ANN Lab2 Report

何秉翔 计04 2020010944

0. 前言

Lab2 实验主要使用 PyTorch 框架对 CNN 和 MLP 进行搭建,并手动实现 BatchNorm 和 Dropout ,完成 cifar-10 classification 的分类任务,目的在于学会使用深度学习框架去搭建更深的网络架构。

1. MLP

1.1 网络架构

我们采用文档中给出的 input -- Linear - BN - ReLU - Dropout - Linear - loss 的架构进行搭建网络,实验中设置的超参数如下:

其中, $hidden_size$ 为 MLP 网络隐藏层维度,我们固定为 1024,固定跑 50 个 epoch ,网络架构如下:

```
Model(

(network): Sequential(
    (0): Linear(in_features=3072, out_features=1024, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): CrossEntropyLoss()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(4): Linear(in_features=1024, out_features=10, bias=True)

(1): BatchNorm1d()
(2): ReLU()
(4): Linear(in_features=1024, out_features=10, bias=True)

(2): RelU()
(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(3): Dropout()
(4): Linear(in_features=1024, out_features=10, bias=True)

(4): Linear(in_features=10, bias=True)

(5): Linear(in_features=10, bias=True)

(6): Linear(in_features=10, bias=True)

(7): Linear(in_features=10, bias=True)

(8): Linear(in_features=10, bias=True)

(9): Linear(in_features=10, bias=True)

(1): Linear(in_features=10, bias=True)

(2): Linear(in_features=10, bias=True)

(3): Linear(in_features=10, bias=True)

(4): Linear(in_features=10, bias=True)

(4): Linear(in_features=10, bias=Tru
```

- Dropout 层的实现按照文档给出,若是 self.training == True ,则对每个神经元随机 drop 之后乘上 (1-p) 进行调整,否则直接返回即可。
- BatchNorm 层的实现按照文档和参考文献给出,对 running_mean 和 running_var 进行记录但不当成模型参数,用于 inference 阶段。

1.2 最佳实验结果

最佳实验结果的可改变超参为:

超参	值
dropout_rate	0.5
batch_size	500

超参	值
learning_rate	0.001

最佳实验结果为:

结果	值		
training loss	0.608461869508028		
training accuracy	0.7891750365495682		
validation loss	1.4441942930221559		
validation accuracy	0.5550000309944153		
best validation accuracy	0.5629000276327133		
final test loss	1.359006679058075		
final test accuracy	0.5610000312328338		

以下结果为最佳实验结果的 ACC 和 Loss 的图。

1.3 无 Dropout 实验

我们使用上述实验效果最好的超参进行实验,此外,将模型架构中的 Dropout 层去掉(可以通过 dropout_rate = 0.0 实现),模型架构为: linput -- Linear - ReLU - Dropout - Linear - loss,实验结果如下:

结果	值		
training loss	0.04587939833290875		
training accuracy	0.9923500388860702		
validation loss	2.2439882874488832		
validation accuracy	0.5269000291824341		
best validation accuracy	0.5409000277519226		
final test loss	1.3810120344161987		
final test accuracy	0.5376000240445137		

实验结果的分析在后面 ~~

1.4 无 BatchNorm 实验

我们使用上述实验效果最好的超参进行实验。此外,将模型架构中的 BatchNorm 层去掉,模型架构为: input – Linear – BN – ReLU – Dropout – Linear – loss , 实验结果如下:

结果	值		
training loss	0.6915876083076		
training accuracy	0.7644750341773033		
validation loss	1.501079499721527		
validation accuracy	0.5545000255107879		
best validation accuracy	0.5635000318288803		
final test loss	1.3940251529216767		
final test accuracy	0.5554000198841095		

实验结果的分析在后面 ~~

2. CNN

2.1 网络架构

我们采用文档中给出的 input - Conv - BN - ReLU - Dropout - MaxPool - Conv - BN - ReLU - Dropout - MaxPool - Linear - loss 的架构进行搭建网络,实验中设置的超参数如下:

```
1 {
       "dropout_rate": [0.0, 0.1, 0.3, 0.5],
2
                                                  (可改变)
3
       "batch_size": [50, 100, 200, 500],
                                                   (可改变)
       "learning_rate": [0.01, 0.001, 0.0005, 0.0001], (可改变)
4
5
       "num_epochs": 50,
6
       "hidden_channels": (1024, 1024),
                                                   (两个 channels 均固定为 1024)
       "kernel_size": (5, 5)
                                                   (两个卷积核 kernel_size 均固定为
7
    5x5)
8
       "MaxPool2d": {
                                                   (两个最大池化层固定参数)
9
           "kernel_size": (2, 2),
                                                   (池化核 2x2)
           "stride": (2, 2)
                                                   (步长为 2)
10
11
12 }
```

我们固定跑 50 个 epoch, 网络架构如下(其余超参默认):

```
1 Model(
2
      (network): Sequential(
3
        (0): Conv2d(3, 256, kernel_size=(5, 5), stride=(1, 1))
4
       (1): BatchNorm2d()
5
       (2): ReLU()
6
        (3): Dropout()
        (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
    ceil_mode=False)
        (5): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
8
9
        (6): BatchNorm2d()
10
       (7): ReLU()
11
        (8): Dropout()
12
        (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
    ceil_mode=False)
13
     (linear): Linear(in_features=6400, out_features=10, bias=True)
14
15
     (loss): CrossEntropyLoss()
16 )
```

- Dropout 层的实现按照文档给出,若是 self.training == True ,则对每个通道随机 drop 之后乘上 (1-p) 进行调整,否则直接返回即可。
- BatchNorm2D 层的实现按照文档和参考文献给出,对 running_mean 和 running_var 进行记录但不当成模型参数,用于 inference 阶段。

另外, 也参考了课件:

Batch Normalization

- Application in CNN
 - ◆ There are 3 "feature" dimensions

$$y = \frac{\gamma \odot (x - \mu)}{\sigma} + \beta$$

28

2.2 最佳实验结果

最佳实验结果的可改变超参为:

超参	值
dropout_rate	0.0
batch_size	100
learning_rate	0.001

最佳实验结果为:

结果	值		
training loss	0.1002505999733694		
training accuracy	0.9653749735653401		
validation loss	1.233576392531395		
validation accuracy	0.7577999812364579		
best validation accuracy	0.7865999799966812		
final test loss	1.1286860883235932		
final test accuracy	0.7769999796152115		

以下结果为最佳实验结果的 ACC 和 Loss 的图。

2.3 无 Dropout 实验

我们使用上述实验效果最好的超参进行实验,此外,将模型架构中的 Dropout 层去掉(可以通过 dropout_rate = 0.0 实现),模型架构为: input -- Linear - ReLU - Dropout -- Linear - loss,实验结果即为**上述最佳实验结果**。

实验结果的分析在后面 ~~

2.4 无 BatchNorm 实验

我们使用上述实验效果最好的超参进行实验。此外,将模型架构中的 BatchNorm 层去掉,模型架构为: input - Conv - ReLU - Dropout - MaxPool - Linear - loss , 实验结果如下:

结果	值		
training loss	0.06134577980148606		
training accuracy	0.978524968624115		
validation loss	2.5819300985336304		
validation accuracy	0.6840999847650528		
best validation accuracy	0.717499983906746		
final test loss	0.8769321936368942		
final test accuracy	0.7058999854326248		

实验结果的分析在后面 ~~

2.5 Dropout1d && Dropout2D

结果	Dropout2d	Dropout1d
training loss	0.1002505999733694	0.0004943044707033551
training accuracy	0.9653749735653401	1.0
validation loss 1.233576392531395 1.22170		1.2217035603523254
validation accuracy	0.7577999812364579	0.7779999768733978
best validation accuracy	0.7865999799966812	0.7817999798059464
final test loss	1.1286860883235932 1.1444447153806687	
final test accuracy	0.7769999796152115	0.7764999788999557

以下是 Dropout1d 的图像:

以下是 Dropout2d 的图像:

从最终的实验结果可以看出,二者的训练表现并没有太大差别, propout2d 会略微好于 propout1d ,但是如果从训练的效率上来看, propout1d 的平均 propout1d 的平均 propout2d 的中均 propout2d 的中均

因此我们更倾向于在 CNN 中使用 Dropout2d,将一个通道看成一个整体。事实上,CNN 的一个通道可以看成是一个卷积核提取的特征,以特征的粒度来选择是否需要 drop 掉,可以理解为 CNN 提取了很多的特征,但是有些特征可能有用,有些可能没用,因此 drop 掉一整个特征的效率更高也更合理。

3. 实验结果分析

3.1 BatchNorm 的作用

若对原始数据集如果 shuffle 得不够均匀,这有可能导致每个 batch 的数据分布不均匀,尤其是在 batch_size 较小的时候,这种不均匀现象会更加明显,也因此容易导致模型训练过程出现较大的波动。

基于此, BatchNorm 的作用就在于将每一层输入的数据进行归一化,得到一个比较相似的分布,都分布到均值为 0 方差为 1 上,但是如果每一层都这样归一化,又容易导致学习到的特征被破坏,因此考虑增加 γ 和 β 这两个可学习的参数进行平移和缩放。

我们从图像上也可以观察出来,有 BatchNorm 的一组训练时的抖动较小,收敛也比较快。

3.2 Dropout 的作用

从 MLP 的结果对比上可以看出,有 dropout 的一组的 train ACC 为 78.9%,没有的一组几乎达到 100%,但是从最终在测试集上的效果来看,反而有 dropout 的一组效果更好。

可以看出来,dropout 的作用主要是防止出现过拟合的情况,当没有 dropout 的时候,train 和 valid 的 差别较大,而且在训练 epoch 较多的时候,在 valid 集上的 loss 甚至还会变大,跟 train 背道而驰,很明显出现了过拟合的现象。随着 dropout 的加入过拟合现象明显缓解,在后面的调参实验中,我们将给出不同的 dropout_rate 下模型的表现,当 dropout_rate 过高的时候也可能导致模型出现欠拟合的情况。

但是从 CNN 的效果上看,貌似 dropout_rate = 0 ,也就是没有 dropout 层的时候效果最好。这可能是我们考虑的超参并不多,比如 CNN 网络的通道数、卷积核大小以及 maxpool 的大小等参数我们都是定死的,于是考虑设置更小的通道数进行实验,比如设置为 128 ,结果发现能得到跟 MLP 类似的结论。

4. 思考题

4.1 self.training 的作用

这是 PyTorch 深度学习框架提供的一个内置属性, 当对模型调用 model.train() 方法的时候, 该 model 的 training 属性就会被设置为 True, 表示正在训练; 同理, 如果对模型调用 model.eval() 方法, 该属性就会被设置为 False。

对于 Dropout 层和 BatchNorm 层,其在 train 阶段和 eval 阶段的行为并不同,因此我们需要通过该属性来判断目前模型是处于哪个阶段,来进行分别处理。

4.2 train_loss 与 valid_loss 的对比

这两个损失分别是在训练集以及验证集上计算而来的,两个数据集并不同。当两者差别较大,而且往往是 train_loss 较小而 valid_loss 较大的时候,这也就是过拟合的现象,这意味着模型在训练过程中,学习到 了训练集上很多特征,但是并不是所有特征都是必要的,这虽然会让模型在训练集表现越来越好,但是当训练集的数据不足以代表更广的数据,比如验证集的数据时,模型的泛化能力就难以增强。

虽然说要学习到足够的特征,但是过于细节的特征学习也许表现并不好,因此这也是一个 trade-off ,在欠拟合和过拟合之间取得较好的平衡点。我们也从 Loss 曲线中可以看出,train_loss 基本是一路下滑,但是 valid_loss 一般是先下降后上升,因此 valid_loss 以及验证集的目的就在于,当发现模型的 valid_loss 开始上升时,也就是在转折点处,停止模型的训练,即设置一个 early_stop 的阈值,去改善过拟合的问题。

4.3 CNN && MLP 对比

CNN 以及 MLP 最好的结果在下表呈现:

结果	CNN	MLP
training loss	0.1002505999733694	
training accuracy	0.9653749735653401	0.7891750365495682
validation loss	1.233576392531395	1.4441942930221559

结果	CNN	MLP
validation accuracy	0.7577999812364579	0.5550000309944153
best validation accuracy	0.7865999799966812	0.5629000276327133
final test loss	1.1286860883235932 1.359006679058075	
final test accuracy	0.7769999796152115	0.5610000312328338

从二者的模型架构来对比,可以发现 CNN 的模型架构更加复杂,每个 epoch 的时间也相对来说更长,但是从最终的表现来看, CNN 要明显优于 MLP。

相较于 MLP, CNN 网络实现了局部连接以及权值共享,训练参数量大大减少,而 MLP 由于较大的参数量更容易产生过拟合的情况。另外, CNN 可以对一个像素块的周围一起进行运算,而不是像 MLP 那样平铺地计算,因此 CNN 可以对图像的空间信息进行更好的模拟,而 MLP 可以看成是卷积核大小为 1 的 CNN,图片中相邻像素块的联系并不如 CNN 那么紧密,因此 CNN 更适合于处理图像信息,更适合于去提取图像中局部的特征。

5. 超参实验

此部分里,我们选取 Tearning_rate 、 dropout_rate 以及 batch_size 三者进行超参数实验,探究这些超参数是如何影响 Dropout 和 BatchNorm 层的表现的。

5.1 实验设置

首先, CNN 和 MLP 模型网络均保留 BatchNorm 以及 Dropout 层,对于 MLP 网络,我们的超参设置如下:

对于 CNN 网络, 我们的超参设置如下:

```
1 {
       "dropout_rate": [0.0, 0.1, 0.3, 0.5],
2
                                                 (可改变)
       "batch_size": [50, 100, 200, 500],
3
                                                 (可改变)
       "learning_rate":[0.01, 0.001, 0.0005, 0.0001], (可改变)
4
       "num_epochs": 50,
5
6
       "hidden_channels": (1024, 1024),
                                                  (两个 channels 均固定为 1024)
       "kernel_size": (5, 5)
7
                                                  (两个卷积核 kernel_size 均固定为
   5x5)
       "MaxPool2d": {
                                                   (两个最大池化层固定参数)
8
           "kernel_size": (2, 2),
9
                                                  (池化核 2x2)
           "stride": (2, 2)
                                                   (步长为 2)
10
11
12 }
```

5.2 实验结果

5.2.1 dropout_rate

在调整 dropout_rate 时,我们固定其他可改变的超参为对应的最佳实验结果所设置的超参:

```
1
    {
2
        "dropout_rate": [0.0, 0.1, 0.3, 0.5],
3
        "batch_size": {
            "MLP": 500,
4
5
            "CNN": 100,
6
        },
        "learning_rate": {
7
8
            "MLP": 0.001,
            "CNN": 0.001,
9
10
        }
11 }
```

我们首先汇报在这四种 dropout_rate 下的实验结果,再进行结果分析。

5.2.1.1 MLP

dropout_rate	0.0	0.1	0.3	0.5
training loss	0.0459	0.1498	0.3399	0.6085
training accuracy	0.9924	0.9565	0.8868	0.7892
validation loss	2.244	1.9759	1.708	1.444
validation accuracy	0.5269	0.5312	0.5362	0.5550
best validation accuracy	0.5409	0.5496	0.5577	0.5629
final test loss	1.381	1.464	1.357	1.359
final test accuracy	0.5376	0.5432	0.5517	0.5610

5.2.1.2 CNN

dropout_rate	0.0	0.1	0.3	0.5
training loss	0.1003	0.0468	0.1496	0.4503
training accuracy	0.9654	0.9850	0.9493	0.8447
validation loss	1.234	1.306	0.9274	0.7266
validation accuracy	0.7578	0.7437	0.7495	0.7594
best validation accuracy	0.7866	0.7547	0.7640	0.7657
final test loss	1.129	0.9356	0.7470	0.7335
final test accuracy	0.7770	0.7537	0.7542	0.7578

5.2.1.3 结果分析

对于 MLP,随着 dropout_rate 的提高,最后一次训练的 ACC 逐渐下降靠近验证集的 ACC。一开始没有 dropout 时,训练集上的准确率接近 100% 而验证集只有 50% 左右,到所测试的最高的 dropout_rate = 0.5 时,训练集上的准确率为 78% 而验证集上为 55% 左右,很明显看到过拟合的情况有不少缓解。另一方面,我们也可以从图像中看出,随着 dropout_rate 的提高,valid_loss 曲线的转折点往较大的 epoch 处

偏移,即说明过拟合情况正在缓解,并且 valid_loss 没有反向上升太多。

对于 CNN ,随着 dropout_rate 的提高,训练集上的准确率也逐步向验证集靠拢,并且从曲线中可以看出,在 CNN 里,随着 dropout_rate 的提高,模型训练的稳定性也提升了,原因可能是调整 dropout_rate 时,相 当于同时训练了很多个模型,在 dropout_rate = 0.5 时,随机 drop 的通道数最平均,此时的排列组合方式是最多的,因此相当于是很多的模型平均的效果,使得最后的稳定性有所提升。

从实验结果我们也注意到,其实 dropout_rate 的超参实验的参数设置可以更广一些,比如设置 dropout_rate = 0.7 , 因为 MLP 和 CNN 都只是缓解了过拟合现象,而没有达到一个居中的效果,或者有欠 拟合的情况,但是从理论分析上可知, dropout_rate 较高时,确实会出现欠拟合的现象,因此我们也测试了 0.7 的情况,发现二者均出现了训练集准确率低于验证集准确率的情况。

5.2.2 batch_size

在调整 batch_size 时,我们固定其他可改变的超参为对应的最佳实验结果所设置的超参:

```
1 {
2
        "batch_size": [50, 100, 200, 500],
       "dropout_rate": {
3
           "MLP": 0.5,
4
5
            "CNN": 0.0,
6
        "learning_rate": {
7
           "MLP": 0.001,
8
           "CNN": 0.001,
9
10
        }
11 }
```

我们首先汇报在这四种 batch_size 下的实验结果,再进行结果分析。

5.2.2.1 MLP

batch_size	50	100	200	500
training loss	0.4680	0.4992	0.5452	0.6085
training accuracy	0.8320	0.8219	0.8098	0.7892
validation loss	2.084	1.669	1.520	1.444
validation accuracy	0.5162	0.5451	0.5555	0.5550
best validation accuracy	0.5573	0.5582	0.5648	0.5629
final test loss	1.399	1.373	1.435	1.359
final test accuracy	0.5513	0.5547	0.5606	0.5610

5.2.2.2 CNN

batch_size	50	100	200	500
training loss	0.0144	0.1003	0.0005	0.0007

batch_size	50	100	200	500
training accuracy	0.9956	0.9654	1.0	1.0
validation loss	1.681	1.234	1.105	1.001
validation accuracy	0.7483	0.7578	0.7848	0.7803
best validation accuracy	0.7645	0.7866	0.7848	0.7849
final test loss	1.375	1.129	1.078	0.9452
final test accuracy	0.7549	0.7770	0.7747	0.7766

5.2.2.3 结果分析

随着 batch_size 的增大,MLP 和 CNN 的表现均有略微提升,虽然 CNN 在 100 的时候表现最好,但是 200 和 500 下的测试集准确率与之不相上下,在误差允许范围内。对于 MLP,可以看得出来 batch_size 的提升使得模型的过拟合程度有所降低,而对于 CNN ,从图像上可以看出 50 个 epoch 对于 CNN 有些过多了,应该差不多 30 个 epoch 就足够了,从图像中也可以看出 valid_loss 的反向上升现象有所减缓。(另外对于 batch_size=100 的一组在训练集上的准确率可能不太具有代表性,从图像中可以看出这是遇到了一些特殊情况,50 个 epoch 正好处于尖峰的位置,也说明了模型稳定性还不是很好)

另一方面,从图像上也可以看出来随着 batch_size 的提高,BatchNorm 对于增强模型的训练稳定性的能力更强。事实上 BatchNorm 本意就在于对一个 batch 的数据进行归一化,减小不同 batch 之间的偏差。如果一个 batch 过小,这样的归一化往往不能正确反映数据集的特征,会导致一些误差,使得模型训练过程的波动较大。因此对于 BatchNorm 的效果,我们可以适当提高 batch_size。

5.2.3 learning_rate

在调整 learning_rate 时,我们固定其他可改变的超参为对应的最佳实验结果所设置的超参:

```
1
    {
2
         "learning_rate": [0.01, 0.001, 0.0005, 0.0001],
3
         "dropout_rate": {
             "MLP": 0.5,
4
             "CNN": 0.0,
5
6
         "batch_size": {
8
             "MLP": 500,
             "CNN": 100,
9
10
11 }
```

我们首先汇报在这四种 learning_rate 下的实验结果,再进行结果分析。

5.2.3.1 MLP

learning_rate	0.01	0.001	0.0005	0.0001
training loss	0.5448	0.6085	0.6746	0.7926
training accuracy	0.8030	0.7892	0.7679	0.7363
validation loss	1.791	1.444	1.372	1.305
validation accuracy	0.5284	0.5550	0.5574	0.5569
best validation accuracy	0.5452	0.5629	0.5626	0.5604

learning_rate	0.01	0.001	0.0005	0.0001
final test loss	1.669	1.359	1.317	1.299
final test accuracy	0.5451	0.5610	0.5561	0.5539

5.2.3.2 CNN

learning_rate	0.01	0.001	0.0005	0.0001
training loss	0.0947	0.1003	0.0067	0.0229
training accuracy	0.9777	0.9654	0.9998	0.9981
validation loss	3.976	1.234	1.045	0.9579
validation accuracy	0.7083	0.7578	0.7797	0.7518
best validation accuracy	0.7244	0.7866	0.7896	0.7615
final test loss	0.8922	1.129	1.006	0.9667
final test accuracy	0.7223	0.7770	0.7722	0.7514

5.2.3.3 结果分析

对于 MLP 和 CNN 而言,较大的学习率虽然能够使得模型训练较快,Loss 能很快降下来,但是从图像中可以看出来,验证集上的损失有反向上升的趋势,MLP 比 CNN 的图像更明显,即 valid_loss 的低谷对应的 epoch 数随着 lr 的增大而减小,这也说明在训练 epoch 数与学习率之间存在一个 trade-off,如果设置的不好,就容易产生过拟合现象或者欠拟合现象。

同时对于两个网络而言,都是学习率居中的时候在测试集上表现效果最好。当学习率较高的时候,模型容易出现反复横跳的波动情况,难以收敛,当学习率较低的时候,模型容易陷在局部最优解里,无法搜索到全局最优解。

6. 总结

Lab2 实验给了我一个使用 PyTorch 深度学习框架自己搭建网络的机会,让我了解了常用的一些属性和方法,比如 self.training 以及 self.register_buffer 等之前自己未注意到的部分。另外通过手写 Dropout 和 BatchNorm, 我也对这两种神经网络中的技巧以及作用有了更深的认识。

最后,感谢助教和老师提供的清晰的代码框架以及实验指导文档,这次实验让我收获很多!