CENTRO UNIVERSITÁRIO HERMÍNIO OMETTO

CEP 13607-

Av. Maximiliano Baruto, 500 339 Araras SP

Tel (19) 3543 -1439 Fax (19) 3543 -1440

Aluno: André Luiz N. Carneiro De Castro RA: 92854

P1 - Computação Gráfica

Prof. M.e Tiago Remedio

FUNDAÇÃO HERMÍNIO OMETTO

ARARAS/SP

10/2020

FUNDAÇÃO HERMÍNIO OMETTO

Av. Maximiliano Baruto, 500 CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

1) Quais são os dois tipos de projeções planares principais? (1 ponto)

Paralelas e Perspectiva.

- b) Paralelas e Normais.
- c) Normais e Perspectiva.
- d) Isométrica e Normais.
- e) Isométrica e Perspectiva.
- 2) No que consiste o Recorte? (1 ponto)
 - a) Sinônimo da Janela de Desenho
 - b) Sinônimo da Viewport
 - c) Remoção das partes fora da Janela de Viewport
 - Remoção das partes fora da Janela de Desenho
 - e) Transformação do conteúdo da Janela de Desenho para a Janela de Viewport
- Por que usamos coordenadas homogêneas? (1 ponto)
 - a) Para termos mais uma coordenada.
 - b) Para caso uma coordenada apresente erro, tem-se outra.
 - Para consistência nos cálculos.
 - d) Para aumentar a complexidade.
 - e) Para remover imperfeições das geometrias.
- Considere o polígono fechado definido pelos vértices V1(0,0), V2(6,1), V3(9,4), V4(7,8), V5(4,6) e V6(2,8). Faça o preenchimento do mesmo usando o algoritmo ScanLine. Para isto monte a tabela de arestas (TA) e tabela de arestas ativas (TAA). Apresente quais os pontos que

serão preenchidos. (2 pontos) Preenchendo os vértices temos:

Av. Maximiliano Baruto, 500 339 Araras SP

Tel (19) 3543 -1439 Fax (19) 3543 -1440

CEP 13607-

Figura 1 - Polígono obtido através dos vértices

Funcionamento do Algoritmo que funcionará como um scanner:

- 1° Passo do algoritmo é ter todas as arestas modeladas.
- 2º Tabela de arestas (organizam quais arestas serão analisadas a cada vez que a linha passar).
- 3° Tabela de arestas ativas, linha de *scanline* bateu e terá que pintar.

Começará lendo as linhas horizontais. E sempre iremos desconsiderar os vértices superiores.

Y_{max} $X \text{ em } Y_{min}$ $\frac{1}{m}$ Ponteiro para a proxima aresta				
$\frac{1}{m}$ $\frac{1}{m}$ proxima aresta	V	V om V	1	Ponteiro para a
	¹ max	A CIII I min	\overline{m}	proxima aresta

Estrutura da Aresta

Partindo como início pelo Y, seguindo a sequência de AB, primeira aresta, temos:

V12	1	0	6	0(y _{min})
		1	Δx	6-0
		$\frac{-}{m}$ =	$=\frac{1}{\Lambda v}$	1-0

Av. Maximiliano Baruto, 500 CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

V23 4	6	1	1(y _{min})			
	1 =	$=\frac{\Delta x}{\Delta y}=$	9-6			
	m	Δy	4-1			
V34 8	9	-2/4	4(y _{min})			
	1	$=\frac{\Delta x}{\Delta y}=$	7-9			
	m^{-}	Δy	8-4			
V45 8	4	-3/-2	6(y _{min})		
	1	$=\frac{\Delta x}{\Delta y}=\frac{\Delta x}{\Delta y}$	4-7			
	\overline{m}	$-\frac{1}{\Delta y}$	6-8			
V56 8	4	-1	6(y _{min})			
$\frac{1}{m} = \frac{\Delta x}{\Delta y} = \frac{2-4}{8-6}$						
	m	Δy	8–6			
V61 8	0	-2/-8	O(y _{min})			
	1	$=\frac{\Delta x}{\Delta y}=$	0-2			
	m^{-}	Δy	8-0			
V12	1	0	6	O(y _{min})		
V23	4	6	1	1(y _{min})		
V34	8	9	-0,5	4(y _{min})		
V45	8	4	1,5	6(y _{min})		
V45						
V45 V56	8	4	-1	6(y _{min})		

Organizando tabela de arestas, que serão organizados através do Y mínimo de cada um, teremos:

Y atual: 0

Entrará [8, 0, 0.25, 0] Entrará [1, 0, 6.0, 0]

Tabela de Arestas Ativas (TAA) Ordenada em x:

Pos 0 [8, 0, 0.25, 0]

Pos 1 [1, 0, 6.0, 0]

Pintará de (0 , 0) até (0 , 0)

CENTRO UNIVERSITÁRIO HERMÍNIO OMETTO

Av. Maximiliano Baruto, 500

CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

Y atual: 1

Entrará [4,6,1.0,1] Sairá [1, 6.0, 6.0, 0]

TAA - Ordenada em X 0 [8 , 0.25 , 0.25 , 0] 1 [4, 6, 1.0, 1]

Pintará (0, 1) até (6, 1)

Y atual: 2

TAA Ordenada em x! 0 [8, 0.5, 0.25, 0] 1 [4, 7.0, 1.0, 1]

Pintará (1,2) até (7,2)

Y atual: 3

TAA Ordenada em x! 0 [8 , 0.75 , 0.25 , 0] 1 [4, 8.0, 1.0, 1]

Pintará (1,3) até (8,3)

Y atual: 4 Entrou [8, 9, -0.5, 4]

CENTRO UNIVERSITÁRIO HERMÍNIO OMETTO

Av. Maximiliano Baruto, 500 CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

Sairá: [4, 9.0, 1.0, 1]

TAA - Ordenada em x! 0 [8 , 1.0 , 0.25 , 0] 1 [8 , 9 , -0.5 , 4]

Pintará (1,4) até (9,4)

Y atual: 5

TAA - Ordenada em x! 0 [8 , 1.25 , 0.25 , 0] 1 [8 , 8.5 , -0.5 , 4]

Pintará (1,5) até (8,5)

Y atual: 6

Entrou [8 , 4 , -1.0 , 6] Entrou [8 , 4 , 1.5 , 6]

TAA - Ordenada em x! 0 [8 , 1.5 , 0.25 , 0] 1 [8 , 4 , -1.0 , 6] 2 [8 , 4 , 1.5 , 6] 3 [8 , 8.0 , -0.5 , 4]

Pintará (2,6) até (4,6) Pintará (4,6) até (8,6)

Y atual: 7

TAA - Ordenada em x! 0 [8 , 1.75 , 0.25 , 0] 1 [8 , 3.0 , -1.0 , 6] 2 [8 , 5.5 , 1.5 , 6] 3 [8 , 7.5 , -0.5 , 4]

Pintará (2,7) até (3,7) Pintará (6,7) até (7,7)

Y atual: 8

Sairá [8 , 7.0 , -0.5 , 4] Sairá [8 , 7.0 , 1.5 , 6]

Av. Maximiliano Baruto, 500 CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

Sairá [8 , 2.0 , -1.0 , 6] Sairá [8 , 2.0 , 0.25 , 0]

Com isso teremos o fim do Scanline e nosso polígono preenchido.

6) Juninho deseja criar uma linha tracejada para suas geometrias. Ele já conseguiu implementar o DDA e o Bresenham, porém estes dois métodos criam linhas contínuas. Proponha uma modificação em um destes algoritmos para que Juninho consiga traçar linhas tracejadas.

PS: Não é para criar o algoritmo, e sim explicar as modificações que você faria, e em quais lugares do algoritmo, para que linhas tracejadas possam ser desenhadas na tela. **(1,5 pontos)**

Juninho deveria modificar o Bresenham para que ele tenha a função de um Bresenham Baixa/Alta para realizar as linhas tracejadas nas *diagonais*. Para as linhas *verticais* e *horizontais*, ele poderia utilizar DDA com uma pequena alteração adicionando um contador. Como o DDA pinta pixels que estão próximos, essa mecânica de distanciamento dos pixels faz com que as linhas fiquem tracejadas. Também funcionaria para linhas diagonais.

4) Aplique o filtro M (Gaussiano) na imagem I. Apresente uma tabela com os valores resultantes.

(1,5 pontos)

1/16	2/16	1/16				
2/16 4/16 2/16						
1/16 2/16 1/16						

0	255	0	0	255
0	255	0	255	0
0	0	255	0	0
0	255	0	255	0
255	0	0	255	0

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

0	255	0	0	255
0	255	0	255	0
0	0	255	0	0
0	255	0	255	0
255	0	0	255	0

Analisando os pixels centrais da tabela e multiplicando os valores correspondentes somamos e atualizamos os pixels, obtemos:

Av. Maximiliano Baruto, 500 CEP 13607-339 Araras SP Tel (19) 3543 -1439 Fax (19) 3543 -1440

47,8	95,6	63,7	63,7	79,6
47,8	111,6	111,6	95,6	63
31	95,6	127,5	95,6	31,9
63,7	95,6	111,6	111,6	47,8
79,6	63,7	63,7	95,6	47,8

7) A partir da análise das duas imagens (a) Inicial e (b) Final, indique quais foram as transformações geométricas, e os valores dentro de cada transformação, para que a imagem (a) tenha se transformado na imagem (b). (2 pontos)

- 1. Primeiramente *TODOS* os polígonos devem passar pela translação até o ponto de origem, para que elas tenham um ponto de referência.
- 2. Polígono roxo, espelhamento em y, translocado 3 unidades em y com valor positivo e 1 unidade em X positiva.
- 3. Polígono laranja, translocado em x em 1 unidade e translocado em Y negativamente em 3 unidades. Após isso sofreu uma escala em X de 3 unidades positivas.
- 4. Polígono azul, espelhamento em x, translação em x de 3 unidades para a direita e translocado em y com valor de 4 unidades.
- 5. Polígono verde translocado em Y em 2 unidades com valor positivo.