Some Recent Uses of Stern-like Protocols in Lattice-Based Cryptography

Khoa Nguyen, Nanyang Technological University

Quantum-Safe Crypto Workshop, CQT, NUS

October, 3rd, 2016

Outline of the Talk

- Introduction
 - Zero-Knowledge Protocols
 - Zero-Knowledge Protocols in Lattice-Based Cryptography
- Stern-like Protocols
 - Stern-KTX Protocol
 - Abstracting Stern's Protocol
 - Techniques and Applications
- 3 Conclusion

Zero-Knowledge Protocols

[Goldwasser-Micali-Rackoff 1985]

- ullet Zero-knowledge: ${\cal V}$ learns nothing except the validity of the statement.
- Soundness: Dishonest \mathcal{P} should not be able to cheat.
- Completeness: Honest $\mathcal P$ should be able to convince $\mathcal V$.

Numerous applications: identification, signatures, anonymity schemes, MPC, ...

Existing ZK Protocols in Lattice-Based Crypto

- Lattice-based crypto [Ajtai'96, GPV'08]: An exciting area.
- Existing zero-knowledge protocols in LBC belong to 2 main classes.

Existing ZK Protocols in Lattice-Based Crypto

- Lattice-based crypto [Ajtai'96, GPV'08]: An exciting area.
- Existing zero-knowledge protocols in LBC belong to 2 main classes.
- Schnorr-like [Schnorr'89] approach. Technique: masking.
 - Pioneered by Lyubashevsky [L'08,12].
 - Additional technique: rejection sampling.
 - Relatively efficient, imperfect completeness, extraction gap.

Existing ZK Protocols in Lattice-Based Crypto

- Lattice-based crypto [Ajtai'96, GPV'08]: An exciting area.
- Existing zero-knowledge protocols in LBC belong to 2 main classes.
- Schnorr-like [Schnorr'89] approach. Technique: masking.
 - Pioneered by Lyubashevsky [L'08,12].
 - Additional technique: rejection sampling.
 - Relatively efficient, imperfect completeness, extraction gap.
- ② Stern-like [Stern'93,96] approach. Technique: **permuting**, **masking**.
 - First used by Kawachi et al. [KTX'08]: restricted relation.
 - Additional techniques [LNSW'13]: **decomposition** and **extension**.
 - Recently developed into a strong tool for privacy-preserving LBC.
 - Less efficient, perfect completeness, no extraction gap (i.e., the exact constraints of prover's secret are "captured").

Stern's original protocol: SD relation (naturally appearing in code-based crypto): (public matrix) · (binary secret vector with fixed weight) = (public vector) mod 2.

ullet [KTX'08] shifted Stern's to mod $q \Rightarrow$ a restricted, unnatural version of ISIS.

- ullet [KTX'08] shifted Stern's to mod ${\it q} \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s decomposition-extension techniques ⇒ (I)SIS and LWE.
 ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.

- ullet [KTX'08] shifted Stern's to mod ${\it q} \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s **decomposition-extension** techniques ⇒ (I)SIS and LWE. ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.
- [LLNW'14]: a hidden (μ, σ) pair for the Bonsai signature [CHKP'10]. \Rightarrow group signatures, policy-based signatures [CNW'15].

- ullet [KTX'08] shifted Stern's to mod $q \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s decomposition-extension techniques ⇒ (I)SIS and LWE.
 ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.
- [LLNW'14]: a hidden (μ, σ) pair for the Bonsai signature [CHKP'10]. \Rightarrow group signatures, policy-based signatures [CNW'15].
- [LNW'15]: a hidden (μ, σ) pair for the Boyen signature [Boy'10].

- ullet [KTX'08] shifted Stern's to mod ${\it q} \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s decomposition-extension techniques ⇒ (I)SIS and LWE.
 ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.
- [LLNW'14]: a hidden (μ, σ) pair for the Bonsai signature [CHKP'10]. \Rightarrow group signatures, policy-based signatures [CNW'15].
- [LNW'15]: a hidden (μ, σ) pair for the Boyen signature [Boy'10].
- [LLNW'16]: a hidden path in a Merkle hash tree \Rightarrow logarithmic-size set membership \Rightarrow logarithmic-size ring signatures, trapdoor-free GS.

- ullet [KTX'08] shifted Stern's to mod $q \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s decomposition-extension techniques ⇒ (I)SIS and LWE.
 ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.
- [LLNW'14]: a hidden (μ, σ) pair for the Bonsai signature [CHKP'10]. \Rightarrow group signatures, policy-based signatures [CNW'15].
- [LNW'15]: a hidden (μ, σ) pair for the Boyen signature [Boy'10].
- [LLNW'16]: a hidden path in a Merkle hash tree ⇒ logarithmic-size set membership ⇒ logarithmic-size ring signatures, trapdoor-free GS.
- [LLMNW'16-(1)]: **abstracting Stern**; the μ being signed is U's hidden pk. \Rightarrow "signatures with protocols", dynamic GS, anonymous credentials.

- ullet [KTX'08] shifted Stern's to mod $q \Rightarrow$ a restricted, unnatural version of ISIS.
- [LNSW'13]'s **decomposition-extension** techniques ⇒ (I)SIS and LWE. ⇒ immediate applications: (ID-based) identifications, plaintext knowledge.
- [LLNW'14]: a hidden (μ, σ) pair for the Bonsai signature [CHKP'10]. \Rightarrow group signatures, policy-based signatures [CNW'15].
- [LNW'15]: a hidden (μ, σ) pair for the Boyen signature [Boy'10].
- [LLNW'16]: a hidden path in a Merkle hash tree ⇒ logarithmic-size set membership ⇒ logarithmic-size ring signatures, trapdoor-free GS.
- [LLMNW'16-(1)]: **abstracting Stern**; the μ being signed is U's hidden pk. \Rightarrow "signatures with protocols", dynamic GS, anonymous credentials.
- [LLMNW'16-(2)]: "quadratic relations", i.e., (secret matrix) · (secret vector)
 ⇒ group encryption.

Outline

- Introduction
 - Zero-Knowledge Protocols
 - Zero-Knowledge Protocols in Lattice-Based Cryptography
- Stern-like Protocols
 - Stern-KTX Protocol
 - Abstracting Stern's Protocol
 - Techniques and Applications
- 3 Conclusion

```
Parameters: k, d, t \in \mathbb{Z}; \mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}; COM.
```

Common input: Matrix
$$\mathbf{M} \in \mathbb{Z}_2^{k \times d}$$
, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

$$\mathcal{P}$$
's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

Verifier

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

Verifier

1. Pick
$$\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^d$$
, $\pi \overset{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where
$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}(\pi, \mathbf{M} \cdot \mathbf{r}) \\ \mathbf{c}_2 = \mathrm{COM}(\pi(\mathbf{r})) \\ \mathbf{c}_3 = \mathrm{COM}(\pi(\mathbf{w} + \mathbf{r})) \end{cases}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}(\pi, \mathbf{M} \cdot \mathbf{r}) \\ \mathbf{c}_2 = \mathrm{COM}(\pi(\mathbf{r})) \\ \mathbf{c}_3 = \mathrm{COM}(\pi(\mathbf{w} + \mathbf{r})) \end{cases}$$

Verifier

2. Send a challenge

$$\mathit{Ch} \xleftarrow{\$} \{1,2,3\}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{ \mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t \}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}(\pi, \mathbf{M} \cdot \mathbf{r}) \\ \mathbf{c}_2 = \mathrm{COM}(\pi(\mathbf{r})) \\ \mathbf{c}_3 = \mathrm{COM}(\pi(\mathbf{w} + \mathbf{r})) \end{cases}$$

3. If Ch = 1, reveal c_2 and c_3 . Send $\pi(\mathbf{w})$ and $\pi(\mathbf{r})$

Verifier

2. Send a challenge

$$\textit{Ch} \xleftarrow{\$} \{1,2,3\}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} c_1 = \mathrm{COM}\big(\pi, \boldsymbol{\mathsf{M}} \cdot \boldsymbol{\mathsf{r}}\big) \\ c_2 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{r}})\big) \\ c_3 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{w}} + \boldsymbol{\mathsf{r}})\big) \end{cases}$$

3. If Ch = 1, reveal c_2 and c_3 . Send $\pi(\mathbf{w})$ and $\pi(\mathbf{r})$

Verifier

2. Send a challenge

$$\textit{Ch} \xleftarrow{\$} \{1,2,3\}$$

Check that $\pi(\mathbf{w}) \in \mathcal{B}$ and

$$\begin{cases} \mathbf{c}_2 = \mathrm{COM}\big(\pi(\mathbf{r})\big) \\ \mathbf{c}_3 = \mathrm{COM}\big(\pi(\mathbf{w}) + \pi(\mathbf{r})\big) \end{cases}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} c_1 = \mathrm{COM}\big(\pi, \boldsymbol{\mathsf{M}} \cdot \boldsymbol{\mathsf{r}}\big) \\ c_2 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{r}})\big) \\ c_3 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{w}} + \boldsymbol{\mathsf{r}})\big) \end{cases}$$

3. If Ch = 2, reveal c_1 and c_3 . Send π and w + r.

Verifier

2. Send a challenge

$$\textit{Ch} \xleftarrow{\$} \{1,2,3\}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} c_1 = \mathrm{COM}\big(\pi, \boldsymbol{\mathsf{M}} \cdot \boldsymbol{\mathsf{r}}\big) \\ c_2 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{r}})\big) \\ c_3 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{w}} + \boldsymbol{\mathsf{r}})\big) \end{cases}$$

3. If Ch = 2, reveal c_1 and c_3 . Send π and w + r.

Verifier

2. Send a challenge

$$Ch \xleftarrow{\$} \{1,2,3\}$$

Check that

$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}\big(\pi, \mathbf{M} \cdot (\mathbf{w} + \mathbf{r}) - \mathbf{v}\big) \\ \mathbf{c}_3 = \mathrm{COM}\big(\pi(\mathbf{w} + \mathbf{r})\big) \end{cases}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}(\pi, \mathbf{M} \cdot \mathbf{r}) \\ \mathbf{c}_2 = \mathrm{COM}(\pi(\mathbf{r})) \\ \mathbf{c}_3 = \mathrm{COM}(\pi(\mathbf{w} + \mathbf{r})) \end{cases}$$

3. If Ch = 3, reveal c_1 and c_2 . Send π and r.

Verifier

2. Send a challenge

$$\textit{Ch} \xleftarrow{\$} \{1,2,3\}$$

Parameters: $k, d, t \in \mathbb{Z}$; $\mathcal{B} = \{\mathbf{w} \in \{0, 1\}^d : wt(\mathbf{w}) = t\}$; COM

Common input: Matrix $\mathbf{M} \in \mathbb{Z}_2^{k \times d}$, vector $\mathbf{v} \in \mathbb{Z}_2^k$.

 \mathcal{P} 's goal: Proving knowledge of $\mathbf{w} \in \mathcal{B}$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod 2$.

Prover

1. Pick $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^d$, $\pi \overset{\$}{\leftarrow} \mathcal{S}_d$. Send $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$, where

$$\begin{cases} c_1 = \mathrm{COM}\big(\pi, \boldsymbol{\mathsf{M}} \cdot \boldsymbol{\mathsf{r}}\big) \\ c_2 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{r}})\big) \\ c_3 = \mathrm{COM}\big(\pi(\boldsymbol{\mathsf{w}} + \boldsymbol{\mathsf{r}})\big) \end{cases}$$

3. If Ch = 3, reveal c_1 and c_2 . Send π and r.

Verifier

2. Send a challenge

$$Ch \xleftarrow{\$} \{1,2,3\}$$

Check that

$$\begin{cases} \mathbf{c}_1 = \mathrm{COM}(\pi, \mathbf{M} \cdot \mathbf{r}) \\ \mathbf{c}_2 = \mathrm{COM}(\pi(\mathbf{r})) \end{cases}$$

Why Stern's ideas work?

Permuting

- $\mathbf{w} \in \mathcal{B} \iff \pi(\mathbf{w}) \in \mathcal{B};$
- $\mathbf{w} \in \mathcal{B}$ and $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d \longrightarrow \pi(\mathbf{w})$ is uniform in \mathcal{B} .

Why Stern's ideas work?

- Permuting
 - $\mathbf{w} \in \mathcal{B} \iff \pi(\mathbf{w}) \in \mathcal{B}$;
 - $\mathbf{w} \in \mathcal{B}$ and $\pi \stackrel{\$}{\leftarrow} \mathcal{S}_d \longrightarrow \pi(\mathbf{w})$ is uniform in \mathcal{B} .
- **2** Masking $\mathbf{r} \xleftarrow{\$} \mathbb{Z}_2^d \longrightarrow \mathbf{w} + \mathbf{r}$ is uniform in \mathbb{Z}_2^d .

Why Stern's ideas work?

Permuting

- $\mathbf{w} \in \mathcal{B} \iff \pi(\mathbf{w}) \in \mathcal{B};$
- $\mathbf{w} \in \mathcal{B}$ and $\pi \xleftarrow{\$} \mathcal{S}_d \longrightarrow \pi(\mathbf{w})$ is uniform in \mathcal{B} .
- **2** Masking $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^d \longrightarrow \mathbf{w} + \mathbf{r}$ is uniform in \mathbb{Z}_2^d .

Kawachi et al.'s adaptation [KTX'08] to lattice setting:

- $\bullet \ \mathbf{M} \cdot \mathbf{w} = \mathbf{v} \bmod \mathbf{q} \quad \text{and} \quad \mathbf{w} \in \mathcal{B}.$
- Limited applications: identification, signature (via [FS'86]).

Why Stern's ideas work?

Permuting

- $\mathbf{w} \in \mathcal{B} \iff \pi(\mathbf{w}) \in \mathcal{B};$
- $\mathbf{w} \in \mathcal{B}$ and $\pi \xleftarrow{\$} \mathcal{S}_d \longrightarrow \pi(\mathbf{w})$ is uniform in \mathcal{B} .
- **2** Masking $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^d \longrightarrow \mathbf{w} + \mathbf{r}$ is uniform in \mathbb{Z}_2^d .

Kawachi et al.'s adaptation [KTX'08] to lattice setting:

- $\bullet \ \mathbf{M} \cdot \mathbf{w} = \mathbf{v} \bmod \mathbf{q} \quad \text{and} \quad \mathbf{w} \in \mathcal{B}.$
- Limited applications: identification, signature (via [FS'86]).

In lattice-based crypto, we usually work with

- $\mathbf{w} \stackrel{\$}{\leftarrow} \{0,1\}^d$ (no restriction on Hamming weight).
- $\mathbf{w} \stackrel{\$}{\leftarrow} [0, \beta]^d$ for some $1 \ll \beta \ll q$.
- Gaussian $\mathbf{w} \in [-\beta, \beta]^d$.

Abstracting Stern's Protocol

Suppose we want to use Stern to prove $\mathbf{w} \in \mathsf{VALID} \subset \mathbb{Z}^d$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \bmod q$.

Question: Which properties of VALID do we need?

Abstracting Stern's Protocol

Suppose we want to use Stern to prove $\mathbf{w} \in VALID \subset \mathbb{Z}^d$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod q$.

Question: Which properties of VALID do we need?

An answer: There exists a finite set S s.t. we can associate every $\pi \in S$ with a permutation T_{π} of d elements, satisfying:

- **1** $\mathbf{w} \in \mathsf{VALID} \Longleftrightarrow \mathcal{T}_{\pi}(\mathbf{w}) \in \mathsf{VALID}.$
- **2** $\mathbf{w} \in VALID$ and $\pi \xleftarrow{\$} \mathcal{S}$, then $T_{\pi}(\mathbf{w})$ is uniform in VALID.

Note: Stern's protocol corresponds to the special case when

$$VALID = \mathcal{B}, \quad \mathcal{S} = \mathcal{S}_d, \quad T_{\pi}(\mathbf{w}) = \pi(\mathbf{w}).$$

Abstracting Stern's Protocol

Suppose we want to use Stern to prove $\mathbf{w} \in VALID \subset \mathbb{Z}^d$ s.t. $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod q$.

Question: Which properties of VALID do we need?

An answer: There exists a finite set S s.t. we can associate every $\pi \in S$ with a permutation T_{π} of d elements, satisfying:

- **1** $\mathbf{w} \in \mathsf{VALID} \Longleftrightarrow T_{\pi}(\mathbf{w}) \in \mathsf{VALID}.$
- **2** $\mathbf{w} \in VALID$ and $\pi \xleftarrow{\$} \mathcal{S}$, then $\mathcal{T}_{\pi}(\mathbf{w})$ is uniform in VALID.

Note: Stern's protocol corresponds to the special case when

$$VALID = \mathcal{B}, \quad \mathcal{S} = \mathcal{S}_d, \quad T_{\pi}(\mathbf{w}) = \pi(\mathbf{w}).$$

How does it work?

- To prove $\mathbf{w} \in VALID$: sample $\pi \stackrel{\$}{\leftarrow} \mathcal{S}$, show that $\mathcal{T}_{\pi}(\mathbf{w}) \in VALID$.
- To prove $\mathbf{M} \cdot \mathbf{w} = \mathbf{v} \mod q$, use usual masking vector $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^d$.

Outline

- Introduction
 - Zero-Knowledge Protocols
 - Zero-Knowledge Protocols in Lattice-Based Cryptography
- Stern-like Protocols
 - Stern-KTX Protocol
 - Abstracting Stern's Protocol
 - Techniques and Applications
- 3 Conclusion

Example 1: Proving $\mathbf{x} \in \{0,1\}^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$, for $(\mathbf{A}, \mathbf{v}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n$.

Example 1: Proving $\mathbf{x} \in \{0,1\}^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$, for $(\mathbf{A}, \mathbf{v}) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^n$.

Idea: x does not have fixed Hamming weight, so, let's make it fixed!

• Appending "dummy" entries $\{0,1\}$ to **x** to get $\mathbf{w} = \begin{pmatrix} \mathbf{x} \\ \vdots \end{pmatrix} \in \mathsf{B}_m^2$, where

$$\mathsf{B}_m^2 = \{ \mathbf{w} \in \{0,1\}^{2m} : wt(\mathbf{w}) = m \}.$$

• Note that $\mathbf{x} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}^{m \times m} \end{bmatrix} \cdot \mathbf{w}$, and let $\mathbf{M} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{I}_m & \mathbf{0}^{m \times m} \end{bmatrix} \in \mathbb{Z}_q^{n \times 2m}$. We then have $\mathbf{M} \cdot \mathbf{w} = \mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

Now, we have an instance of the abstraction, where d=2m, $\mathcal{S}=\mathcal{S}_d$, and $T_{\pi}(\mathbf{w})=\pi(\mathbf{w})$.

Example 2: Proving $\mathbf{x} \in \{-1, 0, 1\}^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

Example 2: Proving $\mathbf{x} \in \{-1, 0, 1\}^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

Idea: The coordinates of x are not balanced, let's make them balanced then.

- Appending "dummy" entries $\{-1,0,1\}$ to \mathbf{x} to get $\mathbf{w} = \begin{pmatrix} \mathbf{x} \\ \vdots \end{pmatrix} \in \mathsf{B}^3_m$, where B^3_m is the set of all vectors in $\{-1,0,1\}^{3m}$, that have exactly m coordinates -1; m coordinates 0; and m coordinates 1.
- Note that $\mathbf{x} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}^{m \times 2m} \end{bmatrix} \cdot \mathbf{w}$, and let $\mathbf{M} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{I}_m & \mathbf{0}^{m \times 2m} \end{bmatrix} \in \mathbb{Z}_q^{n \times 3m}$. We then have $\mathbf{M} \cdot \mathbf{w} = \mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

Again, we have an instance of the abstraction.

Decompositions

Decomposition sequence

$$\forall\,\beta\in\mathbb{Z}_+\text{, let }\delta_\beta:=\left\lfloor\log_2\beta\right\rfloor+1\text{; define }\beta_1,\ldots,\beta_{\delta_\beta}\text{, where }\beta_j=\left\lfloor\frac{\beta+2^{j-1}}{2^j}\right\rfloor,\forall j.$$

Property:
$$z \in [0, \beta] \iff \exists c_1, \ldots, c_{\delta_\beta} \in \{0, 1\} : z = \sum_{i=1}^{s_\beta} \beta_i \cdot c_j$$
.

Decompositions

Decomposition sequence

$$\forall \beta \in \mathbb{Z}_+$$
, let $\delta_{\beta} := \lfloor \log_2 \beta \rfloor + 1$; define $\beta_1, \ldots, \beta_{\delta_{\beta}}$, where $\beta_j = \lfloor \frac{\beta + 2^{j-1}}{2^j} \rfloor, \forall j$.

Property:
$$z \in [0,\beta] \iff \exists c_1,\ldots,c_{\delta_\beta} \in \{0,1\}: z = \sum_{j=1}^{o_\beta} \beta_j \cdot c_j.$$

Decomposition matrix

For $m, \beta \in \mathbb{Z}_+$, define

$$\mathbf{H}_{m,eta} := egin{bmatrix} eta_1 \dots eta_{\delta_eta} & & & & \\ & & \ddots & & \\ & & & eta_1 \dots eta_{\delta_eta} \end{bmatrix} \in \mathbb{Z}^{m imes m \delta_eta}.$$

As a result, we have

$$\mathbf{x} \in [-\beta, \beta]^m \iff \exists \mathbf{x}' \in \{-1, 0, 1\}^{m\delta_\beta} : \mathbf{x} = \mathbf{H}_{m,\beta} \cdot \mathbf{x}'.$$

Decomposition-Extension

Example 3 The ISIS relation: $\mathbf{x} \in [-\beta, \beta]^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

- **①** Decompose \mathbf{x} into $\mathbf{x}' \in \{-1,0,1\}^{m\delta_{\beta}}$.
- 2 Let $\mathbf{A}' = \mathbf{A} \cdot \mathbf{H}_{m,\beta}$, then we have $\mathbf{A}' \cdot \mathbf{x}' = \mathbf{v} \mod q$.
- 3 Reduce to Example 2.

Applications: Proving knowledge of a lattice-based signature (e.g., [GPV'08], [Boy'10], [CHKP'10]) on a publicly given message.

Decomposition-Extension

Example 3 The ISIS relation: $\mathbf{x} \in [-\beta, \beta]^m$ s.t. $\mathbf{A} \cdot \mathbf{x} = \mathbf{v} \mod q$.

- **1** Decompose **x** into $\mathbf{x}' \in \{-1, 0, 1\}^{m\delta_{\beta}}$.
- 2 Let $\mathbf{A}' = \mathbf{A} \cdot \mathbf{H}_{m,\beta}$, then we have $\mathbf{A}' \cdot \mathbf{x}' = \mathbf{v} \mod q$.
- 3 Reduce to Example 2.

Applications: Proving knowledge of a lattice-based signature (e.g., [GPV'08], [Boy'10], [CHKP'10]) on a publicly given message.

Example 4 The LWE relation (HNF): $\mathbf{s} \in [-\beta, \beta]^n$, $\mathbf{e} \in [-\beta, \beta]^m$ s.t.

$$\mathbf{A}^{\top} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$
.

Note that

$$\left[\begin{array}{cc} \mathbf{A}^T & \mathbf{I}_m \end{array}\right] \cdot \left(\begin{array}{c} \mathbf{s} \\ \mathbf{e} \end{array}\right) = \mathbf{b} \bmod q.$$

2 Reduce to **Example 3**.

Applications: Proof that a given ciphertext generated of an LWE-based encryption scheme (e.g., Regev [R'05], dual-Regev [GPV'08]) is well-formed.

Group signatures [CH'91]:

- Allow members to anonymously sign messages on behalf of the group.
- There is a tracing authority who can identify the signer.

Group signatures [CH'91]:

- Allow members to anonymously sign messages on behalf of the group.
- There is a tracing authority who can identify the signer.

Common approach: "sign-then-encrypt-then-prove"

- Each user has a signature σ on his identity μ , certified by the manager.
- In the process of generating GS, the user encrypts μ to \mathbf{c} , then prove that:
 - **1** He has a secret valid pair (μ, σ) w.r.t. the group public key.
 - **2** c is a well-formed ciphertext of μ .

Group signatures [CH'91]:

- Allow members to anonymously sign messages on behalf of the group.
- There is a tracing authority who can identify the signer.

Common approach: "sign-then-encrypt-then-prove"

- Each user has a signature σ on his identity μ , certified by the manager.
- In the process of generating GS, the user encrypts μ to c, then prove that:
 - **1** He has a secret valid pair (μ, σ) w.r.t. the group public key.
 - **2** c is a well-formed ciphertext of μ .

Desired building block: Zero-knowledge proof of knowledge of a valid message-signature pair for a lattice-based standard model signature.

Let's see how to do it with Boyen's signature [Boyen'10].

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod \mathbf{a}$$

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

• Apply decomposition-extension to $\mathbf{x}_1, \mathbf{x}_2 \in [-\beta, \beta]^m$ to obtain $\mathbf{y}_1, \mathbf{y}_2 \in \mathsf{B}^3_{m\delta_\beta}$.

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

- Apply decomposition-extension to $\mathbf{x}_1, \mathbf{x}_2 \in [-\beta, \beta]^m$ to obtain $\mathbf{y}_1, \mathbf{y}_2 \in \mathsf{B}^3_{m\delta_\beta}$.
- Extend μ to $\mu' = (\mu[1], \dots, \mu[\ell], \mu[\ell+1], \dots, \mu[2\ell])^T \in \mathsf{B}^2_{\ell}$.

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

- $\bullet \ \ \mathsf{Apply} \ \mathsf{decomposition\text{-}extension to} \ \mathbf{x}_1, \mathbf{x}_2 \in [-\beta, \beta]^m \ \mathsf{to} \ \mathsf{obtain} \ \mathbf{y}_1, \mathbf{y}_2 \in \mathsf{B}^3_{m\delta_\beta}.$
- Extend μ to $\mu' = (\mu[1], \dots, \mu[\ell], \mu[\ell+1], \dots, \mu[2\ell])^T \in \mathsf{B}^2_{\ell}$.
- Let $d = (2\ell + 2)3m\delta_{\beta}$, form vector **w** as:

$$(\mathbf{y}_1^T \| \mathbf{y}_2^T \| \mu[1] \cdot \mathbf{y}_2^T \| \dots \| \mu[2\ell] \cdot \mathbf{y}_2^T)^T \in \{-1, 0, 1\}^d.$$
 (1)

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

- ullet Apply decomposition-extension to $\mathbf{x}_1, \mathbf{x}_2 \in [-eta, eta]^m$ to obtain $\mathbf{y}_1, \mathbf{y}_2 \in \mathsf{B}^3_{m\delta_eta}$.
- Extend μ to $\mu' = (\mu[1], \dots, \mu[\ell], \mu[\ell+1], \dots, \mu[2\ell])^T \in \mathsf{B}^2_{\ell}$.
- Let $d = (2\ell + 2)3m\delta_{\beta}$, form vector **w** as:

$$(\mathbf{y}_1^T \| \mathbf{y}_2^T \| \mu[1] \cdot \mathbf{y}_2^T \| \dots \| \mu[2\ell] \cdot \mathbf{y}_2^T)^T \in \{-1, 0, 1\}^d.$$
 (1)

• We obtain $\mathbf{M} \cdot \mathbf{w} = \mathbf{u} \mod q$, where (\mathbf{M}, \mathbf{u}) is public.

Namely, $\mu = (\mu[1], \dots, \mu[\ell])^T \in \{0, 1\}^{\ell}$ and $\sigma = (\mathbf{x}_1^T || \mathbf{x}_2^T)^T \in [-\beta, \beta]^{2m}$ s.t.

$$\mathbf{A} \cdot \mathbf{x}_1 + \mathbf{A}_0 \cdot \mathbf{x}_2 + \sum_{i=1}^{\ell} \mathbf{A}_i \cdot (\mu[i] \cdot \mathbf{x}_2) = \mathbf{u} \mod q.$$

- $\bullet \ \ \text{Apply decomposition-extension to} \ \ \mathbf{x}_1, \mathbf{x}_2 \in [-\beta, \beta]^m \ \ \text{to obtain} \ \ \mathbf{y}_1, \mathbf{y}_2 \in \mathsf{B}^3_{m\delta_\beta}.$
- Extend μ to $\mu' = (\mu[1], \dots, \mu[\ell], \mu[\ell+1], \dots, \mu[2\ell])^T \in \mathsf{B}^2_{\ell}$.
- Let $d = (2\ell + 2)3m\delta_{\beta}$, form vector **w** as:

$$(\mathbf{y}_1^T \| \mathbf{y}_2^T \| \mu[1] \cdot \mathbf{y}_2^T \| \dots \| \mu[2\ell] \cdot \mathbf{y}_2^T)^T \in \{-1, 0, 1\}^d.$$
 (1)

• We obtain $\mathbf{M} \cdot \mathbf{w} = \mathbf{u} \mod q$, where (\mathbf{M}, \mathbf{u}) is public.

VALID: the set of vectors of the form (1), for some $\mathbf{y}_1,\mathbf{y}_2\in\mathsf{B}^3_{m\delta_\beta}$ and $\mu'\in\mathsf{B}^2_\ell$.

Let $S = S_{3m\delta_{\beta}} \times S_{3m\delta_{\beta}} \times S_{2\ell}$. For each $\pi = (\phi, \psi, \rho) \in S$, let T_{π} be the permutation that transforms vector $\mathbf{t} \in (\mathbf{t}_{-1}^T \| \mathbf{t}_0^T \| \mathbf{t}_1^T \| \dots \| \mathbf{t}_{2\ell}^T)^T \in \mathbb{Z}^D$ to:

$$T_{\pi}(\mathbf{t}) = \left(\phi(\mathbf{t}_{-1})^T \| \psi(\mathbf{t}_0)^T \| \psi(\mathbf{t}_{\rho(1)})^T \| \dots \| \psi(\mathbf{t}_{\rho(2\ell)})^T \right)^T.$$

Now, we have an instance of the abstract protocol.

Using the proof of a message-signature pair (μ, σ) as a building block, we can obtain a group signature.

Encrypt μ using dual-Regev [GPV'08]:

$$\mathbf{c} = \left[\begin{array}{c} \mathbf{B} \\ \mathbf{p} \end{array} \right] \cdot \mathbf{s} + \left(\begin{array}{c} \mathbf{I}_m \\ & \mathbf{I}_\ell \end{array} \right) \cdot \mathbf{e} + \left[\begin{array}{c} \mathbf{0} \\ \lfloor \frac{q}{2} \rfloor \mathbf{I}_\ell \end{array} \right] \cdot \boldsymbol{\mu} \quad \in \mathbb{Z}_q^{m+\ell}.$$

Using the proof of a message-signature pair (μ, σ) as a building block, we can obtain a group signature.

Encrypt μ using dual-Regev [GPV'08]:

$$\mathbf{c} = \left[\begin{array}{c} \mathbf{B} \\ \mathbf{p} \end{array} \right] \cdot \mathbf{s} + \left(\begin{array}{c} \mathbf{I}_m \\ & \mathbf{I}_\ell \end{array} \right) \cdot \mathbf{e} + \left[\begin{array}{c} \mathbf{0} \\ \lfloor \frac{q}{2} \rfloor \mathbf{I}_\ell \end{array} \right] \cdot \mu \quad \in \mathbb{Z}_q^{m+\ell}.$$

• Extend μ to $\mu' \in \mathsf{B}_{2\ell}$ as before, then use the same permutation τ to prove that the same μ are involved in both layers.

Using the proof of a message-signature pair (μ, σ) as a building block, we can obtain a group signature.

Encrypt μ using dual-Regev [GPV'08]:

$$\mathbf{c} = \left[\begin{array}{c} \mathbf{B} \\ \mathbf{p} \end{array} \right] \cdot \mathbf{s} + \left(\begin{array}{c} \mathbf{I}_m \\ & \mathbf{I}_\ell \end{array} \right) \cdot \mathbf{e} + \left[\begin{array}{c} \mathbf{0} \\ \lfloor \frac{q}{2} \rfloor \mathbf{I}_\ell \end{array} \right] \cdot \boldsymbol{\mu} \quad \in \mathbb{Z}_q^{m+\ell}.$$

- Extend μ to $\mu' \in \mathsf{B}_{2\ell}$ as before, then use the *same* permutation τ to prove that the same μ are involved in both layers.
- Convert the whole interactive proof into a group signature using [FS'86].

Group encryption [KTY'07]: dual primitive of group signature.

- Protect anonymity of ciphertext receivers who are certified group members.
- There is a tracing authority who can break anonymity should the needs arise.

Group encryption [KTY'07]: dual primitive of group signature.

- Protect anonymity of ciphertext receivers who are certified group members.
- There is a tracing authority who can break anonymity should the needs arise.

Common approach:

- Each member has a key pair (sk, pk) for an anonymous encryption scheme.
- Manager signs member's public key pk, and publishes (pk, σ) .

Group encryption [KTY'07]: dual primitive of group signature.

- Protect anonymity of ciphertext receivers who are certified group members.
- There is a tracing authority who can break anonymity should the needs arise.

Common approach:

- Each member has a key pair (sk, pk) for an anonymous encryption scheme.
- Manager signs member's public key pk, and publishes (pk, σ) .
- Sender encrypts a message under pk to c_R , also encrypts pk under the tracing authority's public key to c_{TA} . Then proves that:
- **1** \mathbf{c}_{R} is an encryption of some message under a hidden pk.
- ② Sender knows a sig. σ on pk and c_{TA} is a correct encryption of that pk.

Group encryption [KTY'07]: dual primitive of group signature.

- Protect anonymity of ciphertext receivers who are certified group members.
- There is a tracing authority who can break anonymity should the needs arise.

Common approach:

- Each member has a key pair (sk, pk) for an anonymous encryption scheme.
- Manager signs member's public key pk, and publishes (pk, σ) .
- Sender encrypts a message under pk to c_R , also encrypts pk under the tracing authority's public key to c_{TA} . Then proves that:
- **①** c_R is an encryption of some message under a hidden pk.
- ② Sender knows a sig. σ on pk and c_{TA} is a correct encryption of that pk.

To instantiate a GE scheme with LWE-based encryption, we will have to handle an LWE relation with hidden-but-certified matrix:

$$\mathbf{X} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$
.

We call this "quadratic relation".

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$.

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{Z}_q^m$ be columns of \mathbf{X} , and $s_1, \dots, s_n \in \mathbb{Z}_q$ be the entries of \mathbf{s} . Note that:

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{Z}_q^m$ be columns of \mathbf{X} , and $s_1, \dots, s_n \in \mathbb{Z}_q$ be the entries of \mathbf{s} . Note that:

- **2** $\mathbf{x}_i \cdot \mathbf{s}_i = \mathbf{H}_{m,q-1} \cdot \left(\mathbf{x}_{i,1} \cdot \mathbf{s}_i, \dots \mathbf{x}_{i,mk} \cdot \mathbf{s}_i \right)^T$, where $k = \lfloor \log_2(q-1) \rfloor + 1$.

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{Z}_q^m$ be columns of \mathbf{X} , and $s_1, \dots, s_n \in \mathbb{Z}_q$ be the entries of \mathbf{s} . Note that:

- $\mathbf{2} \mathbf{x}_i \cdot s_i = \mathbf{H}_{m,q-1} \cdot (x_{i,1} \cdot s_i, \dots x_{i,mk} \cdot s_i)^T$, where $k = \lfloor \log_2(q-1) \rfloor + 1$.

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{Z}_q^m$ be columns of \mathbf{X} , and $s_1, \dots, s_n \in \mathbb{Z}_q$ be the entries of \mathbf{s} . Note that:

$$\mathbf{2} \mathbf{x}_i \cdot s_i = \mathbf{H}_{m,q-1} \cdot (x_{i,1} \cdot s_i, \dots x_{i,mk} \cdot s_i)^T$$
, where $k = \lfloor \log_2(q-1) \rfloor + 1$.

 $x_{i,j} \cdot s_i$ has form (public matrix)·(secret vector) \rightarrow so does $\mathbf{x}_i \cdot s_i \rightarrow$ so does $\mathbf{X} \cdot \mathbf{s}$:

$$\mathbf{X} \cdot \mathbf{s} = \mathbf{Q} \cdot \mathbf{z} \mod q$$

where $\mathbf{Q} \in \mathbb{Z}_q^{m \times nmk^2}$ and $\mathbf{z} \in \{0,1\}^{nmk^2}$.

Example 6: Given $\mathbf{b} \in \mathbb{Z}_q^m$, prove that $\mathbf{b} = \mathbf{X} \cdot \mathbf{s} + \mathbf{e} \mod q$, where $\mathbf{X} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$ satisfy additional relations.

First step: Transforming $\mathbf{X} \cdot \mathbf{s} = (\text{public matrix}) \cdot (\text{secret vector}) \mod q$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{Z}_q^m$ be columns of \mathbf{X} , and $s_1, \dots, s_n \in \mathbb{Z}_q$ be the entries of \mathbf{s} . Note that:

$$\mathbf{2} \mathbf{x}_i \cdot s_i = \mathbf{H}_{m,q-1} \cdot (x_{i,1} \cdot s_i, \dots x_{i,mk} \cdot s_i)^T$$
, where $k = \lfloor \log_2(q-1) \rfloor + 1$.

 $x_{i,j} \cdot s_i$ has form (public matrix)·(secret vector) \rightarrow so does $\mathbf{x}_i \cdot s_i \rightarrow$ so does $\mathbf{X} \cdot \mathbf{s}$:

$$\mathbf{X} \cdot \mathbf{s} = \mathbf{Q} \cdot \mathbf{z} \mod q$$

where $\mathbf{Q} \in \mathbb{Z}_q^{m \times nmk^2}$ and $\mathbf{z} \in \{0,1\}^{nmk^2}$. But...the harder part is still ahead!

Vector **z** still has a quadratic nature: each of its entries is a product of a bit from **X** and a bit from **s**. And these component bits must also satisfy other relations!

Divide-and-conquer: Let us view the problem as a bunch of sub-problems: Proving that z has the form $c_1 \cdot c_2$, while "keeping track" of the bits c_1 and c_2 .

Divide-and-conquer: Let us view the problem as a bunch of sub-problems: Proving that z has the form $c_1 \cdot c_2$, while "keeping track" of the bits c_1 and c_2 .

ullet For $c\in\{0,1\}$, let $\overline{c}=1-c$. For $c_1,c_2\in\{0,1\}$, define the vector

$$\mathsf{ext}(c_1,c_2) = (\overline{c}_1 \cdot \overline{c}_2, \overline{c}_1 \cdot c_2, c_1 \cdot \overline{c}_2, c_1 \cdot c_2)^\top \in \{0,1\}^4.$$

• For $b_1, b_2 \in \{0,1\}$, define the permutation T_{b_1,b_2} that transforms vector $\mathbf{v} = (v_{0,0}, v_{0,1}, v_{1,0}, v_{1,1})^{\top} \in \mathbb{Z}^4$ to vector $(v_{b_1,b_2}, v_{b_1,\overline{b}_2}, v_{\overline{b}_1,b_2}, v_{\overline{b}_1,\overline{b}_2})^{\top}$. Note that, for all $c_1, c_2, b_1, b_2 \in \{0,1\}$, we have the following:

$$\mathbf{z} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{z}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2),$$

Divide-and-conquer: Let us view the problem as a bunch of sub-problems: Proving that z has the form $c_1 \cdot c_2$, while "keeping track" of the bits c_1 and c_2 .

• For $c \in \{0,1\}$, let $\overline{c} = 1 - c$. For $c_1, c_2 \in \{0,1\}$, define the vector

$$\mathsf{ext}(c_1,c_2) = (\overline{c}_1 \cdot \overline{c}_2, \overline{c}_1 \cdot c_2, c_1 \cdot \overline{c}_2, c_1 \cdot c_2)^\top \in \{0,1\}^4.$$

• For $b_1,b_2\in\{0,1\}$, define the permutation T_{b_1,b_2} that transforms vector $\mathbf{v}=(v_{0,0},v_{0,1},v_{1,0},v_{1,1})^{\top}\in\mathbb{Z}^4$ to vector $(v_{b_1,b_2},v_{b_1,\overline{b}_2},v_{\overline{b}_1,b_2},v_{\overline{b}_1,\overline{b}_2})^{\top}$. Note that, for all $c_1,c_2,b_1,b_2\in\{0,1\}$, we have the following:

$$\mathbf{z} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{z}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2),$$

Example: $c_1 = 1, c_2 = 0$. Then $ext(c_1, c_2) = (0 \cdot 1, 0 \cdot 0, 1 \cdot 1, 1 \cdot 0)^T = (0, 0, 1, 0)^T$. Then we have $v_{0,0} = 0, v_{0,1} = 0, v_{1,0} = 1, v_{1,1} = 0$. Now, let $b_1 = 1, b_2 = 1$.

$$T_{1,1}(\mathsf{ext}(1,0)) = (0,1,0,0)^T = \mathsf{ext}(0,1) = \mathsf{ext}(1 \oplus 1,0 \oplus 1).$$

Divide-and-conquer: Let us view the problem as a bunch of sub-problems: Proving that z has the form $c_1 \cdot c_2$, while "keeping track" of the bits c_1 and c_2 .

• For $c \in \{0,1\}$, let $\overline{c} = 1 - c$. For $c_1, c_2 \in \{0,1\}$, define the vector

$$\mathsf{ext}(c_1,c_2) = (\overline{c}_1 \cdot \overline{c}_2, \overline{c}_1 \cdot c_2, c_1 \cdot \overline{c}_2, c_1 \cdot c_2)^\top \in \{0,1\}^4.$$

• For $b_1,b_2\in\{0,1\}$, define the permutation T_{b_1,b_2} that transforms vector $\mathbf{v}=(v_{0,0},v_{0,1},v_{1,0},v_{1,1})^{\top}\in\mathbb{Z}^4$ to vector $(v_{b_1,b_2},v_{b_1,\overline{b}_2},v_{\overline{b}_1,b_2},v_{\overline{b}_1,\overline{b}_2})^{\top}$. Note that, for all $c_1,c_2,b_1,b_2\in\{0,1\}$, we have the following:

$$\mathbf{z} = \operatorname{ext}(c_1, c_2) \iff T_{b_1, b_2}(\mathbf{z}) = \operatorname{ext}(c_1 \oplus b_1, c_2 \oplus b_2),$$

Example: $c_1 = 1, c_2 = 0$. Then $ext(c_1, c_2) = (0 \cdot 1, 0 \cdot 0, 1 \cdot 1, 1 \cdot 0)^T = (0, 0, 1, 0)^T$. Then we have $v_{0,0} = 0, v_{0,1} = 0, v_{1,0} = 1, v_{1,1} = 0$. Now, let $b_1 = 1, b_2 = 1$.

$$T_{1,1}(\mathsf{ext}(1,0)) = (0,1,0,0)^T = \mathsf{ext}(0,1) = \mathsf{ext}(1 \oplus 1,0 \oplus 1).$$

Solution to sub-problem: extend z to z, then permute it with random bits b_1, b_2 . To "keep track", use the same b_1, b_2 at other appearances of c_1, c_2 , resp.

Conclusion

- Stern's protocol has been developing into a strong tool for privacy-preserving lattice-based crypto.
- 4 techniques: decomposing, extending, permuting, masking.

Thank you!