CS420

Introduction to the Theory of Computation

Lecture 13: Regular expressions & NFAs

Tiago Cogumbreiro

Today we will learn...

- Converting REGEX to NFA
- Converting NFA to REGEX

Soundess

All Regexes have an equivalent NFA

REGEX → NFA

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

Given an alphabet Σ

• NFA(\underline{a}) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA($\underline{\epsilon}$) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA($\underline{\epsilon}$) = nil
- NFA($\underline{\emptyset}$) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) =$

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- $NFA(R_1 \cup R_2) = union(NFA(R_1), NFA(R_2))$
- NFA $(R_1 \cdot R_2) =$

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \text{union}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA $(\underline{R_1 \cdot R_2}) = \text{append}(\text{NFA}(\underline{R_1}), \text{NFA}(\underline{R_2}))$
- NFA(\mathbb{R}^{\star}) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \operatorname{union}(\operatorname{NFA}(R_1), \operatorname{NFA}(R_2))$
- NFA $(\underline{R_1 \cdot R_2}) = \text{append}(\text{NFA}(\underline{R_1}), \text{NFA}(\underline{R_2}))$
- NFA (\underline{R}^*) = star $(NFA(\underline{R}))$

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

Given an alphabet Σ

- NFA($\frac{a}{a}$) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \text{union}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA $(R_1 \cdot R_2) = \text{append}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA $(\underline{R}^*) = \text{star}(\text{NFA}(\underline{R}))$

(Proof follows by induction on the structure of R.)

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The nil operator

$$L(\mathrm{nil}) = \{\epsilon\}$$

The nil operator

$$L(\mathrm{nil}) = \{\epsilon\}$$

The nil operator

$$L(\mathrm{nil}) = \{\epsilon\}$$

$$L(\operatorname{char}(c)) = \{[c]\}$$

$$L(\operatorname{char}(a)) = \{[a]\}$$

$$L(\operatorname{char}(a)) = \{[a]\}\$$

The union(M,N) automaton

 $\overline{L(\mathrm{union}(M,N))} = \overline{L(M) \cup L(N)}$

The $\operatorname{union}(M,N)$ automaton

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

 N_1

The union(M,N) operator

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

Example union (N_1, N_2)

- Add a new initial state
- Connect new initial state to the initial states of N_1 and N_2 via ϵ -transitions.

The $\operatorname{append}(M,N)$ operator

 $L(\operatorname{append}(M, N)) = L(M) \cdot L(N)$

The $\operatorname{append}(M,N)$ operator

$$L(\operatorname{append}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

The $\operatorname{append}(M,N)$ operator

$$L(\operatorname{append}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

Solution

What did we do? Connect the accepted states of N_1 to the initial state of N_2 via ϵ -transitions.

Why bot connect directly from $q_{1,1}$ into $q_{1,2}$? See next slide.

Concatennation example 2

Solution

Concatennation example 2

Solution

 $L(\operatorname{star}(N)) = L(N)^{\star}$

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathtt{a}),\text{char}(\mathtt{b})))) = \{w \mid w \text{ is a sequence of } \mathtt{ab} \text{ or } \mathtt{empty}\}$

Solution

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathtt{a}),\text{char}(\mathtt{b})))) = \{w \mid w \text{ is a sequence of } \mathtt{ab} \text{ or } \mathtt{empty}\}$

Solution

- create a new state $q_{1,1}$
- ullet ϵ -transitions from $q_{1,1}$ to initial state
- ullet ϵ -transitions from accepted states to $q_{1,1}$
- $q_{1,1}$ is the only accepted state

$$L(\mathrm{star}(N)) = L(N)^\star$$

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

Completeness

All NFAs have an equivalent Regex

NFA → REGEX

Completeness

All NFAs have an equivalent Regex

Why is this result important?

Completeness

All NFAs have an equivalent Regex

Why is this result important?

If we can derive an equivalent regular expression from any NFA, then our regular expression are enough to describe whatever can be described using finite automatons.

Overview:

Converting an NFA into a regular expression

There are many algorithms of converting an NFA into a Regex. Here is the algorithm we find in the book.

- 1. Wrap the NFA
- 2. Convert the NFA into a GNFA
- 3. Reduce the GNFA
- 4. Extract the Regex

Step 1: wrap the NFA

Given an NFA N, add two new states q_{start} and q_{end} such that q_{start} transitions via ϵ to the initial state of N, and every accepted state of N transitions to q_{end} via ϵ . State q_{end} becomes the new accepted state.

Input

Step 1: wrap the NFA

Given an NFA N, add two new states q_{start} and q_{end} such that q_{start} transitions via ϵ to the initial state of N, and every accepted state of N transitions to q_{end} via ϵ . State q_{end} becomes the new accepted state.

Step 2: Convert an NFA into a GNFA

A GNFA has regular expressions in the transitions, rather than the inputs.

For every edge with a_1,\ldots,a_n convert into $a_1+\cdots+a_n$

Input

Step 2: Convert an NFA into a GNFA

A GNFA has regular expressions in the transitions, rather than the inputs.

For every edge with a_1,\ldots,a_n convert into $a_1+\cdots+a_n$

Input

Output

Step 3: Reduce the GNFA

While there are more than 2 states:

pick a state and its incoming/outgoing edges, and convert it to transitions

$$ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{0+\epsilon}{ o} q_{2,2}) = q_{1,1} \stackrel{\epsilon \cdot (0+\epsilon)}{ o} q_{2,2} \ ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{1}{ o} q_{3,2}) = q_{1,1} \stackrel{\epsilon \cdot 1}{ o} q_{3,2}$$

Input

$$ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{0+\epsilon}{ o} q_{2,2}) = q_{1,1} \stackrel{\epsilon \cdot (0+\epsilon)}{ o} q_{2,2} \ ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{1}{ o} q_{3,2}) = q_{1,1} \stackrel{\epsilon \cdot 1}{ o} q_{3,2}$$

Input Output $\begin{array}{c} \text{Start} \rightarrow \overrightarrow{q_{1,1}} \\ & \downarrow \\ & \downarrow$

Each state that connects to $q_{1,2}$ must connect to every state that $q_{1,2}$ connects to. Som $q_{1,1}$ must connect with $q_{2,2}$ and $q_{1,1}$ must connect with $q_{3,2}$.

Input

Input

$$ext{compress}(q_{1,1} \stackrel{0+\epsilon}{ o} q_{2,2} \stackrel{\epsilon}{ o} q_{2,1}) = q_{1,1} \stackrel{(0+\epsilon)\cdot\epsilon}{ o} q_{2,2} \ ext{compress}(q_{3,2} \stackrel{0}{ o} q_{2,2} \stackrel{\epsilon}{ o} q_{2,1}) = q_{3,2} \stackrel{0\cdot\epsilon}{ o} q_{2,1}$$

Each state that connects to $q_{2,2}$ must connect to every state that $q_{2,2}$ connects to. Som $q_{1,1}$ must connect with $q_{2,1}$ and $q_{3,2}$ must connect with $q_{2,1}$.

Step 3.3: compress state $q_{3,2}$

After compressing a state, we must merge the new node with any old node (in red).

$$\operatorname{compress}(q_{1,1} \xrightarrow{1} q_{3,2} \xrightarrow{0} q_{3,2} \xrightarrow{0} q_{2,1}) + q_{1,1} \xrightarrow{0+\epsilon} q_{2,1} = q_{1,1} \xrightarrow{(10^{\star}0) + (0+\epsilon)} q_{2,2} \\ \operatorname{compress}(q_{1,1} \xrightarrow{1} q_{3,2} \xrightarrow{0} q_{3,2} \xrightarrow{1} q_{4,2}) = q_{3,2} \xrightarrow{10^{\star}1} q_{2,1}$$

Input

Output

Step 3.3: compress state $q_{4,2}$

After compressing a state, we must merge the new node with any old node (in red).

$$\operatorname{compress}(q_{1,1} \xrightarrow{10^\star 1} q_{4,2} \xrightarrow{\epsilon} q_{2,1}) + q_{1,1} \xrightarrow{10^\star 1 + 0 + \epsilon} q_{2,1} = q_{1,1} \xrightarrow{\left(10^\star 1 \cdot \epsilon\right) + \left(10^\star 0 + 0 + \epsilon\right)} q_{2,2}$$

Input

Output

Result: $10^{\star}1 + 10^{\star}0 + 0 + \epsilon$

Convert an NFA into a Regex

1. Convert the NFA into an NFA (same)

2. Wrap the NFA

Convert an NFA into a Regex

1. Convert the NFA into an NFA (same)

2. Wrap the NFA

Convert an NFA into a Regex

3. Convert NFA into GNFA

Convert an NFA into a Regex

3. Convert NFA into GNFA

Before

After

Convert an NFA into a Regex

4. Compress state.

Convert an NFA into a Regex

4. Compress state.

Before

After

Convert an NFA into a Regex

5. Compress state.

Convert an NFA into a Regex

5. Compress state.

Before

After

Convert an NFA into a Regex

Convert an NFA into a Regex

Before

After

Convert an NFA into a Regex

Convert an NFA into a Regex

Before

After

