Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Docket No. MRE-0014

Listing of Claims:

1-9. (Cancelled)

10. (Currently Amended) A multi-stacker for an IC (integrated circuit) handler,

comprising:

a stacker frame;

a guide frame positioned below and coupled to a bottom of the stacker frame;

a movement plate configured to move upward and downward within the guide

frame; and

a plurality of tray plates stacked on the movement plate and configured to move

upward and downward within a guide attached to the guide frame and within the stacker frame;

<u>and</u>

a support portion formed at a lower end portion of the stacker and configured to

selectively engage and disengage side end portions of a tray plate of the plurality of tray plates.

Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

Docket No. MRE-0014

11. (Currently Amended) The multi-stacker of claim 10, further comprising wherein

the support portion comprises at least one stopper mechanism which is configured to prevent

one or more tray plates from being lowered from the stacker frame into the guide frame.

12. (Previously Presented) The multi-stacker of claim 11, wherein the at least one

stopper mechanism comprises:

a blocking protrusion configured to engage a side edge of one of the plurality of

tray plates; and

an actuator coupled to the blocking protrusion and attached to the stacker frame.

13. (Previously Presented) The multi-stacker of claim 12, wherein the actuator is

configured to move the blocking protrusion into and out of a path of travel of the plurality of

tray plates as the plurality of tray plates move from the stacker frame to the guide frame.

14. (Previously Presented) The multi-stacker of claim 13, wherein the at least one

stopper mechanism comprises first and second stopper mechanisms attached to opposite sides

of the stacker frame, and wherein the actuator of each stopper mechanism comprises a piston

and cylinder.

Docket No. MRE-0014

Serial No. 09/433,380

Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

15. (Previously Presented) The multi-stacker of claim 10, further comprising an elevator mechanism coupled to the movement plate and configured to move the movement plate upward and downward such that tray plates stacked on the movement plate are moved from the guide frame into and out of the stacker frame.

16. (Previously Presented) The multi-stacker of claim 15, wherein the elevator mechanism comprises:

a rail that is movably mounted on the multi-stacker and that is connected to the movement plate;

a rack mounted on the rail;

a motor mounted on the multi-stacker adjacent the rail; and

a pinion gear mounted on a rotating shaft of the motor, wherein the pinion gear engages the rack mounted on the rail, and wherein rotational movement of the pinion gear causes the rail and the movement plate to move upward and downward.

17. (Previously Presented) The multi-stacker of claim 16, further comprising a linear movement block mounted on the multi-stacker and configured to guide movement of the rail.

Docket No. MRE-0014

Serial No. 09/433,380

Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

18. (Previously Presented) The multi-stacker of claim 16, further comprising a support plate connected between the rail and the movement plate and configured to dampen vibrations of the movement plate during movement of the movement plate.

19. (Previously Presented) The multi-stacker of claim 16, further comprising at least one support plate connected to a lower end of the rail and configured to dampen vibrations of the rail during movement of the rail.

20. (Previously Presented) The multi-stacker of claim 10, wherein the guide includes four guide rails that are configured to guide corners of the tray plates as the tray plates move upward and downward with the movement plate.

- 21. (Previously Presented) The multi-stacker of claim 10, further comprising a sensor configured to determine positions of the plurality of tray plates.
- 22. (Currently Amended) A multi-stacker for an IC (integrated circuit) handler, comprising:

a guide frame;

Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

Docket No. MRE-0014

a movement plate configured to move upward and downward within the guide

frame;

a plurality of tray plates stacked on the movement plate and configured to move

upward and downward within the guide frame, wherein each of the tray plates is configured to

receive a tray holding a plurality of semiconductor devices; and

at least one stopper mechanism which is configured to selectively engage and

disengage with a corresponding side portion of one of the plurality of tray plates so as to prevent

one or more tray plates from being lowered as the movement plate moves downward in the

guide frame.

23. (Cancelled)

24. (Previously Presented) The multi-stacker of claim 22, wherein the at least one

stopper mechanism comprises:

a blocking protrusion configured to engage a side edge of one of the plurality of

tray plates; and

an actuator coupled to the blocking protrusion and configured to move the

blocking protrusion into and out of a path of travel of the plurality of tray plates as the plurality

of tray plates move upward and downward.

Amdt. Dated February 4, 2005

Reply to Office Action of November 15, 2004

Docket No. MRE-0014

25. (Previously Presented) The multi-stacker of claim 22, further comprising an elevator mechanism coupled to the movement plate and configured to move the movement

plate upward and downward along the guide frame.

26. (Previously Presented) The multi-stacker of claim 25, wherein the elevator

mechanism comprises:

a rail that is movably mounted on the multi-stacker and that is connected to the

movement plate;

a rack mounted on the rail;

a motor mounted on the multi-stacker adjacent the rail; and

a pinion gear mounted on a rotating shaft of the motor, wherein the pinion gear

engages the rack mounted on the rail, and wherein rotational movement of the pinion gear

causes the rail and the movement plate to move upward and downward.

27. (Previously Presented) The multi-stacker of claim 26, further comprising a

support plate connected between the rail and the movement plate and configured to dampen

vibrations of the movement plate during movement of the movement plate.

Docket No. MRE-0014

Reply to Office Action of November 15, 2004

28. (Previously Presented) The multi-stacker of claim 26, further comprising at least one support plate connected to a lower end of the rail and configured to dampen vibrations of

the rail during movement of the rail.

29. (Previously Presented) The multi-stacker of claim 22, further comprising a sensor

configured to determine positions of the plurality of tray plates.

30. (New) A multi-stacker for an IC (integrated circuit) handler, comprising:

a stacker frame;

a guide frame positioned below and coupled to a bottom of the stacker frame;

a movement plate configured to move upward and downward within the guide

frame; and

a plurality of tray plates stacked on the movement plate and configured to move

upward and downward within a guide attached to the guide frame and within the stacker frame,

wherein the guide includes four guide rails that are configured to guide corners of the tray plates

as the tray plates move upward and downward with the movement plate.