Chapter 3: Equilibrium of a particle 2D/3D

Plan

- Condition for the equilibrium of a particle
- Free-Body diagram
- Coplanar Force Systems
- Three-Dimensional Force Systems

Condition for the equilibrium of a particle

- Equilibrium: particle at rest or moving at constant velocity.
- Newton's first law of motion:

$$\Sigma \mathbf{F} = 0$$

Where ΣF is the vector sum of all forces acting on the particle.

Newton's second law of motion:

$$\Sigma F = ma$$

If the forces verify Newton's first law, therefore ma=0, a=0, The particle is at rest or at constant velocity

 Free-Body Diagram (FBD): a sketch that shows only the forces acting on a body.

Springs

- Linear elastic spring: change in length is directly proportional to the force acting on it.
- Elasticity of the spring: spring constant or stiffness k
- Magnitude of force when spring is deformed (elongated or compressed) F=k s
- Where s is the difference between spring's deformed length I and its undeformed length I_0 : $s=I-I_0$
- If s > 0, elongation, F pull on the spring
- If s < 0, shortening, F push on the spring</p>

Cables and Pulleys

- Cables (or cords) are assumed to have negligible weight and they cannot stretch
- A cable only support tension or pulling force
- Tension always acts in the direction of the cable
- Tension force in a continuous cable must have a constant magnitude for equilibrium
- For any angle , the cable is subjected to a constant tension T throughout its length.

Smooth contact

- If an object rests on a smooth surface, the surface will exert a force on the object that is normal to the surface at the point of contact.
- In the figure below, the three forces (weight W, normal force N, force T of the cord) are concurrent at the center of the cylinder ⇒ equation of equilibrium can be applied to this particle.

Coplanar Force Systems

■ If a particle is subjected to coplanar forces in the x-y plane \Rightarrow for equilibrium, resolve into i and j components: $\Sigma F=0 \Rightarrow$ $\Sigma F_x=0 \& \Sigma F_v=0$

Three-Dimensional Force Systems

- When particle is in equilibrium, the vector sum of all the forces acting on it must be zero: $\Sigma \mathbf{F} = 0$
- In case of three-dimensional system,

 $\Sigma F_x = 0$, $\Sigma F_v = 0 \& \Sigma F_z = 0$: three scalar equations of equilibrium

