Ley de propagación de errores, justificación de la ley $\Sigma_y = J_x \Sigma_x J_x^T$

Joaquín Gómez 25 de mayo de 2025

1. Introducción

A la hora de medir un evento cuya entrada es una variable aleatoria X, y cuya salida o variable dependiente es Y, otra variable aleatoria de la cual no sabemos más que su relación con X, surge el siguiente problema: ¿cómo podemos aproximar Y para cualquier valor, dado que conocemos X y su relación con Y? Esta pregunta es trivial si se trata de una relación totalmente lineal entre X e Y, lo que implica

$$Y = aX \tag{1}$$

para un cierto número real a. Sin embargo, en el mundo real estas relaciones no se cumplen de forma perfecta.

2. Caso unidimensional

Para este caso, donde tenemos un número de entradas que definiremos como N=1 y salidas P=1, podemos encontrar una función $f:R\to R$ tal que

$$Y = f(X) \tag{2}$$

Figura 1: Propagación de error unidimensional

En la figura 1 se muestra un ejemplo, en el cual, a través de una aproximación lineal, podemos determinar la distribución Gaussiana de Y. Para hacerlo, debemos utilizar una aproximación de Taylor de primer orden. En este caso es

$$Y = f(\mu_y) + \left. \frac{\partial f}{\partial X} \right|_{X = \mu_x} (X - \mu_x) \tag{3}$$

El significado del signo de "aproximado" es que Y no va a representar el valor real de la función, pero puede ser una aproximación suficientemente buena, siempre y cuando la correspondencia entre X e Y sea "suficientemente lineal" en un intervalo dado. Se considera el intervalo $[\mu_x - \sigma_x, \mu_x + \sigma_x]$, pero también

es válido, en algunos casos, considerar $[\mu_x - 2\sigma_x, \mu_x + 2\sigma_x]$. Esto último siempre y cuando la desviación estándar no sea muy grande.

Analicemos lo siguiente, dados los valores reales de Y, podríamos conocer su varianza y su media. Supongamos que sabemos la varianza real de Y, dada como σ_0^2 y su media μ_0 . Ahora, si suponemos

$$\sigma_o^2 \approx \sigma_y^2 \mu_o \approx \mu_y$$
 (4)

entonces podemos utilizar la aproximación para encontrar

$$\mu_y = f(\mu_x)$$

$$\sigma_y = \frac{\partial f}{\partial X} \Big|_{X = \mu_x} \sigma_x \tag{5}$$

En una situación real, debemos inferir los valores de μ_x y σ_x , o intentar adivinarlos. En esta situación, se tiene que dar que nuestro valor de muestra $X=x^*$ sea cercano a E[X]. Basándonos en este principio, podemos a su vez intentar hallar un valor aproximado para s_x^* , que deberá ser cercano a $E\left[(X-\mu_x)^2\right]^{1/2}$. Si cumplimos ambas condiciones, obtendremos un valor de y^* no tan alejado de E[Y], y una desviación estándar s_y^* también suficientemente cerca de $E\left[(Y-\mu_y)^2\right]^{1/2}$.

Matemáticamente, dada una muestra $X=x^*\approx E[X]$ y un valor inferido $s_x^*\approx\sigma_x$, tenemos que, la aproximación $Y=y^*$ y s_y^* cumplen

$$y^* \approx E[Y]$$

$$s_y^* \approx \sigma_y \tag{6}$$

En este caso, lo que se intenta decir es que las medidas reales que nosotros tomemos, pueden ser similares a las que resulten de nuestra aproximación, siempre y cuando se cumpla que los valores de entrada sean representativos. En otras palabras, si tomamos una muestra y corresponde a un valor cercano al promedio, entonces debería cumplirse que la salida de nuestro sistema también sea cercana a su promedio.

3. Sistema con varias entradas y una salida

Para este caso, tendremos una serie de N=n entradas X_1, X_2, \dots, X_n y P=1 salida. La función $f: \mathbb{R}^n \to \mathbb{R}$ es un campo escalar y nos da la relación

$$f(X_1, X_2, \dots, X_n) = Y \tag{7}$$

Nuevamente, utilizaremos la aproximación de Taylor de primer orden

$$Y = f(\mu_x^{(1)}, \mu_x^{(2)}, \dots, \mu_x^{(n)}) + \sum_{i=1}^n \frac{\partial f}{\partial X_i} \left(\mu_x^{(1)}, \mu_x^{(2)}, \dots, \mu_x^{(n)} \right) (X_i - \mu_x^{(i)})$$
(8)

(nótese que la derivada parcial está aplicada en el vector μ_x). Así, podemos encontrar la media y desviación estándar de Y, definiremos dos variables, que

son $a_0 = f(\mu_x^{(1)}, \mu_x^{(2)}, \dots, \mu_x^{(n)})$ y $a_i = \frac{\partial f}{\partial X_i} \left(\mu_x^{(1)}, \mu_x^{(2)}, \dots, \mu_x^{(n)} \right)$, de forma que obtenemos

$$\mu_{y} = E[Y]$$

$$= E\left[a_{0} + \sum_{i} a_{i}(X_{i} - \mu_{x}^{(i)})\right]$$

$$= E[a_{0}] + E\left[\sum_{i} a_{i}(X_{i} - \mu_{x}^{(i)})\right]$$

$$= a_{0} + \sum_{i} a_{i}E[X_{i}] - \sum_{i} a_{i}E\left[\mu_{x}^{(i)}\right]$$

$$= a_{0} + \sum_{i} a_{i}\mu_{x}^{(i)} - \sum_{i} a_{i}\mu_{x}^{(i)}$$

$$= a_{0}$$

$$(9)$$

Para hallar la desviación estándar, el camino es más largo, para ello utilizamos la varianza

$$\sigma_y^2 = E\left[\left(\sum_i a_i(X_i - \mu_x^{(i)})\right)^2\right]$$

$$= E\left[\left(\sum_i a_i(X_i - \mu_x^{(i)})\right)^2\right]$$

$$= E\left[\sum_i a_i(X_i - \mu_x^{(i)})\sum_j a_j(X_j - \mu_x^{(j)})\right]$$

$$= E\left[\sum_i a_i^2(X_i - \mu_x^{(i)})^2 + \sum_{i \neq j} a_i a_j(X_i - \mu_x^{(i)})(X_j - \mu_x^{(j)})\right]$$

$$= E\left[\sum_i a_i^2(X_i - \mu_x^{(i)})^2\right] + E\left[\sum_{i \neq j} a_i a_j(X_i - \mu_x^{(i)})(X_j - \mu_x^{(j)})\right]$$

$$= \sum_i a_i^2 E\left[(X_i - \mu_x^{(i)})^2\right] + \sum_{i \neq j} a_i a_j E\left[(X_i - \mu_x^{(i)})(X_j - \mu_x^{(j)})\right]$$

$$= \sum_i a_i^2 Var(X_i) + \sum_{i \neq j} a_i a_j Cov(X_i, X_j)$$

$$= \sum_i \left(\frac{\partial f}{\partial X_i}\Big|_{X = \mu_x}\right)^2 Var(X) + \sum_{i \neq j} \frac{\partial f}{\partial X_i}\Big|_{X = \mu_x} \frac{\partial f}{\partial X_j}\Big|_{X = \mu_x} Cov(X_i, X_j)$$

$$= \sum_i \left(\frac{\partial f}{\partial X_i}\Big|_{X = \mu_x}\right)^2 \sigma_x^2 + \sum_{i \neq j} \frac{\partial f}{\partial X_i}\Big|_{X = \mu_x} \frac{\partial f}{\partial X_j}\Big|_{X = \mu_x} \sum_{i \neq j}^2 (10)$$

Entonces, la desviación estándar es

Figura 2: Elipse deformada como producto de la transformación que aplica Σ_x

$$\sigma_y = \sqrt{\sum_i \left(\left. \frac{\partial f}{\partial X_i} \right|_{X=\mu_x} \right)^2 \sigma_x^2 + \sum_{i \neq j} \left. \frac{\partial f}{\partial X_i} \right|_{X=\mu_x} \left. \frac{\partial f}{\partial X_j} \right|_{X=\mu_x} \Sigma_{ij}^2} \tag{11}$$

Si las variables independientes no están relacionadas entre sí, $Cov(X_i, X_j) = 0$ para $j \neq i$, entonces la fórmula se resume en

$$\sigma_y^2 = \sum_i \left(\frac{\partial f}{\partial X_i}\right)^2 \sigma_x^2 \tag{12}$$

Donde suponemos que aplicamos la derivada parcial en un punto fijo, que será en este caso, la media u_x . Omitimos esto para abreviar la fórmula y evitar así demasiada sintaxis.

La figura 2 muestra el cambio de base que produce la matriz Σ_x . Utilizamos como ejemplo una matriz de covarianza cualquiera.

4. Sistema con múltiples entradas y salidas

Este caso es una generalización del caso anterior, tomamos las ideas que ya conocemos, para encontrar la fórmula más recurrente para la propagación de errores, que es

$$\Sigma_y = F_x \Sigma_x F_x^T \tag{13}$$

¿Cómo encaramos el problema? Antes que nada, definiremos la función que relaciona una serie de entradas X_1, X_2, \ldots, X_n a una serie de salidas f_1, f_2, \ldots, f_p . Tendremos que el sistema tiene N=n y P=p entradas y salidas respectivamente. De forma que la función que lo representa es $f: \mathbb{R}^n \to \mathbb{R}^p$ un campo

vectorial, así

$$\begin{cases} Y_1 = f_1(X_1, X_2, \dots, X_n) \\ Y_2 = f_2(X_1, X_2, \dots, X_n) \\ \vdots \\ Y_p = f_p(X_1, X_2, \dots, X_n) \end{cases}$$
(14)

Para esta sección, definiremos $Y = (Y_1, Y_2, \dots, Y_n)$. Buscaremos una fórmula para la aproximación de Taylor de primer orden, como vimos en la sección anterior

$$Y_{i} = f_{i}(X_{1}, X_{2}, \dots, X_{n}) + \sum_{k=1}^{n} \frac{\partial f_{i}}{\partial X_{k}} (X_{1}, X_{2}, \dots, X_{n}) (X_{k} - \mu_{x}^{k})$$
 (15)

Si observamos bien, podemos representar al segundo miembro del lado derecho de la ecuación como el producto escalar $\nabla f_i \cdot (X - \mu_x)$

$$Y_i = f_i(X_1, X_2, \dots, X_n) + \nabla f_i \cdot (X - \mu_x)$$
 (16)

Asímismo, podemos escribir Y como una suma de dos vectores, donde $X=(X_1\,X_2\,\cdots\,X_n)$ y $\mu_x=\left(\mu_x^{(1)}\,\mu_x^{(2)}\,\cdots\,\mu_x^{(n)}\right)$

$$Y = \begin{bmatrix} f_1(\mu_x) \\ f_2(\mu_x) \\ \vdots \\ f_p(\mu_x) \end{bmatrix} + \begin{bmatrix} \nabla f_1(\mu_x) \cdot (X - \mu_x) \\ \nabla f_2(\mu_x) \cdot (X - \mu_x) \\ \vdots \\ \nabla f_p(\mu_x) \cdot (X - \mu_x) \end{bmatrix}$$
(17)

Si separamos el vector con los gradientes ∇f_i , y los expandimos, obtendríamos la matriz Jacobiana

$$J_{x}(X) = \begin{bmatrix} \nabla f_{1}(\mu_{x}) \\ \nabla f_{2}(\mu_{x}) \\ \vdots \\ \nabla f_{p}(\mu_{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}(X)}{\partial X_{1}} & \cdots & \frac{\partial f_{1}(X)}{\partial X_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{p}(X)}{\partial X_{1}} & \cdots & \frac{\partial f_{p}(X)}{\partial X_{n}} \end{bmatrix}$$
(18)

de forma tal que, podemos reescribir (17) como

$$Y = f(\mu_x) + J_x(\mu_x) \cdot (X - \mu_x) \tag{19}$$

Debemos encontrar la covarianza de Y, para ello, sin perder generalidad, buscamos el elemento en la posición ij en la matriz de covarianza Σ_y y el elemento i en el vector μ_y . Definimos $a_{i0} = f_i(\mu_x^{(1)}, \mu_x^{(2)}, \dots, \mu_x^{(n)})$ y $a_{ij} = 0$

$$\frac{\partial f_{i}}{\partial X_{j}}(\mu_{x}^{(1)}, \mu_{x}^{(2)}, \dots, \mu_{x}^{(n)})$$

$$\mu_{y}^{(i)} = E[Y_{i}]$$

$$= E\left[a_{i0} + \sum_{j} a_{ij}(X_{j} - \mu_{x}^{(j)})\right]$$

$$= E[a_{i0}] + E\left[\sum_{j} a_{ij}X_{j}\right] - E\left[\sum_{j} a_{ij}\mu_{x}^{(j)}\right]$$

$$= a_{i0} + \sum_{j} a_{ij}E[X_{j}] - \sum_{j} a_{ij}\mu_{x}^{(j)}$$

$$= a_{i0} + \sum_{j} a_{ij}\mu_{x}^{(j)} - \sum_{j} a_{ij}\mu_{x}^{(j)}$$

$$= a_{i0} + \sum_{j} a_{ij}\mu_{x}^{(j)} - \sum_{j} a_{ij}\mu_{x}^{(j)}$$

$$= a_{i0} + \sum_{j} a_{ij}\mu_{x}^{(j)} - \sum_{j} a_{ij}\mu_{x}^{(j)}$$

$$\begin{split} & \Sigma_{y}^{(ij)} = \text{Cov}(Y_{i}, Y_{j}) \\ & = E\left[(Y_{i} - \mu_{y}^{(i)})(Y_{j} - \mu_{y}^{(j)}) \right] \\ & = E\left[\sum_{k} a_{ik} (X_{k} - \mu_{x}^{(k)}) \sum_{l} a_{jl} (X_{l} - \mu_{x}^{(l)}) \right] \\ & = E\left[\sum_{k} a_{ik} a_{jk} (X_{k} - \mu_{x}^{(k)})^{2} + \sum_{l \neq k} a_{jl} a_{ik} (X_{l} - \mu_{x}^{(l)})(X_{k} - \mu_{x}^{(k)}) \right] \\ & = E\left[\sum_{k} a_{ik} a_{jk} (X_{k} - \mu_{x}^{(k)})^{2} \right] + E\left[\sum_{l \neq k} a_{jl} a_{ik} (X_{l} - \mu_{x}^{(l)})(X_{k} - \mu_{x}^{(k)}) \right] \\ & = \sum_{k} a_{ik} a_{jk} E\left[(X_{k} - \mu_{x}^{(k)})^{2} \right] + \sum_{l \neq k} a_{jl} a_{ik} E\left[(X_{l} - \mu_{x}^{(l)})(X_{k} - \mu_{x}^{(k)}) \right] \\ & = \sum_{k} a_{ik} a_{jk} \Sigma_{x}^{kk} + \sum_{l \neq k} a_{jl} a_{ik} \Sigma_{x}^{(lk)} \\ & = \sum_{k,l} a_{jl} a_{ik} \Sigma_{x}^{(lk)} \\ & = \sum_{k,l} \frac{\partial f_{j}}{\partial X_{l}} \frac{\partial f_{i}}{\partial X_{k}} \Sigma_{x}^{(lk)} \end{split}$$

$$(21)$$

Recordemos que la matriz de covarianza de X está dada por

$$\Sigma_{x} = \begin{bmatrix} \Sigma_{x}^{(11)} & \Sigma_{x}^{(12)} & \cdots & \Sigma_{x}^{(1n)} \\ \Sigma_{x}^{(21)} & \Sigma_{x}^{(22)} & \cdots & \Sigma_{x}^{(2n)} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{x}^{(n1)} & \Sigma_{x}^{(n2)} & \cdots & \Sigma_{x}^{(22)} \end{bmatrix}$$
(22)

La expresión (21) es lo mismo que

$$\Sigma_{y}^{(ij)} = \nabla f_{i} \cdot \Sigma_{x} \cdot \nabla f_{j}$$

$$= \begin{bmatrix}
\frac{\partial f_{i}}{\partial X_{1}} \\
\vdots \\
\frac{\partial f_{i}}{\partial X_{n}}
\end{bmatrix} \cdot \begin{bmatrix}
\Sigma_{x}^{(11)} & \Sigma_{x}^{(12)} & \cdots & \Sigma_{x}^{(1n)} \\
\Sigma_{x}^{(22)} & \Sigma_{x}^{(22)} & \cdots & \Sigma_{x}^{(2n)}
\end{bmatrix} \cdot \begin{bmatrix}
\frac{\partial f_{j}}{\partial X_{1}} \\
\vdots \\
\Sigma_{x}^{(n1)} & \Sigma_{x}^{(n2)} & \cdots & \Sigma_{x}^{(22)}
\end{bmatrix} \cdot \begin{bmatrix}
\frac{\partial f_{j}}{\partial X_{n}}
\end{bmatrix}$$

$$= \begin{bmatrix}
\sum_{k} \frac{\partial f_{i}}{\partial X_{k}} \Sigma_{x}^{(k1)} \\
\sum_{k} \frac{\partial f_{i}}{\partial X_{k}} \Sigma_{x}^{(k2)} \\
\vdots \\
\sum_{k} \frac{\partial f_{j}}{\partial X_{n}}
\end{bmatrix} \cdot \begin{bmatrix}
\frac{\partial f_{j}}{\partial X_{1}} \\
\vdots \\
\frac{\partial f_{j}}{\partial X_{n}}
\end{bmatrix}$$

$$= \sum_{k} \frac{\partial f_{i}}{\partial X_{k}} \frac{\partial f_{j}}{\partial X_{1}} \Sigma_{x}^{(k1)} + \cdots + \sum_{k} \frac{\partial f_{i}}{\partial X_{k}} \frac{\partial f_{j}}{\partial X_{n}} \Sigma_{x}^{(kn)}$$

$$= \sum_{k} \sum_{l} \frac{\partial f_{i}}{\partial X_{k}} \frac{\partial f_{j}}{\partial X_{l}} \Sigma_{x}^{(kl)}$$

$$= \sum_{k} \sum_{l} \frac{\partial f_{i}}{\partial X_{k}} \frac{\partial f_{j}}{\partial X_{l}} \Sigma_{x}^{(kl)}$$

Si generalizamos la expresión, obtenemos la ecuación de la ley de propagación de errores

$$\Sigma_y = J_x \Sigma_x J_x^T \tag{24}$$

En nuestro caso, aplicamos μ_x en la matriz Jacobiana, es decir

$$\Sigma_y = J_x(\mu_x) \Sigma_x \left[J_x(\mu_x) \right]^T \tag{25}$$

La fórmula (24) expresa un cambio de base (lineal) aplicado a la matriz de covarianza de X. Básicamente, estamos transformando la covarianza de X a través de su relación con Y, esta relación está dada por la matriz Jacobiana, ya que expresa la tasa de cambio de cada salida Y_i con respecto a sus variables X_j . El significado intuitivo es el mismo que en el caso unidimensional.