Name:	
J#:	${f Midterm}$
Date: 2017 June 30	

Instructions:

- Your student ID is required to take this exam.
- Do **not** separate these pages.
- All items other than writing utensils must be put away for the duration of the exam. You will be provided with an updated progress report.
- You have **75 minutes** to complete any of the provided exercises: two for each Core Standard C01-C06 and one for each Supporting Standard S01-S07. You are not expected to answer every exercise. Instead, only answer the exercises for standards where you have not earned all possible ✓s and you are confident of the correct solution.
- Use the space provided in the back of the packet if you run out of room for an exercise.
- Each worked exercise will be marked with \times , \star , or \checkmark and treated similarly to quiz exercises. Details on improving \star marks will be provided at a later date.
- All the necessary information to answer each question is provided on the exam. The proctor will not answer questions or make clarifications. In the unlikely event of an error, a make-up exercise will be offered at a later date.
- When you are satisfied with your solutions, submit this packet to the proctor. Then collect your belongings and exit the classroom.
- Exams not submitted to the proctor in time will not be graded.

Standard: This student is able to	Mark:
C01: SurfaceEQ. Identify and sketch surfaces in three-	
dimensional Euclidean space.	
a	

Sketch the surface $(x+1)^2 + (y-3)^2 + z^2 = 1$ in xyz space.

Standard: This student is able to	Mark:
C01: SurfaceEQ. Identify and sketch surfaces in three-	
dimensional Euclidean space.	
b	

Sketch the equation yz = 9 first as a curve in the yz plane, then as a surface in xyz space.

Standard: This student	is able to	Mark:
C02: VectFunc.	Model curves in Euclidean space with vec-	
tor functions.		
a		

Give a vector function modeling the line passing through $\langle 3, 3, 2 \rangle$ and parallel to the vector $\langle 3, -1, 4 \rangle$.

Standard: This studen	t is able to	Mark:
C02: VectFunc.	Model curves in Euclidean space with vec-	
tor functions.		
b		

Give a vector function $\mathbf{r}(t)$ parameterizing one counter-clockwise motion around the circle with center $\langle 5, 0 \rangle$ from the point $\langle 5, 3 \rangle$ back to itself.

Standard: This student is able to	Mark:
C03: VectCalc. Compute and apply vector function limits,	
derivatives, and integrals.	
a	

Find a vector tangent to the curve parameterized by $\mathbf{r}(t) = \langle 3t, 2t^2 + t - 2 \rangle$ at the point $\langle 0, -2 \rangle$.

Standard: This student is able to...

C03: VectCalc. Compute and apply vector function limits, derivatives, and integrals.

b

Find $\mathbf{r}(t)$ given $\mathbf{r}'(t) = \langle e^t, 3t^2 \rangle$ and $\mathbf{r}(1) = \langle 2e, 3 \rangle$.

Standard: This student is able to	Mark:
C04: VectFuncSTNB. Compute and apply the arclength	
parameter and TNB frame for a vector function.	
a	

Find the arclength parameter s(t) for the curve given by $\mathbf{r}(t) = \langle 4\cos t, 3t, -4\sin t \rangle$. Then give the arclength from t=0 to $t=\pi$.

Standard: This student is able to...

C04: VectFuncSTNB. Compute and apply the arclength parameter and TNB frame for a vector function.

b

Suppose the unit tangent and normal vectors at a point on a parametrized curve are given by $\mathbf{T} = \left\langle \frac{3}{5}, 0, -\frac{4}{5} \right\rangle$ and $\mathbf{N} = \left\langle \frac{2}{5}, \frac{\sqrt{3}}{2}, \frac{3}{10} \right\rangle$. Find the binormal vector \mathbf{B} at that same point.

Standard: This student is able to	Mark:
C05: MulivarCalc. Compute and apply the partial deriva-	
tives, gradient, and directional derivatives of a multivariable	
real-valued function.	
a	

Find the minimal value of the directional derivative for the function $f(x,y) = 4xy + 2x^2 + y - 1$ at the point $\langle -1, 2 \rangle$.

Standard: This student is able to...

C05: MulivarCalc. Compute and apply the partial derivatives, gradient, and directional derivatives of a multivariable real-valued function.

b

Verify the mixed derivative theorem $f_{yz} = f_{zy}$ for $f(x, y, z) = xy^3 - 5xyz^2$ by computing the second partial derivative both ways.

Standard: This student is able to C06: ChainRule. Apply the multivariable Chain Rule to compute derivatives and find normal vectors.	Mark:
a	

Use the multivariable Chain Rule to find $\frac{df}{dt}$ at t=1 given $f(x,y)=3xy^2$ and $\mathbf{r}(t)=\langle t^2+2,1-2t\rangle$.

Standard: This student is able to	Mark:
C06: ChainRule. Apply the multivariable Chain Rule to	
compute derivatives and find normal vectors.	
b	

Find an equation for the plane tangent to the surface $xy = z^2 + 3$ at the point (2, 2, -1).

Standard: This student is able to	Mark:
S01: 3DSpace. Plot and analyze points and vectors in	
three-dimensional Euclidean space.	

In xy plane, sketch the vector $\mathbf{v} = \langle 3, 4 \rangle$, the vector \mathbf{w} pointing from $\langle 3, 4 \rangle$ to $\langle -1, 2 \rangle$, and the vector $\mathbf{v} + \mathbf{w}$.

Standard: This studen	at is able to	Mark:	
S02: DotProd.	Compute and apply the dot product of two		
vectors.			

Find the work done by a force vector $\langle 5, -3 \rangle$ over the displacement vector $\langle 3, -4 \rangle$.

Standard: This student is	ard: This student is able to	
S03: CrossProd.	Compute and apply the cross product of	111001111
two vectors.		

Use the cross product to prove that (3, 1, -4) and (6, 2, -8) are parallel vectors.

Standard: This student is able to	Mark:	
S04: Kinematics. Compute and apply position, velocity,		
and acceleration vector functions.		

Recall that position in ideal projectile motion is given by $\mathbf{r}(t) = P_0 + \mathbf{v}_0 t - \frac{1}{2}g\hat{\jmath}t^2$ where P_0 is the initial position, \mathbf{v}_0 is initial velocity, and g is acceleration due to gravity. Assume g = 10 meters per second squared. Find the height of a projectile after 3 seconds if it is launched from the ground with initial velocity $\langle 8, 20 \rangle$ meters per second.

Standard: This student is able to	ent is able to Mark:	
S05: MulivarFunc. Sketch and analyze the domain, level		
curves, and graph of a two-variable real-valued function.		

Graph $f(x,y) = \sqrt{25 - x^2 - y^2}$.

Standard: This student is able to...

S06: Lineariz. Compute the linearization of a two-variable real-valued function at a point and use it for approximation.

Mark:

Find the linearization L(x,y) for $f(x,y)=(6x+3y)^{1/2}$ at the point $\langle 1,1\rangle$. Then use it to show that $f(1.1,0.98)\approx 3.09$.

Standard: This student is able to	Mark:
S07: Optimiz. Use the first-derivative test and Lagrange	
multipliers to optimize a real-valued multivariable function.	

Find the maximum value of the function $f(x,y) = 2x^2 + y^2 + 1$ on the closed and bounded disk $x^2 + y^2 \le 4$. (Hint: You can check the critical points on the boundary by using $\mathbf{r}(t) = \langle 2\cos t, 2\sin t\rangle$ with $2\sin t\cos t = \sin(2t)$, or alternatively by using Lagrange multipliers with $g(x,y) = x^2 + y^2 = 4$.)

Use this page if additional space is required.

Use this page if additional space is required.