Task №12

Щербаков Алексей Б01-908

03 Dec 2019

1

Разложите в ДНФ и КНФ булеву функцию, заданную вектором значений: f(x,y,z) = 00111100

X	У	Z	res
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Если res=1, то переменные, равные 1, записываем в ДНФ без изменения, а равные 0 с отрицанием.

ДНФ: $(\bar{x} \wedge y \wedge \bar{z}) \vee (\bar{x} \wedge y \wedge z) \vee (x \wedge \bar{y} \wedge \bar{z}) \vee (x \wedge \bar{y} \wedge z)$

Если res=0, то переменные, равные 0, записываем в КНФ без изменения, а равные 1 с отрицанием.

КНФ: $(x \lor y \lor z) \land (x \lor y \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z})$ х и y существенные, z

- фиктивная. Поэтому z можно не учитывать:

ДНФ: $(\bar{x} \wedge y) \vee (x \wedge \bar{y})$ КНФ: $(x \vee y) \wedge (\bar{x} \vee \bar{y})$

2

Вычисляется ли константа 0 в базисе $\{\neg(x_1 \to x_2)\}$

x_1	$\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$	res	
0	0	0	
0	1	0	
1	0	1	
1	1	0	

$$\neg(\neg(x_1 \to x_2) \to \neg(x_1 \to x_2))$$

\mathbf{x}_1	x_2	res
0	0	0
0	1	0
1	0	0
1	1	0

Ответ: Да

3

Вычислите $\mathrm{MAJ}(x,y,z)$ схемой в базисе Жегалкина $\{1,\wedge,x_1\oplus x_2\}$

$$MAJ(x, y, z) = (x \land y) \oplus (y \land z) \oplus (x \land z)$$

4

Сколько ненулевых коэффициентов в многочлене Жегалкина, который равен $x_1 \vee x_2 \vee ... \vee x_n$?

Выразим многочлен в базисе Жегалкин:

$$x_1 \vee x_2 \vee \dots \vee x_n = \neg(\neg(x_1 \vee x_2 \vee \dots \vee x_n)) = \neg(\bar{x}_1 \wedge \bar{x}_2 \wedge \dots \wedge \bar{x}_n) = \neg((1+x_1) \cdot (1+x_2) \cdot \dots \cdot (1+x_n)) = \neg(1+A) = 1+1+A = A$$

$$1+A \text{ COMPLY MET } 2^n \text{ CHAPPY MET } 2^n = 1 \text{ CHA$$

1 + A содержит 2^n одночленов, значит A содержит $2^n - 1$ одночлен

Ответ: $2^{n} - 1$

5

Докажите полноту базиса $\{x|y\}$

$$\neg x = x | x$$

$$x \land y = \neg(x|y) = (x|y)|(x|y)$$

Таким образом с помощью штриха Шеффера можно выразить полный базис $\{\neg, \land\}$, значит штрих Шеффера тоже полный базис

6

Является ли полным базис $\{\land; \to\}$?

$$1 \land 1 = 1$$
$$1 \rightarrow 1 = 1$$

Значит набор функций замкнут в классе T_1 , значит не является базисом

Ответ: Нет

7

Является ли полным базис $\{\neg; MAJ(x_1, x_2, x_3)\}$?

$$MAJ(x_1, x_2, x_3) = 0, MAJ(\bar{x}_1, \bar{x}_2, \bar{x}_3) = 1$$

 $MAJ(x_1, x_2, x_3) = 1, MAJ(\bar{x}_1, \bar{x}_2, \bar{x}_3) = 0$

Функции отрицания и MAJ самодвойственные, следовательно, базис замкнут на S.

Ответ: Нет

8

Пусть $f(x_1,...,x_n)$ - немонотонная функция. Докажите, что $\neg x_1$ вычисляется в базисе $\{0,1,f\}$

 $\exists A,B: (f(A)=1) \land (f(B)=0) \land (B$ получается из A заменой любого количества нулей на 1)

В наборе B заменим все появившиеся единицы на x_i , назовём получившийся набор C, тогда если $x_i=1$, то C=B и f(C)=0, а если $x_i=0$, то C=A и f(C)=1. Таким образом, $f(C)=\neg x_i$ чтд.

Докажите, что всякую монотонную булеву функцию можно вычислить монотонной схемой

Нужно доказать, что любая монотонная функция представима в ДН Φ без отрицаний. Выпишем таблицу истинности произвольной монотонной функции

X	у	Z	res
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Рассмотрим столбцы, где значение равно 1. Рассмотрим строку где значение равно 1, при этом количество аргументов равное 1 минимально. Т.к. функция монотонная, то существуют строки, равные 1, которые отличаются от этой только заменой одного 0 на 1. Получается ... \lor ($\bar{a} \land b \land ...$) \lor ($a \land b \land ...$)... Эта дизъюнкция равна ($b \land ...$). Далее аналогично для любой строки. Таким образом, любую дизъюнкцию конъюнкций с отрицанием можно сократить до конъюнкции без отрицания, значит, любое ДНФ представление любой монотонной функции можно сократить до представления ДНФ без отрицания. чтд.

10

 $PAR(x_1, x_2, ..., x_n) = 1$, если количество единиц чётное и 0, если нечётно

а) Выразите PAR через известные булевы функции

$$PAR(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$$

б) При каких $n \geq 1$ можно представить PAR в виде ДНФ без отрицаний

Функция задаётся ДНФ без отрицаний, только если она монотонная (так как ДНФ без отрицаний монотонна по определению, $(a \wedge b \wedge c \wedge ...) \vee (d \wedge e \wedge g \wedge ...) \vee ... = 1 \rightarrow$ если любой 0 заменить на 1, то значение функции не изменится). Т.к. PAR при n>1 немонотонная (если PAR(A)=1 и если заменить любой 0 на 1, то значение функции поменяется), значит n=1 Ответ: 1

11

Докажите, если $f(x_1,...,x_n)$ - нелинейная функция, то $x_1 \wedge x_2$ вычисляется в базисе $\{0,1,\neg,f\}$

Представим функцию f в форме полинома Жегалкина:

Так как функция нелинейная, то существует одночлен, содержащий хотя бы две переменные

Представим в форме Жегалкина $f(x_1,x_2,1,1,1,1...)=(x_1\wedge x_2)\oplus x_1\oplus x_2\oplus 1$. При этом $(x_1\wedge x_2)$ будет обязательно присутствовать, а оостальные слагаемые не обязательно. Если присутствует только конъюнкция, то $\wedge=f(x_1,x_2,1,1,1,1...)$, если присутствуют ещё члены, то применив отрицание от них можно избавиться.

12

Докажите теорему Поста

Если функции не принадлежит ни одному из классов T_0, T_1, M, L, S , то они образуют полный базис.

Рассмотрим функию $f(x_1, x_2, ...)$

Если функция $f \notin T_0$, то $f(x,x,x,x...) = \neg$ или 1

Если функция $f \notin T_1$, то $f(x, x, x, x...) = \neg$ или 0

Таким образом из этой функции можно получить отрицание и две константы.

По теореме, доказанной в предыдущем задании, мы можем выразить \land Таким образом, мы из f получили полный базис $\{\neg, \land\}$, значит f так же является полным базисом.