1. Uma empresa aérea deseja alocar suas aeronaves
nas rotas em que opera. A tabela abaixo mostra os
custos das aeronaves nas respectivas rotas.

	R_1	R ₂	R_3
Aeronave 1	100		
Aeronave 2	120	130	
Aeronave 3	200	250	120
Aeronave 4		180	160
Aeronave 5			190

As capacidades de cada aeronave são de $k_1, k_2, ..., k_5$ passageiros. A empresa dispõe de $T_1, T_2, ..., T_5$ aeronaves de cada tipo. Sendo a demanda mínima diária de passageiros em cada rota de D_1, D_2 e $D_3,$ modelar o problema de alocação das aeronaves com o menor custo possível. <u>Obs</u>. Considere que cada aeronave realiza uma única viagem por dia na rota alocada.

La bariaveir de decisão:

Xij = quantidade de acronorse i fozondo a roto j

Lo Sunção Objetivo:

Min Z = X11.100 + X21.120 + X22.130 + X31.200 + X32.250 + X33.120 + X42.180 + X43.160 + X53.190

4 hostricos:

 $X_{11} \leq T_{1}$ $X_{11} + X_{21} + X_{31} \geq D_{1}$ $X_{21} + X_{22} \leq T_{2}$ $X_{22} + X_{32} + X_{42} \geq D_{2}$

 $X_{31} + X_{32} + X_{33} \le T_3 (X_{33} + X_{43} + X_{53} > D_3$

X42+X43 ET4 | Xij 20, ies1.53, jes1.33

 $X_{S3} \leq T_{S}$

2. A região metropolitana de BH inclui 6 cidades que precisam de serviço de ambulância. Devido à proximidade entre as cidades, uma única estação de ambulância pode atender a mais de uma comunidade. A determinação é que a estação deve estar a menos de 15 minutos das cidades que atende. A tabela abaixo fornece os tempos de viagem, em minutos, entre as cidades. Monte um modelo de PL para minimizar os custos de alocação das estações e garantir que cada cidade seja atendida por pelo menos uma estação.

	C1	C2	C3	C4	C5	C6
C1	0	23	14	18	10	32
C2	23	0	24	13	22	11
C3	14	24	0	60	13	20
C4	18	13	60	0	55	10
C5	10	22	13	55	0	12
C6	32	11	20	10	12	0
Custo de instalação	35	47	24	58	25	34

L's Corióvel de decisão: Xi = 1 se uma stação GOT instolodo ma cidade i, i e 21..6} O coso contrório

Lo Funga Ulgative : Min 2 = X1.3S + X2.47 + X3.24 + X4.58 + X5.2S + X6.34

3. Uma siderúrgica abastece a sua produção, estabelecida em duas usinas a partir de três minas de ferro. Os custos de transporte por tonelada, as demandas das usinas e as capacidades de extração do minério nas minas são dados na tabela abaixo. Por força de contrato, caso alguma mina forneça qualquer quantidade de minério é cobrado um custo fixo por este fornecimento. Escreva um modelo de programação linear para atender as demandas com o menor custo possível.

	Mina 1	Mina 2	Mina 3	Demanda mínima
Usina 1	\$10	\$25	\$15	120
Usina 2	\$12	\$20	\$30	230
Cap. produção	250	570	750	
Custo fixo	\$1.200	\$1.750	\$1.530	

Lo Carianeir de Alecisas:

Xij = Clerantidode em tondodos transportados do minos j para a listina i.

7j = {1 esse o mino j Gornego O coso contrório

Lo Jungao (llejativo: Min $z = \chi_{11}.10 + \chi_{12}.25 + \chi_{13}.15 + \chi_{21}.12 + \chi_{22}.20 + \chi_{23}.30 + \chi_{1.1200} + \chi_{2.1750} + \chi_{3.1530}$

L> Restrictor:

Xij > 0, ie {1,2}, je {1..3}

Xn+X12+X13 ≥ 120

X21+X22+X23 > 230

 $X_{11} + X_{21} \leq 250$

 $\chi_{12} + \chi_{22} \leq 5 \%$

 $X13+X_{23} \leq 750$

Xn+X21 & co. Yn

X12+X22 ≤ ∞, Y2

X13 +X23 & 6 /3