

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Teoria dos Grafos Professor: Marco Antonio M. Carvalho

decom

Lista de Exercícios 03

Instruções

- A resolução da lista de exercícios deve ser entregue em um arquivo formato PDF legível no Moodle;
- Ao final desta lista de exercícios, está disponível o padrão para as respostas;
- A resolução deve considerar estritamente a mesma numeração e ordem dos exercícios;
- Quando não especificado nos exercícios, considere grafos simples.
- 1. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

2. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

3. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

1. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

Gabarito Exemplo

As questões deve ser respondida por meio de tabelas. Adeque a quantidade de linhas de acordo com cada rede.

a. Indique na tabela cada arco da rede e o fluxo viável associado.

Fluxo viável	
Arco	Fluxo
(vértice s, vértice 1)	Χ
(vértice 1, vértice 2)	Υ
(vértice 2, vértice 3)	Z
(vértice 3, vértice t)	Α

b. Semelhante à letra (a), porém, agora relacionado ao fluxo máximo. Preencha também a segunda tabela referente ao corte mínimo.

Fluxo máximo	
Arco	Fluxo
(vértice s, vértice 1)	Χ
(vértice 1, vértice 2)	Υ
(vértice 2, vértice 3)	Z
(vértice 3, vértice t)	Α

Capacidade do corte mínimo:	
X = {	}
X' = {	}