9 10

Data Structure Midterm Examination 3:30pm-5:20pm (110 minutes), April. 23, 2018

- ◆ 看清題目再作答。
- ◆ 中英文、鉛筆原子筆做答都可以。
- ◆ 如有多個正確
- ◆ 答案但題目指要求回答一個,回答任一個均可。
- ♦ There are 10 questions. You can obtain up to 114 points.

1. (8pt) KMP Algorithm

(1) Please show a pattern (NTHU...) that lets KMP Algorithm try to match pat[2] upon a mismatch at pat[7] as shown in the following figure.

(2) What is the next index (0 \sim 6) KMP Algorithm would try to match upon a mismatch at pat[5] as shown in the following figure?

2. **(14pt)** Please compare the asymptotic complexity hierarchy of the following functions using '=', '>', or '<'.

3. **(10pt)** Please complete the function that inserts a singly linked list (non-circular, with a header) into a **doubly linked list** (non-circular, with a header) right after the node pointed by the pointer P. Please assume the handling pointer of the doubly linked list is "first".

```
void DoublyList::InsetSinglyList(Node* List, Node* P)
{
```

4. **(10pt)** Please analyze the **time complexity** of the following functions as tight as possible:

```
void f(int X, int Y, int a[])
{
  while (Y > 0) {
    if(X <= 0) {
        X = Y = Y - 1;
    }
    X = X - 1;
    a[Y]++;
  }
}</pre>
```

}

```
void g(int N, int a[], int b[])
{
   if (a[N] % N == 0)
     return;
   for (int i=0; i<N; i=i*2)
     b[N]++;
   g(N-1, a, b);
}</pre>
```

```
f(X,Y,...) \in \Omega ( \qquad ) \qquad g(N,...) \in \Omega ( \qquad ) f(X,Y,...) \in O ( \qquad ) \qquad g(N,...) \in O ( \qquad )
```

5.	(20pt) Select the best answer (-1 points for each wrong selection)
	Which can cause operating systems (e.g., Linux and Windows) to report a
	runtime error?
	(A) Reference to an out-of-bound array entry.
	(B) Miss a semicolon (分號) in a C program.
	(C) Reference to a variable name that is undefined.
	(D) Duplicate functions or variables in a program.
	(E) None of the above.
	Which corresponds to the slowest algorithm when the problem size is large
	enough?
	(A) O (n ⁴)
	(B) O (0.1(4 ⁿ))
	(C) $O(10\log(4^n))$
	(D) O ((4n) ⁿ)
	(E) None of the above is the best answer because it depends on the
	implementation of the algorithm.
	Which programming language can solve the largest set of problems.
	(A) Structure language (e.g., C)
	(B) Object-oriented language (e.g., C++)
	(C) Assembly language
	(D) The above can solve the same set of problems.
	(E) The answer depends on compilers and operating systems.
	To store a polynomial $f(x, y, z) = 2x^3y^4 + 3x^2z^3 - 7xy^2z^2 +$ using an array.
	(A) array size = 3 * terms
	(B) array size = 4 * terms
	(C) array size = terms ²
	(D) array size = terms ³
	(E) None of the above
	int A[10][10][10] is an row-major array. What is the offset of A[3][3][3]?
	(A) 3 * (1000 + 100) * sizeof(int)
	(B) 3 * (1000 + 100 + 10 + 1) * sizeof(int)
	(C) 3 * (100 + 10 + 1) * sizeof(int)
	(D) 3 * (1000 + 100 + 10) * sizeof(int)
	(E) None of the above

6. **(12pt)** Please convert **B** * **C** + (**A** * **B** / **C**) – **A** / **B** + **C** into a postfix expression. Only the boxes with thick borders will be graded (只有粗黑框格子計分). Please note the priority listed in the table is not what we commonly use.

← bottom

Token Stack Output So Far																					
Token		Stack					tpu	t Sc	Fa	r	,										
В															D.:						
*															Priority (Operator			
С																			+		
+														<u> </u>							
(Low			*/			
Α														_							
*																					
В																					
/																					
С																					
)																					
-																					
Α																					
1																					
В																					
+																					
С																					
	Final output				ut																

7. (10pt) Linked list operations

8. (10pt) Asymptotic notations

$$P(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_k n^k \Rightarrow \log(P(n)) = O(n)$$

(1) (4pt) Is the above statement true or false?

(2) (6pt) Please prove or disprove the statement according to the definition of Big-O.

9. (11pt) Hanoi Tower

(1) **(5pt)** Suppose the smallest disk weighs 1 gram, the 2nd smallest one weighs 2 grams, ..., the Nth one weighs 2^N grams, how many grams are lifted in total to move the N disks to another stick?

(2)	(6pt) Please write a recursive program that simulates Hanoi Tower to calculate the above value.

10.	(9pt	t)
	(1)	(3pt) Please describe two differences between call-by-value and call-by-pointer?
	(2)	(3pt) Please explain two purposes of templates in C++.
	(3)	(3pt) A multiplication operation is usually slower than an addition operation, but why can we still consider them the same when performing step count analysis?