PHY(426 Locklan Noble Apr: 110, 2017 DEFFFOOV Take Home Final 1) cylinder rotated of solid body: Ur=0 for 05rEa ug=rslô ho(a)=as no slip boundary: at r=a Ufluid = Ucyl = FIR ô vorticity w= Vxu = (3x - 3x) k = 2 si= wok $D(\omega) = (\omega \cdot \nabla) \omega + \nu \nabla^2(\omega)$ in polar coordinates:

(\(\name \nu \name \nam $0 = \mathcal{V}\left(\frac{\partial^2 u_0}{\partial r^2} + \frac{1}{r} \frac{\partial u_0}{\partial r} - \frac{u_0}{r^2}\right)$ de l'accepte de confrencte às ODE: dra + d (up) = 0 =) dus , us = C, $\frac{d(c u_0)}{dc} = \frac{1}{2} \frac{c_1 c_2}{c_1 c_2} + \frac{c_1}{c_1} = \frac{c_1}{c_1} = \frac{c_1}{c_2} = \frac{c_1}{c_1} = \frac{c_2}{c_1} = \frac{c_1}{c_2} = \frac{c_1}{c_1} = \frac{c_2}{c_1} = \frac{c_1}{c_2} = \frac{c_1}{c_2} = \frac{c_2}{c_1} = \frac{c_1}{c_2} = \frac{c_1}{c_2} = \frac{c_2}{c_1} = \frac{c_1}{c_2} = \frac{c_2}{c_2} = \frac{c_1}{c_2} = \frac{c_2}{c_2} = \frac{c_1}{c_2} = \frac{c_2}{c_2} = \frac{c_2}{c$ / tho = 320 - 1 (80) = 200 11 1 C, F + Cg()

4 2) Bernoulli! P[2 /u/2 + g2 + P] = u - F + 1 dP insteady state u.F=0 W. F = V. (y. 2) - 2 (dy)2 = 0

hock done
by cylonfloid dissipation (V. (u.t) = 6 40 to . de to = v duo + = N (1) (12) (- 22) (0) (- 32) (0) =-20-2/342 nork Dug = 200 + 1 240 + 240 (5 (30) 5 N = 5 (56 (50) 919) = 29 (34 s2) dr = 245 [- 3/3.] 3 7 = -545 975 9:22: bafior hence rate of work equals viscous
dissipation

letting non-dimensional velocity

$$u' = u = f(r, t, v) - F(n)$$
 $\Gamma/2\pi r$
 $n \circ n \quad dimensional velocity

 $\Gamma = \Gamma \cdot r$
 $\Gamma =$$

$$KE = \begin{cases} \frac{1}{2} u^{2}JZ = \frac{1}{2}u^{2} = \frac{1}{2}u^{2}Si_{1}^{2}(\omega U + \delta) \\ \frac{1}{2} U^{2} = \frac{1}{2}u^{2} = \frac{1}{2}u^{2}Si_{1}^{2}(\omega U + \delta) \\ \frac{1}{2} U^{2} = \frac{1}{2}u^{2} = \frac{1}{2}u^{2}Si_{1}^{2}(\omega U + \delta) \\ \frac{1}{2} U^{2} = \frac{1}{2}u^{2}Si_{1}^{2}(\omega U + \delta) \\ \frac{1}{2}u^{2}Si$$

* 4) OCC 1. POLL B. 911 L L L 284 Jan

S= separation Point Mr=0 } st suffice => M(R,0)-0) (R,0)=0 Doutside of Gorndon, loyer st x-2R to W (Surring viscour flow) or AED 11 + - Un - (n - 12) 1:00 los \$ = V = (- P2) (-19 U0 = - U xx (1 + 12) 1:0 = - 200 1:0 pt r=R 100 m = 200 (2) Poublie = Ps Post 2 PV2 = P, + 2 Pus? P, = 100 - 1 P Ux (1-41:20). D= - \\ \(\) \(\ defining drag depressure coefficients CD= D $C_{\rho} = \frac{\rho - \rho_{\infty}}{2}$ CD = -1 (-12 100,000

3) / NR DUO - 1 10 = { [[27R2] r \le R

Suffice of mater in voitex (rMR)

rough and turbulent

outside voitex smoother, with

Mo flow along surface of headland

& channel edge (looks like an eddy)

4) At the moment the flow

terns off, the vertex will

travel back towards the headland

with initial speed - Vas because

of negatine up where

vortex is,

Shell of decreases $\omega_0 = \omega_f$ She prosbolic with $\eta = h - R^2$