

Kubernetes + Security = True?

Or...maintaining high velocity and still wearing a seatbelt

WHOAMI\$

- Cloud Evangelist Sopra Steri
- Focus areas: Cloud & Security
- «Hobbies»
 - Microsoft Cloud Security User Group
 - Cloudfirst Podcast
 - Tech influencer <u>msandbu.org</u>
 - Also an author sometimes

What is the biggest challenge with securing Kubernetes?

The biggest challenge with securing Kubernetes is the complex and dynamic ature of the environment. Kubernetes is a highly distributed system that consists of multiple components and layers making it inherently more difficult to secure compared to traditional monolithic architectures. Here are some key challenges:

From the NSM Risk report 2023

Utnyttelse av cybersårbarheter lar ikke vente på seg

I Norge har vi fra 2019 til 2021 sett en tredobling i alvorlige cyberoperasjoner mot norske myndigheter og virksomheter. Antallet alvorlige og svært 50.000 norske kroner i tapt inntekt per minutt – det er scenariet for foretak som opplever feil som gjør digitale tjenester utilgjengelige for kundene.

The number of vulnerabilities from 2008 - 2022

Attack vectors

Risks in a Cloud-native landscape?

Unauthorized access to Kube API

Unauthorized access to CI/CD and sourcecode

Vulnerabilities in Container Image or

Limited to none network «segmentation» policies

Harvested user credentials/tokens/SPNs

Credentials stored in plaintext in container

Container applications

The 4C's of Cloud Native Security

Vulnerabilities in Kubernetes

Container Escape

Supply-chain vulnerabilities

Limited network insight

Limited security control of container registry

No proper RBAC in place

Identity also a much bigger challenge

300% Increase in identity-based attacks the last

MFA Fatigue Attacks

Hackers Breached Colonial Pipeline Using Compromised Password

- Investigators suspect hackers got password from dark web leak
- Colonial CEO hopes U.S. goes after criminal hackers abroad

Uber suffers major cyber attack

Details are trickling out of an apparent 'near total' compromise of ride-sharing service Uber by an alleged teenage hacktivist

Source: Azure AD Identity Protection sessions at high risk with multiple failed MFA attempts

Reusing username and passwords on different sites

Phishing attacks and credential harvesting

MFA Fatigue attacks

What other security threats?

Post-authentication attacks

Determined attackers are using malware to steal tokens from devices—allowing a valid user to perform valid multifactor authentication on a valid machine, but then using credential stealers to take the cookies and tokens and use them elsewhere. This method is on the rise and has been used in recent high-profile attacks. Tokens can also be stolen if incorrectly logged or if intercepted by compromised routing infrastructure, but the most common mechanism by far is malware on a machine. If a user is running as admin on a machine, then they are just one click away from token theft. Core Zero Trust principles like running effective endpoint protection, managing devices, and, critically, using least privileged access (meaning, run as a user, not an admin, on your machines) are great defenses. Pay attention to signals that indicate that token theft is occurring, and require re-authentication for critical scenarios like machine enrollment.

Token Replay

Detected token replay attacks per month

Analysis of 4 Million Docker Images Shows Half Have Critical Vulnerabilities

Snyk finds 200+ malicious npm packages, including Cobalt Strike dependency confusion attacks

State of Kubernetes Security Report 2022 State of Open Source Security Report 2022

Kubernetes (k8s) Architecture

Code CI/CD

Integrations will differ

CSI = Storage and Secrets

Cloud Controller Manager = API integration to cloud providers

Load Balancer and Ingress

Windows and Linux nodes

A huge ecosystem with oppurtunities

Often many security mechanisms availal from the providers

Network uses an integration called **CNI** Example: Cilium, VMware NSX, Azure CNI

Public Cloud

Load

Balancer

aithub.com/msugn

#MSUGN

Real-life scenario on how you shouldn't do

Access internal services using VDI

NO healthcheck of device

Multiple agents and MFA services

No MFA on the github account (at that time)

Not all attacks are that critical (but they can be!)

Kubernetes with Kubeflow

Using
Kubeflow to
trigger Tensor
flow jobs

Kubeflow dashboard open to internet

Compromised Git pipeline

Developer X got his access token from Github stolen

Collected all enviroment variables in git and sent it to a digital ocean VPS

Tried to logon to Azure Portal using harvested credentials

What kind of countermeasures can we implement?

Not one size fits all – Some mechanisms are entirely **depedant on use-case** and security requirements of an organization

Securing the developer experience

Zero-Trust Network Access

Never Trust Always Verify

End-user

Identity Posture

Device Posture

ZTNA Magic

Condition based access

Lokasjon

Tidspunkt

Data

Session

SaaS TCP/UDP Web Apps Windows Apps File Storage Jumphost

Microsoft's approach

Azure Active Directory

Intune & **Defender**

al Access

Microsoft Tunnel

SaaS

TCP/UDP

Cloudflare Zero-Trust

Securing the developer workbench

VS Code - Local development GitPod

Github Codespaces

Provide non-persistent container, web-based Deployed as isolated pod As SaaS service can integrate with CASB

Allow use of central iDP

Virtual Desktop

For workloads not supported in web-IDE

Example: Hardware development (Custom drivers)

Provide secure virtual desktop with locked down OS

Securing the developer workbench - Extensions!

Be Careful of which extenions you use!

Double check publisher

Double check released date

Some useful extensions for code analys

Checkov (Palo Alto – Requires Prism Cloud API)
Trivy (Requires API access to Aqua Security)
Tfsec (Full open source)
Snyk (Requires API access to Snyk.io)

Can you spot the fake one?

Project Details

💆 F 🖾

Project Details

prettier/pret	tier-vscode	prettier/prettier-vscode			
Last Commi	t: a month ago 6	• Last Commit: a month ago			
গৈ 14 Pull Requ	iests	\$\$ 14 Pull Requests			
• 51 Open Issues		• 51 Open Issues			
More Info		More Info			
Version	9.10.3	Version	9.10.3		
Released on	1/10/2017, 9:52:02 PM 7	Released on	9/14/2022, 7:49:49 PM		
Last updated	11/30/2022, 9:13:17 PM	Last updated	1/2/2023, 3:50:11 PM		
Publisher	Prettier	Publisher	Prettier		
Unique Identifier	esbenp.prettier-vscode 8	Unique Identifier	espenp.pretier-vscode		
Report	Report Abuse	Report	Report Abuse		

Also be careful with Copilot

```
os_profile {
    computer_name = "example-vm"
    admin_username = "adminuser"
    admin_password = "Password1234!"
}

os_profile_linux_config {
    disable_password_authentication = false
}
```


msugn

Security mechanisms for GitHub

SCIM – User provisioning from central iDP

SSO and access management using SAML/OAcode scanning

Self-hosted runners and private repositories Provide the ability to control and restrict the traffic flow

TFSec = Inspect security issues in Terraform c

Trivy = Inspect security issues in TF Code and Container images

Git Signed Commit

Github Advanced Security Secret scanning = Free feature

Manage programatic access

Use of fine-grained personal access tokens

Github Advanced
Security: (features
for private
repositories)
Code scanning
Secret Scanning
Depedency Review

IAM mechanisms and RBAC

dexidp/dex or pinniped

Accessing Kuberneretes API trough
Token, Sertifikat or authentication proxy
Built-in Certificate in Kubernetes cannot be revoke
No standard LDAP integration

Example: Azure AD, Google or OpenID Connect

RBAC is only to add permissions no deny mechanism

Roles can be defined on namespace level or clust

apiVersion:

rbac.authorization.k8s.io/v1

kind: Role metadata:

namespace: default
name: pod-reader

rules: - apiGroups: [""] # ""

resources: ["pods"]

verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: read-pods
namespace: default

subjects:kind: Username: minikube

apiGroup: rbac.authorization.k8s.io

roleRef: kind:

Role name: pod-reader

apiGroup: rbac.authorization.k8s.io

RBAC and API Objects

All permissions can be delegated(CRUD)

Role

Rolebinding

Namespace

ClusterRol

ClusterRoleBinding

sighupio/permission-manager

Private Cluster

No limit on authentication requests

Mostly an issue on Kubernetes in Public Cloud

Redusere abuse of tokens or other credentials against Kube product:kubernetes country:"NO"

A few vulnerabilites here the last years (example: CVE-2022

.....or atleast define authorized IP addresses for Kube-API prox

Cluster will often require a redeployment of the

Shodan check today!

2 - TOTAL RESULTS	
ox 237	
TOP CITIES	
Oslo	162
Lysaker	8
Selje	8
Mysen	6
Sandefjord	6
More	

Is it according to best pratices?

Kubebench - Scans environment according to CIS

Kubescape - Scans environment according to NSA-CISA and CIS Both understand limitations when running in Microsoft Azure Kubescape can also run using Github Actions or CLI YAML or JSON based reporting

SEVERITY	CONTROL NAME	FAILED RESOURCES	EXCLUDED RESOURCES	ALL RESOURCES	% RISK-SCOR
Critical	Disable anonymous access to Kubelet service	·	+ 0	+	: skipped∗
	Enforce Kubelet client TLS authentication	0	0	0	skipped*
High	Resource limits	0	7	19	0%
	HostNetwork access	0	6	19	0%
High	Privileged container	0	1	19	0%
Medium	Exec into container	0	2	70	0%
Medium	Non-root containers	0	7	19	0%
Medium	Allow privilege escalation	0	6	19	0%
Medium	Ingress and Egress blocked	12	7	19	63%
Medium	Automatic mapping of service account	12	46	58	21%
Medium	Cluster-admin binding	0	2	70	0%
Medium	Cluster internal networking	0	4	4	0%
Medium	Linux hardening	0	2	19	0%
Medium	Secret/ETCD encryption enabled	0	1	1	0%
Medium	Audit logs enabled	0	1	1	0%
Low	Immutable container filesystem	0	6	19	0%
Low	PSP enabled	0	1	1	0%

Kubescape extension for Lens / Openlens

Upgrades and patching

1 year support on a minor release

Version now 1.26.1 (major.minor.patc

Maintance for 14 months

Some different standards on what is support

Depending on vendor

Kubernetes patches come weekly

Some patches requires node restart

A bit dependent on underlying OS

Example: VMware - Photon, Microsoft - Mariner

Kured (Kubernetes Reboot Daemon)

Look after /var/run/reboot-required and reboot if required

Node image upgrade

K8s version	Upstream release	AKS preview	AKS GA	End of life
1.24	Apr-22-22	May 2022	Jul 2022	Jul 2023
1.25	Aug 2022	Oct 2022	Dec 2022	Dec 2023
1.26	Dec 2022	Feb 2023	Apr 2023	Mar 2024
1.27	Apr 2023	Jun 2023	Jul 2023	Jul 2024

Get warning about unsupported API's

FairwindsOps/pluto

Backup and data protection

For services that require persistent storage

Provisions using built-in CSI (storage interface)

Cloud platforms, Dell, HP, NetApp, IBM etc

For data storage that requires read/write by multiple pods.

Backup is something that needs to be deployed seperately

Use of tools like Velero, Kasten or Portvorx Backup

Kubestr can be used to benchmark CSI drivers

Pod Security Admission (PSA)

Better default isolation on containers

Can define different standards

Operate on a namespace level

Three built-in levels

Example: Privileged gives no limits Can be defined on namespace level

kubectl label --overwrite ns test-privileged podsecurity.kubernetes.io/**enforce=privileged** podsecurity.kubernetes.io/**warn=privileged**

kubecti label --overwrite ns test-restricted podsecurity.kubernetes.io/**enforce=restricted** podsecurity.kubernetes.io/**warn=restricted**

Policy Modes

Namespace

Pou Security
Standards

restricted privileged baseline

Encryption and Container Isolation

gVisor - emulates OS-Kernel calls to reduce the risk of container escape

Confidental Computing on Public Cloud Kubemetes kjøremiljø UEFI Boot med VTPM

Uses Hardware technology from AMD to encrypt everything in

CPU

In-transit kryptering

Kata Containers

Minne

Data Prosessering

Container Registry

- Many are using base image with heavy footprin
 - Small changes required such as just changing to slim
- Private vs Public Image repository
- Same principles apply in regard to access contr
- Only allow «approved» images
- Image scanning mechanisms to detect vulneral
 - Quay / Clair
 - Falco
 - Trivy
 - Cloud providers

python

882 MB 431 dependencies 268 vulnerabilities 66 high severity

python: 3-slim-buster

113 MB 94 dependencies 75 vulnerabilities 1 high severity

Note: none of the high severity vulnerabilities currently have fixes available, nor do they have an exploit in the wild

Secret Management

Caution:

Kubernetes Secrets are, by default, stored unencrypted in the API server's underlying data store (etcd). Anyone with API access can retrieve or modify a Secret, and so can anyone with access to etcd.

Additionally, anyone who is authorized to create a Pod in a namespace can use that access to read any Secret in that namespace; this includes indirect access such as the ability to create a Deployment.

- Etcd has no built-in versioning or backup
- Data is not encrypted at rest by default
- External Kubernetes Secret Operator or...
- Secret CSI driver

Features \ Providers	Azure	GCP	AWS	Vault	
Sync as Kubernetes secret	Yes	Yes	Yes	Yes	
Rotation	Yes	Yes No	Yes No	Yes No	
Windows					
Helm Chart	Yes	No	No	Yes	

Supported for Secret Store CSI

Workload Identity

Safe authentication between container to PaaS services

Supported by Google and Microsoft

Federate authentication trough OpenID Connect

Avoid use of keys at all! (at least only shortlived)

Kubernetes Nettverk - some acronyms

CNI = Network integration between Kubernetes and the underlying network

CRD = Custom Resource Definition (Utvidelse med ressurser I Kubernetes APIet)

Network Policies = Lag ³/₄ Firewall mechanisms – Controlled via CNI

Services = Exposing of a service in a pod

Ingress / **Gateway API** = Entry to the different services (trough layer 7)

IP Tables = packet filter in the OS kernel and controls much of the network logic in k8s

eBFP = Mini applications running as a sandbox package in the OS kernel

Network Policies

- Traffic control on layer ¾
 - IP, Port, Protocol, Pod label
 - By default everything in Kubernetes is open
- Require a CNI that can control traffic
 - Calico, WeaveNet, Azure CNI, GKE CNI, Cilium (eBFP)
 - Flannel (does not support Network Policies)
 - Traffic flow controlled via YAML configuration

Some free tools to visualize flow

https://orca.tufin.io/netpol/ https://artturik.github.io/network-policyviewer/ apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: frontend-to-sqldatabase namespace: default spec: podSelector: matchLabels: Target app: sqldatabase policyTypes: - Ingress - Egress ingress: - from: - ipBlock: Source IP cidr: 172.17.0.0/1 namespaceSelector: matchLabels: project: myproject podSelector: matchLabels: Source role: frontend egress: - to: - ipBlock: cidr: 10.0.0.0/24 Target IP ports: og Port - protocol: TCP port: 5978

Service Mesh

Allows us to provide the following features in the platform

Visibilty (L7)
Security (L7)
Traffic shaping

Moving this functionality out of the application layer and into the platform

Service Mesh - Architecture

Different features and architecture depending on vendor

Sidecar proxy or use of eBFP

Cilium use eBFP

Istio use iptables

Provides for instance mTLS on service-to-service

Provides visibility into the network tier

Layer 7 network policies

Service Mesh architecture will soon be replaced with a new architecture

Source - https://istio.io

Architecture based upon Isitio which uses Envoy as a sidecar proxy

Some Service Mesh alternatives

Features	Istio	Linkerd	Hashicorp Consul	Traefik Mesh	Kuma (fra Kong)	Open Service Mesh	VMware Tanzu
Proxy component	Envo y	Linkerd2- proxy	Envoy	Egen	Envoy	Envoy	Envoy
Sidecar Proxy	Yes	Yes	Yes	No	Yes	Yes	Yes
Container-VM	Yes	No	Yes	No	Yes	No	No
MultiCluster	Yes	Yes	Yes	No	Yes		Yes
BYO Ingress	Gate way	Yes	Yes	Wel	Yes	Yes	Yes
Dashboard	Kiali	Yes	Yes	Traefik Hub		Azure Monitor	Tanzu Mission Control
mTLS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Traffic Kontroll	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HTTP/3	Yes	No	Yes	Yes	Yes	Yes	Yes

Security Monitoring of Kubernetes

Kubernetes API monitoring

from
CoreDNS

Host logs

CNI logs

Kubectl apply -f

Kubernetes Audit Policy

Audit Level

- None
- Metadata
- Request
- RequestRespon se

Customize Azure Kubernetes
Service Diagnostics for Azure
Log Analytics - msandbu.org

apiVersion: audit.k8s.io/v1

kind: Policy omitStages:

- "RequestReceived"

rules:

- **level**: RequestResponse

resources:

- group: ""

resources: ["pods"]

- level: Metadata

resources:

- group: ""

resources: ["pods/log",

"pods/status"]

Log service

- Splunk
- Sentinel
- ELK
- Loki

Enterprise products

- ✓ Secure Code development ✓ Securing dependencies
- ✓ Container Image Scanning
 - ✓ Secure IaC

✓ Secure Code Development ✓ Secure IaC

- ✓ Cloud and Kubernetes Security Posture √ Secure Code Development ✓ Securing **Pipelines**
- ✓ Secure IaC
- ✓ Vulnerability Management

- ✓ Cloud and Kubernetes Security Posture
- ✓ Secure Code Development
 - ✓ Securing **Pipelines**
- ✓ Secure IaC
- ✓ Vulnerability Management

So where to start?

Basic Mechanisms

- **✓ Private Cluster**
- ✓ Identity based access
- ✓ Security scanning for vulnerabilities and dependencies
 - ✓ Simple network Policies
 - ✓ Control of versioning

Next level of maturity

- ✓ Workload Identity
 - ✓ Security Monitoring
 - ✓ External Secret Management
 - ✓ Proper Network
 Policies based
 upon Zero-trust
 principles
 ✓ GitOps
 - ✓ Identity control using SCIM

Train the developers

Per use-case

- ✓ Service Mesh
 - ✓ Backup
- ✓ Kubebench (CIS, NIST validering)
 - ✓ Confidential Computing or Kata VM
- ✓ Use of enterprise commersial producuts
 - ✓ Falco/Tetragon

Build understanding

Start with simple achiveable goals

