ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет информатики, математики и компьютерных наук

Программа подготовки бакалавров по направлению 01.03.02 Прикладная математика и информатика

Антонов Илья Витальевич

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Проверка условной независимости в трехмерном распределении Бернулли

Научный руководитель

д.ф.-м.н., проф.

П.А. Колданов

Содержание

1	Теория проверки условной независимости в трехмерном рас-		
	пределении Бернулли		3
	1.1	Условная независимость в трехмерном распределение Бернулли	3
	1.2	Частный коэффициент корреляции Пирсона в трехмерном рас-	
		пределении Бернулли	5
	1.3	Тест на параметр трехмерного распределения Бернулли в экс-	
		поненциальной форме	8
	1.4	РНМН тест проверки независимости в двумерном распределе-	
		нии Бернулли	12
	1.5	Проверка условной независимости по подвыборкам из условных	
		распределений	14
Cī	тисо	к использованной литературы	19

Теория проверки условной независимости в трехмерном распределении Бернулли

1.1 Условная независимость в трехмерном распределение Бернулли

Определим трехмерное распределение Бернулли [3; 6].

Определение 1.1. Случайный вектор $(X,Y,Z)^T$ имеет трехмерное распределение Бернулли, если множество его возможных значений:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

и заданы $P(X=x,Y=y,Z=z)=p_{xyz}\geq 0, \sum_{x=0}^{1}\sum_{y=0}^{1}\sum_{z=0}^{1}p_{xyz}=1.$

Приведем определение понятия условной независимости [4].

Определение 1.2. Пусть $(X,Y,Z)^T$ – дискретный случайный вектор. Говорят, что случайные величины X и Y условно независимы при условии Z, и пишут $X \perp\!\!\!\perp Y \mid Z$, если:

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z)P(Y = y \mid Z = z)$$

при любом z для которого P(Z=z) > 0.

Сформулируем и докажем теорему, которая характеризует соотношения между параметрами трехмерного распределения Бернулли при условной независимости.

Теорема 1.1. Пусть $(X,Y,Z)^T$ — случайный вектор, имеющий трехмерное распределение Бернулли, в котором P(Z=0)>0. Случайные величины X и Y условно независимы при условии Z тогда и только тогда, когда $p_{00z}p_{11z}=p_{01z}p_{10z}$ для всех $z=\overline{0,1}$.

Доказательство. Пусть $X \perp\!\!\!\perp Y \mid Z$. Значит, для любых $x=\overline{0,1},\,y=\overline{0,1}$ и $z=\overline{0,1}$ выполнено условие:

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z)P(Y = y \mid Z = z)$$
 (1)

После домножения (1) на $P(Z=z)^2$ получаем эквивалентное условие:

$$P(X = x, Y = y, Z = z)P(Z = z) = P(X = x, Z = z)P(Y = y, Z = z)$$
 (2)

Найдем следующие вероятности:

$$P(X = x, Z = z) = p_{x0z} + p_{x1z}, \ P(Y = y, Z = z) = p_{0yz} + p_{1yz}$$

 $P(Z = z) = p_{00z} + p_{01z} + p_{10z} + p_{11z}$

Тогда условие (2) перепишем в следующем виде:

$$p_{xyz}(p_{00z} + p_{01z} + p_{10z} + p_{11z}) = (p_{x0z} + p_{x1z})(p_{0yz} + p_{1yz})$$

Это условие выполняется для всех $x=\overline{0,1},\,y=\overline{0,1},\,z=\overline{0,1}.$ Пусть z фиксировано. Если x=0 и y=0, то:

 $p_{00z}(p_{00z}+p_{01z}+p_{10z}+p_{11z})=(p_{00z}+p_{01z})(p_{00z}+p_{10z})\Leftrightarrow p_{00z}p_{11z}=p_{01z}p_{10z}$ Если x=0 и y=1, то:

 $p_{01z}(p_{00z}+p_{01z}+p_{10z}+p_{11z})=(p_{00z}+p_{01z})(p_{01z}+p_{11z})\Leftrightarrow p_{01z}p_{10z}=p_{00z}p_{11z}$ Если x=1 и y=0, то:

 $p_{10z}(p_{00z}+p_{01z}+p_{10z}+p_{11z})=(p_{10z}+p_{11z})(p_{00z}+p_{10z})\Leftrightarrow p_{10z}p_{01z}=p_{11z}p_{00z}$ Если x=1 и y=1, то:

$$p_{11z}(p_{00z} + p_{01z} + p_{10z} + p_{11z}) = (p_{10z} + p_{11z})(p_{01z} + p_{11z}) \Leftrightarrow p_{11z}p_{00z} = p_{10z}p_{01z}$$

Таким образом, из условной независимости X и Y при условии Z следует $p_{00z}p_{11z}=p_{01z}p_{10z}$ для всех $z=\overline{0,1}.$

Доказательство в обратную сторону проводится аналогично.

Приведем пример случайного вектора $(X,Y,Z)^T$ с трехмерным распределением Бернулли, в котором $X \perp\!\!\!\perp Y \mid Z$.

Пример 1.1. Пусть $(X,Y,Z)^T$ имеет трехмерное распределение Бернулли с вероятностями $p_{000}=0.15,\ p_{001}=0.1,\ p_{010}=0.3,\ p_{011}=0.1,\ p_{100}=0.05,$ $p_{101}=0.1,\ p_{110}=0.1,\ p_{111}=0.1.$ Заметим, что:

$$p_{000}p_{110} = p_{010}p_{100} = 0.015$$

$$p_{001}p_{111} = p_{011}p_{101} = 0.01$$

Значит из теоремы 1.1 следует, что $X \perp\!\!\!\perp Y \mid Z$.

1.2 Частный коэффициент корреляции Пирсона в трехмерном распределении Бернулли

Согласно [1] в трехмерном нормальном распределении случайные величины X и Y условно независимы при условии Z тогда и только тогда, когда частный коэффициент корреляции Пирсона между X и Y принимает нулевое значение. Проверим, сохраняется ли это свойство в трехмерном распределении Бернулли. Для случайного вектора $(X,Y,Z)^T$ определим ковариационную матрицу:

$$\Sigma = \begin{pmatrix} \sigma_{XX} & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{YX} & \sigma_{YY} & \sigma_{YZ} \\ \sigma_{ZX} & \sigma_{ZY} & \sigma_{ZZ} \end{pmatrix}$$

Остатками от X и Y при регрессии на Z называются случайные величины:

$$X' = (X - EX) - \frac{\sigma_{XZ}}{\sigma_{ZZ}}(Z - EZ)$$

$$Y' = (Y - EY) - \frac{\sigma_{YZ}}{\sigma_{ZZ}}(Z - EZ)$$

Согласно работе [2] частный коэффициент корреляции Пирсона определяется как коэффициент корреляции Пирсона между остатками, другими словами:

$$\rho^{XY \cdot Z} = \frac{E(X'Y')}{\sqrt{E(X')^2 E(Y')^2}}$$

Можно показать, что в любом распределении:

$$\rho^{XY \cdot Z} = \frac{\sigma_{XY} \sigma_{ZZ} - \sigma_{XZ} \sigma_{YZ}}{\sqrt{\sigma_{XX} \sigma_{ZZ} - \sigma_{XZ}^2} \sqrt{\sigma_{YY} \sigma_{ZZ} - \sigma_{YZ}^2}} = \frac{\rho_{XY} - \rho_{XZ} \rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2} \sqrt{1 - \rho_{YZ}^2}}$$

где ρ_{XY} , ρ_{XZ} , ρ_{YZ} – коэффициенты корреляции Пирсона между случайными величинами X и Y, X и Z, Y и Z соответственно. Для дальнейших рассуждений примем следующие обозначения:

$$p_{x**} = P(X = x), \ p_{*y*} = P(Y = y), \ p_{**z} = P(Z = z)$$

$$p_{xy*} = P(X = x, Y = y), \ p_{x*z} = P(X = x, Z = z), \ p_{*yz} = P(Y = y, Z = z)$$

Найдем значение выражения $\sigma_{XY}\sigma_{ZZ}-\sigma_{XZ}\sigma_{YZ}$ в трехмерном распределении Бернулли.

Лемма 1.1. Пусть $(X,Y,Z)^T$ – случайный вектор, имеющий трехмерное распределение Бернулли. Тогда:

$$\sigma_{XY}\sigma_{ZZ} - \sigma_{XZ}\sigma_{YZ} = p_{**0}(p_{001}p_{111} - p_{011}p_{101}) + p_{**1}(p_{000}p_{110} - p_{010}p_{100})$$

Доказательство. Легко проверить, что $\sigma_{ZZ} = p_{**1}(1-p_{**1})$. Найдем соотношение для σ_{XY} . Воспользуемся формулой $\sigma_{XY} = E(XY) - E(X)E(Y)$.

$$E(XY) = 1 \cdot p_{11*} + 0 \cdot (p_{00*} + p_{01*} + p_{10*}) = p_{11*}$$

Таким образом, $\sigma_{XY}=p_{11*}-p_{1**}p_{*1*}$. Аналогично, $\sigma_{XZ}=p_{1*1}-p_{1**}p_{**1}$ и $\sigma_{YZ}=p_{*11}-p_{*1*}p_{**1}$. Преобразуем выражение $\sigma_{XY}\sigma_{ZZ}-\sigma_{XZ}\sigma_{YZ}=$

$$= (p_{11*} - p_{1**}p_{*1*})p_{**1}(1 - p_{**1}) - (p_{1*1} - p_{1**}p_{**1})(p_{*11} - p_{*1*}p_{**1}) =$$

$$= p_{11*}p_{**1} - p_{11*}p_{**1}p_{**1} - p_{1**}p_{*1*}p_{**1} - p_{1*1}p_{*11} + p_{1*1}p_{*1*}p_{**1} + p_{1**}p_{**1}p_{*11} =$$

$$= (p_{111}p_{**1} + p_{110}p_{**1}) - p_{11*}p_{**1}p_{**1} - p_{1**}p_{*1*}p_{**1} -$$

$$-p_{1*1}p_{*11} + p_{1*1}p_{*1*}p_{**1} + p_{1**}p_{**1}p_{*11} =$$

=
$$(p_{111}p_{**1} - p_{1*1}p_{*11}) + p_{**1}(p_{110} - p_{11*}p_{**1} - p_{1**}p_{*1*} + p_{1*1}p_{*1*} + p_{1**}p_{*11})$$
 (3)

Заметим, что:

- 1) $p_{110} p_{11*}p_{**1} = p_{110} p_{110}p_{**1} p_{111}p_{**1} = p_{110}(1 p_{**1}) p_{111}p_{**1} = p_{110}p_{**0} p_{111}p_{**1}$
- 2) $-p_{1**}p_{*1*} + p_{1*1}p_{*1*} + p_{1**}p_{*11} = -(p_{1*0} + p_{1*1})(p_{*10} + p_{*11}) + p_{1*1}(p_{*10} + p_{*11}) + (p_{1*0} + p_{1*1})p_{*11} = -p_{1*0}p_{*10} + p_{1*1}p_{*11}$

Учитывая вышеприведенные соотношения, запишем (3):

$$(p_{111}p_{**1} - p_{1*1}p_{*11}) + p_{**1}((p_{110}p_{**0} - p_{1*0}p_{*10}) - (p_{111}p_{**1} - p_{1*1}p_{*11})) =$$

$$= (1 - p_{**1})(p_{111}p_{**1} - p_{1*1}p_{*11}) + p_{**1}(p_{110}p_{**0} - p_{1*0}p_{*10}) =$$

$$= p_{**0}(p_{111}p_{**1} - p_{1*1}p_{*11}) + p_{**1}(p_{110}p_{**0} - p_{1*0}p_{*10})$$

$$(4)$$

Также заметим, что:

- 1) $p_{111}p_{**1} p_{1*1}p_{*11} = p_{111}(p_{001} + p_{011} + p_{101} + p_{111}) (p_{101} + p_{111})(p_{011} + p_{111}) = p_{001}p_{111} p_{011}p_{101}$
- 2) $p_{110}p_{**0} p_{1*0}p_{*10} = p_{110}(p_{000} + p_{010} + p_{100} + p_{110}) (p_{100} + p_{110})(p_{010} + p_{110}) =$

 $= p_{000}p_{110} - p_{010}p_{100}$

Подставляя преобразованные выражения в (4) имеем:

$$\sigma_{XY}\sigma_{ZZ} - \sigma_{XZ}\sigma_{YZ} = p_{**0}(p_{001}p_{111} - p_{011}p_{101}) + p_{**1}(p_{000}p_{110} - p_{010}p_{100})$$

Вышеприведенное соотношение для $\sigma_{XY}\sigma_{ZZ} - \sigma_{XZ}\sigma_{YZ}$ позволяет доказать следующую теорему.

Теорема 1.2. Пусть $(X,Y,Z)^T$ – случайный вектор, имеющий трехмерное распределение Бернулли. Если $X \perp\!\!\!\perp Y \mid Z$, то $\rho^{XY\cdot Z}=0$.

Доказательство. Пусть $X \perp \!\!\! \perp Y \mid Z$. Тогда по теореме 1.1: $p_{000}p_{110} = p_{010}p_{100}$ и $p_{001}p_{111} = p_{011}p_{101}$. Используя эти соотношения в числителе частного коэффициента корреляции Пирсона и учитывая лемму 1.1, имеем:

$$\sigma_{XY}\sigma_{ZZ}-\sigma_{XZ}\sigma_{YZ}=p_{**0}(p_{001}p_{111}-p_{011}p_{101})+p_{**1}(p_{000}p_{110}-p_{010}p_{100})=0$$
 Следовательно, $\rho^{XY\cdot Z}=0.$

Таким образом, ноль в частном коэффициенте корреляции Пирсона является необходимым условием условной независимости. Однако, не является достаточным условием, так как в обратную сторону теорема 1.2 неверна. Легко построить контрпример при $p_{**0} \neq 0$. Далее покажем контрпример при $p_{**0} \neq 0$.

Пример 1.2. Пусть $p_{000}=0.15,\ p_{001}=0.1,\ p_{010}=0.1,\ p_{011}=0.15,\ p_{100}=0.1,\ p_{101}=0.15,\ p_{110}=0.15,\ p_{111}=0.1.$ Тогда $p_{**0}=0.5,\ p_{**1}=0.5$ и $M_{21}=p_{**1}(p_{000}p_{110}-p_{010}p_{100})+p_{**0}(p_{001}p_{111}-p_{011}p_{101})=0.5\cdot(0.15\cdot0.15-0.1\cdot0.1)+0.5\cdot(0.1\cdot0.1-0.15\cdot0.15)=0.$

Однако, случайные величины X и Y условно зависимы при условии Z поскольку:

$$p_{000}p_{110} - p_{010}p_{100} = 0.15 \cdot 0.15 - 0.1 \cdot 0.1 = 0.0125 \neq 0$$
$$p_{001}p_{111} - p_{011}p_{101} = 0.1 \cdot 0.1 - 0.15 \cdot 0.15 = -0.0125 \neq 0$$

Классически, для оценки частного коэффициента корреляции Пирсона используют выборочный частный коэффициент корреляции Пирсона:

$$r^{XY \cdot Z} = \frac{r_{XY} - r_{XZ}r_{YZ}}{\sqrt{1 - r_{XY}^2}\sqrt{1 - r_{YZ}^2}}$$

где r_{XY}, r_{XZ}, r_{YZ} – выборочные коэффициенты корреляции Пирсона между случайными величинами X и Y, X и Z, Y и Z соответственно. Для нормального распределения известно [1], что при истинности гипотезы $\rho^{XY\cdot Z}=0$ статистика:

$$T^{\text{Partial}} = \sqrt{n-3} \frac{r^{XY \cdot Z}}{\sqrt{1-(r^{XY \cdot Z})^2}}$$

имеет распределение Стьюдента с n-3 степенями свободы, где n – объем наблюдений. Тогда тест уровня α проверки гипотезы $H: \rho^{XY\cdot Z}=0$ против альтернативы $K: \rho^{XY\cdot Z} \neq 0$ определяется как:

$$arphi^{ ext{Partial}}(t) = egin{cases} 1, \ t < C_1 \ \text{или} \ t > C_2 \ 0, \ C_1 \leq t \leq C_2 \end{cases}$$

где константы C_1 и C_2 , удовлетворяют уравнениям $P(T^{\text{Partial}} < C_1) = \alpha/2$ и $P(T^{\text{Partial}} > C_2) = 1 - \alpha/2$.

В настоящей работе с помощью численных экспериментов будет проверено контролирует ли тест φ^{Partial} вероятность ошибки первого рода в трехмерном распределении Бернулли.

1.3 Тест на параметр трехмерного распределения Бернулли в экспоненциальной форме

Покажем вид трехмерного распределения Бернулли в экпоненциальной форме:

$$P(X = x, Y = y, Z = z) = p_{000}^{(1-x)(1-y)(1-z)} \dots p_{111}^{xyz} =$$

$$= \exp\left\{\ln(p_{000}) + \ln\left(\frac{p_{001}p_{111}p_{010}p_{100}}{p_{011}p_{101}p_{000}p_{110}}\right)xyz + \ln\left(\frac{p_{100}}{p_{000}}\right)x + \ln\left(\frac{p_{010}}{p_{000}}\right)y + \ln\left(\frac{p_{001}p_{101}p_{100}}{p_{000}p_{100}}\right)xy + \ln\left(\frac{p_{000}p_{101}}{p_{001}p_{100}}\right)xz + \ln\left(\frac{p_{000}p_{011}}{p_{001}p_{010}}\right)yz\right\}$$

Среди параметров, стоящих при статистиках xyz, x, y, z, xy, xz, yz выделим параметр, связанный с условной независимостью.

Теорема 1.3. Пусть $(X,Y,Z)^T$ — случайный вектор, имеющий трехмерное распределение Бернулли, и $\theta=\ln\left(\frac{p_{001}p_{111}p_{010}p_{100}}{p_{011}p_{101}p_{000}p_{110}}\right)$. Если выполнено одно из условий:

- \bullet $X \perp \!\!\! \perp Y \mid Z$
- \bullet $X \perp \!\!\! \perp Z \mid Y$
- $\bullet \ Y \perp \!\!\! \perp Z \mid X$

то параметр θ принимает значение 0.

Доказательство. Результаты теоремы 1.1 можно обобщить следующим образом:

$$X \perp\!\!\!\perp Z \mid Y \Leftrightarrow p_{000}p_{101} = p_{001}p_{100}$$
 и $p_{010}p_{111} = p_{011}p_{110}$ $Y \perp\!\!\!\perp Z \mid X \Leftrightarrow p_{000}p_{011} = p_{001}p_{010}$ и $p_{100}p_{111} = p_{101}p_{110}$

- 1. Пусть $X \perp \!\!\! \perp Y \mid Z$, тогда по теореме 1.1 выполнено: $p_{000}p_{110} = p_{010}p_{100}$ и $p_{001}p_{111} = p_{011}p_{101}$. Отсюда следует, что $\theta = \ln(1) = 0$.
- 2. Пусть $X \perp \!\!\! \perp Z \mid Y$, тогда из вышеприведенных соображений $p_{000}p_{101}=p_{001}p_{100}$ и $p_{010}p_{111}=p_{011}p_{110}$. Отсюда следует, что $\theta=\ln(1)=0$.
- 3. Пусть $Y \perp \!\!\! \perp Z \mid X$, тогда из вышеприведенных соображений $p_{000}p_{011} = p_{001}p_{010}$ и $p_{100}p_{111} = p_{101}p_{110}$. Отсюда следует, что $\theta = \ln(1) = 0$.

Таким образом, принятие нулевого значения параметром θ является необходимым условием наличия условно независимой пары случайных величин в трехмерном распределении Бернулли. Для проверки гипотезы о равенстве параметра θ нулю используем теорию РНМН тестов [5] в многопараметрическом экспоненциальном семействе. Пусть

$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix}, \begin{pmatrix} X_2 \\ Y_2 \\ Z_2 \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ Y_n \\ Z_n \end{pmatrix}$$

повторная выборка из распределения случайного вектора $(X,Y,Z)^T$. Совместное распределение повторной выборки имеет вид:

$$P(X_{1} = x_{1}, Y_{1} = y_{1}, Z_{1} = z_{1}, \dots, X_{n} = x_{n}, Y_{n} = y_{n}, Z_{n} = z_{n}) =$$

$$= \prod_{i=1}^{n} P(X_{i} = x_{i}, Y_{i} = y_{i}, Z_{i} = z_{i}) =$$

$$= \exp \left\{ \ln(p_{000})n + \ln\left(\frac{p_{001}p_{111}p_{010}p_{100}}{p_{011}p_{101}p_{000}p_{110}}\right) \sum_{i=1}^{n} x_{i}y_{i}z_{i} + \ln\left(\frac{p_{100}}{p_{000}}\right) \sum_{i=1}^{n} x_{i} + \ln\left(\frac{p_{010}}{p_{000}}\right) \sum_{i=1}^{n} y_{i} + \ln\left(\frac{p_{001}}{p_{000}}\right) \sum_{i=1}^{n} z_{i} + \ln\left(\frac{p_{000}p_{110}}{p_{001}p_{100}}\right) \sum_{i=1}^{n} x_{i}y_{i} + \ln\left(\frac{p_{000}p_{101}}{p_{001}p_{100}}\right) \sum_{i=1}^{n} x_{i}z_{i} + \ln\left(\frac{p_{000}p_{011}}{p_{001}p_{010}}\right) \sum_{i=1}^{n} y_{i}z_{i} \right\}$$

Пусть

$$U = \sum_{i=1}^{n} X_i Y_i Z_i, \ T_1 = \sum_{i=1}^{n} X_i Y_i, \ T_2 = \sum_{i=1}^{n} X_i Z_i,$$
$$T_3 = \sum_{i=1}^{n} Y_i Z_i, \ T_4 = \sum_{i=1}^{n} X_i, \ T_5 = \sum_{i=1}^{n} Y_i, \ T_6 = \sum_{i=1}^{n} Z_i$$

Обозначим $T=(T_1,\ldots,T_6),\,t=(t_1,\ldots,t_6),\,\theta_0=0.$ Тогда согласно [5] РНМН тест уровня α проверки гипотезы $H:\theta=\theta_0$ против альтернативы $K:\theta\neq\theta_0$ имеет вид:

$$arphi^{ heta ext{-UMPU}}(u,t) = egin{cases} 1, \ u < C_1(t) \ \text{или} \ u > C_2(t) \ \\ \gamma_i, \ u = C_i(t), \ i = 1, 2 \ \\ 0, \ C_1(t) < u < C_2(t) \end{cases}$$

где константы C_i и γ_i определяются из системы уравнений:

$$\begin{cases} E_{\theta_0}[\varphi^{\theta\text{-UMPU}}(U,T) \mid T=t] = \alpha \\ E_{\theta_0}[U\varphi^{\theta\text{-UMPU}}(U,T) \mid T=t] = \alpha E_{\theta_0}[U \mid T=t] \end{cases}$$

Приведем распределение статистики U при условии T=t.

Лемма 1.2. Пусть $k_1(u) = u$, $k_2(u) = t_1 - u$, $k_3(u) = t_2 - u$, $k_4(u) = t_3 - u$, $k_5(u) = t_4 - t_1 - t_2 + u$, $k_6(u) = t_5 - t_1 - t_3 + u$, $k_7(u) = t_6 - t_2 - t_3 + u$, $k_8(u) = n - u + t_1 + t_2 + t_3 - t_4 - t_5 - t_6$. Тогда

$$P_{\theta_0}(U = u \mid T = t) = \frac{(\prod_{i=1}^8 k_i(u)!)^{-1}}{\sum_{s \in \mathcal{D}} (\prod_{i=1}^8 k_i(s)!)^{-1}}$$

где $\mathcal{D} = \{ s \in \mathbb{Z} : 0 \le k_i(s) \le n \text{ для всех } i = 1 \dots, 8 \}.$

Доказательство. Найдем совместное распределение статистик (U, T_1, \dots, T_6) :

$$\begin{split} P(U=u,T=t) &= P(U=u,T_1=t_1,T_2=t_2,T_3=t_3,T_4=t_4,T_5=t_5,T_6=t_6) = \\ &= P\left(\sum_{i=1}^n X_i Y_i Z_i = u,\sum_{i=1}^n X_i Y_i = t_1,\sum_{i=1}^n X_i Z_i = t_2,\sum_{i=1}^n Y_i Z_i = t_3, \right. \\ &\qquad \qquad \sum_{i=1}^n X_i = t_4,\sum_{i=1}^n Y_i = t_5,\sum_{i=1}^n Z_i = t_6\right) = \\ &= P\left(\sum_{i=1}^n X_i Y_i Z_i = u,\sum_{i=1}^n X_i Y_i (1-Z_i) = t_1 - u,\sum_{i=1}^n X_i (1-Y_i) Z_i = t_2 - u, \right. \\ &\qquad \qquad \sum_{i=1}^n (1-X_i) Y_i Z_i = t_3 - u,\sum_{i=1}^n X_i (1-Y_i) (1-Z_i) = t_4 - t_1 - t_2 + u, \\ &\sum_{i=1}^n (1-X_i) Y_i (1-Z_i) = t_5 - t_1 - t_3 + u,\sum_{i=1}^n (1-X_i) (1-Y_i) Z_i = t_6 - t_2 - t_3 + u, \\ &\sum_{i=1}^n (1-X_i) (1-Y_i) (1-Z_i) = n - u + t_1 + t_2 + t_3 - t_4 - t_5 - t_6 \right) = \frac{n!}{\prod_{i=1}^8 k_i(u)!} \times \\ &\qquad \qquad \times p_{111}^u p_{110}^{t_1-u} p_{1011}^{t_2-u} p_{0111}^{t_3-u} p_{1010}^{t_3-u} p_{0101}^{t_3-u} p_{0101}^{t_3-u} p_{001}^{t_3-u} p_{001}^{t_$$

Тогда условное распределение статистики U при условии T=t можно записать как:

$$P(U = u \mid T = t) = \frac{P(U = u, T = t)}{P(T = t)} = \frac{P(U = u, T = t)}{\sum_{s \in \mathcal{D}} P(U = s, T = t)} = \frac{(\prod_{i=1}^{8} k_i(u)!)^{-1} \left(\frac{p_{001}p_{010}p_{100}p_{111}}{p_{000}p_{011}p_{101}p_{110}}\right)^u}{\sum_{s \in \mathcal{D}} (\prod_{i=1}^{8} k_i(s)!)^{-1} \left(\frac{p_{001}p_{010}p_{100}p_{111}}{p_{000}p_{011}p_{101}p_{110}}\right)^s}$$

При истинности гипотезы $\theta=\theta_0$ параметр $\frac{p_{001}p_{010}p_{100}p_{111}}{p_{000}p_{011}p_{101}p_{110}}=1$. Следовательно:

$$P_{\theta_0}(U = u \mid T = t) = \frac{(\prod_{i=1}^8 k_i(u)!)^{-1}}{\sum_{s \in \mathcal{D}} (\prod_{i=1}^8 k_i(s)!)^{-1}}$$

1.4 PHMH тест проверки независимости в двумерном распределении Бернулли

В следующем разделе будет показано, что проверку условной независимости в трехмерном распределении Бернулли можно свести к множественной проверке независимости в условных распределениях. Согласно работе [3], случайный вектор с трехмерным распределением Бернулли при одной фиксированной компоненте имеет двумерное распределение Бернулли. Приведем теорию проверки независимости в двумерном распределении Бернулли.

Определение 1.3. Случайный вектор $(X,Y)^T$ имеет двумерное распределение Бернулли, если множество его возможных значений:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

и заданы $P(X=x,Y=y)=p_{xy}\geq 0, \sum_{x=0}^{1}\sum_{y=0}^{1}p_{xy}=1.$

В работе [3] показано, что:

$$P(X = x, Y = y) = \exp\left\{\ln(p_{00}) + \ln\left(\frac{p_{10}}{p_{00}}\right)x + \ln\left(\frac{p_{01}}{p_{00}}\right)y + \ln\left(\frac{p_{00}p_{11}}{p_{01}p_{10}}\right)xy\right\}$$

Также, в [3] доказано, что X и Y независимы тогда и только тогда, когда

$$\theta = \ln\left(\frac{p_{00}p_{11}}{p_{01}p_{10}}\right) = 0$$

Пусть

$$\begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}, \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ Y_n \end{pmatrix}$$

повторная выборка из распределения случайного вектора $(X,Y)^T$. Тогда:

$$P(X_1 = x_1, Y_1 = y_1, \dots, X_n = x_n, Y_n = y_n) = \prod_{i=1}^n P(X_i = x_i, Y_i = y_i) =$$

$$= \exp\left\{\ln(p_{00})n + \ln\left(\frac{p_{10}}{p_{00}}\right)\sum_{i=1}^{n} x_i + \ln\left(\frac{p_{01}}{p_{00}}\right)\sum_{i=1}^{n} y_i + \ln\left(\frac{p_{00}p_{11}}{p_{01}p_{10}}\right)\sum_{i=1}^{n} x_i y_i\right\}$$

Пусть

$$U = \sum_{i=1}^{n} X_i Y_i, \ T_1 = \sum_{i=1}^{n} X_i, \ T_2 = \sum_{i=1}^{n} Y_i$$

Обозначим $T=(T_1,T_2),\ t=(t_1,t_2),\ \theta_0=0.$ Тогда согласно [5] РНМН тест проверки гипотезы $H:\theta=0$ против альтернативы $K:\theta\neq 0$ уровня α имеет вид:

$$arphi^{ ext{Independence}}(u,t) = egin{cases} 1, \ u < C_1(t) \ \text{или} \ u > C_2(t) \ \\ \gamma_i, \ u = C_i(t), \ i = 1, 2 \ \\ 0, \ C_1(t) < u < C_2(t) \end{cases}$$

где константы C_i и γ_i определяются из системы уравнений:

$$\begin{cases} E_{\theta_0}[\varphi^{\text{Independence}}(U,T) \mid T=t] = \alpha \\ E_{\theta_0}[U\varphi^{\text{Independence}}(U,T) \mid T=t] = \alpha E_{\theta_0}[U \mid T=t] \end{cases}$$

Приведем распределение статистики U при условии T=t.

Лемма 1.3. Пусть $k_1(u)=u,\ k_2(u)=t_1-u,\ k_3(u)=t_2-u,\ k_4(u)=n-t_1-t_2+u.$ Тогда

$$P_{\theta_0}(U = u \mid T_1 = t_1, T_2 = t_2) = \frac{(\prod_{i=1}^4 k_i(u)!)^{-1}}{\sum_{s \in \mathcal{D}} (\prod_{i=1}^4 k_i(s)!)^{-1}}$$

где $\mathcal{D} = \{ s \in \mathbb{Z} : 0 \le k_i(s) \le n \text{ для всех } i = 1 \dots, 4 \}.$

Доказательство данной леммы не приводится, поскольку оно полностью аналогично доказательству леммы 1.2.

1.5 Проверка условной независимости по подвыборкам из условных распределений

Приведем трактовку определения 1.2 для трехмерного распределения Бернулли. Случайные величины X и Y условно независимы при условии Z тогда и только тогда, когда:

- ullet X и Y независимы при условии Z=0
- ullet X и Y независимы при условии Z=1

Такая трактовка порождает способ проверки условной независимости. Сформулируем индивидуальные гипотезы:

- $h_0: X$ и Y независимы при условии Z=0
- $h_1: X$ и Y независимы при условии Z=1

Тогда гипотеза об условной независимости формулируется как $h = h_0 \cap h_1$. Естественным образом, гипотезу h_0 необходимо проверять по наблюдениям $(x_i, y_i, z_i)^T$, в которых $z_i = 0$. Поскольку $(X, Y)^T$ при условии Z = z имеет двумерное нормальное распределение [3], то в качестве теста для h_0 можно использовать $\varphi_0 = \varphi_0^{\text{Independence}}$, приведенный в разделе 1.4. Аналогичные рассуждения справедливы и для гипотезы h_1 . Учитывая озвученные соображения, построим тест проверки гипотезы h_1 , контролирующий вероятность ошибки первого рода на уровне α . Пусть

$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix}, \begin{pmatrix} X_2 \\ Y_2 \\ Z_2 \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ Y_n \\ Z_n \end{pmatrix}$$

повторная выборка из распределения случайного вектора $(X,Y,Z)^T$. Обозначим $\mathbf{Z}=(Z_1,\ldots,Z_n)$ и $\mathbf{z}=(z_1,\ldots,z_n)$. Покажем, что в условном распределении при $\mathbf{Z}=\mathbf{z}$ наблюдения:

$$\Xi = \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}, \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ Y_n \end{pmatrix}$$

являются независимыми.

Π емма 1.4.

$$P(X_1 = x_1, Y_1 = y_1, \dots, X_n = x_n, Y_n = y_n \mid \mathbf{Z} = \mathbf{z}) =$$

$$= \prod_{i=1}^n P(X_i = x_i, Y_i = y_i \mid \mathbf{Z} = \mathbf{z})$$

Доказательство. С одной стороны:

$$P(X_1 = x_1, Y_1 = y_1, Z_1 = z_1, \dots, X_n = x_n, Y_n = y_n, Z_n = z_n) =$$

$$= P(\mathbf{Z} = \mathbf{z})P(X_1 = x_1, Y_1 = y_1, \dots, X_n = x_n, Y_n = y_n \mid \mathbf{Z} = \mathbf{z})$$

С другой стороны:

$$P(X_1 = x_1, Y_1 = y_1, Z_1 = z_1, \dots, X_n = x_n, Y_n = y_n, Z_n = z_n) =$$

$$= \prod_{i=1}^n P(X_i = x_i, Y_i = y_i, Z_i = z_i) =$$

$$= \prod_{i=1}^n P(X_i = x_i, Y_i = y_i \mid Z_i = z_i) P(Z_i = z_i) =$$

$$= P(\mathbf{Z} = \mathbf{z}) \prod_{i=1}^n P(X_i = x_i, Y_i = y_i \mid \mathbf{Z} = \mathbf{z})$$

Пусть также $\mathbf{Z} = \mathbf{z}$ фиксированы. Разобьем выборку Ξ на две подвыборки Ξ_0 и Ξ_1 , такие что:

$$\Xi_0 = \begin{pmatrix} X_{i_1} \\ Y_{i_1} \end{pmatrix}, \begin{pmatrix} X_{i_2} \\ Y_{i_2} \end{pmatrix}, \dots, \begin{pmatrix} X_{i_{n_0}} \\ Y_{i_{n_0}} \end{pmatrix}$$

где $Z_{i_k}=z_{i_k}=0$ для всех i_k при $k=\overline{1,n_0}$ и

$$\Xi_1 = \begin{pmatrix} X_{j_1} \\ Y_{j_1} \end{pmatrix}, \begin{pmatrix} X_{j_2} \\ Y_{j_2} \end{pmatrix}, \dots, \begin{pmatrix} X_{j_{n_1}} \\ Y_{j_{n_1}} \end{pmatrix}$$

где $Z_{j_k}=z_{j_k}=1$ для всех j_k при $k=\overline{1,n_1}$. Причем $n=n_0+n_1$. Отметим, что разбиение $\Xi=\Xi_0\sqcup\Xi_1$ опреляется лишь набором $\mathbf{Z}=\mathbf{z}$.

Сформулируем следующую теорему.

Теорема 1.4. Пусть $\mathbf{Z} = \mathbf{z}$ – фиксированы. Тогда выборка Ξ_0 является повторной выборкой из распределения $(X,Y)^T$ при условии Z=0.

Доказательство. По лемме 1.4:

$$P(X_1 = x_1, Y_1 = y_1, \dots, X_n = x_n, Y_n = y_n \mid \mathbf{Z} = \mathbf{z}) =$$

$$= \prod_{i=1}^n P(X_i = x_i, Y_i = y_i \mid \mathbf{Z} = \mathbf{z})$$

Просуммировав обе части вышепредставленного равенства по всем возможным значениям $x_{j_1}, y_{j_1}, \dots, x_{j_{n_1}}, y_{j_{n_1}}$ получаем:

$$P(X_{i_1} = x_{i_1}, Y_{i_1} = y_{i_1}, \dots, X_{i_{n_0}} = x_{i_{n_0}}, Y_{i_{n_0}} = y_{i_{n_0}} \mid \mathbf{Z} = \mathbf{z}) =$$

$$= \prod_{k=1}^{n_0} P(X_{i_k} = x_{i_k}, Y_{i_k} = y_{i_k} \mid \mathbf{Z} = \mathbf{z})$$

Значит

$$\Xi_0 = \begin{pmatrix} X_{i_1} \\ Y_{i_1} \end{pmatrix}, \begin{pmatrix} X_{i_2} \\ Y_{i_2} \end{pmatrix}, \dots, \begin{pmatrix} X_{i_{n_0}} \\ Y_{i_{n_0}} \end{pmatrix}$$

независимые наблюдения при условии $\mathbf{Z} = \mathbf{z}$.

Покажем, что $(X_{i_k},Y_{i_k})^T$ при условии ${\bf Z}={\bf z}$ распределен также как и $(X,Y)^T$ при условии Z=0.

$$P(X_{i_k} = x_{i_k}, Y_{i_k} = y_{i_k} \mid \mathbf{Z} = \mathbf{z}) =$$

$$= P(X_{i_k} = x_{i_k}, Y_{i_k} = y_{i_k} \mid Z_{i_k} = z_{i_k}) =$$

$$= P(X = x_{i_k}, Y = y_{i_k} \mid Z_{i_{n_k}} = 0)$$

Аналогично показывается, что выборка Ξ_1 является повторной выборкой из распределения $(X,Y)^T$ при условии Z=1.

Для упрощения записи будет использовать нотацию $P(A \mid B) = P_B(A)$. Сформулируем следующую теорему.

Теорема 1.5. Пусть Ξ_0 и Ξ_1 – подвыборки, полученные разбиением случайной выборки Ξ . Пусть φ_0 и φ_1 – рандомизированные тесты проверки гипотез h_0 и h_1 по повторным выборкам Ξ_0 и Ξ_1 соответственно. Введем события:

 $A_0 = \{$ отвергнуть гипотезу h_0 рандомизированным тестом $\varphi_0 \}$

 $A_1 = \{$ отвергнуть гипотезу h_1 рандомизированным тестом $\varphi_1 \}$

Пусть φ_0 и φ_1 тесты уровня α_0 и α_1 при любом объеме наблюдений в подвыборках Ξ_0 и Ξ_1 соответственно, то есть:

$$P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0) = \alpha_0$$

$$P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_1) = \alpha_1$$

Тогда $P_{h_0 \cap h_1}(A_0 \cap A_1) = P_{h_0 \cap h_1}(A_0) P_{h_0 \cap h_1}(A_1).$

Доказательство. Пусть $\mathbf{Z} = \mathbf{z}$ фиксировано. Тогда статистиками тестов φ_0 и φ_1 являются $T_0 = T_0(X_{i_1}, Y_{i_1}, \dots, X_{i_{n_0}}, Y_{i_{n_0}})$ и $T_1 = T_1(X_{j_1}, Y_{j_1}, \dots, X_{j_{n_1}}, Y_{j_{n_1}})$ соответственно. Отметим, что T_0 и T_1 – независимы при условии $\mathbf{Z} = \mathbf{z}$, поскольку наблюдения

$$\begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}, \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ Y_n \end{pmatrix}$$

независимы при условии $\mathbf{Z} = \mathbf{z}$ и аргументы статистик как функций не пересекаются.

$$P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0 \cap A_1) =$$

$$= \sum_{t_0} \sum_{t_0} P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0 \cap A_1 \mid T_0 = t_0, T_1 = t_1) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_0 = t_0, T_1 = t_1)$$

Отметим, что $P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0 \cap A_1 \mid T_0 = t_0, T_1 = t_1) = \varphi_0(t_0)\varphi_1(t_1)$, поскольку для того, чтобы при известных значениях статистик t_0 и t_1 отвергнуть гипотезы h_0 и h_1 в рандомизированном тесте нужно провести два испытания с вероятностью успеха $\varphi_0(t_0)$ и $\varphi_1(t_1)$. Постулируется, что такие испытания независимые. Тогда:

$$P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0 \cap A_1) = \sum_{t_0} \sum_{t_1} \varphi_0(t_0) \varphi_1(t_1) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_0 = t_0, T_1 = t_1) =$$

$$= \sum_{t_0} \sum_{t_1} \varphi_0(t_0) \varphi_1(t_1) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_0 = t_0) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_1 = t_1) =$$

$$= \sum_{t_0} \left[\varphi_0(t_0) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_0 = t_0) \left(\sum_{t_1} \varphi_1(t_1) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_1 = t_1) \right) \right] =$$

$$= \sum_{t_0} \left[\varphi_0(t_0) P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(T_0 = t_0) \alpha_1 \right] = \alpha_0 \alpha_1$$

По формуле полной вероятности:

$$P_{h_0 \cap h_1}(A_0) = \sum_{\mathbf{z}} P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}}(A_0) P_{h_0 \cap h_1}(\mathbf{Z} = \mathbf{z}) = \sum_{\mathbf{z}} \alpha_0 P_{h_0 \cap h_1}(\mathbf{Z} = \mathbf{z}) = \alpha_0$$

Аналогично, $P_{h_0 \cap h_1}(A_1) = \alpha_1$.

$$P_{h_0 \cap h_1}(A_0 \cap A_1) = \sum_{\mathbf{z}} P_{h_0 \cap h_1, \mathbf{Z} = \mathbf{z}} (A_0 \cap A_1) P_{h_0 \cap h_1} (\mathbf{Z} = \mathbf{z}) =$$

$$= \sum_{\mathbf{z}} \alpha_0 \alpha_1 P_{h_0 \cap h_1} (\mathbf{Z} = \mathbf{z}) = \alpha_0 \alpha_1$$

Таким образом,
$$P_{h_0 \cap h_1}(A_0 \cap A_1) = P_{h_0 \cap h_1}(A_0)P_{h_0 \cap h_1}(A_1) = \alpha_0 \alpha_1.$$

Применим теорему 1.5 для проверки условной независимости. Положим:

- $h_0: X$ и Y независимы при условии Z=0
- $h_1:X$ и Y независимы при условии Z=1

Для проверки гипотез h_0 и h_1 будем использовать тесты $\varphi_0 = \varphi_0^{\text{Independence}}$ и $\varphi_1 = \varphi_1^{\text{Independence}}$ уровня α_0 и α_1 по повторным выборкам Ξ_0 и Ξ_1 соответственно. Тогда гипотеза условной независимости $h = h_0 \cap h_1$ и тест проверки условной независимости можно определить как:

$$\varphi^{\text{Subsamples}} = \begin{cases} 1, \text{ наступило событие } A_0 \cup A_1 \\ 0, \text{ иначе} \end{cases}$$

Пусть для простоты $\alpha_0 = \alpha_1 = \beta$. Тогда

$$P_{h_0 \cap h_1}(\varphi^{\text{Subsamples}} = 1) = P_{h_0 \cap h_1}(A_0 \cup A_1) =$$

$$= P_{h_0 \cap h_1}(A_0) + P_{h_0 \cap h_1}(A_1) - P_{h_0 \cap h_1}(A_0 \cap A_1) = 2\beta - \beta^2$$

Нетрудно проверить, что для контроля $P_{h_0 \cap h_1}(\varphi^{\text{Subsamples}} = 1) = \alpha$ достаточно положить уровень значимости $\beta = 1 - \sqrt{1 - \alpha}$ на индивидуальных тестах проверки гипотез h_0 и h_1 .

Список литературы

- 1. Anderson T. An Introduction to Multivariate Statistical Analysis. Wiley-Interscience, 2003.
- 2. Cramér H. Mathematical methods of statistics. Princeton University Press, 1946.
- 3. Dai B., Ding S., Wahba G. Multivariate Bernoulli distribution // Bernoulli. 2013. T. 19, \mathbb{N}^{2} 4. C. 1465—1483.
- 4. Lauritzen S. L. Graphical models. Clarendon Press, 1996.
- 5. Lehmann E. L. Testing statistical hypotheses. Wiley, 1986.
- Teugels J. L. Some representations of the multivariate Bernoulli and binomial distributions // Journal of Multivariate Analysis. 1990. T. 32, № 2. C. 256—268.