6. freiwillige Hausaufgabe – Logik

Abgabe: bis 10:30 am 09.12.2022 im ISIS-Kurs [WiSe 2022/23] Logik

Die vierte Aufgabe ist etwas anspruchsvoller. Eventuell werden wir deshalb nicht die Zeit haben diese in der Großübung zu besprechen.

Hausaufgabe 1

Sei $\tau := \{\cdot\}$ eine Signatur, wobei \cdot ein zweistelliges Funktionssymbol ist. Definieren Sie eine τ -Struktur \mathcal{A} , sodass \mathbb{R} das Universum von \mathcal{A} ist und $\cdot^{\mathcal{A}}$ weder kommutativ, noch assoziativ ist.

Hausaufgabe 2

Entscheiden Sie für die folgenden Formeln ob sie syntaktisch korrekte Formeln der Prädikatenlogik erster Stufe sein könnten. Falls Sie glauben, dass eine Formel φ_i syntaktisch korrekt sein kann, geben Sie eine Signatur σ_i an, sodass φ_i eine syntaktisch korrekte FO $[\sigma_i]$ -Formel ist.

- (i) $\varphi_1 := \forall x \to \exists y$
- (ii) $\varphi_2 := x = y \land \exists x, y, t \ g(x) = y$
- (iii) $\varphi_3 := x \neq y \; \exists x \forall y$
- (iv) $\varphi_4 := \forall x \forall y (c \sim x \land y \sim c)$
- (v) $\varphi_5 := a = b = c$
- (vi) $\varphi_6 := \exists x \forall y \exists z \ x \cdot y \cdot z = 0$

Hausaufgabe 3

Sei $\sigma = \{+,\cdot\}$ eine Signatur mit zwei 2-stelligen Funktionssymbolen und sei $\mathcal{N} = (\mathbb{N}, +^{\mathcal{N}}, \cdot^{\mathcal{N}})$ die σ -Struktur der natürlichen Zahlen mit der üblichen Addition und Multiplikation. Geben Sie für $i \in [5]$ Formeln φ_i an, sodass gilt:

- (i) $\varphi_1(\mathcal{N}) = \{1\}.$
- (ii) $\varphi_2(\mathcal{N}) = \{0\}.$
- (iii) $\varphi_3(\mathcal{N}) = \{2k \mid k \in \mathbb{N}\}.$
- (iv) $\varphi_4(\mathcal{N}) = \{(x,y) \mid x < y\}$
- (v) $\varphi_5(\mathcal{N})$ ist die Menge der Primzahlen.

Hausaufgabe 4

Sei $\rho := \{V, E, I\}$ eine Signatur, wobei I ein zweistelliges Relationssymbol ist und V und E einstellige Relationssymbol sind.

Für einen ungerichteten Graphen G definieren wir die *Inzidenzkodierung von G* als die ρ -Struktur $\mathcal{I}(G) = (V(G) \cup E(G), V^{\mathcal{I}(G)} := V(G), E^{\mathcal{I}(G)} := E(G), I^{\mathcal{I}(G)})$, wobei $I^{\mathcal{I}(G)} := \{(v, e) \mid e \in E(G) \text{ und } v \in e\}$.

Sei G ein beliebiger ungerichteter Graph und A eine beliebige ρ -Struktur. Geben Sie für $i \in \{1, 2, 3, 4\}$ jeweils eine FO[σ]-Formel φ_i an, sodass gilt

- (i) $\varphi_1(\mathcal{I}(G)) = \{u \in V(G) \mid u \text{ hat keine Nachbarn.}\}\$
- $(ii) \ \varphi_2(\mathcal{I}(G)) = \{(u,v) \mid u,v \in V(G) \text{ und } \{u,v\} \text{ ist eine dominierende Menge.} \}$
- (iii) $\mathcal{I}(G) \models \varphi_3$ genau dann, wenn kein Knoten in G mehr als zwei Nachbarn besitzt.
- (iv) $\mathcal{A} \models \varphi_4$ genau dann, wenn \mathcal{A} die Inzidenzkodierung eines ungerichteten Graphen ist.

Erklären Sie Ihre Antwort jeweils kurz.