@ 2/6 Nested quantifiers \$1.6 Consider a statement like!

> "For every real number x, there is a real number y that is strictly greater than x." We can represent this statement using nested quantifiers:

V x dy P(x, y) where P(x,y)="y>x" Here P(x,y) is a propositional formula involving two variables x andy. Its domain of discourse is the set Rx R of pairs (x,y) of real numbers.

The previous example mixed existential & universal quantifrers, We can also use multiple of the same kind of quantifrer with a statement like

"The sum of two positive real numbers is positive" which can be written symbolically as:

∀x ∀y (x>0) ∧ (y>0) ->(x+y>0) where the domain of discourse is again RxR.

WARNING: When we do mix Y and I it is very important to make sure the order of quantifiers is correct,

E.g. $\forall x \exists y \ y > x \ is TRUE: 1+ expresses the$ iden that there is no biggest real number. But... By Vx y > x rs FALSE: that would be saying there is a real number bigger than every real number.

Q: What does " /x fy (x+y=0) "mean? (D=Rx R again) A! For every real number x, there is a real number y such that x + y = D. This is true because we can take y = -x and then x + (-x) = 0.

Compare the previous example w/ "By Yx (x+y)=0" which is FALSE: there is not a single real number y that sums to 0 with every real number x. Key difference between $\forall x \exists y P(x,y)$ and $\exists y \forall x P(x,y)$: with $\forall x \exists y P(x,y)$: the y is allowed to depend on x, but with $\exists y \forall x P(x,y)$; the y cannot depend on x. ((analso think in derms of "adverserial game": see book). Q: 1s fy \x (x+y=x) true? A: Yes, there y=0 so that x+y=x+0=x Vx. We can also use (nested) quantifiers to define properties. Consider the proposition at formula Paul where P(n) = "∃m€Z fp€Z (m>1) 1(p>1) 1 (mp=n)" for example, for PC6) we have "3m, p ∈ Z2 cend this Statement is true since we can take m=2 and p=3 so that mp=6. But on the other hand P(7) is false since we cannot write 7 as a product of two integers that are strictly greater than 1. We can see that for an integer $n \geq 2$, P(n) express the property "n is composite" i.e., "nis not a prime number." Many important propose tres of mathematical objects

are expressed like this using rested quantifiers.

4

_

· 2/8

444

بلشد

_-+ _-+ _-+

11111

_4

11111

1

(

Proofs (Chapter 2 of textbook)

We are finally moving beyond the 1st chapter of the book. In Chapter 2, we will use the logical language we have developed to talk about mathematical proofs, and learn several different kinds of proof techniques.

Mathematical systems and direct proofs \$2.1

Proofs occur within mathematical systems,
which are made up of axioms, definitions, and undefined terms.

For example, the Heavy of "planar Euclidean geometry" is a mathematical system. One of its axioms is:

· Given two distinct points, there is exactly one line that contains both of them.

Axioms are the basic laws from which other results are deduced. Here the terms "point" and "line" are undefined terms: their meaning is inferred from axioms. An example of a detinition in Euclidean geometry is:

A triangle is equilateral if all its sides are the same length.

(Of course, "triangle," "side," etc. would also need to be defined...)

Even with axioms & définitions, to really make a math.

System worthwhile we also reed theorems: results

that can be deduced from the basic axioms.

· If a triangle is equilateral then it is equiangular.

Sometimes we give special names to certain kinds of theorems: a corollary is deduced from a bigger theorem, while a temma is a helper result to prove a big theorem.

Another math. System is the "theory of the real numbers."

An axiom of the real numbers is:

For any two real numbers x, yETR, x.y = y.x.

Multiplication of real numbers is implicitly defined by
this (commutativity) and other axioms (associativity, etc.) it appears in.

We similarly define positivity for real numbers by order axioms...

Atheorem of the real numbers could be:

For any real number xETR, x 2 ≥ 0.

See the book for more examples...

-

سنسي

-

-

Dur goal is not to develop a big complicated mathematical system, but to see in some simple examples what proving theorems looks like. Therefore, we will (stock to two simple math. Systems: the theory of the integers and the theory of sets where we will assume some basic familiarity with the axioms & dermittons.

In practice most theorems are of the form:

\[
\forall x_1, \times_2, ..., \times_n \times P(\times_1, ..., \times_n) \times \text{theorem we need to show that if P(\times_1, ..., \times_n) is true then Q(\times_1, ..., \times_n) is true for all x_1, ..., \times_n \times \text{in the domain of discourse.}

E.g. Let's prove a theorem about integers, specifically about evenness/oddness of integers.

Of course, we all know what even & odd integers are, but let's establish a formal definition:

Des'n An integer n is even if it can be written as n=2k for some integerk. An integer n1 is odd if it can be written m=2k+1 for some integer k. Theorem The sum of an even integer and an odd integer is odd. Proof: What we want to show is that: "For all integers N, and nz, if n, is even and nz, is odd, then n, + nz is odd. So let n, and nz be integers, and assume the hypothosis of the "if... then ...": that n, is even and nz is odd. This means N = 2k, for some integer K, and N2 = 2K2+1 for some integer K2. Therefore, n,+n2 = 2K,+2K2+1 = 2(K,+K2)+1, which shows ni+nz is odd because ki+kz is an integer. D 2/10 - Let's prove another theorem, this time about sets: Theorem For any sets X, Y, and Z, Xn(YUZ) = (XnY)U(XnZ). Pf: To prove that A=B for two sets A and B, we need to show that they have the same elements. That is, that: (a) if $x \in A$ then $x \in B$ (this is the same as $A \subseteq B$), and (b) if x ∈ B then x ∈ A (this is the same as B⊆A). So to prove this theorem we must show that (a) if x ∈ Xn(YUZ) then x ∈ (XnY) U(XNZ), and (b) if $x \in (X \cap Y) \cup (X \cap Z)$ then $x \in X \cap (Y \cup Z)$ First let's prove (a), So assume that & \n(YUZ). By definition of intersection, this means that: x ∈ X and x ∈ YUZ. By definition of union, this means that: $x \in X$ and $(x \in Y)$ or $x \in Z$.

4

4

4

There are two possibilities to consider: (1) If $x \in Y$, then $x \in X \cap Y$ (since $x \in X$ and $x \in Y$), So that $x \in (XNY)U(XNZ)$ as required. (2) If x & Y, then since (x & Y or x & Z) we must have x & Z, $50 \times EXNZ$ and therefore $x \in (XNY) \cup (XNZ)$, We see that no matter the case, $x \in (X \cap Y) \cup (X \cap Z)$, and so we have proved (a) like we wanted to, The proof of (b) is very similar and is left as an exercise This kind of proof, where we assume the hypotheses of theorem and use them (together with axioms, definitions, and rules of logic) to deduce the conclusion of the theorem, is called a direct proof. We will discuss several others __ methods of proof soon... First let us recall that a counterexample to a universally quantified Statement is an element of the dunamordiscourse for which the prop formula is talse. Counterexamples can disprove proposed conjectures (= statements you think might be true). "For all nonnegative integers n, 2"+1 is prime." For n=0,1,2,3, ... get 2"+1 = 2,3,5,9, ... and q=3x3 is not prime, so n=3 is a counterexample. E.g. The smallest counter example to "For all n=0, 22"+1 is prime" is n=5 worm 22+1= 4294907297=641 x6700417. So some times it can be hard to find a counterexample!

Often we don't know abend of time if a statement is true: Eig: If the statement "For all sets A, B, C, we have (ANB) UC = AN (BUC)" is true, prove it. Otherwise, find a counterexample!

Let's start by trying to prove the statement. So we'd noed to show $\forall x \in (AnB) \cup C$ have $x \in An(B \cup C)$ and convoxely. Thus, let $\chi \in (AnB) \cup C$. This means that:

(χ is in A and χ is in B) or (χ is in C).

We want to show: $\chi \in An(B \cup C)$, that is:

(χ is in χ is in χ is in χ or χ is in χ is in χ .

If χ is in χ and χ is in χ or χ is in χ .

But what it χ is in χ ? Then we need to show that χ is also in χ . But does χ have to be in χ ?

Doesn't seem like it does... We are stuck in our attempted proof, so now we might try tomake a counterexample.

We got stuck in the proof when there was an element in the set C that was not in A. This suggests a counter example might look like:

4

4

4

4

4

10

4

4

4

 $A = \{1, 2, 5\}$ $B = \{2, 3, 5\}$ $C = \{4, 5\}$

Indeed, we can check that (ANB)UC= \(\frac{2}{2}\)\(\frac{5}{4}\)\(\frac{5}{3} = \{\frac{2}{4}\)\(\frac{5}{3}\)
but AN (BUC) = \{\frac{1}{2}\)\(\frac{2}{3}\)\(\frac{1}{2}\)\(\frac{5}{3}\)\(\frac{1}{4}\)\(\frac{5}{3}\

2/15

More methods of proof § 2.2

We have so far discussed the most common kind of proofs a direct proof of a universal statement $\forall x \ P(x)$.

Now will we discuss some other kinds of proof.

Existence proofs: Sometimes theorems are of the form $\exists x \ P(x)$. To prove, just find $x \ s.t. \ Polistrue$:

E.g. Prove "There is a real number $x \ for \ which \ x^2 = 2^n$.

Pf: We can just take x = Jz (or x = -Jz). Electron for the course, this is not much of a theorem.

You may notice existence proofs have similar form to counterexamples: By DeMorgan's Law are have that $T \ \forall x \ P(x) \equiv \exists x \ T \ P(x)$, so the relationship it clear.

Sometimes existence theorems also involve universal quantifier;

Eg. Thm There exists a set A such that AUB=B for all sets B.

Pf: We take $A = \emptyset$, the empty set. To prove that

this works we need to prove that ØUB = B Y B.

The containment $B \subseteq ØUB$ follows from:

Exercise: Y sets A, B have $B \subseteq AUB$.

To see that & UBCB, let x & Ø UB. We know that X & Ø for any x, which means that x & B, proving the desired inclusion.

1 6

سَب

-

-