[머신러닝 기반 데이터 분석] 03. 지도학습 모델 적용하기

- 01. 머신러닝 수행방법 계획하기
- 02. 데이터 세트 분할하기
- 03. 지도학습 모델 적용하기
 - 3-1 분류 목적의 머신러닝 기법 적용 decision tree(의사결정트리)
 - 3-2 분류 목적의 머신러닝 기법 적용 -SVM(서포트 벡터 머신)
- 04. 자율학습 모델 적용하기
- 05. 모델성능 평가하기
- 06. 학습결과 적용하기

학습 목표

- 가. 의사결정트리 기법에 대해 이해해 본다.
- 나. 서포트 벡터 머신 개념에 대해 이해해 본다.
- 3-1 분류 목적의 머신러닝 기법 적용

2019. 1. 1. Evernote Export

가. 의사 결정 트리(decision) 기법

- 결정 트리 학습법은 지도 분류 학습에서 가장 유용하게 사용되고 있는 기법 중 하나이다.
- 예측 모델중의 하나이다. (분류)
- 통계, 데이터 마이닝, 기계 학습에 사용되는 예측 모델링 접근 방식 중 하나이다.
- 목표 변수(target variable)가 이산형(discrete variable)를 취할 수 있는 트리 모델을 분류 나무(classification tree)라고 한다.
- 목표 변수(target variable)가 연속형(continuous values) 값을 취할 수 있는 트리 모델을 회귀 나무(regression tree) 라고 한다.

- 의사결정 트리는 설명변수(독립변수)의 특징이나 기준값에 따라 if-then의 형태로 분기된다. 이를 통해 각 데이터가 주어졌을 때, 어떠한 카테고리로 분류되는지 쉽게 알 수 있다.
- 아래 의사결정트리의 가장 상위의 루트 노드에서 분류하는데 있어, **성별(남,여)이 사용**되었다. 이는 **생존/사망을 판별**하는데 가장 유의한 변수는 **성별이 가장 유의한 변수**로 해석할 수 있다.
- 각 가지의 제일 마지막 사각형 노드가 리프(Leaf) 노드이다.

[그림 3-3] 의사결정 트리 예시

(NCS 교재 참조)

나. 의사 결정 트리(decision) 는 어떤 기준을 가지고 분류하는가?

- 각 노드마다 질문을 던지고 그 응답에 따라 가지를 쳐서 데이터를 분리한다.
- 데이터가 얼마나 잘 분리되어 있는지 평가하기 위해 사용되는 기준은 불순도(impurity)기준으로 사용한다.
- 불순도는 노드에 여러 분류가 섞여 있을 수록 높고, 노드에 하나의 분류만 존재할 때 가장 낮아진다.
- -> 노드 분리 후 각 노드의 불순도가 낮아질수록 트리 분류가 잘 된 것으로 판단할 수 있다.

대표적인 사용되는 불순도 지니 불순도(Gini Impurity) : 엔트로피 지수(Entropy) :

2019. 1. 1.

(참조: https://www.bogotobogo.com/python/scikitlearn/scikt machine learning Decision Tree Learning Information Gain IG Impurity Entropy Gini Classification Error.php)

다. 의사결정트리 기법

- 입력 변수(input variables)로 부터 목표 변수(target variable)를 예측하는 모델을 생성하는 것이다.
- 결정트리의 '학습'은 학습에 사용되는 자료 집합을 적절한 분할 기준 또는

분할 테스트에 따라 부분 집합으로 나누는 과정이다.

$$(\mathbf{x}, Y) = (x_1, x_2, x_3, \dots, x_k, Y)$$

종속 변수 Y는 분류를 통해 학습하고자 하는 목표 변수(target variable)와 벡터 x는 x1,x2,x3등의 입력변수(input variable)로 구성된다.

라. 의사결정트리 기법 사용하기 위해 어떤 패키지가 있을까?

R에서 의사결정트리 기법을 구현한 여러가지 패키지가 존재한다.

대표적인 패키지 rpart (rpart 함수) party 패키지 (ctree 함수) C50 패키지 (C5.0 함수)

[rpart 패키지의 rpart 함수]

rpart는 대표적인 의사결정 트리 기법(CART: Classification and Regresson Trees)를 구현한 패키지.

[party 패키지의 ctree 함수]

[C50 패키지의 C5.0 함수]

C5.0 알고리즘을 구현한 함수

마. 의사결정트리 장단점은 무엇일까?

〈표 3-5〉 의사결정트리 기법의 장단점

장 점

단 점

- 분류문제 및 수치예측 모두 활용 가능하다.
- 결측치가 있는 데이터 효과적으로 처리 가능.
- 중요한 변수만 선별할 수 있고, 이를 통해다른 추가 분석 위한 통찰력을 얻을 수 있다.
- <mark>선형성</mark>, <mark>정규성</mark>, <mark>등분산성 등의 가정</mark>이 필요 없는 비모수적 모형이다.
- 수학적 지식이 없는 사람도 모형의 결과 이해가 쉽고, 어떤 입력변수가 목표변수를 설명하는데 영향력이 높은지를 알 수 있다.
- 분류결과에 대한 Rule 기반의 해석 가능하여 분류결과 이유를 설명해야 할 경우 유용하다.

- 연속형 입력변수를 비연속적인 값으로 취급하므로, 분리의 경계점 근방에서 예측오류 가능성 있음.
- 선형 또는 주효과 모형과 같은 해석이 불가능하므로 모형식을 수립해야 하는 경우 적용이 어렵다.
- 훈련데이터에 대한 약간의 변경이 발생 시 <mark>트리</mark> 분류 결정 논리에 큰 변화를 가져온다. (특정 데이터 변화에 분석결과 변화가 민감함)
- 모델이 쉽게 과적합화 되거나 과소적합 될 수 있다.
- 트리가 너무 커질 경우 패턴 이해하기가 쉽지 않다.

(NCS 교재 참조)

바. 의사결정트리 - 목적변수가(Target)이 수치형에도 사용이 가능한가?

의사결정트리는 분류 목적의 머신러닝 기법이다. 단, 수치예측의 목적으로도 사용할 수 있다. 분류 목적의 의사결정트리를 분류나무(Classification Tree)라 부르고, 수치예측의 의사결정트리를 회귀나무(Regression Tree)라 구별해 부른다.

분류 목적은 노드 분리를 위해

카이제곱 통계량, 지니계수, 엔트로피 지수 등의 불순도 측정으로 트리를 구성.

수치예측의 목적의 의사결정트리 -

목표변수의 평균과 표준편차 혹은 평균과 절대 편차 같은 통계치를 이용하여

마디가 분리된다.

[그림 3-9] 수치예측 목적의 의사결정 트리 예시

구매 금액을 목표변수로 하고 이에 영향을 미치는 설명변수들을 마디로 분리한다고 할 때, 첫번째 분리변수로 성별이 사용되었다. 남성의 구매금액의 평균이 210만원이고, 여성의 구매금액이 189만원이다. 성별에 따라 구매금액의 높고 낮음이 잘 예측될 수 있다.

의사결정트리의 분리기준

수치 예측 목적의 의사결정트리의 경우 F통계량의 p값이나 분산(혹은 표준편차)의 감소량 등을 통해 가지를 분리 (자세한 내용은 NCS 교재 p63 참조)

3-2 분류 목적의 머신러닝 기법 적용 - SVM(Support Vector Machine)

가. 용어 이해하기

서포트 벡터 머신은?

- 두 범주 간의 데이터를 최대로 나눌 최대 마진 초평면을 찾아서 각 데이터를 분류한다.
- 최대 마진 초평면을 찾는 이유는 현재의 훈련 데이터가 아닌

평가용 데이터나 미래의 데이터에서 경계선 주변의 점들이 약간 변경되더라도 분류 경계선을 넘어가는 가능성을 최소로 하기 위한 것이다.

서포트 벡터(Support Vector)

경계선과 가장 가까운 각 분류에 속한 점들을 서포트(혹은 지지 벡터)라고 한다. 하나 이상의 서포트 벡터를 가지고 있어야 한다.

[그림 3-7] 서포트 벡터 머신 개념

나. 모든 데이터를 위와 같이 선형적으로 분류할 수 없을때,

이런 경우에는 **커널 트릭(Kernel Trick)이라는 방법**을 써서 주어진 데이터를 적절한 고차원으로 사상한 뒤, 변환된 차원에서 데이터를 잘 분류할 수 있는 초평면을 찾는다.

주로 사용되는 커널 함수는 **다항 커널, 가우시안 커널, 시그모이드 커널** 등이 있다.

〈표 3-7〉서포트 벡터 머신 기법의 장단점

장 점

단 점

- 범주분류나 수치예측 문제에 모두 활용 가능하다.
- 노이즈 데이터에 영향을 크게 받지 않고, 과적합화가 잘 되지 않는다.
- 일반적으로 분류 문제에서 다른 알고리즘 보다 분류 성능이 높은 것으로 알려져 있으며, 특히 분류 경계가 복잡한 비선형 문제일 경우 타 기법대비 성능이 좋은 것으 로 알려져 있다.
- 최적 분류를 위해 커널함수 및 매개변수 등에 대한 반복적인 조합 테스트가 필요하다.
- 입력 데이터의 양이나 변수가 많은 경우 훈련에 오랜 시간이 소요된다.
- 배경이 되는 이론 및 알고리즘 구현 시 타 기법에 비해 상대적으로 난해한 면이 있다.
- 결과 해석이나 이유 설명 등이 쉽지 않다.

다. 서포트 벡터 머신 기법의 활용 분야

- 서포트 벡터 머신은 분류와 수치예측 문제에 모두 활용 가능하다.
- 분류 성능이 좋으면서도 과적합화가 잘 되지 않고, 일반화 능력이 높아서 정교한 분류 성능이 필요한 분야 (유전자 데이터 분류, 언어식별, 보안 결함, 이상치 거래 탐색 등)