Basen von Vektorräumen

Ist V ein K-Vektorraum, so nennt man $B \leq V$ eine Basis von V, falls:

- B linear unabhängig
- \bullet B erzeugt V

Merkregeln

- Jeder K-Vektorraum hat eine Basis
- $B \le V$ ist eine Basis von V $\Leftrightarrow B$ ist eine maixmal-linear-unabhängige Teilmenge von V $\Leftrightarrow B$ ist minimales Erzeugendensystem von V
- ullet Jede linear unabhängige Menge von V kann man zu einer Basis ergänzen
- $\bullet\,$ Jedes Erzeugendensystem von V kann zu einer Basis verkürzt werden
- Ist B eine Basis von V, so kann jedes $v \in V$ als genau eine Weise bzgl. B dargestellt werden:

$$v = \lambda_1 b_1 + \ldots + \lambda_n b_n$$

- Je zwei Basen von V haben die gleiche Mächtigkeit : B_1, B_2 Basen von $V \Rightarrow |B_1| = |B_2|$
- Die Dimension eines Vektorraumes V:

Wähle Basis B von V

$$dim(V) = |B| = \begin{cases} n \\ \infty \end{cases}$$

• Ist V ein Vektorraum der Dimension n: dim(V) = n:

Dann:

- \bullet Jede linear unabhängige Menge mit n Elementen ist eine Basis
- \bullet Jedes Erzeugendensystem mit n Elementen ist eine Basis
- Mehr als n Vektoren sind immer linear abhängig
- $U \le V \Rightarrow dim(U) \le dim(V)$
- $U \le V \land dim(U) = dim(V) \Rightarrow U = V$
- $dim(\mathbb{R}[x]_n) = n+1$

Anwendung in Linearen Gleichungssystemen

$$A \in K^{m \times n} = (a(ij)) = \begin{pmatrix} s_1 & \dots & s_n \end{pmatrix} = \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix}$$

$$S_A = \langle s_1, \dots, s_n \rangle$$
 = Spaltenraum von $A \mid Z_A = \langle z_1, \dots, z_m \rangle$ = Zeilenraum von A $dim(S_A)$ = Spaltenrang von $A \mid dim(Z_A)$ = Zeilenrang von A