Po=
$$\sqrt{3}$$
UsoIo cospo=0 \Rightarrow cfo= $+\pi/2$ \Rightarrow ff= α 0.

Perteo Fer nightifies et fs=0

donc $\times m = \frac{V_0}{I_0} = \frac{U_{SO}}{\sqrt{3}}$ Io

Pcc = V3 Usce Isce coupee = 3 R'& Isce - + Pr=

2)
$$N_1 = 16642pm$$
 $g_1 = \frac{N_S - N_1}{N_S}$ $N_S = \frac{60.16}{p} = 18002pm$
 $Teu_1 = \frac{3p}{\omega_0} V_S^2 \frac{R^2/g_1}{(R^2/g_1)^2 + \chi^2}$ and $V_S = \frac{Ll_S}{V_S}$
 $Teu_1 = k_2 \Omega_1$ and $\Omega_1 = \frac{N_1 \times 2\pi}{60} \rightarrow k = \frac{Teu_1}{\Omega_1} = \frac{1}{2}$
 $Teu_1 = k_2 \Omega_1$ and $Teu_2 = \frac{N_1 \times 2\pi}{60} \rightarrow k = \frac{Teu_1}{\Omega_1} = \frac{1}{2}$
 $Teu_2 = \frac{1}{2} + \frac{1}{2}$ and $Teu_3 = \frac{1}{2} + \frac{1}{2} +$

$$Is_1 = Io + I$$
, and $I_1 = \frac{V_S}{(R_2/q_1)^2 + X_2^2)_{1/2}}$ at $|g\varphi'_1 = \frac{X}{R_2/q_1}$.

donc
$$Is_1 = [(to+I)\min(\varphi_1) + (I)\cos(\varphi_1')^2]^{-2}$$

et $ty\varphi_1 = \frac{to+I)\min(\varphi_1')}{I(\cos(\varphi_1')} - \cos(\varphi_1) =$

longuion inverse les deux phones du motern, la caractéristique Teur (52) du nuotem

(91) devient la caractéristique (2) avec

me vitem ny nothone de - Ds.

72 Trobantament, à caux de l'ui entie

des parties tournantes J, la vitere me Vaux pas donc le point de forchomement durnoteur para de A eu B.

$$g_z = \frac{-N_s - N_1}{-N_s} = \frac{N_s + N_1}{N_s} = \frac{N_s + (l-g_1)N_s}{N_s} = 2 - g_1$$
 $g_z = 2 - g_1 > 1$

 $g_z = \frac{-N_s - N_1}{-N_s} = \frac{N_s + N_1}{N_s} = \frac{N_s + (l-g_1)N_s}{N_s} = 2 - g_1$ $g_z = 2 - g_1 > 1$. Le moteur fonctionne en frain et l'energie airêtique disoitée pendant le françe est discipée sous forme de chaleur dans le votor de la machine.

Town
$$2 = \frac{3p}{4los} V_s^2 \frac{k_z^2/q_z}{(k_z^2/q_z)^2 + x^2}$$

$$| \text{Town } 2 | = \frac{3p}{4los} V_s^2 \frac{k_z^2/q_z}{(k_z^2/q_z)^2 + x^2} \frac{\text{To} + \text{Tr}}{\text{Ts}_z} \text{ avec } \text{Tr}_z = \frac{V_s}{(k_z^2/q_z)^2 + x^2} | \text{Tr}_z = \frac{V_s}{(k_z^2/q_z)^2 + x^2$$

4) en B on a Tell_2 - & D_1 = J\dr_2 \ dt \ B. avec Tell_2 <0 donc J\dr_2 \ dt \ B.

L'entrainement s'ante puis report donné l'antir seus de robotion, j'usqu'an nouveau point d'équilitée C (virus echon de (2) et de Tr = kD).

Compte term des symétries des caractéristiques, on à N₃ = -N₁ J₃ = J₁ donc |Tell_3| = Tell_1 \ \alpha \rangle f_3 = \corp_1 \ \Tell_3 = \Tell_1 \.

Corrigé exercice 7

Corrige	exercice /				
	Question 1		Question 2	Question 3	
		g1	0.0326476	0.4444444	
		Tem1	500	500	Nm
		Pin1	94774.1402	94669.9446	W
p_	2	Pem1	91170.8155	52359.8776	W
Us	600	lr1	91.1970039	91.1970309	Α
Vs_	346.410162	N1	1741.23431	1000	rpm
Uso	600	W1	182.341631	104.719755	rad/s
Iso	15	cphir1	0.99999402	0.99889433	
Uscc	29	cosphi1	0.98618997	0.97831271	
Iscc	40	Pjr1	3076.96328	3076.9651	W
Pcc	592	Prext	0	38810.9379	W
Qcc	1920	Rext		1.55550526	Ohm
Scc	2009.17858				
cphicc	0.29462026		_		
Xm_	23.0940108	Ohm			
Rr_	0.12332182	Ohm			
X_	0.4	Ohm			
14/0	276 001110	rod/o	1		

B = R'z = 1 /Zcc / coopec R R2/g X=3+22 ower surfice = \ 1-cooper 2 = 2/2 = 1 | Zec | suicfec A) Tell = $T_2 = \frac{3p}{\omega_0} \frac{V_s^2}{(R_s + \frac{R_1^2}{g_1})^2 + x^2} d'_{ou} \left(\frac{R_s + \frac{R_2^2}{g_1}}{g_1} \right)^2 + x^2 = \frac{3p}{\omega_0} \frac{V_s^2}{T_{R_s}} R_1^2 / g_1$: en multipliant por g_1^2 : (Rs g, + R'2)2+g,2×2=g, × 3p Vs2 R'2 Equation du second dégré en g: 9,2(R2+x2)+g,(2RR2-3P V52R2)+R22=0 200 lutions: 00 g1 <1 - fouctionnement en moteur stable. 4 frem instable. La solution stable en moteur et 0 cg/c/ Is $I = I_0 + I_1$ $I_1 = \frac{V_s}{\left[\left(\frac{R_s + \frac{R_s}{2}}{\frac{R_s}{2}}\right)^2 + \chi^2\right]^{1/2}}$ $I_1 = \frac{X}{R_s + \frac{R_s}{2}}$ Is $I_2 = \left[\left(\frac{I_0 + I_1 \sin(\varphi_1^2)}{I_1 \cos(\varphi_1^2)}\right)^2 + \left(\frac{I_1 \cos(\varphi_1^2)}{I_2 \cos(\varphi_1^2)}\right)^2\right]^2$ et $I_2 = \frac{I_0 + I_1 \sin(\varphi_1^2)}{I_1 \cos(\varphi_1^2)}$ $I_3 = \frac{I_0 + I_1 \sin(\varphi_1^2)}{I_1 \cos(\varphi_1^2)}$

Ou permute instantanement 2 phases. Le point de fonctionnement du moteur pare de A en B et Di me vani pas instantantment à course de l'inertie. Comme à l'exercise 6, ou montre que Jar 8 <<0. L'entrainement s'autete puis le seus de robation s'inverse, la charge descend le nouveau point d'équilibre consofond à une vitere de descente

superieure à Des qui correspond à un fonctionnement en génération. Dans ce cas l'energie de françe est un voyée dans le réseau aux pents près. Ou demonte que C est stable, vien durinne la viterre de descente, le comple de la charge devient supérieur au couple résistant de la genérative, on revient en c. Sion augmente la vitere de descente, le couple résistant de la gandrahire devient supérieur au couple de la charge, onrevient en C.

3) 92 comofordant à D2 est co. 92 estrolution de :

Tr= - 3 p Vs 2 R2/92.

On official une Equation du nueve type qu'ala

(Rs+ R2)2x2 question 1. La solution à conserver est alle qui
a une value absolue la flus proche de 0. Ou peut

alors recalculer I2 et , Is 2 et cosofz. (Si on tient compte de R to il n'y a pas de symétile comme à l'exercice 6. 4) Si ou permute à nouveau les phanes en C, on panceu D et ou revient au pout d'équilibre A. Hais il faut que Teur (D) > Teur (C) (cequient viai ici)!

Corrigé Exercice 9 Question 1

p_	2			
fsessai_	60	Hz		
wsessai_	376.991118	rad/s		
Uso_	575	V		
Vso_	331.976405	V		
Iso_	307	Α		
Uscc_	81	V		
Vscc_	46.7653718	V		
Iscc_	300	Α		
Pcc_	10800	W		
Qcc_	40679.6018	VAR		
Xm1_	1.08135637	Ohm		
X1_	0.15066519	Ohm		
R_	0.04	Ohm		
Lm_	0.00286839	I		
_	0.00039965	I		
	Question 2	Question 3	Question 4	
Usn1_	575	400	479.182407	V
Vsn1_	331.976405	230.940108	276.656091	V
fs1_	60	50	50	Hz
ws1_	376.991118	314.159265	314.159265	rad/s
Flux1_	0.88059476	0.73510519	0.88062369	Wb
Tem1_	2200	2200	2200	Nm
N1_	1706.21502	1359.15195	1406.22167	rpm
Ns1_	1800	1500	1500	rpm
g1_	0.05210277	0.0938987	0.06251888	
lr1_	424.327983	520.008508	424.312929	Α
tphir1_	0.19625183	0.29473471	0.19623791	
cphir1_	0.98128161	0.95920512	0.98128419	
sphir1_	0.19257832	0.28271104	0.19256516	
Iso1_	307	256.278261	307.010084	A
ls1_	569.628903	641.435445	569.619999	A
cosphi_	0.73097633	0.7776228		
w1_	178.674419	142.330059	147.259189	rad/s
eta1_	0.94789723	0.9061013	0.93748112	