Table 1.	,		
iable 1	Laws of	Algebra c	of Propositions
The state of the s	- C. C. S.	e trail of the C	H I I U DUSHUUH S

St. No. 1	Name of the law	Primal form	Dual form
2. I 3. I 604. C 5. C 6. A 7. II 8. A	dempotent law dentity law Dominant law Complement law Commutative law Associative law Distributive law Absorption law De Morgan's law	$p \lor p \equiv p$ $p \lor F \equiv p$ $p \lor T \equiv T$ $p \lor T p \equiv T$ $p \lor q \equiv q \lor p$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \lor (p \land q) \equiv p$ $T(p \lor q) \equiv Tp \land Tq$	$p \wedge p = p$ $p \wedge T = p$ $p \wedge F = F$ $p \wedge T p = F$ $p \wedge q = q \wedge p$ $(p \wedge q) \wedge r = p \wedge (q \wedge r)$

Table 2 Equivalences Involving Conditionals

```
1. p \rightarrow q \equiv \exists p \lor q

2. p \rightarrow q \equiv \exists p \rightarrow q

3. p \lor q \equiv \exists p \rightarrow q

4. p \land q \equiv \exists (p \rightarrow \exists q)

5. \exists (p \rightarrow q) \equiv p \land \exists q

6. (p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r) \lor q

7. (p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r

8. (p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)

9. (p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r
```

Table 3 Equivalences Involving Biconditionals

1.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

2. $p \leftrightarrow q \equiv \exists p \leftrightarrow \exists q$
3. $p \leftrightarrow q \equiv (p \land q) \lor (\exists p \land \exists q)$
4. $7(p \leftrightarrow q) \equiv p \leftrightarrow \exists q$

Table 4 ... Implications

Theory of Interence!

Interence Theory in conceined

with genning a conclusion from

certain hypothesis or basic assumptions

or premises by applying principles

of reasoning or rales & interence.

Premise!

is assumed to be true.

Formal proof!

Conclusion from a set of premises

by the accepted rules of resoning

is called a formal proof.

Topes!

1. Direct proof.

2. Indirect proof.

Ruks of Inference!

Rule p!

at any step in the desiration.

Rule T:

A formula S may be
Introduced in the delivation,

If s is tautologically implied

by one or Hore preceeding

formulae in the derivation.

Rule cp: (Conditional proof)

If the conclusion is of the form R->s, Then we will take R as an additional premise and derive & using The Premise I given premises and R.

Inconsistent premises!

HI, Her..., Hn is said to be inconsistent if Their conjunction impires a contradiction lies.

HI A HEAL... A HO > F.

Consistent premises!

A Set of premises is Said to be consistent of it

Problem under direct proof:

Acon the premise open 1988.

I. show that R is a raind inference from the premues $P \rightarrow Q$, $Q \rightarrow R$ and P.

	step	StateMent	Lule	Deason.
	1 - 1 - 1	p -> 9	p *	Given
	2.	Q ->P	P	Given
	3	P	P	Given.
	4	p→ p	T	C1121, Hyperney
	5.	R	1	(3/4), Modul poneni.
	23-10			10401 1011211,
	14			
2	Show	that p-	-s follor	va Logically
	frem	The pren	nises 7p	rq, Tarr,
	and	₹ → 4,	11,303	Briblen)
	Solunon	124 0 13	T to	14 mod 2 1
	Ptep	Statement	Lule	Teason.
and the second	<i>*</i>	TPVQ	f	Gives
	2	Tarr	P	Given
	3	$R \rightarrow \mathcal{L}$	P	Given.

	4	P+Q	T.	1, table (2.11)
	5	Q>F	T ,	2, table (2.1)
	6	P→R	7	(415), Hapol.
	ᅾ.	2 - q	T	(6,3), Hypol.,
				e and for the second
3.	show 7	That RA	(pra)	is a valid
		on from		
	pra,	Q > 4, P=	H a	nd 7M.
	!nonplo2	77	4	
	step	statement	Rule	Reason,
	or to die	pra	P	Given
	2	9->R	- p	4
21	1900 % mka u	P-> M	P	
	2114.140	719	P	"
R	Manyle		~	(413), Modu
	5.	77	T	tollens.
	hard Aren	R	T	(211) / DMJ1. 1911
	7 4	2	T	(6,2), Moder ponens
A CONTRACTOR OF THE CONTRACTOR	8.	RA(pVQ)	7	(7,1), conjunction

8. PA(pVQ)

3.

Ens can be delired from the premises P-9, 19->70. r, prctus) Solunoni Step statement Reason. Rule 1 Gires 2 P 3 PY(EAS) 5 P->78 (12), Hypotherical. 9 1 9 T (3/6), Modul ponens. 7 (714), Dinjunetre Tyllogian. FVI 5. Ras can be derived from The premises p+ (a -> s), TRVP and p. Solution!

Step statement due leason. 1. P7(9-7.5) P Given 2. TRUP P Ø 1 3 2, p→Q=7pYQ. T 4 2 > P (411), Hypotherical T 5 R7 (Q71) 5, table (2.1) T 6. TRY (79VI) T 6, Associative 7. GRYTQ) VS 8. (TarTR) VI T 7, COHNUTATIVE. 9. TQV(TRYS) T 8, Associative. T (319), Disjunctive TRYS 10. T 10, table (2.1). 11 R-75 Problem under conditional proof! 6. Show that pas follows logically from the premises tprq 179 rR,

and Ras wing cp.

Solurion!

Scanned by CamScanner

Step	Statement	Pale	udah d	Peasor	n).
1	TPVQ	p		Give)
2	79VP	P		11	
3	R->S	P		11	
4	P	P	1 - 4	Addrin	onal
5	P → 4	T 12 4	10 10	table	12-17
6.	Q -> P	TLYP	۵,	table la	2.1)
7.	P->R	T	(57,6)	, Aspo	otherical.
€ .	pas	Time	(3,7)	, ,	
9.	S	7249	(418,	, Mod	us onens.
10.		T	2 y 9 T	we q	
Derre	p→(2→5)	UALL	نې دې	ruk	
from the premises $p \rightarrow (q \rightarrow r)$					
and $9 \Rightarrow (8 \Rightarrow 5)$.					
dolution	July 197	गऊरचे		e e e	, q
		7832	§ §		y CamSc

1. P>(9-78) P Griven 9 > (0 > s) P GHYEN. P Additional. 3 7->8 T (311), Moder poners. T A, table (2.1) 79.48 5. 78 V (r->3) T 2, table (2.1) 7. 79. V (M(r->01) T (576), Dist. T 7, Hodui ponens. 8. 79VS T 8, table 2.1 9. T 9, Rule Cp. 6. He dolla is soler problem under inconsistent!

8. show that the following premises are inconsistent:

(i) If Jack Hisses Hany classes due to illness, then he fails in school.

(11) If Jack fails in school, Then he is uneducated.

- (III) If Jack reads a Let of books, Then be is not uneducated.
- (IV) Jack Misses Many classes due to illness and reads a Lot & books.

Solution!

Let

Pi Jack Misser Many darses due to illness.

Q: He fails in school.

R: He reads a Lot of books.

e: He is uneducated.

The premise are:

P->0, 0->1, 2-71, PAR

the control of the second of t

Step statement Rule Leason. P-> 9 GIVED 1 2. Q -S P R -> IS P 3 PAR P 4 T (1,2), Hypol., 5. P->s 6. S-7R す 3, アラヤミアタラア T (5,6), Hypol., 7. PITR 8. Ibilt 7, table (2.1) 7 T & Demorganis. 9. TCPAR) F (+19), Complement. 10

9 Show that the premises are "
Inconsistent.

- (1) If Rama gets his degree, he will go for a Job.
- (11) It he goes for a job, he will get Harried.
- (111) It he goes for higher study, he will not get Hamed.

(1v) Lama gets his degree and goes for higher study.

Solution!

P! Rama gets his degree.

q: He goer too a Job

R: He goes too higher study.

s: He WIII get Married.

The premois are.

P-P, Q-S, L->75, PAR.

Mumber . same as problem

Problems Under Indirect proof:

- 1. Introduce The negation of the derived Conclusion as a new premise.
- 2. Osing The given premise and
 This new premise, aluter a
 Contradiction.

probleu!

10. Use Indirect Herrod to show that

7-72 1841, 5-72 19-9 =77p.

solumon!

step	statement	dule	Peason.
1.	8->78	P	Gliven
2.	275	<i>P</i>	"
3	5-72	P	" *\" = 7
†	P > 2	P	
5· ·	P 11.7	P	Add prenise.
6.	19 1 L	Τ -	(fis) 1 Modus ponens
7 .	(843) ->79	7	(1,3), (p+r) 1(9,+8) = (pv9) ->8.
8.	79	T	(2,7), Modul ponens.
9.	F	T	(6,8), complement.

11. Use indirect Hethod to show There

P>q, 9>8, 7(pnr), pvr =>8

Solution:

1. P-72 P Giren

2.9+8 P 11

3.7(par) p "

4. Px8 P.

5. 78 P Additional

6. pix T (1,2), #4p1..

9. 7P T (516), Moder tollers.

8. 8 T (7/4), DISJUNCTUR.

9 F T (815), complement

10 F T (819), Doninant