Anotaciones Espacios Topológicos Conexos

Quintín Mesa Romero

December 2021

- 1. (X,T) es conexo si no existen abiertos $A,B \in T$ tales que:
 - 1. $A, B \neq \emptyset$
 - $2. \ A \cup B = X$
 - 3. $A \cap B = \emptyset$

Intuitivamente, un espacio topológico es conexo cuando **no se puede partir en dos** trozos abiertos

Podemos cambiar en la definición de conexo abiertos por cerrados.

- 2. Todo intervalo $J \subset \mathbf{R}$ es conexo: $J \subset \mathbf{R}$ es intervalo \Rightarrow es conexo
- 3. Sea (X,T) un espacio topológico verificando: si $A,B\in T,\ A,B\neq\emptyset\Rightarrow A\cap B\neq\emptyset$. Entonces, (X,T) es conexo.
 - 1. $(X, T_t), (X, T_{CF})$ con X infinito, (X, T_{CN}) con X no numerable
 - 2. (X, T_D) es conexo \iff X tiene un solo punto
- 4. **Teorema 1.** En (\mathbf{R}, T_U) un subconjunto es conexo sí y solo sí es un intervalo. En particular, como consecuencia del teorema, \mathbf{R} es un intervalo.
- 5. Si (X,T) es un espacio topológico conexo y $T'\subset T$, entonces, (X,T') es conexo.
- 6. En el espacio topológico (\mathbf{R}, T_S) , el conjunto $\mathbf{B_s} = \{[a, b]/a < b\}$ no es conexo. Luego, (\mathbf{R}, T_S) tampoco es conexo.
- 7. Equivalen:
 - 1. (X,T) es conexo.
 - 2. Cualquier aplicación continua de (X,T) en un espacio topológico **discreto** es **constante**.
 - 3. Cualquier aplicación continua de (X,T) en $(\{0,1\},T_D)$ es constante.
- 8. Sea (X,T) un espacio topológico, $A\subset X$ un subconjunto conexo. Sea $B\subset X$ tal que $A\subset B\subset \overline{A}$. Entonces, B es un subconjunto conexo. En particular, si A es conexo, entonces \overline{A} es conexo.
- 9. **Teorema 2.** Si $f:(X,T)\to (Y,T')$ es una aplicación continua entre dos espacios topológicos y (X,T) conexo, entonces, f(X) es subconjunto conexo de (Y,T'). Esto viene a decirnos que la imagen de un conexo por una función continua es conexa.

- 10. Si $f:(X,T) \to (Y,T')$ es un homeomorfismo y (X,T) es conexo, entonces, (Y,T') es conexo. Esto se deduce de lo anterior porque si antes decíamos que la imagen de un conexo por una función continua era conexa, ahora que tenemos un homeomorfismo: aplicación continua biyectiva y abierta; en particular es sobreyectiva, por lo tanto, la imagen de la apliación coincide con el codominio (Y,T'). Luego, (Y,T') es conexo.
- 11. La conexión es un invariante topológico.
- 12. **Teorema 3.** Bolzano o del Valor Intermedio. Sea $f:(X,T) \to (\mathbb{R}, T_U)$ una función continua. Supongamos que (X,T) es conexo. Si $x,y \in X$ y $\alpha \in \mathbb{R}$, verifica que $f(x) <= \alpha <= f(y)$ entonces existe un $z \in X$ tal que $f(z) = \alpha$. Se deduce del hecho de que dado que f es continua y (X,T) conexo, f(X) es conexo, y por tanto, al ser subconjunto de los reales y conexo, necesariamente ha de ser un intervalo, lo que garantiza la existencia de dicho z.
- 13. Ni la unión ni la intersección de conexos son necesariamente conjuntos conexos
- 14. Sea $\{C_i\}_{i\in I}$ una familia de conjuntos conexos de un espacio topológico (X,T).
 - 1. Si existe $i_0 \in I$ tal que $C_{i_0} \cap C_i \neq \emptyset$, $\forall i \in I$, entonces $\bigcup_{i \in I} C_i$ es conexo.
 - 2. Si $I = \mathbb{N}$ y $C_i \cap C_{i+1} \neq \emptyset$, entonces $\bigcup_{i \in I} C_i$ es conexo.
- 15. Si A, B son subconjuntos conexos de un espacio topológico y $A \cap B \neq \emptyset$, entonces $A \cup B$ es conexo.
- 16. **Teorema 4.** Sean (X_i, T_i) con $i \in \{1, ..., k\}$ espacios topológicos. Entonces $(X_1 \times ... \times X_k, T_1 \times ... \times T_k)$ es conexo sí y solo sí (X_i, T_i) es conexo.
- 17. Sea (X,T) un espacio topológico, $x \in X$. La **componente conexo** de (X,T) que contiene al punto x es el conjunto: $C_x = \bigcup \{A : A \subset X \text{ conexo}, x \in A\}$. C_x es la unión de todos los conjuntos conexos que contienen a x.
- 18. Propiedades de la componente conexo:
 - 1. C_x es conexo y $x \in C_x$. De hecho, es el mayor conexo que contiene a x.
 - 2. Si A es conexo y $x \in A$, entonces $A \subset C_x$
 - 3. $\overline{C_r} = C_r$.
 - 4. Si $C_x \cap C_y \neq \emptyset$, entonces $C_x = C_y$. Los componentes conexos forman una partición.
 - 5. Si A es abierto y cerrado y $x \in A$ entonces $C_x \subset A$
- 19. Ejemplos interesantes:
 - 1. (X,T) conexo $\Rightarrow C_x = X, \forall x \in X$
 - 2. Sea (X,T) un espacio topológico tal que los únicos conjuntos conexos son los puntos. Si $x \in X$ entonces $C_x = \{x\}$
 - (\mathbb{R},T_S) cumple esta propiedad: $x < y \Rightarrow \exists z \in (x,y); \ (-\infty,z), [z,+\infty) \ (x,T_D)$
 - $$\begin{split} &(\mathbb{Q},(T_u)_{\mathbb{Q}}); \ q_1 < q_2. \ \mathrm{Sea} \ r \in \mathbb{R} \backslash \mathbb{Q} \ / \ q_1 < r < q_2 \Rightarrow \mathbb{R} \backslash \{r\} = (-\infty,r), (r,+\infty). \\ &\mathrm{Si} \ A \subset \mathbb{Q} \ y \ q_1, q_2 \in A \ (q_1 \neq q_2) \Rightarrow A \subset (-\infty,r), (r,+\infty). \end{split}$$
 - 3. En (\mathbb{R}, T_S) , $C_x = \{x\}$, $\forall x \in \mathbb{R}$ que **no** sea abierto. (Los componentes conexos no son en general conjuntos abiertos).
 - 4. Si (X,T) tiene una cantidad finita de componentes conexos entonces los componentes conexos son conjuntos abiertos.

- 20. **Teorema 5.** Sea $f:(X,T)\to (Y,T')$ un homeomorfismo, $x\in X$. Entonces $f(C_x)=C_{f(x)}$.
- 21. **Corolario.** El cardinal del conjunto de componentes conexos de un espacio topológico es un invariante topológico.
- 22. Un **arco** en un espacio topológico (X,T) es una aplicación continua, $\gamma:([0,1],T_{u_{[0,1]}})\to (X,T)$. $\gamma(0)$ es el origen del arco y $\gamma(1)$ el extremo. Si dados $x,y\in X$, $\gamma(0)=x$ y $\gamma(1)=y$, entonces diremos que el arco conecta a $x\in y$.
- 23. Un espacio topológico (X,T) es conexo por arcos sí y solo sí $\forall x,y \in X$ existe un arco que conecta $x \in y$.
- 24. Todo espacio conexo por arcos es conexo. El recíproco no es cierto.

25. Ejemplos de conjuntos conexos:

- 1. Un punto en \mathbb{R}^{k}
- 2. En $\mathbb R$ un intervalo cerrado por la derecha o por la izquierda.
- 3. El complementario de un punto en \mathbb{R}^{κ}

26. Ejemplos de conjuntos disconexos:

- 1. El complementario de un punto en \mathbb{R}
- 2. El conjunto $\mathbb Q$ de los número racionales con la topología usual de $\mathbb R$ no es conexo.
- 3. El conjunto $\mathbb{R}\setminus\mathbb{Q}$ de los número iracionales con la topología usual de \mathbb{R} no es conexo.
- 4. Cualquier conjunto finito que contenga más de un punto.
- 5. El conjunto formado por todos los puntos de un número finito de cerrados $F_1, ..., F_k$, disjuntos dos a dos.