Введение в искусственный интеллект. Машинное обучение Лекция 4. Линейная регрессия

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

27 октября 2020г.

План лекции

- Регрессия
- ② Оценка качества регрессии

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Постановка задачи

Дано

$$p(y_i|x_i) = w^T x_i + \varepsilon_i,$$

для $i=1..,\ell$, где $w\in \mathbf{R}^{n+1}$, $arepsilon_i\sim \mathcal{N}(0,\sigma^2)$

Задача

Найти *w*

Напоминание: два вида оценивания параметров

Принцип максимального правдоподобия

$$w_{ML} = \underset{w}{\operatorname{arg\,max}} p(y|w,x)$$

Принцип максимума апостериорной вероятности

$$w_{MAP} = \underset{w}{\operatorname{arg\,max}} p(w|x,y)$$

Оценка максимального правдободобия

$$w_{ML} = \underset{w}{\text{arg max}} \ p(y|w,x)$$

$$w_{ML} = \underset{w}{\text{arg max}} \ \prod_{i} p(y_{i}|w,x_{i})$$

$$p(y_{i}|w,x_{i}) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}}\right)$$

$$w_{ML} = \underset{w}{\text{arg max}} \ \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}}\right) = \underset{w}{\text{arg max}} \sum_{i} -\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}}$$

$$w_{ML} = \underset{w}{\text{arg min}} \ \sum_{i} (y_{i}-w^{T}x_{i})^{2}$$

Метод наименьших квадратов

Постановка задачи и допущения

- $X = \mathbb{R}^n$, $Y = \mathbb{R}$
- ullet $a(x)=f_w(x)=w_0+w_1x_1+w_2x_2+...+w_nx_n$, где $w=(w_0,w_1,...,w_n)^T\in\mathbb{R}^{n+1}$ параметры модели.
- Удобно писать в векторном виде

$$a(x) = w^T \cdot x,$$

где
$$x = (1, x^1, ..., x^n)^T \in \mathbb{R}^{n+1}$$
.

Метод наименьших квадратов

- ullet $L(w,X_{train})=MSE(w,X_{train})=rac{1}{\ell}\sum_i(w^T\cdot x^{(i)}-y_i)^2$ функция потерь
- Задача найти $\hat{w} = \arg\min(L(w, X_{train}))$

Аналитическое решение

Теорема

Решением задачи $\operatorname*{arg\,min}_{w}(\sum\limits_{i=1}^{\ell}(w^{T}\cdot x_{i}-y_{i})^{2})$ является $\hat{w}=(X^{T}X)^{-1}\cdot X^{T}\cdot y$, где $X_{i,j}=x_{i}^{j}$, $y=(y_{1},...,y_{\ell}).$

<u>Доказат</u>ельство

Запишем задачу в векторном виде $||Xw-y||^2 o \min_w$. Необходимое условие минимума в матричном виде имеет вид:

$$\frac{\partial}{\partial w}||Xw-y||^2 = \frac{\partial}{\partial w}\left((Xw-y)^T\cdot(Xw-y)\right) = \frac{\partial}{\partial w}\left((Xw)^TXw-(Xw)^Ty-y^TXw+y^Ty\right) = \frac{\partial}{\partial w}\left((Xw-y)^T($$

$$\frac{\partial}{\partial w} \left(w^T X^T X w - w^T X^T y - y^T X w + y^T y \right) = \frac{\partial}{\partial w} w^T (X^T X) w - 2 \frac{\partial}{\partial w} (X^T y)^T w = 0$$

Леммы

Определение

Пусть $w=(w_1,...,w_n)$ — вектор столбец, а $z=z(w_1,...,w_n)$. Тогда определим

$$\frac{\partial z}{\partial w} := \left(\frac{\partial z}{\partial w_1}, ..., \frac{\partial z}{\partial w_n}\right)^T$$

Лемма 1

$$\frac{\partial}{\partial x} x^T a = a$$

Лемма 2

$$\frac{\partial}{\partial x} x^T A x = (A + A^T) x$$

Аналитическое решение

Теорема

Решением задачи $\operatorname*{arg\,min}_{w}(\sum\limits_{i=1}^{\ell}(w^T\cdot x_i-y_i)^2)$ является $\hat{w}=(X^TX)^{-1}\cdot X^T\cdot y$, где $X_{i,j}=x_i^j$, $y=(y_1,...,y_\ell)$.

Продолжение доказательтва

Необходимое условие минимума в матричном виде имеет вид:

$$\frac{\partial}{\partial w}||Xw - y||^2 = \frac{\partial}{\partial w}w^T(X^TX)w - 2\frac{\partial}{\partial w}(X^Ty)^Tw =$$

Далее применяем леммы и приравниваем к нулю:

$$=2X^TXw-2X^Ty=0,$$

откуда получаем $w = (X^T X)^{-1} \cdot X^T \cdot y$, что и требовалось доказать.

Полиномиальная регрессия

Идея

Можно генерировать новые признаки на основе уже имеющихся, применяя нелинейные функции

Примеры преобразований

- Возведение в степень
- Попарные произведения
- Квадратный корень
- Логарифм
- Экспонента

Преимущества и недостатки линейной регрессии

Преимущества

- Простой алгоритм, вычислительно не сложный
- Линейная регрессия хорошо интерпретируемая модель
- Несмотря на свою простоту может описывать довольно сложные зависимости (например, полиномиальные)

Недостатки

- Алгоритм предполагает, что все признаки числовые
- Алгоритм предполагает, что данные распределены нормально, что не всегда так
- Алгоритм сильно чувствителен к выбросам

Время для вопросов

Метод максимизации апостериорной вероятности

$$\begin{aligned} w_{MAP} &= \underset{w}{\text{arg max}} \ p(w|x_1,...x_\ell,y_1,...,y_\ell) \\ w_{MAP} &= \underset{w}{\text{arg max}} \ \prod_i p(y_i|x_i,w) p(w) \\ w_{MAP} &= \underset{w}{\text{arg max}} \ \sum_i \ln p(y_i|x_i,w) + \ln p(w) \\ w_{MAP} &= \underset{w}{\text{arg max}} \ \sum_i -\frac{(y_i - w^T x_i)^2}{2\sigma^2} + \ell \ln p(w) \\ w_{MAP} &= \underset{w}{\text{arg min}} \ \sum_i \frac{(y_i - w^T x_i)^2}{2\sigma^2} - \ell \ln p(w) \end{aligned}$$

В задаче минимизации появилось дополнительное слагаемое, которое зависит только от априорного распределения на веса $\it w$

Метод максимизации апостериорной вероятности

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - \ell \ln p(w)$$

Предположим, что $p(w) \sim N(0, au^2)$

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - \frac{\ell w^T w}{2\tau^2}$$

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \ \frac{1}{\ell} \sum_{i} \frac{(y_{i} - w^{T} x_{i})^{2}}{2\sigma^{2}} - \frac{1}{2\tau^{2}} ||w||^{2}$$

Гребневая регрессия

L2-регуляризация

- ullet $L(w, X_{train}) = MSE(w, X_{train}) + rac{lpha}{2} \sum_{i=0}^n w_i^2 = rac{1}{\ell} \sum_i (w^T \cdot x^{(i)} y_i)^2 + rac{lpha}{2} \sum_{i=0}^n w_i^2$ функция потерь
- ullet Задача найти $\hat{w} = \operatorname*{arg\,min}(L(w, X_{train}))$

Теорема

Решением задачи $\underset{w}{\operatorname{arg\,min}} (\sum_{i=1}^{\ell} (w^T \cdot x^{(i)} - y_i)^2 + \alpha \sum_{i=0}^{n} w_i^2)$ является

$$\hat{w} = (X^TX + lpha I_{n+1})^{-1} \cdot X^T \cdot y$$
, где $X_{i,j} = x_i^j$, $y = (y_1,...,y_\ell)$, I_{n+1} — единичная матрица.

Доказательство теоремы

Лемма 3

$$\frac{\partial}{\partial x} x^T x = 2x$$

Теорема

Решением задачи $\underset{w}{\arg\min}(\sum_{i=1}^{\ell}(w^T\cdot x^{(i)}-y_i)^2+\alpha\sum_{i=0}^{n}w_i^2)$ является $\hat{w}=(X^TX+\alpha I_{n+1})^{-1}\cdot X^T\cdot y$, где $X_{i,j}=x_i^j$, $y=(y_1,...,y_\ell)$, I_{n+1} — единичная матрица.

Доказательство

Запишем задачу в векторном виде $||Xw-y||^2+\alpha||w||^2\to \min_w$. Необходимое условие минимума в матричном виде имеет вид:

$$\frac{\partial}{\partial w}\left((Xw - y)^T \cdot (Xw - y) + \alpha w^T w\right) = 2X^T Xw - 2X^T y + 2\alpha w = 0$$

Свойства гребневой регрессии

- Регуляризация не даёт параметрам модели быть слишком большими
- Как правило регуляризация обеспечивает большую обобщающую способность
- Более устойчива к выбросам
- Появился параметр, который можно настравить при помощи кросс-валидации

Вероятностный смысл параметра lpha

 $lpha=rac{1}{ au^2}$, где au — среднеквадратическое отклонение априорного распределения на w

LASSO

L1-регуляризация

- $L(w, X_{train}) = MSE(w, X_{train}) + \alpha \sum_{i=0}^{n} |w_i| = \sum_i (w^T \cdot x^{(i)} y_i)^2 + \alpha \sum_{i=0}^{n} |w_i|$ функция потерь
- ullet Задача найти $\hat{w} = rgmin(L(w, X_{train}))$

LASSO

L1-регуляризация

- $L(w, X_{train}) = MSE(w, X_{train}) + \alpha \sum_{i=0}^{n} |w_i| = \sum_i (w^T \cdot x^{(i)} y_i)^2 + \alpha \sum_{i=0}^{n} |w_i|$ функция потерь
- ullet Задача найти $\hat{w} = rgmin(L(w, X_{train}))$

Свойства

- Эта регуляризация обеспечивает отбор признаков
- Нет аналитического решения

Вероятностная интерпретация LASSO

Вероятностный смысл параметра α

Параметр α — обратно пропорционален среднеквадратичному отклонению априорного распределения на w. В данном случае это распределение Лапласа

$$p(w) = \frac{1}{ au} exp\left(-rac{||w||}{2 au}
ight)$$

Отбор признаков при L1-регуляризации

Elastic Net

L1-регуляризация и L2-регуляризация

•
$$L(w, X_{train}) = MSE(w, X_{train}) + r\alpha \sum_{i=0}^{n} |w_i| + (1-r)\frac{\alpha}{2} \sum_{i=0}^{n} w_i^2 =$$

$$\sum_{i} (w^T \cdot x^{(i)} - y_i)^2 + r\alpha \sum_{i=0}^{n} |w_i| + (1-r)\frac{\alpha}{2} \sum_{i=0}^{n} w_i^2 - \text{функция потерь}$$

ullet Задача найти $\hat{w} = rg \min_{w} (L(w, X_{train}))$

Свойства

- Нет аналитического решения
- Совмещает положительные свойства гребневой регрессии и LASSO.

Время для вопросов

Метрики качества для задачи регрессии

Мотивация

- Постановка задачи машинного обучения обычно начинается с определения метрики и фиксирования тестового датасета, на котором эта метрика будет считаться
- Неправильно выбранная метрика может затруднить использование модели машинного обучения в жизни и свести на нет усилия команды, разрабатываюшей алгоритм машинного обучения.
- Как правило заказчик не мыслит в терминах метрик и может объяснить проблему, которую он хочет решить, только бизнес языком
- Понимание влияния выбора той или иной метрики на бизнес это ключ к успешной постановки задачи

Метрики качества для задачи регрессии

Mean Square Error

$$MSE = \frac{1}{\ell} \sum_{i} (y_i - a(x_i))^2$$

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{\ell} \sum_{i} (y_i - a(x_i))^2}$$

Mean Absolute Error

$$MAE = \frac{1}{\ell} \sum_{i} |y_i - a(x_i)|$$

Метрики качества для задачи регрессии

Max Error

$$ME = max(|y_i - a(x_i)|)$$

Mean Squared Logarithmic Error

$$MSLE = \frac{1}{\ell} \sum_{i} (\ln y_i - \ln a(x_i))^2$$

R^2 score

$$R^2 = 1 - \frac{\sum_i (y_i - a(x_i))^2}{\sum_i (y_i - \bar{y})^2},$$

где $ar{y} = rac{1}{\ell} \sum_i y_i$

Заключение

- Линейная регрессия простая, хорошо интерпретируемая модель, не устойчивая к выбросам
- Имеет наглядную вероятностную интерпретацию
- Регуляризация отличный способ борьбы с переобучением и шумом в данных

Дорожная карта Scikit-Learn²

Время для вопросов

