

武漢大学

课程设计报告

图像有损压缩 Matlab 仿真及性能测试

姓 名: 陈子昂,朱鹤然,卢意帆

学 号: 2021202120085

任课教师: 茹国宝

学院:电子信息学院

专业:信息与通信工程

二〇二一年十一月

说 明

目 录

说	明······	I
1	图像有损压缩技术的背景	1
	1.1 图像压缩的必要性	1
	1.2 图像压缩的可能性	1
2	JPEG 图像有损压缩	2
	2.1 颜色空间转换与色度采样	2
	2.1.1 颜色空间转换	2
	2.1.2 色度采样	2
	2.2 图像分块与 DCT 变换	3
	2.2.1 图像分块	3
	2.2.2 DCT 变换 ······	3
	2.3 量化 ·····	4
	2.4 熵编码	4
	2.4.1 霍夫曼编码	4
3	图像有损压缩实验结果 ······	5
	3.1 实验结果的定性分析	5
	3.2 实验结果的定量分析	5
	3.2.1 性能指标	5
	3.2.2 定量结果 · · · · · · · · · · · · · · · · · · ·	5

1 图像有损压缩技术的背景

1.1 图像压缩的必要性

图像数据量庞大,给存储和传输带来了许多困难。一张尺寸为 3840x2180 的原始图像,如果每个像素使用 32bit 来表示(RGBA),那么需要的内存为 3840x2180x4=33484800 Byte ≈ 31.9 M。相应的,如果拍摄 1 min 30 fps 这样规格的 4k 视频,那么需要的存储空间将会达到 $3840x2180x4x30x60 \approx 56.1$ G!

1.2 图像压缩的可能性

图像数据存在冗余

- 空间冗余。一幅图像表面上各采样点的颜色之间往往存在着空间连贯性;
- 时间冗余。视频的相邻帧往往包含相同的背景和移动物体
- **视觉冗余**。人类的视觉系统由于受生理特性的限制,对于图像场的注意是非均匀的,人对细微的颜色差异感觉不明显。

2 JPEG 图像有损压缩

2.1 颜色空间转换与色度采样

2.1.1 颜色空间转换

需要将 RGB 颜色空间转化为 YUV 颜色空间,也叫 YCbCr, 其中, Y 是亮度 (Luminance), U 和 V 表示色度 (Chrominance) 和浓度 (Chroma), UV 分量同时表示色差

做这一步的原因是对于人眼来说,图像中明暗的变化更容易被感知到,而对颜色的变化则没有那么敏感,将两者分开,就可以根据数据的重要程度的做不同的处理

研究表明,红绿蓝三基色所贡献的亮度不同,绿色所贡献亮度最多,蓝色所贡献亮度最少。假定红色贡献为 K_R ,蓝色贡献为 K_R ,则亮度可以表示为

$$Y = K_R \cdot R + (1 - K_R - K_B) \cdot G + K_B \cdot B \tag{2.1}$$

根据经验值 $K_R = 0.299, K_B = 0.114$,则有

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B \tag{2.2}$$

蓝色和红色的色差为

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

$$C_b = -0.1687 \cdot R - 0.3313 \cdot G + 0.5 \cdot B + 128$$

$$C_r = 0.5 \cdot R - 0.4187 \cdot G - 0.0813 \cdot B + 128$$
(2.3)

或

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$
 (2.4)

2.1.2 色度采样

为了进一步压缩图像数据, JPEG 对色度图像二次采样。YUV 有三种采样方式:

4:4:4 采样: 每一个 Y 对应一个 U 和一个 V。

4:2:2 采样: 每两个 Y 共用一对 U 和 V。

4:2:0 采样: 每四个 Y 共用一对 U 和 V。

图 2.1 3 种色度采样示意

2.2 图像分块与 DCT 变换

2.2.1 图像分块

2.2.2 DCT 变换

一般的二维 DCT 变换

$$F(u,v) = c(u)c(v) \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(i,j) \cos\left(\frac{i+0.5}{M}u\pi\right) \cos\left(\frac{j+0.5}{N}u\pi\right)$$

$$c(u) = \begin{cases} \sqrt{\frac{1}{N}}, & u=0\\ \sqrt{\frac{2}{N}}, & u\neq0 \end{cases}$$

$$(2.5)$$

当 M=N 时,DCT 变换可以表示为矩阵相乘的形式,F 的 DCT 变换则是 $T=AFA^T$ 。变换矩阵 A 为

$$A = \frac{2}{\sqrt{N}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & \frac{1}{\sqrt{2}} \\ \cos \frac{\pi}{2N} & \cos \frac{3\pi}{2N} & \dots & \cos \frac{(2N-1)\pi}{2N} \\ \dots & \dots & \dots \\ \cos \frac{(N-1)\pi}{2N} & \cos \frac{3(N-1)\pi}{2N} & \dots & \cos \frac{(2N-1)(N-1)\pi}{2N} \end{bmatrix}$$
(2.6)

当原始图像从 RGB 颜色空间转换到 YCbCr 颜色空间之后,需要对每一个 8×8 的图像块进行二维 DCT 变换

$$F(u,v) = c(u)c(v) \sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j) \cos\left(\frac{i+0.5}{8}u\pi\right) \cos\left(\frac{j+0.5}{8}u\pi\right)$$

$$c(u) = \begin{cases} \sqrt{\frac{1}{8}}, & u=0\\ \frac{1}{2}, & u\neq 0 \end{cases} \quad u, v = 0, 1, 2, ..., 7$$
(2.7)

这时候的 DCT 变换矩阵为

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & \frac{1}{\sqrt{2}} \\ \cos\frac{\pi}{16} & \cos\frac{3\pi}{16} & \dots & \cos\frac{(16-1)\pi}{16} \\ \dots & \dots & \dots \\ \cos\frac{(N-1)\pi}{16} & \cos\frac{3(N-1)\pi}{16} & \dots & \cos\frac{(16-1)(N-1)\pi}{16} \end{bmatrix}$$
 (2.8)

在 Matlab 中可以用 T = dctmtx(8) 查看

```
T =

0.3536  0.3536  0.3536  0.3536  0.3536  0.3536  0.3536  0.3536

0.4904  0.4157  0.2778  0.0975  -0.0975  -0.2778  -0.4157  -0.4904

0.4619  0.1913  -0.1913  -0.4619  -0.4619  -0.1913  0.1913  0.4619

0.4157  -0.0975  -0.4904  -0.2778  0.2778  0.4904  0.0975  -0.4157

0.3536  -0.3536  -0.3536  0.3536  0.3536  -0.3536  -0.3536  0.3536

0.2778  -0.4904  0.0975  0.4157  -0.4157  -0.0975  0.4904  -0.2778

0.1913  -0.4619  0.4619  -0.1913  -0.1913  0.4619  -0.4619  0.1913

0.0975  -0.2778  0.4157  -0.4904  0.4904  -0.4157  0.2778  -0.0975
```

对图像进行 8×8 分块后,对每一个矩阵块 A 都进行 DCT 变换 TAT^T

2.3 量化

2.4 熵编码

2.4.1 霍夫曼编码

霍夫曼编码是一种用于无损数据压缩的熵编码(权编码)算法,其使用变长编码表 对数据进行编码。

变长编码表是通过评估符号出现概率得到的,出现概率高的符合使用较短的编码, 反之出现概率低的则使用较长的编码, 使编码之后的字符串的平均长度降低, 从而达到无损压缩数据的目的。

霍夫曼编码主要分为两步:

根据每个字符出现的概率构建一颗最优二叉树;

再根据二叉树对字符进行编码。

3 图像有损压缩实验结果

- 3.1 实验结果的定性分析
- 3.2 实验结果的定量分析
- 3.2.1 性能指标

3.2.1.1 MSE

均方误差 (MSE) 定义为原图各像素 I(i,j) 与压缩后图像各像素 K(i,j) 差的平方和 (式3.1)

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$
(3.1)

3.2.1.2 PSNR

峰值信噪 (PSNR) 比定义为

$$PSNR = 20\lg(\frac{Max_1}{\sqrt{MSE}})$$
(3.2)

其中 Max_1 是表示图像点颜色的最大数值,MSE为均方误差。

3.2.1.3 SSIM

样本 (x, v) 的结构相似度为

$$SSIM(x,y) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1} \cdot \frac{2\delta_{xy} + C_2}{\delta_x^2 + \delta_y^2 + C_2}$$
(3.3)

3.2.1.4 压缩比

压缩比定义为原图片比特数与压缩后图片比特数之比。

3.2.2 定量结果

表 3.1 MSE

压缩质量	0.8	0.5	0.3	0.2	0.1
MSE	4.92	5.40	5.73	5.90	6.00

图 3.1 实验结果的定性分析

表 3.2 PSNR

压缩质量	0.8	0.5	0.3	0.2	0.1
PSNR	41.2	40.8	40.5	40.4	40.3

表 3.3 SSIM

压缩质量	0.8	0.5	0.3	0.2	0.1
PSNR	0.98	0.98	0.98	0.98	0.98

表 3.4 压缩比

压缩质量	0.8	0.5	0.3	0.2	0.1
游程压缩比	7.99	9.88	10.9	11.4	11.8
总压缩比	13.0	16.2	18.2	19.2	20.0
Matlab 压缩比	17.8	32.3	44.5	56.6	82.2