Redes neuronales

Redes multi-clase Softmax

Ejemplo multi-clase: MNIST

Dataset con dígitos manuscritos – 10 clases

Objetivo

Objetivo

Nuestra red debería computar una probabilidad de que la entrada pertenezca a una clase.

La salida ideal debería ser el one-hot encoding para la clase correcta

$$[0, 0, 1, 0, 0, 0, 0, 0, 0]$$
 Target de entrenamiento!

Salida multi-clase

• Necesitamos una red neuronal con n neuronas de salida

Función de activación Softmax

Recordemos la computación de la función lineal en la última capa de una NN (antes de la función de activación)

$$z_L = X_{L-1} \cdot W^L + b^L$$

L es el número de capas

 z_L es un vector real de dimensión n. Por ejemplo, supongamos que tenemos una NN con 3 neuronas en la salida:

$$z_L = \begin{bmatrix} -1.45 \\ -7.82 \\ -3.78 \end{bmatrix}$$

Cuál es la interpretación de estos valores?

Función de activación Softmax

$$Softmax(z_i) = \frac{\left(e^{z_i}\right)}{\sum_k e^{z_k}}$$

Función de activación Softmax

$$Softmax(z_i) = \underbrace{\frac{e^{z_i}}{\sum_k e^{z_k}}}$$

$$Z_L = \begin{bmatrix} -1.45 \\ -7.82 \\ -3.78 \end{bmatrix} \xrightarrow{exp} \begin{bmatrix} 0.2346 \\ 0.0004 \\ \hline 0.00228 \end{bmatrix} \xrightarrow{normalizar} \begin{bmatrix} 0.9099 \\ 0.0016 \\ \hline 0.00885 \end{bmatrix} \sum_{i=1}^{normalizar} \begin{bmatrix} 0.9099 \\ 0.0016 \\ \hline 0.00885 \end{bmatrix}$$

Softmax transforma cualquier salida en una función de densidad de probabilidades (pdf)

Softmax como función de activación de la capa de salida

Resumen

- Softmax como función de activación para producir una pdf
- Clasificador multi-clase

Redes neuronales

Redes multi-clase Cross-entropy Loss

- Nuestra red ahora produce una pdf
- La salida objetivo (one-hot encoding) es también una pdf
- Cómo comparamos dos pdf's: Cross-entropy loss

$$L(y, y') = -\sum_{i=1}^{n} y_i \log(y_i')$$

• Por ejemplo, para el problema de 3 clases, podemos tener

One-hot encoding

Salida Softmax

• Por ejemplo, para el problema de 3 clases, tenemos

One-hot encoding

• Por ejemplo, para el problema de 3 clases, tenemos

Por lo tanto,

$$L(y, y') = 0.0944$$

One-hot encoding

Cross-entropy Loss: Explicación

• Ejemplo: queremos usar una antena para enviar el estado del clima

code

bits

**	4	**	7/7	•
Soleado	Nublado	Nublado parcial	Lluvia	Tormenta
000	001	010	011	100
3	3	3	3	3

Cantidad promedio de bits usados = 3

Cross-entropy Loss: Explicación

• Ejemplo: queremos usar una antena para enviar el estado del clima

Bits promedio = 3(0.25) + 3(0.45) + 3(0.2) + 3(0.09) + 3(0.01) = 3

• Ejemplo: queremos usar una antena para enviar el estado del clima

Bits promedio = 4(0.25) + 1(0.45) + 2(0.2) + 4(0.09) + 4(0.01) = 2.25

Cross-entropy Loss: Explicación

• Ejemplo: queremos usar una antena para enviar el estado del clima

*	4		A	•
Soleado	Nublado	Nublado parcial	Lluvia	Tormenta
0.25	0.45	0.2	0.09	0.01

p(x)

Cómo obtenemos el mínimo número de bits?

Cross-entropy Loss: Explicación

• Ejemplo: queremos usar una antena para enviar el estado del clima

	*	4	*		•
	Soleado	Nublado	Nublado parcial	Lluvia	Tormenta
p(x)	0.25	0.45	0.2	0.09	0.01
1/p(x)	4	2.22	5	11.11	100

Cómo obtenemos el mínimo número de bits?

• Ejemplo: queremos usar una antena para enviar el estado del clima

Cómo obtenemos el mínimo número de bits	•			4	*	
	Tormenta	Lluvia	Nublado parcial	Nublado	Soleado	
	0.01	0.09	0.2	0.45	0.25	p(x)
$\log_2\left(\frac{1}{p(x)}\right) = -\log_2 p(x)$	100	11.11	5	2.22	4	1/p(x)
	6.64	3.47	2.32	1.15	2	$-\log_2 p(x)$

Bits promedio = 2(0.25) + 1.15(0.45) + 2.32(0.2) + 3.47(0.09) + 6.64(0.01) = 1.86

• Ejemplo: queremos usar una antena para enviar el estado del clima

	*	4	*		•	Cómo obtenemos el mínimo número de bits?
	Soleado	Nublado	Nublado parcial	Lluvia	Tormenta	$\log_2\left(\frac{1}{p(x)}\right) = -\log_2 p(x)$
p(x)	0.25	0.45	0.2	0.09	0.01	(p(x))
1/p(x)	4	2.22	5	11.11	100	$-\sum n(x)\log n(x)$ Entropía
$-\log_2 p(x)$	2	1.15	2.32	3.47	6.64	$-\sum p(x)\log p(x)$ Entropía

Bits promedio = 2(0.25) + 1.15(0.45) + 2.32(0.2) + 3.47(0.09) + 6.64(0.01) = 1.86

• Ejemplo: queremos usar una antena para enviar el estado del clima

	*	4	*		•	Cómo obtenemos el mínimo número de bits?
	Soleado	Nublado	Nublado parcial	Lluvia	Tormenta	$\log_2\left(\frac{1}{p(x)}\right) = -\log_2 p(x)$
p(x)	0.25	0.45	0.2	0.09	0.01	(p(x))
1/p(x)	4	2.22	5	11.11	100	$-\sum p(x)\log p(x)$ Entropía
$-\log_2 p(x)$	2	1.15	2.32	3.47	6.64	$\sum_{i} p(x) \log p(x)$

La entropía es 1.86: cantidad de bits para representar la información que obtienes si sabes el clima de la ciudad A

Y si usamos esto para una antena en ciudad B?

	*	4	**		-
	Soleado	Nublado	Nublado parcial	Lluvia	Tormenta
p(x) in A	0.25	0.45	0.2	0.09	0.01
$-\log_2(p_A)$	2	1.15	2.32	3.47	6.64
p(x) in B	0.3	0.2	0.2	0.25	0.05

Cuál es la cantidad de bits para la antena B?

$$-\sum p(x)\log q(x)$$
Cross-entropy

Bits promedio = 0.3(2) + 0.2(1.15) + 0.2(2.32) + 0.25(3.47) + 0.05(6.64) = 2.5

Y si usamos esto para una antena en ciudad B?

	*	4	*		4
	Soleado	Nublado	Nublado parcial	Lluvia	Tormenta
p(x) in A	0.25	0.45	0.2	0.09	0.01
$-\log_2(p_A)$	2	1.15	2.32	3.47	6.64
p(x) in B	0.3	0.2	0.2	0.25	0.05

Cuál es la cantidad de bits para la antena B?

$$-\sum p(x)\log q(x)$$
Cross-entropy

La cross-entropy es 2.5: cantidad de información que obtienes en promedio usando la información de clima de la ciudad B y la codificación óptima de la ciudad A.

Cross-entropy

$$L(y,y') = -\sum_{i=1}^{n} y_i \log(y_i')$$

Por lo tanto,

$$L(y, y') = 0.0944$$

One-hot encoding

1

0

0

-0.0944

-6.4377

-2.4247

-0.0944

0

0

Información que obtienes por conocer la data real

Ejemplo multi-clase en Pytorch

```
0000000000000000000
  11111111111111
2222222222222122222
33333333333333333333
444444444444444444
55555555555555555555
ファチュファファファファファファ
3998999
```

Resumen

- Softmax + cross entropy loss para problemas multi-clase
- Derivación de gradiente para softmax + cross entropy loss en material suplementario en U-Cursos