ECE313FA24Note

AutuEnd

December 9, 2024

Foundations

1.1 probability space

triplet

It's a triplet (Ω, \mathcal{F}, P)

 Ω : A nonempty set, each element ω of Ω is called an *outcome* and Ω is called the *sample space*. The number of ω is called the cardinality of Ω

 \mathcal{F} : Read as *Script F*, a set of all subsets of Ω , also call it *events*.

 $P: a \text{ probability measure on } F. P(A) \text{ is the probability of event } A (A \in \mathcal{F}).$

We use C_A or A^C to mean the complement of A.

Event axioms

 Ω is an event $(\Omega \in \mathcal{F})$.

If A is an event then A^C is an event $(A \in \mathcal{F} \implies A^C \in \mathcal{F})$.

If A and B are events then $A \cup B$ is an event $(A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F})$.

Probability axioms

 $\forall A \in \mathcal{F}, P(A) \geq 0.$

if $A, B \in \mathcal{F}$ and A and B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$.

 $P(\Omega) = 1$

Calculate the size of various sets 1.2

Principle of counting: If there are m ways to select one variable and n ways to select another variable, and if these two selections can be made independently, then there is a total of mn ways to make the pair of selections.

n choose k**: $\binom{n}{k}$

Discrete-type random variables

A random variable is a real-valued function on Ω

pmf (probability mass function):
$$p_X(u) = P\{X = u\}$$

 $P\{X \in \{u_1, u_2...\}\} = \sum_i p_X(u_i) = 1$

The mean of a random variable

The mean (also called expectation) of a random variable X with pmf p_X is denoted by E[X] and is defined by E[X] $\sum_i u_i p_X(u_i)$, where $u_1, u_2, ...$ is the list of possible values of X.

The general formula for the mean of a function, g(X), of X, is $E[g(X)] = \sum_i g(u_i)p_X(u_i)$.

E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + c.

2.3 The variance and standard deviation of a random variable

The variance of a random variable X is a measure of how spread out the pmf of X is. Letting $\mu_X = E[X]$, the variance is defined by: $Var(X) = E[(X - \mu_X)^2] = E[(X - E[X])^2] = E[X^2] - 2\mu_X E[X] + \mu_X^2 = E[X^2] - \mu_X^2$ E[aX + b] = aE[X] + b, $Var(aX + b) = a^2 Var(X)$

$$E[aX + b] = aE[X] + b$$
, $Var(aX + b) = a^2Var(X)$

The standardized version of X is the random variable $\frac{X - \mu_X}{\sigma_X}$, and $Var\left(\frac{X - \mu_X}{\sigma_X}\right) = 1$

2.4 Conditional probabilities

The **conditional probability** of B given A is defined by: $P(B|A) = \left\{ \frac{P(AB)}{P(A)} \text{ if } P(A) > 0 \text{ undefined if } P(A) = 0 \right\}$

Mutually independent events

Event A is **independent** of event B if P(AB) = P(A)P(B).

Events A,B and C are pairwise independent if P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C)

Events A,B and C are **independent** if ther are pairwise independent and if P(ABC) = P(A)P(B)P(C)

Discrete-type indepent random variables

Random variables X and Y are **independent** if any event of the form $X \in A$ is independent of any event of the form $Y \in B$. $(P\{X = i, Y = j\} = p_X(i)p_Y(j))$

2.5 Binomial distribution

A random variable X is said to have the **Bernoulli distribution** with parameter p, where $0 \le p \le 1$, if $p_X(1) = p$ and $p_X(0) = 1 - p$. E[X] = p, $Var(X) = E[X^2] - E[X]^2 = p(1 - p)$

Suppose n independent *Bernoulli trials* are conducted, each resulting in a one with probability p and a zero with probability 1 - p. Let X denote the total number of ones occurring in the n trials. The pmf of X is

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ for } 0 \le k \le n$$

$$E[X] = np$$
 and $Var[X] = np(1-p)$

2.6 Geometric distribution

Do Bernoulli trials untill the outcome of a trial is one. L denote the number of trials conducted. The pmf of L is:

$$p_L(k) = (1-p)^{k-1}p \text{ for } k \ge 1$$

and
$$P\{L>k\}=(1-p)^k$$
 for $k\geq 0$.
$$E[L]=\frac{1}{p}, Var[L]=\frac{1-p}{p^2}$$

2.7 Negative binomial distribution

Let S_r denotes the number of trials required for r ones, and the last trail must be one. Let $n \ge r$, and let k = n - r. The event $\{S_r = n\}$ is determined by the outcomes of the ffirst n trials. The event is true iff there are r - 1 ones and k zeros in the first k + r - 1 trials, and trail n is one. Therefore, the pmf of S_r is given by

$$p(n) = \binom{n-1}{r-1} p^r (1-p)^{n-r} \text{ for } n \ge r$$

$$E[S_r] = \frac{r}{p}, Var(S_r) = rVar(L_1) = \frac{r(1-p)}{p^2}$$

2.8 Poisson disttribution

The **Poission probability distribution** with parameter $\lambda > 0$ is the one with pmf $p(k) = \frac{e^{-\lambda} \lambda^k}{k!}$ for $k \geq 0$. It's a good approximation for a binomial distribution with parameters n and p, when n is very large, p is very small, and $\lambda = np$.

$$E[Y] = Var[Y] = \lambda$$

Examples:

- Radio active emissions in a fixed time interval: n is the number of uranium atoms in a rock sample, and p is the probability that any particular one of those atoms emits a particle in a one minute period.
- *Incoming phone calls in a fixed time interval*: n is the number of people with cell phones within the access region of one base station, and p is the probability that a given such person will make a call within the next minute.
- Misspelled words in a document: n is the number of words in a document and p is the probability that a given word is misspelled.

Maximum likelihood parameter estimation

For a random variable X, and that the pmf of X is p_{θ} , where θ is a parameter. The probability of k being the observed value for X. The likelihood X = k is $p_{\theta}(k)$. The maximum likelihood estimate of θ for observation k, denoted by $\hat{\theta}_{ML}(k)$, is the value of θ that maximizes the likelihood, $p_{\theta}(k)$, with respect to θ . (Give k, find θ (or p in some Bernoulli trials) to make $p_{\theta}(k)$ biggest, $\hat{\theta}_{ML}(k)$ = the value of θ).

Markov and Chebychev inequalities and confidence intervals

Markov's inequality: $P\{Y \ge c\} \le \frac{E[Y]}{c}$

Chebychev inequalit: $P\{|X - \mu| \ge d\} \le \frac{\sigma^2}{d^2}$

2.11 The law of total probability

$$P(E_i|A) = \frac{P(AE_i)}{A} = \frac{P(A|E_i)P(E_i)}{P(A)}$$

$$E[X] = \sum_{j=1}^{J} E[X|E_j]P(E_j)$$

2.12 confidence intervals

$$P\{p \in (\hat{p} - \frac{a}{2\sqrt{n}}, \hat{p} + \frac{a}{2\sqrt{n}})\} \ge 1 - \frac{1}{a^2}$$

Binary hypothesis testing with discrete-type observations 2.13

	X = 0	X = 1	X=2	X = 3
H_1	0.0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Four possible outcomes

: Hypothesis H_0 is true and H_0 is declared.

Hypothesis H_1 is true and H_1 is declared.

Hypothesis H_0 is true and H_1 is declared. This is called a *false alarm*.

Hypothesis H_1 is true and H_0 is declared. This is called a *miss*.

In this example: $p_{false-alarm} = 0.2 + 0.1 = 0.3$, $p_{miss} = 0.0 + 0.1 = 0.1$

Maximum likelihood(ML) decision rule

Define the **likelihood ratio**: $\Lambda(k) = \frac{p_1(k)}{p_0(k)}$

An LRT with threshold τ (For ML, $\tau = 1$) can be written as $\Lambda(X)$ $\{>\tau \text{ declare } H_1 \text{ is true } < \tau \text{ declare } H_0 \text{ is true } \}$ $\Lambda(X) = \tau$? It will metioned in questions(like "Asume that ties are broken in favor of H_1 ").

Maximum a posteriori probability (MAP) decision rule

Define a (π_0, π_1) . $P(H_i, X = k) = \pi_i p_i(k)$. For example, the joint probability matrix $((\pi_0, \pi_1) = (0.8, 0.2))$ is:

	X = 0	X = 1	X=2	X = 3
H_1	0.0	0.02	0.06	0.12
H_0	0.32	0.24	0.16	0.08

3

The threshold τ of LRT in MAP is $\frac{\pi_0}{\pi_1}$ $p_e=\pi_0 p_{false-alarm}+\pi_1 p_{miss}$ (For ML, It is possible that $p_e\neq 0.5 p_{false-alarm}+0.5 p_{miss}$)

2.16 Reliability

Union bound: $P(A_1 \cup A_2 \cup ... \cup A_m) \leq P(A_1) + P(A_2) + ... + P(A_m)$.

3 Continuous-type random vairables

3.1 Cumulative Distribution Functions(CDF)

CDF of a discrete-type random variable: $F_X(c) = \sum_{u: u \leq c} p_X(u)$

CDF of a continuous-type random vairable: $F_X(c) = \int_{-\infty}^{c} f_X(u) du$

3.2 Continuous-type random variables

$$\mu_X = E[X] = \int_{-\infty}^{+\infty} u f_X(u) du$$
$$Var(X) = E[X^2] - \mu_X^2$$

Law of the Unconscious Statistician

$$\begin{split} E[g(X)] &= \int_{-\infty}^{\infty} g(u) f_X(u) du \\ Var(g(X)) &= \int_{-\infty}^{\infty} g^2(u) f_X(u) du - \left(\int_{-\infty}^{\infty} g(u) f_X(u) du \right)^2 \end{split}$$

3.3 Uniform distribution

Let $a \leq b$. A random variable X is *uniformly distributed* over the interval [a, b] if

$$f_X(u) = \begin{cases} \frac{1}{b-a} & a \le u \le b\\ 0 & else. \end{cases}$$

The pdf and CDF of the uniform distribution over an interval [a, b]:

Figure 1: pdf and CDF of the uniform distribution

$$E[X] = \frac{a+b}{2}, Var[X] = \frac{(a-b)^2}{12}$$

3.4 Exponential distribution

A random variable T has the exponential distribution with parameter $\lambda > 0$ if its pdf is given by

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t} & t \ge 0\\ 0 & else. \end{cases}$$

and CDF is:

$$F_T(t) = \begin{cases} 1 - e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}, \ F_T^c(t) = \begin{cases} e^{-\lambda t} & t \ge 0 \\ 1 & t < 0 \end{cases}$$

$$E[T^n] = \frac{n!}{\lambda^n}, Var(T) = \frac{1}{\lambda^2}$$

Memoryless property of exponential distribution: $P(T>s+t|T>s)=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P\{T>t\}.$

3.5 The Erlang distribution

Let T_r denote the time of the r^{th} count of a Poisson process. Thus, $T_r = U_1 + ... + U_r$.

$$P\{T_r > t\} = \sum_{k=0}^{r-1} \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$

4

$$f_{T_r}(t) = \frac{e^{-\lambda t} \lambda^r t^{r-1}}{(r-1)!}$$
$$E[T_r] = \frac{r}{\lambda}, Var[T_r] = \frac{r}{\lambda^2}$$

3.6 The Gaussian (normal) distribution

$$N(\mu, \sigma^2) \quad f(u) = \frac{e^{-\frac{(u-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}$$

standard normal distribution N(0,1)

pdf:
$$f(u) = \frac{e^{-\frac{(u)^2}{2}}}{\sqrt{2\pi}}$$

CDF: $\Phi(u)$, $Q(u) = 1 - \Phi(u)$

3.7 ML parameter estimation for continuous-type variables

Example: $\lambda_{ML}(t)$, is the value of $\lambda>0$ that maximizes $\lambda e^{-\lambda t}$ with respect to λ , for t fixed. Since $\frac{d(\lambda e^{-\lambda t})}{d\lambda}=(1-\lambda t)e^{-\lambda t}$, the likelihood is increasing in λ for $0\leq\lambda\leq\frac{1}{t}$, and it is decreasing in λ for $\lambda\geq\frac{1}{t}$, so the likelihood is maximized at $\frac{1}{t}$. That is, $\hat{\lambda}_{ML}=\frac{1}{t}$

3.8 Function of a random variable

Scope the problem: Get ready. find the CDF of Y: $F_Y(c) = P\{Y \le c\} = P\{g(X) \le c\}$ Differentiate F_Y to find its derivative, which is f_Y

3.9 Binary hypothesis testing with continuous-type observations

Figure 2: pdf and CDF of the uniform distribution

4 Jointly Distributed Random variables

4.1 Joint cumulative distribution functions

 $F_{X,Y}(u_0,v_0) = P\{X \le u_0, Y \le v_0\}$ For rectangular region $(a,b] \times (c,d]$ in the plane, then $P\{(X,Y) \in \mathbb{R}\} = F_{X,Y}(b,d) - F_{X,Y}(b,c) - F_{X,Y}(a,d) + F_{X,Y}(a,c)$

4.2 Joint probability mass functions

$$\begin{split} p_X(u) &= \sum_j p_{X,Y}(u,v_j), p_Y(v) = \sum_i p_{X,Y}(u_i,v). \\ p_{Y|X}(v|u_o) &= P(Y=v|X=u_o) = \frac{p_{X|Y}(u_o,v)}{p_X(u_o)} \end{split}$$

4.3 Joint probability density functions

If g is a function on the plane then the expectation of the random vairable g(X,Y) can be computed using LOTUS:

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v) f_{X,Y}(u,v) du dv$$

5

The pdf of
$$X$$
 and Y :
$$\begin{cases} f_X(u) = \int_{-\infty}^{\infty} f_{X,Y}(u,v) dv \\ f_Y(v) = \int_{-\infty}^{\infty} f_{X,Y}(u,v) du \end{cases}$$

And the conditional pdf: $f_{Y|X}(v,u_o) = \frac{f_{X,Y}(u_o,v)}{F_X(u_o)}$

The conditional expectation of Y given X = u written as: $E[Y|X = u] = \int_{-\infty}^{\infty} v f_{Y|X}(v, u) dv$

4.4 Independence of random variables

Defination 1: Random variables X and Y are defined to be independent if any pair of the form $\{X \in A\}$ and $\{Y \in B\}$, are independent. That is: $P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}$, also $F_{X,Y}(u_o, v_o) = F_X(u_o)F_Y(v_o)$

Proposition 2: X and Y are independent if and only if: $\forall u \in \mathbb{R}, \forall v \in \mathbb{R} \to \text{ either } f_X(u) = 0 \text{ or } f_{Y|X}(v,u) = f_Y(v).$

Defination 3: A subset S in \mathbb{R}^2 has the swap property if for any two points $(a,b) \in S$ and $(c,d) \in S$, the points (a,d) and c,b are also in S.

4.5 Joint pdfs of function of random variables

4.5.1 Transformation of pdfs under a linear mapping

Suppose X and Y have a joint pdf $f_{X,Y}$, and suppose:

$$\begin{bmatrix} W \\ Z \end{bmatrix} = A \begin{bmatrix} X \\ Y \end{bmatrix}, \text{ where } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

So that
$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = A \begin{bmatrix} u \\ v \end{bmatrix}$$
, and $\begin{bmatrix} u \\ v \end{bmatrix} = A^{-1} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
The $\begin{bmatrix} W \\ Z \end{bmatrix}$ has pdf $f_{W,Z}(\alpha,\beta) = \frac{1}{|\det A|} f_{X,Y} \left(A^{-1} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right)$

4.5.2 Transformation of pdfs under a one-to-one mapping

We assume that
$$\begin{bmatrix} W \\ Z \end{bmatrix} = g\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right)$$
, which can be expressed by $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} g_1(u,v) \\ g_2(u,v) \end{bmatrix}$

The Jacobian of g, which we denote be J, is the matrix-valued function defined by: $J = J(u, v) = \begin{bmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial u} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_3}{\partial u} \end{bmatrix}$

Then
$$\begin{bmatrix} W \\ Z \end{bmatrix}$$
 has the joint pdf given by: $f_{W,Z}(\alpha,\beta) = \frac{1}{|\det J|} f_{X,Y}\left(g^{-1}\left(\begin{bmatrix} \alpha \\ \beta \end{bmatrix}\right)\right)$

4.6 Correlation and covariance

Let X and Y be random variables with finite second moments. Three important related quantities are:

$$\begin{cases} \text{The correlation: } E[XY] \\ \text{The covariance: } \operatorname{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y] \\ \text{The correlation coefficient: } \rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y} \end{cases}$$

Random variables X and Y are called *uncorrelated* if Cov(X, Y) = 0

If Cov(X, Y) > 0, the variables are said to be *positively correlated*.

If Cov(X, Y) < 0, the variables are said to be *negatively correlated*

If X and Y are independent, then E[XY] = E[X]E[Y], which implies that X and Y are uncorrelated.

 $\begin{aligned} &\operatorname{Cov}(X+Y,X+Y) = \operatorname{Cov}(X,Y) + \operatorname{Cov}(Y,Y) + \operatorname{Cov}(X,Y) + \operatorname{Cov}(Y,X) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y). \\ &\operatorname{Cov}(aX+b,cY+d) = ac\operatorname{Cov}(X,Y). \end{aligned}$

4.7 Minimum mean square error estimation

4.7.1 Constant estimators

The **mean square error(MSE)** for estimating Y by δ is defined by $E[(Y - \delta)^2]$, if Y is a continuous-type random variable,

MSE (for extimation of Y by a constant
$$\delta$$
) =
$$\int_{-\infty}^{+\infty} (y - \delta)^2 f_Y(y) dy$$

And we can use the fact that $E[Y - \mu_Y] = 0$ and $\mu_Y - \delta$ is constant to get

$$E[(Y - \delta)^2] = \operatorname{Var}(Y) + (\mu_Y - \delta)^2$$

We can see that the MSE is minimized with respect to δ if and only if $\delta^* = \mu_Y$, and the minimum possible value is Var(Y)

4.7.2 Unconstrained estimators

Conditional expectation indeed gives the optimal estimator:

$$MSE = E[(Y - g(X))^{2}] = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} (v - g(u))^{2} f_{Y|X}(v|u) dv \right) f_{X}(u) du$$

We write $E[Y|X]forg^*(X)$. Which means:

$$g^*(u) = E[Y|X = u] = \int_{-\infty}^{\infty} v f_{Y|X}(v|u) dv$$

And the minimum MSE is:

$$MSE = E[(Y - E[Y|X])^{2}] = E[Y^{2}] - E[(E[Y|X])^{2}]$$

4.7.3 Linear estimators

The MSE for the linear estimator aX + b is

$$MSE = E[(Y - (aX + b))^2]$$

$$a^* = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}, b^* = \mu_Y - a\mu_X$$

And the Minimum MSE linear estimator is given by $L^*(X) = \hat{E}[Y|X]$, where

$$\hat{E}[Y|X] = \mu_Y + \frac{\text{Cov}(Y,X)}{\text{Var}(X)}(X - \mu_X) = \mu_Y + \sigma_Y + \rho_{X,Y}\left(\frac{X - \mu_X}{\sigma_X}\right)$$

So:

$$MSE_{\min} = \sigma^2 Y - \frac{\text{Cov}^2(X,Y)}{\text{Var}(X)} = \sigma_Y^2 (1 - \rho_{X,Y}^2) = \sigma_Y^2 - \text{Var}(\hat{E}[Y|X]) = E[Y^2] - E[\hat{E}[Y|X]^2]$$

4.7.4 Summary

The following ordering among the three MSEs holds:

$$E[(Y - g^*(X))^2] \qquad \leq \qquad \sigma_Y^2(1 - \rho_{X,Y}^2) \qquad \leq \qquad \sigma_Y^2$$