Exercice 1:

Dans cet exercice toutes les récurrences devront être faites sans considérer qu'elles sont évidentes ; Soit $(u_n)_{n\geq 0}$ la suite de nombres réels définie par $u_0\in]0,1]$ et par la relation de récurrence

$$u_{n+1} = \frac{u_n}{2} + \frac{(u_n)^2}{4}$$

1. Montrer que : $\forall n \in \mathbb{N}, u_n > 0$.

2. Montrer que : $\forall n \in \mathbb{N}, u_n \leq 1$.

3. Montrer que la suite est monotone. En déduire que la suite est convergente.

Déterminer la limite de la suite (u_n)_{n≥0}.

Exercice 2:

Dans cet exercice toutes les récurrences devront être faites sans considérer qu'elles sont évidentes ; Soit $(u_n)_{n\geq 0}$ la suite de nombres réels définie par $u_0\in]1,2]$ et par la relation de récurrence

$$u_{n+1} = \frac{(u_n)^2}{4} + \frac{3}{4}$$

1. Montrer que : $\forall n \in \mathbb{N}, u_n > 1$.

2. Montrer que : $\forall n \in \mathbb{N}, u_n \leq 2$.

Montrer que la suite est monotone. En déduire que la suite est convergente.

Déterminer la limite de la suite (u_n)_{n≥0}.

Exercice 3:

Soient u_0 , a et b trois réels. On considère la suite $(u_n)_{n\geq 0}$ de nombres réels définie par u_0 et la relation de récurrence :

$$u_{n+1} = au_n + b$$

1. Comment appelle-t-on la suite $(u_n)_{n\geq 0}$ lorsque a=1? Lorsque que b=0 et $a\neq 1$?

2. Exprimer u_n dans les deux cas particulier de la question 1.

3. Dans le cas général, calculer u_1 , u_2 et u_3 en fonction de u_0 , a et b.

4. Démontrer par récurrence que le terme général de la suite est donné par :

$$u_n = a^n u_0 + b \sum_{k=1}^n a^{n-k}, n \in \mathbb{N}^*$$

5. On suppose que $a \neq 1$. Démontrer que

$$\sum_{k=1}^{n} a^{n-k} = \frac{a^n - 1}{a - 1}$$

Déduire de ce qui précède que pour tout n ∈ N*

$$u_n = \frac{a^n(u_1 - u_0) - b}{a - 1}$$

7. On suppose dans cette question que a > 1 et que $au_0 + b > u_0$. Montrer que la limite de la suite $(u_n)_{n \in \mathbb{N}}$ a pour limite $+\infty$.

 On suppose dans cette question que 0 < a < 1, montrer que (u_n)_{n≥0} converge et que sa limite ne dépend pas de u₀.

Exercice 4:

Soit (u_n) une suite définie par la relation de récurrence

$$u_{n+1} = \frac{1}{2}u_n + 1$$

Et la donnée de u₀

1.

1.1. Montrer que si $u_0 \le 2$ alors pour tout $n \ge 0$, $u_n \le 2$ et que la suite est monotone.

1.2. En déduire que la suite est convergente et déterminer sa limite.

2

2.1. Montrer que si $u_0 \ge 2$ alors pour tout $n \ge 0$, $u_n \ge 2$ et que la suite est monotone.

2.2. En déduire que la suite est convergente et déterminer sa limite.

3.

3.1. On pose $v_n = u_n - 2$. Montrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{2}$.

3.2. En déduire une expression de u_n en fonction de n et u₀. Retrouver le résultat des deux premières questions.

3.3. En déduire

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^{n} u_k}{n}$$

Exercice 5:

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = \frac{u_n + 8}{2u_n + 1}$$

Et soit $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_n = \frac{u_n - 2}{u_n + 2}$$

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $-\frac{3}{5}$
- 2. Exprimer v_n en fonction de n.
- Exprimer u_n en fonction de n.
- Montrer que (u_n)_{n∈N} converge et déterminer sa limite.

Exercice 8:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et par la relation de récurrence

$$u_{n+1} = \frac{1}{6}u_n^2 + \frac{3}{2}$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n > 0$.
- Calculer la limite éventuelle de la suite (u_n)_{n∈N}.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $u_n < 3$.
- 4. Montrer que la suite est croissante, que peut-on en conclure ?

Exercice 9:

On considère la suite de nombre réel définie par son premier terme $u_0 = 0$ et par la relation de récurrence :

$$u_{n+1} = 2u_n^2 + \frac{1}{8}$$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Exercice 10:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=\frac{3}{2}$ et par la relation de récurrence

$$u_{n+1} = (u_n - 1)^2 + 1$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $1 < u_n < 2$.
- Montrer que (u_n)_{n∈N} est strictement monotone.
- En déduire que (u_n)_{n∈N} est convergente et déterminer sa limite.

Exercice 13:

1. Montrer que pour tout $k \in \mathbb{N}^*$

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

2. Soit $(u_n)_{n \in \mathbb{N}^*}$ la suite réelle définie pour tout n > 0 par

$$u_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)}$$

A l'aide de la question 1. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est convergente et déterminer sa limite.

Exercice 16

On considère la suite de nombres réels définie par son premier terme $u_0 = \frac{11}{4}$ et par la relation de récurrence :

$$u_{n+1} = \frac{5}{2} + \sqrt{u_n - \frac{7}{4}}$$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie, convergente et déterminer sa limite.