Rapport de DEEP

Digital Embedded Electronics Project

Livraison finale

Nom du projet :	Tapis de Détection
Etudiants .	MARQUES THEO
Etudiants:	MORALES MAX

0 Compléments choisis

Complément (voir l'annexe correspondante à la fin du rapport)		
A- utilisation d'un analyseur logique pour déchiffrer des trames	2	
B- design de PC B		
avec bluepill	3	X
Composants CMS et microcontrôleur nu	4	
C- design CAO d'un boîtier		
D- documentation doxygen du code source		
E- mesure de conso et d'énergie selon scénarios	2	
F- enregistrement de paramètres en flash		
G- gestion de version du code source / Git ou SVN		
T- jeu de t ests pour valider une fonctionnalité software ou hardware		
Nombre de points ciblés au maximum :	5 /	6

1 Cahier des charges

Le projet consiste à détecter la position d'une personne sur un tapis, via la détection de lumière ou non par des photorésistances. (Les photorésistances devront donc pouvoir détecter de la lumière de la longueur d'onde envoyée par les émetteurs)

Une caméra sera dirigée vers la position détectée à l'aide d'un moteur pas à pas, ce dernier devant donc pouvoir s'orienter précisément dans une plage d'angles de plus ou moins 45° de chaque côté de sa position initiale.

De plus, la position de la personne sur le tapis sera aussi représentée sur un écran TFT par un point en mode "vue du dessus"

Notre projet est principalement limité par le peu d'espace que nous avons dans la salle, nous forçant à réduire la taille du tapis au strict minimum, et par les composants, petits fragiles, et peu précis, rendant la détection de présence difficile et parfois imprécise.

Ce projet, réalisé dans un contexte en entreprise, avec un véritable budget et un matériel plus grand et adéquat, pourrait servir à tracker la position d'une personne dans une pièce en temps réel et de manière précise (en ayant un très grand nombre de diodes et de photorésistances)

2 Manuel d'utilisation

Pour utiliser notre tapis, il suffit juste d'alimenter le tout en 12V, afin que le moteur puisse fonctionner correctement, et marcher dessus! L'affichage de la position sur l'écran et le tracking de la caméra avec le moteur pas à pas se feront automatiquement.

3 Mes ports

Pin	rôle
PA0	photorésistance
PA1	photorésistance
PA2	photorésistance
PA3	photorésistance
PA4	photorésistance
PA5	photorésistance
PA6	photorésistance
PA7	photorésistance
PA8	Moteur pas à pas (Pulse)
PA9	Moteur pas à pas (Dir)
PA10	
PA11	
PA12	
PA13	(non dispo - SWDIO)
PA14	(non dispo - SWDCLK)
PA15	non dispo sur certaines bluepill
PB0	ecran tft
PB1	ecran tft
PB2	(non dispo)
PB3	
PB4	
PB5	
PB6	UART2 Rx
PB7	UART2 Rx
PB8	
PB9	
PB10	
PB11	
PB12	ecran tft
PB13	ecran tft
PB14	ecran tft
PB15	ecran tft
PC13	(LED bluepill)
PC14	(Quartz 32kHz bluepill)
PC15	(Quartz 32kHz bluepill)

4 Description d'un algorithme du programme

Représentation de la partie "Affichage sur l'écran" du programme par un diagramme des classes :

5 Structure du programme

5.1 Fichier « lumiere.c»

Ce module permet de récupérer et trier les valeurs renvoyées par les photorésistances

Fonction	Nom du développeur	Description
recup_lumino	Max Morales	Permet de récupérer et placer dans un tableau les valeurs des photorésistances
intersection	Max Morales & Théo Marques	Permet d'extraire du tableau alimenté par recup_lumino le numéro de la ligne et de la colonne ayant les valeurs les plus faibles

5.2 Fichier « ecran.c»

Ce module permet d'afficher différentes choses à l'écran

Fonction	Nom du développeur	Description
AffichageEcran	Max Morales	Permet d'afficher à l'écran un trait lorsqu'une présence est détectée sur une ligne et sur une colonne
AffichageEcran_colonnes	Théo Marques	Permet d'afficher à l'écran un point lorsqu'une présence est détectée sur une colonne
AffichageEcran_lignes	Théo Marques	Permet d'afficher à l'écran un trait lorsqu'une présence est détectée sur une ligne

6 Tests

Test	Description	Eta	t Date	Туре
Alimentation	on a bien +3,3 et+5 v	✓	24/11/2022	fonctionnement
led / bluepill	test de fonctionnement	✓	24/11/2022	fonctionnement
moteur	pouvoir utiliser le pas à pas	✓	04/01/2023	fonctionnement
capteur	récupérer l'intensité lumineuse	✓	04/01/202	fonctionnement
émetteur	activer un pin pour l'alimentation	✓	04/01/2023	fonctionnement
ecran tft	afficher sur l'ecran	✓	25/11/2022	fonctionnement
cordonnees	connaitre les cordonnées a partir des capteurs	✓	11/01/2023	Programme
moteur angle	tourner le moteur selon les coordonnees	✓	04/01/2023	programme
ecran tft				
affichage	affichage de l'emplacement	✓	25/11/2022	programme

7 Cahier de suivi

Pour chaque date (chaque séance de travail, pendant ou en dehors des créneaux prévus à l'agenda), notez dans ce cahier de suivi les tâches réalisées, les réalisateurs, les difficultés rencontrées, l'état d'avancement de la réalisation...

Date	Tâches, réalisateurs, difficultés rencontrées.	A faire la prochaine fois	
		Finir de se décider sur le projet fina et terminer le schéma synoptique	
16/11	Nous nous sommes mis d'accord sur l'objectif	Commencer les soudures pour les composants que l'on a déjà	

18/11	Premières soudures :	Commencer à comprendre le code, et
10/11	i remeres soudires .	tester les composants que l'on a déjà
	Max: Soudures des barrettes femelles pour la bluepill et soudures pour l'adaptateur DC/DC	
	Théo : Soudures des barrettes femelles pour l'écran TFT	
23/11	Nous avons commencé à étudier le code, et à tester son fonctionnement avec une LED	Réaliser les premiers tests des composants
	Théo : Recherche fonctions du moteur nécessaires	
	Max: recherche fonction tft nécessaires / ressoudure d'une barette défectueuse	
25/11	Premiers tests réalisés : Alim avec LF33, Bluepill avec câble nucléo et led bluepill, écran TFT	
	Théo & Max : Recherche des fonctions à utiliser pour afficher des choses sur l'écran (+ Ressoudures des pins de l'écran)	
30/11	Nous avons fait	Commander les composants, tester le
	Théo: Etude du fonctionnement du moteur et de son driver: quels pins utiliser et premiers tests avec le code	
	Max : étude périphérique adc et photorésistances	
02/12	Gros problème, le code ne se téléversait pas dans la carte, 3h pour se rendre compte que la bluepill était le problème, changement de la bluepill	Déterminer le port où l'on va
	Max : Soudures de la nouvelle bluepill Bon de commande pour matériel manquant (choix des diodes lasers et photorésistances)	Tester les 8 pins ADC avec une résistance en attendant les photorésistances
	Théo : Complétion du document trame rapport intermédiaire	
07/12	Changement dans l'association des pins : libération des ports adc (PA0 à PA7) : Re soudure des pins SCK, MISO, MOSI respectivement sur les ports PB13, PB14, PB15 On a donc associé le pin RQt au port PB12	
	Max : Ressoudures nécessaires au fonctionnement de l'écran Test ADC fait	

	Théo: Modification du code pour le moteur:	
	Tests moteur réalisé	
09/12	Max : partie graphique faite	Faire les compléments suivants : Altium
	Théo : A travaillé sur le moteur, impossible de le	
	faire marcher avec les fonctions	
	STEPPER_MOTORS	Réussir à faire fonctionner le
1.4/1.0		moteur
14/12	Théo : Travaillé sur le moteur avec des transistors afin d'alimenter les commandes du	
	pulse et de la direction en 5V, mais toujours	Solidworks pour le support de
	impossible d'avoir un quelconque résultat	caméra
		Réussir à faire fonctionner le
	Max : complété la trame final et commencé le	moteur
	support de présentation	
04/01	Théo: Toujours impossible de faire fonctionner	
	le moteur	Altium
	M	Solidworks pour le support de
	Max : test avec toutes les photorésistances sur breadboard	camera Réussir à faire fonctionner le
	breadboard	moteur
		inoteur
06/01	Théo : Avec l'aide de Mr Poiraud, le moteur	Faire les compléments suivants :
00/01	fonctionne enfin, validation des tests pour le	
	pulse et la direction et test de la fonction	
	permettant au moteur de se positionner en ayant	1 11
	pour seule information un angle.	
		Faire le montage pour les diodes et
	Max : test programme trouver la photorésistance	les photorécepteurs en meme temps
	avec la luminosité la plus faible	
11/01	Théo: Rédaction du code partie moteur dans le	
	main afin qu'il fasse ce qu'on attend de lui dans	
	le cahier des charges	Solidworks pour le support de
	M 4 . 4 4 . 4 1 . 1 . 1 . 1 1	caméra
10/01	Max: test toute les diodes sur breadboard	
13/01	Théo: Calcul des angles que devra prendre la	
	caméra pour s'orienter en direction des différents	
	points de détection du tapis / Début de la création de la PCB sur Altium	Terminer le montage pour les diodes
	uc la l'Ob sul Altium	et les photorécepteurs et tester tous
	Max : Envoi Solidworks / Commencé à faire le	
	montage / soudures pour les diodes /	
	photorécepteur / Rédaction du code partie diodes	
	et photorécepteurs	
16/01	Théo: Terminé et corrigé tout le code	
	Max : A soudé les diodes et les photorésistances	
	sur des plaquettes afin de réaliser le montage	
	final	

8 État d'avancement et analyse du projet réalisé

Nous sommes parvenus à terminer notre projet dans les temps, nous avons réalisé et testé toutes les fonctionnalités que nous voulions mettre en place au début du projet.

Cependant, si ce projet était à refaire, nous aurions d'abord commencé par commander les composants en priorité, et fait une liste de ce dont nous avions besoin d'utiliser sur la PCB avant de commencer quoi que ce soit d'autre, car nous avons perdu beaucoup de temps à souder et dessouder. (Nous serions aussi allés demander de l'aide plus tôt pour faire fonctionner le moteur pas à pas, sur lequel nous sommes restés bloqués pendant 6 séances)

Aussi, malgré que notre projet soit fonctionnel, il est limité par la mauvaise qualité des composants commandés (Diodes laser très fragiles, fibre plastique beaucoup trop fine et rigide), et il n'a pas un aspect de produit fini (Montage réalisé en scotchant des plaquettes sur des planches de bois, cable management qui aurait pu être amélioré)

9 Conclusion

En conclusion, nous sommes contents et fiers de ce que nous avons produits, et ce projet nous a permis d'en apprendre beaucoup sur la façon dont se déroule, et devrait se dérouler un projet.

Annexe - Complément « design de PCB »

Nous penserons à joindre à l'archive zip livrable : notre fichier SchDoc, notre	X
fichier PcbDoc ainsi que le PDF généré par Altium contenant schéma, vue des	
couches de routage et vue 3D.	

Les connecteurs sont accessibles		
Un plan de masse est présent sur chaque couche de cuivre	X	
Les GND sont correctement tous reliés par des pistes (même si le plan de masse les regroupe ensuite).	X	
Le DRC (Design Rules Check) passe sans aucune erreur		
Présence d'un connecteur UART (Rx + Tx + GND), parce que c'est toujours utile	X	
Un schéma correct	95/100	
Qualité du placement (un bon placement garanti un bon routage)		
Qualité du routage	95/100	

Extraits du schéma:

Le microcontrolleur est la pièce principale de la carte, c'est lui qui va venir contrôler et distribuer les informations aux différents périphériques / composants de la carte. Le module UART2 va permettre d'envoyer des caractères.

L'alimentation va permettre d'alimenter le reste de la carte avec la tension que l'on veut, grâce au régulateur qui va sortir du 3V3 et du 5V, qui vont nous permettre d'alimenter les différents composants qui n'acceptent que ces tensions.

L'écran va nous permettre d'afficher la position de la personne sur le tapis, en vue du dessus.

Vue 2D du routage

Vue 3D de la PCB:

Estimation du coût de fabrication de notre PCB avec Eurocircuit :

Annexe C – Complément « Design CAO d'un boîtier »

Nous avons utilisé SolidWorks pour notre design. L'objectif est d'avoir une pièce imprimable en 3D, relativement simple qui peut supporter un téléphone. Cette pièce doit pouvoir tenir sur l'embout du moteur. Nous n'avons pas réalisé la pièce par manque de temps.

Figure 2 vue de face

Figure 1 vue 3/4 avant gauche