Bootstrapping Big Data

Ariel Kleiner Ameet Talwalkar, Purnamrita Sarkar Michael I. Jordan

UC Berkeley

The Setting

Observe data X_1, \ldots, X_n

Form an estimate $\hat{\theta}_n = \theta(X_1, \dots, X_n)$ (e.g., θ could be a classifier)

Want to compute an assessment ξ of the quality of $\hat{\theta}_n$ (e.g., ξ could compute a confidence region)

Our Goal

A procedure for quantifying estimator quality which is

accurate automatic scalable

The Unachievable Ideal

Ideally, we would

- Observe many independent datasets of size n
- ② Compute $\hat{\theta}_n$ on each
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n$.

The Unachievable Ideal

Ideally, we would

- Observe many independent datasets of size n
- ② Compute $\hat{\theta}_n$ on each
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n$.

The Unachievable Ideal

Ideally, we would

- Observe many independent datasets of size n
- ② Compute $\hat{\theta}_n$ on each
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n$.

But, we only observe *one* dataset of size *n*

Use the observed data to simulate multiple datasets of size *n*:

Repeatedly resample n points with replacement from the original dataset of size n.

- Repeatedly resample n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_n^*$ on each resample.

- Repeatedly *resample n* points *with replacement* from the original dataset of size *n*.
- ② Compute $\hat{\theta}_n^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n^*$ as our estimate of ξ for $\hat{\theta}_n$.

- Repeatedly *resample n* points *with replacement* from the original dataset of size *n*.
- ② Compute $\hat{\theta}_n^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n^*$ as our estimate of ξ for $\hat{\theta}_n$.

- Repeatedly *resample n* points *with replacement* from the original dataset of size *n*.
- 2 Compute $\hat{\theta}_n^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_n^*$ as our estimate of ξ for $\hat{\theta}_n$.

Computational Issues

• Expected number of *distinct* points in a resample is $\sim 0.632n$

- Expected number of *distinct* points in a resample is $\sim 0.632n$
- Resources required to compute θ generally scale in number of *distinct* data points.

- Expected number of *distinct* points in a resample is $\sim 0.632n$
- Resources required to compute θ generally scale in number of distinct data points.
 - This is true of many commonly used learning algorithms (e.g., SVM, logistic regression, linear regression, kernel methods, general M-estimators, etc.).

- Expected number of *distinct* points in a resample is $\sim 0.632n$
- Resources required to compute θ generally scale in number of *distinct* data points.
 - This is true of many commonly used learning algorithms (e.g., SVM, logistic regression, linear regression, kernel methods, general M-estimators, etc.).
 - Use weighted representation of resampled datasets to avoid physical data replication.

- Expected number of *distinct* points in a resample is $\sim 0.632n$
- Resources required to compute θ generally scale in number of distinct data points.
 - This is true of many commonly used learning algorithms (e.g., SVM, logistic regression, linear regression, kernel methods, general M-estimators, etc.).
 - Use weighted representation of resampled datasets to avoid physical data replication.
 - Example: If original dataset has size 1 TB, then expect resample to have size \sim 632 GB.

Computational Issues

Suppose that the original dataset has size 1 TB. The bootstrap does the following:

```
for i \leftarrow 1 to 300 resample \sim 632 GB of data compute \theta on resample compute \xi based on the resampled \theta's
```

Advantages

- Accurate for a wide range of θ
- \bullet Automatic: can compute without knowledge of the internals of θ

Advantages

- Accurate for a wide range of θ
- \bullet Automatic: can compute without knowledge of the internals of θ

Disadvantages

- ullet Must repeatedly compute heta on \sim 63% of the data
- For big data, difficult to parallelize across different computations of θ (though θ could perhaps be parallelized internally)

Compute θ only on smaller resamples of the data of size b(n) < n, and analytically correct our uncertainty estimates:

• Repeatedly resample b(n) < n points with replacement from the original dataset of size n.

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_{b(n)}^*$.

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_{b(n)}^*$.
- **4** Analytically correct to produce final estimate of ξ for $\hat{\theta}_n$.

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_{b(n)}^*$.
- **4** Analytically correct to produce final estimate of ξ for $\hat{\theta}_n$.

Compute θ only on smaller resamples of the data of size b(n) < n, and analytically correct our uncertainty estimates:

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_{b(n)}^*$.
- **4** Analytically correct to produce final estimate of ξ for $\hat{\theta}_n$.

Much more favorable computational profile than the bootstrap.

Compute θ only on smaller resamples of the data of size b(n) < n, and analytically correct our uncertainty estimates:

- Repeatedly resample b(n) < n points with replacement from the original dataset of size n.
- ② Compute $\hat{\theta}_{b(n)}^*$ on each resample.
- **3** Compute ξ based on these multiple realizations of $\hat{\theta}_{b(n)}^*$.
- **4** Analytically correct to produce final estimate of ξ for $\hat{\theta}_n$.

Much more favorable computational profile than the bootstrap.

Issues

- Accuracy sensitive to choice of b(n).
- ullet Still fairly automatic, though analytical correction introduces some dependency on internals of heta.

• Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.
- $y = w \cdot x + \epsilon$, where $w \in \mathbb{R}^d$ is a fixed weight vector and ϵ is independent Gamma noise.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.
- $y = w \cdot x + \epsilon$, where $w \in \mathbb{R}^d$ is a fixed weight vector and ϵ is independent Gamma noise.
- Estimate $\hat{\theta}_n = \hat{w} \in \mathbb{R}^d$ via least squares.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.
- $y = w \cdot x + \epsilon$, where $w \in \mathbb{R}^d$ is a fixed weight vector and ϵ is independent Gamma noise.
- Estimate $\hat{\theta}_n = \hat{w} \in \mathbb{R}^d$ via least squares.
- Compute a marginal confidence interval for each component of \hat{w} and assess accuracy via relative mean (across components) absolute deviation from true confidence interval size.

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.
- $y = w \cdot x + \epsilon$, where $w \in \mathbb{R}^d$ is a fixed weight vector and ϵ is independent Gamma noise.
- Estimate $\hat{\theta}_n = \hat{w} \in \mathbb{R}^d$ via least squares.
- Compute a marginal confidence interval for each component of \hat{w} and assess accuracy via relative mean (across components) absolute deviation from true confidence interval size.
- For *b* out of *n* bootstrap, use $b(n) = n^{\gamma}$ for various values of γ .

- Multivariate linear regression with d = 100 and n = 20,000 on synthetic data.
- x values sampled independently from coordinate-wise Gamma distributions.
- $y = w \cdot x + \epsilon$, where $w \in \mathbb{R}^d$ is a fixed weight vector and ϵ is independent Gamma noise.
- Estimate $\hat{\theta}_n = \hat{w} \in \mathbb{R}^d$ via least squares.
- Compute a marginal confidence interval for each component of \hat{w} and assess accuracy via relative mean (across components) absolute deviation from true confidence interval size.
- For *b* out of *n* bootstrap, use $b(n) = n^{\gamma}$ for various values of γ .
- Similar results obtained with Normal and StudentT data generating distributions, as well as if estimate a misspecified model.

Use only b(n) < n data points to compute each resample while maintaining robustness to choice of b(n):

• Repeatedly subsample b(n) < n points without replacement from the original dataset of size n.

- Repeatedly subsample b(n) < n points without replacement from the original dataset of size n.
- Por each subsample do:

- Repeatedly subsample b(n) < n points without replacement from the original dataset of size n.
- Por each subsample do:
 - Repeatedly resample n points with replacement from the subsample.

- Repeatedly *subsample* b(n) < n points *without replacement* from the original dataset of size n.
- For each subsample do:
 - Repeatedly resample n points with replacement from the subsample.
 - ② Compute $\hat{\theta}_n^*$ on each resample.

- Repeatedly subsample b(n) < n points without replacement from the original dataset of size n.
- For each subsample do:
 - Repeatedly resample n points with replacement from the subsample.
 - ② Compute $\hat{\theta}_n^*$ on each resample.
 - **3** Compute an estimate of ξ based on these multiple resampled realizations of $\hat{\theta}_n^*$.

- Repeatedly subsample b(n) < n points without replacement from the original dataset of size n.
- For each subsample do:
 - Repeatedly resample n points with replacement from the subsample.
 - ② Compute $\hat{\theta}_n^*$ on each resample.
 - **3** Compute an estimate of ξ based on these multiple resampled realizations of $\hat{\theta}_n^*$.
- **3** We now have one estimate of ξ per subsample. Output their average as our final estimate of ξ for $\hat{\theta}_n$.

Our Approach: BLB Computational Issues

• Recall: resources required to compute θ generally scale in number of *distinct* data points.

- Recall: resources required to compute θ generally scale in number of *distinct* data points.
- Each BLB subsample/resample contains at most b(n) < n distinct points.

- Recall: resources required to compute θ generally scale in number of distinct data points.
- Each BLB subsample/resample contains at most b(n) < n distinct points.
- Example: if n = 1,000,000, data point size is 1 MB, and we take $b(n) = n^{0.6}$, then

- Recall: resources required to compute θ generally scale in number of distinct data points.
- Each BLB subsample/resample contains at most b(n) < n distinct points.
- Example: if n = 1,000,000, data point size is 1 MB, and we take $b(n) = n^{0.6}$, then
 - full dataset has size 1 TB

- Recall: resources required to compute θ generally scale in number of *distinct* data points.
- Each BLB subsample/resample contains at most b(n) < n distinct points.
- Example: if n = 1,000,000, data point size is 1 MB, and we take $b(n) = n^{0.6}$, then
 - full dataset has size 1 TB
 - subsamples/resamples contain at most 3,981 data points and have size at most 4 GB

- Recall: resources required to compute θ generally scale in number of distinct data points.
- Each BLB subsample/resample contains at most b(n) < n distinct points.
- Example: if n = 1,000,000, data point size is 1 MB, and we take $b(n) = n^{0.6}$, then
 - full dataset has size 1 TB
 - subsamples/resamples contain at most 3,981 data points and have size at most 4 GB
 - ullet (in contrast, bootstrap resamples have size \sim 632 GB)

Like the Bootstrap

- Accurate for a wide range of θ . Shares the bootstrap's consistency and higher-order correctness.
- \bullet Automatic: can compute without knowledge of the internals of θ

Like the Bootstrap

- Accurate for a wide range of θ . Shares the bootstrap's consistency and higher-order correctness.
- \bullet Automatic: can compute without knowledge of the internals of θ

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

• Can explicitly control b(n), the amount of data on which we must repeatedly compute θ ; can have $b(n)/n \to 0$ as $n \to \infty$.

Like the Bootstrap

- Accurate for a wide range of θ . Shares the bootstrap's consistency and higher-order correctness.
- \bullet Automatic: can compute without knowledge of the internals of θ

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

- Can explicitly control b(n), the amount of data on which we must repeatedly compute θ ; can have $b(n)/n \to 0$ as $n \to \infty$.
- More robust to choice of b(n), which can be much smaller than n.

Like the Bootstrap

- Accurate for a wide range of θ . Shares the bootstrap's consistency and higher-order correctness.
- \bullet Automatic: can compute without knowledge of the internals of θ

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

- Can explicitly control b(n), the amount of data on which we must repeatedly compute θ ; can have $b(n)/n \to 0$ as $n \to \infty$.
- More robust to choice of b(n), which can be much smaller than n.
- Generally faster than the bootstrap (even if computing serially), and requires less total computation.

Like the Bootstrap

- Accurate for a wide range of θ . Shares the bootstrap's consistency and higher-order correctness.
- \bullet Automatic: can compute without knowledge of the internals of θ

Beyond the Bootstrap (and b out of n Bootstrap/Subsampling)

- Can explicitly control b(n), the amount of data on which we must repeatedly compute θ ; can have $b(n)/n \to 0$ as $n \to \infty$.
- More robust to choice of b(n), which can be much smaller than n.
- Generally faster than the bootstrap (even if computing serially), and requires less total computation.
- Easy to parallelize across different computations of θ (in addition to parallelizing θ internally).

Empirical Results: BLB

Empirical Results

BLB: Theoretical Results

BLB shares the bootstrap's favorable statistical properties (consistency & higher-order correctness)

under the same conditions that have been used in prior analysis of the bootstrap