

Universidade Federal de Sergipe - UFS

Departamento de Sistemas de Informação - Itabaiana - DSI/Ita

Inteligência Artificial - SINF0042

Exercício 01 - Problemas e Busca

Prof. Dr. Alcides Xavier Benicasa

Exercício EM DUPLA AVALIATIVO

Prazo para entrega: 05/06/2019 às 23:59h Envio: encaminhar arquivos para alcides@ufs.br Assunto do email: EX01 - Problemas e Busca

Corpo do email: nome da dupla

QUESTÕES:

1. O MUNDO DO ASPIRADOR DE PÓ

FORMULAÇÃO DO PROBLEMA: Espaço de Estados do Mundo do Aspirador de Pó. Referência: RUSSELL, S. & NORVIG, P. Inteligência Artificial. Rio de Janeiro, Campus, 2003.

Considerando o código fonte disponível no SIGAA (IA - NA01 - Resolução por Meio de Busca - Codigo Grafo e Mat.Adj) sobre caminhamento em grafo utilizando a estratégia de BUSCA EM LARGURA, faça as alterações necessárias para que, dado um Estado Inicial e um Estado Final referente ao Espaço de Estados do Mundo do Aspirador de Pó, a APLICAÇÃO lhe apresente a(s) rota(s) encontrada(s).

2. O PROBLEMA DOS JARROS DE ÁGUA

Resolver apresentando as árvores de busca: LARGURA, PROFUNDIDADE e CUSTO UNIFORME.

DESCRIÇÃO: Tem-se dois jarros, um com capacidade de 4 litros e outro de 3 litros. Nenhum deles possui qualquer tipo de medidor. Existe uma torneira que pode ser usada para encher os jarros de água. Como pode-se ter exatamente 2 litros de água no jarro de 4 litros?

- Espaço de Estado: pode ser representado como um conjunto de pares ordenados (x, y), tal que x = 0, 1, 2, 3 ou 4 e y = 0, 1, 2 ou 3, onde x representa o número de litros de água no jarro de 4 litros e y representa a quantidade de água no jarro de 3 litros;
- Estado Inicial: o estado inicial é (0,0);
- Estado Final: o objetivo do problema é (2, n) para qualquer valor de n (uma vez que não é especificado quantos litros de água devem existir no jarro de 3 litros);
- Conjunto de Regras: um conjunto de regras que poderia ser usado na solução do problema é o seguinte, onde o lado esquerdo das regras deve ser comparado ao estado atual e o lado direito representa o estado resultante da aplicação da regra:
 - (a) Se $x < 4 \rightarrow (4, y)$, encher o jarro de 4 litros;
 - (b) Se $y < 3 \rightarrow (x,3)$, encher o jarro de 3 litros;
 - (c) Se $x > 0 \rightarrow (x d, y)$, derramar uma quantidade de água do jarro de 4 litros;
 - (d) Se $y > 0 \rightarrow (x, y d)$, derramar uma quantidade de água do jarro de 3 litros;
 - (e) Se $x > 0 \rightarrow (0, y)$, esvaziar o jarro de 4 litros;
 - (f) Se $y > 0 \rightarrow (x, 0)$, esvaziar o jarro de 3 litros;
 - (g) Se $x + y \ge 4$ e $y > 0 \rightarrow (4, y (4 x))$, completar o nível do jarro de 4 litros usando a água do de 3 litros:
 - (h) Se $x + y \ge 3$ e $x > 0 \rightarrow (x (3 y), 3)$, completar o nível do jarro de 3 litros usando a água do de 4 litros;
 - (i) Se $x + y \le 4$ e $y > 0 \rightarrow (x + y, 0)$, colocar toda a água do jarro de 3 litros no de 4 litros:
 - (j) Se $x + y \le 3$ e $x > 0 \to (0, x + y)$, colocar toda a água do jarro de 4 litros no de 3 litros:
 - (k) Se estado for $(0,2) \rightarrow (2,0)$, colocar 2 litros de água do jarro de 3 litros no de 4 litros;
 - (1) Se estado for $(2, y) \rightarrow (0, y)$, jogar fora 2 litros de água do jarro de 4 litros.