

3 Modellierung mit System Dynamics

- 3.1 Grundlagen
- 3.2 Beschreibung der Methode
- 3.3 Grundmuster der Systemdynamik

3.1.1 Grundlegendes von "System Dynamics"

Am MIT (Jay W. Forrester, 1958) eingeführt zur Erforschung komplexer dynamischer Systeme :

- Unternehmensentwicklung
- Urbane Entwicklung
- Weltmodelle (Club of Rome, "Grenzen des Wachstums", 1970)

Eigenschaften

- + kommt weitgehend ohne Mathematik aus
- + die Modellstruktur entsteht sehr anschaulich aus der Analyse des Wirkungszusammenhangs → fördert systemisches Denken
- + benötigt nur sehr wenige Beschreibungselemente
- die quantitative Festlegung der Modellparameter oft schwierig

3.1.2 Beschreibungselemente

Zustandsgrößen: Größen, die durch Zu- und Abflüsse wachsen oder schrumpfen.

(Metapher: Füllstand in einem Behälter)

Flüsse: Zu- oder Abflüsse, die eine Zustandsgröße (den Füllstand)

wachsen oder schrumpfen lassen.

Wirkungsfaktoren: Größen, welche die Zu- oder Abflussmenge beeinflussen.

→ abhängig von Zustandsgrößen und Parametern (Ventile)

Parameter: Parameter dienen der Einstellung des Systems.

Sie sind während des Simulationslaufes konstant.

3.1.3 Werkzeuge

- VensimPLE (frei)
- Powersim Constructor Lite (frei)
- Goldsim Academic (freie akadem. Version)
- Anylogic (Testversion)
- uvm.

3 Modellierung mit System Dynamics

- 3.1 Grundlagen
- 3.2 Beschreibung der Methode
- 3.3 Grundmuster der Systemdynamik

3.2.1 Generelle Vorgehensweise

Die Systemanalyse erfolgt in 3 Schritten:

3.2.2 Vorgehensweise Schritt-für-Schritt

3.2.2.1 Wortmodell

Hintergrund:

- Prozesswissen liegt meist nur umgangssprachlich vor.
- Prozesswissen entsteht i. Allg. aus Gesprächen mit Prozessexperten, aber simulationsunerfahrenen Personen.
- Prozesswissen befindet sich im ständigen Wandel
 (Diskussion → Modellierung → Simulation →
 Prüfung → Diskussion → Korrektur/Verfeinerung).

zu klären:

- Welcher Aspekt der Realität soll beschrieben werden? → Modellzweck
- Welche Einschränkungen sind erlaubt?
- Welche Größen beschreiben das System?
 (Zustandsgrößen, Zu- und Abflüsse, Wirkungsfaktoren, Parameter)
- Welche externen Größen wirken auf das System ein?
- Wie wirken die Systemgrößen aufeinander?
- Was ist Ursache, was ist Wirkung?
- Ist ein Einfluss stärkend oder schwächend?
- Gibt es Zeitverzögerungen im System?

Beispiel: Zinswachstum

<u>Sparguthaben</u> wachsen jährlich um den <u>Zinsbetrag</u>.

Der jährlich gutgeschriebene Zinsbetrag ist abhängig vom Guthaben und vom <u>Zinssatz</u> [= €/(€*Jahr)].

3.2.2.2 Wirkungsdiagramm

Zweck: Qualitative Analyse der Wirkungszusammenhänge.

Prinzip:

- Systemgrößen bilden die Knoten im Wirkungsdiagramm
- Wirkungen sind die Kanten des Wirkungsdiagramms.
- Die Kantenrichtung verläuft von der Ursache zur Wirkung.
- Stärkende Einflüsse werden mit einem + gekennzeichnet, schwächende Einflüsse mit einem - .
- Eine geschlossene Wirkungskette mit einer geraden Anzahl (incl. 0) negativer Wirkungen bewirkt ein <u>eskalierendes</u> Systemverhalten.
- Eine geschlossene Wirkungskette mit einer ungeraden Anzahl negativer Wirkungen bewirkt ein <u>stabilisierendes</u> Systemverhalten.

Beispiel: Zinswachstum

3.2.2.3 Flüssemodell

Zweck: Formale Modellierung des Systems mit dem <u>Ziel der Simulation</u>.

Hierzu müssen die Zustandsgrößen, Wirkungsfaktoren und

Wirkungszusammenhänge identifiziert und quantifiziert werden.

Grafische Beschreibungselemente: Anm.: Symbole aus "Vensim PLE"

Zustandsgröße (**Behälter**, Integrator), in dem die entsprechende Größe akkumuliert wird.

Änderbarer Zu-/Abfluss (**Ventil**), welcher die Zustandsgröße ändert (*Wirkungsfaktor*).

Zu- oder Abfluss

Wirkungszusammenhang von der Ursache zur Wirkung

zu klären:

- Was sind die Zustandsgrößen?
- Welche Anfangswerte haben die Zustandsgrößen.
- Welcher funktionale Zusammenhang besteht zwischen Ursache und Wirkung? (z.B. additiv, multiplikativ, über analytische Funktion, über Lookup-Tabellen)
- Welche Zwischengrößen sind sinnvoll (Verständlichkeit)?
- Wie sind die Parameter zu wählen?

Beispiel: Zinswachstum

Startguthaben = 1000 €

Zinsen = Guthaben * Zinssatz [€/(€*a)]

Zinssatz = 0.03 [€/(€*a)]

ÜBUNG: Zustandsgrößen

- 1. Welche Dimension haben die Zu- und Abflüsse von Zustandsgrößen?
- 2. Welche mathematische Operation verbirgt sich hinter der Zustandsgrößenberechnung?

Wie könnte eine einfach Realisierung aussehen?

3 Modellierung mit System Dynamics

- 3.1 Grundlagen
- 3.2 Beschreibung der Methode
- 3.3 Grundmuster der Systemdynamik

3.3.1 Lineares Wachstum

Füllstand

3.3.2 Exponentielles Wachstum

Beispiel:

Startguthaben = 1000 €

Zinsen = Guthaben * Zinssatz [€/(€*a)]

Zinssatz = 0.03 [€/(€*a)]

3.3.3 Begrenztes Wachstum

Beispiel: Toilettenspühlung

3.3.4 Gleichgewichtsprozesse mit Verzögerung

Zeitverzögerungen bei der Wahrnehmung oder der Korrektur führen oft zu einer überschießenden Reaktion um den Gleichgewichtszustand.

ÜBUNG: Räuber-Beute-Modell (Lotka-Volterra-System, 1925)

Gegeben ist folgendes Wortmodell:

Die Anzahl der Hasen H wächst mit der Geburtenrate $g_H=0.05$ [H/(H*Mon)]. Die Zahl der natürlichen Tode ist proportional zum Hasenbestand H und wird beschrieben durch die Todesrate $t_H=0.02$ [H/(H*Mon)].

Die Hasen werden von den Füchsen gejagt. Die Wahrscheinlichkeit des Jagderfolges steigt sowohl mit der Zahl der Hasen als auch der Zahl der Füchse. Dieser Sachverhalt wird modelliert durch H*F (Treffenrate).

Die Verminderung des Hasenbestandes durch Jagd soll durch $H^*F^*t_{HJ}$ modelliert werden, mit der Jagderfolgsrate $t_{HJ} = 0.0005$ [1/(F^*Mon)].

Die Geburtsrate $g_F=0.0001$ [1/(H*Mon)] der Füchse soll nahrungsabhängig sein, was mit H*F* g_F beschrieben werden soll.

Die Zahl der natürlichen Tode der Füchse ist proportional zum Fuchsbestand F und wird beschrieben durch die Todesrate $t_F=0.01$ [F/(F*Mon)].

Geben Sie das Wirkungsdiagramm und das Flüssediagramm an.

Simulationsergebnis

4

Mathematischer Modellierungsansatz **Differentialgleichungen**

- 4.1 Gedankenansatz
- 4.2 Mathematische Grundlagen
- 4.3 Numerische Lösung
- 4.4 Partielle Differentialgleichungen

In vielen Anwendungsbereichen (Ökonomie, Physik, Chemie, Ingenieurwissenschaften) sind die im System geltenden <u>mathematischen Gesetze</u> der <u>Systemkomponenten</u> <u>bekannt</u> und <u>sehr einfach</u>.

Dennoch kann die <u>analytische Darstellung</u> des <u>Gesamtverhaltens</u> sehr <u>schwierig</u> oder auch unmöglich sein. In diesen Fällen kann Simulation sinnvoll sein.

einfache Gesetzmäßigkeiten

komplexes Zusammenspiel

Beispiel: Gesetze in elektr. Schaltkreisen

$$- \underbrace{\qquad \qquad}_{\mathsf{R}} \quad u = R \cdot i$$

$$- \underbrace{\frac{-\mathbf{u}}{\mathbf{u}}}_{\mathbf{i}} \quad u = L \cdot \frac{di}{dt}$$

$$\begin{array}{ccc}
 & -\mathbf{u} & \longrightarrow \\
 & & \downarrow \\
 & \downarrow \\$$

Wie verhält sich das Gesamtsystem?

ÜBUNG: Einfaches physikalisches Beispiel → fallender Blumentopf

Ein Blumentopf fällt von einem 120m hohen Hochhaus. Beschreiben und diskutieren Sie die Gesetzmäßigkeiten des Falls?

Was wird nicht berücksichtigt?

ÜBUNG: Tank mit Schwimmer (Füllstandregelung)

Geben Sie die Sytemgleichungen des folgenden Systems an:

Zwischen Zufluss und Wasserhöhe gilt folgender Zusammenhang.

ÜBUNG: Hasen und Füchse (Lotka-Volterra-System 2)

Die Änderungsrate von Hasen ist abhängig von

a) der Anzahl der Hasen H

→ + a*H

(a berücksichtigt Geburten u. Alterstode)

b) der Freßrate

→ - b*H*F

c) der Eigenkonkurrenzrate.

→ - c*H*H

Die Änderungsrate von Füchsen ist abhängig von

a) der Anzahl der Füchse F

→ - d*F

(mehr Tode als Geburten, es sei denn, es gibt genug zu fressen)

b) der Freßrate

→ +e*H*F

c) der Eigenkonkurrenzrate.

 \rightarrow - g*F*F

Geben Sie die Systemgleichungen an.

4

Mathematischer Modellierungsansatz

Differentialgleichungen

- 4.1 Gedankenansatz
- 4.2 Mathematische Grundlagen
- 4.3 Numerische Lösung
- 4.4 Partielle Differentialgleichungen

4.2.1 Grundbegriffe

4.2.1.1 Definition: Differentialgleichung

Eine Differentialgleichung <u>verknüpft</u> eine <u>Funktion</u> [hier z.B. y(t)] und <u>einige ihrer Ableitungen</u> in einer Gleichung.

In der Gleichung kann auch die unabhängige Variable [hier z.B. die Zeit t] auftreten.

Beispiel:
$$5 \cdot \frac{dy(t)}{dt} + y(t) = 3 \cdot t + 1$$

Was sind das für Funktionen y(t), für die diese Gleichung gilt ?

<u>Dynamische Systeme</u> behandeln <u>zeitliche Änderungen</u> von Systemgrößen. Demzufolge werden dynamische Systeme durch Ableitungen nach der Zeit beschrieben.

Zur <u>Vereinfachung der Schreibweise</u> verwendet man für Ableitungen nach der Zeit meist die kürzere Schreibweise:

$$\frac{dy}{dt} = \dot{y}(t)$$
 = 1. Ableitung (nach der Zeit)

$$\frac{d^2y}{dt^2} = \ddot{y}(t)$$
 = 2. Ableitung (nach der Zeit)

U.S.W.

Beispiel:

$$5 \cdot \frac{dy}{dt} + y(t) = 3t + 1 \qquad \qquad 5 \cdot \dot{y}(t) + y(t) = 3t + 1$$

ÜBUNG: Funktionen als Differentialgleichungen beschreiben

Gegeben sie die Differentialgleichung an, deren Lösung die gegebene Funktion ist. Geben Sie die dazugehörigen Anfangsbedingungen an.

a)
$$y(t) = \sin \omega t$$

t: unabhängige Variable

b)
$$y(t) = e^{-at}$$

t: unabhängige Variable

c)
$$y(x) = x^2 + C_1 x + C_2$$

x: unabhängige Variable

d)
$$y(t) = e^{-at} \cos \omega t$$

t: unabhängige Variable

e)
$$y(t) = K \cdot \left(1 - e^{-\frac{t}{T}}\right)$$

t: unabhängige Variable

4.2.1.2 Klassifikation von DGLn

Gewöhnliche DGLn: Die Funktionen sind nur von <u>einer</u> unabhängigen Variablen abhängig (z.B. nur von der Zeit).

Beispiele:
$$\ddot{y}(t) + y(t) = t \cdot \sin(t)$$

$$\ddot{y}(t) + \dot{y}(t) + y(t) = e^{-t} \cdot \sin(t)$$

Partielle DGLn: Die Funktionen sind von <u>mehreren</u> unabhängigen Variablen abhängig (z.B. von Ort und Zeit).

$$\frac{\partial^2 y}{\partial t^2} = a^2 \cdot \frac{\partial^2 y}{\partial x^2}$$
 Gleichung der Saitenschwingung

32

Ordnung der DGL: Die höchste Ableitung der DGL bestimmt die Ordnung.

Beispiele:
$$\ddot{y}(t) + y(t) = t \cdot \sin(t)$$
 Ordnung = 2

$$\ddot{y}(t) + \dot{y}^5(t) = y(t)$$
 Ordnung = 3

Lineare DGL: Die unbekannte Funktion und deren Ableitungen

- treten nur in der 1. Potenz auf,
- sind nicht Argumente von Funktionen,
- sind untereinander oder mit der unabhängigen Variable (hier t) nicht über Produkte bzw. Quotienten verknüpft.

Beispiele:
$$\ddot{y}(t) + 2 \cdot \dot{y}(t) = 7 \cdot y(t)$$
 linear

$$\ddot{y}(t) \cdot \dot{y}(t) = y(t)$$
 nichtlinear

$$\ddot{y}(t) + \sqrt{\dot{y}(t)} = y^3(t)$$
 nichtlinear

ÜBUNG: Klassifikation von Differentialgleichungen

Klassifizieren Sie folgende Differentialgleichungen.

Was sind die unabhängigen Variablen?

a)
$$\ddot{y} + a \cdot \dot{y} + \sin(2\pi \cdot t) = t^3$$

b)
$$\dot{y} = t^2 + y^2$$

c)
$$\ddot{y} + \dot{y} = \frac{1}{y} + t$$

d)
$$\frac{d^3U}{dt^3} + \frac{d^2U}{dt^2} + \frac{dU}{dt} - U = e^t$$

e)
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

4.2.2 Differentiation und Integration - anschauliche Wiederholung

4.2.2.1 Fläche unter Funktionen

Die Fläche $y(t_1)$ unter der Funktion Y(t) von $t = 0 \dots t_1$ soll bestimmt werden.

sehr grobe Näherungslösung

- 1. Funktion in rechteckige Abschnitte zerlegen.
- 2. Aufsummieren der Rechteckflächen.

$$y(t_1) \approx \sum_{i=1}^{7} Y(i \cdot \Delta t) \cdot \Delta t$$

bessere Näherungslösung

Eine Verkleinerung von *∆t* würde das Ergebnis verbessern.

$$y(t_1) \approx \sum_{i=1}^{13} Y(i \cdot \Delta t) \cdot \Delta t$$

Am besten: $\Delta t \rightarrow 0$

$$y(t_1) = \lim_{\Delta t \to 0} \sum_{i=1}^{t_1/\Delta t} Y(i \cdot \Delta t) \cdot \Delta t$$

oder kurz
$$y(t_1) = \int_0^{t_1} Y(t) \cdot dt$$

4.2.2.2 Zusammenhang zwischen Ableitung und Integral

4.2.3 Graphische Beschreibung von DGLn

4.2.3.1 Der Integrator als Grundelement

Wie gezeigt gilt für eine zum Zeitpunkt t=0 beginnende Integration:

$$y(t) = y(0) + \int_{0}^{t} \dot{y}(\tau) d\tau$$

Ein "Bauelement", welches dieses Operation ausführt, könnte wie folgt gezeichnet werden:

$$\dot{y} \longrightarrow \int_{y(0)} \longrightarrow y$$

y(0): Anfangswert der Integration

Integrator

4.2.3.2 Eigenschaften des Integrators

Graphische Darstellung der Integration:

Füllstand i_1 j_2 j_3 j_4 j_5 j_6 j_6 j_7 j_8 j_9 j_9

Zusammenhang mit der flußorientierten Darstellung ("System Dynamics"):

ÜBUNG: Integrator

Skizzieren Sie das Ausgangssignal eines Integrators für folgendes Eingangssignal:

Startwert y(0) = 0

4.2.3.3 Graphische Darstellung von DGLn (Analogrechner-Darstellung)

Beispiel:
$$\ddot{y} + 3\dot{y} + y \cdot \cos(t) = \sin(t)$$

1. DGL umstellen nach der höchsten Ableitung:

$$\ddot{y} = -3\dot{y} - y \cdot \cos(t) + \sin(t)$$

2. Grafik zeichnen

Beispiel: Analog-Computer

EAI 2000, 70er Jahre

Beispiel: Orbital-rendezvous-Simulation

www.analogmuseum.org

43

Beispiel: Simulation mit Matlab-Simulink

4.2.3.4 Zerlegung einer DGL der Ordnung n in n DGLn der Ordnung 1

Dadurch entstehen 2 DGLn 1. Ordnung:

$$\dot{y}_1 = \sin(t) - 3 \cdot y_1 - y_2 \cos(t)$$

$$\dot{y}_2 = y_1$$

oder in Matrixschreibweise:

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} -3 & -\cos(t) \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ 0 \end{pmatrix}$$

ÜBUNG: Aufstellen des Analogrechner-Schaltbildes

- a) Geben Sie für den fallenden Blumentopf das Analogrechner-Schaltbild an (ohne / mit Luftreibung).
- b) Geben Sie für den Tank mit Schwimmer das Analogrechner-Schaltbild an.
- c) Geben Sie das Analogrechner-Schaltbild für das Räuber-Beute-System nach Lottka-Volterra an (Hasen-Füchse-System).

4.2.4 Geometrische Interpretation von DGLn 1. Ordnung

DGL/DGLn vom Typ $\dot{y} = f(y,t)$ beschreiben Richtungsfelder.

Gesucht ist die Lösungsfunktion y(t) für einen gegebenen Startwert (\rightarrow Anfangswertproblem).

ÜBUNG: DGLn als Richtungsfelder

Skizzieren Sie das Richtungsfeld für folgende Differentialgleichungen:

a)
$$y' = x$$

x: unabhängige Variable

b)
$$y' = -\frac{x}{y}$$

x: unabhängige Variable

$$\dot{y} = 1 - y$$

t: unabhängige Variable

4.2.5 Analytische Lösung von DGLn

4.2.5.1 Das Problem

Die DGL/DGLn sind bekannt.

Diejenigen Funktionen, welche der DGL/DGLn genügen, werden gesucht.

Beispiel 1: Gegegeben ist die DGL: $\ddot{y}(t) = a^2 \cdot y(t)$

Für welche Funktionen gilt diese DGL?

Beispiel 2: Gegegeben ist die DGL: $\ddot{y}(t) = 3$

Für welche Funktionen gilt diese DGL?

Beispiel 3: Gegegeben ist die DGL: $\dot{y}(t) = y(t)$

Für welche Funktionen gilt diese DGL?

4.2.5.2 Lösungstypen und Ansätze

Für spezielle Typen von DGLn gibt es analytische Lösungsansätze. Hier einige Beispiele:

Тур	Beispiel	Ansatz
gewöhnliche, lineare		z.B. mit Laplace- Transformation
1. Ordnung, homogen	$y'(x) = f(\frac{y}{x})$	Umformung und Integration
1. Ordnung, getr. Variabl.	$y'(x) = \frac{f(x)}{g(y)}$	Umformung und Integration
1. Ordnung, Bernoulli	$y'(x) = f(x) \cdot y + g(x) \cdot y^{n}$	Umformung in eine lineare DGL
	siehe z.B. "Taschenbuch der Mathematik", Bronstein u. Semendjajew	

Für viele DGLn gibt es keine analytischen Lösungen → numerisch Lösen

4

Mathematischer Modellierungsansatz **Differentialgleichungen**

- 4.1 Gedankenansatz
- 4.2 Mathematische Grundlagen
- 4.3 Numerische Lösung
- 4.4 Partielle Differentialgleichungen

4.3.1 Grundidee

Wie lassen sich DGL der Ordnung n lösen?

DGL n-ter Ordnung in n DGL 1. Ordnung zerlegen

DGLn 1. Ordnung numerisch lösen

4.3.2 Graphische Lösung (Versuch 1)

Beispiel:
$$\dot{y} = y + t$$

Startpunkt:

y(0) = -0.5

Schrittweite in t-Richtung: h = 1.0

Gesucht wird die Funktion y(t), welche die DGL erfüllt.

Schritt 1 •
$$t = 0$$
, $y = -0.5$

Steigg.
$$\dot{y} = -0.5 + 0 = -0.5$$

Schritt 2 •
$$t = 1$$
, $y = -1$

Steigg.
$$\dot{y} = -1 + 1 = 0$$

Schritt 3 •
$$t = 2$$
, $y = -1$

Steigg.
$$\dot{y} = -1 + 2 = 1$$

Je kleiner die Schrittweite h, desto besser das Ergebnis!

Numerische Umsetzung -> Euler Verfahren (Vorwärts-Verfahren)

Eine genäherte Lösungskurve kann demnach mit folgendem Algorithmus bestimmt werden (explizites Euler-Verfahren):

$$\dot{y} = f(t_n, y_n) \approx \frac{\Delta y}{\Delta t} = \frac{y_{n+1} - y_n}{h}$$

$$y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

$$t_{n+1} = t_n + h$$

 $f(t_n, y_n)$: Steigung im Startpunkt

h : Schrittweite

ÜBUNG: Numerische Lösung von DGLn mit Hilfe des Euler-Verfahrens

1. Geben Sie ein C-Programm zur Lösung der folgenden DGL 1. Ordnung mit Hilfe des Euler-Verfahrens an:

$$y'(x) = -\frac{x}{y(x)}$$
 Anm.: x ist die unabh. Variable

Startwert: y(0)=1

Simulieren Sie mit verschiedenen Schrittweiten: h=0.2, h=0.02, h=0.002

2. Geben Sie ein C-Programm zur Lösung der folgenden DGL 2. Ordnung mit Hilfe des Euler-Verfahrens an:

$$\ddot{y}(t) = -100 \cdot y(t)$$
 Anm.: t ist die unabh. Variable

Startwerte: y(0)=0, $\dot{y}(0)=10$

Simulieren Sie mit verschiedenen Schrittweiten: h=0.005, h=0.00005

4.3.3 Verbesserte graphische Lösung (Runge-Kutta 2. Ordnung)

Beispiel: $\dot{y} = y + t$

Startpunkt: y(0) = -0.5, Schrittweite: h = 1.0

Idee: verbesserte Steigung nach einem halben Schritt verwenden!

$$k_1 = h \cdot f\left(t_n, y_n\right)$$

 $f(t_n, y_n)$: Steigung am Startpunkt k_1 : Δy nach Vollschritt mit Steigung •

$$k_2 = h \cdot f\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$f\left(t_n+\frac{h}{2},y_n+\frac{k_1}{2}\right)$$
 : Steigung nach Halbschritt $ullet$

 k_2 : Δy nach Vollschritt mit Steigung •

$$y_{n+1} = y_n + k_2 \bigcirc$$

ÜBUNG: Numerische Lösung mit Runge-Kutta (2. Ordnung)

 Geben Sie ein C-Programm zur Lösung der folgenden DGL 1. Ordnung mit Hilfe des RK2-Verfahrens an:

$$y'(x) = -\frac{x}{y(x)}$$
 Anm.: x ist die unabh. Variable

Startwert: y(0)=1

Simulieren Sie mit verschiedenen Schrittweiten: h=0.2, h=0.05

2. Geben Sie ein C-Programm zur Lösung der folgenden DGL 2. Ordnung mit Hilfe des RK2-Verfahrens an:

$$\ddot{y}(t) = -100 \cdot y(t)$$
 Anm.: t ist die unabh. Variable

Startwerte: y(0)=0, $\dot{y}(0)=10$

Simulieren Sie mit verschiedenen Schrittweiten: h=0.2, h=0.05

Das " Arbeitspferd ": Runge-Kutta 4. Ordnung

$$k_{1} = h \cdot f(t_{n}, y_{n})$$

$$k_{2} = h \cdot f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = h \cdot f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = h \cdot f\left(t_{n} + h, y_{n} + k_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6}$$

Bei der RK4-Methode wird bei gleicher Schrittweite gegenüber der RK2-Methode meist (aber nicht immer) ca. die doppelte Genauigkeit erzielt.

ÜBUNG: Moonlander

Geben Sie die DGLn und das Strukturbild an.

Geben Sie die Iterationsgleichungen für das Spiel "Moonlander" an (Euler).

4.3.4 Steife Differentialgleichungen

Typisch für steife DGLn: Lösungsfunktionen mit langsamen und schnell

veränderlichen Anteilen.

Problem: Schrittweite muss extrem klein gewählt werden.

Anderenfalls droht instabiles Lösungsverhalten.

4.3.5 Andere numerische Lösungsverfahren

Die meisten Simulationsumgebungen bieten mehrere Lösungsverfahren an. Welches Verfahren am zweckmäßigsten ist hängt von der Problemstellung ab.

Variable Schrittweite: Die Schrittweite h ist nicht konstant, sondern wird an die

lokalen Erfordernisse angepasst.

explizite/implizite Verfahren:

Explizite Verfahren verwenden nur Steigungswerte, die zeitlich vor dem zu berechnenden Wert liegen (siehe Vorwärts-Euler-Verfahren, Runge-Kutta).

Implizite Verfahren verwenden auch den Steigungswert des Lösungspunktes selbst.

Nachteil: Aufwändiger, da ggf. zusätzlich ein Nullstellenproblem zu lösen ist.

Vorteil: Stabiler im Falle steifer DGLn.

Beispiel: Implizites Euler Verfahren (Rückwärts-Verfahren)

$$y_{n+1} = y_n + h \cdot f(t_{n+1}, y_{n+1})$$

$$f(t_{n+1}, y_{n+1}) : Steigung \underline{am Zielpunkt}$$

$$h : Schrittweite$$

$$f(t_{n+1}, y_{n+1})$$
: Steigung am Zielpunkt

Beispiel: $\dot{y} = y + t$ Startpunkt: y(0) = -0.5,

Schrittweite: h = 0.5

$$y_{n+1} = y_n + h \cdot [y_{n+1} + t_{n+1}] \qquad y_{n+1} = \frac{y_n + h \cdot t_{n+1}}{1 - h}$$

$$f(t_{n+1}, y_{n+1})$$

4.3.6 Lösungsverfahren in Matlab (Auswahl)

→ s. Dokumentation

Verfahren mit fester Schrittweite

ode1: Euler

ode2: Heun

ode3: Bogacki-Shampine

ode4: Runge-Kutta 4. Ordnung

ode5: Dormand-Prince

Verfahren mit variabler Schrittweite

ode45: Standardverfahren, explizit, nicht steife DGLn

ode23: explizit, schwach steife DGLn

ode23tb: implizit, steife DGLn

ode113: hohe Genauigkeit, nicht steife DGLn

ode15s: implizit, steife DGLn

4

Mathematischer Modellierungsansatz **Differentialgleichungen**

- 4.1 Gedankenansatz
- 4.2 Mathematische Grundlagen
- 4.3 Numerische Lösung
- 4.4 Partielle Differentialgleichungen

4.4.1 Anwendungsfelder

Problemstellung: Die betrachtete Größe hängt ab von der Zeit und vom Ort.

Beispiele:

- Wärmeleitung (Auslegung von Kühlsystemen,) und Diffusionsprozesse
- Impulsausbreitung in Kabeln und Leiterbahnen (Telegrafengleichung)
- Schwingungen von Saiten, Balken, Membranen, Wasseroberflächen,

Wärmeleitungsgleichung
$$\frac{\partial T(t, \vec{x})}{\partial t} = \kappa \cdot \left[\frac{\partial^2 T(t, \vec{x})}{\partial x^2} + \frac{\partial^2 T(t, \vec{x})}{\partial y^2} + \frac{\partial^2 T(t, \vec{x})}{\partial z^2} \right]$$

$$\frac{\partial^2 u(t,x)}{\partial t^2} = c^2 \frac{\partial^2 u(t,x)}{\partial x^2}$$

Schwingungsgleichung (Membran, Wasseroberfläche)

$$\frac{\partial^2 u(t, \vec{x})}{\partial t^2} = c^2 \cdot \left[\frac{\partial^2 u(t, \vec{x})}{\partial x^2} + \frac{\partial^2 u(t, \vec{x})}{\partial y^2} \right]$$

4.4.2 Lösungsprinzip

Idee: Umwandeln: partielle DGL → System linearer DGLn

Ansatz: Diskretisierung einer der unabhängigen Variablen (Linienmethoden)

- CSDT-Methode (Continous-Space Discrete Time)
- CTDS-Methode (Continous-Time Discrete-Space)

Beispiel: Wärmeausbreitung in einem isolierten Metallstab

Ortsableitung(en) durch Differenzenquotienten ersetzen

$$\frac{\partial T}{\partial t} = C \cdot \frac{\partial^2 T}{\partial x^2} \longrightarrow \frac{\partial T(x_i)}{\partial t} \approx C \cdot \left[\frac{T(x_{i-1}) - 2T(x_i) + T(x_{i+1})}{(\Delta x)^2} \right] \qquad i = 1...6$$

$$T(x_0) = T_0 \qquad T(x_7) = T_1$$

ÜBUNG: CTDS-Methode

1. Leiten Sie folgende Näherungen her:

$$\frac{\partial u(x)}{\partial x} \approx \frac{u_{+1} - u_{-1}}{2\Delta x}$$

$$\frac{\partial^2 u(x)}{\partial x^2} \approx \frac{u_{+1} - 2u_0 + u_{-1}}{(\Delta x)^2}$$

Anm.:
$$u_a = u(x + a \cdot \Delta x)$$

 $\Delta x \rightarrow 0$

2. Für die Auslenkung eines schwingenden Seiles gilt die part. Differentialgleichung:

$$\frac{\partial^2 u(t,x)}{\partial t^2} = c^2 \frac{\partial^2 u(t,x)}{\partial x^2}$$
 Lösung

Geben sie das System lin. Differentialgleichungen an, welches die part. DGL annähert.

ÜBUNG: CTDS-Methode

3. Für die Schwingungsausbreitung auf einer Membran gilt die part. DGL:

$$\frac{\partial^2 u(t, \vec{x})}{\partial t^2} = c^2 \cdot \left[\frac{\partial^2 u(t, \vec{x})}{\partial x^2} + \frac{\partial^2 u(t, \vec{x})}{\partial y^2} \right] \qquad \text{mit } \vec{x} = (x, y)$$

Geben sie das System lin. Differentialgleichungen an, welches die part. DGL annähert.

Wellenbad

4.4.3 Verbesserte Diskretisierungen

Durch Einbeziehung von Werten der weiteren Umgebung lassen sich verbesserte Diskretisierungen finden (Taylorreihenentwicklung).

Ableitung	Differenzenausdruck	
∂и	$\frac{1}{12\Delta x} \left(-u_{+2} + 8u_{+1} - 8u_{-1} + u_{-2} \right)$	
$\overline{\partial x}$	$\frac{1}{60\Delta x} \left(u_{+3} - 9u_{+2} + 45u_{+1} - 45u_{-1} + 9u_{-2} - u_{-3} \right)$	
$\frac{\partial^2 u}{\partial x^2}$	$\frac{1}{12\left(\Delta x\right)^{2}}\left(-u_{+2}+16u_{+1}-30u_{0}+16u_{-1}-u_{-2}\right)$	
$\frac{\partial^3 u}{\partial x^3}$	$\frac{1}{2(\Delta x)^3} \left(+ u_{+2} - 2u_{+1} + 2u_{-1} - u_{-2} \right)$	
	$\frac{1}{8(\Delta x)^3} \left(-u_{+3} + 8u_{+2} - 13u_{+1} + 13u_{-1} - 8u_{-2} + u_{-3} \right)$	