We wish to show that given $(S, C) \to X$ a log terminal cyclic extraction on a normal affine toric surface then this admits a toric degeneration such that the contraction extends over the total space. This map can be constructed via the minimal resolution. If you take the minimal resolution \widetilde{X} then there exists an exceptional curve E such that the blowup of a general point on E is the minimal resolution of S.

In particular we can assume that X is a $\frac{1}{r}(1,s)$ singularity and has a fan Σ with rays (a,b) and (c-d,-d) with a,b,c,d>0. We can also assume that the ray (1,0) corresponds to E in the minimal resolution. We also note that r is equal to the determinant of the rays, ad-b(c-d).

We note that S has a torus acting on it. Via the deformation theory of complexity one varieties we see that one of the equivariant toric degeneration is the toric variety with rays (a,b), (c,-d), (c-d,-d). Call this Y. The cone (c,-d), (c-d,-d) is a T-singularity. The cone (a,b), (c,-d) is a $\frac{1}{t}(1,u)$ singularity with once again t=bc+ad. Labelling these three rays v_1, v_2, v_3 we get the relation $d^2v_1 - rv_2 + tv_3 = 0$. So writing out the Cox ring we have

$$\mathcal{R}(Y) = \mathbb{C}[x_1, x_2, x_3]$$

With a \mathbb{C}^* action with weights $(d^2, -r, t)$. Taking the d fold veronese embedding of this gets us

$$\frac{\mathbb{C}[y_1,y_2,y_3,y_4]}{y_2^d-y_3y_4} \text{ with weights } (d,b,-r,t)$$

Here the b occurs as t - r = db. This lets us construct the deformation family by considering

$$\frac{\mathbb{C}[y_1, y_2, y_3, y_4]}{\lambda y_1^b + \mu y_2^d - y_3 y_4}$$
 with weights $(d, b, -r, t)$

All that remains is to show that this is the desired complexity one variety. This is equivalent to finding the Smith Normal Form of a matrix

$$\left(\begin{array}{cccc}
b & -1 & -1 & 0 \\
0 & -1 & -1 & d \\
a & 0 & 1 & c
\end{array}\right)$$