TDS3651 Visual Information Processing

Edges
Lecture 4

Faculty of Computing and Informatics
Multimedia University

Lecture Outline

- What makes an edge?
- Gradient-based Edge Detectors
- Canny Edge Detector

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0 °	1	2	7	4
1 '	5°	8 '	9	3	1
2	7°	2 '	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1 °	2	7	4
1	5 1	8 °	9 '	3	1
2	7	2 °	5 '	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2°	7	4
1	5	8	9 °	3 '	1
2	7	2	5 °	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

5	4	0	

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1 '	7°	8 1
4	2	1	6 1	2 °	8 1
2	4	5	2 -1	3 °	9 1

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2	3	16

What does the following filter do?

Filter 1

-1	0	1
-2	0	2
-1	0	1

Filter 2

1	-2	1
-2	4	-2
1	-2	1

- A. Smoothing
- B. Sharpening
- C. Extract details
- D. Denoising

What does the following filter do?

Filter 1

-1	0	1
-2	0	2
-1	0	1

Filter 2

1	-2	1
-2	4	-2
1	-2	1

- A. Smoothing
- B. Sharpening
- C. Extract details
- D. Denoising

Recall: Unsharp Masking

Recall: Image filtering

- Compute a function of the local neighbourhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbours
- Uses of filtering
 - Enhance an image (denoising, sharpening, etc)
 - Extract information (edges, textures, etc)

What makes an edge?

Edge Detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Most semantic and shape information from the image can be encoded in the edges
- Ideal: Artist's line drawing (but artist is also using object-level knowledge)

Edge Detection

- Goal: Identify sudden changes (discontinuities) in an image
 - ⇒ Map image from 2D array of pixels to a set of curves or line segments/contours
- Main Idea: Look for strong gradients, post-process

Surface normal discontinuity

Source: D. Hoiem

Source: D. Hoiem

Surface color discontinuity

Source: D. Holem

Gradient/Derivative-based edge detectors

Derivatives and Edges

An edge is a place of rapid change in the image intensity function

Derivatives with convolution

• For 2D function f(x, y), the partial derivative:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

 For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

 To implement it by convolution, what would be the associated filter?

Partial derivatives of an image

$$\frac{\partial f(x,y)}{\partial x}$$

$$\frac{\partial f(x,y)}{\partial y}$$

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

 Gradient – Points in the direction of most rapid increase in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

Direction:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

Magnitude ("edge strength") $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Partial derivatives of an image

 Taking both partial derivatives in the x direction and y direction, we get the full set of derivatives or "gradients" corresponding to both directions

Looking at a row profile

Intensity profile

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Effects of noise

- Gradient filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbours
 - What can be done?

- A. Smoothing to make pixels look more like their neighbours
- B. Thresholding to remove all the noise pixels
- Filtering to transform the pixels into a clearer format
- D. Nothing can be done

Solution:

Derivative theorem of convolution

Differentiation is convolution, convolution is associative

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

Derivative of Gaussian filter

Derivative of Gaussian filter

Using 1st order gradient filter

- Gradient magnitude is larger along a thick ridge
 - So, how to identify the actual edge points?
 - If we can, then how do we link the actual edge points to form curves?

Laplacian of Gaussian

- 2nd derivative of the Gaussian
- Where is the edge? Zero-crossings of last graph

2D Gradient-based Edge Filters

 $abla^2$ Laplacian operator

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian of Gaussian (LoG) filter

- LoG filter also known as Marr-Hildreth algorithm
 - Convolution of the image with the Laplacian of the Gaussian function
 - Zero crossings are detected to obtain edges
 - Its operator sometimes known as
 Mexican hat operator

$DoG \Longrightarrow LoG$

- Difference of Gaussians (DoG) filter a fast approximation of the LoG filter
 - Subtract one blurred version of original image (by Gaussian filter) from another, less blurred version of original

 \Rightarrow Just use different σ values to create the two different blurred

versions!

Smoothing with a Gaussian

• Recall: Parameter σ is the "scale" or "width" of the Gaussian kernel, controls amount of smoothing

Effect of σ on derivatives

 Edge structure differs depending on Gaussian kernel's scale parameter

- Larger values: thick, only important edges detected
- Smaller values: finer edges detected, but too much details
- So, what scale to choose?

 "Finite difference filters" – approximates the gradient of image intensity function

Roberts

Prewitt

 $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

Sobel

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{vmatrix}$$

 "Finite difference filters" – approximates the gradient of image intensity function

0	0	0	10	10	10			
0	0	0	10	10	10		1	0
0	0	0	10	10	10	*	1	0
0	0	0	10	10	10		1	0
0	0	0	10	10	10			
0	0	0	10	10	10			

 "Finite difference filters" – approximates the gradient of image intensity function

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Mask properties

Smoothing

- Values positive
- Sum to $1 \Rightarrow$ constant regions same as input
- Amount of smoothing proportional to mask size

Edge Derivatives

- Different signs (positive, negative) are used to get high response in regions of high contrast
- Sum to ? ⇒ no response in constant regions B. 2
- High absolute value at points of high contrast
 C. 1

D. 0

- Criteria of an "optimal" edge detector
 - Good detection: Must minimize probability of false positives (spurious edges due to noise), and false negatives (missing real edges)

- Criteria of an "optimal" edge detector
 - Good detection: Must minimize probability of false positives (spurious edges due to noise), and false negatives (missing real edges)
 - Good localization: Edges detected are as close as possible to true edges

- Criteria of an "optimal" edge detector
 - Good detection: Must minimize probability of false positives (spurious edges due to noise), and false negatives (missing real edges)
 - Good localization: Edges detected are as close as possible to true edges

Single response: Detector must return one point only for

each true edges

- Primary edge detection steps:
 - Smoothing: Suppress noise
 - Edge enhancement: Filter for contrast
 - Edge localization: Determine which local maxima from filter output are actually edges
 - Thresholding

Thresholding

- Choose a threshold value t
- Set any pixels less than t to zero (off)
- Set any pixels greater or equal to t to one (on)

Original image

Thresholding: Gradient magnitude image

Which threshold to use?

Lower threshold value

Higher threshold value

What can we conclude from using different threshold values?

- A. A universal value can be used for the best thresholding.
- B. Lower threshold will detect all edges we need.
- C. Higher threshold may miss out on some edges.
- D. A random value can be used to perform thresholding.

- Most widely used edge detector Stable, consistent
- Steps:
 - Filter image with Gaussian filter, find magnitude and orientation of gradient

2. Non-maximum suppression

- Thin wide "ridges" down to single pixel width (get rid of spurious responses)
- 3. Hysteresis threshold after filtering
 - Define 2 thresholds low and high (to mark strong and weak edges)
 - Start edge curves from the true edges and continue tracking based on weak edges that are connected to the true edges

- Most widely used edge detector Stable, consistent
- Steps:
 - **1. Filter image with Gaussian filter**, find magnitude and orientation of gradient

2. Non-maximum suppression

Thin wide "ridges" down to single pixel width (get rid of spurious responses)

3. Hysteresis thresholding and linking

- Define 2 thresholds: low and high (to mark strong and weak edges)
- Start edge curves from the true edges and continue tracking based on weak edges that are connected to the true edges

Step 1

- Lena Example:
 - Step 1 can be done in one pass, by filtering with the derivative of Gaussian filter (both x and y directions)

2 Problems when thresholding

Problem #1:

 Edges from many gradient-based edge detectors are too thick

How to turn these thick regions into single pixel edges?

- Most widely used edge detector Stable, consistent
- Steps:
 - 1. Filter image with Gaussian filter, find magnitude and orientation of gradient

2. Non-maximum suppression

• Thin wide "ridges" down to single pixel width (get rid of spurious responses)

3. Hysteresis thresholding and linking

- Define 2 thresholds: low and high (to mark strong and weak edges)
- Start edge curves from the true edges and continue tracking based on weak edges that are connected to the true edges

Step 2

Get orientation at each pixel

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- Non-maximum suppression
 - Check if pixel is local maximum along gradient direction e.g. maximum at q if value larger than p and r (interpolated pixels). So, suppress p and r.

2 Problems when thresholding

Problem #2:

 Pixels along weak edges will not survive if standard thresholding is applied (using a threshold determined globally)

- Most widely used edge detector Stable, consistent
- Steps:
 - 1. Filter image with Gaussian filter, find magnitude and orientation of gradient
 - 2. Non-maximum suppression
 - Thin wide "ridges" down to single pixel width (get rid of spurious responses)

3. Hysteresis thresholding and linking

- Define 2 thresholds: low and high (to mark strong and weak edges)
- Start edge curves from the true edges and continue tracking based on weak edges that are connected to the true edges

Step 3

- Double threshold
 - High threshold (Gradient higher than this threshold)
 ⇒ strong edges
 - Low threshold (Gradient higher than low threshold but lower than high threshold) ⇒ weak edges
- The plan: Ensure continuity in edges of different strengths

 High Thresholded NMS Low Thresholded NMS Lo

Step 3

- To "link" edges, perform connected components, starting from strong edge pixels
 - Search 8-neighbourhood for weak edge pixels

 Usually a weak edge pixel caused by true edges will be connected to a strong edge pixel while noise responses

are unconnected.

Final Result

Effect of σ (Gaussian kernel width)

- The choice of σ depends on desired behaviour
 - Large σ detect large scale edges (less edges typically)
 - Small σ detects fine features (more edges typically)

So...how do we know if the edges found are really the TRUE edges?

Gradient edges vs. Human segmentation

Berkeley segmentation database http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Human-perceived edges

Features used vs. Human-marked

Contour Detection (CVPR 2008)

Contour Detection (ICCV 2013)

Best performing:

P. Dollar and C. Zitnick, "Structured Forests for Fast Edge Detection" (ICCV 2013) Code:

Original (Matlab/C++): https://www.microsoft.com/en-us/download/details.aspx?id=52370

Python: https://github.com/ArtanisCV/StructuredForests

OpenCV (C++): https://docs.opencv.org/3.3.1/d0/da5/tutorial_ximgproc_prediction.html

Data-driven edge detection

Machine learning: How can we "train" an edge detector to learn what is an edge?

Deep Learning-based Edge detection

State-of-the-arts deep-learning based edge detection:

- Holistically-Nested Edge Detection
 https://ieeexplore.ieee.org/abstract/document/7410521/
- Learning Relaxed Deep Supervision for Better Edge Detection
 https://ieeexplore.ieee.org/document/7780401
- DeepContour: A deep convolutional feature learned by positivesharing loss for contour detectionv

https://ieeexplore.ieee.org/document/7299024/

Summary

- Edges what makes an edge?
- Gradient-based edge detectors
 - Using derivatives or gradients to find edges
 - LoG and DoG
- Canny edge detector
- Knowing what are true edges

Recommended Reading

- [Gonzalez & Woods] Chapter 10
- [Forsyth & Ponce] Chapter 8