Test

$Steph\ Gervasi$

5/13/2019

Contents

3

4

5

6

4.7

4.6

5.0

5.4

3.2

3.1

3.6

3.9

Load package for this demo											1
Run very short EDA Summary Stats											2
											2
Boxplot Dot and Run group Check assu	with ggpubr . with ggplot2 . line plot with comparison imptions of a	ggpubr analysis (Al									4 4 5 6
	omogeneity of ormality assum										
Multiple Density Histogra Boxplots Kruskal Boxplots Violin w	oration with groups and Faplots	points	output								10 11 12 13 15 16
Load pa	ackage for	r this der	no								
<pre>data(iris) head(iris)</pre>											
## Sepal ## 1 ## 2	.Length Sepa 5.1 4.9	1.Width Peta 3.5 3.0	l.Length Pet 1.4 1.4		Species setosa setosa						

1.3

1.5

1.4

1.7

0.2 setosa

0.2 setosa

0.2 setosa

0.4 setosa

Run very short EDA

1 setosa

50 5.01 0.352

2 versicolor 50 5.94 0.516 ## 3 virginica 50 6.59 0.636

```
str(iris)
## 'data.frame':
                   150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
                : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ Species
head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                         3.5
                                      1.4
## 2
             4.9
                         3.0
                                      1.4
                                                 0.2 setosa
## 3
             4.7
                         3.2
                                     1.3
                                                 0.2 setosa
## 4
             4.6
                         3.1
                                     1.5
                                                 0.2 setosa
## 5
                                                 0.2 setosa
             5.0
                         3.6
                                      1.4
             5.4
                         3.9
                                      1.7
                                                 0.4 setosa
levels(iris$Species)
## [1] "setosa"
                   "versicolor" "virginica"
Summary Stats
# install.packages("tidyverse")
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.2.1 --
## v ggplot2 3.1.0
                   v purrr
                            0.2.5
## v tibble 1.4.2 v dplyr
                            0.7.8
## v tidyr
           0.8.1 v stringr 1.3.1
## v readr
           1.1.1
                   v forcats 0.3.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
group_by(iris, Species) %>%
 summarise(
   count = n(),
   mean = mean(Sepal.Length, na.rm = TRUE),
   sd = sd(Sepal.Length, na.rm = TRUE)
)
## # A tibble: 3 x 4
    Species count mean
    <fct>
              <int> <dbl> <dbl>
```

Visualizations

Boxplot with ggpubr

```
# install.packages("ggpubr")
library(ggpubr)
## Loading required package: magrittr
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
       set_names
## The following object is masked from 'package:tidyr':
##
##
       extract
ggboxplot(iris, x = "Species", y = "Sepal.Length",
          color = "Species", palette = c("#00AFBB", "#E7B800", "#FC4E07"),
          order = c("setosa", "versicolor", "virginica"),
          ylab = "Sepal Length (in)", xlab = "Flower Species Name")
```


Boxplot with ggplot2

```
library(ggplot2)
ggplot(iris, aes(x=Species, y=Sepal.Length, fill=Species)) +
  geom_boxplot() + theme_classic() + theme(legend.position = "top") +
  labs(x="Flower Species Name", y = "Sepal Length (in)")
```


Dot and line plot with ggpubr

```
ggline(iris, x = "Species", y = "Sepal.Length",
    add = c("mean_se", "jitter"),
    order = c("setosa", "versicolor", "virginica"),
    ylab = "Sepal Length (in)", xlab = "Flower Species Name")
```


Run group comparison analysis (ANOVA)

```
# Compute the analysis of variance
aov1 <- aov(Sepal.Length ~ Species, data = iris)</pre>
# Summary of the analysis
summary(aov1)
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Species
                 2 63.21 31.606
                                     119.3 <2e-16 ***
## Residuals
               147
                    38.96
                             0.265
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
# Posthoc tests
TukeyHSD(aov1)
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = Sepal.Length ~ Species, data = iris)
##
## $Species
##
                         diff
                                     lwr
                                               upr p adj
## versicolor-setosa
                        0.930 0.6862273 1.1737727
                        1.582 1.3382273 1.8257727
## virginica-setosa
```

Check assumptions of analysis/model

Check homogeneity of variance assumption

Residuals vs Fitted

Fitted values aov(Sepal.Length ~ Species)

```
#plot(aov1)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
## The following object is masked from 'package:purrr':
##
##
       some
leveneTest(Sepal.Length ~ Species, data = iris)
## Levene's Test for Homogeneity of Variance (center = median)
          Df F value
                       Pr(>F)
## group
           2 6.3527 0.002259 **
```

```
147
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# From the output we can see that the p-value is less than the significance level of 0.05. This means t
# It is possible to run a Welch's ANOVA where the assumption of homogeneity of variance is relaxed. It
oneway.test(Sepal.Length ~ Species, data = iris)
##
##
   One-way analysis of means (not assuming equal variances)
##
## data: Sepal.Length and Species
## F = 138.91, num df = 2.000, denom df = 92.211, p-value < 2.2e-16
# Now pairwise t tests on this output:
pairwise.t.test(iris$Sepal.Length, iris$Species,
                p.adjust.method = "BH", pool.sd = FALSE)
##
## Pairwise comparisons using t tests with non-pooled SD
##
## data: iris$Sepal.Length and iris$Species
##
              setosa versicolor
##
## versicolor < 2e-16 -
## virginica < 2e-16 1.9e-07
##
## P value adjustment method: BH
```

Check normality assumption

```
plot(aov1, 2)
```



```
# Additional check for normality besides QQ plot produced above.
# Extract the residuals
aov_residuals <- residuals(object = aov1)</pre>
# Run Shapiro-Wilk test
shapiro.test(x = aov_residuals)
##
   Shapiro-Wilk normality test
##
##
## data: aov_residuals
## W = 0.9879, p-value = 0.2189
# If this had been significant, it would indicate that we were in violation of the assumption of normal
kruskal.test(Sepal.Length ~ Species, data = iris)
##
   Kruskal-Wallis rank sum test
##
```

```
## Kruskal-Wallis rank sum test
##
## data: Sepal.Length by Species
## Kruskal-Wallis chi-squared = 96.937, df = 2, p-value < 2.2e-16</pre>
```

Some exploration with plotting in ggpubr

Multiple groups and Faceting

```
data(ToothGrowth)
head(ToothGrowth)
##
      len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
           VC 0.5
## 4 5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
p <- ggboxplot(ToothGrowth, x = "dose", y = "len",</pre>
      color = "supp", palette = c("#00AFBB", "#E7B800"),
     ylab = "Length", xlab = "Dose")
print(p)
```


Density plots

Histograms

Boxplots with jittered points

Kruskal Wallis

```
head(ToothGrowth)
##
     len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
## 3 7.3
           VC 0.5
## 4 5.8
           VC 0.5
## 5 6.4
           VC 0.5
## 6 10.0
            VC 0.5
str(ToothGrowth)
## 'data.frame':
                   60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
# Convert the dose variable to a factor
tg <- ToothGrowth
tg$dose <- as.factor(tg$dose)</pre>
head(tg)
##
     len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
## 3 7.3
           VC 0.5
```

```
## 4 5.8
           VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
str(tg)
## 'data.frame':
                    60 obs. of 3 variables:
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 ...
## $ dose: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...
# Perform the test
kruskal.test(len ~ dose, data = tg)
##
##
   Kruskal-Wallis rank sum test
##
## data: len by dose
## Kruskal-Wallis chi-squared = 40.669, df = 2, p-value = 1.475e-09
# multiple comparisons with Dunn test
#install.packages("FSA")
library(FSA)
## Warning: package 'FSA' was built under R version 3.5.2
## ## FSA v0.8.23. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
##
## Attaching package: 'FSA'
## The following object is masked from 'package:car':
##
##
       bootCase
dunnTest(len ~ dose,
              data=tg,
              method="bh")
                              # Can adjust p-values;
## Dunn (1964) Kruskal-Wallis multiple comparison
     p-values adjusted with the Benjamini-Hochberg method.
##
     Comparison
                        Z
                               P.unadj
       0.5 - 1 -3.554911 3.781068e-04 5.671603e-04
## 1
## 2
        0.5 - 2 -6.362612 1.983517e-10 5.950552e-10
## 3
          1 - 2 -2.807701 4.989660e-03 4.989660e-03
                              # See ?p.adjust for options
# multiple comparisons using wilcoxon test :THIS APPEARS TO BE WHAT IS USED IN THE GRAPHS BELOW!!!
pairwise.wilcox.test(tg$len,
                          tg$dose,
                          p.adjust.method="none")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot
## compute exact p-value with ties
```

```
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot
## compute exact p-value with ties
##
   Pairwise comparisons using Wilcoxon rank sum test
##
##
## data: tg$len and tg$dose
##
##
    0.5
## 1 7.0e-06 -
## 2 8.4e-08 0.00018
##
## P value adjustment method: none
                              # Can adjust p-values;
                              # See ?p.adjust for options
```

Boxplots with stats output!

```
# Add p-values comparing groups
# Specify the comparisons you want
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
p + stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
stat_compare_means(label.y = 50)  # Add global p-value</pre>
```

dose 😑 0.5 눰 1 😑 2

Violin with box plots including stats output

Bar plots and references

```
## Mazda RX4 Wag
                      Mazda RX4 Wag 2.875 21.0
## Datsun 710
                           Datsun 710 2.320 22.8
## Hornet 4 Drive
                       Hornet 4 Drive 3.215 21.4
## Hornet Sportabout Hornet Sportabout 3.440 18.7
                              Valiant 3.460 18.1
ggbarplot(dfm, x = "name", y = "mpg",
         fill = "cyl",
                                     # change fill color by cyl
         color = "white",
                                   # Set bar border colors to white
         palette = "jco",
                                   # jco journal color palett. see ?ggpar
         sort.val = "desc",
                                   # Sort the value in dscending order
         sort.by.groups = FALSE,
                                   # Don't sort inside each group
         x.text.angle = 90
                                     # Rotate vertically x axis texts
```

cyl 4 6 8


```
# See these references:
# http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
# http://www.sthda.com/english/wiki/ggplot2-box-plot-quick-start-guide-r-software-and-data-visualizatio
# http://www.sthda.com/english/wiki/one-way-anova-test-in-r
```

[#] https://rcompanion.org/rcompanion/d_06.html