Matrix-Multiplication Algorithms on Distributed-Memory Architectures

SC3260/5260 High-Performance Computing

Hongyang Sun

(hongyang.sun@vanderbilt.edu)

Vanderbilt University
Spring 2020

Data Distribution

- With distributed memory, we assume the initial data is distributed among different processors, and communicated via message passing.
- There are different ways to distribute regular data (e.g., 1D array, dense matrix):
 - Block distribution;
 - Cyclic distribution;
 - Block-cyclic distribution.

In this class, we will study distributed-memory algorithms that use block distribution, but block-cyclic distribution is more often used in practice.

Block Distribution

 Block distribution conserves locality of data for each process, and a higher-dimensional (e.g., 2D) distribution allows to use more processes.

Cyclic Distribution

 Cyclic distribution achieves better load balancing for certain computations (e.g., LU factorization), but has poor data locality for the processes.

Block-Cyclic Distribution

 Block-cyclic distribution strikes a balance between data locality and load balancing. It is more often used in practice by numerical libraries.

Matrix Multiplication

- We will discuss the following algorithms for multiplying two $n \times n$ matrices ($C = A \times B$) on P processors using 2D block distribution:
 - 1) Inner-product algorithm;
 - 2) Outer-product algorithm;
 - 3) Cannon's algorithm;
 - 4) Fox's algorithm;
 - 5) Snyder's algorithm.

Homework 3 provides the inner-product algorithm and asks you to implement another algorithm and compare their performance on ACCRE.

2D Block Distribution

We assume:

- □ All *P* processors are logically arranged in a 2D mesh of $\sqrt{P} \times \sqrt{P}$ processors, and *n* is divisible by \sqrt{P} .
- Processor P_{ij} initially holds matrix blocks A_{ij} and B_{ij} , and is responsible for computing block C_{ij} . All blocks are of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$.
- The figure on the right illustrates the initial data distribution for P = 9 processors.

$ \begin{array}{c} P_{00} \\ (A_{00}, B_{00}) \\ \to C_{00} \end{array} $	$ \begin{array}{c} P_{01} \\ (A_{01}, B_{01}) \\ \rightarrow C_{01} \end{array} $	$ \begin{array}{c} P_{02} \\ (A_{02}, B_{02}) \\ \rightarrow C_{02} \end{array} $
$ \begin{array}{c} P_{10} \\ (A_{10}, B_{10}) \\ \rightarrow C_{10} \end{array} $	$ \begin{array}{c} P_{11} \\ (A_{11}, B_{11}) \\ \rightarrow C_{11} \end{array} $	P_{12} (A_{12}, B_{12}) $ \rightarrow C_{12}$
$ \begin{array}{c} P_{20} \\ (A_{20}, B_{20}) \\ \rightarrow C_{20} \end{array} $	P_{21} (A_{21}, B_{21}) $ \rightarrow C_{21}$	P_{22} (A_{22}, B_{22}) $ \rightarrow C_{22}$

(1) Inner-Product Algorithm

```
\begin{array}{l} \text{Inner-Product}\,(A,B,C,P) \, \{ \\ q = \sqrt{P} \, ; \\ \text{for } (i=0; \, i < q; \, i + +) \\ \text{for } (j=0; \, j < q; \, j + +) \\ \text{for } (k=0; \, k < q; \, k + +) \\ // \, \, \text{blocked matrix product} \\ C_{ij} \, + = \, A_{ik} \, * \, B_{kj} \, ; \\ \} \end{array}
```

- The above pseudocode shows the blocked version of the classical inner-product algorithm.
- <u>Idea:</u> processor P_{ij} computes block C_{ij} locally by first collecting blocks A_{ik} and B_{kj} for all $k = 0, 1, ..., \sqrt{P} 1$.

(1) Inner-Product Algorithm

The idea is illustrated below for processor P_{12} , which needs to computes:

$$C_{12} = A_{10} * B_{02} + A_{11} * B_{12} + A_{12} * B_{22}$$

(1) Inner-Product Algorithm

- Three steps of the algorithm:
 - All-to-all broadcast (MPI_Allgather) of matrix A's blocks along each row;
 - 2) All-to-all broadcast (MPI_Allgather) of matrix *B*'s blocks along each column;
 - Each processor P_{ij} locally computes matrix block $C_{ij} = A_{i0} * B_{0j} + A_{i1} * B_{1j} + \cdots + A_{i\sqrt{P}} * B_{\sqrt{P}j}$
- **Drawbacks:** each processor needs to hold \sqrt{P} blocks of both matrices A and B, which may not fit in the local memory of the processor for very large matrix size n.

(2) Outer-Product Algorithm

```
Outer-Product (A,B,C,P) { The three "for-loops" can be arranged in any order without affecting correctness of result. for (i=0;\ i< q;\ i++) for (j=0;\ j< q;\ j++) // blocked matrix product C_{ij} += A_{ik} * B_{kj}; }
```

- The above pseudocode shows the blocked version of the outer-product algorithm.
- Idea: algorithm works in \sqrt{P} steps; at the k-th step $(k = 0, 1, ..., \sqrt{P} 1)$, processor P_{ij} computes the k-th partial C_{ij} by collecting blocks A_{ik} and B_{kj} .

(2) Outer-Product Algorithm

■ The idea is illustrated below for step k = 0, where each processor P_{ij} needs to compute:

$$C_{ij} += A_{i0} * B_{0j}$$

(2) Outer-Product Algorithm

- Repeat step $k = 0, 1, ..., \sqrt{P} 1$:
 - One-to-all broadcast (MPI_Bcast) of matrix A's blocks in column k along each row;
 - One-to-all broadcast (MPI_Bcast) of matrix *B*'s blocks in row *k* along each column;
 - Each processor P_{ij} locally updates matrix block $C_{ij} += A_{ik} * B_{kj}$
- Compared to the inner-product algorithm, the outer-product algorithm has much reduced memory requirement; each processor needs only hold 2 blocks of matrices A and B.

- Idea: algorithm works in \sqrt{P} steps:
 - \Box At step k = 0, processor P_{ij} updates block

$$C_{ij} = A_{i,(i+j)mod\sqrt{P}} * B_{(i+j)mod\sqrt{P},j}$$

through an initial alignment of matrices A and B's blocks via circular shift.

■ At step $k = 1, 2, ..., \sqrt{P} - 1$, processor P_{ij} updates block

$$C_{ij} = A_{i,(i+j+k)mod\sqrt{P}} * B_{(i+j+k)mod\sqrt{P},j}$$

by circular shifting matrices A and B's blocks by one position and computing the product.

- For step k = 0:
 - Circular shift *i*-th row of matrix *A*'s blocks *i* positions to the left (i.e., all diagonal blocks of *A* to first column);
 - Circular shift i-th column of matrix B's blocks i positions up (i.e., all diagonal blocks of B to first row);
 - Each processor P_{ij} locally updates matrix block C_{ij}
- For step $k = 1, 2, ..., \sqrt{P} 1$:
 - 1) Circular shift each row of *A*'s blocks one position left;
 - 2) Circular shift each column of *B*'s blocks one position up;
 - Each processor P_{ij} locally updates matrix block C_{ij}

Next slide illustrates all steps for P = 9 processors.

- Each processor needs only hold one block of matrix A and one block of matrix B at all times.
- Also note the order in which the partial results of each block C_{ij} is computed over the steps. For example,

$$C_{00} = A_{00} * B_{00} + A_{01} * B_{10} + A_{02} * B_{20}$$

$$C_{11} = A_{12} * B_{21} + A_{10} * B_{01} + A_{11} * B_{11}$$

$$C_{22} = A_{21} * B_{12} + A_{22} * B_{22} + A_{20} * B_{02}$$

- Idea: algorithm works in \sqrt{P} steps:
 - \Box At step k = 0, processor P_{ij} updates block

$$C_{ij} = A_{i,i} * B_{i,j}$$

with the diagonal block of matrix A (i.e., $A_{i,i}$) being broadcasted in each row i.

□ At step $k = 1, 2, ..., \sqrt{P} - 1$, processor P_{ij} updates block

$$C_{ij} = A_{i,(i+k)mod\sqrt{P}} * B_{(i+k)mod\sqrt{P},j}$$

with block $A_{i,(i+k)mod\sqrt{P}}$ broadcasted in each row i and circular shifting B by one position.

- For step k = 0:
 - One-to-all broadcast (MPI_Bcast) of block $A_{i,i}$ within each row i;
 - Each processor P_{ij} locally updates matrix block C_{ij}
- For step $k = 1, 2, ..., \sqrt{P} 1$:
 - One-to-all broadcast (MPI_Bcast) of block $A_{i,(i+k)mod\sqrt{P}}$ within each row i;
 - 2) Circular shift each column of *B*'s blocks one position up;
 - Each processor P_{ij} locally updates matrix block C_{ij}

Next slide illustrates all steps for P = 9 processors.

- Each processor needs to hold two blocks of matrix A and one block of matrix B at all times.
- Also note the order in which the partial results of each block C_{ij} is computed over the steps. For example,

$$C_{00} = A_{00} * B_{00} + A_{01} * B_{10} + A_{02} * B_{20}$$

$$C_{11} = A_{11} * B_{11} + A_{12} * B_{21} + A_{10} * B_{01}$$

$$C_{22} = A_{22} * B_{22} + A_{20} * B_{02} + A_{21} * B_{12}$$

(5) Snyder's Algorithm

- Idea: first transpose matrix B's blocks, and then compute each diagonal blocks of matrix C at a time by shifting matrix B's blocks by one position and performing a row-wide reduction.
- Note that the transpose is with regard to the blocks of the whole matrix B, not for the values within each block.
- In this algorithm, each processor also needs only hold one block of matrix A and one block of matrix B at all times.

(5) Snyder's Algorithm

- Transpose matrix B's blocks;
- For step $k = 0, 1, ..., \sqrt{P} 1$:
 - Each processor P_{ij} computes the partial matrix block $C_{i,(i+k)mod\sqrt{P}}$
 - All-to-one reduction (MPI_Reduce) of partial matrix blocks $C_{i,(i+k)mod\sqrt{P}}$ within each row i to processor $P_{i,(i+k)mod\sqrt{P}}$ to get the final $C_{i,(i+k)mod\sqrt{P}}$
 - If $k < \sqrt{P} 1$, then circular shift each block of B one position up.

Next slide illustrates all steps for P = 9 processors.

(5) Snyder's Algorithm

Initial data	(A_{00}, B_{00}) (A_{01}, B_{01}) (A_{02}, B_{02}) (A_{10}, B_{10}) (A_{11}, B_{11}) (A_{12}, B_{12}) (A_{20}, B_{20}) (A_{21}, B_{21}) (A_{22}, B_{22})	2)	$(A_{00}, B_{00}) \to C_{00} \to C_{00} \to C_{00} \to C_{00}$ $(A_{10}, B_{01}) \to C_{11} \to C_{11} \to C_{11} \to C_{11}$ $(A_{20}, B_{02}) \to C_{22} \to C_{22} \to C_{22}$	<u>Step 0</u>
<u>Step 1</u>	$(A_{00}, B_{01}) \to C_{01} \to $	2)	$(A_{00}, B_{02}) (A_{01}, B_{12}) (A_{02}, B_{22}) \rightarrow C_{02} \rightarrow C_{02}$ $(A_{10}, B_{00}) (A_{11}, B_{10}) (A_{12}, B_{20}) \rightarrow C_{10} \rightarrow C_{10}$ $(A_{20}, B_{01}) (A_{21}, B_{11}) (A_{22}, B_{21}) \rightarrow C_{21} \rightarrow C_{21}$	<u>Step 2</u>

Some Remarks

- Among the discussed algorithms
 - □ Cannon's algorithm incurs the lowest & optimal communication overhead, but it has certain limitations (i.e., P must be perfect square, and n divisible by \sqrt{P}).
 - Practical libraries (such as ScaLAPACK
 http://www.netlib.org/scalapack/) implement an
 outer-product version using 2D block-cyclic
 data distribution.

References

- A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing (2nd Edition). Addison-Wesley Professional.
- H. Casanova, A. Legrand, Y. Robert. Parallel Algorithms. Chapman & Hall/CRC.
- B. Barney. Introduction to Parallel Computing Tutorial, Lawrence Livermore National Laboratory.
 - https://computing.llnl.gov/tutorials/parallel_comp/