-1	.0 f(t), T=100.0 sec
Γhe form	$f(t) = \begin{cases} 1, & t = [-T/2, 0]; \\ -1, & t = [0, T/2]; \end{cases}$ or coefficients are computed with the following equation:
	$F_n = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} f\left(t ight) e^{-i\omega_n t} dt \ F_n = rac{1}{T} \int_{-rac{T}{2}}^{0} 1 e^{-i\omega_n t} dt - rac{1}{T} \int_{0}^{rac{T}{2}} 1 e^{-i\omega_n t} dt \ F_n = -rac{i}{T\omega_n} (e^{i\omega_n rac{T}{2}} - 1) - \left[-rac{i}{T\omega_n} (1 - e^{-i\omega_n rac{T}{2}}) ight] \ F_n = rac{2i}{T\omega_n} - rac{i}{T\omega_n} (e^{i\omega_n rac{T}{2}} + e^{-i\omega_n rac{T}{2}}) \ F_n = rac{2i}{T\omega_n} - rac{i}{T\omega_n} (2cos(\omega_n rac{T}{2})) \ F_n = rac{2i}{T\omega_n} (1 - cos(\omega_n rac{T}{2}))$
# Fund functi we Fr Fr	the signal and the Fourier Synthesis for N= 1,3, 20, 40 tion to compute Fourier Coefficients and Fourier Series of the square wave on exercise1(nf :: Int64, T :: Float64) =2*\pi/T; p=zeros(Complex(Float64), nf); # Positive Coefficients n=zeros(Complex(Float64), nf); # Negative Coefficients er Coefficients: Lopp to compute Fn.
er f= # Four fo	<pre>zeros(length(t)); zier Serie: Loop to compute Fourier Series. or n=1:nf; for i=1:length(f);</pre>
# Call N=[1,3 Fnp,Fr Fnp2,F Fnp3,F Fnp4,F # Plot figure plt.pl plt.pl	the function to calculate different fourier synthesis for the square wave: [,20,40]; [n,f1=exercise1(N[1],T); [nn2,f2=exercise1(N[2],T); [nn3,f3=exercise1(N[3],T); [nn4,f4=exercise1(N[4],T); the results: [(16,figsize=(8,5),tight_layout=true); [ot(t,f1, c="r",label=L"\hat f1(t)") [ot(t,f2, c="g",label=L"\hat f2(t)") [ot(t,f3, c="y",label=L"\hat f3(t)") [ot(t,f4, c="m",label=L"\hat f3(t)")
plt.gr plt.xl plt.xt plt.yt plt.yt plt.le	ot(t, squarewave, ":", c="RoyalBlue", label="f(t)", linewidth=3.0); id("True"); tle("Square Wave and Fourier Synthesis for N= \$N"); abel("Time[sec]", labelpad=10.0); icks(-4T:4T,["-4T","-3T","-2T,"-T",0, "T", "2T", "3T", "4T"]); abel("Amplitude", labelpad=10.0); icks(-4:0.5:1); gend(loc="upper right"); Square Wave and Fourier Synthesis for N= [1, 3, 20, 40]
Amp	.5
#Four: Fnp, Fr Np=[i Nn=[i figure plt.st plt.st plt.st plt.xl plt.xl plt.yl	the spectrum of discrete amplitudes for $n=[-50,50]$ er Coefficient: # all the even coefficients are 0 n, f=exercise1(50,T); for i=1:50] for i=-1:-1:-50]
0.6 0.5 0.4 	
2) Pro a. Linear o. Time c	-40 -20 0 20 40 n et <matplotlib.legend.legend 0x0000000061aaa4f0="" at="" object=""> we the following properties of the Fourier transform: ty lelay</matplotlib.legend.legend>
d. Symm $F(\omega)=$ $f(t)=$ $f(t)$ $f(t)$	Figure Transform and the Inverse Fourier Transform of a signal are respectively given by: $\int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$ Parity By the Fourier Transform (\mathcal{F}) to the sum of two scaled signals: $(t) + c_2 f_2(t)) = \int_{-\infty}^{\infty} (c_1 f_1(t) + c_2 f_2(t)) e^{-i\omega t} dt = c_1 \int_{-\infty}^{\infty} f_1(t) e^{-i\omega t} dt + c_2 \int_{-\infty}^{\infty} f_2(t) e^{-i\omega t} dt = c_1 \mathcal{F}(f_1(t)) + c_2 \mathcal{F}(f_2(t)) = c_1 F_1(\omega) + c_2 F_2(\omega)$ By the Fourier Transform of the sum of two different signals is equal to the sum of the Fourier Transform of the signals. Moreover, the Fourier Transform of a signal which has a scalar applied is equal to the sum of the fourier Transform of the signals.
the Four D. \mathbf{Tim} $\mathcal{F}\left(f\left(t\right)\right)$ If we repl $\mathcal{F}\left(f\left(t\right)\right)$ This dem	Transform of the signal scaled by the same factor. e delay property
$\mathcal{F}(f(t))$ Changing $\mathcal{F}(f(t))$	$f(t)*g(t) = \int_{-\infty}^{\infty} f\left(t\right)g\left(u-t\right)dt$ e Fourier Transform of the convolution: $e\left(g(t)\right) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f\left(t\right)g\left(u-t\right)dt\right] e^{-i\omega u}du$ of the ordder of integration: $e\left(g(t)\right) = \int_{-\infty}^{\infty} f\left(t\right) \left[\int_{-\infty}^{\infty} g\left(u-t\right)e^{-i\omega u}du\right]dt$ iff property (b. Time delay property): $e\left(t-t\right)e^{-i\omega u}du = G\left(\omega\right)e^{-i\omega t}$ et
$\mathcal{F}(f(t))$ $f(t)$ $f(t)$ Finally, $f(t)$	$f(t) = \int_{-\infty}^{\infty} f(t) \left[\int_{-\infty}^{\infty} g\left(u - t\right) e^{-i\omega t} du \right] dt = \int_{-\infty}^{\infty} f(t) G\left(\omega\right) e^{-i\omega t} dt$ $f(t) * g(t) = F\left(\omega\right) G\left(\omega\right)$ $f(t) * g(t) = F\left(\omega\right) G\left(\omega\right)$ Figure Transform of convolution in space/time domain is equivalent to multiplication in the frequency domain. In metry: real can be written as a sum of an even $(f_e\left(t\right))$ and an odd $(f_o\left(t\right))$ function: $f(t) = f_e\left(t\right) + f_o\left(t\right)$
Jsing tl 1. The pr 2. The p r	ier Transform of $f(t)$ is: $F(\omega) = \int_{-\infty}^{\infty} (f_e(t) + f_o(t))e^{-i\omega t}dt$ $F(\omega) = \int_{-\infty}^{\infty} (f_e(t) + f_o(t))(\cos(\omega t) - i sen(\omega t))dt$ he following properties: educt of two odd functions or two even functions is even. Educt of an even and an even function is odd. Eagral of an odd function from $-t_1$ to $+t_1$ is zero.
$F_e\left(\omega ight)$ a	$F\left(\omega ight)=\int_{-\infty}^{\infty}(f_{c}\left(t ight)cos(\omega t)-if_{o}\left(t ight)sen(\omega t) ight)dt=F_{c}\left(\omega ight)+F_{o}\left(\omega ight)$ and $F_{o}\left(\omega ight)=\int_{-\infty}^{\infty}f_{e}\left(t ight)cos(\omega t)dt$ $F_{o}\left(\omega ight)=\int_{-\infty}^{\infty}if_{o}\left(t ight)sen(\omega t)dt$
	e, if $f(t)$ is real $F(\omega)$ is complex, but the real part is even and the imaginary part is odd. Which means: $F(\omega) = F^*(-\omega) = F(-\omega)$ $Re(F(\omega)) = Re(F(-\omega))$ $Im(F(\omega)) = -Im(F(-\omega))$ rticular case in which $f(t)$ is real and even. The symmetry property shows: $Re(F(\omega)) = Re(F(-\omega))$ $Im(F(\omega)) = 0$
$c_{(t)} = cc$	using the fact that $\mathcal{F}(e^{i\omega_0t})=2\pi\delta(\omega-\omega_0)$ find the Fourier Transform of the following signals: $s(i\omega_0t)$ $s(i\omega_0t)$
a. $\mathcal{F}(cos)$	$egin{align} & in(i\omega_0 t + lpha) \ & in(i\omega_0 t)) = \int_{-\infty}^{\infty} cos(i\omega_0 t) \left(t\right) e^{-i\omega t} dt \ & include cos(i\omega_0 t) e^{-i\omega t} dt = \int_{-\infty}^{\infty} rac{e^{i\omega_0 t} + e^{-i\omega_0 t}}{2} e^{-i\omega t} dt = 0 \ & include cos(i\omega_0 t) e^{-i\omega t} dt + rac{1}{2} \int_{-\infty}^{\infty} e^{-i\omega_0 t} e^{-i\omega t} dt = 0 \ & include cos(i\omega_0 t) e^{-i$
$\pi(\delta(\omega))$ 0. $\mathcal{F}(sir)$	$\int_{-\infty}^{\infty} e^{-i(\omega-\omega_0)t} dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-i(\omega+\omega_0)t} dt = 0$ $\int_{-\infty}^{\infty} e^{-i(\omega-\omega_0)t} dt = 0$ $\int_{-\infty}^{\infty} \sin(i\omega_0 t) (t) e^{-i\omega t} dt$ $\int_{-\infty}^{\infty} \sin(i\omega_0 t) (t) e^{-i\omega t} dt = 0$ $\int_{-\infty}^{\infty} e^{i\omega_0 t} e^{-i\omega_0 t} dt = 0$
$\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \pi(\delta(\omega))$	$\int_{-\infty}^{\infty}e^{i\omega_0t}e^{-i\omega t}dt-rac{1}{2}\int_{-\infty}^{\infty}e^{-i\omega_0t}e^{-i\omega t}dt=0$ $\int_{-\infty}^{\infty}e^{-i(\omega-\omega_0)t}dt-rac{1}{2}\int_{-\infty}^{\infty}e^{-i(\omega+\omega_0)t}dt=0$ $\int_{-\infty}^{\infty}e^{-i(\omega+\omega_0)t}dt=0$
$\int_{-\infty}^{\infty} s rac{1}{2} e^{ilpha} ,$	$egin{align*} u(i\omega_0t+lpha)) &= \int_{-\infty}^\infty sin(i\omega_0t+lpha) \left(t ight) e^{-i\omega t} dt \ in(i\omega_0t+lpha) e^{-i\omega t} dt = \int_{-\infty}^\infty rac{e^{i\omega_0t+lpha}-e^{-i\omega_0t+lpha}}{2} e^{-i\omega t} dt = \ \int_{-\infty}^\infty e^{i\omega_0t} e^{-i\omega t} dt - rac{1}{2} e^{-ilpha} \int_{-\infty}^\infty e^{-i\omega_0t} e^{-i\omega t} dt = \ \int_{-\infty}^\infty e^{-i(\omega-\omega_0)t} dt - rac{1}{2} e^{-ilpha} \int_{-\infty}^\infty e^{-i(\omega+\omega_0)t} dt = \ \delta(\omega-\omega_0) - e^{-ilpha} \delta(\omega+\omega_0)) \end{aligned}$
	Inpute the Fourier Transform of $f_{(t)}=e^{i\omega_0t}$ $t=\left[\frac{-T}{2},\frac{T}{2}\right]$ and $\omega_0=0.3$. To calculate a complex exponential signal of frequency ω_0 whitin time range $t=\left[\frac{-T}{2},\frac{T}{2}\right]$ and its Fourier Transform: DSP, FFTW, PyPlot on exercise3(dt:: Float64, ω_0 :: Float64, τ_0 :: Float64) collect(-T/2:dt:T/2);
functi	$ \begin{array}{l} = \cos . (\omega \theta^* t) \\ = \exp . (1 \mathrm{im}^* \omega \theta^* t); \\ = \operatorname{real}(f); \\ = 2\pi / \operatorname{length}(t); \\ \mathrm{dw}^* (0 : \operatorname{length}(t) - 1); \\ \mathrm{fft}(f); \\ \mathrm{p=abs.}(F); \\ \mathrm{ase=angle.}(F); \\ \mathrm{turn} \ f, \mathrm{amp.} \mathrm{phase.} t, \mathrm{w.} \mathrm{T} \\ \\ \operatorname{se3} \ (\mathrm{generic} \ \mathrm{function} \ \mathrm{with} \ 1 \ \mathrm{method}) \\ \mathrm{eresults} \ \mathrm{for} \ \mathrm{different} \ \mathrm{values} \ \mathrm{of} \ \mathrm{the} \ \mathrm{time} \ \mathrm{period} \ \mathrm{given} \ \mathrm{by} \ T = [5.0, 10.0, 20.0, 50.0] \ \mathrm{sec.} \\ \mathrm{span}(t), \ (10.0, 20.0, 50.0); \\ \mathrm{span}(t), \ (10.$
functi ## f= fr dv w= F= an ph re end Ploting th	<pre>ing the results xs = plt.subplots(nrows=4, ncols=2, figsize=(18, 12)) ght_layout(pad=3.0) =["orange", "green", "red", "blue"] in 1:4 amp, phase, t, w, periodo=exercise3(dt, w0, T[i]) s[i,1].plot(t, real.(f), c=colors[i], label="f(t), T=\$periodo") s[i,1].grid("True") s[i,1].set_title("Harmonic signal") s[i,1].set_xlabel("Time [seg]") s[i,1].set_ylabel("Amplitude") s[i,1].legend(loc="upper right")</pre>
functi t= #f fr dw w= F= an ph re end exercis bull = 2. # plot fig, a fig.ti colors for i f, ax ax ax ax ax ax ax ax	ss[i,2].plot(w,amp, c=colors[i], label=" F(ω) , T=\$periodo") ss[i,2].grid("True") ss[i,2].set_title("Amplitude Spectrum")
functi t= ## f= fr dw w= F= an ph re end exercis Volume 15.0 dt=0.5 ω0= 2.0 # plott fig, a fig.ti colors for i f, ax	S[1,2].set_title("Amplitude Spectrum") S[1,2].set_xlabel("ω") S[1,2].set_xtick(s(s(π/2):2π)) S[1,2].set_xtick(s(s(π/2):2π)) S[1,2].set_xtick(albels(("ω"), "π/2", "π", "(3/2)π", "2π"]) S[1,2].set_ylabel("Amplitude") S[1,2].set_ylabel("Amplitude") S[1,2].set_ylabel("Best") Harmonic signal Amplitude Spectrum F(ω) 10 10 10 10 10 10 10 10 10 1
function to the state of the s	S[i,2].set_title("Amplitude Spectrum") S[i,2].set_title("Amplitude Spectrum") S[i,2].set_xticks(0:π/2:2*π) S[i,2].set_xticks(0:π/2:2*π) S[i,2].set_xticklabels(["0", "π/2", "π", "(3/2)π", "2π"]) S[i,2].set_wlabel("Amplitude") S[i,2].legend(loc="best") Harmonic signal Amplitude Spectrum F(ω)
function the second se	\$\frac{1}{2}, 2 = \text{int \text{Tree}^{\text{**}}}{\text{**}\text{2}} \text{**}\text{2} \text{**}\text{3} \text{**}\text{2} \text{**}\text{3} \text{2} \text{**}\text{3} \text{2} \text{**}\text{3} \text{2} \text{3} \
functing the first state of the	5(5,2) - 1,0
function $t=1$ for $t=1$	### State Property ### State ### State Property ### State ### State Property
function $t=1$ and $t=1$	Applied Spottum Harmonic sporal Applied Spottum Find Table Applied Spo
function the same of the second of the seco	The state of the months are the state of the months and are the state of the months are the months are the state of the months are the state of the months are the month
function the state of the stat	The Fourier Transform of the following singular and a second part of the fourier transform of the following singular and a second part of the fourier transform of the following singular and a second part of the fourier transform of the following singular and a second part of the fourier transform of the following singular and a second part of the fourier transform of the following singular and a second part of the following singular and a second part of the fourier transform of the following singular and a second part of the following singular and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The control of the co
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Particular Transfer on the bibliographic of the state of