Advances in Optimization Methods for Machine Learning

(2016 - 2017)

Xiaotong Yuan

BDAT Lab
Nanjing University of Information Science and Technology

Context

Large-Scale Machine learning

Large-scale Learning=Optimization over BIG Data

ERM: large n, large d, complex loss/penalty

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

(x, y) = (features, labels) n=# of samples d=dimension

(Elad Hazen, tutorial 2017)

Outline

- Stochastic Variance Reduction Grad. ++
 - Nonconvex + SVRG/SAGA (Reddi et al., ICML 2016; Allen-Zhu & Hazan, ICML 2016; Reddi et al., NIPS 2016)
 - Sparsity + SVRG (Li et al., ICML 2016; Chen & Gu, UAI 2016)
 - Frank-Wolfe + SVRG (Hazan & Luo., ICML 2016)
- Distributed and parallel settings
 - Communication-efficient distributed statistical inference (Jordan et.al, Arxiv 16)
- Optimization for training deep models
 - ADMM for DNN (Taylor et al., ICML 16; Yang et al., NIPS 16)
 - Sparse DNN training (Han et al., ICLR 16/17; Jin et al., Arxiv 16)

Nonconvex SVRG

Nonconvex finite-sum problems

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Difficult to optimize, but local minima, maxima, saddle points satisfy $\nabla g(\theta) = 0$

Stationarity gap:

$$\mathbb{E}[\|\nabla g(\theta_t)\|^2] \le \epsilon$$

Nonconvex SVRG (Cont.)

```
\begin{array}{l} \textbf{for s=0 to S-1} \\ \theta_0^{s+1} \leftarrow \theta_m^s \\ \tilde{\theta}^s \leftarrow \theta_m^s \\ \textbf{-for t=0 to m-1} \\ \textbf{Uniformly randomly pick } i(t) \in \{1,\dots,n\} \\ \theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \Big[ \nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \Big] \\ \textbf{-end} \\ \textbf{-end} \end{array}
```

Algorithm is identical to convex SVRG

Nonconvex SVRG (Cont.)

Complexity results

Algorithm	Nonconvex	Nonconvex-PL	
SGD	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(\frac{1}{\epsilon^2}\right)$	
GD	$O\left(\frac{n}{\epsilon}\right)$	$O\left(\frac{n}{2\mu}\log\frac{1}{\epsilon}\right)$	
SVRG	$O(n + \frac{n^{2/3}}{\epsilon})$	$O\left(\left(n + \frac{n^{2/3}}{2\mu}\right)\log\frac{1}{\epsilon}\right)$	
SAGA	$O(n + \frac{n^{2/3}}{\epsilon})$	$O\left(\left(n + \frac{n^{2/3}}{2\mu}\right)\log\frac{1}{\epsilon}\right)$	
MSVRG	$O\left(\min\left(\frac{1}{\epsilon^2}\right), \frac{n^{2/3}}{\epsilon}\right)$		

(Reddi et al., ICML 2016; Allen-Zhu & Hazan, ICML 2016)

SVRG for Nonconvex Composite Opt.

Nonconvex composite optimization:

$$\min_{x \in \mathbb{R}^d} \quad F(x) := \underbrace{f(x) + h(x)}_{\text{nonconvex}} \quad \text{convex}_{\text{nonsmooth}}$$

Once again variance reduction works!

Algorithm	IFO	РО	IFO (PL)	PO (PL)	Constant minibatch?
PROXSGD	$O\left(1/\epsilon^2\right)$	$O\left(1/\epsilon ight)$	$O\left(1/\epsilon^2\right)$	$O\left(1/\epsilon\right)$?
ProxGD	$O\left(n/\epsilon\right)$	$O(1/\epsilon)$	$O\left(n\kappa\log(1/\epsilon)\right)$	$O\left(\kappa\log(1/\epsilon)\right)$	-
PROXSVRG	$O(n + (n^{2/3}/\epsilon))$	$O(1/\epsilon)$	$O((n + \kappa n^{2/3}) \log(1/\epsilon))$	$O(\kappa \log(1/\epsilon))$	√
PROXSAGA	$O(n + (n^{2/3}/\epsilon))$	$O(1/\epsilon)$	$O((n + \kappa n^{2/3}) \log(1/\epsilon))$	$O(\kappa \log(1/\epsilon))$	\checkmark

(Reddi et al., NIPS 2016)

SVRG for Sparse Learning

Sparsity-constrained optimization

$$\min_{oldsymbol{w}\in\mathbb{R}^d}\mathcal{F}(oldsymbol{w})$$
 s.t. $\|oldsymbol{w}\|_0\leq k$

Nonconvex and NP-hard!

Gradient Hard Thresholding (GHT)

$$\boldsymbol{w}^{(t+1)} = \mathcal{H}_k \left(\boldsymbol{w}^{(t+1)} - \eta \nabla \mathcal{F}(\boldsymbol{w}^{(t+1)}) \right)$$

Gradient descent + Hard truncation

SVR-GHT

Algorithm 1 Stochastic Variance Reduced Gradient Hard Thresholding Algorithm.

Input: update frequency m, step size parameter η , sparsity k, and initial solution $\widetilde{\boldsymbol{w}}^{(0)}$

```
\begin{aligned} &\widetilde{\boldsymbol{w}} = \widetilde{\boldsymbol{w}}^{(r-1)}, \, \widetilde{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\widetilde{\boldsymbol{w}}), \, \boldsymbol{w}^{(0)} = \widetilde{\boldsymbol{w}} \\ &\mathbf{for} \ t = 0, 1, \dots, m-1 \\ &(\text{S1) Randomly sample } i_t \ \text{from } [n] \\ &(\text{S2)} \ \overline{\boldsymbol{w}}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \left( \nabla f_{i_*}(\boldsymbol{w}^{(t)}) - \nabla f_{i_*}(\widetilde{\boldsymbol{w}}) + \widetilde{\boldsymbol{\mu}} \right) \\ &(\text{S3)} \ \boldsymbol{w}^{(t+1)} = \mathcal{H}_k(\bar{\boldsymbol{w}}^{(t+1)}) \quad \text{hard truncation} \\ &\mathbf{end for} \\ &\widetilde{\boldsymbol{w}}^{(r)} = \boldsymbol{w}^{(m)} \\ &\mathbf{end for} \end{aligned}
```

SVRG + Hard truncation

Exhibits similar convergence behavior to GHT!

(Li *et al., ICML* 2016)

SVRG for Projection-Free Optimization

Convex constrained optimization

$$\min_{\boldsymbol{w}\in\Omega} f(\boldsymbol{w}) = \min_{\boldsymbol{w}\in\Omega} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$$

Quadratic Projection: $\operatorname{argmin}_{\boldsymbol{v} \in \Omega} \|\boldsymbol{w} - \boldsymbol{v}\|^2$

Linear Projection: $\operatorname{argmin}_{\boldsymbol{v} \in \Omega} \boldsymbol{w}^{\top} \boldsymbol{v}$

Frank-Wolfe Algorithm: LP much faster than QP

$$\boldsymbol{v}_k = \operatorname*{argmin}_{\boldsymbol{v} \in \Omega} \nabla f(\boldsymbol{w}_{k-1})^{\top} \boldsymbol{v}$$

$$\boldsymbol{w}_k = (1 - \gamma_k) \boldsymbol{w}_{k-1} + \gamma_k \boldsymbol{v}_k$$

SVRG-FW

Algorithm 1 Stochastic Variance-Reduced Frank-Wolfe (SVRF)

- 1: **Input:** Objective function $f = \frac{1}{n} \sum_{i=1}^{n} f_i$.
- 2: **Input:** Parameters γ_k , m_k and \tilde{N}_k .
- 3: Initialize: $w_0 = \min_{w \in \Omega} \nabla f(x)^{\top} w$ for some arg-VRG trary $x \in \Omega$.
- 4: **for** t = 1, 2, ..., T **do**
- 5: Take snapshot: $x_0 = w_{t-1}$ and compute $\nabla f(x_0)$.
- 6: **for** k = 1 **to** N_t **do**
- 7: Compute $\tilde{\nabla}_k$, the average of m_k iid samples of $\tilde{\nabla} f(x_{k-1}, x_0)$.
- 8: Compute $v_k = \min_{v \in \Omega} \nabla_k^{\top} v$.
- 9: Compute $x_k = (1 \gamma_k)x_{k-1} + \gamma_k v_k$.
- 10: **end for**
- 11: Set $w_t = x_{N_t}$.

Frank-Wolfe

12: end for

SVRG + Frank-Wolfe

	previous work	this work	
Smooth	$\mathcal{O}(rac{1}{\epsilon^2})$	$\mathcal{O}(rac{1}{\epsilon^{1.5}})$	
Smooth and	$\mathcal{O}(\frac{1}{\epsilon})$	$\mathcal{O}(\ln \frac{1}{\epsilon})$	
Strongly Convex	$\mathcal{O}(\frac{1}{\epsilon})$		

Improved complexity bound

(Hazan & Luo, ICML 2016)

Distributed Optimization

master machine

Distributed data storage:

$$D = [D_1, D_2, ..., D_i, ..., D_M]$$

 $\forall j, D_i$ is stored on machine M_i

Global solution

 $w^* = \underset{w}{\operatorname{arg\,min}} \left\{ F(w) := \sum_{(x_i, y_i) \in D} l(w \mid x_i, y_i) \right\}$

slave machines

Local solution on M_j

$$w_j^* = \underset{w}{\operatorname{arg\,min}} \left\{ F_j(w) := \sum_{(x_i, y_i) \in D_j} l(w \mid x_i, y_i) \right\}$$

Problem: How to calculate w^* based on $\{w_i^*\}_{i=1}^M$

Practical Issues:

- communication cost
- local machine processing delay

.

Communication-Efficient Distributed Statistical Inference

Global loss:

$$\mathcal{L}_N(\theta) = \frac{1}{N} \sum_{i=1}^n \sum_{j=1}^k \mathcal{L}(\theta; z_{ij}) = \frac{1}{k} \sum_{j=1}^k \mathcal{L}_j(\theta)$$

Local loss of machine j:

$$\mathcal{L}_{j}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta; z_{ij}), \text{ for } j \in [k],$$

Key Idea: surrogate construction based on local higher-order derivative and global first-order derivative

$$\begin{split} \widetilde{\mathcal{L}}(\theta) &= \mathcal{L}_N(\overline{\theta}) + \langle \nabla \mathcal{L}_N(\overline{\theta}), \theta - \overline{\theta} \rangle + \sum_{j=2}^{\infty} \frac{1}{j!} \, \nabla^j \mathcal{L}_1(\overline{\theta}) \, (\theta - \overline{\theta})^{\otimes j} \\ & \qquad \qquad \text{global} & \qquad \qquad \text{local} \end{split}$$

(Jordan et.al, Arxiv 16)

```
1 Initialize \theta^{(0)} = \overline{\theta};
 <sub>2</sub> for t = 0, 1, ..., T - 1 do Distributed global gradient evaluation
          Transmit the current iterate \theta^{(t)} to local machines \{\mathcal{M}_j\}_{j=1}^k;
          for j = 1 : k \text{ do}
               Compute the local gradient \nabla \mathcal{L}_j(\theta^{(t)}) at machine \mathcal{M}_j;
              Transmit the local gradient \nabla \mathcal{L}_j(\theta^{(t)}) to machine \mathcal{M}_1;
 7
          end
          Calculate the global gradient \nabla \mathcal{L}_N(\theta^{(t)}) = \frac{1}{k} \sum_{j=1}^k \nabla \mathcal{L}_j(\theta^{(t)}) in Machine \mathcal{M}_1;
          Form the surrogate function \mathcal{L}^t(\theta) = \mathcal{L}_1(\theta) - \langle \theta, \nabla \mathcal{L}_1(\theta^{(t)}) - \nabla \mathcal{L}_N(\theta^{(t)}) \rangle;
          Do one of the following in Machine \mathcal{M}_1:
          (1). Update \theta^{(t+1)} \in \arg\min_{\theta \in \Theta} \widetilde{\mathcal{L}}^t(\theta); // Exactly minimizing surrogate function
          (2). Update \theta^{(t+1)} = \theta^{(t)} - \nabla^2 \mathcal{L}_1(\theta^{(t)})^{-1} \nabla \mathcal{L}_N(\theta^{(t)}); // One-step quadratic
                                                                    Local surrogate minimization
          approximation
13 end
14 return \theta^{(T)}
```

Algorithm 1: Iterative local estimation

ADMM in Deep Learning

General form of DNN

$$\min_{W} \ \ell(f(a_0; W), y)$$
 α_0 - input activations h - activation function

 $W=\{W_1, W_2, ..., W_L\}$ - the weight matrices

h - activation function

Constrined form of DNN:

minimize
$$\{W_l\}, \{a_l\}, \{z_l\}$$

subject to $z_l = W_l a_{l-1}$, for $l = 1, 2, \dots L$
 $a_l = h_l(z_l)$, for $l = 1, 2, \dots L - 1$.
minimize $\{U(z_L, y)\}$
 $\{W_l\}, \{a_l\}, \{z_l\}$
 $\{U(z_L, y)\}$
 $\{U(z_L,$

Bregman ADMM

Merits:

- 1. Do not need gradient propagation
- 2. Exhibits strong scaling in the distributed computing environment

(Taylor *et al., ICML* 2016)

Sparse DNN Training

Comparison with other model reduction methods on AlexNet

(Han, et al., NIPS 2015)

Sparse DNN Training (Cont.)

Three stage compression: pruning, quantization and Huffman coding. (Han et al., ICLR 2016)

Dense-Sparse-Dense Training. (Han et al., ICLR 2017, Jin et al., Arxiv 2016)

Other Interesting Work

Stochastic optimization methods

Newton-type methods (Garber et al., ICML 2016)

Adaptive Blockwise Frank-Wolfe (Osokin et al., ICML 2016)

New insights and improvements on SDCA (Shai Shalev-Shwartz, *ICML* 2016)

SGD without replacement sampling (Shamir., NIPS 2016)

Distributed and parallel optimization

Parallel/distributed Frank-Wolfe (Wang et al., ICML 2016)

Adaptive delay (Sra et al., AISTATS 2016)

Distributed Kernel PCA (Balcan et.al, KDD 2016)

Distributed Submodular Cover (Mirzasoleiman et al., NIPS 2016)

Other Interesting Work (Cont.)

Optimization for training deep models

Improved training methods for GANs (Salimans et al., NIPS 2016)

Weight/Layer normalization for acceleration (Salimans & Kingma et.al, NIPS 2016; Ba et al., Arxiv 2016)

Distributed second-order optimization (Ba et al., ICLR 2017)

Fast top eigenvector computation (Garber et al., ICML 2016)

Convergence acceleration (Scieur et al., NIPS 2016)

NOT touch upon:

Online learning/optimization, Bayesian inference in graphical models, Markov-chain Monte-Carlo, Partial information and bandit algorithms,...

Perspectives

Nonconvex optimization

Impact of non-convexity on generalization

Information-Theoretic limits for nonconvex finite-sums

Duality theory for nonconvex optimization

More "tractable" nonconvex models

Infinite dimensional nonconvex problems

Communication-efficient distributed optimization (theory and implementation)

Energy economic training of deep models

Polynomial optimization

New applications/software toolkits

and many more...

Thank you!