

ZHITNITSKIY, S.I.

Investigating the effect of some factors on the shear of  
borders of cast-iron parts caused by broaching. Stan. i  
instr. 34 no.10:29 0 '63. (MIRA 16:11)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITNITSKIY, S.I.

Wear of hard alloy broaches in broaching cast iron. Stan. 1  
instr. 35 no.1:32-34 Ja '64. (MIRA 17:3)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITNITSKIY, S.I.

Sectional hard-alloy broach. Stan.1 instr. 33 no.7:28-29 J1 '62.  
(MIRA 15:7)  
(Broaching machines)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

8/123/62/000/023/007/008  
A004/A101

AUTHOR: Zhitnitskiy, S. I.

TITLE: Comparing the resistance to wear of various tool materials in broaching of cast-iron parts

PERIODICAL: Referativnyy zhurnal, Mashinostroyeniye, no. 23, 1962, 86, abstract 23B499 ("Avtomob. prom-st'", 1962, no. 6, 40)

TEXT: Tests were carried out with the following six sintered carbide grades on specimens of grade C 421-40 (S421-40) cast iron of HB 210 - 217 hardness: BK4 (VK4), BK 6 M (VK6M), BK 8 (VK8), TT 7 K12 (TT7K12), T5K10 (T5K10) and T 15 K6 (T15K6), and also with P 18 (R18) high-speed steel. The tests were conducted at  $\gamma$  - 1.3, 5, 6, 8, 10, 15, 20 and 30 m/min; S = 0.2 m; B = 4.5 mm. Of all these tool materials, VK6M showed the maximum service life at all cutting speeds and is recommended to be used for the broaching of cast-iron parts. There are 2 figures and 1 table. ✓

[Abstracter's note: Complete translation]

Card 1/1

ZHITNITSKIY, S.I., ANDREYCHIKOV, O.S.

Tool for thread rolling in holes. Stan. i instr. 36  
no.10:28-30 O '65. (MIRA 18:11)

ZHITNITSKIY, Z.; KRYUKOVA, L.

New books. Sots. trud 8 no.9:158-159 S '63. (MIRA 16:10)

1. Nachal'nik otdela truda i zarabotnoy platy fabriki klavishnykh  
instrumentov "Zarya" (for Kryukova).

ZHITNITSKIY, S.P., dots., kand. tekhn. nauk

Thermal-stress analysis of friction-disk brakes. Izv.vys.  
ucheb.zav.; mashinostr. no.2:29-36 '58. (MIRA 11:12)

1. Zaporozhskiy mashinostroitel'nyy institut.  
(Brakes) (Thermal stresses)

ACCESSION NR: AP4019093

z/0038/64/000/003/0085/0085

AUTHOR: Zitnansky, Bohumil (Zhitnyanski, B.)

TITLE: A study of the transition of chromium and sulfur into welding filler metal

SOURCE: Jaderna energie, no. 3, 1964, 85

TOPIC TAGS: isotope exchange, welding rod, welding electrode, welding metal filler, chromium, sulfur, welding, filler metal, Cr<sup>51</sup>, S<sup>35</sup>

ABSTRACT: The transition of chromium and sulfur into welding filler metal was studied with the help of Cr<sup>51</sup> and S<sup>35</sup>. Activated chromium and sulfur were in the electrode coating. Activation was effected by a simultaneous immersion of the electrodes in a solution of Cr<sup>51</sup> and S<sup>35</sup> with isotope exchange. Radiometric evaluation was done by a double measurement. The activity of chromium was established by a gamma scintillation counter, while the S<sup>35</sup> radiation was measured with a beta scintillation counter without window. Certain relations were established for the welding electrode. A large amount of chromium evaporates out of the electric arc under given welding conditions, whereupon the relatively

Card 1/2

ACCESSION NR: AP4019093

marked transition of chromium for the given chromium-nickel electrode takes place in that case when the chromium is found in the electrode coating. In a contrary case, the chromium losses are more substantial. Sulfur transforms from coating into metal almost completely. [Abstractor's note: this is a complete translation of the original article.] Orig. art. has no graphics.

ASSOCIATION: Vuzkumny ustav svaracsky, Bratislava (Research institute for welding)

SUBMITTED: 00

DATE ACQ: 23Mar64

ENCL: 00

SUB CODE: IE, ML

NO REF SOV: 000

OTHER: 000

Card 2/2

ZHITNITSKIY, S.P.

Designing multiple-disk (plate) brakes for the TB electric pulleys.  
Trudy KhPI. Ser.mash. 19 no.5:183-190 '59. (MIRA 14:9)  
(Pulleys--Brakes)

ZHITNYUK, R.I. (Leningrad, Pesochnaya ul., d.24, kv.8)

Immediate and late results of the application of gall bladder  
fistula in acute cholecystitis. Vest.khir. no.4:75-78 '61.  
(MIRA 14:4)

1. Iz fakul'tetskoy khirurgicheskoy kliniki No.2 (raph. - prof.  
M.S. Lisitsyn) Vojenno-meditsinskoy ordena Lenina skademii im.  
S.M. Kirova.

(GALL BLADDER—SURGERY)

ZHITNYUK, R.I.; SHEMYAKIN, I.S.

Hernia of the xiphoid process. Vest.khir. no.1:141 '62.

(MIRA 15:1)

1. Iz 2-y fakul'tetskoy khirurgicheskoy kliniki (nach. - prof.  
M.S. Lisitayn [deceased]), Voyenno-meditsinskoy ordena Lenina  
akademii im. S.M. Kirova.

(XIPHOID PROCESS—HERNIA)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITNYUK, R.I. (Leningrad)

Neurinoma of the pelvis minor simulating an inoperable tumor  
of the rectum. Vop. neirokhir. 26 no.6:56 N-D'62 (MIRA 17:3)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

ZHITNYUK, R.I. (Leningrad, 18, ul. Pesochnaya, d. 24, kv. 8)

Study of prothrombin in stomach diseases. Klin.khir. no.8:40-42  
J1 '62. (MIRA 15:11)

1. Kafedra voyenno-morskoy khirurgii (nachal'nik - prof. A.A.  
Bocharov) Voyenno-meditsinskoy ordena Lenina akademii imeni  
S.M.Kirova.

(PROTHROMBIN) (STOMACH--DISEASES)

ZHITNYUK, R.I. (Leningrad, Pesochnaya ul., 24, kv.8)

Barre-Masson disease. Vest. khir. 92 no.1:89-91 Ja '64.

(MIRA 17:11)

1. Iz kafedry neyrokhirurgii (nachal'nik - prof. B.A. Samotokin)  
Voyenno-meditsinskoy ordena Lenina akademii imeni Kirova, Leningrad.

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

GREEENYUK, V.I., ZHITNYUK, R.I.

Diagnosis of closed abdominal lesions in patients with a brain  
trauma, Voen.-med. zhur. no.6:26-29 '64. (MIRA 18:5)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITNYY, P.; DUDAREV, V.; OGARKOV, V.; KOPELYANSKIY, V.; NOVIKOV, K.

Exchange of experience. Avt.transp. 42 no.3:55-56 Mr '64.  
(MIRA 17:4)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

BREKHOVSKIKH, S.M., kand.tekhn.nauk; ZHITOMIRSKAYA, E.Z.

Radiation resistance of foam glass. Stek. i ker. 20 no.5:16-17  
My '63. (MIRA 16:7)  
(Glass, Cellular—Testing)

S/081/62/000/023/071/120  
B144/B186

AUTHOR: Zhitomirskaya, E. Z.

TITLE:

PERIODICAL: Preliminary experiments for high-frequency foaming of articles  
Referativny zhurnal. Khimiya, no. 23, 1962, 501, abstract  
23K500 (Steklo. Byul. Gos. n.-i. in-ta stekla, no. 1(110),  
1961, 70 - 71)

TEXT: The tests were carried out in the FA-61-a (GL-61-a) high-frequency melting-tempering apparatus of the Institut stali (Steel Institute). The heating element was a graphite crucible 180 mm high, with 100 mm internal diameter, and 15 mm wall thickness. Several operation conditions were tried: different amperage of the anodic current, different forms of holding with a definite amperage of the anodic current. The operation was controlled by the holding under cover after the current had been switched off, and also the production compositions of the mixture. The preliminary investigation into the production of foam glass in graphite molds with a high-frequency current yielded results showing that uniform foaming is inhibited by a

Card 1/2

S/081/62/000/023/071/120  
B144/B186

Preliminary experiments for...

high temperature gradient along the sample cross-section. [Abstracter's  
note: Complete translation.]

Card 2/2

BAKHVALOV, A.P.; SHRAGO, Z.Kh.; ZHITOMIRSKAYA, L.M.; ISHKOVA, A.K.,  
red.; MAMONTOVA, N.N., tekhn.red.

[Coin mechanisms of vending machines] Monetnye mekhanizmy  
torgovykh avtomatov. Moskva, Gos.izd-vo torg.lit-ry, 1960.  
79 p. (MIRA 13:12)  
(Vending machines)

ZHITOMIRSKAYA, O

M

Klimaticheskoye Opisanije Respublik Sredney Azii (By) Ye. N. Balashova,  
O.M. Zhitomirskaya (1) O.A. Semenova. Leningrad, Gimiz, 1960.  
240 (1) p. Diagrs., Tables  
At Head of Title: Glavnoye Upravleniye Gidrometeorologicheskoy  
Sluzhby Pri Sovete Ministrov SSSR, and Sredneaziatskiy Nauchno-Issledovatel'skiy  
Gidrometeorologicheskiy Institut.  
Bibliography: P. 240-(241)

BALASHOVA, Yelena Nikolsyevna; ZHITOMIRSKAYA, Ol'ga Moiseyevna;  
SIMONOVA, Ol'ga Alekseyevna; ZHDANOVA, L.P., red..  
V redaktyorsnii priminal uchastiye KOZIK, S.M.. VLADIMIROV,  
O.G.; tekhn.red.

[Climatic description of the republics of Central Asia]  
Klimaticheskoe opisanie respublik Srednei Azii. Leningrad,  
Gidrometeor.izd-vo, 1960. 240 p. (MIRA 13:8)  
(Soviet Central Asia--Climate)

ZHITOMIRSKIY, Aleksandr

Posed pictures are easily detected. Sov. foto 20 no. 12:24  
D '60. (MIRA 14:1)

1. Glavnnyy khudozhnik zhurnala "Sovetskiy Soyuz."  
(Photography)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

GORELIK, I.; ZHITOMIRSKIY, R.

Quality of merchandise inspections. Sov.torg. no.4:37-40 Ap '59.  
(MIRA 12:6)

(Commercial products--Testing)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

ZHITOMIRSKIY, Emanuil Grigor'evich

N/5

729.43

.Z6

Finansirovaniye I Dreditovaniye Predpriyatiy Lesnoy Promyshlennosti Finance and credit in Timber Industrial Enterprises, Moskva, Goslesbumizdat, 1957.

67 p. tables.

At head of title: Moscow, Nauchno-Technicheskoye Obshchestvo Lesnoy Promyshlennosti.

Bibliographical Footnotes.

KIRILLOV, I.A., prof.; BORODIN, S.V.; VINOGRADOV, R.D.; VOSKRESENSKIY, A.A.;  
GIROVSKIY, V.F.; ZHITOMIRSKIY, E.G.; SAFRAY, G.Ye.; SYCHEV, N.G.;  
NIKITIN, N.D.; FILATOV, N.L.; FIALKOVA, V., red.; LEZHDEV, A.,  
tekhn.red.

[Finances of branches of the national economy] Finansy otriaslei  
narodnogo khoziaistva. Avtorskii kollektiv pod rukovodstvom  
I.A.Kirillova. Moskva, Gosfinizdat, 1958. 302 p. (MIRA 12:2)  
(Finance)

SMIRNOV, Petr Vasil'yevich; ZHITOMIRSKIY, Emmanuil Grigor'yevich;  
KORENEV, A., otv.red.; POGODIN, Yu., red.izd.-va; TLEGINA, T.,  
tekhn.red.

[Finances of supply and sale organizations] Finansy snabzhen-  
chesko-sbytovykh organizatsii. Moskva, Gosfinizdat, 1959.  
130 p. (MIRA 13:3)

(Finance)

ZHITOMIRSKIY, I. B.

Cand Tech Sci - (diss) "Study of new designs of mine surveyor gyro-compasses." Leningrad, 1961. 21 pp with illustrations; (Ministry of Higher and Secondary Specialist Education RSFSR, Leningrad Orders of Lenin and Labor Red Banner Mining Inst imeni G. V. Plekhanov); 200 copies; price not given; (KL, 5-61 sup, 189)

ZHITOMIRSKIY, I.B.

Effect of the moment of external forces on the stability of readings  
of a gyrocompass having the sensing element centered on the pin.  
Izv.vys.ucheb.zav.; prib. 4 no.3: 59-67 '61. (MIRA 14:6)

1. Vsesoyuznyy nauchno-issledovatel'skiy marksheyderskiy institut.  
Rekomendovana Orgkomitetom Vtoroy mezhevuzovskoy konferentsii po  
problemam sovremennoy giroskopicheskoy tekhniki.  
(Gyrocompass)

VASIL'YEV, A.G. (Khar'kov); ZHITOMIRSKIY, I.S. (Khar'kov); KLEMPNER, K.S.  
(Khar'kov)

Reliability criteria of automatic relay devices with radioactive  
emitters. Avtom.i telem. 21 no.7:245-253 F '60.  
(MIRA 13:5)  
(Switching theory)

8/137/61/000/012/022/149  
A006/A101

AUTHORS: Zhitomirskiy, I. S., Likht, M. K., Dreyzin-Dudchenko, S. D.

TITLE: A method of calculating the temperature field and the crystallization front in the zone of secondary cooling in square section ingots during continuous teeming of steel.

PERIODICAL: Referativnyy zhurnal. Metallurgiya, no. 12, 1961, 60, abstract 12V367 ("Sb. nauchn. tr. Gos. n.-i. i proyektn. in-t metallurg. prom-sti "Giprostal", 1960, no. 2; 145 - 151)

TEXT: A method is described to calculate the temperature fields and crystallization front in secondary cooling zones of square-section ingots during continuous teeming of steel. It is noted that the accuracy of calculation by this method is sufficient for practical purposes and that results of calculating the temperature field can be applied to investigate the effect of cooling conditions on mechanical stresses in the crust and on the quality of the ingot. By varying the values of dimensionless criteria of similarity, a sufficiently complete table of data can be obtained for the depth of the liquid phase for parameters of different values, and corresponding recommendations can be given as to the height of

Card 1/2

A method of calculating the ...

S/137/61/000/012/022/149  
A006/A101

the secondary cooling zone.

V. Gasilina ✓

[Abstracter's note: Complete translation]

Card 2/2

ZHITOMIRSKIY, M.O., inzh.

New method of calculating some flight characteristics of a plane  
with a turbojet engine for altitudes N 11,000 meters. Vest. Vozd.  
Fl. 41 no.8:85-86 Ag '58. (MIRA 11:9)  
(Airplanes--Turbojet engines)

ZHITOMIRSKIY, M.R.

Production lines in thread manufacture. Tekst.prom. 20 no.7:  
63-64 Jl '60. (MIRA 13:7)  
(Thread)

DELONE, B.; ZHITOMIRSKY, O. [deceased]; IVASHEV-MUSATOV, O.S., red.;  
GOLUBKUVA, L.A., tekhn.red.

[Problems in geometry] Zadachnik po geometrii. Izd.7., stereo-  
tipnoe. Moskva, Gos.izd-vo fiziko-matem.lit-ry, 1959. 294 p.  
(MIRA 12:11)  
(Geometry--Problems, exercises, etc.)

~~RESTRICTED~~

ZHITNIKOV, S. S.

KOBEKO, P. P., KUVSKINSKIY, E. V., VACHAYEV, I. P., GORODETSKAYA, N. A.,  
and ZHITNIKOV, S. S.

J. Phys. Chem. (USSR), 2, 376-86 (1937)

A study of the amorphous state. IX. Electric conductivity and  
viscosity of alcohols.

~~RESTRICTED~~

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITNIKOV, V. (Tambovskaya oblast').

The oldest motorcycle driver. Za rul. 14 no.8:6 '56. (MIRA 10:9)  
(Gurelev, Konstantin Nikolaevich)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

ZHITNIKOV, Ye.I., inzhener.

Methods of transmitting video signals and sound on one carrier frequency. Tekh.televid.no.5:43-60 '55. (MIRA 10:2)  
(Television--Transmitters and transmission)



ZHITNYUK, I., leytenant.; YAKUSHEV, A., mayor

Battle formations of tank units; reactions to an article published  
in no. 2. Voen. vest. 38 no. 8:34-35 Ag '58. (MIRA 11:?)  
(Tank warfare)

1. ZHITNYUK, I. D.
2. USSR (600)
4. Burns and Scalds
7. Loss of plasma in burns and efforts to control it. Novosti med. no. 24, 1951.
  
9. Monthly List of Russian Accessions, Library of Congress, February 1953. Unclassified.

1. ZHITNYUK, I. D.
2. USSR (600)
4. Burns and Scalds
7. Determination of extent of burned surface in laboratory animals. Novosti med. no. 24, 1951.

  

9. Monthly List of Russian Accessions, Library of Congress, February 1953, Unclassified.

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

ZHITYVYOK [REDACTED]

Combined therapy of extensive burns using fibrin film. Vest.khir.  
73 no.4:94-95 Ap '57.

(MLRA 10:9)

1. Iz K-akogo gospitalya (nach. - N.A.Westerov)  
(BURNS, therapy,

fibrin film in complex ther. (Rus))  
(HEMOSTATICS, therapeutic use,

fibrin film in complex ther. of burns (Rus))

91. Combined-Therapy Using Antibiotics, Blood Transfusion, and Fibrin Film  
Decreases Dangers of Extensive Burns

"Combined Therapy of Extensive Burns by the Application of  
Fibrin Films," by R. I. Zhitnyuk, "N" Hospital (chief, M. A.  
Nesterov), *Vestnik Khirurgii imeni I. I. Grekov*, Vol 78, No 4,  
Apr 57, pp 94-95

The author gives the medical history of one patient suffering from  
burns on 72% of his body surface as a result of a compressed gas explosion  
in a closed space.

On arrival at the surgical department, the patient's condition was  
serious: blood pressure 85/44 mm Hg, heart beat weak, etc. The condition  
of the patient was immediately improved by morphine administration, blood  
transfusion, etc.

After getting the patient out of shock, the burnt surface of the patient's body was treated under ether anesthesia by gauze tampons moistened with furacilin (5-nitro-2-furfurylidine-semicarbazone). On the burnt surface perforated fibrin films were laid and these were later covered by gauze also moistened with furacilin. Every 2 days these gauze coverings were moistened with furacilin solution without removing them from the burnt surface. Infusion of 5% glucose in physiological solution, penicillin (30 million units), streptomycin (15 g) and food rich in proteins and vitamins was prescribed.

After 15 days the fibrin films were removed, and portions of dry skin with good epithelialization were seen. Necrotic tissue sloughed off in 32 days, and the patient was discharged after 2 1/2 months.

The author concludes that this case history demonstrates that a timely application of combined therapy using large quantities of antibiotics, blood transfusion, and fibrin films brings about a significant decrease in the possibility of a fatal outcome in cases of extensive burns. (U)

ZHITNYUK, R.I. (Leningrad, pr. K. Marks, d.6, kv.30)

Cholecystostomy in acute cholecystitis. Vest.khir. 83 no.10:43-47  
O '59.  
(MIRA 13:2)

1. Iz fakul'tetskoy khirurgicheskoy kliniki No.2 (nachal'nik - prof.  
M.S. Lisitsin) Voyenno-meditsinskoy ordena Lenina akademii im. S.M.  
Kirova).

(CHOLECYSTITIS surgery)



ZHITOMIROVA, N. N.

N. K. Krupskaia on rukovodstve detskim chteniem (N. K. Krupskaia on the guidance of children's reading.) Moskva, Goskul(tprosvetizdat, 1952. 24 p.

SO: Monthly List of Russian Accessions, Vol 6, No. 3, June 1953

L 10522-63

EWP(q)/EWT(m)/ADS--AFFTC/ASD--Pq-4--dt

ACCESSION NR: AP3000392

S/0072/63/000/005/0016/0017

AUTHOR: Brekhovskikh, S. M.; Zhitomirskaya, E. Z.

59

TITLE: Radiation stability of foamed glass

SOURCE: Steklo i keramika, no. 5, 1963, 16-17

TOPIC TAGS: foamed glass, composition, service temperature, mechanical strength, radiation stability, radiation, foaming agent

ABSTRACT: The radiation resistance of two types of foamed glass has been studied. The first type was prepared from 90 to 95% alkali window glass (71.5% SiO<sub>2</sub>, 1 to 1.5% Al<sub>2</sub>O<sub>3</sub>, 7.5 to 8% CaO, 3 to 3.5% MgO, 15% Na<sub>2</sub>O) and 10 to 5% Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, or ZrO<sub>2</sub>, with the addition of 0.5 to 1% SiC or carbon black, or 4% MnO as foaming agents. The second type was prepared from 70 to 80% nonalkali barium glass (60.5% SiO<sub>2</sub>, 14.6% Al<sub>2</sub>O<sub>3</sub>, 16.2% CaO, 8.7% BaO, + 2% Fe) and 30 to 20% Cr<sub>2</sub>O<sub>3</sub> or ZrO<sub>2</sub>, with the addition of 0.5 to 1% SiC or carbon black. The approximate service temperature of the glasses is 600 to 800°C; the highest compressive strength, 51.7 to 74.4 kg/cm<sup>2</sup>, is exhibited by specimens produced with use of SiC. The glasses were irradiated with thermal neutrons for 84 hrs (total flux about 10<sup>18</sup> neutron·cm<sup>-2</sup>)

Card 1/2

19

L 10522-63

ACCESSION NR: AP3000392

and subjected to compression tests. The tests showed that the mechanical strength of the specimens remained almost unchanged. It was concluded that foamed glasses from alkali window glass and  $TiO_2$  or  $ZrO_2$  and from nonalkali barium glass with  $Cr_2O_3$  or  $ZrO_2$  are resistant to radiation and can be used as heat-resistant thermal insulation in equipment exposed to gamma-neutron radiation.

ASSOCIATION: none

SUBMITTED: 00

DATE ACQ: 11Jun63

ENCL: 00

SUB CODE: CH

NO REF Sov: 000

OTHER: 000

Card 2/2  
*msd/ch*

ZHITOMIRSKAYA, E.Z., kand.tekhn.nauk

Causes of the increase of water absorption of foam glass.  
Stek.i ker. 20 no.2:19-20 F '63. (MIRA 16:2)

1. Institut stekla.

(Glass, Cellular)

ZHITOMIESKAYA G. M.

AYZENSHTAT, Boris Abramovich; BALASHEVA, Yelena Nikolayevna; ZHITOMIESKAYA,  
Ol'ga Macisevyna; BABUSHKIN, L.N., prof., red.; ZHDANOVA, L.P.,  
red.; PLAUM, M.Ya., tekhn.red.

[Climatological description of the Golodnaya Steppe] Klimaticheskoe  
opisanie Golodnoi stepi. Pod red. L.N.Babushkina. Leningrad.  
Gidrometeor. izd-vo, 1958. 73 p. (MIRA 11:7)  
(Golodnaya Steppe—Climate)

BALASHOVA, Yelena Nikolayevna; ZHITOMIRSKAYA, Ol'ga Moiseyevna;  
SEMENOVA, Ol'ga Aleksandrovna; KOZIK, S.M., red.; ZHDANOVA,  
L.P., red.; VLADIMIROV, O.G., tekhn.red.

[Climatic characteristics of the republics of Central Asia]  
Klimaticheskoe opisanie respublik Srednei Azii. Leningrad,  
Gidrometeor.izd-vo, 1960. 240 p.  
(Soviet Central Asia--Climate) (MIRA 13:?)

3(3)

PHASE I BOOK EXPLOITATION

SOV/1653

Ayzenshtat, Boris Abramovich, Yelena Nikolayevna Balasheva, and  
Ol'ga Moiseyevna Zhitomirskaya

Klimaticheskoye opisanie Golodnoy stepi. (Climatic Description of the  
Golodnaya Steppe) Leningrad, Gidrometeoizdat, 1958. 73 p. 1,000  
copies printed.

Sponsoring Agencies: USSR. Glavnoye upravleniye gidrometeorologicheskoy  
sluzhby, and Tashkent. Nauchno-issledovatel'skaya geofizicheskaya  
observatoriya

Ed. (Title page): L. N. Babushkin, Professor; Ed. (Inside book):  
L. P. Zhdanova; Tech. Ed.: M. Ya. Flaum

PURPOSE: This booklet is intended for planning and agricultural organizations  
connected with development of the virgin lands of the Golodnaya Steppe. It  
is also of interest to climatologists.

Card 1/3

**Climatic Description of the Golodnaya Steppe**

SOV/1653

**COVERAGE:** This monograph gives a detailed description of climatic characteristics of the Golodnaya Steppe as related to the physicogeographical conditions. With the aid of numerous charts and figures it describes the general conditions, wind regime, dust storms, radiation, cloud conditions, air and soil temperatures, air moisture and drought conditions. An attempt to regionalize the area on the basis of climatological features is also made. There are three Soviet references.

**TABLE OF CONTENTS:**

|                                           |    |
|-------------------------------------------|----|
| Introduction                              | 3  |
| Some Characteristics of Climate Formation | 5  |
| Wind Regime                               | 7  |
| Local Winds                               | 20 |
| Number of Dust Storm Days                 | 24 |
| Radiation Regime and Cloudiness           | 32 |
| Card 2/3                                  |    |

|                                                                                                                      |          |
|----------------------------------------------------------------------------------------------------------------------|----------|
| Climatic Description of the Golodnaya Steppe                                                                         | SOV/1653 |
| Air Temperature                                                                                                      | 34       |
| Soil Temperature                                                                                                     | 50       |
| Air Moisture                                                                                                         | 54       |
| Precipitation                                                                                                        | 58       |
| Dryness of the Air                                                                                                   | 64       |
| Some Adverse Weather Effects                                                                                         | 65       |
| Variations in the Microclimate of the Virgin Lands of<br>Golodnaya Steppe Due to Their Utilization in Cotton Culture | 67       |
| The Characteristics of Separate Sections of the Golodnaya<br>Steppe                                                  | 71       |
| Bibliography                                                                                                         | 75       |

AVAILABLE: Library of Congress (QC990.R9236)  
Card 3/3

MM/eag  
5-9-59

ZHITOMIRSKAYA, O.M.; SABININA, I.G.; SEMENOVA, O.A., otv. red.;  
LIVSHITS, B.Ye., red.; NIKOLAYEVA, G.S., tekhn. red.

[Climatic description of the Usturt] Klimaticeskoe opisanie Ustiurta. Leningrad, Gidrometeoizdat, 1963. 57 p.  
(MIRA 16:11)  
(Usturt—Climate)

ZHITOMIRSKAYA, O.M.; SABININA, I.G.; SEMENOVA, O.A., otv. red.;  
LIVSHITS, B.Ye., red.; NIKOLAYEVA, G.S., tekhn. red.

[Climatic description of the Ust-Urt] Klimaticheskoe opisanie Ustiurta. Leningrad, Gidrometeoizdat, 1963. 57 p.  
(MIRA 16:8)  
(Ust-Urt--Climate)

ZHITOMIRSKAYA, O.M.; SEMENOVA, O.A., red.; KAPITANETS, Ye.P.,  
red.

[Climatic description of the Aral Sea region] Klimati-  
cheskoe opisanie raiona Aral'skogo moria. Leningrad,  
Gidrometeoizdat, 1964. 66 p. (MIRA 18:10)

ZHITOMIRSKAYA, O.M.; LEUKHINA, G.N.

Climatic description of the western Tien Shan. Trudy Sred.-Az.  
nauch.-issl. gidrometeor. inst. no.24:59-117 '65.

(MIRA 18:10)

BALASHEVA, Yelena Nikolayevna; ZHITOMIRSKAYA, Ol'ga Moiseyevna;  
KARAU'L'SHCHIKOVA, Nina Nikolayevna; SABININA, Irina  
Georgiyevna; SEMENOVA, O.A., red.; VAYTSMAN, A.I., red.;  
NIKOLAYEVA, G.S., tekhn. red.

[Climatic description of the Zeravshan Range region] Klima-  
ticheskoe opisanie Zeravshanskogo raiona. [By] E.N.Balasheva  
i dr. Leningrad, Gidrometeoizdat, 1963. 118 p.

(Zeravshan Range region—Climate) (MIRA 16:8)

ZHITOMIRSKAYA, TS.

The work of bank branches is made easier. Den. 1 kred. 21  
no.6:26-28 Je '63.

(MIRA 16:8)

1. Starshiy ekonomist Pervomayskogo otdeleniya Gosbanka Moskvy.  
(Moscow--Credit) (Moscow--Payment)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3

ZHITOMIRSKIY, V.G.

Triangular group of automorphisms of a direct product of groups.  
Mat. zap. Ural. mat. ob-na UrGU 3 no.3;30-36 '62. (MIRA 18:7)

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"

## Binding properties of crystal hydrates of the sulfate type

ZHURAVLBY AND V. I. SHITOMINSKAYA. APPLIED  
(U.S.S.R.), 23 (2) 113-17 (1960). — The work was done

*Ibid.*, 23 [3] 113-17 (1950).—The work was limited to  $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ . Differential thermal analysis indicates insignificant endothermal effects at 92°, 128°, and 200°C. and more distinct effects at 104° and 342°. A fine-ground sample was stirred, carefully heated to 104°, and held there for 30 min.; after this, grinding and dehydration of the sample were repeated. The addition of water to a partially dehydrated sample caused setting to start in 3 min. and end in 8 min. Test shapes (55% normal consistency) stored in the open showed tensile strengths of 16.5, 17.7, and 28.7 kg./cm.<sup>2</sup> after 1, 3, and 7 days, respectively; compressive strengths were 240.0, 240.0, 240.0, and 410.0 kg./cm.<sup>2</sup> after 1, 3, 7, and 28 days, respectively. The specimens had dense structure and high hardness; their coloration was grayish. After open storage for 1 year, hardness, strength, and color were retained. *Ibid.*, 23 [3] 230-32 (1950).—The investigation was limited to  $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ . Endothermic effects recorded at 77°, 104°, and 315°C correspond to the separation of water; those at 741° and 865°, to the dissociation of  $\text{ZnSO}_4$ . Crystalline hydrate was heated to 104°, held there for 30 min., then ground fine, again heated to 104°, and held for 18 min. The powder was mixed with 55% water; setting started in 4 min. and was com-

plete in 7 min. Tensile (and compressive) strengths, after open storage for 1, 3, and 7 days, were 3.6 (325.0), 14.0 (622.5), and 11.7 (210.5) kg./cm.<sup>2</sup>, respectively. The structure was dense and the color was grayish green; crystals of considerable size were noted by the unaided eye. Debyograms of the specimen of maximum strength indicate that it consists of uniform crystal hydrate and, on the basis of literature data, that it contains  $ZnSO_4 \cdot 7H_2O$  and not  $ZnSO_4 \cdot H_2O$ . Debyograms of the two-week-old specimen, which had crumbled into powder, indicate the presence of a large amount of  $ZnSO_4 \cdot H_2O$  and the absence of  $ZnSO_4 \cdot 7H_2O$ . Under a microscope, the three-day-old specimen showed good crystallization with  $n_D = 1.498$  and  $n_D = 1.489$ ; restriction of the three-week-old specimen could not be determined because of very fine crystallization. During a partial dehydration of  $ZnSO_4 \cdot 7H_2O$  the crystalline lattice undergoes such a change that the  $ZnSO_4 \cdot 7H_2O$ , which is formed during subsequent hydration, is unstable and loses water readily. This loss of water changes the size of the crystals and lowers their adherence with the result that the strength is reduced and the specimen crumbles.

CHINESE  
BIZK

CA

20

Blending properties of crystal hydrates of the sulfate type  
V. F. Khuraviev and V. I. Zhilinskikh (Leningrad Inst.  
Technol., Leningrad), *J. Applied Chem. U.S.S.R.* 23,  
116-19(1950)(Engl. translation); *Zhur. Prilim. Khim.* 23,  
113-17. --The dehydration of  $MgSO_4$  was studied with  
thermal analysis by use of the Kurnakov pyrometer; dis-  
cerned, begins above  $600^\circ$ . Blending tests on powder, partially  
dehydrated  $MgSO_4$ , show it commences to set in 3 min. and  
setting is complete in 6 min. After storage in air for one  
year, samples retained hardness, strength, and color. Industrial  
utilization of  $MgSO_4$  as blending material is recom-  
mended. M E McMahon

Binding properties of crystal hydrates of the sulfate type.  
V. P. Zhuravlev and V. L. Zhigunskaya. *J. Applied  
Chem. U.S.S.R.*, 23, 237-30 (1950) (English translation);  
*Zhur. Priklad Khim.*, 23, 230-2 (1950); cf. *C.A.*, 43, 3141c.  
When  $ZnSO_4$  powder is mixed with  $H_2O$ , setting is very  
rapid and hardening very intense; max. strength is found  
after three days; in the air white spots appear, and gradu-  
ally merge, and the strength of the samples drops to zero.  
X-ray analysis shows that the decrease in strength of hard-  
ened samples is due to the spontaneous elimination of  $H_2O$   
from the crystal hydrate. Partially dehydrated  $ZnSO_4$  has  
marked binding properties and an extremely high mechan-  
ical strength (during the initial period of hardening).

M. McMahon

|                                                 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |                      |  |  |  |  |
|-------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|----------------------|--|--|--|--|
|                                                 |  | PROCESSES AND PROPERTIES INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |                      |  |  |  |  |
|                                                 |  | 1st AND TWO READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  | 3rd AND 4th READINGS |  |  |  |  |
| C                                               |  | <p><b>Binding properties of crystal hydrates of the sulfato type.</b> V. P. ZHURAVLEV AND V. I. ZHURAVLEVSKAYA. <i>J. Applied Chem. (U.S.S.R.)</i>, 23 [2] 113-17 (1950).—The work was limited to <math>\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}</math>. Differential thermal analysis indicates insignificant endothermal effects at 92°, 124°, and 200°C, and more distinct effects at 104° and 342°. A fine-ground sample was stirred, carefully heated to 104°, and held there for 30 min; after this, grinding and dehydration of the sample were repeated. The addition of water to a partially dehydrated sample caused setting to start in 3 min. and end in 6 min. Test shapes (55% normal consistency) stored in the open showed tensile strengths of 13.8, 17.7, and 28.7 kg./cm.<sup>2</sup> after 1, 3, and 7 days, respectively; compressive strengths were 240.0, 240.0, 240.0, and 410.0 kg./cm.<sup>2</sup> after 1, 3, 7, and 28 days, respectively. The specimens had dense structure and high hardness; their coloration was grayish. After open storage for 1 year, hardness, strength, and color were retained. <i>Ibid.</i>, 23 [3] 281-32 (1950).—The investigation was limited to <math>\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}</math>. Endothermal effects recorded at 77°, 104°, and 315°C. correspond to the separation of water; those at 741° and 865°, to the dissociation of <math>\text{ZnSO}_4</math>. Crystal hydrate was heated to 104°, held there for 30 min., then ground, the result that the strength is reduced and the specimen crumbles when mixed with 80% water; setting started in 4 min. and was com-</p> |  |  |  |  |                      |  |  |  |  |
| MATERIALS                                       |  | <p>plete in 7 min. Tensile (and compressive) strengths, after open storage for 1, 3, and 7 days, were 3.0 (325.0), 11.0 (322.5), and 11.7 (210.8) kg./cm.<sup>2</sup>, respectively. The structure was dense and the color was grayish green; crystals of considerable size were noted by the unaided eye. Dehydrograms of the specimen of maximum strength indicate that it consists of uniform crystal hydrate and, on the basis of literature data, that it contains <math>\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}</math> and not <math>\text{ZnSO}_4 \cdot \text{H}_2\text{O}</math>. Dehydrograms of the two-week-old specimen, which had crumbled into powder, indicate the presence of a large amount of <math>\text{ZnSO}_4 \cdot \text{H}_2\text{O}</math> and the absence of <math>\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}</math>. Under a microscope, the three-day-old specimen showed good crystallization with <math>n_D = 1.408</math> and <math>n_D = 1.400</math>; refraction of the three-week-old specimen could not be determined because of very fine crystallization. During a partial dehydration of <math>\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}</math> the crystalline lattice undergoes such a change that the <math>\text{ZnSO}_4 \cdot \text{H}_2\text{O}</math>, which is formed during subsequent hydration, is unstable and loses water readily. This loss of water changes the size of the crystals and lowers their adherence with fine, again heated to 104°, and held for 18 min. The powder was mixed with 80% water; setting started in 4 min. and was com-</p> <p style="text-align: right;">B.Z.K.</p>           |  |  |  |  |                      |  |  |  |  |
| ASIN-14 METALLURGICAL LITERATURE CLASSIFICATION |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |                      |  |  |  |  |
| E22-12-2-1-2-2-2-2-2-2-2-2                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |                      |  |  |  |  |
| STANDARD                                        |  | SUBCLASS HELP ONLY ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |                      |  |  |  |  |
| 100000 00                                       |  | SUBTOPIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |                      |  |  |  |  |
| 000000 00                                       |  | SECTION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |                      |  |  |  |  |
| 000000 00                                       |  | 00000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |                      |  |  |  |  |

*Brief ab.**BS - 10 Blg. v Rd 24. Metre*

Binding properties of crystallized hydrates of the sulphate type. V. N. Zhuravlev and V. I. Shchegolev. Usp. Khim., U.S.S.R., 1961, No. 112-117.—Endothermic effects during the heating of  $MgSO_4 \cdot 7H_2O$  were observed at 92°, 120°, 164°, 200°, and 343°, and it may be assumed that at 343° the last mol. of water is given up by  $MgSO_4$ . Partly-dehydrated  $MgSO_4 \cdot 7H_2O$  binds very quickly. Cubes (3×3×3 cm.) made from paste show after 1, 3, 7, and 28 days the tensile strengths 2164, 177, 287, and compressive strengths 240, 240, 240, and 410 kg. per sq. cm. High strength, hardness, quick binding, and colour of products suggest that dehydrated  $MgSO_4 \cdot 7H_2O$  may be applied for industrial use. J. R. J. ZAAA.





**Removal of iron from sands for the manufacture of glass of high transmissivity.** B. G. ZHURMINSKAYA AND V. A. MALTSEVA. Abstracted in *Scherzinger's Keram. Prom.*, 1942, No. 4-5, p. 16.—The Fe in the Lyuberts'k sand is present in amounts up to 0.002%, but it is distributed in several mineralogical forms, which makes removal difficult. The extent of removal is better for the inferior sands of grade I than for the better sands of grade 0. By means of the Willey table the Fe content of grade 0 can be lowered from 0.044 to 0.016%. The Fe in grade I can be reduced from 0.039 to 0.01-0.02% by treatment with acetic acid, with or without the addition of copperas (metanterite). Consumption of acetic acid should be 2.8 kg./ton of sand. The Fe content of grade I can also be reduced to 0.02% by means of the Willey table, but the loss is about 25%. The same results for grade I can also be obtained by the Adams method (sodium acetate in the presence of copperas and sulfuric acid), but the process is complicated and requires special equipment. In addition to the removal of Fe, it is also necessary to eliminate all sources from which the Fe oxides can enter the glass melt to obtain glass of high transmissivity. B.Z.K.

**450-554 METALLURGICAL LITERATURE CLASSIFICATION**

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"



Sklyar, ... L.

Importance of granulometric composition of the reducing agent in glassmelting with sodium sulfate. P. N. ZHURAVLEV. Sverdlovsk. I. Keram. Prom., 1948, No. 1-2, pp. 11-13. The effect of the granulometric composition of anthracite in the reduction of sodium sulfate during glassmelting was investigated with a charge calculated to give a glass containing  $\text{SiO}_2$  72,  $\text{Al}_2\text{O}_3$  2,  $\text{CaO}$  8,  $\text{MgO}$  2, and  $\text{Na}_2\text{O}$  16%. Melting was conducted at 1350° for only 3 hr. to use the extent of incomplete melting as an indicator of the effect of grain size of coal on the reduction of sulfate. The melting pots had capacities of 100 and 500 gm. of glass melt. The coal was of three classifications: (a) up to 0.2 mm., (b) up to 0.5 mm., and (c) 1.5 to 2 mm. The quantity of coal (85% carbon) was expressed as  $R$ , which is  $C/\text{SO}_3$  in the batch (in %). The quality of the melt was better for classification a coal. As the quantity of classification c coal is increased, there is a sharp changeover in quality; thus, when  $R$  is 14%, the glass is not yet completely free of bubbles, but when  $R$  is 10%, there is already discoloration. B.Z.K.

CA

Significance of the particle size of the reducing agent in glass melting with a sulfate batch. Jr. Z. Zhitomirskaya, Sib. nauch. i Tekhn. Press, 1964, No. 1/2, 11-13. — Anhydrite in sizes of 1.0-2.0, not over 0.8, and not over 0.2 mm. was used in glass batches. Generally, deficiency of reducing agent causes glass gall and excess causes discoloration. Coarse reducing agent is more reactive, and smaller quantities of it will cause discoloration. Also the transition from quantities causing glass gall to quantities causing discoloration is more rapid with a coarse than with a fine-grain reducing agent. M. Hoch

19

## ASLIBA METALLURGICAL LITERATURE CLASSIFICATION

| TOPIC | SUBTOPIC | SUBTOPIC | RELATION | EIGHTH NUMBER | EIGHTH NUMBER |     |
|-------|----------|----------|----------|---------------|---------------|-----|
|       |          |          |          |               | ONE           | TWO |
| TO U  | M        | A        | X        | 1             | 1             | 1   |
| TO U  | M        | A        | X        | 2             | 2             | 2   |
| TO U  | M        | A        | X        | 3             | 3             | 3   |
| TO U  | M        | A        | X        | 4             | 4             | 4   |
| TO U  | M        | A        | X        | 5             | 5             | 5   |
| TO U  | M        | A        | X        | 6             | 6             | 6   |
| TO U  | M        | A        | X        | 7             | 7             | 7   |
| TO U  | M        | A        | X        | 8             | 8             | 8   |
| TO U  | M        | A        | X        | 9             | 9             | 9   |
| TO U  | M        | A        | X        | 10            | 10            | 10  |
| TO U  | M        | A        | X        | 11            | 11            | 11  |
| TO U  | M        | A        | X        | 12            | 12            | 12  |
| TO U  | M        | A        | X        | 13            | 13            | 13  |
| TO U  | M        | A        | X        | 14            | 14            | 14  |
| TO U  | M        | A        | X        | 15            | 15            | 15  |
| TO U  | M        | A        | X        | 16            | 16            | 16  |
| TO U  | M        | A        | X        | 17            | 17            | 17  |
| TO U  | M        | A        | X        | 18            | 18            | 18  |
| TO U  | M        | A        | X        | 19            | 19            | 19  |
| TO U  | M        | A        | X        | 20            | 20            | 20  |
| TO U  | M        | A        | X        | 21            | 21            | 21  |
| TO U  | M        | A        | X        | 22            | 22            | 22  |
| TO U  | M        | A        | X        | 23            | 23            | 23  |
| TO U  | M        | A        | X        | 24            | 24            | 24  |
| TO U  | M        | A        | X        | 25            | 25            | 25  |
| TO U  | M        | A        | X        | 26            | 26            | 26  |
| TO U  | M        | A        | X        | 27            | 27            | 27  |
| TO U  | M        | A        | X        | 28            | 28            | 28  |
| TO U  | M        | A        | X        | 29            | 29            | 29  |
| TO U  | M        | A        | X        | 30            | 30            | 30  |
| TO U  | M        | A        | X        | 31            | 31            | 31  |
| TO U  | M        | A        | X        | 32            | 32            | 32  |
| TO U  | M        | A        | X        | 33            | 33            | 33  |
| TO U  | M        | A        | X        | 34            | 34            | 34  |
| TO U  | M        | A        | X        | 35            | 35            | 35  |
| TO U  | M        | A        | X        | 36            | 36            | 36  |
| TO U  | M        | A        | X        | 37            | 37            | 37  |
| TO U  | M        | A        | X        | 38            | 38            | 38  |
| TO U  | M        | A        | X        | 39            | 39            | 39  |
| TO U  | M        | A        | X        | 40            | 40            | 40  |
| TO U  | M        | A        | X        | 41            | 41            | 41  |
| TO U  | M        | A        | X        | 42            | 42            | 42  |
| TO U  | M        | A        | X        | 43            | 43            | 43  |
| TO U  | M        | A        | X        | 44            | 44            | 44  |
| TO U  | M        | A        | X        | 45            | 45            | 45  |
| TO U  | M        | A        | X        | 46            | 46            | 46  |
| TO U  | M        | A        | X        | 47            | 47            | 47  |
| TO U  | M        | A        | X        | 48            | 48            | 48  |
| TO U  | M        | A        | X        | 49            | 49            | 49  |
| TO U  | M        | A        | X        | 50            | 50            | 50  |
| TO U  | M        | A        | X        | 51            | 51            | 51  |
| TO U  | M        | A        | X        | 52            | 52            | 52  |
| TO U  | M        | A        | X        | 53            | 53            | 53  |
| TO U  | M        | A        | X        | 54            | 54            | 54  |
| TO U  | M        | A        | X        | 55            | 55            | 55  |
| TO U  | M        | A        | X        | 56            | 56            | 56  |
| TO U  | M        | A        | X        | 57            | 57            | 57  |
| TO U  | M        | A        | X        | 58            | 58            | 58  |
| TO U  | M        | A        | X        | 59            | 59            | 59  |
| TO U  | M        | A        | X        | 60            | 60            | 60  |
| TO U  | M        | A        | X        | 61            | 61            | 61  |
| TO U  | M        | A        | X        | 62            | 62            | 62  |
| TO U  | M        | A        | X        | 63            | 63            | 63  |
| TO U  | M        | A        | X        | 64            | 64            | 64  |
| TO U  | M        | A        | X        | 65            | 65            | 65  |
| TO U  | M        | A        | X        | 66            | 66            | 66  |
| TO U  | M        | A        | X        | 67            | 67            | 67  |
| TO U  | M        | A        | X        | 68            | 68            | 68  |
| TO U  | M        | A        | X        | 69            | 69            | 69  |
| TO U  | M        | A        | X        | 70            | 70            | 70  |
| TO U  | M        | A        | X        | 71            | 71            | 71  |
| TO U  | M        | A        | X        | 72            | 72            | 72  |
| TO U  | M        | A        | X        | 73            | 73            | 73  |
| TO U  | M        | A        | X        | 74            | 74            | 74  |
| TO U  | M        | A        | X        | 75            | 75            | 75  |
| TO U  | M        | A        | X        | 76            | 76            | 76  |
| TO U  | M        | A        | X        | 77            | 77            | 77  |
| TO U  | M        | A        | X        | 78            | 78            | 78  |
| TO U  | M        | A        | X        | 79            | 79            | 79  |
| TO U  | M        | A        | X        | 80            | 80            | 80  |
| TO U  | M        | A        | X        | 81            | 81            | 81  |
| TO U  | M        | A        | X        | 82            | 82            | 82  |
| TO U  | M        | A        | X        | 83            | 83            | 83  |
| TO U  | M        | A        | X        | 84            | 84            | 84  |
| TO U  | M        | A        | X        | 85            | 85            | 85  |
| TO U  | M        | A        | X        | 86            | 86            | 86  |
| TO U  | M        | A        | X        | 87            | 87            | 87  |
| TO U  | M        | A        | X        | 88            | 88            | 88  |
| TO U  | M        | A        | X        | 89            | 89            | 89  |
| TO U  | M        | A        | X        | 90            | 90            | 90  |
| TO U  | M        | A        | X        | 91            | 91            | 91  |
| TO U  | M        | A        | X        | 92            | 92            | 92  |
| TO U  | M        | A        | X        | 93            | 93            | 93  |
| TO U  | M        | A        | X        | 94            | 94            | 94  |
| TO U  | M        | A        | X        | 95            | 95            | 95  |
| TO U  | M        | A        | X        | 96            | 96            | 96  |
| TO U  | M        | A        | X        | 97            | 97            | 97  |
| TO U  | M        | A        | X        | 98            | 98            | 98  |
| TO U  | M        | A        | X        | 99            | 99            | 99  |
| TO U  | M        | A        | X        | 100           | 100           | 100 |



C' 16/8  
Importance of granulometric composition of the reducing agent in glassmelting with sodium sulfate. R. J. Gurovskaya. Sov. Krem. i Keram. Prom., 1946, No. 1-2, pp. 11-13.—The effect of the granulometric composition of anthracite in the reduction of sodium sulfate during glassmelting was investigated with a charge calculated to give a glass containing  $\text{SiO}_2$  72,  $\text{Al}_2\text{O}_3$  2,  $\text{CaO}$  8,  $\text{MgO}$  2, and  $\text{Na}_2\text{O}$  16%. Melting was conducted at 1350° for only 8 hr. to use the extent of incomplete melting as an indicator of the effect of grain size of coal on the reduction of sulfate. The melting pots had capacities of 100 and 500 gm. of glass melt. The coal was of three classifications: (a) up to 0.2 mm., (b) up to 0.5 mm., and (c) 1.5 to 2 mm. The quantity of coal (85% carbon) was expressed as  $R$ , which is  $\text{C}/\text{SO}_3$  in the batch (in %). The quality of the melt was better for classification  $c$  coal. As the quantity of classification  $c$  coal is increased, there is a sharp changeover in quality; thus, when  $R$  is 10%, the glass is not yet completely free of bubbles, but when  $R$  is 10% there is already discolouration. H.Z.K.

7 - (3)

BENEFICIATION OF SANDS FROM THE VELIKODVOR DEPOSITS.

E. Z. Zhitomirskaya and E. N. Stepanova. Abstracted in  
Stekol'naya i Keram. Prom., 1947, No. 7, pp. 17-18. --  
The quartz glass sands of the Velikodvor deposits analyze over  
98 SiO<sub>2</sub>, about 0.10 TiO<sub>2</sub>, up to 0.80 Al<sub>2</sub>O<sub>3</sub>, and up to 0.28%  
Fe<sub>2</sub>O<sub>3</sub>. Average grain size is 0.25 to 0.3 mm. The most  
effective method of treatment is by means of a Wifley table;  
this will remove 35 to 45% of the iron oxides (in one case,  
the removal was as high as 70%). The remaining content of  
iron oxides is 0.05 to 0.12%. The tailings are considerable  
but, after the dust has been removed, they can serve in the  
production of dark glass. The middlings were not treated  
further. Sands which are adulterated with iron in the form  
of limonite films on the grains must be treated by washing  
with friction in order to remove the iron. This method is  
equal to that involving the use of oxalic acid. .B.Z.K.

ZHITOMIRSKAYA, YE. Z.

Dressing of glass sands. E. Z. ZHITOMIRSKAYA  
Slekol'naya i Keram. Prom., 1947, No. 5, pp. 1-3, 17.  
Pending on the nature of the iron adulteration, glass sands  
are classified into types in which the iron compounds are  
present (1) in the form of heavy minerals having a specific  
gravity greater than 3 (magnetite, hematite, titanomagnete,  
etc.); (2) bound with the argillaceous admixture;  
(3) in the form of a film (usually illonite) adhering tightly  
to the quartz grain; and (4) in the form of inclusions within  
the quartz grain or as a part of some light silicates having a  
specific gravity less than 3 (glauconite). Type 1 sands  
should be treated by magnetic separation if the heavy  
minerals are magnetic and by means of Wilfley, Devater, or  
other tables if they are not magnetic. The type of table to  
be used should be determined experimentally. Type 2  
sands should be washed, using any desired washer. Type  
3 sands are the most difficult to purify because the dense  
film can be removed only by dissolving it. This method,  
however, is not suitable for large quantities of sand. Experi-  
ments at the State Institute of Glass have shown that  
such films can be removed by grinding the sand; chemical  
solution and mechanical "peeling" of the film have given  
equal results as far as the removal of iron oxides is con-  
cerned. Type 4 sands are seldom found in the pure state;  
grains of this type have the iron oxides which remain after  
any dressing operation. Sands of mixed types should be  
treated by the combination of methods suitable for the  
particular mixture.

R.Z.K.

ZHITOMIRSKAYA, YE. Z.

Dressing of glass sands. II. Z. ZHITOMIRSKAYA  
Slekol'naya i Keram. Prom., 1947, No. 9, pp. 1-6, 1-18.  
Depending on the nature of the iron contamination, glass sands  
are classified into types in which the iron compounds are  
present (1) in the form of heavy minerals having a specific  
gravity greater than 3 (magnetite, hematite, titanomagne-  
tite, etc.); (2) bound with the argillaceous admixtures;  
(3) in the form of a film (usually ilmenite) adhering tightly  
to the quartz grain; and (4) in the form of some light silicates having a  
specific gravity less than 3 (glauconite). Type 1 sands  
should be treated by magnetic separation if the heavy  
minerals are magnetic and by means of Wildley, Dryster, or  
other tables if they are not magnetic. The type of table to  
be used should be determined experimentally. Type 2  
sands should be washed, using any desired washer. Type  
3 sands are the most difficult to purify because the dense  
film can be removed only by dissolving it; this method,  
however, is not suitable for large quantities of sand. Ex-  
periments at the State Institute of Glass have shown that  
such films can be removed by pronouncing the sand) chemical  
solution and mechanical "peeling" of the film have given  
equal results as far as the removal of iron oxides is con-  
cerned. Type 4 sands are seldom found in the pure state;  
grains of this type have the iron oxides which remain after  
any dressing operation. Sands of mixed types should be  
treated by the combination of methods suitable for the  
particular mixture. B.M.K.

Dressing of glass sands. Z. Zhurzhanaya  
Slekol'nyye i Keram., 1947, No. 9, pp. 1-3-11.  
Depending on the nature of the iron impurities, glass sands  
are classified into types in which the iron compounds are  
present (1) in the form of heavy minerals having a specific  
gravity greater than 3 (magnetite, hematite, titanomagne-  
tite, etc.); (2) bound with the argillaceous admixtures;  
(3) in the form of a film (usually ilmenite) adhering tightly  
to the quartz grain; and (4) in the form of inclusions within  
the quartz grain or as a part of some light silicates having a  
specific gravity less than 3 (glaucophane). Type 1 sands  
should be treated by magnetic separation if the heavy  
minerals are magnetite and by means of Wilfley, Deyster, or  
other tables if they are not magnetic. The type of table to  
be used should be determined experimentally. Type 2  
sands should be washed, using any desired washer. Type  
3 sands are the most difficult to purify because the dense  
film can be removed only by dissolving it; this method,  
however, is not suitable for large quantities of sand. Ex-  
periments at the State Institute of Glass have shown that  
such films can be removed by grinding the sand; chemical  
solution and mechanical "peeling" of the film have given  
equal results as far as the removal of iron oxides is con-  
cerned. Type 4 sands are seldom found in the pure state;  
grains of this type have the iron oxides which remain after  
any dressing operation. Sands of mixed types should be  
treated by the combination of methods suitable for the  
particular mixture.

B.Z.K.



PROCESSING AND PROPERTIES OF...

BENEFICIATION OF SANDS FROM THE VELIKODVOR DEPOSITS.  
 E. Z. Miltomirskaya and E. N. Stepanova. Abstracted in  
**Steklo i Tekhnika Promst.** 1947, No. 7, pp. 17-18. —  
 The quartz glass sands of the Velikodvor deposits analyze over  
 98 SiO<sub>2</sub>, about 0.10 TiO<sub>2</sub>, up to 0.80 Al<sub>2</sub>O<sub>3</sub>, and up to 0.28%  
 Fe<sub>2</sub>O<sub>3</sub>. Average grain size is 0.25 to 0.3 mm. The most  
 effective method of treatment is by means of a Wifley table;  
 this will remove 35 to 45% of the iron oxides (in one case,  
 the removal was as high as 70%). The remaining content of  
 iron oxides is 0.05 to 0.12%. The tailings are considerable  
 but, after the dust has been removed, they can serve in the  
 production of dark glass. The middlings were not treated  
 further. Sands which are adulterated with iron in the form  
 of limonite films on the grains must be treated by washing  
 with friction in order to remove the iron. This method is  
 equal to that involving the use of oxalic acid.      B.Z.K.

## ASG-SLA METALLURGICAL LITERATURE CLASSIFICATION

| SUBJECTS |    |    |    |    |          |    |    |    |    | SUBJECTS |    |    |    |    |          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |     |
|----------|----|----|----|----|----------|----|----|----|----|----------|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|-----|
| GENERAL  |    |    |    |    | INDUSTRY |    |    |    |    | GENERAL  |    |    |    |    | INDUSTRY |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |     |
| 1        | 2  | 3  | 4  | 5  | 6        | 7  | 8  | 9  | 10 | 11       | 12 | 13 | 14 | 15 | 16       | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90  | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
| 11       | 12 | 13 | 14 | 15 | 16       | 17 | 18 | 19 | 20 | 21       | 22 | 23 | 24 | 25 | 26       | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |    |    |    |    |    |    |    |    |    |     |
| 11       | 12 | 13 | 14 | 15 | 16       | 17 | 18 | 19 | 20 | 21       | 22 | 23 | 24 | 25 | 26       | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |    |    |    |    |    |    |    |    |    |     |



ZHITOMIRSKAYA, E.

15059

USSR/Glass Manufacture 4413.0600

Sep 1947

"Enriching Sand Used in Manufacture of Glass," K.  
Zhitoimirska, 2<sup>1</sup>/<sub>2</sub> pp

"Stek i Keram Prom" No 9

Divides sands into four types. Methods of extracting iron acids from them described briefly.

1Q

15059



CA

19

Removal of iron from sands for the manufacture of glass of high transmissivity. K. Z. Zhitomirskaya and V. A. Shtilina. Abstracted in *Soviet Glass & Ceram. Proc.*, 1945, No. 4/5, 19; *Ceram. Abstracts* 1948, 9 (in *J. Am. Ceram. Soc.* 31, No. 1).—The Fe in the Lyubertsik sand is present in sand, up to 0.09%, but it is distributed in several mineralogical forms, which makes removal difficult. The extent of removal is better for the inferior sands of grade I than for the better sands of Grade U. By means of the Willey table the Fe content of Grade U can be lowered from 0.044 to 0.016%. The Fe in grade I can be reduced from 0.09 to 0.01-0.02% by treatment with AcOII, with or without the addition of copperas (medanterite). Consumption of AcOII should be 2.0 kg./ton of sand. The Fe content of grade I can also be reduced to 0.02% by means of the Willey table, but the loss is about 25%. The same results for grade I can also be obtained by the Adams method (AcONa in the presence of copperas and  $H_2SO_4$ ), but the process is complicated and requires special equipment. In addition, to the removal of Fe, it is also necessary to eliminate all sources from which the Fe oxides can enter the glass melt to obtain glass of high transmissivity. M. P. R.

## 450-518 METALLURICAL LITERATURE CLASSIFICATION

EIGHT COLUMNS

| SECOND SUBJECT |      | SECOND REF. ONLY ONE |      | THIRD SUBJECT |      | THIRD REF. ONLY ONE |      |
|----------------|------|----------------------|------|---------------|------|---------------------|------|
| 1              | 2    | 3                    | 4    | 5             | 6    | 7                   | 8    |
| 9              | 10   | 11                   | 12   | 13            | 14   | 15                  | 16   |
| 17             | 18   | 19                   | 20   | 21            | 22   | 23                  | 24   |
| 25             | 26   | 27                   | 28   | 29            | 30   | 31                  | 32   |
| 33             | 34   | 35                   | 36   | 37            | 38   | 39                  | 40   |
| 41             | 42   | 43                   | 44   | 45            | 46   | 47                  | 48   |
| 51             | 52   | 53                   | 54   | 55            | 56   | 57                  | 58   |
| 61             | 62   | 63                   | 64   | 65            | 66   | 67                  | 68   |
| 71             | 72   | 73                   | 74   | 75            | 76   | 77                  | 78   |
| 81             | 82   | 83                   | 84   | 85            | 86   | 87                  | 88   |
| 91             | 92   | 93                   | 94   | 95            | 96   | 97                  | 98   |
| 101            | 102  | 103                  | 104  | 105           | 106  | 107                 | 108  |
| 111            | 112  | 113                  | 114  | 115           | 116  | 117                 | 118  |
| 121            | 122  | 123                  | 124  | 125           | 126  | 127                 | 128  |
| 131            | 132  | 133                  | 134  | 135           | 136  | 137                 | 138  |
| 141            | 142  | 143                  | 144  | 145           | 146  | 147                 | 148  |
| 151            | 152  | 153                  | 154  | 155           | 156  | 157                 | 158  |
| 161            | 162  | 163                  | 164  | 165           | 166  | 167                 | 168  |
| 171            | 172  | 173                  | 174  | 175           | 176  | 177                 | 178  |
| 181            | 182  | 183                  | 184  | 185           | 186  | 187                 | 188  |
| 191            | 192  | 193                  | 194  | 195           | 196  | 197                 | 198  |
| 201            | 202  | 203                  | 204  | 205           | 206  | 207                 | 208  |
| 211            | 212  | 213                  | 214  | 215           | 216  | 217                 | 218  |
| 221            | 222  | 223                  | 224  | 225           | 226  | 227                 | 228  |
| 231            | 232  | 233                  | 234  | 235           | 236  | 237                 | 238  |
| 241            | 242  | 243                  | 244  | 245           | 246  | 247                 | 248  |
| 251            | 252  | 253                  | 254  | 255           | 256  | 257                 | 258  |
| 261            | 262  | 263                  | 264  | 265           | 266  | 267                 | 268  |
| 271            | 272  | 273                  | 274  | 275           | 276  | 277                 | 278  |
| 281            | 282  | 283                  | 284  | 285           | 286  | 287                 | 288  |
| 291            | 292  | 293                  | 294  | 295           | 296  | 297                 | 298  |
| 301            | 302  | 303                  | 304  | 305           | 306  | 307                 | 308  |
| 311            | 312  | 313                  | 314  | 315           | 316  | 317                 | 318  |
| 321            | 322  | 323                  | 324  | 325           | 326  | 327                 | 328  |
| 331            | 332  | 333                  | 334  | 335           | 336  | 337                 | 338  |
| 341            | 342  | 343                  | 344  | 345           | 346  | 347                 | 348  |
| 351            | 352  | 353                  | 354  | 355           | 356  | 357                 | 358  |
| 361            | 362  | 363                  | 364  | 365           | 366  | 367                 | 368  |
| 371            | 372  | 373                  | 374  | 375           | 376  | 377                 | 378  |
| 381            | 382  | 383                  | 384  | 385           | 386  | 387                 | 388  |
| 391            | 392  | 393                  | 394  | 395           | 396  | 397                 | 398  |
| 401            | 402  | 403                  | 404  | 405           | 406  | 407                 | 408  |
| 411            | 412  | 413                  | 414  | 415           | 416  | 417                 | 418  |
| 421            | 422  | 423                  | 424  | 425           | 426  | 427                 | 428  |
| 431            | 432  | 433                  | 434  | 435           | 436  | 437                 | 438  |
| 441            | 442  | 443                  | 444  | 445           | 446  | 447                 | 448  |
| 451            | 452  | 453                  | 454  | 455           | 456  | 457                 | 458  |
| 461            | 462  | 463                  | 464  | 465           | 466  | 467                 | 468  |
| 471            | 472  | 473                  | 474  | 475           | 476  | 477                 | 478  |
| 481            | 482  | 483                  | 484  | 485           | 486  | 487                 | 488  |
| 491            | 492  | 493                  | 494  | 495           | 496  | 497                 | 498  |
| 501            | 502  | 503                  | 504  | 505           | 506  | 507                 | 508  |
| 511            | 512  | 513                  | 514  | 515           | 516  | 517                 | 518  |
| 521            | 522  | 523                  | 524  | 525           | 526  | 527                 | 528  |
| 531            | 532  | 533                  | 534  | 535           | 536  | 537                 | 538  |
| 541            | 542  | 543                  | 544  | 545           | 546  | 547                 | 548  |
| 551            | 552  | 553                  | 554  | 555           | 556  | 557                 | 558  |
| 561            | 562  | 563                  | 564  | 565           | 566  | 567                 | 568  |
| 571            | 572  | 573                  | 574  | 575           | 576  | 577                 | 578  |
| 581            | 582  | 583                  | 584  | 585           | 586  | 587                 | 588  |
| 591            | 592  | 593                  | 594  | 595           | 596  | 597                 | 598  |
| 601            | 602  | 603                  | 604  | 605           | 606  | 607                 | 608  |
| 611            | 612  | 613                  | 614  | 615           | 616  | 617                 | 618  |
| 621            | 622  | 623                  | 624  | 625           | 626  | 627                 | 628  |
| 631            | 632  | 633                  | 634  | 635           | 636  | 637                 | 638  |
| 641            | 642  | 643                  | 644  | 645           | 646  | 647                 | 648  |
| 651            | 652  | 653                  | 654  | 655           | 656  | 657                 | 658  |
| 661            | 662  | 663                  | 664  | 665           | 666  | 667                 | 668  |
| 671            | 672  | 673                  | 674  | 675           | 676  | 677                 | 678  |
| 681            | 682  | 683                  | 684  | 685           | 686  | 687                 | 688  |
| 691            | 692  | 693                  | 694  | 695           | 696  | 697                 | 698  |
| 701            | 702  | 703                  | 704  | 705           | 706  | 707                 | 708  |
| 711            | 712  | 713                  | 714  | 715           | 716  | 717                 | 718  |
| 721            | 722  | 723                  | 724  | 725           | 726  | 727                 | 728  |
| 731            | 732  | 733                  | 734  | 735           | 736  | 737                 | 738  |
| 741            | 742  | 743                  | 744  | 745           | 746  | 747                 | 748  |
| 751            | 752  | 753                  | 754  | 755           | 756  | 757                 | 758  |
| 761            | 762  | 763                  | 764  | 765           | 766  | 767                 | 768  |
| 771            | 772  | 773                  | 774  | 775           | 776  | 777                 | 778  |
| 781            | 782  | 783                  | 784  | 785           | 786  | 787                 | 788  |
| 791            | 792  | 793                  | 794  | 795           | 796  | 797                 | 798  |
| 801            | 802  | 803                  | 804  | 805           | 806  | 807                 | 808  |
| 811            | 812  | 813                  | 814  | 815           | 816  | 817                 | 818  |
| 821            | 822  | 823                  | 824  | 825           | 826  | 827                 | 828  |
| 831            | 832  | 833                  | 834  | 835           | 836  | 837                 | 838  |
| 841            | 842  | 843                  | 844  | 845           | 846  | 847                 | 848  |
| 851            | 852  | 853                  | 854  | 855           | 856  | 857                 | 858  |
| 861            | 862  | 863                  | 864  | 865           | 866  | 867                 | 868  |
| 871            | 872  | 873                  | 874  | 875           | 876  | 877                 | 878  |
| 881            | 882  | 883                  | 884  | 885           | 886  | 887                 | 888  |
| 891            | 892  | 893                  | 894  | 895           | 896  | 897                 | 898  |
| 901            | 902  | 903                  | 904  | 905           | 906  | 907                 | 908  |
| 911            | 912  | 913                  | 914  | 915           | 916  | 917                 | 918  |
| 921            | 922  | 923                  | 924  | 925           | 926  | 927                 | 928  |
| 931            | 932  | 933                  | 934  | 935           | 936  | 937                 | 938  |
| 941            | 942  | 943                  | 944  | 945           | 946  | 947                 | 948  |
| 951            | 952  | 953                  | 954  | 955           | 956  | 957                 | 958  |
| 961            | 962  | 963                  | 964  | 965           | 966  | 967                 | 968  |
| 971            | 972  | 973                  | 974  | 975           | 976  | 977                 | 978  |
| 981            | 982  | 983                  | 984  | 985           | 986  | 987                 | 988  |
| 991            | 992  | 993                  | 994  | 995           | 996  | 997                 | 998  |
| 1001           | 1002 | 1003                 | 1004 | 1005          | 1006 | 1007                | 1008 |
| 1011           | 1012 | 1013                 | 1014 | 1015          | 1016 | 1017                | 1018 |
| 1021           | 1022 | 1023                 | 1024 | 1025          | 1026 | 1027                | 1028 |
| 1031           | 1032 | 1033                 | 1034 | 1035          | 1036 | 1037                | 1038 |
| 1041           | 1042 | 1043                 | 1044 | 1045          | 1046 | 1047                | 1048 |
| 1051           | 1052 | 1053                 | 1054 | 1055          | 1056 | 1057                | 1058 |
| 1061           | 1062 | 1063                 | 1064 | 1065          | 1066 | 1067                | 1068 |
| 1071           | 1072 | 1073                 | 1074 | 1075          | 1076 | 1077                | 1078 |
| 1081           | 1082 | 1083                 | 1084 | 1085          | 1086 | 1087                | 1088 |
| 1091           | 1092 | 1093                 | 1094 | 1095          | 1096 | 1097                | 1098 |
| 1101           | 1102 | 1103                 | 1104 | 1105          | 1106 | 1107                | 1108 |
| 1111           | 1112 | 1113                 | 1114 | 1115          | 1116 | 1117                | 1118 |
| 1121           | 1122 | 1123                 | 1124 | 1125          | 1126 | 1127                | 1128 |
| 1131           | 1132 | 1133                 | 1134 | 1135          | 1136 | 1137                | 1138 |
| 1141           | 1142 | 1143                 | 1144 | 1145          | 1146 | 1147                | 1148 |
| 1151           | 1152 | 1153                 | 1154 | 1155          | 1156 | 1157                | 1158 |
| 1161           | 1162 | 1163                 | 1164 | 1165          | 1166 | 1167                | 1168 |
| 1171           | 1172 | 1173                 | 1174 | 1175          | 1176 | 1177                | 1178 |
| 1181           | 1182 | 1183                 | 1184 | 1185          | 1186 | 1187                | 1188 |
| 1191           | 1192 | 1193                 | 1194 | 1195          | 1196 | 1197                | 1198 |
| 1201           | 1202 | 1203                 | 1204 | 1205          | 1206 | 1207                | 1208 |
| 1211           | 1212 | 1213                 | 1214 | 1215          | 1216 | 1217                | 1218 |
| 1221           | 1222 | 1223                 | 1224 | 1225          | 1226 | 1227                | 1228 |
| 1231           | 1232 | 1233                 | 1234 | 1235          | 1236 | 1237                | 1238 |
| 1241           | 1242 | 1243                 | 1244 | 1245          | 1246 | 1247                | 1248 |
| 1251           | 1252 | 1253                 | 1254 | 1255          | 1256 | 1257                | 1258 |
| 1261           | 1262 | 1263                 | 1264 | 1265          | 1266 | 1267                | 1268 |
| 1271           | 1272 | 1273                 | 1274 | 1275          | 1276 | 1277                | 1278 |
| 1281           | 1282 | 1283                 | 1284 | 1285          | 1286 | 1287                | 1288 |
| 1291           | 1292 | 1293                 | 1294 | 1295          | 1296 | 1297                | 1298 |
| 1301           | 1302 | 1303                 | 1304 | 1305          | 1306 | 1307                | 1308 |
| 1311           | 1312 | 1313                 | 1314 | 1315          | 1316 | 1317                | 1318 |
| 1321           | 1322 | 1323                 | 1324 | 1325          | 1326 | 1327                | 1328 |
| 1331           | 1332 | 1333                 | 1334 | 1335          | 1336 | 1337                | 1338 |
| 1341           | 1342 | 1343                 | 1344 | 1345          | 1346 | 1347                | 1348 |
| 1351           | 1352 | 1353                 | 1354 | 1355          | 1356 | 1357                | 1358 |
| 1361           | 1362 | 1363                 | 1364 | 1365          | 1366 | 1367                | 1368 |
| 1371           | 1372 | 1373                 | 1374 | 1375          | 1376 | 1377                | 1378 |
| 1381           | 1382 | 1383                 | 1384 | 1385          | 1386 | 1387                | 1388 |
| 1391           | 1392 | 1393                 | 1394 | 1395          | 1396 | 1397                | 1398 |
| 1401           | 1402 | 1403                 | 1404 | 1405          | 1406 | 1407                | 1408 |
| 1411           | 1412 | 1413                 | 1414 | 1415          | 1416 | 1417                | 1418 |
| 1421           | 1422 | 1423                 | 1424 | 1425          | 1426 | 1427                | 1428 |
| 1431           | 1432 | 1433                 | 1434 | 1435          | 1436 | 1437                | 1438 |
| 1441           | 1442 | 1443                 | 1444 | 1445          | 1446 | 1447                | 1448 |
| 1451           | 1452 | 1453                 | 1454 | 1455          | 1456 | 1457                | 1458 |
| 1461           | 1462 | 1463                 | 1464 | 1465          | 1466 | 1467                | 146  |

CH

Dewatering of quartz sands in centrifuges. E. Z. Zhukovskikh, and V. A. Mitina. Sov. i Krem. o, No. 8, 15-16/1969).—Quartz sands enriched by flotation-flotation and containing 8 to 10% moisture were successfully dewatered in a sugar-industry centrifuge operating at 900 r.p.m. and equipped with a 290 X 165-mm. rotor having about 500 openings of 8 mm. in diam. The residual moisture decreased with decreasing thickness of the sand layer and with increasing treatment; it ranged from 2.14% to 2.70%. For the glass industry, it is proposed to utilize periodic type, suspended centrifuges (model PM-1200) equipped with a 1200 X 500-mm. rotor and

unloading through the bottom. It is believed that continuous-type centrifuges will also be satisfactory.

B. Z. Kamich



Typical installations for dressing glass sands. V. V. ZAITOMIRSKAYA, Sibkrae R&D, a VNIIG (1940), reviews dressing methods. By means of flotation, the content of iron oxides was reduced in one sand from 0.11-0.17% to 0.03-0.06% and in another from 0.11% to 0.03-0.04%. This method is to be used only if the presence and distribution of the adulterants warrant it. A flow sheet of the flotation process is given. B.Z.K.

69

19

Typical installations for dressing glass sands. B. Z. Zhitonov, Nefte i Keram. 6, No. 4, 5-7 (1949); U. S. A. 2, 3576, 3578.—A review of methods. By means of flotation, it was possible to reduce the content of free carbon in one sand from 0.11-0.17% to 0.03-0.06%, and in another from 0.11% to 0.03-0.04%. The flotation method is to be used only if the presence and distribution of the adulterants warrant it. A flowsheet of the flotation process is given. B. Z. Kamich

## **8.2.5.3.4. METALLURGICAL LITERATURE CLASSIFICATIONS**

卷之三

APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R002064820015-3"





Typical installations for dressing glass sands. V.Z.  
Zhitomirskaya, Svetlana I. Kremenchuk (1980).  
reviews dressing methods. By means of flotation, the  
content of iron oxides was reduced in one sand from 0.11-  
0.17% to 0.03-0.05% and in another from 0.11% to 0.01-  
0.04%. This method is to be used only if the presence  
and distribution of the adulterants warrant it. A flow-  
sheet of the flotation process is given. B.Z.K.

ZHITOMIRSKAYA, E. Z. I. MYETTINA, V. A.

29688

Obyezvozhivaniye Kvartsyevykh Preskov v tsyentrifugakh.

Styeklo i Kyeramika, 1949, No 8, s. 15-16

SO: LETOPIS' NO. 40

"APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064820015-3

~~E~~ Zhuravnikskaya, E. 2

Y. Registration of the 2nd and prior versions of the DRA

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064820015-3"

1. ZHITCHIRSKAYA, E.Z.
2. USSR (600)
4. Glass Manufacture
7. Making glass mixture into briquets with preliminary preparation of carbonate raw material, Stek. i ker. 10 no. 5, 1953.
9. Monthly List of Russian Accessions, Library of Congress, APRIL 1953, Unclassified.

"APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064820015-3

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R002064820015-3"

KITAYGORODSKIY, I., professor, doktor tekhnicheskikh nauk;  
ZHITOMIRSKAYA, E., kandidat tekhnicheskikh nauk.

Foam glass in building. Stroitel' no.12:18 D '56. (MLRA 10:2)

(Glass, Cellular)