





## Virtual Internship Batch 1

Engine Performance & Emissions



#### Engine Development Requirements from

- Customers
- Government
- Reliability & Driving Pleasure vs Emissions & Recycling





.....









RevnLab









ReynLab









ReynLab





### **Engine Emissions**





ReynLab

#### What are emissions?

- Unwanted by-products of combustion
- HC, NOX, SOX, PM, CO, SOC, CO<sub>2</sub>
- Diesel Engines NOX & PM
- Gasoline CO, HC & CO<sub>2</sub>
- Gasoline emit 20-25% more CO<sub>2</sub> than Diesels





### **Engine Emissions**

- Why emissions form?
- Combustions is a complex chemical reaction
- $C_nH_{(2n+2)} + (n+1) O_2 => nCO_2 + (n+1) H_2O + heat$
- Gasoline C<sub>8</sub>H<sub>18</sub>
- Diesel C<sub>12</sub>H<sub>24</sub>
- Fuel: Air Ratio Stoichiometric Ratio
- Gasoline 14.7
- Diesel 14.6
- Stoich ratios should ensure only CO<sub>2</sub> and H<sub>2</sub>O
- Deviations from Stoich?
- At 3000 rpm One 4 Stroke Cycle every 40 mS





ReynLab



This Photo by Unknown Author is licensed under CC BY-SA



### IC Engine Combustion

- Chemical Conversion involving reactants
- Conversion depends on many factors
  - Concentration of reactants
  - Temperature among others
- Higher temperature Higher rate of reaction
- Temperature refers to the flame temperature
- Flame travels outward from spark plug





ReynLab



(a) Normal combustion



### IC Engine Combustion





ReynLab

- Flame Temperature Depends On
  - Heat energy released Chemical Energy
  - Composition of burned mixture
  - Initial temperatures
  - Final temperatures
- Flame temperature determines end products









ReynLab

#### HC & CO

- Formed when there is Oxygen deficiency
- Rich mixtures, typically
- Also formed when mixture is not homogenous or uniform
   localised rich / lean pockets
- Fuel avoiding flame zones Crevasses and pockets in piston
- Weak flame front in sufficient advances
- Absent or Minimal when running lean
- CO is colourless and odourless and very harmful to human
- HC forms ground level smog / petrochemical smog
- HC emissions is not same as PM









ReynLab

#### NOX

- Formed when Nitrogen in air / fuel mixes with oxygen
- Thermal NOX and Fuel NOX
- Prompt NOX Formed by process other than above
- Nitrogen reacts with radicals CH2 or C or CH
- Though nitrogen is usually inert, high temperatures activate it
- NOX formation occurs at high temperatures
- Gas law T  $\alpha$  P, higher in-cylinder pressure raises NOX
- Rich mixtures produce less NOX Less O<sub>2</sub> present
- Stoichiometric Ratio High NOX Flame temp is high
- Slightly Lean Max NOX Excessive O<sub>2</sub>
- Excessively Lean Low NOX Flame temp is low
- Usually invisible, though NO is brownish colour









ReynLab

#### PM

- Particulate Matter Formed because of incomplete combustion
- Exact formation is still unknown
- Nucleation one possible reason
- Classified as PM<sub>10</sub> and PM<sub>2.5</sub> − Refers to particle sizes
- Small particles, extremely harmful
- Penetrates lungs and blood streams Asthma and Cancer
- Linked to air fuel ratio directly









#### ReynLab

#### SOX

- Sulphur present in fuels primarily diesels
- Sulphur oxides irritate nasal passages
- Also causes acid rain Sulphuric Acid



### **Statutory Requirements**





ReynLab

#### BS6

- Stipulations on maximum permissible emissions
- Measured in PPM or g/100km or g/kWh
- Emissions measurement devices 5 gas analysers
- Testing procedures need to be followed







### Vehicle Classification





ReynLab

| L1e                                   |                                 | L2e                                         | L3e                      | L4e              | L5                  |                                                         | L6e                                     |                                      | L7e                               |                                       |                                      |
|---------------------------------------|---------------------------------|---------------------------------------------|--------------------------|------------------|---------------------|---------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|
| Light two-<br>wheeled vehicle         |                                 | Three-<br>wheel<br>moped                    | Motorcycle               | With<br>side car | Tricycle            |                                                         | Light quadricycle                       |                                      | Heavy quadricycle                 |                                       |                                      |
| L1e-A<br>Powered<br>cycles            | L1e-B<br>Moped                  | L2e                                         | L3e                      | L4e              | L5e-A<br>Tricycle   | L5e-B<br>Commercial<br>tricycle                         | <b>L6e-A</b><br>Light quad              | <b>L6e-B</b> Light quadrimobile      | L7e-A<br>Heavy<br>on-road<br>quad | L7e-B<br>Heavy all<br>terrain<br>quad | L7e-C<br>Heavy<br>Quadmobile         |
| O O                                   |                                 | L2e-P                                       | L3e-A1                   | L4e-A1           |                     | CE TO                                                   |                                         | L6Be-P                               | L7e-A1                            | L7e-B1                                | L7e-CU                               |
|                                       | Limited speed                   | L2e-U                                       | L3e-A2                   | L4e-A2           |                     |                                                         |                                         | L6Be-U                               | L7e-A2                            | L7e-B2                                | L7e-CP                               |
|                                       |                                 |                                             | L3e-A3                   |                  |                     |                                                         |                                         |                                      |                                   |                                       |                                      |
| ≤50cc,<br>≤25<br>km/h,<br>250W<br>1kW | ≤50cc,<br>≤45<br>km/h,<br><4 kW | ≤50cc,<br>≤45<br>km/h,<br><4 kW,<br>≤270 kg | <= 11 kW,<br>A2: <=35 kW |                  | 3W,<br><1000<br>kg, | 3W, <1000<br>kg, max 2<br>seats,<br>V 0.6m <sup>3</sup> | <4kW,<br>≤425 kg,<br>≤45 km/h<br>(D, G) | <6kW, <425<br>kg, ≤45<br>km/h (D, G) | <15kW,<br>≤450 kg                 | W/G<6,<br>≤450 kg                     | P: ≤450 kg,<br>U: ≤600 kg,<br>(D, G) |



#### Vehicle Classification





#### **Category L1**

- Motorcycle with engine capcity less than 50cc or electric drive less than 500W
- Max speed not to exceed 45 kmph

#### **Category L2**

- Other than L1, subdivisions as in previous slide
- Quadricycle is a new classification in India Bajaj

#### Category M1

Motor vehicle for carrying passengers, not more than 8 seats in addition to driver

#### **Category M2**

- Motor vehicle for carrying passengers, 9 or more seats in addition to driver
- Gross vehicle weight not to exceed 5T

#### Category M3

- Motor vehicle for carrying passengers, 9 or more seats in addition to driver
- Gross vehicle weight exceeding 5T



### **Drive Cycles**





#### ReynLab

# 1. Modified Indian Driving Cycle (Bharat stage Norms)



Total test time: 1180 sec Total distance: 10.647 km Max. speed: 90 km/h

Maximal Acceleration: 0.833 m/s<sup>2</sup> Maximal Deceleration: 1.389 m/s<sup>2</sup>



### **Drive Cycles**





ReynLab

#### **Drive Cycles**

- Representative of real world conditions in a lab
- Change vehicle velocity over time to simulate driving conditions
- Urban, rural and highway drive cycles
- Country Specific, India MIDC, Europe NEDC, USA FTP75, Global WLTP
- More information available from ARAI website Link attached
- Test cycles are repeated, say 4 cycles for MIDC 2 wheelers



### Drive Cycles and Torque





ReynLab

#### **Torque Requirement**

- Required for accelerating the vehicle
- Vehicle has to accelerate to meet drive cycle requirement (primary target, since if it does not clear drive cycle, it cannot be sold in the market)
- Torque required at wheels < = torque from engine</p>
- If the other way, drive cycle not met
- Torque can be varied by using gears
- Torque can also be varied by changing engine parameters



### Drive Cycles and Torque







speed

- Curves represent 100% throttle opening
- Curves vary based on throttle opening as well (Gasoline)

Gear 3



### Drive Cycles and Torque







- Lower throttle openings Lower peak torque
- Lower throttle openings also produce their peak torques at lower rpms



#### **Torque Development**

- Torque at crank = Force on Con Rod\* Stroke Length
- Force on Con Rod Exerted because of pressure on piston
- Pressure on piston Combustion Pressure
- Combustion pressure Heat release and Volume

$$bmep = \frac{2\pi NT}{V_d}$$





ReynLab









**Torque and Emissions** 

- Higher torque output requires a higher BMEP inside the cylinder
- Usually higher BMEP means
  - More fuel More heat energy Rich AFR
  - More BMEP More Temperature PαT
  - Higher Torque at
    - Stoichiometric ratios More NOX
    - Richer AFR More HC and CO
- Torque delivery usually associated with higher emissions of one kind or the other







ReynLab

#### **Challenges**

- How do we deliver torque without sacrificing emissions performance?
- Is there a safe / acceptable way of delivering torque?
- If we do have higher emissions, how do we control them?



### Activity





#### ReynLab

#### **Activity 1**

- Select a vehicle of your choice, it can be a two / three or four wheeler
- Figure out what the classification of your vehicle is
- Find out the relevant drive cycle for your target vehicle
- Find out the emissions performance of the vehicle (if possible)







#### ReynLab

#### **Reference Books**

■ Internal Combustion Engine Fundamentals — John Heywood