

Week13_Information from parts of words: Subword Models

발표자: 임세영, 황채원

목치

01 Linguistic Knowledge

02 Purely character-level models

03 Subword models

04 Hybrid models

Linguistic Knowledge

#01 Linguistic knowledge

Phonology: 음운론. 의미를 가지는 소리의 구조와 기능에 관한 연구

Phonetics : 음성학. 소리의 물리적 특성과 문법적 특성에 관한 연구

음운론 vs. 음성학

: 음성학에서는 모든 음성적 자질을 동등하게 중시하지만, 음운론은 의미를 변별하는 기능을 가진 변별적 자질을 중시하여 모든 음성적 자질을 동등하게 취급하는 것은 아니다.

Phonemes: 음소. 뜻 구별의 최소 단위

Morphology: 형태론. 단어의 어형 변화를 연구하는 문법의 한 분야

Morphemes : 형태소. [[un [[fortun(e)]_{ROOT} ate]_{STEM}]_{STEM} ly]_{WORD}

#01 Linguistic knowledge

Words in writing systems - 언어별로 상이한 특성들

- 띄어쓰기가 없는 언어
- 띄어쓰기가 있는 언어
 - -> 합성어의 띄어쓰기 문제
 - -> 발음하는 대로 적는 언어, 의미대로 적는 언어

美国关岛国际机场及其办公室均接获

Je vous ai apporté des bonbons

```
| so+said+we+it | فقلناها = فقلناها = فقلناها
```

life insurance company employee Lebensversicherungsgesellschaftsangestell

#01 Linguistic knowledge

Models below the word level – 커버해야 할 단어 수가 너무 많다

Rich morphology
 nejneobhospodařovávatelnějšímu
 ("to the worst farmable one")

Informal spelling

Purely character-level models

#02 Purely character-level models

Pure character-level seq2seq system (2015)

- 영어 체코어 번역
- Word-level에 비해 우수한 성능 특히 사람 이름 번역에서 두각을 보임

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní
char	Její jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu <i>divně</i>
	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>
word :	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

• 학습시간이 너무 느리다는 치명적인 단점 - 3주 이상 소요

#02 Purely character-level models

Fully Char-level Natural Machine Translation (2017)

- 개선된 성능
- 인코더: char 단위 input, convolution layer, max pooling, single layer GRU

#02 Purely character-level models

Seq2seq과 BPE 모델 성능 비교

- 영어 프랑스어 번영에서는 큰 차이가 없지만 체코어 – 영어 번역에서 우수한 성능
- Character-level 연산량이 매우 크다

Subword models

#03 Subword models

BPE(Byte Pair Encoding)

- Word level model과 비슷하다. BPE는 더 작은 word인 word pieces를 이용한다.
- 딥러닝과는 무관한 아이디어
- Most frequent byte pair(n gram)을 새로운 byte(a new gram)으로 clustering

#03 Subword models

BPE(Byte Pair Encoding)

- Frequent 하게 등장하는 es, est, lo를 새로운 단어로 cluster
- 새로 추가된 단어도 하나의 단어처럼 취급
- Target vocab size 에 도달하면 중지
- 시스템의 vocab를 자동적으로 결정

Dictionary

5 low

2 lower

6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d

Dictionary

5 low

2 lower

6 new**es**t

3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, **es**

Dictionary

5 low

2 lower

6 newest

3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

#03 Subword models

Wordpiece model

- 단어 내에서 tokenizing을 진행
- Pre-segmentation + BPE
- Used to Transformer, ElMo, BERT, GPT-2 -> 최신 딥러닝 모델들

Sentencepiece model

- Raw text에서 바로 작동
- 구글에서 2018년 공개한 비지도학습 형태소 분석 패키지
- Pre-segmentation 없이 단어 분리 토큰화 진행
- bigram 각각에 대해 co-occurence 확률을 계산하고 가장 높은 값을 가지는 것을 단어장에 추가

Hybrid models

Hybrid models

- 기본적으로 word 단위로 취급
- 몇몇만 character 단위로 취급 Ex) 사전에 없는 단어, 이름

Character-based LSTM (2015)

- Bi-LSTM을 통해 word embedding
- final state를 concat해서 임베딩된 단어의 벡터로 사용
- 임베딩된 단어 벡터들을 LSTM에 최종적인 task 진행
- language model, pos tagging 사용

Character-Aware Neural Language Models (2015)

- subword 관계성을 인코딩
 Ex) eventful, eventfully, uneventful
- 다른 모델이 가진 rare-word problem을 해결함
- 더 적은 파라미터 수로 비슷한 성능을 냄

Char 단위로 구분

- -> Conv layer with various filter size
- -> maxpooling (어떤 ngram이 단어의 뜻을 가장 잘 나타내는지)
- -> highway network
- -> Word level LSTM

Convolutional layer를 거쳐 feature representation

- Convolutions over character-level inputs.
- Max-over-time pooling (effectively n-gram selection).

Highway Network

- LSTM과 유사한 기능
- semantic을 반영하여 가장 유사한 단어를 잘 뽑아내는 결과

Word-level LSTM

• 최종 출력층

		DATA-S					
		Cs	DE	Es	FR	RU	AR
Botha	KN-4 MLBL	$\frac{545}{465}$	366 296	$\frac{241}{200}$	$\frac{274}{225}$	396 304	323
Small	Word Morph Char	503 414 401	305 278 260	212 197 182	229 216 189	352 290 278	216 230 196
Large	Word Morph Char	$\frac{493}{398}$ 371	286 263 239	$200 \\ 177 \\ 165$	222 196 184	$357 \\ 271 \\ 261$	172 148 148

		DATA-L					
		Cs	DE	Es	FR	RU	EN
D -41-	KN-4	862	463	219	243	390	291
Botha	MLBL	643	404	203	227	300	273
	Word	701	347	186	202	353	236
Small	Morph	615	331	189	209	331	233
	Char	578	305	169	190	313	216

Comparable performance with fewer parameters

	PPL	Size
LSTM-Word-Small	97 .6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	$7 \mathrm{m}$
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

			In Vocabular	y	
	while	his	you	richard	trading
LSTM-Word	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

Richard의 <mark>철자</mark>가 유사한 단어들이 가장 유사하다고 출력

의미를 고려하여 다른 사람 이름을 출력

semantic을 반영하여 더 의미 있는 단어들을 학습

- 16,000개 vocabulary size 이용
- seq2seq으로 word-level model 진행
- unknown word -> character-level model
- 4개의 layer 사용

source	The author Stephen Jay Gould died 20 years after diagnosis .				
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .				
char	Autor Stepher Stepher zemřel 20 let po diagnóze .				
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>				
	Autor Stephen Jay Gould zemřel 20 let po po .				
اد داد داد	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>				
hybrid	Autor Stephen Jay Gould zemřel 20 let po diagnóze .				

wrong name translation

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird			
human	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird Její jedenáctiletá dcera Shani Bartová prozradila, že je to trochu zvláštní			
word -	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>			
	Její <mark>11-year-old</mark> dcera Shani , řekla , že je to trochu <i>divné</i>			
hybrid	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>			
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>			

이름은 문제없이 옮기지만 나이 같은 경우 제대로 번역이 되지 않은 문장이 만들어짐

source	The author Stephen Jay Gould died 20 years after diagnosis .			
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .			
char	Autor Stepher Stepher zemřel 20 let po diagnóze .			
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>			
	Autor Stephen Jay Gould zemřel 20 let po po .			
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>			
I	Autor Stephen Jay Gould zemřel 20 let po diagnóze .			

번역 결과 hybrid가 가장 우수

FastText Embeddings

- 차세대 word2vec (word vector learning library)
- 하나의 단어에 여러 단어들이 존재하는 것으로 간주
- 한 단어의 n-gram과 원래의 단어를 모두 학습에 사용

형태소가 풍부한 언어나 희귀한 단어들을 다룰 때 성능이 더 좋음

모르는 단어에 대해서도 subword를 활용해 다른 단어와의 유사도 계산 가능

등장 빈도수가 적은 단어도 다른 단어와 n-gram을 비교해 임베딩 값 계산 가능

THANK YOU

