9.3 POLINOMIO INTERPOLADOR EN LA FORMA DE LAGRANGE (M>0)

Ejemplo:
$$N=1$$
, 2 puntos (x_0, y_0) , (x_1, y_1) , $x_0 \neq x_1$

$$p(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 - p(x_0) = y_0$$
, $p(x_1) = y_1$

definición: decinos polinomios elementales de (PEL) Legroupe par los modos $\{x_i\}_{i=0}^m \subset \mathbb{R}$, $x_i \neq x_j$ $\{x_i\}_{i=0}^m \subset \mathbb{R}$, $\{x_i\}_{i=0}^m \subset \mathbb{R}$

$$\lim_{k \neq j} \frac{x_{-x_{k}}}{x_{j}-x_{k}}, \quad j \in \{0, ..., m\}$$

Ejemplo: M = 2, 3 puntos (x_0, y_0) , (x_1, y_1) , (x_2, y_2) $L_0(x) = \frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2}$, $L_1(x) = \frac{x - x_0}{x_1 - x_0} \frac{x - x_2}{x_1 - x_0}$, $L_2(x) = \frac{x - x_0}{x_2 - x_0} \frac{x - x_1}{x_2 - x_0}$

teorene : seen $\{(x_i, y_i)\}_{i=1}^m \subset \mathbb{R}^2$, $x_i \neq x_j$ si $i \neq j$ y sean $\{L_j\}_{j=1}^m$ los PEL pon $\{x_i\}_{i=1}^m$

=> el polinomio interpolador p e In es

p(x) = & J; Lj(x),
$$\forall x \in \mathbb{R}$$
.

POLINOMIO INTERPOLADOR EN LA FORXA DE LAGRANGE

observación: costa computacional

- . para calcular pox en un punto x x \ x x ; } i=
 - eveluer todos los Ljeux O(m²) dependen de x
 - eveluer p como c.l. O(n)
- . para añadir un punto de interpolación (xm., ym.) La es necesario recalente todos los Ljax

demostración:

. codo
$$L_j \in P_m \Rightarrow \frac{m}{j=0} y_j L_j \in P_m$$

.
$$p(x_i) = \frac{\tilde{\Sigma}}{\tilde{J}=3} y_j L_j(x_i) = y_i$$
 : es el unico polimento interp. #

pero cualquier elección de los modos se obtiene una base

demostración:

- . todo pe Pn es c. l. de los Lj:
 - sea pe Pm y diparus y = p(x:), i = \{o...m}
 - por los puntos {(xi, yi)}.
 - pcx) = = = y; Lj (x): es c.e. de los Lj
- . los Lj som l.i.
 - sea {c;} ~ c R t.g. = c; Lj (x) = 0 \ \ \
 - sea q(x) = \(\frac{m}{j} = 0 \) (j/x)

$$=> q(x_j) = c_j => c_j = 0 \forall j \in \{0...n\}$$

Ejercicio: sean $\{L_j\}_{j=3}^m$ PEL por $\{x_i\}_{i=3}^m$, $x_i \neq x_j$ si * $i \neq j$ => $\sum_{j=3}^m L_j(x) = 1$ $\forall x \in \mathbb{R}$.

 $Q(x) = \sum_{j=0}^{m} 1 \cdot L_{j}(x) \quad \text{satisface} \quad Q(x; y) = 1 \quad \forall i \in \{0, -m\}$

. pcx = 1 es Pm y sotisface p(xi) = 1

· => 9 = p por unicidad.

definición: decimos pesos bonicontulos de Laprange por los modos {x;}in cR, x; x; si i+j

 $W_{j} = \frac{1}{\prod_{k=0}^{m} (x_{j} - x_{k})}, \quad j \in \{0, ..., m\}$

teoreme: (forma bonicentrice de Legrange)
seen {(xi, yi)} ~ c | R², xi xxj si i xj

=> el polinomis interpolador p e In es

 $p(x) = \frac{\sum_{j=0}^{n} y_j \frac{w_j}{x-x_j}}{\sum_{j=0}^{n} \frac{w_j}{x-x_j}}, \quad \forall \quad x \in \mathbb{R} \setminus \{x_i\}_{i=0}^{m}.$

observacion: coste computacional

- . paro colenlar p(x) en un x e R
 - eveluar todos los Wj O(m²) no dependen de x
 - eveluer per x userab (*) O(n)
- · pero a vestir un punto de interpolación (xn+1, yn+1)
 - recelcular los W; O(n) independentemente de x
 - eveluer per x userab (*) O(n)

demostración:

. sea
$$\overline{\prod}_{m+1}(x) = (x-x_0)(x-x_1)...(x-x_m) = \frac{m}{\prod_{j=0}^{\infty}}(x-x_j)$$

"polinomis mônice que se anule en {x;} "

(, el muico polinomio de presto m+1 que se enula en los m+1 modos {x:}", y que tiene coeficiente 1 pero el monomio de orden m+1 (por eso "mônico")

$$= \sum_{k=0}^{N} \int_{\mathbb{K}^{+}j} \frac{x - x_{k}}{x_{j} - x_{k}} = \frac{\int_{\mathbb{K}^{+}j}^{\mathbb{K}^{+}} \int_{\mathbb{K}^{+}j} (x - x_{k})}{\int_{\mathbb{K}^{+}j}^{\mathbb{K}^{+}} \int_{\mathbb{K}^{+}j} (x_{j} - x_{k})}$$

$$= \bigvee_{j} \frac{\prod_{m+1} (x)}{x - x_{j}} = \prod_{m+1} (x) \frac{x - x_{j}}{x}$$

. por el terremo enterior, el polinamis interpolador es

$$p(x) = \sum_{j=0}^{n} y_j L_j(x) = \prod_{M \neq i} (x) \sum_{j=0}^{n} \frac{x_j}{x - x_j} y_j$$

· usanola la segunda de estes identidades (y el ejenciais)

$$1 = \sum_{j=0}^{n} L_{j}(x) = \prod_{M \neq i} C_{x,j} \sum_{j=0}^{n} \frac{w_{j}}{x - x_{j}}$$

$$= > \overline{dI}_{M+1}(x) = \frac{1}{\sum_{j=0}^{m} \frac{w_{j}}{x-x_{j}}}$$