

FPChecker

Detecting Floating-Point Exceptions in GPUs

Ignacio Laguna, Harshitha Menon
Lawrence Livermore National Laboratory

Michael Bentley, Ian Briggs, Pavel Panchekha, Ganesh Gopalakrishnan **University of Utah**

Hui Guo, Cindy Rubio González University of California at Davis

Michael O. Lam

James Madison University

Trapping Floating-Point Exceptions in CPU Code

Floating-Point Arithmetic Standard (IEEE 754)

- 1.Invalid operation
- 2. Division by zero
- 3.Overflow
- 4.Underflow
- 5.Inexact calculation

- When an exceptions occurs, it is signaled
 - System sets a flag or takes a trap
 - Status flag FPSCR set by default
- The system (e.g., Linux) can also cause the floating-point exception signal to be raised
 - SIGFPE

Source: https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.genprogc/floating-point_except.htm

CUDA has Limited Support for Detecting Floating-Point Exceptions

- CUDA: programming language of NVIDIA GPUs
- CUDA has no mechanism to detect exceptions
 - As of CUDA version: 10
- All operations behave as if exceptions are masked

You may have "hidden" exceptions in your CUDA program

Detecting the Result of Exceptions in a CUDA Program

Place printf statements in the code (as many a possible)

```
double x = 0;
x = x/x;
printf("res = %e\n", x);
```

Programming checks are available in CUDA:

```
__device__ int <u>isnan</u> ( float a );
__device__ int <u>isnan</u> ( double a );
```

Also available isinf

These solutions are not ideal; they require significant programming effort

Goals of FPChecker

- Automatically detect the location of FP exceptions in NVIDIA GPUs
 - Report file & line number
 - No extra programming efforts required
- Report input operands
- Use software-based approach (compiler)
- Analyze optimized code

Workflow of FPChecker

How to Use FPChecker

1. Use clang as compiler for CUDA

2. Include path of FPChecker runtime system

3. Tell clang to load the instrumentation library

Example of Compilation Configuration

Use clang instead of NVCC

```
#CXX = nvcc
CXX = /path/to/clang++
CUFLAGS = -std=c++11 --cuda-gpu-arch=sm_60 -g
FPCHECK_FLAGS = -Xclang -load -Xclang /path/libfpchecker.so \
    -include Runtime.h -I/path/fpchecker/src
CXXFLAGS += $(FPCHECK_FLAGS)
```

- Load instrumentation library
- Include runtime header file

What Happens At Runtime?

Mode 1 Errors abort

- If exception is detected, we signal a trap instruction
- Kernel aborts execution

Mode 2 Errors don't abort

- If exception is detected, we store the location in global memory
- At the end of kernels, we check if exceptions occurred
 - If so, it prints a report
- Slightly higher overhead than mode 1

Errors Abort Mode

We report **Warnings** for Latent Underflows/Overflows

- -D **FPC_DANGER_ZONE_PERCENT=**x.x:
 - a. Changes the size of the danger zone.
 - b. By default, x.x is 0.10, and it should be a number between 0.0 and 1.0.

Example of Error Report

Example of Overflow

Laghos (LAGrangian High-Order Solver) is a miniapp that solves the time-dependent Euler equations of compressible gas dynamics.


```
const double pinv = 1.0 / p;
388
389
                   // det(pinv*(gradv-q*I))
390
                   const double r = (0.5*pinv*pinv*pinv *
391
                                      ((gradv q00*gradv q11*gradv q22) +
392
                                       (2.0*gradv10*gradv21*gradv20) -
393
                                       (gradv q11*gradv20*gradv20) -
394
                                       (gradv q22*gradv10*gradv10) -
395
                                       (gradv q00*gradv21*gradv21)));
396
397
                   double phi = 0;
398
                   if (r <= -1.0)
399
400
                      phi = M PI / 3.0:
401
402
                   else if (r < 1.0)
403
                      phi = acos(r) / 3.0;
404
405
```

- p is initially zero
- pinv is INF
- **r** becomes -INF

This branch is taken

May not be detected with printf

Overhead of FPChecker

Average slowdown observed in three mini applications: 1.3x - 1.5x

Slowdown depends on:

- Mode of operation
- Floating-point instructions per kernel
- Kernel execution frequency

Source code available: https://github.com/LLNL/FPChecker

Questions?

http://fpanalysistools.org/

15

Exercises

Exercises with FPChecker

- 1. Compile and run CUDA application with Clang
- 2. Compile application with Clang & FPChecker
- 3. ERRORS_ABORT: NaN exception
- 4. ERRORS_DONT_ABORT: INF exception

Directory Structure

```
/Module-FPChecker
|---/exercise-1
|---/exercise-2
|---/exercise-3
|---/exercise-4
```

Application: LULESH

- Proxy application developed at LLNL
- Models a shock hydrodynamics problem
- LULESH version 2.0.2 for CUDA
 - o Input: -s N
 - N: integer
 - Example: ./lulesh -s 5
 - Runs a 5x5x5 problem
- https://computation.llnl.gov/projects/co-design/lulesh

Exercise 1

Exercise 1: Compiling CUDA with Clang

- Open Makefile file
- Take a look at this compilation options:
 - O NVCC = clang++
 - Indicates to use clang as the CUDA compiler
 - FLAGS = -g --cuda-gpu-arch=sm_35
 - Use debug information (-g)
 - Use CUDA compute capability (architecture) sm_35
- Execute:
 - \$ make clean
 - o \$ make

Exercise 1: Output

```
$ make
clang++ -g --cuda-gpu-arch=sm_35   -Wno-mismatched-new-delete -Wno-format-extra-args -03 -DNDEBUG
allocator.cu -I ./ -c -o allocator.o
clang++ -g --cuda-gpu-arch=sm_35   -Wno-mismatched-new-delete -Wno-format-extra-args -03 -DNDEBUG
lulesh.cu -I ./    -c -o lulesh.o
clang++ -g --cuda-gpu-arch=sm_35   -Wno-mismatched-new-delete -Wno-format-extra-args -03 -DNDEBUG
lulesh-comms.cu -I ./ -c -o lulesh-comms.o
clang++ -g --cuda-gpu-arch=sm_35   -Wno-mismatched-new-delete -Wno-format-extra-args -03 -DNDEBUG
lulesh-comms-gpu.cu -I ./ -c -o lulesh-comms-gpu.o
clang++ -L/usr/local/cuda-8.0/lib64/ -lcuda -lcudart allocator.o lulesh.o lulesh-comms.o
lulesh-comms-gpu.o -o lulesh
```

Exercise 1: Running LULESH

- Run LULESH:
 - o ./run_lulesh.sh
- Internally the scripts runs:
 - o ./lulesh -s 5

```
$ ./run lulesh.sh
Host ip-172-31-37-229 using GPU 0: Tesla K80
Running until t=0.010000, Problem size=5x5x5
cycle = 1, time = 3.417997e-04, dt=3.417997e-04
cycle = 2, time = 7.519594e-04, dt=4.101597e-04
cycle = 3, time = 8.925464e-04, dt=1.405871e-04
cycle = 4, time = 1.009948e-03, dt=1.174011e-04
cycle = 72, time = 1.000000e-02, dt=1.193338e-04
Run completed:
  Problem size
  MPI tasks
  Iteration count
                      = 72
  Final Origin Energy = 7.853665e+03
  Testing Plane 0 of Energy Array on rank 0:
       MaxAbsDiff
                    = 4.547474e-13
       TotalAbsDiff = 1.405569e-12
       MaxRelDiff = 4.974166e-15
Elapsed time
                            0.02(s)
Grind time (us/z/c) = 1.6841111 (per dom) ( 1.6841111 overall)
FOM
                    = 593.78505 (z/s)
```

Exercise 2

Exercise 2: Compile Application with FPChecker

- 1. Open Makefile
- 2. Take a look at FPChecker flags

```
FPCHECKER_PATH = /opt/fpchecker/install
LLVM_PASS = -Xclang -load -Xclang $(FPCHECKER_PATH)/lib/libfpchecker.so \
-include Runtime.h -I$(FPCHECKER_PATH)/src

OTHER_FLAGS = $(LLVM_PASS) -Wno-mismatched-new-delete -Wno-format-extra-args

NVCC = clang++
FLAGS = -g --cuda-gpu-arch=sm_35
DFLAGS = $(OTHER_FLAGS) -lineinfo
RFLAGS = $(OTHER_FLAGS) -03 -DNDEBUG
```

Exercise 2: Compile Application with FPChecker

- Run make:
 - make

FPChecker output

Some instructions are instrumented

```
$ make
clang++ -g --cuda-gpu-arch=sm 35 -Xclang -load -Xclang
/opt/fpchecker/install/lib/libfpchecker.so -include Runtime.h
-I/opt/fpchecker/install/src -Wno-mismatched-new-delete -Wno-format-extra-args -O3
-DNDEBUG allocator.cu -I ./ -c -o allocator.o
#FPCHECKER: Initializing instrumentation
#FPCHECKER: Pointer value (fp32 check add function): 0
clang++ -g --cuda-gpu-arch=sm 35 -Xclang -load -Xclang
/opt/fpchecker/install/lib/libfpchecker.so -include Runtime.h
-I/opt/fpchecker/install/src -Wno-mismatched-new-delete -Wno-format-extra-args -O3
-DNDEBUG lulesh.cu -I ./ -c -o lulesh.o
#FPCHECKER: Initializing instrumentation
#FPCHECKER: Pointer value (fp32 check add function): 0
#FPCHECKER: Found FPC DEVICE CODE FUNC
#FPCHECKER: Found FPC PRINT ERRORS
#FPCHECKER, Entering main loop in instrumentFunction
#FPCHECKER: Instrumented operation 15
#FPCHECKER: Leaving main loop in instrumentFunction
#FPCHECKER: Instrumenting function: Z31CalcAccelerationForNodes kerneliPdS S S S S
#FPCHECKER: Entering main loop in instrumentFunction
#FPCHECKER: Instrumented operations: 4
```

Exercise 3

Exercise 3: NaN Exception & ERRORS_ABORT

- We inject a synthetic a NaN exception in LULESH
- FPChecker is run in ERRORS_ABORT mode
 - Detects the first exception
 - Reports the exception
 - Aborts

Exercise 3: Synthetic NaN Exception

- We inject a synthetic NaN exception in LULESH
 - See file: lulesh.cu
 - o Line: 2868

```
2857 global
2858 void CalcAccelerationForNodes kernel(int numNode,
2859
                                          Real t *xdd, Real t *ydd, Real t *zdd,
2860
                                          Real t *fx, Real t *fy, Real t *fz,
                                          Real t *nodalMass)
2861
2862 {
      int tid=blockDim.x*blockIdx.x+threadIdx.x;
2863
      if (tid < numNode)</pre>
2864
2865
2866
          Real_t one_over_nMass = Real_t(1.)/nodalMass[tid];
2867
          // NaN
          one over nMass = (one over nMass-one over nMass) / (one over nMass-one over nMass);
2868
          xdd[tid]=fx[tid]*one over nMass;
2869
          ydd[tid]=fy[tid]*one_over nMass;
2870
```

Exercise 3: FPChecker Detects NaN Exception

- Run lulesh:
 - ./run_lulesh.sh
- See FPChecker report
- Aborts after report is printed

```
$ ./run lulesh.sh
------
FPChecker (v0.1.0, Jun 23 2019)
Host ip-172-31-37-229 using GPU 0: Tesla K80
Running until t=0.010000, Problem size=10x10x10
: NaN
Frror
Operation : DIV
         : lulesh.cu
File
Line
          : 2868
terminate called after throwing an instance of 'thrust::system::detail::bad alloc'
 what(): std::bad_alloc: an illegal instruction was encountered
./run lulesh.sh: line 3: 3344 Aborted
                                        (core dumped) ./lulesh -s 5
```

Exercise 4

Exercise 4: INF Exception & ERRORS_DONT_ABORT

- We inject a synthetic a INF exception in LULESH
- FPChecker is run in ERRORS_DONT_ABORT mode
 - Reports the exception
 - It doesn't aborts on the first exception
 - Program continues running

Exercise 4: INF Exception & ERRORS_DONT_ABORT

Makefile

```
FPCHECKER_PATH = /opt/fpchecker/install
LLVM_PASS = -Xclang -load -Xclang $(FPCHECKER_PATH)/lib/libfpchecker.so \
-include Runtime.h -I$(FPCHECKER_PATH)/src -DFPC_ERRORS_DONT_ABORT 

OTHER_FLAGS = $(LLVM_PASS) -Wno-mismatched-new-delete -Wno-format-extra-args

NVCC = clang++
FLAGS = -g --cuda-gpu-arch=sm_35

DFLAGS = $(OTHER_FLAGS) -lineinfo

RFLAGS = $(OTHER_FLAGS) -03 -DNDEBUG
```

Exercise 4: FPChecker Detects INF Exception

- Run lulesh:
 - o ./run_lulesh.sh
- FPChecker report is a single line
- Program continues to run after the error report
- A warning is also reported

```
$ ./run_lulesh.sh
FPChecker (v0.1.0, Jun 23 2019)
Host ip-172-31-37-229 using GPU 0: Tesla K80
Running until t=0.010000, Problem size=5x5x5
cycle = 1, time = 3.417997e-04, dt=3.417997e-04
cycle = 2, time = 7.519594e-04, dt=4.101597e-04
#FPCHECKER: INF Error at lulesh.cu:2871 (code:#-2, tid:0)
cycle = 3, time = 8.925464e-04, dt=1.405871e-04
cycle = 4, time = 1.009948e-03, dt=1.174011e-04
#FPCHECKER: Warning at lulesh.cu:2871 (#2.805864e+304, tid:0)
cycle = 5, time = 1.114606e-03, dt=1.046586e-04
cycle = 6, time = 1.211786e-03, dt=9.718025e-05
cycle = 7, time = 1.304180e-03, dt=9.239337e-05
cycle = 8, time = 1.393422e-03, dt=8.924197e-05
cycle = 9, time = 1.480620e-03, dt=8.719797e-05
cycle = 10, time = 1.566588e-03, dt=8.596832e-05
```