Chapter 1 An Introduction to Computer Science

INVITATION TO
Computer Science

Objectives

After studying this chapter, students will be able to:

- Understand the definition of computer science
- Write down everyday algorithms and evaluate them to determine if they are ambiguous or not effectively computable

Objectives (continued)

After studying this chapter, students will be able to:

- Understand the roots of modern computer science in mathematics thousands of years old and in mechanical machines hundreds of years old
- Summarize the key points in the historical development of modern electronic computers
- Map the organization of the text onto the definition of computer science

Introduction

- Misconceptions
 - Computer science is:
 - The study of computers
 - The study of how to write computer programs
 - The study of the uses and applications of computers and software

The Definition of Computer Science

- Computer science is the study of algorithms, including:
 - Their formal and mathematical properties
 - Their hardware realizations
 - Their linguistic realizations
 - Their applications

The Definition of Computer Science (continued)

- Algorithm
 - Informally, "an ordered sequence of instructions that is guaranteed to solve a specific problem."
- Operations used to construct algorithms
 - Sequential operations
 - Conditional operations
 - Iterative operations

Step 1	If the clock and calendar are not correctly set, then go to page 9 of the instruction manual and follow the instructions there before proceeding to Step 2		
Step 2	Place a blank disc into the DVR disc slot		
Step 3	Repeat Steps 4 through 7 for each program that you want to record		
Step 4	Enter the channel number that you want to record and press the button labeled CHAN		
Step 5	Enter the time that you want recording to start and press the button labeled TIME-START		
Step 6	Enter the time that you want recording to stop and press the button labeled TIME-FINISH. This completes the programming of one show		
Step 7	If you do not want to record anything else, press the button labeled END-PROG		
Step 8	Turn off your DVR. Your DVR is now in TIMER mode, ready to record		

Programming your DVR: An example of an algorithm

Given: $m \ge 1$ and two positive numbers each containing m digits, a_{m-1} a_{m-2} ... a_0 and b_{m-1} b_{m-9} ... b_0

Wanted: $c_m c_{m-1} c_{m-2} \dots c_0$, where $c_m c_{m-1} c_{m-2} \dots c_0 = (a_{m-1} a_{m-2} \dots a_0) + (b_{m-1} b_{m-2} \dots b_0)$

Algorithm:

Step 1 Set the value of carry to 0

Step 2 Set the value of i to 0

Step 3 While the value of i is less than or equal to m-1, repeat the instructions in Steps 4 through 6

Step 4 Add the two digits a_i and b_i to the current value of carry to get c_i

Step 5 If $c_i \ge 10$, then reset c_i to $(c_i - 10)$ and reset the value of *carry* to 1; otherwise, set the new value of *carry* to 0

Step 6 Add 1 to *i*, effectively moving one column to the left

Step 7 Set c_m to the value of *carry*

Step 8 Print out the final answer, $c_m c_{m-1} c_{m-2} \dots c_0$

Step 9 Stop

Algorithm for adding two m-digit numbers

The Definition of Computer Science (continued)

- Why are formal algorithms so important in computer science?
 - If we can specify an algorithm to solve a problem, then we can automate its solution
- Computing agent
 - Machine, robot, person, or thing carrying out the steps of the algorithm
- Unsolved problems
 - Some problems are unsolvable, some solutions are too slow, and some solutions are not yet known

Algorithms

- The Formal Definition of an Algorithm
 - A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

- Well-ordered collection
 - Upon completion of an operation we always know which operation to do next
- Ambiguous statements
 - Go back and do it again (Do what again?)
 - Start over (From where?)

- Unambiguous operation, or primitive
 - Can be understood by the computing agent without having to be further defined or simplified
- It is not enough for an operation to be understandable
 - It must also be doable (effectively computable) by the computing agent

Algorithm

- Result must be produced after the execution of a finite number of operations
- Result may be a number, text, a light, picture, sound, or a change in the computing agent's environment
- Infinite loop
 - Runs forever
 - Usually a mistake

Step	Operation
1	Wet your hair
2	Set the value of WashCount to 0
3	Repeat Steps 4 through 6 until the value of WashCount equals 2
4	Lather your hair
5	Rinse your hair
6	Add 1 to the value of WashCount
7	Stop, you have finished shampooing your hair

A correct solution to the shampooing problem

Step	Operation
1	Wet your hair
2	Lather your hair
3	Rinse your hair
4	Lather your hair
5	Rinse your hair
6	Stop, you have finished shampooing your hair

Another correct solution to the shampooing problem

- The Importance of Algorithmic Problem Solving
 - "Industrial revolution" of 19th century
 - Mechanized and automated repetitive physical tasks
 - "Computer revolution" of the 20th and 21st centuries
 - Mechanized and automated repetitive mental tasks
 - Through algorithms and computer hardware
- See: "A Brief History of Computing"

Organization of the Text

Computer science is the study of algorithms including:	Levels of the text:
1. Their formal and mathematical properties,	Level 1: The Algorithmic Foundations of Computer Science
2. Their hardware realizations,	Level 2: The Hardware World Level 3: The Virtual Machine
3. Their linguistic realizations,	Level 4: The Software World
4. Their applications.	Level 5: Applications Level 6: Social Issues

Summary

- Computer science is the Study of algorithms
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
- If we can Specify an algorithm to solve a problem, then we can automate its solution
- Computers developed from mechanical calculating devices to modern electronic marvels of miniaturization