Задание №7

1. Графики зависимости времени выполнения программы от числа элементов массива

1.1 Кусочно-линейный график

Кусочно-линейный график для зависимости 15 вариантов программы (с уровнями оптимизации Os O1 O2 O3 O0 и с алгоритмом, основанным на работе с указателями, с индексацией обращением к элементам с помощью конструкции «указатель + индекс»)

График 1: Кусочно-линейный для 15 вариантов программы

Судя по графику, можно сделать вывод, что при нулевом уровне оптимизации по времени явно выигрывает способ обработки массива через указатели, в то время как два других способа работают практически за

одно и то же время. При остальных уровнях оптимизации (включая оптимизацию по памяти) время выполнение программы практически совпадает. График нарисован по данным в 1337 тестов, однако в процессе подготовки задания были и замеры с небольшим количеством тестов, где был виден «разброс» в значениях разных алгоритмов. В таких случаях всегда немного «выигрывал» по времени алгоритм индексации с оптимизацией ОЗ, однако, как видно на графике, на дистанции все они срабатывают одинаково. Значит, оптимизатор выбирает наиболее быстрый по времени алгоритм и использует его во всех случаях.

На всех графиках:

- ptrs алгоритм с указателями
- idx алгоритм с индексацией
- mixed смешанный алгоритм

1.2 Кусочно-линейный график с ошибкой

Кусочно-линейный график с ошибкой для трёх вариантов программы (все три разновидности алгоритма, у всех уровень оптимизации О2)

График 2: Кусочно-линейный график с ошибкой

Кусочно-линейный график с ошибкой позволяет увидеть разброс между средним значением, максимумом и минимумом при каждом замере. Из-за того, что исследование проводилось в таких условиях, что были отключены все возможные фоновые процессы (в том числе Wi-Fi и антивирус), число «статистических выбросов» сведено практически к нулю. В большинстве замеров между наибольшим, наименьшим и средним значением различие минимально. Судя по графику, 4 случая из 21 не обошлись без выбросов, однако все они относятся к разным вариантам программы, так что никакой зависимости от них не имеется. Также можно заметить, что максимальное значение отличается от среднего гораздо больше, чем минимальное, а выбросы «вниз» совсем отсутствуют.

1.3 График с усами

График с усами для программы с алгоритмом индексации на уровне оптимизации O3:

График 3: График с усами

График с усами позволяет посмотреть наиболее распространённые отклонения от медианного значения (те, которые входят в промежуток между первым и третьим квартилями), а также, подобно графику с ошибкой, посмотреть разброс максимального и минимального значения. график Также мною были помещены значения среднего на арифметического, чтобы визуально удостовериться в том, что они не всегда совпадают с медианным значением, особенно в тех замерах, где присутствуют статистические выбросы. Аналогично графику с ошибкой, разброс от медианного значения совсем не велик. Разброс первого и третьего квартилей составляет в среднем не больше 1% в обе стороны от медианы.

2. Таблицы данных, по которым были построены графики

Все значения были округлены до десятых, чтобы уместить в таблицу.

Таблица 1: Таблица значений для графика 1

N	Среднее значение (мкс)				
	Указатели ; Смешанные ; Индексы				
	Os	O0	01	O2	O3
1	0.0; 0.0; 0.0	0.1; 0.0; 0.0	0.0; 0.0; 0.0	0.0; 0.0; 0.0	0.0; 0.0; 0.0
500	0.4; 0.4; 0.4	1.0 ; 1.2 ; 1.2	0.4; 0.4; 0.4	0.4; 0.4; 0.4	0.4; 0.4; 0.4
1000	0.9; 0.9; 0.9	2.1; 2.3; 2.3	0.9; 0.8; 0.9	0.8; 0.8; 0.8	0.8; 0.9; 0.9
1500	1.3; 1.3; 1.3	3.1; 3.5; 3.5	1.3; 1.3; 1.3	1.3; 1.3; 1.3	1.3; 1.3; 1.3
2000	1.7; 1.7; 1.7	4.2 ; 4.7 ; 4.7	1.7; 1.7; 1.7	1.7; 1.7; 1.7	1.7; 1.7; 1.7
2500	2.1; 2.1; 2.2	5.2 ; 5.8 ; 5.8	2.1; 2.2; 2.1	2.1; 2.1; 2.1	2.1; 2.1; 2.1
3000	2.6; 2.6; 2.6	6.2 ; 7.0 ; 7.0	2.6; 2.6; 2.6	2.6; 2.6; 2.6	2.6; 2.6; 2.6
3500	3.0; 3.0; 3.0	7.3;8.1;8.2	3.0; 3.0; 3.0	3.0; 3.0; 3.0	3.0; 3.0; 3.0
4000	3.4; 3.4; 3.5	8.3; 9.3; 9.3	3.4; 3.5; 3.4	3.4; 3.4; 3.4	3.4; 3.4; 3.4
4500	3.9; 3.9; 3.9	9.3; 10.5; 10.5	3.9; 3.9; 3.9	3.9; 3.9; 3.9	3.9; 3.9; 3.9
5000	4.3; 4.3; 4.3	10.4; 11.6; 11.6	4.3; 4.3; 4.3	4.3; 4.3; 4.3	4.3; 4.3; 4.3
5500	4.7; 4.7; 4.8	11.3; 12.8; 12.8	4.7; 4.7; 4.7	4.7; 4.7; 4.7	4.7; 4.7; 4.7
6000	5.2;5.2;5.2	12.5;13.9;14.0	5.2;5.2;5.2	5.1; 5.2; 5.2	5.2;5.2;5.2
6500	5.6; 5.6; 5.6	13.5; 15.1; 15.1	5.6; 5.6; 5.6	5.6; 5.6; 5.6	5.6; 5.6; 5.6
7000	6.0;6.0;6.1	14.5; 16.2; 16.3	6.0; 6.0; 6.0	6.0; 6.0; 6.0	6.0; 6.0; 6.0
7500	6.4;6.4;6.5	15.5; 17.4; 17.4	6.5 ; 6.5 ; 6.5	6.4; 6.4; 6.4	6.5 ; 6.4 ; 6.5
8000	6.9; 6.9; 6.9	16.6; 18.6; 18.6	6.9 ; 6.9 ; 6.9	6.9 ; 6.9 ; 6.9	6.9 ; 6.9 ; 6.9
8500	7.3; 7.3; 7.4	17.6; 19.7; 19.7	7.3; 7.3; 7.3	7.3; 7.3; 7.3	7.3; 7.3; 7.3
9000	7.7; 7.7; 7.8	18.7; 20.1; 20.9	7.8; 7.8; 7.7	7.7; 7.7; 7.7	7.7;7.7;7.7
9500	8.1;8.2;8.2	19.7;22.0;22.1	8.2;8.2;8.2	8.2;8.1;8.2	8.2;8.2;8.2
10000	8.6; 8.6; 8.6	20.7; 23.3; 23.2	8.6; 8.6; 8.6	8.6; 8.6; 8.6	8.6; 8.6; 8.6

Таблица 2: Таблица значений для графика 2

N	Среднее ; Максимум ; Минимум			
	Указатели	Смешанные	Индексация	
1	0.0; 0.0; 0.0	0.0; 0.0; 0.0	0.0; 0.0; 0.0	
500	0.4; 0.6; 0.4	0.4; 0.6; 0.4	0.4; 0.5; 0.4	
1000	0.9; 1.0; 0.8	0.8; 1.0; 0.8	0.8; 1.0; 0.8	
1500	1.3 ; 1.5 ; 1.3	1.3; 1.4; 1.3	1.3; 1.4; 1.3	
2000	1.7; 1.9; 1.7	1.7 ; 1.9 ; 1.7	1.7; 1.9; 1.7	
2500	2.1; 2.3; 2.1	2.1; 2.3; 2.1	2.1; 2.4; 2.1	
3000	2.6 ; 2.7; 2.5	2.6 ; 3.2; 2.6	2.6 ; 3.7; 2.6	
3500	3.0; 3.1; 3.0	3.0; 3.1; 3.0	3.0; 3.1; 3.0	
4000	3.4; 3.5; 3.4	3.4; 3.6; 3.4	3.4 ; 3.5 ; 3.4	
4500	3.9 ; 4.0 ; 3.8	3.9 ; 4.0 ; 3.8	3.9 ; 4.0 ; 3.8	
5000	4.3; 4.4; 4.3	4.3 ; 4.4 ; 4.3	4.3 ; 4.4 ; 4.3	
5500	4.7; 4.9; 4.7	4.7 ; 4.8 ; 4.7	4.7 ; 4.8 ; 4.7	
6000	5.2 ; 5.3 ; 5.1	5.2 ; 5.5 ; 5.1	5.2 ; 5.3 ; 5.1	
6500	5.6;6.0;5.6	5.6 ; 5.7 ; 5.6	5.6 ; 5.7 ; 5.6	
7000	6.0; 6.1; 6.0	6.0 ; 6.2 ; 6.0	6.0 ; 6.4 ; 6.0	
7500	6.5 ; 6.6 ; 6.4	6.4 ; 6.6 ; 6.4	6.4 ; 7.2 ; 6.4	
8000	6.9;8.0;6.8	6.9 ; 7.0 ; 6.8	6.9 ; 7.1 ; 6.8	
8500	7.3 ; 7.5 ; 7.3	7.3 ; 7.5 ; 7.3	7.3; 7.8; 7.3	
9000	7.7 ; 7.9 ; 7.7	7.7 ; 7.9 ; 7.7	7.7 ; 8.1 ; 7.7	
9500	8.2;8.8;8.1	8.2; 8.4; 8.1	8.2;8.3;8.1	
10000	8.6; 8.9; 8.5	8.6; 8.7; 8.6	8.6 ; 8.9 ; 8.6	

Таблица 3: Таблица значений для графика 3

N	Минимум	1 Квартиль	Медиана	3 Квартиль	Максимум	Среднее
1	0.0	0.0	0.0	0.0	0.0	0.0
500	0.4	0.4	0.4	0.4	0.6	0.4
1000	0.8	0.8	0.8	0.8	1.0	0.9
1500	1.3	1.3	1.3	1.3	1.4	1.3
2000	1.7	1.7	1.7	1.7	1.8	1.7
2500	2.1	2.1	2.1	2.1	2.3	2.1
3000	2.6	2.6	2.6	2.6	2.7	2.6
3500	3.0	3.0	3.0	3.0	3.2	3.0
4000	3.4	3.4	3.4	3.5	3.6	3.4
4500	3.8	3.8	3.8	3.9	4.0	3.9
5000	4.3	4.3	4.3	4.3	4.4	4.3
5500	4.6	4.7	4.7	4.7	4.9	4.7
6000	5.1	5.1	5.1	5.2	5.3	5.2
6500	5.6	5.6	5.6	5.6	5.7	5.6
7000	6.0	6.0	6.0	6.0	6.0	6.0
7500	6.4	6.4	6.4	6.5	6.6	6.5
8000	6.8	6.8	6.9	6.9	7.0	6.9
8500	7.3	7.3	7.3	7.3	7.4	7.3
9000	7.7	7.7	7.7	7.8	7.9	7.7
9500	8.1	8.1	8.1	8.2	8.4	8.2
10000	8.6	8.6	8.6	8.6	8.7	8.6

Таблица 4: Таблица с логарифмическим выражением

N	Время выполнения	$\frac{\ln(i+1) - \ln(i)}{\ln(n+1) - \ln(n)}$
1	0.01	0.59
500	0.4	1
1000	0.8	1.2
1500	1.3	0.93
2000	1.7	0.95
2500	2.1	1.17
3000	2.6	0.93
3500	3	0.94
4000	3.4	1.16
4500	3.9	0.93
5000	4.3	0.93
5500	4.7	1.16
6000	5.2	0.93
6500	5.6	0.93
7000	6	0.94
7500	6.4	1.17
8000	6.9	0.93
8500	7.3	0.93
9000	7.7	1.16
9500	8.2	0.93
10000	8.6	

Таблица была построена в LibreOffice Calc с использованием формулы по условию. Все значения получились близки к единице, значит изменения времени выполнения близки к линейным.

3. Ответы на вопросы

- 1) Наиболее быстрым способом обработки массива является обработка с использованием указателей. Алгоритм работы с указателями в ассемблерном коде обращается напрямую к ячейкам памяти и перемещается между ними, в то время как при способе индексации перед этим выполняются другие математические операции, только после которых идёт непосредственное обращение к ячейке памяти.
- 2) При обнаружении статистического выброса нельзя вырезать данные из датасета. В таком случае можно/нужно пересобрать датасет полностью.
- 3) При обнаружении статистического выброса, но имея доступ к предыдущим наборам данных, нельзя вырезать данные из датасета. В таком случае можно/нужно пересобрать датасет полностью или откатиться на предыдущий (или ранее) набор данных.
- 4) Нельзя объединять эксперименты с одним результатом в единый обработке результатов количество эксперимент, при так как играет огромную роль. Так, экспериментов если заменить эксперименты с идентичными результатами одним экспериментом, то при подсчёте среднего арифметического или медианы результат «объединённого» эксперимента будет влиять на итоговый результат гораздо меньше, чем если бы все эти эксперименты существовали по-отдельности. Из-за этого можно получить некорректный итоговый результат. Также каждый эксперимент в любом случае не проходит в одинаковых условиях, так что все результаты необходимо сохранять.
- 5) Замеряется время только целевого алгоритма, так как чем меньше проводится операций, тем меньше вероятность получить статистический выброс и погрешность измерений. Также сколь бы ни было малым время выполнения инициализации массива, оно всё

равно оставит отпечаток на общем времени эксперимента, из-за чего нельзя будет судить о времени выполнения целевого алгоритма, как о реальном.