Free RTOS MasterClass

Week3 Task

Designing a Real Time System

By: Ahmed Abdelhamid Shokry

System Flowchart:

Hand Analysis:

I decided to implement the system Into 5 tasks .the total information of all the tasks are given in the table provided next

Task	Task Name	Periodicity	Execution	Deadline	Priority
Number		(P)	time (e)	(D)	(Pr)
1	Display Task	100ms	2ms	100ms	0
	(LCD and				
	UART)				
2	Blood	25ms	3ms	25ms	0
	Pressure				
	Sensor Task				
3	Heart Beat	50ms	1.5ms	50ms	0
	Detector Task				
4	Temperature	10ms	2.5ms	10ms	0
	Sensor Task				
5	Alert Siren	10ms	1ms	10ms	0
	Task				

From the previous Table we can conclude the following:

Total Execution Time = 2 + 3 + 1.5 + 2.5 + 1 = 10ms

Hyperperiod = LCM {100, 25, 50, 10, 10} = 100ms

CPU Load =
$$\frac{2+(3*4)+(1.5*2)+(2.5*10)+(1*10)}{100}$$
 = 52%

Then i set the system tick as follows:

Systick Time = 5ms

Notes:

- There were no requirements on Deadline of Tasks so I set the deadline of each task to be the same as their periodicity
- I choose the Systick Time to be equal to 5ms so all the tasks can be performed within their deadline
- All the tasks are given the same priority as the system is non preemptive
- The scheduling technique used is Fixed Priority Scheduling

Timeline:

Simulation using Simso:

Comments:

- The system is schedulable as no task misses its deadline.
- The simulation results agree with the hand analysis done before.
- The System is considered healthy as the CPU load is reasonable (52 %).
- The Heart Beat Detector Task periodicity was chosen this way because it is considered a safety critical task.
- The Siren Alert Task periodicity was chosen this way so it can keep up with any updates provided by any of the other tasks.