





## INSTITUTO TECNOLOGICO SUPERIOR DE CHICONTEPEC



## INGENIERIA EN SISTEMAS COMPUTACIONALES

NOMBRE DE LA MATERIA:

Métodos Numéricos

**SEMESTRE:** 

4º semestre

NOMBRE DEL ALUMNO:

Carlos Humberto Tejeda Osorio.

NOMBRE DEL DOCENTE:

Ing. Efrén Flores Cruz TRABAJO:

Resumen unidad 6.

Chicontepec, Ver 29 de mayo de 2020







## Unidad 6 METODOS DE UN PASON TOUR SU WOOMS Las metodas de un pasa dienen por abjetivo obtener una aproximación de la sulvición de un problema bien planteaclo de valor inicial en cada punto de la malla, basandose en el resultado obtenido para el pinta underros. Se desorrollan agrillas metados Taylor, y Ut Runge Kutta. Para ver el dutalle de cacho uno di los melados hocer click en cada uno de los siguientes vincolos. para volver a esta pagina, hour chem en la solopa metado de un paso 100 sus sollas soll Muchallet interestingth of interesting the ingression · Metood OF EULE VINS IN IN A MOUNT OF · METODOS OF TAILOR DOLLAR CAMBON STATES · METOGOS DE RONGE KUTTA as and from decisions the second of the second of the second Hay das ruestiones importantes que deben tonerse un -4- (V) V (V) V (V) . EL ESTUERZO COMPUTACIONAL REQUERIDO PARAFIECUTARCO - LA PRECISIONI QUE ESTO ESFUERTO pricodes IN THE PERSON OF THE PARTY OF T para los algoritmos vistos, os mayor estuelas se presente en la evaluación de for El alguntino de Eulex hace una evaluación de f por paso y el de RKY hace 4, mientras que las de tay los, fieden la comples un de evaluar las derivadas de l'encada paso, por esta sezon, y dode gre in metoda de Runge- kutta de orden m tiene la misma precesión que el metodo de Tay las de igual orden, es que los métodos de Taylor Nose utilizan con lines produces.















| Under 6                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SISTEMAS DE ECUACIONES DIFERENCIALES DROINARIAS                                                                                                                          |
| ORDINARIAS DE CUALQUER OZDENI PUEDE SER REDUCIDO                                                                                                                         |
| AUN SISTEMA EQUINCENTE DE PRIMER ORDEN, SI SE<br>INTRODUCEN NUEVAS VARIABLES Y ÉCUACIONES. POR<br>ESA RETON EN ESTE ARTICULO (RESUMEN) PODEMOS                           |
| PRIMER ORDER ESTA ESCRITA EN PARAN, EXPLICITA                                                                                                                            |
| $\frac{\int dx_1}{dt} = F_i(x_1, x_2, \dots, x_n; t)$                                                                                                                    |
| $\frac{dx_2}{dt} = F_2(x_1, x_2, \dots, x_n; t)$ $\frac{dx_n}{dt} = \frac{1}{f_n} (x_1, x_2, \dots, x_n; t)$ $\frac{dx_n}{dt} = \frac{1}{f_n} (x_1, x_2, \dots, x_n; t)$ |
| DADO UN SISTEMA DE ECUACIONES DIFERENCINCES DE<br>BROEN O CON M ECUACIONES!                                                                                              |
| EXISTE UN SISTEMS EQUINTERVE DE PRIMER OSDEN                                                                                                                             |
| CON + LEGIONES (7,11) X M EXPRIDITE DE PRIME VER X570  CONSIDERAMOS UN SISTEMA EN QUE INTERVITATION M  PUNCIONES INECCNITALS X; 14 1805 MI DERIVADAS, E                  |
| MI, IC DEFINIOUS DELLA SIGNEDTE MONEY DI UNI                                                                                                                             |
| y:, x (t) : = d *x;(4)                                                                                                                                                   |
| Scribe                                                                                                                                                                   |







|                                 |                    |                               |                                                   | Andreak                                                       |                                        |
|---------------------------------|--------------------|-------------------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
|                                 |                    |                               | Easwird                                           |                                                               | ar or hi                               |
| L SISTEM                        | YiL                | Aesus Th                      | ica in in                                         | 1 1 3 4 6                                                     |                                        |
| Ji.                             | K117 d             | izk.                          | John K                                            | G { a 2,                                                      | 10-1)                                  |
| F.                              | (41,0,4,1          |                               | )=0 3,5                                           | e [1,2,                                                       | Cons                                   |
| 4                               | EJERCI             | ao                            | 5.12 18 15                                        |                                                               |                                        |
| TAMANOS<br>RESOLVER<br>COMETION | DE PASO<br>LA ECUA | Tallent<br>Tallent<br>Tallent | = h Siend<br>55: 0,1:0<br>EE RENCIA:<br>CON EZ TA | 571MAR ZO=1 V<br>20=1 V<br>105, 0.025<br>2. VALORA<br>MONO PE | los<br>, o, Dizs,<br>n ez Enno<br>poso |
| DISTINTES                       | TAMANOS            | DO PASO                       | 4= Too 2 1 2 1 -                                  | x 44, 40                                                      | ) = 1,                                 |
|                                 |                    |                               | h=0.025                                           |                                                               | Exacts                                 |
| 10                              | 34, 4114 90        | 45, 5883 9                    | 1 53, 807866                                      | 60,037124                                                     | 64,9979                                |
| Error Grobal                    | 30,48              | 19,309                        | 11,09.                                            | 4, 16                                                         |                                        |
|                                 |                    | TONK                          | TI. ALL                                           | 1                                                             |                                        |







