

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ДИСЦИПЛИНА	Программирование управляемых технических систем
	(укажите полное наименование дисциплины без
	сокращений)
ИНСТИТУТ	ПТИП
	(укажите название учебного института)
КАФЕДРА	Индустриального программирования
	(укажите полное наименование кафедры)
ВИД УЧЕБНОГО	
МАТЕРИАЛА	Лабораторные материалы
	(в соответствии с пп.1-11)
ПРЕПОДАВАТЕЛЬ	Закожурников Сергей Сергеевич
	(фио)
CEMECTP	2, 2025
	(указать семестр обучения, учебный год)

Лабораторная работа «Автоматизация уличного освещения в программе ОрепНАВ»

Цель работы заключается в создании автоматизированной системы управления уличным освещением. Рассмотрим уличное освещение в городской среде. Чтобы сделать более комфортными условия пребывания людей в городе, а также повысить безопасность движения транспорта на дорогах, внедряют системы автоматизированного освещения. Освещение может включаться по показаниям датчика или по известному времени восхода и заката. Источником данных был выбран датчик света. Каждый раз, когда значение освещённости становится меньше заданной величины, освещение включается. При превышении данного показателя освещение автоматически отключается.

Алгоритм работы следующий:

1.Создайте новый проект и разместите в нем окружение моделируемого пространства (рис. 1).

Рисунок 1. Городская среда

2. Установите IP адрес и порт МОТТ брокера в панели глобальных настроек в компоненте Параметры текущего соединения (рис. 2).

Рисунок 2. Параметры текущего соединения

3. Разместите датчик света (рис. 3), установите статус датчика ВКЛ и пропишите Event топик В компоненте MQTT - Показание: matt:topic:main:light_sensor:value/out.

Рисунок 3. Добавление датчика света

- 4.Нажмите на кнопку Связать и дождитесь установления статуса «Подключено».
 - 5. Добавьте в проект объект освещения (рис. 4).

6.В компоненте Управление питанием установите тип переключателя на MQTT.

Рисунок 4. Добавление объекта освещения

- 7.В появившемся компоненте MQTT Переключатель пропишите следующие топики:
- a.Event топик mqtt:topic:main:lamp:status/out,
- b.Command топик matt:topic:main:lamp:status/in
- 8. Нажмите на кнопку Связать и дождитесь установления статуса Подключено.
 - 9.Откройте в браузере ОрепНав.
- 10.В панели Things добавьте новую вещь Generic MQTT Thing, которая будет связываться с виртуальных датчиком света.
 - 11. Установите следующие параметры (рис. 5):
 - a.Unique ID: light_sensor

b.Label: Light Sensor

Рисунок 5. Параметры датчика света

12.После создания датчика света, перейдите во вкладку channels и добавьте новый канал со следующими параметрами (рис. 6):

a.Channel Identifier: light_sensor_value

b.Label: Значение

c.Channel type: Number Value

d.MQTT State Topic: mqtt:topic:main:light_sensor:value/out

e.Incoming Value Transformations: JSONPATH:\$.value

f.Outgoing Value Format: {"value":%s}

Рисунок 6. Добавление нового канала

13. далее добавьте новый Item к созданному каналу со следующими

Параметрами (рис. 7):

a.Name: LightSensor_Value

b.Label: Значение датчика света

c.Type: Number

Рисунок 7. Добавление item

14. Убедитесь, что значение от виртуального датчика передается в Item.

15.Далее необходимо создать новую вещь (рис. 8), которая будет связываться с виртуальным переключателем освещения, со следующими параметрами:

a.Unique ID: lamp

b.Label: Lamp

16. Добавьте в вещь новый канал со следующими параметрами:

a.Channel Identifier: lamp_status

b.Label: Статус

c.Channel type: On/Off Switch

d.MQTT State Topic: mqtt:topic:main:lamp:status/out

e.MQTT Command Topic: mqtt:topic:main:lamp:status/in

f.Custom On/Open Value: true

g.Custom Off/Closed Value: false

h.Incoming Value Transformations: JSONPATH:\$.value

i.Outgoing Value Format: {"value":%s}

Рисунок 8. Добавление новой вещи

17. Далее добавьте новый Item к созданному каналу со следующими параметрами (рис. 9):

a.Name: Lamp_Status

b.Label: Статус переключателя

c.Type: Switch

18. Убедитесь, что статус от виртуального освещения передается в Item.

19.Далее необходимо создать новое правило во панели Rule, со следующими параметрами:

a.Unique ID: light_auto

b.Label: Автоматизация освещения

Рисунок 9. Добавление item к созданному каналу

- 20. Установите срабатывание правила на триггер. Для этого в пункте When добавьте триггер Item Event, выберите Значение датчика света, установите пункт срабатывания changed.
- 21.В пункт Then добавьте действие Run Script и выберите Design with Blockly и собирите следующий скрипт (рис. 10):

Рисунок 10. Скрипт

22.После сохранения правила, перейдите в виртуальный проект и начните изменять значение глобального освещения. При значении показания датчика света меньше 10000 освещение должно включаться. При значении больше 10000 выключаться (рис. 11).

Рисунок 11. Работа датчика света

23. Далее перейдите в HABPanel и настройте дашборд (рис. 12).

24. Добавьте виджет Модель для вывода значения датчика света. В настройках установите следующие параметры:

а.Имя: Показания датчика света

b.openHAB Item: LightSensor_Value

с.Формат: %.2f

Рисунок 12. Настройка дашборда

25.Добавьте виджет Переключатель для управления освещением со следующими параметрами (рис. 13):

а.Имя: Освещение

b.openHAB: Lamp_Status

имя	Освещение
openHAB Item	
Настройки отображения	□ Скрыть имя □ Скрыть иконку □ Скрыть ОN/OFF
Иконка фона	Выберите набор иконок 🕶
Иконка	Выберите набор иконок ▼

Рисунок 13. Виджет Переключатель

26. Убедитесь, что на дашборд выводится верное показание виртуального датчика света и идёт управление освещением (рис. 14).

Рисунок 14. Дашборд

27. Проверьте работу системы автоматизированного управления освещением на лабораторном стенде и в виртуальном лабораторном комплексе ProgramLab.