

AD-A276 637

2

FINAL REPORT FOR THE PERIOD

10/1/90 - 9/30/93

to

MAR 09 1994

OFFICE OF NAVAL RESEARCH

Grant No: N00014-91-J-1189

PREDICTION OF HYDROGEN ENTRY AND PERMEATION IN METALS AND ALLOYS

H. W. Pickering, Principal Investigator

Department of Materials Science and Engineering
The Pennsylvania State University
University Park, PA 16802

94-07601

PENNSTATE

College of Earth and Mineral Sciences

ERIC QUALITY INSPECTION

94 9 9 9 9 9 9

The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. The Pennsylvania State University does not discriminate against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Direct all affirmative action inquiries to the Affirmative Action Office, The Pennsylvania State University, 201 Willard Building, University Park, PA 16802-2801. U.Ed. EMS 93-05

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 2704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1219 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Prediction of Hydrogen Entry and Permeation in Metal and Alloys		5. FUNDING NUMBERS C: N00014-91-J-1189 Pr: 431 5098
6. AUTHOR(S) H. W. Pickering		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Pennsylvania State University Department of Materials Science & Engineering 326 Steidle Building University Park, PA 16802		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Scientific Officer Materials Division Code: 3310 Office of Naval Research Arlington, VA 22217-5000 ATTN: A. John Sedriks		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.		12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) This Grant focused on the investigation of the factors which affect hydrogen entry and permeation into metals/alloys that by themselves or in combination with other materials are used under conditions for which hydrogen embrittlement and cracking are a major concern. Factors that affect H entry include a broad range of metallurgical, environmental and interface properties such as adsorption, surface segregation, surface films and recesses in the surface. Research during this grant period focused on understanding how these parameters control hydrogen entry. The specific investigations included both aqueous and gas phase charging of hydrogen, utilizing primarily electrochemical techniques, in particular hydrogen permeation with the IPZ model, and microscopic methods in the case of aqueous phase charging, and ultra high resolution scanning tunneling microscopy (STM) in the case of gas phase charging.		
14. SUBJECT TERMS		15. NUMBER OF PAGES
		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED
20. LIMITATION OF ABSTRACT		

RESEARCH GOALS

This Grant focused on the investigation of the factors which affect hydrogen entry and permeation into metals/alloys that by themselves or in combination with other materials are used under conditions for which hydrogen embrittlement and cracking are a major concern. Hydrogen entry is the first step in the severe hydrogen degradation of the mechanical properties of structural alloys. Hydrogen entry occurs during the cathodic protection of structures, during corrosion processes, and during the processing of steels for which the source can be either the aqueous phase, e.g., as in electrogalvanizing of steel, or the gas phase. Once hydrogen is inside the material in solid solution or as hydride, loss of structural integrity can occur at any time during the service application to produce the so called "delayed failure". Factors that affect H entry include a broad range of metallurgical, environmental and interface properties such as adsorption, surface segregation and surface films. Another recently recognized important parameter is the existence of recesses in the surfaces.¹⁻³ These can be pre-existing or produced during service by the occurrence of nonuniform (localized) corrosion processes. Research during this grant period focused on understanding how these parameters control hydrogen entry. The specific investigations included both aqueous and gas phase charging of hydrogen, utilizing primarily electrochemical techniques, in particular hydrogen permeation with the IPZ model,⁴ and microscopic methods in the case of aqueous phase charging, and ultra high resolution scanning tunneling microscopy (STM) in the case of gas phase charging.

SUMMARY OF RESULTS

Significant results obtained on the Project in the period 10/1/90 to 9/30/93 include the following:

1. Following the procedure which enables application of the IPZ model to steady state permeation data, a study of the role of H₂S as an additive to aqueous electrolytes produced two significant results: (i) it demonstrated the applicability of the IPZ model as a diagnostic tool for better understanding how the various parameters promote or suppress hydrogen

Dist	A-1
City	
State	
Zip	
Special	

entry, thereby hopefully encouraging others to use it for diagnosing the roles of the parameters determining hydrogen entry under other conditions, and (ii) the results indicate that H₂S additions to the electrolyte promote hydrogen entry by increasing the transfer coefficient of the proton discharge step and decreasing the hydrogen recombination rate constant. Though limited data were obtained, it is clear that these two parameters were affected by H₂S and that a more extensive permeation experiment would likely be conclusive on these two parameters and provide more detailed information. To put into perspective what the results obtained thus far indicate if taken at face value, is that the half dozen other mechanisms that can be envisioned or are already proposed in the literature are not applicable (for H₂S in acid solution). Only mechanisms based on the "bridging" concept first proposed by Kawashima, et. al. are consistent with the results.⁵

- 2a. Surface geometrical defects are in general known to account for inhomogeneous potential distribution over the surface. Thus, during spontaneous electrochemical processes, a potential gradient can be expected in cavities that are open to the electrolyte. What has been learned from experiments on the project is that the magnitude of the gradient is significant during cathodic or anodic polarization even for cavities of rather small aspect ratio when solid or gaseous reaction product form in the cavity. For the specific case of anodic polarization, either imposed or spontaneous, of steel and corrosion resistant alloys, the hydrogen evolution reaction sometimes occurs inside cavities as a result of the sign and magnitude of the potential gradient that can occur within the cavity.¹ This result demonstrates that surface geometry is a parameter that needs to be considered when studying the hydrogen entry issue, and is particularly significant because of its lack of recognition to the present time. Hydrogen permeation experiments are, in fact, confirming the expected, namely that some of the hydrogen formed inside the cavity enters the metal. This happens because recesses in the surface can promote hydrogen entry even under polarization conditions that do not permit proton discharge and hydrogen entry elsewhere on the surface.

- b. The general phenomenon described above in a has some unique features when occurring in a grain boundary sensitized alloy. In this case the necessary potential conditions for hydrogen discharge and entry into the metal can develop with time even when there are no recesses in the original surface. Investigations on sensitized 430 stainless steel revealed that in the grain boundary grooves that formed by the Cr-depletion mechanism, the potential gradient inside the groove was sufficient to favor proton discharge and hydrogen entry into the steel within the groove.^{3,6} We can learn from these results that it is important, indeed necessary, to consider the magnitude of the potential gradient within cracks, rather than solely considering the changes in solution composition within cracks, in order to obtain a more in-depth understanding of the conditions that produce crack propagation and the mechanism. The importance of this conclusion is highlighted by the recent literature findings for localized corrosion (crevice corrosion, pit growth and grain boundary corrosion) that steep potential gradients and the size of the active loop in the E-i curve within the cavity provide a more in-depth understanding and the framework for quantitative models that can successfully predict susceptibility, critical aspect ratio and current distribution within the cavity.
3. Scanning tunneling microscopy (STM) has been successfully used during the Grant period in studying the step preceding the actual entry (or absorption) of hydrogen into the metal. This atomic scale study of hydrogen adsorption was conducted using hydrogen gas as the hydrogen source. The vacuum environment and "model" substrates, e.g., silicon, provided experimental conditions for which adequate resolution was most readily achieved. Many features of the adsorption of hydrogen at room temperature have been observed including the initial adsorption sites (dimerised Si atoms), adsorption of hydrogen atoms as pairs, monohydride formation followed by dihydride formation and etching of Si atoms at higher fractional monolayer hydrogen coverages.⁷ Atomic scale features of the desorption process with increasing temperature were also successfully monitored. Thus, the results show that STM can add to our understanding of hydrogen entry and are particularly encouraging (i)

when complimentary results are obtained by other methods which then enable more in depth STM studies and (ii) because of the capability of STM to probe the atomic scale.

REFERENCES

1. H. W. Pickering, Proc. 12th Intern. Corrosion Congress, p. 2346-2355, NACE, International, Houston, TX, 1993.
2. Yuan Xu and H. W. Pickering, J. Electrochem. Soc., 140, 658 (1993).
3. H. W. Pickering, Annual Report to the Office of Naval Research, January 1993.
4. H. W. Pickering, Final Report to the Office of Naval Research, January 1991; R. N. Iyer and H. W. Pickering, J. Electrochem. Soc., 137, 3512 (1990).
5. H. W. Pickering, Technical Report to the Office of Naval Research, February, 1992; R. N. Iyer, I. Takeuchi, M. Zamazadeh and H. W. Pickering, Corrosion, 46, 460 (1990).
6. W. Kelly, R. N. Iyer and H. W. Pickering, J. Electrochem. Soc., 140, 3134 (1993).
7. X. Wang, H. Lu, T. Hashizume, H. W. Pickering and T. Sakurai, Appl. Surface Sci, 67, 266 (1993); Technical Report to the Office of Naval Research, April, 1993.

LISTS OF PUBLICATIONS AND REPORTS

- R. N. Iyer and H. W. Pickering, "Construction of Iso-Coverage Tafel Plots to Evaluate the True H. E. R. Transfer Coefficient", *J. Electrochem. Soc.*, 137, 3512-3514 (1990).
- K. Cho and H. W. Pickering, "Demonstration of Crevice Corrosion in Alkaline Solution Without Acidification", *J. Electrochem. Soc.*, 137, 3313 (1990).
- R. Iyer and H. W. Pickering, "Current Developments in Modeling and Characterizing Electrochemically Influenced Hydrogen Evolution and Entry in to Materials", pp. 195-209 in *Hydrogen Effects on Material Behavior* N. R. Moody and A. W. Thompson, ed., TMS, Warrendale, PA (1990).
- R. N. Iyer and H. W. Pickering "Mechanism and Kinetics of Electrochemical Hydrogen Entry and Degradation of Metallic Systems", *Annual Review of Materials Science*, Vol. 20, Annual Reviews, Inc., Palo Alto, Calif., (1990).
- A. Valdes and H. W. Pickering, "IR Drops and the Local Electrode Potential During Crevicing of Iron", pp. 393-401 in *Advances in Localized Corrosion*, H. S. Isaacs, U. Bertocci, J. Kruger and S. Smialowska, eds., NACE -9, National Association of Corrosion Engineers, Houston, Texas (1990).
- H. W. Pickering, "A Critical Review of IR Drops and Electrode Potentials Within Pits, Crevices and Cracks", *ibid*, pp. 77-84.
- H. W. Pickering and T. Sakurai "Scanning Tunneling Microscopy and Its Applications in Corrosion Science", Sym. on Surface and Interface Characterization in Corrosion, NACE, Houston Texas, Preprint No. 81, CORROSION 91.
- T. Sakurai, T. Hashizume, A. Sakai, H. W. Pickering, "Scanning Tunneling Microscopy and Its Related Topics, Principles and Applications" Bulletin of the Chemical Soc. of Japan (Sym, March 31, 1991, Tokyo, Japan).
- H. W. Pickering, "Hydrogen Assisted Cracking and Corrosion of Some Highly Corrosion Resistant Alloys", Final Report to the Office of Naval Research (January, 1991).
- K. Cho and H. W. Pickering, "The Role of Chloride Ions in the IR>IR* Criterion for Crevice Corrosion in Iron", *J. Electrochem. Soc.*, 138, L56-L58 (1991).
- X. D. Wang, T. Hashizume, H. Lu, H. W. Pickering and T. Sakurai, "FI-STM Investigation of Atomic Hydrogen Adsorption on the Si(100)2x1 Surface", *Phy. Rev. B*, in press.
- Y. Xu and H. W. Pickering, "Model of the Potential and Current Distributions Within Crevices and Its Application to the Iron-Ammoniacal Solution", *ibid.*, pp. 389-406 in *Critical Factors in Localized Corrosion*, G. Frankel and R. Newman, ed., Vol. 92-9,

The Electrochemical Society Softbound Series, Pennington, NJ, 1992; ibid., Extended Abs., Vol. 91-2, 1991.

- K. Cho and H. W. Pickering, "The Role of Chloride Ions in the IR>IR* Criterion for Crevice Corrosion in Iron", pp. 407-419 in Critical Factors in Localized Corrosion (1992). G. Franke and R. Newman, ed., Vol. 92-9, The Electrochemical Society Softbound Series, Pennington, NJ, 1992, ibid., Extended Abs., Vol. 91-2, 1991; ibid., J. Electrochem. Soc., 138, L56 (1991).
- H. W. Pickering, "Prediction of Hydrogen Entry and Permeation in Metals and Alloys", Annual Report to the Office of Naval Research (January, 1992).
- H. W. Pickering, "Hydrogen Sulfide Effect on Hydrogen Entry into Iron-A Mechanistic Study", Technical Report to the Office of Naval Research (February, 1992).
- Yuan Xu and H. W. Pickering, "The Initial Potential and Current Distributions of the Crevice Corrosion Process", J. Electrochem. Soc., 140, 658 (1993).
- H. W. Pickering, K. Cho and E. Nystrom, "Microscopic and Local Probe Method for Studying Crevice Corrosion and Its Application to Iron and Stainless Steel", Corrosion Sci., 35, 775, (1993).
- X. Wang, H. Lu, T. Hashizume, H. W. Pickering and T. Sakurai, "Atomic Hydrogen Chemisorption on Si (100) 2x1 Studied by FI-STM", Appl. Surface Sci., 67 266 (1993).
- Yuan Xu, Minghua Wang and H. W. Pickering, "On Electric Field Induced Breakdown of Passive Films and IR Voltage Stabilization of Pitting Corrosion", J. Electrochem. Soc., 140, 3448 (1993).
- Yuan Xu and H. W. Pickering, "A New Index for the Crevice Corrosion Resistance of Materials", ASTM, STP 1194, G. Cragolino and N. Sridhar, ed., American Society for Testing and Materials, Philadelphia (1992), in press.
- W. Kelly, R. N. Iyer and H. W. Pickering, "Another Grain Boundary Corrosion Mechanism in Sensitized Stainless Steel", J. Electrochem. Soc., 140, 3134 (1993).
- H. W. Pickering, "On the Mechanism of Crevice Corrosion and Its Consequences for Crack Initiation", p. B.5.1, in Directions for Research on Corrosion-Assisted Crack Initiation, (EPRI Workshop, Chicago, IL, September 23-25, (1992).
- H. W. Pickering, "Electrochemical Aspects of Hydrogen Embrittlement; (i) IPZ Model of Hydrogen Energy, (ii) IR Voltage-Induced Hydrogen Charging", pp. 2346-2355 in Proc. 12th Intern. Corrosion Congress, Nat. Assoc. Corrosion Eng., Houston, TX, 1993.
- H. W. Pickering, "The IR Voltage Mechanism of Localized Corrosion", pp. 1929-1937 in Proc. 12th Intern. Corrosion Congress, Nat. Assoc. Corrosion Engineers, Houston, TX, 1993.

- H. W. Pickering and T. Sakurai, "FI-STM Investigation of Atomic Hydrogen Adsorption on the Si(100) 2x1 Surface", Technical Report to the Office of Naval Research, (April, 1993).
- H. W. Pickering, "Prediction of Hydrogen Entry and Permeation in Metals and Alloys", Annual Report to the Office of Naval Research (January, 1993).
- Yuan Xu and H. W. Pickering, "The Initial Potential and Current Distributions of the Crevice Corrosion Process", Technical Report to the Office of Naval Research (May, 1993)
- Yuan Xu and H. W. Pickering, "A New Index for the Crevice Corrosion Resistance of Materials", Technical Report to the Office of Naval Research (February, 1993).

June 1997

BASIC DISTRIBUTION LIST

Technical Reports and Publications

<u>Organization</u>	<u>Copies</u>	<u>Organization</u>	<u>Copies</u>
• Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2	• Naval Air Warfare Center Aircraft Division, Trenton Trenton, NJ 08628 ATTN: Library	1
• Office of Naval Research 800 N. Quincy Street Arlington, VA 22217-5660 ATTN: Code 3310	3	• Naval Facilities Engineering Service Center Pcrt Hueneme, CA 94043 ATTN: Materials Div.	1
• Naval Research Laboratory 4555 Overlook Ave, S.W. Washington, DC 20375 ATTN: Code 6000 Code 6300 Code 5227	1 1 1	• Naval Surface Warfare Center Carderock Division Bethesda, MD 20084 ATTN: Library	1
• Naval Air Warfare Center White Oak Detachment Silver Spring, MD 20903-5000 ATTN: Library Code R33	1	• Naval Underwater Warfare Ctr. Newport, RI 02840 ATTN: Library	1
• Naval Postgraduate School Monterey, CA 93940 ATTN: Mechanical Engineering Department	1	• Naval Air Warfare Center Weapons Division China Lake, CA 93555-6001 ATTN: Library	1
• Naval Air Systems Command Washington, DC 20361 ATTN: Code 5304	1	• NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 ATTN: Library	1
• Naval Sea Systems Command Washington, DC 20362 ATTN: Code 05M Code 05R	1 1	• National Institute of Standards and Technology Gaithersburg, MD 20899 ATTN: Metallurgy Division Ceramics Division Fracture & Deformation Division	1 1 1

<u>Organization</u>	<u>Copies</u>	<u>Organization</u>	<u>Copies</u>
• Naval Command, Control and Ocean Surveillance Center R&D Division San Diego, CA 92152-5000 ATTN: Library	1	• Naval Facilities Engineering Command Alexandria, VA 22331 ATTN: Code 03	1
• Office of the Assistant Commander HQ Marine Corps 2 Navy Annex Washington, DC 20380-1775 ATTN: Scientific Advisor	1	• Oak Ridge National Laboratory Metals and Ceramics Div. P.O. Box X Oak Ridge, TN 37380	1
• Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709 ATTN: Metallurgy & Ceramics Program	1	• Los Alamos Scientific Lab. P.O. Box 1663 Los Alamos, NM 87544 ATTN: Report Librarian	1
• Army Materials Technology Laboratory Watertown, MA 02172-0001 ATTN: SLCMT-TMM	1	• Argonne National Laboratory Metallurgy Division P.O. Box 229 Lemont, IL 60439	1
• Air Force Office of Scientific Research Building 410 Bolling Air Force Base Washington, DC 20332 ATTN: Electronics & Materials Science Directorate	1	• Brookhaven National Laboratory Upton, Long Island NY 11973 ATTN: Research Library	1
• NASA Headquarters Washington, DC 20546 ATTN: Code RN	1	• Lawrence Berkeley Lab. 1 Cyclotron Rd Berkeley, CA 94720 ATTN: Library	1
• Naval Surface Warfare Center Port Hueneme Division 4363 Missile Way Port Hueneme CA 93043-4307 ATTN: Library	1	• Naval Surface Warfare Center Annapolis Detachment Annapolis, MD 21402-5067 ATTN: Code 61 Code 613 Code 0115	1 1 1
• Metals Information Analysis Center Purdue University 2595 Yeager Road West Lafayette IN 47906	1	• Office of Naval Research Resident Representative Ohio State University Research Center 1960 Kenny Rd Columbus, OH 43210-1063	1

4315DIST
04 June 1993

Supplemental Distribution List

Profs. G.H. Meier and F.S. Pettit
Dept. of Mat'l's Science & Eng.
848 Benedum Hall
University of Pittsburgh
Pittsburgh, PA 15261

Prof. Gordon P. Bierwagen
North Dakota State University
Dept. of Polymers and Coatings
Box 5227
Fargo, ND 58105

Prof. H.W. Pickering
The Pennsylvania State Univ.
209 Steidle Bldg.
University Park, PA 16802

Prof. D.J. Duquette
Dept. of Metallurgical Eng.
Rensselaer Polytechnic Inst.
Troy, NY 12181

Prof. D. Tomanek
Michigan State University
Dept. of Physics and Astronomy
East Lansing, MI 48824-1116

Dr. M. W. Kendig
Rockwell International Sci.Ctr.
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360

Prof. R. A. Rapp
Dept. of Metallurgical Eng.
The Ohio State University
116 West 19th Avenue
Columbus, OH 43210-1179

Dr. R.D. Granata
Sinclair Laboratory #7
Lehigh University
Bethlehem, PA 18015

Dr. G. D. Davis
Martin Marietta Laboratories 848
1450 South Rolling Rd.
Baltimore, MD 21227-3898

Dr. S.M. Lipka
Dept. of Ocean Engineering
Florida Atlantic University
Boca Raton, FL 33431-0991

Dr. D.D. Macdonald
The Pennsylvania State Univ.
517 Deike Bldg.
University Park, PA 16802

Dr. B.G. Pound
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Prof. C.R. Clayton
Dept. of Materials Science &
Eng.
State University of New York
Stony Brook
Long Island, NY 11794

Dr. J.W. Oldfield
Cortest Laboratories Ltd
23 Shepherd Street
Sheffield, S3 7BA, U.K.

Ms. D.M. Aylor
Code 613
Naval Surface Warfare Center
Annapolis, MD 21402-5067

Prof. K. Sieradzki
Dept. of Materials Sci. & Eng.
The Johns Hopkins University
Baltimore, MD 21218

Dr. P.S. Pao
Code 6326
Naval Research Laboratory
Washington, D.C. 20375-5343

Dr. W.P. Allen
United Technologies Research
Ctr.
East Hartford, CT 06108

Dr. B.A. Shaw
Dept. of Eng. Sci. & Mechanics
207 Hallowell Building
The Pennsylvania State University
University Park, PA 16802-1484

Dr. P. Cox
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025-3493

Dr. R. E. Ricker
National Institute of Standards
and Technology
Bldg. 223, Room B-266
Gaithersburg, MD 20899

Dr. F.B. Mansfield
Dept. of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089-0241

Prof. R.E. White
Dept. of Chemical Engineering
University of South Carolina
Columbia, SC 29208

Prof. R.A. Buchanan
Dept. of Materials Science & Eng.
University of Tennessee
Knoxville, TN 37996-2200

Dr. B.J. Little
NRL Detachment
Bldg. 1105, Room D415
Stennis Space Center
MS 39529-5004

Prof. M.E. Orazem
Dept. of Chemical Engineering
University of Florida
Gainesville, FL 32611

Prof. J. O'M. Bockris
Dept. of Chemistry
Texas A & M University
College Station, TX 77843

Dr. V. S. Agarwala
Code 6062
Naval Air Warfare Center
Warminster, PA 18974-0591

Prof. R.C. Newman
UMIST
Corrosion and Protection Center
P.O. Box 88
Manchester M60 1QD, U.K.

Prof. S. C. Dexter
College of Marine Studies
University of Delaware
700 Pilottown Rd
Lawes, DE 19958

Prof. R.P. Gangloff
Dept. of Mat'l's Science & Eng.
Thornton Hall
University of Virginia
Charlottesville, VA 22903-2442

Dr. R. Brown
Dept. of Chemical Engineering
University of Rhode Island
Kingston, R.I. 02881-0805

Dr. J. Jones-Meehan
Code R301
Naval Surface Warfare Center
10901 New Hampshire Ave.
Silver Spring, MD 20903

Dr. P. Natishan
Code 6322
Naval Research Laboratory
Washington, D.C. 20375-5343

Dr. R. L. Jones
Code 6170
Naval Research Lab.
Washington, D.C. 20375-5342