$$3, 4, 5, 6, 7, 8, 9, 0 \Rightarrow 8$$

$$[l,\gamma] \Rightarrow \gamma-l+1$$

$$S_n = \frac{n}{2} \left(2 \times a + (n-1) \times d \right)$$

$$Q \Rightarrow first ten (2)$$
 $X \Rightarrow Common ration (3)$
 $M \Rightarrow no. f tens (4)$

$$S_n = \underbrace{a(\gamma^n - 1)}_{(\gamma - 1)}$$

Joid June (int N) of
$$S = 0$$

$$\begin{cases} i = 1; & i < = N; & i + 1) d \\ S = S + i; & J \Rightarrow \end{cases}$$

$$i = 1, 2, 3, \dots$$

$$= [1, N] = N - 1 + 1 = N$$

2) Void for (int M, int M) d

$$S=0$$
, j (i = 1; i $c = M$; i++) d

 $S=S+i$; $\Rightarrow M$
 $S=S+i$; $\Rightarrow M$
 $S=S+j$; $\Rightarrow M$

3 void for (int N) d
$$S = 0$$

$$\begin{bmatrix} 1 & N \end{bmatrix}$$

$$\begin{bmatrix} 1 & N \end{bmatrix}$$

$$0 & 3 \\ 0 & 3 \\ 0 & 5 \\ 0 &$$

$$(4)$$
 void $f_{1}(int N) d$

$$S = 0;$$

$$f_{1}(i = 0; i < = 100; i + +)d$$

$$S = S + i;$$

$$[0, 100] = 100-0+1 = 101$$

2. Loose

$$i \Rightarrow \begin{bmatrix} 1, \sqrt{N} \end{bmatrix} \Rightarrow \sqrt{N-1+x} + \sqrt{N}$$

$$i \times i < = N \Rightarrow i^2 \leq N$$

$$i \leq \sqrt{N}$$

$$i \Rightarrow [N] \forall i = N$$

$$\Rightarrow \text{while } (i \times 1) \neq 0$$

$$i = i/2;$$

$$k = i/2$$

$$k$$

$$b_{g_{2}} = \frac{K}{2}$$

You'd for (int N)
$$\lambda$$

S=0;

for (i=0; i <=N; i=i×2) λ

S=S+i;

8 void for (N) d

$$S = 0;$$
 $S = 0;$
 $S = 0;$

$$S = 0;$$

$$S = 0;$$

$$S = S + i;$$

$$S = S + i;$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 8 & 1 & 1 \end{bmatrix} + \underbrace{2^{1} \times 1}_{2} = \underbrace{N}_{2}$$

$$(6x) \qquad (K = \log_2 N + 1)$$

$$M = 10$$

$$\frac{1}{2} = \frac{1}{2}$$

$$S = 0;$$
 $S = 0;$
 S

$$\Rightarrow \quad \text{(j=1)} \quad \text{(j=$$

$$S = S + i \times j;$$

To void for (N) d

$$S = 0;$$
 $S = 0;$
 $S = 0$

i j # iterations

$$0 \quad (0,0)$$
 $-1 \quad [0,1]=$
 $2 \quad [0,2]$
 $3 \quad [0,3]$

N-1

 $N-1 \quad [0,N-1]$
 $N+1 \quad N=N$
 $N=N$
 $N=N$
 $N=N$

$$S_{n} = \underbrace{\frac{1}{2}\left(2+\left(N-1\right)\frac{1}{2}\right)}_{2}$$

$$\underbrace{\frac{1}{2}\left(N+1\right)}_{2} = \underbrace{\frac{1}{2}+1}_{2}$$

Void
$$fr(H) d$$

$$(i=1; i \leq H; i=i+2) d H$$

$$(j=1; j \leq i; j++) d$$

$$prid (i+j);$$

$$\frac{1}{3}$$

$$\frac{1}$$

$$Q = 1$$
 $d = 2$
elements in the sequence $= \left(\frac{N+1}{2}\right)$

$$S_{N} = \frac{M}{2} \left(\frac{2a + (N+1)d}{2a + (N+1-1)d} \right)$$

$$\frac{1}{2} \left(\frac{N+1}{2} \right) \left(2 + (\frac{N+1-1}{2} - \frac{1}{2} + \frac{1}$$

void for
$$(N)$$
 d

for $(i=1)$, $i \le N'$, $i++$) d

for $(j=1)$, $j \in N'$, $j=j \times 2$) $(i++)$ d

print $(i \times j)$,

$$\begin{array}{c}
i \\
1 \\
2 \\
3 \\
\vdots \\
N
\end{array}$$

itercha = N x log 2H

$$f^{r}(i=1; i=i+2)$$

$$N=8$$
 (1,3,5,7)
 \leftarrow 4 times >