Санкт-Петербургский Политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №3 по дисциплине "Анализ данных с интервальной неопределенностью"

Выполнил студент:

Иванов Андрей Игоревич, группа $5040102 \setminus 20201$

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Постановка задачи			
2	Teo	рия	4	
	2.1	Формирование интервальной выборки	4	
	2.2	Формирование выборки остатков	4	
	2.3	Точечная линейная регрессия	4	
	2.4	Информационное множество	4	
	2.5	Классификация измерений	5	
	2.6	Взаимные отношения интервалов наблюдения и прогнозного интервала модели	5	
3	Pea	лизация	7	
4	Рез	зультаты	8	
	4.1	Интервальная выборка	8	
	4.2	Выборка остатков	10	

Список иллюстраций

1	График интервальной выборки	8
2	Точечная регрессия интервальной выборки	8
3	Информационное множество для интервальной выборки	9
4	Коридор совместных значений для интервальной выборки	9
5	График выборки остатков	10
6	Точечная регрессия выборки остатков	11
7	Информационное множество для выборки остатков	11
8	Коридор совместных значений для выборки остатков	12
9	Диаграмма статусов для выборки остатков	12

1 Постановка задачи

Дано множество вещественных выборок, соответствующих показаниям -0.45, -0.35, -0.25, -0.15, 0.05, 0.05, 0.15, 0.25, 0.35, 0.45. Необходимо:

- Сформировать интервальную выборку по имеющимся данным и выборку остатков по полученной интервальной;
- Найти точечную линейную регрессию для обеих выборок;
- Построить информационное множество коэффициентов регрессии (решить задачу восстановления зависимости) для обеих выборок
- Построить коридор совместных зависимостей задачи восстановления для обеих выборок
- Построить диаграмму статусов для выборки остатков

2 Теория

2.1 Формирование интервальной выборки

Дано множество из N выборок вещественных чисел $\{\mathbf{X_i}\}_{i=1}^N$. По этому множеству формируется интервальная выборка по следующему принципу:

$$X = \{ (min(\mathbf{X_i}), max(\mathbf{X_i})) \mid \mathbf{X_i} \in \{\mathbf{X_i}\}_{i=1}^N \} \}$$
 (1)

2.2 Формирование выборки остатков

Дана интервальная выборка Y и ее регрессионная модель. Выборка остатков формируется следующим образом:

$$X_{res} = \{ y_i - (\beta_0 + \beta_1 \cdot x_i) | y_i \in Y, x_i \in \{values\} \}$$
 (2)

2.3 Точечная линейная регрессия

Рассматривается задача восстановления зависимости для выборки $(X, (Y)), X = \{x_i\}_{i=1}^n, Y = \{y_i\}_{i=1}^n, x_i$ - точеный, y_i - интервальный. Пусть искомая модель задана в классе линейных функций:

$$y = \beta_0 + \beta_1 x \tag{3}$$

Поставим задачу оптимизацию для нахождения точечных оценок параметров $\beta_0, \beta_1.$

$$\sum_{i=1}^{m} w_i \to \min$$

$$\operatorname{mid} \mathbf{y}_i - w_i \cdot \operatorname{rad} \mathbf{y}_i \le \beta_0 + \beta_1 x \le \operatorname{mid} \mathbf{y}_i + w_i \cdot \operatorname{rad} \mathbf{y}_i$$

$$w_i \ge 0, i = 1, ..., m$$

$$w_i, \beta_0, \beta_1 - ?$$

$$(4)$$

Задачу можно решить методами линейного программирования.

2.4 Информационное множество

Информационным множеством задачи восстановления зависимости будем называть множество значений всех параметров зависимости, совместных с данными в каком-то смысле.

Коридором совместных зависимостей задачи восстановления зависимости называется многозначное множество отображений Υ , сопоставляющее каждому значению аргумента x множество

$$\Upsilon(x) = \bigcup_{\beta \in \Omega} f(x, \beta) \tag{5}$$

, где Ω - информационное множество, x - вектор переменных, β - вектор оцениваемых параметров.

2.5 Классификация измерений

Измерения можно классифицировать следующим образом. Измерения, добавление которых к выборке не приводит к модификации модели, называются внутренними. Те, которые изменяют модель, называются внешними. Измерения, которые определяют какую-либо границу информационного множества, называются граничными. Выбросами называются те измерения, которые делают информационное множество пустым. Граничные измерения - подмножество внутренних, выбросы - внешних.

Для удобства анализа взаимоотношения информационных множеств работу с ними заменяют на анализ взаимоотношения интересующего интервального измерения и интервального прогнозируемого значения модели (коридора совместных значений).

2.6 Взаимные отношения интервалов наблюдения и прогнозного интервала модели

Существует несколько характеристик, определяющих это взаимоотношение.

Размахом (плечом) называется следующее отношение:

$$l(x, \mathbf{y}) = \frac{\Upsilon(x)}{rad(\mathbf{y})} \tag{6}$$

Относительным остатком называется отношение:

$$r(x, \mathbf{y}) = \frac{mid(\mathbf{y}) - mid(\Upsilon(x))}{rad(\mathbf{y})}$$
(7)

здесь x - точечное значение, \mathbf{y} - интервальное значение интересующей величины (отклик x), $\Upsilon(x)$ - интервальная оценка интересующей величины (значение коридора совместных значений).

Для внутренних наблюдений выполняется неравенство:

$$|r(x, \mathbf{y})| \le 1 - l(x, \mathbf{y}) \tag{8}$$

В случае равенства

$$|r(x,\mathbf{y})| = 1 - l(x,\mathbf{y}) \tag{9}$$

измерение будет граничным.

Выбросы определяются неравенством

$$|r(x,\mathbf{y})| > 1 + l(x,\mathbf{y}) \tag{10}$$

3 Реализация

Лабораторная работа выполнена на языке Python 3.10 с помощью загружаемых пакетов NumPy, MatPlotLib, SciPy. Исходный код лабораторной работы находится на GitHub репозитории.

4 Результаты

4.1 Интервальная выборка

Рис. 1: График интервальной выборки

Рис. 2: Точечная регрессия интервальной выборки

Рис. 3: Информационное множество для интервальной выборки

Рис. 4: Коридор совместных значений для интервальной выборки Ниже приведена таблица, описывающая итоговую интервальную выборку

Набор данных	$\underline{\mathbf{x_i}}$	$\overline{\mathrm{x_i}}$
-0.45V_sp115.dat	-7568	-6392
-0.35V_sp196.dat	-6117	-4872
-0.25V_sp403.dat	-4369	-3307
-0.15V_sp155.dat	-2906	-1804
-0.05V_sp465.dat	-1338	-155
$0.05 V_{sp321.dat}$	227	1335
0.15V_sp135.dat	1721	2843
0.25V_sp135.dat	3235	4368
0.35V_sp300.dat	4812	5907
0.45V_sp1014.dat	6313	7450

Искомая модель принимает вид:

$$y = -39.03125 + 15424.374999 \cdot x \tag{11}$$

4.2 Выборка остатков

Рис. 5: График выборки остатков

Рис. 6: Точечная регрессия выборки остатков

Рис. 7: Информационное множество для выборки остатков

Рис. 8: Коридор совместных значений для выборки остатков

Рис. 9: Диаграмма статусов для выборки остатков

Ниже приведена таблица, описывающая выборку остатков:

Набор данных	$\underline{\mathbf{x_i}}$	$\overline{\mathbf{x_i}}$
-0.45V_sp115.dat	-588.000000538862	587.999999461138]
-0.35V_sp196.dat	-679.4375004133717	565.5624995866283
-0.25V_sp403.dat	-473.8750002878801	588.1249997121199
-0.15V_sp155.dat	-553.3125001623894	548.6874998376106
-0.05V_sp465.dat	-527.7500000368989	655.2499999631011
0.05V_sp321.dat	-505.1874999114084	602.8125000885916
0.15V_sp135.dat	-553.6249997859177	568.3750002140823
0.25V_sp135.dat	-582.062499660427	550.937500339573
0.35V_sp300.dat	-547.4999995349363	547.5000004650637
0.45V_sp1014.dat	-588.937499409446	548.062500590554

Искомая модель принимает вид:

$$y = 0.000001 \cdot x \tag{12}$$