Relatividad especial

1.1 Transformación de vectores

Digamos que un vector transforma

$$X_i' = a_{ij}X_j$$

de manera que se verifique que las leyes físicas sean invariantes frente a rotaciones propias.

Einstein postula que:

- Todos los sistemas inerciales son equivalentes.
- La velocidad de la luz en un sistema inercial es constante. No depende del estado de movimiento del observador.

Sea un sistema S' que se mueve con velocidad ${\bf v}$ de otro S en forma paralela a un eje (ver figura).

Figura 1.1

Se verifica entonces la transformación de Lorentz

$$x^{1'} = x^1$$

 $x^{2'} = x^2$
 $x^{3'} = \gamma [x^3 - \beta x^0]$
 $x^{0'} = \gamma [x^0 - \beta x^3]$

donde son

$$\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}} \qquad x^0 = ct$$

A la transformación [1] se le puede dar forma de rotación en funciones hiperbólicas como sigue

$$x^{0'} = x^0 \cosh(\eta) - x^3 \sinh(\eta)$$
$$x^{3'} = -x^0 \sinh(\eta) + x^3 \cosh(\eta)$$

donde seguimos viendo que las leyes son lineales en las coordenadas (el espacio es isótropo)

Debiéramos dar ideas de estas cosas importantes de relatividad especial

$$\begin{pmatrix} x^{0'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \cosh(\eta) & \sinh(\eta) \\ -\sinh(\eta) & \cosh(\eta) \end{pmatrix} \begin{pmatrix} x^0 \\ x^3 \end{pmatrix}$$

y no es otra cosa que una rotación en eje $\hat{0},\hat{3}$ con el ángulo $\eta=atanh(\beta)$. Notemos que se verifica la invariancia del módulo de la transformación

$$(x^{0'})^2 - ((x^{1'})^2 + (x^{2'})^2 + (x^{3'})^2) = (x^0)^2 - ((x^1)^2 + (x^2)^2 + (x^3)^2)$$

o en una notación más feliz

$$(ct')^2 - (x'^2 + y'^2 + z'^2) = (ct)^2 - (x^2 + y^2 + z^2)$$

Este espacio 4D es el de Minkowski y no es euclídeo.

$$\begin{pmatrix} x^{0'} \\ x^{1'} \\ x^{2'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta \gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$

La transformación inversa se obtiene tomando los reemplazos

$$x^{i'} \to x^i$$
 , $x^i \to x^{i'}$, $\beta \to -\beta$

El elemento invariante de línea es

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2} = ds'^{2}$$

o bien

$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

que es el tensor de la métrica. Se verifica

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Cuadrivectores en el espacio 4D

Un cuadrivector contravariante es

$$A^{\mu} = (A^0, \mathbf{A})$$

mientras que el covariante es

$$A_{\mu}=(A^0,-{\bf A})$$

y vemos que las partes temporales son las mismas cambiando el signo de la espacial. Las reglas de transformación son

$$A'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} A^{\beta} \qquad A'_{\alpha} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} A_{\beta}$$

luego el producto interno es

$$\widetilde{A} \cdot \widetilde{B} \equiv A_{\alpha} B^{\alpha}$$

donde estamos usando convención de suma de Einstein, que significa que

$$\widetilde{A} \cdot \widetilde{B} = A^0 B^0 - \mathbf{A} \cdot \mathbf{B}$$

que es invariante por ser un escalar de Lorentz,

$$A_{\alpha}B^{\alpha} = A'_{\alpha}B'^{\alpha}$$

Intervalos entre eventos

Los intervalos deben ser invariantes relativistas y de Lorentz, si el intervalo es temporal se tiene

$$x^0 > x^i x_i \Rightarrow \delta s^2 > 0$$

y los eventos pueden estar conectados causalmente

$$x^0 < x^i x_i \Rightarrow \delta s^2 < 0$$

y los eventos no pueden estar conectados causalmente. Se cumple

$$\delta s^2 = (x^0)^2 - [(x^1)^2 + (x^2)^2 + (x^3)^2]$$

Operadores diferenciales

Tenemos la derivada respecto a una coordenada contravariante

$$\partial_{\alpha} \equiv \frac{\partial}{\partial x^{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, \nabla\right)$$

que es la derivada covariante, y también la derivada respecto de una coordenada covariante

$$\partial^{\alpha} \equiv \frac{\partial}{\partial x_{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, -\nabla\right)$$

que es la derivada contravariante. Note la asimetría entre derivo respecto de arriba y es derivada abajo y viceversa. La notación abreviada puede inducir a confusiones.

La cuadridivergencia de un cuadrivector es un invariante,

$$\partial_{\alpha}A^{\alpha} = \frac{\partial A^{0}}{\partial x^{0}} + \boldsymbol{\nabla} \cdot \mathbf{A}$$

$$\partial^{\alpha} A_{\alpha} = \frac{\partial A^{0}}{\partial x^{0}} - \boldsymbol{\nabla} \cdot (-\mathbf{A})$$

y aquí vemos $\partial_{\alpha}A^{\alpha}=\partial^{\alpha}A_{\alpha}.$ Esto nos lleva al D'Alembertiano

$$\Box \equiv \partial_{\alpha} \partial^{\alpha} = \frac{\partial^2}{\partial x^{0^2}} - \nabla^2$$

S es el intervalo entre los eventos 1 y 2, y es un invariante lorentziano

$$s^2 = c^2(t_1 - t_2)^2 - |\mathbf{x}_1 - \mathbf{x}_2|^2$$

El intervalo es temporal si $s^2 > 0$ en cuyo caso se tiene

$$c\delta t > |\mathbf{x}_1 - \mathbf{x}_2|$$

lo cual significa que existe frame inercial donde $x_1=x_2$ los eventos ocurren en el mismo sitio de manera que pueden estar conectados causalmente; puesto que $c\delta t>0$ y $t_2>t_1$. Por el contrario si $c^2<0$ se tiene

$$c\delta t<|\mathbf{x}_1-\mathbf{x}_2|$$

y existe entonces frame inercial donde los dos eventos son en el mismo sitio $x_1=x_2$ y entonces $c\delta t<0$ y $t_2< t_1$ de manera que no pueden estar conectados causalmente.

Según se interpreta claramente del gráfico de la figura [ampliar].

$$x'^0=\gamma(x^0-\beta x^3) \qquad x'^3=\gamma(x^3-\beta x^0)$$

Figura 1.2

y si ahora es $x'^0 = 0$ entonces para un observador en S' se tiene

$$0 = \gamma(x^0 - \beta x^3)$$

o bien $x^0 = \beta x^3$ y aquí es $x'^3 = 0$ de modo que

$$\frac{x^3}{\beta} = x^0$$

y entonces a de la figura puede ser causado por un suceso en el origen pero b no tiene conexión causal con el origen.

1.1.1 Transcurso del tiempo en un sistema con V grande

Sea v/c no despreciable

$$c\Delta t' = \gamma (c\Delta t - \beta \Delta z)$$
 $\gamma > 1$
$$\Delta t' = \gamma \Delta t \left(1 - \beta \frac{\Delta z}{c\Delta t} \right)$$

pero si en S^\prime la partícula está en reposo es v=dz/dt de manera que

$$\Delta t' = \gamma \Delta t (1 - \beta^2)$$

$$\Delta t' = \Delta t (1 - \beta^2)^{1/2}$$

de modo que $\Delta t' < \Delta t$, en S' el tiempo transcurre más lentamente.

Figura 1.3

Número de onda y conteo

Un proceso de conteo (discreto) es invariante lorentziano

$$x'^3 = \gamma(x^3 - \beta x^0)$$

siendo ${\bf v}$ entre sistemas SS'. El número de crestas es

$$\begin{split} \#_s &= \frac{z_1 - z}{\lambda} = \frac{k}{2\pi}(z_1 - z) = \frac{k}{2\pi}(ct - z) = \frac{1}{2\pi}(\omega t - kz) \\ \#'_s &= \frac{1}{2\pi}(\omega' t' - k' z') \end{split}$$

y se puede generalizar

$$\begin{aligned} \mathbf{k}' \cdot \mathbf{x}' - \omega' t' &= \mathbf{k} \cdot \mathbf{x} - \omega t \\ - \left(\mathbf{k}' \cdot \mathbf{x}' - \frac{\omega' x'^0}{c} \right) &= - \left(\mathbf{k} \cdot \mathbf{x} - \frac{\omega x^0}{c} \right) \end{aligned}$$

es un invariante lorentziano como

$$k_{\alpha}x^{\alpha} = k^{\alpha}x_{\alpha}$$

donde el cuadrivector de onda se define

$$k^{\alpha} = \left(\frac{\omega}{c}, \mathbf{k}\right).$$

1.2 Forma covariante del electromagnetismo

Partimos de la ecuación de continuidad para la carga,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

la cual con la definición del cuadrivector corriente

$$J^{\mu} = (c\rho, \mathbf{J})$$

se puede escribir como

$$\partial_{\mu}J^{\mu} = \frac{\partial c\rho}{\partial ct} + \boldsymbol{\nabla}\cdot\mathbf{J} = 0.$$

La formulación covariante empleaba el gauge de Lorentz (así las ecuaciones son validas en cualquier sistema inercial), el gauge de Lorentz era

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \mathbf{\nabla}\cdot\mathbf{A} = 0$$

siendo el cuadripotencial

$$A^{\mu} = (\phi, \mathbf{A})$$

y entonces

$$\partial_{\mu}A^{\mu} = \frac{\partial \phi}{\partial ct} + \nabla \cdot \mathbf{A} = \frac{1}{c} \frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{A} = 0.$$

Se podía ver que resultan ecuaciones de onda inhomogéneas para los potenciales

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} \mathbf{J}$$

que viene a ser

$$\partial_{\mu}\partial^{\mu} = \Box \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

y para el potencial ϕ

$$\boldsymbol{\nabla}^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

que desemboca en

$$\partial_{\mu}\partial^{\mu} = \Box \phi = \frac{4\pi}{c}(c\rho)$$

Al aplicar el D'Alembertiano a un cuadrivector obtenemos otro cuadrivector

$$\Box A^{\mu} = \frac{4\pi}{c} J^{\mu}.$$

Los campos **E**, **B** forman parte de un tensor de segundo rango antisimétrico llamado tensor de intesidad de campo

$$F^{\alpha\beta} = \partial^{\alpha}A^{\beta} - \partial^{\beta}A^{\alpha}$$

que matricialmente se puede ver como

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

También se suele definir un tensor de intensidad de campo dual

$$\mathcal{F}^{\alpha\beta} = \frac{1}{2} \varepsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta}$$

que no es otra cosa que

$$\mathcal{F}^{\alpha\beta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

y donde $\varepsilon^{\alpha\beta\gamma\delta}$ es el tensor de Levi-Civita de cuatro dimensiones, que es nulo cuando se repite un índice. Entonces las ecuaciones de Maxwell en forma covariante explícita resultan

$$\partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0$$
 $\qquad \qquad \partial_{\alpha} F^{\alpha\beta} = \frac{4\pi}{c} J^{\alpha}.$

1.2.1 Transformación de los campos

L transformación de Lorentz era

$$ct' = \gamma [ct - \beta \cdot \mathbf{x}]$$

 $\mathbf{x'}_{\parallel} = \gamma [\mathbf{x}_{\parallel} - \beta ct]$
 $\mathbf{x'}_{\perp} = \mathbf{x}_{\perp}$

con $\beta = \mathbf{v}/c$ y donde la transformación de los campos \mathbf{E}, \mathbf{B}

$$\mathbf{E'} = \mathbf{E}_{\parallel} + \gamma \left(\mathbf{E}_{\perp} + \boldsymbol{\beta} \times \mathbf{B} \right)$$
$$\mathbf{B'} = \mathbf{B}_{\parallel} + \gamma \left(\mathbf{B}_{\perp} - \boldsymbol{\beta} \times \mathbf{E} \right)$$

Figura 2.4

que se pueden poner como

$$\mathbf{E}' = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{E}) + \gamma (\mathbf{E} + \boldsymbol{\beta} \times \mathbf{B})$$

$$\mathbf{B'} = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{B}) + \gamma \left(\mathbf{B} - \boldsymbol{\beta} \times \mathbf{E} \right)$$

y recordemos que la transformación de Galileo era

$$\mathbf{E'} = \mathbf{E} + \frac{1}{c}\mathbf{V} \times \mathbf{B}$$
 $\mathbf{B'} = \mathbf{B} - \frac{1}{c}\mathbf{V} \times \mathbf{E}$

siendo el segundo término el que da origen a las corrientes de Foucault al mover un conductor en el seno de un campo ${\bf B}$.

Figura 2.5

Según la figura superior la transformación de los campos satisface

$$\begin{split} E_x' &= \gamma (E_x - \beta B_y) \qquad B_x' = \gamma (B_x + \beta E_y) \\ E_y' &= \gamma (E_y + \beta B_x) \qquad B_y' = \gamma (B_y - \beta E_x) \\ E_z' &= E_z \qquad B_z' = B_z \end{split}$$

Las contracciones del producto escalar entre el tensor de intensidad son

invariantes. Así, por ejemplo,

$$\begin{split} F^{\alpha\beta}F_{\alpha\beta} &= 2(B^2 - E^2) \\ \mathcal{F}^{\alpha\beta}\mathcal{F}_{\alpha\beta} &= 2(E^2 - B^2) \\ \mathcal{F}^{\alpha\beta}F_{\alpha\beta} &= -4\,\mathbf{B}\cdot\mathbf{E} \end{split}$$

Sea

$$\mathcal{F}^{\alpha\beta}F_{\alpha\beta} = -4\,\mathbf{B}\cdot\mathbf{E} = 0,$$

entonces $\mathbf{E} \perp \mathbf{B}$ o alguno de los campos es nulo en todo sistema inercial. Para una carga que se mueve con velocidad \mathbf{v} se tiene $\mathbf{B} = 0$ en un sistema en el que q está en reposo de manera que

$$\mathbf{B} \cdot \mathbf{E} = \mathbf{B'} \cdot \mathbf{E'} = 0$$

siempre y entonces $\mathbf{E}' \perp \mathbf{B}'$ para cualquier sistema inercial S'.

Un sistema electromagnético dependiente del tiempo intercambiará ${\bf p}$ con el campo entonces no vale el principio de acción y reacción ,

$$\frac{d\mathbf{P}_{M}}{dt} + \frac{d\mathbf{P}_{c}}{dt} = \int_{S(v)} \overline{T} \cdot d\mathbf{S}$$

mientras que

$$\frac{d\mathbf{P}_c}{dt} = \frac{d}{dt} \left(\frac{1}{4\pi c} \int \mathbf{E} \times \mathbf{B} dV \right)$$

1.2.2 Covarianza con medios materiales

En presencia de medios materiales puede definirse

$$G^{\alpha\beta} = \begin{pmatrix} 0 & -D_x & -D_y & -D_z \\ D_x & 0 & -H_z & H_y \\ D_y & H_z & 0 & -H_x \\ D_z & -H_y & H_x & 0 \end{pmatrix}$$

y

$$F^{\alpha\beta} \to G^{\alpha\beta}, \quad E_i \to D_i, \quad B_i \to H_i$$

si las relaciones constitutivas son

$$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} \qquad \qquad \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}$$

desde

$$G^{\alpha\beta} = F^{\alpha\beta} + R^{\alpha\beta}$$

y con

$$\partial_{\alpha}G^{\alpha\beta} = \frac{4\pi}{c}J^{\beta}$$

donde la información de P_i y M_i está en el tensor $R^{\alpha\beta}$. Recordemos que los campos transforman según

$$\mathbf{P'} = \mathbf{P}_{\parallel} + \gamma \left(\mathbf{P}_{\perp} - \boldsymbol{\beta} \times \mathbf{M} \right)$$

$$\mathbf{M'} = \mathbf{M}_{\parallel} + \gamma \left(\mathbf{M}_{\perp} + \boldsymbol{\beta} \times \mathbf{P} \right)$$

Entonces de un sistema inercial a otro una ${\bf P}$ da origen a una ${\bf M}$ y viceversa.

1.3 Principio de Hamilton y relatividad

Habiéndonos situado en un espacio de Minkowski, tenemos la acción

$$S = -\alpha \int_{a}^{b} ds,$$

siendo α una constante a fijar luego, y ds un arco en el espacio minkowskiano. La acción debe ser un invariante pues es un extremo.

$$ds = \sqrt{c^2 dt^2 - dx^2 - dy^2 - dz^2} = c dt \sqrt{1 - v^2/c^2}$$

de manera que

$$S = -\alpha \int_{t_1}^{t_2} c dt \sqrt{1 - v^2/c^2} = \int_{t_1}^{t_2} \mathcal{L} dt$$

y donde \mathcal{L} es el lagrangiano,

$$\mathcal{L} = -\alpha c \left(1 - v^2/c^2\right)^{1/2} \approx -\alpha c + \frac{\alpha v^2}{2c}$$

y luego

$$\mathcal{L}
ightarrow T = rac{mv^2}{2}$$
 (baja velocidad)

de manera que fijamos el valor de la constante a partir de este límite de baja velocidades,

$$\mathcal{L} = -mc^2 \left(1 - v^2/c^2 \right)^{1/2}$$

es el lagrangiano relativista.

A partir de las ecuaciones de Euler-Lagrange es

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial v_i}$$

y haciendo el álgebra,

$$p_i = \frac{mv}{\sqrt{1 - v^2/c^2}}$$

que es el momento relativista. Entonces

$$\frac{d\mathbf{P}}{dt} = m\frac{d}{dt} \left(\frac{\mathbf{v}}{\sqrt{1 - v^2/c^2}} \right).$$

Para un movimiento circular, el módulo de la velocidad permanece constante.

$$\frac{d|\mathbf{v}|}{dt} = 0 \quad \Rightarrow \quad \frac{d\mathbf{P}}{dt} = \left(\frac{m}{\sqrt{1 - v^2/c^2}}\right) \frac{d\mathbf{v}}{dt} = m \,\gamma \,\frac{d\mathbf{v}}{dt}$$

si en cambio es $\frac{d|\mathbf{v}|}{dt} \neq 0$ se tiene

$$\frac{d\mathbf{P}}{dt} = m\left(\left(\frac{1}{\sqrt{1 - v^2/c^2}}\right)\frac{d\mathbf{v}}{dt} + \mathbf{V}(1 - v^2/c^2)^{-3/2}\frac{v}{c^2}\frac{dv}{dt}\right)$$
$$\frac{d\mathbf{P}}{dt} = m\gamma\frac{d\mathbf{v}}{dt} + m\mathbf{v}\gamma^3\frac{v}{c^2}\frac{dv}{dt}$$

donde el primer término en el RHS está asociado a la variación en la dirección y el segundo a la variación en la magnitud (hemos usado con $\gamma^3 v^2/c^2 > \gamma$?). De esto se desprende que la inercia es mayor para variar la longitud de v que su dirección. Es más fácil cambiar dirección que rapidez.

Entonces

$$E = \mathbf{p} \cdot \mathbf{v} - \mathcal{L} = m\gamma v^2 + mc^2 \gamma^{-1} = m\gamma c^2$$

y esta es la energía relativista de una partícula libre. Veamos el límite de bajas velocidades, es decir que si $v/c \ll 1$ entonces

$$\gamma = \sqrt{1 - v^2/c^2} \approx 1 + \frac{v^2}{2c^2},$$

y resulta

$$E \approx mc^2 + \frac{mv^2}{2} = E_0 + \frac{mv^2}{2}$$

donde E_0 es una energía en reposo, que no depende de ${\bf v}$ y podemos expresar la energía cinética como

$$E - mc^2 = \frac{mv^2}{2} = T.$$

Si es

$$\mathbf{p} = m\mathbf{w},$$

con $\mathbf{w} = \gamma \mathbf{v}$ entonces

$$E^2 = m^2 \gamma^2 c^4 \qquad p^2 = m^2 \gamma^2 v^2$$

y

$$\frac{E^2}{c^2} = m^2 c^2 \gamma^2$$

$$\frac{E^2}{c^2} - p^2 = m^2 \gamma^2 (c^2 - v^2) = m^2 c^2$$

y esta es la relación fundamental entre energía y momento

$$\frac{E^2}{c^2} = p^2 + m^2 c^2.$$

Para partículas con $m_0=0$ y v=c será

$$\frac{E^2}{c^2} = p^2 \qquad p = \frac{h\nu}{c} = k\hbar.$$

La formulación hamiltoniana comenzará a partir de

$$\mathcal{H} = \sqrt{p^2 + m^2 c^2} \, c,$$

sobre el que se puede operar para obtener el límite clásico (de bajas velocidades) como

$$\mathcal{H} = \left(1 + \frac{p^2}{m^2 c^2}\right)^{1/2} mc^2$$

y si se cumple $p/(mc) \ll 1$ entonces

$$\mathcal{H} \approx mc^2 + \frac{p^2}{2m^2}$$

donde el último término es el hamiltoniano de la mecánica clásica para nuestra partícula libre.

El cuadrimomento se define como

$$p^{\mu} = (m\Gamma c, m\Gamma \mathbf{u}), \qquad \Gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}$$

o bien

$$p^{\mu} = (E/c, \mathbf{p})$$

siendo

$$p^{\mu}p_{\mu} = \frac{E^2}{c^2} - p^2 = m^2c^2$$

el invariante asociado a la conservación (del cuadrimomento).

1.3.1 Partícula en un campo electromagnético

Dado que es de la mecánica clásica $\mathcal{L}=T-V$ la acción correspondiente la podemos expresar como

$$S=S_0+S_inter=\int_{t_1}^{t_2}Tdt-\int_{t_1}^{t_2}Vdt$$

es decir la suma de una parte libre y una de interacción. Luego

$$S_{inter}^{NR} = \int_{t_1}^{t_2} -e\phi dt = -\int_{t_1}^{t_2} \frac{e\phi}{c} d(ct) = -\int_{x_1}^{x_2} \frac{eA^0}{c} dx^0$$

si usamos los cuadrivectores

$$A^{\mu} = (\phi, \mathbf{A})$$
 $x^{\mu} = (ct, \mathbf{x})$

y generalizamos

$$S_{inter} = -\frac{e}{c} \int_{x_*}^{x_2} A_{\mu} dx^{\mu}$$

tendremos

$$S_inter = \frac{e}{c} \int_{x_1}^{x_2} \left(\mathbf{A} \cdot d\mathbf{x} - c\phi dt \right) = \frac{e}{c} \int_{x_1}^{x_2} \left(\mathbf{A} \cdot \mathbf{v} - c\phi \right) dt$$

y finalmente el lagrangiano de una partícula en un campo electromagnético es

$$\mathcal{L} = -mc^2\sqrt{1 - v^2/c^2} + \frac{e}{c}\mathbf{A} \cdot \mathbf{v} - e\phi$$

donde el primer término es el lagrangiano de partícula libre y la interacción viene luego. Esta lagrangiano no es invariante de medida; sin embargo no perjudica porque en las ecuaciones de movimiento sólo entran las derivadas del mismo. Recordemos además que $\mathcal L$ no es invariante relativista pero la acción S sí lo es.

Para construir el hamiltoniano necesitamos el momento conjugado,

$$\mathbf{P} = \frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \mathbf{p} + \frac{e}{c} \mathbf{A} = m \gamma \mathbf{v} + \frac{e}{c} \mathbf{A}$$

y siguiendo la prescripción usual $\mathcal{H} = \frac{\partial \mathcal{L}}{\partial \mathbf{v}} \mathbf{v} - \mathcal{L}$,

$$\begin{split} H = (m\gamma \mathbf{v} + \frac{e}{c}\mathbf{A})\mathbf{v} + mc^2(1 - v^2/c^2)^{1/2} - \frac{e}{c}\mathbf{A} \cdot \mathbf{v} + e\phi = \\ m\gamma v^2 + e\phi + mc^2(1 - v^2/c^2)^{1/2} \end{split}$$

y

$$H = m\gamma v^2 + e\phi + \frac{mc^2}{\gamma}$$

de manera que el hamiltoniano en un campo es

$$H = m\gamma c^2 + e\phi$$

$$\mathbf{P} = m\gamma v + \frac{e}{c}\mathbf{A} \qquad H = m\gamma c^2 + e\phi$$

y

$$\begin{split} \left(\mathbf{p} - \frac{e}{c}\mathbf{A}\right)^2 &= m^2 \gamma^2 v^2 \qquad \left(\frac{H}{c} - \frac{e}{c}\phi\right)^2 = m^2 \gamma^2 c^2 \\ \left(\frac{H}{c} - \frac{e}{c}\phi\right)^2 - \left(\mathbf{p} - \frac{e}{c}\mathbf{A}\right)^2 &= m^2 \gamma^2 (c^2 - v^2) = mc^2, \end{split}$$

con ustedes el invariante. Entonces el cuadrimomento de una partícula en un campo electromagnético, sometida a un potencial electromagnético es

$$p^{\mu} = \left(\frac{H - e\phi}{c}, \mathbf{p} - \frac{e}{c}\mathbf{A}\right)$$

que es un caso particular del xxxx.

Para el caso de H es

$$H=c\sqrt{m^2c^2+(\mathbf{p}-\frac{e}{c}\mathbf{A})}+e\phi$$

y el no relativista

$$H^{nr} = mc^2(1 + \frac{1}{m^2c^2}(\mathbf{p} - \frac{e}{c}\mathbf{A})^2)^{1/2} + e\phi$$

usando la aproximación de baja velocidad,

$$H^{nr} \approx mc^2 + \frac{1}{2m}(\mathbf{p} - \frac{e}{c}\mathbf{A})^2 + e\phi$$

donde tiro el término de reposo mc^2 y

$$H^{nr} \approx \frac{1}{2m} (\mathbf{p} - \frac{e}{c} \mathbf{A})^2 + e\phi$$

Aplicando las ecuaciones de Euler-Lagrange al lagrangiano electromagnético hallado se llega a

$$\frac{d\mathbf{P}}{dt} = \frac{d}{dt}(m\gamma\mathbf{v}) = e\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$$

qu es la fuerza de Lorentz con la corrección relativista. Es la misma expresión hallada otrora pero sin tener en cuanta la relatividad.

Si $\mathbf{E} = 0$ entonces

$$\frac{d\mathbf{P}}{dt} = m\gamma \frac{d\mathbf{v}}{dt}$$
 pues $\frac{dv}{dt} = 0$

y el campo **B** sólo variará la dirección de **v**, no su módulo. El radio de giro de una partícula ciclotrón es mayor con la aproximación relativista que con la newtoniana porque su inercia es mayor $\gamma > 1$. Planteamos

$$|\mathbf{F}| = evB$$

que desde el punto de vista relativista significa

$$evB = m\gamma \frac{d\mathbf{v}}{dt}$$

mientras que clásicamente

$$m\frac{v^2}{r} = evB$$

y sale el radio de giro desde acá

$$r_B = \frac{m\gamma v}{eB} \qquad \qquad r_B^{n\,r} = \frac{mv}{eB}$$

y luego $r_B > r_B^{nr}$.

1.3.2 Cambio de gauge

El cambio de gauge es una transformación

$$A'^{\mu} = A^{\mu} - \partial^{\mu} f$$

entonces

$$A'0 = \phi - \partial^0 f \qquad \qquad \mathbf{A'} = \mathbf{A} + \mathbf{\nabla} f$$

El cambio de gauge no es invariante pero $\delta S=0$ sí es invariante. La cuadridensidad de fuerza de Lorentz

$$f^{\beta} = -\partial_{\alpha} T^{\alpha\beta}$$
.

1.3.3 Especie de tiro oblicuo

La situación física es la depicted en la figura bajo estas líneas

$$\frac{d\mathbf{P}}{dt} = e\mathbf{E} = \frac{1}{t}(m\gamma\mathbf{v})$$

que lleva a un sistema hartocomplicado de resolver que es

$$\frac{dP_x}{dt} = m\frac{d}{dt} \left(\frac{v_x}{\sqrt{1 - (v_x^2 + v_y^2)/c^2}} \right) = eE$$

$$\frac{dP_y}{dt} = m\frac{d}{dt} \left(\frac{v_y}{\sqrt{1 - (v_x^2 + v_y^2)/c^2}} \right) = 0$$

Figura 3.6

Cualitativamente vemos que v_x crece a medida que ingresa en la zona de campo ${\bf E}$ entonces como v_y es constante se tiene que γ aumenta y aumenta la inercia de modo que disminuye $|{\bf v}|$ y describe aproximadamente una parábola.

1.3.4 cuadrivelocidad

 ${\bf u}$ no transforma como cuadrivector (¿que u?), pero lo que sí transforma así es

$$W^{\mu} = (\Gamma c, \Gamma \mathbf{u})$$

donde $\Gamma\equiv 1/(1-u^2/c^2)^{1/2}$. Luego tenemos la fórmula de Einstein de suma de velocidades, que tiene como límite a c,

Figura 3.7

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \frac{\mathbf{v} \cdot \mathbf{u}'}{c^2}} \qquad \qquad u_{\perp} = \frac{u_{\perp}'}{\gamma \left(1 + \frac{\mathbf{v} \cdot \mathbf{u}'}{c^2}\right)}$$

De esta manera el cuadrimomento es

$$p^{\mu} = (m\Gamma c, m\Gamma \mathbf{u})$$
 \Rightarrow $mW^{\mu} = p^{\mu}.$