Tóm tắt chương 7: Modul CCP

- >PIC16F887 có 2 modul CCP1(chân RC2) và CCP2(chân RC1)
- >3 chức năng:
- -Capture: Bắt sự kiện
- -Compare: So sánh
- PWM: Điều chế độrộng xung

Các Timer sử dụng cho modul CCP.

Chế độ CCP	Timer sử dụng
Capture	Timer 1
Compare	Timer 1
PWM	Timer 2

Modul CCP

Chế độ Capture:

Xác định khoảng thời gian tồn tại của một sự kiện bên ngoài
 được phản ánh thông qua một ngõ vào của vi điều khiển

Chế độ Compare:

 Thay đổi trạng thái của một chân ngõ ra hoặc tạo ra một ngắt sau một khoảng thời gian xác định

Chế độ PWM:

- Tạo ra sóng vuông có chu kỳ nhiệm vụ thay đổi được tại một tần số xác định
- Cung cấp những tính năng nâng cao cho nhiều kết nối yêu cầu khác nhau.

THANH GHI CỦA MODUL CCP

(CCP1CON và CCP2CON)-> CCPxCON (x=1 or 2)

P1M1 P1M0 CCPxX CCPxY CCPxM3 CCPxM2 CCPxM1 CCPxM0

BIT	Chức năng
CCPxM<3:0>	Các bit chọn chế độ CCP, cấu hình modul này như là ngõ vào Capture, ngõ ra Compare hoặc ngõ ra PWM
CCPx <x:y></x:y>	2 bit LSB qui định chu kỳ nhiệm vụ cho xung PWM (8 bit MSB được chứa trong thanh ghi CCPRxL)
P1M<1:0>	chỉ có thể dùng cho modul ECCP (Enhanced CCP). Điều khiển lái ngõ ra toàn cầu hoặc nữa cầu.

chọn chế độ PWM CCPxM<3:0>=1100

CCPxX=DCxB1
CCPxY=DCxB0

chọn P1M<1:0>=00

THANH GHI CỦA MODUL CCP

Timer2 Control Register (T2CON)

TOUTPS3	TOUTPS2	TOUTPS1	TOUTPSO	TMR2ON	T2CKPS1	T2CKPS0

 T2CKPS1
 T2CKPS0
 Tỉ lệ

 0
 0
 1:1

 0
 1
 1:4

 1
 X
 1:16

- TMR2ON=1/0 :cho phép/cấm Timer 2
- Các bit chọn tỉ lệ cho Prescaler T2CKPS1=0/1, T2CKPS0=0/1

• Các bit chọn tỉ lệ cho postscaler TOUTPS3=1/0; TOUTPS2=1/0; TOUTPS1=1/0; TOUTPS0=1/0

TOUTP S3	TOUTP S2	TOUTP S1	TOUTP S0	Tỉ lệ
<mark>2</mark> 0	0	0	0	1:1
0	0	0	1	1:2
0	0	1	0	1:3
0	0	1	1	1:4
0	1	0	0	1:5
0	1	0	1	1:6
0	1	1	0	1:7
0	1	1	1	1:8
1	0	0	0	1:9
1	0	0	1	1:10
1	0	1	0	1:11
1	0	1	1	1:12
1	1	0	0	1:13
<mark>-</mark> 1	1	0	1	1:14
1	1	1	0	1:15
1	1	1	1	1:16

CHẾ ĐỘ PWM

• Trong chế độ này, tại chân CCPx sẽ xuất ra tín hiệu PWM (Pulse-Width Modulated)

CÁC CÔNG THỰC TÍNH TOÁN CỦA CHẾ ĐỘ PWM

toff

ton

$$D(\%) = \frac{t_{on}}{t_{on} + t_{off}}.100\% = \frac{t_{on}}{T}.100\%$$

D=25%

CÁC CÔNG THỰC TÍNH TOÁN CỦA CHẾ ĐỘ PWM

- Chu kỳ PWM (PWM Period):

$$T_{PWM} = ([PR2] + 1) \times 4 \times \frac{1}{fosc} \times Pre.$$

T_{PWM}: Chu kỳ xung PWM (μs)

f_{OSC}: Tần số dao động (MHz)

Pre.: Giá trị hệ số Prescaler (Pre = 1, 4, 16)

[PR2]: Giá trị cần ghi vào thanh ghi PR2.

T2CKPS1	T2CKPS0	Tỉ lệ
0	0	1:1
0	1	1:4
1	X	1:16

CÁC CÔNG THỰC TÍNH TOÁN CỦA CHẾ ĐỘ PWM

Độ rộng xung PWM (PWM Pulse Width)

$$PW = t_{on} = \frac{D \cdot T_{PWM}}{100}$$

$$PW = (CCPRxL: CCPxCON < 5:4 >) \times \frac{1}{f_{osc}} \times Pre$$

PW: Độ rộng xung PWM (µs)

f_{osc}: Tần số dao động (MHz)

Pre: Giá trị hệ số Prescaler (P....

CCPRxL(8bit) DCxB1 DCxB0

[CCPRxL:CCPxCON<5:4>]: Con số có giá trị 10 bit (gồm 8 bit MSB trong thanh ghi CCPxxL và 2 bit LSB trong thanh ghi CCPxCON).

 $0 \leq [CCPRxL: CCPxCON < 5:4 >] \leq 1023$

Các bước cấu hình modul CCP ở chế độ PWM

- -Bước 1: Cấm xuất xung PWM
- TRISC2=1 :sử dụng CCP1
- TRISC1=1 :sử dụng CCP2

-**Bước 2:** Đặt giá trị chu kỳ của xung PWM cho modul CCP ->suy ra **PR2=?** từ công thức :

$$T_{PWM} = ([PR2] + 1) \times 4 \times \frac{1}{fosc} \times Pre.$$

Các bước cấu hình modul CCP ở chế độ PWM

- -Bước 3: Cấu hình modul CCP ở chế độ PWM
- CCP1CON=0X0C :sử dụng CCP1
- CCP2CON=0X0C :sử dụng CCP2
- Bước 4: Đặt giá trị PW hay chu kỳ nhiệm vụ của xung PWM
- CCP1R1L=? và DC1B1=0/1; DC1B0=0/1 : sử dụng CCP1
- CCP1R2L=? và DC2B1=0/1; DC2B0=0/1 :sử dụng CCP2

$$PW = (CCPRxL: CCPxCON < 5:4 >) \times \frac{1}{fosc} \times Pre$$

Các bước cấu hình modul CCP ở chế độ PWM

- -Bước 5: Cấu hình và kích hoạt Timer 2
- TMR2IF = 0 : xóa cờ ngắt
- T2CKPS1=0/1; T2CKPS0=0/1
- Các bit chọn tỉ lệ cho Prescaler
- TMR2ON=1 :cho phépTimer 2 hoạt động
- Bước 6: Cho phép xuất xung PWM
- while(TMR2IF==0) :chờ cho đến khi Timer 2 tràn
- TRISC2=0 :sử dụng CCP1
- TRISC1=0 :sử dụng CCP2

T2CKPS1	T2CKPS0	Tỉ lệ
0	0	1:1
0	1	1:4
1	Х	1:16

VÍ DỤ MINH HỌA

- Ví dụ 1: Dựa vào sơ đồ, viết chương trình điều khiển tạo xung PWM có f_{PWM} = 10KHz, D = 30% tại chân CCP2 (RC1). Sử dụng modul CCP ở chế độ PWM để tạo xung.(fosc=4Mhz,pre=1)
 - Sơ đồ nguyên lý:

Tính toán giá trị thanh ghi

• f_{PWM} =10KHz, f_{OSC} =4MHz, chọn prescaler =1

$$T_{PWM} = \frac{1}{f_{PWM}} = \frac{1}{10000} = 100 \mu s$$

$$T_{PWM} = ([PR2] + 1) \times 4 \times \frac{1}{fosc} \times Pre.$$

- Thay T_{PWM}, f_{OSC}, pre vào ta tính được PR2 = 99
- Với CCP2: D% = 30%
 Tính được

$$PW = \frac{D.T_{PWM}}{100} = \frac{30.100}{100} = 30\mu s$$

Tính toán giá trị thanh ghi

Từ công thức :

$$PW = (CCPRxL: CCPxCON < 5:4 >) \times \frac{1}{fosc} \times Pre$$

- Đặt E =(CCPR2L:CCP2CON<5:4>) suy ra E=30x4=120
- CCPR2L = E/4 = 30;
- CCP2CON<5:4> = E%4 = 0 suy ra giá trị
 từ bảng TT, ta có:

DC2B1=0 và DC2B0=0

CCPxCON<5:4> =E%4	DCxB1	DCxB0
0	0	0
1	0	1
2	1	0
3	1	1

VÍ DỤ MINH HỌA

• Giải thuật:

```
(Begin)
        Main
      Cấu hình tất cả
Analog Input → Digital I/O
      Cấm xuất PWM
     CCP2(RC1): Input
       Xóa Timer 2
         TMR2 = 0
Đặt chu kỳ xung PWM (PR2)
   f = 4KHz (T = 100 \mu s)
  Đặt độ rộng xung PWM
 (CCPRxL:CCPxCON<5:4>)
Pulse Width = 30\% (30us);)
   Cấu hình modul CCP
      ở chế đô PWM
   Cho phép xuất PWM
    CCP2(RC1) : Output
    Đặt chế đô Timer 2
    Mode: Timer
    Prescaler: 1:1
    Postscaler: 1:1
    Timer 2 \rightarrow ON
```

VÍ DỤ MINH HỌA

Cấu hình (Hi-Tech C):

```
__CONFIG(FOSC_HS & WDTE_OFF & PWRTE_ON & MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & IESO_OFF & FCMEN_OFF & LVP_OFF & DEBUG_ON);
```

#define _XTAL_FREQ 4000000

Chương trình (Hi-Tech C):

```
void setup_ccp(void)
 TRISC1 = 1;
 TMR2 = 0;
 PR2 = 99;
 CCPR2L = 30;
 CCP2CON = 0x0C;
 DC2B1=0;DC2B0=0;
 TRISC1 = 0;
 T2CON = 0X00;
 TMR2ON =1;
```

```
void main(void)
  {
  setup_ccp();
  while(1);
  }
```