SUMMARY TABLE:

	Required Change to Reduce Fuel	Approx. % Change
	Rate by 10 kg/thm	(based on avg)
Slag Rate	-33.33 kg/thm	-6.7% (from 500 kg)
Hot Blast Temp	+40 °C	+3.5% (from 1150 °C)
Moisture	-4%	-50% (from 8%)
Gas Utilization	+5%	+ 10.6% (from 47%)
Efficiency		
Flame	+200 °C	+ 9.1% (from 2200 °C)
Temperature		
Top Pressure	+1 bar	+43.5% (from 2.3 bar)

These small shifts can save 10 kg/thm while maintaining furnace safety and output.

Theoritical Fuel Rate Adjustment Table

Parameter	Unit	Change	Fuel Rate Adjustment (kg/tHM)
Moisture Injection	g/m³ STP	+ 10	+ 6
Top pressure	bar	+ 0.1	- 1.2
Blast temperature	°C	+ 100	-9
Slag	kg/thm	+ 10	+ 0.5
Gas Utilization	%	+ 1	-7

Predicted Fuel Rate Adjustment Table

Parameter	Unit Change	Fuel Adjustment (kg/thm)
Moisture injecition	+ 10%	+ 12.7
Top Pressure	+ 0.1 bar	- 5.6
Blast Temperature	+ 100 °C	– 12.4
Slag Rate	+ 10 kg/thm	+ 0.3
Gas utilization efficiency	+ 1%	- 5
Flame Temperature	+ 100 °C	- 3.6

NOTE: There is difference in unit for Moisture Injection for the tables

Summary

- \triangleright Moisture injection: Positive correlation with fuel rate (higher moisture \rightarrow Higher fuel),
- ➤ CO Efficiency: Slight negative correlation (higher CO utilization → lower fuel), Better CO gas utilization clearly reduces carbon consumption by making use of CO for reduction.
- ➤ Hot Blast Temperature: Plot shows negative trend (higher temp → lower fuel), and theory indicates the same: hotter blast reduce fuel consumption.
- ➤ Slag Rate: Clear positive correlation (higher slag rate → higher fuel), moderate strength. Additional slag requires extra heating and melting, raising the fuel cosumption.
- ➤ Flame Temperature: Flame Temperature have a Negative correlation with fuel rate. Higer Raceway flame temperature → Lower fuel rate.
- ➤ Top Pressure: Top Pressure have a Negative correlation with fuel rate; fuel rate is decreasing by increasing top-gas pressure.

Recommendations -

- Maximize CO to CO₂ conversion efficiency / Gas Utilization Efficiency (optimize burden mix and gas flows to lower top-gas CO ratio).
- > Operate at the higher practical hot-blast temperature.
- ➤ Reduce slag production (better raw-material quality and flux control) to avoid melting costs.
- Carefully control charge moisture: minimize unnecessary water in feed, but use precise steam injections only to the extent they improve permeability.
- Maintain stable flame temperature and top pressure through proper O₂ and burden control, their direct impact on fuel rate is significant.