ECUACIONES PARAMÉTRICAS

REPRESENTACIÓN DE CURVAS EN FORMA PARAMÉTRICA

Las coordenadas (x, y) del punto P de una curva pueden estar dadas en función de una tercera variable, llamado parámetro es decir

C:
$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$
(1)

A la expresión dada en (1) se denomina ecuaciones paramétricas, en donde cada valor de t le corresponde un punto P(f(t), g(t)) del plano XY.

El lugar geométrico que describe el punto P se denomina curva parametrizada de la ecuación paramétrica, para obtener la ecuación cartesiana se elimina el parámetro t y de esa manera se obtiene una ecuación en forma cartesiana.

$$y = f(x)$$
 ó $E(x, y) = 0$

Ejemplo: Trazar la gráfica de las siguientes ecuaciones paramétricas

1.
$$\begin{cases} x = 2t \\ y = -5t \end{cases} \quad y = -\frac{5}{2}x \quad 1$$
Solución:

Para trazar la gráfica primero tabulamos

t	x	у
0	0	0
1	2	-5
2	4	-10
-1	-2	5
2	-4	10

$$\begin{cases} x = 2t &, \frac{x}{2} = t \\ y = -5t &, \frac{y}{-5} = t \end{cases} \rightarrow \frac{x}{2} = \frac{y}{-5}$$
$$\rightarrow -5x = 2y \rightarrow y = -\frac{5}{2}$$

$$2. \quad \left\{ \begin{array}{l} x = t - 1 \\ y = t^2 \end{array} \right.$$

Solución:

Para trazar la gráfica primero tabulamos

t	x	у
0	-1	0
1	0	1
-1	-2	1
2	1	4

ÁREA BAJO UNA CURVA DADA EN FORMA PARAMÉTRICA

Consideramos una curva C definida mediante las ecuaciones paramétricas

C:
$$\begin{cases} x = f(t) \\ y = g(t) \end{cases} t \in [\alpha, \beta]$$

Entonces el área de la región acotada por esta curva, el eje X y las rectas verticales x=a , x=b se expresa mediante la integral

$$A = \int_{\alpha}^{\beta} g(t)f'(t)dt$$

Donde α y β se determinan de las ecuaciones $a=f(\alpha);\ b=f(\beta)$ y $g(t)\geq 0$ en $[\alpha,\beta]$

Ejemplo:

Calcular el área de la elipse dada por sus ecuaciones paramétricas

$$C: \begin{cases} \frac{x}{a} = cost \\ \frac{y}{b} = sent \end{cases}$$

Solución:

Dada la simetría de la elipse canónica respecto a $OX\ y\ OY$, bastara con calcular el área de un cuadrante y multiplicarla por 4 desde x=0 hasta x=a

Si
$$x = 0 \rightarrow 0 = acost \rightarrow 0 = cost \rightarrow t = \frac{\pi}{2}$$

Si
$$x = a \rightarrow a = acost \rightarrow 1 = cost \rightarrow t = 0$$

Pero:
$$\begin{cases} dx = -asent \ dt \\ dy = bcost \ dt \end{cases}$$

$$f'(t) = -asent$$

$$A = 4 \int_{\frac{\pi}{2}}^{0} bsent(-asent)dt$$

$$A = -4ab \int_{\frac{\pi}{2}}^{0} sen^2 t \, dt$$

$$A = -4ab \int_{\frac{\pi}{2}}^{0} \frac{1 - \cos 2t}{2} dt$$

$$A = -2ab \int_{\frac{\pi}{2}}^{0} (1 - \cos 2t) \, dt$$

$$A = -2ab \left[t - \frac{sen2t}{2} \right]_{\frac{\pi}{2}}^{0}$$

$$A = -2ab \left[\left(\cancel{0} - \frac{sen0}{2} \right) - \left(\frac{\pi}{2} - \frac{sen2\frac{\pi}{2}}{2} \right) \right]_{\frac{\pi}{2}}^{0}$$

$$\begin{array}{c} x = 4 \cos(t) \\ y = 9 \sin(t) \end{array} \right\} 0 \le t \le 6.28$$

Ejemplo:

Calcula el area comprendida entre $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$

Solución:

Calculamos donde corta la cicloide en el eje OX haciendo $y=0 \rightarrow 0=a\,(1-\cos t) \rightarrow 1=\cos t \rightarrow t=0,2\pi,4\pi...$ Un arco estara comprendido entre $0\ \ y\ 2\pi$ $dx=a(1-\cos t)dt$

$$A = \int_0^{2\pi} a (1 - \cos t) a (1 - \cos t) dt$$

$$= a^2 \int_0^{2\pi} (1 - \cos t) (1 - \cos t) dt$$

$$= a^2 \int_0^{2\pi} (1 - \cos t)^2 dt$$

$$= a^2 \int_0^{2\pi} (1 - 2\cos t + \cos^2 t) dt$$

$$= a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1}{2} + \frac{1}{2}\cos 2t \right) dt$$

$$= a^2 \int_0^{2\pi} \left(\frac{3}{2} - 2\cos t + \frac{1}{2}\cos 2t \right) dt$$

$$= a^2 \left[\frac{3}{2}t - 2\sin t + \frac{1}{4}\sin 2t \right]_0^{2\pi}$$

$$= a^2 \left[\left(\frac{3}{2}2\pi - 2\sin 2\pi + \frac{1}{4}\sin 4\pi \right) - \left(\frac{3}{2}.0 - 2\sin 0 + \frac{1}{4}\sin 0 \right) \right]$$

$$= a^2 \left[(3\pi) \right] = 3a^2 \pi u^2$$