Tyler H. Chang – CV

Numerical Optimization and Scientific Machine Learning, Senior Research Engineer

Mountain View, CA, USA

LIST OF PUBLICATIONS

Peer-Reviewed Journal Articles

- 13. 2025. T. H. Chang and S. M. Wild. Designing a framework for solving multiobjective simulation optimization problems. To appear in INFORMS Journal on Computing, 33 pages. doi: 10.1287/ijoc.2023.0250
- 12. 2025. T. H. Chang, A. K. Gillette, and R. Maulik. Leveraging interpolation models and error bounds for verifiable scientific machine learning. Journal of Computational Physics 524, Article 113726, 23 pages. doi: 10.1016/j.jcp.2025.113726
- 11. 2024. T. H. Chang, L. T. Watson, S. Leyffer, T. C. H. Lux, and H. M. J. Almohri. Remark on Algorithm 1012: computing projections with large data sets. ACM Transactions on Mathematical Software 50(2), Article 12, 8 pages. doi: 10.1145/3656581
- 10. 2023. T. C. H. Lux, L. T. Watson, T. H. Chang, and W. I. Thacker. Algorithm 1031: MQSI—Monotone quintic spline interpolation. ACM Transactions on Mathematical Software 49(1), Article 6, 17 pages. doi: 10.1145/3570157
- 9. 2023. T. H. Chang and S. M. Wild. ParMOO: a Python library for parallel multiobjective simulation optimization. Journal of Open Source Software 8(82), Article 4468, 5 pages. doi: 10.21105/joss.04468
- 8. 2023. N. Neveu, T. H. Chang, P. Franz, S. Hudson, and J. Larson. Comparison of multiobjective optimization methods for the LCLS-II photoinjector. Computer Physics Communication 283, Article 108566, 10 pages. doi: 10.1016/j.cpc.2022.108566
- 7. 2023. Y. Wang, L. Xu, Y. Hong, R. Pan, T. H. Chang, T. C. H. Lux, J. Bernard, L. T. Watson, and K. W. Cameron. Design strategies and approximation methods for high-performance computing variability management. Journal of Quality Technology 55(1), pp. 88-103. doi: 10.1080/00224065.2022.2035285
- 6. 2022. T. H. Chang, L. T. Watson, J. Larson, N. Neveu, W. I. Thacker, S. Deshpande, and T. C. H. Lux. Algorithm 1028: VTMOP: Solver for blackbox multiobjective optimization problems. ACM Transactions on Mathematical Software 48(3), Article 36, 34 pages. doi: 10.1145/3529258
- 5. 2021. L. Xu, T. C. H. Lux, T. H. Chang, B. Li, Y. Hong, L. T. Watson, A. R. Butt, D. Yao, and K. W. Cameron. Prediction of highperformance computing input/output variability and its application to optimization for system configurations. Quality Engineering 33(2), pp. 318–334. doi: 10.1080/08982112.2020.1866203
- 4. 2021. T. C. H. Lux, L. T. Watson, T. H. Chang, J. Bernard, B. Li, L. Xu, G. Back, A. R. Butt, K. W. Cameron, and Y. Hong. Interpolation of sparse high-dimensional data. Numerical Algorithms 88(1), pp. 281-313. doi: 10.1007/s11075-020-01040-2
- 3. 2020. T. H. Chang, L. T. Watson, T. C. H. Lux, A. R. Butt, K. W. Cameron, and Y. Hong. Algorithm 1012: DELAUNAYSPARSE: Interpolation via a sparse subset of the Delaunay triangulation in medium to high dimensions. ACM Transactions on Mathematical Software 46(4), Article 38, 20 pages. doi: 10.1145/3422818
- 2. 2020. L. Xu, Y. Wang, T. C. H. Lux, T. H. Chang, J. Bernard, B. Li, Y. Hong, K. W. Cameron, and L. T. Watson. Modeling I/O performance variability in high-performance computing systems using mixture distributions. Journal of Parallel and Distributed Computing 139, pp. 87-98. doi: 10.1016/j.jpdc.2020.01.005
- 1. 2019. T. H. Chang, T. C. H. Lux, and S. S. Tipirneni. Least-squares solutions to polynomial systems of equations with quantum annealing. Quantum Information Processing 18(12), Article 374, 17 pages. doi: 10.1007/s11128-019-2489-x

Peer-Reviewed Conference and Workshop Papers

- 15. 2023. G. Chen, T. H. Chang, J. Power, and C. Jing. An integrated multi-physics optimization framework for particle accelerator design. In Proc. 2023 Winter Simulation Conference (WSC 2023), Industrial Applications Track, 2 pages. Orlando, FL, USA. doi: 10.48550/arXiv.2311.09415
- 14. 2023. M. Garg¹, T. H. Chang, and K. Raghavan. SF-SFD: Stochastic optimization of Fourier coefficients for spacefilling designs. In Proc. 2023 Winter Simulation Conference (WSC 2023), pp. 3636–3646. Orlando, FL, USA. doi: 10.1109/WSC60868.2023.10408245
- 13. 2023. T. H. Chang, J. R. Elias, S. M. Wild, S. Chaudhuri, and J. A. Libera. A framework for fully autonomous design of materials via multiobjective optimization and active learning: challenges and next steps. In 11th Intl. Conf. on Learning Representation (ICLR 2023), Workshop on Machine Learning for Materials (ML4Materials). Kigali, Rwanda. url: https://openreview.net/forum? id=8KJS7RPjMqG

¹⁼ NSF MSGI (PhD student intern) at Argonne in my supervision

- 12. 2020. **T. H. Chang**, J. Larson, and L. T. Watson. Multiobjective optimization of the variability of the high-performance Linpack solver. *In Proc. 2020 Winter Simulation Conference (WSC 2020)*, pp. 3081–3092. Orlando, FL, USA. **doi:** 10.1109/WSC48552.2020.9383875
- 11. 2020. **T. H. Chang**, J. Larson, L. T. Watson, and T. C. H. Lux. Managing computationally expensive blackbox multiobjective optimization problems with libEnsemble. *In Proc. 2020 Spring Simulation Conference (SpringSim '20)*, Article 31, 12 pages. Fairfax, VA, USA. **doi:** 10.22360/springsim.2020.hpc.001
- 10. 2020. T. C. H. Lux, L. T. Watson, **T. H. Chang**, L. Xu, Y. Wang, and Y. Hong. An algorithm for constructing monotone quintic interpolating splines. *In Proc. 2020 Spring Simulation Conference (SpringSim '20)*, Article 33, 12 pages. Fairfax, VA, USA. **doi:** 10.22360/springsim.2020.hpc.003
- 9. 2020. T. C. H. Lux and **T. H. Chang**. Analytic test functions for generalizable evaluation of convex optimization techniques. *In Proc. IEEE SoutheastCon 2020*, 8 pages. Raleigh, NC, USA. **doi:** 10.1109/SoutheastCon44009.2020.9368254
- 8. 2020. T. C. H. Lux, L. T. Watson, **T. H. Chang**, L. Xu, Y. Wang, J. Bernard, Y. Hong, and K. W. Cameron. Effective nonparametric distribution modeling for distribution approximation applications. *In Proc. IEEE SoutheastCon 2020*, 6 pages. Raleigh, NC, USA. **doi:** 10.1109/SoutheastCon44009.2020.9368295
- 7. 2018. **T. H. Chang**, L. T. Watson, T. C. H. Lux, S. Raghvendra, B. Li, L. Xu, A. R. Butt, K. W. Cameron, and Y. Hong. Computing the umbrella neighbourhood of a vertex in the Delaunay triangulation and a single Voronoi cell in arbitrary dimension. *In Proc. IEEE SoutheastCon 2018*, 8 pages. St. Petersburg, FL, USA. **doi:** 10.1109/SECON.2018.8479003
- 6. 2018. T. C. H. Lux, L. T. Watson, **T. H. Chang**, J. Bernard, B. Li, X. Yu, L. Xu, G. Back, A. R. Butt, K. W. Cameron, Y. Hong, and D. Yao. Nonparametric distribution models for predicting and managing computational performance variability. *In Proc. IEEE SoutheastCon 2018*, 7 pages. St. Petersburg, FL, USA. **doi:** 10.1109/SECON.2018.8478814
- 5. 2018. **T. H. Chang**, L. T. Watson, T. C. H. Lux, J. Bernard, B. Li, L. Xu, G. Back, A. R. Butt, K. W. Cameron, and Y. Hong. Predicting system performance by interpolation using a high-dimensional Delaunay triangulation. *In Proc. 2018 Spring Simulation Conference (SpringSim '18)*, Article 2, 12 pages. Baltimore, MD, USA. **doi:** 10.22360/springsim.2018.hpc.003
- 4. 2018. T. C. H. Lux, L. T. Watson, **T. H. Chang**, J. Bernard, B. Li, L. Xu, G. Back, A. R. Butt, K. W. Cameron, and Y. Hong. Predictive modeling of I/O characteristics in high performance computing systems. *In Proc. 2018 Spring Simulation Conference (SpringSim '18)*, Article 8, 10 pages. Baltimore, MD, USA. **doi:** 10.22360/springsim.2018.hpc.009
- 3. 2018. **T. H. Chang**, L. T. Watson, T. C. H. Lux, B. Li, L. Xu, A. R. Butt, K. W. Cameron, and Y. Hong. A polynomial time algorithm for multivariate interpolation in arbitrary dimension via the Delaunay triangulation. *In Proc. 2018 ACM Southeast Conference (ACMSE '18)*, Article 12, 8 pages. Richmond, KY, USA. **doi:** 10.1145/3190645.3190680
- 2. 2018. T. C. H. Lux, L. T. Watson, **T. H. Chang**, J. Bernard, B. Li, X. Yu, L. Xu, G. Back, A. R. Butt, K. W. Cameron, D. Yao, and Y. Hong. Novel meshes for multivariate interpolation and approximation. *In Proc. 2018 ACM Southeast Conference (ACMSE '18)*, Article 13, 7 pages. Richmond, KY, USA. **doi:** 10.1145/3190645.3190687
- 1. 2017. C. Raghunath, **T. H. Chang**, L. T. Watson, M. Jrad, R. K. Kapania, and R. M. Kolonay. Global deterministic and stochastic optimization in a service oriented architecture. *In Proc. 2017 Spring Simulation Conference (SpringSim '17)*, Article 7, 12 pages. Virginia Beach, VA, USA. **doi:** 10.22360/springsim.2017.hpc.023

Technical Reports and Dissertations

- 5. 2024. **T. H. Chang**, S. M. Wild, and H. Dickinson². *ParMOO: Python library for parallel multiobjective simulation optimization*. Technical Report Version 0.4.1. Argonne National Laboratory, Lemont, Illinois, USA. **url:** https://parmoo.readthedocs.io/_/downloads/en/latest/pdf/
- 4. 2023. R. Egele, **T. H. Chang**, Y. Sun, V. Vishwanath, and P. Balaprakash. *Parallel multi-objective hyperparameter optimization with uniform normalization and bounded objectives*. Technical Report arXiv:2309.14936 [cs.LG]. arXiv preprint. Submitted Apr 2024. Preprint: https://arxiv.org/abs/2309.14936. url: https://arxiv.org/abs/2309.14936
- 3. 2020. A. K. Gillette and **T. H. Chang**. *ALGORITHMS: assessing latent space dimension by Delaunay loss*. Technical Report LLNL-CONF-814930. Lawrence Livermore National Laboratory, Livermore, California, USA. **url:** https://www.osti.gov/servlets/purl/1756748
- 2. 2020. T. H. Chang. *Mathematical software for multiobjective optimization problems*. Ph.D. Dissertation. Department of Computer Science, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA. Dept. of Computer Science Nominee for Outstanding Dissertation Award. url: http://hdl.handle.net/10919/98915
- 1. 2016. **T. H. Chang**. *GPU saturation for multiple matrix-vector multiplications*. Bachelor's Thesis. Department of Computer Science, Virginia Wesleyan University, Virginia Beach, VA, USA.

²= DOE SULI (undergraduate intern) at Argonne in my supervision