# Balanced Comparison

## 労働経済学 2

## 川田恵介

## Table of contents

| 1    | 単純な例: データ上でのバランス                           | 2 |
|------|--------------------------------------------|---|
| 1.1  | 論点整理                                       | 2 |
| 1.2  | 例: "人種" 間格差                                | 2 |
| 1.3  | 例: 平均格差                                    | 3 |
| 1.4  | 目標                                         | 3 |
| 1.5  | 準備: 繰り返し期待値の法則                             | 3 |
| 1.6  | 正式な定義: 平均値の分解                              | 4 |
| 1.7  | 例: $X = immigrant$                         | 4 |
| 1.8  | 含意                                         | 4 |
| 1.9  | Balanced mean                              | 4 |
| 1.10 | Target Weight                              | 5 |
| 1.11 | 実践上の含意.................................... | 5 |
| 1.12 | 例: $X = immigrant$                         | 5 |
| 1.13 | 例: Balanced Mean                           | 6 |
| 1.14 | 定義: Balancing weights                      | 6 |
| 1.15 | 定義: Balancing weights                      | 6 |
| 1.16 | 仮定: Overlap                                | 7 |
| 1.17 | まとめ                                        | 7 |
| 1.18 | 付論: 別解釈                                    | 7 |
| 2    | 母集団上での推定対象                                 | 7 |
| 2.1  | Estimand                                   | 7 |
| 2.2  | 実践上の含意・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 8 |
| 3    | 推定方法                                       | 8 |
| 3.1  | 例: 移民、調査年                                  | 8 |
| 3.2  | 例: Balanced Comparison                     | 9 |

| 3.3    | 例: "Unbalanced" Comparison | 6  |
|--------|----------------------------|----|
| 3.4    | 例: Balanced Comparison     | 9  |
| 3.5    | 例. 異なる Target Weight       | 10 |
| 3.6    | 例: 移民、調査年、年齢               | 11 |
| 3.7    | 例: 移民、調査年、年齢、その他           | 11 |
| 3.8    | 事例数問題                      | 12 |
| 3.9    | まとめ                        | 12 |
| Refere | ence                       | 12 |

## 1 単純な例: データ上でのバランス

- *X* をバランスさせた比較を、データ上でどのように行うのか?
  - 因果推論/格差、両面で有効
    - \* 理想的な因果推論に比べて、Xの分断が大きく、注意深い議論が格差推定では、注意深い議論が必要

#### 1.1 論点整理

- Balancing Comparison/ weights を用いて議論を整理
  - 因果効果や格差を推定するために、データから推定する必要がある
  - 傾向スコア、マッチング、IPW、Double Machine Learning、OLS などを、Balancing weights を 推定する手法として整理できる
    - \* Chattopadhyay, Hase, and Zubizarreta (2020), Bruns-Smith et al. (2023), Ben-Michael et al. (2021)
- 多くの手法を整理できる!!!

#### 1.2 例: "人種" 間格差

- "Race" 間での教育格差を推定
  - $\mathcal{F}-\mathcal{P}\colon$  US General Social Survey 1974-2002
  - Y = 教育年数
  - -D = 1 "白人以外" / 0 "白人"
  - X = 年齢/移民かどうか/何年の調査か
    - \* 同じ社会/コホート/出身国内で差があれば、格差

## 1.3 例: 平均格差



• "白人以外"の方が、移民が多く、年齢が若く、直近の調査に多い

## 1.4 目標

- ・ 人種 (=D) 間で、年齢、調査年、移民状態 (=X) を Balance させた後の、教育年数 (=Y) の平均差 教育格差についての、Balanced Comparison
- Point: Balance とは何か?

## 1.5 準備: 繰り返し期待値の法則

• 繰り返し期待値の法則

大阪大学の平均身長 = 経済学部生の平均身長

×経済学部生の割合

+社会学部生の平均身長

×社会学部生の割合

+...

#### 1.6 正式な定義: 平均値の分解

• 一般にデータ上の Y の平均値は以下のように書き換えられる

$$d$$
における $Y$ の平均値 =  $\left\{ (x \& d)$ における $Y$ の平均値 
$$\times d$$
における $x$ の割合  $\left. \right\}$   $ox$ についての総和

#### 1.7 **例**: X = immigrant

| E[Y D,X] | D | immigrant | f(x d) |
|----------|---|-----------|--------|
| 11.9     | 1 | no        | 0.843  |
| 13.0     | 1 | yes       | 0.157  |
| 12.8     | 0 | no        | 0.902  |
| 12.3     | 0 | yes       | 0.098  |

D=1の平均教育年数

$$\underbrace{12.0727}_{E[Y|1]} = \underbrace{0.843}_{f(no|1)} \times \underbrace{11.9}_{E[Y|1,no]} + \underbrace{0.157}_{f(yes|1)} \times \underbrace{13.0}_{E[Y|1,yes]}$$

#### 1.8 含意

- D間での格差を生み出す要因は2種類に分解できる
  - -(x & d)におけるYの平均値の違い (X内での格差)
  - -dにおけるxの割合 の違い (X の格差)
- Balanced Comparison: 後者を排除

#### 1.9 Balanced mean

• "Xの格差"を排除した平均値

$$Balanced\ Mean = \left\{ (x\ \&\ d)$$
におけるYの平均値 
$$\times \underbrace{x o 仮想的な割合}_{Target\ Weight} \right\} ox$$
についての総和

#### 1.10 Target Weight

- Target Weight は D 間で共通
  - 研究者が設定する必要がある
- 代表例として
  - データ全体での x の割合 f(X)
  - -D=1 または D=0 における x の割合 f(X|D=1), f(X|D=0)

#### 1.11 実践上の含意

- 一般に Target Weight が異なれば、推定結果も異なり、含意も異なる
  - 例外は、理想的な因果推論
    - \* RCT に近いデータを用いることができれば、X の分布は D=1/0 で差がない
      - · どの Weight を用いても、同じような値になる
- 一般に格差推定においては、値が大きく異なることが予想される

#### 1.12 例: X = immigrant

| E[Y D,X] | D | immigrant | f(x d) | Target = f(x) | Target = f(x 1) | Target = f(x 0) |
|----------|---|-----------|--------|---------------|-----------------|-----------------|
| 11.9     | 1 | no        | 0.843  | 0.891         | 0.843           | 0.902           |
| 13.0     | 1 | yes       | 0.157  | 0.109         | 0.157           | 0.098           |
| 12.8     | 0 | no        | 0.902  | 0.891         | 0.843           | 0.902           |
| 12.3     | 0 | yes       | 0.098  | 0.109         | 0.157           | 0.098           |

• f(x) を使用した D=1 の Balanced Mean

$$12.01 = \underbrace{0.89}_{f(no)} \times \underbrace{11.9}_{E[Y|1,no]} + \underbrace{0.11}_{f(yes)} \times \underbrace{13.0}_{E[Y|1,yes]}$$

#### 1.13 例: Balanced Mean



## 1.14 定義: Balancing weights

- Balanced Mean の実際の算出には、Balancing Weight の活用が便利
- d=1 または =0 について、以下を達成する  $\omega(X,d)$

$$Balanced\ Mean = \frac{\omega(X_1,d)Y_i + .. + \omega(X_{N_d},d)}{N_d}$$

- $N_d$  は d の事例数
  - Yの加重平均

## 1.15 定義: Balancing weights

• Balanced Weight は、以下の定義式から算出できる

 $Target \ Weight = \omega(X,d) imes d$ におけるXの割合

$$\omega(X,d) = rac{Target \ Weight}{d$$
における $X$ の割合

- データ上での割合が、Target よりも低い集団に対して、重い Weight
- X の割合を、Target Weight に揃える (Balance する) ように調整する

#### 1.16 **仮定**: Overlap

- Balancing weight が"存在する"前提
- "すべての X の組み合わせについて、D=d もそれ以外も存在する"
  - -f(X) を Target Weight とするのであれば、

$$1 > f(D = d|X = x) > 0$$

-f(X|D=d) を Target Weight とするのであれば、

$$1 > f(D = d|X = x) \ge 0$$

#### 1.17 まとめ

- Overlap の仮定が成り立てば、Balanced comparison を実行できる
  - Balancing weight で荷重することで、X の分布を揃えた上で、Y の平均値を計算できる
- 母集団に対する含意は?
  - 母集団を活用した丁寧な議論が必要

#### 1.18 付論: 別解釈

- Stratified estimation としても解釈できる
- 1. すべての X の組み合わせについて、D 間での Yの平均差  $\tau(X)$  を計算
- 2. au(X) の" 平均値"を計算

## 2 母集団上での推定対象

• 母集団上で定義した Estimand を、データから推定する

#### 2.1 Estimand

• 母集団上で算出した Balanced Mean

- 研究者が、X,D,Y と Target Weight を決定することで、定義される
- 母集団上で Overlap が成り立つことが前提
  - データ上で成り立たなくとも、追加の仮定のもとで母集団上での Balanced Mean は計算できる

#### 2.2 実践上の含意

- 理想的な因果推論では、Overlap は常に成り立つと考えられる
  - RCT に近いデータを用いることができれば、X の分布は D=1/0 で差がない
- 一般に格差推定においては、Xの分断が大きく、Overlapが成り立たない可能性が出てくる
  - 今後の議論も踏まえた注意深い議論が必要

## 3 推定方法

- データ上で Overlap が成り立つのであれば、シンプルな方法で推定できる
  - データ上で、Balancing Weight を直接計算 (MatchIt package など)
- Xの組み合わせが増えると、事例数の問題から推定できないので、他の手法を使う必要がある

#### 3.1 例: 移民、調査年

```
Weight = MatchIt::matchit(
  D ~ immigrant + factor(year),
  data = Data,
  method = "Exact", # Balancing Weight
  estimand = "ATE"
)
Weight
```

#### A matchit object

- method: Exact matching
- number of obs.: 9120 (original), 9120 (matched)
- target estimand: ATE
- covariates: immigrant, factor(year)
  - number of obs. = 事例数
    - original: 元の事例数

- matched: weights を計算できた事例数

## 3.2 例: Balanced Comparison

## 3.3 例: "Unbalanced" Comparison

```
lm(
    Y ~ D,
    Data
)
```

```
Call:
lm(formula = Y ~ D, data = Data)
Coefficients:
(Intercept) D
12.7708 -0.6935
```

## 3.4 例: Balanced Comparison

```
Weight |>
cobalt::bal.tab() |>
cobalt::love.plot()
```



## 3.5 例. 異なる Target Weight

• D=1 における X の割合をターゲットとすることもできる

```
Weight = MatchIt::matchit(
  D ~ immigrant + factor(year),
  data = Data,
  method = "Exact", # Balancing Weight
  estimand = "ATT"
)

lm(
  Y ~ D,
  Data,
  weights = Weight$weights
)
```

```
Call:
lm(formula = Y ~ D, data = Data, weights = Weight$weights)
Coefficients:
(Intercept)
```

```
12.8432 -0.7659
```

• 格差分析において、特に重要

#### 3.6 例: 移民、調査年、年齢

```
MatchIt::matchit(
  D ~ immigrant + year + age,
  data = Data,
  method = "Exact",
  estimand = "ATE"
)
```

#### A matchit object

- method: Exact matching
- number of obs.: 9120 (original), 7788 (matched)
- target estimand: ATE
- covariates: immigrant, year, age
  - 年齢も加えると Weight が計算できない事例が増える

#### 3.7 例: 移民、調査年、年齢、その他

```
MatchIt::matchit(
  D ~ age + lowincome16 + city16 + immigrant + siblings + year,
  data = Data,
  method = "Exact",
  estimand = "ATT"
)
```

#### A matchit object

- method: Exact matching
- number of obs.: 9120 (original), 1261 (matched)
- target estimand: ATT
- covariates: age, lowincome16, city16, immigrant, siblings, year
  - 居住地なども加えると Weight が計算できない事例がさらに増える

#### 3.8 事例数問題

• 母集団において Overlap が成立していたとしても、事例数が限られるデータにおいては、D=1/0 の どちらかしか存在しない X が発生する

| D | immigrant | year | age |
|---|-----------|------|-----|
| 0 | no        | 2002 | 57  |
| 0 | no        | 2002 | 81  |
| 0 | no        | 2002 | 69  |
| 0 | yes       | 2002 | 75  |
| 0 | no        | 2002 | 64  |
| 0 | yes       | 2002 | 58  |
| 0 | yes       | 2002 | 56  |
| 0 | yes       | 2002 | 76  |
| 0 | no        | 2002 | 79  |
| 0 | yes       | 2002 | 70  |

#### 3.9 まとめ

- X をバランスさせたもとでの比較 (Balanced comparison) は、Balancing weights の算出が要求する
  - X の組み合わせに対して、事例数が十分あれば、Overlap の仮定のもとで、X を"Exact" にバランスさせる Weight を計算できる
  - 多くの実践で不十分
    - \* OLS (Imbens 2015; Chattopadhyay and Zubizarreta 2022) や傾向スコア、明示的な最適化 (Hainmueller 2012; Zubizarreta 2015) を使用する必要がある

#### Reference

Ben-Michael, Eli, Avi Feller, David A Hirshberg, and José R Zubizarreta. 2021. "The Balancing Act in Causal Inference."  $arXiv\ Preprint\ arXiv\ 2110.14831$ .

Bruns-Smith, David, Oliver Dukes, Avi Feller, and Elizabeth L Ogburn. 2023. "Augmented Balancing Weights as Linear Regression." arXiv Preprint arXiv:2304.14545.

Chattopadhyay, Ambarish, Christopher H Hase, and José R Zubizarreta. 2020. "Balancing Vs Modeling Approaches to Weighting in Practice." *Statistics in Medicine* 39 (24): 3227–54.

Chattopadhyay, Ambarish, and José R Zubizarreta. 2022. "On the Implied Weights of Linear Regression for Causal Inference." *Biometrika*, asac058.

- Hainmueller, Jens. 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies." *Political Analysis* 20 (1): 25–46.
- Imbens, Guido W. 2015. "Matching Methods in Practice: Three Examples." *Journal of Human Resources* 50 (2): 373–419.
- Zubizarreta, José R. 2015. "Stable Weights That Balance Covariates for Estimation with Incomplete Outcome Data." *Journal of the American Statistical Association* 110 (511): 910–22.