Experiment - 5

Objective: Study of β -spectroscopy

Sources : β -ray source = \mathbf{Sr}^{90} , \mathbf{Na}^{22}

Scope of Expt:

i) Set the connections for magnet depending upon whether it's a β^- ray or β^+ ray from Sr^{90} or Na^{22} , respectively.

ii) Put the source, Hall probe and GM tube in its place in the β -spectroscope.

iii) Keep your maximum current I = 2 Amp. Set the CC to 2 Amp.

iv) Current I flowing through the coil is proportional to generation of magnetic field, B.

v) Measure counts in GM counter for 100 Sec for different B. Also notedown the voltage, V and Current, I in the coil.

vi) Calculate kinetic energy E_{β} , of β -particle for each magnetic field, B.

vii) Plot Counts vs E_{β.}

Theory: Write necessary theory for β -ray spectroscopy. Decay of β -ray sources like \mathbf{Sr}^{90} , \mathbf{Na}^{22}

Experiment

The β -particle kinetic energy is defined as $E_{kin} = \sqrt{(eBrc)^2 + m_0^2c^4} - m_0c^2$

2.2 Technical specifications and physical constants

Average trajectory radius: r = 50 mm

 $c = 299792.5 \cdot 10^3 \text{ m/s}$ $m_0 = 9.10191 \cdot 10^{-31} \text{ kg}$ $e = 1.60210 \cdot 10^{-19} \text{ C}$ Constants:

Using the above parameter find out the E_{β}

Table I : For Sr⁹⁰ source (<u>Take three Run for counts, 100 sec each</u>) [See direction of current, I in coil for β ⁻]

Sl. No	Coil Voltage (V)	Coil Current (I)	Mag. Field (B)	Energy (E _β)	Counts
	(in Volts)	(in Amp)	(in mT)	(in KeV)	(for 100 Sec)
1	0	0	3.6		390
2	0.38	0.13	10.1		470
3					
4					
5					
6					
7	5.15	2.0	127.9		2210

Table II : For Na²² source (<u>Take three Run for counts, 100 sec each</u>) [See direction of current, I in coil for β^+]

Sl. No	Coil Voltage (V)	Coil Current (I)	Mag. Field (B)	Energy (E _β)	Counts
	(in Volts)	(in Amp)	(in mT)	(in KeV)	(for 100 Sec)
1	0	0	3.6		320
2	1.94	0.75	50.4		1710
3					
4					
5					
6					
7	5.15	2.0	127.9		-

Graphs:

Fig. 6: β -spectrum of 90 Sr.

Fig. 7: β-spectrumof ²² Na.

Conclusion : Write your conclusion on the above observations.