	Expt. No. 4		
Expt. Name Michelson's Interferometer	Page No		
	Experiment-4		
din:			
To determine t	he refractive index of a thin glas plate.		
apparatus:			
Laxy light source beach, glass pla Online Lab Sin	Michelson interferometer Kit, optical te, meter scale.		
Theory:			
two interfring is optical path length nt while the thickness of air optical path length The beam trave path difference in fringes, 0=30°,	clate of thin thickness t and refractive ded normal to the path of one of the rains in nichelson Enterferometer. The af the beam through the plate is optical path length through an equal is just to so the Threase in caused by inserbing the plate is (n-1)t. The arrange of the plate is (n-1)t. The path of the plate is (n-1)t. The plate is (n-1)t. The path of the path of the plate is (n-1)t. The path of the path of the plate is (n-1)t. The path of the path of the plate is (n-1)t.		

Teacher's Signature:_

S.No.	fringe shifted (N)	Ande of rotation (8)
1 .2 3 4 5	1 2 3 4 5	0.36° 1.71° 2.39° 2.93° 3.37° 3.76° 4.11° 4.44°

1 30 m

3 * * * * * * * * * *

-91 con

• • •

ret :

SNO.	fringe st	hifted (N)	Abgae of	Rotation (9°)	To the second se
1	1	Common Andrew Marrier, after the property com-	0.39°		
2	a		1.680		
3	3	·),	2.35	1. C.	•
4	4		2.860		
5	1	•	3.30	4	•
6	6	*	3.68	•	
7	7		4.030		
8	8		4.35°	í	

Teacher's Signature:_

calculations:

for knypton laser,
$$\lambda = 5680 \text{Å}$$
, $t = 2 \text{mm}$.

La Safet Brasina

$$= (2x2 - 2x \cdot 5680) (1 - \cos(1.71)).$$

$$\frac{(2-2\times5680)(1-\cos(1-71))}{2\times2(1-\cos(1-71))}$$
 = 2×5680

2 for Her Ne leve, of the man amount of the service