Fizika alapismeretek

2022

Kornis János Fizika Tanszék

Általános tudnivalók

1 óra előadás + 1 óra számolási gyakorlat névsor minden órán előadáson: 50 % jelenlét követelmény

gyakorlaton: 70 % jelenlét követelmény

Félévközi jegy: két nagy zh. 40% + jelenléti követelmények

számonkérések

2 nagy zh. (100 pont)

pót zh, pót-pót zh

Kedvezmények:

- Felmérő az első héten
- 70%-os eredmény > teljesített tárgy

Miért éppen fizika

Fizikai kutatások

Számítógépes hálózat
Tranzisztor

Kvantumszámítógép

GPS
(atomóra, rel. elm.)

CT (NMR)

Holográfia
Nanofizika

Alkalmazások

Internet (www.)
Félvezető elektronika

Nagy számolási sebesség RSA kód feltörése, stb.

Helymeghatározás

Gyógyászat
3D képalkotás, 3D TV
bankkártya, stb.
Láthatatlan repülőgép
Öntisztuló ruha
"Öngyógyuló" számítógép

Miért éppen fizika

Mert érdekes !!!

Mire jó a fizika?

- Módszert és analógiákat mutat problémák megoldásához
- Megmutatja az összefüggéseket

A fizika természeti jelenségekkel foglalkozik, a természettudomány egyik ága.

Cél:

a természeti jelenségek tanulmányozása, objektív törvények megismerése, ezek érvényességi határainak vizsgálata, és a törvények gyakorlati alkalmazása

A megismerés módszere

- 1. lépés: adatgyűjtés/megfigyelés hogyan?
- 2. lépés: analízis/modellalkotás mi a közös?
- 3. lépés: elmélet/axiómák miért?
- 4. lépés: kísérletek igaz?

A fizika a jelenségek megértése és leírása érdekében *modellekkel* dolgozik.

(Nem a vizsgált objektumot vagy jelenséget próbálja a maga teljességében leírni, hanem egyszerűsítéseket használ, elhanyagolja a jelenség lényegének megértéséhez nem okvetlenül szükséges részleteket, és az így kapott modell-objektumot, vagy modell-jelenséget vizsgálja.)

A modell akkor jó, ha a belőle kapott eredményeket a tapasztalat igazolja (ellenőrzés).

Fontos segédeszköz a *matematika*, amelynek segítségével a mennyiségek között számszerű összefüggések írhatók fel: a *törvények kvantitatívvá tehetők*.

Használt mennyiségek típusai:

- skaláris- (csak nagyság: pl. tömeg, hőmérséklet, töltés)
- vektoriális (irány is: pl. elmozdulás, sebesség, erő).

Számunkra szükséges matematikai alapok: a skalár- és vektormennyiségekkel végzett műveletek, vagyis a vektorszámítás-, továbbá a differenciál- és integrálszámítás alapjai.

Fizikai mennyiség ={mérőszám} {mértékegység}

Sebesség = 5 m/s

- dimenzió: [L/T]

A fizikai mennyiség *dimenziója* (jellege):

hosszúság – L tömeg – M idő – T

"Egy egyenletben szerepő minden tag dimenziójának azonosnak kell lennie." Milyen a jó mértékegység?

Elvileg a fizikai mennyiségekhez tetszőleges mértékegységet hozzárendelhetünk.

- Azonban a mértékegységeket célszerű úgy megválasztani, hogy segítségükkel a mindennapi élet tapasztalatai egyszerűen kifejezhetők legyenek.
- Továbbá az egységet időtálló módon rögzíteni a mértékegységeket lehetőleg természeti állandókra vagy jól reprodukálható jelenségekre kell alapítani, és a lehető legnagyobb körben egyezményesen elfogadtatni.

Mértékrendszerek

- 1799. június 22. az első tízes alapú mértékrendszer (Decimal Metric System); az első platina méter és kilogram etalonok elhelyezése a párizsi Archives de la Républiqueban.
- 1832. Gauss megalkotja az első koherens mértékrendszert, melyben a kg-hoz és a m-hez hozzáveszi a csillagászatból vett másodpercet. Gauss meghatározza a Föld mágneses terének erősségét a milliméter, gramm and másodperc egységek segítségével.
- 1860-as évek Maxwell és Thomson javasolja, hogy a koherens mértékrendszer álljon alap és származtatott mértékegységekből.
- 1874 bevezetik a CGS rendszert, mely három mechanikai egységen a centiméteren, a gramon és a másodpercen alapul és a prefixumok közül bevezetik a mikrotól a megáig terjedőket.
- 1875 május 20. Méter Konvenció, feladata az új méter és kilogram etalonok kidolgozása.
- 1889 életbe lép az MKS rendszer az új méter és kilogram standardokkal és a bevezetésre kerülő csillagászati másodperccel.
- 1901 Giorgi bebizonyítja, hogy a mechanikai mértékegységekhez az ampert, vagy ohmot hozzáváve koherens 4 elemű mértékrendszer alkotható.
- 1921 a Méter Konvenció felülvizsgálata.
- 1939 az MKSA rendszer bevezetése: a negyedik mértékegység az amper lesz.
- 1954 bevezetésre kerül a **kelvin és a candela** , mint a termodinamikai hőmérséklet és a fényerősség egységei.
- 1960 A hat elemű mértékrendszer a Système International d'Unités (SI) nevet kapja.
- 1971 az anyagmennyiség mértékegységének, a molnak a bevezetésével teljessé válik a jelenleg is érvényes 7 tagú SI mértékrendszer.

Mars Polar Lander

Spacecraft Dimensions

1.06 meters tall by 3.6 meters wide.

Spacecraft Weight

Total: 576 kg Propellant: 64 kg **Mission Timeline**

1993: Project started January 3, 1999: Launch

December 3, 1999: LOST during

landing

Project Cost

\$110 million for spacecraft development, \$10 million mission operations; total \$120 million (not including launch vehicle or Deep Space 2 microprobes).

Root Cause: Failure to use metric units in the coding of a ground software file, "Small Forces," used in trajectory models

Az SI felépítése

(MSz 4900/1...12)

- Alapegységek 7 db
- Kiegészítő egységek 2 db
- Leszármaztatott mennyiségek
- Megtűrt egységek [hold, négyszögöl, Å, fényév, pc, ...]

A nem (hivatalos) SI egységeket is ismerni kell

Hosszúság és időegység

A másodperc: A másodpercet eredetileg az átlagos

Nap-nap segítségével lehetett meghatározni, annak 1/86400-ad része.

Atomóra: nagy pontosság 1ms / év vagy jobb

A másodperc az alapállapotú cézium-133 atom két hiperfinom energiaszintje közötti átmenetnek megfelelő sugárzás 9192631770 periódusának időtartama.

A méter: 1 méter a Föld kerületének (a Párizson átmenő délkörnek) 1/4000000-od része → ősméter

1 méter: Kr⁸⁶ narancssárga spektrumvonalának 1650763.73 - szorosa

Szökőmásodpercek az utóbbi években

A kilogramm

Az első meghatározás (1795) szerint legyen egy kilogramm annyi víznek a tömege, amely egytized méter élhosszúságú kockába fér a víz fagyáspontján

A kilogramm etalonja, eredetije a Nemzetközi Súly- és Mértékügyi Hivatalban (BIPM), Sèvres-ben őrzött, 1 kg tömegűnek definiált platina-irídium henger.

A kilogrammot a Planck-állandóhoz kötötték.

A végleges döntés a 26. konferencián, 2018 novemberében született meg, amely során ezt a módszert választották az új definícióként. A méréséhez szükséges kísérleti eszközt a Watt-mérleget, ma már Kibble-mérleg néven említik Bryan Kibble tiszteletére, aki továbbfejlesztette az eszközt.

Az SI felépítése

(MSz 4900/1...12)

- Alapegységek 7 db
- Kiegészítő egységek 2 db
- Leszármaztatott mennyiségek
- Megtűrt egységek [hold, négyszögöl, Å, fényév, pc, ...]

A nem (hivatalos) SI egységeket is ismerni kell

SI alapegységek					
Név	Jel	Mennyiség	Mennyiség jele		
méter	m	Hossz	I		
kilogramm	kg	Tömeg	m		
másodperc	S	ldő	t		
amper	Α	Elektromos áramerősség	I		
kelvin	ĸ	Abszolút hőmérséklet	Т		
mól	mol	Anyagmennyiség	n		
kandela	cd	Fényerősség	-		

Kiegészítő egységek: radián és szteradián

SI-prefixumok							
Előtag	lala	Szorzó					
Liviag	Jeie	hatvánnyal	számnéwel				
yotta-	Υ	10 ²⁴	kvadrillió				
zetta-	Z	10 ²¹	trilliárd				
exa-	E	10 ¹⁸	trillió				
peta-	Р	10 ¹⁵	billiárd				
tera-	T	10 ¹²	billió				
giga-	G	10 ⁹	milliárd				
mega-	M	10 ⁶	millió				
kilo-	k	10 ³	ezer				
_	_	10 ⁰	egy				
milli-	m	10 ⁻³	ezred				
mikro-	μ	10 ⁻⁶	milliomod				
nano-	'n	10 ⁻⁹	milliárdod				
piko-	þ	10 ⁻¹²	billiomod				
femto-	f	10 ⁻¹⁵	billiárdod				
atto-	а	10 ⁻¹⁸	trilliomod				
zepto-	z	10 ⁻²¹	trilliárdod				
yokto-	У	10 ⁻²⁴	qadrilliomod				

Idő

Planck-idő: az idő kvantuma. Ennél rövidebb időtartam alatt nincs értelme összehasonlítani az Univerzum előző és következő állapotát.

 $(5,391\cdot10^{-44} \text{ másodperc})$

<u>Platón</u> Kr. e. 378-ban vízórás ébresztőórát készített, melyben egy tartályból szivárgó víz átbillentett egy rekeszt, melyből ólomgolyók estek egy rézlapra, s a zaj felébresztette tanítványait.

Óra, naptár Gergely-naptár

Törölni kell egy napot 4782-ben!

"A puha órák nem mások, mint az idő és a tér paranoia-kritikai érett, különc és magányos camembert-ei."

A zónaidők a UTC-től általában egész órában térnek el, ritkábban az egészhez képest fél óra, két esetben pedig negyed óra eltérés van.

Elméletileg 24 időzónának kellene lennie, a valóságban azonban 40 van.

A másodperc számértéke mindenütt azonos.

Kínában egyetlen zónaidőt használnak.

	Név	Érték	Megjegyzés	
	Planck-idő	~5,4x10 ⁻⁴⁴ másodperc	Elméletileg legkisebb időtartam	
	atto-másodperc	10 ⁻¹⁸ másodperc	a 2006-ban közvetlenül mért legkisebb időtartam	
	pico-másodperc	0,000 000 000 001 másodperc		
	nano-másodperc	0,000 000 001 másodperc		
Használatos időegységek	micro-másodperc	0,000 001 másodperc		
<i>5,</i> 5	milli-másodperc	0,001 másodperc		
	másodperc	<u>SI</u> alapegység		
	perc	60 másodperc		
	<u>óra</u>	60 perc		
	nap	24 óra		
	<u>hét</u>	7 nap		
	<u>fortnight</u>	14 nap	angol 2 hét	
	<u>hónap</u>	28-31 nap		
	negyedév	3 hónap		
	<u>év</u>	12 hónap		
	<u>év</u>	365 nap	52 hét + 1 nap	
	szökőév	366 nap	52 hét + 2 nap	
	tropikus év	365,24219 nap	átlag	
	Gergely év	365,2425 nap	átlag	
	<u>Olympiád</u>	4 év ciklus		
	<u>évtized</u>	10 év		
	score	20 év	angol	
	generació	25 év	közelítően	
	<u>évszázad</u>	100 év	19	
	<u>millennium</u>	1000 év		

Trigonometria 1.

geometria

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

 $\theta = \bullet$

 $\cos \theta$

Trigonometria 2.

Trigonometria 6.

Koszinusz-tétel

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Vektor: nagyság + irány

Vektorok összeadása:

Vektor kivonása

$$\vec{a} - \vec{b} = ?$$

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Vektor Descartes és síkbeli-polár komponensei

Síkbeli-polár komponensek: r & ф

$$r_x = r \cdot \cos \varphi$$

$$r_y = r \cdot \sin \varphi$$

$$\vec{r} = r \cdot \vec{e}_r$$
 ahol $r = |\vec{r}|$

$$|\vec{r}| = r = \sqrt{r_x^2 + r_y^2}$$

$$tan\Theta = \frac{r_y}{r_x}$$

Descartes koordináták: r_x & r_y

Henger és gömbi koordináták

Henger koordina-rendszer

$$\vec{r} = r \cdot \vec{e}_r$$

Gömbi koordina-rendszer

Egységvektorok:

Vektorok összeadása és kivonása, komponensek

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$
 $\vec{b} = b_x \vec{i} + b_y \vec{j}$ $\vec{a} + \vec{b} = ?$

$$\vec{b} = b_x \vec{i} + b_y \vec{j}$$

$$\vec{a} + \vec{b} = ?$$

$$\vec{a} + \vec{b} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} = \vec{d}$$

$$d_y$$

$$\vec{a} - \vec{b} = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} = \vec{c}$$

$$C_{y}$$

$$^{\rm C}_{
m y}$$

$$\vec{a} + \vec{b} + \vec{c} + ... = (a_x + b_x + c_x + ...)\vec{i} + (a_y + b_y + c_y + ...)\vec{j}$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

$$\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$

Vektorok skalárszorzata

Def.:

$$|\vec{a} \cdot \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cos \varphi$$

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$

$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{i} \cdot \vec{k} = 0$$

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Def.: irány ⇒ jobbkéz-szabály

$$\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \cdot \left| \vec{b} \right| \sin \varphi$$

Egységvektorok: $\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0$

$$\vec{a} \times \vec{b}$$
 Vektoriális szorzat \vec{b} \vec{b} \vec{a}

$$\vec{i} \times \vec{j} = \vec{k}$$
, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$ de: $\vec{j} \times \vec{i} = -\vec{k}$, $\vec{k} \times \vec{j} = -\vec{i}$, $\vec{i} \times \vec{k} = -\vec{j}$

$$\vec{a} \times \vec{b} = [a_x \vec{i} + a_y \vec{j} + a_z \vec{k}] \times [b_x \vec{i} + b_y \vec{j} + b_z \vec{k}] = \dots$$

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x)$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
 H.F.

Mutasd meg, hogy:

$$V = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

Határérték, meredekség 1.

$$a_1, a_2, a_3, a_4...a_n \rightarrow K \longrightarrow \lim_{n \rightarrow \infty} a_n = K$$

$$\forall \, \epsilon (>0) \exists \, N : n > N \Longrightarrow \left| K - a_n \right| < \epsilon$$

P1.:
$$\lim_{n \to \infty} \frac{2}{1 + \frac{1}{n}} = 2$$

vagy

$$P1: \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

$$a_n = t_1 + t_2 + t_3 + \dots + t_4$$

$$\lim_{n\to\infty}a_n=t$$

Határérték, meredekség 2.

Differencia hányados:

$$\frac{\Delta f}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = tg(\alpha)$$

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{df}{dx}$$

Pl.:
$$f(x) = ax^2$$

$$\lim_{\Delta x \to 0} \frac{a(x + \Delta x)^2 - ax^2}{\Delta x} = \lim_{\Delta x \to 0} a \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} a \frac{x^2 + 2ax\Delta x + (\Delta x)^2 - x^2}{\Delta x} = 2ax$$

Határérték, meredekség 3.

x(t): pozíció [m] t: idő [s]

Def.: átlagsebesség
$$v_{\text{átl.}} = \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

Pl.:
$$x(t) = 4t^{2}$$

$$v_{\text{átl.}} = \frac{\Delta x}{\Delta t} = \frac{4t_{2}^{2} - 4t_{1}^{2}}{t_{2} - t_{1}}$$
Legyen: $t_{1} = 2s$ és $t_{2} = 3s$

$$v_{\text{átl.}} = \frac{\Delta x}{\Delta t} = \frac{4 \cdot 3^2 - 4 \cdot 2^2}{3 - 2} = 20 \frac{m}{s}$$

Legyen: $t_1 = 2s$ és $t_2 = 2.1s$

$$v_{\text{átl.}} = \frac{\Delta x}{\Delta t} = \frac{4 \cdot 2.1^2 - 4 \cdot 2^2}{3 - 2} = 16.4 \frac{\text{m}}{\text{s}}$$

A pillanatnyi sebesség:

$$v(t = 2s) = 16 \frac{m}{s}$$

Határérték, meredekség 4.

Miért fontos a *meredekség* ?

Szélsőérték \rightarrow m = 0 (maximum vagy minimum)

Példa:

x(t)

$$x(t) = 20t - 5t^2$$

$$x(t) = (-5)(t^2 - 4t) = (-5)[(t - 2)^2 - 4] = -5(t - 2)^2 + 20$$

Függőleges hajítás

$$x_{\text{max}} = x(t = 2s) = 20m$$