

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD						Pl	ESE	CL		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1–12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2011

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 1P-112

Zadanie 1. (4 pkt)

Uzasadnij, że dla każdej liczby całkowitej k liczba $k^6 - 2k^4 + k^2$ jest podzielna przez 36.

Zadanie 2. (4 pkt)

Uzasadnij, że jeżeli
$$a \neq b$$
, $a \neq c$, $b \neq c$ i $a + b = 2c$, to $\frac{a}{a - c} + \frac{b}{b - c} = 2$.

	Nr zadania	1.	2.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 3. (6 pkt) Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 - 4mx - m^3 + 6m^2 + m - 2 = 0$ ma dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $(x_1 - x_2)^2 < 8(m+1).$

	Nr zadania	3.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 4. (4 pkt)

Rozwiąż równanie $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ w przedziale $\langle 0, 2\pi \rangle$.

Odpowiedź:

Zadanie 5. (4 pkt)

O ciągu (x_n) dla $n \ge 1$ wiadomo, że:

a) ciąg (a_n) określony wzorem $a_n = 3^{x_n}$ dla $n \ge 1$ jest geometryczny o ilorazie q = 27.

b)
$$x_1 + x_2 + ... + x_{10} = 145$$
.

Oblicz x_1 .

	Nr zadania	4.	5.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 6. (4 pkt)

Podstawa AB trójkąta równoramiennego ABC ma długość 8 oraz $| \not \prec BAC | = 30^{\circ}$. Oblicz długość środkowej AD tego trójkąta.

	Nr zadania	6.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 7. *(4 pkt)*

Oblicz miarę kąta między stycznymi do okręgu $x^2 + y^2 + 2x - 2y - 3 = 0$ poprowadzonymi przez punkt A = (2,0).

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (4 pkt)

Wśród wszystkich graniastosłupów prawidłowych sześciokątnych, w których suma długości wszystkich krawędzi jest równa 24, jest taki, który ma największe pole powierzchni bocznej. Oblicz długość krawędzi podstawy tego graniastosłupa.

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 9. *(4 pkt)*

Oblicz, ile jest liczb ośmiocyfrowych, w zapisie których nie występuje zero, natomiast występują dwie dwójki i występują trzy trójki.

Zadanie 10. *(3 pkt)*

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M, N są odpowiednio środkami boków AB i CD. Punkty P, Q są odpowiednio środkami przekątnych AC i BD. Uzasadnij, że $MQ \parallel PN$.

	Nr zadania	9.	10.
Wypełnia	Maks. liczba pkt	4	3
egzaminator	Uzyskana liczba pkt		

Zadanie 11. *(6 pkt)*

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD. W trójkącie równoramiennym ASC stosunek długości podstawy do długości ramienia jest równy |AC|:|AS|=6:5. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 12. *(3 pkt)*

A, B są zdarzeniami losowymi zawartymi w Ω . Wykaż, że jeżeli P(A) = 0.9 i P(B) = 0.7, to $P(A \cap B') \le 0.3$ (B'oznacza zdarzenie przeciwne do zdarzenia B).

Odpowiedź:

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS

PESEL										

MMA-R1_1P-112

WYPEŁNIA ZDAJĄCY

Miejsce na naklejkę z nr PESEL

WYPEŁNIA EGZAMINATOR

Nr	Punkty								
zad.	0	1	2	3	4	5	6		
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									

SUMA PUNKTÓW				
D	7 8 9			
0 1 2 3 4 5 6	7 8 9			

KOD EGZAMINATORA									
Czytelny podpis egzaminatora									
	KC	DD 2	ZDA	λJĄ(CEC	30			