Answer Key

- 1a. p: You play, w: You win, $\neg p \rightarrow \neg w$
- 1b. d: Your friends dance, f: Your friends are my friends, $\neg d \rightarrow \neg f$
- 1c. e: Timmy's age is over 8, t: Timmy's age is less than 13, m: Timmy gets Tween-priced movie tickets. $(e \wedge t) \to m$
- 1d. s: I get enough sleep, c: I drink coffee, w: I go to work. $(s \vee c) \to w$

	p	q	r	a. $(p \land q) \to r$	b. $p \to (q \lor r)$
2a. 2b.	Т	Τ	Τ	Т	T
	T	T	F	F	${ m T}$
	Τ	F	Τ	${ m T}$	${ m T}$
	Τ	F	F	${ m T}$	\mathbf{F}
	F	Τ	Τ	${ m T}$	${ m F}$
	\mathbf{F}	T	F	${ m T}$	F
	\mathbf{F}	\mathbf{F}	Τ	${ m T}$	F
	F	F	F	${ m T}$	${ m F}$

$$\begin{array}{c|ccccc} p & q & p \rightarrow q & \neg(p \rightarrow q) \\ \hline T & T & T & F \\ 2c. & T & F & F & T \\ F & T & T & F \\ F & F & T & F \end{array}$$

- 3a. $P(x) \to Q(X)$
- 3b. $P(x) \rightarrow \neg Q(x)$
- 3c. $\neg P(x) \rightarrow Q(x)$
- 3d. $\neg P(x) \rightarrow Q(x)$
- 4a. $i \wedge \neg j$: You go to New Delhi and you do NOT see the Jantar Mantar.
- 4b. $(j \land c) \land \neg b$: Jessica gets chocolate AND Jessica gets cake AND Jessica DOES NOT have a happy birthday.

- 4c. $p \wedge \neg (w \wedge s) \equiv p \wedge \neg w \vee \neg s$: You have a group project AND neither you do all the work, nor someone else does all the work.
- 5a. $\forall x \in D, \neg B(x) \to H(x)$
 - Converse: $\forall x \in D, H(x) \to \neg B(x)$ For all people x, if x is hungry, then x didn't eat breakfast
 - Inverse: $\forall x \in D, B(x) \to \neg H(x)$ For all people x, if x at breakfast then x is NOT hungry
 - Contrapositive: $\forall x \in D, \neg H(x) \to B(x)$ For all people x, if x is NOT hungry, then x at breakfast
- 5b. $\forall x \in D, (P(x) \vee G(x)) \to M(x)$
 - Converse: $\forall x \in D, M(x) \to (P(x) \vee G(x))$ For all people x, if x is a musician, then x plays piano or x plays guitar
 - Inverse: $\forall x \in D, \neg(P(x) \lor G(x)) \to \neg M(x)$ For all people x, if x does NOT play piano and does NOT play guitar, then x is NOT a musician
 - Contrapositive: $\forall x \in D, \neg M(x) \to \neg (P(x) \lor G(x))$ For all people x, if x is NOT a musician, then x doesn't play piano and x doesn't play guitar.
- 5c. $\forall x \in \mathbb{R} : P(x) \to Q(x)$
 - Converse: $\forall x \in D, Q(x) \to P(x)$ For all real numbers x, if $x^2 > 4$ then x > 2.
 - Inverse: $\forall x \in D, \neg P(x) \to \neg Q(x)$ For all real numbers x, if $x \leq 2$ then $x^2 \leq 4$
 - Contrapositive: $\forall x \in D, \neg Q(x) \to \neg P(x)$ For all real numbers x, if $x^2 \leq 4$ then $x \leq 2$
- 5d. $\forall x \in \mathbb{Z} : R(x) \to S(x)$
 - Converse: $\forall x \in D, S(x) \to R(x)$ For all integers x, if $x^3 = 1$ then $x^2 = 1$
 - Inverse: $\forall x \in D, \neg R(x) \to \neg S(x)$ For all integers x, if $x^2 \neq 1$ then $x^3 \neq 1$
 - Contrapositive: $\forall x \in D, \neg S(x) \to \neg R(x)$ For all integers x, if $x^3 \neq 1$ then $x^2 \neq 1$