CITY of BOSTON PERMITTING Deliverable 3

CS 506 - Team DDavid E. Kim (Team Lead)

Lukas Werk Richard Hao Efim Sokolov Jackson Fisk

Analyze approved and rejected permits, including those assessed under Article 80, to uncover insights linked to broader societal, political, and environmental concerns.

Boston Permitting Process

Application

Apply and pay underlying fees for the permit

Plan Review & Zoning

City examines the plan for compliance with the zoning laws

Current Progress

- Data cleaning & visualizations
- Preliminary Analysis
- Census data merging
- Geospatial visualizations
- Project base questions answered
- Basic Exploratory Analysis
- Extension project

Datasets

Approved Permits

Approved Building Permits

Article 80 Permits

Approved
Permits subject
to Article 80

Zoning Board of Appeal

ZBA decisions

Census Data

For additional analysis

DataExtension

COVID19

Project

Extension Project

Questions

- How did the **pandemic outbreak** affect the permitting process?
- What <u>factors can be predicted</u> by machine learning to influence permit approvals?

Datasets

- Dataset of Massachusetts **COVID-19 data** including dates and confirmed case counts.
- <u>Combined dataset</u> of approved and rejected permits.

Information

- <u>Mathematical methods</u> to discover trends in COVID-19 and permitting processes over time.
- Implement a <u>decision tree model</u> to illustrate the factors influencing permit approvals and rejections.
- Objective: Explore insights related to societal, political, and environmental factors.

STAN TOTAN POL
78° 78°
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
78° 78°
78° 78°
78° 78°
28° 28°
782 785
1.6° 1.6°
2,52 2,55
25 205 20
1
irmed Death

Q-Q Plots

OLS Regression Results									
Dep. Variable: normal	======= ized_project_c	======================================			 0.484				
Model:		OLS Ad	j. R-squared:		0.472				
Method:	Least Squ	ares F-	statistic:		40.27				
Date:	Wed, 06 Dec	2023 Pr	ob (F-statistic):	1.15e-07				
Time:	22:3	6:43 Lo	g-Likelihood:		23.554				
No. Observations:		45 AI	c:		-43.11				
Df Residuals:		43 BI	C:		-39.49				
Df Model:		1							
Covariance Type:	nonro	bust							
=======================================	coef	std er	 r t	P> t	[0.025	0.975]			
const	0.7832	0.02	6 29.695	0.000	0.730	0.836			
normalized_Confirmed deat	hs -0.6777	0.10	7 -6.346	0.000	-0.893	-0.462			
======================================	========= 33 . 031	 Durbin-Watson:		=======	===== 1 . 458				
Prob(Omnibus):	0.000	Jarque-Bera (JB):		10	108.580				
Skew:	-1.767	Prob(JB):		2.6	2.64e-24				
Kurtosis:	9.739	Cond. No			4.98				

Prediction Features

Words used in Rejected

Prediction Features

Prediction Features

Accuracy: 0.79	recision	recall	f1-score	support
False True	0.92 0.73	0.61 0.95	0.73 0.83	1598 1810
accuracy macro avg weighted avg	0.83 0.82	0.78 0.79	0.79 0.78 0.78	3408 3408 3408

Takeaways

- Assumption: Location, work type, valuation, and size are key influencers in permit decisions.
- Correlation between COVID cases/deaths and project counts
- Increase on Covid death leads a drop on permitted projects and increase in denied projects
- Type of family, development type and zoning information is important to predicting the decisions

Next Steps

Finish analysis for extension project and complete final report.

Individual Contribution

David Kim: Extension Project, Dataset Cleaning, Prediction Wordcloud, Analysis

Zhihuan Hao: Merging abp and zba with covid-19; Then did Covid-19 Correlation Analysis with line charts and correlation matrix and linear regression.

Lukas: Merged abp and zba data, performed nlp on text features and generated decision trees to find new features. Drafted the final report.

Efim: Presentation, COVID Correlation Analysis, Q-Q plots, Regression analysis

Jackson:

CITY of BOSTON

PERMITTING

CS 506 - Team **D**

David E. Kim (Team Lead) Lukas Werk Richard Hao Efim Sokolov Jackson Fisk

Boston Permitting Process

Datasets

Approved Permits

Approved Building Permits

Article 80 Permits

Approved
Permits subject
to Article 80

Zoning Board of Appeal

ZBA decisions

Census Data

For additional analysis

Approved Permits by Type and Valuation

Appeal Distributions by Neighborhood

Categories and Status Article 80

Appealed Permits Counts and Status

Income and Demographic Distributions

- 0.8

- 0.7

- 0.2

- 0.1

Development Distribution

Income Lorenz Curves and Gini Coefficients

Gini Coefficients

- Income-Population: 0.48 (US is 0.47)
- Income-Development for approved: -0.395
- Income-Development for rejected: -0.512

Demographic Lorenz Curves and Gini Coefficients

Gini Coefficients by census demographic group:

- Total: 0.303
- White alone: 0.181
- Black or African American alone: 0.446

- Asian alone: 0.335
- Hispanic or Latino: 0.409
- American Indian and Alaska Native alone: 0.409

Goal

Analyze both the approved and rejected permits, including those assessed under Article 80, to **uncover insights** linked to broader societal, political, and environmental concerns.

Meetings

Fridays 9 AM

Sundays 9:30 PM

Division of Labor

D.K. Project Lead and ZBA

R.H. Approved Permits

E.S. Census & Geospatial

J.F. Article 80 Permits

L.W. Data Prep. & Cleaning

Current Progress

- Initial data cleaning
- Initial visualizations
- Preliminary Analyses
- Census data merging
- Geospatial visualizations
- Project base questions answered
- Exploratory Analyses
- Extension project started

Takeaways

- Additional data and merging techniques are needed
- Assumptions such as the impact of COVID-19 will need to be backed up by additional analysis
- One or two more please

Next Steps

- Continue finding environmental and political patterns and selectively investigating further
- Improve our results by exploring different data subsets and cleaning optimizations
- Work toward <u>telling a story</u> with our data and shaping our <u>final report</u>
- Begin the initial stages of our <u>extension project</u>