Machine learning for vision and multimedia

(01URPOV)

Lab 02 - Hyper-parameter optimization Francesco Manigrasso

2025-2026

- (Experience guided) experimentation
 - See Evaluating learning algorithms

- (Experience guided) experimentation
 - See Evaluating learning algorithms
- Grid search

- (Experience guided) experimentation
 - See Evaluating learning algorithms
- Grid search

Pay attention when the best value falls on one of the extremes – the optimal value may not be covered!

- (Experience guided) experimentation
 - See Evaluating learning algorithms
- Grid search
- Random search

Hyperparameter 1

- (Experience guided) experimentation
 - See Evaluating learning algorithms
- Grid search
- Random search

For deep learning, random search often achieves comparable results

Hyperparameter 2

Hyperparameter 1

Grid search:

- Fixed budget
- Small # of parameters
- Global coverage

Random search:

- Flexible budget
- Large # of parameters
- Works well if a single parameter is important

Source: AutoML: Methods, Systems, Challenges, Chapter 1

Learning rate

"The learning rate is perhaps the most important hyperparameter. If you have time to tune only one hyperparameter, tune the learning rate."

Goodfellow, Bengio & Courville, Deep learning

- However, it is not possible to know in advance the optimal learning rate for a given problem
 - importance of experimenting on a proper validation set
- The learning rate depends:

◆ On the batch size: batch size ↑

◆ On the initialization: random initialization ↑

transfer learning ↓

On the optimizer

What does a good learning rate look like?

cite: Stanford cs231

9

Tips & tricks

- Change the learning rate by order of magnitude, first, and then fine-tune
 - ◆ 0.1, 0.01, 0.001 vs. 0.01, 0.02, 0.03, ...
- Use a smaller learning rate when using transfer learning
 - Typically rule of thumb divide by a factor 10
- Consider the use of different learning schedules
 - Learning rate warmup
 - Learning rate decay
 - Reduce learning rate on plateau
 - Cyclical learning rate

Reduce rate on plateau

- One of the most common "tricks"
- Implemented in

tf.keras.callbacks.ReduceLROnPlateau()

Learning rate finder

A principled approach to finding the optimal learning rate

Learning rate finder

 Example of application of the learning rate finder on a ResNet50 with Adam optimizer

Optimizers: SGD + Momentum

Plain SGD

$$w_{t+1} = w_t - \alpha \frac{\partial L}{\partial w_t}$$

Optimizers: SGD + Momentum

Plain SGD

$$w_{t+1} = w_t - \alpha \frac{\partial L}{\partial w_t}$$

SGD with momentum

$$w_{t+1} = w_t - \alpha v_t$$

$$v_t = \beta v_{t-1} + \frac{\partial L}{\partial w_t}$$

Momentum term

Analogy: pushing a ball down a hill

Usually $\beta \approx 0.9$

- ADAM belongs to the family of adaptive gradient methods (Adagrad, Adadelta), that differentiate the learning rate for each parameter
- At each time t, it computes the moving average of the first moment (mean) and second moment (variance) of the gradients, with momentum

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) v_t$$

- ADAM belongs to the family of adaptive gradient methods (Adagrad, Adadelta), that differentiate the learning rate for each parameter
- At each time t, it computes the moving average of the first moment (mean) and second moment (variance) of the gradients, with momentum

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) v_t$$

 Exponential weighting counteracts zeroinitialization

$$\widetilde{m}_t = m_t / (1 - \beta_1^t)$$

$$\widetilde{v}_t = v_t / (1 - \beta_2^t)$$

- ADAM belongs to the family of adaptive gradient methods (Adagrad, Adadelta), that differentiate the learning rate for each parameter
- Use the bias-corrected first and second moment estimates to update the weights

$$w_{t+1} = w_t - \frac{\alpha}{\sqrt{v_t} + \epsilon} m_t$$

- ADAM belongs to the family of adaptive gradient methods (Adagrad, Adadelta), that differentiate the learning rate for each parameter
- Use the bias-corrected first and second moment estimates to update the weights

$$w_{t+1} = w_t - \left(\frac{\alpha}{\sqrt{\tilde{v}_t} + \epsilon}\right) \widetilde{m}_t$$

Each parameter sees a different effective learning rate Usually $\beta_1 \approx 0.9$, $\beta_2 \approx 0.9999$

Optimizers: Comparison

Image credit: https://cs231n.github.io/neural-networks-3/

Optimizers: Comparison

Image credit: https://cs231n.github.io/neural-networks-3/

Adaptive vs. SGD

- Comparison of different optimizers on CIFAR-10
 - SGD vs. RMSProp, AdaGrad, Adam
 - \bullet Learning rate with decay: parameters α , decay rate
- Grid search
 - logarithmically-spaced grid of five learning rates
 - if the best performance was at one of the extreme, add grid points until the best performance is contained in the middle of two parameters

Adaptive vs. SGD

"We observe that the solutions found by adaptive methods generalize worse (often significantly worse) than SGD, even when these solutions have better training performance"

[Wilson, The Marginal Value of Adaptive Gradient Methods in Machine Learning, 2018]

In practice

- Data quality is often more important than hyperparameters selection
- Consider your computational budget
 - Good enough vs. perfect solution
 - A faster method (to tune and to train) may be preferable
 - SGD requires a lot of tuning to work
- Automate whenever possible, log always
- Beware that automatic hyperparameter optimization at scale is prone to overfitting to the validation set
 - Final performance should be determined on the test set

Diminuishing returns

References and tutorials

- F. Cholet, Deep Learning with Python, Manning Publications
- https://cs231n.github.io/neural-networks-3/
- https://www.pyimagesearch.com/2019/08/05/ker
 as-learning-rate-finder/
- https://ruder.io/optimizing-gradient-descent/
- https://www.deeplearningbook.org/contents/opti mization.html