1. Project Title

Fraud Detection in Credit Card Transactions Using Machine Learning

2. Objective

The aim of this project is to detect fraudulent transactions from a dataset of credit card activity using machine learning models. The system should accurately flag suspicious transactions, minimizing false positives while ensuring fraud cases are not missed.

3. Problem Statement

Fraudulent credit card transactions cause significant financial losses to institutions and customers. Manual detection is inefficient and error-prone due to high transaction volumes. Thus, an automated and intelligent system is required to detect fraud in real-time with high accuracy.

4. Requirements

\' Hardware Requirements

- System with 4 GB+ RAM
- Processor: Intel i5/i7 or equivalent
- Disk Space: Minimum 2 GB free

Software Requirements

- Python 3.8+
- Jupyter Notebook / VS Code / PyCharm
- Libraries:
 - pandas, numpy, matplotlib, seaborn
 - scikit-learn
 - imbalanced-learn (for SMOTE)
 - xgboost or lightgbm (optional, for better performance)

Fraud-Detection-in-Credit-Card-Transactions

5. Tools & Technologies Used

Category	Tools/Technologies
Programming	Python
Data Handling	Pandas, NumPy
Visualization	Matplotlib, Seaborn
ML Algorithms	Scikit-learn, XGBoost, Random Forest
Imbalance Handling	SMOTE (Synthetic Minority Oversampling)
IDE	Jupyter Notebook / VS Code
Version Control	Git (optional)

6. Dataset Information

• Source: Kaggle (Credit Card Fraud Detection Dataset)

• **Records**: 284,807 transactions

• Features:

• Time, Amount, 28 anonymized variables (V1 to V28)

• Class (0 = legitimate, 1 = fraud)

• **Imbalance**: Only ~492 frauds (~0.17% of data)

7. Project Workflow

Step 1: Data Exploration & Preprocessing

- Load data and inspect distribution
- Normalize Amount and Time
- Identify class imbalance

Step 2: Handling Imbalance

• Apply undersampling, oversampling, or SMOTE

Step 3: Feature Engineering

- Use PCA if needed (features are already PCA-transformed)
- Remove irrelevant data (if any)

Step 4: Model Building

- Train multiple models:
 - Logistic Regression
 - Random Forest
 - XGBoost
 - Isolation Forest (optional for anomaly detection)
- Use cross-validation

Step 5: Model Evaluation

- Evaluate using:
 - Confusion Matrix
 - Precision, Recall, F1-Score
 - ROC-AUC Curve
 - Precision-Recall Curve

Step 6: Model Deployment (Optional)

- Export model using joblib or pickle
- Create a simple Flask API for predictions

8. Evaluation Metrics

Metric	Why It's Important
Precision	To avoid false alarms (false positives)
Recall	To ensure actual frauds are detected
F1 Score	Balance between precision and recall
ROC-AUC	Model's discrimination ability

9. Results

- Best model: Random Forest / XGBoost (depending on tuning)
- Achieved high recall (~90%) and acceptable precision
- Demonstrated improvement using **SMOTE**

10. Conclusion

The project effectively demonstrates how machine learning can be applied to detect fraudulent credit card transactions. By addressing data imbalance and carefully selecting evaluation metrics, the model performs well in real-world-like conditions.

11. Future Enhancements

- Deploy model as an API service
- Use real-time streaming (e.g., Kafka + Spark)
- Apply deep learning methods (e.g., LSTM on sequences)
- Integrate with banking systems for live transaction monitoring