AY: 2023-2024 L3-S5: Dept. of Electrical Engineering

EXAM | Machine Learning Teacher: A. Mhamdi Jan. 2024 Time Limit: $\mathbf{1}_{D}^{1}$ h

This document contains 5 pages numbered from 1/5 to 5/5. As soon as it is handed over to you, make sure it is complete. The 3 tasks are independent and can be treated in the order that suits you.

The following rules apply:

Task Nº1

- **1 No document** is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- Mysterious or unsupported answers will not receive full credit.
- **O Round results** to the nearest thousandth (i.e., third digit after the decimal point).

You are given a dataset as in TAB. 1 that contains information about the number of hours studied (x) and the corresponding scores (y) obtained by a group of students. Your task is to apply the normal equation to find the parameters of a linear regression model.

Table 1: Number of hours studied and scores

Hours	2 3	4	5	6	7	8	9	10
Scores	2 3.5	5	7	12	15	16.5	17.5	18

(a) (2 points) Apply the normal equation to solve for the parameters in:

$$y = \theta_0 + \theta_1 x \tag{1}$$

$$\mathbf{X}^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{bmatrix}$$
 and
$$\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} 2 & 3.5 & 5 & 7 & 12 & 15 & 16.5 & 17.5 & 18 \end{bmatrix}$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \begin{bmatrix} 9 & 54 \\ 54 & 384 \end{bmatrix} \text{ and } \mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 96.5 \\ 716.0 \end{bmatrix}$$

Applying the normal equation yields:

$$\boldsymbol{\theta} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \quad \therefore \quad \left\{ \begin{array}{ll} \boldsymbol{\theta}_0 & = & -2.978 \\ & & & \\ \boldsymbol{\theta}_1 & = & 2.283 \end{array} \right.$$

(b) (2 points) Use the previous equation to predict the score for a student who studied for 6 hours. Calculate the mean squared error (MSE) between the predicted and actual scores.

Let's denote by \hat{y} the predicted score: $\hat{y} = 10.72$. The actual score y is 12.

$$MSE = 1.638 :: MSE = (\hat{y} - y)^2$$

Task Nº2

Consider the dataset in TAB. 2 of cars with four features: horsepower, acceleration, fuel efficiency (in miles per gallon), and weight (in kilograms). Each car belongs to one of four classes: sedan, sports car, suv, or truck. We want to classify a new car based on its standardized horsepower, acceleration, fuel efficiency and weight.

Table 2: Features of cars

Car	Horsepower	Acceleration	MPG	Weight	Class
1	200	8	25	1200	sedan
2	300	6	20	1500	sport car
3	150	9	30	1400	suv
4	250	7	15	2000	truck
5	180	8.5	22	1300	sedan
6	280	6.5	18	1600	sport car
7	160	9.5	28	1500	suv
8	240	7.5	16	1800	truck

(a) (2 points) Standardize the data in TAB. 2. (These are the standard deviation for each feature: Horsepower 52.2, Acceleration 1.15, MPG 5.17 and Weight 244.63)

At first, we compute the mean μ and the standard-deviation σ for each

feature.

Feature	Horsepower	$\underbrace{\frac{Acceleration}{a}}_{a}$	MPG mpg	Weight
μ	220.0	7.75	21.75	1537.5
σ	52.2	1.15	5.17	244.63

For each feature value, we subtract μ and divide it by σ .

$$hp = \begin{bmatrix} -0.383 & 1.533 & -1.341 & 0.575 & -0.766 & 1.149 & -1.149 & 0.383 \end{bmatrix}$$

$$a = \begin{bmatrix} 0.217 & -1.522 & 1.087 & -0.652 & 0.652 & -1.087 & 1.522 & -0.217 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} -1.38 & -0.153 & -0.562 & 1.891 & -0.971 & 0.255 & -0.153 & 1.073 \end{bmatrix}$$

(b) (4 points) Let's say we have a new car with the following specifications: horse-power of 220, acceleration of 7.2, fuel efficiency of 24 MPG, and weight of 1400 Kg. We want to classify this car using k-NN with k=3 and the Euclidean distance on the standardized data.

The standardized new input is:

The distance of the observation to each car is:

The k nearest neighbors with k = 3 are:

- Car #1 (Distance = 1.156)
- Car #5 (Distance = 1.477)

• Car #6 (Distance = 1.925)

Among the k nearest neighbors, "Sedan" appears twice, and "sport car" appears once. Therefore, based on the k-NN algorithm with Euclidean distance on standardized data, the new car with specifications of horse-power 220, acceleration 7.2, fuel efficiency 24 MPG, and weight 1400 kg is predicted to belong to the "Sedan" class.

Task Nº3

2 40mn | (10 points)

Use the K-means algorithm and $\underline{\text{Manhattan distance}}$ (p = 1) to cluster the following 6 points into 3 clusters.

Point	Α	В	С	D	E	F
x_1	3	8	4	2	7	5
x_2	3	5	4	3	7	0

(a) (6 points) Perform K-means clustering and show all the calculations performed at each iteration. (Initial centroids α , β and γ are set at A, C and F respectively.)

$1^{\rm ST}$ iteration

1 ITERATION						_
Datum point	Α	В	C	D	E	F
Feature x ₁	3	8	4	2	1	5
Feature x_2	3	5	4	3	7	0
Distance to α	0	7	2	1	8	5
Distance to β	2	5	0	3	6	5
Distance to γ	5	8	5	6	9	0
∈ Cluster	#1	#2	#2	#1	#2	#3

New centroids are:

$$\alpha \begin{pmatrix} 2.5 \\ 3 \end{pmatrix}; \beta \begin{pmatrix} 19/3 \\ 16/3 \end{pmatrix}; \gamma \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$2^{\mbox{\scriptsize ND}}$ iteration

Datum	Α	В	C	D	E	F
$\overline{x_1}$	3	8	4	2	7	5
x_2	3	5	4	3	7	0
d(_, α)	0.5	7.5	2.5	0.5	8.5	5.5
$d(_, \beta)$	17/3	6/3	12/3	20/3	7/3	20/3
$d(_\gamma)$	5	8	5	6	9	0
€	#1	#2	#1	#1	#2	#3

New centroids are:

$$\alpha \begin{pmatrix} 3 \\ 10/3 \end{pmatrix}; \beta \begin{pmatrix} 7.5 \\ 6 \end{pmatrix}; \gamma \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$3^{\rm RD}$ iteration

O ITEIN	11011					
Datum	Α	В	C	D	E	F
$\overline{\mathbf{x}_1}$	3	8	4	2	7	5
x_2	3	5	4	3	7	0
$d(\underline{\ }, \alpha)$	1/3	20/3	5/3	4 /3	23/3	16/3
$d(_, \beta)$	7.5	1.5	5.5	8.5	1.5	8.5
$d(_\gamma)$	5	8	5	6	9	0
€	#1	#2	#1	#1	#2	#3

$$\alpha \left(\begin{array}{c} 3 \\ 10/3 \end{array} \right); \ eta \left(\begin{array}{c} 7.5 \\ 6 \end{array} \right); \ \gamma \left(\begin{array}{c} 5 \\ 0 \end{array} \right)$$

(b) (4 points) Draw a 2-d space with all the 6 points. Show the clusters and the new centroids after each iteration.

