西安电子科技大学

	数	字电路实验		_ 课
程实验报告				
实验名称		、规模集成数字电路	洛设计	
机电工程	学院	2004031	班	
姓名 梁志恒	学号	20049200420	_	成绩
姓名 王煊	学号	20049200399		
姓名 周宏宇	学号	20049200400	_	
姓名 杨翰	学号	20049200030		
姓名 张睿恒	学号	20049200095		
姓名 卡米让・-	卡米力江	学号 20040	300001	
同作者				
实验日期2021	_ 年	11 月 21 日		
指导教师评语:				

指导教师: 董瑞军

_____年___月__日

- 一、实验目的
 - 1、熟悉大规模集成数字电路的设计方法
 - 2、熟悉数字电路的调试
- 二、实验内容

自动饮料售货机

- 1、项目功能
 - (1) 识别 0.5 1.0 元两种硬币
 - (2) 售出 3 种不同价格的饮料, 饮料价格分别为 1.5 2.0 2.5;
 - (3) 可以找零
 - (4) 购买者可以选择饮料购买
 - (5) 卖出饮料后自动复位
 - (6) 手动复位
- 2、设计要求分析

首先项目分为输入,判断与输出三个模块。输入分为商品内容选择,货币投入。判断模块为判断此时投入货币是否满足购买要求,以及是否找零。输出模块负责输出购买信号及找零信号。饮料共有三种,故设计四种状态分别为 choose00 choose01 choose10 choose11 分别代表初始,买 1.5 元饮料,买 2.0 元饮料,买 2.5 元饮料.系统内 7 种状态转化,分别为为 SO-6,分别为 sO 表示初态,s1 表示投入 5 角,s2 表示投入 1 元,s3 表示投入 1 元 5 角,s4 表示投入 2 元,s5 表示投入 2 元 5 角,s6 表示投入 3 元。例如选择 01 即 1.5 元的饮料。此时状态为 SO.输入端口输入 01 即投入五角持续三个 CP,第一个 CP 是 SO——S1 代表投入五角。第二个 CP S1——S2 代表此时已经投入一元,再经过一个 Cp S2——S3 表示投入 1.5 元此时输出为 10 即投出货物不找零,下一个 CP 时输入变为 00 状态回归 S0 并再 S0 保持。其他情况依次类推。当再初始状态 choose00 时投入硬币,则 warning 会置 1,现实意义为投币处放置挡板,硬币会被返回给用户。

3、代码实现

library ieee;

use ieee.std logic 1164.all;

entity zidong is

port(clk,reset :in std_logic;

choose :in std_logic_vector(1 downto 0);

```
state_inputs:in std_logic_vector(0 to 1);
           comb_outputs:out std_logic_vector(0 to 1);
           warning :out std_logic);
end zidong;
architecture be of zidong is
  type fsm_st is(s0,s1,s2,s3,s4,s5,s6);
  signal current_state,next_state:fsm_st;
begin
reg:process(reset,clk)
    begin
    if reset='1'then current state<=s0;
    elsif rising_edge(clk)then
            current_state<=next_state;
    end if;
  end process;
com:process(current state, state inputs, choose)
begin
  warning <= '0';
 if(choose="11") then
    warning <= '0';
   case current state is
    when s0=>comb_outputs<="00";
       if
             state_inputs="00" then next_state<=s0;
      elsif state inputs="01" then next state<=s1;
     elsif state_inputs="10" then next_state<=s2;
     end if;
     when s1=>comb_outputs<="00";
       if
             state_inputs="00" then next_state<=s1;
     elsif state_inputs="01" then next_state<=s2;
     elsif state inputs="10" then next state<=s3;
        end if;
     when s2=>comb_outputs<="00";
       if
             state_inputs="00" then next_state<=s2;
     elsif state inputs="01" then next state<=s3;
     elsif state_inputs="10" then next_state<=s4;
        end if;
     when s3=>comb_outputs<="00";
       if
             state_inputs="00" then next_state<=s3;
      elsif state_inputs="01" then next_state<=s4;
     elsif state_inputs="10" then next_state<=s5;
```

```
end if;
 when s4=>comb_outputs<="00";
   if
         state_inputs="00" then next_state<=s4;
  elsif state_inputs="01" then next_state<=s5;
  elsif state_inputs="10" then next_state<=s6;
       end if;
 when s5=>comb_outputs<="10";
   if
         state_inputs="00" then next_state<=s0;
  elsif state_inputs="01" then next_state<=s1;
  elsif state_inputs="10" then next_state<=s2;
    end if;
 when s6=>comb_outputs<="11";
   if
         state inputs="00" then next state<=s0;
  elsif state_inputs="01" then next_state<=s1;
  elsif state_inputs="10" then next_state<=s2;
  end if;
  end case;
elsif(choose="10") then
  warning<='0';
case current_state is
 when s0=>comb outputs<="00";
   if
         state_inputs="00" then next_state<=s0;
  elsif state_inputs="01" then next_state<=s1;
  elsif state_inputs="10" then next_state<=s2;
  end if;
 when s1=>comb_outputs<="00";
   if
         state_inputs="00" then next_state<=s1;
  elsif state_inputs="01" then next_state<=s2;
  elsif state_inputs="10" then next_state<=s3;
    end if;
 when s2=>comb outputs<="00";
   if
         state_inputs="00" then next_state<=s2;
  elsif state_inputs="01" then next_state<=s3;
  elsif state_inputs="10" then next_state<=s4;
    end if;
 when s3=>comb_outputs<="00";
   if
```

```
state_inputs="00" then next_state<=s3;
   elsif state_inputs="01" then next_state<=s4;
   elsif state_inputs="10" then next_state<=s5;
       end if;
  when s4=>comb outputs<="10";
    if
          state_inputs="00" then next_state<=s0;
   elsif state_inputs="01" then next_state<=s1;
   elsif state inputs="10" then next state<=s2;
        end if;
  when s5=>comb outputs<="11";
    if
          state_inputs="00" then next_state<=s0;
   elsif state_inputs="01" then next_state<=s1;
   elsif state_inputs="10" then next_state<=s2;
      end if;
  when s6=>comb_outputs<="11";
    if
          state_inputs="00" then next_state<=s1;
   elsif state_inputs="01" then next_state<=s2;
   elsif state_inputs="10" then next_state<=s3;
      end if;
   end case;
elsif(choose="01") then
   warning<='0';
 case current_state is
  when s0=>comb_outputs<="00";
    if
          state_inputs="00" then next_state<=s0;
   elsif state_inputs="01" then next_state<=s1;
   elsif state inputs="10" then next state<=s2;
   end if;
  when s1=>comb_outputs<="00";
    if
          state_inputs="00" then next_state<=s1;
   elsif state inputs="01" then next state<=s2;
   elsif state_inputs="10" then next_state<=s3;
      end if;
  when s2=>comb_outputs<="00";
    if
          state_inputs="00" then next_state<=s2;
   elsif state_inputs="01" then next_state<=s3;
   elsif state_inputs="10" then next_state<=s4;
```

```
end if;
    when s3=>comb_outputs<="10";
       if
             state_inputs="00" then next_state<=s0;
     elsif state_inputs="01" then next_state<=s1;
     elsif state_inputs="10" then next_state<=s2;
         end if;
    when s4=>comb_outputs<="11";
       if
             state_inputs="00" then next_state<=s0;
     elsif state_inputs="01" then next_state<=s1;
     elsif state_inputs="10" then next_state<=s2;
          end if;
     when s5=>comb_outputs<="11";
       if
             state_inputs="00" then next_state<=s1;
     elsif state_inputs="01" then next_state<=s2;
     elsif state_inputs="10" then next_state<=s3;
        end if;
    when s6=>comb_outputs<="11";
       if
             state_inputs="00" then next_state<=s2;
     elsif state_inputs="01" then next_state<=s3;
     elsif state_inputs="10" then next_state<=s4;
        end if;
     end case;
    else
       if
             state_inputs="00" then warning<='0';
                  next state<=s0;
     elsif state_inputs="01" then warning<='1';
                  next state<=s0;
     elsif state_inputs="10" then warning<='1';
                  next_state<=s0;
     end if;
    end if;
     end process;
     end be;
4. flow summary
```

Flow Status Successful - Sun Nov 21 09:01:25 2021 Quartus II Version 9.0 Build 235 06/17/2009 SP 2 SJ Web Edition Revision Name autosell Top-level Entity Name Family MAX7000S Device EFM7128SLC84-15 Timing Models Final Met timing requirements Yes Total macrocells 25 / 128 (20 %) Total pins 13 / 68 (19 %)

五、状态转移

六、波形仿真

图中 choose 表示选择的饮料 clk 为时钟信号 上 PUT 为输出结果,下 PUT 为投入钱数 基本功能测试

(1),

输入三个 01 即投入 1.5 元。选择 01 即 1.5 元饮料。输出 10,表示放出一瓶饮料并找回 0 元 (2)

输入两个 10 即投入 2 元。选择 01 即 1.5 元饮料。输出 10,表示放出一瓶饮料并找回 0.5 元 (3)

输入一个 10 一个 01 即投入 1.5 元。选择 01 即 1.5 元饮料。输出 10,表示放出一瓶饮料并 找回 0 元

功能联合测试

(4)

ı	Master T	ime Ba	ar: 2	0.0 ns		1	Poin	ter:		91.0	2 ns		Interv	al:		71.0	2 ns		Start			0 p	s		End:
Γ			.,	O ps			40.	0 ns			80.) ns			120.) ns			160.	ns			200). O ns	
			Name		20.	J ns																			
	₽ 0	Ξ	choose)]	$\!=$			[3]							[2]									[3]
-	□ 1		- choose[1]	<u> </u>																					
-	<u>→</u> 2		L choose[0]	<u> </u>	_			_	_		_			_	_	_	_	_	[_			
- 1-	■ 3		clk	H,	<u> </u>	닏	\sqcup		\sqcup	L,	!!	\sqcup		_	_		┵	_	_		\sqcup	\sqcup	Ц	ᆜ	Ц
-		▣	comb_outputs - comb_outputs	[(<u> </u>		[0]					[0	1		X [2]	4+							[0]	+
-	2 6		Comb_outputs							-						_	4							_	+
-	□ 7		reset	(XXXX	(XXX)					_	_									\top	=	1			
-	- 8		state_inputs	[2]	([0]	[2]	(0)	X [2]	[0]	([2])	[0]	[2]	(IOI)	[1] X	[0] X	[1] X	[0] X	[2] X	[0] X	[2]	(IOI	X [2]	X	-	
Ī	₽ 9		state_inputs	F								=								_					
	ii 10		L _{state_inputs}											\neg											
Г	⊚ 11		warning	_	1																				

当初始状态(出场状态)投币时,warning 置 1,表示投币处挡板下置,硬币会被返回给用户。切换至三档(2.5 元),投入 3 个 1 元硬币,后 comb_outputs 为 11,表示出一瓶饮料,且找回 5 角钱。再投 1 枚硬币后,切换至二档(2.0 元),再投入两枚 5 角硬币,comb_outputs 置 10,表示只出一瓶饮料。第二个方框处,reset 置 1,使售卖机内状态清 0。

七、成员分工及自评

姓名	学号	任务	评分
梁志恒	20049200420	程序编写及调试	100
王煊	20049200399	程序调试及汇报	79
周宏宇	20049200400	仿真波形设计及汇 报	79
张睿恒	20049200095	文档编写	79
杨翰	20049200030	程序纠错及修改	79
卡米让	20040300001	小组讨论提供选题 及讨论	64