Average Mechanical Properties of Typical Engineering Materials^a (SI Units)

Materials	Density ρ (Mg/m³)	Moduls of Elasticity E (GPa)	Modulus of Rigidity G (GPa)	Yield	d Strength (M σ_Y Comp. ^b	IPa) Shear	Ultin	nate Strength $\sigma_{ m u}$ Comp. $^{ m b}$	(MPa) Shear	%Elongation in 50 mm specimen	Poisson's Ratio ν	Coef. of Therm. Expansion α $(10^{-6})/^{\circ}C$
Metallic												
Aluminum —2014-T6	2.79	73.1	27	414	414	172	469	469	290	10	0.35	23
Wrought Alloys \(\subseteq 6061-T6	2.71	68.9	26	255	255	131	290	290	186	12	0.35	24
Cast Iron Gray ASTM 20	7.19	67.0	27	-	-	-	179	669	-	0.6	0.28	12
Alloys — Malleable ASTM A-197	7.28	172	68	-	-	-	276	572	-	5	0.28	12
Copper Red Brass C83400	8.74	101	37	70.0	70.0	_	241	241	_	35	0.35	18
Alloys Bronze C86100	8.83	103	38	345	345	_	655	655	_	20	0.34	17
Magnesium Alloy [Am 1004-T61]	1.83	44.7	18	152	152	-	276	276	152	1	0.30	26
Structural A-36	7.85	200	75	250	250	_	400	400	-	30	0.32	12
Steel — Structural A992	7.85	200	75	345	345	_	450	450	_	30	0.32	12
Alloys Stainless 304	7.86	193	75	207	207	_	517	517	_	40	0.27	17
L_Tool L2	8.16	200	75	703	703	_	800	800	-	22	0.32	12
Titanium Alloy [Ti-6Al-4V]	4.43	120	44	924	924	-	1,000	1,000	-	16	0.36	9.4
Nonmetallic												
Concrete Low Strength	2.38	22.1	-	_	-	12	_	-	-	_	0.15	11
High Strength	2.37	29.0	-	_	_	38	-	=	_	_	0.15	11
Plastic — Kevlar 49	1.45	131	-	-	-	-	717	483	20.3	2.8	0.34	-
Reinforced 30% Glass	1.45	72.4	-	-	-	-	90	131	-	_	0.34	-
Wood Douglas Fir	0.47	13.1	-	-	_	-	2.1c	26 ^d	6.2 ^d	-	0.29e	-
Select Structural White Spruce	3.60	9.65	-	-	-	-	2.5°	36 ^d	6.7 ^d	-	0.31e	-

^a Specific values may vary for a particular material due to alloy or mineral composition,mechanical working of the specimen,or heat treatment. For a more exact value reference books for the material should be consulted.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^c Measured perpendicular to the grain.

^d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.

Average Mechanical Properties of Typical Engineering Materials^a (U.S. Customary Units)

Materials	Specific Weight (lb/in³)		Modulus of Rigidity G (10³) ksi	Yie	ld Strength (σ_Y	ksi) Shear	Ultin	nate Strength $\sigma_{ m u}$ Comp. $^{ m b}$	ı (ksi) Shear	%Elongation in 2 in. specimen	Poisson's Ratio ν	Coef. of Therm. Expansion α (10 ⁻⁶)/°F
Metallic												
Aluminum —2014-T6 Wrought Alloys —6061-T6	0.101 0.098	10.6 10.0	3.9 3.7	60 37	60 37	25 19	68 42	68 42	42 27	10 12	0.35 0.35	12.8 13.1
Cast Iron — Gray ASTM 20 Alloys — Malleable ASTM A-19	0.260 0.263	10.0 25.0	3.9 9.8	-	- -	- -	26 40	96 83	- -	0.6 5	0.28 0.28	6.70 6.60
Copper Red Brass C83400 Alloys Bronze C86100	0.316 0.319	14.6 15.0	5.4 5.6	11.4 50	11.4 50	-	35 35	35 35	- -	35 20	0.35 0.34	9.80 9.60
Magnesium Alloy [Am 1004-T61]	0.066	6.48	2.5	22	22	-	40	40	22	1	0.30	14.3
Steel Alloys Structural A-36 Structural A992 Stainless 304 Tool L2	0.284 0.284 0.284 0.295	29.0 29.0 28.0 29.0	11.0 11.0 11.0 11.0	36 50 30 102	36 50 30 102	- - -	58 65 75 116	58 65 75 116	- - -	30 30 40 22	0.32 0.32 0.27 0.32	6.60 6.60 9.60 6.50
Titanium Alloy [Ti-6Al-4V]	0.160	17.4	6.4	134	134	-	145	145	-	16	0.36	5.20
Nonmetallic Concrete Low Strength High Strength	0.086 0.086	3.20 4.20	-	- -	-	1.8 5.5	- -	- -	- -	- -	0.15 0.15	6.0 6.0
Plastic Kevlar 49 Reinforced 30% Glass	0.0524 0.0524	19.0 10.5	-	- -	- -	- -	104 13	70 19	10.2	2.8	0.34 0.34	-
Wood Select Structural Grade — White Spruce	0.017 0.130	1.90 1.40	- -	-	- -	- -	0.30° 0.36°	3.78 ^d 5.18 ^d	0.90 ^d 0.97 ^d	- -	0.29 ^e 0.31 ^e	

^a Specific values may vary for a particular material due to alloy or mineral composition,mechanical working of the specimen,or heat treatment. For a more exact value reference books for the material should be consulted.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^c Measured perpendicular to the grain.

^d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.