Granice za Remzijeve brojeve i primene

Mihailo Milenković, Dejan Gjer, Bojana Čakarević8.2.2020

Sadržaj

1	Uvod	3
2	Gornja ograničenja za Remzijeve brojeve	6
3	Donja ograničenja za Remzijeve brojeve	8
4	Primene Remziieve teoreme	13

Predgovor

U ovom radu ćemo navesti i dokazati neke od teorema u vezi granica za Remzijeve brojeve, kao i primene Remzijevih brojeva u raznim oblastima. U prvom poglavlju ćemo navesti neke od važnijih teorema Remzijeve teorije, koje služe kao osnova za teoreme koje su dokazane u ovom radu. U drugom poglavlju ćemo dokazati neke teoreme u vezi gornjih ograničenja za Remzijeve brojeve. U trećem poglavlju ćemo dokazati neke teoreme u vezi donjih ograničenja za Remzijeve brojeve. Na kraju, u četvrtom poglavlju ćemo videti neke od primena Remzijeve teoreme i njenih uopštenja u rešavanju raznih problema.

1 Uvod

Remzijeva teorija je oblast matematike koja se bavi ulsovima pod kojim se red mora pojaviti. Najjednostavnija teorema ovog tipa jeste Dirihleov princip:

Definicija 1.1. Za prirodan broj n > 0 definišemo

$$\underline{n} := \{1, 2, \dots, n\}.$$

Neka je dat skup X i neka je $r \in \mathbb{N} \setminus \{0\}$.

Bojenje skupa X sa r boja je funkcija $\chi:X\to r$ Podskup $Y\subseteq X$ nazivano monohromatskim (u odnosu na χ), ako je

$$\forall y_1, y_2 : \chi(y_1) = \chi(y_2)$$

Teorema 1.1 (Dirihleov Princip). Neka je A konačan skup i neka je 0 < r < |A|. Ako svaki element skupa A obojimo sa jednom od datih r boja, onda su najmanje dva elementa objena istom bojom.

Dirihleov princip se može dodatno uopštiti u sledeće tvrđenje:

Teorema 1.2 (Uopšteni Dirihleov princip). Neka su dati $n, r \in \mathbb{N}$, kao i $l_1, \ldots, l_r \in \mathbb{N} \setminus \{0\}$, gde je

$$l_1 + \ldots + l_r \le n + r - 1.$$

Tada za svako bojenje $\chi: \underline{n} \to \underline{r}$ postoje $i \in \underline{r}$,takvo da važi $|\chi^{-1}(i)| \geq l_i$

Dirihleov princip i uopšteni Dirihleov princip služe kao osnova za sve teoreme Remzijevog tipa.

Osnovna teorema Remzijeve teorije je Remzijeva teorema za grafove:

Definicija 1.2. Za skup X i prirodan broj k > 0 definišemo

$$[X]^k := \{Y \subseteq X | |Y| = k\}.$$

Pišemo

$$n \to (l_1, \ldots, l_r)$$

ako za svako bojenje $\chi: [\underline{n}]^2$ postoje $i\in\underline{r}$ i $T\subseteq\underline{n}$ sa $|T|=l_i$, takvi da je $[T]^2$ u odnosu na χ *i*-monohromatsko.

Teorema 1.3. Ako je $n \to (l_1 - 1, l_2)$ i $m \to (l_1, l_2 - 1)$, tada važi da je i $n + m \to (l_1, l_2)$.

Dokaz. Posmatrajmo graf G sa n+m čvorova, gde će nam jedna boja predstavljati povezane grane, a druga nepovezane i u njemu uočimo proizvoljan čvor u. Dokažimo da je on ili povezan sa n čvorova ili nije povezan sa m čvorova. Ovo direktno sledi iz uopštenog Dirihleovog principa jer je $n+m \leq (n+m-1)+2-1$. Ako je čvor u povezan sa n čvorova tada, kako je $n \to (l_1-1,l_2)$ tih n čvorova grade ili \overline{K}_{l_2} ili K_{l_1-1} . U prvom slučaju je kraj dokaza, dok u drugom primetimo da kada dodamo čvor u na K_{l_1-1} dobijamo K_{l_1} . Analogno u slučaju kada čvor u nije povezan sa m čvorova imamo ili K_{l_1} ili \overline{K}_{l_2-1} , gde takođe dodavanjem u na \overline{K}_{l_2-1} dobijamo \overline{K}_{l_2} .

Teorema 1.4 (Remzijeva Teorema za obojene grafove). Neka $l_1, \ldots, l_r \in \mathbb{N}$. Tada postoji n, za koje važi

$$n \to (l_1, \ldots, l_r)$$

Definicija 1.3. Najmanji broj n za koji važi

$$n \rightarrow (l_1, l_2)$$

naziva se Remzijev broj i označavamo ga sa $R(l_1, l_2)$.

Definicija 1.4. Najmanji broj n za koji važi

$$n \to (l_1, \ldots, l_r)$$

naziva se Remzijev broj za obojene grafove i označavamo ga sa $R(l_1,\ldots,l_r)$.

Remzijeva teorema se može proširiti na hipergrafove, kao i na beskonačne grafove.

Definicija 1.5. Za $n \in \mathbb{N}, r, k \in \mathbb{N} \setminus \{0\}$ i $l_1, \ldots, l_r \in \mathbb{N}$ pišemo

$$n \to (l_1, \ldots, r)^k$$
,

ako za svako bojenje $\chi:[\underline{n}]^k\to\underline{r},$ postoji $i\in\underline{r}$ i l_i -elementni skup $T\subseteq\underline{n},$ tako da je $[T]^k\subseteq\chi^{-1}(i)$

Teorema 1.5 (Remzijeva Teorema za obojene hipergrafove). Neka $l_1, \ldots, l_r, k \in \mathbb{N}$. Tada postoji n, za koje važi

$$n \to (l_1, \dots, l_r)^k$$

Definicija 1.6. Sa $R_k(l_1,\ldots,l_r)$ označavamo najmanji broj n za koji važi

$$n \to (l_1, \ldots, l_r)^k$$
,

Teorema 1.6 (Remzijeva Teorema za beskonačne grafove). Neka $k,r\in\mathbb{N}\backslash 0$. Tada za svako bojenje $\chi:[\mathbb{N}]^k\to\underline{r}$ postoje beskonačni skup $M\subseteq\mathbb{N}$ i $i\in\underline{r}$, takvi da

$$[M]^k \subseteq \chi^{-1}(i)$$

Tačne vrednosti Remzijevih brojeva je izuzetno teško izračunati. Poznato je $R(l_1,1)=(1,l_2)=1$ i $R(l_1,2)=(2,l_2)=l$, ali za $l_1,l_2\geq 2$ je poznato samo 9 tačnih vrednosti Remzijevih brojeva. Poznata su razna ograničenja koja važe u opštem slučaju, dok su bolja ograničenja poznata samo za neke od vrednosti $l_1\leq 10, l_2\leq 15$.

	1	3	4	5	6	7	8	9	10	11	12	13	14	15
k														
3		6	9	14	18	23	28	36	40	47	52	59	66	73
٦	' I	0	9	14	10	23	20	30	42	50	59	68	77	87
4			18	25	36	49	58	73	92	98	128	133	141	153
-	4		10	25	41	61	84	115	149	191	238	291	349	417
5				43	58	80	101	126	144	171	191	213	239	265
5				49	87	143	216	316	442	633	848	1138	1461	1878
6					102	113	132	169	179	253	263	317		401
0	U				165	298	495	780	1171	1804	2566	3703	5033	6911
7						205	217	241	289	405	417	511		
'						540	1031	1713	2826	4553	6954	10578	15263	22112
8							282	317				817		861
0							1870	3583	6090	10630	16944	27485	41525	63609
9								565	581					
9								6588	12677	22325	38832	64864		
10									798					1265
10									23556	45881	81123			

Slika 1: Poznate vrednosti i ograničenja Remzijevih brojeva

Iako je poznat samo mali broj tačnih vrednosti Remzijevih brojeva, postoje mnoge teoreme u vezi ograničenja za Remzijeve brojeve. Neke od njih ćemo dokazati u sledećim poglavljima.

2 Gornja ograničenja za Remzijeve brojeve

U sledećem delu rada obuhvatićemo četiri teoreme koje govore o gornjim ograničenjima Remzijevih brojeva pri bojenju grafova sa dve ili više boja. Neke od ovih dokaza, kao i mnoge druge u vezi gornjih granica Remzijevih brojeva možete naći u radovima [2], [3] i [4].

Teorema 2.1. Za svako $l_1, l_2 \geq 2$ važi

$$R(l_1, l_2) \le R(l_1 - 1, l_2) + R(l_1, l_2 - 1)$$

Dokaz. Iz definicije Remzijevih brojeva znamo da je $R(l_1-1,l_2) \to (l_1-1,l_2)$ i $R(l_1,l_2-1) \to (l_1,l_2-1)$, pa na osnovu Teoreme 1.3 dobijamo da je

$$R(l_1 - 1, l_2) + R(l_1, l_2 - 1) \rightarrow (l_1, l_2),$$

iz čega po definiciji $R(l_1, l_2)$ sledi nejednakost.

Teorema 2.2. Ako su $R(l_1-1,l_2)$ i $R(l_1,l_2-1)$ parni brojevi, za $l_1,l_2 \geq 2$ važi stroga nejednakost, odnosno:

$$R(l_1, l_2) < R(l_1 - 1, l_2) + R(l_1, l_2 - 1)$$

Dokaz. Iz Teoreme 2.1 već znamo da je $R(l_1,l_2) \leq R(l_1-1,l_2) + R(l_1,l_2-1),$ pa treba još dokazati da $R(l_1,l_2) \neq R(l_1-1,l_2) + R(l_1,l_2-1).$ Pretpotstavimo suprotno da je $R(l_1,l_2) = R(l_1-1,l_2) + R(l_1,l_2-1)$ i neka je $r_1 = R(l_1-1,l_2)$ i $r_2 = R(l_1,l_2-1).$ Tada mora da postoji graf G sa r_1+r_2-1 čvorova koji ne sadrži ni K_{l_1} ni \overline{K}_{l_2} (u suprotnom bi važilo da je $R(l_1,l_2) < R(l_1-1,l_2) + R(l_1,l_2-1) \Longrightarrow$ kontradikcija). Uočimo proizvoljan čvor vu grafu G. Na osnovu dokaza Teoreme 1.3 lako je zaključiti da mora važiti

$$\delta(v) < r_1 - 1 \tag{1}$$

$$r_1 + r_2 - 2 - \delta(v) \le r_2 - 1 \tag{2}$$

jer bi u suprotnom pronašli ili K_{l_1} ili \overline{K}_{l_2} . Odavde dobijamo da je $\delta(v) = r_1 - 1$. Pošto je izbor čvora v bio proizvoljan onda stepen svakog čvora u grafu mora biti takođe $r_1 - 1$. Ipak pošto $2 \nmid r_1 - 1$ i $2 \nmid r_1 + r_2 - 1$ dobijamo

$$2 \nmid \sum_{v \in V(G)} \delta(v) = (r_1 + r_2 - 1)(r_1 - 1),$$

što je u suprotnosti sa prvom teoremom teorije grafova (da je zbir svih stepena čvorova svakog grafa paran broj). Dakle takav graf ne postoji pa je pretpostavka bilo netačna, iz čega sledi tvrđenje.

Teorema 2.3. Za sve $l_1, l_2 \geq 2$ važi

$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Dokaz. Kod ovog dokaza koristićemo matematičku indukciju.

 \bullet Baza indukcije Naša baza biće da dokažemo da nejednakost važi za $l_1=l_2=2,$ odnosno

$$R(2,2) \le \binom{2+2-2}{2-1}$$
$$\binom{2 \le 2}{1}$$
$$2 \le 2$$

- Indukcijska hipoteza Pretpostavimo sada da tvrđenje važi za sve brojeve x i y, gde $x \leq l_1$, $y \leq l_2$ i bar jedna nejednakost je stroga.
- Indukcijski korak Iz Teoreme 2.1 znamo da je

$$R(l_1, l_2) \le R(l_1 - 1, l_2) + R(l_1, l_2 - 1)$$

$$R(l_1, l_2) \le {l_1 - 1 + l_2 - 2 \choose l_1 - 1 - 1} + {l_1 + l_2 - 1 - 2 \choose l_1 - 1}$$

$$R(l_1, l_2) \le {l_1 + l_2 - 3 \choose l_1 - 2} + {l_1 + l_2 - 3 \choose l_1 - 1}$$

$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Gde poslednja nejednakost sledi primenom poznatog Paskalovog identiteta $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}.$

Teorema 2.4. Za $k \ge 2$ važi

$$R(l_1, l_2, ..., l_k) \le 2 + \sum_{i=1}^{k} (R(l_1, l_2, ..., l_{i-1}, l_i - 1, l_{i+1}, ..., l_k) - 1)$$

Neka su $l_1, l_2, l_3, ..., l_k \in \mathbb{N}$. Tada postoji neki Remzijev broj, neko n, za koje važi $n \to (l_1, l_2, l_3, ..., l_k)$ odnosno da postoji kompletan graf G obojen sa k boja, pri čemu je l_i grana obojena istom bojom za neko $1 \le i \le k$. Najmanje n za koje ovo važi označićemo kao $R(l)_k$.

Dokaz. Ova teorema dokazuje se slično kao teorema 2.1. samo što sada imamo kboja. Neka je

$$r_1 = R(l_1 - 1, l_2, \dots, l_k)$$

$$r_2 = R(l_1, l_2 - 1, \dots, l_k)$$

$$\vdots$$

$$r_k = R(l_1, l_2, \dots, l_k - 1)$$

Odredimo n za koje sigurno važi da je

$$n \to (l_1, l_2, \dots, l_k)$$

Posmatrajmo proizvoljan graf G sa n čvorova u kojem su grane obojene u k boja. U njemu uočimo proizvoljan čvor u. Tada u ima n-1 suseda sa kojima je povezan granama različitih boja. Odredimo koje vrednosti n zadovoljavaju osobinu da među n-1 suseda čvora u sigurno možemo pronaći r_1 čvorova povezanih sa u u prvoj boji ili r_2 čvorova povezanih sa u u drugoj boji ili ... ili r_k čvorova povezanih sa u u k-toj boji. Na osnovu uopštenog Dirihleovog principa dobijamo da n zadovoljava nejednakost

$$r_1 + r_2 + \dots r_k \le (n-1) + k - 1$$
 (3)

Ako je ispunjen ovaj uslov sigurno možemo pronaći bar jednu boju i tako da je čvor u povezan sa bar r_i suseda u toj boji. Obeležimo podgraf indukovan sa tih r_i čvorova sa H. Ako se u njemu nalazi j-monohromatski K_{l_j} , gde $j \neq i$ onda se on nalazi i u G. U suprotnom mora se pojaviti K_{l_i-1} koji dodavanjem čvora u u grafu G postaje K_{l_i} . Na osnovu ovoga zaključujemo da je $n \to (l_1, l_2, \ldots, l_k)$, a samim tim

$$R(l_1, l_2, \dots, l_k) \le n,$$

gde je najmanje n koje zadovoljava uslove nejednakosti (1)

$$n = 2 - k + r_1 + r_2 + \dots + r_k = 2 + \sum_{i=1}^{k} (r_i - 1)$$

iz čega sledi tražena nejednakost.

3 Donja ograničenja za Remzijeve brojeve

U ovom poglavlju ćemo dokazati neke od bitnijih dokaza u vezi donjih ograničenja Remzijevih brojeva. Prve dve teoreme dokazuju se preko verovatnoće, dok se ostale dokazuju konstrukcijom pogodnih grafova. Dokaz teoreme 3.1 možete naći u radu [1], a ove dokaze, kao i mnoge druge u vezi donjih ograničenja Remzijevih brojeva možete naći u radovima [2] i [3].

Teorema 3.1. Neka su dati prirodni brojevi n i k, takvi da $n \ge k > 0$. Ako je

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1,$$

onda važi R(k,k) > n.

Dokaz. Posmatrajmo proizvoljno bojenje grana grafa K_n u dve boje - crvenu i plavu takvo da je verovatnoća da je grana uv u grafu obojena crvenom bojom jednaka verovatnoći da je obojena plavom bojom i iznosi

$$P(uv \text{ je crvena}) = P(uv \text{ je plava}) = \frac{1}{2}.$$

Prvo ćemo odrediti verovatnoću da je neki k-podskup K_k početnog grafa monohromatski. Sa M_s označimo događaj da je K_k monohromatski. Kako nam od svih mogućih bojenja ovog k-podskupa odgovaraju samo dva gde su sve grane isključivo crvene ili plave dobijamo da je

$$P(M_s) = 2\left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1-\binom{k}{2}}.$$

Odredimo sada verovatnoću da se u celom K_n grafu nalazi monohromatski K_k podskup i označimo taj događaj sa A. U celom grafu ima $\binom{n}{k}$ ovakvih podskupova koje ćemo označiti sa S. Ipak pošto događaj da je neki K_k monohromatski nije nezavisan u odnosu na to da su ostali podskupovi S monhromatski dobijamo

$$P(A) = P(\bigcup_{|S|=k} M_S) \le \sum_{|S|=k} P(M_S) = \binom{n}{k} 2^{1-\binom{k}{2}}.$$

Iz ovoga sledi da ako je $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ onda važi i P(A) < 1, čime dobijamo da pri ovakvim bojenjima grafa K_n postojanje monohromatskog K_k nije garantovano, tj. postoji bojenje koje ga ne sadrži i odatle da je R(k,k) > n.

Naredne dve posledice koje se izvode preko prethodno dokazane teoreme pokazuju nam da kvadratni Remzijevi brojevi rastu eksponencijalno. Nije teško uveriti se da to važi i za sve Remzijeve brojeve, pa ovo objašnjava njihov brz rast i zašto je poznat samo mali broj Remzijevih brojeva.

Posledica 3.1.1. Za svako $k \geq 3$ važi

$$R(k,k) > 2^{\frac{k}{2}}.$$

Dokaz. Ako je $n \geq 2^{\frac{k}{2}}$, gde je n takvo da $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$, dobijamo

$$R(k,k)>n\geq 2^{\frac{k}{2}}.$$

U suprotnom kada je $n < 2^{\frac{k}{2}}$ na osnovu dokaza Teoreme 4.1 imamo:

$$P(\bigcup_{|S|=k} M_S) \le \binom{n}{k} 2^{1-\binom{k}{2}} \le \frac{n^k}{k!} 2^{1-\binom{k}{2}} < \frac{(2^{\frac{k}{2}})^k 2^{1-\frac{k(k-1)}{2}}}{k!} = \frac{2^{\frac{k+2}{2}}}{k!}.$$

Sada još treba dokazati da za svako $k \geq 3$ važi $\frac{2^{\frac{k+2}{2}}}{k!} < 1$, tj. $2^{\frac{k+2}{2}} < k!$ i ovo možemo dokazati pomoću matematičke indukcije.

• Baza indukcije Za k = 3 dobijamo

$$2^{\frac{5}{2}} = 5,66 < 6 = 3!$$

- Indukcijska hipoteza Pretpotstavimo da za neko $k \in \mathbb{N}$ važi $2^{\frac{k+2}{2}} < k!$.
- Indukcijski korak

$$2^{\frac{k+3}{2}} = 2^{\frac{k+2}{2}}\sqrt{2} < k!\sqrt{2} < (k+1)k! = (k+1)!$$

Odakle sledi tvrđenje.

Posledica 3.1.2. Za svako $k \in \mathbb{N}$ važi

$$R(k,k) > \frac{1}{e\sqrt{2}}k\sqrt{2^k}$$

Dokaz. Neka je N najmanje n za koje važi $\binom{n}{k} 2^{1-\binom{k}{2}} \geq 1$. Tada je

$$R(k,k) \ge N = (N^k)^{\frac{1}{k}} > \left(\frac{N!}{k!(N-k)!}k!\right)^{\frac{1}{k}} = \left(\binom{N}{k}k!\right)^{\frac{1}{k}}$$
$$R(k,k) > \left(2^{\binom{k}{2}-1}k!\right)^{\frac{1}{k}} = 2^{\frac{k}{2}-\frac{1}{k}-\frac{1}{2}}(k!)^{\frac{1}{k}}$$

Sada ćemo iskoristiti Stirlingovu aproksimaciju za faktorijal $k! \sim \left(\frac{k}{e}\right)^k \sqrt{2\pi k}$, kada $k \longrightarrow +\infty$ i činjenicu da je $k! \geq \left(\frac{k}{e}\right)^k \sqrt{2\pi k}$ za svako $k \in \mathbb{N}$. Odatle dobijamo

$$R(k,k) > \frac{k2^{\frac{k}{2}}}{e\sqrt{2}} \left(\left(\frac{\pi}{2}\right)^{\frac{1}{2k}} k^{\frac{1}{2k}} \right)$$

Kako uvek važi $\left(\frac{\pi}{2}\right)^{\frac{1}{2k}}k^{\frac{1}{2k}}>1$ kada uvrstimo to u nejednakost dobijamo

$$R(k,k) > \frac{k2^{\frac{k}{2}}}{e\sqrt{2}}$$

što je i trebalo dokazati.

Sada ćemo dati uopštenje teoreme 3.1 na sve Remzijeve brojeve, ne samo kvadratne.

Teorema 3.2. Neka su dati prirodni brojevi $n,\ k$ i l,takvi da $n\geq k>0$ i $n\geq l>0.$ Ako za neki broj $p,\ 0\leq p\leq 1$ važi

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}} < 1$$

onda je R(k,l) > n

Dokaz. Dokaz ove teoreme je sličan dokazu prethodne Teoreme 3.1. Neka je verovatnoća da je proizvoljna grana uv u grafu K_n crvena jednaka p. Tada je verovatnoća da je ona plava jednaka 1-p, pa možemo pisati

$$P(uv \text{ je crvena}) = p, P(uv \text{ je plava}) = 1 - p, \forall uv \in E(K_n)$$

Neka je S potpun k-elementan poskup, a T potpun l-elementan poskup grafa K_n . Označimo sa A_S događaj da je neki podskup S monohromatski crven, a B_T događaj da je poskup T monohromatski plav. Onda je ukupna verovatnoća da u grafu K_n postoji monohromatski obojen K_k u crveno ili K_l u plavo jednaka

$$P\left(\bigcup_{|S|=k} A_S \cup \bigcup_{|T|=l} B_T\right) \le \sum_{|S|=k} P(A_S) + \sum_{|T|=l} P(B_T) \le \binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}}$$

Ako postoji p za koji je krajnji izraz manji od 1, onda zaključujemo da postoji K_n koji sadrži potpuno crveni K_k ili potpuno plavi K_l , pa mora biti R(k,l) > n.

Slede dve teoreme koje predstavljaju vezu između više Remzijevih brojeva. Njihove dokaze moćete pogledati i u [7].

Teorema 3.3. Neka su dati prirodni brojevi n, m i k tako da je $1 \le k \le n-2$. Tada je

$$R(m,n) > R(m,n-k) + R(m,k+1) - 1.$$

Dokaz. Neka je $r_1 = R(m, n-k)$ i $r_2 = R(m, k+1)$ i bez umanjenja opštosti prva boja crvena, a druga plava. Posmatrajmo grafove $G_1 = K_{r_1-1}$ i $G_2 = K_{r_2-1}$, takve da su im sve grane obojene u crvenu ili plavu boju i da G_1 ne sadrži nijedan crveni K_m i nijedan plavi K_{n-k} , a G_2 ne sadrži nijedan crveni K_m ni plavi K_{k+1} podgraf. Primetimo da na osnovu definicije Remzijevih brojeva ovakvi grafovi siguro postoje. Neka je $G = G_1 \nabla G_2$, tako da svaku granu uv, gde $u \in V(G_1)$ i $v \in V(G_2)$ obojimo u plavo. Sada vidimo da je $G = K_{r_1+r_2-2}$ i kako su sve dodate grane između grafova G_1 i G_2 plave, jasno je da G_1 ne sadrži crveni G_2 0 obojimo u plavo. Sada vidimo da je G_3 1 obojimo u plavo. Sada vidimo da je G_3 2 plave, jasno je da G_3 3 ne sadrži crveni G_3 4. Sa druge strane najveći monohromatski plavi kompletan podgraf nema više od G_3 5 odavde sledi G_3 6 ne sadrži ni plavi G_3 7. Odavde sledi G_3 8 odavde sledi G_3 9 odavde sle

Ova posledica nam daje vezu dva uzastopna Remzijeva broja.

Posledica 3.3.1. Neka su dati prirodni brojevi m i $n \geq 3$. Tada je

$$R(m,n) \ge R(m,n-1) + m - 1.$$

Dokaz. Direktnom zamenom k=1 u prethodnoj teoremi dobijamo izraz. \square

Granicu za uzastopne Remzijeve brojeve koju smo sad dobili možemo još malo poboljšati narednom teoremom. Ipak primetimo da nam ona daje linearnu, a ne eksponencijalnu vezu kako smo prethodno dobili u posledicama 3.1.1 i 3.1.2, pa se u klasičnoj Remzijevoj teorijie retko koristi ova teorema, ali nalaze svoju primenu za granice kod generalizovanih Remzijevih brojeva (ako su G i H grafovi, R(G,H) definišemo kao R(m,n), ali tako da su G i H na mestu K_m i K_n)

Teorema 3.4. Neka su dati prirodni brojevi $m, n \ge 2$. Tada važi

$$R(m,n) \ge R(m,n-1) + 2m - 3.$$

Dokaz. Neka je r=R(m,n-1) i $G_1=K_{r-1}$ takav da ne sadrži crveni K_m i plavi K_{n-1} . Dokažimo da G_1 sigurno sadrži K_{m-1} . Pretpotstavimo suprotno. Tada u G_1 možemo dodati čvor u i povezati ga sa svima ostalima crvenom bojom. Neka je k takvo da je K_k najveći monohromatski crven podgraf grafa G_1 . Tada ako mu dodamo čvor u on postaje K_{k+1} . Ako je k < m-1 tj. k+1 < m onda graf nastao dodavanjem čvora u na ovaj način ima r čvorova i ne sadrži ni crveni K_m ni plavi K_{n-1} , što je kontradikcija sa izborom r.

U daljem delu dokaza koristićemo samo činjenicu da onda postoji i crven K_{m-2} . Obeležimo njegove čvorove sa $u_1, u_2, \ldots, u_{m-2}$. Obeležimo sada sa G_2 graf koji nastaje dodavanjem još m-2 čvorova $v_1, v_2, \ldots, v_{m-2}$, tako da G_2 bude K_{r+m-3} i gde su nove dodate grane incidentne sa v čvorovima obojene na sledeći način. Za svako i povezaćemo u_i i v_i plavom granom, a za svako $i \neq j$ u_i i v_j povežemo crveno, i v_i sa v_j takođe crveno. Za svako $x \in V(G_1)$ i $x \notin \{u_1, u_2, \ldots, u_{m-2}\}$ povežimo v_i i x istom bojom kao i što je grana xu_i . Na osnovu ovog bojenja jasno je da se neko v_i može nalaziti u nekom crvenom monohromatskom kompletnom podgrafu G_2 akko se na njegovom mestu u G_1 nalazio u_i . Pošto je u_iv_i plavo oni se zajedno ne mogu nalaziti u njemu pa G_2 ne sadrži crveni K_m . Sa druge strane se K_{n-1} može pojaviti. Jasno je da on mora sadržati bar jedan od čvorova iz $\{v_1, v_2, \ldots, v_{m-2}\}$, ali pošto su svaka dva čvora iz tog skupa povezana crveno, dobijamo da svaki K_{n-1} mora sadržati tačno jedan čvor v_i i njegov parnjak u_i .

Konstruišimo sada graf G_3 dodavanjem još m-1 čvorova $w_1, w_2, \ldots, w_{m-1}$ u graf G_2 koji su povezani na sledeći način. Za svako $i \neq j$ $w_i w_j$ je crveno, $w_i y$ je plavo za svako y koje nije u_j , v_j ili w_j . Za svako i i j $u_i w_j$ je crveno za $i \geq j$, dok je u suprotnom plavo. Sa druge strane bojimo $v_i w_j$ crveno za i < j, a u suprotnom u plavo. Da bismo završili dokaz potrebno je još pokazati da ovako dobijeni graf $G_3 = K_{r+2m-4}$ ne sadrži crveni K_m ni plavi K_n .

Pretpotstavimo suprotno, prvo da postoji crveni K_m . Tada se u njemu mora

nalaziti bar jedan w_i , jer G_2 ne sadrži takav podgraf. Kako je svaki w_i povezan plavo sa svakim y koje nije među u i v čvorovima, sledi da se K_m sastoji isključivo od njih i w čvorova. Neka je k indeks najmanjeg, a l indeks najvećeg w čvora u K_m . Tada se u posmatranom K_m nalazi ne više od l-k+1 w čvorova. Pored toga svako u_i , mora ispunjavati uslov $i \geq l$, a svako v_i , uslov i < k. Zato dobijamo da je maksimalan broj čvorova u crvenom K_m jednak (l-k+1)+(m-1-l)+(k-1)=m-1. Kontradikcija.

Pretpotstavimo sada da postoji plavi K_n . Kako su svi w čvorovi povezani međusobno crveno, a bar jedan se mora nalaziti u datom K_n , onda je to tačno jedan w_i . To znači da je posmatrani K_n dobijen dodavanjem čvora w_i na već postojeći K_{n-1} iz G_2 . Ipak već smo dokazali da se u svakom takvom K_{n-1} nalazi tačno jedan par čvorova u_j i v_j . Odatle dobijamo da su i $w_i u_j$ i $w_i v_j$ povezani plavo, što je nemoguće zbog izbora bojenja grana incidentnih sa w_i . Kontradikcija.

Tako dobijamo da postoji K_{r+2m-4} takav da ne sadrži ni crveni K_m ni plavi K_n pa mora važiti $R(m,n) \geq R(m,n-1) + 2m - 3$.

4 Primene Remzijeve teoreme

U ovom poglavlju ćemo videti primene Remzijeve teorije i njenih uopštenja u teoriji brojeva, rešavanju problema u vezi konveksnih mnogouglova i nalaženja idempotentnih elemenata polugrupe. Dokaz teoreme 4.4 možete naći u radu [5], dok dokaz teorema 4.1 i 4.3, kao i mnoge druge primene Remzijeve teoreme možete naći u radu [6].

Teorema 4.1. Za svako $k \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za svako bojenje $\chi : \underline{n} \to \underline{k}$ postoje brojevi $x, y, z \in \underline{n}$ sa osobinom

$$x + y = z$$
 i $\chi(x) = \chi(y) = \chi(z)$

Dokaz. Neka je $n\in\mathbb{N},\,n+1\geq R(3)_k=\underbrace{(3,3,\ldots,3)}_{\text{k puta}}.$ Tada ono indukuje sledeće

bojenje:

$$\chi^*: [\underline{n+1}]^2 \to \underline{k}: \{i,j\} \mapsto \chi(|i-j|)$$

Zbog $n+1 \to \underbrace{(3,3,\ldots,3)}_{\text{k puta}}$, postoje i_1,i_2 i i_3 obojeni istom bojom, odnosno

$$\chi^*(\{i_1, i_2\}) = \chi^*(\{i_1, i_3\}) = \chi^*(\{i_2, i_3\})$$
. Neka je:

$$x := i_1 - i_2, \ y := i_2 - i_3 \ i \ z := i_1 - i_3$$

Imamo
$$x, y, z \in \{1, \dots, n\}$$
 i $x - y = i_1 - i_2 + i_2 - i_3 = i_1 - i_3 = z$.

Definicija 4.1. Skup generatora $\{g_1, \ldots, g_n\}$ je skup elemenata grupe Gtakvih da se primenom operacije grupe na generatore mogu dobiti svi ostali elementi grupe. Kažemo da $\{g_1, \ldots, g_n\}$ generiše grupu G. Ako postoji g takvo da je $\{g\}$ skup generatora grupe G, kažemo da je G ciklična i da je G generator grupe G.

Lema 4.2. Grupa \mathbb{Z}_p^* , čiji je skup elemenata $\{0, 1, \dots, p-1\}$ i čija je operacija množenje po modulu p, gde je p prost broj je ciklična.

Teorema 4.3. Za sve $m \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za sve proste brojeve $p > n_0$ jednačina

$$x^m + y^m \equiv z^m \pmod{p}$$

ima netrivijalna rešenja. (Rešenje je trvijalno ako $x \cdot y \cdot z \equiv 0 \pmod{p}$)

Dokaz. Neka je $n_0 = R(3)_m + 1$. Neka je g generator grupe \mathbb{Z}_p^* (g postoji zbog cikličnosti grupe \mathbb{Z}_p^*). Svaki elemenat $x \in \mathbb{Z}_p^*$ možemo zapisati x kao g^a . Imamo a = mj + i, za $0 \le i < m$, tako da je $x = g^{mj+i}$. Posmatrajmo bojenje koje boji elemenat x skupa \mathbb{Z}_p^* u boju i ako je $x = g^{mj+i}$. Na osnovu teoreme 4.1 postoje a, b i c obojeni istom bojom, takvi da važi a + b = c, odnoso eksponenti a, b i c su kongrueni po modulu m. Dakle,

$$q^{mj_a+i} + q^{mj_b+i} = q^{mj_c+i}$$

Neka su $x=g^{j_a},\,y=g^{j_b}$ i $z=g^{j_c}.$ Množenjem gornje jednačine sa g^{-i} dobijamo $x^m+y^m=z^m$

Teorema 4.4. Za svaki prirodan broj $n \geq 3$ postoji broj N(n) takav da bilo koji skup od bar N tačaka u ravni u opštem položaju sadrži konveksan n-tougao

Dokaz. Za n=4dokazaćemo da N=5zadovoljava uslove. Posmatrajmo 5 tačaka A,B,C,D i E.Ako je najmanji konveksni mnogougao petougao ili četvorougao, dokaz je trivijalan. U suprotnom, neka je najmanji takav mnogougao trougao $ABC.\ D$ i E se onda nalaze unutar $ABC.\ 2$ tačke od A,B i C se moraju nalaziti sa jedne strane prave DE. Neka su to A i C. Tada je ACDE traženi četvorougao.

Neka je X skup od bar $R_4(n,5)$ tačaka u opštem položaju. Na osnovu Remzijeve teoreme za hipergrafove znamo da je ovaj broj konačan. Obojimo sve četvoročlane podskupove tačaka u plavo ako je četvorougao koje obrazuju konveksan ili u crveno ako je konkavan. Pošto ima ukupno $R_4(n,5)$ tačaka, mora postojati ili n-točlani skup tačaka čiji su svi četvoročlani podskupovi plave boje (konveksni) ili petočlani skup tačaka čiji su svi četvoročlani podskupovi crvene boje. Dokazali smo da među 5 tačaka u opštem položaju mora postojati konveksan četvorougao, dakle mora postojati n-točlani skup tačaka tako da su svi četvorouglovi koje oni obrazuju knoveksni, odnosno konveksan n-toguao od n tačaka. Dakle traženi N postoji i važi $N \leq R_4(n,5)$

Definicija 4.2. Polugrupa ${\bf S}$ je uređen par (S,\cdot) , takav da važi

$$\cdot: S \times S \to S \quad \text{i} \quad \forall x,y,z \in S: x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

S je grupa ako dodatno važi:

$$\exists e \in S \ \forall s \in S : e \cdot s = s \cdot e = s \quad \mathbf{i}$$
$$\forall s \in S \ \exists t \in S : s \cdot t = t \cdot s = e$$

Definicija 4.3. Element s polugrupe $\mathbf{S} = (S, \cdot)$ je idempotentan, ako je $s \cdot s = s$

Definicija 4.4. Reč polugrupe S je izraz oblika $s_1^{n_1}s_2^{n_2}\dots s_k^{n_k}$, $s_1,\dots,s_k\in S$, $n_1,\dots,n_k\in\mathbb{N}$, pri čemu s_i i $s_j,i\neq j$ ne moraju biti različiti.

Teorema 4.5. Neka je $\mathbf{S}=(S,\cdot)$ konačna polugrupa. Tada \mathbf{S} sadrži bar jedan idempotentan element.

Dokaz. Neka je Skonačna polugrupa čiji je konačan generišući skupA. Izaberimo reč $a_1a_2\ldots$ dužine $n_0=R(3)_{|S|}+1$ nadA. Posmatrajmo bojenje grafa čiji je skup čvorova \underline{n} koje boji granu izmedju i i $j,\,i\leq j$ u vrednost reči $a_{i+1}\ldots a_j$ u S. Na osnovu teoreme 1.4, moraju postojati i< j< k izmedju kojih se nalaze grane iste boje, odnosno

$$a_{i+1} \dots a_j = a_{j+1} \dots a_k = a_{i+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{j+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{i+1} \dots a_j$$

Dakle, elemenat polugrupe čija je vrednost $a_{i+1} \dots a_j$ je idempotentan.

15

Literatura

- [1] M. Aigner, G. M. Ziegler. Proofs from The BOOK. Springer, 1998.
- [2] R. L. Graham, J. Nešetřil, S. Butler. The Mathematics of Paul Erdős II. Springer, 1990.
- [3] Chung, F.R.K., R.L. Graham, R.M. Wilson. A survey of Bounds for Classical Ramsey Numbers Journal of graph theory, 1989.
- [4] J.G.Kalbfleisch. Upper Bounds for Some Ramsey Numbers Journal of combinatorial theory, 1967.
- [5] P. Erdos G. Szekeresz A combinatorial problem in geometry Compositio Mathematica, tome 2, 1935
- [6] M. Steed. Some theorems and applications of Ramsey Theory
- [7] S. A. Burr, P. Erdos, R. J. Faudree, R.H. Schelp On the Diffeence of Consecutive Ramsey Numbers