

SÍLABO ELECTRÓNICA DE POTENCIA

ÁREA CURRICULAR: SISTEMAS ELÉCTRICOS Y ELECTRÓNICOS

CICLO IX SEMESTRE ACADÉMICO 2018-1

I. CÓDIGO DEL CURSO : 09070009040

II. CRÉDITOS : 04

III. REQUISITOS : 09012808040 Circuitos Electrónicos III

09011206040 Maquinas Eléctricas

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA:

El curso es científico – aplicativo que permite al futuro ingeniero analizar y diseñar sistemas de potencias con métodos convencionales y modernos.

El curso comprende tres unidades de aprendizaje: I. Análisis de diodos semiconductores, tiristores y transistores de potencia. Convertidores AC/DC no controlados y controlados. II. Convertidores DC/DC. Sistemas de comando. III. Convertidores DC/AC. Variadores de velocidad de motores AC.

VI. FUENTES DE CONSULTA:

Bibliográficas:

- Benavent, Abellan & Figueres Amoros. (2007). Electrónica de Potencia Teoría y aplicaciones. t. Alfaomega.
- HarT. (2001). Electrónica de Potencia. Editorial Pearson Educación.
- Mohan, Undeland & Robbins. (2003). Electrónica de Potencia Convertidores, Aplicaciones y Diseño. 3ra edición New York: Chichester/Brisbane Toronto Singapore. Editorial John Wiley.
- Rashid. (2004). Electrónica de Potencia. Circuitos, dispositivos y aplicaciones. 3ra. Edición México: Editorial Prentice Hall Hispanoamericana
- Malonney. (2006). Electrónica Industrial Moderna. 5ta. Edición México: Editorial Printice Hall Hispanoamericana.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: DIODOS, TIRISTORES Y TRANSISTORES DE POTENCIA, CONVERTIDORES AC/DC, NO CONTROLADOS Y CONTROLADOS.

OBJETIVOS DE APRENDIZAJE:

- Analizar las características de los diodos y tiristores en alta potencia. Operación de transistores BJT,
 MOSFET Y IGBT y diseña circuitos de aplicación en conmutación.
- Analizar convertidores de AC/DC. Aplicaciones.

PRIMERA SEMANA

Primera sesión:

Dispositivos de Electrónica de Potencia, operación en conmutación y aplicaciones **Segunda sesión:**

Circuitos básicos RC, RL, RLC. Transformadores. Circuitos con diodos. Aplicaciones

SEGUNDA SEMANA

Primera sesión:

Laboratorio 1: Manejo del software de Simulación PSIM

Segunda sesión:

Rectificadores de Diodos Monofásicos. Convertidores de CA /CC. Efectos de Cargas Inductivas

TERCERA SEMANA

Primera sesión:

Rectificadores de Diodos Trifásicos. Convertidores de CA/CC. Efectos de Cargas Inductivas **Segunda sesión:**

Rectificadores controlados y semi-controlados monofásicos y trifásicos. Efecto de cargas inductivas

CUARTA SEMANA

Primera sesión:

Laboratorio 2: Rectificadores controlados y no controlados.

Segunda sesión:

Práctica calificada 1

QUINTA SEMANA

Primera sesión:

Introducción a los convertidores DC/DC y sus aplicaciones

Segunda sesión:

Reductores de voltaje (topología Buck). Aplicaciones.

SEXTA SEMANA

Primera sesión:

Elevadores de voltaje (topología Boost). Aplicaciones.

Segunda sesión:

Análisis de circuitos convertidores comerciales

UNIDAD II: CONVERTIDORES DC/DC Y SISTEMAS DE COMANDO

OBJETIVOS DE APRENDIZAJE:

- Entender el principio convertidores DC/DC, reguladores reductor-elevadores conmutados.
- Diseñar el sistema de control de convertidores DC/DC.

SÉPTIMA SEMANA

Primera sesión:

Sistemas de comando de convertidores DC/DC. Control por modo de voltaje

Segunda sesión:

Sistemas de comando de convertidores DC/DC. Control por modo de corriente.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Diseño de controladores utilizando sistemas digitales.

Segunda sesión:

Laboratorio 3. Tiristores, UJT.

DÉCIMA SEMANA

Primera sesión:

Análisis de respuesta en Frecuencia de sistemas de comando DC/DC

Segunda sesión:

Práctica calificada 3

UNIDAD III: CONVERTIDORES DC/AC: REGULACIÓN DE VELOCIDAD PARA MOTORES AC. OBJETIVOS DE APRENDIZAJE:

- Entender el principio de los inversores modulados PWM y SPVM, monofásicos y trifásicos.
- Entender como se regula la velocidad de un motor AC.

UNDÉCIMA SEMANA

Primera sesión:

Convertidores DC/AC. Topologías de convertidores

Segunda sesión:

Diseño de inversores modulados PWM y SPVM monofásico y trifásico. Análisis de modulación y efectos de armónicos.

DUODÉCIMA SEMANA

Primera sesión:

Aplicaciones de conversores DC/AC para sistema de comando de control de motores AC.

Segunda sesión:

Laboratorio 4: Convertidor DC/AC

DÉCIMOTERCERA SEMANA

Primera sesión:

Diseño de un sistema de control de un motor de inducción.

Segunda sesión:

Laboratorio 5: Controlador de motor DC

DÉCIMOCUARTA SEMANA

Primera sesión:

Control de motores de inducción

Segunda sesión:

Eficiencia Energética: Correctores de Factor de potencia

DÉCIMOQUINTASEMANA

Primera sesión:

Presentación de Proyectos Finales.

Segunda sesión:

Exposición de trabajos

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas	0
b. Tópicos de Ingeniería	4
c. Educación General	0

IX. PROCEDIMIENTOS DIDÁCTICOS

- **Método Expositivo Interactivo**. Comprende la exposición del docente y la interacción con el estudiante.
- **Método de Demostración ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

Equipos: Multimedia, Simulador PSIM

Materiales: Dispositivos electrónicos discretos de potencia, separatas, transparencias, direcciones electrónicas.

XI. EVALUACIÓN

El promedio final (PF) se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4 PE = ((P1+P2)/2 + W1 + PL) /3 PL = (Lb1+Lb2+Lb3+Lb4+Lb5-MN) / 4

Donde:

EP = Examen parcial escritoPL = Promedio laboratorio,EF = Examen final escritoLb1....Lb5 = nota de laboratorioPE = Promedio de evaluacionescalificado

P1 y P2 : Práctica calificada escrita
W1 = Proyecto final de laboratorio
Mn = Menor nota.

XII. APORTES AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	R
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	2	2

b) Sesiones por semana: dos sesiones.

c) **Duración**: 6 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Jorge López Villalobos

XV. FECHA

La Molina, marzo de 2018