Regularization

Question 1

You are training a	classification	model with	logistic r	egression.
--------------------	----------------	------------	------------	------------

Which of the following statements are true? Check all that apply.

- (Adding mant new	footures to	the model	halps provent	overfitting or	a tha training c	^ +
-1	Adding mant new	reatures to	the model	neips prevent	overtitting or	i the training s	eτ

- Introducing regularization to the model always results in equal or better performance on the training set.
- Introducing regularization to the model always results in equal or better performance on examples not in the training set.
- Adding a new feature to the model always results in equal or better performance on the training set.

Question 2

Suppose you ran logistic regression twice, once with $\lambda = 0$, and once with $\lambda = 1$.

One of the times, you got parameters $\theta = \begin{bmatrix} 81.47 \\ 12.69 \end{bmatrix}$, and the other time you got $\theta = \begin{bmatrix} 13.01 \\ 0.91 \end{bmatrix}$.

However, you forgot which value of λ corresponds to which value of θ .

Which one do you think corresponds to $\lambda=1$?

$$\theta = \begin{bmatrix} 13.01\\ 0.91 \end{bmatrix}$$

$$\Box \theta = \begin{bmatrix} 81.47 \\ 12.69 \end{bmatrix}$$

Question 3

Which of the following statements about regularization are true? Check all that apply.

- Because logistic regression outputs values $0 \le h_{\theta}(x) \le 1$, it's range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.
- $label{Interpolation}$ Using too large a value of λ can cause your hypothesis to underfit the data.
- Because regularization causes $J(\theta)$ to no longer be convex, gradient descent may not always converge to the global minimum (when $\lambda > 0$, and when using an appropriate learning rate α).

Question 5

In which one of the following figures do you think the hypothesis has underfit the training set?

