Simulation physique de corps rigides avec interaction

Merwan Achibet Université du Havre, 2011

Table des matières

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection

Correction

Réponse

Moteur

Algorithme principal

Démonstrations

Perspectives d'évolution

Conclusion

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection

Correction

Réponse

Moteur

Algorithme principal

Démonstrations

Perspectives d'évolution

Conclusion

Introduction

Moteur physique?

Moteur physique : système de simulation mécanique Industrie, science, cinéma précis, lents Jeu vidéo, réalité virtuelle approximatifs, temps réel

Ce projet :

- Moteur physique de base
- Corps rigides
- Corps convexes
- Temps réel

Étude de cas

1. La chute

$$\vec{a} = \frac{1}{m} \sum_{i} \vec{F}_{i}$$

2. Le rebond

$$\vec{v}_1 = \gamma \vec{v}_2$$

3. Le repos

$$\vec{F}_{A/B} = -\vec{F}_{B/A}$$

$$\vec{F}_{A/B} + \vec{F}_{B/A} = 0$$

Introduction

Différentes tâches

- Dynamique
 - Composante linéaire
 - Composante angulaire

- Gestion des collisions
 - Détection
 - Correction
 - Réponse

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection

Correction

Réponse

Moteur

Algorithme principal Démonstrations

Perspectives d'évolution

Conclusion

La composante linéaire

Entrée Forces environnementales Sortie Changement de position

$$\vec{v} = \frac{\partial \vec{p}}{\partial t}$$
 \iff $\vec{p} = \int \vec{v} \, \partial t$ $\vec{a} = \frac{\partial \vec{v}}{\partial t}$ $\vec{v} = \int \vec{a} \, \partial t$

Intégration de la composante linéaire

Intégration d'Euler :

$$x_{n+1} = x_n + x' \partial t$$

Appliquée à nos besoins :

$$\vec{a}_{t+\partial t} = \frac{1}{m} \sum_{i} \vec{F}_{i}$$

$$\vec{v}_{t+\partial t} = \vec{v}_t + \vec{a}_{t+\partial t} \partial t$$

$$\vec{p}_{t+\partial t} = \vec{p}_t + \vec{v}_{t+\partial t} \partial t$$

Simplification grâce à l'élan linéaire

L'élan linéaire :

$$\vec{L} = m\vec{v} \qquad \qquad \sum_{i} \vec{F}_{i} = \frac{\partial \vec{L}}{\partial t} = \frac{\partial (m\vec{v})}{\partial t}$$

La nouvelle intégration :

$$\vec{L}_{t+\partial t} = \vec{L}_t + \sum_i \vec{F}_i$$

$$\vec{p}_{t+\partial t} = \vec{p}_t + \frac{1}{m} \vec{L}_{t+\partial t} \partial t$$

Modélisation d'un corps

OK pour une particule, mais un objet plus complexe?

Une particule = un sommet Non

Une unique particule judicieusement placée Oui, le centre de masse

$$\vec{C} = \frac{1}{M} \sum_{i} m_i \vec{p}_i$$

Dynamique

Le centre de masse

Centre de masse = origine du repère local

$$\vec{p}_I = \vec{p}_a - \vec{C}$$

La composante angulaire

Il manque quelque chose... Les rotations!

Matrice d'orientation Un vecteur colonne = un axe du repère local

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Élan angulaire Analogue à l'élan linéaire

$$\vec{A}_{t+\partial t} = \vec{A}_n + \sum_i \vec{\tau}_i$$

$$\vec{\tau}_i = (\vec{x} - \vec{C}) \times \vec{F}_i$$

Dynamique

Quantités auxiliaires I

Passage de l'élan à la nouvelle orientation moins direct.

Tenseur d'inertie local Matrice représentant les efforts à fournir pour produire une rotation le long de chaque axe

Tenseur d'inertie absolu Pendant absolu du tenseur d'inertie local

$$I_a = RI_I{}^tR$$

Vitesse angulaire

$$\vec{\omega} = I_a^{-1} \vec{A}$$

Quantités auxiliaires II

On définit l'opérateur * :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}^* = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

On multiplie $\vec{\omega}$ et chaque axe de R :

$$\frac{\partial R}{\partial t} = \left(\vec{\omega}^* \begin{pmatrix} R_{xx} \\ R_{xy} \\ R_{xz} \end{pmatrix} \quad \vec{\omega}^* \begin{pmatrix} R_{yx} \\ R_{yy} \\ R_{yz} \end{pmatrix} \quad \vec{\omega}^* \begin{pmatrix} R_{zx} \\ R_{zy} \\ R_{zz} \end{pmatrix} \right)$$

Soit

$$\frac{\partial R}{\partial t} = \vec{\omega}^* R$$

Intégration de la composante angulaire

$$\vec{A}_{t+\partial t} = \vec{A}_t + \sum_i \vec{\tau}_i$$

$$I_a = R_t I_I^t R_t$$

$$\vec{\omega} = I_a^{-1} \vec{A}_{t+\partial t}$$

$$R_{t+\partial t} = R_t + \vec{\omega}^* R_t \partial t$$

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection Correction

Réponse

Moteur

Algorithme principal Démonstrations Perspectives d'évolution

Conclusion

Deux niveaux de précision

On teste les collisions entre paires de corps : $\frac{n(n-1)}{2}$ tests

Beaucoup de tests, on veut accélérer le processus.

- 1. Détection grossière Économique, faux positif possible
- 2. Détection fine Précise, plus coûteuse

Détection grossière

Boîte englobante Contient tous les sommets, donc tous les points SAT Test rapide de collision entre boîtes

Détection grossière

Faux positif La détection fine invalidera le résultat

Détection grossière

Collision détectée La détection fine validera le résultat

Détection fine I

Somme de Minkowski $A \oplus B = \{a+b \mid a \in A, b \in B\}$ Différence de Minkowski $A \ominus B = A \oplus (-B)$

Particularité La plus petite distance de la différence de Minkowski à l'origine est la plus petite distance entre les corps A et B

Détection fine II

Comment calculer la plus petite distance entre M et l'origine?

Algorithme GJK Expansion d'un simplex jusqu'à ce qu'il contienne le point le plus proche de l'origine.

Simplex Structure géométrique entièrement contenue dans *M* et liée à une dimension.

- 0 Sommet
- 1 Arête
- 2 Triangle
- 3 Tétraèdre

Détection fine III

Comment guider la recherche?

 $S(\vec{d})$ Fonction de support renvoyant le sommet de M le plus extrême dans la direction \vec{d}

Avantage
$$S_{A \ominus B}(\vec{d}) = S_A(\vec{d}) - S_B(-\vec{d})$$

Inutile de calculer explicitement M !

détection fine IV

Correction I

Intégration d'Euler Simulation discrète, pas de temps fixe Problème Les collisions sont toujours pénétrantes

Solution Intégrer en arrière, par dichotomie

Correction II

Réponse I

Corps rigide Défini par sommets, arêtes et faces

On s'intéresse uniquement aux contacts sommet-face et arête-arête.

Réponse II

Un contact:

- Position
- Normale
- Temps

À chaque contact, une impulsion :

$$J = \vec{n} \frac{-(1+\varepsilon)v_r}{\frac{1}{m_A} + \frac{1}{m_B} + \vec{n}(I_A^{-1}(\vec{r}_A \times \vec{n})) \times \vec{r}_A + (I_B^{-1}(\vec{r}_b \times \vec{n})) \times \vec{r}_B}$$

Réponse III

Et pour les contacts de repos?

On force un arepsilon valant 0 pour produire une collision non-élastique.

Problème Les collisions continuelles font vibrer les corps

Solution On endort les corps dont l'énergie cinétique est faible pendant un laps de temps.

$$E_i = \frac{1}{2}m\vec{v}_i^2 \qquad \qquad E = \sum_i E_i$$

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection Correction Réponse

Moteur

Algorithme principal Démonstrations Perspectives d'évolution

Conclusion

Algorithme principal

```
Algorithme 4 : Boucle principale
 Entrées: Un pas de temps \partial t
 pour chaque paire de corps (A,B) faire
     si collisionGrossiere (A.B) alors
         sicollisionFine(A,B) alors
             (A, B) \leftarrow \operatorname{corrigerCollision}(A, B)
             C \leftarrow \text{detecterContacts}(A.B)
             pour chaque contact c \in C faire
                 I \leftarrow \texttt{calculerImpulsion}(c)
                appliquer(I, A)
                appliquer (-I, B)
 pour chaque corps A faire
     appliquerForcesEnvironnementales(A)
     integrer(A, \partial t)
```

Défauts de cet algorithme

- Aucune cohérence temporelle
- L'ordre d'intégration des corps change l'issue de la simulation

Algorithme principal amélioré

```
Algorithme 5 : Boucle principale améliorée
```

```
Entrées: Un pas de temps \partial t
C \leftarrow \emptyset
pour chaque paire de corps (A,B) faire
    (A_2, B_2) \leftarrow (A, B)
    appliquerForcesEnvironnementales (A_2)
    integrer(A_2, \partial t)
    appliquerForcesEnvironnementales (B_2)
    integrer(B_2, \partial t)
    si collisionGrossiere (A_2, B_2) alors
        si collisionFine (A_2, B_2) alors
            corrigerCollision(A_2, B_2)
            C \leftarrow C \cup \text{detecterContacts}(A_2, B_2)
trierContacts(C)
\partial t_2 \leftarrow \min(\partial t, C/0, t)
pour chaque corps A faire
    appliquerForcesEnvironnementales(A)
    integrer(A, \partial t_2)
pour chaque contact c \in C | c.t = \partial t_2 faire
    I \leftarrow \texttt{calculerImpulsion}(c)
    appliquer(I, A)
    appliquer(-I,B)
```

Démonstrations

Tunneling

Problème Les corps se traversent mais aucune collision détectée

Tunneling

Problème Les corps se traversent mais aucune collision détectée

Solution Lancer de rayons

- + Économique
- Peut manquer les plus petits corps

Tunneling

Problème Les corps se traversent mais aucune collision détectée

Solution Boîtes englobant les positions avant/après

- + Ne manque aucun tunneling
- + Procédures de base déjà utilisées pour la détection grossière
- Certaines trajectoires peu avantageuses (diagonales)

Introduction

Dynamique

Composante linéaire Composante angulaire

Collisions

Détection

Réponse

Moteur

Algorithme principal Démonstrations

Perspectives d'évolution

Conclusion

Conclusion

Conclusion

Différentes perspectives d'évolution :

- Partitionnement de l'espace
- Contraintes
- Plus de stabilitité (empilement)

Une voie intéressante : résolution de systèmes linéaires pour les contact de repos.

Conclusion

Questions