LC20 : Détermination de constantes d'équilibre

La pile Daniell

Produit de solubilité de l'acide benzoïque

Prélèvement de V = 20 mL de surnageant

Solution saturée d'acide benzoïque

Mesure du pK_a de l'acide éthanoïque

• On prépare une solution d'acide éthanoïque à $C_0 = 1.\,10^{-2}\,mol.\,L^{-1}$

	$CH_3COOH_{(aq)}$	+ <i>H</i> ₂ <i>O</i> =	$= CH_3COO_{(aq)}^-$	$+ H_3O^+_{(aq)}$
Etat initial	C_0	excès	0	0
Equilibre	$C_0 - \xi_{eq}$	excès	ξ_{eq}	ξ_{eq}

$$K_a(T) = \frac{\xi_{eq}^2}{C^0(C_0 - \xi_{eq})}$$

$$[H_3O^+] = \xi_{eq} = 10^{-pH}$$

 \Rightarrow En mesurant à l'aide d'un pH-mètre la pH de la solution on peut determiner $K_a(T_{amb})$

Evolution du produit de solubilité de l'iodure de plomb(II) avec la température

Equilibre:

$$PbI_{2(s)} = Pb_{(aq)}^{2+} + 2I_{(aq)}^{-}$$

$$s = [Pb^{2+}]_{eq} = \frac{[I^-]_{eq}}{2}$$

Loi de Kolrausch :
$$\sigma = 2s[\lambda_{\frac{1}{2}Pb^{2+}}^0 + \lambda_{I^-}^0]$$

$$K_S(T) = \frac{\sigma(T)^3}{2[\lambda_{\frac{1}{2}Pb^{2+}}^0 + \lambda_{I^-}^0]^3 (C^0)^3}$$

Mesure de K_S pour plusieurs T en mesurant σ pour des solutions saturées portées à ces T