Computing Statistical Summaries over Massive Distributed Data

Ke Yi

Hong Kong University of Science and Technology

Distributed Systems for Massive Data: MapReduce

Open sourece implementation: Hadoop

Distributed Systems for Massive Data: MapReduce

Open sourece implementation: Hadoop

Suitable for batch processing (e.g., index construction)

Distributed Systems for Massive Data: Dremel

No open source implementation yet

Distributed Systems for Massive Data: Dremel

No open source implementation yet

Suitable for analytical queries (e.g., extracting a summary)

(Simplified) Model of Computation

(Simplified) Model of Computation

- The root broadcasts a message to initialize computation
- Each node computes a summary on its local data
- The root combines the summaries to produce a global summary

(Simplified) Model of Computation

- The root broadcasts a message to initialize computation
- Each node computes a summary on its local data
- The root combines the summaries to produce a global summary
- Using minimum communication (and load balancing)

Outline

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

Problem: Frequency Estimation

- Input: Multiset *S* of *N* items drawn from the universe $[u] = \{1 \dots u\}$ For example, all IP addresses
- Each node $j \in [k]$ holds a subset of SFor any item $i \in [u]$ x_{ij} : total number of i's in node j (local count) $y_i = \sum_{j=1}^k x_{ij}$ (global count)
- Compute y_i for each i

Compute exactly: send everything

- Compute exactly: send everything
- Approximate each y_i within additive error ϵN

- Compute exactly: send everything
- Approximate each y_i within additive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

- Compute exactly: send everything
- Approximate each y_i within additive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

- Compute exactly: send everything
- Approximate each y_i within additive error ϵN
- Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Count-min sketch, MG sketch, Space saving, etc.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

■ We can achieve: $O(\sqrt{k}/\varepsilon)$ Typical values of $\varepsilon=10^{-3}\sim10^{-6}, k=10^2\sim10^4$ We assume $k<1/\varepsilon^2$

Each node holds a set of (item, count) pairs

(item, count)

```
(1, 20)
(2, 13)
(3, 35)
(4, 12)
(5, 5)
(6, 22)
```

node j

send each pair (i, x_{ij}) with probability $g(x_{ij})$

Each node holds a set of (item, count) pairs

HT estimator for x_{ij} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

This is an unbiased estimator

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

This is an unbiased estimator

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$Var[Y_{i,j}] = \left(\frac{x_{i,j}}{g(x_{i,j})} - x_{i,j}\right)^2 g(x_{i,j}) + (x_{i,j})^2 (1 - g(x_{i,j}))$$
$$= \frac{x_{i,j}^2 (1 - g(x_{i,j}))}{g(x_{i,j})}$$

$$Var[Y_i] = \sum_{j=1}^{n} Var[Y_{ij}] = \sum_{j=1}^{n} \frac{x_{i,j}^2(1-g(x_{i,j}))}{g(x_{i,j})}$$

Question: What sampling function g(x) should we use

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN

A function is valid, if $Var[Y_i] \leq (\epsilon N)^2$ for all items i

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN

A function is valid, if $Var[Y_i] \leq (\epsilon N)^2$ for all items i

Communication cost: $\sum_{i,j} g(x_{ij})$

Question: What sampling function g(x) should we use

Accuracy: standard deviation less than εN

A function is valid, if $Var[Y_i] \leq (\epsilon N)^2$ for all items i

Communication cost: $\sum_{i,j} g(x_{ij})$

Optimal valid g(x)?

A Worst-Case Optimal Sampling Function

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

A Worst-Case Optimal Sampling Function

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

Can show:

$$Var[Y_i] = -\left(\frac{y_i}{\sqrt{k}} - \frac{\varepsilon N}{2}\right)^2 + \frac{(\varepsilon N)^2}{4} \le \frac{1}{4}(\varepsilon N)^2,$$

i.e., $g_1(x)$ is valid

■ Communication cost of using $g_1(x)$ is $O(\sqrt{k}/\varepsilon)$

$$g_2(x) = (g_1(x))^2$$

$$g_2(x)=(g_1(x))^2$$

Can show:

 \blacksquare g_2 is also valid

$$g_2(x) = (g_1(x))^2$$

Can show:

- \blacksquare g_2 is also valid
- Clearly, $g_1(x) \ge g_2(x)$

 g_1 's communication cost is always $\Theta(\sqrt{k}/\varepsilon)$, while g_2 can be much better when there are many small local counts

$$g_2(x) = (g_1(x))^2$$

Can show:

- \blacksquare g_2 is also valid
- Clearly, $g_1(x) \ge g_2(x)$

 g_1 's communication cost is always $\Theta(\sqrt{k/\varepsilon})$, while g_2 can be much better when there are many small local counts

■ A stronger optimality: $g_2(x)$ is instance-optimal

Define
$$opt(I) = \sum_{i,j} g_2(x_{i,j})$$
 on input $I : \{x_{i,j}\}$

Can show that on every input I, any valid sampling function must have cost $\Omega(opt(I))$

Instance Optimality

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$
 $Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \cdots + 0 + 1)$

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \cdots + 0 + 1)$$

Each site j just needs to tell whether i is sampled or not!

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \cdots + 0 + 1)$$

Each site j just needs to tell whether i is sampled or not!

The set of sampled items can be encoded in a Bloom filter, taking O(1) bits per item

$$\Rightarrow$$
 total cost = $O(\sqrt{k}/\varepsilon)$ bits

$$g_1(x) = \min\{\frac{\sqrt{k}}{\varepsilon N}x, 1\}$$

HT estimator for x_{ii} :

$$Y_{i,j} = \frac{x_{i,j}}{g(x_{i,j})}$$
 if it is sampled, otherwise 0

Estimator for y_i :

$$Y_i = Y_{i,1} + \cdots + Y_{i,n}$$

$$Y_i = \frac{\varepsilon N}{\sqrt{k}} (1 + 0 + 1 + 1 + \cdots + 0 + 1)$$

Each site j just needs to tell whether i is sampled or not!

The set of sampled items can be encoded in a Bloom filter, taking O(1) bits per item

$$\Rightarrow$$
 total cost = $O(\sqrt{k}/\varepsilon)$ bits

An $\Omega(\sqrt{k}/\varepsilon)$ -bit lower bound [Woodruff, Zhang, '12]

Bloom Filters

- A Bloom filter needs $O(\log(1/q))$ bits per item
- No false negatives
- False positive probability = q

Bloom Filters

- A Bloom filter needs $O(\log(1/q))$ bits per item
- No false negatives
- False positive probability = q

Change the estimator to

$$Y_i = \frac{\varepsilon N}{\sqrt{k}} \cdot \frac{Y_{i,1} + \cdots + Y_{i,k} - kq}{1 - q}$$

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Estimator for y_i :

$$Y_i = \frac{x_{i,1}}{g_2(x_{i,1})} + 0 + 0 + \frac{x_{i,4}}{g_2(x_{i,4})} + \cdots + 0 + \frac{x_{i,k}}{g_2(x_{i,k})}$$

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Estimator for y_i :

opt(I) such terms

$$Y_{i} = \left(\frac{x_{i,1}}{g_{2}(x_{i,1})}\right) + 0 + 0 + \left(\frac{x_{i,4}}{g_{2}(x_{i,4})}\right) + \cdots + 0 + \left(\frac{x_{i,k}}{g_{2}(x_{i,k})}\right)$$

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Estimator for y_i :

opt(I) such terms

$$Y_{i} = \left(\frac{x_{i,1}}{g_{2}(x_{i,1})}\right) + 0 + 0 + \left(\frac{x_{i,4}}{g_{2}(x_{i,4})}\right) + \cdots + 0 + \left(\frac{x_{i,k}}{g_{2}(x_{i,k})}\right)$$

- Use $g_2(x)$ to perform the sampling locally
- Then use $g_1(x)$ + Bloom filters to sample the $\frac{x_{i,j}}{g_2(x_{i,j})}$'s

- $g_2(x)$ samples opt(I) (item, count) pairs, which may be much smaller than $O(\sqrt{k}/\varepsilon)$ on many inputs
- But it is a nonlinear sampling function

Estimator for y_i :

opt(I) such terms

$$Y_{i} = \left(\frac{x_{i,1}}{g_{2}(x_{i,1})}\right) + 0 + 0 + \left(\frac{x_{i,4}}{g_{2}(x_{i,4})}\right) + \cdots + 0 + \left(\frac{x_{i,k}}{g_{2}(x_{i,k})}\right)$$

- Use $g_2(x)$ to perform the sampling locally
- Then use $g_1(x)$ + Bloom filters to sample the $\frac{x_{i,j}}{g_2(x_{i,j})}$'s

Can show this takes $O\left(opt(I)\log^2\left(\frac{\sqrt{k}}{\varepsilon \ opt(I)}\right)\right)$ bits

Simulation Results

 $k=1000, N=10^9$ following Zipf distribution with $\alpha=1.2$. Estimate the frequencies of the 100 most popular items. Variance computed from 100 runs, and take the worst

Outline

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r. The 0.5-quantile is the median.

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r. The 0.5-quantile is the median.

An ε -approximate (r/n)-quantile is any value ranked between $[r - \varepsilon n, r + \varepsilon n]$.

Generalizes the frequency estimation problem.

Quantiles

In a set of n values, the (r/n)-quantile is the value ranked at r. The 0.5-quantile is the median.

Quantiles: Previous Solutions

■ Sketching: Each node computes a sketch of its own data and sends it to the coordinator.

Sketch size: $O(1/\varepsilon)$

Communication cost: $O(k/\varepsilon)$

Random sampling

Uniformly randomly sample a subset of size $O(1/\varepsilon^2)$

■ We can achieve: $O(\sqrt{k}/\varepsilon)$

Typical values of $\varepsilon=10^{-3}\sim 10^{-6}, k=10^2\sim 10^4$ We assume $k<1/\varepsilon^2$

Base station

The algorithm for each node

Sample each value with probabiltiy p

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

(1)

5 6

- $\widehat{10}$ $\widehat{11}$
- 15

(3)

7 9

16

- 2
- (4)

12 14

19

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

Base station

At the base station:

Answering value-to-rank query

Given any value x, estimates its rank r(x)

$$\hat{r}(10) = 5 + 2/p$$

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

r(10)?

1

5

6

10

(11)

15

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

$$r(10)$$
?

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

$$r(10)$$
?

5

?

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

Will show: $\hat{r}(x)$ is an unbiased estimator of r(x) with standard deviation εn .

Follows a geometric distribution (almost)

E[?] =
$$1/p$$
 Var[?] $\leq 1/p^2$
Set $p = \frac{\sqrt{k}}{\varepsilon n}$
Var[$\hat{r}(x)$] $\leq k/p^2 = (\varepsilon n)^2$

Total cost: $np = \sqrt{k/\varepsilon}$ in expectation

Outline

- Model of computation
- Frequency estimation (heavy hitters)
- Quantiles (order statistics)
- Other problems

ε -approximate range counting

Let P be a set of n points in the plane. Compute a summary structure so that, for any range Q (from a certain range space), $|P \cap Q|$ can be extracted with error εn

ε -approximations

 $S \subseteq P$ is an ε -approximation of P if for any Q (from a certain range space),

$$|P \cap Q| = |S \cap Q| \cdot \frac{n}{|S|} \pm \varepsilon n$$

ε -approximations

Size of ε -approximations

ε -approximations over k distributed data sets

ε -approximations over k distributed data sets

Tight lower bounds (up to polylog factors).

For what probems can we do better than $k \times$ sketch size?

For what probems can we do better than $k \times \text{sketch size}$?

Some positive results in this talk

For what probems can we do better than $k \times \text{sketch size}$?

- Some positive results in this talk
- Negative results in [Woodruff, Zhang, '12]
 - Number of distinct elements (F_0)
 - Lower bound: $\tilde{\Omega}(k/\varepsilon^2)$
 - Upper bound: the distinct count sketch of size $O(1/\varepsilon^2)$ [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan, '02]

For what probems can we do better than $k \times \text{sketch size}$?

- Some positive results in this talk
- Negative results in [Woodruff, Zhang, '12]
 - Number of distinct elements (F_0)
 - Lower bound: $\tilde{\Omega}(k/\varepsilon^2)$
 - Upper bound: the distinct count sketch of size $O(1/\varepsilon^2)$ [Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan, '02]
 - *F*₂
 - Lower bound: $\tilde{\Omega}(k/\varepsilon^2)$
 - lacktriangle Upper bound: the AMS sketch of size $O(1/arepsilon^2)$ [Alon, Matias, Szegedy, '96]

References

- Optimal Sampling Algorithms for Frequency Estimation in Distributed Data. Zengfeng Huang, Ke Yi, Yunhao Liu, Guihai Chen. INFOCOM 2011.
- Sampling Based Algorithms for Quantile Computation in Sensor Networks. Zengfeng Huang, Lu Wang, Ke Yi, and Yunhao Liu. SIGMOD 2011.