```
In [1]: ▶ import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

# **Exploratory Data Analysis**

Out[2]:

|     | symboling | normalized-<br>losses | make            | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | en |
|-----|-----------|-----------------------|-----------------|---------------|----------------|------------------|---------------------|-------|--------|----|
| 0   | 3         | ?                     | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   |    |
| 1   | 3         | ?                     | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   |    |
| 2   | 1         | ?                     | alfa-<br>romero | gas           | hatchback      | rwd              | front               | 65.5  | 52.4   |    |
| 3   | 2         | 164                   | audi            | gas           | sedan          | fwd              | front               | 66.2  | 54.3   |    |
| 4   | 2         | 164                   | audi            | gas           | sedan          | 4wd              | front               | 66.4  | 54.3   |    |
|     |           |                       |                 |               |                |                  |                     |       |        |    |
| 200 | -1        | 95                    | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 201 | -1        | 95                    | volvo           | gas           | sedan          | rwd              | front               | 68.8  | 55.5   |    |
| 202 | -1        | 95                    | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 203 | -1        | 95                    | volvo           | diesel        | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 204 | -1        | 95                    | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
|     |           |                       |                 |               |                |                  |                     |       |        |    |

205 rows × 15 columns

In [3]: ► df.shape

Out[3]: (205, 15)

```
▶ df.describe()
In [4]:
    Out[4]:
                                                          engine-
                                                                               highway-
                                     width
                                                                                                pric
                      symboling
                                                height
                                                                    city-mpg
                                                             size
                                                                                   mpg
               count 205.000000
                                205.000000
                                           205.000000
                                                       205.000000
                                                                  205.000000
                                                                             205.000000
                                                                                           205.00000
               mean
                       0.834146
                                 65.907805
                                             53.724878
                                                       126.907317
                                                                   25.219512
                                                                              30.751220
                                                                                         13227.47804
                       1.245307
                                  2.145204
                                              2.443522
                                                        41.642693
                                                                    6.542142
                                                                               6.886443
                                                                                          7902.6516°
                 std
                min
                       -2.000000
                                 60.300000
                                             47.800000
                                                        61.000000
                                                                   13.000000
                                                                              16.000000
                                                                                          5118.00000
                25%
                       0.000000
                                 64.100000
                                             52.000000
                                                        97.000000
                                                                   19.000000
                                                                              25.000000
                                                                                          7788.00000
                50%
                       1.000000
                                 65.500000
                                             54.100000
                                                       120.000000
                                                                   24.000000
                                                                              30.000000
                                                                                        10345.00000
                75%
                       2.000000
                                 66.900000
                                             55.500000
                                                       141.000000
                                                                   30.000000
                                                                              34.000000
                                                                                        16500.00000
                                                                                        45400.00000
                       3.000000
                                 72.300000
                                             59.800000
                                                       326.000000
                                                                   49.000000
                                                                              54.000000
                max
In [5]:
             df.info()
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 205 entries, 0 to 204
              Data columns (total 15 columns):
                   Column
               #
                                         Non-Null Count
                                                           Dtype
                   _____
              _ _ _
                                         _____
                                                            ----
               0
                   symboling
                                         205 non-null
                                                           int64
               1
                   normalized-losses
                                         205 non-null
                                                           object
               2
                                         205 non-null
                   make
                                                           object
               3
                   fuel-type
                                         205 non-null
                                                           object
                                                            object
               4
                   body-style
                                         205 non-null
               5
                   drive-wheels
                                         205 non-null
                                                            object
               6
                   engine-location
                                         205 non-null
                                                            object
               7
                   width
                                         205 non-null
                                                           float64
                                                           float64
               8
                   height
                                         205 non-null
                   engine-type
               9
                                         205 non-null
                                                            object
               10
                   engine-size
                                         205 non-null
                                                            int64
               11
                   horsepower
                                         205 non-null
                                                            object
               12
                   city-mpg
                                         205 non-null
                                                            int64
               13
                                         205 non-null
                                                            int64
                   highway-mpg
```

205 non-null

int64

## **Handling Missing Values**

dtypes: float64(2), int64(5), object(8)

14

price

memory usage: 24.1+ KB



## **Changing Dtype from Object to Float64**

```
'''df["normalized-losses"].replace("?",np.nan,inplace=True)
 In [8]:
             df["horsepower"].replace("?",np.nan,inplace=True)
             df["normalized-losses"]=df["normalized-losses"].astype("float64")
             df["horsepower"]=df["horsepower"].astype("float64")
             nmean=df["normalized-losses"].mean()
             hmean=df["horsepower"].mean()
             df["normalized-losses"].fillna(nmean,inplace=True)
             df["horsepower"].fillna(hmean,inplace=True)'''
    Out[8]: 'df["normalized-losses"].replace("?",np.nan,inplace=True)\ndf["horsepowe
             r"].replace("?",np.nan,inplace=True)\n\ndf["normalized-losses"]=df["norma
             lized-losses"].astype("float64")\ndf["horsepower"]=df["horsepower"].astyp
             e("float64")\n\nnmean=df["normalized-losses"].mean()\nhmean=df["horsepowe
             r"].mean()\n\ndf["normalized-losses"].fillna(nmean,inplace=True)\ndf["hor
             sepower"].fillna(hmean,inplace=True)'
 In [9]:

    df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 205 entries, 0 to 204
             Data columns (total 15 columns):
              #
                  Column
                                     Non-Null Count Dtype
             ---
                  -----
                                     -----
                                                     ----
                                                     int64
              0
                  symboling
                                     205 non-null
              1
                  normalized-losses 205 non-null
                                                     object
              2
                  make
                                     205 non-null
                                                     object
              3
                  fuel-type
                                     205 non-null
                                                     object
              4
                  body-style
                                                     object
                                     205 non-null
              5
                  drive-wheels
                                     205 non-null
                                                     object
              6
                  engine-location
                                     205 non-null
                                                     object
              7
                  width
                                     205 non-null
                                                     float64
                                     205 non-null
              8
                  height
                                                     float64
              9
                  engine-type
                                     205 non-null
                                                     object
              10 engine-size
                                     205 non-null
                                                     int64
              11
                 horsepower
                                     205 non-null
                                                     object
              12
                 city-mpg
                                     205 non-null
                                                     int64
              13 highway-mpg
                                     205 non-null
                                                     int64
              14 price
                                     205 non-null
                                                     int64
             dtypes: float64(2), int64(5), object(8)
             memory usage: 24.1+ KB
In [10]:
             #df["normalized-losses"]
          #df["horsepower"]
In [11]:
```

```
    | df["normalized-losses"].replace("?",np.nan,inplace=True)

In [12]:
             df["horsepower"].replace("?",np.nan,inplace=True)
             df["normalized-losses"]=df["normalized-losses"].astype("float64")
             df["horsepower"]=df["horsepower"].astype("float64")
In [13]:
          ★ from sklearn.impute import SimpleImputer

▶ | si=SimpleImputer(missing_values=np.nan,strategy="mean")

In [14]:

    df[["normalized-losses", "horsepower"]]=si.fit_transform(df[["normalized-losses")]

In [15]:
In [16]:

    df["normalized-losses"]

   Out[16]: 0
                     122.0
             1
                     122.0
             2
                     122.0
              3
                     164.0
             4
                     164.0
                     . . .
             200
                      95.0
             201
                      95.0
             202
                      95.0
             203
                      95.0
             204
                      95.0
             Name: normalized-losses, Length: 205, dtype: float64
In [17]: ► df["horsepower"]
   Out[17]: 0
                     111.0
             1
                     111.0
             2
                     154.0
              3
                     102.0
             4
                     115.0
                     . . .
             200
                     114.0
             201
                     160.0
             202
                     134.0
              203
                     106.0
             204
                     114.0
             Name: horsepower, Length: 205, dtype: float64
```

#### In [18]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):

| #    | Column               | Non-Null Count  | Dtype   |
|------|----------------------|-----------------|---------|
|      |                      |                 |         |
| 0    | symboling            | 205 non-null    | int64   |
| 1    | normalized-losses    | 205 non-null    | float64 |
| 2    | make                 | 205 non-null    | object  |
| 3    | fuel-type            | 205 non-null    | object  |
| 4    | body-style           | 205 non-null    | object  |
| 5    | drive-wheels         | 205 non-null    | object  |
| 6    | engine-location      | 205 non-null    | object  |
| 7    | width                | 205 non-null    | float64 |
| 8    | height               | 205 non-null    | float64 |
| 9    | engine-type          | 205 non-null    | object  |
| 10   | engine-size          | 205 non-null    | int64   |
| 11   | horsepower           | 205 non-null    | float64 |
| 12   | city-mpg             | 205 non-null    | int64   |
| 13   | highway-mpg          | 205 non-null    | int64   |
| 14   | price                | 205 non-null    | int64   |
| d+vn | oc. $float64(4)$ int | 64(E) object(6) |         |

dtypes: float64(4), int64(5), object(6)

memory usage: 24.1+ KB

### In [19]: ► df.head()

#### Out[19]:

|   | symboling | normalized-<br>losses | make            | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engind<br>typ |
|---|-----------|-----------------------|-----------------|---------------|----------------|------------------|---------------------|-------|--------|---------------|
| 0 | 3         | 122.0                 | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   | doł           |
| 1 | 3         | 122.0                 | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   | doł           |
| 2 | 1         | 122.0                 | alfa-<br>romero | gas           | hatchback      | rwd              | front               | 65.5  | 52.4   | oho           |
| 3 | 2         | 164.0                 | audi            | gas           | sedan          | fwd              | front               | 66.2  | 54.3   | or            |
| 4 | 2         | 164.0                 | audi            | gas           | sedan          | 4wd              | front               | 66.4  | 54.3   | oł            |
| 4 |           |                       |                 |               |                |                  |                     |       |        |               |

In [20]: ► df.describe()

Out[20]:

|       | symboling  | normalized-<br>losses | width      | height     | engine-<br>size | horsepower | city-mp   |
|-------|------------|-----------------------|------------|------------|-----------------|------------|-----------|
| count | 205.000000 | 205.000000            | 205.000000 | 205.000000 | 205.000000      | 205.000000 | 205.00000 |
| mean  | 0.834146   | 122.000000            | 65.907805  | 53.724878  | 126.907317      | 104.256158 | 25.21951  |
| std   | 1.245307   | 31.681008             | 2.145204   | 2.443522   | 41.642693       | 39.519211  | 6.54214   |
| min   | -2.000000  | 65.000000             | 60.300000  | 47.800000  | 61.000000       | 48.000000  | 13.00000  |
| 25%   | 0.000000   | 101.000000            | 64.100000  | 52.000000  | 97.000000       | 70.000000  | 19.00000  |
| 50%   | 1.000000   | 122.000000            | 65.500000  | 54.100000  | 120.000000      | 95.000000  | 24.00000  |
| 75%   | 2.000000   | 137.000000            | 66.900000  | 55.500000  | 141.000000      | 116.000000 | 30.00000  |
| max   | 3.000000   | 256.000000            | 72.300000  | 59.800000  | 326.000000      | 288.000000 | 49.00000  |

In [22]: ▶ feature

Out[22]:

|     | symboling | normalized-<br>losses | make            | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | en |
|-----|-----------|-----------------------|-----------------|---------------|----------------|------------------|---------------------|-------|--------|----|
| 0   | 3         | 122.0                 | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   |    |
| 1   | 3         | 122.0                 | alfa-<br>romero | gas           | convertible    | rwd              | front               | 64.1  | 48.8   |    |
| 2   | 1         | 122.0                 | alfa-<br>romero | gas           | hatchback      | rwd              | front               | 65.5  | 52.4   |    |
| 3   | 2         | 164.0                 | audi            | gas           | sedan          | fwd              | front               | 66.2  | 54.3   |    |
| 4   | 2         | 164.0                 | audi            | gas           | sedan          | 4wd              | front               | 66.4  | 54.3   |    |
|     |           |                       |                 |               |                |                  |                     |       |        |    |
| 200 | -1        | 95.0                  | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 201 | -1        | 95.0                  | volvo           | gas           | sedan          | rwd              | front               | 68.8  | 55.5   |    |
| 202 | -1        | 95.0                  | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 203 | -1        | 95.0                  | volvo           | diesel        | sedan          | rwd              | front               | 68.9  | 55.5   |    |
| 204 | -1        | 95.0                  | volvo           | gas           | sedan          | rwd              | front               | 68.9  | 55.5   |    |
|     |           |                       |                 |               |                |                  |                     |       |        |    |

205 rows × 14 columns

```
In [23]: ► target
   Out[23]: 0
                    13495
             1
                    16500
             2
                    16500
             3
                    13950
             4
                    17450
                    . . .
             200
                    16845
             201
                    19045
             202
                    21485
             203
                    22470
             204
                    22625
             Name: price, Length: 205, dtype: int64
```

# **Handling outliers**



Out[25]:

|    | symboling | normalized-<br>losses | make  | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engine<br>typ |
|----|-----------|-----------------------|-------|---------------|----------------|------------------|---------------------|-------|--------|---------------|
| 29 | 3         | 145.0                 | dodge | gas           | hatchback      | fwd              | front               | 66.3  | 50.2   | oh            |
| 4  |           | _                     | _     |               | _              |                  |                     |       |        |               |

In [26]: M df.loc[29,"price"]

Out[26]: 12964

```
In [27]: ► df.loc[29,"price"]=9000
```

In [28]: plt.figure(figsize=(20,20))
 plt.grid()
 sns.boxplot(data=feature,x=target,y="make");



Out[29]:

|    | symboling | normalized-<br>losses | make  | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engine-<br>type | • |
|----|-----------|-----------------------|-------|---------------|----------------|------------------|---------------------|-------|--------|-----------------|---|
| 41 | 0         | 85.0                  | honda | gas           | sedan          | fwd              | front               | 65.2  | 54.1   | ohc             |   |
| 4  |           |                       |       |               |                |                  |                     |       |        |                 |   |

In [30]: M df.loc[41,"price"]=12000

In [31]: plt.figure(figsize=(20,20))
 plt.grid()
 sns.boxplot(data=feature,x=target,y="make");



#### Out[32]:

|     | symboling | normalized-<br>Iosses | make   | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engi<br>ty |
|-----|-----------|-----------------------|--------|---------------|----------------|------------------|---------------------|-------|--------|------------|
| 172 | 2         | 134.0                 | toyota | gas           | convertible    | rwd              | front               | 65.6  | 53.0   |            |
| 178 | 3         | 197.0                 | toyota | gas           | hatchback      | rwd              | front               | 67.7  | 52.0   | do         |
| 179 | 3         | 197.0                 | toyota | gas           | hatchback      | rwd              | front               | 67.7  | 52.0   | do         |
| 180 | -1        | 90.0                  | toyota | gas           | sedan          | rwd              | front               | 66.5  | 54.1   | do         |
| 181 | -1        | 122.0                 | toyota | gas           | wagon          | rwd              | front               | 66.5  | 54.1   | do         |
|     |           |                       |        |               |                |                  |                     |       |        |            |

```
    df.loc[[172,178,179,180,181],"price"]

In [33]:
    Out[33]: 172
                       17669
               178
                       16558
               179
                       15998
               180
                       15690
               181
                       15750
               Name: price, dtype: int64
            ▶ df.loc[[172,178,179,180,181],"price"]=13000
In [34]:
In [35]:
            ▶ plt.figure(figsize=(20,20))
               plt.grid()
               sns.boxplot(data=feature,x=target,y="make");
                   chevrolet
                    dodge
                    isuzu
                 mercedes-benz
                  mitsubish
                    peugot
                   plymouth
                    subaru
```

25000 price

 df[(df["make"]=="mitsubishi")&(df["price"]>13000)] In [36]: Out[36]: normalizedfuelbodydriveenginesymboling make width height losses type style wheels location 83 3 50.2 122.0 mitsubishi gas hatchback fwd front 66.3 84 3 122.0 mitsubishi hatchback fwd front 66.3 50.2 gas df.loc[[83,84],"price"] In [37]: Out[37]: 83 14869 14489 Name: price, dtype: int64

df.loc[[83,84],"price"]=13000

In [38]:

```
In [39]:  plt.figure(figsize=(20,20))
  plt.grid()
  sns.boxplot(data=feature,x=target,y="make");
```



Out[40]:

|     | symboling | normalized-<br>losses | make     | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | en |
|-----|-----------|-----------------------|----------|---------------|----------------|------------------|---------------------|-------|--------|----|
| 124 | 3         | 122.0                 | plymouth | gas           | hatchback      | rwd              | front               | 66.3  | 50.2   |    |
| 4   |           |                       |          |               |                |                  |                     |       | 1      |    |

Out[41]: 12764

In [42]: M df.loc[124,"price"]=8500







Out[44]:

|    | symboling | normalized-<br>losses | make  | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engine-<br>type | е |
|----|-----------|-----------------------|-------|---------------|----------------|------------------|---------------------|-------|--------|-----------------|---|
| 45 | 0         | 122.0                 | isuzu | gas           | sedan          | fwd              | front               | 63.6  | 52.0   | ohc             |   |
| 4  |           |                       | _     | _             | _              | _                |                     |       |        |                 |   |

In [45]: ► df.loc[45,"price"]

Out[45]: 23000

```
In [46]:

    df.loc[45,"price"]=13500

In [47]:
               plt.figure(figsize=(20,20))
               plt.grid()
               sns.boxplot(data=feature, x=target, y="make");
                   chevrolet
                    peugot
                                                              25000
price
```

To identify skew from numeric datatype and how to apply log transformation

```
In [48]: ► df.describe()
```

#### Out[48]:

|       | symboling  | normalized-<br>losses | width      | height     | engine-<br>size | horsepower | city-mp   |
|-------|------------|-----------------------|------------|------------|-----------------|------------|-----------|
| count | 205.000000 | 205.000000            | 205.000000 | 205.000000 | 205.000000      | 205.000000 | 205.00000 |
| mean  | 0.834146   | 122.000000            | 65.907805  | 53.724878  | 126.907317      | 104.256158 | 25.21951  |
| std   | 1.245307   | 31.681008             | 2.145204   | 2.443522   | 41.642693       | 39.519211  | 6.54214   |
| min   | -2.000000  | 65.000000             | 60.300000  | 47.800000  | 61.000000       | 48.000000  | 13.00000  |
| 25%   | 0.000000   | 101.000000            | 64.100000  | 52.000000  | 97.000000       | 70.000000  | 19.00000  |
| 50%   | 1.000000   | 122.000000            | 65.500000  | 54.100000  | 120.000000      | 95.000000  | 24.00000  |
| 75%   | 2.000000   | 137.000000            | 66.900000  | 55.500000  | 141.000000      | 116.000000 | 30.00000  |
| max   | 3.000000   | 256.000000            | 72.300000  | 59.800000  | 326.000000      | 288.000000 | 49.00000  |
| 4     |            |                       |            |            |                 |            |           |

### In [49]: ► df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):
```

| #    | Column              | Non-Null Count   | Dtype   |
|------|---------------------|------------------|---------|
|      |                     |                  |         |
| 0    | symboling           | 205 non-null     | int64   |
| 1    | normalized-losses   | 205 non-null     | float64 |
| 2    | make                | 205 non-null     | object  |
| 3    | fuel-type           | 205 non-null     | object  |
| 4    | body-style          | 205 non-null     | object  |
| 5    | drive-wheels        | 205 non-null     | object  |
| 6    | engine-location     | 205 non-null     | object  |
| 7    | width               | 205 non-null     | float64 |
| 8    | height              | 205 non-null     | float64 |
| 9    | engine-type         | 205 non-null     | object  |
| 10   | engine-size         | 205 non-null     | int64   |
| 11   | horsepower          | 205 non-null     | float64 |
| 12   | city-mpg            | 205 non-null     | int64   |
| 13   | highway-mpg         | 205 non-null     | int64   |
| 14   | price               | 205 non-null     | int64   |
| dtyp | es: float64(4), int | 64(5), object(6) |         |

```
In [50]: ▶ feature.select_dtypes(["int64","float64"]).columns
```

memory usage: 24.1+ KB

```
▶ | colname=feature.select_dtypes(["int64","float64"]).columns
In [51]:
           ▶ colname
In [52]:
              Index(['symboling', 'normalized-losses', 'width', 'height', 'engine-siz
                      'horsepower', 'city-mpg', 'highway-mpg'],
                     dtype='object')
           In [53]:
           ▶ | skew(feature["normalized-losses"])
In [54]:
    Out[54]: 0.8485348696008058
In [55]:
           ▶ feature[colname]
                    symboling
                                           width height
                                                                 horsepower
                                    losses
                                                            size
                                                                              mpg
                                                                                        mpg
                 0
                           3
                                     122.0
                                            64.1
                                                   48.8
                                                            130
                                                                       111.0
                                                                               21
                                                                                         27
                 1
                           3
                                     122.0
                                            64.1
                                                   48.8
                                                            130
                                                                       111.0
                                                                               21
                                                                                          27
                 2
                           1
                                     122.0
                                            65.5
                                                   52.4
                                                            152
                                                                       154.0
                                                                               19
                                                                                          26
                 3
                           2
                                     164.0
                                            66.2
                                                   54.3
                                                            109
                                                                       102.0
                                                                                          30
                                                                               24
                 4
                           2
                                     164.0
                                            66.4
                                                   54.3
                                                            136
                                                                       115.0
                                                                               18
                                                                                          22
                           ...
                                                   ...
                                                             ...
                                                                                ...
                                                                                          ...
               200
                           -1
                                      95.0
                                            68.9
                                                   55.5
                                                            141
                                                                       114.0
                                                                               23
                                                                                          28
               201
                                      95.0
                                            68.8
                           -1
                                                   55.5
                                                            141
                                                                       160.0
                                                                               19
                                                                                          25
               202
                                      95.0
                                            68.9
                                                   55.5
                                                                       134.0
                           -1
                                                            173
                                                                               18
                                                                                          23
               203
                           -1
                                      95.0
                                            68.9
                                                   55.5
                                                            145
                                                                       106.0
                                                                               26
                                                                                          27
               204
                                      95.0
                                            68.9
                                                   55.5
                                                            141
                                                                       114.0
                                                                               19
                                                                                          25
                           -1
              205 roug v Q columns
           ▶ skew(feature[colname])
In [56]:
```

Out[56]: array([0.20952469, 0.84853487, 0.89737535, 0.06265992, 1.93337485,

1.38751473, 0.65883775, 0.53603793])





In [58]: ► df.corr()# to check the corelation

C:\Users\Reshmi\AppData\Local\Temp\ipykernel\_21608\3597234383.py:1: Futur eWarning: The default value of numeric\_only in DataFrame.corr is deprecat ed. In a future version, it will default to False. Select only valid colu mns or specify the value of numeric\_only to silence this warning.

df.corr()# to check the corelation

#### Out[58]:

|                       | symboling | normalized-<br>losses | width     | height    | engine-<br>size | horsepower | city-mpg  |
|-----------------------|-----------|-----------------------|-----------|-----------|-----------------|------------|-----------|
| symboling             | 1.000000  | 0.465190              | -0.232919 | -0.541038 | -0.105790       | 0.071389   | -0.035823 |
| normalized-<br>losses | 0.465190  | 1.000000              | 0.084195  | -0.370706 | 0.110997        | 0.203434   | -0.218749 |
| width                 | -0.232919 | 0.084195              | 1.000000  | 0.279210  | 0.735433        | 0.642195   | -0.642704 |
| height                | -0.541038 | -0.370706             | 0.279210  | 1.000000  | 0.067149        | -0.110137  | -0.048640 |
| engine-size           | -0.105790 | 0.110997              | 0.735433  | 0.067149  | 1.000000        | 0.810713   | -0.653658 |
| horsepower            | 0.071389  | 0.203434              | 0.642195  | -0.110137 | 0.810713        | 1.000000   | -0.803162 |
| city-mpg              | -0.035823 | -0.218749             | -0.642704 | -0.048640 | -0.653658       | -0.803162  | 1.000000  |
| highway-<br>mpg       | 0.034606  | -0.178221             | -0.677218 | -0.107358 | -0.677470       | -0.770903  | 0.971337  |
| price                 | -0.099208 | 0.123851              | 0.722863  | 0.150782  | 0.848517        | 0.736585   | -0.655155 |

```
▶ pd.concat([feature,target],axis=1).corr().style.background gradient()
In [59]:
              C:\Users\Reshmi\AppData\Local\Temp\ipykernel 21608\4285486589.py:1: Futur
              eWarning: The default value of numeric only in DataFrame.corr is deprecat
              ed. In a future version, it will default to False. Select only valid colu
              mns or specify the value of numeric only to silence this warning.
                pd.concat([feature,target],axis=1).corr().style.background gradient()
   Out[59]:
                                     normalized-
                                                                     engine-
                          symboling
                                                    width
                                                            height
                                                                             horsepower
                                                                                         city-mpg
                                         losses
                                                                        size
                                       0.465190 -0.232919 -0.541038
                symboling
                            1.000000
                                                                   -0.105790
                                                                               0.071389
                                                                                        -0.035823
               normalized-
                            0.465190
                                       1.000000
                                                 0.084195 -0.370706
                                                                    0.110997
                                                                               0.203434
                                                                                        -0.218749
                   losses
                                                 1.000000
                    width
                           -0.232919
                                       0.084195
                                                          0.279210
                                                                    0.735433
                                                                               0.642195 -0.642704
                   height
                           -0.541038
                                       -0.370706
                                                 0.279210
                                                          1.000000
                                                                    0.067149
                                                                               -0.110137 -0.048640
                           -0.105790
                                       0.110997
                                                 0.735433
                                                          0.067149
                                                                    1.000000
                                                                               0.810713 -0.653658
               engine-size
               horsepower
                            0.071389
                                       0.203434
                                                 0.642195
                                                         -0.110137
                                                                    0.810713
                                                                               1.000000 -0.803162
                           -0.035823
                                       -0.218749 -0.642704 -0.048640
                                                                   -0.653658
                                                                               -0.803162
                 city-mpg
                                                                                         1.000000
                 highway-
                            0.034606
                                       -0.178221 -0.677218 -0.107358
                                                                   -0.677470
                                                                               -0.770903
                                                                                         0.971337
                     mpg
                     price
                           -0.099208
                                       0.123851
                                                 0.722863
                                                          0.150782
                                                                    0.848517
                                                                               0.736585 -0.655155

    | df["normalized-losses"].unique()
In [60]:
    Out[60]: array([122., 164., 158., 192., 188., 121., 98., 81., 118., 148., 110.,
                      145., 137., 101., 78., 106., 85., 107., 104., 113., 150., 129.,
                      115., 93., 142., 161., 153., 125., 128., 103., 168., 108., 194.,
                      231., 119., 154., 74., 186., 83., 102.,
                                                                     89., 87., 77.,
                      134., 65., 197., 90., 94., 256.,
              feature["normalized-losses"]=np.log(feature["normalized-losses"])
In [61]:
              skew(feature["normalized-losses"])
In [62]:
```

## **Encoding**

Out[62]: 0.03137735337911685

1.OneHotEncoding 2.LabelEncoding

```
In [63]: ▶ from sklearn.preprocessing import OneHotEncoder
```

```
    one=OneHotEncoder()

In [64]:
            one.fit transform(feature[["make"]]).toarray()
   Out[64]: array([[1., 0., 0., ..., 0., 0., 0.],
                    [1., 0., 0., ..., 0., 0., 0.]
                    [1., 0., 0., ..., 0., 0., 0.]
                    [0., 0., 0., \ldots, 0., 0., 1.],
                    [0., 0., 0., ..., 0., 0., 1.],
                    [0., 0., 0., \ldots, 0., 0., 1.]]
          ▶ | from sklearn.preprocessing import LabelEncoder
In [65]:
            le=LabelEncoder()
            le.fit_transform(target)
   Out[65]: array([119, 134, 134, 125, 144, 128, 145, 153, 163, 109, 133, 141, 157,
                    158, 164, 168, 180, 177,
                                             1, 11, 17,
                                                             7,
                                                                 13,
                                                                      49,
                         64, 67, 70, 14, 25,
                                                       16,
                                                           32,
                                                   5,
                                                                 34,
                                                                      34,
                                                                           47,
                                                                                71,
                         91, 109, 92, 22, 88, 121, 98, 170, 175, 176,
                                                                            2.
                                  97, 106, 122, 131, 66,
                                                           61,
                         21, 37,
                                                                93,
                                                                      90,
                                                                           95, 100,
                    148, 149, 165, 167, 166, 169, 173, 174, 179, 181, 135,
                     19, 42, 82, 62, 113, 115, 115, 28, 55, 74, 74,
                                                                                30,
                                                                            6,
                         24, 36,
                                  35, 46, 39, 52, 58,
                                                           69,
                                                                79, 120, 126, 120,
                    143, 156, 150, 108, 116, 112, 124, 130, 140, 138, 142, 137, 146,
                          7, 49, 10, 20, 41, 67, 63, 160, 171, 172, 178, 109,
                    147,
                         81, 107, 110, 127, 129, 147, 152,
                                                             0,
                                                                 29,
                                                                      40,
                     83,
                         72, 102,
                                  38, 89, 53, 105,
                                                        3,
                                                           12,
                                                                 15,
                                                                      26,
                                                                          48,
                                        43,
                                             59, 73, 54,
                     27,
                         33, 48,
                                   45,
                                                           57,
                                                                76,
                                                                      78,
                                                                           60,
                     86,
                         99, 103, 115,
                                        68,
                                             94, 85, 96, 101, 115, 115, 115, 115,
                                  56, 61, 77, 87, 104, 84, 117, 123, 111, 114,
                    44,
                         50, 51,
                    118, 132, 136, 151, 154, 139, 155, 159, 161, 162, dtype=int64)
In [66]:
          ▶ | catcol=feature.select dtypes("object").columns
In [67]:
          ▶ catcol
   Out[67]: Index(['make', 'fuel-type', 'body-style', 'drive-wheels', 'engine-locatio
             n',
                    'engine-type'],
                   dtype='object')
```

## **Using OrdinalEncoder**

input

In [69]: ▶ feature[catcol]

Out[69]:

|     | make | fuel-type | body-style | drive-wheels | engine-location | engine-type |
|-----|------|-----------|------------|--------------|-----------------|-------------|
| 0   | 0.0  | 1.0       | 0.0        | 2.0          | 0.0             | 0.0         |
| 1   | 0.0  | 1.0       | 0.0        | 2.0          | 0.0             | 0.0         |
| 2   | 0.0  | 1.0       | 2.0        | 2.0          | 0.0             | 5.0         |
| 3   | 1.0  | 1.0       | 3.0        | 1.0          | 0.0             | 3.0         |
| 4   | 1.0  | 1.0       | 3.0        | 0.0          | 0.0             | 3.0         |
|     |      |           |            |              |                 |             |
| 200 | 21.0 | 1.0       | 3.0        | 2.0          | 0.0             | 3.0         |
| 201 | 21.0 | 1.0       | 3.0        | 2.0          | 0.0             | 3.0         |
| 202 | 21.0 | 1.0       | 3.0        | 2.0          | 0.0             | 5.0         |
| 203 | 21.0 | 0.0       | 3.0        | 2.0          | 0.0             | 3.0         |
| 204 | 21.0 | 1.0       | 3.0        | 2.0          | 0.0             | 3.0         |

205 rows × 6 columns

In [70]: ▶ feature.head()

Out[70]:

|   | symboling | normalized-<br>losses | make | fuel-<br>type | body-<br>style | drive-<br>wheels | engine-<br>location | width | height | engine-<br>type | enţ |
|---|-----------|-----------------------|------|---------------|----------------|------------------|---------------------|-------|--------|-----------------|-----|
| 0 | 3         | 4.804021              | 0.0  | 1.0           | 0.0            | 2.0              | 0.0                 | 64.1  | 48.8   | 0.0             |     |
| 1 | 3         | 4.804021              | 0.0  | 1.0           | 0.0            | 2.0              | 0.0                 | 64.1  | 48.8   | 0.0             |     |
| 2 | 1         | 4.804021              | 0.0  | 1.0           | 2.0            | 2.0              | 0.0                 | 65.5  | 52.4   | 5.0             |     |
| 3 | 2         | 5.099866              | 1.0  | 1.0           | 3.0            | 1.0              | 0.0                 | 66.2  | 54.3   | 3.0             |     |
| 4 | 2         | 5.099866              | 1.0  | 1.0           | 3.0            | 0.0              | 0.0                 | 66.4  | 54.3   | 3.0             |     |
|   |           |                       | _    | _             | _              | _                |                     |       |        |                 |     |

In [ ]: ▶