Printemps 2022

Feuille d'exercices

Algèbre : Espaces préhilbertiens –
Enseignant : Xavier Friederich

Exercice 1.

1. Soit $n \in \mathbb{N}^*$ et soient $\alpha_1, \ldots, \alpha_n \in \mathbb{R}_+^*$. Montrer que l'application $\varphi : (x,y) \mapsto \sum_{i=1}^n \alpha_i x_i y_i$ définit un produit scalaire sur \mathbb{R}^n , où x_1, \ldots, x_n (respectivement y_1, \ldots, y_n) désignent les n composantes du vecteur x (respectivement y).

2. Que peut-on dire si les réels $\alpha_1, \ldots, \alpha_n$ ne sont pas tous strictement positifs?

Exercice 2. Montrer que la valeur absolue sur \mathbb{R} définit une norme euclidienne sur \mathbb{R} .

Exercice 3. On note $E = \mathcal{C}^1([0,1],\mathbb{R})$ et on définit $\varphi: E^2 \to \mathbb{R}$ par

$$\forall (f,g) \in E^2, \qquad \varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t) \ dt.$$

- 1. Montrer que φ est un produit scalaire sur E. On notera $\|\cdot\|$ la norme euclidienne associée.
- 2. Calculer les produits scalaires $\varphi(\cos, \sin)$ et $\varphi(\mathrm{Id}, \exp)$.
- 3. Calculer les normes $\|\cos\|$, $\|\sin\|$ et $\|\exp\|$.
- 4. Ecrire l'inégalité de Cauchy-Schwarz pour ce produit scalaire.

Exercice 4. Soit $(E, \|\cdot\|)$ un espace préhilbertien et soient $x, y, z \in E$. Montrer que

$$||x - z||^2 \le 2(||x - y||^2 + ||y - z||^2).$$

Exercice 5. Soit $(x, y, z) \in \mathbb{R}^3$ tel que $x^2 + y^2 + z^2 \le 1$.

- 1. Montrer que $(x + 2y + 3z)^2 \le 14$.
- $2. \ \,$ Etudier le cas d'égalité dans l'inégalité précédente.

Exercice 6. Soit E un espace préhilbertien de norme associée $\|\cdot\|$. Soit n un entier naturel non nul et soit $(x_1, \ldots, x_n) \in E^n$.

Montrer que
$$\left\| \sum_{k=1}^{n} x_k \right\|^2 \le n \sum_{k=1}^{n} \|x_k\|^2$$
.

Exercice 7. Soit $n \in \mathbb{N}^*$ et soient $x_1, \ldots, x_n \in \mathbb{R}_+^*$ vérifiant $\sum_{k=1}^n x_k = 1$.

Montrer que $\sum_{k=1}^{n} \frac{1}{x_k} \ge n^2$ et étudier le cas d'égalité.

Exercice 8. Montrer en utilisant l'inégalité de Cauchy-Schwarz :

$$\forall n \ge 1, \qquad \sum_{k=1}^{n} k\sqrt{k} \le \frac{n(n+1)\sqrt{2n+1}}{2\sqrt{3}}.$$

Exercice 9. Soit $n \in \mathbb{N}^*$. Pour tout $p \in \mathbb{N}$, on pose $S_p := \sum_{k=1}^n k^p$.

Montrer que $\forall p \in \mathbb{N}^*, \quad S_p^2 \leq S_{p-1}S_p.$

Exercice 10. Soit E un espace préhilbertien réel. Soit $(u, v) \in E^2$ vérifiant

$$\forall t \in \mathbb{R}, \quad ||u + tv|| \ge ||u||.$$

Montrer que u et v sont orthogonaux.

Exercice 11. Soit $E = \mathbb{R}_3[X]$ le \mathbb{R} -espace vectoriel des polynômes à une indéterminée de degrés inférieurs ou égaux à 3.

- 1. a. Montrer qu'en posant $(P|Q) := \int_{-1}^{1} P(t)Q(t) dt$, on définit un produit scalaire sur E.
 - b. Déterminer une base orthonormée de E pour ce produit scalaire.
 - c. Déterminer le supplémentaire orthogonal de $\mathrm{Vect}(X)$ dans E pour ce produit scalaire.
 - d. Déterminer la projection orthogonale de X^3-X^2 sur $\mathrm{Vect}(1,X)$ pour $(\cdot|\cdot)$.
- 2. Reprendre les questions précédentes avec $\langle P,Q\rangle:=\sum_{k=-2}^{2}P(k)Q(k)$.

Exercice 12. Dans \mathbb{R}^4 muni de sa structure euclidienne canonique, on considère les sous-espaces vectoriels F et G donnés par les équations suivantes dans la base canonique

$$F: \begin{cases} x+y+z+t &= 0 \\ x-2y+3z-4t &= 0 \end{cases} \text{ et } G: \begin{cases} x+y &= 0 \\ z+t &= 0, \end{cases}$$

- 1. Déterminer une base de F^{\perp} . Orthonormaliser cette base par le processus de Gram-Schmidt.
- 2. Déterminer l'expression de la projection orthogonale de (x, y, z, t) sur F^{\perp} .
- 3. Déterminer la matrice dans la base canonique de \mathbb{R}^4 de la projection orthogonale sur G.
- 4. Soit $x \in \mathbb{R}^4$. Déterminer la distance de x au sous-espace vectoriel G.

Exercice 13. Soit E un espace préhilbertien réel, muni du produit scalaire noté \langle,\rangle . Soient F et G deux sous-espaces vectoriels de E.

1. Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

- 2. Montrer que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$.
- 3. Montrer que si on suppose de plus E euclidien, alors l'inclusion de la question précédente est une égalité.

Exercice 14. 1. Vérifier que l'application $(A, B) \mapsto \operatorname{tr}({}^t AB)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

- 2. Montrer que $F := \{M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et préciser sa dimension.
- 3. Déterminer F^{\perp} .

Exercice 15. Déterminer lorsque le couple (a,b) décrit \mathbb{R}^2 la valeur minimale de l'intégrale

$$\int_0^{\pi} (t - a\cos t - b\sin t)^2 dt.$$

Exercice 16. Déterminer

$$\inf \left\{ \int_{-1}^{1} (x^3 - ax^2 - bx - c)^2 dt, (a, b, c) \in \mathbb{R}^3 \right\}.$$

Exercice 17. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien, de norme associée notée $\| \cdot \|$ et soient e_1, \ldots, e_n des vecteurs unitaires de E tels que

$$\forall x \in E, \quad \sum_{i=1}^{n} \langle x, e_i \rangle^2 = ||x||^2.$$

Montrer que (e_1, \ldots, e_n) est une base orthonormée de E.

Exercice 18 (Polynômes de Laguerre). On définit $\langle, \rangle : \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ par

$$\forall (P,Q) \in \mathbb{R}[X]^2, \qquad \langle P,Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} dt.$$

Pour tout $n \in \mathbb{N}$, on définit $h_n : \mathbb{R} \to \mathbb{R}$ par $h_n(x) = x^n e^{-x}$ pour tout $x \in \mathbb{R}$.

- 1. Montrer que \langle , \rangle est un produit scalaire sur $\mathbb{R}[X]$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme $L_n \in \mathbb{R}[X]$ tel que

$$\forall x \in \mathbb{R}, \quad h_n^{(n)}(x) = L_n(x)e^{-x}.$$

- 3. Montrer que pour tout $n \in \mathbb{N}$, $(L_0, L_1, \dots L_n)$ est une base orthogonale de $\mathbb{R}_n[x]$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $||L_n|| = n!$.

Exercice 19. 1. Vérifier que pour toute fonction continue f, l'intégrale $\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^1}} dt$ est convergente.

2. Déterminer la borne inférieure de $\int_{-1}^{1} \frac{P^2(t)}{\sqrt{1-t^2}} dt$ lorsque P décrit l'ensemble des polynômes unitaires (coefficient dominant égal à 1) de degré 3.

Exercice 20. On considère un espace euclidien (E, \langle, \rangle) .

1. Montrer que pour tout endomorphisme u de E, il existe un unique endomorphisme u^* de E tel que

$$\forall x, y \in E, \qquad \langle u(x), y \rangle = \langle x, u^*(y) \rangle.$$

On dira que u^* est l'adjoint de u.

2. Soit p un projecteur de E et soit p^* son adjoint. Montrer que

$$\operatorname{Ker}(p+p^*) = \operatorname{Ker} p \cap \operatorname{Ker} p^*.$$

Exercice 21. Soit E un espace euclidien et soit p un projecteur de E. Montrer l'équivalence entre les propositions suivantes :

- 1. p est une projection orthogonale.
- 2. p est un endomorphisme symétrique (c'est-à-dire $\forall x,y \in E, \langle p(x),y \rangle = \langle x,p(y) \rangle$).
- 3. $\forall x \in E, \quad ||p(x)|| \le ||x||.$

Exercice 22. Déterminer l'ensemble des matrices orthogonales et triangulaires supérieures de taille n.

Exercice 23. Soit $M = (m_{i,j})_{1 \le i,j \le n} \in \mathcal{O}_n(\mathbb{R})$. On note v_1, \ldots, v_n les vecteurs colonnes de M (qui sont des éléments de \mathbb{R}^n), $v := \sum_{i=1}^n v_i$ et $u = \sum_{j=1}^n e_j$ où (e_1, \ldots, e_n) désigne la base canonique de \mathbb{R}^n . On munit enfin \mathbb{R}^n de sa structure euclidienne usuelle.

- 1. Montrer que $\sum_{i,j=1}^{n} m_{i,j} = \langle u, v \rangle$.
- 2. En déduire que $\left| \sum_{i,j=1}^{n} m_{i,j} \right| \leq n$. Cette inégalité est-elle optimale?
- 3. Démontrer que $n \leq \sum_{i,j=1}^{n} |m_{i,j}| \leq n^{\frac{3}{2}}$.

Exercice 24. Soit E un espace euclidien, soit $u \in \mathcal{O}(E)$ et soit F un sous-espace vectoriel de E.

- 1. Démontrer que $u\left(F^{\perp}\right)=u(F)^{\perp}$.
- 2. Démontrer que F est stable par u si et seulement si F^{\perp} est stable par u.

Exercice 25. Soit $E = \mathbb{R}_3[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) \ dt$. On considère l'application $\phi : E \to E$ définie par

$$\phi(P)(X) = P(-X).$$

Démontrer que ϕ est une symétrie orthogonale.

Exercice 26. Soit (E, \langle, \rangle) un espace euclidien non réduit à $\{0\}$ et soit $a \in E \setminus \{0\}$. On pose pour tout $x \in E$

$$s_a(x) = x - 2 \frac{\langle a, x \rangle}{\langle a, a \rangle} a.$$

- 1. Montrer que s_a est un endomorphisme orthogonal.
- 2. Déterminer $Ker(s_a Id)$ et $Ker(s_a + Id)$.
- 3. Décrire géométriquement s_a .

Exercice 27. Soit E un espace euclidien et soit $f \in \mathcal{O}(E)$ diagonalisable. Montrer que f est une symétrie.

Exercice 28. On munit $\mathbb{R}_n[X]$ du produit scalaire \langle , \rangle défini par : $\forall P, Q \in \mathbb{R}_n[X]$,

$$\langle P, Q \rangle := \int_{-1}^{1} P(t)Q(t) dt.$$

Montrer que l'endomorphisme φ de $\mathbb{R}_n[X]$ déterminé par

$$\varphi(P) := (X^2 - 1)P'' + 2XP' + P$$

est symétrique.

Exercice 29. On considère la matrice $A := \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$.

- 1. Justifier que A est diagonalisable en base orthonormée.
- 2. Déterminer une base orthonormée de vecteurs propres pour A.

Exercice 30. On considère la matrice $B := \begin{pmatrix} 2 & 4 & 2 \\ 4 & 2 & -2 \\ 2 & -2 & 5 \end{pmatrix}$.

Justifier que B est diagonalisable et diagonaliser B en base orthonormée.

Exercice 31. Soit \langle , \rangle le produit scalaire usuel sur \mathbb{R}^n et soit $\| \cdot \|$ la norme associée. Soit $A \in \mathcal{S}_n(\mathbb{R})$. On ordonne les valeurs propres $\lambda_1 \leq \cdots \leq \lambda_n$ (avec d'éventuelles répétitions).

Montrer que $\lambda_1 = \min_{\|x\|=1} \langle Ax, x \rangle$ et $\lambda_n = \max_{\|x\|=1} \langle Ax, x \rangle$.

Exercice 32. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. On pose $B := A^3 + A + I_n$. Montrer que A est un polynôme en la matrice B.

Exercice 33. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A +^t A$ est nilpotente. Montrer que A est antisymétrique.

Exercice 34. Si $M \in \mathcal{S}_n(\mathbb{R})$ vérifie $M^p = I_n$ pour un certain $p \in \mathbb{N}^*$, que vaut M^2 ?

Exercice 35. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Justifier que la matrice ${}^{t}AA$ est diagonalisable.
- 2. Montrer que les valeurs propres de ${}^{t}AA$ sont toutes positives.