CHAPTER 3 SEMIGROUPS & GROUPS

Binary operation

"Binary" means "two." A binary operation is simply an operation that requires two arguments, or "inputs." For example, the arithmetic operations you learn in elementary school (+, -, x, /) are binary operations. So are dot products, cross products, and other arbitrary operations.

Let S be a non-empty set. An everywhere defined function f: S x S \rightarrow S is called a <u>binary operation</u>. This takes 2 elements of S, combine them in some manner, and produce a result which is also an element of S.

<u>eg (1)</u>

+ is a binary operation on **Z**.

For any two integers $\in \mathbb{Z}$, it is possible to find the sum. This function is everywhere defined.

For any two integers, their sum is also an integer. \mathbb{Z} is said to be <u>closed</u> under this operation of +.

eg (2)

 \div is not a binary operation on ${\bf Z}$.

<u>eg (3)</u>

 \cup is a binary operation on P(S).

eg (4) Let A = $\{0, 1\}$. We define binary operations \land and \lor by the following tables:

^	0	1
0		
1		

V	0	1
0		
1		

In general, we represent a binary operation by *. The result of operating on x and y is represented by x*y, which is called the "product" of x and y.

The binary operation * on S is said to be <u>associative</u> if $(x^*y)^*z = x^*(y^*z) \quad \forall x, y, z \in S$ Then we may write x^*y^*z without parentheses.

eg (5)

The binary operation * on S is said to be <u>commutative</u> if $x*y = y*x \quad \forall \ x, y \in S$.

<u>eg (6)</u>

Semigroups

A non-empty set S, together with a binary operation * defined on it, is called a <u>semigroup</u> if this operation is associative, ie

$$(x*y)*z = x*(y*z) \quad \forall x, y, z \in S$$

Because of associativity of * in a semigroup, brackets are not essential.

eg. Writing a*b*c*d is as good as writing (a*b)*(c*d) or (a*(b*(c*d))).

eg (7)

Let $S = \mathbb{Z}^+$, the set of all positive integers. Let the binary operation * be the usual addition +. + is associative:

eg (8)

Let L be a lattice. The operation \vee is associative: $(a \vee b) \vee c = a \vee (b \vee c)$

eg (9)

Let A be a set of symbols. A* is the set of all finite strings formed using symbols in A. Let & be the binary operation of concatenation (joining of 2 strings). This & is associative:

Identity

An element e of a semigroup S is called an <u>identity</u> element if $x^*e = e^*x = x \quad \forall \ x \in S$.

eg (10)

In a lattice L, $a \lor 0 = a$ and $0 \lor a = a \forall a$.

0 is the identity for $[L, \vee]$.

What is the identity for $[L, \land]$?

Theorem

If a semigroup has an identity element, then it is unique. (ie there is only one identity element.)

Monoid

A semigroup that has an identity element is called a monoid.

<u>eg (11)</u>
$[\mathbb{Z}, +]$ is a monoid. The identity element is
[ℤ+, +] is a semigroup, but not a monoid:
<u>eg (12)</u>
$[P(S), \cup]$ is a monoid.
\cup is associative:
The identity element is

<u>eg (13)</u>

Consider the free semigroup $[A^*, \&]$ defined in eg(9).

Let \wedge be the null string (empty string). Then

$$\alpha \& \land =$$
 and $\land \& \alpha =$ $\forall \alpha \in A^*$.

& is associative, with \wedge as identity element.

So, [A*, &] is a monoid. This is called the <u>free monoid</u> generated by A.

eg (14)

Let $B = \{0,1\}$. Define a binary operation \oplus by the following "addition table":

\oplus	0	1
0		
1		

Group

A set G with a binary operation * is called a group if

(1) * is associative: (a * b) * c = a * (b * c)

 \forall a, b, c \in G

(2) There is an identity element e such that

$$e * a = a$$
 and $a * e = a$

$$\forall a \in G$$

(3) For every $a \in G$, there is an element a' such that a * a' = e and a' * a = e

This a' is called the <u>inverse</u> of a. This is usually denoted by a⁻¹. For convenience, we sometimes write ab for a*b.

<u>eg (15)</u>

 $(\mathbb{Z},+)$ is a group under the usual addition, +.

eg (16)

 (\mathbb{Z} , \times) under the usual multiplication is

<u>eg (17)</u>

The set of all nonzero real numbers under ordinary multiplication is a group.

eg (18) Let B = $\{0,1\}$. Define binary operation \oplus by the "multiplication table" shown:

\oplus	0	1
0		
1		

(B, \oplus) is a group with identity = _____

Write the inverse of each element:

Some Theorems

- (1) The inverse of any element in a group is unique.
- (2) Cancellation law:

$$ab = ac \Rightarrow b = c$$

$$ba = ca \Rightarrow b = c$$

- $(3) (a^{-1})^{-1} = a$
- (4) $(ab)^{-1} = b^{-1}a^{-1}$

Subgroup

A subset H of G is called a subgroup of G if

- (1) for any $a, b \in H$, $a*b \in H$;
- $(2) e \in H$;
- (3) for any $a \in H$, $a^{-1} \in H$.

eg (19)

Let
$$G = [\mathbb{Z}, +]$$

Let H be the set of all even integers, $H \subseteq G$.

Let H₂ be the set of all odd integers,

Product of Groups

Suppose $(G_1, *_1)$ and $(G_2, *_2)$ are 2 groups. $G_1 \times G_2 = \{(g_1, g_2): g_1 \in G_1, g_2 \in G_2\}$

 $G_1 \times G_2$ is a group under the operation * defined by $(g_1, g_2) * (h_1, h_2) = (g_1 *_1 h_1, g_2 *_2 h_2)$

eg (20)

Let B = {0,1}, \oplus as defined in previous example. (B, \oplus) is a group. The product group Bⁿ = {(b₁, b₂, ..., b_n) : each b_i \in B} with binary operation \oplus :

For convenience, we may write $b_1b_2b_3...b_n$ for $(b_1,b_2,b_3,...b_n)$ For the case n=2, binary operation table for B^2 is as below:

\oplus	00	01	10	11
00				
01				
10				
11				

The identity element of (B^2, \oplus) is Here, every element is the inverse of itself:

Left Coset and Right Coset

```
Let H be a subgroup of a group G.
```

```
For a \in G, aH = \{ah : h \in H\} is called a <u>left coset</u> of H.

Ha = \{ha : h \in H\} is called a <u>right coset</u> of H.

If H = \{h_1, h_2, ..., h_m\}, aH = \{ah_1, ah_2, ..., ah_m\}

Ha = \{h_1a, h_2a, ..., h_ma\}
```

eg (21)

Consider the group (B^2, \oplus) . Let $H = \{00, 01\}$ Show that H is a subgroup of B^2 . Write down all the left cosets of H.

(00)H =

Here, every left coset = the corresponding right coset as the operation \oplus is commutative.

We see that:

- (1) Every coset has the same number of elements as H.
- (2) Cosets are either identical or disjoint.

(ie. Distinct cosets have no common elements.)

The 2 statements above are true in general, that is, valid for any group G and any subgroup H.

The set of all distinct cosets form a partition of the group G.

Let G/H represent the set of all left cosets (may also use right cosets) Define a binary operation \otimes on the cosets by

This "operation by representative" is well defined (giving consistent results) if H has the property that every left coset is the same as the corresponding right coset. (A subgroup H with this property is called a normal subgroup.) The binary operation \otimes is associative:

The	identity	of	\otimes	is	•
_		_			

The inverse of aH is _____.

G/H under the binary operation \otimes is a group. This is called the quotient group of G relative to H.

Eg (22)

Write the binary operation table for the quotient group of B² relative to the subgroup H in the preceding example.

\otimes	(00)H	(10)H
(00)H		
(10)H		

Show that the binary operation on \Re defined by x * y = 2 + xy is commutative but not associative.

Determine whether the description of * is a valid definition of binary operation on the set. Justify your answer.

- (i) On \mathbb{Z} , where $x * y = \frac{x}{y}$
- (ii) On \mathbb{Z}^+ , where $x * y = x^y$
- (iii) On \mathbb{Z} , where $x * y = \frac{2x}{y}$
- (iv) On \mathbb{Z}^+ , where y * z = 4y z
- (v) On $\mathbb{R}^+ \{0\}$, where $x * y = x^{-y}$

A binary operation * is defined on the set $S = \{a, b, c\}$ by the following table:

*	a	b	c
a	b	С	b
\overline{b}	a	b	c
\overline{c}	С	а	b

By evaluating $(c^*a)^*b$ and another suitable expression, show that [S, *] is not a semigroup.

The set of all integers, \mathbb{Z} , is a group under the usual addition. Let H be the set of all multiples of 5 (including negative multiples). Show that H is a subgroup of $[\mathbb{Z}, +]$.

:

Determine whether the following binary operation * gives a group structure on \mathbb{R}^+ Let * be defined on \mathbb{R}^+ by $a*b=\sqrt{ab}$.

Let $G = \{0, 1, 2, 3, 4, 5\}$ and * be a binary operation on G defined as a * b = the remainder when a + b is divided by 6.

The binary operation table is given below:

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

It is known that * is associative and [G, *] is a group.

- (i) Briefly state what is meant by saying that * is associative.
- (ii) Determine whether * is commutative.
- (iii) State the identity element of [G, *].
- (iv) State the inverse of each element in [G, *].
- (v) Give an example of a subgroup of [G, *] consisting of 2 elements.