Quantum Al mini Seminar series

Quantum Fundamentals

- Quantum Power
 - One chip checks many paths at once (parallel thinking)
 - Classical = tries one at a time
- Why Quantum for Al
 - All has huge spaces to search (like hyperparameters or paths)
 - Quantum explores more options faster
- Still mysterious
 - It works—but no one fully knows why (just how nature works)

Classical Bits vs. Qubits

- Classical Bits
 - Just 0 or 1 (clear cut)
 - Always gives same answer if you run again
- Qubits
 - Can be 0 and 1 at same time → superposition
 - Has 3D spin (on Bloch sphere)
 - Once you measure it → collapses to 0 or 1
 - Example: like flipping a coin but it spins until you look
- Entanglement
 - Qubits can be linked → affect each other even if far apart
 - Example: twin dice roll one and the other "knows"
 - Used for quantum communication + more powerful circuits

Superposition & Entanglement in Al

- Superposition
 - Try many answers at once
 - Saves time → better for huge AI tasks
- Entanglement
 - Helps connect data, qubits can share info
 - Good for graphs, high-dimensional data
- Example:
 - Bell State = two entangled qubits
 - Collapse = final measured state (what's left after you "look")

Quantum Gates (Tools)

- Pauli-X \rightarrow flips 0 \leftrightarrow 1 (like NOT gate)
- Z Gate → changes phase (used in logic)
- Hadamard (H) → puts qubit into superposition
- CNOT → makes entanglement
- Important: All quantum gates are reversible

Dirac Notation: |0> (called "ket") and (0| (called "bra")

Simulation & Circuits

- Classical computers
 - Good for testing small circuits
 - Slow for full-scale quantum tasks
- Quantum deployment
 - Needs proper circuits (depends on the task)
 - Some setups can take hours to run

Applications in Al

- Hyperparameter Search
 - Use Grover's Algorithm → faster search
- Optimization
 - Find best path or choice (ex: robot with water tank in a forest)
- Real Companies
 - ProteinQure → finds new drugs
 - D-Wave → supply chain optimization
 - CQC → improves NLP
 - Toshiba → secure networks

Quantum Algorithms for Al

- Grover's Algorithm
 - Speeds up search (ex: finding needle in haystack)
 - Used in tuning AI models
- QFT (Quantum Fourier Transform)
 - Turns complex wave into simple one
 - Used in AI for pattern detection & optimization

Type of Algorithm

classical quantum

CC CQ

QC QQ

- QAQA
 - Solves graph problems (like scheduling or routing)
 - Good for logistics + planning
- VQE
 - Mix of quantum + classical
 - Used to optimize parameters (like weights in ML)
 - Loop: set guess → measure → adjust → repeat
- QSVM
 - Quantum version of SVM (classifier)
- Quantum Walks
 - Move through a graph faster
 - Good for ranking nodes, pathfinding

Data in Quantum

- Amplitude Encoding
 - Vector stored in amplitude
- Angle Encoding
 - Vector turned into angle on Bloch sphere
- Quantum Feature Maps
 - Turns normal data into quantum data for Al

Quantum Clustering

- Basic
 - Uses qubit distances to group data
- Dynamic
 - Clusters change over time → better for live data
- Limited Basis
 - Uses fewer states → saves qubits/resources

Challenges

- Noise: outside energy messes up qubits
- Decoherence: qubits lose info fast
- Qubit Limits: we don't have enough powerful ones yet
- Quantum Error Correction: hard but needed

Real-World Example: Maldives Disaster

- Scenario: Typhoon hits main island
- Goal: Send supplies from nearby islands
- Tools Used:
 - Quantum Walk (to explore map)
 - Encoded data: demand, supply, distance
 - Used coin + shift operators + Grover's to find best path

Quantum Graph Neural Networks (QGNNs)

- What is GNN
 - o A model that learns from nodes and connections (like social networks)
- Quantum Part
 - Use qubits to store node info
 - Circuits process all graph paths at once (superposition)
 - Helps with graph tasks like pathfinding and node ranking

Tools & Learning

- Languages
 - Python + Qiskit (IBM tool)
- Resources
 - o IBM courses with certs
 - o Projects you can build