Chapter 5: Information source

5.1. What is information source?

- Information is abstract. To talk on information, information theory presents each information by a source symbol.
- Set of source symbol (source alphabet) normally finite S = {s1, s2, ..., sq}
- Source: emitting a sequence of source symbols (message) from alphabet $m = \{si1, si2, ...\}$ while sij is a symbol si \in S, j is time for creating symbol si
- Each symbol: selected according to some fixed probability law
- Refer to the source itself as S

- At any given time, emitted symbol is mapped to a value of a random variable (e.g. X)
 - Probability of random variable value = probability of symbol
- Source is a random variable

5.2. Type of information sources

- Discrete source
 - Output has an alphabet of distinct letters (source symbols)
 - The size of the alphabet is usually finite
 - Different types of discrete sources:
 - Discrete memoryless source (DMS): successive symbols emitted from the source are statistically independent.
 - Its output at a certain time does not depend on its output at any earlier time.
 - Random variable that represents DMS propertied by
 - $X = \{x1, x2...xn\}$
 - $P(X) = \{P(x1), P(x2),...P(Xn)\}$
 - Discrete source with memory (DSM) has the property that its output at a certain time may depend on its outputs at a number of earlier times
 - DSMs are usually modeled by means of Markov chains; they are then called Markov sources.
 - *Ergodic source* has the property that its output at any time has the same statistical properties as its output at any other time. Memoryless sources are, trivially, always ergodic; a source with memory is ergodic only if it is modeled by an ergodic Markov chain.

- Continuous source:
 - Output is set to be continuous time and continuous value
 - Normally called waveform
 - Random variable that represent continuous propertied by
 - $X = \{x\}$ xmin < x < xmax
 - $P_X(x)$: probability density distribution function

• Binary source:

- Is a discrete source
- Alphabet set has only two values
- Example: $X = \{0,1\}$ and $P(X) = \{0.5, 0.5\}$

Markov source:

Each symbol depends on the previous one.

$$p(x_{i_n}|x_{j_{n-1}},x_{k_{n-2}}...)=p(x_{i_n}|x_{j_{n-1}})$$

• At time n, output of source can be x_i with the probability $p_i = p(x_{i_n} | x_{j_{n-1}})$ when at time (n-1) output of source is x_j

• L: number of alphabet letters
$$\sum_{j=1}^{L} p_{ij} = 1$$

- Markov source:
- A Markov source: each symbol depends upon a finite number m of preceding symbols
 - m-th order Markov source
- A Markov source consists:
 - Alphabet
 - Set of states
 - Set of transitions between states
 - Set of labels for the transitions
 - Two sets of probabilities
 - Initial probability distribution on the set of states, which determines the probabilities of sequences starting with each symbol in the alphabet.
 - Set of transition probabilities. For each pair of states, x_i and x_j , the probability of a transition from i to j is P(j|i).
 - The labels on the transitions are symbols from the alphabet

- Example Markov source:
- Alphabet $\{0,1\}$ and set of states $\{\sigma_1, \sigma_2, \sigma_3\}$
- Suppose there are four transitions:

$$\sigma_1 \rightarrow \sigma_2$$
 with label 1 and P(2|1) = 1

$$\sigma_2 \rightarrow \sigma_3$$
 with label 0 and P(3|2) = 1

$$\sigma_3 \rightarrow \sigma_1$$
 with label 1 and P(1|3) = 0.6

$$\sigma_3 \rightarrow \sigma_2$$
 with label 0 and P(2|3) = 0.4

- A Markov source whose states are sequences of m symbols from the alphabet is called an mth-order Markov source.
- Example: second-order Markov source {0,1}

$$P(0|00) = P(1|11) = 0.8$$

 $P(1|00) = P(0|11) = 0.2$
 $P(0|01) = P(0|10) = P(1|01) = P(1|10) = 0.5$

Transition probability from 01 to 10, which would be represented by P(10|01), would be represented instead by the probability of emission of 0 when in the state 01, that is P(0|01)

Non ergodic Markov source

```
\{0,1\}

P(0|00) = P(1|11) = 1.0

P(1|00) = P(0|11) = 0

P(0|01) = P(0|10) = P(1|01) = P(1|10) = 0.5
```


- n states $\{\sigma_1, \sigma_2... \sigma_n\}$ has
 - Transition matrix:

$$\Pi = \begin{bmatrix} P(1|1) & P(1|2) & \cdots & P(1|N) \\ P(2|1) & P(2|2) & \cdots & P(2|N) \\ \vdots & \vdots & \ddots & \vdots \\ P(N|1) & P(N|2) & \cdots & P(N|N) \end{bmatrix}$$

• w_i^t is probability of source at state σ_i at time t

$$W^t = \begin{bmatrix} w_1^t \\ w_2^t \\ \vdots \\ w_N^t \end{bmatrix}$$

• Then: $W^{t+1} = \Pi W^t$

$$W^t = \Pi^t W^0$$

• Stationary distribution: A probability distribution W over the states of a Markov source with transition matrix Π that satisfies the equation Π W= W is a stationary distribution

•
$$\sum w_i = 1$$

$$W = \{w_1, w_2, w_3\}$$

$$\Pi = \begin{bmatrix} 0.25 & 0.50 & 0.00 \\ 0.50 & 0.00 & 0.25 \\ 0.25 & 0.50 & 0.75 \end{bmatrix}$$

5.3. Calculate amount of information

- Discrete memoryless source
- Amount of information of symbol s_i

$$I(s_i) = \log \frac{1}{P(s_i)}$$

Average amount of information per symbol in the source

$$\sum_{S} P(s_i) I(s_i)$$

Entropy is defined as the average amount of information

$$H(S) \triangleq \sum_{S} P(s_i) \log \frac{1}{P(s_i)}$$

• H(S) max = log |S| when S has uniform distribution

Example:

- Source $S = \{s1, s2, s3\}$ with P(s1) = 1/2 and P(s2) = P(s3) = 1/4.
- Then:

$$H(S) = -\frac{1}{2} log_2 \frac{1}{2} - \frac{1}{4} log_2 \frac{1}{4} - \frac{1}{4} log_2 \frac{1}{4}$$
$$= \frac{1}{2} log_2 2 + \frac{1}{4} log_2 4 + \frac{1}{4} log_2 4$$
$$= \frac{3}{2} bits/information$$

Markov source:

- P_i : probability distribution on the set of transitions from the i^{th} state
- $H(P_i)$: entropy of the i^{th} state
- M:

$$H(P_i) = -\sum_{j=1}^{N} P(j|i) \log(P(j|i))$$

$$H(M) = \sum_{i=1}^{N} w_i H(P_i) = -\sum_{i=1}^{N} \sum_{j=1}^{N} w_i P(j|i) \log(P(j|i))$$

 $\sigma_1 \rightarrow \sigma_2$ with label 1 and P(2|1) = 1 $\sigma_2 \rightarrow \sigma_3$ with label 0 and P(3|2) = 1 $\sigma_3 \rightarrow \sigma_1$ with label 1 and P(1|3) = 0.6 $\sigma_3 \rightarrow \sigma_2$ with label 0 and P(2|3) = 0.4

$$H(P_i) = ? W_i = ? H(M) = ?$$

- Continuous source:
 - Entropy of stationary source:

$$H(X) = -\int_{-\infty}^{\infty} p(x) \log p(x) dx$$

- H(X) max:
 - Source has limited peak power: Pmax, Pmin are limited values
 - $xmax = \sqrt{Pmax}$; $xmin = \sqrt{Pmin}$
 - H(X) max = log(xmax xmin) when source has uniform distribution (P(x) = 1/(xmax xmin)) for all x)
 - Source has limited average power: Pav is limited value
 - H(X) max = $\log \sqrt{2\Pi e} Pav$ when source has Gaussian distribution
 - e: natural base

- Continuous source:
 - Entropy of stationary source:

$$H(X) = -\int_{-\infty}^{\infty} p(x) \log p(x) dx$$

- H(X) max:
 - Source has limited peak power: Pmax is limited value
 - $xmax = \sqrt{Pmax}$; $xmin = -\sqrt{Pmax}$
 - H(X) max = log(2xmax) when source has uniform distribution (P(x) = 1/(2xmax)) for all x
 - Source has limited average power: Pav is limited value
 - H(X) max = $\ln \sqrt{2\Pi e} Pav$ when source has Gaussian distribution $\int_{-\infty}^{\infty} x^2 p(x) dx = 1$
 - e: natural base

5.4. Redundancy of source

- Source has H(X)max:
 - Amount of information carried by a source symbol is max
- Source has H(X) < H(X)max:
 - Amount of information carried by a source symbol is not max
- Source sequence of H(X)max is min to carry a given amount of information
 - Generate given amount of information: Source has H(X) < H(X) max need more source symbol than source has H(X) = H(X) max
 - Source has H(X) < H(X)max has several redundancy
- Redundancy of source defined by H(X)max H(X)
 - Domains of sources have H(X)max and H(X) are identical
- Source has redundancy = 0: each symbol carries maximum amount of information
- Source has redundancy >0: need to be compressed to reduce the needed symbols
 - Best compression: compressed source has H(X) = H(X)max

5.4. Redundancy of source (Cont.)

• Example:

- Source $S1 = \{0,1\}$ with $P(S1) = \{1/2,1/2\}$
 - H(S1)max = $-\frac{1}{2}log_2\frac{1}{2} \frac{1}{2}log_2\frac{1}{2} = log_22 = 1$ bit/ symbol
- Source S2 = $\{0,1\}$ with $P(S2) = \{3/4,1/4\}$
 - H(S2) = $-\frac{3}{4}log_2\frac{3}{4} \frac{1}{4}log_2\frac{1}{4} = log_24 \frac{3}{4}log_23 \approx 2 1.19 \approx 0.81$ bits/symbol
- → To create an amount of information 810 bits
 - S1 needs to generate 810 symbols
 - S2 needs to generate 1000 symbols
- S2 has redundancy: H(X)max H(X) = 1 0.81 = 0.19 bits/symbol

5.5. Extension source

- Extension source of a source S:
 - S^n is a source so that its symbols S^n_i is sequence of n symbols of source (S_{ij})
 - $s_i^n = s_{i1} s_{i2} s_{i3} \dots s_{in}$
 - The symbols in the sequence s_i^n are independent
 - $P(s_i^n) = P(s_{i1}) P(s_{i2}) ... P(s_{in})$
- Entropy of S^n :
 - $H(S^n) = n H(S)$

5.5. Extension source

- Memoryless source S{0,1}
- $P_0 = 0.2$, $P_1 = 0.8$
- Extension source?

E.g: P_{00} , P_{001} ? H(S^2)?

5.6. Information rate

- Information rate (R): Average amount of information that source can generate in a unit of time
- $R = n_o \times H(X)$
 - n_o : number of symbol that source can generate in a unit of time
 - H(X): average amount of information per symbol (entropy)
- In many cases of information theory, n_o is physical parameter so that n_o is assigned to unit value $(n_o=1)$
- In case of discrete
 - $n_o = F$
 - F: number of generated symbol in unit of time (frequency)
 - $R = F \times H(X)$
 - $Rmax = F \times log |X|$

Source transmits 9.6 kbaud: (baud = symbol/ second)

X_i	$P(X_i)$	BCD word
Α	0.30	000
В	0.10	001
C	0.02	010
D	0.15	011
Ε	0.40	100
F	0.03	101

• Information rate =?

$$\begin{split} H &= -\sum_{i=1}^6 P(X_i) \cdot \log_2 P(X_i) = -0.30 \cdot \log_2 0.30 - 0.10 \cdot \log_2 0.10 - 0.02 \cdot \log_2 0.02 \\ &- 0.15 \cdot \log_2 0.15 - 0.40 \cdot \log_2 0.40 - 0.03 \cdot \log_2 0.03 \\ &= 0.52109 + 0.33219 + 0.11288 + 0.41054 + 0.52877 + 0.15177 \\ &= 2.05724 \text{ bits/symbol} \end{split}$$

Information rate: $R = H \cdot R_s = 2.05724 \text{ [bits/symbol]} \cdot 9600 \text{ [symbols/s]} = 19750 \text{ [bits/s]}$

- In case of continuous
- n_o is number of samples of corresponding discreted source
 - $n_o = 2 \text{ Fmax}$
 - Fmax: maximum frequency of the continuous source
 - R = 2 Fmax x H(x)
 - R = 2 Fmax x log (xmax xmin) when source has limited peak power
 - R = 2 Fmax x log $\sqrt{2\Pi e} Pav$ when source has limited average power

- In case of continuous
- n_o is number of samples of corresponding discreted source
 - $n_o = 2 \text{ Fmax}$
 - Fmax: maximum frequency of the continuous source
 - R = 2 Fmax x H(x)
 - R = 2 Fmax x log (2xmax) when source has limited peak power
 - R = 2 Fmax x In $\sqrt{2\Pi e} Pav$ when source has limited average power