MATH 2603, Fall 2015, Quiz 8, Nov 11 2015: Closed book, no calculators. Instructor: Esther Ezra.

You can answer all questions on this sheet, but may use extra sheets (from your personal notepad) if needed.

Solution
Name GT IDnumber

Problem 1. (100 points)

You are given a list of n+1 natural numbers, $n \ge 1$.

a. Show that there is a pair of numbers whose difference is divisible by n.

There exists n congruence classes modulo n(0, 1, ..., n-1) and any of the given n+1 natural numbers must belong to one of the classes. \Rightarrow By Pigeon Hole Principle, there are at least $\lceil \frac{n+1}{n} \rceil = 2$ numbers in the same congruence class, which by definition means their difference is divisible by n. b. Suppose next that the input list consists of 3n+1 natural number. What is the largest lower

b. Suppose next that the input list consists of 3n+1 natural number. What is the largest lower bound on the number of elements, each pair of which has a difference divisible by n? (Give your best possible answer.)

As above, there are still a congruence classes modulo a and each of the 3n+1 natural numbers belong to one of the mentioned classes

By Pigeon Hole Principle, there are at least $\left[\frac{3n+1}{n}\right] = 4$ numbers out of these given numbers

that belong to the same class so the different between any 2 of these 4 must be divisible by n by definition

-> the largest longer bound is 4