

ADVANCED SUMMER SCHOOL ON APPLIED DYNAMICS IN SYSTEMS AND SYNTHETIC BIOLOGY

EXERCISES - GENE REGULATORY CIRCUITS

- 1. Calculate the coefficient of sensitivity for the negative feedback gene circuit studied in class with respect to the maximum expression rate β , the decay rate γ , and the repression threshold K.
- 2. Show graphically that adding basal expression α to the positive feedback gene circuit studied in class leads to an irreversible response to α : starting from the low-expression fixed point at α =0, an increase in α leads to the high-expression fixed point (the cell starts producing protein), but a subsequent decrease of α back down to 0 does not cause expression to turn off: the cell responds *irreversibly* to a pulse stimulus in α .
- 3. Consider the following activator-repressor model discussed in class:

$$\frac{dx}{dt} = a_1 + \frac{b_1 x^n}{K_1^n + x^n} - gxy - d_1 x$$

$$\frac{dy}{dt} = a_2 + \frac{b_2 x^m}{K_2^m + x^m} - d_2 y$$

Use the tools that you have learned in the different courses of this school to analyze this dynamical system in the plane, as the basal expression rate a_1 of x varies, as shown in the slides. Use these values for the other parameters to perform simulations if necessary: a_2 =0.025 nM/s, b_1 =15 nM/s, b_2 =0.8 nM/s, d_1 = d_2 =5·10⁻⁵ s⁻¹, g=2.5·10⁻⁷ nM⁻¹s⁻¹, K_1 =3000 nM, K_2 =750 nM, and n=m=2.

4. The following model describes genetic competence in *B. subtilis*:

$$\frac{dK}{dt} = \alpha_k + \frac{\beta_k K^n}{k_k^n + K^n} - \frac{\gamma_k K}{1 + \frac{K}{\Gamma_k} + \frac{S}{\Gamma_s}} - \delta_k K$$

$$\frac{dS}{dt} = \alpha_s + \frac{\beta_s}{1 + (K/k_s)^p} - \frac{\gamma_s S}{1 + \frac{K}{\Gamma_k} + \frac{S}{\Gamma_s}} - \delta_s S$$

Again, use the tools that you have learned in the different courses of this school to analyze this dynamical system in the plane, as the parameters α_k , α_s and β_s vary (one at a time or in pairs). Reproduce and study the response of the system in the different dynamical regimes studied in class. Consider the following baseline parameter values:

Parameter	Value	Parameter	Value	Parame
$lpha_k$	0.00875 molec/s	γ_k , γ_s	0.001 s^{-1}	k_k
α_s	0.0004 molec/s	δ_k , δ_s	10 ⁻⁴ s ⁻¹	k_s
$oldsymbol{eta}_k$	7.5 molec/s	Γ_k	25000 molec	n
$oldsymbol{eta}_{s}$	0.06 molec/s	$arGamma_s$	20 molec	p

Parameter	Value	
k_k	5000 molec	
k_s	833 molec	
n	2	
p	5	