Dynamic Programming for Shortest Paths in Graphs

Did somebody say G-raph?

Why Graphs?

Biological and Chemical Networks

Transportation Networks

The Internet

Circuits

Social Networks

State Transition Networks

Directed and undirected graphs

Directed graph

Undirected graph

Distance from s to t (denoted **dist**(s,t)) = minimum over all paths P from s to t, of the sum of the edge weights along P.

Notation: V = vertex set, E = edge set, n = |V|, m = |E|,

Why do we even care about negative weights?

The shortest paths problems we'll consider

Input: Directed weighted graph. Weights can be negative but assume no negative-weight cycles.

Single-Source Shortest Paths (SSSP): Given a special vertex **s**, find a shortest path from **s** to every vertex **t**.

All-Pairs Shortest Paths (APSP): For every pair s,t of vertices, find a shortest path from s to t.

3

1	2	3	4	5
0	1	2	0	∞
0	0	2	-1	∞
-2	-1	0	-2	∞
1	2	3	0	∞
6	6	8	5	0

What about single-pair shortest path?

Two Key Observations

Principle of Optimality

- If a shortest path from s to t goes through vertex v, then it must take a shortest path from s to v, then a shortest path from v to t.
- Since there are no negative-weight cycles in the graph, there is a shortest path from s to t with no cycles in it.

Check out my recurrence for SSSP!

Your equation is technically correct, but it's not really a recurrence and it doesn't work for DP.

$$dist(s,v) = min_{(u,v) \in E} \{ dist(s,u) + \ell(u,v) \}$$

In the shortest $s \rightarrow v$ path, u is the last vertex before v (and u could be s)

Base case: dist(s,s) = 0

Notation:

- $\ell(y,z)$ is the weight (or "length") of the edge $y \rightarrow z$
- **dist(y,z)** is the distance from y to z

Recurrence for SSSP

Key Definition. Let $dist^{(i)}(s,v)$ be the length of the shortest path from s to v that uses <u>exactly</u> i edges, or ∞ if there's no such path.

What is...

dist^(o)(5,3)?

dist⁽¹⁾(5,3)?

dist⁽²⁾(5,3)?

dist⁽³⁾(5,3)?

dist⁽⁴⁾(5,3)?

Recurrence for SSSP

Key Definition. Let $dist^{(i)}(s,v)$ be the length of the shortest path from s to v that uses <u>exactly</u> i edges, or ∞ if there's no such path.

End goal: min_{i≤n-1} dist⁽ⁱ⁾(s,v) for each v.

$$dist^{(i)}(s,v) =$$

Base case(s):

The recurrence will be similar in structure to Professor Y's first attempt

Let's follow the DP Recipe

This is called the **Bellman-Ford Algorithm** (Bellman, Ford, Moore, Shimbel, 1955)

The DP Recipe

- 1. Write recurrence —— usually the trickiest part
- 2. Size of table: How many dimensions? Range of each dimension?
- 3. What are the base cases?
- 4. To fill in a cell, which other cells do I look at? In which order do I fill the table?
- 5. Which cell(s) contain the final answer?
- Running time = (size of table) (time to fill each entry)
- 7. To reconstruct the solution (instead of just its size) follow arrows from final answer to base case

Pseudocode for Bellman-Ford

```
Algorithm SSSP(G, s)
table := 2D-array indexed from 0 to n-1 in both dimensions
// first dimension represents vertices vo,...,vn-1, where s is vo,
  second dimension represents the number i of edges
table(0,0) = 0 // base case for s
for k = 1 to n-1:
    table(k, 0) = \infty // rest of base cases
for i = 0 to n-1: // for each number i of edges
    for k = 0 to n-1: // for each vertex
        table(k, i) = min {table(j, i-1) + \ell(v_j, v_k)}}
                       (vj,vk) \in E
Return min<sub>i</sub>{table(k, i)} for each vertex k
```

Previously we assumed the graph has no negative-weight cycles. But what if it does?

With a slight modification, the Bellman-Ford (BF) Algorithm can detect whether or not there is a negative-weight cycle:

Run BF for n more iterations!

I.e calculate dist(i)(s,v) for all i up to 2n-1.

Claim: There is a negative-weight cycle (reachable from s) IFF $\min_{i \le 2n-1} \operatorname{dist}^{(i)}(s,v) < \min_{i \le n-1} \operatorname{dist}^{(i)}(s,v)$ for some vertex v.

Faster Algorithms for SSSP

■ Bernstein, Nanongkai, Wulff-Nilsen, 2022: O(m log⁸n) ← integer weights

```
My postdoc Thatchaphol Saranurak's advisor PhD advisor
```

- Fineman, 2023: $O(mn^{7/8}) \leftarrow any weights$
- If no negative weights, Dijkstra's algorithm: O(m + n log n)

Initial idea for solving APSP: Run SSSP from every vertex

That works, but the algorithm you're about to see is faster for dense graphs: $O(n^3)$

Let's try essentially the same recurrence as BF

$$dist^{(i)}(s,v) = min_{(u,v) \in E} \{ dist^{(i-1)}(s,u) + \ell(u,v) \}$$

Base case:
$$dist^{(o)}(s,v) = \begin{cases} o & \text{if } s = v \\ \infty & \text{otherwise} \end{cases}$$

The only difference:

there are 3 "free" variables: s, v, and i \Rightarrow 3D DP table!

The DP table

Running time:

But there's a cool trick that allows each cell to only look at 3 other cells...

Key idea: Impose an arbitrary ordering on the vertices and consider paths that **only use the first i vertices** in the ordering.

Arbitrary ordering of vertices: v1, v2, ..., vn.

Key Definition: Let $dist^{[i]}(s,t)$ be the shortest path from s to t with internal vertices *only* in $\{v_1,...,v_i\}$, or ∞ if no such path.

Recurrence

Arbitrary ordering of vertices: v1, v2, ... vn.

Key Definition: Let $dist^{[i]}(s,t)$ be the shortest path from s to t with internal vertices *only* in $\{v_1,...,v_i\}$, or ∞ if no such path.

Base case:
$$dist^{[o]}(s,t) = \begin{cases} 0 & \text{if } s = t \\ \ell(s,t) & \text{if } (s,t) \in E \\ \infty & \text{otherwise} \end{cases}$$

$$dist^{[i]}(s,t) = min\{$$

Case 1 ("Lose it!"): shortest st-path doesn't contain vi

Case 2 ("Use it!"): shortest st-path contains vi

Let's Follow the DP Recipe

Pseudocode for Floyd-Warshall

```
Algorithm APSP(G)
 table := 3D-array (1..n, 1..n, 0..n)
// first two dimensions represent vertices v1,...,vn,
  third dimension represents restricting to the first i internal vertices
 for i = 1 to n:
    for j = 1 to n:
        table(i, j, o) = \ell(vi,vj) // base case
 for i = 1 to n:
    for j = 1 to n:
        for k = 1 to n:
            table(i,j,k) = min\{table(i,j,k-1), table(i,k,k-1) + table(k,j,k-1)\}
 Return table(i, j, n) for all i,j
```

A question to ponder...

Why doesn't the trick of computing dist^[i](s,t) give a faster-than-BF algorithm for SSSP too?

Progress on APSP since Floyd-Warshall

Author	Runtime	Year
Fredman	n ³ log log ^{1/3} n / log ^{1/3} n	1976
Takaoka	n ³ log log ^{1/2} n / log ^{1/2} n	1992
Dobosiewicz	n ³ / log ^{1/2} n	1992
Han	n ³ log log ^{5/7} n / log ^{5/7} n	2004
Takaoka	n³ log log² n / log n	2004
Zwick	n ³ log log ^{1/2} n / log n	2004
Chan	n³ / log n	2005
Han	n ³ log log ^{5/4} n / log ^{5/4} n	2006
Chan	n ³ log log ³ n / log ² n	2007
Han, Takaoka	n³ log log n / log² n	2012
Williams	n³ / exp(√ log n)	2014

This is wild!

Conclusion: Maybe $O(n^{2.99})$ is impossible?

Maybe $O(n^{2.99})$ is impossible?

Either ALL of the following have O(n^{<3}) time algorithms or NONE of them do: (Virginia Vassilevska Williams, Ryan Williams, 2010)

- 1. APSP
- 2. Minimum Weight Triangle
- 3. Metricity
- 4. Minimum Cycle
- 5. Distance Product
- 6. Second Shortest Path
- 7. Replacement Paths
- 8. Negative Triangle Listing

...

A curious open problem: "The Not Shortest Path problem"

Given a directed graph with positive edge weights and a pair s,t of vertices, is there a polynomial time algorithm to find a simple path from s to t that is NOT shortest?