CSE 306_Assignment1 4-Bit Arithmetic and Logic Unit

Student ID: 1505097-1505102

May 13, 2018

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka 1000

1 Design of Arithmetic Unit

Truth Table : Arithmetic Operations

CS_2	CS_1	$CS_0(C_{in})$	X_i	Y_i	F	Arithmetic Operation
0	0	0	A_i	$\overline{B_i}$	A-B-1	Subtract with borrow
0	0	1	A_i	$\overline{B_i}$	A - B	Subtract
0	1	0	A_i	1	A-1	Decrement A
0	1	1	A_i	1	A	Transfer A

 $Subtract\ with\ borrow$:

$$= A - B - 1$$

$$= (A + \overline{B} + 1) - 1$$

$$= A + \overline{B}$$

$$= A + (2^n - 1 - B)$$

$$=2^{n}+(A-B-1)$$

Subtract:

$$=A-B$$

$$=A+\overline{B}+1$$

$$= A + (2^n - 1 - B) + 1$$

$$= 2^n + (A - B)$$

Decrement A:

$$= A - 1$$

$$= A + 2^n - 1$$

$$=2^n+(A-1)$$

Transfer A:

$$= A$$

$$=A+2^n-1+1$$

$$=2^n+A$$

So we have,

$$X_i = A_i$$

$$Y_i = \overline{CS_1}.\overline{B_i} + CS_1 = \overline{(CS_1 + B_i)} + CS_1$$

Figure 1: Design of Yi

2 Design of Logic Unit

Truth Table: Logical Operations

CS_2	CS_1	$CS_0(c_{in})$	X_i	Y_i	$F_i = X_i \oplus Y_i$	Operation
1	0	0	$A_i + \overline{B_i}$	B_i	$A_i.B_i$	AND
1	0	1	$A_i + \overline{B_i}$	B_i	$A_i.B_i$	AND
1	1	0	$\overline{A_i}$	1	$\overline{A_i}$	Complement A
1	1	1	$\overline{A_i}$	1	$\overline{A_i}$	Complement A

Explanation: We can't modify Y_i because that would change the arithmetic operations and neither can omit A_i in any input, So we change X_i . Let,

$$X_i = A_i + K_i$$

$$F_i = X_i \oplus Y_i$$

$$F_i = (A_i \oplus K_i) \oplus \overline{B_i}$$

$$F_{i} = (A_{i} \oplus K_{i}) \oplus \overline{B_{i}}$$

$$F_{i} = (A_{i} \oplus K_{i})B_{i} + (\overline{A_{i} \oplus K_{i}}).\overline{B_{i}}$$

$$F_{i} = A_{i}B_{i} + K_{i}B_{i} + \overline{A_{i}}.\overline{K_{i}}.\overline{B_{i}}$$

$$F_{\cdot} = A \cdot B_{\cdot} + K \cdot B_{\cdot} + \overline{A_{\cdot}} \, \overline{K_{\cdot}} \, \overline{B_{\cdot}}$$

Here the desired operation is A_iB_i . So putting $K_i = \overline{B_i}$ $F_i = A_i B_i$

$$F_i = X_i \oplus Y_i$$

$$F_i = X_i \oplus 1$$

$$F_i = X_i$$

$$F_i = X_i \oplus Y_i$$

$$F_i = X_i \oplus 1$$

$$F_i = \overline{X_i}$$

$$F_i = \overline{A_i + K_i}$$

Here the desired output is $\overline{A_i}$. So putting $K_i = 0$ $F_i = \overline{A_i}$

So we need $K_i = \overline{B_i}$ when we will do AND operation and $K_i = 0$ for NOT operation.

We get,

$$X_i = A_i + CS_2.\overline{CS_1}.\overline{B_i} = A_i + CS_2\overline{(CS_1 + B_i)}$$

Figure 2: Design of X_i

So finally we have,

$$X_i = A_i + CS_2(\overline{CS_1 + B_i})$$

$$Y_i = \overline{(CS_1 + B_i)} + CS_1$$