1. Simboli matematici, costanti, alfabeto greco

1.1 Simboli comuni

```
più
                                      meno
                                      per
   oppure a/b
                                      a fratto b
\overline{b}
a^b
                                      a elevato a b
%
                                      percento
                                      radice quadrata di a
                                      radice ennesima di a
n! = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1
                                      n fattoriale (n numero naturale)
                                      coefficiente binomiale, n su k
                                      più o meno
Ŧ
                                      meno o più
                                      uguale
                                      diverso
\infty
                                      proporzionale
                                      minore
<
                                      maggiore
>
≤
                                      minore o uguale
                                      maggiore o uguale
\geq
                                      molto minore
«
                                      molto maggiore
>>
                                      infinito
\infty
=_{\mathit{def}}
                                      uguale per definizione
                                      m divide n
m \mid n
a \equiv b \bmod n
                                      a \in b sono congrui modulo n, cioè a-b è multiplo di n
                                      minimo comune multiplo
mcm
                                      massimo comun divisore
MCD
                                      unità immaginaria (i^2 = -1)
Re(z)
                                      parte reale di z
Im(z)
                                      parte immaginaria di z
|z|
                                      modulo di z
arg(z)
                                      argomento di z
\overline{Z}
                                      coniugato di z
```

1.2 Insiemi numerici

\mathbb{N}	Insieme dei numeri naturali {0,1,2,3,,}
\mathbb{Z}	Insieme dei numeri interi $\{,-3,-2,-1,0,+1,+2,+3,\}$
$\mathbb{Z}^{\scriptscriptstyle +}$	Insieme dei numeri interi positivi (zero escluso)
\mathbb{Z}^-	Insieme dei numeri interi negativi (zero escluso)
\mathbb{Q}	Insieme dei numeri razionali $\left\{0,+1,+2,,-1,-2,,+\frac{1}{2},-\frac{1}{2},,+\frac{2}{3},-\frac{2}{3}\right\}$
\mathbb{Q}^+	Insieme dei numeri razionali positivi (zero escluso)
\mathbb{Q}^-	Insieme dei numeri razionali negativi (zero escluso)
\mathbb{R}	Insieme dei numeri reali $\left\{0, +1, -1,, +\frac{1}{2}, -\frac{1}{2},, \sqrt{2}, \sqrt{3}, \pi, e,\right\}$
\mathbb{R}^+	Insieme dei numeri reali positivi (zero escluso)
\mathbb{R}^-	Insieme dei numeri reali negativi (zero escluso)

Insieme dei numeri complessi $\{0,+1,+i,-1,-i,i+1,2-3i,\ldots\}$

1.3 Simboli insiemistici

 \mathbb{C}

€	appartiene
∉	non appartiene
\subseteq	inclusione (contenuto o uguale)
\subset	inclusione (stretta)
\forall	per ogni
3	esiste
∄	non esiste
\cup	unione insiemistica
\cap	intersezione insiemistica
\	differenza insiemistica
Δ	differenza simmetrica
×	prodotto cartesiano
A^c oppure C_A	complementare di A (rispetto all'ambiente)
Ø	insieme vuoto
$\wp(A)$	insieme delle parti di A
max	massimo
min	minimo
sup	estremo superiore
inf	estremo inferiore

3

1.4 Geometria

// parallelo

⊥ perpendicolare (o ortogonale)

 \equiv coincidente \simeq congruente \approx simile

AB lunghezza del segmento AB

 \vec{a} vettore a

 $\vec{P}Q$ vettore PQ con origine in P e fine in Q

 $A\hat{B}C$ angolo ABC con vertice in B

d(P,Q) distanza PQ

1.5 Logica

V vero F falso

∨ or inclusivo

✓ or esclusivo∧ and logico

 \neg not

⇒ implica, se ... allora

⇔ se e solo se, doppia implicazione

oppure: tale che

1.6 Funzioni particolari

|x| valore assoluto

 $\begin{bmatrix} x \end{bmatrix}$ parte intera alta, approssimazione per eccesso parte intera bassa, approssimazione per difetto

sgn(x) segno

 x^k potenza k -esima esponenziale in base e a^x esponenziale in base a

ln(x) logaritmo naturale (in base e)

Log(x) logaritmo in base 10 $log_a(x)$ logaritmo in base a

sin(x) seno cos(x) coseno tan(x) tangente cot(x) cotangente arcsin(x) arcoseno arccos(x) arcocoseno

arctan(x)	arcotangente
$\operatorname{arccot}(x)$	arcocotangente
sec(x)	secante
$\csc(x)$	cosecante
sinh(x)	seno iperbolico
$\cosh(x)$	coseno iperbolico
tanh(x)	tangente iperbolica
$\coth(x)$	cotangente iperbolica
settsinh(x)	settore seno iperbolico
settcosh(x)	settore coseno iperbolico
$\Gamma(x)$	Gamma di Eulero
$\beta(x, y)$	Beta di Eulero

1.7 Calcolo combinatorio

(n)	n!	
$\binom{k}{k}$	$ = \frac{1}{k!(n-k)!} $	coefficiente binomiale

$$P_n = n!$$
 permutazioni semplici

$$P_{n_1,n_2,\dots,n_h}^* = \frac{(n_1+n_2+\dots n_h)!}{n_1!n_2!\dots n_h!}$$
 permutazioni con ripetizione

$$C_{nk}$$
 combinazioni semplici

$$C_{nk}^*$$
 combinazioni con ripetizione

 $D_{n,k}$ disposizioni semplici

 $D_{n,k}^*$ disposizioni con ripetizione

1.8 Analisi

[*a*,*b*]

]a,b[,(a,b)]	intervallo aperto
[a,b[,[a,b)	intervallo chiuso a sinistra e aperto a destra, a è incluso, b è escluso
]a,b], (a,b]	intervallo aperto a sinistra e chiuso a destra, a è escluso, b è incluso
∂A	frontiera dell'insieme A

 $\frac{\partial A}{A}$ frontiera dell'insieme A chiusura dell'insieme A

A interno dell'insieme A

 $\mathcal{D}(A)$ derivato dell'insieme A (insieme dei punti di accumulazione di A) conv(A) involucro convesso di A, intersezione di tutti gli insiemi convessi

contenenti A

intervallo chiuso

 $\{a_n\}$ successione

 $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$ sommatoria per *i* che va da 1 a *n* di x_i

 $\prod_{i=1}^{n} x_i = x_1 \cdot x_2 \cdot \dots \cdot x_n$ produttoria per *i* che va da 1 a *n* di x_i

→ 1:	tende a
$ \lim_{n\to+\infty}a_n=a $	il limite della successione a_n , per n che tende all'infinito, è a
$\sum_{n=0}^{+\infty} a_n = \lim_{N \to +\infty} \sum_{n=0}^{N} a_n$	serie come limite della successione delle somme parziali
$\prod_{n=0}^{+\infty} a_n = \lim_{N \to +\infty} \prod_{n=0}^{N} a_n$	prodotto della successione a_n
$f: A \to B$	funzione f da A in B
$f: A \to B$ $x \mapsto f(x)$	f è una funzione da A in B che a $x \in A$ associa $f(x) \in B$
f(x)	immagine di x tramite f , funzione diretta
$f^{-1}(y)$	controimmagine di y tramite f , funzione inversa
dom(f)	dominio di f
Im(f)	immagine di f
$f(x_1, x_2, \dots, x_n)$	funzione in n variabili
$\lim_{x \to x_0^+} f(x) = l$	il limite della funzione f per x che tende a x_0 da destra è l
$\lim_{x\to x_0^-} f(x) = l$	il limite della funzione f per x che tende a x_0 da sinistra è l
$\lim_{x \to x_0} f(x) = l$	il limite della funzione f per x che tende a x_0 è l
f(x) = o(g(x))	o piccolo, f è infinitamente piccola rispetto a g
f(x) = O(g(x))	O grande, f è dominata localmente da g
Δx	differenza tra due valori di x
Δf	differenza tra due valori di f
df	differenziale totale di f
$f'(x)$ oppure $\frac{d}{dx}f(x)$	derivata prima di f calcolata in x
$f''(x)$ oppure $\frac{d^2}{dx^2}f(x)$	derivata seconda di f calcolata in x
$\frac{\partial f}{\partial x}(x,y)$	derivata prima parziale di f rispetto a x calcolata in (x, y)
$\frac{\partial^2 f}{\partial y \partial x}(x, y)$	derivata seconda mista, prima rispetto a x poi rispetto a y , di f
	calcolata in (x, y)
$\frac{\partial^2 f}{\partial x^2}(x, y)$ ∇f	derivata seconda di f rispetto a x due volte calcolata in (x, y)
abla f	gradiente di f
J f	matrice jacobiana di f
Hf	matrice hessiana di f
$divF = \nabla \cdot F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$	divergenza del campo vettoriale $F = (F_1, F_2, F_3)$

......www.matematicamente.it

5

F. Cimolin, L. Barletta, L. Lussardi

rot(F)

rotore del campo vettoriale F

$$\Delta f(x, y, z) = \nabla^2 f(x, y, z) = \nabla \cdot (\nabla f(x, y, z)) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

operatore di Laplace

$$F\{g(t)\}(f) = G(f)$$

G(f)è la trasformata di Fourier di g(t)

$$L\{g(t)\}(s) = G(s)$$

G(s)è la trasformata di Laplace di g(t)

$$\int f(x)dx$$

integrale indefinito di $\,f\,$, cioè insieme delle primitive di $\,f\,$

$$\int_{a}^{b} f(x) dx$$

integrale fra a e b della funzione f

$$\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx$$

integrale improprio

$$\iint_{A} f(x, y) dx dy$$

integrale doppio della funzione f sull'insieme A

$$\iiint_{A} f(x, y, z) dx dy dz$$

integrale triplo della funzione f sull'insieme A

$$\oint f(z)dz$$

integrale curvilineo di f su γ

$$\oint_{\Sigma} f(u,v) du dv$$

integrale di superficie di f su Σ

$$(f \otimes g)(t) = \int_{-\infty}^{+\infty} f(t - \tau)g(\tau)d\tau$$

prodotto di convoluzione fra f e g

1.9 Spazi funzionali

 $C([a,b],\mathbb{R})$

insieme delle funzioni continue definite su [a,b] a valori in $\mathbb R$

 $C^1([a,b],\mathbb{R})$

insieme delle funzioni definite su [a,b] a valori in $\mathbb R$ derivabili

(almeno) una volta con derivata prima continua

 $C^n([a,b],\mathbb{R})$

insieme delle funzioni definite su [a,b] a valori in \mathbb{R} derivabili

(almeno) n volte con derivata n-esima continua

 $C^{\infty}([a,b],\mathbb{R})$

insieme delle funzioni definite su [a,b] a valori in $\mathbb R$ derivabili con

continuità infinite volte

 $L^p([a,b],\mathbb{R})$

insieme delle funzioni definite su [a,b] a valori in \mathbb{R} con modulo

elevato alla potenza p integrabile secondo Lebesgue

1.10 Algebra Lineare

matrice con m righe ed n colonne

0

matrice nulla

E oppure I

matrice identità, gli elementi sulla diagonale valgono 1 e gli altri 0

tr(A)

traccia di A

 $\dim(V)$

dimensione dello spazio vettoriale V

......www.matematicamente.it

F. Cimolin, L. Barletta, L. Lussardi

span(V) insieme delle combinazioni lineari finite degli elementi di V

 $a_{i,j}$ elemento di posto i, j della matrice A

 A^{-1} inversa di A trasposta di A

det(A) determinante della matrice A

ker(A) nucleo di A Im(A) immagine di A

null(A) dimensione del nucleo di A

rank(A) rango di A, cioè dimensione dell'immagine di A

⊕ somma diretta fra spazi vettoriali

 $\begin{array}{lll} \langle \cdot, \cdot \rangle & & \text{prodotto scalare} \\ \times & \text{oppure } \wedge & & \text{prodotto vettoriale} \\ \otimes & & \text{prodotto tensoriale} \end{array}$

1.11 Probabilità e statistica

 Ω evento certo \varnothing evento impossibile P(A) probabilità di A

P(B|A) probabilità condizionale di B rispetto ad A $F_X(x)$ funzione di distribuzione di probabilità di X funzione di densità di probabilità di X

 $F_{X,Y}(x,y)$ funzione di distribuzione congiunta di $X \in Y$ $f_{X,Y}(x,y)$ densità di probabilità congiunta di $X \in Y$

 $f_{X|Y}(x|y)$ densità di probabilità condizionale di X dato Y = y

E[X] valore atteso, o media, di X

Var(X) varianza di X σ_X^2 varianza di X

 σ_X deviazione standard di X σ scarto quadratico medio Cov(X,Y) covarianza fra $X \in Y$

 ρ_{XY} coefficiente di correlazione fra $X \in Y$

 Σ_{x} matrice di covarianza di X

 $E_{Y|Y}[X \mid y]$ valore atteso condizionale di X dato Y = y

 $X \sim U(a,b)$ X è una variabile aleatoria uniformemente distribuita fra a e b $X \sim N(\mu, \sigma^2)$ X è una variabile aleatoria gaussiana con media μ e varianza σ^2 Bin(n, p) Variabile aleatoria Binomiale, n prove, probabilità di successo singolo p

Poisson(λ) Variabile aleatoria di Poisson di tasso λ

 $\operatorname{Exp}(\lambda)$ Variabile aleatoria esponenziale di parametro λ

1.12 Costanti matematiche

e = 2,71828182845904523536028747135266249...

 $\pi = 3,14159265358979323846264338327950288...$

 $\sqrt{2} = 1.41421356237309504880168872420969807...$

1° (1 grado) ≈ 0,0174532925 radianti

1 radiante $\approx 57^{\circ}17'44,8''$

$$\phi = \frac{\sqrt{5} + 1}{2} \approx 1,61803$$
 (rapporto aureo)

 $\gamma = 0.57721566490153286060651209008240243...$

costante di Eulero-Mascheroni

1.13 Alfabeto greco

1.13 Allabeto gree	U	
Lettera	Maiuscola	Minuscola
Alfa	\boldsymbol{A}	α
Beta	B	$oldsymbol{eta}$
Gamma	Γ	γ
Delta	Δ	δ
Epsilon	E	${\cal E}$
Zeta	Z	5
Eta	H	η
Theta	Θ	heta
Iota	I	ı
Cappa	K	K
Lambda	Λ	λ
Mi (mu)	M	μ
Ni (nu)	N	ν
Xi	Ξ	ξ
Omicron	O	0
Pi	П	π
Rho	P	ho
Sigma	Σ	σ
Таи	T	au
<i>Ipsilon</i> (uspilon)	Y	υ
Phi	Φ	arphi
Chi	X	χ
Psi	Ψ	ψ
Omega	Ω	ω

......www.matematicamente.it

1.14 Multipli e sottomultipli

Prefisso	Valore	Simbolo	Prefisso	Valore	Simbolo
deca	10^{1}	da	deci	10^{-1}	d
etto	10^{2}	h	centi	10^{-2}	c
kilo	10^{3}	k	milli	10^{-3}	m
mega	10^{6}	M	micro	10^{-6}	μ
giga	10^{9}	G	nano	10^{-9}	n
tera	10^{12}	T	pico	10^{-12}	p
peta	10^{15}	P	femto	10^{-15}	f
exa	10^{18}	E	atto	10^{-18}	a
zetta	10^{21}	Z	zepto	10^{-21}	Z
yotta	10^{24}	Y	yocto	10^{-24}	y

9