

Machine Intelligence 1

1.2 Connectionist Neurons

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2017/2018

1.2.1 1. Input-Output Relationship

Biological neurons

Connectionist neurons

Input-output relationship: linear filter with a static non-linearity

 $\underline{\mathbf{x}}$: input vector with components x_j

 y_i : scalar output of neuron i

 $\underline{\mathbf{w}}_i$: weight vector of neuron i with components \mathbf{w}_{ij}

 $\begin{array}{ll} \theta_i: & \text{threshold of neuron } i \\ h_i: & \text{total input of neuron } i \end{array}$

f: transfer function

Examples: rate neurons, mean-field approximation, receptive field models, etc.

Typical transfer functions (1)

logistic function

$$f_{(h)} = \frac{1}{1 + \exp(-\beta h)}$$

Typical transfer functions (1)

logistic function

$$f_{(h)} = \frac{1}{1 + \exp(-\beta h)}$$

hyperbolic tangent

$$f_{(h)} = \tanh \beta h$$

Typical transfer functions (2)

$$\frac{1}{1+e^{-x}} = \frac{e^{\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}$$

$$= \frac{1}{2} \left\{ \underbrace{\frac{e^{\frac{x}{2}} - e^{-\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}}_{\tanh \frac{x}{2}} + \underbrace{\frac{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}}_{1} \right\}$$

$$= \frac{1}{2} \left(\tanh \frac{x}{2} + 1 \right)$$

Typical transfer functions (2)

$$\frac{1}{1+e^{-x}} = \frac{e^{\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}$$

$$= \frac{1}{2} \left\{ \underbrace{\frac{e^{\frac{x}{2}} - e^{-\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}}_{\tanh \frac{x}{2}} + \underbrace{\frac{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}}_{1} \right\}$$

$$= \frac{1}{2} \left(\tanh \frac{x}{2} + 1 \right)$$

transformation

- lacktriangle scale all input weights w_{ij} or slope parameter eta by 2
- shift output by -1
- scale output by 2

Shortcut notation for threshold / bias

$$\begin{array}{ccc}
\mathbf{x}_{1} & \mathbf{x}_{0} = 1 \\
\mathbf{x}_{2} & & & \\
\mathbf{x}_{j} & & & \\
\mathbf{x}_{N} & & & \\
\mathbf{y}_{i} & & & \\
\mathbf{y}$$

Note on notation

$$\underline{\mathbf{w}}$$
 will be used for $\left(\begin{array}{c} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_N \end{array}\right)$ as well as for $\left(\begin{array}{c} \mathbf{w}_0 \\ \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_N \end{array}\right)$

$$\underline{\mathbf{x}}$$
 will be used for $\begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{pmatrix}$ as well as for $\begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{pmatrix}$

1.2.2 2. Feature Detection and Evaluation

Linear filters and feature detection

Linear filters and feature detection

$$\underbrace{y_{kl}}_{\text{strength}} = \sum_{i,j=0}^{m,n} \underbrace{\mathbf{w}_{ij}}_{\substack{\text{filter} \\ \text{coefficients}}} \mathbf{x} \underbrace{(k+i)(l+j)}_{\substack{\text{pixel value}}}$$

Example filters w for points and edges

-1	-1	-1
-1	+8	-1
-1	-1	-1

point filter

Linear filters and feature detection

$$\underbrace{y_{kl}}_{\substack{\text{strength} \\ \text{of feature}}} = \sum_{i,j=0}^{m,n} \underbrace{w_{ij}}_{\substack{\text{filter} \\ \text{coefficients}}} \mathbf{x}_{\underbrace{(k+i)(l+j)}_{\substack{\text{pixel value}}}}$$

Example filters w for points and edges

-1	-1	-1
-1	+8	-1
-1	-1	-1

point filter

-1	0	+1
-2	0	+2
-1	0	+1

+1	+2	+1
0	0	0
-1	-2	-1

edge filter (Sobel filter)

 \Rightarrow w describes a feature and is often called receptive field.

Center-surround filters

from: http://www.union.edu/academic_depts/bioengineering/visual_motion/visual_tour/center_surround.php

Detection / evaluation of features

⇒ Partitioning of feature space into two half-spaces

1.2.3 3. Special Transfer Functions

Special transfer functions

Linear neuron: $f(h) = \beta h$

extraction of linear features

Special transfer functions

Linear neuron: $f(h) = \beta h$

Binary neuron: f(h) = sign(h)

extraction of linear features classification \rightarrow perception

Special transfer functions

Linear neuron: $f(h) = \beta h$

extraction of linear features

Binary neuron: f(h) = sign(h)

 $\mathsf{classification} \, \to \, \mathsf{perception}$

Stochastic binary neuron: $P(y \rightarrow -y) = \frac{1}{1 + \exp(\beta y h)}$ noise parameter β

