Integer Programming ISE 418

Lecture 3

Dr. Ted Ralphs

Reading for This Lecture

- N&W Sections I.1.1-I.1.6
- Wolsey Chapter 1
- CCZ Chapter 2

Alternative Formulations

- Recall our definition of a valid formulation from the last lecture.
- A key concept in the rest of the course will be that every mathematical model has many alternative formulations.
- Many of the key methodologies in integer programming are essentially automatic methods of reformulating a given model.
- The goal of the reformulation is to make the model easier to solve.

Simple Example: Knapsack Problem

- We are given a set $N = \{1, \dots n\}$ of items and a capacity W.
- There is a profit p_i and a size w_i associated with each item $i \in N$.
- We want to choose the set of items that maximizes profit subject to the constraint that their total size does not exceed the capacity.
- The most straightforward formulation is to introduce a binary variable x_i associated with each item.
- x_i takes value 1 if item i is chosen and 0 otherwise.
- Then the formulation is

$$\min \sum_{j=1}^{n} p_j x_j$$
s.t.
$$\sum_{j=1}^{n} w_j x_j \le W$$

$$x_i \in \{0, 1\} \quad \forall i$$

Is this formulation correct?

An Alternative Formulation

- Let us call a set $C \subseteq N$ a cover is $\sum_{i \in C} w_i > W$.
- Further, a cover C is *minimal* if $\sum_{i \in C \setminus \{j\}} w_i > W$ for all $j \in C$.
- Then we claim that the following is also a valid formulation of the original problem.

$$\min \sum_{j=1}^{n} p_j x_j$$

s.t.
$$\sum_{j \in C} x_j \le |C| - 1 \quad \text{for all minimal covers } C$$

$$x_i \in \{0, 1\} \qquad i \in N$$

Which formulation is "better"?

Back to the Facility Location Problem

- Recall our earlier formulation of this problem.
- Here is another formulation for the same problem:

$$\min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i$$

$$x_{ij} \leq y_j \qquad \forall i, j$$

$$x_{ij}, y_j \in \{0, 1\} \qquad \forall i, j$$

- Notice that the set of integer solutions contained in each of the polyhedra is the same (why?).
- However, the second polyhedron is strictly included in the first one (how do we prove this?).
- Therefore, the second polyhedron will yield a better lower bound.
- The second polyhedron is a better approximation to the convex hull of integer solutions.

Formulation Strength and Ideal Formulations

- Consider two formulations A and B for the same MILP.
- Denote the feasible regions corresponding to their LP relaxations as \mathcal{P}_A and \mathcal{P}_B .
- Formulation A is said to be at least as strong as formulation B if $\mathcal{P}_A \subseteq \mathcal{P}_B$.
- If the inclusion is strict, then A is stronger than B.
- If S is the set of all feasible integer solutions for the MILP, then we must have $conv(S) \subseteq \mathcal{P}_A$ (why?).
- A is *ideal* if $conv(F) = \mathcal{P}_A$.
- If we know an ideal formulation (of small enough size), we can solve the MILP (why?).
- How do our formulations of the knapsack problem compare by this measure?

Strengthening Formulations

• Often, a given formulation can be strengthened with additional inequalities satisfied by all feasible integer solutions.

- Example: The Perfect Matching Problem
 - We are given a set of n people that need to paired in teams of two.
 - Let c_{ij} represent the "cost" of the team formed by person i and person j.
 - We wish to maximize efficiency over all teams.
 - We can represent this problem on an undirected graph G = (N, E).
 - The nodes represent the people and the edges represent pairings.
 - We have $x_e = 1$ if the endpoints of e are matched, $x_e = 0$ otherwise.

min
$$\sum_{e=\{i,j\}\in E} c_e x_e$$

s.t. $\sum_{\{j|\{i,j\}\in E\}} x_{ij} = 1, \ \forall i \in N$
 $x_e \in \{0,1\}, \ \forall e = \{i,j\} \in E.$

Valid Inequalities for Matching

- Consider the graph on the left above.
- The optimal perfect matching has value L+2.
- The optimal solution to the LP relaxation has value 3.
- This formulation can be extremely weak.
- Add the *valid inequality* $x_{24} + x_{35} \ge 1$.
- Every perfect matching satisfies this inequality.

The Odd Set Inequalities

- We can generalize the inequality from the last slide.
- ullet Consider the cut S corresponding to any odd set of nodes.
- \bullet The *cutset* corresponding to S is

$$\delta(S) = \{\{i, j\} \in E | i \in s, j \notin S\}.$$

- An *odd cutset* is any $\delta(S)$ for which |S| is odd.
- Note that every perfect matching contains at least one edge from every odd cutset.
- Hence, each odd cutset induces a possible valid inequality.

$$\sum_{e \in \delta(S)} x_e \ge 1, S \subset N, |S| \text{odd.}$$

Using the New Formulation

- If we add all of the odd set inequalities, the new formulation is ideal.
- Hence, we can solve this LP and get a solution to the IP.
- However, the number of inequalities is exponential in size, so this is not really practical.
- Recall that only a small number of these inequalities will be active at the optimal solution.
- Later, we will see how we can efficiently generate these inequalities on the fly to solve the IP.

Extended Formulations

- We have so far focused on strengthening formulations using additional constraints.
- However, changing the set of variables can also have a dramatic effect.
- Example: A Lot-sizing Problem
 - We want to minimize the costs of production, storage, and set-up.

```
- Data for period t = 1, ..., T: * d_t: total demand,
```

- * c_t : production set-up cost,
- * p_t : unit production cost,
- * h_t : unit storage cost.
- Variables for period $t = 1, \ldots, T$:

*

*

*

Lot-sizing: The "natural" formulation

• Here is the formulation based on the "natural" set of variables:

$$\min \sum_{t=1}^{T} (p_t y_t + h_t s_t + c_t x_t)$$
s.t. $y_1 = d_1 + s_1$,
$$s_{t-1} + y_t = d_t + s_t, \quad \text{for } t = 2, \dots, T,$$

$$y_t \le \omega x_t, \quad \text{for } t = 1, \dots, T,$$

$$s_T = 0,$$

$$s, y \in \mathbb{R}_+^T,$$

$$x \in \{0, 1\}^T.$$

• Here, $\omega = \sum_{t=1}^{T} d_t$, an upper bound on y_t .

Lot-sizing: The "extended" formulation

- Suppose we split the production lot in period t into smaller pieces.
- Define the variables q_{it} to be the production in period i designated to satisfy demand in period $t \geq i$.
- Now, $y_i = \sum_{t=i}^{T} q_{it}$.
- With the new set of variables, we can impose the tighter constraint

$$q_{it} \leq d_t x_i$$
 for $i = 1, \ldots, T$ and $t = 1, \ldots, T$.

- The additional variables strengthen the formulation.
- Again, this in contrary to conventional wisdom for formulating linear programs.

Strength of Formulation for Lot-sizing

- Although the formulation from the previous slide is much stronger than our original, it is still not ideal.
- Consider the following sample data.

```
# The demands for six periods
DEMAND = [6, 7, 4, 6, 3, 8]
# The production cost for six periods
PRODUCTION\_COST = [3, 4, 3, 4, 4, 5]
# The storage cost for six periods
STORAGE\_COST = [1, 1, 1, 1, 1, 1]
# The set up cost for six periods
SETUP\_COST = [12, 15, 30, 23, 19, 45]
# Set of periods
PERIODS = range(len(DEMAND))
```

Strength of Formulation for Lot-sizing (cont'd)

Optimal Total Cost is: 171.42016761

```
Period 0: 13 units produced, 7 units stored, 6 units sold 0.38235294 is the value of the fixed charge variable

Period 1: 0 units produced, 0 units stored, 7 units sold 0.0 is the value of the fixed charge variable

Period 2: 4 units produced, 0 units stored, 4 units sold 0.19047619 is the value of the fixed charge variable

Period 3: 6 units produced, 0 units stored, 6 units sold 0.35294118 is the value of the fixed charge variable

Period 4: 11 units produced, 8 units stored, 3 units sold 1.0 is the value of the fixed charge variable

Period 5: 0 units produced, 0 units stored, 8 units sold 0.0 is the value of the fixed charge variable
```

What is happening here?

Strength of Formulation for Lot-sizing (cont'd)

Let's take a more detailed look:

```
production in period 0 for period 0 : 2.2941176 production in period 0 for period 1 : 2.6764706 production in period 0 for period 2 : 1.5294118 production in period 0 for period 3 : 2.2941176 production in period 0 for period 4 : 1.1470588 production in period 0 for period 5 : 3.0588235
```

What is the problem?

An Ideal Formulation for Lot-sizing

We can further strengthen the formulation by adding the constraint

$$\sum_{i=1}^{t} q_{it} \ge d_t \text{ for } t = 1, \dots, T$$

- In fact, adding these additional constraints makes the formulation ideal.
- If we *project* into the original space, we will get the convex hull of solutions to the first formulation.
- How would we prove this?

Contrast with Linear Programming

 In linear programming, the same problem can also have multiple formulations.

- In LP, however, conventional wisdom is that bigger formulations take longer to solve.
- In IP, this conventional wisdom does not hold.
- We have already seen two examples where it is not valid.
- Generally speaking, the size of the formulation does not determine how difficult the IP is.