Reverse phase HPLC of class I HLA eluted peptide ligands

Fraction number

Ion many of peptides eluted from various B15 class I sHLA molecules. Mapping was accomplished with a nano-spray reedle and an ESI mass spectrometer.

The figure shows that the same ion peak is present in 3 of 4 B15 class I.

FIG.

00 2 ç ĝ 09 Ö 20 \$ yacroint # MS/MS fragmentation-sequencing of ion 517.2 runs. There is also sufficient peptide present to MS/MS sequenced. There is sufficient peptide from the various B15 class I sHLA molecules. second nanospray of the peptides in fraction 8 from the HPLC. This demonstrates how ions This data was accomplished by completing a present to do multiple MS/MS fragmentation separation in the event that two peptides had facilitate a submotif on fraction 8 or further can be MS ion mapped and subsequently mapped at 517.2 in the ion map.

FIG. 3

infected and uninfected cells were compared. Ion 484.72 was unique to the HIV infected cells. Ion 484.72 was subjected to MS/MS fragmentation-sequencing. We called GPRTAALGLL as the sequence of the ligand. We synthesized this peptide and found that it sHLA B*0702 was secreted from HIV infected and uninfected cells. The ion maps of the peptides eluted from sHLA B*0702 in generated the same MS/MS fragmentation pattern as the ligand from HIV infected cells. This MS/MS data on a synthetic ligand matches our experimental data and validates the accuracy of our sequence.

ļ.
1
10
1 Par
*
,
**
*
* ****
4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
the three wife
Span Share

B*1508

B*1510

123456789	H K K K K K K K K K K K K K K K K K K K	T GRRIM-F DDV L EK	N E
	dominant	strong	
6.8	→	jsa 1	YMVTF APAVVGYTXSX YWCNAEEYTXSX YMVCNAEEYF ALGSZAXMPF VGYVDDTQF DVEGWMSZY AQHPSAXRFZAY GLGSTSAEF NAXGRESSF TARVXSVEY AAFCGXV XLHET ILGPPGSVY XLHET ILGPPGSVY XLHET YGGYNMY VMGXTNANF AVOTXZSDF AMNPTNTVF SQXAAGVDVF VWGXTNANF AVOTXZSDF AMNPTNTVF SQXAAGVDVF VECSHTTF XQGHHEMFY PQGZMAY HLTGNEATSF YMIDPSGVSY
234567	OX FR M M M M M M M M M M M M M M M M M M	MPPG LHDI VAG	FLZAMGSTY GQYVVZPTY PMFDPPZTF XAVGHSGGTYPTYPTY EPAMVXZCF XAHTECPRGY VQGPVGSZY VQXYGSVV GQPGAPXGEZY VQXYGSVV GQPGAPXGEZY VQXYYGSVV GQPGAPXGEZY VQXYYGSVV GQPGAPXGEZY VQXYYGSVV GQPCAPXCF PTDRRZE YTGVSYXPF ATGTAZNXNZ VVACVY PLA-N-HTY VVACVY PLA-N-HTY VVACVY PLA-N-HTY VVACVY PLA-N-HTY VVACYCY SQRXDRAYZF VAGGWF SGAXDRAYZF VAGGWF SGAXDRAYZF VAGGFFXXEY XAGFFXXEY XAGFFXXEY XAGFFXXEY XAGFFXXEY YOGPVGTDF VQGPVGTDF
1	dominant -	strong - 1	
7 8 9	> -1 1	Ευ !	ILGPPGSVY XLGDVNMY APXVSY YMSGXYGTFAVVAZSY MPAGYNNVY XPVVPAAZTY XMIDPSGVSY
123456	и К г г г г г г г г г г г г г г г г г г	1 H C D W	AQYAAGESFY TPHTZHDEY YMFMY MVGXXPAT DPEYVSGF ZE VVACVY PLA-N-HTY VVAPITTGY XAXYRRMY PXAMQXYTY TZSNAY MAAMYGVAVY LPEQPLATY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY FVTXNXEEY GPZ VMZHGY TYTANAGE NGYSTI YVASTI YVASTI YGY VDDTÇF ZAINSVTSTY YATAGEMMAF XASTI YGT VDDTÇF ZAINSVTSTY YATAGEMMAF TARVXSVEY TARVX
	dominant	strcng	

Pooled Peptide Motif

P1 P2 P3 P4 P5 P6 P7 P8 P9
T R P
S E
Q
M
Y
K
H

FIG.

Narrowing search parameters using fraction motifs:

Ovarian Carcinoma Immunoreactive Antigen

MNGRADFREP	NAEVPRPIPH	IGPDYI PTEE	ERRYFAECND	ESFWFRSYPL
AATSMLITQG	LISKGILSSH	PKYGSIPKLI		KLSYVKICGE
KF KKLENSPL	GEALRSGQAR	RSSPPGHYY	KSKYDSSVSG	QSSFVTSPAA
QSSFVTSPAA	OMEMLPHYE	PIPFSSSMNE	SAPTGITDHI	Y BG PDP NLEE
SPKRKNITYE	ELRNKINRESY	EVSLTQKTDP	SVRPMHERVP	
DTWDE				

Scanning with whole-pooled motif revealed 4 putative epitopes.

Ovarian Carcinorna Immunoreactive Antigen

MINGRADFREP	NAEVPRPIPH	IGPDYIPTEE	ERRYFAECND	ESFWFRSYPL
AATSMUTQG	LISKGILSSH	PKY6SIPKU	LACMGYFAG	KLSYVKTCQE
KFKKLENSPL	GEALRSGQAR	RSSPPGHYYO	KSKYDSSVSG	QSSFVTSPAA
GSSFVTSPA,A		PIPFSSSMINE	SAPTGITDHI	YQGPDPNLEE
SPKRKNITYE	ELRIKARESY	EVSLTQKTDP	SVRPMHERVP	KKEVKVNKY6
DTWDE				

Scanning with fraction 48 peptide motif revealed 1 putative epitope.

FIG. 8

Motif Data (Edman sequencing)

		L	H	-				-		·	Г	125		ŀ					ŀ	ŀ	8	
	1000		7	, ,	TOIG	0	000 0	4	,¢	10IQ	6 D	26	Told 6	%	told	7	0/	TOIG	g R	. %	fold	9 76
Dominant	H					F 9.20	۲	1.18														
3.5 fold			-	\vdash			32 09	7,04							L				<u> </u>			
increase or			<u> </u>	-		N 620		4.11											-			
more civer			_	-		M		10,42											L			200
prior round			\vdash							_									_			
															_							
			\mathbb{H}																	-		
Strong	K 3.50		R 53	53.80	2.57	0 8,20		10 P	8.30	2.97												7.50
2.5-3.5 fold	Я		-			K. 5.40		7		├									-	_		
increase over 🖺 🕏 👚	- S- 11140			_		L 165	10 3.4	3,47		_									_			
prior ro and			_	_															_	_		
			H	Н																_		
Weak			H	\vdash		A . 580	80 2.08	89			N	4.90	2.28			Δ,	7:70	2.12				
2.0-2.5 fold			_	-																		
increase over								2	_						_					-		
prior round				_					_	L										-		
			Н																			
Trace			0 3	3.60	1.79	P 2.20		7 7 X	11.00	0 1.63	3 1 1	6.50	4:99						2	1.40	1.93	100
1.50-2.0 fold								S	6.00	1.68	8 F	4.20	1.83						2	5.70	1.55	
increase over			H					^	5.30	1.99	Н. 6	1.80	191									
prior round									_										-			
																			_			

FIG. 11

DESIGN OF HLA LIGAND/MOTIF DATABASE

FIG. 12

FIG. 13

Entity-Relationship (ER) Diagram for HLA Ligand/Motif Database

FIG. 14

UML Diagram for HLA Ligand/Motif Database

