THEORETICAL PART:

Definition (Inverse of a Relation):

Let R be a relation. The **inverse of R**, denoted R^{-1} , is the relation defined by switching the first and second coordinates of each ordered pair that is an element of R.

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

CAUTION:

Note that f^{-1} does not stand for $\frac{1}{f}$ when f is a function!

Theorem (The Horizontal Line Test):

Let f be a function. We say that the graph of f passes the **horizontal line test** if every horizontal line in the plane intersects the graph no more than once. If f passes the horizontal line test, then f^{-1} is also a function.

Definition (One-to-One Function):

A function f is **one-to-one** if, for every pair of distinct elements x_1 and x_2 in the domain of f, we have $f(x_1) \neq f(x_2)$.

Procedure (Finding Formulas of Inverse Functions):

Let f be a one-to-one function, and assume that f is defined by a formula. To find a formula for f^{-1} , perform the following steps:

- 1. Replace f(x) in the definition of f with the variable y. The result is an equation in x and y that is solved for y at this point.
- 2. Solve the equation for x.
- 3. Replace the x in the resulting equation with $f^{-1}(x)$ and replace each occurrence of y with x.

Theorem (Composition of Functions and Inverses):

Given a function f and its inverse f^{-1} , the following statements are true:

$$f(f^{-1}(x)) = x$$
 for all $x \in Dom(f^{-1})$

$$f^{-1}(f(x)) = x$$
 for all $x \in Dom(f)$

PRACTICAL PART:

1. Determine the inverse of each of the following relations. Then graph each relation and its inverse, and determine the domain and range of both:

(a)
$$R = \{(4, -1), (-3, 2), (0, 5)\}$$

(b)
$$y = x^2$$

(a) $R^{-1} = \{(-1, 4), (2, -3), (5, 0)\}$ (b) $R = \{(x, y) | y = x^2\}$ $R^{-1} = \{(x, y) | x = y^2\}$

(a) $Dom(R^{-1})=\{-1, 2, 5\}$ $Ran(R^{-1})=\{4, -3, 0\}$

(b) Dom(R-1) = [0,00) Ran(R-1) = (-0,00)

2. Determine if the following functions have inverse functions:

(a)
$$f(x) = |x|$$

(b)
$$g(x) = (x+2)^3$$

3. Find the inverse of each of the following functions:

(a)
$$f(x) = (x-1)^3 + 2$$

(b)
$$g(x) = \frac{x-3}{2x+1}$$

(a)
$$y=(x-1)^3+2$$

 $y-2=(x-1)^3$
 $x-1=3(y-2)$
 $x=3(y-2)+1$

(b)
$$y = \frac{x-3}{2x+1}$$

$$2xy + y = x - 3$$

$$2(2y - 1) = -y - 3$$

$$X = \frac{-y - 3}{2y - 1}$$

$$f^{-1}(x) = \frac{-x-3}{2x-1}$$

4. Find two suitable restrictions of the domain so that the function $f(x) = (x + 1)^2 - 3$ has an inverse function, then find a formula for the inverse for each restricted function.

$$f(x) = (x+1)^2 - 3$$

$$f(x) \text{ is not one-to-one}$$

$$on IR$$

$$on [-1, \infty) \quad f(x) \text{ is}$$

one-to-one

$$y=(x+1)^2-3$$

 $y+3=(x+1)^2$
 $x+1=+\sqrt{y+3}$
 $x=+\sqrt{y+3}-1$

• an
$$(-\infty, -1)$$
 f(x) is also one-to-one

 $y = (x+1)^2 - 3$
 $f'(x) = -(x+3) - 1$

5. Use functions $f(x) = (x-1)^3 + 2$ and $f^{-1}(x) = (x-2)^{\frac{1}{3}} + 1$ to demonstrate that the composition of a function and its inverse leaves any input unchanged.

$$\frac{f \circ f^{-1}(x)}{(x-2)^{1/3}+1} = f(f^{-1}(x)) = f((x-2)^{1/3}+1) = \frac{f(f^{-1}(x))}{(x-2)^{1/3}+1} = \frac{f(f^{-1}(x))}{(x-2)^{1/3}+1} = \frac{f(f^{-1}(x))}{(x-1)^{3}+1} = \frac{f(f^{-1}(x))}{(x$$