PWM/PFM 控制 DC-DC 降压转换器

■ 产品概述

XT3410 是一款由基准电压源、振荡电路、比较器、PWM/PFM 控制电路等构成的 CMOS 降压型 DC/DC 调整器。利用 PWM/PFM 自动切换控制电路达到可调占空比,具有全输入电压范围内的低纹波、高效率和大输出电流等特点。

XT3410 内置功率 MOSFET,集成了过压、过流、过热、短路等诸多保护电路,在超过控制值时会自动断开,以保护芯片。本产品结合了微型封装和低消耗电流等特点,最适合在移动设备的电源内部使用。

■ 用途

- 数码相机、电子记事本、PDA 等移动设备电源
- 照相机、视频设备、通信设备的稳压电源
- 微机电源
- 机顶盒

■ 产品特点

● 高效率 最大效率可达 95%

最大输出电流 1.5A超低静态电流 40µA甚小输出纹波 <±0.4%

● 低压操作 可达 100%占空比

● PWM/PFM 自动切换 占空比自动可调以保持全负载 范围内的高效率、低纹波

● 短路保护

■ 封装

SOT-23-5L

■ 典型应用电路

■ 订购信息

XT3410A①②③

数字项目	符号	描述		
(1)	F	PWM/PFM 自动切换模式		
(1)	W	纯 PWM 模式		
2	М	SOT-23-5L 封装		
3	R	卷带方向正向		
	L	卷带方向反向		

■ 引脚配置

■ 引脚分配

引脚号	符号	引脚说明		
1	CE	芯片使能端,高有效		
2	GND	地		
3	LX	内部功率开关输出端口		
4	VIN	电源输入端		
5	FB	输出电压反馈端		

■ 打印信息

SOT-23-5L

符号	说明		
Α	外置反馈		
F	频率1.5MHz		
D	版本号		
X	生产信息		
• 质量追踪信息			

■ 功能框图

■ 绝对最大额定值

项目		符号	绝对最大额定值	单位	
输入电	输入电压		-0.3∼6.5		
输出电压		VFB	-0.3∼6.5	V	
		VLX	-0.3∼VIN + 0.3		
CE端电	CE端电压		-0.3∼VIN + 0.3	V	
LX端电	LX端电流		±2	А	
容许功耗	SOT-23-5L	Pd	250	mW	
工作环境	工作环境温度		-40~+85	°C	
保存温度		Tstg	-55~+125	C	

■ 电学特性参数

CIN=10uF, COUT=10uF, L=2.2uH

(Ta=25℃除非特殊指定)

项目	符号	条件	最小值	典型值	最大值	单位
输入电压范围	VIN	-	2.5	-	6	V
欠压保护	UVLO	-	-	2.4	-	V
欠压保护迟滞	UVLO_HYS	-	-	500	-	mV
过压保护	OVP	-	-	6.2	-	V
过压保护迟滞	OVP_HYS	-	-	300	-	mV
FB 反馈电压	VFB	Ta=25℃	0.588	0.6	0.612	V
待机电流	ISTB	VCE=0V, VIN=5V	0	-	1	uA
静态电流	IQ	VFB=110%, ILOAD=0	-	40	-	uA
工作电流	IACT	VFB=90%, ILOAD=0	-	150	300	uA
峰值电流限制	ILIM	VFB=90%, VIN=5V	1	-		Α
负载调整度	ΔVOUT	ILOAD=10mA to 1.0A	-	0.5	-	%
线性调整度	$\frac{\Delta VOUT}{\Delta VIN \times VOUT}$	VIN=2.5V to 6V	-	0.04	0.4	%
PFM 切换点	ILOAD	VIN=3.6V, VOUT=1.8V	-	30	-	mA
振荡频率	FOSC	VOUT=100%	-	1.5	-	MHz
最大占空比	DMAX	-	100	-	-	%
功率管内阻_P	RDSON_P	ISW=100mA	-	0.3	-	Ω
功率管内阻_N	RDSON_N	ISW= 100mA	-	0.2	-	Ω
SW 端漏电流	ILEAK_SW	VCE=0V, IN=5V	-	±0.01	±1	uA
CE 开启电平	VCEH	VIN=5V	1.2	-	-	V
CE 关断电平	VCEL	VIN=5V	-	-	0.7	V
短路保护电流	I_OS	VFB<0.2V		0.2		Α
过温保护	TSHD	-	-	160	-	$^{\circ}$
过温保护迟滞	T_HYS	-	-	20	-	$^{\circ}$

■ 特性曲线

1、 工作状态

VIN=5.0V, VOUT=3.3V, IL=1.0A

3、CE 关断

VIN=5.0V, VOUT=3.3V, IL=1.0A

5、中等负载波形

VIN=5.0V, VOUT=3.3V, IL=0.6A

2、CE 开启

VIN=5.0V, VOUT=3.3V, IL=1.0A

4、轻载波形

VIN=5.0V, VOUT=3.3V, IL=1mA

6、重载波形

VIN=5.0V, VOUT=3.3V, IL=1.2A

7、静态电流温度曲线

9、输出电压温度曲线

11、效率温度曲线

8、频率温度曲线

10、反向输出电流温度曲线

12、效率 @ VOUT=3.3V

13、效率 @ VOUT=1.8V

15、静态电流 Vs. 输入电压

14、效率 @ VOUT=1.2V

16、负载调整率@ VOUT=3.3V

■ 功能说明

● 概述

XT3410 是一款由基准电压源、振荡电路、比较器、PWM/PFM 控制电路等构成的 CMOS 降压 DC/DC 调整器。输入电压范围 2.5V ~ 6.0 V,输出电压可低至 0.6V,最大能提供 1.5A 负载电流。

XT3410 采用电流模控制架构,内部集成了主功率管 (PMOSFET)和续流管 (NMOSFET),在正常工作状态下,主功率管在每个 OSC 上升沿开启,FB 和内部基准电压的差值经由误差放大器 EA 放大后,与电感电流峰值采样信号比较并产生关闭主功率管的 PWM 信号,主功率管关闭后续流管开启,直到下个周期来临或者电感电流反向时关闭。

当输出电流增加时,FB 电压有轻微的降低,PWM 信号将晚一点产生,主功率管导通更久一点时间,随着占空比的增大,输出电压提高并达到新的稳态。

■ 应用说明

● 输出电压设置

输出电压通过以下公式计算得到,

$$VOUT = 0.6 \times (1 + \frac{R1}{R2})$$

建议 R2 选用百 K 级电阻以降低待机功耗。

● 输入电容

输入电容在交流电路中电压下降时提供能量,在直流电路中具有整流作用。输入电容纹波电流可以通过以下公式计算:

$$ICIN = ILOAD \times \sqrt{\frac{VOUT}{VIN} \left(1 - \frac{VOUT}{VIN}\right)}$$

ILOAD 是负载电流, VOUT 是输出电压, VIN 是输入电压。

输入电容值可以由以下公式计算:

$$CIN = \frac{ILOAD}{fs \times AVIN} \times \frac{VOUT}{VIN} \times \left(1 - \frac{VOUT}{VIN}\right)$$

fs 是开关频率,Δ VIN 是输入纹波电流。 典型应用中建议使用 10uF 以上的陶瓷电容。

● 输出电容

● 轻载 PFM 模式

XT3410 轻载时工作于 PFM 模式,在 PFM 模式下,通过开关频率的变化来实现负载电流的调节,当负载电流减小时通过降低开关频率以减小开关损耗,进而提高效率。

● 关断状态

当 CE 引脚端电压低于 0.7V 时, XT3410 处于关断状态。在关断状态下,芯片不工作,电路工作电流低于 1uA。

● 短路保护

输出对地短路时,XT3410 开关频率降低以防止电感电流的增加超出功率管电流限制,并且通过降低占空比来实现短路保护。

● 温度保护

当 XT3410 芯片内的温度超过 160℃ 时,芯片会停止 工作,在直到温度降低到 140℃ 以下时,芯片恢复工作。

输出电容值决定了输出电压纹波,输出电压纹波由以下 公式计算:

$$\Delta VOUT = \frac{VOUT}{\mathrm{fs} \times L} \times \left(1 - \frac{VOUT}{VIN}\right) \times \left(RESR + \frac{1}{8 \times \mathrm{fs} \times COUT}\right)$$

fs 是开关频率, RESR 为输出电容的等效串联电阻。

输出电容可以选择低 ESR 的钽电容或陶瓷电容,低 ESR 的电容可以降低输出电压纹波。

输出电容也会影响系统的稳定性和瞬态响应,典型应用中建议使用 10uF 以上的陶瓷电容。

● 电感

电感值可以由以下公式计算:

$$L = \frac{VOUT}{\text{fs} \times \Delta IL} \times \left(1 - \frac{VOUT}{VIN}\right)$$

fs 是开关频率, ΔIL 是电感电流的峰值,一般取电感电流的40%。

典型应用中建议使用 2.2uH 的线圈电感。

■ 典型应用方案

注: C1 为可选电容。

■ PCB 布局

为了使噪音最低和操作性能最佳,PCB 布局时以下几点建议可作为参考:

- 1、VIN、SW、GND 组成的功率通路,尽量采用短而宽的布线,避免过孔。
- 2、输入电容尽量靠近输入引脚。
- 3、电感远离 VOUT 节点。
- 4、PCB上的地线应尽可能大以便更好的散热。

■ 封装信息

● SOT-23-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	