Aprendizaje Automático No Supervisado Alberto Barbado González

Tema 1 - Introducción

La pregunta del día

¿Cómo podemos identificar patrones y estructuras ocultas en conjuntos de datos sin etiquetas previas?

Encuesta previa

¿Cómo definirías de manera sencilla el UML?

¿Por qué crees que es necesario?

Nombra una tarea que conozcas que se realiza con UML

En el día de hoy

- Definición de Aprendizaje Automático No Supervisado (UML)
- Aplicaciones de UML
- Flujo de experimentación con UML
- Preprocesamiento de datos

Definición

Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. (Wikipedia)

Unsupervised learning in artificial intelligence is a type of machine learning that learns from data without human supervision. Unlike supervised learning, unsupervised machine learning models are given unlabeled data and allowed to discover patterns and insights without any explicit guidance or instruction (Google)

El aprendizaje automático no supervisado se denomina así porque no hay un supervisor externo proporcionando retroalimentación sobre cómo debe ser clasificado un dato (Apuntes de la asignatura)

Ejemplos

Recordatorio: Aprendizaje Supervisado - Clasificación

https://www.acte.in/supervised-learning-workflow-and-algorithms-article

Ejemplos

Aprendizaje No Supervisado - Clustering

Ejemplos de UML

Reducción de dimensionalidad

Reglas de asociación

Purchase item A => also purchase item B

Detección de anomalías

https://365datascience.com/tutorials/python-tutorials/principal-components-analysis/https://ai-ml-analytics.com/introduction-to-machine-learning-blog-1/

UML para distintos ámbitos: NLP

Topic Modeling

https://hyperskill.org/learn/step/27852

ML que no es SML – Reinforcement Learning

RL como otro casoque no es SML

A-TD3: An Adaptive Asynchronous Twin Delayed Deep Deterministic for Continuous Action Spaces

RL no es sólo para juegos...

- Gracias a técnicas de RL, se han podido desarrollarlos LLMs tan eficientes que temenos hoy en día.
- En particular, el caso de DeepSeek, donde, usando RL para desarrollar modelos con razonamiento que se "autocorrigen" antes de generar la respuesta final.

Question: If a>1, then the sum of the real solutions of $\sqrt{a-\sqrt{a+x}}=x$ is equal to Response: <think>
To solve the equation $\sqrt{a-\sqrt{a+x}}=x$, let's start by squaring both \cdots $\left(\sqrt{a-\sqrt{a+x}}\right)^2=x^2\implies a-\sqrt{a+x}=x^2$. Rearrange to isolate the inner square root term: $(a-x^2)^2=a+x\implies a^2-2ax^2+(x^2)^2=a+x\implies x^4-2ax^2-x+(a^2-a)=0$...

Wait, wait. Wait. That's an aha moment I can flag here. Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation: $\sqrt{a-\sqrt{a+x}}=x$ First, let's square both sides: $a-\sqrt{a+x}=x^2\implies \sqrt{a+x}=a-x^2$ Next, I could square both sides again, treating the equation: \cdots ...

Table 3 | An interesting "aha moment" of an intermediate version of DeepSeek-R1-Zero. The model learns to rethink using an anthropomorphic tone. This is also an aha moment for us, allowing us to witness the power and beauty of reinforcement learning.

https://arxiv.org/pdf/2501.12948

https://www.scmp.com/tech/big-tech/article/3301986/ai-agent-manus-partners-alibabas-gwen-develop-chinese-version

Algunas aplicaciones a distintas industrias...

Segmentación de clientes

Detección de fraude en transacciones financieras

https://rpubs.com/michelarrudala/801795

 $\underline{\text{https://cambridge-intelligence.com/detect-credit-card-fraud-with-network-visualization/}}$

https://www.kirenz.com/blog/posts/2020-05-14-r-association-rule-mining/

https://applemagazine.com/netflix-introduces-personalized-my-netflix-section-for-ios-users/59507

Ubicar productos en tienda

Personalizar contenido

Flujo de experimentación con UML

Preprocesamiendo de datos

- Fase esencial para convertir información en datos procesables por el computador.
- Generalmente, los datos deben ser numéricos; textos e imágenes requieren transformación.
- La calidad del procesamiento es clave para asegurar resultados precisos.

https://www.linkedin.com/pulse/garbage-out-chanthoeun-chiv/

Preprocesamiento - técnicas

Las habituales...

- Tratamiento de nulos
- Transformación de datos
- Discretización
- Estandarización
- Codificación de datos categóricos
- Tratamiento de valores atípicos (outliers)

Preprocesamiento - técnicas

Otras más específicas a cada situación...

- Reducción de dimensionalidad
 - Selección de variables
 - Extracción de variables
- Preprocesamiento de imágenes
- Preprocesamiento de texto
 - Tokenización
 - Eliminación de stopwords
 - Stemming / lematización
 - NER
 - **...**
- Resampling techniques / Data Augmentation

Preprocesamiento - técnicas

Otras más específicas a cada situación...

- Reducción de dimensionalidad
 - Selección de variables
 - Extracción de variables
- Preprocesamiento de imágenes
- Preprocesamiento de texto
 - Tokenización
 - Eliminación de stopwords
 - Stemming / lematización
 - NER
 - ...

- Lo veremos en la asignatura
- ➡ Visión Artificial

Procesamiento de Lenguaje Natural

Resampling techniques / Data Augmentation

Tratamiento de nulos

Objetivo: Tratamiento de valores nulos o incompletos

Age	Salary	Department
25	50000	HR
30	NaN	Finance
NaN	60000	IT

Algunas técnicas

- Eliminar registros
- Reemplazar con media, mediana o moda
- Reemplazar con valor por defecto
- Reemplazar por UNK
- Predecirlo con un modelo de ML!

Age	Salary	Department
25	50000	HR
30	55000	Finance
27.5	60000	IT

Ejemplo: Reemplazar por media

Tratamiento de nulos

Age	Salary	Department	
25	50000	HR	
30	-1	Finance	
99999	60000	IT	

Nota: Los nulos a veces no se representan como valores "vacíos"

 Age
 Salary
 Department

 25
 50000
 HR

 30
 55000
 Finance

 27.5
 60000
 IT

Ejemplo: Reemplazar por media

Transformación de datos

Objetivo: Reducir asimetría, convertir relaciones no lineales en lineales y mejorar la predicción.

https://mathbench.umd.edu/modules/misc_scaling/page07.htm https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036143/

Transformación de datos

Objetivo: Reducir asimetría, convertir relaciones no lineales en lineales y mejorar la predicción.

Age	Salary	Department
25	50000	HR
30	55000	Finance
27	4500000	IT

Algunas técnicas

- Transformación logarítmica
- Transformación polinómica

Age	Ln(Salary)	Department
25	10.82	HR
30	10.91	Finance
27	15.31	IT

Ejemplo: Transformación logarítmica

Transformación de datos

Objetivo: Reducir asimetría, convertir relaciones no lineales en lineales y mejorar la predicción.

Ejemplo de aplicación

Ejemplos de transformaciones polinómicas

Transformation	f(x) Notation	Examples	
Horizontal Translation	0/ 1)	$g(x) = (x-5)^4$	5 units right
Graph shifts left or right.	f(x-h)	$g(x) = (x+2)^4$	2 units left
Vertical Translation	C() 1 1	$g(x) = x^4 + 1$	1 unit up
Graph shifts up or down.	f(x) + k	$g(x) = x^4 - 4$	4 units down
Reflection	f(-x)	$g(x) = (-x)^4 = x^4$	over y-axis
Graph flips over x- or y-axis.	-f(x)	$g(x) = -x^4$	over x-axis
Horizontal Stretch or Shrink	f(ax)	$g(x) = (2x)^4$	shrink by a factor of $\frac{1}{2}$
Graph stretches away from or shrinks toward y-axis.	J (dx)	$g(x) = \left(\frac{1}{2}x\right)^4$	stretch by a factor of 2
Vertical Stretch or Shrink		$g(x) = 8x^4$	stretch by a factor of 8
Graph stretches away from or shrinks toward <i>x</i> -axis.	$a \cdot f(x)$	$g(x) = \frac{1}{4}x^4$	shrink by a factor of $\frac{1}{4}$

https://static.bigideasmath.com/protected/content/pe/hs/sections/alg2_pe_04_07.pdf https://stats.stackexchange.com/questions/568417/why-would-you-perform-transformations-over-polynomial-regression

Discretización de datos

Objetivo: Convertir los valores de una variable continua en valores discretos, generando intervalos o *bins*.

Algunas técnicas

- Uso de cuantiles
- Árboles de Decisión
- Clustering

Estandarización de datos

Objetivo: Asegurar que los datos están en una misma escala. Esto es fundamental para usarlos en algoritmos basados en distancias (e.j., NN)

Age	Salary	Department	
25	50000	HR	
30	55000	Finance	
27	80000	IT	

Ejemplo: Normalización

Age	Salary	Department	
0	0	HR	
1	0.167	Finance	
0.625	1	IT	

Algunas técnicas

- Normalización
- Estandarización

Feature scaling

https://medium.com/@brijesh_soni/feature-engineering-101-7cb68d293551

Estandarización de datos

Influencia de los valores atípicos

Codificación de valores categóricos

Objetivo: Convertir los datos textuales en formato numérico

Degree	Department
Graduate	HR
MSc	Finance
PhD	IT

Algunas técnicas

- One-hot encoding
- Label encoding
- Codificación binaria

Contract	Department_HR	Department_Finance	Department_IT
0	1	0	0
1	0	1	0
2	0	0	1

Label encoding

One-hot encoding

Tratamiento de outliers

Objetivo: Detectar y tratar *outliers* que pueden perjudicar al rendimiento del modelo.

```
Serie = [10, 12, 14, 15, 16, 18, 19, 21, 100]
```

```
Q1: 14.0
Q3: 19.0
IQR: 5.0
IQR Outliers (outside [ 6.5 , 26.5 ]): [100]
```

Algunas técnicas

- Z-score
- IQR

Fórmulas

Z-Score Formula:
$$Z = \frac{X - \mu}{\sigma}$$

$$IQR = Q3 - Q1$$

E.j. Umbrales

$$\Pr(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 68.27\%$$

 $\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95.45\%$
 $\Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 99.73\%$

$${\rm Lower\ bound} = Q1 - 1.5 \times {\rm IQR}$$

Upper bound =
$$Q3 + 1.5 \times IQR$$

En resumen

- UL como enfoque para encontrar patrones en datos cuando no se dispone de un target específico
- UL como un conjunto de algoritmos útiles para distintos casos de uso: perfilado clientes, detección de fraude, ubicación de productos en tiendas, personalización de contenido...
- Preprocesado como etapa fundamental inicial de todos los flujos de experimentación y trabajo de ML (SML y UML)

En la próxima semana

¿Cómo podemos agrupar un conjunto de datos de clientes de una tienda en diferentes segmentos sin conocer previamente su comportamiento de compras?

UNIVERSIDAD INTERNACIONAL LITTERNACIONAL DE LA RIOJA

www.unir.net