X - Réduction

I - Éléments propres

Définition 1 - Valeur propre, Vecteur propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Le réel λ est une valeur propre de M s'il existe un vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $MX = \lambda X$.

Exemple 1 - Valeurs / Vecteurs propres

• Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Alors,

$$AX = \begin{pmatrix} -1 - 1 \\ 1 + 1 \\ 1 - 1 \end{pmatrix} = 2X.$$

Ainsi, X est un vecteur non nul et AX = 2X, donc X est un vecteur propre de A associé à la valeur propre 2.

- Si λ est un vecteur propre de I_n et X est un vecteur propre associé, alors $I_nX=\lambda X$ soit $X=\lambda X$ et $(\lambda-1)X=0_{n,1}$. Comme $X\neq 0_{n,1}$, alors $\lambda-1=0$ soit $\lambda=1$. Ainsi, 1 est l'unique valeur propre de I_n et tout vecteur
 - Ainsi, 1 est l'unique valeur propre de I_n et tout vecteur non nul est un vecteur propre associé.

• Soit
$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
, λ une valeur propre de D et

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 un vecteur propre associé. Comme $DX = \lambda X$,

alors

$$\begin{cases}
-x &= \lambda x \\
2y &= \lambda y \\
-3z &= \lambda z
\end{cases} \Leftrightarrow \begin{cases}
(\lambda - 1)x &= 0 \\
(2 - \lambda)y &= 0 \\
(-3 - \lambda)z &= 0
\end{cases}$$

Comme X est un vecteur propre, il est non nul et une de ses composantes est non nulle. Ainsi, soit $\lambda - 1 = 0$, soit $2 - \lambda = 0$ soit $-3 - \lambda = 0$. Alors, $\lambda \in \{-1, 2, -3\}$.

Réciproquement, il est facile de trouver un vecteur propre correspondant aux valeurs propres -1, 2 et -3.

L'ensemble des valeurs propres de D est donc $\{-1,2,3\}$.

Proposition 1 - Valeurs propres & Inversibilité

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Le réel λ est une valeur propre de M si et seulement si $M - \lambda I_n$ n'est pas inversible.

Exemple 2 - Valeurs propres d'une matrice triangulaire

Soit
$$T = \begin{pmatrix} 4 & 32 & -1 \\ 0 & 9 & -2 \\ 0 & 0 & -7 \end{pmatrix}$$
. Le réel λ est valeur propre de T si

et seulement si la matrice
$$T - \lambda I_3 = \begin{pmatrix} 4 - \lambda & 32 & -1 \\ 0 & 9 - \lambda & -2 \\ 0 & 0 & -7 - \lambda \end{pmatrix}$$

est inversible. D'après la caractérisation de l'inversibilité des matrices triangulaires, λ est une valeur propre de T si et seulement si $\lambda \in \{4, 9, -7\}$.

Théorème 1 - Valeurs propres & Matrices triangulaires

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire. Les valeurs propres de T sont ses éléments diagonaux.

Théorème 2 - Recherche de valeurs propres

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Le réel λ est une valeur propre de M si et seulement si $\operatorname{Rg}(M - \lambda I_n) < n$.

Exemple 3 - Recherche de valeurs propres

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 0 & -1 & 0 \\ 8 & -4 & -5 \end{pmatrix}$$
 et $\lambda \in \mathbb{R}$. Alors,

$$Rg(A - \lambda I_3) = Rg \begin{pmatrix} 7 - \lambda & -4 & -4 \\ 0 & -1 - \lambda & 0 \\ 8 & -4 & -5 - \lambda \end{pmatrix}$$

$$= Rg \begin{pmatrix} 7 - \lambda & -4 & -4 \\ 8 & -4 & -5 - \lambda \\ 0 & -1 - \lambda & 0 \end{pmatrix} \quad L_{2 \leftrightarrow L_3}$$

$$= Rg \begin{pmatrix} 7 - \lambda & -4 & -4 \\ 8 & -5 - \lambda & -4 \\ 0 & 0 & -1 - \lambda \end{pmatrix} \quad C_{2 \leftrightarrow C_3}$$

$$= Rg \begin{pmatrix} 8 & -5 - \lambda & -4 \\ 7 - \lambda & -4 & -4 \\ 0 & 0 & -1 - \lambda \end{pmatrix} \quad L_{1 \leftrightarrow L_2}$$

$$= Rg \begin{pmatrix} 8 & -5 - \lambda & -4 \\ 0 & -\lambda^2 + 2\lambda + 3 & -4(\lambda + 1) \\ 0 & 0 & -1 - \lambda \end{pmatrix} \quad L_{2 \leftrightarrow 8L_2 - (7 - \lambda)L_1}$$

Ainsi, $Rg(A - \lambda I_3) < 3$ si et seulement si

$$(-\lambda^{2} + 2\lambda + 3)(-1 - \lambda) = 0$$
$$-(\lambda + 1)(\lambda - 3)(-\lambda - 1) = 0$$
$$\lambda \in \{-1, 3\}.$$

L'ensemble des valeurs propres de A est donc $\{-1,3\}$.

Proposition 2 - Inversibilité & Valeur propre nulle

Soit $M \in \mathcal{M}_n(\mathbb{R})$. La matrice M est inversible si et seulement si 0 n'est pas valeur propre de M.

Définition 2 - Sous-espace propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de M. Le sous-espace propre de M associé à la valeur propre λ est l'espace vectoriel $E_{\lambda}(M) = \text{Ker}(M - \lambda I_n)$.

Exemple 4 - Calcul de sous-espace propre

En reprenant l'exemple précédent, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{-7}(T)$ si et seulement si

$$TX = -7X \Leftrightarrow \begin{cases} 4x + 32y - z &= -7x \\ 9y - 2z &= -7y \\ -7z &= -7z \end{cases}$$

$$\Leftrightarrow \begin{cases} 11x + 32y - z &= 0 \\ 16y - 2z &= 0 \end{cases} \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= -\frac{3}{11}\lambda \\ y &= \frac{1}{8}\lambda \\ z &= \lambda \end{cases}$$

Ainsi,

$$E_{-7}(T) = \text{Vect}\left\{\left(-\frac{3}{11}, \frac{1}{8}, 1\right)\right\} = \text{Vect}\left\{\left(-24, 11, 88\right)\right\}.$$

Proposition 3 - Sous-espace propre

Soit $\lambda \in \mathbb{R}$ et $M \in \mathcal{M}_n(\mathbb{R})$. L'ensemble $E_{\lambda}(M) = \operatorname{Ker}(M - \lambda I_n)$ est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. De plus, dim $E_{\lambda}(M) \geq 1$ si et seulement si λ est une valeur propre de M.

II - Diagonalisation

Définition 3 - Matrices diagonalisables

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée. La matrice A est diagonalisable s'il existe une matrice $P \in \mathcal{M}_n(\mathbb{R})$ inversible et une matrice $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.

Exemple 5 - Matrice diagonalisable

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

- D'une part, $AP = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}$.
- D'autre part, $PD = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}$.
- En utilisant la méthode de Gauss-Jordan, on montre que $P \text{ est inversible et } P^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}.$

D'où, AP = PD et $A = PDP^{-1}$. La matrice A est donc diagonalisable.

Théorème 3 - Diagonalisation & Endomorphisme

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $f \in \mathcal{L}(\mathbb{R}^n)$ l'endomorphisme canoniquement associé. La matrice M est diagonalisable si et seulement s'il existe une base \mathcal{B} de \mathbb{R}^n telle que $\mathrm{Mat}_{\mathcal{B}}(f)$ soit diagonale.

Exemple 6 - Endomorphisme

Soit $\mathscr C$ la base canonique de $\mathbb R^2$, $M=\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ et $f\in\mathscr L(\mathbb R^2)$ l'endomorphisme canoniquement associé à M. Posons u=(2,1)

et v = (-1, 1). Alors,

$$f(u) = (3 \times 2 + 2 \times 1, 1 \times 2 + 2 \times 1) = (8, 4) = 4u$$

$$f(v) = (3 \times (-1) + 2 \times 1, 1 \times (-1) + 2 \times 1) = (-1, 1) = v$$

Comme $P = \operatorname{Mat}_{\mathscr{C}}(u,v) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ est inversible, alors $\mathscr{B} = (u,v)$ est une base de \mathbb{R}^2 .

De plus, $\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} = D.$

Ainsi, d'après les formules de changement de bases, $M = PDP^{-1}$ et M est diagonalisable.

Théorème 4 - Construction de P

Soit $M \in \mathcal{M}_n(\mathbb{R})$. On suppose que (X_1, \ldots, X_n) est une base de vecteurs propres de M et $(\lambda_1, \ldots, \lambda_n)$ sont les valeurs propres associées. En notant P la matrice de la famille (X_1, \ldots, X_n) dans la base canonique et D la matrice diagonale dont les coefficients diagonaux sont $\lambda_1, \ldots, \lambda_n$, alors $M = PDP^{-1}$.

II.1 - Critères

Théorème 5 - Condition suffisante (admis)

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Si M possède n valeurs propres distinctes, alors M est diagonalisable.

Exemple 7 - Une matrice diagonalisable

• Soit $T = \begin{pmatrix} 4 & 32 & -1 \\ 0 & 9 & -2 \\ 0 & 0 & -7 \end{pmatrix}$. Comme T est triangulaire supé-

rieure, les valeurs propres de T se lisent sur la diagonale (voir l'exemple précédent). Ainsi, les valeurs propres de T sont 4, 9 et -7. Comme T possède 3 valeurs propres dis-

tinctes, alors T est diagonalisable.

Pour identifier une matrice P inversible et une matrice D diagonale telles que $T = PDP^{-1}$, il faut identifier des vecteurs propres associés aux différentes valeurs propres.

• La réciproque de ce théorème est fausse car, par exemple, la matrice identité est diagonalisable et elle possède une unique valeur propre qui est 1.

Théorème 6 - Matrices symétriques - C. S. (admis)

Toute matrice symétrique à coefficients réels est diagonalisable.

Exemple 8 - Une matrice diagonalisable

Soit
$$S = \begin{pmatrix} 4 & 32 & -1 \\ 32 & 9 & -2 \\ -1 & -2 & -7 \end{pmatrix}$$
. Comme S est une matrice symétrique

à coefficients réels, alors S est diagonalisable.

Pour identifier une matrice P inversible et une matrice D diagonale telles que $T = PDP^{-1}$, il faut commencer par rechercher les valeurs propres avec une des techniques vues précédemment (ou via la partie suivante), puis identifier des vecteurs propres associés aux différentes valeurs propres.

III - Polynômes annulateurs (H.P.)

III.1 - Définition

Définition 4 - Polynôme annulateur

Soit $A \in \mathscr{M}_n(\mathbb{R})$ une matrice carrée et $Q(X) = a_0 + a_1 X + \dots + a_p X^p$ un polynôme non nul. Le polynôme Q est un polynôme annulateur de A si

$$Q(A) = a_0 I + a_1 A + \dots + a_p A^p = 0.$$

Exemple 9 - Polynôme annulateur

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix}$$
 et $Q(X) = X^3 - 4X^2 + X + 6$. Alors,

$$Q(A) = A^3 - 4A^2 + A + 6I$$

$$= \begin{pmatrix} 55 & -28 & -28 \ 9 & -1 & -9 \ 47 & -28 & -20 \end{pmatrix} - 4 \begin{pmatrix} 17 & -8 & -8 \ 3 & 1 & -3 \ 13 & -8 & -4 \end{pmatrix} + \cdots$$

$$\cdots + \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \ 0 & 6 & 0 \ 0 & 0 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi, Q est un polynôme annulateur de A.

En particulier, on obtient alors

$$A^{3} - 4A^{2} + A + 6I = 0$$
$$A(A^{2} - 4A + I) = -6I$$

Donc A est inversible et $A^{-1} = -\frac{1}{6}(A^2 - 4A + I)$.

Proposition 4 - Taille 2

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $Q(X) = X^2 - (a+d)X + (ad-cb)$. Alors, $Q(A) = 0_2$.

Exemple 10 - Matrice de taille 2

Soit
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 5 \end{pmatrix}$$
. On pose

$$Q(X) = X^{2} - (1+5)X + (1 \times 5 - (-1) \times 2)$$

= $X^{2} - 6X + 7$.

Alors,

$$\begin{split} Q(A) &= A^2 - 6A + 7I \\ &= \begin{pmatrix} -1 & 12 \\ -6 & 23 \end{pmatrix} - \begin{pmatrix} 6 & 12 \\ -6 & 30 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

Ainsi, Q est un polynôme annulateur de A.

En particulier,

$$A^{2} - 6A + 7I = 0$$

 $A(A - 6I) = -7I$.

Donc A est inversible et $A^{-1} = -\frac{1}{7}(A - 6I)$.

III.2 - Polynômes annulateurs et Valeurs propres

Proposition 5 - Valeurs propres & Racines de polynômes annulateurs

Soit A une matrice et Q un polynôme annulateur de A. Si λ est une valeur propre de A, alors λ est une racine de Q (c'est-à-dire $Q(\lambda) = 0$).

Exemple 11 - Identification de valeurs propres potentielles

- Soit $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. On constate que $A^2 = 2A$. Alors, $X^2 2X$ est un polynôme annulateur de A. Les valeurs propres **possibles** de A sont donc 0 et 2. On montre ensuite $E_0(A)$ et $E_2(A)$ sont de dimension supérieure ou égale à 1 pour en déduire que 0 et 2 sont bien valeurs propres de A.
- Soit $N \in \mathcal{M}_n(\mathbb{R})$ une matrice non nulle telle qu'il existe $p \in \mathbb{N}^*$ tel que $N^p = 0_n$. Alors, X^p est un polynôme annulateur et la seule valeur propre possible de N est 0. En supposant par l'absurde que N est inversible, on montre que $N^{p-1} = 0_n$, puis par itération que $N = 0_n$, ce qui est impossible. Ainsi, N n'est pas inversible et 0 est donc valeur propre de N.

Finalement, l'unique valeur propre de N est 0.