Chapitre 01 : Mole et quantité de matière-Corrigé

OCM

A et C.

2 A.

3 A et B.

4 A.

5 A.

- 8 1. $N_A = 6.02 \times 10^{23}$ entités.
- **2.** $M_{\rm C} = N_{\rm A} \cdot m_{\rm c} = 6,02 \times 10^{23} \times 1,99 \times 10^{-23} = 12,0$ g·mol⁻¹.
- **3**. Toutes les masses molaires atomiques sont répertoriées dans le tableau périodique.
- **9** Le propane de formule brute C_3H_8 est utilisé dans les bouteilles de gaz.
- 1. 3 mol de C et 8 mol de H.
- **2.** $M(C_3H_8) = 3$ $M_C + 8$ $M_H = 3 \times 12,0 + 8 \times 1,0$ = 44,0 g·mol⁻¹.

10

Nom	Formule brute	Masse molaire (g · mol⁻¹)
méthane	CH ₄	16,0
ion fluorure	F-	19,0
éthanol	C ₂ H ₆ O	46,0
ammoniac	NH ₃	17,0

Nom de l'entité	Masse (en g)	Masse molaire (en g · mol ⁻¹)			
proton	1,67 × 10 ⁻²⁴	1,00			
atome de sodium	$3,82 \times 10^{-23}$	23,0			
molécule d'eau	2,99 × 10 ⁻²³	18,0			
bille	2,00 1,20 × 10 ²⁴				
ion magnésium	4,04 × 10 ⁻²³	24,3			

- 15 1. $M(C_{12}H_{22}O_{11}) = 342 \text{ g} \cdot \text{mol}^{-1}$.
- **2.** $m(C_{12}H_{22}O_{11}) = 3420 g.$
- 16 Un comprimé de vitamine C contient une masse m = 500 mg de vitamine C de formule brute $C_6H_8O_6$.
- **1.** $M(C_6H_8O_6) = 176 \text{ g} \cdot \text{mol}^{-1}$.
- **2.** $n(C_6H_8O_6) = \frac{0.500}{176} = 2.84 \times 10^{-3} \text{ mol.}$

19

Échantillon	1	2	3
Volume molaire (en L · mol ⁻¹)	24	22,4	85,0
Volume (en L)	1,5	50,0	5 000
Quantité de matière (en mol)	6,3 × 10 ⁻²	2,23	58,8

20 1.
$$C = \frac{n}{V} = \frac{2,50 \times 10^{-3}}{50,0 \times 10^{-3}} = 0,0500 \text{ mol} \cdot \text{L}^{-1}.$$

- **2.** 49,9 mL $\leq V_{\text{mesuré}} \leq 50,1$ mL.
- **3.** Le milieu de l'intervalle correspond au meilleur estimateur V = 50,0 mL.

La demi-largueur de l'intervalle défini est, en première approximation, un estimateur de l'incertitude-type u(V) = 0.1 mL.

21

Solution	1	2	3
Concentration de la solution (en L·mol ⁻¹)	5,0	0,010	5,00 × 10 ⁻³
Volume de la solution (en L)	0,50	2,0	0,750
Quantité de matière de soluté (en mol)	2,5	0,020	3,75 × 10 ⁻³

18 1.
$$n = \frac{V}{V_{\rm m}} = \frac{2400}{24} = 100 \text{ mol.}$$

2.
$$V_{\rm m} = \frac{V}{n} = \frac{12}{100} = 0.12 \, \text{L} \cdot \text{mol}^{-1}$$
.

- 3. Le volume molaire dépend de la pression.
- 33 **1.** $n = c \cdot V = 0,100 \times 2,00 = 0,200$ mol.

 $V = n \cdot V_m = 0,200 \times 25,0 = 5,00 \text{ L}.$

- **2**. 1,99 L $\leq V_{\text{mesuré}} \leq$ 2,01 L.
- **3.** Le milieu de l'intervalle correspond au meilleur estimateur V = 2,00 L.

La demi-largueur de l'intervalle défini est, en première approximation, un estimateur de l'incertitude-type : u(V) = 0,01 L.

34 1. 1 L de solution fournit 10 L de O₂:

$$n(O_2) = \frac{V(O_2)}{V_m} = \frac{10}{22,0} = 0,455 \text{ mol.}$$

2. Donc 250 mL fournissent : $\frac{0,455}{4} = 0,114$ mol.

Alors $n(H_2O_2) = 2 \times n(O_2) = 0,228 \text{ mol.}$

3.
$$c = \frac{0.228}{0.250} = 0.912 \text{ mol} \cdot L^{-1}$$
.

4. $M(H_2O_2) = 2 \times 1.0 + 2 \times 16.0 = 34.0 \text{ g} \cdot \text{mol}^{-1} \text{ et}$ $m(H_2O_2) = 0.228 \times 34.0 = 7.75 \text{ g}.$