THE NUCLEUS **CHAPTER - 46**

$$\begin{split} 1. \quad & M = Am_p, \, f = M/V, \, m_p = 1.007276 \,\, u \\ & R = R_0 A^{1/3} = 1.1 \times 10^{-15} \,\, A^{1/3}, \, u = 1.6605402 \times 10^{-27} \,\, kg \\ & = \frac{A \times 1.007276 \times 1.6605402 \times 10^{-27}}{4/3 \times 3.14 \times R^3} \, = 0.300159 \times 10^{18} = 3 \times 10^{17} \,\, kg/m^3. \end{split}$$

'f' in CGS = Specific gravity = 3×10^{14} .

$$2. \hspace{0.5cm} f = \frac{M}{v} \Rightarrow V = \frac{M}{f} = \frac{4 \times 10^{30}}{2.4 \times 10^{17}} = \frac{1}{0.6} \times 10^{13} = \frac{1}{6} \times 10^{14}$$

$$\Rightarrow \ \frac{1}{6} \times 10^{14} = 4/3 \ \pi \times R^3 \Rightarrow R^3 = \frac{1}{6} \times \frac{3}{4} \times \frac{1}{\pi} \times 10^{14}$$

$$\Rightarrow R^3 = \frac{1}{8} \times \frac{100}{\pi} \times 10^{12}$$

$$\therefore$$
 R = $\frac{1}{2} \times 10^4 \times 3.17 = 1.585 \times 10^4 \text{ m} = 15 \text{ km}.$

- 3. Let the mass of ' α ' particle be xu.
 - 'α' particle contains 2 protons and 2 neutrons.
 - :. Binding energy = $(2 \times 1.007825 \text{ u} \times 1 \times 1.00866 \text{ u} \text{xu})C^2 = 28.2 \text{ MeV (given)}$.
 - x = 4.0016 u

4.
$$Li^7 + p \rightarrow I + \alpha + E$$
; $Li^7 = 7.016u$

$$\alpha$$
 = ${}^{4}\text{He}$ = 4.0026u ; p = 1.007276 u

$$E = Li^7 + P - 2\alpha = (7.016 + 1.007276)u - (2 \times 4.0026)u = 0.018076 u.$$

$$\Rightarrow$$
 0.018076 \times 931 = 16.828 = 16.83 MeV.

5. B = $(Zm_p + Nm_n - M)C^2$

$$Z = 79$$
; $N = 118$; $m_0 = 1.007276u$; $M = 196.96u$; $m_0 = 1.008665u$

B =
$$[(79 \times 1.007276 + 118 \times 1.008665)u - Mu]c^2$$

$$= 198.597274 \times 931 - 196.96 \times 931 = 1524.302094$$

so, Binding Energy per nucleon = 1524.3 / 197 = 7.737.

6. a) $U^{238}_{2}He^{4} + Th^{234}$

$$E = [M_u - (N_{HC} + M_{Th})]u = 238.0508 - (234.04363 + 4.00260)]u = 4.25487 \; \text{Mev} = 4.255 \; \text{Mev}.$$
 b)
$$E = U^{238} - [\text{Th}^{234} + 2\text{n'}_0 + 2\text{p'}_1]$$

b)
$$E = U^{238} - [Th^{234} + 2n_0 + 2p_1]$$

$$= \{238.0508 - [234.64363 + 2(1.008665) + 2(1.007276)]\}u$$

7.
223
R_a = 223.018 u ; 209 Pb = 208.981 u ; 14 C = 14.003 u.

$$^{223}R_a \rightarrow ^{209}Pb + ^{14}C$$

$$\Delta m = \text{mass}^{223} R_a - \text{mass}^{209} Pb + {}^{14}C)$$

$$\Rightarrow$$
 = 223.018 - (208.981 + 14.003) = 0.034.

Energy = $\Delta M \times u = 0.034 \times 931 = 31.65$ Me.

8.
$$E_{Z.N.} \rightarrow E_{Z-1}$$
, N + P₁ \Rightarrow $E_{Z.N.} \rightarrow E_{Z-1}$, N + ₁H¹ [As hydrogen has no neutrons but protons only] $\Delta E = (M_{Z-1.N} + N_H - M_{Z.N})c^2$

9.
$$E_2N = E_{Z,N-1} + {}_{0}^{1}n$$
.

Energy released = (Initial Mass of nucleus – Final mass of nucleus) $c^2 = (M_{7,N-1} + M_0 - M_{7N})c^2$.

10.
$$P^{32} \rightarrow S^{32} + {}_{0}\overline{V}^{0} + {}_{1}B^{0}$$

Energy of antineutrino and β-particle

$$= (31.974 - 31.972)u = 0.002 u = 0.002 \times 931 = 1.862 \text{ MeV} = 1.86.$$

11. $\ln \to P + e^-$

We know: Half life = 0.6931 / λ (Where λ = decay constant).

Or
$$\lambda = 0.6931 / 14 \times 60 = 8.25 \times 10^{-4} \text{ S}$$
 [As half life = 14 min = 14 × 60 sec].

Energy =
$$[M_n - (M_P + M_e)]u = [(M_{nu} - M_{pu}) - M_{pu}]c^2 = [0.00189u - 511 \text{ KeV/c}^2]$$

= $[1293159 \text{ eV/c}^2 - 511000 \text{ eV/c}^2]c^2 = 782159 \text{ eV} = 782 \text{ KeV}.$

12.
$$^{226}_{58}$$
Ra $\rightarrow ^{4}_{2}\alpha + ^{222}_{26}$ Rn

$${}_{8}^{19}O \rightarrow {}_{9}^{19}F + {}_{n}^{0}\beta + {}_{0}^{0}\overline{V}$$

$$^{13}_{25} AI \rightarrow ^{25}_{12} MG + ^{0}_{-1} e + ^{0}_{0} \overline{V}$$

13.
64
 Cu $\rightarrow ^{64}$ Ni + e⁻ + v

Emission of nutrino is along with a positron emission.

a) Energy of positron = 0.650 MeV.

Energy of Nutrino = 0.650 - KE of given position = 0.650 - 0.150 = 0.5 MeV = 500 Kev.

b) Momentum of Nutrino =
$$\frac{500 \times 1.6 \times 10^{-19}}{3 \times 10^8} \times 10^3 \text{ J} = 2.67 \times 10^{-22} \text{ kg m/s}.$$

14. a)
$$_{19}K^{40} \rightarrow _{20}Ca^{40} + _{-1}e^0 + _0\overline{\nu}^0$$

$$_{19}\text{K}^{40} \rightarrow _{18}\text{Ar}^{40} + _{-1}\text{e}^{0} + _{0}\overline{v}^{0}$$

$$_{19}K^{40} + _{-1}e^0 \rightarrow _{18}Ar^{40}$$

$$_{19}K^{40} \rightarrow _{20}Ca^{40} + _{-1}e^0 + _{0}v^0$$
.

b) $Q = [Mass of reactants - Mass of products]c^2$

$$= [39.964u - 39.9626u] = [39.964u - 39.9626]uc^{2} = (39.964 - 39.9626) 931 Mev = 1.3034 Mev.$$

$$_{19}K^{40} \rightarrow _{18}Ar^{40} + _{-1}e^{0} + _{0}\overline{v}^{0}$$

$$Q = (39.9640 - 39.9624)uc^2 = 1.4890 = 1.49 Mev.$$

$$_{19}K^{40} + _{-1}e^0 \rightarrow _{18}Ar^{40}$$

$$Q_{\text{value}} = (39.964 - 39.9624)uc^2$$
.

15.
$${}_{3}^{6}\text{Li} + \text{n} \rightarrow {}_{3}^{7}\text{Li} ; {}_{3}^{7}\text{Li} + \text{r} \rightarrow {}_{3}^{8}\text{Li}$$

$${}_{3}^{8}\text{Li} \rightarrow {}_{4}^{8}\text{Be} + e^{-} + v^{-}$$

$${}_{4}^{8}\text{Be} \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He}$$

16. "C
$$\rightarrow$$
 "B + β^+ + v

mass of
$$C'' = 11.014u$$
; mass of $B'' = 11.0093u$

Energy liberated = (11.014 - 11.0093)u = 29.5127 MeV.

For maximum K.E. of the positron energy of v may be assumed as 0.

.. Maximum K.E. of the positron is 29.5127 Mev.

17. Mass
$$^{238\text{Th}}$$
 = 228.028726 u ; 224 Ra = 224.020196 u ; $\alpha = {}^{4}_{2}$ He \rightarrow 4.00260u

238
Th \rightarrow 224 Ra* + α

224
Ra* \to 224 Ra + v(217 Kev)

Now, Mass of 224 Ra* = 224.020196 × 931 + 0.217 Mev = 208563.0195 Mev.

KE of
$$\alpha$$
 = E ^{226Th} – E(²²⁴Ra* + α)

$$= 228.028726 \times 931 - [208563.0195 + 4.00260 \times 931] = 5.30383 \text{ Mev} = 5.304 \text{ Mev}.$$

18.
$$^{12}N \rightarrow ^{12}C^* + e^+ + v$$

18.
$${}^{12}N \rightarrow {}^{12}C^* + e^+ + v$$

 ${}^{12}C^* \rightarrow {}^{12}C + v(4.43 \text{ MeV})$

Net reaction:
$${}^{12}N \rightarrow {}^{12}C + e^+ + v + v(4.43 \text{ MeV})$$

Energy of
$$(e^+ + v) = N^{12} - (c^{12} + v)$$

$$= 12.018613u - (12)u - 4.43 = 0.018613u - 4.43 = 17.328 - 4.43 = 12.89 Mev.$$

Maximum energy of electron (assuming 0 energy for v) = 12.89 Mev.

19. a)
$$t_{1/2} = 0.693 / \lambda [\lambda \rightarrow Decay constant]$$

$$\Rightarrow$$
 t_{1/2} = 3820 sec = 64 min.

b) Average life =
$$t_{1/2}$$
 / 0.693 = 92 min.

c)
$$0.75 = 1 e^{-\lambda t} \Rightarrow \ln 0.75 = -\lambda t \Rightarrow t = \ln 0.75 / -0.00018 = 1598.23 sec.$$

20. a) 198 grams of Ag contains $\rightarrow N_0$ atoms.

1
$$\mu g$$
 of Ag contains \rightarrow N₀/198 \times 1 μg = $\frac{6 \times 10^{23} \times 1 \times 10^{-6}}{198}$ atoms

Activity =
$$\lambda N = \frac{0.963}{t_{1/2}} \times N = \frac{0.693 \times 6 \times 10^{17}}{198 \times 2.7}$$
 disintegrations/day.

$$= \frac{0.693 \times 6 \times 10^{17}}{198 \times 2.7 \times 3600 \times 24} \text{ disintegration/sec} = \frac{0.693 \times 6 \times 10^{17}}{198 \times 2.7 \times 36 \times 24 \times 3.7 \times 10^{10}} \text{ curie} = 0.244 \text{ Curie}.$$

b)
$$A = \frac{A_0}{2t_{1/2}} = \frac{0.244}{2 \times \frac{7}{2.7}} = 0.0405 = 0.040 \text{ Curie.}$$

21.
$$t_{1/2}$$
 = 8.0 days ; A_0 = 20 μ CI

a)
$$t = 4.0 \text{ days}$$
; $\lambda = 0.693/8$

$$A = A_0 e^{-\lambda t} = 20 \times 10^{-6} \times e^{(-0.693/8)\times 4} = 1.41 \times 10^{-5} \text{ Ci} = 14 \text{ } \mu \text{ Ci}$$

b)
$$\lambda = \frac{0.693}{8 \times 24 \times 3600} = 1.0026 \times 10^{-6}$$
.

22.
$$\lambda = 4.9 \times 10^{-18} \text{ s}^{-1}$$

a) Avg. life of
$$^{238}U = \frac{1}{\lambda} = \frac{1}{4.9 \times 10^{-18}} = \frac{1}{4.9} \times 10^{-18} \text{ sec.}$$

=
$$6.47 \times 10^{3}$$
 years.

b) Half life of uranium =
$$\frac{0.693}{\lambda} = \frac{0.693}{4.9 \times 10^{-18}} = 4.5 \times 10^9 \text{ years.}$$

c)
$$A = \frac{A_0}{2^{t/t_{1/2}}} \Rightarrow \frac{A_0}{A} = 2^{t/t_{1/2}} = 2^2 = 4.$$

23.
$$A = 200$$
, $A_0 = 500$, $t = 50$ min

A = 200, A₀ = 500, t = 50 min
A = A₀ e<sup>-
$$\lambda$$
t</sup> or 200 = 500 × e<sup>- 50 × 60 × λ
 $\Rightarrow \lambda = 3.05 \times 10^{-4}$ s.</sup>

$$\Rightarrow \lambda = 3.05 \times 10^{-4} \text{ s}$$

b)
$$t_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{0.000305} = 2272.13 \text{ sec} = 38 \text{ min.}$$

24.
$$A_0 = 4 \times 10^5$$
 disintegration / sec

$$A' = 1 \times 10^6$$
 dis/sec; $t = 20$ hours.

$$A' = \frac{A_0}{2^{t/t_{1/2}}} \Rightarrow 2^{t/t_{1/2}} = \frac{A_0}{A'} \Rightarrow 2^{t/t_{1/2}} = 4$$

$$\Rightarrow t/t_{1/2} = 2 \Rightarrow t^{1/2} = t/2 = 20 \text{ hours } / 2 = 10 \text{ hours.}$$

$$A'' = \frac{A_0}{2^{t/t_{1/2}}} \Rightarrow A'' = \frac{4 \times 10^6}{2^{100/10}} = 0.00390625 \times 10^6 = 3.9 \times 10^3 \text{ dintegrations/sec.}$$

25.
$$t_{1/2}$$
 = 1602 Y; Ra = 226 g/mole; CI = 35.5 g/mole.

297g = 1 mole of Ra.

0.1 g =
$$\frac{1}{297} \times 0.1$$
 mole of Ra = $\frac{0.1 \times 6.023 \times 10^{23}}{297}$ = 0.02027 × 10²²

$$\lambda = 0.693 / t_{1/2} = 1.371 \times 10^{-11}$$
.

Activity =
$$\lambda N = 1.371 \times 10^{-11} \times 2.027 \times 10^{20} = 2.779 \times 10^9 = 2.8 \times 10^9$$
 disintegrations/second.

26.
$$t_{1/2} = 10$$
 hours, $A_0 = 1$ ci

Activity after 9 hours =
$$A_0 e^{-\lambda t} = 1 \times e^{\frac{-0.693}{10} \times 9} = 0.5359 = 0.536 \text{ Ci.}$$

No. of atoms left after 9th hour, $A_9 = \lambda N_9$

$$\Rightarrow \ N_9 = \frac{A_9}{\lambda} = \frac{0.536 \times 10 \times 3.7 \times 10^{10} \times 3600}{0.693} = 28.6176 \times 10^{10} \times \ 3600 = 103.023 \times 10^{13}.$$

Activity after 10 hours =
$$A_0 e^{-\lambda t} = 1 \times e^{\frac{-0.693}{10} \times 9} = 0.5 \text{ Ci.}$$

No. of atoms left after 10th hour

$$A_{10} = \lambda N_{10}$$

$$\Rightarrow \ N_{10} = \frac{A_{10}}{\lambda} = \frac{0.5 \times 3.7 \times 10^{10} \times 3600}{0.693/10} = 26.37 \times 10^{10} \times 3600 = 96.103 \times 10^{13}.$$

No.of disintegrations = $(103.023 - 96.103) \times 10^{13} = 6.92 \times 10^{13}$.

27. $t_{1/2}$ = 14.3 days ; t = 30 days = 1 month

As, the selling rate is decided by the activity, hence A_0 = 800 disintegration/sec.

We know, $A = A_0 e^{-\lambda t}$ [$\lambda = 0.693/14.3$]

 $A = 800 \times 0.233669 = 186.935 = 187 \text{ rupees}.$

- 28. According to the question, the emission rate of γ rays will drop to half when the β + decays to half of its original amount. And for this the sample would take 270 days.
 - .. The required time is 270 days.
- 29. a) $P \rightarrow n + e^+ + v$ Hence it is a β^+ decay.
 - b) Let the total no. of atoms be 100 N₀.

 $\begin{array}{ccc} & & & & & & & \\ \text{Carbon} & & & & & \\ \text{Initially } 90 \text{ N}_0 & & & 10 \text{ N}_0 \\ \text{Finally } 10 \text{ N}_0 & & & 90 \text{ N}_0 \\ \end{array}$

Now, 10 N₀ = 90 N₀ $e^{-\lambda t} \Rightarrow 1/9 = e^{\frac{-0.693}{20.3} \times t}$ [because $t_{1/2}$ = 20.3 min] \Rightarrow In $\frac{1}{9} = \frac{-0.693}{20.3} t \Rightarrow t = \frac{2.1972 \times 20.3}{0.693} = 64.36 = 64$ min.

- 30. N = 4×10^{23} ; $t_{1/2}$ = 12.3 years
 - a) Activity = $\frac{dN}{dt} = \lambda n = \frac{0.693}{t_{1/2}} N = \frac{0.693}{12.3} \times 4 \times 10^{23}$ dis/year.

 $= 7.146 \times 10^{14} \text{ dis/sec.}$

b)
$$\frac{dN}{dt} = 7.146 \times 10^{14}$$

No.of decays in next 10 hours = $7.146 \times 10^{14} \times 10 \times 36..$ = 257.256×10^{17} = 2.57×10^{19} .

- c) N = N₀ $e^{-\lambda t}$ = 4 × 10²³ × $e^{\frac{-0.693}{20.3} \times 6.16}$ = 2.82 × 10²³ = No.of atoms remained No. of atoms disintegrated = (4 2.82) × 10²³ = 1.18 × 10²³.
- 31. Counts received per cm² = 50000 Counts/sec.

 $N = N_3$ o of active nucleic = 6×10^{16}

Total counts radiated from the source = Total surface area \times 50000 counts/cm²

= $4 \times 3.14 \times 1 \times 10^4 \times 5 \times 10^4 = 6.28 \times 10^9$ Counts = dN/dt

We know, $\frac{dN}{dt} = \lambda N$

Or $\lambda = \frac{6.28 \times 10^9}{6 \times 10^{16}} = 1.0467 \times 10^{-7} = 1.05 \times 10^{-7} \text{ s}^{-1}.$

32. Half life period can be a single for all the process. It is the time taken for 1/2 of the uranium to convert to lead.

No. of atoms of U²³⁸ = $\frac{6 \times 10^{23} \times 2 \times 10^{-3}}{238} = \frac{12}{238} \times 10^{20} = 0.05042 \times 10^{20}$

No. of atoms in Pb =
$$\frac{6 \times 10^{23} \times 0.6 \times 10^{-3}}{206} = \frac{3.6}{206} \times 10^{20}$$

Initially total no. of uranium atoms = $\left(\frac{12}{235} + \frac{3.6}{206}\right) \times 10^{20} = 0.06789$

$$\begin{split} & N = N_0 \; e^{-\lambda t} \Rightarrow N = N_0 \; e^{\frac{-0.693}{t/t_{1/2}}} \Rightarrow 0.05042 = 0.06789 \; e^{\frac{-0.693}{4.47 \times 10^9}} \\ & \Rightarrow \; log \bigg(\frac{0.05042}{0.06789} \bigg) = \frac{-0.693t}{4.47 \times 10^9} \\ & \Rightarrow t = 1.92 \times 10^9 \, years. \end{split}$$

33. $A_0 = 15.3$; A = 12.3; $t_{1/2} = 5730$ year

$$\lambda = \frac{0.6931}{T_{1/2}} = \frac{0.6931}{5730} yr^{-1}$$

Let the time passed be t,

We know A =
$$A_0 e^{-\lambda t} - \frac{0.6931}{5730} \times t \Rightarrow 12.3 = 15.3 \times e$$
.

$$\Rightarrow$$
 t = 1804.3 years.

34. The activity when the bottle was manufactured = A_0

Activity after 8 years =
$$A_0 e^{\frac{-0.693}{12.5} \times 8}$$

Let the time of the mountaineering = t years from the present

$$A = A_0 e^{\frac{-0.693}{12.5} \times t}$$
; $A = Activity of the bottle found on the mountain.$

A = (Activity of the bottle manufactured 8 years before) \times 1.5%

$$\Rightarrow A_0 e^{\frac{-0.693}{12.5}} = A_0 e^{\frac{-0.693}{12.5} \times 8} \times 0.015$$

$$\Rightarrow \ \frac{-0.693}{12.5}t = \frac{-0.693 \times 8}{12.5} + In[0.015]$$

$$\Rightarrow$$
 0.05544 t = 0.44352 + 4.1997 \Rightarrow t = 83.75 years.

35. a) Here we should take R_0 at time is $t_0 = 30 \times 10^9 \text{ s}^{-1}$

i)
$$ln(R_0/R_1) = ln\left(\frac{30 \times 10^9}{30 \times 10^9}\right) = 0$$

ii)
$$In(R_0/R_2) = In\left(\frac{30 \times 10^9}{16 \times 10^9}\right) = 0.63$$

iii)
$$In(R_0/R_3) = In\left(\frac{30 \times 10^9}{8 \times 10^9}\right) = 1.35$$

iv)
$$ln(R_0/R_4) = ln\left(\frac{30 \times 10^9}{3.8 \times 10^9}\right) = 2.06$$

v)
$$ln(R_0/R_5) = ln\left(\frac{30 \times 10^9}{2 \times 10^9}\right) = 2.7$$

c) : The half life period =
$$t_{1/2}$$
.

$$t_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{0.028} = 25 \text{ min.}$$

36. Given : Half life period $t_{1/2}$ = 1.30 \times 10 9 year , A = 160 count/s = 1.30 \times 10 9 \times 365 \times 86400

$$\therefore \ \ \mathsf{A} = \lambda \mathsf{N} \Rightarrow \mathsf{160} = \frac{0.693}{t_{\mathsf{1/2}}} \mathsf{N}$$

$$\Rightarrow N = \frac{160 \times 1.30 \times 365 \times 86400 \times 10^9}{0.693} = 9.5 \times 10^{18}$$

 \therefore 6.023 × 10²³ No. of present in 40 grams.

$$6.023 \times 10^{23} = 40 \text{ g} \Rightarrow 1 = \frac{40}{6.023 \times 10^{23}}$$

$$\therefore 9.5 \times 10^{18} \text{ present in} = \frac{40 \times 9.5 \times 10^{18}}{6.023 \times 10^{23}} = 6.309 \times 10^{-4} = 0.00063.$$

 \therefore The relative abundance at 40 k in natural potassium = $(2 \times 0.00063 \times 100)\% = 0.12\%$.

37. a) P + e
$$\rightarrow$$
 n + v neutrino [a \rightarrow 4.95 \times 10⁷ s^{-1/2}; b \rightarrow 1]

b)
$$\sqrt{f} = a(z - b)$$

$$\Rightarrow \sqrt{c/\lambda} = 4.95 \times 10^7 (79 - 1) = 4.95 \times 10^7 \times 78 \Rightarrow C/\lambda = (4.95 \times 78)^2 \times 10^{14}$$

$$\Rightarrow \lambda = \frac{3 \times 10^8}{14903.2 \times 10^{14}} = 2 \times 10^{-5} \times 10^{-6} = 2 \times 10^{-4} \text{ m} = 20 \text{ pm}.$$

38. Given : Half life period =
$$t_{1/2}$$
, Rate of radio active decay = $\frac{dN}{dt}$ = R \Rightarrow R = $\frac{dN}{dt}$

Given after time $t \gg t_{1/2}$, the number of active nuclei will become constant.

i.e.
$$(dN/dt)_{present} = R = (dN/dt)_{decay}$$

$$\therefore$$
 R = (dN/dt)_{decay}

$$\Rightarrow$$
 R = λ N [where, λ = Radioactive decay constant, N = constant number]

$$\Rightarrow$$
 R = $\frac{0.693}{t_{1/2}}$ (N) \Rightarrow Rt_{1/2} = 0.693 N \Rightarrow N = $\frac{Rt_{1/2}}{0.693}$.

39. Let
$$N_0$$
 = No. of radioactive particle present at time t = 0

N = No. of radio active particle present at time t.

$$\therefore$$
 N = N₀ e^{- λt} [λ - Radioactive decay constant]

$$\therefore$$
 The no.of particles decay = $N_0 - N = N_0 - N_0 e^{-\lambda t} = N_0 (1 - e^{-\lambda t})$

We know,
$$A_0 = \lambda N_0$$
; $R = \lambda N_0$; $N_0 = R/\lambda$

From the above equation

$$N = N_0 (1 - e^{-\lambda t}) = \frac{R}{\lambda} (1 - e^{-\lambda t})$$
 (substituting the value of N₀)

40.
$$n = 1 \text{ mole} = 6 \times 10^{23} \text{ atoms}, t_{1/2} = 14.3 \text{ days}$$

t = 70 hours, dN/dt in root after time $t = \lambda N$

N = No
$$e^{-\lambda t}$$
 = 6 × 10²³ × $e^{\frac{-0.693 \times 70}{14.3 \times 24}}$ = 6 × 10²³ × 0.868 = 5.209 × 10²³ .

$$\begin{split} 5.209\times10^{23}\times\frac{-0.693}{14.3\times24} &= \frac{0.0105\times10^{23}}{3600} \text{ dis/hour.} \\ &= 2.9\times10^{-6}\times10^{23} \text{ dis/sec.} = 2.9\times10^{17} \text{ dis/sec.} \end{split}$$

=
$$2.9 \times 10^{-6} \times 10^{23}$$
 dis/sec = 2.9×10^{17} dis/sec.

Fraction of activity transmitted =
$$\left(\frac{1\mu ci}{2.9 \times 10^{17}}\right) \times 100\%$$

$$\Rightarrow \left(\frac{1 \times 3.7 \times 10^8}{2.9 \times 10^{11}} \times 100\right) \% = 1.275 \times 10^{-11} \%.$$

41.
$$V = 125 \text{ cm}^3 = 0.125 \text{ L}$$
, $P = 500 \text{ K}$ pa = 5 atm.

T = 300 K,
$$t_{1/2}$$
 = 12.3 years = 3.82×10^8 sec. Activity = $\lambda \times N$

$$N = n \times 6.023 \times 10^{23} = \frac{5 \times 0.125}{8.2 \times 10^{-2} \times 3 \times 10^{2}} \times 6.023 \times 10^{23} = 1.5 \times 10^{22} \text{ atoms.}$$

$$\lambda = \frac{0.693}{3.82 \times 10^8} = 0.1814 \times 10^{-8} = 1.81 \times 10^{-9} \text{ s}^{-1}$$

Activity =
$$\lambda N$$
 = 1.81 × 10⁻⁹ × 1.5 × 10²² = 2.7 × 10³ disintegration/sec

=
$$\frac{2.7 \times 10^{13}}{3.7 \times 10^{10}}$$
 Ci = 729 Ci.

42.
$$^{212}_{83}$$
Bi $\rightarrow ^{208}_{81}$ Ti $+ ^{4}_{2}$ He(α)

$$^{212}_{83}$$
Bi $\rightarrow ^{212}_{84}$ Bi $\rightarrow ^{212}_{84}$ P₀ + e⁻

$$t_{1/2}$$
 = 1 h. Time elapsed = 1 hour

at
$$t = 0 \text{ Bi}^{212}$$
 Present = 1 g

Probability α -decay and β -decay are in ratio 7/13.

$$\therefore$$
 P₀ remained = 0.325 g

20 40 60 80 100 200 300 400 500

- 43. Activities of sample containing 108 Ag and 110 Ag isotopes = 8.0×10^8 disintegration/sec.
 - a) Here we take $A = 8 \times 10^8$ dis./sec
 - : i) $\ln (A_1/A_{0_1}) = \ln (11.794/8) = 0.389$
 - ii) $\ln (A_2/A_{0_2}) = \ln(9.1680/8) = 0.1362$
 - iii) $\ln (A_3/A_{0_3}) = \ln(7.4492/8) = -0.072$
 - iv) $\ln (A_4/A_{0_4}) = \ln(6.2684/8) = -0.244$
 - v) ln(5.4115/8) = -0.391
 - vi) ln(3.0828/8) = -0.954
 - vii) ln(1.8899/8) = -1.443
 - viii) ln(1.167/8) = -1.93
 - ix) ln(0.7212/8) = -2.406
 - b) The half life of 110 Ag from this part of the plot is 24.4 s.
 - c) Half life of 110 Ag = 24.4 s.
 - \therefore decay constant λ = 0.693/24.4 = 0.0284 \Rightarrow t = 50 sec,

The activity A = $A_0e^{-\lambda t}$ = $8 \times 10^8 \times e^{-0.0284 \times 50}$ = 1.93×10^8

- e) The half life period of ¹⁰⁸Ag from the graph is 144 s.
- 44. $t_{1/2} = 24 h$

$$\therefore t_{1/2} = \frac{t_1 t_2}{t_1 + t_2} = \frac{24 \times 6}{24 + 6} = 4.8 \text{ h}.$$

$$A_0 = 6 \text{ rci} ; A = 3 \text{ rci}$$

$$\therefore \ \mathsf{A} = \frac{\mathsf{A}_0}{2^{t/t_{1/2}}} \Rightarrow 3 \ \mathsf{rci} = \frac{6 \ \mathsf{rci}}{2^{t/4.8 h}} \Rightarrow \frac{t}{24.8 h} = 2 \Rightarrow t = 4.8 \ h.$$

45. Q = $qe^{-t/CR}$; A = $A_0e^{-\lambda t}$

$$\frac{\text{Energy}}{\text{Activity}} = \frac{1q^2 \times e^{-2t/cR}}{2 \text{ CA}_0 e^{-\lambda t}}$$

Since the term is independent of time, so their coefficients can be equated,

So,
$$\frac{2t}{CR} = \lambda t$$

or,
$$\lambda = \frac{2}{CR}$$

or,
$$\frac{1}{\tau} = \frac{2}{CR}$$

So,
$$\frac{2t}{CR} = \lambda t$$
 or, $\lambda = \frac{2}{CR}$ or, $\frac{1}{\tau} = \frac{2}{CR}$ or, $R = 2\frac{\tau}{C}$ (Proved)

46. R = 100Ω ; L = 100 mH

After time t, i =
$$i_0 (1 - e^{-t/Lr})$$
 N = $N_0 (e^{-\lambda t})$

$$N = N_0 (e^{-\lambda t})$$

$$\frac{i}{N} = \frac{i_0 \left(1 - e^{-tR/L}\right)}{N_0 e^{-\lambda t}} \quad \text{i/N is constant i.e. independent of time.}$$

Coefficients of t are equal $-R/L = -\lambda \Rightarrow R/L = 0.693/t_{1/2}$

=
$$t_{1/2}$$
 = 0.693 × 10⁻³ = 6.93 × 10⁻⁴ sec.

So, 235 g contains 6.023×10^{23} atoms. 47. 1 g of 'l' contain 0.007 g U²³⁵

So, 0.7 g contains
$$\frac{6.023 \times 10^{23}}{235} \times 0.007$$
 atom

1 atom given 200 Mev. So, 0.7 g contains $\frac{6.023 \times 10^{23} \times 0.007 \times 200 \times 10^{6} \times 1.6 \times 10^{-19}}{235} J = 5.74 \times 10^{-8} J.$

48. Let n atoms disintegrate per second

Total energy emitted/sec = $(n \times 200 \times 10^6 \times 1.6 \times 10^{-19})$ J = Power

 $300 \text{ MW} = 300 \times 10^6 \text{ Watt} = \text{Power}$

$$300 \times 10^6 = n \times 200 \times 10^6 \times 1.6 \times 10^{-19}$$

$$\Rightarrow$$
 n = $\frac{3}{2 \times 1.6} \times 10^{19} = \frac{3}{3.2} \times 10^{19}$

 6×10^{23} atoms are present in 238 grams

$$\frac{3}{3.2} \times 10^{19}$$
 atoms are present in $\frac{238 \times 3 \times 10^{19}}{6 \times 10^{23} \times 3.2} = 3.7 \times 10^{-4} \text{ g} = 3.7 \text{ mg}.$

49. a) Energy radiated per fission = 2×10^8 ev

Usable energy =
$$2 \times 10^8 \times 25/100 = 5 \times 10^7$$
 ev = $5 \times 1.6 \times 10^{-12}$

Total energy needed = $300 \times 10^8 = 3 \times 10^8$ J/s

No. of fission per second =
$$\frac{3 \times 10^8}{5 \times 1.6 \times 10^{-12}} = 0.375 \times 10^{20}$$

No. of fission per day = $0.375 \times 10^{20} \times 3600 \times 24 = 3.24 \times 10^{24}$ fissions.

b) From 'a' No. of atoms disintegrated per day = 3.24×10^{24}

We have, 6.023×10^{23} atoms for 235 g

for
$$3.24 \times 10^{24}$$
 atom = $\frac{235}{6.023 \times 10^{23}} \times 3.24 \times 10^{24}$ g = 1264 g/day = 1.264 kg/day.

50. a) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}H$

Q value =
$$2M(_1^2H) = [M(_1^3H) + M(_1^3H)]$$

$$= [2 \times 2.014102 - (3.016049 + 1.007825)]u = 4.0275 \text{ MeV} = 4.05 \text{ MeV}.$$

b) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}H + n$

Q value =
$$2[M(_1^2H) - M(_2^3He) + M_n]$$

$$= [2 \times 2.014102 - (3.016049 + 1.008665)]u = 3.26 \text{ MeV} = 3.25 \text{ MeV}.$$

c) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}H + n$

Q value =
$$[M(_1^2H) + M(_1^3He) - M(_2^4He) + M_n]$$

$$= (2.014102 + 3.016049) - (4.002603 + 1.008665)]u = 17.58 \text{ MeV} = 17.57 \text{ MeV}.$$

51. PE =
$$\frac{Kq_1q_2}{r} = \frac{9 \times 10^9 \times (2 \times 1.6 \times 10^{-19})^2}{r}$$
 ...(1)

$$1.5 \text{ KT} = 1.5 \times 1.38 \times 10^{-23} \times \text{T}$$
 ...(2

Equating (1) and (2)
$$1.5 \times 1.38 \times 10^{-23} \times T = \frac{9 \times 10^9 \times 10.24 \times 10^{-38}}{2 \times 10^{-15}}$$

$$\Rightarrow T = \frac{9 \times 10^9 \times 10.24 \times 10^{-38}}{2 \times 10^{-15} \times 1.5 \times 1.38 \times 10^{-23}} = 22.26087 \times 10^9 \text{ K} = 2.23 \times 10^{10} \text{ K}.$$

52. ${}^{4}\text{H} + {}^{4}\text{H} \rightarrow {}^{8}\text{Be}$

$$M(^2H) \rightarrow 4.0026 \text{ u}$$

$$M(^{8}Be) \rightarrow 8.0053 u$$

Q value =
$$[2 \text{ M}(^2\text{H}) - \text{M}(^8\text{Be})] = (2 \times 4.0026 - 8.0053) \text{ u}$$

$$= -0.0001 \text{ u} = -0.0931 \text{ Mev} = -93.1 \text{ Kev}.$$

53. In 18 g of N_0 of molecule = 6.023×10^{23}

In 100 g of N₀ of molecule =
$$\frac{6.023 \times 10^{26}}{18}$$
 = 3.346 × 10²⁵

:. % of Deuterium =
$$3.346 \times 10^{26} \times 99.985$$

Energy of Deuterium =
$$30.4486 \times 10^{25}$$
 = $(4.028204 - 3.016044) \times 93$

=
$$942.32 \text{ ev} = 1507 \times 10^5 \text{ J} = 1507 \text{ mJ}$$

