BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 26 915.0

Anmeldetag:

16. Juni 2003

Anmelder/Inhaber:

Bayer AG, Leverkusen/DE

Bezeichnung:

Verfahren zur asymmetrischen Hydrierung von Keto-

carbonsäureestern

IPC:

C 07 C, C 07 B, B 01 J

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 24. November 2003 Deutsches Patent- und Markenamt

Der Präsident

Sigg

Verfahren zur asymmetrischen Hydrierung von Ketocarbonsäureestern

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von enantiomerenangereicherten α - und β -Hydroxycarbonsäureestern aus den entsprechenden Ketocarbonsäureestern sowie dafür verwendbare Katalysatoren.

Enantiomerenangereicherte α- und β-Hydroxycarbonsäureester sind wertvolle

10

15

25

30

5

Reagenzien zur Racematspaltung und wichtige Intermediate bei der Herstellung von Arzneimitteln und Agrochemikalien. Üblicherweise werden enantiomerenangereicherte α- und β-Hydroxycarbonsäureester durch katalytische Hydrierung der entsprechenden α- und β-Ketocarbonsäureester gewonnen, wobei als Katalysatoren häufig Übergangsmetallkomplexe mit chiralen Phosphanen als Liganden eingesetzt werden (siehe z.B. Genet et al., Tetrahedron, Asymmetry, 1994, 5(4), 675-690). Nachteilig an chiralen Phosphanen ist der hoher Preis und die Oxidationsempfindlichkeit weshalb ihr Einsatz im industriellen Maßstab wenn überhaupt überwiegend in homogenen Prozessen erfolgt.

Alternativ dazu sind Verfahren unter Verwendung von mit Chinchona-Alkaloiden oder Weinsäurederivaten modifizierten Platin- oder Nickelkatalysatoren bekannt (T. Mallat et al., Fine Chemicals through Heterogeneous Catalysis, Wiley-VCH, 2001, S. 449 ff).

Darüberhinaus wird für die Hydrierung von Ketoestern in Ferrand et al. (Tetrahedron: Asymmetry, 13, 2002, S. 1379 bis 1384) der Einsatz von Rhodium-, Ruthenium- und Iridium-Komplexen mit chiralen Diaminen beschrieben. Allen Verfahren ist jedoch gemeinsam, dass sie allenfalls einen mäßigen Enantiomerenüberschuss erlauben.

Es bestand daher das Bedürfnis, Katalysatoren bereitzustellen, die insbesondere in einem Verfahren zur Herstellung von enantiomerenangereicherten α - und β - Hydroxycarbonsäureestern hohe Ausbeuten und Enantioselektivitäten ermöglichen.

Es wurden nun Substanzen gefunden, enthaltend zumindest

- ein mikro-, meso- oder makroporöses Trägermaterial und
- daran und/oder darin adsorbierte Verbindungen der Formel (I)

10

25

in der

N N für eine enantiomerenangereicherte chirale Stickstoffverbindung steht,

(M m⁺) für ein Metall mit der Wertigkeit m steht

L für einen anionischen oder neutralen Liganden steht

(Sulfonat-) für das Anion einer Sulfonsäure steht und

p für eins oder zwei steht und

n für eins, zwei, drei oder vier steht,

wobei die Auflage gilt, dass m-p-[Anzahl der anionischen Liganden] = 0 ist.

Enantiomerenangereicherte Verbindungen im Sinne der Erfindung sind enantiomerenreine Verbindungen oder Mischungen von Enantiomeren einer Verbindung, in denen ein Enantiomer in einem Enantiomerenüberschuss, im Folgenden auch ee (enantiomeric excess) genannt, im Vergleich zum anderen Enantiomer vorliegt. Bevorzugt beträgt dieser Enantiomerenüberschuss 10 bis 100 % ee, besonders bevorzugt 90 bis 100 % ee und ganz besonders bevorzugt 95 bis 100 % ee.

Im Rahmen der Erfindung können alle oben stehenden und im Folgenden aufgeführten, allgemeinen oder in Vorzugsbereichen genannten Restedefinitionen, Parameter und Erläuterungen untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen in beliebiger Weise kombiniert werden.

\$

Im Folgenden stehen Alkyl beziehungsweise Alkoxy beziehungsweise Alkylen beziehungsweise Alkenylen jeweils unabhängig für einen geradkettigen, cyclischen, verzweigten oder unverzweigten Alkyl- beziehungsweise Alkoxy- beziehungsweise Alkylen- beziehungsweise Alkenylen-Rest, der gegebenenfalls weiter durch C₁-C₄-Alkoxy substituiert sein kann. Gleiches gilt für den nichtaromatischen Teil eines Arylalkyl-Restes.

15

20

25

30

5

C₁-C₄-Alkyl steht beispielsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl und tert.-Butyl, C₁-C₈-Alkyl darüber hinaus beispielsweise für n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, neo-Pentyl, 1-Ethylpropyl, cyclo-Hexyl, cyclo-Pentyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-1,2,2-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1-Ethyl-2-Trimethylpropyl, methylpropyl, n-Heptyl und n-Octyl, C₁-C₂₀-Alkyl weiter darüber hinaus beispielsweise für Adamantyl, die isomeren Menthyle, n-Nonyl, n-Decyl und n-Dodecyl.

 C_1 - C_4 -Alkoxy steht beispielsweise für Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, sec.-Butoxy und tert.-Butoxy, C_1 - C_8 -Alkoxy darüberhinaus beispielsweise für n-Pentoxy. 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, neo-Pentoxy, 1-Ethylpropoxy. cyclo-Hexoxy, cyclo-Pentoxy, n-Hexoxy und n-Octoxy, C_1 - C_{20} -

Alkoxy weiter darüber hinaus beispielsweise für Adamantoxy, die isomeren Menthoxy-Reste, n-Decoxy und n-Dodecoxy.

C₁-C₄-Alkylen steht beispielsweise für Methylen, 1,1-Ethylen, 1,2-Ethylen, 1,1-Propylen, 1,3-Propylen, 1,4-Butylen, C₁-C₈-Alkylen darüber hinaus beispielsweise für 1,2-cyclo-Hexylen und 1,2-cyclo-Pentylen.

C₂-C₈-Alkenylen steht beispielsweise für 1,1-Ethenylen 2-Ethoxy-1,1-ethenylen und 2-Methoxy-1,1-ethenylen.

Halogenalkyl, beziehungsweise Halogenalkoxy, beziehungsweise Halogenalkylen bedeutet jeweils unabhängig einen geradkettigen, cyclischen, verzweigten oder unverzweigten Alkyl-Rest beziehungsweise Alkylen-Rest, der einfach, mehrfach oder vollständig durch Halogenatome substituiert ist.

Beispielsweise steht C₁-C₂₀-Halogenalkyl für Trifluormethyl, Chlormethyl, 2-Chlorethyl, 2,2,2-Trifluorethyl, Pentafluorethyl, Nonafluorbutyl, Heptafluorisopropyl, Perfluoroctyl, Perfluordodecyl und Perfluorhexadecyl.

Aryl steht jeweils unabhängig für einen heteroaromatischen Rest mit 5 bis 14 Gerüst-kohlenstoffatomen, in denen keines, ein, zwei oder drei Gerüstkohlenstoffatome pro Cyclus, im gesamten Molekül mindestens jedoch ein Gerüstkohlenstoffatom, durch Heteroatome, ausgewählt aus der Gruppe Stickstoff, Schwefel oder Sauerstoff, substituiert sein können, oder und vorzugsweise für einen carbocyclischen aromatischen Rest mit 6 bis 14 Gerüstkohlenstoffatomen.

Beispiele für carbocyclische aromatische Reste mit 6 bis 14 Gerüstkohlenstoffatomen sind zum Beispiel Phenyl, Biphenyl, Naphtyl, Phenanthrenyl, Anthracenyl oder Fluorenyl, heteroaromatische Reste mit 5 bis 14 Gerüstkohlenstoffatomen in denen keines, ein, zwei oder drei Gerüstkohlenstoffatome pro Cyclus, im gesamten Molekül mindestens jedoch ein Gerüstkohlenstoffatom, durch Heteroatome, ausgewählt aus

10

15

5

, , 20

30

der Gruppe Stickstoff, Schwefel oder Sauerstoff, substituiert sein können, sind beispielsweise Pyridinyl, Oxazolyl, Benzofuranyl, Dibenzofuran-yl oder Chinolinyl.

Weiterhin kann der carbocyclische aromatische Rest oder heteroaromatische Rest mit bis zu fünf gleichen oder verschiedenen Substituenten pro Cyclus substituiert sein, die beispielsweise ausgewählt sind aus der Gruppe Nitro, Cyano, Chlor, Fluor, C₁-C₁₂-Alkyl, C₁-C₁₂-Halogenalkyl, C₁-C₁₂-Halogenalkylthio, C₁-C₁₂-Alkoxy, Di(C₁-C₈-alkyl)amino oderTri(C₁-C₆-alkyl)siloxyl substituiert sein.

5

Arylen steht für einen Aryl-Rest, der eine weitere Bindungsstelle am aromatischen Gerüst besitzt und dadurch divalent ist.

Arylalkyl bedeutet jeweils unabhängig einen geradkettigen, cyclischen, verzweigten oder unverzweigten Alkyl-Rest nach vorstehender Definition, der einfach, mehrfach oder vollständig durch Aryl-Reste gemäß vorstehender Definition substituiert sein kann.

Arylalkylen steht für einen Arylalkyl-Rest, der eine weitere Bindungsstelle am aromatischen Gerüst besitzt und dadurch divalent ist.

20

25

30

15

Im Folgenden werden Vorzugsbereiche für die erfindungsgemäßen Substanzen definiert:

Bevorzugte **Trägermaterialien** besitzen eine Porengröße, die im Bereich von 15 bis 250 Å liegt, besonders bevorzugt im Bereich von 20 bis 100 Å. Die im Rahmen der Erfindung geltenden Definitionen für die Begriffe mikro-, meso- und makroporös wie auch die Nomenklatur der Zeolithe sind dabei IUPAC-konform auszulegen (McCusker et al. Pure Appl. Chem, vol. 73, No. 2, pp 381-394, 2001). Geeignete Trägermaterialien sind beispielsweise Silica-Gele, Zeolithe vom Typ Davison, MOR, X, Y, MCM, ZSM, FAU, MFI, L, BEA, FER, A und SBA, sowie solche vom Typ AlPO, MAlPO und SAPO, wobei die genannten Zeolithe gegebenenfalls isomorph

substituiert sein können. Besonders bevorzugt sind Trägermaterialien wie insbesondere solche des MCM- oder Davison-Typs wie beispielsweise MCM-41 (ca. 30 Å, Davison 923 (ca. 22 Å, Davison 634 (ca. 60 Å).

5 In Formel (I) steht

N N bevorzugt für enantiomerenangereicherte chirale Stickstoffverbindungen der Formel (II)

$$R^{2}$$
 $N-R^{3}-N$
 R^{5} (II)

in der

R¹, R², R⁴ und R⁵ jeweils unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₅-Arylalkyl oder C₄-C₁₄-Aryl stehen oder NR¹R² und/oder NR⁴R⁵ als Ganzes für einen cyclischen Aminorest mit insgesamt 4 bis 20 Kohlenstoffatomen steht,

15

20

R³ für einen divalenten Rest mit insgesamt 2 bis 30 Kohlenstoffatomen stehtoder

R³ und mindestens einer der Reste R¹, R², R⁴, R⁵ zusammen Teil eines cyclischen Aminorestes mit insgesamt 4 bis 20 Kohlenstoffatomen sind.

Bevorzugte Verbindungen der Formel (II) sind solche, in der

R¹, R², R⁴ und R⁵ jeweils unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₅25 C₁₅-Arylalkyl oder C₄-C₁₄-Aryl stehen oder NR¹R² und/oder NR⁴R⁵ als
Ganzes für einen 5- oder 6-gliedrigen monocyclischen Aminorest steht, der
am Kohlenstoffgerüst gegebenenfalls einfach, zweifach, dreifach oder
vierfach C₁-C₄-Alkyl substituiert ist und

10

15

20

25

30

R³ für einen divalenten Rest steht, der ausgewählt ist aus der Gruppe C₂-C₈-Alkylen, das gegebenenfalls einfach oder zweifach durch C₄-C₁₄-Arylreste weiter substituiert sein kann, C₅-C₁₅-Arylalkylen, C₄-C₁₄-Arylen oder Bis-(C₄-C₁₄-arylen) oder

R³ und einer der Reste R¹, R², R⁴ und R⁵ zusammen Teil eines 5- oder 6-gliedrigen monocyclischen Aminorestes sind, der am Kohlenstoffgerüst gegebenenfalls zusätzlich einfach, zweifach, dreifach oder vierfach durch C₁-C₄-Alkyl substituiert ist.

Besonders bevorzugte Verbindungen der Formel (II) sind solche, in denen

R¹, R², R⁴ und R⁵ jeweils unabhängig voneinander für Wasserstoff, Methyl oder Ethyl stehen und

R³ für einen divalenten Rest steht, der ausgewählt ist aus der Gruppe 1,2-Bis-(C₄-C₁₄-aryl)-1,2-ethylen, 1,2-Cyclohexylen, 1,1'-2,2'-Bis-(C₄-C₁₄-arylen) oder

R³ und einer der Reste R¹, R², R⁴ und R⁵ zusammen Teil eines Pyrrolidinyl- oder Piperidinyl-Restes sind.

Ganz besonders bevorzugte Verbindungen der Formel (II) sind

(1R,2R)-1,2-Diphenylethylendiamin, (1S,2S)-1,2-Diphenylethylendiamin, (1R,2R)-1,2-Dimethylethylendiamin, (1S,2S)-1,2-Dimethylethylendiamin, (1R,2R)-1,2-cyclohexylendiamin, (1S,2S)-1,2-cyclohexylendiamin, (S)-2-Aminomethyl-1-ethylpyrrolidin, (S)-(2-Pyrrolidinylmethyl)-pyrrolidin, (R)-(2-Pyrrolidinylmethyl)-pyrrolidin, (S)-2-Aminomethyl-1-methylpyrrolidin, (R)-2-Aminomethyl-1-methylpyrrolidin, (R)-1,1'-Diamino-2,2'-binaphthyl, (S)-1,1'-Diamino-2,2'-binaphthyl, (S)-1,1'-Diamino-2,2'-biphenyl und (S)-1,1'-Diamino-6,6'-Dimethoxy-2,2'-biphenyl und (S)-

1,1'-Diamino-6,6'-Dimethoxy-2,2'-biphenyl, wobei (R)-2-Aminomethyl-1-ethyl-pyrrolidin, (S)-(2-Pyrrolidinylmethyl)-pyrrolidin, (R)-(2-Pyrrolidinylmethyl)-pyrrolidin und (S)-2-Aminomethyl-1-methylpyrrolidin noch weiter bevorzugt sind.

5 In Formel (I) steht weiterhin

(M m⁺) vorzugsweise für Cobalt in den formalen Oxidationsstufen 0, +2 und +3, Rhodium und Iridium in den formalen Oxidationsstufen +1 und +3, Nickel, Palladium und Platin in den formalen Oxidationsstufen 0 und +2 sowie Ruthenium in der formalen Oxidationsstufe +2, wobei Rh^I, Ir^I und Pd^{II} bevorzugt sind.

L steht bevorzugt für folgende Ligandentypen: Monoolefine wie beispielsweise Ethylen, Cycloocten und Cyclohexen, Diolefine wie beispielsweise 1,5-Cyclooctadien (cod), Norbornadien (nbd), und Butadien, Nitrile wie Acetonitril (ACN), Benzonitril und Benzylnitril, Aromaten wie Benzol, Mesitylen und Cymol, sowie anionische Liganden wie Allyl, Methylallyl, Phenylallyl, C₁-C₈-Alkylacylacylate, Chlorid, Bromid und Iodid.

steht bevorzugt für Salze des Typs $R^6SO_3^-$, wobei R^6 für C_1 - C_{12} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_4 - C_{14} -Aryl oder C_5 - C_{15} -Arylalkyl steht. Bevorzugt steht R^6 für Methyl, Phenyl, p-Tolyl und C_1 - C_{20} -Perfluoralkyl, besonders bevorzugt für C_1 - C_4 -Perfluoralkyl wie insbesondere Trifluormethyl.

Besonders bevorzugt steht

(Sulfonat-)

10

15

20

25

المتر

als ganzes Fragment für Rh(cod)OTf, Ir(cod)OTf, Rh(nbd)OTf, Ir(nbd)OTf, Pd(Allyl)OTf, Rh(cod)OMes, Ir(cod)OMes, Rh(nbd)OMes, Ir(nbd)OMes, Pd(Allyl)OMes, Rh(cod)ONf, Ir(cod)ONf, Rh(nbd)ONf, Ir(nbd)Onf und Pd(Allyl)ONf, wobei OTf für Trifluormethansulfonat, OMes für Methansulfonat und ONf für Nonafluorbutansulfonat steht.

Ganz besonders bevorzugte Verbindungen der Formel (I) sind solche der Formeln (Ia), (Ib), (Ic), (Id), (Ie) und (If)

10

* ein stereogenes Zentrum markiert, das entweder R oder S konfiguriert ist, wobei die Auflage gilt, dass Mesoformen ausgeschlossen sind (Verbindungen der Formel (Ic) und (Id))

5

M⁺ für Rhodium¹ oder Iridium¹ steht und

L für cod oder nbd steht und

Sulfonat für Trifluormethansulfonat, Mesylat oder Nonafluorbutansulfonat steht.

Die Verbindungen der Formel (I) sind von der Erfindung ebenfalls umfasst, wobei folgende ausgenommen sind:

[Rh(cod)((S)-2-aminomethyl-1-ethylpyrrolidin)]OTf und [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]OTf.

20

15

Die Herstellung der Verbindungen der Formel (I) wie insbesondere solchen der Formeln (Ia) bis (If) kann in an sich bekannter Weise beispielsweise dadurch erfolgen, dass enantiomerenangereicherte chirale Stickstoffverbindungen der Formel (II) vorzugsweise in Gegenwart eines organischen Lösungsmittels mit Übergangsmetallverbindungen umgesetzt werden.

Als organische Lösungsmittel für die Umsetzung eignen sich üblicherweise aliphatische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie beispielsweise Petrolether, Benzol, Toluol, die isomeren Xylole, Chlorbenzol, die isomeren Dichlorbenzole, Hexan, Cyclohexan, Dichlormethan oder Chloroform sowie vorzugsweise Ether, wie Diethylether, Diisopropylether, Dioxan, Tetrahydrofuran, Methyl-tert.-butylether oder Ethylenglykoldimethyl- oder -diethylether. Besonders bevorzugte organische Lösungsmittel sind Toluol, Diethylether, Tetrahydrofuran und Methyl-tert.-butylether.

30

- 11 -

Bevorzugte Übergangsmetallverbindungen für die Umsetzung mit enantiomerenangereicherten chiralen Stickstoffverbindungen der Formel (II) sind solche der Formel (IIIa)

 $M^{l}(An^{l})_{pl} \qquad (IIIa)$

in der

M¹ für Ruthenium, Rhodium, Iridium, Nickel, Palladium oder Platin und

10 An¹ für Halogenid und

P1 für Ruthenium, Rhodium und Iridium für 3, für Nickel, Palladium und Platin für 2 steht,

oder Übergangsmetallverbindungen der Formel (IIIb)

$$M^{2}(An^{2})_{p2}L^{1}_{2} \qquad (IIIb)$$

in der

20

M² für Ruthenium, Rhodium, Iridium, Nickel, Palladium oder Platin und

An² für Halogenid oder ein Sulfonat

p2 für Rhodium und Iridium für 1, fürNickel, Palladium, Platin und Ruthenium für 2 steht und

L¹ jeweils für ein C₂-C₁₂-Alken wie beispielsweise Ethylen oder Cycloocten, oder ein Nitril wie beispielsweise Acetonitril, Benzonitril oder Benzylnitril steht, oder

L₂ zusammen für ein (C₄-C₁₂)-Dien wie beispielsweise Norbornadien oder 1,5-Cyclooctadien steht

oder Übergangsmetallverbindungen der Formel (IIIc)

5

$$[M^3L^2An_2^3]_2 (IIIc)$$

in der

M³ für Ruthenium und

L² für cod, nbd, Allyl, Methylallyl oder Arylreste wie zum Beispiel Cymol,

Mesitylen, Benzol und

An³ für Halogenid oder Sulfonat steht

15

20

oder Übergangsmetallverbindungen der Formel (IIId)

$$M_{p3}^4[M^5(An^3)_4]$$
 (IIId),

wobei

M⁵ für Palladium, Nickel, Iridium oder Rhodium und

An³ für Chlorid oder Bromid steht und

25 M⁴ für Lithium, Natrium, Kalium, Ammonium oder organisches Ammonium

steht und

P3 für Rhodium und Iridium für 3, für

Nickel, Palladium und Platin für 2 steht,

30

oder Übergangsmetallverbindungen der Formel (IIIe)

 $[M^6(L^3)_2]An^4$ (IIIe),

wobei

- 5 M⁶ für Iridium oder Rhodium und
 - L³ für ein (C₄-C₁₂)-Dien wie beispielsweise Norbornadien oder 1,5-Cyclooctadien steht und

10 An⁴ für ein Sulfonat steht.

15

20

25

30

Darüber hinaus sind als Übergangsmetallverbindungen beispielsweise Ni(cod)₂, Pd₂(dibenzylidenaceton)₃, Cyclopentadienyl₂Ru, Rh(acetylacetonat)(CO)₂, Ir(pyridin)₂(cod) oder mehrkernige verbrückte Komplexe wie beispielsweise [Pd(Allyl)Cl]₂, [Pd(Allyl)Br]₂, [Rh(cod)Cl]₂, [Rh(cod)Br]₂, [Rh(Ethen)₂Cl]₂, [Rh(Cycloocten)₂Cl]₂, [Ir(cod)Cl]₂ und [Ir(cod)Br]₂, [Ir(Ethen)₂Cl]₂ und [Ir(Cycloocten)₂Cl]₂ geeignet.

bevorzugte Übergangsmetallverbindungen sind: [Pd(Allyl)Cl]₂, Besonders [Rh(cod)Cl]₂, [Rh(cod)₂Br, [Rh(cod)₂]OTf, [Rh(cod)₂]OMes, [Pd(Allyl)Br]₂, [Rh(cod)₂]ONf, RuCl₂(cod), [(Cymol)RuCl₂]₂, [(Benzol)RuCl₂]₂. [(Mesitylen)RuCl₂]₂, [(Cymol)RuBr₂]₂, [(Cymol)RuI₂]₂, [Ir(cod)₂Cl]₂, [Ir(cod)₂]OTf, [Ir(cod)₂]OMes, [Ir(cod)₂]Onf, [Rh(nbd)₂Br], [Rh(nbd)₂]OTf, [Rh(nbd)₂]OMes, RuCl₂(nbd), [Ir(nbd)₂]OTf, [Ir(nbd)₂]OMes, [Ir(nbd)₂]ONf, [Rh(nbd)₂]Onf, Ir(pyridin)₂(nbd)OTf, [Ru(DMSO)₄Cl₂], [Ru(ACN)₄Cl₂], [Ru(PhCN)₄Cl₂] und $[Ru(cod)Cl_2]_n$.

Er sei darauf hingewiesen, dass es bei Verwendung von halogenidhaltigen Übergangsmetallverbindungen erforderlich ist, zusätzlich in etwa äquimolarer Menge zum vorhandenen Halogenid beispielsweise Thallium-, Silber- oder Kalium-Sulfonate gemäß oben stehender Definition einzusetzen.

Zur Herstellung der erfindungsgemäßen Substanzen wird das Trägermaterial mit Verbindungen der Formel (I) umgesetzt.

Das Gewichtsverhältnis von Verbindungen der Formel (I) zu Trägermaterial kann dabei beispielsweise und bevorzugt 0,02:1 bis 100:1, besonders bevorzugt 0,1:1 bis 5:1 und ganz besonders bevorzugt 0,1:1 bis 1:1 betragen.

15

20

Die Reaktionstemperatur kann beispielsweise und bevorzugt -20 bis 100°C, besonders bevorzugt 0 bis 80°C und ganz besonders bevorzugt 10 bis 30°C betragen.

Die Aufarbeitung der erfindungsgemäßen Substanzen kann in an sich bekannter Weise durch Filtration und/oder Zentrifugation und/oder Sedimentation und gegebenenfalls anschließendem Waschen mit organischem Lösungsmittel erfolgen, wobei das Waschen beispielsweise diskontinuierlich oder kontinuierlich durchgeführt werden kann. Zu Lagerzwecken werden die erfindungsgemäßen Verbindungen vorzugsweise getrocknet.

Die erfindungsgemäßen Substanzen können direkt als Katalysator für asymmetrische Reaktionen eingesetzt werden.

Von der Erfindung sind daher auch Katalysatoren umfasst, die die erfindungsgemäßen Substanzen enthalten.

- Weiterhin ist von der Erfindung ein Verfahren zur katalytischen Herstellung von enantiomerenangereicherten Verbindungen umfasst, das dadurch gekennzeichnet ist, dass als Katalysatoren solche eingesetzt werden, die erfindungsgemäßen Substanzen enthalten.
- 30 Bevorzugte Verfahren zur Herstellung von enantiomerenangereicherten Verbindungen sind asymmetrische Hydrierungen, wie beispielsweise Hydrierungen von

prochiralen C=C-Bindungen wie prochiralen Enaminen, Olefinen, Enolethern; C=O-Bindungen wie prochiralen Ketonen und C=N-Bindungen wie prochiralen Iminen. Besonders bevorzugte asymmetrische Hydrierungen sind Hydrierungen von prochiralen Ketonen wie insbesondere α - und β -Ketocarbonsäureestern.

5

Bevorzugte α- und β-Ketocarbonsäureester sind Verbindungen der Formel (IV),

in der

10

 R^6 und R^8 jeweils unabhängig voneinander für C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_5 - C_{15} -Arylalkyl oder C_4 - C_{14} -Aryl stehen und

 R^7 fehlt oder für 1,1-(C_1 - C_4 -Alkylen) steht.

15

Vorzugsweise stehen

 R^6 und R^8 jeweils unabhängig voneinander für gegebenenfalls chloriertes C_1 - C_4 -Alkyl oder Phenyl und

20

R⁷ für Methylen oder fehlt.

Besonders bevorzugte Verbindungen der Formel (IV) sind Phenylglyoxylsäuremethylester, Benzoylameisensäuremethylester und Chloracetessigester.

25

Durch erfindungsgemäße Hydrierung von α - und β -Ketocarbonsäureestern sind enantiomerenangereicherte Verbindungen der Formel (V) erhältlich,

$$R^6$$
 O (V)

in der

5

* ein stereogenes Zentrum markiert, das S oder R-konfiguriert ist und

R⁵, R⁶ und R⁷ die unter der Formel (V) angegebenen Bedeutungen und Vorzugsbereiche besitzen.

10

In einer bevorzugten Ausführungsform von erfindungsgemäßen asymmetrischen Hydrierungen beträgt die Reaktionstemperatur 0 bis 200°C, bevorzugt 10 bis 150°C, der Wasserstoffpartialdruck beispielsweise 0,1 bis 200 bar, bevorzugt 0,9 bis 100 bar und besonders bevorzugt 4 bis 30 bar.

15

20

25

Als Lösungsmittel für erfindungsgemäße asymmetrische Hydrierungen eignen sich insbesondere aliphatische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie beispielsweise Petrolether, Benzol, Toluol, die isomeren Xylole, Chlorbenzol, die isomeren Dichlorbenzole, Hexan, Cyclohexan, Dichlormethan oder Chloroform, Ether, wie Diethylether, Diisopropylether, Dioxan, Tetrahydrofuran, Methyl-tert.-butylether oder Ethylenglykoldimethyl- oder —diethylether sowie vorzugsweise Alkohole wie Methanol, Ethanol und Iso-Propanol.

Das Gewichtsverhältnis der erfindungsgemäßen Katalysatoren zu Substrat kann beispielsweise 1:1 bis 1:10000 betragen, bevorzugt ist ein Verhältnis von 1:5 bis 1:1000.

Der Vorteil der vorliegenden Erfindung ist, dass auf effiziente Weise heterogene Katalysatoren in hohen Ausbeuten hergestellt werden können und diese Katalysatoren hohe Umsätze und Enantioselektivitäten in asymmetrischen Synthesen erlauben. Dieser Umstand ist insofern als besonders überraschend einzustufen, dass die Verbindungen der Formel (I) im Falle des homogenen Einsatzes wenn überhaupt nur sehr geringe Enantioselektivitäten erlauben, wie die Vergleichsbeispiele zeigen.

Beispiele

Beispiel 1

5 Herstellung von [Rh(cod)((S)-2-Aminomethyl-1-ethylpyrrolidin)]CF₃SO₃

[RhCl(cod]₂ (100 mg, 0.20 mmol) wurde in THF (10 ml) gelöst, AgCF₃SO₃ (104 mg, 0.40 mmol) zugegeben und die Lösung für eine Stunde gerührt. Die Lösung wurde anschließend filtriert, das Filtrat mit (S)-2-Aminomethyl-1-ethylpyrrolidin (52 mg, 0.40 mmol) versetzt und die resultierende Lösung eine Stunde gerührt. Anschließend wurde die Lösung im Vakuum eingeengt und mit Hexan (25 ml) versetzt, wobei das Produkt ausfiel. Es wurde filtriert, das Produkt mit Hexan (2 x 20 ml) und Diethylether (2 x 20 ml) gewaschen und im Vakuum getrocknet. Es wurde ein gelbes Pulver erhalten (172 mg, 88 %).

Anal.: Berechnet für $C_{15}H_{28}N_2RhBF_4$ C, 39.34; H, 5.74; N, 5.74. Gefunden: C, 39.84; H, 5.54; N, 5.69.

¹H NMR (CDCl₃) 1.76-4.3 (28H, Amin und Olefin).

 13 C NMR (CDCl₃) = 12.2 (1), 21.7 (4), 24.4 (5), 45.5 (7), 51.0 (2), 56.5 (3), 67.1 (6), 30.4, 30.7 (CH₂) 79.7, 83.6 (CH).

+ve ESI = $339 (M^+)$.

20

25

10

15

Beispiel 2

Herstellung von

heterogenisiertem [Rh(cod)((S)-2-Aminomethyl-1-ethyl-pyrrolidin)]CF₃SO₃

Zu trockenem calciniertem MCM-41 (500mg) und CH₂Cl₂ (20 ml) wurde der Komplex aus Beispiel 1 gegeben. Es wurde drei Stunden gerührt. In dieser Zeit färbte sich der Träger MCM-41 gelb. Anschliessend wurde filtriert, der Rückstand mit reichlich CH₂Cl₂ gewaschen bis kein Komplex mehr erkennbar ausgewaschen wurde und das Produkt im Vakuum getrocknet.

Anal: C, 3.77; H, 0.83; N, 0.42.

Beispiel 3

Herstellung von [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]CF₃SO₃

[RhCl(cod]₂ (100 mg, 0.20 mmol) wurde in THF (10 ml) gelöst, AgCF₃SO₃ (104 mg, 0.40 mmol) zugegeben und die Lösung für eine Stunde gerührt. Die Lösung wurde anschließend filtriert, das Filtrat mit (1R, 2R)-1,2-Diphenylethylendiamin (80 mg, 0.4 mmol) versetzt und die resultierende Lösung eine Stunde gerührt. Anschließend wurde die Lösung im Vakuum eingeengt und mit Hexan (25 ml) versetzt, wobei das Produkt ausfiel. Es wurde filtriert, das Produkt mit Hexan (2 x 20 ml) und Diethylether (2 x 20 ml) gewaschen und im Vakuum getrocknet. Es wurde ein gelbes Pulver erhalten (200 mg, 88 %).

Anal.: Berechnet für C₂₃H₂₈N₂RhF₃SO₃ C, 48.25; H, 4.90; N, 4.90. Gefunden: C, 47.95; H, 4.86; N, 4.60.

¹H NMR (CD₃OD) 1.95 (br m, CH₂ 4H), 2.45 (br m, CH₂, 4H), 4.01 (s, NCH, 2H), 4.23 (m, CH, 2H), 4.35 (m, CH, 2H), 7.1-7.3 (m, Ph, 10H).

¹³C NMR (CD₃OD) 31.5 (*C*H₂), 66.3 (N*C*H) 81.4 (*C*H), 128.5, 129.2, 129.68, 140.5 (Ph).

+ve ESI = $423 \, (M^+)$.

20 Beispiel 4

Herstellung von

heterogenisiertem [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]CF₃SO₃

Zu trockenem calciniertem MCM-41 (500mg) und CH₂Cl₂ (20 ml) wurde der Komplex aus Beispiel 3 gegeben. Es wurde drei Stunden gerührt. In dieser Zeit färbte sich der träger MCM-41 gelb. Anschließend wurde filtriert, der Rückstand mit reichlich CH₂Cl₂ gewaschen bis kein Komplex mehr erkennbar ausgewaschen wurde und das Produkt im Vakuum getrocknet.

Anal: C, 3.76; H, 0.72; N, 0.39.

5

10

15

Beispiele 5 und 6

Analog zu Beispiel 3 wurden erhalten:

- 5) [Rh(cod)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃
- 6) [Pd(allyl)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃

5

Beispiele 7-16

Analog zu Beispiel 4 wurden erhalten:

- 7) [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]CF₃SO₃ auf/in Davison 923
- 8) [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]CF₃SO₃ auf/in Davison 634
- 9) [Rh(cod)((1R,2R)-1,2-Diphenylethylendiamin)]CF₃SO₃ auf/in Davison 654

10

- 10) [Rh(cod)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃ auf/in Davison 923
- 11) [Rh(cod)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃ auf/in Davison 634
- 12) [Rh(cod)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃ auf/in Davison 654

15

20

Analog zu Beispiel 2 wurden erhalten:

- 13) [Rh(cod)((S)-2-Aminomethyl-1-ethyl-pyrrolidin)]CF₃SO₃ auf/in Davison 923
- 14) [Rh(cod)((S)-2-Aminomethyl-1-ethyl-pyrrolidin)]CF₃SO₃ auf/in Davison 634
- 15) [Rh(cod)((S)-2-Aminomethyl-1-ethyl-pyrrolidin)]CF₃SO₃ auf/in Davison 653
- 16) [Pd(allyl)((S)-(2-Pyrrolidinmethyl-)-pyrrolidin)]CF₃SO₃ auf/in MCM 41

Beispiele 17 bis 44: Asymmetrischen Hydrierungen

Allgemeine Arbeitsvorschrift

Die asymmetrischen Hydrierungen wurden in einem Hochdruckautoklaven aus rostfreiem Edelstahl mit einem Volumen von 150 ml durchgeführt. Jeweils 10 mg des homogenen Katalysators bzw. jeweils 50 mg der immobilisierten Katalysatoren wurden unter Inertatmossphäre in den Hochdruckautoklaven transferiert.

Das Substrat (0.5 g), Methanol (30 g), und ein interner Standard (Cyclododecan) wurden zugegeben und der Hochdruckautoklav verschlossen. Der Hochdruckautoklav und seine Zu- und Ableitungen wurden anschließend durch dreimaliges Spülen mit Stickstoff inertisiert und zur Prüfung der Dichtigkeit schließlich unter einen Wasserstoffdruck von 5 bar gesetzt. Anschließend wurde der Wasserstoffdruck auf 20 bar erhöht, der Hochdruckautoklav auf Reaktionstemperatur gebracht (313 K) und der Inhalt mit einem mechanischen Rührer bei 400 U/min gerührt.

Über ein automatisches Entnahmeventil wurden Proben des Inhalts entnommen um den Verlauf der Reaktion untersuchen zu können. Am Ende der Reaktion wurde der Hochdruckautoklav zwei Stunden im Eisbad gekühlt, entspannt und die Produkte durch Gaschromatographie (GC, Varian, Model 3400 CX) über eine chirale Säule identifiziert (Chiraldex, 20 m x 0.25 mm).

Die Ergebnisse der Hydrierungsexperimente sind in nachstehender Tabellen zusammengefasst:

10

15

20

Substrat: Benzoylameisensäuremethylester

Beispiel	Katalysator	Reaktionstyp	t	Umsatz	TOF	ee
	aus Beispiel		(h)	(%)	(h ⁻¹)	(%)
17	5	Homogen	0.5	46.2	145	53
18	10	Heterogen	0.5	92.8	643	85
19	10	Heterogen	2.0	95.8	166	94
20	11	Heterogen	0.5	63.0	436	72
21	11	Heterogen	2.0	91.5	159	78
22	12	Heterogen	0.5	60.7	420	65
23	12	Heterogen	2.0	86.9	151	59
						:
24	1	Homogen	2.0	62	46	0
25	13	Heterogen	0.5	82.6	542	82
26	13	Heterogen	2.0	93.3	153	77
27	14	Heterogen	0.5	67.1	440	65
28	14	Heterogen	2.0	93.9	154	61
29	15	Heterogen	0.5	44.6	292	0
30	15	Heterogen	2.0	86.1	141	0
31	3	Homogen	2.0	69.9	60	0
32	7	Heterogen	0.5	77.7	596	50
33	7	Heterogen	2.0	98.1	188	79
34	8	Heterogen	0.5	59.7	458	68
35	8	Heterogen	1.0	75.5	290	73
36	9	Heterogen	0.5	38.8	298	0
37	9	Heterogen	2.0	83.1	159	4
38	6	Homogen	0.5	96.0	264	55

39	16	Heterogen	0.5	89.8	542	62
40	16	Heterogen	2.0	98.9	149	67
41	16	Heterogen	2.0	100	151	66
	(recycliert)					_

Substrat: Phenylglyoxylsäuremethylester

Beispiel	Katalysator	Temperatur	Reaktionsdauer	Umsatz	ee
	aus Beispiel	[°C]	[h]	[%]	[%]
42	3	40	2	82,0	0
43	2	40	2	98,9	93,3
44	4	40	2	98,3	89,1

Patentansprüche

5

10

20

- 1. Substanzen enthaltend zumindest
 - ein mikro-, meso- oder makroporöses Trägermaterial und
 - daran und/oder darin adsorbierte Verbindungen der Formel (I)

in der

N N für eine enantiomerenangereicherte chirale Stickstoffverbindung steht,

(M m⁺) für ein Metall mit der Wertigkeit m steht

L für einen anionischen oder neutralen Liganden steht

(Sulfonat⁻) für das Anion einer Sulfonsäure steht und

p für eins oder zwei steht und

n für eins, zwei, drei oder vier steht.

wobei die Auflage gilt, dass m-p-[Anzahl der anionischen Liganden] = 0 ist.

15

20

25

- 2. Substanzen nach Anspruch 1, dadurch gekennzeichnet, dass die Trägermaterialien eine Porengröße von 15 bis 250 Å aufweisen.
- 3. Substanzen nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die **Trägermaterialien** Silica-Gele oder Zeolithe vom Typ MOR, X, Y, MCM, ZSM, FAU, MFI, L, BEA, FER, A und SBA, AlPO, MAlPO und SAPO sind, wobei die genannten Zeolithe gegebenenfalls isomorph substituiert sein können.
- 4. Substanzen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Formel (I)
 - N N für enantiomerenangereicherte chirale Stickstoffverbindungen der Formel (II) steht

$$R^{2}$$
 $N-R^{3}-N$ R^{5} (II)

in der

- R¹, R², R⁴ und R⁵ jeweils unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₅-Arylalkyl oder C₄-C₁₄-Aryl stehen oder NR¹R² und/oder NR⁴R⁵ als Ganzes für einen cyclischen Aminorest mit insgesamt 4 bis 20 Kohlenstoffatomen steht,
- R³ für einen divalenten Rest mit 2 bis 30 Kohlenstoffatomen steht oder
- R³ und mindestens einer der Reste R¹, R², R⁴, R⁵ zusammen Teil eines cyclischen Aminorestes mit insgesamt 4 bis 20 Kohlenstoffatomen sind.

20

- 5. Substanzen nach Anspruch 4, dadurch gekennzeichnet, dass
 - R¹, R², R⁴ und R⁵ jeweils unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₅-Arylalkyl oder C₄-C₁₄-Aryl stehen oder NR¹R² und/oder NR⁴R⁵ als Ganzes für einen 5- oder 6-gliedrigen monocyclischen Aminorest steht, der am Kohlenstoffgerüst gegebenenfalls einfach, zweifach, dreifach oder vierfach C₁-C₄-Alkyl substituiert ist und
- 10 R³ für einen divalenten Rest steht, der ausgewählt ist aus der Gruppe C₂C₈-Alkylen, das gegebenenfalls einfach oder zweifach durch C₄-C₁₄Arylreste weiter substituiert sein kann, C₅-C₁₅-Arylalkylen, C₄-C₁₄Arylen oder Bis-(C₄-C₁₄-arylen) oder
- R³ und einer der Reste R¹, R², R⁴ und R⁵ zusammen Teil eines 5- oder 6gliedrigen monocyclischen Aminorestes sind, der am Kohlenstoffgerüst gegebenenfalls zusätzlich einfach, zweifach, dreifach oder vierfach durch C₁-C₄-Alkyl substituiert ist.
 - 6. Substanzen nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Formel (I)
 - (M m⁺) für Cobalt in den formalen Oxidationsstufen 0, +2 und +3, Rhodium und Iridium in den formalen Oxidationsstufen +1 und +3, Nickel, Palladium und Platin in den formalen Oxidationsstufen 0 und +2 oder Ruthenium in der formalen Oxidationsstufe +2 steht.

- 7. Substanzen nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Formel (I)
 - L für folgende Ligandentypen steht: Monoolefine, Diolefine, Nitrile, Aromaten sowie anionische Liganden.
- 8. Substanzen nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Formel (I)
- 10 (Sulfonat⁻) für Salze des Typs R₆SO₃⁻ steht, wobei R⁶ für C₁-C₁₂-Alkyl, C₁-C₂₀-Halogenalkyl, C₄-C₁₄-Aryl oder C₅-C₁₅-Arylalkyl steht.
 - 9. Substanzen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Verbindungen der Formel (I) solche der Formeln (Ia), (Ib), (Ic) und (Id) sind

$$H_2N$$
 NH_2
 NH_2

in denen jeweils

5

ein stereogenes Zentrum markiert, das entweder R oder S konfiguriert ist, wobei die Auflage gilt, dass Mesoformen ausgeschlossen sind (Verbindungen der Formel (Ic) und (Id))

10

für Rhodium^I oder Iridium^I steht und M^+

L

für cod oder nbd steht und

15

Sulfonat für Trifluormethansulfonat, Mesylat oder Nonafluorbutansulfonat steht.

- 10. Verbindungen der Formel (I) mit der in Anspruch 1 genannten Bedeutung, wobei folgende Verbindungen ausgenommen sind: [Rh(cod)((S)-2-aminomethyl-1-ethylpyrrolidin)]OTf und [Rh(cod)((1R,2R)-

20 1,2-Diphenylethylendiamin)]OTf.

Verwendung von Substanzen nach mindestens einem der Ansprüche 1 bis 9 11. als Katalysator für asymmetrische Reaktionen.

25

Katalysatoren enthaltend Substanzen nach mindestens einem der Ansprüche 1 12. bis 9.

- 13. Verfahren zur katalytischen Herstellung von enantiomerenangereicherten Verbindungen umfasst, das dadurch gekennzeichnet ist, dass Katalysatoren nach Anspruch 12 eingesetzt werden.
- 5 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass Verfahren zur katalytischen Herstellung von enantiomerenangereicherten Verbindungen asymmetrische Hydrierungen sind.
 - 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass asymmetrische Hydrierungen Hydrierungen von prochiralen C=C-Bindungen, C=O-Bindungen und C=N-Bindungen sind.
 - 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass Hydrierungen von prochiralen C=O-Bindungen Hydrierungen α- und β-Ketocarbonsäureestern sind.
 - 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass α und β Ketocarbonsäureester solche der Formel (IV) sind

in der

10

15

20

- R^6 und R^8 jeweils unabhängig voneinander für C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_5 - C_{15} -Arylalkyl oder C_4 - C_{14} -Aryl stehen und
- R^7 fehlt oder für 1,1-(C_1 - C_4 -Alkylen) steht.

- 18. Verfahren nach mindestens einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass für asymmetrische Hydrierungen die Reaktionstemperatur 0 bis 200°C und der Wasserstoffpartialdruck 0,1 bis 200 bar beträgt.
- Verfahren nach mindestens einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass für asymmetrische Hydrierungen als aliphatische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, Ether und/oder Alkohole eingesetzt werden.
- 10 20. Verfahren nach mindestens einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Katalysatoren nach Anspruch 12 zu Substrat 1:1 bis 1:10000 beträgt.

Verfahren zur asymmetrischen Hydrierung von Ketocarbonsäureestern

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von enantiomerenangereicherten α - und β -Hydroxycarbonsäureestern aus den entsprechenden Ketocarbonsäureestern sowie dafür verwendbare Katalysatoren.