Profitability of Fertilizer: Experimental Evidence from Female Rice Farmers in Mali

by Beaman et al. (AER: Paper and Proceedings 2013)

Johannes Schmieden

December 2017

Why is it interesting to look at the profitability of fertilizer in Mali?

 \rightarrow Mali belongs to sub-Saharan Africa(SSA)

Food security is a big issue:

• 233 million people in sub-Saharan Africa were hungry/undernourished in 2014-2016 (UN Food & Agriculture Organization) $\to \sim 1/4$

- 233 million people in sub-Saharan Africa were hungry/undernourished in 2014-2016 (UN Food & Agriculture Organization) $\to \sim 1/4$
- 501 million people (47 percent of the population of SSA) lived on \$1.90 a day or less, a principal factor in causing widespread hunger. (World Bank data)

- 233 million people in sub-Saharan Africa were hungry/undernourished in 2014-2016 (UN Food & Agriculture Organization) $\to \sim 1/4$
- 501 million people (47 percent of the population of SSA) lived on \$1.90 a day or less, a principal factor in causing widespread hunger. (World Bank data)
- · causes of hunger include
 - poverty
 - draught/climate change
 - population growth
 - disease

- 233 million people in sub-Saharan Africa were hungry/undernourished in 2014-2016 (UN Food & Agriculture Organization) $\to \sim 1/4$
- 501 million people (47 percent of the population of SSA) lived on \$1.90 a day or less, a principal factor in causing widespread hunger. (World Bank data)
- causes of hunger include
 - poverty
 - draught/climate change
 - population growth
 - disease
 - low agricultural productivity

- 233 million people in sub-Saharan Africa were hungry/undernourished in 2014-2016 (UN Food & Agriculture Organization) $\to \sim 1/4$
- 501 million people (47 percent of the population of SSA) lived on \$1.90 a day or less, a principal factor in causing widespread hunger. (World Bank data)
- · causes of hunger include
 - poverty
 - draught/climate change
 - population growth
 - disease
 - low agricultural productivity

ightarrow Well known that the use of fertilizer increases crop yield

- \rightarrow Well known that the use of fertilizer increases crop yield
- ightarrow Only few African farmers only use fertilizer

- \rightarrow Well known that the use of fertilizer increases crop yield
- ightarrow Only few African farmers only use fertilizer

- \rightarrow Well known that the use of fertilizer increases crop yield
- ightarrow Only few African farmers only use fertilizer

Why are aggregate adoption rates low and stagnating when returns to fertilizer are so high?

- Informational barriers
- Credit constraints
- Behavioral biases
- Heterogenous yield returns adopting to fertilizer

Why are aggregate adoption rates low and stagnating when returns to fertilizer are so high?

- Informational barriers
- Credit constraints
- Behavioral biases
- Heterogenous yield returns adopting to fertilizer

This paper: Field experiment providing fertilizer grants to women rice farmers in Mali

What is new?

The returns to a policy of fertilizer distribution are estimated instead of measuring the returns to a single input (e.g. fertilizer).

This paper: Field experiment providing fertilizer grants to women rice farmers in Mali

What is new?

The returns to a policy of fertilizer distribution are estimated instead of measuring the returns to a single input (e.g. fertilizer).

Results

- Increase in inputs (fertilizer, but also complementary inputs)
- Output \(\text{by 31}\%
- No evidence for any increase in agricultural profits

This paper: Field experiment providing fertilizer grants to women rice farmers in Mali

What is new?

The returns to a policy of fertilizer distribution are estimated instead of measuring the returns to a single input (e.g. fertilizer).

Results

- Increase in inputs (fertilizer, but also complementary inputs)
- Output ↑ by 31%
- No evidence for any increase in agricultural profits

This paper: Field experiment providing fertilizer grants to women rice farmers in Mali

What is new?

The returns to a policy of fertilizer distribution are estimated instead of measuring the returns to a single input (e.g. fertilizer).

Results

- Increase in inputs (fertilizer, but also complementary inputs)
- Output ↑ by 31%
- No evidence for any increase in agricultural profits

Conclusion

- Fertilizer has only a small impact on profits compared to other sources of variation
- Difficult for farmers to observe the impact of fertilizer
 - \rightarrow no fertilizer use even in the absence of credit constraints

Field Experiment - Randomized Control Trial

Setup:

- Spring 2010: consensus of female rice farmers in 23 villages in Southern Mali → baseline survey
 - detailed information about agricultural activities
 - other economic activities
 - assets
 - consumption

Field Experiment - Randomized Control Trial

Setup:

- Spring 2010: consensus of female rice farmers in 23 villages in Southern Mali \rightarrow baseline survey
 - detailed information about agricultural activities
 - other economic activities
 - assets
 - consumption
- average plot size: 0.22 of a hectare (2200 m^2)
- average fertilizer usage: 38kg/ha
- average yield: 1600kg/ha
- 416 respondents
- ullet 383 cultivated rice in 2009 o constitute the sample

Field Experiment - Randomized Control Trial

Setup:

- Spring 2010: consensus of female rice farmers in 23 villages in Southern Mali → baseline survey
 - detailed information about agricultural activities
 - other economic activities
 - assets
 - consumption
- average plot size: 0.22 of a hectare $(2200 m^2)$
- average fertilizer usage: 38kg/ha
- average yield: 1600kg/ha
- 416 respondents
- 383 cultivated rice in 2009 ightarrow constitute the sample

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups

- Spring 2010: baseline survey
 - \rightarrow Random assignment to treatment and control groups

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups
- May 2010: fertilizer distribution

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups
- May 2010: fertilizer distribution
- Aug 2010: follow up survey focusing on inputs

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups
- May 2010: fertilizer distribution
- Aug 2010: follow up survey focusing on inputs
- Dec 2010: second follow up survey immediately after harvest

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups
- May 2010: fertilizer distribution
- Aug 2010: follow up survey focusing on inputs
- Dec 2010: second follow up survey immediately after harvest
 - ▶ 378 out of 383

- Spring 2010: baseline survey
 - → Random assignment to treatment and control groups
- May 2010: fertilizer distribution
- Aug 2010: follow up survey focusing on inputs
- Dec 2010: second follow up survey immediately after harvest
 - ▶ 378 out of 383

Field Experiment - Results

Regression equation

$$y_{ijt} = \beta_0 + \beta_1 half_{ijt} + \beta_2 full_{ijt} + \beta_3 y_{ij(t-1)} + \beta_4 x_{ij(t-1)} + \delta_j + \epsilon_{ijt}$$

Field Experiment - Results on Inputs

	Input use			Input expenses					
	Use of fertilizer	Fertilizer quantity used (Kg)	Family labor (days)	Fertilizer expenses (FCFA)	Herbicides (FCFA)	Expenses on hired labor (FCFA)	Total input expenses (excl. fertilizer) (FCFA)	Total inputs (incl. value of fertilizer used) (FCFA)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Treatment (half)	0.64***	21.28***	2.84	-2412.91***	1012.54*	1075.15*	1705.06	7061.32***	
	(0.04)	(4.10)	(4.32)	(536.70)	(533.73)	(602.21)	(1139.86)	(1641.05)	
Treatment (full)	0.64***	32.91***	-4.73	-3011.97***	999.8*	2353.15***	3003.96***	11450.61***	
	(0.04)	(4.05)	(4.27)	(532.16)	(527.71)	(594.93)	(1130.02)	(1627.02)	
p-value: half = 1/2 * full	0.00	0.17	0.16	0.05	0.27	0.85	0.84	0.35	
N	378	378	378	377	378	378	377	377	
Mean of Control	0.32	13.17	59.76	3585.16	3855.24	2967.74	9685.77	12993.70	
SD of Control	0.47	28.08	37.11	7871.52	4942.22	3632.80	10000.33	14399.81	

Notes:

- 1) Standard errors are in parentheses. *p<.10, **p<.05, ***p<.01
- 2) Column (1) is a linear probability model while columns (2)-(8) show OLS estimates where the dependent variable is identified in the column heading. Also included in all specifications is the lagged dependent variable, an indicator for when the baseline value is missing, village fixed effects and the control variables used in the randomization routine (whether or not there is an extended household, use of fertilizer, use of plough and an agricultural asset index).
- 3) The dependent variable in (7) is the sum of those in (5) and (6), and expenses on seeds, ploughing, rental of carts, manure and chemicals other than fertilizer and herbicides such as e.g. insecticides and pesticides.
- 4) p-value: half = $1/2^*$ full reports the p value of a Wald test that the impact of the half treatment is 1/2 the size of the full treatment.
- 5) The mean and SD of control are values of the column heading variable at endline in only control villages.

Field Experiment - Results on Output

TABLE 4-OUTPUT (WOMEN, RICE PLOTS)

	Value output	Profits	Profits (subtracting	Profits (subtracting fertilizer costs only) (FCFA)	
	(FCFA)	(FCFA)	value of family labor)		
	(FOFA)	(FCFA)	(FCFA)		
	(1)	(2)	(3)	(4)	
Treatment (half)	5952.23*	-1101.05	-2446.13	593.56	
	(3549.27)	(3253.79)	(3193.44)	(3277.51)	
Treatment (full)	11045.78***	-115.82	1458.83	2936.29	
	(3504.60)	(3226.97)	(3167.06)	(3237.35)	
p-value: half = 1/2 * full	0.89	0.71	0.25	0.76	
N	372	371	371	372	
Mean of Control	35919.50	22971.13	-1220.54	32649.88	
SD of Control	31406.16	28880.84	27573.59	29660.41	

Notes:

- 1) Standard errors are in parentheses. *p<.10, **p<.05, ***p<.01
- 2) All columns show OLS estimates where the dependent variable is identified in the column heading. Also included in all specifications is the lagged dependent variable, an indicator for when the baseline value is missing, village fixed effects and the control variables used in the randomization routine (whether or not there is an extended household, use of fertilizer, use of plough and an agricultural asset index).
- 3) Family labor is valued at 400 FCFA per day in column (3).
- 4) The mean and SD of control are values of the column heading variable at endline in only control villages.

Comment on the results/Conclusion

Conclusion

- Fertilizer has only a small impact on profits compared to other sources of variation
- Difficult for farmers to observe the impact of fertilizer
 - \rightarrow no fertilizer use even in the absence of credit constraints

Comment on the results/Conclusion

Conclusion

- Fertilizer has only a small impact on profits compared to other sources of variation
- Difficult for farmers to observe the impact of fertilizer
 - \rightarrow no fertilizer use even in the absence of credit constraints

Comment

• Difficult to design an easy policy that intervention that increases crop yield in an efficient way!

Comment on the results/Conclusion

Conclusion

- Fertilizer has only a small impact on profits compared to other sources of variation
- Difficult for farmers to observe the impact of fertilizer
 - \rightarrow no fertilizer use even in the absence of credit constraints

Comment

• Difficult to design an easy policy that intervention that increases crop yield in an efficient way!

Thank you for your attention!