Marks

(a)

The diagram shows the graph of the function $f(x) = \sqrt{x} - 1$. Use the graph of y = f(x) to sketch (on separate diagrams) the following graphs, showing the values of any intercepts on the coordinate axes and the equations of any asymptotes:

(i) y = |f(x)|

(ii) y = f(|x|)

(iii) $y = \frac{1}{f(x)}$

(iv) $y = \tan^{-1} f(x)$

(b)

The diagram shows the graph of the function $f(x) = (\ln x)^2$, $x \ge 1$. $P(x_1, y_1)$ is a point on the curve such that the tangent to the curve at P passes through the origin O.

- (i) By considering the gradient of the line OP in two different ways, show that P is the point $(e^2, 4)$.
- (ii) Find the set of values of the real number k such that the equation f(x) = kx has two distinct real roots.
- (iii) Use integration by parts to show that $\int (\ln x)^2 dx = x(\ln x)^2 2x \ln x + 2x + c .$

Hence find the exact area of the region bounded by the curve y = f(x), the x axis and the line OP.

- (iv) Find the equation of the inverse function $f^{-1}(x)$.
- (v) Find the equation of the tangent to the curve $y = f^{-1}(x)$ that passes through the origin. 1

2

- (a) Evaluate $\int_0^4 \frac{1}{\sqrt{x^2 + 9}} dx$, giving the answer in simplest exact form.
- (b) Evaluate $\int_0^1 e^x \cos(e^x) dx$, giving the answer correct to 4 significant figures. 2
- (c) Evaluate $\int_0^2 \frac{x(x-16)}{(4x+1)(x^2+4)} dx$, giving the answer in simplest exact form.
- (d) Use the substitution $u = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{p}{2}} \frac{1}{3\cos x 4\sin x + 5} dx$.
- (e) f(x) is a continuous, odd function. Use the substitution u = -x to show that $\int_{-a}^{a} f(x) dx = 0.$

Question 3

Begin a new page

- (a) Find the values of real numbers a and b such that $\frac{a}{i} + \frac{b}{1+i} = 1$.
- (b)(i) Express z = 1 + i in modulus / argument form. Hence show that $z^9 = 16z$.
 - (ii) Express $(1+i)^9 + (1-i)^9$ in the form a+ib where a and b are real.
- (c) In the Argand diagram points A, B, C, D represent the complex numbers a, b, g, d respectively.
 - (i) If a+g=b+d show that ABCD is a parallelogram.
 - (ii) If ABCD is a square with vertices in anticlockwise order, show that $\mathbf{g} + i\mathbf{a} = \mathbf{b} + i\mathbf{b}$.
- (d)(i) In the Argand diagram shade the region where both $|z (1+i)| \le 1$ and $0 \le \arg(z (1+i)) \le \frac{\mathbf{p}}{4}$.
 - (ii) Find the sets of values of |z| and of arg z for points in the shaded region.

Question 4

Begin a new page

(a)

In the diagram $P(a \sec q, b \tan q)$ is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. S is a focus of the hyperbola. The tangent to the hyperbola at P meets the asymptotes $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$ at the points Q and R respectively.

(i) Show that the tangent to the hyperbola at P has equation $bx \sec \mathbf{q} - ay \tan \mathbf{q} = ab$.

2

2

(ii) Show that Q and R have coordinates $(a(\sec q + \tan q), b(\sec q + \tan q))$ and $(a(\sec q - \tan q), -b(\sec q - \tan q))$ respectively.

(iii) Show that P is the midpoint of QR.

1

(iv) Show that $OQ \times OR = OS^2$ where O is the origin.

3

(b) $P\left(p, \frac{1}{p}\right)$ and $Q\left(q, \frac{1}{q}\right)$ are two points on the rectangular hyperbola xy = 1. M is the midpoint of the chord PQ.

(i) Show that the chord PQ has equation x + pqy - (p+q) = 0.

- 2
- (ii) If P and Q move on the rectangular hyperbola such that the perpendicular distance of the chord PQ from the origin O(0,0) is always $\sqrt{2}$, show that $(p+q)^2 = 2(1+p^2q^2)$.

1

(iii) Hence find the equation of the locus of M, stating any restrictions on its domain and range.

4

Begin a new page

Marks

(a)

In the diagram, AE is a diameter of a circle with centre O. Quadrilateral ABCD is inscribed in the circle. The diagonals AC and BD intersect at right angles at the point X.

- (i) Copy the diagram
- (ii) Show that $\triangle ABX \parallel \triangle AED$ and deduce that BC = ED.

4

4

(iii) Hence show that $AX^2 + BX^2 + CX^2 + DX^2 = d^2$, where d is the diameter of the circle.

(b)

NOT TO SCALE

In the diagram ABC is a triangle in which AB = AC and BC = 1. D is the point on BC such that $\angle BAD = \mathbf{q}$, $\angle CAD = 2\mathbf{q}$, BD = x and CD = 1 - x.

- (i) Use the sine rule in each of $\triangle ADB$ and $\triangle ADC$ to show that $\cos q = \frac{1-x}{2x}$.
- (ii) Hence show that $\frac{1}{3} < x < \frac{1}{2}$.

3

3

Question 6

Begin a new page

- (a) T_n , n=1,2,3,... is a sequence of positive integers. S_n , n=1,2,3,... is another sequence of positive integers such that $S_n=T_1+T_2+T_3+...+T_n$. Also $S_1=6$, $S_2=20$ and $S_n=6$, $S_{n-1}-8$, S_{n-2} , n=3,4,5,....
 - (i) Use Mathematical Induction to show that $S_n = 4^n + 2^n$, n = 1, 2, 3, ...
 - (ii) Hence find T_n , n = 1, 2, 3, ... in simplest form.

(b)

In the diagram the line x = 2 meets the ellipse $\frac{x^2}{16} + \frac{y^2}{12} = 1$ at the points P and Q. A solid has as its base the region $\left\{ (x, y) : \frac{x^2}{16} + \frac{y^2}{12} \le 1 \text{ and } x \ge 2 \right\}$.

Each cross section perpendicular to the *y* axis is a square with one side in the base of the solid.

- (i) Show that the volume V of the solid is given by $V = \int_{-3}^{3} (x-2)^2 dy$.
- (ii) Hence find the value of V in simplest exact form.

1

2

Question 7

Begin a new page

- (a) A body of mass m kg is moving in a horizontal straight line. At time t seconds it has displacement x metres from a fixed point O in the line, velocity v ms⁻¹ and acceleration a ms⁻². The body is subject to a resistance of magnitude $\frac{1}{10}m\sqrt{v}\left(1+\sqrt{v}\right)$ Newtons. Initially the body is at O and has velocity V ms⁻¹.
 - (i) Show that $a = -\frac{1}{10}\sqrt{v} \left(1 + \sqrt{v}\right)$.
 - (ii) Show that $t = -10 \int \frac{1}{\sqrt{v} \left(1 + \sqrt{v}\right)} dv$. Hence find an expression for t in terms of v.

(You may use the substitution $v = u^2$ if required.)

- (iii) Show that $x = -10 \int \frac{\sqrt{v}}{1 + \sqrt{v}} dv$. Hence find an expression for x in terms of v.

 (You may use the substitution $v = u^2$ if required.)
- (iv) Find the distance travelled and the time taken in coming to rest.

(b)

In the diagram the curves xy = 2 and y = x(k - x) intersect at the points P, Q and R with x coordinates a, b and g respectively.

- (i) Show that \mathbf{a} , \mathbf{b} and \mathbf{g} satisfy the equation $x^3 kx^2 + 2 = 0$.
- (ii) Find the value of k such that a, b and g are consecutive terms in an arithmetic sequence.
- (iii) Find the monic cubic equation with coefficients in terms of k whose roots are \mathbf{a}^2 , \mathbf{b}^2 and \mathbf{g}^2 .

Question 8

Begin a new page

- (a) (i) Solve the equation $z^5 1 = 0$, giving the roots in modulus / argument form.
- 2

2

- (ii) Hence show that $z^5 1 = (z 1)(z^2 2z\cos\frac{2\mathbf{p}}{5} + 1)(z^2 2z\cos\frac{4\mathbf{p}}{5} + 1)$.
- (iii) Show that $4\left(1-\cos\frac{2p}{5}\right)\left(1-\cos\frac{4p}{5}\right) = 5.$
- (iv) Hence show that $x = \cos \frac{2\mathbf{p}}{5}$ is a root of the equation $8x^3 8x^2 8x + 3 = 0$.

(b)

NOT TO SCALE

In the diagram AB is a diameter of a circle with centre O and radius 1. C is a point on AB produced such that BC = AO = OB. D is a point on the circle such that $\angle AOD = \mathbf{q}$, $0 < \mathbf{q} < \frac{\mathbf{p}}{2}$. CD cuts the circle at E and $\angle BCE = \mathbf{a}$. M is the foot of the perpendicular from D to AB.

(i) Show that $\tan a = \frac{\sin q}{2 + \cos q}$.

- 2
- (ii) Explain why $\angle BOE = \mathbf{a} + \mathbf{e}$ for some $\mathbf{e} > 0$. Hence show that $\mathbf{q} = 3\mathbf{a} + \mathbf{e}$.
- 3

(iii) Hence show that $\frac{\sin q}{2 + \cos q} < \tan \frac{q}{3}$, $0 < q < \frac{p}{2}$.

2

EXAMINERS

Graham Arnold Denise Arnold Terra Sancta College, Nirimba Patrician Brothers, Blacktown