Data-driven Intelligent Systems

Lecture 18 KNN, Case-based Reasoning, and Association Rules

http://www.informatik.uni-hamburg.de/WTM/

Outline

- k-Nearest Neighbors
- 2. Case-based Reasoning
- 3. Overview Predictive vs. Descriptive Modeling
- 4. Association Rules Apriori algorithm

k-Nearest Neighbors (KNN)

- Classification without learning (but need to keep the data)
 - Task is to classify a new data point x_n

from the training data

- Find the k nearest points $\{x_{k'}\}$ with their class labels $\{y_{k'}\}$
- Assign class y_n based on the majority vote of {y_{k'}}

k-Nearest Neighbors: Choosing k

k-Nearest Neighbors

- The distance measure is important, e.g. Euclidean distance
- Normalization can change the results, e.g. whitening
- KNN uses existing data {x_k, y_k, } directly for decisions, does not build a model

- k=1: decide as in one precedence case
 - → Case Based Reasoning (existing data are "past experience")

Outline

- 1. k-Nearest Neighbors
- Case-based Reasoning
- 3. Overview Predictive vs. Descriptive Modeling
- 4. Association Rules Apriori algorithm

CBR – A way to solve complex problems

- By remembering how we solved a similar case in the past
- This is Case Based Reasoning (CBR)
 - memory-based problem-solving
 - re-using past experiences
- Experts often find it easier to relate to past cases than to formulate rules about reasoning

CBR – Problems we solve this way

- Medicine
 - doctor remembers previous patients
 - especially for rare combinations of symptoms
- Law
 - law depends on precedence
 - case histories are consulted
- Management
 - decisions are often based on past rulings
- Financial
 - performance is predicted by past results
- Robotics
 - Robot soccer imitate good moves

CBR – Overview

 CBR provides an automated method for storing experience and reusing it to make decisions in the future

CBR Prerequisites

- Expertise is embodied in a library of past cases (experiences)
- Each case typically contains
 - a description of the problem
 - → features should allow to find similar cases
 - goals, and subgoals that arise in reasoning
 - successful attempts at achieving those goals
 - → to propose solutions to new problems
 - failed attempts
 - → to warn of possible failure

CBR Process

- Basic algorithm to solve a current problem:
 - Match the problem's features against the cases in the case base, and retrieve similar cases.
 - If multiple solutions are found then resolve any ambiguities.
 - Reuse retrieved cases to propose a solution and test for success.
 - Revise the solution, if necessary.
 - Retain the current problem as part of a new case, i.e.
 - its defining features,
 - goals & subgoals,
 - successful & failed attempts,
 - its final solution.

CBR Evaluation

- What does the CBR process depend on?
 - Appropriate methods for indexing cases using their key attributes
 - Efficient mechanisms for retrieving cases given a set of index values
 - Existing cases a smaller case-base can be compensated for by more creativity in retrieval and revision
 - Good presentation of the information to the user

CBR Applications

- Failure prediction
 - ultrasonic non-destructive testing for Dutch railways
 - water in oil wells for Schlumberger
- Failure analysis
 - Mercedes cars for DaimlerChrysler
 - semiconductors at National Semiconductor
- Maintenance scheduling
 - Boeing 737 engines
 - TGV trains for SNCF
- Planning
 - mission planning for US navy
 - route planning for DaimlerChrysler cars

CBR in Business

Norwegian CBR consultant Verdande started in the oil business

CBR as Presented by "Verdande Technology"

- "Based on the principle that similar problems have similar solutions, CBR .. analyzes data patterns in real-time, using past events to proactively predict future problems."
- "harvests multiple, heterogeneous data types to index and search for those past experiences and provides organizations with the information they need"
- "transforms big data into actionable insight"
- "offering a realistic assessment as to whether a similar scenario is likely to occur in the future"
- "can help reduce drilling NPT" (non-productive time) by:
 - "Identify problem precursors.
 - Interpret and resolve the drilling situation.
 - Retrieve relevant solutions and lessons learned."

Outline

- 1. k-Nearest Neighbors
- 2. Case-based Reasoning
- Overview Predictive vs. Descriptive Modeling
 - 4. Association Rules Apriori algorithm

Turning Data into Knowledge

Main Types of Inductive Learning

Unsupervised learning:

(without teacher)

- goal is to discover "natural" structure in the data,
- requires task-independent measure of quality of representation

Example – Supervised Learning

Problem: bank approval of credit (1)

Available data:

- * Rejected
- Approved by expert

Previous customers with or without approval.

Learning: Linear classification function:

- 1. above reject
- 2. below accept

Example – Unsupervised Learning

Problem: bank approval of credit (2)

Available data: + Unlabeled

Unsupervised

Approval unknown for previous customers.

- → Three classes of customers:
- Low debt approved
- High debt +Low income reject
- 3. High debt +High income additional analysis

Data Mining Tasks Overview (1)

Prediction tasks

- Use some variables to predict unknown or future values of other variables.
 - Produce as a result the model.
 - Examples: classification & regression with decision tree, artificial neural network, ...

Column name Formula

VBA Code

Name manager

- Find human-interpretable patterns that describe the data.
 - Produce as a result information.
 - Examples: rule, graph, summary, ...

Data Mining Tasks Overview (2)

Data Mining Tasks Overview (3)

How about Reinforcement Learning?

- uses regression (a predictive task) for value estimation
- learns an action strategy to seek rewards
- agent-environment interaction "data" not of interest
- → beyond data mining, own category

Data Mining Algorithms

A data mining algorithm is a well-defined procedure that takes data as input and produces output in the form of models or patterns.

- Well-defined: can be encoded in software
- Algorithm: must terminate after some finite number of steps

Predictive Modeling (1)

 A black box that makes predictions about the future based on information from the past and present.

Predictive Modeling (2)

- Predict one variable Y given a set of other variables X
 - Here X could be a n-dimensional vector
- Classification: Y is categorical

$$y = f(x)$$

- Regression: Y is real-valued
 - Y may be a m-dimensional vector
- This is function approximation: learning the relationship f between Y and X
- Many algorithms in statistics and machine learning
- Often
 - emphasis on predictive accuracy (~ERM)
 - less emphasis on the model itself (~SRM)

Predictive Modeling (3)

- Classification is a learning function that classifies a sample into one of several predefined classes.
 - Given a collection of samples
 - Find a model for the class attribute as a function of the other attributes
 - Goal: previously unseen samples should be assigned a class as accurately as possible (test set)

Classification Example

Predictive Modeling (4)

 Prediction is a learning function that maps a sample to a real valued predicted attribute.

- Given a collection of samples
- Find a model for the predicted attribute as a function of the other attributes
- Goal: previously unseen sample should be assigned a value as accurately as possible (test set)

Predictive Modeling (4)

 Prediction is a learning function that maps a sample to a real valued predicted attribute.

- Often learnt like regression:
- Inputs are sequence values from time steps: t-n ... t-1
- Output is sequence value at time step: t

- → learning time series
 - Apply model recursively to generate the learnt time series

Descriptive Modeling

- Goal is to build a generative or descriptive model
 - E.g., a model that could simulate the data helping to understand basic characteristics of the process.

Examples:

- Density estimation:
 - Estimate the joint distribution P(x₁,....x_p)
- Cluster analysis:
 - Find natural groups in the data and describe them
- Dependency models among variables
 - Learn a Bayesian network for the data

Example of Descriptive Modeling

Main Groups

Describe data with elliptic clusters

Descriptive Modeling: Clustering

- Clustering is a descriptive task where one seeks to identify a finite set of categories (or clusters) to describe the data
 - Given a collection of samples
 - Find a model as a function of all attributes

Pattern Discovery is a Descriptive Task

Gene Analysis Example:

ADACABDABAABBDDBCADDDDBCDDBCCBBCCDADADAADABDBBDA BABBCDDDCDDABDCBBDBDBCBBABBBCBBABCBBACBBDBAACCAD DADBDBBCBBCCBBBDCABDDBBADDBBBBCCACDABBABDDCDDBBA BDBDDBDDBCACDBBCCBBACDCADCBACCADCCCACCDDADCBCADA DBAACCDDDCBDBDCCCCACACACCDABDDBCADADBCBDDADABCCA BDAACABCABACBDDDCBADCBDADDDDCDDCADCCBBADABBAAADA AABCCBCABDBAADCBCDACBCABABCCBACBDABDDDADAABADCDC CDBBCDBDADDCCBBCDBAADADBCAAAADBDCADBDBBBCDCCBCDC DCCADAADACABDABAABBDDBCADDDDBCDDBCCBBCCDADADACCC ABCADDADBACBBCCCDBAAADDDBDDCABACBCADCDCBAAADCADD ADAABBACCBB

same: CBBCC similar: CCBBCD, CCBCD

Another Example of Descriptive Modeling

Learning Directed Graphical Models

Descriptive Modeling: Dependency Modeling

- The task consists of finding a model that describes significant dependency in a set (subset) of samples.
 - Given a collection of samples
 - Find significant local models for subsets of samples

Change- & Deviation Detection

 Focuses on methods for discovering the most significant changes in large data sets.

~ outlier detection

Deviation Detection Example

Detect significant deviations from normal behavior

Applications:

Credit card fraud detection

Network intrusion detection

Early detection of malfunction in mechanical equipment

Descriptive Modeling: Summarization

- Summarization involves methods for finding a complete description for a set of samples.
 - Given a collection of samples
 - Find a short, simple descriptive model for samples as a function of all attributes.

Descriptive Modeling: Summarization

- Special case: Text summarization
- A crude approach is simple:

- Identify significant words in the text
 - These are frequent, but generally not frequent in other texts
- Select sentences with many of these important words
- Done. Possible post-processing:
 - Reduce the extracted sentences, removing unimportant words
 - Adapt sentences to each other for fluent reading

Summarizing: Frequent Pattern Analysis as Association Rules

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?
 - What are the subsequent purchases after buying, e.g. a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, DNA sequence analysis.

Outline

- 1. k-Nearest Neighbors
- 2. Case-based Reasoning
- 3. Overview Predictive vs. Descriptive Modeling
- Association Rules Apriori algorithm

Why is freq. Pattern Mining important?

Broad Applications of Frequent Pattern Mining

- Frequent pattern: An intrinsic property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Finding and analyzing sequential, structural (e.g., sub-graph) patterns
 - E.g. in spatiotemporal, multimedia, time-series, and stream data
 - Discriminate data based on frequent patterns
 - Clustering
 - Classification (if labels available)
 - Semantic data compression
 - Data warehousing
 - E.g. access data based on frequent patterns

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: a set of one or more items
- *k***-itemset** $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: frequency of occurrence of an itemset X
- (relative) support of X: fraction of transactions that contains X (~ the probability that a transaction contains X)
- An itemset X is frequent if its support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

is associated with

- Find all the rules X → Y with minimum support and confidence
 - Support s: probability that a transaction contains an itemset
 - Confidence c: conditional probability that a transaction having X also contains Y

$$Confidence(X \rightarrow Y) =$$

 $Support(X \cup Y) / Support(X)$

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Let minsup = 50%, minconf = 50%
- Freq. Patterns:
 - Beer: 3, Nuts: 3, Diaper: 4,Eggs: 3, {Beer, Diaper}: 3
- Association rules:
 - Beer → Diaper (s=60%, c=100%)
 - Diaper → Beer (s=80%, c=75%)
 - many more ...

Interpreting Association Rules

- 1. {Milk, Bread} → Eggs
- 2. {Milk, Bread} → Beer

is not the same as

3. {Milk, Bread} → {Eggs, Beer}

However, from 3. follows:

- 4. {Milk, Bread, Eggs} → Beer
- 5. {Milk, Bread, Beer} → Eggs

assume:

conf=0.7

Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - I.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: a Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! [Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94]
- Method:

according to parameter: minsup

- Initially, scan DB once to get frequent 1-itemsets
- From length k frequent itemsets, generate length (k+1)
 candidate itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated
- Apriori name: use of prior knowledge of frequent itemset

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
L_k: Frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k !=\emptyset; k++) do begin
    C_{k+1} = candidates generated from L_k;
    for each transaction t in database do
      increment the count of all candidates in C_{k+1}
      that are contained in t
    end
    L_{k+1} = candidates in C_{k+1} with min_support
end
return \cup_k L_k;
```

The Apriori Algorithm – an Example

 $\sup_{\min} = 2$

Transaction DB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_1

1st scan for count

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

sup

3

2

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L₂ Itemset sup {A, C} 2 {B, C} 2 {B, E} 3 {C, E} 2 C₂ | Itemset | {A, B} | {A, C} | {A, E} | {B, C} | {B, E}

{C, E}

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

3rd scan

*L*₃

Itemset	sup
{B, C, E}	2

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates:
 - minsup low → potentially an exponential number of frequent itemsets
 - Worst case: M^N
 where M: # distinct items; N: max length of transactions
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Local & Global Scan of Database

- Any itemset that is potentially frequent with $\sup \sigma$ in DB must be frequent with $\sup \sigma/k$ in at least one of k partitions of DB
 - Scan 1: partition database and find local frequent patterns

Scan 2: consolidate global frequent patterns

Summary

- k-Nearest Neighbors & Case-Based Reasoning
 - Prediction without learning
- Tasks in data mining
 - Predictive tasks, e.g. via supervised learning
 - Descriptive tasks, e.g. via unsupervised learning
- Frequent pattern mining: Apriori algorithm
 - Descriptive task without learning