

Uma breve introdução – 12.º ano

Abril de 2008

Marília Peres

Introdução à física quântica

- A quantização da energia de PlancK
- A teoria dos fotões de Einstein
- Dualidade onda-corpúsculo para a luz
- Radiação ionizante e não ionizante
- Interacção da radiação com a matéria: efeito fotoeléctrico, efeito de Compton, produção e aniquilação de pares
- Raios X
- Dualidade onda-corpúsculo para a matéria. Relação de De Broglie
- Princípio de Incerteza e Mecânica Quântica
- Física em acção

Uma Nova Ciência

Max Planck	<u>Niels Bohr</u>
Albert Einstein	<u>De Broglie</u>
<u>Heisenberg</u>	<u>Schrodinger</u>
Dawisson e Germer	<u>Física Clássica/</u> <u>Física Quântica</u>

O Corpo Negro e a Catástrofe do Ultravioleta

http://phet.colorado.edu/new/simulations/sims.php?sim=Blackbody_Spectrum

Max Planck

Em 1900 Planck propôs que a energia radiante não pode ser emitida em quaisquer quantidades, mas apenas em certas quantidades bem definidas que são múltiplas de um valor mínimo *h ν*, "quantum" de energia.

$$E = h v$$

Em 1927 os físicos americanos C.Dawisson e L.Germer obtiveram figuras de Difracção de Electrões.

Albert Einstein

Em 1905 Einstein, baseado nos estudos de Planck e para interpretar o efeito fotoeléctrico, propôs que era da própria natureza das radiações não se apresentarem com quaisquer valores de energia. Para um feixe de radiações de frequência v, as energias possíveis seriam E = n h v, com n = 1, 2, 3, ..., consoante o número de "partículas" de energia radiante. Surge o Dualismo ondapartícula.

http://phet.colorado.edu/new/simulations/sims.php?sim=Photoelectric_Effect

Efeito de Compton

- Efeito Compton é a diminuição de energia (aumento de comprimento de onda) de um fotão de raios X ou de raios gama, quando ele interage com a matéria.
- O Efeito Compton foi observado por Arthur Holly Compton em 1923, pelo qual fez ele receber o Prêmio Nobel de Física em 1927.

http://www.launc.tased.edu.au/online/sciences/physics/compton.html

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=20.0

http://phet.colorado.edu/new/simulations/sims.php?sim=Wave_Interference

Niels Bohr

- Em 1913 Bohr estendeu a ideia da quantização da energia ao electrão do átomo de hidrogénio, para interpretar o respectivo espectro de emissão.
- Embora de grande importância para o nascimento da física quântica foi muito contestado pelos seus pares.

Deficiências do Modelo de Bohr

- No modelo de Bohr o electrão ao mover-se à volta do núcleo, deveria perder energia, acabando por cair no próprio núcleo.
- Bohr defendeu-se explicando que num determinado nível – Estado Estacionário - a energia é constante.
- Quantificava o momento angular do electrão com um modelo meramente matemático

$m v r = n h / 2 \prod$

- Não explicava os níveis energéticos dos átomos polielectrónicos, nem o grau de ocupação dos níveis mais energéticos.
- Bohr considerava apenas o electrão como uma partícula.

Louis De Broglie

➢ Em 1924 De Broglie, físico francês, inspirado no trabalho de Compton, estendeu a descrição onda-partícula (do fotão) para qualquer partícula de momento linear p = m.v, a qual terá um "de certo modo" um comprimento de onda

$$\lambda = h/m v$$

tal como para o fotão.

Ernest Heisenberg

Em 1925 Ernest Heisenberg apresenta o seu

Princípio da Incerteza.

Não é possível conhecer simultaneamente com exactidão a posição e a velocidade de uma partícula.

 Δx . $\Delta p \ge h/4 \prod$

Schrodinger

- Em 1925-1926 um físico austríaco Schrodinger estabeleceu uma abordagem ondulatória da Mecânica Quântica.
- A sua <u>equação de onda</u> é famosa bem como o seu gato.

Equação de Onda de Schrodinger

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8 \cdot m \cdot \Pi^2}{h^2} \cdot (E - V) \cdot \psi = 0$$

 $x, y, z \rightarrow coordenadas$

 $\psi \rightarrow função.de.onda$

 $m \rightarrow massa.do.electrão$

 $E \rightarrow Energia.total$

 $V \rightarrow Energia.potencial$

Esta equação permita relacionar a energia de um electrão com a probabilidade de o encontrar num certo ponto do espaço.

Equação de Onda de Schrodinger

http://phet.colorado.edu/new/simulations/sims.php?sim=Rutherford_Scattering

Modelos Atómicos

O Paradoxo do gato de Schrodinger

- Um gato está fechado numa caixa e dentro da caixa está uma ampola de veneno volátil; um martelo que pode cair sobre a ampola é mantido preso por um dispositivo accionado por protões. Enviamos a este dispositivo um protão de spin indeterminado e, passada uma hora, observamos o interior da caixa por uma pequena vigia. Como é evidente o gato está morto ou vivo.
- Se quisermos descrever segundo um formalismo quântico, encontraremos um sério problema. Assim, o conjunto formado pelo protão e pelo dispositivo é descrito por uma complicada função de onda logo o gato estará numa sobreposição de estados entre o "gato vivo" e o "gato morto"!

Ref.^a 2

http://www.truveo.com/Schr%C3%B6dingers-cat-WWWOLOSCIENCECOM/id/2869338186

Bibliografia

- 1. BOHR, N. (1913). Sobre a constituição de Átomos e Moléculas, Fundação Calouste Gulbenkian, Lisboa.
- 2.) ORTOLI, S., Pharabod, J.- P., (1986). *Introdução à Física Quântica*, Publicações Dom Quixote, Lisboa.
- 3. Physics Education Tecnology http://phet.colorado.edu/web-pages/index.html
- 4. The Physics Classroom http://www.physicsclassroom.com
- 5. Compton Effect
 http://www.launc.tased.edu.au/online/sciences/physics/compton.h

 tml
- 6. NTNUJAVA Virtual Physics Laboratory http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=20.0