8 The Matrix of a Linear Transformation

Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, we show in this section that it is actually a matrix transformation $\vec{x} \mapsto A\vec{x}$.

Definition 8.1. Let $\vec{e_i}$ denote the standard basis vector having 1 in the ith row, and zero elsewhere.

$$\vec{e_i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow ith \text{ row}$$

In particular $\vec{e_i}$ is the ith column of the $n \times n$ identity matrix.

Example 8.2. Consider the 3×3 identity matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\uparrow \uparrow \uparrow \uparrow$$

$$\vec{e}_1 \ \vec{e}_2 \ \vec{e}_3$$

Theorem 8.3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then, there exists a unique matrix A such that for every \vec{x} in \mathbb{R}^n we have

$$T(\vec{x}) = A\vec{x}.$$

In fact, A is the $m \times n$ matrix whose ith column is the vector $T(\vec{e_i})$. In particular

$$A = \left[T(\vec{e}_1) \quad T(\vec{e}_2) \quad \cdots \quad T(\vec{e}_n) \right]$$

The matrix A is called the **standard matrix** for T.

Proof. Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 be in \mathbb{R}^n . Then

$$\vec{x} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n.$$

Hence $T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + \dots + x_n\vec{e}_n)$. Since T is a linear transformation, we have

$$T(\vec{x}) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + \dots + x_n T(\vec{e}_n)$$

$$= \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) & \dots & T(\vec{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= A\vec{x}.$$

Example 8.4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} -1\\3 \end{bmatrix} \text{ and } T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\-1 \end{bmatrix}$$

- Compute $T(\vec{u})$ where $\vec{u} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.
- Give the matrix A such that $T(\vec{x}) = A\vec{x}$ for every \vec{x} in \mathbb{R}^2 (the matrix A is the standard matrix of T).

Solution:

• We have

$$\vec{u} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hence

$$T(\vec{u}) = T\left(4\begin{bmatrix} 1\\0 \end{bmatrix} + 3\begin{bmatrix} 0\\1 \end{bmatrix}\right) = 4T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 3T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= 4\begin{bmatrix} -1\\3 \end{bmatrix} + 3\begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} -1\\9 \end{bmatrix}$$

• The standard matrix A of T is given by

$$A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) \end{bmatrix} = \begin{bmatrix} T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) & T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 \\ 3 & -1 \end{bmatrix}$$

Check that

$$A\vec{u} = \begin{bmatrix} -1 \\ 9 \end{bmatrix}.$$

Properties of Linear Transformation

Definition 8.5. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every \vec{b} in \mathbb{R}^m is the image of at least one vector \vec{u} in \mathbb{R}^n . That is, T is onto if for all \vec{b} in \mathbb{R}^m , there exists \vec{u} in \mathbb{R}^n such that $T(\vec{u}) = \vec{b}$.

Facts:

- T is onto when the range of T is all of the codomain \mathbb{R}^m .
- T is not onto when there is some \vec{b} in \mathbb{R}^m for which the equation $T(\vec{x}) = \vec{b}$ has no solution.

Definition 8.6. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if every \vec{b} in \mathbb{R}^m is the image of at most one vector \vec{u} in \mathbb{R}^n . That is T is said to be one-to-one if for every \vec{u} , \vec{v} in \mathbb{R}^n , $T(\vec{u}) = T(\vec{v})$ implies $\vec{u} = \vec{v}$.

Facts

A transformation T is one-to-one if for every \vec{b} in \mathbb{R}^m the equation $T(\vec{x}) = \vec{b}$ never has multiple solutions (unique or none).

Example 8.7. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation whose standard matrix is given by

$$A = \left[\begin{array}{rrrr} -1 & 2 & 5 & 1 \\ 0 & -2 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{array} \right].$$

- Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? (the same as: is T onto?)
- Is T a one-to-one transformation?

Solution:

• To check if T is onto, we need to verify if for every $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ in \mathbb{R}^3 , the equation $T(\vec{x}) = \vec{b}$ has a solution. This equation is the same as $A\vec{x} = \vec{b}$. The later equation is equivalent to the linear system with augmented matrix

$$\begin{bmatrix} -1 & 2 & 5 & 1 & b_1 \\ 0 & -2 & 3 & 2 & b_2 \\ 0 & 0 & 0 & -4 & b_3 \end{bmatrix}.$$

The matrix is already in row echelon form and we see that the system is always consistent for every $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. It follows that for every $\vec{b} \in \mathbb{R}^3$, there exists $\vec{x} \in \mathbb{R}^4$ such that $T(\vec{x}) = A\vec{x} = \vec{b}$, so T is onto.

• To check if T is one-to-one, we need to verify if for every \vec{b} in \mathbb{R}^3 , there exist at most one vector \vec{x} in \mathbb{R}^4 such that $T(\vec{x}) = \vec{b}$, that is $A\vec{x} = \vec{b}$. This again equivalent to the linear system with augmented matrix

$$\begin{bmatrix} -1 & 2 & 5 & 1 & b_1 \\ 0 & -2 & 3 & 2 & b_2 \\ 0 & 0 & 0 & -4 & b_3 \end{bmatrix}$$

This shows that the system is consistent. Since there are more variables than equations, we have a free variable $(x_4 \text{ is free})$, then the system has infinitely many solutions, so T is not one-to-one.

Theorem 8.8. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\vec{x}) = \vec{0}$ has only the trivial solution.

38

Proof. Suppose that the equation $T(\vec{x}) = \vec{0}$ has only the trivial solution. Let \vec{b} be in \mathbb{R}^m and \vec{u}, \vec{v} in \mathbb{R}^n such that $T(\vec{u}) = T(\vec{v}) = \vec{b}$. Then $T(\vec{u}) - T(\vec{v}) = \vec{0}$. Since T is linear, we have $T(\vec{u} - \vec{v}) = \vec{0}$. As $\vec{0}$ is the only solution of $T(\vec{x}) = \vec{0}$, we have $\vec{u} - \vec{v} = \vec{0}$, so $\vec{u} = \vec{v}$. It follows that T is one-to-one.

Suppose T is one-to-one. Then every equation including $T(\vec{x}) = \vec{0}$ has at most one solution. Since $T(\vec{0}) = \vec{0}$ is always true, $T(\vec{x}) = \vec{0}$ has only the trivial solution.

Facts:

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

- T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A spans \mathbb{R}^m .
- T is one-to-one if and only if the columns of A are linearly independent.

Note:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A. As consequences the above facts, we have the following:

- If there is a pivot in every row of the row echelon form of A, then T is onto.
- If there is a pivot in every column of the row echelon form of A, then T is one-to-one.