GOFプロット作成と視覚的共変量探索

Contents

- GOFプロット
 - ・必要な関数の説明
 - 演習-1
- 視覚的共変量探索
 - 共変量候補の相関関係
 - ・ 必要な関数・パッケージの説明
 - 演習-2
 - ETA(変量効果)と共変量の関係
 - 演習-3

Goodness-of-fit (GOF) プロット

- ・母集団解析で構築したモデルの診断プロットの1つ
 - 実測値(DV) vs 母集団予測値(PRED)
 - 実測値(DV) vs 個別予測値(IPRED)
 - 条件付き重み付き残差(CWRES) vs PRED
 - CWRES vs Time
 - 個別重み付き残差の絶対値(|IWRES|) vs IPREDなど

GOFプロットの作成手順

sdtab(GOFプロット作成に必要な変数を出力したファイル)

GOFプロット

ID	DRUG	TIME	TSLD	IPRED	IWRES	CWRES	DV	PRED
1001	1	0.08	0.08	28659.037	0.2262266	1.9951971	35142.7	21061.817
1001	1	0.25	0.25	74049.641	-0.0535400	0.4345582	70085.0	56645.410
1001	1	0.48	0.48	115050.120	-0.2447800	-0.8001000	86888.0	91746.698
1001	1	0.75	0.75	73646.393	-0.0714910	-0.2390400	68381.3	65146.467
1001	1	1.00	1.00	52299.705	0.0411351	0.2186856	54451.1	48906.945
1001	1	1.50	1.50	33480.929	0.0037355	-0.0824990	33606.0	31857.561
1001	1	2.00	2.00	24345.973	0.0304608	0.1652561	25087.6	22487.875
1001	1	3.00	3.00	13816.528	0.0589955	0.4711499	14631.7	11805.423
1001	1	4.50	4.50	6003.747	0.0627425	0.5179446	6380.5	4558.547
1001	1	6.05	6.05	2538.807	-0.0263040	-0.0950420	2472.0	1706.605

GOFプロット作成に必要な関数

- geom point: 散布図を作成する
 - 例:p <- ggplot(data = sdtab, aes(y=DV, x=PRED)) + geom_point(size=1, alpha=0.8, shape=21)
 - size: 点の大きさ
 - alpha:点の透過性(0<α≤1)、0に近いほど透明、1に近いほど不透明
 - shape:点の形(0~25)、お勧めはshape=21「〇」、詳細はリンク参照 http://www.cookbook-r.com/Graphs/Shapes and line types/
- stat smooth:平滑化曲線を追加する
 - 例:p <- p + stat_smooth(method="loess", linetype="dashed", colour="red", se=FALSE)
 - method:直線/曲線の算出方法("loess", "glm", "lm", "gam")
 - linetype:線の種類("solid", "dashed", "dotted"...)
 - size:線の太さ
 - colour:線の色(デフォルトは"black")
 - se:信頼区間を表示させるか否か(TRUE, FALSE)
- geom abline:対角線(y=x)を追加する
 - 例:p <- p + geom_abline(linetype="solid")
- geom_hline:対角線(y=0)を追加する
 - 例:p <-p + geom_hline(yintercept=0, linetype="solid")
 - yintercept:y切片の値を指定
- theme:グリッドと背景を指定する
 - 例:p <- p + theme_bw(base_size=12)
 - theme bw: 白背景に灰色のグリッド(デフォルトはtheme gray)
 - base size:軸ラベル、タイトル等のフォントサイズ

複数の図をまとめて表示する

・ パッケージ"gridExtra"

• 例:grid.arrange(p1, p2, p3, p4, nrow=2)

• nrow:分割する行数を指定

• ncol:分割する列数を指定

演習-1

- Data folder内のsdtab60を読み込み、Drug=1, DV>0のデータについて、 以下の図を作成してください。
 - 実測値(DV)と母集団予測値(PRED)のプロットを平滑化曲線と対角線(y=x)付きで作成してください。
 - CWRESと直近の投与後時間(TSLD)のプロットを平滑化曲線と直線(y=0)付きで作成してください。
 - ・上記で作成した図を1行2列で並べて1つの図として表示してください。

※sdtab60ファイル中には、DRUG=1、2のデータが含まれています。

演習-1:回答コード例

#データ読み込み

sdtab <- read_table(paste0(path, "/sdtab60"), skip = 1)</pre>

DV vs PRED

```
p <- ggplot(data=sdtab %>% filter(DV > 0) %>% filter(DRUG == 1), aes(x =
```

```
p <- p + geom_point(alpha=0.7, shape=21)
```

p <- p + stat_smooth(method="loess", linetype = "dashed", colour = "red", se = FALSE)

```
p <- p + geom_abline()</pre>
```

p <- p + theme_bw(base_size=12)

p1 <- p

演習-1:回答コード例

CWRES vs TSLD

```
p <- ggplot(sdtab %>% filter(DV > 0) %>% filter(DRUG == 1), aes(x = TSLD, y = CWRES))
```

p <- p + stat_smooth(method="loess", linetype = "dashed", colour = "red", se = FALSE)

演習-1:回答コード例

図をまとめて表示 grid.arrange(p1, p2, ncol=2)

視覚的共変量探索

• 共変量

- 薬物動態や薬力学に影響を及ぼす要因
 - 内因性の要因:体重、性別、年齢、臨床検査値、遺伝子多型など
 - 外因性の要因:併用薬、合併症、喫煙の有無など
 - 試験デザイン:製剤、食事の条件など

共変量探索の流れ

- 患者背景の確認
 - 要約統計量の把握
 - ・ 共変量候補の相関関係の確認(散布図行列)
- Base model構築
- ・ ETA(変量効果)のEBEと共変量の相関を確認(散布図、ボックスプロット)
- NONMEMで共変量探索の実行

※実際に演習を行っていただく部分は青字で示しています。

要約統計量の把握

- ・ 収集した患者背景データで共変量探索可能かどうか確認する
 - ・連続変数: 平均、標準偏差、データの範囲、分布の形は?
 - ・離散変数:全体に占める割合は?

共変量候補の相関関係の確認

各共変量候補が互いに独立しているか確認する

• 相関が強い共変量を複数同時に組み込むとパラメータを適切に推定できない

• あらかじめ共変量の相関を確認し、相関の強い共変量を複数同時にパラメー

タに組み込まないよう注意する

ETA (変量効果)のEBEと共変量の相関を確認

Base modelのETAと共変量に相関関係があるか確認する

- 共変量探索前に組み込まれそうな共変量に当たりをつける
- +変量を組み込む際の式を検討する(比例的な増加か?べき乗的な増加か?頭打ちか?)

散布図行列作成の前処理に必要な関数

<dplyr>

- filter:列を指定し、条件式に該当する行を抜き出す
 - 例:nmdata2 <- nmdata %>% filter(DOSE==500)
 - 意味:列「DOSE」=500の行を抜き出す
- distinct: 列を指定し、重複した値を持つ行を削除する
 - 例:nmdata2 <- nmdata %>% distinct(ID, .keep_all = TRUE)
 - 意味: 「ID」列を指定し、重複した値を持つ行を削除する(初出を残し、2回目以降は削除)
 - .keep_all: 指定した列以外を残すか否か(TRUE/FALSE)
- select: 指定した列を抜き出す
 - 例:nmdata2 <- nmdata %>% select(ID, DOSE)
 - 意味:「ID」「DOSE」列を抜き出す
- mutate:新たに列を作成する(既にある列を指定すると、データが置き換わる)
 - 例: nmdata2 <- nmdata %>% mutate(IBW = 22 * (HT/100)^2)
 - 意味:新たにIBW(=22*(HT/100)^2)という列を作成
 - 例: nmdata2 <- nmdata %>% mutate(MALE = as.factor(MALE))
 - 意味:「MALE I列の型を因子(factor)に変更する

共変量の散布図行列作成に必要なパッケージ

<GGally>:「ggplot2」を利用して散布図行列を作成するパッケージ

- 例:p <- ggpairs(data=nmdata)
 - 非対角要素(lower)
 - 連続変数×連続変数: 散布図
 - 連続変数×離散変数:ヒストグラム
 - 離散変数×離散変数:棒グラフ
 - 対角要素(diag)
 - 連続変数:ヒストグラム(密度)
 - 離散変数:棒グラフ
 - 非対角要素(upper)
 - 連続変数×連続変数:相関係数
 - 連続変数×離散変数:ボックスプロット
 - 離散変数×離散変数:割合
- 例:p <- ggpairs(data=nmdata, aes(alpha=0.7, colour=MALE))
 - •「MALE」列で色分けして表示

ggpairs関数の詳細はリンク参照 https://ggobi.github.io/ggally/articles/ggpairs.html

演習-2

- Data folder内のPSP4-8-748-s012.csvをnmdataとして読み込み、共変量の 散布図行列作成のためのデータセットをnmdata2として作成してください。
 - ・ 被験者番号(ID)が重複した行は削除し、各IDにつき1行のデータセットとしてください。
 - 「CRCL」「AGE」「MALE」「HLTH」の列を抜き出してください。
 - •「CRCL」の値が欠損しているID(CRCL=-99)は削除してください。
 - •「MALE」「HLTH」の型を因子(factor)にしてください。
- ・データセット「nmdata2」を用いて共変量の散布図行列を作成してください。
 - •「CRCL」「AGE」「MALE」「HLTH」の散布図行列を、「HLTH」で色分けして作成してください。

演習-2:回答コード例

#データ処理

nmdata <- read_csv(paste0(path, "/PSP4-8-748-s012.csv"), skip = 0)

nmdata2 <- nmdata %>%

distinct(ID, .keep_all = TRUE) %>%

select(CRCL, AGE, MALE, HLTH) %>%

filter(CRCL != -99) %>%

mutate(MALE = as.factor(MALE)) %>%

mutate(HLTH = as.factor(HLTH))

CRCL	AGE MALE	HLTH
113.5	29 1	1
152.6	23 1	1
145.3	22 1	1
145.7	40 1	1
177.0	19 1	1
88.3	39 1	1
147.5	34 1	1
110.0	40 1	1
136.7	38 1	1
160.4	22 1	1

kable(head(nmdata2, 10))

演習-2:回答コード例

散布図行列

p <- ggpairs(data=nmdata2, aes(alpha=0.7, colour=HLTH))

print(p)

演習-3

- Data folder内のpatab61、catab61、cotab61、sdtab61について
 - patab61、catab61、cotab61は被験者番号(ID)が重複した行を削除して、 patab、catab、cotabを作成してください。
 - sdtab61はID及びDRUGが重複した行を削除して、sdtabを作成してください。
 - patab、catab、cotab、sdtabをIDをkeyとしてマージしたnmdataを作成してください。

- nmdataを用いてETA1とCRCLの相関プロットを作成してください。
- nmdataを用いてETA1とHLTHのボックスプロットを作成してください。

演習-3に用いるデータセットの説明

patab61: 患者個別パラメータ(ETA)を出力したファイル

catab61:共変量候補のうち、離散変数を出力したファイル

cotab61:共変量候補のうち、連続変数を出力したファイル

sdtab61:GOFプロット作成に必要な変数を出力したファイル(今回は

「DRUG」列をマージするために使用)

演習-3:回答コード例

#データ読み込み

```
cotab61 <- read_table(paste0(path, "/cotab61"), skip = 1)
catab61 <- read_table(paste0(path, "/catab61"), skip = 1)
patab61 <- read_table(paste0(path, "/patab61"), skip = 1)
sdtab61 <- read_table(paste0(path, "/sdtab61"), skip = 1)</pre>
```

#データ処理

patab <- patab61 %>% distinct(ID, .keep_all=TRUE)
catab <- catab61 %>% distinct(ID, .keep_all=TRUE)
cotab <- cotab61 %>% distinct(ID, .keep_all=TRUE)
sdtab <- sdtab61 %>% distinct(ID, DRUG, .keep_all=TRUE)

nmdata <- left_join(sdtab, patab, by="ID")
nmdata <- left_join(nmdata, catab, by="ID")
nmdata <- left_join(nmdata, cotab, by="ID")</pre>

演習-3:回答コード例

ETA vs covariateプロット

```
p <- ggplot(data=nmdata %>% filter(CRCL != -99 & DRUG == 1), aes(x=CRCL, y=ETA1))
p <- p + geom_point(alpha=0.7, shape=21)
p <- p + stat smooth(method="loess", linetype = "dashed", colour = "red", se = FALSE)
p <- p + theme bw(base size=12)
p1 <- p
p <- ggplot(data=nmdata %>% filter(CRCL != -99 & DRUG == 1), aes(x=factor(HLTH),
y=ETA1)
p <- p + geom_boxplot(alpha=0.7, shape=21)
p <- p + geom hline(yintercept=0, linetype="dashed")
p <- p + theme_bw(base_size=12)
p2 <- p
```


grid.arrange(p1, p2, ncol=2)