Moment Inequality and Partial Identification in Industrial Organization

Handbook of IO, Volume 4, Chapter 5

Presented by: Hang XU, Xinrui LIU

Hong Kong University of Science and Technology

March 1, 2025

Outline

Introduction

Example 1: Measurement Error Models

Example 2: Models Based on Revealed Preference

Examples with Partial Identification: Strategic Interactions

Estimation and Inference in Partial Identification

Point Identification

Point Identification

Estimating model parameters as a single value, e.g., $\hat{\theta}=0.5$.

Point Identification

Point Identification

Estimating model parameters as a single value, e.g., $\hat{\theta} = 0.5$.

- In traditional econometrics, we often try to find point identification with a cost of adding more assumptions (to improve identifying power).
- Common assumptions include: Certain distributions of error terms (e.g., logit model); Independence of error terms.
- If assumptions are satisfied, one can always obtain the true value of the parameter by using an infinite amount of data.
- But in reality, these assumptions are often violated or not well justified by economic theory (e.g., correlation between error terms and regressor).
- **Problem**: Two researchers using the same data may reach different conclusions due to different assumptions.

Partial Identification

 Need to find out what can be learned from the data without imposing strong assumptions – May give up point identification and turn to partial identification.

Partial Identification

 Need to find out what can be learned from the data without imposing strong assumptions – May give up point identification and turn to partial identification.

Partial Identification

Estimating model parameters as a set, e.g., $\hat{\theta} \in [0.3, 0.7]$.

Partial Identification

 Need to find out what can be learned from the data without imposing strong assumptions – May give up point identification and turn to partial identification.

Partial Identification

Estimating model parameters as a set, e.g., $\hat{\theta} \in [0.3, 0.7]$.

- Cannot know the true value of the parameter even with an infinite dataset, but can still reveal some insights about the object of interest.
- Usually, the partial identification of the parameter is derived from a set of inequalities, which are called moment inequalities.
- The inequalities are derived from optimizing behavior based on economic theory (e.g., revealed preferences) or simply the statistical properties from the data.

Roadmap

- Partial identification is widely used in empirical IO, especially in
 - Models with measurement errors or unobserved heterogeneity,
 - Models based on revealed preference,
 - Strategic interaction models among multiple agents (e.g., market entry, auction),
 - Models with multiple equilibria or incomplete information.
- Partial identification also gives challenges for estimation and inference:
 - Estimation: How do we estimate a set? What is a "good" estimate of set?
 - Inference: How to test an hypothesis about true parameters with partial identification?

Acknowledgement

This presentation is based on

- Chapter 5: *Moment Inequality and Partial Identification in Industrial Organization* from the Handbook of Industrial Organization, Volume 4,
- Introduction to Partial Identification from C. Bontemps' lecture notes.

Outline

Introduction

Example 1: Measurement Error Models

Example 2: Models Based on Revealed Preference

Examples with Partial Identification: Strategic Interactions

Estimation and Inference in Partial Identification

A Warm-up: Frisch (1934): Measurement Error Models

- **Example**: Consider a simple linear regression model $y^* = \beta x^* + u$.
- If we assume $E(x^*u)=0$, we can estimate a consistent β as $\hat{\beta}=\frac{\sum_{i=1}^n(x_i^*-\bar{x})(y_i^*-\bar{y})}{\sum_{i=1}^n(x_i^*-\bar{x})^2}$.
- Now, suppose both x^* and y^* are measured with errors:

$$x = x^* + v_x$$
$$y = y^* + v_y$$

Where v_x , v_y are unobserved measurement errors with i.i.d. distribution.

• How to estimate β in the true model by only observing (x, y)?

A Warm-up: Frisch (1934): Measurement Error Models (Cont'd)

The true model implies

$$y = \beta x + \underbrace{u + v_y - \beta v_x}_{w}$$

and if we regress y on x:

$$\hat{\beta} = \beta + \frac{Cov(x, w)}{Var(x)}$$

- This leads to inconsistency of the estimation.
- Traditional methods (e.g., IV) can get point identification of β if conditions hold.
- Alternatively, we can use partial identification to get a set of $\hat{\beta}$ by finding some moment inequalities.

A Warm-up: Frisch (1934): Measurement Error Models (Cont'd)

The model imposes some equations in second order moments of observables:

$$Var(x) = Var(x^*) + Var(v_x)$$
 (1)

$$Var(y) = Var(y^*) + Var(v_y) \ge \beta^2 Var(x^*) + Var(v_y)$$
 (2)

$$Cov(x, y) = Cov(x^* + v_x, y^* + v_y) = \beta Var(x^*)$$
(3)

$$(2) + (3) \rightarrow Var(y) \ge \beta Cov(x, y) + Var(v_y)$$

$$(4)$$

Two inequalities can be derived based on the statistical properties of variance:

- $Var(v_x) \ge 0 \rightarrow \beta \ge \frac{Cov(x,y)}{Var(x)}$
- $Var(v_y) \ge 0 \rightarrow \beta \le \frac{Var(y)}{Cov(x,y)}$
- Then, we can get a set of $\hat{\beta} \in \left[\frac{Cov(x,y)}{Var(x)}, \frac{Var(y)}{Cov(x,y)}\right]$

Outline

Introduction

Example 1: Measurement Error Models

Example 2: Models Based on Revealed Preference

Examples with Partial Identification: Strategic Interactions

Estimation and Inference in Partial Identification

Revealed Preference

- Revealed preference theory is a method to infer consumer preferences from observed choices.
- The theory is based on the assumption that consumers' choices are consistent with their preferences.
- The theory can be used to derive moment inequalities for partial identification.
- Formally, let $\pi(d_i, d_{-i}, y_i, \theta)$ be the pay-off agent i receives from choosing action d_i given its competitors chose d_{-i} and other determinants y_i , we have:

$$E[\pi(d_i, d_{-i}, y_i, \theta)|I_i] \ge E[\pi(d, d_{-i}, y_i, \theta)|I_i] \quad \forall d \in \mathbb{D}_i$$

Where I_i is the information set, and \mathbb{D}_i is the choice set available to agent i.

 The expectation is taken since competitors actions or other determinants might be random at the time of decision.

Katz (2007): Shoppers Driving Time Costs

- Katz (2007) studies the costs shoppers assign to driving to a supermarket, which is important for zoning laws and public transportation policy.
- This problem involves a two-stage decision process: agent i's decision $d_i = (s_i, b_i)$,
 - First, choose a supermarket (store) s_i.
 - Then, choose products to purchase (a complex choice set of possible bundles), say the basket b_i .

Katz (2007): Shoppers Driving Time Costs (Cont'd)

- The utility functions of the agent with z_i characteristics are additively separable functions of:
 - The utility of the basket bought $u(b_i, z_i)$,
 - The expenditure on the basket $e(b_i, s_i)$,
 - Driving time to the store $\theta_i dt(s_i, z_i)$.

Utility function is:

$$\pi(d_i, z_i, \theta) = u(b_i, z_i) - e(b_i, s_i) - \theta_i dt(s_i, z_i)$$

Where $\theta_i = \theta_0 + v_i$ is the parameter of interest (the dollar value of driving time), and v_i is the unobserved preference for driving time.

Katz (2007): Shoppers Driving Time Costs (Cont'd)

- By using revealed preference, we compare the actual choice, d_i , to the alternative d_i^f of purchasing:
 - The same basket b_i of goods,
 - At a store s_i^f that is farther away from the agent's home than the actual store s_i .

Thus, we have:

$$\Delta\pi(d_i, d_i^f, z_i, \theta) = \pi(d_i, z_i, \theta) - \pi(d_i^f, z_i, \theta)$$

= $-\Delta e(b_i, s_i, s_i^f) - (\theta_0 + v_i)\Delta dt(s_i, s_i^f, z_i) \geq 0$

- Notice that choosing a different basket at d_i just reinforces the inequality.
- Then we have:

$$\theta_0 + v_i \ge -\frac{\Delta e(b_i, s_i, s_i^t)}{\Delta dt(s_i, s_i^f, z_i)}$$

Katz (2007): Shoppers Driving Time Costs (Cont'd)

- Assume that v_i follows a distribution with mean zero: $E(v_i) = 0$.
- Then we can get the moment inequality by aggregating over all agents:

$$\theta_0 \geq -rac{E[\Delta e(b_i, s_i, s_i^f)]}{E[\Delta dt(s_i, s_i^f, z_i)]}$$

• Similar approach can be applied to a store that is closer to the agent's home: s_i^c .

$$heta_0 \leq -rac{E[\Delta e(b_i, s_i, s_i^c)]}{E[\Delta dt(s_i, s_i^c, z_i)]}$$

- This approach eliminates the needs to specify:
 - The specific distribution assumption of v_i (where MNL model is often used),
 - The choice set of the basket b_i and store s_i for each agent,
 - The two-stage decision problem.

Outline

Introduction

Example 1: Measurement Error Models

Example 2: Models Based on Revealed Preference

Examples with Partial Identification: Strategic Interactions

Estimation and Inference in Partial Identification

Strategic Interactions

- The previous case is a single-agent model, where the agent's decision depends on the agent's own characteristics.
- In many IO models, agents' decisions depend on the decisions of others, which is called strategic interactions, or multi-agent models.
- The payoffs in multi-agent models are often functions of actions of all agents, and the agents' actions are interdependent.
- Models with strategic interactions may have multiple equilibria, incomplete information, or other complications where MNL with MLE are not applicable.
- In such models, the revealed preference approach tends to use only a subset of conditions implied by the model, thereby leading to learning less about the parameters (may have a wide set of estimates).
- Thus, other conditions (e.g., equilibrium conditions, equilibria selections, etc.) are needed to narrow down the set of estimates.

• Two firms i = 1, 2 decide whether to enter a market: $d_i = 1, 0$ with 0 to be not. The payoff of firm i is:

$$\pi_1 = d_1 \times (x_1 \beta_1 + \Delta_1 d_2 + \epsilon_1)$$

 $\pi_2 = d_2 \times (x_2 \beta_2 + \Delta_2 d_1 + \epsilon_2)$

Table 5 A parametric two-player, two-action game in normal form.

	$d_2 = 0$	$d_2 = 1$
$d_1 = 0$	(0, 0)	$(0, x_2\beta_2 + \epsilon_2)$
$d_1 = 1$	$(x_1\beta_1 + \epsilon_1, 0)$	$(x_1\beta_1 + \Delta_1 + \epsilon_1, x_2\beta_2 + \Delta_2 + \epsilon_2)$

- Firms have complete information about the other firm's profit function,
- Assume both Δ_1 and Δ_2 are negative, a competition effect,
- Only focus on pure strategy Nash equilibrium.

Shocks $\epsilon_i \perp x_i$ are known to the firm but not to the econometrician:

• Firms observe all components of the payoff, including ϵ_i , so their decisions satisfy:

$$d_i = \mathbf{1}\{\pi_i \ge 0\}$$
 for $i = 1, 2$

- The econometrician can only observe the entry decisions d_i : a pair of indicators (d_1, d_2) and the characteristics x_i .
 - If $(d_1, d_2) = (1, 0)$ is observed (firm 1 is the monopolist), $\Rightarrow x_1\beta_1 + \epsilon_1 \ge 0$ and $x_2\beta_2 + \Delta_2 + \epsilon_2 \le 0$, \Rightarrow A necessary condition for (1, 0) to be the equilibrium;
 - From a reverse logic, when $x_1\beta_1 + \epsilon_1 \ge 0$ and $x_2\beta_2 + \epsilon_2 \le 0$, $\Rightarrow (1,0)$ is a dominant strategy equilibrium, \Rightarrow A sufficient condition for (1,0) to be the equilibrium.
- The aim is to learn the vector of parameters $\theta = (\beta_1, \beta_2, \Delta_1, \Delta_2)$.

- It seems we can obtain a point identification of θ by maximizing the likelihood function of the observed data if assuming the distributions of ϵ_i .
- i.e., choose θ such that we match the observed four choice probabilities $p_{ij} = P(d_1 = i, d_2 = j)$ as good as possible.
- However, since multiple equilibria exists in some regions, the choice probability for some outcomes cannot be written as a function of θ (the pay-off functions), even with the distributional assumption of ϵ_i :
 - Within certain range of ϵ , the outcome is still random since which equilibrium is selected is random.

• Specify the choice probabilities as (assuming Δ_1 and Δ_2 are negative):

$$\begin{aligned} p_{00} &= P(d_1 = 0, d_2 = 0 | x) = P(\epsilon_1 \le -x_1\beta_1, \epsilon_2 \le -x_2\beta_2) \\ p_{11} &= P(d_1 = 1, d_2 = 1 | x) = P(\epsilon_1 \ge -x_1\beta_1 - \Delta_1, \epsilon_2 \ge -x_2\beta_2 - \Delta_2) \\ p_{10} &= P(d_1 = 1, d_2 = 0 | x) = P(\epsilon_1 \ge -x_1\beta_1, \epsilon_2 \le -x_2\beta_2 - \Delta_2, \epsilon \notin S_{\beta}) \\ &\quad + P(d_1 = 1, d_2 = 0 | x, \epsilon \in S_{\beta}) \times P(\epsilon \in S_{\beta}) \\ p_{01} &= P(d_1 = 0, d_2 = 1 | x) = 1 - p_{00} - p_{11} - p_{10} \end{aligned}$$

- Where $S_{\beta} = \{\epsilon : -x_1\beta_1 \le \epsilon_1 \le -x_1\beta_1 \Delta_1, -x_2\beta_2 \le \epsilon_2 \le -x_2\beta_2 \Delta_2\}$ are the regions where the equilibrium is not unique: (1,0) and (0,1) are both equilibria.
- For p_{00} and p_{11} , we can write them as functions of θ and x (the pay-off functions can uniquely reflect the realized data), but not for p_{10} and p_{01} if no more assumptions on multiple equilibria selections are made.

FIGURE 1

Mapping from ϵ to outcomes.

- More assumptions are needed to specify the equilibrium selection rules to get a point identification of θ ;
- Instead, without any further assumptions, we can still get a set of θ by using partial identification approach:
- The inequality conditions are coming from the statistical property of the probability. We apply this inequality condition on the ones we do not have a function of θ : $P(d_1 = 1, d_2 = 0 | x, \epsilon \in S_\beta) \in [0, 1]$.
- Thus, we find the set of θ that satisfies the inequality conditions:

$$H_L^{(1,0)} \le P(d_1 = 1, d_2 = 0 | x) \le H_U^{(1,0)}$$

- Where $H_L^{(1,0)} = P(\epsilon_1 \ge -x_1\beta_1, \epsilon_2 \le -x_2\beta_2 \Delta_2, \epsilon \notin S_\beta)$,
- $H_U^{(1,0)} = P(\epsilon_1 \ge -x_1\beta_1, \epsilon_2 \le -x_2\beta_2 \Delta_2).$

- Similar approach for $p_{01}=p\left(d_1=0,d_2=1|x\right)$ to find $H_L^{(0,1)}$ and $H_U^{(0,1)}$.
- For p_{00} and p_{11} , we have equality conditions, which can be written as functions of θ : $H^{(0,0)} = P(\epsilon_1 \le -x_1\beta_1, \epsilon_2 \le -x_2\beta_2)$ and $H^{(1,1)} = P(\epsilon_1 \ge -x_1\beta_1 \Delta_1, \epsilon_2 \ge -x_2\beta_2 \Delta_2)$.
- Finally, the identified set of θ is the intersection of the sets from all conditions:

$$\Theta = \{\theta : H_L^{(1,0)} \le P(d_1 = 1, d_2 = 0 | x) \le H_U^{(1,0)}, H_L^{(0,1)} \le P(d_1 = 0, d_2 = 1 | x) \le H_U^{(0,1)}, P(d_1 = 0, d_2 = 0 | x) = H^{(0,0)}, P(d_1 = 1, d_2 = 1 | x) = H^{(1,1)}\}$$

Other Strategic Interaction Models: Incomplete Information

A market entry game with incomplete information:

- With incomplete information, firms form beliefs about the other firm's action based on what they know:
- The payoffs are now functions of the actions and the beliefs of the other firm:

$$\pi_1 = d_1 \times (x_1 \beta_1 + \Delta_1 \omega_1 (d_2 = 1|x) + \epsilon_1)$$

 $\pi_2 = d_2 \times (x_2 \beta_2 + \Delta_2 \omega_1 (d_1 = 1|x) + \epsilon_2)$

- Where $\omega_1(d_2 = 1|x)$ is the belief that firm 1 holds about the probability that firm 2 will enter the market.
- By using economic theory, one can find the upper and lower bounds of $\omega_i(d_{-i}=1|x)$, and then find the set of θ that satisfies the moment inequalities.

Other Strategic Interaction Models: Auctions

- In a typical auction model, bidder i with valuation θ_i has the pay-off: $\theta_i x_i t_i$ where:
 - t_i is the actual transfer he made,
 - $x_i \in \{0,1\}$ gives the allocation state of the object,
 - bidder *i* bids with *b_i*.
- Haile and Tamer (2003) proposes two assumptions in auction settings:
 - Bids are weakly less than corrsponding valuation: $b_i(\theta_i) \leq \theta_i$;
 - A bidder that loses the auction has a valuation that makes it unprofitable to beat the winning bid: $\theta_i \leq b^* + \Delta$
 - Where b^* is winning bid, $\Delta \geq 0$ is the minimum bid increment.
- These two assumptions generate upper and lower bounds on the distributions of valuation θ_i , a partial identification approach.

Revisit the Roadmap

- Partial identification is widely used in empirical IO, especially in
 - Models with measurement errors or unobserved heterogeneity,
 - Models based on revealed preference,
 - Strategic interaction models among multiple agents (e.g., market entry, auction),
 - Models with multiple equilibria or incomplete information.
- Partial identification also gives challenges for estimation and inference:
 - Estimation: How do we estimate a set? What is a "good" estimate of set?
 - Inference: How to test an hypothesis about true parameters with partial identification?

Outline

Introduction

Example 1: Measurement Error Models

Example 2: Models Based on Revealed Preference

Examples with Partial Identification: Strategic Interactions

Estimation and Inference in Partial Identification