Oliver Thomas, Dara McCutcheon, Will McCutcheon

# Modelling Nonlinear optics with the Bloch-Messiah reduction

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Quantum Engineering CDT University of Bristol

August 23, 2018

#### Overview

Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dar McCutcheon Will McCutcheon

- What is nonlinear optics?
- Why do we care about it?
- What I have been doing
- Gaussian optics
- Outlook

# Motivation quantum nonlinear optics

Oliver Thomas, Dara McCutcheon, Will

#### The good

Spontaneous Parametric processes, SPDC, SFWM

- Heralded single photon sources
- Entangled photon pair generation (polarisation, spatial)

#### Kerr processes

- Self-Phase modulation (SPM), generating Bannana states (CV)
- Cross-Phase modulation (XPM) for sensing

#### The bad

 Generating more than two photons -> bad for quantum computing

All Kerr nonlinear processes

- SPM -> Spectral broadening
- XPM -> Unwanted phase shifts on single photons due to propagation of the pump

# What do we mean by nonlinear optics?

Oliver Thomas, Dara McCutcheon, Will McCutcheon  Roughly processes that conserve energy but do not conserve photon number.

$$\vec{P} = \chi^{(1)}\vec{E}_1 + \chi^{(2)}\vec{E}_1\vec{E}_2 + \chi^{(3)}\vec{E}_1\vec{E}_2\vec{E}_3 + \dots$$
 (1)

Here we are going to talk about squeezing, i.e SPDC or SFWM, Hamiltonians are then of the form,

$$\hat{H} = A\hat{a}_{S}^{\dagger}\hat{a}_{I}^{\dagger}\hat{a}_{P} + h.c. \tag{2}$$

$$\hat{H} = A\hat{a}_S^{\dagger} \hat{a}_I^{\dagger} \hat{a}_P \hat{a}_P + h.c. \tag{3}$$

## Gaussian Optics

Oliver Thomas, Dara McCutcheon, Will McCutcheon



- Using the undelpeted pump approximation we can write the Hamiltonians as terms which are at most quadratic in creation and annihilation operators.
- These are Gaussian transforms, they take Gaussian states to Gaussian states

$$\begin{bmatrix} \vec{b} \\ \vec{b}^{\dagger} \end{bmatrix} = M \begin{bmatrix} \vec{a} \\ \vec{a}^{\dagger} \end{bmatrix} \tag{5}$$

<sup>&</sup>lt;sup>1</sup>These are linear symplectic transforms which conviently can be written as a matrix

## Hamilton<u>ian</u>

Modelling Nonlinear optics with the Bloch-Messiah

Oliver Thomas, Dara McCutcheon, Will McCutcheon We can do re-write this Hamiltonian as a Schmidt-decomposition using SVD.

$$-\frac{i}{\hbar}Pf(\omega_1,\omega_2) = \sum_k r_k \psi_k(\omega_1)\phi_k(\omega_2)$$
 (6)

Where  $\psi$  &  $\phi$  are unitary matrices,

- with  $\psi_k(\omega_1)$  is the k-th row and  $\omega_1$ -th column of  $u_{(\omega_1,k)}$ ,
- ullet with  $\phi_k(\omega_2)$  is the  $\omega_2$ -th row and k-th column of  $v_{(k,\omega_2)}^\dagger$

$$P'f(\omega_1,\omega_2) = \sum_k r_k u_{(\omega_1,k)} v_{(k,\omega_2)}^{\dagger}$$
 (7)

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Recall SVD is defined as,

$$M = U\Sigma V^{\dagger} \tag{8}$$

# The Joint Spectral Amplitude (JSA)

Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dar McCutcheon Will



(a) Signal (red) and Idler (blue)

# Non-separable JSAs

Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dara McCutcheon, Will McCutcheon



(a) Signal (red) and Idler (blue)

# Types of Gaussian transformations

Oliver Thomas, Dara McCutcheon, Will



Figure: Two source HOM dip



Figure: Type-1 Fusion gate

# Two squeezers JSA

Modelling Nonlinear optics with the Bloch-Messial

Oliver Thomas, Dara McCutcheon, Will



## G(4) correlation function

Modelling Nonlinear optics with the

Oliver Thomas, Dar McCutcheon Will

$$G^{(4)} = \frac{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{3}^{\dagger} \hat{a}_{4}^{\dagger} \hat{a}_{1} \hat{a}_{2} \hat{a}_{3} \hat{a}_{4} \right\rangle}{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{1} \right\rangle \left\langle \hat{a}_{2}^{\dagger} \hat{a}_{2} \right\rangle \left\langle \hat{a}_{3}^{\dagger} \hat{a}_{3} \right\rangle \left\langle \hat{a}_{4}^{\dagger} \hat{a}_{4} \right\rangle} \tag{9}$$

## Outlook

Modelling Nonlinear optics with the Bloch-Messiah

Oliver Thomas, Dan McCutcheon Will McCutcheon

• There is much to do