Convolutional Neural Network & Backpropagation Algorithm

Xuelin Qian

Content

- 1.Neural Network
- 2.Backpropagation Algorithm
- 3. Convolutional Neural Network
 - 4.Backpropagation on CNN

Content

1. Neural Network

- 2.Backpropagation Algorithm
- 3. Convolutional Neural Network
 - 4.Backpropagation on CNN

"neuron"

$$h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 W_i x_i + b)$$

where $f:\Re\mapsto\Re$ is called the **activation function**

neural network: consist of many simple "neurons"

Forward Propagation

Layer L₃

Layer L2

Layer L₁

 n_l : the number of layers

 L_l : the layer l

 $W_{ij}^{(l)}$: the weight associated with the connection between unit j in layer l, and unit i in layer l+1

 $b_i^{(l)}$: the bias associated with unit i in layer l+1

 $a_i^{(l)}$: the acctivation unit \dot{l} in layer l

$$a_{1}^{(2)} = f(W_{11}^{(1)}x_{1} + W_{12}^{(1)}x_{2} + W_{13}^{(1)}x_{3} + b_{1}^{(1)})$$

$$a_{2}^{(2)} = f(W_{21}^{(1)}x_{1} + W_{22}^{(1)}x_{2} + W_{23}^{(1)}x_{3} + b_{2}^{(1)})$$

$$a_{3}^{(2)} = f(W_{31}^{(1)}x_{1} + W_{32}^{(1)}x_{2} + W_{33}^{(1)}x_{3} + b_{3}^{(1)})$$

$$h_{W,b}(x) = a_{1}^{(3)} = f(W_{11}^{(2)}a_{1}^{(2)} + W_{12}^{(2)}a_{2}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + b_{1}^{(2)})$$

Forward Propagation

 L_l : the layer l

 $b_i^{(l)}$: the bias associated with unit i in layer l+1

 $a_i^{(l)}$: the acctivation unit \dot{l} in layer l

 $z_i^{(l)}$: the total weighted sum of inputs to unit i in layer l

e.g.
$$a_1^{(2)} = f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)})$$
$$a_1^{(2)} = f(z_1^{(2)}) \qquad z_1^{(2)} = \sum_{i=1}^3 W_{1i}^{(1)}x_i + b_1^{(1)}$$

Forward Propagation

 n_l : the number of layers

 L_l : the layer l

 $W_{ij}^{(l)}$: the weight associated with the connection between unit j in layer l, and unit i in layer l+1

 $b_i^{(l)}$: the bias associated with unit i in layer l+1

 $a_i^{(l)}$: the acctivation unit \dot{l} in layer l

 $z_i^{(l)}$: the total weighted sum of inputs to unit i in layer l

$$z^{(2)} = W^{(1)}x + b^{(1)}$$
 $a^{(2)} = f(z^{(2)})$
 $z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$
 $a^{(l+1)} = f(z^{(l+1)})$
 $a^{(l+1)} = f(z^{(l+1)})$

Content

1.Neural Network

- 2.Backpropagation Algorithm
- 3. Convolutional Neural Network
 - 4.Backpropagation on CNN

"Loss function"

$$J(W, b; x, y) = \frac{1}{2} \|h_{W,b}(x) - y\|^2.$$

$$J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2}\sum_{l=1}^{n_{l}-1}\sum_{i=1}^{s_{l}}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^{2}$$

$$= \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\left\|h_{W,b}(x^{(i)}) - y^{(i)}\right\|^{2}\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_{l}-1}\sum_{i=1}^{s_{l}}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^{2}$$

"Gradient Descent"

$$\begin{split} J(W,b) &= \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2}\sum_{l=1}^{n_{l}-1}\sum_{i=1}^{s_{l}}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^{2} \\ &= \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\left\|h_{W,b}(x^{(i)}) - y^{(i)}\right\|^{2}\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_{l}-1}\sum_{i=1}^{s_{l}}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^{2} \\ W_{ij}^{(l)} &= W_{ij}^{(l)} - \alpha\frac{\partial}{\partial W_{ij}^{(l)}}J(W,b) \\ b_{i}^{(l)} &= b_{i}^{(l)} - \alpha\frac{\partial}{\partial b_{i}^{(l)}}J(W,b) \end{split}$$

"Gradient Descent"

$$J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m}J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^2$$

$$= \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\left\|h_{W,b}(x^{(i)}) - y^{(i)}\right\|^2\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}\left(W_{ji}^{(l)}\right)^2$$

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)}$$
$$\frac{\partial}{\partial b_i^{(l)}} J(W, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_i^{(l)}} J(W, b; x^{(i)}, y^{(i)})$$

different i

x₃

Layer L2

Layer L₃

"Derivative chain rule"

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)}$$
$$\frac{\partial}{\partial b_i^{(l)}} J(W, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_i^{(l)}} J(W, b; x^{(i)}, y^{(i)})$$

$$z_i^{(l+1)} = \sum_{i=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)} \qquad a_i^{(l+1)} = f(z_i^{(l+1)})$$
 (Page 7)

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x^{(i)}, y^{(i)}) = \frac{\partial}{\partial z_i^{(l+1)}} J(W, b; x^{(i)}, y^{(i)}) \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}}$$

 x_1 x_2 $a_1^{(2)}$ $a_2^{(2)}$ $a_3^{(2)}$ $a_3^$

"error term"

$$\mathcal{S}_{i}^{(l+1)} = \frac{\partial}{\partial z_{i}^{(l+1)}} J(W, b; x^{(i)}, y^{(i)})$$

which measures how much that node was "responsible" for any errors in output

"error term"

$$\mathcal{S}_{i}^{(l+1)} = \frac{\partial}{\partial z_{i}^{(l+1)}} J(W, b; x^{(i)}, y^{(i)})$$

a) For each output unit i in layer n_l

$$\delta_{i}^{(n_{l})} = \frac{\partial}{\partial z_{i}^{n_{l}}} J(W, b; x, y) = \frac{\partial}{\partial z_{i}^{n_{l}}} \frac{1}{2} \|y - h_{W, b}(x)\|^{2}$$

$$= \frac{\partial}{\partial z_{i}^{n_{l}}} \frac{1}{2} \sum_{j=1}^{S_{n_{l}}} (y_{j} - a_{j}^{(n_{l})})^{2} = \frac{\partial}{\partial z_{i}^{n_{l}}} \frac{1}{2} \sum_{j=1}^{S_{n_{l}}} (y_{j} - f(z_{j}^{(n_{l})}))^{2}$$

$$= -(y_{i} - f(z_{i}^{(n_{l})})) \cdot f'(z_{i}^{(n_{l})}) = -(y_{i} - a_{i}^{(n_{l})}) \cdot f'(z_{i}^{(n_{l})})$$

$$a_i^{(l+1)} = f(z_i^{(l+1)}) \quad z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
 (Page 7)

b) For
$$l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$$

$$\begin{split} \delta_{i}^{(n_{l}-1)} &= \frac{\partial}{\partial z_{i}^{n_{l}-1}} J(W,b;x,y) = \frac{\partial}{\partial z_{i}^{n_{l}-1}} \frac{1}{2} \|y - h_{W,b}(x)\|^{2} = \frac{\partial}{\partial z_{i}^{n_{l}-1}} \frac{1}{2} \sum_{j=1}^{S_{n_{l}}} (y_{j} - a_{j}^{(n_{l})})^{2} \\ &= \frac{1}{2} \sum_{j=1}^{S_{n_{l}}} \frac{\partial}{\partial z_{i}^{n_{l}-1}} (y_{j} - a_{j}^{(n_{l})})^{2} = \frac{1}{2} \sum_{j=1}^{S_{n_{l}}} \frac{\partial}{\partial z_{i}^{n_{l}-1}} (y_{j} - f(z_{j}^{(n_{l})}))^{2} \\ &= \sum_{j=1}^{S_{n_{l}}} -(y_{j} - f(z_{j}^{(n_{l})})) \cdot \frac{\partial}{\partial z_{i}^{(n_{l}-1)}} f(z_{j}^{(n_{l})}) = \sum_{j=1}^{S_{n_{l}}} -(y_{j} - f(z_{j}^{(n_{l})})) \cdot f'(z_{j}^{(n_{l})}) \cdot \frac{\partial z_{j}^{(n_{l})}}{\partial z_{i}^{(n_{l}-1)}} \\ &= \sum_{j=1}^{S_{n_{l}}} \delta_{j}^{(n_{l})} \cdot \frac{\partial z_{j}^{(n_{l})}}{\partial z_{i}^{n_{l}-1}} = \sum_{j=1}^{S_{n_{l}}} \left(\delta_{j}^{(n_{l})} \cdot \frac{\partial}{\partial z_{i}^{n_{l}-1}} \sum_{k=1}^{S_{n_{l}-1}} f(z_{k}^{n_{l}-1}) \cdot W_{jk}^{n_{l}-1} \right) \\ &= \sum_{j=1}^{S_{n_{l}}} \delta_{j}^{(n_{l})} \cdot W_{ji}^{n_{l}-1} \cdot f'(z_{i}^{n_{l}-1}) = \left(\sum_{j=1}^{S_{n_{l}}} W_{ji}^{n_{l}-1} \delta_{j}^{(n_{l})} \right) f'(z_{i}^{n_{l}-1}) \\ &= \sum_{j=1}^{S_{l}} W_{ij}^{(l)} a_{j}^{(l)} + b_{l}^{(l)} \end{aligned}$$

b) For
$$l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$$

$$\delta_i^{(n_l-1)} = \left(\sum_{j=1}^{S_{n_l}} W_{ji}^{n_l-1} \delta_j^{(n_l)}\right) f'(z_i^{n_l-1})$$

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

"Gradient Descent"

$$W_{ij}^{(l)} = W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b)$$
$$b_i^{(l)} = b_i^{(l)} - \alpha \frac{\partial}{\partial b_i^{(l)}} J(W, b)$$

"Gradient Descent"

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)}$$
$$\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J(W, b; x^{(i)}, y^{(i)})$$

"Derivative chain rule"

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x^{(i)}, y^{(i)}) = \frac{\partial}{\partial z_i^{(l+1)}} J(W, b; x^{(i)}, y^{(i)}) \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}}$$

$$\delta_{i}^{(l+1)} = \frac{\partial}{\partial z_{i}^{(l+1)}} J(W, b; x^{(i)}, y^{(i)}) \qquad \qquad z_{i}^{(l+1)} = \sum_{j=1}^{s_{l}} W_{ij}^{(l)} a_{j}^{(l)} + b_{i}^{(l)}$$

$$egin{align} rac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) &= a_j^{(l)} \delta_i^{(l+1)} \ &rac{\partial}{\partial b_i^{(l)}} J(W,b;x,y) &= \delta_i^{(l+1)}. \end{aligned}$$

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

$$\begin{split} \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) &= a_j^{(l)} \delta_i^{(l+1)} \\ \frac{\partial}{\partial b_i^{(l)}} J(W,b;x,y) &= \delta_i^{(l+1)}. \end{split}$$

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

$$\begin{split} \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) &= a_j^{(l)} \delta_i^{(l+1)} \\ \frac{\partial}{\partial b_i^{(l)}} J(W,b;x,y) &= \delta_i^{(l+1)}. \end{split}$$

"error term"

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$
$$\delta_i^{(l)} = \left(\sum_{i=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

结论:一个点(神经元)的残差=前向的时候下一层中使用过该点的神经单元的 残差按权重求和

Content

- 1.Neural Network
- 2.Backpropagation Algorithm
- 3. Convolutional Neural Network
 - 4.Backpropagation on CNN

convolution

How to calculate the number of hidden units?
1,000,000 hidden units?

convolution layer

stride, pad, kernel(size), number(output)

$$H_{l+1} = \frac{(H_l + 2 \times pad_h - \ker nel_h)}{stride_h} + 1 \qquad W_{l+1} = \frac{(W_l + 2 \times pad_w - \ker nel_w)}{stride_w} + 1$$

$$W_{l+1} = \frac{(W_l + 2 \times pad \underline{w} - \ker nel \underline{w})}{stride \underline{w}} + 1$$

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved **Feature**

$$H_{l} = W_{l} = 5$$

$$\ker nel _h = \ker nel _w = 3$$

$$pad = 0$$

$$stride = 1$$

pooling layer

Max Pooling & Avg Pooling

Convolved Pooled feature

feature

fully connected layer

activation function

MNIST

50419213

convolution layer

- a. compute the input size
- b. setup stride, pad, kernel(size), number(output), λ, α
- c. compute the size of filter and output
- d. *initialize weights (the first iteration)
- e. convolution

Content

- 1.Neural Network
- 2.Backpropagation Algorithm
- 3. Convolutional Neural Network
 - 4.Backpropagation on CNN

- > Backpropagation on pooling layer
- > Backpropagation on convolution layer

$$\begin{split} \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) &= a_j^{(l)} \delta_i^{(l+1)} \\ \frac{\partial}{\partial b_i^{(l)}} J(W,b;x,y) &= \delta_i^{(l+1)}. \end{split}$$

"error term"

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$
$$\delta_i^{(l)} = \left(\sum_{i=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

结论:一个点(神经元)的残差=前向的时候下一层中使用过该点的神经单元的 残差按权重求和

Backpropagation on pooling layer

Forward

1	2	3	4
5	6	7	8
9	2	3	5
6	5	1	1

Forward

0	0	0	0
0	1	0	2
თ	0	0	4
0	0	0	0

$$\stackrel{\delta^{(l+1)} \to \delta^{(l)}}{\longleftarrow}$$

1	2	
3	4	

Backpropagation on pooling layer

Forward

1	2	3	4
5	6	7	8
9	2	3	5
6	5	1	1

11

5

Backward

0.25	0.25	0.5	0.5
0.25	0.25	0.5	0.5
0.75	0.75	1	1
0.75	0.75	1	1

$$\begin{array}{c|c} \mathcal{S}^{(l+1)} \to \mathcal{S}^{(l)} & \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}$$

Backpropagation on convolution layer

Image

Convolved Feature

W ₁	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W ₉

С

1	1	1	0	0
0	0	0	1	0
0	1	1	1	1
0	1	1	0	0
1	1	1	1	0

stride=1
pad=0

$$W^{l}$$

$$l+1$$

Backpropagation on convolution layer

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

W ₁	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W 9

С

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	1	2	3	0	0
0	0	4	5	6	0	0
0	0	7	8	9	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

stride=1
pad=?

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

 \mathcal{S}^{l}

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

 $\mathcal{\delta}^{\scriptscriptstyle l}$

结论:一个点(神经元)的残差=前向的时候下一层中使用过该点的神经单元的残差按权重求和

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

$$W^l$$
 $\delta^{l+1}(+pad)$

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

 \mathcal{S}^{l}

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

 \mathcal{S}^{l}

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

$$W^l$$
 $\delta^{l+1}(+pad)$ δ

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

W ₁	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W 9

С

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	1	2	3	0	0
0	0	4	5	6	0	0
0	0	7	8	9	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

 \mathcal{S}^{l}

$$W_{l+1} = \frac{(W_l + 2 \times pad - \ker nel)}{stride} + 1$$

Backpropagation on convolution layer

6M	8W 7W					
⁹ M	^G K	[†] M	С			
εW	ν ₂	١W				
(rotation)						

$$W^{l}$$

$$\delta^{l+1}(+pad)$$

$$\mathcal{\delta}^{\iota}$$

Backpropagation on convolution layer

 δ^l

 W^{l}

a.
$$\delta^{l+1} + pad$$

- b. Wrotate 180°
- c. compute δ (convolution)
- d. compute gradient $\frac{\partial}{\partial W}J$
- e. update weights

Reference

- 1. UFLDL: http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial
- 2. Blogs:

http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/http://blog.csdn.net/zouxy09/article/category/1387932

THANK YOU