Mining Massive Datasets

Lecture 10

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: http://www.mmds.org.

Association Rule Discovery

Supermarket shelf management: Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items

A classic rule:

If someone buys diaper and milk, then he/she is likely to buy beer

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
 - Each basket is a small subset of items
 - E.g., the things one customer buys on one day

Input:

TID	Items in a basket		
1	Bread, Coke, Milk		
2	Beer, Bread		
3	Beer, Coke, Diaper, Milk		
4	Beer, Bread, Diaper, Milk		
5	Coke, Diaper, Milk		

Output:

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

- Goal: discover association rules
 - People who bought {x,y,z} tend to buy {v,w}
 - Amazon!

Applications

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
- Amazon's people who bought X also bought Y

Outline

First: Define

Frequent itemsets

Association rules: Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + refinements

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset *I*: Number of baskets containing all items in *I*
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, frequent itemsets are sets of items that appear in at least s baskets

TID	Items		
1	Bread, Coke, Milk		
2	Beer, Bread		
3	Beer, Coke, Diaper, Milk		
4	Beer, Bread, Diaper, Milk		
5	Coke, Diaper, Milk		

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 \neq \{m, c, b, j\}$
 $B_7 \neq \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

Association Rules

- Association Rule:
 - If-then rule about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow J$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain $J = \{j\}$ "
- In practice there are many rules, want to find significant/interesting ones
- Confidence of this association rule is the probability of $J = \{j_1, ..., j_p\}$ given $I = \{i_1, ..., i_k\}$

$$conf(I \to j) = \frac{support(I \cup J)}{support(I)}$$

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \to milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence is high
- Interest of an association rule $I \rightarrow J$:

 difference between its confidence and the fraction of baskets that contain $J = \{j_1, ..., j_p\}$

$$Interest(I \rightarrow J) = conf(I \rightarrow J) - Pr[J]$$

 Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Association rule: {m, b} →c

- Confidence = 2/4 = 0.5
- Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - Rule is not very interesting!

Set	m,b	m,b,c	С
В1	1	1	1
B2			
В3	1		
В4			1
B5	1		
B6	1	1	1
В7			1
B8			1

Finding Association Rules

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$
 - Note: Support of an association rule is the fraction of transactions containing both *I* and *J*, i.e. support(I ∪ J) (link, Sec. 3.1)
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2, ..., i_k\} \rightarrow J$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j_1, ..., j_p\}$ will be "frequent"

Mining Association Rules

- Step 1: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - lacksquare Since $m{I}$ is frequent, $m{A}$ is also frequent
 - Variant 1: Single pass to compute the rule confidence
 - confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - Variant 2:
 - Observation: If A,B,C \rightarrow D is below confidence, so is A,B \rightarrow C,D
 - Can generate "bigger" rules from smaller ones!
 - Output the rules above the confidence threshold

Example

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - Singletons and {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

b → m:
$$c = 4/6$$
 b → c: $c = 5/6$ **b,c** → m: $c = 3/5$ m → b: $c = 4/5$... b,m → c: $c = 3/4$ b → c,m: $c = 3/6$

Finding Frequent Itemsets

Itemsets: Computation Model

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes – all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms,
 main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\{i_1, i_2\}$
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its n(n-1)/2 pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items {i, j} is c."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Comparing the 2 Approaches

Triangular Matrix

Triples

Comparing the two approaches

- Approach 1: Triangular Matrix
 - n = total number items
 - Count pair of items {i, j} only if i<j</p>
 - Keep pair counts in lexicographic order:
 - **1**,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},...,{2,*n*}, {3,4},...
 - Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-1
 - Total number of pairs n(n-1)/2; total bytes= $2n^2$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur

Comparing the two approaches

- Approach 1: Triangular Matrix
 - n = total number items
 - Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?

Beats Approach 1 if less than 1/3 of possible pairs actually occur $2n^2$

A-Priori Algorithm

A-Priori Algorithm – (1)

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: monotonicity
 - If a set of items *I* appears at least *s* times, so does every subset *J* of *I*
- Contrapositive for pairs:
 If item i does not appear in s baskets, then no pair including i can appear in s baskets
- So, how does A-Priori find freq. pairs?

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the <u>frequent items</u>
- Pass 2: Read baskets again and count in main memory <u>only</u> those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = numberof frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - C_k = candidate k-tuples = those that might be frequent sets (support ≥ s) based on information from the pass for k-1
 - L_k = the set of truly frequent k-tuples

Example

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 . But that one can be more careful with candidate generation. For example, in C_3 we know {b,m,j} cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C₁
- Prune non-frequent: L₁ = { b, c, j, m }
- Generate C₂ = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
- Count the support of itemsets in C₂
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter → FruitJam
 - BakedGoods, MilkProduct → PreservedGoods
- Lower the support s as itemset gets bigger

PCY (Park-Chen-Yu) Algorithm

PCY (Park-Chen-Yu) Algorithm

- Observation:
 - In pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
 - Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm – First Pass

Few things to note:

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent ⁽³⁾
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent \odot
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:Only count pairs that hash to frequent buckets

PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s
 (call it a frequent bucket); 0 means it did not
- 4-byte integer counts are replaced by bits,
 so the bit-vector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm – Pass 2

- Count all pairs {i, j} that meet the conditions for being a candidate pair:
 - 1. Both i and j are frequent items
 - The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)
 - Both conditions are necessary for the pair to have a chance of being frequent

Main-Memory: Picture of PCY

Main-Memory Details

- Buckets require a few bytes each:
 - Note: we do not have to count past s
 - #buckets is O(main-memory size)
- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach)
 - Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori

Thank you.

Questions?

Additional Slides

Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
 - Remember: Memory is the bottleneck
 - Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent
- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - i and j are frequent, and
 - {i, j} hashes to a frequent bucket from Pass 1
- On middle pass, fewer pairs contribute to buckets, so fewer false positives
- Requires 3 passes over the data

Main-Memory: Multistage

Pass 1

Count items Hash pairs {i,j}

Pass 2

Hash pairs {i,j} into Hash2 iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 Pass 3

Count pairs {i,j} iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 {i,j} hashes to freq. bucket in B2

Multistage – Pass 3

- Count only those pairs $\{i, j\}$ that satisfy these candidate pair conditions:
 - 1. Both i and j are frequent items
 - Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
 - 3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1

Important Points

- The two hash functions have to be independent
- We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Refinement: Multihash

- Key idea: Use several independent hash tables on the first pass
- Risk: Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes

Main-Memory: Multihash

PCY: Extensions

- Either multistage or multihash can use more than two hash functions
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts > s