# Revisiting the Effectiveness of Off-the-shelf Temporal Modeling Approaches for Video Recognition

July, 2017

Chuang Gan
Tsinghua University

#### Our Baidu&Tsinghua Team



Chuang Gan



Xiao Liu



Fu Li



Yunlong Bian



Xiang Long



Heng Qi



Jie Zhou



Shilei Wen

#### Outline

#### Temporal Modeling Approaches

- √ Background
- ✓ Proposed approach
- ✓ Experiment results
- ✓ Conclusions and Discussion

# Outline

#### Temporal Modeling Approaches

- √ Background
- ✓ Proposed approach
- ✓ Experiment results
- ✓ Conclusions and Discussion



Two-Stream Convolutional Networks for Action Recognition in Videos. NIPS'14



Learning Spatiotemporal Features With 3D Convolutional Networks. ICCV' 15



Long-term Recurrent Convolutional Networks for Visual Recognition and Description. CVPR'15



DevNet: A Deep Event Network for Multimedia Event Detection and Evidence Recounting. CVPR2015

# Outline

#### Temporal Modeling Approaches

- ✓ Background
- ✓ Proposed approach
- ✓ Experiment results
- ✓ Conclusions and Discussion

## Using the Fine-tuning features!!



DevNet: A Deep Event Network for Multimedia Event Detection and Evidence Recounting. CVPR2015

## Multi-stream Sequence Model



## **Fast-forward Sequence Model**



#### **Temporal Xception Network**



#### **Shifting Attention Network**



Secret Weapon for our winner solution on ActivityNet 2017

## **Shifting Attention Network**



Secret Weapon for our winner solution on ActivityNet 2017

#### **Results on the Validation Set**

| Approach                       | Top1 Acc. (%) | Top5 Acc. (%) |
|--------------------------------|---------------|---------------|
| RGB                            | 73.0          | 90.9          |
| Flow                           | 54.5          | 75.9          |
| Audio                          | 21.6          | 39.4          |
| Three-stream fusion            | 74.9          | 91.6          |
| Multi-stream LSTM              | 77.0          | 93.2          |
| Fast-forward LSTM<br>(Depth 7) | 77.1          | 93.2          |
| Temporal Xception              | 77.2          | 93.4          |
| Shifted Attention              | 77.7          | 93.2          |
| Ensemble                       | 81.5          | 95.6          |

#### **Results on the Validation Set**

| Approach                       | Top1 Acc. (%) | Top5 Acc. (%) |
|--------------------------------|---------------|---------------|
| RGB                            | 73.0          | 90.9          |
| Flow                           | 54.5          | 75.9          |
| Audio                          | 21.6          | 39.4          |
| Three-stream fusion            | 74.9          | 91.6          |
| Multi-stream LSTM              | 77.0          | 93.2          |
| Fast-forward LSTM<br>(Depth 7) | 77.1          | 93.2          |
| Temporal Xception              | 77.2          | 93.4          |
| Shifting Attention             | 77.7          | 93.2          |
| Ensemble                       | 81.5          | 95.6          |

# Take-home Message

- ✓ Multi-stream sequence model is an effective way to leverage multimodality features.
- ✓ The fast forward connections is important to increase the depth of LSTM.
- ✓ Temporal convolution is an alternative approach for temporal modeling.
- ✓ Shifted attention is a very effective temporal modeling approach.

# Acknowledgement

Thanks for the support from Baidu IDL team!





Thank You!