Data Visualization – EN.605.662

Revised Project Proposal

Description

Since my undergraduate in Physics, I have been fascinated with quantum computing and progressively trying to learn more over time.

Well, for starters, quantum computing is a domain of computing that leverages collective properties of quantum states, such as superposition, interference, and entanglement, to perform calculations. With the much hyped-up advantage being faster integer factorization than classical computers, i.e., Bye-Bye encryption! ¹

Now given the field is still analogically at the same stage as vacuum-tube computers of the 1940s, there is ongoing progress in visualizations explaining the core concepts. Thus, I propose a Tableau dashboard simulating single-qubit Bloch spheres for the following quantum gates: Pauli-X, Pauli-Y, Pauli-Z, and Hadamard.

- A Bloch sphere is a 2-D sphere in 3-D Euclidean space representing pure state basis vectors $|0\rangle$ and $|1\rangle$ at the antipodal points and mixed (entangled) states at the interior points.
- Quantum logic gates operate on qubits or quantum bits and are fundamental circuit building blocks, just like their classical counterparts.

¹ https://www.quantamagazine.org/why-is-quantum-computing-so-hard-to-explain-20210608/

Figure 1: Bloch Sphere for a two-level quantum system ²

The Plan

I will use Tableau 2022.1 to create a dashboard simulator with two semitransparent wire frame unit spheres, a single arrow emerging from the origin representing the state vector, and an analogous image for the quantum gate transformation.

Figure 2: Bloch Spheres depicting a resultant state of a Pauli-X gate

² https://en.wikipedia.org/wiki/Quantum_logic_gate#/media/File:Bloch_sphere.svg

Sabneet Bains

Likewise, the dashboard will have a drop-down box for the four quantum gates operating on the current quantum state.

In principle, these quantum logic gates function as follows:

■ Pauli-X:	Pauli-Y:
$\oplus 0\rangle \rightarrow 1\rangle$	\oplus $ 0\rangle \rightarrow i 1\rangle$
\oplus $ 1\rangle \rightarrow 0\rangle$	$\oplus 1\rangle \to -i 0\rangle$
■ Pauli-Z:	Hadamard:
	■ Hadamard:

Visually, these logic gate operations can be represented in Tableau as:

rotation around Z-axis rotation around X & Z axes Initial Pauli-Z gate transformation Pauli-Z gate transformation Hadamard: Initial Hadamard gate transformation

Consequently, I can simulate the effects of these quantum logic gates on a given basis state through some basic trigonometry while providing interactive parameters.

Therefore, given throughout this project, I want to visually learn more about the effect of quantum gates on single-qubit states, I will utilize the following skills learned during the course:

- **Visual Encoding** to neatly map a complex quantum physics topic
- Visual Design Guidelines to keep the visualization consistent and minimalistic
- **Graphical Integrity** to stay true to the underlying physics
- **Color Palettes** to focus attention on the changes in the quantum states
- Interaction to allow the user to explore different (outcome) quantum states

Timeline

A detailed timeline of each significant aspect of the project follows:

Sabneet Bains

July 4th, 2022	•	Draft Project Proposal
July 11th, 2022		Begin revising the proposal based on instructor feedback
July 18th, 2022		Submit the Revised Project Proposal
July 25th, 2022	•	Begin researching literature
July 28th, 2022		Find four references
July 30th, 2022		Write short descriptions and a brief introduction of the bibliography
August 1st, 2022		Submit the Final Literature Review
August 3rd, 2022	Î	Introduction – section introducing the research problem Background – discussing some of the previous work
August 5th, 2022		Approach – describes what was accomplished Results – describes the results
August 8th, 2022		Conclusion – concludes the paper Abstract – paragraph summarizing the paper
August 10th, 2022		Finalize the source code and finish documentation
August 15th, 2022		Submit the Final Project and Paper