Relatório - Trabalho Prático 5

Controlo Difuso

Realizado por:

2009109673 – Daniel Frutuoso

2009111924 – Igor Cruz

Grupo 4

Faculdade de Ciências e Tecnologias da UC

Departamento de Engenharia Informática

Coimbra, 18 de Dezembro de 2012

Introdução

Neste trabalho pretende-se testar dois tipos de controladores difusos, o Mamdani, intuitivo e adaptável a inputs humanos, e o Sugeno, computacionalmente eficiente em técnicas adaptativas. Para além disto, pretende-se que se consiga comparar os dois controladores difusos e a sua proficiência no controlo de um sistema.

Será desenhado um diagrama de blocos que poderá por exemplo simular a variação da temperatura ao longo do tempo numa sala ou automatismos de automóveis, entre outros. Mais à frente serão particularizados detalhes acerca deste diagrama por forma a que se consiga reproduzir o sistema numa oportunidade futura.

Diagrama de Blocos

Para simular o sistema em questão foi construído um diagrama de blocos que se baseia na retroacção também designado de malha fechada.

O diagrama é constituído por um gerador de sinal que dá o input para o nosso diagrama ao qual é adicionada a temperatura actual da sala. Este valor é multiplicado por uma constante que representa o grau de consideração que este valor tem no sistema.

É, de seguida, calculada a sua derivada e estes valores são as entradas do nosso controlador lógico, responsável por avaliar se é necessário alterar o sistema. Por outras palavras o controlador verifica se é necessário aumentar, diminuir ou manter a temperatura da sala.

Existem ainda duas perturbações: uma ocorre no actuador ao instante 50 e outra que ocorre na carga ao instante 120. Estas perturbações representam alterações positivas ou negativas no sistema. Ambas as perturbações, no nosso caso, influenciam de forma positiva a temperatura da sala.

A função de transferência que nos foi fornecida pelo professor representa forma como a temperatura reage a uma determinada acção do controlador.

Por fim, existem dispositivos que permitem traçar gráficos da saída, da referência, do erro de forma a ter feedback do que está a acontecer no sistema e um mostrador do erro (calculado como distância entre a saída e a referência).

Este diagrama de blocos tem em consideração a variação do erro ao longo do tempo. Por outras palavras, a acção a tomar vai ter em conta não só o erro, mas também a sua variação. Sempre que ocorra uma perturbação o sistema equilibra-se rapidamente devido a este diagrama implementar uma malha fechada.

Regras do Controlador

Foram utilizadas 9 regras nos controladores de Mamdani e Sugeno. Devido ao bom desempenho não vimos necessidade de aumentar o nível de detalhe de forma a utilizar 25 regras.

- 1 Se <u>erro negativo</u> e <u>derivada do erro negativa</u> então saída é <u>negativa</u>;
- 2 Se erro negativo e derivada do erro zero então saída é negativa;
- 3 Se erro negativo e derivada do erro positiva então saída é zero;
- 4 Se erro zero e derivada do erro negativa então saída é negativa;
- 5 <u>Se erro zero</u> e <u>derivada do erro zero</u> então saída é <u>zero</u>;
- 6 Se erro zero e derivada do erro positiva então saída é positiva;
- 7 Se erro positivo e derivada do erro negativa então saída é zero;
- 8 Se erro positivo e derivada do erro zero então saída é positiva;
- 9 <u>Se erro positivo</u> e <u>derivada do erro positiva</u> então saída é <u>positiva</u>.

Mamdani

Após vários testes com o controlador de Mamdani conseguimos obter um sistema que o nosso controlador consegue aproximar sem dificuldade. Esse sistema define-se pelos parâmetros:

- Frequência do gerador de sinal: 0.025 Hz;
- Amplitude do gerador de sinal: 1;
- Entrada: Função Seno;
- Factor de Escala à entrada: 0.81;
- Factor de Escala à saída 0.8;
- Perturbação do Actuador: -1 a partir do instante 50;
- Perturbação da Carga: -1 a partir do instante 120;
- Erro Obtido: 33.78;

Este sistema foi emulado no intervalo de tempo 0 – 200 com fixed step igual a $0.1\,.$

No gráfico abaixo a linha desenhada a cor amarela representa a referência, ou seja, o valor desejado. A cor-de-rosa encontra-se desenhada a saída do sistema.

Como podemos verificar, numa fase inicial o sistema é capaz de se adaptar à referência, pois as linhas são bastante próximas. No instante 50, ocorre a perturbação no actuador (num sistema real poderá simular uma deficiência no controlador, por exemplo obstrução de um termo-ventilador por poeiras). Após um pequeno intervalo de tempo o sistema consegue-se adaptar lentamente e retornar os valores desejados. Posteriormente, no instante 120 ocorre a perturbação da carga (num sistema real esta perturbação pode simular uma corrente de ar fria devido a quebra de um vidro). Após algumas oscilações o sistema consegue-se voltar a adaptar à referência tendo para isso que compensar a perda de energia com um aumento do trabalho.

Figure 1 - Seno

No caso de mudar a função de entrada, tivemos que mudar os factores de escala para os seguintes valores:

- Factor de Escala à entrada: 0.53;
- Factor de Escala à saída 1.3;

Com estes parâmetros obtivemos um erro igual a 94,79.

Figure 2 - Input Onda Quadrada

Sugeno

Tal como no controlador de Mamdani fizemos vários testes para encontrar os valores ideais, ou seja, os factores de escala que permitissem ao controlador seguir os valores de referencia.

- Frequência do gerador de sinal: 0.025 Hz;
- Amplitude do gerador de sinal: 1;
- **-** Entrada: Função Seno;
- Factor de Escala à entrada: 0.485;
- **-** Factor de Escala à saída 0.595;
- Perturbação do Actuador: -1 a partir do instante 50;
- Perturbação da Carga: -1 a partir do instante 120;
- Erro Obtido: 18,05;

Também como no sistema anterior, este sistema correu no intervalo de $0\,a$ 200 com o valor do step igual a 0.1.

É possível ver, através da imagem abaixo apresentada, de que o sistema consegue aproximar-se rapidamente dos valores de referencia. Após a primeira perturbação, que ocorre no instante 50, o sistema varia bruscamente (como estavamos à espera) mas volta apressadamente aos valores de referencia. O mesmo acontece aquando da segunda perturbação, apesar desta ser mais fraca.

Quando testamos a mesma configuração mas apenas mudando o input, ou seja, passámos de seno para uma onda quadrada, o desempenho diminui-o pelo que tivemos que encontrar novos valores que aproximassem ao máximo a saída da referência.

O resultado obtido foi o seguinte:

Figure 4 - Input Onda Quadrada

Os novos parâmetros obtidos foram:

- Factor de Escala à entrada: 0.495;
- **-** Factor de Escala à saída 0.595;

Conclusões

Através da realização deste trabalho prático ficámos a conhecer melhor e a perceber em que situações é recomendável implementar um controlador difuso.

Os controladores de Mamdani e Sugeno são ideais para controlo adaptativo como situações de controlo de temperatura numa sala, sistemas de travagem de automóveis e outros sistemas dinâmicos.

No sistema descrito por nós e utilizando a função de transferência fornecida pelo professor verificámos que o controlador de Sugeno apresentou uma melhor performance do que o de Mamdani. Como verificámos, os controladores foram capazes de se adaptar à referência. No entanto o erro entre a referência e a saída foi menor utilizando o controlador Sugeno.

No que toca às perturbações, ambos os controladores reagiram correctamente, autocorrigindo-se o que possibilitou que o a saída se voltasse a aproximar da referência após algum tempo. Nenhum dos sistemas se evidenciou pelo desempenho no que toca à adaptação após perturbação, obtendo resultados equivalentes. De notar que por vezes, algum do mau desempenho tem a haver com a posição das perturbação no eixo do tempo.