

Individual Influence Maximization via Link Recommendation

Guowei Ma¹, Qi Liu¹, Enhong Chen¹, and Biao Xiang²

1 University of Science and Technology of China gwma@mail.ustc.edu.cn, {qiliuql,cheneh}@ustc.edu.cn 2 Search Technology Center Asia (STCA), Microsoft bixian@microsoft.com

Outline

- Motivation
 - > Related Work
- Problem Formulation
- Solutions
- Experiments
- Conclusion

Motivation

- Social Networks
 - New resources and platforms
 - ➤ Important and fundamental role for the spread of information

- Exploiting social influence
 - Viral Marketing
 - **>**

Motivation

- Individual Influence
 - > One person or company want to improve her influence
 - ◆ Make new friends
 - ◆ Cooperate with other companies
 - > One country want to improve her politic influence
 - ◆ Establish new diplomatic relations

Research Problem:

Individual Influence Maximization via Link Recommendation

Motivation

Research Problem:

Individual Influence Maximization via Link Recommendation

- Challenge
 - > Influence overlap
 - > Computational efficiency

Problem Formulation

$$\arg \max_{\mathbf{S}} \{f_{t \to V}^{\mathbf{S}} - f_{t \to V}\}$$
, subject to $c(\mathbf{S}) \le B$

Problem Formulation

$$\operatorname{arg\,max}_{\mathbf{S}} \{f_{t \to V}^{\mathbf{S}} - f_{t \to V}\}\$$
, subject to $c(\mathbf{S}) \leq B$

Problem Formulation

$$\arg \max_{\mathbf{S}} \{f_{t \to V}^{\mathbf{S}} - f_{t \to V}\}$$
, subject to $c(\mathbf{S}) \le B$

Objective Function Definition

$$\mathcal{F}(\mathbf{S}) = f_{t \to V}^{\mathbf{S}} - f_{t \to V} = \sum_{c \in \mathbf{S}} \mathcal{F}(\{c\})$$
$$= \sum_{c \in \mathbf{S}} \lambda_c (1 - f_{t \to c}) * \sum_{i=1}^n (f_{c \to i} * [1 - f_{t \to i}]).$$

Objective Function Definition

$$\mathcal{F}(\mathbf{S}) = f_{t \to V}^{\mathbf{S}} - f_{t \to V} = \sum_{c \in \mathbf{S}} \mathcal{F}(\{c\})$$

$$= \sum_{c \in \mathbf{S}} \lambda_c (1 - f_{t \to c}) * \sum_{i=1}^n (f_{c \to i} * [1 - f_{t \to i}]).$$

- Properties of the Objective Function
 - 1. $\mathcal{F}(\emptyset) = 0$,
 - 2. $\mathcal{F}(\mathbf{S})$ is nonnegative and monotonically increasing.
 - 3. $\mathcal{F}(\mathbf{S})$ is submodular.

Solutions

- Greedy Strategy
 - > greedy algorithm
 - ◆ Solution>= (1-1/e)*OPT
 - ◆ O_T (n * K)

Algorithm 1: Greedy Algorithm for IM

```
Input: G(V, E), K
Output: \mathbf{S} with K nodes

1 initialize \mathbf{S} = \emptyset;

2 while |\mathbf{S}| < K do

3 | select s = \arg\max_{x \in V \setminus \mathbf{S}} f(\mathbf{S} \cup x) - f(\mathbf{S});

4 | \mathbf{S} = \mathbf{S} \cup s;

5 Return \mathbf{S};
```

Solutions

Greedy Strategy

- > greedy algorithm
 - ◆ Solution>= (1-1/e)*OPT
 - **♦** O_T (n * K)

> lazy algorithm

- ◆ Solution>= (1-1/e)*OPT
- \bullet O_T (n + θ *K)

```
Input: G(V, E, T), a given target node t, K
Output: \mathbf{S} with K nodes

1 initialize \mathbf{S} = \emptyset;

2 for each node i \in V do

3 | calculate \mathcal{F}(\{i\}) = f_{t \to V}^{\{i\}} - f_{t \to V};

4 | flag_i = |\mathbf{S}|; // here, |\mathbf{S}| = 0

5 | // flag_i indicates that \mathcal{F}(\{i\}) is

6 | // calculated in the |\mathbf{S}| iteration
```

```
Algorithm 1: Greedy Algorithm for IM

Input: G(V, E), K
Output: \mathbf{S} with K nodes

1 initialize \mathbf{S} = \emptyset;

2 while |\mathbf{S}| < K do

3 | select s = \arg\max_{x \in V \setminus \mathbf{S}} f(\mathbf{S} \cup x) - f(\mathbf{S});

4 | \mathbf{S} = \mathbf{S} \cup s;

5 Return \mathbf{S};
```

```
7 while |\mathbf{S}| < K do

8 | s = Find the greatest \mathcal{F}(\{s\}) in \mathcal{F};

9 | if flag_s == |\mathbf{S}| then

10 | \mathbf{S} = \mathbf{S} \cup s;

11 | \mathcal{F}(s) = 0;

12 | else

13 | recalculate \mathcal{F}(s) = f_{t \to V}^{\mathbf{S} \cup s} - f_{t \to V}^{\mathbf{S}};

14 | flag_s = |\mathbf{S}|;
```

15 Return S:

Solutions

- Greedy Strategy
 - > greedy alg.
 - ◆ Solution >= (1-1/e)*OPT
 - ◆ O_T (n*K)

General Influence Propagation Models

Linear Model

- ➤ lazy alg.
 - ◆ Solution >= (1-1/e)*OPT
 - \bullet O_T (n + θ *K)

- Upper Bound algorithm (uBound)
 - Solution >= (1-1/e)*OPT
 - $O_T(1 + \eta^*K)$

```
Input: G(V, E, T), a given target node t, K
                                                                       6 while |S| < K do
                                                                                s = Find the greatest \mathcal{F}(s) in \mathcal{F};
   Output: S with K nodes
1 initialize S = \emptyset;
                                                                                if flag_s == |S| then
2 Compute the upper bound vector
                                                                                      \mathbf{S} = \mathbf{S} \cup s;
                                                                                   \mathcal{F}(s) = 0;
   \mathbb{U} = diag(\lambda_1, \lambda_2, ..., \lambda_n) \cdot
   diag(\alpha_1, \alpha_2, ..., \alpha_n) \cdot (I - DT)^{-1} \cdot \mathbf{e} in
   O(|E|) time;
                                                                                      recalculate \mathcal{F}(s) = f_{t \to V}^{\mathbf{S} \cup s} - f_{t \to V}^{\mathbf{S}};
3 for each node i \in V do
                                                                                   flag_s = |\mathbf{S}|;
         \mathcal{F}(i) = \mathbb{U}_i;
         flag_i = 0; // here, |\mathbf{S}| = 0
                                                                     14 Return S;
```

Experiments

Experiments

- ➤ Real Influence Gain Comparison
- ➤ Time Complexity Analysis
- Case Study

Table 1. Experimental Datasets

Name	Wiki-Vote	Weibo	cit-HepPh	Twitter
Nodes	7,115	7,378	34,546	11,316,811
Edges	103,689	39,759	421,578	85,331,845

Real Influence Gain Comparison

- Our method:
 - > ISIM

Bechmarks:

- > Random
- ➤ OutDeg
- ➤ LongDist
- ➤ PageRank
- ➤ HighestInf
- > IMSeeds

Time Complexity Analysis

On Linear Model

- ➤ Greedy
- ➤ Lazy
- > uBound

Datasets	$\begin{array}{c} \operatorname{Top} K \\ \operatorname{Alg.} \end{array}$	5	10	15	20	25	30	35	40	45
Wiki-Vote	greedy	35208	70390	105547	140679	175786	210868	245925	280957	315964
	lazy	7124	7139	7171	7195	7220	7250	7306	7331	7374
	uBound	19	53	84	119	157	204	265	297	352
Weibo	greedy	36836	73646	110431	147191	183926	220636	257321	293981	330616
	lazy	7414	7446	7505	7572	7638	7738	7838	7917	8047
	uBound	50	98	180	278	356	494	622	726	868
Cit-HepPh	lazy	34554	34566	34586	34608	34642	34660	34691	34710	34744
	uBound	17	37	64	89	137	161	194	221	264
Twitter	uBound	16	43	71	99	136	166	212	253	286

Evaluation

- > # influence spread estimations
- > Running time

Real Runtime Comparison

Case Study

 It's necessary to design individualized link recommendation algorithms.

Conclusion

Study the individual influence maximization problem

- Formulate the problem
 and design the objective function
- Algorithms
 - > greedy, lazy and uBound
- Validate the performance of the proposed algorithms

Thank you!

