

| Név:                                                                                                | Magyar MI Diákolimpia<br>Országos Válogató                                                                                                               |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Versenyzői Azonosító:                                                                               | 1. Forduló                                                                                                                                               |
| A feladatsor megoldására pontosan <b>60 perc</b> áll remaximálisan <b>200 pontot ér</b> .           | endelkezésedre. A forduló <b>28 kérdésből áll</b> , a teljes feladatsor                                                                                  |
| Ez a feladatsor a <b>Magyar Mesterséges Intel</b> segédeszközök használata nélkül kell teljesíteni. | lligencia Diákolimpia első fordulója, amelyet papíralapon,                                                                                               |
| 9.                                                                                                  | otokat: <b>gépi tanulás</b> (Machine Learning, ML), <b>számítógépes</b><br><b>lvfeldolgozás</b> (Natural Language Processing, NLP), valamint<br>ag, RL). |
| A diákolimpia során összesen 600 pont szerezhet                                                     | tő. Az első forduló eredménye beleszámít a végső pontszámba.                                                                                             |
| Sok sikert kívánunk!                                                                                |                                                                                                                                                          |
| Feleletválasztós kérdések (5 pont kér                                                               | rdésenként)                                                                                                                                              |
| 1. Tanítás és kiértékelés során hány független együttes alkalmazása esetén?                         | adathalmazra van szükség L1 regularizáció és korai megállás                                                                                              |
| ○ Egy                                                                                               |                                                                                                                                                          |
| ○ Kettő                                                                                             |                                                                                                                                                          |
| ○ Három                                                                                             |                                                                                                                                                          |
| O Négy                                                                                              |                                                                                                                                                          |
| <ul> <li>Attól függ, milyen loss függvényt h</li> </ul>                                             | asználunk                                                                                                                                                |
| 2. Az alábbiak közül melyik <b>nem</b> biológiai ihlet                                              | tésű?                                                                                                                                                    |
| O Hebb-i tanulás                                                                                    |                                                                                                                                                          |
| $\bigcirc$ ADAM                                                                                     |                                                                                                                                                          |
| Önszervező térkép                                                                                   |                                                                                                                                                          |
| Konvolúciós háló                                                                                    |                                                                                                                                                          |
| O Spike-time dependent plasticity                                                                   |                                                                                                                                                          |
| 3. Az alábbiak közül válaszd ki a felügyelt tanu                                                    | lási algoritmusokat!                                                                                                                                     |
| ○ K-means                                                                                           |                                                                                                                                                          |
| <ul> <li>K-legközelebbi szomszéd (K-NN)</li> </ul>                                                  |                                                                                                                                                          |
| Önszerveződő térkép                                                                                 |                                                                                                                                                          |
| <ul> <li>Perceptron tanulás</li> </ul>                                                              |                                                                                                                                                          |
| ○ PCA                                                                                               |                                                                                                                                                          |
| 4. Az alábbi módszerek közül melyek használjál                                                      | k csak az elsőrendű deriváltat?                                                                                                                          |
| ○ SGD Nesterov momentummal                                                                          |                                                                                                                                                          |
| ○ ADAM                                                                                              |                                                                                                                                                          |
| Newton-módszer                                                                                      |                                                                                                                                                          |

5. Vizsgáld meg az alábbi két állítást:

 $\bigcirc$  L-BFGS

 $\bigcirc$  Koordináta csökkentés módszere

- A sigmoid igazából egy transzformált tangens hiperbolikusz.
- $\bullet\,$  A softplus általánosságban nem teljesít rosszabbul a ReLU-nál.





| O Az első igaz, a második hamis                                                             |  |
|---------------------------------------------------------------------------------------------|--|
| ○ Az első hamis, a második igaz                                                             |  |
| ○ Mindkettő hamis                                                                           |  |
| <ul> <li>A második függ a konkrét feladattól</li> </ul>                                     |  |
| 6. Mi a helyes teendő, ha a tanítás során NaN értékű gradiens keletkezik?                   |  |
| O Semmi, ez nem befolyásolja a tanítást                                                     |  |
| O Frissítés után véletlenszerű kis lépés megtétele                                          |  |
| <ul> <li>Az aktuális lépést hagyjuk ki</li> </ul>                                           |  |
| $\bigcirc$ Hagyjuk ki a lépést, helyette tegyünk egy kis véletlenszerű lépést               |  |
| O A teljes tanítást újra kell indítani                                                      |  |
| 7. Melyik módszerhez kapcsolódik a Pointer Network?                                         |  |
| ○ Seq2Seq architektúra                                                                      |  |
| O Bahdanau figyelem                                                                         |  |
| O Nesterov momentum                                                                         |  |
|                                                                                             |  |
| ○ Transformers                                                                              |  |
| 8. Melyik állítás <b>igaz</b> a dropout technikáról?                                        |  |
| O Minden lépésben ugyanazokat a súlyokat nullázza                                           |  |
| <ul> <li>A háló súlyainak egy részét véglegesen nullára állítja</li> </ul>                  |  |
| O A kimenet bizonyos részeit véglegesen nullára állítja                                     |  |
| O A háló egyes részeit ideiglenesen kikapcsolja tanítás közben                              |  |
| ○ A tanulási rátát csökkenti lokálisan                                                      |  |
| 9. Mely állítások igazak az adathalmazokra vonatkozóan?                                     |  |
| <ul> <li>A validációs és teszt adathalmaz mindig azonos</li> </ul>                          |  |
| <ul> <li>A validációs adathalmazt a tanítás során használjuk</li> </ul>                     |  |
| A teszt adathalmaz csak a végső értékelésre szolgál                                         |  |
| A teszt és tanítóhalmaz méreteinek azonosnak kell lennie                                    |  |
| A validációs halmazra nincs mindig szükség                                                  |  |
| 10. Az alábbiak közül melyek tartoznak a <b>hiperparaméterek</b> közé?                      |  |
| ○ Tanulási ráta (learning rate)                                                             |  |
| O Batch mérete                                                                              |  |
| ○ Modell pontossága (accuracy)                                                              |  |
| ○ Súlyok aktuális értékei                                                                   |  |
| O Rétegek száma a hálóban                                                                   |  |
| 11. Mely állítások igazak a veszteségfüggvényre (loss) mesterséges neurális hálók esetén s  |  |
| ○ Ertéke mindig 0 és 1 között van                                                           |  |
| A tanítás során nőnie kell                                                                  |  |
| O Mindig monoton csökken O Differenciálla tárada hall launia a tanátáshaz (n.l. SCD azatán) |  |
| O Differenciálhatónak kell lennie a tanításhoz (pl. SGD esetén)                             |  |





| 12. | Mely állítások igazak a súlyinicializálásra?                                              |
|-----|-------------------------------------------------------------------------------------------|
|     | ○ A súlyokat mindig nullára kell állítani                                                 |
|     | <ul> <li>Általában a súlyokat véletlenszerűen inicializáljuk</li> </ul>                   |
|     | ○ A kezdőérték nem számít                                                                 |
|     | <ul> <li>A súlyokat újratanulásból is származtathatjuk (pl. transfer learning)</li> </ul> |
|     | O A bias értékek mindig 1-re vannak állítva                                               |
| 13. | Mely állítások igazak a K-means klaszterező algoritmusra?                                 |
|     | O A klaszterek száma (k) a módszer paramétere                                             |
|     | <ul> <li>Minden pont a hozzá legközelebbi középponthoz tartozik</li> </ul>                |
|     | O A veszteségfüggvény erősen befolyásolja a konvergenciát                                 |
|     | ○ Nem igényel inicializációt                                                              |
|     | <ul> <li>Csak szférikus klasztereket tud kezelni</li> </ul>                               |
| 14. | Mely állítások igazak a normalizálásra és skálázásra?                                     |
|     | $\bigcirc$ Ha nem alkalmazzuk, a nagy értékű változók dominálhatnak                       |
|     | O A normalizálás során az átlagot nullára hozzuk                                          |
|     | <ul> <li>A normalizálás és skálázás ugyanaz</li> </ul>                                    |
|     | <ul> <li>A skálázás mindig az átlaggal való osztást jelenti</li> </ul>                    |
|     | $\bigcirc$ A skálázás gyakran a szórással való osztást is magában foglalja                |
| 15. | Mely metrikákat használják gyakran bináris osztályozási feladatok értékelésére?           |
|     | ○ F1-score                                                                                |
|     | ○ ROC-AUC                                                                                 |
|     | O Precision és Recall                                                                     |
|     | ○ Mean Squared Error                                                                      |
|     | ○ BLEU score                                                                              |
| 16. | Mely változók befolyásolják a tanulást megerősítéses tanulásban?                          |
|     | $\bigcirc$ Tanulási ráta $(\alpha)$                                                       |
|     | $\bigcirc$ Diszkont faktor $(\gamma)$                                                     |
|     | $\bigcirc$ Felfedezési arány $(\epsilon)$                                                 |
|     | ○ Hibatolerancia                                                                          |
|     | O Dropout arány                                                                           |
| 17. | Mely jellemzők írják le a Q-learning algoritmust?                                         |
|     | ○ Off-policy                                                                              |
|     | ○ Táblázatos értékfrissítést alkalmazhat                                                  |
|     | ○ Nem igényel környezetmodell ismeretet                                                   |
|     | ○ Szabály-alapú következtetésen alapul                                                    |
|     | ○ A jövőbeli jutalmakat nem veszi figyelembe                                              |
| 18. | Melyik állítás igaz az Attention mechanizmusra?                                           |
|     | <ul> <li>Képes kontextusfüggő reprezentációkat létrehozni</li> </ul>                      |
|     | <ul> <li>Egy token hatását a többi tokenhez viszonyítva súlyozza</li> </ul>               |
|     | <ul> <li>Kizárólag képek feldolgozására használjuk</li> </ul>                             |
|     |                                                                                           |





|     | O Csak visszacsatolt hálókban alkalmazható                             |
|-----|------------------------------------------------------------------------|
| 19. | Mely állítások igazak a konvolúciós rétegekre a számítógépes látásban? |
|     | <ul> <li>Képesek helyi mintázatok felismerésére</li> </ul>             |
|     | O Tömegével csökkentik a tanulandó paraméterek számát                  |
|     | <ul> <li>Ugyanazt a szűrőt alkalmazzák különböző pozíciókra</li> </ul> |
|     | O Minden neuron külön súlyt kap minden képponthoz                      |
|     | O Csak fekete-fehér képeken használhatók                               |
| 20. | Mely tényezők vezethetnek overfittinghez egy gépi tanulási modellben?  |
|     | <ul> <li>Túl bonyolult modell kevés adattal</li> </ul>                 |
|     | ○ Hiányzó regularizáció                                                |
|     | O Dropout használata                                                   |
|     | <ul> <li>Túl hosszú tanítás validáció nélkül</li> </ul>                |
|     | ○ Alacsony tanulási ráta                                               |
|     |                                                                        |

## Kifejtős kérdések (20 pont kérdésenként)

# 1. Milyen limitációkat von maga után a lineáris és konvolúciós réteg használata szekvenciális bemeneteken?

Fogalmazd meg, hogy milyen problémák adódhatnak ezeknek a rétegeknek a közvetlen használatából, amikor a bemenet időbeli vagy szekvenciális természetű.

Térj ki arra is, hogyan lehet ezeket a korlátokat áthidalni modern architektúrák vagy tanulási stratégiák segítségével.

# 2. Mit nevezünk batch optimalizációnak?

Ismertesd a fogalmat, magyarázd el, hogyan működik a gyakorlatban, és hasonlítsd össze más optimalizálási stratégiákkal:

- Teljes halmazos (batch)
- Mini-batch
- Sztochasztikus (SGD)

Fejtsd ki, milyen hatással van a batch-méret növelése vagy csökkentése:

- A tanulás stabilitására
- A gradiens becslésére
- A konvergencia sebességére
- Az általánosítási képességre

#### 3. Ismertesd a korai megállás technikát! Milyen probléma megoldásában lehet ez hasznos?

Írd le, hogyan működik az early stopping módszer, milyen típusú metrikákat figyelünk, és milyen feltétellel állítjuk le a tanítást.

Mutasd be, milyen jelenség kivédésére szolgál, és milyen körülmények között célszerű alkalmazni.

## 4. Bináris osztályozás: FP és FN jelentősége

Egy bináris osztályozási feladatban a válaszok lehetnek igaz pozitívak (TP), igaz negatívak (TN), hamis pozitívak (FP) vagy hamis negatívak (FN).

Adj példát olyan alkalmazásra, ahol:





- Fontosabb csökkenteni az FP értékét még az FN rovására is
- Fontosabb minimalizálni az FN értéket, még ha több FP keletkezik is

Indokold meg mindkét példát. Milyen típusú alkalmazásokban számítanak ezek a különbségek?

# 5. Hogyan befolyásolja a diszkont faktor ( $\gamma$ ) értéke a tanulást megerősítéses tanulásban?

Írd le, mit jelent a diszkont faktor  $(\gamma)$ , és hogyan jelenik meg a visszatekintő (return) vagy értékfüggvény számításában.

Térj ki a következő szempontokra:

- $\bullet$  Mit jelent, ha  $\gamma$  közel van 0-hoz? Mit, ha közel van 1-hez?
- Milyen típusú környezeteknél célszerű alacsonyabb vagy magasabb  $\gamma$ -t választani?
- Milyen viselkedési különbségekhez vezethet egy túl kicsi vagy túl nagy diszkont faktor?

