86512 Herstellung und Vermarktung von Schienenfahrzeugen

Prof. Dr. Raphael Pfaff

28. Mai 2019

Fachhochschule Aachen

Einführung in die Veranstaltung

Themenplan

Datum	Thema	Dozent
	Verkaufsgespräche richtig führen	Thomas
	Verkaufsgespräche richtig führen	Thomas
	Vertragsinhalte	Thomas
	Vertragsinhalte	Thomas
	Verkaufsgespräche/Vertragsinhalte	Thomas
	Kostenmanagement	Thomas
	Finanzierungsaspekte zur Vertriebsunterstützung	Thomas
29.5.	Einführung, Marktsegmente, Marktschranken	Pfaff
	Lebenszyklusmodelle, Projektmanagement	Pfaff
19.6.	Requirements Engineering, Aufwandsschätzung	Pfaff
26.6.	Projektplanung	Pfaff
3.7.	Schweißen	Pfaff
	Schrauben	Pfaff
	Korrosionsschutz, DB Güteprüfung, IBS	Pfaff
	Lessons learned Railway Challenge	Pfaff

Einführung in die Veranstaltung

Marketing

Marketing

Marktsegmentierung

H AACHEN

Warum Marktsegmentierung?

- Marktidentifizierung
 - Abgrenzung des relevanten Gesamtmarktes
 - Bestimmung der relevanten Teilmärkte
 - Auffinden vernachlässigter Teilmärkte (Marktlücken, Marktnischen)
- Rechtzeitige Beurteilung von Neueinführungen der Konkurrenz und rechtzeitiges Ergreifen von Gegenmaßnahmen
- Beurteilung der eigenen Markenpositionierung im Vergleich zur Positionierung der Konkurrenzprodukte
- Richtige Positionierung von Neuprodukten
- Fundierte Prognose der (segmentspezifischen) Marktentwicklung
- Optimale Allokation des Budgets auf einzelne Segmente
- Erhöhung der Zielerreichungsgrade
- Preisfindung

Segmentierungskriterien für Schienenfahrzeuge und ihre Komponenten

Marketing

Marktgrundlagen

Größe und Entwicklung des Marktes

- Gesamtmarkt Schienenfahrzeuge weltweit: 47 Mrd EUR (Stand 2012)
- Dominierende Teilmärkte:
 - Asien
 - Europa
- Relevante
 Fahrzeugsegmente
 variieren lokal stark

Größe und Entwicklung des Marktes

Gesamtmarkt Schienenfahrzeuge

Vertrieb und Beschaffung

- Typisch: B-to-B-Markt
- Eigenschaften:
 - Investition stattKonsum
 - Abgeleitete Nachfrage
 - Multipersonalität
 - FormalisierteBeschaffung
 - Individualisierung
 - Internationalität

Bechaffungsmanagement

- Ziele:
 - Kosten
 - Qualität
 - Risiko
 - Flexibilität
- Strategien:
 - Mutiple Sourcing
 - + Wettbewerb, Risiken minimieren
 - Aufwand z.B. bei Qualitätsunterschienden
 - Single Sourcing
 - + enge Zusammenarbeit, Entwicklung
 - Wettbewerb eingeschränkt
 - Dual Sourcing
 - +/- Vereint Vor- und Nachteile

Konzepte der Beschaffung

- Komplexität und Umfang
 - System / Module Sourcing
 - Component Sourcing
 - Parts Sourcing
- Ort der Beschaffung
 - Lokal oder global
 - Intern oder extern (Make or Buy)
- Bereitstellung
 - Stock Sourcing
 - Demand Tailored Sourcing
 - Just-In-Time-Sourcing

Marktschranken

- Markteintrittsschranke: erschwert den Eintritt neuer Marktteilnehmer
- In Bahnmärkten häufig:
 - Regulatorische Schranken
 - Normative Schranken
 - Käuferpräferenzen
- Marktaustrittsschranke: erschwert den Austritt der Marktteilnehmer
- Typisch für Märkte mit hohen Schranken: Hohe Margen, Oligopole

U Sammlung Marktschranken

Marktrisiken

- Marktspezifische Risiken:
 - Implizite Anforderungen
 - Marktverdrängung durch Wettbewerber

Projektablauf, -kriterien und

organisation

Projektablauf, -kriterien und organisation

Projektablauf

Tafelbild Projektablauf, Ausblick V-Modell, Phasen, Meilensteine

Projektablauf, -kriterien und organisation

Projektkriterien

Fragen an die Projektorganisation

- Was verstehen wir unter einem Projekt?
- Wie binden wir Projekte in unser Unternehmen ein?
- Welche standardisierten Vorgehensmodelle wenden wir an?
- Wie stellen wir sicher, dass alle Informationen zur richtigen Zeit verfügbar sind?
- Welche Dokumente/Dokumentenarten werden eingesetzt? Wie werden sie verwaltet?
- Gibt es Verhaltensregeln für das Projektteam?
- Wie sichern wir die Qualität der Projektbearbeitung?

Projektmerkmale

- Zeitliche Befristung
- Eindeutige Zielsetzung
- Eindeutige Zuordnung der Verantwortungsbereiche
- Einmaliger (azyklischer) Ablauf/Einmaligkeit
- Vorgegebener finanzieller Rahmen und begrenzte Ressourcen
- Komplexität
- Interdisziplinärer Charakter der Aufgabenstellung
- Relative Neuartigkeit
- Projektspezifische Organisation
- Arbeitsteilung
- Unsicherheit und Risiko

Projektablauf, -kriterien und organisation

Projektorganisation

U Formen der Projektorganisation

Projektdokumentation

Dokumentationssystem

- Identifizieren erwarteter Dokumente
 - z.B. Vertragsdokumente, Kalkulationen, Berichte, Entwicklungs- und Testdokumentation
- Kennzeichnungssystem
 - Eindeutigkeit, Aktualität, Relevanz des Dokuments
- Anforderungen an Dokumente
 - Formale Anforderungen: Name und Status des Dokuments, Projekt, Ersteller, Prüfer, Freigeber, Verteiler, Integrität (z.B. durch Seitenzahlen)
 - Inhaltliche Anforderungen
- Verantwortlichkeiten
 - z.B. anhand einer Dokumentenmatrix
- Ablagestruktur
 - z.B. gemeinsamer Netzwerkordner
- Datensicherung

Warum Projektdokumentation?

- Multipersonalität
- Langer Projektlebenszyklus
- Rechtliche Auswirkungen
 - Strafrechtlich (Sorgfaltspflicht!)
 - Zivilrechtlich
 - Nachforderungen
 - Nichterfüllung von Anforderungen
- Dokumentationspflichten
 - Kundenforderung
 - Normative Anforderungen (z.B. ISO 9001, IRIS)
- Wiederverwendbarkeit der Entwicklung
- Nachvollziehbarkeit von Entscheidungen, Kalkulationen, etc.
- Zulassung

Welche Arten von Dokumenten?

■ Projektmanagement-Dokumente

■ Technische Dokumente

■ Betriebswirtschaftliche Dokumente

- Dokumente des Qualitätsmanagements
- Rechtliche Dokumente

- Projektmanagement-Dokumente
 - Projektauftrag, Aufgabenlisten, -zuordnungen, Terminpläne, Dokumentenmatrix, Statusberichte, Budget-Reporting, Lieferstaffeln, Gesprächsprotokolle, Re...
- Technische Dokumente
 - Anforderungs-Dokumente, Stücklisten, Zeichnungen, Nachweise (z.B. Berechnungen), Berichte, Abweichungs- und Änderungsmitteilungen, ...
- Betriebswirtschaftliche Dokumente
 - Kalkulationen, Preiseskalation, Angebote von Zulieferern und Dienstleistern, Verhandlungsprotokolle,
- Dokumente des Qualitätsmanagements
 - Prüfanweisungen, Ergebnisse, Zeugnisse, Lieferantenaudits
- Rechtliche Dokumente
 - Vertrag, Rahmenvertrag,

Dokumentenlenkung

- Erstellung und Aktualisierung
 - Angemessene Kennzeichnung und Beschreibung
 - z.B. Titel, Datum, Autor, Referenznummer
 - angemessenes Format und Medium
 - z.B. Sprache, Softwareversion, Grafiken
 - Angemessene Überprüfung und Genehmigung im Hinblick auf Eignung und Angemessenheit
- Lenkung der Informationen
 - Informationen sind verfügbar und geeignet
 - Informationen sind angemessen geschützt
- Besondere Aufgaben der Dokumentenlenkung
 - Verteilung, Zugriff, Auffindung und Verwendung
 - Ablage/Speicherung und Erhaltung (einschließlich Lesbarkeit)
 - Überwachung von Änderungen (z.B. Versionskontrolle)
 - Aufbewahrung und Verfügung über den weiteren Verbleib

Vertragsprüfung

Aufgaben der Vertragsprüfung

- Angebotsphase
 - Prüfung auf Vollständigkeit
 - Prüfung auf Risiken
- Vertragsabschlussphase
 - Prüfung auf Vollständigkeit
 - Prüfung auf Unstimmigkeit
 - Prüfung auf Widersprüchlichkeit
- Abwicklungsphase
 - Verfolgen von Änderungen
 - Verfolgen von Abweichungen

Vorgehen in der Angebotsphase

- Rechte und Pflichten der Vertragsparteien
 - Dokumentenhierarchie
 - Liefer- und Leistungsumfang
- Mitwirkungspflichten
 - Auftraggeber
 - Auftragnehmer
- Analyse der Regelungen u.a. zu
 - Vertragsstrafen (z.B. Gewichtspönale, Lieferverzug,...)
 - Abnahmen
 - Änderungen
 - Verzögerungen
- Beurteilen besonderer vertraglicher Risiken
- 1 Lesen der Dokumente
- 2 Herausforderungen erkennen
- 3 Maßnahmen erarbeiten und umsetzen

- Anwendbares Recht, Gerichtsstand
- Regelung von Folgeschäden
- Verzeichnis der Vertragsdokumente (inkl. Ausgabestand)
- Liefer- und Leistungsumfang
- Preisstellung (DDP Oslo vs. EXW), Preiseskalation
- Umgang mit Abweichungen, technischem Fortschritt
- Technische Termine
- Optionen
- Teillieferungen
- Verspätung bei Lieferung, Dokumentation, IBS und Pönalen
- Nichteinhalten der vertraglichen Leistungswerte (Qualität, RAMS, LCC,...)

Wichtige Aspekte bei der Vertragsprüfung ii

- Force-Majeur-Klausel
- Produktionsstandorte
- Logistik, Verpackung und Konservierung
- Prüfungen und Tests
- Schulungen (Kunde und Betreiber)
- Zertifikate
- Gewährleistung

Requirements Engineering

Warum Requirements Engineering (RE)?

- Qualität: Qualität ist das Maß der Erfüllung der Anforderungen an ein Produkt.
- Kosten- und Termintreue
- Einbindung der Stakeholder (Anspruchsteller)
- Systematisierung der Beschaffung und des Engineerings

Key-Aspects of Requirements Engineering

- Stakeholder Involvement
- Technical Reviews
- Traceability

Generisches Phasenmodell

Für jede Phase festzulegen:

- Purpose
- Inputs
- Entry Criteria
- Roles
- Verification steps
- Outputs
- Exit criteria
- Resources
- Management review activities

ប V-Modell für Requirements Engineering

Requirements Analysis

Leitfragen:

- What are the stakeholders?
- What is the system to do?
- How well it is to do it?
- Under what conditions?

Typischer Meilenstein: Initial Design Review (IDR)

System Specification

Leitfragen:

- Is the required system feasible?
- What are system and subsystem borders?
- What are associated costs/lead times/risks?
- How can the risk be reduced?
- Which system integration steps are necessary?

Typischer Meilenstein:

Preliminary Design Review (PDR)

Subsystem Design

Leitfragen:

- What are the subsystem requirements?
- Make or Buy?
- Which deliverables (e.g. documentation) are requested?
- What is the suitable subsystem structure?

Typischer Meilenstein: Critical Design Review (CDR)

Module Design

Leitfragen:

- How can the module be realised efficiently?
- What are critical characteristics of the module and its parts?
- Can service proven modules be used or adapted?

Kosten- und Aufwandsschätzung

Warum Kosten- und Aufwandsschätzung?

- Aufwandsschätzung (Größe: Zeit)
 - Identifikation von Arbeitspaketen
 - Input für Kostenschätzung
 - Ressourcenplanung und -allokation
 - Terminplanung (auch projektübergreifend)
- Kostenschätzung (Größe: Geld)
 - Bestimmung von:
 - Einmalkosten non recurring cost (NRC)
 - Stückkosten recurring cost (RC)
 - Identifikation von Investitionen
- Entscheidungshilfe im Entwicklungsprozess
- Bestimmung des Angebotspreises

OF APPLIED SCIENCES

Herausforderungen Aufwands- und Kostenschätzung

- Informationen:
 - unvollständig
 - unsicher
 - fehlerbehaftet
 - Daher: Schätzung, d.h. wahrscheinlichste Vorhersage über den wahren Aufwand
- Projektdefinition:
 - Anforderungen nicht final ("to be defined during design stage")
 - Änderungen möglich
- Projektablauf:
 - Beginn durch Angebotsrunden verzögert
 - Projektverlauf durch externe Einflüsse (teil-)gesteuert
- Projektressourcen:
 - Durch andere Projekte Ressourcen blockiert oder eingeschränkt nutzbar

Kosten- und Aufwandsschätzung

Aufwandsschätzung

Ansätze zur Aufwandsschätzung

- Expertenschätzverfahren, z.B.:
 - Projektstrukturplan-basiert (WBS-based)
 - Gruppenschätzung
- Formale Schätzverfahren, z.B.:
 - Analogie-basiert (z.B. Bremszange wie ..., jedoch mit ...)
 - Parametrische Modelle (z.B. E-Kupplung Verkabelung: 100 h)
 - Größenbasiert: (z.B. Anpasskonstruktion: 500 h)
- Kombinierte Schätzverfahren, z.B.:
 - Zerlegung mit WBS, parametrische Schätzung der Pakete
- Auswahl des Verfahrens:
 - Abhängig von der Organisation
 - Formale Verfahren weniger "lernfähig"
 - Expertenschätzverfahren anfällig für "wishful thinking"
- Psychologische Herausforderungen (Cognitive biases):
 - Planning fallacy, cognitive dissonance, anchoring, confirmation bias, wishful thinking

Projektstrukturplan

- Dekomposition eines Projekts
 - Hierarchisch
 - Inkrementell
- Baumstruktur
- Gliederung gemäß DIN 69900
 - Funktionsorientiert
 - Objektorientiert
 - Zeitorientiert
- Starke Abhängigkeit von Deliverables
- Erstellung üblicherweise Top-Down
- Nutzen: Vollständige Übersicht
- Hilfreich: "Tickler list"

Aufbereitung WBS für Projektplanung

- Schätzung des Aufwands
 - Besprechung: möglicher Bias
 - Alternative: Planning Poker
- Abhängigkeit (Reihenfolge) der Projektbearbeitung
- Externe Inputs oder Vorbedingungen für Arbeitspakete
- Vertraglich zugesicherte Termine
- Zuordnung zu:
 - Ressourcen
 - Phasen
- Zieldefinition (Definition of Done)

Kosten- und Aufwandsschätzung

Kostenschätzung

Kostenschätzung

NRC estimation

- Basierend aufAufwandsschätzung
- Ergänzend:
 - Kundenbetreuung
 - Reisekosten
 - Externe Dienstleistungen (z.B. Tests, Abnahmen, ...)
 - Prototypen, Muster
 - Investitionen
- Zu beachten:
 - Stundensätze
 - Kostenentwicklung
- Nützlich: Checkliste

RC estimation (Niazi et al. (2005);

Pahl et al. (2013))

- Intuitive Verfahren:
 - Basierend auf Expertenschätzung
 - Unterstützt durch Regeln
- Analogiebasierte Schätzung
 - Ähnlichkeit
 - Komplexität
- Parametrische Schätzung:
 - z.B. Gewicht, Material oder kombiniert
- Analytische Verfahren, z.B.
 - Bearbeitungssimulation
 - Feature based cost estimation

Projektplanung

Was bedeutet Projektplanung?

- Organisation verschiedener Projektaspekte:
 - Projektumfang
 - Arbeitspakete
 - Projektrisiken
 - Finanz- und Kostenplanung
 - Einsatzmittelplanung
 - Materialplanung
 - Berichten des Fortschritts
 - Verfolgen von Abweichungen
- Begleitung der Projektdurchführung
 - Ggf. Plananpassung, Krisenmanagement

NPR 7120.5D	Pre-Phase A	Phase A	Phase B	Phase C	Phase D	Phase E
Project Plan - Control Plans	KDP A	KDP B	KDP C	KDP D	KDPE	KDPF
 Technical, Schedule, and Cost Control Plan 		Preliminary	Baseline			
2. Safety and Mission Assurance Plan		Preliminary	Baseline			
3. Risk Management Plan		Preliminary	Baseline			
4. Acquistion Plan		Preliminary	Baseline			
5. Technology Development Plan		Baseline				
6. Systems Engineering Management Plan		Baseline				
7. Software Management Plan		Preliminary	Baseline			
8. Review Plan		Preliminary	Baseline			
9. Missions Operations Plan			Preliminary	Baseline		
10. Environmental Management Plan		Baseline				
11. Logistics Plan		Preliminary		Baseline		
12. Science Data Management Plan		_	Preliminary	Baseline		
 Information and Configuration Management Plan 		Preliminary	Baseline			
14. Security Plan		Preliminary	Baseline			
15. Export Control Plan		Preliminary	Baseline			

NASA Project Planning Process

Projekt: Mars Voyage

Step	Description	Estimated Effort	Predecessor	
0	Kick Off	Milestone	-	
А	Build spaceship	2	0	
В	Equip spaceship	1	А	
С	Test spaceship	2	В	
D	Train astronauts	4	0	
Е	Flight to Mars	5	C, D	
1	Mars Landing	Milestone	Е	

Kritischer Pfad

- Voraussetzungen:
 - Liste der Arbeitspakete (z.B. aus WBS)
 - Dauer der Aufgaben
 - Abhängigkeiten
 - Zwischen-/Endpunkte, z.B. Meilensteine, Deliverables

Gantt-Diagramme

- Tabellenform:
 - Erste Zeile: Zeitachse
 - Erste Spalte: Aktivitäten
 - Aktivitäten als Balken
- Weitere Elemente:
 - Gruppen
 - Meilensteine
 - Abhängigkeiten
- Unübersichtlich für große Projekte
- Toolunterstützung:
 - MS Project
 - Project Libre

Projektplanung im Gantt-Diagram

Einführung Lean Manufacturing

Schlanke Fertigung bei der Sendung mit der Maus

http://www.ardmediathek.de/tv/Die-Sendung-mit-der-Maus/
Die-Sendung-mit-der-Maus-25-11-2012-Fl/Das-Erste/Video-Podcast?
documentId=12567908&bcastId=1458

Lean Production bei Porsche

On July 27, 1994, something remarkable happened in the assembly hall of the Porsche company in Stuttgart, Germany. A Porsche Carrera rolled off the line with nothing wrong with it. The army of blue-coated craftsmen waiting in the vast rectification area could pause for a moment because, for the first time in forty-four years, they had nothing to do. This was the first defect-free car ever to roll off a Porsche assembly line or to emerge from the earlier system of bench assembly. This first perfect Porsche—and there have been many more since—was a small but highly visible milestone in the efforts of Chairman Wendelin Wiedeking and his associates to introduce lean thinking into a veritable industrial institution—indeed, into one of the great symbols of the German industrial tradition. [...] What's more, there's already evidence that when lean concepts are married to the strengths of the German tradition, embodied in the concept of superior technology, or technik, a remarkably competitive hybrid form can emerge. (Womack and Jones, 2010)

Lean als Produktionssystem

- Eingeführt von japanischen Automobilunternehmen
- Starke Fokussierung auf Kundennutzen
- Im Gegensatz zu gepufferter Produktion
- Ziele
 - Kompetenz und Verantwortung zusammenführen
 - in Netzwerken arbeiten
 - Verschwendung und Fehler vermeiden
 - Abläufe synchronisieren
 - Kontinuierlich im Kleinen besser werden
 - bei Bedarf im Großen ändern

Elemente des Lean Manufacturing

- Angemessene technische Ausstattung
- Wenig hierarchische Arbeitsorganisation
- KonsequentesQualitätsmanagement
- Kontinierliche Verbesserung
- Qualifikation und Motivation
- Just-In-Time/Sequence, Pull
- Wertschöpfungsorientierung

Vermeidung von Verschwendung

- 1 Transport: Kein Kundennutzen durch Wege
- 2 Bestände: Binden Kapital, Fläche, erzeugen Handhabungsaufwand
- 3 Bewegung: Mehr Bewegung als der Prozess benötigt
- 4 Warten: Wartezeiten erzeugen keinen Kundennutzen
- 5 Überproduktion: Kein Kunde, kein Nutzen
- 6 Aufwändige Prozesse: Fehleranfällig, unflexible Prozesse
- **7** Fehler: Kein Kundennutzen durch Fehlersuche und -behebung 6σ

H AACHEN JNIVERSITY OF APPLIED SCIENC

Tools auf dem Weg zum Lean Manufacturing

- 5 S: Sortiere aus! Stelle ordentlich hin! Säubere! Sauberkeit bewahren! Selbstdisziplin üben!
- One-Piece-Flow: Losgrößenreduzierung. Benötigt kurze Rüstzeiten.
- Visual Management: Zustand des Prozesses, Verbesserungen etc. visualieren.
- Jidoka: Fehler an der Quelle finden.
- Poka Yoke: Vermeiden "unglücklicher" Fehler, z.B. durch Kodierung.
- Heijunka: Nivellierung des Produktionslevels.
- Kanban: Bedarf steuert Produktion.
- Andon: Zustand des Prozesses in Echtzeit abbilden.
- Kaizen: Stetige Verbesserung.
- Genba: Ort der Produktion.
- Obeya: "Großer Raum".
- Genchi Genbutsu: Go and see for yourself!

Lean Development

- Wert: Spezifiziere den Wert deines Produktes
- Wertstrom: Erkenne den Wertstrom
- Flow: Erzeuge einen Wertstromfluss ohne Unterbrechungen
- Pull: Lasse den Kunden den Takt der Bearbeutung bestimmen
- Perfektion: Verbessere die Dinge kontinuierlich

Agile Development

- Werte (Agile Manifesto):
 - Menschen und Interaktionen mehr als Prozesse und Werkzeuge
 - Funktionierende Software [Produkte] mehr als umfassende Dokumentation
 - Zusammenarbeit mit dem Kunden mehr als Vertragsverhandlung
 - Reagieren auf Veränderung mehr als Befolgen eines Plans
- Prinzipien:
 - Kurze Iterationen
 - Einfachheit
 - Selbstorganisation
 - Persönliche Kommunikation
 - Teamarbeit

Schweißen nach EN 15085

Schweißen an Schienenfahrzeugen - Allgemeines

Definition (Schweißen)

Schweißen bezeichnet das unlösbare Verbinden von Bauteilen unter Anwendung von Wärme oder Druck, mit oder ohne Schweißzusatzwerkstoffe.

Anwendung in der Schienenfahrzeugtechnik

- Verbindungen: z.B. Wagenkasten und Drehgestellfertigung
- Reparaturschweißungen im Stahlgussprozess
- Auftragsschweißungen, z.B. verschleißmindernde Schichten

Herausforderungen in der Schienenfahrzeugtechnik

- Lange Produktlebensdauer, hohe Schwingspielzahlen
- Hohes Sicherheitsbedürfnis
- Zertifizierungs und Prüfaufwand

Prozessschritte Herstellung Schweißverbindungen

- Wareneingangsprüfung (mind. Zeugnisse)
- 2 Schweißnahtvorbereitung
 - i.d.R. maschinelle Bearbeitung
 - verhältnismäßig eng toleriert
 - je nach Nahtform Badsicherung erforderlich
- 3 Aufnahme in Vorrichtung
- 4 Heften
- 5 Entnahme aus Vorrichtung
- 6 Schweißen
- 7 Prüfung duch Schweißer/Bediener
- 8 Ggf. Nachbearbeitung der Schweißnaht
- Prüfung durch Prüfpersonal bzw. Werkerselbstprüfung
- Ggf. Abnahme duch Kunden
- Bearbeitung zur Erreichung von Schnittstellenmaßen

- 2 Konstruktionsentwurf
 - Ermittlung Beanspruchungszustand
 - Ermittlung Sicherheitsbedürfnis
- 3 Freigabe durch verantwortliche Schweißaufsichtsperson (vSAP)
 - Für DB: Ggf. Schweißtechnische Bauweisenprüfung Teil 1 (STBP 1)
- 4 Festlegung benötigter Verfahrens- und Arbeitsproben
- 5 Durchführung und Analyse Verfahrens- und Arbeitsproben (evtl. iterativ)
- 6 Fertigung der Bauteile
 - Für DB: Ggf. Schweißtechnische Bauweisenprüfung Teil 2 (STBP 2)

Europäische Normierung nach EN 15085

Teile der EN 15085

- Allgemeines, Begriffe
- 2 Qualitätsanforderungen und Zertifizierung von Schweißbetrieben
- 3 Konstruktionsvorgaben
- 4 Fertigungsanforderungen
- 5 Prüfung und Dokumentation

Anwendungsbereich

- Schweißen metallischer Werkstoffe
 - Pflicht für Stahl und Aluminium, auch Gusslegierungen)
 - Fakultativ für andere Werkstoffe
- Herstellung und Instandsetzung
- Ausnahme: spezielle Regelwerke, z.B. Druckbehälter

Begriffe i

Definition (Zertifizierungsstufe (CL))

Stufe zur Klassifizierung der geschweißten Schienenfahrzeuge und geschweißter Komponenten on Abhängigkeit von der Schweißnahtgüteklasse.

Definition (Schweißnahtgüteklasse (CP))

Güteanforderungen an die Schweißverbindung in Abhängigkeit von Beanspruchungszustand und von Sicherheitsbedürfnis der einzelnen Schweißnaht.

Definition (Schweißnahtprüfklasse (CT))

Durchzuführende Prüfung für die Schweißvérbindung in Abhängigkeit von der Schweißnahtgüteklasse.

Begriffe ii

Definition (Hersteller)

Organisation, die

- eine schweißtechnische Fertigung zur Herstellung und Instandsetzung betreibt oder
- geschweißte Komponenten konstruiert, einkauft oder vertreibt.

Definition (Statische Auslegung)

Dimensionierung von Schweißverbindungen, bei der die Kennwerte der statischen Festigkeit eingehalten werden.

Definition (Dauerfestigkeitsauslegung)

Dimensionierung von Schweißverbindungen, bei der die Kennwerte der Ermüdungsfestigkeit eingehalten werden.

Begriffe iii

Definition (Ausnutzung der Beanspruchbarkeit)

Verhältnis zwischen berechneter Ermüdungsfestigkeit und der durch den entsprechenden Sicherheitsfaktor abgeglichenen zulässigen Ermüdungsfestigkeit.

Definition (Zulässige Ermüdungsfestigkeit)

Maximale Spannung, die unter Berücksichtigung eines speziellen Faktors für die Schweißverbindung vom eingesetzten Werkstoff aufnehmbar ist.

Definition (Sicherheitsbedürfnis)

Definiert die Auswirkungen eines Versagens einer einzelnen Schweißnaht im Hinblick auf die Folgen für Personen, Einrichtungen und die Umwelt.

Begriffe iv

Definition (Arbeitsprobe)

Musterschweißverbindungen zum Nachweis der Handfertigkeit des Schweißers oder der bedingungsgemäßen Ausführung von Schweißverbindungen.

Schweißen nach EN 15085

Schweißnahtklassifizierung nach EN 15085

Bestimmung der Ausnutzung der Beanspruchbarkeit

- lacktriangle Verhältnis S berechneter zu zulässiger Spannung der Verbindung
 - Bezogen auf Dauerfestigkeit
 - Festigkeitsanforderungen gemäß EN 12663, EN 13749 oder nationalen Normen
 - Bewertung der Festigkeit nach nationalen Regelwerken, z.B. DVS 1612
 - Abhängig von Nahtform und Grundwerkstoff
 - Betrachtung höherfester Werkstoffe konservativ
 - Alternativ Dauerversuch möglich
- Bei Berechnung nach Norm:
 - Beanspruchungszustand Hoch: $S \ge 0.9$
 - \blacksquare Beanspruchungszustand Mittel: $0.75 \leq S < 0.9$
 - lacktriangle Beanspruchungszustand Niedrig: S < 0.75

Sicherheitsbedürfnis der Schweißnaht

- Versagen einer einzelnen Schweißnaht führt:
 - lacktriangle zwangsläufig zu Ereignissen mit Personenschäden und Versagen der Gesamtfunktion ightarrow Hoch
 - möglicherweise zu Ereignissen mit Personenschäden und Beeinträchtigung der Gesamtfunktion → Mittel
 - lacktriangle zu unwahrscheinlichen Ereignissen mit Personenschäden und keiner direkten Beeinträchtigung der Gesamtfunktion o Niedrig
- Nur Betrachtung Einfachfehler

Beanspruchungszustand	Siche	erheitsbed	ürfnis
Deanspruchungszustand	Hoch	Mittel	Niedrig
Hoch	CP A	CP B	CP C2
Mittel	CP B	CP C2	CP C3
Niedrig	CP C1	CP C3	CP D

- CP A: Nur für voll durchgeschweißte und für Überprüfung während Fertigung und Instandhaltung zugängliche Schweißnähte
- CP B, Sicherheitsbedürfnis hoch: CP A: Nur für voll durchgeschweißte und für Überprüfung während Fertigung und Instandhaltung zugängliche Schweißnähte
- Weitere Ergänzungen zu eingeschränkt volumetrisch prüfbaren Schweißnähten siehe (EN 15085-3, 2007, Tabelle 2).

Schweißnahtprüfklassen

Cohwoißnahtaiitaklassa	Schweißnahtprüfklasse
Schweißnahtgüteklasse	(Mindestanforderung)
CP A	CT 1
CP B	CT 2
CP C1	CT 2
CP C2	CT 3
CP C3	CT 4
CP D	CT 4

Schweißnahtnriifklasse	Volumetrisch	Oberfläche	Sichtprüfung
Schweißnahtprüfklasse	RT oder UT	MT oder PT	VT
CT 1	100 %	100 %	100 %
CT 2	10 %	10 %	100 %
CT 3	n/a	n/a	100 %
CT 4	n/a	n/a	100 %

- Jeweils Mindestanforderungen
- CT 3: VT durch Prüfpersonal (damit CP 2 CT 3 ähnlich SGK 2.3 nach DIN 6700)
- CT 4: VT als Werkerselbstprüfung, Dokumentation nicht erforderlich
- Falls volumetrische Prüfung nicht möglich: ersatzweise 100% Oberflächenprüfung und Arbeitsprobe

Zertifizierung der Schweißbetriebe

- CL 1: Schweißen der Güteklassen CP A bis CP D, Handel und Konstruktion
- CL 2: Schweißen der Güteklassen CP C2 bis CP D, Handel un Konstruktion nach CL 2 und CL 3 ist eingeschlossen
- CL 3: Schweißen der Güteklasse CP D
- CL 4: Schweißkonstruktion von Teilen der CL 1 bis CL 3 sowie Handel mit solchen Teilen

Schweißen nach EN 15085

Schweißen an Schienenfahrzeugen - Aluminium und Stahl

Konstruktive Grundlagen i

- Vermeiden:
 - Scharfe Ecken
 - Querschnittsänderungen
 - Gemischte Verbindungsarten (z.B. Schweißen und Schrauben)
 - Anhäufungen von Schweißnähten
 - Quernähte zur Befestigung untergeordneter Teile bei Zugbeanspruchung
- Zugänglichkeit zum Schweißen und Prüfen gewährleisten
- Kaltverformte Bereiche (einschließlich Umgebung 5*t*):
 - Schweißen nur an Teilen der CL 3 zulässig
 - Für CL 1 und CL 2:
 - Normalglühen
 - Eingeschränkte Radien (EN 15085-3, 2007, Tabelle 9)

Konstruktive Grundlagen ii

- Stumpfnähte an Bauteilen unterschiedlicher Dicke
 - Übergang mit Neigung:
 - CP C3 und CP D: Neigung 1:1
 - CP A, CP B, CP C1 und CP C2: Neigung 1:4
- Abstand zwischen Schweißnähten: i.d.R. 50 mm
- Freischnitte sollen Umschweißbarkeit gewährleisten
- Randabstand Kehlnaht $\geq 1.5a + t$
- Korrosionsschutz.
 - Umschweißen
 - Rückseite abdichten: Dichtschweißen, Acryl, ...

Angaben auf Schweißzeichnungen

- Schweißnahtgüteklasse
 - falls einheitlich: in Zeichung
 - falls unterschiedlich: nahe bei der Schweißnaht
- Zertifizierungsstufe
 - je Bauteil
- Schweißnahtform
- Schweißnahtdicke
- Schweißnahtlänge
- Schweißzusätze (in Zeichnungen, Stücklisten oder anderen Dokumenten)

Schraubenverbindungen

Schraubenverbindungen an Schienenfahrzeugen - Allgemeines

Definition (Schraubenverbindungen)

Schraubverbindungen ermöglichen das lösbare Verbinden von Werkstücken mittels Verbindungselementen. Eine Schraubenverbindung umfasst sowohl die Verbindungelemente als auch die zu verbindenden Teile.

Anwendung in der Schienenfahrzeugtechnik

- Bremszange an Drehgestellrahmen
- Radbremsscheibe an Rad
- Elektrische Kontakte (z.B. Erdung, Stromversorgung)

Herausforderungen in der Schienenfahrzeugtechnik

- Lange Produktlebensdauer, hohe Schwingspielzahlen
- Hohes Sicherheitsbedürfnis
- Zertifizierungs- und Prüfaufwand

Grundlage: DIN 25201

■ Sieben Teile:

- 1 Einteilung, Kategorien der Schraubverbindungen
- 2 Konstruktion maschinenbauliche Anwendungen
- 3 Konstruktion elektrische Anwendungen
- 4 Sichern von Schraubenverbindungen
- 5 Korrosionsschutz
- 6 Anschlussmaße
- 7 Montage

Risikoklassen der Schraubenverbindungen

- Risikoklasse H (hoch)
 - Das Versagen der Schraubenverbindung stellt eine direkte oder indirekte Gefahr für Leib und Leben dar.
- Risikoklasse M (mittel)
 - Das Versagen der Schraubenverbindung führt zu einer Funktionsstörung des Fahrzeugs.
- Risikoklasse G (gering)
 - Das Versagen der Schraubenverbindung führt maximal zu Komforteinbußen für die Fahrgäste oder das Bedienpersonal.

Tabelle 1 — Maschinenbauliche Anwendungen

Risikoklasse	Hoch	Mittel	Gering	
Vordimensionierung	Vordimensionierung nach DIN 25201-2	Vordimensionierung nach DIN 25201-2	Vordimensionieren nach DIN 25201-2, VDI 2230 oder Erfahrung	
Nachweis der Verbindung	nach VI	DI 2230		
Dokumentation des Nachweises		erforderlich		
$M_{ m A}$ -Vorgabe in der Zeichnung	erforderlich	erforderlich	nicht erforderlich	
Montage protokolliert				
M _A Protokolliert		nicht erforderlich		
Qualitätssicherung	DIN 25201-7	DIN 25201-7	DIN 25201-7	
Sicherheitsphilosophie	icherheitsphilosophie DIN 25201-2			
Schraubensicherung sind zu vermeiden ^a		DIN 25201-4	DIN 25201-4	
Korrosionsschutz		DIN 25201-5		
Anschlussmaße		DIN 25201-6		
Montage		DIN 25201-7		

V 23201-1, 2010, Id

Schraubfälle

Schraubfälle

Belastung und Versagen der Schrauben

Klemmlänge l_K

Konstruktive Grundlagen der Verschraubung

		Risikoklasse		
	H (hoch)	M (mittel)	G (gering)	
Sicherheitsphilosophie	/ dolan oddridanz maco / dolan oddridanz mani boi botrobilonom		keine Ausfallredundanz erforderlich	
Nachweis der Schraubenverbindung	Berechnung nach VDI 2230 Blatt 1		Auslegung auf Grundlage von Erfahrungswerten möglich	
Dokumentation des Nachweises	erforderlich		nicht erforderlich	
Angaben in technischen Dokumenten ^c (Zeichnungen)	Risikoklasse, Montagedrehmoment oder Drehwinkel/ Montagedrehmoment oder Vorspannkraft oder Längenänderung, Verschraubungsklasse, Schmier- und Trennmittel, Montagehinweise		Angaben nicht vorgeschrieben	

Ausfallredundanz:

- Schraubenanzahl größer als rechnerisch erforderlich
- ein weiterer Lastpfad, der bei Versagen der Verbindung eine Sicherungsfunktion übernimmt (z. B. Fangseil, Fangvorrichtung)
 Wo keine Redundanz hergestellt werden kann, sind verkürzte Kontrollabstände im Betriebseinsatz erforderlich.
- Definition der Belastungen nach z. B. DIN EN 12663, DIN EN 13749.
- c Bezeichnungsbeispiele siehe Anhang B.

Haftreibungszahlen in der Trennfuge

Stoffpaarung ^a	Haftreibungszahl μ_{T} im Zustand		
Storipaarung	trocken	geschmiert	
Stahl – Stahl/Stahlguss	0,1 bis 0,23	0,07 bis 0,12	
Stahl – GG	0,12 bis 024	0,06 bis 0,1	
GG – GG	0,15 bis 0,3	0,2	
Bronze – Stahl	0,12 bis 0,28	0,18	
GG – Bronze	0,28	0,15 bis 0,2	
Stahl – Kupferlegierung	0,07		\neg
Stahl – Aluminiumlegierung	0,1 bis 0,28	0,05 bis 0,18	
Aluminium – Aluminium	0,21		\dashv
a aus VDI 2230 Blatt 1, Tabelle A6			

Anforderungen an die Verbindung

- Elastische Nachgiebigkeit: Hoch bei Schraube, gering bei verspannte Bauteilen
- Schrauben und Muttern gleicher Festigkeitsklassen
- Anzahl Unterlegeteile minimiert
- Montagewerkzeuge: Innen- bzw Außensechskant oder -sechsrund
- Metrisches ISO-Regelgewinde
- Schraubenwerkstoff:
 - Bevorzugte Festigkeitsklassen: 8.8, A2-70 und A4-80
 - Festigkeitsklasse 12.9 wird nicht betrachtet (vgl. DB Gütepüfung)
- Oberflächenbeschichtung
 - Korrosionbeständigkeit
 - Bei hohen Festigkeiten: Waserstoffversprödung vermeiden
 - Definiertes und enges Reibungszahlfenster

Schraubensicherung - Lösen der Schraubenverbindung

Schraubensicherung - Methoden

Maßnahme		am gegen		
wasnanne	Setzen	Kriechen		
Gestaltung von Verbindungen mit großen Nachgiebigkeitsverhältnis (harter Schraubfall)	ja	ja		
Verringern der Flächenpressung durch Vergrößerung der Auflageflächen	_	ja		
Verringerung der Anzahl der Trennfugen	ja	bedingt		
Verwenden von Schrauben mit erhöhter Festigkeit zur Vergrößerung der Ausgangsspannung (Vorspannkraft)	ja	nein		
Vergrößern der Klemmlänge	ja	nein		
Verwenden von federnden Verbindungselementen, jedoch unter der Bedingung, dass	jaª	nein		
 die wirksame Federkraft dieser Elemente der erforderlichen Vorspannkraft der Schraubenverbindung angepasst ist 				
 das eingefügte Teil nicht das Risiko einer zusätzlichen Setzung mit sich bringt 				
 die Elastizität der Verbindungselemente w\u00e4hrend der gesamten Lebensdauer der Verbindung erhalten bleibt 				
Verringern der Rautiefen	ja	nein		
Zweckmäßige Form- und Lagetoleranzen wählen	ja	ja		
Vermeiden von dicken Beschichtungen	ja	nein		
a nur zum Ausgleich von Oberflächenrauheiten				

Ursachen des Vorspannkraftabfalls	Sicherungsart	Funktionsart	Sicherungselement	Anwendungshinweise		1	
				Schrauben/ Muttern	S	cheiben	1
				Festigkeitsklasse	Hä	rteklasse	1
					200 HV	300 HV	ı
			Scheibe nach				1
	Lockerungs-	mitverspannt	DIN EN ISO 7089 DIN EN ISO 7090	8.8/8	Ja	Ja	
Lockern	Sicherungs-	Flächenpressung	DIN 7349	10.9/ 10	Nein	Ja	ı
		herabsetzend	DIN EN ISO 7092	A2-70/ A2-70	Ja	Nein	ı
			DIN EN ISO 7093-1				
	mitverspannt		Spannscheibe nach DIN 6796,	Zur Reduzierung von Setzbeträgen max. 20 μm			1
		federnd		Federkraft muss auf die V	orspannkraft abgestimmt	sein.	-
			Elemente mit Nachweis nach Anhang B, z. B.:	g B, z. B.: wechselnden Querbelastungen ausgesetzt sind und keine gehärte			Δ 1
		sperrend.	Rippschraube, Rippmutter ^a	vorhanden sind.			ے
		z. T. mitverspannt	Keilscheibenpaar ^a	Härte der Auflagefläche n und Mutter bzw. der mitve		Auflageflächen von Schraube	۲
				Diese Sicherungselement Schraubenkopf und der M		sie direkt unter dem	2010
Selbsttätiges Losdrehen	Losdrehsicherung	Mikroverkapselter Klebstoff entsprechend DIN 267-27		Überall dort anzuwenden, wechselnden Querbelastu Einsatz sperrender Verbir	ingen ausgesetzt sind und	gehärtete Oberflächen den	1_4
				Temperaturabhängig. Ein Bei Einsatz von Klebstoffe			0630
			Flüssigklebstoff Abschnitt 6 dieser Norm	Die Temperaturgrenzen fi unbedingt zu beachten. E Bei Einsatz von Klebstoffe	insatz bei elektrischen An	wendungen nicht erlaubt.	(DIN)

Ursachen des Vorspannkraftabfalls	Sicherungsart	Funktionsart	Sicherungselement	Anwendungshinweise
	Verliersicherung		Form B nach DIN 8140-1,	Dort einzusetzen, wo es bei Schraubenverbindungen primar darum geht, eine restliche Vorspannkraft zu erhalten und die Verbindung gegen Ausseinanderfallen zu sichern. Für Multern und Schrauben mit Kunststoffeinsatz ist die Temperatursbängigkeit zu beachten. Bei elektrischen Anwendungen darf es zu keiner Spanbildung durch Ganzmetallmuttern kommen.
^a siehe Literaturhinweise				

Materialien, Korrosionsschutz, DB

Güteprüfung

Materialien, Korrosionsschutz, DB Güteprüfung

Materialien, Korrosionsschutz, DB Güteprüfung

Materialien

Anforderungen an Materialien für Schienenfahrzeuge

- Statische Festigkeit
- Dauerfestigkeit
- Gut zu fügen
- In Abmessungen und Mengen verfügbar
- Geringes Gewicht (gemessen an der Festigkeit)
- Beständig gegen Umwelteinflüsse
- Recyclingfähig
- Keine Freisetzung gefährlicher Substanzen
- Angemessene Kosten
- Reparierbarkeit
- Betriebserfahrung
- Günstiges Brandverhalten

Materialien für Schienenfahrzeuge i

- Baustahl (S235, S355):
 - Blechstärke bis 12 mm
 - Zusätzlich: Tieftemperatureignung
- Feinkornbaustahl (S500, S690):
 - Gewichtsersparnis bei hochbelasteten Teilen
- Edelstähle
 - Korrosionsbeständige Stähle, z.B. X5CrNi18-10: Rohrleitungen
 - Verschleisbeständige Stähle, z.B. X120Mn12: Gleitelemente
- Aluminiumwerkstoffe
 - Strangpressprofile: AIMgSi
 - Bleche: AIMg

Materialien für Schienenfahrzeuge ii

- Gusswerkstoffe
 - Grauguss:
 - Gusseisen mit Lamellargraphit, z.B. EN-GJL-300: Gehäuse, Bremsenteile
 - Gusseisen mit Kugelgraphit, z.B. EN-GJS-500: Zugstangen, Bremszangen, Bremsscheiben
 - Bainitisches Gusseisen mit Kugelgraphit, z.B. EN-GJ-800/1000: Hochbelastete Bauteile, Bremshebel
 - Gussstahl, z.B. G18NiMoCr3-6: hochbelastete Teile, Bremsscheiben
 - Aluminiumguss
- Kunststoffe, z.B. PA, PE
- Elastomere, z.B. Silikon, Fluorelastomere (Viton)

Materialien, Korrosionsschutz, DB Güteprüfung

Korrosionsschutz

Korrosionsschutz i

■ Aufgaben:

- Lebensdauer und Atmosphäre belasten Schienenfahrzeugkomponenten extrem
- (Extrem-)Beispiel: Kanaltunnelzüge, Metro Uijeongbu

■ Anforderungen:

- Hohe Feuchtigkeitseinträge
- Temperaturschwankungen
- Metalleinträge in Umgebung
- Korrosive Substanzen
- Schotterflug
- Wartbarkeit (Vandalismus)
- Reparierbarkeit
- Ästhethik

Korrosionsschutz ii

- Lack:
 - Prozess:
 - Rohbau bzw. Komponentenfertigung
 - Strahlen und Reinigen
 - Abkleben (für Flächen ohne Grundierung)
 - Grundierung (für DB gem. TL 918300: $(30...80) \mu m$ 2K-EP)
 - Ggf. Zwischenschicht
 - Ggf. Füller/Spachtel
 - \blacksquare Decklack (für DB gem. TL 918300: $(200\dots300)\,\mu\mathrm{m}$ 2K-EP)
 - Üblich: Lacksystem der Betreiber, z.B.
 - DB: 2-Komponenten EP-Lack
 - SNCF: PU-Lack
- Verzinken
- Chromatieren
- GEOMET

Korrosionsschutz iii

- Pulverbeschichten
- Fett

Materialien, Korrosionsschutz, DB Güteprüfung

DB Güteprüfung

Einleitung

- Einkaufsvolumen DB AG 2014: 23,2 Mrd. EUR
 - Industrielle Produkte: 4,3 Mrd. EUR
- Langjährige Kenntnis qualitäts- und sicherheitsrelevanter Aspekte der Produkte
- Ähnlich bei vielen ehemals staatlichen Bahnen

Definition (Qualität)

Qualität ist der Grad, zu welchem Anforderungen an Produkte, Systeme und Dienstleistungen von diesen erfüllt werden.

Zweck der Güteprüfung

■ Zweck:

- Regelung des Umfangs der QS-Maßnahmen
- Beschaffung für DB AG und verbundene Unternehmen
- Gilt auch für Unterlieferanten
- Fokus auf Sicherheit (und Verfügbarkeit)
- Achtung: nur kostenneutral, wenn Bestellung durch die DB vorliegt

Güteprüfpflichtige Produkte

Schienenfahrzeuge

Ersatz für die Ausgabe vom 01.10.1998

Ausgabe November 2005

Prüfstufen - Lieferanteneinstufung

- Prüfstufe 1:
 - Hochsicherheitsrelevante Teile, z.B.
 - Fahrzeuge
 - Bremsscheiben, Bremszylinder
- Prüfstufe 2:
 - Sicherheitsrelevante Teile, z.B.
 - Herzstück Kupplung
 - Notausstiege

- Ermittelt im Rahmen der Herstellerbezogenen
 Produktqualifikation "HPQ":
 - Q1: Stichprobenprüfung für
 P1, Herstellerabnahme für P2
 - Q2: 100%-Prüfung für P1, Stichprobenprüfung für P2
 - Q3: 100%-Prüfung für alle Lieferungen, Sperrung möglich
- Für bestimmte Produkte, darunter Guss- und Schmiedeteile im sicherheitsrelevanten Bereich

Qualifikationspflichtige Produkte und Fertigungsverfahren

■ Produkte

- Radsätze und Radsatzteile
- Gesenkschmiedeteile aus dem Bereich Zug- und Stoßeinrichtung
- Zughaken, Schraubenkupplung
- Puffer
- Bremsklotzsohlen gegossen
- Bremsscheiben
- Radsatzlager
- Kunststoffkäfige für Rollenlager
- Sicherheitsglas für Schienenfahrzeuge
- Molybdänbeschichtete Radsatzwellen
- Guss- und Schmiedeteile im sicherheitsrelevanten Bereich
- Fertigungsverfahren
 - Gießen
 - Schmieden
 - Pulverbeschichten
 - Thermisches Spritzen

Erstmusterprüfung

- Am ersten unter Serienbedingungen hergestellten Teil
- Nachweis der Erfüllung der (Qualitäts-)Anforderungen
- Erstmusterprüfung durchzuführen bei:
 - Erstproduktionen
 - Produktänderungen
 - Produktionsverlagerung
 - Änderung von Produktionsverfahren
 - Änderung der Produktions- oder Prozessabläufe
 - Aussetzen der Produktion mehr als 12 Monate
 - Neuen Lieferanten
- Vorab durchzuführen:
- Ergebnisse:
 - Freigabe für Serienfertigung
 - Freigabe für Serienfertigung mit Auflagen
 - Gesperrt für Serienfertigung

Typprüfungen

- Umfang der Typprüfungen in Normen, Spezifikationen oder behördlich geregelt
- Nachweis der Konformität mit o.g. Anforderungen
- Durchführung vor Erstbemesterung bzw. Serienfertigung
- Prüfplan i. d. R. abzustimmen
- Typnachweis bzw. Typprüfbericht, evtl. mit Bewertung durch Sachverständige

Prüfpunkte

■ A-Punkt:

- Abstimmungspflichtiger Prüfpunkt
- Schriftliche Meldung an zuständigen Prüfingenieur
- Anwesenheit Prüfingenieur verpflichtend

■ F-Punkt:

- Meldepunkt
- Schriftliche Meldung an zuständigen Prüfingenieur
- Anwesenheit Prüfingenieur optional (Entscheidung Prüfingenieur)
- Prüfung am nächstmöglichen Prüfpunkt in Anwesenheit des Prüfingeniurs nachholen

■ S-Punkt:

- Stichprobenprüfung
- Schriftliche Meldung an zuständigen Prüfingenieur
- Anwesenheit Prüfingenieur optional (Entscheidung Prüfingenieur)
- Prüfung muss nicht vom Prüfingenieur überwacht werden

					•					
167			1.4.1.1.17	Schale für EFG (Elastomer-Feder-Gelenk)		Х		Χ		
168			1.4.1.1.18	Schale für EFG – Lagerbock		Х		Х		
169		1	1.4.1.1.19	Zapfen für EFG – Lagerbock		Х		Χ		
170		1	1.4.1.1.20	Mittenstück für EFG		Х		Х		
171		1	1.4.1.1.21	Schalenmuffen		Х		Х		
172			1.4.1.1.22	Bremsschläuche	Ī					
173		1.4.1.2		Kurz- und Übergangskupplung	Х			Х	EMP	HPQ
174		1.4.1.3		Teleskopeinrichtung Kupplung		Х		Х		
175	1.4.2			Elektrische Kupplung	Ī	Х		Х	EMP	
176	1.4.3	1		Kupplung Datenübertragung		Х		Х		
177	1.4.4			Pneumatische / hydraulische Kupplung	Ī	Х		Χ		
178	1.4.5	1		Stoßeinrichtung, Stoßverzehrelement	Х			Х	EMP	HPQ
179		1.4.5.1		Seitenpuffer / Hülsenpuffer komplett	Х		Х	Х	EMP	HPQ
180			1.4.5.1.1	Bauelemente, wie Hülse, Stößel, Pufferteller		Х		Х		HPQ
181		1.4.5.2		Stoßverzehrelement MPK		Х		Х	EMP	HPQ

■ DB-Gruppe 1:

- z.B. Drehgestellrahmen, Untergestell, Zug- und Stoßeinrichtung, Schwingungs- und Stoßdämpfer
- Schweißtechnische Bauweiseprüfung Teil 1 und 2 erforderlich, CL 1 nach EN 15085

■ DB-Gruppe 2:

- z.B. Einstiegstüren, Drehgestellanbauten, Kabelkupplungen an automatischen Kupplungen
- Schweißtechnische Bauweisenprüfung Teil 1 erforderlich, CL 1 nach EN 15085

■ DB-Gruppe 3:

- z.B. Innenausbau, Tragrahmen innen, WC-Bauteile und Wasserbehälter
- Schweißtechnische Bauweisenprüfung nicht erforderlich, CL 2 nach EN 15085

■ DB-Gruppe 4:

- z.B. Halter für Schilder, Tritte, Griffe, Geländer innen
- Schweißtechnische Bauweiseprüfung nicht erforderlich, CL 3 nach EN 15085

Art	Bezeichnung	Inhalt	Erstellt durch			
2.1	Werksbe-	Bestätigung der Übereinstimmung	Hersteller			
	scheinigung	mit der Bestellung				
2.2	Werkszeugnis	Bestätigung der Übereinstimmung	Hersteller			
		mit der Bestellung unter Angabe von				
		Ergebnissen nichtspezifischer Prüfung				
3.1	Abnahme-	Bestätigung der Übereinstimmung	Unabhängige			
	prüfzeugnis	mit der Bestellung unter Angabe von	Stelle des Her-			
	3.1	Ergebnissen spezifischer Prüfung	stellers			
3.2	Abnahme-	Bestätigung der Übereinstimmung	Unabhängige			
	prüfzeugnis	mit der Bestellung unter Angabe von	Stelle des Her-			
	3.2	Ergebnissen spezifischer Prüfung	stellers und			
			Abnehmer des			
			Kunden o.ä.			

Aufgaben der Root-Cause-Analysis

- Im Verlauf der IBS häufig:
 - Systematische Abweichungen
 - Ausfälle
 - Kundenbeschwerden
- Typisch: nur Symptome werden geschildert
 - Auftreten sporadisch
 - Zugang zum Fahrzeug eingeschränkt
 - Nicht reproduzierbar
 - Keine Referenzsystem vorhanden
- Problem: vorgefertigte Meinungen zur Ursache
- Möglichkeiten:
 - Ishikawa-Diagramm
 - 5-Why

Ishikawa-Diagramm

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

5-Why

- Einfaches, direktes Fragen nach der Ursache führt häufig nicht zur Root-Cause
- Wiederholtes Fragen kommt "tiefer"
- Generell akzeptiert sind 5 Why

Literatur

DVS 1612: Gestaltung und Dauerfestigkeitsbewertung von Schweißverbindungen mit Stählen im Schienenfahrzeugbau. Deutscher Verband für Schweissen und verwandte Verfahren e.V., 2009.

Deutsche Bahn AG. Liste güteprüfplichtiger Produkte, http://www.deutschebahn.com/file/de/2128678/JwePIH-gLPohxM4LWXm2xVI2u0I/2462592/data/produktlistesfz.pdf.

DIN 25201-1. E DIN 25201-1: Konstruktionsrichtlinie für Schienenfahrzeuge und deren Komponenten - Schraubenverbindungen - Teil 1: Einteilung, Kategorien der Schraubenverbindungen. Beuth-Verlag, 2010.

- DIN 25201-2. E DIN 25201-2: Konstruktionsrichtlinie für Schienenfahrzeuge und deren Komponenten Schraubenverbindungen Teil 2: Konstruktion Maschinenbauliche Anwendungen. Beuth-Verlag, 2010.
- DIN 25201-4. E DIN 25201-4: Konstruktionsrichtlinie für Schienenfahrzeuge und deren Komponenten Schraubenverbindungen Teil 4: Sichern von Schraubenverbindungen. Beuth-Verlag, 2010.
- EN 15085-3. EN 15085-3: Schweißen von Schienenfahrzeugen und -fahrzeugteilen; Teil 3: Konstruktionsvorgaben. Beuth-Verlag, 2007.
- EN 15085-4. EN 15085-4: Schweißen von Schienenfahrzeugen und -fahrzeugteilen; Teil 4: Fertigungsanforderungen. Beuth-Verlag, 2007.
- EN 15085-5. EN 15085-5: Schweißen von Schienenfahrzeugen und -fahrzeugteilen; Teil 5: Prüfung und Dokumentation. Beuth-Verlag, 2007.

Literatur iii

Roland Felkai and Arndt Beiderwieden. *Projektmanagement für technische Projekte*. Springer Vieweg, 2013.

Norbert Kanitzky. Ungeschickt verhandelt. Frankfurt Allgemeine Zeitung Buch, 2010.

Michael Kleinaltenkamp and Samy Saab. Technischer Vertrieb. Springer-Verlag, 2009.

Adnan Niazi, Jian S. Dai, Staroula Balabani, and Lakmal Seneviratne. Product cost estimation: Technique classification and methodology review. *J. Manuf. Sci. Eng.*, 128(2):563 – 575, 2005.

Gerhard Pahl, Wolfgang Beitz, Jörg Feldhusen, and Karl-Heinrich Grote. *Pahl/Beitz Konstruktionslehre: Grundlagen Erfolgreicher Produktentwicklung*. Springer-Verlag, 2013.

James P Womack and Daniel T Jones. *Lean thinking: banish waste and create wealth in your corporation.* Simon and Schuster, 2010.