Congruence

Definition 1 (Segment Congruence). Let \mathcal{P} be an ordered geometry, and suppose we have an equivalence relation on pairs of points, denoted \cong_s . We call \cong_s a segment congruence if the following properties are satisfied.

- SC1. $(x,y) \cong_s (y,x)$ and $(x,y) \cong_s (y,x)$ for all points x and y.
- SC2. If $(x,y) \cong_s (z,w)$ then $(z,w) \cong_s (x,y)$ for all points x, y, z, and w.
- SC3. If $(x,y) \cong_s (z,w)$ and $(z,w) \cong_s (u,v)$, then $(x,y) \cong_s (u,v)$ for all x, y, z, w, u, and v.
- SC4. If [xyz] and [abc], then if any two of the congruences

$$(x,y) \cong_s (a,b), \quad (y,z) \cong_s (b,c), \quad (x,z) \cong_s (a,c)$$

hold, so does the third.

In this case, \cong_s is and equivalence relation on the set of segments in \mathcal{P} , and we write $\overline{xy} \cong \overline{ab}$ to mean $(x,y) \cong_s (a,b)$.

Examples

Angle Congruence

Definition 2 (Angle Congruence). Let \mathcal{P} be an ordered geometry, and suppose we have an equivalence relation on triples of points, denoted \cong_a . We call \cong_a an angle congruence if the following properties are satisfied.

- AC1. $(a, o, b) \cong_a (b, o, a)$ and $(a, o, b) \cong_a (a, o, b)$ for all points a, o, and b.
- AC2. If $(a, o, b) \cong_a (x, p, y)$, then $(x, p, y) \cong_a (a, o, b)$ for all points a, o, b, x, p, and y.
- AC3. If $(a, o, b) \cong_a (x, p, y)$ and $(x, p, y) \cong_a (h, q, k)$, then $(a, o, b) \cong_a (h, q, k)$ for all points a, o, b, x, p, y, h, q, and k.
- AC4. If $x \in \overrightarrow{oa}$ and $y \in \overrightarrow{ob}$ and x, y, and o are distinct, then $(a, o, b) \cong_a (x, o, y)$.