

Chapitre 1

Des choses à faire

Construire des extensions explicites! Y'a l'air d'avoir beaucoup de critères là dans le chapitre

Chapitre 2

2e point sur les cours, 11/10/2024

2.1 Conséquences

Ducoup comme la fermeture intégrale commute avec la localisation on a directement

Les idéaux sont tous inversibles : ça c'est direct, en particulier les idéaux fractionnaires forment un groupe.

La decomposition en idéaux premiers : avec une petite application de la noethérianité.

ensuite, si L/K = Frac(A) est séparable finie, on prouve que

- 1. La trace $Tr(x_{-})$ est non dégénérée (via le discriminant), et c'est ptet là l'hypothèse séparable.
- 2. La fermeture de A dans L est de Dedekind et de type fini sur A.

On obtient directement les décompositions,

$$\mathfrak{p}B = \prod_{\mathfrak{P}|\mathfrak{p}} \mathfrak{P}^{e_{\mathfrak{P}}}$$

et la formule

$$[L:K] = \sum e_{\mathfrak{P}} f_{\mathfrak{P}}$$

avec le lemme chinois.

2.2 Sur les anneaux de Dedekind

Le truc cool que j'avais jamais vu c'est que si A est intègre noethérien

Équivalences. On a :

A est de dimension 1 et intégralement clos.

équivaut à

Tout les localisés $A_{\mathfrak{p}}$ sont de valuations discrètes.

L'équivalence est assez directe. On obtient la déf d'anneau de Dedekind.

Remarque 1. En fait ça prouve que localiser et passer à la fermeture intégrale commutent. I.e. $(\mathfrak{a}.\mathfrak{b})_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}}.\mathfrak{b}_{\mathfrak{p}}$ et $(\mathfrak{a} + \mathfrak{b})_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}} + \mathfrak{b}_{\mathfrak{p}}$.

Ça prouve directement que les idéaux sont tous inversibles dans un anneau de Dedekind.

Faut juste se rappeler de la correspondance entre idéaux de A et $S^{-1}A$.

2.3 Sur les anneaux de valuations discrètes

J'aimerais donner seulement des idées de preuves et équivalences. J'regarde toujours des anneaux commutatifs.

Équivalences. Dans un anneau noethérien,

DVR \equiv local, noethérien, $\mathfrak{m} = (\pi)$ non nilpotent.

Idées. On veut écrire $x = \pi^n u$ de manière unique. Il faut montrer que $\cap \mathfrak{m}^n = 0$! Pour ça on utilise $\mathfrak{u} = \{x | \exists n, \pi^n x = 0\}$. Ensuite c'est fini.

Équivalences. Dans un anneau noethérien intègre,

DVR \equiv un seul idéal premier \neq 0, intégralement clos.

Démonstration. Le point c'est de montrer que \mathfrak{m} est inversible, alors \mathfrak{m} est principal. On note $\mathfrak{m}' = \{x \in K | x\mathfrak{m} \subset A\}$. On a

$$\mathfrak{mm}' \subset A$$
 et $A \subset \mathfrak{m}'$ implique $\mathfrak{m} \subset \mathfrak{mm}'$.

d'où $\mathfrak{m}\mathfrak{m}'=\mathfrak{m}$ ou A. Maintenant en fait

si
$$\mathfrak{m}\mathfrak{m}' = A$$
 alors $\sum x_i y_i = 1$ d'où $u = x_{i_0} y_{i_0} \in A - \mathfrak{m} = A^{\times}$

en particulier tout $z \in \mathfrak{m}$ se réécrit $z = x_{i_0}(u^{-1}yz)$. Le reste est page 20 du Corps locaux.

Chapitre 3

1er point sur les cours, 04/10/2024

3.1 Extensions sur corps non complets

Si $(K, |.|_K)$ est ultramétrique et E/K finie. On peut regarder Aut(L/K) pour construire

$$|.|_L \mapsto |\sigma(.)|_L$$

elles étendent toutes $|.|_K$ et on en a #Aut(L/K)/ef dans le cas galoisien par exemple. À l'inverse, étant donné $|.|_L$ qui étend $|.|_K$ on peut obtenir un σ en trouvant $\tau \colon \widehat{L} \to (\widehat{K})^c$ d'où $|.|_{\widehat{L}} = |.|_c \circ \tau$. En fait on regarde

$$L \longrightarrow L.\overline{K} = \widehat{L}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow$$

$$K \longleftarrow \overline{K} \simeq \widehat{K} \longleftarrow (\widehat{K})^{c}$$

où \overline{K} est l'adhérence de K dans \widehat{L} . L'égalité montre que \widehat{L} est de dimension finie sur \widehat{K} . En particulier on obtient $\tau\colon \widehat{L}\to (\widehat{K})$. Ensuite, $\tau(\widehat{L})\ni \tau(x)\mapsto |x|_{\widehat{L}}$ est une valeur absolue sur $\tau(\widehat{L})\subset (\widehat{K})^c$ qui étend celle de $\overline{K}\simeq \widehat{K}$ d'où par unicité sur la clôture on a

$$|x|_{\widehat{L}} = |\tau(x)|_c$$

et on peut faire redescendre sur $\tau|_L \colon L \to K^c$.

Remarque 2. Y'a plusieurs plongements en général $\widehat{L} \to (\widehat{K})^c$ penser au groupe de galois sur \mathbb{Q} qui devient le groupe de décomposition sur \mathbb{Q}_p . Et y définissent tous la même valeur absolue sur \widehat{L} .

3.2 Avec les anneaux artiniens

Là y'a un truc cool qui montre clairement la décomposition des premiers dans des extensions! On a une correspondance entre

{Idéaux maximaux de $L \otimes_K \widehat{K}$ } \leftrightarrow {extensions de $|.|_K$ à L}

Pour la surjectivité on utilise

et on pose $\mathfrak{m}_{|.|_L} = \ker(L \otimes_K \widehat{K}) \to \widehat{L}$. Pour l'injectivité c'est assez direct.

3.3 Extensions de valuations et corps complets

Le cas archimédien est assez particulier puisque y'a que \mathbb{R} et \mathbb{C} . C'est l'exercice 8 de la feuille où on peut montrer que tout corps archimédien complet qui contient i est isomorphe à \mathbb{C} . Je vais regarder surtout le cas non archimédien.

Théoreme 1. Si C(K) est l'ensemble des suites de Cauchy sur K et $\mathfrak{m}(K)$ celles qui tendent vers 0 alors $\mathfrak{m}(K)$ est maximal et $C(K)/\mathfrak{m}(K)$ est un corps complet minimal où K est dense.

Pour les extensions maintenant on a besoin de Hensel et du fait que

Corollaire 1. Si K est complet ultramétrique, le max des coefficients de P(X) irréductible sur K est atteint par $P^*(0)$ (coeff dominant) ou P(0). En particulier si $P^*(0) = 1$ et $|P(0)| \le 1$ alors P est dans $\mathcal{O}_K[X]$.

mais j'en parlerai a un autre moment. Donc maintenant qu'on sait c'est quoi les corps complets premiers en caractéristique 0 on regarde leurs extensions finies. L'idée c'est que c'est des Banach de dimension finie sur un \mathbb{Q}_p donc

1er point sur les cours, 04/10/2024

• Toutes les normes sont équivalentes.

en particulier les valeurs absolues sont équivalentes, donc y'en a qu'une qui étend $|.|_p$.

Construction de la valeur absolue. Étant donné $x \in L/K$ on regarde l'endomorphisme de multiplication sur L par $x, m_x \in End_K(L)$. On déf

$$N_{L/K}(x) = \det(m_x)$$

comme $N_{L/K}(y \in K) = y^{[L:K]}$ on déf

$$|.|_L := |N_{L/K}(.)^{1/[L:K]}|$$

pour vérifier qu'elle est ultramétrique, on se rappelle que $\det(m_x)$ est le coefficient constant de $\chi_{m_x}(X)$ le polynôme caractéristique de m_x à coefficient dans K. En plus $x \mapsto m_x$ est un homomorphisme d'anneau. D'où

$$N_{L/K}(x) = (-1)^{[L:K]} \chi_{m_x}(0)$$

si on remarque que m_x est diagonale par bloc avec [L:K(x)] blocs. On peut affiner en remarquant que

$$\chi_{m_x} = \mu_x^{[L:K(x)]}$$

avec μ_x le polynôme minimal de x. Maintenant pour montrer que c'est ultramétrique faut montrer que

$$|1 + \alpha|_L \le 1$$

Mais $\mu_{1+x}(X) = \mu_x(X-1)$ et $\mu_x \in \mathcal{O}_K$ par le corollaire puis $\mu_x(-1) \in \mathcal{O}_K$ d'où le résultat. Les autres propriétés sont claires.

On peut maintenant l'étendre a une clôture algébrique K^c via

$$x \mapsto |N_{K(x)/K}(x)^{1/[K(x):K]}|$$

et il y'a unicité.

3.4 Classification sur \mathbb{Q}

En théorie des nombres, on a regardé grosso modo Ostrowski et les équivalences de valeurs absolues $(|.|^s)$ pour définir la même topologie.

Les grosses idées a retenir pour moi : étant donné une |.|, si elle est non archimédienne \to on regarde la valuation associée v. Ensuite $\mathfrak{m} \cap \mathbb{Z} = p\mathbb{Z}$, et ensuite sur \mathbb{Z} si $x \wedge p = 1$ |ux| = |1 - yp| = 1 d'où suffit de regarder |p|. Le cas archimédien est un peu plus compliqué mais assez étonnant. En fait si on regarde un corps archimédien complet dont la v.a. étend celle de \mathbb{Q} contenant i. Alors on peut plonger \mathbb{C} , disons i: $\mathbb{C} \to K$. L'idée c'est de regarder pour $a \in K$ l'inf de,

$$f_a \colon z \mapsto |z - a|_K$$

si c'est r > 0 on peut faire bouger r comme on veut. Ensuite faut regarder pour $|\gamma_0 - a| = r$ et $|\gamma - \gamma_0| < r$ on peut calculer

$$(\gamma_0 - \gamma)^n - (\gamma_0 - a)^n$$

le spécificité de $\mathbb C$ analytiquement c'est alors d'avoir toutes les racines de l'unités. Ce qui permet de factoriser le truc du dessus.