Algonithms

DATE: 22/2/22

NODE

ALGORITHMS

mathematical procedure that allows us to tell what's the shortest path from the red point to the blue point.

OPTIMISATION PROBLEMS

DETERMINISTIC > doesn't make roudom olecisions. ALGORITHM

OPTIH. PROBLEM (shortest path, minimum spawing tree)

SPANNING _ graph with no cycles. TREE

· ALGORITHM TECHNIQUES

- greedy algorithms
- · dinamic programming.
 · divide et impera (divide and conquer)

STABLE HATCHING PROBLEM COMPANIES (an) APPLICANTS (bn) a2 bz POSSIBLE MATCHES BETWEEN COMPANIES AND APPLICANTS b, a, bz 02 PREFERS a, to az IF WE CONSIDER THESE CASES, Ь. 1 az to a, EVERYONE WILL BE SATISFIED b a, 1 Ь, to b, az by to by prefers b, 2 works only a, . a,: b, > b2 → b, a₂ • az: b1 > b2 b, : a, > a2 bi WORKS ONLY b_2 : $a_1 > a_2$ FOR A, & bz UNSTABLE MATCHING Let A and B be two sets of cardinality Dec: 1A1 = 1B1 = n, with AnB = Ø: A perfect motching between A and B is a pairing of the elements of A with the elements of B. That is, M = [{a,b} | a \in A \ b \in B] M is a perfect matching if and only if (IFF) Va & A there exists exactly one be B such that § a, b } ∈ M (AND Viceversa) example

One company will have only one applicant and viceversa.

STABLE HATCHING

Let A, B be two sets |A| = |B| = n, An $B = \emptyset$ suppose that each $a \in A$ has a prejevence order on B and, likewise, each $b \in B$ has a prejevence order on A.

Given a perfect matching. Mof A and B, we sony that in is unstable if it contains two pairs \{ a, b \}, \{ a', b' \} \in M, such that:

- a PREFERS b' to b AND a to a

a X b

A MATCHING M is STABLE, IF ITS NOT UNSTABLE (bruh...)

Questions:

1) Does a stable matching always exist?
2) How can we find a stable matching (if it exists)?

