Semi-Supervised Power Weighted Shortest Path Distances

Daniel Mckenzie ¹ Steven Damelin ²

¹ University of Georgia

² American Mathematical Society

October 20th 2018

Overview: Clustering Euclidean Data

• Clustering: Given $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \subset \mathbb{R}^D$, find partition into clusters:

$$\mathcal{X} = \mathcal{X}_1 \cup \ldots \cup \mathcal{X}_k \tag{1}$$

- In this talk we consider:
 - **SS Clustering** Given $\mathcal{Y} \subset \mathcal{X}$ with $\mathcal{Y} = \mathcal{Y}_1 \cup \ldots \cup \mathcal{Y}_k$ known, find (1) with $\mathcal{Y}_a \subset \mathcal{X}_a$.
 - Cluster Extraction Given $\mathcal{Y}_a \subset \mathcal{X}_a$, find \mathcal{X}_a .
- We propose a distance $d^{ss,p}(\cdot,\cdot)$ on $\mathcal X$ incorporating labeled data $\mathcal Y$.
- We provide theoretical and experimental evidence that using $d^{ss,p}(\cdot,\cdot)$ instead of Euclidean distance can improve accuracy of many algorithms.

Daniel Mckenzie (UGA) Shortest Paths October 20th 2018 2 / 25

Graphical Approaches to Clustering

- Convert \mathcal{X} to weighted graph G = (V, E, W) with $V = \{v_1, \dots, v_N\}$ and $W_{ij} = \varphi(d(\mathbf{x}_i, \mathbf{x}_j))$.
- Require $\varphi: \mathbb{R} \to \mathbb{R}$ to be non-increasing, continuous at 0, fast-decaying.
- Typical example: $\varphi(d(\mathbf{x}_i, \mathbf{x}_j)) = \exp(-d(\mathbf{x}_i, \mathbf{x}_j)^2/\sigma^2)$
- More refined example²:

$$W_{ij} = \begin{cases} \exp\left(-d(\mathbf{x}_i, \mathbf{x}_j)^2/\sigma_i\sigma_j\right) & \text{if } \mathbf{x}_j \text{ amongst } r\text{-NN of } \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

Here $\sigma_i = \|\mathbf{x}_i - \mathbf{x}_{[\ell,i]}\|_2$ where $\mathbf{x}_{[\ell,i]}$ is ℓ -th nearest neighbor of \mathbf{x}_i .

• Usually $d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2$.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

²Zelnik-Manor and Perona 2005.

Data Driven Metrics/Distances

- It makes sense to consider d dependent on \mathcal{X} .
- Nearest Neighbor metric³, more generally density based distances⁴.
- Shortest Path Distances⁵⁶ $d_{SP}(\mathbf{x}_i, \mathbf{x}_j) = \min_{\gamma} \sum_{j=0}^{m} \|\mathbf{x}_{i_{j+1}} \mathbf{x}_{i_j}\|_2$ where $\gamma = \{\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_m}\} \subset \mathcal{Q} \subset \mathcal{X}$ and $\mathbf{x}_{i_0} := \mathbf{x}_i, \ \mathbf{x}_{i_{m+1}} := \mathbf{x}_i$
- Longest leg distance⁷.
- Diffusion Distances⁸.

³Cohen et al. 2015.

⁴Orlitsky and Sajama 2005.

⁵Vincent and Bengio 2003.

⁶Tenenbaum, De Silva, and Langford 2000.

⁷Little, Maggioni, and Murphy 2017.

⁸Coifman and Lafon 2006.

Semi-Supervised Power weighted Path Distances

- ullet If available, it makes sense to incorporate labeled data ${\mathcal Y}$ into metric.
- For a fixed a, and $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$, define a path through \mathcal{Y}_a from \mathbf{x}_i to \mathbf{x}_j as any subset $\gamma := \{\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_m}\} \subset \mathcal{Y}_a$.
- Power-weighted length of path (for p > 1):

$$\ell^{p}(\gamma) = \|\mathbf{x}_{i} - \mathbf{y}_{i_{1}}\|^{p} + \sum_{j=1}^{m-1} \|\mathbf{y}_{i_{j}} - \mathbf{y}_{i_{j+1}}\|^{p} + \|\mathbf{y}_{i_{m}} - \mathbf{x}_{j}\|^{p}$$

- For $a=1,\ldots,k$ define $d^{a,p}(\mathbf{x}_i,\mathbf{x}_j):=\min_{\gamma}\ell^p(\gamma)$.
- $\bullet \ \mathsf{Define} \ d^{ss,p}(\mathbf{x}_i,\mathbf{x}_j) := \min\{\min_{a} d^{a,p}(\mathbf{x}_i,\mathbf{x}_j), \|\mathbf{x}_i-\mathbf{x}_j\|_2^p\}.$
- Bijral et. al^9 consider a similar, but different approach.

◆ロト ◆御 ▶ ◆恵 ▶ ◆恵 ▶ ・恵 ・ 釣 ९ ○

⁹Bijral, Ratliff, and Srebro 2011.

Visualizing the geodesics

Figure: Three clusters drawn from three Gaussian distributions. Labeled data indicated by colored crosses. Paths shown are geodesics for $d^{1,2}$.

Daniel Mckenzie (UGA) Shortest Paths October 20th 2018 6 / 2

Visualizing the geodesics

Figure: Data drawn from three thickened lines. Labeled data indicated by colored crosses. Paths shown are geodesics for $d^{1,2}$.

7 / 25

An appropriate generative model

- $\mathcal{M}_1, \ldots, \mathcal{M}_k \subset \mathbb{R}^D$ smooth, embedded, compact manifolds. $\dim (\mathcal{M}_a) = d_a \ll D$.
- $\mathcal{X}_a \sim \mathcal{M}_a$ uniformly i.i.d for $a=1,\ldots,k$. Let $\mathcal{X}=\cup_{a=1}^k \mathcal{X}_a$
- $\operatorname{dist}(\mathcal{M}_a, \mathcal{M}_b) := \min_{\mathbf{u} \in \mathcal{M}_b, \mathbf{v} \in \mathcal{M}_b} \|\mathbf{u} \mathbf{v}\| \ge \delta$ for all $a \ne b$.
- Such data models are widely-studied¹⁰ and are hypothesized to describe real-world data such as hand-written digits, faces, etc.
- Assume labeled data $\mathcal{Y} = \bigcup_{a=1}^k \mathcal{Y}_a$ with $\mathcal{Y}_a \subset \mathcal{X}_a$ selected at random.
- Let $m_a = |\mathcal{Y}_a|$ and assume $m_1 \approx m_2 \approx \ldots \approx m_k$.

Analyzing the Shortest-Paths metric for this Data model

Two key parameters for clustering algorithms:

$$\begin{split} \epsilon_1 &:= \max_{\substack{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}_a \\ \mathbf{x}_i \neq b}} d^{ss,p}(\mathbf{x}_i, \mathbf{x}_j) \quad \text{(Max. in-cluster distance.)} \\ \epsilon_2 &:= \min_{\substack{\mathbf{x}_i \in \mathcal{X}_a, \mathbf{x}_j \in \mathcal{X}_b \\ a \neq b}} d^{ss,p}(\mathbf{x}_i, \mathbf{x}_j) \quad \text{(Min. between-cluster distance.)} \end{split}$$

Want ϵ_1 small and ϵ_2 large. We are able to show that:

Lemma (Damelin & M.)

$$\epsilon_2 \geq \delta^p \ \textit{where} \ \delta := \min_{\substack{\mathbf{u} \in \mathcal{M}_a, \mathbf{v} \in \mathcal{M}_b \\ a \neq b}} \|\mathbf{u} - \mathbf{v}\|$$

Theorem (Damelin & M.)

$$\epsilon_1 = O(m^{(1-p)/d}) \rightarrow 0$$
 where $m = |\mathcal{Y}|$.

Bounding minimal between-cluster distance

Recall that:

$$d^{ss,p}(\mathbf{x}_{i},\mathbf{x}_{j}) := \min \{ \min_{c} d^{c,p}(\mathbf{x}_{i},\mathbf{x}_{j}), \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{p} \}$$

$$d^{c,p}(\mathbf{x}_{i},\mathbf{x}_{j}) = \min_{\gamma} \left(\|\mathbf{x}_{i} - \mathbf{y}_{i_{1}}\|^{p} + \sum_{j=1}^{m-1} \|\mathbf{y}_{i_{j}} - \mathbf{y}_{i_{j+1}}\|^{p} + \|\mathbf{y}_{i_{m}} - \mathbf{x}_{j}\|^{p} \right)$$

Where
$$\gamma = \{\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_m}\} \subset \mathcal{Y}_c$$
.

- If $\mathbf{x}_i \in \mathcal{X}_a$ and $\mathbf{x}_j \in \mathcal{X}_b$

 - ② Either $c \neq a$ or $c \neq b$, so $\|\mathbf{x}_i \mathbf{y}_{i_1}\|^p \geq \delta^p$ or $\|\mathbf{y}_{i_1} \mathbf{x}_j\|^p \geq \delta^p$
- Hence $\epsilon_2 \geq \delta^p$

Intrinsic Path distances

• Let g_a denote restriction of Euclidean (Riemannian) metric to \mathcal{M}_a . For any $\mathbf{u}, \mathbf{v} \in \mathcal{M}_a$ can define *intrinsic distance*:

$$d_{\mathcal{M}_a}(\mathbf{u},\mathbf{v}) = \inf_{\lambda} \int_0^1 \sqrt{g_a(\lambda'(t),\lambda'(t))} dt$$

where $\lambda:[0,1]\to\mathcal{M}_a$ with $\lambda(0)=\mathbf{u}$ and $\lambda(1)=\mathbf{v}$.

• For $\mathbf{u}, \mathbf{v} \in \mathcal{M}_a$ define:

$$d_{\mathsf{S},\mathsf{a}}^{p}(\mathbf{x}_i,\mathbf{x}_j) := \min_{\gamma} \left(d_{\mathcal{M}_\mathsf{a}}(\mathbf{u},\mathbf{y}_{i_1})^p + \sum_{j=1}^{m-1} d_{\mathcal{M}_\mathsf{a}}(\mathbf{y}_{i_j},\mathbf{y}_{i_{j+1}})^p + d_{\mathcal{M}_\mathsf{a}}(\mathbf{y}_{i_m},\mathbf{v})^p \right)$$

Where again $\gamma = \{\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_m}\} \subset \mathcal{Y}_{\mathsf{a}}$

Bounding maximal in-cluster distance 1

Lemma

For any $\mathcal{M} \subset \mathbb{R}^D$ with induced Riemannian metric and any $\mathbf{u}, \mathbf{v} \in \mathcal{M}$:

$$\|\mathbf{u} - \mathbf{v}\| \leq d_{\mathcal{M}}(\mathbf{u}, \mathbf{v})$$

Corollary

For all a = 1, ..., k and all $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{M}_a$:

$$d^{a,p}(\mathbf{x}_i,\mathbf{x}_j) \leq d^p_{S,a}(\mathbf{x}_i,\mathbf{x}_j)$$

Will show $d_{S,a}^p(\mathbf{x}_i,\mathbf{x}_j) = O(m^{(1-p)/d})$

Bounding maximal in-cluster distance 2

Theorem (From Theorem 1 in Hwang, Damelin, and Hero 2016)

Assume \mathcal{Y}_a drawn uniformly i.i.d from \mathcal{M}_a , with $|\mathcal{Y}_a| = m_a$. Define $r_{m_a} := m_a^{(1-p)/pd}$ and fix $\epsilon > 0$:

$$\mathbb{P}\left(\sup_{\substack{\mathbf{u},\mathbf{v}\in\mathcal{M}_{a}\\d_{\mathcal{M}_{a}}(\mathbf{u},\mathbf{v})\geq r_{m_{a}}}}\left|\frac{d_{S,a}^{p}(\mathbf{u},\mathbf{v})}{m^{(1-p)/d}\nu_{\mathcal{M}_{a}}^{(p-1)/d}d_{\mathcal{M}_{a}}(\mathbf{u},\mathbf{v})}-C(d_{a},p)\right|>\epsilon\right)=o_{m_{a}}(1)$$
where $\nu_{\mathcal{M}_{a}}=Vol(\mathcal{M}_{a})$

Rearranging, with probability 1 - o(1):

$$\max_{\substack{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}_a \\ d_{\mathcal{M}_a}(\mathbf{u}, \mathbf{v}) \geq r_{m_a}}} d_{S,a}^p(\mathbf{x}_i, \mathbf{x}_j) \leq \left(C(d_a, p) + \epsilon\right) \nu_{\mathcal{M}_a}^{(p-1)/d} m^{(1-p)/d} \max_{\mathbf{u}, \mathbf{v} \in \mathcal{M}_a} d_{\mathcal{M}_a}(\mathbf{u}, \mathbf{v})$$

 $=\widetilde{C}_a m^{(1-p)/d}$

Daniel Mckenzie (UGA)

Shortest Paths

Bounding maximal in-cluster distance 3

Hence with probability 1 - o(1):

$$\max_{\substack{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}_a \\ d_{\mathcal{M}_a}(\mathbf{u}, \mathbf{v}) \geq r_{m_a}}} d^{a,p}(\mathbf{x}_i, \mathbf{x}_j) \leq \max_{\substack{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}_a \\ d_{\mathcal{M}_a}(\mathbf{u}, \mathbf{v}) \geq r_{m_a}}} d^p_{S,a}(\mathbf{x}_i, \mathbf{x}_j) = \widetilde{C}_a m^{(1-p)/d}$$

So:

$$\max_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}_{a}} d^{ss,p}(\mathbf{x}_{i}, \mathbf{x}_{j}) \leq \max_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}_{a}} \min (d^{a,p}(\mathbf{x}_{i}, \mathbf{x}_{j}), \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{p}$$

$$\leq \max \left(\widetilde{C}_{a} m^{(1-p)/d}, r_{m_{a}}^{p}\right)$$

$$= O(m_{a}^{(1-p)/d}) \text{ as } r_{m_{a}} = m_{a}^{(1-p)/pd}$$

Experimental Results: Set-up

- For each data set $\mathcal{X} \subset \mathbb{R}^D$ draw $\mathcal{Y} \subset \mathcal{X}$ at random. $m_1 = m_2 = \ldots = m_k$.
- Computed Euclidean (E) distances: $A_{ij}^{(1)} = \|\mathbf{x}_i \mathbf{x}_j\|$ and Path-Based (P-B) distances: $A_{ii}^{(2)} = d^{ss,p}(\mathbf{x}_i, \mathbf{x}_j)$ with p = 2.
- Use ZMP local scaling (for $\alpha = 1, 2$):

$$W_{ij}^{(\alpha)} = \left\{ \begin{array}{c} \exp\left(-\left(A_{ij}^{(\alpha)}\right)^2/\sigma_i\sigma_j\right) & \text{if } \mathbf{x}_j \text{ amongst } r\text{-NN of } \mathbf{x}_i \\ 0 & \text{otherwise} \end{array} \right.$$

Experimental Results: Algorithms

Algorithms for SS Clustering:

- TV-based partitioning with a Regional Force (TVRF) (Yin and Tai 2018)
- Normalized Spectral Clustering (Spectral) (Ng, Jordan, and Weiss 2002)
- Iterated SS Cluster Pursuit (ISSCP) (Lai and Mckenzie 2018)

Algorithms for Cluster Extraction:

- Local Spectral Diffusion (LOSP++) (He et al. 2016)
- Heat Kernel Diffusion (HKGrow) (Kloster and Gleich 2014)
- SS Cluster Pursuit (SSCP) (Lai and Mckenzie 2018)

Experimental Results: Three Lines

Figure: Three Lines. Artificial data set with 3000 points and three, equally sized clusters. Labeled data shown with colored crosses.

Experimental Results: Three Lines

	TVRF		ISSCP		Spectral	
	Е	P-B	Е	P-B	Е	P-B
1%	43.13%	50.45%	67.82%	66.71%	34.78%	35.21%
2%	69.41%	72.79%	77.75 %	76.47%	34.83%	34.86%
3%	81.47%	82.38%	83.37%	82.45%	34.79%	34.77%
4%	83.92%	$\pmb{85.95\%}$	83.43%	81.53%	34.53%	34.70%
5%	90.13%	89.67%	87.09%	85.21%	34.55%	34.65%

Table: Comparing accuracy—Euclidean (E) versus Path-Based (P-B)—for three SS clustering algorithms on 'Three Lines' data set. Amount of labeled data varying from 1% to 5%.

Experimental Results: Subset of MNIST

Figure: MNIST. 500 pictures of each digit 0–4 chosen at random for total of 2500 data points. Images converted to vectors, PCA done, 50 highest principal components kept.

Experimental Results: Subset of MNIST

	TVRF		ISSCP		Spectral	
	Е	P-B	Е	P-B	Е	P-B
1%	20.12%	47.46%	89.90%	91.07%	78.76%	79.20%
2%	79.26%	83.06%	91.98%	92.47%	78.76%	79.20%
3%	98.46%	98.61 %	91.82%	92.68%	78.76%	79.20%
4%	98.52%	98.58 %	97.04%	97.29%	78.76%	79.20%
5%	98.56%	98.56 %	97.33%	97.70%	78.76%	79.20%

Table: Comparing accuracy—Euclidean (E) versus Path-Based (P-B)—for three SS clustering algorithms on 'MNIST' data set. Amount of labeled data varies from 1% to 5%.

Experimental Results: Columbia Object Image Library (COIL)

Chapelle et. al. 11 constructed a standard SSL data set by:

- Taking only red channel, downsampling to 16×16 .
- Choosing 24 objects, grouped into 6 categories. 250 images per

¹¹Chapelle, Scholkopf, and Zien 2006.

October 20th 2018

Experimental Results: COIL

	T	VRF	Spectral		
	Euclidean	Path-Based	Euclidean	Path-Based	
1%	57.27%	60.53%	33.67%	41.93%	
2%	57.73%	66.73%	37.80%	42.00%	
3%	68.20%	77.00 %	37.80%	37.80%	
4%	71.93%	85 .60%	37.47%	37.40%	
5%	81.53%	89 .13%	37.93%	37.93%	

Table: Comparing accuracy—Euclidean (E) versus Path-Based (P-B)—for two SS clustering algorithms on 'COIL' data set. Amount of labeled data varies from 1% to 5%

Experimental Results: One Line With Background

Figure: 500 data points drawn from thickened line and 1000 background points drawn uniformly in $[0,5]^{10} \subset \mathbb{R}^{10}$. 2-D projection shown

Experimental Results: One Line With Background

	SSCP		LOSP++		HKGrow	
	Ε	P-B	Ε	P-B	Ε	P-B
3%	0.83	0.81	0.55	0.43	0.58	0.76
4%	0.84	0.83	0.53	0.47	0.58	0.68
5%	0.96	0.93	0.72	0.51	0.68	0.95
6%	0.94	0.92	0.69	0.62	0.89	0.88
7%	0.96	0.93	0.77	0.68	0.81	0.81

Table: Comparing Jaccard index—Euclidean (E) versus Path-Based (P-B)— for three cluster extraction algorithms. Amount of labeled data varies from 3% of cluster of interest to 7% of cluster of interest

Concluding Remarks

Future Directions

- **1** Improve computational speed of computing $d^{ss,p}$.
- ② Provide estimates on amount of labeled data $(|\mathcal{Y}|)$ required.
- 3 Test on more SS Clustering and Cluster extraction algorithms.

Questions or Comments: danmac29@uga.edu

Thank you!