# Testing a perceptual fluency/disfluency model of priming with a model of choice and response time

Kevin Potter, Chris Donkin, and David Huber

- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion

- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion

# Perceptual priming



- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion



Huber and O'Reilly (2003)



Huber and O'Reilly (2003)

Early perceptual dynamics



**Decision process** 

Early perceptual dynamics



**Decision process** 

Project focus

Early perceptual dynamics

Race between perceptual identification latencies <u>Target</u> Foil

Response times?
Serial vs. parallel?
Bias?
Speed-accuracy trade-off?

**Decision process** 

nROUSE Accuracy data only



- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion

# Experimental design



- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion



Logan et al. (2014)



<sup>\*</sup>Fit nROUSE separately to each subject's forced-choice accuracy data and extracted latencies

Target primed Foil primed 400 ms 400 ms 50 ms 50 ms nROUSE target identification latency nROUSE foil identification latency  $\rho_5$ **Drift rates** Onscreen alternatives Match? **Target**  $\xi_2$  $\xi_3$ Target precept  $\xi_7$ Foil Match?



- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion

# Modeling results



# Modeling results



# Modeling results



Inverse latencies

- Perceptual priming
- The nROUSE model
- Experimental design
- The diffusion race model
- Modeling results
- Discussion

#### Discussion

- Despite independent estimation, there was sizeable convergence between the diffusion race and nROUSE models.
- Supports the assumption that decision is based on perceptual identification latencies.
- Assumption of mirroring effect proved effective in linking performance between forced-choice and same-different tasks.

#### List of references

- Huber, D. E. (2008). Immediate priming and cognitive aftereffects. *Journal of Experimental Psychology: General*, 137, 324 347.
- Huber, D. E., & O'Reilly, R. C. (2003). Persistence and accommodation in short-term priming and other perceptual paradigms: Temporal segregation through synaptic depression. *Cognitive Science*, 27, 403 430.
- Logan, G. D., Van Zandt, T., Verbruggen, F., & Wagenmakers, E.-J. (2014). On the ability to inhibit thought and action: General and special theories of an act of control. *Psychological Review*, 121 (1), 66 95.



Fastest determines observed choice



Huber and O'Reilly (2003)

| Correct | Prime  | Duration<br>(ms) | Left racer          |                       | Right racer         |                      |
|---------|--------|------------------|---------------------|-----------------------|---------------------|----------------------|
| Left    | Target | 50               | $\tau_1$ $\kappa_1$ | $\xi_1$               | $\tau_1$ $\kappa_1$ | ξ <sub>5</sub>       |
|         |        | 400              |                     | $\xi_2$               |                     | $\boldsymbol{\xi}_6$ |
|         | Foil   | 50               |                     | $\xi_3$               |                     | ξ <sub>7</sub>       |
|         |        | 400              |                     | $\xi_4$               |                     | ξ <sub>8</sub>       |
| Right   | Target | 50               |                     | <b>ξ</b> <sub>5</sub> |                     | $\xi_1$              |
|         |        | 400              |                     | $\xi_6$               |                     | $\xi_2$              |
|         | Foil   | 50               |                     | $\xi_7$               |                     | ξ <sub>3</sub>       |
|         |        | 400              |                     | ξ <sub>8</sub>        |                     | $\xi_4$              |

| Correct choice | Prime  | Duration<br>(ms) | Same racer                    |                    | Different racer               |                            |
|----------------|--------|------------------|-------------------------------|--------------------|-------------------------------|----------------------------|
| Same           | Target | 50               | τ <sub>2</sub> κ <sub>2</sub> | $\xi_1 - \theta_M$ | τ <sub>2</sub> κ <sub>3</sub> | $2\xi_{\rm B}-\xi_1$       |
|                |        | 400              |                               | $\xi_2 - \theta_M$ |                               | $2\xi_{B}-\xi_{2}$         |
|                | Foil   | 50               |                               | $\xi_3 - \theta_M$ |                               | $2\xi_{\rm B}-\xi_3$       |
|                |        | 400              |                               | $\xi_4 - \theta_M$ |                               | $2\xi_{B}-\xi_{4}$         |
| Different      | Target | 50               |                               | $\xi_5 - \theta_M$ |                               | $2\xi_{\rm B}-\xi_{\rm 5}$ |
|                |        | 400              |                               | $\xi_6 - \theta_M$ |                               | $2\xi_{\rm B}-\xi_{\rm 6}$ |
|                | Foil   | 50               |                               | $\xi_7 - \theta_M$ |                               | $2\xi_B - \xi_7$           |
|                |        | 400              |                               | $\xi_8 - \theta_M$ |                               | $2\xi_B - \xi_8$           |

# Descriptive statistics



#### Descriptive statistics



# Acknowledgements



**David Huber** 



**Chris Donkin**