

IONIZATION CONSTANTS OF ACIDS AND BASES

W. P. Jencks and J. Regenstein

These pK'_a values were taken from the original literature and from several extensive compilations of such data, of which the most important are

- Albert, *Ionization Constants of Acids and Bases*, Methuen, London, 1962.
- Bell, *The Proton in Chemistry*, 2nd ed., Cornell, Ithaca, New York, 1973.
- Brown, McDaniel, and Häfliger, in Braude and Nachod, *Determination of Organic Structures by Physical Methods*, Academic Press, New York, 1955.
- Kortum, Vogel, and Andrusow, *Dissociation Constants of Organic Acids in Aqueous Solution*, Butterworths, London, 1961.
- Perrin, *Dissociation Constants of Organic Bases in Aqueous Solution*, Butterworths, London, 1965.
- Yukawa, Ed., *Handbook of Organic Structural Analysis*, Benjamin, New York, 1965.

A particularly valuable source of dissociation constants obtained under a variety of experimental conditions is provided by Sillen L. G. and Martell, A. E., Eds., *Stability Constants*, Special Publications No. 17 and 25, Chemical Society, London, 1964 and 1971. This compilation also lists association constants of metals for a variety of inorganic and organic ligands.

The compounds selected were those which were thought most likely to be useful to biochemists and chemists and these compilations should be consulted for information on compounds which are not included here.

All values are reported as $pK'_a = -\log K'_a = 14 - pK'_b$. K'_a is the ionization constant

$$\frac{[H^+][A^-]}{[HA]} \text{ or } \frac{[H^+][B]}{[HB^+]} \text{ or } \frac{[A^{n-1}][H^+]}{[HA^n]}$$

Temperatures are not indicated because variations of pK'_a with temperature are generally smaller than the variations of the data from different sources for other reasons, but most of the data were obtained at or near 25° . Ionization constants which are reported as thermodynamic values at 25° are indicated with an asterisk, *, but some of these may only represent values measured at low ionic strength.

These pK'_a values and a measured pH should not be used to obtain an *exact* measure of the ratio of acid to base in a given solution. Ionic strength and specific salt effects, as well as possible errors in the reported pK'_a values, are likely to make such estimates inaccurate. It should be kept in mind that the effect of increasing ionic strength is generally to decrease the apparent pK'_a of neutral and anionic acids and to increase the pK'_a of cationic acids. These effects are particularly large for polyanions, such as phosphates.

There is some intentional redundancy in the tables to facilitate the location of listings for compounds that might be listed in several sections. The pK'_a values for amines refer to the ionization of the conjugate acids of the amines except for a few nitrogen acids, which undergo an acidic ionization.

The pH of a solution at a given ionic strength and temperature is given by

$$pH = pK'_a + \log \frac{[\text{base}]}{[\text{acid}]}$$

in which the pK'_a is measured under the same experimental conditions. The following relationships are useful to have readily available to estimate the ratio of acid to base at a given pH or to estimate the buffer ration of acid required to give a given pH; the compiler keeps a copy of these numbers on his desk.

Fraction base or acid	pH	Fraction base or acid	pH
.5% or 95%	$pK'_a \pm 1.25$	30% or 70%	$pK'_a \pm 0.37$
10% or 90%	$pK'_a \pm 0.95$	35% or 65%	$pK'_a \pm 0.27$
15% or 85%	$pK'_a \pm 0.75$	40% or 60%	$pK'_a \pm 0.18$
20% or 80%	$pK'_a \pm 0.60$	45% or 55%	$pK'_a \pm 0.09$
25% or 75%	$pK'_a \pm 0.48$	50% or 50%	$pK'_a \pm 0$

AMINO ACIDS

Compound	pK _a	Reference	Compound	pK _a	Reference
Alanine	2.34, 9.69	6	α -Aminotricarballylic acid	2.10, 3.60,	99
<i>N</i> -Acetyl-	3.72	97		4.60, 9.82	
Amide	8.02*	99	α -Aminovaleric acid	4.20*	130
3-(2-Aminoethyl)dithio-	8.28, 9.30	99	2-Anilinoethylsulphonic acid	3.80	99
Carbamyl-	3.89	99	Arginine	12.48, 2.17,	6
<i>N</i> -Ethyl-	2.22, 10.22	99		9.04	
<i>N</i> -Methyl-	2.22, 10.19	99	Argininosuccinic acid	> 12, 1.62,	
<i>N</i> -n-Propyl-	2.21, 10.19	99		9.58, 2.70,	
β -(2-Pyridyl)-	1.37, 4.02, 9.22	99		4.26	
β -(3-Pyridyl)-	1.77, 4.64, 9.10	99	Asparagine	2.02, 8.8	6
β -(4-Pyridyl)-	4.85	99	α -Hydroxy-	2.28, 7.20	99
β -Alanine	3.60, 10.19	6	β -Hydroxy-	2.09, 8.29	99
<i>N</i> -acetyl-	4.44	129	Aspartic acid	2.09, 3.86, 9.82	99
Carbamyl-	4.49	129	Diamide	7.00	99
Allothreonine	2.11, 9.01	99	Hydroxy-	1.91, 3.51, 9.11	99
<i>O</i> -Methyl-	1.92, 8.90	99	Azascrine	8.55	101
γ -Aminoacetoacetic acid	2.9, 8.3	99			99
α -Amino adipic acid	2.14, 4.21	101			99
2-Aminobenzoic acid	2.19, 4.95	99	γ -Butyrobetaine	3.94	99
<i>N</i> , <i>N</i> -Dimethyl-	1.4, 8.49	99	Cananine	2.40, 3.70,	99
3-Hydroxy-	5.19, 10.12	99		9.20	
<i>N</i> -Methyl-	1.97, 5.34	99	Canavanine	2.50, 6.60, 9.25	99
3-Aminobenzoic acid	3.29, 5.10	99	L-Citrulline	2.43, 9.41	99
4-Aminobenzoic acid	2.50, 4.87	99	Creatine	2.67, 11.02	6
4-Aminobutylylphosphonic acid	2.55, 7.55, 10.9	99	Creatinine	4.84, 9.2	6
4-Aminobutylsulphonic acid	10.65	99	Cycloserine	4.4, 7.4	101
α -Aminobutyric acid	2.55, 9.60	6	Cysteine	10.78, 1.71,	6
Carbamoyl- α -amino-n-butyric	3.89	129		8.33	
γ -Aminobutyric acid	4.23, 10.43	6	Ethyl ester	6.69, 9.17	99
Carbamyl-	4.68	129	Methyl ester	6.56, 8.99	99
2-Aminobutyric acid	2.27, 9.68	99	S-Ethyl-	1.94, 8.69	99
α -Amino-n-caproic acid	2.33	129	S-Methyl-	8.75	99
ϵ -Aminocaproic acid	4.37	129	Cystine	1.65, 7.85	6
10-Aminodecylphosphonic acid	8.0, 11.25	99	L-Cystine diamide	5.93, 6.90	99
10-Aminodecylsulphonic acid	11.35	99	2,4-Diaminobutyric acid	1.85, 8.28,	99
10-Amino- <i>n</i> -dodecanoic acid	4.648	99		10.50	
Aminoethylphosphoric acid	2.45, 7.0, 10.8	99	2,3-Diaminopropionic acid	1.23, 6.73, 9.56	99
2-Aminoethylsulphonic acid	8.95	99	2,7-Diaminosuberic acid	1.84, 2.64,	99
ω -Aminoheptanoic acid	4.50	136		9.23, 9.89	
6-Aminohexanoic acid	4.37, 10.81	99	3-Dimethylaminopropionic acid	9.85	99
α -Aminoisobutyric acid	2.36, 10.21	6	Formamidinoglutamic acid	2.7, 4.4, 11.3	99
Carbamyl-	4.46	129	Formamidinoacetic acid	2.6, 11.5	99
α -Aminoisocaproic acid	2.33	129	Glutamic acid	2.19, 4.25, 9.67	6
α -Aminoisovaleric acid	2.29	129	Diethyl ester	7.04	99
δ -Aminolaevulinic acid	4.05, 8.90	99	γ -Monobenzyl ester	2.17, 9.00	99
Aminomethylphosphonic acid	2.35, 5.9	99	α -Monoethyl ester	3.85, 7.84	99
Aminomethylsulphonic acid	5.75	99	γ -Monoethyl ester	2.15, 9.19	99
α -Amino- β -methyl- <i>n</i> -valeric acid	2.32	129	Glutamine	2.17, 9.13	6
1-Aminonaphthalene-2-sulphonic acid	1.71	99	Glycine	2.34, 9.6	6
2-Aminonaphthalene-1-sulphonic acid	2.35	99	<i>N</i> -Acetyl-	3.67	99
3-Amino-1-naphthoic acid	2.61, 4.39	99	<i>N,N</i> -bis(2-Hydroxyethyl)-	2.50, 8.11	99
4-Aminopentanoic acid	3.97, 10.46	99	<i>N</i> -n-Butyl-	2.35, 10.25	99
5-Aminopentylsulphonic acid	10.95	99	Carbamyl-	3.88*	97
4-Aminophenylacetic acid	3.60, 5.26	99	Chloroacetyl-	3.38*	97
2-Aminophenylarsonic acid	3.77, 8.66	99	<i>N,N</i> -Diethyl-	2.04, 10.47	99
2-Aminophenylboric acid	4.53, 9.31	99	Dihydroxyethyl-	8.08*	97
β -Aminopropionic acid	3.55*, 10.23*	97	<i>N,N</i> -Dimethyl-	2.08, 9.80	99
4-Aminosalicylic acid	1.78, 3.63	99	<i>N</i> -Ethyl-	2.34*, 10.23	99

* Thermodynamic value.

PEPTIDES

Compound	pK _a	Reference	Compound	pK _a	Reference
Ala-Ala-(LD)	3.12, 8.30	27	Gly-Ala-Ala (LD)	3.30, 8.17	27
Ala-Ala-(LL)	3.30, 8.14	27	Gly-Ala-Ala (LL)	3.38, 8.10	27
Ala-Ala-Ala-(3D)	3.39, 8.06	27	Gly-Ala-Ala-Gly	3.30, 7.93	99
Ala-Ala-Ala-(DLL)	3.37, 8.06	27	Gly-Asp	2.81, 4.45, 8.60	99
Ala-Ala-Ala-Ala-(DLLL)	3.42, 7.99	27	Gly-asparagine	2.82, 7.20	99
Ala-Ala-Ala-(3L)	3.39, 8.03	27	Gly-Gly	3.06, 8.13	6
Ala-Ala-Ala-Ala-(4L)	3.42, 7.94	27	Gly-Gly-cystine	2.71, 7.94	99
Ala-Ala-Ala-(LDL)	3.31, 8.13	27	Gly-Gly-Gly	3.26, 7.91	23
Ala-Ala-Ala-Ala-(LDLL)	3.22, 7.99	27	Gly-His	6.79, 8.20	99
Ala-Ala-Ala-(LLD)	3.37, 8.05	27	Gly-Leu	3.10, 8.41	99
Ala-Ala-Ala-Ala-(LLDL)	3.24, 7.93	27	Gly-Pro	2.81, 8.65	99
Ala-Gly	3.16, 8.24	27	Gly-sarcosine	2.98, 8.57	99
Ala-Gly-Gly	3.19, 8.15	99	Gly-Ser	2.92, 8.10	99
Ala-Lys-Ala-(3L)	3.15, 7.65, 10.30	27	Gly-Ser-Gly	3.23, 7.99	99
Ala-Lys-Ala-(LDL)	3.33, 7.97, 10.36	27	Gly-Trp	8.06	99
Ala-Lys-Ala-(LDLL)	3.32, 8.01, 10.37	27	Gly-Tyr	2.93, 8.45, 10.49	99
Ala-Lys-Ala-(LLD)	3.29, 7.84, 10.49	27	Gly-Val	3.15, 8.18	99
Ala-Lys-Ala-Ala-(4L)	3.58, 8.01, 10.58	27	His-Gly	2.36, 6.27, 8.57	99
Ala-Lys-Ala-Ala-Ala-(5L)	3.53, 7.75, 10.35	27	His-His	5.54, 6.80, 7.82	99
Ala-Lys-Ala-Ala-Ala-(LDLL)	3.30, 7.85, 10.29	27	Leu-asparagine	2.83, 8.23	99
β -Ala-1-methylhistidine	2.64, 7.04, 9.49	99	Leu-Tyr	2.87, 8.36, 10.28	99
Ala-Pro	3.04, 8.38	99	Lys-Ala-(LD)	3.00, 7.74, 10.63	27
β -Ala-Bis	2.73, 6.87, 9.73	99	Lys-Ala-(LL)	3.22, 7.62, 10.70	27
Anserine	7.0, 2.65, 9.5	6	Lys-Glu	2.98, 4.47, 8.45, 11.30	99
Asparaginyl-Gly	2.90, 7.25	99	Lys-Lys-(LD)	2.85, 7.53, 9.92 10.98	27
Asp-Asp	2.70, 3.40, 4.70 8.26	99	Lys-Lys-(LL)	3.01, 7.53, 10.05 11.01	27
α -Aspartyl-histidine	2.45, 3.02, 6.82, 7.98	99	Lys-Lys-Lys-(3L)	3.08, 7.34, 9.80, 10.54, 11.32	27
β -Aspartyl-histidine	1.93, 2.95, 6.93, 8.72	99	Lys-Lys-Lys-(LDD)	2.94, 7.14, 9.60, 10.38, 11.09	27
Asp-Gly	2.10, 4.53, 9.07	99	Lys-Lys-Lys-(LDL)	2.91, 7.29, 9.79, 10.54, 11.42	27
Asp-Tyr	2.13, 3.57, 8.92, 10.23	99	Met-Met	2.22, 9.27	99
Carnosine	6.83, 9.51	6	Methyl-Leu-Gly	3.29, 7.82	99
Cys-Cys	2.65, 7.27, 9.35, 10.85	99	Phe-Ala-Arg	2.60, 7.54, 12.43	99
Cys-Gly-Gly	3.13, 6.36, 6.95	99	Phe-Gly	3.13, 7.62	99
Cys-Gly-Gly-Gly-Gly	3.21, 6.01, 6.87	99	Phenylalanylglycine amide	6.72	99
L-Cystinylcystine	1.87, 2.94, 6.53, 7.66	99	Pro-Gly	3.19, 8.97	99
N,N-Dimethylglycyl-glycine	3.11, 8.09	99	Sarcosyl-Gly	3.14, 8.66	99
N,N-Dimethyl-leucyl-glycine	7.78	99	Sarcosyl-Leu	3.15, 8.67	99
Glutaminyl-glutamic acid	3.14, 4.38, 7.62	99	Sarcosylsarcosine	2.89, 9.18	99
Glutaminyl-glycine	3.15, 7.52	99	Ser-Gly	3.10, 7.33	99
Glutathione	3.59, 8.75, 9.65	77	Ser-Leu	3.08, 7.45	99
Glutathione, oxidized	3.15, 4.03, 8.57, 9.54	77	Tyr-Tyr	3.52, 7.68, 9.80, 10.26	99
Gly-Ala (L), (D)	3.17, 8.23	27	Val-Gly	3.23, 8.00	99

THIOLS

Compound	pK_a	Reference	Compound	pK_a	Reference
<i>N</i> -Acetylcysteine	9.52	112	<i>o</i> -Mercaptophenylacetic acid	4.28, 7.67	59
<i>N</i> -Acetyl- β -mercaptopisoleucine	10.30	112	2-Mercaptopropionic acid	4.32, 10.30	153
<i>N</i> -Acetylpenicillamine	9.90	112	Methyl cysteine	6.5, (7.5)	81
<i>O</i> -Aminothiophenol	6.59	81	Methyl-[β -diethylaminoethyl]-sulfide	9.8	5
<i>p</i> -Chlorothiophenol	7.50	81	Methyl thioglycolate	7.8	23
Cysteine	1.8, 8.3, 10.8	23	<i>p</i> -Nitrobenzenethiol	5.1	58
Cysteine ethyl ester	6.53, 9.05	112	Penicillamine	7.90, 10.42	112
Cysteinylcysteine	2.65, 7.27, 9.35, 10.85	23	Thiocyanic acid	-1.84	104
1-Diethylamino-butane-(4)	10.1	5	Thioglycolic acid	3.67, 10.31	23
1-Diethylamino-hexane-(6)	10.1	5	Thiophenol	7.8, 6.52	59, 81, 82
1-Diethylamino-propane-(3)	8.0, 10.5	5	Pentafluoro-	2.68	155
<i>N</i> -Diethyl-cysteamine	7.8, 10.75	5	<i>p</i> -Me-	6.82	157
<i>N</i> -Dimethyl-cysteamine	7.95, 10.7	5	<i>p</i> -OMe-	6.77	157
<i>N</i> -Dipropyl-cysteamine	8.00, 10.8	5	<i>m</i> -Me-	6.66	157
Ethyl mercaptan	10.50	81	<i>m</i> -OMe-	6.38	157
Glutathione	2.12, 3.59, 8.75, 9.65	23	<i>p</i> -Cl-	6.13	157
DL-Homocysteine	8.70, 10.46	112	<i>p</i> -Br-	6.02	157
2-Mercaptoethanesulfonate	7.53 (9.1)	81	<i>m</i> -Cl-	5.78	157
Mercaptoethanol	9.5	23	<i>p</i> -COMe-	5.33	157
Mercaptoethylamine	8.6, 10.75	23	<i>m</i> -NO ₂ -	5.24	157
<i>N</i> - β -Mercaptoethylmorpholine	6.65, 9.8	5	<i>p</i> -NO ₂ -	4.71, 4.50	157
<i>N</i> - β -Mercaptoethylpiperidine	7.95, 11.05	5	<i>I</i> -Thio-D-sorbitol	9.35	81
β -Mercaptoisoleucine	8.10, 10.6	112	<i>N</i> -Trimethyl cysteine	8.6	23

X =	-H	-S-	-SH	X =	-H	-S-	-SH
X(CH ₂) ₂ SH	12.0	13.96	10.75	X(CH ₂) ₃ SH	-	13.24	11.14
X(CH ₂) ₃ SH	12.4	13.25	11.50	X(CH ₂) ₃ SH	-	13.27	11.82

Compound	pK_a	Reference	Compound	pK_a	Reference
Mercaptans, RSH			<i>t</i> -C ₄ H ₉ -	11.05	82
R			(CH ₃) ₂ CH-	10.86*	103
C ₆ H ₅ CH ₂ -	9.43	82	(CH ₃) ₃ C-	11.22*	103
HOCH ₂ CH(OH)CH ₂ -	9.51	82	HOCH ₂ CH ₂ -	9.72	103
CH ₂ =CHCH ₂ -	9.96	82	CH ₃ CONHCH ₂ CH ₂ -	9.92	103
<i>n</i> -C ₄ H ₉ -	10.66	82	-OCOCH ₂ -	10.68*	103
<i>t</i> -C ₅ H ₁₁ -	11.21	82	-OCOCH ₂ CH ₂ -	10.84*	103
C ₂ H ₅ OCOCH ₂ -	7.95	82	<i>o</i> -OCOC ₆ H ₄ -	8.88*	103
C ₂ H ₅ OCH ₂ CH ₂ -	9.38	82	<i>p</i> -OCOC ₆ H ₄ -	5.80*	103
HOCH ₂ CH(OH)CH ₂ -	9.66	82	CH ₃ CO-	3.62*	103
<i>n</i> -C ₃ H ₇ -	10.65	82			

* Thermodynamic value.