Statistical Learning Theory - Classification -

Hisashi Kashima

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Classification

Classification:

Supervised learning for predicting discrete variable

■ Goal: Obtain a function $f: \mathcal{X} \to \mathcal{Y}$ (\mathcal{Y} : discrete domain)

-E.g. $x \in \mathcal{X}$ is an image and $y \in \mathcal{Y}$ is the type of object

appearing in the image

- -Two-class classification: $\mathcal{Y} = \{+1, -1\}$
- Training dataset:

 N pairs of an input and an output $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Some applications of classification:

From binary to multi-class classification

- Binary (two-class)classification:
 - Purchase prediction: Predict if a customer ${\bf x}$ will buy a particular product (+1) or not (-1)
 - Credit risk prediction: Predict if a obligor ${\bf x}$ will pay back a debt (+1) or not (-1)
- Multi-class classification (≠ Multi-label classification):
 - Text classification: Categorize a document x into one of several categories, e.g., {politics, economy, sports, ...}
 - Image classification: Categorize the object in an image x into one of several object names, e.g., {AK5, American flag, backpack, ...}
 - Action recognition: Recognize the action type ($\{running, walking, sitting, ...\}$) that a person is taking from sensor data x

Model for classification: Linear classifier

Linear (binary) classification model:

$$y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}(w_1x_1 + w_2x_2 + \dots + w_Dx_D)$$

- $-|\mathbf{w}^{\mathsf{T}}\mathbf{x}|$ indicates the intensity of belief
- $-\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ gives a separating hyperplane
- $-\mathbf{w}$: normal vector perpendicular to the separating hyperplane

Learning framework: Loss minimization and statistical estimation

- Two learning frameworks
 - 1. Loss minimization: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)})$
 - Loss function ℓ : directly handles utility of predictions
 - Regularization term $R(\mathbf{w})$
 - 2. Statistical estimation (likelihood maximization): $L(\mathbf{w}) = \prod_{i=1}^{N} f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})$
 - Probabilistic model: generation process of class labels
 - Prior distribution $P(\mathbf{w})$
- They are often equivalent: \begin{cases} Loss = Probabilistic model Regularization = Prior

Classification problem in loss minimization framework: Minimize loss function + regularization term

- Minimization problem: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) + R(\mathbf{w})$
 - -Loss function $L(\mathbf{w})$: Fitness to training data
 - -Regularization term $R(\mathbf{w})$: Penalty on the model complexity to avoid overfitting to training data (usually norm of \mathbf{w})
- Loss function should reflect the number of misclassifications on training data
 - -Zero-one loss: $\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) = \begin{cases} 0 & \left(y^{(i)} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right) \\ 1 & \left(y^{(i)} \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right) \end{cases}$ Incorrect classification

Zero-one loss:

Number of misclassification is hard to minimize

■ Zero-one loss:
$$\ell(y^{(i)}, \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)}) = \begin{cases} 0 & (y^{(i)} \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} > 0) \\ 1 & (y^{(i)} \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} \le 0) \end{cases}$$

Non-convex function is hard to optimize directly

Convex surrogates of zero-one loss: Different functions lead to different learning machines

- Convex surrogates: Upper bounds of zero-one loss
 - -Hinge loss \rightarrow SVM, Logistic loss \rightarrow logistic regression, ...

Logistic regression

Logistic regression:

Minimization of logistic loss is a convex optimization

Logistic loss:

$$\ell(y^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) = \frac{1}{\ln 2} \ln(1 + \exp(-y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}))$$

(Regularized) Logistic regression:

Convex

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w}\|_2^2$$

Statistical interpretation:

Logistic loss min. as MLE of logistic regression model

- Minimization of logistic loss is equivalent to maximum likelihood estimation of logistic regression model
- Logistic regression model (conditional probability):

$$f_{\mathbf{w}}(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$$

- σ : Logistic function (σ : $\Re \to (0,1)$)
- Log likelihood:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)}) = -\sum_{i=1}^{N} \log(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}))$$

$$\left(=\sum_{i=1}^{N} \delta(y^{(i)}=1) \log \frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} + \delta(y^{(i)}=-1) \log \left(1-\frac{1}{1+\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}\right)\right)$$

Parameter estimation of logistic regression: Numerical nonlinear optimization

Objective function of (regularized) logistic regression:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda ||\mathbf{w}||_{2}^{2}$$

- Minimization of logistic loss / MLE of logistic regression model has no closed form solution
- Numerical nonlinear optimization methods are used
 - -Iterate parameter updates: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$

Parameter update:

Find the best update minimizing the objective function

■ By update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} + \mathbf{d}$, the objective function will be:

$$L_{\mathbf{w}}(\mathbf{d}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}(\mathbf{w} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)})) + \lambda \|\mathbf{w} + \mathbf{d}\|_{2}^{2}$$

• Find \mathbf{d}^* that minimizes $L_{\mathbf{w}}(\mathbf{d})$:

$$-\mathbf{d}^* = \operatorname{argmin}_{\mathbf{d}} L_{\mathbf{w}}(\mathbf{d})$$

Finding the best parameter update: Approximate the objective with Taylor expansion

Taylor expansion:

3rd-order term

$$L_{\mathbf{w}}(\mathbf{d}) = L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \mathbf{H}(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

-Gradient vector:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\top}$$

Steepest direction

-Hessian matrix: $[H(\mathbf{w})]_{i,j} = \frac{\partial^2 L(\mathbf{w})}{\partial w_i \partial w_j}$

Newton update:

Minimizes the second order approximation

Approximated Taylor expansion (neglecting the 3rd order term):

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d} + O(\mathbf{d}^{3})$$

- Derivative w.r.t. \mathbf{d} : $\frac{\partial L_{\mathbf{w}}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{w}) + \mathbf{H}(\mathbf{w})\mathbf{d}$
- Setting it to be **0**, we obtain $\mathbf{d} = -\mathbf{H}(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Newton update formula:

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

$$\mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}) \qquad \mathbf{W} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$$

Modified Newton update: Second order approximation + linear search

■ The correctness of the update $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$ depends on the second-order approximation:

$$L_{\mathbf{w}}(\mathbf{d}) \approx L(\mathbf{w}) + \mathbf{d}^{\mathsf{T}} \nabla L(\mathbf{w}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\mathbf{w}) \mathbf{d}$$

- This is not actually true for most cases
- Use only the direction of $H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$ and update with $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta H(\mathbf{w})^{-1}\nabla L(\mathbf{w})$
- Learning rate $\eta > 0$ is determined by linear search:

$$\eta^* = \operatorname{argmax}_{\eta} L(\mathbf{w} - \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w}))$$

(Steepest) gradient descent: Simple update without computing inverse Hessian

- Computing the inverse of Hessian matrix is costly
 - -Newton update: $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \mathbf{H}(\mathbf{w})^{-1} \nabla L(\mathbf{w})$
- (Steepest) gradient descent:
 - -Replacing $H(\mathbf{w})^{-1}$ with I gives $\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} \eta \nabla L(\mathbf{w})$
 - $\nabla L(\mathbf{w})$ is the steepest direction
 - ullet Learning rate η is determined by line search

$$\mathbf{w} - \eta \nabla L(\mathbf{w}) \qquad \mathbf{w} - \eta \nabla L(\mathbf{w})$$

Gradient of

objective function

Summary:

Gradient descent

- Steepest gradient descent is the simplest optimization method:
- Update the parameter in the steepest direction of the objective function

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$$

-Gradient:
$$\nabla L(\mathbf{w}) = \left(\frac{\partial L(\mathbf{w})}{\partial w_1}, \frac{\partial L(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_D}\right)^{\mathsf{T}}$$

-Learning rate η is determined by line search

Example of gradient descent: Gradient of logistic regression

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ln(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

$$\bullet \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial \left(1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})\right)}{\partial \mathbf{w}}$$

$$= -\sum_{i=1}^{N} \frac{1}{1 + \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= -\sum_{i=1}^{N} \left(1 - f_{\mathbf{w}}(y^{(i)}|\mathbf{x}^{(i)})\right) y^{(i)}\mathbf{x}^{(i)}$$
Can be easily computed with the current prediction probabilities

Mini batch optimization: Efficient training using data subsets

Objective function for N instances:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda R(\mathbf{w})$$

- Its derivative $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} \frac{\partial \ell(\mathbf{w}^{\top} \mathbf{x}^{(i)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}}$ needs O(N) computation
- Approximate this with only one instance:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx N \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(J)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Stochastic approximation)}$$

• Also we can do this with 1 < M < N instances:

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{N}{M} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(j)})}{\partial \mathbf{w}} + \lambda \frac{\partial R(\mathbf{w})}{\partial \mathbf{w}} \quad \text{(Mini batch)}$$

Support Vector Machine and Kernel Methods

Support vector machine (SVM): One of the most successful learning methods

- One of the most important achievements in machine learning
 - -Proposed in 1990s by Cortes & Vapnik
 - -Suitable for small to middle sized data
- A learning algorithm of linear classifiers
 - Derived in accordance with the "maximum margin principle"
 - –Understood as hinge loss + L2-regularization
- Capable of non-linear classification through kernel functions
 - -SVM is one of the kernel methods

Loss function of support vector machine: Hinge loss

■ In SVM, we use hinge loss as a convex upper bound of 0-1 loss

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\}$$

• Squared hinge loss $\max\{\left(1-y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}\right)^2, 0\}$ is also sometimes used

Two formulations of SVM training: Soft-margin SVM and hard margin SVM

1. "Soft-margin" SVM: hinge-loss + L2 regularization

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_2^2$$

- −This is a convex optimization problem ⊕
- 2. "Hard-margin": constraint on the loss (to be zero)

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \text{ s.t. } \sum_{i=1}^N \max\{1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}, 0\} = 0$$

Equivalently, the constraint is written as

$$1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \le 0 \text{ (for all } i = 1, 2, ..., N)$$

The originally proposed SVM formulation was in this form

Geometric interpretation: Hard-margin SVM maximizes the margin

- $\bullet \min \frac{1}{2} \parallel \mathbf{w} \parallel_2^2 \leftrightarrow \max \frac{1}{\|\mathbf{w}\|_2} \left(\frac{1}{\|\mathbf{w}\|_2} \text{ is called } margin \right)$
- $\frac{\mathbf{w}'(\mathbf{x}^+ \mathbf{x}^-)}{\|\mathbf{w}\|_2}$: Sum of distance from separating hyperplane to a positive instance \mathbf{x}^+ and the distance to a negative instance \mathbf{x}^-
- - Since $1 y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0$ for $\forall i$,

$$\frac{\mathbf{w}^{\mathsf{T}}(\mathbf{x}^{\mathsf{+}}-\mathbf{x}^{\mathsf{-}})}{\|\mathbf{w}\|_{2}}$$
 is lower bounded by $\frac{2}{\|\mathbf{w}\|_{2}}$

Solution of hard-margin SVM (Step I): Introducing Lagrange multipliers

$$\min_{\mathbf{w}} \frac{1}{2} \| \mathbf{w} \|_{2}^{2} \text{ s.t. } 1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq 0 \ (i = 1, 2, ..., N)$$

• Lagrange multipliers $\{\alpha_i\}_i$:

$$\min_{\mathbf{w}} \max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{1}{2} \| \mathbf{w} \|_2^2 + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) \right)$$

- $-\operatorname{If} 1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} > 0$ for some i, we have $\alpha_i = \infty$
 - The objective function becomes ∞ , that cannot be optimal
- -If $1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} \leq 0$ for some i, we have either $\alpha_i = 0$ or $\left(1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}\right) = 0$, i.e. objective function remains the same as the original one $\left(\frac{1}{2} \| \mathbf{w} \|_2^2\right)$

Solution of hard-margin SVM (Step II): Dual formulation as a quadratic programming problem

By changing the order of min and max:

$$\min_{\mathbf{w}} \max_{\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \left(\frac{\parallel \mathbf{w} \parallel_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

$$\max_{\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \min_{\mathbf{w}} \left(\frac{\parallel \mathbf{w} \parallel_2^2}{2} + \sum_{i=1}^N \alpha_i (1 - y^{(i)} \mathbf{w}^\top \mathbf{x}^{(i)}) \right)$$

• Solving min gives $\mathbf{w} = \sum_{i=1}^N \alpha_i y^{(i)} \mathbf{x}^{(i)}$, which finally results in

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)}$$

Support vectors:

SVM model depends only on support vectors

• The dual problem:

e dual problem:
$$\underbrace{\sum_{\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_N)\geq 0}^{N}\sum_{i=1}^{N}\alpha_i-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy^{(i)}y^{(j)}\mathbf{x}^{(i)}\mathbf{x}^{(j)}}_{\mathbf{x}^{(i)}\mathbf{x}^{(j)}}$$

- Support vectors: the set of i such that $\alpha_i > 0$
 - -For such i, $1 y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} = 0$ holds
 - They are the closest instance to the separating hyperplane
- Non-support vectors ($\alpha_i = 0$) do not contribute to the model:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x}^{(j)}^{\mathsf{T}}\mathbf{x}$$

Solution of soft-margin SVM:

A similar dual problem with additional constraints

• Equivalent formulation of soft-margin SVM:

$$\min_{\mathbf{w}} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{N} e_{i} \qquad \text{Hinge loss}$$

$$\text{S. t. } 1 - y^{(i)} \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \leq e_{i}$$

$$(i = 1, 2, ..., N)$$

Results in a similar dual problem with additional constraints:

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)^{\top}} \mathbf{x}^{(j)}$$

$$0 \le \alpha_i \le C \ (i = 1, 2, ..., N)$$

An important fact about SVM: Data access through inner products between data

- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)}^\mathsf{T} \mathbf{x}^{(j)}$
 - –Optimization problem (dual form):

$$\max_{\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \mathbf{x}^{(j)}$$

- -Model: $y = \sum_{j=1}^{N} \alpha_j y^{(j)} \mathbf{x^{(i)}}^{\mathsf{T}} \mathbf{x}$
- -The inner product $\mathbf{x}^{(i)}^{\mathsf{T}}\mathbf{x}^{(j)}$ is interpreted as similarity

Kernel methods: Data access through kernel function

- The dual form objective function and the classifier access to data always through inner products $\mathbf{x}^{(i)}^\mathsf{T} \mathbf{x}^{(j)}$
- The inner product $\mathbf{x}^{(i)}$ $\mathbf{x}^{(j)}$ is interpreted as similarity
- Can we use some similarity function $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ instead of $\mathbf{x}^{(i)} \mathbf{x}^{(j)}$? Yes (under certain conditions)

$$\max_{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N) \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

-Model:
$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \sum_{j=1}^{N} \alpha_j y^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x})$$

Kernel functions: Introducing non-linearity in linear models

- Consider a (nonlinear) mapping ϕ : $\Re^D \to \Re^{D'}$
 - -D-dimensional space to $D'(\gg D)$ -dimensional space
 - –Vector ${f x}$ is mapped to a high-dimensional vector ${m \phi}({f x})$
- Define kernel $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$ in the D'-dimensional space
- ullet SVM is a linear classifier in the D'-dimensional space, while is a non-linear classifier in the original D-dimensional space

Advantage of kernel methods: Computationally efficient (when D' is large)

Advantage of using kernel function

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \boldsymbol{\phi}(\mathbf{x}^{(i)})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}^{(j)})$$

- lacktriangle Usually we expect the computation cost of K depends on D'
 - -D' can be high-dimensional (possibly infinite dimensional)
- If we can somehow compute $\phi(\mathbf{x}^{(i)})^{\mathsf{T}}\phi(\mathbf{x}^{(j)})$ in time depending on D, the dimension of ϕ does not matter
- Problem size:
 - D'(number of dimensions) $\rightarrow N$ (number of data)
 - -Advantageous when D' is very large or infinite

Example of kernel functions: Polynomial kernel can consider high-order cross terms

- Combinatorial features: Not only the original features $x_1, x_2, ..., x_D$, we use their cross terms (e.g. x_1x_2)
 - -If we consider M-th order cross terms, we have $\mathrm{O}(D^M)$ terms
- Polynomial kernel: $K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)} + c)^{\mathsf{M}}$

-E.g. when
$$c = 0$$
, $M = 2$, $D = 2$,
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \left(x_1^{(i)} x_1^{(j)} + x_2^{(i)} x_2^{(j)}\right)^2$$
$$= \left(x_1^{(i)^2}, x_2^{(i)^2}, \sqrt{2} x_1^{(i)} x_2^{(i)}\right) \left(x_1^{(j)^2}, x_2^{(j)^2}, \sqrt{2} x_1^{(j)} x_2^{(j)}\right)$$

-Note that it can be computed in O(D)

Example of kernel functions: Gaussian kernel with infinite feature space

- Gaussian kernel (RBF kernel): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|_2^2}{\sigma}\right)$
 - Can be interpreted as an inner product in an infinitedimensional space

Discrimination surface with Gaussian kernel

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html

Gaussian kernel (RBF kernel)

 $\|\mathbf{x}_i - \mathbf{x}_j\|_2^2$

Kernel methods for non-vectorial data: Kernels for sequences, trees, and graphs

Kernel methods can handle any kinds of objects (even non-vectorial objects) as long as efficiently computable kernel functions are available

Representer theorem:

Theoretical underpinning of kernel methods

- Can we use some similarity function as a kernel function?
 - –Yes (under certain conditions)
- Kernel methods rely on the fact that the optimal parameter is represented as a linear combination of input vectors:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

-Gives the dual form classifier

$$\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \operatorname{sign}\left(\sum_{j=1}^{N} \alpha_{j} y^{(j)} \mathbf{x}^{(j)}^{\mathsf{T}}\mathbf{x}\right)$$

Representer theorem guarantees this (if we use L2-regularizer)

(Simple) proof of representer theorem: Obj. func. depends only on linear combination of inputs

- Assumption: Loss ℓ for i-th data depends only on $\mathbf{w}^{\top}\mathbf{x}^{(i)}$
 - -Objective function: $L(\mathbf{w}) = \sum_{i=1}^{N} \ell(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda ||\mathbf{w}||_{2}^{2}$
- Divide the optimal parameter \mathbf{w}^* into two parts $\mathbf{w} + \mathbf{w}^{\perp}$:
 - $-\mathbf{w}$: Linear combination of input data $\left\{\mathbf{x}^{(i)}\right\}_i$
 - $-\mathbf{w}^{\perp}$: Other parts (orthogonal to all input data $\{\mathbf{x}^{(i)}\}$)
- $L(\mathbf{w}^*)$ depends only on \mathbf{w} : $\sum_{i=1}^N \ell(\mathbf{w}^{*\mathsf{T}}\mathbf{x}^{(i)}) + \lambda ||\mathbf{w}^*||_2^2$

$$= \sum_{i=1}^{N} \ell \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \right) + \lambda (\|\mathbf{w}\|_{2}^{2} + 2\mathbf{w}^{\mathsf{T}} \mathbf{w}^{\mathsf{T}} + \|\mathbf{w}^{\mathsf{T}}\|_{2}^{2})$$

$$= 0 \qquad \qquad = 0 \qquad \text{Minimized to} = 0$$

Primal objective function:

Kernel representation is also available in the primal form

Primal objective function of SVM:

$$L(\mathbf{w}) = \sum_{i=1}^{N} \max\{1 - y^{(i)}\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}, 0\} + \lambda \|\mathbf{w}\|_{2}^{2}$$

Primal objective function using kernel:
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$L(\mathbf{\alpha}) = \sum_{i=1}^{N} \max\{1 - y^{(i)} \sum_{j=1}^{N} \alpha_{j} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), 0\}$$

$$+ \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

Support vector regression:

Use ϵ -insensitive loss instead of hinge loss

■ Instead of the hinge loss, use ϵ -insensitive loss:

$$\ell^{(i)}(y^{(i)}, \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}; \mathbf{w}) = \max\{|y_i - \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}| - \epsilon, 0\}$$

• Incurs zero loss if the difference between the prediction and the target $|y_i - \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)}|$ is less than $\epsilon > 0$

