Amendments to the Claims

Please amend Claim 14. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

1. (Original) A compound represented by the structural formula:

or a pharmaceutically acceptable salt thereof, wherein R_1 and R_2 are independently an aliphatic group, a substituted aliphatic group, an aryl group or a substituted aryl group,

R₁₀ is -H or unsubstituted alkyl group;

R₆ is a carboxylic acid protecting group; and

Y is a covalent bond or a substituted or unsubstituted straight-chained hydrocarbyl group.

- 2. (Original) The compound of Claim 1 wherein Y is a covalent bond or -C(R₇R₈)- and R₇ and R₈ are each independently -H, an aliphatic or substituted aliphatic group, or R₇ is -H and R₈ is a substituted or unsubstituted aryl group, or, R₇ and R₈, taken together, are a C₂-C₆ substituted or unsubstituted alkylene group.
- 3. (Original) The compound of Claim 2 wherein R_7 and R_8 are both -H.

- 4. (Original) The compound of Claim 1 wherein R₁ is an aryl group or a substituted aryl group.
- 5. (Original) The compound of Claim 1 wherein R₂ is an alkyl group or a substituted lower alkyl group.
- 6. (Original) The compound of Claim 2 wherein R₂ is methyl or ethyl; R₇ is -H; and R₈ is -H or methyl.
- 7. (Original) The compound of Claim 6 wherein R_1 is phenyl or substituted phenyl.
- 8. (Original) The compound of Claim 7 wherein R_1 is phenyl and R_2 is methyl.
- 9. (Original) The compound of Claim 2 wherein R₁ is an aliphatic group or a substituted aliphatic group.
- 10. (Original) The compound of Claim 2 wherein R₂ is an aliphatic group or a substituted aliphatic group.
- 11. (Original) The compound of Claim 10 wherein R₂ is a lower alkyl group or a substituted lower alkyl group.
- 12. (Original) The compound of Claim 1 wherein R_{10} is H.
- 13. (Original) The compound of Claim 2 wherein R_{10} is H.
- 14. (Currently Amended) A compound represented by the structural formula:

$$R_1$$
 S R_2 N R_5 R_{10}

or a pharmaceutically acceptable salt thereof, wherein R_1 and R_2 are independently an aliphatic group, a substituted aliphatic group, an aryl group or a substituted aryl group; R_5 is -H or a hydrazine protecting group and R_{10} is -H or a substituted or unsubstituted alkyl group; wherein R_5 and R_{10} are not both -H.

- 15. (Original) The compound of Claim 14 wherein R_5 is a hydrazine protecting group when R_2 is an aryl group or a substituted aryl group.
- 16. (Original) The compound of Claim 14 wherein R_5 is -H or a hydrazine protecting group when R_2 is an aliphatic or substituted aliphatic group and R_{10} is -H or an unsubstituted alkyl group.
- 17. (Original) The compound of Claim 14 wherein R₂ is an aliphatic group or a substituted aliphatic group.
- 18. (Original) The compound of Claim 17 wherein R_1 is an aryl group or a substituted aryl group.
- 19. (Original) The compound of Claim 18 wherein R₂ is an alkyl group or a substituted lower alkyl group.
- 20. (Original) The compound of Claim 19 wherein R_2 is methyl or ethyl.

- 21. (Original) The compound of Claim 14 wherein R₁ is phenyl or substituted phenyl.
- 22. (Original) The compound of Claim 21 wherein R_1 is phenyl and R_2 is methyl.
- 23. (Original) The compound of Claim 21 wherein R₁ is phenyl substituted with one or more groups selected from -OH, -Br, -Cl, -I, -F, -OR^a, -O-COR^a, -COR^a, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR^a, -N(R^aR^b), -COOR^a, -CHO, -CONH₂, -CONHR^a, -NHCOR^a, -NRCOR^a, -NHCONH₂, -NHCONR^aH, -NHCON(R^aR^b), -NR^cCONH₂, - $NR^{c}CONR^{a}H$, $-NR^{c}CON(R^{a}R^{b})$, $-C(=NH)-NH_{2}$, $-C(=NH)-NHR^{a}$, $-C(=NH)-N(R^{a}R^{b})$ $C(=NR^c)-NH_2$, $-C(=NR^c)-NHR^a$, $-C(=NR^c)-N(R^aR^b)$, $-NH-C(=NH)-NH_2$, $-NH-C(=NH)-NH_2$ NHR^a , -NH-C(=NH)-N(RaRb), -NH-C(=NRc)-NH₂, -NH-C(=NR°)-NHR^a, -NH- $C(=NR^c)-N(R^aR^b)$, $-NrdH-C(=NH)-NH_2$, $-NR^d-C(=NH)-NHR^a$, $-NR^d-C(=NH)-NHR^a$ $N(R^aR^b)$, $-NR^d-C(=NR^c)-NH_2$, $-NR^d-C(=NR^c)-NHR^a$, $-NR^d-C(=NR^c)-N(R^aR^b)$, $-NHNH_2$, $-NR^d-C(=NR^c)-N(R^aR^b)$, $-NR^d-C(=NR^c)-N(R^aR^b)$, $-NHNH_2$, $-NR^d-C(=NR^c)-N(R^aR^b)$ NHNHR^a, -NHN(R^aR^b),-SO₂NH₂, -SO₂NHR^a, -SO₂NR^aR^b, -CH=CHR^a, -CH=CR^aR^b, -CR^c=CR^aR^b,-CR^c=CHR^a, -CR^c=CR^aR^b, -CCR^a, -SH, -SR^a, -S(O)₂R^a, alkyl groups, substituted alkyl group, non-aromatic heterocyclic group, substituted nonaromatic heterocyclic group, benzyl group, substituted benzyl group, aryl group or substituted aryl group wherein Ra-Rd each independently an alkyl group, substituted alkyl group, benzyl, substituted benzyl, aromatic or substituted aromatic group, or, -N(RaRb), taken together, can also form a substituted or unsubstituted non-aromatic heterocyclic group.
- 24. (Original) The compound of Claim 23, wherein R_2 is methyl.
- 25. (Original) The compound of Claim 14 wherein R₁ is a lower alkyl group and R₂ is a phenyl group substituted with one or more groups selected from -OH, -Br, -Cl, -I, -F, -OR^a, -O-COR^a, -COR^a, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR^a, -N(R^aR^b), -COOR^a, -CHO, -CONH₂, -CONHR^a, -CON(R^aR^b), -NHCOR^a, -NRCOR^a, -NHCONH₂, -NHCONR^aH, -NHCON(R^aR^b), -NR^cCONH₂, -NR^cCON(R^aR^b),

-C(=NH)-NH₂, -C(=NH)-NHR^a, -C(=NH)-N(R^aR^b), -C(=NR^c)-NH₂, -C(=NR^c)-NHR^a, -C(=NR^c)-N(R^aR^b), -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR^a, -NH-C(=NH)-N(R^aR^b), -NH-C(=NR^c)-NH₂, -NH-C(=NR^c)-NH₂, -NH-C(=NR^c)-NH₂, -NR^d-C(=NH)-NHR^a, -NR^d-C(=NH)-N(R^aR^b), -NR^d-C(=NR^c)-NH₂, -NR^d-C(=NR^c)-NHR^a, -NR^d-C(=NR^c)-NHR^a, -NHN(R^aR^b), -SO₂NH₂, -SO₂NHR^a, -SO₂NR^aR^b, -CH=CHR^a, -CH=CR^aR^b, -Crc=CR^aR^b, -CR^c=CHR^a, -CR^c=CR^aR^b, -CCR^a, -SH, -SR^a, -S(O)R^a, -S(O)₂R^a, alkyl groups, substituted alkyl group, non-aromatic heterocyclic group, substituted non-aromatic heterocyclic group, benzyl group, substituted benzyl group, aryl group or substituted aryl group wherein R^a-R^d each are independently an alkyl group, substituted alkyl group, benzyl, substituted benzyl, aromatic or substituted aromatic group, or, -N(R^aR^b), taken together, can also form a substituted or unsubstituted non-aromatic heterocyclic group.