

ساختمان داده ها

مدرس: سمانه حسینی سمنانی

دانشگاه صنعتی اصفهان- دانشکده برق و کامپیوتر

– مرتب سازی – sorting

Input: A sequence of *n* numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output: A permutation (reordering) $(a'_1, a'_2, \dots, a'_n)$ of the input sequence such that $a'_1 \le a'_2 \le \dots \le a'_n$.

- Insertion sort:
 - takes $\theta(n^2)$ time in the worst case.
 - fast in-place sorting algorithm for small input sizes.
- Merge sort:
 - has a better asymptotic running time: $\theta(nlogn)$
 - MERGE procedure it uses does not operate in place.

– sorting – مرتب سازی

- Heapsort sorts:
 - sorts n numbers in place
 - in O(nlogn)
- Quicksort sorts:
 - n numbers in place,
 - but its worst-case running time is $\theta(n^2)$

– sorting – مرتب سازی

Algorithm	Worst-case running time	Average-case/expected running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Heapsort	$O(n \lg n)$	
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)

– مرتب سازی – sorting

- انواع الگوریتم های مرتب سازی
- مقایسه ای و غیر مقایسه ای
 - پایدار و غیر پایدار
- Insertion sort, merge sort, heapsort, and quicksort are all comparison sorts
- We will prove that a lower bound of $\theta(nlogn)$ on the worst-case running time of any comparison sort on n inputs,
- heapsort and merge sort are asymptotically optimal comparison sorts.

Divide: Partition (rearrange) the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, in turn, less than or equal to each element of A[q+1..r]. Compute the index q as part of this partitioning procedure.

Conquer: Sort the two subarrays A[p ... q - 1] and A[q + 1... r] by recursive calls to quicksort.


```
QUICKSORT (A, p, r)
```

```
1 if p < r
2 q = PARTITION(A, p, r)
3 QUICKSORT(A, p, q - 1)
4 QUICKSORT(A, q + 1, r)
```


PARTITION (A, p, r)

$$1 \quad x = A[r] \tag{f}$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$ (g)

4 **if**
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i + 1]$$
 with $A[r]$

8 return
$$i+1$$
 (i)

(h)

partitions the array into four (possibly empty) regions.

The running time of Partition on the subarray A[p..r] is $\Theta(n)$, where n=r-p+1

Performance of quicksort

Worst-case partitioning:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n).$$

$$\Theta(n^2)$$
.

Performance of quicksort

Best-case partitioning:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n \lg n)$$
.

Performance of quicksort

- Balanced partitioning:
 - The average-case running time of quicksort is much closer to the best case than to the worst case
 - Suppose, for example, that the partitioning algorithm always produces a 9-to-1 proportional split,

$$T(n) = T(9n/10) + T(n/10) + cn$$

 $O(n \lg n)^{-4}$

A randomized version of quicksort

RANDOMIZED-PARTITION (A, p, r)

- $1 \quad i = \text{RANDOM}(p, r)$
- 2 exchange A[r] with A[i]
- 3 **return** PARTITION(A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

```
1 if p < r
```

- 2 q = RANDOMIZED-PARTITION(A, p, r)
- RANDOMIZED-QUICKSORT (A, p, q 1)
- 4 RANDOMIZED-QUICKSORT (A, q + 1, r)

Lower bounds for sorting

Theorem 8.1

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Decision tree for insertion sort

An internal node annotated by i : j indicates a comparison between a_i and a_j

$$\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$$
 indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$.

The shaded path:
$$\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$$

Decision tree for insertion sort

- The execution of the sorting algorithm corresponds to tracing a simple path from the root of the decision tree down to a leaf
- Each internal node indicates a comparison $a_i \leq a_j$
- When we come to a leaf, the sorting algorithm has established the ordering

$$a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$$

- Any correct sorting algorithm must be able to produce each permutation of its input
- each of the *n!* permutations on n elements must appear as one of the leaves of the decision tree for a comparison sort to be correct.

Decision tree for insertion sort

- each of these leaves must be reachable from the root by a downward path corresponding to an actual execution of the comparison sort.
- *l* :reachable leaves corresponding to a comparison sort on n elements
- h: height of the tree

$$n! \leq l \leq 2^{h}$$

$$h \geq \lg(n!)$$

$$= \Omega(n \lg n)$$

Sorting in Linear Time

• In all the previous algorithms (Merge sort, heapsort, Quicksort, Insertion sort):

the sorted order they determine is based only on comparisons between the input elements.

- We call such sorting algorithms *comparison sorts*.
- \bullet O(nlogn)

Sorting in Linear Time

- Counting sort, radix sort, and bucket sort—that run in linear time.
- These algorithms use operations other than comparisons to determine the sorted order.

• assumes that each of the n input elements is an integer in the range θ

to k, for some integer k.


```
COUNTING-SORT (A, B, k)
 1 let C[0..k] be a new array
2 for i = 0 to k
 C[i] = 0
 4 for j = 1 to A.length
   C[A[j]] = C[A[j]] + 1
 6 // C[i] now contains the number of elements equal to i.
 7 for i = 1 to k
   C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
10 for j = A. length downto 1
11 	 B[C[A[j]]] = A[j]
12 C[A[j]] = C[A[j]] - 1
```


(d)

(b)

(f)

COUNTING-SORT (A, B, k)

```
1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]] + 1

6 // C[i] now contains the number of elements equal to i.

k = O(n),
```

7 **for**
$$i = 1$$
 to k

$$8 C[i] = C[i] + C[i-1]$$

9 // C[i] now contains the number of elements less than or equal to i.

10 **for**
$$j = A$$
. length **downto** 1

$$B[C[A[j]]] = A[j]$$

12
$$C[A[j]] = C[A[j]] - 1$$

stable: numbers with the same value appear in the output array in the same order as they do in the input array.

 $\Theta(n)$.

- The property of stability is important:
- 1. when satellite data are carried around with the element being sorted.
- 2. Counting sort is often used as a subroutine in radix sort.
- In order for radix sort to work correctly, counting sort must be stable.