

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-9 (canceled)

Claim 10 (currently amended): A graphite powder formed by graphitization at a temperature ranging from about 1500°C to less than 2200°C, the graphite powder comprising a carbon material containing about 0.01 to less than 1.0 wt% of boron and having a looped closure structure at an end of a graphite c-planar layer on at least a surface of cleavage formed by shearing, wherein the density of the interstitial planar sections between neighboring closure structures is not less than 100/ μm and not more than 1500/ μm , wherein the graphite powder further comprises a c-axis (002) planar section lattice distance (d_{002}) that is 3.3650 Å or less as determined by a lattice constant measurement method by x-ray diffraction.

Claim 11 (canceled)

Claim 12 (previously presented): The graphite powder of claim 10, wherein the graphite powder further comprises a specific surface area that is 1.0 m^2/g or less.

Claim 13 (previously presented): The graphite powder of claim 10, wherein the graphite powder has a crystallite diameter that ranges from 100 Å to 2000 Å.

Claim 14 (previously presented): The graphite powder of claim 10, wherein the graphite powder has a volume cumulative mean particle size that ranges from 5 μm to 35 μm as measured by a laser diffraction scattering method.

Claim 15 (currently amended): A negative electrode material of a lithium ion secondary battery, the negative electrode material consisting essentially of a graphite powder formed by graphitization at a temperature ranging from about 1500°C to less than 2200°C, the graphite powder comprising a carbon material containing about 0.01 to less than 1.0 wt% of boron and having a looped closure structure at an end of a graphite c-planar layer on at least a surface of cleavage formed by shearing, wherein the density of the interstitial planar sections between neighboring closure structures is not less than 100/ μm and not more than 1500/ μm wherein the graphite powder further comprises a c-axis (002) planar section lattice distance (d002) that is 3.3650 Å or less as determined by a lattice constant measurement method by x-ray diffraction..

Claim 16 (canceled)

Claim 17 (previously presented): The negative electrode material of claim 15, wherein the graphite powder further comprises a specific surface area that is 1.0 m^2/g or less.

Claim 18 (previously presented): The negative electrode material of claim 15, wherein the graphite powder has a crystallite diameter that ranges from 100 Å to 2000 Å.

Claim 19 (previously presented)): The negative electrode material of claim 15, wherein the graphite powder has a volume cumulative mean particle size that ranges from 5 μm to 35 μm as measured by a laser diffraction scattering method.

Claim 20 (currently amended): A lithium ion secondary battery comprising:
a negative electrode material consisting essentially of a graphite powder formed by graphitization at a temperature ranging from about 1500°C to less than 2200°C, the graphite powder comprising a carbon material containing about 0.01 to less than 1.0 wt% of boron and having a looped closure structure at an end of a graphite c-planar layer on at least a surface of cleavage formed by shearing, wherein the density of the interstitial planar sections between neighboring closure structures is not less than 100/ μm and not more than 1500/ μm ;

a positive electrode material comprising $\text{LiM}^1_{1-x}\text{M}^2_x\text{O}_2$ or $\text{LiM}^1_{2y}\text{M}^2_y\text{O}_4$, where x and y are numerical figures such that $0 < x < 4$ and $0 < y < 1$, M¹ and M² denote at least one of the transition metal of Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In and Sn and,

a nonaqueous electrolyte,

wherein said negative electrode material and positive electrode material are coated on both sides of a current collector, wherein the graphite powder further comprises a c-axis (002) planar section lattice distance (d002) that is 3.3650 Å or less as determined by a lattice constant measurement method by x-ray diffraction.

Claim 21 (canceled)

Claim 22 (previously presented): The lithium ion secondary battery of claim 20, wherein the graphite powder further comprises a specific surface area that is $1.0 \text{ m}^2/\text{g}$ or less.

Claim 23 (previously presented): The lithium ion secondary battery of claim 20, wherein the graphite powder has a crystallite diameter that ranges from 100 Å to 2000 Å.

Claim 24 (previously presented): The lithium ion secondary battery of claim 20, wherein the graphite powder has a volume cumulative mean particle size that ranges from 5 µm to 35 µm as measured by a laser diffraction scattering method.