

Model Development Phase Template

Date	10 th July 2024			
Team ID	739958			
Project Title	Food Demand Forecasting For Food Delivery Company			
Maximum Marks	4 Marks			
Initial Model Training Code, Model Validation and Evaluation Report				

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Import necessary libraries import pandas as pd

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

Load the preprocessed dataset
data = pd.read_csv('processed_data.csv')

Define features and target variable

features = ['hour', 'day_of_week', 'month', 'customer_age', 'customer_gender', 'order_total', 'promo_used', 'temperature', 'precipitation', 'is_holiday'] target = 'demand'

Split data into training and testing sets (80% training, 20% testing)
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)


```
# Initialize Random Forest Regressor model
model = RandomForestRegressor(n_estimators=100, random_state=42)
# Train the model
model.fit(train_data[features], train_data[target])
# Predict on the test set
predictions = model.predict(test_data[features])
# Evaluate the model
mae = mean_absolute_error(test_data[target], predictions)
rmse = mean_squared_error(test_data[target], predictions, squared=False)
r2 = r2_score(test_data[target], predictions)
# Print evaluation metrics
print(f'Mean Absolute Error: {mae:.2f}')
print(f'Root Mean Squared Error: {rmse:.2f}')
print(f'R-squared: {r2:.2f}')
# Save the trained
model import joblib
joblib.dump(model, 'food_demand_forecasting_model.pkl')
```


MODEL	CLASSIFICATION REPORT	F1 SCO RE	CONCLUSION MATRIX
-------	-----------------------	-----------------	----------------------

Forest	<pre>accuracy=model.score(X_test,Y_test) print[["Decision Tree"] print("Model accuracy\t\t",{accuracy}) print(f'Accuracy in Percentage\t{" {:.1%}".format(accuracy)}') print(classification_report(Y_test,Y_pred))</pre>	81%	confusion_matrix(y_test,ypred) array([[62, 13],
--------	--	-----	---