- CC1-S2 -

- 2016-2017 -

- Correction - Géométrie -

Exercice 1

On notera $x(t) = e^{\sin(2t)}$ et $y(t) = e^{\cos(t)}$.

1. On remarque que ces deux fonctions sont périodiques de période 2π , on peut donc restreindre l'intervalle d'étude à $[0,2\pi]$.

D'autre part, les dérivées sont :

$$x'(t) = 2\cos(2t)e^{\sin(2t)}$$
 et $y'(t) = -\sin t e^{\cos(t)}$.

Le tableau de variations est donc le suivant :

t	0		$\pi/4$		$3\pi/4$		π		$5\pi/4$		$7\pi/4$		2π
x'(t)		+	0	_	0		+		0	_	0	+	
			e						e				1
x(t)		7		\searrow		7	1	7		>		7	
	1				1/e						1/e		
	e												e
y(t)		\searrow	$e^{\frac{\sqrt{2}}{2}}$								$e^{\sqrt{2}/2}$	7	
				\searrow	$e^{-\frac{\sqrt{2}}{2}}$				$e^{-\frac{\sqrt{2}}{2}}$	7			
						\searrow	1/e	7					
y'(t)	0			_			0			+			

On obtient alors la courbe suivante :

Spé PT Page 1 sur 2

2. Sur la courbe, il semble bien que le point (1,1) soit un point double. Vérifions par le calcul. On cherche $t_1, t_2 \in [0, 2\pi[$ tels que :

$$\begin{cases} \exp(\sin(2t_1)) &= \exp(\sin(2t_2)) \\ \exp(\cos(t_1)) &= \exp(\cos(t_2)) \end{cases} \iff \begin{cases} \sin(2t_1) &= \sin(2t_2) \\ \cos(t_1) &= \cos(t_2) \end{cases}$$

Intéressons-nous d'abord à la deuxième équation. Elle implique que $t_2 = t_1 + 2k\pi$ ou $t_2 = -t_1 + 2k\pi$, avec k un entier relatif. Mais puisque t_1 et t_2 sont deux réels distincts de $[0, 2\pi[$, la première égalité est impossible, et la deuxième ne peut être vrai que pour k = 1.

On a donc $t_2 = -t_1 + 2\pi$, et t_1 doit vérifier l'équation :

$$\sin(2t_1) = \sin(-2t_1 + 4\pi) = \sin(-2t_1).$$

Cette équation entraı̂ne que $2t_1 = -2t_1 + 2k'\pi$ ou $2t_1 = \pi + 2t_1 + 2k'\pi$, avec k' un entier relatif. Le deuxième cas est impossible. Il reste donc $4t_1 = 2k'\pi$, dont les solutions dans $[0, 2\pi[$ sont $t_1 = 0$, à exclure car alors $t_2 = 2\pi$, $t_1 = \pi/2$, $t_1 = \pi$, à exclure également car dans ce cas $t_2 = t_1 = \pi$, et $t_1 = 3\pi/2$. En $t = \pi/2$ et $t = 3\pi/2$, on trouve bien le point double (1, 1).

Exercice 2

La courbe paramétrée par :

$$t\mapsto \left(\frac{t^3}{t^2-9},\frac{t(t-2)}{t-3}\right)$$

est définie sur $]-\infty, -3[\cup]-3, 3[\cup]3, +\infty[$.

On étudie donc les branches infinies au voisinage de 4 valeurs de t :

- Pour t tendant vers -3, y(t) tend vers -5/2 et x(t) tend vers $-\infty$ si t tend vers -3 par valeur inférieure, et vers $+\infty$ si t tend vers -3 par valeurs supérieures. La droite d'équation y = -5/2 est donc asymptote à la courbe pour t tendant vers -3.
- En 3 : cette fois, à la fois |x(t)| et |y(t)| tendent vers $+\infty$ si t tend vers 3. On va étudier comment se comporte le quotient. On a :

$$\frac{y(t)}{x(t)} = \frac{t(t-2)(t+3)}{t^3} \to \frac{2}{3}$$

et:

$$y(t) - \frac{2}{3}x(t) = \frac{t(t^2 + 3t - 18)}{3(t - 3)(t + 3)} = \frac{t(t + 6)}{t(t + 3)} \to \frac{3}{2}.$$

On en déduit que la droite d'équation $y = \frac{2}{3}x + \frac{3}{2}$ est asymptote à la courbe (pour $t \to 3$).

— Pour t tendant vers $+\infty$, on a encore |x(t)| et |y(t)| qui tendent vers $+\infty$, et le calcul précédent donne :

$$\frac{y(t)}{x(t)} = \frac{t(t-2)(t+3)}{t^3} \to 1.$$

On calcule cette fois

$$y(t) - x(t) = \frac{t(t-6)}{(t-3)(t+3)} \to 1.$$

La droite y = x + 1 est donc asymptote à la courbe pour t tendant vers $+\infty$.

— Le raisonnement est complètement similaire pour t tendant vers $-\infty$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 2