Auxiliary Sections > Integral Transforms > Tables of Fourier Sine Transforms > Fourier Sine Transforms: Expressions with Power-Law Functions

Fourier Sine Transforms: Expressions with Power-Law Functions

No	Original function, $f(x)$	Sine transform, $\check{f}_{s}(u) = \int_{0}^{\infty} f(x) \sin(ux) dx$
1	$\begin{cases} 1 & \text{if } 0 < x < a, \\ 0 & \text{if } a < x \end{cases}$	$\frac{1}{u} \left[1 - \cos(au) \right]$
2	$\frac{1}{x}$	$\frac{\pi}{2}$
3	$\frac{1}{a+x}$, $a>0$	$\sin(au)\operatorname{Ci}(au) - \cos(au)\operatorname{si}(au)$
4	$\frac{x}{a^2 + x^2}, a > 0$	$\frac{\pi}{2}e^{-au}$
5	$\frac{1}{x(a^2+x^2)}, a>0$	$\frac{\pi}{2a^2} \left(1 - e^{-au} \right)$
6	$\frac{a}{a^2 + (x-b)^2} - \frac{a}{a^2 + (x+b)^2}$	$\pi e^{-au}\sin(bu)$
7	$\frac{x+b}{a^2 + (x+b)^2} - \frac{x-b}{a^2 + (x-b)^2}$	$\pi e^{-au}\cos(bu)$
8	$\frac{x}{(x^2+a^2)^n}$, $a > 0$, $n = 1, 2,$	$\frac{\pi u e^{-au}}{2^{2n-2}(n-1)! a^{2n-3}} \sum_{k=0}^{n-2} \frac{(2n-k-4)!}{k! (n-k-2)!} (2au)^k$
9	$\frac{x^{2m+1}}{(x^2+a)^{n+1}}, n, m = 0, 1, \dots; 0 \le m \le n$	$(-1)^{n+m} \frac{\pi}{2n!} \frac{\partial^n}{\partial a^n} \left(a^m e^{-u\sqrt{a}} \right)$
10	$\frac{1}{\sqrt{x}}$	$\sqrt{\frac{\pi}{2u}}$
11	$\frac{1}{x\sqrt{x}}$	$\sqrt{2\pi u}$
12	$x(a^2+x^2)^{-3/2}$	$uK_0(au)$
13	$x^{-\nu}$, $0 < \nu < 2$	$\cos\left(\frac{1}{2}\pi\nu\right)\Gamma(1-\nu)u^{\nu-1}$

Notation: $\mathrm{Ci}(z)$ is the integral cosine, $\mathrm{si}(z) = \mathrm{Si}(z) - \frac{\pi}{2}$, $\mathrm{Si}(z)$ is the integral sine, $K_0(z)$ is the modified Bessel function of the second kind, $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Fourier Sine Transforms: Expressions with Power-Law Functions