

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ИКБ направление «Киберразведка и противодействие угрозам с применением технологий искусственного интеллекта» 10.04.01

Кафедра КБ-4 «Интеллектуальные системы информационной безопасности»

Отчёт по лабораторной работе №2

по дисциплине: «Анализ защищенности систем искусственного интеллекта»

Группа:

ББМО-02-22

Выполнила:

Бардасова И.А.

Проверил:

Спирин А.А.

Содержание

Введение	3
Ход выполнения работы	4
Задание 1	5
Задание 2	8
Задание 3	17
Заключение	25

Введение

Задачи:

- 1. Реализовать атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения.
- 2. Получить практические навыки переноса атак уклонения на основе черного ящика против моделей машинного обучения.

Ход выполнения работы

Шаг 1. Набор данных: Для этой части используем набор данных GTSRB (German Traffic Sign Recognition Benchmark). Набор данных состоит примерно из 51 000 изображений дорожных знаков (рис. 2). Загрузим набор данных по ссылке: https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign (рис. 1).

Рисунок 1 – Загрузка данных

Рисунок 2 – Распределение изображений в GTRSB

Задание 1

Шаг 2. Обучить 2 классификатора на основе глубоких нейронных сетей на датасете GTSRB. Ресурсы колаба не безграничны, поэтому используем только часть набора данных. Использовали следующие модели нейронных сетей: ResNet50 и VGG16. Будем использовать необходимые фреймворки. Поделим набор данных на обучающую и тестовую в соотношении 70/30.

Сначала извлечем изображения для создания тренировочной выборки. На выходе, мы получим матричное представление изображения (рис. 3).

Рисунок 3 – Матричное представление изображения

Шаг 3. Построение первой модели: ResNet50 (рис. 4).

```
[10] x_train, x_val, y_train, y_val = train_test_split(data, labels, test_size=0.3, random_state=1)

[11] img_size = (224,224)

model = Sequential()

model.add(ResNet50(include_top = False, pooling = 'avg'))

model.add(Dropout(0.1))

model.add(Dense(256, activation="relu"))

model.add(Dropout(0.1))

model.add(Dense(43, activation = 'softmax'))

model.layers[2].trainable = False
```

Рисунок 4 – Модель ResNet50

Определили оптимальное значение эпох обучения (5) и размера пакета (64). Для валидации будут выбраны 30 процентов тренировочного набора, сама валидация показана на рисунке 6. Графики процесса обучения представлены на рисунке 5.

Рисунок 5 – Графики ResNet50

Рисунок 6 – Валидация ResNet50

Протестируем нашу модель на тестовом наборе. Результат валидации можно увидеть на рисунке 7. Итоговая точность составила – 90%.

Рисунок 7 – Тестирование ResNet50

Шаг 4. Построение второй модели: VGG16 (рис. 8).

```
[17] del model

del history

img_size = (224,224)

model = Sequential()

model.add(VGG16(include_top=False, pooling = 'avg'))

model.add(Dropout(0.1))

model.add(Dense(256, activation="relu"))

model.add(Dropout(0.1))

model.add(Dense(43, activation = 'softmax'))

model.layers[2].trainable = False

Downloading data from <a href="https://storage.googleapis.com/tensorflow/kera">https://storage.googleapis.com/tensorflow/kera</a>
```

Рисунок 8 – Модель VGG16

Графики процесса обучения модели VGG16 показаны на рисунке 9. Валидационный результат представлен на рисунке 10.

Рисунок 9 – Графики VGG16

Рисунок 10 – Валидация VGG16

Тестирование обученной модели на валидационном наборе (рис. 11):

Рисунок 11 – Тестирование VGG16

Шаг 5. Результаты: Подведём результаты по первому заданию в таблице 1.1.

Таблица 1.1 – Результаты

Модель	Обучение		Валидация		Тест	
МОДСЛЬ	loss	accuracy	loss	accuracy	loss	accuracy
ResNet50	0,0758	0,9815	0,1925	0,9539	0,5282	0,8890
VGG16	0,1215	0,9760	0,108	0,9758	0,2992	0,9382

Задание 2

Шаг 6. Применим нецелевую атаку уклонения на основе белого ящика против моделей глубокого обучения. Реализуем атаку Fast Gradient Sign Method (FGSM) и Projected Gradient Descent (PGD).

Для создания нецелевых атакующих примеров используем первые 1,000 изображений из тестового множества. Также используем следующие значения параметра искажения для атак на изображения: $\epsilon = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]$.

Шаг 7. Атака FGSM на ResNet50. Создаем модель атаки, которая будет основываться на обученном классификаторе для внесения шума в изображение.

Результаты каждого параметра на рисунке 12.

princti frue Accuracy, faccuracy, × [23] Eps: 0.00392156862745098 /usr/local/lib/python3.10/dist-packages/keras/src/er updates = self.state_updates Adv Loss: 1.9604094190597534 Adv Accuracy: 0.6980000138282776 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.00784313725490196 Adv Loss: 3.526020553588867 Adv Accuracy: 0.515999972820282 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.011764705882352941 Adv Loss: 4.846283386230469 Adv Accuracy: 0.42399999499320984 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.01568627450980392 Adv Loss: 5.901705902099609 Adv Accuracy: 0.33399999141693115 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.0196078431372549 Adv Loss: 6.745779880523681 Adv Accuracy: 0.2680000066757202 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.03137254901960784

√ [23] Eps: 0.0196078431372549 Adv Loss: 6.745779880523681 Adv Accuracy: 0.2680000066757202 True Loss: 0.5273744940757752 True Accuracy: 0.893999938011169 Eps: 0.03137254901960784 Adv Loss: 8.335723251342774 Adv Accuracy: 0.1679999977350235 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.0392156862745098 Adv Loss: 8.916819450378417 Adv Accuracy: 0.11999999731779099 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.0784313725490196 . Adv Loss: 9.802408462524413 Adv Accuracy: 0.03200000151991844 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.19607843137254902 Adv Loss: 9.217128112792969 Adv Accuracy: 0.007000000216066837 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.3137254901960784 Adv Loss: 8.476739044189452 Adv Accuracy: 0.00400000189989805 True Loss: 0.5273744940757752

Рисунок 12 – Параметры искажения для атак на изображения

График зависимости точности предсказания модели на атакованных изображениях от параметра искажения представлена на рисунке 13.

Отобразим исходное изображение из датасета и атакующие изображения с указанием величины параметра $\epsilon = [1/255, 5/255, 10/255, 50/255, 80/255]$ (рис. 14).

Рисунок 13 – График зависимости

Исходное изображение, предсказанный класс: 16, действительный класс 16

Изображение с eps: 0.00392156862745098 , предсказанный класс: 16, действительный класс 16

Изображение с eps: 0.0196078431372549 , предсказанный класс: 16, действительный класс 16

Изображение с eps: 0.0392156862745098 , предсказанный класс: 16, действительный класс 16

Изображение с eps: 0.19607843137254902 , предсказанный класс: 5, действительный класс 16

Рисунок 14 – Исходные изображения и искажённые изображения FGSM

Шаг 8. Теперь сделаем то же самое с ResNet50 через PGD. Подобно FGSM реализуем атаку PGD для различных значений ерs (рис. 16). Результаты каждого параметра на рисунке 15.

Adv Loss: 8.150178527832031 Adv Accuracy: 0.24300000071525574 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.03137254901960784 Adv Loss: 9.762843841552735 Adv Accuracy: 0.19200000166893005 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.0392156862745098 . Adv Loss: 10.258387588500977 Adv Accuracy: 0.17399999499320984 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.0784313725490196 Adv Loss: 23.217008361816408 Adv Accuracy: 0.013000000268220901 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.19607843137254902 Adv Loss: 38.92885894775391 Adv Accuracy: 0.0010000000474974513 True Loss: 0.5273744940757752 True Accuracy: 0.8939999938011169 Eps: 0.3137254901960784 . Adv Loss: 43.524760925292966 Adv Accuracy: 0.001000000474974513 True Loss: 0.5273744940757752 True Accuracy: 0.893999938011169

Рисунок 15 – Параметры искажения для атак на изображения

Рисунок 16 – График зависимости PGD

Шаг 9. Сделаем то же самое для VGG16 – начнём с атаки FGSM (рис. 18). Результаты каждого параметра на рисунке 17.

Eps: 0.00392156862745098 Adv Loss: 0.9649940905570984 Adv Accuracy: 0.8389999866485596 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.00784313725490196 Adv Loss: 1.6718001012802124 Adv Accuracy: 0.7289999723434448 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.011764705882352941 Adv Loss: 2.314442026138306 Adv Accuracy: 0.6349999904632568 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.01568627450980392 . Adv Loss: 2.9762243146896363 Adv Accuracy: 0.5370000004768372 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.0196078431372549 Adv Loss: 3.571226887702942 Adv Accuracy: 0.4569999873638153 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Adv Loss: 4.840155690193177

Eps: 0.03137254901960784

Adv Accuracy: 0.28/0000004/683/16 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.0392156862745098 Adv Loss: 5.448998310089111

Adv Accuracy: 0.20200000703334808 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.0784313725490196

Adv Loss: 6.630562896728516 Adv Accuracy: 0.0560000017285347 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.19607843137254902

Adv Loss: 6.108267921447754 Adv Accuracy: 0.03099999949336052 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.3137254901960784 Adv Loss: 5.541807586669922

Adv Accuracy: 0.02999999329447746 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858

Рисунок 17 – Параметры искажения для атак на изображения

Изображение с eps: 0.00392156862745098, предсказанный класс: 38, действительный класс 38

Изображение с eps: 0.0196078431372549 , предсказанный класс: 38, действительный класс 38

Изображение с eps: 0.0392156862745098 , предсказанный класс: 38, действительный класс 38

Изображение с eps: 0.19607843137254902 , предсказанный класс: 38, действительный класс 38

Рисунок 18 – Исходные изображения и искажённые изображения FGSM

Шаг 10. VGG16 PGD (рис. 20). Подобно FGSM реализуем атаку PGD для различных значений eps. Результаты каждого параметра на рисунке 19.

Eps: 0.00392156862745098
Adv Loss: 1.153845339655876
Adv Accuracy: 0.824099988079071
True Loss: 0.3210929125417024
True Accuracy: 0.9350000023841858
Eps: 0.00784313725490196
Adv Loss: 2.1025033988952635
Adv Accuracy: 0.722000002861023
True Loss: 0.3210929125417024
True Accuracy: 0.9350000023841858
Eps: 0.011764705882352941
Adv Loss: 2.9856135816574096
Adv Accuracy: 0.0350000023841858
Eps: 0.01166802745098000023841858
Eps: 0.01568627450980392
Adv Loss: 0.3210929125417024
True Accuracy: 0.9350000023841858
Eps: 0.01568627450980392
Adv Loss: 4.06682709293702
Adv Accuracy: 0.5460000038146973
True Loss: 0.3210929125417024
True Accuracy: 0.9350000023841858
Eps: 0.01960788413372549
Adv Loss: 4.867372755058008
Adv Accuracy: 0.48100000619888306
True Loss: 0.3210929125417024
True Accuracy: 0.48100000619888306
True Loss: 0.3210929125417024
True Accuracy: 0.48100000619888306
True Loss: 0.3210929125417024
True Accuracy: 0.48100000619888306
True Loss: 0.3310929125417024
Adv Loss: 0.3310929125417024

Adv Accuracy: 0.48100000619888306 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.03137254901960784 Adv Loss: 6.533005279541015 Adv Accuracy: 0.3700000047683716 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.0392156862745098 . Adv Loss: 7.113522884368897 Adv Accuracy: 0.3149999976158142 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.0784313725490196 Adv Loss: 18.210905303955077 Adv Accuracy: 0.07199999690055847 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858 Eps: 0.19607843137254902 Adv Loss: 46.494306640625 Adv Accuracy: 0.003000000026077032 True Loss: 0.3210929125417024
True Accuracy: 0.9350000023841858
Eps: 0.3137254901960784
Adv Loss: 57.72623907470703 Adv Accuracy: 0.0020000000949949026 True Loss: 0.3210929125417024 True Accuracy: 0.9350000023841858

Рисунок 19 – Параметры искажения для атак на изображения

Рисунок 20 – График зависимостей PGD

Шаг 11. Результаты (таблица 2.1).

Таблица 2.1 - Результаты

Модель	Исходные	Adversarial	Adversarial	Adversarial
	изображения	images	images	images
		<i>εε</i> =1/255	<i>€€</i> =5/255	εε=10/255
ResNet50 - FGSM	loss: 0.5275	loss: 1.9604	loss: 6.7457	loss: 8.4767
	accuracy: 0.894	accuracy: 0.698	accuracy: 0.268	accuracy: 0.004
ResNet50 - PGD	loss: 0.5275	loss: 2.2387	loss: 8.1501	loss: 43.5247
	accuracy: 0.894	accuracy: 0.67	accuracy: 0.243	accuracy: 0.001
VGG16 - FGSM	loss: 0.3210	loss: 0.9649	loss: 3.5712	loss: 5.5418
	accuracy: 0.935	accuracy: 0.839	accuracy: 0.457	accuracy: 0.0299
VGG16 - PGD	loss: 0.3210	loss: 1.1538	loss: 4.8673	loss: 57.7262
	accuracy: 0.935	accuracy: 0.825	accuracy: 0.4810	accuracy: 0.3210

Задание 3

Применение целевой атаки уклонения методом белого против моделей глубокого обучения.

Шаг 12. Используем изображения знака «Стоп» (label class 14) из тестового набора данных. Применим атаку Projected Gradient Descent (PGD) на знак «Стоп» с целью классификации его как знака «Ограничение скорости 30» (target label class = 1). Будем изменять значения искажений $\epsilon \epsilon = [1/255, 3/255, 5/255, 10/255, 20/255, 50/255, 80/255].$

Повторим атаку методом FGSM и заполним таблицу 3.1.

Таблица 3.1 – Результаты

ϵ	FGSM - Stop	PGD – Stop
$\epsilon = 1/255$	loss: 0.0290	loss: 0.0308
	accuracy: 0.9888	accuracy: 0.9888
$\epsilon = 3/255$	loss: 0.9453	loss: 0.5882
	accuracy: 0.8185	accuracy: 0.8555
$\epsilon = 5/255$	loss: 2.6736	loss: 1.399
	accuracy: 0.5407	accuracy: 0.6296
$\epsilon = 10/255$	loss: 7.3347	loss: 2.5267
	accuracy: 0.088	accuracy: 0.47037
$\epsilon = 20/255$	loss: 10.321	loss: 8.7211
	accuracy: 0.0	accuracy: 0.1296
$\epsilon = 50/255$	loss: 10.1705	loss: 21.8093
	accuracy: 0.0	accuracy: 0.0
$\epsilon = 80/255$	loss: 8.8265	loss: 23.3313
	accuracy: 0.0	accuracy: 0.0

Подробнее ниже. Результаты каждого параметра **FGSM** представлены на рисунке 21.

```
→ Eps: 0.00392156862745098

    /usr/local/lib/python3.10/dist-packages/keras/src/engi
     updates = self.state_updates
    Adv Loss: 0.029083787294587604
    Adv Accuracy: 0.9888888597488403
    True Loss: 0.0001438668120398587
    True Accuracy: 1.0
    Eps: 0.00784313725490196
    Adv Loss: 0.30910830034150016
    Adv Accuracy: 0.9111111164093018
    True Loss: 0.0001438668120398587
    True Accuracy: 1.0
    Eps: 0.011764705882352941
    .
Adv Loss: 0.9453249255816142
    Adv Accuracy: 0.8185185194015503
    True Loss: 0.0001438668120398587
    True Accuracy: 1.0
    Eps: 0.01568627450980392
    Adv Loss: 1.7251197532371239
    Adv Accuracy: 0.6777777671813965
    True Loss: 0.0001438668120398587
    True Accuracy: 1.0
    Eps: 0.0196078431372549
    Adv Loss: 2.6736539045969647
    Adv Accuracy: 0.5407407283782959
    True Loss: 0.0001438668120398587
    True Accuracy: 1.0
            Eps: 0.0196078431372549
        Adv Loss: 2.6736539045969647
Adv Accuracy: 0.5407407283782959
            True Loss: 0.0001438668120398587
            True Accuracy: 1.0
Eps: 0.03137254901960784
            .
Adv Loss: 5.802423519558377
            Adv Accuracy: 0.20370370149612427
             True Loss: 0.0001438668120398587
            True Accuracy: 1.0
            Eps: 0.0392156862745098
            Adv Loss: 7.33478997901634
            Adv Accuracy: 0.08888889104127884
            True Loss: 0.0001438668120398587
            True Accuracy: 1.0
Eps: 0.0784313725490196
            Adv Loss: 10.321093538072374
            Adv Accuracy: 0.0
             True Loss: 0.0001438668120398587
             True Accuracy: 1.0
            Eps: 0.19607843137254902
            Adv Loss: 10.17051308243363
            Adv Accuracy: 0.0
            True Loss: 0.0001438668120398587
             True Accuracy: 1.0
            Eps: 0.3137254901960784
            Adv Loss: 8.826515868858055
            Adv Accuracy: 0.0
```

Рисунок 21 – Параметры FGSM

Выведем 5 примеров классификации класса 14 как класс 1 при помощи целевой FGSM атаки (рис. 22):

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

Рисунок 22 – FGSM искажение

Результаты каждого параметра **PGD** представлены на рисунке 23.

∃ Eps: 0.00392156862745098

Adv Loss: 0.030893028648225247 Adv Accuracy: 0.9888888597488403

True Loss: 0.0001438668120398587 True Accuracy: 1.0 Eps: 0.00784313725490196 Adv Loss: 0.2406274570359124 Adv Accuracy: 0.9222221970558167

True Loss: 0.0001438668120398587 True Accuracy: 1.0

True Accuracy: 1.0 Eps: 0.011764705882352941 Adv Loss: 0.5882822204519201 Adv Accuracy: 0.85555534362793 True Loss: 0.0001438668120398587

True Accuracy: 1.0 Eps: 0.01568627450980392 Adv Loss: 1.0544115953975253 Adv Accuracy: 0.766666507720947 True Loss: 0.0001438668120398587

True Accuracy: 1.0 Eps: 0.0196078431372549 Adv Loss: 1.3990310554151182 Adv Accuracy: 0.6296296119689941 True Loss: 0.0001438668120398587

Рисунок 23 – Результаты для PGD

Выведем 5 примеров классификации класса 14 как класс 1 при помощи целевой PGD атаки (рис. 24):

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14 $^{0}\,f^{-}$

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Рисунок 24 – PGD искажение

Заключение

В результате выполнения работы были также проведены эксперименты по атаке на модели машинного обучения методом черного и белого ящика, а также целевые и нецелевые.

Также были рассмотрены модели VGG16 и ResNet50, VGG16 показала несколько большую устойчивость к атакам, хоть и не значительную, но уже не в рамках погрешности. Было отмечено сильно ухудшение качества и точности моделей по достижении отметки искажения в 20/255. Метод FGSM плохо подходит для целевых атак. С ростом искажения классификация начинает давать сбои. PGD больше подходит для целевых атак. При больших искажениях, модель будет определять нужный класс, но картинка сильно испортится шумом.