Mathematical Foundations of Reinforcement Learning

Shiyu Zhao

Contents

C	onter	IUS .	V	
P	Preface			
O.	vervi	ew of this Book	ix	
1	Bas	ic Concepts	1	
	1.1	A grid world example	1	
	1.2	State and action	2	
	1.3	State transition	3	
	1.4	Policy	4	
	1.5	Reward	6	
	1.6	Trajectories, returns, and episodes	8	
	1.7	Markov decision processes	11	
	1.8	Summary	12	
	1.9	Q&A	12	
2	Stat	e Values and Bellman Equation	15	
	2.1	Motivating example 1: Why are returns important?	16	
	2.2	Motivating example 2: How to calculate returns?	17	
	2.3	State values	19	
	2.4	Bellman equation	20	
	2.5	Examples for illustrating the Bellman equation	22	
	2.6	Matrix-vector form of the Bellman equation	25	
	2.7	Solving state values from the Bellman equation	27	
		2.7.1 Closed-form solution	27	
		2.7.2 Iterative solution	28	
		2.7.3 Illustrative examples	28	
	2.8	From state value to action value	30	
		2.8.1 Illustrative examples	31	
		2.8.2 The Bellman equation in terms of action values	32	
	2.9	Summary	33	

	2.10	Q&A	33	
3	Optimal State Values and Bellman Optimality Equation			
	3.1	Motivating example: How to improve policies?	36	
	3.2	Optimal state values and optimal policies	37	
	3.3	Bellman optimality equation	38	
		3.3.1 Maximization of the right-hand side of the BOE	39	
		3.3.2 Matrix-vector form of the BOE	40	
		3.3.3 Contraction mapping theorem	40	
		3.3.4 Contraction property of the right-hand side of the BOE	44	
	3.4	Solving an optimal policy from the BOE	46	
	3.5	Factors that influence optimal policies	49	
	3.6	Summary	53	
	3.7	Q&A	54	
4	Val	ue Iteration and Policy Iteration	57	
	4.1	Value iteration	58	
		4.1.1 Elementwise form and implementation	58	
		4.1.2 Illustrative examples	59	
	4.2	Policy iteration	62	
		4.2.1 Algorithm analysis	62	
		4.2.2 Elementwise form and implementation	65	
		4.2.3 Illustrative examples	67	
	4.3	Truncated policy iteration	70	
	1.0	4.3.1 Comparing value iteration and policy iteration	70	
		4.3.2 Truncated policy iteration algorithm	72	
	4.4	Summary	74	
	4.5	Q&A	74	
5	Mo	nte Carlo Methods	77	
	5.1	Motivating example: Mean estimation	78	
	5.2	MC Basic: The simplest MC-based algorithm	80	
		5.2.1 Converting policy iteration to be model-free	80	
		5.2.2 The MC Basic algorithm	81	
		5.2.3 Illustrative examples	83	
	5.3	MC Exploring Starts	86	
	5.5	5.3.1 Utilizing samples more efficiently	86	
		5.3.2 Updating policies more efficiently	87	
		5.3.3 Algorithm description	88	
	5.4	MC ϵ -Greedy: Learning without exploring starts	89	
	9.4	ϵ -Greedy policies	89	
		U.1.1 C 5100U (PUHOLOD	UJ	

		5.4.2	Algorithm description					
		5.4.3	Illustrative examples					
	5.5	Explo	ration and exploitation of ϵ -greedy policies					
	5.6	Summ	ary					
	5.7	Q&A						
6	Sto	Stochastic Approximation 10						
	6.1	Motiva	ating example: Mean estimation					
	6.2	Robbi	ns-Monro algorithm					
		6.2.1	Convergence properties					
		6.2.2	Application to mean estimation					
	6.3	Dvore	tzky's convergence theorem					
		6.3.1	Proof of Dvoretzky's theorem					
		6.3.2	Application to mean estimation					
		6.3.3	Application to the Robbins-Monro theorem					
		6.3.4	An extension of Dvoretzky's theorem					
	6.4	Stocha	astic gradient descent					
		6.4.1	Application to mean estimation					
		6.4.2	Convergence pattern of SGD					
		6.4.3	A deterministic formulation of SGD					
		6.4.4	BGD, SGD, and mini-batch GD					
		6.4.5	Convergence of SGD					
	6.5	Summ	ary					
	6.6	Q&A						
7	Ten	Temporal-Difference Methods 128						
	7.1	TD lea	arning of state values					
		7.1.1	Algorithm description					
		7.1.2	Property analysis					
		7.1.3	Convergence analysis					
	7.2	TD lea	arning of action values: Sarsa					
		7.2.1	Algorithm description					
		7.2.2	Optimal policy learning via Sarsa					
	7.3	TD lea	arning of action values: n -step Sarsa					
	7.4	TD lea	arning of optimal action values: Q-learning					
		7.4.1	Algorithm description					
		7.4.2	Off-policy vs on-policy					
		7.4.3	Implementation					
		7.4.4	Illustrative examples					
	7.5	A unif	ied viewpoint					
	7.6	Summ	ary					

	7.7	Q&A	149
8	Valu	ue Function Methods	.51
	8.1	Value representation: From table to function	152
	8.2	TD learning of state values based on function approximation	155
		8.2.1 Objective function	156
		8.2.2 Optimization algorithms	161
		8.2.3 Selection of function approximators	162
		8.2.4 Illustrative examples	164
		8.2.5 Theoretical analysis	167
	8.3	TD learning of action values based on function approximation	179
		8.3.1 Sarsa with function approximation	179
		8.3.2 Q-learning with function approximation	180
	8.4	Deep Q-learning	181
		8.4.1 Algorithm description	182
		8.4.2 Illustrative examples	184
	8.5	Summary	186
	8.6		187
9	Poli	cy Gradient Methods	91
	9.1	Policy representation: From table to function	192
	9.2	Metrics for defining optimal policies	193
	9.3	Gradients of the metrics	198
		9.3.1 Derivation of the gradients in the discounted case	200
		9.3.2 Derivation of the gradients in the undiscounted case	205
	9.4		210
	9.5	Summary	213
	9.6		213
10	Act	or-Critic Methods	15
	10.1	The simplest actor-critic algorithm (QAC)	216
	10.2	Advantage actor-critic (A2C)	217
		10.2.1 Baseline invariance	217
		10.2.2 Algorithm description	220
	10.3	Off-policy actor-critic	221
		10.3.1 Importance sampling	221
		10.3.2 The off-policy policy gradient theorem	224
			226
	10.4		227
		10.4.1 The deterministic policy gradient theorem	227
		- * *	234

	10.5 Summary	235		
	10.6 Q&A	236		
A	Preliminaries for Probability Theory	237		
В	B Measure-Theoretic Probability Theory			
\mathbf{C}	Convergence of Sequences			
	C.1 Convergence of deterministic sequences	251		
	C.2 Convergence of stochastic sequences	254		
D	D Preliminaries for Gradient Descent			
Bibliography		270		
Symbols		271		
Index				