

# Artificial Intelligence – Fall 2025

### **Course Objectives**

- Learn foundational and modern Al algorithms for building intelligent systems, including search, decision making, learning, and game-playing.
- Understand the strengths and limitations of different Al approaches and tools.
- Gain practical skills in implementing Al algorithms and applying them to real-world problems.

### Faculty

Dr. Arun Chauhan – Email: arun@sitare.org Dr. Alapan – Email: alapan@sitare.org

#### Class Schedule

Monday: 1:00 PM – 1:55 PM, 2:00 PM – 2:55 PM Tuesday: 3:00 PM – 3:55 PM, 4:00 PM – 4:55 PM

Office Hours: 3:00 PM - 3:55 PM

#### Course Outline

| Sub<br>Code | Subject                    | L | Т | Р | CIE | ESE | Total /<br>Credits |
|-------------|----------------------------|---|---|---|-----|-----|--------------------|
|             | Artificial<br>Intelligence | 3 | 0 | 2 | 50  | 50  | 100 / 4            |

# **Syllabus**

- Graph and Tree Search Algorithms (BFS, DFS, A\*)
- Decision Making under Uncertainty (Bayes, MDPs)
- Al in Games (Mini-Max, Alpha-Beta Pruning)
- Constraint Satisfaction Problems (CSPs, backtracking, propagation)
- Reinforcement Learning (theory and applications)







- Basic Machine Learning Algorithms (Naive Bayes, Regression, Clustering)
- Modern Al Tools (LLMs for text, Diffusion models for images)

#### **Prerequisites**

- · Mathematical Foundations of Computing
- Programming Methodology in Python

### Course Learning Outcomes (CLOs)

- CLO1: Understand the fundamental concepts, history, and modern applications of Al.
- CLO2: Apply graph and tree-based search, adversarial search, and CSP techniques to problem solving.
- CLO3: Apply probabilistic reasoning, reinforcement learning, and machine learning algorithms in decision making.
- CLO4: Explore modern AI tools and understand how to build simple AI-driven applications.

## **Teaching Methodology**

- A mix of lectures, tutorials, and coding sessions.
- In-class problem solving for reinforcement.
- Weekly assignments and hands-on practice with Python/Al libraries.

# Weekly Session Plan

| Week | Topics                                                 | CLO  |
|------|--------------------------------------------------------|------|
| 1    | Foundations and History of AI; Natural vs Artificial   | CLO1 |
|      | Intelligence; Weak vs Strong Al                        |      |
| 2    | Uninformed Search: BFS, DFS                            | CLO2 |
| 3    | Informed Search: Greedy Best-First, A*                 | CLO2 |
| 4    | Adversarial Search: Mini-Max, Alpha-Beta Pruning       | CLO2 |
| 5    | Constraint Satisfaction Problems: Definition,          | CLO2 |
|      | Propagation, Backtracking                              |      |
| 6    | Uncertainty: Probability, Bayes' Rule, Markov Decision | CLO3 |
|      | Processes                                              |      |
| 7    | Reinforcement Learning – Theory                        | CLO3 |
| 8    | Reinforcement Learning – Implementation                | CLO3 |







| 9  | Naive Bayes Algorithm                                 | CLO3   |
|----|-------------------------------------------------------|--------|
| 10 | Linear & Logistic Regression                          | CLO3   |
| 11 | K-Means Clustering                                    | CLO3   |
| 12 | Modern Al Tools: Large Language Models (Text-to-Text) | CLO4   |
| 13 | Modern Al Tools: Diffusion Models (Text-to-Image)     | CLO4   |
| 14 | Building Al Applications – From Idea to Prototype     | CLO4   |
| 15 | Revision & Open Discussions                           | CLO1-4 |
| 16 | Student Presentations                                 | CLO1-4 |

#### Assessment Structure

- Continuous Assessment:
  - 5 Marks (Teacher's assessment)
  - 5 Marks (Appreciation for Innovation)
  - 5 Marks (Class Participation)
- Internal Assessment Tests (2 × 10 marks): 20 Marks
- Mid-Term Exam: 15 MarksEnd-Term Exam: 50 Marks
- Total: 100 Marks

### Assessment Philosophy

- Assignments and quizzes test application and coding skills.
- Internal and end-term exams test both theory and practical algorithm implementation.
- Students should demonstrate not only knowledge of algorithms but also reasoning about when to use them.

#### **Policies**

- Unfair Means: Any form of plagiarism or cheating results in an F grade.
- Al Use Policy: Students must not use Al tools (e.g., ChatGPT, Copilot) for assignments. They are encouraged to explore these tools only for learning purposes.



