Minería de datos

Hugo Andrés Dorado

Contenido

- Definiciones en minería de datos
- Pre procesamiento
- Tipo de aprendizaje
- Modelos supervisados
- Tipos de error
- Partición del conjunto de datos
- Medidas de desempeño
- Optimización de parámetros
- Interpretación de modelos

Conceptos en minería de datos

• Características, variables de entrada (Features): Variables medidas sobre las observaciones que se asocian luego a un variable salida.

• Variable de salida: Variable a explicar de interés.

• Función costo: Es una función que permite aproximar un conjunto de variables de entrada para generar una respuesta aproximada según la variable de salida.

$$Y = f(X) + \varepsilon$$

Preprocesamiento

Dumificación de variables

Row Number	Direction	Row Number	Direction_N	Direction_S	Direction_W	Direction_E	Dire
1	North	1	1	0	0	0	
2	North-West	2	0	0	0	0	
3	South	3	0	1	0	0	
4	East	4	0	0	0	1	
5	North-West	5	0	0	0	0	

Normalización de datos

Selección de atributos

Tipo de aprendizaje

Supervisado

Ranking de importancia de variables

 X_2 X_4

 X_3 X_{10}

 X_1 X_5

No supervisado

- Análisis cluster.
- PCA.
- TSE

Modelos supervisados

- Pregunta: ¿Que mails son spam?, ¿Que zonas son bosque?, ¿Que clientes serán morosos?
- Entrada de datos: conjuntos de e-mail, Imágenes satelitales, información de clientes. (Ya clasificados)
- Variables de entrada: Frecuencia de ciertas palabras, índices espectrales por color, variables seleccionadas
- Algoritmo: Redes neuronales artificiales, suppor vector machine, J46
- Parámetros: (Tasa de decaimiento, neuronas ocultas), (costo), (umbral de confianza)
- Evaluación. (Precisión, exactitud, concordancia)

Tipos de error.

• Error dentro de la muestra: La tasa de error que se obtiene en los mismos datos para construir el modelo.

• Error fuera de la muestra: La tasa de error que se obtiene al traer nuevos datos no mostrados, también conocido como error de generalización.

Partición del conjunto de datos

Partición del conjunto de datos - K - fold

Overfitting – sobre parametrización

	Underfitting	Just right	Overfitting
Symptoms	- High training error - Training error close to test error - High bias	- Training error slightly lower than test error	- Low training error - Training error much lower than test error - High variance
Regression			my
Classification			
Deep learning	Validation Training Epochs	Error Validation Training Epochs	Validation Training Epochs
Remedies	- Complexify model - Add more features - Train longer		- Regularize - Get more data

Medidas de desempeño

Modelos de regresión

Raíz de errores cuadráticos medios

$$RMSE = \sqrt{\frac{\sum_{i=0}^{n} (\hat{Y}_i - Y_i)^2}{n}}$$

n= número de observaciones

Coeficiente de determinación

$$R^2 = \rho_{\hat{y}y}^2$$

Un valor entre [0,1]

Medidas de desempeño

Modelos de clasificación

Realidad

Predicción		Ocurre	No ocurre		
	Ocurre	А	В		
	No ocurre	С	D		

$$kappa = \frac{P_r(\alpha) + P_r(e)}{1 - P_r(e)}$$
 [-1,1]

$$P_r(\alpha)$$
 = Acuerdo relativo
 $P_r(e)$ = Probabilidad por azar

Accuracy /Exactitud

$$\frac{A+D}{A+B+C+D} = \frac{Casos\ acertados}{Casos\ posibles} \quad [0,1]$$

Valoración del Índice Kappa				
Valor de k	Fuerza de la concordancia			
< 0.20	Pobre			
0.21 - 0.40	Débil			
0.41 - 0.60	Moderada			
0.61 - 0.80	Buena			
0.81 - 1.00	Muy buena			

Optimización de parámetros

Model	method Value	Type 🗆 L	ibraries	Tuning Parameters
Neural Network	nnet	Classification, Regression	nnet	size, decay
Random Forest	rf	Classification, Regression	randomForest	mtry
CART	rpart	Classification, Regression	rpart	ср

http://topepo.github.io/caret/index.html

Interpretación de modelos

Importancia de variables

Dependencias parciales

Alrededor de 60.000 semillas por HA

Un rango diurno de menos de 11.5°C

Una cantidad óptima de 180 kg/ha de nitrógeno

Por lo menos 30% de días con lluvia

El mejor método de aprendizaje de máquina

Interpretable Simple **Preciso** Rápido Escalable

Puntos claves

- La minería de datos ofrece una gama variada de herramientas para explotar el conocimiento que pueda tener la información registrada en bases de datos.
- Para llevar a cabo un proyecto de minería de datos se debe seguir un cuidadoso procesamiento, análisis y evaluación de los datos.
- El mejor método de aprendizaje de máquina debe tener característica que le permiten tener un balance entre interpretación, complejidad, efectividad, velocidad y escalabilidad.

Gracias!

Hugo Andrés Dorado

Investigador Alianza Bioversity CIAT

h.a.dorado@cgiar.org