3

MATH 3940 Numerical Analysis for Computer Scientists Assignment 5 Solutions Fall 2020

(a) (9 marks) Using hand calculations, find the least-squares line y = f(x) = Ax + B for the data and calculate the root-mean-square error $E_2(f)$.

(b) (3 marks) Using Matlab, find the least-squares line y = f(x) = Ax + B for the data.

Solution. (a)

	x_k	y_k	x_k^2	$x_k y_k$
	1	1.3	1	1.3
	2	3.5	4	7.0
	3	4.2	9	12.6
	4	5.0	16	20.0
	5	7.0	25	35.0
Sum	15	21	55	75.9

The normal equations are

$$55A + 15B = 75.9$$

 $15A + 5B = 21$

Multiplying second equation by -3 and adding to the first equation, we have

$$55A + 15B = 75.9$$

 $-45A - 15B = 63$
 $10A = 12.9$

Thus $A = \frac{12.9}{10} = 1.29$. Substituting A = 1.29 into the second equation we obtain

$$15A + 5B = 21 \Rightarrow 15(1.29) + 5B = 21 \Rightarrow 5B = 21 - 19.35 = 1.65 \Rightarrow B = \frac{1.65}{5} = 0.33$$

Therefore the least-squares line is y = f(x) = Ax + B = 1.29x + 0.33. The error $E_2(f)$ is given by

$$E_{2}(f) = \left[\frac{1}{5} \sum_{k=1}^{5} (f(x_{k}) - y_{k})^{2}\right]^{\frac{1}{2}} = \left[\frac{1}{5} \sum_{k=1}^{5} (1.29x_{k} + 0.33 - y_{k})^{2}\right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{5} \left\{ (1.62 - 1.3)^{2} + (2.91 - 3.5)^{2} + (4.2 - 4.2)^{2} + (5.49 - 5)^{2} + (6.78 - 7)^{2} \right\}\right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{5} \left\{ (0.32)^{2} + (-0.59)^{2} + (0)^{2} + (0.49)^{2} + (-0.22)^{2} \right\}\right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{5} (0.1024 + 0.3481 + 0 + 0.2401 + 0.0484)\right]^{\frac{1}{2}} = \left(\frac{0.739}{5}\right)^{\frac{1}{2}} = 0.3845$$

(b) See Matlab sheets for the solution of part (b).

2. Consider the data

(a) (5 marks) Using hand calculations, find the least-squares power fit $y = f(x) = \frac{A}{x}$ for the data.

(b) (3 marks) Using Matlab, find the least-squares power fit $y = \frac{A}{x}$ for the data. (Provide program for power fit).

Solution. (a) For the power fit $y = \frac{A}{x}$, we have M = -1.

We construct the following table

The coefficient A is given by $A = \frac{20.6334}{5.6945}$ (*)3.6234

Therefore the power fit is $y = \frac{3.6234}{x}$

(b) See Matlab sheets for the solution.

3. Consider the data

x_k	1	2	3	4
y_k	0.6	1.9	4.3	7.6

(a) (4 marks) Find the least-squares curve $y = f(x) = Cx^A$ by nonlinear method using Matlab (Hint: Use Matlab built-in function for minimization of a function).

(b) (10 marks) Using hand calculations, find the least-squares curve y = f(x) = Cx^A by data linearization method (the change of variable method).

Solution. (a) See Matlab sheets for the solution of part (a).

(b) The change of variables will be $X = \ln x$, $Y = \ln y$ and $B = \ln C$, or $C = e^B$. We will calculate the following table of values

	x_k	y_k	$X_k = \ln x_k$	$Y_k = \ln y_k$	X_k^2	X_kY_k
	1	0.6	0	-0.5108	0	0
	2	1.9	0.6931	0.6419	0.4804	0.4449
	3	4.3	1.0986	1.4586	1.2069	1.6024
	4	7.6	1.3863	2.0281	1.9218	2.8116
Sum			3.178	3.6178	3.6091	4.8589

The normal equations are

$$3.6091A + 3.178B = 4.8589$$

 $3.178A + 4B = 3.6178$

Multiplying first equation by 4 and second equation by -3.6178 and adding, we have

Thus
$$A = \frac{7.93823}{4.33672} = 1.83047.$$

Substituting A = 1.83047 into the second equation we obtain

$$3.178A + 4B = 3.6178 \implies 3.178(1.83047) + 4B = 3.6178$$

 $\implies 3B = 3.6178 - 5.81723 = -2.19943 \implies B = -0.54986$
 $C = e^B = e^{-0.546986} = 0.57703$.

Therefore the least-squares fit is $y = f(x) = Cx^A = 0.57703x^{1.83047}$.

4. Let $f(x) = \sin x$, and h = 0.2 in each case.

(a) (2 marks) Find
$$f'(1.5)$$
 using the formula $f'(x) = \frac{f(x+h) - f(x)}{h}$

(b) (2 marks) Find
$$f''(1.5)$$
 using the formula $f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$

(c) (4 marks) Find the exact and relative error for the approximation obtained in part (b).

Solution. (a)
$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

$$f'(1.5) = \frac{f(1.5 + 0.2) - f(1.5)}{0.2}$$

$$= \frac{f(1.7) - f(1.5)}{0.2}$$

$$= \frac{\sin(1.7) - \sin(1.5)}{0.2}$$

$$= \frac{0.991664 - 0.997494}{0.2}$$

$$= \frac{-0.00583}{0.2} = -0.02915$$

(b)
$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

$$f''(1.5) = \frac{f(1.5+0.2) - 2f(1.5) + f(1.5-0.2)}{(0.2)^2}$$

$$= \frac{\sin(1.7) - 2\sin(1.5) + \sin(1.3)}{0.04}$$

$$= \frac{0.99166481 - 2(0.997494986) + 0.963558185}{0.04}$$

$$= \frac{-0.039766977}{0.04} = -0.994174433$$

(c) $f(x) = \sin x$, $f'(x) = \cos x$ and $f''(x) = -\sin x$.

Thus exact value of f''(1.5) is $f''(1.5) = -\sin(1.5) = -0.997494986$.

The exact error is |-0.997494986 - (-0.994174433)| = 0.003320553.

The relative error is
$$\frac{0.003320553}{|-0.997494986|} = 0.00332889$$

(7 marks) Find the order of error in the following approximation (show your steps)

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

Solution. We use Taylor polynomial expansion for the functions and obtain

$$f(x+2h) = f(x) + 2\frac{f'(x)}{1!}h + 4\frac{f''(x)}{2!}h^2 + 8\frac{f'''(x)}{3!}h^3 + 16\frac{f^{(4)}(x)}{4!}h^4 + 32\frac{f^{(5)}(c_1)}{5!}h^5$$

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \frac{f^{(4)}(x)}{4!}h^4 + \frac{f^{(5)}(c_2)}{5!}h^5$$

$$f(x-h) = f(x) - \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 - \frac{f'''(x)}{3!}h^3 + \frac{f^{(4)}(x)}{4!}h^4 - \frac{f^{(5)}(c_3)}{5!}h^5$$

$$f(x-2h) = f(x) - 2\frac{f'(x)}{1!}h + 4\frac{f''(x)}{2!}h^2 - 8\frac{f'''(x)}{3!}h^3 + 16\frac{f^{(4)}(x)}{4!}h^4 - 32\frac{f^{(5)}(c_1)}{5!}h^5$$

Multiplying the first equation by -1, the second equation by 8, the third equation by -8, and the fourth equation by 1 and adding them

$$\begin{split} -f(x+2h) &= -f(x) - 2\frac{f'(x)}{1!}h - 4\frac{f''(x)}{2!}h^2 - 8\frac{f'''(x)}{3!}h^3 - 16\frac{f^{(4)}(x)}{4!}h^4 - 32\frac{f^{(5)}(c_1)}{5!}h^5 \\ 8f(x+h) &= 8f(x) + 8\frac{f'(x)}{1!}h + 8\frac{f''(x)}{2!}h^2 + 8\frac{f'''(x)}{3!}h^3 + 8\frac{f^{(4)}(x)}{4!}h^4 + 8\frac{f^{(5)}(c_2)}{5!}h^5 \\ -8f(x-h) &= -8f(x) + 8\frac{f''(x)}{1!}h - 8\frac{f''(x)}{2!}h^2 + 8\frac{f'''(x)}{3!}h^3 - 8\frac{f^{(4)}(x)}{4!}h^4 + 8\frac{f^{(5)}(c_3)}{5!}h^5 \\ f(x-2h) &= f(x) - 2\frac{f'(x)}{1!}h + 4\frac{f''(x)}{2!}h^2 - 8\frac{f'''(x)}{3!}h^3 + 16\frac{f^{(4)}(x)}{4!}h^4 - 32\frac{f^{(5)}(c_1)}{5!}h^5 \\ -f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) = 12\frac{f'(x)}{1!}h + O(h^5) \end{split}$$

Thus we obtain

$$12hf'(x) = -f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) + O(h^5)$$

$$\Rightarrow f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h} + O(h^4)$$

Thus the order of error in the given approximation is $O(h^4)$.

m

6. (6 marks) Consider the data

Γ	x_k	0.1	0.13	0.16
	$f(x_k)$	0.0415	-0.0583	-0.1577

Find the approximations to f'(0.1), f'(0.13), and f'(0.16) of order $O(h^2)$. (Hint: use appropriate difference formulas for each value of x)

Solution. Looking at the table, we should take h = 0.13 - 0.1 = 0.03. For f'(0.1), we will use forward-difference formula.

$$f'(x) = \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$

$$f'(0.1) = \frac{-3f(0.1) + 4f(0.1+0.03) - f(0.1+0.06)}{2(0.03)}$$

$$= \frac{-3f(0.1) + 4f(0.13) - f(0.16)}{0.06}$$

$$= \frac{-3(0.0415) + 4(-0.0583) - (-0.1577)}{0.06}$$

$$= \frac{-0.2}{0.06} = -3.3333$$

For f'(0.13), we will use central-difference formula.

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

$$f'(0.13) = \frac{f(0.13 + 0.03) - f(0.13 - 0.03)}{2(0.03)}$$

$$= \frac{f(0.16) - f(0.1)}{0.06}$$

$$= \frac{-0.1577 - 0.0415}{0.06} = \frac{-0.1992}{0.06} = -3.32$$

For f'(0.16), we will use backward-difference formula.

$$f'(x) = \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h}$$

$$f'(0.16) = \frac{3f(0.16) - 4f(0.16 - 0.03) + f(0.16 - 0.03)}{2(0.03)}$$

$$= \frac{3f(0.16) - 4f(0.13) + f(0.1)}{0.06}$$

$$= \frac{3(-0.1577) - 4(-0.0583) + 0.0415}{0.06}$$

$$= \frac{-0.1984}{0.06} = -3.3067$$

Question 1: (b) Using the least-square line program in Matlab >> X=[1 2 3 4 5]; >> Y=[1.3 3.5 4.2 5.0 7.0]; >> [A B]=Isline(X,Y) A = 1.2900 B = 0.3300The least square line is $y=1.29 \times + 0.33$ Question 2: (b) M file for the power fit is function A=Ispower(X,Y,M) % Input - X is the 1xn abscissa vector - Y is the 1xn ordinate vector % Output - A is the coefficient of x^M XM=X.^M; sumx2m=(XM)*(XM)'; sumxmy=(XM)*(Y)'; A=sumxmy/sumx2m; >> X=[0.5 1 1.5 2]; >> Y=[7.1 3.7 2.6 2]; >> A=Ispower(X,Y,-1) A = 3.6234Thus the least squares power fit is y=3.6234/x. Question 3: (a) M file for the error function is function Z=EQ3(U) C=U(1); A=U(2); Z=zeros(1,2); $Z = (C*(1^A) - 0.6)^2 + (C*(2^A) - 1.9)^2 + (C*(3^A) - 4.3)^2 + (C*(4^A) - 7.6)^2$; >> fminsearch('EQ3',[1 1]) or >> fminunc('EQ3',[1 1]) ans = 1.96541 0.49756.

Thus the least-squares fit is $y=f(x)=0.49756 \times (1.96541)$