L - Punkty bliskie

Rzeczą wielkiej wagi jest nieskończona rozmaitość kotów.

Opis

Świat jest pełen rozmaitości. Mamy rozmaite modele tefefonów komórkowych, aparatów fotograficznych, rozmaite ciekawe zadania czekają na rozwiązania. Informatycy mają rozmaite języki programowania, psychologowie rozmaite modele psychologiczne, a prawnicy rozmaite kodeksy postępowań. Matematycy też mają rozmaitości, a niektórzy z nich nawet je lubią. Takie osoby nazywa się (ku większej rozmaitości) topologami. Pomijając ścisłe definicje, rozmaitość w matematyce jest to przestrzeń, która przypomina \mathbb{R}^n . Jedną z najbardziej popularnych rozmaitości jest torus. Przykładny torus wygląda następująco:

Ciekawą rzeczą jest jak taki torus powstaje z kwadratowej kartki papieru. Okazuje się, że jeśli skleimy (utożsamimy) przeciwległe boki kwadratu, to otrzymamy właśnie torus.

Kwadrat, z którego budujemy nasz torus, ma rozmiary 4 000 na 4 000, dokładniej jest to kwadrat o wierzchołkach w punktach (0,0), (0, 4000), (4000, 4000), (4000, 0).

Mając taką reprezentację torusa, możemy wprowadzić funkcję odległości. Przez odległość między dwoma punktami a i b będziemy uznawać długość najkrótszego odcinka łączącego owe punkty na zdefiniowanym powyżej kwadracie z utożsamionymi brzegami. Na przykład, dla punktów (1,1) i (3999,3999) kwadrat odległości wynosi 8.

Matematycy nie pytają. Matematycy stawiąją problemy. Aktualnie postawili taki: mając podany zbiór punktów na powyżej zdefiniowanym torusie, znajdź i wypisz dwa punkty z tego zbioru, które są najmniej od siebie oddalone.

Specyfikacja wejścia

W pierwszej linii podana jest liczba T (0 < $T \le 100$) przypadków testowych. Każdy przypadek składa się z liczby punktów N, gdzie $2 \le N \le 10000$. Następnie znajduje się N linii, które zawierają współrzędne punktów (x, y) (0 < $x, y \le 4000$).

Specyfikacja wyjścia

Dla każdego zestawu danych należy wypisać w jednej linii 4 liczby: x_1, y_1, x_2, y_2 , gdzie (x_1, y_1) i (x_2, y_2) to współrzędne dwóch punktów, które są na najmniej oddalone od siebie. Jeżeli istnieje więcej takich par, wypisz dowolną z nich.

Przykład

Odpowiedź

1 1 3999 3999