

百度推荐引擎实践系列(一):策略篇

赵岷 百度 - 推荐与个性化部 2012. 10.20

- 为何推荐?
- 百度推荐与个性化实践
- 推荐系统设计要素
- 推荐系统设计之策略篇

搜索 VS. 推荐: 互为补充

信息爆炸信息过载

方法 1 用户主动搜索

用户知道自己想要什么 && 知道如何描述自己的需求 知识匮乏时间有限

方法 2 系统主动推荐

豆瓣douban

用户有需求 && 不知道怎样描述自己的需求 or 不知道去哪寻找/懒得找

- ✓ 目标:协助用户高效便捷地寻找/发现信息
 - ✓ 管理&组织、搜索&引导、浏览&发现

✓ 产品可兼顾三者,搜索与推荐功能有机结合

- ✓ 提升用户体验和满意度,增强用户粘性
 - 消费需求的变化:
 - 单一/从众 → 多样/个性/品位
 - 信息的极大丰富
 - 需要有效的信息过滤工具
- ✓ 用户数据的积累已经可以支撑个性化应用
 - 能够在线获得大量用户行为、偏好数据
 - SNS的流行,用户逐渐养成分享和接受推送的习惯

- ✓个性化营销
 - → 电子商务公司

- ✓个性化广告
 - → 以面向个人用户的广告为主要盈利模式 的互联网公司

- ✓ 除了广告/商品推荐之外,推荐还能带来什么显著收益?
- ✓ 推荐是锦上添花,还是雪中送炭?独立推荐产品能成功吗?
- ✓ 会出现像搜索引擎一样成功的推荐引擎吗?或者,推荐引擎将与搜索引擎合二为一?
- ✓ 以上,期待大家的实践 ◎

● 为何推荐?

百度推荐与个性化实践

推荐系统设计要素

推荐系统设计之策略篇

例:个性化上网入口 -- 百度新首页

例:知道问题推荐

我的知道

我的提问

我的回答

我的评论

我的赞同

) 为我推荐的提问

我的求助

我的成长

我的任务

我的物品

我的团队

财富商城

我的设置

标题(共247条)
安徽有BEC高级考点吗?有的话在哪报名以及报名…(英语考试)
❷ 10 BEC口语考试时间不合适,可以申请改时间吗,本… (英语考试)
京级考试心得? [英语考试]
急》、EC中级考试的最终复习资料啊 (英语考试)
母 20 谁有英语BEC证件的清晰版扫描件发给我一份要… (英语考试)
❷ 10 新东方BEC主讲谢姣岳的中级口语教材 谁能帮忙… (英语考试)
黄山英语BEC在哪里报名 [英语考试]
推荐一些考bec中级的好方法,我打算下半年考,…[英语考试]
bec中级写报告与商务建议的格式是什么 [英语考试]
求助BEC中级的复习资料 [英语考试]
求教BEC高级 四级630 六级590 托福9 [英语考试]
BEC考试还有15天,做了半个月的题,错的比较…(英语考试)
有无2012中级BEC全套练习资料。 [英语考试]
我想大三上个学期考BEC(就是下个学期),老师…[英语考试]
考BEC的资料谁有啊? [英语考试]

回答数	提问时间	
0	2012-5-20	
1	2012-5-20	
2	2012-5-20	
1	2012-5-20	
0	2012-5-13	
0	2012-5-17	
1	2012-5-17	
2	2012-5-16	
1	2012-5-15	
0	2012-5-19	
0	2012-5-21	
1	2012-5-18	
0	2012-5-14	
2	2012-5-17	
 2	2012-5-12	

例:贴吧帖子推荐图片、视频

共有51算贴子 1 2 下一页 尾页

【如此倾心】[11.10-19]林心如会红长时间的!

只看楼主

核心合员 17

不是我盖的, 我关注过的女星算比较多的吧, 林老板个性人品都算是上乘了, 从偶像,一步一步踏实地走向实力,刚开始并非倾城的她,现在确实散发了一种美丽

从纯情的瑶女郎,到如今各种差异的角色的成功塑造。

虽然在电影上的作品较少,在电视剧放个版块上,确实绝对的实力派了

对后面的更年轻的演员也很是照顾,这个他们自己都这么感谢心如姐的。 只要,她愿意,她会成功塑造更多不同以往的角色人物,她可以红得更久。 这种红,不是那种简单的明星的红了,应该说是表演艺术的境界吧。

例:音乐推荐

✓ 全类型

- 多媒体

過 百度音乐

- LBS、APP 🔀 地图 🙋 百度身边 🌋 百度应用 瞐 百度游戏

- ✓ 全方位
 - 个人上网入口、各垂直领域、PC+无线

推荐引擎技术Overview

产品分析 分析框架/工具 推荐效果评估 评估 新首页 知道 贴吧 video 新闻 产品策略 视频类推荐 资讯类推荐 推荐子系统 关联 协同 内容 CTR 推荐算法 触发 过滤 关联 预估 用户 内容 ontology: 用户兴趣 用户行为 文本内容模型: 资讯/视频/图片 作品类 模型 模型 模型 模型 用户 推荐 资讯/视频/图片/音乐/... uid/cookie/无线/... 数据 资源 UGC数据 产品线日志 网页库 资源库 基础数据

架 在线服务 流式计算

算法 平台 数

数据仓库

- 9 为何推荐?
- 百度推荐与个性化实践
- 推荐系统设计要素
 - 推荐系统设计之策略篇

- ✓ Task 1: 通过人的行为/偏好/兴趣、事物的特性等建立事物间和人之间的关联
 - 行为:浏览购买、地理位置、Social Network、......
 - 口味:吃喝玩乐、衣食住行、.....
- ✓ Task 2: 把关联的人或物推荐给人
 - 书籍、电影、音乐、文章、网站......
 - **商品、广告……**
 - 人、团体、活动……

- ✓ 需求分析和用户调研
- ② ✓ 功能设计
- 3 ✓ 界面设计
- 4 ✓ 架构设计
- 5 ✓ 算法设计
- 6 ✓ 系统评测
- ~~ 不同推荐系统各部分重要程度不同 ~~

需求分析和用户调研 - 为谁?推荐什么?何时?何地? 1

- ✓ 为谁(例):
 - 新用户:兴趣未知,着重多样性、新热
 - 老用户:兴趣已知,着重个性化
- ✓ 推荐什么(例):
 - 价格一致,用户经常购买的类别
 - 书、电影、音乐、文章 → 以用户对内容主题的兴趣为主
 - 价格不一致,用户经常购买的类别
 - 服饰、日用百货 → 视觉、品牌、价格、内容
- ✓ 何时(例):
 - Email VS. 手机短信 VS. APP推送
 - 短期、长期、周期(节假日、季节、.....)
- ✓ 何地(例):
 - 商家、优惠券推送

✓ 产品分类(例)

- 文本:新闻、博客、小说、论文、......
- 图片:风景、商品、旅游、......
- 音频:歌曲、歌手、专辑、......
- 视频:电影、电视剧、综艺节目、短视频、.....
- 其他:app、位置服务、......
- SNS:人、群组、.....
- 混合类别~~
- 数据(例):文本或其他内容 + metadata + 用户行为 + SNS
- 功能(例)
 - 1) item → item list: e.g., 关联商品、关联视频、关联app、关联网站
 - 2) item set → item set list: e.g., 关联列表、关联专辑
 - 3) user → item list、item set list: e.g., 您可能喜欢的XXX
 - 4) user → user list、 user set list: e.g., 您可能感兴趣的XXX(人、群组)

考虑因素:

- -- 用户是否需要?
- -- 系统收益?
- -- 数据是否支持?

- ✓ 如何将推荐结果呈现给用户?
- ✓ 如何收集用户信息和反馈数据?
- ✓ 目的:
 - 提高用户满意度, 达到推荐目的
 - 更多更好地收集高质量的用户反馈
 - 准确评测推荐算法效果

- ✓ 大规模存储
- ✓ 分布式计算
- ✓ 用户量、访问频次、峰值
- ✓ 实时响应的要求:
 - 毫秒级、秒级、小时级?
- ✓ 硬件资源的最大利用

- ✓ 优化准则:
 - 准确性、多样性、新颖性、覆盖率、时效性、……
- ✓ 数据预处理
- ✓ 离线算法
- ✓ 在线算法
- ✓ 功能实现策略
- ✓ 推荐解释
 - 对消费代价大的(时间、金钱)item尤其重要

- ✓ 上线前:基于人工标注评测集
- ✓ 上线后:
 - 基于用户点击数据
 - 将用户显示/隐式反馈转化为评测集
 - 基于A/B测试
 - 点击率、后续步长、转化率、......
 - 整体收益 VS. 各模块内部收益
 - 产品指标
 - 用户指标:高收益用户、低收益用户
 - 每个产品特性导致不同的评估指标
 - 如何评估用户需求满足度?

- 为何推荐?
- 百度推荐与个性化实践
- 推荐系统设计要素
- 推荐系统设计之策略篇

推荐系统设计之策略篇

功能分析、数据分析、算法设计

- ✓ 用户数:万 → 十万 → 百万 → 千万→ 亿
- ✓ 用户群体:低端/高端、大众/小众、职业、年龄......
- ✓ 推荐功能:
 - 推荐内容:资讯、视频、图片、......
 - 个性化?非个性化?
 - Session?Cookie?用户?
 - Top-N?列表浏览?
 - 实时反馈的更新:点击、收藏、喜欢、删除、换一批
 - 用户模型的更新:实时、小时级、天级、周级?

例:功能分析

- ✓ 例1:知道问题推荐
 - 用户:知道产品相对资深用户,各领域都有
 - 推荐功能:
 - 推荐内容:知道待回答问题
 - 是否个性化:针对特定用户的个性化推荐,和用户历史行为偏好相关
 - 展现形态:个人中心列表浏览&特定场景推送
 - 实时反馈:点击查看、回答
 - 时效性需求:固定周期更新 or 根据用户行为实时调整
- ✓ 例2:贴吧帖子推图片、视频
 - 用户:浏览该帖子的用户,可能是贴吧忠实用户或搜索带来的非贴吧用户
 - 推荐功能:
 - 推荐内容: 帖子相关的图片或视频
 - 是否个性化:非个性化的关联推荐,每个用户看到的都一样
 - 展现形态:关联列表(文字标题+多媒体内容)
 - 实时反馈:点击查看
 - 时效性需求:固定周期更新(旧帖) or 实时关联计算(新帖)

推荐系统设计之策略篇

功能分析、数据分析、算法设计

- ✓ Item
 - 内容:文本、图片、音频、视频
 - Ontology、tag
- ✓ 用户
 - profile
- ✓ 用户-item行为数据
 - 点击、收藏、删除、观看、评分历史
- ✓ 关键:各类数据是否充足?可用性如何?

例:item基础数据的重要性

界面1:

普罗米修斯 主演: 劳米·拉佩斯

机器人总动员主演:本:贝尔特

哈利·波特7: ... 主演: 丹尼尔·雷...

变形金刚3: 黑... 主演: 希亚·拉博夫

源代码 主演: 杰克·吉伦...

界面2:

普罗米修斯 主演: 劳米·拉佩斯

机器人总动员主演: 本:贝尔特

哈利·波特7: ... 主演: 丹尼尔·雷...

变形金刚3: 黑... 主演: 希亚·拉博夫

你17.69 主演: 杰克·吉伦...

界面3:

普罗米修斯

机器人总动员

哈利·波特7: ...

变形金刚3:黑...

源代码

- ✓ Explicit feedback
 - 评分、收藏、推荐/分享、购买、评论
- ✓ Implicit feedback
 - 点击浏览、下载、停留观看时间

✓ 理想:大量准确的Explicit 反馈

✓ 折中:用Implicit 反馈补充

✓ 问题: Explicit与Implicit数据的整合

- ✓ 推荐算法设计与评估的基础
 - 数据充足,简单算法性能可以很好
 - 数据缺失,任何算法也不可能有好的性能
- ✓ 要求:不仅要吸引用户提供反馈,而且要吸引用户提供准确反馈
 - 给用户充足便利的反馈机会
 - 促使用户提供准确反馈/反馈鉴别机制
 - 购买行为:主动搜索购买 VS. 促销购买
 - 浏览行为:排行榜的强引导作用

推荐系统之策略设计

功能分析、数据分析、算法设计

例:简单的个性化推荐流程图

算法选择:基于数据和功能

- ✓ 数据
 - 内容:文本、图片、音频、视频、......
 - Metadata: Ontology/类别信息、tag、......
 - 用户行为日志:点击、评分、......
 - SNS:好友关系、群组关系、......
- ✓ 同一个算法可实现不同功能;同一个功能可用不同算法实现
- ✓ 用户建模、内容建模:将用户、内容用特征向量描述
 - 属性、term、topic、......
- ✓ 离线关联算法:计算<用户-用户>/<用户-item>/<item-item>关联并排序
 - 关联/相似度计算
 - 基于内容的:专家标注、ontology、tag、文本/音频/图像/视频、......
 - 基于用户行为的:统计方法、关联规则、相似度经验公式
 - 混合算法
 - 机器学习
 - 协同过滤 : knn、基于模型的、......
 - 各种经典算法:分类、回归、聚类、图算法、......

例:关联计算-基于内容的(专家标注)

Squeeze your search

Zero in on what you want with real-time suggestions.

Mood -

Feel Good x

Humorous

Touching

Sentimental

Witty

Exciting

Offbeat

Stylized

Captivating

Clever

Plot 💌

Genres 💌

Time/Period -

Audience 💌

Praise *

Based on 💌

jinni.com: Movie Genome

基于内容的关联计算:解决冷启动的好办法

- ✓ 和其他领域紧密结合
 - 新闻、博客、... 自然语言处理
 - 音乐 音频处理;图像 图像处理;视频 视频处理精度取决于相关领域的研究进展
- ✓ 专家标注:限于item数量少且有相对客观标准的领域
 - 电影 VS. 书籍
 - 自动专家发现?
- ✓ 可与Metadata结合:
 - ontology(量少准确):商品分类
 - 分类排行榜:很土很有效的推荐列表
 - tag(量大不准确)

例:关联计算-基于用户行为的(统计)

点击在线试读!

创新者的窘境 [平装]

~ 克莱顿•克里斯坦森 (Clayton M. Christensen) (作者), 胡建桥 (译者)

★★★☆☆ ☑ (10 个用户评论)

市场价: ¥ 38.00

卓越价: Y 22.40 此商品可以享受免费送货 详情

为您节省: Y 15.60 (5.9折)

现在有货。

由卓越亚马逊直接销售和发货。

关键在于用户是否需要此功能 不在于算法简单或复杂

浏览此商品的顾客最终购买

81% 的顾客看完这一页后购买了此商品 创新者的窘境 - 克莱顿●克里斯坦森 (Clayton M. Christensen) 平装 ★★★☆☆ (10) ¥ 22.40

7% 的顾客看完这一页后购买了 创新的艺术 - 汤姆·凯利(Tom Kelley) 平装 ★★★★☆ (11)

5% 的顾客看完这一页后购买了 重来:更为简单有效的商业思维 - 贾森•弗里德(Jason Fried) 平装 ★★★★★ (47) ¥ 22.80

4% 的顾客看完这一页后购买了 设计心理学 - 唐纳德·A·诺曼(Donald Arthur Norman) 平装 ★★★★☆ (46) ¥ 19.50

关联计算 - 基于用户行为的(关联规则)

- ✓ 基本假设
 - 过去经常被一起频繁消费的商品,今后也会被一起消费
- ✓ 算法:
 - 根据事先确定的支持度、置信度、提升度等, 计算关联商品
- ✓ 成熟的商业应用
 - 电信套餐定制、超市捆绑销售
- ✓ 特点:
 - 适合Session/Transaction数据
 - 难以对长尾商品作有效预测
 - 用户的消费差异性被忽略,不是很适合个性化推荐

关联计算 - 基于用户行为的(相似度公式)

- 将用户用item向量表示,或将item用用户向量表示
 - 向量上的取值可以是用户对item的评分或其他行为取值
- 常用的相似度计算公式(也可用于内容关联计算)
 - cosine

$$sim(i,j) = cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{\|i\| * \|j\|} = \frac{\sum_{u \in U} R_{u,i} R_{u,j}}{\sqrt{\sum_{u \in U} R_{u,i}^2} \sqrt{\sum_{u \in U} R_{u,j}^2}}$$

adjusted cosine

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R}_u)(R_{u,j} - \bar{R}_u)}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R}_u)^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R}_u)^2}}$$

pearson correlation

$$sim(i,j) = \frac{Cov(i,j)}{\sigma_i \sigma_j} = \frac{\sum_{u \in U} (R_{u,i} - \bar{R}_i)(R_{u,j} - \bar{R}_j)}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R}_i)^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R}_j)^2}}$$

- ✓ 关联融合
 - 数据融合 → 关联算法
 - 不同关联算法 → 结果融合
- ✓ 关联结果应用
 - 直接用于相关推荐
 - 个性化推荐:用户对特定item的偏好 → 关联扩展

✔ 优点:不依赖domain

	协同过滤							
基本假设	过去行为偏好相似的用户,今后行为偏好也相似							
基本思路	基于近邻的 为每个用户/商品计算相似用户/ 商品,再利用相似用户/商品的历 史进行预测: 基于部分user-item关系 相似度计算→k近邻→偏好预测	基于模型的 用隐变量刻画用户和商品间的关系: 部分user-item关系 → 用隐变量刻画 user-item关系 →偏好预测						
商业 应用	在线购物网站,如Amazon的商品 关联推荐	学术研究热点,实际应用不太普及						
特点	适于个性化推荐							

例:基于模型的协同过滤-MF&PLSA

✓ MF(矩阵分解)

 $\mathbf{R} \approx \mathbf{U}^{\mathsf{T}} \mathbf{V}$

$$\widehat{r}_{ui} = \sum_{k=1}^{K} u_{ku} v_{ki} = \mathbf{u}_{u}^{\top} \mathbf{v}_{i}$$

$$\min_{\mathbf{U} \in \mathbb{R}^{k \times m}, \mathbf{V} \in \mathbb{R}^{k \times n}} \sum_{(u,i) \in \mathcal{R}} (r_{ui} - \mathbf{u}_u^{\mathsf{T}} \mathbf{v}_i)^2 + \lambda (\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2)$$

SVD, set A=U Σ , B=V^T

✓ PLSA(概率隐语义分析)

$$P(r_{ui}|u,i) = \sum_{z=1}^{k} P(z|u)P(r_{ui};\mu_{zi},\sigma_{zi})$$

$$P(r_{ui};\mu_{zi},\sigma_{zi}) = \frac{1}{\sqrt{2\pi}\sigma_{zi}} \exp\left[-\frac{(r_{ui}-\mu_{zi})^2}{\sigma_{zi}^2}\right]$$

$$\widehat{r}_{ui} = \sum_{z=1}^{k} P(z|u) \int rP(r;\mu_{zi},\sigma_{zi})dr = \sum_{z=1}^{k} P(z|u)\mu_{zi}$$

✓ 将用户-item行为数据: <user, item, 点击>,转换为

	用户 属性 1	用户 属性 2	 item 属性1	item 属性2		<u,i> 属性1</u,i>	<u,i> 属性2</u,i>	 是否 点击
<u1,i1></u1,i1>	а	II	 Α	t	•••	22	0.4	 1
<u1,i2></u1,i2>	b	III	 В	р		587	0.8	 0
					•••			
<un,im></un,im>	а	Ī	 В	m	•••	31	0.01	 1

- 可使用各种机器学习分类算法(把难点转换成属性构造和选择问题)
- 参考:个性化广告的CTR(点击率)预估模型
 - 但是,很多推荐不是只以提升CTR为目标
 - CTR提升,用户满意度不一定提升(吸引眼球的推荐不一定是好的推荐)

机器学习算法的难点:优化目标的多样性

✓ 一般算法的优化目标:相对单一和明确

- 分类:分类错误率

- 信息检索:准确率、召回率、......

✓ 推荐系统

- 不同功能的优化目标不同;不同发展阶段的优化目标不同
- 不同优化目标可能需要不同的数据和算法
- 同一算法在不同数据集上效果差异很大,数据在不断变化
 - Item/user比,新老用户比,稀疏度,时效性
- 推荐系统本身影响收集的用户行为数据
 - 推荐列表 -> 用户点击 -> 根据点击数据优化推荐列表

不能因为手里有把锤子,就把所有问题都当作钉子~~

推荐系统之策略设计

一些感受

- ✓ "某某说:XX 算法效果很好/不好"通常意味着"某某有/ 没有适合该算法的数据"
 - 例:"基于SNS的算法效果很好"、"内容关联不靠谱"
- ✓ "在现有数据上优化" VS. "寻找更多的数据"
 - 不同阶段的重点
- ✓ 数据清理&整合

- ✓ 推荐策略和产品业务紧密耦合 → 领域知识的大量使用
 - 关联定义
 - 数据处理
 - 特征构建
 - 推荐解释
- ✓ "通用推荐引擎" VS. "垂直推荐引擎"
 - "通用系统平台+归一化数据+算法" + "垂直策略设计"

谢谢!

