Nome:		RA:
Turma:	1ª PROVA	04/04/2008

Q1	
Q2	
Q3	
Q4	
Q5	
Total	_

ATENÇÃO: Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!

Q1. (2,0 pontos) Calcule o limite, caso exista, ou mostre que o mesmo não existe.

(a)
$$\lim_{x \to 1} \frac{x^3 + x - 2}{x - 1}$$
 (b) $\lim_{x \to -\infty} |x - 1| - x$ (c) $\lim_{x \to 2} \frac{\sqrt{x^2 + 4}}{x - 2}$.

(b)
$$\lim_{x \to -\infty} |x - 1| - x$$

(c)
$$\lim_{x \to 2} \frac{\sqrt{x^2 + 4}}{x - 2}$$

Q2. (2,0 pontos) Seja a função $f(x) = (x-1)^2 + 2$, onde $x \ge 1$.

(a) Encontre sua função inversa f^{-1} .

(b) Esboce os gráficos de f e de f^{-1} . Dê o domínio de f^{-1} e a imagem de f e explique a relação entre esses conjuntos.

Q3. (2,0 pontos) Se f(2) = 2 e f'(2) = 4 então calcule o coeficiente angular da reta tangente ao gráfico de $h(x) = \frac{3x^3 - 4x^2}{f(x)}$ em (2,4).

Q4. (2,0 pontos) Encontre todos os valores $c \in \mathbb{R}$ para os quais a função abaixo é contínua:

$$f(x) = \begin{cases} cx + 1, & \text{se } x \le 3, \\ c^2 x^2 + 1, & \text{se } x > 3. \end{cases}$$

Q5. (2,0 pontos) Considere uma função f tal que $|f(x)-Ax|\leqslant e^{-x}$, para algum número $A\in\mathbb{R}$ fixado. Calcule $\lim_{x\to+\infty}\frac{f(x)-f(1)}{x-1}$.