Lógica Digital (1001351) Mapas de Karnaugh

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 6 de março de 2019

$$f = (\overline{x}_1 + x_2)(\overline{x}_1 + x_3)$$

Figure 2.60 POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

Figure 2.60 POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

Figure 2.60 POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

Figure 2.61 POS minimization of $f(x_1, ..., x_4) = \Pi M(0, 1, 4, 8, 9, 12, 15).$

- Nos circuitos digitais, há certas situações onde algumas entradas para uma função nunca acontecem. Ex:
 - Um sensor para detectar se uma porta está aberta e outro para detectar se a mesma porta está fechada;
 - Um sensor para detectar se um objeto é muito pesado e outro se ele é muito leve; etc.
- Em funções deste tipo, as entradas que nunca ocorrem são chamadas de indiferenças (don't care conditions);
 - Tanto faz qual será a saída da função nesses casos, já que a entrada nunca ocorre;
 - Isso pode ser usada para otimizar a função, adotando 0 ou 1 na saída de acordo com a conveniência.

(a) SOP implementation

(b) POS implementation

Figure 2.62 Two implementations of the function $f(x_1, ..., x_4) = 1$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 5/13

BCD	b_3	b_2	b_1	b_0	f				x_1	r_0	
0	0	0	0	0	0				x_1	<i>x</i> 0	
1	0	0	0	1	0			00	01	11	10
2	0	0	1	0	0						
3	0	0	1	1	1		00				•
4	0	1	0	0	0			0	0	1	0
5	0	1	0	1	0	x_3x_2	01				
6	0	1	1	0	1			0	0	0	1
7	0	1	1	1	0						·
8	1	0	0	0	0				_	_	_
9	1	0	0	1	1			D	D	D	D
A	1	0	1	0	_		10				
b	1	0	1	1	_			0	1	D	D
C	1	1	0	0	_			U	ı		D
d	1	1	0	1	_				1		
E	1	1	1	0	_						
F	1	1	1	1	_						

Implementar $f(b_3, b_2, b_1, b_0) = \sum m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

BCD	b_3	b_2	b_1	b_0	f				x_1	r_0	
0	0	0	0	0	0				w_1	w ()	
1	0	0	0	1	0			00	01	11	10
2 3	0	0	1	0	0						
	0	0	1	1	1		00	0	0	1	0
4	0	1	0	0	0						
5	0	1	0	1	0						
6	0	1	1	0	1		01	0	0	0	1
7 8	0	1	1	1	0	$x_{3}x_{2}$	٠.				
	1	0	0	0	0	x_3x_2					
9	1	0	0	1	1		11	D	D	D	D
A	1	0	1	0	_						
$egin{array}{c} b \ C \ d \end{array}$	1	0	1	1	_		10	0	1	D	D
C	1	1	0	0	_		10	0		ן ט	ן
d	1	1	0	1	_		l				
E	1	1	1	0	_						
F	1	1	1	1	_						

Implementar $f(b_3, b_2, b_1, b_0) = \sum m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

BCD	b_3	b_2	b_1	b_0	f				x_1	r_0	
0	0	0	0	0	0				w_1	<i></i> 0	
1	0	0	0	1	0			00	01	11	10
2 3	0	0	1	0	0						
3	0	0	1	1	1		00	0	0	1	0
4	0	1	0	0	0						
5	0	1	0	1	0						
6 7 8	0	1	1	0	1		01	0	0	0	1
7	0	1	1	1	0		٠.				
	1	0	0	0	0	$x_{3}x_{2}$		_			
9	1	0	0	1	1		11	D	D	D	D
A	1	0	1	0	_						
$egin{array}{c} b \ C \ d \end{array}$	1	0	1	1	_		10	0	1	D	D
C	1	1	0	0	_		10	0	<u> </u>	U	
d	1	1	0	1	_						
E	1	1	1	0	_						
F	1	1	1	1	_						

Implementar $f(b_3, b_2, b_1, b_0) = \sum m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

- ► Frequentemente é necessário implementar funções que são parte de um sistema maior;
- Pode ser possível compartilhar algumas das portas necessárias na implementação de funções individuais;
- Essa estratégia nem sempre funciona da melhor maneira, como veremos a seguir;
- Em vez de derivar as expressões individualmente, podemos procurar implicantes que possam ser compartilhados com vantagem na realização combinada das funções.

(a) Logic circuit and 7-segment display

(b) Truth table

(c) The Karnaugh maps for outputs a and e.

Figure 2.63 Using don't-care minterms when displaying BCD numbers.

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351) Mapas de Karnaugh

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 6 de março de 2019

