INTERACT | SenseDoc Quality checks

B. Thierry, Spherelab

27 June, 2024

Contents

1	QA	${f QA}$ objectives					
2	Dat	a coverage	1				
	2.1	Get data from database	1				
	2.2	Survey time span	1				
	2.3	Wear time vs total survey time	6				
	2.4	Wear time with GPS fix	8				

1 QA objectives

Create summary statistics (see QA subfolder):

- date ranges
- number of days of data per participant
- min, max, SD distributions
- GPS locations

2 Data coverage

2.1 Get data from database

```
select city_id, wave_id, interact_id, sd_id
   ,min(utcdate) start_time, max(utcdate) end_time
   ,max(utcdate) - min(utcdate) survey_duration
   ,count(*) n_epoch
   ,sum(wearing) n_epoch_wearing
   ,count(lat) n_gps_fix
from (
    SELECT 'mtl' city_id, 1 wave_id
        ,ts.*, tm.wearing
   FROM top_sd.top_1sec_mtl ts,
```

```
top_sd.top_1min_mtl tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get Mtl / w2
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'mtl' city_id, 2 wave_id
        ,ts.*, tm.wearing
    FROM top_sd2.top_1sec_mtl ts,
        top_sd2.top_1min_mtl tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get Mtl / w3
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'mtl' city_id, 3 wave_id
        ,ts.*, tm.wearing
   FROM top_sd3.top_1sec_mtl ts,
       top_sd3.top_1min_mtl tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get Skt / w1
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'skt' city_id, 1 wave_id
        ,ts.*, tm.wearing
    FROM top_sd.top_1sec_skt ts,
        top_sd.top_1min_skt tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get Skt / w2
```

```
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start time, max(utcdate) end time
    ,max(utcdate) - min(utcdate) survey duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'skt' city_id, 2 wave_id
        ,ts.*, tm.wearing
    FROM top_sd2.top_1sec_skt ts,
        top_sd2.top_1min_skt tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get skt / w3
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'skt' city_id, 3 wave_id
        ,ts.*, tm.wearing
   FROM top_sd3.top_1sec_skt ts,
        top_sd3.top_1min_skt tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get van / w1
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'van' city_id, 1 wave_id
        ,ts.*, tm.wearing
   FROM top_sd.top_1sec_van ts,
        top_sd.top_1min_van tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get van / w2
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
```

```
,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'van' city_id, 2 wave_id
        ,ts.*, tm.wearing
   FROM top_sd2.top_1sec_van ts,
       top_sd2.top_1min_van tm
    WHERE ts.interact id = tm.interact id AND ts.sd id = tm.sd id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get van / w3
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'van' city_id, 3 wave_id
        ,ts.*, tm.wearing
   FROM top_sd3.top_1sec_van ts,
       top_sd3.top_1min_van tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
        AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get vic / w1
UNTON
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'vic' city_id, 1 wave_id
        ,ts.*, tm.wearing
    FROM top_sd.top_1sec_vic ts,
        top_sd.top_1min_vic tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
       AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
  -- Get vic / w2
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'vic' city_id, 2 wave_id
        ,ts.*, tm.wearing
```

```
FROM top_sd2.top_1sec_vic ts,
       top_sd2.top_1min_vic tm
    WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
       AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
-- Get vic / w3
UNION
select city_id, wave_id, interact_id, sd_id
    ,min(utcdate) start_time, max(utcdate) end_time
    ,max(utcdate) - min(utcdate) survey_duration
    ,count(*) n_epoch
    ,sum(wearing) n_epoch_wearing
    ,count(lat) n_gps_fix
from (
   SELECT 'vic' city_id, 3 wave_id
       ,ts.*, tm.wearing
   FROM top_sd3.top_1sec_vic ts,
       top_sd3.top_1min_vic tm
   WHERE ts.interact_id = tm.interact_id AND ts.sd_id = tm.sd_id
       AND date_trunc('minute', ts.utcdate) = tm.utcdate) as foo
group by city_id, wave_id, interact_id, sd_id
```

head(top_1s_agg)

city_id	wave_	idinteract_idsd_id	$l start_time$	end_time	survey_du	ratin <u>n</u> epoch	_epoch_w	eauringgps_
vic	3	103772760 357	2021-05-25	2021-06-04	9 days	831100	550140	59853
			16:08:19	06:59:58	14:51:39			
skt	2	$302619633\ 312$	2020-10-20	2020-10-23	3 days	265747	145719	15200
			13:09:32	14:58:38	01:49:06			
van	3	$203842375\ 451$	2022 - 07 - 24	2022-08-03	9 days	837692	589752	77296
			13:31:40	06:13:11	16:41:31			
van	1	201585258 445	2018-08-22	2018-09-01	9 days	824722	431133	261061
			14:07:11	03:12:32	13:05:21			
mtl	1	401178032 96	2019-01-11	2019-01-21	9 days	829763	524205	275790
			11:41:22	02:10:44	14:29:22			
van	2	201140482 375	2020-09-10	2020-09-27	16 days	1427720	455100	223106
			14:59:52	03:35:11	12:35:19			

2.2 Survey time span

```
top_1s_agg |>
mutate(
    sdate = as_date(start_time),
    edate = as_date(end_time)
) |>
ggplot() +
geom_segment(
    aes(
        x = sdate,
        xend = edate,
```

```
y = city_id,
    color = city_id
),
    linewidth = 2,
    alpha = .3,
    position = position_jitter(width = 0, height = .3)
) +
scale_x_date(name = "Survey period", date_breaks = "2 month", date_labels = "%b %y") +
facet_wrap(vars(wave_id), ncol = 1, scales = "free", labeller = label_both) +
theme(legend.position = "none")
```


2.3 Wear time vs total survey time

```
top_1s_agg |>
    ggplot() +
    geom_point(aes(x=n_epoch, y=n_epoch_wearing, color=factor(sd_id))) +
    xlim(0, 10 * 24 * 3600) + ylim(0, 10 * 24 * 3600) + # Define theoretical max of survey n_epoch, i.e.
    facet_grid(rows = vars(city_id), cols = vars(wave_id)) +
    theme(legend.position = "none")
```

Warning: Removed 156 rows containing missing values or values outside the scale range
('geom_point()').


```
top_1s_agg |>
mutate(`Wear time` = n_epoch_wearing / n_epoch) |>
ggplot() +
geom_histogram(aes(x = `Wear time`)) +
scale_x_continuous(labels = scales::percent) +
facet_grid(rows = vars(city_id), cols = vars(wave_id), scales = "free_y")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

2.4 Wear time with GPS fix

```
top_1s_agg |>
    ggplot() +
    geom_point(aes(x=n_epoch_wearing, y=n_gps_fix, color=factor(sd_id))) +
    xlim(0, 10 * 24 * 3600) + ylim(0, 10 * 24 * 3600) + # Define theoretical max of survey n_epoch, i.e.
    facet_grid(rows = vars(city_id), cols = vars(wave_id)) +
    theme(legend.position = "none")
```

Warning: Removed 2 rows containing missing values or values outside the scale range ## ('geom_point()').


```
top_1s_agg |>
mutate(`Wear time with GPS` = pmin(n_gps_fix / n_epoch_wearing, 1)) |>
ggplot() +
geom_histogram(aes(x = `Wear time with GPS`)) +
scale_x_continuous(labels = scales::percent) +
facet_grid(rows = vars(city_id), cols = vars(wave_id), scales = "free_y")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

