

Algoritmi fundamentali Curs 5 Analiza algoritmilor

Dr. ing. Kiss Istvan

istvan.kiss@umfst.ro

Cuprins

- 1. Etapele rezolvării problemelor
- 2. Testarea solutiei
- 3. Complexitatea algoritmilor
 - 1. Operatia de baza
 - 2. Funcții de complexitate
 - 3. Clase de complexitate
 - 4. Determinarea complexității unui algoritm dat
- 4. Exemple...

Algoritm...

1. Etapele rezolvării problemelor

1. Analiza teoretica a problemei

Pune accent pe corectitudinea solutiei

2. Proiectarea algoritmului de solutionare

Pune accent pe eficienta de rezolvare (timp,spatiu)

3. Implementarea si testarea solutiei in practica

 Utilitate, siguranta in functionare, robustete, performanta

 Complexitatea algoritmilor: disciplina care se ocupa cu studiul teoretic al eficientei algoritmilor.

- Un program este **corect** dacă el satisface specificaţiile problemei.
- Testarea programelor este activitatea prin care programatorul observă comportarea programului în urma execuţiei lui cu date de test.
 - La programe complexe se practica testarea modulelelor
- Robustetea programului inseamna comportare adecvata la date de intrare intenţionat greşite, pentru care problema nu are sens.

- Testarea dupa specificatia problemei: stabilirea datelor de test se face analizând specificaţia problemei.
- Testarea după textul programului: stabilirea datelor de test pe baza instrucțiunilor din program.

```
DACĂ n<2 ATUNCI
. . . .

DACĂ n>3 ATUNCI
A
...

SFDACĂ
```

Claritatea algoritmului/programului

- Gries sugerează următoarele reguli:
 - instrucţiunile unei secvenţe se vor scrie aliniate, începând toate în aceeaşi coloană;
 - instrucţiunile unei structuri de calcul (instrucţiuni compuse) se vor scrie începând toate din aceeaşi coloană, aflată cu 2-4 caractere la dreapta faţă de începutul instrucţiunii compuse;
 - pe o linie pot fi scrise mai multe instrucţiuni, cu condiţia ca ele să aibă ceva comun. Astfel, 2-4 instrucţiuni scurte de atribuire pot fi scrise pe acelaşi rând. Acest lucru se recomandă în vederea unei scrieri compacte a programului. E bine ca un program ce se poate scrie pe o pagină, cu respectarea structurii lui, să nu fie întins pe două pagini!
- Se recomandă ca denumirile variabilelor să fie astfel alese încât să reflecte **semnificaţia acestor variabile**.

Claritatea algoritmului/programului

```
PROGRAMUL CLASAMENT ESTE:
 DATE m,n,NUME_i, i=1,n,NOTE_{i,i}, j=1,m,i=1,n;
 PENTRU i:=1,n EXECUTĂ {calculează media generală a elevului i}
   FIE S:=0;
   PENTRU j:=1,m EXECUTĂ S:=S+NOTE<sub>i,i</sub> SFPENTRU
   FIE MEDII;:=S/M
 SFPENTRU
 PENTRU j:=1,m EXECUTĂ
   CHEAMĂ ORDINE(n,NOTE,,O);
   CHEAMĂ TIPAR(n, NUME, O)
 SFPENTRU
 CHEAMĂ ORDINE(n, MEDII, O);
 CHEAMĂ TIPAR(n,NUME,O)
SFALGORITM
```

3. Complexitatea algoritmilor

- Se refera la eficienta unui algoritm
- Putem compara doi algoritmi în raport cu:
 - cantitatea de memorie necesară;
 - viteza de lucru, deci timpul necesar rezolvării problemei.
- Timpul necesar execuţiei unui program depinde de numărul operaţiilor executate.
- Numărul operaţiilor executate depinde de datele de intrare, deci se schimbă de la o execuţie la alta.
- Complexitate de spatiu: reprezinta spatiul de memorie de lucru necesar in functie de date de intrare...

3. Complexitatea algoritmilor

- Din punctual de vedere a timpului de executie distingem trei cazuri:
 - Cel mai rau caz: numarul operatiilor de baza efectuate este maxim. W – worst case
 - Cel mai favorabil caz. B best case
 - Complexitatea medie: un numar mediu de operatii de baza. A – average case
- Pentru compararea algoritmilor este suficient daca se determina ordinul de marime al complexitatii.

3.1. Operatia de baza

- Operatia sau operatiile repetitive, identificate in corpul descrierii algoritmului.
- Contorizarea operatiilor de baza permite estimarea timpului de executie.
- Operatia de baza este operatia *inevitabila* in rezolvarea problemei.
- Ex.: in cazul sortarii unui sir de *n* numere prin comparatii este clar ca operatia de baza este operatia de comparare a numerelor.

3.2. Functii de complexitate

- Numarul de repetitii al operatiei de baza se exprima matematic printr-o functie de complexitate individuala asociata algoritmului, functie ce depinde in mod inevitabil de marimea vectorului datelor de intrare.
- Ex.: Algoritmul de determinare a maximului dintrun sir de *n* elemente prin comparatie.
 - Numarul de comparatii effectuate va fi o functie de *n*.

3.2. Functii de complexitate

```
Citeste n, a<sub>1</sub>, a<sub>2</sub>,...,a<sub>n</sub>

Max:=a<sub>1</sub>;

Pentru i:=2;n executa

daca max < a<sub>i</sub> atunci

max:=a<sub>i</sub>;

sf.daca

Sf.pentru
```

Deci, functia care descrie numarul operatiilor de baza este f(n)=n-1

$$f \in O(g(n))$$

- O(1) clasa algoritmilor constanti
- O(log n) algoritmi logaritmici
- O(n) liniari
- O(nlog n) liniarlogaritmici
- O(n²) patratici
- O(n^klog n) polilogaritmici
- O(n^k) polinomiali
- O(aⁿ) clasa algoritmilor exponentiali

$$f \in O(g(n))$$

- Exemple de algoritmi:
 - O(n): afisarea vectorului
 - O(n²): doua cicluri imbracate: afisarea matricei, sortare prin selectie directa
 - O(n³): trei cicluri imbracate: produsul matricelor
 - O(log n): cautare binara
 - O(nlog n): quick sort
 - O(aⁿ): backtracking

Asymptotic comparison operator

Our algorithm is **o**(something)

Our algorithm is **O**(something)

Our algorithm is **O**(something)

Our algorithm is Ω (something)

Our algorithm is ω (something)

Numeric comparison operator

A number is < something

A number is ≤ something

A number is = something

A number is ≥ something

A number is > something

- Clasa problemelor NP-complete (Non-deterministic polinomial):
 - Nu pot fi solutionate prin algoritmi eficienti (de complexitate polinomiala)
- Ex.: Se da o expresie logica in forma normala conjunctiva cu *n* variabile, sa se determine daca pot fi atribuite valori logice variabilelor astfel incat expresia sa fie adevarata [Coo,1970].

- Clasa problemelor NP-complete (Non-deterministic polinomial):
 - Nu pot fi solutionate prin algoritmi eficienti (de complexitate polinomiala)

3.3. Clasificare algoritmi

- Clasificare funcție de implementare:
 - recursivi (se invocă pe ei înşişi) / iterativi (au construcții repetitive);
 - logici (controlează deducţii logice);
 - seriali (un singur procesor şi o singură instrucţiune executată la un moment dat) / paraleli (mai multe procesoare care executa instrucţiuni în acelaşi timp);
 - deterministici (o decizie exactă la fiecare pas)/ nedeterministici (rezolvă problema plecând de la presupuneri);
- Clasificare funcţie de "design" (metodă), ex.:
 - împarte și stăpânește (împarte problema în una sau mai multe instanțe mai mici);
 - programare dinamică (caută structuri optimale o soluție optimală a problemei poate fi construită plecând de la soluțiile optimale ale subproblemelor);
 - metoda "Greedy" (caută tot structuri optimale cu deosebirea că soluțiile la subprobleme nu trebuie să fie cunoscute la fiecare pas; alegerea "Greedy" se referă la "ce arată" mai bine la un moment dat).
- Clasificare funcție de domeniul de studiu algoritmii sunt:
 - de căutare, de sortare, numerici, algoritmi de grafuri, de geometrie computațională, de învățare automată, de criptografie, etc.

• 1. CITEŞTE a, b, c DACĂ a>b ATUNCI max=a ALTFEL max=b Sf.daca DACĂ c>max ATUNCI max=c Sf.daca AFIŞEAZĂ max

2.
 CITEŞTE n
 suma=0; i=0
 CÂT TIMP i<n
 i++
 suma=suma+i
 Sf.cattimp

AFIŞEAZĂ suma

- 3. Descompunerea unui număr în factori primi
 - 1. CITEŞTE n
 - 2. n=abs(n)
 - 3. f=2 //factorul prim de testat
 - 4. CÂT TIMP (f<=n)
 - 4.1.e=0 //exponentul la care apare factorul în descompunere
 - 4.2.CÂT TIMP (n%f==0) //n se divide la f
 - 4.2.1.n=n/f
 - 4.2.2.e=e+1
 - 4.3.DACĂ (e≠0) SCRIE f," la ",e
 - 4.4.DACĂ (f=2) f=f+1 ALTFEL f=f+2

• 4. Calculul unei sume duble

```
1.CITEŞTE a,b,m,n

2.i=1 3.j=1 4.s=0

5.CÂT TIMP (i<=m)

5.1.CÂT TIMP (j<=n)

5.1.1.s=s+ sin(a+3*i)*cos(b+5*j)

5.1.2.j=j+1

5.2.i=i+1

6.SCRIE s
```

3.4. Determinarea complexitatii algoritmilor f(n) = f(n-1) + f(n

- 5. Genereaza numerele Fibonacci
 - 1. CITEŞTE n
 - 2. DACĂ n>=2

$$f(m) = f(m-1) + f(m-2)$$

$$x^{2} = x + 1$$

$$x^{2} - x - 1 = 0$$

$$x_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

$$f(n) = (d_{1})^{n} + (d_{2})^{n}$$

$$f(n) = (\frac{1 + \sqrt{5}}{2})^{n} + (\frac{1 - \sqrt{5}}{2})^{n}$$

$$T(n) = O((\frac{1 + \sqrt{5}}{2})^{n}) + (\frac{1 - \sqrt{5}}{2})^{n}$$

$$T(n) = O((\frac{1 + \sqrt{5}}{2})^{n})$$

$$T(n) = O(1, 6180^{m})$$

$$1,6180 - Golden Patio$$

$$1,1,2,3,5,8,13,21,...$$

$$ex : \frac{21}{13} = 1,6153 \text{ N}1,618$$

$$\frac{5}{3} = 1,66 \text{ N}1,618$$

• 6. Valoarea unui polinom intr-un punct

```
1 CITEŞTE g,x
2 i = 0
3 CÂT TIMP i<n
     3.1 CITEŞTE p[i]
     3.2 i = i + 1
4 \text{ v=p[0]}, xi=x, i=1 // v reprezinta valoarea, iar xi reprezinta x<sup>i</sup>
5 CÂT TIMP i<n
     5.1 xi=xi*x
     5.2 v = v + xi * p[i]
     5.3 i = i + 1
6 SCRIE v
```