法律声明

- ■课程详情请咨询
 - ◆微信公众号:北风教育
 - ◆官方网址: http://www.ibeifeng.com/

人工智能之机器学习

回归算法

主讲人: Gerry

上海育创网络科技有限公司

课程要求

- ■课上课下"九字"真言
 - ◆认真听,善摘录,勤思考
 - ◆多温故,乐实践,再发散
- ■四不原则
 - ◆不懒散惰性,不迟到早退
 - ◆不请假旷课,不拖延作业
- ■一点注意事项
 - ◆违反"四不原则",不包就业和推荐就业

严格是大爱

寄语

做别人不愿做的事,

做别人不敢做的事,

做别人做不到的事。

课程内容

- ■线性回归
- ■Logistic回归
- Softmax回归
- ■梯度下降
- ■特征抽取
- ■线性回归案例

什么是回归算法

- ■回归算法是一种有监督算法
- ■回归算法是一种比较常用的机器学习算法,用来建立"解释"变量(自变量X)和观测值(因变量Y)之间的关系;从机器学习的角度来讲,用于构建一个算法模型(函数)来做属性(X)与标签(Y)之间的映射关系,在算法的学习过程中,试图寻找一个函数 h: R^d-> R 使得参数之间的关系拟合性最好。
- ■回归算法中算法(函数)的最终结果是一个**连续**的数据值,输入值(属性值)是一个d 维度的属性/数值向量

回归算法理性认知

■房价的预测

房屋面积(m^2)	租赁价格(1000Y)
10	0.8
15	1
20	1.8
30	2
50	3.2
60	3
60	3.1
70	3.5

请问,如果现在有一个房屋面积为55平,请问最终的租赁价格是多少比较合适?

线性回归

y=ax+b

房屋面积(m^2)	租赁价格(1000Ұ)
10	0.8
15	1
20	1.8
30	2
50	3.2
60	3
60	3.1
70	3.5

线性回归

$$\bullet h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \uparrow^Y$$

房屋面积	房间数量	租赁价格	
10	1	0.8	
20	1	1.8	
30	1	2.2	
30	2	2.5	
70	3	5.5	
70	2	5.2	

线性回归

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$= \theta_0 1 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$= \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$= \sum_{i=0}^n \theta_i x_i = \theta^T x$$

最终要求是计算出 θ 的值,并选择最优的 θ 值构成算法公式

线性回归、最大似然估计及二乘法

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}$$

- ■误差 $\varepsilon^{(i)}(1 \le i \le n)$ 是独立同分布的,服从均值为0,方差为某定值 σ^2 的<mark>高斯分布</mark>。
 - ◆原因:**中心极限定理**
- ■实际问题中,很多随机现象可以看做**众多因素**的独立影响的综合反应,往往服从 正态分布

似然函数

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}$$

$$p(\varepsilon^{(i)}) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(\frac{-(\varepsilon^{(i)})^2}{2\sigma^2}\right)}$$

$$p(y^{(i)} \mid x^{(i)}; \theta) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{\left(y^{(i)} - \theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

 $loss(y_j, \hat{y}_j) = J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

对数似然、目标函数及最小二乘

$$\ell(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{m} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{\left(y^{(i)} - \theta^{T} X^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{\left(y^{(i)} - \theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

$$= m \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{\sigma^2} \bullet \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \theta^T x^{(i)} \right)^2$$

0的求解过程 $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} = \frac{1}{2} \left(X \theta - Y \right)^{T} \left(X \theta - Y \right) \longrightarrow \min_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left(\frac{1}{2} \left(X \theta - Y \right)^{T} \left(X \theta - Y \right) \right) = \nabla_{\theta} \left(\frac{1}{2} \left(\theta^{T} X^{T} - Y^{T} \right) \left(X \theta - Y \right) \right)$$

$$= \nabla_{\theta} \left(\frac{1}{2} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} Y - Y^{T} X \theta + Y^{T} Y \right) \right)$$

$$= \frac{1}{2} \left(2 X^{T} X \theta - X^{T} Y - \left(Y^{T} X \right)^{T} \right)$$

$$= X^{T} X \theta - X^{T} Y$$

$$\theta = \left(X^{T} X \right)^{-1} X^{T} Y$$

最小二乘法的参数最优解

■参数解析式

$$\theta = \left(X^T X\right)^{-1} X^T Y$$

■最小二乘法的使用要求矩阵 X^TX 是可逆的;为了防止不可逆或者过拟合的问题存在,可以增加额外数据影响,导致最终的矩阵是可逆的:

$$\theta = (X^T X + \lambda I)^{-1} X^T y$$

■最小二乘法直接求解的难点:矩阵逆的求解是一个难处

普通最小二乘法线性回归案例

- 现有一批描述家庭用电情况的数据,对数据进行算法模型预测,并最终得到预测模型(每天各个时间段和功率之间的关系、功率与电流之间的关系等)
 - ◆数据来源: Individual household electric power consumption Data Set
 - ◆建议:使用python的sklearn库的linear_model中LinearRegression来获取算法

Individual household electric power consumption Data Set

Download Data Folder, Data Set Description

Abstract: Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available.

Data Set Characteristics:	Multivariate, Time-Series	Number of Instances:	2075259	Area:	Physical
Attribute Characteristics:	Real	Number of Attributes:	9	Date Donated	2012-08-30
Associated Tasks:	Regression, Clustering	Missing Values?	Yes	Number of Web Hits:	135342

Attribute Information:

- 1.date: Date in format dd/mm/yyyy
- 2.time: time in format hh:mm:ss
- 3.global_active_power: household global minute-averaged active power (in kilowatt)
- 4.global_reactive_power. household global minute-averaged reactive power (in kilowatt)
- 5.voltage: minute-averaged voltage (in volt)
- 6.global_intensity: household global minute-averaged current intensity (in ampere)
- 7.sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered).
- 8.sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light.
- 9.sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner.

普通最小二乘法线性回归案例

普通最小二乘法线性回归案例

目标函数(loss/cost function)

- ■0-1损失函数 $J(\theta) = \begin{cases} 1, Y \neq f(X) \\ 0, Y = f(X) \end{cases}$
- ■感知损失函数 $J(\theta) = \begin{cases} 1, |Y f(X)| > t \\ 0, |Y f(X)| \le t \end{cases}$
- 平方和损失函数 $J(\theta) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- ●绝对值损失函数 $J(\theta) = \sum_{i=1}^{m} \left| h_{\theta}(x^{(i)}) y^{(i)} \right|$
- ■对数损失函数 $J(\theta) = \sum_{i=1}^{m} (y^{(i)} \log h_{\theta}(x^{(i)}))$

模型

Observed user's interest on topic k against time t

User's interest

过拟合

1阶,系数为: [-44.14102611 40.05964256]

5阶,系数为: [-5.60899679-14.80109301 0.75014858 2.11170671-0.07724668 0.00566633]

9阶,系数为: [-2465.58378507 6108.6381056 -5111.99327317 974.74973548 1078.89648247 -829.50276827 266.13230319 -45.71741527

4.11582735 -0.15281063]

线性回归的过拟合

- ■目标函数: $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- ■为了防止数据过拟合,也就是的θ值在样本空间中不能过大/过小,可以在目标函数之上增加一个平方和损失:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2}$$

■正则项(norm): $\lambda \sum_{j=1}^n \theta_j^2$;这里这个正则项叫做L2-norm

过拟合和正则项

L2-norm:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \qquad \lambda > 0$$

L1-norm:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \left| \theta_{j} \right| \qquad \lambda > 0$$

Ridge回归

■使用L2正则的线性回归模型就称为Ridge回归(岭回归)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \qquad \lambda > 0$$

LASSO回归

■使用L1正则的线性回归模型就称为LASSO回归(Least Absolute Shrinkage and Selection Operator)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \left| \theta_{i} \right| \qquad \lambda > 0$$

Ridge(L2-norm)和LASSO(L1-norm)比较

- L2-norm中,由于对于各个维度的参数缩放是在一个圆内缩放的,不可能导致有维度参数变为0的情况,那么也就不会产生稀疏解;实际应用中,数据的维度中是存在噪音和冗余的,稀疏的解可以找到有用的维度并且减少冗余,提高回归预测的准确性和鲁棒性(减少了overfitting)(L1-norm可以达到最终解的稀疏性的要求)
- Ridge模型具有较高的准确性、鲁棒性以及稳定性;LASSO模型具有较高的求解速度。
- ■如果既要考虑稳定性也考虑求解的速度,就使用Elasitc Net

Ridge(L2-norm)和LASSO(L1-norm)比较

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Elasitc Net

■同时使用L1正则和L2正则的线性回归模型就称为Elasitc Net算法(弹性网络算法)

$$\begin{cases} \lambda > 0 \\ p \in [0, 1] \end{cases}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \left(p \sum_{j=1}^{n} \left| \theta_{j} \right| + (1 - p) \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

线性回归算法过拟合比较(一)

各种不同线性回归过拟合显示

线性回归算法过拟合比较(二)

```
线性回归:1阶,
             系数为:
                      [-44, 14102611]
                                   40.059642561
线性回归:3阶,系数为:
                      [ -6.80525963 -13.743068
                                                 0.93453895
                                                             1.798447911
线性回归:5阶,系数为:
                      [ -5, 60899679 -14, 80109301
                                                 0.75014858
                                                             2, 11170671 -0, 07724668
                                                                                     0.005666331
线性回归:7阶,系数为:
                     [-41, 70721172
                                   52, 38570529 -29, 56451338
                                                           -7.66322829
                                                                        12.07162703
                                                                                    -3.86969096
                                                                                                  0.53286096
                                                                                                             -0.027255361
                      [-2465, 58378507]
                                     6108.6381056 -5111.99327317
                                                                   974, 74973548
                                                                                1078, 89648247
                                                                                                             266, 13230319
                                                                                              -829.50276827
                                                                                                                           -45,71741
527
        4, 11582735
                    -0.15281063
Ridge回归:1阶,系数为:
                                    29, 790900571
                        -6.71593385
kidge回归:3阶,系数为:
                       [-6.7819845]
                                   -13,73679293
                                                 0.92827639
                                                              1, 799209541
kidge同归:5阶,系数为:
                      [-0.82920155 -1.07244754 -1.41803017 -0.93057536 0.88319116 -0.07073168]
kidge回归:7阶,系数为:
                      [-1.62586368 -2.18512108 -1.82690987 -2.27495708]
                                                                     0.98685071 0.30551091 -0.10988434 0.008469081
                      [-10.50566712 -6.12564342 -1.96421973
                                                              0.80200162
                                                                          0.59148104 -0.23358235
                                                                                                   0.20297017
                                                                                                                           0.0132585
  -0.000721841
Lasso回归:1阶,系数为:
                                    29.27359177]
Lasso回归:3阶,系数为:
                       [-6.7688595]
                                   -13.75928024
                                                 0.93989323
                                                              1.79778598]
Lasso回归:5阶,系数为:
                                    -12.00109345
                                                 -0.50746853
                                                              1,74395236
                                                                          0.07086952
                                                                                     -0.005836051
Lasso回归:7阶,系数为:
                                   -0.
                                              -0.
                                                         -0.08083315 0.19550746
                                                                                0.03066137 -0.00020584 -0.00046928]
Lasso回归:9阶,系数为
                                   -0.
                                              -0.
                                                         -0.
                                                                     0.04439727
                                                                                0.05587113 0.00109023 -0.00021498 -0.00004479 -0.0000
06741
ElasticNet:1阶,系数为:
                                     32,083593381
                        [-13, 22089654
ElasticNet:3阶,系数为:
                        -13.75928024
                                                  0.93989323
                                                               1, 797785981
BlasticNet:5阶,系数为:
                       [-1.65823671 -5.20271875 -1.26488859
                                                                                 -0.01683786
                                                          0.94503683 0.2605984
BlasticNet:7阶,系数为:
                                                          -0.15812511
                                                                      0.22150166
                                                                                 0.02955069 -0.00040066 -0.00046568]
                                    <0.
                                               -0.
BlasticNet:9阶,系数为:
                                                                                            0.00111995 -0.00020596 -0.00004365 -0.000
                                    -0.
                                               -0.
                                                          -0.
                                                                      0.05255118
                                                                                 0.05364699
006671
```


模型效果判断

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \widehat{y}_i)^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \widehat{y}_i)^2}$$

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}} \qquad \bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_{i}$$

模型效果判断

- ■MSE:误差平方和,越趋近于0表示模型越拟合训练数据。
- ■RMSE: MSE的平方根,作用同MSE
- R²:取值范围(负无穷,1],值越大表示模型越拟合训练数据;最优解是1;当模型 预测为随机值的时候,有可能为负;若预测值恒为样本期望,R²为0
- ■TSS:总平方和TSS(Total Sum of Squares),表示样本之间的差异情况,是伪方差的m倍
- ■RSS: 残差平方和RSS(Residual Sum of Squares),表示预测值和样本值之间的差异情况,是MSE的m倍

机器学习调参

- 在实际工作中,对于各种算法模型(线性回归)来讲,我们需要获取θ、λ、p的值;θ的求解其实就是算法模型的求解,一般不需要开发人员参与(算法已经实现),主要需要求解的是λ和p的值,这个过程就叫做调参(超参)
- ■交叉验证:将训练数据分为多份,其中一份进行数据验证并获取最优的超参:λ和p;比如:十折交叉验证、五折交叉验证(scikit-learn中默认)等

训练数据

测试数据

梯度下降案例 $y = f(x) = x^2$

 $y = x^2$ 函数求解最小值,最终解为: x=-0.00, y=0.00

```
## 原函粉
def f(x):
    return x ** 2
## 异数
def h(x):
   return 2 * x
x = []
Y = []
y = 2
step = 0.8
f change = f(x)
f current = f(x)
X. append(x)
Y. append (f current)
while f_change > 1e-10:
    x = x - step * h(x)
    tmp = f(x)
   f_change = np. abs(f_current - tmp)
   f current = tmp
   X. append(x)
   Y. append (f_current)
print u"最终结果为:", (x, f_current)
```

最终结果为: (-5.686057605985963e-06, 3.233125109859082e-11)

梯度下降案例 $z = f(x, y) = x^2 + y^2$

```
## 原函数
def f(x, y):
    return x ** 2 + v ** 2
## 偏函数
def h(t):
    return 2 * t
x = []
Y = []
z = 1
x = 2
y = 2
f change = x ** 2 + y ** 2
f current = f(x, y)
step = 0.1
X. append(x)
Y. append(v)
Z. append(f current)
while f_change > 1e-10:
    x = x - step * h(x)
    v = v - step * h(v)
    f_{change} = f_{current} - f(x, y)
    f_{current} = f(x, y)
    X. append(x)
    Y. append (y)
    Z. append (f_current)
print u"最终结果为:", (x, y)
```

最终结果为: (9.353610478917782e-06, 9.

梯度下降算法

- ■目标函数θ求解 $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- ■初始化θ(随机初始化,可以初始为0)

■沿着负梯度方向迭代,更新后的θ使J(θ)更小

$$\theta = \theta - \alpha \bullet \frac{\partial J(\theta)}{\partial \theta}$$

◆α:学习率、步长

梯度方向

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=1}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

批量梯度下降算法(BGD)

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = (h_{\theta}(x) - y) x_{j}$$

$$\frac{\partial J(\theta)}{\partial \theta_{i}} = \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{i}} = \sum_{i=1}^{m} \left(x_{j}^{(i)} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \right) = \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta_{j} = \theta_{j} + \alpha \sum_{i=1}^{m} \left(y^{(i)} - h_{\theta} \left(x^{(i)} \right) \right) x_{j}^{(i)}$$

随机梯度下降算法(SGD)

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = (h_{\theta}(x) - y) x_{j}$$

for i= 1 to m,{

$$\theta_{i} = \theta_{i} + \alpha \left(y^{(i)} - h_{\theta} \left(x^{(i)} \right) \right) x_{i}^{(i)}$$

}

BGD和SGD算法比较

- ■SGD速度比BGD快(迭代次数少)
- ■SGD在某些情况下(全局存在多个相对最优解/J(θ)不是一个二次), SGD有可能跳出某些小的局部最优解,所以不会比BGD坏
- ■BGD一定能够得到一个局部最优解(在线性回归模型中一定是得到一个全局最优解),SGD由于随机性的存在可能导致最终结果比BGD的差
- ■注意:优先选择SGD

小批量梯度下降法(MBGD)

■如果即需要保证算法的训练过程比较快,又需要保证最终参数训练的准确率,而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称MBGD)的初衷。MBGD中不是每拿一个样本就更新一次梯度,而且拿b个样本(b一般为10)的平均梯度作为更新方向。

for i= 1 to m/10,{ $\frac{i+10}{2}$

$$\theta_{j} = \theta_{j} + \alpha \sum_{k=i}^{i+10} (y^{(k)} - h_{\theta}(x^{(k)})) x_{j}^{(k)}$$

梯度下降法

- 由于梯度下降法中负梯度方向作为变量的变化方向,所以有可能导致最终求解的值是局部最优解,所以在使用梯度下降的时候,一般需要进行一些调优策略:
 - ◆ **学习率的选择**: 学习率过大,表示每次迭代更新的时候变化比较大,有可能会跳过最优解; 学习率过小,表示每次迭代更新的时候变化比较小,就会导致迭代速度过慢,很长时间都不能结束;
 - ◆ **算法初始参数值的选择**:初始值不同,最终获得的最小值也有可能不同,因为梯度下降法求解的是局部最优解,所以一般情况下,选择多次不同初始值运行算法,并最终返回损失函数最小情况下的结果值;
 - ◆ 标准化:由于样本不同特征的取值范围不同,可能会导致在各个不同参数上 迭代速度不同,为了减少特征取值的影响,可以将特征进行标准化操作。

梯度下降法

- BGD、SGD、MBGD的区别:
 - ◆ 当样本量为m的时候,每次迭代BGD算法中对于参数值更新一次,SGD算法中对于参数值更新m次,MBGD算法中对于参数值更新m/n次,相对来讲SGD算法的更新速度最快;
 - ◆ SGD算法中对于每个样本都需要更新参数值,当样本值不太正常的时候,就有可能会导致本次的参数更新会产生相反的影响,也就是说SGD算法的结果并不是完全收敛的,而是在收敛结果处波动的;
 - ◆ SGD算法是每个样本都更新一次参数值,所以SGD算法特别适合样本数据量大的情况以及在线机器学习(Online ML)。

回归算法案例:基于梯度下降法实现线性回归算法

■基于梯度下降法编写程序实现回归算法,并自行使用模拟数据进行测试,同时对同样的模拟数据进行两种算法的比较(python sklearn LinearRegression和自己实现的线性回归算法) 自定义的线性模型和模块中的线性模型比较

线性回归的扩展

- ■线性回归针对的是θ而言是一种,对于样本本身而言,样本可以是非线性的
- ■也就是说最终得到的函数f:x->y;函数f(x)可以是非线性的,比如:曲线等

$$y = \theta_0 + \theta_1 x$$

$$y = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

线性回归总结

- ■算法模型:线性回归(Linear)、岭回归(Ridge)、LASSO回归、Elastic Net
- ■正则化:L1-norm、L2-norm
- 损失函数/目标函数 : $J(\theta) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2 \longrightarrow \min_{\theta} J(\theta)$
- ■θ求解方式:最小二乘法(直接计算,目标函数是平方和损失函数)、梯度下降 (BGD\SGD\MBGD)

局部加权回归-直观理解

局部加权回归-损失函数

■普通线性回归损失函数:

$$J(\theta) = \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

■局部加权回归损失函数:

$$J(\theta) = \sum_{i=1}^{m} w^{(i)} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

局部加权回归-权重值设置

■w⁽ⁱ⁾是权重,它根据要预测的点与数据集中的点的距离来为数据集中的点赋权值。 当某点离要预测的点越远,其权重越小,否则越大。常用值选择公式为:

$$w^{(i)} = \exp\left(-\frac{\left(x^{(i)} - \overline{x}\right)^2}{2k^2}\right)$$

- ■该函数称为指数衰减函数,其中k为波长参数,它控制了权值随距离下降的速率
- ■注意:使用该方式主要应用到样本之间的相似性考虑,主要内容在SVM中再考虑(核函数)

6,200 0 0,5040 8,2660 78,30 2,8944 8 307,0 17,40 385,05 4,14 44,80

回归算法综合案例(二):波士顿房屋租赁价格预测

- ■基于<u>波士顿房屋租赁数据</u>进行房屋租赁价格预测模型构建,分别使用Lasso回归、Ridge回两种回归算法构建模型,并分别构建1/2/3阶算法中的最优算法(参数),并比较这两种回归算法的效果;另外使用lasso回归算法做特征选择
 - ◆数据下载url: http://archive.ics.uci.edu/ml/datasets/Housing

Attribute Information:

	0.52693	0.00	6.200	0	0.5040	8.7250	83.00	2.8944	8	307.0	17.40 382.00	4.63	50.00
CRIM: per capita crime rate by town	0.38214	0.00	6.200	0	0.5040	8.0400	86.50	3.2157	8	307.0	17.40 387.38	3.13	37.60
ZN: proportion of residential land zoned for lots over 25,000 sq.ft.	0. 41238	0.00	6.200	0	0.5040	7.1630	79.90	3.2157	8	307.0	17.40 372.08	6.36	31.60
INDUS: proportion of non-retail business acres per town	0.29819	0.00	6.200	0	0.5040	7.6860	17.00	3.3751	8	307.0	17.40 377.51	3.92	46.70
4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)	0. 44178	0.00	6.200	0	0.5040	6.5520	21.40	3.3751	8	307.0	17.40 380.34	3.76	31.50
5. NOX: nitric oxides concentration (parts per 10 million)	0.53700	0.00	6.200	0	0.5040	5.9810	68.10	3.6715	8	307.0	17.40 378.35	11.65	24.30
RM: average number of rooms per dwelling	0.46296	0.00	6.200	0	0.5040	7.4120	76.90	3.6715	8	307.0	17.40 376.14	5.25	31.70
AGE: proportion of owner-occupied units built prior to 1940	0.57529	0.00	6.200	0	0.5070	8.3370	73.30	3.8384	8	307.0	17.40 385.91	2.47	41.70
DIS: weighted distances to five Boston employment centres	0.33147	0.00	6.200	0	0.5070	8.2470	70.40	3.6519	8	307.0	17.40 378.95	3.95	48.30
RAD: index of accessibility to radial highways	0. 44791	0.00	6.200	1	0.5070	6.7260	66.50	3.6519	8	307.0	17.40 360.20	8.05	29.00
10. TAX: full-value property-tax rate per \$10,000	0.33045	0.00	6.200	0	0.5070	6.0860	61.50	3.6519	8	307.0	17.40 376.75	10.88	24.00
11. PTRATIO: pupil-teacher ratio by town	0.52058	0.00	6.200	1	0.5070	6.6310	76.50	4. 1480	8	307.0	17.40 388.45	9.54	25.10
12. B: 1000(Bk - 0.63) ² where Bk is the proportion of blacks by town	0.51183	0.00	6.200	0	0.5070	7.3580	71.60	4. 1480	8	307.0	17.40 390.07	4.73	31.50
13. LSTAT: % lower status of the population	0.08244	30.00	4.930	0	0.4280	6.4810	18.50	6.1899	6	300.0	16.60 379.41	6.36	23.70
 MEDV: Median value of owner-occupied homes in \$1000's 	0.09252	30.00	4.930	0	0.4280	6.6060	42.20	6. 1899	6	300.0	16.60 383.78	7.37	23.30
	0 11200	20.00	4 020	0	0.4000	6 0070	E4 20	6 2261	G	200 0	16 60 201 25	11 90	22 00

回归算法综合案例(二):波士顿房屋租赁价格预测

Ridge算法:最优参数: {'poly_degree': 3, 'linear_fit_intercept': True, 'poly_include_bias': True, 'poly_interaction_only': True}

Ridge算法:R值=0.832

Lasso算法:最优参数: {'poly_degree': 3, 'linear_fit_intercept': False, 'poly_include_bias': True, 'poly_interaction_only': True}

Lasso算法:R值=0.849

回归算法综合案例(二):波士顿房屋租赁价格预测

参数: [('CRIM', 22.600592809201991), ('ZN', -0.93534557687414488), ('INDUS', 1.0202352850146854), ('CHAS', -0.0), ('NOX', 0.594831384154614 9), ('RM', -1.8002644875942369), ('AGE', 2.5861907995357281), ('DIS', -0.064956108249539249), ('RAD', -2.8017533936656509), ('TAX', 1.934332 9692037559), ('PTRATIO', -1.7218677875512203), ('B', -2.2762334623842988), ('LSTAT', 0.70288003005515387)] 截距: 0.0

CHAS列的数据对于LassoCV模型而言无用,所以在 进行实际模型构建的时候,可以不考虑该特征

回归算法综合案例(三):葡萄酒质量预测

- ■基于葡萄酒数据进行葡萄酒质量预测模型构建,分别使用线性回归、Lasso回归、Ridge回归、Elasitc Net四类回归算法构建模型(并分别测试1/2/3阶),并比较这些回归算法的效果
 - ◆数据下载url: http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Attribute Information:

For more information, read [Cortez et al., 2009]. Input variables (based on physicochemical tests):

- 1 fixed acidity
- 2 volatile acidity
- 3 citric acid
- 4 residual sugar
- 5 chlorides
- 6 free sulfur dioxide
- 7 total sulfur dioxide
- 8 density
- 9 pH
- 10 sulphates
- 11 alcohol

Output variable (based on sensory data):

12 - quality (score between 0 and 10)

```
2 7.4; 0.7; 0; 1.9; 0.076; 11; 34; 0.9978; 3.51; 0.56; 9.4; 5
3 7.8; 0.88; 0; 2.6; 0.098; 25; 67; 0.9968; 3.2; 0.68; 9.8; 5
4 7.8; 0.76; 0.04; 2.3; 0.092; 15; 54; 0.997; 3.26; 0.65; 9.8; 5
5 11.2; 0.28; 0.56; 1.9; 0.075; 17; 60; 0.998; 3.16; 0.58; 9.8; 6
6 7.4; 0.7; 0; 1.9; 0.076; 11; 34; 0.9978; 3.51; 0.56; 9.4; 5
7 7.4; 0.66; 0; 1.8; 0.075; 13; 40; 0.9978; 3.51; 0.56; 9.4; 5
8 7.9; 0.6; 0.06; 1.6; 0.069; 15; 59; 0.9964; 3.3; 0.46; 9.4; 5
9 7.3; 0.65; 0; 1.2; 0.065; 15; 21; 0.9946; 3.39; 0.47; 10; 7
10 7.8; 0.58; 0.02; 2; 0.073; 9; 18; 0.9968; 3.36; 0.57; 9.5; 7
11 7.5; 0.5; 0.36; 6.1; 0.071; 17; 102; 0.9978; 3.35; 0.8; 10.5; 5
```


回归算法综合案例(三):葡萄酒质量预测

葡萄酒质量预测

Logistic回归

Logistic/sigmoid函数 $p = h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$ $y = \begin{cases} 0 \\ 1 \end{cases}$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \left(\frac{1}{1+e^{-z}}\right)' = \frac{e^{-z}}{\left(1+e^{-z}\right)^2}$$

$$= \frac{1}{1+e^{-z}} \cdot \frac{e^{-z}}{1+e^{-z}} = \frac{1}{1+e^{-z}} \cdot \left(1 - \frac{1}{1+e^{-z}}\right)$$

$$= g(z) \cdot (1 - g(z))$$

Logistic回归及似然函数

■假设: $P(y=1 | x;\theta) = h_{\theta}(x)$ $P(y=0 | x;\theta) = 1 - h_{\theta}(x)$

$$P(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{(1-y)}$$

■似然函数:
$$L(\theta) = p(\vec{y} \mid X; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) \right)^{y^{(i)}} \left(1 - h_{\theta} \left(x^{(i)} \right) \right)^{(1-y^{(i)})}$$

■对数似然函数: $\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} \left(y^{(i)} \log h_{\theta}(x^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\theta}(x^{(i)})\right) \right)$

最大似然/极大似然函数的随机梯度

対数似然函数:
$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)}))$$
 $\partial h_{\alpha}(x^{(i)})$

最大似然/极大似然/数数的随机梯度
$$\frac{\partial \ell(\theta)}{\partial \theta_{j}} = \sum_{i=1}^{m} \left(\frac{y^{(i)}}{h_{\theta}(x^{(i)})} - \frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})} \right) \cdot \frac{\partial h_{\theta}(x^{(i)})}{\partial \theta_{j}}$$

$$= \sum_{i=1}^{m} \left(\frac{y^{(i)}}{g(\theta^{T} x^{(i)})} - \frac{1 - y^{(i)}}{1 - g(\theta^{T} x^{(i)})} \right) \cdot \frac{\partial g(\theta^{T} x^{(i)})}{\partial \theta_{j}}$$

$$= \sum_{i=1}^{m} \left(\frac{y^{(i)}}{g(\theta^{T} x^{(i)})} - \frac{1 - y^{(i)}}{1 - g(\theta^{T} x^{(i)})} \right) \cdot g(\theta^{T} x^{(i)}) \left(1 - g(\theta^{T} x^{(i)}) \right) \cdot \frac{\partial \theta^{T} x^{(i)}}{\partial \theta_{j}}$$

$$= \sum_{i=1}^{m} \left(y^{(i)} \left(1 - g \left(\theta^{T} X^{(i)} \right) \right) - \left(1 - y^{(i)} \right) g \left(\theta^{T} X^{(i)} \right) \right) \cdot X_{j}^{(i)} = \sum_{i=1}^{m} \left(y^{(i)} - g \left(\theta^{T} X^{(i)} \right) \right) \cdot X_{j}^{(i)}$$

θ参数求解

■ Logistic回归θ参数的求解过程为(类似梯度下降方法):

$$\theta_{j} = \theta_{j} + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_{j}^{(i)}$$

$$\theta_j = \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

极大似然估计与Logistic回归损失函数

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta) = \prod_{i=1}^{m} p_i^{y^{(i)}} (1 - p_i)^{1 - y^{(i)}} \qquad p_i = h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

$$\ell(\theta) = \ln L(\theta) = \sum_{i=1}^{m} \ln \left[p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}} \right]$$

$$loss = -\ell(\theta)$$

$$= -\sum_{i=0}^{m} \left[y^{(i)} \ln(p_i) + \left(1 - y^{(i)}\right) \ln(1 - p_i) \right]$$

$$= \sum_{i=1}^{m} \left[-y^{(i)} \ln(h_{\theta}(x^{(i)})) - (1-y^{(i)}) \ln(1-h_{\theta}(x^{(i)})) \right]$$

Logistic案例(一):乳腺癌分类

- ■基于<u>病理数据</u>进行乳腺癌预测(复发4/正常2),使用Logistic算法构建模型
 - ◆数据来源:

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original

%29

#	Attribute	Domain
1.	Sample code number	id number
2.	Clump Thickness	1 - 10
3.	Uniformity of Cell Size	1 - 10
4.	Uniformity of Cell Shape	1 - 10
5.	Marginal Adhesion	1 - 10
6.	Single Epithelial Cell Size	1 - 10
7.	Bare Nuclei	1 - 10
8.	Bland Chromatin	1 - 10
9.	Normal Nucleoli	1 - 10
10.	Mitoses	1 - 10
11.	Class:	(2 for benign, 4 for malignant)

```
1000025, 5, 1, 1, 1, 2, 1, 3, 1, 1, 2

1002945, 5, 4, 4, 5, 7, 10, 3, 2, 1, 2

1015425, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2

1016277, 6, 8, 8, 1, 3, 4, 3, 7, 1, 2

1017023, 4, 1, 1, 3, 2, 1, 3, 1, 1, 2

1017122, 8, 10, 10, 8, 7, 10, 9, 7, 1, 4

1018099, 1, 1, 1, 1, 2, 10, 3, 1, 1, 2

1018561, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2

1033078, 2, 1, 1, 1, 2, 1, 1, 1, 5, 2

1035283, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2
```


Logistic案例(一):乳腺癌分类

Softmax回归

- ullet softmax回归是logistic回归的一般化,适用于K分类的问题,第k类的参数为向量 θ_k ,组成的二维矩阵为 θ_{k*n} ;
- ■softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。
- ■softmax回归概率函数为:

$$p(y = k \mid x; \theta) = \frac{e^{\theta_k^T x}}{\sum_{l=1}^K e^{\theta_l^T x}}, k = 1, 2 \dots, K$$

Softmax算法原理

$$p(y = k \mid x; \theta) = \frac{e^{\theta_k^T x}}{\sum_{l=1}^K e^{\theta_l^T x}}, k = 1, 2 \dots, K$$

$$h_{\theta}(x) = \begin{bmatrix} p(y^{(i)} = 1 \mid x^{(i)}; \theta) \\ p(y^{(i)} = 2 \mid x^{(i)}; \theta) \\ \dots \\ p(y^{(i)} = k \mid x^{(i)}; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ e^{\theta_{2}^{T} x} \\ \dots \\ e^{\theta_{k}^{T} x} \end{bmatrix} \Longrightarrow \theta = \begin{bmatrix} \theta_{11} & \theta_{12} & \dots & \theta_{1n} \\ \theta_{21} & \theta_{22} & \dots & \theta_{2n} \\ \dots & \dots & \dots & \dots \\ \theta_{k1} & \theta_{k2} & \dots & \theta_{kn} \end{bmatrix}$$

Softmax算法损失函数

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} I(y^{(i)} = j) \ln \left(\frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right) \qquad I(y^{(i)} = j) = \begin{cases} 1, & y^{(i)} = j \\ 0, & y^{(i)} \neq j \end{cases}$$

$$I(y^{(i)} = j) = \begin{cases} 1, & y^{(i)} = j \\ 0, & y^{(i)} \neq j \end{cases}$$

Softmax算法梯度下降法求解

SOTTMAX算法梯度下降法》解
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} I(y^{(i)} = j) \ln \left(\frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right)$$

$$I(y^{(i)} = j) = \begin{cases} 1, & y^{(i)} = j \\ 0, & y^{(i)} \neq j \end{cases}$$

$$= \frac{\partial}{\partial \theta_{j}} - I(y^{(i)} = j) \left(\theta_{j}^{T} x^{(i)} - \ln \left(\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}} \right) \right)$$

$$= -I(y^{(i)} = j) \left(1 - \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}}}\right) x^{(i)}$$

Softmax算法梯度下降法求解

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = -I(y^{(i)} = j) \left(1 - \frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right) x^{(i)}$$

$$\theta_{j} = \theta_{j} + \alpha \sum_{i=1}^{m} I(y^{(i)} = j) (1 - p(y^{(i)} = j | x^{(i)}; \theta)) x^{(i)}$$

$$\theta_{j} = \theta_{j} + \alpha I(y^{(i)} = j)(1 - p(y^{(i)} = j|x^{(i)};\theta))x^{(i)}$$

Softmax案例(一): 葡萄酒质量分类

- ■基于<u>葡萄酒数据</u>进行葡萄酒质量预测模型构建,使用Softmax算法构建模型, 并获取Softmax算法构建的模型效果(注意:分成11类)
 - ◆数据来源:http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Attribute Information:

For more information, read [Cortez et al., 2009]. Input variables (based on physicochemical tests):

- 1 fixed acidity
- 2 volatile acidity
- 3 citric acid
- 4 residual sugar
- 5 chlorides
- 6 free sulfur dioxide
- 7 total sulfur dioxide
- 8 density
- 9 pH
- 10 sulphates
- 11 alcohol

Output variable (based on sensory data):

12 - quality (score between 0 and 10)

```
7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5
7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5
11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
7.9;0.6;0.06;1.6;0.069;15;59;0.9964;3.3;0.46;9.4;5
9.7.3;0.65;0;1.2;0.065;15;21;0.9946;3.39;0.47;10;7
0.7.8;0.58;0.02;2;0.073;9;18;0.9968;3.36;0.57;9.5;7
```

7.5;0.5;0.36;6.1;0.071;17;102;0.9978;3.35;0.8;10.5;5

2 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5

Softmax案例(一):葡萄酒质量分类

分类问题综合案例(一):信贷审批

- ■基于信贷数据进行用户信贷分类,使用Logistic算法和KNN算法构建模型,并 比较这两大类算法的效果
 - ◆数据来源:http://archive.ics.uci.edu/ml/datasets/Credit+Approval

Attribute Information:

```
A1: b. a.
                                            a, 40.83, 10, u, g, q, h, 1.75, t, f, 0, f, g, 00029, 837, +
A2: continuous
A3 continuous.
                                            b, 19. 33, 9. 5, u, g, q, v, 1, t, f, 0, t, g, 00060, 400, +
A4: u, y, I, t.
                                             a, 32. 33, 0. 54, u, g, cc, v, 0. 04, t, f, 0, f, g, 00440, 11177, +
A5: q, p, qq.
A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff.
                                             b, 36. 67, 3. 25, u, g, q, h, 9, t, f, 0, t, g, 00102, 639, +
A7: v. h, bb, j, n, z, dd, ff, o.
                                             b, 37. 50, 1. 125, y, p, d, v, 1. 5, f, f, 0, t, g, 00431, 0, +
A8: continuous
A9: t, f.
                                             a, 25. 08, 2. 54, y, p, aa, v, 0. 25, t, f, 0, t, g, 00370, 0, +
A10: t. f.
                                             b, 41. 33, 0, u, g, c, bb, 15, t, f, 0, f, g, 00000, 0, +
A11: continuous.
A12: t, f.
                                             b, 56.00, 12.5, u, g, k, h, 8, t, f, 0, t, g, 00024, 2028, +
A13: g, p, s.
                                             a, 49.83, 13.585, u, g, k, h, 8.5, t, f, 0, t, g, 00000, 0, +
A14: continuous.
A15 continuous
A16: +,- (class attribute)
```


分类问题综合案例(一):信贷审批

分类问题综合案例(二): 鸢尾花数据分类

- 基于<u>鸢尾花数据</u>进行分类模型构建,使用logistics算法和KNN算法进行构建, 并计算两种算法的AOC值,以及画出对应的ROC曲线
 - ◆数据来源: http://archive.ics.uci.edu/ml/datasets/Iris

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life	
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01	
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	1319181	

Attribute Information:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5 class:
- -- Iris Setosa
- -- Iris Versicolour
- -- Iris Virginica

分类问题综合案例(二): 鸢尾花数据分类

分类问题综合案例(二): 鸢尾花数据分类

总结

- 线性模型一般用于回归问题, Logistic和Softmax模型一般用于分类问题
- 求θ的主要方式是梯度下降算法,梯度下降算法是参数优化的重要手段,主要 是SGD,适用于在线学习以及跳出局部极小值
- Logistic/Softmax回归是实践中解决分类问题的最重要的方法
- 广义线性模型对样本要求不必要服从正态分布、只需要服从指数分布簇(二项分布、泊松分布、伯努利分布、指数分布等)即可;广义线性模型的自变量可以是连续的也可以是离散的。

上海育创网络科技有限公司