Université Mohamed Khider Biskra	Probabilités
Faculté des FSENV	$2^{\grave{e}me}$ Année.
Département de Mathématiques	2015/2016.
	06/06/2016

Epreuve de Rattrapage

Exercice-§1

Soient $A_1, A_2, ..., A_n$ n-événements de $(\Omega, \mathcal{F}, \mathbb{P})$, Montrer que

$$\mathbb{P}(\cup_{j=1}^{n} A_{j}) = \sum_{j=1}^{n} \mathbb{P}(A_{j}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) \\
+ \dots + (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2}, < i_{3} <, \dots, < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}) \\
+ \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap A_{2} \cap \dots \cap A_{n}).$$

Exercice-§2_

- (1) Si $(A_n)_{n\geq 1}$ une suite croissante d'événements de $(\Omega, \mathcal{F}, \mathbb{P})$ telle que $\bigcup_{n\geq 1} A_n = A$. Montrer que $\mathbb{P}(A) = \mathbb{P}(\bigcup_{n\geq 1} A_n) = \lim_{n\to +\infty} \mathbb{P}(A_n)$.
- (2) Si $(A_n)_{n\geq 1}$ une suite décroissante d'événements de $(\Omega, \mathcal{F}, \mathbb{P})$ telle que $\cap_{n\geq 1} A_n = B$. Montrer que $\mathbb{P}(B) = \mathbb{P}(\cap_{n\geq 1} A_n) = \lim_{n\to+\infty} \mathbb{P}(A_n)$.
- (3) Si $(A_n)_{n\geq 1}$ une suite d'événements de $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer que si $\sum_{n\geq 1} \mathbb{P}(A_n) < +\infty$ alors

$$\mathbb{P}(\limsup_{n>1} A_n) = 0.$$

Exercice-§3_

Une urne \mathbb{U}_1 contient a_1 boules rouges et a_2 boules noires, une autre urne \mathbb{U}_2 contient b_1 boules rouges et b_2 boules noires. On tire une boule de \mathbb{U}_1 et on la met dans \mathbb{U}_2 , on désing par \boldsymbol{A} l'evenement "la boule tirée de \mathbb{U}_1 est rouge" et par \boldsymbol{B} l'evenement "la boule tirée de \mathbb{U}_2 est rouge" et par \boldsymbol{A} et \boldsymbol{B} les évenements contriares.

- (1) Calculer les probabilités $\mathbb{P}(A)$, $\mathbb{P}(\overline{A})$, $\mathbb{P}(B \mid A)$, $\mathbb{P}(B \mid \overline{A})$.
- (2) Calculer les probabilités $\mathbb{P}(B)$, $\mathbb{P}(A \mid B)$, $\mathbb{P}(\overline{A} \mid B)$.

Exercice-§4

(I) Soit X une variable aleatoire suit la loi Hypergéometrique $\mathcal{H}(n,a,b): N=a+b$

$$X \in \left\{ \sup(0, n-p), ..., \inf(a, n) \right\}, \ \ \mathbb{P}(X = k) = \frac{C_a^k C_b^{n-k}}{C_N^n},$$

Montrer que si $N \to +\infty$ et $\frac{a}{N}$ et $\frac{b}{N}$ restent fixés alors $\lim_{N \to +\infty} \mathcal{H}(n, a, b) = \mathcal{B}(n, \frac{a}{N})$.

(II) Soit X une variable aleatoire vérifiant a > 0,

$$\forall n \in \mathbb{N}^* : \frac{\mathbb{P}[X = n]}{\mathbb{P}[X = n - 1]} = \frac{a}{n}.$$

- (1) Exprimer $\mathbb{P}(X = n)$ en fonction de $\mathbb{P}(X = 0)$.
- (2) Déterminer $\mathbb{P}(X=0)$ puis déduire $\mathbb{P}(X=n)$,
- (2) A quelle loi de probabilité usuelle correspond-elle?