matplotlib tutorial 정리

matplotlib.pyplot

MATLAB 처럼 matplotlib 을 사용할 수 있게 하는 명령 스타일 함수들(command style functions) 모음이다.

ex) figure 생성하고 -> figure에 plotting area 생성 -> plotting area 에 line 그리고 -> label 등을 꾸미고.. etc.

* plotting 함수들은 current axes 에 작용한다.

```
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()
```

** plot() 에 값 한개만 입력시에는 y 값으로 생각한다.

※ x 값은 자동생성한다.(0 부터 시작함)


```
import matplotlib.pyplot as plt
plt.plot([1,2,3,4), [1,4,9,16), 'ro')
plt.axis([0, 6, 0, 20]) # (xmin, xmax, ymin, ymax)
plt.show()
```

```
matplotlib.pyplot.plot(*args, **kwargs) Plot lines and/or markers to the Axes. plot (x,y) # plot x and y using default line style and color plot (x,y,'bo') # plot x and y using blue circle markers plot (y) # plot y using x as index array 0..N-1 plot (y,'r+') # ditto, but with red plusses a .plot (x1,y1,'g^-,x2,y2,'g^-)
```

format string characters are accepted to control the line style or marker:

character	description
'_'	solid line style
''	dashed line style
''	dash-dot line style
1:1	dotted line style
1.1	point marker
1,1	pixel marker
'o'	circle marker
'v'	triangle_down marker
1.1	triangle_up marker
'<'	triangle_left marker
'>'	triangle_right marker
'1'	tri_down marker
'2'	tri_up marker
'3'	tri_left marker
'4'	tri_right marker
's'	square marker
'p'	pentagon marker
'*'	star marker
'h'	hexagon1 marker
'H'	hexagon2 marker
'+'	plus marker
'x'	x marker
'D'	diamond marker
'd'	thin_diamond marker
' '	vline marker
	hline marker
ʻb'	blue
ʻg'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'w'	white

 $\label{lib:pyplot} $$ $$ $ $ \text{http://matplotlib.org/api/pyplot_api.html\#matplotlib.pyplot.axis} $$ $$ $ \text{matplotlib.pyplot.axis}(*v, **kwargs) $$$

Convenience method to get or set axis properties.

>>> axis (v)

sets the min and max of the x and y axes, with v = (xmin, xmax, ymin, ymax).:

*** matplotlib 은 numpy array 를 사용한다.

※ segence 자료 (list etc)는 내부적으로 numpy arra y로 변환 하여 사용한다.

import numpy as np import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

line 속성 제어하기 (Controlling line properties)

참고: matplotlib.lines.Line2D

```
plt .plot (x, y, linewidth = 2.0)
       line ,=plt .plot (x, y, '-')
       line .set_antialiased (False )# turn off antialising
   * setp() 명령어 사용
       lines =plt .plot (x1, y1, x2, y2)
       # use keyword args
       plt .setp (lines ,color ='r',linewidth =2.0 )
       # or MATLAB style string value pairs
       plt .setp (lines ,'color','r','linewidth',2.0 )
   * line 속성 얻을때도, setp() 명령어 사용
       lines =plt .plot ([1,2,3])
       plt .setp (lines )
       alpha: float
       animated: (True | False)
       antialiased or aa: (True | False)
     . ..snip
여러개의 figure &axes 로 작업하기 (Working with multiple figures and axes)
   pyplot --- current figure, current axes 의 개념이 있다.
   * 모든 plotting 명령어는 current axes 에 적용된다.
        * gca() --- current axes 반환 (matplotlib.axes.Axes instance)
       * gcf() --- current figure 반환 (matplotlib.figure.Figure instance)
       import numpy as np
       import matplotlib.pyplot as plt
       def f(t):
           return np.exp(-t) * np.cos(2*np.pi*t)
       t1 = np.arange(0.0, 5.0, 0.1)
       t2 = np.arange(0.0, 5.0, 0.02)
       plt.figure(1) # 생략 가능
       plt.subplot(211) # row number, column number, figure number
       plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
       plt.subplot(212)
```

```
plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show()
```

- * plt.figure(1) 생략 가능 : defalut 로 figure(1) 생성 된다.
- ※ axes 지정 하지않으면, defalut 로 subplot(111) 생성됨.

*** figure() 를 여러번 호출하여, 여러개의 figure 생성 가능하다.

```
(각 figure 는 자신만의 axes , subplot 를 갖는다)
import matplotlib.pyplot as plt
plt.figure(1)
                            # the first figure
plt.subplot(211)
                             # the first subplot in the first figure
plt.plot((1,2,3))
plt.subplot(212)
                            # the second subplot in the first figure
plt.plot((4,5,6))
                            # a second figure
plt.figure(2)
                           # creates a subplot(111) by default
plt.plot((4,5,6))
plt.figure(1)
                            # figure 1 current; subplot(212) still current
```

make subplot(211) in figure1 current

- * clf() --- clear current figure.
- * cla() --- clear current axes.

*** 메모리 해제 : close()

plt.subplot(211)

※ close() 호출되기 전까지는, pyplot 이 참조를 계속 가지고 있다.

plt.title('Easy as 1,2,3') # subplot 211 title

텍스트 작업하기 (Working with text)

matplotlib.pyplot.text(x, y , s , fontdict=None , withdash=False , **kwargs)

```
-- 좌표 x,y 에 텍스트 s 출력하기
```

```
import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\\sigma=15$')
plt.axis((40, 160, 0, 0.03))
plt.grid(True)
plt.show()
```


t =plt .xlabel ('my data',fontsize =14 ,color ='red')

텍스트로 수학식 표현하기 (Using mathematical expressions in text)

built-in TeX expression parser and layout engine

$$\sigma_i = 15$$
 plt .title (r' $\alpha_i = 15$)

텍스트 주석달기 (Annotating text)

참고: http://matplotlib.org/1.3.1/api/pyplot_api.html#matplotlib.pyplot.annotate

출처: http://freeprog.tistory.com/15 [취미로 하는 프로그래밍 !!!]