Inteligência Artificial – ACH2016 Aula 03 – Buscas Informadas e Heurísticas de Busca

Norton Trevisan Roman (norton@usp.br)

26 de fevereiro de 2019

Heurística

Heurística

 Conjunto de regras que aumentam a probabilidade de atingirmos o objetivo mais rapidamente

Heurística

- Conjunto de regras que aumentam a probabilidade de atingirmos o objetivo mais rapidamente
 - São a forma mais comum de trazer conhecimento adicional ao problema

Heurística

- Conjunto de regras que aumentam a probabilidade de atingirmos o objetivo mais rapidamente
 - São a forma mais comum de trazer conhecimento adicional ao problema

Busca com Heur<u>ística</u>

Buscas nessa categoria fazem uso de regras práticas

Heurística

- Conjunto de regras que aumentam a probabilidade de atingirmos o objetivo mais rapidamente
 - São a forma mais comum de trazer conhecimento adicional ao problema

Busca com Heurística

- Buscas nessa categoria fazem uso de regras práticas
 - Algo que pode ser útil em alguns casos, mas não sempre

Heurística

- Conjunto de regras que aumentam a probabilidade de atingirmos o objetivo mais rapidamente
 - São a forma mais comum de trazer conhecimento adicional ao problema

Busca com Heurística

- Buscas nessa categoria fazem uso de regras práticas
 - Algo que pode ser útil em alguns casos, mas não sempre
- Não necessariamente acham a melhor solução, mas podem encontrar a solução de forma mais eficiente

Estratégia Melhor Primeiro

• A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)

- A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)
 - Construída como uma estimativa de custo

- A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)
 - Construída como uma estimativa de custo
 - Assim, o nó com a menor avaliação é expandido primeiro

- A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)
 - Construída como uma estimativa de custo
 - Assim, o nó com a menor avaliação é expandido primeiro
- A escolha de f determina a estratégia de busca

- A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)
 - Construída como uma estimativa de custo
 - Assim, o nó com a menor avaliação é expandido primeiro
- A escolha de f determina a estratégia de busca
 - A maioria dos algoritmos assim incluem uma função heurística h(n) como componente de f

- A ideia é selecionar um nó para visita com base em uma função de avaliação f(n)
 - Construída como uma estimativa de custo
 - Assim, o nó com a menor avaliação é expandido primeiro
- A escolha de f determina a estratégia de busca
 - A maioria dos algoritmos assim incluem uma função heurística h(n) como componente de f
 - Nesse caso, h(n) é uma estimativa do custo do caminho mais barato do nó n até o objetivo

Melhor Primeiro (Gulosa)

 Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo

- Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo
- Avalia o nó usando tão somente a função heurística

- Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo
- Avalia o nó usando tão somente a função heurística
 - Ou seja, f(n) = h(n)

- Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo
- Avalia o nó usando tão somente a função heurística
 - Ou seja, f(n) = h(n)
- Algoritmo idêntico ao da Busca de Custo Uniforme

- Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo
- Avalia o nó usando tão somente a função heurística
 - Ou seja, f(n) = h(n)
- Algoritmo idêntico ao da Busca de Custo Uniforme
 - Exceto que, dessa vez, usamos h(n) para escolher o caminho com menor custo

- Tenta expandir o nó que <u>parece</u> estar mais próximo do objetivo
- Avalia o nó usando tão somente a função heurística
 - Ou seja, f(n) = h(n)
- Algoritmo idêntico ao da Busca de Custo Uniforme
 - Exceto que, dessa vez, usamos h(n) para escolher o caminho com menor custo
 - Ou seja, em vez de expandir (visitar) o nó n com o menor caminho até então, expande aquele com menor distância estimada ao objetivo

Melhor Primeiro (Gulosa) – Problemas

Melhor Primeiro (Gulosa) – Problemas

 Dependendo da heurística, nem sempre dá a melhor solução

Melhor Primeiro (Gulosa) – Problemas

- Dependendo da heurística, nem sempre dá a melhor solução
 - Dependendo da heurística, nem sempre dá uma solução

Melhor Primeiro (Gulosa) – Problemas

- Dependendo da heurística, nem sempre dá a melhor solução
 - Dependendo da heurística, nem sempre dá uma solução

Melhor Primeiro (Gulosa) – Problemas

- Dependendo da heurística, nem sempre dá a melhor solução
 - Dependendo da heurística, nem sempre dá uma solução

A*

 Forma mais conhecida de busca to tipo Melhor Primeiro

Melhor Primeiro (Gulosa) – Problemas

- Dependendo da heurística, nem sempre dá a melhor solução
 - Dependendo da heurística, nem sempre dá uma solução

- Forma mais conhecida de busca to tipo Melhor Primeiro
- Avalia o nó combinando o custo do caminho até ele (g(n)) e o custo estimado dele (h(n)) até o objetivo

Melhor Primeiro (Gulosa) – Problemas

- Dependendo da heurística, nem sempre dá a melhor solução
 - Dependendo da heurística, nem sempre dá uma solução

- Forma mais conhecida de busca to tipo Melhor Primeiro
- Avalia o nó combinando o custo do caminho até ele (g(n)) e o custo estimado dele (h(n)) até o objetivo
 - Ou seja, f(n) = g(n) + h(n)

A*

• f(n) é então o custo estimado da melhor solução passando por n

A*

 f(n) é então o custo estimado da melhor solução passando por n

Custo Uniforme

Objetivo

A*

• f(n) é então o custo estimado da melhor solução passando por n

A*

 Se h(n) for uma heurística admissível e consistente,
 A* garantidamente encontra o caminho mais curto ao objetivo

- Se h(n) for uma heurística admissível e consistente,
 A* garantidamente encontra o caminho mais curto ao objetivo
- Heurística admissível:

- Se h(n) for uma heurística admissível e consistente,
 A* garantidamente encontra o caminho mais curto ao objetivo
- Heurística admissível:
 - Nunca superestima a distância do nó ao objetivo (a distância real é garantidamente maior ou igual à estimada)

- Se h(n) for uma heurística admissível e consistente,
 A* garantidamente encontra o caminho mais curto ao objetivo
- Heurística admissível:
 - Nunca superestima a distância do nó ao objetivo (a distância real é garantidamente maior ou igual à estimada)
 - Naturalmente otimista: sempre assume o custo para resolver o problema abaixo do real (ou, no máximo, igual)

- Se h(n) for uma heurística admissível e consistente,
 A* garantidamente encontra o caminho mais curto ao objetivo
- Heurística admissível:
 - Nunca superestima a distância do nó ao objetivo (a distância real é garantidamente maior ou igual à estimada)
 - Naturalmente otimista: sempre assume o custo para resolver o problema abaixo do real (ou, no máximo, igual)
 - Ex: Distância euclidiana (linha reta) como forma de distância entre duas cidades → sempre será ≤ que a real

- Heurística admissível:
 - Uma vez que g(n) é o custo real para se chegar a n, se h(n) nunca superestimar o custo, então f(n) = g(n) + h(n) nunca superestimará o custo de uma solução que passe por n

- Heurística admissível:
 - Uma vez que g(n) é o custo real para se chegar a n, se h(n) nunca superestimar o custo, então f(n) = g(n) + h(n) nunca superestimará o custo de uma solução que passe por n
- Heurística consistente:

- Heurística admissível:
 - Uma vez que g(n) é o custo real para se chegar a n, se h(n) nunca superestimar o custo, então f(n) = g(n) + h(n) nunca superestimará o custo de uma solução que passe por n
- Heurística consistente:
 - Se, para cada nó n e sucessor n' de n, o custo estimado de atingir o objetivo a partir de n não for maior que o custo de ir de n a n' mais o custo estimado de se atingir o objetivo a partir de n'

- Heurística admissível:
 - Uma vez que g(n) é o custo real para se chegar a n, se h(n) nunca superestimar o custo, então f(n) = g(n) + h(n) nunca superestimará o custo de uma solução que passe por n
- Heurística consistente:
 - Se, para cada nó n e sucessor n' de n, o custo estimado de atingir o objetivo a partir de n não for maior que o custo de ir de n a n' mais o custo estimado de se atingir o objetivo a partir de n'
 - Ou seja, $h(n) \leq c(n, n') + h(n')$

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2
 - Toda heurística consistente é admissível

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2
 - Toda heurística consistente é admissível
- A* será ótimo quando:

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2
 - Toda heurística consistente é admissível
- A* será ótimo quando:
 - Em sua versão para árvores, h(n) for admissível

- Heurística consistente:
 - Trata-se de uma forma de desigualdade triangular: cada lado do triângulo não pode ser maior que a soma dos outros 2
 - Toda heurística consistente é admissível
- A* será ótimo quando:
 - Em sua versão para árvores, h(n) for admissível
 - Em sua versão para grafos, h(n) for consistente

A* - Exemplo

• Considere o seguinte grafo

A* – Exemplo

• Considere o seguinte grafo

A* – Exemplo

- Considere o seguinte grafo
- Imagine que ele representa estradas entre cidades

A* - Exemplo

- Considere o seguinte grafo
- Imagine que ele representa estradas entre cidades
- h(n) será então a distância,
 em linha reta, entre o nó n
 e O, conforme a tabela:

n	h(n)	n	h(n)
Α	4	D	0.5
В	2.5	Ε	8.0
С	2		

A* – Algoritmo

```
Q \leftarrow No' inicial;

enquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com

menor <math>f(C) = g(C) + h(cabeça(C));

se cabeça(C) = objetivo então

\bot Retorne C

para cada filho f de cabeça(C) faça

\bot Adicione [f,C] a Q
```

retorna falha

A* – Algoritmo

```
Q \leftarrow Nó inicial;

enquanto Q n\~ao estiver vazia faça
C \leftarrow \text{Retire de } Q \text{ o caminho com}
\text{menor } f(C) = g(C) + h(\text{cabeça}(C));
\text{se } cabeça(C) = objetivo \text{ ent\~ao}
\bot \text{ Retorne } C
\text{para cada } filho \text{ f de } cabeça(C) \text{ faça}
\bot \text{ Adicione } [f,C] \text{ a } Q
```


retorna falha

A* – Algoritmo

$Q \leftarrow No inicial$:

enquanto *Q* não estiver vazia faça

C ← Retire de Q o caminho com

menor f(C) = g(C) + h(cabe, a(C));

se cabeça(C) = objetivo então

_ Retorne C

para cada filho f de cabeça(C) faça

Adicione [f,C] a Q

retorna falha

	Caminho	g	h	f
Q:	[A]	0	4	4

C:

A* – Algoritmo

	Caminho	g	h	f
Q:	[A]	0	4	4

retorna falha

C:

A* – Algoritmo

	Caminho	g	h	f
Q:				

retorna falha

A* – Algoritmo

```
Q \leftarrow No' inicial;
enquanto Q n\~ao estiver vazia faça
C \leftarrow Retire de Q o caminho com
menor f(C) = g(C) + h(cabeça(C));
se cabeça(C) = objetivo ent\~ao
Retorne C
para cada filho f de cabeça(C) faça
Adicione [f,C] a Q
```


retorna falha

A* – Algoritmo

 $Q \leftarrow No' inicial;$ enquanto Q $n\~ao$ estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo ent $\~ao$ Retorne Cpara cada filho f de cabeça(C) faça Adicione [f,C] a Q

retorna falha

A* – Algoritmo

 $Q \leftarrow No'$ inicial; **enquanto** Q $n\~ao$ estiver vazia **faça** $C \leftarrow Retire$ de Q o caminho com menor f(C) = g(C) + h(cabeça(C)); **se** cabeça(C) = objetivo **então** $C \leftarrow Retorne$ $C \rightarrow Retor$

Adicione [f,C] a Q

	Caminho	g	h	f
Q: [[B,A]	2	2.5	4.5

retorna falha

A* – Algoritmo

```
Q \leftarrow No' inicial;

enquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com

menor <math>f(C) = g(C) + h(cabeça(C));

se cabeça(C) = objetivo então

C \leftarrow Retorne C

para cada filho f de cabeça(C) faça

Adicione [f,C] a Q
```


	Caminho	g	h	f
Q:	[B,A]	2	2.5	4.5

retorna falha

A* – Algoritmo

Q \leftarrow Nó inicial; **enquanto** Q $n\~ao$ estiver vazia **faça** $C \leftarrow \text{Retire de } Q \text{ o caminho com}$ menor f(C) = g(C) + h(cabeça(C)); $\text{se } cabeça(C) = objetivo \text{ ent\~ao}$ $\perp \text{ Retorne } C$ para cada filho f de cabeça(C) faça $\mid \text{ Adicione } [f,C] \text{ a } Q$

	Caminho	g	h	f
Q:	[B,A]	2	2.5	4.5
	[C,A]	5	2	7

retorna falha

A* – Algoritmo

	Caminho	g	h	f
Q:	[B,A]	2	2.5	4.5
	[C,A]	5	2	7

retorna falha

A* – Algoritmo

```
Q \leftarrow Nó inicial;

enquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com

menor f(C) = g(C) + h(\text{cabeça}(C));

se cabeça(C) = objetivo então

\bot Retorne C

para cada filho f de cabeça(C) faça

\bot Adicione [f,C] a Q
```


	Caminho	g	h	f
Q:	[C,A]	5	2	7

retorna falha

A* – Algoritmo

```
Q \leftarrow No' inicial;

enquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com

menor <math>f(C) = g(C) + h(cabeça(C));

se cabeça(C) = objetivo então

C \leftarrow Retorne C

para cada filho f de cabeça(C) faça

Adicione [f,C] a Q
```


	Caminho	g	h	f
Q:	[C,A]	5	2	7

retorna falha

A* – Algoritmo

```
Q \leftarrow Nó inicial; fenquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com menor f(C) = g(C) + h(\text{cabeça}(C));

se cabeça(C) = objetivo então

Retorne C

para cada filho f de cabeça(C) faça

Adicione [f,C] a Q
```


	Caminho	g	h	f
Q:	[C,A]	5	2	7

retorna falha

A* – Algoritmo

Q \leftarrow Nó inicial; enquanto Q não estiver vazia faça $C \leftarrow$ Retire de Q o caminho com menor f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então \bot Retorne Cpara cada filho f de cabeça(C) faça \bot Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9

retorna falha

A* – Algoritmo

 $Q \leftarrow No' inicial;$ enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então Retorne Cpara cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9

retorna falha

A* – Algoritmo

Q \leftarrow Nó inicial; **enquanto** Q não estiver vazia **faça** $C \leftarrow \text{Retire de Q o caminho com}$ menor f(C) = g(C) + h(cabeça(C)); se cabeça(C) = objetivo então $\perp \text{ Retorne C}$ para cada filho f de cabeça(C) faça $\mid \text{Adicione } [f,C] \text{ a } Q$

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[E,B,A]	4	0.8	4.8

retorna falha

A* – Algoritmo

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[E,B,A]	4	0.8	4.8

retorna falha

A* – Algoritmo

```
Q \leftarrow No' inicial;

enquanto Q não estiver vazia faça

C \leftarrow Retire de Q o caminho com

menor f(C) = g(C) + h(cabeça(C));

se cabeça(C) = objetivo então

C \leftarrow Retorne C

para cada filho f de cabeça(C) faça

C \leftarrow Retorne C

Adicione [f,C] a Q
```


	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9

retorna falha

C: [E,B,A] (4,0.8,4.8)

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retorne C$ para cada filho f de cabeça(C) faça $C \leftarrow Retorne C$ Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9

retorna falha

C: [E,B,A] (4,0.8,4.8)

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retorne C$ para cada filho f de cabeça(C) faça $C \leftarrow Retorne C$ Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9

retorna falha

C: [E,B,A] (4,0.8,4.8)

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retorne C$ para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5

retorna falha

A* – Algoritmo

 $Q \leftarrow \text{N\'o inicial};$ enquanto Q não estiver vazia faça $C \leftarrow \text{Retire de } Q \text{ o caminho com}$ menor f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então Retorne C para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5

retorna falha

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retire C$ para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5
	[O,E,B,A]	5	0	5

retorna falha

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retire C$ Para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5
	[O,E,B,A]	5	0	5

retorna falha

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retorne C$ para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5

retorna falha

C: [O,E,B,A] (5,0,5)

A* – Algoritmo

 $Q \leftarrow No'$ inicial; enquanto Q não estiver vazia faça $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C));se cabeça(C) = objetivo então $C \leftarrow Retorne C$ para cada filho f de cabeça(C) faça Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5

retorna falha

C: [O,E,B,A] (5,0,5)

A* – Algoritmo

 $Q \leftarrow No'$ inicial; **enquanto** Q $n\~ao$ estiver vazia **faça** $C \leftarrow Retire de Q o caminho com$ menor <math>f(C) = g(C) + h(cabeça(C)); **se** cabeça(C) = objetivo **então** $C \leftarrow Retorne C$ **para cada** filho f de cabeça(C) **faça**

Adicione [f,C] a Q

	Caminho	g	h	f
Q:	[C,A]	5	2	7
	[A,B,A]	5	4	9
	[D,E,B,A]	7	0.5	7.5

retorna falha

C: [O,E,B,A] (5,0,5)

A* – Observações

No início da busca:

- No início da busca:
 - g(n) influi pouco

- No início da busca:
 - g(n) influi pouco
 - h(n) domina

- No início da busca:
 - g(n) influi pouco
 - h(n) domina
 - Escolhe caminho que parece ser o melhor

- No início da busca:
 - g(n) influi pouco
 - h(n) domina
 - Escolhe caminho que parece ser o melhor
- Ao final da busca:

- No início da busca:
 - g(n) influi pouco
 - h(n) domina
 - Escolhe caminho que parece ser o melhor
- Ao final da busca:
 - h(n) influi pouco

- No início da busca:
 - g(n) influi pouco
 - h(n) domina
 - Escolhe caminho que parece ser o melhor
- Ao final da busca:
 - h(n) influi pouco
 - g(n) domina

- No início da busca:
 - g(n) influi pouco
 - h(n) domina
 - Escolhe caminho que parece ser o melhor
- Ao final da busca:
 - h(n) influi pouco
 - g(n) domina
 - Acaba ficando com o menor caminho

A* – Vantagem

• A* ignora caminhos que, em linha reta, se afastam muito do objetivo

- A* ignora caminhos que, em linha reta, se afastam muito do objetivo
 - Busca de custo uniforme pode demorar a perceber que está no caminho errado

- A* ignora caminhos que, em linha reta, se afastam muito do objetivo
 - Busca de custo uniforme pode demorar a perceber que está no caminho errado
 - A* decide (bem) antes.

- A* ignora caminhos que, em linha reta, se afastam muito do objetivo
 - Busca de custo uniforme pode demorar a perceber que está no caminho errado
 - A* decide (bem) antes. Ex:

- A* ignora caminhos que, em linha reta, se afastam muito do objetivo
 - Busca de custo uniforme pode demorar a perceber que está no caminho errado
 - A* decide (bem) antes. Ex:

- A* ignora caminhos que, em linha reta, se afastam muito do objetivo
 - Busca de custo uniforme pode demorar a perceber que está no caminho errado
 - A* decide (bem) antes. Ex:

Até agora vimos problemas que eram:

• Observáveis: sabemos em que estado estamos

- Observáveis: sabemos em que estado estamos
 - Se conhecermos todos os estados então o ambiente é totalmente observável

- Observáveis: sabemos em que estado estamos
 - Se conhecermos todos os estados então o ambiente é totalmente observável
- Determinísticos: sabemos em que estado estaremos se executarmos determinada ação

- Observáveis: sabemos em que estado estamos
 - Se conhecermos todos os estados então o ambiente é totalmente observável
- Determinísticos: sabemos em que estado estaremos se executarmos determinada ação
- De ambientes conhecidos: conhecemos todas as regras de ação do ambiente

- Observáveis: sabemos em que estado estamos
 - Se conhecermos todos os estados então o ambiente é totalmente observável
- Determinísticos: sabemos em que estado estaremos se executarmos determinada ação
- De ambientes conhecidos: conhecemos todas as regras de ação do ambiente
 - Sabemos a saída (ou probabilidade de cada saída) para todas as ações dadas. Se o ambiente for desconhecido, teremos antes que aprender como ele funciona

Problema

• E se não for esse o caso?

Problema

- E se não for esse o caso?
 - E se não tivermos acesso a toda a informação necessária?

Problema

- E se não for esse o caso?
 - E se não tivermos acesso a toda a informação necessária?
 - E se tivermos restrições de memória, nos proibindo de carregar o grafo todo?

Problema

- E se não for esse o caso?
 - E se não tivermos acesso a toda a informação necessária?
 - E se tivermos restrições de memória, nos proibindo de carregar o grafo todo?

Solução

Busca local

<u>Pr</u>oblema

- E se não for esse o caso?
 - E se não tivermos acesso a toda a informação necessária?
 - E se tivermos restrições de memória, nos proibindo de carregar o grafo todo?

Solução

- Busca local
 - Avalia e modifica apenas o estado atual, em vez de explorar caminhos a partir de um estado inicial

Problema

- E se não for esse o caso?
 - E se não tivermos acesso a toda a informação necessária?
 - E se tivermos restrições de memória, nos proibindo de carregar o grafo todo?

Solução

- Busca local
 - Avalia e modifica apenas o estado atual, em vez de explorar caminhos a partir de um estado inicial
 - Naturalmente, não se aplica a casos em que queremos o caminho. Queremos apenas o estado final (objetivo)

Características

 Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)

Características

- Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)
 - Em geral movem-se apenas para vizinhos desse estado

Características

- Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)
 - Em geral movem-se apenas para vizinhos desse estado
- Tipicamente, os caminhos são ignorados

Características

- Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)
 - Em geral movem-se apenas para vizinhos desse estado
- Tipicamente, os caminhos são ignorados

Vantagens

Características

- Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)
 - Em geral movem-se apenas para vizinhos desse estado
- Tipicamente, os caminhos são ignorados

Vantagens

Usam pouca memória

Características

- Algoritmos de busca local operam usando um único estado (em vez de um grafo de estados)
 - Em geral movem-se apenas para vizinhos desse estado
- Tipicamente, os caminhos são ignorados

Vantagens

- Usam pouca memória
- Frequentemente encontram soluções razoáveis em grandes (ou mesmo infinitos) espaços de busca

Espaços de busca

 Podemos definir o espaço de busca em termos de seus estados (eixo x) e sua função de avaliação (y):

Espaços de busca

 Se essa função corresponder ao custo, queremos encontrar o vale mais profundo – mínimo global

Espaços de busca

 Se corresponder ao objetivo, queremos encontrar o pico mais alto – máximo global

Definições

 Um algoritmo de busca local será completo se sempre encontrar um objetivo, caso exista

Definições

 Um algoritmo de busca local será completo se sempre encontrar um objetivo, caso exista

 Um algoritmo de busca local será ótimo se sempre encontrar um máximo (ou mínimo) global

Hill Climbing

Hill Climbing (Subida da Encosta)

 Escolhe, a cada passo, o nó que parece levar mais próximo do objetivo

Hill Climbing (Subida da Encosta)

 Escolhe, a cada passo, o nó que parece levar mais próximo do objetivo

 Move-se continuamente na direção de valores crescentes – encosta acima

Hill Climbing (Subida da Encosta)

 Escolhe, a cada passo, o nó que parece levar mais próximo do objetivo

- Move-se continuamente na direção de valores crescentes – encosta acima
- Exige uma função de avaliação, para indicar quão próximo da solução está o nó atual

Hill Climbing (Subida da Encosta)

Pára quando atinge um pico

Hill Climbing (Subida da Encosta)

- Pára quando atinge um pico
 - Nenhum vizinho tem valor maior que o estado atual

Hill Climbing (Subida da Encosta)

- Pára quando atinge um pico
 - Nenhum vizinho tem valor maior que o estado atual
- Não olha além dos vizinhos imediatos do estado em que está

Hill Climbing (Subida da Encosta)

- Pára quando atinge um pico
 - Nenhum vizinho tem valor maior que o estado atual

zlobal maximum

objective function

shoulder

- Não olha além dos vizinhos imediatos do estado em que está
- Considera todos os movimentos a partir do estado atual, selecionando o melhor deles como próximo estado

'flat'' local maximum

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho;

retorna atual;
```

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho; ← A cada passo, o nó
atual é substituído pelo seu melhor vizinho
```

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho;

Nessa versão, o melhor vizinho era aquele com maior valor de avaliação.
```

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho;

Se usássemos uma heurística de custo, teria que ser o vizinho com o menor custo
```

Hill Climbing – Algoritmo

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

Hill Climbing modifica
```

 $atual \leftarrow vizinho; \leftarrow$

retorna atual;

Hill Climbing modifica então o estado atual tentando melhorá-lo

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho;

E se houver um empate entre vizinhos de um nó?

retorna atual;
```

```
atual ← Nó inicial;

enquanto atual ≠ objetivo E possui vizinhos faça

vizinho ← vizinho de atual com maior valor de avaliação;

se avaliação(vizinho) ≤ avaliação(atual) então

retorna atual;

atual ← vizinho;

O algoritmo tipicamente escolhe um aleatoriamente
```

Hill Climbing - Exemplo

 Voar de uma cidade a outra, minimizando o número de conexões

Hill Climbing – Exemplo

- Voar de uma cidade a outra, minimizando o número de conexões
- Heurística:

Hill Climbing – Exemplo

- Voar de uma cidade a outra, minimizando o número de conexões
- Heurística:
 - Quanto maior a distância de cada voo, a partir do estado corrente, maior a probabilidade de estar mais perto do destino

Hill Climbing - Exemplo

- Voar de uma cidade a outra, minimizando o número de conexões
- Heurística:
 - Quanto maior a distância de cada voo, a partir do estado corrente, maior a probabilidade de estar mais perto do destino
- Função de Avaliação:

Hill Climbing – Exemplo

- Voar de uma cidade a outra, minimizando o número de conexões
- Heurística:
 - Quanto maior a distância de cada voo, a partir do estado corrente, maior a probabilidade de estar mais perto do destino
- Função de Avaliação:
 - Maior aresta saindo do nó corrente ⇒ maior valor do nó ao final dessa aresta

Hill Climbing – Exemplo

Hill Climbing – Exemplo

NY para LA:

Hill Climbing – Exemplo

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                 Calgary(
                                                            1500
                                                                        Toronto
           retorna atual;
                                                                       500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
                                                                            1000
retorna atual;
                                                             1000
                                                                     Chicago
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
```

Fonte: Adaptado de AIUC. Shildt.

Hill Climbing – Exemplo

```
NY para LA:
atual \leftarrow No inicial:
enquanto atual \neq objetivo E possui vizinhos faça
     vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                Calgary(
                                                            1500
                                                                        Toronto
           retorna atual;
                                                                       500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
retorna atual;
                                                             1000
                                                                     Chicago
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
```

Fonte: Adaptado de AIUC. Shildt.

1000

Hill Climbing – Exemplo

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                 Calgary(
                                                             1500
                                                                         Toronto
           retorna atual;
                                                                        500 800
                                        Urbana
                                                        1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
                                                                            1000
retorna atual;
                                                              1000
                                                                     Chicago
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

Hill Climbing - Exemplo

NY para LA:

```
atual \leftarrow No inicial;
                                                           Quanto mais longe do
enquanto atual \neq objetivo E possui vizinhos faça
                                                           nó atual melhor será o
     vizinho \leftarrow vizinho de atual com major
                                                           valor de um nó vizinho
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                Calgary(
                                                             1500
                                                                        Toronto
           retorna atual;
                                                                       500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
retorna atual;
                                                             1000
                                                                     Chicago
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

Hill Climbing - Exemplo

```
NY para LA:
                                                           Por essa heurística, o
atual \leftarrow No inicial;
                                                          valor do nó atual será
enquanto atual \neq objetivo E possui vizinhos faça
                                                         sempre menor que o do
     vizinho \leftarrow vizinho de atual com major
                                                         vizinho, se houver vizinho
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                Calgary(
                                                            1500
                                                                       Toronto
          retorna atual;
                                                                      500 800
                                                      1800
                                       Urbana
                                                               1900
     atual \leftarrow vizinho;
                                             500
                                                  Denver
retorna atual;
                                                            1000
                                                                    Chicago
                                                        900
                                                1000
                                                                 Houston
                                                   1500
                                                 Fonte: Adaptado de AIUC. Shildt.
```

Hill Climbing – Exemplo

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                Calgary(
                                                            1500
                                                                        Toronto
           retorna atual;
                                                                       500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho:
                                              500
                                                  Denver
                                                                            1000
retorna atual;
                                                             1000
                                                                     Chicago
                                                1000 🗼 900
                                                                 Houston
                                                    1500
```

Fonte: Adaptado de AIUC. Shildt.

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                Calgary(
                                                            1500
                                                                        Toronto
           retorna atual;
                                                                       500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
                                                                            1000
retorna atual;
                                                             1000
                                                                     Chicago
                                                 1000 🗼 900
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                  Calgary(
                                                              1500
                                                                          Toronto
           retorna atual;
                                                                         500 800
                                         Urbana
                                                         1800
                                                                  1900
      atual \leftarrow vizinho;
                                                500
                                                    Denver
                                                                              1000
retorna atual;
                                                               1000
                                                                       Chicago
                                       viz
                                                  1000 \frac{1}{1000}
                                                                    Houston
                                                      1500
                                                   Fonte: Adaptado de AIUC. Shildt.
```

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
      vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                  Calgary(
                                                              1500
                                                                          Toronto
           retorna atual;
                                                                         500 800
                                         Urbana
                                                         1800
                                                                  1900
      atual \leftarrow vizinho;
                                                500
                                                    Denver
                                                                              1000
retorna atual;
                                                               1000
                                                                       Chicago
                                       viz
                                                  1000 \frac{1}{1000}
                                                                    Houston
                                                      1500
                                                   Fonte: Adaptado de AIUC. Shildt.
```

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
     vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                 Calgary(
                                                             1500
                                                                         Toronto
           retorna atual;
                                                                        500 800
                                        Urbana
                                                        1800
                                                                1900
     atual \leftarrow vizinho:
                                              500
                                                   Denver
                                                                            1000
retorna atual;
                                                              1000
                                                                     Chicago
                                      viz
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
     vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                 Calgary(
                                                             1500
                                                                         Toronto
           retorna atual;
                                                                        500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
                                                                            1000
retorna atual;
                                                              1000
                                                                     Chicago
                                      viz
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

```
NY para LA:
atual \leftarrow No inicial;
enquanto atual \neq objetivo E possui vizinhos faça
     vizinho \leftarrow vizinho de atual com major
     valor de avaliação;
     se avaliação(vizinho) < avaliação(atual)
      então
                                                 Calgary(
                                                             1500
                                                                         Toronto
           retorna atual;
                                                                        500 800
                                        Urbana
                                                       1800
                                                                1900
     atual \leftarrow vizinho;
                                              500
                                                   Denver
                                                                            1000
retorna atual:
                                                              1000
                                                                     Chicago
                                                         900
                                                 1000
                                                                  Houston
                                                    1500
                                                  Fonte: Adaptado de AIUC. Shildt.
```

Hill Climbing – Problemas

Pode não encontrar uma solução (mesmo havendo uma)

Hill Climbing – Problemas

- Pode não encontrar uma solução (mesmo havendo uma)
- Não consegue ir adiante nas seguintes situações:

Hill Climbing – Problemas

- Pode não encontrar uma solução (mesmo havendo uma)
- Não consegue ir adiante nas seguintes situações:
 - Máximos locais: quando não há vizinho melhor, mas o estado atual não é a melhor solução (ou nem mesmo é solução)

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais
 - Platôs: quando os vizinhos são iguais ao estado atual, e este não é solução

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais
 - Platôs: quando os vizinhos são iguais ao estado atual, e este não é solução
 - Podem ser máximos locais planos

Fonte: AIMA. Russell & Norvig.

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais
 - Platôs: quando os vizinhos são iguais ao estado atual, e este não é solução
 - Podem ser máximos locais planos ou "ombros"

Fonte: AIMA. Russell & Norvig.

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais
 - Platôs: quando os vizinhos são iguais ao estado atual, e este não é solução
 - Podem ser máximos locais planos ou "ombros"

Fonte: AIMA. Russell & Norvig.

• Solução: Subida da Encosta de Recomeço Aleatório

Hill Climbing – Problemas

- Não consegue ir adiante nas seguintes situações:
 - Cordilheiras: sequência de máximos locais
 - Platôs: quando os vizinhos são iguais ao estado atual, e este não é solução
 - Podem ser máximos locais planos ou "ombros"

Fonte: AIMA. Russell & Norvig.

- Solução: Subida da Encosta de Recomeço Aleatório
 - Random-Restart Hill Climbing

Random-Restart Hill Climbing – Funcionamento

 Se n\u00e3o conseguir da primeira vez, tente de novo

- Se n\u00e3o conseguir da primeira vez, tente de novo
- Se ficou preso em um estado não muito bom:

- Se n\u00e3o conseguir da primeira vez, tente de novo
- Se ficou preso em um estado não muito bom:
 - Gere aleatoriamente um novo estado inicial

- Se n\u00e3o conseguir da primeira vez, tente de novo
- Se ficou preso em um estado não muito bom:
 - Gere aleatoriamente um novo estado inicial
 - Comece a busca novamente

- Se n\u00e3o conseguir da primeira vez, tente de novo
- Se ficou preso em um estado não muito bom:
 - Gere aleatoriamente um novo estado inicial
 - Comece a busca novamente

Fonte: https://somosamp.wordpress.com/ 2017/02/02/toca-raul-tente-outra-vez/

Random-Restart Hill Climbing

 O algoritmo executa, então, uma série de hill climbings a partir de estados iniciais aleatórios, até que o objetivo seja atingido

- O algoritmo executa, então, uma série de hill climbings a partir de estados iniciais aleatórios, até que o objetivo seja atingido
- Embora não pareça, é muito eficiente

- O algoritmo executa, então, uma série de hill climbings a partir de estados iniciais aleatórios, até que o objetivo seja atingido
- Embora não pareça, é muito eficiente
- ullet Também é completo, com probabilidade pprox 1

- O algoritmo executa, então, uma série de hill climbings a partir de estados iniciais aleatórios, até que o objetivo seja atingido
- Embora não pareça, é muito eficiente
- ullet Também é completo, com probabilidade pprox 1
 - Se cada busca tiver probabilidade p de sucesso, o número de reinícios esperado é $\frac{1}{p}$

- O algoritmo executa, então, uma série de hill climbings a partir de estados iniciais aleatórios, até que o objetivo seja atingido
- Embora não pareça, é muito eficiente
- ullet Também é completo, com probabilidade pprox 1
 - Se cada busca tiver probabilidade p de sucesso, o número de reinícios esperado é $\frac{1}{p}$
 - Ex: $p = 0.01 \Rightarrow \frac{1}{p} = 100$

Simulated Annealing

 Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.
- Por outro lado, até uma caminhada aleatória seria completa, embora ineficiente

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.
- Por outro lado, até uma caminhada aleatória seria completa, embora ineficiente
 - Quando escolhemos aleatoriamente o vizinho de um nó, a partir de uma distribuição uniforme

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.
- Por outro lado, até uma caminhada aleatória seria completa, embora ineficiente
 - Quando escolhemos aleatoriamente o vizinho de um nó, a partir de uma distribuição uniforme
- E se combinássemos os 2?

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.
- Por outro lado, até uma caminhada aleatória seria completa, embora ineficiente
 - Quando escolhemos aleatoriamente o vizinho de um nó, a partir de uma distribuição uniforme
- E se combinássemos os 2? Têmpera Simulada

- Por nunca "descer a encosta", movendo-se para estados com menor valor (ou maior custo), hill climbing é garantidamente incompleto
 - Sempre pode ficar preso em máximos locais, platôs etc.
- Por outro lado, até uma caminhada aleatória seria completa, embora ineficiente
 - Quando escolhemos aleatoriamente o vizinho de um nó, a partir de uma distribuição uniforme
- E se combinássemos os 2? Têmpera Simulada
 - Simulated Annealing

Simulated Annealing

• Em metalurgia, têmpera é o processo usado para deixar metais e vidros mais resistentes

- Em metalurgia, têmpera é o processo usado para deixar metais e vidros mais resistentes
 - Estes são aquecidos até uma alta temperatura e então gradualmente esfriados

- Em metalurgia, têmpera é o processo usado para deixar metais e vidros mais resistentes
 - Estes são aquecidos até uma alta temperatura e então gradualmente esfriados
- E o que isso tem a ver com nosso problema?

- Em metalurgia, têmpera é o processo usado para deixar metais e vidros mais resistentes
 - Estes são aquecidos até uma alta temperatura e então gradualmente esfriados
- E o que isso tem a ver com nosso problema?
 - Com Simulated Annealing, começamos adicionando um ruído aleatório alto (alta temperatura), e então gradualmente reduzimos esse ruído (baixamos a temperatura)

- Em metalurgia, têmpera é o processo usado para deixar metais e vidros mais resistentes
 - Estes são aquecidos até uma alta temperatura e então gradualmente esfriados
- E o que isso tem a ver com nosso problema?
 - Com Simulated Annealing, começamos adicionando um ruído aleatório alto (alta temperatura), e então gradualmente reduzimos esse ruído (baixamos a temperatura)
 - Assim, se estivermos presos em um mínimo local (ou máximo), conseguimos nos livrar dele com um "salto"

Simulated Annealing objective function global maximum shoulder local maximum "flat" local maximum state space current state


```
atual \leftarrow No inicial:
T \leftarrow T_0:
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p=e^{\Delta E/T}
     T \leftarrow \text{pr\'oximaTemperatura}(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                               Escolhe o próximo mo-
T \leftarrow T_0:
                                               vimento aleatoriamente
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow \text{pr\'oximaTemperatura}(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial;
                                               Se o movimento melhora a
T \leftarrow T_0:
                                               situação, é sempre aceito
repita
     pr\'oximo \leftarrow seleciona \ aleatoria mente \ vizinho \ de \ atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual:
```

```
atual \leftarrow No inicial:
                                              Do contrário, ele tem proba-
T \leftarrow T_0:
                                              bilidade e^{\Delta E/T} de ser aceito
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p=e^{\Delta E/T}
     T \leftarrow \text{pr\'oximaTemperatura}(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                              Mapeamento que deter-
                                              mina o valor da tempe-
T \leftarrow T_0:
                                               ratura a cada iteração
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
         faça atual \leftarrow próximo com probabilidade p=e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T):
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                                Pode ser algo tão simples
T \leftarrow T_0:
                                                quanto T \leftarrow \alpha T, \alpha < 1
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow \text{avaliação(próximo)} - \text{avaliação(atual)};
     se \Delta E > 0 então
           atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p=e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T):
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                               A probabilidade decresce
                                            exponencialmente com a piora
T \leftarrow T_0:
                                              de próximo (se \Delta(E) \leq 0)
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow \text{pr\'oximaTemperatura}(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                                 Se \Delta(E) \approx 0, então
                                               p \approx 1, e a atribuição tem
T \leftarrow T_0:
                                                mais chance de ser aceita
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
           atual ← próximo
     senão
           faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow \text{pr\'oximaTemperatura}(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                           Também decresce exponenci-
T \leftarrow T_0:
                                          almente com a temperatura T
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                                     Se T \rightarrow \infty, então
T \leftarrow T_0:
                                                    \frac{\Delta(E)}{\tau} \rightarrow 0 e p \rightarrow 1
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
           atual ← próximo
     senão
           faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                             Se T \to 0, então \frac{\Delta(E)}{T} \to -\infty
T \leftarrow T_0:
                                             (lembre que \Delta(E) < 0) e p \rightarrow 0
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
           atual ← próximo
     senão
           faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual:
```

```
atual \leftarrow No inicial:
                                           Assim, movimentos ruins têm
                                           mais chance de serem aceitos
T \leftarrow T_0:
                                             no início, quando T é alta
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                           Na medida em que T reduz,
T \leftarrow T_0:
                                          eles se tornam menos prováveis
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                          Movimentos "colina abaixo" são
                                          então mais aceitos no início, fi-
T \leftarrow T_0:
                                         cando cada vez menos frequentes
repita
     próximo ← seleciona aleatoriamente vizinho de atual:
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                      Se próximaTemperatura baixar T de
                                     modo suficientemente lento, o algoritmo
T \leftarrow T_0:
                                      encontrará um ótimo global com p \approx 1
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
         faça atual \leftarrow próximo com probabilidade p=e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T):
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                         Aqui medimos o valor de cada nó
T \leftarrow T_0:
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                               Se medíssemos custo.
T \leftarrow T_0:
                                               teríamos que mudar...
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow avaliação(próximo) - avaliação(atual);
     se \Delta E > 0 então
          atual ← próximo
     senão
          faça atual \leftarrow próximo com probabilidade p = e^{\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

```
atual \leftarrow No inicial:
                                                   Se medíssemos custo.
T \leftarrow T_0:
                                                   teríamos que mudar...
repita
     próximo ← seleciona aleatoriamente vizinho de atual;
     \Delta E \leftarrow \text{custo}(\text{pr\'oximo}) - \text{custo}(\text{atual});
     se \Delta E < 0 então
           atual ← próximo
     senão
           faça atual \leftarrow próximo com probabilidade p = e^{-\Delta E/T}
     T \leftarrow próximaTemperatura(T);
até T < T_{final};
retorna atual;
```

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice Hall. 3a ed.
- Schildt, H. (1987): Artificial Intelligence Using C. Mcgraw-Hill.
- https://www.baeldung.com/java-hill-climbing-algorithm
- http:
 //conteudo.icmc.usp.br/pessoas/sandra/G9_t2/annealing.htm
- https://ocw.mit.edu/courses/aeronautics-and-astronautics/ 16-410-principles-of-autonomy-and-decision-making-fall-2010/ lecture-notes/MIT16_410F10_lec14.pdf
- http://ocw.mit.edu/OcwWeb/ Electrical-Engineering-and-Computer-Science/ 6-034Spring-2005/LectureNotes/index.htm