Manual for Package: physics Revision 1:8M

Karl Kästner

March 28, 2020

Contents

1	@Constant 2						
	1.1	Constant)				
	1.2	celsius_to_kelvin	2				
	1.3	depth_to_pressure	2				
	1.4	kelvin_to_celsius	3				
	1.5	optical_attenuation	3				
	1.6	pressure_to_depth	3				
	1.7	saturation_vapor_pressure	3				
	1.8	sound_absorption_air	3				
	1.9	sound_absorption_water	3				
	1.10	sound_velocity_water	1				
	1.11	viscosity_dynamic_water	1				
	1.12	viscosity_kinematic_water	1				
2	physics 4						
	2.1	beam_bending_deflection	1				
	2.2	beam_bending_moment	1				
	2.3	beam_bending_strain	1				
	2.4	beam_bending_stress	1				
	2.5	bolt_stress	5				
	2.6	drag_force	5				
3	hydro	gen-spectrum 5	5				
	3.1	hydrogen_spectrum_1d5	5				
	3.2	hydrogen_spectrum_2012_12_02	5				
	3.3	hydrogen_spectrum_2d	5				
	3.4	hydrogen_spectrum_3d	5				
4	physic	\mathbf{s}	5				

	4.1	minimum_cable_diameter	ŏ
	4.2	moment_of_inertia_rectangle	5
	4.3	moment_of_inertia_ring	ō
	4.4	parabolic_reflector_gain	3
5	salinit	y	6
	5.1	Salinity	ô
	5.2	Salinity78	ô
	5.3	canter_cremer_number	6
	5.4		6
	5.5	dispersion_hws_savenije	6
	5.6		7
	5.7		7
	5.8		7
	5.9		7
	5.10	sea_water_density	7
	5.11	tidal_discharge	7
	5.12	tidal_excursion	7
	5.13	tidal_prism_channel	3
	5.14	tidal_prism_estuary	3
	5.15	tidal_velocity	3
6	physic	s 8	3
	6.1	test_sound_absorption_air	3
7	turbul	ence 8	3
	7.1	keps2nu	3
8	wind-v	wave 8	3
	8.1	short_wave_length	8
	8.2	short_wave_shear_velocity	9
	8.3	wave_height_from_wind_speed	

1 @Constant

1.1 Constant

Constant and physical standard quantities

1.2 celsius_to_kelvin

```
convert temperature from degree Celsius to Kelvin function t_K = celsius\_to\_kelvin(t_C)
```

1.3 depth_to_pressure

```
convert depth to pressure in fresh water at standard temperature z = (p - p0)/(rho g) \Rightarrow p = rho g z + p0 input: p0 : nx1 \text{ or scalar, pressure at water surface in BAR} d : depth in metre output: p : nx1, pressure at measurement depth in BAR
```

1.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

1.5 optical_attenuation

1.6 pressure_to_depth

```
convert pressure to depth in fresh water at standard temperature
z = (p - p0)/(rho*g)
input:
p : nx1, pressure at measurement depth in BAR
p0 : nx1 or scalar, pressure at water surface in BAR
output:
d : depth in metre
```

1.7 saturation_vapor_pressure

1.8 sound_absorption_air

1.9 sound_absorption_water

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

1.10 sound_velocity_water

```
sound velocity in water
following Lubbers and Graaff (1998)
this formula does not include depth and salinity effects
```

1.11 viscosity_dynamic_water

1.12 viscosity_kinematic_water

2 physics

2.1 beam_bending_deflection

2.2	${\bf beam_bending_moment}$
2.3	$beam_bending_strain$
2.4	$beam_bending_stress$
2.5	$bolt_stress$
2.6	$ m drag_force$
0	
	hydrogen-spectrum
3.1	$hydrogen_spectrum_1d$
3.2	$hydrogen_spectrum_2012_12_02$
3.3	$hydrogen_spectrum_2d$
3.4	hydrogen_spectrum_3d

- 4 physics
- 4.1 minimum_cable_diameter
- 4.2 moment_of_inertia_rectangle
- 4.3 moment_of_inertia_ring
- 4.4 parabolic_reflector_gain
- 5 salinity
- 5.1 Salinity
- 5.2 Salinity78
- 5.3 canter_cremer_number

Canter Cremer Number

ratio of fresh water to sea water that flows into the estuary

Qf : fresh water discharge

T : tidal period
Pt : tidal prism

Savenije, Salinity and tides, eq. 1.1, 2.35 and 5.67

5.4 density2salinity

5.5 dispersion_hws_savenije

Dispersion at river mouth during high water slack

v0 : tidal velocity scale
E0 : tidal excursion

h0 : depth

a : convergence length
Nr : Richargson Number

Savenije 1993c, Savenije, Salinity and Tides, eg. 5.70

5.6 dispersion_tda_burgh

5.7 richardson_number

Estuarine Richardson Number potential energy due to mixing the entire fresh water with sea water $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

ratio of potential energy and buoyancy Savenije, Salinity and Tides, 2.36

drho : difference of sea water and fresh water density

rho : fresh water density

h : depth

v : tidal velocity scale

N : Cramer number

5.8 salinity

5.9 salinity_intrusion_length

5.10 sea_water_density

5.11 tidal_discharge

specific tidal discharge (discharge per unit width)

5.12 tidal_excursion

Tidal excursion length

Pt : tidal prism

 $h0 : depth \\ w0 : width$

5.13 tidal_prism_channel

Tidal prism

Pt = int_lsw^hws Q_t dt ~ A E

z1 : tidal amplitude

w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

5.14 tidal_prism_estuary

Tidal prism

Pt = int_lsw^hws Q_t dt ~ A E

z1 : tidal amplitude

w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

5.15 tidal_velocity

6 physics

6.1 test_sound_absorption_air

- 7 turbulence
- 7.1 keps2nu
- 8 wind-wave
- $8.1 \quad short_wave_length$
- 8.2 $short_wave_shear_velocity$
- $8.3 \quad wave_height_from_wind_speed$