Capítulo 1

Grupos

1.1 Grupóides, semigrupos e monóides

Definição 1.1.1. Seja X um conjunto. Uma operação binária (interna) em X é uma função $*: X \times X \to X$, $(x,y) \mapsto x * y$. Uma operação binária * em X diz-se associativa se para cada três elementos $x,y,z \in X$, (x*y)*z=x*(y*z). Uma operação binária * em X diz-se comutativa se para cada dois elementos $x,y \in X$, x*y=y*x.

- **Exemplos 1.1.2.** (i) A adição + e a multiplicação \cdot são operações associativas e comutativas em \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} . Salienta-se que, nestes apontamentos, \mathbb{N} designa o conjuntos dos inteiros não negativos: $\mathbb{N} = \{0, 1, 2, \dots\}$.
- (ii) A subtracção é uma operação binária em \mathbb{Z} , \mathbb{Q} e \mathbb{R} , mas não em \mathbb{N} . A subtracção não é associativa nem comutativa.
 - (iii) Uma operação em \mathbb{N} que é comutativa mas não associativa é dada por a*b = |a-b|.
- (iv) Uma operação associativa no conjunto $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$ é dada pela multiplicação das matrizes. Se $n\geq 2$, então a multiplicação de matrizes não é comutativa.
- (v) A composição de funções é uma operação associativa no conjunto $\mathcal{F}(X)$ das funções no conjunto X. Se X tiver pelo menos dois elementos, a composição não é comutativa.
- (vi) A reunião e a intersecção são operações associativas e comutativas no conjunto potência $\mathcal{P}(X)$ de um conjunto X.
- Nota 1.1.3. Uma operação binária * num conjunto finito $X = \{x_1, \ldots, x_n\}$ pode ser

dada através de uma tabela da forma:

	$ x_1 $	x_2	• • •	x_{j}	• • •	x_n
x_1	$x_1 * x_1$	$x_1 * x_2$	• • •	$x_1 * x_j$	• • •	$x_1 * x_n$
x_2	$x_2 * x_1$	$x_2 * x_2$	• • •	$x_2 * x_j$	• • •	$x_2 * x_n$
:	:	:	÷	:	÷	:
x_i	$x_i * x_1$	$x_i * x_2$	• • •	$x_i * x_j$	• • •	$x_i * x_n$
:	:	÷	÷	÷	:	:
x_n	$x_n * x_1$	$x_n * x_2$		$x_n * x_j$		$x_n * x_n$

Esta tabela é às vezes chamada a tabela de Cayley da operação *. Por exemplo, a tabela de Cayley da reunião no conjunto potência de um conjunto X com um elemento é dada por:

$$\begin{array}{c|cccc} & \emptyset & X \\ \hline \emptyset & \emptyset & X \\ X & X & X \end{array}$$

Definição 1.1.4. Um grupóide é um par (X,*) em que X é um conjunto não vazio e * é uma operação binária em X. Um semigrupo é um grupóide associativo, isto é, um grupóide cuja operação é associativa.

Exemplos 1.1.5. Cada uma das operações binárias nos exemplos 1.1.2 (i),(iv),(v),(vi) é a operação de um semigrupo. O grupóide $(\mathbb{Z}, -)$ não é um semigrupo.

Convenção 1.1.6. No desenvolvimento da teoria, denotaremos as operações de grupóides em geral pelos símbolos \cdot e +, sendo o uso do símbolo + restrito a operações comutativas. No caso de uma operação denotada por \cdot falaremos da multiplicação do grupóide e do $produto\ a \cdot b$ de dois elementos a e b. Em vez de $a \cdot b$ escrevemos também simplesmente ab. No caso de uma operação denotada por + falaremos da adição do grupóide e da $soma\ a + b$ de a e b. Muitas vezes indicaremos um grupóide pelo símbolo do conjunto subjacente. Assim, faleremos simplesmente do grupóide X em vez do grupóide (X,\cdot) . Estas convenções serão aplicadas a quaisquer grupóides e, em particular, a grupóides especiais como, por exemplo, semigrupos. Em exemplos e exercícios continuaremos a usar símbolos como * e \bullet para designar operações de grupóides.

Definição 1.1.7. Definimos os *produtos* dos elementos a_1, \ldots, a_n de um grupóide X (nesta ordem) recursivamente como se segue: O único produto de um elemento $a \in a$. Para $n \geq 2$, um elemento $x \in X$ é um produto dos elementos a_1, \ldots, a_n se existem $i \in \{1, \ldots, n-1\}$ e $y, z \in X$ tais que y é um produto dos elementos a_1, \ldots, a_i, z é um produto dos elementos a_{i+1}, \ldots, a_n e $x = y \cdot z$.

Assim, o único produto de dois elementos a e b de um grupóide é $a \cdot b$. Para três elementos a, b e c temos os dois produtos $a \cdot (b \cdot c)$ e $(a \cdot b) \cdot c$, que são, em geral, diferentes.

Por isso devemos, em geral, fazer atenção aos parênteses. No entanto, em semigrupos podemos omitir os parênteses:

Proposição 1.1.8. Sejam S um semigrupo e $a_1, \ldots, a_n \in S$. Então existe um único produto dos elementos a_1, \ldots, a_n .

Demonstração: Procedemos por indução. Para n=1 o resultado verifica-se por definição. Seja $n \geq 2$ tal que o resultado se verifica para qualquer $i \in \{1, \ldots, n-1\}$. Por hipótese de indução, existe um único produto dos elementos a_2, \ldots, a_n . Seja b este produto. Então $a_1 \cdot b$ é produto dos elementos a_1, \ldots, a_n . A fim de mostrar a unicidade deste produto consideramos um produto x dos elementos a_1, \ldots, a_n e mostramos que $x = a_1 \cdot b$. Sejam $i \in \{1, \ldots, n-1\}$ e $y, z \in S$ tais que y é um produto dos elementos a_1, \ldots, a_i , z é um produto dos elementos a_{i+1}, \ldots, a_n e $x = y \cdot z$. Se i = 1, então $y = a_1, z = b$ e $x = a_1 \cdot b$. Suponhamos que i > 1. Pela hipótese de indução existe um produto c dos elementos a_2, \ldots, a_i . Então $a_1 \cdot c$ é um produto dos elementos a_1, \ldots, a_i . Pela hipótese de indução, $y = a_1 \cdot c$. Como a operação \cdot de S é associativa, temos $x = y \cdot z = (a_1 \cdot c) \cdot z = a_1 \cdot (c \cdot z)$. Como $c \cdot z$ é um produto dos elementos a_2, \ldots, a_n , temos $c \cdot z = b$ e então $x = a_1 \cdot b$. \Box

Notação 1.1.9. Sejam S um semigrupo e $a_1, \ldots, a_n \in S$. O único produto dos elementos a_1, \ldots, a_n é denotado por $a_1 \cdots a_n$ ou por $\prod_{i=1}^n a_i$ no caso da escrita multiplicativa da operação e por $a_1 + \cdots + a_n$ ou por $\sum_{i=1}^n a_i$ no caso da escrita aditiva da operação.

Definição 1.1.10. Sejam S um semigrupo, $a \in S$ e $n \ge 1$ um inteiro. O único produto de n cópias de a é chamado potência de ordem n de a e é denotado por a^n . Se a operação de S for denotada por +, fala-se antes do múltiplo de ordem n de a e escreve-se $n \cdot a$ ou na em vez de a^n .

As seguintes regras de cálculo com potências seguem imediatamente de 1.1.8:

Proposição 1.1.11. Sejam S um semigrupo, $a \in S$ um elemento e $m, n \ge 1$ números inteiros. Então $(a^n)^m = a^{nm}$ e $a^{n+m} = a^n a^m$.

Definição 1.1.12. Seja X um grupóide. Um elemento neutro à esquerda de X é um elemento $e \in X$ tal que $e \cdot x = x$ para todo o $x \in X$. Um elemento neutro à direita de X é um elemento $e \in X$ tal que $x \cdot e = x$ para todo o $x \in X$. Um elemento de X que é ao mesmo tempo um elemento neutro à esquerda e à direita de X diz-se um elemento neutro de X.

Proposição 1.1.13. Sejam e um elemento neutro à esquerda e e' um elemento neutro à direita de um grupóide X. Então e = e'. Em particular, um grupóide admite, no máximo, um elemento neutro.

Demonstração: Como e' é um elemento neutro à direita, $e \cdot e' = e$. Como e é um elemento neutro à esquerda, $e \cdot e' = e'$. Logo e = e'.

Definição 1.1.14. Chama-se *monóide* a um semigrupo com elemento neutro.

Exemplos 1.1.15. (i) Os semigrupos \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a multiplicação como operação são monóides com elemento neutro 1.

- (ii) Os semigrupos \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a adição como operação são monóides com elemento neutro 0.
- (iii) O semigrupo $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$ é um monóide. A matriz identidade é o elemento neutro.
- (iv) O semigrupo $\mathcal{F}(X)$ das funções no conjunto X é um monóide. A função identica id_X é o elemento neutro.
- (v) O conjunto potência de um conjunto X é um monóide com a reunião ou a intersecção como multiplicação. O conjunto vazio é o elemento neutro para a reunião e X é o elemento neutro para a intersecção.
 - (vi) O semigrupo das matrizes reais $n \times n$ com determinante zero não é um monóide.
- (vii) O semigrupo das funções constantes num conjunto com mais do que um elemento não é um monóide. Neste semigrupo, todos os elementos são elementos neutros à direita.
- (viii) O grupóide $\mathbb N$ com a operação dada por $a\cdot b=|a-b|$ admite um elemento neutro, mas não é um monóide.
- **Notas 1.1.16.** (i) Sejam M um monóide com elemento neutro e e $n \ge 1$ um inteiro. Uma indução simples mostra que $e^n = e$.
- (ii) Na tabela de Cayley da multiplicação de um grupóide finito com elemento neutro costuma-se ordenar os elementos do grupóide de modo que o elemento neutro é o primeiro.

Notação 1.1.17. Se nada for especificado, o elemento neutro de um monóide será denotado por e. Na escrita multiplicativa da operação também é habitual usar o símbolo 1 para o elemento neutro. Na escrita aditiva também se usa o símbolo 0 para indicar o elemento neutro.

Elementos invertíveis

Definição 1.1.18. Seja X um grupóide com elemento neutro e. Um elemento $y \in X$ diz-se inverso à esquerda de um elemento $x \in X$ se yx = e. Um elemento $y \in X$ diz-se inverso à direita de um elemento $x \in X$ se xy = e. Um elemento $y \in X$ diz-se inverso de um elemento $x \in X$ se é ao mesmo tempo um inverso à esquerda e à direita de x. Um elemento $x \in X$ diz-se invertível (à esquerda, à direita) se admite um inverso (à esquerda, à direita).

Nota 1.1.19. Um elemento de um grupóide finito com elemento neutro é invertível à esquerda (direita) se e só se a coluna (linha) do elemento na tabela de Cayley da multiplicação contém o elemento neutro.

Proposição 1.1.20. Sejam M um monóide $e \ x \in M$. Sejam y um inverso à esquerda de x e z um inverso à direita de x. Então y = z.

Demonstração: Usando a associatividade, tem-se y = ye = y(xz) = (yx)z = ez = z.

Notação. Pela proposição anterior, um elemento invertível x de um monóide admite um único inverso. Se a operação do monóide é denotada por \cdot , escrevemos x^{-1} para indicar o inverso de x. Se a operação é denotada por +, escrevemos -x para indicar o inverso de x.

Observação 1.1.21. O elemento neutro de um monóide é sempre invertível e tem-se $e^{-1} = e$.

Exemplos 1.1.22. (i) Nos monóides \mathbb{Q} e \mathbb{R} com a multiplicação como operação, todos os elementos a menos do 0 são invertíveis. O inverso de um elemento x é o elemento $\frac{1}{x}$.

- (ii) Nos monóides \mathbb{N} e \mathbb{Z} com a multiplicação como operação, nenhum elemento a menos dos de módulo 1 admite um inverso à esquerda ou à direita.
- (iii) Nos monóides \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a adição como operação, todos os elementos são invertíveis.
- (iv) No monóide $\mathbb N$ com a adição como operação, nenhum elemento a menos do 0 admite um inverso à esquerda ou à direita.
- (v) No monóide $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$, os elementos invertíveis são as matrizes com determinante diferente de zero. Neste monóide, um elemento é invertível à esquerda se e só se é invertível à direita.
- (vi) No monóide $\mathcal{F}(X)$ das funções no conjunto X, os elementos invertíveis são as funções bijectivas. Os elementos invertíveis à esquerda são as funções injectivas e os elementos invertíveis à direita são as funções sobrejectivas.
- (vii) Num conjunto potência com a reunião ou a intersecção como multiplicação, o único elemento invertível à esquerda ou à direita é o elemento neutro.

Proposição 1.1.23. Sejam a e b elementos invertíveis de um monóide M. Então a^{-1} e ab são invertíveis e $(a^{-1})^{-1} = a$ e $(ab)^{-1} = b^{-1}a^{-1}$.

Demonstração: Tem-se $aa^{-1}=e$ e $a^{-1}a=e.$ Logo a^{-1} é invertível e $(a^{-1})^{-1}=a.$ Tem-se

$$(ab)(b^{-1}a^{-1}) = abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$$

е

$$(b^{-1}a^{-1})(ab) = b^{-1}a^{-1}ab = b^{-1}eb = b^{-1}b = e.$$

Logo ab é invertível e $(ab)^{-1} = b^{-1}a^{-1}$.

Corolário 1.1.24. Sejam a_1, \ldots, a_n elementos invertíveis de um monóide M. Então $a_1 \cdots a_n$ é invertível e $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_1^{-1}$.

Demonstração: Para n=1, o resultado é trivial. Para n=2, o resultado é a proposição 1.1.23. Seja $n\geq 3$ tal que o resultado se verifica para m< n. Então $a_1\cdots a_{n-1}$ é invertível e $(a_1\cdots a_{n-1})^{-1}=a_{n-1}^{-1}\cdots a_1^{-1}$. Logo $a_1\cdots a_n=(a_1\cdots a_{n-1})\cdot a_n$ é invertível e $(a_1\cdots a_n)^{-1}=((a_1\cdots a_{n-1})\cdot a_n)^{-1}=a_n^{-1}\cdot (a_{n-1}^{-1}\cdots a_1^{-1})=a_n^{-1}\cdots a_1^{-1}$.

Corolário 1.1.25. Sejam a um elemento invertível de um monóide M e $n \ge 1$ um inteiro. Então a^n é invertível e $(a^n)^{-1} = (a^{-1})^n$.

Notação 1.1.26. Seja a um elemento invertível de um monóide M. Se a operação de M é denotada por \cdot , pomos $a^0 = e$ e $a^{-n} = (a^n)^{-1}$ para todo o inteiro $n \ge 1$. Se a operação de M é denotada por +, pomos $0 \cdot a = e$ e $(-n) \cdot a = -(n \cdot a)$ para todo o inteiro $n \ge 1$. Em vez de $m \cdot a$ escrevemos também simplesmente ma $(m \in \mathbb{Z})$.

Observação 1.1.27. Seja a um elemento invertível de um monóide M. Então para todo o $n \in \mathbb{Z}$, $a^{-n} = (a^n)^{-1} = (a^{-1})^n$. Isto segue de 1.1.25 para n > 0 e é claro para n = 0. Para n < 0, tem-se -n > 0 e logo $a^{-n} = ((a^{-n})^{-1})^{-1} = (a^{-(-n)})^{-1} = (a^n)^{-1}$ e $a^{-n} = ((a^{-n})^{-1})^{-1} = (a^{-(-n)})^{-1} = ((a^{-1})^{-n})^{-1} = (a^{-1})^{-(-n)} = (a^{-1})^n$. Na escrita aditiva da operação temos (-n)a = -(na) = n(-a) para todo o $n \in \mathbb{Z}$.

Proposição 1.1.28. Sejam a um elemento invertível de um monóide M e $m, n \in \mathbb{Z}$. $Então (a^n)^m = a^{nm} e a^{n+m} = a^n a^m$.

Demonstração: Mostramos primeiramente que $(a^n)^m=a^{nm}$. Se $m,n\geq 1$, isto segue de 1.1.11. Se m=0 ou n=0, $(a^n)^m=e=a^{nm}$. Suponhamos que $m\geq 1$ e n<0. Seja k=-n. Então $k\geq 1$ e temos $(a^n)^m=(a^{-k})^m=((a^k)^{-1})^m=((a^k)^m)^{-1}=(a^{km})^{-1}=a^{-km}=a^{nm}$. Suponhamos que m<0 e $n\geq 1$. Seja l=-m. Então $l\geq 1$ e temos $(a^n)^m=(a^n)^{-l}=((a^n)^l)^{-1}=(a^{nl})^{-1}=a^{-nl}=a^{nm}$. Suponhamos finalmente que m,n<0. Sejam k=-n e l=-m. Então $k,l\geq 1$ e $(a^n)^m=(a^n)^{-l}=((a^n)^{-1})^l=(a^{-n})^l=(a^k)^l=a^{kl}=a^{nm}$.

Mostramos agora que $a^{n+m}=a^na^m$. Começamos com o caso m>0. Se $n\geq 1$, o resultado segue de 1.1.11. Se n=0, $a^{n+m}=a^m=ea^m=a^0a^m=a^na^m$. Se n<0 e n+m=0, então n=-m e $a^{n+m}=e=a^{-m}a^m=a^na^m$. Se n<0 e n+m>0, então $a^{-n}a^{n+m}=a^{-n+n+m}=a^m$, pelo que $a^{n+m}=a^na^{-n}a^{n+m}=a^na^m$. Se n<0 e n+m<0, então $a^{-n}a^{n+m}=a^{-n+n+m}=a^m$, pelo que $a^{n+m}=a^na^{-n}a^{n+m}=a^na^m$. Se n<0 e n+m<0, então $a^{n+m}(a^m)^{-1}=a^{-(-(n+m))}(a^m)^{-1}=(a^{-(n+m)})^{-1}(a^m)^{-1}=(a^ma^{-(n+m)})^{-1}=(a^ma^{-(n+m)})^{-1}=(a^{-n})^{-1}=a^n$, pelo que $a^{n+m}=a^{n+m}(a^m)^{-1}a^m=a^na^m$. No caso m=0 temos $a^{n+m}=a^n=a^ne=a^na^0=a^na^m$. Consideremos finalmente o caso m<0. Então -m>0. Segue-se que $a^{n+m}=a^{-(-n-m)}=(a^{-1})^{-n-m}=(a^{-1})^{-n}(a^{-1})^{-m}=a^na^m$.