北京交通大学 2024-2025 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 A 卷 出题教师:《智能计算数学基础》课程组

	班级:		_ 姓名:	学号:	上课教师:	
		注意: 1. i	式卷共 49 道题,满分 1	100 分。2. 题目排序与难度无	竞关。3. 判断题请回答"是"或"否"。	
1.	计算:	(-2, 3, -5, 7)	l_{∞} 范数。			
 2°	 计算 :	$\lim_{x \to 0} \frac{(e^x - e^{-x}) \cot x}{\sin x}$	<u>ss x</u> °			
 3°	 判断 :	$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} $ 是以	 汝 敛的。			
 4°	·············· 计算 :	$f(x,y) = x^2$	$y + 3xy^2 + e^{xy} \not\ni$	 关于 <i>x</i> 的偏导数。		
 5.	判断:	集合 S = {(x	$(x,y) \in \mathbb{R}^2 \mid x+x$	$2y>1$ } 是 \mathbb{R}^2 中的	 紧集。	
6°	判断:	$f(x,y) = x^2$	- 2y² 是 ℝ² 上的	的 Lipschitz 函数。		
7 。		, , , ,	$=3x^2+4xy+2$	$2y^2 - 12x - 8y$ 的极	小值点。	
8.					$z \geqslant 3$ 和 $x \geqslant 0$ 条件下的量	 表小值。
9.	计算:	$f(X) = \operatorname{tr}(X)$	$(T^{\top}AX)$ 关于 X	的梯度,其中 <i>X</i> 和	$\mid A$ 都是 n 阶方阵。	
10 为 ²		最小二乘法与		ax + b 对点 $(0,0), (1$, 2), (2, 3), (3, 5), (5, 7) 进行	
11	 。矩阵	$A = \begin{bmatrix} 2 & 0 & -4 \\ 2 & 2 & 2 \\ -1 & 1 & 0 \end{bmatrix}$?		

12。判断: $\operatorname{rank}(A^{T}A) < \operatorname{rank}(A)$,其中 A 是一个 $n \times m$ 的矩阵。
13。 方程组 $\begin{cases} x_1 + 5x_2 + 2x_3 = 1\\ 3x_1 + 12x_2 + 5x_3 = 17\\ 2x_1 + 4x_2 + 2x_3 = 8 \end{cases}$
是否有解?若有解,请问解空间的维数是多少?
14 。假设向量 u 和向量 v 的内积为 $u^{T}v$,则向量 u 在向量 v 上的投影向量是什么?
15 。已知方阵 $\begin{bmatrix} 17 & 1 & x \\ 6 & 4 & -12 \\ y & z & -14 \end{bmatrix}$ 的两个特征值为 1 和 2 ,计算该方阵的行列式。
16 。判断:对称方阵 $\begin{bmatrix} 1 & -2 & 3 \\ -2 & 5 & 2 \\ 3 & 2 & 10 \end{bmatrix}$ 是正定的。
17 。判断:已知 3 维向量 u 的 ℓ_{∞} 范数小于正实数 m ,则 u 的 ℓ_2 范数小于 $\sqrt{3}m$ 。
18。设方阵 $A = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$,计算 $\max_{x \neq 0} \frac{ Ax _2}{ x _2}$ 。
19。概率论中的PDF英文全称和中文翻译分别是什么?
20 。假设 x_1, x_2 都是取值在 $[0,2]$ 之间的均匀分布独立随机变量。现有 $y = x_1 + x_2$,那么 y 服从什么分布? y 的均值是多少?
21 。假设 u 和 v 都是相互独立的高斯随机变量,均值为 0 ,方差为 1 ,即 $u\sim N(0,1)$, $v\sim N(0,1)$ 现有 $z=3u+4v$,那么 z 服从什么分布? z 的方差是多少?
22 。假设 $u \sim N(0,1)$,变量 $x = 3u$, $y = 4u$,则 $z = x + y$ 服从什么分布? z 的方差是多少?

23 。为获取某常数 <i>A</i> ,	通过 1 次测量得到	刊数据 $x[1] = 2.36$,	已知数据 $x[1]$	和待估计常	数 A 的关系是
x[1] = A + w[1], 其中 似然准则得到 A 的估	·	方差为 2 的高斯白	日噪声,即 $w[1]$	$\sim N(1,2)$.	那么利用最大

24。判断:矩阵 $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ 可能是某均值为 0 的随机向量的协方差矩阵或相关矩阵。该随机向量由 2 个实随机变量构成。

.....

25。判断: 当先验等概时,最大后验概率(MAP)判决准则等价于最大似然(ML)判决准则。

26。判断: 假设 $x_1, x_2, ..., x_{100}$ 都是取值在[-1,1]之间的均匀分布独立随机变量。则 $z = x_1 + x_2 + \cdots + x_{100}$ 近似服从高斯分布。

27。有N个外观完全一样的小球,其中有1个小球重量与其余N-1个不同,要找到这个小球并判断 其轻重,如果仅允许用天平称两次,按照自信息量的定义和结论,N的最大取值是多少?

28。若一信源X输出四个符号a、b、c、d,则当a、b、c、d四个符号出现的概率满足什么条件时H(X)最大?

00 WINC WAY PAYING XI TAYAY AND TAYAY XX

29。判断: 当X与Y相互独立时, H(X) = H(Y/X)。

30。若 $\sum p_i = \sum q_i = 1$,有 $H(X) = -\sum p_i \log p_i \le -\sum p_i \log q_i$,该公式反映了信息熵的哪种性质?

91 烟蜓 对工任务协开人窗勘防扣亦是又和双之同的亚特互应自主进业先

31。判断:对于任意的两个离散随机变量X和Y之间的平均互信息表达式为: I(X;Y) = H(X) - H(X/Y)

32。判断:对于固定的信源 X 和信宿 Y ,平均互信息 I(X;Y) 具有凸状性,是信源概率分布 P(X) 的上凸函数。

33。如下的信息传输处理系统:

则有结论: $I(X;Y) \ge I(X;Z)$, 这反映了信息的什么原理?

34。判断: 如果把p(x)和q(x)定义在同一概率空间上的两种分布,则p相对于q的信息散度具有对称性,即 D(p//q) = D(q//p)。

35。判断: 博弈问题中,一个纳什均衡解也是一个帕雷托最优解。

36。判断:一个零和博弈中,各方不存在合作的可能。

37。判断:如下图1的博弈矩阵中,行为决策者1的纯策略而列为决策者2的纯策略,双方均追求更大收益。可判断策略组合(B,B)为一个纯策略纳什均衡解。

	A	В	C
A	7, 7	1, 10	-2, 3
В	10, 1	4, 4	1, 2
С	3, -2	2, 1	0, 0

图 1:

.....

38。判断: 完美信息扩展型博弈中每个纳什均衡解也都是子博弈精炼均衡解。

.....

39。判断:不完全信息博弈中的不确定性比不完美信息博弈中的不确定性要低。

40。判断:在重复博弈中,只要决策者具有足够耐心,那么在满足其个人理性约束的前提下,博弈

方之间就总有可能达成某种合作均衡。

41。判断:如下图2的博弈树中,上三角代表MAX节点而下三角代表MIN节点。应用minimax算法

后,判断MAX节点将采取中策略。

42。如下图2的博弈树中,上三角代表MAX节点而下三角代表MIN节点。应用 α - β 剪枝方法后,可忽略多少个终端节点?

43。判断:同一个问题Q,使用两种不同的编码形式 e_1 和 e_2 ,如果 e_1 和 e_2 是多项式相关的,那么 $e_1(Q) \in P \Rightarrow e_2(Q) \in P$ 。

44。判断: P问题, NP-complete问题和NP-hard问题都是NP问题的子集。

45。判断: 如果 L_1 可以多项式时间复杂度规约到 L_2 ,如果 L_1 是多项式时间复杂度可解的,则 L_2 也是多项式时间复杂度可解的。

46。判断: NP-complete问题是NP-hard问题的子集。

47。选择: 已知 $L \in NP$,且 L' 是 NP-complete, 下面哪儿个条件满足可以证明 L 是 NP-complete问题。

A: $L \leq_p L'$ 。 B: $L' \leq_p L$ 。 C: $\forall L'' \in NP \Rightarrow L \leq_p L''$ 。 D: A和C均正确。

48。请将 Steiner Tree 问题"已知无向连通图 $G(V ext{fi} E, W)$,V 是顶点的集合,E 是边的集合,W 是边的权重集合,和子集 $R \subseteq V$,求连接 R 中所有顶点且边权之和最小的生成树",转化为判定问题:

并进一步转化为语言描述:

49。选择:下面哪儿类问题有近似率为1的多项式算法。

A: P问题。 B: NP问题。 C: NP-complete问题。 D: NP-hard问题。

50。判断: TSP问题存在近似率为2的多项式算法。