Beam-background impact in the IDEA drift chamber

Niloufar Alipour Tehrani

FCC-ee physics & experiments:

Machine detector interface (review)

FCC Week 2018 Amsterdam, the Netherlands

10 April 2018

FCC Software: FCCSW

- ► Common software for all FCC experiments
 - ee, hh & eh
- Detector and physics studies
 - Fast & full simulations
 - One software stack from event generation to physics analysis
- ► Collaborative approach
 - ► LHC: Gaudi
 - ► CLIC: DD4hep
 - New solutions ⇒ where needed

2 FCCee detector concepts

- ► The CLD detector concept (c.f. CLD detector model overview, Oleksandr Viazlo)
 - ► An adaptation of the CLIC detector model
 ⇒ (Silicon-based vertex and tracking detectors)
 - Widely simulated with the ILCSoft
- ► The IDEA detector concept ⇒ focus of this talk
 - Simulated using FCCSW

IDEA: Ultimate Goal

- Vertex detector: MAPS
- Ultra-light drift chamber with PID
- Pre-shower counter
- Double read-out calorimetry
- 2 T solenoidal magnetic field
- Instrumented return yoke
- ► Surrounded by large tracking volume (R~8 m) for very weakly coupled (long-lived) particles

IDEA Drift Chamber (DCH)

- ► Track reconstruction & particle ID
- ► Layers divided into cells rotated with a certain stereo angle

Parameters

Length	4500 mm
Inner radius	345 mm
Outer radius	2000 mm
Nb. layers	112
Cell size	12 mm to 14.7 mm
Total nb. of sensitive wires	56448
Total nb. of field wires	282240
Total nb. of wires	338688
Gas	GasHe_90Isob_10
Wire material	Aluminum
Single cell resolution	0.1 mm

- ► Field wires: provide a uniform electric field
- Sensitive wires: record signal
- ▶ Field to sense wire ratio: 5:1

The interaction region as implemented in FCCSW

- ▶ Beam-pipe, beam instrumentations and the vertex detector are taken from the CLD concept
- ► The DCH implemented from scratch in FCCSW

Visualisation with FCCSW

CLD vs. IDEA interaction region

- ▶ Both detectors have comparable coverage
- ▶ Difference in the tracking regions:
 - Number of layers
 - Material budget (and type)
 - ► CLD tracker separated in the endcap and the barrel regions

FCCee (CLD)	FCCee (IDEA)
17 mm	17 mm
59 mm	59 mm
250 mm	250 mm
24 - 45 mm	24 - 45 mm
102 mm	102 mm
159-301 mm	159-301 mm
127 mm	345 mm
2100 mm	2000 mm
4720 mm	4500 mm
	17 mm 59 mm 250 mm 24 - 45 mm 102 mm 159-301 mm 127 mm 2100 mm

FCCSW simulation chain

- 1. Detector geometry description with DD4hep
 - Collaborative effort with CLIC, ILC and LHCb
 - ► The IR region and the VXD from CLD are as well implemented in DD4hep
 - Definition of the gas layers in the DCH
- 2. Segmentation of the sensitive areas:
 - ▶ Information on the position of the sense wires instead of placing physical volumes
 - Speed up the simulation
- 3. Geant4 simulation:
 - Calculate the E_{dep} for each ionisation action
 - Charge drift to the wires
- 4. Hit reconstruction:
 - Combination of individual hit calculations from (3)
 - Calculation of the signal in the wire

Segmentation of the DCH

- Information on the location of the sensitive wires
- Associates a unique wire ID (cellID) to the wires
- Different granularity for different layers in the DCH
- ► The segmentation information is created while building geometry
 - ⇒ Accessible in every step of the simulation

- First layer of the DCH
- Hits having the same wire ID are shown by the same color
- Validates the segmentation

Hit simulation and reconstruction of the DCH

Hit Simulation

- ► Geant4: Stepping in the gas with a G4Step length of 2 mm
- Reject ionisation acts with:
 - ightharpoonup E_{dep} < 10 eV
 - ▶ G4Step length $< 5\mu m$
- Drift the charge deposition to the nearest wire
 - Compute the distance of the closest approach
 - ► Calculate the drift time assuming a constant drift velocity of 2 cm/ μ s
 - ► Calculate the total time of the hit

$$t_{hit} = t_{drift} + t_{signal} + t_{particle flight} \tag{1}$$

Reconstruction

Hit: regroup the E_{dep} with a drift time smaller than the maximum drift time in the cell

Number of sensitive layers vs. θ

- ▶ Number of layers hit by 100 GeV μ −
 - $\theta = 0^{\circ}$: in the forward direction
 - $\theta = 90^{\circ}$: in the barrel
 - ightharpoonup Averaged over ϕ

VXD

DCH

Impact of the beam background

- ▶ The effect of incoherent e + e pairs on the interaction region (IR)
- ▶ Pairs generated using GuineaPig (c.f. Georgios Voutsinas)
- $E_{cm} = 365 \text{ GeV}$
- ▶ Total nb. of particles: \sim 6200

Momentum distribution

Pair particles in the detector

- Pair particles production in 1 BX
- ► The detector parts are highlighted
- In this example no track of pairs reaches the tracker

Impact of incoherent pairs in the VXD

▶ The number of hits is averaged over 30 BX

Vertex Barrel

Vertex Endcap

Comparisons with the ILCSoft in progress

-50

-100

▶ The level of this background does not pose problem for pattern recognition

100

z [mm]

50

Impact of incoherent pairs in the DCH: work in progress

- Only few tracks of the incoherent pairs are expected to enter the DCH
- Most of the hits come from the back scatterings
- ▶ On average \sim 2000 wires per BX are hit in the DCH (3.5% of occupancy).
- ► Acceptable level of occupancy for tracking: 5%

Impact of incoherent pairs in the DCH: occupancy per layer

- Occupancy as a function of the DCH layer for one BX
 - ▶ The occupancy vs. DCH layer remains in acceptable ranges
 - More investigations are needed

- ► Acceptance levels of occupancy:
 - ▶ 20% for inner-most layers
 - ▶ 5% for outer-most layers

Summary & Outlook

- ► Full simulation of the FCCee-IDEA detector concept with FCCSW
- ▶ Implementation of the drift chamber ⇒ geometry, segmentation, simulation & reconstruction
- Validations done and still ongoing
- ► First physics studies:
 - Impact of beam-induced backgrounds: e+e- incoherent pairs
 - ▶ Estimation of the occupancy in the VXD and DCH with FCCSW and comparison with ILCSoft
 - Small occupancy due to the incoherent pairs in the VXD
 - More investigation on the occupancy is needed for the DCH to draw final conclusions
- ► Future work:
 - Study of the effect of the synchrotron radiation
 - Optimisation of the geometry of the DCH
 - ► Track reconstruction in FCCSW

Thank you for your attention!

Backup slides

Segmentation Strategy for DCH (1)

- ► Compute the azimuth angle of the hit ϕ for (x_{hit}, y_{hit})
 - ▶ (like if the wires were parallel to the z-axis).

$$\phi = \arctan(y_{hit}/x_{hit}) \tag{2}$$

► The angle between the hit position and the wire detecting it is calculated:

$$\alpha = 2\arcsin(\frac{z_{hit}tan(\epsilon)}{2R})$$
 (3)

▶ Total hit azimuthal angle: $\phi + \alpha$

Impact of incoherent pairs in the DCH: work in progress

