Chapitre VI

<u>Équations Différentielles</u> et Primitives

I. NOTION D'ÉQUATION DIFFÉRENTIELLE

A. DÉFINITION

Une équation liant une fonction et ses dérivées est appelée équation différentielle. En général, on note y la fonction, y' sa dérivée, y'' sa dérivée seconde.

B. EXEMPLES

- y' = 2x est une équation différentielle définie sur \mathbb{R} dont *une* solution est $y = x^2$.
- y' = y est une équation différentielle définie sur \mathbb{R} dont une solution est exp.

1. REMARQUE

Ce ne sont pas les seules solutions!

C. REMARQUES

- (1) L'équation est dite de *premier ordre* ou *d'ordre 1* lorsque seule intervient la dérivée première d'une fonction (et éventuellement la fonction). Par exemple : y' = 3y 5.
- (2) Plutôt que d'écrire l'équation f'(x) = 3f(x) 5, on note f(x) à l'aide de la variable y, qui joue le rôle d'inconnue, ou plutôt de « fonction inconnue », car un point (x; y) appartient à la courbe représentative de f si et seulement si y = f(x).

y étant la variable utilisée pour les ordonnées et les images, il est cohérent de l'utiliser pour symboliser une fonction.

II. PRIMITIVES D'UNE FONCTION CONTINUE (SOLUTIONS DE y' = f(x))

A. DÉFINITION

Soit f une fonction continue sur un intervalle I. Une primitive de f sur I est une fonction F telle que :

B. EXEMPLE

$$F' = f$$

La fonction $F: x \mapsto \frac{1}{x}$ est une primitive de $f: x \mapsto \frac{-1}{x^2}$, sur \mathbb{R}^{+*} .

C. Théorème (Démontré dans le Chapitre sur l'Intégration)

Toute fonction continue sur un intervalle I admet une primitive sur I.

D. REMARQUE

Il arrive qu'on ne puisse pas exprimer cette primitive avec les fonctions classiques.

1. Exemple

$$f: x \mapsto e^{x^2}$$

E. THÉORÈME

Soit f une fonction continue sur un intervalle I et F est une primitive de f sur I.

Alors, f admet une infinité de primitives sur I^① et toute primitive G de f sur I est définie par $G(x) = F(x) + k^{②}$ où k est une constante réelle.

1. DÉMONSTRATION

- 1. Si F est une primitive de f, quel que soit le réel k, la fonction $G: x \mapsto F(x) + k$ est une primitive de f. En effet, G'(x) = F'(x) = f(x), donc, il y a une infinité de primitives.
- 2. Si F et G sont deux primitives d'une même fonction f, alors :

$$(F-G)'(x) = F'(x) - G'(x) = f(x) - f(x) = 0$$

La dérivée de F – G est nulle, donc F – G est une constante.

Donc,
$$\forall x \in I$$
, $F(x) - G(x) = k$

$$F(x) = G(x) + k$$

On a montré que deux primitives d'une même fonction sont différents d'une constante.

III. CALCUL DES PRIMITIVES

A. Primitives des Fonctions usuelles

Fonction $f: x \mapsto$	Primitive $F: x \mapsto$	Intervalle
k (constante)	kx	\mathbb{R}
$x^n \ (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1}$	\mathbb{R}
$\frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N})$	$-\frac{1}{n-1} \times \frac{1}{x^{n-1}}$ ou $\frac{x^{-n+1}}{-n+1}$	$]-\infty$; 0 [ou] 0; $+\infty$ [
$\frac{1}{x}$	ln(x)	\mathbb{R}^{+*}
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	\mathbb{R}^{+*}
e^x	e^x	\mathbb{R}
$\sin(x)$	$-\cos(x)$	\mathbb{R}
$\cos(x)$	$\sin(x)$	\mathbb{R}

FIGURE 6.1. – Tableau des Primitives des Fonctions Usuelles

B. Primitives de Fonctions Composées

Les primitives se déduisent des formules de dérivation. \boldsymbol{u} désigne une fonction continue sur I

Fonction f du type	Primitive F	Conditions
$u'u^n \ (n \in \mathbb{N})$	$\frac{1}{n+1} \times u^{n+1}$	_
$\frac{u'}{u^n} = u'u^{-n} \ (n \ge 2, n \in \mathbb{N})$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}}$ ou $\frac{u^{-n+1}}{-n+1}$	$\forall x \in I, \ u(x) \neq 0$
$\frac{u'}{u}$	ln(u)	$\forall x \in I, \ u(x) > 0$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	$\forall x \in I, \ u(x) > 0$
$u'\mathrm{e}^u$	e^u	_
$u'\sin(u)$	$-\cos(u)$	_
$u'\cos(u)$	$\sin(u)$	

FIGURE 6.2. – Tableau des Primitives de Fonctions Composées

C. Primitives et Opérations sur les Fonctions

1. Théorème

Si F et G sont des primitives respectivement des fonctions f et g et si k est une constante réelle, F + G est une primitive de f + g et kF est une primitive de kf.

2. Propriété

Si f est une fonction continue sur un intervalle tel que $ax + b \in I$, et F est une primitive de f, alors : $g: x \mapsto g(x) = f(ax + b)$ admet une primitive :

$$G(x) = \frac{1}{a}F(ax+b)$$

A. EXEMPLE

$$f(x) = (3x-2)^4$$
 $F(x) = \frac{1}{3} \times \frac{1}{5} (3x-2)^5$
= $\frac{1}{15} (3x-2)^5$

IV. ÉQUATION DIFFÉRENTIELLE y' - ay = 0

A. Théorème

Posons (E) : y' = ay

Soit $a \in \mathbb{R}$, les solutions sur \mathbb{R} de l'équation différentielle (E) sont les fonctions définies sur \mathbb{R} par $f(x) = \operatorname{Ce}^{ax}$, où C est une constante réelle :

$$y' - ay = 0$$
 $\mathscr{S} = \{x \mapsto Ce^{ax}, C \in \mathbb{R}\}$

1. DÉMONSTRATION

- Toute fonction $f: x \mapsto f(x) = Ce^{ax}$ vérifie $f'(x) = aCe^{ax} = a \times f(x)$. f est donc solution de (E).
- Montrons que toute solution de (E) est sous la forme $x \mapsto Ce^{ax}$ Soit g, une solution de (E). On a g' = ag, or $f : x \mapsto f(x) = e^{ax}$ est solution de (E).

f ne s'annulant pas, on peut définir $h: x \mapsto \frac{g(x)}{f(x)} = \frac{g(x)}{e^{ax}}$.

On peut écrire $h(x) = g(x)e^{-ax}$:

$$h'(x) = g'(x)e^{-ax} - ae^{-ax}g(x)$$

$$= e^{-ax}(g'(x) - ag(x)) \quad \text{or} \quad g'(x) = ag(x)$$

$$= e^{-ax} \times 0$$

$$= 0$$

Donc, h est une fonction constante, $\exists C$, $h(x) = C = \frac{g(x)}{e^{ax}}$.

$$g(x) = Ce^{ax}, C \in \mathbb{R} \square$$

B. EXEMPLE

Soit l'équation $y' + 5y = 0 \iff y' = -5y$.

Les solutions de l'équation sont les fonctions f définies par $f(x) = Ce^{-5x}$, $C \in \mathbb{R}$.

V. ÉQUATIONS DIFFÉRENTIELLES y' - ay = k(x), k ÉTANT CONTINUE

A. MÉTHODE

Supposons qu'on a deux fonctions f et g, solutions de l'équation (E) : y' - ay = k(x).

Alors la fonction h(x), définie par h(x) = g(x) - f(x) est solution de l'équation y' - ay = 0.

1. VÉRIFICATION

$$h'(x) - ah(x) = g'(x) - f'(x) - a(g(x) - f(x))$$

$$= g'(x) - ag(x) - (f'(x) - af(x))$$

$$= k(x) - k(x)$$

$$= 0$$

Ainsi, pour tout *x* (sur un ensemble de définition que l'on n'a pas étudié) :

$$h(x) = Ce^{ax}$$
, $C \in \mathbb{R}$ (d'après §IV)

Donc, si l'on trouve une solution particulière f de l'équation (E) toute solution s'écrit sous la forme :

$$g(x) = f(x) + Ce^{ax}, C \in \mathbb{R}$$

car $g(x) - f(x) = h(x) = Ce^{ax}$

B. EXEMPLE

Soit l'équation différentielle $y' + y = \frac{x-1}{x^2}$. (E)

- 1. Vérifier que la fonction inverse est solution de (E).
- 2. En déduire toutes les solutions de (E).
- 1. Soit $f_0: x \mapsto \frac{1}{x}$ alors $f_0' = \frac{-1}{x^2}$. $f_0' + f_0 = \frac{-1}{x^2} + \frac{1}{x} = \frac{x-1}{x^2}$, la fonction inverse est solution de (E) sur \mathbb{R}^{+*} .
- 2. D'après la démonstration précédente, toute solution f de (E) est de la forme $f: x \mapsto f_0(x) + \mathrm{Ce}^{ax}, \ \mathrm{C} \in \mathbb{R}.$

On résout y' + u = 0: ici a = -1.

Ainsi, les solutions sont :

$$\mathcal{S} = \left\{ x \mapsto \frac{1}{x} + Ce^{ax}, \ C \in \mathbb{R} \right\}$$

C. EXEMPLE

Soit l'équation y' - 2y = 5. (E)

- 1. Trouvons une fonction constante solution (E). La fonction $x \mapsto \frac{-5}{2}$ convient.
- 2. On résout y' 2y = 0:

$$\left\{ x \mapsto Ce^{2x}, C \in \mathbb{R} \right\}$$

Les solutions de (E) sont les fonctions du type:

$$\mathcal{S} = \left\{ x \mapsto \frac{-5}{2} + Ce^{2x}, C \in \mathbb{R} \right\}$$