UNIVERSALITY OF THE BRAID CATEGORY

RUBEN MUD

1. Introduction

Let $\{*\}$ be a singleton set, let G be a group, let F_* denote the free group on the point *. An element of F_* , is of the form $\prod_{i=1}^n *$, or $\prod_{i=1}^n *^{-1}$ or e_* (denoting the neutral element of F_*). Given a homomorphism $\varphi: F_* \longrightarrow M$, then $\varphi(\prod_{i=1}^n *) = \prod_{i=1}^n \varphi(*)$. So this homomorphism is uniquely determined by the image of the point * under φ . In other words, there is a bijection $\operatorname{Hom}_{\mathbf{Grp}}(F_*, G) \cong \operatorname{Hom}_{\mathbf{Set}}(*, G)$.

This means that F_* has the following universal property: For the inclusion map $\iota: \{*\} \longrightarrow F_*$ given by $\iota(*) = *$. We have that for every function $f: * \longrightarrow G$ there exists a unique group homomorphism $\overline{f}: F_* \longrightarrow G$ such that $\overline{f}\iota = f$. This property is indeed universal, for if H was a group with the same property, then we have uniquely induced group homomorphisms \overline{i} and $\overline{\iota}$ fitting in commutative diagrams:

Notice that the identity homomorphisms id_H and id_{F_*} would also make the outer triangles commute. By uniqueness of the induced homomorphisms, we must find that $\bar{\imath}\bar{\imath}=\mathrm{id}_{F_*}$ and $\bar{\imath}\bar{\imath}=\mathrm{id}_H$. Therefore there is a group isomorphism $H\cong F_*$.

The goal of the presentation accompanying this handout is to show that the braid category has a very similar universal property as the one described above. Namely that it is the free strict braided category generated by one object.

email: r.n.mud@student.rug.nl

- 2. Preliminaries
- 2.1. Definition. A category \mathfrak{C} consists of:
- * A collection of objects ob(C)
- * For each pair of objects $A, B \in ob(C)$ a set of morphisms $Hom_{\mathcal{C}}(A, B)$
- * For each object $A \in ob(C)$ an identity morphism $id_A \in Hom_{\mathcal{C}}(A, A)$.

Together with a composition law $\circ : \operatorname{Hom}_{\mathfrak{C}}(B,C) \times \operatorname{Hom}_{\mathfrak{C}}(A,B) \to \operatorname{Hom}_{\mathfrak{C}}(A,B)$, mapping a pair of morphisms (g, f) to their composite gf. Furthermore, composition is associative, h(qf) = (hq)f, and satisfies the unit axiom, $id_B f = f id_A = f$.

- 2.2. Example. There is a category of sets, is denoted **Set**. Its objects are sets, and its morphisms are functions.
- 2.3. Example. The one point discrete category is a category with one object *. Its morphism set is given by $Hom(*,*) = \{id_*\}.$
- groups, denoted **Grp**. The objects are groups, and the morphisms are group homomorphisms.
- k-linear mappings.
- 2.4. Example. There is a category of 2.6. Example. For two categories C and \mathcal{D} there is a product category $\mathcal{C} \times \mathcal{D}$, its objects are given by $ob(\mathcal{C} \times \mathcal{D}) = ob(\mathcal{C}) \times$ For two objects, (C_1, D_1) and (C_2, D_2) , the associated set of morphisms 2.5. Example. There is a category of k- is given by $\operatorname{Hom}_{\mathbb{C}\times\mathbb{D}}((C_1,D_1),(C_2,D_2)) =$ vector spaces denoted \mathbf{Vect}_k . The objects $\mathrm{Hom}_{\mathcal{C}}(C_1,C_2)\times\mathrm{Hom}_{\mathcal{D}}(D_1,D_2)$. Composiare k-vector spaces and the morphisms are tion is done component wise. Moreover, $id_{(C,D)} = (id_C, id_D).$
- 2.7. Example. A group G can be viewed as a category with one object * and morphism $\operatorname{set} \operatorname{Hom}(*,*) = G$
- 2.8. Definition. For two categories \mathcal{C} and \mathcal{D} , a functor $F:\mathcal{C}\longrightarrow\mathcal{D}$ consists of a function $F_0: ob(\mathfrak{C}) \longrightarrow ob(\mathfrak{D})$ that is compatible with the composition on \mathfrak{C} and \mathfrak{D} in the following sense. For each pair of objects $A, B \in ob(\mathcal{C})$, there is a function $F_{A,B}: \operatorname{Hom}_{\mathbb{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathbb{D}}(F_0A,F_0B)$ that satisfies $F_{A,C}(gf) = F_{B,C}(g)F_{A,B}(f)$ and $F_{A,A}(\mathrm{id}_A) = \mathrm{id}_{F_0A}$.
- 2.9. Example. There is a forgetful functor $U: \mathbf{Grp} \longrightarrow \mathbf{Set}$ that forgets about the group structure. A group G is mapped to its underlying set G. Group homomorphisms are mapped to their underlying functions.

- 2.10. EXAMPLE. There is a functor called the free functor $F_{(-)}: \mathbf{Set} \longrightarrow \mathbf{Grp}$ whose action on objects is to map a set S to the free group F_S consisting of all finite words in the alphabet S. The action on morphisms is as follows: given a function $f: S \to T$, we have a rule that assigns each letter of the alphabet S to a letter in the alphabet S. This induces a group homomorphism as follows, take a word $W = \prod_{i=1}^n s_{k_i} \in F_S$, then $F_f(\prod_{i=1}^n s_{k_i}) := \prod_{i=1}^n f(s_{k_i}) \in F_T$. Note that $F_f(e_S) := e_T$, (the empty product is mapped to the empty product). To see that F is a functor, we moreover need that it behaves well under composition. Suppose that we have functions $S \xrightarrow{f} T \xrightarrow{g} U$. Then $F_{gf}(s) = g(f(s)) = F_g(f(s)) = F_gF_f(s)$ for each letter $s \in S$. Moreover, $F_{id_S}(s) = s$ for all $s \in S$. Thus $F_{id_S} = id_{FS}$.
- 2.11. EXAMPLE. The tensor product $\otimes_k : \mathbf{Vect}_k \times \mathbf{Vect}_k \longrightarrow \mathbf{Vect}_k$ on k-vector spaces is a functor. In lecture 4 it was shown that for a pair of k-vector spaces (V, W), their tensor product $V \otimes_k W$ exists, so the action on objects is well defined. Moreover it was stated the tensor product maps tuples of k-linear functions (f, g) to a k-linear function $f \otimes_k g$. The statement that \otimes_k is a functor, amounts to saying that $(f_1 \otimes_k g_1)(f_2 \otimes_k g_2) = f_1 f_2 \otimes_k g_1 g_2$ and that $\mathrm{id}_V \otimes_k \mathrm{id}_W = \mathrm{id}_{V \otimes_k W}$.
- 2.12. Definition. A monoidal category $(\mathfrak{C}, \otimes, I, a, l, r)$ consists of:
- * a category C,
- * $a \ functor \otimes : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$,
- * an object I of \mathfrak{C} , called the tensor unit,
- * natural isomorphisms; $a_{XYZ}:(X\otimes Y)\otimes Z\longrightarrow X\otimes (Y\otimes Z)$, $l_X:I\otimes X\longrightarrow X$, $r_X:X\otimes I\longrightarrow X$

subject to two coherence axioms expressed by commutativity of the following diagrams:

$$((W \otimes X) \otimes Y) \otimes Z \xrightarrow{a} (W \otimes X) \otimes (Y \otimes Z) \xrightarrow{a} W \otimes (X \otimes (Y \otimes Z))$$

$$\downarrow^{1 \otimes a}$$

$$(W \otimes (X \otimes Y)) \otimes Z \xrightarrow{a} W \otimes ((X \otimes Y) \otimes Z)$$

$$(X \otimes I) \otimes Y \xrightarrow{a} X \otimes (I \otimes Y)$$

$$\downarrow^{1 \otimes a}$$

$$(X \otimes I) \otimes Y \xrightarrow{a} X \otimes (I \otimes Y)$$

A strict monoidal category is a monoidal category for which a, l, r are identity morphisms.

2.13. Example. The category \mathbf{Vect}_k is monoidal, but not strict monoidal. Its tensor unit is given by k.

4 RUBEN MUD

2.14. EXAMPLE. Given the one point discrete category *, we can concatenate finitely many copies of the discrete category to obtain a discrete category \mathbb{N} whose objects consist of all tuples of *. For example the n-tuple (*, *, ..., *) would be an object in this category. The only morphisms of \mathbb{N} defined as such, are the identity morphisms. Concatenation of tuples provides a strict monoidal functor $\otimes: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ sending the n-tuple and the m-tuple to the (n+m)-tuple. The tensor unit is the empty tuple (). We say that \mathbb{N} is freely generated by the one point discrete category.

 id_*

- 2.15. EXAMPLE. The power set $\mathcal{P}(S)$ of a set S can be seen as a strict monoidal category. The objects are the subsets of S, there is an arrow $S \longrightarrow T$ precisely whenever $S \subseteq T$. Intersection then provides the monoidal functor $\cap : \mathcal{P}(S) \times \mathcal{P}(S) \longrightarrow \mathcal{P}(S)$ for which S acts as the tensor unit.
- 2.16. DEFINITION. For two monoidal categories $(\mathfrak{C}, \otimes, I_{\mathfrak{C}}, a, l, r)$ and $(\mathfrak{D}, \otimes, I_{\mathfrak{D}}, a, l, r)$, a monoidal functor from \mathfrak{C} to \mathfrak{D} consists of a functor $F: \mathfrak{C} \longrightarrow \mathfrak{D}$ on the underlying categories, together with an isomorphisms $\varphi_0: I_{\mathfrak{D}} \longrightarrow F(I_{\mathfrak{C}})$ and natural isomorphisms $\varphi_{2,U,V}: F(U) \otimes F(V) \longrightarrow F(U \otimes V)$ such that the diagrams

$$(F(U) \otimes F(V)) \otimes F(W) \xrightarrow{a} F(U) \otimes (F(V) \otimes F(W))$$

$$\downarrow^{\operatorname{id} \otimes \varphi_{2}}$$

$$F(U \otimes V) \otimes F(W) \qquad F(U) \otimes F(V \otimes W)$$

$$\downarrow^{\varphi_{2}}$$

$$F((U \otimes V) \otimes W) \xrightarrow{F_{a}} F(U \otimes (V \otimes W)),$$

and

$$I \otimes F(U) \xrightarrow{l} F(U)$$

$$\varphi_0 \otimes \operatorname{id} \downarrow \qquad \qquad \uparrow^{F(l)}$$

$$F(I) \otimes F(U) \xrightarrow{\varphi_2} F(I \otimes U),$$

and

$$F(U) \otimes I \xrightarrow{r} F(U)$$

$$\downarrow_{\operatorname{id} \otimes \varphi_0} \qquad \qquad \uparrow_{F(r)}$$

$$F(U) \otimes F(I) \longrightarrow_{\varphi_2} F(U \otimes I),$$

commute for all objects $U, V, W \in ob(\mathfrak{C})$. The monoidal functor is said to be strict if the isomorphisms φ_0 and φ_2 are identities.

2.17. Example. Given a function $f: S \longrightarrow T$, the preimage $f^{-1}: \mathcal{P}(T) \longrightarrow \mathcal{P}(S)$ defined by $f^{-1}(U) = \{s \in S : f(s) \in U\}$, is a strict monoidal functor.

3. Braided Monoidal Categories

3.1. DEFINITION. For a strict monoidal category $(\mathfrak{C}, \otimes, I)$, a braiding c is a natural isomorphism $(c_{V,W}: V \otimes W \longrightarrow W \otimes V)_{V,W \in ob(\mathfrak{C})}$ that satisfies

$$c_{U,V\otimes W} = (\mathrm{id}_V \otimes c_{U,W})(c_{U,V} \otimes \mathrm{id}_W)$$
 and $c_{U\otimes V} = (c_{U,W} \otimes \mathrm{id}_V)(\mathrm{id}_U \otimes c_{V,W})$

A strict monoidal category equipped with a braiding is called a braided monoidal category.

- 3.2. Theorem. [Thm XIII.1.3, (1)] Any braiding on a monoidal category satisfies the Yang-Baxter Equation.
- 3.3. Definition. A monoidal functor from a braided monoidal category \mathbb{C} to a braided monoidal category \mathbb{D} is braided if, for any pair of objects $V, V' \in ob(\mathbb{C})$, the square

$$F(V) \otimes F(V') \xrightarrow{\varphi_2} F(V \otimes V')$$

$$\downarrow c \qquad \qquad \downarrow Fc$$

$$F(V') \otimes F(V) \xrightarrow{\varphi_2} F(V' \otimes V)$$

commutes.

4. The Braid Category

The braid category \mathcal{B} is the category whose objects are given by $ob(\mathbb{N}) = \{0, 1, 2, \ldots\}$, that is, the collection of n-tuples $(*, *, \ldots, *)$ described above. For any pair of objects $n, m \in ob(\mathcal{B})$ there is a morphism set

$$\operatorname{Hom}(n,m) = \begin{cases} \emptyset & \text{if } n \neq m \\ B_n & \text{if } n = m \end{cases}$$

Here B_n denotes the braid group on n strands. There is a functor $\otimes : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$ whose action on objects and morphisms is concatenation. In order to put a braiding on the braid category, we have to define isomorphisms $c_{n,m} : n \otimes m \longrightarrow m \otimes n$ for any objects $n, m \in \text{ob}(\mathcal{C})$. This is done as follows: $c_{0,n} = \text{id}_n = c_{n,0}$, and for n, m > 0 we set

$$c_{n,m} = (\sigma_m \sigma_{m-1} \cdots \sigma_1)(\sigma_{m+1} \sigma_m \cdots \sigma_2) \cdots (\sigma_{m+n-1} \sigma_{m+n-2} \cdots \sigma_n)$$

where $\sigma_1, \ldots, \sigma_{m+n-1}$ denote the generators of B_{m+n} , for example, σ_i is shown in figure 1. The braid $c_{n,m}$ is represented in figure 2.

4.1. THEOREM. [XIII.2.1 (1)] The family of isomorphisms $(c_{n,m}|n, m \in ob(\mathbb{N}))$ defines a braiding on the braid category \mathfrak{B} .

PROOF. Naturality is stated in theorem XIII.2.1 of (1). To show that c satisfies definition 3.1 we refer to figure 3 and 4.

Figure 1: The braid σ_i . taken from: (1)

Figure 2: The braid $c_{n,m}$. taken from: (1)

Figure 3: Proof c is a braiding. taken from:(1)

Figure 4: Proof c is a braiding. taken from:(1)

5. Universality of the Braid Category

We will need the following lemma:

5.1. LEMMA. [XIII.3.2 (1)] Let $(F, \varphi_0, \varphi_2) : \mathcal{C} \longrightarrow \mathcal{D}$ be a monoidal functor between monoidal categories. If σ is a Yang-Baxter Operator on the object V in \mathcal{C} , then

$$\sigma' = \varphi_{2,V,V}^{-1} F(\sigma) \varphi_{2,V,V}$$

is a Yang-Baxter operator on F(V) in \mathfrak{D} .

From this above lemma we deduce that:

5.2. THEOREM. if \mathbb{C} is a strict braided monoidal category and $X \in ob(\mathbb{C})$, then there exists a unique braided monoidal functor $F_X : \mathbb{B} \longrightarrow \mathbb{C}$ such that $F_X(*) = X$.

PROOF. Because F_X is is a strict monoidal functor we know that $F_X(\otimes_{i=1}^n *) = \otimes_{i=1}^n F(*)$ so that setting $F_X(*) = X$ completely determines the action of F_X on the objects of \mathcal{B} . By strictness of the functor F_X , we see that the above lemma reduces to $\sigma' = F_X(\sigma)$. This means that the image of Yang-Baxter operators under F_X is again a Yang-Baxter operator. There is only given one such operator on \mathcal{C} , namely the one induced by the braiding of \mathcal{C} . Asking that F_X is a strict braided monoidal functor is asking that it sends the braiding \mathcal{B} to the braiding on \mathcal{C} . There is only one choice for this.

To state explicitly why the above theorem defines a universal property, define the inclusion functor $\iota: * \longrightarrow \mathcal{B}$ to act on objects as $\iota(*) = (*) = 1 \in \text{ob}(\mathcal{B})$. If we are given a functor $G: * \longrightarrow \mathcal{C}$, we have determined an object $G(*) \in \text{ob}(\mathcal{C})$. Therefore there exists a unique strict braided monoidal functor $\widehat{G}: \mathcal{B} \longrightarrow \mathcal{C}$ such that $\widehat{G}(\iota(*)) = G(*)$. Thus $\widehat{G} \circ \iota = G$. This property of the braid category \mathcal{B} is universal in the sense that, if presented with another strict braided monoidal category \mathcal{B}' satisfying the same property, then we would find a pair of uniquely induced strict braided monoidal functors $\widehat{i}: \mathcal{B} \longrightarrow \mathcal{B}'$ and $\widehat{\iota}: \mathcal{B}' \longrightarrow \mathcal{B}$ that act as eachothers inverses.

References

C. Kassel, Quantum Groups. Springer-Verlag (first edition), 1995.

Mac Lane, Categories for the Working Mathematician, Springer Verlag (second edition), 1978.