Peyton D. Murray

+1 408 761 9078

<u>pdmurray.dev</u>

peynmurray@gmail.com

Education

University of California, Davis (2012 - 2018)

2018) St Mar

St Mary's College of California (2007 - 2011)

• B. S. Physics, Minor: Mathematics

Ph. D. Physics (Dec 2018)M. S. Physics (Dec 2013)

Computing

Python, C/C++, Go, Javascript, Rust. Python scientific/data vis stack (contributor to scipy, numpy, jupyter, conda, ...). Dashboarding with panel, bokeh, plotly. Web development with FastAPI, Django/Sqlalchemy ORMs, frontend experience with JS/TS, React. Testing with pytest, hypothesis. Git for version control.

Git for version control

Skills

Agile Development, Automated Testing, Simulations, Continuous Integration, Data Analysis, Statistics, Visualization, Linux, Python Data & Visualization Ecosystem (numpy, scipy, pandas, jupyterlab, matplotlib, ...) including coding at C/Python and Rust/Python interfaces; Bayesian parameter estimation, HPC (slurm), Distributed Computing, VTK.

Experience

Quansight · Arcata, CA Senior Software Engineer

May 2021 - Present

As part of Quansight's consulting branch, delivered custom-built solutions to meet a wide range of
customer needs. Much of this work consisted of open source contributions to upstream Python
packages in the scientific Python ecosystem - see my <u>GitHub profile</u> for examples of my work. In
addition to being technical lead for numerous projects, I also acted as a personnel manager for a
team of Quansight developers from around the globe.

Voltaiq · Berkeley, CA Software Engineer

Oct 2019 - May 2021

• Developed and deployed bespoke production-quality data analysis and visualization tools to provide quantitative insight into battery performance for some of the world's largest battery manufacturers using Django (with Django REST Framework), Plotly.js, and React.

Tampere University · Finland

Postdoctoral Scholar

Jan 2019 - Aug 2019

Simulated nanoscale magnetic materials on the <u>CSC's</u> Taito-GPU supercluster using a combination
of open source software and in-house code (Go, CUDA, and Python). Numerical calculations of
domain wall motion were compared to an analytic model <u>[Skaugen 2019]</u>.

UC Davis Department of Physics · Davis, CA Graduate Student Researcher Aug 2012 - Dec 2018

- Developed <u>PyFORC</u>, a Python-based suite of open source tools for analyzing and visualizing magnetic measurements using the First-Order Reversal-Curves (FORC) technique.
- Streamlined the Liu group's material analysis pipeline by developing <u>tarmac</u>, a Python library for quickly visualizing Markov-chain monte carlo (MCMC) samples. This library makes it simple to identify correlations between parameters in a statistical model and evaluate convergence during fitting.
- Fabricated and characterized a wide range of nanoscale magnetic materials, including
 nanoparticles, thin films, single crystals, and patterned nanostructures using a variety of cuttingedge techniques. Programmed data acquisition and instrument control software for crucial
 laboratory equipment.

Lawrence Berkeley National Laboratory · Berkeley, CA *Junior Specialist* May 2011 - May 2012

• Created control software (C++, with a Qt-based GUI) for automated circuit testing. Hardware tested with this system was deployed as part of the Insertable B-Layer system at the Large Hadron Collider in 2014, enabling continued studies of the Higgs boson.

St. Mary's College of California · Moraga, CA Research Assistant

Sep 2010 - May 2011

• Classified astronomical data from the Arecibo Observatory as part of the ALFALFA Collaboration.

Teaching

Teaching Assistant, Physics Department, University of California, Davis

Student Tutor and Live-In Mentor, Dept. of Physics, St Mary's College of California

2012 - 2016

2010 - 2011

Laboratory Skills

Fabrication

Sputtering, e-beam evaporation, and e-beam-/photo-lithography and lift-off.

Magnetic Characterization

Vibrating sample magnetometry (VSM), magneto-optic Kerr effect (MOKE), SQUID magnetometry, and magnetoresistance.

Other Techniques

X-ray diffraction (XRD), reciprocal space mapping (RSM), scanning electron microscopy (SEM), polarized neutron reflectometry (PNR), x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD), and electrical techniques including Hall effect and van der Pauw resistivity methods.

Publications

- 1. Murray, P. D. et al. <u>Electrically Enhanced Exchange Bias via Solid-State Magneto-ionics.</u> ACS Applied Materials & Interfaces 13 (32), 38916-38922 (2021).
- 2. Burks, E. C. et al. <u>3D Nanomagnetism in Low Density Interconnected Nanowire Networks.</u> Nano Letters 21, 716–722. issn: 1530-6984 (2021).
- 3. Gilbert, D. A. et al. <u>Reconstructing phase-resolved hysteresis loops from first-order reversal curves.</u> Scientific Reports 11, 4018. issn: 2045-2322 (2021).
- 4. Murray, P. D. et al. Interfacial-Redox-Induced Tuning of Superconductivity in YBa2 Cu3 O7 $-\delta$. ACS Applied Materials & Interfaces, 9b18820. issn: 1944-8244 (2020).
- 5. Karayev, S. et al. <u>Interlayer exchange coupling in Pt/Co/Ru and Pt/Co/Ir superlattices.</u> Physical Review Materials 3, 041401 (2019).
- 6. Rippy, G. et al. <u>X-ray nanodiffraction studies of ionically controlled nanoscale phase separation in cobaltites.</u> Physical Review Materials 3, 082001. issn: 2475-9953 (2019).
- 7. Skaugen, A. et al. <u>Analytical computation of the demagnetizing energy of thin film domain walls.</u> Phys. Rev. B 100, 094440 (2019).
- 8. Gilbert, D. A. et al. <u>Ionic tuning of cobaltites at the nanoscale</u>. Physical Review Materials 2, 104402 (2018).
- 9. Quintana, A. et al. <u>Voltage-Controlled ON-OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film.</u> ACS Nano 12, 10291–10300 (2018).
- 10. De Toro, J. A. et al. <u>Remanence plots as a probe of spin disorder in magnetic nanoparticles.</u> Chemistry of Materials 29, 8258–8268 (2017).
- 11. Sun, L. et al. <u>Magnetization reversal in kagome artificial spin ice studied by first-order reversal curves.</u> Physical Review B 96, 144409 (2017).
- 12. Zhang, Q. et al. <u>Magnetic fingerprint of interfacial coupling between CoFe and nanoscale ferroelectric domain walls.</u> Applied Physics Letters 109, 082906 (2016).
- 13. The ATLAS IBL Collaboration. <u>Prototype ATLAS IBL modules using the FE-I4A front-end readout chip.</u> Journal of Instrumentation 7, P11010–P11010 (2012).

Selected Conferences

- P. D. Murray. Invited colloquium: Tuning Ionic Distributions for Multifunctional Materials. Tampere University, Tampere, Finland (2019).
- P. D. Murray, D. A. Gilbert, A. J. Grutter, B. J. Kirby, D. Hernandez-Maldonado, M. Varela, Z. E. Brubaker, R. V. Chopdekar, V. Taufour, R. Zieve, J. R. Jeffries, E. Arenholz, Y. Takamura, J. Borchers, and K. Liu. Poster: Interfacial-Redox-Induced Tuning of Superconductivity in YBa2 Cu3 O7–δ.
 International Conference on Magnetism and Magnetic Materials, San Francisco, CA (2018).
- P. D. Murray, Z. Chen, D. A. Gilbert, J. Zang, T. Stückler, K. Lenz, B. B. Maranville J. Fassbender, H. Yu, J. Borchers, and K. Liu. Poster: Topological Hall Effect in Planar Artificial Skyrmion Lattices. Conference on Magnetism and Magnetic Materials, Pittsburgh, PA (2017).
- P. D. Murray, D. A. Gilbert, A. J. Grutter, A. L. Ionin, R. V. Chopdekar, A. T. N'Diaye, B. J. Kirby, B. B. Maranville, Y. Takamura, E. Arenholz, K. Liu, and J. Borchers. Talk: Complete Suppression of Magnetism in Gd/(La,Sr)CoO3 Films via Redox Design of Oxygen

Awards

3rd Place Winner, 2020 John D. Hunter Excellence in Plotting Contest. Entry (video), Source repository