Volume Estimation

Arjan Cornelissen¹, Simon Apers¹, Sander Gribling²

¹Université Paris Cité, CNRS, IRIF, Paris, France ²Tilburg University, Tilburg, the Netherlands

May 8th, 2024

1 Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.

- **1** Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.
- 2 Parameters:
 - $\mathbf{0}$ $d \in \mathbb{N}$ dimension.

A.J. Cornelissen (IRIF)

- **1** Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.
- Parameters:
 - $\mathbf{0}$ $d \in \mathbb{N}$ dimension.
 - \mathbf{Q} R > 1 outer radius.
- Goal:
 - Reconstruction: $\widetilde{K} \subseteq \mathbb{R}^d$ convex s.t. $\frac{\text{Vol}(\widetilde{K}\Delta K)}{\text{Vol}(K)} \le \varepsilon$.

A.J. Cornelissen (IRIF)

2/12

- **1** Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.
- Parameters:
 - $\mathbf{0}$ $d \in \mathbb{N}$ dimension.
 - \mathbf{Q} R > 1 outer radius.
- Goal:
 - Reconstruction: $\widetilde{K} \subseteq \mathbb{R}^d$ convex s.t. $\frac{\operatorname{Vol}(\widetilde{K}\Delta K)}{\operatorname{Vol}(K)} \le \varepsilon$.

A.J. Cornelissen (IRIF)

- **1** Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.
- Parameters:
 - $\mathbf{0}$ $d \in \mathbb{N}$ dimension.

 - $\varepsilon > 0$ precision.
- Goal:
 - $\bullet \ \ \textit{Reconstruction:} \ \widetilde{K} \subseteq \mathbb{R}^d \ \text{convex s.t.} \ \ \frac{\operatorname{Vol}(\widetilde{K}\Delta K)}{\operatorname{Vol}(K)} \le \varepsilon.$
- **Access model:** (membership oracle) $O : \mathbb{R}^d \to \{0,1\}, \ O(x) = [x \in K].$

2/12

A.J. Cornelissen (IRIF)

- **1** Input: $K \subseteq \mathbb{R}^d$ convex, $B(0,1) \subseteq K \subseteq B(0,R)$.
- Parameters:
 - $\mathbf{0}$ $d \in \mathbb{N}$ dimension.
 - \mathbf{Q} R > 1 outer radius.
 - $\varepsilon > 0$ precision.
- Goal:
 - $\bullet \ \ \textit{Reconstruction:} \ \widetilde{K} \subseteq \mathbb{R}^d \ \text{convex s.t.} \ \ \frac{\operatorname{Vol}(\widetilde{K}\Delta K)}{\operatorname{Vol}(K)} \le \varepsilon.$
 - **2** Volume estimation: $\widetilde{V} \geq 0$ s.t. $\frac{|\widetilde{V} \text{Vol}(K)|}{\text{Vol}(K)} \leq \varepsilon$.
- **4** Access model: (membership oracle) $O: \mathbb{R}^d \to \{0,1\}, O(x) = [x \in K].$
- Computational models:
 - Oeterministic
 - 2 Randomized (success prob. $\geq 2/3$)
 - **3** Quantum $(O: |x\rangle |0\rangle \mapsto |x\rangle |x \in K\rangle)$

May 8th. 2024

- **4** Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.
 - **o** $B(0,1) \subseteq T(K) \subseteq B(0,R')$.
 - $oldsymbol{0}{2}$ R' is as small as possible.

A.J. Cornelissen (IRIF)

- **1** Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.
 - **o** $B(0,1) \subseteq T(K) \subseteq B(0,R')$.
 - $\mathbf{Q} \quad R'$ is as small as possible.

- **1** Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.
 - **o** $B(0,1) \subseteq T(K) \subseteq B(0,R')$.
 - \circ R' is as small as possible.

$$\Rightarrow \operatorname{Vol}(T(K)) = \det(T)\operatorname{Vol}(K).$$

3/12

1 Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.

- $\bullet B(0,1) \subseteq T(K) \subseteq B(0,R').$
- \circ R' is as small as possible.
- $\Rightarrow Vol(T(K)) = det(T) Vol(K).$
- **2** Lower bound: $R' = \Omega(\sqrt{d})$.
 - Hard example: hypercube

3/12

1 Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.

•
$$B(0,1) \subseteq T(K) \subseteq B(0,R')$$
.

 \circ R' is as small as possible.

$$\Rightarrow Vol(T(K)) = det(T) Vol(K).$$

- **2** Lower bound: $R' = \Omega(\sqrt{d})$.
 - Hard example: hypercube
- Previous works:

Source	Model	Queries	R'
[GLS88]	Deterministic	$\widetilde{O}(\operatorname{poly}(d))$	$O(d^3)$

3/12

- Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.
 - **o** $B(0,1) \subseteq T(K) \subseteq B(0,R')$.
 - \circ R' is as small as possible.
 - $\Rightarrow \operatorname{Vol}(T(K)) = \det(T)\operatorname{Vol}(K).$
- **2** Lower bound: $R' = \Omega(\sqrt{d})$.
 - Hard example: hypercube
- Previous works:

Source	Model	Queries	R'
[GLS88]	Deterministic	$\widetilde{O}(poly(d))$	$O(d^3)$
[LV06,JLLV21]	Randomized*	$\widetilde{O}(d^3)$	$\widetilde{O}(\sqrt{d})$

A.J. Cornelissen (IRIF)

^{*} $[Vol(T(K) \cap B(0, R')) \ge (1 - \varepsilon) Vol(T(K))]$

- **1** Goal: Find matrix $T: \mathbb{R}^d \to \mathbb{R}^d$ s.t.
 - **●** $B(0,1) \subseteq T(K) \subseteq B(0,R')$.
 - \circ R' is as small as possible.
 - $\Rightarrow Vol(T(K)) = det(T) Vol(K).$
- **2** Lower bound: $R' = \Omega(\sqrt{d})$.
 - Hard example: hypercube
- Previous works:

Source	Model	Queries	R'
[GLS88]	Deterministic	$\widetilde{O}(poly(d))$	$O(d^3)$
[LV06,JLLV21]	Randomized*	$\widetilde{O}(d^3)$	$\widetilde{O}(\sqrt{d})$
??	Quantum	??	??

* $[Vol(T(K) \cap B(0, R')) \ge (1 - \varepsilon) Vol(T(K))]$

A.J. Cornelissen (IRIF)

• Well-rounded case: $R' = \widetilde{O}(\sqrt{d})$.

4/12

- Well-rounded case: $R' = \widetilde{O}(\sqrt{d})$.
- 2 Previous works:

```
• [DF91]: Randomized -\widetilde{O}(\operatorname{poly}(d,1/\varepsilon))
:
```

- ② [CV18]: Randomized $\widetilde{O}(d^3/\varepsilon^2)$
- **3** [CCH+23]: Quantum $\widetilde{O}(d^{2.5}/\varepsilon)$
- **1** [CH23]: Quantum $\widetilde{O}(d^{2.25}/\varepsilon)$
- **6** [RM06]: Randomized $\widetilde{\Omega}(d^2)$

A.J. Cornelissen (IRIF)

- Well-rounded case: $R' = \widetilde{O}(\sqrt{d})$.
- Previous works:
 - [DF91]: Randomized $\widetilde{O}(\operatorname{poly}(d,1/\varepsilon))$:
 - ② [CV18]: Randomized $\widetilde{O}(d^3/\varepsilon^2)$
 - **3** [CCH+23]: Quantum $\widetilde{O}(d^{2.5}/\varepsilon)$
 - **1** [CH23]: Quantum $\widetilde{O}(d^{2.25}/\varepsilon)$
 - **§** [RM06]: Randomized $-\widetilde{\Omega}(d^2)$

4/12

- Well-rounded case: $R' = \widetilde{O}(\sqrt{d})$.
- Previous works:
 - [DF91]: Randomized $\widetilde{O}(\operatorname{poly}(d,1/\varepsilon))$:
 - ② [CV18]: Randomized $\widetilde{O}(d^3/\varepsilon^2)$
 - **3** [CCH+23]: Quantum $\widetilde{O}(d^{2.5}/\varepsilon)$
 - **1** [CH23]: Quantum $\widetilde{O}(d^{2.25}/\varepsilon)$
 - **6** [RM06]: Randomized $\widetilde{\Omega}(d^2)$
- **1** Our focus: d fixed, $\varepsilon \downarrow 0$.

A.J. Cornelissen (IRIF)

- Well-rounded case: $R' = \widetilde{O}(\sqrt{d})$.
- Previous works:
 - [DF91]: Randomized $\widetilde{O}(\operatorname{poly}(d,1/\varepsilon))$:
 - **2** [CV18]: Randomized $\widetilde{O}(d^3/\varepsilon^2)$
 - **3** [CCH+23]: Quantum $\widetilde{O}(d^{2.5}/\varepsilon)$
 - (a) [CH23]: Quantum $\widetilde{O}(d^{2.25}/\varepsilon)$
 - **6** [RM06]: Randomized $-\widetilde{\Omega}(d^2)$
- **3** *Our focus:* d fixed, $\varepsilon \downarrow 0$.
- State of the art:
 - Randomized: $O(1/\varepsilon^2)$.
 - **Q** Quantum: $O(1/\varepsilon)$.
 - **3** No lower bounds better than $\Omega(1)$.

A.J. Cornelissen (IRIF)

1 Regime: d fixed, $\varepsilon \downarrow 0$.

- **1** *Regime:* d fixed, $\varepsilon \downarrow 0$.
 - Deterministic rounding:
 - $R' = O(d^3) = O(1)$.
 - O(poly(d)) = O(1) queries.

A.J. Cornelissen (IRIF)

Volume estimation

May 8th, 2024

- **1** *Regime:* d fixed, $\varepsilon \downarrow 0$.
 - Deterministic rounding:

•
$$R' = O(d^3) = O(1)$$
.

- O(poly(d)) = O(1) queries.

- **1** *Regime:* d fixed, $\varepsilon \downarrow 0$.
 - Deterministic rounding:
 - $R' = O(d^3) = O(1)$.
 - O(poly(d)) = O(1) queries.
- 2 Results:

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

A.J. Cornelissen (IRIF)

- **1** *Regime:* d fixed, $\varepsilon \downarrow 0$.
 - Deterministic rounding:

•
$$R' = O(d^3) = O(1)$$
.

•
$$O(\text{poly}(d)) = O(1)$$
 queries.

- Results:

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

A.J. Cornelissen (IRIF)

Volume estimation

May 8th, 2024

- **1** *Regime:* d fixed, $\varepsilon \downarrow 0$.
 - Deterministic rounding:

•
$$R' = O(d^3) = O(1)$$
.

•
$$O(\text{poly}(d)) = O(1)$$
 queries.

- Results:

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

3 Behavior of the exponent:

•
$$\frac{d-1}{2} \to \infty$$
.

•
$$\frac{2(d-1)}{d+3} = 2 - O(\frac{1}{d}) \to 2$$
.

•
$$\frac{d-1}{d+1} = 1 - O(\frac{1}{d}) \to 1$$
.

May 8th, 2024

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus K) \le \delta$.

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus K) \le \delta$.
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - Quantum: use amplitude estimation.

A.J. Cornelissen (IRIF)

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$. (Cost C_{δ})
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - 2 Quantum: use amplitude estimation.
- **2** Analysis: (for any $\delta > 0$)
 - **1** Deterministic: C_{δ} .

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$. (Cost C_{δ})
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - Quantum: use amplitude estimation.
- **2** Analysis: (for any $\delta > 0$)
 - **1** Deterministic: C_{δ} .
 - **2** Randomized: $O(C_{\delta} + (\frac{\delta}{\varepsilon})^2)$.

A.J. Cornelissen (IRIF)

Techniques I – Algorithm overview

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$. (Cost C_{δ})
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - 2 Quantum: use amplitude estimation.
- **2** Analysis: (for any $\delta > 0$)
 - **1** Deterministic: C_{δ} .
 - **2** Randomized: $O(C_{\delta} + (\frac{\delta}{\varepsilon})^2)$.
 - **3** Quantum: $O(C_{\delta} + \frac{\delta}{\varepsilon})$.

Techniques I – Algorithm overview

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$. (Cost C_{δ})
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - 2 Quantum: use amplitude estimation.
- **2** Analysis: (for any $\delta > 0$)
 - **1** Deterministic: C_{δ} .
 - **2** Randomized: $O(C_{\delta} + (\frac{\delta}{\varepsilon})^2)$.
 - **3** Quantum: $O(C_{\delta} + \frac{\delta}{\varepsilon})$.
- **3** Claim: $C_{\delta} = \widetilde{O}(\delta^{-\frac{d-1}{2}})$. (next slide)

Techniques I – Algorithm overview

- Procedure:
 - Reconstruct *K* deterministically:
 - Find $\underline{K} \subseteq K \subseteq \overline{K}$, s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$. (Cost C_{δ})
 - Refine the estimate:
 - **1** Randomized: sample from $\overline{K} \setminus \underline{K}$.
 - Quantum: use amplitude estimation.
- **2** Analysis: (for any $\delta > 0$)
 - **1** Deterministic: C_{δ} .
 - **2** Randomized: $O(C_{\delta} + (\frac{\delta}{\varepsilon})^2)$.
 - **3** Quantum: $O(C_{\delta} + \frac{\delta}{\varepsilon})$.
- **3** Claim: $C_{\delta} = \widetilde{O}(\delta^{-\frac{d-1}{2}})$. (next slide)
- **4** Balance: Optimize δ .
 - \Rightarrow All complexities follow.

7/12

Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.

Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.

Failed attempt 1:

- **1** Take v_1, \ldots, v_n an η -net on $\partial B(0,1)$.
- ② Find the boundary points $r_j v_j \in \partial K$ with binary search.
- 4 Hard to bound volume difference.

May 8th. 2024

Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.

Failed attempt I:

- Take v_1, \ldots, v_n an η -net on $\partial B(0,1)$.
- ② Find the boundary points $r_j v_j \in \partial K$ with binary search.
- 4 Hard to bound volume difference.

Failed attempt II:

- Take v_1, \ldots, v_n an η -net on $\partial B(0,1)$.
- ② Optimize over $x \mapsto v_i^T x$ over K.
- \odot \overline{K} is the intersection of the halfspaces.
- 4 Hard to bound volume difference.

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024 7/12

Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.

Failed attempt I:

- Take v_1, \ldots, v_n an η -net on $\partial B(0,1)$.
- ② Find the boundary points $r_j v_j \in \partial K$ with binary search.
- 4 Hard to bound volume difference.

Failed attempt II:

- Take v_1, \ldots, v_n an η -net on $\partial B(0,1)$.
- ② Optimize over $x \mapsto v_j^T x$ over K.
- \odot \overline{K} is the intersection of the halfspaces.
- Hard to bound volume difference.

Successful attempt: "average" of the two.

① Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.

- Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.

A.J. Cornelissen (IRIF)

- Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.

8 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

- **①** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.
 - **3** Let \underline{K} and \overline{K} be as before.

8 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

- **1** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.
- Procedure sketch:
 - **1** Take an η -net on $\partial B(0, R+1)$.
 - 2 Project every point onto K.
 - \bullet Let K and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\begin{array}{ll}
 \bullet & \underline{K} \subseteq \underline{K} + B(0, O(\eta^2)) \\
 \bullet & \overline{K} \subseteq K + B(0, O(\eta^2)).
 \end{array}$

Volume estimation May 8th. 2024 8 / 12 A.J. Cornelissen (IRIF)

- **1** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.
 - **3** Let \underline{K} and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\bullet K \subseteq \underline{K} + B(0, O(\eta^2))$
- Analysis sketch:

8 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

- **1** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.
- Procedure sketch:
 - **1** Take an η -net on $\partial B(0, R+1)$.
 - 2 Project every point onto K.
 - \bullet Let K and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\bullet K \subseteq \underline{K} + B(0, O(\eta^2))$
 - $\underline{K} \subseteq K + B(0, O(n^2)).$
- Analysis sketch:

 - Vol $(\overline{K} \setminus \underline{K}) = O(\eta^2) =: \delta$. $O(\eta^{-(d-1)})$ points in the η -net.

8 / 12

Volume estimation May 8th. 2024 A.J. Cornelissen (IRIF)

- **1** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.(convex minimization problem)
 - **3** Let \underline{K} and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\bullet K \subseteq \underline{K} + B(0, O(\eta^2))$
- Analysis sketch:

 - 2 $O(\eta^{-(d-1)})$ points in the η -net.
 - $\widetilde{O}(\text{poly}(d)) = \widetilde{O}(1)$ queries per point [GLS88].

8 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

- **1** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \le \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.(convex minimization problem)
 - **3** Let \underline{K} and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\bullet K \subseteq \underline{K} + B(0, O(\eta^2))$
- Analysis sketch:

 - **2** $O(\eta^{-(d-1)})$ points in the η -net.
 - $\widetilde{O}(\text{poly}(d)) = \widetilde{O}(1)$ queries per point [GLS88].

$$\Rightarrow C_{\delta} = \widetilde{O}(\delta^{-\frac{d-1}{2}}).$$

A.J. Cornelissen (IRIF)

- **4** Goal: Find $\underline{K} \subseteq K \subseteq \overline{K}$ s.t. $Vol(\overline{K} \setminus \underline{K}) \leq \delta$.
- Procedure sketch:
 - Take an η -net on $\partial B(0, R+1)$.
 - Project every point onto K.
 (convex minimization problem)
 - **3** Let \underline{K} and \overline{K} be as before.
- Approximation claims: (next slide)
 - $\bullet K \subseteq \underline{K} + B(0, O(\eta^2))$
- 4 Analysis sketch:
 - Vol $(\overline{K} \setminus \underline{K}) = O(\eta^2) =: \delta$.
 - **2** $O(\eta^{-(d-1)})$ points in the η -net.
 - $\widetilde{O}(\operatorname{poly}(d)) = \widetilde{O}(1)$ queries per point [GLS88].

$$\Rightarrow C_{\delta} = \widetilde{O}(\delta^{-\frac{d-1}{2}}).$$

Remark: Approximation errors.

• Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:

9/12

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - **2** Let x' be the projection of x onto K.

9/12

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - Find Y from the η -net s.t. $||Y X|| \le \eta$.

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - **2** Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - Find Y from the η -net s.t. $||Y X|| \le \eta$.
 - **5** Let y' be the projection of Y onto K.
 - **6** Let $\Delta x = X x'$, $\Delta y = Y y'$.

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \text{Let } \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

May 8th. 2024

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - **2** Let x' be the projection of x onto K.
 - Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \mathsf{Let} \ \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- **2** Construction:
 - Let $x \in \overline{K} \setminus K$.
 - **2** Let x' be the projection of x onto K.
 - Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \mathsf{Let} \ \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \text{Let } \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

A.J. Cornelissen (IRIF)

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - **9** Find *Y* from the η-net s.t. $||Y X|| \le η$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \mathsf{Let} \ \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - Find Y from the η -net s.t. $||Y X|| \le \eta$.
 - **5** Let y' be the projection of Y onto K.
 - $\bullet \quad \text{Let } \Delta x = X x', \ \Delta y = Y y'.$
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

 - $\Rightarrow \ell = \|x' y'\| \cdot \frac{\sin(\alpha)}{\sin(\varphi)} = O(\eta).$
 - $\Rightarrow h = \ell \tan(\varphi) = O(\eta^2). \square$

- Goal: $\overline{K} \subseteq K + B(0, O(\eta^2))$.
- 2 Construction:
 - Let $x \in \overline{K} \setminus K$.
 - 2 Let x' be the projection of x onto K.
 - **3** Let X be the corresponding point on $\partial B(0, R+1)$.
 - Find Y from the η -net s.t. $||Y X|| \le \eta$.
 - **3** Let y' be the projection of Y onto K.
 - **6** Let $\Delta x = X x'$, $\Delta y = Y y'$.
- Observations:
 - **1** $\|\Delta x \Delta y\| \le 2\eta, \|\Delta x\| \ge 1, \|\Delta y\| \ge 1.$

 - $\bullet \Rightarrow \ell = \|x' y'\| \cdot \frac{\sin(\alpha)}{\sin(\varphi)} = O(\eta)$. [Attempt I]

Techniques V – Lower bounds

May 8th, 2024

Techniques V – Lower bounds

• Bit string embedding:

May 8th, 2024

- Bit string embedding:
 - Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.

A.J. Cornelissen (IRIF)

Bit string embedding:

- Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.
- ② Let B_j be the spherical cap around v_j . $\Rightarrow \text{Vol}(B_i) = \Theta(\eta^{d+1})$.

A.J. Cornelissen (IRIF)

Volume estimation

Bit string embedding:

- Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.
- ② Let B_j be the spherical cap around v_j . $\Rightarrow Vol(B_i) = \Theta(\eta^{d+1})$.
- **3** For $x \in \{0,1\}^n$, let $K_x = B_0 \cup \bigcup_{\substack{j=1 \ x_j=1}}^n B_j$. ⇒ Vol(K_x) = Vol(B_0) + |x| Vol(B_i).

A.J. Cornelissen (IRIF)

Volume estimation

- Bit string embedding:
 - Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.
 - 2 Let B_j be the spherical cap around v_j . $\Rightarrow \text{Vol}(B_i) = \Theta(\eta^{d+1})$.
 - For $x \in \{0,1\}^n$, let $K_x = B_0 \cup \bigcup_{\substack{j=1 \ x_j=1}}^n B_j$. ⇒ $Vol(K_x) = Vol(B_0) + |x| Vol(B_j)$.
- **2** Query complexities: $(k \in [1, n/4])$

	Recovery	Approx. counting	
Model	$ x \oplus \tilde{x} \leq k$	$ x - \tilde{w} \le k$	
Deterministic	$\Theta(n)$	$\Theta(n)$	
Randomized	$\Theta(n)$	$\Theta(\min(n,(n/k)^2))$	
Quantum	$\Theta(n)$	$\Theta(n/k)$	

10 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

- Bit string embedding:
 - Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.
 - 2 Let B_j be the spherical cap around v_j . $\Rightarrow \text{Vol}(B_i) = \Theta(\eta^{d+1})$.
 - For $x \in \{0,1\}^n$, let $K_x = B_0 \cup \bigcup_{\substack{j=1 \ x_j=1}}^n B_j$. ⇒ Vol (K_x) = Vol (B_0) + |x| Vol (B_i) .
- **Query complexities:** $(k \in [1, n/4])$

	Recovery	Approx. counting	
Model	$ x \oplus \tilde{x} \leq k$	$ x - \tilde{w} \le k$	
Deterministic	$\Theta(n)$	$\Theta(n)$	
Randomized	$\Theta(n)$	$\Theta(\min(n,(n/k)^2))$	
Quantum	$\Theta(n)$	$\Theta(n/k)$	

1 Plug in: $n = \Theta(\eta^{-(d-1)})$ and $k = \Theta(\varepsilon \eta^{-(d+1)})$.

A.J. Cornelissen (IRIF)

Volume estimation

- Bit string embedding:
 - Let v_1, \ldots, v_n be an η -net in $\partial B(0, R)$. $\Rightarrow n = \Theta(\eta^{-(d-1)})$.
 - 2 Let B_j be the spherical cap around v_j . $\Rightarrow \text{Vol}(B_i) = \Theta(\eta^{d+1})$.
- **Query complexities:** $(k \in [1, n/4])$

•)	(- [/ /]/		
	Recovery	Approx. counting	
Model	$ x \oplus \tilde{x} \leq k$	$ x - \tilde{w} \le k$	
Deterministic	$\Theta(n)$	$\Theta(n)$	
Randomized	$\Theta(n)$	$\Theta(\min(n,(n/k)^2))$	
Quantum	$\Theta(n)$	$\Theta(n/k)$	

- **3** Plug in: $n = \Theta(\eta^{-(d-1)})$ and $k = \Theta(\varepsilon \eta^{-(d+1)})$.
- **1** Balance: Optimize $\eta \Rightarrow$ All bounds follow.

May 8th, 2024

1 Our results: $(d \text{ fixed}, \varepsilon \downarrow 0)$

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

11 / 12

A.J. Cornelissen (IRIF)

1 Our results: $(d \text{ fixed}, \varepsilon \downarrow 0)$

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

Volume estimation:

A.J. Cornelissen (IRIF)

1 Our results: $(d \text{ fixed}, \varepsilon \downarrow 0)$

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

- Pollow-up questions:
 - Limits in other directions.

Volume estimation:

11 / 12

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024

1 Our results: $(d \text{ fixed}, \varepsilon \downarrow 0)$

Model	Reconstruction	Volume est.
Deterministic	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$
Randomized	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{2(d-1)}{d+3}})$
Quantum	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{2}})$	$\widetilde{\Theta}(arepsilon^{-rac{d-1}{d+1}})$

- Pollow-up questions:
 - Limits in other directions.
 - Quantum rounding.

Volume estimation:

A.J. Cornelissen (IRIF) Volume estimation May 8th, 2024 11/12

Thanks for your attention! cornelissen@irif.fr

References

- [CCH+23] S. Chakrabarti, A. Childs, S. Hung, T. Li, C. Wang, and X. Wu. Quantum algorithm for estimating volumes of convex bodies. 2023
 - [CH23] A. Cornelissen and Y. Hamoudi. A Sublinear-Time Quantum Algorithm for Approximating Partition Functions. 2023
 - [CV18] B. Cousins and S. Vempala. Gaussian cooling and $O^*(n^3)$ algorithms for volume and gaussian volume. 2018
 - [DF91] M. Dyer and A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps. 1991
 - [Dud74] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries. 1974
 - [GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization. 1988
 - [JLLV21] H. Jia, A. Laddha, Y. Lee, and S. Vempala. Reducing isotropy and volume to kls: an $O^*(n^3\psi^2)$ volume algorithm. 2021