Теория групп. Лекция 1

Штепин Вадим Владимирович

5 сентября 2019 г.

<u>Опр.</u> **Группа** — множество G с определённой на нём операцией *, удовлетворяющей условиям:

- 1. Ассоциативность: (a * b) * c = a * (b * c)
- 2. Существование нейтрального элемента: $\exists e \in G \ \forall a \in G \ a * e = e * a = a$
- 3. Существование обратного элемента: $\forall a \in G \; \exists a^{-1} \in G \; a * a^{-1} = a^{-1} * a = e$

<u>Опр.</u> Если выполено свойство коммутативности ($\forall a,b \in G \ a*b=b*a$), то группа называется **абелевой**

Опр. **Подгруппа** — непустое подмножество $H \subset G$, являющееся группой.

Теорема (критерий подгруппы). Доказывалась на 1 курсе.

Непустое подмножество $H \subset G$ это подгруппа в G, если верны следующие условия:

- 1. H замкнуто относительно групповой операции: $\forall a,b \in H \ a*b \in H$
- 2. H замкнуто относительно взятия обратного элемента: $\forall a \in H \ a^{-1} \in H$

Примеры групп:

- 1. $(Z, +), (Z_n, +)$
- 2. Если F поле, то (F,+) аддитивная группа поля, $(F^*,*)$ мультипликативная группа поля
- 3. Если V лин. пр-во, то (V, +) абелева группа
- 4. $GL_n(F)$ полная линейная группа над полем F, т.е. группа невырожденных матриц относительно умножения
- 5. S_n симметрическая группа степени n, т.е. группа биекций множества $\{1,2,...,n\}$ на себя относительно композиции.

Опр. Порядок группы — число элементов в группе

Опр. Порядок элемента группы ${\bf g}$ — наименьшее ненулевое число n, в что $g^n=e$

Примеры подгрупп (знаком ≤ обозначают отношение "быть подгруппой"):

- 1. $nZ \leq Z$ —группа кратных n чисел
- 2. Если W,V-лин. пространства и $W \leq V$ (подпространство), то верно что W- подгруппа V
- 3. $SL_n(F) \leq GL_n(F), A \in SL_n(F) \leftrightarrow det(A) = 1$
- 4. $O_n \leq GL_n(\mathbb{R})$ группа ортогональных матриц, $U_n \leq GL_n(\mathbb{C})$ группа унитарных матриц
- 5. $A_n \le S_n$ четные подстановки

1 Группа, порожденная подмножеством

<u>Опр.</u> Пусть G - группа относительно умножения и $M\subset G$. Тогда $\langle M\rangle=\cap_{H\leq G,M\subset H}H$ - подгруппа, порожденная M

<u>Опр.</u> Подгруппа, **порожденная** M — наименьшая по включению подгруппа G, содержащая M

Утв.
$$\langle M \rangle = \{ m_1^{\epsilon_1} * m_2^{\epsilon_2} * ... * m_s^{\epsilon_s} \mid m_i \in M, \ \epsilon_i \in \{0, 1, -1\} \}$$

2 Циклическая группа

 $\frac{\text{Опр.}}{a}$ Пусть $\exists a \in G, \ G = \langle a \rangle$, тогда G - циклическая группа с порождающим элементом

Теорема (об элементе конечного порядка) Пусть $a \in G$, $ord(a) < \infty$, ord(a) = n. Тогда $\langle a \rangle$ - конечная группа порядка n и $\langle a \rangle = \{e, a, ..., a^{n-1}\}$

Теорема (об изоморфизме циклических групп) Все циклические группы одного порядка (в том числе и бесконечные) изоморфны между собой

Следствие

- 1. Если $|G|=n<\infty$ и G цикличная, то $G\simeq Z_n$
- 2. Если $|G|=\infty$ и G цикличная, то $G\simeq Z$

Теорема Всякая подгруппа циклической группы сама циклическая

Теорема Пусть G — циклическая группа, порожденная a и Div(G) — множество делителей n = ord(a), тогда $\forall d \in Div(G) \ \exists H_d \leq G, \ H_d = \{e, a^d, a^{2d}, ..., a^{(\frac{n}{d}-1)d}\}$ и

- 1. H_d циклическая подгруппа порядка $\frac{n}{d}$
- 2. Если $d_1, d_2 \in Div(G)$, $d_1 \neq d_2$, то $H_{d_1} \neq H_{d_2}$
- 3. Всякая подгруппа группы G имеет вид H_d для некоторого d

3 Произведение подмножеств в группе

Опр. Если $A, B \subset G$, то $AB = \{ab \mid a \in A, b \in B\}$ Если $A = a, B = H \leq G$, то $AB = aH = \{ah \mid h \in H\}$ — левый смежный класс a по подгруппе H. $Ha = \{ha \mid h \in H\}$ — правый смежный класс. Причем верно $\forall A, B, C \subset G$ (AB)C = A(BC)

Теорема (критерий подгруппы, переформулировка) Пусть $H\subset G$ и $H\neq\varnothing$. Тогда $H\leq G$ \Leftrightarrow

- 1. HH = H
- 2. $H^{-1} = H$, где $H^{-1} = \{a^{-1} \mid a \in H\}$

Свойства левых смежных классов:

1. Всякий левый смежный класс порождается любым своим элементом $y \in xH, H \leq G \Rightarrow yH = xH$

Доказательство: $y\in xH,\ H\leq G\Rightarrow \exists h\in H:\ y=xh\Rightarrow yH=xhH=xH,$ так как если $h\in H,$ то hH=H

2. Всякие два левых смежных класса по подгруппе H либо не пересекаются, либо совпадают

Доказательство: Пусть $xH\cap yH\neq\varnothing\Rightarrow\exists z\in xH\cap yH\Rightarrow zH=xH\ zH=yH\Rightarrow xH=yH$

3. $G = \sqcup_{i \in I} x_i H$ — левостороннее разложение группы G по подгруппе H , где объединение дизъюнктное, то есть объединяются непересекающиеся множества

Доказательство Очевидно, что $G = \bigcup_{x \in G} xH$. Из каждого семейства совпадающих смежных классов оставим ровно по одному представителю. По предыдущему свойству они не пересекаются.

Аналогично доказывается существование правостороннего разложения $G = \sqcup_{i \in I} Hx$ Наличие этих разложений — следствие того, что отношение "x и у принадлежат одному левому (правому) смежному классу" — это отношение эквивалентности на G, и верна теорема о классах эквивалентности

Теорема (критерий принадлежности двух элементов одному левому смежному классу) Элементы $x,y\in G$ принадлежат одному левому смежному классу по подгруппе H тогда, и только тогда, когда верно одно из след. эквивалентных условий:

- 1. $x^{-1}y \in H$
- 2. $y^{-1}x \in H$
- 3. xH = yH
- $4. \ x \in yH$
- 5. $y \in xH$
- 6. $xH \cap yH \neq \emptyset$

Доказательство. Покажем эквивалентность с первым условием:

- 1. Необходимость $x, y \in zH \Rightarrow \exists h_1, h_2 \in H \ x = zh_1, \ y = zh_2 \Rightarrow x^{-1}y = h_1^{-1} * z^{-1} * z * h_2 = h_2$ $h_1^{-1} * h_2 \in H$
- 2. Достаточность $x^{-1}y \in H \Rightarrow x^{-1}y = h \in H \Rightarrow y = xh \Rightarrow y \in xH \Rightarrow xH = yH$

Упражнение: Доказать остальные эквивалентности и придумать аналогичный критерий для правых смежных классов

Теорема(Лагранж) Порядок любой подгруппы конечной группы является делителем порядка группы

Доказательство $G = \bigsqcup_{i \in I} x_i H$ и |xH| = |H| по свойствам группы. Значит, |G| = |I| |H|, так как объединение дизъюнктное. Тогда |G|: |H|

Опр.

 $\overline{G/H}$ — множество левых смежных классов в разложении

|G/H| — индекс подгруппы

 $H\backslash G$ — множество правых смежных классов в разложении $|G/H|=|H\backslash G|=\frac{|G|}{|H|}=|G:H|$

$$|G/H| = |H\backslash G| = \frac{|G|}{|H|} = |G:H|$$

Следствие Порядок любого элемента конечной группы — делитель порядка группы

Следствие Если p — простое, то любая группа порядка p — циклическая

Доказательство Если p-простое, то $p\geq 2$ и в группе есть элемент, отличный от нейстрального. Обозначим его $a \in G$, $a \neq e$. По теореме Лагранжа $|G| : |\langle a \rangle|$. Так как pпростое, то $|\langle a \rangle| = p$ и $\langle a \rangle = G$

Следствие $\forall p$ — простое $\exists !$ с точностью до изоморфизма группа порядка p

Доказательство $|G|=p\Rightarrow G$ изоморфно C_p — абстрактная циклическая группа порядка р

Следствие (теорема Эйлера) Если $a \in Z, n \in N, \gcd(a,n) = 1$, то $a^{\phi(n)} \equiv 1 \pmod n$, где $\phi(n)$ — функция Эйлера, т.е. количество простых чисел, меньших n. Свойства функции Эйлера:

- 1. $\phi(nm) = \phi(n)\phi(m)$, если gcd(n, m) = 1
- 2. Если $n=p_1^{\alpha_1}*...*p_s^{\alpha_s}$ каноническое разложение на простые множители, то $\phi(n)=n(1-\frac{1}{p_1})...(1-\frac{1}{p_s})$

Доказательство Z_n^* — группа вычетов, взаимно простых с n. По условию $a \in Z_n^*$ и $\mid Z_n^* \mid = \phi(n)$. Значит, если ord(a) = k, то $\phi(n) \stackrel{.}{:} k$ и $a^{\phi(n)} \equiv 1 \pmod n$

Следствие (Малая теорема Ферма) $a \in N, p$ —простое, то $a^p \equiv a \pmod{n}$

Доказательство Если НОД(a,p)=1, то $a^{\phi}(p)\equiv 1\pmod n$, то есть $a^{p-1}\equiv 1\pmod n$.

Домножение равенства на a доказывает следствие. Если $HOД(a,p) \neq 1$, то a : p и $a^p \equiv a \equiv 0$ \pmod{n}