Identity Mappings in Deep Residual Networks

Abstract

본 논문에서는 Residual Block의 연산과정에 대해 분석하고, 이를 통해 새로운 Residual Block을 고안한다.

Introduction

Fig 1. Residual Block

$$egin{aligned} y_l &= h(x_l) + F(x_l, W_l), \ x_l + 1 &= f(y_l) \end{aligned}$$

여기서 $h(x_l)$ 는 identity mapping을 의미하며, $F(x_l,W_l)$ 은 residual mapping을 의미한다. 또한, $f(y_l)$ 은 ReLU activation을 적용시킨다는 의미다.

저자의 연구에 따르면, $h(x_l)$ 과 $f(y_l)$ 이 identity mapping일 때 forward 방향과 backward 방향 모두에서 데이터가 직접적으로 전달된다고 한다. 이 조건을 만족하는 구조가 Fig. 1(b) 이다.

또한, 기존 상식으로 여겨지던 "activation function은 Weight 연산 이후에 적용되어야 한다" 의 규칙을 Fig 1.(b) 처럼 깨버림으로써 학습이 더 잘 되고, 일반화도 더 잘되는 결과를 얻었다고 한다.

Activation function이 weight 연산 이전에 먼저 적용이 되어 모델의 이름을 "Pre-activation ResNet"으로 명명하였다.

Anaylsis of Deep Residual Networks

위의 식에서 $h(x_l)$ 이 identity mapping 이라면 $h(x_l)=x_l$ 이고, $f(y_l)$ 이 identity mapping 이라면 $y_l=x_{l+1}$ 이 된다.

따라서, 식을 정리하면 다음과 같다.

$$egin{aligned} x_{l+1} = x_l + F(x_l, W_l) \end{aligned}$$

$$x_{L} = x_{l} + \sum_{i=l}^{L-1} F(x_{i}, W_{i})$$

이 재귀식에서 중요한 성질들을 관찰할 수 있다.

1) 아무리 L이 깊더라도, 모델은 x_l 과 $\sum_{i=l}^{L-1} F(x_i,W_i)$ 로 구성된다. 즉 L과 l 유닛들로 이루어진다.

2) $x_L=x_0+\sum_{i=0}^{L-1}F(x_i,W_i)$ 이므로, x_0 와 이전 모든 Residual function들의 합으로 볼수 있다.

그렇다면, BackPropagation은 다음과 같이 표현된다.

$$\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \left(1 + \frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_{i}, \mathcal{W}_{i}) \right)$$

위 식을 보면, ϵ 에 대한 x_l 의 편미분은 2개의 식의 합으로 나눠진다.

1) 전자식: weight layer와는 관계없이 정보를 전달한다.

2) 후자식: weight layer를 통해서 정보가 전달된다.

On the Importance of Identity Skip connections

이 부분에서는 $h(x_l)$ 이 identity mapping이 아니면 어떤 결과가 나올지에 대한 실험을 진행하였다.

- 1. Scalar : $h(x_l) = \lambda_l x_l$
- 스칼라 값을 하면, backpropagation시 스칼라 값이 중첩이 되어 곱해진다. 그 결과 λ_l 이 1 보다 작으면 Vanishing gradient problem이, 1보다 크면 Exploding gradient problem이 발생하게된다. 이는 최적화를 어렵게 만든다.
- 2. Exclusive gating
- 이는 간단히, 1x1 conv 연산 결과에 softmax를 적용시키고, 그 값을 이용하여 적절한 비율 만큼 residual mapping과 identity mapping에 곱해주는 방식이다.
- shortcut에는 1-g(x)를 곱함
- 학습시 g(x)의 바이어스 b_g 의 초기값에 영향을 크게 받음
- 0~-10 값 중 최적값을 찾아 활용
- g(x)가 0에 가까워지면 shortcut만 남아 identity-mapping에 가까워져 성능이 좋음
- 3. Shortcut only gating

- 이는 Exclusive gating 과 유사하지만, residual mapping 부분은 softmax 출력값과 관계 없이 그대로 더해지는 방식이다.
- 2와 마찬가지로 g(x)가 0에 가까워지면 성능이 좋아짐

4. 1 x 1 Convolution

- 이는 identity mapping 을 1 x 1 shorcut connection으로 교체한 방식이다.
- ResNet 논문에서 projection shortcut과 동일
- ResNet 논문과는 다르게 항상 성능이 좋아지지는 않음
- 깊이에 따라 성능이 좋아지기도 나빠지기도 함

5. Dropout shortcut

• identity mapping에 dropout을 0.5만큼 적용시키는 방식이다. 이는 Scalar를 0.5로 둔 것과 유사하게 볼 수 있다.

결과를 보면, 모든 경우 기존의 ResNet보다 성능이 좋지 않음을 알 수 있다.

On the Usage of Activation Functions

이 부분에서는 $f(y_l)$ 이 identity mapping이 아니면 어떤 결과가 나오는지에 대한 실험을 진행

ResNet에서 사용하는 residual block에서 활성함수 f는 ReLU 함수이며, shortcut된 신호와 합쳐지는 곳 뒤에 위치한다. 논문에서는 f를 identity mapping으로 만들기 위해 새로운 residual block을 제안한다.

- 1. BN after addition // f : BN + ReLU
- 이 방식은 element-wise addition 이후에 BN을 넣고, ReLU를 적용시킨다. 이 방식은 기존의 방식보다 성능이 안좋았다고 한다.
- 2. ReLU before addtion // f: identity mapping
- 이 방식은 element-wise addition 이전에 ReLU를 적용시킴으로써, f 를 identity mapping 으로 만들었다 그러나, residual mapping의 결과가 0에서부터 무한대까지로 제한이 된다. 즉, forward propagation 값이 단조 증가해버리는 문제가 생긴다.
- 3. ReLU-only pre-activation // f:identity mapping
- 이 방식은 2의 문제를 해결하기 위해 ReLU를 weight layer 이전에 적용시켰다.
- 4. full pre-activation // f:identity mapping

• 3의 방식을 따르면, BN의 효과를 누릴 수가 없다. 따라서 BN을 ReLU 이전에 적용시킨다.

결과를 보면, 2의 방식을 적용시킨 경우 성능이 안좋아진 반면, 4의 방식을 사용했을 때는 기존의 방식과 유사한 성능을 보였다.

dataset	network	baseline unit	pre-activation unit
CIFAR-10	ResNet-110 (1layer skip)	9.90	8.91
	ResNet-110	6.61	6.37
	ResNet-164	5.93	5.46
	ResNet-1001	7.61	4.92
CIFAR-100	ResNet-164	25.16	24.33
	ResNet-1001	27.82	22.71

그러나, 기존의 ResNet은 layer 깊이를 1001개로 늘렸을 때 Overfitting이 발생하는 반면 pre-activation ResNet은 Overfitting이 발생하지 않았다고 한다.

그 이유로 저자는 기존의 ResNet에서 Weight Layer의 입력이 unnormalize 상태이지만 (BN이 먼저 적용되지 않았으므로), pre-normalize 된 상태 (BN이 먼저 적용되었기 때문에) 이기 때문일 것이라고 추측하였다.

Result

method	augmentation	train crop	test crop	top-1	top-5
ResNet-152, original Residual Unit [1]	scale	224×224	224×224	23.0	6.7
ResNet-152, original Residual Unit [1]	scale	224×224	320×320	21.3	5.5
Res Net-152, $\mathbf{pre\text{-}act}$ Residual Unit	scale	224×224	320×320	21.1	5.5
ResNet-200, original Residual Unit [1]	scale	224×224	320×320	21.8	6.0
Res Net-200, $\mathbf{pre\text{-}act}$ Residual Unit	scale	224×224	320×320	20.7	5.3
Res Net-200, $\mathbf{pre\text{-}act}$ Residual Unit	scale+asp ratio	224×224	320×320	20.1^{\dagger}	4.8^{\dagger}
Inception v3 [19]	scale+asp ratio	299×299	299×299	21.2	5.6

Pre-activation ResNet은 top-1 error를 20.1%, top-5 error를 4.8%로 기록하면서 기존의 ResNet의 성능을 앞섰고, Inception V3도 앞선 결과를 보여주었다.

성능분석

post/pre activation 구조의 경향비교

Pre-activation이 주는 긍정적인 영향 중 첫 번째는 활성화 함수 f가 identity mapping이 되어 최적화하기 쉬워진 것.

ResNet의 post-activation구조에서는 ReLU로 인해 음수 신호가 모두 사라진다. 깊은 망일수록 이러한 음의 영역 신호 손실이 많이 발생하여 제일 처음 가정했던 아래 식이 만족하지 않게 된다.

이러한 현상은 ResNet-1001을 학습할 때 확인할 수 있다. post-activation 구조에서 학습할 경우 초반에 학습이 잘 이루어지지 않는 경향이 있지만 pre-activation구조에서는 처음부터 학습이 잘 이루어진다.

Pre-activation이 주는 긍정적인 영향 중 두 번째는 Batch Normalization의 영향으로 regularization 이 되어 일반화가 잘된다는 것.

아래 그림은 ResNet-164를 학습한 결과이다. 특이한 점은 테스트 성능은 제안된 구조가 더 좋지만, 학습 결과는 제안한 구조가 더 나쁘게 나오고 있다.

이러한 현상이 발생하는 원인은 제안하는 full pre-activation 구조는 Batch-Normalization을 통과해 정규화된 신호가 weight layer를 통과하기 때문에 일반화 성능이 올라가기 때문이다.

Table 5. Comparisons of single-crop error on the ILSVRC 2012 validation set. All ResNets are trained using the same hyper-parameters and implementations as [1]). Our Residual Units are the full pre-activation version (Fig. 4(e)). †: code/model available at https://github.com/facebook/fb.resnet.torch/tree/master/pretrained, using scale and aspect ratio augmentation in [20].

method	augmentation	train crop	test crop	top-1	top-5
ResNet-152, original Residual Unit [1]	scale	224×224	224×224	23.0	6.7
ResNet-152, original Residual Unit [1]	scale	224×224	320×320	21.3	5.5
ResNet-152, $\mathbf{pre-act}$ Residual Unit	scale	$224{\times}224$	320×320	21.1	5.5
ResNet-200, original Residual Unit [1]	scale	224×224	320×320	21.8	6.0
ResNet-200, pre-act Residual Unit	scale	224×224	320×320	20.7	5.3
ResNet-200, $\mathbf{pre-act}$ Residual Unit	scale+asp ratio	224×224	320×320	20.1^{\dagger}	4.8^{\dagger}
Inception v3 [19]	scale+asp ratio	299×299	299×299	21.2	5.6

다음으로 ImageNet에서 ResNet-152/200, InceptionV3를 비교한 결과이다

실험결과에서 기본 구조의 Residual Block을 사용한 ResNet-152와 ResNet-200을 비교해보면, ResNet-152가 성능이 더 좋은 것을 볼 수 있다.

특이한 점은 학습할 때 training error는 ResNet-200이 더 낮았기 때문에 논문 저자들은 Overfitting이 발생한 것으로 보았다. 하지만 일반화 성능이 좋은 pre-activation 구조의 ResNet은 200이 152보다 성능이 좋은 것을 볼 수 있다.

post-activation 구조에서는 ReLU에 의해 신호손실이 생기지만 pre-activation 구조에서는 신호 손실이 없다. 네트워크가 깊어질수록 더 많은 활성함수를 통과하기 때문에 post 구조에서 손실은 커지지만 pre-activation은 그러한 경향이 없다. 실제로 실험에서 pre-activation을 사용하면 ResNet152/200 모두 성능은 개선되지만, ResNet152 에서는 성능 개선이 미미한 것을 볼수 있다. 하지만 ResNet200 구조에서는 상대적으로 성능이 많이 올라간 것을 볼수 있다.

최종적으로 Pre-activation 구조를 적용하고, single crop 등의 agumentation 기법을 적용한 ResNet200이 가장 좋은 성능을 보여준다.

Pre-activation 구조는 ResNet에서 추구하던 layer가 identity-mapping이 되도록 residual block의 구조를 개선한 결과물이다.