Отчет о прохождении 2 этапа внешнего курса

Работа на сервере

Ким Денис Вячеславович

Содержание

Сп	21	
5	Выводы	20
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Задание 1.		•	•	•		•	•		•		•			•	•	•	•	•	•	•		•				8
4.2	Задание 2.																										9
4.3	Задание 3.		•																								9
4.4	Задание 4.																										9
4.5	Задание 5.																										10
4.6	Задание 6.		•																								10
4.7	Задание 7.		•																								11
4.8	Задание 8.		•					•		•								•									11
4.9	Задание 9.		•					•		•								•									12
4.10	Задание 10		•					•								•									•		12
	Задание 11																										12
4.12	Задание 12		•					•								•									•		13
4.13	Задание 13		•					•								•									•		13
	Задание 14																										14
4.15	Задание 15		•				•	•		•					•	•	•	•	•	•	•				•		14
	Задание 16																										15
4.17	Задание 17		•				•	•		•					•	•	•	•	•	•	•				•		15
	Задание 18																										16
4.19	Задание 19		•				•	•		•					•	•	•	•	•	•	•				•		16
4.20	Задание 20		•				•																				17
4.21	Задание 21		•					•								•									•		17
4.22	Задание 22		•					•								•									•		17
4.23	Задание 23		•					•		•	•			•		•		•		•		•		•	•		18
121	Зэпэцио ЭЛ																										10

Список таблиц

1 Цель работы

Ознакомиться с функционалом операционной системы Linux.

2 Задание

Просмотреть видео и на основе полученной информации пройти тестовые задания.

3 Теоретическое введение

Линукс - в части случаев GNU/Linux — семейство Unix-подобных операционных систем на базе ядра Linux, включающих тот или иной набор утилит и программ проекта GNU, и, возможно, другие компоненты. Как и ядро Linux, системы на его основе, как правило, создаются и распространяются в соответствии с моделью разработки свободного и открытого программного обеспечения. Linux-системы распространяются в основном бесплатно в виде различных дистрибутивов — в форме, готовой для установки и удобной для сопровождения и обновлений, — и имеющих свой набор системных и прикладных компонентов, как свободных, так и проприетарных.

4 Выполнение лабораторной работы

2 Этап: (рис. fig. 4.1, fig. 4.2, fig. 4.3, fig. 4.4, fig. 4.5, fig. 4.6, fig. 4.7, fig. 4.8, fig. 4.9, fig. 4.10, fig. 4.11, fig. 4.12, fig. 4.13, fig. 4.14, fig. 4.15, fig. 4.16, fig. 4.17, fig. 4.18, fig. 4.19, fig. 4.20, fig. 4.21, fig. 4.22, fig. 4.23, fig. 4.24).

Рис. 4.1: Задание 1

Удаленный сервер - это компьютер, находящийся в дата-центре, к которому можно получить удаленный доступ через сеть Интернет. Удаленный сервер обычно используется для размещения веб-сайтов, приложений, баз данных и других сервисов, которые необходимы для функционирования сайта или бизнеспроцессов компании. Пользователи могут получить доступ к удаленному серверу с помощью протоколов удаленного доступа, таких как RDP, VNC или SSH.

Рис. 4.2: Задание 2

Только id_rsa.pub, так как он является открытым.

Рис. 4.3: Задание 3

-r = Recursively copy entire directories. Note that scp follows symbolic links encountered in the tree traversal.

Рис. 4.4: Задание 4

Проверяем интернет соединение на предмет того, что устройство не может соединиться с сервером, затем проверяем то, знает ли оно вообще о существовании такой программы.

Рис. 4.5: Задание 5

FileZilla — свободный многоязычный проект, посвящённый приложениям для FTP. Включает в себя отдельное приложение «FileZilla Client» (являющееся FTP-клиентом), и «FileZilla Server». Приложения публикуются с открытым исходным кодом для Windows, macOS и Linux. Клиент поддерживает FTP, SFTP, и FTPS (FTP через SSL/TLS) и имеет настраиваемый интерфейс с поддержкой смены тем оформления.

Рис. 4.6: Задание 6

1. Проверить, есть ли другая версия этой программы (специально для терминала)

2. Настроить сервер, чтобы он поддерживал вывод информации на экран компьютера

Рис. 4.7: Задание 7

Рис. 4.8: Задание 8

FastQC supports files in the following formats

FastQ (all quality encoding variants) Casava FastQ files* Colorspace FastQ GZip compressed FastQ SAM BAM SAM/BAM Mapped only (normally used for colorspace data)

Рис. 4.9: Задание 9

-align Do full multiple alignment.

Рис. 4.10: Задание 10

Комбинация Ctrl+C - завершает процесс. Комбинация Ctrl+Z - приостанавливает процесс.

Рис. 4.11: Задание 11

Рис. 4.12: Задание 12

Если сигнал не перехватывается процессом, процесс уничтожается. Следовательно, это используется для изящного завершения процесса. Команда «kill -9» отправляет сигнал уничтожения для немедленного завершения любого процесса, если он присоединен к PID или имени процесса . Это принудительный способ убить/завершить набор процессов

Рис. 4.13: Задание 13

Команда kill шлёт сигнал о завершении процесса. Но программа обрабатывает сигналы только когда она исполняется, пока она остановлена она не может обработать сигнал и приступит к его обработке только после продолжения работы.

Рис. 4.14: Задание 14

Запущенная программа потребляет ресурсы СРИ, а остановленная нет.

Рис. 4.15: Задание 15

Приостановленное приложение не выполняет новых действий, поэтому не занимает вычислительные ресурсы компьютера (CPU 0%). При этом, в оперативной памяти оно сохранится, поэтому оно будет занимать столько же оперативной памяти, сколько до постановки на паузу.

Рис. 4.16: Задание 16

Although it is possible to specify the TID (thread ID, see gettid(2)) of one of the threads in a multithreaded process as the argument of kill, the signal is nevertheless directed to the process (i.e., the entire thread group). In other words, it is not possible to send a signal to an explicitly selected thread in a multithreaded process. The signal will be delivered to an arbitrarily selected thread in the target process that is not blocking the signal.

Рис. 4.17: Задание 17

Рис. 4.18: Задание 18

echo "306174 reads; of these:

306174 (100.00%) were unpaired; of these:

11 (0.00%) aligned 0 times

305580 (99.81%) aligned exactly 1 time

583 (0.19%) aligned >1 times

100.00% overall alignment rate" > bowtie.log

Рис. 4.19: Задание 19

Рис. 4.20: Задание 20

exit завершает работу tmux

Рис. 4.21: Задание 21

Мы заходили на сервер с терминала, который и закрыли, а tmux будет продолжать свою работу на сервере.

Рис. 4.22: Задание 22

Ещё будет предупреждение о том, что работа завершится. Запущенный процесс во вкладке, конечно же, при её закрытии, пропадёт.

Рис. 4.23: Задание 23

Ctrl+b с - создать новое окно;

Ctrl+b w - выбрать окно из списка;

Ctrl+b 0-9 - открыть окно по его номеру;

Ctrl+b, - переименовать текущее окно;

Ctrl+b % - разделить текущую панель по горизонтали;

Ctrl+b " - разделить текущую панель по вертикали;

Ctrl+b стрелка - перейти на панель, находящуюся в стороне, куда указывает стрелка;

Ctrl+b Ctrl+стрелка - изменить размер текущей панели;

Ctrl+b o - перейти на следующую панель;

Ctrl+b; - переключаться между текущей и предыдущей панелью;

Ctrl+b x - закрыть текущую панель;

Ctrl+b [- войти в режим копирования (подробнее ниже);

Ctrl+b] - вставить из внутреннего буфера обмена tmux;

Ctrl+b d - отключится от текущей сессии;

Ctrl+b: - открыть командную строку.

Рис. 4.24: Задание 24

Можно закрыть одно из делений вкладки выполнив команды Ctrl+B и X.

По половинам "разделенной" вкладки можно перемещаться при помощи Ctrl+B и стрелок - как описано в задании выше.

Делить экран можно только в текущей вкладке tmux, а не во всех вкладках одновременно.

5 Выводы

Мы просмотрели курс и освежили в памяти навыки работы с более сложными командами в Линукс.

Список литературы

1. Введение в Linux