HWS Problem 1

F= {AB+L, L+A, BL+P, A(D+B, D+EG, BE+(, L6+BD, CE+A6)}

Algorithm discusted in result := X	X	pp
while result is changing	.] .].	
For Rach FD Y + 2	in F) do	(BO)+
if Y CX then		
rosult: = result	UZ //** by reflexivity	& transitivity
Tration II	Iteration 2:	Ideration 7:
result: BD	result: = BD FG	resnl+=BDEGCA
AB+C	$AB \rightarrow \ell$	AB -16
AB & BDno change	AB & DDF G, no change	AB = reml+, no change
CAA ?	(7)	(7A
C & BD Inv change	L&BDEL, no change	(French, no change
8170	B(-> D	BCAD
B(& BD, no change	BC & BDEG, no change	AL E result, to change
ACD-B	ALD-> B	ACD +B
Alo & Boro change	ALD 4BDEb, no change	ALDE results no change
D -> EG	D 7 E 6	0766
DEBD, AD UFG ren H=BDEG	DEBDEG, no change	DE renthino change
(6-) BD	Et already there	DE 71
CG & BPEG, no change	BEEBDEG, LUBOEG	RECrosh It, nockange
(£) AC	rent:=BDEG(CG 7 1810
CERBAEL, no change	(G+BD)	CGERPILITY no change
nosult has changed,	(G C D) C (/ 1 - 1	(E ?AG
continues	CE PAG	(E I ren't no change
Uniting	CE SBOEGC, AGUBDEGL	result has not changed
	rent: = RDEGCA	stops here:
	result has changed	
	continue -	
	BP (BP)+ = BD E 6	CA-

HWG Problem 2: F= {AB+L, A+DL, B+A} Iteration 1: edurdances 2) 3) B+Bl transitivity of 1+2 4) B+C Decomposition of (3) be ause {A-BL, B-11} 62 Therefore,

HW5 Problem 3: F={s+p, I+B, Is+Q, B+0} R=(BUSQID)

0	1 - 2) 7 1, 7 - 18, 13 - 10, 18 - 105
	· Is is a superleey of R Proof?
	Ving algorithm used previously in Problem 1. Is + Q Given
	result = Is
	3.5+p biven
	JERESULT Aug of (3) by Is.
	result = ISD IS = superkey 5. I + B Given
	6. It > Is Any of (6) by ts
	rem It = ISDB 1 8. B + BO Ang of (7) by B.
	TS-1Q (5) and (8).
	TS Cresult DITIATED Augustaby IS.
	result = ISPBQ II + BOSQID 11. Ist IsQD Trans. to (2) and (4)
	13 7 0 (2.I) + ISQDBO Trans, to (10) and (11)
0	R = 1 S D D X
	regult = ISDBQD
1	rent= R
1	R(BOSQIP) Decomposition of R
L,	into BUNF
	R R
	R, / REPORT
	$(\pi(\alpha))$
	O O R 3 R
	(ISRD) - (ISDBD)
	(ISA)
(0)	r × y = V
	(N. J.)

HW5 Problem 4:
The decomposition rule states that the set {R, Ry, r, Rn} is a decomposition of
the relation schema R such that
(R)=R, UR, UR, and each attribute of Rappears
R RI Rn
-Now, we assume r(R) and let r= TTp. (r) which means {v, m, rn} is the database that results from de composing \$R, r, Rp3. It is always the case that r Er Mr M. Mrns but in general r >> Mr Mr. Mrns
A decomposition on the last of
BLNF. (R) is given REBONF it V FD's of the form A - B are 1) A + B is trivial i.e. BCA
For R, all FD's are trivial R, & BCNF because
I - 18 B C T BLNF because IS + a, Q C IS B + 0, D C B and Is is a superkey. The part of superkey I's
Therefore, this is a tostell join decomposition.

HW5 Problem 5: F= {A >BC, CD>E, B>D, E+A} K= {ABCDE} 1. Using the algorithm stated in Problem 1: Landidate leeys are: A+, E+, AB+, AC+, Ap+, AE+, BC+, Bp+, BE+, CD+, CE+, DE+ BT+B B+ >BD Using previous B > D algor ithm B++BD 1, A SBC 6 wes bluen 2. A & B, A > C Decomp. of (1) B. B & D Given 2 E 7 A 3, (D+A Trans of (1) and (2) 4 ADD trans of (2a) and (4) 4. A > BL Given S.CDTE Given 5. (D-BL Trang. of (3) and (4) b. A + CD Union of (26) and (4) 6. CO+ ABE Union of (1)(3), and (5) 7 A 7 E Trans. of (4) and (6) 8. A+BCPE Vinen of (2), (6), and (7) 11870 Given 2 (D) E Given 2 A & BL Circa 3, B() E Read - Trans. of (1) and (2) 3. EABL Trans, of (1) and (2) 4. EAB, EAC Decomp. of (3) 5, BL 7 F Trans, of (3) and (4) 5. Byp Given b. B(>D reflexivity of B 6. E -, P Trans. of (44) and (6) 7. BL-7ADE Valor St (3), (5), (6) 7, E - ABLO Vilor of (1) (3), and (6) F+= SA -BCOE, CD -ABE, B-D, BL-ADE, F-ABCD?

HWS Problem 5 (continued): F={A+BL,(D+E, B+D, E+A}

HWS Problem 6: Address = Estreet, number, 2 prodes F = { (street, number) -> 2 iprode, riprode -> street} Address EINF Dipode is a non-prime attribute. It is fully furtherally dependent Address EZNF). Estreet, number 3. b) 3NF? Address = 2NF 2 prode is a non-prime attribute. (street, number) +2 ipide holds & (street, number) is key 2 iprode - street hold, because street - 2 iprode = street, Theet E (street, number Therefore, Address & 3NF c) BCNF? Address E3NF result - Adaress done = true while (!done) it I a non-trivial FD of the form A >B st ANB = 0 A radress # # A is not be y
then remit= (result - Address) V (Address - B) V (AB) else done true street, number) +2 poole v 210rode 7 street Therefore, Address.