Topic 3: Atmospheric circulation

MATH3261/5285: Fluids, Oceans, and Climate

{Shane Keating}, School of Mathematics and Statistics

UNSW Sydney, Term 1 2019

2.1 A brief overview of atmospheric circulation

"The storm is up, and all is on the hazard."

William Shakespeare, Julius Caesar Act V Scene 1.

General circulation = large-scale motion of the atmosphere

1000 km → 10000 km synoptic scale planetary scale

Radiative equilibrium

What would the temperature be if there was no atmosphere or ocean?

Assume that each point on Earth's surface absorbs incoming solar radiation and radiates as a "black body" with a temperature given by the **Stefan-Boltzmann law**

$$S_{\text{in}}(\theta) (1 - \alpha) = \sigma T_{\text{rad}}^4 (\theta),$$

where α is the albedo and $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4}$.

(Credit: Vallis 2006)

(Credit: Vallis 2006)

Emitting temperature (outgoing radiation) has weaker pole-to-pole gradients than **radiative equilibrium temperature** (incoming radiation)

(Credit: Vallis 2006)

Emitting temperature (outgoing radiation) has weaker pole-to-pole gradients than **radiative equilibrium temperature** (incoming radiation)

Heat is redistributed away from equator towards poles

(Credit: Vallis 2006)

Emitting temperature (outgoing radiation) has weaker pole-to-pole gradients than **radiative equilibrium temperature** (incoming radiation)

Heat is redistributed away from equator towards poles

Large-scale circulation in the atmosphere and ocean moves warm air/water towards poles and cool air/water towards equator, eroding gradient imposed by radiative forcing.

Temperature and pressure vs height

(Credit: European Space Agency)

Troposphere (o km to 8-18 km)

- monotonic *decrease* of temperature with height
- **tropopause** (top of troposphere) changes height with latitude and season
- contains about 80% of the mass of the atmosphere

Troposphere (o km to 8-18 km)

- monotonic *decrease* of temperature with height
- **tropopause** (top of troposphere) changes height with latitude and season
- contains about 80% of the mass of the atmosphere

Stratosphere (to 50 km)

- temperature *increases* with height due to absorption of solar radiation by ozone layer
- contains about 19.9% of the mass of the atmosphere

Troposphere (o km to 8-18 km)

- monotonic *decrease* of temperature with height
- **tropopause** (top of troposphere) changes height with latitude and season
- contains about 80% of the mass of the atmosphere

Stratosphere (to 50 km)

- temperature *increases* with height due to absorption of solar radiation by ozone layer
- contains about 19.9% of the mass of the atmosphere

Mesosphere, Thermosphere, and Exosphere (>50 km)

- temperature decreases with height then increases again
- very tenuous / little mass

Temperature and wind fields

Temperature averaged in the zonal direction (east-west)

Temperature and wind fields

Zonal wind (east-west) averaged in the zonal direction

Zonal wind velocity at 146.3W (m/s)

Temperature and wind fields

Meridional (north-south) wind averaged in the zonal direction

Tropopause bulges upward at equator

Strong meridional temperature gradients at subtropics

• drives an eastward **zonal jet** because of thermal wind balance

Convergence/divergence of meridional wind leads to upwelling and downwelling of air.

Surface winds are *not* due to thermal wind balance, but caused by alternating overturning cells

Overturning circulation

Zonally asymmetric winds

- Zonal average ignores zonal asymmetries (good in tropics, not so good in mid-latitudes)
- Midlatitude (polar) jet stream has strong meanders due to propagating Rossby waves
- If these meanders grow and detatch, they produce cyclones and anticyclones, aka **weather**

{Youtube movie of Rossby waves}

2.2 The Hadley Cell

"The answer, my friend, is blowin' in the wind."

Bob Dylan

(Credit: G. Vallis)

2.3 Shallow water waves

"Is there any peace

In ever climbing up the climbing wave?"

Alfred, Lord Tennyson, *The Lotus-eaters*

Shallow water dispersion relations

Wavenumber k

(Credit: I. Simpson)

2.4 Rossby waves

"Perhaps I occasionally sought to give, or inadvertently gave, to the student a sense of battle on the intellectual battlefield. If all you do is to give them a faultless and complete and uninhabited architectural masterpiece, then you do not help them to become builders of their own."

Carl-Gustaf Rossby

I. Perturb a fluid parcel northward into region of higher planetary vorticity

2. To conserve total PV, the parcel develops negative relative vorticity

