Machine Learning 2 – Group ESHG Assignment 09

Willi Gierke, Arik Elimelech, Mehmed Halilovic, Leon Sixt

June 23, 2017

Exercise 1: Dual of One-Class SVM (60 P)

The spherical version of the one-class SVM (also called "support vector data description") is given by the minimization problem:

$$\min_{R,c,(\xi_i)_{i=1}^n} \ R^2 + \frac{1}{n\nu} \sum_{i=1}^n \xi_i$$

subject to

$$\forall_{i=1}^n: \quad \|\phi(x_i)-c\|^2 \leq R^2 + \xi_i \quad \text{and} \quad \xi_i \geq 0$$

where x_1, \dots, x_n are the training data and $\phi(x_i) \in \mathbb{R}^d$ is a feature space representation.

- (a) Derive the dual program for the one-class SVM.
- (b) Show that the kernelized dual has the form

$$\begin{aligned} \max_{\alpha} \quad & \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x_{i}) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) \\ \text{subject to} \quad & \sum_{i=1}^{n} \alpha_{i} = 1 \quad \text{and} \quad \forall_{i=1}^{n} : \ 0 \leq \alpha_{i} \leq \frac{1}{n\nu} \\ \text{and with center} \quad & c = \sum_{i=1}^{n} \alpha_{i} \phi(x_{i}) \end{aligned}$$

where k is the kernel associated to the feature map ϕ .

Exercise 2: Quadratic Programming (40 P)

Show that the dual program derived in Exercise 1 is a linearly constrained quadratic program, by writing it in the matrix form

$$\min_{\alpha} \ \alpha^{\top} P \alpha + q^{\top} \alpha$$
 subject to $G\alpha \leq h$ and $A\alpha = b$

with matrices P,G,A and vectors q,h,b. That is, express the matrices P,G,A and vectors q,h,b in terms of the solution of Exercise 1, and specify their dimensions.