Logique, symboles, raisonnement mathématique

Logique et quantificateurs

Exercice 1 (Traduction)

Traduire les affirmations et leurs négations avec des quantificateurs:

- 1. Il existe $x \ge 0$ tel que f(x) > -5x + 2.
- 2. f s'annule au moins une fois sur [0, 1].
- 3. f est constante sur [0,1].
- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 5. La suite $(v_n)_{n\in\mathbb{N}}$ est majorée par 4.
- 6. La suite $(v_n)_{n\in\mathbb{N}}$ est majorée.

Exercice 2 ("Inversion" de quantificateurs)

- 1. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Relier les quantificateurs aux phrases correspondantes:
- $\forall y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ y = f(x). \bullet$
- Toujours vrai
- $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ y = f(x). \bullet$
- Jamais vrai
- $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ y = f(x). \bullet$
- Vrai pour certaines fonctions
- $\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ y = f(x). \bullet$
- Signifie que fest constante
- 2. Comparer: $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ e^x \leq k$ avec $\forall x \in \mathbb{R}, \exists k \in \mathbb{R}, e^x \leq k$

Exercice 3 (Implications)

- Soient $x, y \in \mathbb{R}$. Indiquer si on a $\mathcal{A} \Rightarrow \mathcal{B}$, $\mathcal{B} \Rightarrow \mathcal{A}$ ou $\mathcal{A} \Leftrightarrow \mathcal{B}$ (ou aucun des trois).
- 1. $A: \text{``}\cos(x) = \frac{\sqrt{2}}{2}$ " $\mathcal{B}: \text{``}x = \frac{\pi}{4}$ "
- 2. $A: "2 \ln(x) \ge \ln(x+1)"$ $B: "x^2 \ge x+1"$
- 3. $A: "x > \frac{1}{2}"$
- \mathcal{B} : " $\frac{1}{-}$ < 2"
- 4. A: "x + y > 0"
- \mathcal{B} : "x > 0 et y > 0"
- 5. A: "x + y > 0"
- \mathcal{B} : "x > 0 ou y > 0"
- 6. A : "x = 0"
- \mathcal{B} : " $\exists a > 0, |x| \leq a$ "
- 7. A : "x = 0"
- \mathcal{B} : " $\forall a > 0, |x| \leq a$ "

Exercice 4 (Quelques équivalences)

1. Soient $x, y \in \mathbb{R}$. Montrer l'équivalence :

$$(x+y)^2 = (x-y)^2 \iff (x=0 \text{ ou } y=0).$$

- 2. Soient $a,b\in\mathbb{R}$ et P le polynôme défini par : $\forall x \in \mathbb{R}, \ P(x) = ax^2 + bx.$
- (a) On suppose que
- $\forall x \in \mathbb{R}, \ P(x+1) P(x-1) = x.$

Déterminer les constantes a et b.

(b) En déduire l'équivalence :

$$\forall x \in \mathbb{R}, \ P(x+1) - P(x-1) = x$$
 $\iff \forall x \in \mathbb{R}, \ P(x) = \frac{x^2}{4}.$

Récurrences

Exercice 5 (Une suite récurrente)

On définit une suite $(v_n)_{n\in\mathbb{N}^*}$ en posant $v_1=1$

et
$$\forall n \in \mathbb{N}^*, \ v_{n+1} = 2v_n + \frac{1}{v_n}.$$

Montrer que pour tout $n \in \mathbb{N}^*$, v_n est bien défini et $v_n > 0$.

Exercice 6 (Une décomposition)

Montrer:

$$\forall n \in \mathbb{N}, \exists (a_n, b_n) \in \mathbb{Z}^2, (3+\sqrt{2})^n = a_n + b_n \sqrt{2}.$$

Exercice 7 (Divisibilité par 3)

On rappelle qu'un entier a est divisible par 3 si et seulement si il existe $k \in \mathbb{Z}$ tel que a = 3k.

Montrer que pour tout $n \in \mathbb{N}$, $4^n - 1$ est divisible par 3.

Exercice 8 (Une suite à récurrence linéaire double)

On définit une suite $(u_n)_{n\in\mathbb{N}}$ en posant $u_0=1$, $u_1 = 2 \text{ et } \forall n \geqslant 2, \ u_n = 3u_{n-1} - 2u_{n-2}.$

- 1. Calculer les premiers termes de la suite puis conjecturer, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n.
- 2. Démontrer rigoureusement cette conjecture.

Exercice 9 (Une suite de rationnels)

On définit $(w_n)_{n\in\mathbb{N}^*}$ en posant $w_1=2$

et:
$$\forall n \in \mathbb{N}, \ w_{n+1} = \frac{w_1}{n} + \frac{w_2}{n-1} + \ldots + \frac{w_n}{1}.$$

Montrer que pour tout $n \in \mathbb{N}^*$, $w_n \in \mathbb{Q}$.

Ensembles

Exercice 10 (Valide ou non?)

Soient $E = \{a, b, c\}$, $F = \{c, d\}$ et $G = \{e\}$. Peut-on écrire les choses suivantes? Si non, que faudrait-il écrire à la place?

1.
$$a \subset E$$
 2. $\{a\} \in \mathcal{P}(E)$

3.
$$E \cap F = c$$
 4. $E \cap F = \{\emptyset\}$

Exercice 11 (Traduction)

Écrire les ensembles suivants sous forme implicite, puis sous forme explicite :

- 1. Ensemble des entiers divisibles par $3\,$
- 2. Ensemble des réels positifs dont le carré est un entier
- 3. Ensemble des couples de réels dont la somme vaut 1

Exercice 12 (Ensembles et logique)

Soit $x \in \mathbb{R}$. Traduire les inégalités suivantes en terme d'appartenance à une partie de \mathbb{R} .

a)
$$(x \le 2 \text{ et } x \ge -1) \text{ ou } x > 3$$

b)
$$x > 4$$
 et $(x \le 6$ ou $x \ge 2)$

Exercice 13 (Réunion de n ensembles)

Soit $n \in \mathbb{N}$. Déterminer $\bigcup_{i=1}^{n} A_i$ et $\bigcap_{i=1}^{n} A_i$ avec :

- a) $\forall i \in [1, n], A_i = [0, i]$
- b) $\forall i \in [1, n], A_i = [i, i + 1[.$
- c) $\forall i \in [1, n], A_i =]\frac{1}{i}, i]$

Exercice 14 (Différence symétrique)

Soient A, B deux parties de E. On pose $A\Delta B = (A \cup B) \setminus (A \cap B)$

- 1. Faire un dessin.
- 2. Déterminer $A\Delta A, A\Delta E$ et $A\Delta \emptyset$.
- 3. (a) Montrer : $A\Delta B = \left(A \cap \overline{B}\right) \cup \left(\overline{A} \cap B\right)$.
- (b) Déduire de (a) que $A\Delta B = \overline{A}\Delta \overline{B}$.
- (c) Déduire de (a) que $\overline{A\Delta B} = \overline{A}\Delta B$.
- 4. Montrer que $A\Delta B = \emptyset \iff A = B$.

Exercice 15 (Une partie de \mathbb{N}^2)

Pour tout $r \in \mathbb{N}$, on définit l'ensemble $E_r = \{(p,q) \in \mathbb{N}^2 \mid p+q=r\}.$

- 1. Expliciter E_0 , E_1 , E_2 , E_3 .
- 2. Représenter ces ensembles dans le plan \mathbb{R}^2 .
- 3. Que dire de $E_r \cap E_{r'}$ pour $r \neq r'$?
- 4. Montrer: $\forall (p,q) \in \mathbb{N}^2, \exists ! r \in \mathbb{N}, (p,q) \in E_r.$