Analyse de couverture urbaine par homologie persistante : cas du développement des transports publics

Elowan ; 10381

March 23, 2025

Le but

Trouver les zones les moins biens desservies par un réseau de métros.

En convertissant des données géographiques en représentation géométrique puis en effectuant une analyse topologique de l'espace représenté.

Figure 1: Carte vers représentation géoQ vers cartes avec triangles

Plus en détail : l'homologie persistante

Figure 2: Tore discrétisé, avec un zoom sur une partie du tore

Définitions

Simplexe

Généralisation du triangle en dimension n, c'est l'objet le plus simple que l'on puisse construire qui ait n dimension

Face

La face de σ un simplexe de dimension n est un simplexe σ' de dimension n-1 constituant σ .

Complexe simplicial

Un ensemble de simplexes de dimension non forcément égales

Figure 3: Exemple de complexe simplicial, avec des simplexes de différentes dim et faces

Définitions

Filtration

Suite croissante pour l'inclusion de complexes simplicials

Figure 4: Exemple de filtration

Classe d'homologie

Intuitivement, elle représente un trou en dimension n

4

Plan d'attaque

- Construire une filtration à partir d'un ensemble discret de points
- Application de l'algorithme standard
- Récupération des classes d'homologies

Théorème central

Définition de la distance

Distance

On définit la distance d entre deux stations de metro x et y:

$$d(x,y) = \frac{1}{2}(\min(t_{pied}(x,y),t_{voiture}(x,y)) + \min(t_{pied}(y,x),t_{voiture}(y,x)))$$

Définition des complexes pondérés de Vietoris-Rips

Lien entre les complexes et les stations de métros

Récupération des données

Pour le calcul des temps de trajet : apidocs.geoapify.com

Pour la récupération des stations et des temps d'attentes moyens : transport.data.gouv.fr

Prératif de l'algorithme : Ordre total sur les simplexes

Préparatif de l'algorithme : Matrice de brodure

Application de l'algorithme

```
for j=1 to n do
while il existe i < j avec Low(i) = j do
    Ajouter la colonne i a j</pre>
```

Compréhension du résultat en sortie

Résultats et conclusion

Figure 5: Marseille

Figure 6: Toulouse

Annexe

Définition d'une variété

Définition d'un cycle

Un cycle est une sous-variété fermée.

Définition d'une limite

Une limite est un cycle qui est également la limite d'une sous-variété

Définition d'une classe d'homologie

Une classe d'homologie est une classe d'équivalence de cycles modulo une limite : elle est donc représentée par un cycle qui n'est la limite d'aucune sous-variété, il représente donc un trou, une variété dont la limite serait ce cycle, mais qui n'est pas là

Annexe : Diagrammes de persistance

Figure 7: Diagramme de persistance de Marseille

Figure 8: Diagramme de persistance de Toulouse