SEMINAR 2

Problema 1. Fie multimile $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ și funcția $f: A \longrightarrow B$ dată prin

$$1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$$

Pentru orice $X \subset A$ și orice $Y \subset B$, calculați f(X) și respectiv $f^{-1}(Y)$.

Soluție: Submulțimile mulțimii A sunt în număr de $2^4 = 16$. Acestea sunt \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}.$

Imaginea directă a acestor multimi este $f(\emptyset) = \emptyset, f(\{1\}) = \{a\}, f(\{2\}) = \{b\}, f(\{3\}) = \{b\}, f(\{3\})$ $\{c\}, f(\{4\}) = \{d\}, f(\{1,2\}) = \{a,b\}, f(\{1,3\}) = \{a,c\}, f(\{1,4\}) = \{a,d\}, f(\{2,3\}) = \{b,c\}, f(\{1,4\}) = \{a,b\}, f(\{1,4\})$ $f(\{2,4\}) = \{b,d\}, f(\{3,4\}) = \{c,d\}, f(\{1,2,3\}) = \{a,b,c\}, f(\{1,2,4\}) = \{a,b,d\},$ $f(\{1,3,4\}) = \{a,c,d\}, f(\{2,3,4\}) = \{b,c,d\}, f(\{1,2,3,4\}) = \{a,b,c,d\}.$

Imaginile inverse ale submulțimilor mulțimii $\{a, b, c, d\}$ sunt

 $f^{-1}(\emptyset) = \emptyset, f^{-1}(\{a\}) = \{1\}, f^{-1}(\{b\}) = \{2\}, f^{-1}(\{c\}) = \{3\}, f^{-1}(\{d\}) = \{4\}, f^{-1}(\{a,b\}) = \{4\},$ $\{1,2\}, f^{-1}(\{a,c\}) = \{1,3\}, f^{-1}(\{a,d\}) = \{1,4\}, f^{-1}(\{b,c\}) = \{2,3\}, f^{-1}(\{b,d\}) = \{2,4\},$ $f^{-1}(\{c,d\}) = \{3,4\}, f^{-1}(\{a,b,c\}) = \{1,2,3\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,3,4\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,3,4\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,2,$ $f^{-1}(\{b,c,d\}) = \{2,3,4\}, f^{-1}(\{a,b,c,d\}) = \{1,2,3,4\}.$

Problema 2. Pentru orice mulțimi X, Y notăm cu H(X, Y) mulțimea funcțiilor de la X la Y. Fie A, B, C trei mulțimi nevide și fie funcția

$$\alpha: H(A, H(B, C)) \to H(A \times B, C)$$

definită prin $\alpha(f)(a,b) = f(a)(b)$ pentru orice $f \in H(A,H(B,C)), a \in A, b \in B$.

- (i) Arătați că α este bijectivă,

(ii) Explicitați
$$\alpha(f)$$
 pentru $f \in H(\{1,2,3\}, H(\{4,5,6\}, \{a,b,c,d\}))$, dată prin $f(1) = \begin{pmatrix} 4 & 5 & 6 \\ a & b & d \end{pmatrix}, f(2) = \begin{pmatrix} 4 & 5 & 6 \\ b & a & c \end{pmatrix}, f(3) = \begin{pmatrix} 4 & 5 & 6 \\ c & c & a \end{pmatrix}.$

Solutie:

(i) Fig $f,g \in H(A,H(B,C))$, a.î. $\alpha(f) = \alpha(g) \Leftrightarrow (\forall)(a,b) \in A \times B$, $\alpha(f)(a,b) = \alpha(g)(a,b) \Leftrightarrow (\forall)(a,b) \in A \times B$ f(a)(b) = g(a)(b), egaltate valabilă pentru orice $b \in B \Rightarrow f(a) = g(a)$, egaltate valabilă pentru orice $a \in A \Rightarrow f = g$. Deci α este injectivă.

Considerăm o funcție $F: A \times B \longrightarrow C$. Definim $f: A \longrightarrow H(B,C)$ prin f(a)(b) := F(a,b). Prin definiția lui f, avem $\alpha(f) = F$. Deci α este surjectivă.

(ii)
$$\alpha(f)(1,4) = f(1)(4) = a, \alpha(f)(1,5) = f(1)(5) = b, \alpha(f)(1,6) = f(1)(6) = d, \alpha(f)(2,4) = f(2)(4) = b, \alpha(f)(2,5) = f(2)(5) = a, \alpha(f)(2,6) = f(2)(6) = c, \alpha(f)(3,4) = f(3)(4) = c, \alpha(f)(3,5) = f(3)(5) = c, \alpha(f)(3,6) = f(3)(6) = a.$$

Problema 3. Arătați că mulțimea \mathbb{Q} a numerelor raționale este numărabilă.

Soluție: \mathbb{Z}, \mathbb{N} sunt mulțimi numărabile. Folosind un rezultat din curs $\Rightarrow \mathbb{Z} \times \mathbb{N}^*$ este numărabilă iar \mathbb{Q} se identifică cu mulțimea claselor de echivalență $\mathbb{Z} \times \mathbb{N}^*/\sim$, unde $(x,y)\sim (p,q) \Leftrightarrow xq=yp$. Deci \mathbb{Q} este numărabilă.

1

2 SEMINAR 2

Problema 4. Fie A o mulțime nevidă și $f:\mathcal{P}(A)\longrightarrow A$ o funcție. Notăm cu

$$B := A \setminus \{ f(X) \mid X \subseteq A, f(X) \in X \}$$

- (i) Arătați că există $D \in \mathcal{P}(A) \setminus \{B\}$ cu f(D) = f(B).
- (ii) Găsiți un D în cazul $A = \{1, 2, 3\}$ și

Soluție: (i) Fie f(B) = b. Dacă $b \in B$, atunci $f(B) = b \notin B$. O contradicție.

Deci $b \notin B \Leftrightarrow (\exists)D \subset A$ a.î. $f(D) = b \in D$. $D \neq B$ pentru că $b \in D \setminus B$ și f(D) = f(B).

Rezultă că nu există funcții injective de la mulțimea părților unei mulțimi $\mathcal{P}(A)$, la mulțimea nevidă A.

(ii) Pentru exemplul dat $\{f(X) \mid X \subseteq A, f(X) \in X\} = \{1\}, (X = A) \text{ iar } B = A \setminus \{1\} = \{2, 3\}.$ $f(\emptyset) = f(\{3\}) = f(A) = f(B) = 1$. Avem deci în acest caz trei exemple de mulţimi $D \neq B$ pentru care f(D) = f(B).

Problema 5. Fie A, B, C trei mulţimi. Arătaţi că $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ unde $X\Delta Y = (X\backslash Y) \cup (Y\backslash X)$ este diferenţa simetrică a mulţimilor X, Y.

Soluție: $A\Delta(B\Delta C) = A\Delta B\Delta C = (A\Delta B)\Delta C$ este reprezentată în figura de mai jos de regiunea colorată cu albastru.

Figura 1: $A\Delta B\Delta C$