November 11, 2020

Acknowledgements

An important resource for these slides was Christopher Bishop's *Pattern Recognition and Machine Learning*.

The model

- Observations $x_1, ..., x_n$.
- Latent variables z_n encode class (1-of-K encoding scheme). Assume a data point belongs to exactly one group or class out of K possibilities,
- Parameters $\theta = \{A, \pi, \phi\}$
 - Transition probabilities $p(\mathbf{z}_n|\mathbf{z}_{n-1})$ given by **A**, where $A_{ik} = p(\mathbf{z}_{nk} = 1|\mathbf{z}_{n-1,i} = 1)$
 - Emission probabilities $p(\mathbf{x}_n|\mathbf{z}_n, \phi)$ governed by ϕ . (E.g. $\phi = \{\mu_k, \Sigma_k\}_{k=1}^K$)
 - Distribution of **z** given by π : $\pi_k = p(z_{1k} = 1)$

Likelihood

$$P(X|\theta) = \sum_{Z} P(X, Z|\theta)$$

What would be hard about maximizing the likelihood?

4

Likelihood

$$P(X|\theta) = \sum_{Z} P(X, Z|\theta)$$

What would be hard about maximizing the likelihood?

- No closed-form solution for maximum likelihood
- The number of terms in the summation goes as K^N

Complete data likelihood

$$p(X, Z|\theta) = p(\mathbf{z}_1|\pi) \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, A) \prod_{m=1}^{N} p(\mathbf{x}_m|\mathbf{z}_m, \phi)$$

EM

E: Compute

$$Q(\theta, \theta^{(old)}) = \mathbb{E}_{Z|X, \theta^{(old)}} \ln p(X, Z|\theta).$$

M : Find θ to maximize $Q(\theta, \theta^{(old)})$.

$$p(X, Z|\theta) = p(\mathbf{z}_{1}|\pi) \prod_{n=2}^{N} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}, A) \prod_{m=1}^{N} p(\mathbf{x}_{m}|\mathbf{z}_{m}, \phi)$$

$$= (\prod_{k=1}^{K} \pi_{k}^{z_{1k}}) (\prod_{n=1}^{N} \prod_{k=1}^{K} \prod_{j=1}^{K} A_{jk}^{z_{n-1,j}z_{nk}}) (\prod_{m=1}^{N} \prod_{k=1}^{K} z_{mk} p(\mathbf{x}_{n}|\phi_{k}))$$

E-step

Define:
$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \theta^{(old)})$$
 Note: $\gamma(z_{nk}) = \mathbb{E}[z_{nk}]$ $\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \theta^{(old)})$. Note: $\xi(z_{n-1,j}, z_{nk}) = \mathbb{E}[z_{n-1,j}z_{nk}]$ Evaluate γ, ξ (how? forward backward algorithm). Then can compute:

$$\begin{split} Q(\theta, \theta^{(old)}) = & \mathbb{E}_{Z|X, \theta^{(old)}} \ln p(X, Z|\theta) \\ = & \sum_{k=1}^K \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^N \sum_{j=1}^K \sum_{k=1}^K \xi(z_{n-1, j} z_{nk}) \ln A_{jk} \\ & + \sum_{n=1}^N \sum_{k=1}^K \gamma(z_{nk}) \ln p(\mathbf{x}_n|\phi_k) \end{split}$$

$$\begin{split} Q(\theta, \theta^{(old)}) = & \mathbb{E}_{Z|X, \theta^{(old)}} \ln p(X, Z|\theta) \\ = & \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1, j} z_{nk}) \ln A_{jk} \\ & + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(\mathbf{x}_n|\phi_k) \end{split}$$

M-step: Find θ to maximize $Q(\theta, \theta^{(old)})$.

$$\pi_k = \frac{\gamma(z_{1k})}{\sum_{k=1}^K \gamma(z_{1k})}, \ A_{jk} = \frac{\sum_{n=2}^N \xi(z_{n-1,j}z_{nk})}{\sum_{l=1}^K \sum_{n=2}^N \xi(z_{n-1,j},z_{nl})}$$

Result of maximization with respect to ϕ depends on choice of emission probabilities.

M-step: Find θ to maximize $Q(\theta, \theta^{(old)})$.

$$\pi_k = \frac{\gamma(z_{1k})}{\sum_{k=1}^K \gamma(z_{1k})}, A_{jk} = \frac{\sum_{n=2}^N \xi(z_{n-1,j}z_{nk})}{\sum_{l=1}^K \sum_{n=2}^N \xi(z_{n-1,j},z_{nl})}$$

Result of maximization with respect to ϕ depends on choice of emission probabilities.

E.g if
$$p(\mathbf{x}|\phi_k) = \mathsf{Normal}(\mathbf{x}|\mu_k, \Sigma_k)$$

$$\mu_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^N \gamma(z_{nk})}, \Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

EM for HMMs summary:

Alternate between updating γ, ξ and updating π, A, ϕ .

How to efficiently calculate γ, ξ for the E-step?

Use a two-stage message passing algorithm, the *forward-backward* algorithm to compute.

For details and derivation, see, e.g. Christopher Bishop's *Pattern Recognition and Machine Learning* sec. 13.2.2.