Morning.

Turing Machine

- 1. Definition
- 2. Construction
- 3. Language accepted by TM

Turing Machine

Definition of Turing Machine

TM is a seven-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

- Q is finite set of states
- Σ is finite set of input symbols
- Γ is finite set of tape symbols
- δ is transition function : $Q \times \Gamma \Rightarrow Q \times \Gamma \times \{R, L\}$ $\delta(q, X) = (p, Y, D)$
- q_0 is start state
- B is blank symbol
- F is finite set of final state

Example
$$L = \{ a^n b^n c^n | n \ge 1 \}$$

 $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a,b,c\}, \{a,b,c,B,X,Y,Z\}, \delta, q_0,B, \{q_4\})$

Instantaneous

- how to describe the configuration of TM
- > sequence of symbols in tape
- > state of TM
- > read/wtite head of TM
- $> X_1 \dots X_{i-1} q X_i X_{i+1} \dots X_n$

Instantaneous

• ID of the above TM for $w=aabbcc \in \{a^nb^nc^n \mid n \ge 1\}$

 q_0 aabbcc $\vdash Xq_1$ abbcc $\vdash X$ a q_1 bbcc $\vdash XaYq_2$ bcc $XaYbq_2$ cc $\vdash X$ a Yq_3 bZc $\vdash X$ a q_3 YbZc $\vdash Xq_3$ aYbZc $\vdash Xq_3$ aYbZc $\vdash Xq_0$ aYbZc $\vdash XXq_1$ YbZc $\vdash XXYq_1$ bZc $\vdash XXYYq_2$ Zc $\vdash XXYYZq_2$ c $\vdash XXYYQ_3$ ZZ $\vdash ...$

Language of TM

language accepted by a TM

$$\{w \mid q_0w \not \succeq \alpha p\beta, p \in F, \alpha, \beta \in \Gamma^*\}$$

• The language accepted by TM is called recursively enumerable (RE) language.

Example Construct a Turing Machine for

$$L = \{ a^n b^n a^n b^n | n \ge 0 \}$$

Example Construct a Turing Machine for

$$L = \{ w \mid w \in \{0,1\}^* \text{ and } |w| \text{ is even } \}$$

Halting

· We say a TM halts if it enters a state q, scanning a tape symbol X, and there is no move in this situation.

Given two positive integers x and y, design a TM to compute x+y.

> notation for x and y

$$x \Rightarrow w(x) \in \{1\}^+ \text{ and } |w(x)| = x$$

$$x + y \Rightarrow w(x + y) \in \{1\}^+ \text{ and } |w(x + y)| = x + y$$

Compute the function nomus $(m, n)=\max(m-n,0)$

- > put 0^m10^n into tape as input
- > delete one 0 from 0^m and one 0 from 0ⁿ
- > three cases:

 $m>n \Leftrightarrow 0^{m-n-1}$ at the left of 1

 $m=n \Leftrightarrow no 0$

 $m < n \Leftrightarrow 0^{n-m}$ at the right of 1

Construct a TM to compute the function

where $w \in \{1\}^+$.

Construct a TM to compute the function

where $w \in \{0,1\}^+$.

Example

Construct a TM to compute $m \times n$.

Two Stack Machine

$$\delta(q, \alpha, X, Y) = (p, \alpha, \beta)$$

Example Construct a two stack machine for

$$L = \{ a^n b^n c^n | n \ge 0 \}$$

How about the two stack machine for

$$L = \{ a^n b^n c^n d^n e^n | n \ge 0 \}$$

Good good Study day Up