Stationarity Econ 211C – Unit 1, Section 1

Eric M. Aldrich UC Santa Cruz

Time Series

A time series is a stochastic process indexed by time:

$${Y(t): t \in \mathcal{T}}.$$

Let's focus on the case when Y(t) is univariate.

- ▶ If \mathcal{T} is an interval in \mathbb{R} , then Y(t) is a continuous time stochastic process.
- ▶ If \mathcal{T} is a set of discrete indices, Y(t) is a discrete time stochastic process.
 - ▶ In this case, we denote the time series process as $\{Y_t\}_{t\in\mathcal{T}}$ or simply $\{Y_t\}$.
 - Note that \mathcal{T} could be an infinite set such as $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}: \{Y_t\}_{t \in \mathcal{T}} = \{Y_t\}_{t = -\infty}^{\infty}.$
- ▶ In this course we will focus on discrete time series.

Distributions

We will think of $\{Y_t\}_{t\in\mathcal{T}}$ as a random variable in its own right.

- ▶ $y_{\mathcal{T}} = \{y_t\}_{t \in \mathcal{T}}$ is a single realization of $Y_{\mathcal{T}} = \{Y_t\}_{t \in \mathcal{T}}$.
- ▶ The CDF is $F_{\boldsymbol{Y}_{\mathcal{T}}}(\boldsymbol{y}_{\mathcal{T}})$ and the PDF is $f_{\boldsymbol{Y}_{\mathcal{T}}}(\boldsymbol{y}_{\mathcal{T}})$.
- ▶ For example, consider $\mathcal{T} = 1, \ldots, 100$:

$$F\left(\{y_t\}_{t=1}^{100}\right) = P(Y_1 \le y_1, \dots, Y_{100} \le y_{100}).$$

▶ Notice that Y_T is just a collection of random variables and $f_{Y_T}(y_T)$ is the joint density.

Time Series Observations

As statisticians and econometricians, we want many observations of Y_T to learn about its distribution:

$$oldsymbol{y}_{\mathcal{T}}^{(1)}, \quad oldsymbol{y}_{\mathcal{T}}^{(2)}, \quad oldsymbol{y}_{\mathcal{T}}^{(3)}, \quad \dots$$

Likewise, if we are only interested in the marginal distribution of Y_{17}

$$f_{Y_{17}}(a) = P(Y_{17} \le a)$$

we want many observations: $\left\{y_{17}^{(i)}\right\}_{i=1}^{N}$.

Time Series Observations

Unfortunately, we usually only have one observation of $Y_{\mathcal{T}}$.

- ► Think of the daily closing price of Harley-Davidson stock since January 2nd.
- ► Think of your cardiogram for the past 100 seconds.

In neither case can you repeat history to observe a new sequence of prices or electronic heart signals.

- ▶ In time series econometrics we typically base inference on a single observation.
- ▶ Additional assumptions about the process will allow us to exploit information in the full sequence $y_{\mathcal{T}}$ to make inferences about the joint distribution $F_{\boldsymbol{Y}_{\mathcal{T}}}(y_{\mathcal{T}})$.

Moments

Since the stochastic process is comprised of individual random variables, we can consider moments of each:

$$E[Y_t] = \int_{-\infty}^{\infty} y_t f_{Y_t}(y_t) dy_t = \mu_t$$

$$Var(Y_t) = \int_{-\infty}^{\infty} (y_t - \mu_t)^2 f_{Y_t}(y_t) dy_t = \gamma_{0t}$$

$$Cov(Y_t, Y_{t-j}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y_t - \mu_t) (y_{t-j} - \mu_{t-j})$$

$$\times f_{Y_t, Y_{t-j}}(y_t, y_{t-j}) dy_t dy_{t-j} = \gamma_{jt},$$

where f_{Y_t} and $f_{Y_t,Y_{t-j}}$ are the marginal distributions of $f_{\boldsymbol{Y}_{\mathcal{T}}}$ obtained by integrating over the appropriate elements of $\boldsymbol{Y}_{\mathcal{T}}$.

Autocovariance

Suppose $\boldsymbol{Y}_{\mathcal{T}} = (Y_1, Y_2, \dots, Y_T)'$.

$$\Sigma_{\boldsymbol{Y}_{\mathcal{T}}} = \begin{bmatrix} \gamma_{0,1} & \gamma_{-1,1} & \cdots & \gamma_{-T+1,1} \\ \gamma_{1,2} & \gamma_{0,2} & \cdots & \gamma_{-T+2,2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{T-1,T} & \gamma_{T-2,T} & \cdots & \gamma_{0,T} \end{bmatrix}$$

- ► This is a symmetric matrix.
- $ightharpoonup \gamma_{jt}$ is known as the jth autocovariance of Y_t since it is the covariance of Y_t with its own lagged value.

Autocorrelation

The jth autocorrelation of Y_t is defined as

$$\rho_{jt} = Corr(Y_t, Y_{t-j})$$

$$= \frac{Cov(Y_t, Y_{t-j})}{\sqrt{Var(Y_t)}\sqrt{Var(Y_{t-j})}}$$

$$= \frac{\gamma_{jt}}{\sqrt{\gamma_{0t}}\sqrt{\gamma_{0t-j}}}$$

Sample Moments

If we had N observations $\boldsymbol{y}_{\mathcal{T}}^{(1)}, \dots, \boldsymbol{y}_{\mathcal{T}}^{(N)}$, we could estimate moments of each (univariate) Y_t in the usual way:

$$\hat{\mu}_t = \frac{1}{N} \sum_{i=1}^N y_t^{(i)}.$$

$$\hat{\gamma}_{0t} = \frac{1}{N} \sum_{i=1}^N (y_t^{(i)} - \hat{\mu}_t)^2.$$

$$\hat{\gamma}_{jt} = \frac{1}{N} \sum_{i=1}^N (y_t^{(i)} - \hat{\mu}_t)(y_{t-j}^{(i)} - \hat{\mu}_{t-j}).$$

Example

Suppose Y_T is a T dimensional vector with each element described by

$$Y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_t^2), \forall t.$$

We could express this in vector form

$$oldsymbol{Y}_{\mathcal{T}} = oldsymbol{\mu}_{\mathcal{T}} + oldsymbol{arepsilon}_{\mathcal{T}}$$

where

$$\boldsymbol{\varepsilon}_{\mathcal{T}} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_T \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \Sigma), \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_T^2 \end{bmatrix}_{T \times T},$$

and where $\mu_{\mathcal{T}} = (\mu_1, \mu_2, \dots, \mu_T)'$ and $\mathbf{0} = (0, 0, \dots, 0)'_{1 \times T}$.

Example

In this case,

$$\mu_{t} = \operatorname{E} [Y_{t}] = \mu_{t}, \ \forall t,$$

$$\gamma_{0t} = \operatorname{Var} (Y_{t}) = \operatorname{Var} (\varepsilon_{t}) = \sigma_{t}^{2}, \ \forall t$$

$$\gamma_{jt} = \operatorname{Cov} (Y_{t}, Y_{t-j}) = \operatorname{Cov} (\varepsilon_{t}, \varepsilon_{t-j}) = 0, \ \forall t, j \neq 0.$$

- ▶ If $\sigma_t^2 = \sigma^2 \ \forall t$, ε_T is known as a Gaussian white noise process.
- ▶ In this case, $Y_{\mathcal{T}}$ is a Gaussian white noise process with drift $\mu_{\mathcal{T}}$ is the drift vector.

White Noise

Generally speaking, $\varepsilon_{\mathcal{T}}$ is a white noise process if

$$E\left[\varepsilon_t\right] = 0, \ \forall t \tag{1a}$$

$$E\left[\varepsilon_t^2\right] = \sigma^2, \ t \tag{1b}$$

$$E\left[\varepsilon_{t}\varepsilon_{\tau}\right] = 0, \text{ for } t \neq \tau.$$
 (1c)

Notice there is no distributional assumption for ε_t .

- ▶ If ε_t and ε_τ are independent for $t \neq \tau$, ε_T is independent white noise.
- Notice that independence ⇒ Equation (1c), but Equation (1c) ⇒ independence.
- ▶ If $\varepsilon_t \sim \mathcal{N}(0, \sigma^2) \ \forall t$, as in the example above, $\varepsilon_{\mathcal{T}}$ is Gaussian white noise.

Weak Stationarity

Suppose the first and second moments of a stochastic process $Y_{\mathcal{T}}$ don't depend on $t \in \mathcal{T}$:

$$\mathbf{E}\left[Y_{t}\right] = \mu \ \, \forall t$$

$$\mathbf{Cov}\left(Y_{t}, Y_{t-j}\right) = \gamma_{j} \ \, \forall t \text{ and any } j.$$

- ▶ In this case $Y_{\mathcal{T}}$ is weakly stationary or covariance stationary.
- ▶ In the previous example, if $Y_t = \mu + \varepsilon_t \ \forall t, \ \boldsymbol{Y}_T$ is weakly stationary.
- ▶ However if $\mu_t \neq \mu \ \forall t, \ \boldsymbol{Y}_{\mathcal{T}}$ is not weakly stationary.

Autocorrelation under Weak Stationarity

If $Y_{\mathcal{T}}$ is weakly stationary

$$\rho_{jt} = \frac{\gamma_{jt}}{\sqrt{\gamma_{0t}}\sqrt{\gamma_{0t-j}}}$$

$$= \frac{\gamma_{j}}{\sqrt{\gamma_{0}}\sqrt{\gamma_{0}}}$$

$$= \frac{\gamma_{j}}{\gamma_{0}}$$

$$= \rho_{j}.$$

▶ Note that $\rho_0 = 1$.

Weak Stationarity

Under weak stationarity, autocovariances γ_j only depend on the distance between random variables within a stochastic process:

$$Cov(Y_{\tau}, Y_{\tau-j}) = Cov(Y_t, Y_{t-j}) = \gamma_j.$$

This implies

$$\gamma_{-j} = \operatorname{Cov}(Y_{t+j}, Y_t) = \operatorname{Cov}(Y_t, Y_{t-j}) = \gamma_j.$$

More generally,

$$\Sigma_{\boldsymbol{Y}_{\mathcal{T}}} = \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{T-2} & \gamma_{T-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{T-3} & \gamma_{T-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_{T-2} & \gamma_{T-3} & \cdots & \gamma_0 & \gamma_1 \\ \gamma_{T-1} & \gamma_{T-2} & \cdots & \gamma_1 & \gamma_0 \end{bmatrix}.$$

Strict Stationarity

 $\boldsymbol{Y}_{\mathcal{T}}$ is strictly stationary if for any set $\{j_1, j_2, \dots, j_n\} \in \mathcal{T}$

$$f_{Y_{j_1},\dots,Y_{j_nn}}(a_1,\dots,a_n) = f_{Y_{j_1+\tau},\dots,Y_{j_nn+\tau}}(a_1,\dots,a_n), \ \forall \tau.$$

- ▶ Strict stationarity means that the joint distribution of any subset of random variables in $Y_{\mathcal{T}}$ is invariant to shifts in time, τ .
- ► Strict stationarity ⇒ weak stationarity if the first and second moments of a stochastic process exist.
- ▶ Weak stationarity ⇒ strict stationarity: invariance of first and second moments to time shifts (weak stationarity) does not mean that all higher moments are invariant to time shifts (strict stationarity).

Strict Stationarity

If $Y_{\mathcal{T}}$ is Gaussian then weak stationarity \Rightarrow strict stationarity.

- ▶ If $Y_{\mathcal{T}}$ is Gaussian, all marginal distributions of $(Y_{j_1}, \ldots, Y_{j_n})$ are also Gaussian.
- Gaussian distributions are fully characterized by their first and second moments.

Ergodicity

Given N identically distributed weakly stationary stochastic processes $\{Y_{\mathcal{T}}\}_{i=1}^N$, the ensemble average

$$\frac{1}{N} \sum_{i=1}^{N} Y_t^{(i)} \stackrel{p}{\to} \mu, \quad \forall t \in \mathcal{T}.$$

For a single stochastic process, we desire conditions under which the $time\ average$

$$\frac{1}{T} \sum_{t=1}^{T} Y_t \stackrel{p}{\to} \mu, \tag{2}$$

where we have assumed $\mathcal{T} = \{1, \dots, T\}$.

Ergodicity

If $Y_{\mathcal{T}}$ is weakly stationary and

$$\sum_{j=0}^{\infty} |\gamma_j| < \infty, \tag{3}$$

 $Y_{\mathcal{T}}$ is ergodic for the mean and Equation (2) holds.

- ► Equation (3) requires that the autocovariances fall to zero sufficiently quickly.
- ▶ i.e. a long realization of $\{y_t\}$ will have many segments that are uncorrelated and which can be used to approximate an ensemble average.

Ergodicity

A weakly stationary process is ergodic for the second moments if

$$\frac{1}{T-j} \sum_{t=j+1}^{T} (Y_t - \mu)(Y_{t-j} - \mu) \xrightarrow{p} \gamma_j.$$
 (4)

- ► Separate conditions exist which cause Equation (4) to hold.
- ▶ If $Y_{\mathcal{T}}$ is Gaussian and stationary, then Equation (3) ensures that $Y_{\mathcal{T}}$ is ergodic for all moments.