Recitation 2: Sets (again but advanced)

Discrete Mathematics

Habib University Karachi, Pakistan

January 28, 2022

Question

Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find

- $\blacksquare A \cup B$
- $\blacksquare A \cap B$
- $\blacksquare A B$
- $\blacksquare B A$

The Solution of part A

This contains elements of both A and B therefore

$$A \cup B = \{a,b,c,d,e,f,g,h\}$$

The Solution of part B

This contains elements that are in both A and B therefore

$$A\cap B=\{a,b,c,d,e\}$$

The Solution of part C

This contains elements of A that are not in B therefore

$$A - B = \{\}$$

The Solution of part D

This contains elements of B that are not in A therefore

$$B-A=\{f,g,h\}$$

Question

Find the Cartesian product of $A=\{1,2\}$ and $B=\{a,b,c\}.$

The Solution

Definition

The Cartesian product of two sets X and Y, written $X\times Y,$ is the set $X\times Y=\{(x,y)\mid x\in X,y\in Y\}.$

The Solution

Definition

The Cartesian product of two sets X and Y, written $X\times Y$, is the set $X\times Y=\{(x,y)\mid x\in X,y\in Y\}.$

Since, |A| = 2 and |B| = 3, Cartesian Product of A and B will have

$$2 \times 3 = 6$$

The Solution

Definition

The Cartesian product of two sets X and Y, written $X \times Y$, is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}.$

Since, |A| = 2 and |B| = 3, Cartesian Product of A and B will have

$$2 \times 3 = 6$$

elements(multiplication principle).

The Cartesian Product $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

-Cardinalities — Question

Cartesian Product is not commutative: Given some set A and B show that $A\times B$ may not be equal to $B\times A$

Proof by counterexample: we show that there exits pair of sets A and B such that, $A\times B\neq B\times A$

Proof by counterexample:

Let
$$A=\{1,2\}$$
 and $B=\{a,b,c\}$

Proof by counterexample:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$ The Cartesian product of $B \times A$ is

$$B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$

Proof by counterexample:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$ The Cartesian product of $B \times A$ is

$$B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$

The Cartesian product of $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Proof by counterexample:

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$ The Cartesian product of $B \times A$ is

$$B\times A=\{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}$$

The Cartesian product of $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

We can see $A \times B \neq B \times A$.

Question

Can you conclude that A=B if A, B, and C are set such that

- $\blacksquare A \cup C = B \cup C$
- $A \cap C = B \cap C$ (Not connected to the first part!)

Let
$$A=\{a\}$$
, $B=\{a,b\}$ and $C=\{a,b,c\}.$

Let
$$A=\{a\},$$
 $B=\{a,b\}$ and $C=\{a,b,c\}.$
$$A\cup C=\{a,b,c\}$$

Let
$$A=\{a\}$$
, $B=\{a,b\}$ and $C=\{a,b,c\}$.
$$A\cup C=\{a,b,c\}$$

$$B\cup C=\{a,b,c\}$$

Let
$$A=\{a\},\ B=\{a,b\}$$
 and $C=\{a,b,c\}.$
$$A\cup C=\{a,b,c\}$$

$$B\cup C=\{a,b,c\}$$

$$A\cup C=B\cup C$$

Let
$$A=\{a\},\ B=\{a,b\}$$
 and $C=\{a,b,c\}.$
$$A\cup C=\{a,b,c\}$$

$$B\cup C=\{a,b,c\}$$

$$A\cup C=B\cup C$$

$$A\neq B$$

Solution to part A

Let
$$A=\{a\},\ B=\{a,b\}$$
 and $C=\{a,b,c\}.$
$$A\cup C=\{a,b,c\}$$

$$B\cup C=\{a,b,c\}$$

$$A\cup C=B\cup C$$

$$A\neq B$$

Best TAs Ever

So the answer is No! :(

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

$$A\cap C=\emptyset$$

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

$$A\cap C=\emptyset$$

$$B\cap C=\emptyset$$

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

$$A \cap C = \emptyset$$

$$B\cap C=\emptyset$$

$$A \cap C = B \cap C$$

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

$$A \cap C = \emptyset$$

$$B \cap C = \emptyset$$

$$A \cap C = B \cap C$$

$$A \neq B$$

Solution to part B

Let
$$A = \{a\}$$
, $B = \{b\}$ and $C = \emptyset$.

$$A\cap C=\emptyset$$

$$B \cap C = \emptyset$$

$$A \cap C = B \cap C$$

$$A \neq B$$

So the answer is No! :(

Question

Suppose that $A \times B = \emptyset$, where A and B are set. What can you conclude?

Definition

The Cartesian product of two sets X and Y, written $X\times Y$, is the set $X\times Y=\{(x,y)\mid x\in X,y\in Y\}.$

Definition

The Cartesian product of two sets X and Y, written $X \times Y$, is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}.$

If $A = \emptyset$ or $B = \emptyset$ then there is no (a,b) such that $a \in A$ and $b \in B$

Definition

The Cartesian product of two sets X and Y, written $X \times Y$, is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}.$

If $A=\emptyset$ or $B=\emptyset$ then there is no (a,b) such that $a\in A$ and $b\in B$ The other way around

Definition

The Cartesian product of two sets X and Y, written $X \times Y$, is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}.$

If $A=\emptyset$ or $B=\emptyset$ then there is no (a,b) such that $a\in A$ and $b\in B$

The other way around

If $A \neq \emptyset$ and $B \neq \emptyset$ then there is exists $a \in A$ and $b \in B$, thus $(a,b) \in A \times B$

Definition

The Cartesian product of two sets X and Y, written $X \times Y$, is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}.$

If $A = \emptyset$ or $B = \emptyset$ then there is no (a,b) such that $a \in A$ and $b \in B$

The other way around

If $A \neq \emptyset$ and $B \neq \emptyset$ then there is exists $a \in A$ and $b \in B$, thus $(a,b) \in A \times B$

So we can conclude that either A or either B is a null set. This is similar to saying "multiplying by 0".

$$A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$$

Question

Let A, B, C be sets. Show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Using set identities we will show $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

TABLE 1 Set Identities.				
Identity	Name			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			

Using set identities we will show $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

TABLE 1 Set Identities.				
Identity	Name			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C}) \qquad \qquad \text{by the second De Morgan law}$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C}) \qquad \qquad \text{by the first De Morgan law}$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A} \qquad \text{by the commutative law for intersections}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A} \qquad \qquad \text{by the commutative law for unions}$$

Question

For sets A and B, prove that $A \cup (B - A) = A \cup B$

Using set identities, we can show $A \cup (B-A) = A \cup B$

TABLE 1 Set Identities.				
Identity	Name			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws			
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

$$A \cup (B-A) = A \cup (B \cap \overline{A}) \quad \text{Using the definition of set complement}$$

$$= A \cup (\overline{A} \cap B) \quad \text{Using commutative law for intersections}$$

$$= (A \cup \overline{A}) \cap (A \cup B) \qquad \qquad \text{Using Distributive Law}$$

$$= U \cap (A \cup B) \qquad \qquad \text{Using complement law } A \cup \overline{A} = U$$

$$= A \cup B \qquad \qquad \text{Using Identity Law}$$

Therefore shown that they are equal.

Using a Truth table.

Using a Truth table.

A	B	B-A	$A \cup (B-A)$	$A \cup B$
F	F	F	F	F
F	T	T	T	T
T	F	F	T	T
T	T	F	T	T

23/24

Github!

When you commit after a long time and don't remember what you've done

Conclusion

-Conclusion

That's all folks! Attendance time and don't forget to read the book and subscribe to our youtube channel!