t-SNE – effective usage, avoiding pitfalls, and alternatives

Caroline Weis

December 5, 2019

Machine Learning and Computational Biology Intradepartmental seminar

t-SNE in a nutshell

t-SNE algorithm

- t-SNE: t-distributed Stochastic Neighbor Embedding
- machine learning algorithm to visualize high-dimensional data
- Hinton et al developed SNE [1]
- van der Maaten introduced the t-distribution [2]
- non-linear dimensionality reduction

t-SNE conserves probabilities, not distances

t-SNE algorithm

conditional probability $p_{B|A}$: probability that a point A would choose point B as its neighbor

t-SNE algorithm

- high-dimensional space $p_{i|i}$: normal distributed
- low-dimensional space $q_{j|i}$: t-distributed (with one degree of freedom)
- ullet cost function: Kullback-Leibler divergence between $p_{j|i}$ and $q_{j|i}$

t-SNE minimizes the difference between two probability distributions

t-SNE is not deterministic

t-SNE parameters

cost function parameter

 perplexity ≈ number of neighbors considered / weigh emphasis on local or global aspects of your data [3] recommended [5,50]

optimization parameters

- number iterations > 250
- learning rate recommended [10,1000]

perplexity

perplexity

Within the recommended range, results look different with varying perplexities

perplexity and number of samples I

With more data points the perplexity generally needs to increase to obtain the same results

perplexity and number of samples II

The perplexity should be smaller than the number of points - t-SNE can give unexpected behavior otherwise

t-SNE behaviour

random noise

Random noise doesn't always look random

cluster size

Cluster sizes are not conserved by t-SNE

cluster distances

Cluster distances are not always conserved by t-SNE

summary

- increase perplexity with number of points
- always choose perplexity < number of points
- random noise might look non-random
- t-SNE does not conserve cluster sizes
- t-SNE does not always conserve cluster distances

effective use of t-SNE

- Run t-SNE for several suitable perplexity values.
- Don't "optimize" perplexity with Kullback-Leibler divergence!
- Use Kullback-Leibler divergence to find best optimization.
 (With constant dataset and perplexity, KL divergences are comparable. It is perfectly fine to run t-SNE several times, and select the solution with the lowest KL divergence)
- Don't overinterpret results!
- Try other dimensionality reduction methods as well.

alternative algorithms

low dimensional embedding algorithms

• Principal Component Analysis (PCA)

- Multi-Dimensional Scaling (MDS)
- Local Linear Embedding (LLE)
- Isomap
- Spectral Embedding

slides and code on GitHub

https://github.com/cvweis/2019-12-tSNE-intradepartmental-seminar

- slides
- code to reproduce all plots (Jupyter Notebooks and Python code)

references

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. volume 9, pages 2579–2605. 2008.

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. **How to use t-sne effectively.** *Distill*, 2016.

formulars

- high-dimensional space: $p_{j|i} = \frac{\exp(-\|x_i x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i x_k\|^2/2\sigma_i^2)}$
- low-dimensional space: $q_{j|i} = \frac{\left(1 + \|y_i y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k y_l\|^2\right)^{-1}}$
- cost function Kullback-Leibler divergence $C = \sum_{i} KL(P_{i} || Q_{i}) = \sum_{i} \sum_{j} p_{ji} \log \frac{p_{j|i}}{q_{j|i}}$