Metabolomics

January 8, 2021

1 Figure 3 C: Targeted amino acid quantification

1.1 Define the Q-test for identification of outliers in the AA Quantification

```
[2]: q90 = [0.941, 0.765, 0.642, 0.56, 0.507, 0.468, 0.437, 0.412, 0.392, 0.376, 0.361, 0.349, 0.338, 0.329, 0.32, 0.313, 0.306, 0.3, 0.295, 0.29, 0.285, 0.281, 0.277, 0.273, 0.269, 0.266, 0.263, 0.26
]

q95 = [0.97, 0.829, 0.71, 0.625, 0.568, 0.526, 0.493, 0.466, 0.444, 0.426, 0.41, 0.396, 0.384, 0.374, 0.365, 0.356, 0.349, 0.342, 0.337, 0.331, 0.326, 0.321, 0.317, 0.312, 0.308, 0.305, 0.301, 0.29
]

q99 = [0.994, 0.926, 0.821, 0.74, 0.68, 0.634, 0.598, 0.568, 0.542, 0.522, 0.503, 0.488, 0.475, 0.463, 0.452, 0.442, 0.433, 0.425, 0.418, 0.411, 0.404, 0.399, 0.393, 0.388, 0.384, 0.38, 0.376, 0.372
]
```

```
Q90 = \{n:q \text{ for } n,q \text{ in } zip(range(3,len(q90)+1), q90)\}
Q95 = \{n:q \text{ for } n,q \text{ in } zip(range(3,len(q95)+1), q95)\}
Q99 = \{n:q \text{ for } n,q \text{ in } zip(range(3,len(q99)+1), q99)\}
def dixon_test(data, left=True, right=True, q_dict=Q95):
    Keyword arguments:
        data = A ordered or unordered list of data points (int or float).
        left = Q-test of minimum value in the ordered list if True.
        right = Q-test of maximum value in the ordered list if True.
        q_dict = A dictionary of Q-values for a given confidence level,
             where the dict. keys are sample sizes N, and the associated values
             are the corresponding critical Q values. E.g.,
             {3: 0.97, 4: 0.829, 5: 0.71, 6: 0.625, ...}
    Returns a list of 2 values for the outliers, or None.
    E.q.,
       for [1,1,1] -> [None, None]
       for [5,1,1] -> [None, 5]
       for [5,1,5] -> [1, None]
    assert(left or right), 'At least one of the variables, `left` or `right`, u
\hookrightarrowmust be True.'
    assert(len(data) >= 3), 'At least 3 data points are required'
    assert(len(data) <= max(q_dict.keys())), 'Sample size too large'</pre>
    sdata = sorted(data)
    Q_{mindiff}, Q_{maxdiff} = (0,0), (0,0)
    if left:
        Q_{\min} = (sdata[1] - sdata[0])
        try:
             Q_{\min} /= (sdata[-1] - sdata[0])
        except ZeroDivisionError:
        Q_mindiff = (Q_min - q_dict[len(data)], sdata[0])
    if right:
        Q_{\max} = abs((sdata[-2] - sdata[-1]))
        try:
             Q_{\max} /= abs((sdata[0] - sdata[-1]))
        except ZeroDivisionError:
            pass
        Q_maxdiff = (Q_max - q_dict[len(data)], sdata[-1])
```

```
if not Q_mindiff[0] > 0 and not Q_maxdiff[0] > 0:
    outliers = [None, None]

elif Q_mindiff[0] == Q_maxdiff[0]:
    outliers = [Q_mindiff[1], Q_maxdiff[1]]

elif Q_mindiff[0] > Q_maxdiff[0]:
    outliers = [Q_mindiff[1], None]

else:
    outliers = [None, Q_maxdiff[1]]

return outliers
```

1.2 Read in AA Quant data and metadata

```
[3]: aminos = pd.read_csv(r'data/AA-Results.csv',index_col=[0],header=[0,1])
    aminos = aminos.sort_index()

aminos_key = pd.read_csv(r'data/AA-MetaData.csv',index_col=[0],header=[0])

blank=aminos.loc['blank'].melt()
    blank.columns=['variable','measure','value']
    blank=blank[blank.measure=='Final Conc.']
    blank=blank.drop('measure',axis=1)
    blank['cond']='blank'
    blank
```

```
[3]:
                              variable
                                         value
                                                 cond
    12
          Tryptophan (Trp)-pos Results 0.4153 blank
    13
          Tryptophan (Trp)-pos Results 0.4160
                                               blank
          Tryptophan (Trp)-pos Results 0.4309
    14
                                               blank
    15
          Tryptophan (Trp)-pos Results 0.4151
                                               blank
          Tryptophan (Trp)-pos Results 0.4114 blank
    16
    1171
            Arginine (Arg)-pos Results 0.2365
                                               blank
    1172
            Arginine (Arg)-pos Results 0.5347
                                                blank
    1173
            Arginine (Arg)-pos Results 0.2619
                                                blank
    1174
            Arginine (Arg)-pos Results 0.2252
                                               blank
    1175
            Arginine (Arg)-pos Results 0.2366 blank
    [300 rows x 3 columns]
```

2 Plots results, using Q-test to filter out outliers

• Creates table df_conc, which is used to generate the subsequent figure

• Must run this code for the following segment to work (uses df conc)

```
[4]: cols = [(x,'Final Conc.') for x in aminos.columns.levels[0].values]
     fig,ax = plt.subplots(2,3,figsize=(12,12),sharex=True,sharey=True)
     i=0
     j=0
     df_conc=pd.DataFrame()
     for index,df in aminos_key.groupby(by=['Time point','Growth condition']):
         #protein =df['Protein concentration (uq/mL)']
         conc = aminos.loc[df.index.values,cols]
         conc.columns = conc.columns.droplevel(1)
         for col in conc.columns:
             x = conc[col]
             if len(x) >= 3:
                 res = np.array(dixon_test(x.values))
                 res =res[res!=None]
                 if len(res)>0:
                     x[x==res[0]]=None
             conc.loc[:,col] = x
         cond=' '.join([index[1].split('(')[0],index[0]])[:-5]
         if '+' in cond:
             cond=cond.split('+')[1][1:]
         means = conc.mean()
         errors = conc.std()
         temp = conc.melt()
         temp['cond']=cond
         df_conc=pd.concat([df_conc,temp])
         labels = [x.split()[0] for x in conc.columns]
         sns.barplot(y=labels,x=means,xerr=errors,ax=ax[j][i%3])
         ax[j][i%3].set_title(cond,fontsize=15)
         i += 1
         if i\%3 == 0 and i>0:
             j=1
         if j == 1 and i\%3 == 1:
             ax[j][i%3].set_xlabel('Biomass Normalized Conc.')
     \#ax[j][i\%3].set\_xlim(-1,50)
     ax[j][i%3].set_xscale('log')
     fig.tight_layout()
     sns.despine()
     df_conc=pd.concat([df_conc,blank])
     #plt.savefiq('AminoAcid-Quant.pnq',bbox_inches='tight',dpi=100)
```

```
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:52:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:60:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:52:
```

RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:60:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:52:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:60:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:52:
RuntimeWarning: invalid value encountered in double_scalars
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:60:
RuntimeWarning: invalid value encountered in double_scalars

3 Figure 3 C

- Be sure you run the code segments above, as this relies on the generation of df_conc
- Plots results with outliers removed on a log scale

```
[5]: df conc=df conc[(df conc.variable!='Citrulline - pos Results')&(df conc.
     ⇒variable!='Taurine - pos Results')&(df_conc.variable!='Hydroxyproline_
     cond_map={'Regular early log ':'Reference T1', '0.25 mM cysteine early log ':
     '0.25 mM sulfide early log ': 'Sulfide T1', 'Regular mid log ':
     '0.25 mM cysteine mid log ':'Cysteine T2', '0.25 mM sulfide mid log ':
     df conc['labels'] = df conc.cond.map(cond map)
    rows=4
    cols=4
    fig=plt.figure(figsize=(cols*2.5,rows*3))
    ax=plt.subplot(rows,cols,1)
    order=['Arginine (Arg)-pos Results','Lysine (Lys)-pos Results','Aspartate⊔
     → (Asp)-pos Results', 'Serine (Ser)-pos Results',
           'Threonine (Thr)-pos Results', 'Asparagine (Asn)-pos Results','Glutamine⊔
     →(Gln)-pos Results',
           'Glycine (Gly)-pos Results', 'Proline (Pro)-pos Results',
           'Isoleucine (Ile)-pos Results', 'Leucine (Leu)-pos Results', 'Valine_\sqcup
     'Methionine (Met)-pos Results',
            'Alanine (Ala)-pos Results',
            'Phenylalanine (Phe)-pos Results']
    for measure in order:
        df = df conc[df conc.variable==measure]
        g=sns.barplot(y='labels',x='value',data=df,ax=ax)
        #g.set_xticklabels(g.get_xticklabels(),rotation=90)
        g.set_xscale('log')
        g.set_ylabel('')
        g.set_xlabel('')
        g.set_title(measure.split('(')[0])
        if df['value'].max() > 500:
            g.set xlim(10,10**4)
            #g.set_xticks(range(1,10**4))
        g.set_xlim(.01,10**4)
        g.set_xticks([10**-2,10**0,10**2,10**4])
        if (i-1)\%cols != 0:
            g.set_yticklabels('')
        if i <= len(order):</pre>
```

```
ax=plt.subplot(rows,cols,i)

fig.tight_layout()
fig.text(.4,0,'Concentration (ug/mL)')
#plt.savefig('2020_Targeted_aminos3.pdf',bbox_inches='tight')
```

[5]: Text(0.4, 0, 'Concentration (ug/mL)')


```
[105]: df_conc=df_conc[(df_conc.variable!='Citrulline - pos Results')&(df_conc.
       →variable!='Taurine - pos Results')&(df_conc.variable!='Hydroxyproline_
       cond_map={'Regular early log ':'Reference T1', '0.25 mM cysteine early log ':
       '0.25 mM sulfide early log ': 'Sulfide T1', 'Regular mid log ':
       '0.25 mM cysteine mid log ':'Cysteine T2', '0.25 mM sulfide mid log ':
       df_conc['labels']=df_conc.cond.map(cond_map)
      rows=4
      cols=4
      fig=plt.figure(figsize=(cols*3,rows*3))
      ax=plt.subplot(rows,cols,1)
      i=1
      order=['Arginine (Arg)-pos Results','Lysine (Lys)-pos Results','Aspartate⊔
       → (Asp)-pos Results', 'Serine (Ser)-pos Results',
             'Threonine (Thr)-pos Results', 'Asparagine (Asn)-pos Results', 'Glutamine
       \hookrightarrow (Gln)-pos Results',
             'Glycine (Gly)-pos Results', 'Proline (Pro)-pos Results',
             'Isoleucine (Ile)-pos Results', 'Leucine (Leu)-pos Results', 'Valine⊔
       'Methionine (Met)-pos Results',
              'Alanine (Ala)-pos Results',
              'Phenylalanine (Phe)-pos Results']
      for measure in order:
          df = df_conc[df_conc.variable==measure]
          g=sns.boxplot(y='labels',x='value',data=df,ax=ax)
          sns.stripplot(y='labels',x='value',data=df,ax=ax,color='black',alpha=0.5)
          #q.set_xticklabels(q.qet_xticklabels(),rotation=90)
          #g.set_xscale('log')
          g.set_ylabel('')
          g.set_xlabel('')
          g.set_title(measure.split('(')[0])
          #if df['value'].max() > 500:
              #q.set xlim(10,10**4)
              #g.set_xticks(range(1,10**4))
          #g.set_xlim(.01,10**2)
          #q.set_xticks([10**-3,10**-2,10**0,10**2])
          if df.value.dropna().max() < 10 and df.value.dropna().max()>1:
              if df.value.dropna().max() < 6:</pre>
                  if df.value.dropna().max() < 3:</pre>
                      g.set_xticks([0,1,2,3])
```

```
else:
                g.set_xticks([0,2,4,6])
        else:
            g.set_xticks([0,3,6,9])
    if df.value.dropna().max() > 10 and df.value.dropna().max()<100:</pre>
        if df.value.dropna().max() < 30:</pre>
            if df.value.dropna().max() < 15:</pre>
                 g.set_xticks([0,5,10,15])
            else:
                 g.set_xticks([0,10,20,30])
        else:
            g.set_xticks([0,15,30,45])
    if df.value.dropna().max() >100:
        if df.value.dropna().max() >500:
            g.set_xticks([0,250,500,750])
        else:
            g.set_xticks([0,70,140,210])
    if df.value.dropna().max() <2:</pre>
        if df.value.dropna().max() <.5:</pre>
            g.set_xticks([0,.15,.3,.45])
        else:
            g.set_xticks([0,.4,.8,1.2])
    if (i-1)\%cols != 0:
        g.set_yticklabels('')
    i+=1
    if i <= len(order):</pre>
        ax=plt.subplot(rows,cols,i)
fig.tight_layout()
fig.text(.4,0,'Concentration (ug/mL)')
plt.savefig('2020_Targeted_aminos_boxplot.pdf',bbox_inches='tight')
```


4 Figure 4 C

• Requires above code to be run first (Fig 3 C)

```
df['cond'] = df['cond'].map(cond_map)
   df=df[df['cond']!='Blank']
   t=[]
   cond=[]
   for val in df['cond']:
       val=val.split()
       if val[0] !='Sulfide':
           cond.append(val[0][:3])
       else:
           cond.append(val[0][:4])
       t.append(val[1])
   df['cond']=cond
   df['t']=t
   df['Z-Score']=zscore(df['value'].values)
   plt.figure(figsize=(4,4))
   sns.
\hookrightarrow catplot(x='t', hue='cond', y='Z-Score', data=df, palette=c, kind='bar', height=4)
   #plt.legend(loc=2,bbox_to_anchor=(1,1))
   plt.xlabel('')
   plt.yticks([-2,-1,0,1,2,3])
   plt.title(measure.split('-')[0])
   \#plt.savefig(measure.split('-')[0]+'-zscore.pdf',bbox_inches='tight')
   plt.show()
   plt.clf()
```

<Figure size 288x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

<Figure size 288x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

<Figure size 288x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

<Figure size 288x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

5 Untargeted Metabolomics

• Results tables used below were generated by XCMS online

6 Figure 4 B

- XCMS online systems biology results
- Provides pathway dysregulation for multi sample comparison (cys vs reg vs sulf)

```
[144]:
                                                         Pathway
                                                                   Overlapping genes
       0
                   isoleucine biosynthesis I (from threonine)
                                                                                    0
       2
                                            valine biosynthesis
                                                                                    0
       3
                                incomplete reductive TCA cycle
                                                                                    0
       4
                                   2-oxopentenoate degradation
                                                                                    0
       5
                            phosphopantothenate biosynthesis I
                                                                                    0
       6
                                        respiration (anaerobic)
                                                                                    0
       9
                                                glyoxylate cycle
                                                                                    0
       10
                                        mixed acid fermentation
                                                                                    0
                 catechol degradation to 2-oxopent-4-enoate I
       11
                                                                                    0
       12
                 threonine degradation III (to methylglyoxal)
                                                                                    0
       13
                         pyrimidine ribonucleosides salvage I
                                                                                    0
       14
                                                                                    0
            UDP-N-acetyl--D-mannosaminouronate biosynthesis
       15
                        methylerythritol phosphate pathway II
                                                                                    0
       16
           \'\"pyridoxal 5\'\'-phosphate salvage pathway\"\'
                                                                                    0
       17
                                                                                    0
                                          gentisate degradation
       18
           biotin biosynthesis from 7-keto-8-aminopelargo...
                                                                                  0
       21
                  TCA cycle IV (2-oxoglutarate decarboxylase)
                                                                                    0
       19
                                  TCA cycle III (helicobacter)
                                                                                    0
       20
                                                                                    0
                                          lysine biosynthesis I
          Overlapping genes.1
                                 All genes
                                             Overlapping proteins
       0
                             0%
                             0%
                                          0
       2
                                                                  0
                             0%
       3
                                          0
                                                                  0
                             0%
       4
                                          0
                                                                  0
       5
                             0%
                                          0
                                                                  0
                             0%
                                          0
       6
                                                                  0
                             0%
       9
                                          0
                                                                  0
       10
                             0%
                                          0
                                                                  0
                             0%
                                          0
       11
                                                                  0
                             0%
       12
                                          0
                                                                  0
                             0%
       13
                                          0
                                                                  0
       14
                             0%
                                          0
                                                                  0
       15
                             0%
                                          0
                                                                  0
                             0%
       16
                                          0
                                                                  0
       17
                             0%
                                          0
                                                                  0
       18
                             0%
                                          0
                                                                  0
                             0%
       21
                                          0
                                                                  0
       19
                             0%
                                          0
                                                                  0
                             0%
       20
                                          0
                                                                  0
          Overlapping proteins.1
                                    All proteins
                                                    Overlapping putative metabolites1
       0
                                                                                       6
                                0%
                                                0
       2
                                0%
                                                0
                                                                                       3
                                0%
                                                0
       3
                                                                                      4
       4
                                0%
                                                0
                                                                                      3
```

5 6 9 10 11 12 13 14		(0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0			3 4 3 4 2 2 2 2	
15 16 17 18		(0% 0 0% 0 0% 0 0% 0			3 2 2 2	
21 19 20		(0% 0 0% 0 0% 0			4 3 3	
0 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 21 19 20	Overlappin	g putative	metabolites1.1 54.5% 60.0% 40.0% 42.9% 37.5% 26.7% 30.0% 23.5% 50.0% 50.0% 50.0% 40.0% 40.0% 40.0% 30.8% 23.1%	All metabolites2* 11 5 10 7 8 15 10 17 4 4 4 12 5 5 5 13 13 13	p-values 0.00068 0.00120 0.00120 0.00200 0.00260 0.00300 0.00440 0.00540 0.00540 0.00540 0.00790 0.00790 0.00790 0.00790 0.00890 0.00890 0.00890	q-values 0.00660 0.00660 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00792 0.00890 0.00890 0.00890 0.00890 0.00890 0.00890 0.00890	
0 2 3 4 5 6 9 10	logp 7.293418 6.725434 6.725434 6.214608 5.952244 5.809143 5.449140 5.426151 5.221356	overlap 54.545455 60.000000 40.000000 42.857143 37.500000 26.666667 30.000000 23.529412 50.000000					

```
12 5.221356 50.000000
13 5.221356 50.000000
14 5.221356 50.000000
15 4.961845 25.000000
16 4.840893 40.000000
17 4.840893 40.000000
18 4.840893 40.000000
21 4.721704 30.769231
19 4.721704 23.076923
20 4.721704 23.076923
```

7 Names and ordering were further curated using Adobe illustrator

```
[147]: plt.figure(figsize=(5,10))
       temp = sysbio[(sysbio['p-values']<=.01)&(sysbio['overlap']>=20)]
       sort=[]
       for p in temp['Pathway']:
           if 'lysine' in p.lower() or 'valine' in p.lower() or 'isoleucine' in p.
        →lower():
               sort.append('bcaa')
           elif 'biosynthesis' in p.lower():
               sort.append('biosynth')
           elif 'degredation' in p.lower():
               sort.append('deg')
           elif 'glyoxylate' in p.lower() or 'tca' in p.lower():
               sort.append('tca')
           elif 'fermentation' in p.lower():
               sort.append('ferm')
           else:
               sort.append('path')
       temp['sort']=sort
       sns.barplot(y='Pathway',x='overlap',data=temp.
       ⇒sort_values(by='sort'),palette='rainbow')
       plt.ylabel('')
       plt.xlabel('Pathway Metabolite Overlap (%)')
       plt.xlim(0,100)
       plt.savefig('Metabolite-Pathway-Disregulation.pdf',bbox_inches='tight')
```


8 XCMS Online MultiClass Results (mummichog + feature abundances)

```
[149]: pathway = pd.read_csv(r'data/pathwayanalysis_mummichog_all.csv')
features=pd.read_csv(r'data/XCMS-MultiClass-All.csv',index_col=0)
features
```

[149]:		name	mzmed	mzmin	mzmax	rtmed	\
	featureidx						
	1	M911T2_5	911.486746	911.486356	911.489983	2.049583	
	2	M485T23_1	484.638683	484.638013	484.639495	22.604533	
	3	M514T23_1	514.147566	514.147004	514.148278	22.626633	
	4	M515T23_1	514.649161	514.648714	514.649834	22.625600	
	5	M969T23	969.280946	969.279960	969.282163	22.613367	
	•••	•••	•••	•••			
	29983	M979T20 4	979 031523	979 026895	979 034959	19 580333	

29984 29985 29986 29987	M1061T20_4 M567T19_3 M1059T20_3 M939T20_1	1061.03 566.98 1059.04 938.53	30125 56 17693 105	6.974108 5 9.044559 10	61.038579 66.980818 59.053117 38.534355	19.574900 19.285067 19.578500 19.569067
C 1	rtmin	rtma	ax npeaks	Cys_early	Cys_mid	\
featureidx	0.040007	0.0504		•	•	•••
1	2.049097	2.05912			0	•••
2	22.441633	22.76815			0	•••
3	22.450200	22.78486			0	•••
4	22.450200	22.75143			0	•••
5	22.441633	22.79325	50 24	5	0	•••
•••	•••	•••				
29983	19.436200	19.88055			5	•••
29984	19.429500	19.68243			5	•••
29985	18.955300	19.50538	35 35	5	4	
29986	19.454600	19.63401		4	5	
29987	19.437800	19.65770	00 29	4	5	
	Sulf	_4	Sulf_5	Sul	.f_6	$Sulf_7 \setminus$
featureidx						
1	0.0000	000	0.000000	0.000	000	0.00000
2	2947.1311	12 53	387.786899	10512.508	700 994	12.933647
3	10228.6202	210 127	739.203810	24752.718	460 2544	14.025700
4	1473.2403	383 35	88.953005	8237.769	879 884	15.544354
5	5398.3051	.92 77	712.465577	13713.700	000 1479	91.932000
•••	•••		•••	•••	•••	
29983	74186.8428	349	938.100800	36523.133	400 3378	36.608000
29984	66480.8640	000 302	224.658160	32453.198	770 2395	6.123900
29985	37974.1180	000 1908	339.678200	180341.841	400 15350	01.735500
29986	119789.2800	000 289	941.711040	36981.664	.000 2150	02.682530
29987	38812.0200		367.681950			53.517070
	Sulf	8	Sulf_12	Sulf_1	.3 5	Sulf_14 \
featureidx		_ `	_	_		
1	0.0000	000	0.00000	0.0000	0 0.	.000000
2	11833.7884		372.27600	41237.2920		. 244970
3	25487.2005		906.34182	74647.6278		. 193000
4	8302.4672		255.61148	29283.3895		. 117800
5	14893.3391		359.63124	54289.9536		.328000
J	1-1000.0091	.20 110	JUJ. UU12 1	04209.9000	.0002.	02000
 29983	56593.4793	210 500	 383.76055	 31963.9346	 a วายา/	. 688860
29984	54586.8325		786.08250	17157.2739		.899470
29985	153928.2928		192.47160	187036.3697		
29986	69536.7301		331.79050	17133.3249		.842730
29987	33345.7756	306	325.96364	10903.5506	3 8757.	.898971

```
Sulf_15
                               Sulf_16
featureidx
1
                 0.00000
                               0.00000
2
             44785.12589
                           57506.10800
3
             83768.10200
                           95294.30221
             33901.81809
                           40221.23230
5
             56710.08310
                           68136.46000
             52402.77692 100848.12300
29983
29984
             42938.66087
                           97891.91788
            171034.72650
29985
                           86020.71200
29986
             54714.21035 169284.58920
29987
             28008.05973
                           56703.22411
[29987 rows x 61 columns]
```

[2000] TOWN A OF COTUMINS

9 Extract feature ID and compound mapping

```
'2-ACETO-2-HYDROXY-BUTYRATE': 234,
'PYRUVATE': [117, 241, 174, 197, 42, 298, 102, 34],
'1-KETO-2-METHYLVALERATE': [213, 44],
'2-KETO-3-METHYL-VALERATE': [179, 38],
'CPD-16013': 68,
'GLYCEROL-3P': [100, 303],
'GLYCEROL': 44,
'CMP': 53,
'2-KETO-ISOVALERATE': 38,
'2-ACETO-LACTATE': [161, 184, 234, 158],
'FUM': 220,
'SUC': 100,
'MAL': [220, 241],
'4-HYDROXY-2-KETOVALERATE': [161, 184, 234, 158],
```

```
'OXOPENTENOATE': [158, 161],
'2-DEHYDROPANTOATE': 234,
'L-PANTOATE': [213, 44],
'GLYOX': 241,
'CPD-14965': 239,
'AMINO-OXOBUT': 27,
'METHYL-GLYOXAL': 184,
'UMP': 289,
'UDP-N-ACETYL-D-GLUCOSAMINE': [115, 296],
'UDP-MANNAC': [115, 296],
'HYDROXY-METHYL-BUTENYL-DIP': 110,
'PYRIDOXAL': 239,
'PYRIDOXINE': 113,
'DETHIOBIOTIN': 111,
'S-ADENOSYLMETHIONINE': 242,
'DELTA1-PIPERIDEINE-2-6-DICARBOXYLATE': [39, 21],
'AMINO-HYDROXYMETHYL-METHYL-PYR-P': 86,
'CHORISMATE': 188,
'ASCORBATE': [34, 117, 197, 298, 42, 174, 102],
'CPD-329': [34, 117, 197, 298, 42, 174, 102],
'2-AMINOACRYLATE': [68, 262],
'OROTATE': 247,
'GLUCOSAMINE-1P': 171,
'2-D-THREO-HYDROXY-3-CARBOXY-ISOCAPROATE': 38,
'2K-4CH3-PENTANOATE': [179, 38],
'3-CARBOXY-3-HYDROXY-ISOCAPROATE': 38,
'ACETYL-GLU': [49, 21],
'30H-4P-0H-ALPHA-KETOBUTYRATE': [153, 96],
'TMP': 210,
'CPD-10754': [101, 233],
'CPD-13722': 234,
'CPD-180': 171,
'PREPHENATE': 188,
'HCN': 262,
'BUTYRIC_ACID': [67, 71, 213],
'XANTHOSINE': 254,
'D-XYLULOSE': [161, 158, 184],
'DCMP': 210,
'CPD-7682': 215,
'CPD0-1159': 312,
'DTDP-D-GLUCOSE': 280,
'SULFATE': 79,
'PSEUDOURIDINE-5-P': 289,
'ACRYLATE': 184,
'DODECANOATE': 105}
```

```
[151]: rev_cmp_dict ={}
       for key in cmp_dict:
           idx = cmp_dict[key]
           if type(idx) != type([]):
               idx = [idx]
           for i in idx:
               if i not in rev_cmp_dict:
                   rev_cmp_dict[i] = [key]
                   rev_cmp_dict[i].append(key)
       rev cmp dict
[151]: {68: ['CPD-15056', 'CPD-16013', '2-AMINOACRYLATE'],
        234: ['2-ACETO-2-HYDROXY-BUTYRATE',
         '2-ACETO-LACTATE',
         '4-HYDROXY-2-KETOVALERATE',
         '2-DEHYDROPANTOATE',
         'CPD-13722'],
        117: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        241: ['PYRUVATE', 'MAL', 'GLYOX'],
        174: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        197: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        42: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        298: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        102: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        34: ['PYRUVATE', 'ASCORBATE', 'CPD-329'],
        213: ['1-KETO-2-METHYLVALERATE', 'L-PANTOATE', 'BUTYRIC_ACID'],
        44: ['1-KETO-2-METHYLVALERATE', 'GLYCEROL', 'L-PANTOATE'].
        179: ['2-KETO-3-METHYL-VALERATE', '2K-4CH3-PENTANOATE'],
        38: ['2-KETO-3-METHYL-VALERATE',
         '2-KETO-ISOVALERATE',
         '2-D-THREO-HYDROXY-3-CARBOXY-ISOCAPROATE',
         '2K-4CH3-PENTANOATE',
         '3-CARBOXY-3-HYDROXY-ISOCAPROATE'],
        100: ['GLYCEROL-3P', 'SUC'],
        303: ['GLYCEROL-3P'],
        53: ['CMP'],
        161: ['2-ACETO-LACTATE',
         '4-HYDROXY-2-KETOVALERATE',
         'OXOPENTENOATE',
         'D-XYLULOSE'],
        184: ['2-ACETO-LACTATE',
         '4-HYDROXY-2-KETOVALERATE',
         'METHYL-GLYOXAL',
         'D-XYLULOSE',
         'ACRYLATE'].
        158: ['2-ACETO-LACTATE',
```

```
'4-HYDROXY-2-KETOVALERATE',
 'OXOPENTENOATE',
 'D-XYLULOSE'],
220: ['FUM', 'MAL'],
239: ['CPD-14965', 'PYRIDOXAL'],
27: ['AMINO-OXOBUT'],
289: ['UMP', 'PSEUDOURIDINE-5-P'],
115: ['UDP-N-ACETYL-D-GLUCOSAMINE', 'UDP-MANNAC'],
296: ['UDP-N-ACETYL-D-GLUCOSAMINE', 'UDP-MANNAC'],
110: ['HYDROXY-METHYL-BUTENYL-DIP'],
113: ['PYRIDOXINE'].
111: ['DETHIOBIOTIN'],
242: ['S-ADENOSYLMETHIONINE'],
39: ['DELTA1-PIPERIDEINE-2-6-DICARBOXYLATE'],
21: ['DELTA1-PIPERIDEINE-2-6-DICARBOXYLATE', 'ACETYL-GLU'],
86: ['AMINO-HYDROXYMETHYL-METHYL-PYR-P'],
188: ['CHORISMATE', 'PREPHENATE'],
262: ['2-AMINOACRYLATE', 'HCN'],
247: ['OROTATE'],
171: ['GLUCOSAMINE-1P', 'CPD-180'],
49: ['ACETYL-GLU'],
153: ['30H-4P-OH-ALPHA-KETOBUTYRATE'],
96: ['30H-4P-OH-ALPHA-KETOBUTYRATE'],
210: ['TMP', 'DCMP'],
101: ['CPD-10754'],
233: ['CPD-10754'],
67: ['BUTYRIC_ACID'],
71: ['BUTYRIC_ACID'],
254: ['XANTHOSINE'],
215: ['CPD-7682'],
312: ['CPD0-1159'],
280: ['DTDP-D-GLUCOSE'],
79: ['SULFATE'],
105: ['DODECANOATE']}
```

10 Unique feature indexes mapping to a metabolite

```
[152]: idxs = []
for key in cmp_dict:
    if type(cmp_dict[key]) == type(1):
        idxs.append(cmp_dict[key])
    else:
        idxs+=cmp_dict[key]
    idxs=pd.unique(idxs)
    idxs
```

```
[152]: array([ 68, 234, 117, 241, 174, 197, 42, 298, 102, 34, 213, 44, 179, 38, 100, 303, 53, 161, 184, 158, 220, 239, 27, 289, 115, 296, 110, 113, 111, 242, 39, 21, 86, 188, 262, 247, 171, 49, 153, 96, 210, 101, 233, 67, 71, 254, 215, 312, 280, 79, 105])
```

11 Feature abundance normalization

- Convert Area to Log Area
- Convert Log Area to Z-score

```
[153]: logarea = pd.DataFrame(index=features.index,columns=features.columns[31:
       →],data=features.iloc[:,31:])
       logarea=np.log(logarea+1).dropna()
       vals = logarea.values.ravel()
       hist = plt.hist(vals,bins=50,density=True)
       dist = norm(loc=np.median(vals),scale=np.std(vals)/1.25)
       plt.plot(sorted(vals),dist.pdf(sorted(vals)))
       keep = []
       toss = []
       cutoff = 0.05
       x = dist.ppf(cutoff)
       plt.plot((x,x),plt.ylim(),'k--')
       for i in logarea.index:
           vals = logarea.loc[i,:].values
           truth = dist.cdf(vals)>cutoff
           if len(truth[truth==True])/len(vals)>.5:
               keep.append(i)
           else:
               toss.append(i)
       logarea=logarea.loc[keep,:]
```



```
[154]: cols = ['Cys_1', 'Cys_1', 'Cys_1', 'Cys_1', 'Cys_1', 'Cys_2', 'Cys_2', 'Cys_2', 'Cys_2', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_2', 'Reg_2', 'Reg_2', 'Reg_2', 'Sulf_1', 'Sulf_1', 'Sulf_1', 'Sulf_1', 'Sulf_2', 'Sulf_2', 'Sulf_2', 'Sulf_2']
cols = [(x.split('_')[0],x.split('_')[1]) for x in cols]

temp = logarea.copy()
temp.columns = pd.MultiIndex.from_tuples(cols)
avglogarea = temp.groupby(level=[0,1],axis=1).median()
zscores = temp.groupby(level=[0,1],axis=1).median().T.apply(zscore).T
zscores
```

```
[154]:
                                                      Sulf
                    Cys
                                      Reg
                      1
                               2
                                       1
                                                2
                                                                  2
      featureidx
      2
                -0.133942 -1.838233 1.128196 0.922728 -0.527024 0.448275
      3
      4
                0.115952 -2.076387 0.906507 0.780861 -0.184705 0.457773
      5
                0.026579 -1.984705 1.013676 0.749986 -0.377800 0.572265
      6
                0.105237 -1.870644 1.060993 0.790479 -0.649394 0.563329
      29983
                1.081408 -0.302608 -0.095585 0.099708 -1.876962 1.094039
      29984
                1.083481 -0.375817 0.157349 0.148293 -1.942739
                                                           0.929433
      29985
                0.470406 1.072179 -1.822936 -0.776935 0.260781 0.796505
```

12 Supplementary Figure 4C: PCA Analysis with all features

```
[16]: colors=sns.color_palette('colorblind')
      cols = ['Cys_1', 'Cys_1', 'Cys_1', 'Cys_1', 'Cys_1', 'Cys_2', 'Cys_2', 'Cys_2',
             'Cys_2', 'Cys_2', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1', 'Reg_1',
             'Reg_2', 'Reg_2', 'Reg_2', 'Reg_2', 'Sulf_1', 'Sulf_1',
             'Sulf_1', 'Sulf_1', 'Sulf_1', 'Sulf_2', 'Sulf_2', 'Sulf_2',
             'Sulf_2', 'Sulf_2']
      cols = [(x.split('_')[0],x.split('_')[1]) for x in cols]
      temp = logarea.copy()
      temp.columns = pd.MultiIndex.from_tuples(cols)
      temp=temp[['Reg','Cys','Sulf']]
      logarea2 = temp
      pca_data =temp.copy().T
      pca_data=pca_data.apply(zscore)
      pca = PCA(n_components=2)
      color=sns.color palette('colorblind')
      c=[colors[0],colors[2],colors[4]]
      pca_coord = pca.fit_transform(pca_data)
      pca_coord= pd.DataFrame(pca_coord,index=pca_data.index,columns=['PC1','PC2'])
      pca_coord = pca_coord.reset_index()
      pca coord.columns=['Condition','Time','PC1','PC2']
      labels = {'Cys':'Cysteine Inhibition','Reg':'Regular','Sulf':'Sulfide_
      →Inhibition'}
      pca_coord['Condition']=pca_coord['Condition'].map(labels)
      print('Explained Variance... PC1:%s, PC2:%s'%tuple(pca.
      →explained_variance_ratio_))
      loadings = pd.DataFrame(pca.components_,index=['PC1','PC2'],columns=pca_data.
      →columns)
      plt.figure(figsize=(4,4))
      →scatterplot(x='PC1',y='PC2',hue='Condition',style='Time',data=pca_coord,palette=c)
      plt.legend(bbox_to_anchor=(-.05,1.5),ncol=2,loc=2,fontsize=15)
      plt.xlabel('PC1 (%s)'%(pca.explained_variance_ratio_[0].round(2)))
      plt.ylabel('PC2 (%s)'%(pca.explained_variance_ratio_[1].round(2)))
      #plt.savefig('Pred_Metabolites_PCA_All.pdf',bbox_inches='tight')
```

Explained Variance... PC1:0.30613375327757675, PC2:0.12063218765258428

```
[16]: Text(0, 0.5, 'PC2 (0.12)')
```


13 Supplementary Figure 4D: PCA Analysis with features mapping to metabolites

```
pca_data =temp.loc[idxs,:].copy().T
pca_data=pca_data.apply(zscore)
pca = PCA(n_components=2)
color=sns.color_palette('colorblind')
c=[colors[0],colors[2],colors[4]]
pca_coord = pca.fit_transform(pca_data)
pca_coord= pd.DataFrame(pca_coord,index=pca_data.index,columns=['PC1','PC2'])
pca_coord = pca_coord.reset_index()
pca coord.columns=['Condition','Time','PC1','PC2']
labels = {'Cys':'Cysteine Inhibition','Reg':'Regular','Sulf':'Sulfideu
→Inhibition'}
pca_coord['Condition'] = pca_coord['Condition'].map(labels)
print('Explained Variance... PC1:%s, PC2:%s'%tuple(pca.
→explained_variance_ratio_))
loadings = pd.DataFrame(pca.components_,index=['PC1','PC2'],columns=pca_data.
⇔columns)
plt.figure(figsize=(4,4))
⇒scatterplot(x='PC1',y='PC2',hue='Condition',style='Time',data=pca_coord,palette=c)
plt.legend(bbox_to_anchor=(-.05,1.5),ncol=2,loc=2,fontsize=15)
plt.xlabel('PC1 (%s)'%(pca.explained variance ratio [0].round(2)))
plt.ylabel('PC2 (%s)'%(pca.explained_variance_ratio_[1].round(2)))
#plt.savefig('Pred_Metabolites_PCA_All.pdf',bbox_inches='tight')
```

Explained Variance... PC1:0.5316343239426855, PC2:0.21420861404263722

```
[76]: Text(0, 0.5, 'PC2 (0.21)')
```


14 Obtain feature pathway mapping

```
pathmap[int(j)]=[path]
elif path not in pathmap[int(j)]:
    pathmap[int(j)].append(path)

pathmap
```

```
[155]: {68: ['isoleucine biosynthesis I (from threonine)',
         'methionine biosynthesis I',
         'cysteine biosynthesis/homocysteine degradation'],
        234: ['isoleucine biosynthesis I (from threonine)',
         'valine biosynthesis',
         '2-oxopentenoate degradation',
         'phosphopantothenate biosynthesis I',
         'androstenedione degradation'],
        117: ['isoleucine biosynthesis I (from threonine)',
         'valine biosynthesis',
         'incomplete reductive TCA cycle',
         '2-oxopentenoate degradation',
         'respiration (anaerobic)',
         'mixed acid fermentation',
         'methylerythritol phosphate pathway II',
         'gentisate degradation',
         'lysine biosynthesis I',
         'alanine biosynthesis I',
         '4-aminobenzoate biosynthesis',
         'L-ascorbate biosynthesis IV',
         'thiazole biosynthesis I (E. coli)',
         'tryptophan biosynthesis',
         "pyridoxal 5'-phosphate biosynthesis I",
         'gluconeogenesis I',
         'androstenedione degradation',
         'streptomycin biosynthesis',
         'alanine degradation IV',
         'pyruvate fermentation to acetate II',
         'D-fructuronate degradation',
         'pyruvate fermentation to lactate',
         '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
         'pyruvate fermentation to ethanol III',
         'glycolysis II (from fructose 6-phosphate)',
         'glycolysis III (from glucose)',
         'L-serine degradation',
         'L-cysteine degradation II',
         'tryptophan degradation II (via pyruvate)',
         'pyruvate decarboxylation to acetyl CoA',
         'thiazole biosynthesis II (Bacillus)'],
        241: ['isoleucine biosynthesis I (from threonine)',
         'valine biosynthesis',
```

```
'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'glyoxylate cycle',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'TCA cycle III (helicobacter)',
 'lysine biosynthesis I',
 'TCA cycle IV (2-oxoglutarate decarboxylase)',
 'TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
174: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
```

```
'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
197: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
```

```
42: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
298: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
```

```
'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
102: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
34: ['isoleucine biosynthesis I (from threonine)',
```

```
'valine biosynthesis',
 'incomplete reductive TCA cycle',
 '2-oxopentenoate degradation',
 'respiration (anaerobic)',
 'mixed acid fermentation',
 'methylerythritol phosphate pathway II',
 'gentisate degradation',
 'lysine biosynthesis I',
 'alanine biosynthesis I',
 '4-aminobenzoate biosynthesis',
 'L-ascorbate biosynthesis IV',
 'thiazole biosynthesis I (E. coli)',
 'tryptophan biosynthesis',
 "pyridoxal 5'-phosphate biosynthesis I",
 'gluconeogenesis I',
 'androstenedione degradation',
 'streptomycin biosynthesis',
 'alanine degradation IV',
 'pyruvate fermentation to acetate II',
 'D-fructuronate degradation',
 'pyruvate fermentation to lactate',
 '<i>N</i>-acetylneuraminate and <i>N</i>-acetylmannosamine degradation',
 'pyruvate fermentation to ethanol III',
 'glycolysis II (from fructose 6-phosphate)',
 'glycolysis III (from glucose)',
 'L-serine degradation',
 'L-cysteine degradation II',
 'tryptophan degradation II (via pyruvate)',
 'pyruvate decarboxylation to acetyl CoA',
 'thiazole biosynthesis II (Bacillus)'],
213: ['isoleucine biosynthesis I (from threonine)',
 'phosphopantothenate biosynthesis I',
 'lysine fermentation to acetate and butyrate'],
44: ['isoleucine biosynthesis I (from threonine)',
 'cardiolipin biosynthesis I',
 'phosphopantothenate biosynthesis I',
 'glycerol degradation I',
 'triacylglycerol degradation'],
179: ['isoleucine biosynthesis I (from threonine)',
 'leucine biosynthesis',
 'isoleucine degradation I'],
38: ['isoleucine biosynthesis I (from threonine)',
 'valine biosynthesis',
 'phosphopantothenate biosynthesis I',
 'alanine biosynthesis I',
 'leucine biosynthesis',
 'valine degradation I',
```

```
'isoleucine degradation I'],
100: ['cardiolipin biosynthesis I',
 'incomplete reductive TCA cycle',
 'respiration (anaerobic)',
 'glycerol degradation I',
 'aerobic respiration I (cytochrome c)',
 'glyoxylate cycle',
 'mixed acid fermentation',
 'TCA cycle III (helicobacter)',
 'lysine biosynthesis I',
 'TCA cycle IV (2-oxoglutarate decarboxylase)',
 'TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)',
 'methionine biosynthesis I',
 'CDP-diacylglycerol biosynthesis I',
 '4-aminobutyrate degradation II',
 'ketolysis',
 'glycerophosphodiester degradation',
 '4-aminobutyrate degradation III',
 '3-oxoadipate degradation',
 '4-aminobutyrate degradation I'],
303: ['cardiolipin biosynthesis I',
 'glycerol degradation I',
 'CDP-diacylglycerol biosynthesis I',
 'glycerophosphodiester degradation'],
53: ['cardiolipin biosynthesis I',
 'pyrimidine ribonucleosides salvage I',
 'methylerythritol phosphate pathway II',
 'pyrimidine ribonucleotides salvage',
 'purine and pyrimidine metabolism',
 'CMP phosphorylation',
 'coenzyme A biosynthesis',
 'phosphatidylethanolamine biosynthesis I'],
161: ['valine biosynthesis',
 '2-oxopentenoate degradation',
 'catechol degradation to 2-oxopent-4-enoate I',
 'catechol degradation to 2-oxopent-4-enoate II',
 'protocatechuate degradation III (<I>para</I>-cleavage pathway)',
 'xylose degradation I'],
184: ['valine biosynthesis',
 '2-oxopentenoate degradation',
 'threonine degradation III (to methylglyoxal)',
 'xylose degradation I',
 'acrylonitrile degradation I'],
158: ['valine biosynthesis',
 '2-oxopentenoate degradation',
 'catechol degradation to 2-oxopent-4-enoate I',
 'catechol degradation to 2-oxopent-4-enoate II',
```

```
'protocatechuate degradation III (<I>para</I>-cleavage pathway)',
  'xylose degradation I'],
 220: ['incomplete reductive TCA cycle',
  'respiration (anaerobic)',
  'aerobic respiration I (cytochrome c)',
  'glyoxylate cycle',
  'mixed acid fermentation',
  'gentisate degradation',
  'TCA cycle III (helicobacter)',
  'TCA cycle IV (2-oxoglutarate decarboxylase)',
  'TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)',
  'arginine biosynthesis II (acetyl cycle)',
  'gluconeogenesis I',
  "inosine-5'-phosphate biosynthesis II",
  'adenosine ribonucleotides <i>de novo</i> biosynthesis',
  'citrulline-nitric oxide cycle',
  "inosine-5'-phosphate biosynthesis I",
  'urea cycle',
  'arginine biosynthesis IV (archaebacteria)'],
 239: ['catechol degradation to 2-oxopent-4-enoate I',
  "pyridoxal 5'-phosphate salvage pathway",
  'catechol degradation to 2-oxopent-4-enoate II',
  'protocatechuate degradation III (<I>para</I>-cleavage pathway)'],
 27: ['threonine degradation III (to methylglyoxal)',
  'threonine degradation II'],
 289: ['pyrimidine ribonucleosides salvage I',
  'UMP biosynthesis',
  'pyrimidine ribonucleotides salvage',
  'purine and pyrimidine metabolism',
  'UTP and CTP biosynthesis',
  'pseudouridine degradation',
  'pyrimidine nucleobases salvage I'],
 115: ['UDP-<i>N</i>-acetyl-&alpha;-D-mannosaminouronate biosynthesis',
  'UDP-<i>N</i>-acetyl-D-glucosamine biosynthesis I',
  'CMP-pseudaminate biosynthesis',
  'anhydromuropeptides recycling',
  'mycothiol biosynthesis',
  'UDP-<i>N</i>-acetylmuramoyl-pentapeptide biosynthesis II (lysine-
containing)',
  'UDP-<i>N</i>-acetylmuramoyl-pentapeptide biosynthesis III (<i>meso</i>-DAP-
containing)',
  'CMP-<i>N</i>-acetylneuraminate biosynthesis II (bacteria)'],
 296: ['UDP-<i>N</i>-acetyl-&alpha;-D-mannosaminouronate biosynthesis',
  'UDP-<i>N</i>-acetyl-D-glucosamine biosynthesis I',
  'CMP-pseudaminate biosynthesis',
  'anhydromuropeptides recycling',
  'mycothiol biosynthesis',
```

```
'UDP-<i>N</i>-acetylmuramoyl-pentapeptide biosynthesis II (lysine-
containing)',
  'UDP-<i>N</i>-acetylmuramoyl-pentapeptide biosynthesis III (<i>meso</i>-DAP-
containing)',
  'CMP-<i>N</i>-acetylneuraminate biosynthesis II (bacteria)'],
 110: ['methylerythritol phosphate pathway II'],
 113: ["pyridoxal 5'-phosphate salvage pathway"],
 111: ['biotin biosynthesis from 7-keto-8-aminopelargonate'],
 242: ['biotin biosynthesis from 7-keto-8-aminopelargonate',
  '4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis',
  'thiazole biosynthesis I (E. coli)',
  'cyclopropane fatty acid (CFA) biosynthesis',
  'factor 420 biosynthesis',
  'menaquinol-6 biosynthesis',
  '<i>S</i>-adenosyl-L-methionine cycle II',
  'menaquinol-10 biosynthesis',
  'lipoate biosynthesis and incorporation I',
  'menaquinol-11 biosynthesis',
  'S-adenosyl-L-methionine biosynthesis',
  'heme biosynthesis from uroporphyrinogen-III II',
  'cob(II)yrinate <i>a,c</i>-diamide biosynthesis I (early cobalt insertion)',
  'chlorophyllide <i>a</i> biosynthesis III',
  'chlorophyllide <i>a</i> biosynthesis I',
  'methionine degradation I (to homocysteine)',
  'lipoate biosynthesis and incorporation III (Bacillus)',
  'menaquinol-8 biosynthesis',
  'chlorophyllide <i>a</i> biosynthesis II (anaerobic)',
  'menaquinol-9 biosynthesis',
  'cob(II)yrinate <i>a,c</i>-diamide biosynthesis II (late cobalt
incorporation)'],
39: ['lysine biosynthesis I'],
 21: ['lysine biosynthesis I',
  'arginine biosynthesis II (acetyl cycle)',
  'ornithine biosynthesis'],
 86: ['4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis',
  'hydroxymethylpyrimidine salvage',
  'thiamin salvage IV (yeast)'],
 188: ['4-aminobenzoate biosynthesis',
  'tryptophan biosynthesis',
  'tyrosine biosynthesis I',
  'chorismate biosynthesis from 3-dehydroquinate'],
 262: ['methionine biosynthesis I',
  'taxiphyllin bioactivation',
  'thiosulfate disproportionation III (rhodanese)'],
 247: ['UMP biosynthesis'],
 171: ['UDP-<i>N</i>-acetyl-D-glucosamine biosynthesis I',
  'anhydromuropeptides recycling',
```

```
'streptomycin biosynthesis'],
      49: ['arginine biosynthesis II (acetyl cycle)', 'ornithine biosynthesis'],
      153: ["pyridoxal 5'-phosphate biosynthesis I"],
      96: ["pyridoxal 5'-phosphate biosynthesis I"],
      210: ['purine and pyrimidine metabolism',
       'dTMP <i>de novo</i> biosynthesis (mitochondrial)',
       'pyrimidine deoxyribonucleosides salvage',
       'pyrimidine deoxyribonucleotides <i>de novo</i> biosynthesis I',
       'pyrimidine deoxyribonucleotides <i>de novo</i> biosynthesis II',
       'salvage pathways of pyrimidine deoxyribonucleotides',
       '<i>N</i><sup>10</sup>-formyl-tetrahydrofolate biosynthesis',
       'pyrimidine deoxyribonucleotide phosphorylation'],
      101: ['CMP-pseudaminate biosynthesis'],
      233: ['CMP-pseudaminate biosynthesis'],
      67: ['lysine fermentation to acetate and butyrate'],
      71: ['lysine fermentation to acetate and butyrate'],
      254: ['xanthine and xanthosine salvage',
       "urate biosynthesis/inosine 5'-phosphate degradation",
       'purine ribonucleosides degradation'],
      215: ['lysine degradation VI'],
     312: ['oleate β -oxidation'],
     280: ['dTDP-L-rhamnose biosynthesis I'],
     79: ['sulfate activation for sulfonation'],
      105: ['palmitate biosynthesis II (bacteria and plants)']}
[]: def kmeans cluster(df,k):
         X = df.values
         km = KMeans(n_clusters=k, random_state=0)
         return km.fit_predict(X)
```

15 Figure 3A: Heatmap of feature z-scores for features mapping to metabolites

```
if p in pathmap[idx]:
            row_clrs[i][idx]=p
        else:
            row_clrs[i][idx]='None'
   row_clrs[i]=row_clrs[i].map(path_clr)
   i += 1
#If using plt.cm.tab20 then colors[i] must be changed to colors(i)
handles = [mpatches.Patch(color=path_clr[i], label=i) for i in path_clr.keys()]
#Creat heatmap
clust = sns.
→clustermap(df,cmap='RdYlBu',yticklabels='',figsize=(5,10),col_cluster=False,vmax=-2.
→5, vmin=2.5, row_colors=row_clrs)
clust.ax_heatmap.set(ylabel='',xlabel='')
clust.cax.set_visible(False)
clust.ax_heatmap.
-legend(bbox_to_anchor=(1,1),loc=2,handles=handles,frameon=False)
#plt.savefig('Pred-Metabolite-Heatmap.png',bbox_inches='tight',dpi=500)
```

[18]: <matplotlib.legend.Legend at 0x1a241d7e48>

16 Figure 4B: Putative features abundances in BCAA

```
[19]: names=['CPD-15056','1-KETO-2-METHYLVALERATE','2-KETO-3-METHYL-VALERATE','2-ACETO-2-HYDROXY-BUT
index=[]
name_dict={}
for name in names:
    if type(cmp_dict[name]) == type([]):
        idx=cmp_dict[name]
    else:
        idx=[cmp_dict[name]]

    index+=idx
    for i in idx:
        if i not in name_dict:
            name_dict[i]=name
```

```
else:
                  name_dict[i] = name_dict[i] +'/'+name
      name_dict
[19]: {68: 'CPD-15056',
       213: '1-KETO-2-METHYLVALERATE',
       44: '1-KETO-2-METHYLVALERATE/GLYCEROL',
       179: '2-KETO-3-METHYL-VALERATE',
       38: '2-KETO-3-METHYL-VALERATE/2-KETO-ISOVALERATE',
       234: '2-ACETO-2-HYDROXY-BUTYRATE/2-ACETO-LACTATE',
       161: '2-ACETO-LACTATE'.
       184: '2-ACETO-LACTATE',
       158: '2-ACETO-LACTATE'.
       220: 'MAL',
       241: 'MAL',
       100: 'GLYCEROL-3P',
       303: 'GLYCEROL-3P'}
[157]: multi=[]
      for cond in ['cys','reg','sulf']:
          for t in ['T1', 'T2']:
               for rep in range(1,6):
                  multi.append((cond,t,rep))
      relabund=(np.exp(logarea)-1).copy()
      relabund.columns=pd.MultiIndex.from_tuples(multi)
      relabund=relabund/relabund.sum(axis=0)
      relabund.sum(axis=0)
      relabund
[157]:
                                                                            \
                       cys
                        T1
                         1
                                       2
                                                     3
                                                                         5
      featureidx
                  0.000003 1.534291e-06 2.482685e-06 0.000003 0.000005
      2
      3
                  0.000005 3.164120e-06 6.018955e-06 0.000005 0.000010
      4
                  0.000002 9.313779e-07 1.868791e-06 0.000002 0.000004
                  0.000002 2.161251e-06 3.400159e-06 0.000004 0.000006
      5
                  0.000001 7.828048e-07 1.299537e-06 0.000001 0.000002
      6
      29983
                  0.000009 6.902365e-06 2.084933e-06 0.000004 0.000008
      29984
                  0.000008 6.814050e-06 1.628057e-06 0.000004 0.000007
      29985
                  0.000021 5.139379e-07 1.669532e-05
                                                        0.000026 0.000028
      29986
                  0.000014 1.086642e-05 1.330217e-06 0.000003 0.000009
                  0.000005 4.113982e-06 9.581834e-07 0.000002 0.000005
      29987
```

```
T2
                                      2
                                                    3
                       1
                                                                   4
featureidx
2
            4.933268e-08
                           2.033698e-08
                                         2.201864e-08
                                                       2.680995e-08
3
            7.142940e-07
                          7.961235e-07
                                         8.298417e-07
                                                       8.040248e-07
4
                                         5.254944e-08
                                                       3.257441e-08
            2.694299e-08
                          9.586718e-09
            1.839371e-07
                           1.307271e-07
                                         1.542928e-07
                                                        2.095020e-07
5
6
            1.333526e-07
                           1.439539e-07
                                         1.327211e-07
                                                        1.715190e-07
29983
            5.988915e-06
                           1.520856e-05
                                         2.217725e-06
                                                       3.786984e-06
29984
            5.200672e-06
                           1.541116e-05
                                         1.828297e-06
                                                        3.430294e-06
            2.362840e-05
                          9.235334e-06
29985
                                         1.443436e-05
                                                        2.176989e-05
29986
            5.687856e-06
                          2.549465e-05
                                         1.635998e-06
                                                        3.668759e-06
29987
            3.036996e-06 8.714433e-06 8.172636e-07
                                                       1.693315e-06
                                      sulf
                                                                         \
                                        T1
                                                        2
                       5
                                         1
featureidx
            7.573280e-08
2
                              3.746099e-07 7.089190e-07
                                                           1.428266e-06
3
            8.328074e-07
                              1.300160e-06 1.676210e-06
                                                           3.362990e-06
4
            1.207442e-08
                              1.872636e-07
                                            4.722305e-07
                                                           1.119212e-06
5
            2.060366e-07
                              6.861787e-07
                                            1.014798e-06
                                                           1.863191e-06
6
            1.295445e-07
                              2.969920e-07
                                            3.739778e-07
                                                           5.865295e-07
                   ... ...
                                   •••
                                               •••
29983
            1.342991e-05
                              9.429891e-06
                                            4.597117e-06
                                                          4.962160e-06
29984
            1.315275e-05
                             8.450384e-06
                                            3.976927e-06
                                                          4.409204e-06
29985
            3.881321e-05
                          ... 4.826891e-06
                                            2.511047e-05
                                                           2.450187e-05
29986
            2.108254e-05
                           ... 1.522642e-05
                                            3.808118e-06
                                                           5.024457e-06
            7.831434e-06
                          ... 4.933397e-06
                                            2.087852e-06
                                                           2.772300e-06
29987
                                               T2
                       4
                                      5
                                                1
                                                           2
                                                                     3
featureidx
2
            1.146211e-06 1.661544e-06 0.000005
                                                   0.000005
                                                              0.000004
                                                   0.000009
3
            2.933160e-06 3.578576e-06
                                         0.000008
                                                              0.000009
4
            1.019705e-06
                          1.165723e-06
                                         0.000004
                                                   0.000003
                                                              0.000003
5
            1.705198e-06
                           2.091126e-06
                                         0.000006
                                                   0.000006
                                                              0.000006
6
            7.060791e-07
                           8.142010e-07
                                         0.000002
                                                   0.000002
                                                              0.000002
29983
            3.894884e-06
                          7.946109e-06 0.000006
                                                   0.000004
                                                              0.000003
29984
            2.761636e-06
                          7.664362e-06
                                         0.000007
                                                   0.000002
                                                              0.000003
            1.769551e-05
                                                   0.000022
29985
                           2.161258e-05
                                         0.000021
                                                              0.000021
29986
            2.478806e-06
                           9.763429e-06
                                         0.000009
                                                   0.000002
                                                              0.000002
29987
            1.735353e-06 4.681973e-06 0.000004
                                                   0.000001
                                                              0.000001
```

```
0.000006 0.000008
                  0.000010 0.000014
      3
      4
                  0.000004 0.000006
      5
                  0.000007 0.000010
                  0.000002 0.000003
                  0.000007 0.000014
      29983
      29984
                  0.000005 0.000014
      29985
                  0.000021 0.000012
      29986
                  0.000007 0.000024
      29987
                  0.000003 0.000008
      [28508 rows x 30 columns]
[21]: temp =relabund.T.apply(zscore).T.loc[index,].copy()
      df = temp.unstack()
      df = df.reset_index()
      df['name'] = df['featureidx'].map(name_dict)
      df.columns=['cond','t','rep','feature','val','name']
      df['cond']=df['cond'].map({'reg':'Ref','cys':'Cys','sulf':'Sulf'})
      c = sns.color_palette('colorblind')
      c=[c[0],c[2],c[4]]
      for name,df2 in df.groupby(by=['name']):
          print(name)
          g = sns.catplot(x="t", y="val",
                      hue="cond", col="feature", hue_order=['Ref', 'Cys', 'Sulf'],
                      data=df2,
       →kind="bar",palette=c,legend=False,sharey=False,height=4)
          g.axes[0][0].set_ylabel('Z-Score')
          for ax in g.axes[0]:
              ax.set_xlabel('')
              ax.set_yticks([-2,-1,0,1,2,3])
          leg=plt.legend(bbox_to_anchor=(1,1),loc=2,title='Condition',fontsize=15)
          leg.get_title().set_fontsize('15')
          \#plt.savefig('\%s-box.pdf'\%('+'.join(name.split('/'))),bbox_inches='tight')
          plt.show()
          plt.clf()
```

4

featureidx

5

1-KETO-2-METHYLVALERATE

1-KETO-2-METHYLVALERATE/GLYCEROL

2-ACETO-2-HYDROXY-BUTYRATE/2-ACETO-LACTATE

2-ACETO-LACTATE

<Figure size 432x288 with 0 Axes>

2-KETO-3-METHYL-VALERATE

2-KETO-3-METHYL-VALERATE/2-KETO-ISOVALERATE

CPD-15056

GLYCEROL-3P <Figure size 432x288 with 0 Axes>

MAL <Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

17 Supplementary Figure 5: Mycothiol

```
[166]: df=pd.DataFrame(relabund.loc[[5,115, 296],:])
      df=df.T.reset index()
      df.columns=['cond','time','rep','5','115','296']
      fig, (ax1,ax2)=plt.subplots(1,2,figsize=(9,4),sharey=True)
      c=sns.color_palette('colorblind')
      g=sns.
       →boxplot(x='cond',y='5',hue='time',data=df,palette=[c[0],c[2],c[4]],order=['reg','cys','sulf
      sns.

→stripplot(x='cond',y='5',hue='time',data=df,dodge=True,color='black',alpha=0.

→5, order=['reg', 'cys', 'sulf'], ax=ax1)
      g.set_ylabel('Relative Abundance')
      g.set_xticklabels(['No\ntreatment','Cysteine\ntreatment','Sulfide\ntreatment'])
      g.set_title('Mycothione')
      g.set_xlabel('')
      g.legend().set_visible(False)
      g=sns.
       \rightarrowboxplot(x='cond',y='296',hue='time',data=df,palette=[c[0],c[2],c[4]],order=['reg','cys','su
       -stripplot(x='cond',y='296',hue='time',data=df,dodge=True,color='black',alpha=0
       g.set_ylabel('')
      g.set_xlabel('')
      handles, labels = g.get_legend_handles_labels()
      g.legend(handles[:3],['T1','T2'],bbox_to_anchor=(1,1),title='Time point')
      g.set_xticklabels(['No\ntreatment','Cysteine\ntreatment','Sulfide\ntreatment'])
```

```
g.set_title('UDP-N-acetyl- -D-glucosamine')
fig.tight_layout()
plt.savefig('Mycothione-UPD-Relabund.pdf',bbox_inches='tight')
```


18 Supplementary Figure 4 B

```
[]: data=np.exp(logarea2)-1
     data=data/data.sum()
     cys_pvals=[]
     sulf_pvals=[]
     cys_sulf_pvals=[]
     c=sns.color_palette('colorblind')
     for i in idxs:
         df=data.loc[i].reset_index()
         plt.figure(figsize=(4,2.5))
         g=sns.boxplot(y='level_0',x=i,data=df)
         g=sns.
      →boxplot(y='level_0',x=i,data=df,palette=[c[0],c[2],c[4]],order=['Reg','Cys','Sulf'])
         sns.stripplot(y='level_0',x=i,data=df,color='black',alpha=0.
      →5,order=['Reg','Cys','Sulf'])
         g.set_ylabel('')
         g.set_xlabel('Relative Abundance')
         \#g.set\_xlim(-3.5,3.5)
         g.set_yticklabels(['No treatment', 'Cysteine treatment', 'Sulfide_
      →treatment'])
         reg=df[df['level_0']=='Reg'][i].values
         cys=df[df['level_0']=='Cys'][i].values
         sulf=df[df['level_0']=='Sulf'][i].values
```

```
cys_pval=ttest_ind(reg,cys,equal_var=False).pvalue
sulf_pval=ttest_ind(reg,sulf,equal_var=False).pvalue
cys_sulf_pval=ttest_ind(cys,sulf,equal_var=False).pvalue
cys_pvals.append(cys_pval)
sulf_pvals.append(sulf_pval)
cys_sulf_pvals.append(cys_sulf_pval)
g.set_title(rev_cmp_dict[i])
print(i)
#plt.savefig('metabolomics-feat-%s-boxplots.pdf'%(i),bbox_inches='tight')
plt.show()
plt.clf()
cys_pvals=multipletests(cys_pvals, method='fdr_bh',alpha=0.01)[:2][1]
sulf_pvals=multipletests(sulf_pvals, method='fdr_bh',alpha=0.01)[:2][1]
cys_sulf_pvals=multipletests(cys_sulf_pvals, method='fdr_bh',alpha=0.01)[:2][1]
```

68

117
<Figure size 432x288 with 0 Axes>

241 <Figure size 432x288 with 0 Axes>

197 <Figure size 432x288 with 0 Axes>

298 <Figure size 432x288 with 0 Axes>

34
<Figure size 432x288 with 0 Axes>

['1-KETO-2-METHYLVALERATE', 'L-PANTOATE', 'BUTYRIC_ACID']

44 <Figure size 432x288 with 0 Axes>

['1-KETO-2-METHYLVALERATE', 'GLYCEROL', 'L-PANTOATE']

303

53 <Figure size 432x288 with 0 Axes>

161 <Figure size 432x288 with 0 Axes>

['2-ACETO-LACTATE', '4-HYDROXY-2-KETOVALERATE', 'OXOPENTENOATE', 'D-XYLULOSE']

184 <Figure size 432x288 with 0 Axes>

['2-ACETO-LACTATE', '4-HYDROXY-2-KETOVALERATE', 'METHYL-GLYOXAL', 'D-XYLULOSE', 'ACRYLATE']

158 <Figure size 432x288 with 0 Axes>

['2-ACETO-LACTATE', '4-HYDROXY-2-KETOVALERATE', 'OXOPENTENOATE', 'D-XYLULOSE']

239 <Figure size 432x288 with 0 Axes>

289

<Figure size 432x288 with 0 Axes>

[]: