

Ingénierie des Modèles

Concepts principaux

Léa Brunschwig

⊠ lea.brunschwig@univ-pau.fr

M2 Technologies de l'Internet

Université de Pau et des Pays de l'Adour Collège STEE Département Informatique 01.

Concepts principaux

Modèle, méta-modèle, transformation.

02.

Modélisation logicielle

UML et OCL.

03.

Méta-modélisation et DSL

Syntaxe concrète et abstraite, ...

04.

Transformation de modèles

M2M, M2T/M2C, Acceleo, ...

05.

Approfondissements

Modèles exécutables et low-code plateforme.

Abstraction

Source: https://computersciencewiki.org/index.php/Abstraction

- Simplifie en se concentrant sur l'essentiel,
 - L'esprit humain ajuste en permanence sa perception de la réalité.
- Trois techniques pour abstraire :
 - Généralisation : Réduire les caractéristiques
 spécifiques des objets réels en une vue plus générale,
 - Classification : Organiser les objets en groupes logiques et cohérents,
 - Agrégation : Combiner des objets pour créer des entités plus complexes.

• Artefact centrale à toutes les activités du génie logiciel.

Models as drafts

• Communication d'idées et d'alternatives.

Models as guidelines

Décisions de conception sont documentés.

Models as programs

Applications générées automatiquement.

• Représente un **système** (ou concept) selon un certain **point de vue**, à un niveau d'abstraction **facilitant** sa **compréhension** et son **utilisation**,

- Mappage: basé sur un système d'origine,
 - Une carte géographique.
- **Réduction**: ne reflète que la sélection pertinente des propriétés de l'original,
 - Une carte de prévision météorologique.
- Pragmatique: utilisable en remplacement de l'original dans le cadre d'un certain objectif,
 - Une maquette architecturale.

Modèle: Mappage

Carte géographique numérique :

 Représente fidèlement les rues et les points d'intérêts d'une ville.

Modèle: Réduction

Carte de prévision météorologique :

- Ne prend en compte que quelques variables clés parmi de nombreuses autres, pour prédire le temps :
 - Température,
 - Humidité,
 - Pression atmosphérique,
 - · . . .

Modèle: Pragmatique

Source: https://www.isome.fr/2019/11/05/isome-investit-dans-la-maguette-numerique/

Maquette architecturale d'un bâtiment :

- Version réduite du bâtiment réel, conservant :
 - les caractéristiques architecturales principales,
 - les proportions,
 - les fonctionnalités clés.
- Facilite la visualisation et la communication des plans architecturaux sans la complexité ni la taille du bâtiment.

- Représente un système modélisé via :
 - o une description d'un système existant (modèle descriptif),
 - une spécification d'un système à construire (modèle prescriptif).
- Relation entre un système et un modèle \rightarrow ReprésentationDe (notée μ)

- Écrit dans un langage qui peut-être :
 - Non ou peu formalisé, langage naturel
 - Formel ou bien défini
 - Syntaxe, grammaire, sémantique
 - Métamodèle

Métamodèle

Métamodèle

- Modèle abstrait qui définit le langage d'expression d'un modèle : sa structure, ses contraintes, ...
- Relation de **conformité** \rightarrow *ConformeA* (notée χ)
 - Si chacun des éléments (objets ou relations) est instance d'un élément du métamodèle et respecte les contraintes exprimées par le métamodèle,
 - Relation **essentielle**, c'est la base de l'IDM.

Métamodèle

Oeuvre d'art "One and Three Chairs" de Joseph Kosuth au Centre Pompidou à Paris Source: https://www.centrepompidou.fr/fr/ressources/oeuvre/c5jdxb

Lien de conformité

Métamodèle et langage

• Métamodèle définit les règles et la structure abstraite qui guident la création et l'utilisation d'un langage de modélisation,

Langage de modélisation

Métamodèle et langage

- Langage: définit selon le tuple {AS, CS, M_{ca}, SD, M_{cs}} avec :
 - AS: syntaxe abstraite,
 - CS: syntaxe concrète,
 - \circ M_{ca} : correspondance entre les syntaxes abstraites et concrètes,
 - SD: domaine sémantique
 - M_{cs} : correspondance entre la syntaxe concrète et le domaine sémantique.
- **General Purpose Languages (GPL)** ou **Langage à usage général :** langages qui peuvent être utilisé et appliqué à *n'importe quel secteur* ou domaine,
 - Java, UML, réseaux de Pétri, machine à état, ...
- Domain-Specific Languages (DSL) ou Langage dédié : langages conçus pour un domaine ou contexte précis,
 - O HTML, SQL, ...

Transformation

Transformation

- Processus automatisé manipulant des modèles en les convertissant d'un modèle source vers un modèle cible,
 - **Endogène :** source + cible conforme au même MM,
 - UML vers UML
 - Exogène : source + cible conforme à des MM différents.
 - UML vers Java

Références

Le contenu de ce cours est basé sur :

- Les supports pédagogiques du Dr. Eric Cariou
 Source: https://lab-sticc.univ-brest.fr/~ecariou/cours/idm.html
- Marco Brambilla , Jordi Cabot , Manuel Wimmer (2017). Model-Driven Software Engineering in Practice, Second Edition
- Jean-Marc Jézéquel, Benoît Combemale, Didier Vojtisek (2012). *Ingénierie Dirigée par les Modèles : des concepts à la pratique*