Fachbereich Informatik und Kommunikation

Prof. Dr. Ulrike Griefahn Dr. Hansjürgen Paul

Prozedurale Programmierung (PPR)

Übungsblatt zu Kapitel 4 (Funktionen)

WS 2020/21

Aufgabe 4.1 (Typumwandlung)

Betrachten Sie das folgende Programm

```
int main(void)
  {
2
       unsigned char uc = 153;
       char c
                         = uc;
       unsigned int ui = c;
5
       int i
                         = ui;
6
       printf("unsigned char (%%d) : %d\n", uc);
8
       printf("unsigned char (%%u) : %u\n", uc);
       printf("unsigned char (%%x) : %x\n", uc);
10
       printf("\n");
11
12
       printf("
                 signed char (%%d) : %d\n", c);
13
                 signed char (%%u) : %u \n", c);
       printf("
14
                 signed char (%%x) : %x\n", c);
       printf("
15
       printf("\n");
16
17
       printf("unsigned int
                               (%%d) : %d\n", ui);
18
       printf("unsigned int
                               (%%u) : %u\n", ui);
19
       printf("unsigned int
                               (%x) : %x\n", ui);
20
       printf("\n");
21
22
       printf("
                 signed int
                               (%%d) : %d\n", i);
23
       printf("
                 signed int
                               (%%u) : %u\n", i);
24
                 signed int
       printf("
                               (%%x) : %x\n", i);
25
       printf("\n");
```

das die folgenden Ausgaben erzeugt.

```
unsigned char (%d) : 153
unsigned char (%u) : 153
unsigned char (%x) : 99

signed char (%d) : -103
signed char (%u) : 4294967193
signed char (%x) : ffffff99
```

```
9 unsigned int (%d) : -103
10 unsigned int (%u) : 4294967193
11 unsigned int (%x) : fffffff99
12
13 signed int (%d) : -103
14 signed int (%u) : 4294967193
15 signed int (%x) : ffffff99
```

Erklären Sie, wie diese Ausgaben zustande kommen.

Aufgabe 4.2 (Wertebereiche der Datentypen)

Schreiben Sie zwei Programme zur Bestimmung der Wertebereiche von Variablen vom Typ char, short, int und long, sowohl für signed als auch unsigned,

- a) indem Sie die entsprechenden kleinsten und größten Werte aus der Standard-Definitionsdatei limits.h ausgeben.
- b) indem Sie dieselben Werte mit Hilfe von Bitoperatoren selbst bestimmen.

Aufgabe 4.3 (Speicherklassen)

Schreiben Sie das Programm coffee_machine.c so um, dass die Funktion main in einer eigenen Datei definiert wird, aber beide C-Dateien sich getrennt voneinander übersetzen lassen. Definieren Sie alle Elemente als **static**, die nur innerhalb einer der beiden Dateien benötigt werden.

Das Programm coffee_machine.c steht Ihnen bei den Code-Beispielen im Moodle-Kurs zum Download zur Verfügung.