Write your answers in the answer blank (or circle them). Show all necessary work for full credit. Answers are to be exact values unless stated otherwise.

- 1. Calculate the following iterated integrals:
 - (a) $\int_{0}^{1} \int_{0}^{1} y e^{xy} dx dy$

1a. _____

(b) $\int_{1}^{2} \int_{0}^{2} (y + 2xe^{y}) dxdy$

1b. _____

(c) $\int_0^1 \int_0^y \int_x^1 6xyz \ dz dx dy$

1c. _____

- 2. Convert the following equations:
 - (a) $\phi = \pi/4$ to rectangular coordinates

2a. _____

(b) $x^2 + y^2 = 4$ to spherical coordinates

9h

3. Sketch the region whose area is given by $\int_0^{\pi/2} \int_0^{\sin 2\theta} r \ dr d\theta$ (you may need to change the coordinate system)

4. Change the order of integration of the following: $\int_0^1 \int_{\sqrt{y}}^1 \frac{ye^{x^2}}{x^3} dxdy$

4. _____

- 5. Express the double integrals with dA = dxdy and dydx
 - (a) $\iint_D xydA$ where $D=\{(x,y)|\ 0\leq y\leq 1,\ y^2\leq x\leq y+2\}$

5a. _____

(b) $\iint_D \frac{1}{1+x^2} dA$ where D is the triangular region with vertices (0, 0), (4, 7/3), and (6, 0)

5b. _____

(c) $\iint_D y \ dA$ where D is the region in the first quadrant bounded by $x=y^2$ and $x=8-y^2$

5c. _____

- 6. Express the triple integrals with dV defined with th given orders of integration.
 - (a) $\iiint_E dV$ using dV = dzdydx and dydzdx where $E = \{(x, y, z) | 0 \le x \le 3, \ 0 \le y \le x, \ 0 \le z \le x + y\}$

6a. _____

(b) $\iiint_E dV$ using dV = dzdydx and dxdydz where E is lies above z = 0, below z = y and inside $x^2 + y^2 = 4$

6b. _____

- 7. Express the following as a double integral in rectangular and convert to polar coordinates:
 - (a) $\iint_R (2x y) dA$ where R is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 4$ and the lines x = 0 and y = x

7a. _____

(b) $\iint_D e^{-x^2-y^2} dA$ where D is the region bounded by $x = -\sqrt{4-y^2}$ and the y-axis.

7b. _____

(c) $\int_0^2 \int_0^{\sqrt{2y-y^2}} \sqrt{x^2+y^2} \ dy dx$

7c. _____

8. Find the surface area for the part of the plane 6x + 4y + 2z = 1 that lies inside the cylinder $x^2 + y^2 = 25$

8. _____

- 9. Express as a triple integral in rectangular and convert to the indicated coordinate system.
 - (a) $\iiint_E xe^{x^2+y^2+z^2} dV$ where E is the portion of the sphere $x^2+y^2+z^2\leq 9$ that lies in the first octant. To Spherical coordinates

9a.

(b) $\iiint_E z \ dV$ where E lies above $z=x^2+y^2$ and below z=2y. To Spherical coordinates

9b. ____

(c) $\iiint_E (x^2 + y^2) dV$ where E is bounded by $z = 2 - x^2 - y^2$, y = 0, z = 0, z = 0, z = 0. To Cylindrical coordinates.

9c. _____

(d) $\iiint_E (x-y) dV$ where E solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 16$, above the xy-plane, and below z = y + 4. To Cylindrical coordinates.

9d. _____