The spinner below will be used to generate a sample.

	i	Xi	p_i
	1	8	0.38
	2	16	0.28
	3	24	0.18
	4	26	0.16
,			

- (a) What is the probability of spinning 24? In other words, what is P(X = 24)?
- (b) What is the probability of spinning 24 or 26? In other words, what is P(X = 24 or X = 26)?
- (c) What is the probability of spinning at most 16? In other words, what is $P(X \le 16)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

Xi	p_i
2	0.37
16	0.08
17	0.48
26	0.07
	2 16 17

- (a) What is the probability of spinning 17? In other words, what is P(X = 17)?
- (b) What is the probability of spinning 2 or 26? In other words, what is P(X = 2 or X = 26)?
- (c) What is the probability of spinning at least 16? In other words, what is $P(X \ge 16)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

i	Xi	p_i
1	6	0.14
2	10	0.09
3	19	0.68
4	26	0.09

- (a) What is the probability of spinning 6? In other words, what is P(X = 6)?
- (b) What is the probability of spinning 10 or 26? In other words, what is P(X = 10 or X = 26)?
- (c) What is the probability of spinning at most 10? In other words, what is $P(X \le 10)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

$i x_i p_i$	
1 15 0.3	5
2 19 0.18	8
3 21 0.24	4
4 23 0.23	3

- (a) What is the probability of spinning 21? In other words, what is P(X = 21)?
- (b) What is the probability of spinning 19 or 23? In other words, what is P(X = 19 or X = 23)?
- (c) What is the probability of spinning at least 19? In other words, what is $P(X \ge 19)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

i	Xi	p_i
1	6	0.28
2	12	0.44
3	14	0.11
4	20	0.06
5	30	0.11
_		

- (a) What is the probability of spinning 20? In other words, what is P(X = 20)?
- (b) What is the probability of spinning 6 or 12? In other words, what is P(X = 6 or X = 12)?
- (c) What is the probability of spinning at most 12? In other words, what is $P(X \le 12)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

i	Xi	p_i
1	10	0.08
2	24	0.08
3	25	0.7
4	27	0.14

- (a) What is the probability of spinning 24? In other words, what is P(X = 24)?
- (b) What is the probability of spinning 10 or 27? In other words, what is P(X = 10 or X = 27)?
- (c) What is the probability of spinning at least 24? In other words, what is $P(X \ge 24)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

i	Xi	p_i
1	22	0.12
2	25	0.12
3	26	0.46
4	28	0.3

- (a) What is the probability of spinning 22? In other words, what is P(X = 22)?
- (b) What is the probability of spinning 26 or 28? In other words, what is P(X = 26 or X = 28)?
- (c) What is the probability of spinning at least 25? In other words, what is $P(X \ge 25)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

Xi	p_i
3	0.13
13	0.66
15	0.13
26	0.08
	3 13 15

- (a) What is the probability of spinning 26? In other words, what is P(X = 26)?
- (b) What is the probability of spinning 3 or 13? In other words, what is P(X = 3 or X = 13)?
- (c) What is the probability of spinning at most 15? In other words, what is $P(X \le 15)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

Xi	p_i
3	0.31
10	0.36
18	0.16
27	0.17
	3 10 18

- (a) What is the probability of spinning 10? In other words, what is P(X = 10)?
- (b) What is the probability of spinning 3 or 27? In other words, what is P(X = 3 or X = 27)?
- (c) What is the probability of spinning at most 18? In other words, what is $P(X \le 18)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

The spinner below will be used to generate a sample.

_				
i	Xi	p_i		
1	5	0.11		
2	11	0.07		
3	19	0.12		
4	21	0.25		
5	27	0.45		

- (a) What is the probability of spinning 11? In other words, what is P(X = 11)?
- (b) What is the probability of spinning 11 or 27? In other words, what is P(X = 11 or X = 27)?
- (c) What is the probability of spinning at least 19? In other words, what is $P(X \ge 19)$?
- (d) Determine the mean of the probability distribution by using $\mu = \sum p_i x_i$.
- (e) Determine the standard deviation of the probability distribution by using $\sigma = \sqrt{\sum p_i(x_i \mu)^2}$.

1. Make a table.

Xi	p_i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
8	0.38	3.04	-8	64	24.32
16	0.28	4.48	0	0	0
24	0.18	4.32	8	64	11.52
26	0.16	4.16	10	100	16
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 16$			$\sum p_i(x_i - \mu)^2 = 51.84$
		μ = 16			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 7.2$

- (a) 0.18
- (b) 0.34
- (c) 0.66
- (d) μ = 16
- (e) $\sigma = 7.2$

2. Make a table.

X _i	p _i	$p_i x_i$	$X_i - \mu$	$(x_i - \mu)^2$	$p_i(x_i-\mu)^2$
2	0.37	0.74	-10	100	37
16	0.08	1.28	4	16	1.28
17	0.48	8.16	5	25	12
26	0.07	1.82	14	196	13.72
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 12$			$\sum p_i(x_i - \mu)^2 = 64$
		μ = 12			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 8$

- (a) 0.48
- (b) 0.44
- (c) 0.63
- (d) μ = 12
- (e) $\sigma = 8$

3. Make a table.

Xi	p _i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
6	0.14	0.84	-11	121	16.94
10	0.09	0.9	-7	49	4.41
19	0.68	12.92	2	4	2.72
26	0.09	2.34	9	81	7.29
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 17$			$\sum p_i(x_i - \mu)^2 = 31.36$

X_i	p _i	$p_i x_i$	$x_i - \mu$	$(x_i - \mu)^2$	$\rho_i(x_i-\mu)^2$
		μ = 17			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 5.6$

- (a) 0.14
- (b) 0.18
- (c) 0.23
- (d) $\mu = 17$
- (e) $\sigma = 5.6$

4. Make a table.

Xi	p_i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
15	0.35	5.25	-4	16	5.6
19	0.18	3.42	0	0	0
21	0.24	5.04	2	4	0.96
23	0.23	5.29	4	16	3.68
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 19$			$\sum p_i(x_i - \mu)^2 = 10.24$
		μ = 19			$\sigma = \sqrt{\sum p_i (x_i - \mu)^2} = 3.2$

- (a) 0.24
- (b) 0.41
- (c) 0.65
- (d) $\mu = 19$
- (e) $\sigma = 3.2$

5. Make a table.

Xi	p _i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
6	0.28	1.68	-7	49	13.72
12	0.44	5.28	-1	1	0.44
14	0.11	1.54	1	1	0.11
20	0.06	1.2	7	49	2.94
30	0.11	3.3	17	289	31.79
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 13$			$\sum p_i(x_i - \mu)^2 = 49$
		μ = 13			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 7$

- (a) 0.06
- (b) 0.72
- (c) 0.72

- (d) $\mu = 13$
- (e) $\sigma = 7$
- 6. Make a table.

Xi	p_i	$p_i x_i$	$x_i - \mu$	$(x_i - \mu)^2$	$p_i(x_i-\mu)^2$
10	0.08	0.8	-14	196	15.68
24	80.0	1.92	0	0	0
25	0.7	17.5	1	1	0.7
27	0.14	3.78	3	9	1.26
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 24$			$\sum p_i(x_i - \mu)^2 = 17.64$
		μ = 24			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 4.2$

- (a) 0.08
- (b) 0.22
- (c) 0.92
- (d) $\mu = 24$
- (e) $\sigma = 4.2$
- 7. Make a table.

x_i	p_i	$p_i x_i$	$\mathbf{X}_{i}-\mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
22	0.12	2.64	-4	16	1.92
25	0.12	3	-1	1	0.12
26	0.46	11.96	0	0	0
28	0.3	8.4	2	4	1.2
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 26$			$\sum p_i(x_i - \mu)^2 = 3.24$
		μ = 26			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 1.8$

- (a) 0.12
- (b) 0.76
- (c) 0.88
- (d) $\mu = 26$
- (e) $\sigma = 1.8$
- 8. Make a table.

X_i	p_i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
3	0.13	0.39	-10	100	13
13	0.66	8.58	0	0	0
15	0.13	1.95	2	4	0.52

X_i	p_i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$\rho_i(x_i-\mu)^2$
26	0.08	2.08	13	169	13.52
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 13$			$\sum p_i(x_i - \mu)^2 = 27.04$
		μ = 13			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 5.2$

- (a) 0.08
- (b) 0.79
- (c) 0.92
- (d) μ = 13
- (e) $\sigma = 5.2$
- 9. Make a table.

X_i	p _i	$p_i x_i$	$x_i - \mu$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
3	0.31	0.93	-9	81	25.11
10	0.36	3.6	-2	4	1.44
18	0.16	2.88	6	36	5.76
27	0.17	4.59	15	225	38.25
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 12$			$\sum p_i(x_i - \mu)^2 = 70.56$
		μ = 12			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 8.4$

- (a) 0.36
- (b) 0.48
- (c) 0.83
- (d) $\mu = 12$
- (e) $\sigma = 8.4$
- 10. Make a table.

X_i	p_i	$p_i x_i$	$\mathbf{x}_i - \mathbf{\mu}$	$(x_i-\mu)^2$	$p_i(x_i-\mu)^2$
5	0.11	0.55	-16	256	28.16
11	0.07	0.77	-10	100	7
19	0.12	2.28	-2	4	0.48
21	0.25	5.25	0	0	0
27	0.45	12.15	6	36	16.2
=======	=======	=======	=======	=======	=======
		$\sum p_i x_i = 21$			$\sum p_i(x_i - \mu)^2 = 51.84$
		μ = 21			$\sigma = \sqrt{\sum p_i(x_i - \mu)^2} = 7.2$

- (b) 0.52
- (c) 0.82
- (d) μ = 21
- (e) $\sigma = 7.2$