Def. A field is a set F with two operations "+", "." called addition and multiple=
sotisfying "field exious" (A) (M) (D).

(A) Axioms for addition (A) $x,y \in F$ $x+y \in F$ (A^2) x+y=y+x $(A3)(x+y)+2=x+(y+3)(A4)\exists o \in F, x+o = x$ $(A5)(x+y)+2=x+(y+3)(A4)\exists o \in F, x+o = x$ (A5)(x+y)+2=x+(y+3)(A4)(x+o = x) (A5)(x+y)+2=x+(y+3)(x+o = x) (A5)(x+y)+2=x+(y+3)(x+o = x) (A5)(x+y)+2=x+(y+3)(x+o = x) (A5)(x+y)+2=x+(y+3)(x+o = x) (A5)(x+o = x)+2=x+(y+3)(x+o = x) (A5)(x+o = x)+2=x+(y+3)(x+o = x) (A5)(x+o = x)+2=x+(y+o = x)

(M) Axioms for multiplication (M1) x, y ef, x y ef (M2) xy = yx, x, y ef (M3) (xy) $\geq = x / y$) $(M4) \ 1 \in F, \ x \cdot 1 = x \ (M5) \ x \in F, x \neq 0, \exists y \in F \neq x \neq 1$ write $y = \frac{1}{x}$ (Q) The distributive law: $x(y+2) = xy + x^2$ holds for $x_1 y_1 \neq \in F$.

Ruk: $\mathbb Q$ is a field. All familiar properties for $\mathbb Q$ should hold for a field for example: Cancellation law: $x + y = z + y \Rightarrow x = y$.

Def An ordered field is a field which is also an ordered set S.t.

- (i) x+y < x+2 : f x < \(\), y < \(\).
- (ii) xy70 if x >0, y70

(negative) (2000) lee well onle so positive if 2000,

Rmk: Q is an ordered field &<y (=> y->c>0.

Prop For x, y in an ordered field

(a) if >(>0, gluen -x<0 (b) x>0, y=2 => xy=12 (c) >cco, y=2 => x.y>x.z

(d) If x to show x2 >0; in particular, 100 (e) ocxcy = 0 = /y = ix

 $\frac{\text{Pwof}: (1) \circ (x)}{(2-y)(-x) > 0} = 0 + (-1)(-x)(-x)(-x) = 0 - x < 0, (b) \circ (2-y)(-x)$ $(1) \frac{(2-y)(-x) > 0}{(-2)(-x)(-x) > 0} = 0 < \frac{x}{9} < 1$ $(1) \frac{(2-y)(-x) > 0}{(-2)(-x)(-x) > 0} = 0 < \frac{x}{9} < 1$ $(1) \frac{(2-y)(-x) > 0}{(-2)(-x)(-x) > 0} = 0 < \frac{x}{9} < 1$ $(2-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$ $(3-y)(-x) > 0 = 0 < \frac{x}{9} < 1$

Thun There exists an ordered field IR contains Q as a subfield, solistaines she least-upper bound property

We oul she member in IR a real number.

Construction: Dedekind cuts α :

(1) $\alpha \neq Q$ non-empty $\otimes \forall S \in \alpha$, $t \in \alpha$; $f \in S$ (3) no maximal rational in α .

Con défine addition: $x+\beta=2s+t:sex, te\beta$

multiplication is more tedions. First define positive cuts $\text{Order}: \ \, \alpha < \beta \ \, \text{if} \ \, \alpha < \beta \, .$

Let $S = U \propto B$. Com show this is S = Sup E. Soy S = Sup E.

Archiveden property and benever of Q: R.

(4) If $x \in \mathbb{R}_{0}$, $y \in \mathbb{R}$, there is a positive let. In S.t. x > y

(6) If x, y \in R, xccy, then there is a noted number r s.t. xcrcy.

Proof (0) If for any $n \in \mathbb{Z}_n$, $n \times \epsilon y$, the set $\{u_{2}v_{1}\}$ has an upper bound, Then by LUP, let α be the least upper bound of $\{n_{2}v_{1}\}$, Then $\alpha - x$ is not an upper bound of $\{n_{2}v_{1}\}$, i.e. $\exists n_{2}v_{2} > \alpha - x \Rightarrow (n_{2} + 1) \neq x > v_{2} \neq x$. (b) with $\{n_{1}v_{2}\}$ and $\{n_{2}v_{3}\}$ s.t. $\{n_{2}v_{2}\}$ by $\{n_{2}v_{1}\}$ by $\{n_{2}v_{3}\}$ and $\{n_{3}v_{4}\}$ and $\{n_{4}v_{4}\}$ and $\{n_{4}v_{5}\}$ and $\{n_{4}v_{5}\}$ s.t. $\{n_{4}v_{5}\}$ and $\{n_{4}v_{5}\}$ are an appear bound,

Desimals of $x \in \mathbb{R}$. having chosen no, ..., n_{k+1} , let n_k be the largest integer such the $n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x$.

Then $x = \sup E$, $\hat{E} = \left\{ n_0 + \frac{n_1}{10} + \dots + \frac{n_K}{10 k} \right\}$. The decimal expression of x is $n_0, 0, n_2 - \dots$

Thu. for $\forall x \in \mathbb{R}_{70}$, there is a unique 970 s.t. $y^n = x$. Idea: $E = \{x \in \mathbb{R}: t^n \le x\}$ $y = \sup_{x \in \mathbb{R}} y^n = x$

(Such number of is denoted by $^h \sqrt{x}$ or $x^{'h}$)
The symbol +00, -00. We define -000 for all $x \in \mathbb{R}$

Euliden space. RK.

5c+y= (x1+y11 x2+y2, ..., xx+yx)

delR, dix= (ax1, ax2, ", axx)

Inner product: $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_K y_K$

Define: | \frac{1}{24} = \sqrt{1} \frac{1}{2} \cdot \frac{1}{2}

Condry-Schmonz Inequity: $\vec{x} \cdot \vec{y} \in |\vec{x}| \cdot |\vec{y}|$

Proof Notation: $\sum_{i=1}^{n} x_i = 2c_1 + x_2 + \cdots + 2c_n$.

Want to show:

$$\sum_{i=1}^{\ell=1} x^{i} \cdot \lambda^{i} \leq \sqrt{\left(\sum_{i=1}^{\ell} x^{i}\right) \cdot \left(\sum_{i=1}^{\ell} \lambda^{i}\right)}$$

$$(\Rightarrow) \left(\sum_{i=1}^{h} x_i y_i \right)^2 \leq \left(\sum_{i=1}^{h} z_i^2 \right) \left(\sum_{i=1}^{h} y_i^2 \right) .$$

$$A\left(\lambda - \frac{B}{A}\right)^2 + \frac{AC-B^2}{4} \ge 0$$
 tu

Def the Distance between $\frac{1}{2}$ and $\frac{1}{y}$ is $\left|\frac{1}{2} - \frac{1}{y}\right| = \sqrt{\frac{1}{2}(2c - y_i)^2}$

Example: R1:

R2: ///b