WE CLAIM:

A method of treating a mammal having precancerous lesions comprising administering a pharmacologically effective amount of a compound of formula I or pharmaceutically acceptable salt thereof:general formula,

$$\begin{array}{c|c}
N & \overrightarrow{0} \\
C - N + A \xrightarrow{\uparrow} R^3 \\
R^2
\end{array}$$

wherein R₁ is a hydrogen atom or a halogen atom; R₂ is a phenyl-lower alkyl group; R₃ is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolino ayl group, 3,4-dihydro-2(lH)-quinolinonyl group and 3,4-dihydro-1,4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a group of the formula -B-R⁴, (.a is a lower alkylene group; R⁴ is a 5-to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR⁵R⁶ (R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridyl-carbonyl group\an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁵ and R⁶ may form 5- to 6-membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

A is a lower alkylene group; and n is 0 or 1.

The method according to Claim 1, wherein R³ is an indolyl group, said indolyl group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R⁴, (B is a lower alkylene group; R⁴ is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group or a group of the formula -NR⁵R⁶ (R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁵ and R⁶ may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.

3. A method for inhibiting the growth of neoplastic cells comprising exposing the cells to a growth inhibiting effective amount of a compound of Formula I or pharmaceutically acceptable salt thereof:

$$\mathbb{R}^{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{0} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{3}$$

wherein R₁ is a hydrogen atom or a halogen atom; R₂ is a phenyl-lower alkyl group; R₃ is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(lH)-quinolinonyl group and 3,4-dihydro-1,4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a group of the formula -B-R⁴, (B is a lower alkylene group; R⁴ is a 5-to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and P-168

sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR⁵R⁶ (R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridyl-carbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group.or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁵ and R⁶ may form 5- to 6-membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

A is a lower alkylene group; and n is 0 or 1.

The method according to Claim 3, wherein R³ is an indolyl group, said indolyl group may have 1 to substituents selected from the group consisting of: a group of the formula -B-R¹, (B is a ower alkylene group; R⁴ is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR⁵R⁶ (R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁵ and R⁶ may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group

5. A method for regulating apoptosis in human cells comprising exposing said cells to an effective amount of a compound of the formula:

$$\mathbb{R}^{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{0} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{0}$$

wherein R₁ is a hydrogen atom or a halogen atom; R₂ is a phenyl-lower alkyl group; R₃ is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(lH)-quinolinonyl group and 3,4-dihydro-1,4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a group of the formula -B-R⁴, (a is a lower alkylene group; R⁴ is a 5-to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring. having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR5R6 (R5 and R6 are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridyl-carbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁵ and R⁶ may form 5- to 6-membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

A is a lower alkylene group; and n is 0 or 1.

6. The method according to Claim 5, wherein R³ is an indolyl group, said indolyl group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R⁴, (B is a lower alkylene group; R⁴ is a 5- to 11-membered saturated or unsaturated heterocyclic group of P-168

single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR⁵R⁶ (R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an ammo-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R⁶ and R⁶ may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.