

Projet numérique: Effet Ramsauer– Townsend

Physique moderne Pré ing 2 MI-03 groupe 3E ABDELAZIZ Boumiz JORON Noémie VETTORETTO Lucie SAIDI Narymen

SOMMAIRE

- Résolution analytique pour les états stationnaires
- Comparaison et étude des prédictions graphiques avec celles des états stationnaires
- Comparaison et étude pour les paquets d'ondes

Équation de Schrödinger stationnaire

$$-\hbar^2 / (2m) * d^2\psi(x)/dx^2 + V(x)\psi(x) = E\psi(x)$$

$$\Rightarrow d^2\psi(x)/dx^2 + (2m/\hbar^2)(E - V(x))\psi(x) = 0$$

$$k_1 = \sqrt{2mE} / \hbar$$

$$k_2 = \sqrt{(2m(E + V_0))} / \hbar$$

Région I : x < -a/2, V(x) = 0

Équation: $d^2\psi_1(x)/dx^2 + k_1^2\psi_1(x) = 0$

Solution: $\psi_1(x) = A e^{ik_1x} + B e^{-ik_1x}$

Région II : -a/2 < x < a/2, $V(x) = -V_0$

Équation: $d^2\psi_2(x)/dx^2 + k_2^2\psi_2(x) = 0$

Solution: $\psi_2(x) = C e^{ik_2x} + D e^{-ik_2x}$

Région III : x > a/2, V(x) = 0

Solution: $\psi_3(x) = F e^{ik_1x}$

On pose x = a/2

C exp(i k_2 a/2)+ D exp(-i k_2 a/2)= F exp(i k_1 a/2) k_2 (C exp(i k_2 a/2) - D exp(-i k_2 a/2))= k_1 F exp(i k_1 a/2)

On pose x = -a/2

A exp(-i k_1 a/2)+ B exp(i k_1 a/2)= C exp(-i k_2 a/2)+ D exp(i k_2 a/2) k_1 (A exp(-i k_1 a/2) - D exp(i k_1 a/2))= k_2 (C exp(-i k_2 a/2) - D exp(i k_2 a/2))

Par résolution de système on trouvera:

$$\frac{C = F \exp(i (k_1 - k_2) a/2)(1 + k_1)}{k_2}$$

A = F exp(i k₁ a) [exp(-i k₂ a)(2 +
$$\frac{k_2}{k_1}$$
 + $\frac{k_1}{k_2}$ + exp(i k₂ a)(2 - $\frac{k_2}{k_1}$ - $\frac{k_1}{k_2}$)]

4

D = F exp(i (
$$k_2+k_1$$
) a/2)(1 - k_1)
2

B = F [exp(-i
$$k_2$$
 a)(- $\frac{k_2}{k_1}$ + $\frac{k_1}{k_2}$ + exp(i k_2 a)($\frac{k_2}{k_1}$ - $\frac{k_1}{k_2}$)]

Coefficient de transmission et de réflexion

$$T = |F|^{2} = 4$$

$$|A|^{2} \qquad 4 \cos^{2}(k_{2} a) + \frac{(k_{2}^{2} + k_{1}^{2})}{(k_{1} k_{2})^{2}} * \sin^{2}(k_{2} a)$$

$$R = \frac{|B|^2}{|A|^2} = \frac{(k_2^2 - k_1^2)^2 * \sin^2(k_2 a)}{(k_1 k_2)^2}$$

$$4 \cos^2(k_2 a) + \frac{(k_2^2 + k_1^2)}{(k_1 k_2)^2} * \sin^2(k_2 a)$$

$$\frac{(k_1 k_2)^2}{(k_1 k_2)^2}$$

Etude des états stationnaires

Etude du paquet d'onde