Numerical methods for solving nonlinear equations in $\mathbb R$

Let $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}$. Consider the equation

$$f(x) = 0, \quad x \in \Omega. \tag{1}$$

Newton's method

$$x_{i+1} = F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, ...,$$

The algorithm:

Let x_0 be the initial approximation.

for n = 0, 1, ..., ITMAX

$$x_{n+1} \leftarrow x_n - \frac{f(x_n)}{f'(x_n)}$$
.

A stopping criterion is:

$$|f(x_n)| \le \varepsilon \text{ or } |x_{n+1} - x_n| \le \varepsilon \text{ or } \frac{|x_{n+1} - x_n|}{|x_{n+1}|} \le \varepsilon,$$

where ε is a specified tolerance value.

The secant method

$$x_{i+1} := F_1^L(x_{i-1}, x_i) = x_i - \frac{(x_i - x_{i-1}) f(x_i)}{f(x_i) - f(x_{i-1})}, \quad i = 1, 2, \dots$$

The algorithm:

Let x_0 and x_1 be two initial approximations.

for
$$n = 1, 2, ..., ITMAX$$

$$x_{n+1} \leftarrow x_n - f(x_n) \left[\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \right].$$

A suitable stopping criterion is

$$|f(x_n)| \le \varepsilon \text{ or } |x_{n+1} - x_n| \le \varepsilon \text{ or } \frac{|x_{n+1} - x_n|}{|x_{n+1}|} \le \varepsilon,$$

where ε is a specified tolerance value.

THE BISECTION METHOD

Let f be a given function, continuous on an interval [a,b], such that

$$f(a)f(b) < 0. (2)$$

By Mean Value Theorem, it follows that there exists at least one zero α of f in (a,b).

The bisection method is based on halving the interval [a, b] to determine a smaller and smaller interval within α must lie.

First we give the midpoint of [a,b], c=(a+b)/2 and then compute the product f(c)f(b). If the product is negative, then the root is in

the interval [c, b] and we take $a_1 = c$, $b_1 = b$. If the product is positive, then the root is in the interval [a, c] and we take $a_1 = a$, $b_1 = c$. Thus, a new interval containing α is obtained.

Bisection method

The algorithm:

Suppose $f(a)f(b) \leq 0$. Let $a_0 = a$ and $b_0 = b$.

for n = 0, 1, ..., ITMAX

$$c \leftarrow \frac{a_n + b_n}{2}$$

if
$$f(a_n)f(c) \le 0$$
, set $a_{n+1} = a_n, b_{n+1} = c$

else, set
$$a_{n+1} = c, b_{n+1} = b_n$$

The process of halving the new interval continues until the root is located as accurately as desired, namely

$$|a_n - b_n| < \varepsilon, \tag{3}$$

where a_n and b_n are the endpoints of the n-th interval $[a_n, b_n]$ and ε is a specified precision. The approximation of the solution will be $\frac{a_n+b_n}{2}$.

Some other stopping criterions: $\frac{|a_n-b_n|}{|a_n|}<\varepsilon$ or $|f(a_n)|<\varepsilon$.

THE METHOD OF FALSE POSITION

This method is also known as *regula falsi*, is similar to the Bisection method but has the advantage of being slightly faster than the latter. The function have to be continuous on [a, b] with

$$f(a)f(b) < 0.$$

The point c is selected as point of intersection of the Ox-axis, and the straight line joining the points (a, f(a)) and (b, f(b)). From the equation of the secant line, it follows that

$$c = b - f(b)\frac{b - a}{f(b) - f(a)} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$
(4)

Compute f(c) and repeat the procedure between the values at which the function changes sign, that is, if f(a)f(c) < 0 set b = c, otherwise set a = c. At each step we get a new interval that contains a root of f and the generated sequence of points will eventually converge to the root.

Method of false position.

The algorithm:

Given a function f continuous on $[a_0,b_0]$, with $f(a_0)f(b_0) < 0$,

input: a_0, b_0

for
$$n = 0, 1, ..., ITMAX$$

$$c \leftarrow \frac{f(b_n)a_n - f(a_n)b_n}{f(b_n) - f(a_n)}$$

if
$$f(a_n)f(c) < 0$$
, set $a_{n+1} = a_n, b_{n+1} = c$ else set $a_{n+1} = c, b_{n+1} = b_n$.

Stopping criterions: $|f(a_n)| \le \varepsilon$ or $|a_n - a_{n-1}| \le \varepsilon$, where ε is a specified tolerance value.

One of the main disadvantages of this method is that if the sequence of points generated by its algorithm is one-sided, the convergence of the method is slow.