# 平成17年度 日本留学試験(第2回)

# 試験問題

# 化学

### 「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙のおもて面に解答し、もう1科目を裏面に解答してください。

「化学」を選ぶ場合は、右のように、解答用紙の左上にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。選択した科目が正しくマークされていないと、採点されません。

| <解答            | 等用紙記             | 入例>           |
|----------------|------------------|---------------|
| 解答             | 科目 Sul           | oject         |
| 物 理<br>Physics | 化 学<br>Chemistry | 生物<br>Biology |
| 0              | •                | 0             |
|                |                  |               |

計算には次の数値を用いること。ただし,リットル(liter)はLで表す。

気体定数 (gas constant): R = 0.082 atm·L/(K·mol) = 8.31 J/(K·mol)

ファラデー定数(Faraday constant):F=9.65×10<sup>4</sup> C/mol

原子量 (atomic weight) H:1.0 C:12 O:16 Na:23 S:32 Cu:64

問1 原子 (atom) およびイオン (ion) についての次の記述①~⑤の中から,正しいものを 一つ選びなさい。

- ① Cl<sup>-</sup>の最外殻 (outermost shell) の電子数は7である。
- ② 1,Na+の原子核中の陽子(proton)の数は1,Mgの原子核中の陽子の数と等しい。
- ③ <sup>14</sup>C の中性子 (neutron) 数は<sup>14</sup>N の中性子数と等しい。
- ④ 原子の原子番号と原子核中の陽子の数は等しい。
- ⑤ 重水素 (deuterium; <sup>2</sup>H) の電子配置では, K 殼 (K shell) に 2 個の電子がある。

問2 「黒鉛 (graphite) の結晶 (crystal) 中で、1つの炭素原子と共有結合 (covalent bond) している炭素原子の数」、および「二酸化ケイ素 (silicon dioxide) の結晶中で、 1つのケイ素原子(silicon atom)と共有結合している酸素原子の数」の組み合わせとし 2 て最も適当なものを、次の①~⑥の中から一つ選びなさい。

|    | 炭素原子数 | 酸素原子数 |
|----|-------|-------|
| 1) | 3     | 2     |
| 2  | 3     | - 3   |
| 3  | 3     | 4     |
| 4  | 4     | 2     |
| 5  | 4     | 3     |
| 6  | 4     | 4     |

問3 標準状態(standard state)で,1Lの空気(air)に含まれる分子の数として最も適当 なものを、次の①~⑤の中から一つ選びなさい。ただし、アボガドロ定数(Avogadro 3 constant)  $\delta N_A$  [/mol]  $\xi \delta$ .

- (1)  $(1/18) \times N_A$  (2)  $(1/29) \times N_A$
- (3)  $(1/22.4) \times N_A$

- $4 \times N_A$
- (5)  $(1 \times 3600/96500) \times N_A$

間4 組成式(empirical formula)C₃H₅で表される化合物 A を容積 100 mL の容器に入れて 100°Cに加熱し、完全に気体にした。その質量 (mass) を 1 atm のもとで計ると 268 mg であった。化合物 A の分子式を次の①~⑥の中から一つ選びなさい。ただし、1 atm= 4 1.0×10<sup>5</sup>Pa とする。

①  $C_3H_5$  ②  $C_3H_6$  ③  $C_3H_8$  ④  $C_6H_{10}$  ⑤  $C_6H_{12}$  ⑥  $C_9H_{15}$ 

| 問: | 5.00gの硫     | 流酸銅(II)五水    | 和物 CuSO4・5      | H₂O を 35.0gの   | )水に溶かした       | ところ,密度  |
|----|-------------|--------------|-----------------|----------------|---------------|---------|
|    | (density) が | 1.05 g/cm³の仮 | 流酸銅(II)水溶液      | 友 (aqueous sol | ution) ができた   | た。この硫酸銅 |
|    | (II)水溶液の    | モル濃度(mo      | lar concentrati | on)に最も近い       | 値を次の①~億       | の中から一つ  |
|    | 選びなさい。      |              |                 |                |               | 5 mol/L |
|    |             |              |                 |                |               |         |
|    | ① 0.50      | ② 0.53       | 3 0.60          | <b>4</b> 0.78  | <b>⑤</b> 0.82 |         |
|    |             |              |                 |                |               |         |
|    |             |              |                 |                |               |         |

**間 6** 次の反応(a)~(e)の中で、酸化還元 (oxidation・reduction) が起こっている反応の組み合わせを、下の①~⑧の中から一つ選びなさい。

- (a)  $2H_2S + SO_2 \rightarrow 3S + 2H_2O$
- (b)  $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
- (c)  $Ag_2O + 4NH_3 + H_2O \rightarrow 2[Ag(NH_3)_2]OH$
- (d)  $2KI + Cl_2 \rightarrow 2KCl + I_2$
- (e)  $2NO_2 \rightarrow N_2O_4$
- ① a, b ② a, d ③ a, e ④ b, c
  ⑤ b, d ⑥ c, d ⑦ c, e ⑧ d, e
- 問 7 次の物質またはイオン1~5の中から、Mn 原子の酸化数が最大のものを一つ選びなさい。
  - ①  $Mn_2O_3$  ②  $MnO_4$  ③  $MnFeO_4$  ④  $MnBr_2$  ⑤  $MnO_2$
- 問 8 質量パーセント (mass percentage) 濃度 44.0%の硫酸 H₂SO₄水溶液 (aqueous solution) の密度は、1.34 g/cm³である。この水溶液 98.0 mL を完全に (completely) 中和するとき、必要な水酸化ナトリウム NaOH の質量に最も近い値を次の①~⑤の中から一つ選びなさい。
  - ① 5.90 ② 11.8 ③ 23.6 ④ 47.2 ⑤ 94.4

**問9** 次の(a), (b)両方の性質を持つ気体として最も適当なものを、下の①~⑤の中から一つ選びなさい。

- (a) 水溶液 (aqueous solution) は弱い酸性 (acidic) を示す。
- (b) 水溶液に硝酸銀 (silver nitrate) の水溶液を加えると黒い沈殿 (precipitate) ができる。
- ①  $H_2S$  ② HCl ③  $CO_2$  ④  $Cl_2$  ⑤  $NH_3$
- 問 10 異なる金属イオン (metal ion) をそれぞれ含む水溶液 (aqueous solution) (a)~(c)がある。塩酸 (hydrochloric acid) を加えたところ(a)と(b)はいずれも沈殿 (precipitate)を生じ、生じた沈殿を含む水溶液を加熱したところ、(a)の沈殿だけ溶解 (dissolve) した。また、(c)に水酸化ナトリウム (sodium hydroxide) 水溶液を少しずつ加えたところ、一度生じた沈殿が溶解した。水溶液(a)~(c)が含む金属イオンの組み合わせとして最も適当なものを、次の①~⑥の中から一つ選びなさい。

|     | a                | b                | С                |
|-----|------------------|------------------|------------------|
| 1   | Ag+              | Al³+             | Pb²+             |
| 2   | Ag+              | Pb <sup>2+</sup> | Al³+             |
| 3   | Al <sup>3+</sup> | Ag+              | Pb <sup>2+</sup> |
| 4   | Al <sup>3+</sup> | Pb <sup>2+</sup> | Ag+              |
| (5) | Pb <sup>2+</sup> | Ag+              | Al³+             |
| 6   | Pb <sup>2+</sup> | Al <sup>3+</sup> | Ag+              |

問 11 次の熱化学方程式を参考にして,下の①~⑥の中からメタン(methane)の生成熱 (heat of formation) に最も近い値を一つ選びなさい。 11 kJ/mol

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l) + 891 kJ$$
  
 $C(無鉛: graphite) + O_2(g) = CO_2(g) + 394 kJ$   
 $2H_2(g) + O_2(g) = 2H_2O(g) + 484 kJ$   
 $H_2O(g) = H_2O(l) + 44 kJ$ 

① 31  $\bigcirc 2 -31$   $\bigcirc 3 75$   $\bigcirc 4 -75$   $\bigcirc 5 891$   $\bigcirc 6 -891$ 

問 12 次の反応(a),(b)で,水は酸または塩基(base)のどちらの働きをしているか。正しい 組み合わせを下の①~④の中から一つ選びなさい。 12

- (a)  $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
- (b)  $CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+$

|   | a  | b  |
|---|----|----|
| 1 | 酸  | 酸  |
| 2 | 酸  | 塩基 |
| 3 | 塩基 | 酸  |
| 4 | 塩基 | 塩基 |

問 13 次の酸化物(a)~(e)の中から、水に溶けて酸性を示すものだけを全て含む組み合わせを 下の①~⑧の中から一つ選びなさい。 13

- (a) MgO (b)  $CO_2$  (c)  $P_4O_{10}$  (d) CaO (e)  $SO_2$

- ① a, b
- ② b, d ③ c, e ④ d, e

- ⑤ a, b, c ⑥ a, c, d ⑦ b, c, e ⑧ b, d, e

問 14 白金 (platinum) を電極 (electrode) として, NaCl の水溶液 (aqueous solution) を電気分解 (electrolyze) した。陽極 (anode) と陰極 (cathode) で発生する気体の組み合わせとして最も適当なものを, 次の①~⑥の中から一つ選びなさい。

|   | 陽極 | 陰極 |
|---|----|----|
| 1 | 水素 | 酸素 |
| 2 | 水素 | 塩素 |
| 3 | 酸素 | 水素 |
| 4 | 酸素 | 塩素 |
| 5 | 塩素 | 水素 |
| 6 | 塩素 | 酸素 |



注) 水素 (hydrogen), 酸素 (oxygen), 塩素 (chlorine)

間 15  $20^{\circ}$ Cで酸素  $O_2$ は,その分圧(partial pressure)が 1 atm のとき,水 1 L に  $1.38 \times 10^{-3}$  mol 溶ける。同温で,酸素分圧 0.2 atm で酸素を飽和させた水 100 L に溶けている酸素は何 g か。次の①~⑤の中から,最も近い値を一つ選びなさい。

- (1) 0.88
- 2 1.10
- ③ 1.77
- **4**) 3.53
- **⑤** 4.42

問 16 ある不飽和炭化水素 (unsaturated hydrocarbon) A は、水とモル比 (molar ratio) 1:1で付加反応 (addition reaction) し、化合物 B を与えた。B の元素分析を行うと、 炭素 62.1%、水素 10.3%であった。A の組成式 (empirical formula) として最も適当なものを次の①~⑥の中から一つ選びなさい。

①  $C_2H_2$  ②  $C_2H_4$  ③  $C_3H_4$  ④  $C_3H_6$  ⑤  $C_4H_6$  ⑥  $C_4H_8$ 

- 問 17 次に示すジブロモプロパン (dibromopropane: C<sub>3</sub>H<sub>6</sub>Br<sub>2</sub>) の 4 つの異性体 (isomer)
  - ①~④の中から、光学異性体 (optical isomer) を持つものを一つ選びなさい。
- 17

- ① CH<sub>2</sub>Br-CH<sub>2</sub>-CH<sub>2</sub>Br ② CH<sub>2</sub>Br-CHBr-CH<sub>3</sub>
- $3 H_3C-CBr_2-CH_3$
- ④ CHBr₂-CH₂-CH₃
- 間18 次の3つの化合物(i)~(iii)を区別するために下の実験(a),(b)を行った。実験結果中の空 欄(A)~(C)には化合物(i)~(iii)のどれが入るか。下の表の①~⑥の中から最も適当な 18 組み合わせを一つ選びなさい。

(i) (ii) (iii) (iii) 
$$H_3C-CH_2-CH_2-OH \qquad H_3C-CH-CH_3 \qquad H_3C-C-CH_2-CH_3 \qquad OH \qquad O$$

- (a) それぞれの化合物に金属ナトリウム (sodium metal) を少量加えると, (A) と (B) は気体を発生した。
- (b) それぞれの化合物に、水酸化ナトリウム水溶液 (sodium hydroxide solution) とヨ ウ素-ヨウ化カリウム溶液 (iodine-potassium iodide solution) を加えて加熱したとこ ろ、(B) と(C) が黄色固体を生成した。

|     | A   | В   | С   |
|-----|-----|-----|-----|
| 1   | i   | ii  | iii |
| 2   | i   | iii | ii  |
| 3   | ii  | i   | iii |
| 4   | ii  | iii | i   |
| (5) | iii | i   | ii  |
| 6   | iii | ii  | i   |

問 19 次の文章中の空欄(A),(B),(C)に入る語句の組み合わせとして最も適当なものを下の①~⑥の中から一つ選びなさい。 19

アミノ酸 (amino acid) は、分子内に酸性を示す (A) 基と塩基性 (basic) を示す (B) 基を有する。アミノ酸の分子間で (A) 基と (B) 基が脱水縮合 (dehydration condensation) して生成した結合は、(C) 結合とよばれる。

|   | A      | В      | С    |
|---|--------|--------|------|
| 1 | ヒドロキシル | カルボキシル | エステル |
| 2 | カルボキシル | アミノ    | アミド  |
| 3 | アミノ    | カルボキシル | アミド  |
| 4 | ヒドロキシル | アミノ    | アミド  |
| 5 | カルボキシル | アミノ    | エステル |
| 6 | アミノ    | ヒドロキシル | エステル |

注) ヒドロキシル(hydroxyl), カルポキシル(carboxyl), アミノ(amino), エステル(ester), アミド(amide)

**問20** アセチレン (acetylene) を出発物質 (starting substance) としてポリ酢酸ビニル (poly(vinyl acetate)) を合成する経路を次に示す。それぞれの反応 A, B は形式的に何 反応とよばれているか。正しい組み合わせを下の①~⑥の中から一つ選びなさい。 **20** 

$$nH-C=C-H$$
  $\xrightarrow{CH_3COOH}$   $nH_2C=CH$   $\xrightarrow{B}$   $\xrightarrow{B}$   $\xrightarrow{H}$   $\xrightarrow{C}$   $\xrightarrow{CH_3}$   $\xrightarrow{B}$   $\xrightarrow{H}$   $\xrightarrow{C}$   $\xrightarrow{CH_3}$   $\xrightarrow{B}$   $\xrightarrow{H}$   $\xrightarrow{C}$   $\xrightarrow{CH_3}$   $\xrightarrow{B}$   $\xrightarrow{R}$   $\xrightarrow{$ 

|   | A  | В    |
|---|----|------|
| 1 | 付加 | 縮合重合 |
| 2 | 置換 | 付加重合 |
| 3 | 酸化 | 付加重合 |
| 4 | 置換 | 縮合重合 |
| 5 | 脱離 | 縮合重合 |
| 6 | 付加 | 付加重合 |

注)付加 (addition),置換 (substitution),酸化 (oxidation),脱離 (elimination),付加重合 (addition polymerization),縮合重合 (condensation polymerization)

化学の問題はこれで終わりです。解答欄の 21  $\sim$  75 は、空欄にしてください。

この問題用紙を持ち帰ることはできません。