Computability - Exercise 10

All questions should be answered formally and rigorously unless stated otherwise

Due: June 18, 2020

Question 1

- (a) Let $L_1, L_2 \subseteq \Sigma^*$. Prove that if $L_1 \leq_p L_2$ and $L_2 \in NP$, then $L_1 \in NP$.
- (b) Prove that polynomial-time reductions are transitive. That is, if $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$, where $L_1, L_2, L_3 \in 2^{\Sigma^*}$.
- (c) Prove that A_{TM} is **NP-Hard**.
- (d) Prove that every non-trivial language L is **P-Hard**, i.e., that $K \leq_p L$ for every $K \in P$.

Question 2

We define $coNP = \{\overline{L} \mid L \in NP\}$. Show that if $coNP \cap NP$ —Complete $\neq \emptyset$ then NP = coNP. (In fact, it is unknown whether P = NP and whether NP = coNP).

Question 3

The feasibility problem of $Integer\ Linear\ Programming$ is defined as follows: given a set of m linear constraints:

$$\sum_{i=1}^{n} a_{i,j} \cdot x_j \le b_i,$$

where $1 \leq i \leq m$, we have to decide whether there exists a 0/1 assignment to x_1, \ldots, x_n such that all constraints are satisfied. In matrix notation, an instance of the feasibility problem is given by a pair of an $m \times n$ matrix over \mathbb{Z} , denoted A, and a column vector of size m over \mathbb{Z} , denoted b, and we have to decide if there is some column vector of size n over $\{0,1\}$, denoted x, such that $Ax \leq b$. Let $ILP = \{\langle A, b \rangle : A \in \mathbb{Z}_{m \times n}, b \in \mathbb{Z}^m$ and there exists $x \in \{0,1\}^n$ with $Ax \leq b\}$.

Also, define the languages

$$SUBSET - SUM = \left\{ \left\langle \left\{ x_1, \dots, x_m \right\}, t \right\rangle : \exists I \subseteq [m] \text{ such that } \sum_{i \in I} x_i = t \right\}$$

and

$$PARTITION = \left\{ \langle x_1, \dots, x_m \rangle : \exists I \subseteq [m] \text{ such that } \sum_{i \in I} x_i = \sum_{i \in [m] \setminus I} x_i \right\}.$$

where $x_1,...,x_m,t\in\mathbb{Z}$ are numbers encoded in binary. As you will see in class, SUBSET-SUM is NP-Complete.

Questions:

- (a) Prove that $ILP \in NP$ by showing a polynomial-time verifier for it.
- (b) Prove that $SUBSET SUM \leq_p PARTITION$.
- (c) Prove that $3SAT \leq_p ILP$.

Question 4

An independent set in an undirected graph G = (V, E) is a set $D \subseteq V$ such that for every $u, v \in D$ it holds that $\{u, v\} \notin E$. Define the language $IS = \{\langle G, k \rangle \mid \text{The graph } G \text{ has an independent set of size } k\}$.

- (a) Prove that $IS \in NP$, by showing a polynomial-time verifier for it.
- (b) Prove that $CLIQUE \leq_p IS$.
- (c) (Not for submission) Prove that $VC \leq_p IS$. (Remark: we saw that $CLIQUE \leq_p VC$, so (b) follows from (c) using 1(b). However, we want you to show a direct reduction).