Summary Report

General information:

Requirements:

- 1. Implement all tasks using data. Table R library.
- 2. For some specific calculations (date transformations, linear regression, charts, etc.) use special R packages (lubridate, ISOweek, gam, ggplot2, etc.).
- 3. Write clear comments across all functions.
- 4. Share your intermediate and final results (R script, outputs, charts, reports) via Git repo (you can use GitHub or GitLab account).

Deliverables:

1. Prepare full R Markdown Report/R notebook that will contain a detailed description of Exploratory Data Analysis, Feature Extraction, Modeling, and Post-modeling analysis with conclusions and explanations.

Evaluation:

- 1. The way you're thinking
 - a. what actions you're implementing
 - b. and why.
- 2. Code style (please follow best practices).
- 3. Suggestions on the additional analytics/approaches which could be applied.

Structure of the report:

- 1. Technical tasks
 - 1.1. Quality Check/ Exploratory Data Analysis of the raw input data
 - 1.2. Data Manipulation & Transformation
 - 1.3. Regression analysis

Technical tasks:

Quality Check/ Exploratory Data Analysis of the raw input data

What I planned to do:

- 1. Check data quality interpretation with data.table library
- 2. Check NA's in the dataset
- 3. Better understand data with visualization
- 4. Think about normalization/removing outliers

Explanatory summary for initial dataset

```
cat
                    subcat
                                      date
                                                        value
Length:75000
                 Length:75000
                                                    Min. : -1.655
                                  Lenath:75000
Class :character
                 Class :character
                                  Class :character
                                                    1st Qu.: 11.783
Mode :character Mode :character
                                                    Median : 25.944
                                  Mode :character
                                                    Mean
                                                          : 53.181
                                                    3rd Qu.: 54.599
                                                    Max. :2247.129
NA's :7
   volume
                     units
Min. : -2.3617
                 Min. : -0.0711
                                   Min.
                                         :0.0000
1st Qu.: 0.8457 1st Qu.: 3.1322 1st Qu.:0.0000
Median: 2.2662 Median: 7.9865
                                   Median :0.0000
Mean : 5.5351
                 Mean : 19.9289
                                    Mean : 0.4325
                                   3rd Qu.:1.0000
3rd Qu.: 5.6876
                 3rd Ou.: 18.5874
Max. :325.7443
NA's :1
                 Max. :1276.6882
                                    Max.
                                          :1.0000
                 NA's
                       :4
```

First of all, I look at the summary of the initial (rows) data set. I saw several NA's in 'volumn', 'units', and 'value' columns.

Summary for type in the columns

Secondly, I look at how my data is initialized with data.table. It seems that all was done correctly. And the total number of observations is 75 000.

Explanatory summary for dataset without Na's

cat	subcat	date	value
Length:74988	Length:74988	Length:74988	Min. : -1.655
Class :character	Class :character	Class :character	1st Qu.: 11.781
Mode :character	Mode :character	Mode :character	Median: 25.943
			Mean : 53.179
			3rd Qu.: 54.598
			Max. :2247.129
volume	units	promo	
Min. : -2.3617	Min. : -0.0711	Min. :0.0000	
1st Qu.: 0.8456	1st Qu.: 3.1317	1st Qu.:0.0000	
Median : 2.2662	Median : 7.9844	Median :0.0000	
Mean : 5.5347	Mean : 19.9282	Mean :0.4325	
3rd Qu.: 5.6875	3rd Qu.: 18.5863	3rd Qu.:1.0000	
Max. :325.7443	Max. :1276.6882	Max. :1.0000	

After removing Na's, it seems that it has not changed the picture at all, but it can be helpful to avoid problems with calculation new columns in the future.

Number of observations after removing Na's = 74988

NA'S Infinity - Infinity

Visualization to better understand data

'cat'

Categorical visualization (will be with grouping at the next step) # 'subcat'

Categorical visualization (will be with grouping at the next step) # 'date'

It needs special transformation for making visualization.

'value' column (boxplot for discovering)

For visualization, I choose boxplot. It is pretty helpful for range analysis.

Of course, It is not easy to say about exact median or percentiles, but we see maximum, which can be possible outliers.

'volume' column

The same situation as with 'value' column.

'units'

The main difference with the previous example is that we see continuous growth to 850 units per volume and break till new growing from 1000 to ~ 1300. It did not tell as much as we wanted since a categorical column makes these clusters logical. But without categorical variables, we can see two separated groups.

Yes, I saw that value, volume, units interpret in decimal, but I decided not to round.

'promo' column

For the variable 'promo' at this stage,- boxplot is not informative. I would better use a pie chart to see distribution, but I need to make data aggregation.

Only we can conclude that we haven't negative values.

Delating outliers and normalization/scaling/standardization

About data normalization

In the following steps, I will take the logarithm of some columns, so I decided not to normalize or make standardization of my data.

About outliers

Also, with the same situation as with data normalization, we can make EDA for the upgraded dataset and conclude outliers at that step.

Data Manipulation & Transformation

Data Manipulation

What I planned to do:

- 1. Aggregate data (for better understanding)
- 2. Visualize aggregated data (the same reason)

'cat' column (total three possible values in this column)

'subcat' column (total 248 possible values in this column)

'cat' * 'subcat' (total 466 possible configuration)

Unfortunately, it is impossible to do a pie chart for subcat and cat*subcat columns distributions because there are too many groups to display.

For your recommendations, I aggregate numeric variables by categorical variables and "`promo ". I obtained:

Distribution for a total sum of the promo by categories

Aggregation for a total sum of the promo by subcategories

subcat	pro
<chr></chr>	<int></int>
Flowers	201
Home Carpets	313
Outdoor Tools	163
Fournitures de nettoyage	193
Literie	210
Grasses	55
Dessert Decorators	234
Desktop Holder	201
Food Storage	268
Artisanat	200

Aggregation for a total sum of the promo by subcategories and Categories

cat <chr></chr>	subcat <chr></chr>	pro	
beauty	Flowers	89	
beauty	Home Carpets	106	
beauty	Outdoor Tools	83	
beauty	Fournitures de nettoyage	82	
beauty	Literie	38	
beauty	Grasses	12	
beauty	Dessert Decorators	51	
beauty	Desktop Holder	82	
beauty	Food Storage	77	
beauty	Artisanat	83	

I notice that for cat=='beauty' and subcat=='Flowers' sum of the promo is equal 89 at that time only for subcat=='Flowers' sum of the promo is 201. I was confused, so I decided to look at aggregation for total rows separately for subcat and cat*subcat.

Aggregation for the total number of records by subcategories

subcat	N
<chr></chr>	<int></int>
Flowers	305
Home Carpets	468
Outdoor Tools	312
Fournitures de nettoyage	468
Literie	468
Grasses	312
Dessert Decorators	468
Desktop Holder	491
Food Storage	468
Artisanat	468

After data manipulation, I understand that subcategories can be in any category. And I think it will be important in feature generating or modeling.

cat	subcat	N
<chr></chr>	<chr></chr>	<int></int>
beauty	Flowers	149
beauty	Home Carpets	156
beauty	Outdoor Tools	156
beauty	Fournitures de nettoyage	156
beauty	Literie	156
beauty	Grasses	156
beauty	Dessert Decorators	156
beauty	Desktop Holder	156
beauty	Food Storage	156
beauty	Artisanat	156

Ordered aggregation by promo and subcategories to see where was the most promo

Ordered aggregation by promo, categories, and subcategories to see where was the most promo (to understand data better)

cat cchr>	subcat <chr></chr>	promo <int></int>	
accessories	Crayon à sourcils & Amplificateur	298	
accessories	Alarme Smart	156	
accessories	Aquariums	156	
accessories	Crochets	156	
accessories	Lumières 3D	156	
accessories	Wine Decanters	156	
accessories	Garden Gloves	156	
accessories	Soldering Tools	155	
accessories	Colanders & Strainers	155	
accessories	Faux cils	155	

I analyzed by volume and units, the same as for promo. You can find charts and data tables in r markdown.

Transformation

Dataset preview before first part transformation

What I added (there were some problems, I will take notice):

- year, week, year_week, month, full_date
 Comment: all these columns are necessary for:
 - 1.1. Future analysis time series
 - 1.2. Making new dummy columns from "holidays.csv" based on date.
- 2. prexms, xms, easter, halloween, newyear, valentine
- * During this task, I have a problem with 53 weeks, but I solve it with the ISOweek library; also, I have a problem with initialization data in incorrect time zone, but I solve it by delaminating one day from the current date in a cell.

Dataset preview before second part transformation (because of previous manipulations)

Summary

	subcat	cat_subcat	рионо	date	LIGAN	
cat Length: 74988	Length:74988	Length:74988	promo Min. :0.0000		year Length:74988	
					-	
Class :character	Class :character					
Mode :character	Mode :character	Mode :character	Median :0.0000	Mode :characte	r Mode :characte	er
			Mean :0.4325			
			3rd Qu.:1.0000			
			Max. :1.0000			
week	year_week	month	full_date	prexms	xms	
Length:74988	Length: 74988	Length: 74988	Min. :2016-1	1-20 Min. :0.0	0000 Min. :0.00	9000
Class :character	Class :character	Class :character	1st Qu.:2017-0	8-13 1st Qu.:0.0	00000 1st Qu.:0.00	9000
Mode :character	Mode :character	Mode :character	Median :2018-0	5-06 Median:0.0	10000 Median :0.00	3000
			Mean :2018-0	5-09 Mean :0.0	1922 Mean :0.03	1922
			3rd Qu.:2019-0	2-03 3rd Qu.:0.0	10000 3rd Qu.:0.00	3000
			Max. :2019-1	1-03 Max. :1.0	00000 Max. :1.00	9000
easter	halloween	newyear	valentine	value	volume	units
Min. :0.00000	Min. :0.00000	Min. :0.0000 N	lin. :0.00000	Min. : -1.655	Min. : -2.3617	Min. : -0.0711
1st Qu.:0.00000	1st Qu.:0.00000	1st Qu.:0.0000 1	st Qu.:0.00000	1st Qu.: 11.781	1st Qu.: 0.8456	1st Qu.: 3.1317
Median :0.00000	Median :0.00000	Median :0.0000 N	ledian :0.00000	Median : 25.943	Median : 2.2662	Median : 7.9844
Mean :0.01923	Mean :0.01926	Mean :0.0192 N	lean :0.01923	Mean : 53.179	Mean : 5.5347	Mean : 19.9282
3rd Qu.:0.00000	3rd Qu.:0.00000	3rd Qu.:0.0000 3	rd Qu.:0.00000	3rd Qu.: 54.598	3rd Qu.: 5.6875	3rd Qu.: 18.5863
Max. :1.00000	Max. :1.00000	Max. :1.0000 N	lax. :1.00000	Max. :2247.129	Max. :325.7443	Max. :1276.6882

^{*} Total rows - 74988

What I added to the previous data table:

1. 'price' column It was produced 7703 Na's.

price
Min. :-103239.68
1st Qu.: 8.20
Median : 10.88
Mean : 9.95
3rd Qu.: 15.07
Max. : 48.13
NA's :7703

We suppose price can't be negative (so I remove value which is less than 0):

price
Min. : 0.9777
1st Qu.: 8.1971
Median :10.8803
Mean :12.4540
3rd Qu.:15.0735
Max. :48.1279

Now it looks much better.

2. 'price_var' column

For me, it was a bit confused to make 'price_var' for an unknown sample. So, I decided to sample by category*subcategory because it seems the most logical for me.

At this point, without NA'a.

If we delete observations where var > 2 or Na, we will have 28599 observations total. (So, at this point, I decide two save two versions with this cutting (copy) and without(without_var_cuting_copy))

price	price_var
Min. : 0.9777	Min. :0.01021
1st Qu.: 6.7691	1st Qu.:0.22980
Median : 8.9176	Median :0.69174
Mean : 9.4824	Mean :0.85808
3rd Qu.:11.0864	3rd Qu.:1.37558
Max. :32.2901	Max. :2.00920

3. 'log_price' column

log_price
Min. :-0.009779
1st Qu.: 0.830531
Median : 0.950249
Mean : 0.944263
3rd Qu.: 1.044792
Max. : 1.509070

^{*} Box plot is for 'price var' column

4. 'avg_volume' column

To this column also arise questions (we will use seasonality in our modeling, but this column does not include seasonality). But anyway, I did it, and in the future, I will check this variable on statistical significance.

5. 'log_volume' column

log_volume
Min. :-3.8008
1st Qu.: 0.1441
Median : 0.4851
Mean : 0.4731
3rd Qu.: 0.8375
Max. : 2.2660
NA's :7

* Removed 7 NA's

5.5 After made condition week>29, we have 13079 observations (from 28592)

6. 'cpi' column

Statistical analysis for new columns ('total_value' and 'total_volume')

valı	ıe
: (0.0006
: 23	3.9409
: 58	3.7925
: 99	9.4418
:127	7.6193
:821	L.7723
	: 23 : 58 : 99 :127

total_v	olume/
Min. :	0.00023
1st Qu.:	2.73190
Median :	7.62576
Mean :	12.64162
3rd Qu.:	16.00281
Max. :	200.10653

Statistical analysis for new column 'cpi.'

cpi Min. :0.300 1st Qu.:0.892 Median :0.995 Mean :1.002 3rd Qu.:1.064 Max. :3.329 NA's :4903

7. 'log_cpi'column

log_cpi
Min. :-1.203
1st Qu.:-0.115
Median :-0.005
Mean :-0.015
3rd Qu.: 0.062
Max. : 1.203
NA's :4903

After changing NA's on 0:

log_cpi

Min. :-1.202752

1st Qu.:-0.034654

Median : 0.000000

Mean :-0.009584

3rd Qu.: 0.007960

Max. : 1.202752

Dataset after deformation (second part)

Summary (if we make all conditions)

cat	subcat	cat_subcat	promo	date	year	week	year_week	month
Length:13079	Length: 13079	Length: 13079	Min. :0.0000	Length: 13079	Length: 13079	Min. :30.00	Length: 13079	Length: 13079
lass :character	Class :character	Class :character	1st Qu.:0.0000	Class :character	Class :character	1st Qu.:35.00	Class :character	Class :character
Mode :character	Mode :character	Mode :character	Median :0.0000	Mode :character	Mode :character	Median :41.00	Mode :character	Mode :character
			Mean :0.4089			Mean :41.38		
			3rd Qu.:1.0000			3rd Qu.:47.00		
			Max. :1.0000			Max. :53.00		
full_date	prexms	xms	easter ho	alloween n	ewyear val	entine value	volume	
Min. :2016-11-20	Min. :0.00000	Min. :0.00000	Min. :0 Min.	:0.00000 Min.	:0.00000 Min.	:0 Min. : (0.0006 Min. : (0.00023
lst Qu.:2017-10-08		1st Qu.:0.00000			Qu.:0.00000 1st Q			1.45444
Median :2018-08-19		Median :0.00000			an :0.00000 Media			3.20478
Mean :2018-06-24		Mean :0.04159	Mean :0 Mear					6.03448
3rd Qu.:2018-12-23					Qu.:0.00000 3rd Q			
Max. :2019-11-03	Max. :1.00000	Max. :1.00000	Max. :0 Max.	:1.00000 Max.	:1.00000 Max.	:0 Max. :82:	L.7723 Max. :18	4.48945
units	price	price_var	log_price	avg_volume	log_volume	total_value	total_volume	cpi
in. : 0.0008	Min. : 0.9868	Min. :0.01021	Min. :-0.005776	Min. : 0.2404	Min. :-3.6459	Min. : 0.0006	Min. : 0.0002	
1st Qu.: 4.2522	1st Qu.: 6.7643	1st Qu.:0.22980	1st Qu.: 0.830222	1st Qu.: 1.6104	1st Qu.: 0.1627	1st Qu.: 23.9409	1st Qu.: 2.7319	
Median : 9.1352	Median : 8.9220	Median :0.69174	Median : 0.950462	Median : 3.3596	Median : 0.5058	Median : 58.7925	Median : 7.6257	
Mean : 16.8399	Mean : 9.4837	Mean :0.85721	Mean : 0.945103	Mean : 5.8202	Mean : 0.4909	Mean : 99.4418	Mean : 12.6416	
3rd Qu.: 18.7751	3rd Qu.:10.9992	3rd Qu.:1.37558	3rd Qu.: 1.041359	3rd Qu.: 7.3635	3rd Qu.: 0.8571	3rd Qu.:127.6193	3rd Qu.: 16.0028	
Max. :350.7110	Max. :32.2788	Max. :2.00920	Max. : 1.508918	Max. :50.6894	Max. : 2.2660	Max. :821.7723	Max. :200.1065	Max. :3.329 NA's :4903
log_cpi								
Min. :-1.202752								
lst Qu.:-0.034654								
Median : 0.000000								
Mean :-0.009584								
3rd Qu.: 0.007960								
Max. : 1.202752								

^{*} Total number observations- 13079

Regression analysis

Features selection

Variables with statistically significant influence on log_volume variables (Boruta library):

> print(boruta_signif)									
[1] "cat"	"subcat"	"value"	"volume"	"units"	"log_units"	"promo"	"year"	"week"	"month"
[11] "avg_volume"	"price"	"price_var"	"log_price"	"total_value"	"total_volume"	"log_cpi"	"xms"	"halloween"	

_	meanImp [‡]	decision ‡	
_	театтр	decision	
volume	24.793408	Confirmed	
value	19.893041	Confirmed	
units	19.177472	Confirmed	
log_units	19.018194	Confirmed	
price	16.305416	Confirmed	
log_price	15.848585	Confirmed	
total_volume	15.226778	Confirmed	
price_var	14.728627	Confirmed	
total_value	13.527180	Confirmed	
avg_volume	12.813820	Confirmed	
cat	11.220164	Confirmed	
subcat	10.622604	Confirmed	
promo	9.869864	Confirmed	
log_cpi	7.539264	Confirmed	
year	6.242038	Confirmed	
week	6.221052	Confirmed	
month	3.058743	Confirmed	
halloween	1.915930	Confirmed	
xms	1.629961	1.629961 Confirmed	

Modeling

First model

```
lm(formula = log_volume ~ log_units + log_price + cat + subcat +
    promo + log_cpi + year + week + month + xms + halloween,
    data = copy)
```

Comment: I added all variables from feature selection which are highly important for log price.

Second model

```
lm(formula = log_volume ~ log_units + log_price + cat + subcat +
    cat * subcat + promo + log_cpi + year + week + month + xms +
    halloween, data = copy)
```

Comment: I delete seasonality.

Third model

```
lm(formula = log_volume ~ log_units + log_price + cat + subcat +
    promo + log_cpi + year + week + month + xms + halloween +
    (prexms * xms * newyear), data = copy)
```

Comment: I added interaction term prexms*xms*newyear.

Results

Metrics

	First model	Second model	Third model
R^2	0.9987	0.9987	0.9987
RSS	5.400473	5.401647	5.400472
TSS	4111.76	4111.76	4111.76
MPE	-0.00123435	-0.00123435	-0.001144638
MAPE	0.05072712	0.05069987	0.05073671

Visualizations (first, second and third accordingly)

All three models are on the same level of quality. R^2 is high, MPE and RSS are small. So, we can take any of these three models.

Prepared by Yaroslav Boiko.