SSE5107 Optimization Theory and Algorithms Mid-term quiz

Problem 1 (20 points): True or False

1. A hyperplane is a convex set.

True or False

2. A quadratic function is a convex function.

True or False

3. A locally optimal point of a convex problem is also globally optimal.

True or False

4. A convex problem has a unique optimal value and a unique optimal point.

True or False

5. All the eigenvalues of a positive semidefinite matrix are non-negative.

True or False

Problem 2 (40 points): Single Choice

1. Make a **single choice** for each given set

A. Convex B. Non-convex

- (a) $\{\bar{x} + Px \mid ||x||_2 \le 1\}$, where $\bar{x} \in \mathbb{R}^n$ and $P \in \mathbb{R}^{n \times n}$.
- (b) $\{\sum_{i=1}^{3} \alpha_i x_i \mid \sum_{i=1}^{3} \alpha_i = 1, \alpha_i \geq 0, i = 1, 2, 3\}$, where $x_i \in \mathbb{R}^n$, i = 1, 2, 3.
- (c) A set S such that for any $x \in S$, θx is also in set S, for any $\theta \in [0, 1]$.
- (d) $\{x \in \mathbb{R}^n \mid c^T x \leq 0, x^T (W cc^T) x \leq 0\}$, where $W \in \mathbb{S}^n_+$ and $c \in \mathbb{R}^n$.
- (e) $\{x \in \mathbb{R}^n \mid x^T y \leq 0, \forall y \in C\}$, where C is a given set.
- 2. Make a **single choice** for each given function

A. Convex B. Concave C. Both D. Neither

- (a) $f(x) = ||x||_p$, where p > 1.
- (b) f(X) = Tr(AXB), where $A, B, X \in \mathbb{R}^{n \times n}$.
- (c) $f(X) = \text{Tr}(AX^{-1})$, where **dom** $f = \mathbb{S}_{++}^n$ and $A \in \mathbb{S}_{+}^n$.
- (d) $g(y) = \sup_{x \in \mathbf{dom}} f y^T x f(x)$, for any given function f(x).
- (e) $f(X) = \log \det(X)$, where **dom** $f = \mathbb{S}^n_+$.

Problem 3 (20 points)

1. Consider the following general linear programming

$$\min_{x \in \mathbb{R}^n} c^T x$$

$$s.t. \quad Ax = b$$

$$Gx \le h$$

where $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{k \times n}$, and $h \in \mathbb{R}^k$. Convert the above problem into a standard-form linear programming.

2. Consider the following general semidefinite programming:

$$\min_{x \in \mathbb{R}^n} c^T x$$

$$s.t. \quad Ax = b$$

$$\sum_{i=1}^n F_i x_i + G \leq 0,$$

where $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{S}^k$ and $F_i \in \mathbb{S}^k$, for i = 1, 2, ..., n. Convert the above problem into a *standard-form* semidefinite programming.

Problem 4 (20 points)

Consider a convex problem of the general form:

$$\min f(x)
s.t. x \in \mathcal{X}.$$

Here $\mathcal{X} \subset \mathbb{R}^n$ is a convex set, and $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable function on \mathcal{X} .

- 1. Give a necessary and sufficient condition for $x^* \in \mathcal{X}$ to be an optimal solution of the above problem.
- 2. Prove the sufficiency of the condition in question 1.
- 3. Present more specific optimality conditions (no need to prove) for the following case:

$$\mathcal{X} = \{x \mid x_i \in [l_i, u_i], i = 1, ..., n\}, l_i \le u_i, \forall i.$$