Casper Kristiansson 2022-11-16

Homework 3

Question 1

A)

link = 20Mbps, TCP segment size = 1000bytes, Propagation delay = 0.2s

$$\frac{(\max window size * segment size)}{Propagation delay} = link capacity$$

$$max\ window\ size = \frac{link\ capacity*popagation\ delay}{segment\ size} = \frac{20*10^6*0.2}{1000*8} = 500\ segments$$

B)

The window size is between $\frac{W}{2}$ and W. Therefore, the average window size is $\frac{3W}{4}=3*\frac{500}{4}=375$ segments.

The average throughput is $375 * \frac{1000*8}{0.2} = 15000000 = 15 * 10^6$

C)

$$\frac{W}{2} * 0.2 = \frac{500}{2} * 0.2 = 50s$$

Question 2

A)

Question 3

A)

Prefix Match	Address range	Number of Addresses
10	10000000 – 10111111	64
01	01000000 - 01111111	64
11	11000000 – 11111111	64
Otherwise	00000000 - 00111111	64

B)

Prefix Match	Address range	Number of Addresses
101	10100000 – 10111111	32
111	11100000 - 11111111	32
01	01000000 - 01111111	64

Casper Kristiansson 2022-11-16

Otherwise	00000000 - 00111111	128
	11000000 – 11011111	
	10000000 - 10011111	

Question 4

 $diagram = 2400 byte, link\ MTU = 260 bytes, identification\ number = 21$

Fragments generated =
$$\frac{Datagram\ size-IP\ header\ size}{MTU\ size-IP\ header\ size} = \frac{2400-20}{260-20} = 9.91667$$

 $\approx 10\ fragments$

Fragment	Flag	Length	Identification	Offset
1	1	260	21	0
2	1	260	21	(240/8) = 30
3	1	260	21	60
4	1	260	21	90
5	1	260	21	120
6	1	260	21	150
7	1	260	21	180
8	1	260	21	210
9	1	260	21	240
10	0	240	21	270

Fragment 10: 2400 - 20 - (9 * 240) + 20 = 240

Question 5

A)

Subnet: 192.168.56.64/26

 $Example\ IP\ address\ =\ 192.168.56.65$

B)

Subnet nr.	Subnet Address
1	192.168.56.128/28
2	192.168.56.144/28
3	192.168.56.160/28
4	192.168.56.176/28

Question 6

Match	Action
Ingress port = 1	Forward(2)
IP Src = 10.3.0.*	
IP Dst = 10.1.0.*	

Casper Kristiansson 2022-11-16

Ingresss port = 2 IP Src = 10.1.0.* IP Dst = 10.3.0.*	Forward(1)
Ingress port = 1 IP Dst = 10.2.0.3	Forward(3)
Ingress port = 2 IP Dst = 10.2.0.3	Forward(3)
Ingress port = 1 IP Dst = 10.2.0.4	Forward(4)
Ingress port = 2 IP Dst = 10.2.0.4	Forward(4)
Ingress port = 3 IP Src = 10.2.0.3 IP Dst = 10.2.0.4	Forward(4)
Ingress port = 4 IP Src = 10.2.0.4 IP Dst = 10.2.0.3	Forward(3)