# Le bilan de matière et le tableau d'avancement

# I-Bilan de matière d'un système chimique :

#### > ACTIVITE 1

Réaliser le bilan de matière du système consiste à déterminer les quantités de matière de toutes les espèces présentes.

On peut donc avoir besoin d'un bilan de matière dans l'état initial, dans l'état final, mais aussi dans un état intermédiaire.

Le réactif limitant est le réactif qui a été introduit par défaut et qui disparaît totalement au cours de la réaction.

### II - Avancement chimique :

### > ACTIVITE 2

Pour suivre l'évolution du système entre l'état initial et l'état final, on définit une nouvelle grandeur : l'avancement chimique.

L'avancement chimique d'une réaction est une quantité de matière variable, notée x, qui permet de déterminer les quantités de matière de tous les réactifs et les produits à n'importe quel moment de la réaction.

Remarque : l'avancement x est une quantité de matière. Elle s'exprime en mol.

- Dans l'état initial, x = 0,
- À l'état final :  $x = x_{max}$  (avancement maximal de la réaction).
- Au cours de la transformation,  $0 \le x \le x_{max}$

Pour simplifier, on présente généralement tous ces éléments sous la forme d'un tableau d'avancement .

## III- Tableau d'avancement d'une réaction.

| EQUATION DE LA REACTION       |                         | α A -                        | + β <b>B</b> →                       | γC         | + δ D                     |
|-------------------------------|-------------------------|------------------------------|--------------------------------------|------------|---------------------------|
| État du système               | Avancement              | Quantités de matières en mol |                                      |            |                           |
| État initial                  | x = 0                   | а                            | b                                    | 0          | О                         |
| Au cours de la transformation | Х                       | a - α x                      | <b>b</b> - β x                       | γ <i>x</i> | δχ                        |
| État final                    | <b>X</b> <sub>max</sub> | α - α Χ <sub>тах</sub>       | <b>b</b> - β <b>x</b> <sub>max</sub> | γ          | <b>δ χ</b> <sub>max</sub> |

# Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Au cours de la transformation :

- La quantité de matière formée d'un produit est le produit de l'avancement x par le nombre stœchiométrique de ce produit.
- La quantité de matière disparue d'un réactif vaut le produit de l'avancement x par le nombre stœchiométrique de ce réactif.

Remarques : toutes les quantités figurant dans ce tableau sont des quantités de matière ; si les données sont sous une autre forme (masse, volume, concentration, etc.), il faut d'abord calculer les quantités de matière correspondantes ;

### IV. Détermination de l'avancement maximal et état final:

#### 1-Réactif limitant:

La réaction chimique s'arrête dès qu'un des réactifs est épuisé : le système est alors dans son état final, et l'avancement a atteint sa valeur maximale  $x_{max}$ .

Le réactif qui s'épuise le premier est appelé « réactif limitant » ; pour calculer  $x_{max}$ , il faut donc tout d'abord déterminer quel est le réactif limitant.

Pour cela, on effectue pour chaque réactif l'hypothèse « ce réactif est limitant » et on calcule la valeur de  $x_{max}$  correspondante. On peut alors déterminer quel réactif est réellement limitant : c'est celui pour lequel la valeur de  $x_{max}$  est la plus petite (ce qui signifie bien que ce réactif arrête la réaction avant les autres).

### 2-Proportions stœchiométriques:

- Lorsque les quantités de matière initiales des réactifs sont proportionnelles aux coefficients stœchiométriques de l'équation bilan, on dit que les réactifs sont dans les proportions stœchiométriques, ou que la réaction a lieu dans les conditions stœchiométriques.
   Si les réactifs sont dans les proportions stœchiométriques, alors ils s'épuiseront en même temps.
- Si on considère une réaction quelconque, d'équation :  $aA + bB \rightarrow cC + dD$  où A et B sont les formules chimiques des réactifs, C et D celles des produits, et A, B, B et B leurs coefficients stæchiométriques, alors A et B sont dans les proportions stæchiométriques si leurs quantités de matière initiales A0, et A1, sont proportionnelles aux coefficients stæchiométriques de l'équation bilan, on dit que les réactifs vérifient la relation :

$$\frac{n(A)_i}{a} = \frac{n(B)_i}{b}$$

Dans ce cas, l'avancement maximal vaut : 
$$x_{max} = \frac{n(A)_i}{a} = \frac{n(B)_i}{b}$$

et les réactifs s'épuiseront en même temps. Les quantités de matière finales sont :

$$n(A)_f = n(B)_f = 0$$
;  
 $n(C)_f = c \cdot x_{max}$ ;  
 $n(D)_f = d \cdot x_{max}$ .

#### > ACTIVITE 3

# Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

#### À retenir

- Lorsque les quantités de matière des espèces chimiques d'un système évoluent, on dit que ce système subit une transformation chimique. On modélise cette transformation par une équation chimique.
- L'équation chimique doit respecter la conservation des atomes et des charges.
- L'avancement chimique d'une réaction est une quantité de matière variable, notée x, qui permet de déterminer les quantités de matière de tous les réactifs et produits à n'importe quel moment de la réaction.
- La réaction chimique s'arrête dès qu'un des réactifs, appelé « réactif limitant », est épuisé : le système est alors dans son état final et l'avancement a atteint sa valeur maximale  $x_{max}$ .
- Lorsque les réactifs sont dans les proportions stœchiométriques, alors ils s'épuisent en même temps.