$12n_{0251} \ (K12n_{0251})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{11} + 2u^{10} + 8u^9 + 13u^8 + 22u^7 + 27u^6 + 24u^5 + 19u^4 + 9u^3 + 4u^2 + b - 1, \\ u^{13} + 2u^{12} + 10u^{11} + 16u^{10} + 37u^9 + 46u^8 + 62u^7 + 57u^6 + 46u^5 + 30u^4 + 12u^3 + 7u^2 + a - u, \\ u^{14} + 2u^{13} + 11u^{12} + 18u^{11} + 46u^{10} + 60u^9 + 91u^8 + 90u^7 + 86u^6 + 60u^5 + 34u^4 + 17u^3 + 2u^2 - 1 \rangle \\ I_2^u &= \langle b - u + 1, \ u^4 - u^3 + 4u^2 + a - 2u + 2, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{11} + 2u^{10} + \dots + b - 1, \ u^{13} + 2u^{12} + \dots + a - u, \ u^{14} + 2u^{13} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{13} - 2u^{12} + \dots - 7u^{2} + u\\-u^{11} - 2u^{10} + \dots - 4u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{12} + 5u^{10} - 2u^{9} + 3u^{8} - 11u^{7} - 14u^{6} - 18u^{5} - 16u^{4} - 8u^{3} - 5u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} - 4u^{5} - 4u^{3} - 2u\\-u^{9} - 5u^{7} - 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{11} - 4u^{9} + 2u^{8} + 9u^{6} + 12u^{5} + 11u^{4} + 6u^{3} + 4u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} + 2u\\-u^{7} - 3u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

$$= u^{13} + 2u^{12} + 11u^{11} + 18u^{10} + 45u^9 + 56u^8 + 80u^7 + 65u^6 + 50u^5 + 12u^4 - 7u^3 - 11u^2 - 9u - 14u^2 + 11u^2 - 9u - 14u^2 - 9u - 14u^2 + 11u^2 - 9u - 14u^2 + 1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{14} + 26u^{13} + \dots + 14u + 1$
c_2, c_4	$u^{14} - 6u^{13} + \dots - 2u - 1$
c_3, c_8	$u^{14} + u^{13} + \dots + 64u + 32$
c_5, c_6, c_7 c_{10}, c_{11}	$u^{14} - 2u^{13} + \dots + 2u^2 - 1$
c_9, c_{12}	$u^{14} - 2u^{13} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 86y^{13} + \dots - 730y + 1$
c_{2}, c_{4}	$y^{14} - 26y^{13} + \dots - 14y + 1$
c_3, c_8	$y^{14} - 33y^{13} + \dots - 1536y + 1024$
$c_5, c_6, c_7 \\ c_{10}, c_{11}$	$y^{14} + 18y^{13} + \dots - 4y + 1$
c_9, c_{12}	$y^{14} - 30y^{13} + \dots - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.550724 + 0.891947I		
a = -0.096240 + 0.175738I	-15.0245 + 4.4031I	-12.54526 - 3.39165I
b = -1.07587 - 1.79627I		
u = -0.550724 - 0.891947I		
a = -0.096240 - 0.175738I	-15.0245 - 4.4031I	-12.54526 + 3.39165I
b = -1.07587 + 1.79627I		
u = 0.190452 + 0.810025I		
a = 0.013565 - 0.546935I	1.71814 - 1.64819I	-5.73834 + 4.69390I
b = -0.396657 + 0.339392I		
u = 0.190452 - 0.810025I		
a = 0.013565 + 0.546935I	1.71814 + 1.64819I	-5.73834 - 4.69390I
b = -0.396657 - 0.339392I		
u = -0.772289		
a = -2.27398	-17.7180	-15.7100
b = -0.485231		
u = -0.241199 + 0.492313I		
a = 0.340540 + 1.345040I	-1.48613 + 0.97077I	-11.76317 - 1.95166I
b = 1.022190 + 0.391429I		
u = -0.241199 - 0.492313I		
a = 0.340540 - 1.345040I	-1.48613 - 0.97077I	-11.76317 + 1.95166I
b = 1.022190 - 0.391429I		
u = -0.04571 + 1.57188I		
a = -1.87359 - 0.58564I	5.67567 + 1.86276I	-10.57290 - 1.15181I
b = 2.33538 + 1.40783I		
u = -0.04571 - 1.57188I		
a = -1.87359 + 0.58564I	5.67567 - 1.86276I	-10.57290 + 1.15181I
b = 2.33538 - 1.40783I		
u = 0.05378 + 1.66919I		
a = 0.834731 - 0.136645I	10.47610 - 2.59125I	-5.03885 + 1.58782I
b = -1.099410 - 0.067263I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05378 - 1.66919I		
a = 0.834731 + 0.136645I	10.47610 + 2.59125I	-5.03885 - 1.58782I
b = -1.099410 + 0.067263I		
u = -0.16470 + 1.67887I		
a = 1.88194 + 1.97217I	-6.19448 + 7.22352I	-10.76531 - 2.66085I
b = -2.16875 - 3.14542I		
u = -0.16470 - 1.67887I		
a = 1.88194 - 1.97217I	-6.19448 - 7.22352I	-10.76531 + 2.66085I
b = -2.16875 + 3.14542I		
u = 0.288492		
a = -0.927924	-0.575448	-17.4430
b = 0.251456		

II. $I_2^u = \langle b - u + 1, u^4 - u^3 + 4u^2 + a - 2u + 2, u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$

(i) Arc colorings

a₁) Are colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} + u^{3} - 4u^{2} + 2u - 2 \\ u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + u^{3} - 5u^{2} + 2u - 3 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} + u^{3} - 4u^{2} + 2u - 2 \\ u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^4 + 3u^3 12u^2 + 10u 19$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_3, c_8	u^5
c_4	$(u+1)^5$
c_5, c_6, c_7	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_9, c_{12}	$u^5 + u^4 - u^2 + u + 1$
c_{10}, c_{11}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_8	y^5
$c_5, c_6, c_7 \\ c_{10}, c_{11}$	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$
c_9, c_{12}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233677 + 0.885557I		
a = 0.487744 + 0.170166I	0.17487 - 2.21397I	-10.60206 + 4.05273I
b = -0.766323 + 0.885557I		
u = 0.233677 - 0.885557I		
a = 0.487744 - 0.170166I	0.17487 + 2.21397I	-10.60206 - 4.05273I
b = -0.766323 - 0.885557I		
u = 0.416284		
a = -1.81849	-2.52712	-16.7900
b = -0.583716		
u = 0.05818 + 1.69128I		
a = 0.92150 - 1.10071I	9.31336 - 3.33174I	-10.00277 + 3.46299I
b = -0.94182 + 1.69128I		
u = 0.05818 - 1.69128I		
a = 0.92150 + 1.10071I	9.31336 + 3.33174I	-10.00277 - 3.46299I
b = -0.94182 - 1.69128I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{14} + 26u^{13} + \dots + 14u + 1)$
c_2	$((u-1)^5)(u^{14}-6u^{13}+\cdots-2u-1)$
c_3, c_8	$u^5(u^{14} + u^{13} + \dots + 64u + 32)$
c_4	$((u+1)^5)(u^{14} - 6u^{13} + \dots - 2u - 1)$
c_5, c_6, c_7	$(u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1)(u^{14} - 2u^{13} + \dots + 2u^2 - 1)$
c_9, c_{12}	$(u^5 + u^4 - u^2 + u + 1)(u^{14} - 2u^{13} + \dots - 2u - 1)$
c_{10}, c_{11}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{14} - 2u^{13} + \dots + 2u^2 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^{14} - 86y^{13} + \dots - 730y + 1)$
c_2, c_4	$((y-1)^5)(y^{14}-26y^{13}+\cdots-14y+1)$
c_3,c_8	$y^5(y^{14} - 33y^{13} + \dots - 1536y + 1024)$
$c_5, c_6, c_7 \\ c_{10}, c_{11}$	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{14} + 18y^{13} + \dots - 4y + 1)$
c_9, c_{12}	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{14} - 30y^{13} + \dots - 4y + 1)$