เคมี มัธยมศึกษาปีที่ 6 : Alkyne

โดย..มิสเพ็ญนภา ดีจรัส

แอลไคน์ (Alkyne)

แอลไคน์ มีสมบัติทางกายภาพคล้ายคลึงกับแอลเคน แอลคีน แอลไคน์ ไม่ละลายน้ำ เนื่องจากเป็นสารโคเวเลนต์ไม่มีขั้ว แต่ละลายในตัวทำละลายอินทรีย์ มีความหนาแน่นน้อยกว่าน้ำ

C₂-C₄ มีสถานะเป็น **แก๊ส** C₅-C₁₈ มีสถานะเป็น **ของเหลว** C มากกว่า **18** อะตอม
 มีสถานะเป็น**ของแข็ง**

แอลไคน์ (Alkyne): จุดหลอมเหลว และจุดเดือดของแอลไคน์โซ่ตรงบางชนิด

จำนวนอะตอม	แอลไคน์		จุดหลอมเหลว	จุดเดือด
ของศาร์บอน	ชื่อ	สูตรโมเลกุล	(°C)	(°C)
2	อีไทน์ (ethyne)	C ₂ H ₂	-80.7*	-84.7**
3	โพรไพน์ (propyne)	C₃H₄	-102.7	-23.2
4	1–บิวไทน์ (1–butyne)	C_4H_6	-125.7	8.1
5	1–เพนไทน์ (1–pentyne)	C₅H ₈	-90.0	40.1
6	1–เฮกไซน์ (1–hexyne)	C ₆ H ₁₀	-131.9	71.3
7	1–เฮปไทน์ (1–heptyne)	C ₇ H ₁₂	-81.0	99.7
8	1–ออกไทน์ (1–octyne)	C ₈ H ₁₄	-79.3	126.3

 C_nH_{2n-2}

- เรียกตามการเรียกชื่อของแอลคีน แต่ลงท้ายเสียง **ไ-น์ (-yne)**
- ระบุตำแหน่งของพันธะสาม **(ตัวเลขน้อยที่สุด)**

CH≡CH	มีชื่อว่า	อีไทน์ (ethyne, C₂H₂)
CH≡CCH ₃	มีชื่อว่า	โพรไพน์ (propyne, C₃H₄)
CH≡CCH ₂ CH ₃	มีชื่อว่า	1–บิวไทน์ (1–butyne, C ₄ H ₆)
$CH_3C \equiv CCH_3$	มีชื่อว่า	2–บิวไทน์ (2–butyne, C₄H₀)
1 2 3 4 5 CH ₃ C≡CCHCH ₃ CH ₃	มีชื่อว่า	4–เมทิล–2–เพนไทน (4–methyl–2–pentyne, C ₆ H ₁₀)

ไซโคลแอลไคน์ (cycloalkyne)

โมเลกุลที่เล็กที่สุดของไซโคลแอลไคน์คือไซโคลออกไทน์ (คาร์บอน 8 อะตอม)

มีชื่อว่า ไซโคลโนไนน์ (cyclononyne, C₉H₁₄)

$$HC \equiv C - CH_{2}CHCH_{3}$$

$$CH_3$$
 $-CH_2$
 CH_3 $-CH$ $-C\equiv C$ $-CH_3$

$$CH_{3}-C \equiv C-C-CH_{3}$$
 CH_{3}

$$\begin{array}{ccc} \mathrm{CH_3-CH_2} & \mathrm{CH_3} \\ \mathrm{CH_3-CH-CH-C} \equiv \mathrm{C-CH-CH_3} \\ \mathrm{CH_3} \end{array}$$

เขียนสูตรโครงสร้างของ 6,6-ไดเอทิล-2,5-ไดเมทิล-3-ออกไทน์

แอลไคน์ (Alkyne) : การเตรียมแอลไคน์

ปฏิกิริยาการเตรียมอีไทน์ เตรียมได้จากปฏิกิริยาระหว่าง แคลเซียมคาร์ไบด์กับน้ำ หรือเตรียมจากแก๊สมีเทนที่ความร้อนสูง ๆ ระยะเวลาสั้น ๆ

$$3C + CaO \xrightarrow{2500^{\circ}C} CaC_{2} + CO$$

$$CaC_{2}(s) + 2H_{2}O(l) \xrightarrow{} HC = CH + Ca(OH)_{2}$$

$$2CH_{4} \xrightarrow{1500^{\circ}C} HC = CH + 3H_{2}$$

แอลไคน์ (Alkyne) : การเตรียมแอลไคน์

ปฏิกิริยาการเตรียมอีไทน์ เตรียมได้จากแอลคืนซึ่งผ่านปฏิกิริยา dehydrohalogenetion

แอลไคน์ (Alkyne) : ปฏิกิริยา

ปฏิกิริยาการเติม (addition reaction)

Hydrogenation

Halogenation

addition of hydrogen halide

ปฏิกิริยาออกซิเดชัน (Oxidation)

แอลไคน์ (Alkyne) : ปฏิกิริยาการเติมไฮโดรเจน (hydrogenation)

$$HC \equiv CH \xrightarrow{H_2, Ni} CH_2 = CH_2 \xrightarrow{H_2, Ni} CH_3CH_3$$

$$R \longrightarrow C \longrightarrow C \longrightarrow R$$

$$H_2/Pt \longrightarrow R$$

$$H \longrightarrow C \longrightarrow R$$

$$H \longrightarrow$$

แอลไคน์ (Alkyne) : ปฏิกิริยาการเติมฮาโลเจน (halogenation)

$$R-C \equiv C-R \xrightarrow{Br_2} \xrightarrow{Br} C=C \xrightarrow{R} \xrightarrow{Br} \xrightarrow$$

แอลไคน์ (Alkyne) : ปฏิกิริยาการเติมไฮโดรเจนเฮไลด์

ปฏิกิริยาการเติมไฮโดรเจนเฮไลด์ การเติม HCl นั้น H จะเข้าทำปฏิกิริยาที่ตำแหน่ง ที่ 1 และ Cl จะเข้าที่ตำแหน่งที่ 2 ของเฮไลด์ เนื่องจากการเกิดปฏิกิริยานั้น เมื่อ H เข้าทำ ปฏิกิริยาทำให้เกิด 2° คาร์โบแคทไอออน หลังจากนั้น Cl จึงเข้าทำปฏิกิริยาตามมา

แอลไคน์ (Alkyne) : ปฏิกิริยาออกซิเดชัน

การฟอกจางสีของ KMnO₄

ถ้าพันธะสามอยู่ที่คาร์บอน**ตำแหน่งที่ 1**

$$3RC \equiv CH + 8KMnO_4 + 4H_2O \longrightarrow 3RCOOH + 3CO_2 + 8MnO_2 + 8KOH$$

ถ้าพันธะสามอยู่ที่คาร์บอน**ตำแหน่งที่ 2 เป็นต้นไป**

แอลไคน์ (Alkyne) : การใช้ประโยชน์

การใช้ประโยชน์

เมื่อเผาแก๊สผสมของอะเซทิลีนกับแก๊สออกซิเจนในอัตราส่วนที่เหมาะสมจะ ได้เปลวไฟออกซีอะเซทิลีน ซึ่งให้ความร้อนสูงถึง 3000 ⁰C จึงสามารถนำมาใช้ใน การเชื่อมและตัดโลหะได้ นอกจากนี้ยังใช้แก๊สอะเซทิลีนเป็นเชื้อเพลิงในการให้ แสงสว่าง และเพื่อเร่งการออกดอกของพืชและใช้เร่งให้ผลไม้สุกเร็ว

ลองทำดู

แอลไคน์ (Alkyne) : X คือ สารใด

$$X + KMnO_4 + H_2O \longrightarrow CH_3 - C - C - CH_3 + MnO_2 + KOH$$

$$X + KMnO_4 + H_2O$$
 \longrightarrow $CH_3 - CH_2 - C - OH + CO_2 + MnO_2 + KOH$

$$X + KMnO_4 + H_2O \longrightarrow C_7H_{14}O_2 + MnO_2 + KOH$$

แอลไคน์ (Alkyne) : X คือ สารใด

$$X + KMnO_4 + H_2O \longrightarrow C_7H_{14}O_2 + MnO_2 + KOH$$

$$X + KMnO_4 + H_2O \longrightarrow C_4H_{10}O_2 + MnO_2 + KOH$$

$$X + KMnO_4 + H_2O \longrightarrow C_5H_8O_2 + MnO_2 + KOH$$

$$X + KMnO_4 + H_2O \longrightarrow C_4H_8O_2 + CO_2 + MnO_2 + KOH$$

แอลไคน์ (Alkyne) : จงเขียนสมการแสดงปฏิกิริยาที่เกิดขึ้นระหว่างสารต่อไปนี้

แอลไคน์ (Alkyne): พิจารณาข้อมูล แล้วตอบคำถาม

สาร A B และ C เป็นสารประกอบไฮโดรคาร์บอน เมื่อนำสาร A ทำปฏิกิริยากับสารละลาย KMnO₄ และนำสาร B และ C ทำปฏิกิริยากับสารละลายโบรมีน ในที่สว่างจะเกิดปฏิกิริยาดังสมการ

$$A + KMnO_4 + H_2O -----> C_3H_6O_2 + MnO_2 + KOH$$
 $B + Br_2 -----> C_3H_6Br_2$
 $C + Br_2 -----> C_3H_5Br + HBr$

ข้อใดต่อไปนี้ **ถูก** ต้อง

- 1. สาร A มีสูตรโมเลกุล C_3H_4
- 2. สาร B และ C เป็นไอโซเมอร์กัน
- 3. สาร C ฟอกสีสารละลาย $KMnO_4$
- 4. สาร A 1 โมลเกิดปฏิกิริยาการเผาไหม้อย่างสมบูรณ์ได้แก๊สคาร์บอนไดออกไซด์และน้ำ อย่างละ 3 โมล
- ก. ข้อ 1 และ 2 ข. ข้อ 3 และ 4 ค. ข้อ 1 3 และ 4 ง. 1 2 และ 3

