Natural sensors (& sensing)

Why, what, how - & so-what?

• The word "sensor" comes from Latin (sensus: sense) and means feeler

Sensors

 Perform some input function by sensing or feeling the physical changes in characteristics of a system in response to some stimuli

• Example: In a temperature sensor, heat is converted to electrical signals

https://bostondynamics.com/blog/what-is-dynamic-sensing/

Transducers

 Convert one form of energy into another (https://www.youtube.com/watch?v=9XTqD44Q9WA)

• Example: In a sound system, a microphone converts sound waves into electrical signals, which are then amplified by an amplifier and a loudspeaker converts the electrical signals back into sound waves

It is a collective term that includes both sensors and actuators

Sensor – Energy Converter

- A sensor may incorporate several transducers. The last part is a direct sensor producing electrical output
- Example: A chemical sensor produces electrical signal in response to a chemical reaction. It may have two parts: first one converts the energy of a chemical reaction to heat (transducer) and the other part (thermopile) converts the heat into an electrical signal
- Direct sensor and Indirect Sensor

Sensor Features

• Sensitive only to the measured property (temperature sensor only senses the ambient temperature)

Insensitive to any other property encountered in the system

Does not influence the measured property

Why do we need to sense?

- Monitor
- Repair
- Predict
- Maintain
- Analyse
- Understand
- Survive?

What are we sensing?

Visual Auditory Movement/direction (is it direct or indirect?) Touch **Smell Taste Vibration**

How are we sensing?

- Waves
- Force & strain
- Chemical
- Mechanical
- Electrical
- Thermal
- Quantity
- features

Human Skin as sensor

Dermis is below the epidermis and contains four kinds of mechanoreceptors that respond to stimuli such as pressure, stretching, and vibration.

- Meissner corpuscles- respond to light **touch** and adapt rapidly to changes in **texture** (vibrations around 50 Hz).
- The bulbous corpuscles (also known as Ruffini endings) detect tension deep in the skin and fascia.
- The Merkel nerve endings (also known as Merkel discs) detect sustained pressure.
- The lamellar corpuscles (also known as Pacinian corpuscles) in the skin and fascia detect rapid **vibrations** (of about 200–300 Hz).
- Cutaneous mechanoreceptors respond to mechanical stimuli that result from physical interaction, including pressure and vibration.

Tactile Receptors in the Skin

Wikipedia. L

Eye & brain as visual sensor

Nose as a sensor

Tongue as a sensor

Ear – auditory sensor

Eardrum – vibration → hammer/anvil/stirrup bones → the structure & conductive motion of middle ear amplifies the sound → vibration of the fluid in the inner ear (hydraulic energy) → oscillation of thousands of tiny sensory hair cells in cochlea → chemical/electrical signals to the brain

• • • • • • • • •

Spectrum for sensing..

The electromagnetic spectrum

8. Infrasound 9. Human hearing 10. Ultrasound →

Sensing, recognizing and actuator control!

Complexity – density of sensors

