What is claimed is:

1. A photoresist monomer represented by following Formula 1:

Formula 1

2. A photoresist polymer comprising the photoresist monomer of claim 1.

3. The photoresist polymer according to claim 2, wherein the polymer comprises a repeating unit of Formula 2 or Formula 3:

Formula 2

Formula 3

$$\begin{array}{c|c}
 & R_6 \\
\hline
 & R_6 \\
\hline
 & R_6
\end{array}$$

$$\begin{array}{c|c}
 & R_6 \\
\hline
 & R_6
\end{array}$$

10

20

25

wherein R_1 is selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group (-O-), (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group, and -COOR';

 R_2 , R_3 , R_5 and R_6 are individually selected from the group consisting of H, halogen, (C_1 - C_{20}) alkyl, (C_1 - C_{20}) alkyl with halogen substituent(s), (C_1 - C_{20}) alkyl containing an ether group, and (C_1 - C_{20}) alkyl with halogen substituent(s) and containing an ether group;

R', R₄ and R₇ are individually acid labile protecting groups;

X and Y are individually selected from the group consisting of (C_1-C_{10}) alkylene, O and S;

n is 0 or 1; and

the ratio a: b: c falls within the ranges 1-50mol%: 0-50mol%: 0-80mol%.

- 15 4. The photoresist polymer according to claim 3, wherein the repeating unit comprises one or more of substituent(s) which are selected from the group consisting of halogen, (C₁-C₂₀) alkyl, (C₁-C₂₀) alkyl with halogen substituent(s), (C₁-C₂₀) alkyl containing an ether group, and (C₁-C₂₀) alkyl with halogen substituent(s) and containing an ether group.
 - 5. The photoresist polymer according to claim 3, wherein the acid labile protecting group is selected from the group consisting of 2-methyl 2-adamantyl, hexafluoro isopropyl, 8-ethyl 8-tricyclodecanyl, tert-butyl, tetrahydropyran-2-yl, 2-methyl tetrahydropyran-2-yl, tetrahydrofuran-2-yl, 2-methyl tetrahydrofuran-2-yl, 1-methoxypropyl, 1-methoxy-1-methylethyl, 1-ethoxypropyl, 1-ethoxy-1-methylethyl, 1-methoxyethyl, 1-ethoxyethyl, 1-isobutoxyethyl and 2-acetylmenth-1-yl.

6. The photoresist polymer according to claim 3, wherein the repeating unit further comprises a monomer of Formula 4.

Formula 4

wherein, R_8 is selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group, and (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group;

Z is O or S; and

m is 0 or 1.

10

5

7. The photoresist polymer according to claim 3 or claim 6, wherein the repeating unit is represented by Formulas 2a to 2d or Formula 3a:

Formula 2a

Formula 2b

Formula 2c

$$\begin{array}{c} & & & \\ & &$$

Formula 2d

Formula 3a

$$\begin{array}{c|c}
 & H_2 \\
 & C \\
 & C$$

- 8. A process of preparing of a photoresist polymer comprising:
- 5 (a) admixing (i) a monomer of Formula 1, (ii) at least one of the monomer selected from the group consisting of Formula 5 and Formula 6, and with or without (iii) a monomer of Formula 4; and
 - (b) adding a radical polymerization initiator or an anion polymerization catalyst into the resultant of step (a) to obtain a repeating unit of Formula 2.

Formula 1

Formula 2

10

15

Formula 4

Formula 5

Formula 6

wherein, R_1 is selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group, (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group, and - COOR';

 R_2 , R_3 and R_8 are individually selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group, and (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group;

R' and R₄ are individually acid labile protecting groups;

X and Y are individually selected from the group consisting of (C₁-C₁₀)

alkylene, O and S;

Z represents O or S;

m and n are individually 0 or 1; and

the ratio a:b:c falls within the ranges 1-50mol%: 0-50mol%: 0-80mol%.

- 5 9. The process according to claim 8, wherein the step (b) is carried out in a polymerization solvent selected from the group consisting of cyclohexanone, cyclopentanone, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dioxane, methylethylketone, benzene, toluene, xylene and mixtures thereof.
- 10 10. The process according to claim 8, wherein the radical polymerization initiator is selected from the group consisting of 2,2'-azobisisobutyronitrile(AIBN), benzoylperoxide, acetylperoxide, laurylperoxide, tert-butylperoxide and di-tert-butyl peroxide.
- 15 11. The process according to claim 8, wherein the anion polymerization catalyst is selected from the group consisting of KOH, NaNH₂, alkoxide ion, alkali metal, grignard reagent and alkyl lithium.
 - 12. A process of preparing of a photoresist polymer comprising:
- 20 (a) admixing (i) a monomer of Formula 1, (ii) at least one of the monomer selected from the group consisting of Formula 7 and Formula 8, and with or without (iii) a monomer of Formula 4; and
 - (b) adding a radical polymerization initiator or an anion polymerization catalyst into the resultant of step (a) to obtain a repeating unit of Formula 3.

Formula 1

Formula 3

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Formula 4

Formula 7

Formula 8

wherein, R_1 is selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group, (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group, and - COOR';

 R_5 , R_6 and R_8 are individually selected from the group consisting of H, halogen, (C_1-C_{20}) alkyl, (C_1-C_{20}) alkyl with halogen substituent(s), (C_1-C_{20}) alkyl containing an ether group, and (C_1-C_{20}) alkyl with halogen substituent(s) and containing an ether group;

R₇ is an acid labile protecting group;

Z represents O or S;

m is 0 or 1; and

the ratio a:b:c falls within the ranges 1-50mol%: 0-50mol%: 0-80mol%.

- 13. The process according to claim 12, wherein the step (b) is carried out in a polymerization solvent selected from the group consisting of cyclohexanone, cyclopentanone, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dioxane, methylethylketone, benzene, toluene, xylene and mixtures thereof.
- 14. The process according to claim 12, wherein the radical polymerization initiator is selected from the group consisting of 2,2'-azobisisobutyronitrile(AIBN), benzoylperoxide, acetylperoxide, laurylperoxide, tert-butylperoxide and di-tert-butyl peroxide.
- 15. The process according to claim 12, wherein the anion polymerization catalyst is selected from the group consisting of KOH, NaNH₂, alkoxide ion, alkali metal, grignard reagent and alkyl lithium.
 - 16. A photoresist composition comprising:
 - (i) the photoresist polymer comprising the photoresist monomer of claim 1;
 - (ii) an organic solvent; and
 - (iii) a photoacid generator.

10

- 17. The photoresist composition according to claim 16, wherein the photoacid generator is selected from the group consisting of phthalimidotrifluoromethane sulfonate, dinitrobenzyltosylate, n-decyl disulfone and naphthylimido trifluoromethane sulfonate.
- 18. The photoresist composition according to claim 17, wherein the photoacid generator further comprises a compound selected from the group consisting of diphenyl iodide hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl iodide hexafluoroantimonate, diphenyl p-methoxyphenylsulfonium triflate, diphenyl p-toluenylsulfonium triflate, diphenyl p-isobutylphenylsulfonium triflate, diphenyl p-tert-butylphenylsulfonium triflate, triphenylsulfonium hexafluororphosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium triflate, dibutylnaphthylsulfonium triflate and mixtures thereof.
- 15 19. The photoresist composition according to claim 16, wherein the photoacid generator is present in an amount ranging from about 0.05 to about 10% by weight of the photoresist polymer.
 - 20. The photoresist composition according to claim 16, wherein the organic solvent is selected from the group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propylene glycol methyl ether acetate, cyclohexanone, 2-heptanone, ethyl lactate and mixtures thereof.
- The photoresist composition according to claim 16, wherein the
 organic solvent is present in an amount ranging from about 500 to about 2000% by weight of the photoresist polymer.
 - 22. A process for forming a photoresist pattern, comprising:
- (a) coating a photoresist composition of claim 16 on a substrate to form a photoresist film;
 - (b) exposing the photoresist film to light; and
 - (c) developing the exposed photoresist film to obtain a photoresist pattern.

- 23. The process according to claim 22, further comprising a soft baking step before step (b) and/or a post baking step after step (b).
- 24. The process according to claim 23, wherein the soft and post baking steps are individually performed at the temperature ranging from about 70 to about 200°C.
 - 25. The process according to claim 22, wherein the source of the light is selected from the group consisting of VUV, ArF, KrF, E-beam, EUV and ion beam.
 - 26. The process according to claim 22, wherein the irradiation energy of the step (b) ranges from about 1mJ/cm² to about 100 mJ/cm².
- 27. The process according to claim 22, wherein the step (c) is performed in alkaline developing solution.
 - 28. A semiconductor element manufactured according to the process of claim 22.