

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Question Number	Scheme	Notes	Marks
1(a)	$f(x) = x^3 - \frac{10\sqrt{x}}{x}$	$\frac{-4x}{2}$ $x > 0$	
	f(1.4) = -0.435673 f(1.5) = 0.598356	Attempts both f(1.4) and f(1.5)	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) α is between $x = 1.4$ and $x = 1.5$	Both $f(1.4) = awrt - 0.4$ and $f(1.5) = awrt 0.6$, sign change and conclusion. For 'sign change' indication that $f(1.4) < 0$ and $f(1.5) > 0$ is sufficient. Also $f(1.4) f(1.5) < 0$ is sufficient. 'Therefore root' (without mention of the interval) is a sufficient conclusion. Mention of 'continuous' is not required.	A1
			(2)
(b)	$f(x) = x^3 - \frac{10\sqrt{x} - 4x}{x^2}$	$\frac{x}{x} = x^3 - 10x^{-\frac{3}{2}} + 4x^{-1}$	
		$x^n \to x^{n-1}$ for one term	M1
	$f'(x) = 3x^2 + 15x^{-\frac{3}{2}} - 4x^{-2}$ (or equivalent, see below)	2 correct terms simplified or unsimplified	A1
		All correct simplified or unsimplified	A1
(a)		Correct application of N-R leading to an	(3)
(c)	$(x_1) = 1.4 - \frac{f(1.4)}{f'(1.4)}$ $\left(= 1.4 - \frac{-0.43567}{10.30720}\right) =$	answer. Values of f(1.4) and f '(1.4) need not be seen before their final answer.	M1
	= 1.442	cao (must be corrected to 3 d.p.) isw if x_2 , etc. have been found, but the answer for 'one use of N-R' must be seen as 1.442 to score this mark.	A1
			(2)
(b)	Equivalent unsimplified versions are	The 'two correct terms' still applies for	Total 7
(6)	acceptable, e.g. (using quotient rule);	the first A1. Here a 'term' would be, for	
	$3x^{2} - \frac{\left(5x^{\frac{3}{2}} - 4x^{2}\right) - 20x^{\frac{3}{2}} + 8x^{2}}{x^{4}}$	example, the $x^{-\frac{5}{2}}$ terms in unsimplified form.	
		Isw after a correct unsimplified form.	
(b)(c)		$+4x^{-2}$ instead of $-4x^{-2}$, giving 1.430 in erect, would score (b) 110 and (c) 10	(c).

Question Number	Scheme		Notes	Marks
2	$5x^2 - 2x + 3$	3 = 0		
(a)	$\alpha + \beta = \frac{2}{5}, \alpha\beta = \frac{3}{5}$	Both corn	rect	B1
				(1)
(b)(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	Uses a co	orrect identity	M1
	$= \left(\frac{2}{5}\right)^2 - 2\left(\frac{3}{5}\right) = -\frac{26}{25}$		value (allow -1.04), or $\alpha + \beta = -\frac{2}{5}$ in (a)	A1
(ii)				
	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$	TT		M1
	$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$	Uses a co	orrect identity	M1
	$= \left(\frac{2}{5}\right)^3 - 3\left(\frac{3}{5}\right)\left(\frac{2}{5}\right) = -\frac{82}{125}$	Correct v	value (allow -0.656)	A1
		1		(4)
(c)	Sum = $\alpha + \beta + \alpha^2 + \beta^2 = \frac{2}{5} - \frac{26}{25} \left(= -\frac{16}{25} \right)$	$\left(\frac{5}{5}\right)$	Attempts value of sum	M1
	Product = $\alpha\beta + \alpha^3 + \beta^3 + (\alpha\beta)^2 = \frac{3}{5} - \frac{82}{125} + (\frac{3}{5})$	$\int_{0}^{2} \left(= \frac{38}{125} \right)$	Attempts value of product, using the <u>correct</u> expansion of $(\alpha + \beta^2)(\beta + \alpha^2)$	M1
	$x^2 + \frac{10}{25}x + \frac{38}{125} (=0)$ Accep		ir sum)x + their product ied versions.	M1
	$125x^2 + 80x + 38 = 0$	Allow any Must be a including	y integer multiple. fully correct equation,	A1
		<u> </u>	•	(4)
				Total 9

Question Number	Scheme	Notes	Marks
3	$f(z) = z^4 + az^3 + bz$	$c^2 + cz + d$	
(a)	(z=)3-i or (z=)-1+2i		B1
	(z=)3-i and (z=)-1+2i		B1
<u></u>			(2)
(b)	(3, 1) Re	3±i correctly plotted with vectors or dots or crosses etc. or -1±2i correctly plotted with vectors or dots or crosses etc.	B1
	(-1, -2) $(3, -1)$	All 4 correct roots correctly plotted with scaling approximately correct (e.g. (-1, 2) higher than (3, 1), etc.) There should be approximate symmetry about the real axis, but be generous	B1
			(2)
(c)	$z = 3 \pm i \Rightarrow (z - (3 + i))(z - (3 - i)) = \dots$ or $z = -1 \pm 2i \Rightarrow (z - (-1 + 2i))(z - (-1 - 2i)) = \dots$	Correct strategy to find at least one quadratic factor. Throughout this part ignore the use of <i>x</i> (or other variable) instead of <i>z</i>	M1
	$z^2 - 6z + 10$ or $z^2 + 2z + 5$	One correct quadratic	A1
	$z^2 - 6z + 10$ and $z^2 + 2z + 5$	Both correct	A1
	$(z^2-6z+10)(z^2+2z+5)=$	Attempts product of their two 3-term quadratic factors no 'missing terms' in the expansion	M1
	$a = -4, b = 3, c = -10, d = 50$ or $f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$	All correct values or correct quartic	A1
			(5)
			Total 9

()			1
(c) Way 2	$(z - (3 + i))(z - (-1 \pm 2i)) = \cdots$ or $(z - (3 - i))(z - (-1 \pm 2i)) = \cdots$	Correct strategy to find at least one quadratic factor. Throughout this part ignore the use of <i>x</i> (or other variable) instead of <i>z</i>	M1
	$z^{2} + z(-2 + i) + (-1 - 7i) $ (i) or $z^{2} + z(-2 - i) + (-1 + 7i) $ (ii) or $z^{2} + z(-2 + 3i) + (-5 - 5i) $ (iii) or $z^{2} + z(-2 - 3i) + (-5 + 5i) $ (iv)	One correct quadratic	A1
	(i) and (ii) correct or (iii) and (iv) correct	A correct pair	A1
	e,g $[z^2 + z(-2+i) + (-1-7i)] \times [z^2 + z(-2-i) + (-1+7i)] =$	Attempts product of their two 3-term quadratic factors no 'missing terms' in the expansion	M1
	$a = -4, b = 3, c = -10, d = 50$ or $f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$	All correct values or correct quartic	A1

(c) Way 3	$\sum \propto = (3+i) + (3-i) + (-1-2i) + (-1+2i) =$ or $\alpha\beta\gamma\delta = (3+i)(3-i)(-1-2i)(-1+2i) =$	Attempts one of these	M1
	a = -4 or d = 50		A1
	Both $a = -4$ and $d = 50$		A1
	$\sum \alpha \beta = \dots$ and $\sum \alpha \beta \gamma = \dots$	Attempts $\sum \alpha \beta$ (all 6 terms) and $\sum \alpha \beta \gamma$ (all 4 terms)	M1
	$a = -4, b = 3, c = -10, d = 50$ or $f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$	All correct values or correct quartic	A1

(c) Way 4	$(3+i)^4 + a(3+i)^3 + b(3+i)^2 + c(3+i) + d = 0$ $() + () i = 0$	Substitutes one of the roots into the given quartic and fully multiplies out	M1
	(28 + 18a + 8b + 3c + d) + i(96 + 26a + 6b + c) or $(-7 + 11a - 3b - c + d) + i(-24 + 2a + 4b - 2c)$	One correct expansion	A1
	(28 + 18a + 8b + 3c + d) + i(96 + 26a + 6b + c) and $(-7 + 11a - 3b - c + d) + i(-24 + 2a + 4b - 2c)$	Obtains a second correct expansion using another root.	A1
	(28 + 18a + 8b + 3c + d) = 0, etc leading to $a = , b = , c = , d =$	Solves 4 simultaneous equation to find values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i>	M1
	$a = -4, b = 3, c = -10, d = 50$ or $f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$	All correct values or correct quartic	A1

Question Number	Scheme	Notes	Marks
4(a)	$(2r-1)^2 = 4r^2 - 4r + 1$	Correct expansion	B1
	$\sum_{r=1}^{n} (4r^2 - 4r + 1) = 4 \times \frac{1}{6} n(n+1)$ M1: Attempt to use at least one of A1: Correct ex	the standard results correctly	M1A1
	$= \frac{1}{3}n \Big[2(n+1)(2n+1) - 6(n+1) + 3 \Big]$	Attempt to factorise $\frac{1}{3}n()$ Condone one slip but there must have been + n , not +1 in their expression for the sum	M1
	$=\frac{1}{3}n\left[4n^2-1\right]*$	Correct proof with no errors. There should be an intermediate step showing the expansion of $(n+1)(2n+1)$, or equivalent	A1*
	Condone poor or incorrect use of notation, e.g	g. Σ used at every step of the proof	(5)
(b)	$2r - 1 = 499 \Rightarrow r = 250$	Identifies the correct upper limit (may be implied)	B1
	$2r - 1 = 201 \Rightarrow r = 101$	Identifies the correct lower limit (may be implied)	B1
	$\sum_{r=101}^{250} (2r-1)^2 = \frac{1}{3} \times 250 (4 \times 250^2)$		MI
	Uses the result from part (a) together with the A common mistake is to assume 500 and 200 is scored if 199 is used	* *	M1
	= 19 499 950	Cao	A1
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$xy = 64 \Rightarrow y = 64x^{-1} \Rightarrow \frac{dy}{dx} = -64x^{-2}$ or $xy = 64 \Rightarrow x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$ or $x = 8p, y = \frac{8}{p} \Rightarrow \frac{dy}{dx} = \frac{-8p^{-2}}{8}$	Correct $\frac{dy}{dx}$ This can be in any form, simplified or unsimplified. The parameter could be a different variable, e.g. t	B1
	$x = 8p, y = \frac{8}{p} \Rightarrow \frac{dy}{dx} = \frac{-8p^{-2}}{8}$ $m_T = -\frac{64}{64p^2} \Rightarrow m_N = p^2$ or $\frac{8}{p}$	Correct use of the perpendicular gradient rule and the point <i>P</i> to obtain the normal gradient	M1
	$m_{T} = -\frac{\frac{8}{p}}{8p} \Rightarrow m_{N} = p^{2}$ or $m_{T} = -p^{-2} \Rightarrow m_{N} = p^{2}$	Correct normal gradient of p^2	A1
	$m_T = -p^{-2} \Rightarrow m_N = p^2$ $y - \frac{8}{p} = p^2 (x - 8p)$ or $y = p^2 x + c, \frac{8}{p} = p^2 \times 8p + c \Rightarrow c = \dots$	Correct straight line method for normal	M1
	$\frac{p}{p^{3}x - py = 8(p^{4} - 1)^{*}}$	cso. (No errors, but possibly direct from the version in line 1 above)	A1*
(b)	$p^{3}x - py = 8(p^{4} - 1), xy = 64 \Rightarrow$		(5)
	$p^{3}x - py = 8(p^{-1}), xy = 64 \Rightarrow 0$ $p^{3}x - p\frac{64}{x} = 8(p^{4} - 1)$ or $p^{3}\frac{64}{y} - py = 8(p^{4} - 1)$	Uses both equations to obtain an equation in one variable	M1
	$p^{3}x^{2} + 8(1-p^{4})x - 64p = 0$ or $py^{2} + 8(p^{4} - 1)y - 64p^{3} = 0$	Correct quadratic. Must have the x^2 or y^2 term, but the x or y terms need not be combined. The terms do not need to be 'all on one side', and the coefficients could involve fractions, e.g. $p^2x^2 + \frac{8x}{n} - 8p^3x = 64$	A1
	$(x-8p)(p^3x+8) = 0 \Rightarrow x = \dots$ or $(py-8)(y+8p^3) = 0 \Rightarrow y = \dots$	Solves their 3TQ (usual rules) to obtain the other value of x or y. The other value must be picked out as a solution. This could be done by algebraic division (see below)	dM1
	$x = -\frac{8}{p^3} \ y = -8p^3 \ \text{or} \ \left(-\frac{8}{p^3}, -8p^3\right)$	Correct coordinates (ignore coordinates of P if they are also given as an answer). $-8p^{-3}$ may be seen rather than $-\frac{8}{p^3}$	A1
			(4) Total 9

5(b)	Rather than solving the 3TQ for the dM1, algebraic division can be used.	
	To score the mark the division should follow the usual rules for solution by factorisation, so in the	
	first case, e.g. if the quadratic is correct, the quotient should be $\pm p^3 x \pm 8$, then this must lead to	
	the other value $x_2 = \cdots$	

5(b)	Note that another way to find the other value for the dM1 is to use the 'sum of roots' = $-\frac{b}{a}$,
	e.g.
	$8p + x_2 = \frac{-8(1 - p^4)}{p^3} \qquad x_2 = \cdots$

(b) Way 2	$p^{3}x - py = 8\left(p^{4} - 1\right), \left(8q, \frac{8}{q}\right) \Longrightarrow$ $p^{3}8q - p\frac{8}{q} = 8\left(p^{4} - 1\right)$	Uses the given normal equation and the parametric form for Q to form an equation in p and q	M1
	$p^3q^2 - p = qp^4 - q$	Correct quadratic. Must have the q^2 term, but the q terms need not be combined. The terms do not need to be 'all on one side', and the coefficients could involve fractions.	A1
	$(p-q)(p^3q+1)=0 \Rightarrow q=$	Solves their 3TQ (usual rules) to obtain the value of <i>q</i> . This could be done by algebraic division (condition as for main scheme)	dM1
	$q = -\frac{1}{p^3} \Rightarrow x = -\frac{8}{p^3} y = -8p^3$ or $\left(-\frac{8}{p^3}, -8p^3\right)$	Correct coordinates (ignore coordinates of <i>P</i> if they are also given as an answer). $-8p^{-3}$ may be seen rather than $-\frac{8}{p^3}$	A1
			(4)

Question Number	Scheme	Notes	Marks
6(i)(a)	Stretch scale factor 3 parallel to the <i>y</i> -axis	Stretch (<u>not</u> enlargement) Scale factor 3 parallel to the <i>y</i> -axis. Allow, e.g. '3 times <i>y</i> values', ' <i>y</i> increased by 3 factor', or similar. Allow, e.g. 'direction of <i>y</i> ', 'along <i>y</i> ', 'vertical', or similar. Ignore any mention of the origin. If additional transformations are included, send to Review	B1
(b)	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix. $\frac{1}{\sqrt{2}}$ may be seen rather than $\frac{\sqrt{2}}{2}$	B1
(c)	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	Attempt to multiply the right way round, i.e. BA , not AB At least two correct terms (for their matrix B) are needed to indicate a correct multiplication attempt	M1
	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \end{pmatrix} \text{ or equiv. e.g.} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 3 \\ -1 & 3 \end{pmatrix}$	Correct matrix	A1
(ii)	Trapezium area= $\frac{1}{2}(5+2)(k+8)$	Correct method for the area of the	(2) M1
	$\begin{vmatrix} 5 & 1 \\ -2 & 3 \end{vmatrix} = 5 \times 3 - (-2) \times 1 = 17$	Correct method for the determinant	M1
	$ -2 \ 3 ^{-3\times 3} \ (2)^{\times 1-17}$	17 (Allow ± 17)	A1
	$\frac{1}{2}(5+2)(k+8) \times 17 = 510 \Rightarrow k = \dots$	Multiplies their trapezium area by their determinant, sets equal to 510 and solves for k . Or equivalently: Equates their trapezium area to (510 ÷ determinant) and solves for k	M1
	$k = \frac{4}{7}$	$\frac{4}{7}$ or exact equivalent. If additional answers such as $-\frac{4}{7}$ are given and not rejected, this is A0	A1
			(5)

(ii) Way 2	$ \begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -2 & -2 & 5 & 5 \\ 0 & k & 8 & 0 \end{pmatrix} $ $ = \begin{pmatrix} -10 & -10 + k & 33 & 25 \\ 4 & 4 + 3k & 14 & -10 \end{pmatrix} $	Multiplies correct matrices to find the coordinates for <i>T</i> '	2 nd M
	$= \begin{pmatrix} -10 & -10+k & 33 & 25\\ 4 & 4+3k & 14 & -10 \end{pmatrix}$	Correct coordinates (can be left in matrix form)	A1
	$\frac{1}{2}[-10(4+3k) + 14(-10+k) - 330 + 100 - 4(-10+k) - 33(4+3k) - 350 - 100]$	Correct method for area of T' ('shoelace rule' with or without a modulus), using their coordinates for T'	1 st M
	$\pm \frac{1}{2}(952 + 119k) = 510$, $k =$	Sets area of T' equal to 510 and solves for k	M1
	$k = \frac{4}{7}$	$\frac{4}{7}$ or exact equivalent. If additional answers such as $-\frac{4}{7}$ are given and not rejected, this is A0	A1
			Total 10

Question Number	Scheme	Notes	Marks
7(a) Way 1	$3x - 4y + 48 = 0 \Rightarrow x = \frac{4y - 48}{3}$ $y^{2} = 4ax \Rightarrow y^{2} = 4a\left(\frac{4y - 48}{3}\right)$ or $3x - 4y + 48 = 0 \Rightarrow y = \frac{3x + 48}{4}$ $y^{2} = 4ax \Rightarrow \left(\frac{3x + 48}{4}\right)^{2} = 4ax$ or $y^{2} = 3y^{2}$	Uses both equations to obtain an equation in one variable.	M1
	$x = \frac{y^2}{4a} \Rightarrow \frac{3y^2}{4a} - 4y + 48 = 0$ $3y^2 - 16ay + 192a = 0$ or $9x^2 + (288 - 64a)x + 2304 = 0$ $3x - 8\sqrt{a}\sqrt{x} + 48 = 0$	Correct 3TQ (Coefficients could be 'fractional') (This could be a quadratic in \sqrt{x})	A1
	Equal roots: $(16a)^2 = 4 \times 3 \times 192a$ or $(288 - 64a)^2 = 4 \times 9 \times 2304$ $\Rightarrow a =$ $a = 9 *$	Uses " $b^2 = 4ac$ " to find a value for a	M1 A1*
	Beware the use of the given result $a = 9$, but t		l .
	deserves merit (if in doubt, send to Review).	T	
			(4)

(a) Way 2	$y^{2} = 4ax \Rightarrow 2y \frac{dy}{dx} = 4a$ $3x - 4y + 48 = 0 \Rightarrow \frac{dy}{dx} = \frac{3}{4}$ $\Rightarrow 2y \times \frac{3}{4} = 4a$ $y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \Rightarrow a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{3}{4}$ $x = at^{2}, y = 2at \Rightarrow \frac{dy}{dx} = \frac{1}{t}$ $\frac{1}{t} = \frac{3}{4}$	Uses differentiation to obtain the gradient of C and substitutes the gradient of l to obtain an equation connecting y and a , or connecting x and a , or an equation in t	M1
	$y = \frac{8a}{3} \text{or} x = \frac{16a}{9}$	Correct y value, or correct x value (possibly implied in subsequent work, particularly if using the parametric equations)	A1
	$y^{2} = 4ax \Rightarrow \frac{64a^{2}}{9} = 4ax \Rightarrow x = \frac{16a}{9}$ $3 \times \frac{16a}{9} - 4 \times \frac{8a}{3} + 48 = 0 \Rightarrow a = \dots$ $x = \frac{4y - 48}{3} = \frac{32a}{9} - 16$ $\frac{64a^{2}}{9} = 4a\left(\frac{32a}{9} - 16\right) \Rightarrow a = \dots$ $y^{2} = 4ax \Rightarrow y^{2} = \frac{64a^{2}}{9} \Rightarrow y = \frac{8a}{3}$ $3 \times \frac{16a}{9} - 4 \times \frac{8a}{3} + 48 = 0 \Rightarrow a = \dots$ $y = \frac{3x + 48}{4} = \frac{4a}{3} + 12$ $\left(\frac{4a}{3} + 12\right)^{2} = 4a\left(\frac{16a}{9}\right) \Rightarrow a = \dots$ $3(at^{2}) - 4(2at) + 48 = 0$ $3\left(\frac{16a}{9}\right) - 4\left(\frac{8a}{3}\right) + 48 = 0 \Rightarrow a = \dots$	Uses $y^2 = 4ax$ or l to find a value for x (or y) and substitutes their x and y into the other equation to find a value for a If using parameter t , substitutes their value for t into $3(at^2) - 4(2at) + 48 = 0$ and solves to find a value for a	M1
	a = 9 *	cso	A1*

(b)	$a = 9 \Rightarrow 3y^{2} - 144y + 1728 = 0 \Rightarrow y = 24$ $9x^{2} - 288x + 2304 = 0 \Rightarrow x = 16$	Uses $a = 9$ to solve their 3TQ to obtain the repeated root for x or y .	M1	
	x = 16 and $y = 24$	Correct values or coordinates.	A1	
				(2)

(b) Way 2 follows (a)Way2	$a = 9 \Rightarrow x = \cdots \text{ or } y = \cdots$	Substitutes $a = 9$ into their expression for x or y , OR substitutes $a = 9$ into at^2 to find x , or into $2at$ to find y .	M1
	x = 16 and $y = 24$	Correct values or coordinates.	A1

(c) Way 1	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)			
	$x = -9 \Rightarrow 3(-9) - 4y + 48 = 0 \Rightarrow y = 5.25$	$\Rightarrow y = 5.25$ Correct method with the correct directrix to find the y coordinate of A			
	E.g.Trapezium -	E.g.Trapezium – 2 triangles			
	$= \frac{1}{2} \left(\frac{21}{4} + 24 \right) \times 25 - \frac{1}{2} \times 18 \times \frac{21}{4} - \frac{1}{2} \times 7 \times 24 = \frac{1875}{8}$				
	Fully correct triangle area method (condone one slip if the intention seems clear)				
	$=\frac{1875}{8}(234.375)$	Correct area (exact)			
			(4)		
			Total 10		

(c) Way 2	Focus is at $(9,0)$	Correct focus (could be seen on a sketch or implied in working)	B1
	$x = 9 \Rightarrow 3(9) - 4y + 48 = 0 \Rightarrow y = 18.75$	Correct method to find the y coordinate when $x = 9$, but also requires correct directrix at some stage of the solution	M1
	E.g. $A = \frac{1}{2} (18.75 \times 18) + \frac{1}{2} (18.75 \times (16 - 9))$	Fully correct triangle area method (condone one slip if the intention seems clear)	dM1
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1
(c) Way 3	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)	B1
	$x = -9 \Rightarrow 3(-9) - 4y + 48 = 0 \Rightarrow y = 5.25$	Correct method with the correct directrix to find the <i>y</i> coordinate of <i>A</i>	M1
	E.g. $ \frac{1}{2} \begin{vmatrix} 9 & -9 & 16 & 9 \\ 0 & 5.25 & 24 & 0 \end{vmatrix} $ $ = \frac{1}{2} 47.25 - 216 - 84 - 216 $	Fully correct area method (condone one slip if the intention seems clear)	dM1
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1

(c) Way 4	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)	B1		
	$x = -9 \Rightarrow 3(-9) - 4y + 48 = 0 \Rightarrow y = 5.25$	Correct method with the correct directrix to find the <i>y</i> coordinate of <i>A</i>	M1		
	E.g.Rectangle – 3 triangles				
	$(25 \times 24) - \frac{1}{2}(18 \times 5.25) - \frac{1}{2}(7 \times 24) - \frac{1}{2}(25 \times 18.75)$				
	Fully correct triangle area method (condor	ly correct triangle area method (condone one slip if the intention seems clear)			
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1		

Question Number	Scheme		Notes	Marks	
8(i)	$\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2 (r+1)^2} = \frac{n^2}{(n+1)^2}$				
	$\frac{2(1)^2 - 1}{1^2(1+1)^2} = \frac{1}{4}, \frac{1^2}{(1+1)^2} = \frac{1}{4}$	Getting $\frac{1}{2^2}$ or $\frac{1}{4}$ from each is the minimum		B1	
	Assume $\sum_{r=1}^{k} \frac{2r^2 - 1}{r^2 (r+1)^2} = \frac{k^2}{(k+1)^2}$				
	$\sum_{r=1}^{k+1} \frac{2r^2 - 1}{r^2 (r+1)^2} = \frac{k^2}{(k+1)^2}$ Assumes the result is true for se	,		M1	
	Assumes the result is true for so $k^{2}(k+2)^{2} + 2(k+1)^{2} - 1$	Atte	empts common denominator	dM1	
	$\frac{k(k+2)+2(k+1)-1}{(k+1)^2(k+2)^2}$	Cor	rect expression	A1	
	$\frac{k^4 + 4k^3 + 4k^2 + 2k^2 + 4k + 1}{\left(k+1\right)^2 \left(k+2\right)^2} = \frac{k^4 + 4k^3 + 6k^2 + 4k + 1}{\left(k+1\right)^2 \left(k+2\right)^2} = \frac{\left(k+1\right)^4}{\left(k+1\right)^2 \left(k+2\right)^2}$				
	$\frac{\left(k+1\right)^2}{\left(k+2\right)^2}$		nieves this result with intermediate king and no errors	A1	
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is true for all n .		e underlined features should be seen. ne may appear earlier in the solution.	Alcso	
(ii)	$f(n) = 12^n$	· _ 2	(6)		
()	$f(1) = 12 + 2 \times 1 = 14$	+ 2	This is sufficient	B1	
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempt $f(k+1)$	M1	
	$f(k+1) - f(k) = 12^{k+1} + 2 \times 5^{k} - 12^{k} - 2 \times 5^{k-1}$ $f(k+1) - f(k) = 11 \times 12^{k} + 22 \times 5^{k-1} + 10 \times 5^{k-1} - 24 \times 5^{k-1}$		Working with $f(k+1) - f(k)$		
	$11 - (12^k + 2 - 5^{k-1}) + 14 - 5^{k-1}$		$11 \times (12^k + 2 \times 5^{k-1})$ or $11f(k)$	A1	
	$=11\times (12^{k} + 2\times 5^{k-1}) - 14\times 5^{k-1}$		$-14\times5^{k-1}$	A1	
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$ Makes $f(k+1)$ the subject Dependent on at least one of the A marks		dM1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is <u>true for all n</u> .	The underlined features should be seen.		Alcso	
				(6) T. 4.112	
				Total 12	

ALT 1	$f(1) = 12 + 2 \times 1 = 14$	This	is sufficient		B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$	Atte	mpt f(<i>k</i> +1)		M1
	$f(k+1) = 12(12^k + 2 \times 5^{k-1})$	$+2\times5\times5$	$5^{k-1}-12\times2\times$	5^{k-1}	
	$f(k+1) = 12(12^{k} + 2 \times 5^{k-1}) - 14 \times 5^{k-1}$	12(1	$2^k + 2 \times 5^{k-1}$	or 12f(k)	A1
	1(0.13) 12(12.12.00) 1.000		$\times 5^{k-1}$		A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$ Dependent on at least one of the A marks				dM1
	If the result is <u>true for</u> $n = k$, then it is				
	<u>true for $n = k+1$.</u> As the result has been			ures should be seen.	Alcso
	shown to be <u>true for $n = 1$</u> , then the result	Some m	ay appear ea	arlier in the solution.	111000
	is <u>true for all <i>n</i></u> .				
ALT 2	$f(1) = 12 + 2 \times 1 = 14$	This is s	ufficient		B1
	Let $12^k + 2 \times 5^{k-1} = 7M$				
	$f(k+1) = 12^{k+1} + 2 \times 5^k$	Attempt	f(<i>k</i> +1)		M1
	$f(k+1) = 12(7M-2\times5^{k-1})+2\times5^k$	OR: 1	f(k+1) = 5	$5(7M) + 7 \times 12^k$	
	$f(k+1) = 84M - 14 \times 5^{k-1}$	84 <i>M</i>	· · · · ·	OR: 35M	A1
	OR: $f(k+1) = 35M + 7 \times 12^k$	-14×5^{k}	-1	$+7 \times 12^{k}$	A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$	Dependent on at least one of the A			
	OR:	marks			dM1
	$f(k+1) = 5f(k) + 7 \times 12^{k}$ If the result is <u>true for</u> $n = k$, then it is				
	true for $n = k+1$. As the result has been	The underlined features should be seen.			
	shown to be <u>true for</u> $n = 1$, then the result		Some may appear earlier in the solution.		
	is true for all n .	come may appear earner in the seramon.			
ALT 3			TELL: C	· .	D1
	$f(1) = 12 + 2 \times 1 = 14$		This is suff	icient	B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempts for	(k+1)	M1
	Working with		* /		
	$f(k+1) - mf(k) = 12^{k+1} +$	$2\times5^k-m$	$e(12^k + 2 \times 5^k)$	r-1),	
	$f(k+1)-f(k) = (12-m)\times 12^k + 2\times$	$(12-m)\times$	$5^{k-1} + 10 \times 5^{k-1} -$	$-24\times5^{k-1}$	
			$(12-m)\times ($	$(12^k + 2 \times 5^{k-1})$	
	$= (12-m) \times (12^{k} + 2 \times 5^{k-1}) - 14 \times 5^{k}$	-1	or $(12-n)$	(i)f(k)	A1
	$-14\times5^{k-1}$			A1	
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$			+ 1) the subject t on at least one of ks	dM1
	If the result is <u>true for</u> $n = k$, then it is				
	<u>true for</u> $n = k+1$. As the result has been				Alcso
	shown to be <u>true for</u> $n = 1$, then the result				111000
	is <u>true for all <i>n</i></u> .				

ALT 4	$f(1) = 12 + 2 \times 1 = 14$		This is sufficient	B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempts $f(k+1)$	M1
	$f(k+1) - 5f(k) = 12^{k+1} + 2 \times 5^{k} - 5(12^{k} + 2 \times 5^{k-1})$		Working with $f(k + 1) - 5f(k)$	
	$= 7 \times 12^k + 2 \times 5^k - 2 \times 5^k$		7×12 ^k	A1
	$= 7 \times 12^{\circ} + 2 \times 5^{\circ} - 2 \times 5^{\circ}$		$2 \times 5^k - 2 \times 5^k$ (or zero)	A1
	$f(k+1) = 5f(k) + 7 \times 12^k$		Makes $f(k + 1)$ the subject Dependent on at least one of the A marks	dM1
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is true for all n .		derlined features should be seen. nay appear earlier in the solution.	Alcso

NOTES:

Part (i)

This approach may be seen:

Assume result is true for n = k and n = k + 1

Subtract: (sum to (k + 1) terms) minus (sum to k terms)

Show that this is equal to the (k + 1)th term

Please send any such response to Review.

Part (ii)

Apart from the given alternatives, other versions will work and can be marked equivalently. If in any doubt, send to Review.