STVIs for platform diving

Image and video understanding 2019 WS

C. Lenzenweger, B. Sespede

Goal

 Identify diving style from video using STVI's as a base for feature extraction

Pike Tuck Straight

Dataset

- Diving48[1] contains 20.000 diving videos
 - Captured from a variety of angles
 - Different divers
 - Different background
 - Cover a variety of diving styles

Dataset issues

- Groundtruth labels, not so much truth in them
 - Time to manually annotate!
- Implement tool and classify 300 videos (100 per diving style)
 - Always sideways
 - Low motion blur
 - Remove water splashing part
 - Remove complex twists

Space-time volume instances (STVI)

- How do they look?
 - See video
- What kind of data are we dealing with?
 - Spatio-temporal masks

Feature extraction issues

- Where has the volume gone?
 - Manually discard videos
- STVI flickering
 - Filtering in feature space

Feature extraction & token selection

- Selection of relevant STVI
 - 2-3 largest (by volume or area) X
 - Represent: torso / thighs / lower legs
 - Largest (by contour area) ✓
 - Represents: diver
 - Merge non-artefact contours with same STVI label

- Select features describing the diver's pose
 - Fitting primitives (MBR, ellipses, lines) to extracted contours
 - Scalar features such as angle & distance w.r.t. bounding box, elongation, compactness, fill factor
 - Scale, rotation and reflection invariant Hu moments

Feature extraction issues

- Correcting STVI artefacts
 - Minimum threshold
 - Relative area w.r.t. to biggest contour
- Example extraction (see figures)
 - Green: accepted STVI
 - o Red: rejected STVI

Style classification

- Support vector machines
 - Input: framewise feature vector
 - Input: stacked temporal feature vectors
- Convolutional neural networks? X
 - Input: feature vector over time
 - 1D convolutional layers w.r.t. Time
- Neural networks? X
 - Input: feature vector
 - Framewise processing

Thank you for your attention!