DZ_TV_L5

```
In [ ]: Задание 1.
```

06.12.2021, 01:32

Утверждается, что шарики для подшипников, изготовленные автоматическим станком, имею Используя уровень значимости 0.025 и правостороннюю критическую область, проверить д что в выборке из 100 шариков средний диаметр оказался равным 17.5 мм, а дисперсия из

Утверждается, что шарики для подшипников, изготовленные автоматическим станком, имеют средний диаметр d =17 мм. Используя односторонний критерий с α = 0.02 проверить эту гипотезу, если в выборке из n =100 шариков средний диаметр оказался равным 17.5 мм, а дисперсия известна и равна $D(X)=\sigma^{**2}=4$ мм, поэтому(среднешение.
Нулевая гипотеза: H(0) : a=17 . Альтернативная гипотеза (односторонняя) H(1) : Xcp.= Вычисляем наблюдаемое значение критерия Uнаб.=(Xcp.-a)*n**0.5/ σ (17.5-17)*10/2=2.5 Чтобы найти критическую область нужно отыскать критическое значение. $\Phi(u)=(1-2\alpha)/2$ где α - выбранный уровень значимости, $\Phi(u)$ - старая знакомая функция Лапласа. По таблице функции Лапласа найдем критическую точку для односторонней области. В нашем случае $\Phi(U$ kp.)=(1-0.05)/2=0.475 из таблицы найдем Ukp.=1.96 Uha6.0.50hp. 0.475 из таблицы найдем 0.475 из таблицы найдем 0.575 0.475 0.575

In []: Задача_2

Известно, что генеральная совокупность распределена нормально с известным средним квадратическим отклонением 16. Найти доверительный интервал для оценки математического ожидания а с надежностью 0.95, если выборочное среднее равно 80, а объём равен 256

In []: σ =16, n=256, Xcp.=80, 1- α =0.95=p Выборочная средняя – это точечная оценка неизвестной нам генеральной средней . И по условию, требуется найти интервал , которой с вероятностью накроет истинное зн Предполагая, что случайная величина X распределена нормально, построим доверительный интервал для M(X) с доверительной вероятностью 0,95. Для э Найдём среднее и несмещённую оценку для среднего квадратического отклонения: $t1-\alpha/2, n-1 - \text{квантиль}, \text{ выбранный из таблицы квантилей t-распределения} = 1.984$ $\text{Xcp.-} t1-\alpha/2, n-1\cdot\sigma X \text{Vn} < M(X) < \text{Xcp.+} t1-\alpha/2, n-1\cdot\sigma X \text{Vn}$ Вычислим доверительный интервал:

```
import numpy as np
x=80
t=1.9840
n=256
s=16
(x - t * s / np.sqrt(n), x + t * s / np.sqrt(n))
```

Out[3]: (78.016, 81.984)

Задача_3
Продавец утверждает, что средний вес пачки печенья составляет 200 г. Из партии извлечена выборка из 10 пачек. Вес каждой пачки составляет: 202, 203, 199, 197, 195, 201, 200, 204, 194, 190
Известно, что их веса распределены нормально. Верно ли утверждение продавца, если учитывать, что уровень значимости равен 1%?

In []: Продавец утверждает, что средний вес пачки печенья составляет 200 г, m = 200.

06.12.2021, 01:32 DZ_TV_L5

Уровень значимости равен 1% α = 0.01 , n =10. Выборка weight = [202, 203, 199, 197, 195, 201, 200, 204, 194, 190] РЕШЕНИЕ. Найдем среднее значение выборки и среднее кв.отклонение

```
In [4]:
    weight = np.array([202, 203, 199, 197, 195, 201, 200, 204, 194, 190])
    m = weight.mean()
    s = weight.std(ddof=1)
    print(m, s)
```

198.5 4.453463071962462

```
In [6]:

#Выбранный из таблицы квантилей t-распределения

t = 2.2622

n=10

(m - t * s / np.sqrt(n), m + t * s / np.sqrt(n))
```

```
Out[6]: (195.31412410798328, 201.68587589201672)
```

```
In []: Утверждение продавца верно! 200 г попадает в доверительный интервал))
```