## Lecture 5: Components of Classification



James D. Wilson MATH 373

### Plan for this Lecture



- The classification problem
- Why not regression?
- Assessing model accuracy
  - Mean squared error and accuracy
  - Receiver Operating Curves (ROCs)

**Reference:** ISL Sections 2.2.3; 4.1; 4.2; 4.4.3

# The Classification Setting



**Data:** Consisting of *n* observations  $(x_1, y_1), \dots, (x_n, y_n)$  with

- $x_i \in \mathcal{X}$  space of predictors (often  $\subseteq \mathbb{R}^p$ )
- $y_i \in C$ : response or class label
  - Binary classification:  $C = \{-1, +1\}$  (or equivalently,  $\{0, 1\}$ )
  - Multi-class classification:  $C = \{0, 1, ..., m\}$

Unlike regression, the observed labels are *categorical* or *qualitative*.

### Classification



**Goal:** Given an unlabeled vector x, assign it to class  $c \in C$ .

### Prediction Rule / Classifier

A prediction rule or classifier is a map

$$\phi: \mathcal{X} \to \mathcal{C}$$

$$\phi(\mathbf{x}) = \mathbf{c} \in \mathcal{C}$$

Regard  $\phi(x) = c \in \mathcal{C}$  as a prediction of the class label associated with the predictor x.

### Motivation



#### **Motivation:**

- Predictors readily available: relatively inexpensive and/or fast to obtain
- Response not readily available: relatively expensive and/or slow to obtain
- Understanding and modeling the relationship between the predictors and the response is of scientific interest.

## Examples



#### **Medical Tests:**

- $x \in \mathbb{R}^p$  contains the (numerical) results of p diagnostic tests
- y = illness / condition

### **Object Recognition:**

- $x \in \mathbb{R}^p$  contains the pixel intensities from a satellite image
- y = +1 if image contains a man-made object, y = -1 otherwise

## Examples



### **Automatic Spam Recognition:**

- x = vector of features extracted from text of email, e.g.,
  - presence of keywords ("cheap", "cash", "medicine")
  - presence of key phrases ("Dear Sir/Madam")
  - use of words in all-caps ("VIAGRA")
  - point of origin of email
- y = +1 if email is spam, y = -1 otherwise

# Examples



#### Credit Card Default



Figure: The annual incomes and monthly credit card balances of a group of individuals. Orange: defaulted on credit card payments; Blue: did not default.



# **Key Considerations**



- Why not use regression?
- Measuring the loss/error of a prediction
- Assessing the overall performance of a prediction rule
- Identifying the optimal prediction rule

# Why Not Use Regression?



Consider a simple example where Doctors are trying to predict the medical condition of a patient. Here,

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

- Regression assumes that there is a meaning behind the *ordering*of y and that a change in levels above suggest the *same* change.
- Typically, however, categorical variables have no natural order and there is no way to quantify a "jump" from one level to another.

# Why Not Use Regression?



Consider a simple example where Doctors are trying to predict the medical condition of a patient. Here,

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

- Regression models y directly therefore, estimates will be continuous values in (-∞,∞)
- Prediction rules are often concerned with the probability of each value of y

# Measuring the Loss of a Prediction



Let  $\phi: \mathcal{X} \to \mathcal{C}$  be a prediction/classification rule of interest

**Question:** Given a pair (x, y), how do we compare  $\phi(x)$  and y? Namely, how do we measure the accuracy of  $\phi(x)$ ?

Common to use the Zero-One Loss Function  $\ell(\phi(x), y)$ :

$$\ell(\phi(x),y) = \begin{cases} 1 & \text{if } \phi(x) \neq y \\ 0 & \text{if } \phi(x) = y \end{cases}$$

**Note**: Two types of errors  $\phi(x) = 1$ , y = 0 and  $\phi(x) = 0$ , y = 1 given equal weight

# **Expected Loss**



**Given:** Zero-one loss of prediction rule  $\phi: \mathcal{X} \to \mathcal{C}$  given by

$$\ell(\phi(\mathbf{x}),\mathbf{y}) = \mathbb{I}(\phi(\mathbf{x}) \neq \mathbf{y})$$

We typically measure performance of  $\phi$  by its expected loss (risk)

$$R(\phi) = \mathbb{E}[\ell(\phi(x), y)]$$

**Important:** Note that

$$R(\phi) = \mathbb{E}[\mathbb{I}(\phi(x) \neq y)] = \mathbb{P}(\phi(x) \neq y)$$

is just the probability that  $\phi$  misclassifies a sample.

# Measuring Accuracy



### Accuracy

The accuracy of a classifier  $\phi(x)$  is:

$$1 - R(\phi) = \mathbb{P}(\phi(x) = y)$$

### **Important Notes:**

 In practice, we measure the empirical probability of misclassification over a data set with n observations using:

$$\frac{1}{n}\sum_{i=1}^n\mathbb{I}(y_i\neq\phi(x_i))$$

- If  $y \in \{0, 1\}$ , the empirical misclassification rate =  $MSE(\phi)$ .
- Training and test set evaluations still apply!

# Issues with Measuring Accuracy Only



### Example:

Paypal claims that its fraud rate is less than 0.5%. Suppose that you are hired to create a classifier that distinguishes fraudulent transactions from non-fraudulent transactions. How might you classify new transactions?

# Issues with Measuring Accuracy Only



### Example:

Paypal claims that its fraud rate is less than 0.5%. Suppose that you are hired to create a classifier that distinguishes fraudulent transactions from non-fraudulent transactions. How might you classify new transactions?

Let  $y_i = -1$  if the transaction is fraudulent and  $y_i = +1$  otherwise. A great classifier (perhaps the best) according to MSE / accuracy is choosing  $\phi(x_i) = +1$  for all i. Indeed, your MSE would be  $\sim 0.005$ .

**Result**: You never detect any of the fraudulent transactions!

The above is a typical example of unbalanced data.



### Informative Model Assessment



Let  $y_i \in \{-1, +1\}$  (binary classification).  $\phi$  = proposed classifier.

• True positives (TP):

$$\sum_{i=1}^n \mathbb{I}(y_i = \phi(x_i) = +1)$$

False positives (FP):

$$\sum_{i=1}^{n} \mathbb{I}(y_i = -1; \phi(x_i) = +1)$$

• True negatives (TN):

$$\sum_{i=1}^n \mathbb{I}(y_i = \phi(x_i) = -1)$$

False negatives (FN):

$$\sum_{i=1}^{n} \mathbb{I}(y_i = +1; \phi(x_i) = -1)$$

# Model Assessment Relationships



- Accuracy =  $\frac{TP + TN}{n} \in [0, 1]$
- The sensitivity (or recall) of  $\phi$  is:

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} = \frac{\mathsf{TP}}{\sum_{i=1}^{n} \mathbb{I}(y_i = +1)} \in [0, 1]$$

• The specificity of  $\phi$  is:

$$\frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}} = \frac{\mathsf{TN}}{\sum_{i=1}^{n} \mathbb{I}(y_i = -1)} \in [0, 1]$$

• The precision of  $\phi$  is:

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} = \frac{\mathsf{TP}}{\sum_{i=1}^{n} \mathbb{I}(\phi(x_i) = +1)} \in [0, 1]$$



### Model Assessment



To understand the performance of a classifier, we can use a confusion matrix which portrays the FN, TN, FP, TP rates.

|                     |                              | True condition                    |                                  |
|---------------------|------------------------------|-----------------------------------|----------------------------------|
|                     | Total population             | Condition positive                | Condition negative               |
| Predicted condition | Predicted condition positive | True positive                     | False positive<br>(Type I error) |
|                     | Predicted condition negative | False negative<br>(Type II error) | True negative                    |

Figure: From Wikipedia.org

### **Model Choice**



Choice of Model: depends on the context and constraints

Back to the Paypal problem: Suppose there are 100K transactions

$$y_i = +1$$
  $y_i = -1$   
 $\phi(x_i) = +1$  99500 500  
 $\phi(x_i) = -1$  0 0

**Summary**: TN = FN = 0; TP = 99500; FP = 500

Accuracy = precision = 0.995; sensitivity = 1; specificity = 0

**Result**: If we are concerned with identifying fraud, we want specificity to be close to 1. In this case, our model performs terribly.

# Decision Regions and Decision Boundary



Every decision rule  $\phi: \mathcal{X} \to \{-1, +1\}$  partitions the predictor space into two sets called decision regions

$$\mathcal{X}_{+}(\phi) = \{x \in : \phi(x) = +1\}$$

$$= \text{points } x \text{ assigned by } \phi \text{ to } +1$$

$$\mathcal{X}_{-}(\phi) = \{x \in : \phi(x) = -1\}$$

$$= \text{points } x \text{ assigned by } \phi \text{ to } -1$$

The boundary between  $\mathcal{X}_{-}(\phi)$  and  $\mathcal{X}_{+}(\phi)$  is called the decision boundary of  $\phi$ .

# Decision Regions and Decision Boundary







### Alternative View of the Classification Problem



#### Idea:

- Regard given sample  $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \{-1, +1\}$  as a set of labeled points in , with  $x_i$  having label  $y_i$ .
- Look for a simple prediction rule (equivalently, a partition of into two sets) that separates the -1s from the +1s.
- This idea extends to multi-class classification as well. In this case, we'll need multiple decision regions.

# Next Up



- Classification Algorithms
  - k Nearest Neighbors
  - Bayes Classifiers
  - Linear Discriminant Analysis
- Logistic Regression
- Comparison of Classification Methods