

Entrega 0

$\begin{array}{c} {\rm Metodos\ Computacionales\ en\ OOCC,\ IOC} \\ {\rm 4201} \end{array}$

Profesor: Patricio Moreno

Ayudante: Maximiliano Biasi

Alumno: Bernardo Caprile Canala-Echevarría

14 de septiembre de 2024

$\acute{\mathbf{I}}\mathbf{ndice}$

[Entrega 0	2
۱.	Introducción	2
	Resultados 2.1. Redes de flujo	9

Entrega 0

1. Introducción

Para obras en las que se debe construir a nivel subacuático o con un nivel freático alto, es necesario el uso de ataguías. Estas estructuras temporales permiten construir de forma segura y eficiente en condiciones de humedad. Es importante, antes de instalar las ataguías, tener conocimiento de la profundidad a la que se van a hundir, la presión que se va a contener, tanto del agua como de otros factores, y la cantidad de agua que se va a bombear. De lo contrario, se pondría en riesgo la vida de los trabajadores y la maquinaria. Por ello, en esta entrega se presentarán esquemas de redes de flujo, caudales de infiltración, presiones de poros, gradientes hidráulicos, entre otros, de tres casos distintos de ataguías de tablaestaca.

2. Resultados

2.1. Redes de flujo

A continuación, se muestran los esquemas de las redes de flujo de las 3 ataguías.

Figura 1: Ataguía con el caso 1 — Figura 2: Ataguía con el caso 2 — Figura 3: Ataguía con el caso 3

Como se puede apreciar, en la figura 1 la tablaestaca no está enterrada, mientras que la tablaestaca de la figura 2 está enterrada a una profundidad de 2.4 metros. Por último, en la figura 3 la tablaestaca está enterrada a una profundidad de 5.8 metros.