Gaußsche Summenformel

Die Gaußsche Summenformel lautet: Für alle natürlichen Zahlen $n \ge 1$ gilt

A(n):
$$1+2+\cdots+n = \frac{n(n+1)}{2}$$

Sie kann durch vollständige Induktion bewiesen werden. Der Induktionsanfang ergibt sich unmittelbar:

A(1):
$$1 = \frac{1(1+1)}{2}$$

Im Induktionsschritt ist zu zeigen, dass aus der Induktionsvoraussetzung

A(n):
$$1+2+\cdots+n = \frac{n(n+1)}{2}$$

die Induktionsbehauptung

A
$$(n+1)$$
: $1+2+\cdots+n+(n+1)=\frac{(n+1)\left((n+1)+1\right)}{2}$ für $n\geq 1$

folgt. Dies gelingt folgendermaßen (Die Induktionsvoraussetzung ist rot markiert.):

$$1+2+\cdots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)+2(n+1)}{2} \qquad \text{(Hauptnenner 2)}$$

$$= \frac{(n+2)(n+1)}{2} \qquad \text{(Ausklammern von } (n+1))$$

$$= \frac{(n+1)(n+2)}{2} \qquad \text{(Umdrehen nach Kommutativgesetz)}$$

$$= \frac{(n+1)((n+1)+1)}{2} \qquad \text{(mit } (n+1) \text{ an der Stelle von } n)$$

Schließlich der Induktionsschluss: Damit ist die Aussage $\mathrm{A}(n)$ für alle $n \geq 1$ bewiesen.

Summe ungerader Zahlen (Maurolicus 1575)

Die schrittweise Berechnung der Summe der ersten n ungeraden Zahlen legt die Vermutung nahe: Die Summe aller ungeraden Zahlen von 1 bis 2n-1 ist gleich dem Quadrat von n:

$$1 = 1$$

 $1 + 3 = 4$
 $1 + 3 + 5 = 9$
 $1 + 3 + 5 + 7 = 16$

Der zu beweisende allgemeine Satz lautet: $\sum_{i=1}^{n} (2i - 1) = n^2$.

Induktionsanfang — Beweise, dass A(1) eine wahre Aussage ist. —

A(1):
$$\sum_{i=1}^{1} (2i-1) = 2 \cdot 1 - 1 = 1 = 1^{2}$$

Induktionsvoraussetzung — Die Aussage A(k) ist wahr für ein beliebiges $k \in \mathbb{N}$.

A(n):
$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + \dots + (2n-1) = n^{2}$$

Induktionsschritt — Beweise, dass wenn A(n = k) wahr ist, auch A(n = k + 1) wahr sein muss. —

A(n+1):
$$\sum_{i=1}^{n+1} (2i-1) = (n+1)^2$$

Beweis

Er ergibt sich über folgende Gleichungskette, bei der in der zweiten Umformung die Induktionsvoraussetzung angewandt wird:

$$\sum_{i=1}^{n+1} (2i-1) = 1+3+\cdots + (2n-1) + (2(n+1)-1)$$
 Formel für die letzte Zahl ist: $2n-1$, n ist hier $n+1$

$$= \sum_{i=1}^{n} (2i-1) + (2(n+1)-1)$$
 andere Schreibweise mit dem Summenzeichen
$$= n^2 + 2(n+1) - 1$$
 Ersetzen des Summenzeichens mit dem Ergebnis der Formel
$$= n^2 + 2n + 2 - 1$$
 ausmultiplizieren
$$= n^2 + 2n + 1$$
 mit erster Binomischer Formel: $(a+b)^2 = a^2 + 2ab + b^2$
$$= (n+1)^2$$

 $(Die\ Induktions vor aussetzung\ ist\ rot\ markiert.)$