前言

离散系统 z 域分析相关内容

一、线性性质

若

$$f_1(k) \longleftrightarrow F_1(z), \alpha_1 < |z| < \beta_1$$

$$f_2(k) \longleftrightarrow F_2(z), \alpha_2 < |z| < \beta_2$$

对于任意常数 a_1, a_2 ,则:

 $a_1f_1(k) + a_2f_2(k) \longleftrightarrow a_1F_1(z) + a_2F_2(z)$, 收敛域至少是 $F_1(z)$ 和 $F_2(z)$ 收敛域的相交部分。

例:

$$2\delta(k)+3\epsilon(k)\longleftrightarrow 2+rac{3z}{z-1},|z|>1$$

二、移位特性

移位特性分单边和双边

双边:

若

$$f(k) \longleftrightarrow F(z), \alpha < |z| < \beta$$
, 且对整数 $m > 0$,则:

$$f(k\pm m) \longleftrightarrow z^{\pm m}F(z),, lpha < |z| < eta$$

单边:

若

$$f(k)\longleftrightarrow F(z), |z| ,且对整数 $m>0$,则:$$

$$f(k-m) \longleftrightarrow z^{-m}F(z) + \sum_{k=0}^{m-1} f(k-m)z^{-k}$$

$$f(k-1) \longleftrightarrow z^{-1}F(z) + f(-1)$$

$$f(k-2) \longleftrightarrow z^{-2}F(z) + f(-2) + z^{-1}f(-1)$$
 $f(k+1) \longleftrightarrow zF(z) - zf(0)$

$$f(k+2) \longleftrightarrow z^2 F(z) - z^2 f(0) - z f(1)$$

三、尺度变换

若

 $f(k) \longleftrightarrow F(z), lpha < |z| < eta$,且有常数 a
eq 0,则:

$$a^k F(k) \longleftrightarrow F(rac{z}{a}), lpha |a| < |z| < eta |a|$$

例: $\cos(\beta k)\epsilon(k)$

$$\cos(eta k) = rac{1}{2}(e^{jeta k} + e^{-jeta k})$$

$$\cos(eta k)\epsilon(k)\longleftrightarrowrac{0.5}{z-e^{jeta}}+rac{0.5}{z-e^{-jeta}}$$

四、卷积定理

若

$$f_1(k) \longleftrightarrow F_1(z), lpha_1 < |z| < eta_1$$

$$f_2(k) \longleftrightarrow F_2(z), lpha_2 < |z| < eta_2$$

则:

$$f_1(k) * f_2(k) \longleftrightarrow F_1(z)F_2(z)$$

五、z 域微分

若

$$f(k)\longleftrightarrow F(z), lpha<|z|则:$$

$$kf(k) \longleftrightarrow -zrac{d}{dz}F(z), \ \ lpha < |z| < eta$$

例:

$$k\epsilon(k)\longleftrightarrow -zrac{d}{dz}(rac{z}{z-1})=rac{z}{(z-1)^2}$$

六、z 域积分

若

$$f(k) \longleftrightarrow F(z), lpha < |z| < eta$$
 ,且对**整数** $m, k+m > 0$,则:

$$rac{f(k)}{k+m} \longleftrightarrow z^m \int_z^{+\infty} rac{F(\eta)}{\eta^{m+1}} d\eta, lpha < |z| < eta$$

例:求序列 $\frac{1}{k+1}\epsilon(k)$ 的z变换

$$rac{1}{k+1}\epsilon(k)\longleftrightarrow z\int_z^{+\infty}rac{\eta/\eta-1}{\eta^2}d\eta=z\int_z^{+\infty}rac{1}{\eta(\eta-1)}d\eta=z\ln(rac{z}{z-1})$$

七、z域反转

若

$$f(k) \longleftrightarrow F(z), lpha < |z| < eta$$

则:

$$f(-k) \longleftrightarrow F(z^{-1}), rac{1}{eta} < |z| < rac{1}{lpha}$$

八、部分和

若

$$f(k) \longleftrightarrow F(z), lpha < |z| < eta$$

则

$$\sum_{i=-\infty}^k f(i) \longleftrightarrow rac{z}{z-1} F(z), max(lpha,1) < |z| < eta$$

总结

	序列	Z变换	收敛域	备注
1	$x\left[n ight]$	$X\left(Z\right)$	$R_{X-} < Z < R_{X+}$	
2	$y\left[n ight]$	$Y\left(Z\right)$	$R_{Y-} < \left Z ight < R_{Y+}$	
3	$ax\left[n ight] +by\left[n ight]$	$aX\left(Z ight) +bY\left(Z ight)$	$egin{split} max[R_{X-},R_{Y-}] &< Z \ &< min[R_{X+},R_{Y+}] \end{split}$	线性性
4	$x\left[-n ight]$	$X\left(\frac{1}{Z}\right)$	$rac{1}{R_{X-}} < Z < rac{1}{R_{X+}}$	时域反转
5	$x\left[n ight] st y\left[n ight]$	$X\left(Z\right) Y\left(Z\right)$	$egin{split} max[R_{X-},R_{Y-}] &< Z \ &< min[R_{X+},R_{Y+}] \end{split}$	序列卷积
6	$x\left[n ight] y\left[n ight]$	$\frac{1}{2\pi j}\int_{C}X\left(v\right)\ast Y\left(\frac{Z}{v}\right)v^{-1}dv$	$R_{X-}R_{Y-} < Z < R_{X+}R_{Y+}$	序列相乘
7	$x^*~[n]$	$X^*\left(Z^* ight)$	$R_{X-} < \left Z ight < R_{X+}$	序列共轭
8	$nx\left[n ight]$	$-Zrac{dX\left(Z ight) }{Z}$	$R_{X-} < Z < R_{X+}$	频域微分
9	$x\left[n+n_o ight]$	$Z^{n_{o}}X\left(Z ight)$	$R_{X-} < Z < R_{X+}$	序列移位
10	$x\left[0 ight] =X\left(\infty ight)$		因果序列 $ Z >R_{X-}$	初值定理
11	$x\left[\infty \right] =Res\left(X\left(Z\right) ,1\right)$		$(Z-1)X(Z)$ 收敛于 $ Z \geq 1$	终值定理