Equivalence relations

An important family of relations is the equivalence relation. (We will soon see why it is important.)

Defn: A relation \mathcal{R} on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

If \mathcal{R} is an equivalence relation on a set A, then one defines the equivalence class of each element of A with respect to \mathcal{R} as follows:

$$[a]_{\mathcal{R}} = \{ b \in A : (a, b) \in \mathcal{R} \}$$

Note that $a \in [a]_{\mathcal{R}}$. (WHY?)

Defn: A partition of a set A is a collection of non-empty sets $\{S_1, S_2, \ldots\}$ of A with the property that

 $A = S_1 \cup S_2 \cup \dots$ where $S_i \cap S_j = \emptyset$ whenever $i \neq j$. (Note that the collection $\{S_1, S_2, \dots\}$ may contain an infinite number of sets.)

es:

 $A = \{a_1b_1c_1d_1e_1f_3\}$ $\{S_{1,1}S_{2,1}S_{3,1}\}$ is a $S_{1} = \{a_1b_1e_1\}$ $S_{2} = \{a_1b_1e_1\}$ $\{S_{1,1}S_{2,1}S_{3,1}\}$ is a

partition of A

because $A = \{S_{1,1}S_{2,1}S_{3,1}\}$ $A = \{S_{1,1}S_{2,1}S_{3,1}\}$ $A = \{S_{1,1}S_{2,1}S_{3,1}\}$ and $\{S_{1,1}S_{2,1}S_{3,1}\}$ $\{S_{1,1}S_{2,1}S_{3,1}\}\}$ $\{S_{1,1}S_{2,1}S_{3,1}\}$ $\{S_{1,1}S_{2,1}S_{3,1}\}\}$

Theorem: If R is an equivalence relation on a set A, then the collection of equivalence classes with respect to A forms a partition

Moreover, if $\{S_1, S_2, \ldots\}$ is a partition of A, then there exists an equivalence relation on A with equivalence classes S_1, S_2, \ldots

Example (of an equivalence relation): (Congruence modulo m)

Consider the set of integers \mathbb{Z} . Then $a \in \mathbb{Z}$ is said to be **congruent** ex: a=7, b=3 to $b \in \mathbb{Z}$ modulo m if and only if 1

a - b = km

for some integer k.

Equivalently, a and b give the same remainder in $\{0, 1, ..., m-1\}$

 $8 \equiv 11$ (Med 3) hen divided by m.

observe We write that $a \equiv b \pmod{m}$. beth 8 XI

We will show that the relation $\mathcal R$ on the set of integers $\mathbb Z$ defined as

leave a

 $\mathcal{R} = \{(a, b) : a \equiv b \pmod{m}\}$ remainder when

is an equivalence relation.

divided 2 75

(i) reflexive: Let $a \in \mathbb{Z}$. Then a-a=0=0 m. So $(a_1a_1 \in \mathbb{R})$.

(ii) Symmetric: Let (a,b) ER. (a,b EZ).

Then a-b=k im for some $k\in\mathbb{Z}$. Then b-a=-k im for some $k\in\mathbb{Z}$. Then b-a=-k im where $-k\in\mathbb{Z}$. So $(b,a)\in\mathbb{R}$. This shows that k is symmetric. (iii) + rans; tive: Suppose $(a,b)\in\mathbb{R}$

7 = 3 (mod 4)

because 7-3=4=1.4

= 20 (mod 5)

(b,c) ∈R (a,b,c∈ Z). So, a-b=k,m -- (a-b)+(b-c) = k. m + b-

$$[4]_{R} = \{-1, -6, -1, 4, 9, 14, 19, -1.\}$$

$$[3]_{R} = \{-1, -2, 3, 8, 13, 18, ...\}$$

What are the equivalence classes of the equivalence relation

$$\mathcal{R} = \{(a,b) : a \equiv b \pmod{5}\}?$$

$$[5]_{R} = \{0\}_{R} = \{0\}_{R} = \{0\}_{R} = [0]_{R} =$$

Example: Prove that \mathcal{R} defined on \mathbb{Z} as

$$\mathcal{R} = \{(a,b): |a| = |b|\}$$
 (This is \mathcal{R}_{6} .)

is an equivalence relation and determine its equivalence classes.

we showed yesterday that R is reflexive symmetric and transitive. So R is an equivalence relation. $\begin{bmatrix}
11 \\
2
\end{bmatrix} = \begin{cases}
21, -1 \\
21 \\
2
\end{bmatrix} = \begin{cases}
32, -2 \\
33, -3
\end{cases}$

Example: Prove that \mathcal{R} defined on $\mathbb{Z} \setminus \{0\}$ as

 $\mathcal{R} = \{(a,b) : \frac{a}{b} = 2^k\} \text{ for some } k \in \mathbb{Z}$ is an equivalence relation and determine its equivalence classes.} $\mathcal{R} \text{ is reflexive: Let } a \in \mathbb{Z} \setminus \{0\} \text{ . Since } a = 1 = 2^o \text{ ($0 \in \mathbb{Z}$)}$ we have that $(a_ia) \in \mathbb{R}$. $\mathcal{R} \text{ is symmetric: Suppose } (a_ib) \in \mathbb{R} \text{ ($a_ib \in \mathbb{Z} \setminus \{0\}$)}.$ Then $\frac{a}{b} = 2^k$ for some $k \in \mathbb{Z}$.

Then $\frac{b}{a} = \frac{1}{2^k} = 2^k$ where $-k \in \mathbb{Z}$. $\mathcal{R} \text{ is transitive:}$

(left as an exercise

Example: Prove that \mathcal{R} defined on $\mathbb{Z}^+ \times \mathbb{Z}^+$ as

$$\mathcal{R} = \{((a_1, a_2), (b_1, b_2)) : a_1b_2 = a_2b_1\}$$

is an equivalence relation and determine its equivalence classes.