

Uber Fare Price Prediction

By~ Ashutosh Rai

Project Roadmap

Exploratory Data Analysis

Summary Statistics:

understand distribution.

Loading Data

Initially there are total 200000 rows and 9 columns in Dataset

Data Cleaning and Preparation

Handling Missing Values:
Identifying and imputing
or removing missing
values.
Data Types and
Conversion: Ensuring all

data types are appropriate

for analysis

Calculating mean,
median, mode, standard
deviation, etc.,
.Distribution Analysis:
Plotting histograms or
density plots to

Descriptive Identifying
Statistics Patterns and
Relationships

Correlation Analysis:
Calculating correlation
coefficients to identify
linear relationships
between features.
violin plots..

Feature
Engineering
and Selection

Creating New Features:
Generating new
features based on
existing ones to
improve model
performance..

Most of the passenger are traveling alone.

We have one value as 208 in 'passenger_count'

- Peak Hour at 19:00: This is our busiest time.
- Low Bookings at 00:00: Midnight sees fewer bookings. We can attract more customers with targeted coupons.
- 1:00-7:00 Low Activity: Late-night bookings are low, likely due to the timing. We should offer incentives to boost usage during these hours.
- 8:00-17:00 Improvement Potential: Bookings are low during these hours, but there's significant potential for growth. Consider offering new coupons for office and school commuters, and promote carpooling services.
- Decline from 20:00-23:00: Customer numbers drop steadily, likely due to longer wait times. Focusing on this period could improve overall performance.

Fare Distribution

- In weekend the number of customers are compratively low
- We should put on some sttractive offers for consumers to plan their weekends.

Heatmap

fare_amount -	1	0.015	0.0052	-0.0063	0.034	0.017	0.81	0.0088	0.00058	0.024
passenger_count -	0.015	1	0.0034	0.014	0.0097	0.034	0.0047	-0.0016	0.0015	0.0083
pickup_day -	0.0052	0.0034	1	0.0055	-0.017	0.0051	0.0063	-0.014	0.02	-0.018
pickup_hour -	-0.0063	0.014	0.0055	1	-0.0027	-0.086	-0.025	-0.00076	-0.0046	0.00091
pickup_month -	0.034	0.0097	-0.017	-0.0027	1	-0.0091	0.0083	-0.23	0.27	0.76
pickup_day_of_week -	0.017	0.034	0.0051	-0.086	-0.0091	1	0.038	-0.0081	-0.0099	0.0019
distance_miles -	0.81	0.0047	0.0063	-0.025	0.0083	0.038	1	0.0077	0.011	-0.0021
Monthly_Quarter_Q2 -	0.0088	-0.0016	-0.014	-0.00076	-0.23	-0.0081	0.0077	1	-0.33	-0.34
Monthly_Quarter_Q3 -	0.00058	0.0015	0.02	-0.0046	0.27	-0.0099	0.011	-0.33	1	-0.3
Monthly_Quarter_Q4 -	0.024	0.0083	-0.018	0.00091	0.76	0.0019	-0.0021	-0.34	-0.3	1
	re_amount -	nger_count -	oickup_day -	ickup_hour -	cup_month -	y_of_week -	ance_miles -)uarter_Q2 -)uarter_Q3 -)uarter_Q4 -

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0

Adjusted R-squared Comparison:

Training Adjusted R-squared:

Linear Regression and Polynomial Ridge Regression with 9, 8, and 7 features exhibit the highest training adjusted R-squared values. As the number of features decreases below 6, the training adjusted R-squared values also drop, indicating less fit to the training data. Test Adjusted R-squared:

Polynomial Ridge Regression with 8 and 7 features shows the highest test adjusted R-squared values.

The test adjusted R-squared drops significantly with fewer features, highlighting the models' reduced predictive power on unseen data with fewer features.

R-squared Comparison:

Training R-squared:

Similar to the adjusted R-squared, the training R-squared is highest for models with more features, peaking at 9, 8, and 7 features. Test R-squared:

Polynomial Ridge Regression models with 8 and 7 features have the highest test R-squared values. Test R-squared values decrease notably for models with fewer than 6 features.

RMSE Comparison:

Training RMSE:

The training RMSE is lowest for Polynomial Ridge Regression with 9, 8, and 7 features, indicating better fit on the training data. RMSE values increase as the number of features decreases, indicating poorer model performance. Test RMSE:

The lowest test RMSE values are observed for Polynomial Ridge Regression with 8 and 7 features.

Test RMSE increases with fewer features, showing the models' reduced accuracy on the test set with fewer features.

Conclusion

- Peak Hour at 19:00: This is our busiest time.
- Low Activity at Midnight (00:00): Consider using coupons to attract more customers.
- Low Bookings from 1:00-7:00: Late-night timing likely affects demand; incentives could help increase usage.
- Low Bookings from 8:00-17:00: High potential for growth by targeting commuters with coupons and promoting carpooling.
- Decline from 20:00-23:00: Focus on reducing waiting times to improve customer retention during these hours.

Recommendations:

- Targeted Promotions: Introduce coupons and discounts during low-demand hours (00:00 and 1:00-7:00) to attract
- more customers.
- Commuter Incentives: Launch special offers for office and school commuters during 8:00-17:00, and promote carpooling services to boost bookings.
- Operational Efficiency: Analyze and address factors contributing to increased waiting times between 20:00-23:00 to maintain customer satisfaction and prevent declines in bookings.