

APACHE FLINK

Technologies for Big Data Mangement

NICCOLÒ VACCA

INDEX

- Introduzione ad Apache Flink
- Streaming in Apache Flink
- Flink SQL
- Flink Runtime
- Stateful Stream Processing
- Event Time & Watermarks
- Checkpoints & Recovery

INTRODUZIONE AD APACHE FLINK

COS'È APACHE FLINK?

Apache Flink è uno **stream processor** utilizzato prevalentemente in applicazioni real-time

Questo Framework è basato su 4 concetti principali:

- STREAMING
- STATE
- TIME
- SNAPSHOT

Flink offre **API** in Java, Scala, SQL e altri linguaggi e supporta sia **stream** che **batch** processing

Flink ha una **community numerosa e attiva**, ed è utilizzato da molte aziende importanti, tra cui Netflix, Alibaba e Uber

STREAMING IN APACHE FLINK

STREAMING IN APACHE FLINK

Apache Flink cattura gli eventi da una sorgente, non appena questi si verificano (Event Streaming)

- Le sequenze di eventi letti formano uno **stream potenzialmente illimitato** che si estende nel futuro
- Se si vogliono analizzare dati historical vanno considerati invece stream finiti, con un timestamp di inizio e uno di fine

STRUTTURA DI UN' APPLICAZIONE FLINK

Tutte le Applicazioni Flink consumano dati da una o più **sorgenti** e producono dati su uno o più **sink**

La Business Logic è implementata grazie alle API Flink e viene eseguita in un cluster Flink

STRUTTURA DI UN' APPLICAZIONE FLINK

- Un'applicazione in esecuzione su Flink è chiamata Job
- I dati relativi agli eventi registrati, le computazioni da effettuare e i messaggi da scambiare vengono raccolte in una pipeline chiamata **Job Graph**
- I nodi "Operator" che si trovano nel Job Graph rappresentano le computazioni
- Il Job Graph è un **DAG**
- È possibile dividere gli stream di eventi in **sub-stream paralleli** che possono essere processati indipendemente

FLINK PLAN VISUALIZER

POSSIBILI OPERAZIONI FLINK

- Forwarding: Connessione più semplice tra i nodi, si limita a scambiare dati
- Partitioning: Divisione di una tabella in più parti relative a essa
- Random Partitioning (o shuffling): Partiziona gli elementi randomicamente
- Rebalancing: Partiziona gli elementi seguendo l'approccio round-robin, per creare una distribuzione di carico bilanciata per ogni partizione

FLINK SQL

FLINK SQL

Flink SQL è un engine conforme agli standard ANSI per SQL in grado di trasformare istruzioni SQL in intere Applicazioni Flink.

Può processare dati sia in modalità Streaming che Batch, mantenendo i principi di scalabilità, performance e consistenza tipici di Flink

Flink SQL

Table API

DataStream API

Process Functions

Level of abstraction

DataStream
API
Process Functions

Table / SQL API

Optimizer / Planner

Low-Level Stream Operator API

Dataflow Runtime

FLINK RUNTIME

FLINK RUNTIME

- Quando si scrive un'applicazione Flink usando le API Flink, la stessa App diventa un Client Flink
- Quando il Client viene eseguito, viene assemblato il Job Graph relativo e il **Job** viene **sottomesso al Job Manager**
- Il Job Manager istanzia le risorse necessarie per eseguire il Job (nodi Task Manager)
- Ciascun Task Manager fornisce diversi Task Slot, che si occupano di eseguire le singole computazioni del Job
- I Task Manager possono scambiarsi dati tra di Ioro
- Durante l'esecuzione, il Job Manager è responsabile della gestione dei Checkpoint e dei Failure Recovery

BATCH PROCESSING IN FLINK

In Flink, il Batch processing è una casistica specifica di runtime, in cui l'esecuzione procede in fasi e dove i dati intermedi vengono salvati in dei buffer per venire processati successivamente.

I risultati finali vengono restituiti al termine del Job

STATEFUL STREAM PROCESSING

STATEFUL STREAM PROCESSING

Mentre molte operazioni in uno stream di dati esaminano semplicemente un singolo evento alla volta, alcune operazioni devono ricordare le **informazioni su più eventi** (ad esempio nelle time window). Queste operazioni sono chiamate **stateful**.

Gli stati vengono salvati su strutture di dati **key-value** distribuite, per cui ogni istanza parallela gestisce lo stato per le sue key specifiche.

Per garantire **performance elevate**, Flink salva gli stati dei Job localmente, per ogni nodo operator e per garantire **Fault Tolerance**, esegue periodicamente dei checkpoint degli stati, copiandoli di volta in volta in uno spazio di archiviazione remoto (Ad esempio in S3)

STATEFUL STREAM PROCESSING

Flink può salvare una **grande mole di dati**, a patto che gli stream da cui vengono salvati **non** siano **illimitati** (Stram Processing).

Per questo vanno aggiunti dei **vincoli temporali** alle computazioni (**Time Windows**), così di volta in volta lo spazio di archiviazione di Flink può essere svuotato e non arriverà mai al suo limite.

<u>Quando la computazione è basata sull' Event Time, la gestione di finestre temporali può essere complessa</u>

EVENT TIME & WATERMARKS

EVENT TIME & WATERMARKS

È possibile che un evento generato prima di un altro subisca più delay e venga letto più tardi, addirittura nella finestra temporale successiva

WATERMARKS

La soluzione a questo problema sono gli **Watermarks**, degli elementi generati all'interno di una stream e che contengono un timestamp uguale a: max_timestamp - out_of_orderness - 1ms

Ogni watermark assume che tutti gli elementi letti prima siano stati generati precedentemente rispetto al timestamp del watermark stesso

WATERMARKS

- Non sono necessari per applicazioni basate su Processing Time
- Non sono necessari per Batch Processing
- Servono per attivare azioni basate su Event Time
- Sono generati sulla base del valore out-of-orderness ipotizzato (ritardo massimo dei dati)

CHECKPOINTS & RECOVERY

CHECKPOINT

- Un checkpoint è uno snapshot automatico di tutti gli stati, creato da Flink
- È usato soprattutto per il Failure Recovery
- I checkpoint sono salvati in un file system remoto
- Esistono anche altri tipi di snapshot, i savepoint, creati manualmente
- Dopo un fail, Flink riavvia gli operator affetti per eseguire il Recovery

THANK YOU