A propagação de ondas em água é tudo menos simples. Recomenda-se a leitura da aula 51 nas *The Feynman Lectures on Physics, Volume I* que, como todas as outras *Feynman Lectures*, se encontra disponível electronicamente [https://www.feynmanlectures.caltech.edu/l_51.html]. A complicação principal deve-se à água ser um meio dispersivo.

Vamos considerar ondas na superfície da água, assumindo que as deformações da superfíce da água são influenciadas pela aceleração da gravidade g e pela tensão superficial da água T (expressa em unidades de força por unidade de comprimento). Para um corpo de água com densidade constante $\rho = 1 \text{ g cm}^{-3}$, profundidade h também constante e no qual seja possível desprezar a viscosidade, é possivel mostrar que a velocidade de fase v_{ϕ} das ondas que se propagam na superfície da água é dada por:

$$v_{\phi}^{2}(k) = \left(\frac{g}{k} + \frac{Tk}{\rho}\right) \tanh(kh)$$

onde $k = 2\pi/\lambda$ é o número de onda e $\tanh(x)$ é a tangente hiperbólica de x.

- (i) Determine, em termos das grandezas do problema, o comprimento de onda λ_{crit} para o qual o efeito da tensão superficial da água é de magnitude idêntica ao efeito da gravidade. Sabendo que para água a 20° C se tem $\lambda_{\text{crit}}=2$ cm, determine a tensão superficial da água.
- (ii) Considere os vários casos em que o comprimento de onda λ tem uma escala diferente (ou seja, é muito maior ou muito menor que) de λ_{crit} e h, comparando em cada caso as velocidades de grupo e de fase.
- (iii) Determine, justificando cuidadosamente, em que condições é possível transmitir sinais sem dispersão na superfície de um corpo de água.