| ٠                             |                |                                          |       |                 |                   |
|-------------------------------|----------------|------------------------------------------|-------|-----------------|-------------------|
| ENGINEERING NOTE              | SECTION        | PROJECT                                  |       | SERIAL-CATEGORY | PAGE /            |
| SUBJECT                       |                | •                                        | NAME  | •               |                   |
| RF Cavity Lab.                |                |                                          | DATE  | REVIGIO         | N DATE            |
| Purpose                       |                |                                          |       | , .             |                   |
|                               | ı              |                                          |       |                 |                   |
| a) Measure mode s             | pectrum.       | of a                                     | n R   | Feauty          |                   |
| b) Measure cavity com         |                |                                          |       |                 |                   |
| of a causty                   |                |                                          |       |                 |                   |
| c) Measure electric           | field pro      | file                                     | and   | R/Q             | o£                |
| a cavity with a               |                |                                          |       |                 |                   |
| Equipment                     |                | v. · · · · · · · · · · · · · · · · · · · |       |                 | 5 (1) (1) (2) (4) |
| Network Analyzer              |                |                                          |       |                 | je semili<br>L    |
| 3.5 calibration ki            | <del>/</del> . |                                          |       |                 |                   |
| Single cell ceun<br>couplers. |                | an                                       | E fo  | ald and         | B field           |
| Bead Pull Setup               |                |                                          |       |                 |                   |
| Graph Paper                   |                |                                          |       |                 |                   |
| Calculator                    |                |                                          |       |                 | ·                 |
| Back ground Info              |                |                                          |       |                 |                   |
| The cauties used              | in this        | euper                                    | imen: | f are           |                   |
| aluminum mockups              |                |                                          |       |                 |                   |
| Upgrade. They reso            | _              |                                          |       |                 | Hz.               |



The cavity has two couplers. One is a quasi
B field coupler in which the angle of the coupling loop with respect to the magnetic field can be changed in order to change the coupling. The other coupler is a Efield coupler that is weakly coupled to the cavity.

| *       | ENGINEERING NOTE   | SECTION   | PROJECT      |            | SERIAL-CATE | SORY       | PAGE   |
|---------|--------------------|-----------|--------------|------------|-------------|------------|--------|
| SUBJECT |                    |           |              | NAME       |             | <u> </u>   | •      |
| RF      | Cauly Lab.         |           |              | DATE       | <u>.</u>    | REVISION I | DATE . |
| 600     | edure              |           |              |            |             |            | ·      |
| 1)      | Connect port 0     | of the    | NW           | <b>4</b> + | o 4h        | ح ا        | કે [   |
|         | field probe. Conne | ct port ( | <u>3</u> ) 1 | 10 t       | he E        | e.         | إعا    |
|         | probe. Reflection  | measurem  | 2tha         | ψı         | ll be       | ماه        | ne     |

- by measuring Sy: Transmission measurements will be done by measuring Son.
- 2) In the transmission mode, find the resonant frequencies of the first 5 modes. Because the modes couple differently to the B field probe, rotate the probe 360° to make sure you can couple to all the modes.
- 3) Zoom in the NWA on the first mode. (It should be around 815 MHz). Calibrate . Port O for reflection measurements.
- 4) Adjust the B field coupling loop for a coupling of 1.
  - a) Set the display format to Smith Chart b) Center the trace (it should be a circle)

BUBJECT

RF Cavily Lab

DATE REVISION DATE

46 (cont.)) around the Treal axis as shown in the notes. by putting a phase offset into the NWA. One can also center the trace backing and the Trace using a phase offset.

Centering the trace using a phase offset.

- c) Rotate the B field coupling loop until de compling of 1 is achieved.
- 5) Measure the <u>unloaded</u> Q of the county by finding the frequencies in which the real part of the impedance = ± the imaginary part of the impedance.
- 6) Knowing the coupling of the cavity, calculate the <u>loaded</u> Q of the cavity.
- 7) Sketch the log magnitude of the reflection coefficient us frequency. What is the value of  $S_{II}$  at  $\omega = \omega_0 \pm \frac{\omega_0}{q_{instead}}$  and  $\omega = \omega_0 \pm \frac{\omega_0}{q_{instead}}$ ?

| FERMILAB SECTION PROJECT SERIAL CATEGORY PAGE  FERMILAB  SECTION  PROJECT  SERIAL CATEGORY  PAGE  SECTION |
|-----------------------------------------------------------------------------------------------------------|
| RF Cauty Lab.  REVISION DATE                                                                              |
| 8) Connect Port (1) to the Efield probe                                                                   |
| and fort @ to the B field probe.                                                                          |
| Measure the coupling of the Efield probe.                                                                 |
| 9) Connect Port 1) to the B field probe                                                                   |
| and Port (2) to the Effeld probe.                                                                         |
| Using Si on the NWA, measure the                                                                          |
| Loaded Q of the mode. Does it                                                                             |
| agree with Step 6?                                                                                        |
| 10) Change the B field probe coupling to                                                                  |
| 3. Be sure to re-center the country                                                                       |
| trace on the Smith Chart by adjusting                                                                     |
| the phase offset on the NWA.                                                                              |
| 11) Measure                                                                                               |
| a) The coupling                                                                                           |
| b) The resonant frequency                                                                                 |
| c) the unloaded Q                                                                                         |
| d) the loaded Q with S11                                                                                  |

e) The loaded Q with Szi

SUSJECT

RF Cavity Lab.

DATE REVISION DATE

12) Set the coupling to 1/3 with the B field probe. Repeat Step 11.
How does the resonant frequency change with coupling and why?

13) Set the coupling of the Bfield probe to 1 @ the fundamental mode (815 Titlz). Duth the B field probe fixed, Repeat step 11 for the next 4 higher order causty modes.

14) Set the NWA up for a Sai measurement for the fundamental mode. (The B field probe coupling should still be set at 1) With the bead outside the cavity, set the phase of Sai at the resonant frequency equal to zero by adjusting the phase offset of the NWA. The resonant frequency with the bead outside the cavity will be called the an perturbed resonant frequency.

| <del>_</del> -                                      | Lorene    | Tago For         | SERIAL-CATEGORY | la.o.  |
|-----------------------------------------------------|-----------|------------------|-----------------|--------|
| ENGINEERING NOTE                                    | SECTION . | PROJECT          | SCHIPL-CATEGORY | PAGE   |
| RF Cavity Lab                                       |           | DATE             | REVISION        | N DATE |
| 15) Pull the bead                                   | l slowl   | y thru           | the ear         | rity   |
| and measure H                                       | he per    | -turbed"         | resonant        |        |
| frequency and t                                     |           |                  |                 | _      |
| the unperturbed                                     | d" reson  | ant freq         | luency a        | 28     |
| a function of be                                    | ad pos    | ition.           |                 | 4      |
| 16) Repeat Steps                                    | 14 & 1    | 2 <del>6</del> 4 | the new         | +      |
| 4 higher order                                      | modes     |                  |                 |        |
| Bead Pull Analysis                                  |           |                  |                 | ÷      |
| The shunt impedance of                              | f the co  | unty. is         | given           | as     |
| R= 1 2000 [ Sq. (C)                                 |           |                  |                 |        |
| where $\mathcal{F} = \mathcal{H} a^3 \mathcal{E}_o$ | for a     | a metal          | bead            |        |
| - 1.011                                             | 0/        | 1 1              | ,               | _      |

The electric field profile along the gap is:

However, if the bead is very small or the electric field in the cavity is small, the shift in resonant frequency (oco) might be very RF Causty Lab

DATE REVISION DATE

hard to measure. A more sensitive measurement would be to measure the phase shift of Szl at the "un-perturbed" resonant frequency as the bead is pulled thru the cavity.

The impedance of the cavity is:

Z= Rett cos \$\varphi\$

where

$$tan \phi = Q\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)$$

$$\omega = \omega_0 \left( 1 + \frac{\delta \omega}{\omega_0} \right)$$

where su 221

then

Q sw & I tan q.

For the mensurements made in Steps 15 & 16 Calculate the R/Q of each mode and plot E for each mode.