House Sales in King County, USA

Analysis and Predictions

•••

Orlando Marin

Topics of Discussion

- 1. Introduction to the Dataset
- 2. Data Exploration
- 3. Modeling Overview and Results
- 4. Insights and Comparison
- 5. Conclusion and Takeaways

Introduction to the Dataset

Introduction to the Dataset

- The "House Sales in King County, USA" dataset contains house sale prices for King County, which includes Seattle, WA. It includes homes sold between May 2014 and May 2015.
- Why did I choose this dataset?
 - Buying and Selling Property Understand the factors that influence home prices, helping students make informed decisions when buying or selling a property.
 - Renovating Property Identify which home improvements provide the best return on investment, guiding students on how to increase property value for resale.
 - Inheritance or Estate Planning Students may inherit property and become involved in decisions related to selling a relative's home. Understanding home values can help make decisions regarding selling or maintaining property.

Data Exploration

Data Cleaning, Prep, and Feature Engineering

- Ensured that the "date" column was converted from a string to datetime
- Dropped the "id" column since it is a unique identifier, and there were no duplicates
- Treated the "zip_code" column as categorical instead of an integer
 - Ultimately removed the "zip_code" column since to avoid redundancy
 - The dataset had latitude and longitude data
 - There were 70 different zip codes
- Removed rows of homes that had either 0 bedrooms or 0 bathrooms

- Replaced the "yr_renovated" column values of "0" with the corresponding value from the "yr_built" column for homes that were never renovated
- Created a binary "has_basement" column
 - o 0 means the home doesn't have a basement
 - 1 means the home has a basement
- Removed the "sqft_above" and "sqft_basement" columns to avoid redundancy with "sqft_living"
 - The sum of "sqft_above" and "sqft_basement" equals the "sqft_living" column
 - o I created the "has_basement" column
- Removed rows with outliers for "price", "sqft_lot", and an extreme "bedrooms" outlier (33 bedrooms)

Dataset Features

Original Features (21 columns, 21613 rows)

- id
- date (string)
- price
- bedrooms
- bathrooms
- sqft_living
- sqft_lot
- floors
- waterfront
- view
- condition
- grade
- sqft_above
- sqft_basement
- yr_built
- yr_renovated (many rows with value of "0" for homes never renovated)
- zip_code
- lat
- long
- sqft_living15
- sqft_lot15

Features after Modifications (18 columns, 18229 rows)

Features Removed: id, sqft_above, sqft_basement, zip_code Features Updated: date, price, bedrooms, sqft_lot, yr_renovated Features Created: has_basement

- date (datetime)
- price (removed outliers)
- bedrooms (removed an extreme outlier)
- bathrooms
- sqft_living
- sqft_lot (removed outliers)
- floors
- waterfront
- view
- condition
- grade
- yr_built
- yr_renovated (homes that had "0" were replaced with yr_built)
- lat
- long
- sqft_living15
- sqft_lot15
- has_basement

Summary statistics of key features after data cleaning

	price	bedrooms	bathrooms	sqft_living	sqft_lot	grade	yr_built
Mean	\$467,147	3.31	2.02	1910.65	7214.46	7.47	1970
Standard Deviation	\$204,677	0.89	0.71	727.76	3461.94	0.98	29.92
Minimum	\$78,000	1.00	0.50	370.00	520.00	3.00	1900
50%	\$426,000	3.00	2.00	1800.00	7189.00	7.00	1972
Maximum	\$1,127,000	11.00	7.50	7350.00	18295.00	12.00	2015

Most home prices in King County are between \$200K and \$500K

Most homes in King County are sold in spring and summer months

Locations of the most and least expensive homes in King County

- The 40 most expensive homes in King County have red markers
- The 40 least expensive homes in King County have green markers
- The highest priced homes in King County tend to be further north
 - This indicates that latitude may be a more important factor when predicting home price than longitude
- The highest priced homes also tend to be near Seattle and Bellevue, two major cities, and/or near the water

Google Colab

The vast majority of waterfront homes are high-priced

Non-waterfront homes have a balanced distribution by price range

There is a linear relationship between sqft_living and price

As condition increases, so does the proportion of high-priced homes

As the view improves, so does the proportion of high-priced homes

Modeling Overview and Results

Lasso Regression Model

Purpose - apply Lasso regression to predict house prices in King County and compare its performance to KNN regression, leveraging regularization to handle overfitting and feature selection

Method - implemented a Lasso regression model with alpha set to 1.0. Data was split into 80/20 training/testing sets, and numerical features were standardized before model fitting

Results

• R² Score: 0.7011

• Root Mean Squared Error: \$112,313

• Mean Price: \$469,133

Feature Importance - Lasso Regression

KNN Regressor Model

Purpose - Apply KNN regression to predict house prices in King County and compare its performance to Lasso regression, using non-linear relationships between features.

Method - implemented KNN with n_neighbors = 5. Data was split into 80/20 training/testing sets, and numerical features were standardized before model fitting.

Results

• R² Score: 0.7721

• Root Mean Squared Error: \$98,078

• Mean Price: \$469,133

Insights and Comparison

Which model performed best, and why?

- Best performing model: KNN Regression
 - KNN performed better with an R² of 0.7721, compared to Lasso's 0.7011. This indicates that KNN explains more of the variance in King County house prices.
 - KNN also had a lower Root Mean Squared Error of \$98,078 compared to Lasso's \$112,313, indicating that KNN's predictions were closer to the actual values.
- Lasso Regression
 - Helped identify which features mattered most, such as grade, sqft_living, and latitude, which gives useful insight into what drives house prices in King County.
 - Lasso uses regularization to reduce the influence of less important features, helping to avoid overfitting and making the model easier to interpret.
- Why KNN performed better?
 - KNN can model non-linear patterns in the data. It can detect more complex relationships between the features and house prices that a linear model like Lasso might miss.

Conclusion and Takeaways

Conclusion and Takeaways

Limiting Factors

- Important details like school district, crime rate, etc. were not included in the dataset, even though they can significantly impact house prices.
- The models were trained only on King County data, so the results may not apply well to other housing markets.

Suggestions for Future Study

- Test another model like Random Forest to potentially improve accuracy.
- Add features like crime rate, school ratings, or walkability scores to build a more complete model of what influences house prices

Recommendations to Students

- When buying a home, prioritize homes in great condition with larger living space and desirable location features (view, waterfront) to maximize long-term value.
- When selling and renovating a home, invest in upgrades that improve the home's condition and living area to have the biggest impact on price.

Thank you!