Transmission Impairments

- ◆ A transmitted signal becomes distorted due to transmission impairments
- ◆ For <u>Analogue</u> signals the quality can become degraded
- ◆ For <u>Digital</u> signals, bit errors can be introduced
- ◆ Types of Impairment:
 - Attenuation and Attenuation distortion
 - Noise

Attenuation & Attenuation distortion

- Attenuation where the signal becomes weaker over distance
- ◆ Interestingly attenuation is a function of frequency (refer to graph 1)
- ◆ Attenuation distortion affects the intelligibility of the received signal especially Signal Pulses which can become distorted
 - One technique for addressing this problem is to use equalizing amplifiers:
 - This boosts higher frequency components (refer to graph2) which evens out Signal Pulses

Attenuation & Attenuation distortion

Noise

- ♦ Noise is the insertion of unwanted signals onto the transmission signal
 - Its effect is to distort the signal during transmission (refer to diagram on slide entitled Effects of Impulse and Thermal Noise)
- It particularly affects digital signals
 - The greater the noise the greater the bit error rate
- ◆ Four categories of Noise:
 - Thermal Noise
 - Cross Talk
 - Impulse Noise

Thermal Noise

- ◆ Caused by the thermal agitation of electrons within a conductor
- Characteristics:
 - Present in all electronic devices and conductors
 - It is a function of *temperature* i.e. increased temperature leads to increase in thermal noise
 - It is uniformly distributed across frequency spectrum hence it is also known as white noise
 - It places an upper limit on the data carrying capacity of a transmission system
 - Must ensure that the strength of the data-carrying signal is much greater than the noise signal
 - Term used to describe this relationship is SNR Signal to Noise Ratio

Cross Talk

- ◆ Unwanted coupling between signals on neighbouring transmission paths
 - The term coupling means connecting without actually touching
 - Coupling can occur between cables in close proximity or between radio signals close to the same frequency

Impulse Noise

- Irregular pulses or noise spikes of short duration and high amplitude
- ◆ Causes:
 - Lightning and static discharges
 - Switching of heavy electrical loads
 - Faults within the transmission system
- ◆ Analogue signals are less affected by this type of noise
 - E.g. a voice trasnmission, whilst affected by impulse noise, it can still be received intelligibly
- Digital signals are very susceptible
 - Can lead to corruption of data i.e. changing one to zero and viceversa
 - This is demonstrated on the next slide

Effects of Impulse and Thermal Noise

Channel Capacity

- Channel capacity allows us to study the interrelationships between Signal BW, System BW and Signal Impairments
- ◆ Channel Capacity is the maximum rate at which data can be transmitted over a communications path or channel
- ◆ The objective is to make the best use of a given bandwidth/channel
 - However, from previous discussions Channel Capacity is limited in practice by transmission impairments of which the main constraint is noise
- Two distinguished scientists had something to say on this subject namely Nyquist and Shannon

Nyquist's Noise Free Channel

- ◆ According to Nyquist the limitation on data rate is simply the bandwidth of the channel
- ◆ Nyquist's Theorem

$$C = 2BLog_2M$$

C = maximum data rate measured in bits per sec.

B = bandwidth of the Transmission System Hz.

M = number of discrete states in digital signal

Limitation on Channel Capacity

- It appears from Nyquist's theorem that any data rate is achievable by:
 - increasing the bandwidth of the system
 - encoding more bits per signal cycle
- ♦ However, as the Data Rate increases:
 - The bit error rate increases
 - It becomes more and more difficult for the receiver to distinguish different signal states
- ◆ Noise and other transmission impairments put a practical limit on M and hence on the maximum Data Rate achievable

Noise and Data Rate

- Noise distorts a signal during transmission
- ◆ The greater the noise the greater the bit error rate for digital signals
- ◆ Key factor is Signal to Noise Ratio (SNR)
- Measured in Decibels
 - $-SNR_{dB} = 10 Log_{10} (S/N)$

S = Average signal power

N = Average noise power

Shannon's Noisy Channel

- Shannon extended Nyquist's work and took into account the effects of noise
- ♦ Shannon's Capacity Formula is stated thus:

$$C = BLog_2(1 + (S/N))$$

- Observations:
 - Increasing the bandwidth increases the maximum data rate
 - Increasing the noise reduces the maximum data rate
 - Shannon's Law defines an upper limit on the achievable data rate
 - Hence the data rate is limited by bandwidth <u>and</u> noise

Limitation on Channel Capacity

- According to Shannon the maximum data rate achievable is determined by:
 - The bandwidth of the system/channel and,
 - the noise on the channel
 - i.e. every system/channel has a maximum data carrying capacity that cannot be exceeded
- ◆ This is a more practical and realistic reflection on Channel Capacity as it takes into consideration the effects of noise

Worked examples of Channel Capacity

◆ Example calculations of Channel Capacity will be demonstrated in class.