Review for Exam I - STAT 642

Topics Covered on EXAM:

I. Experimental Design Principles:

- 1. Design experiments/studies to estimate and control variation
- 2. How to control variation
- 3. Six major principles of scientific experimentation
- 4. Properly Conducted Statistical Designed Experiments are
 - a. Economical
 - b. Allow the estimation of the impact of factors on response
 - c. Allow the estimation of variability
 - d. Allow the development of tests of hypotheses and confidence intervals
- 5. Experimental Design Terminology

Experimental Unit, Measurement Unit, Homogeneous EU's, Blocks, Factor, Levels of Factors, Treatment, Replication, Subsampling, Repeated Measures, Response, Effect of Treatments, Interaction, Confounding, Covariates

- 6. Common Problems in Experimental Designs
 - a. Masking of Factor Effects
 - b. Uncontrolled Factors
 - c. Erroneous Principles of Efficiency

7. Randomization

- a. Assignment of Treatments to EU's
- b. Randomly selecting EU's from Existing Populations
- c. Order in which measurements are taken or the position of EU's in Laboratories must be randomized
- d. Valid inferences only occur with proper randomization
- e. Permutation Tests

II. Components of a Designed Experiment:

- 1. C_1 : Randomization Completely Randomized, Blocked, Latin Squares, Random Factor Levels, Subsampling, Incomplete Blocks, Split-Plot, Split-Plot, Strip-Plot, Crossover, Repeated Measures
- 2. C_2 : Treatment Structure Single Factor, Crossed, Nested, Crossed/Nested, Fractional Factorials

Factor Levels - Fixed, Random

3. $C_{:}3$ Measurement Structure - Single measurement, Subsampling, Repeated Measures-Spatial and/or Temporal

- 4. Given the description of an experiment:
 - a. Identify the Treatment Structure and Whether the Levels of the Factors are Fixed or Random. Also, identify any blocking factors and/or covariates
 - b. Describe the method of randomization and the EU's
 - c. Identify the measurement structure and the MU's

III. Completely Random Design (CRD):

- 1. Model: Interpretation of parameters and LSE
 - a. Cell Means: $y_{ij} = \mu_i + e_{ij}$; i = 1, ..., t; $j = 1, ..., n_i$
 - b. Effects models with restrictions: $y_{ij} = \mu + \tau_i + e_{ij}$; i = 1, ..., t; $j = 1, ..., n_i$ with $\sum_{i=1}^t n_i \tau_i = 0$ or $\tau_t = 0$
 - c. Matrix formulation of the models
- 2. AOV & F-Test
 - a. F-test of $H_o: \mu_1 = \mu_2 = \cdots = \mu_t$ vs $H_1:$ At least one pair of means differ
 - b. Power of F-test: noncentrality parameter, Use textbook's graphs to compute power
- 3. Determine Number of Reps

For specified number of treatments, $\hat{\sigma}_e$, α , bound on power, bound on effect size

4. Estimation of Treatment Means

LSE, standard errors, C.I., Treatment Effects

- 5. Treatment Comparisons
 - a. Type I Error Rates Per Comparison (PC) vs Familywise (FWER) vs False Discovery Rate (FDR)
 - b. Bonferroni Procedures
 - c. Scheffé Procedures
 - d. Contrasts:
 - i. Comparisons of linear combinations of treatment means: F-test, t-test
 - ii. Orthogonal Polynomials
 - iii. Tests for Trends
 - iv. Scheffe, Bonferroni F-test
 - v. Simultaneous tests of m contrasts using Hypothesis Matrix
 - e. Control vs Treatment Means: Dunnett's Procedure
 - f. Determine Group of Best Treatments: Hsu's Procedure
 - g. All Pairwise Comparisons of Treatment Means: Tukey's procedure
 - h. FDR procedure