Неавторегрессивный машинный перевод

Как описано в статье "Mask-Predict: Parallel Decoding of Conditional Masked Language Models"

Докладчик - Коля Карташев, 181

Неавторегрессивный машинный перевод - что это

Плюсы такого подхода

- Требуется O(1) запросов к декодеру против O(n) у классической архитектуры
- Не требуется алгоритма перебора вариантов в генерации предсказания, таких как Beam Search.

The Multimodality Problem

The Multimodality Problem - пример

Архитектура модели

Основные шаги Training:

- Случайное количество токенов, выбранное равномерно, маскируются.
- Требуется предсказать замаскированные токены, на основе уже подставленных и энкодинга предложения на другом языке - BERT с подсказкой

Prediction

Несколько особенностей

- Длина предложения не предсказывается этой моделью "нативно", поэтому ее предсказывают через отдельный модуль классификации в энкодере
- Чтобы побороть мультимодальность, модель не просят размаскировать все токены сразу, а делают n_steps шагов, на каждом добавляя len / n_steps значений токенов.

Пример перевода

Гиперпараметры: параметры модели и тренировки

- 6 слоев, 8 attention heads
- Варианты с 512 или 2048 hidden размерностью (для лучшего сравнения с другими архитектурами)
- Ir с разогревом до 5е-4 за 10000 слоев, снижается со скоростью обратного квадратного корня

Гиперпараметры

- Количество подбираемых кандидатов на длину (параметр I)
- Количество итераций декодинга (1 10)
- Дистиллировать ли модель?

Альтернативные модели с быстрым декодингом

- Обычная авторегрессивная модель: Base Transformer (Vaswani et al., 2017)[1]
- 2. Наиболее близкое к описываемой статье исследование Iterative refinement(Lee et al., 2018)[2]
- 3. "Чисто" неавторегрессивная модель = 1 итерация декодинга (Gu & Kong, 2020) [3]
- 4. Imputer: модель, обходящая по качеству обычный трансформер. (Chan et al., 2020) [4]

Подробнее про каждую архитектуру позже!

Сравнение CMLM с Base Transformer

Т = количество итераций

I = количество кандидатов длины

b = размер луча в Beam Search

Сравнение с прошлыми моделями

Model	Dimensions Iterations		WMT'14		WMT'16	
	(Model/Hidden)	EN-DE DE-EN		DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30			
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99
Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		

Сравнение с "будущими" моделями

Под "Ours" обозначена архитектура из статьи "Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade"

Сравнение качества работы

Models		Iter.	Speed	WMT'14 EN-DE DE-EN		WMT'16 EN-RO RO-I	
	Transformer base (teacher)	N	1.0×	27.48	31.39	33.70	34.05
AT	Transformer base (12-1)	N	$2.4 \times$	26.21	30.80	33.17	33.21
	+ KD	N	2.5×	27.34	30.95	33.52	34.01
	iNAT (Lee et al., 2018)	10	1.5×	21.61	25.48	29.32	30.19
	Blockwise (Stern et al., 2018)	$\approx N/5$	$3.0 \times$	27.40	77.0	65	-
Iterative NAT	InsT (Stern et al., 2019)	$\approx \log N$	4.8×	27.41	-	-	
nerative NAI	CMLM (Ghazvininejad et al., 2019)*	10	1.7×	27.03	30.53	33.08	33.31
	LevT (Gu et al., 2019)	Adv.	4.0×	27.27	-	-	33.26
	KERMIT (Chan et al., 2019)	$\approx \log N$	-	27.80	30.70	-	-
	LaNMT (Shu et al., 2020)	4	5.7×	26.30	-		29.10
	SMART (Ghazvininejad et al., 2020b)*	10	1.7×	27.65	31.27	-	2
	DisCO (Kasai et al., 2020a)*	Adv.	$3.5 \times$	27.34	31.31	33.22	33.25
	Imputer (Saharia et al., 2020)*	8	$3.9 \times$	28.20	31.80	34.40	34.10
	Vanilla-NAT (Gu et al., 2018a)	1	15.6×	17.69	21.47	27.29	29.06
	LT (Kaiser et al., 2018)	1	$3.4 \times$	19.80	-	-	-
	CTC (Libovický and Helcl, 2018)	1	-	16.56	18.64	19.54	24.67
	NAT-REG (Wang et al., 2019)	1		20.65	24.77	-	-
	Bag-of-ngrams (Shao et al., 2020)	1	10.0×	20.90	24.60	28.30	29.30
	Hint-NAT (Li et al., 2018)	1	-	21.11	25.24	-	-
	DCRF (Sun et al., 2019)	1	10.4×	23.44	27.22	-	-
	Flowseq (Ma et al., 2019)	1	1.1 ×	23.72	28.39	29.73	30.72
Fully NAT	ReorderNAT (Ran et al., 2019)	1	16.1×	22.79	27.28	29.30	29.50
	AXE (Ghazvininejad et al., 2020a)*	1	15.3×	23.53	27.90	30.75	31.54
	EM+ODD (Sun and Yang, 2020)	1	16.4×	24.54	27.93	-	-
	GLAT (Qian et al., 2020)	1	15.3×	25.21	29.84	31.19	32.04
	Imputer (Saharia et al., 2020)*	1	18.6×	25.80	28.40	32.30	31.70
	Ours (Fully NAT)	1	17.6×	11.40	16.47	24.52	24.79
	+ KD	1	17.6×	19.50	24.95	29.91	30.25
	+ KD + CTC	1	16.8×	26.51	30.46	33.41	34.07
	+ KD + CTC + VAE	1	16.5×	27.49	31.10	33.79	33.87
	+ KD + CTC + GLAT	1	16.8×	27.20	31.39	33.71	34.16

Различные улучшения из статьи про Fully NAT

Methods	Distillation	Latent Variables	Latent Alignments	Glancing Targets
What it can do?	simplifying the training data	model any types of de- pendency in theory	handling token shifts in the output space	ease the difficulty of learning hard examples
What it cannot?	uncertainty exists in the teacher model	constrained by the mod- eling power of the used latent variables	unable to model non- monotonic dependency, e.g. reordering	training / testing phase mismatch
Potential issues	sub-optimal due to the teacher's capacity	difficult to train; poste- rior collapse	decoder inputs must be longer than targets	difficult to find the op- timal masking ratio

Imputer

- CTC
- Разбивает на блоки, на каждом шаге предсказывает по одному токену из блока
- Использует ДП для выравнивания предсказания с ответом

Итоги

- Почти без потери качества можно достичь ускорения в несколько раз (х2 - х16)
- Дистилляция модели всегда полезна (возможно ниже)
- Качественно превзойти left-to-right декодеры не получается

Нужна ли дистилляция?

Iterations	WMT'1	4 EN-DE	WMT'	6 EN-RO
	Raw	Dist	Raw	Dist
T = 1	10.64	18.05	21.22	27.32
T=4	22.25	25,94	31.40	32.53
T = 10	24.61	27.03	32.86	33.08

- Уменьшение зашумленности данных, в теории
 вызывает значительное облегчение обучения модели
- Результаты значительно улучшаются с дистилляцией

Как подбирать количество кандидатов длины?

Length	WMT'1	4 EN-DE	WMT'16 EN-RO		
Candidates	BLEU	LP	BLEU	LP	
$\ell = 1$	26.56	16.1%	32.75	13.8%	
$\ell = 2$	27.03	30.6%	33.06	26.1%	
$\ell = 3$	27.09	43.1%	33.11	39.6%	
$\ell = 4$	27.09	53.1%	32.13	49.2%	
$\ell = 5$	27.03	62.2%	33.08	57.5%	
$\ell = 6$	26.91	69.5%	32.91	64.3%	
$\ell = 7$	26.71	75.5%	32.75	70.4%	
$\ell = 8$	26.59	80.3%	32.50	74.6%	
$\ell = 9$	26.42	83.8%	32.09	78.3%	
Gold	27.27	\$ <u>93.0</u> 5	33.20	320	

4 кандидата подходят идеально в большинстве ситуаций

Спасибо!

Список литературы:

- [0] Ghazvininejad et. al, 2019. Mask-Predict: Parallel Decoding of Conditional Masked Language Models
- [1] Vaswani et al., 2017. Attention Is All You Need
- [2] Lee et al., 2018. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement
- [3]Gu & Kong, 2020. <u>Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade</u>
- [4]Chan et al., 2020. <u>Imputer: Sequence Modelling via Imputation and Dynamic Programming</u>