

COURSE 811M PYTHON FOR DATA SCIENTISTS

EXERCISE MANUAL

The following course materials are copyright protected materials. They may not be reproduced or distributed and may only be used by students attending the *Python for Data Scientists* course.

Table of Contents

Exercise 2.1: Array Creation	1
Exercise 2.2: Array Basic Operations	3
Exercise 3.1: Pandas Series	5
Exercise 3.2: Pandas DataFrame	7

Exercise 2.1: Array Creation

The aim of this exercise is to gain some experience of working with NumPy arrays.

- 1. Start IPython.
- 2. Define an ndarray containing the integer numbers 0 to 9.
- 3. Print the type of the array to the console.
- 4. Print the following properties of the array (they are accessible in the same way as ntype):
 - a. ndim
 - **b.** shape
 - C. size
 - d. itemsize
- 5. Define a 3 x 3 NumPy array containing all 1's and display it to the console.
- 6. Print the four properties of Step 4 on the array defined in Step 5.

Exercise 2.2: Array Basic Operations

The aim of this exercise is to gain some experience of working with basic operations on NumPy arrays.

- 1. Define a 3 x 3 array with the integers 1 through 9 named array1.
- 2. Define a second 3 x 3 array with the number 2 in each cell named array2.
- 3. Now, perform the following operations using the two arrays:
 - a. array1+array2
 - **b.** array1-array2
 - C. array1/array2
 - **d.** array1*5
- 4. Print elements 4 to 6 of array 1 using a slice operation.
- 5. Create a new single-dimensioned array named array3 with the numbers 0 through 19 in it.
- 6. Take a slice of elements 5 to 15 of array 3 and assign the slice to a variable named aslice and print the variable.
- 7. Modify the contents of the first and last elements of the slice by writing the value 99 into these elements.
- 8. Print the contents of the slice aslice and the array array3. Are the contents what you expect of both arrays?

Exercise 3.1: Pandas Series

The aim of this exercise is to gain some experience of working with the NumPy Series data structure.

- 1. Define a Series object holding the values 1 to 10.
- 2. Display the data values of the Series object defined in Step 1.
- 3. Display the index values of the Series object defined in Step 1.
- 4. Define a new Series object holding the values 1 to 10, with the corresponding index values set 'a' through to 'j'.
- 5. Display the data values and index of the Series object of Step 4.
- 6. Access the third and fifth elements of the Series object using their index.
- 7. Define the following dictionary: {'Dublin': 200000, 'Athlone': 15000, 'Galway': 700000}.
- 8. Define the following array: ['Dublin', 'Athlone', 'Waterford'].
- 9. Now, construct a Series object using the dictionary in Step 7 and the index in Step 8.
- 10. Display the Series object defined in Step 9.
- 11. Use the Series notnull() and isnull() methods to display which elements are not null and null, respectively, for the Series object defined in Step 9.

Exercise 3.2: Pandas DataFrame

The aim of this exercise is to gain some experience of working with NumPy DataFrame data structure.

1. Use the following dictionary to create a DataFrame:

```
a. {'team':['Leicester', 'Manchester City', 'Arsenal'],
    player':['Vardy', 'Aguero', 'Sanchez'],'goals':[24,22,19]}
```

- 2. Display the above DataFrame to the console.
- 3. What values are assigned for the index and columns?

4. Use the dictionary from Step 1 and create a second DataFrame with index values 'one', 'two', 'three', respectively, and columns team, player, goals, played. Display the DataFrame to the console.