

ESC Spring 2018 - Data Mining and Analysis

SeoHyeong Jeong

Textbook:

An Introduction to Statistical Learning

Lecture Slides:

Stanford Stats 202: Data Mining and Analysis

Spring 17' ESC Statistical Data Analysis

An Introduction to Statistical Learning

chapter 6.2 Shrinkage Methods

Table of Contents

- 1. Shrinkage Methods
- 2. Ridge Regression
- 3. The Lasso

Shrinkage Methods

The idea is to perform a linear regression, while regularizing or shrinking the coefficients $\hat{\beta}$ towards 0.

Why would shrunk coefficients be better?

- This introduces bias, but may significantly decrease the variance of the estimates. If the latter effect is larger, this would decrease the test error.
- There are Bayesian motivations to do this: the prior tends to shrink the parameters. (we don't go in to depth)

Ridge Regression

Ridge regression solves the following optimization:

$$\min_{\beta} \quad \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

In blue, we have the RSS of the model (the loss).

In red, we have the squared ℓ_2 norm of β , or $||\beta||_2^2$ (the **penalty** or **regularization**).

- Note that the intercept is not penalized, just the slopes!
- The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage.
- We find an estimate $\hat{\beta}_{\lambda}^{R}$ for many values of λ and then choose λ by crossvalidation.

Bias-Variance Tradeoff

In a simulation study, we compute bias, variance, and test error as a function of λ .

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

Ridge Regression

 In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, i.e. after doing this we have the same RSS.

- In ridge regression, this is not true as the penalty term discourages large coefficients.
- In practice, what do we do?
 - Scale each variable such that it has sample variance 1 before running the regression.
 - This prevents penalizing some coefficients more than others.

Example. Ridge Regression

Ridge regression of default in the Credit dataset.

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$.

Selecting λ by Cross-Validation

FIGURE 6.12. Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various value of λ . Right: The coefficient estimates as a function of λ . The vertical dashed lines indicate the value of λ selected by cross-validation.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression works best in situations where the least squares estimates have *high variance*. (meaning that a small change in the training data can cause a large change in the coefficient estimates.)

When do we have high variance in a model?

- When the relationship between the response and the predictors is close to linear
- When the number of variables p is almost as large as the number of observations n.
- When p > n, then the least squares estimates do not have a unique solution.

The Lasso

Lasso solves the following optimization:

$$\min_{eta} \quad \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{i,j}
ight)^2 + \lambda \sum_{j=1}^p |eta_j|$$

In blue, we have the RSS of the model (the loss). In red, we have the squared ℓ_1 norm of β , or $||\beta||_1$ (the **penalty** or **regularization**).

Why would we use the Lasso instead of Ridge regression?

- Ridge regression shrinks all the coefficients to a non-zero value.
- The Lasso shrinks some of the coefficients all the way to zero. Alternative to best subset selection or stepwise selection.

Example. The Lasso

Lasso regression of default in the Credit dataset.

Comparing to pg. 9 (Example. ridge regression), Lasso regression shrinks coefficients to zero, whereas ridge regression shows a lot of pesky small coefficients throughout the regularization.

An Alternative Formulation for Regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{R}$ solves:

▶ Lasso: for every λ , there is an s such that $\hat{\beta}_{\lambda}^{L}$ solves:

Best subset:

Visualizing Ridge and the Lasso with 2 predictors

The Lasso

 $\bullet: \quad \sum_{j=1}^{p} |\beta_j| < s$

Ridge Regression

 $|\beta_j| < s$: $\sum_{j=1}^p \beta_j^2 < s$ (Red ellipses are equal RSS contours)

When is the Lasso better than Ridge?

Example 1. All coefficients β_i are non-zero.

- Bias, Variance, MSE. The Lasso(—), Ridge(---).
- The bias is about the same for both methods.
- The variance of Ridge regression is smaller, so is the MSE.
- Rule: Lasso is typically no better than ridge for prediction when most variables are useful for prediction.

Example 2. Only 2 of 45 coefficients β_i are non-zero.

- Bias, Variance, MSE. The Lasso(—), Ridge(---).
- The bias, variance, and MSE are lower for the Lasso.
- Rule: Lasso is especially effective when most variables are not useful for prediction.

Choosing λ by Cross-Validation

A Special Case in Ridge Regression

Suppose n = p and our matrix of predictors is X = I.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda \beta_j^2$$
.

It is easy to show that

$$\hat{\beta}_j^R = \frac{y_j}{1+\lambda}.$$

A Special Case in The Lasso

The objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda |\beta_j|$$
.

It is easy to show that

$$\hat{eta}_j^L = egin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2; \ y_j + \lambda/2 & \text{if } y_j < -\lambda/2; \ 0 & \text{if } |y_j| < \lambda/2. \end{cases}$$

Lasso and Ridge as a function of λ

