Floating-Point Reference Sheet for Intel® Architecture

https://software.intel.com/en-us/articles/floating-point-reference-sheet-for-intel-architecture (v2.13)

Binary Format Floating-Point Number

Sign	Biased Exponent		Sig	gnif	ica	nd		
S	E	X ₁	X 2	X 3		X _{p-1}	Хр	=
MSB		J-bit		Fr	act	ion	LSB	

$$= \begin{cases} (-1)^s \times x_1. x_2 x_3 \cdots x_{p-1} x_p \times 2^{E-B}, & \text{if normal} \\ (-1)^s \times x_1. x_2 x_3 \cdots x_{p-1} x_p \times 2^{e_{min}}, & \text{if denormal} \end{cases}$$

- Sign bit is s = 0 for '+', and s = 1 for '-' (also refer to 's' as 'sign')
- Unbiased exponent is $e = E B x_1 + 1$ for nonzero finite numbers
- For standard formats, x1 equals (E ≠ 0) and is implicit
- For NaNs, the payload is the bit string from x₃ to x_p

Floating-Point Classes, Encodings, and Parameters Standard Formats* Extended Format* Non-Std* Values Half (16b) Fraction x87 (80b) t*** Bfloat (16b) Single (32b) Double (64b) Quad (128b) 0000 **0**000 ... 0000 00...00 +Zero 0000 0000 0000 0000 0000 0000 0000 ... 0000 0000 Zero 0000 0001 0000 0000 ... 0001 0000 **0**000 ... 00...00 0 00...01 +D_{min} 0001 0000 0000 0001 0001 Denormal 03ff 007f ffff ffff ffff 000**0 7**fff 007f 11...11 +D_{max} ffff ffff 0000 00...01 00...00 0400 0000 0800 0010 0000 0000 0000 0001 0000 ... 0000 0001 8000 ... 0000 0080 Normal +One 3c00 3f80 0000 3ff0 0000 0000 0000 3fff 0000 ... 0000 3fff 8000 ... 0000 3f80 7ffe ffff ... ffff 11...10 7bff 7f7f ffff 7ffe ffff ... ffff 7 f 7 f 11...11 $+N_{max}$ 7fef ffff ffff ffff 7000 0000 ... 0000 7ff**f 8**000 ... 0000 00...00 7f80 0000 7ff0 0000 0000 0000 7f80 Infinity +Infinity 7c01 7f80 0001 7ff0 0000 0000 0001 0000 ... 0001 7fff **8**000 ... 0001 7f81 00...01 "+"sNaN sNaN 01...11 7dff 7fbf ffff 7fff 7fff 7fff **b**fff 7fbf 11...11 R Ind** 10...00 fe00 ffc0 0000 0000 0000 ffff 8000 ... ffff **c**000 ffc0 αNaN 7e00 7fc0 0000 7ff8 0000 0000 0000 7fff 8000 ... 0000 7fff **c**000 ... 0000 7fc0 "+"qNaN 7fff 7fff ffff 11...11 7fff ffff ffff ffff 7fff ffff ffff 7fff **f**fff ffff 7fff s E J Field E J Ε S F Е E J S F S J F Ε S J # of Bits 1 5 0 10 1 8 0 23 11 0 15 0 112 15 1 8 0 63 Exp. bias (B) 0x0f (15) 0x7f (127) 0x3ff (1023) 0x3fff (16383) 0x3fff (16383) 0x7f (127) -126 -1022 1023 -16382 16383 -1638216383 emin: emax

Operation-Specific Results and Faults for Typical Intel® SSE or Intel® AVX Scalar Instructions

op-specific

- If DAZ = 1, denormal inputs are replaced with appropriately signed zeros
- Q(X) (Quiet(X)) sets the most significant fraction bit of X (x₂) to 1

	NaN Behavior:			Src	2		
į.	Add/Sub/Mul/Div	sNaN		qNaN		Other	
	sNaN	Q(Src1)	Т	Q(Src1)	Т	Q(Src1)	1
Crc1	a Na N	Crc1	1	Crc1		Crc1	

O(Src2)

Src2

Non	-NaN X * Y					Υ			
sign	= X.s ^ Y.s	Infinity	У	Norma	al	Denorm	nal	Zero	
	Infinity	Infinity		Infinity		Infinity	D	R Ind	-
Х	Normal	Infinity		X * Y		X * Y	D	0.0	
^	Denormal	Infinity	D	X * Y	D	X * Y	D	0.0	D
	7ero	RInd	1	0.0		0.0	D	0.0	

Non	n-NaN X / Y					Υ			
sign	1 = X.s ^ Y.s	Infinit	У	Norma	al	Denorm	nal	Zero	
	Infinity	R Ind	1	Infinity		Infinity	D	Infinity	
х	Normal	0.0		X/Y		X/Y	D	Infinity	Z
^	Denormal	0.0	D	X/Y	D	X/Y	D	Infinity	Ζ
	Zero	0.0		0.0		0.0	D	R Ind	-1

	NaN Behavior:			Z			
	FMA (X*Y + Z)	sNaN		qNaN	l	Other	
	sNaN, sNaN	Q(X)	Τ	Q(X)	-1	Q(X)	-
	sNaN, qNaN	Q(X)	1	Q(X)	1	Q(X)	1
	sNaN, Other	Q(X)	1	Q(X)	1	Q(X)	-1
	qNaN, sNaN	Х	1	Х	1	Х	1
X,Y	qNaN, qNaN	Х	1	Х		Х	
	qNaN, Other	Х	1	Х		Х	
	Other, sNaN	Q(Y)	1	Q(Y)	1	Q(Y)	1
	Other, qNaN	Υ	1	Υ		Υ	
	Other, Other	Q(Z)	1	Z		X*Y+Z	

•	For n	nore	det	ails	on	exc	eption	ıqı	riorities and	unmas	ked	l behavior,	see	flov	wcha	art d	on i	next	page
							_							_					

NaN payload's least significant bits are zero-extended or truncated to fit the destination

No	n-NaN X + Y							Υ					
[X -	Y = X + (-Y)]	+Infinit	у	-Infini	ity	Norma	al	Denorm	al	+Zero		-Zero	
	+Infinity	Х		R Ind	Т	Х		Х	D	Х		Х	
	-Infinity	R Ind	1	Х		Х		X	D	Х		Х	
v	Normal	Υ		Y		X+Y*		X+Y*	D	Χ		X	
Х	Denormal	Υ	D	Y	D	X+Y*	D	X+Y*	D	Х	D	X	D
	+Zero	Υ		Y		Υ		Υ	D	+0.0		0.0*	
	-Zero	Υ		Υ		Υ		Υ	D	0.0*		-0.0	

* If X + Y is exactly 0, sign bit s equals (RC == -INF)

	Sqrt(X)		
	sNaN	Q(X)	1
	qNaN	Х	
	+Infinity	Х	
	-Infinity	R Ind	1
Х	+Normal	Sqrt(X)	
	-Normal	R Ind	1
	+Denormal	Sqrt(X)	D
	-Denormal	R Ind	1
	Zero	Х	

	Convert(X)	Fp2Int(X)	Fp2Fp(X)	Int2Fp(X)
	sNaN	Int Ind	Т	Q(X)	1	N/A	
	qNaN	Int Ind	1	Х		N/A	
Х	, Infinity	Int Ind	1	Х		N/A	
1	Normal	Fp2Int(X)	*	Fp2Fp(X)		Int2Fp(X)	
	Denormal	Fp2Int(X)		Fp2Fp(X)	D	N/A	
	Zero	0		Χ		+0	
Ir	t Ind (Integer Ind	efinite) is de	fin	ed to he the	∍ hi	t string 10	იი

Int Ind (Integer Indefinite) is defined to be the bit string 10...00

* If Fp2Int(X) is not representable in dest format, raise |

Nor	n-NaN X*Y+Z							Z					
	[XY + Z]	+Infinit	у	-Infini	ity	Norma	ıl	Denorma	al	+Zero		-Zero	
	R Ind	R Ind	1	R Ind	1	R Ind	Τ	R Ind	\perp	R Ind	\perp	R Ind	\perp
	+Infinity	XY	*	R Ind	1	XY	*	XY	D	XY	*	XY	*
	-Infinity	R Ind	1	XY	*	XY	*	XY	D	XY	*	XY	*
XY	Normal	Z	*	Z	*	XY+Z**	*	XY+Z**	D	XY	*	XY	*
	Denormal	Z	D	Z	D	XY+Z**	D	XY+Z**	D	XY	D	XY	D
	+Zero	Z	*	Z	*	Z	*	Z	D	+0.0	*	0.0**	*
	-Zero	Z	*	Z	*	Z	*	Z	D	0.0**	*	-0.0	*

* If X or Y is Denormal and X*Y+Z does not raise I, raise D

** If XY + Z is exactly 0, sign bit s equals (RC == -INF)

Control and Status Words

Other

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
v07	FPCW				Χ	R	C	Р	C					Ma	sks		
x87	FPSW	В	C3		Top		C2	C1	CO	ES	SF			Excep	tions		
SSE, AVX	MXCSR	FTZ	R	C			Ma	sks			DAZ			Excep	tions		
					_		_	7	7			_		_	7	7	

RC RNE	-INF	+INF	RTZ
PC SP		DP	DEP

*E, *M: Exceptions and Masks RC: Round Control PC: Precision Control

Underflow / Denormals

Precision (P), Underflow (U), Overflow (O), Divide-by-Zero (Z), Denormal Inputs (D), Invalid Inputs (I)

RoundTiesToEven / RoundToNearestEven (RNE), RoundTowardsNegative (-INF), RoundTowardsPositive (+INF), RoundTowardZero (RTZ) Single Precision (SP), Double Precision (DP), Double Extended Precision (DEP)

Flush to Zero (FTZ), Denormals Are Zero (DAZ)

Flowchart for a Typical Intel® SSE or Intel® AVX Floating-Point Scalar Instruction

Unnormalized Reduced Precision Result (URPR) $|URPR| = (-1)^s \times x_0 x_1 \cdot x_2 \cdots x_{p-1} L G R S \times 2^{exp}$ significand $\in [0,4]$ expunbounded

Theoretical: Compute the Infinitely Precise Result (IPR); if not representable, choose one of the two nearest representable FP numbers using IEEE 754 rounding process. Practical effect: we must usually compute URPR instead. The URPR is formed from the terminating representation of the IPR if one exists (ex.: 10.0₂ vs. 01.111...₂).

Operation		Input Manipulation	Leading 1	URPR.exp	Guard	Round	Sticky
X +	Y True Add	Denormalize smaller number (R-shift) to make	$x_0 \text{ or } x_1$	max(X.exp,Y.exp)		IPR.x _{p+1}	OR(IPR.x _{p+2} ,IPR.x _{p+3} ,)
X -	Y True Sub ²	exponents equal, if required	$x_1 - x_p$, or URPR = 0.0	шах(л.ехр,т.ехр)	N/A		
XY-	-Z FMTrueAdd	Denormalize smaller of XY or Z (R-shift) to make exponents equal, if required	$x_0 \text{ or } x_1$	max(XY.exp,Z.exp)			
XY-	-Z FMTrueSub ²		$x_1 - x_{2p-1}$, or URPR = 0.0				
X×	Y Multiply	None	$x_0 \text{ or } x_1$	X.exp+Y.exp			
٧X	Sqrt	L-shift significand to make exponent even, if required	$ x_1 $	(X.exp+1)>>1			
х/	Y Divide	None	x ₁ or x ₂	X.exp-Y.exp	IPR.x _{p+1}	IPR.x _{p+2}	OR(IPR.x _{p+3} ,IPR.x _{p+4} ,)
² A heterogeneous sub (Ex: homogeneous FMA true subtraction) requires a set of guard bits							

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.