Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе попущен	
Студент	Жуйков / Лопатенко / Хасан	Работа выполнена	17.10.2022
Преподават	гель Тимофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №4.02

Эксперимент Юнга. Изучение интерференционной картины через два отверстия

1. Цель работы:

Исследовать физический смысл эксперимента Юнга по получению интерференционной картины от двух щелей.

2. Задачи, решаемые при выполнении работы:

- 1. Определить расстояние между двумя щелями по полученной от них интерференционной картине;
 - 2. Исследовать объекты и явление интерференции.

3. Объект исследования:

Оптический квантовый генератор, две щели и интерференционные картины.

4. Метод экспериментального исследования:

Прямые измерения периодов интерференционных картин для различных конфигураций установки.

5. Рабочие формулы и исходные данные:

- 1) Разность хода волн: $\Delta \approx d \cdot \theta \approx d \frac{x}{L}$
- 2) Период интерференционной картины: $\Delta x = x_{m+1} x_m = \frac{\lambda}{d} \cdot L$
- 3) Координата интерференционного минимума: $x_m = (m + \frac{1}{2})\lambda \frac{L}{d}$

6. Измерительные приборы:

No	Наименование	Измерение	Используемый диапазон	$\Delta_{_{ m H}}$	
1	Шкала экрана	расстояние	[0, 0.1] м	5 · 10 ⁻⁴ м	
2	Шкала направляющей	расстояние	[0, 1] м	25 · 10 ⁻⁴ м	

7. Схема установки:

Источником света служит гелий-неоновый лазер 1. В роли вторичных источников выступают две щели на учебно-демонстрационном объекте 2. Для наблюдения интерференционной картины используется экран 3, закрепленный позади объекта на оптическом рельсе

8. Результаты прямых измерений и их обработки:

Таблица 1. Начальные данные установки

Длина волны гелий-неонового лазера λ , нм	632.82 ± 0.01		
Расстояние до экрана $X_{_{\mathfrak{I}}}$, м	0.3		
Расстояние до объекта X_{of} , м	0.93		

Таблица 2. Показатели интерференционной картины для разных конфигураций установки

X _{об} ,	<i>L</i> , M	x_{min}^{1}	x_{min}^2	x_{min}^3	x_{min}^4	x_{min}^{5}	x_{min}^{6}	x_{min}^{7}	x_{min}^{8}
0.93	0.63	0.005	0.008	0.010	0.013	0.015	0.018	0.021	0.023
0.88	0.58	0.004	0.007	0.009	0.011	0.014	0.016	0.019	0.021
0.83	0.53	0.006	0.008	0.010	0.012	0.014	0.016	0.019	0.021
0.78	0.48	0.005	0.007	0.009	0.011	0.013	0.015	0.017	0.019
0.73	0.43	-0.007	-0.006	-0.004	-0.002	-0.001	0.001	0.002	0.004

Расчет по МНК значения коэффициента К:

$$K=rac{\sum\limits_{i=1}^{N}(\Delta x_{_{i}})(L_{_{i}})}{\sum\limits_{i=1}^{N}(L_{_{i}})^{2}}=~0.~0035502;~$$
 тогда значение расстояния между щелями $d=rac{\lambda}{K}=0.178(5)$ мм

10. Расчет погрешностей измерений:

$$\Delta K = 2 \sqrt{\frac{\sum_{1}^{N} (\Delta x - KL)^{2}}{(N-1)\sum_{1}^{N} L_{i}^{2}}} = 0.001605 \Rightarrow \Delta d = \sqrt{\left(\frac{\partial d}{\partial K} \cdot \Delta K\right)^{2} + \left(\frac{\partial d}{\partial \lambda} \cdot \Delta \lambda\right)^{2}}$$

$$\Delta d = \sqrt{\left(\frac{-\lambda}{K^2} \cdot \Delta K\right)^2 + \left(\frac{\partial d}{\partial \lambda} \cdot \Delta \lambda\right)^2} = 0.0008 \text{ mm}$$

11. Графики:

График 1. Зависимость $L(\Delta x)$. Аппроксимация коэффициента K.

12. Окончательные результаты:

Доверительные интервалы к значениям:

$$d = (0.1785 \pm 0.0016) \text{ mm} \quad \epsilon_{\beta} = 0.452\% \qquad \alpha = 0.95$$

13. Выводы и анализ результатов работы:

В ходе лабораторной работы исследовали явление интерференции когерентных источников излучения и произвели подсчет расстояния между щелями для объекта №32.

Измерения:
