Feuille d'exercices 4 : Fonctions usuelles

Logarithme - Exponentielle - Puissances 1

Exercice 1. Soit $f: x \mapsto \ln(e^x + 1)$.

Montrer que f est une bijection de \mathbb{R} dans \mathbb{R}_+^* et déterminer sa bijection réciproque.

Exercice 2. On pose $f(x) = \ln(\sqrt{x^2 + 1} + x)$.

- 1. Déterminer l'ensemble de définition de la fonction f.
- 2. Montrer que la fonction f est impaire.
- 3. Etudier les variations de la fonction f.

Exercice 3. Calculer les limites suivantes :

1.
$$\lim_{x \to 1^+} \ln(x) \ln \left(\ln(x) \right)$$

$$3. \lim_{x \to +\infty} \frac{x+1}{e^x - 1}$$

5.
$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$$

$$2. \lim_{x \to +\infty} \frac{\ln(1+x^2)}{2x}$$

4.
$$\lim_{x \to 0^+} x^{\frac{1}{x}}$$

5.
$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$$
6.
$$\lim_{x \to +\infty} \frac{a^{(b^x)}}{b^{(a^x)}} \text{ avec } 1 < a < b$$

Exercice 4. Montrer que : $\forall x \in]0,1[, x^x(1-x)^{1-x} \ge \frac{1}{2}.$

Exercice 5. Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$$

2.
$$4^{x+1} + 2^{2-x} = 65$$

1.
$$2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$$

2. $4^{x+1} + 2^{2-x} = 65$
3. $4^x - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$
4. $2^{(\sin x)^2} = \cos(x)$

4.
$$2^{(\sin x)^2} = \cos(x)$$

Exercice 6. Résoudre l'inéquation suivante, d'inconnue $x \in \mathbb{R}$:

$$\ln(x-1) + \ln(x+1) < 2\ln(x) - 1$$

Exercice 7. On pose $f: x \mapsto x^x$.

- 1. Déterminer l'ensemble de définition \mathcal{D} de f, et étudier les variations de la fonction f.
- 2. Déterminer les limites de f aux bornes de \mathcal{D} .
- 3. Montrer que l'on peut prolonger f par continuité en 0. Déterminer la limite du taux d'accroissement en 0. La fonction f est-elle dérivable en 0?
- 4. Tracer la courbe représentative de f.

Exercice 8. Étudier et tracer l'allure approximative du graphe de la fonction suivante :

$$f: x \mapsto \left(1 + \frac{1}{x}\right)^x$$

2 Fonctions hyperboliques

Exercice 9. Résoudre les inéquations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$sh(x) < 2$$

2.
$$ch(x) = 3$$

$$3. \cosh(x) < 3$$

Exercice 10. Simplifier l'expression : $\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x}$, $x \in \mathbb{R}_+^*$

Exercice 11. Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$, $7\operatorname{ch} x + 2\operatorname{sh} x = 9$.

Exercice 12. 1. (a) Montrer que sh est bijective.

On note Argsh sa bijection réciproque.

- (b) Etudier la dérivabilité et calculer la dérivée de Argsh.
- (c) Représenter graphiquement Argsh.
- (d) Montrer que pour tout $x \in \mathbb{R}$, $Argsh(x) = \ln(x + \sqrt{1 + x^2})$.
- (a) Montrer de même que $f: \mathbb{R}_+ \to [1, +\infty[$ est bijective. On note Argch sa bijection réciproque.

- (b) Etudier la dérivabilité et calculer la dérivée de Argch.
- (c) Représenter graphiquement Argch.
- (d) Trouver une expression de Argch.

Exercice 13. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, on a

$$\operatorname{ch}(a+b) + \operatorname{sh}(a+b) = (\operatorname{ch}(a) + \operatorname{sh}(a))(\operatorname{ch}(b) + \operatorname{sh}(b)) \quad \text{et} \quad \operatorname{ch}(a+b) - \operatorname{sh}(a+b) = (\operatorname{ch}(a) - \operatorname{sh}(a))(\operatorname{ch}(b) - \operatorname{sh}(b)).$$

En déduire les formules d'addition de trigonométrie hyperbolique (ch (a + b), sh (a + b), ch (a - b), sh (a - b), ch (2a)et sh (2a) en fonction de ch (a), ch (b), sh (a), sh (b)).

Exercice 14. Etudier et tracer l'allure du graphe de la fonction suivante :

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x\mathrm{ch}\left(x\right) \end{array} \right.$$

3 Fonctions circulaires

Exercice 15. Résoudre les inéquations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$\cos x > 0$$
 2. $\sin x \le \frac{1}{2}$ 3. $\tan x > \frac{\sqrt{3}}{3}$

Exercice 16. Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$\cos x = \frac{1}{2}$$

4.
$$2\cos^2(2x) - 3\cos(2x) = -1$$

8.
$$\cos(3x) + \sin x = 0$$

2.
$$\sqrt{2}\sin\left(\frac{\pi}{6} - x\right) = 1$$

$$5. \cos(2x) = \cos(x)$$

$$9. \cos x - \cos(2x) = \sin(3x)$$

3.
$$2\cos(2x) = \sqrt{3}$$

5.
$$\cos(2x) = \cos(x)$$

6. $\sin(2x) + \sin x = 0$
7. $\sin(2x) + \sin(\frac{\pi}{3} + 3x) = 0$
9. $\cos x - \cos(2x) = \sin x$
10. $\cos x + \sin x = 2$
11. $\sqrt{3}\cos x - \sin x = 1$

11.
$$\sqrt{3}\cos x - \sin x = 1$$

1. Calculer les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

2. Résoudre sur \mathbb{R} l'équation $(\sqrt{3}+1)\cos(2x)+(\sqrt{3}-1)\sin(2x)=\sqrt{2}$.

Exercice 18. Montrer que : $\forall n \in \mathbb{N} \setminus \{0,1\}, \ \forall x \in \mathbb{R} \setminus \pi \mathbb{Z}, \ |\sin(nx)| < n |\sin(x)|$

Fonctions circulaires réciproques

Exercice 19. Simplifier les expressions suivantes :

1.
$$\arccos\left(\cos\frac{2\pi}{3}\right)$$

4.
$$\arctan\left(\tan\frac{3\pi}{4}\right)$$

8.
$$\arccos x + \arccos(-x)$$
, $x \in [-1, 1]$

 $\begin{array}{ll} 1. \ \arccos\left(\cos\frac{2\pi}{3}\right) & 4. \ \arctan\left(\tan\frac{3\pi}{4}\right) \\ 2. \ \arccos\left(\cos(4\pi)\right) & 5. \ \cos(\arctan x), \ x \in \mathbb{R} \\ 3. \ \arccos\left(\cos\left(-\frac{2\pi}{3}\right)\right) & 6. \ \sin(3\arctan x), \ x \in \mathbb{R} \\ 7. \ \tan(\arcsin x), \ x \in]-1,1[\end{array}$

Exercice 20. Montrer la formule de Machin : $4\arctan\frac{1}{5} - \arctan\frac{1}{239} = \frac{\pi}{4}$.

Exercice 21. Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

1.
$$\arcsin\frac{4}{5} + \arcsin\frac{5}{13} = \arcsin x$$

$$5. \ 2\arcsin x = \arccos|2x^2 - 1|$$

2. $\arccos x = \arcsin x$

5.
$$2\arcsin x = \arccos |2x^2 - 1|$$

6. $2\arcsin (x) = \arcsin (2x\sqrt{1 - x^2})$

3. $\arccos x = \arcsin(2x)$

7.
$$\arctan(x) + \arctan(2x) = \frac{\pi}{4}$$

4. $\arcsin x + \arcsin \sqrt{1 - x^2} = \frac{\pi}{2}$

8.
$$\arcsin(2x) - \arcsin(x\sqrt{3}) = \arcsin(x)$$

Exercice 22. Après avoir précisé le domaine de validité, montrer les formules :

1.
$$\arcsin x + \arccos x = \frac{\pi}{2}$$

2.
$$2\arctan\left(\sqrt{\frac{1-x}{1+x}}\right) + \arcsin x = \frac{\pi}{2}$$

3.
$$2\arctan(\sqrt{1+x^2}-x) + \arctan x = \frac{\pi}{2}$$

3.
$$2\arctan\left(\sqrt{1+x^2-x}\right) + \arctan x = \frac{\pi}{2}$$

4. $\arctan\left(x\right) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2} \text{ sur }]0, +\infty[$ et $\arctan\left(x\right) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2} \text{ sur }]-\infty, 0[$

Exercice 23. Etudier les variations de la fonction suivante et tracer sa courbe représentative : $f(x) = \arcsin\left(\frac{2\sqrt{x}}{1+x}\right)$

Exercice 24. Représenter la fonction : $f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \arcsin{(\sin(x))} \end{array} \right.$

Exercice 25. Montrer que : $\forall x \in \mathbb{R}_+^*$, $\arctan x > \frac{x}{1+x^2}$.

Exercice 26. On pose $f(x) = \arcsin\left(\frac{x}{\sqrt{x^2 + 1}}\right)$ 1. Déterminer l'ensemble de définition \mathcal{D} de f.

- 2. Montrer que f est dérivable sur \mathcal{D} et calculer sa dérivée.
- 3. En déduire une expression simple de f.
- 4. Retrouver ce résultat par une méthode directe.