TỐI ƯU KHÔNG CÓ RÀNG BUỘC THUẬT TOÁN

Dương Thị Kim Huyền – Tạ Thúy Anh

Khoa công nghệ thông tin Đại học PHENIKAA

Hà Nội - 2023

1. Phương pháp gradient

2. Phương pháp Newton

3. Phương pháp hướng gradient liên hợp

Phương pháp gradient

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

Xét bài toán tối ưu không có ràng buộc

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- Di tìm điểm dùng
- Giải phương trình $\nabla f(x) = 0$.
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

Xét bài toán tối ưu không có ràng buộc

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- Di tìm điểm dừng
- Giải phương trình $\nabla f(x) = 0$.
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

Xét bài toán tối ưu không có ràng buộc

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

Đi tìm điểm dừng

Giải phương trình $\nabla f(x) = 0$.

ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

Xét bài toán tối ưu không có ràng buộc

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- Đi tìm điểm dừng
- Giải phương trình $\nabla f(x) = 0$.
- Nếu f là hàm lồi thì điếm dừng là nghiệm của bài toán.

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục.

Xét bài toán tối ưu không có ràng buộc

$$\min\{f(x):x\in\mathbb{R}^n\}.$$

- Đi tìm điểm dừng
- Giải phương trình $\nabla f(x) = 0$.
- ullet Nếu f là hàm lồi thì điểm dừng là nghiệm của bài toán.

Thuật toán lặp đi tìm điểm dừng

$$x_{k+1} = x_k + t_k d_k$$

- ▶ d_k: hướng (direction)
- t_k : bước lặp (stepsize)

Hướng giảm I

Definition

Cho $f: \mathbb{R}^n \to \mathbb{R}$ là hàm số khả vi liên tục. Một vécto $d \in \mathbb{R}^n$ được gọi là một hướng giảm (descent direction) của f tại x nếu đạo hàm theo hướng f'(x;d) < 0, tức là

$$f'(x;d) = \nabla f(x)^T d < 0.$$

Tính chất của hướng giảm

Lemma

Cho f là là hàm số khả vi liên tục trên \mathbb{R}^n và $x \in \mathbb{R}^n$. Giả sử rằng d là một hướng giảm của f tại x. Khi đó, tồn tại c>0 sao cho

$$f(x + td) < f(x)$$

với mọi $t \in (0, \epsilon]$.

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, 2, \dots$

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- $(c) Set x_{k+1} = x_k + t_k d_k.$
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$.
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- $(c) Set x_{k+1} = x_k + t_k d_k.$
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: For any $k = 0, 1, 2, \dots$

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$.
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$.
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$.
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

Descent Directions Method

Initialization: Pick $x_0 \in \mathbb{R}^n$ arbitrarily.

- (a) Pick a descent direction d_k .
- (b) Find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
- (c) Set $x_{k+1} = x_k + t_k d_k$.
- (d) If stopping criterion is satisfied, then STOP and x_{k+1} is the output

- Diểm bắt đầu (xuất phát) là điểm nào?
- Bước lặp (stepsize) chọn như thế nào?
- Tiêu chuẩn dừng thuật toán?

- Diểm bắt đầu (xuất phát) là điểm nào?
- ▶ Bước lặp (stepsize) chọn như thế nào?
- Tiêu chuẩn dùng thuật toán?

- Diểm bắt đầu (xuất phát) là điểm nào?
- ▶ Bước lặp (stepsize) chọn như thế nào?
- ► Tiêu chuẩn dừng thuật toán?

lacktriangle Điểm bắt đầu (xuất phát) là điểm bất kỳ $x_0 \in \mathbb{R}^n$

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- ▶ Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \ge 0} f(x_k + td_k)$$

Backtracking

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \geqslant 0} f(x_k + td_k)$$

Chọn bước lặp (stepsize)

- Bước lặp hằng $t_k = t$ với mọi k
- Bước lặp theo "exact line search" t_k là cực tiếu dọc theo tia $x_k + td_k$:

$$t_k = \operatorname{argmin}_{t \geqslant 0} f(x_k + td_k)$$

Backtracking

Tiêu chuẩn dùng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là số dương đủ bé, thường chọn $\epsilon = 10^{-6}$ hoặc $\epsilon = 10^{-5}$

Chú ý: Chuẩn của một vécto $x=(a_1,a_2,\ldots,a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Tiêu chuẩn dùng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là số dương đủ bé, thường chọn $\epsilon=10^{-6}$ hoặc $\epsilon=10^{-5}$

Chú ý: Chuẩn của một véctơ $x=(a_1,a_2,\ldots,a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

► Tiêu chuẩn dùng thuật toán:

$$\|\nabla f(x_{k+1})\| < \epsilon$$

 ϵ là số dương đủ bé, thường chọn $\epsilon=10^{-6}$ hoặc $\epsilon = 10^{-5}$

Chú ý: Chuẩn của một vécto $x = (a_1, a_2, \dots, a_n)$ trong \mathbb{R}^n được định nghĩa là

$$||x|| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}.$$

Hướng giảm: ngược hướng gradient

$$d_k = -\nabla f(x_k)$$
 là một hướng giảm tại x_k nếu $\nabla f(x_k) \neq 0$.

Thật vậy

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

Hướng giảm: ngược hướng gradient

 $d_k = -
abla f(x_k)$ là một hướng giảm tại x_k nếu $abla f(x_k)
eq 0$.

Thật vậy

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

Thuật toán gradient (gradient method) I

Input: $\epsilon > 0$ - tolerance parameter.

Initialization: Pick $x_o \in \mathbb{R}^n$ arbitrarily.

For any $k = 0, 1, 2, \ldots$, execute the following steps:

ightharpoonup Pick a stepsize t_k by a *line search procedure* on the function

$$g(t) = f(x_k - t_k \nabla f(x_k))$$

- If $\|\nabla f(x_{k+1})\| < \epsilon$, then STOP and x_{k+1} is the output

Thuật toán gradient (gradient method) II

Hình: Gradient Method

Thuật toán gradient (gradient method) III

Ví dụ: Xây dựng dãy lặp theo phương pháp gradient cho bài toán

$$\{\min f(x, y) = x^2 + 2y^2 : (x, y) \in \mathbb{R}^2\}$$

Start point: $(x_0, y_0) = (2, 1)$

Constant stepsize: t = 0.1

Phương pháp Newton

Phương pháp Newton I

- ▶ Start: $x_0 \in \mathbb{R}^n$
- $x_{k+1} = x_k (\|\nabla^2 f(x_k)\|)^{-1} \nabla f(x_k)$

Phương pháp Newton II

Chú ý: Thuật toán Newton cũng là một thuật toán gradient với stepsize

$$t_k = \frac{1}{\|\nabla^2 f(x_k)\|}$$

Phương pháp Newton III

Ví dụ: Xây dựng dãy lặp theo phương pháp Newton cho bài toán

$$\{\min f(x,y) = x^2 + 2y^2 : (x,y) \in \mathbb{R}^2\}$$

Start point: $(x_0, y_0) = (2, 1)$

Phương pháp hướng gradient liên hợp