2. Vorlesung - Zahlen

Analysis I und Lineare Algebra für Ingenieurwissenschaften

20.10.2025

Vorkurs Mathematik

Pingo Umfrage

War Ihnen bekannt, dass in der Zeit vom 22.09 - 02.10 ein Vorkurs Mathematik in Präsenz (nicht der Online-Brückenkurs) stattgefunden hat?

- Nein.
- Ja, aber ich habe davon zu spät erfahren.
- Ja, aber ich hatte keine Zeit bzw. kein Interesse.
- Ja, ich habe daran (teilweise) teilgenommen.

2.1 Zahlen und Zahlendarstellungen

Natürliche Zahlen: $\mathbb{N} := \{0, 1, 2, 3, \dots\}$

Ganze Zahlen:
$$\mathbb{Z} := \{0, -1, 1, -2, 2, -3, 3, \dots\} = \mathbb{N} \cup \{-n | n \in \mathbb{N}\}$$

Rationale Zahlen: $\mathbb{Q} := \{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N}, n \geq 1 \}$

Beispiel: 11 - 0,75 =
$$\frac{-3}{4} \in \mathbb{Q}$$

2) $\frac{20}{11} = 1,818181...$

typisch, dass diese abbrechen oder periodisch sind.

2.1 Zahlen und Zahlendarstellungen II

Reelle Zahlen: $\mathbb{R} := \{x | x \text{ ist eine reelle Zahl}\}$

Z.B.
$$\sqrt{2}$$
, T , e
 $x^2 = 2$ hat eine Lösung $x = \sqrt{2} eR$
Aber $x^2 = -1$ hat keine Rosung in R .

Komplexe Zahlen: $\mathbb{C} \rightsquigarrow VL 3$

Definiere
$$C := \{\{\{a+ib\}\} \mid a,b \in \mathbb{R}\}\}$$
 mit $i^2 = -1$
 $Z \cdot B \cdot Z = 3 + 2i$

$$2 \rightarrow 2$$

$$3 \rightarrow 2e(a)$$

Zusammenfassend:

2.2 Ungleichungen

5 / 15

Ordnungsrelation auf \mathbb{R} :

- x kleiner y, x größer y,
- x größer gleich y

Axiome für Ungleichungen

- (A1) Für $x, y \in \mathbb{R}$ gilt genau einer der Fälle x < y, x > y, oder x = y
- (A2) Aus x < y und y < z folgt x < z

- (A3) Aus x < y und $a \le b$ folgt x + a < y + b
- (A4) Aus x < y und a > 0 folgt ax < ay

Weitere Eigenschaften

6 / 15

- 1) Falls $\times LO$, dann $-\times > 0$ Beweis' $\times LO$ \Rightarrow $\times +(-\times) < 0 + (-\times) \Rightarrow 0 < -\times$
- 2) thes xxy and a = 0 folgt ax > ay

 Beispiel: 223 => -2>-3
- 3) Fur X #0 gilt x2>0
 - 1. Fall x>0: x·x > 0·x =) x²>0
- 4) Allgemein: Für x>0 gilt: x1>0

Fur x00 gilt: xn \$ >0 galls n gerade

2.3 Reelle Wurzeln

Definition: Sei $a \ge 0$. Dann ist die Quadratwurzel \sqrt{a} die nichtnegative Lösung der Gleichung $x^2 = a$.

Allgemein: $\sqrt[n]{a}$ ist eine Lösung der Gleichung $x^n = a$.

Beispiel:

$$-\frac{3}{8} = 2 (a=8, n=3)$$
, da $2^3 = 8$
 $-\frac{3}{8} = -2 (a=-8, n=3)$ da $(-2)^3 = -8$

2.4 Absolutbetrag

Definition: Der Absolutbetrag einer reellen Zahl ist

$$|x| := \begin{cases} x, & \text{falls } x \ge 0 \\ -x, & \text{falls } x < 0. \end{cases}$$

Beispiel:
$$|-2| = -(-2) = 2 = |2|$$
, $|x-5| = \begin{cases} x-5 & \text{falls } x-5 \neq 0 \\ -(x-5) & \text{galls } x-5 \neq 0 \end{cases}$

Eigenschaften:

3)
$$1x \cdot y = |x| \cdot |y|$$

4)
$$\sqrt{x^{21}} = |x|$$
 , z. B $\sqrt{(-3)^{21}} = 3$

Hinners: Bei Betragen niemals quadriver:
$$1 \times 14 - 3$$
 hat keine Losungen $\times 2 = (1 \times 1)^2 = (-3)^2 = 9$ hat keine Losungen

2.5 Lösen von Ungleichungen

Pingo Umfrage

Finde alle $x \in \mathbb{R}$, die folgende Ungleichung erfüllen:

$$\frac{2}{x} \leq 1$$

 $x \in [2, \infty[$

$$x \in]-\infty, 0[\cup [2,\infty[$$

$$x \in]-\infty,0] \cup [2,\infty[$$

$$x \in \mathbb{R} \setminus]0,2[$$

Für x + 0 müssen wir 2 Felle unterscheiden:

1. Fall
$$\times$$
 >0) Pann

 $\frac{2}{x} \leq 1 \iff 2 \leq x$
 $\Rightarrow \times > 0 \text{ und } \times > 2$
 $\Rightarrow \times \in [2] \approx [$

2.5 Lösen von Ungleichungen

Beispiel: Finde
$$x \in \mathbb{R}$$
 mit $\frac{2x}{x+2} > 1$

night in der YL geochal Es muss gelten x \$2. 1. Fall: X+2>0 => X>-Z $\frac{\partial ann}{\partial x+2} > 1$ /· (x+2)E) ZX > X+Z En [x,2] =)4z= Joo, -2[n]-0, 2[=]-2[] =] =] =] =] =] =] = [=] Z, D[=] Z, D[=> 4= LIULe = J-2,-2[U]Z, 2[= 12\[-2,27

2.5 Lösen von Ungleichungen II

Beispiel: Finde $x \in \mathbb{R}$ mit $|x-2| \le 2x+5$

1. Fall
$$x-2 \ge 0 \Rightarrow x \ge 2$$

Dann $|x-2| \le 2x+5$
 $x-2 \ge 0$
 $x-2 \le 2x+5$
 $x-2 \ge 2x+5$

7.
$$\text{Fall}: \times -2 \neq 0 \implies \times \neq 2$$

Dann $| \times -2 | \leq 2 \times +5$

(=) $-(\times -2) \leq 2 \times +5$
 $\times -2 \neq 0$

(=) $-\times +2 \leq 2 \times +5$

(=) $2 \leq 3 \times +5$

(=) $-3 \leq 3 \times$

(=) $-3 \leq 3 \times$

1:3

=) $\ell_2 = J - \omega_1 Z \Gamma \cap \Gamma - 1 \omega \Gamma = \Gamma - 1 Z \Gamma$

2.6 Summenzeichen

Definition: Seien $m, n \in \mathbb{N}$ und $x_0, x_1, \dots, x_n \in \mathbb{R}$.

- Für $m \le n$ ist $\sum_{k=m}^{n} x_k := x_m + x_{m+1} + \cdots + x_n$.
- Für m > n ist $\sum_{k=m}^{n} x_k := 0$.

Beispiele:

1)
$$\sum_{k=3}^{7} k^{2} = 3^{2} + 4^{2} + 5^{2} + 6^{2} + 7^{2} = 135 =$$

$$= \sum_{j=3}^{6} j^{2} = \sum_{k=2}^{6} (k+1)^{2}$$

$$= \sum_{j=3}^{6} j^{2} = \sum_{k=2}^{6} (k+1)^{2}$$

2.6 Summenzeichen - Rechenregeln

$$\sum_{k=m}^{n} x_k + \sum_{k=m}^{n} y_k = \sum_{k=m}^{n} (x_k + y_k).$$

$$\sum_{k=m}^{n} x_k = \sum_{k=m}^{p} x_k + \sum_{k=p+1}^{n} x_k$$
, falls $m \le p \le n$.

Geometrische Summe: Sei $n \in \mathbb{N}$ und $q \in \mathbb{R}$:

$$\sum_{k=0}^{n} q^k = q^0 + q^1 + q^2 + \dots + q^n = egin{cases} rac{1 - q^{n+1}}{1 - q} & ext{für} q
eq 1 \ n + 1 & ext{für} q = 1 \end{cases}$$

Beweis:

Geometrische Reihe

Pingo Umfrage

Es gilt $2^6 = 64$. Berechne $\sum_{k=0}^{5} \left(\frac{1}{2}\right)^k$.

- **64**

2.7 Produktzeichen

Definition: Seien $m, n \in \mathbb{N}$ und $x_0, x_1, \dots, x_n \in \mathbb{R}$.

- Für $m \le n$ ist $\prod_{k=m}^{n} x_k := x_m \cdot x_{m+1} \dots x_n$.
- Für m > n ist $\prod_{k=m}^{n} x_k := 1$.

Beispiel: