EVOLUTIONARY PHASES OF THE INTERNET

CONNECTIVITY PHASE

- Digital access
- Web Browser, Email, Search Engines

NETWORK ECONOMY PHASE

- Digital Business
- o E-Commerce, Supply Chain Management

IMMERSIVE EXPERIENCE PHASE

- Digital Interaction
- Social Media, Video Streaming, Online Gaming

IoT PHASE

- Digital World
- Connecting Objects, Infrastructure, People & Data

ONEM2M ARCHITECTURE

- OneM2M architecture was developed by European Telecommunication Standards Institutes (ETSI) in order to standardise machine to machine communication. Later this model was adapted for IoT
- The main goal of OneM2M architecture is to create a common service layer which can be readily embedded in field device in order to enable communication with the server
- OneM2M architecture offers interoperability at all levels of the IoT functional stack
- It divides the IoT function stack into three groups namely **Application Layer**, **Service Layer** & **Network Layer**

• APPLICATION LAYER

 This layer manages the communication between field devices and the servers. It contains various application layer protocols and standards for defining API's that can be used for communication

SERVICE LAYER

 This is a conceptual layer which adds support for API and middleware to access 3RD party service. OneM2M service ;ayer can be readily embedded in various software and hardware components to establish connectivity

• NETWORK LAYER

 This layer manages the communication device and the communication network that connects the devices. It contains various protocols like IEEE 802.15.4, ZigBee etc. In cases where machine to machine communication is not needed a Field Area Network (FAN) is used for communication

IoT WORLD FORUM ARCHITECTURE

- The IoTWF architecture divides the IoT function stack into 7 layers. It Provides clean and simplified view of IoT
- Each of the seven layers have a specific functionality and the entire model is enriched with security measures
- The data flows from layer 1 (Physical & controller layer) to layer 7
 (Collaboration & Process Layer) in an upward fashion. The seven layers of the IoTWF model are explain below

Physical Device & Controller Layer

This layer includes all the things on the IoT which include various endpoint devices and sensors. This layer is the point of origin of data in IoT

Connectivity Layer

This layer includes all the networking devices. The main function of this layer is to provides timely and reliable transmission of data from layer 1 to layer 3

Edge Computing Layer

This layer processes the data obtained from layer 1 to make it ready for storage and processing by higher layers. Various process like data evaluation, filtering, aggregation reformatting, decoding are carried out and if any invalid data is received suitable actions are taken

Data Accumulation Layer

This layer obtains the processed data and stores it in formats which can be queried

Data Abstraction Layer

This layer reconciles multiple formats of data, ensuring consistent semantics from various data sources., ensures that the data obtained is complete and consolidates the data.

Application Layer

This layer includes the application which consumes the data. The applications might monitor, control or provoked reports based in the analysis on the data

o Collaboration & Process Layer

This layer delivers the insights and information obtained from the applications to consumers thus making IoT useful

BENEFITS OF IOTWF ARCHITECTURE

- Decomposes the IoT problem into smaller parts
- Explains how layers are related to each other
- Different parts can be provided by different vendors
- Have a process defined interface which improves interoperability
- Enriched with security measures

SOME OTHER COMMON IOT ARCHITECTURES

- Purdue Model for Control Horechey
- Industrial Internet Reference Architecture (IIRA)
- Internet of Things Architecture (IoT-A)

SIMPLIFIED IOT ARCHITECTURE AND CORE IOT FUNCTIONAL STACK

Write content based on IoTWF

PARAMETER	CLOUD COMPUTING	FOG COMPUTING	EDGE COMPUTING
LATENCY	High	Medium	Low
SECURITY	Less Secure	Highly Secure	Highly Secure
RESPONSE TIME	Minutes, Days	Minutes, Seconds	Seconds, Milliseconds
SCALABILITY	High & Easy to Scale	Scales Within Network	Less & Hard to Scale
LOCATION OF PROCESSING	At Server	At Intermediate Location	At Edge Device

		(Like Gateway)	
INTEROPERABILITY	High	High	Low
COMPUTING POWER	High	Limited	Limited
GEO DISTRIBUTION	Centralised	Distributed	Distributed

SENSORS

- A sensor is a physical device that measures some physical quality and converts it into electrical / digital signals. This digital signal can later be consumed by another device
- Sensors can be classified based on various constraints, some of them are
 - Active & Passive Active sensors require an external power supply to operate whereas Passive sensors do not require an external power supply.
 - Invasive & Non-Invasive Invasive sensors are part of the environment in which they are measuring where as Non-Invasive sensors are not part of the environment
 - Contact & Non-Contact Contact sensors require physical connection to what they are measuring where as Non-Contact sensors do not need a physical connection
 - Absolute & Relative Absolute sensors measures values on an absolute scale where as Relative sensors measures values with reference to a fixed value
 - Area of Application Sensors can be categories based on the industries / fields in which they are being used
 - How Sensor Measures Sensors can be categories based on they type of physical mechanism they use to measure a value
 - What Sensor Measures Sensors can be categories based on the actual physical value which they measure.

ACTUATORS

- Actuators are a natural complement to sensors. They receive electrical / digital signal and perform some physical action relevant to the signal
- Actuators can be classified based on various constraints, some of them are
 - Type of Motion Actuators can be categorised based on the type of motion they perform like linear, rotation, oscillation etc.
 - Power Consumption Actuators can be classified based on their power consumption like micro. low, medium high etc.
 - Binary & Continuous Actuators can be classified based on the number of states and type of their outputs
 - Area of Application Actuators can be categories based on the industries / fields in which they are being used
 - **Type of Energy -** Actuators can be classified based on their energy type like mechanical, electrical, hydroelectric, thermal etc.

SMART OBJECTS

- A smart object is the simple and fundamental building block of IoT. A smart object can be describe based on four fundamental characteristics
 - Processing Unit
 - Sensors & Actuators
 - Communication Device
 - Power Source
- As the evolution of IoT development proceeds we are able to the following trends in characteristic of smart objects
 - Reduction in Size
 - Reduction in Power Consumption
 - Increased Processing Power
 - Improved Communication Capabilities
 - Increased Communication Standards

HARDWARE PLATFORM

- CONTENT FOR ARDUINO & RASPBERRY PI
- CODE FOR ARDUINO

MODULE 3

TYPES OF OPTIMIZATION

- ADAPTATION Application Layer Gateways are used for translating between Non-IP and IP stack
- 2. **ADOPTION -** Underlying non-IP stack is modified into IP stack

For example, SCADA supports both adaptation & adoption. ZigBee supports adaptation through ZigBee Gateway

NEED FOR OPTIMIZATION

1. CONSTRAINED NODES

- IoT devices that have low processing capabilities and low power consumptions are called as constrained nodes
- Due to this nature communication in these device has to be optimised

2. CONSTRAINED NETWORKS

 Communication network with low bandwidth, high latency, high packet last and limited power supply is called as constrained network

6LoWPAN TO 6Lo OPTIMISATION

- IoT implements optimization at the **Adaptation Layer** layer of the IP stack. An Adaptation Layer is a model for packaging IP into lower layer protocols. It is defined by IETF working group and published as RFC
- 6LoWPAN to 6Lo optimization is carried out through Header Compression,
 Fragmentation and Mesh Addressing. At the adaptation layer respective frame headers can be stacked depending on the need for optimization
- These optimization are based on IPv6 and IEEE 802.15.4 protocols

IP Protocol Stack

HTTP RTP Application TCP UDP ICMP Transport IP Network Ethernet MAC Data Link Ethernet PHY Physical

IoT Protocol Stack with 6LoWPAN Adaptation Layer

Application Protcols		
UDP	ICMP	
IPv6		
LoWPAN		
IEEE 802.15.4 MAC		
IEEE 802.15.4 PHY		

HEADER COMPRESSION

- The Header Compression method can reduce the 40 Bytes of IPv6 Header & 8 Bytes of UDP Header to 6 Bytes combined
- This is achieved by using shared information available among the nodes in the network and assuming values for common header fields

FRAGMENTATION

- Fragmentation is needed due to the conflict in Maximum Transmission
 Unit (MTU) between IPv6 packet and IEEE 802.15.4 frame
- MTU of IPv6 is 1280 Bytes where as MTU of IEEE 802.15.4 is 127 Bytes, In this case a larger packet has to be storge inside a smaller frame which is not possible
- Hence a IPv6 packet are fragmented and sent across multiple IEEE 802.15.4 frames
- Fragmentation header contains the following header fields:

- ➤ **6LoWPAN Fragmentation Header -** Size of 1 Byte and it indicated weather the upcoming headers are used for fragmentation
- ➤ **Datagram Size -** Size of 1 Byte and it specifies the total size of unfragmented payload
- ➤ **Datagram Tag -** Size of 2 Bytes and it specifies the set of fragments of a payload
- ➤ **Datagram Offset -** Size of 1 Byte and it specifies the position of the fragment in the payload. This field will be set 0 for the 1ST fragment

6LoWPAN Fragmentation Header

MESH ADDRESSING

- Mesh Addressing is used for forwarding frames over multiple hopes
- Mesh Addressing header contains the following header fields:
 - ➤ **Hop Limit -** Size of 1 Byte and it is specific how many times a frame can be forwarded. On each hop the value is decreased by 1 and when it reaches 0 the frame is dropped
 - Source Address & Destination Address Size of 2 Bytes each and it specifies the IEEE 802.15.4 address of the endpoints 6LoWPAN Mesh Addressing Header

RPL (ROUTING PROTOCOL FOR LOW POWER & LOSSY NETWORK)

- RPL is a distance-vector based Routing Protocol for Low Power & Lossy Networks (LLNs)
- Each node will act as router in a RPL network, each node will examine the incoming packets and determine the next hop based in the informations available in the packet headers
- Due to the constrained nature of nodes RPL protocol can be operated under two modes
 - Storing Mode Every node will contain a complete routing table of the RPL network, that is every node will know how to reach every other node in the network
 - Non Storing Mode Only the border nodes (border routers) will contain a complete routing table of the RPL network. All other nodes will contain only the list of parents. All the packets are forwarded to the border node (border router) through the parents
- RPL is based on the concept of Directed Acyclic Graph (DAG) (A directed graph without any cycles). It builds Destination Oriented Directed Acyclic Graph (DODAG). A DODAG is a DAG which is routed to one destination. This destination will be a border router and is called as DODAG Root

- DODAG will contain **Upward Routes** (Routes towards the DODAG root) and **Downward Routes** (Routes towards the destinations)
- Upward Routes are discovered and configured using DAG Information Object (DIO) Messages. Nodes use DIO Message to determine their parents and finding best routes towards the DODAG root
- Downward Routes are discovered and configured using DAG Advertisement
 Object (DAO) Messages. Nodes use DAO messages to inform parents about their presence and to advertise about their descendants

 In Storing Mode, all the nodes will record the information propagated through the DAO Message, whereas in Non Storing Mode only the DODAG root will record the information propagated through the DAO Message

- **Objective Function** is used for determining the rank of nodes using a set of defined metrics. **Rank** of a node tells us how close the node is to the DODAG root. Some of the common metrics used are
 - Expected Transmission Count
 - Hop Count
 - Latency
 - Node State
 - Node Attribute
 - Node Energy
 - Throughput
 - Link Quality Level
 - o Link Colour

MODULE 5

Transmission Control Protocol (TCP) or **User Datagram Protocol (UDP)** as 2 main transport layer protocols. The performance and scalability of IoT devices changes depending on which one of these is selected.

TRANSMISSION CONTROL PROTOCOL vs USER DATAGRAM PROTOCOL

• https://www.geeksforgeeks.org/differences-between-tcp-and-udp/

APPLICATION LAYER NOT PRESENT

- Devices that fall under class O send and receive only a few bytes of data and they are severely constrained (low power consumption & low processing capabilities). Hence Implementing a complete network protocol stack is not feasible
- Due to this nature constrained devices such as sensors and actuators are being deployed without an application layer.
- Currently there is no standards for such deployment due to which each vendor will have their own implementation which gives rise to interoperability issues
- **IoT Data Brokers** are used to overcome this issue. **IoT Data Brokers** are middleware which standardises the outputs of sensors in order for applications to consume the data easily and effectively. *Ex. Temperature Sensor*
- Commercial companies also uses IoT Data Brokers as a source of revenue by supplying IoT related data through them

SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA)

- SCADA was initially implemented over serial links and later it was adapted to work over IP stack
- SCADA data collection and control of sensor in a remote manner

 SCADA is a collection of protocols which are used for control and management of devices. Some those protocols are DNP3, Modbus & IEC

ADOPTION OF SCADA FOR IP (BASED ON DNP3)

- DNP3 is a SCADA protocols which works based on master-slave architecture
- A master is a powerful computer which is present in a central facility. A salve is a remote device. DNP3 refers to slaves as outstations
- An outstation will monitor and collect data about the environment it is present in. It transmits the data (when requested) and events to the master in an asynchronous manner
- A master can control outstations by sending commands to them
- IEEE 1815-2012 specifies the standards for adopting DNP3 over the IP.
 It involves addition of a connection management layer as an intermediate between DNP3 protocol layers and IP protocol layers.
- The DNP3 protocol layers are unaware of the presence of IP protocol layers in this configuration
- IEEE 1815-2012 implementation will provide a native support of IP on DNP3

TUNNELING LEGACY SCADA OVER IP NETWORK

 Tunnelling involve transportation of legacy serial DNP3 over IP networks this can be achieve in the following ways

- ➤ Using Raw Sockets
- Using Protocol Translation

RAW SOCKET

PROTOCOL TRANSLATION

- Protocol translation involves usage of intermediate devices for translating DNP3 into IP. These devices are called as IoT
 Gateways
- ➤ IoT gateways are generally present closer to the edge of the network

SCADA OVER LOW POWER LOSSY NETWORK (LLN)

- LLNs are highly constrained. Due to this nature they use optimised communication through 6LoWPAN
- 6LoWPAN supports only IPv6 networks where SCADA protocol works only IPv4. Due to this protocols must be translated when SCADA is used with LLN
- This is implemented using MAP-T (Mapping of Address and Port Translation). This involves usage of two main component - MAP-T CPE (Customer Premise Equipment) and MAP-T Border Relay
- MAP-T CPE is placed near the outstations (slave) and MAP-T Border Relay is place near the SCADA servers (master)
- The network between the two components will be LLNs

CoAP()

MQTT (MESSAGE QUEUING TELEMETRY TRANSPORT)

• Message Queuing Telemetry Transport is a li

MODULE 7

Big Data is characterised by 6 V's - **Volume, Velocity, Veracity, Variety, Value, Variability**

TYPES OF DATA ANALYTICS

- **1. DESCRIPTIVE What is happening?**
- **2. DIAGNOSTIC -** Why did it happen?
- 3. PRESCRIPTIVE What should you do about it?
- **4. PREDICTIVE -** What will likely happen in the future?

Perspective & Predictive data analytics is resource intensive and complex but they are more valuable. **Descriptive & Diagnostic** data analytics are less compress but they are less valuable

IOT DATA ANALYTICS CHALLENGES IN RDBMS

- 1. **SCALING PROBLEM -** When a large number of sensors and smart objects are used the amount of data produced and the rate at which the data is produced will be large. Traditional RDBMS systems are not efficient enough in these situation and hence results in performance issues
- 2. **VOLATILE DATA** Data generated by sensors and smart objects have a dynamic structure. RDBMS can only handle data with fixed schema modifying the schema everything the structure changes is tedious

To address these challenges **NoSQL Database** is use for handling data in IoT

CLASSIFICATION OF DATA

STRUCTURED DATA	UNSTRUCTURED DATA
Data will have a well defined schema	Data lacks a scheme or it is loosely define
Suitable for storing and processing using SQL DB	Suitable for storing and processing using NoSQL DB
Data can be understand and analysed easily	Data cannot be understand and analysed easily
E.g Data generated by application	E.g. Data generated by sensors

DATA IN MOTION	DATA IN REST
Data is in transit	Data is stationary
Cannot be stored and processed	Can be stored and processed
Real Time and Online	Stored and Offline
Traditional data analytics is not suitable. Stream analytics should be used	Traditional data analytics can be used
E.g	E.g

MACHINE LEARNING

SUPERVISED LEARNING	UNSUPERVISED LEARNING
Dataset is known and labelled	Dataset is unknown and not labelled
Number of target classes is known	Number of target class in unknown
Algorithm is complex	Algorithms is simple
Predictions are more reliable and accurate	Predication are less reliable and accurate
Suitable for offline and stored data	Suitable for online and realtime data
Ex. Regression	Ex. Clustering

LOCAL LEARNING	REMOTE LEARNING
Data is collected and process in the node itself (edge) or in the gateway (fog)	Data is collected and sent to a central computing system (cloud)

APPLICATION OF MACHINE LEARNING IN IOT

- Monitoring
- Behaviour Control
- Operations Optimization
- Self-Optimization & Self-Healing

NoSQL DATABASE

- Generally schemaless or have a dynamic schema
- Highly scalable (Both vertical & horizontal scalability)
- Supports multiple data models
- Handles realtime and volatile data efficiently
- Supports distributed data storage
- Types of NoSQL Database
 - Key-Value Storage
 - Document Storage
 - Graph Storage
 - Wide Column Storage

MODULE 8

HADOOP

- Hadoop is an open source framework which is used for storing and processing big data efficiently in a distributed fashion. The three important components of Hadoop are
 - Hadoop Distributed File System (HDFS)
 - ➤ Name Node & Data Node (Diagram)
 - ➤ Block & Rack Awareness Algorithm (Diagram)
 - > Replication Factor
 - MapReduce
 - ➤ Mapping Phase
 - Reducing Phase
 - ➤ Shuffle & Sort Phase
 - Yet Another Resource Negotiator (YARN)
 - ➤ Definition

HADOOP ECOSYSTEM

 Hadoop Ecosystem is a collection of more than 100+ software modules which are used for managing various data lifecycles Data Collection, Data Preprocessing, Data Visualization and Data Storage

APACHE KAFKA

- Apache Kafka is an open source distributed publisher-subscriber based message handling system. It is fast and highly scalable
- The main role of message handling systems is to receive data or messages from various sources and deliver them to the streaming system. EX Apache Spark Streaming
- Apache Kafka prepares the data received for processing and analysis but streaming systems
- The main components of apache kafka are Topic & Data Broken. A produce will writer the data to a topic and consumer will read data from a topic
- Due to the distributed nature of apache kafka it can handle multiple produces and consume concurrently

APACHE SPARK

- Apache Spark is an open source distributed in-memory data analysis platform. It helps in accelerating the performance of process in hadoop ecosystem
- In MapReduce the data is read from the disk and processed then it is written back to the disk. Accessing the disk frequently will increase the latency of the application
- To overcome the problem of latency spark uses high speed memory for storing and processing data
- Real Time streaming data can be process using apache sparks software module called as apache spark streaming
- Apache spark streaming can utilise real time data from apache kafka. It partitions the data into micro batches called and DStreams
- These DStreams will then be processed using the spark processing engine

EDGE STREAMING ANALYTICS

- Edge devices contain a lot of sensors and they produce large volumes of data at a high rate. Due to this nature the data cannot be propagated to cloud for analysis everytime because it will consume a lot of bandwidth and it is inefficient. Hence analytic must be performed directly on the edge
- The edge is highly distributed due to which any analytics performed must be highly coordinated and structured. The important stages of edge analytics are
 - Raw Input Stream

The Raw Input Stream is data generated by sensors which is subjected to analytics at the APU

Analytical Processing Unit (APU)

The APU applies various filters and functions to the raw data to extract useful information. Some common operation performed on APU are

- 1. Filter Extract important information from the raw data
- 2. Transform The extracted data is converted to suitable format
- 3. **Time -** Flowing data must be ordered based on time to process
- **4. Correlate -** Multiple streams and historical data can be combined to perform analysis
- **5. Match Pattern** Pattern matching can be used to get deeper insights of data. Machine learning can be used to make it more efficient
- **6. Business Insights -** From the output obtained suitable business choice can be made

Output Stream

The Output Stream is the result generated by APU. It is utilised to make business choices and then it is stored in the cloud for further analysis

NETWORK STREAMING ANALYTICS MODULE 9

MODULE 10