Economics 6400: Econometrics

Lecture 5: More on inference, the F Test, and other topics

CSU, East Bay

October 20, 2016

Last week...

• We derived the **estimated** variation of $\hat{\beta}_j$:

$$\widehat{Var}(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}$$

where

- $\hat{\sigma}^2 = \frac{SSR}{n-k-1} = \frac{\sum_{i=1}^n \hat{u}_i^2}{n-k-1}$ (from main regression)
- $SST_j = \sum_{i=1}^n (x_{ij} \overline{x}_j)^2$ is the sample variation in right-hand side variable x_j
- R_j^2 is the R^2 from a regression of x_j on the <u>other</u> right-hand side variables (including a constant)
- The standard error is $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)} = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}}$

Last week...

- We then used the standard error for hypothesis testing
- Suppose we wish to test whether β_j is equal to some value a_j (usually zero):

$$H_0: \beta_j = a_j$$

 $H_1: \beta_j \neq a_j$

Test statistic is:

$$t_{\hat{eta}_j} \equiv rac{\hat{eta}_j - \mathsf{a}_j}{\mathsf{se}(\hat{eta}_j)} \sim t_{n-k-1} = t_{\mathsf{df}}$$

■ The smallest significance level at which the null hypothesis is still rejected is called the *p*-value of the hypothesis test

Testing hypotheses about a linear combination of parameters

Example: Returns to education at 2-year versus a 4-year college:

$$\log(wage) = \beta_0 + \beta_1 jc + \beta_2 univ + \beta_3 exper + u$$

where *jc* is years at 2-year college and *univ* is years at 4-year college

- We want to test if $\beta_1 = \beta_2$ (i.e. returns are equal)
- Test $H_0: \beta_1 \beta_2 = 0$ against $H_1: \beta_1 \beta_2 < 0$
- Possible test statistic: $t = \frac{\hat{\beta}_1 \hat{\beta}_2}{se(\hat{\beta}_1 \hat{\beta}_2)}$
- Difference in the coefficient is normalized by the variance of the difference
- If the difference is too negative (i.e. return to junior college lower) then the null hypothesis would be rejected

Testing hypotheses about a linear combination of parameters (twoyear.dta)

. reg lwage jc univ exper

Source	SS	df	MS		Number of obs	= 6763
					F(3, 6759)	= 644.53
Model	357.752575	3	119.250858		Prob > F	= 0.0000
Residual	1250.54352	6759	.185019014		R-squared	= 0.2224
-					Adj R-squared	= 0.2221
Total	1608.29609	6762	.237843255		Root MSE	= .43014
lwage	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]

lwage	Coef.	Std. Err.	t P> t		[95% Conf.	Interval]		
jc univ	.0666967	.0068288	9.77 33.30	0.000	.0533101	.0800833		
exper _cons	.0049442	.0023007	31.40 69.91	0.000 0.000	.0046355	.0052529		

• Note that $\beta_{ic} - \beta_{univ} = 0.067 - 0.077 = -0.010$

Testing hypotheses about a linear combination of parameters

 Standard regression output will not compute the covariance term

$$\begin{split} se(\hat{\beta}_1 - \hat{\beta}_2) = & \sqrt{\widehat{Var}(\hat{\beta}_1 - \hat{\beta}_2)} \\ = & \sqrt{\widehat{Var}(\hat{\beta}_1) + \widehat{Var}(\hat{\beta}_2) - 2\widehat{Cov}(\hat{\beta}_1, \hat{\beta}_2)} \end{split}$$

■ Possible to derive the variance-covariance matrix for $\hat{\beta}$ that contains the covariance of two slope coefficients (see Equation E.14 in Appendix E) but we will not do so in this class

Alternative method: estimate a different model!

- Define $\theta_1 = \beta_1 \beta_2 \Rightarrow \beta_1 = \theta_1 + \beta_2$
- Test $H_0: \theta_1 = 0$ against $H_1: \theta_1 < 0$
- Substitute the expression for β_1 (that contains θ_1) into the regression equation and group coefficients:

$$\log(wage) = \beta_0 + \beta_1 jc + \beta_2 univ + \beta_3 exper + u$$
$$= \beta_0 + (\theta_1 + \beta_2) jc + \beta_2 univ + \beta_3 exper + u$$
$$= \beta_0 + \theta_1 jc + \beta_2 (jc + univ) + \beta_3 exper + u$$

- Create the new variable jc + univ and include in a regression with jc and exper
- The coefficient on jc will be our estimate of θ_1 and Stata will compute its standard error! (Minor) magic!

Testing hypotheses about a linear combination of parameters (twoyear.dta)

- . gen totcoll = jc + univ
- . reg lwage jc totcoll exper

Source	SS	df	MS
Model Residual	357.752575 1250.54352		119.250858 .185019014
Total	1608.29609	6762	. 237843255

Number of obs = 6763
F(3, 6759) = 644.53
Prob > F = 0.0000
R-squared = 0.2224
Adj R-squared = 0.2221
Root MSE = .43014

lwage	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]			
jc	0101795	.0069359	-1.47	0.142	0237761	.003417		
totcoll	.0768762	.0023087	33.30	0.000	.0723504	.0814021		
exper	.0049442	.0001575	31.40	0.000	.0046355	.0052529		
_cons	1.472326	.0210602	69.91	0.000	1.431041	1.51361		

•
$$t = \frac{-0.0102}{0.0069} = -1.47$$
, p-value = $P(T < -1.47) = 0.07$

Testing hypotheses about a linear combination of parameters

- The coefficients on the other variables are unchanged (e.g. exper)
 - Provides a way to check if the new model has been properly estimated
- Strategy of rewriting the model so that it contains the parameter of interest works in all cases

Testing multiple linear restrictions

- If we wish to test multiple restrictions, we can no longer use a t test but must use an F test
- Often we wish to test whether a group of variables has no effect on the left-hand side variable
- Consider the following model of baseball player salaries:

$$\log(salary) = \beta_0 + \beta_1 y ears + \beta_2 g a mes y r + \beta_3 b a v g + \beta_4 h r u n s y r + \beta_5 r b i s y r + u$$

where

- gamesyr is average games played per year
- bavg is career batting average
- hrunsyr is home runs per year
- rbisyr is runs batted in (rbi) per year

Model of baseball player salaries

. reg lsalary years gamesyr bavg hrunsyr rbisyr

Source	SS	df	MS		Number of obs		353
Model Residual	308.989208 183.186327	5 347	61.7978416 .527914487		F(5, 347) Prob > F R-squared	=	0.0000 0.6278
Total	492.175535	352	1.39822595		Adj R-squared Root MSE	=	0.6224 .72658
lsalary	Coef.	Std. I	Err. t	P> t	[95% Conf.	In	terval]
years gamesyr bavg hrunsyr rbisyr _cons	.0688626 .0125521 .0009786 .0144295 .0107657 11.19242	.0121: .00264 .00110 .0160 .0073	468 4.74 035 0.89 057 0.90 175 1.50	0.000 0.376 0.369 0.134	.0450355 .0073464 0011918 0171518 0033462 10.62435		0926898 0177578 .003149 0460107 0248776 1.76048

■
$$SSR = 183.186$$
, $df = n - k - 1 = 347$, $R^2 = 0.628$

Exclusion restrictions

- Suppose we want to test the null hypothesis that bavg, hrunsyr, and rbisyr have no effect on salary, once years and gamesyr have been controlled for
 - None of these variables is statistically significant on their own due to multicollinearity
 - They are all highly correlated, e.g.
 Corr(rbisyr, hrunsyr) = 0.89
- The null and alternative hypotheses are:

$$H_0: \beta_3 = 0, \beta_4 = 0, \beta_5 = 0$$

 $H_1: H_0 \text{ not true}$

The null constitutes three exclusion restrictions

Restricted and unrestricted models

■ The **restricted model (r)** without the three variables is:

$$\log(salary) = \beta_0 + \beta_1 years + \beta_2 gamesyr + u$$

■ The unrestricted model (ur) with the three variables is:

$$\log(salary) = \beta_0 + \beta_1 y ears + \beta_2 g a mes y r + \beta_3 b a v g + \beta_4 h r u n s y r + \beta_5 r b i s y r + u$$

- Basic idea: How much does the SSR increase when we impose the q = 3 exclusion restrictions?
 - If SSR_r is sufficiently larger than SSR_{ur} then reject $H_0!$

Restricted model results

. reg lsalary years gamesyr

Source	SS	df	MS		Number of obs		353
Model Residual	293.864058 198.311477		46.932029 566604221		F(2, 350) Prob > F R-squared	=	259.32 0.0000 0.5971
Total	492.175535	352 1	. 39822595		Adj R-squared Root MSE	=	0.5948 .75273
lsalary	Coef.	Std. Er	r. t	P> t	[95% Conf.	Int	terval]
years gamesyr _cons	.071318 .0201745 11.2238	.01250 .001342 .10831	9 15.02	0.000 0.000 0.000	.0467236 .0175334 11.01078		0959124 0228156 1.43683

$$SSR = 198.311, R^2 = 0.597$$

F statistic

The test statistic is

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} \sim F_{q,n-k-1}$$

- If c is the cutoff given a chosen significance level then reject H_0 if F>c
- For the baseball example:

$$F = \frac{198.311 - 183.186}{183.186} \cdot \frac{347}{3} \approx 9.55$$

■ With q=3, and n-k-1=347, $c_{0.05}=2.60$ and $c_{0.01}=3.78$ so we can easily reject H_0 at both of these significance levels

The F distribution

F - Distribution (α = 0.01 in the Right Tail)

	٦	٦t		N	umerator [Degrees of	Freedom			
l	df_2	df _{1 1}	2	3	4	5	6	7	8	9
l	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
ı	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
1		34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
ı	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
ı	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
ı	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761
ı	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188
ı	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106
ء ا	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511
Freedom	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
8	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
- e	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875
ш.	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911
4	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
Degrees	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
1 2	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804
ြစ္မ	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822
	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971
l۵	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
Denominator	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.4567
I⊹≣	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981
l 5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
١š	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.2986
ے ا	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.2172
I	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.1818
I	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.1494
I	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
l	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920

Reasoning behind the F statistic

- Let Z_i , i = 1, 2, ..., n, be independent random variables, each distributed as standard normal
- Define new random variable as the sum of the squares of the Z_i:

$$X = \sum_{i=1}^{n} Z_i^2$$

- X has a **chi-square distribution** with *n* **degrees of freedom**
- If X_1 and X_2 are independent then the random variable

$$F = \frac{X_1/k_1}{X_2/k_2}$$

has an **F** distribution with (k_1, k_2) degrees of freedom

■ Can be shown that $\frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$ is the ratio of two independent chi-square random variables divided by their respective degrees of freedom

5% critical value in an $F_{3,347}$ distribution

R-squared version of the F statistic

■ Since $SSR_r = SST(1 - R_r^2)$ and $SSR_{ur} = SST(1 - R_{ur}^2)$:

$$F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)}$$

For the baseball example:

$$F = \frac{0.6278 - 0.5971}{1 - 0.6278} \cdot \frac{347}{3} \approx 9.54$$

Cannot be used for testing all linear restrictions

F statistic for overall significance of a regression

 Common set of exclusion restrictions involves testing the overall significance of the regression

$$H_0: \ \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

■ $R_r^2 = 0$ since none of the variation in y is being explained because there are no explanatory variables so F statistic becomes:

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$

where R^2 is the usual R-squared from the unrestricted model (i.e. R_{ur})

If we fail to reject H₀ then there is no evidence that any of the independent variables help to explain y

Overall significance of baseball regression

. reg lsalary years gamesyr bavg hrunsyr rbisyr

Source	SS	df	MS
Model Residual	308.989208 183.186327	5 347	61.7978416 .527914487
Total	492.175535	352	1.39822595

Number of obs	=	353
F(5, 347)	=	117.06
Prob > F	=	0.0000
R-squared	=	0.6278
Adj R-squared	=	0.6224
Root MSE	=	.72658

lsalary	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]			
years gamesyr bavg hrunsyr rbisyr _cons	.0688626 .0125521 .0009786 .0144295 .0107657	.0121145 .0026468 .0011035 .016057 .007175	5.68 4.74 0.89 0.90 1.50 38.75	0.000 0.000 0.376 0.369 0.134 0.000	.0450355 .0073464 0011918 0171518 0033462 10.62435	.0926898 .0177578 .003149 .0460107 .0248776		

$$F = \frac{R^2/k}{(1-R^2)/(n-k-1)} = \frac{0.6278/5}{(1-0.6278)/(347)} = 117.06$$

Example: Test whether house price assessments are rational

$$\log(\textit{price}) = \beta_0 + \beta_1 \log(\textit{assess}) + \beta_2 \log(\textit{lotsize})$$
$$\beta_3 \log(\textit{sqrft}) + \beta_4 \textit{bdrms} + u$$

where assess is the assessed value of the house

■ Seek to test whether a 1% change in assessment is associated with a 1% change in price:

$$H_0: \beta_1 = 1, \beta_2 = 0, \beta_3 = 0, \beta_4 = 0$$

Unrestricted regression:

$$\log(\textit{price}) = \beta_0 + \beta_1 \log(\textit{assess}) + \beta_2 \log(\textit{lotsize})$$
$$\beta_3 \log(\textit{sqrft}) + \beta_4 \textit{bdrms} + u$$

Restricted regression (tricky because we need to impose a non-zero restriction on β_1):

$$\log(\textit{price}) = \beta_0 + \log(\textit{assess}) + u$$

$$\Rightarrow \log(\textit{price}) - \log(\textit{assess}) = \beta_0 + u$$

Test statistic

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$$

■ **Cannot** use the *R*² form of the *F* test since the dependent variable is different so *SST* will be different!

. reg lprice lassess llotsize lsqrft bdrms

Source	SS	df	MS		Number of obs		88
Model Residual	6.19607473 1.82152879	4 83	1.5490186	-	F(4, 83) Prob > F R-squared	=	70.58 0.0000 0.7728
Total	8.01760352	87	.09215636	62	Adj R-squared Root MSE	=	0.7619 .14814
lprice	Coef.	Std.	Err.	t P> t	[95% Conf.	In	terval]
lassess llotsize lsqrft bdrms _cons	1.043065 .0074379 1032384 .0338392 .263743	.15: .038! .1384 .0220	5615 0. 4305 -0. 9983 1.	89 0.000 19 0.848 75 0.458 53 0.129 46 0.645	.7418453 0692593 378571 0101135 8692972		344285 0841352 1720942 0777918 396783

 $SSR_{ur} = 1.82$

- . gen newvar = lprice lassess
- . reg newvar

Source	SS	df		MS		Number of obs		88
Model Residual	0 1.88014885	0 87	. 021	610906		Prob > F R-squared	=	0.00 0.0000
Total	1.88014885	87	.021	610906		Adj R-squared Root MSE		0.0000 .14701
newvar	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	0040175	015				1150613		

- $SSR_r = 1.88$
- $F = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{(1.880 1.822)/4}{1.822/83} = 0.661$
- $c_{0.05} = 2.50$, which indicates that there is no evidence against the null hypothesis that assessed values are rational!

Reporting regression results

- Things that must be reported...
 - Estimated OLS coefficients
 - The main coefficients should be <u>interpreted</u> somewhere in the paper
 - 2 Standard errors (usually beside or below the coefficient)
 - Usually preferable to t statistics since you can construct confidence intervals and test hypotheses other than H_0 : $\beta_j = 0$
 - 3 R-squared
 - Provides a goodness-of-fit measure and makes calculation of F statistics for exclusion restrictions simple
 - 4 Number of observations

- If only a couple of models are being estimated then the results can be reported in equation form:
- Consider a model of teacher salaries and benefits

$$\log(\text{salary}) = \beta_0 + \beta_1(b/s) + \text{other factors}$$

- Testing the salary-benefits tradeoff is the same as the test of H_0 : $\beta_1 = -1$ against H_1 : $\beta_1 \neq -1$
 - A 1% or 0.01 rise in b/s should lead to a $-1 \times 0.01 = 0.01\%$ drop in *salary* if benefits and salary are equivalent
- Other factors: size of the school (enroll), staff per thousand students (staff), and measures of school dropout and graduation rates (droprate and gradrate)

If only two variants of this model are estimated then two sample regression functions can be reported in equation form:

$$\widehat{\log(salary)} = 10.523 - 0.825(b/s) \tag{1}$$

$$\widehat{\log(salary)} = 10.884 - 0.605(b/s) + 0.0874\log(enroll)$$

$$- 0.222\log(staff) \tag{2}$$

 When several equations are estimated, the coefficient estimates are reported in different columns

	(1)	(2)	(3)
	log(salary)	log(salary)	log(salary)
benefits/salary	-0.825**	-0.605**	-0.589**
	(0.200)	(0.165)	(0.165)
log(oproll)		0.087**	0.088**
log(enroll)			
		(0.007)	(0.007)
log(staff)		-0.222**	-0.218**
		(0.050)	(0.050)
		,	,
school dropout rate, perc			-0.000
			(0.002)
school graduation rate, perc			0.001
			(0.001)
_		a a a contrato	
Constant	10.523**	10.844**	10.738**
	(0.042)	(0.252)	(0.258)
Observations	408	408	408
R^2	0.040	0.353	0.361
Standard errors in parentheses	* n < 0.05	** n < 0.01	

Standard errors in parentheses. * p < 0.05, ** p < 0.01

Identifying necessary components of a regression table

	/1)	(2)	(2)
	(1)	(2)	(3)
	log(salary)	log(salary)	log(salary)
benefits/salary	-0.825**	-0.605**	-0.589**
	(0.200)	(0.165)	(0.165)
log(enroll)		0.087**	0.088**
		(0.007)	(0.007)
log(staff)		-0.222**	-0.218**
		(0.050)	(0.050)
school dropout rate, perc			-0.000
			(0.002)
school graduation rate, perc			0.001
			(0.001)
Constant	10.523**	10.844**	10.738**
	(0.042)	(0.252)	(0.258)
Observations	408	408	408
R^2	0.040	0.353	0.361

Standard errors in parentheses. * p < 0.05, ** p < 0.01

- Without controlling for any other factors, $\hat{\beta}_1$ is -0.825
 - t statistic is $\frac{-0.825+1}{0.200}=0.875$, which is below below 1.96 so we cannot reject H_0
- Adding controls for school size and staff reduces the magnitude of the coefficient
 - t statistic is now $\frac{-0.605+1}{0.165}=2.39$, which is above 1.96 so we can reject H_0

How to use columns

- Use columns to include control variables to demonstrate the robustness of your main coefficient (e.g. the coefficient on (b/s))
 - Add more important controls earlier to create a "triangle" shape in the bottom left-hand corner of the table
 - Inclusion of controls will indicate any omitted variables bias from excluding these controls
- Estimate the equation with different subsamples:
 - Different cohorts, genders, countries
 - Different time periods

Different columns for gender: Dependent variable is log(wage)

	(1)	(2)	(3)
	All	Men	Women
years of education	0.092**	0.096**	0.080**
	(0.007)	(0.009)	(0.010)
years potential experience	0.004*	0.008**	0.002
	(0.002)	(0.002)	(0.002)
years with current employer	0.022**	0.018**	0.010
	(0.003)	(0.004)	(0.005)
Constant	0.284**	0.322*	0.356*
	(0.104)	(0.139)	(0.141)
Observations	526	274	252
R^2	0.316	0.365	0.212

Standard errors in parentheses. * p < 0.05, ** p < 0.01

Different columns for different years: Dependent variable is log(price)

	(1)	(2)	(3)
	All	1978 only	1981 only
square footage of house	0.000**	0.000**	0.000**
	(0.000)	(0.000)	(0.000)
# rooms in house	0.031	0.051*	0.061*
# rooms in nouse			
	(0.024)	(0.024)	(0.029)
# bathrooms	0.235**	0.220**	0.293**
	(0.032)	(0.036)	(0.033)
Constant	10.176**	10.015**	10.304**
Constant			
	(0.128)	(0.130)	(0.153)
Observations	321	179	142
R^2	0.527	0.561	0.704

Standard errors in parentheses. * p < 0.05, ** p < 0.01

Example from Levitt and Syverson (2008)

TABLE 2.—THE IMPACT OF AGENT-OWNERSHIP STATUS ON SALE PRICE AND TIME-TO-SALE

	(1)	(2)	(3)	(4)
	Dependent Variable: ln(Sale Price of Home)			
Coefficient on agent-owned home (Standard error) R^2	0.048	0.042	0.038	0.037
	(0.004)	(0.004)	(0.003)	
	0.856	0.886	0.896	0.958
	Variable: Days to Sale			
Coefficient on agent-owned home	16.89	11.03	10.25	9.47
(Standard error)	(2.42)	(2.40)	(2.39)	(2.25)
R^2	0.123	0.130	0.139	0.384
Controls included:				
City × year interactions	Yes	Yes	Yes	Yes
Basic house characteristics	Yes	Yes	Yes	Yes
Indicators of house quality	No	Yes	Yes	Yes
Keywords in description	No	No	Yes	Yes
Block fixed effects	No	No	No	Yes
"Excess return" of agent				
assuming a 20% annual				
discount rate	0.039	0.036	0.032	0.032

Notes: Regression coefficients are reported in the table, along with standard errors in parentheest. Results are based on a sample of 96,038 single-family home sales in 34 Cook County, Illinois, subarbs over the period 1992-2002. The dependent variable in the top panel of the table is from a separate regression. The other variables included in each specification are noted in the table, but the coefficients on these other variables are not reported here (table 3 presents a subset of coefficient estimates for these controls). See the appendix for a complete list. The table's bottom row reports the implied "excess return" accruing to agents selling their own homes, computed as the additional price received for a home adjusted for the extra time on the mathet, under the assumption of a 29% small discount rate.

Quadratic functional forms

- Quadratic functional forms allow you to incorporate non-linear effects when you have zero or negative values $(\log(x) \text{ doesn't work if } x \leq 0)$
- Consider the following wage function:

$$\widehat{wage} = 3.73 + 0.298 exper - 0.0061 exper^2$$

Marginal effect of experience:

$$\frac{d\widehat{wage}}{dexper} = 0.298 - 2 \cdot 0.0061 exper$$

- First year of experience increases the wage by $0.298 2 \times 0.0061 \times 0 \approx 30$ cents.
- The second year by $0.298 2 \times 0.0061 \times 1 \approx 29$ cents.

Wage maximum with respect to work experience

$$\frac{\textit{d}\widehat{\textit{wage}}}{\textit{dexper}} = 0 \Rightarrow 0.298 - 2 \cdot 0.0061 \textit{exper} = 0 \Rightarrow \textit{exper}^* = \frac{0.298}{0.0122} \approx 24.4$$

Wage maximum with respect to work experience

- Does this mean the return to experience becomes negative after 24.4 years?
- Not necessarily. It depends on how many observations in the sample lie to the right of the turning point (there may be none)
 - In fact, in this dataset, 28% of the observations lie to the right suggesting there may be a specification problem (e.g. omitted variables)

Effects of pollution on housing prices

Suppose (the log of) house price is estimated to be:

$$\widehat{\log(\textit{price})} = 13.39 - 0.902 \log(\textit{nox}) - 0.087 \log(\textit{dist}) - 0.545 \textit{rooms} + 0.062 \textit{rooms}^2 - 0.048 \textit{stratio}$$

where *nox* is nitrogen oxide in air, *dist* is distance from employment centers, and *stratio* is student/teacher ratio

Marginal effect of rooms:

$$\frac{d\log(price)}{drooms} = \frac{\%dprice}{drooms} = -0.545 + 0.124rooms$$

- Increase rooms from 5 to 6: $-0.545 + 0.124 \times 5 = 7.5\%$
- Increase rooms from 6 to 7: $-0.545 + 0.124 \times 6 = 19.9\%$

Effects of pollution on housing prices

Next week

■ Further Issues (Chapter 6) and Midterm Revision