Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

15 сентября 2023 г.

1 Аннотация

В работе измеряется удельное сопротивление нихромовой проволоки двумя способами: 1) путем анализа графика ВАХ проволоки, 2) путем вычисления по известной формуле $R = \rho \frac{l}{S}$, где R измерено посредством моста Уильсона (моста постоянного тока).

Цель работы: измерение удельного соединения нихромовой проволоки и вычисление систематических и случайных погрешностей при использовании измерительных прибров.

Оборудование: линейка, штангенциркуль, микрометр, нихромовая проволока, амперметр, стрелочный вольтметр, источник ЭДС, мост Уильсона (мост постоянного тока), реостат, ключ, провода.

2 Теоретические сведения

Удельное сопротивление цилиндрической проволоки определяется по формуле: $\rho = \frac{R}{l}S$, а учитывая что $S = \pi \frac{d^2}{4}$,

$$\rho = \frac{R}{l} \frac{\pi d^2}{4}$$

Где R - сопротивление отрезка проволоки, l - его длина, d - диаметр.

По закону Ома для участка цепи:

$$R = \frac{U}{I}$$

U - напряжение на участке цепи, I - сила тока, R - сопротивление.

Таким образом, для определения сопротивления проволоки достаточно измерить силу тока и напряжение на нем. Это возможно с помощью схемы рис.1.

Вольтметр верно измеряет падение напряжения на проволоке, а амперметр измеряет сумму токов через проволоку и вольтметр. Поэтому можно записать систему:

$$\begin{cases}
I_A = I + I_V \\
IR = U_V \\
I_V R_V = U_V
\end{cases}$$
(1)

 U_V - показания вольтметра, I_A - показания амперметра

Выразив токи I и I_V и подставив их в первое уравнение получим

$$R_1 = \frac{U_V}{I_A} = R \frac{R_V}{R + R_V} \tag{2}$$

Рис. 1: Используемая схема

Здесь R_1 не является истинным сопротивлением проволоки, выразим истинное сопротивление R из (2):

$$R = \frac{R_1}{1 - \frac{R_1}{R_V}}$$

В силу величины R_V по сравнению с R_1 :

$$R \approx R_1 (1 + \frac{R_1}{R_V}) \tag{3}$$

3 Оборудование и экспериментальные погрешности

 $\it Линейка: \Delta_{\it лин} = \pm 0.5 \; {\rm мм} \; ({
m половина} \; {
m цены} \; {
m деления})$

UI тангенциркуль: $\Delta_{\text{mt}} = \pm 0.05$ мм (половина цены деления)

 $Mикрометр: \Delta_{\text{мкм}} = \pm 0.01 \text{ мм (маркировка производителя)}$

 $Aмперметр: \Delta_{\rm A} = \pm (0.002*X+2k),$ где X - измеряемая величина, k - единица младшего разряда (k = 0.01 мA) (согласно паспорту прибора)

Вольтметр: $\Delta_{V \text{ паспорт}} = \pm (0.005 * X)$, где X - измеряемая величина (согласно классу точности)

Т.к. положение стрелки вольтметра определялось на глаз, к погрешности вольтметра можно прибавить половину цены деления :

$$\Delta_{V} = \pm (0.005 * X + 0.5 * c),$$

где с - цена деления

Т.к. $R_V(U_V,I_V)=rac{U_V}{I_V},$ имеем

$$\sigma_{R_V} = \sqrt{(\frac{\delta R_V}{\delta U_V} \Delta_V)^2 + (\frac{\delta R_V}{\delta I_V} \Delta_A)^2}$$

$$\sigma_{\mathrm{cuct}R_1} = \sqrt{(\frac{\Delta_V}{I_V})^2 + (\frac{U_V}{I_V^2}\Delta_A)^2}$$

Получаем

$$\sigma_{R_V} = 0,0275 \ \Omega$$

$$R_V = \frac{600}{0.15} = 4000 \ \Omega$$

(согласно маркировке при $U_V = 600$ В. $I_V = 0.15$ А)

По сравнению с R_V , σ_{R_V} слишком мала, поэтому ей можно пренебречь:

 $\sigma_{R_V} \approx 0 \ \Omega$

Мост постоянного тока Р4833:

Класс точности: 0,1

Разрядность магазина сопротивлений: 5 ед.

Используемый множитель: 10^{-1}

Погрешность измерений в используемом диапазоне: $\Delta_{\text{мост}} = \pm 0,0001~\Omega$.

4 Измерения и обработка данных

4.1 Измерение длины проволоки l

Значения l измерялись с помощью линейки.

4.2 Измерение диаметра проволоки d

Проволока неоднородна, поэтому ее диаметр различен в разных местах. Мы можем измерить его в нескольких местах и усреднить полученные значения.

Измерения с помощью штангенциркуля показали одинаковый диаметр проволоки для N=12 измерений, $d_{\rm mr}=0.4{\rm mm}.$

№	1	2	3	4	5	6	7	8	9	10	11	12
d_{iiit} , mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Таблица 1: Результат измерения d штангенциркулем

Для измерения диаметра был также использован микрометр, который выявил отличия в диаметре проволоки в разных ее местах (см. Табл. 1).

Nº	1	2	3	4	5	6	7	8	9	10	11	12
d_{mkm} , mkm	380	380	360	390	360	370	350	340	360	380	370	370

Таблица 2: Результат измерения d микрометром

Средний диаметр

$$\overline{d} = \frac{\Sigma d_i}{N} = 367.5 \text{ MKM}$$

Среднее квадратичное отклонение

$$\sigma_d = \sqrt{rac{1}{N}\sum_{i=1}^N \Delta d_i^2} = 13.62$$
 мкм

Погрешность среднего

$$\sigma_{\overline{d}} = \frac{\sigma_d}{\sqrt{N}} = 3.93 \; \mathrm{mkm}$$

Общая погрешность

$$\sigma_d = \sqrt{\sigma_d^2 + \Delta_{\mbox{\tiny MKM}}^2} = 10.74 \ \mbox{мкм} pprox 10.7 \ \mbox{мкм}$$

Следовательно,

$$d = (367.5 \pm 10.7) \text{ MKM}$$

4.3 Вычисление сопротивления проволоки *R*

Измерить сопротивление отрезка проволоки R возможно двумя способами

4.3.1 Вычисление R путем анализа ВАХ проволоки

Для снятия ВАХ проволоки была собрана схема Рис. 1

ВАХ снималась для трех разных длин проволоки путем постепенного уменьшения напряжения источника. Результаты измерений приведены в Табл. 3, 4, 5.

Nº	U ист, В	Uv, дел	Uv, mB	Іа, мА
1	3.5	148	592	111.16
2	3.3	137	548	103.42
3	3.1	130	520	97.84
4	2.9	121	484	90.41
5	2.7	115	460	86.6
6	2.3	98	392	73.78
7	1.9	80	320	60.3
8	1.5	64	256	47.9
9	1.1	36	144	26.63
10	0.7	23	92	17.29
11	0.2	3	12	1.98

Таблица 3: ВАХ проволоки $l = (500.0 \pm 0.5)$ мм

N⁰	U ист, В	Uv, дел	Uv, мВ	Іа, мА
1	3.5	150	600	184.86
2	3.3	143	572	176.44
3	3.1	136	544	167.57
4	2.9	124	496	152.78
5	2.7	118	472	145.04
6	2.3	100	400	123.58
7	1.9	84	336	103.16
8	1.5	67	268	82.66
9	1.1	48	192	59.25
10	0.7	21	84	25.31
11	0.2	2	8	1.79

Таблица 4: ВАХ проволоки $l = (300.0 \pm 0.5)$ мм

No॒	Uист , В	Uv, дел	Uv, мВ	Іа, мА
1	3.5	149	596	271.1
2	3.3	139	556	256.15
3	3.1	130	520	241.29
4	2.9	123	492	227.4
5	2.7	112	448	208.09
6	2.3	98	392	181.76
7	1.9	80	320	147.89
8	1.5	64	256	118.08
9	1.1	47	188	87.3
10	0.7	16	64	29.91
11	0.2	6	24	10.65

Таблица 5: ВАХ проволоки $l = (200.0 \pm 0.5)$ мм

$$1$$
 дел $= \frac{600 \text{ мB}}{150 \text{ дел}} = 4 \text{ мB}$

Построим график U(I) по данным Табл.3, 4, 5: угловые коэффициенты k_{20}, k_{30}, k_{50} этих прямых будут соответствовать величинам соответствующих R_1

Рис. 2: Прямые $U_V(I_A)$ для трех значений l

Систематическую погрешность R_1 оценим как ошибку косвенного измерения по максимальным систематическим погрешностям Δ_A и Δ_V .

систематическим погрешностям Δ_A и Δ_V . Т.к. $R_1(U_V,I_A)=\frac{U_V}{I_A}$, имеем систематическую погрешность

$$\sigma_{\text{chct}R_1} = \sqrt{(\frac{\delta R_1}{\delta U_V} \Delta_V)^2 + (\frac{\delta R_1}{\delta I_A} \Delta_A)^2}$$

$$\sigma_{\text{chct}R_1} = \sqrt{(\frac{\Delta_V}{I_A})^2 + (\frac{U_V}{I_A^2}\Delta_A)^2}$$

Систематическую погрешность $\sigma_{\text{сист}R_1}$ берем максимальную для всех измерений каждого l.

$$\sigma_{\text{полн}R_1} = \sqrt{\sigma_{\text{случ}R_1}^2 + \sigma_{\text{сист}R_1}^2}$$

l, см	R_1 , om	$\sigma_{\mathrm{случ}R_1}, \Omega$	$\sigma_{\mathrm{cuct}R_1}, \Omega$	$\sigma_{\text{полн}R_1}, \Omega$
50	5.32066	0.00611	1.04299	1.04591
30	3.24624	0.00260	1.14118	1.14232
20	2.16850	0.00488	0.19925	0.21114

Таблица 6: Определение R_1 по графику U(I)

В итоге, для $l=(500\pm0.5)$ мм $R_1=(5.32066\pm1.04591)\Omega$ для $l=(300\pm0.5)$ мм $R_1=(3.24624\pm1.14232)\Omega$ для $l=(200\pm0.5)$ мм $R_1=(2.16850\pm0.21114)\Omega$

Найдем R по формуле (3). Погрешность косвенной величины R:

$$\sigma_R = \sqrt{(2\frac{R_1}{R_V} + 1)^2 \sigma_{R_1}^2 + (R_1 - \frac{R_1}{R_V^2})^2 \sigma_{R_V}^2}$$

Т.к. $\sigma_{R_V} \approx 0$, получаем

$$\sigma_R = (2\frac{R_1}{R_V} + 1)\sigma_{R_1}$$

1, см	R, Ω	$\sigma_R, \ \Omega$
50	5,328	1,049
30	3,249	1,144
20	2,170	0,211

Таблица 7: Вычисление R

4.3.2 Прямое измерение R с помощью моста постоянного тока

Для измерения R использовался мост постоянного тока P4833. Т.к. $\Delta_{\text{мост}}=\pm 0,0001~\Omega$ « значений Табл 7., будем считать $\Delta_{\text{мост}}=0~\Omega$. Для трех l были подобраны такие положения рубильников, при котором стрелка прибора была минимально отклонена от нуля.

1, м	R, Ω	Δ moct, Ω
0.5	5.3	0.0001
0.3	3.235	0.0001
0.2	2.121	0.0001

Таблица 8: Измерение R на мосте постоянного тока

4.4 Вычисление $\rho_{yд}$

$$\rho = \frac{R}{l} \frac{\pi d^2}{4}$$

$$\sigma_{\rho} = \sqrt{\left(\frac{\pi d^2}{4l} \sigma_R\right)^2 + \left(\frac{\pi d}{2l} \sigma_d\right)^2 + \left(\frac{\pi d^2}{4l^2} \Delta_l\right)^2}$$

1, м	$\rho, \frac{\Omega_{\text{MM}}^2}{M}$	$\sigma_{ ho}, \frac{\Omega_{ m MM}^2}{M}$
0.5	1.13026	0.23201
0.3	1.14873	0.40456
0.2	1.15072	0.11214

Таблица 9: Вычисление $\rho_{yд}$

Усредняя результаты 3-х опытов окончательно получаем:

$$\rho_{\text{уд}} = 1.14323 \pm 0.24957 \frac{\Omega \text{ MM}^2}{M} (\epsilon_{\rho} = 21.8\%)$$

$$\rho = \frac{R}{l} \frac{\pi d^2}{4}$$

$$\sigma_{\rho} = \sqrt{\left(\frac{\pi d^2}{4l} \Delta_{\text{MOCT}}\right)^2 + \left(\frac{\pi d}{2l} \sigma_d\right)^2 + \left(\frac{\pi d^2}{4l^2} \Delta_l\right)^2}$$

1, м	$\rho, \frac{\Omega_{\text{MM}}^2}{M}$	$\sigma_{ ho}, \frac{\Omega_{ m MM}^2}{M}$
0.5	1.12437	0.065480
0.3	1.14382	0.001907
0.2	1.12490	0.002813

Таблица 10: Вычисление $\rho_{yд}$

Усредняя результаты 3-х опытов окончательно получаем:

$$ho_{
m yg} = 1.13103 \pm 0.02340 \; rac{\Omega \; {
m MM}^2}{M} (\epsilon_{
ho} = 2\%)$$

К сожалению, использовать этот результат мы не можем т.к. проволока была откручена, а потом снова прикручена, что нарушило эксперимент. В окончательный ответ попадает значение из метода анализа ВАХ проволоки.

5 Вывод

Однажды Эрнест Хемингуэй поспорил, что затехает лабу 1.1.1 за 5 часов. Он проспорил. В результате были измерены R нихромовой проволоки для 3 ее длин, и по этим данным было вычислено

$$\rho_{\rm уд. \ нихрома} = 1.14323 \pm 0.24957 \ \frac{\Omega \ {\rm MM}^2}{\rm _M} (\epsilon_\rho = 21.8\%)$$

Еще Эрнест Хемингуэй открутил проволоку и заруинил вторую часть эксперимента, но он был уверен, что если бы он это не сделал, все бы отлично сошлось.

Когда мою лабу увидел оксимирон, он спел:

Практически готов идеальный финал (Да-да-да-да-да) До смешного близок мечтаний предел (Да-да-да-да) Оправдана уйма стараний и сил Неизбежно верен счастливый прогноз...

Надеюсь следующие лабы пойдут быстрее, а то 13 часов это слишком.