الهندسة الفضائية السلسلة 1 (7 تمارين)

التمرين 1:

$$B\left(1,3,1
ight)$$
 و $A\left(1,2,1
ight)$ ، نعتبر النقطتين $A\left(1,2,1
ight)$ و في الفضاء المنسوب إلى معلم متعامد ممنظم و مباشر

$$\overrightarrow{OA} \wedge \overrightarrow{OB}$$
 .1.

$$(OAB)$$
 معادلة ديكارتية للمستوى $x-z=0$

$$(OAB)$$
 و المماسة للمستوى (S) التي مركزها $\Omega(-3,0,1)$ و المماسة للمستوى (S)

$$\left(OAB\right)$$
 و $\left(S\right)$ مدد إحداثيات نقطة تماس

$$(S)$$
 مماس للقلكة $\vec{u}(2,5,2)$ و الموجه بالمتجهة $H(-1,0,-1)$ مماس القلكة (S) مماس القلكة و الموجه بالمتجهة المار من النقطة (S)

التمرين 2:

$$\left(O,ec{i}^{},ec{j}^{},ec{k}^{}
ight)$$
 الفضاء منسوب لمعلم متعامد ممنظم و مباشر

$$C\left(1,1,1
ight)$$
 و $B\left(2,3,-1
ight)$ و $A\left(2,-1,1
ight)$

$$\overrightarrow{AB} \wedge \overrightarrow{BC} = 4\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$$
 ابين أن .1

$$(BC)$$
 عن المستقيم (A مسافة النقطة بالمستقيم

$$(BC)$$
 على A المسقط العمودي للنقطة A على BC

بین أن
$$\left(egin{array}{c} 2, rac{1}{3}, rac{5}{3} \end{array}
ight)$$
 . H هو مثلوث إحداثيات H هو مثلوث المتري ل

[AH] معادلة ديكارتية للفلكة التي أحد أقطارها [AH]

التمرين 3:

$$\left(O, \vec{i}^{}, \vec{j}^{}, \vec{k}^{}\right)$$
 الفضاء منسوب إلى معلم متعامد ممنظم

$$x^{2}+y^{2}+z^{2}-4y+2z+2=0$$
 : بحيث $M\left(x\,,y\,,z\,\right)$ مجموعة النقط (S) مجموعة النقط

$$\sqrt{3}$$
 و شعاعها $\Omega(0,2,-1)$ بين أن (S) فلكة مركزها

$$(S)$$
 تنتمي إلى الفلكة $A(-1,1,0)$ تنتمي إلى الفلكة (S

$$A$$
 عند النقطة (S) عند النقطة (P) عند النقطة المستوى

$$\vec{n}$$
 (1,1,1) ق B (1,3,-2) المار من النقطة (Q) المار من النقطة $x+y+z-2=0$ و (3. متجهة منظمية له. ب) بين أن (S) يقطع (S) وفق دائرة محددا مركزها و شعاعها

التمرين 4:

نعتبر في الفضاء المنسوب إلى معلم متعامد ممنظم
$$\left(O,\vec{i},\vec{j},\vec{k}
ight)$$
 النقطة $A\left(1,-1,3
ight)$ و المستوى $A\left(1,-1,3
ight)$ الذي معادلة ديكارتية $x-y+3z=0$:

$$\left(OA\right)$$
 تمثیل بارامتري للمستقیم $x=t$ $y=-t$ $\left(t\in\mathbb{R}\right)$.1 .1 $z=3t$

$$A$$
 النقطة (OA) بالمستوى (Q) العمودي على المستقيم (OA) في النقطة (Q) ج- تحقق من أن (P) يوازي المستوى

$$O$$
 التي مركزها (Γ) المماسة للمستوى (Q) في A و التي يقطعها المستوى (P) وفقا للدائرة (S) التي مركزها $\sqrt{33}$ و شعاعها $\sqrt{33}$

$$c=3a$$
 و $b=-a$ و OA ثم استنتج أن OA مركز الفلكة OA مركز الفلكة OA تنتمي إلى المستقيم OA ثم استنتج أن OA مركز الفلكة OA ثم استنتج أن OA أن شعاعها يساوي OA مركز الفلكة OA ثم بين أن شعاعها يساوي OA

التمرين 5:

في الفضاء المنسوب إلى معلم متعامد ممنظم
$$\left(P
ight)$$
 ، نعتبر النقطة $A\left(2,0,2
ight)$ و المستوى $A\left(2,0,2
ight)$ ذا المعادلة : $x+y-z-3=0$

- (P) على (P) المار من (P) و العمودي على (P)
 - (P) و المستوى (D) و المستوى .2
- 3. نعتبر الفلكة (S) التي مركزها A و التي تقطع المستوى (P) وفق الدائرة التي مركزها (S) و شعاعها (S) أ. حدد شعاع الفلكة (S) ب. أكتب معادلة ديكارتية للفلكة (S)

التمرين 6:

نعتبر في الفضاء المنسوب إلى معلم متعامد ممنظم
$$C\left(2,1,2\right)$$
 ، النقط $A\left(0,0,1\right)$ و $A\left(0,0,1\right)$ و الفلكة $C\left(2,1,2\right)$ و الفلكة $O\left(1,-1,0\right)$ و شعاعها $O\left(1,-1,0\right)$ و شعاعها $O\left(1,-1,0\right)$ و شعاعها $O\left(1,-1,0\right)$ و شعاعها $O\left(1,-1,0\right)$ بين أن $O\left(1,-1,0\right)$ بين أن $O\left(1,-1,0\right)$ بين أن $O\left(1,-1,0\right)$ بين أن $O\left(1,-1,0\right)$ هي معادلة ديكارتية للفلكة $O\left(1,-1,0\right)$ و تحقق من أن $O\left(1,-1,0\right)$

$$(ABC)$$
 و استنتج أن $x-y-z+1=0$ هي معادلة ديكارتية للمستوى (2 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$) أ. بين أن بين أن بين أن يمسافة $d\left(\Omega,(ABC)\right)$ ثم استنتج أن المستوى $d\left(\Omega,(ABC)\right)$ مماس للفلكة أحسب المسافة والمستوى أن المستوى أ

$$(ABC)$$
 ليكن (Δ) المستقيم المار من Ω و العمودي على (3

$$\left(\Delta
ight)$$
 نمثیل بارامتری للمستقیم $x=1+t$ $y=-1-t$ $(t\in\mathbb{R})$: أ. بين أن $z=-t$

(S) و الفلكة (Δ) و الفلكة . ب. استنتج مثلوثي إحداثيات نقطتي تقاطع المستقيم

التمرين 7:

$$C\left(5,10,1
ight)$$
 و $B\left(1,2,1
ight)$ و $A\left(0,1,-1
ight)$ ، النقط $\left(O,\vec{i}\,,\vec{j}\,,\vec{k}\,
ight)$ و معلم متعامد ممنظم و نعتبر في الفضاء المنسوب إلى معلم متعامد ممنظم

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = -16\overrightarrow{i} + 8\overrightarrow{j} + 4\overrightarrow{k}$$
 1. بین أن

(AB) و المستقيم
$$C$$
 أحسب المسافة بين النقطة

$$(ABC)$$
 حدد معادلة ديكارتية للمستوى

$$x^2 + y^2 + z^2 - 10x - 20y - 2z + 70 = 0$$
 التي تحقق العلاقة $M(x,y,z)$ التي النقط (S) مجموعة النقط (S) مجموعة النقط (S) مجموعة النقط (S) التي أن (S) هي فلكة مركزها S

ب) بين أن المستقيم (AB) مماس للفلكة (S) ، ثم حدد نقطة التماس .

$$\overrightarrow{OB}(1,3,1)$$
 د $\overrightarrow{OA}(1,2,1)$: الدينا

$$\overrightarrow{OA} \wedge \overrightarrow{OB} = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{i} + \overrightarrow{k}$$
 : نينا

$$(OAB)$$
 دينا $\overrightarrow{OA} \wedge \overrightarrow{OB} (-1,0,1)$ متجهة منظمية للمستوى 2.

$$(-1)x + (0)y + (1)z + d = 0$$
 : کتب علی شکل (OAB) تکتب علی شکل

$$d=0$$
 و لدينا $(-1)(0)+(0)(0)+(1)(0)+d=0$ الذن $O(0,0,0)\in (OAB)$: و لدينا

$$-x+z=0$$
 : إذن المعادلة تصبح

$$\left(OAB\right)$$
 و منه : $x-z=0$ معادلة ديكارتية للمستوى

: مماسة
$$(S)$$
 مماسة المستوى (OAB) فإن شعاع (S) هو .3

$$d\left(\Omega, (OAB)\right) = \frac{\left|(-3) - (1)\right|}{\sqrt{(1)^2 + (-1)^2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

$$(S)$$
 هو مركز الفلكة $\Omega(-3,0,1)$ ولدينا

$$(x+3)^2 + y^2 + (z-1)^2 = (2\sqrt{2})^2 = 8$$
: (S) إذن معادلة الفاكة

 $\Omega(-3,0,1)$ عن نقطة تقاطع المستوى OAB مع المستقيم OAB العمودي على OAB و المار من OAB.

$$(\Delta)$$
 موجهة للمستقيم $\overrightarrow{OA} \wedge \overrightarrow{OB} (-1,0,1)$ لدينا

$$((OAB)$$
 و $\overrightarrow{OA} \wedge \overrightarrow{OB}$ متجهة المستوى (Δ) لأن (Δ) لأن (Δ)

$$\left\{ egin{aligned} x=-3-t \ y=0 \ z=1+t \end{aligned}
ight.$$
 هو $\left(\Delta
ight)$ هو $\left(\Delta
ight)$ هو $\left(\Delta
ight)$

$$\begin{cases} x=-1 \ y=0 \end{cases}$$
 $\begin{cases} x=-3-t \ y=0 \end{cases}$ $\begin{cases} x=-1 \ z=-1 \end{cases}$ $\begin{cases} x=-3-t \ y=0 \end{cases}$ $\begin{cases} z=1+t \ x-z=0 \end{cases}$

$$(-1,0,-1)$$
 : و بالتالي مثلوث إحداثيات نقطة التماس هو

$$\overrightarrow{\Omega H} \wedge \overrightarrow{u} = 10\overrightarrow{i} - 8\overrightarrow{j} + 10\overrightarrow{k}$$
: فإن $\overrightarrow{\Omega H} \left(2, 0, -2 \right)$ ، بما أن $H \left(-1, 0, -1 \right) \in \left(S \right)$.5

و لدينا :
$$2\sqrt{2} = \frac{\|\overrightarrow{\Omega H} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|} = \frac{\sqrt{264}}{\sqrt{33}} = 2\sqrt{2}$$
 . \overrightarrow{u} ($2,5,2$) . \overrightarrow{u} ($2,5,2$) و بما أن $2\sqrt{2}$ شعاع الفلكة (3) فإن (3) مماس للفلكة (3).

$$\overrightarrow{BC}$$
 $(-1,-2,2)$ و \overrightarrow{AB} $(0,4,-2)$ الحينا (1 .1 $\overrightarrow{AB} \wedge \overrightarrow{BC} = \begin{vmatrix} 4 & -2 \\ -2 & 2 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 0 & -1 \\ -2 & 2 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 0 & -1 \\ 4 & -2 \end{vmatrix} \overrightarrow{k} = 4\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$

$$d(A,(BC)) = \frac{\|\overrightarrow{AB} \wedge \overrightarrow{BC}\|}{\|\overrightarrow{BC}\|} = \frac{\sqrt{4^2 + 2^2 + 4^2}}{\sqrt{(-1)^2 + (-2)^2 + (2)^2}} = \frac{\sqrt{36}}{\sqrt{9}} = \frac{6}{3} = 2 \quad (1 + 2)$$

$$(BC) \text{ Manifinal Boundary Points and Points Answer P$$

الدينا (P) تكتب على شكل : $\overrightarrow{BC}(-1,-2,2)$ منظمية للمستوى (P) إذن معادلة ديكارتية للمستوى $\overline{BC}(-1,-2,2)$ المنت -x-2y+2z+d=0 و لدينا -(2)-2(-1)+2(1)+d=0 إذن -(2)-2(-1)+2(1)+d=0 إذن -(2)-2(-1)+2(1)+d=0 المنت -(2)-2(-1)+2(1)+d=0 إذن -(2)-2(-1)+2(1)+d=0 المنت -(2)-2(-1)+2(1)+d=0 إذن -(2)-2(-1)+2(1)+d=0 المنت -(2)-2(-1)+2(1)+d=0 إذن -(2)-2(-1)+2(1)+d=0

$$\begin{cases} x = \frac{2}{3} \\ y = \frac{1}{3} \\ z = \frac{5}{3} \end{cases}$$

$$\begin{cases} x = 1 - t \\ y = 1 - 2t \\ z = 1 + 2t \\ -x - 2y + 2z - 2 = 0 \end{cases}$$
 : abidition we all little in the contraction of the

H و بالتالي : $\left(\frac{2}{3}, \frac{1}{3}, \frac{5}{3}\right)$ هو مثلوث إحداثيات

$$M(x,y,z) \in (S) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{HM} = 0$$

$$\overrightarrow{HM}\left(x - \frac{2}{3}, y - \frac{1}{3}, z - \frac{5}{3}\right) \Rightarrow \overrightarrow{AM}(x - 2, y + 1, z - 1) :$$

$$Level M(x,y,z) \in (S) \Leftrightarrow (x - 2)\left(x - \frac{2}{3}\right) + (y + 1)\left(y - \frac{1}{3}\right) + (z - 1)\left(z - \frac{5}{3}\right) = 0$$

$$M(x,y,z) \in (S) \Leftrightarrow x^2 + y^2 + z^2 - \frac{8}{3}x + \frac{2}{3}y - \frac{8}{3}z + \frac{8}{3} = 0$$

.1

$$M(x,y,z) \in (S)$$
 $\Leftrightarrow x^2 + y^2 + z^2 - 4y + 2z + 2 = 0$ $\Leftrightarrow x^2 + y^2 - 4y + 4 + z^2 + 2z + 1 = 4 + 1 - 2$ $\Leftrightarrow x^2 + (y - 2)^2 + (z + 1)^2 = 3$ $\Leftrightarrow (x - (0))^2 + (y - (2))^2 + (z - (-1))^2 = (\sqrt{3})^2$ $R = \sqrt{3}$ وشعاعها $\Omega(0,2,-1)$ المن مركزها $\Omega(0,2,-1)$ وشعاعها $\Omega(0,2,-1)$ المن في $\Omega(0,2,-1)$ المن في المن في $\Omega(0,2,-1)$ المن

$$d\left(\Omega,(Q)\right) = \frac{\left|(0) + (2) + (-1) - 2\right|}{\sqrt{(1)^2 + (1)^2 + (1)^2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} : نب (نب المينا : 1)$$

: فق دائرة شعاعها طر $\left(\Omega,(Q)
ight)$ بما أن $d\left(\Omega,(Q)
ight)$ فإن $d\left(\Omega,(Q)
ight)$

$$r = \sqrt{R^2 - (d(\Omega, (Q)))^2} = \sqrt{(\sqrt{3})^2 - (\frac{\sqrt{3}}{3})^2} = \frac{2\sqrt{6}}{3}$$

(Q) مع المستقيم (Δ) مع المستقيم مركز الدائرة H هو نقطة تقاطع المستقيم مركز الدائرة المار من Ω

$$\begin{cases} x = \frac{1}{3} \\ y = \frac{7}{3} \\ z = \frac{-2}{3} \end{cases}$$
 $\begin{cases} x = t \\ y = 2 + t \\ z = -1 + t \\ x + y + z - 2 = 0 \end{cases}$ $t = \frac{1}{3}$

 $H\left(\frac{1}{3}, \frac{7}{3}, \frac{-2}{3}\right)$ ومنه

تصحيح التمرين 4

2. أ) بما أن (Q) مماس للفلكة (S) في النقطة (S) في النقطة (Q) و منه :

$$(\Omega A) \perp (Q)$$

و بما أن (P) يقطع (S) وفق دائرة (Γ) مركزها (Γ) فإن (Γ) هي المسقط العمودي للنقطة (S) على (P) و منه :

$$(\Omega O) \perp (P)$$

و بما أن
$$(P)/\!/(Q)$$
 فإن

$$(\Omega O) \perp (Q)$$

 $\overline{\left(\Omega O
ight)oldsymbol{\perp}\left(Q
ight)}$ إدن النقط Ω و A و A مستقيمية . و بالتالي $\Omega\in (OA)$

$$\left\{egin{aligned} a=t\ b=-t\ :\ D(a,b,c)\in OA\)$$
 بما أن $\Omega(a,b,c)\in OA$ فإن المثلوث $\Omega(a,b,c)$ يحقق التمثيل البار امتري للمستقيم وما $\Omega(a,b,c)$ فإن المثلوث $C=3t$

$$c=3a$$
 و منه : $b=-a$

$$(\Gamma)$$
 با لدينا (S) و (S) هو شعاع الفلكة (S) هو شعاع الدائرة (S) و (S) هو شعاع الدائرة (S) الدينا (S) مماس للفلكة (S) هي النقطة (S) هي النقطة (S) مماس للفلكة (S) مماس للفلكة (S) هي النقطة (S) هي النقطة (S) مماس للفلكة (S) مماس للفلكة (S) مماس (S) مماس للفلكة (S) هي النقطة (S) مماس للفلكة (S) مم

$$\Omega O^2 = a^2 + b^2 + c^2$$
 و $\Omega A^2 = a^2 + b^2 + c^2 - 2a + 2b - 6c + 11$: بالتعويض في النتيجة المحصل عليها نجد :
$$a - b + 3c = -11$$

$$a-b+3c=-11$$
 عن $a-b+3c=-11$ و $a-b+3c=-11$ و $a-b+3c=-11$ و $a-b+3c=-11$ و $a-b+3c=-11$ و $a-b+3c=-11$ بالمثلوث $a-(-a)+3(3a)=-11$ بالمثلوث $a-(-a)+3(3a)=-11$ و منه $a=-1$ و منه $a=-1$ و التالي: $a-(-a)+3(3a)=-11$ و لدينا كذلك : $a-(-a)+3(3a)=-11$

تصحيح التمرين 5

$$(D)$$
 و $(D) \perp (P)$ موجهة للمستقيم $\vec{n} \, (1,1,-1)$ النا $(D) \perp (P)$ و (P) موجهة للمستقيم $\vec{n} \, (1,1,-1)$. 1 $(D) \perp (P)$ و لدينا $(D) \perp (P)$ و لدينا $(D) \perp (P)$ و $(D) \perp (P)$ و $(D) \perp (D)$. $(D) \perp (D)$

8/11 Math.ma $- \frac{4}{2017}$

$$\begin{cases} x=2+t \ y=t \end{cases}$$
 . $\begin{cases} x=2+t \ z=2-t \end{cases}$. $\begin{cases} x=2+t \ z=2-t \end{cases}$

2. لدينا النقطة $\,B\,$ هي نقطة تقاطع المستقيم $\,(\,D\,)\,$ و المستوى $\,(\,P\,)\,$ و بالتالي مثلوث إحداثياتها يحقق :

$$B\left(3,1,1\right)$$
 : ومنه $t=1$: $z=2-t$ $z=2-t$ $z=2-t$

 $R^{2} = r^{2} + AB^{2}$ $R = \sqrt{r^{2} + AB^{2}}$ $R = \sqrt{(2)^{2} + (\sqrt{3})^{2}}$ $R = \sqrt{7}$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$ $(x - 2)^{2} + (y - 0)^{2} + (z - 2)^{2} = (\sqrt{7})^{2} : (S)$

تصحيح التمرين 6

:
$$R = \sqrt{3}$$
 و شعاعها $\Omega(1,-1,0)$ التي مركزها (S) التي مركزها (S) و شعاعها $\Omega(x-(1))^2 + (y-(-1))^2 + (z-(0))^2 = (\sqrt{3})^2$
$$(x-1)^2 + (y+1)^2 + z^2 = 3$$

$$x^2 + y^2 + z^2 - 2x + 2y - 1 = 0$$

$$(0)^2 + (0)^2 + (1)^2 - 2(0) + 2(0) - 1 = 1 - 1 = 0 :$$
 لدينا
$$A(0,0,1) \in (S) :$$
 لاننا : $A(0,0,1) \in (S)$ و $\overrightarrow{AB}(1,1,0) :$ لدينا : $\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$

$$(ABC)$$
 البينا المستوى $AB \wedge \overline{AC}$ $(1,-1,-1)$ البينا $X-y-z+d=0$ البين معادلة ديكارتية المستوى (ABC) القدن (ABC) البين (ABC) البينا و لينا (ABC) البينا (ABC) البينا و (ABC) البينا و و المثالي و و المثالي و

(2,-2,-1) و (0,0,1) : هما (S) هما والمستقيم (Δ) و الفلكة (S) هما وخداثيتي نقطتي تقاطع المستقيم

$$(ABC)$$
 متجهة منظمية للمستوى $\overrightarrow{AB} \wedge \overrightarrow{AC} (-16,8,4)$.3 .3 $-16x + 8y + 4z + d = 0$: پازن معادلة ديكارتية للمستوى (ABC) تكتب على شكل (ABC) تكتب على شكل (ABC) باذن (ABC) .4 (ABC) ابننا (ABC) .4 (ABC) .4 (ABC) .4 (ABC) .4 (ABC) .4 (ABC) .5 و منه : المعادلة تصبح (ABC) هي (ABC) هي .4 (ABC) هي .4 (ABC) هي .4 (ABC) هي .4 (ABC) هي .5 (ABC)

$$x^2+y^2+z^2-10x-20y-2z+70=0$$
 : لدينا (أ.4) $(x-5)^2+(y-10)^2+(z-1)^2=\left(\sqrt{56}\right)^2$: تكافئ $R=\sqrt{56}$ هي الفلكة التي مركزها C $(5,10,1)$ و شعاعها C $(5,10,1)$ فإن C $(5,10,1)$ مماس الفلكة C $(5,10,1)$ فإن C $(5,10,1)$ مماس الفلكة C $(5,10,1)$ فإن C $(5,10,1)$ مماس الفلكة C $(5,10,1)$

$$\begin{cases} x = t \\ y = 1 + t \\ z = -1 + 2t \end{cases} \quad (t \in \mathbb{R})$$
 عثلوث إحداثيات نقطة لتماس يحقق :
$$(x - 5)^2 + (y - 10)^2 + (z - 1)^2 = 56$$

بالتعويض نجد : 3 =
$$x = 3$$
 $y = 4$: $z = 5$

إذن النقطة $H\left(3,4,5
ight)$ هي نقطة لتماس