Analysis on Clinical and Financial Data of Patients with a Certain Condition

Matthew Zakharia Hadimaja

Analysis

Preprocessing

Cleaning

Joining

- bill_amount
- bill_id
- clinical_data
- demographics

- inconsistent labeling
- wrong formats

- unnecessary information
- new variables

Exploration

variables

- numerical
- continuous
- binary
- categorical

between predictors

- correlation
- means across categories

on a predictor

- histograms
- bar plot

between predictor and response

- regression line
- box plot

Exploration - numerical

Predictors are uncorrelated of each other. Only one predictor pair (weight-height) has correlation more than 0.05!

Exploration - numerical

Top 6 predictors with highest correlation with total_amount:

variable	correlation
symptom_5	0.517
age	0.326
medical_history_1	0.227
symptom_3	0.184
symptom_2	0.158
weight	0.158

Exploration - continuous

Most distribution have Gaussian shape, with some following bimodal distributions.

Exploration - binary

Medical history variables (top row) are unbalanced, but it is expected.

Patients under this condition are more likely to receive certain preop medications.

Some symptoms are more common than the other under this condition.

Exploration - categorical

No difference in cost across gender. The condition also affects each gender equally.

Malays and Indians have higher cost. Does this condition affect them more?

Foreigners and PRs pay more than Singaporeans do.

race and resident_status are not distributed equally in our data.

Prediction

Prediction – linear regression

Baseline model

MSE = 2473.793

Important variables:

symptom_5, symptom_3, symptom_2 medical_history_1, medical_history_6 race and resident_status

Prediction – polynomial regression

Best model

MSE = 520.633

Higher performance, more variables. May be difficult to explain.

Prediction – other models

LASSO

- Small penalty from CV
- Similar to OLS

MSE: 2466.897

Regression Tree

Worst model, even with deep tree

MSE: 4868.979

Support Vector Regression

- CV chose linear kernel
- Similar to OLS

MSE: 2555.064

Neural Network

 Better than OLS, but worse than polynomial regression

MSE: 1122.375

Conclusion

Important cost drivers

- symptom variables
- race, residential status
- age, weight
- some medical history variables

Less relevant variables

- preop medication variables
- lab results
- some medical history variables

Model selection

 simple models with regularized parameter