COMP6453: Week 2 Answers

1 Part 1

1.1

$$(27+45) \mod 17 = 4$$

1.2

$$(2 \times 17 + 19) \mod 11 = 9$$

1.3

$$2^{10} \mod 7 = 2$$

1.4

$$A = \{0, 6, 17, 20, 26\}$$
 and $B = \{5, 6, 17, 19, 35\}$

$$|A| = 5 |B| = 5$$

Union: $A \cup B = \{0, 6, 17, 20, 26, 5, 19, 35\}$

Intersection: $A \cap B = \{6, 17\}$

2 Part 2

2.1 Question 5

Consider cipher $M=D\ G\ H\ L\ T\ E\ W\ Q.$

Assume letter A map to 0, B map to 1,.. and so on.

Shifting key K = 5 that means we want to shift D = 3 + K (=5) = 8 which map to I

 $\textbf{Answer:} \quad \text{Text}: \text{DGHLTEWQ}$

Shift: 5

Cipher: ILMQYJBV

2.2 Question 6

Suppose that K = (5, 21) is a key in an Affine Cipher - substitution cipher over \mathbb{Z}_{29} .

(a) Express the decryption function $d_K(y)$ in the form $d_K(y) = a_0 y + b_0$, where $a_0, b_0 \in \mathbb{Z}_{29}$.

Answer: We have encryption function $E_K(x) = (a_0x + b_0) \mod p$, K = (5, 21) and p = 29

$$E_K(x) = (5x + 21) \mod 29$$

We have the decryption function is:

$$D_K(y) = a_0^{-1}(y - b_o) \mod 29$$

 a_0^{-1} is the modular multiplicative inverse of a_0 modulo p. ie. satisfy equation:

$$1 = a_0^{-1} a_0 \bmod p$$

Note that the multiplicative inverse of a only exists if a and m are coprime.

We now want to first find the modular multiplicative inverse of $a_0 = 5$, which is a_0^{-1} . In this case, it is 6 because $5 * 6 = 30 \mod 29 = 1$

Thus, we now have:

$$D_K(y) = 6(y - 21) \mod 29$$

$$<=> D_K(y) = 6y - 126 \mod 29$$

$$<=>D_K(y) = 6y + 19 \mod 29$$

(b) Prove that
$$d_K(e_K(x)) = x$$
 for $\forall x \in \mathbb{Z}_{29}$.

Answer: $d_K(e_K(x)) = a_0^{-1}(E_K(x) - b) \mod 29$

$$= a_0^{-1}(((ax+b) \mod 29) - b) \mod 29$$

$$= a_0^{-1}(ax + b - b) \bmod 29$$

$$= a_0^{-1} \ ax \mod 29$$

$$= x \mod 29$$

= x

2.3 Question 7

Ciphertext: ZRTFT IH PQFTHZ IQ ZRT XBGBOZIO HTQBZT. HTWTFBG ZRLPHBQV HLGBF HYHZTSH RBWT VTOGBFTV ZRTIF IQZTQZILQH ZL GTBWT ZRT FTEPKGIO. ZRIH HTEBFBZIHZ SLWTSTQZ, PQWTF ZRT GISIZTV Q PFKTF LD CTVI AQIXRZH ZL SBIQZBIQ ETBOT BQV LFVFF IQ ZRT XBGBJY. HTQBZLF BSIVBGB, ZRT DLFSTF NPTTQ LD QBKLL, IH FTZPFQIQX ZL ZR T XBGBOZIO HTQBZT ZL WLZT LQ ZRT OFIZIOBG IHHPT LD OFTBZIQX BQ BFSY LD ZRT FTEPKGIO ZL BHHIHZ ZRT LWTFMRTGSTV CTVI

Substitution Dictionary: t -> e z -> t b -> a i -> o 1 -> i h -> n

2.4 Question 8

Consider a cipher which has message space, ciphertext space, and keyspace all equal to Z_p , where p is a prime. Let encryption be given by $E(k, m) = k \cdot m \pmod{p}$ and $D(k, c) = k^{-1} \cdot c \pmod{p}$. Show this cipher has perfect secrecy. What goes wrong if p is not a prime?

Answer: Given a ciphertext c and a message $m \in \mathbb{Z}_p$, the probability m encrypts to c is precisely the number of keys such that E(k, m) = c divided by the total number of keys. The number of such keys is 1, so this probability is always 1/p.

When p is not a prime, then not all keys will have a multiplicative inverse (i.e k^{-1} does not always exist). So we must restrict the keyspace to keys k which do have a multiplicative inverse. But then the size of the keyspace is smaller than the size of the message space, so we cannot have perfect security.