Семинары: Погорелова П.В.

Семинар 2.

Модель парной регрессии. МНК-оценивание.

- 1. Обозначим $k_i = \frac{x_i}{\sum_j x_j^2}$. Покажите, что k_i удовлетворяют следующим условиям:
 - (a) $\sum k_i = 0;$
 - (b) $\sum k_i x_i = \sum k_i X_i = 1;$
 - (c) $\sum k_i^2 = 1/\sum x_i^2$;
 - (d) $\sum k_i y_i = \sum k_i Y_i$.
- 2. Рассмотрим модель парной регрессии без константы

$$Y_i = \beta_1 X_i + \varepsilon_i$$
.

Найдите:

- (a) МНК-оценку для β_1 ;
- (b) $Var(\hat{\beta}_1)$.
- 3. Рассмотрим модель парной регрессии с константой

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

Получите выражения для:

- (a) $Var(\hat{\beta}_0)$, $Var(\hat{\beta}_1)$;
- (b) $\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)$.
- 4. Рассмотрим модель парной регрессии

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

Найдите оценку для дисперсии σ^2 случайной ошибки ε .

- 5. (Домашнее задание). Пусть $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ и $i=1,\ldots,5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 Y_i^2 = 55, \sum_{i=1}^5 X_i^2 = 3, \sum_{i=1}^5 X_i Y_i = 12, \sum_{i=1}^5 Y_i = 15, \sum_{i=1}^5 X_i = 3$.
 - (a) Найдите $\hat{\beta}_0$, $\hat{\beta}_1$, $Corr(\hat{\beta}_0, \hat{\beta}_1)$.
 - (b) Найдите $TSS,\,ESS,\,RSS,\,R^2,\,\hat{\sigma}^2.$