CS2040S Data Structures and Algorithms

(e-learning edition)

Hashing! (Part 1)

Semester Roadmap

Plan: this week and next

Three Days of Hashing

- Applications
- Basic theory
- Handling collisions
- (Hashing in Java)
- Amortized analysis (doubling/shrinking)
- Sets and Bloom filters

Topic of the Week: Hash Tables

Abstract Data Types

Symbol Table

public interface	SymbolTable	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Symbol Table

Examples:

Dictionary: key = word

value = definition

Phone Book key = name

value = phone number

Internet DNS key = website URL

value = IP address

Java compiler key = variable name

value = type and value

Implement a symbol table with a Linked List: $(C_I = cost insert, C_S = cost search)$

1.
$$C_I = O(1), C_S = O(1)$$

2.
$$C_I = O(1), C_S = O(\log n)$$

$$\checkmark$$
3. C₁ =O(1), C_S=O(*n*)

4.
$$C_T = O(\log n)$$
, $C_S = O(\log n)$

5.
$$C_1 = O(n), C_S = O(\log n)$$

6.
$$C_1 = O(n), C_S = O(n)$$

Implement symbol table with an AVL tree: $(C_I = cost insert, C_S = cost search)$

1.
$$C_I = O(1), C_S = O(1)$$

2.
$$C_I = O(1), C_S = O(\log n)$$

3.
$$C_1 = O(1), C_S = O(n)$$

$$\checkmark$$
4. $C_I = O(\log n)$, $C_S = O(\log n)$

5.
$$C_1 = O(n), C_S = O(\log n)$$

6.
$$C_I = O(n), C_S = O(n)$$

Symbol Table

Implement a symbol table with:

$$- C_{I} = O(1)$$

$$- C_S = O(1)$$

Fast, fast, fast....

What can you do with a dictionary but not a symbol table?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting: With an AVL tree/dictionary? With a symbol table?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting:
With an AVL tree/dictionary? O(n log n)
With a symbol table?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting:
With an AVL tree/dictionary? O(n log n)
With a symbol table? O(n²)

Sorting (aside)

Isn't O(1) impossible?

Sorting takes $\Omega(n \log n)$ comparisons.

- How do you sort with a symbol table?
- Only search/insert/delete.

Sorting (aside)

Isn't O(1) impossible?

Sorting takes $\Omega(n \log n)$ comparisons.

- How do you sort with a symbol table?
- Only search/insert/delete.

(Binary) search takes $\Omega(\log n)$ comparisons.

- Impossible to search in fewer than log(n) comparisons.
- But a symbol table finds an item in O(1) steps!!
- Conclusion: symbol table is not *comparison-based*.

java.util.Map

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                         get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value remove (Object k) remove mapping for k
                                         number of entries
            int size()
```

java.util.Map

- Parameterized by key and value.
- Does not extend Comparable

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                        get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value
                remove(Object k) remove mapping for k
                                        number of entries
            int size()
```

java.util.Map

Search by key.

public interface	java.util.Map <key, value=""></key,>	
void	clear()	removes all entries
boolean	containsKey(Object k)	is k in the map?
boolean	containsValue(Object v)	is v in the map?
Value	get(Object k)	get value for k
Value	put(Key k, Value v)	adds (k,v) to table
Value	remove(Object k)	remove mapping for k
int	size()	number of entries

java.util.Map

- Search by key.
- Search by value.(May not be efficient.)

```
public interface java.util.Map<Key, Value>
           void clear()
                                        removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                        get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value
                remove(Object k) remove mapping for k
                                        number of entries
            int size()
```

java.util.Map

Can use any Object as key?

```
public interface java.util.Map<Key, Value>
           void clear()
                                        removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value
                get(Object k)
                                        get value for k
          Value put (Key k, Value v) adds (k,v) to table
                                        remove mapping for k
          Value
                remove(Object k)
                                        number of entries
            int size()
```

java.util.Map

Put new (key, value) in table.

```
public interface java.util.Map<Key, Value>
            void
                 clear()
                                          removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
           Value get (Object k)
                                          get value for k
           Value put (Key k, Value v)
                                          adds (k, v) to table
                                          remove mapping for k
           Value
                 remove(Object k)
                                          number of entries
             int size()
```

Map Interface in Java

java.util.Map<Key, Value>

- No duplicate keys allowed.
- No mutable keys
 - If you use an *object* as a key, then you can't modify that object later.

Symbol Table

What time does this plane depart it?

Key Mutability

```
SymbolTable<Time, Plane> t =
           new SymbolTable<Time, Plane>();
Time t1 = new Time(9:00);
Time t2 = new Time(9:15);
t.insert(t1, "SQ0001");
t.insert(t2, "SQ0002");
t1.setTime(10:00);
x = \text{new Time (9:00)};
t.search(x);
```

Symbol Table Moral: Keys should be immutable.

Key Mutability

Examples: Integer, String

```
SymbolTable<Time, Plane> t =
           new SymbolTable<Time, Plane>();
Time t1 = new Time(9:00);
Time t2 = new Time(9:15);
t.insert(t1, "SQ0001");
t.insert(t2, "SQ0002");
t1.setTime(10:00);
x = \text{new Time}(9:00);
t.search(x);
```

java.util.Map

public interface	java.util.Map	<key, value=""></key,>
Set <map.entry<key, value=""></map.entry<key,>	entrySet()	set of all mappings
Set <key></key>	keySet()	set of all keys
Collection <value></value>	values()	collection of all values

Note: not sorted

not necessarily efficient to work with these sets/collections.

What is wrong here?

Example:

There is a bug here!

```
Map<String, Integer> ageMap = new Map<String, Integer>();

ageMap.put("Alice", 32);

ageMap.put("Bernice", 84);

ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice")
```

- Key-type: String
- Value-type: Integer

What is wrong here?

Example:

Map is an interface!
Cannot instantiate an interface.

```
Map<String, Integer> ageMap = new Map<String, Integer>();

ageMap.put("Alice", 32);

ageMap.put("Bernice", 84);

ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice")
```

- Key-type: String
- Value-type: Integer

Map Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", 84);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice");
System.out.println("Alice's age is: " + age + ".");
```

- Key-type: String
- Value-type: Integer

Map Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", null);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Bob");
if (age==null){
    System.out.println("Bob's age is unknown.");
}
```

- Returns "null" when key is not in map.
- Returns "null" when value is null.

Map Classes in Java

HashMap

Symbol Table

- containsKey
- contains Value
- entrySet
- get
- isEmpty
- keySet
- put
- putAll
- remove
- values

TreeMap

Dictionary

- containsKey
- contains Value
- entrySet
- get
- isEmpty
- keySet
- put
- putAll
- remove
- values

Map Classes in Java

HashMap

Symbol Table

TreeMap

Dictionary

- ceilingEntry
- ceilingKey
- descendingKeySet
- firstEntry
- firstKey
- floorEntry
- floorKey
- headMap
- higherEntry
- higherKey
- ... (and more)

Lots of functionality

Wide Interfaces

VS.

Narrow Interfaces

Limited functionality

Lots of functionality

- Java
- No guarantee of efficiency.
- Easy to use (badly).

Wide Interfaces

VS.

Narrow Interfaces

Limited functionality

- Enforces proper use.
- Restricts usage.

Symbol Tables are Useful

Examples:

- 1. Spelling correction (key=misspelled word, data=word)
- 2. Scheme interpreter (key=variable, data=value)
- 3. Web server
 - Lots of simultaneous network connections.
 - When a packet arrives, give it to the right process to handle the connection.
 - key=ip address, data = connection handler

In this cases, O(log n) often isn't fast enough!

Symbol Tables are Useful

Example 1: Pilot Scheduling

1. Check to see if feasible to schedule at time t.

No two airplanes can land with 3 minutes of each other.

2. Find schedule of pilot *p*.

Get a list of all the planes that are being flown by a specified pilot.

Which can be efficiently solved with a symbol table?

- 1. Both: scheduling and pilots info.
- 2. Only scheduling.
- ✓3. Only pilot info.
 - 4. Neither.

Example 1: Pilot Scheduling

- 1. Check to see if feasible to schedule at time t.
 - Hard with a symbol table!
 - Need to find out if there are any planes scheduled in the interval $[t, t \pm \text{safe distance}]$

Example 1: Pilot Scheduling

- 1. Check to see if feasible to schedule at time t.
- 2. Find schedule of pilot *p*.
 - Perfect for a symbol table!
 - Can insert new pilots.
 - Can search for (and update) existing pilots.
 - Listing all pilots?

- Given two documents A and B, how similar are they?
 - Two documents are *similar* if they have similar words in similar frequencies.
 - Formally, define each text as a vector with one entry per word.
 - The distance between the two texts is the angle between the two vectors.

- Step 1: Read in each document
 - Read the file as a string.
 - Parse the file into words.
 - Sort the list of words.
 - Count the frequency of each word.
- Step 2: Compare the two documents
 - Calculate the norm |A| and |B| of each vector
 - Calculate the dot product *AB*.
 - Calculate the angle between *A* and *B*.

- Step 1: Read in each document
- O(n) Read the file as a string.
- O(n) Parse the file into words.
- $O(n \log n)$ Sort the list of words.
- O(n) Count the frequency of each word.
 - Step 2: Compare the two documents
- O(n) Calculate the norm |A| and |B| of each vector
- O(n) Calculate the dot product AB.
- O(n) Calculate the angle between A and B.

Performance Profiling (Sorting)

(Dracula vs. Lewis & Clark)

Step	Function	Running Time
Create vectors:	Read each file	1.03s
	Parse each file	1.23s
	Sort words in each file	2.04s
	Count word frequencies	0.41s
Dot product:		6.10s
Norm:		0.01s
Angle:		0.02s
Total:		12.75 s

Performance Profiling (Symbol Table)

(Dracula vs. Lewis & Clark)

Step	Function	Running Time
Create vectors:	Read each file	1.19s
	Parse each file	1.37s
	Sort words in each file	0
	Count word frequencies	0
Dot product:		0.03s
Norm:		0.01s
Angle:		0.02s
Total:		2.43s

Example 2: Document Distance

- Step 1: Read in each document
 - Read and parse the file.
 - Put each (word, count) in a HashMap.

Symbol Table:

- key (String) = word
- value (Integer) = count (# times in doc)

- Step 1: Read in each document
 - Read and parse the file.
 - Put each (word, count) in a map.

```
if (word != "")
{
    if (m_WordList.containsKey(word))
    {
        int count = m_WordList.get(word)+1;
        m_WordList.put(word, count);
    }
    else
    {
        m_WordList.put(word, 1);
    }
    word = "";
}
```

Step 2: Compare documents (dot-product)

```
// Get an iterator for all the keys stored in A
Set<String> ASet = A.m WordList.keySet();
Iterator<String> Alterator = ASet.iterator();
// Iterate through all the keys in A
while (AIterator.hasNext())
    String Key = Alterator.next();
    // If the key from A is also in B
    if (B.m WordList.containsKey(Key))
        // Add the product of the counts to the sum.
        int AValue = A.m WordList.get(Key);
        int BValue = B.m WordList.qet(Key);
        sum += AValue*BValue;
```

Document Distance

(Dracula vs. Lewis & Clark)

Version	Change	Running Time
Version 1		4,311.00s
Version 2	Better file handling	676.50s
Version 3	Faster sorting	6.59s
Version 4	Symbol Table	2.35s

Building a Symbol Table

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
234	null
	null
5	item3
6	null
7	null
8	item2
9	null

Universe U= $\{0..9\}$ of size m = 10.

(key, value)

(2, item1)

(8, item2)

(5, item3)

Assume keys are distinct.

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
3	null
4	null
5	item3
	null
7	null
8	item2
9	null

Example: insert(4, Seth)

Attempt #1: Use a table, indexed by keys.

0	null	
1	null	Example: insert(4, Seth)
2	item1	
3	null	
4	Seth	
5	item3	
6	null	
7	null	
8	item2	
9	null	

Time: O(1) / insert, O(1) / search

Problems:

- Too much space
 - If keys are integers, then table-size > 4 billion

- What if keys are not integers?
 - Where do you put the key/value "(hippopotamus, bob)"?
 - Where do you put 3.14159...?

Pythagoras said, "Everything is a number."

"The School of Athens" by Raphael

Pythagoras said, "Everything is a number."

- Everything is just a sequence of bits.
- Treat those bits as a number.

– English:

- 26 letters => 5 bits/letter
- Longest word = 28 letters (antidisestablishmentarianism?)
- 28 letters * 5 bits = 140 bits
- So we can store any English word in a direct-access array of size 2^{140} .

Pythagoras said, "Everything is a number."

- Everything is just a sequence of bits.
- Treat those bits as a number.

– English:

- 26 letters => 5 bits/letter
- Longest word = 28 letters (antidisestablishmentarianism?)
- 28 letters * 5 bits = 140 bits
- So we can store any English word in a direct-access array of size 2¹⁴⁰. ≈ number of atoms in observable universe

Problem:

- e.g., 2¹⁴⁰
- Huge universe U of possible keys.
- Smaller number n of actual keys.

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).
- Time complexity:
 - Time to compute h + Time to access bucket
- For now: assume hash function has cost 1 to compute.

0	null
1	null
2 3	null
	null
4	null
5	null
6	null
7	null
8	null
9	null

 $insert(k_1, A)$

 $insert(k_1, A)$ $insert(k_2, B)$

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

Can we choose a hash function with no collisions?

- 1. Yes
- 2. Sometimes, if we choose carefully
- ✓3. No, impossible

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

– Unavoidable!

- The table size is smaller than the universe size.
- The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Coping with Collision

• Idea: choose a new, better hash functions

Coping with Collision

- Idea: choose a new, better hash functions
 - Hard to find.
 - Requires re-copying the table.
 - Eventually, there will be another collision.

Coping with Collision

- Idea: choose a new, better hash functions
 - Hard to find.
 - Requires re-copying the table.
 - Eventually, there will be another collision.
- Idea: chaining (today)
 - Put both items in the same bucket!
- Idea: open addressing (next week)
 - Find another bucket for the new item.

Puzzle Break

100 passengers board the airplane in a random order.

Puzzle Break

An airplane has 100 seats.

100 passengers board the airplane in a random

Passenger 1 is Mr. Burns.

Mr. Burns sits in a random seat.

An airplane has 100 seats.

- Sits in their assigned seat, if it is free.
- Otherwise, sits in a random seat.

An airplane has 100 seats.

You are passenger #100.

What is the probability your seat is free when you board?

An airplane has 100 seats.

What is the probability your seat is free when you board?

Problem Solving techniques:

Try a plane with 2 seats. Try a plane with 3 seats.

Coping with Collision

- Idea: choose a new, better hash functions
 - Hard to find.
 - Requires re-copying the table.
 - Eventually, there will be another collision.
- Idea: chaining (today)
 - Put both items in the same bucket!
- Idea: open addressing (next week)
 - Find another bucket for the new item.

Chaining

Each bucket contains a linked list of items.

Chaining

Each bucket contains a linked list of items.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

What is the worst-case cost of inserting a (key, value)?

- **✓** 1. O(1 + cost(h))
 - 2. $O(\log n + \operatorname{cost}(h))$
 - 3. O(n + cost(h))
 - 4. O(n cost(h))
 - 5. We cannot determine it without knowing h.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

What is the worst-case cost of searching a (key, value)?

- 1. O(1 + cost(h))
- 2. $O(\log n + \operatorname{cost}(h))$
- 3. O(n + cost(h))
- 4. O(n*cost(h))
- 5. We cannot determine it without knowing h.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key) → time depends on length of linked list
 - Calculate h(key)
 - Search for (key, value) in the linked list.

Assume all keys hash to the same bucket!

- Search costs O(n)
- Oh no!

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Why don't we just insert each key into a random bucket (instead of using h)?

- 1. It would be slow to insert.
- 2. Computers don't have a real source of randomness.
- 3. By choosing the keys carefully, a user could force the random choices to create many collisions.

- 4. Searching would be very slow.
- 5. None of the above.

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m= average # items / bucket.

Expected search time = 1 + expected # items per bucket

linked list traversal

hash function + array access

Probability Theory

Set of outcomes for $X = (e_1, e_2, e_3, ..., e_k)$:

- $Pr(e_1) = p_1$
- $Pr(e_2) = p_2$
- _ ...
- $Pr(e_k) = p_k$

Expected outcome:

$$E[X] = e_1p_1 + e_2p_2 + ... + e_kp_k$$

Probability Theory

Linearity of Expectation:

$$- E[A + B] = E[A] + E[B]$$

Example:

- -A = # heads in 2 coin flips
- B = # heads in 2 coin flips
- -A + B = # heads in 4 coin flips

$$E[A+B] = E[A] + E[B] = 1 + 1 = 2$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m= average # items / bucket.

Expected search time = 1 + expected # items per bucket

linked list traversal

hash function + array access

A little more probability

```
X(i, j) = 1 if item i is put in bucket j
= 0 otherwise
```

$$Pr(X(i, j) == 1) = ?$$

- **✓**1. 1/m
 - 2. 1/n
 - 3. 1/(m+n)
 - 4. m/n
 - 5. n/m
 - 6. log(n)

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j) == 1) = 1/m$$

$$E(X(i, j)) = ??$$

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j) == 1) = 1/m$$

$$E(X(i, j)) = Pr(X(i, j)==1)*1 + Pr(X(i, j)==0)*0$$

$$= Pr(X(i, j)==1)$$

$$= 1/m$$

What is the expected number of items in a bucket?

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Each item contributes '1' to the bucket it is in...

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Calculate expected number of items per bucket:

Expected
$$(\Sigma_i X(i, b)) =$$

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i | \mathbf{X}(i, b)) = \Sigma_i | \mathbf{E}(\mathbf{X}(i, b))$$

Linearity of expectation: E(A + B) = E(A) + E(B)

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i | \mathbf{X}(i, b)) = \Sigma_i | \mathbf{E}(\mathbf{X}(i, b))$$

$$= \sum_{i} 1/m$$

$$= n/m$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / buckets.

- Expected search time = 1 + n/mlinked list traversal hash function + array access

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets, e.g., m = 2n

- Expected search time = 1 + n/m= O(1)

Searching:

- Expected search time = 1 + n/m = O(1)
- Worst-case search time = O(n)

Inserting:

- Worst-case insertion time = O(1)

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: O(log n)

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: $\Theta(\log n / \log \log n)$

Hashing: Recap

Problem: coping with large universe of keys

- Number of possible keys is very, very large.
- Direct Access Table takes too much space

Hash functions

- Use hash function to map keys to buckets.
- Sometimes, keys collide (inevitably!)
- Use linked list to store multiple keys in one bucket.

Analyze performance with simple uniform hashing.

- Expected number of keys / bucket is O(n/m) = O(1).

100 passengers board the airplane in a random order.

An airplane has 100 seats.

100 passengers board the airplane in a random

Passenger 1 is Mr. Burns.

Mr. Burns sits in a random seat.

An airplane has 100 seats.

- Sits in their assigned seat, if it is free.
- Otherwise, sits in a random seat.

An airplane has 100 seats.

You are passenger #100.

What is the probability your seat is free when you board?

An airplane has 100 seats.

What is the probability your seat is free when you board?

Problem Solving techniques:

Try a plane with 2 seats. Try a plane with 3 seats.

