EE671: VLSI DESIGN SPRING 2024/25

LAXMEESHA SOMAPPA

DEPARTMENT OF ELECTRICAL ENGINEERING

IIT BOMBAY

laxmeesha@ee.iitb.ac.in

LECTURE – 13 ARITHMETIC IP: ADDERS

N-BIT ADDERS: RIPPLE CARRY ADDER (RCA)

- ☐ RCA: Cascade of FAs
- □ Worst case delay: Carry path (carry propagates from C_{in} to C_{out})
- \Box $T_{adder_wc} = (N-1) t_{carry} + t_{sum}$
- □ Speeding up the adder: reduce carry hardware delay
- ☐ Alternately: Sum is not in the critical path!!

RCA: OPTIMIZATION

- ☐ Sum is not in the critical path
 - ☐ Can generate sum slowly → if it can reduce MOSFETs

$$sum = \overline{C_{out}} \cdot (A + B + C_{in}) + A \cdot B \cdot C_{in}$$

A total of 28 MOSFETs to generate Sum and Carry (Property-1)

RCA: FURTHER OPTIMIZATION?

☐ Use property-2!! → Odd FAs: complement input

- ☐ Using only property-1:
 - \square [28*4] = 112 MOSFETs, delay: (N.t_{carry})
- Now:
 - \square [10+16]*2 + [10+14+4]*2 = 108 MOSFETs, delay: (N.t_{carry new})
 - \Box t_{carry_new}: one-inverter delay lesser than t_{carry} \rightarrow i.e., (N. t_{inv}) faster

FEW OBSERVATIONS BEFORE WE PROCEED

Α	В	С	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

When both inputs are o, irrespective of C_{in} , C_{out} is always o. **Kill** the Cout. i.e., when,

$$K \equiv \overline{A} \cdot \overline{B}$$
, $C_{out} = 0$

Other input cases (only one input is O/1), $C_{out} = C_{in}$. **Propagate** Cout. i.e., when,

$$P \equiv A \oplus B$$
, $C_{out} = C_{in}$

When both inputs are 1, irrespective of Cin, Cout is always 1. **Generate** Cout. i.e., when,

$$G \equiv A.B$$
, $C_{out} = 1$

Sum =
$$P \oplus C_{in}$$
 and $C_{out} = G + P.C_{in}$

GENERATING P AND G

When both inputs are o, irrespective of $C_{\rm in}$, $C_{\rm out}$ is always o. **Kill** the $C_{\rm out}$. i.e., when,

$$K \equiv \overline{A} \cdot \overline{B}, \ C_{out} = 0$$

Other input cases (only one input is O/1), $C_{out} = C_{in}$.

Propagate C_{out}. i.e., when,

$$P \equiv A \oplus B$$
, $C_{out} = C_{in}$

When both inputs are 1, irrespective of C_{in} , C_{out} is always 1. **Generate** C_{out} . i.e., when,

$$G \equiv A.B$$
, $C_{out} = 1$

4-BIT MANCHESTER CARRY CHAIN

- ☐ Worst case delay: All "P" are 1
- ☐ Series of RC network → delay high in the absence of static inverter

THE CARRY RECURRENCE

Recurrence:
$$C_i = G_i + P_i C_i$$

$$C_1 = G_1 + P_1 C_0$$

$$C_2 = G_2 + P_2 G_1 + P_2 P_1 C_0$$

$$C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0$$

$$C_4 = G_4 + P_4 G_3 + P_4 P_3 G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 C_0$$

- ☐ Consider a 4 bit adder.
- □ The final C_{out} (C_4 in this case) can be directly generated from C_o (neglecting the hardware complexity)
- \square Practically: to generate C_{4} we need high fan-in CMOS gates (max 5 input AND)
- ☐ Generating C4 will have the same order of delay as RCA with FA!!!
- □ Remember: fan-in increases with increased adder size → limitation → might be okay for 4-bits

RCA USING PG

$$C_4 = G_4 + P_4 C_3$$

PG DIAGRAM NOTATION

PG DIAGRAM NOTATION (16-BIT ADDER)

$$G_{i:k}$$
 $G_{k-1:j}$
 $G_{k-1:j}$

$$\Box t_{\text{add_wc}} = t_{\text{pg}} + (N-1) t_{\text{AO}} + t_{\text{sum}}$$

- □ Compute P and G for each bit parallelly
- \square If $P_1.P_2.P_3.P_4 = 1$, then carry is propagated (critical path delay)
- ☐ If a G is generated in any FA: no propagation → not critical path
- ☐ Hence, bypass the critical path through mux!
- □ No use in its standalone mode. But consider the next case

- ☐ Propagate signal are pre-computed for stage-2 onwards
 - ☐ Critical path can be bypassed from stage-2 onwards

- □ Consider *N* bit adder with *B* bits in each stage
- \Box $t_{add_wc} = (B-1).t_{carry} + (N/B-1).t_{mux} + (B-1).t_{carry} + t_{sum}$ [Assuming $t_{pg} < (B-1)t_{carry}$]
- \square Recall, $t_{add,rca_wc} = (N-1) t_{carry} + t_{sum}$
- □ For carry skip adder: optimal B = sqrt(N/2) [Solve this !!]

- \square Compute $P_i.P_{i+1}.P_{i+2}.P_{i+3}$.
- ☐ These will be computed at the same time across 4 stages.
- ☐ Propagate signal are pre-computed for stage-2 onwards
- ☐ Critical path can be bypassed from stage-2 onwards

PG-RCA

□ First block of 4-bits → worst-case delay → no propagate (no bypass) → ripple through 3 bits

- $T_{\text{add_wc}} = t_{\text{pg}} + (B-1).t_{\text{AO}} + (N/B-1).t_{\text{mux}} + (B-1).t_{\text{AO}} + t_{\text{sum}}$ $(B-1).t_{\text{AO}} + t_{\text{sum}}$
- □ For carry skip adder: optimal B =sqrt(N/2) [Solve this !!]

CARRY SKIP (BYPASS) ADDER USING PG-RCA: VARIABLE SIZE

☐ Adder with 2,3,4,4,3 bit groups (16-bit adder)

$$\Box$$
 T_{add wc} = ?

FA-RCA

CARRY SELECT ADDER (CSA) USING FA-RCA

- □ CSA: Simple implementation version
 - ☐ Precompute Sum for both possible carry options
 - ☐ Multiplex the appropriate Sum output based on the Carry signal

☐ Hardware doubles!

CARRY SELECT ADDER (CSA): USING PG-RCA

Precompute P,G, C_{out} for both possible carry conditions

Hardware doubles!

$$\Box$$
 T_{adder_wc} = t_{pg} + B.t_{AO} + (N/B). t_{mux} + t_{sum}

SQUARE ROOT CSA

- ☐ All subsequent stages are ready with the result and waiting for the previous stage
- ☐ Instead of idle time, spend this wait time on computing additional bit addition!!
- ☐ Instead of fixed B, use increasing bit group (example: increase by 1)

$$\Box$$
 $t_{adder-wc} = t_{pg} + 2.t_{AO} + sqrt(N). t_{mux} + t_{sum}$

TREE ADDERS: IDEA

- ☐ Speed up computation: tree structure
- ☐ Similar to example below:

☐ Combine neighbours to produce immediate intermediate output groups

TREE ADDERS: BASICS

☐ Recall the carry recurrence

Recurrence:
$$C_{i+1} = G_i + P_i C_i$$

Group generate
$$C_1 = G_0 + P_0C_0$$

$$C_2 = G_1 + P_1G_0 + P_1P_0C_0$$

$$G_{i:j}$$

$$G_2 = (G_1 + P_1G_0) + (P_1P_0)C_0$$

$$G_{i:j}$$
Group propagate
$$P_{i:j}$$

□ Nomenclature: let's call the carry from present stage "i" as $C_{out,i}$ and the main adder carry as $C_{in,o}$

$$\begin{split} P_{1:0} &= P_1 \cdot P_0 \quad G_{1:0} = G_1 + P_1 \cdot G_0 \\ C_{\text{out},1} &= G_{1:0} + P_{1:0} C_{\text{in},0} \\ \end{split}$$

$$\begin{split} P_{3:2} &= P_3 \cdot P_2 \quad G_{3:2} = G_3 + P_3 \cdot G_2 \\ C_{\text{out},3} &= G_{3:2} + P_{3:2} C_{\text{in},2} \\ \end{split}$$

$$\begin{split} P_{3:0} &= P_{3:2} \cdot P_{1:0} \quad G_{3:0} = G_{3:2} + P_{3:2} \cdot G_{1:0} \\ C_{\text{out},3} &= G_{3:0} + P_{3:0} C_{\text{in},0} \end{split}$$

TREE ADDERS: BASIC IDEA

$$\begin{split} P_{1:0} &= P_1 \cdot P_0 \quad G_{1:0} = G_1 + P_1 \cdot G_0 \\ C_{\text{out},1} &= G_{1:0} + P_{1:0} C_{\text{in},0} \end{split}$$

$$P_{3:2} = P_3 \cdot P_2 \quad G_{3:2} = G_3 + P_3 \cdot G_2$$

$$C_{\text{out},3} = G_{3:2} + P_{3:2}C_{in,2}$$

$$\begin{split} P_{3:0} &= P_{3:2} \cdot P_{1:0} \quad G_{3:0} = G_{3:2} + P_{3:2} \cdot G_{1:0} \\ C_{\text{out},3} &= G_{3:0} + P_{3:0} C_{\text{in},0} \end{split}$$

 \Box The final C_{out} which is in the critical path can be computed using C_{in} with a tree like structure without relying on previous-stage carry!

TREE ADDERS: BRENT KUNG ADDER

- ☐ Brent Kung adder: logarithmic adder
 - ☐ P, G computed over 1,2,4,.... bits in a tree structure

TREE ADDERS: BRENT KUNG ADDER

$$C_1 = G_{1,0} + P_{1,0} \cdot C_{in}$$
 $C_3 = G_{3,0} + P_{3,0} \cdot C_{in}$ $C_7 = G_{7,0} + P_{7,0} \cdot C_{in}$

$$C_3 = G_{3,0} + P_{3,0} \cdot C_{in}$$

$$C_7 = G_{7,0} + P_{7,0} \cdot C_{in}$$

 \square Carry C_1 C_2 C_7 : generated from input carry C_{in} in a tree fashion in log-time

Tree Adders: Brent Kung Adder

$$C_1 = G_{1,0} + P_{1,0} \cdot C_{in}$$
 $C_3 = G_{3,0} + P_{3,0} \cdot C_{in}$ $C_7 = G_{7,0} + P_{7,0} \cdot C_{in}$

$$C_0 = G_0 + P_0 \cdot C_{in}$$
 $C_2 = G_2 + P_2 \cdot C_1$, $C_4 = G_4 + P_4 \cdot C_3$ and so on

$$\mathsf{Sum}_i = P_i \oplus C_i$$

Tree Adders: Brent Kung Adder

