木管楽器の発音原理に関するノート

H. S.

2017.5.18-

Abstract

本記事は木管楽器の発音原理に関するノートである. 特に, 管内での固有振動モードの解析的導出がメインである.

目次

1		疎密波の方程式	2
	1.1	Euler 方程式	2
	1.2	波動方程式	2
2		閉管の固有振動	2
	2.1	方形管の固有振動	2
	2.2	円形管の固有振動	2
	2.3	円錐管の固有振動	2
3		開菅と半開菅の固有振動	2
	3.1	開菅の境界条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	3.2	方形開菅の固有振動	2
	3.3	円形開菅の固有振動	2
	3.4	円形半開菅の固有振動	2
	3.5	円錐開管の固有振動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4		管外への音の放射	2
5		トーンホールの効果	2

- 1 疎密波の方程式
- 1.1 Euler 方程式
- 1.2 波動方程式
- 2 閉管の固有振動
- 2.1 方形管の固有振動
- 2.2 円形管の固有振動
- 2.3 円錐管の固有振動
- 3 開菅と半開菅の固有振動
- 3.1 開菅の境界条件
- 3.2 方形開菅の固有振動
- 3.3 円形開菅の固有振動
- 3.4 円形半開菅の固有振動
- 3.5 円錐開管の固有振動
- 4 管外への音の放射
- 5 トーンホールの効果