COMP4418, 2017 – Assignment 3

Chunnan Sheng

Student Code: z5100764

1. Social Choice and Game Theory

(a)

Alternatives	Nodes can be reached within 2 steps
a	b,d,c,e,f,g
b	c,d,a,e,f,g
С	a,d,g,b,e,f
d	e,f,g,a,b
е	a,f,g,b,d
f	b,g,c,d,e
g	

The uncovered set: {a, b, c}

Alternatives	One of the paths to visit all other nodes
a	a, b, c, d, e, f, g
b	b, c, a, d, e, f, g
С	c, a, b, d, e, f, g
d	d, e, a, b, c, f, g
е	e, a, b, c, d, f, g
f	f, b, c, a, d, e, g
g	

The top cycle:

...->b->c->d->e->a->f->...

Alternatives	Dominates:	Copeland Score				
а	a (a,b), (a,d), (a, g), (a, f)					
b	(b,c), (b,d), (b,e), (b,g)	4				
С	(c,a), (c,d), (c,g), (c,e), (c,f)	5				
d	(d,e), (d,f), (d,g)	3				
е	(e,a), (e,f), (e,g)	3				
f	(f,b), (f,g)	2				
g		0				

The set of Copeland winners: {c}

The set of Banks winner: {b, c}

Alternatives	Has parent(s)
a	yes
b	yes
С	yes
d	yes
е	yes
f	yes
g	yes

Condorcet winner doesn't allow parents, which means the set of Condorcet winners is: {} = \emptyset

(b) Compute all the Nash equilibria of the following two player game

	D	E
Α	2,4	8,5
В	6,6	4,4

$$u_1(A, D) = 2$$

$$u_1(B, D) = 6$$

then

$$u_1(A,D) < u_1(B,D)$$

So (A, D) is not a Nash equilibrium.

(A, E)

$$u_1(A, E) = 8$$

$$u_1(B, E) = 4$$

$$u_2(A, E) = 5$$

$$u_2(A, D) = 4$$

Then

$$u_1(A, E) > u_1(B, E)$$

$$u_2(A, E) > u_2(A, D)$$

So (A, E) is a Nash equilibrium.

(B, D)

$$u_1(B, D) = 6$$

$$u_1(A, D) = 2$$

$$u_2(B, D) = 6$$

$$u_2(B, E) = 4$$

Then

$$u_1(B, D) > u_1(A, D)$$

$$u_2(B, D) > u_2(B, E)$$

So, (B, D) is a Nash equilibrium.

(B, E)

$$u_1(B, E) = 4$$

$$u_1(A, E) = 8$$

$$u_1(B,E) < u_1(A,E)$$

So, (B, E) is not a Nash equilibrium.

The set of Nash equilibria:

{(A, E), (B, D)}

			Player2	
			q	1-q
			D	Е
Player1 p A		2,4	8,5	
	1-р	В	6,6	4,4

Rewards of player1's actions if probability of player2's action $\ ^D$ is $\ ^q:$ $2\,q+8(1-q)=6\,q+4(1-q)$

Rewards of player2's actions if probability of player1's action A is $^p:4\ p+6(1-p)=5\ p+4(1-p)$

$$p = \frac{2}{3}$$

$$q = \frac{1}{2}$$

Then the mixed policy is:

Player1=(2/3,1/3), Player2=(1/2,1/2)

2. Decision Making

(a)

Games	Model
Blackjack	(B) Markov decision process (MDP)
Candy Crush	(B) Markov decision process (MDP)
Chess	(E) None/Other
Minesweeper	(D) Partially-observable Markov decision process (POMDP)
Snakes and Ladders	(A) Markov chain
Texas Holdem Poker	(E) None/Other

(b)

Policies Stay=S Leave=L	Expected utility	When δ is 0.999
	$V(s_1) = \frac{1}{1 - \delta}$	1000
π_{SSS}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1 - \delta}$	-2000
	$V(s_1) = \frac{1}{1 - \delta}$	1000
π_{SSL}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1-\delta}$	-2000
	$V(s_1) = \frac{1}{1 - \delta}$	1000
π_{SLS}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = 5 - \frac{0.5\delta}{1 - \delta}$	-494.5
	$V(s_3) = \frac{-2}{1 - \delta}$	-2000
	$V(s_1) = \frac{1}{1 - \delta}$	1000
π_{SLL}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = 5 - \frac{0.5\delta}{1 - \delta}$	-494.5
	$V(s_3) = \frac{-2}{1 - \delta}$	-2000
	$V(s_1) = \delta V(s_2) = 0$	0
π_{LSS}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1 - \delta}$	-2000

	$V(s_1) = \delta V(s_2) = 0$	0
π_{LSL}	$V(s_2)=0$	0
2.22	$V(s_3) = \frac{-2}{1-\delta}$	-2000
	$V(s_1) = \delta V(s_2) = \frac{\delta(5 - 6\delta)}{(1 - \delta)(1 - 0.5\delta^2)}$	-1982
π_{LLS}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = \frac{5 - 6\delta}{(1 - \delta)(1 - 0.5\delta^2)}$	-1984
	$V(s_3) = \frac{-2}{1-\delta}$	-2000
	$V(s_1) = \delta V(s_2) = \frac{\delta(5 - 6\delta)}{(1 - \delta)(1 - 0.5\delta^2)}$	-1982
$\pi_{L\!L\!L}$	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = \frac{5 - 6\delta}{(1 - \delta)(1 - 0.5\delta^2)}$	-1984
	$V(s_3) = \frac{-2}{1-\delta}$	-2000

 π_{SSS} (stay-stay-stay) and π_{SSL} (stay-stay-leave) are the best policies in this case. If δ is close to 1, long term benefits would be more important than short term rewards. Thus, though the reward of leaving s_2 is attractive, it is risky. To avoid getting trapped in s_3 , the best choice is to stay at s_1 and s_2 .

(c)

Policies Stay=S Leave=L	Expected utility	When δ is 0.001
	$V(s_1) = \frac{1}{1 - \delta}$	1.001
π_{SSS}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \frac{1}{1 - \delta}$	1.001
π_{SSL}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
π_{SLS}	$V(s_1) = \frac{1}{1 - \delta}$	1.001

	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = 5 - \frac{0.5\delta}{1-\delta}$	4.999
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \frac{1}{1 - \delta}$	1.001
π_{SLL}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = 5 - \frac{0.5\delta}{1-\delta}$	4.999
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \delta V(s_2) = 0$	0
π_{LSS}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \delta V(s_2) = 0$	0
π_{LSL}	$V(s_2)=0$	0
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \delta V(s_2) = \frac{\delta(5 - 6\delta)}{(1 - \delta)(1 - 0.5\delta^2)}$	0.005
π_{LLS}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = \frac{5 - 6\delta}{(1 - \delta)(1 - 0.5\delta^2)}$	4.999
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002
	$V(s_1) = \delta V(s_2) = \frac{\delta(5 - 6\delta)}{(1 - \delta)(1 - 0.5\delta^2)}$	0.005
π_{LLL}	$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = \frac{5 - 6\delta}{(1 - \delta)(1 - 0.5\delta^2)}$	4.999
	$V(s_3) = \frac{-2}{1-\delta}$	-2.002

 π_{SLS} (stay-leave-stay) and π_{SLL} (stay-leave-leave) are the best policies in this case. If δ is close to zero, short term benefits would be more important than long term rewards. Thus,

the probability of going into the trap of decisions without considering any risks. \mathbf{S}_3

(d)

A short Python program is implemented to do the calculation

```
def v_func(mdp, step, state, cache):
    The value function of a state
    if step == 0:
         return 0.0
    next_val1 = cache[step - 1][state - 1][0]
    if next_val1 is None:
    next_val1 = v_func_act(mdp, step - 1, state, 'stay', cache)
next_val2 = cache[step - 1][state - 1][1]
    if next_val2 is None:
        next_val2 = v_func_act(mdp, step - 1, state, 'leave', cache)
    return max(next_val1, next_val2)
def v_func_act(mdp, step, state, act, cache):
    The value function of a state and an action
    reward, result = mdp[state][act]
    next_val = reward
sum = 0.0
    for prob, next_state in result:
         sum += prob * v_func(mdp, step, next_state, cache)
    next_val += sum * 0.6
    if act == 'stay':
         cache[step][state - 1][0] = next_val
         cache[step][state - 1][1] = next_val
    return next_val
if __name__ == "__main__":
    # mdp defines the Markov Decision Process
    # This cache is to help improve performance
    # The time complexity would be \dot{\text{O}(2^{\text{n}})} without this cache
    cache = [];
    for i in range(1000):
         states = []
         for j in range(3):
             actions = []
              for k in range(2):
                  actions.append(None)
             states.append(actions)
         cache.append(states)
    # Print the table of value functions
    for state in range(1, 4):
         for step in range(4):
             print('V{0}(s{1}): {2}'.format(step, state, round(v_func(mdp, step, state, cache), 5)), end='\t')
print('V{0}(s{1}, S): {2}'.format(step, state, round(v_func_act(mdp, step, state, 'stay', cache), 5)), end='\t')
print('V{0}(s{1}, L): {2}'.format(step, state, round(v_func_act(mdp, step, state, 'leave', cache), 5)), end='\t')
         print()
    # Check the value function after many steps
    for state in range(1, 4):
         print('V{0}(s{1}): {2}'.format(500, state, v_func(mdp, 500, state, cache)))
```

	$V_0(s)$	$V_0(s,S)$	$V_0(s,L)$	$V_1(s)$	$V_1(s,S)$	$V_1(s,L)$	$V_2(s)$	$V_2(s,S)$	$V_2(s,L)$	$V_3(s)$
S_1	0.0	1.0	0.0	1.0	1.6	3.0	3.0	2.8	2.82	2.82
s_2	0.0	0.0	5.0	5.0	3.0	4.7	4.7	2.82	4.94	4.94
S_3	0.0	-2.0	-2.0	-2.0	-3.2	-3.2	-3.2	-3.92	-3.92	-3.92

According to the Python program, the values finally converge to:

$$V(s_1) = 2.5610$$

$$V(s_2) = 4.2683$$

$$V(s_3) = -5.000$$

These values are consistent with π_{LLS} (leave-leave-stay), and π_{LLL} (leave-leave-leave).

(e)

The leave-leave-stay policy:

(f)

Value functions of all policies are listed in answers of (b) and (c).

Value functions of leave-leave-stay policy:

$$\mathcal{T}_{LLS} = V(s_1) = \frac{\delta(5-6\delta)}{(1-\delta)(1-0.5\delta^2)}$$

$$V(s_2) = 5 + \delta(0.5V(s_1) + 0.5V(s_3)) = \frac{5-6\delta}{(1-\delta)(1-0.5\delta^2)}$$

$$V(s_3) = \frac{-2}{1-\delta}$$

According to evaluations of all policies in circumstances (b) and (c), leave-leave-stay policy is neither optimal in (b), nor optimal in (c).