CNN Architecture II

May 4, 2020

Chad Schupbach

The default backend engine for Keras (Tensorflow) uses CUDA, an API only supported by NVIDIA GPUs. We utilize PlaidML as Keras backend engine, which has Metal support for the current device GPU (AMD Radeon Pro 5300M). We reassign Keras backend engine as PlaidML in the following two code blocks.

```
[1]: import os
[2]: path = '/Users/chadschupbach/opt/anaconda3/'
     os.environ['KERAS_BACKEND'] = 'plaidml.keras.backend'
     os.environ['RUNFILES DIR'] = path + 'share/plaidml'
     os.environ['PLAIDML_NATIVE_PATH'] = path + 'lib/libplaidml.dylib'
[3]: import numpy as np
     import pandas as pd
     import keras
     from keras.layers import Conv2D
     from keras.layers import MaxPooling2D, BatchNormalization
     from keras.layers import Flatten, Dense, Dropout
     from keras.models import Sequential
     from keras.callbacks import ModelCheckpoint, EarlyStopping
     from keras import backend as K
     from sklearn.model_selection import train_test_split
     from IPython.display import clear_output
     import time
     from src import utils
```

Using plaidml.keras.backend backend.

1 MNIST

The MNIST digits dataset is one of the most widely used datasets for high-dimensional classification. While recent advancements in deep learning have led many to conclude MNIST digits classification is a solved problem, we use it here as introduction to deep learning. Prior to these advancements, support-vector machine classification was considered to be the optimal approach to the MNIST

digits problem; achieving a maximum testing accuracy around 97.8% [Zalando Research]. In our next notebook, we dive into deep learning using the dataset released primarily as a replacement to the MNIST digits dataset. One of the reasons the MNIST digits dataset is so popular is its wide availability as part of the Keras distribution. In addition, the dataset is large enough for meaningful deep learning application, while not being so large that it requires using GPU support.

1.1 Initialization

Load the entire MNIST digits dataset containing 60000 training images and 10000 testing images across 10 classes $\{0, 1, \ldots, 8, 9\}$.

[4]: x_train, y_train, x_test, y_test, input_shape = utils.load_mnist()

INFO:plaidml:Opening device "metal_amd_radeon_pro_5300m.0"

The first 12 samples from each class are shown below.

[5]: utils.plot_samples(x_train, y_train)

We display the mean training image for each class as follows:

[6]: utils.plot_class_means(x_train, y_train)

For the ensemble, we will train 10 models with the same architecture using a batch size of 128.

```
[7]: n_classes = y_test.shape[-1]
n_models = 10
batch_size = 128
```

The architecture of each CNN model is as follows:

```
[8]: model = [None] * n models
     for i in range(n_models):
         model[i] = Sequential()
         model[i].add(Conv2D(16, 3, padding='same', activation='relu',
                             input_shape=(28, 28, 1)))
         model[i].add(Conv2D(16, 3, padding='same', activation='relu'))
         model[i].add(MaxPooling2D(pool_size=(2, 2)))
         model[i].add(Conv2D(32, 3, padding='same', activation='relu'))
         model[i].add(Conv2D(32, 3, padding='same', activation='relu'))
         model[i].add(MaxPooling2D(pool_size=(2, 2)))
         model[i].add(Conv2D(64, 3, padding='same', activation='relu'))
         model[i].add(Conv2D(64, 3, padding='same', activation='relu'))
         model[i].add(Conv2D(64, 3, activation='relu'))
         model[i].add(Flatten())
         model[i].add(Dropout(0.25))
         model[i].add(Dense(batch_size, activation='relu'))
         model[i].add(Dropout(0.5))
         model[i].add(Dense(batch_size, activation='relu'))
         model[i].add(Dropout(0.5))
         model[i].add(Dense(n_classes, activation='softmax'))
         model[i].compile(optimizer='nadam', loss='categorical_crossentropy',
                          metrics=['accuracy'])
```

[9]: model[0].summary()

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 28, 28, 16)	160
conv2d_2 (Conv2D)	(None, 28, 28, 16)	2320
max_pooling2d_1 (MaxPooling2	(None, 14, 14, 16)	0
conv2d_3 (Conv2D)	(None, 14, 14, 32)	4640
conv2d_4 (Conv2D)	(None, 14, 14, 32)	9248
max_pooling2d_2 (MaxPooling2	(None, 7, 7, 32)	0
conv2d_5 (Conv2D)	(None, 7, 7, 64)	18496
conv2d_6 (Conv2D)	(None, 7, 7, 64)	36928
conv2d_7 (Conv2D)	(None, 5, 5, 64)	36928
flatten_1 (Flatten)	(None, 1600)	0
dropout_1 (Dropout)	(None, 1600)	0
dense_1 (Dense)	(None, 128)	204928
dropout_2 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
dropout_3 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 10)	1290

Total params: 331,450 Trainable params: 331,450 Non-trainable params: 0

We assign model checkpoints and early stopping criterion below. The checkpoints save parameter weights of the best training epoch based on validation accuracy to files in the models/mnist/directory. We also set early stopping criterion indicating convergence when no decrease in validation loss is observed over 7 epochs.

If the early stopping criterion is not met, we end the training session of each model after 20 epochs. Because we need a validation set for the checkpoints and convergence criterion, we generate seeds (cell 11) to randomly split the training data into 50000 training samples and 10000 validation samples prior to each training session. It's not uncommon to see similar models implemented using the testing set for model validation in an effort to fully utilize the available training data. While it's tempting given that the validation set is not actually being used in training, using this strategy will result in model selection bias and should be avoided.

We fit each CNN model as follows:

```
CNN_10
```

```
acc: 0.9879 - val_loss: 0.0373 - val_acc: 0.9907
  Epoch 6/25
  acc: 0.9890 - val_loss: 0.0391 - val_acc: 0.9901
  Epoch 7/25
  acc: 0.9895 - val_loss: 0.0296 - val_acc: 0.9920
  Epoch 8/25
  acc: 0.9901 - val_loss: 0.0407 - val_acc: 0.9898
  acc: 0.9904 - val_loss: 0.0395 - val_acc: 0.9903
  acc: 0.9902 - val_loss: 0.0347 - val_acc: 0.9918
  Epoch 11/25
  acc: 0.9913 - val_loss: 0.0376 - val_acc: 0.9898
  Epoch 12/25
  acc: 0.9924 - val_loss: 0.0318 - val_acc: 0.9919
  Epoch 13/25
  acc: 0.9931 - val_loss: 0.0301 - val_acc: 0.9923
  Epoch 14/25
  acc: 0.9931 - val_loss: 0.0445 - val_acc: 0.9899
  Epoch 15/25
  48000/48000 [============== ] - 28s 592us/step - loss: 0.0292 -
  acc: 0.9926 - val_loss: 0.0460 - val_acc: 0.9914
  Epoch 16/25
  acc: 0.9933 - val loss: 0.0441 - val acc: 0.9920
  Epoch 17/25
  acc: 0.9930 - val_loss: 0.0526 - val_acc: 0.9906
[12]: print('Total runtime: {:.2f} min'.format(runtime / 60))
```

Total runtime: 91.28 min

The training epochs of the final model are shown as output to cell 12. In addition, we observe a total runtime of just over 104 minutes for fitting all models. The training summary is given below.

```
[13]: utils.training_summary(model, ledger, x_test, y_test)
```

[13]:			Epoch	Train Loss	Val Loss	Test Loss	Train Acc	Val Acc	Test Acc
	Model	0	9.0	0.02905	0.03882	0.02953	0.9928	0.9911	0.9918
	Model	1	13.0	0.02466	0.03280	0.03238	0.9938	0.9939	0.9932
	Model	2	24.0	0.01968	0.03148	0.05521	0.9952	0.9931	0.9919
	Model	3	10.0	0.02399	0.03629	0.02270	0.9944	0.9913	0.9938
	Model	4	7.0	0.02560	0.03674	0.02665	0.9938	0.9912	0.9929
	Model	5	19.0	0.02471	0.04275	0.03671	0.9940	0.9907	0.9927
	Model	6	13.0	0.02305	0.03189	0.03093	0.9943	0.9927	0.9928
	Model	7	10.0	0.02509	0.04039	0.02839	0.9936	0.9911	0.9932
	Model	8	19.0	0.01759	0.03923	0.03865	0.9952	0.9915	0.9915
	Model	9	13.0	0.02718	0.02960	0.03278	0.9933	0.9922	0.9924
	Averag	тe	13.7	0.02406	0.03600	0.03339	0.9941	0.9919	0.9926

Taking a look at the average of all models above, we observe a mean training, validation, and testing accuracies of 94.08%, 92.37%, and 91.63%, respectively. The small decrease in testing accuracy relative to validation accuracy reveals a small amount of overfitting not accounted for by the three dropout layers. It's plausible that reducing model complexity with the addition of an L1 regularizer might help account for a fraction of the overfitting. We combine the results of all models to form the ensemble CNN as follows:

```
[14]: test_act, test_pred, test_res = utils.ensemble_results(model, x_train, y_train, x_test, y_test)
```

Ensemble Train Accuracy: 0.9991 Ensemble Test Accuracy: 0.9967

Shown above, the ensemble CNN results in a testing accuracy of 93.43%. We observe increases in testing accuracy of 1.80% and 1.49% relative to the average testing accuracy across all models (91.63%) and the model with the best testing accuracy (Model 4, 91.94%), respectively. We display the confusion matrix for the ensemble as follows:

```
[15]: utils.plot_confusion(test_act, test_pred)
```

MNIST CNN Ensemble Confusion Matrix

The confusion matrix above reveals poor performance of the model when classifying shirts, where items labelled Shirt are frequently misclassified as T-shirt, and vice versa. We also observe items labelled Shirt misclassified as Pullover and Coat at a relatively high rate. Some other item pairs that are difficult for the model to tell apart are Sneaker/Boot and Coat/Pullover. Below, we display the first 50 misclassified fashion items from the testing data with their respective actual and predicted labels. For each label, we also display the probability that the label is true according to the trained ensemble. Doing this provides some insight into how close the CNN ensemble was to predicting the labels of misclassified items correctly.

[16]: utils.plot_misclassified(x_test, test_pred, test_act, test_res, _sort=True)

MNIST CNN Ensemble Misclassified Digits

