7 класс

Задача 1. Ахиллес и черепахи. Вдоль длинной дороги с постоянной скоростью на равных расстояниях друг от друга колонной ползут черепахи. Мимо стоящего Ахиллеса в минуту проползает $n_1 = 5$ черепах. Если Ахиллес побежит трусцой в сторону движения колонны, то он будет обгонять в минуту $n_2 = 45$ черепах, а если он поедет на велосипеде навстречу колонне, то в минуту ему будет встречаться $n_3 = 105$ черепах. Какое расстояние L успеет проползти черепаха за то время, за которое Ахиллес трусцой пробежитS = 100 м? Во сколько раз скорость Ахиллеса на велосипеде больше, чем при беге?

Возможное решение(Замятнин М.). Пусть расстояние между черепахами l, тогда при движении колонны мимо неподвижного Ахиллеса

$$\frac{l}{v} = t_1 = \frac{1}{n_1}$$
 мин;

при движении бегом

$$\frac{l}{u_1 - v} = t_2 = \frac{1}{n_2}$$
 мин;

при езде на велосипеде

$$\frac{l}{u_2 + \upsilon} = t_3 = \frac{1}{n_3} \text{ мин }.$$

Откуда

$$k = \frac{n_3 - n_1}{n_2 + n_1} = 2,a$$
 $L = S \frac{n_1}{n_1 + n_2} = 10 \text{ M}.$

1)	Уравнения для движения черепах мимо неподвижного Ахиллеса	2 балла
2)	Уравнение для бегущего Ахиллеса	2 балла
3)	Уравнение для Ахиллеса, едущего на велосипеде	2 балла
4)	Выражение и численный ответ для пройденного черепахой расстояния	2 балла
5)	Выражение и численный ответ для отношения скоростей	2 балла

Задача 2.Из Парижа в Версаль. Во время Великой французской революции декретом конвента было введено «Десятичное время». Сутки от полуночи до полуночи делились на 10 десятичных часов, час на 100 десятичных минут, а минута на 100 десятичных секунд. Таким образом, полночь приходилась на 0:00:00, полдень — на 5:00:00 и т. п.

Однажды курьер отправился из Парижа в Версаль, между которыми расстояние 5,2 лье, когда его новые десятичные часы показывали 3:56:78. Доставив важное донесение, он вернулся в Париж в 6:79:40. Определите среднюю скорость путевую $v_{\rm en}$ курьера. Ответ выразите в привычных нам км/ч. Примечание: 1 лье равен 4 км.

Возможное решение (М. Замятнин). В десятичном времени путешествие длилось 67940 - 35678 = 32262 дес. секунд. По условию 50000 дес. ceкунд = 12 час. Следовательно, 32262 дес. секунд = 7,743 ч. Расстояние от Парижа до Версаля и обратно равно 2.5, 2.4 км = 41,6 км. Откуда $v_{cp} = 5,37 \approx 5,4$ км/ч.

1)	Найдена длительность путешествия в десятичном времени	2 балла
2)	Перевод времени движения в привычные часы (привычное время)	4 балла
3)	Перевод пути из лье в километры	2 балла
4)	Определена средняя скорость	2 балла

Задача 3. Среднее через среднее. На графике (рис. 1) представлена зависимость средней скорости машины от пройденного пути. Определите среднюю скорость машины на участке, где она разгонялась.

Возможное решение (Михайлов 3.).Из графика следует, что разгон машины происходил на участке между 2-м и 10-м километром. Движение с постоянной или уменьшающейся скоростью, привело бы к уменьшению угла наклона графика средней скорости.

Время, за которое было пройдено некоторое расстояние s равно отношению этого расстояния к средней скорости, достигнутой к данному моменту времени $t = s / \nu_{\rm en}$.

По графику находим, что до 2-го километра машина ехала 2 км/(20 км/ч) = 0,1 ч = 6 мин, а 10-го километра машина достигла через 10 км/(60 км/ч) = 10 мин после начала движения.

Следовательно, время разгона составляло 4 мин = (1/15) ч. Средняя скорость на этапе разгона равна $\upsilon_{\rm cn} = 8$ км/(1/15) ч = 120 км/ч.

1)	Определен участок, на котором машина разгонялась	2 балла
2)	Формула для времени движения через путь и среднюю скорость	1 балл
3)	Найдено время движения до начала разгона	2 балла
4)	Найдено время движения до окончания разгона	2 балла
5)	Найдена средняя скорость на этапе разгона	3 балла

Задача 4. Поплавок. Из листа жести толщиной d=1,0 мм сварили пустой внутри герметичный поплавок в форме куба со сторонойa=90 см и квадратными сквозными отверстиями со стороной b=30 см. Определите массу и среднюю плотность поплавка. Плотность жести $\rho=7~800~{\rm kr/m}^3$. Плотностью воздуха a внутри поплавка можно пренебречь.

Примечание. При вычислении средней плотности считайте, что объем поплавка равен объему вытесненной им жидкости при полном погружении тела в эту жидкость.

Рис. 2

Возможное решение (Михайлов 3.). Масса m_1 жестяного квадрата со стороной bравна $m_b = b^2 d \, \rho = 0,702 \, \mathrm{kr}$. Каждая из 6 сторон куба состоит из 12 таких квадратов (8 снаружи и 4 в отверстиях). Следовательно, масса всего куба $M = 6 \cdot 12 \cdot m_b = 50,544 \, \mathrm{kr}$.

Объем Vпоплавка, с учетом вырезанных полостей, $V = 27b^3 - 7b^3 = 20b^3 = 0,54$ м³.

Средняя плотностьпоплавка

$$\rho_{\rm cp} = \frac{M}{V} = 93,6 \text{ kg/m}^3.$$

Критерии оценивания

1) Определена площадь поверхности куба	2 балла
2) Формула связи массы, плотности и объема куба	1 балл
3) Определена масса куба	3 балла
4) Найден объем поплавка	2 балла
5) Рассчитана средняя плотность	2 балла

Решение (2). Сначала найдем массу поплавка. Он состоит из 6 «внешних» пластинмассой

$$6m_a = 6(a^2 - b^2)d\rho = 33,7 \text{ кг}.$$

и 24 «внутренних» частей массой $~24m_{\!\scriptscriptstyle b}=24b^2d\,\rho=16,85~{\rm кг}$.

Масса всего поплавка

$$M = 6m_a + 24m_b = 50,544$$
 кг.

Объем поплавка

$$V = a^3 - 7b^3 = 0.54 \text{ m}^3$$
.

Средняя плотность поплавка равна его массе, деленной на объем пространства, который

он занимает:
$$\rho_{\rm cp} = \frac{M}{V} = 93,6 \ {\rm KF/M}^3.$$

Критерии оценивания

1)	Рассчитан объем или масса одной «внешней» пластины	2 балла
2)	Рассчитан объем или масса одной малой «внутренней» пластины	2 балла
3)	Рассчитана масса M поплавка	1 балл
4)	Рассчитан объем V всего поплавка	3 балла

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

5) Найдено численное значение средней плотности ρ_{cp}

2 балла

8 класс

Задача 1. Максимум через минимум. На рис. 1 приведен график зависимости координаты движущегося OT движения. К тела времени сожалению, масштаб по осям оказался утерян. Но сохранилась информация, что по ходу движения максимальное значение средней путевой скорости на 20 m/cпревышало минимальное значение. Определите, с какой максимальной скоростью υ_{\max} двигалось тело. Движение тела происходило вдоль одной прямой.

Примечание: средняя путевая скорость – отношение всего пройденного пути ко всему времени движения (включая остановки).

Возможное (Замятнин М.). Преобразуем решение исходный график в зависимость путиl от времениt. Для этого сместим на одну клетку вверх ось времени и зеркально (относительно горизонтальной совпадающей с участком графика x = const) отобразим участок, на котором координата уменьшается (рис. 2). Средняя скорость тела в произвольный момент времени движения однозначно связана с угловымкоэффициентом наклона прямой, проведенной из начала координат в соответствующую графика. точку Следовательно,

прямые, имеющие наибольший и наименьший угол наклона, проведенные из начала координат и касающиеся полученного графика, определяют максимальную и минимальную среднюю скорость тела.

Пусть цена деления на оси пути l_0 , а на оси времени τ . Тогда через них можно выразить максимальную и минимальную среднюю скорость: $\bar{\upsilon}_{\max} = 3l_0/(2\tau), \bar{\upsilon}_{\min} = l_0/(2\tau)$.

Тело двигалось быстрее всего на втором участке, так как соответствующий участок графика имеет наибольший угол наклона: $\upsilon_{\max} = 5l_0/(2\tau)$. По условию $\overline{\upsilon}_{\max} - \overline{\upsilon}_{\min} = l_0/\tau = 20$ м/с, следовательно, $\upsilon_{\max} = (5/2)(l_0/\tau) = 50$ м/с. (допустимый разброс значений от 40 до 60 м/с)

Критерии оценивания

- 1) Установлена связь средней скорости с углом наклона прямых, проведенных из начала координат на графике зависимости пути от времени **2 балла**
- 1. Построен график зависимости пути от времени 2 балла
- 2. Найдены точки, в которых средняя скорость максимальна и минимальна 2 балла

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00. Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

3. Найден участок, на котором скорость тела максимальна

2 балла

4. Получено численное значение максимальной скорости

2 балла

Задача 2. Ограниченное равновесие!На двух нитях висит однородный стержень массы M. К его левому краю прикреплена нить, перекинутая через подвижный блок, который удерживает груз(рис. 1). При каких значениях массытотого груза система будет находиться в равновесии. Массой блока и нитей можно пренебречь. Отметки на стержне делят его на семь равных частей.

Возможное решение (Юдин И.). Обозначим черезl длину одного фрагмента стержня. Если масса груза будет слишком большой, то стержень начнёт поворачиваться вокруг точки крепления к левой нити. Условие равновесия стержня найдём по правилу моментов (относительно этой точки):

$$\frac{m_A g}{2} l = Mg \cdot 2,5l$$
. Отсюда $m_A = 5M$.

Если масса груза будет слишком мала, то стержень начнёт поворачиваться вокруг точки крепления к правой нити. Условие равновесия стержня найдём по правилу моментов (относительно этой точки):

$$\frac{m_B g}{2} 3l = Mg \cdot 0, 5l$$
. Отсюда $m_B = M/3$.

Таким образом, система будет находиться в равновесии при условии:

$$M/3 \le m \le 5M$$
.

Критерии оценивания

1) Применено правило моментов относительно одной из точек крепления стержня (по 2 балла за каждую из двухточек) 4 балла 2) Найдено ограничение массы груза «сверху» 2 балла 2 балла 3) Найдено ограничение массы груза «снизу» 4) Записано итоговое неравенство 2 балла Задача 3. Шарик на нити. Легкий цилиндрический сосуд с жидкостью стоит на двух симметричных опорах. Над одной из них внутри сосуда привязан к дну полностью погруженный в жидкость шарик объемом $V=10~{\rm cm}^3$ и плотностью $\rho=500~{\rm kr/m}^3$ (рис. 1). Плотность жидкости в

сосуде равна $\rho_0 = 1\ 200\ \text{кг/m}^3$. Найдите модуль разности сил реакции

Возможное решение (Замятнин М.). Расставим силы, действующие на сосуд: F – сила давления на дно, действующая со стороны воды, T – сила натяжения нити, N_1 и N_2 – силы реакций опор (рис. 2).

Запишем правило моментов относительно точки А:

$$(N_2 + T)2l = Fl.$$

Запишем правило моментов относительно точки В:

$$N_1 2l = Fl$$
.

 $F = \rho_0 g H S = \rho_0 g \left(\frac{m}{\rho_0} + V \right)$, где H— уровень воды в сосуде, S— площадь поперечного сечения сосуда, m— масса воды в сосуде.

Запишем условие равновесия для шарика:

$$T + \rho V g = \rho_0 V g$$
.

Решая систему получим:

$$N_1 = \frac{mg + \rho_0 Vg}{2};$$

$$N_2 = \frac{gV(2\rho - \rho_0) + mg}{2}.$$

Решая полученную систему уравнений, найдём: $N_1 - N_2 = (\rho_0 - \rho)Vg = 70$ мН.

1)	Записано правило моментов относительно полюса (A)	1 балл
2)	Записано правило моментов относительно полюса (B)	1 балл
3)	Записано условие равновесия для шарика	1 балла
4)	Получено выражение для силы F	2 балла
5)	Найдена реакция опоры N_1	2 балла
6)	Найдена реакция опоры N_2	2 балла
7)	Получен ответ	1 балл

Задача 4. Уличный фонарь. Уличный фонарь представляет собой прозрачный куб ребром a = 20 см, в центр которого помещена небольшая лампочка мощностью $P = 100 \, \mathrm{Bt}$. После снегопада на фонаре появилась "шапка" из снега высотой h =а. Наступила оттепель. Температура воздуха установилась около 0^{0} C. За темное время суток ($\tau = 10$ часов), пока светил фонарь, "шапка" наполовину растаяла (рис. 1). Считая, что

снег отражает примерно $\alpha = 90\%$ света, определить его пористость ϵ (пористость снежного пласта равно отношению объёма, занятого воздухом, к общему объёму снежного пласта). Удельная теплота плавления льда $\lambda = 335$ кДж/кг, плотность льда $\rho =$ 900 кг/м³. Считать снежную "шапку" непрозрачной.

Возможное решение (Бабинцев В.). Шестая часть энергии лампы попадает на снег. Десятая часть энергии, попавшей на снег, поглощается и идет на плавление снега.

$$Q = \frac{1-\alpha}{6}P\tau = m\lambda.$$

Отсюда масса расплавившегося льда (снега) в "шапке"

$$m = \frac{(1-\alpha)P\tau}{6\lambda} = \frac{0.1 \cdot 100 \text{Bt} \cdot 36000 \text{ c}}{6 \cdot 335000 \text{Дж/кг}} = 0.18 \text{ кг.}$$

Тогда объём воздуха в расплавившейся части "шапки

$$V_0 = \frac{a^2h}{2} - \frac{m}{\rho} = \frac{a^2h}{2} - \frac{(1-\alpha)P\tau}{6\lambda\rho} = (4-0.2)\cdot 10^{-3}\,\mathrm{m}^3.$$

Пористость по определению

$$\varepsilon = \frac{V_0}{a^2 h/2} = 1 - \frac{0.2}{4} = 0.95.$$

Критерии оценивания

1) Отмечено, что **шестая** часть энергии лампы попадает на снег

2 балла «шапки» 2) Подсчитана энергия, которая расходуется на плавление снега «шапки» 2 балла

3) Подсчитана масса снега в расплавившейся части «шапки» 2 балла

4) Найден объем воздуха в расплавившейся части «шапки» 2 балла

5) Подсчитана пористость снега 2 балла