AMENDMENTS TO THE SPECIFICATION

Please amend the Specification as follows:

Paragraph [0030] on page 16:

[0030] The term "C₁₋₆alkylidene" "C₁₋₆alkylene", as used herein, refers to a substituted or unsubstituted, linear or branched saturated divalent radical consisting solely of carbon and hydrogen atoms, having from one to six carbon atoms, having a free valence "-" at both ends of the radical.

Paragraph [0031] on page 16:

[0031] The term "C₂₋₆alkenylidene" "C₂₋₆alkenylene", as used herein, refers to a substituted or unsubstituted, linear or branched unsaturated divalent radical consisting solely of carbon and hydrogen atoms, having from two to six carbon atoms, having a free valence "-" at both ends of the radical, and wherein the unsaturation is present only as double bonds and wherein a double bond can exist between the first carbon of the chain and the rest of the molecule.

Paragraph [0106] bridging pages 37 and 38:

[0106] In certain embodiments, when R³ represents a phenyl group substituted with a moiety having the structure -P-Q, the following groups do not occur simultaneously as defined:

P is selected from the group consisting of substituted or unsubstituted C_4 - C_8 -alkylidene, C_4 - C_8 -alkynylidene, C_4 - C_8 -alkynylidene, C_4 - C_8 -alkynylidene, C_4 - C_8 -alkynylidene, and C_4 - C_8 -alkynylidene, and an alkynylidene, and al

Q is selected from the group consisting of:

and a boronic acid moiety; wherein W is O or S; V is O, S or -NR^{Vd}, wherein R^{Vd} is hydrogen, alkyl, alkoxyxarbonyl, aryloxyxarbonyl, alkoxycarbonyl, aryloxycarbonyl,

alkylsulfonylarylsulfonyl, alkylsulfonyl, arylsulfonyl, or aryl; R^{Va} is hydrogen, alkyl, alkenyl, alkynyl, or aryl; R^{Vb} is hydrogen, alkyl, aryl, alkoxy, aryloxy, amino, hydroxylamino, alkoxylamino or halogen; and R^{Vc} is hydrogen, alkyl, aryl, hydroxyl, alkoxy, aryloxy or amino.

Paragraph [0135] bridging pages 48 and 49:

[0135] xvii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is an aryl or heteroaryl moiety substituted with a moiety having the structure –L-R^{4A} wherein L is a substituted or unsubstituted C₄₋₈alkylidene or C₄₋₈alkenylidene C₄₋₈alkylene or C₄₋₈alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} comprises a metal chelator;

Paragraph [0136] on page 49:

[0136] xviii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is an aryl or heteroaryl moiety substituted with a moiety having the structure -L-R⁴A wherein L is a substituted or unsubstituted C₄_8alkylidene or C₄_8alkenylidene C₄_8alkylene or C₄_8alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONRZ¹, OCONRZ¹, NRZ¹NRZ², NRZ¹NRZ²CO, NRZ¹CO, NR

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0137] on page 49:

[0137] xix) compounds of the invention as described above and in classes and subclasses herein wherein R^3 is an aryl or heteroaryl moiety substituted with $-(CH_2)_rN(R^{4C})Alk^1R^{4A}$, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or

heteroaryl; R^{4A} comprises a metal chelator; Alk¹ is a substituted or unsubstituted C₃₋₇alkylidene or C₃₋₇alkenylene or C₃₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0138] bridging pages 49 and 50:

[0138] xx) compounds of the invention as described above and in classes and subclasses herein wherein R³ is an aryl or heteroaryl moiety substituted with –(CH₂)_rN(R^{4C})Alk¹R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk¹ is a substituted or unsubstituted C₃₋₇alkylidene or C₃₋₇alkenylidene C₃₋₇alkylene or C₃₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is –C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0139] on page 50:

[0139] xxi) compounds of the invention as described above and in classes and subclasses herein wherein R³ is an aryl or heteroaryl moiety substituted with –(CH₂)_rN(R^{4C})C(=O)Alk²R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; R^{4A} comprises a metal chelator; Alk² is a substituted or unsubstituted C₃₋₆alkylidene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂,

SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0140] bridging pages 50 and 51:

[0140] xxii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is an aryl or heteroaryl moiety substituted with – (CH₂)_rN(R^{4C})C(=O)Alk²R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk² is a substituted or unsubstituted G₃₋₆alkylidene or G₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is –C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0141] on page 51:

[0141] xxiii) compounds of the invention as described above and in classes and subclasses herein wherein R^3 is an aryl or heteroaryl moiety substituted with – $(CH_2)_rN(R^{4C})C(=O)Alk^2R^{4A}$, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; R^{4A} comprises a metal chelator; Alk^2 is a substituted or unsubstituted $C_{3.6}$ alkylidene $C_{3.6}$ alkylene chain;

Paragraph [0142] on page 51:

[0142] xxiv) compounds of the invention as described above and in classes and subclasses herein wherein R^3 is an aryl or heteroaryl moiety substituted with $-(CH_2)_rN(R^{4C})C(=O)Alk^2R^{4A}$, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk^2 is a substituted or unsubstituted C_{3-6} alkylene chain; and R^{4A} is $-C(=O)OR^{4B}$, $-C(=O)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0145] on page 52:

[0145] xxvii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein L is a substituted or unsubstituted C_{4-8} alkylidene or C_{4-8} alkenylidene C_{4-8} alkenylene or C_{4-8} alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{AA} comprises a metal chelator;

Paragraph [0146] bridging pages 52 and 53:

[0146] xxviii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

$$R^{4A}$$
 R^{4A}
 R^{4A}

wherein L is a substituted or unsubstituted C_{4-8} alkeylidene or C_{4-8} alkeylidene C_{4-8} alkeylidene or C_{4-8} alkeylidene or C_{4-8} alkeylidene or C_{4-8} alkeylidene or C_{4-8} alkeylidene or or C

NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0147] on page 53:

[0147] xxix) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein L is –(CH₂)_rN(R^{4C})Alk¹R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk¹ is a substituted or unsubstituted C₃₋₇alkylidene or C₃₋₇

Paragraph [0148] bridging pages 53 and 54:

[0148] xxx) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein L is –(CH₂)_rN(R^{4C})Alk¹R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk¹ is a substituted or unsubstituted C₃₋₇alkylidene or C₃₋₇alkenylidene C₃₋₇alkylene or C₃₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is –C(=O)OR^{4B}, –C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0149] on page 54:

[0149] xxxi) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein L is $-(CH_2)_rN(R^{4C})C(=O)Alk^2R^{4A}$, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk^2 is a substituted or unsubstituted C_{3-6} alkylidene or C_{3-6} alkenylidene C_{3-6} alkenylidene or C_{3-6} alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO,

CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} comprises a metal chelator;

Paragraph [0150] bridging pages 54 and 55:

[0150] xxxii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein L is –(CH₂)_rN(R^{4C})C(=O)Alk²R^{4A}, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk² is a substituted or unsubstituted C₃₋₆alkylidene or C₃₋₆alkenylidene C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is –C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0153] on page 56:

[0153] xxxv) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk¹ is a substituted or unsubstituted C₃₋₇alkylidene or C₃₋₇alkenylidene C₃₋₇alkylene or C₃₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR²¹, OCONR²¹, NR²¹NR²², NR²¹NR²²CO, NR²¹CO, NR²¹CO₂, NR²¹CONR²², SO, SO₂, NR²¹SO₂, SO₂NR²¹, NR²¹SO₂NR²², O, S, or NR²¹; wherein each occurrence of R²¹ and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} comprises a metal chelator;

Paragraph [0154] on page 57:

[0154] xxxvi) compounds of the invention as described above and in classes and subclasses herein wherein R^3 is one of the following structures:

wherein R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk¹ is a substituted or unsubstituted C_{3-7} alkylidene or C_{3-7} alkenylidene C_{3-7} alkenylene or C_{3-7} alkenylene units are independently

Page 12 of 51

optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is $-C(=0)OR^{4B}$, $-C(=0)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0155] bridging pages 57 and 58:

[0155] xxxvii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

$$\begin{array}{c} R^{4C} \\ Alk^2R^{4A} \\$$

wherein R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk² is a substituted or unsubstituted C₃₋₆alkylidene or C₃₋₆alkenylidene C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} comprises a metal chelator;

Paragraph [0156] bridging pages 58 and 59:

[0156] xxxviii) compounds of the invention as described above and in classes and subclasses herein wherein R³ is one of the following structures:

wherein R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; Alk² is a substituted or unsubstituted C₃₋₆alkylidene or C₃₋₆alkenylidene C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{4A} is -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl;

Paragraph [0178] on page 64:

[0178] In certain embodiments, when R⁴ represents a moiety –P-Q, the following groups do not occur simultaneously as defined:

P is selected from the group consisting of substituted or unsubstituted C_4 - C_8 -alkyhidene, C_4 - C_8 -alkyhylidene C_4 - C_8 -alkyhylidene, C_4 - C_8 -alkyhylidene, C_4 - C_8 -alkyhylidene, C_4 - C_8 -alkyhylidene, and C_4 - C_8 -alkyhylidene, and C_4 - C_8 -alkyhylidene, and C_4 - C_8 -alkyhidene, and C_8 - C_8 - C_8 -alkyhidene, and C_8 - C_8 - C_8 -alkyhidene, and C_8 - C_8 -

alkenylidene, or a C_2 - C_7 alkynylidene C_2 - C_7 alkylene, a C_2 - C_7 alkenylene, or a C_2 - C_7 alkynylene, and T represents O, S or NR^T , wherein R^T represents hydrogen, lower alkyl, lower alkynyl, aralkyl, aryl or heterocyclyl; and

Q is selected from the group consisting of:

and a boronic acid moiety; wherein W is O or S; V is O, S or -NR^{Vd}, wherein R^{Vd} is hydrogen, alkyl, alkoxycarbonyl, aryloxycarbonyl, alkoxycarbonyl, aryloxycarbonyl, alkylsulfonyl, arylsulfonyl, or aryl; R^{Va} is hydrogen, alkyl, alkenyl, alkynyl, or aryl; R^{Vb} is hydrogen, alkyl, aryl, alkoxy, aryloxy, amino, hydroxylamino, alkoxylamino or halogen; and R^{Vc} is hydrogen, alkyl, aryl, hydroxyl, alkoxy, aryloxy or amino.

Paragraph [0181] on page 65:

In certain embodiments, L is a substituted or unsubstituted C₄₋₈alkylidene or C₄₋₈alkylidene or C₄₋₈alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

Paragraph [0185] on page 66:

[0185] II) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R¹, R², R⁴, n and R^Z are as described in classes and subclasses herein; r is 0 or 1; Alk¹ is a substituted or unsubstituted C₄₋₇alkylidene or C₄₋₇alkenylidene C₄₋₇alkylene or C₄₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{AA} comprises a metal chelator.

Paragraph [0187] bridging pages 66 and 67:

[0187] In certain embodiments, Alk^1 is a moiety having the structure $-C(=O)-Alk^2$ - and the compound has the structure:

wherein R¹, R², R⁴, n and R^Z are as described in classes and subclasses herein; r is 0 or 1; R^{4A} comprises a metal chelator and Alk² is a substituted or unsubstituted G₃₋₆alkylidene or C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1},

NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

Paragraph [0188] on page 67:

[0188] In certain exemplary embodiments, R^1 is hydrogen, phenyl or methyl; R^2 is hydrogen or a solid support unit; and R^2 is a substituted or unsubstituted alkyl or heteroalkyl moiety, or a substituted or unsubstituted aryl or heteroaryl moiety. In certain embodiments, Alk^2 is a substituted or unsubstituted C_{3-6} alkylidene C_{3-6} alkylene chain.

Paragraph [0189] on page 67:

[0189] In certain embodiments, Alk² is a substituted or unsubstituted C_{3-6} alkylidene C_{3-6} alkylene chain; and R^{4A} is as defined immediately above.

Paragraph [0196] on page 69:

[0196] In certain embodiments, when R⁴ represents a moiety –P-Q, the following groups do not occur simultaneously as defined:

P is selected from the group consisting of substituted or unsubstituted C_4 - C_8 -alkylidene, C_4 - C_8 -alkynylidene C_4 - C_8 alkylene, C_4 - C_8 alkenylene, C_4 - C_8 alkynylene, and -R-T-U-, wherein R and U are independently absent or represent a C_2 - C_7 -alkylidene, a C_2 - C_7 -alkylidene, or a C_2 - C_7 -alkynylene, or a C_2 - C_7 -alkynylene, and T represents O, S or NR^T , wherein R^T represents hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl or heterocyclyl; and

Q is selected from the group consisting of:

and a boronic acid moiety; wherein W is O or S; V is O, S or -NR^{Vd}, wherein R^{Vd} is hydrogen, alkyl, alkoxyxarbonyl, aryloxyxarbonyl, alkoxycarbonyl, aryloxycarbonyl, alkylsulfonyl, arylsulfonyl, or aryl; R^{Va} is hydrogen, alkyl, alkenyl, alkynyl, or aryl; R^{Vb} is hydrogen, alkyl, aryl, alkoxy, aryloxy, amino, hydroxylamino, alkoxylamino or halogen; and R^{Vc} is hydrogen, alkyl, aryl, hydroxyl, alkoxy, aryloxy or amino.

Paragraph [0201] on page 71:

In certain embodiments, L is a substituted or unsubstituted C₄₋₈alkylidene or C₄₋₈alkylidene or C₄₋₈alkylene or C₄₋₈alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

Paragraph [0207] on page 72:

[0207] V) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R¹, R², R^{2A}, R⁴, n and R^Z are as described in classes and subclasses herein; r is 0 or 1; Alk¹ is a substituted or unsubstituted G₄₋₇alkylidene or G₄₋₇alkenylidene C₄₋₇alkylene or C₄₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{AA} comprises a metal chelator.

Paragraph [0209] on page 73:

[0209] In certain embodiments, Alk^1 is a moiety having the structure $-C(=O)-Alk^2$ - and the compound has the structure:

wherein R¹, R², R⁴, n and R^Z are as described in classes and subclasses herein; r is 0 or 1; R^{4A} comprises a metal chelator and Alk² is a substituted or unsubstituted C₃₋₆alkylidene or C₃₋₆alkenylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

Paragraph [0210] on page 73:

[0210] In certain exemplary embodiments, R^1 is hydrogen, phenyl or methyl; R^2 is hydrogen or a solid support unit; and R^2 is a substituted or unsubstituted alkyl or heteroalkyl moiety, or a substituted or unsubstituted aryl or heteroaryl moiety. In certain embodiments, Alk^2 is a substituted or unsubstituted C_{3-6} alkylidene C_{3-6} alkylene chain.

Paragraph [0212] on page 74:

[0212] In certain embodiments, Alk^2 is a substituted or unsubstituted C_{3-6} alkylidene C_{3-6} alkylidene chain; and R^{4A} is as defined immediately above.