Université UMBB Année 2021/2022

Faculté des sciences, Dept de Maths

1ère Année, MI

corrigé de la série d'algèbre1 n°1

1) Logique et ensembles:

Exercice 1: Soient les quatre assertions suivantes :

$$(a)\exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x + y > 0; (b)\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x + y > 0;$$

$$(c) \forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x + y > 0; (d) \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^2 > x.$$

- 1. Les assertions (a), (b), (c) et (d) sont-elles vraies ou fausses?
- 2. Donner leur négation.

Solution:

1. (a) est fausse. Car sa négation qui est $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x+y \leq 0$ est vraie. Étant donné $x \in \mathbb{R}$ il existe toujours un $y \in \mathbb{R}$ tel que $x+y \leq 0$, par exemple on peut prendre

$$y = -(x + 1)$$
 et alors $x + y = x - x - 1 = -1 \le 0$.

- (b) est vraie, pour un x donné, on peut prendre (par exemple) y = -x + 1 et alors x + y = 1 > 0. La négation de (b) est $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x + y \leq 0$.
- (c) est fausse, par contre exemple $\exists x = -1, \exists y = 0$ tels que x + y > 0. La négation est $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}: x + y \leq 0$.

$$y = 1$$
 La págation act. $\forall x \in \mathbb{D}$ $\exists x \in \mathbb{D}$, $y \neq x \in \mathbb{D}$

(d) est vraie, on peut prendre x = -1. La négation est : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: y^2 \leq x$.

Exercice 2: Démontrer par l'absurde que pour tout $x \in IR$; $|x + 3| \ge 3$ ou $|x - 3| \ge 3$

Solution: Soit $x \in IR$, on suppose que |x + 3| < 3 *et* |x - 3| < 3

On a $6 = |6| = |3 + x - (x - 3)| = |(3 + x) + (-(x - 3))| \le |3 + x| + |(-(x - 3))|$, inégalité triangulaire($|x + y| \le |x| + |y|$), d ou $6 \le |3 + x| + |(x - 3)| < 3 + 3 = 6$, contradiction.

Exercice 3:

1. Montrer par raisonnement direct et par contraposition l'assertion suivante :

E étant un ensemble $\forall A, B \in P(E), (A \cap B = A \cup B) \Rightarrow A = B$

2. On suppose que l'on a les inclusions suivantes : $A \cup B \subset A \cup C$ et $A \cap B \subset A \cap C$.

Montrer que B ⊂ C.

Solution: Nous allons démontrer l'assertion de deux manières différentes.

étant donné x ∈ A montrons qu'il est aussi dans B. Comme x ∈ A alors x ∈ A ∪ B donc x ∈ A ∩ B (car A ∪ B = A ∩ B). Ainsi x ∈ B.
 D'autre part prenons x ∈ B et le même raisonnement implique que x ∈ A
 Donc tout élément de A est dans B et tout élément de B est dans A. Cela veut dire A=B

Maintenant nous le montrons par contraposition. Nous supposons que $A \neq B$ et nous devons montrer que $A \cap B \neq A \cup B$.

Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A$ et x n'appartient pas à B ou

alors un élément $x \in B$ qui n appartient pas a A. Nous supposons qu'il existe $x \in A$ et qui n est pas dans B. Alors $x \in A \cup B$ mais : $x \notin A \cap B$ Donc $A \cap B \neq A \cup B$.

2. Prenons $x \in B$. Alors $x \in A \cup B$, alors $x \in A \cup C$ d'après l'hypothèse. Si $x \in C$ c'est fini. Si $x \in A$ alors $x \in A \cap B$ (puisque l'on a pris $x \in B$), d'après l'hypothèse $x \in A \cap C$ ce qui entraine que $x \in C$. On a bien montré que $B \subset C$.

Exercice 4:

Soient A et B deux parties d'un ensemble E. Démontrer les égalités suivantes :

- 1. $A \subseteq B$, montrer $C_E B \subseteq C_E A$
- 2. $C_E(A \cap B) = C_E A \cup C_E B$
- 3. $C_E(A \cup B) = C_E A \cap C_E B$

Solution:

- 1. Soit $x \in C_E B$ donc $x \notin B$, puisque $A \subseteq B$ alors $x \notin A$, d' où $x \in C_E A$.
- 2. Soit $x \in C_E$ $(A \cap B)$, $x \notin A \cap B$ et donc $x \notin A$ ou $x \notin B$, ce qui signifie que $x \in C_E A \cup C_E B$ Cela montre que C_E $(A \cap B) \subset C_E A \cup C_E B$. Soit $x \in C_E A \cup C_E B$, $x \notin A$ ou $x \notin B$ donc

 $x \notin A \cap B$ ce qui entraine que $x \in C_E$ $(A \cap B)$. Cela montre que $C_E A \cup C_E B \subset C_E$ $(A \cap B)$. Et finalement C_E $(A \cap B) = C_E A \cup C_E B$.

3. Soit $x \in C_E$ $(A \cup B)$, $x \notin A \cup B$ et donc $x \notin A$ et $x \notin B$, ce qui signifie que $x \in C_E A \cap C_E B$ Cela montre que C_E $(A \cup B) \subset C_E A \cap C_E B$. Soit $x \in C_E A \cap C_E B$, $x \notin A$ et $x \notin B$ donc $x \notin A \cup B$ ce qui entraine que $x \in C_E$ $(A \cup B)$. Cela montre que $C_E A \cap C_E B \subset C_E$ $(A \cup B)$. Et finalement

$$C_E(A \cup B) = C_E A \cap C_E B$$
.

2) Relations binaires

Exercice 1:

I – Soit \Re une relation définie sur R par :

$$\forall x, y \in \mathbb{R}$$
; $x \Re y \Leftrightarrow x e^y = y e^x$

Montrer que \Re est une relation d'équivalence.

II – La relation \Re définie sur \mathbb{Z} par :

$$\forall x, y \in \mathbb{Z}$$
; $x \Re y \Leftrightarrow \exists k \in \mathbb{Z}$, $x = ky$ est-elle une relation d'ordre?

III – Montrer que la relation \Re définie sur \mathbb{R}^2 par :

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$$
; $(x_1, y_1)\Re(x_2, y_2) \Leftrightarrow x_1 \leq x_2$ n'est pas une relation d'ordre.

Exercice 2:

On définit sur $\mathbb N$ la relation binaire \Re par : $\forall p,q \in \mathbb N$: $p\Re q \Leftrightarrow \exists n \in \mathbb N$ tel que $p^n = q$

- 1) Montrer que \Re est une relation d'ordre.
- 2) Cet ordre est -t-il total? Justifier votre réponse.

Solution:

 $p\Re q \Leftrightarrow \exists n \in \mathbb{N} \text{ tel que } p^n = q$

- 1) \Re est une relation d'ordre si et si $\begin{cases} i) \ \Re \ est \ r\'eflexine \\ ii) \ \Re \ est \ antisymetique \\ iii) \Re \ est \ transitive \end{cases}$
- i) \Re est reflexive $\Leftrightarrow \forall P \in \mathbb{N} : PRP$ soit $P \in \mathbb{N}$; $P = P = P^1 \Rightarrow \exists n = 1 \in \mathbb{N} \text{ t que } P = P^n \Rightarrow PRP$
- ii) \Re est antisymetique $\Leftrightarrow \forall p, q \in \mathbb{N}$; pRq et $qRp \Rightarrow p = q$ soient $p, q \in \mathbb{N}$ t.que pRq et qRpalors $\ni m, n \in \mathbb{N}$; $P^n = q$ et $q^m = P$ $\Rightarrow (P^n)^m = q^m = P \Rightarrow P^{nm} = P$ • Si P = 0 alors $q = p^n = 0^n = 0 \Rightarrow p = q = 0$ • $Si P \neq 0$ on $a: P^{nm-1} = 1 \Rightarrow nm - 1 = 0 \Rightarrow nm = 1$
- Comme $m,n \in \mathbb{N}$, les seuls diviseurs de 1 est 1 alors $n=m=1 \Rightarrow p=q$

iii) \Re est transitive $\Leftrightarrow \forall p,q,r \in \mathbb{N}$; t que pRq et $qRr \Rightarrow pRr$

soient
$$p,q,r \in \mathbb{N}$$
 t.que pRq et qRr

$$\Rightarrow \exists m,n \in \mathbb{N}; p^n = q \text{ et } q^m = r$$

$$\Rightarrow (p^n)^m = q^m = r \Rightarrow p^{n^m} = r$$

$$\Rightarrow \exists s = mn \in \mathbb{N} \text{ t.que } p^s = r \Rightarrow pRr$$

D'ou \Re est une relation d'ordre

2) \Re n'est pas une relation d'ordre total car $\exists P = 2 \in \mathbb{N} \text{ et } \exists q = 3 \in \mathbb{N} \text{ t. que } \forall n \in \mathbb{N} : 2^n \neq 3 \text{ et } 3^n \neq 2$ car 2 et 3 sont premiers entre eux

Exercice 3:

I –On définit sur \mathbb{R}^* la relation binaire \mathfrak{R} par :

$$\forall x, y \in \mathbb{R}^*$$
, $x \mathcal{H} y \iff x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}$.

- 1. Montrer que \Re est une relation d'équivalence
- **2.** Préciser la classe d'équivalence de a pour tout a de \mathbb{R}^* .

II – Même question pour la relation \mathfrak{R} définie sur \mathbb{Z} par :

$$\forall x, y \in \mathbb{Z}, x \Re y \Leftrightarrow (x = y \text{ ou } xy = 1.$$

3) Applications

Exercice 1:

- I) Soit $f: E \to F$ une application. Montrer que :
 - *i*) f injective \Rightarrow $(\forall A \subset E : f^{-1}(f(A)) \subset A)$.
 - ii) f surjective $\Rightarrow (\forall B \subset F : f(f^{-1}(B)) \subset B).$
- **II**) Soit l'application f définie par : $f : \mathbb{R}^* \to \mathbb{R}$

$$x \mapsto f(x) = 1 - \frac{1}{x^2}$$

- 1) Calculer $f(\{-1,1\})$ et $f^{-1}(\{1\})$.
- 2) f est elle injective ? surjective ? Justifier.

Solution:

I- soient $f: E \to F$ une application, $A \subset E$ et $B \subset F$

i) On suppose que f injective et on démontre que $f^{-1}(f(A)) \subset A$

Soit
$$x \in f(f^{-1}(A)) \to f(x) \in f(A) \to a \in A \in f(x) = f(a)$$

Comme f on obtient
$$x = a \in A \rightarrow f(f^{-1}(A)) \subset A$$
.

ii) on suppose que f est surjective et on démontre que $f(f^{-1}(B)) \supset B$

Soit $y \in B$, puisque $B \subset F$ et f surjective alors $\exists x \in E$, y = f(x)

$$0r\ y\in B\Rightarrow f(x)\in B\Rightarrow x\in f^{-1}(B)\Rightarrow f(x)\in f(f^{-1}(B))\Longrightarrow y\in f(f^{-1}(B))$$

II- $f: \mathbb{R}^* \to \mathbb{R}$

$$x \mapsto f(x) = 1 - \frac{1}{x^2}$$

- 1) Calcul de $f(\{-1,1\})$ et $f^{-1}(\{1\})$
- a) $f(\{-1,1\}) = \{f(-1), f(1)\} = \{0\}$
- b) $f^{-1}(\{1\}) = \{x \in \mathbb{R}^*, \ f(x) \in \{1\}\}$ = $\{x \in \mathbb{R}^*, 1 - \frac{1}{x^2} = 1\} = \emptyset$
- 2) Injective? surjective? justifier.
- a) Puisque $f(\{-1,1\})=\{0\}$ donc f(-1)=f(1)=0 donc $\exists \ x=1\in \mathbb{R}^*,$ $\exists \ y=-1\in \mathbb{R}^* \text{ tels que } f(-1)=f(1) \text{ et } -1\neq 1$

 $\underline{\text{Conclusion}}: f \text{ n'est pas injective.}$

b) Puisque $f^{-1}(\{1\}) = \emptyset$ donc on ne peut pas trouver $x \in \mathbb{R}^*$ tel que f(x) = 1

 $\underline{\text{Conclusion}}: f \text{ n'est pas surjective.}$

Exercice 2:

I) Soit 1'application f définit par ; $f: \mathbb{R} \to [5, +\infty[$ tel que : pour tout $x \in \mathbb{R}$, $f(x) = (x^2 - 8)^2 + 5$.

- 1. f est elle injective? surjective? bijective?
- **2.** Comment peut-on <u>choisir un ensemble de départ et un ensemble d'arrivée</u> pour obtenir une application bijective, dans ce cas déterminer la bijection réciproque.
- II) On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par : $\forall x \in \mathbb{R}$, $f(x) = \frac{1}{1+x^2}$.
- i) Soient $A = \{-1,2,3\}$; $B = [0.1[; C = [-1,0]; Déterminer f(A), f(B) et <math>f^{-1}(C)$, f est-elle injective, surjective?
- ii) donner un ensemble de départ et un autre d'arrive de manière à avoir une application bijective, dans ce cas déterminer f^{-1} .

Solution:

I. Soit $f: \mathbb{R} \to [5, +\infty[$ tel que : pour tout $x \in \mathbb{R}$, $f(x) = (x^2 - 8)^2 + 5$.

(f injective)ssi $\forall x, x' \in \mathbb{R}, f(x) = f(x') \Rightarrow x = x'$

 \Leftrightarrow l'équation f(x) = y admet au plus une solution

En effet: $f(x) = y \iff (x^2 - 8)^2 + 5 = y \iff x^2 - 8 = \pm \sqrt{y - 5} \iff x = \pm \sqrt{8 \pm \sqrt{y - 5}}$ ce qui montre que la solution n'est pas unique et f non injective.

• Ou bien on remarque que f est une application paire et donc : f(1) = f(-1) mais $1 \ne -1$ et donc f n'est pas injective.

f surjective $\Leftrightarrow \forall y \in [5, +\infty[, \exists x \in \mathbb{R}, y = f(x)]$

 \Leftrightarrow l'équation y = f(x) admet au moins une solution

on a

$$y = f(x) \Leftrightarrow (x^2 - 8)^2 + 5 = y \Leftrightarrow x^2 - 8 = \pm \sqrt{y - 5} \Leftrightarrow x^2 = 8 \pm \sqrt{y - 5}$$
$$\Leftrightarrow x = \pm \sqrt{8 \pm \sqrt{y - 5}}$$

la solution existe d'où : f est surjective.

f non injective implique que f non bijective.

- \triangleright 2. D'après la question 1 f est surjective sur l'ensemble d'arrivée [5, $+\infty$ [.
- Pour l'injectivité il faut que l'équation y = f(x) possède au plus une solution en effet :

$$y = f(x) \Leftrightarrow (x^2 - 8)^2 + 5 = y \Leftrightarrow x^2 - 8 = \pm \sqrt{y - 5}$$
 alors pour que la solution soit au plus une on choisit: $x^2 - 8 = \pm \sqrt{y - 5}$ qui corresponde à :

$$x^2 - 8 \ge 0 \Leftrightarrow x \in]-\infty, 2\sqrt{2}] \cup [2\sqrt{2}, +\infty[]$$
 dans ce cas :

$$y = f(x) \Leftrightarrow x^2 - 8 = \sqrt{y - 5} \Leftrightarrow x^2 = 8 + \sqrt{y - 5}$$

 $\Leftrightarrow x = \pm \sqrt{8 + \sqrt{y - 5}} \quad \text{puisque l'injection nécessite au plus une solution } \underline{\text{on choisit}}$ $x \ge 0 \text{ avec } x \in]-\infty, 2\sqrt{2}] \cup [2\sqrt{2}, +\infty[\text{ on obtient : } x \in [2\sqrt{2}, +\infty[\text{ et l'équation}]$

y = f(x) admet l'unique solution $x = \sqrt{8 + \sqrt{y - 5}}$ ssi : $x \in [2\sqrt{2}, +\infty[$ ce qui donne l'ensemble de départ est $[2\sqrt{2}, +\infty[$ d'où :

L'application définie par : \tilde{f} : $\left[2\sqrt{2}, +\infty\right] \rightarrow [5, +\infty]$

$$x \mapsto \tilde{f}(x) = f(x) = (x^2 - 8)^2 + 5$$
 est bijective et sa réciproque est définie par : \tilde{f}^{-1} : $[5, +\infty[\to [2\sqrt{2}, +\infty[$

$$y \mapsto \tilde{f}^{-1}(y) = x.$$

Tel que
$$y = f(x) \Leftrightarrow x = \sqrt{8 + \sqrt{y - 5}} = \tilde{f}^{-1}(y)$$
.

II-
$$f: \mathbb{R} \to \mathbb{R}$$
 definie par : $\forall x \in \mathbb{R}$, $f(x) = \frac{1}{1+x^2}$

i) SoientA= $\{-1,2,3\}$; B=[0.1[; C=[-1,0] ; Déterminer

$$f(A) = \{f(x), x \in A\} = \left\{\frac{1}{1+x^2}; x = -1 \lor x = -2 \lor x = 3\right\} = \left\{\frac{1}{1+1}, \frac{1}{1+4}, \frac{1}{1+9}\right\} = \left\{\frac{1}{2}, \frac{1}{5}, \frac{1}{10}\right\} \ .$$

$$f(B) = \{f(x), x \in [0.1[] \} = \{f(x), 0 \le x < 1\} = \left\{\frac{1}{1+x^2}, 1 \le x^2 + 1 < 2\right\} = \left\{\frac{1}{1+x^2}, \frac{1}{2} < \frac{1}{1+x^2} \le 1\right\}$$
$$= \left[\frac{1}{2}, 1\right]$$

$$f^{-1}(C) = \{x \in \mathbb{R}, f(x) \in [-1,0]\} = \{x \in \mathbb{R}, \frac{1}{x^2 + 1} \in [-1,0]\} = \emptyset$$

ii) il est clair que f est une application paire donc :

$$\exists x_1=2 \ \text{,} \ x_2=-2 \ \in \mathbb{R} \ \text{,} \ tels \ que \ f(2)=f(-2) \ mais \ 2 \neq -2 \ d'ouf \ est \ injective.$$

De même
$$f$$
 n'est pas surjective car : $\exists y = 0 \in \mathbb{R}$, $\forall x \in \mathbb{R}$, $\frac{1}{1+x^2} \neq 0$ i. $e \ y \neq f(x)$

Le choix des éléments pour l'injection et la surjection de f n'est pas unique.

iii) Pour que f soit bijective il faut qu'elle soit injective et surjective ou bien y = f(x) admet une solution, on a :

$$y = f(x) \Rightarrow y = \frac{1}{1+x^2} \Leftrightarrow x = \pm \sqrt{\frac{1-y}{y}}$$

Donc la solution existe si

$$\left(y \neq 0 \ et \ \frac{1-y}{y} \geq 0\right) \Leftrightarrow \begin{cases} y > 0 \ et \ 1-y \geq 0 \\ ou \\ y < 0 \ et \ 1-y \leq 0 \end{cases} \Leftrightarrow \begin{cases} y > 0 \ et \ y \leq 1 \\ ou \\ y < 0 \ et \ y \geq 1 \ exclu \end{cases} \Leftrightarrow y \in]0.1]$$

Et elle est unique si $x \in \mathbb{R}_+$ ou $x \in \mathbb{R}_-$

D'où finalement $\check{f}: \mathbb{R}_+ \to]0.1]$ définie par $\check{f}(x) = \frac{1}{1+x^2}$ est bijective et admet une application réciproque $(\check{f})^{-1}$: $]0.1] \to \mathbb{R}_+$ telle que $(\check{f})^{-1}(y) = \sqrt{\frac{1-y}{y}}$.