In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
df=pd.read_csv(r"C:\Users\raja\Downloads\bottle.csv.zip")
df
```

C:\Users\raja\AppData\Local\Temp\ipykernel_17544\367079261.py:1: DtypeWarn ing: Columns (47,73) have mixed types. Specify dtype option on import or s et low_memory=False.

df=pd.read_csv(r"C:\Users\raja\Downloads\bottle.csv.zip")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1 In [3]:	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
df=df[[df 2	'Salnty 1	','T_deg 3	gC']] 054.0 056.0	19- 4903CR- HY-060- 0930- 05400560-	10	10.460	33.4370	NaN	25.65400
Out[3]: 9 1 2		T_degC 10.504 10.460 10.460	054.0 056.0	0010A-7 19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300
3 4 	33.4200 33.4210	10.450 10.450 10.45 $\overline{0}$	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
8648 <u>58</u>	33.4083.	18.744.							
864859 864860 864858 864861 864862	33.4083 33.4150 34404 33.4062 33.3880	18.744 18.692 864859 18.161 17.533	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
864863 864859	rows × 2 (34404	columns 864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

```
In [4]: Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L
                                                                                STheta
df.columns=['sal', 'temp']
df
                                       20-
                                   1611SR-
                           093.4
                                   MX-310-
0864862:
          34404 864863
                                                 15
                                                     17.533 33.3880
                                                                       5.774 24.15297
                           026.4
                                     2239-
                                 09340264-
            sal
                  temp
                                   0015A-3
      0 33.4400 10.500
864863 rows × 74 columns
1 33.4400 10.460
     2 33.4370 10.460
      3 33.4200 10.450
       33.4210 10.450
             ...
864858 33.4083 18.744
864859 33.4083 18.744
864860 33.4150 18.692
864861 33.4062 18.161
864862 33.3880 17.533
864863 rows × 2 columns
```

In [5]:

df.head()

Out[5]:

	sal	temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45

In [11]:

```
sns.lmplot(x='sal',y='temp',data=df,order=2,ci=0.95)
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x1b4e5726020>

In [7]:

df.describe()

Out[7]:

	sal	temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [8]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
     Column Non-Null Count
                              Dtype
             817509 non-null float64
 0
     sal
             853900 non-null float64
 1
     temp
dtypes: float64(2)
memory usage: 13.2 MB
In [9]:
df.fillna(method='ffill',inplace=True)
C:\Users\raja\AppData\Local\Temp\ipykernel_17544\4116506308.py:1: SettingW
ithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.fillna(method='ffill',inplace=True)
In [13]:
x=np.array(df['sal']).reshape(-1,1)
y=np.array(df['temp']).reshape(-1,1)
In [14]:
df.dropna(inplace=True)
C:\Users\raja\AppData\Local\Temp\ipykernel 17544\1379821321.py:1: SettingW
ithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.dropna(inplace=True)
In [17]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x train,y train)
print(regr.score(x_test,y_test))
```

0.2009178946197172

In [18]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [19]:

```
df500=df[:][:500]
sns.lmplot(x='sal',y='temp',data=df500,order=1,ci=None)
```

Out[19]:

<seaborn.axisgrid.FacetGrid at 0x1b4e8843bb0>

In [23]:

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['sal']).reshape(-1,1)
y=np.array(df500['temp']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print('regression:',regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

regression: 0.853524675030656

In [24]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("r2 score:",r2)
```

r2 score: 0.853524675030656

In []:			