Clustered Subset Count: A Proposed Combinatorial Function

Dhruv Gupta

April 10, 2025

Abstract

We introduce a new combinatorial counting function, the *Clustered Subset Count*, which counts the number of subsets of a finite integer set where all elements are mutually within a limited distance from each other. This function captures a novel subset structure not addressed by classical combinatorial functions and opens new pathways for study in pure combinatorics.

1 Introduction

Combinatorics traditionally focuses on counting objects under various constraints, with foundational concepts such as permutations, combinations, and partitions. In this paper, we propose a novel construct: subsets of integers that are *clustered*, meaning each element is within a given distance of another element in the subset. This leads to a new counting function, C(n, k; d), which counts the number of clustered subsets of size k drawn from the set $\{1, 2, \ldots, n\}$.

2 Definition of Clustered Subsets

Given an integer set $S = \{1, 2, ..., n\}$, a subset $A \subseteq S$ of size k is said to be *clustered* if for every element $a \in A$, there exists at least one other element $b \in A$ such that $|a - b| \le d$, where $d \in \mathbb{N}$ is a fixed clustering distance parameter.

3 Clustered Subset Count Function

We define the Clustered Subset Count Function C(n, k; d) as follows:

$$C(n, k; d) = |\{A \subset \{1, \dots, n\} : |A| = k, \forall a \in A, \exists b \in A \setminus \{a\}, |a - b| < d\}|. \tag{1}$$

This function captures the idea of locally-dense subsets and provides a new way to examine proximity relationships within a combinatorial framework.

4 Example Computation

Let us compute C(5,3;2):

- All 3-element subsets of $\{1, 2, 3, 4, 5\}$ are considered.
- Clustered subsets: $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$, $\{1,3,5\}$, $\{2,3,4\}$, $\{2,3,5\}$, $\{2,4,5\}$, $\{3,4,5\}$.
- Non-clustered subsets: $\{1,2,5\}$ and $\{1,4,5\}$.

Hence,

$$C(5,3;2) = 8.$$

5 Explanation of Parameters

The parameters used in defining the function are as follows:

- n: The size of the integer set $S = \{1, 2, ..., n\}$. It represents the range of integers from which subsets are drawn.
- k: The size of the subset A being considered. It specifies how many elements are included in each subset.
- d: The clustering distance parameter. It determines the maximum allowable distance between any two elements in a clustered subset.

6 Conclusion

The proposed function introduces a new concept to combinatorics: subsets governed by proximity rather than selection alone. This paves the way for richer structural studies in subset dynamics and discrete geometry.