表15-5 差异编码所用的首部

帝 首	描 述
ЕТад	文档每个实例的唯一标识符。由服务器在响应中发送,客户端在后继请求的 If-Match 首部和 If-None-Match 首部中可以使用它
If-None-Match	客户端发送的请求首部,当且仅当客户端的文档版本与服务器不同时,才向服务 器请求该文档
A-IM	客户端请求首部,说明可以接受的实例操控类型
IM	服务器响应首部,说明作用在响应上的实例操控的类型。当响应代码是 226 IM Used 时,会发送这个首部
Delta-Base	服务器响应首部,说明用于计算差异的基线文档的 ETag 值(应当与客户端请求 中的 If-None-Match 首部里的 ETag 相同)

实例操控、差异生成器和差异应用器

客户端可以使用 A-IM 首部说明可以接受的一些实例操控的类型。服务器在 IM 首部中说明使用的是何种实例操控。不过到底哪些实例操控类型是可接受的呢?它们又是做什么的呢?表 15-6 中列出了一些在 IANA 注册的实例操控类型。

表 15-6 在IANA注册的实例操控类型

类 型	说 明
vcdiff	用 vcdiff 算法计算差异 *
diffe	用 Unix 系统的 diff-e 命令计算差异
gdiff	用 gdiff 算法计算差异 b
gzip	用 gzip 算法压缩
deflate	用 deflate 算法压缩
range	用在服务器的响应中,说明响应是针对范围选择得到的部分内容
identity	用在客户端请求中的 A-IM 首部中,说明客户端愿意接受恒等实例操控

a: 因特网草案 draft-korn-vcdiff-01 中描述了 vcdiff 算法。该规范在 2002 年初期由 IESG (Internet Engineering Steering Group, 因特网工程指导组) 批准,将很快以 RFC 的形式发布。(译注: vcdiff 的规范由 RFC3284 发布。)

图 15-10 中,服务器侧的"差异生成器"根据基线文档和该文档的最新实例,用客户端在 A-IM 首部中指明的算法计算它们之间的差异。客户端侧的"差异应用器"得到差异,将其应用于基线文档,得到文档的最新实例。例如,如果产生差异的算法是 Unix 系统的 diff-e 命令,客户端就可以用 Unix 系统中的文本编辑器 ed 提供的功能来应用差异,因为diff-e <file1> <file2>产生了一系列ed命令来把<file1>

367

b; http://www.w3.org/TR/NOTE-gdiff-19970901.html 描述了 gdiff 算法。