Домашнее задание №9

Задача №1. (Гл. 1, №115)

Пусть $\{X_n\}_{n=1}^{\infty}$ — последовательность случайных величин с дисперсиями σ_i^2 . Докажите, что если все корреляционные моменты (корреляции) R_{ij} случайных величин X_i и X_j неположительны и $\frac{1}{n^2}\sum_{i=1}^n\sigma_i^2\xrightarrow[n\to\infty]{}0$, то для последовательности $\{X_n\}_{n=1}^{\infty}$ выполняется закон больших чисел.

Задача №2. (Гл. 1, №118)

Приведите пример последовательности независимых случайных величин $\{\xi_n\}_{n=1}^{\infty}$ таких, что предел $\lim_{n\to\infty}\frac{\xi_1+\dots\xi_n}{n}$ существует по вероятности, но не существует с вероятностью 1.

Задача №3. (Биржевой парадокс, Гл. 2, №37)

Рассмотрим любопытный экономичсекий пример. Пусть имеется начальный капитал K_1 , который требуется увеличить. Для этого имеется две возможности: вкладывать деньги в надёжный банк и покупать на бирже акции некоторой компании. Пусть u — доля капитала, вкладываемая в банк, а v — доля капитала, расходуемая на приобретение акций ($0 \le u + v \le 1$). Предположим, что банк гарантирует $b \times 100\%$ годовых, а акции приносят $X \times 100\%$ годовых, где X — случайная величина с математическим ожиданием $\mathbb{E}X = m_X > b > 0$. Таким образом, через год капитал составит величину $K_2 = K_1(1 + bu + Xv)$. Очевидно, что если придерживаться стратегии, максимизирующей средний доход за год, то выгодно присвоить следующие значения: u = 0, v = 1.

Рассмотрите прирост капитала K_{t+1} за t лет, считая X_1, \ldots, X_t независимыми случайными величинами. Покажите, что при ежегодном вложении капитала в акции

$$\mathbb{E}\left[K_t\right] \xrightarrow[t\to\infty]{} \infty,$$

но при этом в случае $\mathbb{E}[\ln(1+X)] < 0$

$$K_t \xrightarrow[t\to\infty]{\text{п.н.}} 0.$$

Приведите пример такой случайной величины Х.

Yказание. Воспользуйтесь усиленным законом больших чисел для последовательности $\ln(1+X_t)$.