Art of Problem Solving

Instructive Olympiad Algebra Problems

At a national Olympiad and higher level.

- **APMO 2015 Q3** A sequence of real numbers $a_0, a_1, ...$ is said to be good if the following three conditions hold.
 - (i) The value of a_0 is a positive integer.
 - (ii) For each non-negative integer i we have $a_{i+1} = 2a_i + 1$ or $a_{i+1} = \frac{a_i}{a_{i+2}}$
 - (iii) There exists a positive integer k such that $a_k = 2014$.

Find the smallest positive integer n such that there exists a good sequence a_0, a_1, \dots of real numbers with the property that $a_n = 2014$.

Proposed by Wang Wei Hua, Hong Kong

APMO 2009 Q2 Let a_1, a_2, a_3, a_4, a_5 be real numbers satisfying the following equations:

$$\frac{a_1}{k^2+1} + \frac{a_2}{k^2+2} + \frac{a_3}{k^2+3} + \frac{a_4}{k^2+4} + \frac{a_5}{k^2+5} = \frac{1}{k^2}$$
 for $k = 1, 2, 3, 4, 5$

Find the value of $\frac{a_1}{37} + \frac{a_2}{38} + \frac{a_3}{39} + \frac{a_4}{40} + \frac{a_5}{41}$ (Express the value in a single fraction.)

APMO 1999 Q2 Let $a_1, a_2, ...$ be a sequence of real numbers satisfying $a_{i+j} \le a_i + a_j$ for all i, j = 1, 2, Prove that

$$a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \dots + \frac{a_n}{n} \ge a_n$$

for each positive integer n.

APMO 1993 Q3 Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
 and

$$g(x) = c_{n+1}x^{n+1} + c_nx^n + \dots + c_0$$

be non-zero polynomials with real coefficients such that g(x) = (x+r)f(x) for some real number r. If $a = \max(|a_n|, \ldots, |a_0|)$ and $c = \max(|c_{n+1}|, \ldots, |c_0|)$, prove that $\frac{a}{c} \leq n+1$.

EGMO 2015 Q4 Determine whether there exists an infinite sequence a_1, a_2, a_3, \ldots of positive integers

which satisfies the equality

$$a_{n+2} = a_{n+1} + \sqrt{a_{n+1} + a_n}$$

for every positive integer n.