CERTIFICATION OF TRANSLATION

I, Yeon-ju Ryu, an employee of Y.P.LEE, MOCK & PARTNERS of Koryo Building, 1575-1 Seocho-dong, Seocho-gu, Seoul, Republic of Korea, hereby declare under penalty of perjury that I understand the Korean language and the English language; that I am fully capable of translating from Korean to English and vice versa; and that, to the best of my knowledge and belief, the statement in the English language in the attached translation of Korean Patent Application No. 10-2002-0045367 consisting of 30 pages, have the same meanings as the statements in the Korean language in the original document, a copy of which I have examined.

Signed this 4th day of January 2007

ABSTRACT

[Abstract of the Disclosure]

Provided are an information storage medium on which information on a drive and information on the state of a disc is recorded in a zone of a recordable area and a method of recording information on the information storage medium. The information storage medium (a disc) includes an area and a user data area. The area includes a recordable zone having a drive & disc zone in which information on a drive and information on a state of the disc is recorded. The drive & disc zone includes a plurality of physical clusters or ECC blocks and the information on the drive and the information on the state of the disc is recorded in the same physical cluster or ECC block or different physical clusters or ECC blocks.

[Representative Drawing]

FIG. 2

10

SPECIFICATION

[Title of the Invention]

5

15

20

30

INFORMATION STORAGE MEDIUM AND METHOD OF RECORDING INFORMATION THEREON

[Brief Description of the Drawings]

FIG. 1 illustrates the data structure of a lead-in or lead-out area according to the present invention. 10

FIG. 2 is a view for explaining an information storage medium and a method of recording information thereon according to a first embodiment of the present invention.

FIG. 3 is a view for explaining an information storage medium and a method of recording information thereon according to a second embodiment of the present invention.

FIGS. 4A and 4B are views for explaining an information storage medium and a method of recording information thereon according to a third embodiment of the present invention.

FIG. 5 illustrates information on a drive and on the state of a disc, the information being recorded in a drive & disc zone of an information storage medium according to the present invention.

FIGS. 6A and 6B are views for explaining an information storage medium and a method of recording information thereon according to a fourth embodiment of the present invention.

25 < Explanation of Reference numerals designating the Major Elements of the Drawings >

5: read-only zone

10: recordable zone

10a: defect management area 10b: control data zone

10c: OPC test zone

10d: drive & disc zone

10e: buffer zone

10-0, 10-1,...,10-n: physical cluster or ECC block

10-0-0, 10-0-1: 10-0-2,..., 10-n-0, 10-n-1,..., 10-n-m: recording unit

[Detailed Description of the Invention]

[Object of the Invention]

10

15

20

25

30

[Technical Field of the Invention and Related Art prior to the Invention]

The present invention relates to an information storage medium on which information on a drive and information on the state of a disc is recorded in a zone of a recordable area and a method of recording information thereon.

When a 4.7GB digital versatile disc-random access memory (DVD-RAM) is loaded into a drive, information on the drive, e.g., information on the drive maker, a serial number, and so forth, is recorded in a rewritable identification zone of a lead-in area of the disc. A 20GB high-density (HD)–DVD also has a lead-in area including a drive zone with a plurality of physical clusters so as to record information on a used drive in the drive zone.

In particular, since information is recorded only once in an optimum power control (OPC) zone necessary for testing a disc or a drive information zone of a once-writable information storage medium, the once-writable information storage medium requires updated information on its state as well as information on a used drive so that the drive can rapidly access the once-writable information storage medium when recording additional user data in unrecorded zones after recording user data.

Accordingly, a method of efficiently recording new information regarding a new drive and state of the disc should be proposed to satisfy a new format of an information storage medium.

[Technical Goal of the Invention]

The present invention provides an information storage medium on which information on a drive and information on the state of the medium can be recorded in a zone composed of a plurality of error correcting code (ECC) blocks or physical clusters, so that the drive can rapidly access the medium using the recorded information and user data can be efficiently recorded and/or reproduced, and a method of recording information thereon.

[Structure and Operation of the Invention]

According to an aspect of the present invention, there is provided an information storage medium (a disc) including an area and a user data area. The area includes a

recordable zone having a drive & disc zone in which information on a drive and information on a state of the disc is recorded. The drive & disc zone includes a plurality of physical clusters or ECC blocks and the information on the drive and the information on the state of the disc is recorded in a physical cluster or ECC block.

5

10

15

20

25

30

Whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block different from a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded, particularly in a physical cluster or ECC block following a physical cluster or ECC block in which information on a last drive and information on a last state of the disc is recorded.

Each of the plurality of physical clusters or ECC blocks comprises a plurality of recording units, and the information on the drive and the information on the state of the disc may be sequentially recorded in different recording units or the same recording unit of a physical cluster or an ECC block.

It is preferable that information on a new drive and information on a latest state of the disc is recorded in a starting recording unit of the physical cluster or ECC block, and then the information on the drive and the information on the state of the disc is copied into a recording unit right after the starting recording unit.

According to another aspect of the present invention, there is also provided an information storage medium (a disc) including an area and a user data area. The area includes a recordable zone having a drive & disc zone in which information on a drive and information on a state of the disc is recorded. The drive & disc zone includes a plurality of physical clusters or ECC blocks and the information on the drive and the information on the state of the disc is recorded in different physical clusters or ECC blocks.

The information on the drive and the information on the state of the disc are sequentially and alternately recorded starting from a beginning part of the drive & disc zone. Alternatively, the drive & disc zone may be divided into two zones, and one of the information on the drive and the information on the state of the disc may be recorded in a first zone of two zones and the remaining information may be recorded in a second zone of two zones.

The information on the state of the disc may include at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information

on a last drive and information on a latest state of the disc is recorded, a last recorded address of a zone in which user data is lastly recorded, information on the number of sessions, write protection information, information for indicating whether additional user data is recordable after recording user data, and information necessary for indicating an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc is to be recorded or information necessary for indicating an address of a zone in which user data is to be recorded.

According to still another aspect of the present invention, there is also provided a method of recording information on an information storage medium (a disc). Information on a drive and information on a state of the disc is recorded in one of a plurality of physical clusters or ECC blocks of a drive & disc zone of a recordable zone included in an area except a user data area. Information on a new drive and information on a latest state of the disc is recorded in a physical cluster or an ECC block different from a physical cluster or an ECC block in which the information on the drive and the information on the state of the disc is recorded whenever the information on the drive and the information on the state of the disc is updated.

10

15

25

30

According to yet another aspect of the present invention, there is also provided a method of recording information on an information storage medium (a disc). Information on a drive and information on a state of the disc is recorded in different physical clusters or ECC blocks of a plurality of physical clusters or ECC blocks of a drive & disc zone of a recordable zone included in an area except a user data area. Information on a new drive and information on a latest state of the disc is recorded in a physical cluster or ECC block different from a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded whenever the information on the drive and the information on the state of the disc is updated.

Hereinafter, an information storage medium (a disc) and a method of recording information thereon according to the present invention will be described in detail with reference to the attached drawings.

FIG. 1 illustrates the physical structure of a lead-in area having a predetermined diameter starting from the central hole of an information storage medium (a disc) according to the present invention. The lead-in area includes a read-only zone 5 in which data is pre-recorded and a recordable zone 10. Disc-related control data is

pre-recorded as pits or high frequency wobbles in the read-only zone 5 when manufacturing the disc and is only readable.

The recordable zone 10 includes a defect management area 10a in which information necessary for handling and managing defects on the disc is recorded, a control data zone 10b, an OPC test zone 10c in which information necessary for optimally controlling a power is recorded, and a buffer zone 10e.

Here, the recordable zone 10 further includes a drive & disc zone 10d in which information on a drive and information on the state of the disc is recorded. The drive & disc zone 10d is composed of a plurality of physical clusters or ECC blocks, each of which may be composed of a plurality of recording units such as sectors or data frames. The information on the drive includes information on a manufacturer, manufacturing company-related information, a manufacture number, a serial number of the drive, and so forth. The information on the state of the disc includes at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive is recorded, a last recorded address of a zone of a user data area in which user data is lastly recorded, information on the number of sessions, write protection information, and information for indicating whether additional user data is recordable in a user data area after recording write user data.

According to the present invention, information on the drive and the information on the state of the disc is recorded in the drive & disc zone 10d of the disc having the plurality of physical clusters or ECC blocks. In this case, each time information on a new drive is recorded and the information on the state of the disc is updated, the information is recorded in a physical cluster or ECC block different from one of the plurality of physical clusters or ECC blocks in which the information on the previous drive and the information on the previous state of the disc is recorded. In particular, it is preferable that whenever information on a new drive is recorded and the information on the state of the disc is updated, the information on the new drive and the updated information on the state of the disc is recorded in a physical cluster or ECC block following the physical cluster or ECC block in which the information on the previous drive and the information on the previous state of the disc is recorded. The drive & disc zone 10d may be included in each of the areas except the user data area. For example, the drive & disc zone 10d may be included in at least one of the lead-in area

and a lead-out area (not shown). The lead-out area may have a similar structure to the lead-in area.

Referring to FIG. 2, the drive & disc zone 10d of an information storage medium (a disc) according to a first embodiment of the present invention may include n+1 physical clusters or ECC blocks ranging from a 0th physical cluster or ECC block 10-0 to a nth physical cluster or ECC block 10-n. Each of the (n+1) physical clusters or ECC blocks may be composed of a plurality of recording units such as sectors or data frames. Hereinafter, only physical clusters will be described for convenience. For example, the 0th physical cluster 10-0 may be composed of m+1 recording units ranging from a 0th recording unit 10-0-0 to an mth recording unit 10-0-m.

10

15

20

25

30

According to the first embodiment, information on a drive and information on the state of the disc is recorded in a physical cluster. For example, information on a 0th drive is recorded in a 0th recording unit 10-0-0 of a 0th physical cluster 10-0 and information on a 0th state of the disc is recorded in a first recording unit 10-0-1 of the 0th physical cluster 10-0. Dummy data is recorded in remaining recording units of the 0th physical cluster. Thereafter, when a new drive records data on and/or reproduce data from the disc, information on the new drive, i.e., information on a first drive, is recorded in a 0th recording unit 10-1-0 of a first physical cluster 10-1 after the 0th physical cluster 10-0. Here, the information on the state of the disc is updated, i.e., information on a first state of the disc is recorded in a first recording unit 10-1-1 of the first physical cluster 10-1. Next, the information on the 0th drive and the information on the 0th state of the disc is copied from the 0th and first recording units of the 0th physical cluster into a second recording unit 10-1-2 and a third recording unit 10-1-3 of the first physical cluster 10-1, respectively.

When a new drive, i.e., a second drive, records data on the disc, information on the second drive and information on a second state of the disc is recorded in a second physical cluster 10-2 following a physical cluster in which data is lastly recorded, i.e., the first physical cluster 10-1. Here, the information on the second drive is recorded in a 0th recording unit 10-2-0 of the second physical cluster 10-2 and the information on the second state of the disc is recorded in a first recording unit 10-2-1 of the second physical cluster 10-2. Next, the information on the first drive, the information on the first state of the disc, the information on the 0th drive, and the information on the 0th state of the disc is copied into second, third, fourth, and fifth recording units 10-2-2, 10-2-3,

10-2-4, and 10-2-5 of the second physical cluster 10-2, respectively, following the 0th and first recording units 10-2-0 and 10-2-1.

5

10

15

20

25

30

As described above, every time information on a new drive and information on a new state of a disc is recorded in a physical cluster following a physical cluster in which information on a previous drive and information on a previous state of the disc is recorded, the information on the previous drive and the information on the previous state of the disc is also recorded in the physical cluster in which the information on the new drive and the information on the new state of the disc is recorded. This is to inform a new drive of information on a previous drive and the history of the state of the disc. Information on the new drive and information on a new state of the disc is recorded in starting sections of a physical cluster and the information on the previous drive and the information on the previous state of the disc is copied into sections of the physical cluster following the starting sections. Therefore, a user can obtain information on all used drives and information on all states of the disc by reproducing the physical cluster in which the information on the new drive and the information on the new state of the disc is recorded, without reproducing the physical cluster in which the information on the previous drive and the information on the previous states of the disc is recorded. As a result, the user can efficiently manage a new drive or efficiently check the state of a disc.

As previously described, the information on the state of the disc includes an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive is recorded, a last recorded address of a zone of a user data area in which user data is lastly recorded, write protection information, and information for indicating whether additional user data is recordable in a user data area after recording user data. This will be explained in detail below.

Information on a recording and/or reproduction power necessary for recording and/or reproducing user data is recorded in the OPC test zone 10c whenever user data is recorded, and the recording and/reproduction power can be adjusted to an optimum state using this information. New data corresponding to a power used whenever recording is performed is recorded as the information on the recording and/or reproduction power. In particular, in an event that a once-writable optical information storage medium is used, OPC data is recorded in a new zone in which data was not previously recorded whenever new data is recorded. When new data is recorded after

recording of data is completed, a zone in which new OPC data is to be recorded has to be found. Due to this, it is preferable that an address of the zone in which new OPC data is recorded is written to a predetermined zone so that a used drive can rapidly access it. In other words, the drive can quickly access a zone in which new OPC data is to be recorded when recording new OPC data by recording an address of a zone in which OPC data is lastly recorded in the drive & disc zone 10d and reproducing the address of the zone in which OPC data is lastly recorded without reproducing all zones in which OPC data is recorded.

As the information on the drive, information on the drive and information on the state of the disc is updated whenever a new drive records information on the disc. Thus, it is preferable that an address of a zone in which information on a lastly used drive and information on a last state of the disc is recorded as the information on the state of the disc. Thereafter, a position in which information on a new drive or information on a new state of the disc is to be recorded can be easily found when recording information on the new drive by reproducing the address of the zone in which information on the lastly used drive and the last state of the disc is recorded.

10

15

20

25

30

When recording of user data stops, and then new user data is recorded, a pickup has to find out and access a zone in which user data is to be recorded. Thus, it is preferable that an address of a zone in which user data is lastly recorded is recorded in the drive & disc zone 10d so that the pickup has a rapid access to the zone in which user data is to be recorded.

Instead of the address of the zone in which the information on the last drive and the information on the last state of the disc is recorded or the address of the zone in which user data is lastly recorded, an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc will be recorded or an address of a zone in which subsequent user data will be recorded may be recorded in the drive & disc zone 10d.

If the information on the state of the disc containing information on a latest state of the disc is not supplied, all information recorded in the OPC test zone 10b, the drive & disc zone 10d, or the user data area has to be reproduced when recording user data. Thus, it takes a large amount of time for the drive to access the disc.

Information on the number of sessions necessary for determining how many sections the user data area is divided into may be recorded as the information on the

state of the disc. For example, the information on the number of sessions can be supplied in order to divide the user data area into several sections according to their use purpose or capacity so that the disc can be further conveniently used.

After recording of user data is completed, it is preferable that information necessary for determining whether additional user data is recordable is recorded immediately after the zone in which user data is lastly recorded. Data indicating that recording of additional user data is impossible after recording of user data is completed can be recorded so that additional user data is not recorded any more. However, if recording of additional user data is possible, data indicating that additional user data can be recorded right after the zone in which user data is lastly recorded is recorded.

5

10

15

20

25

30

The information on the state of the disc can be recorded in the drive & disc zone 10d of the recordable zone 10 of the lead-in or lead-out area whenever recording of user data is finished. As a result, the pickup can accurately and rapidly access a corresponding zone using the information on the state of the disc when recording user data later. Also, user data can be efficiently recorded and/or reproduced. In particular, the information on the state of the disc is useful for a once-writable information storage medium.

As described above, according to the first embodiment, information on a drive and information on the state of a disc can be recorded together. Also, whenever this information is updated, the updated information can be recorded in a physical cluster or ECC block following a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.

An information storage medium (a disc) and a method of recording information thereon according to a second embodiment of the present invention will be described.

Referring to FIG. 3, the drive & disc zone 10-d is composed of a plurality of physical clusters or ECC blocks 10-1, 10-2, ..., and 10-n, each of which is composed of a plurality of recording units 10-0-0, 10-0-1, ..., and 10-0-m such as sectors or data frames. According to the second embodiment, information on a 0th drive and information on a 0th state of the disc is recorded in different physical clusters or ECC blocks. Thereafter, when a new drive records data on and/or reproduces data from the disc; information on the new drive and updated information on the state of the disc is also recorded in different physical clusters or ECC blocks. Preferably, the information on the new drive and the updated information on the state of the disc is recorded in

physical cluster or ECC blocks following physical clusters or ECC blocks in which information on a previous drive and information on a previous state of the disc is recorded. Here, information on all used drives and information on all states of the disc is alternately recorded from a starting part of the drive & disc zone 10d. Hereinafter, only physical clusters will be described for convenience.

Information on the 0th drive is recorded in the 0th physical cluster 10-0 and information on the 0th state of the disc is recorded in the first physical cluster 10-1. Next, when another drive, i.e., a first drive, records data on and/ or reproduces data from the disc, information on the first drive and information on a first state of the disc is recorded in the second physical cluster 10-2 and the third physical cluster 10-3, respectively. Here, it is preferable that information on a new drive and information on a new state of the disc is recorded in 0th recording units of corresponding physical clusters, respectively, and then information on previous drives and information on previous states of the disc is copied starting from first recording units. The reason why the information on the previous drives and the information on the previous states of the disc is copied is as previously explained.

10

15

20

25

30

When information on a drive and information on the state of a disc is recorded in different physical clusters as described above, it is preferable that at least one of an address of a zone in which information on a last drive is recorded and an address of a zone in which information on a last state of the disc is recorded is recorded as the information on the state of the disc.

An information storage medium (a disc) and a method of recording data thereon according to a third embodiment will be described with reference to FIG. 4A. The present embodiment is characterized in that information on a drive and information on the state of a disc is recorded in one of recording units constituting physical clusters or ECC blocks of the drive & disc zone 10d. In detail, information on a used drive, i.e., a 0th drive, and information on a 0th state of the disc is recorded in a 0th recording unit 10-0-0 of a 0th physical cluster 10-0. Thereafter, when another drive, i.e., a first drive, records data on and/or reproduces data from the disc, information on the first drive and information on a first state of the disc is recorded in a 0th recording unit 10-1-0 of a first physical cluster 10-1 right after the 0th physical cluster 10-0. The information on the 0th drive and the information on the 0th state of the disc is copied into a first recording unit 10-1-1 of the first physical cluster 10-1.

When a second drive records data on and/or reproduces data from the disc, information on the second drive and information on a second state of the disc is recorded in a 0th recording unit 10-2-0 of a second physical cluster 10-2. The information on the first drive and the first state of the disc and the 0th drive, and the information on the 0th drive and the 0th state of the disc is copied into first and second recording units 10-2-1 and 10-2-2, respectively.

As shown in FIG. 4B, in order to increase the reliability of recording/reproducing of information on a drive and information on the state of a disc, original information on the drive and original information on the state of the disc may be recorded in a predetermined physical cluster, and then copied into another physical cluster. For example, original information on a 0th drive and original information on a 0th state of the disc is recorded in a 0th recording unit 10-0-0 of a 0th physical cluster 10-0, and then copied into a 0th recording unit 10-1-0 of a first physical cluster 10-1.

10

15

20

25

30

When another drive, i.e., a first drive, records data and/or reproduces data from the disc, original information on the first drive and original information on a first sate of the disc is recorded in a second physical cluster 10-2 right after the first physical cluster 10-1 into which the original information on the 0th drive and the original information on the 0th state of the disc is copied, and then copied into a third physical cluster 10-3. In the present embodiment, original information on a drive and original information on the state of a disc is first recorded and then copied. However, this may be applied to the first and second embodiments. Therefore, when original information on a drive and original information on the state of a disc is damaged or a defect appears, copied information on the drive and copied information on the state of the disc can be reproduced. As a result, an efficiency of recording and/or reproducing data can be improved.

Information on a drive and information on the state of a disc recorded in a recording unit according to the third embodiment is as shown in FIG. 5.

An information storage medium (a disc) and a method of recording data thereon according to a fourth embodiment of the present invention will be described with reference to FIGS. 6A and 6B. Referring to FIGS. 6A and 6B, a drive & disc zone 10d of-a-recordable-zone 10 of a lead-in or lead-out area, except a user data area, is divided into two zones. Information on a drive is recorded in the fore zone and information on the state of a disc is recorded in the back zone. The drive & disc zone 10d shown in

FIG. 6A is the same as that shown in FIG. 1 except that the drive & disc zone 10d is divided into two zones, and thus will not be explained herein.

As shown in FIG. 6B, the drive & disc zone 10d is, for example, composed of n+1 physical clusters or ECC blocks. Information on the drive is recorded in the fore half of the drive & disc zone 10d and information on the state of the disc is recorded in the back half of the drive & disc zone 10d. In other words, whenever information on a new drive is recorded, the information is sequentially recorded starting from a 0th physical cluster 10-0 to a (n-1)/2th physical cluster 10-(n-1)/2. Whenever information on the state of the disc is updated, the updated information is sequentially recorded starting from a (n+1)/2th physical cluster 10-(n+1)/2 to an nth physical cluster 10-n.

10

15

20

25

30

In more detail, information on a 0th drive is recorded in a 0th recording unit 10-0-0 of a 0th physical cluster 10-0, and then information on a 0th state of the disc is recorded in a 0th recording unit 10-(n+1)/2 of a (n+1)/2th physical cluster 10-(n+1)/2. Next, when a new drive, i.e., a first drive, records data on and/or reproduces data from the disc, information on the first drive is recorded in a 0th recording unit 10-1-0 of a first physical cluster 10-1. Here, it is preferable that the information on the 0th drive is copied into a first recording unit 10-1-1 of the first physical cluster 10-1. Information on a first state of the disc is recorded in a 0th recording unit 10-(n+3)2-0 of a (n+3)/2th physical cluster 10-(n+3)/2, and then the information on the 0th state of the disc is copied into a first recording unit 10-(n+3)2-1 of the (n+3)/2th physical cluster 10-(n+3)/2.

In the above-described first through fourth embodiments, information on a drive is recorded prior to information on the state of a disc. However, the information on the state of the disc may be recorded prior to the information on the drive.

In summary, in a method of recording information on an information storage medium (a disc) according to the present invention, information on drives and information on states of a disc is recorded in a drive & disc zone 10d of a recordable zone of a lead-in or lead-out area except a user data area. The drive & disc zone 10d is composed of a plurality of physical clusters or ECC blocks. Also, whenever information on a new drive and information on a new state of the disc is recorded, the information on the new drive and the information on the new state of the disc is recorded in a physical cluster or ECC block different from a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.

Information on a used drive and information on the state of a disc may be recorded in a physical cluster or ECC block or different physical clusters or ECC blocks. In addition, each of the plurality of physical clusters or ECC blocks is composed of a plurality of recording units such as sectors or data frames. In a case where information on a used drive and information on the sate of a disc is recorded in a physical cluster, the information on the used drive and the information on the state of the disc may be recorded in different recording units of the physical cluster as described with reference to FIG. 2 or in a recording unit of the physical cluster as described with reference to FIG. 4A.

In an event that information on used drives and information on the states of a disc is recorded in different physical clusters or ECC blocks, as described with reference to FIG. 3, the information on the used drives and the information on the states of the disc can be alternately recorded starting from a beginning physical cluster or ECC block of the drive & disc zone 10d. Alternatively, as described with reference to FIG. 6B, after the drive & disc zone 10d may be divided into two zones, at least one of information on the used drives and information on the states of the disc may be sequentially recorded in physical clusters or ECC blocks of the fore zone and remaining information may be sequentially recorded in physical clusters or ECC blocks of the remaining zone. In other words, at least one of information on a new drive and information on a new state of the disc is recorded in the fore one of the two divided zones, and remaining information is recorded in the remaining zone. As described above, information on used drives and information on states of a disc can be recorded using various methods.

25 [Effect of the Invention]

5

10

20

30

As described above, in an information storage medium (a disc) and a method of recording information thereon according to the present invention, zones in which information on drives and information on states of a disc can be efficiently used. Also, the information on the drives and the information on the states of the disc can be used in a new format.

In addition, the information storage medium and the method of recording information thereon according to the present invention can be applied to once-writable information storage media as well as several-time-rewritable information storage media.

In particular, when information on a drive and information on the state of a disc is recorded on a once-writable information storage medium, the information on the drive and the information on the state of the disc can be recorded only one time in a physical cluster or ECC block. Thus, when information on a new drive and information on a new state of the disc is recorded, the physical cluster or ECC block in which the information on the drive and the information on the state of the disc cannot be used. Instead, the information on the new drive and the information on the new state of the disc should be recorded in a physical cluster or ECC block right after a physical cluster or ECC block in which information on a last drive and information on a last state of the disc is recorded. Therefore, it is preferable that the method of recording information according to the present invention is applied to once-writable information storage medium.

10

15

20

25

Moreover, in a case of a several-time-rewritable information storage medium, information on previous drives and information on previous states of the disc is recorded in a zone in which information on a last drive and information on a last state of the disc is recorded. Thus, a drive & disc zone can be efficiently managed by reproducing only the zone in which the information on the last drive and the information on the last state of the disc is recorded.

Furthermore, whenever recording of user data is completed, information on a latest state of a disc is recorded. Thus, a pickup can rapidly access an exact position in which user data is to be recorded next time. As a result, since user data can be recorded using the information on the latest state of the disc, recording/reproduction efficiency can be improved.

While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

What is claimed is:

5

20

25

- 1. An information storage medium (a disc) comprising an area and a user data area, the area including a recordable zone having a drive & disc zone in which information on a drive and information on a state of the disc is recorded, wherein the drive & disc zone includes a plurality of physical clusters or ECC blocks and the information on the drive and the information on the state of the disc is recorded in a physical cluster or ECC block.
- 2. The information storage medium of claim 1, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block different from a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.
- 3. The information storage medium of claim 2, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block right after a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.
 - 4. The information storage medium of claim 2, wherein each of the plurality of physical clusters or ECC blocks comprises a plurality of recording units, and the information on the drive and the information on the state of the disc is sequentially recorded in different recording units of a physical cluster or an ECC block.
 - 5. The information storage medium of claim 2, wherein each of the plurality of physical clusters or ECC blocks comprises a plurality of recording units, and the information on the drive and the information on the state of the disc is recorded in the same recording unit of a physical cluster.
 - 6. The information storage medium of claim 4 or 5, wherein the plurality of recording units are sectors or data frames.

7. The information storage medium of claim 4 or 5, wherein the information on the drive and the information on the state of the disc is copied into a physical cluster or ECC block following a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded.

5

8. The information storage medium of claim 4 or 5, wherein information on a new drive and information on a latest state of the disc is recorded in a starting recording unit of the physical cluster or ECC block, and then the information on the drive and the information on the state of the disc is copied into a recording unit right after the starting recording unit.

10

9. The information storage medium of any one of claims 1 through 5, wherein the information on the state of the disc comprises at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive and information on a latest state of the disc is recorded, a last recorded address of a zone in which user data is lastly recorded, information on the number of sessions, write protection information, and information for indicating whether additional user data is recordable after recording user data.

20

15

10. The information storage medium of any one of claims 1 through 5, wherein the information on the state of the disc comprises information necessary for indicating an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc is to be recorded or information necessary for indicating an address of a zone in which user data is to be recorded.

25

11. The information storage medium of any one of claims 1 through 5, wherein the area is at least one of a lead-in area and a lead-out area.

30

12. An information storage medium (a disc) comprising an area and a user data area, the area including a recordable zone having a drive & disc zone in which information on a drive and information on a state of the disc is recorded, wherein the drive & disc zone includes a plurality of physical clusters or ECC blocks and the

information on the drive and the information on the state of the disc is recorded in different physical clusters or ECC blocks.

- 13. The information storage medium of claim 12, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block different from a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.
- 14. The information storage medium of claim 13, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block right after a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.

15

- 15. The information storage medium of claim 13, wherein the information on the drive and the information on the state of the disc are sequentially and alternately recorded starting from a beginning part of the drive & disc zone.
- 20 16. The information storage medium of claim 13, wherein the drive & disc zone is divided into two zones, and one of the information on the drive and the information on the state of the disc is recorded in a first zone of two zones and the remaining information is recorded in a second zone of two zones.
- 25 17. The information storage medium of any one of claims 12 through 16, wherein the information on the drive and the information on the state of the disc is copied into a physical cluster or ECC block following a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded.
 - 18. The information storage medium of any one of claims 12 through 16, wherein information on a new drive and information on a latest state of the disc is recorded in a starting recording unit of the physical cluster or ECC block, and then the

information on the drive and the information on the state of the disc is copied into a recording unit right after the starting recording unit.

- 19. The information storage medium of any one of claims 12 through 16, wherein the information on the state of the disc comprises at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive and information on a latest state of the disc is recorded, a last recorded address of a zone in which user data is lastly recorded, information on the number of sessions, write protection information, and information for indicating whether additional user data is recordable after recording user data.
 - 20. The information storage medium of any one of claims 12 through 16, wherein the information on the state of the disc comprises information necessary for indicating an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc is to be recorded or information necessary for indicating an address of a zone in which user data is to be recorded.
 - 21. The information storage medium of any one of claims 12 through 16, wherein the area is at least one of a lead-in area and a lead-out area.

15

20

25

30

22. A method of recording information on an information storage medium (a disc), the method comprising:

recording information on a drive and information on a state of the disc in one of a plurality of physical clusters or ECC blocks of a drive & disc zone of a recordable zone included in an area except a user data area; and

recording information on a new drive and information on a latest state of the disc in a physical cluster or an ECC block different from a physical cluster or an ECC block in which the information on the drive and the information on the state of the disc is recorded whenever the information on the drive and the information on the state of the disc is updated.

23. The method of claim 22, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is

recorded in a physical cluster or ECC block right after a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.

- The method of claim 23, wherein each of the plurality of physical clusters or ECC blocks comprises a plurality of recording units, and the information on the drive and the information on the state of the disc is sequentially recorded in different recording units of a physical cluster or an ECC block.
- 10 25. The method of claim 23, wherein each of the plurality of physical clusters or ECC blocks comprises a plurality of recording units, and the information on the drive and the information on the state of the disc is recorded in the same recording unit of a physical cluster.
 - 26. The method of claim 24 or 25, wherein the plurality of recording units are sectors or data frames.

15

20

- 27. The method of claim 24 or 25, wherein the information on the drive and the information on the state of the disc is copied into a physical cluster or ECC block following a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded.
- 28. The method of claim 24 or 25, wherein information on a new drive and information on a latest state of the disc is recorded in a starting recording unit of the physical cluster or ECC block, and then the information on the drive and the information on the state of the disc is copied into a recording unit right after the starting recording unit.
- 29. The method of any one of claims 22 through 25, wherein the information on the state of the disc comprises at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive and information on a latest state of the disc is recorded, a last recorded address of a zone in which user data is lastly recorded, information on the number of sessions, write

protection information, and information for indicating whether additional user data is recordable after recording user data.

- 30. The method of any one of claims 22 through 25, wherein the information on the state of the disc comprises information necessary for indicating an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc is to be recorded or information necessary for indicating an address of a zone in which user data is to be recorded.
- 10 31. The method of any one of claims 22 through 25, wherein the area is at least one of a lead-in area and a lead-out area.

15

20

32. A method of recording information on an information storage medium (a disc), the method comprising:

recording information on a drive and information on a state of the disc in different physical clusters or ECC blocks of a plurality of physical clusters or ECC blocks of a drive & disc zone of a recordable zone included in an area except a user data area; and

recording information on a new drive and information on a latest state of the disc in a physical cluster or ECC block different from a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded whenever the information on the drive and the information on the state of the disc is updated.

- 33. The method of claim 32, wherein whenever the information on the drive and the information on the state of the disc is updated, the updated information is recorded in a physical cluster or ECC block right after a physical cluster or ECC block in which information on a previous drive and information on a previous state of the disc is recorded.
- 34. The method of claim 33, wherein the information on the drive and the information on the state of the disc are sequentially and alternately recorded starting from a beginning part of the drive & disc zone.

35. The method of claim 33, wherein the drive & disc zone is divided into two zones, and one of the information on the drive and the information on the state of the disc is recorded in a first zone of two zones and the remaining information is recorded in a second zone of two zones.

5

36. The method of any one of claims 32 through 35, wherein the information on the drive and the information on the state of the disc is copied into a physical cluster or ECC block following a physical cluster or ECC block in which the information on the drive and the information on the state of the disc is recorded.

10

15

20

- 37. The method of any one of claims 32 through 35, wherein information on a new drive and information on a latest state of the disc is recorded in a starting recording unit of the physical cluster or ECC block, and then the information on the drive and the information on the state of the disc is copied into a recording unit right after the starting recording unit.
- 38. The method of any one of claims 32 through 35, wherein the information on the state of the disc comprises at least one of an address of a zone in which new OPC data is recorded, an address of a zone in which information on a last drive and information on a latest state of the disc is recorded, a last recorded address of a zone in which user data is lastly recorded, information on the number of sessions, write protection information, and information for indicating whether additional user data is recordable after recording user data.

25

39. The method of any one of claims 32 through 35, wherein the information on the state of the disc comprises information necessary for indicating an address of a zone in which information on a subsequent drive and information on a subsequent state of the disc is to be recorded or information necessary for indicating an address of a zone in which user data is to be recorded.

FIG. 1

LEAD—IN AREA	DESCRIPTION	USE PURPOSE		
READ-ONLY ZONE (5)	PITS OR HIGH FREQUENCY WOBBLES	DISC-RELATED CONTROL DATA		
RECORDABLE ZONE (10)	DMA (10a)	DEFECT MANAGEMENT		
	CONTROL DATA ZONE (10b)	DATA INFORMATION (CONTROL DATA)		
	OPC TEST ZONE (10c)	OPC TESTING (OPC DATA)		
	DRIVE & DISC ZONE (10d)	INFORMATION ON DRIVI AND INFORMATION ON THE STATE OF DISC		
	BUFFER ZONE (10e)	BUFFER FOR USER DATA AREA		

10-n n_th	***************************************							
10-8 ··· 10-(n-1) 1	INFORMATION ON SECOND DRIVE (10-2-0)	INFORMATION ON SECOND STATE OF DISC (10-2-1)	INFORMATION ON FIRST DRIVE (10-2-2)	INFORMATION ON FIRST STATE OF DISC (10—2—3)	INFORMATION ON OTH DRIVE (10-2-4)	INFORMATION ON 0TH STATE OF DISC (10-2-5)	DUMMY DATA	(10-2-m)
10-7 10 1 7th 8								
10-0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 ··· 10-(n-1) 10-n 1	INI ORMATION ON FIRST DRIVE (10-1-0)	INFORMATION ON FIRST STATE OF DISC (10-1-1)	INFORMATION ON 0TH DRIVE (10-1-2)	INFORMATION ON OTH STATE OF DISC (10-1-3)		DUMMY DATA		(10-1-m)
10-1 10-2 1st 2nd		•						
FIG. 2 10-0 10 10 10 10 10 10 10 10 10 10 10 10 10	INFORMATION ON OTH DRIVE (10-0-0)	INFORMATION ON 0TH STATE OF DISC (10-0-1)			DUMMY DATA			(10-0-m)
FIG								

FIG. 3

FIG. 4B

FIG. 5

FIG. 6A

	I	1		
LEAD—IN AREA	DESCRIPTION	USE PURPOSE		
READ-ONLY ZONE (5)	PITS OR HIGH FREQUENCY WOBBLES	DISC—RELATED CONTROL DATA		
RECORDABLE ZONE (10)	DMA (10a)	DEFECT MANAGEMENT		
	CONTROL DATA ZONE (10b)	DATA INFORMATION (CONTROL DATA)		
	OPC TEST ZONE (10c)	OPC TESTING (OPC DATA)		
	DRIVE & DISC ZONE	DRIVE-RELATED INFORMATION		
	(10d)	DISC STATE—RELATED INFORMATION		
	BUFFER ZONE (10e)	BUFFER FOR USER DATA ZONE		

INFORMATION ON FIRST STATE OF DISC $(10-(\frac{n+3}{2})-0)$...10-(n-1) 10-n INFORMATION ON OTH STATE OF DISC $(10-(\frac{n+3}{2})-1)$ $(10-(\frac{m+3}{2})-m)$ DUMMY DATA (n+1)th (n+3)th (n+3)th (n+7)th (n+9)th ... |n-1_th INFORMATION ON OTH STATE OF DISC $(10-(\frac{n+1}{2})-0)$ $(10-(\frac{1}{2})-m)$ DUMMY DATA $10 - (\frac{0.2^{-1}}{2}) \quad 10 - (\frac{0.2^{-3}}{2})$ FIG. 6B INFORMATION ON OTH DRIVE (10-1-1) INFORMATION ON FIRST DRIVE (10-1-0) DUMMY DATA (10-1-m)10-0 10-1 10-2 10-3 10-4 10-5 5th 4th 3rd INFORMATION ON OTH DRIVE (10-0-0) 2nd **DUMMY DATA** (10-0-m)1st Oth

30