STA 674

Regression Analysis And Design Of Experiments
Fitting Multiple Linear Regression Models – Lecture 4

- Last time, we covered sources of squared error: regression versus error (adding to the total.)
- This time, we discuss ANOVA for multiple linear regression.

SSE error -- y-yhat SSR regression (model) -- yhat-ybar SST total -- y-ybar SSE + SSR = SST

STA 674, RADOE:

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

• Consider the example of predicting the output of a nuclear power plant based on the year in which it was built and the cost.

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

• Consider the example of predicting the output of a nuclear power plant based on the year in which it was built and the cost.

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

$$\frac{SSE}{SST} = \frac{736573}{1111564} = 0.663$$

Is this small enough to conclude that the model is useful?

Fitting Multiple Linear Regression Models

ANOVA Tables - Degrees of Freedom (DF)

	SS	DF
Regression	$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	K = number of predictors
Error	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-K-1 = number of data points minus number of predictors minus 1
Total	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1 = number of data points minus 1

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

• Consider the example of predicting the output of a nuclear power plant based on the year in which it was built and the cost.

Source	DF	Sum of Squares	Mean Kanare	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

normalized by df

Fitting Multiple Linear Regression Models

Mean Squares

• Means squares are computed by dividing the sums of squares by their degrees of freedom:

$$MSR = \frac{SSR}{K}$$
 and $MSE = \frac{SSE}{n - K - 1}$

F-Statistic

• The *F*-statistic is the ratio of MSR to MSE:

$$F = \frac{MSR}{MSE}$$

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

• Analysis of Variance -MSR's and F statistic

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

Fitting Simple Linear Regression Models

ANOVA tables—the *F*-test

all predictor Bk equal to 0

at least one predictor Bk not equal to 0

- Hypotheses: $H_0: \beta_1 = \beta_2 = \dots = \beta_K = 0$ vs. $H_a: \beta_k \neq 0$ for some k
- Test Statistic: $F = \frac{MSR}{MSE}$

level of significance

numerator df

- Rejection Rule: Reject H_0 at the α level of significance if $F > F_{\alpha,K,n-K-1}$.

 Otherwise, we fail to reject H_0 .
- P-value: $P(F_{K,n-K-1} > F)$ all are single tail test... F test is always a right tail test

Fitting Multiple Linear Regression Models

from F distribution

Example: Nuclear Reactor Data

• If H_0 is true, then F is distributed according to an F-distribution with 2 and 29 degrees of freedom:

Two wasy to determine significance...

- 1. compare critical F value with F statistic
- 2. compare p value with alpha

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

• Analysis of Variance -P-value

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			