Hearing Abilities of Foundation Models

Evaluation and Analysis of How and What Can Foundation Models Hear.

- Current Topics in Speech Technology

INTRODUCTION AND MOTIVATION

The motivations behind this study are:

- Foundation models enhance *hearing* with self-supervised learning inspired by NLP.
- Hearing includes *indentifying speech*, *object attributes*, and *sound event order*.
- Models combine *audio* and *text* for classification, retrieval, and generation.
- The study explores *evolution*, *challenges*, and *innovations* in *auditory* models.

The objectives of this study are:

- To analyze the SoTA audio-language models' architecture and training mechanisms
- To analyze the hierarchical feature representations across speech and speaker tasks
- To analyze a large-scale evaluation of Speech FMs using (Dynamic-) SUPERB frameworks
- To study the extent to which models are able to hear.

MODELS ARCHITECTURES

1. CLAP's Architecture (Elizalde et al., 2023): 2. Pengi's Architecture (Singh et al., 2024):

3. SALMONN's Architecture (Tang et al., 2024):

4. Example of SALMONN (Tang et al., 2024):

Task: "Speech-Audio Coreasoning"

SPEECH MODELS BENCHMARKS

Hallucinations in Audio Models: A Multi-Task Study (Kuan & Lee, 2024)

Introducing the First Dynamic, Collaborative Benchmark for Speech Instruction Tuning: Covering 33 Tasks and 55 Evaluation Instances (Huang et al., 2024)

Dynamic-SUPERB Results:

BERT-GSLM

1. Accuracy on **seen** tasks:

Whisper	95.3	47.9	55.5	71.1	49.4	-
ImageBind-LLM	64.3	54.7	47.6	78.7	59.8	-
Whisper-LLM	77.6	91.7	55.7	91.0	66.3	-
ASR-ChatGPT	-	-	-	-	-	-
Random	49.9	40.2	41.0	45.9	67.1	-
y on unseen t	tasks:	· ·				
cy on unseen t	tasks:		SEM	DEG	PRL	AUD
			SEM 5.3	DEG 41.6	PRL 12.6	AUD 0.0
Model	CNT	SPK				
Model BERT-GSLM	CNT 0.0	SPK 32.8	5.3	41.6	12.6	0.0
Model BERT-GSLM Whisper	CNT 0.0 14.4	SPK 32.8 58.0	5.3 13.8	41.6 55.4	12.6 8.5	0.0

CNT SPK SEM DEG PRL AUD

66.3 49.1 47.2 68.2 52.7

Subset of the full results of a Large-Scale evaluation of 33 Models Across 15 tasks of SUPERB (Yang et al., 2024):

Model	Best Task (Metric: Score)	Worst Task (Metric: Score)	Notes
WavLM Large	ST (BLEU: 21.5)	SE (PESQ: 2.71)	Excels in semantics; weaker in generative tasks.
HuBERT Large	SID (ACC: 90.3)	SS (SI-SDRi: 9.2)	Strong speaker identification; weaker in source separation.
wav2vec 2.0 Large	KS (ACC: 97.6)	SE (PESQ: 2.62)	Strong keyword spotting; weaker in enhancement tasks.
Data2vec Large	VC (ASV-ACC: 99.5)	SE (PESQ: 2.6)	Excellent in voice conversion; weaker in enhancement tasks.
FBANK (Baseline)	OOD-ASR (WER: 53.6)	Most tasks	Provides a baseline for comparison.

- → Models rely on pattern recognition rather than true semantic comprehension.
- → Highlights the need for robust instruction understanding and generalization.

LAYER-WISE ANALYSIS

Comparison of different layers' contribution to the models performance on Speaker vs. Speech tasks (Ashihara et al., 2024):

A (WavLM Large) Layer **c** (Sup.) B(DINO) SID SID **ASV-IDT ASV-IDT** ASV ASV KS-PR-ER 1 2 3 4 5 6 1 2 3 4 5 6 Layer Layer

layer-wise comparison of two speech-SSL Models (HuBERT Large vs. wav2vec 2.0 Large on SID & PR tasks (Yang et al., 2024)

- \Rightarrow Tasks favor specific layers (e.g., SE: lower, SID/ER: middle, PR: higher).
- ⇒ Layer Weights do not reliably reflect layer performance;

Layer-wise (*Lowest, Middle, Highest*) Benchmarking of wav2vec 2.0, HuBERT, and Data2vec Models Across 5 Tasks (*Yang et al., 2024*)

	• •	0.2	0.4		0.6		8.0	
FBANK	82.01	0.09	35.39	8.47	38.30	77.25	2.55	93.60
wav2vec 2.0 Base	5.74	75.18	63.43	7.50	10.50	98.00	2.55	93.90
wav2vec 2.0 Base - 1	37.10	58.42	59.48	7.79	14.08	95.50	2.51	93.57
wav2vec 2.0 Base - 5	15.72	71.48	60.81	7.36	11.75	97.50	2.47	93.69
wav2vec 2.0 Base - 11	24.42	54.60	57.97	7.32	19.15	97.25	2.40	93.25
wav2vec 2.0 Large	4.76	86.15	65.64	7.63	15.80	97.25	2.52	94.00
wav2vec 2.0 Large - 1	36.95	76.17	60.99	8.06	16.45	85.75	2.55	93.86
wav2vec 2.0 Large - 11	11.13	70.35	65.19	7.71	16.02	94.00	2.57	94.14
wav2vec 2.0 Large - 21	9.80	81.60	62.89	7.80	16.42	91.25	2.54	94.10
wav2vec 2.0 Large - 23	93.23	0.35	52.32	7.50	42.55	97.00	2.11	91.88
HuBERT Base	5.40	81.42	64.92	7.47	8.00	98.50	2.58	93.90
HuBERT Base - 1	42.43	58.16	59.28	7.93	17.00	90.75	2.51	93.68
HuBERT Base - 5	21.05	83.81	62.55	7.38	10.72	99.25	2.55	93.74
HuBERT Base - 11	6.10	69.78	62.72	7.23	11.05	99.00	2.48	93.55
HuBERT Large	3.54	90.33	67.62	7.22	9.00	99.25	2.64	94.20
HuBERT Large - 1	45.25	50.74	58.79	8.16	18.98	75.75	2.56	93.96
HuBERT Large - 11	13.04	86.84	67.47	7.24	10.17	99.50	2.59	93.97
HuBERT Large - 23	3.92	63.63	65.85	7.06	11.43	99.75	2.49	93.51
Data2vec Large	2.55	79.24	66.31	7.02	8.80	99.50	2.56	93.95
Data2vec Large - 1	36.28	52.54	60.69	7.77	15.87	95.00	2.55	93.72
Data2vec Large - 11	6.82	26.14	61.48	6.93	14.72	99.00	2.36	92.98
Data2vec Large - 23	2.62	15.67	60.28	6.87	21.73	99.50	2.36	92.46
	PR-PER	SID-ACC	ER-ACC	VC-MCD	VC-WER	VC-ASV	SE-PESQ	SE-STOI

CONCLUSION

- Models differ not only in their *embeddings of auditory features*, but also across *different tasks*.
- Activation tuning is important for harnessing the *emerging abilities* of speech models as seen in SALMONN.
- Research could benefit from training on multi-modal data and multi-tasking training.
- CLAP and ParaCLAP advanced audio-text alignment using contrastive learning and paraphrased text.
- Pengi's generative approach and SALMONN's sound event encoder addressed background audio issues highlighted by Kuan (2024).

