Efficient Krylov subspace methods for large-scale hierarchical Bayesian inverse problems

Elle Buser and Julianne Chung

May 28, 2024 @ SIAM IS24

Department of Mathematics Emory University ebuser@emory.edu

Problem setup

Consider the inverse problem

$$\mathbf{b} = \mathbf{A}\mathbf{x}_{\text{true}} + \mathbf{e}$$

where

- $\mathbf{A} \in \mathbb{R}^{m \times n}$ represents the linear forward model
- $\mathbf{b} \in \mathbb{R}^m$ contains observations
- $\mathbf{x}_{\text{true}} \in \mathbb{R}^n$ is the true solution
- $oldsymbol{e} \mathbf{e} \in \mathbb{R}^m$ is noise

Complications:

- underdetermined and ill-posed
- for large-scale problems, need efficient methods to
 - approximate solution
 - estimate uncertainties

Elle Buser | Emory University 1/26

Dynamic tomography reconstruction

where

- circular Radon transform
- $\mathbf{b}_i \in \mathbb{R}^{363} \to 43,560$ observations

2/26 FIle Buser | Emory University

Tracking carbon dioxide (CO₂)

Elle Buser | Emory University 3/26

Bayesian approach

Bayesian approach

Idea: Reformulate inverse problem as statistical inference where

$$\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e}, \qquad \mathbf{e} \sim \mathcal{N}(\mathbf{0}, \lambda^{-1}\mathbf{R}) \quad \text{and} \quad \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \delta^{-1}\mathbf{Q})$$

 $\mu \in \mathbb{R}^n$: prior mean

 $\mathbf{R} \in \mathbb{R}^{m \times m}$, $\mathbf{Q} \in \mathbb{R}^{n \times n}$: symmetric and positive definite (SPD) covariance matrices

 $\lambda>0,\,\delta>0$: hyper-parameters with gamma hyperpriors

$$\pi(\lambda) \propto \lambda^{\alpha_{\lambda} - 1} \exp(-\beta_{\lambda} \lambda)$$
 $\pi(\delta) \propto \delta^{\alpha_{\delta} - 1} \exp(-\beta_{\delta} \delta)$

- Able to perform uncertainty quantification (UQ)
- Can assume ${f R}^{-1}$ is obtainable

Calvetti and Somersalo, Introduction to Bayesian Scientific Computing, Springer (2007) Kaipio and Somersalo, Statistical and Computational Inverse Problems, Springer (2005)

Elle Buser | Emory University 4/26

Bayesian approach

Bayes' theorem

Posterior distribution:

$$\pi(\mathbf{x}, \lambda, \delta \mid \mathbf{b}) = \frac{\pi(\mathbf{b} \mid \mathbf{x}, \lambda, \delta) \, \pi(\mathbf{x} \mid \delta) \, \pi(\lambda) \, \pi(\delta)}{\pi(\mathbf{b})} \propto \underbrace{\pi(\mathbf{b} \mid \mathbf{x}, \lambda, \delta)}_{\text{likelihood}} \, \underbrace{\pi(\mathbf{x} \mid \delta)}_{\text{prior}} \, \pi(\lambda) \, \pi(\delta)$$

- Solution to inverse problem
- Non-Gaussian
- Markov chain Monte Carlo (MCMC) for UQ
 - Variance estimates

Calvetti and Somersalo, Introduction to Bayesian Scientific Computing, Springer (2007) Kaipio and Somersalo, Statistical and Computational Inverse Problems, Springer (2005)

Elle Buser | Emory University 5/26

Challenges for large-scale UQ

Need efficient methods to explore the posterior

- Maximum a Posteriori estimate: $\max_{\mathbf{x}, \lambda, \delta} \pi(\mathbf{x}, \lambda, \delta \mid \mathbf{b})$
- Estimating variances requires drawing samples, which can be expensive (non-Gaussian, MCMC)

 \bigwedge A and Q may only be accessible via matrix-vector multiplications

 \wedge Computing factorization $Q = LL^{\top}$ is computationally infeasible

FIle Buser | Emory University 6/26

Challenges for large-scale UQ

Need efficient methods to explore the posterior

- Maximum a Posteriori estimate: $\max_{\mathbf{x}, \lambda} \pi(\mathbf{x}, \lambda, \delta \mid \mathbf{b})$
- Estimating variances requires drawing samples, which can be expensive (non-Gaussian, MCMC)

 \bigwedge A and Q may only be accessible via matrix-vector multiplications

 \wedge Computing factorization $Q = LL^{\top}$ is computationally infeasible

Proposed Hierarchical Bayesian Approach:

- Use Gibbs sampler for $\pi(\mathbf{x}, \lambda, \delta \mid \mathbf{b})$
- Exploit generalized Golub-Kahan (genGK) methods

Elle Buser | Emory University 6/26

Hierarchical Gibbs Sampling

Assume $\mu=0$

Sample from the conditional densities:

$$\lambda \mid \mathbf{b}, \mathbf{x} \sim \Gamma(m/2 + \gamma_{\lambda}, \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{R}^{-1}}^{2} + \beta_{\lambda})$$

$$\delta \mid \mathbf{b}, \mathbf{x} \sim \Gamma(n/2 + \gamma_{\delta}, \frac{1}{2} \|\mathbf{x}\|_{\mathbf{Q}^{-1}}^2 + \beta_{\delta})$$

$$\mathbf{x} \mid \mathbf{b}, \lambda, \delta \sim \mathcal{N} \left(\underbrace{(\lambda \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} + \delta \mathbf{Q}^{-1})^{-1} \lambda \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{b}}_{\hat{\mathbf{x}}(\lambda, \delta)}, \underbrace{(\lambda \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} + \delta \mathbf{Q}^{-1})^{-1}}_{\mathbf{\Gamma}(\lambda, \delta)} \right)$$

$$= \mathcal{N}(\hat{\mathbf{x}}(\lambda, \delta), \mathbf{\Gamma}(\lambda, \delta))$$

where $\|\mathbf{x}\|_{\mathbf{M}} = \sqrt{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}$

Hierarchical Gibbs sampler

Require: Initialize x^0

- 1: **for** j = 1 : J **do**
- 2: Sample $\lambda^j \sim \Gamma(m/2 + \gamma_\lambda, \frac{1}{2} \|\mathbf{A}\mathbf{x}^{j-1} \mathbf{b}\|_{\mathbf{R}^{-1}}^2 + \beta_\lambda)$
- 3: Sample $\delta^j \sim \Gamma(n/2 + \gamma_\delta, \frac{1}{2} \|\mathbf{x}^{j-1}\|_{\mathbf{Q}^{-1}}^2 + \beta_\delta)$
- 4: Sample $\mathbf{x}^j \sim \mathcal{N}(\hat{\mathbf{x}}(\lambda^j, \delta^j), \mathbf{\Gamma}(\lambda^j, \delta^j))$
- 5: end for

ullet Generates a Markov chain $\{\mathbf{x}^i\}_{i=0}^J$ that converges to the target density $\pi(\mathbf{x},\lambda,\delta\mid\mathbf{b})$

Bardsley (2018)

Let
$$\lambda = \lambda^j, \ \delta = \delta^j$$
 be fixed, $\hat{\mathbf{x}} = \hat{\mathbf{x}}(\lambda, \delta), \ \Gamma = \Gamma(\lambda, \delta)$
$$\mathbf{x} | \mathbf{b}, \delta, \lambda \sim \mathcal{N}(\hat{\mathbf{x}}, \Gamma)$$

conditional $\mathcal{N}(\hat{\mathbf{x}}, \Gamma)$

$$\begin{split} \mathbf{\Gamma} &= (\lambda \mathbf{H} + \delta \mathbf{Q}^{-1})^{-1}, \quad \text{with} \quad \mathbf{H} = \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} \\ & \hat{\mathbf{x}} = \lambda \mathbf{\Gamma} \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{b} \end{split}$$

Let
$$\lambda = \lambda^j$$
, $\delta = \delta^j$ be fixed, $\hat{\mathbf{x}} = \hat{\mathbf{x}}(\lambda, \delta)$, $\Gamma = \Gamma(\lambda, \delta)$
$$\mathbf{x} | \mathbf{b}, \delta, \lambda \sim \mathcal{N}(\hat{\mathbf{x}}, \Gamma)$$

conditional $\mathcal{N}(\hat{\mathbf{x}}, \Gamma)$

$$\begin{split} \mathbf{\Gamma} &= (\lambda \mathbf{H} + \delta \mathbf{Q}^{-1})^{-1}, \quad \text{with} \quad \mathbf{H} = \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} \\ & \hat{\mathbf{x}} = \lambda \mathbf{\Gamma} \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{b} \end{split}$$

Compute sample:

$$\mathbf{x}^j = \hat{\mathbf{x}} + \mathbf{\Gamma}^{1/2} oldsymbol{\xi}$$
 where $oldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Bardsley (2018)

Elle Buser | Emory University

Let
$$\lambda = \lambda^j, \ \delta = \delta^j$$
 be fixed, $\hat{\mathbf{x}} = \hat{\mathbf{x}}(\lambda, \delta), \ \Gamma = \Gamma(\lambda, \delta)$
$$\mathbf{x} | \mathbf{b}, \delta, \lambda \sim \mathcal{N}(\hat{\mathbf{x}}, \Gamma)$$

conditional $\mathcal{N}(\hat{\mathbf{x}}, \mathbf{\Gamma})$

$$\mathbf{\Gamma} = (\lambda \mathbf{H} + \delta \mathbf{Q}^{-1})^{-1}, \text{ with } \mathbf{H} = \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A}$$

$$\hat{\mathbf{x}} = \lambda \mathbf{\Gamma} \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{b}$$

Compute sample:

$$\mathbf{x}^j = \hat{\mathbf{x}} + \mathbf{\Gamma}^{1/2} oldsymbol{\xi}$$
 where $oldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Let $\Gamma = \mathbf{S}\mathbf{S}^{ op}$, then a sample is given by

$$\mathbf{x}^j = \hat{\mathbf{x}} + \mathbf{S} oldsymbol{\xi}$$
 where $oldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Bardsley (2018)

Use K steps of the symmetric Lanczos process with Γ and $\pmb{\xi}$

$$\mathbf{W}_K = \begin{bmatrix} \mathbf{w}_1 & \dots & \mathbf{w}_K \end{bmatrix} \in \mathbb{R}^{n \times K} \quad \text{and} \quad \mathbf{C}_K = \begin{bmatrix} \gamma_1 & \alpha_2 & & & & \\ \alpha_2 & \gamma_2 & \alpha_3 & & & \\ & \ddots & \ddots & \ddots & \\ & & \alpha_{K-1} & \gamma_{K-1} & \alpha_K \\ & & & \alpha_K & \gamma_K \end{bmatrix} \in \mathbb{R}^{K \times K}$$

Then $\mathbf{x}^j = \hat{\mathbf{x}} + \mathbf{W}_K \mathbf{C}_K^{1/2} \alpha_1 \mathbf{e}_1$ is an approximate draw from $\mathcal{N}(\hat{\mathbf{x}}, \Gamma)$

Elle Buser | Emory University 10/26

Sampling from an approximate conditional

igwedge Infeasible to explicitly compute ${\bf A},\,{\bf Q}^{-1},\,\hat{{\bf x}},\,{\bf \Gamma}$, and ${\bf \Gamma}^{1/2}$ or factorizations

Flath et al (2011), Bui-Thanh et al (2013), Spantini et al (2015), Saibaba and Kitanidis (2015), Brown et al (2018)

Sampling from an approximate conditional

 \bigwedge Infeasible to explicitly compute A, Q^{-1} , \hat{x} , Γ , and $\Gamma^{1/2}$ or factorizations

approximate conditional $\mathcal{N}(\mathbf{x}_k,\widehat{\mathbf{\Gamma}})$

$$\widehat{\mathbf{\Gamma}} \equiv (\lambda \widehat{\mathbf{H}} + \delta \mathbf{Q}^{-1})^{-1}$$
 with $\widehat{\mathbf{H}} \approx \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A}$
$$\mathbf{x}_k \approx \widehat{\mathbf{x}}$$

Flath et al (2011), Bui-Thanh et al (2013), Spantini et al (2015), Saibaba and Kitanidis (2015). Brown et al (2018)

Sampling from an approximate conditional

Infeasible to explicitly compute A. Q^{-1} . $\hat{\mathbf{x}}$. Γ . and $\Gamma^{1/2}$ or factorizations

approximate conditional $\mathcal{N}(\mathbf{x}_k, \widehat{\boldsymbol{\Gamma}})$

$$\widehat{\mathbf{\Gamma}} \equiv (\lambda \widehat{\mathbf{H}} + \delta \mathbf{Q}^{-1})^{-1} \quad \text{with} \quad \widehat{\mathbf{H}} \approx \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A}$$

$$\mathbf{x}_k \approx \widehat{\mathbf{x}}$$

Current Approaches for H:

Randomized SVD

A Requires lowrank A

Our Approach:

- Find x_k with generalized Golub-Kahan based method
- Use for $\hat{\mathbf{H}}$ and $\hat{\boldsymbol{\Gamma}}^{1/2}$

Emory University 11/26

Flath et al (2011). Bui-Thanh et al (2013), Spantini et al (2015), Saibaba and Kitanidis (2015), Brown et al (2018)

Generalized Golub-Kahan

(genGK) methods

Estimate $\hat{\mathbf{x}}$ with genGK based method

$$\pi(\mathbf{x} \mid \mathbf{b}, \lambda, \delta) \propto \exp\left(-\frac{\lambda}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{R}^{-1}}^2 - \frac{\delta}{2} \|\mathbf{x}\|_{\mathbf{Q}^{-1}}^2\right)$$

Point estimate:

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} - \log \pi(\mathbf{x}|\mathbf{b}, \lambda, \delta) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{\lambda}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{R}^{-1}}^2 + \frac{\delta}{2} \|\mathbf{x}\|_{\mathbf{Q}^{-1}}^2$$

Chung and Saibaba (2017), Calvetti and Somersalo (2005), Calvetti (2007), Arridge, Betcke, and Harhanen (2014)

Estimate \hat{x} with genGK based method

$$\pi(\mathbf{x} \mid \mathbf{b}, \lambda, \delta) \propto \exp\left(-\frac{\lambda}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{R}^{-1}}^2 - \frac{\delta}{2} \|\mathbf{x}\|_{\mathbf{Q}^{-1}}^2\right)$$

Point estimate:

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} - \log \pi(\mathbf{x}|\mathbf{b}, \lambda, \delta) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{\lambda}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{R}^{-1}}^2 + \frac{\delta}{2} \|\mathbf{x}\|_{\mathbf{Q}^{-1}}^2$$

(1) Introduce a change in variables $s = Q^{-1}x$

$$\min_{\mathbf{s} \in \mathbb{R}^n} \frac{\lambda}{2} \left\| \mathbf{A} \mathbf{Q} \mathbf{s} - \mathbf{b} \right\|_{\mathbf{R}^{-1}}^2 + \frac{\delta}{2} \left\| \mathbf{s} \right\|_{\mathbf{Q}}^2$$

Chung and Saibaba (2017), Calvetti and Somersalo (2005), Calvetti (2007), Arridge, Betcke, and Harhanen (2014)

(2) Project transformed problem onto a Krylov subspace of increasing dimension ⇒ generalized Golub-Kahan bidiagonalization

Benbow (1999), Arioli (2013), Arioli & Orban (2013).

(2) Project transformed problem onto a Krylov subspace of increasing dimension ⇒ generalized Golub-Kahan bidiagonalization

(a) Let
$$\gamma_1 = \|\mathbf{b}\|_{\mathbf{B}^{-1}}$$
 and $\mathbf{U}_{k+1}\gamma_1\mathbf{e}_1 = \mathbf{b}$

$$\mathbf{AQV}_k = \mathbf{U}_{k+1}\mathbf{B}_k, \quad \text{and} \quad \mathbf{A}^{\top}\mathbf{R}^{-1}\mathbf{U}_{k+1} = \mathbf{V}_k\mathbf{B}_k^{\top} + \alpha_{k+1}\mathbf{v}_{k+1}\mathbf{e}_{k+1}^{\top}$$

with $\mathbf{U}_{k+1}^{ op}\mathbf{R}^{-1}\mathbf{U}_{k+1}=\mathbf{I}_{k+1}$ and $\mathbf{V}_k^{ op}\mathbf{Q}\mathbf{V}_k=\mathbf{I}_k$

Benbow (1999), Arioli (2013), Arioli & Orban (2013).

(2) Project transformed problem onto a Krylov subspace of increasing dimension \implies generalized Golub-Kahan bidiagonalization

(a) Let
$$\gamma_1 = \|\mathbf{b}\|_{\mathbf{R}^{-1}}$$
 and $\mathbf{U}_{k+1}\gamma_1\mathbf{e}_1 = \mathbf{b}$

$$\mathbf{AQV}_k = \mathbf{U}_{k+1}\mathbf{B}_k$$
, and $\mathbf{A}^{\top}\mathbf{R}^{-1}\mathbf{U}_{k+1} = \mathbf{V}_k\mathbf{B}_k^{\top} + \alpha_{k+1}\mathbf{v}_{k+1}\mathbf{e}_{k+1}^{\top}$

with

$$\mathbf{U}_{k+1}^{ op}\mathbf{R}^{-1}\mathbf{U}_{k+1}=\mathbf{I}_{k+1}$$
 and $\mathbf{V}_{k}^{ op}\mathbf{Q}\mathbf{V}_{k}=\mathbf{I}_{k}$

Krylov subspace

$$\mathcal{R}(\mathbf{V}_k) = \mathcal{K}_k(\mathbf{A}^{\top}\mathbf{R}^{-1}\mathbf{A}\mathbf{Q}, \mathbf{A}^{\top}\mathbf{R}^{-1}\mathbf{b})$$

where

$$\mathcal{K}_k(\mathbf{C}, \mathbf{g}) \equiv \operatorname{span} \left\{ \mathbf{g}, \mathbf{C}\mathbf{g}, \dots, \mathbf{C}^{k-1}\mathbf{g} \right\}$$

Benbow (1999), Arioli (2013), Arioli & Orban (2013).

Elle Buser | Emory University 13/26

(b) Let
$$\mathbf{s} = \mathbf{V}_k \mathbf{y}$$

$$\min_{\mathbf{s} \in \mathcal{R}(\mathbf{V}_k)} \frac{\lambda}{2} \left\| \mathbf{A} \mathbf{Q} \mathbf{s} - \mathbf{b} \right\|_{\mathbf{R}^{-1}}^2 + \frac{\delta}{2} \left\| \mathbf{s} \right\|_{\mathbf{Q}}^2 \quad \Longleftrightarrow \quad \min_{\mathbf{y} \in \mathbb{R}^k} \frac{\lambda}{2} \left\| \mathbf{B}_k \mathbf{y} - \gamma_1 \mathbf{e}_1 \right\|_2^2 + \frac{\delta}{2} \left\| \mathbf{y} \right\|_2^2$$

$$\mathbf{y}_k = \min_{\mathbf{y} \in \mathbb{R}^k} \left\| \begin{bmatrix} \sqrt{\lambda} \mathbf{B}_k \\ \sqrt{\delta} \mathbf{I} \end{bmatrix} \mathbf{y} - \begin{bmatrix} \sqrt{\lambda} \gamma_1 \mathbf{e}_1 \\ \mathbf{0} \end{bmatrix} \right\|^2$$

Elle Buser | Emory University 14/26

Estimate \hat{x} with genGK based method

(b) Let
$$\mathbf{s} = \mathbf{V}_k \mathbf{y}$$

$$\min_{\mathbf{s} \in \mathcal{R}(\mathbf{V}_k)} \frac{\lambda}{2} \left\| \mathbf{A} \mathbf{Q} \mathbf{s} - \mathbf{b} \right\|_{\mathbf{R}^{-1}}^2 + \frac{\delta}{2} \left\| \mathbf{s} \right\|_{\mathbf{Q}}^2 \quad \Longleftrightarrow \quad \min_{\mathbf{y} \in \mathbb{R}^k} \frac{\lambda}{2} \left\| \mathbf{B}_k \mathbf{y} - \gamma_1 \mathbf{e}_1 \right\|_2^2 + \frac{\delta}{2} \left\| \mathbf{y} \right\|_2^2$$

$$\mathbf{y}_k = \min_{\mathbf{y} \in \mathbb{R}^k} \left\| \begin{bmatrix} \sqrt{\lambda} \mathbf{B}_k \\ \sqrt{\delta} \mathbf{I} \end{bmatrix} \mathbf{y} - \begin{bmatrix} \sqrt{\lambda} \gamma_1 \mathbf{e}_1 \\ \mathbf{0} \end{bmatrix} \right\|_2^2$$

(3) Project back:
$$\mathbf{x}_k = \mathbf{Q}\mathbf{s}_k = \mathbf{Q}\mathbf{V}_k\mathbf{y}_k \approx \hat{\mathbf{x}}$$

14/26

Recall: Sampling from approximate conditional

approximate conditional $\mathcal{N}(\mathbf{x}_k,\widehat{oldsymbol{\Gamma}})$

$$\widehat{\boldsymbol{\Gamma}} \equiv (\sigma \widehat{\mathbf{H}} + \alpha \mathbf{Q}^{-1})^{-1}$$
 with $\widehat{\mathbf{H}} \approx \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A}$ $\mathbf{x}_k \approx \hat{\mathbf{x}}$

$$\mathbf{x}^j = \mathbf{x}_k + \hat{\mathbf{\Gamma}}^{1/2}$$

 $Flath \ et \ al \ (2011), \ Bui-Thanh \ et \ al \ (2013), \ Spantini \ et \ al \ (2015), \ Saibaba \ and \ Kitanidis \ (2015), \ Saibaba \ et \ al \ (2020)$

Recall: Sampling from approximate conditional

approximate conditional $\mathcal{N}(\mathbf{x}_k,\widehat{oldsymbol{\Gamma}})$

$$\begin{split} \widehat{\boldsymbol{\Gamma}} &\equiv (\sigma \widehat{\mathbf{H}} + \alpha \mathbf{Q}^{-1})^{-1} \quad \text{with} \quad \widehat{\mathbf{H}} \approx \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} \\ & \mathbf{x}_k \approx \widehat{\mathbf{x}} \end{split}$$

$$\mathbf{x}^j = \mathbf{x}_k + \hat{\mathbf{\Gamma}}^{1/2}$$

From genGK:

$$\mathbf{A}^{\top}\mathbf{R}^{-1}\mathbf{U}_{k+1} \approx \mathbf{V}_k\mathbf{B}_k^{\top} \quad \Longrightarrow \quad \hat{\mathbf{H}} = \mathbf{V}_k\mathbf{B}_k^{\top}\mathbf{B}_k\mathbf{V}_k^{\top}$$

Flath et al (2011), Bui-Thanh et al (2013), Spantini et al (2015), Saibaba and Kitanidis (2015), Saibaba et al (2020)

Estimate $\Gamma^{1/2}$ with genGK

Can assume computations with ${f Q}^{1/2}$ are accessible (using Lanczos method)

$$\begin{split} & \boldsymbol{\Gamma}^{1/2} = (\delta \mathbf{Q}^{-1} + \lambda \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A})^{-1/2} \\ & = \delta^{-1/2} \mathbf{Q}^{1/2} (\mathbf{I} + \frac{\lambda}{\delta} \mathbf{Q}^{1/2} \underbrace{\mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A}}_{\approx \mathbf{V}_{k} \mathbf{B}_{k}^{\top} \mathbf{B}_{k} \mathbf{V}_{k}^{\top}} \mathbf{Q}^{1/2})^{-1/2} \\ & \approx \delta^{-1/2} \mathbf{Q}^{1/2} (\mathbf{I} + \frac{\lambda}{\delta} \underbrace{\mathbf{Q}^{1/2} \mathbf{V}_{k} \mathbf{B}_{k}^{\top} \mathbf{B}_{k} \mathbf{V}_{k}^{\top} \mathbf{Q}^{1/2}}_{\approx \mathbf{Z}_{k} \boldsymbol{\Theta}_{k} \mathbf{Z}_{k}^{\top}})^{-1/2} \\ & = \boxed{\delta^{-1/2} \mathbf{Q}^{1/2} (\mathbf{I} - \mathbf{Z}_{k} \mathbf{D}_{k} \mathbf{Z}_{k}^{\top})} \equiv \hat{\boldsymbol{\Gamma}}^{1/2} \end{split}$$
 (Woodbury Identity)

where $\mathbf{D}_k \equiv \mathbf{I}_k - (\mathbf{I}_k + \frac{\lambda}{\delta} \mathbf{\Theta}_k)^{-1/2}$

Elle Buser | Emory University 16/26

Flath et al (2011), Bui-Thanh et al (2013), Spantini et al (2015), Saibaba and Kitanidis (2015), Saibaba et al (2020)

Draw sample from approximate conditional

Sample:

$$\mathbf{x}^j = \underbrace{\mathbf{Q}\mathbf{V}_k\mathbf{y}_k}_{\mathbf{x}_k} + \underbrace{\delta^{-1/2}\mathbf{Q}^{1/2}(\mathbf{I} - \mathbf{Z}_k\mathbf{D}_k\mathbf{Z}_k^\top)}_{\hat{\mathbf{\Gamma}}^{1/2}}\boldsymbol{\xi}$$

Elle Buser | Emory University 17/26

Draw sample from approximate conditional

Sample:

$$\mathbf{x}^j = \underbrace{\mathbf{Q}\mathbf{V}_k\mathbf{y}_k}_{\mathbf{x}_k} + \underbrace{\delta^{-1/2}\mathbf{Q}^{1/2}(\mathbf{I} - \mathbf{Z}_k\mathbf{D}_k\mathbf{Z}_k^\top)}_{\hat{\mathbf{\Gamma}}^{1/2}}\boldsymbol{\xi}$$

Note:

• To sample δ , need

$$(\mathbf{x}^j)^{\top} \mathbf{Q}^{-1} (\mathbf{x}^j) = \left(\mathbf{V}_k \mathbf{y}^j \right)^{\top} \mathbf{x}^j + \boldsymbol{\xi}^{\top} \delta^{-1} \left(\mathbf{I} - \mathbf{Z}_k \left((\mathbf{D}_k^j)^2 - 2 \mathbf{D}_k^j \right) \mathbf{Z}_k^{\top} \right) \boldsymbol{\xi} + 2 \left(\mathbf{V}_k \mathbf{y}^j \right)^{\top} \hat{\boldsymbol{\Gamma}}^{1/2}$$

ullet The genGK process does not depend on λ or δ

precompute: $\mathbf{B}_k, \quad \mathbf{V}_k, \quad \gamma_1, \quad \mathbf{Z}_k, \quad \boldsymbol{\Theta}_k$ update: \mathbf{D}_k

Elle Buser | Emory University 17/26

Hierarchical Gibbs sampler with genGK

```
Require: Initialize (\lambda^0, \delta^0)
```

Use genGK to get
$$\mathbf{x}^0 = (\lambda^0 \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{A} + \delta^0 \mathbf{Q}^{-1})^{-1} \lambda^0 \mathbf{A}^{\top} \mathbf{R}^{-1} \mathbf{b}$$

Save bidiagonal matrix \mathbf{B}_k , basis vectors \mathbf{V}_k

Compute and save \mathbf{Z}_k and $\mathbf{\Theta}_k$

- 1: **for** j = 1 : J **do**
- 2: Compute $\lambda^j \sim \Gammaig(m/2 + \gamma_\lambda, rac{1}{2} \left\| \mathbf{A} \mathbf{x}^{j-1} \mathbf{b} \right\|_{\mathbf{R}^{-1}}^2 + \beta_\lambdaig)$
- 3: Compute $\delta^j \sim \Gamma(n/2 + \gamma_\delta, \frac{1}{2} \|\mathbf{x}^{j-1}\|_{\mathbf{Q}^{-1}}^2 + \beta_\delta)$
- 4: Compute $\mathbf{x}_k(\lambda^j, \delta^j)$ using genGK relations
- 5: Update \mathbf{D}_k and draw sample from approximate conditional $\mathbf{x}^j \sim \mathcal{N}(\mathbf{x}_k, \widehat{\mathbf{\Gamma}})$
- 6: end for

Elle Buser | Emory University 18/26

Numerical Examples

Seismic Tomography

- ullet $\mathbf{x}_{\mathrm{true}}$ represents a vectorized 64×64 image of the Earth's interior
- \bullet observations $\mathbf{b} \in \mathbb{R}^{3200}$ contains simulated measurements with 2% noise
- IRTools 'PRseismic'
- Q: Matérn Kernel with smoothness $\nu=0.5$ and correlation $\ell=0.25$

Elle Buser | Emory University 19/26

Seismic Tomography

Atmospheric Inverse Modeling

- Simplified atmospheric problem that is not dynamic
- $\mathbf{A} \in \mathbb{R}^{98,880 \times 11,900}$ represents the forward atmospheric transport model
- ullet observations $\mathbf{b} \in \mathbb{R}^{98,880}$ contains satellite data with 4% noise
- Solution $\mathbf{x} \in \mathbb{R}^{11,900}$ is average CO_2 emissions over North America
- Q : Matérn Kernel with smoothness $\nu=2.5$ and correlation $\ell=0.05$

Miller et. al. (2020), Miller and Michalak (2020), Crisp (2015)

Elle Buser | Emory University 21/26

Dynamic Photoacoustic Tomography

- $\mathbf{x}_i \in \mathbb{R}^{16,384}$ is a vectorized 128×128 image
- ullet forward model $\mathbf{A} \in \mathbb{R}^{65,160 imes 327,680}$ is spherical projection with 18 angles
- ullet observations $\mathbf{b} \in \mathbb{R}^{65,160}$ contain projection data with 2% noise

$$\mathbf{x}_{ ext{true}} = egin{bmatrix} \mathbf{x}_1 \ dots \ \mathbf{x}_{20} \end{bmatrix}, \, \mathbf{b} = egin{bmatrix} \mathbf{b}_1 \ dots \ \mathbf{b}_{20} \end{bmatrix}, \, \mathbf{A} = egin{bmatrix} \mathbf{A}_1 \ dots \ \mathbf{A}_{20} \end{bmatrix}, \, \mathbf{Q} = \mathbf{Q}_t \otimes \mathbf{Q}_s$$

• $\mathbf{Q}_s, \mathbf{Q}_t$ Matérn Kernel with smoothness $\nu=0.5, \nu=2.5$ and correlations $\ell=0.25, \ell=0.1$

Elle Buser | Emory University 22/26

Dynamic Photoacoustic Tomography

Elle Buser | Emory University

Future Directions

• Extend to separable non-linear problems of the form

$$\mathbf{b} = \mathbf{A}(\mathbf{y}_{\text{true}})\mathbf{x}_{\text{true}} + \mathbf{e}$$

where $\mathbf{A}(\cdot)$ maps model parameters \mathbf{y} to large, ill-conditioned matrix

- ullet Dimension \mathbf{y} << dimension \mathbf{x}
- Linear in x
- Non-linear ⇒ may be nonGaussian (need MCMC)
- ullet For fixed y, use genGK methods to sample conditional of x
- Use for large-scale dynamic atmospheric example
- Use for MRI reconstructions

Elle Buser | Emory University 24/26

Take-home messages

- 1. UQ for large-scale inverse problems can be challenging
- 2. For Gaussian posterior distributions, generalized Krylov methods can be used to efficiently
 - compute point estimates
 - perform UQ (e.g., draw samples)
- 3. For non-Gaussian posterior distributions, hierarchical Bayesian approaches are needed
 - Sampling can be computationally infeasible and slow
 - Generalized Krylov methods can be exploited within hierarchical Bayesian approaches

Elle Buser | Emory University 25/26

References

- [1] J.M. Bardsley. *Computational Uncertainty Quantification for Inverse Problems*. Society for Industrial and Applied Mathematics. 2018.
- [2] J. Chung, A.K. Saibaba, M. Brown, E. Westman. "Efficient generalized Golub-Kahan based methods for dynamic inverse problems". *Inverse Problems* 34.2 (2018).

Thank you!

Support

- NSF DMS-2026841
- NSF DMS-1654175

Elle Buser | Emory University 26/26

Gaussian priors: Matérn covariance family

Gaussian prior: $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \lambda^{-2}\mathbf{Q})$

Matérn kernel:

$$\mathbf{Q}_{ij} = \kappa(r) = \underbrace{\frac{2^{1-\nu}}{\Gamma(\nu)}}_{Gamma\ function} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} \underbrace{K_{\nu}\left(\frac{\sqrt{2\nu}r}{\ell}\right)}_{Modified\ Bessel\ function} \overset{\mathfrak{G}}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}}_{\overset{\bullet}{\overset{\bullet}{\bigcirc}}}$$

Samples

Elle Buser | Emory University 27/26

=2.5

Fast covariance evaluations

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \lambda^{-1}\mathbf{Q})$$

- Covariance matrices are dense expensive to store and compute
- e.g., a dense $10^6 \times 10^6$ matrix requires 7.45 TB in storage

Available approaches for evaluating matvec with Q

- FFT based methods
- Hierarchical Matrices

Compared to the naive $\mathcal{O}(n^2)$

Storage cost: $\mathcal{O}(n \log n)$ Matvec cost: $\mathcal{O}(n \log n)$

How good is the approximation?

Theorem

At the end of k iterations, the Kullback-Leibler (KL) divergence from the approximate to the true posterior measure satisfies

$$0 \le D_{\mathsf{KL}}(\widehat{\rho}_{\mathrm{post}} \| \rho_{\mathrm{post}}) \le \frac{\lambda^{-1}}{2} \left[\theta_k + \frac{\omega_k^2}{\lambda^2 + \omega_k} \delta_1^2 \beta_1^2 \right].$$

where

- ullet $\omega_k = \|\mathbf{H}_{\mathbf{Q}} \widehat{\mathbf{H}}_{\mathbf{Q}}\|_F$ (monotonically decreasing)
- ullet $heta_k = \mathrm{trace}(\mathbf{H}_{\mathbf{Q}} \widehat{\mathbf{H}}_{\mathbf{Q}})$ (monotonically decreasing)
- with

$$\mathbf{H}_{\mathbf{Q}} = \mathbf{Q}^{1/2}\mathbf{H}\mathbf{Q}^{1/2}$$
 and $\widehat{\mathbf{H}}_{\mathbf{Q}} = \mathbf{Q}^{1/2}\widehat{\mathbf{H}}\mathbf{Q}^{1/2}$

Elle Buser | Emory University 29/26