Jeff Erickson: Algorithms.

SAN Greedy Algorithm.

Eg 1. Greed Storing file on tape.

SETUP · A tape · Reading a tape : Fast Fund all other files

1 2 3 4 5 ... 1

If stored in order, the cost of getting kth file is $cost(k) = \sum_{i=1}^{R} \binom{[i]}{i}$ length of i-th file.

If equally stored, total expected cost is $\mathbb{E}\left[\cos t\right] = \sum_{k=1}^{n} \frac{\cos t(k)}{n} = \frac{1}{n} = \sum_{k=1}^{n} \sum_{i=1}^{k} L[i].$

Now, some files becomes more expensive to read, others are cheaper.

Let $\pi(i):=$ index of file stored at position i on the tape

Then the expected value cost of the permutation $\Re \left[\operatorname{Cost}(\pi) \right] = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{K} L\left[\pi(i) \right]$.

Put cheapest to access first, then more. expensive ones.

Lemma. $\mathbb{E}[\cot(\pi)]$ is minimized when $L(\pi(i)) \leq L(\pi(i+1))$ $\forall i$.

Proof. Suppose there is some i that $L[\pi(i)] > L[\pi(i+1)]$. Let $a_i = \pi(i)$ and $b_i = \pi(i+1)$. If we swap files a and b, the cost of accessing a increases by L[b], and the cost of accessing b decreases by L[a]. B This will affect the expected

cost by $\frac{1}{h}(L[b]-L[a])$. However, L[b]-L[a] < 0, and it's an improvement. By induction, we can swap all possible vals like this getting an aptimal situation. \square

A

Example 2. Likewin Example 1, and we have an array F[1...n]. of access frequencies for each file.

• File i will be accessed exactly F[i] times over the life-time of the tape.

Total cost of accessing all files is
$$\sum cost(\pi) = \sum_{k=1}^{n} \left(F[\pi(k)] \sum_{i=1}^{K} L[\pi(i)] \right)$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{K} \left(F[\pi(k)] L[\pi(i)] \right).$$

Minimize that. 1

FIX FREQ : Size increasing.

? Sort by ratio $\frac{\angle}{F}$?

Lemma. $\sum cost(\pi)$ is minimized when $\frac{L[\pi(i)]}{F[\pi(i)]} \leq \frac{L[\pi(i+1)]}{F[\pi(i+1)]}$. Proof. Suppose $\frac{L[\pi(i)]}{F[\pi(i)]} > \frac{L[\pi(i+1)]}{F[\pi(i+1)]}$ for some idx i,

to simplify notation, let $a := \pi(i)$, $b := \pi(i+1)$.

If we swap files a and b, then the cost of accessing a increases by L[b], and accessing b decr by L[a]. Overall, the swap change the total cost by $L[b]F[a]-L[a]F[b] \leq O$ (hypothesis). Thus, if out of order, improve total cost by swapping. [2]

Example 3. Scheduling Classes

SETUP Given 2 arrays S[1..n] and F[1..n]

Start ends

for each i. $0 \le S[i] < F[i] \le M$, $\forall i$.

Choose largest possible subset $X \in \{1, 2, ..., n\}$, s.t. for any pair $i,j \in X$, either S[i] > F[j] or S[j] > F[i] (no intersection).

Take class 1 or not?

D Recursive appoarch

Let B:= set of classes ends before class 1 starts $\{i: 2 \le i \le n \land F[i] < S[1]\}$

A:= set of classes start after class 1 ends $\{i \mid 2 \le i \le n \ \land S[i] > F[1]\}.$

Try these two until we can find an optimal schedule.

I Intunitive appoarch. first class to finish as early as possible.

Scan through classes in order of finish time whenever encounter a class doesn't conflict with your ladest class so far, take it

GREEDY SCHEDULE (S[1..n], F[1..n]) —

Sort $\{S, F\}$ response, finish time.

count $\leftarrow 1$ $X[count] \leftarrow 1$ for $i \leftarrow 2$ to nif S[i] > F[X[count]]count \leftarrow count +1 $X[count] \leftarrow i$ return X[1...count]

Lemma 3. At least 1 maximal conflict-free schedule includes that the class that finishes first.

Proof. Let f be class that finishes first.

Suppose we have a maximal conflict-free schedule X does not include f, Let g be the first class in X to finish.

Since f finishes before g does, f cannot conflict first g any classes in the set X\{g\}.

Thus, the schedule X'= XU{f}\{g} is also maximal.

Theorem 4. The greedy schedule is an optimal schedule. Proof. Let $\langle g_1, g_2, \cdots, g_K \rangle$ be the seq of classes chosen by greedy algo, sorted by starting time, and we have a maximal conflict-free schedule

 $S=\langle g_1, g_2, \dots, g_{j-1}, C_j, C_{j+1}, \dots, C_m \rangle$ probably new.

don't conflict g_1, \dots, g_{j-1} .

sorted by starting time.

By construction, the j_{th} greedy choice g_j does not conflict with any earlier class g_1,g_2,\cdots,g_{j-1} and because our schedule S is conflict-free, neither does C_j .

Moreover, g_5 has earliest finish time among all classes don't conflict with earlier classes. In particular, g_5 finishes before C_5 . It follows that g_5 does not conflict with any of the later classes C_{J+1} ,..., C_m . Thus, the

modified S'= (g, g2, ..., gj-1, gj, Cj+1, ..., cm)

is also conflict-free.

-> By induction.

SUM V

1. The general pattern.

 Assume there's optimal solution different from greedy solution.

 \Box

- · FIND first difference between two solutions.
- ARGUE we can change the optimal choice for the greedy choice without making the solutions worse. (might not make it better). and by induction, we have

optimal solution > greedy solution.