Lesson 1 - Suggested Problems

Trevor Bramwell

January 14, 2013

Solutions

1.
$$(3-2i) + (-7+5i) = (3-7) + (-2+5)i$$

= $-4+3i$

2.
$$(3-2i) - (-7+5i) = (3-(-7)) - (-2-5)i$$

= $10-7i$

3.
$$(3-2i)(-7+5i) = (3)(-7) + (3)(5)i + (-2)(-7)i + (-2)(5)i^2$$

= $-21 + 15i + 14i - 10i^2$
= $-10i^2 + 29i - 21$

4.

$$\frac{1}{1-i} = \frac{1}{1-i} \left(\frac{1+i}{1+i} \right) = \frac{1+i}{1-i^2} = \frac{1+i}{2} = \frac{1}{2} + \frac{1}{2}(i)$$

5.

$$\frac{3-2i}{-7+5i} = \frac{3-2i}{-7+5i} \left(\frac{-7-5i}{-7-5i}\right)$$

$$= \frac{-21-15i+14i+10i^2}{49-25i^2}$$

$$= \frac{-31-i}{74}$$

$$= \frac{-31}{74} - \frac{1}{74}i$$

6.
$$\overline{5-12i} = 5 + 21i$$

7.
$$|5 - 12i| = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$

8.
$$|5 + 12i| = \sqrt{5^2 + (12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$

9.
$$i^{100} = 1$$
, since 100 (mod 4) = 0 and $i^0 = 1$

10.
$$i^{49} = i$$
, since 49 (mod 4) = 1 and $i^1 = i$
Find all real or complex solutions:

11.
$$4x^2 + 9 = 0$$

12.
$$x^2 + z = -2$$

Illustrate on a graph the parallelogram or triangle law for the expressions:

13. Let z = 2 + i and w = 3 - 4i. Use a graph to illustrate z, w, |z - w|.