5.2. TÉRVEZÉRLÉSŰ TRANZISZTOROS ERŐSÍTŐK

A térvezérlésű tranzisztorok ugyanúgy három erősítő alapkapcsolásban működtethetők, mint a bipoláris tranzisztorok.

5.11. ábra. Térvezérlésű tranzisztor alapkapcsolásai.

5.2.1. Közös source-ú AC erősítő

Az erősítőkapcsolás váltakozó áramú működése hasonló a bipoláris tranzisztoros közös emitterű kapcsoláshoz.

5.12. ábra. A közös source-ú erősítő kapcsolási rajza.

A kapcsolás működése, a jelerősítés folyamata

A bemeneti vezérlőfeszültség legyen szinuszos hullámformájú feszültség.

Ha a vezérlőfeszültség 0-ról pozitív irányba változik:

- mivel a C₁ kondenzátor a működési frekvencián rövidzár
- a tranzisztor U_G gate feszültsége a munkaponthoz képest a vezérlőjel értékével nagyobb

- az source elektróda feszültsége nem változik, mert a C_S kondenzátor a munkaponti source feszültségre feltöltött feszültségforrás, így a vezérlőjel hatására az U_{GS} gate-source feszültség kisebb negatív feszültség
- a kisebb negatív U_{GS} gate-source feszültséghez nagyobb I_{DS} drain-source áram tartozik
- a nagyobb I_{DS} drain-source áram nagyobb U_{RD} feszültséget hoz létre az R_D munkaellenálláson
- a tranzisztor U_D drain feszültsége csökken a munkaponti értékhez képest a megnövekedett U_{RD} feszültség miatt, mivel $U_D = U_t U_{RD}$ és az U_t tápfeszültség állandó
- a C_2 csatolókondenzátor az U_D drain feszültség munkaponti egyenfeszültség-összetevőjét leválasztja, így a terhelő ellenállásra csak a drain feszültség változása jut.

Ha a bemeneti feszültség 0-ról negatív irányban változik:

- a vezérlőjel a tranzisztort a zárás irányába viszi, az I_{DS} drain áram csökken
- a munkaellenállás feszültsége $U_{RD} = I_{DS}R_D$ csökken
- a tranzisztor drain elektródájának U_D feszültsége növekszik a munkaponti értékhez képest
- a kimeneti feszültség pozitív irányban változik.

Megállapítható, hogy a vezérlőfeszültség szinusz függvény szerinti változásának hatására megnövekedett amplitúdójú, ellenkező fázishelyzetű szinuszos feszültség lesz a kimeneten. A közös source-ú váltakozófeszültségű erősítő fázist fordít.

5.13. ábra. Közös source-ú erősítő feszültség-időfüggvényei.

A közös source-ú kapcsolás váltakozó áramú (kisjelű) fizikai helyettesítő képe alapján meghatározhatók az erősítőjellemzők.

5.14. ábra. Közös source-ú kapcsolás kisjelű fizikai helyettesítő képe.

A kapcsolás feszültségerősítési tényezője:

$$A_{u} = -\frac{u_{ki}}{u_{be}} = -\frac{i_{C} \cdot (R_{D} \times R_{t})}{u_{GS}} = -g_{m}(R_{D} \times R_{t})$$
(5.18)

A kapcsolás bemeneti ellenállása: mivel a JFET bemenete szakadással modellezhető, a gate – source átmenettel párhuzamosan kapcsolt R_G ellenállás adja a bemeneti ellenállás értékét.

$$R_{be} \cong R_G \tag{5.19}$$

A kapcsolás kimeneti ellenállása:

$$R_{ki} = -\frac{u_{kiii}}{i_{kir}} = -\frac{-i_{DS}(R_D \times r_{DS})}{i_{DS}} = R_D \times r_{DS} \approx R_D$$
 (5.20)

Mivel r_{DS} értéke M Ω nagyságrendű, a k Ω nagyságrendű R_D ellenállással párhuzamosan kapcsolva értéke elhanyagolható.