Лекция 5. Интегрирование

Вычислительная математика,

Весенний семестр 2022

Ольга Вячеславовна Перл

План лекции

- Значение понятий интегрирования и дифференцирования
- Когда возможно посчитать интеграл
- Численные методы интегрирования

Что такое интеграл?

Значение понятий интегрирования и дифференцирования

- Интеграл это логическое продолжение идеи <u>умножения</u>.
- Дифференцирование это логическое продолжение идеи деления.

$$=2kg+5kg+1kg+4kg$$

$$=\int_{x_1}^{x_4} m(x) = 12kg$$

$$=2kg+5kg+1kg+4kg$$

$$=\int_{x_1}^{x_4} m(x) = 12kg$$

- Операция интегрирования это перемножение изменяющейся величины.
- Дифференцирование это <u>деление изменяющейся величины</u>.

- Операция интегрирования это перемножение изменяющейся величины.
- Дифференцирование это <u>деление изменяющейся величины</u>.

Масса объекта при равномерной плотности, где:

$$m = \rho V$$
 m – Macca

 ρ – плотность

V - объем

$$m = \int_{x_1}^{x_2} \rho(x) dx$$

Масса объекта при неравномерной плотности

- Операция интегрирования это перемножение изменяющейся величины.
- Дифференцирование это <u>деление изменяющейся величины</u>.

$$\forall \varepsilon > 0, \exists N \ n > N \rightarrow |x_n - L| < \varepsilon$$

Когда возможно посчитать интеграл

- Необходимое (Necessary) условие: функция определена и непрерывна на интервале [a, b]
- Достаточное (Sufficient) условие: конечное число точек разрыва первого рода.
- Существует 2 типа разрывов функций(discontinuity):
 - Первого рода:
 - устранимый
 - "скачок"
 - Второго рода:
 - Бесконечность (полюс)
 - Существенно особые точки / essential singularity, например колебания / oscillating

Функция не определена для х меньше 0.

Точка разрыва

Точка разрыва первого рода: устранимый разрыв

Точка разрыва

Точка разрыва второго рода: колебания

Интеграл

$$I(f,a,b) = \sum_{i=0}^{n} A_i y_i$$

• Где A_i (i = 0, 1, ..., n) - постоянные коэффициенты интегрирования из полинома Лагранжа. Это аппроксимирующие (приближающие) квадратуры.

16.03.2022

Формулы Ньютона-Котеса

CLOSED (WHEN $x_0 = a$ AND $x_n = b$)

n	Step size h	Common name	Formula	Error term
1	b-a	Trapezoidal rule	$\frac{h}{2}(f_0+f_1)$	$-\frac{1}{12}h^3f^{(2)}(\xi)$
2	$\frac{b-a}{2}$	Simpson's rule	$\frac{h}{3}(f_0 + 4f_1 + f_2)$	$-\frac{1}{90}h^5f^{(4)}(\xi)$
3	$\frac{b-a}{3}$	Simpson's 3/8 rule	$\frac{3h}{8}(f_0 + 3f_1 + 3f_2 + f_3)$	$-\frac{1}{80}h^5f^{(4)}(\xi)$
4	$\frac{b-a}{4}$	Boole's rule	$\frac{2h}{45}(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$	$-\frac{8}{945}h^7f^{(6)}(\xi)$

OPEN (WHEN $x_0 > a$ AND $x_n < b$)

n	Step size h	Common name	Formula	Error term
0	$\frac{b-a}{2}$	Rectangle rule	$2hf_1$	$\frac{1}{3}h^3f^{(2)}(\xi)$
1	$\frac{b-a}{3}$	Trapezoidal rule	$\frac{3h}{2}(f_1+f_2)$	$\frac{1}{4}h^3f^{(2)}(\xi)$
2	$\frac{b-a}{4}$	Milne`s rule	$\frac{4h}{3}(2f_1 - f_2 + 2f_3)$	$\frac{28}{90}h^5f^{(4)}(\xi)$
3	$\frac{b-a}{5}$		$\frac{5h}{24}(11f_1 + f_2 + f_3 + 11f_4)$	$\frac{95}{144}h^5f^{(4)}(\xi)$

Метод правых прямоугольников

Метод средних прямоугольников

Метод Симпсона

Спасибо за внимание!

В случае вопросов по лекции задавайте их через форму:

https://forms.yandex.ru/u/61ffab0425b437e0e3410e9b/

Мы обязательно обсудим их на следующем занятии.