Point Estimates of Model Parameters

Model Parameters

- The general problem is estimation of a parameter of a probability model.
- A parameter is any number that can be calculated from the probability model.
- \bullet For example, for an arbitrary event A, P[A] is a model parameter.

Estimates of Model Parameters

- ullet Consider an experiment that produces observations of sample values of the random variable X.
- The observations are sample values of the random variables X_1, X_2, \ldots , all with the same probability model as X.
- Assume that r is a parameter of the probability model.
- We use the observations X_1, X_2, \ldots to produce a sequence of estimates of r.
- The estimates $\hat{R}_1, \hat{R}_2, \ldots$ are all random variables.
- \hat{R}_1 is a function of X_1 .
- \hat{R}_2 is a function of X_1 and X_2 , and in general \hat{R}_n is a function of X_1, X_2, \ldots, X_n .

Definition 10.3 Consistent Estimator

The sequence of estimates $\hat{R}_1, \hat{R}_2, \ldots$ of parameter r is consistent if for any $\epsilon > 0$,

$$\lim_{n\to\infty} P\left[\left|\hat{R}_n - r\right| \ge \epsilon\right] = 0.$$

Definition 10.4 Unbiased Estimator

An estimate, \hat{R} , of parameter r is unbiased if $E[\hat{R}] = r$; otherwise, \hat{R} is biased.

Asymptotically Unbiased

Definition 10.5 Estimator

The sequence of estimators \hat{R}_n of parameter r is asymptotically unbiased if

$$\lim_{n\to\infty} \mathsf{E}[\hat{R}_n] = r.$$

Definition 10.6 Mean Square Error

The mean square error of estimator \hat{R} of parameter r is

$$e = \mathsf{E}\left[(\hat{R} - r)^2\right].$$

If a sequence of <u>unbiased estimates</u> $\hat{R}_1, \hat{R}_2, \ldots$ of parameter r has mean square error $e_n = \text{Var}[\hat{R}_n]$ satisfying $\lim_{n \to \infty} e_n = 0$, then the sequence \hat{R}_n is consistent.

$$\mathsf{E}[\widehat{R}] = r$$

$$\lim_{n \to \infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

For an arbitrary random variable Y and constant c > 0,

$$P[|Y - \mu_Y| \ge c] \le \frac{Var[Y]}{c^2}.$$

$$e_n = \operatorname{Var}[\widehat{R}_n]$$
 $\lim_{n \to \infty} e_n = 0$

$$P\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[\widehat{R}_n]}{\epsilon^2}.$$

$$\lim_{n\to\infty}\frac{\operatorname{Var}[\widehat{R}_n]}{\epsilon^2}=0.$$

Example 10.5 Problem

 $Var[N_k] = kr$

In any interval of k seconds, the number N_k of packets passing through an Internet router is a Poisson random variable with expected value $\operatorname{E}[N_k] = kr$ packets. Let $\widehat{R}_k = N_k/k$ denote an estimate of the parameter r packets/second. Is each estimate \widehat{R}_k an unbiased estimate of r? What is the mean square error e_k of the estimate \widehat{R}_k ? Is the sequence of estimates $\widehat{R}_1, \widehat{R}_2, \ldots$ consistent?

$$\mathsf{E}[\hat{R}] = r$$

$$e = \mathsf{E}\left[(\hat{R} - r)^2\right].$$

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

Example 10.5 Solution

First, we observe that \hat{R}_k is an unbiased estimator since

$$\mathsf{E}[\hat{R}_k] = \mathsf{E}\left[N_k/k\right] = \mathsf{E}\left[N_k\right]/k = r. \tag{1}$$

Next, we recall that since N_k is Poisson, $Var[N_k] = kr$. This implies

$$\operatorname{Var}[\widehat{R}_k] = \operatorname{Var}\left[\frac{N_k}{k}\right] = \frac{\operatorname{Var}\left[N_k\right]}{k^2} = \frac{r}{k}.$$
 (2)

Because \hat{R}_k is unbiased, the mean square error of the estimate is the same as its variance: $e_k = r/k$. In addition, since $\lim_{k \to \infty} \mathrm{Var}[\hat{R}_k] = 0$, the sequence of estimators \hat{R}_k is consistent by Theorem 10.8.

The sample mean $M_n(X)$ is an unbiased estimate of E[X].

$$\mathsf{E}\left[M_n(X)\right] = \mathsf{E}\left[X\right]$$

$$\mathsf{E}[\hat{R}] = r$$

The sample mean estimator $M_n(X)$ has mean square error

$$e_n = \mathbb{E}\left[(M_n(X) - \mathbb{E}[X])^2 \right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

Standard Error

- In the terminology of statistical inference, $\sqrt{e_n}$, the standard deviation of the sample mean, is referred to as the *standard error* of the estimate.
- The standard error gives an indication of how far we should expect the sample mean to deviate from the expected value.
- In particular, when X is a Gaussian random variable (and $M_n(X)$ is also Gaussian),

$$P\left[E[X] - \sqrt{e_n} \le M_n(X) \le E[X] + \sqrt{e_n}\right] = 2\Phi(1) - 1 \approx 0.68.$$
 (1)

In words, Equation (10.24) says there is roughly a two-thirds probability that the sample mean is within one standard error of the expected value.

• This same conclusion is approximately true when n is large and the central limit theorem says that $M_n(X)$ is approximately Gaussian.

Example 10.6 Problem

How many independent trials n are needed to guarantee that $\hat{P}_n(A)$, the relative frequency estimate of P[A], has standard error ≤ 0.1 ?

$$Var[X_A] = P[A](1 - P[A])$$

The sample mean estimator $M_n(X)$ has mean square error

$$e_n = \mathbb{E}\left[(M_n(X) - \mathbb{E}[X])^2 \right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

$$p(1-p) \le 0.25$$
 for all $0 \le p \le 1$

Example 10.6 Solution

Since the indicator X_A has variance $Var[X_A] = P[A](1 - P[A])$, Theorem 10.10 implies that the mean square error of $M_n(X_A)$ is

$$e_n = \frac{\text{Var}[X]}{n} = \frac{P[A](1 - P[A])}{n}.$$
 (1)

We need to choose n large enough to guarantee $\sqrt{e_n} \le 0.1$ ($e_n \le 0.01$) even though we don't know P[A]. We use the fact that $p(1-p) \le 0.25$ for all $0 \le p \le 1$. Thus, $e_n \le 0.25/n$. To guarantee $e_n \le 0.01$, we choose n = 0.25/0.01 = 25 trials.

If X has finite variance, then the sample mean $M_n(X)$ is a sequence of consistent estimates of E[X].

The sample mean estimator $M_n(X)$ has mean square error

$$e_n = \mathsf{E}\left[(M_n(X) - \mathsf{E}[X])^2\right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

For an arbitrary random variable Y and constant c > 0,

$$P[|Y - \mu_Y| \ge c] \le \frac{\mathsf{Var}[Y]}{c^2}.$$

$$P\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[\widehat{R}_n]}{\epsilon^2}.$$

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

Estimating the Variance

- When E[X] is a known quantity μ_X , we know $Var[X] = E[(X \mu_X)^2]$.
- In this case, we can use the sample mean of $W = (X \mu_X)^2$ to estimate Var[X].,

$$M_n(W) = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_X)^2.$$
 (1)

If Var[W] exists, $M_n(W)$ is a consistent, unbiased estimate of Var[X].

- When the expected value μ_X is unknown, the situation is more complicated because the variance of X depends on μ_X .
- We cannot use Equation (10.28) if μ_X is unknown.
- In this case, we replace the expected value μ_X by the sample mean $M_n(X)$.

Definition 10.7 Sample Variance

The sample variance of n independent observations of random variable X is

$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - M_n(X))^2$$
.

$$\mathsf{E}\left[V_n(X)\right] = \frac{n-1}{n} \mathsf{Var}[X].$$

Intuitive Explanation:

The <u>observed values</u> fall, on average, <u>closer</u> to the <u>sample mean</u> than to the <u>population mean</u>, the variance which is calculated using variances from the <u>sample mean underestimates</u> the desired variance of the population.

Hence, using n-1 instead of n as the divisor corrects for that by making the result a little bit bigger.

$$\mathsf{E}\left[V_n(X)\right] = \frac{n-1}{n} \mathsf{Var}[X]. \qquad \mathsf{E}\left[M_n(X)\right] = \mathsf{E}\left[X\right]$$

$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - M_n(X))^2$$
.

$$\mathsf{E}[X_i^2] = \mathsf{E}[X^2]$$

$$\mathsf{E}[X_i X_j] = \mathsf{Cov}[X_i, X_j] + \mathsf{E}[X_i] \,\mathsf{E}[X_j]$$

$$E[V_n] = E[X^2] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \left(\text{Cov}[X_i, X_j] + \mu_X^2 \right)$$
$$= \text{Var}[X] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}[X_i, X_j].$$

Proof: Theorem 10.12

Substituting Definition 10.1 of the sample mean $M_n(X)$ into Definition 10.7 of sample variance and expanding the sums, we derive

$$V_n = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n X_i X_j.$$
 (1)

Because the X_i are iid, $\mathsf{E}[X_i^2] = \mathsf{E}[X^2]$ for all i, and $\mathsf{E}[X_i] \mathsf{E}[X_j] = \mu_X^2$. By Theorem 5.16(a), $\mathsf{E}[X_iX_j] = \mathsf{Cov}[X_i,X_j] + \mathsf{E}[X_i] \mathsf{E}[X_j]$. Thus, $\mathsf{E}[X_iX_j] = \mathsf{Cov}[X_i,X_j] + \mu_X^2$. Combining these facts, the expected value of V_n in Equation (10.29) is

$$E[V_n] = E[X^2] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \left(\text{Cov}[X_i, X_j] + \mu_X^2 \right)$$

$$= \text{Var}[X] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}[X_i, X_j].$$
(2)

Since the double sum has n^2 terms, $\sum_{i=1}^n \sum_{j=1}^n \mu_X^2 = n^2 \mu_X^2$. Of the n^2 covariance terms, there are n terms of the form $\text{Cov}[X_i, X_i] = \text{Var}[X]$, while the remaining covariance terms are all 0 because X_i and X_j are independent for $i \neq j$. This implies

$$E[V_n] = Var[X] - \frac{1}{n^2} (n Var[X]) = \frac{n-1}{n} Var[X].$$
 (3)

The estimate

$$V'_n(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - M_n(X))^2$$

is an unbiased estimate of Var[X].

Proof: Theorem 10.13

Using Definition 10.7, we have

$$V_n'(X) = \frac{n}{n-1} V_n(X), \tag{1}$$

and

$$\mathsf{E}\left[V_n'(X)\right] = \frac{n}{n-1}\,\mathsf{E}\left[V_n(X)\right] = \mathsf{Var}[X]. \tag{2}$$

Quiz 10.4

X is the continuous uniform (-1,1) random variable. Find the mean square error, $E[(Var[X] - V_{100}(X))^2]$, of the sample variance estimate of Var[X], based on 100 independent observations of X.

Quiz 10.4 Solution

Define the random variable $W = (X - \mu_X)^2$. Observe that $V_{100}(X) = M_{100}(W)$. By Theorem 10.10, the mean square error is

$$\mathsf{E}\left[(M_{100}(W) - \mu_W)^2\right] = \frac{\mathsf{Var}[W]}{100}.\tag{1}$$

Observe that $\mu_X = 0$ so that $W = X^2$. Thus,

$$\mu_W = \mathsf{E}\left[X^2\right] = \int_{-1}^1 x^2 f_X(x) \ dx = 1/3,$$
 (2)

$$\mathsf{E}\left[W^{2}\right] = \mathsf{E}\left[X^{4}\right] = \int_{-1}^{1} x^{4} f_{X}(x) \ dx = 1/5. \tag{3}$$

Therefore $Var[W] = E[W^2] - \mu_W^2 = 1/5 - (1/3)^2 = 4/45$ and the mean square error is 4/4500 = 0.0009.

Joint Random Variable

Joint Cumulative Distribution Function

Joint cumulative distribution function of random variables X and Y is

$$F_{X,Y}(x,y) = P[X \le x, Y \le y]$$

Properties:

For any pair of random variables, X, Y,

(a)
$$0 \le F_{X,Y}(x,y) \le 1$$
,

(b)
$$F_{X,Y}(\infty,\infty)=1$$
,

(c)
$$F_X(x) = F_{X,Y}(x,\infty)$$
,
(d) $F_Y(y) = F_{X,Y}(\infty,y)$,
(e) $F_{X,Y}(x,-\infty) = 0$,

(d)
$$F_Y(y) = F_{X,Y}(\infty, y)$$
,

(e)
$$F_{X,Y}(x,-\infty) = 0$$
,

(f)
$$F_{X,Y}(-\infty,y)=0$$
,

(g) If
$$x \le x_1$$
 and $y \le y_1$, then

$$F_{X,Y}(x,y) \le F_{X,Y}(x_1,y_1)$$

Joint Probability Mass Function

• Joint probability mass function of discrete random variables X and Y is

$$P_{X,Y}(x,y) = P[X = x, Y = y]$$

• Probability of the event $\{(X,Y) \in B\}$ is

$$P[B] = \sum_{(x,y)\in B} P_{X,Y}(x,y)$$

Marginal probability mass function:

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) \qquad P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x,y)$$

$P_{X,Y}(x,y)$	y = 0	y = 1	y = 2	$P_X(x)$	
x = 0	0.01	0	0	0.01	١
x = 1	0.09	0.09	0	0.18	
x = 2	0	0	0.81	0.81	
$P_Y(y)$	0.10	0.09	0.81		

Joint Probability Density Function

Joint probability density function of continuous random variables X and Y is

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}, \qquad F_{X,Y}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(u,v) dv du$$

Properties

(a)
$$f_{X,Y}(x,y) \ge 0$$
 for all (x,y)

• Probability of the event $\{(X,Y) \in B\}$ is

$$P[B] = \iint_{B} f_{X,Y}(x,y) dx dy$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
,

• Marginal probability density function:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy \,, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Independence, Covariance and Correlation

• Random variable X and Y are independent if and only if Discrete: $[E]P_{X,Y}(x,y) = P_X(x)P_Y(y)$

Continuous:
$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
.

Covariance of two random variables X and Y is

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)].$$

$$Cov[X, Y] = E[X \cdot Y] - \mu_x \mu_Y$$

Correlation coefficient of two random variables X and Y is

$$\rho_{X,Y} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{\operatorname{Cov}\left[X,Y\right]}{\sigma_X\sigma_Y}.$$

Correlation of X and Y is

$$r_{X,Y} = E[XY]$$

Cov >0, =0, <0. Independent = uncorrelated ?

Expectation

For random variables X and Y, the expected value of W=g(X,Y) is

Discrete:
$$[E] E[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x, y) P_{X,Y}(x, y)$$

Continuous:
$$\mathsf{E}[W] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy.$$

Properties

$$\mathsf{E} \, [X+Y] = \mathsf{E} \, [X] + \mathsf{E} \, [Y] \, .$$

$$\mathsf{Var} \, [X+Y] = \mathsf{Var} \, [X] + \mathsf{Var} \, [Y] + 2 \, \mathsf{E} \, [(X-\mu_X)(Y-\mu_Y)] \, .$$

Exercise Problem

Random variables X and Y have the joint PMF

$$P_{X,Y}(x,y) = \begin{cases} cxy & x = 1,2,3,4; y = 1,3\\ 0 & otherwise \end{cases}$$

What is the value of c? 1.

Hint: $\sum_{X,Y} P_{X,Y}(x,y) = 1$

2. What is P[Y < X]? Hint:

3. What is P[Y>X]? Hint:

What is P[Y=X]? 4.

Really? Hint:

5. Find the marginal PMF $P_X(x)$ and $P_Y(y)$.

Hint:

 $P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) \qquad P_Y(y) = \sum_{x \in S_Y} P_{X,Y}(x,y)$

6. Determine if X and Y independent. Justify your answer. Hint:

 $P_{X,Y}(x,y) = P_X(x)P_Y(y)$?

Exercise Problem

Random variables X and Y have the joint PMF

$$P_{X,Y}(x,y) = \begin{cases} cxy & x = 1,2,3,4; y = 1,3\\ 0 & otherwise \end{cases}$$

- 1. Find the expected value of W=Y/X? $\mathsf{E}[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x,y) P_{X,Y}(x,y)$
- 2. Find the correlation $r_{X,Y}$ $r_{X,Y} = E[XY]$
- 3. Find covariance Cov[X,Y]. $Cov[X,Y] = E[X \cdot Y] \mu_x \mu_Y$
- 4. Find the correlation coefficient, $\rho_{X,Y}$. $\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y}.$
- 5. Find the variance Var[X+Y]. Var[X+Y] = Var[X] + Var[Y] + 2Cov(X,Y)

Bivariate Gaussian Random Variables

Random variables X and Y have a bivariate Gaussian probability density function if

$$f_{X,Y}(x,y) = \frac{\exp\left[-\frac{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - \frac{2\rho_{X,Y}(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2}{2(1-\rho_{X,Y}^2)}\right]}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho_{X,Y}^2}},$$

Probability density function of random variable X and Y

$$f_X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/2\sigma_X^2}, \qquad f_Y(y) = \frac{1}{\sigma_Y \sqrt{2\pi}} e^{-(y-\mu_Y)^2/2\sigma_Y^2}.$$

Linear combination of Gaussian distribution is still a Gaussian distribution