Upper Confidence Bound

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem

Step 1. At each round n, we consider two numbers for each ad i:

- $N_i(n)$ the number of times the ad i was selected up to round n,
- $R_i(n)$ the sum of rewards of the ad i up to round n.

Step 2. From these two numbers we compute:

ullet the average reward of ad i up to round n

$$\bar{r}_i(n) = \frac{R_i(n)}{N_i(n)}$$

• the confidence interval $[\bar{r}_i(n) - \Delta_i(n), \bar{r}_i(n) + \Delta_i(n)]$ at round n with

$$\Delta_i(n) = \sqrt{\frac{3}{2} \frac{\log(n)}{N_i(n)}}$$

Step 3. We select the ad *i* that has the maximum UCB $\bar{r}_i(n) + \Delta_i(n)$.

https://www.udemy.com/course/machinelearning/

https://www.udemy.com/course/machinelearning/