MACHINE LEARNING LAB

EXERCISE:: 8

NAME:: Saptarshi Datta

REG NO.:: 19BAI1041

Clustering::

Code(K-Medoid) ::

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets

from sklearn.decomposition import PCA

Dataset

iris = datasets.load_iris()

data = pd.DataFrame(iris.data,columns = iris.feature_names)

target = iris.target_names

labels = iris.target

#Scaling

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns)

#PCA Transformation

from sklearn.decomposition import PCA

pca = PCA(n_components=3)

principalComponents = pca.fit_transform(data)

```
PCAdf = pd.DataFrame(data = principalComponents, columns = ['principal component 1', 'principal component 2', 'principal component 3'])
```

```
datapoints = PCAdf.values
m, f = datapoints.shape
k = 3
#Visualization
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
X_reduced = datapoints
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=labels,
      cmap=plt.cm.Set1, edgecolor='k', s=40)
ax.set_title("First three PCA directions")
ax.set_xlabel("principal component 1")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("principal component 1")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("principal component 1")
ax.w_zaxis.set_ticklabels([])
plt.show()
```



```
def init_medoids(X, k):
 from numpy.random import choice
 from numpy.random import seed
 seed(1)
 samples = choice(len(X), size=k, replace=False)
 return X[samples, :]
medoids_initial = init_medoids(datapoints, 3)
def compute_d_p(X, medoids, p):
 m = len(X)
 medoids_shape = medoids.shape
  # If a 1-D array is provided,
  # it will be reshaped to a single row 2-D array
 if len(medoids_shape) == 1:
    medoids = medoids.reshape((1,len(medoids)))
 k = len(medoids)
 S = np.empty((m, k))
 for i in range(m):
    d_i = np.linalg.norm(X[i, :] - medoids, ord=p, axis=1)
    S[i, :] = d_i^* p
 return S
S = compute_d_p(datapoints, medoids_initial, 2)
def assign_labels(S):
 return np.argmin(S, axis=1)
labels = assign_labels(S)
def update_medoids(X, medoids, p):
 S = compute_d_p(datapoints, medoids, p)
 labels = assign_labels(S)
 out_medoids = medoids
 for i in set(labels):
```

```
avg_dissimilarity = np.sum(compute_d_p(datapoints, medoids[i], p))
    cluster_points = datapoints[labels == i]
    for datap in cluster_points:
      new_medoid = datap
      new_dissimilarity= np.sum(compute_d_p(datapoints, datap, p))
      if new_dissimilarity < avg_dissimilarity:
        avg_dissimilarity = new_dissimilarity
        out_medoids[i] = datap
 return out_medoids
def has_converged(old_medoids, medoids):
 return set([tuple(x) for x in old_medoids]) == set([tuple(x) for x in medoids])
#Full algorithm
def kmedoids(X, k, p, starting_medoids=None, max_steps=np.inf):
 if starting_medoids is None:
    medoids = init_medoids(X, k)
  else:
    medoids = starting_medoids
 converged = False
 labels = np.zeros(len(X))
 i = 1
  while (not converged) and (i <= max_steps):
    old_medoids = medoids.copy()
    S = compute\_d\_p(X, medoids, p)
    labels = assign_labels(S)
    medoids = update_medoids(X, medoids, p)
    converged = has_converged(old_medoids, medoids)
    i += 1
  return (medoids, labels)
results = kmedoids(datapoints, 3, 2)
```

```
final_medoids = results[o]
data['clusters'] = results[1]
#Count
def mark_matches(a, b, exact=False):
  ,,,,,,
  Given two Numpy arrays of {0, 1} labels, returns a new boolean
  array indicating at which locations the input arrays have the
  same label (i.e., the corresponding entry is True).
  This function can consider "inexact" matches. That is, if `exact`
  is False, then the function will assume the \{0, 1\} labels may be
  regarded as the same up to a swapping of the labels. This feature
  allows
   a == [0, 0, 1, 1, 0, 1, 1]
  b == [1, 1, 0, 0, 1, 0, 0]
  to be regarded as equal. (That is, use `exact=False` when you
  only care about "relative" labeling.)
  assert a.shape == b.shape
  a_int = a.astype(dtype=int)
  b_int = b.astype(dtype=int)
  all_axes = tuple(range(len(a.shape)))
  assert ((a_int == 0) | (a_int == 1) | (a_int == 2)).all()
  assert ((b_int == 0) | (b_int == 1) | (b_int == 2)).all()
  exact_matches = (a_int == b_int)
  if exact:
    return exact matches
  assert exact == False
  num_exact_matches = np.sum(exact_matches)
  if (2*num_exact_matches) >= np.prod (a.shape):
    return exact_matches
```

```
return exact_matches == False # Invert
```

```
def count_matches(a, b, exact=False):
  ,,,,,,
  Given two sets of \{0, 1\} labels, returns the number of mismatches.
  This function can consider "inexact" matches. That is, if `exact`
  is False, then the function will assume the \{0, 1\} labels may be
  regarded as similar up to a swapping of the labels. This feature
  allows
  a == [0, 0, 1, 1, 0, 1, 1]
  b == [1, 1, 0, 0, 1, 0, 0]
 to be regarded as equal. (That is, use `exact=False` when you
  only care about "relative" labeling.)
  ,,,,,,
  matches = mark_matches(a, b, exact=exact)
  return np.sum(matches)
n_matches = count_matches(labels, data['clusters'])
print(n_matches,
   "matches out of",
   len(data), "data points",
   "(~ {:.1f}%)".format(100.0 * n_matches / len(labels)))
                142 matches out of 150 data points (~ 94.7%)
```

Code(K-Mean Classifier) ::

import pandas as pd import numpy as np import seaborn as sns %matplotlib inline

df = pd.read_csv("Mall_Customers.csv")
df

	CustomerID	Genre	Age	Annual_Income_(k\$)	Spending_Score
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype							
0	CustomerID	200 non-null	int64							
1	Genre	200 non-null	object							
2	Age	200 non-null	int64							
3	Annual_Income_(k\$)	200 non-null	int64							
4	Spending_Score	200 non-null	int64							
4+	dtimes int 64/4) shipet (1)									

dtypes: int64(4), object(1) memory usage: 7.9+ KB

df.describe()

	CustomerID	Age	Annual_Income_(k\$)	Spending_Score
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

X = df.iloc[:, [3, 4]].values

X

array([[15, 39],[15, 81],[16, 6],[16, 77],[17, 40],[17, 76],[18, 94],[19, 3],[19, 72],[19, 14],[19, 99],[20, 15],[20, 77],[20, 13],[20, 79],[21, 35],[21, 66],[23, 29],[23, 98],[24, 35],[24, 73], [20, 73], [28, 14], [28, 82], [28, 32], [28, 61], [29, 31], [29, 30, 4], [30, 73], [33, 4], [33, 92], [33, 14], [33, 81], [34, 17], [73], [37, 26], [37, 75], [38, 35], [38, 92], [39, 36], [39, 61], [39, 20] 87],[30, 8],[39, 65],[40, 55],[40, 47],[40, 42],[40, 42],[42, 52],[42, 60],[4 3, 54], [43, 60], [43, 45], [43, 41], [44, 50], [44, 46], [46, 51], [46,], [46, 56], [46, 55], [47, 52], [47, 59], [48, 51], [48, 59], [48, 50], [48, 48], [48, 59], [48, 47], [49, 55], [49, 42], [50, 49], [50, 56], [54, 48], [54, 54], [54, 53], [54, 48], [54, 52], [54, 42], [54, 51], [54, 55], [54, 55], [54, 54], [54, 55], 50],[48 48],[48, 59], 54, 54],[54, 55],[54, 41],[54, 44],[54, 57],[54, 46],[57, 58],[57, 55],[58, 60],[58, 46],[59, 55],[59, 41],[60, 49],[60, 40],[60, 42],[60, 52],[60, 47],[60, 0] ,[61, 42],[61, 49],[62, 41],[62, 48],[62, 59],[62, 55],[62, 56],[62, 42],[63, 50],[63, 46],[63, 43],[63, 48],[63, 52][63, 54],[64, 42],[6 4, 46], [65, 48], [65, 50], [65, 43], [65, 59], [67, 43], [67, 57], [67, 56], [67, 40], [69, 58], [69, 91], [70, 29], [70, 77], [71, 35], [71, 95], [71 , 11],[71, 75],[71, 9],[71, 75],[72, 34],[72, 71],[73, 5],[73, 88],[73, 7],[73, 73],[74, 10],[74, 72],[75, 5],[75, 93],[76, 40],[76, 87],[77, 12],[77, 97],[77, 36],[77, 74],[78, 22],[78, 90],[78, 17],[, 11],[71, 75],[71, 5],[73, 88] 88],[78, 20],[78, 76],[78, 16], 78, 73],[79, 35],[79, 83],[81, 76],[78, 16],[78, 89],[78, 1],[78, 78],[78, 5],[81, 93],[85, 26],[85, 6, 20],[86, 95],[87, 27],[87, 63],[87, 13],[87, 75],[87, 10],[87,],[88, 13],[88, 86],[88, 15],[88, 69],[93, 14],[93, 90],[97, 32],[97 86],[98, 15],[98, 88],[99, 39],[99, 97],[101, 24],[101, 68],[103, ,[103, 85],[103, 23],[103, 69],[113, 8],[113, 91],[120, 16],[120, 79],[126, 28],[126, 74],[137, 18],[137, 83]])

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    # inertia method returns wcss for that model
    wcss.append(kmeans.inertia_)

plt.figure(figsize=(10,5))from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    # inertia method returns wcss for that model
```

wcss.append(kmeans.inertia_)
sns.lineplot(range(1, 11), wcss,marker='o',color='red')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

kmeans = KMeans(n_clusters=5)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
print(y_kmeans)

print(kmeans.cluster_centers_)

```
[[88.2 17.11428571]
[55.2962963 49.51851852]
[86.53846154 82.12820513]
[26.30434783 20.91304348]
[25.72727273 79.3636363636]]
```

import matplotlib.pyplot as plt

```
plt.scatter(X[:,0],X[:,1], c=y_kmeans)
centers = kmeans.cluster_centers_
plt.scatter(centers[:,0],centers[:,1], c='black')
```


Code(K-Mode Classifier) ::

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

bank = pd.read_csv("bankmarketing.csv")
bank.head()

bank.info()

bank.describe()

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
count	809.000000	809.000000	809.000000	809.0	809.0	8.090000e+02	8.090000e+02	8.090000e+02	809.000000	809.0
mean	42.619283	267.164400	1.690977	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.856934	5191.0
std	8.693968	231.240893	0.877908	0.0	0.0	1.488619e-14	9.953752e-14	5.047974e-13	0.000248	0.0
min	22.000000	5.000000	1.000000	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.856000	5191.0
25%	36.000000	138.000000	1.000000	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.857000	5191.0
50%	42.000000	209.000000	1.000000	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.857000	5191.0
75%	49.000000	325.000000	2.000000	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.857000	5191.0
max	60.000000	2033.000000	6.000000	999.0	0.0	1.100000e+00	9.399400e+01	-3.640000e+01	4.857000	5191.0

bank_cust = bank[['age','job', 'marital', 'education', 'default', 'housing', 'loan','contact','month
','day_of_week','poutcome']]
bank_cust.head()

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	poutcome
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	nonexistent
1	57	services	married	high.school	unknown	no	no	telephone	may	mon	nonexistent
2	37	services	married	high.school	no	yes	no	telephone	may	mon	nonexistent
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	nonexistent
4	56	services	married	high.school	no	no	yes	telephone	may	mon	nonexistent

bank_cust['age_bin'] = pd.cut(bank_cust['age'], [0, 20, 30, 40, 50, 60, 70, 80, 90, 100], labels=['0-20', '20-30', '30-40', '40-50', '50-60', '60-70', '70-80', '80-90', '90-1 00'])
bank_cust = bank_cust.drop('age',axis = 1)

bank_cust.head()

	job	marital	education	default	housing	loan	contact	month	day_of_week	poutcome	age_bin
0	housemaid	married	basic.4y	no	no	no	telephone	may	mon	nonexistent	50-60
1	services	married	high.school	unknown	no	no	telephone	may	mon	nonexistent	50-60
2	services	married	high.school	no	yes	no	telephone	may	mon	nonexistent	30-40
3	admin.	married	basic.6y	no	no	no	telephone	may	mon	nonexistent	30-40
4	services	married	high.school	no	no	yes	telephone	may	mon	nonexistent	50-60

bank_cust.shape

(809, 11)

bank_cust.isnull().sum()*100/bank_cust.shape[0]

l-	0.0
job	0.0
marital	0.0
education	0.0
default	0.0
housing	0.0
loan	0.0
contact	0.0
month	0.0
day_of_week	0.0
poutcome	0.0
age_bin	0.0
dtype: float64	

bank_cust_copy = bank_cust.copy()
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
bank_cust = bank_cust.apply(le.fit_transform)
bank_cust.head()

	job	marital	education	default	housing	Ioan	contact	month	day_of_week	poutcome	age_bin
0	3	1	0	0	0	0	0	0	0	0	3
1	7	1	3	1	0	0	0	0	0	0	3
2	7	1	3	0	2	0	0	0	0	0	1
3	0	1	1	0	0	0	0	0	0	0	1
4	7	1	3	0	0	2	0	0	0	0	3

from kmodes.kmodes import KModes
cost = []
for num_clusters in list(range(1,5)):
 kmode = KModes(n_clusters=num_clusters, init = "Cao", n_init = 1, verbose=1)
 kmode.fit_predict(bank_cust)
 cost.append(kmode.cost_)

Init: initializing centroids Init: initializing clusters Starting iterations... Run 1, iteration: 1/100, moves: 0, cost: 3191.0 Init: initializing centroids Init: initializing clusters Starting iterations... Run 1, iteration: 1/100, moves: 144, cost: 2694.0 Run 1, iteration: 2/100, moves: 55, cost: 2653.0 Run 1, iteration: 3/100, moves: 37, cost: 2653.0 Init: initializing centroids Init: initializing clusters Starting iterations... Run 1, iteration: 1/100, moves: 172, cost: 2442.0 Run 1, iteration: 2/100, moves: 51, cost: 2442.0 Init: initializing centroids Init: initializing clusters Starting iterations... Run 1, iteration: 1/100, moves: 112, cost: 2410.0

y = np.array([i for i in range(1,5,1)]) plt.plot(y,cost)

[<matplotlib.lines.Line2D at 0x7fa652de83d0>]

km_cao = KModes(n_clusters=2, init = "Cao", n_init = 1, verbose=1)

fitClusters_cao = km_cao.fit_predict(bank_cust)

Init: initializing centroids Init: initializing clusters

Starting iterations...

Run 1, iteration: 1/100, moves: 144, cost: 2694.0 Run 1, iteration: 2/100, moves: 55, cost: 2653.0 Run 1, iteration: 3/100, moves: 37, cost: 2653.0