SFERE700 Distributed Multi-Loop Power Monitoring Unit

Communication Manual -Modbus-RTU

JIANGSU SFERE ELECTRIC CO., LTD.

Content

1	. Introduction	1
2	. Communication	1
	2.1 Physical layer	1
	2.2 Communication Protocol	2
	2.3 Message format instruction	3
	2.4 Data format	. 14
3	. MODBUS-RTU Communication List	. 15
	3.1 Electrical variables data	. 15
	3.2 System status and switch information	.22
	3.3 Max./min. value data	. 23
	3.4 Demand data	.26
	3.5 Grid quality parameters	. 27
	3.6 Manufacture information	. 33
	3.7 Event record information	. 33
	3.8 Parameter setting	.35

1. Introduction

Sfere700-C1, the communication module in Sfere700, applies Modbus-RTU protocol and has three digital communication interfaces. #1 Interface connects monitoring module Sfere700-M; #2 Interface connects host computer; #3 Interface connects display module Sfere700-D1.

communication wire:

#3 interface connects Sfere700-D1. Both sides automatically match and no need to set the operation.

#1 interface connects Sfere700-M. Automatic / manual networking is realized by communication module.

#2 interface connects host computer for transmission. The commands from host computer will be transmitted to Sfere700-M without any change, so will the response of Sfere700-M to host computer.

2. Communication

2.1 Physical layer

The communication interface of Sfere700-M should be connected by shielded twisted pair. A bus can connect 32 devices at most and terminal resistance should be connected at both ends of the bus. Communication speed range is 1200 \sim

9600bps, defaulted as 9600bps; Byte format is 1 start bit, 8 data bits, no check bit or 1 odd/even check bit, and 1/2 stop bit.

2.2 Communication Protocol

Data format

Address code	Function code	Data code	CRC check code
one byte	one byte	N bytes	two bytes

Address code: 1~247 are used and other addresses are reserved.

Function code: It tells the addressed terminal device to perform a function. The following list shows the function codes supported by the device as well as corresponding meaning and functions.

Function code	Meaning
0x01	Read the status of relay output
0x02	Read the status of digital input
0x03/0x04	Read the value of data register
0x05	Remotely control the action of single relay
0x0F	Remotely control the action of muli-relay
0x10	Write register instruction
0x14	Read event recording

Data code: It includes the data which is needed by a terminal device when it performs a function or the data collected from a terminal device when it responds to an inquiry. These data may be numbers, referenced address or setting value. For example, when the data code tells a terminal device to read a register, the data field should indicate the terminal device that which register it should begin from and how much data it should read. The data code sent back from a terminal device includes data length and corresponding data.

Check code: Cyclical Redundancy Check (CRC16) field occupies two bytes including a 16-bit binary value. CRC value will be calculated by transmission equipment and be added to a data frame. When the receiving equipment receives the data, it will calculate CRC value again, then it compare the two CRC value. If the two value are not equal to each other, an error will be detected.

2.3 Message format instruction

2.3.1 Read the status of relay output (Function code 0x01)

	Frame Address Function dat		a code	CRC check		
	structure	code	code	initial relay address	Number of relay	code
Host	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	Data range	1∼247	0x01	0x0000 (fixed)	0x0001~0x0002	CRC16
	Message example	<u>0x01</u>	<u>0x01</u>	0x00 0x00	<u>0x00 0x02</u>	OxBD OxCB
	frame	address	function	dat	a code	CRC check
slave	structure	code	code	byte of register	register value	code
response	Byte	1 byte	1 byte	1 byte	1 byte	2 bytes
	Message example	<u>0x01</u>	<u>0x01</u>	<u>0x01</u>	<u>0x03</u>	0x11 0x89

Remark: the register value in the slave response indicates the status of the relay. Beginning from the lowest bit of the byte, each number corresponds to the status of a loop of relay output. "1" indicates the relay is closed, while "0" indicates the relay is cut off. In the upper list, the register value "0x03" corresponds to "0000 0011" in binary system which means the first and second loop of relays are closed.

2.3.2 Read the status of digital input (Function code 0x02)

	Frame	address	function	dat	a code	CRC check
	structure	code	code	initial switch address	number of switches	code
Host	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	Data range	1∼247	0x02	0x0000	0x0001~0x000C	CRC16
	Message example	<u>0x01</u>	<u>0x02</u>	<u>0x00 0x00</u>	<u>0x00 0x04</u>	0x79 0xC9
	Data	address	function	dat	a code	CRC check
Slave	structure	data	code	byte of register	register value	code
response	Byte	1 byte	1 byte	1 byte	1 byte	2 bytes
тезропзе	Message example	<u>0x01</u>	<u>0x02</u>	<u>0x01</u>	<u>0x02</u>	0x20 0x49

Remark: the register value in the slave response indicates the status of digital input. Beginning from the lowest bit of the byte, each number corresponds to the status of a loop of digital input. "1" indicates the switch is closed, while "0" indicates the switch is cut off. In the upper list the register value "0x02" is "0000 0010" in binary system which means second loop of digital input is closed.

2.3.3 Read data register value (function code 0x03/0x04)

	Frame	address	function	data	code	CRC check
	structure	code	code	initial register	number of	code
				address	register	
Host request	Byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
request	data	1~247	0x03/		Max 100	CRC16
	range	1 247	0x04		IVIAX 100	CKCIO
	message	<u>0x01</u>	<u>0x03</u>	0x00 0x06	<u>0x00 0x06</u>	0XE4 0x36

	example					
	frame	address	function	data	code	CRC check
alavia	structure	code	code	byte of register	register value	code
slave	byte	1 byte	1 byte	1 byte	12 bytes	2 bytes
response	message	001	003	000	12-byte	(CDC46)
	example	<u>0x01</u>	<u>0x03</u>	<u>0x0C</u>	<u>data)</u>	<u>(CRC16)</u>

Remark: the initial register address in host inquiry is the initial address of the data collected from primary grid or secondary grid. The number of register indicates the length of the data. In the upper list the register address "0x00 0x06" indicates the initial address of phase voltage float data of three phases, and the number of register "0x00 0x06" indicates the length of the data is six words (three float data occupy six registers).

2.3.4 Remotely-controlled single relay output (function code 0x05)

	frame	address	function	da	data code	
				initial relay		check
	structure	code	code	address	relay action value	code
host	byte	1byte	1byte	2 bytes	2 bytes	2 bytes
request	data	1~247	0x05	0x0000~	0xFF00/0x0000	CRC16
	range	1 247	0x05	0x0003	0x7700/0x0000	CKCIB
	message	0x01	0x05	0x00 0x00	0xFF 0x00	<u>0x8C</u>
	example	0.01	0.03	0000 0000	0011 0000	<u>0x3A</u>
	frame	address	function	da	ta code	CRC
	structure	code	code	initial relay	relay action value	check
slave	structure	structure code code		address	relay action value	code
response	byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes
	message	0×01	0,05	0x00 0x00	0xFF 0x00	<u>0x8C</u>
	example	<u>0x01</u>	<u>0x05</u>	<u>0x00 0x00</u>	<u> </u>	<u>0x3A</u>

Remark: in host request, the relay action value "0xFF00" indicates the relay is closed, while "0x0000" indicates the relay is cut off. If you want to perform

remotely control, please make sure the relay is working in "remotely control" mode.

2.3.5 Remotely-controlled multi-relay output (function code 0x0F)

					data c	ode		CD C	
	frame structure	address code	function code	initial relay address	number of relay	number of data byte	relay action value	check code	
host request	byte	1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte	2 bytes	
	data range	1~247	0x0F	0x0000	0x0001~ 0x0004	0x01		CRC16	
	message example	<u>0x01</u>	<u>0x0F</u>	0x00 0x00	0x00 0x02	<u>0x01</u>	<u>0x03</u>	0x9E 0x96	
	frame	address	function		data c	data code			
alaus.	structure	code	code	initial rela	ay address	number	of relay	check code	
slave response	byte	1 byte	1byte	2b	ytes	2byt	es	2 bytes	
	message example	<u>0x01</u>	<u>0x0F</u>	<u>0x00</u>	<u>) 0x00</u>	0x00 0	1 <u>x02</u>	<u>0xD4</u> <u>0x0A</u>	

Remark: in the host inquiry, beginning from the lowest bit of relay action value, each bit corresponds to a loop of relay output. "1" indicates the relay is closed, while "0" indicates the relay is cut off. In the upper list, relay action value "0x03" is "0000 0011" in binary system, which means the first and second loops of relay are closed.

2.3.6 Write setup register (function code 0x10)

	Frame				Data	code		
Host request	structur e	Addres s code	Functio n code	initial	numbe	numbe	Write	Check code

				relay	r of	r of	value	
				address	relay	data		
						byte		
	Bytes	1 byte	1 byte	2 bytes	2 bytes	1 byte	2N bytes	2 bytes
	Data range	1~247	0x10	0x080A	0x0001	N		CRC16
	Message example	<u>0x01</u>	<u>0x10</u>	0x08 0x0A	0x00 0x01	<u>0x02</u>	0x006 4	0x2ED 1
					Data	code		
Slave respons	Frame structur e	Addres s code	Functio n code	Registe r initial address	Re	egister lengt	:h	Check code
е	Bytes taken	1 byte	1 byte	2 bytes		2 bytes		2 bytes
	Message example	<u>0x01</u>	<u>0x10</u>	0x08 0x0A		<u>0x00</u> <u>0x01</u>		0x2ED 1

Remark: Please follow strictly the address list of instrument setting information in the annex of instrument when the setup register is written. Do not try to modify and areas which are kept used and the write data shall not exceed the setting range. Wrong writing of setup register may lead to abnormal instrument operation. Please be careful with the operation.

2.3.7 Read event recording (function code 0x14)

The event recording and data read are SOE event recording, over-voltage and under-voltage recording, over-current and under-current recording, overload and underload recording, voltage swell, dips, voltage interrupt recording.

Request

Function code	1 byte	0x14
Byte counting	1 byte	0x07

Sub-request x, parameter type	1 byte	0x06
Sub-request x, document No.	2 bytes	0x0000-0x000d
Sub-request x, recording No.	2 bytes	0x0000-0x001F
Sub-request x, recording length	2 bytes	N

Response

Function code	1 byte	0x14
Response data length	1 byte	0x07∼0xF5
Sub-request x, relevant document length.	1 byte	0x06∼0xF4
Sub-request x, reference type	1 byte	6
Sub-request x, recording data	N×2 bytes	

Send the document No., recording No., and recording length description of sub-request of the message

Event recording	Document No.	Recording No.	Recording length
SOE event	0x0000	0x0000∼0x001F 0: latest SOE event 1: last SOE event 	1~8
Voltage swell event	0x0001	0x0000 ~ 0x000F: 0: latest volt age swell event 1: last voltage swell event 	1~9
Voltage sag event	0x0002	0x0000~0x000F: 0: latest voltage sag event 1: last voltage sag event	1~9

Voltage interruption	0x0003	0x0000~0x000F: 0: latest interruption event 1: last interruption event	1~9
Over voltage	0x0008	0x0000-0x0009: 0x0000: latest over voltage event recording 0x0001:last over voltage event recording 0x0009:last 9 th over voltage event recording	1~12
Under voltage	0x0009	Under voltage event recording, same to above	
Over current	0x000A	Over current event recording, same to above	
Under current	0x000B	Under current event recording, same to above	
Over load power	0x000C	Over load power event recording, same to above	
Under load power	0x000D	Under load power event recording, same to above	

2.3.8 Read SOE event recording:

	5	A -1 -1	From set			Data code			Char
	Frame struct ure	Addr ess code	Functi on code	Byte counti ng	Parame ter type	Docum ent No.	Record ing No.	Record ing length	Chec k code
Host reques t	Bytes taken	1 byte	1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 byte s
	Data range	1~ 247	0x14	0x07	0x06	0x0000	0∼31	1~8	CRC1 6
	Messa ge examp le	<u>0x01</u>	<u>0x14</u>	0x07	<u>0x06</u>	<u>0x0000</u>	<u>0x0000</u>	<u>0x0008</u>	<u>0xF8</u> <u>E2</u>

					Data	a code		
Slave	Frame struct ure	Addr ess code	Functi on code	Respons e data length	Documen t response length	Paramet er type	Recording data	Chec k code
respo nse	Bytes taken	1 byte	1 byte	1 byte	1 byte	1 byte	16 bytes	2 byte s
	Messa ge examp le	<u>0x01</u>	<u>0x14</u>	<u>0x12</u>	<u>0x11</u>	<u>0x06</u>	SOE recording data	CRC1 6

SOE event recording

The instrument have 32 pieces of SOE event recording to record the digital input, time and status of relay output action. The resolution is 1ms.

Format description of SOE event recording data:

Year, month, day, hour, minute, second, millisecond(8byte) ①+ DI change status bits (2byte) + DI present status bits (2byte) + DO change status bits (2byte) + DO present status bits (2byte).

Year, month, day, hour, minute, second, millisecond: time when SOE event occurs.

DI change status bit: status bit which is changed corresponding to each channel of digital input starting from the lowest bit of the byte. 1 means action and 0 means no action.

DI present status bit: status value corresponding to each channel of digital input starting from the lowest bit of the byte. 1 means action status and 0 means reset status.

DO change status bit: status bit which is changed corresponding to each channel of relay output starting from the lowest bit of the byte. 1 means action and 0 means no action.

DO present status bit: status value corresponding to each channel of relay output starting from the lowest bit of the byte. 1 means action status and 0 means reset status.

For example: 0E 03 05 08 14 01 01 00 00 02 00 03 00 01 00 00

 $\underline{0E}$ $\underline{03}$ $\underline{05}$ $\underline{08}$ $\underline{14}$ $\underline{01}$ $\underline{01}$ $\underline{00}$ means the time of 2014, March, 5th, 8 o'clock, 20 minutes, 1 second, 256 millisecond.

00 02 00 03:

00 02 means that the digital input status of the second channel is changed while other channels remain unchanged;

 $00\ 03$ means the first channel and the second channel of digital input are in action status.

00 01 00 00:

00 01 means the status of first channel relay is changed;

00 00 means the current relay is in reset status.

2.3.9 Read voltage swell event recording:

	F	A -1 -1	Sun ati			Data code			Chara
	Frame struct ure	Addr ess code	Functi on code	Byte counti ng	Parame ter type	Docum ent No.	Record ing No.	Record ing length	Chec k code
Host reques	Bytes taken	1 byte	1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes
t	Data range	1~ 247	0x14	0x07	0x06	0x0001	0~15	1~10	CRC1 6
	Messa ge examp le	<u>0x01</u>	<u>0x14</u>	0x07	<u>0x06</u>	<u>0x0001</u>	<u>0x0000</u>	<u>0x000A</u>	0x04 E2
Slave	Frame	Addr	Functi			Data code			Chec

respo nse	struct ure	ess code	on code	Respons e data length	Documen t response length	Paramet er type	Recording data	k code
	Byte	1 byte	1 byte	1 byte	1 byte	1 byte	18 bytes	2 bytes
	Messa ge examp le	<u>0x01</u>	<u>0x14</u>	<u>0x14</u>	<u>0x13</u>	<u>0x06</u>	Swell recording data	CRC1 6

Voltage swell, sag and interruption recording

The device has 16 pieces of voltage swell recording, 16 pieces of voltage sag recording, 16 pieces of voltage interruption recording. Voltage swell, voltage sag and voltage interruption will be handled once every 10ms. It contain start time, end time and voltage extreme value. The threshold and hysteresis of voltage swell, sag, interruption can be set through communication.

Data format of voltage swell, sag and interruption:

Year, month, day, hour, minute, second, millisecond (start time) (8byte) + Year, month, day, hour, minute, second, millisecond (end time) (8byte) + voltage limits (4byte Floating point data)

For example:

0E 03 05 08 14 01 00 78 0E 03 05 08 14 01 02 00 43 ED 80 00

0E 03 05 08 14 01 00 78: Start time: 2014, March, 5th, 8 o'clock, 20 minutes, 1 second, 120 millisecond.

0E 03 05 08 14 01 02 00: End time: 2014, March, 5th, 8 o'clock, 20 minutes, 1 second, 512 milliseconds.

43ED8080: Floating point data voltage limit of 475.0V. As for swell event recording, this value is the maximum voltage value during swell; as for sag recording and voltage interruption recording, this value is the minimum voltage value during the sag.

2.3.10 Read over voltage event recording

Host	Frame Addr	me Addr Functi	Data code	Chec
------	------------	----------------	-----------	------

reque	struct	ess	on	Byte	Parame			Dan	ام سما	Record	k
st	ure	code	code	counti	ter		cum : No.	ing	ord	ing	code
				ng	type	ent	. INO.	IIIg	NO.	length	
	Byte	1	1 byte	1 byte	1 byte	2 h	ytes	2 by	tor	2 bytes	2
	Бусе	byte	1 byte	1 byte	1 byte	2 0	ytes	2 0)	ries	2 bytes	bytes
	Data	1~	0x14	0x07	0x06	0.40	8000	0~	∙09	1~12	CRC1
	range	247	UX14	UXU7	UXUG	UXC	J008	0. 3	09	1, ~ 12	6
	Messa										
	ge	0x01	0x14	0x07	0x06	0.40	0003	0x0	000	0x000c	<u>0x7D</u>
	examp	0.01	<u>0X14</u>	0.07	<u>0x00</u>	UX.	<u> </u>	<u>0x0</u>	<u>000</u>	<u>0x000C</u>	<u>22</u>
	le										
						Data	a code				
	Frame	Addr	Functi	Respons	Docum	nen					Chec
	struct	ess	on	e data	t		Para	met	Re	cording	k
	ure	code	code	length	respor	nse	er ty	pe		data	code
Slave				length	lengt	:h					
respo	Byte	1	1 byte	1 byte	1 byt	۰.	1 byt	-0	2	4 bytes	2
nse	Бусе	byte	1 byte	1 byte	1 byt	.e	1 Dyt			+ bytes	bytes
	Messa										
	ge	0x01	0x14	0x14	0x13	2	0x(16	ove	r voltage	CRC1
	examp	0.01	<u>0X14</u>	<u> </u>	UXI	<u>.</u>	<u> UXI</u>	<u> </u>	<u>re</u>	cording	6
1	1	I	l	l	1		1				l

Over voltage, under voltage, over current, under current, over load power and under load power recording

The device can record up to 10 pieces of events including over voltage, under voltage, over current, under current, over load power and under load power. It judge and process these events every500ms. Event record contains start time, end time and corresponding voltage/current/power extreme value. Threshold value and hysteresis of voltage, current and power are set through communication.

Data format:

Year/month/day/hour/minute/second(start time)(6byte)+year/month/day/hour/minute/second(end time)(6byte)+voltage limit value(12byte,Floating point data)

For example: 0E 03 05 08 14 01 0E 03 05 08 14 05 43 E4 66 66 43 E4 00 00 43 E4 80 00

0E 03 05 08 14 01:

Start time: 14(year)3(month)5(day)8(hour)20(minute)1(second)

OE 03 05 08 14 05 :

End time: 12(year)3(month)5(day)8(hour)20(minute)5(second)

43E46666: 456.8V 43E40000: 456V 43E48080: 457V

If it is voltage swell event, this is the max. voltage value (phase voltage in three phase four wire mode, line voltage in three phase three wire mode); if it is under voltage event, it is min. voltage value. The data format of over current, under current, over power, under power is the same as above.

2.4 Data format

2.4.1 32-bit floating format

32-bit floating format conforms to IEEE-754 format. The byte order of the data is in the form of a large end sequence, the high byte is preceded, and the low byte is in the post.

The following table shows the Float data for three-phase voltage:

Address(Hex)	Data(Hex)	Description
0006-0007	435C-8000	V1 = 0x435C8000 = 220.5V
0008-0009	4360-4CCD	V2 = 0x43604CCD = 224.3V
000A-000B	435E-B333	V3 = 0x435EB333 = 222.7V

2.4.2 16-bit Int format

16-bit Integral format data adopts complementary code storage. The byte $14\,$

order of the data is in the form of a large end sequence, the high byte is preceded, and the low byte is in the post.

The following table shows the Int data for three-phase voltage:

Address(Hex)	Data(Hex)	Description
0210	0230	THDv1 = 0x0230 = 5.6%
0211	0172	THDv2 = 0x0172 = 3.7%
0212	0096	THDv3 = 0x0096 = 1.5%

2.4.3 32-bit Integral format

32-bit Integral format data adopts complementary code storage. The byte order of the data is in the form of a large end sequence, the high byte is preceded, and the low byte is in the post.

The following table shows the Long data for three-phase voltage:

Address(Hex)	Data(Hex)	Description
0210	0230	THDv1 = 0x0230 = 5.6%
0211	0172	THDv2 = 0x0172 = 3.7%
0212	0096	THDv3 = 0x0096 = 1.5%

3. MODBUS-RTU Communication List

3.1 Electrical variables data

Address	Format	Data description	Unit	R/W
0000-0005	Reserved			
0006-0007	Float	Phase A voltage	V	R
0008-0009	Float	Phase B voltage	V	R
000A-000B	Float	Phase C voltage	V	R
000C-000D	Float	Line AB voltage	V	R
000E-000F	Float	Line BC voltage	V	R
0010-0011	Float	Line CA voltage	V	R
0012-0013	Float	Phase A current	А	R
0014-0015	Float	Phase B current	А	R
0016-0017	Float	Phase C current	А	R
0018-0019	Float	In current (reserved)	А	R
001A-001B	Float	Phase A active power	kW	R
001C-001D	Float	Phase B active power	kW	R
001E-001F	Float	Phase C active power	kW	R
0020-0021	Float	Total active power	kW	R
0022-0023	Float	Phase A reactive power	kvar	R
0024-0025	Float	Phase B reactive power	kvar	R
0026-0027	Float	Phase C reactive power	kvar	R
0028-0029	Float	Total reactive power	kvar	R
002A-002B	Float	Phase A apparent power	kVA	
002C-002D	Float	Phase B apparent power	kVA	
002E-002F	Float	Phase C apparent power	kVA	
0030-0031	Float	Total apparent power	kVA	R
0032-0033	Float	Phase A power factor		
0034-0035	Float	Phase B power factor		
0036-0037	Float	Phase C power factor		
0038-0039	Float	Total power factor		R
003A-003B	Float	Grid frequency	Hz	R

003C-003D	Float	Import active energy EP+	kWh	R
003E-003F	Float	Export active energy EP-	kWh	R
0040-0041	Float	Import reactive energy EQ+	kvarh	R
0042-0043	Float	Export reactive energy EQ-	kvarh	R
0044-0045	Float	Apparent energy	kVA	R
0046-0047	Float	First quadrant reactive energy	kvarh	R
0048-0049	Float	Second quadrant reactive energy	kvarh	R
004A-004B	Float	Third quadrant reactive energy	kvarh	R
004C-004D	Float	Fourth quadrant reactive energy	kvarh	R
004E-004F	Float	Import fundamental wave active	kWh	R
		energy		
0050-0051	Float	Export fundamental wave active	kWh	R
		energy		
0052-0053	Float	Import fundamental wave reactive	kvarh	R
		energy		
0054-0055	Float	Export fundamental wave reactive	kvarh	R
		energy		
0056-0057	Float	Phase A import active energy	kWh	R
0058-0059	Float	Phase B import active energy	kWh	R
005A-005B	Float	Phase C import active energy	kWh	R
005C-005D	Float	Phase A export active energy	kWh	R
005E-005F	Float	Phase B export active energy	kWh	R
0060-0061	Float	Phase C export active energy	kWh	R
0062-0063	Float	Phase A import reactive energy	kvarh	R
0064-0065	Float	Phase B import reactive energy	kvarh	R
0066-0067	Float	Phase C import reactive energy	kvarh	R
0068-0069	Float	Phase A export reactive energy	kvarh	R
006A-006B	Float	Phase B export reactive energy	kvarh	R
006C-006D	Float	Phase C export reactive energy	kvarh	R

006E-006F	Float	Present total active energy	kWh	R
0070-0071	Float	Present tariff #1 active energy	kWh	R
0072-0073	Float	Present tariff #2 active energy	kWh	R
0074-0075	Float	Present tariff #3 active energy	kWh	R
0076-0077	Float	Present tariff #4 active energy	kWh	R
0078-0079	Float	Total active energy of present month	kWh	R
0074 0070	Float	Tariff #1 active energy of present	kWh	R
007A-007B		month		
007C-007D	Float	Tariff #2 active energy of present	kWh	R
007C-007D		month		
007E-008F	Float	Tariff #3 active energy of present	kWh	R
007E-008F		month		
0080-0081	Float	Tariff #4 active energy of present	kWh	R
0080-0081		month		
0082-0083	Float	Total active energy of last month	kWh	R
0084-0085	Float	Tariff #1 active energy of last month	kWh	R
0086-0087	Float	Tariff #2 active energy of last month	kWh	R
0088-0089	Float	Tariff #3 active energy of last month	kWh	R
008A-008B	Float	Tariff #4 active energy of last month	kWh	R
008C-008D	Float	Total active energy of the month	kWh	R
0080-008D		before last		
008E-008F	Float	Tariff #1 active energy of the month	kWh	R
0081-0081		before last		
0090-0091	Float	Tariff #2 active energy of the month	kWh	R
0030-0031		before last		
0092-0093	Float	Tariff #3 active energy of the month	kWh	R
0092-0093		before last		
0094-0095	Float	Tariff #4 active energy of the month	kWh	R
0034 0033		before last		

0096-0097	Float	Total active energy of the third month	kWh	R
		before this month		
0098-0099	Float	Tariff #1 active energy of the third	kWh	R
0038-0033		month before this month		
009A-009B	Float	Tariff #2 active energy of the third	kWh	R
		month before this month		
009C-009D	Float	Tariff #3 active energy of the third	kWh	R
0090-0090		month before this month		
009E-009F	Float	Tariff #4 active energy of the third	kWh	R
009E-009F		month before this month		
00A0-00A1	Float	Total active energy of the fourth	kWh	R
00A0-00A1		month before this month		
00A2-00A3	Float	Tariff #1 active energy of the fourth	kWh	R
00AZ-00A3		month before this month		
00A4-00A5	Float	Tariff #2 active energy of the fourth	kWh	R
00A4-00A3		month before this month		
00A6-00A7	Float	Tariff #3 active energy of the fourth	kWh	R
0040-0047		month before this month		
00A8-00A9	Float	Tariff #4 active energy of the fourth	kWh	R
00A8-00A9		month before this month		
00AA-00AB	Float	Total active energy of the fifth month	kWh	R
OUAA-OUAB		before this month		
00AC-00AD	Float	Tariff #1 active energy of the fifth	kWh	R
OUAC-OUAD		month before this month		
00AE-00AF	Float	Tariff #2 active energy of the fifth	kWh	R
OUAE-OUAF		month before this month		
00B0-00B1	Float	Tariff #3 active energy of the fifth	kWh	R
0080-0081		month before this month		
00B2-00B3	Float	Tariff #4 active energy of the fifth	kWh	R
0002-0083		month before this month		

00B4-00B5	Float	Total active energy of the sixth month	kWh	R
0004 0003		before this month		
00B6-007	Float	Tariff #1 active energy of the sixth	kWh	R
0066-007		month before this month		
00B8-00B9	Float	Tariff #2 active energy of the sixth	kWh	R
0000-0009		month before this month		
00BA-00BB	Float	Tariff #3 active energy of the sixth	kWh	R
OOBA-OOBB		month before this month		
0000 0000	Float	Tariff #4 active energy of the sixth	kWh	R
00BC-00BD		month before this month		
0005 0005	Float	Total active energy of the seventh	kWh	R
00BE-00BF		month before this month		
0000 0001	Float	Tariff #1 active energy of the seventh	kWh	R
00C0-00C1		month before this month		
00C2-00C3	Float	Tariff #2 active energy of the seventh	kWh	R
0002-0003		month before this month		
00C4-00C5	Float	Tariff #3 active energy of the seventh	kWh	R
0004-0003		month before this month		
00C6-00C7	Float	Tariff #4 active energy of the seventh	kWh	R
0000-0007		month before this month		
00C8-00C9	Float	Total active energy of the eighth	kWh	R
0008-0009		month before this month		
00CA-00CB	Float	Tariff #1 active energy of the eighth	kWh	R
OOCA-OOCB		month before this month		
00CC-00CD	Float	Tariff #2 active energy of the eighth	kWh	R
0000-0000		month before this month		
00CE-00CF	Float	Tariff #3 active energy of the eighth	kWh	R
JUCE-UUCF		month before this month		
00D0-00D1	Float	Tariff #4 active energy of the eighth	kWh	R
0000-0001		month before this month		

00D2-00D3	Float	Total active energy of the ninth month	kWh	R
		before this month		
00D4-00D5	Float	Tariff #1 active energy of the ninth	kWh	R
0004-0003		month before this month		
00D6-00D7	Float	Tariff #2 active energy of the ninth	kWh	R
0000-0007		month before this month		
00D8-00D9	Float	Tariff #3 active energy of the ninth	kWh	R
0008-0009		month before this month		
0004 0000	Float	Tariff #4 active energy of the ninth	kWh	R
00DA-00DB		month before this month		
0000 0000	Float	Total active energy of the tenth month	kWh	R
00DC-00DD		before this month		
0005 0005	Float	Tariff #1 active energy of the tenth	kWh	R
00DE-00DF		month before this month		
00E0-00E1	Float	Tariff #2 active energy of the tenth	kWh	R
0060-0061		month before this month		
00E2-00E3	Float	Tariff #3 active energy of the tenth	kWh	R
0062-0063		month before this month		
00E4-00E5	Float	Tariff #4 active energy of the tenth	kWh	R
0014-0013		month before this month		
00E6-00E7	Float	Total active energy of the eleventh	kWh	R
0066-0067		month before this month		
00E8-00E9	Float	Tariff #1 active energy of the eleventh	kWh	R
0018-0019		month before this month		
00EA-00EB	Float	Tariff #2 active energy of the eleventh	kWh	R
OUEA-OUEB		month before this month		
00EC-00ED	Float	Tariff #3 active energy of the eleventh	kWh	R
JUEC-UUED		month before this month		
00EE-00EF	Float	Tariff #4 active energy of the eleventh	kWh	R
OUEE-UUEF		month before this month		

3.2 System status and switch information

Address	Format	Data description	Unit	R/W
00F0	char	High byte: year; low byte: month		R
00F1	char	High byte: day; low byte: hour		R
00F2	char	High byte: minute; low byte: second		R
00F3	char	High byte: week; low byte: reserved		R
00F4	Int	Relay output status: 0-OFF, 1-ON Bit0: first relay output status		R
00F5	Int	Digital input information: 0-OFF, 1-ON Bit0: first digital input status Bit1: second digital input status		R
00F6	bit	System status: Bit 0: voltage phase sequence status, 0: normal: 1: abnormal Bit1: frequency status, 0: normal: 1: abnormal Bit2: voltage signal, 0: normal: 1: abnormal Bit3: current sequence status 0: normal: 1: abnormal Bit4: high voltage 0: no high voltage alarm 1: high voltage alarm Bit5: low voltage alarm 1: low voltage alarm 1: low voltage alarm Bit6: high current alarm: 0: no high current alarm 1: high current alarm		

		Bit7: low current alarm:		
		0: no low current alarm 1: low current		
		alarm		
		Bit8: high active power alarm		
		0: no high active power alarm 1:		
		high active power alarm		
		Bit9: low active power alarm		
		0: no low active power alarm 1: low		
		active power alarm		
00F7	Int	M Module type: 0:M1 1:M2 2:M3		
00F8-00F9	Long	DI1 pulse counting	个	R
00FA-00FB	Long	DI2 pulse counting	个	R
00FC-00FD	float	DI1 corresponding data to pulse		R
00FE-00FF	float	DI2 corresponding data to pulse		R

3.3 Max./min. value data

Address	Format	Data description	Unit	R/W
0100-0101	float	Max. historical data of Phase A	V	R
0102-0103	float	Max. historical data of Phase B	V	R
0104-0105	float	Max. historical data of Phase C	V	R
0106-0107	float	Max. historical data of Line AB voltage	V	R
0108-0109	float	Max. historical data of Line BC voltage	V	R
010A-010B	float	Max. historical data of Line CA voltage	V	R
010C-010D	float	Max. historical data of Phase A current	А	R
010E-010F	float	Max. historical data of Phase B current	А	R
0110-0111	float	Max. historical data of Phase C current	А	R
0112-0113	float	Max. historical data of In (3P4W)	А	R
0114-0115	float	Max. historical data of total active power	1W	R
0116-0117	float	Max. historical data of total reactive power	kW	R

0118-0119	float	Max. historical data of total apparent	kW	R
		power		
011A-011B	float	Max. historical data of total power factor	kW	R
011C-011D	float	Max. historical data of Frequency	Hz	R
011E-011F	float	Min. historical data of Phase A voltage	V	R
0120-0121	float	Min. historical data of Phase B voltage	V	R
0122-0123	float	Min. historical data of Phase C voltage	V	R
0124-0125	float	Min. historical data of Line AB voltage	V	R
0126-0127	float	Min. historical data of Line BC voltage	V	R
0128-0129	float	Min. historical data of Line CA voltage	V	R
012A-012B	float	Min. historical data of Phase A current	А	R
012C-012D	float	Min. historical data of Phase B current	А	R
012E-012F	float	Min. historical data of Phase C current	А	R
0130-0131	float	Min. historical data of In (3P4W)	А	R
0132-0133	float	Min. historical data of total active power	1W	R
0134-0135	float	Min. historical data of total reactive power	kW	R
0136-0137	float	Min. historical data of total apparent	kW	R
		power		
0138-0139	float	Min. historical data of total power factor	kW	R
013A-013B	float	Min. historical data of frequency	Hz	R
013C-013D	float	Max. historical data of Phase A voltage in	V	R
		present month		
013E-013F	float	Max. historical data of Phase B voltage in	V	R
		present month		
0140-0141	float	Max. historical data of Phase C voltage in	V	R
		present month		
0142-0143	float	Max. historical data of Line AB voltage in	V	R
		present month		
0144-0145	float	Max. historical data of Line BC voltage in	V	R

		present month		
0146-0147	float	Max. historical data of Line CA voltage in	V	R
		present month		
0148-0149	float	Max. historical data of Phase A current in	А	R
		present month		
014A-014B	float	Max. historical data of Phase B current in	А	R
		present month		
014C-014D	float	Max. historical data of Phase C current in	А	R
		present month		
014E-014F	float	Max. historical data of In (3P4W) in	А	R
		present month		
0150-0151	float	Max. historical data of total active power	kW	R
		in present month		
0152-0153	float	Max. historical data of total reactive power	kW	R
		in present month		
0154-0155	float	Max. historical data of total apparent	kW	R
		power in present month		
0156-0157	float	Max. historical data of total power factor	kW	R
		in present month		
0158-0159	float	Max. historical data of frequency in	Hz	R
		present month		
015A-015B	float	Min. historical data of Phase A voltage in	V	R
		present month		
015C-015D	float	Min. historical data of Phase B voltage in	V	R
		present month		
015E-015F	float	Min. historical data of Phase C voltage in	V	R
		present month		
0160-0161	float	Min. historical data of Line AB voltage in	V	R
		present month		
0162-0163	float	Min. historical data of Line BC voltage in	V	R

		present month		
0164-0165	float	Min. historical data of Line CA voltage in	V	R
		present month		
0166-0167	float	Min. historical data of Phase A current in	А	R
		present month		
0168-0169	float	Min. historical data of Phase B current in	А	R
		present month		
016A-016B	float	Min. historical data of Phase C current in	А	R
		present month		
016C-016D	float	Min. historical data of In (3P4W) in present	А	R
		month		
016E-016F	float	Min. historical data of total active power in	kW	R
		present month		
0170-0171	float	Min. historical data of total reactive power	kW	R
		in present month		
0172-0173	float	Min. historical data of total apparent	kW	R
		power in present month		
0174-0175	float	Min. historical data of total power factor in	kW	R
		present month		
0176-0177	float	Min. historical data of frequency in	Hz	R
		present month		
0178-01B3	float	Max./min. value of last month		R
01B4-01EF	float	Max./min. value of the month before last		R
01F0-03FF		Reserved		
	•			

3.4 Demand data

Address	Format	Data description	Unit	R/W
0400-0401	float	Present demand of Phase A current	1A	R
0402-0403	float	Present demand of Phase B current	А	R
0404-0405	float	Present demand of Phase C current	А	R

0406-0407	float	Present demand of total active	kW	R
		power		
0408-0409	float	Present demand of total reactive	kvar	R
		power		
040A-040B	float	Present demand of total apparent	kVA	R
		power		
040C-040D	float	Demand of Phase A current in last	1A	R
		cycle		
040E-040F	float	Demand of Phase B current in last	А	R
		cycle		
0410-0411	float	Demand of Phase C current in last	А	R
		cycle		
0412-0413	float	Demand of total active power in last	kW	R
		cycle		
0414-0415	float	Demand of total reactive power in	kvar	R
		last cycle		
0416-0417	float	Demand of total apparent power in	kVA	R
		last cycle		
0418-0423		Max. historical demand value		R
0424-042F		Max. demand value in present		R
		month		
0430-04A1		Max. demand value in last month		R
043C-0447		Max. demand value in the month		R
		before last		
0448-04FF		Reserved		

3.5 Grid quality parameters

Format Data description Unit R/W	Address Format
----------------------------------	----------------

0500-0501	float	Voltage positive sequence component	V	R
0502-0503	float	Voltage negative sequence component	V	R
0504-0505	float	Voltage zero sequence component	V	R
0506-0507	float	Unbalanced voltage		R
0508-0509	float	Current positive sequence component	V	R
050A-050B	float	Current negative sequence component	V	R
050C-050D	float	Current zero sequence component	V	R
050E-050F	float	Unbalanced current		R
0510-0511	float	Phase voltage average value	А	R
0512-0513	float	Line voltage average value	А	R
0514-0515	float	Current average value	А	R
0516-0517	float	Active power average value	kW	R
0518-0519	float	Reactive power average value	kvar	R
051A-051B	float	Apparent power average value	kVA	R
051C-051D	float	Phase A voltage deviation	V	R
051E-051F	float	Phase B voltage deviation	V	R
0520-0521	float	Phase C voltage deviation	V	R
0522-0523	float	Line AB voltage deviation	V	R
0524-0525	float	Line BC voltage deviation	V	R
0526-0527	float	Line CA voltage deviation	V	R
0528-0529	float	Frequency deviation	Hz	R
502A-052B	float	Phase A voltage fundamental wave	V	
		value		
052C-052D	float	Phase B voltage fundamental wave value	V	
052E-052F	float	Phase C voltage fundamental wave value	V	
0530-0531	float	Phase A current fundamental wave	А	
		value		
0532-0533	float	Phase B current fundamental wave value	А	
0534-0535	float	Phase C current fundamental wave value	А	

0536-0537	float	Phase A voltage harmonic content	V	R
0538-0539	float	Phase B voltage harmonic content	V	R
053A-053B	float	Phase C voltage harmonic content	V	R
053C-053D	float	Phase A current harmonic content	А	R
053E-053F	float	Phase B current harmonic content	А	R
0540-0541	float	Phase C current harmonic content	А	R
0542-0543	float	Phase A fundamental wave active power	kW	R
0544-0545	float	Phase B fundamental wave active power	kW	R
0546-0547	float	Phase C fundamental wave active power	kW	R
0548-0549	float	Total fundamental wave active power	kW	R
054A-054B	float	Fundamental wave reactive power	kvar	R
054C-054D	float	Fundamental wave apparent power	kVA	R
054E-054F	float	Fundamental wave power factor		R
0550-0551	Long	Meter running time	S	R
0552-0553	Long	Load running time	S	R
0554-056B	Int	Reserved		
056C	Int	Phase angle of Phase A voltage	0.1°	R
		(defaulted as 0)		
056D	Int	Phase angle of Phase B voltage	0.1°	R
056E	Int	Phase angle of Phase C voltage	0.1°	R
056F	Int	Phase angle of Phase A current	0.1°	R
0570	Int	Phase angle of Phase B current	0.1°	R
0571	Int	Phase angle of Phase C current	0.1°	R
0572	Int	Phase A voltage crest factor	0.001	R
0573	Int	Phase B voltage crest factor	0.001	R
0574	Int	Phase C voltage crest factor	0.001	R
0575	Int	Phase A current K factor	0.001	R
0576	Int	Phase B current K factor	0.001	R
0577	Int	Phase C current K factor	0.001	R

0578-057A	Int	Reserved		
057B	Int	Transformer capacity factor	0.1%	R
057C	Int	Phase A current percentage	0.1%	R
057D	Int	Phase B current percentage	0.1%	R
057E	Int	Phase C current percentage	0.1%	R
057F	Int	Load percentage	0.1%	R
0580	Int	Voltage qualified rate	0.1%	R
0581	Int	Frequency qualified rate	0.1%	R
0582	Int	Phase A voltage THD	0.01%	R
0583	Int	Phase B voltage THD	0.01%	R
0584	Int	Phase C voltage THD	0.01%	R
0585	Int	Phase A current THD	0.01%	R
0586	Int	Phase B current THD	0.01%	R
0587	Int	Phase C current THD	0.01%	R
0588	Int	Phase A voltage 2 nd harmonic content	0.01%	R
0589	Int	Phase B voltage 2 nd harmonic content	0.01%	R
058A	Int	Phase C voltage 2 nd harmonic content	0.01%	R
058B	Int	Phase A current 2 nd harmonic content	0.01%	R
058C	Int	Phase B current 2 nd harmonic content	0.01%	R
058D	Int	Phase C current 2 nd harmonic content	0.01%	R
058E	Int	Phase A voltage 3 rd harmonic content	0.01%	R
058F	Int	Phase B voltage 3 rd harmonic content	0.01%	R
0590	Int	Phase C voltage 3 rd harmonic content	0.01%	R
0591	Int	Phase A current 3 rd harmonic content	0.01%	R
0592	Int	Phase B current 3 rd harmonic content	0.01%	R
0593	Int	Phase C current 3 rd harmonic content	0.01%	R
0594	Int	Phase A voltage 4 th harmonic content	0.01%	R
0595	Int	Phase B voltage 4 th harmonic content	0.01%	R
0596	Int	Phase C voltage 4 th harmonic content	0.01%	R

0597	Int	Phase A current 4 th harmonic content	0.01%	R
0598	Int	Phase B current 4 th harmonic content	0.01%	R
0599	Int	Phase C current 4 th harmonic content	0.01%	R
059A	Int	Phase A voltage 5 th harmonic content	0.01%	R
059B	Int	Phase B voltage 5 th harmonic content	0.01%	R
059C	Int	Phase C voltage 5 th harmonic content	0.01%	R
059D	Int	Phase A current 5 th harmonic content	0.01%	R
059E	Int	Phase B current 5 th harmonic content	0.01%	R
059F	Int	Phase C current 5 th harmonic content	0.01%	R
05A0	Int	Phase A voltage 6 th harmonic content	0.01%	R
05A1	Int	Phase B voltage 6 th harmonic content	0.01%	R
05A2	Int	Phase C voltage 6 th harmonic content	0.01%	R
05A3	Int	Phase A current 6 th harmonic content	0.01%	R
05A4	Int	Phase B current 6 th harmonic content	0.01%	R
05A5	Int	Phase C current 6 th harmonic content	0.01%	R
05A6	Int	Phase A voltage 7 th harmonic content	0.01%	R
05A7	Int	Phase B voltage 7 th harmonic content	0.01%	R
05A8	Int	Phase C voltage 7 th harmonic content	0.01%	R
05A9	Int	Phase A current 7 th harmonic content	0.01%	R
05AA	Int	Phase B current 7 th harmonic content	0.01%	R
05AB	Int	Phase C current 7 th harmonic content	0.01%	R
05AC	Int	Phase A voltage 8 th harmonic content	0.01%	R
05AD	Int	Phase B voltage 8 th harmonic content	0.01%	R
05AE	Int	Phase C voltage 8 th harmonic content	0.01%	R
05AF	Int	Phase A current 8 th harmonic content	0.01%	R
05B0	Int	Phase B current 8 th harmonic content	0.01%	R
05B1	Int	Phase C current 8 th harmonic content	0.01%	R
05B2	Int	Phase A voltage 9 th harmonic content	0.01%	R
05B3	Int	Phase B voltage 9 th harmonic content	0.01%	R

05B4	Int	Phase C voltage 9 th harmonic content	0.01%	R
05B5	Int	Phase A current 9 th harmonic content	0.01%	R
05B6	Int	Phase B current 9 th harmonic conten	0.01%	R
05B7	Int	Phase C current 9 th harmonic conten	0.01%	R
05B8	Int	Phase A voltage 10 th harmonic content	0.01%	R
05B9	Int	Phase B voltage 10 th harmonic content	0.01%	R
05BA	Int	Phase C voltage 10 th harmonic content	0.01%	R
05BB	Int	Phase A current 10 th harmonic content	0.01%	R
05BC	Int	Phase B current 10 th harmonic content	0.01%	R
05BD	Int	Phase C current 10 th harmonic content	0.01%	R
05BE	Int	Phase A voltage 11 th harmonic content	0.01%	R
05BF	Int	Phase B voltage 11 th harmonic content	0.01%	R
05C0	Int	Phase C voltage 11 th harmonic content	0.01%	R
05C1	Int	Phase A current 11 th harmonic content	0.01%	R
05C2	Int	Phase B current 11 th harmonic content	0.01%	R
05C3	Int	Phase C current 11 th harmonic content	0.01%	R
				•••
0636	Int	Phase A voltage 31 st harmonic content	0.01%	R
0637	Int	Phase B voltage 31 st harmonic content	0.01%	R
0638	Int	Phase C voltage 31 st harmonic content	0.01%	R
0639	Int	Phase A current 31 st harmonic content	0.01%	R
063A	Int	Phase B current 31 st harmonic content	0.01%	R
063B	Int	Phase C current 31st harmonic content	0.01%	R
063C-06FB	Int	32 nd – 63 rd harmonic content	0.01%	R
06FC-06FF		Reserved		

3.6 Manufacture information

Address	Format	Data content	Data description	R/W
0700-070F	Char	Meter model(ASCII code)		R
0710-071F	Char	Software version(ASCII code)		R
0720-073F	Int	Ua real-time waveform data (32		R
		points)		
0740-075F	Int	Ub real-time waveform data (32		R
		points)		
0760-077F	Int	Uc real-time waveform data (32		R
		points)		
0780-079F	Int	la real-time waveform data (32 points)		R
07A0-07BF	Int	Ib real-time waveform data (32		R
		points)		
07C0-07DF	Int	Ic real-time waveform data (32 points)		R

3.7 Event record information

Address	Format	Data content	Data description	R/W
07E0	Int	High b:yte: year; low byte: month	Power on record	R
07E1	Int	High byte: day; low byte: hour		R
07E2	Int	High byte: minute; low byte: second		R
07E3	Int	Power on times		R
07E4	Int	High b:yte: year; low byte: month	Power off record	R
07E5	Int	High byte: day; low byte: hour		
07E6	Int	High byte: minute; low byte: second		
07E7	Int	Power off times		
07E8	Int	High b:yte: year; low byte: month	Parameter	R
07E9	Int	High byte: day; low byte: hour	modification	
07EA	Int	High byte: minute; low byte: second	record	
07EB	Int	Parameter modification times		

07EC	Int	High b:yte: year; low byte: month	Demand reset	R
07ED	Int	High byte: day; low byte: hour	record	
07EE	Int	High byte: minute; low byte: second		
07EF	Int	Demand reset times		
07F0	Int	High b:yte: year; low byte: month	Energy clearing	R
07F1	Int	High byte: day; low byte: hour	record	
07F2	Int	High byte: minute; low byte: second		
07F3	Int	Energy clearing times		
07F4	Int	High byte: over-voltage record times		R
		Low byte: reserved		
07F5	Int	High byte: under voltage record times		R
		Low byte: reserved		
07F6	Int	High byte: over current record times		R
		Low byte: reserved		
07F70	Int	High byte: under current record times		R
		Low byte: reserved		
07F8	Int	High byte: over load record times		R
		Low byte: reserved		
07F9	Int	High byte: under load record times		R
		Low byte: reserved		
07FA	Int	High byte: SOE event record times		R
		Low byte: reserved		
07FB	Int	High byte: voltage sag record times		R
		Low byte: reserved		
07FC	Int	High byte: voltage swell record times		R
		Low byte: reserved		
07FD	Int	High byte: voltage off record times		R
		Low byte: reserved		
07FE-07EF				R

3.8 Parameter setting

Address	Format	Data content	Data description	R/W
0800	Reserved			
0801	Int	High byte: current signal	0: input via CT	R
		type	1: direct input	
		Low byte: transformer	0: closed type	R
		type	1: open type	
0802	Int	#1 meter address	1-247	R/W
0803	Int	#1 baud rate	0: 1200bps	R/W
			1: 2400bps	
			2: 4800bps	
			3: 9600bps	
			4: 19200bps	
0804	Int	#1 check format	0: N,8,1	R/W
			1: E,8,1	
			2: 0,8,1	
			3: N,8,2	
0805	Int	Reserved		
0806	Int	High byte: wiring mode	0: 3P4W 1: 3P3W	R/W
			2: 1P2W	
		Low byte: grid frequency	0: 50Hz	R/W
			1: 60Hz	
0807	Int	AP DO selecting	0: active energy pulse output	R/W
			1: relay output	
0808	Int	Voltage range setting	1∼660V	R/W
0809	Int	Current range setting	1∼6A	R/W
080A-080B	Long	Primary voltage setting	1∼999999V	R/W
080C-080D	Long	Primary current setting	1∼999999A	R/W
080E	Int	Demand item	Defaulted as Ia/Ib/Ic/P/Q/S	R
080F	Int	#1 Demand working mode	0: slip mode	R/W
			1: fixed mode	
0810	Int	#1 slip time(t)	1∼9999s	R/W
0811	Int	#1 calculation period (T)	1~30t	R/W

0812	Int	Upper limit value of voltage qualified rate	0.1V, Secondary voltage data	R/W
0813	Int	Lower limit value of voltage qualified rate	0.1V,Secondary voltage data	R/W
0814	Int	Upper limit value of frequency qualified rate	0.01Hz	R/W
0815	Int	Lower limit value of frequency qualified rate	0.01Hz	R/W
0816	Int	#1 relay work mode	O: off 1: alarm 2: remote control 3: logic or mode 4: logic and mode	R/W
0817	Int	#1 pulse width	Pulse width: 0.10~99.99s Electric level: 0.00	R/W
0818	Int	#1 alarm item	0: phase voltage over voltage 1: phase voltage under voltage 2: line voltage over voltage 3: line voltage under voltage 4: over current 5: under current 6: frequency over limit 7: frequency under limit 8: total active power over load 9: total active power over load 10: total reactive power under load 11: total reactive power under load 12: total apparent power over load 13: total apparent power under load 14: high power factor 15: low power factor 16: high voltage THD 17: low voltage THD	R/W

		T	T	
			18: high current THD	
			19: low current THD	
			20: first digital input linkage action;	
			digital input close, relay output act	
			21: first digital input linkage action;	
			digital input open, relay output act	
			22 : second digital input linkage	
			action; digital input close, relay	
			output act	
			23 : second digital input linkage	
			action; digital input open, relay	
			output act	
0819	Int	#1 alarm delay time	0.0∼99.99s	R/W
081A-081B	float	#1 alarm value	Numerical ratio coefficient:	R/W
			Voltage: V Current: A	
			Power: kW Frequency: Hz	
			Power factor Harmonic: 0.01%	
081C-081D	float	#1 hysteresis value	Numerical ratio coefficient is same as	R/W
			that off secondary grid data	
081E-083A	Reserved			
083B	Int	Digital input delay	Unit: ms, delay time >10ms	
083C	Int	#1 digital input type	0: status monitoring 1: pulse	
			counting	
083D	Int	#2 digital input type	0: status monitoring 1: pulse	
			counting	
083E-083F	float	#1 digital input pulse	Data quantity represented by each	
		constant	pulse;	
0840-0841	float	#2 digital input pulse	Data quantity represented by each	
		constant	pulse;	
0842-0843		R	eserved	
0844	Char	First set of time zones	#1 time zone:00h: 00m(fixed)	R/W
0845	Char	First and of him	#2 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	

0846	Char	First set of time zones	#3 time zone: high byte-hour, low	R/W
			byte-minute	
0847	Char		#4 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	
0848	Char		#5 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	
0849	Char		#6 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	,
084A	Char		#7 time zone: high byte-hour, low	R/W
004A	Cital	First set of time zones		I K/ VV
			byte-minute	
084B	Char	First set of time zones	#8 time zone: high byte-hour, low	R/W
			byte-minute	
084C	Char	First set of time zones	#9 time zone: high byte-hour, low	R/W
		Thist set of time zones	byte-minute	
084D	Char	5	#10 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	
084E	Char	_	#11 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	
084F	Char		#12 time zone: high byte-hour, low	R/W
		First set of time zones	byte-minute	
0850	Char	Second set of time zones	#1 time zone:00h: 00m(fixed)	R/W
0851	Char		#2 time zone: high byte-hour, low	R/W
		Second set of time zones	byte-minute	
0852	Char		#3 time zone: high byte-hour, low	R/W
		Second set of time zones	byte-minute	
0853	Char	Second set of time zones	#4 time zone: high byte-hour, low	R/W
			byte-minute	
0854	Char	Second set of time zones	#5 time zone: high byte-hour, low	R/W
			byte-minute	
0855	Char	Second set of time zones	#6 time zone: high byte-hour, low	R/W
			byte-minute	
0856	Char	Second set of time zones	#7 time zone: high byte-hour, low	R/W
	5		byte-minute	11, 00
0857	Char	Second set of time zones	#8 time zone: high byte-hour, low	R/W
5557	Citai	Second set of time zones	"To time zone. mgm byte nour, low	I N/ VV

			byte-minute	
0858	Char	Second set of time zones	#9 time zone: high byte-hour, low byte-minute	R/W
0859	Char	Second set of time zones	#10 time zone: high byte-hour, low byte-minute	R/W
085A	Char	Second set of time zones	#11 time zone: high byte-hour, low byte-minute	R/W
085B	Char	Second set of time zones	#12 time zone: high byte-hour, low byte-minute	R/W
085C	Char	Tariffs for first set of time zones: 0: #1 P1 1: #1 P2 2: #1 P3 3: #1 P4	High byte: tariff for #1 time zone Low byte: tariff for #2 time zone	R/W
085D	Char	Tariffs for first set of time zones	High byte: tariff for #3 time zone Low byte: tariff for #4 time zone	R/W
085E	Char	Tariffs for first set of time zones	High byte: tariff for #5 time zone Low byte: tariff for #6 time zone	R/W
085F	Char	Tariffs for first set of time zones	High byte: tariff for #7 time zone Low byte: tariff for #8 time zone	R/W
0860	Char	Tariffs for first set of time zones	High byte: tariff for #9 time zone Low byte: tariff for #10 time zone	R/W
0861	Char	Tariffs for first set of time zones	High byte: tariff for #11 time zone Low byte: tariff for #12 time zone	R/W
0862	Char	Tariffs for second set of time zones	High byte: tariff for #1 time zone Low byte: tariff for #2 time zone	R/W
0863	Char	Tariffs for second set of time zones	High byte: tariff for #3 time zone Low byte: tariff for #4 time zone	R/W
0864	Char	Tariffs for second set of time zones	High byte: tariff for #5 time zone Low byte: tariff for #6 time zone	R/W
0865	Char	Tariffs for second set of time zones	High byte: tariff for #7 time zone Low byte: tariff for #8 time zone	R/W
0866	Char	Tariffs for second set of	High byte: tariff for #9 time zone	R/W

		time zones	Low byte: tariff for #10 time zone	
0867	Char	Tariffs for second set of	High byte: tariff for #11 time zone	R/W
		time zones	Low byte: tariff for #12 time zone	
0868	Char	Selecting time zones for	High byte: January time zones	R/W
		each month:	Low byte: February time zones	
		0: first set of time zones		
		1: second set of time		
		zones		
0869	Char	Time zones for each	High byte: March time zones	R/W
		month	Low byte: April time zones	
086A	Char	Time zones for each	High byte: May time zones	R/W
		month	Low byte: June time zones	
086B	Char	Time zones for each	High byte: July time zones	R/W
		month	Low byte: August time zones	
086C	Char	Time zones for each	High byte: September time zones	R/W
		month	Low byte: October time zones	
086D	Char	Time zones for each	High byte: November time zones	R/W
		month	Low byte: December time zones	
086E	Char	Meter reading time for	High byte: meter reading day	R/W
		each month	Low byte: meter reading hour	
086F	Reserved			
0870-0871	float	Upper limit value of	V	R/W
		voltage range		
0872-0873	float	Hysteresis value for upper	V	R/W
		limit value of voltage range		
0874-0875	float	Lower limit value of	V	R/W
		voltage range		
0876-0877	float	Hysteresis value for lower	V	R/W
		limit value of voltage range		
0878-0879	float	Upper limit value of	A	R/W
		current range		
087A-087B	float	Hysteresis value for upper	A	R/W
		limit value of current		
		range		

087C-087D	float	Lower limit value of current range	А	R/W
087E-087F	float	Hysteresis value for lower limit value of current range	А	R/W
0880-0881	float	Upper limit value of power range	kW	R/W
0882-0883	float	Hysteresis value for upper limit value of power range	kW	R/W
0884-0885	float	Lower limit value of power range	kW	R/W
0886-0887	float	Hysteresis value for lower limit value of power range	kW	R/W
0888-088F	Reserved			
0890-0891	float	Voltage sag threshold value	V	R/W
0892-0893	float	Voltage sag hysteresis value	V	R/W
0894-0895	float	Voltage swell threshold value	v	R/W
0896-0897	float	Voltage swell hysteresis value	V	R/W
0898-0899	float	Voltage interruption threshold value	v	R/W
089A-089B	float	Voltage interruption hysteresis value	V	R/W