-1 2

Thm: (Limit Comparison test - I)

Let f(n), g(n) %0 + x & [a,b).

Suppose $\lim_{x \to b} \frac{f(n)}{g(n)} = l$.

If l≠0,∞, Then jf & jg Converge er diverge

together at b.

Prof: Suppose 2/0. Choose E/0 small s.t. l-E/0.

.i. $\lim_{n\to b^{-}} \frac{f(n)}{g(n)} = l$, $\exists e \in [a,b]$ 3. $\pm \cdot$

 $\frac{f(n)}{g(n)} = 1 < \epsilon \qquad \forall \quad x \in (c, b).$

 $\Rightarrow 2-\epsilon \left\langle \frac{f(n)}{g(n)} \right\rangle \left\langle 2+\epsilon \right\rangle + \chi \left(f(c,b) \right).$

=) (l-2) g(n) $\langle f(n) \langle (l+2) g(n),$

: 1-2/0 /8 g(n) 20. + n, it follows that

 $O \leqslant (l-\epsilon) g(n) \leqslant f(n) \forall x \in (c,b).$

i. By Comparison test, if ff, or equivalenty, if

If Converged, other (l-2) sq, or equivalently,

(l-E) g Converges at 1. => j g converges at 6.

Now suppose Jg, or equiv., Jg Converges at b. Again by fin) ((l+E) g(n) + x E (c,b) & by the Comparison test, it follows that If Converges at b. i. I't Converges at b () g Converges at b. 1/4; If diverges at b = Ig diverges at b. An I.I. at n=0. eg: (1) \[\frac{\gamma_{\text{in}} \times dn.}{\pi^2} \] Set $f(x) = \frac{\sin x}{x^2}$ & $g(x) = \frac{1}{x}$. $\frac{f(n)}{g(n)} = \frac{s_{in}x}{n}.$ Now $\lim_{n\to 0^+} \frac{f(n)}{g(n)} = \lim_{n\to 0^+} \frac{g_{in}n}{n} = 1 > 0$. - But Ig = Inda diverges & - Why? .. By Limit Composision test, Sinn du diverges.. $\int \frac{e^{\sqrt{\chi}}-1}{\chi} dx$ m I.J. at n=0. Set $f(x) = \frac{e^{\sqrt{x}}}{x}$ $y = \sqrt{x}$.

 $\frac{\text{Penj}}{f(n)} = \sqrt{\pi} \left(e^{\sqrt{n}} - 1 \right) = \sqrt{\pi} \left(\sqrt{\pi} + \left(h(x) \right) \times \varpi \right)$ \rightarrow 1 as $x \rightarrow 0^{\dagger}$.

July Strain Converges, by Limit - Companison test,

Jaydeb Sankan

14

 $\int_{1}^{2} \frac{x^{2}+x+1}{(x^{2}-1)^{1/3}} dx.$

$$f(\alpha) := \frac{\alpha^2 + \alpha + 1}{(\alpha^2 - 1)^{1/3}}$$

$$g(x) := \frac{1}{(1-x)^{1/3}}$$
. We can deal with $\frac{1}{x+1}$ factor.

$$\lim_{n\to 1^+} \frac{f(n)}{g(n)} = \lim_{n\to 1^+} \frac{(n^2+n+1)}{(n+1)^{1/3}} = \frac{3}{2^{1/3}} > 0.$$

Now
$$\int g = \int \frac{1}{(1-n)^{1/3}} dn$$

$$= \int_{\delta} \frac{1}{n^{2}} dn \qquad = \int_{\delta} \frac{1-n+n}{n-n} dn$$

$$= \frac{1}{(n^2-1)!} \frac{n^2+n+1}{(n^2-1)!} \frac{\text{Converges}}{1}.$$

Def: An I.I. of is Said to be absolutely convergent the I.I. Siplis Convergent. Thm. Absolute Convergent -> Convergent.

Prof. Let St be an I.I. at n=a.

Now $-|f(n)| \leq f(n) \leq |f(n)| \quad \forall x \in (a,b].$ $\Rightarrow 0 \leq f(n) + |f(n)| \leq 2|f(n)|.$

". the II s | is absolutely conv. at a, by Compowerson

test, it follows that

 $\int \left(f(n) + |f(n)| \right) dn$

+ akckb, we have:

 $\int f = \int (f(n) + |f(n)|) - |f(n)| dn$ $= \int_{c}^{b} \left(f(n) + |f(n)|\right) dn - \int_{c}^{b} |f(n)| dn$

(corrboth Fransist)

5 (f(n) + |f(n)|) dn & f |f(n)| dn both it follows that

17/

If also exists.

- (Recoll from page \$2). $\sqrt{\frac{s_{mn}}{s_{n}}}$. dn. Sinx | Sinx | I Sim x de is convergent, it follows that

J Sinz 18 A.C. & hence Convergent.

Def: (I.I. of type II): Fixacia & suppose ferial + to a. If lim It exists, then we say that If Converges & we write: $\int_{C} f = \lim_{T \to +\infty} \int_{0}^{T} f$

If lim Jt diverges, then we say It diverges.

Jaydeb Sankar

Again, Ex & R[-R, 0] + R>O.

Now, for R>0, $\int e^{x} dx = \int e^{x} dx \qquad \left[x \rightarrow -x \right]$

 $= e^{R} - 1.$ $\lim_{R\to\infty}\int_{-R}^{e^{\pi}}dx=\lim_{R\to\infty}\left(e^{R}-i\right)=\infty.$

jendr diverges.

 $\int_{-\infty}^{\infty} \frac{dn}{1+x^2}.$

We observe: $\int \frac{dx}{1+x^2} = \lim_{R \to \infty} \int \frac{dx}{1+x^2}$

 $=\lim_{R\to\infty}\left[\frac{1}{2}\tan^{2}(R)-\frac{1}{2}a\pi^{2}(0)\right].$ why? $=\frac{\pi}{2}\sqrt{2}-0=\frac{\pi}{2}$

 $\int \frac{dx}{1+x^2} = \lim_{R \to \infty} \int \frac{dx}{1+x^2}.$ $= \lim_{R \to \infty} \int_{0}^{R} \frac{dn}{1+n^{2}} = \frac{1}{1/2}.$

 $\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 11.76$

14

Fact: (HW). Let @>0. Then 1 dn Converges + p>1 & diverges + p=1. # Notation: For a fixed a & IR, we say fer [a, o) if fer [a, R] Thm: (Comparison test - 11). that f is Riemann integrable. Let a EIR, figt R[a, oo) & let + nt [a, oo). $0 \leq f(n) \leq g(x)$ (i) If Ig Goverges, then If Converges. (i) If Ig diverges, then If diverges. f, g + R [a, w), it follows that + E/a. $0 \leq \int f(x) dx \leq \int f(x) dx$ Set $F(\pm) := \int_{C}^{\pm} F(x) dx$ $\int_{C}^{\pm} G_{L}(\pm) := \int_{C}^{\pm} g(x) dx$. F, Ge & C(a, or) & monotonically increasing. The result now follows immediately. Cont. of F& Ga is not needed).

M