Objectives

Objectives for today:

- Introducing specific vocabulary.
- Quick revision of quadratic function.

Factorising

graph of a quadratic sc Factorising a quadratic brackets, and is useful i pretty easy if a = 1 (

It's

- Factorising Quadratics.
- Proving Vieta's formulas
- Carrying out gained knowledge by working out some word problems

Quick Revision

Forms of Quadratic Function

- $f(x) = ax^2 + bx + c$ is called the **standard** form.
- $f(x) = a(x x_1)(x x_2)$ is called the **factored** quadratic function. **form**, where x_1 and x_2 are the roots of the
- $f(x) = a(x h)^2 + k$ is called the **vertex form**.

Delta \triangle

equation have: Δ determines tells us how many solutions quadratic

2 when
$$\Delta > 0$$

can be a real pain otherw

In order to factorise follow steps outlined below

- Rearrange the equation $ax^2 + bx + c$ form.
- 2 Write down two bracket
- 3 Find two numbers that add or subtract to give
- 4 Put the numbers in bra signs.

It's commonly believed other previously established even better than simply

number of solutions =
$$\begin{cases} 1 & \text{when } \Delta = 0 \\ 0 & \text{when } \Delta < 0 \end{cases}$$

The Quadratic Formula

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Graph of Quadratic Function

Figure 1:Graph of $f(x) = ax^2|_{\{0.1,0.3,1.0,3.0\}}$

Example of

Solve $x^2 + 4x - 21 = 0$ b

$$x^2 + 4x - 21 =$$

1 and 21 multiply to give to give 22 and 20.
3 and 7 multiply to give 2

3 and 7 multiply to give igive 10 and 4.

$$x^2 + 4x + 21 =$$

And solving the equation

$$(x+7)(z)$$

we get

$$x = -$$

Quadratic Function

matematika.pl

2015

a Quadratic

means putting it into two f you're trying to draw a live a quadratic equation. in $ax^2 + bx + c$ form), but

Factorising- Tasks

1. Factorise $x^2 - x - 12$.

/ise.

a quadratic you should

.W

into the standard

2. Solve $x^2 - 8 = 2x$ by factorising.

multiply to give 'c' and $(\mathbf{x})(\mathbf{x})$

ckets and choose their

'b' (ignoring signs).

Myth of Delta \triangle

counting Δ . shed formulas. However this is untrue since factorising in many cases is as good or that in order to work out roots of a quadratic function you must count Δ and use

Factorisation

y factorising.

$$=(x)(x)$$

21 - and add or subtract to

$$=(x+7)(x-3)$$

$$(r-3) = 0$$

$$, \quad x = 3$$

Proof of Vieta's Formulas

Let's prove that:

$$x_1 + x_2 = \frac{-b}{a}$$

When Δ is positive we have two roots:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Substituting for x_1 and x_2 respectively, we receive:

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{(-b - \sqrt{\Delta}) + (-b + \sqrt{\Delta})}{2a} = \frac{-2b}{2a} = \frac{-2}{2a} = \frac$$

your task in next section. state that $x_1x_2 = \frac{c}{a}$, but proving this is going to be The same we could do with another pattern, which

Vieta's Formulas- Task

1. Prove that

$$x_1 x_2 = \frac{c}{a}$$

Glossary

verb	noun	meaning
add	addition	+
subtract	subtraction	
multiply	multiplication	•
divide	division	• •
solve	solution	getting answer
substitute	substitute substitution	$t = x^2$

Table 1:Word Formation

Some Necessary and Useful Vocabulary

- (n.) sign \rightarrow + or -
- (n.) equation $\rightarrow something = 0$
- \bullet (n.) factor \rightarrow two multiplied factors give result
- (v.) factorise \rightarrow putting into brackets
- (n.) coefficient \rightarrow a constant number i.e. a, b,c in a pattern $ax^2 + bx + c$
- (n.) quadratic function $\rightarrow f(x) = ax^2 + bx + c$
- (n.) root $\rightarrow \sqrt{sth}$ or solution of quadratic equation
- \bullet (n.) formula = pattern