Experiments on Morphological Reinflection: CoNLL-2017 Shared Task

Akhilesh Sudhakar BITS, Pilani, India

akhileshs.s4@gmail.com

Anil Kumar Singh IIT (BHU), Varanasi, India

nlprnd@gmail.com

Abstract

We present two systems for the task of morphological inflection, i.e., finding a target morphological form, given a lemma and a set of target tags. Both are trained on datasets of three sizes: low, medium and high. The first uses a simple Long Short-Term Memory (LSTM) for lowsized dataset, while it uses an LSTMbased encoder-decoder based model for the medium and high sized datasets. The second uses a simple Gated Recurrent Unit (GRU) for low-sized data, while it uses a combination of simple LSTMs, simple GRUs, stacked GRUs and encoderdecoder models, depending on the language, for medium-sized data. Though the systems are not very complex, they give accuracies above baseline accuracies on high-sized datasets, around baseline accuracies for medium-sized datasets but mostly accuracies lower than baseline for low-sized datasets.

1 Introduction

CoNLL-SIGMOPRHON 2017 shared task Cotterell et al. (2017) consists of two subtasks out of which we participate only in the first subtask, which involves generating a target inflected form from a given lemma with its part-of-speech. For instance, the word writing is the present continuous inflected form of the lemma write. The models were trained on three differently-sized datasets. The low-sized datasets had around 100 training samples, the medium-sized datasets had around 1000 training samples and the high-sized datasets had around 10000 samples for most languages. Datasets were provided for a total of 52 languages.

2 Background

Prior to neural network based approaches to morphological reinflection, most systems used a 3step approach to solve the problem: 1) String alignment between the lemma and the target (morphologically transformed form), 2) Rule extraction from spans of the aligned strings and 3) Rule application to previously unseen lemmas to transform them. Durrett and DeNero (2013) and Ahlberg et al. (2014; 2015) used the above approaches, with each of them using different string alignment algorithms and different models to extract rules from these alignment tables. However, in these kinds of systems, the types of rules to be generated must be specified, which should also be engineered to take into account language-specific transformational behaviour.

Faruqui et al. (2016) proposed a neural network based system which abstracts away the above steps by modeling the problem as one of generating a character sequence, character-by-character. Akin to machine translation systems, this system uses an encoder-decoder LSTM model as proposed by Hochreiter and Schmidhuber (1997). The encoder is a bidirectional LSTM, while the decoder LSTM feeds into a softmax layer for every character position in the target string. A beam search is used to create many output sequences and the best one is chosen based on predicted scores from the softmax layer. This model takes into account the fact that the target and the root word are similar, except for the parts that have been changed due to inflection, by feeding the root word directly to the decoder as well. A separate neural net is trained for every language.

3 System Description

We have modeled our system based on the system proposed by Faruqui et al. (2016), as described

in the previous section. However we have made some modifications to the above system, to account for the three different sizes of datasets and to account for the behaviour of morphological transformations of independent languages. We submitted two submissions for the shared task, each of which we describe in the following sections.

In all the models, some structural and hyperparametrical features remain the same. The characters in the root word are represented using character indices, while the morphological features of the target word are represented using binary vectors. Each character of the root word is then embedded as a character embedding of dimension 64, to form the root word embedding. If an encoder is used, it is bidirectional and the the input word embeddings feed into it. The output of the encoder (if any), concatenated with the root word embedding, feeds into the decoder. All recurrent units have hidden layer dimensions of 256, meaning that they transform the input to a vector of dimension 256. Over the decoder layer is a softmax layer that is used to predict the character that must occur at each character position of the target word. In order to maintain a constant word length, we use paddings of '0' characters. All models use categorical cross-entropy as the loss function and the Adam optimizer as reported by Kingma and Ba (2014) for optimization.

3.1 First Submission

3.1.1 Low-sized Dataset

For training the model on the low-sized dataset, we did not use any encoder and we used a simple LSTM with a single layer as the recurrent unit (Figure 1).

3.1.2 Medium-sized Dataset

For training the model on the medium-sized dataset, we used a bidirectional LSTM as the encoder and a simple LSTM with a single layer as the decoder (Figure 2).

3.1.3 High-sized Dataset

For training the model on the high-sized dataset, we used a bidirectional LSTM as the encoder and a simple LSTM with a single layer as the decoder (Figure 2).

Figure 1: $C_1, ..., C_n$ represent characters of the root word while $O_1, ..., O_n$ represent characters of the output word

3.2 Second Submission

3.2.1 Low-sized Dataset

For training the model on the low-sized dataset, we did not use any encoder and we used a simple GRU, as reported by Cho et al. (2014), with a single layer as the recurrent unit (Figure 3).

3.2.2 Medium-sized Dataset

For medium-sized dataset, we used different model configurations for different languages. Four different kinds of configurations were used:

1) Bidirectional LSTM as the encoder and a simple LSTM with a single layer as the decoder (Figure 2) 2) Bidirectional GRU as the encoder and a simple GRU with a single layer as the decoder (Figure 4) 3) No encoder and a simple GRU with a single layer as the recurrent unit (Figure 3) 4) Bidirectional GRU as the encoder and a deep GRU (two GRUs stacked one above the other) as the decoder (Figure 5)

The specific configuration used for each language has been listed in Table 1. The configuration numbers indicated in the table are according to those mentioned above.

3.2.3 High-sized Dataset

For high-sized data, we were unable to complete experiments for the second submission due to lack of time. However, we have been able to perform

Configuration	Language List
1	Arabic, Basque, Bengali, Catalan, Georgian, Latin, Quechua, Urdu
2	Kurmanji
3	Bulgarian, Czech, Estonian, Faroese, German, Icelandic, Irish, Latvian, Lithuanian,
	Norwegian-Bokmal, Persian, Polish, Swedish
4	Albanian, Armenian, Danish, Dutch, English, Finnish, French, Haida, Hebrew, Hindi,
	Hungarian, Italian, Khaling, Lower-Sorbian, Macedonian, Navajo, Northern-Sami,
	Norwegian-Nynorsk, Portuguese, Romanian, Russian, Scottish-Gaelic, Serbo-Croatian,
	Slovak, Slovene, Sorani, Spanish, Turkish, Ukrainian, Welsh

Table 1: Configurations for different languages for medium-sized data for submission-2.

Language	В	S-1(T)	S-2(T)
Norwegian-Bokmal	69.0	52.6	62.7
Danish	59.8	46.1	49.8
Urdu	30.3	31.2	43.7
Hindi	31.0	33.4	40.8
Swedish	54.3	40.6	39.4

Table 2: Accuracies for top-5 languages for low data.

Language	BL	S-1	S-2
Quechua	68.1	93.0	93.0
Bengali	75.0	91.0	91.0
Portuguese	92.9	86.0	89.6
Urdu	86.1	88.0	88.0
Georgian	90.0	87.7	87.7

Table 3: Accuracies for top-5 languages for medium data.

Language	BL	S-1
Basque	6.0	100.0
Welsh	67.0	99.4
Hindi	94.0	99.3
Persian	77.6	98.9
Portuguese	97.4	98.5

Table 4: Accuracies for top-5 languages for high data.

Language	BL	S-1	S-2
Norwegian-Bokmal	0.489	0.71	0.55
Danish	0.669	0.95	0.87
Swedish	0.884	1.08	1.09
Norwegian-Nynorsk	0.928	1.41	1.23
Dutch	0.69	1.42	1.24

Table 5: Levenshtein distances for top-5 languages for low data.

Figure 2: $C_1,...,C_n$ represent characters of the root word while $O_1,...,O_n$ represent characters of the output word

some ablation studies on high-size datasets, which have been discussed in the analysis section.

4 Evaluation

4.1 Results on Test Set

The evaluation results were obtained using the evaluation script and the test set provided by the shared task organizers. Baseline accuracies were also obtained from the baseline model provided. The best five baseline accuracies, accuracies for the first submission and accuracies for the second submission can be found in Table 2, Table 3 and Table 4 for each of the three dataset sizes: low, medium and high respectively. Similar results for Levenshtein distances can be found in Table 5, Table 6 and Table 7. In these tables, BL stands for Baseline, S-1 stands for Submission-1 and S-2 stands for Submission-2.

Figure 3: $C_1,...,C_n$ represent characters of the root word while $O_1,...,O_n$ represent characters of the output word

Language	BL	S-1	S-2
Portuguese	0.103	0.21	0.16
Bengali	0.44	0.19	0.19
Quechua	1.706	0.28	0.28
Welsh	1.02	0.4	0.29
Georgian	0.225	0.32	0.32

Table 6: Levenshtein distances for top-5 languages for medium data.

The complete set of accuracies and Levenshtein distances for all languages have been included in Appendix-1 (tables 8 to 10), sorted by accuracies. The main observation from these tables is that languages belonging to the same language family tend to get similar similar results by our system, which is intuitively valid (although there are many exceptions). For example, Romance and Slavic languages tend to occur together in these tables.

However, it is not evident from these tables that morphologically more complex languages should be harder to learn, which seems to be counter-

Language	BL	S-1
Basque	3.32	0.0
Serbo-Croatian	0.36	0.0
Welsh	0.45	0.01
Hindi	0.075	0.02
Persian	0.567	0.02

Table 7: Levenshtein distances for top-5 languages for high data.

Figure 4: $C_1,...,C_n$ represent characters of the root word while $O_1,...,O_n$ represent characters of the output word

intuitive. For example, Turkish is above French. This may be because of hyperparameters or configurations selected for different languages (which were different, in an attempt to maximize accuracy on the development data).

Figures 6 to 10 show the correlation between accuracy and Levenshtein distance for all three sizes of datasets for submission-1 and for low and medium sizes of datasets for submission-2.

4.2 Ablation Studies

While we were unable to run an exhaustive hyperparameter search due to lack of time, we performed some experiments, where the choice of hyperparameters was guided by intuitions developed from analysis of the dataset and results obtained on smaller subsets of the data. We have presented some key observations from our analysis in the ensuing sub-sections.

4.2.1 Early Stop Patience

We observed that for low-sized datasets, both the models (LSTM as well as GRU based) required that at least 10 epochs be run before early stop, every time no progress is detected on the validation set. Setting this patience to less than 5, resulted in near 0 accuracies for most languages and printing of nonsensical target words. For medium-sized datasets, this patience value can be set to around

Figure 5: $C_1,...,C_n$ represent characters of the root word while $O_1,...,O_n$ represent characters of the output word

Figure 6: Accuracy vs. Levenshtein Distance for high data (submission-1)

6-8 while for high-sized datasets, it can be set to around 3-4. However, in order to ensure best results, we set our patience value to 10 across all models, training sizes and languages in the final system.

4.2.2 External Feature Categories

In last year's version of the shared task, the morphological features in the dataset were annotated along with the category of each feature. For instance, a sample training feature set from last year is: 'pos=N,def=DEF,case=NOM/ACC/GEN,num=SG'. This year, however, the category of each feature was not provided, i.e., the same example above would appear in this year's format as:

Figure 7: Accuracy vs. Levenshtein Distance for medium data (submission-1)

Figure 8: Accuracy vs. Levenshtein Distance for low data (submission-1)

'N,DEF,NOM/ACC/GEN,SG'. Our studies show that while it is conceptually true that the presence of feature categories means exploring a shorter search space, the absence of them does not make a difference to the accuracies obtained for high and medium sized datasets. In the case of low-sized datasets, marginally better accuracies (around 0.5-1%) were obtained when the categories were incorporated into the dataset (this was done manually). However, this might also be the effect of random initialization of parameters.

Figure 9: Accuracy vs. Levenshtein Distance for medium data (submission-2)

Figure 10: Accuracy vs. Levenshtein Distance for low data (submission-2)

4.2.3 Choice of Recurrent Unit

Simple Recurrent Neural Networks (RNNs) performed the poorest on all sizes of datasets. For low-sized datasets, in almost all cases, using a GRU gave better results than using an LSTM. On an average, the accuracy increased by 2.33% when shifting from LSTM to GRU as the choice of recurrent unit.

In the case of medium-sized datasets, 8 out of 52 languages performed better with an LSTM than a GRU, while the rest showed better performance with a GRU.

4.2.4 Convolutional Layers

We also ran experiments using convolutional layers, in which the root word was convolved and the convolution was concatenated along with the root word and passed to the encoder layer (if any). The rest of the network structure remained the same. For low-sized and medium-sized datasets, adding convolutional layers resulted in the accuracy dropping to near 0. For high-sized datasets, we were unable to finish running the experiments on all languages due to lack of time. However for the few languages on which we performed convolutional ablation studies, it did seem to improve accuracy by around 1.5% on an average.

4.2.5 Stacking Recurrent Units

Deeper models (more than one layer of LSTM/GRU) resulted in drastic accuracy drops for low-sized datasets. For medium-sized datasets, 30 out of 52 languages showed an accuracy improvement upon stacking two GRU layers, while the accuracy drop in the rest 22 was not drastic but appreciable.

5 Conclusions

There are two main conclusions. One is that different configurations of deep neural networks work well for different languages. The second is that deep learning may not be the right approach for low-sized data.

Results for low-size were poor for almost all languages. It is to be noted that we used purely deep learning. If deep learning is augmented with other transduction, rule-based or knowledge-based methods, the results for low-size could perhaps be improved.

For high-sized data, for one language (Basque), we even got an accuracy of 100%. For medium, the highest was 93% and for low, the highest was 69%

References

Malin Ahlberg, Markus Forsberg, and Mans Hulden. 2014. Semi-supervised learning of morphological paradigms and lexicons. In *Proc. of the 14th Conference of the European Chapter of the Association for Computational Linguistics:Language Technology (Computational Linguistics)*. Gothenburg, Sweden, pages 569–578.

Malin Ahlberg, Markus Forsberg, and Mans Hulden. 2015. Paradigm classification in supervised learning of morphology. In *Proc. of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Denver, Colorado, pages 1024–1029.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In *Proc. of EMNLP 2014*.

Ryan Cotterell, Christo Kirov, John Walther Géraldine Sylak-Glassman, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2017. The conll-sigmorphon 2016 shared task: Universal morphological reinflection in 52 languages. In *Proc. of the CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection*. Vancouver, Canada.

Greg Durrett and John DeNero. 2013. Supervised learning of complete morphological paradigms. In *Proc. of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Atlanta, Georgia, pages 1185–1195.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. 2016. Morphological inflection generation using character sequence to sequence learning. In *Proc. of NAACL*.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. *Neural Comput.* 9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. *CoRR* abs/1412.6980.

Acknowledgement

We would like to thank Shaili Jain, Aanchal Chaurasia and Himanshu Karu for their help in our experiments in this shared task.

Appendix-1

In Tables 8 to 10 (on this page and the next), BA stands for baseline accuracy, BLD for baseline Levenshtein Distance, S1A for submission-1 accuracy, S1LD for submission-1 Levenshtein Distance, S2A for submission-2 accuracy and S2LD for submission-2 Levenshtein Distance. All three tables are sorted by submission-1 accuracy, since we have results for all dataset sizes for this submission.

Language	BA	BLD	S1A	S1D
Basque	6	3.32	100	0
Welsh	67	0.45	99.4	0.01
Hindi	94	0.075	99.3	0.02
Persian	77.6	0.567	98.9	0.02
Portuguese	97.4	0.034	98.5	0.03
Quechua	94.7	0.106	98.5	0.05
Bengali	84	0.28	98	0.05
Georgian	94	0.111	97.5	0.04
Khaling	53.8	0.816	97.4	0.04
Catalan	94.2	0.145	97.2	0.07
Hebrew	55.8	0.551	96.7	0.05
Ukrainian	86.3	0.289	96.4	0.07
Haida	69	0.61	96	0.09
Albanian	78.1	0.606	95.4	0.13
Italian	79.9	0.624	95.3	0.1
Estonian	76.2	0.447	94.8	0.11
Macedonian	91.9	0.152	94.6	0.12
Bulgarian	90	0.16	94.3	0.1
English	95	0.09	94.3	0.1
Sorani	64.3	0.696	94.3	0.11
Armenian	89.1	0.215	94	0.12
Swedish	85.4	0.255	94	0.13
Northern-Sami	61.1	0.813	93.6	0.12
Kurmanji	92.2	0.088	93.5	0.09
Lower-Sorbian	86	0.27	93.1	0.12
Dutch	86.8	0.201	92.1	0.16
Latvian	91	0.253	92.1	0.17
Czech	90.4	0.196	89.6	0.19
Slovene	89.8	0.183	89.5	0.18
Danish	89.1	0.184	89.2	0.17
Arabic	47.7	1.481	88.2	0.4
Urdu	95.8	0.065	87.6	0.22
Spanish	90.6	0.206	87.3	0.17
Turkish	72.9	0.772	86.7	0.23
Navajo	38.3	2.105	85.6	0.33
Norwegian-Bokmal	90.6	0.154	84.1	0.24
German	81.2	0.643	83.1	0.35
Lithuanian	64.7	0.466	83.1	0.27
Russian	82	0.61	82.8	0.47
Polish	89.4	0.232	82	0.5
Slovak	85.2	0.248	81	0.43
Finnish	78.5	0.361	80.5	0.4
French	83.6	0.299	80.3	0.38
Hungarian	71.1	0.622	80.2	0.41
Icelandic	76.1	0.466	79.7	0.4
Faroese	74.7	0.553	77.8	0.45
Romanian	80.4	0.647	76	0.7
Norwegian-Nynorsk	78.3	0.383	73.3	0.45
Irish	54.3	1.064	67.9	1.05
Latin	45.6	0.86	54.5	0.71

Table 8: Results for all languages for high data, sorted by submission-1 accuracy

Language	BA	BLD	S1A	S1D	S2A	S2D
Quechua	68.1	1.706	93	0.28	93	0.28
Bengali	75	0.44	91	0.19	91	0.19
Urdu	86.1	0.287	88	0.17	88	0.17
English	90.2	0.257	87.9	0.47	0	8.74
Georgian	90.2	0.139	87.7	0.2	87.7	0.32
Portuguese	92.9	0.223	86	0.32	89.6	0.32
Hindi	86.6	0.103	85.2	0.56	87.4	0.10
Haida	56	1.24	83.2	0.36	0 0	17.48
Kurmanji	88.4	0.234	81.6	0.47	19.2	1.72
Catalan	83.2	0.234	79.7	0.02	79.7	0.38
Turkish	33.1	2.854	74.5	0.65	0	12.97
Welsh	54	1.02	74	0.4	83	0.29
Macedonian	82.3	0.323	69.3	0.5	79.1	0.32
Danish	78.1	0.336	69.2	0.47	0.5	5.53
Spanish	85.4	0.322	66.7	0.89	73.9	0.68
Dutch	71.7	0.403	66.5	0.62	74.6	0.44
Basque	2	5.11	66	0.75	66	0.75
Scottish-	52	0.76	66	1.04	76	0.68
Gaelic						
French	76.1	0.45	63.6	0.77	69.7	0.61
Italian	73.8	0.743	58.5	1.26	70.3	0.8
Armenian	76.6	0.442	58.4	1.14	68.1	0.78
Latvian	85.1	0.278	57.7	0.95	60.2	0.88
Persian	65.4	1.068	57.1	1.27	57	1.46
Hebrew	40	0.933	55.9	0.69	65.8	0.51
Bulgarian	75	0.445	54.8	1.13	55.5	0.98
Slovak	70.7	0.533	52.8	0.82	63.7	0.6
Khaling	18.4	1.909	52.2	0.97	58.2	0.81
Norwegian-	79.8	0.311	48.7	0.74	78.3	0.33
Bokmal						
Hungarian	41.7	1.559	47.7	1.05	62.8	0.68
Swedish	73.7	0.452	47.7	1	70	0.49
Sorani	52.8	1.053	46.5	1.31	57.5	0.95
Estonian	62.4	0.779	39.9	1.68	45.7	1.63
Russian	75	0.737	39.4	1.37	66.6	0.83
Serbo-Croatian	65.8	0.884	38.7	1.83	49.5	1.52
Czech	80.7	0.434	38.6	1.74	52.9	1.41
Arabic	40	1.787	37.6	2.2	37.6	2.2
Romanian	70.2	0.848	36.9	1.95	49	1.57
Northern-Sami	35.7	1.445	34	1.64	40.8	1.26
Lithuanian	53.7	0.714	33.7	1.34	37.6	1.34
Slovene	81.9	0.714	32.3	1.13	73.5	0.45
Albanian	66.1	1.175	32.3	2.44	41.5	1.88
Ukrainian	71.5	0.538	30.8	1.47	61.5	0.7
German	71.5	0.338	30.8	1.47	57.3	0.7
Latin	36.8	1.103	22.1	1.72	22.1	1.72
Irish	30.8 44.7	1.103	20.1	3.71	26.1	3.11
Navajo	31.3	2.495	19.9	2.82	19.3	2.78
Polish	75.2	0.533	19.6	2.01	48.4	1.33
Finnish	42.5	1.353	15	3.21	21.5	2.75
Faroese	58.7	0.891	0	8.13	40.4	1.2
Icelandic	61.4	0.763	0	8.09	41.6	1.16
Lower-Sorbian	70.5	0.587	0	7.01	69	0.52
Norwegian-	63.3	0.634	0	8.68	56.4	0.71
Nynorsk						

Table 9: Results for all languages for medium data, sorted by submission-1 accuracy

Language	BA	BLD	S1A	S1D	S2A	S2D
English	76.2	0.415	73	0.46	0	8.14
Norwegian-	69	0.489	52.6	0.71	62.7	0.55
Bokmal						
Kurmanji	82.3	0.459	50.2	1.27	0	7.77
Scottish-Gaelic	48	0.68	48	1.54	0	8.32
Danish	59.8	0.669	46.1	0.95	49.8	0.87
Swedish	54.3	0.884	40.6	1.08	39.4	1.09
Hindi	31	3.798	33.4	2.34	40.8	2.02
Urdu	30.3	4.201	31.2	2.48	43.7	1.63
Dutch	53.7	0.69	28.2	1.42	33.8	1.24
German	53.7	1.111	25.6	1.75	0	8.59
Catalan	55.2	1.091	24.7	1.76	25.2	1.71
Norwegian-	50.8	0.928	23.9	1.41	32.1	1.23
Nynorsk						
Slovene	47.4	0.862	21	1.54	0	7.6
Spanish	58.6	1.229	20.1	2.72	22.5	2.51
Bengali	44	1.49	20	2.05	28	1.72
Lower-Sorbian	34.3	1.264	17.6	1.82	19.6	1.72
Latvian	62.1	0.806	16.6	2.18	17.6	2.02
Russian	42.8	1.311	15.7	2.61	17.3	2.46
Czech	40.8	1.869	15.6	3.27	16.1	3.05
Icelandic	34.2	1.541	13	2.53	13.3	2.5
Slovak	41.9	1.029	12.5	1.75	0	6.32
Ukrainian	40.7	1.001	12.2	2.04	13.7	1.87
Polish	41.9	1.551	12.1	2.59	17.1	2.29
Bulgarian	33.1	1.572	11	3.05	13.5	2.78
Persian	27.3	3.357	10.5	4.17	14.1	3.9
Faroese	30.7	1.585	9.3	2.62	4.5	3.56
Haida	34	6.03	7	4.89	25	3.1
Hebrew	27.9	1.312	7	2.36	7.5	2.15
Romanian	44.1	1.551	5.8	3.85	1.6	4.15
Serbo-	21.3	2.735	4.1	4.55	9.2	3.66
Croatian						
Estonian	22.6	2.93	3.5	4.58	6.7	3.93
Lithuanian	23.5	1.916	3	3.46	0	8.44
Northern-Sami	15.4	2.359	2.5	4.12	4	3.92
Basque	0	6.46	1	4.91	6	3.73
Arabic	21.5	3.049	0.8	5.66	ő	9.76
Quechua	17.2	6.691	0.7	5.34	22.7	2.84
Finnish	16.2	4.217	0.7	7.41	1.6	6.53
Irish	31.8	2.698	0.6	7.26	0	9.89
Navajo	18.4	3,432	0.4	5.61	1.2	5.16
Portuguese	60.3	0.956	0	9.31	32.8	1.35
Macedonian	50	1.006	0	8.68	24.4	1.52
French	63	0.781	0	8.8	23.9	1.96
Armenian	37.8	2.218	0	9.17	22	2.82
Welsh	15	1.6	0	8.77	17	2.47
Latin	16	2.838	0	9.44	6	3.49
Khaling	3.9	4.298	0	7.32	2.8	3.71
Albanian	21.6	4.439	0	10.23	1.4	6.36
Sorani	20.5	3.363	0	7.64	1.4	4.64
Georgian	71.2	0.585	0	8.82	0	7.96
Hungarian	17.2	2.049	0	10.07	0	11.04
Italian	44.9	1.998	0	10.02	ő	10.38
Turkish	14.3	4.319	0	11.45	0	12.65

Table 10: Results for all languages for low data, sorted by submission-1 accuracy