

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/22

Paper 2 AS Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

(ii) $(p = F/A \operatorname{so})$ units: $\operatorname{kgms}^{-2}/\operatorname{m}^2 = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ A1 [1 allow use of other correct equations: e.g. $(Ap = pg/h \operatorname{so}) \operatorname{kgm}^{-2} \operatorname{ms}^{-2} \operatorname{m} = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ e.g. $(p = W/A V \operatorname{so}) \operatorname{kgm}^{-2} \operatorname{m/m}^3 = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ e.g. $(p = W/A V \operatorname{so}) \operatorname{kgm}^{-3} \operatorname{kgm}^{-3} = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ C1 units of C : $\operatorname{kg/s} (\operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{sgm}^{-1} \operatorname{s}^{-2})^{1/2}$ or units of C : $\operatorname{kg/s} (\operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{kgm}^{-1} \operatorname{s}^{-2})^{1/2}$ or units of C : m^2 A1 [3 and C A2 C A3 C A4 C A5 C A6 C A7 C A7 C A7 C A7 C A8 C A8 C A8 C A8 C A8 C A9 C	P	age 2		Pape)r
(ii) $(p = F/A \operatorname{so})$ units: $\operatorname{kgms}^{-2}/\operatorname{m}^2 = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ A1 [1 allow use of other correct equations: e.g. $(Ap = pg/h \operatorname{so}) \operatorname{kgm}^{-2} \operatorname{ms}^{-2} \operatorname{m} = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ e.g. $(p = W/A V \operatorname{so}) \operatorname{kgm}^{-2} \operatorname{m/m}^3 = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ e.g. $(p = W/A V \operatorname{so}) \operatorname{kgm}^{-3} \operatorname{kgm}^{-3} = \operatorname{kgm}^{-1} \operatorname{s}^{-2}$ C1 units of C : $\operatorname{kg/s} (\operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{sgm}^{-1} \operatorname{s}^{-2})^{1/2}$ or units of C : $\operatorname{kg/s} (\operatorname{kgm}^{-3} \operatorname{kgm}^{-3} \operatorname{kgm}^{-1} \operatorname{s}^{-2})^{1/2}$ or units of C : m^2 A1 [3 and C A2 C A3 C A4 C A5 C A6 C A7 C A7 C A7 C A7 C A8 C A8 C A8 C A8 C A8 C A9 C			Cambridge International AS/A Level – October/November 2016 9702	22	
allow use of other correct equations: e.g. $(\Delta p = \rho g \Delta h s 0) \log m^3 ms^2 m = \log m^{-1} s^{-2}$ e.g. $(p = W/\Delta V s 0) \log ms^{-3} m/m^3 = \log m^{-1} s^{-2}$ e.g. $(p = W/\Delta V s 0) \log ms^{-2} m/m^3 = \log m^{-1} s^{-2}$ (b) units for m : $\log k$; $\log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^3 \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^{-3} \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m^{-3} \log m^{-1} s^{-2}$ $\log m$ units of \mathbb{C} : $\log k \log m $	1	(a)	(i) force/area (normal to the force)	B1	[1]
e.g. $(\Delta p = \rho g \Delta h \text{ so}) \text{ kg m}^{-3} \text{ m} = ^{k} \text{ g m}^{-1} \text{ s}^{-2}$ e.g. $(p = W/\Delta V \text{ so}) \text{ kg ms}^{-2} \text{ m} - ^{k} \text{ kg m}^{-1} \text{ s}^{-2}$ (b) units of C : kg/s (kg m $^{-3}$ kg m $^{-1}$ s $^{-2}$) ^{1/2} or units of C : kg/s (kg m $^{-3}$ kg m $^{-1}$ s $^{-2}$) ^{1/2} 10 units of C : kg/s/s kg m $^{-3}$ kg m $^{-1}$ s $^{-2}$ 11 units of C : kg/s/s kg m $^{-3}$ kg m $^{-1}$ s $^{-2}$ 12 (a) $\Delta E = mg\Delta h$ $= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 \text{ J}$ 13 (b) $E = \frac{1}{2}mv^2$ $= (-)0.091 \text{ J}$ 14 (c) (initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2 (= 0.0254)$ $= 0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31) \text{ so } v = 2.8 \text{ms}^{-1}$ or $= 0.5 \times 0.030 \times v^2 = (0.0254) + (0.091) \text{ so } v = 2.8 \text{ms}^{-1}$ 15 (c) (i) $0.096 = 0.030 (v + 2.8)$ $= 0.096/20 \times 10^{-3} \text{ or } 0.030 (0.40 + 2.8)/20 \times 10^{-3}$ $= 4.8 \text{ N}$ 16 (d) $\frac{\text{kinetic}}{\text{energy}}$ (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. 17 (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$			(ii) $(p = F/A \text{ so}) \text{ units: } \text{kg m s}^{-2}/\text{m}^2 = \text{kg m}^{-1} \text{ s}^{-2}$	A1	[1]
units of $C: kg/s (kg m^{-3} kg m^{-1} s^{-2})^{1/2}$ or units of $C^2: kg^2/s^2 kg m^{-3} kg m^{-1} s^{-2}$ C1 units of $C: m^2$ A1 [3 2 (a) $\Delta E = mg\Delta h$ C1 $= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 J$ A1 [2 (b) $E = \frac{1}{2}mv^2$ C1 (initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2 (= 0.0254)$ C1 $0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31) \text{ so } v = 2.8 \text{ms}^{-1}$ or $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091) \text{ so } v = 2.8 \text{ms}^{-1}$ A1 [3 (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \text{ms}^{-1}$ A1 [2 (ii) $F = \frac{\Delta p}{(\Delta)} (\Delta) t$ or $F = ma$ $= 0.096/20 \times 10^{-3} \text{ or } 0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \text{N}$ A1 [2 (d) $\frac{k \text{inetic}}{(\text{relative})} speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved = (0.091 - 0.076)/0.60 C1$			e.g. $(\Delta p = \rho g \Delta h \text{ so}) \text{ kg m}^{-3} \text{ m s}^{-2} \text{ m} = \text{kg m}^{-1} \text{ s}^{-2}$		
or units of C^2 : $kg^2/s^2 kg m^{-3} kg m^{-1} s^{-2}$ C1 units of C : $kg^2/s^2 kg m^{-3} kg m^{-1} s^{-2}$ C1 units of C : m^2 A1 [3 2 (a) $\Delta E = mg\Delta h$ C1 $= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 \text{ J}$ A1 [2 (b) $E = \frac{1}{2}mv^2$ C1 (initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2$ (= 0.0254) C1 $0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31) \text{ so } v = 2.8 \text{ms}^{-1}$ A1 [3 (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \text{ ms}^{-1}$ A1 [2 (ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \text{ N}$ A1 [2 (d) $\frac{kinetic}{c}$ energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1		(b)	units for m : kg, t : s and ρ : kg m $^{-3}$	C1	
units of C^2 : kg²/s² kg m³ kg m¹ s²² C1 units of C : m² A1 [3 2 (a) $\Delta E = mg\Delta h$ C1 $= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 \text{ J}$ A1 [2 (b) $E = \frac{1}{2}mv^2$ C1 (initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2$ (= 0.0254) C1 $0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31)$ so $v = 2.8 \text{ms}^{-1}$ or $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091)$ so $v = 2.8 \text{ms}^{-1}$ A1 [3 (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \text{ms}^{-1}$ A1 [2 (ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \text{ N}$ A1 [2 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1					
2 (a) $\Delta E = mg\Delta h$ C1 $= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 \text{ J}$ A1 [2 (b) $E = \frac{1}{2}mv^2$ C1 $(\text{initial}) E = \frac{1}{2} \times 0.030 \times 1.3^2 \ (= 0.0254)$ C1 $0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31) \text{ so } v = 2.8 \text{ ms}^{-1}$ A1 [3 (c) (i) $0.096 = 0.030(v + 2.8)$ C1 $v = 0.40 \text{ ms}^{-1}$ A1 [2 (ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030 \ (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \text{ N}$ A1 [2 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1				C1	
$= 0.030 \times 9.81 \times (-)0.31$ $= (-)0.091 \text{ J} \qquad $			units of C: m ²	A1	[3]
$= (-)0.091 \text{ J} \qquad $	2	(a)	$\Delta E = mg\Delta h$	C1	
(b) $E = \frac{1}{2}mv^2$ C1 (initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2$ (= 0.0254) C1 $0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31)$ so $v = 2.8 \text{ms}^{-1}$ or $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091)$ so $v = 2.8 \text{ms}^{-1}$ A1 [3 (c) (i) $0.096 = 0.030(v + 2.8)$ C1 $v = 0.40 \text{ms}^{-1}$ A1 [2 (ii) $F = \frac{\Delta p}{\Delta b} =$			$= 0.030 \times 9.81 \times (-)0.31$		
(initial) $E = \frac{1}{2} \times 0.030 \times 1.3^{2}$ (= 0.0254) C1 $0.5 \times 0.030 \times v^{2} = (0.5 \times 0.030 \times 1.3^{2}) + (0.030 \times 9.81 \times 0.31)$ so $v = 2.8 \mathrm{m s^{-1}}$ or $0.5 \times 0.030 \times v^{2} = (0.0254) + (0.091)$ so $v = 2.8 \mathrm{m s^{-1}}$ A1 [3 (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \mathrm{m s^{-1}}$ A1 [2 (ii) $F = \Delta p / (\Delta) t$ or $F = ma$ $= 0.096 / 20 \times 10^{-3}$ or $0.030 (0.40 + 2.8) / 20 \times 10^{-3}$ C1 $= 4.8 \mathrm{N}$ A1 [2 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076) / 0.60$ C1			= (-)0.091 J	A1	[2]
$0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31) \text{ so } v = 2.8 \text{ms}^{-1}$ or $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091) \text{ so } v = 2.8 \text{ms}^{-1}$ A1 [3] (c) (i) $0.096 = 0.030 (v + 2.8)$ $v = 0.40 \text{ms}^{-1}$ A1 [2] (ii) $F = \Delta p/(\Delta)t$ $= 0.096/20 \times 10^{-3} \text{ or } F = ma$ $= 0.096/20 \times 10^{-3} \text{ or } 0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \text{ N}$ A1 [2] (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1		(b)	$E = \frac{1}{2}mv^2$	C1	
or $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091)$ so $v = 2.8 \mathrm{ms^{-1}}$ A1 [3] (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \mathrm{ms^{-1}}$ A1 [2] (ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8 \mathrm{N}$ A1 [2] (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved = $(0.091 - 0.076)/0.60$ C1			(initial) $E = \frac{1}{2} \times 0.030 \times 1.3^2$ (= 0.0254)	C1	
$0.5 \times 0.030 \times v^2 = (0.0254) + (0.091)$ so $v = 2.8 \mathrm{m s^{-1}}$ A1 [3] (c) (i) $0.096 = 0.030 (v + 2.8)$ C1 $v = 0.40 \mathrm{m s^{-1}}$ A1 [2] (ii) $F = \Delta p / (\Delta) t$ or $F = ma$ $= 0.096 / 20 \times 10^{-3}$ or $0.030 (0.40 + 2.8) / 20 \times 10^{-3}$ C1 $= 4.8 \mathrm{N}$ A1 [2] (d) $\frac{\mathrm{kinetic}}{\mathrm{cor}}$ energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076) / 0.60$ C1					
$v = 0.40\mathrm{ms^{-1}}$ A1 [2] (ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030~(0.40 + 2.8)/20 \times 10^{-3}$ C1 $= 4.8~\mathrm{N}$ A1 [2] (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1				A1	[3]
(ii) $F = \Delta p/(\Delta)t$ or $F = ma$ $= 0.096/20 \times 10^{-3}$ or $0.030 (0.40 + 2.8)/20 \times 10^{-3}$ C1 = 4.8 N A1 [2] (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. B1 [1] (e) force = work done/distance moved $= (0.091 - 0.076)/0.60$ C1		(c)	(i) $0.096 = 0.030 (v + 2.8)$	C1	
= 0.096/20×10 ⁻³ or 0.030 (0.40 + 2.8)/20×10 ⁻³ C1 = 4.8 N A1 [2 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved = (0.091 - 0.076)/0.60 C1			$v = 0.40 \mathrm{m s^{-1}}$	A1	[2]
= 4.8 N A1 [2 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. B1 [1 (e) force = work done/distance moved = (0.091 - 0.076)/0.60 C1				C1	
 (d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved = (0.091 - 0.076)/0.60 			· · · ·		[0]
or (relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. B1 [1 (e) force = work done/distance moved = (0.091 - 0.076)/0.60 C1			= 4.8 N	A1	[2]
(relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic. (e) force = work done/distance moved = (0.091 - 0.076)/0.60 C1		(d)			
= (0.091 - 0.076)/0.60 C1			(relative) speed of approach (of ball and wall) not equal to/greater than (relative)	B1	[1]
= 0.025 N A1 [2		(e)		C1	
			= 0.025 N	A1	[2]

Pá	age 3		Mark Scheme	Syllabus	Pap	
			Cambridge International AS/A Level – October/November 2016	9702	22	
3	(a)		ultant force (in any direction) is zero ultant moment/torque (about any point) is zero		B1 B1	[2]
	(b)	(i)	force = 33 sin 52° or 33 cos 38° = 26 N		A1	[1]
		(ii)	26×0.30 or $W \times 0.20$ or 12×0.40		C1	
			$26 \times 0.30 = (W \times 0.20) + (12 \times 0.40)$		C1	
			$W = 15 \mathrm{N}$		A1	[3]
	(c)	(i)	$E = \Delta \sigma / \Delta \varepsilon$ or $E = \sigma / \varepsilon$		C1	
			$\Delta \sigma = 2.0 \times 10^{11} \times 7.5 \times 10^{-4}$ = 1.5 × 10 ⁸ Pa		A1	[2]
		(ii)	$\Delta \sigma = \Delta F/A$ or $\sigma = F/A$		C1	
			$A = 78/1.5 \times 10^8 \ (= 5.2 \times 10^{-7} \mathrm{m}^2)$		C1	
			$5.2 \times 10^{-7} = \pi d^2/4$			
			$d = 8.1 \times 10^{-4} \mathrm{m}$		A1	[3]
4			ve incident on/passes by or through an aperture/edge ve spreads (into geometrical shadow)		B1 B1	[2]
	(b)	(i)	waves (from slits) overlap (at point X)		B1	
			path difference (from slits to X) is zero/ phase difference (between the two waves) is zero (so constructive interference gives bright fringe)		B1	[2]
		(ii)	difference in distances = $\lambda/2 = 580/2$ = 290 nm		A1	[1]
	(iii)	$\lambda = ax/D$		C1	
			$D = [0.41 \times 10^{-3} \times (2 \times 2.0 \times 10^{-3})]/580 \times 10^{-9}$		C1	
			= 2.8 m		A1	[3]
	(iv)	same separation/fringe width/number of fringes bright fringe(s)/central bright fringe/(fringe at) X less bright dark fringe(s)/(fringe at) Y/(fringe at) Z brighter contrast between fringes decreases			
			Any two of the above four points, 1 mark each		B2	[2]

Α1

[2]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9702	22

5

(a) total/sum of electromotive forces or e.m.f.s = total/sum of potential differences or p.d.s M1 around a loop/(closed) circuit Α1 [2] C1 **(b)** (i) (current in battery =) current in A + current in B or $I_A + I_B$ (I =) 0.14 + 0.26 = 0.40 AΑ1 [2] (ii) E = V + Ir6.8 = 6.0 + 0.40r or 6.8 = 0.40(15 + r)C1 $r = 2.0 \Omega$ Α1 [2] (iii) R = V/IC1 ratio (= R_A/R_B) = (6.0/0.14)/(6.0/0.26) = 42.9/23.1 or 0.26/0.14= 1.9 (1.86)Α1 [2] (iv) 1. P = EI or VI $P = I^2R$ or $P = V^2/R$ or C1 $= 0.40^2 \times 17$ $=6.8^2/17$ $= 6.8 \times 0.40$ = 2.7 W (2.72 W)Α1 [2] output power = VIC1 $= 6.0 \times 0.40 (= 2.40 \text{ W})$ efficiency = $(6.0 \times 0.40)/(6.8 \times 0.40) = 2.40/2.72$

= 0.88 or 88% (allow 0.89 or 89%)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9702	22

6 (a) hadron not a fundamental particle/lepton is fundamental particle or hadron made of quarks/lepton not made of quarks

strong force/interaction acts on hadrons/does not act on leptons

B1 [1]

(b) (i) ${}^0_1 e^{(+)}$ or ${}^0_1 \beta^{(+)}$

B1

 $_{0}^{0}\nu_{(e)}$

B1 [2]

(ii) weak (nuclear force/interaction)

B1 [1]

- (iii) mass-energy
 - momentum
 - proton number
 - nucleon number
 - charge

Any three of the above quantities, 1 mark each

B3 [3]

(c) (quark structure of proton is) up, up, down or uud

B1

up/u (quark charge) is $(+)^{2/3}(e)$, down/d (quark charge) is $-\frac{1}{3}(e)$

C1

 $\frac{2}{3}e + \frac{2}{3}e - \frac{1}{3}e = (+)e$

A1 [3]