This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:
C07K 3/00, 13/00, C07H 21/00
C12P 21/06, 21/02, 21/04
C12N 15/00

(11) International Publication Number: WO 92/14748
(43) International Publication Date: 3 September 1992 (03.09.92)

(21) International Application Number: PCT/US92/01300
 (22) International Filing Date: 20 February 1992 (20.02.92)

(30) Priority data: 657,236 22 February 1991 (22.02.91) US

(60) Parent Application or Grant
(63) Related by Continuation
US
Filed on
657,236 (CIP)
22 February 1991 (22.02.91)

(71) Applicant (for all designated States except US): AMERI-CAN CYANAMID COMPANY [US/US]; 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US). (72) Inventors; and
(75) Inventors/Applicants (for US only): TERMAN, Bruce, Israel [US/US]; 17 Prospect Street, Monroe, NY 10950 (US). CARRION, Miguel, Eduardo [EC/US]; 26 Sum-

(74) Agent: GORDON, Alan, M.; American Cyanamid Company, 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).

mit Avenue, Spring Valley, NY 10977 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

(57) Abstract

A DNA sequence encoding a novel human growth factor receptor referred to as a type III receptor tyrosine kinase is described. The amino acid sequence of the receptor is also described. The receptor has a sequence which is similar to that of the kinase domains of known type III receptor tyrosine kinases, but which is unique in its kinase insert domain sequence. The receptor binds specifically to the vascular endothelial cell growth factor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT:	Austria	FI	Finland	MI	Mali
AU	Australia	FR	France	MN	- Mongolia
RB	Bartedos	GA	Ciabon: ,	MR	Mauritania
86	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NI.	Netherlands
BC	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland .	RO	Romania
CA	Canada	ΙT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	. Sweden
CH	Switzerland		of Korea	SN	Senegal .
CI	Côte d'Ivoire	KR	Republic of Korea	· SU	Soviet Union
CM	Cameroon	LI	Licchtenstein	TD	Chad
C?	Czecheskovakia	Lk	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	us	United States of America
176	i Acometa a	NIC	נאַטוייביי		
E.	Carlos V	MC	Madagas ar		

l

5

IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

10

15

20

25

30

35

FIELD OF THE INVENTION

This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor.

BACKGROUND OF THE INVENTION

Growth factors are small molecules which regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

There is increasing evidence that genetic alterations affecting the expression of receptor tyrosine kinases (RTK) can contribute to the altered cell growth associated with cancer. This conclusion is

WO 92/14748 PCT/US92/01300

- 2 -

supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

5

10

15

20

25

30

35

The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the ckit proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of quanine nucleotide regulatory proteins (8) and protein phosphatases (9). PCR has been used to identify novel tyrosine kinase gence (10), though the primers used in

10

15

20

25

that study were design d from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to different macromolecules (14).

SUMMARY OF THE INVENTION

segments which together comrpise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the KDR protein (which stands for Kinase insert Domain containing Receptor). The KDR protein binds specifically to the growth factor VEGF (vascular endothelial cell growth factor).

10

15

20

25

30

35

The DNA segments ar identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

In a principal embodiment, the present invention is directed to three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as KDR (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The use of the term KDR is intended to include any DNA segments which form the

10

15

20

25

30

3 5

human gene which encodes the novel type III RTK of this application.

The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

The present invention relates to methods for expression of the receptor protein, for example, in CMT-3 cells of mankey kidney origin. The receptor

10

15

20

protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human <u>KDR</u> gene and proteins encoded by related genes found in other species.

methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

25

Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

30

35

Figure 2 depicts the two sets of primers used for PCR (SEQ ID No: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III receptor tyrosine kinase cDNAs are aligned and degenerate oligonucleotide primers are designed based upon the consensus sequences.

10

15

20

25

30

35

Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ l) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder; Bethesda Research Laboratories, Bethesda, MD) are run as well.

Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose gel electrophoresis, digested with Sall and EcoRI, and cloned into the plasmid vector pBlueScribe(+) (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

rigure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start of an arrow), or the M13 universal primer (no box) to initiate the reaction. In some cases, portions of these DNA segments are isolated using the

10

20

25

30

35

restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUCll8, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the KDR derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

Figure 7 depicts the DNA and predicted amino acid sequence of KDR, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the KDR protein.

Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the <u>KDR</u> protein to the <u>ckit</u> proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID NO: 9) (4), and the PDGF receptor (SEQ ID NO: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

Figure 10 depicts the identification of kdp receptor mRNA by Northern blot analysis. Five micrograms of bovine acrtic endothelial cell polya+ RNA

10

15

20

25

30

35

IL).

are used. A nick-translated [32p] CTP-labelled <u>EcoRI/Bam</u>HI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [32p]CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA

used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

Figure 12 depicts a Western blot analysis of CMT-3 cells which express the KDR protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the KDR gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-KDR.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago,

Figure 13 depicts the results of [\$^{125}I\$] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pM [\$^{125}I\$] VEGF (specific activity equal to 4,000 cpm per fmol), for 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define

15

20

25

30

35

specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

Figure 14 depicts the results of affinity cross-linking of [125] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125] VEGF is added. After 90 minutes at room termperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

DETAILED DESCRIPTION OF THE INVENTION

The strategy used to discover the DNA segments for the novel type III RTK gene begins with the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe+ (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

The strategy just described provides several novel elements: 1) the DNA sequences of the oligonucleotide primers used during PCR; 2) the DNA sequence of the products generated by the polymerase chain

10

15

20

25

30

35

reaction; and 3) the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

SalI and EcoRI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers designed from DNA sequences common to all tyrosine kinases allows for the identification of novel proteins. The present invention is the first to

WO 92/14748 PCT/US92/01300

5

10

15

20

25

30

35

- 12 -

contemplate the use of PCR to specifically target type III RTK.

The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 μ l. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5 μ l of sample is separated on a 1% agarose gel and stained with ethidium bromide.

Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethicium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

The DNA from four continguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and SalI. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO. 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+). The recombinant clones are analyzed by sequencing using the dideoxy-method (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 sequencing kit. Figure 4 shows the DNA sequences for the 251 bp PCR

10

15

20

25

30

35

product and the 363 bp DNA segment derived from the 420 bp PCR product.

Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the isolation of more full length clones containing the

WO 92/14748 PCT/US92/01300

5

10

15

20

25

30

35

- 14 -

363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

The screening of the endothelial cell cDNA library is conducted as follows: Lambda gtll phage, 10^6 , are adsorbed to E. coli LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5×10^5 phage per plate. After allowing the phage plaques to develop at 37°C, plaque lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus 1.5 M NaCl. The filters are washed with 2 x standard saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an $[^{32}P]$ ATP end labeled synthetic oligonucleotide, 5' -TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50° C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μ g/ml salmon sperm The filters are washed twice, 20 minutes per wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

Forty-five positive clones are obtained. Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with <u>EcoRI</u> and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA insert of this clone overlaps that of the inserts contained in other two purified clones (designated BTIII079.11 and BTIII070.47A).

15

20

25

30

35

Dig stion of the purified phage DNA of the clone designated BTIII081.8 with <u>Eco</u>RI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUCl18 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a <u>BglII/BglII</u> fragment into pUCl18 and sequencing across the <u>Eco</u>RI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUCl18 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

A [³²p]CTP-labelled, nick-translated ECORI-BamHI DNA segment derived from clone BTIII081.8 (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8.

A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucleotides 3297-3325 of SEQ ID NO. 7) in order to rescreen the original endothelial cell cDNA library for more full 3' length DNA segments of the gene from which

10

15

20

25

30

35

the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plaque purified.

One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thse fragments (2.5 kb) is cloned into pUCl19 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

A second clone isolated from the cDNA library is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6). clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. These three clones define a 4,062 nucleotide sequence of the open reading frame of the gene extending to the 3' end, followed by a 168 nucleotide non-coding region (SEO ID

10

15

20

25

30

35

NO. 7). A sample of a lambda gtll phage harboring the clone BTIII081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gtll phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

To achieve this, an EcoRI-BamHI restriction fragment of BTIV200.2 is cloned into the plasmid pBlueScript KS (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Klenow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucleotides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids encoded by the KDR gene. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

PCT/US92/01300

5

10

15

20

25

30

35

The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the <u>KDR</u> gene. A sample of the plasmid pBlueScript KS which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

- 1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).
- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding site at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-Y-Gly (26) (Figure 8).

10

15

20

25

30

35

- 4) Within the kinas domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: ckit proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the <u>KDR</u> gene.

In addition to the DNA sequence described for the KDR gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

In particular, the invention contemplates those DNA sequences which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency Southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

This invention also comprises DNA sequences which encode amino acid sequences which differ from those of the novel receptor, but which are the biological equivalent to those described for the

WO 92/14748 PCT/US92/01300

5

10

15

20

25

30

35

- 20 -

receptor. Such amino acid sequences may b said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variations which result in the production of a biologically equivalent protein.

10

15

20

25

35

In addition to the full length gene and protein, the invention encompasses biologically active fragments of each. By "biologically active" is meant a protein fragment which qualitatively retains the receptor activity of the larger KDR protein, or, in the case of a nucleotide sequence, which encodes such a protein fragment. It also refers, for purposes of antibody production, to fragments which are capable of eliciting production of antibodies capable of binding to the receptor protein.

To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an EcoRI/BamHI DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe. The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+RNA of ABAE bovine aortic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the new proto-oncogene, increase during some cancers. This has been taken advantage of in designing diagnostic tests for these cancers.

WO 92/14748 PCT/US92/01300

- 22 -

Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. Mouse and human (Hela cell) DNA, 15 μ g of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% The DNA is transferred onto agarose gel. The filter is hybridized to a nitrocellulose. [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 μ g/ml salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested DNA. After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse samples. This indicates that the kdp gene is present in both species.

An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes.

Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain EcoRI digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in EcoRI digested human-mouse somatic cell hybrid DNA:

5

10

15

20

25

30

Table I

	•		rdant # ybrids		cordant Hybrids	# '
5	Chromosome		(-/-)	-	_	<pre>3 Discordancy</pre>
	1	4	19	8	4	34
	2	8	18	5	6	30
	.3	11	12	3	9	34
10	4	14	24	0	0	0
	5	7	14	7 .	10	45
	6	7	19	7	. 5	32
	. 7	11	14	3	8	31
	8	8	11	6	13	50
15	9	3	20	10	4	38
	10	12	9	2	14 .	43
*	11	9	13	4	11	41
	12	9	10	5	14	50
	13	7	18	7	6	34
20	14	11	8	3	16	50
	15	9	15	5	8	35
	`16	7	19 , '	7	- 5	32
• •	17	12	7	2	16	49
	18	J-11	14	3	10	34
25	19	7	18	7	; 6	34
	20	9	10	5	14	50
	21	11	9	· 3	15	47
	22	3	16	10	7	47
	x	8	10	3	8	38
30	•	-				

The scoring is determined by the presence(+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar to those shown in Figure 11. The scoring is compared to the presence or absence of human chromosomes in each hybrid. A 0%

PCT/US92/01300 -

5

10

15

20

25

30

دَد

discordancy indicates a matched s gregation of the DNA probe with a chromosome. Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transected with a vector containing the complete coding region of the KDR gene.

The complete coding portion of the <u>KDR</u> gene is assembled by sequentially cloning into pUCl19 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a <u>SmaI-Eco</u>RI fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO. 7) is blunt ended with Klenow polymerase and introduced into a <u>SmaI</u> site in pUCl19. Next, a <u>BamHI-SmaI</u> fragment of clone BTIII001.2 (nucleotides 2418-3151, SEO ID NO. 7)

10

15

20

25.

30

35

is introduced at a <u>Bam</u>HI-<u>Sma</u>I site. Finally, a <u>Sal</u>I-<u>Bam</u>HI fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO. 7) is introduced at a <u>Sal</u>I-<u>Bam</u>HI site. Part of the cloning site of pUC119 is contained in the <u>Sal</u>I-<u>Bam</u>HI fragment, 5' to the <u>KDR</u> gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUC119) is digested with <u>Sal</u>I and <u>Asp</u>118 and recloned into the eukaryotic expression vector pcDNAltkpASP.

This vector is a modification of the vector pcDNA1 (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNA1. A small SV40 T splice and the SV40 polyadeny-lation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNAltkpASP.

Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the <u>KDR</u> protein (SEQ ID NO. 7), with a cysteine residue linked to the lysine (amino acid 997). The cysteine facilitates coupling of the peptide to a macromolecule which functions as a carrier for the peptide. For example, the peptide is coupled

10

15

20

25

30

35

to keyhole limpet haemocyanin (KLH) using m-maleimido-benzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β -galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-L-lysine.

Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

A sample of the expressed <u>KDR</u> protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred on to nitrocellulose paper for Western blot analysis and the anti-<u>KDR</u>.PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-<u>KDR</u>.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the KDR gene, but is absent in cells transfected with vector alone. The size of this protein is consistent with it being encoded by the KDR gene, in that the predicted amino acid sequence for the unglycosylated KDR protein is 156 kD, and that sequence contains 18 putative extracellular glycosylation sites

10

15.

20

25

30

which would account for the balance of the size seen in the 190 kD band.

The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the KDR protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with 125I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [125] VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the KDR gene contain specific binding sites for [\$^{125}I\$]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

Further evidence that the <u>KDR</u> gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the <u>KDR</u> protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector alone (lane 1 of Figure 14) or with the vector containing the <u>KDR</u> gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free

15

20

25

30

35

media containing 200 pM [125]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [125]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [125] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2).

The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

The described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation of new blood

15

20

25

30

35

capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given.

First, the methods described in this invention for studying the interaction of VEGF with KDR protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, cells expressing the KDR protein are incubated with [125]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the KDR protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

Second, using the teachings of this invention, those skilled in the art can study structural properties of the <u>KDR</u> protein involved in receptor function. This structural information can

WO 92/14748 PCT/US92/01300

- 30 -

then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the <u>KDR</u> gene by well established protocols is one approach, crystallization of the receptor binding site is another.

Bibliography

- 1. Yarden Y., and A. Ullrich, <u>Ann. Rev.</u> <u>Biochem.</u>, <u>57</u>, 433-478 (1988).
- 5 2. Bargmann, C., et al., <u>Nature</u>, <u>319</u>, 226-230 (1986).
 - 3. Yarden, Y., et al., <u>EMBO J.</u>, <u>6</u>, 3341-3351 (1987).
 - 4. Coussens, L., et al., Nature, 320,
- 10 277-280 (1986).
 - 5. Slamon, D., et al., <u>Science</u>, <u>244</u>, 707-712 (1989).
 - Ullrich, A. and Schlessinger, J., <u>Cell</u>,
 61, 203-212 (1990).
- 7. Ruta, M., et al., <u>Oncogene</u>, <u>3</u>, 9-15 (1988).
 - 8. Strathmann, M., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 86</u>, 8698-8702 (1989).
 - 9. Streuli, M., et al., <u>Proc. Natl. Acad.</u>
 Sci., 86, 8698-8702 (1989).
 - 10. Wilkes, A.F., <u>Proc. Natl. Acad. Sci.,</u> 86, 1603-1607 (1989).
 - 11. Folkman, J., and Klagsbrun, M., <u>Science</u>, <u>235</u>, 442-445 (1987).
- 25 12. Ishikawa, F., et al., <u>Nature</u>, <u>338</u>, 557-562 (1989).
 - 13. Baird, A., and Bohlen, P., in <u>Peptide</u>

 <u>Growth Factors and Their Receptors</u>, pages 369-418
 (Spron, M.B., and Roberts, A.B., eds. 1990).
- 30 14. Senger, D.R., et al., <u>Science</u>, <u>219</u>, 983-985 (1983).
 - 15. Gospodarowicz, D., et al., <u>Proc. Natl,</u> <u>Acad. Sci.</u>, <u>86</u>, 7311-7315 (1989).
- 16. Leung, D.W., et al., <u>Science</u>, <u>246</u>, 35 1306-1309 (1989).

10

15

20

17. Maglione, D., et al., Proc. Natl. Acad. Sci., 88, 9267-9271 (1991). Gronwald, R., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). 19. Shows, T., et al., Somat. Del. Mol. Gen., <u>10</u>, 315-318 (1984). 20. Rainer, G., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). Lee, P. L., et al., Science, 245, 57-60 (1989). Sanger, F., et al., Proc. Natl. Acad. 22. <u>Sci., 74</u>, 5463-5467 (1977). Folkman, J., Cancer Res., 46, 467-473 23. (1986).Burgess, W. and Maciag, T., Ann. Rev. 24. Biochem., 58, 575-606 (1989). Matthews, W., et al., Proc. Natl. Acad. 25. <u>Sci., 88, 9026-9030 (1991).</u> Hannink, M. and Donoghue, D., Proc. Natl. Acad. Sci., 82, 7894-7898 (1985). 27. Sambrook, J., et al., Molecule Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). 28. Matsui, T., et al., Science, 243, 800-804 (1989).

Conn, G., et al., Proc. Natl. Acad. Sci.,

30

25

29. Conn, G 87, 2628-2632 (1990).

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Terman, Bruce I Carrion, Miguel E
10	(ii) TITLE OF INVENTION: Identification of a Novel Human Growth Factor Receptor
	(iii) NUMBER OF SEQUENCES: 14 (iv) CORRESPONDENCE ADDRESS:
15	(A) ADDRESSEE: Alan M. Gordon American Cyanamid Company
	(B) STREET: 1937 West Main Street, P.O. Box 60
20	(C) CITY: Stamford
	(D) STATE: Connecticut
25	(E) COUNTRY: USA
	(F) ZIP: 06904
	(V) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC AT

(C) OPERATING SYSTEM: MS-DOS

35

30

- 34 -

	(D) SOFTWARE: ASCII from IBM DW 4
	(vi) CURRENT APPLICATION DATA:
5	(A) APPLICATION NUMBER:
~	(B) FILING DATE:
10	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 07/657,236
15	(B) FILING DATE: February 22, 1991
	(viii) ATTORNEY/AGENT INFORMATION:
20	(A) NAME: Gordon, Alan M.
	(B) REGISTRATION NUMBER: 30,637
	(C) REFERENCE/DOCKET NUMBER: 31,298-01
25	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: 203 321 2719
30	(B) TELEFAX: 203 321 2971
	(C) TELEX:
	(2) INFORMATION FOR SEQ ID NO: 1:

	(A) LENGTH: 27 base pairs	
5	(B) TYPE: nucleic acid	
J	(C) STRANDEDNESSS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
15	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27	
	(2) INFORMATION FOR SEQ ID NO: 2:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 35 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESSS: single	,
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC	35

(2)	INFORMATION	FOR	SEQ	ID	NO:	3:
-----	-------------	-----	-----	----	-----	----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 363 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

10

20

25

30

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

 GAA
 TTC
 GGA
 AAC
 CTG
 TCC
 ACT
 TAC
 CTG
 36

 AGG
 ACG
 AAG
 AAT
 GAA
 TTT
 GTC
 CCC
 TAC
 AAG
 ACC
 72

 AAA
 GGG
 GCA
 CGA
 TTC
 CGT
 CAA
 GGG
 AAA
 GAC
 TTC
 GTT
 108

 GGA
 GCA
 ATC
 CGT
 CGT
 CAA
 GGG
 CGC
 TTG
 GAC
 144

 ACG
 CAT
 CAG
 TAG
 CCA
 GAG
 CTC
 AGA
 CTC
 AGA
 AGA
 144

 ACG
 CAT
 CAG
 TAG
 CCA
 GAG
 CTC
 CAG
 AGA
 CTC
 CAG
 TGC
 AGA
 AGA
 AGA
 AGA
 AGA
 TCT
 GTA
 AGA
 CTT
 CTT
 AGA
 AGA
 CTT
 CTT
 AGA
 ATCT
 CTT
 CT

35 TAT CCA CAG AGA CCT GGC AGC CAG GAA CGT GCT GAA 360

5

15

35

TTC 363

(2)	INFORMATION	FOR	SEQ	ID	NO:	4	:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 251 base pairs

10 (B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

20 GTC GAC AAT CTG TTG GGG GCC TGC ACC ATC CCA ACA 36

TCC TGC TGC TCT ACA ACT ATT TTT ATG ACC GGA GGA 72

GGA TCT ACT TGA TTC TAG AGT ATG CCC CCC GCG GAG 108

25

CTC TAC AAG GAG CTG CAG AAG AGC TGC ACA TTT GAC 144

GAG CAG CGA ACA GCC ACG ATC ATG GAG GAG TTG GCA 180

30 GAT GCT CTA ATG TAC TGC CGT GGG AAG AAG GTG ATT 216

CAC AGA GAC CTG GCA GCC AGC AAC GTG CTG AAT TC 251

(2) INFORMATION FOR SEQ ID NO: 5:

(i)	SEOUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 510 base pairs

5

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

10

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

15

(A) NAME/KEY: PDGF Receptor DNA

(B) LOCATION: Internal sequence

20

(x) PUBLICATION INFORMATION:

(A) AUTHORS: Gronwald, R., et al.

(B) JOURNAL: Proc. Natl. Acad. Sci.

25

(C) VOLUME: 85

(D) PAGES: 3435-3439

30

(E) DATE: 1988

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AAC CTG TGG GGG CCT GCA CCA AAG GAG GAC CAT CTA 36

	TAT	CAT	CTA	TAT	CAT	CAC	TGA	GTA	CTG	CCG	CTA	CGG	72
٠.	AGA	CCT	GGT	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108
5	CTT	CCT	GCA	GCA	CCA	CTC	CGA	CAA	GCG	CCG	ccc	GCC	144
·	CAG	CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
10	GCT	ccc	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
	AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
	AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
15	GAG	ACG	TCA	AAT	AGC	AGA	CAT	CGA	GTC	CTC	CAA	CTA	324
-	CAT	GGC	ccc	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	ccc	360
20	TGA	GAG	GAC	CTG	CCG	AGC	ÄAC	TTT	GAT	CAA	CGA	GTC	396
	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
	CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
25	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG	GCT	AGG	AAC	504
. •	GTC	CTT											510

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 255 base pairs

30

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	•
10	(ix) FEATURE:	
10	(A) NAME/KEY: FGF Receptor DNA	
	(B) LOCATION: Internal sequence	
L5	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Ruta, M., et al.	٠.
20	(B) JOURNAL: Oncogene	
.0	(C) VOLUME: 3	
	(D) PAGES: 9-15	-
.5	(E) DATE: 1988	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
io .	AAC CTG CTG GGG GCC TGC ACG CAG GAT GGT CCC TTG	36
· .	TAT GTC ATC GTG GAG TAT GCC TCC AAG GGC AAC CTG	72
•	CGG GAG TAC CTG CAG ACC CGG AGG CCC CCA GGG CTG	108

GAA TAC TGC TAT AAC CCC AGC CAC AAC CCA GAG GAG

	CAG CTC TCC AAG GAC CTG GTG TCC TGC GCC TAC	180
	CAG GAG GCC CGA GGC ATG GAG TAT CTG GCC TCC AAG	216
5	AAG TGC ATA CAC CGA GAC CTG GCA GCC AGG AAT GTC	252
	CTG	255
10	(2) INFORMATION FOR SEQ ID NO: 7:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 4236 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	-
25	ATG GAG AGC AAG GTG CTG CTG GCC GTC GCC CTG	33
	Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu	
	1 5 10	
	TGG CTC TGC GTG GAG ACC CGG GCC GCC TCT GTG GGT	69
30	Trp Leu Cys Val Glu Thr Arg Ala Ala Ser Val Gly	
	15 2 0	
	TTG CCT AGT GTT TCT CTT GAT CTG CCC AGG CTC AGC	105
	Leu Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser	
35	25 30 35	

		ATA	CAA	AAA	GAC	ATA	CTT	ACA	ATT	AAG	GCT	AAT	ACA	141
		Ile	Gln	Lys	Asp	Ile	Leu	Thr	Ile	Lys	Ala	Asn	Thr	
						40					45			
5		ACT	CTT	CAA	TTA	ACT	TGC	AGG	GGA	CAG	AGG	GAC	TTG	177
							Cys							
				50					55					
	٠	GAC	TGG	CTT	TGG	ccc	AAT	AAT	CAG	AGT	GGC	AGT	GAG.	213
10		Asp.	Trp	Leu	Trp	Pro	Asn	Asn	Gln	Ser	Gly	Ser	Glu	
		60					65					70		
		CAA	AGG	GTG	GAG	GTG	ACT	GAG	TGC	AGC	GAT	GGC	CTC	249
							Thr							
15					75					80	-			
		TTC	TGT	AAG	ACA	CTC	ACA	ATT	CCA	AAA	GTG	ATC	GGA	285
		Phe	Cys	Lys	Thr	Leu	Thr	Ile	Pro	Lys	Val	Ile		
•			85					90					95	•
20				,						·;	m 1 0	999	63.3	223
							TAC							321
		Asn	Asp	Thr	GTÄ	100	Tyr	гÃг	Cys	Pne	105	ALG	GIU	
						100	,							
25		ACT	GAC	TTG	GCC	TCG	GTC	ATT	TAT	GTC	TAT	GTT	CAA	357
		Thr	Asp	Leu	Ala	Ser	Val	Ile	Tyr	Val	Tyr	Val	Gln	
•		ı		110					115					•
		GAT	TAC	AGA	TCT	CCA	TTT	ATT	GCT	TCT	GTT	AGT	GAC	393
30		Asp	Tyr	Arg	Ser	Pro	Phe	Ile	Ala	Ser	Val	Ser	Asp	
		120					125				•	130	٠,	
		CAA	CAT	GGA	GTC	GTG	TAC	ATT	ACT	GAG	AAC	AAA	AAC	429
							Tyr							
35					1.35					140				•

	AAA	ACT	GTG	GTG	ATT	CCA	TGT	CTC	GGG	TCC	ATT	TCA	465
	Lys	Thr	Val	Val	Ile	Pro	Cys	Leu	Gly	Ser	Ile	Ser	
		145	•	•			150		٠.			155	
5	AAT	CTC	AAC	GTG	TCA	CTT	TGT	GCA	AGA	TAC	CCA	GAA	501
	Asn	Leu	Asn	Val	Ser	Leu	Cys	Ala	Arg	Tyr	Pro	Glu	
,	•				160		•		*	165			
			•								•		
	AAG	AGA	TTT	GTT	CCT	GAT	GGT	AAC	AGA	ATT	TCC	TGG	537
10	Lys	Arg	Phe	Val	Pro	Asp	Gly	Asn	Arg	Ile	Ser	Trp	
			170					175	•				
•												-	
		AGC											573
	Asp	Ser	Lys	Lys.	Gly	Phe	Thr	Ile	Pro	Ser		Met	
15 .	180					185	·				190	-	
,													
		AGC											609
	Ile	Ser	Tyr		Gly	Met	Val	Phe		Glu	Ala	Lys	
				195					200				
20							:						
		AAT								_			645
	Ile	Asn	,Asp	Glu	ser	Tyr		ser	тте	Met	TYT		
		205					210					215	
25							300	3 mm	mam	C3 m	CDC	C.C.C.	681
25		GTC											99 T
	vaı	Val	vaı	vai		Tyr	Arg	TIE	TYL	225	vai	val	
•					220					225			
	CTTC.	AGT	ccc	TI CITE	CVM	CCA	አጥጥ	GAA	СФУ	фСф	CTT	GGA	717
30		Ser											, _ ,
	Ten	261	230	Ser	HIS	Gry	116	235			V 444	CLI	
			230								٠		
	GAA	AAG	Gilair	GTC	ТТА	AAT	TGT	ACA	GCA	AGA	ACT	GAA	753
		Lys											
35	240	_, _				245	-1-			5	250	- -	
	2-10												

	CTA	AAT	GTG	GGG	ATT	GAC	TTC	AAC	TGG	GAA	TAC	CCT	789
	Leu	Asn	Val	Gly	Ile	Asp	Phe	Asn	Trp	Glu	Tyr	Pro	
				255					260				
5	TCT	TCG	AAG	CAT	CAG	CAT	AAG	AAA	CTT	GTA	AAC	CGA	825
•	Ser	Ser	Lys	His	Gln	His	Lys	Lys	Leu	Val	Asn	Arg	
		265					270					275	
			-										
	GAC	CTA	AAA	ACC	CAG	TCT	GGG	AGT	GAG	ATG	AAG	AAA	861
IO	Asp	Leu	Lys	Thr	Gln	Ser	Gly	Ser	Glu	Met	Lys	Lys	
			•		280					285			
	TTT	TTG	AGC	ACC	TTA	ACT	ATA	GAT	GGT	GTA	ACC	CGG	897
	Phe	Leu	Ser	Thr	Leu	Thr	Ile	Asp	Gly	Val	Thr	Arg	
15			290					295					
	AGT	GAC	CAA	GGA	TTG	TAC	ACC	TGT	GCA	GCA	TCC	AGT	933
	Ser	Asp	Gln	Gly	Leu	Tyr	Thr	Cys	Ala	Ala	Ser	Ser	
	300			•		305					310		
20						•							
								,			GTC		969
	Gly	Leu	Met	Thr	Lys	Lys	Asn	Ser	Thr	Phe	Val	Arg	
				315					320	•			
							,						
25											AGT		1005
	Val	His	Glu	Lys	Pro	Phe		Ala	Phe	Gly	Ser		
		325					330					335	•
											GAG		1041
30	Met	Glu	Ser	Leu		Glu	Ala	Thr	vaı		Glu	Arg	
					340					345			
									aam	ma	663	000	1077
											CCA		1077
25	Val	Arg		Pro	ATA	ràs	лАL		θŢЙ	TAL	PTO	PEO	
35			350					355					

		CCA	GAA	ATA	AAA	TGG	TAT	AAA	AAT	GGA	ATA	CCC	CTT	1113
		Pro	Glu	Ile	Lys	Trp	Tyr	Lys	Asn	Gly	Ile	Pro	Leu	
		360					365					370	•	
5	-	GAG	TCC	AAT	CAC	ACA	ATT	AAA	GCG	GGG	CAT	GTA	CTG	1149
		Glu	Ser	Asn	His	Thr	Ile	Lys	Ala	Gly	His	Val	Leu	
					375					380				
,							• .							
		ACG	ATT	ATG	GAA	GTG	AGT	GAA	AGA	GAC	ACA	GGA	AAT	1185
10		Thr	Ile	Met	Glu	Val	Ser	Glu`	Arg	Asp	Thr	Gly	Asn	
			385					390					395	
					•									
													GAG	1221
	٠	Tyr	Thr	Val	Ile	Leu	Thr	Asn	Pro	Ile		Lys	Glu	•
15						400					405		,	
ě												TAT		1257
		Lys	Gln	Ser	His	Val	Val	Ser		Val	Val	Tyr	Val	
				410					415					-
20												-		
											_	TCT		1293
			Pro	Gln	Ile	Gly		Lys	Ser	Leu	Ile	Ser	Pro	-
•	-	420		•			425					430		·
25		ama	G3.M	moo.	mia c	C3.C	ma c	CCC	3.00	3 CIT		N CC	CTIC	1220
23														1329
		vai	Asp	ser	435	GIII	TYL	GIY	•	440	GIII	Thr	Leu	
					433		*		•	440				
	•	ארא	ጥረጥ	ACG.	ርጥር	יייבייי	GCC	ידוייף ע	ССТ	CCC	CCG	CAT	CAC	1365
30												His		
		1111	445			-1-		450					455	•
			777											
•		ATC	CAC	TGG	TAT	TGG	CAG	TTG	GAG	GAA	GAG	TGC	GCC	1401
	-	Ile												
35					-1-	460					465	- 4 -		
				. •		- 20								

	AAC	GAG	CCC	AGC	CAA	GCT	GTC	TCA	GTG	ACA	AAC	CCA	1437
	Asn	Glu	Pro	Ser	Gln	Ala	Val	Ser	Val	Thr	Asn	Pro	
			470					475					
		,											
5	TAC	CCT	TGT	GAA	GAA	TGG	AGA	AGT	GTG	GAG	GAC	TTC	1473
	Tyr	Pro	Сув	Glu	Glu	Trp	Arg	Ser	Val	Glu	Asp	Phe	
	480					485			•		490		
												CAA	1509
10	Gln	Gly	Gly	Asn	Lys	Ile	Glu	Val	Asn	Lys	Asn	Gln	,
				495					500				
				•									
	TTT	GCT	CTA	ATT	GAA	GGA	AAA	AAC	AAA	ACT	GTA	AGT	1545
	Phe	Ala	Leu	Ile	Glu	Gly	Lys	Asn	Lys	Thr	Val	Ser	
15		50 5					510					515	
		•											
													1581
	Thr	Leu	Val	Ile	Gln	Ala	Ala	Asn	Val	Ser	Ala	Leu	
		•			520					525			
20										•			
												GGA	1617
, <u>-</u>	Tyr	Lys	Cys	Glu	Ala	Val	Asn	Lys	Val	Gly	Arg	Gly	
			530					535					
25												CCT	1653
	Glu	Arg	Val	Ile	Ser	Phe	His	Val	Thr	Arg		Pro	
, •	540					545		•			550	,	
·												GAG	1689
30	Glu	Ile	Thr		Gln	Pro	Asp	Met		Pro	Thr	Glu	1
•				555					560				
					•			_					
												AGA	1725
	Gln	Glu	Ser	Val	Ser	Leu		Cys	Thr	Ala	Asp		
35		565					,570					575	

	TCT	ACG	TTT	GAG	AAC	CTC	ACA	TGG	TAC	AAG	CTT	GGC	1761
	Ser	Thr	Phe	Glu	Asn	Leu	Thr	Trp	Tyr	Lys	Leu	Gly	•
					580					585			
·					•								
5 '							CAT						1797
	Pro	Gln	Pro	Leu	Pro	Ile	His	Val	Gly	Glu	Leu	Pro	
			590					595					
			CMM.	mca	'A	220	TTG	ር ልጥ	аст	СФФ	, ТСС	222	1833
10							Leu						1000
-	600	PLO	Val	· Cys	TYS	605	200		4		610	-1-	
•	800					005							,
,	TTG	AAT	GCC	ACC	ATG	TTC	TCT	AAT	AGC	ACA	AAT	GAC	1869
							Ser						·
15				615	•				620				
•													
	ATT	TTG	ATC	ATG	GAG	CTT	AAG	AAT	GCA	TCC	TTG	CAG	1905
	Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
		625					630					635	
20		•											
												AGG	1941
	Asp	Gln	Gly	Asp	Tyr	Val	Cys	Leu	Ala		Asp	Arg	
					640					645	•		
, 25					161		mcc.	ĊŒĊ	CTTC	».cc	CAG	CTC	1977
2 5 _,							Cys						
	rys	inr	ьув 650	тур	Arg	TT5	Cyb	655	Y C4.11.	nr 9			
		-	650				*	055				•	•
	ACA	GTC	CTA	GAG	CGT	GTG	GCA	ccc	ACG	ATC	ACA	GGA	2013
30				•		,	Ala						
	660					665					670		
												•	
												AGC	2049
	Asn	Leu	Glu	Asn	Gln	Thr	Thr	Ser	Ile	Gly	Glu	Ser	
35				675		•		•	680	•			

		ATC	GAA	GTC	TCA	TGC	ACG	GCA	TCT	GGG	AAT	ccc	CCT	2085
		Ile	Glu	Val	Ser	Cys	Thr	Ala	Ser	Gly	Asn	Pro	Pro	
			685					690		,			695	
									•	-				
5		CCA	CAG	ATC	ATG	TGG	TTT	AAA	GAT	AAT	GAG	ACC	CTT	2121
		Pro	Gln	Ile	Met	Trp	Phe	Lys	Asp	Asn	Glu	Thr	Leu	
						700		•			705			-
		-								٠				
														2157
10	•	Val	Glu	Asp	Ser	Gly	Ile	Val	Leu	Lys	Asp	Gly	Asn	•
•				710					715	-				•
•						•		-						
													GAC	2193
	•	Arg	Asn	Leu	Thr	Ile			Val	Arg	Lys	Glu	Asp	
15	v.	720		-			72 5					730		
											1 CM	com		2220
	`											GTT		2229
		GIU	GIĀ	Leu		Thr	Cys	GIN	AIA	740	Set	Val	neu	•
20					735					740				
20		ccc	ner	CCX	222	GTG.	GAG	GCA	datada.	መመር	ልሞል	ΑͲΑ	GAA	2265
												Ile		
		GTÄ	745	nau	2,2	· · · ·		750					755	-
								,		t.			,	
25		GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	ATT	2301
												Ile		•
		-				760			,		765			
						,								
		CTA	GTA	GGC	ACG	ACG	GTG	TTA	GCC	ATG	TTC	TTC	TGG	2337
30		Leu	Val	Gly	Thr	Thr	Val	Ile	Ala	Met	Phe	Phe	Trp	
				770					775					
٠													÷	
٠	,	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC	GTT	AAG	CGG	2373
-		Leu	Leu	Leu	Val	Ile	Ile	Leu	Gly	Thr	Val	Lys	Arg	
35		78.Û					785					790		
											-			

	GCC	AAT	GGA	GGG	GAA	CTG	AAG	ACA	GGC	TAC	TTG	TCC	2409
	Ala	Asn	Gly	Gly	Glu	Leu	Lys	Thr	Gly	Tyr	Leu	Ser	
				795					800				
5	ATC	GTC	ATG	GAT	CCA	GAT	GAA	CTC	CCA	TTG	GAT	GAA	2445
	Ile	Val	Met	Asp	Pro	Asp	Glu	Leu	Pro	Leu	Asp	Glu	•
•		805				• .	810					815	
	CAT	TGT	GAA	CGA	CTG	CCT	TAT	GAT	GCC	AGC	AAA	TGG	2481
10	His	Cys	Glu	Arg	Leu	Pro	Tyr	qaA	Ala	Ser	Lys	Trp	,
					820					825			
											•		
	GAA	TTC	ccc	AGA	GAC	CGG	CTG	AAC	CTA	GGT	AAG	CCT	2517
	Glu	Phe	Pro	Arg	Asp	Arg	Leu	Asn	Leu	Gly	Lys	Pro	
15 .			830					835		•			
													2553
		Gly	Arg	Gly	Ala		Gly	Gln	Glu	Ile		Ala	
20	840					845					850		
20													
	•						•					AGG	2589
	Asp	Ala	Phe	_	IIe	Asp	rys	Thr		Thr	Cys	Arg	
				855			-	•	860				
25	3.03	CM3	CO3	CMC		N/II/C	mm/°	***	C2 2	CC3	CCX	ACA	2625
23						,							2625
	THE	865	Ата	vaı	тÃг	Met	870	Lys	GIU	GTĀ	ALG	875	
		665		•			870					675	
•	CAC	እርጥ	GAG	CATT	CGA	CCT	רתיר י	ATG	пСπ	GAA	CTC	- X- X-C	2661
30								Met					2001
	*****	Jei	GIU	1113	880				JC1	885		2,0	
					500								
	АТС	СТС	ىئىش∀	САТ	ATT	GGT	CAC	CAT	CTC	ААТ	GTG	GTC	2697
			-					His					•
35			890			1							
•			330										

												CCA	2733
	Asn	Leu	Leu	Gĺy	Ala	Cys	Thr	Lys	Pro	Gly	Gly	Pro	
	900			-		905					910	,	
5	CTC	ATG	GTG	ATT	GTG	GAA	TTC	TGC	AAA	TTT	GGA	AAC	2769
	Leu	Met	Val	Ile	Val	Glu	Phe	Cys	Lys	Phe	Gly	Asn	
	-		-	915					920				
•	CTG	TCC	ACT	TAC	CTG	AGG	AGC	AAG	AGA	AAT	GAA	TTT	2805
10	Leu	Ser	Thr	Tyr	Leu	Arg	Ser	Lys	Arg	Asn	Glu	Phe	
		925					930			•		935	
	GTC	CCC	TAC	AAG	ACC	AAA	GGG	GCA	CGA	TTC	CGT	CAA	2841
	Val	Pro	Tyr	Lys	Thr	Lys	Gly	Ala	Arg	Phe	Arg	Gln	
15					940					945			
		-					GCA						2877
•	Gly	Lys	Asp	Tyr	Val	Gly	Ala		Pro	Val	Asp	Leu	
	•		950					955		•			
20							·.						
						•	ATC						2913
		Arg	Arg	Leu	Asp		Ile	Thr	ser	ser		ser	
	960					965	,				970		
25							GTG	,					2949
•	Ser	Ala	Ser	Ser	Gly	Phe	Val	Glu	Glu	Lys	Ser	Leu	
				975					980				
	AGT	GAT	GTA	GAA	GAA	GAG	GAA	GCT	CCT	GAA	GAT	CTG	2985
30	Ser	Asp	Val	Glu	Glu	Glu	Glu	Ala	Pro	Glu	Asp	Leu	
,	·	985		•			990			-		995	
	TAT	AAG	GAC	TTC	CTG	ACC	TTG	GAG	CAT	CTC	ATC	TGT	3021
	Tyr	Lys	Asp	Phe	Leu	Thr	Leu	Glu	His	Leu	Ile	Cys	-
35					1000	•				1005			

	TAC	AGC	TTC	CAA	GTG	GCI	AAG	GGC	ATG	GAG	TTC	TTG	3057
	Tyr	Ser	Phe	Gln	Val	Ala	Lys	Gly	Met	Glu	Phe	Leu	
			101	0				101	.5				
5	GCA	TCG	CGA	AAG	TGT	ATC	CAC	AGG	GAC	CTG	GCG	GCA	3093
	Ala	Ser	Arg	Lys	Cys	Ile	His	Arg	Asp	Leu	Ala	Ala	
	102	0				102	5				103	0	
,				<u>i</u>									
	CGA	AAT	ATC	CTC	TTA	TCG	GAG	AAG	AAC	GTG	GTT	AAA	3129
10	Arg	Asn	Ile	Leu	Leu	Ser	Glu	Lys	Asn	Val	Val	Lys	-
				103	5				104	0			
											,	•	
	ATC	TGT	GAC	TTT	GGC	TTG	GCC	CGG	GAT	ATT	TAT	AAA	3165
	Ile	Cys	Asp	Phe	Gly	Leu	Ala	Arg	Asp	Ile	Tyr	Lys	
15		104	5				105	0				1055	
					٠	•							
	GAT	CCA	GAT	TAT	GTC	AGA	AAA	GGA	GAT	GCT	CGC	CTC	3201
	Asp	Pro	Asp	Tyr	Val	Arg	Lys	Gly	Asp	Ala	Arg	Leu	
			`		1066	0	-			106	5		
20													,
	CCT	TTG	AAA	TGG	ATG	GCC	CCA	GAA	ACA	ATT	TTT	GAC	3237
	Pro	Leu	Lys	Trp	Met	Ala	Pro	Glu	Thr	Ile	Phe	Asp	
			1070)				107	5				•
			د	-									
25	AGA	GTG	TAC	ACA	ATC	CAG	AGT	GAC	GTC	TGG	TCT	TTT	3273
	Arg	Val	Tyr	Thr	Ile	Gln	Ser	Asp	Val	Trp	Ser	Phe	
	1080)				1085	5				1090)	
,													
·	GGT	GTT	TTG	CTG	TGG	GAA	ATA	TTT	TCC	TTA	GGT	GCT	3309
30	Gly	Val	Leu	Leu	Trp	Glu	Ile	Phe	Ser	Leu	Gly	Ala	_
				1095	5				1100)			
	TCT	CCA	TAT	CCT	GGG	GTA	AAG	ATT	GAT	GAA	GAA	TTT	3345
	Ser	Pro	Tyr	Pro	Gly	Val	Lys	Ile	Asp	Glu	Glu	Phe	
35		1105	5				1110)			•	1115	
							`						

												GCC	338T
	Cys	Arg	Arg	Leu	Lys	Glu	Gly	Thr	Arg	Met	Arg	Ala	
	•				1120)			٠	1125	5		
				•									
5												ATG	3417
	Pro	Asp	Tyr	Thr	Thr	Pro	Glu	Met	Tyr	Gln	Thr	Met	
			1130)				1135	5				
								-					
												CCC	3453
LO	Leu	Asp	Cys	Trp	His	Gly	Glu	Pro	Ser	Gln	Arg	Pro	
	1140)		•		1145	5				1150)	
												CTC	3489
	Thr	Phe	Ser	Glu	Leu	Val	Glu	His	Leu	Gly	Asn	Leu	
L 5	•	-		1155	5				1160	ָר י י			
•												TAC	3525
	Leu	Gln	Ala	Asn	Ala	Gln	Gln	Asp	Gly	Lys	Asp		
		1165	5				1170) ·				1175	
20					-								
												GAA	3561
	Ile	Val	Leu	Pro	Ile	Ser	Glu	Thr				Glu	
				`	118	כ				1189	5		
*.	-			•							·		
25												GTT	
	Glu	Asp	Ser	Gly	Leu	Ser	Leu	Pro	Thr	Ser	Pro	Val	·.
			1190	כ			-	1195	5				
						•							
•												AAA	3633
30	Ser	Сув	Met	Glu				Val	Cys	Asp			
	1200	ָ כ				1205	5				1210) (
												TAT	3669
	Phe	His	Tyr	Asp	Asn	Thr	Ala	Gly	Ile	Ser	Gln	Tyr	
25				121	5	•		-	1220	•			
					•				,				

	CTG	CAG	AAC	AGT	AAG	CGA	AAG	AGC	CGG	CCT	GTG	AGT	3705
	Leu	Gln	Asn	Ser	Lys	Arg	Lys	Ser	Arg	Pro	Val	Ser	
		122	5				123	0	٠.			1235	
5	GTA	AAA	ACA	TTT	GAA	GAT	ATC	CCG	TTA	GAA	GAA	CCA	3741
	Val	Lys	Thr	Phe	Glu	Asp	Ile	Pro	Leu	Glu	Glu	Pro	
					124)		•		124	5		
				'					÷				·
i	GAA	GTA	AAA	GTA	ATC	CCA	GAT	GAC	AAC	CAG	ACG	GAC	3777
10	Glu	Val	Lys	Val	Ile	Pro	qaA	Asp	Asn	Gln	Thr	Asp	
•			1250)				125	5				
													•
,												ACT	3813
		_	Met	Val	Leu	Ala	Ser	Glu	Glu	Leu	Lys	Thr	
15	1260)				1269	5				127	כ	
	•												-
							TTA						3849
	Leu	Glu	Asp	_		Lys	Leu	Ser			Phe	Gly	
20			<u>.</u> .	1275	•				1280)			
20													
					•		AGC						3885
	GTĀ			Pro	ser	тЛа	Ser	_	GIU	ser	vaı		
		1285	•				1290	,				1295	
25	TCT	GAA	GGC	TCA	AAC	CAG	ACA	AGC	GGC	TAC	CAG	TCC	3921
					-		Thr						
			•		1300					1305			
•	GGA	TAT	CAC	TCC	GAT	GAC	ACA	GAC	ACC	ACC ·	GTG	TAC	3957
30	Gly	Tyr	His	Ser	Asp	Asp	Thr	Asp	Thr	Thr	Val	Tyr	
			1310)				1315	;		•		
			ż										
•	TCC	AGT	GAG	GAA	GCA	GAA	CTT	TTA	AAG	CTG	ÀTA	GAG	3993
•	Ser	Ser	Glu	Glu	Ala	Glu	Leu	Leu	Lys	Leu	Ile	Glu	
35	1320	١				1325	i				1330)	

·	ATT GGA GTG CAA ACC GGT AGC ACA GCC CAG ATT CTC	4029
	Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu	
,	1335 1340	
	AND AND AND AND THE COME COME	4065
5	CAG CCT GAC ACG GGG ACC ACA CTG AGC TCT CCT Gln Pro Asp Thr Gly Thr Thr Leu Ser Ser Pro Pro	+005
,		
	1345 1350 1355	
	GTT TAAAAGGAAG CATCCACACC CCAACTCCCG GACATCACAT	4108
10	Val	
	1356	
		4148
	GAGAGGTCTG CTCAGATTTT GAAGTGTTGT TCTTTCCACC	
15	AGCAGGAAGT AGCCGCATTT GATTTTCATT TCGACAACAG	4188
,	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC	4228
	4236	
20	TTGTGACC 4236	
20	TTGTGACC 4236 (2) INFORMATION FOR SEQ ID NO: 8:	
20	TIGIGACC	
20	(2) INFORMATION FOR SEQ ID NO: 8:	
	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS:	
	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids	
25	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids (B) TYPE: amino acid	
25	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids (B) TYPE: amino acid (C) STRANDEDNESSS:	

	(A) N	AME/KE	¥:	cki	<u>t</u> pr	oto-	onco	gene	rec	epto	r	
5	(B) L	OCATIO	N:	Ami	no a	cids	543	- 975		• .		
J	(x)	PUB	LICATIO	ON I	NFOR	MATI	ON:						
,	(A) A	UTHORS	:	Yard	en,	Y.,	et a	1.		•		
10		В) Ј	OURNAL	: :	ЕМВО	J.							
	(C) V	OLUME:		6 .								,
15	. (D) P	AGES:	;	3341	-335	1	,			•	`	
	(E) D	ATE:	198	7								
	(xi)	SEQ	UENCE I	DESC	RIPT	ION:	SEQ	ID I	No:	B :			
20	Leu T. 543	-	yr Lys 45	Tyr	Leu	Gln	Lys 550	Pro	Met	Tyr	Glu	Val 555	Gln
25	Trp L	ys Va	al Val 560	Glu	Glu	Ile	Asn	Gly 565	Asn	Asn	Tyr	Val	Tyr 570
	Ile A	sp Pi	ro Thr	Gln 575	Leu	Pro	Tyr	Asp	His 580	Lys	Trp	Glu	Phe
30 .	Pro A	rg As	sn Arg	Leu	Ser 590	Phe	Gly	Lys	Thr	Leu 595	Gly	Ala	Gly
		ne Gl	ly Lys	Val	Val	Ala 605	Glu	Thr	Ala	Туг	Gly 610	Leu	Ile
35	Lys S	er As	sp Ala	Ala	Met	Thr	Val	Ala	Val	Lys	Met	Leu	Lys

			615				•	620				-	625	
	Pro	Ser	Ala	His 630	Leu	Thr	Glu	Arg	Glu 635	Ala	Leu	Met	Ser	Glu 640
5	Leu	Lys	Val	Leu	Ser 645	Tyr	Leu	Gly	Asn	His 650	Met	Asn	Ile	Val
10	Asn 655	Leu	Leu	Gly	Ala	Cys 660	Thr	Ile	Gly	Gly	Pro 665	Thr	Leu	Val
	Ile	Thr 670	Glu	Tyr	Cys	Cys	Tyr 675	Gly	Asp	Leu	Leu	Asn 680	Phe	Leu
15	Arg	Arg	Lys 685	Arg	Asp	Ser	Phe	Ile 690	Cys	Ser	Lys	Gln	Glu 695	Asp
	His	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
20	Glu	Ser	Ser	Сув	Ser 715	Asp	Ser	Thr	Asn	Glu 720		Met	Asp	Met
25	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	'Lys 735	Ala	Asp	Lys
	Arg	Arg 740		Val	Arg	Ile	Gly 745	Ser	Tyr	Ile	Glu	Arg 750		Val
30	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	Asp 760	Glu	Leu	Åla	Leu	Asp 765	Leu
, .	Glu	Asp	Leu	Leu 770		Phe	Ser		Gln 775	Val	Lys	Gly	Met	Ala 780
35														

	Phe	Leu	Ala	Ser	Lys 785	Asn	Cys	Ile	His	Arg 790	Asp	Leu	Ala	Ala
5	Arg 795	Asn	Ile	Leu	Leu	Thr 800	His	Gly	Arg	Ile	Thr 805	Lys	Ile	Cys
	Asp	Phe 810	Gly	Leu	Ala	Arg	Asp 815	Ile	Lys	Asn	Asp	Ser 820	Asn	Tyr
10	Val	Val	Lys 825	Gly	Asn	Ala	Arg	Leu 830	Pro	Val	Lys	Val	Met 835	Ala
15	Pro	Glu	Ser	Ile 840	Phe	Asn	Cys	Val	Tyr 845	Thr	Gļu	Glu	Ser	Asp 850
	Val	Trp	Ser	Tyr	Gly 855	Ile	Phe	Leu	Trp	Glu 860	Leu	Phe	Ser	Leu
20	Gly 865	Ser	Ser	Pro	Tyr	Pro 870	Gly	Met	Pro	Val	Lys 875	Ser	Lys	Phe
	Tyr	Lys 880	Met	Ile	Lys	Glu	Gly 885	Phe	Arg	Met	Leu	Ser 890	Pro	Glu
25	His	Ala	Pro 895	Ala	Glu	Met	Tyr	Asp	Ile	Met	Lys	Thr	Cys 905	Trp
30	Asp	Ala	Asp	Pro 910	Leu	Lys	Arg	Pro	Thr 915	Phe	Lys	Gln	Ile	Val 920
- -	Gln	Leu	Ile	Glu 92	-	Gln	Ile	Ser	Glu 93	•	Thr	Asn	His	Ile
35	Tyr 935	Ser	Asn	Leu	Àla	Asn 940	Cys	Ser	Pro	Asn	Arg 945	Gln	Lys	Pro

- 58 -

	-	Val Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Ti 950 955 960	ar
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 amino acids (B) TYPE: amino acid 15 (C) STRANDEDNESSS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 20 (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor 25 (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. 30 (B) JOURNAL: Nature (C) VOLUME: 320	5	Ala Ser Ser Gln Pro Leu Leu Val His Asp Asp Val 965 970 975	
(A) LENGTH: 437 amino acids (B) TYPE: amino acid (C) STRANDEDNESSS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320		(2) INFORMATION FOR SEQ ID NO: 9:	
(A) LENGTH: 437 amino acids (B) TYPE: amino acid (C) STRANDEDNESSS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320		(i) SEQUENCE CHARACTERISTICS:	
(C) STRANDEDNESSS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320	10	(A) LENGTH: 437 amino acids	
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320		(B) TYPE: amino acid	
(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320	15	(C) STRANDEDNESSS:	
(ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320		(D) TOPOLOGY: linear	
(ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320	20	(ii) MOLECULE TYPE: peptide	
(a) AUTHORS: Coussens, L., et al. (b) JOURNAL: Nature (c) VOLUME: 320	20	(ix) FEATURE:	
(x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320		(A) NAME/KEY: CSF-1 receptor	
(A) AUTHORS: Coussens, L., et al. (B) JOURNAL: Nature (C) VOLUME: 320	25	(B) LOCATION: Amino acids 536-972	
(B) JOURNAL: Nature (C) VOLUME: 320	•	(x) PUBLICATION INFORMATION:	
(B) JOURNAL: Nature (C) VOLUME: 320	3.0	(A) AUTHORS: Coussens, L., et al.	
		(B) JOURNAL: Nature	
35 (D) PAGES: 277-280		(C) VOLUME: 320	
·	35	(D) PAGES: 277-280	

(E) DATE: 1986

•												•		
5	(x:	i) SI	EQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID 1	10:	9:			
	Leu	Leu	Tyr	Lvs	Tvr	Lvs	Gln	Lvs	Pro	Lvs	Tvr	Gln	Val	Arg
	536			•	540	•		•		545	-			-
10	Trp	Lys	Ile	Ile	Glu	Ser	Tyr	Glu	Gly	Asn	Ser	Tyr	Thr	Phe
	550					555	_		-	. •	560	_		
								٠						
	Ile	Asp	Pro	Thr	Gln	Leu	Pro	Tyr	Asn	Glu	Lys	Trp	Glu	Phe
		565					570	-			-	575		
15		•												
	Pro	Arg	Asn	Asn	Leu	Gln	Phe	Gly	Lys	Thr	Leu	Gly	Ala	Gly
			580					585					590	
			•			,								
	Ala	Phe	Gly	Lys	Val	Val	Glu	Ala	Thr	Ala	Phe	Gly	Leu	Gly
20			,	595					6.00					605
							•							
•	Lys	Glu	Asp	Ala	Val	Leu	Lys	Val	Ala	Val	Lys	Met	Leu	Lys
					610					615				
25	Ser	Thr	Ala	His	Ala	Asp	Glu	Lys	Glu.	Ala	Leu	Met	Ser	Glu
	620					625					630			-
		•				•								•
	Leu	Lys	Ile	Met	Ser	His	Leu	Gly	Gln	His	Glu	Asn	Ile	Val
	•	635				-	640	`				645		
30													*	
	Asn	Leu	Leu	Gly	Ala	Cys	Thr	His	Gly	Gly	Pro	Val	Leu	Val
•			650			•		655	•				660	
								:						
	Ile	Thr	Glu	Tyr	Cys	Cys	Tyr	Gly	Asp	Leu	Leu	Asn	Phe	Leu
35				665					670					675

	Arg	Arg	Lys	Ala	Glu 680		Met	Leu	Gly	Pro 685		Leu	. Ser	Pro
5	Gly 690	Gln	Asp	Pro	Glu	Gly 695	Gly	Val	Asp	Tyr	Lys 700	Asn	Ile	His
	Leu	Glu 705		Lys	Tyr	Val	Arg 710	Arg	Asp	Ser	Gly	Phe 715	Ser	Ser
10	Gln	Gly	Val 720	Asp	Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	Thr
	Ser	Ser	Asn	Asp 735	Ser	Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745
15	Asp	Gly	Arg	Pro	Leu 750	Glu	Leu	Arg	Asp	Leu 755	Leu	His	Phe	Ser
20	Ser 760	Gln	Val	Ala	Gln	Gly 765	Met	Ala	Phe	Leu	Ala 770	Ser	Lys	Asn
,	Cys	Ile 775		Arg	Asp	Val	Ala 780	Ala	Arg	.Asn	Val	Leu 785	Leu	Thr
25	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800	Arg
	Asp	Ile	Met	Asn 805	Asp	Ser	Asn	Tyr	Ile 810	Val	Lys	Gly	Asn	Ala 815
	Arg	Leu	Pro	Val	Lys 820	Trp	Met	Ala	Pro	Glu 825	Ser	Ile	Phe	Asp
35	Cys ā3ū	Val	Tyr	Thr	Val	Gln 835	Ser	Asp	Val	Trp	Ser 848	Tyr	Gly	Ile

	Leu	Leu 845	Trp	Glu	Ile	Phe	Ser 850	Leu	Gly	Leu	Asn	Pro 855	Tyr	Pro
5	Gly	Ile	Leu 860	Val	Asn	Ser	Lys	Phe 865	Tyr	Lys	Leu	Val	Lys 870	Asp
	Gly	Tyr	Gln	Met 875	Ala	Gln	Pro	Ala	Phe 880	Ala	Pro	Lys	Asn	Ile 885
10	Tyr	Ser	Ile	Met	Gln 890	Ala	Cys	Trp	Ala	Leu 895	Glu	Pro	Thr	His
15	Arg 900	Pro	Thr	Phe	Gln	Gln 905	Ile	Cys	Ser	Phe	Leu 910	Gln	Glu	Gln
	Ala	Gln 915	Glu	Asp	Arg	Arg	Glu 920	Arg	Asp	Tyr	Thr	Asn 925	Leu	Pro
20	Ser	Ser	Ser 930	Arg	Ser	Gly	Gly	Ser 935	Gly	Ser	Ser	Ser	Ser 940	Glu
	Leu	Glu	Glu	Glu 945	Ser	Ser	Ser	Glu	His 950	Leu	Thr	Cys		Glu 955
25	Gln	Gly	Asp	Ile	Ala 960	Gln	Pro	Leu	Leu	Gln 965	Pro	Asn	Asn	Tyr
30	Gln 970	Phe	Cys							-	-			
	(2)			ATION JENCI										•
. 35				ENGTH		٠								
3 5		(2	ئىد رى	-NGT	. i	900	am T I	10 at	, LUB			•		

3.5

	(B) TYPE: amino acid
_	(C) STRANDEDNESSS:
5	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	(ix) FEATURE:
	(A) NAME/KEY: PDGF receptor
	(B) LOCATION: Amino acids 522-1087
15	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
20	(B) JOURNAL: Proc. Natl. Acad. Sci.
	(C) VOLUME: 85
25	(D) PAGES: 3435-3439
25	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
30	Met Leu Trp Gln Lys Lys Pro Arg Tyr Glu Ile Arg Trp Lys 522 525 530 535

Val Ile Glu Ser Val Ser Ser Asp Gly His Glu Tyr Ile Tyr

545

540

	550		PIC	, var	. GIN	555		тут	. Web	ser	560	-	GT.	Leu
5	Pro	Arg 565		Gln	Leu	Val	Leu 570		Arg	Thr		. Gly 575	Ser	Gly
	Ala	Phe	Gly 580		Val	Val	Glu	Ala 585	Thr	Ala	His	Gly	Leu 590	Ser
10	His	Ser	Gln	Ala 595	Thr	Met	Lys	Val	Ala 600	Val	Lys	Met	Leu	Lys 605
15	Ser	Thr	Ala	Arg	Ser 610	Ser	Glu	Lys	Gln	Ser 615	Leu	Met	Ser	Glu
	Leu 620	Lys	Ile	Met	Ser	His 625	Leu	Gly	Pro	His	Leu 630	Asn	Val	Val
20	Asn	Leù 635	Leu	Gly	Ala	Cys	Thr 640	Lys	Gly	Gly	Pro	Ile 645	Tyr	Ile
	Ile	Thr	Glu 650	Tyr	Cys	Arg	Tyr	Gly 655	Asp	Leu	Val		Tyr 660	Leu
25	His	Arg	Asn	Lys 665	His	Thr	Phe	Leu	Gln 6 70	Arg	His	Ser	Asn	Lys 675
30	His	Cys	Pro	Pro	Ser 680	Ala	Glu	Leu	Tyr	Ser 685	Asn	Ala	Leu	Pro
	Val 690	Gly	Phe	Ser	Leu	Pro 695	Ser	His	Leu		Leu 700	Thr	Gly	Glu
35	Ser	Asp 705	Gly	Gly	Tyr		Asp 710	Met	Ser	Lys		Glu 715	Ser	Ile

	ASI	, TAT	720) Met	r reu	ı ABİ	725	_	. GIY	ASL	, ile	730	ı I
5	Ala	a Asp) Ile	Glu 735		Pro	Ser	Tyr	740		Pro	Tyr	Asp	Asn 745
	Туг	Val	Pro	Ser	750		Glu	Arg	Thr	Tyr 755	_	Ala	Thr	Leu
10 ,	Ile 760		Asp	Ser	Pro	765		Ser	Tyr	Thr	Asp 770		Val	Gly
, 15	Phe	Ser 775	_	Gln	Val	. Ala	Asn 780	Gly	Met	Asp	Phe	Leu 785	Ala	Ser
	Lys	Asn	Cys 790	Val	His	Arg	Asp	Leu 795		Ala	Arģ	Asn	Val 800	Leu
20	Ile	Cys	Glu	Gly 805	_	Leu	Val	Lys	Ile 810	Cys	Asp	Phe	Gly	Phe 815
	Ala	Arg	Asp	Ile	Met 820	Arg	Asp	Ser	Asn	Tyr 825	Ile	Ser	Lys	Gly
25	Ser 830	Thr	Tyr	Leu	Pro	Leu 835	Lys	Trp	Met	Ala	Pro 840	Glu	Ser	Ile
	Phe	Asn 845	Ser	Leu	Tyr	Thr	Thr 850	Leu	Ser	Asp	Val	Trp 855	Ser	Phe
	Gly	Ile	Leu 860	Leu	Trp	Glu	Ile	Phe 865	Thr	Leu	Gly	Gly	Thr 870	Pro
35	Tyr	Pro	Glu	Leu 875	Pro	Met	Asn	_	Gln 880	Phe	Tyr	Asn		Ile 885

	гÀг	Arg	СТĀ	Tyr	890		Ala	GIN	Pro	895		Ala	ser	Asr
5	Glu 900	Ile	Tyr	Glu	Ile	Met 905		Lys	Cys	Trp	Glu 910		Lys	Phe
	Glu	Thr 915	Arg	Pro	Pro	Phe	Ser 920	Gln	Leu	Val	Leu	Leu 925	Leu	Glu
10	Arg	Leu	Leu 930	Gly	Glu	Gly	Tyr	Lys 935	Lys	Lys	Tyr	Gln	Gln 940	Val
15	Asp	Glu	Glu	Phe 945	Leu	Arg	Ser	Asp	His 950	Pro	Ala	Ile	Leu	Arg 955
	Ser	Gln	Ala	Arg	Phe 960	Pro	Gly	Ile	His	Ser 965	Leu	Arg	Ser	Pro
20	Leu 970	Asp	Thr	Ser	Ser	Val 975	Leu	Tyr	Thr	Ala	Val 980	Gln	Pro	Asn
	Glu	Ser 985	Asp	Asn	Asp	Tyr	Ile 990	Ile	Pro	Leu	Pro	Asp 995	Pro	Lys
25	Pro	Asp	Val 1000		Asp	Glu	Gly	Leu 1005		Glu	Gly	Ser	Pro 1010	
30	Leu	Ala		Ser 1015		Leu	Asn	Glu	Val		Thr	Ser		Thr L025
	Ile	Ser	Cys	Asp	Ser 1030		Leu	Glu	Leu	Gln 1035		Glu	Pro	Gln
35	Gln 1040	Ala	Glu	Pro	Glu	Ala 1045		Leu	Glu	Gln	Pro 1050		Asp	Ser

- 66 -

	Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Let 1055 1060 1065
5	Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080
	Ala Glu Asp Ser Phe Leu 1085
10	(2) INFORMATION FOR SEQ ID NO: 11:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 16 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	TCGACGCGCG ATG GAG 16
30	

5

10

15

20

25

30

35

We claim:

- 1. An isolated DNA sequence encoding the Kinase insert Domain containing Receptor.
- 2. The DNA sequence of Claim 1 wherein said sequence is a human gene.
- 3. An isolated DNA sequence comprising a DNA sequence capable of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.
- 4. A method for the production of a growth factor receptor which comprises transforming a host cell with the DNA sequence of Claim 3 and culturing the host cell under conditions which result in expression of the gene by an expression vector.
- 5. The method of Claim 4 wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
- 6. The method of Claim 5 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
- 7. The method of Claim 5 where the expression vector is pcDNAltkpASP expression vector.
- 8. A lambda gtll phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC Accession number 40,975).
- 9. A plasmid pBlueScript KS which contains the clone BTIV169 (ATCC accession number 75200).
- 10. An isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 11. The receptor of Claim 10 comprising the amino acid sequence of Figure 7.
- 12. The receptor of Claim 10 encoded by an isolated DNA sequence comprising a DNA sequence capable

WO 92/14748 PCT/US92/01300

of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.

- 13. A biologically active protein fragment which retains the receptor activity of the receptor of Claim 10.
- 14. An isolated DNA sequence encoding a biologically active protein fragment which retains the receptor activity of an isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 15. An oligonucleotide primer consisting of an oligonucleotide primer having 21 bases and having a sequence depicted for Primer 1 in Figure 2.
- 16. An oligonucleotide primer consisting of an oligonucleotide primer having 29 bases and having a sequence depicted for Primer 2 in Figure 2.
- 17. The 363 base pair product having the sequence depicted in Figure 4, or a biological equivalent of said sequence.

20

15

5

10

25

30

35

FIG. 1

SUBSTITUTE SHEET

16.2

FIG. 3

CCC - 4 - 4 C C C - 4 \Box 000H0H540HH O \Box D H H A G A H C C H C 4 A A C - C C C C C - A ACCHCHCHCAPA 0 - 0 - 0 - 0 - 0 - 0 C - A C - - C - - C - - C 4 4 4 0 0 H 0 0 0 0 0 CACCC+CCAACA $A \cap C \cap C \cap C \cap A$ A A H H H A A C C C A C O**PUPPPCPPPC** CA H C C B A C C B C B ACHCACHCACHCA

-16.4A

O L L U O L U V A H C A C C A - 4 - 4 5 - 5 4446644 - H & D D H D - C D A A D -PAGGAACI $A G \cap G \cap A$ CATCATA 0 4 G 4 1 C G AGAGCCA 0 4 0 0 0 0 0 0 ALGGCACA \vdash 0 0 4 0 0 0A T A G C G A 0 0 0 0 4 0 4 D A O D A O A A O A A G G C C C

FIG. 4B

10v 20v 30v 40v 50v 60v 70v 80v 90v 100v 10	CAMA ABOV
10v 10v 6AAATGAATT1 50° v 15 TGGCTCCCC TGG TGG TGG TGG TGG	UUACA TUAAAUUAUU GGA GGAGCTCCTGAAGAT— 220° 220° 390° CAACTTGATCAACGAG ACTT GGACTTCCTGACCT—— 240° 250° 480° 490° TGCG—TCCACAGAGACC TGCG—TCCACAGAGACC TGCG—TCCACAGAGACC
PDGF A 361 bp PDGF 361 bp PDGF	360 bp (1905)
SUESTITU	TE SHEET

80v	*GTACCTGC	A ACC G	CTCTACAACTATTTTATGACCGGAGGAGGATCTACTTGAT	60~ 70~	150v 160v 170v 180v	AGACCCGGAGGCCCCCAGGGCTGGAATACTGCTATAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCA	991 0 9	36ATCATGG	160^					
, VOZ 09	TCCAAGGGCAACCTGCGGG	TC A CAAC /	TCTACAACTATTTTA	200	140v 150v 16	GAGGAGCAGCTCTCCTCCAA	GA GAGCAGC C CCA	GACGAGCAGCGAACAGCCAC	90° 100° 110° 120° 130° 140° 150° 160°	240v 250v	뎣	AAGAAG AT CAC GAGACCTGGCAGCCAG AA GT CT	TGGCAGCCAGCAACGTGCT	****
. 20v	TGTCATCGTGGAGTATGCC	ر وط	JC01C	40	v 130v 140	TAACCCCAGCCACAACCCAI	A AGC CA	SCAGAAGAGCTGCACATTT	120^ 130^	220v 230v	**AGTGCATACACCGAGACC	AAG AT CAC GAGACC	CAGATGCTCTAATGTACTGCCGTGGGAAGAAGGTGATTCACAGAGACCTGGCAGCCAGC	4000
20v 40V 50v	CICAGGATGGTCCCTTGTA		CATCCCAACATCCTG	30~	110v 120v	:AGGCTGGAATACTGCTA1	: G GCT A A	3GGAGCTCTACAAGGAGCT (110	200v 210v 220v	GAGTATCTGGCCTCCAAG/	GTA AAG	ATGTACTGCCGTGGGAAG/	1000
10v 20v	AACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATGGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGC	AA CTG TGGGGGCCTGCAC	4ATCTGTTGGGGGCCTGCAC	10^ 20	90v 100v	AGACCCGGAGGCCCCC	3 333	TCTAGAGTATGCCCCCCGC	, 90° 10	190v 20	GGAGGCCCGAGGCATG	GGA GGC G T GTA	GGAGTTGGCAGATGCTCTA	1704
	- - - -	-	දු දි			F0-1		දු දි	• .		<u>.</u>		දි දි	

FIG.5B

SUBSTITUTE SHEET

			- •	•	
			8/28		
CGG Arg>	AGC ATA Ser Ile>	160 * TGC AGG Cys Arg>	CAA Gln>	270 * ATT Ile>	ACT Thr>
50 * ACC Thr	AGC Ser	1 TGC Cys	GAG Glu	ACA Thr	320 * CGG GAA Arg Glu
GAG Glu	100 * AGG CTC A	ACT Thr	210 * AGT Ser	CTC	
GTG	10 AGG Arg	150 * CAA ATT Gln Ile	66C 61y	260 * AAG ACA Lys Thr	TAC
40 * CTC TGC Leu Cys	CCC		AGT	AAG	310 * C TTC
CTC Leu	CTG	ACT CTT Thr Leu	200 * * AAT CAG ASN Gln	250 * CTC TTC TGT A Leu Phe Cys I	310 * AAG TGC TTC TAC Lys Cys Phe Tyr
TGG Trp	90 * GAT ASP	ACT	2 * AAT Asn	250 * C TTC tu Phe	AAG Lys
30 * GCC CTG Ala Leu	CTT Leu	140 * * T AAT ACA a Asn Thr	AAT Asn	2. CTC Leu	TAC
30 * GCC Ala	TCT	* AAT Asn	190 * TGG CCC Trp Pro	GGC	300 * GCC Ala
GTC Val	80 * GTT Val	130 * ATT AAG GCT Ile Lys Ala	1 TGG Trp	GAT	GGA (Gly)
GCC Ala	70 * GGT TTG CCT AGT Gly Leu Pro Ser	130 * T AAG e Lys	CTT	240 * AGC Ser	ACT
20 * CTG Leu	CCT	1 ATT Ile	TGG	GAG TGC G	290 * * AAT GAC A
CTG	70 * TTG Leu	ACA Thr	180 * GAC Asp	GAG	* AAT Asn
GTG Val		CTT	GAC TTG Asp Leu	230 * ACT Thr	GGA G1y
10 * AAG Lys	GTG Val	120 * ATA Ile		GTG Val	280 * 'G ATC
AGC	TCT Ser	110 * CAA AAA GAC Gln Lys Asp	170 * GGA CAG AGG Gly Gln Arg	GAG Glu	21 GTG Val
GAG	60 * GCC GCC 7 Ala Ala 8	AAA Lys	CAG	220 * AGG GTG (Arg Val (aaa Lys
ATG Met	GCC	110 * CAA Gln	GGA G1y	2. AGG Arg	28 CCA AAA GTG
					X
					G.

				9/4.4	•	
	TTT ATT Phe Ile>	430 * C AAA n Lys>	CTT TGT Leu Cys>	540 * * GAC ASP>	GTC Val>	610 620 630 640 AAA ATT AAT GAT GAA AGT TAC CAG TCT ATT ATG TAC ATA GTT Lys Ile Asn Asp Glu Ser Tvr Gln Ser Ile Met Tur Ile Villa Coll
		* AAC Asn	CTT	TCC TGG Ser Trp	590 * ATG Met	ATA
0,0	AGA TCT CCÀ Arg Ser Pro	AAA Lys	480 * TCA Ser	TCC	590 * GCT GGC ATG Ala Gly Met	0 * TAC
370	TCT	AAC Asn	GTG Val		GCT	640 * ATG T
	AGA Arg	420 * GAG Glu	* AAC Asn	5 AGA Arg		ATT
	TAC Tyr	ACT		AAC Asn	580 * AGC TAT Ser Tyr	TCT
360	GAT Asp	ATT Ile	AAT Asn	510 520 530 ** TTT GTT CCT GAT GGT AAC AGA ATT Phe Val Pro Asp Gly Asn Arg Ile	570 580 * TAC ATG ATC AGC TAT Tyr Met Ile Ser Tyr	630 * CAG
	CAA G1n	400 410 * CAT GGA GTC GTG TAC His Gly Val Val Tyr	460 * GGG TCC ATT TCA Gly Ser Ile Ser	520 * GAT G	ATG Met	TAC
	GTT Val	GTG Val	460 * C ATT r Ile	CCT	570 * TAC Tyr	AGT Ser
350	GTC ATT TAT GTC TAT Val Ile Tyr Val Tyr	GTC Val	46 TCC Ser	GTT Val	560 * TTT ACT ATT CCC AGC Phe Thr Ile Pro Ser	620 * GAA
·	GTC Val	400 * T GGA S Gly	666 61y	510 * TTT Phe	CCC	GAT Asp
	TAT Tyr	4 CAT H1s	450 * ATT CCA TGT CTC Ile Pro Cys Leu	500 * CCA GAA AAG AGA Pro Glu Lys Arg	560 * ATT Ile	AAT
340	ATT Ile	GAC CAA (Asp Gln 1	450 * TGT Cys	AAG Lys	ACT	.0 * ATT 11e
æ		GAC	CCA	500 * GAA Glu		610 * AAA A' Lys I
	TCG	390 * AGT Ser	ATT		50 * GGC G1y	GCA Ala
	GCC	TCT GTT Ser Val	440 * GTG Val	TAC	5. AAG Lys	GAA Glu
330	TTG Leu	TCT Ser	440 * ACT GTG GTG Thr Val Val	490 * GCA AGA TAC Ala Arg Tyr	55 AGC AAG AAG Ser Lys Lys	600 * TGT Cys
	GAC	380 * GCT Ala	ACT Thr	GCA Ala	AGC Ser	600 * TTC TGT GAA Phe Cys Glu
					• •	7B
			,			,

. 002	GGA ATT Gly Ile>	CTA Leu>	810 * AAG Lys>	TTT & V /01	ACC Thr>	970 * AGG GTC Arg Val>
70	GGA G1y	GAA G1u	CAT H1s	860 * AAA Lys	TAC	9. AGG Arg
	CAT His	750 * ACT Thr	CAG Gln	AAG Lys	0 * TTG Leu	GTC
	rcr Ser	GCA AGA Ala Arg		4TG 4et	910 * CAA GGA TTG Gln Gly Leu	TTT
¢ 069	CCG	GCA	800 * AAG CAT Lys H1s	0 * GAG Glu	CAA Gln	960 * ACA Thr
•	AGT Ser	740 * ACA]Thr	800 * TCG AAG CAT Ser Lys H1s	850 * AGT GAG 1 Ser Glu 1	GAC	AGC
	CTG AGT Leu Ser	730 740 * * * CTT GTC TTA AAT TGT ACA Leu Val Leu Asn Cys Thr		GGG .	300 * AGT Ser	* 4AC 4Sn
089	GTT Val	* AAT Asn (790 * CCT TCT Pro Ser	TCT Ser	ACC CGG 7 Thr Arg 9	950 * AAG AAG) Lys Lys)
	GTG Val	10 * TTA Leu	ľac ľyt	840 * CAG Gln	ACC Thr	9 AAG Lys
	GAT GTG GTT Asp Val Val	730 * GTC T	GAA G1u	ACC Thr	890 * GGT GTA Gly Val	ACC
0.*	ATT TAT	CTT	780 * TGG	AAA ACC Lys Thr	g GGT G1y	940 * CTG ATG ACC Leu Met Thr
670	ATT Ile	AAG Lys	AAC Asn	830 * CTA Leu	GAT	940 * CTG A' Leu M
	AGG	720 * GAA Glu	TTC	gac Asp	TA 1e	666 61y
	TAT Tyr	GGA G1y		CGA Arg	880 * ACT A' Thr I	AGT
* 099	666 61y	GTT Val	ATT	20 * AAC Asn	TTA Leu	930 * TCC Ser
	GTA Val	710 * TCT Ser	666 61y		ACC	
	GTT Val	CTA	760 * T GTG n Val	CTT Leu	870 * AGC ACC Ser Thr	GCA
650	GTC GTT GTA Val Val Val	710 * GAA CTA TCT Glu Leu Ser	760 * AAT GTG GGG ASn Val Gly	82 AAA CTT GTA Lys Leu Val	TTG	920 TGT GCA GCA FIG. 7C Cys Ala Ala
						20
						6.
			•			l.

CCT GTG Pro Val>

Ser 1

TCT CTA ATC 7

GAG AAA 'Glu Lys

CAG ATT GGT (Gln Ile Gly (

CCC

TAT Tyr

GTG Val

GTT Val

CTG (

1010 * GGC ATG GAA TCT CTG GTG GAA GCC Gly Met Glu Ser Leu Val Glu Ala>	1060 1070 1080 * * * * AAG TAC CTT GGT TAC CCA CCC CCA Lys Tyr Leu Gly Tyr Pro Pro Pro>	1120 1130 * * GAG TCC AAT CAC ACA ATT AAA Glu Ser Asn His Thr Ile Lys>	1170 1180 ** * * * * * * * * * * * * * * * * *	1240 * * AAG CAG AGC CAT GTG GTC TCT Lys Gln Ser His Val Val Ser>	1280 1290 * *
990 1000 * TTT GTT GCT TTT GGA AGT GGC Phe Val Ala Phe Gly Ser Gly	1050 * T GTC AGA ATC CCT GCG AAG 9 Val Arg Ile Pro Ala Lys	1100 * TAT AAA AAT GGA ATA CCC CTT GAG TYT LYS ASN GlY Ile Pro Leu Glu	1150 1160 1 * * CTG ACG ATT ATG GAA GTG AGT Leu Thr Ile Met Glu Val Ser	ACC AAT CCC ATT TCA AAG GAG Thr Asn Pro Ile Ser Lys Glu	1260 1270
980 * AAA CCT	1030 1040 * * ACG GTG GGG GAG CG' Thr Val Gly Glu Ar	1090 * GAA ATA AAA TGG 7	1140 * GCG GGG CAT GTA (Ala Gly His Val 1	1190 * * ACT GTC ATC CTT 7 Thr Val Ile Leu 7	1250

			12/24.		
1350 * TAT GCC ATT Tyr Ala Ile>	1370 1380 1390 1400 * * * CAC ATC CAC TGG TAT TGG CAG TTG GAG GAA GAG TGC GCC AAC His lie His Trp Tyr Trp Gln Leu Glu Glu Glu Cys Ala Asn>	TGG AGA Trp Arg>	1510 1510 * * * * * * * * * * * * * * * * * * *	GCG GCA Ala Ala>	1590
1 GCC Ala	1400 * ic Gcc		151 CAA Gln	GCG	GGA G1y
ТАТ Туг	1. TGC Cys	50 * GAA Glu	AAT	1560 * CAA Gln	aga Arg
1340 * CG GTC hr Val	GAG G1u	1450 * GAA G	aaa Lys	ATC	1610 * C GGG
13 ACG Thr	90 * GAA Glu	1450 * CCT TGT GAA GAA Pro Cys Glu Glu	1500 * AAT 1 ASD 1	GTT	1(GTC Val
CAA ACG CTG ACA TGT ACG GTC GIn Thr Leu Thr Cys Thr Val	1390 * GAG G/ Glu G		GTT	1520 1560 * * * * * * * * * * GCT CTA ATT GAA GGA AAA AAC AAA ACT GTA AGT ACC CTT GTT ATC CAA GCG GCA Ala Leu Ile Glu Gly Lys Asn Lys Thr Val Ser Thr Leu Val Ile Glu Ala Ala Ala	aaa Lys
10 + ACA Thr	TTG	1420 1430 1440 * * GCT GTC TCA GTG ACA AAC CCA TAC Ala Val Ser Val Thr Asn Pro Tyr	GAA Glu	1.9 ACC Thr	30 * AAC Asn
1330 CTG A	CAG	CCA	1490 * NA ATT 'S Ile	AGT Ser	1600 * GTC AA
ACG	1380 * r TGG : Trp	AAC Asn	1480 * 1490 GGA GGA AAT AAA ATT Gly Gly Asn Lys Ile	1540 * CT GTA hr Val	GCG
CAA G1n	TAT Tyr	1430 * 'G ACA 11 Thr	AAT Asn	15 ACT Thr	GAA
1320 4 GGC ACC ACT G1y Thr Thr	TGG	1 GTG Val	1480 * GGA GGA Gly Gly	AAA Lys	1590 * TGT Cys
1 ACC Thr	1370 * 'C CAC e His	TCA		* AAC Asn	AAA Lys
660	1 ATC Ile	1420 * :cr Grc	CAG Gln	1530 * AAA Lys	TAC
1310 * AG TAC ln Tyr		14 GCT	TTC	GGA G1y	1580 , * T TTG a Leu
1300 1310 * * GAT TCC TAC CAG TAC ASP SET TYT GIN TYT	1360 CCT CCC CCG CAT Pro Pro Pro His	1410 * GAG CCC AGC CAA Glu Pro Ser Gln	1470 * GTG GAG GAC TTC Val Glu Asp Phe	GAA	1570 1580 * * * AAT GTG TCA GCT TTG ASn Val Ser Ala Leu
TAC	13 CCG	: AGC	GTG GAG Val Glu	1520 * TA ATT	TCA
)0 * TCC	, ccc	1410 * CCC		CTA	70 * GTG Val
1300 4 GAT 1 Asp 3	CCT	GAG	1460 * AGT Ser	GCT	1570 * * AAT G7 ASD V8
			~		7E
					F16. 7E
		-		÷	ـــا

1640 1650 1660 * * *	C TCC TTC CAC GTG ACC AGG GGT CCT GAA ATT ACT e Ser Phe His Val Thr Arg Gly Pro Glu Ile Thr	1690 1700 1710 * * *	T GAG CAG GAG AGC GTG TCT TTG TGG TGC ACT I Glu Gln Glu Ser Val Ser Leu Trp Cys Thr	0 1750 1760 1770	AAC CTC ACA TGG TAC AAG CTT GGC CCA CAG CCT Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro	1800 1810 1820 * *	G CCC ACA CCT GTT TGC AAG AAC TTG GAT ACT CTT TGG AAA TTG u Pro Thr Pro Val Cys Lys Asn Leu Asp Thr Leu Trp Lys Leu	1850 1860 1870 * * *	ATG TTC TCT AAT AGC ACA AAT GAC ATT TTG ATC ATG GAG CTT Met Phe Ser Asn Ser Thr Asn Asp Ile Leu Ile Met Glu Leu	1910 1920 1930 *	K
1630	AGG GTG ATC TCC	1680	ATG CAG CCC ACT Met Gln Pro Thr	1730 1740 * * *	ACG TTT GAG AA Thr Phe Glu As	1790	GTG GGA GAG TTG Val Gly Glu Leu	1840	GCC ACC Ala Thr	1900	r gca Tcc

1950	100 2010 2020 2030 2040 2050 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2060 2070 2080 2090 2100 GAA GTC TCA TGC ACG GCA TCT GGG AAT CCC CCT CCA CAG ATC ATG TGG TTT AAA Glu Val Ser Cys Thr Ala Ser Gly Asn Pro Pro Gln Ile Met Trp Phe Lys>	10 2120 2160 % * * * * * * * * * * * * * * * * * *	2170 2180 2190 2200 2210 *	2220 2250 2260 * * * * * * * * * * * * * * * * * * *
1950 * ACC AAG Thr Lys	2000 CCC ACG Pro Thr	2 GAA GTC Glu Val	2110 ** GAT AAT GA Asp Asn Gl	* AAC CTC Asn Leu	2220 GCA TGC AGT F I G. 76 Ala Cys Ser
					للـ

TGC AGG ACA Cys Arg Thr>

ATT GAC AAG P

GAG ATT GAA GCA GAT GCC TTT Glu ile Glu Ala Asp Ala Phe

CAA

	(c)		SC la>	30	* 4 A	15/29	GAA Glu>		GGC G1y>	
2320	TG A		CGG GCC Arg Ala>	2430	GAT GAA Asp Glu>	0+	* GG GI TP G]		TTT G(Phe G)	2590
	ACG C	2370			CCA G Pro A	2480	AAA TGG Lys Trp		GCC T Ala P	
	AAC TTG GAA ATC ATT ATT CTA GTA GGC ACG ACG GTG ATT ASN Leu Glu Ile Ile Ile Leu Val Gly Thr Thr Val Ile>	2	CTA CTT CTT GTC ATC CTA GGG ACC GTT AAG Leu Leu Leu Val 11e 11e Leu Gly Thr Val Lys	2420	ATG GAT (Met Asp 1		GCC AGC AAA TGG GAA Ala Ser Lys Trp Glu	2530	GGT GCC Gly Ala	
2310	GGC G1y		ACC	24	ATG Met	0,0	gcc Ala		CGT Arg	2580
	GTA Val	2360	GCC ATG TTC TGG CTA CTT CTT GTC ATC ATC CTA GGG Ala Met Phe Phe Trp Leu Leu Leu Val Ile Ile Leu Gly		GTC	2470	GAT Asp		GGC G1y	.,
	CTA	2	CTA	2410	TCC ATC Ser Ile	,	TAT Tyr	2520	CTT	
2300	ATT	•	ATC Ile	24	TCC	÷	CCT		CCT	2570
	ATT I I I	2350	Z ATC		TTC	2460	CGA CTG Arg Leu		AAG Lys	
	A ATO	2;	r GT(~ *	TAC TY1			2510	AAC CTA GGT AAG Asn Leu Gly Lys	
2290	G GA		r CT	2400	4 GG(r G1y		r gaa s glu		CTA	2560
2	C TT n Le	0 *	A CT u Le		G AC	2450	r TGT s Cys			25
		2340	G CT P Le		G AA(u Ly		GAA CAT TGT Glu His Cys	2500	CGG CTG Arg Leu	
0 *	G ACG		C TG e Tr	2390	A CT u Le				c cgg p Arg	ο.
2280	AA AAG lu Lys	~	ic TT		6 GA 7 G1	440	G GA		A GA g Ası	2550
	AG G/ 1n G]	2330	rG Tr		34 GG 14 G1	2	A TT	.0 *	C AG	
0 *	GCC CAG GAA AAG ACG Ala Gln Glu Lys Thr		CC A	2380	AAT GGA GGG GAA CTG AAG ACA GGC TAC TTG Asn Gly Gly Glu Leu Lys Thr Gly Tyr Leu		CTC CCA TTG GAT Leu Pro Leu Asp	2490	TTC CCC AGA GAC Phe Pro Arg Asp	<u> </u>
2270	υα		D A		RR		υÄ		T	2540
			•		-					

		•			
GCT CTC Ala Leu>	2700 * GTC AAC Val Asn>	2750 * G GAA TTC 1 Glu Phe>	TTT GTC Phe Val>	2860 * GGA GCA Gly Ala>	AGC TCA Ser Ser>
2640 * GAG CAT CGA GCT CTC Glu His Arg Ala Leu	2690 * CTC AAT GTG Leu Asn Val	ATT GT Ile Va	2800 * AGA AAT GAA Arg Asn Glu	2850 * GAC TAC GTT ASP Tyr Val	2910 * AGT AGC CAG Ser Ser Gln
2630 * ACA CAC AGT C Thr His Ser C	2680 * GGT CAC CAT (2740 ¢ CCA CTC ATG GTG Pro Leu Met Val	STTO 2780 2790 2800 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A GGG AAA	ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA ATC CAT GTG GAT CTG AAA CGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA ATC CAT GTG GAT AGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA ATC CAT GTG GAT CTG AAA CGG CGC TTG GAC AGC ACC AGT AGC CAG AGC TCA ATC CAT GTG GAT CTG AAA CGG CGC TTG GAC AGC ACC AGT AGC CAG AGC TCA
2620 * GGA GCA Gly Ala	CAT ATT His lle	2730 * CCA GGA GGG C Pro Gly Gly P	2780 * CT TAC CTG A	2840 * SA TTC CGT CA G Phe Arg Gl	2890 * 3C TTG GAC A
2610 * TTG AAA GAA Leu Lys Glu	ATC CTC	2720 * ACC AAG Thr Lys	2770 * AC CTG TCC AC Sn Leu Ser Th	2830 * GGG GCA CG Gly Ala Ar	2880 * AAA CGG CG Lys Arg Ar
AAA ATG Lys Met	2660 SAA CTC AAG Slu Leu Lys	2710 * GGT GCC TGT G1y Ala Cys	•	(A)	10 * STG GAT CTG 'al Asp Leu
2600 * GTA GCA GTC Val Ala Val	2650 * ATG TCT GAA Met Ser Glu	CTT CTA (Leu Leu (2760 * TGC AAA TTT Cys Lys Phe	2810 CCC TAC AAG Pro Tyr Lys	2870 * ATC CCT GTG 71 Ile Pro Val
					. <u>.</u> .

•			•	
2970 * GAG GAA Glu Glu>	3020 * C TGT TAC e Cys Tyr>	ATC CAC Ile His> 3130 AAA ATC Lys Ile>	AGA AAA Arg Lys>	3240 * GAC AGA ASP Arg>
CTG GAG GAG AAG TCC CTC AGT GAT GTA GAA GAA GAA VAl Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Glu Glu	30 AT CTC ATC IS Leu Ile 3070	CGA AAG TGT Arg Lys Cys 1120 AAC GTG GTT Asn Val Val	3180 * GAT TAT GTC ASP TYR VA1	3230 * ACA ATT TTT Thr Ile Phe
2950 * CTC AGT GAT Leu Ser Asp	3010 * ACC TTG GAG CAR Leu Glu H 3060	TTG GCA TCG Leu Ala Ser 10 3 TCG GAG AAG Ser Glu Lys	3170 * AAA GAT CCA Lys ASP Pro	3210 * TTG AAA TGG ATG GCC CCA GAA Leu Lys Trp Met Ala Pro Glu
40 * AG AAG TCC (3000 * * sp Phe Leu 7	GTG GCT AAG GGC ATG GAG TTC TTG Val Ala Lys Gly Met Glu Phe Leu 1090 3100 3110 GCG GCA CGA AAT ATC CTC Ala Ala Arg Asn Ile Leu Leu Ser	3160 * ATT TAT Ile Tyr	.0 * A TGG ATG G 'S Trp Met A
2940 * GTG GAG GAG Val Glu Glu		GTG GCT AAG GGC ATG GAG Val Ala Lys Gly Met Glu 3090 GCG GCA CGA AAT ATC CTC Ala Ala Arg Asn Ile Leu	1150 * GCC CGG Ala Arg	3210 * CCT TTG AAA Pro Leu Lys
2930 * CT GGA TTT er Gly Phe	ω Ι	AA GTG GCT In Val Ala 3090 ** GCG GCA	3 GGC TTG Gly Leu	3200 ¢ CGC CTC Arg Leu
2920 * GCC AGC TCT Ala Ser Ser	29 GCT CCT GAA Ala Pro Glu 3030	AGC TTC CAA Ser Phe Gln 3080 AGG GAC CTG Arg Asp Leu	3140 rgr gac rtr cys asp Phe	3190 * GGA GAT GCT Gly Asp Ala
		c		ر.' ا
				9

				/		•
	ATA Ile>	TGT Cys>	3400 * CCA GAA Pro Glu>	の CCC ACG Profit Pro Thr>	3510 * CAG CAG Gln Gln>	GAG G1u>
3290	CTG TGG GAA A Leu Trp Glu 1	TTT	3400 * CCA GAA Pro Glu	CCC ACG	CAG Gln	3560 * G GAA' t Glu
33	TGG Trp	3340 * GAA GAA	ACA	3450 * AGA Arg	GCT Ala	35 ATG Met
	CTG	3340 * GAA G	ACT	3 CAG Gln	3500 * T AAT a Asn	AGC
o *	TTG	GAT	3390 * TAT Tyr	3450 * AGT CAG AGA C Ser Gln Arg F	35 GCT Ala	0 * FTG /
3280	TTT GGT GTT TTG Phe Gly Val Leu	ATT Ile	3 GAT Asp	3440 * G CCC u Pro	3490 3500 * CTC TTG CAA GCT AAT GCT Leu Leu Gln Ala Asn Ala	3550 * ACT T
	GGT Gly	3330 * AAG Lys	CCT	34 GAG G1u	0 * rrg (Leu (3AG 7
	TTT Phe	3 GTA Val	3380 4 6 GCC 9 Ala	3440 * GGG GAG CCC Gly Glu Pro	3490 * CTC TTG Leu Leu	rca (
3270	TCT Ser	CCT GGG GTA AAG ATT GAT Pro Gly Val Lys Ile Asp	33 AGG	AC Is		3530 3540 3550 3560 * * * * * * * ATT GTT CTT CCG ATA TCA GAG ACT TTG AGC ATG GAA GAG Ile Val Leu Ser Met Glu Glu
က	GAC GTC TGG TCT Asp Val Trp Ser	3320 * T CCT T Pro	ATG Met	3430 * TGG C/ Trp H	GGA AAT Gly Asn	3 3 3 3 5 7
	GTC Val	33 TAT TYE	0 * AGA Arg	TGC		CTT (
3260		3320 * CCA TAT CCT Pro Tyr Pro	3370 * ACT A(Thr A)	GAC TGC ASP Cys	3480 * CAT TTG His Leu	30 * GTT (
32	AGT GAC Ser Asp	0 * TCT Ser	GGA G1y	3420 * CTG Leu	GAA Glu	3530 * ATT GT
-	CAG Gln	331 GCT Ala	GAA G1u	3 ATG Met		TAC TYE
0 *		GGT G1y	3360 * AAA Lys	ACC Thr	. E e	0 * 3AC '
3250	ACA Thr	TTA	3 TTG Leu	3410 * c cAG r Gln	GAG Glu	3520 * AAA Gi Lys As
	TAC Tyr	3300 * TCC Ser	CGA	34 TAC Tyr	0 * TCA Ser	36C /
	GTG TAC ACA ATC Val Tyr Thr Ile	3300 * TTT TCC TTA GGT Phe Ser Leu Gly	3350 3360 3370 3380 3390 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3410 3420 * * ATG TAC CAG ACC ATG CTG GAC TGC Met Tyr Gln Thr Met Leu Asp Cys	3460 * TTT TCA GAG 7 Phe Ser Glu I	3520 CAT GGC AAA GAC K ASP Gly Lys ASP
			33			×
						. 👞

GTG CCC AGC AAA AGC AGG GAG TCT GTG GCA TCT Val Pro Ser Lys Ser Arg Glu Ser Val Ala Ser>

GGT GGA ATG GIY GIY Met V

TCT (

3600 36 GTT TCC TGT ATG GAG Val Ser Cys Met Glu 650 3660 ACA GCA GGA ATC AGT Thr Ala Gly 11e Ser 3710 AGT GTA AAA ACA TTT Ser Val Lys Thr Phe 3760 3770 CCA GAT GAC AAC CAG Pro Asp Asp Asn Gln 3820 ACT TTG GAA GAC AGA Thr Leu Glu Asp Arg	3880
3650 3650 3650 1 Ser V 3760 3760 2 CCCA G e Pro A A ACT T A A ACT T S Thr L	3870
3590 CCT ACC TCA CCT Bro Thr Ser Pro 3640 3640 31700 AGC CGG CCT GTG Ser Arg Pro Val 3750 GTA AAA GTA ATC Val Lys Val 11e COO 3810 GAA GAG CTG AAA	3860
3570 GAT TCT GGA CTC TCT CTG Asp Ser Gly Leu Ser Leu 1 20 3630 3630 3630 GTA TGT GAC CCC AAA TTC CTG Val Cys Asp Pro Lys Phe B 3680 3690 3690 3690 3690 3690 3690 3690 3690 3690 3790 3790 3790 3790 3790 3790 3790 3790 3790 3790 3800 GGT ATG GTT CTT GCC TCA GAA CTG GAA CTG GAA CTG GAA CTA	3850
GAT TCT GGA CTC ASP SET Gly Leu 3620 GTA TGT GAC CCC Val Cys Asp Pro 3680 CAG AAC AGT AAG GIN ASN SET Lys 3730 3730 3730 CCG TTA GAA GAA CCG TTA GAA GAA Pro Leu Glu Glu GGT ATG GTT CTT GIY MET VAI LEU	3840

				29/28			
40	ACA Thr>		GAG ATT Glu Ile>	<i>19/28</i> 4020 4	3 ACC ACA 7 Thr Thr>	,	
3940	GAC		GAG Glu		ACC		
	GAT Asp	3990	ATA [1e		31,		
	TCC	()	CTG	4040	ACG		
3930	CAC		AAG CTG I Lys Leu	. 4(GAC ACG (
	TAT Tyr	3980	TTA		CCI		
	GGA Gly	35	ACC GTG TAC TCC AGT GAG GAA GCA GAA CTT Thr Val Tyr Ser Ser Glu Glu Ala Glu Leu	4030	CAA ACC GGT AGC ACA GCC CAG AIT CTC CAG Gln Thr Gly Ser Thr Ala Gln Ile Leu Gln		
3920	TAC CAG.TCC Tyr Gln Ser		GAA Glu	40	CTC		
36	CAG Gln	0,4	GCA Ala		ATT Ile	•	
	TAC Tyr	3970	GAA G1u		ÇAG Gln		
1.0 *	AGC GGC 7 Ser Gly 7		GAG Glu	4020	GCC Ala		
3910	AGC		AGT		ACA Thr	4070	GTT TAA Val ***
	TCA AAC CAG ACA Ser Asn Gln Thr	3960 *	TCC		AGC	4	GTT
	CAG Gln	• ,	TAC Tyr	4010	GGT G1y		CCT Pro
3900 *	AAC Asn		GTG Val	4	ACC Thr	09 *	CCT Pro
	TCA	3950	ACC Thr	-		4060	TCT CCT (Ser Pro
	GGC Gly	36	ACC Thr	4000	GTG Val		AGC Ser
3890	GAA Glu	•	GAC ACC ASP Thr	40	GGA (CTG /

21/28

SUBSTITUTE SHEET

22/28

KDR 891 HIGHHLNVVNLLGACTKPGGPLMVIVEFCKFGNLSTYLRSKRNEFVPYKTKG Ckit 646 YL*N*M*I*******I-***TL**T*Y*CY*D*LNF**R*DS*ICS*QED CSF1 639 *L*Q*E*I*******H-***VL*T*Y*CY*D*LNF**R*BAMLGPSLSP PDGF 625 *L*P**********************************	KDR 787 GTVKRANGGELKTGYLSIVMDPDELPLDEHCERLPYDASKWEFPRDRLNLGK ckit 543 L***YLQKPMYEVQWKVVEEINGNNYVYIDPTQ****H-*****N**SF** CSF1 536 LLY*YKQKPKYQVRWKIIESYEGNSYTFIDPTQ***NE-*****NN*QF** PDGF 522 MLWQKKPRYEIRWKVIESVSSDGHEYIYVDPVQ****-ST****QLV**R
891 646 639 625	<pre></pre>

KDR 1325 ELLKLIEIGVQTGSTAQILQPDTGTTLSSPPV

-***A*********************************	ARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLGASPYPGVKIDEEFC ****V********************************	RRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQRPTFSELVEHLGNLLQANA KMI***F**LS*EHAPA***DI*KT**DAD*LK****KQIVQLIEKQISEST KLV*D*YQ*AQ*AFAPKNI*SI*QA**AL**TH****QQICSF*QEQAQEDR NAI*R*Y**AQ*AHASD*I*EI*QK**EEKFET**P**Q**LL*ER**GEGY	QQDGKDYIVLPISETLSMEEDSGLSLPTSPVSCMEEEEVCDPKFHYDNTAGI NHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV RERDYTNLPSSSRSGG*GSSS*E*EEESSSEHLTCC*QGDIAQPLLQPNNYQ KKKYQQVDEEFLRSDHPAILR*QARF*GIHSLRSPLDTSSVLYTAVQPNESD	SQYLQNSKRKSRPVSVKTFEDIPLEEPEVKVIPDDNQTDSGMVLASEELKTL FC ND*IIPLPDPKPD*ADEGLPEGSPSLASSTLNEVNTSSTISCDSPL*LQEEP	EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSFL
ckit 777 CSF1 762 PDGF 779	KDR 1065 ckit 828 CSF1 814 PDGF 831	KDR 1117 ckit 880 CSF1 862 PDGF 883	KDR 1169 ckit 932 CSF1 914 PDGF 934	<u>KDR</u> 1213 CSF1 966 PDGF 987	<u>KDR</u> 1273 PDGF1039

IDENTIFICATION OF kdp mRNA

FIG. 10

25/28

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

STRUCTURE STRUCT

SUBSTITUTE SHEET

BAND 1_ Band 2_			_200 _97
			_69 _46
BAND 3_			_ 30 _ 21
	1	2	

FIG. 14

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US92/01300

International Application No. PC170002201300								
		ON OF SUBJECT MATTER (if severs		licate all) ³				
According to International Patent Classification (IPC) or to both National Classification and IPC								
IPC (5): C07K 3/00, 13/00; C07H 21/00; C12P 21/06, 21/02, 21/04; C12N 15/00 US CL : 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1								
II. FIEL	DS SEAR							
			mentation Searched ⁴					
Classificat	ion System	<u> </u>	Classification Symbols					
บ.ร	U.S. 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1							
	Documentation Searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched 5							
	DIALOG 1 terms	: type III receptor tyros:		-				
III. DOC	UMENTS	CONSIDERED TO BE RELEVANT 14						
Category*	Citatio	n of Document, ¹⁶ with indication, where ap	propriate, of the relevant passages 17	Relevant to Claim No. 18				
Y,P	Mathew isolat hemato	Natl. Acad. Sci., Volumes et al., "A receptor ed from a population opoietic cells and exhibit to c-kit", pages 9 nt.	tyrosine kinase cDNA of enriched primitive biting close genetic	1-17				
Y	Proc. Natl. Acad. Sci., Volume 86, Issued March 1989, A.F. Wilks, "Two putative protein-tyrosine kinases identified by applicatin of the polymerase chain reaction", pages 1603-1607, see entire document.							
X,P	Oncogene, Volume 6, issued 1991, B.I. Terman et al., "Identification of a new endothelial cell growth factor receptor tyrosine kinase", pages 1677-1683, see entire document.							
A	novel modula	ne, volume 3, issued 198 protein tyrosine kinase go ted during endothelial o 9-15, see entire document	ene whose expression is cell differentiation".	1-17				
· Caralin								
* Special categories of cited documents: 18 "A" document defining the general state of the art which is not considered to be of perticular relevance. "E" earfier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of enother citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date "Y" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date "T" later document published after the international filing date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to invention cannot be considered." "Y"								
		empletion of the International Search ²	Date of Mailing of this International	Search Report ²				
	W377 -	202	1 9 MAY 1992	, .				
	MAY 1							
internation	nel Searchi	ng Authority ¹	Signature of Authorized Office 7	me / /				
TSE	201		Torraine W Spector	19 -415V				

Form PCT/ISA/210 (second sheet)(May 1986) &

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET						
A Y	Oncogene, volume 5, issued 1990, M. Shibuya et al., "Mucleotide sequence and appression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.	1-17 17				
Y	Proc. Natl. Acad. Sci., Volume 85, Issued May 1988, R.G.K. Gronwald et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class", pages 3435-3439, see entire document.	15				
	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹					
V. ∐ 0€	SERVATIONS WHERE CERTAIN CLASSIS WERE POURD ON SERVICES. Stonel search report her not been established in respect of certain claims under Article 17(2) (a) for	the following reasons:				
This intern	ational search report fies not been established in respect or certain coming color or seasonable that Australia	ority, pamely;				
1. L. C	im numbers ω because they relate to subject matter (1) not required to be secrohed by this Auth					
	·					
2. 🔲 Cl ai	m numbers _ because they relate to perts of the international application that do not comply with ti scribed requirements to such an extent that no meaningful international search can be carried out ()	I), specifically:				
busicines isdramment in artist an extent may no management and an artist and an artist and artist arti						
Claim numbers _, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).						
VI. Z CESERVATIONS WHERE UNITY OF INVENTION IS LACKING ²						
This international Searching Authority found multiple inventions in this international application as follows:						
T C1=	ime 1-9 and 14-17, drawn to nucleic acids and expression there-	f. Class 536,				
subclass 27 and Class 435, subclass 69.1. subclass 27 and Class 435, subclass 69.1. II. Claims 10-13, drawn to an isolated growth factor receptor. Class 530, subclass 387.						
I — cu	all required additional search fees were timely paid by the applicant, this international search report ime of the international application. (Telephone Practice)	4				
2. 🗆 🛵	2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:					
3. No No	required additional search fees were timely paid by the applicant. Consequently, this international s tricted to the invention first mentioned in the claims; it is covered by claim numbers:	search report is				
4. As no	all searchable claims could be searched without effort justifying an additional fee, the international trivite payment of any additional fee.	Search Authority did				
	a process:					
	propert accompanied the payment of additional search rees.					

Form PCT/ISA/210 (supplemental sheet(2))(Rev. 4-90) 6

International Application No. PCT/US92/01300

III. DOC	III. DOCUMENTS CONSIDERED T BE RELEVANT (CONTINUED FROM THE SECOND SHEET)				
Category*	Citation of Document, 18 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No.18			
Y	Proc. Natl. Acad. Sci., Volume 86, Issued November 1989, M. Streuli et al., "A family of r ceptor-linked protein tyrosine phosphatas s in humans and Drosophila", pages 8698-8702, see entir document.	1-14			
Y	M.A. Innes et al., PCR Protocols, a guide to methods and applications, published 1990 by Academic Press (N.Y.), see page 10.	15, 16			
-					
İ					

Form PCT/ISA/210 (extra sheet)(May 1986) B.