LLM Notes

A PREPRINT

July 18, 2025

Contents

1	Atte	ntion	2
	1.1	Self Attention	2
	1.2	Multi-Head Attention	3
	1.3	KV-Cache	4
2	Posi	tional Embedding	6

1 Attention

1.1 Self Attention

Given input $X \in \mathbb{R}^{T \times D}$ where T is the sequence length and D is the embedding dimension, we have

$$Q = W_Q X \in \mathbb{R}^{T \times d_k} \quad K = W_K X \in \mathbb{R}^{T \times d_k} \quad V = W_V X \in \mathbb{R}^{T \times d_v}$$
 (1)

$$\operatorname{Attn}(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right) \boldsymbol{V} \tag{2}$$

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_{1} - \\ -\mathbf{x}_{2} - \\ \vdots \\ -\mathbf{x}_{T} - \end{bmatrix}$$

$$\mathbf{W}_{Q}$$

$$\mathbf{W}_{K}$$

$$\mathbf{W}_{V}$$

$$\mathbf{W}_{V}$$

$$\mathbf{W}_{V}$$

$$\mathbf{V} = \begin{bmatrix} -\mathbf{q}_{1} - \\ -\mathbf{q}_{2} - \\ \vdots \\ -\mathbf{q}_{T} - \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} -\mathbf{k}_{1} - \\ -\mathbf{k}_{2} - \\ \vdots \\ -\mathbf{k}_{T} - \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} -\mathbf{v}_{1} - \\ -\mathbf{v}_{2} - \\ \vdots \\ -\mathbf{v}_{T} - \end{bmatrix}$$

$$\begin{bmatrix} -\mathbf{q}_{1} - \\ -\mathbf{q}_{2} - \\ \vdots \\ -\mathbf{q}_{T} - \end{bmatrix} \begin{bmatrix} \mathbf{k}_{1}^{T} & \mathbf{k}_{2}^{T} & \cdots & \mathbf{k}_{T}^{T} \\ \mathbf{k}_{1}^{T} & \mathbf{k}_{2}^{T} & \cdots & \mathbf{k}_{T}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_{1}\mathbf{k}_{1}^{T} & \cdots & \mathbf{q}_{1}\mathbf{k}_{T}^{T} \\ \vdots & \ddots & \vdots \\ \mathbf{q}_{T}\mathbf{k}_{1}^{T} & \cdots & \mathbf{q}_{T}\mathbf{k}_{T}^{T} \end{bmatrix}$$

$$\mathbf{w}_{cights} \text{ for token 1}$$

$$= \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1T} \\ A_{21} & A_{22} & \cdots & A_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ A_{T1} & A_{T2} & \cdots & A_{TT} \end{bmatrix}$$

$$\mathbf{v}_{cights} \text{ for token 1}$$

$$= \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1T} \\ A_{21} & A_{22} & \cdots & A_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ A_{T1} & A_{T2} & \cdots & A_{TT} \end{bmatrix}$$

$$\mathbf{v}_{cights} \text{ for token 1}$$

$$\mathbf{v}_{cights} \text{ for causal attention}$$

$$\mathbf{v}_{cights} \text{ for token 1}$$

$$\mathbf{v}_{cights} \text{ for causal attention}$$

1.2 Multi-Head Attention

In multi-head attention, input X is first passed through H self-attention layer in parallel. Then, the output from each head is concatenated together and fused by a linear projection

$$\left[\mathbf{Z}^{(1)}, \mathbf{Z}^{(2)}, \dots, \mathbf{Z}^{(H)} \right] \mathbf{W}^{O} = \begin{bmatrix} \mathbf{z}_{1}^{(1)} & \mathbf{z}_{1}^{(2)} & \dots & \mathbf{z}_{1}^{(H)} \\ \mathbf{z}_{2}^{(1)} & \mathbf{z}_{2}^{(2)} & \dots & \mathbf{z}_{2}^{(H)} \\ \vdots & \vdots & \dots & \vdots \\ \mathbf{z}_{T}^{(1)} & \mathbf{z}_{T}^{(2)} & \dots & \mathbf{z}_{T}^{(H)} \end{bmatrix} \mathbf{W}^{O}$$
 (3)

1.3 KV-Cache

During inference we still use causal masking because this is how the model being trained. Let's look at a simple case where we only give the model a start token <s> and asks it to generate stuff:

KV-cache is built on this two observations:

- At each time step t, due to causal masking ${m k}_{< t}$ and ${m v}_{< t}$ will remain the same
- To predict $\langle token_{t+1} \rangle$ we only need embedding of $\langle token_t \rangle$.

Therefore, we can make prediction efficiently by drop redundant and unnecessary computation

LLM Notes A PREPRINT

Basically we have

Token 1: $[K1, V1] \rightarrow Cache: [K1, V1]$

Token 2: [K2, V2] \rightarrow Cache: [K1, K2], [V1, V2]

...

Token n: [Kn, Vn] \rightarrow Cache: [K1, K2, ..., Kn], [V1, V2, ..., Vn]

2 Positional Embedding

References