SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

28 février 2024

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Test de l'indépendence des variables catégorielles

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Test de l'indépendence des variables catégorielles

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Résultats de recherche actuelle

Le **test du Chi-carré** est une méthode statistique utilisée pour déterminer s'il existe une association significative entre deux variables catégorielles.

Il compare les fréquences observées dans les catégories aux fréquences attendues s'il n'y avait aucune association (H_0) .

Test de l'indépendence

Calculée comme suit :

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ii}}$$

- ► O_{ii} : Fréquence observée dans la cellule (i, j)
- $ightharpoonup E_{ij}$: Fréquence attendue dans la cellule (i, j)

Test de

Calculée comme suit :

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ii}}$$

- ► O_{ii} : Fréquence observée dans la cellule (i, j)
- $ightharpoonup E_{ij}$: Fréquence attendue dans la cellule (i, j)

La fréquence attendue pour une cellule est

$$E_{ij} = \frac{(\textit{Total de la ligne}) \times (\textit{Total de la colonne})}{\textit{Total général}}$$

Cela suppose l'indépendance entre les variables.

Valeur critique du test du Chi-carré

Déterminé par le degré de liberté :

$$df = (Nombre de lignes - 1) \times (Nombre de colonnes - 1)$$

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Valeur critique du test du Chi-carré

Déterminé par le degré de liberté :

$$df = (Nombre de lignes - 1) \times (Nombre de colonnes - 1)$$

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Base de données sur R, HairEyeColor

 H_0 : Il n'y a pas d'association significative entre la couleur des cheveux et la couleur des yeux.

Tableau de contigence

knitr::kable(observe)

Brown	Blue	Hazel	Green
68	20	15	5
119	84	54	29
26	17	14	14
7	94	10	16
	68 119	68 20 119 84 26 17	68 20 15 119 84 54 26 17 14

Fréquences attendues

	Brown	Blue	Hazel	Green
Black	40.13514	39.22297	16.96622	11.675676
Brown	106.28378	103.86824	44.92905	30.918919
Red	26.38514	25.78547	11.15372	7.675676
Blond	47.19595	46.12331	19.95101	13.729730

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Résultats de recherche actuelle

La fonction margin.table permet de calculer les sommes marginales pour le tableau de contingence observe :

- margin.table(observe, 1) calcule les sommes des lignes du tableau observe. Cela additionne les comptes sur toutes les colonnes pour chaque ligne, donnant les comptes totaux pour chaque niveau de la première variable (par exemple, la couleur des cheveux).
- margin.table(observe, 2) calcule les sommes des colonnes du tableau observe. Cela additionne les comptes sur toutes les lignes pour chaque colonne, donnant les comptes totaux pour chaque niveau de la seconde variable (par exemple, la couleur des yeux).

La fonction outer(..., FUN = "*") prend ces totaux de lignes et de colonnes et calcule le produit extérieur des deux vecteurs. Le produit extérieur de deux vecteurs a et b est une matrice M où chaque élément m_{ij} est le produit de a_i et b_j .

Exemple avec R

SYS865 Inférence statistique avec programmation R

Statistique du Chi-carré

```
chi_carre_stat <- sum((observe-attendu)^2 /attendu) l'indépenden des variables catégorielles
```

```
## [1] 138.29
```

Thamsuwan
Test de
l'indépendence

```
Test de
                                                           l'indépendence
chi carre stat <- sum((observe-attendu)^2 /attendu)
round(chi carre stat, 3)
```

[1] 138.29

Valeur critique pour $\alpha = 0.05$ et degrés de liberté

```
df <- (nrow(observe)-1) * (ncol(observe)-1)
valeur_critique <- qchisq(0.95, df)</pre>
round(valeur_critique, 3)
```

```
## [1] 16.919
```

Ornwina Thamsuwan

des variables catégorielles

Exemple avec R

Conclusion

 $\label{eq:chi_carre_stat} {\tt chi_carre_stat} > {\tt valeur_critique}, \; {\tt rejet} \; {\it H}_0.$

Il existe une association significative entre les variables.

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

```
chi_carre_stat > valeur_critique, rejet H_0.
```

 $\ensuremath{\mathsf{II}}$ existe une association significative entre les variables.

Ou. . .

En appliquant directement la fonction R

```
chisq.test(observe)
```

```
##
## Pearson's Chi-squared test
##
## data: observe
## X-squared = 138.29, df = 9, p-value < 2.2e-16</pre>
```

Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Résultats de recherche actuelle

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

Résultats de recherche actuelle

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Test de l'indépendence des variables catégorielles

- Référer au code séparé et non pas encore publié . . .
 - ▶ "Score" de Échelle d'Équilibre vs. Historique de Chute
 - ► "Score" de Échelle d'Équilibre vs. Trouble de Vision