

Doctoral student studying large-scale ocean circulation and linkages to global climate using observational and remote sensing data. Strong background in time series analysis, signal processing, optimization, statistical modelling. Seeking opportunities to apply data-driven frameworks on real-world engineering, business and logistics challenges.

EDUCATION

UC SAN DIEGO

PhD in Oceanography Expected 2023

UC SAN DIEGO

Master of Science Physical Oceanography Dec 2018

VIT UNIVERSITY

Bachelor of Technology Mechanical Engineering June 2016

SKILLS

Programming 5+ yrs: Python • MATLAB • C

ML frameworks: Sklearn • PyTorch

Familiar:

R • SQL • ArcGIS

COURSEWORK

Recommender Sys. and Web Mining Statistical Learning ML for Physical Applications Data Analysis Methods I,II & III Applied Mathematics I,II & III Probability and Statistics Applied Numerical Methods Operations Research

LINKS

www.github.com/ratnaksha

www.linkedin.com/in/ratnakshalele

WORK EXPERIENCE

JUPITER INTELLIGENCE INC. | ML & DATA SCIENCE INTERN

- Built and tested a pilot ML model to predict extreme coastal flooding in future climate scenarios for various metro areas along the United States coastline.
- Incorporated a deep transfer-learning neural network to prioritize cost and efficiency to train the model over ~10M grid points in the domain. Expected to save company up to 80% of current flood modeling costs.

SCRIPPS INSTITUTION OF OCEANOGRAPHY | PhD CANDIDATE AUG 2016 - PRESENT

- Quantified uncertainty in the role of turbulence in deep ocean circulation to
 within a factor of 3 by applying advanced signal processing and statistical
 algorithms on novel deep-ocean turbulence measurements (χ-pod) in
 MATLAB and Python. Contributed to NSF-funded program to make above data
 public to improve future climate model predictions and reliability.
- Implementing Embedded Clustering on oceanographic observational data using Non-Negative Matrix Factorization and Gaussian Mixture Models to identify unique dynamical regimes of turbulence-driven mixing in the global ocean.
- Improving inference and predictability of ocean dynamics at high resolution by training deep neural network models on remotely sensed data from NASA's <u>GRACE</u> mission— to advance the understanding of global spatiotemporal variability in deep ocean currents and response to climate change.

WOODS HOLE OCEANOGRAPHIC INSTITUTION | RESEARCH FELLOW

- Implemented time-series and spectral methods on in-situ Ice Tethered Profiler (ITP) sea-ice data, field and satellite observations to understand the dynamics and seasonal variation in sea-ice momentum and energy transfer.
- Discovered disparities in outdated ocean model parameterizations of sea-ice compared to new field observation. Recommended updating parameterization to reflect changing sea-ice conditions in the Arctic; now published in Elementa: Science of the Anthropocene. [pdf]

AWARDS

- 2020 NASA Future Investigator in Earth and Space Science Fellowship Grant
- 2020 NASA JPL Center for Climate Science Summer School
- 2017 Departmental Travel Award for Research Excellence
- 2016 UC San Diego Regents Fellowship
- 2016 VIT University Special Achiever Award
- 2015 Woods Hole Oceanographic Institution Summer Student Fellowship
- 2014 Indian Academy of Sciences Summer Research Fellowship

PUBLICATIONS

- [1] R Lele, S G Purkey and J A MacKinnon, Global Regimes of Turbulent Mixing using Unsupervised Embedded Clustering of Hydrographic Data, Geophysical Research Letters, in prep.
- [2] J D Nash, R Lele, J A MacKinnon, S G Purkey, et al. Estimating χ using fast-response thermistors on traditional shipboard CTDs: sources of uncertainty and bias. Journal of Atmospheric and Oceanic Technology, in review.
- [3] R Lele, S G Purkey, J D Nash, J A MacKinnon, A M Thurnherr, C B Whalen, et al. Abyssal Heat Budget in the Southwest Pacific Basin. Journal of Physical Oceanography, 2021. [pdf]
- [4] Sylvia T Cole, John M Toole, Ratnaksha Lele, Mary-Louise Timmermans, Shawn G Gallaher, Timothy P Stanton, William J Shaw, Byongjun Hwang, Ted Maksym, Jeremy P Wilkinson, et al. Ice and ocean velocity in the arctic marginal ice zone: Ice roughness and momentum transfer. Elementa Science of the Anthropocene, 5, 2017. [pdf]
- [5] R Lele. An investigation into arctic sea-ice dynamics and energetics. Report submitied in partial fulfillment of the WHOI Summer Student Fellowship, 2015.

CONFERENCE PRESENTATIONS

R Lele et al, Abyssal Mixing in the South West Pacific Basin. Ocean Sciences Meeting, San Diego CA, Feb 2020, Talk.

R Lele et al, Recipes of Turbulent Mixing from the South Pacific. Gordon Research Conference on Ocean Mixing, Andover NH, June 2018, **Poster**.

R Lele et al, Decadal Changes in the Properties and Transport of AABW at 32S in the Southwest Pacific Basin. Ocean Sciences Meeting, Portland OR, Feb 2018, Talk.

R Lele and SG Purkey Antarctic Bottom Water Warming in the South West Pacific Basin. Graduate Climate Conference, Woods Hole MA, Nov 2017, Poster.

R Lele et al, An Investigation into Arctic Sea-Ice Dynamics and Energetics. Ocean Sciences Meeting, New Orleans LA, Feb 2016, Talk.

TEACHING EXPERIENCE

Introduction to Physical Oceanography SIO-210	Teaching Assistant	Fall 2020
Introduction to Programming in C ITE-101	Teaching Assistant	Fall 2012

OCEANIC FIELDWORK EXPERIENCE

HLY-1803 Experiment in the Beaufort and Chukchi Seas	US Coast Guard Cutter Healy	Oct-Nov 2018
GO-SHIP P06 Leg-1 in the South Pacific	RVIB Nathaniel B. Palmer	Jul-Aug 2017
La Jolla Internal Tide Experiment	R/V Sally Ride	Dec 2016