Курс: Компьютерные сети

Урок 6. Углубленное изучение сетевых технологий. Часть 1

Выполнил: Кузнецов Сергей (Факультет Geek University Python-разработки)

Домашнее задание:

- 1. Настроить ИП адресацию как в сети INTERNET так и в LAN сегментах
- 2. Сети из LAN сегмента не должны аннонсироваться в INTERNET
- 3. Компьютеры PC0 и PC1 должны получать IP адреса динамически от сервера DCHP Server
- 4. Компьютеры PCO и PC1 должны иметь возможность открыть веб страницу вебсерера WEB SERVER с IP адресом 2.14.77.131 из сети INTERNET

1. Настроить ИП адресацию как в сети INTERNET так и в LAN сегментах.

На маршрутизаторах настроить динамическую маршрутизацию с помощью протокола RIP2

Настройка портов роутеров:

Настроим порты «R1» через CLI:

	Tidot por int thought with a repes of in		
Router>	Enable	Переход в привилегированный режим	
Router#	configure terminal	Переход в режим конфигурирования терминала	
Router(config)#	hostname R1	Назовем Роутер	
R1(config)#	interface gigabitEthernet 0/0/0	Редактировать интерфейс	
R1(config-if)#	ip address 10.0.0.1 255.255.255.0	Прописываем сетевой адрес порта (тот, что мы указываем в качестве Default GateWay)	
R1(config-if)#	no shutdown	Включаем порт	
R1(config-if)#	exit	Выйти на уровень ниже	
R1(config)#	interface gigabitEthernet 0/0/1	Редактировать интерфейс	
R1(config-if)#	ip address 172.16.0.1 255.255.255.252	Прописываем сетевой адрес порта (тот, что мы указываем в качестве Default GateWay)	
R1(config)#	ip route 0.0.0.0 0.0.0.0 172.16.0.2	Создание статического правила поиска всех сетей через порт роутера «R2» с адресом «172.16.0.2»	
R1(config-if)#	no shutdown	Включаем порт	

Настроим порты «R2» через CLI:

Router>	Enable	Переход в привилегированный режим
Router#	configure terminal	Переход в режим конфигурирования терминала
Router(config)#	hostname R2	Назовем Роутер
R2(config)#	interface gigabitEthernet 0/0	Редактировать интерфейс
R2(config-if)#	ip address 188.54.11.1 255.255.255.252	Прописываем сетевой адрес порта (тот, что мы указываем в качестве Default GateWay)
R2(config-if)#	no shutdown	Включаем порт
R2(config)#	interface gigabitEthernet 0/1	Редактировать интерфейс
R2(config-if)#	ip address 172.16.0.2 255.255.255.252	Прописываем сетевой адрес порта (тот, что мы указываем в качестве Default GateWay)
R2(config-if)#	no shutdown	Включаем порт
R2(config-if)#	exit	Выйти на уровень ниже
R2(config)#	interface gigabitEthernet 0/2	Редактировать интерфейс
R2(config-if)#	ip address 10.0.1.1 255.255.255.0	Прописываем сетевой адрес порта (тот, что мы указываем в качестве Default GateWay)
R2(config)#	ip route 10.0.0.0 255.255.255.0 172.16.0.1	Создание статического правила поиска сети «10.0.0.0/24» через порт роутера «R1» с адресом «172.16.0.1»
R2(config-if)#	no shutdown	Включаем порт

Аналогичным способом настроим порты всех роутеров.

Роутер	Порт	Адрес	маска
R1	0/0/0	10.0.0.1	255.255.255.0
R1	0/0/1	172.16.0.1	255.255.255.252
R2	0/1	172.16.0.2	255.255.255.252
R2	0/2	10.0.1.1	255.255.255.0
R2	0/0	188.54.11.1	255.255.255.252
R3	0/0/0	188.54.11.2	255.255.255.128
R3	0/0/1	218.0.43.9	255.255.255.252
R4	0/0/1	218.0.43.10	255.255.255.252
R4	0/0/0	2.14.77.129	255.255.255.224
R5	0/0/0	2.14.77.130	255.255.255.224
R5	0/0/1	192.168.200.1	255.255.255.0

Настроим маршрутизацию по протоколу RIP2

Настроим «R1» через CLI:

Hacipolin Will Piepes Cli.		
R1#	show ip interface brief	Показывает настроенные порты и IP-адреса (впоследствии их удобно копировать для команды network)
		· · · · · · · · · · · · · · · · · · ·
R1#	configure terminal	Переход в режим конфигурирования терминала
R1 (config)#	router rip	Переход в конфигурирование протокола RIP
R1 (config-router)#	version 2	Выбираем вторую версию протокола RIP_2
R1 (config-router)#	no auto-summary	Отключаем суммирование маршрутов
R1 (config-router)#	network 10.0.0.1	Подключаем протокол к сети
R1 (config-router)#	network 172.16.0.1	Подключаем протокол к сети
R1 (config-router)#	End	

Настроим «R2» через CLI:

пастроим «ка» через	CLI.	
R2#	show ip interface brief	Показывает настроенные порты и ІР-адреса
		(впоследствии их удобно копировать для команды
		network)
R2#	configure terminal	Переход в режим конфигурирования терминала
R2 (config)#	router rip	Переход в конфигурирование протокола RIP
R2 (config-router)#	version 2	Выбираем вторую версию протокола RIP_2
R2 (config-router)#	no auto-summary	Отключаем суммирование маршрутов
R2 (config-router)#	network 188.54.11.1	Подключаем протокол к сети
R2 (config-router)#	End	
не будем анонсировать сети «10.0.1.0/24» и «172.16.0.0/30» (они будут скрыты за NAT)		

Аналогично настроим RIP_2 на остальных роутерах, учитывая то, «R5» также не будет транслировать сеть «192.168.200.0/24», скрывая ее за NAT.

Настройка хостов в формате статических адресов (для проверки RIP2):

На всех ПК и сервере настроим статические адреса и «Default Gateway», проверим пинги:

Проверим работу сети. «PCO» с адресом «10.0.0.2» пингует «PC1» с адресом «10.0.1.2» - все Ок . LAN1 настроен:

Hacmpoum NAT:

Настроим NAT overload на «R2» через CLI:

R2#	configure terminal	Переход в режим конфигурирования терминала
R2 (config)#	access-list 1 permit 10.0.1.0 0.0.0.255	создаем список доступа, указывая, какие адреса могут использовать NAT
R2 (config)#	access-list 2 permit 10.0.0.0 0.0.0.255	создаем список доступа, указывая, какие адреса могут использовать NAT
R2 (config)#	ip nat inside source list 1 interface gigabitEthernet 0/0 overload	Укажем, что пакеты клиентов с IP-адресов из списка 1 будут подвергаться перегруженной NAT-трансляции при следовании через интерфейс
R2 (config)#	ip nat inside source list 2 interface gigabitEthernet 0/0 overload	Укажем, что пакеты клиентов с IP-адресов из списка 2 будут подвергаться перегруженной NAT-трансляции при следовании через интерфейс
R2 (config)#	interface gigabitEthernet 0/0	Редактировать интерфейс
R2 (config-if)#	ip nat outside	Укажем внешний сетевой интерфейс для NAT
R2 (config-if)#	exit	
R2 (config)#	interface gigabitEthernet 0/1	Редактировать интерфейс
R2 (config-if)#	ip nat inside	Укажем внутренний сетевой интерфейс для NAT
R2 (config-if)#	exit	
R2 (config)#	interface gigabitEthernet 0/2	Редактировать интерфейс
R2 (config-if)#	ip nat inside	Укажем внутренний сетевой интерфейс для NAT
R2 (config-if)#	exit	
R2#	show running-config	Посмотрим итоговые настройки
R2#	show ip nat translations	Посмотрим как при ping транслируются пакеты

Проверим ping с «PC1» на роутер «R3», находящийся в Internet – все Ok

Теперь настроим «R5» (доступ к WEB-server):

R5#	configure terminal	Переход в режим конфигурирования терминала
R5 (config)#	ip nat inside source static tcp	Укажем, что пакеты с адреса «192.168.200.1» 80
	192.168.200.3 80 2.14.77.131 80	порта будем транслировать по протоколу tcp как
		адрес «один-в-один» «2.14.77.131» также по 80
		порту
		клиентов с ІР-адресов из списка 1 будут
		подвергаться перегруженной NAT-трансляции при
		следовании через интерфейс
R5 (config)#	interface gigabitEthernet 0/0/0	Редактировать интерфейс
R5 (config-if)#	ip nat outside	Укажем внешний сетевой интерфейс для NAT
R5 (config-if)#	exit	
R5 (config)#	interface gigabitEthernet 0/0/1	Редактировать интерфейс
R5 (config-if)#	ip nat inside	Укажем внутренний сетевой интерфейс для NAT
R5 (config-if)#	exit	
R5#	show running-config	Посмотрим итоговые настройки
R5#	show ip nat translations	Посмотрим как при ping транслируются пакеты

Проверим на «PCO» и «PC1» доступ WEB-server по адресу «2.14.77.131» - все отлично!

Посмотрим на «R2», как транслируются маршруты «show ip nat translations».

Убедимся, что на роутере «R3» не видны наши внутренние сети LAN «show ip route»

Объединим туннелем «R2» и «R5» для настройки для автоматической выдачи IP адресов DHSP сервером

Начнем с «R2»:

R2#	configure terminal	Переход в режим конфигурирования терминала
R2 (config)#	interface tunnel 0	Заходим в настройки интерфейса «0»
R2 (config-if)#	ip address 172.15.0.1	Назначим туннелю вымышленный IP (не
	255.255.255.252	конфликтует с имеющимися сетями) и сеть с двумя
		адресами (достаточно для подключения «точка-
		точка»)
R2 (config-if)#	tunnel destination 2.14.77.130	адрес конца туннеля (порт «R5»)
R2 (config-if)#	tunnel source gigabitEthernet 0/0	порт начала туннеля
R2 (config-if)#	tunnel mode gre ip	Режим туннеля по протоколу «gre» поверх IP
Настроим статические м	аршруты:	
R2 (config)#	ip route 192.168.200.0	Укажем, что искать сеть с DHCP сервером по
	255.255.255.0 172.15.0.2	адресу виртуального порта «R5»
R2#	show running-config	Посмотрим итоговые настройки

Аналогично с «R5»:

R5#	configure terminal	Переход в режим конфигурирования терминала
R5 (config)#	interface tunnel 0	Заходим в настройки интерфейса «0»
R5 (config-if)#	ip address 172.15.0.2	Назначим туннелю вымышленный IP (не
	255.255.255.252	конфликтует с имеющимися сетями) и сеть с двумя
		адресами (достаточно для подключения «точка-
		точка»)
R5 (config-if)#	tunnel destination 188.54.11.1	адрес конца туннеля (порт «R2»)
R5 (config-if)#	tunnel source gigabitEthernet	порт начала туннеля
	0/0/0	
R5 (config-if)#	tunnel mode gre ip	Режим туннеля по протоколу «gre» поверх IP
Настроим статически	ие маршруты:	
R2 (config)#	ip route 10.0.0.0 255.255.254.0	Укажем, что искать сеть с DHCP сервером по
	172.15.0.1	адресу виртуального порта «R5»
R5#	show running-config	Посмотрим итоговые настройки

Убедимся, что туннель поднят пингуя WEB и DHCP сервера с «PCO» «ping 192.168.200.2», «ping 192.168.200.3»

В режиме симуляции наглядно виден тунельный процесс заворачивания основного пакета при помощи протокола «gre» в собственный заголовок.

Также, мы видим процесс разворачивания этого пакета при выходе из туннеля.

Настройка динамической выдачи адресов

«R1»:

R1#	configure terminal	Переход в режим конфигурирования терминала
R1 (config)#	interface gigabitEthernet 0/0/0	Редактируем интерфейс 0/0/0
R1 (config-if)#	ip helper-address 192.168.200.2	Укажем адрес источника выдающего адреса

«R2»:

R2#	configure terminal	Переход в режим конфигурирования терминала
R2 (config)#	interface gigabitEthernet 0/2	Редактируем интерфейс 0/2
R2 (config-if)#	ip helper-address 192.168.200.2	Укажем адрес источника выдающего адреса

DHCP-server настроим через графический интерфейс.

В ПК установим режим получения адресов по DHSP – получение Default Gateway и IP происходит корректно!!!

