Orbital Manaeuves

- Orbital manoeuvres transfer a spacecraft from one orbit to another.
- Changing of orbits requires the fixing of on-board vocket engines.
- Impulsive manoeuwes are those in which brief fivings of on-board vocket motors change the magnitude and the direction of the relocity vector instantaneously.

The Thrust Equation

- According to Newton's second law of motion:

(Momentum of system at $t+\Delta t$) – (momentum of system at t) = Net external impulse

 $[(m-\Delta m)(v+\Delta v)\hat{i} + \Delta m(-v_e\hat{i})] - mv\hat{i} = (p_e-p_a)A_e\Delta t\hat{i}$

$$-\frac{dm}{dt} = -\dot{m}_e$$

-
$$m \frac{dv}{dt}$$
 - $m_e C_a = (p_e - p_a) A_e$
 v_{e+v}

$$- m \frac{dV}{dt} = \dot{m}_e (a + (p_e - p_a) A_e)$$

- Specific impulse:

$$I_{sp} = \frac{T}{\dot{m}_{ego}} \left(\frac{I_{hrust}}{Sea-level weight-rate of consumption} \right)$$

Table 6.1 Some typical specific impulses	
Propellant	$I_{\rm sp}$ (s)
Cold gas	50
Monopropellant hydrazine	230
Solid propellant	290
Nitric acid/monomethylhydrazine	310
Liquid oxygen/liquid hydrogen	455
Ion propulsion	>3000

Rocket Performance

$$- m \frac{dv}{dt} = - I_{sp} g_0 \frac{dm}{dt}$$

$$- \Delta V = I_{sp} g_0 \ln \left(\frac{m_0}{m_f} \right)$$

$$-\frac{\Delta m}{m} = \frac{m_0 - m_f}{m_0} = 1 - \frac{m_f}{m_0} = 1 - e^{\frac{-\Delta V}{T_0}}$$

Hohmann Transfer [Walter Hohmann (1880-1945)]

- The most energy-efficient two-impulse manoeuvre for transferring between two co-planar circular orbits sharing a common focus.

$$- r_p = \frac{\|hi\|^2}{m} \frac{1}{1 + \|e\|}$$

$$- V_p = \frac{\|\mathbf{h}\|^2}{M} \frac{V_n + V_p}{2V_n}$$

$$- \|h\| = \sqrt{2M} \sqrt{\frac{r_{\alpha}r_{p}}{r_{\alpha}+r_{p}}} \left(\|h\| = \|r\| V_{\perp}\right)$$

$$- \|\mathbf{v}\| = \sqrt{2\mu} \sqrt{\frac{1}{\|\mathbf{v}\|} - \frac{1}{2a}}$$

Example

A 2000-kg spacecraft is in a 480 km by 800 km earth orbit (orbit 1 in Fig. 6.3). Find

⁽a) The Δv required at perigee A to place the spacecraft in a 480 km by 16,000 km transfer ellipse (orbit 2).

⁽b) The Δv (apogee kick) required at B of the transfer orbit to establish a circular orbit of 16,000 km altitude (orbit 3).

⁽c) The total required propellant if the specific impulse is 300 s.

Details

Orbit 3:
$$v_p = v_a = 6378 + 16000 \text{ km}$$

$$(\alpha) V_A)_1 = \frac{\|h_1\|}{V_A}, V_A)_2 = \frac{\|h_2\|}{V_A}$$

$$\Delta V_A = V_A)_2 - V_A)_1$$

(b)
$$V_{B})_{2} = \frac{\|h_{2}\|}{V_{B}}, \quad V_{B})_{3} = \frac{\|h_{3}\|}{V_{B}}$$

$$\Delta V_g = V_g)_3 - V_g)_2$$

(c)
$$\Delta V_{hhol} = |\Delta V_A| + |\Delta V_B|$$

Most efficient transfer strategy

$$- \Delta V_{bbl})_3 = \Delta V_A + \Delta V_B, \quad \Delta V_{bbl})_{3'} = \Delta V_{A'} + \Delta V_{B'}$$

$$- \Delta V_A = |V_A|_3 - |V_A|_1 | \Delta V_B = |V_B|_2 - |V_B|_3 |$$

$$- \Delta V_{A'} = |V_{A'}|_{3'} - V_{A'}|_{1}, \Delta V_{B'} = |V_{B'}|_{2} - V_{B'}|_{3'}|_{3'}$$

Example

altitude of 5000 km, traveling at 10 km/s. At A retrorockets are fired to lower the spacecraft into a 500-km-altitude circular

orbit, where it is to rendezvous with a space station. Find the location of the space station at retrofire so that rendezvous will occur at B (Fig. 6.6).

Details

$$V_A = 5000 + 6378 \text{ km}, V_B = 500 + 6378 \text{ km}$$

$$\alpha = \frac{1}{2} (r_A + r_B)$$

$$T_z = \frac{2\pi}{\sqrt{M}} a^{3/2}$$

$$T_3 = \frac{2\pi}{\sqrt{M}} V_B^{3/2}$$

$$\Delta t_{G} = \frac{T_2}{2}$$

$$\frac{\phi_{cB}}{\Delta_{cB}} = \frac{360^{\circ}}{T_3}$$