RIEMANNIAN SYMMETRIC SPACE

BOWEN LIU

CONTENTS

Part 1. Riemannian symmetric space	2
1. Geometric viewpoints	2
1.A. Basic definitions and properties	2
1.B. Transvection	3
1.C. Symmetric space, locally symmetric space and homogeneous space	4
2. Lie group viewpoints	7
2.A. Riemannian symmetric space as a Lie group quotient	7
2.B. Riemannian symmetric pair	8
2.C. Examples of Riemannian symmetric space	9
3. Curvature of Riemannian symmetric space	12
3.A. Formulas	12
3.B. Computations of curvature	14
4. Classifications	17
4.A. Holonomy group	17
4.B. Irreducibility	17
5. Type and duality	19
5.A. Compact, non-compact and Euclidean types	19
5.B. Duality	19
Part 2. Hermitian symmetric space	20
Part 3. Appendix	21
Appendix A. Basic facts in Riemannian geometry	21
Appendix B. Hopf theorem	22
Appendix C. Killing fields	23
C.A. Basic properties	23
C.B. Killing field as the Lie algebra of isometry group	24
References	26

Part 1. Riemannian symmetric space

1. GEOMETRIC VIEWPOINTS

1.A. Basic definitions and properties.

1.A.1. Riemannian symmetric space.

Definition 1.1 (Riemannian symmetric space). A Riemannian manifold (M,g) is called a Riemannian symmetric space if for each $p \in M$ there exists an isometry $\varphi \colon M \to M$, which is called a symmetry at p, such that $\varphi(p) = p$ and $(d\varphi)_p = -\mathrm{id}$.

Remark 1.2. Note that Theorem A.1, that is rigidity property of isometry, implies if symmetry at point p exists, then it's unique.

Proposition 1.3. *The following statements are equivalent.*

- (1) (M,g) is a Riemannian symmetric space.
- (2) For each $p \in M$, there exists an isometry $\varphi : M \to M$ such that $\varphi^2 = \operatorname{id}$ and p is an isolated fixed point of φ .

Proof. From (1) to (2). Let φ be a symmetry at $p \in M$. Since $(\mathrm{d}\varphi^2)_p = (\mathrm{d}\varphi)_p \circ (\mathrm{d}\varphi)_p = \mathrm{id}$ and $\varphi^2(p) = p$, one has $\varphi^2 = \mathrm{id}$ by Theorem A.1. If p is not an isolated fixed point, then there exists a sequence $\{p_i\}_{i=1}^\infty$ converging to p such that $\varphi(p_i) = p_i$. For $0 < \delta < \mathrm{inj}(p)$, there exists sufficiently large k such that $p_k \in B(p,\delta)$, and we denote $v = \exp_p^{-1}(p_k)$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are two geodesics connecting p and p_k , and thus

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

by uniqueness. In particular, one has $v = (d\varphi)_n v$, which is a contradiction.

From (2) to (1). From $\varphi^2 = \operatorname{id}$ we have $(\mathrm{d}\varphi)_p^2 = \operatorname{id}$, so only possible eigenvalues of $(\mathrm{d}\varphi)_p$ are ± 1 . Now it suffices to show all eigenvalues of $(\mathrm{d}\varphi)_p$ are -1. Otherwise if it has an eigenvalue 1, there exists some non-zero $v \in T_pM$ such that $(\mathrm{d}\varphi)_p v = v$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are geodesics with the same direction at p. Thus

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

for $0 < t < \operatorname{inj}(p)$. In particular, p is not an isolated fixed point, which is a contradiction.

Proposition 1.4. The fundamental group of a Riemannian symmetric space is abelian.

Corollary 1.5. A surface of genus $g \ge 2$ does not admit a Riemannian metric with respect to which it is a symmetric space.

1.A.2. Locally Riemannian symmetric space.

Definition 1.6 (locally Riemannian symmetric space). A Riemannian manifold (M,g) is called a locally Riemannian symmetric space if each $p \in M$ has a neighborhood U such that there exists an isometry $\varphi: U \to U$ such that $\varphi(p) = p$ and $(d\varphi)_p = -\mathrm{id}$.

Theorem 1.7. Let (M,g) be a complete Riemannian manifold. The following statements are equivalent.

- (1) (M,g) is a locally Riemannian symmetric space.
- (2) $\nabla R = 0$.

Proof. From (1) to (2). If φ is the symmetry at point $p \in M$, then it's an isometry such that $(d\varphi)_p = -\mathrm{id}$, and thus for $u, v, w, z \in T_pM$, one has

$$\begin{split} -\nabla_{u}R(v,w)z &= (\mathrm{d}\varphi)_{p} \left(\nabla_{u}R(v,w)z\right) \\ &= \nabla_{(\mathrm{d}\varphi)_{p}u}((\mathrm{d}\varphi)_{p})v, (\mathrm{d}\varphi)_{p}w)(\mathrm{d}\varphi)_{p}z \\ &= \nabla_{u}R(v,w)z \end{split}$$

This shows $(\nabla R)_p = 0$, and thus $\nabla R = 0$ since p is arbitrary.

From (2) to (1). For arbitrary $p \in M$, it suffices to show

$$\varphi = \exp_p \circ \Phi_0 \circ \exp_p^{-1} : B(p, \delta) \to B(p, \delta)$$

is an isometry, where $0 < \delta < \operatorname{inj}(p)$ and $\Phi_0 = -\operatorname{id}: T_pM \to T_pM$. For $v \in T_pM$ with $|v| < \delta$ and $\gamma(t) = \exp_p(tv), \widetilde{\gamma}(t) = \exp_p(t\Phi_0(v))$, if we define

$$\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma}$$

then direct computation shows

$$\begin{split} \Phi_t^* R_{\widetilde{\gamma}(t)} &= (P_{t,0;\gamma})^* \circ \Phi_0^* \circ (P_{0,t;\widetilde{\gamma}})^* R_{\widetilde{\gamma}(t)} \\ &\stackrel{(a)}{=} (P_{t,0;\gamma})^* \circ \Phi_0^* R_{\widetilde{\gamma}(0)} \\ &\stackrel{(b)}{=} (P_{t,0;\gamma})^* R_{\gamma(0)} \\ &\stackrel{(c)}{=} R_{\gamma(t)} \end{split}$$

where

- (a) and (c) holds from Proposition A.5.
- (b) holds from $\widetilde{\gamma}(0) = \gamma(0)$ and R is a (0, 4)-tensor.

Then by Theorem A.2, that is Cartan-Ambrose-Hicks's theorem, φ is an isometry, which completes the proof.

1.B. Transvection.

Definition 1.8 (transvection). Let (M,g) be a Riemannian symmetric space and γ a geodesic. The transvection along γ is defined as

$$T_t = s_{\gamma(\frac{t}{2})} \circ s_{\gamma(0)}$$

where s_p is the symmetry at point p.

Proposition 1.9. Let (M,g) be a Riemannian symmetric space and T_t be the transvection along geodesic γ . Then

- (1) For any $a, t \in \mathbb{R}$, $s_{\gamma(a)}(\gamma(t)) = \gamma(2a t)$.
- (2) T_t translates the geodesic γ , that is $T_t(\gamma(s)) = \gamma(t+s)$.
- (3) $(dT_t)_{\gamma(s)}: T_{\gamma(s)}M \to T_{\gamma(t+s)}M$ is the parallel transport $P_{s,t+s;\gamma}$.
- (4) T_t is one-parameter subgroup of Iso(M, g).

Proof. For (1). It follows from the uniqueness of geodesics with given initial value.

For (2). By (1) one has

$$T_{t}(\gamma(s)) = s_{\gamma(\frac{t}{2})} \circ s_{\gamma(0)}(\gamma(s))$$
$$= s_{\gamma(\frac{t}{2})}(\gamma(-s))$$
$$= \gamma(t+s)$$

For (3). Let X be a parallel vector field along γ . By uniqueness of parallel vector fields with given initial data, we have $(ds_{\gamma(0)})_{\gamma(s)}X_{\gamma(s)} = -X_{\gamma(-s)}$ for all s, since $(ds_{\gamma(0)})_{\gamma(0)}X_{\gamma(0)} = -X_{\gamma(0)}$. Thus

$$(dT_t)_{\gamma(s)}X_{\gamma(s)} = (ds_{\gamma(\frac{t}{2})})_{\gamma(-s)}(-X_{\gamma(-s)})$$
$$= X_{\gamma(t+s)}$$

This shows $(dT_t)_{\gamma(s)} = P_{s,t+s;\gamma}$.

For (4). In order to show $T_{t+s} = T_t \circ T_s$, it suffices to check they're same at some point, so do their derivatives, since isometry can be determined by these two values. Note that

$$T_{t+s}(\gamma(0)) = \gamma(t+s)$$

$$= T_t \circ T_s(\gamma(0))$$

$$(dT_{t+s})_{\gamma(0)} = P_{0,t+s;\gamma}$$

$$= P_{s,t+s;\gamma} \circ P_{0,s;\gamma}$$

$$= (dT_t)_{\gamma(s)} \circ (dT_s)_{\gamma(0)}$$

$$= (d(T_t \circ T_s))_{\gamma(0)}$$

This completes the proof.

1.C. **Symmetric space, locally symmetric space and homogeneous space.** In this section, we will show any complete locally Riemannian symmetric space is a quotient of Riemannian symmetric space (Corollary 1.11), and any Riemannian symmetric space is a Riemannian homogeneous space (Corollary 1.15).

1.C.1. Riemannian symmetric space and locally Riemannian symmetric space.

Theorem 1.10. Let (M,g) be a complete, simply-connected locally Riemannian symmetric space. Then (M,g) is a Riemannian symmetric space.

Proof. For $p \in M$ and $0 < \delta < \operatorname{inj}(p)$, suppose $\varphi : B(p, \delta) \to B(p, \delta)$ is an isometry such that $\varphi(p) = p$ and $(d\varphi)_p = -\operatorname{id}$. For arbitrary $q \in M$, we use $\Omega_{p,q}$ to denote all curves γ with $\gamma(0) = p, \gamma(1) = q$, and for $c \in \Omega_{p,q}$ we choose a covering $\{B(p_i, \delta_i)\}_{i=0}^k$ of c such that

- (1) $0 < \delta_i < \text{inj}(p_i)$.
- (2) $B(p_0, \delta_0) = B(p, \delta)$ and $p_k = q$.
- (3) $p_{i+1} \in B(p_i, \delta_i)$.

If we set $\varphi = \varphi_0$, then we can define isometries $\varphi_i : B(p_i, \delta_i) \to M$ such that $\varphi_i(p_i) = \varphi_{i-1}(p_i)$ and $(d\varphi_i)_{p_i} = (d\varphi_{i-1})_{p_i}$ by using Cartan-Ambrose-Hicks's theorem successively, and by Theorem A.1 one has φ_i and φ_{i+1} coincide on $B(p_i, \delta_i) \cap B(p_{i+1}, \delta_i)$. The covering

¹Since injective radius is a continuous function, it has a positive minimum on curve c, so such covering exists.

together with isometries we construct is denoted by $\mathcal{A} = \{B(p_i, \delta_i), \varphi_i\}_{i=0}^k$. For arbitrary $x \in [0, 1]$, if $c(x) \in B(p_m, \delta_m)$, we may define

$$\varphi_{\mathcal{A}}(c(x)) := \varphi_m(c(x))$$
$$(d\varphi_{\mathcal{A}})_{c(x)} := (d\varphi_m)_{c(x)}$$

In particular, $\varphi_{\mathcal{A}}(q) := \varphi_k(q)$. If $\mathcal{B} = \{\widetilde{B}(\widetilde{p}_i, \widetilde{\delta}_i), \widetilde{\varphi}_i\}_{i=0}^l$ is another covering of c, let's show $\varphi_{\mathcal{A}}(q) = \varphi_{\mathcal{B}}(q)$. Consider

$$I = \{ x \in [0,1] \mid \varphi_{\mathcal{A}}(c(x)) = \varphi_{\mathcal{B}}(c(x)), (d\varphi_{\mathcal{A}})_{c(x)} = (d\varphi_{\mathcal{B}})_{c(x)} \}$$

It's clear $I \neq \emptyset$, since $0 \in I$. Now it suffices to show it's both open and closed to conclude $1 \in I$.

(a) It's open: For $x \in I$, we assume $c(x) \in B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$, that is

$$\varphi_m(c(x)) = \widetilde{\varphi}_n(c(x))$$
$$(d\varphi_m)_{c(x)} = (d\widetilde{\varphi}_n)_{c(x)}$$

Then one has

$$\varphi_m \circ \exp_{c(x)}(v) = \exp_{\varphi_m(c(x))} \circ (d\varphi_m)_{c(x)}(v)$$

$$= \exp_{\widetilde{\varphi}_n(c(x))} \circ (d\widetilde{\varphi}_n)_{c(x)}(v)$$

$$= \widetilde{\varphi}_n \circ \exp_{c(x)}(v)$$

Since $\exp_{c(x)}$ maps onto a neighborhood of c(x), it follows that some neighborhood of x also lies in I, and thus I is open.

(b) It's closed: Let $\{x_i\}_{i=1}^{\infty} \subseteq I$ be a sequence converging to x. Without lose of generality we may assume $\{x_i\}_{i=1}^{\infty} \subseteq B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$, then one has

$$\varphi_m(c(x_i)) = \widetilde{\varphi}_n(c(x_i))$$
$$(d\varphi_m)_{c(x_i)} = (d\widetilde{\varphi}_n)_{c(x_i)}$$

By taking limit we obtain the desired results.

Since $\varphi_{\mathcal{A}}(q)$ is independent of the choice of coverings, we use $\varphi(q)$ to denote it for convenience, and as a consequence we obtain the following map

$$F: \ \Omega_{p,q} \to M$$

$$c \mapsto \varphi(q)$$

Note that F(c) is locally constant, and thus it's independent of the choice of homotopy classes of c. Since M is simply-connected, one has $F: \Omega_{p,q} \to M$ is constant, so we obtain a local isometry $\varphi: M \to M$ which extends $\varphi: B(p, \delta) \to B(p, \delta)$. By Proposition A.3 φ is a Riemannian covering map since M is complete, and thus φ is a diffeomorphism since M is simply-connected, which implies φ is an isometry.

Corollary 1.11. Let (M,g) be a complete locally Riemannian symmetric space. Then it's isometric to $(\widetilde{M}/\Gamma, \widetilde{g})$ where $(\widetilde{M}, \widetilde{g})$ is a Riemannian symmetric space and $\Gamma \cong \pi_1(M)$ is a discrete Lie group acting on \widetilde{M} freely, properly and isometrically.

Proof. Let $(\widetilde{M}, \widetilde{g})$ be the universal covering of (M, g) with pullback metric. Then $(\widetilde{M}, \widetilde{g})$ is a simply-connected Riemannian manifold with parallel curvature tensor. Furthermore, by Proposition A.6 it's complete, hence it is symmetric.

1.C.2. Riemannian symmetric space and Riemannian homogeneous space.

Definition 1.12 (Riemannian homogeneous space). A Riemannian manifold (M, g) is called a Riemannian homogeneous space, if Iso(M, g) acts on M transitively.

Proposition 1.13. Let (M,g) be a Riemannian homogeneous space. If there exists a symmetry at some point $p \in M$, then (M,g) is a Riemannian symmetric space.

Proof. Let φ be a symmetry at $p \in M$. For arbitrary $q \in M$, there exists an isometry $\psi : M \to M$ such that $\psi(p) = q$ since (M, g) is a Riemannian homogeneous space. Then

$$\varphi_a := \psi \circ \varphi \circ \psi^{-1}$$

is the desired symmetry at q.

Theorem 1.14. Let (M, g) be a Riemannian symmetric space. Then

- (1) (M,g) is complete.
- (2) the identity component of isometry group acts transitively on M.

Proof. For (1). For arbitrary geodesic $\gamma: [0,1] \to M$ with $\gamma(0) = p, \gamma'(0) = v$, the curve $\beta(t) = \varphi(\gamma(t)): [0,1] \to M$ is also a geodesic with $\beta(0) = p$ and $\beta'(0) = -v$. Now we obtain a smooth extension $\gamma': [0,2] \to M$ of γ , given by

$$\gamma'(t) = \begin{cases} \beta(1-t), & t \in [0,1] \\ \gamma(t-1), & t \in [1,2] \end{cases}$$

Repeat above process to extend γ to a geodesic defined on \mathbb{R} , this shows completeness.

For (2). For arbitrary $p, q \in M$, let γ be a geodesic connecting p, q. Then the transvection along γ gives an isometry which maps p to q. Since the transvection lies in the identity component of isometry group, one has the identity component of isometry group acts transitively on M.

Corollary 1.15. The Riemannian symmetric space (M,g) is a Riemannian homogeneous space.

2. LIE GROUP VIEWPOINTS

2.A. Riemannian symmetric space as a Lie group quotient.

Definition 2.1 (involution). Let G be a Lie group. An automorphism σ of G is called an involution if $\sigma^2 = id_G$.

Definition 2.2 (Cartan decomposition). Let G be a Lie group and σ be an involution of G. The eigen-decomposition of \mathfrak{g} given by $(d\sigma)_e$ is called Cartan decomposition, that is,

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$$

where

$$\mathfrak{f} = \{ X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{\varrho}(X) = X \}$$

$$\mathfrak{m} = \{ X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{\varrho}(X) = -X \}$$

Proposition 2.3. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ be a Cartan decomposition given by σ . Then

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k}, \quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m}, \quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

Proof. It follows from

$$(d\sigma)_{e}([X,Y]) = [(d\sigma)_{e}(X), (d\sigma)_{e}(Y)]$$

where $X, Y \in \mathfrak{g}$.

Theorem 2.4. Let (M,g) be a Riemannian symmetric space and G be the identity component of Iso(M,g). For $p \in M$, K denotes the isotropic group of G_p .

- (1) The mapping $\sigma: G \to G$, given by $\sigma(g) = s_p g s_p$ is an involution automorphism of G.
- (2) If G^{σ} is the set of fixed points of σ in G, and $(G^{\sigma})_0$ is the identity component of G^{σ} , then $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.
- (3) If $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is the Cartan decomposition given by σ , then \mathfrak{k} is the Lie algebra of K.
- (4) There is a left invariant metric on G which is also right invariant under K, such that G/K with the induced metric is isometric to (M,g).

Proof. For (1). σ is an involution since for arbitrary $g \in G$, one has $\sigma^2(g) = \sigma(s_p g s_p) = s_p^2 g s_p^2 = g$ since $s_p^2 = id$.

For (2). It follows from the following two steps:

- (a) To show $K \subseteq G^{\sigma}$. For any $k \in K$, in order to show $k = s_p k s_p$, it suffices to show they and their differentials agree at some point by Theorem A.1, since both of them are isometries, and p is exactly the point we desired.
- (b) To see $(G^{\sigma})_0 \subseteq K$. Suppose $\exp(tX) \subseteq (G^{\sigma})_0$ is a one-parameter subgroup. Since $\sigma(\exp(tX)) = \exp(tX)$, one has

$$\exp(tX)(p) = s_p \exp(tX)s_p(p) = s_p \exp(tX)(p)$$

But p is an isolated fixed point of s_p , which implies $\exp(tX)(p) = p$ for all t. This shows the one-parameter subgroup lies in K. Since exponential map of Lie group is a diffeomorphism in a small neighborhood of identity element e and $(G^{\sigma})_0$ can be generated by a neighborhood of e, which implies the whole $(G^{\sigma})_0 \subseteq K$.

For (3). Note that $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$, it suffices to show $\mathfrak{k} \cong \text{Lie } G^{\sigma}$. For $X \in \mathfrak{k}$, we claim $\gamma_2(t) = \sigma(\exp(tX))$: $\mathbb{R} \to G$ is a one-parameter subgroup. Indeed, note that

$$\gamma_2(t) \cdot \gamma_2(s) = s_p \exp(tX) s_p \cdot s_p \exp(sX) s_p$$
$$= \sigma(\exp(tX + sX))$$
$$= \gamma_2(t+s)$$

Furthermore, $\gamma_2(t) = \sigma(\exp(tX))$ and $\gamma_1(t) = \exp(tX)$ are two one-parameter subgroups of G such that $\gamma_1(0) = \gamma_2(0)$ and $\gamma_2'(0) = (d\sigma)_e(X) = X = \gamma_1'(0)$. Then $\gamma_1(t) = \gamma_2(t)$, and thus $\exp(tX) \in G^{\sigma}$ for all $t \in \mathbb{R}$. This shows $\mathfrak{k} \subseteq \operatorname{Lie} G^{\sigma}$, and the converse inclusion is clear, so one has $\mathfrak{k} = \operatorname{Lie} G^{\sigma}$.

For (4). Let $\pi: G \to M$ be the natural projection given by $\pi(g) = gp$. Then for $k \in K$ and $X \in \mathfrak{g}$ one has

$$(d\pi)_{e}(Ad_{k}X) = (d\pi)_{e} \left(\frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1}\right)$$

$$= \frac{d}{dt}\Big|_{t=0} \pi(k \exp(tX)k^{-1})$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1} \cdot p$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX) \cdot p$$

$$= (dL_{k})_{p}(d\pi)_{e}(X)$$

By using the equivalent isomorphism $(d\pi)_e|_{\mathfrak{m}}: \mathfrak{m} \to T_pM$, one has an Ad(K)-invariant metric on \mathfrak{m} , and then we can extend it to an Ad(K)-invariant metric on $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ by choosing² arbitrary Ad(K)-invariant metric on \mathfrak{k} such that $\mathfrak{m} \perp \mathfrak{k}$. This shows one has a left-invariant metric on G which is also right invariant with respect to K. Now it suffices to show G/K with the induced metric is isometric to (M,g). For any $gK \in G/K$, consider the following communicative diagram

$$\mathfrak{m} = T_{eK}G/K \xrightarrow{(\mathrm{d}\pi)_e|_{\mathfrak{m}}} T_pM$$

$$\downarrow^{\mathrm{d}L_g} \qquad \qquad \downarrow^{\mathrm{d}L_g}$$

$$T_{gK}G/K \longrightarrow T_{gp}M$$

Since both $(d\pi)_e|_{\mathfrak{m}}$ and (dL_g) are linear isometries, one has $T_{gK}G/K$ is isometric to $T_{gp}M$, and thus G/K with induced metric is isometric to (M,g).

2.B. **Riemannian symmetric pair.** In Theorem 2.4 one can see that if (M, g) is a symmetric space, then it gives a pair of Lie groups (G, K) with an involution σ on G such that

$$(G^{\sigma})_{0} \subset K \subset G^{\sigma}$$

Then there exists a left-invariant metric on G/K such that G/K with this metric is isometric to (M,g). This motivates us an effective way to construct Riemannian

²Such metric exists since K is compact.

symmetric spaces from a pair of Lie groups with certain properties, and such a pair is called a Riemannian symmetric pair.

Definition 2.5 (Riemannian symmetric pair). Let G be a connected Lie group and $K \subseteq G$ be a compact subgroup. The pair (G, K) is called a Riemannian symmetric pair if there exists an involution $\sigma: G \to G$ with $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.

Proposition 2.6. Let (G, K) be a symmetric pair given by σ . Then there is an isomorphism as Lie algebras

$$\mathfrak{k} \cong \operatorname{Lie} K$$

and an isomorphism as vector spaces

$$\mathfrak{m} \cong T_{eK}G/K$$

Proof. $\mathfrak{k} \cong \operatorname{Lie} K$ follows from the same as proof of (3) in Theorem 2.4, and $\mathfrak{m} \cong T_{eK}G/K$ is an immediate consequence.

Corollary 2.7. Let $\widetilde{\sigma}: G/K \to G/K$ be the automorphism of G/K induced σ . Then $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_{G/K}$.

Proof. Since $K \subseteq G^{\sigma}$, one has $\sigma : K \to K$, and thus $\widetilde{\sigma} : G/K \to G/K$ is well-defined. By construction one has $(d\widetilde{\sigma})_{eK} = (d\sigma)_e|_{\mathfrak{m}}$. Then $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_{G/K}$ since $\mathfrak{m} = \{X \in \mathfrak{g} \mid (d\sigma)_e X = -X\}$.

Theorem 2.8. Let (G, K) be a Riemannian symmetric pair given by σ . Then there exists a left-invariant metric on G which is also right invariant on K such that the induced metric on G/K making it to be a Riemannian symmetric space.

Proof. For convenience we use M to denote G/K. Note that a left-invariant metric on G which is also right invariant on K is equivalent to a metric on \mathfrak{g} which is Ad(K)-invariant. Since K is compact, it admits a Ad(K)-invariant metric, and it can be extended to a Ad(K)-invariant metric on \mathfrak{g} as what we have done in the proof of (4) in Theorem 2.4. Furthermore, by Corollary 2.7 one has $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_M$.

Now it suffices to show for any $gK \in M$, $(d\widetilde{\sigma})_{gK} : T_{gK}M \to T_{\sigma(g)K}M$ is an isometry. Note that $\widetilde{\sigma}(ghK) = \sigma(g)\sigma(h)K = \sigma(g)\widetilde{\sigma}(hK)$ holds for all $h \in G$. This shows $\widetilde{\sigma} \circ L_g = L_{\sigma(g)} \circ \widetilde{\sigma}$, where $L_g : M \to M$ is given by $L_g(hK) = ghK$. By taking differential one has the following communicative diagram

$$T_{eK}M \xrightarrow{(\mathrm{d}\widetilde{\sigma})_{eK}} T_{eK}M$$

$$(\mathrm{d}L_g)_{eK} \downarrow \qquad \qquad \downarrow (\mathrm{d}L_{\sigma(g)})_{eK}$$

$$T_{gK}M \xrightarrow{(\mathrm{d}\widetilde{\sigma})_{gK}} T_{\sigma(g)K}M$$

Since $(dL_g)_{eK}$, $(dL_{\sigma(g)})_{eK}$, $(d\widetilde{\sigma})_{eK}$ are isometries, one has $(d\widetilde{\sigma})_{gK}$ is also an isometry as desired.

2.C. Examples of Riemannian symmetric space.

Example 2.9. $G = SL(n, \mathbb{R})$ together with K = SO(n) gives a Riemannian symmetric pair, where σ is defined by

$$\sigma: \operatorname{SL}(n,\mathbb{R}) \to \operatorname{SL}(n,\mathbb{R})$$

$$g \mapsto (g^{-1})^T.$$

Indeed, note that

$$(SL(n, \mathbb{R}))^{\sigma} = SO(n).$$

Thus $SL(n, \mathbb{R})/SO(n)$ is a Riemannian symmetric space, and it can be viewed as a generalization of hyperbolic plane \mathbb{H}^2 , since $SL(2, \mathbb{R})/SO(2) \cong \mathbb{H}^2$.

Example 2.10. G = SO(n + 1) together with K = SO(n) gives a Riemannian symmetric pair, where σ is defined by

$$\sigma: SO(n+1) \to SO(n+1)$$

$$a \mapsto I_{1,n}aI_{1,n}^{-1},$$

where $I_{1,n} = diag\{-1, 1, ..., 1\}$. Indeed, a direct computation shows

$$\mathrm{SO}(n+1)^{\sigma} = \{ a \in \mathrm{SO}(n+1) \mid I_{1,n}a = aI_{1,n} \} = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & b \end{pmatrix} \in \mathrm{SO}(n+1) \mid b \in \mathrm{O}(n) \right\},$$

which implies $(SO(n+1)^{\sigma})_0 = SO(n) \subseteq SO(n+1)$. Thus $S^n \cong SO(n+1)/SO(n)$ is a Riemannian symmetric space.

Example 2.11 (compact Grassmannian). Consider the Grassmannian of oriented k-planes in \mathbb{R}^{k+l} , denoted by $M = \widehat{Gr}_k(\mathbb{R}^{k+l})$. It's clear that SO(k+l) acts on M transitively with isotropy group $SO(k) \times SO(l)$, and thus $M \cong SO(k+l)/SO(k) \times SO(l)$. Consider the involution

$$\sigma: SO(k+l) \to SO(k+l)$$

 $a \mapsto I_{k,l}aI_{k,l}^{-1},$

where $I_{k,l} = diag\{\underbrace{-1,...,-1}_{k \text{ times}},\underbrace{1,...,1}_{l \text{ times}}\}$. A direct computation shows

$$SO(k + l)^{\sigma} = S(O(k) \times O(l))$$

Then $(SO(k+l)^{\sigma})_0 = SO(k) \times SO(l) \subseteq SO(k+l)^{\sigma}$, and thus M is a Riemannian symmetric space, called compact Grassmannian. In particular, $S^n = \widehat{Gr}_1(\mathbb{R}^{n+1})$.

Example 2.12 (hyperbolic Grassmannian). In $\mathbb{R}^{k,l}$ with $k \geq 2, l \geq 1$, let's consider the following quadratic form

$$v^{t}I_{k,l}w = v^{t}\begin{pmatrix} I_{k} & 0\\ 0 & -I_{l} \end{pmatrix}w = \sum_{i=1}^{k} v_{i}w_{i} - \sum_{j=k+1}^{k+l} v_{j}w_{j}$$

The group of linear transformation X that preserves this quadratic form is denoted by O(k, l), that is

$$XI_{k,l}X^t = I_{k,l}$$

and SO(k,l) are those with positive determinant. Now consider set consisting of those oriented k-dimensional subspaces of $\mathbb{R}^{k,l}$ on which quadratic form $I_{k,l}$ are positive definite. This space is called the hyperbolic Grassmannian $M = \widehat{Gr}_k(\mathbb{R}^{k,l})$, which is also an open subset of $\widehat{Gr}_k(\mathbb{R}^{k+l})$. It's clear G = SO(k,l) acting transitively on M with isotropy group $G_p = SO(k) \times SO(l)$. As in Example 2.11 one can also construct an involution σ to show $\widehat{Gr}_k(\mathbb{R}^{k,l})$ is a Riemannian symmetric space.

Example 2.13. Let K be a connected compact Lie group and $G = K \times K$. Then (G, K) is a Riemannian symmetric pair given by σ , where $\sigma : G \to G$ is given by $(x, y) \mapsto (y, x)$,

since

$$G^{\sigma} = \{(a,a) \mid a \in K\} \cong K$$

Then any compact Lie group is a Riemannian symmetric space.

3. CURVATURE OF RIEMANNIAN SYMMETRIC SPACE

3.A. Formulas.

Proposition 3.1. Let (M,g) be a Riemannian symmetric space and G = Iso(M,g) with Lie algebra \mathfrak{g} . For any $p \in M$, one has Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is Lie algebra of isotropy group G_p and $\mathfrak{m} \cong T_pM$. Then for any $X \in \mathfrak{k}$, one has

$$B(X,X) \leq 0$$

where B is the Killing form of \mathfrak{g} . Furthermore, the identity holds if and only if X=0.

Proof. Since a Killing field is determined by X_p and $(\nabla X)_p$, one has elements in \mathfrak{k} is determined by $(\nabla X)_p$, and note that ∇X is a skew-symmetric matrice, so

$$\mathfrak{f} \cong \{ (\nabla X) \in \mathfrak{so}(T_p M) \mid X \in \mathfrak{f} \}$$

By using this identification, there is a natural metric on £ given by

$$\langle S_1, S_2 \rangle = -\operatorname{tr}(S_1 S_2)$$

Then one has metric on $\mathfrak g$ since there is a metric on $\mathfrak m$ obtained from $\mathfrak m \cong T_pM$. For any $S \in \mathfrak k$, we claim with respect to this metric, $\mathrm{ad}_S : \mathfrak g \to \mathfrak g$ is skew-symmetric. Indeed, for $X_1, X_2 \in \mathfrak k$, one has

$$\begin{aligned} \langle \operatorname{ad}_S X_1, X_2 \rangle &= -\operatorname{tr}(\operatorname{ad}_S X_1 X_2) \\ &= -\operatorname{tr}((SX_1 - X_1 S) X_2) \\ &= \operatorname{tr}(X_1 (SX_2 - X_2 S)) \\ &= -\langle X_1, \operatorname{ad}_S X_2 \rangle \end{aligned}$$

For $Y_1, Y_2 \in \mathfrak{m}$, since $S_p = 0$ and $(\nabla S)_p$ is skew-symmetric, one has

$$\begin{split} \langle \operatorname{ad}_S Y_1, Y_2 \rangle &= \langle \nabla_S Y_1 - \nabla_{Y_1} S, Y_2 \rangle \\ &= -\langle \nabla_{Y_1} S, Y_2 \rangle \\ &= \langle \nabla_{Y_2} S, Y_1 \rangle \\ &= -\langle Y_1, \nabla_S Y_2 - \nabla_{Y_2} S \rangle \\ &= -\langle Y_1, \operatorname{ad}_S Y_2 \rangle \end{split}$$

Then one has

$$B(S,S) = \operatorname{tr}(\operatorname{ad}_S \circ \operatorname{ad}_S) = \sum \langle \operatorname{ad}_S \circ \operatorname{ad}_S(e_i), e_i \rangle = -\sum \langle \operatorname{ad}_S(e_i), \operatorname{ad}_S(e_i) \rangle \leq 0$$

Furthermore, if B(S, S) = 0, then $\operatorname{ad}_S = 0$ and for any $X \in \mathfrak{g}$, one has

$$0 = \operatorname{ad}_{S}(X) = [S, X] = \nabla_{S}X - \nabla_{X}S = -\nabla_{X}S$$

since $S_p = 0$. This implies $(\nabla S)_p = 0$, and thus S = 0.

Theorem 3.2. Let (M, g) be a Riemannian symmetric space and G = Iso(M, g). For any $p \in M$, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ with $\mathfrak{m} \cong T_pM$.

(1) For any $X, Y, Z \in \mathfrak{m}$, there holds

$$R(X,Y)Z = -[Z,[Y,X]]$$

$$Ric(Y,Z) = -\frac{1}{2}B(Y,Z)$$

(2) If
$$Ric(g) = \lambda g$$
, then for $X, Y \in \mathfrak{m}$, one has

$$2\lambda R(X, Y, Y, X) = -B([X, Y], [X, Y])$$

Proof. For (1). For any $X, Y, Z \in \mathfrak{m}$, direct computation shows

$$R(X,Y)Z \stackrel{(a)}{=} R(X,Z)Y - R(Y,Z)X$$

$$\stackrel{(b)}{=} \nabla_Z \nabla_Y X - \nabla_{\nabla_Z Y} X - \nabla_Z \nabla_X Y + \nabla_{\nabla_Z X} Y$$

$$\stackrel{(c)}{=} -\nabla_Z [X,Y]$$

$$\stackrel{(d)}{=} -[Z[X,Y]]$$

where

- (a) holds from the first Bianchi identity.
- (b) holds from (2) of Proposition C.1.
- (c) holds from $X, Y \in \mathfrak{m}$, and thus $(\nabla X)_p = (\nabla Y)_p = 0$.
- (d) holds from

$$\nabla_Z[X,Y] - \nabla_{[X,Y]}Z = [Z,[X,Y]]$$

and
$$(\nabla Z)_p = 0$$
.

To see Ricci curvature, note that for $Y \in \mathfrak{m}$

$$ad_{Y}: \mathfrak{k} \to \mathfrak{m}, \quad ad_{Y}: \mathfrak{m} \to \mathfrak{k}$$

Thus $\operatorname{ad}_Z \circ \operatorname{ad}_Y$ preserves the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ if $Y, Z \in \mathfrak{m}$. Then

$$tr(ad_Z \circ ad_Y \mid_{\mathfrak{m}}) = tr(ad_Z \mid_{\mathfrak{k}} \circ ad_Y \mid_{\mathfrak{m}})$$
$$= tr(ad_Y \mid_{\mathfrak{m}} \circ ad_Z \mid_{\mathfrak{k}})$$
$$= tr(ad_Y \circ ad_Z \mid_{\mathfrak{k}})$$

Hence we obtain

$$B(Y, Y) = \operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad} Y|_{\mathfrak{k}}) + \operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad} Y|_{\mathfrak{m}}) = 2\operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad}_{Y}|_{\mathfrak{m}})$$

Since Ricci tensor is trace of curvature tensor, and thus

$$\operatorname{Ric}(Y,Y) = -\operatorname{tr}(\operatorname{ad}_Y \circ \operatorname{ad}_Y|_{\mathfrak{m}}) = -\frac{1}{2}B(Y,Y)$$

Then by using Polarization identity, one has Ric(Y, Z) = -B(Y, Z)/2.

For (2). If
$$Ric(g) = \lambda g$$
, then

$$\begin{aligned} 2\lambda g(R(X,Y)Y,X) &= -2\lambda g(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -2\operatorname{Ric}(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= B(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -B(\operatorname{ad}_Y X,\operatorname{ad}_Y X) \\ &= -B([X,Y],[X,Y]) \end{aligned}$$

Corollary 3.3. Let (M,g) be a Riemannian symmetric space which is an Einstein manifold with Einstein constant λ . Then

- (1) If $\lambda > 0$, then (M, g) has non-negative sectional curvature.
- (2) If $\lambda < 0$, then (M, g) has non-positive sectional curvature.
- (3) If $\lambda = 0$, then (M, g) is flat.

Proof. By Theorem 3.2 one has

$$2\lambda R(X, Y, Y, X) = -B([X, Y], [X, Y]) \ge 0,$$

since $[X, Y] \in [\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{k}$ and B is negative definite on \mathfrak{k} . This shows (1) and (2). If $\lambda = 0$, one has $B([X, Y], [X, Y]) \equiv 0$ for arbitrary X, Y. Then by Proposition 3.1 one has $[X, Y] \equiv 0$ for arbitrary X, Y, and thus (M, g) is flat.

3.B. Computations of curvature.

Example 3.4. In Example 2.9 we have already shown that $M = SL(n, \mathbb{R})/SO(n)$ is a Riemannian symmetric space. Consider its Cartan decomposition

$$\mathfrak{gl}(n) = \mathfrak{go}(n) \oplus \mathfrak{m},$$

where \mathfrak{m} consists of symmetric matrices and $\mathfrak{m} \cong T_pM$ for $p \in M$. On \mathfrak{m} we can put the usual Euclidean metric, that is for $X, Y \in \mathfrak{m}$, we define

$$\langle X, Y \rangle = \operatorname{tr}(XY^T) = \operatorname{tr}(XY) = \frac{1}{2n}B(X, Y),$$

where B is the Killing form of $\mathfrak{Sl}(n)$. By Theorem 3.2 the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -ng$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{2n} \le 0$$

Hence it has non-positive sectional curvatures. One can also show its sectional curvature is non-positive by computing curvature tensor as follows

$$R(X, Y, Z, W) = \operatorname{tr}([Z, [X, Y]]W)$$

$$= \operatorname{tr}(Z[X, Y]W - [X, Y]ZW)$$

$$= \operatorname{tr}(WZ[X, Y] - [X, Y]ZW)$$

$$= \operatorname{tr}([X, Y][Z, W])$$

$$= -\operatorname{tr}([X, Y][Z, W]^{T})$$

$$= -\langle [X, Y], [Z, W] \rangle$$

Example 3.5 (compact Grassmannian). In Example 2.11 we have already shown that $M = \widehat{Gr}_k(\mathbb{R}^{k+l})$ is a Riemannian symmetric space with Cartan decomposition

$$\mathfrak{so}(k+l) = \mathfrak{so}(k) \oplus \mathfrak{so}(l) \oplus \mathfrak{m}$$

where $\mathfrak{m} \cong T_pM$ for $p \in M$. Note that one has the block decomposition of matrices in $\mathfrak{so}(k+l)$ as follows

$$\mathfrak{so}(k+l) = \left\{ \begin{pmatrix} X_1 & B \\ -B^T & X_2 \end{pmatrix} \mid X_1 \in \mathfrak{so}(k), X_2 \in \mathfrak{so}(l), B \in M_{k \times l}(\mathbb{R}) \right\}.$$

Then one has $\mathfrak{m}\cong\left\{\begin{pmatrix}0&B\\-B^T&0\end{pmatrix}\mid B\in M_{k\times l}(\mathbb{R})\right\}$. If we put the usual Euclidean metric on \mathfrak{m} , that is

$$\begin{split} \left\langle \begin{pmatrix} 0 & A \\ -A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ -B^T & 0 \end{pmatrix} \right\rangle &= \operatorname{tr} \left(\begin{pmatrix} 0 & A \\ -A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ -B^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \right) \\ &= -\operatorname{tr} \left(\begin{pmatrix} 0 & A \\ -A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \right) \\ &= -\frac{1}{k+l-2} B \left(\begin{pmatrix} 0 & A \\ -A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ -B^T & 0 \end{pmatrix} \right), \end{split}$$

where B is the Killing form of $\mathfrak{so}(n)$. Then the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = \frac{k+l-2}{2}g,$$

$$R(X, Y, Y, X) = -\frac{B([X, Y], [X, Y])}{k+l-2} \ge 0,$$

where $X, Y \in \mathfrak{m}$. This shows the compact Grassmannian has the non-negative sectional curvature.

Example 3.6 (hyperbolic Grassmannian). In Example 2.12 we have already shown that $M = \widehat{Gr}_k(\mathbb{R}^{k,l})$ is a Riemannian symmetric space with Cartan decomposition

$$\mathfrak{so}(k,l) = \mathfrak{so}(k) \oplus \mathfrak{so}(l) \oplus \mathfrak{m},$$

where $\mathfrak{m} \cong T_pM$ for $p \in M$. Note that one has the block decomposition of matrices in $\mathfrak{so}(k,l)$ as follows

$$\mathfrak{So}(k,l) = \left\{ \begin{pmatrix} X_1 & B \\ B^T & X_2 \end{pmatrix} \mid X_1 \in \mathfrak{So}(k), X_2 \in \mathfrak{So}(l), B \in M_{k \times l}(\mathbb{R}) \right\}.$$

Then one has $\mathfrak{m}\cong \left\{\begin{pmatrix} 0&B\\B^T&0 \end{pmatrix}\mid B\in M_{k\times l}(\mathbb{R})\right\}$. If we put the usual Euclidean metric on \mathfrak{m} , then

$$\left\langle \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \right\rangle = \frac{1}{k+l-2} B \left(\begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}, \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \right),$$

where *B* is the Killing form of $\mathfrak{so}(k, l)$. Then the corresponding metric on *M* has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -\frac{k+l-2}{2}g,$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{k+l-2} \le 0,$$

where $X, Y \in \mathfrak{m}$. This shows the hyperbolic Grassmannian has non-positive sectional curvature.

Example 3.7. In Example 2.13 one has a connected compact Lie group $G \cong G \times G/G^{\Delta}$ is a Riemannian symmetric space with Cartan decomposition $\mathfrak{g} \oplus \mathfrak{g} = \mathfrak{g}^{\Delta} \oplus \mathfrak{g}^{\perp}$, where

$$\begin{split} \mathfrak{g}^{\Delta} &= \{(X,X) \mid X \in \mathfrak{g}\}, \\ \mathfrak{g}^{\perp} &= \{(X,-X) \mid X \in \mathfrak{g}\}. \end{split}$$

Then one has $\mathfrak{m} \cong \mathfrak{g}^{\perp},$ and thus curvature tensor can be computed as follows

$$R(X,Y)Z = R((X,-X),(Y,-Y))(Z,-Z)$$

$$= [(Z,-Z),[(X,-X),(Y,-Y)]]$$

$$= ([Z,[X,Y]],-[Z,[X,Y]])$$

Hence, we arrive at that the formula

$$R(X,Y)Z = [Z,[X,Y]].$$

Remark 3.8. If one computes the curvature tensor in the standard way using bi-invariant metric, then the formula has a factor 1/4 on it.

4. CLASSIFICATIONS

4.A. Holonomy group.

Definition 4.1 (holonomy). Let (M,g) be a Riemannian manifold and γ be a piecewise smooth loop centered at $p \in M$. Then the parallel along γ gives an isometry on T_pM , and the set of all such isometries forms a group called holonomy group, denoted by $\operatorname{Hol}_p(M,g)$.

Remark 4.2. Note that if q is another base point, and γ is a path from p to q, then $\operatorname{Hol}_q = P_{\gamma} \operatorname{Hol}_p P_{\gamma}^{-1}$, and thus they are isomorphic, so for convenience we just denote it by Hol.

Theorem 4.3. Let (M, g) be a Riemannian manifold. Then

- (1) Hol is a Lie group and its identity component Hol⁰ is compact.
- (2) Hol^0 is given by parallel transport along null homotopic loops. As a consequence, if M is simply-connected, then Hol^0 .

Proposition 4.4. Let (M,g) be a Riemannian symmetric space with G = Iso(M,g) and $K = G_p$ for some $p \in M$. Then $\text{Hol}_p \subseteq K$.

Proof. Note that holonomy group is the group of parallel transports along all piecewise smooth loops centered at p, and such a loop γ be written as a limit of geodesic polygons γ_i . The parallel transport along any edge of the polygon is given by applying a transvection along that edge, and so the parallel transport along the full polygon is a composition of isometries which sends p back to itself, hence it is an element of the isotropy group K. Since K is compact, the sequence of parallel transports along geodesic polygons approximating the given loop has a convergent subsequence, and thus $Hol_p \subseteq K$.

Definition 4.5 (decomposability). A Riemannian manifold (M, g) is called decomposable if M is a product of $N_1 \times N_2$ and the Riemannian metric is a product metric. Otherwise (M, g) is called indecomposable.

Theorem 4.6 (de Rham). Let M be a simply-connected Riemannian manifold, $p \in M$ and Hol_p the holonomy group. Let $T_pM = V_0 \oplus V_1 \oplus \cdots \oplus V_k$ be decomposition into Hol_p irreducible subspace with $V_0 = \{v \in T_pM \mid hv = v \text{ for all } h \in \operatorname{Hol}_p\}$. Then M is a Riemannian product $M = M_0 \times \cdots \times M_k$, where M_0 is isometric to flat \mathbb{R}^n . If $p = (p_0, p_1, \ldots, p_k)$, then $T_{p_i}M_i \cong V_i$ and M_i is indecomposable if $i \geq 1$. Furthermore, the decomposition is unique up to order and $\operatorname{Hol}_p \cong \operatorname{Hol}_{p_i} \times \cdots \times \operatorname{Hol}_{p_k}$.

4.B. Irreducibility.

Definition 4.7 (isotropy irreducible). Let (M,g) be a Riemannian symmetric space with G = Iso(M,g) and $K = G_p$ for some $p \in M$. If the identity component of K acts irreducibly on T_pM , then M is called irreducible. Otherwise M is called reducible.

Lemma 4.8. Let B_1 , B_2 be two symmetric bilinear forms on a vector space V such that B_1 is positive definite. If a group K acts irreducibly on V such that B_1 and B_2 are invariant under K, then $B_2 = \lambda B_1$ for some constant λ .

Proof. Since B_1 is positive definite, there exists an endomorphism $L: V \to V$ such that

$$B_2(u,v) = B_1(Lu,v)$$

where $u, v \in V$. Since B_1, B_2 are invariant under K, one has for any $k \in K$

$$B_1(kLu, v) = B_1(Lu, k^{-1}v) = B_2(u, k^{-1}v) = B_2(ku, v) = B_1(Lku, v)$$

holds for arbitrary $u, v \in V$, which implies Lk = kL for all $k \in K$. Moreover, the symmetry of B_1, B_2 implies

$$B_1(Lu, v) = B_2(u, v) = B_2(v, u) = B_1(Lv, u) = B_1(u, Lv)$$

Hence L is symmetric with respect to B_1 , and thus the eigenvalues of L are real. If $E \subseteq V$ is an eigenspace with eigenvalue λ , the fact kL = Lk implies E is invariant under K. Since K acts irreducibly on V, one has E = V, that is $L = \lambda I$, which implies $B_2 = \lambda B_1$.

Theorem 4.9. The irreducible Riemannian symmetric space is Einstein, and the metric is unique determined up to a scalar.

Proof. Since isometries preserves the metric and curvature, and Ricci tensor is also a symmetric bilinear form, by Lemma 4.8 there exists smooth function λ such that

$$Ric(g) = \lambda g$$

Note that Riemannian curvature of Riemannian symmetric space is parallel, so is Ricci curvature. Thus we have λ is a constant.

Theorem 4.10. Let (M,g) be a simply-connected Riemannian symmetric space. Then (M,g) is isometric to

$$(M_1, g_1) \times \cdots \times (M_k, g_k)$$

where (M_i, g_i) are irreducible Riemannian symmetric space for i = 1, ..., k.

Proof. We can decompose T_pM into irreducible subspaces V_i under the action of K_0 . Since $\operatorname{Hol}_p = \operatorname{Hol}_p^0 \subseteq K_0$, these subspaces can be further decomposed into irreducible ones under Hol_p . Applying Theorem 4.6, M has a corresponding decomposition as a Riemannian product. By collecting factors whose tangent spaces lie in V_i , we get a decomposition $M_1 \times \cdots \times M_k$ with $M_1 \cong \mathbb{R}^n$ flat (if a flat factor exists) and $T_{p_i}M_i \cong V_i$. If s_p is the symmetry at $p = (p_1, \dots, p_k)$, then the uniqueness of the decomposition also implies that $s_p = (s_{p_1}, \dots, s_{p_k})$ since, due to $\operatorname{d}(s_p)_p = -\operatorname{id}, s_p$ cannot permute factors in the decomposition. Thus each factor M_i is a symmetric space which is irreducible by construction.

Corollary 4.11. A simply-connected symmetric space with simple isometry group is irreducible.

5. Type and duality

5.A. Compact, non-compact and Euclidean types.

Definition 5.1 (types). Let (G,K) be a Riemannian symmetric pair with Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ and B be the Killing form of \mathfrak{g} . The pair is called

- (1) of compact type if $B|_{\mathfrak{m}} < 0$;
- (2) of non-compact type if $B|_{\mathfrak{m}} > 0$;
- (3) of Euclidean type if $B|_{\mathfrak{m}} = 0$.

Theorem 5.2. Let (G, K) be a Riemannian symmetric pair.

- (1) If (G, K) is irreducible, then it's either of compact type, non-compact type or Euclidean type.
- (2) If M = G/K is simply-connected, then M is isometric to a Riemannian product $M = M_0 \times M_1 \times M_2$ with M_0 of Euclidean type, M_1 of compact type and M_2 of non-compact type.
- (3) If (G, K) is of compact type, then G is semisimple, and both G and M is compact.
- (4) If (G,K) is of non-compact type, then G is semisimple, and both G and M are non-compact.
- (5) (G, K) is of Euclidean type if and only if $[\mathfrak{m}, \mathfrak{m}] = 0$. Furthermore, if G/K is simply-connected, then it's isometric to \mathbb{R}^n .

Proposition 5.3. Let (G, K) be a Riemannian symmetric pair.

- (1) If (G, K) is of compact type, then it has non-negative sectional curvature.
- (2) If (G, K) is of non-compact type, then it has non-positive sectional curvatures.
- (3) If (G, K) is of Euclidean type, then it's flat.
- 5.B. **Duality.** In this section we discuss the important concept of duality. Let (G, K) be a symmetric pair with G/K is simply-connected. Since G is connected, K is connected as well. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ be the Cartan decomposition of \mathfrak{g} . Then we can consider \mathfrak{g} as a real subalgebra of $\mathfrak{g} \otimes \mathbb{C}$ and define a new real Lie algebra $\mathfrak{g}^* \subseteq \mathfrak{g} \otimes \mathbb{C}$ by $\mathfrak{g}^* = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{m}$. Now let G^* be the simply-connected Lie group with Lie algebra \mathfrak{g}^* and K^* be the connected subgroup with Lie algebra $\mathfrak{k} \subseteq \mathfrak{g}^*$. The Riemannian symmetric pair (G^*, K^*) is called dual of (G, K).

Theorem 5.4. Let (G, K) be a symmetric pair with dual symmetric space pair (G^*, K^*) .

- (1) If (G, K) is of compact type, then (G^*, K^*) is of non-compact type, and vice versa.
- (2) If (G, K) is of Euclidean type, then (G^*, K^*) is of Euclidean type.
- (3) (G, K) is irreducible if and only if (G^*, K^*) is irreducible.

Example 5.5. SU(n)/SO(n) is the dual of $SL(n, \mathbb{R})/SO(n)$.

Part 2. Hermitian symmetric space

Part 3. Appendix

APPENDIX A. BASIC FACTS IN RIEMANNIAN GEOMETRY

Theorem A.1. Let $\varphi, \psi : (M, g_M) \to (N, g_N)$ be two local isometries between Riemannian manifolds, and M is connected. If there exists $p \in M$ such that

$$\varphi(p) = \psi(p)$$

$$(\mathrm{d}\varphi)_p = (\mathrm{d}\psi)_p$$

then $\varphi = \psi$.

Theorem A.2 (Cartan-Ambrose-Hicks). Let (M,g) and $(\widetilde{M},\widetilde{g})$ be two Riemannian manifolds, and $\Phi_0: T_pM \to T_{\widetilde{p}}\widetilde{M}$ is a linear isometry, where $p \in M, \widetilde{p} \in \widetilde{M}$. For $0 < \delta < \min\{\inf_{n}(M), \inf_{\widetilde{n}}(\widetilde{M})\}$, The following statements are equivalent.

- (1) There exists an isometry $\varphi: B(p, \delta) \to B(\widetilde{p}, \delta)$ such that $\varphi(p) = \widetilde{p}$ and $(d\varphi)_p = \Phi_0$.
- (2) For $v \in T_pM$, $|v| < \delta$, $\gamma(t) = \exp_v(tv)$, $\widetilde{\gamma}(t) = \exp_{\widetilde{v}}(t\Phi_0(v))$, if we define

$$\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma} : T_{\gamma(t)} M \to T_{\widetilde{\gamma}(t)} \widetilde{M}$$

then Φ_t preserves curvature, that is $(\Phi_t)^*R = R$.

Proposition A.3. Let $(M, g_M), (N, g_N)$ be complete Riemannian manifolds and $f: M \to N$ be a local diffeomorphism such that for all $p \in M$ and for all $v \in T_pM$, one has $|(\mathrm{d} f)_p v| \geq |v|$. Then f is a Riemannian covering map.

Theorem A.4 (Myers-Steenrod). Let (M,g) be a Riemannian manifold and G = Iso(M,g). Then

- (1) G is a Lie group with respect to compact-open topology.
- (2) for each $p \in M$, the isotropy group G_p is compact.
- (3) G is compact if M is compact.

Proposition A.5. Let (M,g) be a Riemannian manifold, $\gamma: I \to M$ a smooth curve and $P_{s,t;\gamma}: T_{\gamma(s)}M \to T_{\gamma(t)}M$ is the parallel transport along γ . For any $s \in I$ with $v = \gamma'(s)$, one has

$$\nabla_{v}R = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=s} (P_{s,t;\gamma})^{*} R_{\gamma(t)}$$

In particular, if $\nabla R = 0$ then

$$(P_{s,t;\gamma})^* R_{\gamma(t)} = R_{\gamma(s)}$$

holds for arbitrary $t, s \in I$.

Proposition A.6. If $\pi: (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a Riemannian covering, then M is complete if and only if \widetilde{M} is.

APPENDIX B. HOPF THEOREM

The argument about analytic continuation in Theorem 1.10 can be used to give a proof of Hopf's theorem.

Theorem B.1 (Hopf). Let (M,g) be a complete, simply-connected Riemannian manifold with constant sectional curvature K. Then (M,g) is isometric to

$$(\widetilde{M}, g_{can}) = \begin{cases} (\mathbb{S}^n(\frac{1}{\sqrt{K}}), g_{can}) & K > 0 \\ (\mathbb{R}^n, g_{can}) & K = 0 \\ (\mathbb{H}^n(\frac{1}{\sqrt{-K}}), g_{can}) & K < 0 \end{cases}$$

Proof. For $p \in M$, $\widetilde{p} \in \widetilde{M}$ and $\delta < \min\{ \inf(p), \inf(\widetilde{p}) \}$. By Cartan-Ambrose-Hicks's theorem, there exists an isometry $\varphi : B(p, \delta) \to B(\widetilde{p}, \delta)$ such that $\varphi(p) = \widetilde{p}$ and $(\mathrm{d}\varphi)_p$ equals to a given linear isometry, since both (M,g) and $(\widetilde{M},\widetilde{g})$ have constant sectional curvature K. By the same argument in proof of Theorem 1.10, there is an isometry $\varphi : (M,g) \to (\widetilde{M},\widetilde{g})$ which extends $\varphi : B(p,\delta) \to B(\widetilde{p},\delta)$. In particular, this completes the proof.

APPENDIX C. KILLING FIELDS

C.A. Basic properties.

Proposition C.1. Let (M,g) be a Riemannian manifold and X be a Killing field.

- (1) If γ is a geodesic, then $J(t) = X(\gamma(t))$ is a Jacobi field.
- (2) For any two vector fields Y, Z,

$$\nabla_{Y}\nabla_{Z}X - \nabla_{\nabla_{Y}Z}X + R(X,Y)Z = 0$$

Proof. For (1). Suppose φ_s is the flow generated by X. Then we obtain a variation $\alpha(s,t) = \varphi_s(\gamma(t))$ consisting of geodesics, and thus

$$X(\gamma(t)) = \frac{\partial \varphi_s(\gamma(t))}{\partial s}\bigg|_{s=0}$$

is a Jacobi field.

For (2). It's an equation of tensors, so we check it pointwisely and use normal coordinate $\{x^i\}$ centered at p. Furthermore, we assume $X = X^i \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial x^j}$, $Z = \frac{\partial}{\partial x^k}$. Then

$$\begin{split} \nabla_{Y}\nabla_{Z}X - \nabla_{\nabla_{Y}Z}X + R(X,Y)Z &= \nabla_{j}\nabla_{k}X + X^{l}R^{l}_{ijk}\frac{\partial}{\partial x^{l}} \\ &= (\frac{\partial^{2}X^{l}}{\partial x^{j}\partial x^{k}} + X^{l}\frac{\partial\Gamma^{l}_{ki}}{\partial x^{j}} + X^{l}R^{l}_{ijk})\frac{\partial}{\partial x^{l}} \\ &= (\frac{\partial^{2}X^{l}}{\partial x^{j}\partial x^{k}} + X^{l}\frac{\partial\Gamma^{l}_{jk}}{\partial x^{i}})\frac{\partial}{\partial x^{l}} \end{split}$$

since $R_{ijk}^l = \frac{\partial \Gamma_{jk}^l}{\partial x^i} - \frac{\partial \Gamma_{ik}^l}{\partial x^j} + \Gamma_{jk}^s \Gamma_{is}^l - \Gamma_{ik}^s \Gamma_{js}^l$. Now it suffices to show $\frac{\partial^2 X^l}{\partial x^j \partial x^k} + X^i \frac{\partial \Gamma_{jk}^l}{\partial x^i} \equiv 0$. In order to show this, for arbitrary $p \in M$, consider a geodesic γ starting at p and consider Jacobi field $J(t) = X(\gamma(t))$. Direct computation shows

$$J'(t) = \left(\frac{\partial X^{i}}{\partial x^{k}} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} + X^{i} \Gamma^{l}_{ki} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t}\right) \frac{\partial}{\partial x^{l}} \bigg|_{\gamma(t)}$$

$$J''(0) = \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} + X^{i} \frac{\partial \Gamma^{l}_{ki}}{\partial x^{j}} \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t}\right) \frac{\partial}{\partial x^{l}} \bigg|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{i} \frac{\partial \Gamma^{l}_{ki}}{\partial x^{j}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \bigg|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{i} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{i}} + X^{i} \frac{\partial \Gamma^{l}_{ki}}{\partial x^{j}} - X^{i} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{i}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \bigg|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{i} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{i}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \bigg|_{p} - R(X, \gamma')\gamma'$$

which implies

$$\frac{\partial^2 X^l}{\partial x^j \partial x^k} + X^i \frac{\partial \Gamma^l_{jk}}{\partial x^i} = 0$$

holds at point p, and since p is arbitrary, this completes the proof.

Corollary C.2. Let (M, g) be a complete Riemannian manifold and $p \in M$. Then a Killing field X is determined by the values X_p and $(\nabla X)_p$ for arbitrary $p \in M$.

Proof. The equation $\mathcal{L}_X g \equiv 0$ is linear in X, so the space of Killing fields is a vector space. Therefore, it suffices to show if $X_p = 0$ and $(\nabla X)_p = 0$, then $X \equiv 0$. For arbitrary $q \in M$, let $\gamma : [0,1] \to M$ be a geodesic connecting p and q with $\gamma'(0) = v$. Since $J(t) = X(\gamma(t))$ is a Jacobi field, and a direct computation shows

$$(\nabla_{v}X)_{n} = J'(0)$$

Thus $J(t) \equiv 0$, since Jacobi field is determined by two initial values. In particular, $X_q = J(1) = 0$, and since q is arbitrary, one has $X \equiv 0$.

Corollary C.3. The dimension of vector space consisting of Killing fields $\leq n(n+1)/2$.

Proof. Note that ∇X is skew-symmetric and the dimension of skew-symmetric matrices is n(n-1)/2. Thus the dimension of vector space consisting of Killing fields ≤ n + n(n-1)/2 = n(n+1)/2.

C.B. Killing field as the Lie algebra of isometry group.

Lemma C.4. Killing field on a complete Riemannian manifold (M, g) is complete.

Proof. For a Killing field X, we need to show the flow $\varphi_t: M \to M$ generated by X is defined for $t \in \mathbb{R}$. Otherwise, we assume φ_t is defined on (a,b). Note that for each $p \in M$, curve $\varphi_t(p)$ is a curve defined on (a,b) having finite constant speed, since φ_t is isometry. Then we have $\varphi_t(p)$ can be extended to the one defined on \mathbb{R} , since M is complete.

Theorem C.5. Let (M, g) be a complete Riemannian manifold and \mathfrak{g} the space of Killing fields. Then \mathfrak{g} is isomorphic to the Lie algebra of G = Iso(M, g).

Proof. It's clear \mathfrak{g} is a Lie algebra since $[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_{[X,Y]}$. Now let's see it's isomorphic to Lie algebra consisting of Killing field as Lie algebra.

- (1) Given a Killing field X, by Lemma C.4, one deduces that the flow $\varphi : \mathbb{R} \times M \to M$ generated by X is a one parameter subgroup $\gamma : \mathbb{R} \to G$, and $\gamma'(0) \in T_eG$.
- (2) Given $v \in T_eG$, consider the one-parameter subgroup $\gamma(t) = \exp(tv)$: $\mathbb{R} \to G$ which gives a flow by

$$\varphi: \mathbb{R} \times M \to M$$
$$(t, p) \mapsto \exp(tv) \cdot p$$

Then the vector field *X* generated by this flow is a Killing field.

This gives a one to one correspondence between Killing fields and Lie algebra of G, and it's a Lie algebra isomorphism.

Corollary C.6 (Cartan decomposition). Let (M, g) be a complete Riemannian manifold and G = Iso(M, g) with Lie algebra \mathfrak{g} . The Lie algebra \mathfrak{g} of G has a decomposition as vector spaces

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

where

$$\begin{split} & \mathfrak{f} = \{X \in \mathfrak{g} \mid X_p = 0\} \\ & \mathfrak{m} = \{X \in \mathfrak{g} \mid (\nabla X)_p = 0\} \end{split}$$

and they satisfy

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k},\quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m}$$

Proof. The decomposition follows from Corollary C.2 and Theorem C.5, and it's easy to see

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

For arbitrary $X \in \mathfrak{k}, Y \in \mathfrak{m}$ and $v \in T_pM$, one has

$$\begin{split} \nabla_v[X,Y] &= \nabla_v \nabla_X Y - \nabla_v \nabla_Y X \\ &= -R(Y,v)X + \nabla_{\nabla_v X} Y + R(X,v)Y - \nabla_{\nabla_v Y} X \\ &= 0 \end{split}$$

since $X_p = 0$ and $(\nabla Y)_p = 0$. This shows $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$.

REFERENCES

DEPARTMENT OF MATHEMATICS, TSINGHUA UNIVERSITY, BEIJING, 100084, P.R. CHINA, $Email\ address$: liubw22@mails.tsinghua.edu.cn