BIOS 662 Fall 2018 Analysis of Variance, Part III

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- Diagnostics
- Nonparametric alternative: Kruskal-Wallis

ANOVA: Diagnostics

- Diagnostics discussed in section 10.6 of the text
- Assumptions
 - 1. Homogeneity of variance
 - 2. Normality of residual error
 - 3. Independence of residual error
 - 4. Linearity

ANOVA: Diagnostics

- Homogeneity of variance
 - Inspect plot of raw data or standard deviations by group means
 - Hartley's and Cochran's test

$$F_{\text{MAX}} = \frac{s_{\text{max}}^2}{s_{\text{min}}^2}, \ C = \frac{s_{\text{max}}^2}{\sum s_i^2}$$

Tables are given in the Web appendix of the text as "Maximum F Tables" and "Cochran Test Tables", respectively

- These tests require equal sample size and are sensitive to the normality assumption

ANOVA: Diagnostics

- Homogeneity of variance
 - Modified Levene test (Brown-Forsythe test): apply
 ANOVA to the absolute deviations from group medians

$$d_{ij} = |Y_{ij} - \tilde{Y}_{i.}|$$

use usual F test; rejection indicates lack of homogeneity (Ordinary Levene test uses means, not medians)

- Robust to normality; does not require equal sample sizes
- Cf. Chapter 18.2 of Kutner et al. Applied Linear Statistical Models, 5th Edition, 2005

Homogeneity of Variance Plot

Modified Levene Test: SAS

proc anova; class group; model age=group; means group/hovtest=bf;

The ANOVA Procedure

Brown and Forsythe's Test for Homogeneity of age Variance ANOVA of Absolute Deviations from Group Medians

		Sum c	of Mean		
Source	DF	Square	es Square	F Value	Pr > F
group	3	0.800	0.2668	0.19	0.9001
Error	19	26.312	25 1.3849		
	Level of	-	age-		
	group	N	Mean	Std De	ev
	active	6	10.1250000	1.4469796	51
	eight	5	12.3500000	0.9617692	20
	no	6	11.7083333	1.5200054	18
	passive	6	11.3750000	1.8957188	36

Modified Levene Test: R

```
Levene <- function(y, group)</pre>
{
    group <- as.factor(group) # precautionary</pre>
    medians <- tapply(y, group, median)</pre>
    resp <- abs(y - medians[group])</pre>
    anova(lm(resp ~ group))[1, 4:5]
}
> Levene(age,group)
      F value Pr(>F)
group 0.1926 0.9001
# Changing anova(lm(resp ~ group))[1, 4:5] to anova(lm(resp ~ group))
> Levene(age,group)
Analysis of Variance Table
Response: resp
          Df Sum Sq Mean Sq F value Pr(>F)
           3 0.8003 0.2668 0.1926 0.9001
group
Residuals 19 26.3125 1.3849
```

ANOVA: Diagnostics for Normality

- QQ plot
- K-S GOF test
- Pearson correlation coefficient test:
 - Ordered residuals and expected values under normality
 - Assumption of normality in question if observed correlation is less than or equal to the critical value on the next page

ANOVA: Diagnostics for Normality

• Critical values for $\alpha = 0.05$

N	Crit. val.	N	Crit. val.	N	Crit. val.
5	0.88	10	0.92	24	0.96
6	0.89	12	0.93	30	0.96
7	0.90	15	0.94	40	0.97
8	0.91	20	0.95	50	0.98
9	0.91	22	0.95	100	0.99

ANOVA: Diagnostics for Normality

Normal Q-Q Plot

ANOVA: Diagnostics for Normality in R

ANOVA: Diagnostics

- Remedial measures
 - 1. Normality: appeal to CLT
 - 2. Transformations
 - Plot (\bar{y}_i, s_i) , (\bar{y}_i, s_i^2) , (\bar{y}_i^2, s_i) ; linearity suggests $\log(y)$, \sqrt{y} , 1/ytransformations, respectively
 - Box-Cox family: minimize SSE (that is, within group SS)
 - 3. Nonparametrics, e.g., Kruskal-Wallis

Box-Cox Transformations

ullet Family of transformations indexed by λ

$$Y_{\lambda} = \begin{cases} k_1(Y^{\lambda} - 1) & \text{for } \lambda \neq 0 \\ k_2 \log(Y) & \text{for } \lambda = 0 \end{cases}$$

where

$$k_2 = \left(\prod_{i,j} Y_{ij}\right)^{1/N}$$
 and $k_1 = \frac{1}{\lambda k_2^{\lambda - 1}}$

- \bullet Choose λ that minimizes SSW
- SAS: macro on course website or proc transreg

R: MASS library, function boxcox()

Box-Cox Transformations

• Assume

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

for
$$i = 1, ..., K; j = 1, ..., n_i$$
.

• ϵ_{ij} are independent and identically distributed with mean zero, but not necessarily normal

• Same hypotheses

 $H_0: \mu_1 = \cdots = \mu_K$ vs. $H_A:$ at least one inequality

- ullet Pool all $\,N\,$ observations and rank from smallest to largest
- Let R_{ij} be the rank of the j^{th} obs in the i^{th} group
- Let $\bar{R}_i = \sum_{j=1}^{n_i} R_{ij}/n_i$ equal the average rank in the i^{th} group
- Let \bar{R} denote the overall average rank. What must this equal?

• The Kruskal-Wallis test statistic is

$$T_{KW} = \frac{12\sum_{i=1}^{K} n_i (\bar{R}_i - \bar{R})^2}{N(N+1)}$$

Equivalently

$$T_{KW} = \frac{12\sum_{i=1}^{K} (\sum_{j=1}^{n_i} R_{ij})^2 / n_i}{N(N+1)} - 3(N+1)$$

• Reject H_0 for large values of $T_{\rm KW}$

• Under H_0 , if the n_i are moderately large (rule of thumb: $n_i \geq 5$), then

$$T_{\rm KW} \sim \chi_{K-1}^2$$

• If the n_i are small, the exact distribution of $T_{\rm KW}$ can be computed

Kruskal-Wallis: Exact

• There are

$$\binom{N}{n_1 n_2 \cdots n_K} = \frac{N!}{n_1! \, n_2! \, n_3! \, \cdots \, n_K!}$$

possible ways to assign n_1 ranks to group 1, n_2 ranks to group 2, ...

- Under H_0 each occurs with equal probability
- Suppose $n_1 = 2$, $n_2 = n_3 = 1$. Then

$$\binom{N}{n_1 n_2 \cdots n_K} = \frac{4!}{2! \ 1! \ 1!} = 12$$

Kruskal-Wallis: Exact

R_{1j}	R_{2j}	R_{3j}	$\sum_i R_{i\cdot}^2/n_i$	$T_{ m KW}$
1 2	3	4	9/2+9+16=29.5	2.7
13	2	4	28	1.8
1 4	2	3	25.5	0.3
23	1	4	29.5	2.7
2 4	1	3	28	1.8
3 4	1	2	29.5	2.7

k	$\Pr[T_{\text{KW}} = k]$
0.3	1/6
1.8	1/3
2.7	1/2

Kruskal-Wallis with Ties

- If there are ties among the ranks, we use the midrank method as in the Wilcoxon tests
- The KW statistic adjusted for ties is:

$$T_{\text{KWadj}} = \frac{T_{\text{KW}}}{1 - \sum_{i=1}^{q} (t_i^3 - t_i)/(N^3 - N)}$$

where q is the number of sets of tied observations and t_i is the number of observations in the i^{th} set

• T_{KWadj} will also be approximately χ^2_{K-1}

Kruskal-Wallis: Example

- A study was conducted to compared three doses of aspirin in the treatment of fever in children with the flu
- 15 children with a fever between 100.0 and 100.9 F were randomly assigned to each dose $(n_1 = n_2 = n_3 = 5;$ N = 15)
- Temperature was measured three hours later
- Let μ_i denote the mean temperature change for dose i
- $\bullet H_0: \mu_1 = \mu_2 = \mu_3$

Kruskal-Wallis: Example cont.

• Distribution of $T_{\rm KW}$ (Owen 1962, page 422; Kruskal, Wallis 1952, JASA, Table 6.1)

k	$\Pr[T_{\mathrm{KW}} \ge k]$
4.50	0.102
4.56	0.100
5.66	0.051
5.78	0.049
7.98	0.010
8.00	0.009

•
$$C_{0.05} = \{T_{\text{KW}} \ge 5.78\}$$

Kruskal-Wallis: Example cont.

Low		Med		High	
Δ Temp	R	Δ Temp	R	Δ Temp	R
2.0	14	0.6	8	1.1	10
1.6	13	1.2	11	-1.0	1
2.1	15	0.5	7	-0.2	3
0.7	9	0.2	4	0.4	6
1.3	12	-0.4	2	0.3	5

•
$$R_1$$
. = 63, R_2 . = 32, R_3 . = 25

Kruskal-Wallis: Example cont.

• Therefore

$$T_{KW} = \frac{12(63^2/5 + 32^2/5 + 25^2/5)}{15(16)} - 3(16) = 8.18$$

• Asymptotic p-value

$$\Pr[\chi_2^2 > 8.18] = 0.0167$$

• From Owen table, expect exact p-value < 0.009

Kruskal-Wallis: SAS

proc npar1way; class dose; var temp_change; exact wilcoxon;

Wilcoxon Scores (Rank Sums) for Variable temp_change Classified by Variable dose

		Sum of	Expected	Std Dev	Mean
dose	N	Scores	Under HO	Under HO	Score
Low	5	63.0	40.0	8.164966	12.60
Medium	5	32.0	40.0	8.164966	6.40
High	5	25.0	40.0	8.164966	5.00

Kruskal-Wallis Test

Chi-Square				8.1800
DF				2
Asymptotic	Pr	>	Chi-Square	0.0167
Exact	Pr	>=	Chi-Square	0.0081

> kruskal.test(change,dose)

Kruskal-Wallis rank sum test

data: change and dose

Kruskal-Wallis chi-squared = 8.18, df = 2, p-value = 0.01674

- Suppose we perform ANOVA with the Y_{ij} replaced by their ranks
- Resulting F test

$$F_{\rm R} = \frac{(N - K)T_{\rm KW}}{(K - 1)(N - 1 - T_{\rm KW})}$$

- If K = 2, the KW test is equivalent to the Wilcoxon rank sum test
- ARE is $3/\pi = 0.955$ compared to the F-test under normality
- For multiple comparisons of means, use Wilcoxon rank sum tests with Bonferroni correction