WEEK 12 TA

DECISION TREE

- ID3(僅能分類、僅適用離散型變數、無法剪枝)
- C4.5 (僅能分類)
- CART (可做分類與迴歸,且改善兩者的缺點)

GINI IMPURITY

- 用於衡量資料的亂度
- 數字越大代表資料越混亂(不純);數字越小代表資料越不混亂 (純)
- 公式:

Gini =
$$1 - \sum p_j^2$$

 P_i 表示欲分類的第j個類別的佔比

EXAMPLE

是否有房	婚姻狀況	年收入	是否拖欠貸款
是	單身	125k	否
否	已婚	100k	否
否	單身	70k	否
是	已婚	120k	否
否	離婚	95k	是
否	已婚	60k	否
是	離婚	220k	否
否	單身	85k	是
否	已婚	75k	否
否	單身	90k	是

是否有房 VS 是否拖欠貸款

	有房	無房
否	3	4
是	0	3

$$Gini(t_1)=1-(3/3)^2-(0/3)^2=0$$

$$Gini(t_2)=1-(4/7)^2-(3/7)^2=0.4849$$

$$Gini=0.3 \times 0 + 0.7 \times 0.4898 = 0.343$$

婚姻狀況 VS 是否拖欠貸款一I

	單身或已婚	離婚
否	6	1
是	2	1

$$Gini(t_1)=1-(6/8)^2-(2/8)^2=0.375$$

$$Gini(t_2)=1-(1/2)^2-(1/2)^2=0.5$$

$$Gini=(8/10) \times 0.375 + (2/10) \times 0.5 = 0.4$$

婚姻狀況 VS 是否拖欠貸款-2

	單身或離婚	已婚
否	3	4
是	3	0

$$Gini(t_1)=1-(3/6)^2-(3/6)^2=0.5$$

$$Gini(t_2)=1-(4/4)^2-(0/4)^2=0$$

$$Gini=(6/10) \times 0.5 + (4/10) \times 0 = 0.3$$

婚姻狀況 VS 是否拖欠貸款-3

	離婚或已婚	單身
否	5	2
是	1	2

$$Gini(t_1)=1-(5/6)^2-(1/6)^2=0.2778$$

$$Gini(t_2)=1-(2/4)^2-(2/4)^2=0.5$$

$$Gini=(6/10) \times 0.2778 + (4/10) \times 0.5 = 0.3667$$

年收入 VS 是否拖欠貸款:連續型採用切割點進行分類

	60	7	0	7	5	8	5	9	0	9	5	10	00	1	20	12	25	22 0
	6	5	7	2	8	0	8	7	9	2	9	7	1:	LO	12	22	1	72
	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>	≤	>
是	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0
否	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1
Gini	0.4	00	0.3	375	0.3	343	0.4	17	0.4	100	0.3	300	0.3	343	O,E	75	0)	400

婚姻狀況 VS 年收入

	單身或離婚	已婚
否	3	4
是	3	0

	年收<=97	年收>97
否	3	4
是	3	0

Gini=0.3

Gini=0.3

MODEL I : IN_DEBT ~ HOUSE + MARRIAGE + INCOME

In_Del																cover	
0.	00 w	hen	Marriage	is		n	narried									40%	
0.	00 w	hen	Marriage	is	divorced	or	single	&	House	is	yes					20%	
0.	00 w	hen	Marriage	is	divorced	or	single	&	House	is	no	&	Income	<	78	10%	
1.	00 w	hen	Marriage	is	divorced	or	single	&	House	is	no	&	Income	>=	78	30%	

MODEL 2 : IN_DEBT ~ INCOME + HOUSE + MARRIAGE

In_Debt							cover
0.00	when	Income	>=			98	40%
0.00	when	Income	<	80			30%
1.00	when	Income	is	80	to	98	30%

Random Forest

Introduction

- 以隨機抽取的訓練資料,產生多顆CART決策樹,以多數決預測分類
- 建立一棵樹的步驟:
 - 1. 隨機抽一定數量的樣本去訓練樹,可選擇取後放回或取後不放回
 - 2. 針對樹各個要分支的節點,每次隨機抽取K個變數當作候選變數
 - 3. 決定樹的深度,可用nodesize或maxnode決定
- 決定要種幾棵樹

Hyperparameter (In R)

Hyperparameter	Explanation	Default Setting For Classification
ntree	要種幾棵樹	500
mtry	分裂每個節點時要隨機 選多少個變數當候選	√p 無條件捨去 p:解釋變數數量
replace	建每顆樹抽的樣本是否要取後放回	True
samplesize	建每棵樹時要抽多少樣本	if (replace) nrow(x) else ceiling(.632*nrow(x))
nodesize	建每棵樹時,末端節點最少 要有多少樣本	1 for classification
maxnode	每棵樹內部最多可有幾個節點	Null

nodesize=10

參考資料

決策樹方法的比較:https://zhuanlan.zhihu.com/p/85731206

CART決策樹範例:https://zhuanlan.zhihu.com/p/139523931

交換變數的範例(Model I& Model 2):https://stackoverflow.com/questions/47715677/inconsistent-results-

from-r-part-package