МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ АНАЛИЗ ДЕТЕРМИНАНТ, ОПРЕДЕЛЯЮЩИХ ДЕГРАДАЦИЮ НЕФТИ БАКТЕРИЯМИ RHODOCOCCUS PYRIDINIVORANS 5AP

Охремчук А.Э.¹, Чернявская М.И.¹, Дитченко М.В.¹, Валентович Л.Н.², Титок М.А.¹

¹Белорусский государственный университет, Минск, Республика Беларусь; ²ГНУ Институт микробиологии НАН Беларуси, Минск, Республика Беларусь

okhrem4ukartur@yandex.ru

Попадание нефти и продуктов ее переработки в окружающую среду приводит к нарушениям биоценозов, поскольку в состав данных соединений входит широкий спектр углеводородов и других органических и неорганических субстратов, многие из которых токсичны, мутагенны и канцерогенны для живых организмов. Для очистки окружающей среды от данных загрязнителей природного и антропогенного происхождения весьма перспективным является использование бактерий-деструкторов. Изучение вклада отдельных генетических систем, обеспечивающих микроорганизмам деградацию нефти, позволит направленно повышать их биодеградационный потенциал.

Целью работы явился молекулярно-генетический анализ отдельных генетических детерминант, определяющих способность бактерий штамма *Rhodococcus pyridinivorans* 5Ap деградировать нефть.

Для изучения вклада отдельных генетических детерминант в процесс утилизации нефти бактериями *Rhodococcus pyridinivorans* 5Ap был использован метод направленного мутагенеза. В результате гомологичной рекомбинации были нарушены детерминанты, определяющие синтез большой субъединицы нафталиндиоксигеназы и алкан-1-монооксигеназы, а также отобран вариант штамма, спонтанно утративший способность утилизировать нафталин. Установлено, что эффективность деградации нефти при вышеуказанных нарушениях снижалась на 65 %, 96 % и 95 % соответственно.

Установлено, что гены, обеспечивающие катаболизм нафталина у бактерий *Rhodococcus pyridinivorans* 5Ap, локализованы в составе плазмиды, способной передаваться путем конъюгации в изогенной системе скрещиваний с частотой 10⁻⁶. Анализ полногеномного секвенирования (Illumina MiSeq, http://www.bio.bsu.by/microbio/rhodococcus_genome.html) позволил выявить гены, определяющие «верхний» и «нижний» пути деградации нафталина в составе фрагментов плазмидного происхождения. При этом среди генов «нижнего» пути были идентифицированы детерминанты, кодирующие катехол-2,3-диоксигеназу и гентизат-1,2-диоксигеназу, что определяет возможность бактерий *R. pyridinivorans* 5Ap утилизировать нафталин через катехол и/или гентизат.

ВЛИЯНИЕ ГИПЕРПРОДУКЦИИ ПРОТЕАЗЫ HTRA НА БЕЛКОВЫЙ ПРОФИЛЬ КЛЕТОК БИОПЛЕНКИ BACILLUS SUBTILIS

Павлова А. С., Чернова Л. С., Шарафутдинов И. С., Каюмов А. Р.

ФГАОУ ВПО Казанский (Приволжский) федеральный университет, Казань, Россия AnBio96@yandex.ru

HtrA — это белок теплового шока, относящийся к семейству сериновых протеаз. Он осуществляет качественный белковый контроль, удаляя поврежденные белки путем их деградации, и таким образом защищает клетки от последствий различных стрессов. У многих штаммов бактерий белок HtrA является фактором патогенности: из-за нехватки функций данной протеазы, они способны частично или полностью терять свою вирулентность. Например, у Streptococcus mutans протеаза HtrA необходима для биогенеза внеклеточных белков, развития генетической компетентности и образования биопленки для выживания в стрессовых условиях. Целью данной работы являлось установить роль протеиназы HtrA в образовании биопленки Bacillus subtilis.

С помощью дифференциального флюоресцентного окрашивания мертвых и живых клеток (акридиновый оранжевый, пропидий йодид) был проведен мониторинг выживаемости клеток B. subtilis в условиях температурного стресса. Было установлено, что при температуре свыше $60\,^{\circ}$ С жизнеспособность клеток бацилл с гиперпродукцией белка повышалась в 6 раз по сравнению с контрольным штаммом. Данные также были подтверждены методом Drop Plate анализа, с последующим подсчетом КОЕ. Кроме того, клетки подвергали температурному воздействию в течение одного часа, после чего высевали на агаризованную питательную среду. В результате, выживаемость у клеток штамма с повышенным синтезом протеазы HtrA при температуре $60\,^{\circ}$ С была на 2 порядка выше, чем у исходного штамма. Предполагается, что повышенный синтез HtrA может влиять на протеом организма, в том числе и клеток, находящихся в составе биопленки. Проверку проводили с помощью 2D электрофореза и MALDI-TOF спектрометрии, которые также показали различия в протеомах рекомбинантного штамма и штамма дикого типа. Таким образом, показано, что