2024학년도 5월 고2 솔찬이 N제 모의고사

과학탐구 영역(화학I) 정답

해설 3p~15p

1	5	2	3	3	5	4	3	5	5
6	4	7	3	8	4	9	2	10	3
11	5	12	3	13	3	14	4	15	1
16	1	17	2	18	5	19	2	20	1

과학탐구 영역(생명과학I) 정답

해설 16p~24p

1	5	2	3	3	2	4	1	5	3
6	5	7	2	8	3	9	3	10	1
11	5	12	2	13	4	14	3	15	2
16	1	17	4	18	3	19	4	20	3

예상 등급컷(이 모의고사에서 얻은 점수로 2024학년도 6월 고2 전국연합학력평가 예측)

화학1					
등급	원점수	표준점수	백분위		
1	38~50	66~78	96~100		
2	34~37	62~65	89~96		
3	30~33	58~61	77~89		
4	26~29	54~57	60~77		
5	20~25	49~53	40~60		
6	15~19	44~48	23~40		
7	10~14	39~43	10~23		
8	7~9	36~38	4~10		
9	0~6	29~35	0~4		

	생명과학1					
등급	원점수	표준점수	백분위			
1	43~50	67~73	96~100			
2	38~42	62~66	89~96			
3	34~37	59~61	76~89			
4	29~33	54~58	57~76			
5	22~28	48~53	38~57			
6	17~21	44~47	23~38			
7	11~16	39~43	11~23			
8	7~10	35~38	4~11			
9	0~6	29~34	0~4			

화학1 해설

1번: ⑤

보기 풀이

- ¬. 나일론은 스타킹, 그물, 밧줄의 재료로 이용된다. (O)
- ∟. ③은 시멘트이다. (O)
- □. □은 이산화 규소(SiO₂)이다. (O)

참고 사항

화학1 1단원에 있는 암기 파트 문제 중 하나로, 난이도는 낮으나 모르면 못 풀기 때문에 보자마자 바로 풀 수 있도록 암기해야 한다. 다만, 이 문항은 이 시험에서 가장 쉽다.

2번: ③

자료 분석

1번째 사진은 메테인, 2번째 사진은 에탄올, 3번째 사진은 아세트산의 분자 모형이다.

보기 풀이

- ¬. 메테인은 액화 천연가스(LNG)에 이용된다. (O)
- L. 에탄올은 손 소독제에 이용된다. (O)
- C. 아세트산은 물에 녹아 H⁺를 내놓으므로 염기성이 아니라 산성이다. (X)

참고 사항

메테인, 에탄올, 아세트산의 특징은 거의 항상 수능, 모평, 학평에 출제되었다. 주로 액화 천연가스(LNG), 손 소독제, 식초, 산성, 염기성 등과 관련하여 물어보는 경향이다. 분자식도 외워야 풀 수 있는 문제도 가끔씩 나온다.

풀이

물의 분자식은 H_2O , 아세트산의 분자식은 CH_3COOH , 이산화 질소의 분자식은 NO_2 이다. 따라서 제시된 표의 따른 원자의 원자량을 기준으로 물의 분자량은 18, 아세트산의 분자량은 60, 이산화 질소의 분자량은 46이다. 모두 합하면 18 + 60 + 46 = 124이다.

참고 사항

분자식을 외워 두면 시간을 단축시킬 수 있다.

4번: ③

자료 분석

(가)에서 몰 농도가 1M이며 500mL이므로 0.5mol / 0.5L = 1M이므로 A는 0.5mol이 들어 있다.

보기 풀이

- ㄱ. (가)에서 A는 0.5 mol 만큼 들어 있다. (X)
- L. (나)에서 A 수용액의 온도를 0.25M으로 만들려면 A의 양은 0.5mol로 일정하게 되므로 전체 용액의 양이 2L가 돼야 한다. 따라서 ③은 1500이다. (X)
- C. 몰 농도는 온도에 따라 영향을 받는다. (O)

참고 사항

물 농도의 정의를 정확히 알아야 하며, 물 농도는 온도에 따라 영향을 받으므로 온도가 일 정한지 반드시 확인해야 한다.

자료 분석

(가)는 원자핵조차 불규칙하게 분포하므로 톰슨의 원자 모형이고, (나)는 원자핵은 원자의 중심에 위치하므로 러더퍼드의 원자 모형이고, (다)는 전자가 궤도를 따라 운동하므로 보어의원자 모형이다.

보기 풀이

- ¬. (가)는 톰슨의 원자 모형이다. (○)
- L. (나)는 원자핵이 중심에 있다. (O)
- C. 자료에서의 순서는 (가) (나) (다)이며, (다) 이후 현대의 원자 모형이라 할 수 있는 전자의 분포를 확률 분포로 나타낸 원자 모형이 등장하였다. (O)

참고 사항

원자 모형별 특징, 인물 이름, 순서를 모두 알아야 풀 수 있다.

6번: ④

풀이

해당 두 동위 원소만 있으므로 두 동위 원소의 존재 비율의 합은 100%이다. 또한 X의 평균 원자량이 23이므로 20 X의 존재 비율을 x, 24 X의 존재 비율을 y로 연립방정식을 세우면 x + y = 1

20x + 24y = 23

따라서 4y = 3, y = 0.75이며 x = 0.25이다. 즉, □은 25, □은 75이다.

□ - □은 50이다.

참고 사항

동위 원소의 평균 원자량에 대해서 연립방정식을 풀어야 하는 문제이다.

보기 풀이

- ¬. 주 양자수(n)가 클 수록 s오비탈의 크기가 크다. (O)
- L. p오비탈은 방향에 따라 3가지가 존재한다. (O)
- C. 에너지 준위는 1s가 2s에 비해 더 작다. 수소 원자는 다른 원자와 달리 전자의 에너지 준위에서 차이가 있지만 1s가 2s에 비해 더 작은 건 공통적이다. (X)

참고 사항

수소 원자와 다원자 전자의 에너지 준위 차이를 잘 알아둬야 한다.

8번: ④

보기 풀이

- ¬. 탄소(C)는 2주기이다. 따라서 ⇒은 2이다. (X)
- ∟. Li의 전자는 1s에 2개, 2s에 1개 있다. 따라서 ◎은 3이다. (O)
- □. 탄소(C)의 전자는 2p에 2개 있고, 질소(N)의 전자는 2p에 3개 있고, 산소(O)의 전자는 2p에 4개 있다. 따라서 © + @ + @은 9이다. (O)

참고 사항

수소 원자와 다원자 전자의 에너지 준위 차이를 잘 알아둬야 한다.

9번: ②

보기 풀이

- 그. (가)는 <u>훈트 규칙에 위배되지만, 불가능한 전자 배치는 아니다.</u> (X)
- L. (나)는 2p_v에서 같은 방향으로 전자가 배치되어 있다. 파울리 베타 규칙에 위배된다. (O)
- C. (가)는 들뜬상태이며, (나)는 불가능한 전자 배치이다. (X)

참고 사항

쌓음 원리, 파울리 베타 원리, 훈트 규칙과 전자 배치가 불가능한지, 가능하면 들뜬상태인지 바닥상태인지 정확히 파악해야 한다.

자료 분석

⇒은 전자가 6개이므로 탄소 원자이다.

보기 풀이

- ¬. ¬은 탄소이므로 14족 원소이다. (O)
- ∟. 순서대로 채워지지 않아 훈트 규칙에 위배되어 보이지만, <u>주 양자수가 같은 p_x~p₂의 에</u> <u>너지 준위는 같으므로 홀전자 수가 최대이므로 훈트 규칙을 만족시킨다.</u> (X)
- C. 상술된 내용처럼 주 양자수(n)가 같은 px, py, pz의 오비탈의 에너지 준위는 같다. (O)

참고 사항

훈트 규칙에 대하여 잘못 알고 있지 않아야 한다. ㄴ과 ㄷ이 밀접하게 연관되어 있다.

11번: ⑤

자료 분석

분자식이 메테인은 CH_4 , 에테인은 C_2H_6 , 프로페인은 C_3H_8 , 뷰테인은 C_4H_{10} 이다.

보기 풀이

- ¬. ¬은 2, □은 3, □은 4이다. 따라서 합은 9이다. (O)
- L. ②은 6, ②은 8, Ы은 10이다. 따라서 평균은 8이다. (O)
- □. ⑤ + 岎은 14, ③ + ⑧은 8이다. (O)

참고 사항

탄화수소의 분자식을 알고 있어야 한다. 순서가 하나씩 올라갈때마 다 분자를 구성하는 C의 개수는 1씩, H의 개수는 2씩 증가하는걸 알면 된다.

보기 풀이

- ¬. 음극선은 (-)극에서 (+)극으로 직진하는 선이다. (X)
- L. 음극선은 전하를 띤다. (O)
- c. 음극선은 직진한다. (O)
- 리. 음극선은 질량을 가지는 입자이다. (X)
- ロ. 음극선 실험에서 나타난 입자의 흐름에서 해당 입자는 원자핵이 아니라 전자이다. (X)

따라서 옳은 것은 ㄴ, ㄷ이므로 옳은 것의 개수는 2개이다.

참고 사항

음극선의 성질에 대해 물어보는 문제로, 그이 다소 지엽적이다.

13번: ③

풀이

²⁰Y는 질량수가 20인 동위 원소 Y를 의미한다. 따라서 ③은 20이다. Y의 평균 원자량은 18 × 0.25 + 20 × 0.5 + 22 × 0.25 = 20이다. 따라서 ⓒ은 20이다. 즉 ⓒ / ③은 1이다.

참고 사항

질량수 계산하는 문제로 자료 중 원자량/존재 비율 상댓값은 간단한 정수비로 나타냈다.

14번: ④

보기 풀이

- ¬. ¬은 4s, □은 3d이다. 4s가 3d보다 에너지 준위가 더 작다. (X)
- ∟. ᠍은 4이다. (O)
- c. 전자는 에너지 준위가 낮은 오비탈부터 순차적으로 채워지게 된다. (O)

참고 사항

다전자 원자의 경우 4s가 3d보다 에너지 준위가 더 작은걸 반드시 알아야 한다.

15번: ①

자료 분석

바닥상태에서 원자번호가 $1\sim20$ 까지의 s 오비탈 수, p 오비탈 수, 주 양자수를 알아내어 조건에 맞게 풀어야 한다.

보기 풀이

원자 번호 1~20까지 s 오비탈 수: 1 2 / 3 4 4 4 4 4 4 4 / 5 6 6 6 6 6 6 6 6 / 7 8 원자 번호 1~20까지 p 오비탈 수: 0 0 / 0 0 1 2 3 4 5 6 / 6 6 7 8 9 10 11 12 / 12 12 원자 번호 1~20까지 주 양자수(n): 1 1 / 2 2 2 2 2 2 2 2 / 3 3 3 3 3 3 3 / 4 4

A는 원자 번호가 11일때 s 오비탈의 수: 5, p 오비탈의 수: 6이므로 조건을 만족시킨다. B는 원자 번호가 1일때 s 오비탈의 수: 1, 주 양자수(n): 1이므로 조건을 만족시킨다. C는 원자 번호가 20일때 s 오비탈의 수: 8, p 오비탈의 수: 12이므로 조건을 만족시킨다.

- ¬. A는 원자 번호가 11이므로 Na(나트륨)이다. 즉, 금속 원소이다. (○)
- L. B는 원자 번호가 1이므로 H(수소)이다. 비활성 기체가 아니다. (X)
- C. C는 원자 번호가 20이므로 Ca(칼슘)이다. 주 양자수(n): 4, s 오비탈의 수: 8이다. (X)

참고 사항

이 문제는 s 오비탈 수, p 오비탈 수, 주 양자수(n)을 이용하여 원소를 추론하는 매우 어려운 문제이다. 원자 번호 1~20까지는 외워 놓아야 시간이 단축된다.

16번: ①

자료 분석

바닥상태에서 원자번호가 1~20까지의 s 오비탈 수, p 오비탈 수, 주 양자수, 홀전자 수를 알아내어 조건에 맞게 풀어야 한다.

보기 풀이

원자 번호 1~20까지 s 오비탈 수: 1 2 / 3 4 4 4 4 4 4 4 / 5 6 6 6 6 6 6 6 6 / 7 8 원자 번호 1~20까지 p 오비탈 수: 0 0 / 0 0 1 2 3 4 5 6 / 6 6 7 8 9 10 11 12 / 12 12 원자 번호 1~20까지 주 양자수(n): 1 1 / 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 원자 번호 1~20까지 홀전자 수: 1 0 / 1 0 1 2 3 2 1 0 / 1 0 1 2 3 2 1 0 / 1 0

1. 두 원자의 홀전자 수의 곱이 1인 경우는 두 원자의 홀전자 수가 모두 1이여야 한다. 원자의 홀전자 수가 1인 원자의 개수는 8가지이므로, 만들 수 있는 조합은 $8 \times 7 \div 2 = 28$ 가지이다. 아래 홀전자수 나열한 것에서 표시해 두었다.

원자 번호 1~20까지 홀전자 수: 1 0 / 1 0 1 2 3 2 1 0 / 1 0 1 2 3 2 1 0 / 1 0

- 2. 1번 문단에서 구한 28가지의 조합 중에서 두 원자의 주 양자수(n)의 곱이 4인 경우는 두 원자의 주 양자수(n)이 <u>ⓐ각각 1, 4이거나</u> <u>ⓑ모두 2인 경우</u>이다.
- a의 경우 원자 번호에 따른 경우가 (1, 19)밖에 없다.
- (b)의 경우 원자 번호에 따른 경우가 (3, 5), (3, 9), (5, 9) 3가지이다.
- 3. 앞에서 구한 (1, 19), (3, 5), (3, 9), (5, 9) 순서쌍 중에서 두 원자 번호의 곱이 최대인 경우는 (5, 9)이고 그 값은 45이다.
- ¬. ¬은 28이다. (O)
- ∟. ⓒ은 4이다. (X)
- □. ⑤은 45이다. (X)

참고 사항

이 문제는 s 오비탈 수, p 오비탈 수, 주 양자수(n)에 이어 홀전자 수까지 이용하는 매우 어려운 문제이다. 경우의 수가 등장하므로 신중하게 계산해야 한다.

17번: ②

풀이

- 1. 포도당의 분자량은 180이며 90g을 넣었으므로 포도당은 0.5 mol이다. 1M 포도당 수용액 1L에는 포도당이 1 mol이 들어 있다. 따라서 포도당 0.5 mol을 추가하면 1.5 mol이다.
- 2. 포도당이 1.5 mol이 있는 수용액에 물을 추가하여 용액의 부피가 3L가 되었다. 그러므로 몰 농도는 1.5 mol / 3L = 0.5 M이다. ③은 0.5이다.
- 3. 포도당 수용액 3L 중 2L를 다른 비커에다가 부었으므로 남은 포도당 수용액은 1L이다. 몰 농도는 0.5 M으로 일정하며 남은 포도당의 양은 0.5 mol이다.
- 4. 0.5 M 포도당 수용액 1L에다가 포도당 2 mol을 추가했으므로 포도당 수용액 속 포도당의 양은 2.5 mol이다.
- 5. 4번 실험에 이어서 물을 추가하여 5로L 만들어줬으므로, 2.5 mol / 5L = 0.5 M이다. © 은 0.5이다.
- 6. 이 실험을 마치고 포도당 수용액 속의 포도당의 양은 2.5 mol, 몰 농도는 0.5 M이다. 포 도당의 분자량은 180이므로 ©은 2.5, @은 450이다.
- $(\ominus + \bigcirc) \times \bigcirc \times \bigcirc \times \bigcirc \times \bigcirc \times (0.5 + 2.5) \times 0.5 \times 450 = 675$ 이다.

참고 사항

계산량이 매우 많고 과정이 복잡한 어려운 문제이다. 몰 농도를 구할 때 용질의 양에서 용액의 부피로 바로 나눠도 몰 농도가 나오니 그나마 빠르게 계산할 수 있다.

자료 분석

<u>일정한 온도, 일정한 압력에서 기체 1g의 부피비는 (가) : (나) = 13 : 19이므로 분자량의 비는 (가) : (나) = 19 : 13인걸 알 수 있다.</u> 또한 (가)~(다)의 분자당 구성 원자 수는 5 이하이므로 조건에 맞게 분자를 추론해야 한다.

보기 풀이

원자량의 비가 X : Y = 6 : 7일때 (가)는 X₂Y, (나)는 XY, (다)는 XY₃이면 X와 Y의 질량비는 (가) 분자에서 12 : 7, (나) 분자에서 6 : 7, (다) 분자에서 6 : 21이다.

따라서 자료에 주어진 (X의 질량 / Y의 질량)은 (가): 36/21, (나): 18/21, (다): 6/21이므로 상댓값인 6:3:1을 만족시킨다.

- ¬. (가) 분자에서의 X의 개수가 (나) 분자에서의 X의 개수의 2배이다. (○)
- L. (다)의 분자식은 XY₃이다. (O)
- C. 분자량 비는 (가): (나): (다) = 19: 13: 27이므로 (가)와 (나)의 분자량을 합한 것과 (다)의 분자량의 비는 (19+13): 27 = 32: 27이다. 따라서 (가)와 (나)의 분자량을 합했을 때 값은 (다)의 분자량의 32/27배이다. (O)

참고 사항

온도와 압력이 일정할 때, 기체 1g당 부피비는 분자량비와 서로 역수 관계인걸 알고 비례식에서 서로 바꾸어 주면 된다. (X의 질량) / (Y의 질량) (상댓값) 표에서 기존에는 분수까지만나타내는 경우에 익숙했다면 이 자료는 분수 값에다가 상댓값으로 간단한 정수비까지나타낸 것이므로 (X의 질량) / (Y의 질량) (상댓값)이 1이라 해서 꼭 X의 질량과 Y의 질량이 같을 필요는 없다는 걸 알아야 한다. 이는 2022학년도 대학수학능력시험 9월 모의평가 화학1 18번 문항에서 강조하고 있다.

19번: ②

자료 분석

화학 반응식에서 계수비는 1:4:1이므로 반응하는 몰비도 1:4:1이다. A의 양은 일정한 상태에서 B를 계속 추가하는 실험이므로 A가 모두 반응하는 지점을 잘 찾아야 한다.

풀이

- 1. 전체 기체의 부피의 상댓값이 3으로 일정한 구간에서 B가 모두 반응하는 구간이므로, A가 3n mol일때 B는 12n mol이 되어야 A, B모두 반응한다.
- 2. A가 3n mol이 있다 하면, B는 0 mol일때 전체 부피는 3n mol이다. 화학 반응식에 따라 B를 n mol 만큼 증가시켰을때 A는 0.25n mol이 감소하고 C는 0.25n mol이 증가한다. 따라서 B는 모두 반응하고 A의 감소량과 C의 증가량이 같으므로 전체 기체의 양은 3n mol로 일정하다.
- 3. B를 12n mol보다 더 많이 넣었을 때 C는 3n mol로 일정하고, <u>A는 없으며, 그래서 B를 넣어준 양 만큼 전체 기체의 양이 증가하게 된다.</u> B가 16n mol일때 전체 기체의 양은 7n mol, B가 20n mol일때 전체 기체의 양은 11n mol이다.
- 4. 즉 자료에서 B를 넣어준 질량(g)이 4g, 8g일때는 전체 기체의 부피가 3으로 일정하다가 16g, 20g일때는 전체 기체의 부피의 상댓값이 7, 11로 증가하므로 A wg의 양이 3n mol일 때 B 1g당 n mol인걸 알 수 있다. 따라서 B가 12g일때 12n mol이므로 A와 B가 모두 반응하는 지점이므로 C 3n mol이 있고, 기체의 몰비는 부피비와 같다. 따라서 x=3이다.

참고 사항

한 기체의 양을 일정하게 한 다음 다른 기체의 양을 변화시키는 실험에서는 기체의 양의 변화에 따라 전체 기체의 양이 어떻게 변하는지에 집중해야 한다. 이 문제에서도 전체 기체의 부피가 일정하다가 A가 모두 반응한 이후 전체 기체의 부피가 증가하게 되었다. 또한 기체의 물비는 기체의 부피비와 같다는걸 알아야 한다.

20번: ①

자료 분석

화학 반응식에서 계수비는 1:1:a이므로 A와 B는 1:1의 몰비로 반응한다.

풀이

- 1. A의 분자량을 y, B의 분자량을 z로 정한다.
- 2. I에서 A의 양은 4/y mol, B의 양은 6/z mol이다. 같은 방법으로 II에서 A의 양은 8/y mol, B의 양은 10/z mol, III에서 A의 양은 14/y mol, B의 양은 12/z mol이다.
- 3. 밀도 = 질량/부피 이므로 기체의 몰비는 기체의 부피비와 같다. 따라서 기체의 질량에서 기체의 양만큼 나누어 주면 밀도를 구할 수 있다. 밀도의 상댓값은 1로 같으므로 아래와 같이 식을 세울 수 있다.

$$\frac{4+6}{\frac{4}{y} + \frac{6}{z}} = \frac{8+10}{\frac{8}{y} + \frac{10}{z}}$$

4. 위의 분수식을 통분하여 식 정리를 시작한다.

$$\frac{10}{\frac{4z+6y}{yz}} = \frac{18}{\frac{8z+10y}{yz}}$$

5. 양변에다가 yz를 나누어줘도 식이 유지되므로 나누어준다.

$$\frac{10}{4z+6y} = \frac{18}{8z+10y}$$

6. 양변에서 좌변의 분자, 우변의 분모의 곱과 좌변의 분모, 우변의 분자의 곱은 같은 걸 이용하여 분수식을 정리해준다.

$$18(4z+6y) = 10(8z+10y)$$

$$72z+108y = 80z+100y$$

$$8y = 8z$$

$$y = z$$

7. 즉, A와 B의 분자량은 같다.

- 8. I에서 A는 4n mol, B는 6n mol이라 하면 A 4n mol, B 4n mol이 반응하고, B 2n mol이 남으며, C 4an mol이 생성된다.
- 9. II에서 A는 8n mol, B는 10n mol이라 하면 A 8n mol, B 8n mol이 반응하고, B 2n mol 이 남으며, C 8an mol이 생성된다.
- 10. III에서 A는 14n mol, B는 12n mol이라 하면, A 12n mol, B 12n mol이 반응하고, A 2n mol이 남으며 C 12an mol이 생성된다.
- 11. 반응 후 전체 기체의 양은 I에서 (4a + 2)n mol이고, III에서 (12a + 2)n mol이다. 기체의 몰비는 기체의 부피비와 같으므로 (4a + 2): (12a + 2) = 5: 13이다. 즉, a=2이다.
- 12. II에서 C는 16n mol이 생성되므로 반응 후 전체 기체의 양은 18n mol이다. I, II, III에서 반응 후 전체 기체의 양은 10n : 18n : 26n = 5 : x : 13이므로 x=9이다.
- 13. 따라서 실험 1~Ⅲ의 결과를 표로 정리하면 다음과 같다.

실험	반응 전 양(mol)		반응 후 양(mol)			
28	А	В	А	В	С	
I	4n	6n	0	2n	8n	
II	8n	10n	0	2n	16n	
III	14n	12n	2n	0	24n	

14. 따라서 a=2, x=9이므로 a ÷ x = 2/9이다.

참고 사항

- 이 문제는 분자량을 미지수로 두고 밀도를 이용하여 분자량 비를 구해야 한다. 특히 분수 안에 분수가 들어가는 계산의 경우 통분 등을 활용하여 식을 간단히 정리하면 된다. 또한 기체의 몰비는 기체의 부피비와 같다는 걸 알고 있어야 한다.
- 이 문제는 15번, 16번, 18번, 19번 문제처럼 이 시험에서 가장 어려운 문제이며 등급을 가르는 문제이다.

생명과학! 해설

1번: ⑤

자료 분석

생물의 특성을 이용하여 해당 생물이 무엇인지 추론한다.

풀이

DNA와 단백질 껍질로 이루어지며, 세포의 구조를 갖추지 않고, 핵이 없고, 생명체 밖에서 물질대사를 할 수 없는 생물은 박테리오파지이다.

참고 사항

박테리오파지에 관한 내용은 시험 범위가 상대적으로 적은 고2 전국연합학력평가에 자주출제된다. 특징을 모두 알고 있어야 한다. 이 문제는 이 시험에서 가장 쉬운 문제이다.

2번: ③

보기 풀이

- 기. 귀납적 탐구 방법, 연역적 탐구 방법 모두 자연 현상을 관찰한다. (O)
- L. 귀납적 탐구 방법과 달리 연역적 탐구 방법은 가설을 세운다. (O)
- C. 플레밍의 페니실린 발견은 연역적 탐구 방법이다. (X)

참고 사항

귀납적 탐구 방법, 연역적 탐구 방법에 대한 내용은 수능, 모평, 학평에 거의 항상 출제된다. 또한 이 문제에는 나오지 않았지만 실험군, 대조군, 독립 변인, 종속 변인, 통제 인변도 정확하게 알고 있어야 한다.

3번: ②

보기 풀이

- ¬. 세포 호흡은 포도당 + 산소로 한다. (X)
- L. 세포 호흡에서 생성되는건 물 + 이산화 탄소이다. (X)
- □. ◎은 ATP로, 아데노신에 인산 3개가 결합되어 있다. (O)

참고 사항

광합성, 세포 호흡에서 반응물, 생성물을 정확히 알아야 한다. 3월 고2 전국연합학력평가에서는 광합성에서 산화, 환원되는 물질 관련된 내용으로 낚시를 하기도 했다.

4번: ①

보기 풀이

- ¬. ¬은 소화계에 대한 설명이다. (O)
- L. 세포 호흡할 때 산소를 흡수한다. (X)
- C. 간은 소화계에 해당된다. (X)

참고 사항

기관이 어느 기관계에 속하는지 정확하게 알아야 한다.

5번: ③

보기 풀이

- ¬. 기초 대사량은 생명 활동을 하는데 필요한 최소 에너지양이다. (O)
- L. 하루 동안 소비하는 에너지의 총량은 1일 대사량이다. (X)
- C. 1일 대사량에서 기초 대사량의 비율이 가장 높다. (O)

참고 사항

1일 대사량과 거기에 속하는 대사량을 잘 알아야 한다. ㄷ을 보면 ㄴ이 아닐 가능성이 높다고 생각할 수 있다.

보기 풀이

- ¬. 신경 세포질과 핵으로 이루어진건 신경 세포체이다. (○)
- L. 신경 세포체에서 뻗어 나온건 가지 돌기와 축삭 돌기이다. (O)
- C. 축삭 돌기는 다른 뉴런이나 세포로 신호를 전달한다. (O)

참고 사항

뉴런의 구조를 알고 있어야 하지만, 알면 쉽게 풀리는 문제이다.

7번: ②

자료 분석

그림을 보고 ⊙은 액틴 필라멘트, ⓒ은 마이오신 필라멘트인걸 알 수 있다.

보기 풀이

- ㄱ. ⇒은 액틴 필라멘트이다. (X)
- L. H대는 근육 원섬유 중심에 ○만 있는 부분이다. (O)
- C. I대는 ③이 있는 부분으로 밝게 보인다. (X)

참고 사항

근육 원섬유 중심에서 액틴 필라멘트, 마이오신 필라멘트와 A대, H대, I대를 구분해야 한다.

8번: ③

보기 풀이

- ¬. 다윈의 진화론은 귀납적 탐구 방법이다. (O)
- L. 연역적 탐구 방법은 가설을 설정한다. (O)
- c. 연역적 탐구 방법에서 실험군과 대조군을 설정한다. (X)

참고 사항

귀납적 탐구 방법, 연역적 탐구 방법을 잘 구분해야 한다.

풀이

- 체성 신경계에서 아세틸콜린이 분비된다. (O)
- © 체성 신경계는 골격근의 반응을 조절한다. (O)
- © 교감 신경에서 신경절 이전 뉴런 말단에서는 아세틸콜린, 신경절 이후 뉴런 말단에서는 노르에피네프린이 분비된다. (X)
- ◎ 부교감 신경에서 신경절 이전 뉴런의 길이는 신경절 이후 뉴런의 길이보다 길다. (O)
- ◎ 교감 신경은 심장 박동을 촉진하고, 부교감 신경은 심장 박동을 억제한다. (X)

따라서 옳은 것은 3개이다.

참고 사항

신경계의 구조를 모두 알고 있어야 하는 어려운 문제이다.

10번: ①

보기 풀이

- ¬. 인슐린과 글루카곤은 호르몬으로 작용한다. (○)
- L. <u>간뇌 시상 하부에서 TRH 분비량을 증가시킨다.</u> (X)
- C. 체내 수분량이 감소하면 삼투압을 감소시킨다. (X)

참고 사항

호르몬의 작용에 대해 정확히 알고 있어야 하는 어려운 문제이다. 갑상샘 자극 호르몬 방출 호르몬(TRH)와 갑상샘 자극 호르몬(TSH)를 잘 구분해야 한다.

보기 풀이

- ¬. 이산화 탄소는 폐를 통해 몸 밖으로 나간다. ⇒은 폐이다. (O)
- L. □은 간이며, 이자와 함계 소화계에 속한다. (O)
- □. 단백질이 사용되어 생성되는 노폐물은 암모니아이며, 암모니아는 간에서 독성이 약한요소로 전환된 후 콩팥을 통해 몸 밖으로 나간다. ©은 콩팥이다. (O)

참고 사항

3점 문제들 중 쉬운 문제이다. 특히 간에서 암모니아가 독성이 약한 요소로 전환되는지에 대한 내용은 수능, 모평, 학평에 자주 출제되었다.

12번: ②

보기 풀이

- ㄱ. 말이집은 슈반 세포의 세포막이 여러 겹으로 쌓여 있다. (X)
- L. 말이집 신경에서 도약 전도가 일어난다. (O)
- c. 말이집 신경에서 랑비에 결절에서만 흥분 전도가 발생한다. (X)

참고 사항

말이집 신경과 민말이집 신경의 구조를 정확히 알고 있어야 한다.

13번: ④

풀이

- □ 대뇌의 겉질은 회색질, 속질은 백색질이다. (O)
- © 대뇌가 소뇌보다 더 크다. (O)
- © 뇌하수체는 다른 내분비샘의 기능을 조절한다. (O)
- ◎ 중간뇌는 동공을 축소시킨다. (X)
- ◎ 연수에서 신경의 좌우 교차가 일어난다. (O)

참고 사항

중추 신경계와 말초 신경계와 그 설명을 모두 알고 있어야 하는 어려운 문제이다.

보기 풀이

- 그. 교감 신경의 말단에서는 노르에피네프린, 부교감 신경의 말단에서는 아세틸콜린이 분비된다. (O)
- L. 교감 신경은 소화를 억제하고, 부교감 신경은 소화를 촉진한다. (O)
- C. 교감 신경은 글리코젠 분해를 촉진하고, 부교감 신경은 쓸개즙 분비를 촉진하다. (X)

참고 사항

교감 신경과 부교감 신경의 작용에 대해 알고 있어야 하며, 교감 신경의 경우 대부분 확장, 촉진이지만 소화는 억제이고, 부교감 신경의 경우 대부분 축소, 억제이지만 소화는 촉진이므로 잘 알아둬야 한다.

15번: ②

보기 풀이

- ¬. 이자의 α세포에서 글루카곤이 분비된다. (X)
- L. 이자의 β세포에서 인슐린이 분비된다. (X)
- \Box . 글루카곤은 이자의 α 세포에서 분비되며 혈중 포도당 농도를 증가시키고, 인슐린은 이자의 β 세포에서 인슐린이 분비되며 혈중 포도당 농도를 감소시킨다. (O)

참고 사항

혈당량 유지에서 어떤 이자 세포에서 인슐린, 글루카곤이 분비되는지, 혈당량의 증감을 잘 알고 있어야 한다.

16번: ①

풀이

- 1. 척수는 중추 신경계에 속한다. (O)
- 2. 척수 신경은 31쌍이다. (X)
- 3. 말초 신경계에서 뇌 신경은 12쌍이다. (X)
- 4. 척수는 겉질이 백색질, 속질이 회색질이다. (O)
- 5. 척수의 운동 신경 다발은 전근이다. (O)

1번은 옳게 답하고 2번, 3번, 4번, 5번은 잘못된 답을 하였으므로 기본 점수 5점인 상태에서 정답으로 얻은 점수 +3점, 오답으로 잃은 점수 -4점이므로 5 + 3 - 4 = 4이다. 따라서 점수는 4점이다.

참고 사항

신경계 내용은 외울 내용도 많고 지엽적으로 낼 수 있다. 2020학년도 대학수학능력시험 9월 모의평가 8번에서 척수 신경이 12쌍인지 물어본 적 있었다.

17번: ④

보기 풀이

- 고. 뇌하수체 전엽에서 분비되는건 생장 호르몬, 갑상샘 자극 호르몬(TSH), 부신 겉질 자극호르몬(ACTH)이다. 뇌하수체 후엽에서 분비되는건 항이뇨 호르몬(ADH), 옥시토신이다. 따라서 ¬에서 뇌하수체 전엽에서 분비되는 호르몬은 3가지, 뇌하수체 후엽에서 분비되는 호르몬은 2가지이다. (X)
- L. 갑상샘에서 분비되는 호르몬은 티록신이다. ○은 티록신이다. (O)
- □. 이자에서 분비되는 호르몬은 인슐린, 글루카곤이며 ©은 글루카곤이다. 글루카콘이 혈중 포도당 농도를 증가시켜서 혈당량을 증가시킨다. (O)

참고 사항

호르몬의 종류와 특징을 정확히 알고 있어야 하는 어려운 문제다. 시상 하부에서 분비되는게 TRH이고, 뇌하수체 전엽에서 분비되는게 TSH인걸 알아야 한다.

자료 분석

근수축 문제로, ⊙, ⓒ, ⓒ의 길이 변화를 확인해야 한다.

보기 풀이

1. 수축 전과 후 ③, ⓒ, ⓒ의 길이를 표로 나타낸 것이다.(단위: µm)

	9	©.	€
수축 전	4	?	10
수축 후	?	6	?

2. 수축 이후 ⓒ의 길이가 ⑤의 길이의 2배가 된다 했으므로 표를 다음과 같이 채울 수 있다.

	9	©	©
수축 전	4	?	10
수축 후	<u>3</u>	6	?

3. ③의 길이가 줄어든 만큼 ⑥의 길이는 늘어나게 된다. 따라서 ⑥의 원리 길이를 알 수 있다. 또한 <u>③의 길이가 줄어든 길이의 2배 만큼</u> ⑥의 길이가 줄어든다.

	9	©	©
수축 전	4	<u>5</u>	10
수축 후	3	6	<u>8</u>

- ¬. ¬의 길이는 수축 이후 3μm이다. (O)
- ㄴ. A대의 길이는 마이오신 필레멘트만 있는 길이이므로 ($\mathbb C$ 의 길이 \times 2) + $\mathbb C$ 의 길이는 항상 20 μ m이다. (X)
- c. 수축 이후 수축 전보다 ③은 1μm 감소, ⑤은 2μm 감소하였다. (O)

참고 사항

생명과학1에서 어려운 문제로 많이 출제되는 주제인 근수축 문제이다. 변화량을 구간에 맞춰 정확히 계산해야 한다.

19번: ④

보기 풀이

- ㄱ. 탈분국 시 Na⁺ 통로는 열리며, K⁺ 통로는 닫혀 있다. 재분국 시 Na⁺ 통로는 닫히고 K⁺ 통로는 열린다. 따라서 \bigcirc , @은 열림, \bigcirc , \bigcirc 은 닫힘이다. (X)
- L. 탈분극 상태에 막 안쪽은 (+)전하를 띤다. (O)
- □. 재분극 상태에서 막전위가 하강한다. (O)

참고 사항

흥분 전도 원리에 대해 정확히 알고 있어야 하는 어려운 문제다. 다만, 문제 번호에 비해 난이도는 낮은 편이다.

20번: ③

자료 분석

막전위 문제로, ⊙은 역치 이상의 자극을 준 상황이다.

보기 풀이

- 1. d₂부터 d₃까지의 거리는 8cm이므로 d₁부터 d₃까지의 거리는 16cm이다.
- 2. \bigcirc 에서 d_2 에 역치 이상의 자극을 주었고 4ms 후 d_3 에서 활동 전위가 발생하였으므로 B에서의 흥분 전도 속도는 2cm/ms이다.
- ¬. B에서의 흥분 전도 속도는 2cm/ms이다. (○)
- ∟. ¬이 일어날 때 A와 B가 연결되어 있는 <u>시냅스 이후에서 활동 전위가 발생하였으므로</u> <u>d₁로 흥분이 전도되지 않는다.</u> (X)
- $_{\text{C}}$. \bigcirc 이후 d_2 에서는 2ms일때 막전위가 최대이며 재분극이 일어난다. 4ms일때 d_3 에서 활동 전위가 발생하였으므로 6ms일때 d_3 에서 재분극이 일어난다. 재분극이 일어날 때 K+통로가 열리게 된다. (O)

참고 사항

생명과학1에서 어렵게 출제되는 주제인 막전위 문제이다. 시냅스 이전, 이후를 구분하여 하고 지점의 거리를 이용하여 흥분 전도 속도를 알아야 한다.