FORMULARIO - TRIGONOMETRIA

1.-
$$\cos \alpha \cdot \sec \alpha = 1$$

2.-
$$\operatorname{sen} \alpha \cdot \operatorname{csc} \alpha = 1$$

3.
$$tg \alpha \cdot ctg \alpha = 1$$

$$4. - \lg \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha}$$

5.-
$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

Pitagóricas

$$1.- \cos^2\alpha + \sin^2\alpha = 1$$

$$1 + tg^2 \alpha = \sec^2 \alpha$$

$$\frac{1}{1} + \frac{1}{1} = \frac{1}$$

$$3.- 1 + \operatorname{ctg}^2 \alpha = \operatorname{csc}^2 \alpha$$

C) Suma y Resta de ángulos

1.-
$$sen(\alpha \pm \beta) = sen \alpha cos \beta \pm cos \alpha sen \beta$$

2.-
$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

3.-
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha \cdot tg \beta}$$

D) Angulos dobles

1.-
$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

2.-
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

= $2\cos^2 \alpha - 1$
= $1 - 2\sin^2 \alpha$

3.-
$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}$$

$$4.- \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

$$5.-\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$$

E) Angulos medios

1.-
$$\operatorname{sen} \alpha = 2 \operatorname{sen} (\alpha/2) \cos (\alpha/2)$$

2.-
$$\cos \alpha = \cos^2(\alpha/2) - \sin^2(\alpha/2)$$

$$3.- \quad \sin^2(\alpha/2) = \frac{1-\cos\alpha}{2}$$

$$4.- \cos^2(\alpha/2) = \frac{1+\cos\alpha}{2}$$

5.-
$$\operatorname{tg}(\alpha/2) = \frac{\operatorname{sen} \alpha}{1 + \operatorname{cos} \alpha}$$

= $\frac{1 - \operatorname{cos} \alpha}{\operatorname{sen} \alpha}$

F) de Producto a Suma

1.-
$$\sin A \cdot \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$

2.-
$$\cos A \cdot \cos B = \frac{1}{2} \left[\cos (A+B) + \cos (A-B) \right]$$

3.-
$$\sin A \cdot \sin B = -\frac{1}{2} [\cos (A + B) - \cos (A - B)]$$

de Suma a Producto

1.-
$$\operatorname{sen} X + \operatorname{sen} Y = 2 \operatorname{sen} \left(\frac{X+Y}{2} \right) \cdot \cos \left(\frac{X-Y}{2} \right)$$

2.-
$$\operatorname{sen} X - \operatorname{sen} Y = 2 \operatorname{sen} \left(\frac{X - Y}{2} \right) \cdot \cos \left(\frac{X + Y}{2} \right)$$

3.-
$$\cos X + \cos Y = 2\cos\left(\frac{X+Y}{2}\right) \cdot \cos\left(\frac{X-Y}{2}\right)$$

4.-
$$\cos X - \cos Y = -2 \operatorname{sen}\left(\frac{X+Y}{2}\right) \cdot \operatorname{sen}\left(\frac{X-Y}{2}\right)$$

Periodicidad

Si $k \in \mathbb{Z}$,

1.-
$$\operatorname{sen}(\alpha \pm 2k\pi) = \operatorname{sen}\alpha$$

$$2.- \cos\left(\alpha \pm 2k\pi\right) = \cos\alpha$$

3.-
$$tg(\alpha \pm k\pi) = tg \alpha$$

4.-
$$\operatorname{ctg}(\alpha \pm k\pi) = \operatorname{ctg}\alpha$$

5.-
$$\sec{(\alpha \pm 2k\pi)} = \sec{\alpha}$$

6.-
$$\csc(\alpha \pm 2k\pi) = \csc\alpha$$

Formulas de Reducción (Ley del Burro)

Sea f cualesquiera de las funciones trigonométricas y cf su co-función. Si s denota el signo que tiene la función f en el cuadrante correspondiente, se cumple que:

2.-
$$f\left(\frac{\pi/2}{3\pi/2} \pm \theta\right) = s \quad cf(\theta)$$
 \leftarrow 24 fórmulas.

Teorema del Seno

En cualquier triángulo, si L_1 representa la medida del lado opuesto al ángulo \angle_1 y \angle_2 es la medida de cualquier otro lado opuesto de un cierto ángulo 42, siempre se cumple que:

$$\frac{\operatorname{sen}(\measuredangle_1)}{L_1} = \frac{\operatorname{sen}(\measuredangle_2)}{L_2}$$

Esto quiere decir que en el siguiente triángulo, se cumplen las fórmulas:

$$1.- \frac{\sin \alpha}{a} = \frac{\sin \beta}{b}$$

$$2.- \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

3.-
$$\frac{\sin \alpha}{\alpha} = \frac{\sin \gamma}{\alpha}$$

Teorema del Coseno

Sí L_1 , L_2 y L_3 representan las medidas de cada uno de los lados de un triángulo cualquiera, y si $\angle 1$ es la medida del ángulo opuesto al lado L_1 , siempre se cumple que:

$$L_1^2 = L_2^2 + L_3^2 - 2L_2L_3\cos(\measuredangle_1)$$

Es decir, en el siguiente triángulo se cumplen las fórmulas:

1.-
$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

2.-
$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

3.-
$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Relaciones en el Triángulo Rectángulo

En todo triángulo rectángulo, siempre se cumple que:

1.-
$$\sin \alpha = \frac{\text{cateto opuesto}}{\text{hipotenusa}} = \frac{\text{CO}}{\text{HIP}}$$

4.-
$$\operatorname{ctg} \alpha = \frac{\operatorname{cateto} \operatorname{adyacente}}{\operatorname{cateto} \operatorname{opuesto}} = \frac{\operatorname{CA}}{\operatorname{CO}}$$

2.-
$$\cos \alpha = \frac{\text{cateto adyacente}}{\text{hipotenusa}} = \frac{\text{CA}}{\text{HIP}}$$

5.-
$$\sec \alpha = \frac{\text{hipotenusa}}{\text{cateto advacente}} = \frac{\text{HIP}}{CA}$$

3.-
$$\operatorname{tg} \alpha = \frac{\operatorname{cateto opuesto}}{\operatorname{cateto advacente}} = \frac{\operatorname{CO}}{\operatorname{CA}}$$

2.-
$$\cos \alpha = \frac{\text{cateto adyacente}}{\text{hipotenusa}} = \frac{\text{CA}}{\text{HIP}}$$
 5.- $\sec \alpha = \frac{\text{hipotenusa}}{\text{cateto adyacente}} = \frac{\text{HIP}}{\text{CA}}$
3.- $\tan \alpha = \frac{\text{cateto opuesto}}{\text{cateto adyacente}} = \frac{\text{CO}}{\text{CA}}$ 6.- $\cot \alpha = \frac{\text{hipotenusa}}{\text{cateto opuesto}} = \frac{\text{HIP}}{\text{CO}}$

*recordar el: cocacoca-hiphip

CO	CA HIP	CO CA	CA CO	HIP CA	HIP
↑ sen	cos	↑ tg	↑ ctg	↑ sec	csc