Multinomial logistic regression

Agenda

- No homework this week
- Extra credit opportunity: department seminar
 - Dr. Mine Cetinkaya-Rundel
 - Monday, September 26, 12pm 1pm in Kirby 120
- Today: multinomial logistic regression

Motivation

- ➡ When the response is binary, we use *logistic regression*
- What happens when the response is categorical, but has MORE than 2 categories?
- We use multinomial logistic regression (aka multinomial regression)

Motivation

Question: What is the relationship between age and contraceptive use for women in Indonesia?

Data: 1473 Indonesian couples, with variables

- + Y_i = contraceptive method used (1 = no use, 2 = long-term, 3 = short-term)
- + X_i = Wife's age (numeric)

The response variable

Contraception	Freq
Long	511
None	629
Short	333

- $+ n_{None} = 629$ (this is 42.7% of the couples)
- $+ n_{Long} = 511$ (this is 34.7% of the couple)
- $+ n_{Short} = 333$ (this is 22.6% of the couples)

The response variable

 Y_i = contraceptive method used (1 = no use, 2 = long-term, 3 = short-term)

What type of variable is Y?

Parametric model building

What are our two steps in building a parametric model?

Building a distribution

 Y_i = contraceptive method used (1 = no use, 2 = long-term, 3 = short-term)

What notation might we use for the probability of no contraceptive use?

Building a distribution

 Y_i = contraceptive method used (1 = no use, 2 = long-term, 3 = short-term)

- $lacktriangledown \pi_{i(None)} = P(Y_i = None)$
- $\pi_{i(Long)} = P(Y_i = Long)$

What must be true of the three probabilities?

The Categorical distribution

Definition: Let Y_i be an **unordered** categorical variable with J levels $j=1,\ldots,J$. Let $\pi_j=P(Y_i=j)$, where $\pi_j\in[0,1]$ for all j, and $\sum_{j=1}^J \pi_j=1$.

Then we say $Y_i \sim Categorical(\pi_1, \ldots, \pi_J)$.

• We can use this distribution as the first step in our modeling process!

What distribution does our response (contraceptive use) have?

Parametric model building

Step 1: Choose a reasonable distribution for ${\cal Y}$

$$Y_i \sim Categorical(\pi_{i(None)}, \pi_{i(Short)}, \pi_{i(Long)})$$

Step 2: Choose a model for any parameters

lacktriangle Need to relate our probabilities to X=Age

EDA

EDA

- Boxplots show there may be some differences with age, but don't let us model the relationship
- We want something like an empirical log odds plot

Can we use the log odds here?

Relative risk

- \blacksquare If Y_i is \emph{binary} , the odds $\frac{\pi_i}{1-\pi_i}$ compare the probabilities of the two possible outcomes
- lacktriangledown If Y_i has more than two outcomes, we need to generalize the odds
- The relative risk compares the probabilities of two potential outcomes

Relative risk of long term vs. no contraceptive use:

Relative risk of short term vs. no contraceptive use:

Example

Consider the 48 twenty-one year old wives in our data:

+ Long: 23

+ Short: 6

+ None: 19

For a 21 year old, what is the *empirical* relative risk of using long term vs. short term contraceptives?

Relative risk

Definition: Let Y_i be a categorical variable with J levels $j=1,\ldots,J$. Let $\pi_j=P(Y_i=j)$. Then the relative risk of level j vs. level k is

$$rac{\pi_{ij}}{\pi_{ik}}$$

Class activity, Part I

https://sta214-f22.github.io/class_activities/ca_lecture_14.html

Speed Range	Slow	Good	Fast	Total
(50,51)	5	1	0	6
(51,52)	5	5	3	13
(52,53)	6	12	2	20
(53, 54)	5	31	4	40

What is the relative risk of Good vs. Slow for the (52,53) speed group?

How would you interpret the relative risk of Good vs. Slow for the (52,53) speed group?

Log relative risk

Instead of modeling the log odds, we can model the *log relative risk*

Log relative risk

Instead of modeling the log odds, we can model the *log relative risk*

Multinomial regression model

Step 1: Choose a reasonable distribution for Y

$$Y_i \sim Categorical(\pi_{i(None)}, \pi_{i(Short)}, \pi_{i(Long)})$$

Step 2: Choose a model for any parameters

$$\logigg(rac{\pi_{i(Long)}}{\pi_{i(None)}}igg) = eta_{0(Long)} + eta_{1(Long)}Age_i$$

$$\log \left(rac{\pi_{i(Short)}}{\pi_{i(None)}}
ight) = eta_{0(Short)} + eta_{1(Short)} Age_i$$

 Pick a reference or baseline category to compare to (here it is None)

Multinomial regression model

Step 1: Choose a reasonable distribution for Y

$$Y_i \sim Categorical(\pi_{i(None)}, \pi_{i(Short)}, \pi_{i(Long)})$$

Step 2: Choose a model for any parameters

$$\log \left(rac{\pi_{i(Long)}}{\pi_{i(None)}}
ight) = eta_{0(Long)} + eta_{1(Long)} Age_i$$

$$\log \left(rac{\pi_{i(Short)}}{\pi_{i(None)}}
ight) = eta_{0(Short)} + eta_{1(Short)} Age_i$$

From the empirical log relative risk plots, did it look like the log relative risk was a linear function of Age?

Log relative risk

Multinomial regression model

Step 1: Choose a reasonable distribution for Y

$$Y_i \sim Categorical(\pi_{i(None)}, \pi_{i(Short)}, \pi_{i(Long)})$$

Step 2: Choose a model for any parameters

$$\logigg(rac{\pi_{i(Long)}}{\pi_{i(None)}}igg) = eta_{0(Long)} + eta_{1(Long)}Age_i + eta_{2(Long)}Age_i^2$$

$$\log \left(rac{\pi_{i(Short)}}{\pi_{i(None)}}
ight) = eta_{0(Short)} + eta_{1(Short)} Age_i + eta_{2(Short)} Age_i^2$$

Estimated model

$$\log\!\left(rac{\widehat{\pi}_{i(Long)}}{\widehat{\pi}_{i(None)}}
ight) = -5.07 + 0.37 Age_i - 0.0063 Age_i^2$$

$$\logigg(rac{\widehat{\pi}_{i(Short)}}{\widehat{\pi}_{i(None)}}igg) = -8.21 + 0.46 Age_i - 0.0065 Age_i^2$$

What is the predicted relative risk of long term vs. none for a woman age 30?

Class activity, Part II

https://sta214-f22.github.io/class_activities/ca_lecture_14.html

Write down the population multinomial regression model, using Slow as the reference category, and assuming that the log relative risk is a linear function of Speed.

$$\log\!\left(rac{\widehat{\pi}_{i(Good)}}{\widehat{\pi}_{i(Slow)}}
ight) = -39.68 + 0.77~\mathrm{Speed}_i$$

Calculate the predicted relative risk of Good vs. Slow for a race where the winning speed was 52.5 mph.

From this information, can you calculate the predicted *probability* that the condition was Good? If not, what more information do you need?