Category theory notes

April 11, 2022

1 Definition of a category

Definition 1 A category C has objects a and arrows $f: a \to b$ between objects. C_0 denotes the objects of category C and C_1 denotes its arrows. For an arrow $f: a \to b$ the object a is called its domain and b its codomain: also denoted a = dom(f) and b = cod(f). A category C must adhere to the following axioms:

• if f and g are two functions such that cod(f) = dom(g), then the composition gf (or g.f) is a function from dom(f) to cod(g):

$$(\mathsf{a} \overset{f}{\longrightarrow} \mathsf{b} \overset{g}{\longrightarrow} \mathsf{c}) \ \mapsto \ (\mathsf{a} \overset{gf}{\longrightarrow} \mathsf{c})$$

- composition of arrows is **associative**: i.e. given $f : a \to b$, $g : b \to c$ and $h : c \to d$, then $(hg)f = h(gf) : a \to d$
- every element $a \in C_0$ has an identity arrow $id_a : a \to a$ satisfying $id_a . f = f \ \forall f \in C_1$ with cod(f) = a and $g.id_a = g \ \forall g \in C_1$ with dom(g) = a.

Example 2 A preorder is a set X together with a binary relation \leq which is

- reflexive: i.e. $x \le x \ \forall x \in X$
- transitive: i.e. $x \le y, y \le z \Rightarrow x \le z \ \forall x, y, z \in X$

any such a preorder can be seen as a category C with elements being the objects of X and a unique arrow $x \to y$ iff $x \le y$.

Example 3 A monoid is a set X with a binary operation, written like multiplication xy for $x, y \in X$ which is associative and has a unit element $e \in X$ such that $ex = xe = x \ \forall x \in X$. A monoid can be interpreted as a category with one object and one arrow x for every $x \in X$.

Example 4 Top, Grp, Mon, Rng, Grph, Pos are the categories with **topological spaces**, groups, monoids, rings, graphs, posets as objects and their respective homomorphisms (structure preserving functions) as arrows. Set is the category of sets with functions between sets as arrows.

Definition 5 A category C is called **small** iff both C_0 and C_1 are sets. The category is called **locally small** iff for any two objects $a, b \in C$ the set of morphisms between a and b (denoted Hom(a,b)) is a set.

Definition 6 Let C be a category, the **oposite category** is denoted C^{op} . This category has the same objects, but arrows pointing the other way. I.e. if $f: a \to b$ in C_1 , then $\bar{f}: b \to a$ in $(C^{op})_0$. Composition of arrows is defined as $\bar{f}\bar{g} = g\bar{f}$.

Definition 7 An arrow $f : a \to b$ is called a **monomorphism** if for any other object c and morphisms $g, h : c \to a$ fg = fh implies g = h. The arrow is called **epimorphism** if for any object c and morphisms $g, h : b \to c$ gf = hf implies g = h.

Lemma 8 Monomorphisms in Set correspond to injective functions, where epimorphisms in Set correspond to surjective functions.

Lemma 9 If gf is mono, then f is mono, so by duality: if fg is epi, then f is epi.

Definition 10 An epi $f: a \to b$ is called **split epi** if $\exists g: b \to a$ such that $fg = id_b$. Dually a mono $f: a \to b$ is called **split mono** if $\exists g: b \to a$ such that $gf = id_a$.

Definition 11 A morphism $f: a \to b$ is called an **isomorphism** if $\exists g: b \to a$ such that $fg = id_b$ and and $gf = id_a$. In this case the objects a and b are called **isomorphic**.

Lemma 12 • if two of f, g and fg are iso, then so is the third

- if f is epi and split mono, it is iso
- if f is split epi and mono, it is iso

Definition 13 An object $a \in C_0$ is called a **terminal object** if for any other object $b \in C_0$ there is a unique arrow $f : b \to a$. (E.g. singletons are terminal objects in Set) Similarly an object $a \in C_0$ is called a **initial object** if for ano other object $b \in C_0$ there is a unique arrow $f : a \to b$. (E.g. the empty set is the only initial object in Set.)

Lemma 14 Any two terminal objects are isomorphic. Same for any two initial objects.

2 Functors and natural morphisms

Definition 15 A functor F from a category C to a category D consists of operations $F_0: C_0 \to D_0$ and $F_1: C_1 \to D_1$ such that the following holds:

• for each $f : a \to b$ in $C \colon F_1(f) : F_0(a) \to F_0(b)$

- for each a \xrightarrow{f} b \xrightarrow{g} c : $F_1(gf) = F_1(g)F_1(f)$.
- $F_0(id_a) = id_{F_0(a)}$ for each $a \in \mathcal{C}$

Definition 16 An endofunctor is a functor F from a category C to itself.

Definition 17 A functor $F: \mathcal{C} \to \mathcal{D}$ is called **covariant**, whereas a functor $F: \mathcal{C}^{op} \to \mathcal{D}$ is called **contravariant**.

Since functors are composable, the following definition can be made:

Definition 18 Cat is the category whose objects are small categories and whose morphisms are functors between those categories.

Now that functors are defined, its time to define natural morphisms:

Definition 19 Let $F,G:\mathcal{C}\to\mathcal{D}$ be two functors of categories \mathcal{C} and \mathcal{D} : a natural morphism $\alpha:F\Rightarrow G$ is a set of morphisms $\alpha_{\mathsf{a}}:F(\mathsf{a})\to G(\mathsf{a})$ for any object $\mathsf{a}\in\mathcal{C}_0$ such that for any arrow $f:\mathsf{a}\to\mathsf{b}$ in \mathcal{C}_1 the following diagram in \mathcal{D} commutes:

$$F(\mathsf{a}) \xrightarrow{F(f)} F(\mathsf{b})$$

$$\downarrow^{\alpha_{\mathsf{a}}} \qquad \downarrow^{\alpha_{\mathsf{b}}}$$

$$G(\mathsf{a}) \xrightarrow{G(f)} G(\mathsf{b})$$

Definition 20 A natural transformation $\alpha : F \Rightarrow G$ is called a **natural isomorphism** iff its components $\alpha_a : a \in \mathcal{C}$ are isomorphisms.

Definition 21 Let C and D be categories. We can define the **Functor category** which is denoted as either D^{C} or [C, D] as follows:

- objects of this category are functors $F: \mathcal{C} \to \mathcal{D}$
- morphisms between two such functors F and G are natural transformations $\alpha: F \Rightarrow G$

Definition 22 Actually a category like Cat which has morphisms and natural transformations between morphisms is called a **2-category**.

Definition 23 Let C and D be two categories, the **product category** or **cartesian product of categories** $C \times D$ has objects (a, b) where $a \in C_0$ and $b \in D_0$ and morphisms $(f,b): (a,b) \to (a',b')$ where $f: a \to a' \in C_1$ and $g: b \to b' \in D_1$.

Definition 24 A functor from any product category to another category is called a **bifunctor**.

Definition 25 A functor $F: \mathcal{C} \to \mathcal{D}$ is called **faithfull** if its induced function $F_1: Hom(a,b) \to Hom(F(a),F(b))$ is injective for any two objects $a,b \in \mathcal{C}$. It's called **full** if this induced function is surjective for any two objects $a,b \in \mathcal{C}$.

Definition 26 A functor **reflects** a property if, whenever the image (of objects or arrows) has a property, then the origin has the property too.

Lemma 27 Faithfull functors reflect epis and monos

Lemma 28 Full and Faithfull functors reflect property of being initial or terminal object.

Definition 29 Suppose we have categories C, D and E together with functors:

$$\mathcal{C} \xrightarrow{F'} \mathcal{D} \xrightarrow{G'} \mathcal{E}$$
 If we have natural transformations $\alpha : F \Rightarrow F'$ and

 $\beta:G\Rightarrow G'$, then they cannot be trivially composed since their domains and codomains do not match. Writing out the inducing morphisms on objects, however, makes it easy to construct a morphism

$$\beta \circ \alpha : G \circ F \Rightarrow G' \circ F'$$

and this composition is called the **horizontal composition** of natural transformations.

3 limits and colimits

Definition 30 Let $F: \mathcal{C} \to \mathcal{D}$ be a functor between categories. A **cone** for F exists of an object $d \in \mathcal{D}_0$ and a natural transformation $\mu: \Delta_d \Rightarrow F$. (Δ_d is the constant functor which sends all objects to d and all arrows to id_d .) So μ is a family of morphisms ($\mu_c: d \to F(c) | c \in \mathcal{C}_0$) such that for any morphism

$$f: c \to c'$$
 in $\mathcal C$ the following diagram commutes:
$$F(c) \xrightarrow{\mu_c} f(c')$$

This cone is denoted as (d, μ) and d is called the **vertex** of the cone. In fact, cones of F form a category with morphisms $f:(d, \mu) \to (d', \mu')$ being a morphism $f:d \to d'$ in C_1 such that $\mu'_c g = \mu_c$ for any $c \in C_0$. I.e. the following

phism
$$f: d \to d$$
 in C_1 such that $\mu_c g = \mu_c$ for any $c \in C_0$. I.e. the following diagram commutes for any $c \in C_0$:

$$\begin{array}{c}
d & \xrightarrow{g} & d' \\
\downarrow^{\mu_c} & \text{So all cones over}
\end{array}$$

F form a category, which is denoted Cone(F).

Note that the codomain of F in the previous definition is regularly called the **diagram of** C in D and the category C is called the **index category** of this diagram.

Definition 31 Let F be as in the previous definition. The terminal object in the category Cone(F) is called the **limiting cone** for F or **limit** for the diagram F. It is also sometimes denoted LimF. Note that I say the terminal object because terminal objects are unique up to unique isomorphism.

Now its natural to define the co-definition for cones and limits:

Definition 32 Let $F: \mathcal{E} \to \mathcal{C}$ be a functor. A **cocone** for this functor is a pair (ν, d) where d is an object in \mathcal{C} and $\nu: F \Rightarrow \Delta_D$ is a natural transformation. So a morphism $f: (\nu, \mathsf{d}) \to (\nu', \mathsf{d}')$ in the category of cocones of F are morphisms $f: \mathsf{d} \to \mathsf{d}'$ such that for any $\mathsf{e} \in \mathcal{E}_0$ the following diagram commutes:

Now I will give a few examples of limits and colimits:

Example 33 Let c,d be two objects of a category \mathcal{C} . These two objects can be seen as the image of the functor $F:\mathbf{2}\to\mathcal{C}$ where $\mathbf{2}$ is the **discrete category** with two objects (the category with two objects and no arrows except for the identity arrows). The functor F sends the one element of $\mathbf{2}$ to \mathbf{c} and the other to \mathbf{d} . The **product** of \mathbf{c} and \mathbf{d} is the limit of the category of cones over F. I.e. it is an object \mathbf{e} together with two morphisms $\mathbf{p}:\mathbf{e}\to\mathbf{c}$ and $\mathbf{q}:\mathbf{e}\to\mathbf{d}$ such that for any other such object \mathbf{e}' and morphisms \mathbf{p}' and \mathbf{q}' there is a unique morphism \mathbf{m} that

factorizes p' and q'. In diagrams this looks as follows:

morphisms p and q are called the **projections** of the product. Its **coproduct** of c and d is the colimit of this functor F. (Write out the diagram yourself.)

Example 34 Let $\bar{\mathbf{2}}$ be the category \mathbf{x} $\stackrel{a}{\underset{b}{\smile}}$ \mathbf{y} . A functor $\bar{\mathbf{2}} \rightarrow \mathcal{C}$ is basically a parallel pair of morphisms $f,g:a\rightarrow b$ in \mathcal{C} . And a cone for this functor \mathbf{d} is basically a diagram \mathbf{d} \mathbf

is usually omitted, leaving the following diagram: d $\stackrel{\mu_a}{\longrightarrow}$ a $\stackrel{f}{\underbrace{\smile}_q}$ b . The

limit in this category of cones (I.e. the object d and morphism μ_a) is called the **equalizer** of the pair f and g. The definition of the **co equalizer** follows automatically.

Lemma 35 Every equalizer is a monomorpism.

Covariantly: every coequalizer is epi.

Lemma 36 let $d \xrightarrow{\mu_a} a \xrightarrow{g} b$ be an equalizer diagram. Then μ_a is an isomorphism iff f = g.

Covariantly: a coequalizer is iso iff f = g.

Definition 37 Every monomorphism $f: a \to b$ which is part of some equalizer diagram $a \xrightarrow{f} b \xrightarrow{g} c$ is called **regular mono**. The definition of a **regular epi** follows automatically.

Lemma 38 If f is regular mono and epi, it is iso. Also every split mono is regular.

Example 39 A pullback is the limiting cone in the category of cones over a diagram like this: a \xrightarrow{f} b \leftarrow_g c . Just to clarify, a cone for this diagram

can be given as the composition gq = fp.) The co definitions of the pullback is called a **pushout**.

Lemma 40 In the pullback diagram given above, is f is mono, then q is too. Similarly if f is iso, then q is too.

Co-Covariantly: let
$$a$$
 f
 g
 c be a pushout diagram, then f epi

implies that q is epi and f regular epi implies that q is regular epi.

Lemma 41 Given two commuting squares
$$\begin{bmatrix} a & \xrightarrow{b} & b & \xrightarrow{c} & c \\ \downarrow a & \downarrow f & \downarrow d \\ x & \xrightarrow{g} & y & \xrightarrow{h} & z \end{bmatrix}$$
, then the fol-

lowing hold:

- If both squares are pullbacks, then so is the composite. Covariantly: the composition of two pushouts is a pushout.
- If the right hand square and the composite are pullbacks, then so is the left hand square. Covariantly: if both the first square and the composition are pushouts, then so is the second square.

antly:
$$f$$
 is epi iff \downarrow^f \downarrow^{id_b} is a pushout diagram.

4 yoneda

Definition 43 A profunctor is a bifunctor which is contravariant in its first argument and covariant in its second and which codomain is Set. So a profunctor is a functor $F: \mathcal{C}^{op} \times \mathcal{D} \to Set$.

Let \mathcal{C} be a locally small category and $\mathbf{a} \in \mathcal{C}_0$. There is a functor Hom(a,-): $\mathcal{C} \to Set$ defined on objects by $\mathbf{x} \mapsto Hom(\mathbf{a},\mathbf{x})$ and which sends arrows $f: \mathbf{x} \to \mathbf{y}$ to the function $Hom(a,f): Hom(\mathbf{a},\mathbf{x}) \to Hom(\mathbf{a},\mathbf{y})$ defined by $Hom(a,f)(h):=fh: \mathbf{a} \to \mathbf{y}$.

Similarly one can fix the second argument in the Hom set in order to get a contravariant functor $Hom(-,b): \mathcal{C}^{op} \to Set$.

Combine these to functors in order to get a profunctor $Hom(-,-): \mathcal{C}^{op} \times \mathcal{C} \to Set$.

Definition 44 Any functor $F: \mathcal{C} \to Set$ which is naturally isomorphic to the Hom functor Hom(a, -) for some object a is called **representable**.

So this means that there are natural iso's $\alpha: Hom(\mathsf{a},-) \to F$ and $\beta: F \to Hom(\mathsf{a},-)$.

Naturality of α means that for all any arrow $f: \mathsf{x} \to \mathsf{y}$ the following diagram commutes:

$$Ff \circ \alpha_{\mathsf{x}} = \alpha_{\mathsf{y}} \circ Hom(\mathsf{a},f)$$

 $(\alpha_{\mathsf{x}} \text{ is a function } Hom(\mathsf{a},\mathsf{x}) \to F\mathsf{x}.)$

The following lemma is called the **yoneda lemma**:

Lemma 45 Let C be any locally small category and furthermore let $a \in C_0$ and $F: C \to Set$ be any functor such that $Fa \neq \emptyset$): There is an isomorphism (of sets)

$$[\mathcal{C}, Set](Hom(\mathsf{a}, -), F) \cong Fa$$

(remember that [C, Set] is the category with functors $C \to Set$ as objects and natural transformations as arrows.)

On one side, lets take any natural transformation $\alpha: Hom(a, -) \to F$, then $\alpha_a: Hom(a, a) \to Fa$ is a function of sets, which can be evaluated at

 $id_{\mathsf{a}} \in Hom(\mathsf{a},\mathsf{a})$ to get an element in Fa. This way we defined a function $[\mathcal{C}, Set](Hom(\mathsf{a},-),F) \to Fa$.

Its inverse is a function $Fa \to [\mathcal{C}, Set](Hom(\mathsf{a}, -), F)$ which can be constructed as follows:

Take any object x in \mathcal{C} , some morphism $h: \mathsf{a} \to \mathsf{x}$ and a morphism $f: \mathsf{x} \to \mathsf{y}$. The naturality square for any natural morphism α given above becomes (pointwise) when acting on h:

$$\alpha_{\mathsf{y}}(Hom(\mathsf{a},f)h) = (Ff)(\alpha_{\mathsf{x}}h)$$

and

$$Hom(\alpha, f)h = f \circ h$$

which leads to:

$$\alpha_{\mathsf{y}}(f \circ h) = (Ff)(\alpha_{\mathsf{x}} h)$$

So specializing x = a and $h = id_a$ this yields:

$$\alpha_{\rm y} f = (Ff)(\alpha_{\rm a} id_{\rm a})$$

The left hand side is the action of α_{y} on an arbitrary element $f \in Hom(a,y)$ which it is completely determined by $\alpha_{a}id_{a}$. So a natural transformation α can be determined uniquely by choosing any value in F_{a} and setting this as the value for $\alpha_{a}id_{a}$.

Co-yoneda lemma states that

Lemma 46
$$[C^{op}, Set](Hom(-, a), F) \cong F_a$$
.

So using the Yoneda lemma and setting F := Hom(b, -) for any object b we get the following equality:

$$[C, Set](Hom(a, -), Hom(b, -)) \cong Hom(b, a)$$

Definition 47 Define a function $h: \mathcal{C} \to Set^{\mathcal{C}^{op}}$ which sends a to the functor $ha: Hom(a, -): \mathcal{C}^{op} \to Set$ which is an element of $Set^{\mathcal{C}}$. This function can be made into a functor be defining its action on a function $f: b \to a$. $hf \in [\mathcal{C}, Set](Hom(a, -), Hom(b, -))$ using the previously given isomorphism. So the function is actually a functor $h: \mathcal{C} \to Set^{\mathcal{C}^{op}}$ which is called the **Yoneda** embedding.

Lemma 48 The Yoneda embedding is full, faithfull and injective on objects.

The use of the Yoneda lemma is often the following: Suppose we want to prove that two objects $a,b \in \mathcal{C}_0$ are isomorphic. It suffices to prove that for any object $x \in \mathcal{C}_0$ there is a bijection $f_x : Hom(x,a) \to Hom(x,b)$ which is natural in x. Naturality in x means the for any morphism $g: x' \to x$ the following diagram

$$\begin{array}{ccc} & \mathit{Hom}(\mathsf{x},\mathsf{a}) & \stackrel{f_\mathsf{x}}{\longrightarrow} & \mathit{Hom}(\mathsf{x},\mathsf{b}) \\ \mathrm{commutes:} & & & \downarrow_{\mathit{Hom}(g,id_\mathsf{a})} & & \downarrow_{\mathit{Hom}(g,id_\mathsf{b})} \\ & & & & & \downarrow_{\mathit{Hom}(\mathsf{x}',\mathsf{a})} & \stackrel{f_\mathsf{x}'}{\longrightarrow} & \mathit{Hom}(\mathsf{x}',\mathsf{b}) \end{array}$$

5 monads, adjunctions and T-algebras

Definition 49 Let C and D be categories with functors $R: C \to D$ and $L: D \to C$. R is called **right adjoint** to the functor L (And conversely L **left adjoint** to R) if there are natural transformations

$$\eta: I_{\mathcal{D}} \Rightarrow R \circ L$$

$$\epsilon: L \circ R \Rightarrow I_{\mathcal{C}}$$

where $I_{\mathcal{D}}$ and $I_{\mathcal{C}}$ are the identity functors for the categories \mathcal{D} and \mathcal{C} respectively. The whole thing is called an **adjunction** and is usually denoted:

$$L\dashv R$$

In this definition η is called the **unit** and ϵ the **counit** of the adjunction.

Note that on objects these natural transformations become moprhisms

$$\eta_{\mathsf{d}}:\mathsf{d}\to (R\circ L)(\mathsf{d})$$

$$\epsilon_{\mathsf{c}}: (L \circ R)(c) \to \mathsf{c}$$

for objects $d \in \mathcal{D}^{op}$ and $c \in \mathcal{C}^{op}$.

Lemma 50 The unit and counit adhere to the following triangular identi-

$$L \xrightarrow{L \circ \eta} L \circ R \circ L \qquad R \xrightarrow{\eta \circ R} R \circ L \circ R \\ \downarrow_{\epsilon \circ L} \qquad \downarrow_{R \circ \epsilon} \qquad \textit{Here the compositions } L \circ \eta,$$

 $\epsilon \circ L$, $\eta \circ R$ and $R \circ \epsilon$ are horizontal compositions or natural transformations. (Where $L = I_L : L \Rightarrow L$ is the identity natural transformation from l to L and R similar.)

Alternatively an adjunction can be described using hom sets:

Definition 51 Let $R: \mathcal{C} \to \mathcal{D}$ and $L: \mathcal{D} \to \mathcal{C}$ be functors. L is left adjoint to R iff for objects $c \in \mathcal{C}$ and $d \in \mathcal{D}$ there is an isomorphism

$$Hom(Ld, c) \cong Hom(d, Rc)$$

which is natural in both c and d.

Lemma 52 There is a forgetfull functor U from M on (the category of monoids) to Set and conversely there is a free functor $F: Set \to M$ on which maps a set to the monoid which is freely generated by the set. For this situation, F is left adjoint to U.

The same goes for the forgetfull functor $U: Grp \to Set$ which maps a group to its underlying set and $F: Set \to Grp$ which maps a set to the group which is freely generated by this set.

Definition 53 Let C be a category and $T: C \to C$ be any endofunctor. The **kleisli category** associated to C,T is denoted C_T . It has the same objects as C, but an arrow $a \to b$ in C_T is actually an arrow $a \to Tb$ in C. Arrows can be composed if T is a monad, as will be described shortly.

Definition 54 A monad is an endofunctor T together together with two natural transformations

$$\mu: T^2 \Rightarrow T$$

and

$$\eta:I\Rightarrow T$$

which make the following two diagrams commute:

$$T^{3} \xrightarrow{\mu \circ T} T^{2} \qquad I \circ T \xrightarrow{\eta \circ T} T^{2} \longleftrightarrow_{T \circ \eta} T \circ I$$

$$\downarrow^{T \circ \mu} \qquad \downarrow^{\mu} \qquad and \qquad \downarrow^{\mu} \qquad Note that again \ \mu \circ T,$$

$$T^{2} \xrightarrow{\mu} T$$

 $T \circ \mu$, $\eta \circ T$ and $T \circ \eta$ are horizontal compositions of natural transformations. μ is usually called **multiplication** and η **unit**.

Lemma 55 Let C be a category and (T, η, μ) a monad on C, then the kleisli category C_T is defined and the composition of arrows are as follows: If $f : a \to Tb, g : b \to Tc \in C_1$ (So $f : a \to b, g : b \to c$ in $(C_T)_1$.) then $g \circ_T f = \mu \circ Tg \circ f$, is the kleisli composition of arrows. (Note that $g \circ_T f : a \to Tc$ in C_1 .)

Ofcourse, its also possible to define a comonad:

Definition 56 A comonad on a category C is an endofunctor $T: C \to C$ together with natural transformations

$$\epsilon:T\Rightarrow I$$

and

$$\delta: T \Rightarrow T^2$$

called **extract** and **duplicate** respectively. These natural transformations should make the following two diagrams commute:

$$T \xrightarrow{\delta} T^{2} \qquad I \circ T \longleftrightarrow_{\epsilon \circ T} T^{2} \xrightarrow{T \circ \epsilon} T \circ I$$

$$\downarrow^{\delta} \qquad \downarrow^{\delta \circ T} \quad and \qquad \uparrow \longleftrightarrow_{\epsilon \circ T} T^{2} \xrightarrow{T \circ \epsilon} T \cap I$$

$$T^{2} \xrightarrow{T \circ \delta} T^{3} \qquad T$$

The following theorem shows that every adjunction gives rise to a monad:

Theorem 57 Let $L \dashv R$ be an adjunction. So we have natural transformations

$$\eta: I_{\mathcal{D}} \Rightarrow R \circ L$$

and

$$\epsilon: L \circ R \Rightarrow I_{\mathcal{C}}$$

. Then $R \circ L$ is a monad with unit η and multiplication $\mu = R \circ \epsilon \circ L$. Similarly $L \circ R$ forms a comonad with ϵ as extract and $\delta = L \circ \eta \circ R$: $(L \circ R)^2 \to L \circ R$.

Definition 58 Let C be a category with endofunctor T. We will now define the category of T-algebras. Objects in this category are pairs (a, f), where $a \in C_0$ and $f : Fa \to a$ in C_1 . Here a is often called the carrier and f is called the evaluator function. A morphism $\mu : (a, f) \to (b, g)$ is simply a morphism $\mu : a \to b$ in C_1 that makes the following diagram commute:

$$Ta \xrightarrow{Tm} Tb$$

$$\downarrow^f \qquad \downarrow^g$$

$$a \xrightarrow{m} b$$

Any object in this category is called a T-albegra. An initial object in this category is called the initial algebra.

Lemma 59 Let (i, j) be an initial algebra, then the morphism $j : Ti \rightarrow i$ is an isomorphism.

Definition 60 Let C be a category with endofunctor T. Objects in the **category** of T-coalgebras are pairs (a, f) where $a \in C_0$ and $f : a \to Ta$. And a morphism $m : (a, f) \to (b, g)$ in this category is a morphism $m : a \to b$ which makes the following diagram commute:

$$Ta \xrightarrow{Tm} Tb$$
 $f \uparrow \qquad \qquad g \uparrow$
 $a \xrightarrow{m} b$

Lemma 61 The arrow u in a terminal objet (t,u) of a T-coalgebra is an isomorphism.

Definition 62 Let C be a category, T an endofunctor and (a, f) the initial T-algebra. (So $a \in C_0$ and $f: Ta \to a$ is iso.) Let furthermore (b, g) be any other object in the category of T-algebras. Then, since (a, f) is the initial object, there is a unique arrow $m: (a, f) \to (b, g)$ in the category of T-algebras. So there is

$$T$$
 a \xrightarrow{Tm} T b T b T a unique $m: a \to b$ that makes the following square commute: f g .

This uniquely defined morphism m is called the **catamorphism of** g, usually denoted cata g.

Note that, since f is iso, cata g can also be defined as the composition cata $g = g \circ Tm \circ f^{-1}$.

So this equality actually gives a recursive definition of $m = \mathsf{cata}\, g$.

It's already been shown that every adjunction gives rise to a monad. What follows next is the opposite. I will show that every monad gives rise to a an adjunction.

Definition 63 Let C be a category and T a monad. Since T is an endofunctor, we can define the category of T-algebras. This category is called the **Eilenberg-Moore category** and is usually denoted by C^T .

Theorem 64 For such a T-algebra there is clearly a forgetful functor U^T : $\mathcal{C}^T \to \mathcal{C}$ which sends objects (\mathbf{a}, f) to the carrier object \mathbf{a} and morphisms of the T-algebra to the corresponding morphism in \mathcal{C}_1 .

As noted before a forgetful functor is left adjoint to a free functor $F^T: \mathcal{C} \to \mathcal{C}^T$. This free functor sends an object $a \in \mathcal{C}_0$ to the object (Ta, μ_a) , where μ is the multiplication of the monad T.

It even turns out that

$$U^T \circ F^T = T$$

as one might hope.