

Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

EE640 - Eletrônica Básica IITurma U

Lista Spice II - Grupo

SIMULAÇÃO DE UM AMPLIFICADOR DIFERENCIAL COM CARGA ATIVA E ESPELHO DE CORRENTE

Geovani Augusto de Souza Alves	150932
Ígor Lívio Figueiredo Moreira	150660
Rafael Seto Takeguma Utikawa	151072
Victor Cordeiro de Arruda	177909

Sumário

1. Especificação do Problema	3
2. Identificação das Partes do Circuito	3
2.1. Fontes de Corrente	3
2.2. Carga Ativa	3
2.3. Estágio de Entrada	3
2.4. Circuito Completo	3
3. Cálculo do Resistor	4
3.1. Valores propostos	4
3.2. Resultado	4
4. Dimensionamento do Primeiro Estágio	4
4.1. Valor Proposto	4
4.2. Resultado	4
Blablabla	4
5. Resultados Finais	4
5.1. Valores de Tensões e Correntes DC no Circuito	4
5.3. Ganho por Década de Frequência	4
5.4. Valores de Corrente AC de Dreno e Fonte por Década de Frequência	5
6. Conclusões	6
7. Referências	6

1. Especificação do Problema

Foi proposto a simulação um amplificador diferencial com carga ativa e espelho de corrente a partir de modelos de transistores propostos, calculando a resistência de referência e o W dos transistores. Como o maior RA do grupo é 177909, I_ref = 10uA+109x10^-7 = 20,9uA e Av = 100+79 = 179 V/V ou 45,057 dB.

2. Identificação das Partes do Circuito

2.1. Fontes de Corrente

2.2. Carga Ativa

2.3. Estágio de Entrada

2.4. Circuito Completo

3. Cálculo do Resistor

3.1. Valores propostos

Modelo dos transistores:

.model MbreakP-X PMOS VTO=-0.5 L=1u kp=10u lambda=0.01 Cbd = 1p Cgdo = 1f Cgso = 1f .model MbreakN-X NMOS VTO=0.5 L=1u kp=10u lambda=0.01 Cbd = 1p Cgdo = 1f Cgso = 1f

 $I_{REF} = 10uA + 109x10^{-7} = 20,9 uA$

3.2. Resultado

Para calcular o valor do resistor é necessário calcular primeiro os valores de $V_{\rm GS}$ dos transistores M5 e M6, para que seja possível calcular a queda de tensão no resistor, sabendo a queda de tensão baseado nos valores de $V_{\rm CC}$, $V_{\rm SS}$ e nos valores de $V_{\rm GS}$ é possível obter a tensão $V_{\rm R1}$. Com o valor de $V_{\rm R1}$ é possível obter o valor de R1 baseado na lei Ohm, utilizando a corrente de referência ($I_{\rm REF}$) para o cálculo.

Neste problema o valor da relação W/L foi considerado como 5, sendo assim W = 5 μm.

$$\begin{split} I_{REF} &= \frac{1}{2} k_p' \frac{W}{L} V_{OV}^2 \\ 10 \mu &= \frac{1}{2} 10 \mu \cdot 5 \cdot V_{OV}^2 \\ V_{OV}^2 &= \frac{2 \cdot 10.9}{5 \cdot 10} \\ V_{OV} &= 0,66 V \\ V_{OV} &= V_{GS} - V_t \\ V_{GS} &= V_{OV} + V_t = 0,5 + 0,66 = 1,16 V \\ V_{DS} &= V_{GS} \\ V_{R1} &+ 2 V_{GS} = V_{CC} - V_{SS} \\ V_{R1} &= R_1 I_{REF} \\ I_{REF} R_1 &= 15 - 2 V_{GS} \\ R_1 &= \frac{15 - 2 V_{GS}}{I_{REF}} = \frac{15 - 2 \cdot 1,16}{10.9 \mu} \end{split}$$

R1=1163k Ω

4. Dimensionamento do Primeiro Estágio

4.1. Valor Proposto

Av=100+79=179V/V ou 45,057dB

4.2. Resultado

Para ser possível obter esse ganho foi necessário definir a dimensão de alguns transistores, além disso foi necessário calcular a corrente que percorre a carga ativa e estágio de entrada, com esse valor é possível calcular a corrente que percorre o transistor M7 e assim projetar corretamente o espelho de corrente e completar o projeto do amplificador diferencial.

Para facilitar o projeto os transistores M1, M2, M3, M4, M5 e M6 possuem as mesmas dimensões, sendo assim apenas o transistor M7 tem uma dimensão diferente.

Cálculo corrente

$$\begin{split} A_d &= \frac{1}{2} g_m r_o \\ r_o &= \frac{1}{\lambda I_D} \\ g_m &= \sqrt{2 k_p^\prime \frac{W}{L} I_D} \\ A_d &= \frac{1}{2} \sqrt{2 k_p^\prime \frac{W}{L} I_D} \frac{1}{\lambda I_D} \\ \lambda 2 A_d &= \frac{\sqrt{2 k_p^\prime \frac{W}{L} I_D}}{I_D} \end{split}$$

$$(\lambda 2A_d)^2 = \frac{2k_p' \frac{W}{L} I_D}{I_D}$$

$$I_D = \frac{k_p' \frac{W}{L}}{2\lambda^2 A_d^2} = 7,8\mu A$$

Como essa corrente I_D é a que passa por cada um dos transistores do estágio de entrada a corrente que deve estar na fonte deve ser a soma da corrente vinda dos dois lados, portanto deve ser o dobro, então I_o = 15,6 μ A. Com este valor de I_o é possível dimensionar o espelho.

$$\begin{split} \frac{I_o}{I_{REF}} &= \frac{(W/L)_7}{(W/L)6} \\ (W/L)_7 &= \frac{I_o}{I_{REF}} (W/L)_6 \\ \text{(W/L)}_7 &= \textbf{7,15, portando W} = \textbf{7,15 } \mu \text{m} \end{split}$$

Os resultados foram obtido foram de 188.23 V/V, ou de 45,494 dB. Esses valores estão próximos dos valores de 179 V/V ou de 45,057 dB

5. Resultados Finais

5.1. Valores de Tensões e Correntes DC no Circuito

5.3. Ganho por Década de Frequência

5.4. Valores de Corrente AC de Dreno e Fonte por Década de Frequência

6. Conclusões

O exercício tem a motivação de mostrar o amplificador diferencial ou par diferencial que é a configuração mais utilizada em projetos de circuitos integrados analógicos, bem como os cálculos necessários para especificação do projeto. Outro ponto importante que o exercício demonstra é a dependência do casamento como necessária e crítica entre ambos os transistores para operação estável do circuito, e entende-se esses dispositivos casados como seus parâmetros sendo praticamente idênticos, relação que é atingida ou assegurada devido as tecnologia de fabricação de circuitos integrados.

Ainda dentro da estrutura de um circuito integrado o exercício motiva o entendimento e cálculo dos componentes que definem a fonte de corrente, a carga ativa e o estágio de entrada que juntos com o par diferencial que formam o circuito completo de amplificação.

Na parte final utilizamos o software de simulação PSpice na versão estudante junto com os modelos de transistores NMOS e PMOS especificados para provar que os parâmetros calculados estão corretos, no caso desse como o efeito Early não foi considerado o valor obtido foi um pouco maior do que o esperado.

7. Referências

1 - Roteiro:

http://www.ggte.unicamp.br/eam/pluginfile.php/541029/mod_resource/content/1/Lista_2_SPICE_EE640U_Aula.pdf

2 - Download PSpice http://www.eng.auburn.edu/~troppel/91pspstu.exe