Exercise of Chapter 7

Xiaoyu Chen

1 Exercise 7.6

Provide a formal statement of Fact 1.5 using the notion of witness-checking predicates.

1.1 Solution

First we provide a formal version for Fact 1.5.

Fact 7.5 (Formal Statement). Suppose we have a witness-checking predicate $\chi: \Sigma^* \times \Sigma^* \to \{0,1\}$, from which we could define two problem φ and f such that $\forall x \in \Sigma^*$,

$$\begin{split} \varphi(x) &\Leftrightarrow \exists \omega \in \Sigma^*. \chi(x,\omega) \wedge |\omega| \leq P(|x|) \\ f(x) &= |\omega \in \Sigma^*: \chi(x,\omega) \wedge |w| \leq P(|x|)| \end{split}$$

Then f does not admit a FPRAS unless PR = NP.

Though the problem itself does not require a proof of this fact, I give one here for a better understanding.

Proof. If f has a FPRAS, then we have a function S such that,

$$\Pr[e^{-\varepsilon}f(x) \le S(x) \le e^{\varepsilon}f(x)] \ge \frac{3}{4}$$

which could be calculated in polynomial time. So we could define a witness-checking predicate χ' for φ as

$$X'(x,\omega) := [S(x) > 0]$$

Then we have:

- 1. If $\varphi(x)$, then f(x) > 0, then $e^{-\varepsilon} > 0$ and $e^{\varepsilon} > 0$. Thus, $\Pr[S(x) > 0] \ge \Pr[e^{-\varepsilon}f(x) \le S(x) \le e^{\varepsilon}] \ge \frac{3}{4}$.
- 2. If $\neg \varphi(x)$, then f(x)=0, then $e^{-\varepsilon}=e^{\varepsilon}=0$. Thus, $\Pr[S(x)=0]\geq \frac{3}{4}$ and hence $\Pr[S(x)>0]\leq \frac{1}{4}$.

So, φ is in BPP.

Then, to go further, we want φ to be some practical NPC problem, i.e. SAT problem. (I get this idea from a online material). Suppose we have a SAT problem φ which has k variables x_1, x_2, \dots, x_k . To make things more easy, we could construct another witness-checking predicate χ'' from χ' by calling χ' polynomial times, such that

- 1. If $\varphi(\phi)$, then $\Pr[\chi''(\phi,\omega)] \ge 1 2^{-m}$
- 2. If $\neg \varphi(\phi)$, then $\Pr[\chi''(\phi, \omega)] \leq 2^{-m}$.

We try to construct a witness-checking predicate χ^* for SAT problem.

witness-checking predicate $X^*(\phi,\omega)$ begin if $\neg \chi''(\phi, \omega)$ then return false \mathbf{end} for i in [1, n] do $x_i \leftarrow 0$ Get a new problem ϕ_1 by fix variables from x_1 to x_i if $\neg \chi''(\phi_1, \omega_1)$ then /* Here ω_1 is some random solution for ϕ_1 */ $x_i \leftarrow 1 \text{ // also modify } x_i \text{ in } \phi_1$ end end $\omega_1 \leftarrow \{x_1, x_2, \cdots, x_n\}$ return $\chi(\phi,\omega_1)$ end

When $\neg \varphi(\phi)$, if $\neg \chi''(\phi, \omega)$, $\chi^*(\phi, \omega)$ returns false. If $\chi''(\phi, \omega)$, then χ^* will construct a solution ω_1 by using χ'' polynomial times. And if $\neg \chi(\phi, \omega_1)$, then χ^* will return false. So, these ensures that $\neg \varphi(\phi) \Rightarrow \neg \chi^*(\phi, \omega)$ for all ω .

When $\varphi(\phi)$, consider the probability for $\chi^*(\phi,\omega)$. We only need to analysis the worst case for this, i.e. when there is only one ω such that $\chi(\phi,\omega)$. To achieve $\chi^*(\phi,\omega)$, we need to avoid wrong choice made by χ'' . Note that we have k+1 choices made by χ'' and each of them have probability at less than 2^{-m} to be wrong. So, in this case,

$$\Pr[\chi^*(\phi,\omega)] \ge (1-2^{-m})^{k+1} \ge \frac{1}{2}$$

for some appropriate m.

So, its clear that χ^* reaches the requirement of RP and we have φ is in RP, which implies that $NP \subseteq RP$. Together with $RP \subseteq NP$, we have RP = NP.

2 Exercise 7.10

Complete the proof of Theorem 7.9. To keep technical complexity to a minimum, assume the graph G is triangle-free, i.e., contains no cycles of length 3.

2.1 Solution

Suppose there are two states $x, y \in \Omega$, the distance d(x, y) between them is defined as the hamming distance between them. Then, to use the path-coupling method, we need to design the coupling. The coupling is defined between the pairs (X_0, Y_0) , where $d(X_0, Y_0) = 1$. Since $d(X_0, Y_0) = 1$, we could assume that there exists a vertex v where $X_0(v) = 0$ and $Y_0(v) = 1$ without loss of generality.

```
*/
/* Update the status of two vertices
Update(X, u, w, a, b)begin
   X_1 \leftarrow X, where X_1(u) = a and X_1(v) = b
   if X_1 is a independent set then
   \mid return X_1
   \mathbf{end}
   return X
end
/* define the coupling for d(X_0, Y_0) = 1
                                                                        */
Coupling (X_0, Y_0) begin
   Choose an edge \{u, w\} \in E, u.a.r.
   /* general cases for selecting (a, b)
   Select (a, b) from \{(0, 0), (0, 1), (1, 0)\}, u.a.r.
   /* If v \in \{u, w\}, then we only select (a, b) from the
       feasible combinations
   if u = v \lor w = v then
       /* assume u = v, without loss of generality
       if X_0(\mathbb{N}(w)\setminus\{u\})=1 then
          Select (a, b) from \{(0, 0), (1, 0)\}, u.a.r.
      end
   end
   Update(X_1, u, w, a, b), Update(Y_1, u, w, a, b)
   return (X_1, Y_1)
end
```

After that, we are going to analysis the value of $\mathbb{E}[d(X_1, Y_1)]$. Denote the neighbor of v by $\mathbb{N}(v)$, and $\mathbb{N}[v] := \{v\} \cup \mathbb{N}(v)$. Then, any edge $\{u, w\}$ of G must belongs to one of the following three classes.

```
1. u \notin \mathbb{N}[v] \land w \notin \mathbb{N}[v], i.e., v is not the neighbor of edge \{u, w\}.
```

- 2. $u \in \mathbb{N}(v) \land w \notin \mathbb{N}[v]$, i.e., v is a neighbor of edge $\{u, w\}$.
- 3. $u = v \land w \in \mathbb{N}(v)$, i.e., v is an end point of edge $\{u, w\}$.

Since G is triangle-free, we do not need to consider the case $u \in \mathbb{N}(v) \land w \in \mathbb{N}(v)$.

For the first case: Note that X_1 and Y_1 will satisfies the requirement for a independent set simutaneously, because the status of all the neighbors of edge $\{u, w\}$ are the same in X_0 and Y_0 . So in this case

$$d(X_1, Y_1) = d(X_0, Y_0)$$

For the second case: Recall that $X_0(v) = 0$ and $Y_0(v) = 1$. Intuitively, we have the following circumstance

$$v \longrightarrow u \longrightarrow w \longrightarrow \mathbb{N}(w) \setminus \{u\}$$

Since $X_0(\mathbb{N}(w)\setminus\{u\})=Y_0(\mathbb{N}(w)\setminus\{u\})$, we only need to consider whether there is any vertex in $\mathbb{N}(w)\setminus\{u\}$ in the independent set. Let $\delta=d(X_1,Y_1)-d(X_0,Y_0)$.

$X_0(\mathbb{N}(w)\setminus\{u\})$	possible cases to make $\delta = -1$	possible cases to make $\delta = 1$
0	None	(1,0)
1	None	(1,0)

Lets denote the number of edges belong to the second case by n_2 , then

$$\mathbb{E}(\delta) = \frac{n_2}{m} \times \frac{1}{3}$$
$$= \frac{n_2}{3m}$$

For the third case: Since in this case, we only select (a, b) from feasible combinations, the probability of $d(X_1, Y_1) = 0$ is 1. So if we denote the number of edges belong to the second case by n_3 , then

$$\mathbb{E}(\delta) = \frac{-n_3}{m}$$

Put all the cases together, we have

$$\mathbb{E}(\delta) = \frac{1}{m} (\frac{n_2}{3} - n_3)$$

$$\leq \frac{1}{m} (\frac{3n_3}{3} - n_3), \quad \text{Since } n_2 \leq 3n_3$$

$$= 0$$

Note

Note that although we complete the proof on the book, it does not mean that we have proved the MC is rapidly mixing. The complete proof bases on a carefully designed distance measure function.

3 Exercise 7.12

Using the same reduction, but improved estimates, show that Proposition 7.11 holds for some Δ less than 1100. (I think $\Delta = 964$ is achievable)

3.1 Solution

First, we could note that we have a loose upper bound for |J'|. Actually, we could fix this upper bound, and we have

$$(2^r - 1)^k \le |J'| \le \binom{n}{k} (2^r - 1)^k$$

Recall that we have Stirling Formula for n!:

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le 2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

So

$$\begin{split} \binom{n}{k} &= \frac{n!}{k!(n-k)!} \\ &\leq \frac{2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi k} \left(\frac{k}{e}\right)^k \sqrt{2\pi (n-k)} \left(\frac{n-k}{e}\right)^{n-k}} \\ &\leq \frac{2\sqrt{n}n^n}{\sqrt{k}\sqrt{2\pi (n-k)}k^k (n-k)^{n-k}} \\ &\leq \frac{2\sqrt{4k}(4k)^{4k}}{\sqrt{k}\sqrt{2\pi (4k-k)}k^k (4k-k)^{4k-k}}, \quad \text{since } k \geq \frac{n}{4} \\ &= \frac{4\times 4^{4k}k^{4k}}{\sqrt{6\pi k} \times k^k 3^{3k}k^{3k}} \\ &= \frac{4\times 4^{4k}}{\sqrt{6\pi k} \times 3^{3k}} \\ &\leq \frac{4^{4k}}{3^{3k}}, \quad \text{since } 4 \leq \sqrt{6\pi k} \end{split}$$

Then we have a more tight bound for |J'|

$$(2^r - 1)^k \le |J'| \le \binom{n}{k} (2^r - 1)^k$$

or, taking the natural logarithm,

$$k \ln(2^r - 1) \le \ln|J'| \le 4k \ln 4 - 3k \ln 3 + k \ln(2^r - 1)$$

Consider the following estimate for k

$$\hat{k} = \frac{\ln|J'|}{4\ln 4 - 3\ln 3 + \ln(2^r - 1)}$$

 $\quad \text{then} \quad$

$$k(\frac{\ln(2^r - 1)}{4\ln 4 - 3\ln 3 + \ln(2^r - 1)}) \le \hat{k} \le k$$
$$k(1 - \frac{4\ln 4 - 3\ln 3}{4\ln 4 - 3\ln 3 + \ln(2^r - 1)}) \le \hat{k} \le k$$

Note that when r = 241,

$$\frac{4\ln 4 - 3\ln 3}{4\ln 4 - 3\ln 3 + \ln(2^r - 1)} \leq \frac{1}{74}$$