Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplo

AFD/AFN
Propriedade

Fechamento

Situação Atua

Roteiro da Aula 3

- 1 Definição: Autômatos Finitos Não-determinísticos Sintaxe Semântica
- 2 Exemplos
- 3 Equivalência AFD/AFN
- 4 Propriedades de Fechamento União Interseção
- Situação Atual

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Sintaxe

Exemplo

Equivalênci AFD/AFN

Propriedades de

Situação Atua

Não-determinismo

Determinístico

Exatamente uma trajetória sobre uma $w \in \Sigma^*$.

Não-determinístico

Uma ou várias trajetórias sobre uma $w \in \Sigma^*$.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplo

Equivalênci AFD/AFN

Propriedade de Fechamento

Situação Atua

Não-determinismo

Observação

Autômatos não-determinísticos são uma generalização de autômatos determinísticos

Todo autômato determinístico é também, por definição, não-determinístico. O contrário não vale!

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Sintaxe

Exemplo

Equivalênci AFD/AFN

Propriedades de

Situação Atua

Intuição sobre a semântica

• Autômato A aceita palavra w se existe uma trajetória de A sobre w que termina num estado final.

Exemplo: autômato N_1

- Aceita (p.ex.): ε , a, baba, baa, aaa;
- Não aceita (p. ex.): b, bb, babba, baab.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Sintaxe Semântica

Equivalênci

Propriedades de Eechamento

Situação Atual

Sintaxe

Para qualquer alfabeto Σ , $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Victor Ströele

Roteiro

Autômatos
Finitos Nãodeterminístico

Sintaxe

Equivalênc

AFD/AFN

Propriedades de Fechamento

Situação Atua

Sintaxe

Para qualquer alfabeto Σ , $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Um Autômato Finito Não-determinístico (AFN) é uma tupla $A=(Q,\Sigma,\delta,q_0,F)\text{, onde:}$

Q Σ $F \subseteq Q$ $q_0 \in Q$ $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$

conjunto finito de estados alfabeto finito de símbolos conjunto de estados finais estado inicial funcão de transicão

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Equivalênci AFD/AFN

Propriedades de

Fechamento

Exemplo

AFN N2

$$N_2 = (Q = \{\ell_1, \ell_2, \ell_3, \ell_4\}, \Sigma = \{0, 1\},$$

estado	0	1	ε
ℓ_1	$\{\ell_1\}$	$\{\ell_1,\ell_2\}$	Ø
ℓ_2	$\{\ell_3\}$	$\{\ell_3\}$	\emptyset
ℓ_3	$\{\ell_4\}$	$\{\ell_4\}$	\emptyset
ℓ_4	Ø	Ø	Ø

$$q_0 = \ell_1,$$

 $F = \{\ell_4\}$)

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Sintaxe Semântica

Evemples

Equivalênci AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Sintaxe Semântic

Evemplos

Equivalênci AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

Qual linguagem é aceita por N_2

Victor Ströele

Roteiro

Definição: Autômatos Finitos Não-

Sintaxe

- I

Equivalênc

Propriedade de

Situação Atual

Exemplo

AFN N_2

 $\mathcal{L}(N_2) = \{ w \mid \mathsf{antepen\'ultimo} \ \mathsf{s\'imbolo} \ \mathsf{de} \ w \ \mathsf{\'e} \ \mathsf{um} \ \mathsf{1} \ \}$

Victor Ströele

Semântica

Semântica

Sejam $A = (Q, \Sigma, \delta, q_0, F)$ um AFN e $w = w_1 w_2 w_3 \dots w_n$ uma palavra sobre Σ

Dizemos que A aceita w se:

- podemos escrever w como $w = y_1 y_2 \dots y_m, y_i \in \Sigma_{\varepsilon}$; e
- existe uma sequência de estados de Q, $r = r_0, r_1, \dots, r_m$, tal que:
- **1** $r_0 = q_0$; e
- **2** $r_{i+1} \in \delta(r_i, y_{i+1})$ para todo $0 \le i \le m-1$; e
- $r_m \in F$.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplos

Equivalência AFD/AFN

de

i cenamente

Exemplo

Que linguagem aceita N_3 ?

 N_3 :

Construir um AFD equivalente...

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplos

Equivalência

de

recnamento

Não-determinismo às vezes facilita

Para N_2 :

O menor AFD equivalente é:

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplo

Equivalência AFD/AFN

de

Fechamento

Situação Atua

Equivalência entre AFD e AFN

Teorema

Para todo AFN A, existe AFD B, tal que $\mathcal{L}(A) = \mathcal{L}(B)$.

Linguagem Regular

Uma linguagem $\mathcal{L} \subseteq \Sigma^*$ é Regular se existe um AFN A tal que $\mathcal{L}(A) = \mathcal{L}$.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplos

Equivalência AFD/AFN

Propriedade de

Fechamento

Intuição sobre o Teorema

AFN $N_1 = (Q, \Sigma, \delta, q_0, F)$:

- Construir AFD $B = (Q', \Sigma, \delta', q'_0, F')$ tal que $Q' = \mathcal{P}(Q)$;
- B é chamado de construção do subconjunto.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplo

Equivalência AFD/AFN

Propriedades de

Fechament

Intuição sobre o Teorema

AFD B equivalente a N_1 :

$$B$$
 é tal que $\mathcal{L}(B) = \mathcal{L}(N_1)$

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplo

AFD/AFN

Propriedad

Fechament

União

Situação Atua

Propriedades de Fechamento: União

Defina um AFN B que represente a linguagem $\mathcal{L}_1 = \{w | w \text{ possui três 0's ou três 1's consecutivos}\}$

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalence AFD/AFN

Propriedade

Propriedade de

Fechament

União Interseçã

Situação Atual

União

Qual é a linguagem aceita?

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminístico

Exemplos

AFD/AFN

Propriedade de

Fechament União

Uniao Interseção

Situação Atua

União

Qual é a linguagem aceita?

• $\mathcal{L}_1 = \{0^k \mid k \text{ é par}\};$

Victor Ströele

Roteiro

Definição: Autômatos Finitos Não-

Exemplos

Equivalência AFD/AFN

Propriedad de

Fechament União

Uniao Interseção

Situação Atual

União

Qual é a linguagem aceita?

• $\mathcal{L}_1 = \{0^k \mid k \text{ é par}\};$

Victor Ströele

Roteiro

Definição: Autômatos Finitos Não-

Exemplos

Equivalência AFD/AFN

Propriedad de

União

Interseção

União

Qual é a linguagem aceita?

- $\mathcal{L}_1 = \{0^k \mid k \text{ é par}\};$
- $\mathcal{L}_2 = \{0^k \mid k \text{ \'e m\'ultiplo de 3}\};$

Victor Ströele

Roteiro

Definição: Autômatos Finitos Não-

Exemplos

Equivalênci AFD/AFN

Propriedade de

União Interseção

Situação Atual

União

Qual é a linguagem aceita?

- $\mathcal{L}_1 = \{0^k \mid k \text{ é par}\};$
- $\mathcal{L}_2 = \{0^k \mid k \text{ \'e m\'ultiplo de 3}\};$
- $\mathcal{L}_1 \cup \mathcal{L}_2$.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalênci AFD/AFN

Propriedades de

Fechament União

Interseção

Situação Atual

União

Em geral

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedade

Fechament

União Interseção

Situação Atual

União

Em geral

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalênc AFD/AFN

Propriedad

de

recnament

Interseção

Situação Atua

Interseção

Se \mathcal{L}_1 e \mathcal{L}_2 são regulares, $\mathcal{L}_1 \cap \mathcal{L}_2$ é regular?

Victor Ströele

Roteiro

Definição: Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalênc AFD/AFN

Propriedad

de

Fechament

União

Interseção

Situação Atua

Interseção

Se \mathcal{L}_1 e \mathcal{L}_2 são regulares, $\mathcal{L}_1 \cap \mathcal{L}_2$ é regular?

Sim, pois
$$\mathcal{L}_1\cap\mathcal{L}_2=\overline{\overline{\mathcal{L}_1}\cup\overline{\mathcal{L}_2}}$$

Victor Ströele

Roteir

Definição: Autômatos Finitos Nãodeterminístico

Exemplos

AFD/AFN

de Fechamento

Interseção

Situação Atua

Recapitulando

Linguagens Regulares

Linguagens aceitas por AFD ou AFN.

Classe de Linguagens Regulares

Fechada por Complementação, União e Interseção.

Victor Ströele

Roteiro

Definição: Autômatos Finitos Não-

Exemplos

Equivalênc

Propriedade

Fechament

Situação Atual

Situação Atual

