BFGS Algorithm for finding minimizer

Line search procedure

The method is adapted directly from *Numerical Optimization* by Jorge Nocedal and Stephen J. Wright, called the *strong backtracking*. The procedure will be given with later explanation.

- 1. Set a = 1. Set $a_{old} = 0$ then goto 2.
- 2. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f(x + a_{old})$, then set $a_{low} = a_{old}$ and $a_{high} = a$ and go to step 6. Else, go to step 3.
- 3. If $|s^T \nabla f(x+as)| < -\eta s^T \nabla f(x)$, then $\lambda = a$ and Exit. Else, go to step 4.
- 4. If $s^T \nabla f(x + as) \ge 0$ then set $a_{low} = a_{old}$ and $a_{high} = a$ and go to step 6. Else, go to step 5.
- 5. Let $a_{old} = a$ and a = 2a. Back to step 2.
- 6. Set $f_{low} = f(x + a_{low}s)$. goto step 7. Note that this value will be fixed regardless of changing a_{low} .
- 7. Use binary search or golden section search to find suitable a between a_{low} and a_{high} .
 - (a) For binary search, let $a = (a_{low} + a_{high})/2$
 - (b) For golden section search, let $c = a_{low} + (a_{high} a_{low})/\phi$ and $d = a_{high} (a_{high} a_{low})/\phi$, where ϕ is a golden ratio. If f(x + cs) < f(x + ds), let a = c. Otherwise, let a = d.

Then go ostep 8.

- 8. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f_{low}$, then let $a_{high} = a$. Then go back to step 7. Else, goto step 9.
- 9. If $|s^T \nabla f(x + as)| \leq -\eta s^T \nabla f(x)$, then $\lambda = a$ and Exit. Else, go to step 10.
- 10. If $(s^T \nabla f(x+as))(a_{high}-a_{low}) \geq 0$, then let $a_{high}=a_{low}$ and goto step 11.
- 11. Let $a_{low} = a$ and back to step 7.

The step-by-step explanation is as follow:

- 1. a is representing λ . Let it be 1 first.
- 2. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$, then it is violating first Wolfe's condition. It is thus ensuring that the bracket (a_{old}, a) will contain range that is not violating that. (The slope at $s^T \nabla f(x + a_{old}s)$ is always negative according to step 4, so that (a_{old}, a) must contain local minimum, that is, containing second Wolfe's point.) Also, $f(x + as) > f(x + a_{old})$ is indicating that the function is going to increase, thus (a_{old}, a) must also contain local minimum (that is second Wolfe's point, too.) Note that a_{high} and a_{low} can swap regardless of their values.
- 3. The first Wolfe's condition is already checked in step 2. Thus, if the point also satisfies second Wolfe's condition, then let it be λ and exit.
- 4. If $s^T \nabla f(x + as) \geq 0$ then it is indicating that the function is going to increase, thus (a_{old}, a) must contain local minimum (that is second Wolfe's point.) (It is cleared because $s^T \nabla f(x + a_{old}s)$ is always negative.) Also, note that a_{high} and a_{low} can swap regardless of their values.
- 5. If the range (a_{old}, a) is not containing second Wolfe's point, slide it to the immediate right and expand it two times.
- 6. This evaluated value will be used in the step 8.
- 7. Finding a between a_{high} and a_{low} . a will converge to range which satisfies second Wolfe's condition.

- 8. If $f(x + as) > f(x) + \mu as^T \nabla f(x)$ or $f(x + as) > f_{low}$, then f(x + as) value is to big. Thus, let a_{high} be it to lower the upper bound.
- 9. The first Wolfe's condition is already checked in step 8. Thus, if the point also satisfies second Wolfe's condition, then let it be λ and exit.
- 10. $(s^T \nabla f(x+as))(a_{high} a_{low}) \ge 0$, together with step 11, ensures us that the range between a_{high} and a_{low} always contain local minimum(s). To see that, let $a_{high} < a_{low}$, so $a_{high} a_{low} < 0$. Moreover, the slope at a_{high} must be negative and the slope at a_{low} must be positive (from step 2, step 4, and recursive characteristics that happens here.) $a_{high} < a < a_{low}$ must be true, and in step 11 a_{low} becomes a, so the slope at a must be positive. If the slope at a is negative, then, a_{high} must be swap with a_{low} to make the slope of a_{high} positive. Then between a_{high} and a will be ensured to have local minimum. The same is applied when $a_{high} > a_{low}$. Just swap the pair accordingly and we will get the same proof.
- 11. Let $a_{low} = a$ to shorten the length.

From the book *Numerical Optimization*, step 2 to step 5 are called *Bracket phase*, and step 7 to step 11 are called *Zoom phase*.

BFGS algorithm

First is an implementation of StrongBacktrack.m. The explanation is already given in greater details in the last section. I choose to use the binary search because it usually give less steps than the golden section search.

```
1 function [lambda,nF,nG] = StrongBacktrack(FcnName, x0, s, a, mu, eta)
    ----- Function inputs -----
_{5} % FcnName: function to return the value, the gradient, and the Hessian
6 % of the particular function.
     Mode 1: return only f.
     Mode 2: return f and gradient.
10 \% x0: starting point of searching.
11
12 % s: search direction.
13 %
14 % a: size of initial lambda.
15 %
_{16} % mu, eta: the parameters used in the stopping criterion for line search.
17
18 %
    ----- Function outputs -----
20 % lambda: returned the lambda value that satisfies strong Wolfe's.
21
22 % nF, nG: numbers of f and gradient calculations.
_{24} nF = 0; % number of f calculations.
nG = 0; % number of gradient calculations.
[f0, g0] = FcnName(x0, 2); nF = nF + 1; nG = nG + 1;
28 % first evaluation of f and gradient.
29 fprev = f0; aprev = 0;
30 % fprev: previous value of f at (x0 + a*s).
_{31} % aprev: previous value of a (that is the value going to represent lambda.)
32 alo = NaN; ahi = NaN; % the bracket that contain strong Wolfe's.
33 % alo represent lower value of f, ahi represent higher value of f.
_{34} % However, the value of alo and ahi can be swap without ruining the algorithm.
36 gr = (sqrt(5) + 1) / 2; % golden ratio.
38 % finding suitable bracket.
```

```
39 while 1
       [f1, g1] = FcnName(x0 + a*s, 2); nF = nF + 1; nG = nG + 1;
40
       % evaluate function at (x0 + a*s).
41
       if f1 > f0 + mu*a*dot(s,g0) || f1 >= fprev
           % If the function value of the right point is more than Armijo's rule or
43
           \% more than that of previous value,
44
           % it is sure that the lowest point is there in the bracket, and
45
           % there is strong Wolfe's point in that bracket. (Since it is ensured that
46
           % at aprev, the slope is negative.)
47
           alo = aprev; ahi = a;
48
           break
49
       elseif abs(dot(g1,s)) <= -eta*dot(g0,s)</pre>
50
           % Checking the second strong Wolfe's condition.
51
           lambda = a;
52
53
           return
       elseif dot(g1,s) >= 0
           \mbox{\ensuremath{\%}} If the slope on the right point is positive, it is sure that the
55
           % lowest point is there in the bracket, and
56
57
           % there is strong Wolfe's point in that bracket.
           % (Since it is ensured that at aprev, the slope is negative.)
58
59
           alo = aprev; ahi = a;
60
           break
61
       \% slide the bracket to the right and expand it by multiple of 2.
62
63
       fprev = f1; aprev = a; a = 2*a;
65
66 [flo,~] = FcnName(x0 + alo*s, 1); nF = nF + 1; % f value at (x0 + alo*s).
67 while 1
68
       \% if want to use golden search, use these lines.
69
       % ----Golden search to find a between alo and ahi.
70
       % ----f1 is f at (x0 + a*s), g1 is gradient at (x0 + a*s).
71
            c = ahi - (ahi - alo) / gr;
72
             d = alo + (ahi - alo) / gr;
73
74
       %
       %
             [fc,gc] = FcnName(x0 + c*s, 2);
75
76
       %
             [fd,gd] = FcnName(x0 + d*s, 2);
       %
77
78
             if fc < fd % f(c) > f(d) to find the maximum.
                 f1 = fc; g1 = gc; a = c;
79
       %
       %
80
       %
                 f1 = fd; g1 = gd; a = d;
81
       %
             end
82
       % ----end of Golden search
83
84
85
       % if want to use binary search, use this line.
       a = (ahi+alo)/2; [f1,g1] = FcnName(x0 + a*s, 2);
86
       nF = nF + 1; nG = nG + 1;
87
       if f1 > f0 + mu*a*dot(s,g0) || f1 > flo
89
           % if violating Armijo's rule or if f1 still higher than flo, then,
90
           \% set new hi to decrease f at ahi.
91
           ahi = a;
92
93
       else
           if abs(dot(g1,s)) <= -eta*dot(g0,s)</pre>
94
               % Checking the second strong Wolfe's condition.
95
96
               lambda = a;
97
           elseif dot(g1,s)*(ahi - alo) >= 0
98
                % This condition ensures that ahi and alo always bracket the
99
                % lowest point. That is, there is strong Wolfe's point between
               % alo and ahi.
               ahi = alo;
           end
           alo = a;
106
```

```
107 end
108
109 end
```

Implementation of function BFGS.m is given here. The epsilon value is used to give a threshold for norm of gradient (the gradient of local minimum must converge to zero.)

```
1 function [xmin,fmin, Xk, Fk, Gk, Lk, nF, nG, IFLAG] = BFGS (FcnName, x0, epsilon, mu, eta, itmax)
3 % ----- Function inputs -----
4 %
{\ensuremath{\mathtt{5}}} % FcnName: function to return the value, the gradient, and the Hessian
6 % of the particular function.
7 %
     Mode 1: return only f.
     Mode 2: return f and gradient.
8 %
9 %
10 % x0: starting point of searching.
11 %
_{12} % epsilon: stoping criterion of the minimum search. (norm(x1-x0) < epsilon.)
13 %
_{14} % mu, eta: the parameters used in the stopping criterion for line search.
15 %
16 % itmax: max allowed number of iterations.
17 %
18 % IFRAG: success (0) or not success (-999).
19
20 % ------ Function outputs -----
21 %
22 % xmin, fmin: returned minimum function argument and value, respectively.
23 %
^{24} % Xk ,Fk, Gk, Lk: arrays to keep x, f, gradient and lambda along the search steps.
25 %
26 % nF, nG: numbers of f and gradient calculations.
27 %
_{28} % IFLAG: indicate the success. 0 if success, -999 otherwise.
30 Xk = []; % list to store x_k.
31 Fk = []; % list to store f_k.
^{32} Gk = []; % list to store g_k.
33 Lk = []; % list to store l_k.
34
mF = 0; % number of f calculations.
mG = 0; % number of gradient calculations.
37
38 IFLAG = -999; % IFLAG: indicate the success.
39
40 B = eye(2); % Let the first matrix B be an identity matrix.
41
42 for i = 1:itmax
43
      % strong backtracking.
44
      [f0, g0] = FcnName(x0, 2); nF = nF + 1; nG = nG + 1;
45
      a = 1; % first value of lambda.
46
47
      s = B \setminus (-g0); % set line search direction.
      [lambda,nFnew,nGnew] = StrongBacktrack(FcnName, x0, s, a, mu, eta);
48
      % finding lambda that satisfied strong Wolfe's.
49
      nF = nF + nFnew; nG = nG + nGnew;
50
51
      % store values.
52
53
      Xk(:,i) = x0; Fk(i) = f0; Gk(:,i) = g0; Lk(i) = lambda;
54
      % update B.
55
      x1 = x0 + lambda*s;
56
57
       [f1,g1] = FcnName(x1, 2); nF = nF + 1; nG = nG + 1;
58
      delta_g = g1 - g0;
      delta_x = lambda*s;
59
      B = B + delta_g*delta_g'/dot(delta_g,delta_x) - B*(delta_x*delta_x')*B/(delta_x'*B*)
      delta_x);
61
```

```
% terminate
62
63
       if norm(g1) < epsilon % at local minimum, gradient converges to 0.
           xmin = x1; fmin = f1; IFLAG = 0;
64
           disp('search successful.');
66
           break
67
68
       % update values
69
       x0 = x1; f0 = f1; g0 = g1;
70
71 end
72
73 if IFLAG == -999
       xmin = 0; fmin = 0; disp('search unsuccessful.');
74
75 end
76
77 end
```

Implementation of Rosenbrock.m is here.

```
function [f,gradient] = Rosenbrock(x,options)
      \% Declare the functions.
      f_fun = @(x) 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
      gradient_fun = @(x)[400*x(1)*(x(1)^2 - x(2)) - 2*(1-x(1)); 200*(x(2)-x(1)^2)];
6
      % Evaluate numerical values.
      switch options
          case 1 % calculate only f.
9
10
              f = f_fun(x);
              gradient = 0;
11
          case 2 % calculate f and gradient.
              f = f_fun(x);
13
14
               gradient = gradient_fun(x);
          otherwise % invalid option.
15
16
              disp('invalid option.')
               f = 0; gradient = 0;
17
18
      end
19
20 end
```

This is a script used to test the code.

```
1 [xmin, fmin, Xk, Fk, Gk, Lk, nF, nG, IFLAG] = BFGS(@Rosenbrock, [10;12], 0.000002, 1e-4, 0.95, 10000);
3 % print out the result.
4 fprintf('% 5s % 13s % 13s % 15s % 15s % 15s \n', 'Iter', 'x_1', 'x_2', 'f', 'gradient_1', '
      gradient_2');
5 for i = 0:length(Xk)-1
      fprintf('% 5.2d % 13.7f % 13.7f % 15.5f % 15.5f % 15.5f \n', i, Xk(1,i+1), Xk(2,i+1), Fk
      (i+1), Gk(1,i+1), Gk(2,i+1);
  end
9 fprintf("Number of f calculations:
                                                %i \n", nF)
10 fprintf("Number of gradient calculations:
                                                %i \n", nG)
11
12 %% Plot trajectory.
13 tp = theaterPlot("XLim",[-20 20],"YLim",[-20 20]);
14 trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{Xk'})
```

The reported tabular is given here when setting x0 = [10;12], epsilon = 2e-6, mu = 1e-4, eta = 0.1.

```
search successful.
                                                                            gradient_2
  Iter
                                                           gradient_1
                  x_1
                                 x_2
                                                   f
     00
           10.0000000
                         12.0000000
                                        774481.00000
                                                         352018.00000
                                                                          -17600.00000
           -0.7427368
                                         14368.14165
                                                           3557.32893
                                                                           2397.09028
    01
                         12.5371094
    02
           -1.3243799
                          2.4088612
                                            48.28939
                                                            342.27468
                                                                            130.97580
    03
           -1.3592801
                          1.8692915
                                             5.61307
                                                             7.05237
                                                                              4.32984
    04
           -1.3603042
                          1.8516118
                                             5.57118
                                                             -4.07623
                                                                              0.23685
    05
          -1.1513687
                          1.2774932
                                             4.86029
                                                            -26.48116
                                                                              -9.63133
```

9	06	-0.9980416	0.9288701	4.44398	-30.83025	-13.44341	
10	07	-0.7386240	0.6116981	3.46017	16.06163	13.22654	
11	08	-0.5535744	0.2865384	2.45322	-7.51499	-3.98125	
12	09	-0.5106769	0.2249715	2.41045	-10.33820	-7.16387	
13	10	-0.3238515	0.0558135	1.99333	-9.00379	-9.81327	
14	11	-0.2558141	0.0796349	1.59722	-1.05922	2.83880	
15	12	-0.1089611	-0.0123586	1.28851	-3.27402	-4.84622	
16	13	-0.0343320	-0.0372802	1.21775	-2.59681	-7.69178	
17	14	0.2377167	0.0245037	0.68351	1.51873	-6.40111	
18	15	0.2279841	0.0512564	0.59606	-1.47834	-0.14406	
19	16	0.3709929	0.1168103	0.43902	1.83241	-4.16508	
20	17	0.4885548	0.2088254	0.35074	4.81248	-5.97208	
21	18	0.5326485	0.2882858	0.22051	-1.90869	0.91428	
22	19	0.6365177	0.3911262	0.15180	2.84484	-2.80573	
23	20	0.7350614	0.5217170	0.10478	4.93849	-3.71967	
24	21	0.7609271	0.5815879	0.05782	-1.26277	0.51557	
25	22	0.8381920	0.6951434	0.03169	2.16497	-1.48449	
26	23	0.8999793	0.7999008	0.02013	3.42218	-2.01239	
27	24	0.9190669	0.8464102	0.00685	-0.79648	0.34525	
28	25	0.9634323	0.9253881	0.00213	1.01122	-0.56276	
29	26	0.9967803	0.9931595	0.00003	0.15760	-0.08228	
30	27	0.9967820	0.9935801	0.00001	-0.00868	0.00113	
31	28	1.0000038	0.9999972	0.0000	0.00416	-0.00208	
32	29	0.9999966	0.9999933	0.00000	-0.00001	0.0000	
33	Number	r of f calculations:		245			
34	Number	of gradient ca	lculations:	222			

The reported tabular is given here when setting x0 = [10;12], epsilon = 2e-6, mu = 1e-4, eta = 0.95.

1	search	successful.					
2	Iter	x_1	x_2	f	gradient_1	gradient_2	
3	00	10.0000000	12.000000	774481.00000	352018.00000	-17600.00000	
4	01	-0.7427368	12.5371094	14368.14165	3557.32893	2397.09028	
5	02	-1.3243799	2.4088612	48.28939	342.27468	130.97580	
6	03	-1.3642658	1.7922101	6.06601	-42.38830	-13.80221	
7	04	-1.3602443	1.8519908	5.57105	-3.78127	0.34524	
8	05	-1.3601578	1.8513708	5.57052	-3.99046	0.26830	
9	06	-1.3566856	1.8352821	5.55679	-7.59695	-1.06273	
10	07	-1.3490352	1.8075806	5.53313	-11.34365	-2.46309	
11	80	-1.3238584	1.7269712	5.46601	-18.21978	-5.12595	
12	09	-1.2746349	1.5827714	5.34971	-25.92367	-8.38452	
13	10	-1.2066696	1.4015248	5.16671	-30.73168	-10.90536	
14	11	-1.1081768	1.1691900	4.79093	-30.30983	-11.77315	
15	12	-0.9882935	0.9393943	4.09266	-18.73367	-7.46594	
16	13	-0.8527599	0.6982302	3.51664	-13.58704	-5.79385	
17	14	-0.6875841	0.4555011	2.87777	-8.12521	-3.45415	
18	15	-0.5618981	0.2697318	2.65110	-13.46220	-9.19954	
19	16	-0.3247234	0.0508937	2.05248	-9.73511	-10.91030	
20	17	-0.3107299	0.1043721	1.72413	-1.64962	1.56380	
21	18	-0.1772295	0.0129858	1.41982	-3.66060	-3.68489	
22	19	-0.0653010	-0.0443728	1.37142	-3.40102	-9.72741	
23	20	-0.0754223	-0.0154689	1.20130	-2.78914	-4.23148	
24	21	0.0036170	-0.0071511	0.99791	-1.98240	-1.43283	
25	22	0.1187272	-0.0102101	0.83572	-0.60822	-4.86125	
26	23	0.2209112	0.0146637	0.72352	1.45842	-6.82762	
27	24	0.2896986	0.0763799	0.51022	-0.54625	-1.50907	
28	25	0.3704396	0.1191009	0.42920	1.42651	-3.62492	
29	26	0.4859078	0.2080054	0.34326	4.43362	-5.62021	
30	27	0.5252493	0.2734521	0.22598	-0.43797	-0.48694	
31	28	0.6496628	0.4010884	0.16672	4.74957	-4.19467	
32	29	0.6504449	0.4171563	0.12570	0.84173	-1.18445	
33	30	0.7402801	0.5398832	0.07407	1.88838	-1.62629	
34	31	0.8187324	0.6579482	0.04817	3.69005	-2.47491	
35	32	0.8567829	0.7355403	0.02073	-0.78796	0.29268	
36	33	0.8978652	0.8033260	0.01124	0.81423	-0.56718	
37	34	0.9527803	0.8998400	0.00855	2.93553	-1.59007	
38	35	0.9428425	0.8867987	0.00373	0.69778	-0.43066	
39	36	0.9605985	0.9222061	0.00158	0.13000	-0.10868	
40	37	0.9894981	0.9779504	0.00024	0.43655	-0.23120	

41	38	0.9953827	0.9904516	0.00003	0.12419	-0.06702	
42	39	0.9995176	0.9989702	0.0000	0.02510	-0.01304	
43	40	0.9998959	0.9997996	0.0000	-0.00332	0.00156	
44	41	1.0000323	1.0000627	0.0000	0.00077	-0.00035	
45	Number of f calculations:		207				
46	Number of gradient calculations:		198				

The result indicates that when eta is higher, the line search is less rigorous, so it required more step to reach the 2-D local minimum. However, when eta is higher, number of function value and gradient calculations is lower since the less rigorous line search, too.