BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

PCT/JP2094/014954 10.12.2004
JP04/14954
REC'D 13 JAN 2005
WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 7月12日

出 願 番 号 Application Number:

特願2004-205234

[ST. 10/C]:

[JP2004-205234]

出 願 人
Applicant(s):

シャープ株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月24日

1) 11)

ページ:

【書類名】 特許願 【整理番号】 04J03367 【提出日】 平成16年 7月12日 【あて先】 特許庁長官 殿 【国際特許分類】 G11B 27/28 H04N 5/445 【発明者】 【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 【氏名】 木山 次郎 【発明者】 【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 【氏名】 木付 英士 【発明者】 【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 【氏名】 大泉 勝志 【特許出願人】 【識別番号】 000005049 【氏名又は名称】 シャープ株式会社 【代理人】 【識別番号】 100080034 【弁理士】 【氏名又は名称】 原 謙三 【電話番号】 06-6351-4384 【選任した代理人】 【識別番号】 100113701 【弁理士】 【氏名又は名称】 木島 降一 【選任した代理人】 【識別番号】 100116241 【弁理士】 【氏名又は名称】 金子 一郎 【先の出願に基づく優先権主張】 【出願番号】 特願2003-352932 【出願日】 平成15年10月10日 【手数料の表示】 【予納台帳番号】 003229 【納付金額】 16.000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【包括委任状番号】

0316194

【書類名】特許請求の範囲

【請求項1】

コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得手 段と、

クロック信号を生成するクロック生成手段と、

上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに変換するデコード手段と、

上記クロック信号に従って上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信する同期制御手段と、

上記同期実行プログラムを実行することにより出力データを生成するとともに、上記同期制御手段より受信した同期制御信号に従って、当該出力データを出力する同期処理手段とを備えることを特徴とする再生装置。

【請求項2】

コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得手 段と、

クロック信号を生成するクロック生成手段と、

上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに変換 するデコード手段と、

上記クロック信号に従って上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信する同期制御手段と、

上記同期実行プログラムを上記同期制御手段より受信した同期制御信号に従って実行することにより出力データを生成するとともに、当該出力データを出力する同期処理手段と を備えることを特徴とする再生装置。

【請求項3】

上記同期処理手段は、上記同期制御手段より受信した同期制御信号に従って、上記同期 実行プログラムを実行することにより出力データを生成するプログラム実行手段を備える ことを特徴とする請求項1または2に記載の再生装置。

【請求項4】

上記同期処理手段は、上記プログラム実行手段によって生成された出力データを、上記同期制御手段より受信した同期制御信号に従って出力する出力制御手段を備えることを特徴とする請求項3に記載の再生装置。

【請求項5】

上記同期タイミング情報は、上記タイミング指定情報とともにアクション指定情報を含み、

上記同期制御手段は、タイミング指定情報で指定されたタイミングで上記プログラム実 行手段へ同期制御信号を送信する際、当該タイミング指定情報に対応するアクション指定 情報を同期制御信号に含めるものであり、

上記プログラム実行手段は、上記同期制御手段より受信した同期制御信号に含まれるアクション指定情報で指定された同期実行プログラムを実行するものであることを特徴とする請求項3または4に記載の再生装置。

【請求項6】

上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、再生を開始する時刻よりも前の時刻を示すタイミング指定情報を含む同期タイミング情報に従って、タイミング指定情報が前のものから順に同期制御信号を送信するものであることを特徴とする請求項1または2に記載の再生装置。

【請求項7】

上記同期タイミング情報は、上記タイミング指定情報とともに、他の同期タイミング情報との依存関係を示す依存情報を含み、

上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、他の同期タイミング情報に依存しないことを示す依存情報を含む同期タイミング情報のうち、再生を

開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同期タイミング情報 と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を含む同期タイミン グ情報とに従って、タイミング指定情報が前のものから順に同期制御信号を送信するもの であることを特徴とする請求項1または2に記載の再生装置。

【請求項8】

上記データ取得手段は、複数の同期実行プログラムを実行した結果と同一の結果が得ら れる統合同期実行プログラムを取得するものであり、

上記同期タイミング情報は、上記タイミング指定情報とともに、実行すべき同期実行プ ログラムを示すアクション指定情報と、該アクション指定情報で示された同期実行プログ ラムが統合同期実行プログラムであるか否かを示す統合同期実行プログラム識別情報を含

上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、統合同期実 行プログラムであることを示す統合同期実行プログラム識別情報を含む同期タイミング情 報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同 期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を 含む同期タイミング情報とに従って、タイミング指定情報が前のものから順に同期制御信 号を送信するものであることを特徴とする請求項1または2に記載の再生装置。

【請求項9】

上記データ取得手段は、上記コンテンツデータの途中から再生を開始した場合にのみ実 行される途中再生同期実行プログラムを取得するものであり、

上記同期タイミング情報は、上記タイミング指定情報とともに、実行すべき同期実行プ ログラムを示すアクション指定情報と、該アクション指定情報で示された同期実行プログ ラムが途中再生同期実行プログラムであるか否かを示す途中再生同期実行プログラム識別 情報を含み、

上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、途中再生同 期実行プログラムであることを示す途中再生同期実行プログラム識別情報を含む同期タイ ミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報 を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指 定情報を含む同期タイミング情報とに従って、タイミング指定情報が前のものから順に同 期制御信号を送信するものであることを特徴とする請求項1または2に記載の再生装置。

【請求項10】

上記同期タイミング情報は、上記同期実行プログラムが実行されるべき時の上記デコー ド手段の状態を示す実行条件情報を含み、

上記同期制御手段は、上記デコード手段の状態を監視するとともに、該状態と上記実行 条件情報とに基づいて上記同期制御信号を送信するものであることを特徴とする請求項1 または2に記載の再生装置。

【請求項11】

上記デコード手段はコンテンツデータとしてのビデオデータを再生してビデオ画像を出 力するものであり、

上記プログラム実行手段は、上記同期実行プログラムとして、上記ビデオ画像に重畳す る画像データを生成するプログラムを実行するものであることを特徴とする請求項3から 10のいずれか1項に記載の再生装置。

【請求項12】

請求項1から11のいずれか1項に記載の再生装置を動作させる制御プログラムであっ て、コンピュータを上記同期制御手段および上記同期処理手段として機能させるための制 御プログラム。

【請求項13】

請求項12に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。

請求項1から11のいずれか1項に記載の再生装置に供給可能であるように、コンテン

ツデータ、同期実行プログラム、同期タイミング情報のうちの少なくとも一つが記録されていることを特徴とするコンテンツ記録媒体。

【請求項15】

請求項1から11のいずれか1項に記載の再生装置に供給可能であるように、コンテンツデータ、同期タイミング情報が記録されており、

上記同期タイミング情報が上記コンテンツデータと分離されていることを特徴とするコンテンツ記録媒体。

【請求項16】

請求項1から11のいずれか1項に記載の再生装置に供給可能であるように、同期実行プログラム、同期タイミング情報が記録されており、

上記同期タイミング情報が上記同期実行プログラムの近傍に記録されていることを特徴とするコンテンツ記録媒体。

【請求項17】

請求項1から11のいずれか1項に記載の再生装置に供給可能であるように、同期実行プログラム、同期タイミング情報が記録されており、

上記同期タイミング情報が上記同期実行プログラムと同一ファイルに格納されていることを特徴とするコンテンツ記録媒体。

【請求項18】

デコード手段および同期処理手段を備えた再生装置の制御方法であって、

コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得ステップと、

上記デコード手段にてクロック信号に従ってコンテンツデータを再生出力のための再生 データに変換するとともに、該クロック信号に従って上記同期タイミング情報に含まれる タイミング指定情報によって指定されたタイミングで上記同期処理手段へ同期制御信号を 送信するデコードステップと、

上記同期処理手段にて、上記同期実行プログラムを実行することにより出力データを生成するとともに、受信した上記同期制御信号に従って、当該出力データを出力するプログラム実行出力ステップとを含むことを特徴とする再生装置の制御方法。

【請求項19】

デコード手段および同期処理手段を備えた再生装置の制御方法であって、

コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得ステップと、

上記デコード手段にてクロック信号に従ってコンテンツデータを再生出力のための再生 データに変換するとともに、該クロック信号に従って上記同期タイミング情報に含まれる タイミング指定情報によって指定されたタイミングで上記同期処理手段へ同期制御信号を 送信するデコードステップと、

上記同期処理手段にて、上記同期実行プログラムを受信した上記同期制御信号に従って 実行することにより出力データを生成するとともに、当該出力データを出力するプログラム実行出力ステップとを含むことを特徴とする再生装置の制御方法。

【請求項20】

再生装置にて再生されるコンテンツデータを格納するコンテンツデータ格納領域と、 再生装置にて上記コンテンツデータの再生と同期して実行される同期実行プログラムを 格納する同期実行プログラム格納領域と、

再生装置が上記コンテンツデータを再生するためのクロック信号に基づいて、上記同期 実行プログラムが実行されるタイミングを指定した同期タイミング情報を格納する同期タ イミング情報格納領域とを含むことを特徴とするデータ構造。

【書類名】明細書

【発明の名称】再生装置、再生装置の制御方法、コンテンツ記録媒体、データ構造、制御プログラム、制御プログラムを記録したコンピュータ読み取り可能な記録媒体

【技術分野】

[0001]

本発明は、コンピュータソフトウエアによってビデオ再生を制御する再生装置、再生装置の制御方法、コンテンツ記録媒体、データ構造、制御プログラム、制御プログラムを記録したコンピュータ読み取り可能な記録媒体に関するものである。

【背景技術】

[0002]

近年、より高いインタラクティブ性を求めて、AV (audio visual)機器に汎用プログラム言語の実行環境が導入されつつある。その代表的なものがMHP (Multimedia Home Platform)で、Java (登録商標)言語が採用されている(例えば、特許文献1)。

[0003]

なお、特許文献1には、多彩な制御機能を与えながら、ユーザに簡単なインタフェースを与えることを目的としたテレビジョン表示装置が記載されている。具体的には、このテレビジョン表示装置は、複数の制御画像を格納し、主要ファイルを持続して記憶するメモリと、イベントを複数の制御画像の選択された1つに対応させるイベントセレクタと、アクションを選択された制御画像に対応させるアクションセレクタと、イベントを検出し、これに応じて所定期間に亘って選択された制御画像をテレビジョン表示部の一部に、見ているテレビジョンサービスに重ね合わせて表示する表示部と、入力装置によって所定期間内に制御コマンドが供給されたか否かに応じてアクションを開始するコマンド部とを備え、コマンド部は、入力装置によって所定期間内に供給された主要コマンドに応じて表示された各主要画像の主要ファイルの内容を現在見ているテレビジョンサービスに重ね合せて表示する。

【特許文献1】特開2001-103383号公報(公開日:平成13年4月13日

【発明の開示】

【発明が解決しようとする課題】

[0004]

図19は、汎用プログラム言語実行環境を備えた従来のAV機器の構成の概略を示す機能プロック図である。図19に示すように、AV機器に汎用プログラム言語実行環境を導入する場合、プログラムを実行するプログラム実行部101と、ビデオデータをデコードするビデオ再生部102と、合成部103とで構成される。そして、プログラム実行部101およびビデオ再生部102の出力を、合成部103が重ね合わせる。さらに、コストやリアルタイム性の点から、ビデオ再生部102はハードウェアで実装されるのが一般的である。

[0005]

しかしながら、上記従来のAV機器では、プログラムによって生成したグラフィックスやアニメーションなどをビデオ再生の時間軸上の特定のビデオフレームから表示開始したり表示終了することは難しい。なぜならば、高級言語によるプログラムは一般的に動作が遅いためである。特にJava言語はバーチャルマシン上で実行され、しかも使用済みのメモリを開放するためのガーベジコレクション処理ともあいまって、リアルタイム処理を保証することは難しい。また、フレーム単位でビデオと同期を取ろうとすると、フレームレートより短い時間でポーリングをする必要があり、プログラムのオーバーヘッドが大きくなる。また、ビデオ再生の特定のタイミングでグラフィックス表示の開始や終了をさせようとした場合、ソフトウェアでビデオ再生のクロック値を見に行く必要がある。それゆえ、処理のオーバーヘッドが大きく、フレーム単位でタイミングを一致させるのが困難であり、処理効率が悪い。

[0006]

また、上記従来のAV機器では、ビデオ中の任意の時刻から再生を開始した場合、その時刻に表示すべきグラフィックスを正しく重畳表示させるのは難しい。なぜならば、ビデオ再生のクロックをポーリングして、その値でグラフィックス表示・消去タイミングを制御しているため、再生開始時刻までのビデオ再生のクロックの変化を再現してやる必要があり、その時刻のグラフィックスを表示するには、ビデオの先頭から再生開始時刻までの時間を要するからである。

[0007]

本発明は、上記の問題点を解決するためになされたもので、その目的は、AVデータ等の再生に同期させて実行するプログラムを効率よく実行することができる再生装置、再生装置の制御方法、コンテンツ記録媒体、データ構造、制御プログラム、制御プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することにある。

【課題を解決するための手段】

[0008]

上記課題を解決するために、本発明に係る再生装置は、コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得手段と、クロック信号を生成するクロック生成手段と、上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに変換するデコード手段と、上記クロック信号に従って上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信する同期制御手段と、上記同期実行プログラムを実行することにより出力データを生成するとともに、上記同期制御手段より受信した同期制御信号に従って、当該出力データを出力する同期処理手段とを備えることを特徴としている。

[0009]

また、本発明に係る再生装置の制御方法は、デコード手段および同期処理手段を備えた 再生装置の制御方法であって、コンテンツデータ、同期実行プログラム、同期タイミング 情報を取得するデータ取得ステップと、上記デコード手段にてクロック信号に従ってコン テンツデータを再生出力のための再生データに変換するとともに、該クロック信号に従っ て上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミング で上記同期処理手段へ同期制御信号を送信するデコードステップと、上記同期処理手段に て、上記同期実行プログラムを実行することにより出力データを生成するとともに、受信 した上記同期制御信号に従って、当該出力データを出力するプログラム実行出力ステップ とを含むことを特徴としている。

[0010]

上記の構成により、デコード手段が行うコンテンツデータの再生処理に同期して、同期 処理手段に対して、同期実行プログラムの実行結果(出力データ)を出力するタイミング を規定する同期制御信号(トリガー)を供給することができる。

[0011]

よって、同期処理手段からデコード手段の再生クロックを見に行く必要がないため、同期のために同期処理手段に負担がかからない。それゆえ、上記再生装置では、AVデータ等の再生に同期させて実行するプログラムを効率よく実行できる。

$[0\ 0\ 1\ 2]$

例えば、ビデオ再生の特定のタイミングでプログラムによるグラフィックス表示を開始 /終了させる場合であっても、同期処理手段のソフトウェアで、クロックを見に行く必要 がない。よって、処理のオーバーヘッドがなく、フレーム単位でタイミングを容易に一致 させることが可能となる。すなわち、精度の高い制御が可能となり、処理効率にも優れて いる。

[0013]

また、本発明に係る再生装置は、コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得手段と、クロック信号を生成するクロック生成手段と、上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに変換するデコード手段と、上記クロック信号に従って上記同期タイミング情報に含まれるタイミン

グ指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信する同期 制御手段と、上記同期実行プログラムを上記同期制御手段より受信した同期制御信号に従 って実行することにより出力データを生成するとともに、当該出力データを出力する同期 処理手段とを備えることを特徴としている。

[0014]

また、本発明に係る再生装置の制御方法は、デコード手段および同期処理手段を備えた 再生装置の制御方法であって、コンテンツデータ、同期実行プログラム、同期タイミング 情報を取得するデータ取得ステップと、上記デコード手段にてクロック信号に従ってコン テンツデータを再生出力のための再生データに変換するとともに、該クロック信号に従っ て上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミング で上記同期処理手段へ同期制御信号を送信するデコードステップと、上記同期処理手段に て、上記同期実行プログラムを受信した上記同期制御信号に従って実行することにより出 力データを生成するとともに、当該出力データを出力するプログラム実行出力ステップと を含むことを特徴としている。

[0015]

上記の構成により、デコード手段が行うコンテンツデータの再生処理に同期して、同期 処理手段に対して、同期実行プログラムを実行して出力データを生成するタイミングを規 定する同期制御信号(トリガー)を供給することができる。

[0016]

よって、同期処理手段からデコード手段の再生クロックを見に行く必要がないため、同 期のために同期処理手段に負担がかからない。それゆえ、上記再生装置では、AVデータ 等の再生に同期させて実行するプログラムを効率よく実行できる。

[0017]

例えば、ビデオ再生の特定のタイミングでプログラムによるグラフィックス表示を開始 /終了させる場合であっても、同期処理手段のソフトウェアで、クロックを見に行く必要 がない。よって、処理のオーバーヘッドがなく、フレーム単位でタイミングを容易に一致 させることが可能となる。すなわち、精度の高い制御が可能となり、処理効率にも優れて いる。

[0018]

なお、データ取得手段としては、コンテンツデータ、同期実行プログラム、同期タイミ ング情報をコンテンツ記録媒体から読み出す読み出し手段であってもよいし、ネットワー クを経由して取得する通信手段であってもよい。すなわち、コンテンツデータ、同期実行 プログラム、同期タイミング情報の再生装置への供給は、種々の形態によって可能である 。例えば、コンテンツデータ、同期実行プログラム、同期タイミング情報のすべてを記録 したコンテンツ記録媒体から読み出してもよい。また、コンテンツデータ、同期実行プロ グラム、同期タイミング情報のいずれかをネットワーク経由で取得して、コンテンツ記録 媒体から読み出した他のデータと組み合わせて再生してもよい。さらに、コンテンツ記録 媒体に記録されている同期実行プログラム(コンテンツデータ、同期タイミング情報につ いても同様)の一部あるいは全部を、ネットワーク経由で取得した同期実行プログラムに 置き換えて再生してもよい。

[0019]

また、プログラムとしては、ビデオ画像に重畳する画像データ(静止画、アニメーショ ン)を生成するプログラムのほか、例えば効果音やナレーション等の音声のみを出力する プログラムにも利用可能である。

[0020]

さらに、本発明に係る再生装置は、上記同期処理手段は、上記同期制御手段より受信し た同期制御信号に従って、上記同期実行プログラムを実行することにより出力データを生 成するプログラム実行手段を備えることを特徴としている。

[0021]

上記の構成により、コンテンツデータの再生に用いるクロック信号に基づく同期制御信

号に従って、同期実行プログラムを実行できる。よって、コンテンツデータの再生に同期 して同期実行プログラムの出力データを生成することが可能となる。

[0022]

さらに、本発明に係る再生装置は、上記同期処理手段は、上記プログラム実行手段によって生成された出力データを、上記同期制御手段より受信した同期制御信号に従って出力する出力制御手段を備えることを特徴としている。

[0023]

上記の構成により、コンテンツデータの再生に用いるクロック信号に基づく同期制御信号に従って、同期実行プログラムによって生成された出力データを出力できる。よって、コンテンツデータの再生に同期して同期実行プログラムの出力を制御することが可能となる。

[0024]

さらに、本発明に係る再生装置は、上記同期タイミング情報は、上記タイミング指定情報とともにアクション指定情報を含み、上記同期制御手段は、タイミング指定情報で指定されたタイミングで上記プログラム実行手段へ同期制御信号を送信する際、当該タイミング指定情報に対応するアクション指定情報を同期制御信号に含めるものであり、上記プログラム実行手段は、上記同期制御手段より受信した同期制御信号に含まれるアクション指定情報で指定された同期実行プログラムを実行するものであることを特徴としている。

[0025]

上記の構成により、プログラム実行手段が処理を行うタイミングとともに、実行する同期実行プログラムを、同期制御手段から制御できる。よって、プログラム実行手段に複数の同期実行プログラム(指令)を切り替えながら実行させることが可能となる。

[0026]

さらに、本発明に係る再生装置は、上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、再生を開始する時刻よりも前の時刻を示すタイミング指定情報を含む同期タイミング情報に従って、タイミング指定情報が前のものから順に同期制御信号を送信するものであることを特徴としている。

[0027]

上記の構成により、さらに、コンテンツデータの途中から再生を開始する際、その時刻までのビデオ用クロックの変化を再現してやる必要がなく、再生開始までの時間を短縮することが可能となる。

[0028]

さらに、本発明に係る再生装置は、上記同期タイミング情報は、上記タイミング指定情報とともに、他の同期タイミング情報との依存関係を示す依存情報を含み、上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、他の同期タイミング情報に依存しないことを示す依存情報を含む同期タイミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を含む同期タイミング情報とに従って、タイミング指定情報が前のものから順に同期制御信号を送信するものであることを特徴としている。

[0029]

上記の構成により、さらに、コンテンツデータの途中から再生を開始する際、再生開始 時刻に合致したグラフィックスの表示等の処理を直ちに実行できるため、不要な処理を実 行する必要がなくなり、再生開始までの時間を短縮することが可能となる。

[0030]

さらに、本発明に係る再生装置は、上記データ取得手段は、複数の同期実行プログラムを実行した結果と同一の結果が得られる統合同期実行プログラムを取得するものであり、上記同期タイミング情報は、上記タイミング指定情報とともに、実行すべき同期実行プログラムを示すアクション指定情報と、該アクション指定情報で示された同期実行プログラムが統合同期実行プログラムであるか否かを示す統合同期実行プログラム識別情報を含み

、上記コンテンツデータの途中から再生を開始する際、上記同期制御手段は、統合同期実 行プログラムであることを示す統合同期実行プログラム識別情報を含む同期タイミング情 報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同 期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を 含む同期タイミング情報とに従って、タイミング指定情報が前のものから順に同期制御信 号を送信するものであることを特徴としている。

[0031]

上記の構成により、さらに、コンテンツデータの途中から再生を開始する際、再生開始 時刻に合致したグラフィックスの表示等の処理を直ちに実行できるため、不要な処理を実 行する必要がなくなり、再生開始までの時間を短縮することが可能となる。

[0032]

さらに、本発明に係る再生装置は、上記データ取得手段は、上記コンテンツデータの途 中から再生を開始した場合にのみ実行される途中再生同期実行プログラムを取得するもの であり、上記同期タイミング情報は、上記タイミング指定情報とともに、実行すべき同期 実行プログラムを示すアクション指定情報と、該アクション指定情報で示された同期実行 プログラムが途中再生同期実行プログラムであるか否かを示す途中再生同期実行プログラ ム識別情報を含み、上記コンテンツデータの途中から再生を開始する際、上記同期制御手 段は、途中再生同期実行プログラムであることを示す途中再生同期実行プログラム識別情 報を含む同期タイミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタ イミング指定情報を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を 示すタイミング指定情報を含む同期タイミング情報とに従って、タイミング指定情報が前 のものから順に同期制御信号を送信するものであることを特徴としている。

上記の構成により、さらに、再生開始時刻に応じて割り込み処理を選択でき、再生状態 に応じた処理が可能になる。例えば、ある時刻から再生を開始した場合だけ特別なグラフ ィックスを表示したりすることで、ユーザはコンテンツを繰り返し楽しむことが可能にな り、コンテンツの付加価値を向上させることが可能になる。

[0034]

さらに、本発明に係る再生装置は、上記同期タイミング情報は、上記同期実行プログラ ムが実行されるべき時の上記デコード手段の状態を示す実行条件情報を含み、上記同期制 御手段は、上記デコード手段の状態を監視するとともに、該状態と上記実行条件情報とに 基づいて上記同期制御信号を送信するものであることを特徴としている。

[0035]

上記の構成により、さらに、再生状態に応じて割り込み処理を選択でき、再生状態に応 じた処理が可能になる。例えば、早送りの場合だけ特別なグラフィックスを表示したりす ることで、ユーザはコンテンツを繰り返し楽しむことが可能になり、コンテンツの付加価 値を向上させることが可能になる。

[0036]

さらに、本発明に係る再生装置は、上記デコード手段はコンテンツデータとしてのビデー オデータを再生してビデオ画像を出力するものであり、上記プログラム実行手段は、上記 同期実行プログラムとして、上記ビデオ画像に重畳する画像データを生成するプログラム を実行するものであることを特徴としている。

[0037]

上記の構成により、デコード手段で再生したビデオ画像に、当該ビデオ画像の再生に同 期してプログラム実行手段で生成した画像データを重畳させて出力することが可能となる 。なお、プログラム実行手段で生成した画像データは、静止画であってもよいし、アニメ ーションであってもよい。

[0038]

なお、上記再生装置は、コンピュータによって実現してもよく、この場合には、コンピ ュータを上記の各手段、特に、上記同期制御手段および上記同期処理手段として動作させ

ることにより上記再生装置をコンピュータにて実現させる再生装置の制御プログラム、お よび、その制御プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の 範疇に入る。

[0039]

また、本発明に係るコンテンツ記録媒体は、上記の再生装置に供給可能であるように、 コンテンツデータ、同期実行プログラム、同期タイミング情報のうちの少なくとも一つが 記録されていることを特徴としている。

[0040]

さらに、本発明に係るコンテンツ記録媒体は、上記の再生装置に供給可能であるように 、コンテンツデータ、同期タイミング情報が記録されており、上記同期タイミング情報が 上記コンテンツデータと分離されていることを特徴としている。

[0041]

上記の構成により、コンテンツデータ(ビデオデータ)と同期タイミング情報とを別々 に管理することで、1個のコンテンツデータを複数の同期実行プログラムで共有すること が容易になる。また、同期タイミング情報と同期実行プログラムを別のファイルとして管 理することで、プログラム作成後にビデオデータを編集した場合でも、同期実行プログラ ムを書き換える必要がない。

[0042]

さらに、本発明に係るコンテンツ記録媒体は、上記の再生装置に供給可能であるように 、同期実行プログラム、同期タイミング情報が記録されており、上記同期タイミング情報 が上記同期実行プログラムの近傍に記録されていることを特徴としている。

[0043]

上記の構成により、同期実行プログラムの実行にあたってのこれらのデータの読み出し の際のピックアップの移動距離が小さくて済む。よって、再生開始までの待ち時間が短縮 されるとともに、ビデオ再生の途切れの防止、電力消費の抑制、騒音の抑制が可能となる

[0044]

さらに、本発明に係るコンテンツ記録媒体は、上記の再生装置に供給可能であるように 、同期実行プログラム、同期タイミング情報が記録されており、上記同期タイミング情報 が上記同期実行プログラムと同一ファイルに格納されていることを特徴としている。

[0045]

上記の構成により、読み出すファイル数が減少するため、読み出しの際のオーバーヘッ ドが減少する。

[0046]

また、本発明に係るデータ構造は、再生装置にて再生されるコンテンツデータを格納す るコンテンツデータ格納領域と、再生装置にて上記コンテンツデータの再生と同期して実 行される同期実行プログラムを格納する同期実行プログラム格納領域と、再生装置が上記 コンテンツデータを再生するためのクロック信号に基づいて、上記同期実行プログラムが 実行されるタイミングを指定した同期タイミング情報を格納する同期タイミング情報格納 領域とを含むことを特徴としている。

[0047]

上記の構成により、これらのデータを格納したコンテンツ記録媒体を実現できため、こ れらのデータを再生装置に簡便に供給することが可能となる。

【発明の効果】

[0048]

以上のように、本発明に係る再生装置は、コンテンツデータ、同期実行プログラム、同 期タイミング情報を取得するデータ取得手段と、クロック信号を生成するクロック生成手 段と、上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに 変換するデコード手段と、上記クロック信号に従って上記同期タイミング情報に含まれる タイミング指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信

する同期制御手段と、上記同期実行プログラムを実行することにより出力データを生成するとともに、上記同期制御手段より受信した同期制御信号に従って、当該出力データを出力する同期処理手段とを備える構成である。

[0049]

また、本発明に係る再生装置の制御方法は、デコード手段および同期処理手段を備えた再生装置の制御方法であって、コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得ステップと、上記デコード手段にてクロック信号に従ってコンテンツデータを再生出力のための再生データに変換するとともに、該クロック信号に従って上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミングで上記同期処理手段へ同期制御信号を送信するデコードステップと、上記同期処理手段にて、上記同期実行プログラムを実行することにより出力データを生成するとともに、受信した上記同期制御信号に従って、当該出力データを出力するプログラム実行出力ステップとを含む方法である。

[0050]

また、本発明に係る再生装置は、コンテンツデータ、同期実行プログラム、同期タイミング情報を取得するデータ取得手段と、クロック信号を生成するクロック生成手段と、上記クロック信号に従って上記コンテンツデータを再生出力のための再生データに変換するデコード手段と、上記クロック信号に従って上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミングで同期処理手段へ同期制御信号を送信する同期制御手段と、上記同期実行プログラムを上記同期制御手段より受信した同期制御信号に従って実行することにより出力データを生成するとともに、当該出力データを出力する同期処理手段とを備える構成である。

[0051]

また、本発明に係る再生装置の制御方法は、デコード手段および同期処理手段を備えた 再生装置の制御方法であって、コンテンツデータ、同期実行プログラム、同期タイミング 情報を取得するデータ取得ステップと、上記デコード手段にてクロック信号に従ってコン テンツデータを再生出力のための再生データに変換するとともに、該クロック信号に従っ て上記同期タイミング情報に含まれるタイミング指定情報によって指定されたタイミング で上記同期処理手段へ同期制御信号を送信するデコードステップと、上記同期処理手段に て、上記同期実行プログラムを受信した上記同期制御信号に従って実行することにより出 力データを生成するとともに、当該出力データを出力するプログラム実行出力ステップと を含む方法である。

[0052]

これにより、同期処理手段からデコード手段の再生クロックを見に行く必要がないため、同期のために同期処理手段に負担がかからない。それゆえ、上記再生装置によれば、AVデータ等の再生に同期させて実行するプログラムを効率よく実行できるという効果を奏する。

【発明を実施するための最良の形態】

[0.053]

[実施の形態1]

本発明の一実施の形態について図1から図11に基づいて説明すれば、以下のとおりである。なお、本実施の形態では、ビデオディスクプレーヤについて説明するが、本発明はこれに限定されず、ハードウェアデコーダを搭載したPC (Personal Computer) 等にも適用できる。

[0054]

くシステム構成>

図1は、本実施の形態に係るビデオディスクプレーヤ1の構成の概略を示す機能ブロック図である。

[0055]

ビデオディスクプレーヤ1 (再生装置) は、光ディスク2に記録されているAVデータ 出証特2004-3106516

を再生する装置である。図1に示すように、ビデオディスクプレーヤ1は、プログラム実 行部10、ビデオ再生部20、合成部30、出力制御部40、ディスク読み出し部50を 備えて構成されている。

[0056]

ディスク読み出し部50(データ取得手段、読み出し手段)は、光ディスク2(コンテ ンツ記録媒体)からビデオデータ(コンテンツデータ)、プログラム(同期実行プログラ ム)、同期タイミング情報を読み出す。そして、ディスク読み出し部50は、プログラム をプログラム実行部10に、ビデオデータおよび後述する同期タイミング情報をビデオ再 生部20にそれぞれ送る。

[0057]

プログラム実行部10は、プログラムを実行する。具体的には、プログラム実行部10 は、プログラムを実行することによって、ビデオ再生部20、ディスク読み出し部50、 および出力制御部40に対して制御を行うとともに、出力制御部40に対して、プログラ ム実行によって生成したビットマップデータを送る。

[0058]

ビデオ再生部20は、ディスク読み出し部50から送られるビデオデータをデコードし 、非圧縮ビデオデータを合成部30に対して送る。また、ディスク読み出し部50から送 られる同期タイミング情報を基に、プログラム実行部10および出力制御部40に対する 制御を行う。

[0059]

出力制御部40は、プログラム実行部10から送られるビットマップデータを保持し、 このビットマップデータをビデオ再生部20およびプログラム実行部10からの制御に従 って合成部30に出力する。

[0060]

合成部30は、出力制御部40から送られるビットマップデータおよびビデオ再生部2 0から送られる非圧縮ビデオデータを合成し、合成映像を出力する。

[0061]

なお、プログラム実行部10および出力制御部40より同期処理部(同期処理手段)6 0が構成される。すなわち、同期処理部60は、プログラム実行部10にて、ビデオ再生 部20より受信した同期制御信号に従って、プログラムを実行することによりビットマッ プデータ(出力データ)を生成するとともに、出力制御部40にて、ビットマップデータ をビデオ再生部20より受信した同期制御信号に従って出力する。

[0062]

<プログラム実行部>

図2は、上記プログラム実行部10の詳細な構成を示す機能ブロック図である。

[0063]

上記のように、プログラム実行部10は、同期制御部22より受信した同期制御信号に 従ってプログラムを実行する。また、プログラム実行部10は、同期制御部22より受信 した同期制御信号に含まれるフィールドaction_idで指定されたプログラムを実行する。 特に、実施の形態では、プログラム実行部10は、ビデオ画像に重畳する画像データを生 成するプログラムを実行する。

[0064]

図2に示すように、プログラム実行部10は、メモリ11、CPU12、ビデオ再生制 御部13、割り込み制御部14で構成される。

[0065]

メモリ11は、ディスク読み出し部15から入力されたプログラムを一旦格納する。C PU12は、メモリ11に格納されたプログラムを読み出し、そのプログラムを実行する 。CPU12は、プログラムの内容に応じて、ビデオ再生制御部13に対して指令を送っ たり、出力制御部40に対してビットマップデータを送る。ビデオ再生制御部13は、実 行されたプログラムに基づきビデオ再生部20に対して制御信号を送る。制御信号として

[0066]

<出力制御部>

図3は、上記出力制御部40の詳細な構成を示す機能ブロック図である。

[0067]

図3に示すように、出力制御部40は、入力側バッファ切替部41、表示バッファメモリ42A(#1)・42B(#2)、出力側バッファ切替部43で構成される。

[0068]

入力側バッファ切替部41は、プログラム実行部10からのビットマップデータを受け取り、プログラム実行部10の制御により、表示バッファメモリ42A・42Bのいずれかに送る。出力側バッファ切替部43は、ビデオ再生部20からの制御に基づき、表示バッファメモリ42A・42Bの内容のいずれかを合成部30に出力する。

[0069]

表示バッファメモリ42Aおよび表示バッファメモリ42Bは、ビットマップデータを格納するためのバッファメモリであり、前述のように入力側バッファ切替部41と出力側バッファ切替部43から制御を受ける。

[0070]

くビデオ再生部>

図4は、上記ビデオ再生部20の詳細な構成を示す機能ブロック図である。

[0071]

図4に示すように、ビデオ再生部20は、メモリ21、同期制御部22、クロック23、デコーダ24、インタフェース部25で構成される。

[0072]

デコーダ24 (デコード手段) は、クロック信号に従ってビデオデータを再生出力のための非圧縮ビデオデータに変換する。具体的には、デコーダ24は、ディスク読み出し部50より入力されたビデオデータをデコードし、非圧縮ビデオデータ(ビデオ画像)を出力する。

[0073]

クロック(クロック生成手段) 2 3 は、デコードおよび非圧縮ビデオデータの出力のタイミングを司る。すなわち、クロック 2 3 は、クロック信号を生成する。なお、本実施の形態では、光ディスク 2 に記録されているビデオデータのフォーマットは、ISO/IEC 1381 8-1のProgram Streamであるとする。この場合、クロック 2 3 の値はそのSTC(System Time Clock)に相当する。

[0074]

また、メモリ21は、ディスク読み出し部50より入力された同期タイミング情報を格納する。

[0075]

そして、同期制御部(同期制御手段)22は、メモリ21上の同期タイミング情報とクロック23の値とを常時比較し、それらが一致した場合、同期タイミング情報で指定された処理ブロック(プログラム実行部10あるいは出力制御部40)に対して、指定された制御を行う。具体的には、同期制御部22は、クロック信号に従って同期タイミング情報に含まれるフィールドtiming(タイミング指定情報)で指定されたタイミングでプログラム実行部10(プログラム実行手段)へ同期制御信号を送信する。また、同期制御部22は、フィールドtimingで指定されたタイミングでプログラム実行部10へ同期制御信号を送信する際、当該フィールドtimingに対応するフィールドaction_idを同期制御信号に含める。なお、本実施の形態においては、同期制御部22によるデコーダ24の状態の監視

は必須ではない。

[0076]

同期タイミング情報で指定された処理ブロックがプログラム実行部10の場合、同期制御部22は、割り込み制御部14に対して割り込みをかけ、割り込み制御部14中のレジスタに対して情報をセットする。

[0077]

これにより、プログラム実行に負担をかけることなく、ビデオ再生時間軸上の任意タイミングでの処理の起動が可能となる。なぜなら、ハードウェアによる割り込み機構を用いているため、従来技術のようにプログラム内でビデオ再生部20のクロックを参照するためのポーリング処理を行う必要がなく、ポーリング処理によるオーバーヘッドが無くなるためである。

[0078]

一方、同期タイミング情報で指定された処理ブロックが出力制御部40の場合、出力側バッファ切替部43に対して指令を出し、表示バッファメモリ42A・42Bの切替を行う。これにより、プログラムによる映像出力をフレーム精度で切り替えることが可能となる。なぜなら、表示バッファメモリ42A・42Bは、ハードウェアによる切り替えを行うため、従来技術のようにプログラムで表示のON/OFFを制御するのに比べて、関数呼び出しやガーベジコレクションのようなプログラム実行に伴うオーバーヘッドが発生しないためである。

[0079]

また、ビデオ再生部20では、インタフェース部25により、プログラム実行部10のビデオ再生制御部13から送られる制御信号を受け取り、その制御信号に従ってデコーダ24を制御したり、現在の状態をビデオ再生制御部13へ送る。

[0080]

<同期タイミング情報>

ここで、図5、図6を参照しながら、光ディスク2に記録されているデータのデータ構造について説明する。

[0081]

光ディスク2には、ビデオディスクプレーヤ1に供給可能であるように、ビデオデータ、プログラム、同期タイミング情報が記録されている。

[0082]

図5 (a) (b) は、同期タイミング情報のデータ構造を示す説明図である。図5 (a) に示すように、同期タイミング情報は、エントリ数を示すnumber_of_sync_infoとエントリである0個以上のsync_info()で構成される。図5 (b) に示すように、エントリsync_info()は、timing, target, action_idの3個のフィールドで構成される。すなわち、同期タイミング情報は、フィールドtiming (タイミング指定情報) とともにフィールドaction_id (アクション指定情報) を少なくとも含む。

[0083]

フィールドtimingは、プログラム実行部10あるいは出力制御部40に対して指令を与えるタイミングを示す。フィールドtimingは、同期制御部22において、クロック23との比較に用いられる。

[0084]

フィールドtargetは、指令を与える対象を示す。フィールドtargetでは、プログラム実行部10および出力制御部40のいずれかが指定される。

[0085]

フィールドaction_idは、指令内容を示す。なお、フィールドaction_idの詳細については後述する。

[0086]

このように、同期タイミング情報において指令を与える対象を示すフィールドtargetを 設けることで、複数の処理ブロックに指令を与える場合にも対応が可能である。また、指 令内容を示すフィールドaction_idを設けることにより、同一処理ブロックに対して複数の指令を切り替えて出すことが可能である。

[0087]

<データ配置とファイル構成>

図6は、光ディスク2におけるデータ配置を示す説明図である。

[0088]

図6に示すように、光ディスク2は、管理情報領域61とビデオデータ領域(コンテンツデータ格納領域)62とで構成される。管理情報領域61は、プログラムが格納されたプログラム格納領域(同期プログラム格納領域)61Aと、同期タイミング情報が格納された同期タイミング情報格納領域61Bとからなる。また、ビデオデータ領域62には、ビデオデータが格納されている。なお、個々の同期タイミング情報、プログラム、ビデオデータはファイルとして管理される。

[0089]

特に、本実施の形態では、同期タイミング情報がビデオデータと分離されている。また 、同期タイミング情報がプログラムの近傍に記録されている。また、同期タイミング情報 がプログラムと同一ファイルに格納されている。

[0090]

このように、ビデオデータと同期タイミング情報を別々に管理することで、1個のビデオデータを複数のプログラムで共有することが容易になる。また、同期タイミング情報とプログラムを別のファイルとして管理することで、プログラム作成後にビデオデータを編集した場合でも、プログラムを書き換える必要がない。

[0091]

なお、ビデオデータ、プログラム、同期タイミング情報のビデオディスクプレーヤ1への供給は、種々の形態によって可能である。例えば、ビデオディスクプレーヤ1は、ビデオデータ、プログラム、同期タイミング情報のすべてを記録した光ディスク2から読み出してもよい。また、ビデオデータ、プログラム、同期タイミング情報のいずれかを通信部(通信手段)(図示せず)によりネットワーク経由で取得して、光ディスク2から読み出した他のデータと組み合わせて再生してもよい。さらに、光ディスク2に記録されているプログラム(ビデオデータ、同期タイミング情報についても同様)の一部あるいは全部を、ネットワーク経由で取得したプログラムに置き換えて再生してもよい。

[0092]

例えば、図1において、プログラムおよび同期タイミング情報の取得先をネットワーク 経由に変更することが考えられる。このような構成をとることで、光ディスク2によって ユーザが提供したビデオデータに対して、光ディスク2の制作者がネットワークを通じて 後から付加価値を付けることができる。プログラムおよび同期タイミング情報はビデオデータに比べてデータ量がはるかに小さいため、このようなやり方は後から付加価値を付ける際に時間や料金等の通信コストの面で有利である。

[0093]

<再生処理>……

つづいて、図7を参照しながら、ビデオディスクプレーヤ1による再生処理について説明する。

[0094]

図7は、ビデオディスクプレーヤ1による再生処理の全体の流れを示すフローチャートである。

[0095]

まず、電源投入後、ビデオディスクプレーヤ1は、光ディスク2からのファイルシステム情報(図示せず)等の読み込み、および各処理部の初期化を行う。また、ディスク読み出し部50は、読み出したファイルシステム情報を基に、光ディスク2上の自動起動プログラムの位置を取得する(S11)。なお、自動起動プログラムについてはファイル名で識別できるようになっている。

[0096]

なお、自動起動プログラムは、ビデオディスクプレーヤ1に光ディスク2を装着したとき、あるいはビデオディスクプレーヤ1の電源を投入したときに、最初に光ディスク2から起動されるプログラムである。自動起動プログラムの内容は、光ディスク2の制作者の自由であるが、通常は光ディスク2中の複数のコンテンツ選択用のメニュー表示プログラムを用いる。自動起動プログラムを格納したファイルのファイル名には、あらかじめ特定の名称を与えるように決めておけば、ディスク読み出し部50はそのファイル名を頼りに自動起動プログラムの位置を取得できる。

[0097]

次に、ディスク読み出し部 50 は、プログラムの位置情報を基に、プログラムを読み込み、プログラム実行部 10 に送る(S12)。プログラム実行部 10 は、受け取ったプログラムを実行する(S13)。このとき、ディスク読み出し部 50 は、光ディスク 2 上の次に実行すべきプログラムの位置を取得する(S14)。

[0098]

次に、図8を参照しながら、プログラム実行部10がプログラム実行を行うステップであるステップS13について説明する。

[0099]

まず、プログラム実行部10は、ビデオ再生部20からの割り込みを扱うための、割り込みハンドラを登録する(S21)。なお、割り込みハンドラについては後述する。次に、プログラム実行部10は、ビデオ再生部20に対し、再生対象のビデオデータファイルを指定し、再生開始を指示する(S22)。最後に、ビデオ再生との同期が必要ない処理を実行する(S23)。

[0100]

<具体例>

つづいて、図9から図11を参照しながら、ビデオディスクプレーヤ1におけるプログラム実行の具体例を説明する。ここでは、ビデオデータ再生中の時刻T2からT4の間、静止画を表示し、時刻T4からT5の間、アニメーションを表示するプログラムを例として挙げる。

[0101]

図9に示すフローチャートを用いて、本具体例における割り込みハンドラの設定について説明する。

[0102]

まず、CPU12は、割り込みハンドラ起動後、割り込み制御部14中のレジスタを参照して、ビデオ再生部20によってセットされたフィールドaction_idの値を取得し(S31)、判定する(S32)。

[0103]

ステップS 3 2 において、フィールドaction_idが "A 1" の場合、C P U 1 2 は静止 画を生成し表示メモリバッファ 4 2 A に書き込む処理を呼び出す(S 3 3)。フィールド action_idが "A 2" の場合、C P U 1 2 はアニメーションの生成を開始し、生成したビットマップデータをメモリバッファ 4 2 B に書き込む処理を呼び出す(S 3 4)。フィールドaction_idが "A 3" の場合、C P U 1 2 はアニメーションの生成を終了する処理を呼び出す(S 3 5)。

[0104]

図10は、本具体例において用いる同期タイミング情報を示す。なお、フィールドaction_idの列における "A1", "A2", "A3"は、図9における処理に対応する。また、図11に、本具体例におけるタイミングチャートを示す。横軸はビデオデータ再生の時間軸を表す。

[0105]

まず、時刻T1に起動した静止画表示の処理は、時刻t1に表示バッファメモリ42Aへの書き込みが終了して、表示準備が完了する。次に、時刻T2に、合成部30に送る画

[0106]

ここでのポイントは、静止画の表示バッファメモリ42Aへの書き込みに要する時間 d 1 (= t1-T1) よりも、T2-T1を大きくしておくことである。これにより、指定した時刻T2に、静止画を表示することが可能となる。

[0107]

同様に、時刻T3に起動したアニメーション表示開始の処理は、時刻 t 2 に表示バッファメモリ42Bにアニメーションの最初のビットマップデータの書き込みが完了する。次に、時刻T4に、合成部30に送る画像を表示バッファメモリ42B(#2)のものに切り替えて、アニメーションを表示する。

[0108]

ここでのポイントは、アニメーションの最初のビットマップデータの表示バッファメモリ42Bへの書き込みに要する時間d2(=t2-T3)よりも、T4-T3を大きくしておくことである。これにより、指定した時刻T4に、静止画からアニメーションへの映像の切替が可能となる。

[0109]

次に、本実施の形態における各種データを光ディスク2から読み込むタイミングについて説明する。ビデオデータは、データ量が大きいため、デコード前にまとめて光ディスク2から読み出すことはメモリ量および読み出し時間の点で現実的ではない。そのため、ビデオデータは、デコードと読み出しを並行して行う。

[0110]

一方、プログラムおよび同期タイミング情報は、データ量が小さく、まとめてメモリ21やメモリ11に読み出してもメモリ量および読み出し時間の点でも問題がない。よって、ビデオデータ読み込み中のディスク読み出し部50のピックアップ(図示せず)の移動によるビデオ再生の途切れや、電力消費の増大、騒音の発生を避けるため、プログラムおよび同期タイミング情報は、ビデオデータ読み込み開始前にまとめて読み込む。本実施の形態では、プログラムと同期タイミング情報を光ディスク2上の近傍に配置しているため、読み出しの際のピックアップの移動距離が小さくて済み、再生開始までの待ち時間を縮小するとともに、ビデオ再生の途切れの防止、電力消費の抑制、騒音の抑制が可能となる

[0111]

次に、本具体例におけるプログラムの構成について説明する。本具体例では、メイン処理であるビデオ再生処理と、静止画表示処理およびアニメーション表示処理という2種類のサブ処理とで構成されている。これらは、1個のプログラムにまとめてもよいし、1個のメインプログラムと2個のサブプログラムとしてもよい。

[0112]

複数のプログラムで構成する場合、各プログラムを別ファイルにすることが考えられる。この場合、ディスク読み出し部50の負担を小さくするため、1個のファイルにまとめることが望ましい。そのような例として、Java Rechive)ファイルというファイルフォーマットが定義されている。

[0113]

以上のように、本実施の形態のビデオディスクプレーヤ1は、プログラム実行部10、ビデオ再生部20、プログラム実行部10の出力(ビットマップデータ)とビデオ再生部20の出力(非圧縮ビデオデータ)とを合成する合成部30を備え、同期タイミング情報に従って、ビデオ再生部20のクロックに基づき、プログラム実行部10の出力を制御する。これにより、プログラム実行部10の処理に負担をかけることなく、かつフレーム単位の精度で、ビデオ再生部20の生成する出力すなわちビデオデータの指定のタイミングでの出力開始・終了を実現できる。したがって、コンピュータプログラム実行とビデオ再生を同時に行う場合に、プログラムによって生成したグラフィックスやアニメーションなどをビデオ再生の時間軸上の特定のビデオフレームから表示開始したり表示終了すること

が可能となる。

[0114]

さらに、上記ビデオディスクプレーヤ1では、同期タイミング情報が、ビデオ再生部20からの出力を生成するための情報(ビデオデータ)とは分離されている。これにより、ビデオ再生部20からの出力を生成するための情報に対して、複数バージョンの同期タイミング情報を適用することが可能である。

[0115]

さらに、上記ビデオディスクプレーヤ1では、同期タイミング情報には、ビデオ再生部20の時間軸上の時刻を含み、制御対象と制御内容のうちの少なくとも一方を含む。これにより、複数の処理ブロックに指令を与える場合にも対応でき、同一処理ブロックに対して複数の指令を切り替えることが可能となる。

[0116]

[実施の形態2]

本発明の他の実施の形態について図12から図17に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記の実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1において定義した用語については、特に断らない限り本実施の形態においてもその定義に則って用いるものとする。

[0117]

本実施の形態は、ビデオデータの任意位置から再生を開始することを考慮した、実施の 形態1の変形例である。よって、実施の形態1と共通する部分が多いため、実施の形態1 と相違する部分に絞って説明する。

[0118]

<システム構成>

実施の形態1と同一であるため、説明を省略する。

[0119]

<プログラム実行部>

実施の形態1と同一であるため、説明を省略する。

[0120]

<出力制御部>

実施の形態1と同一であるため、説明を省略する。

[0121]

くビデオ再生部>

実施の形態1とほぼ同一であるが、本実施の形態では、ビデオ再生時に同期タイミング情報中のフィールドmerged_flag(後述)の値が"1"に設定されたエントリsync_info()を無視する点が異なる。

[0122]

また、コンテンツデータの途中から再生を開始する際、同期制御部22は、再生を開始 する時刻よりも前の時刻を示すフィールドtiming(タイミング指定情報)を含む同期タイ ミング情報に従って、タイミング指定情報が前のものから順にプログラム実行部10へ同 期制御信号を送信する。

[0123]

また、コンテンツデータの途中から再生を開始する際、同期制御部22は、他の同期タイミング情報に依存しないことを示す依存情報(後述するフィールドindependent_flag)を含む同期タイミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を含む同期タイミング情報とに従って、タイミング指定情報が前のものから順にプログラム実行部10个同期制御信号を送信するものである。なお、そのために、同期タイミング情報は、フィールドtimingとともに、他の同期タイミング情報との依存関係を示す依存情報を含む。

[0124]

また、コンテンツデータの途中から再生を開始する際、同期制御部22は、複数の同期実行プログラムを実行した結果と同一の結果が得られる統合同期実行プログラムであることを示す統合同期実行プログラム識別情報(フィールドmerged_flag)を含む同期タイミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を含む同期タイミング情報とに従って、タイミング指定情報が前のものから順にプログラム実行部10へ同期制御信号を送信する。なお、そのため、ディスク読み出し部50は、複数の同期実行プログラムを実行した結果と同一の結果が得られる統合同期実行プログラムを取得する。この統合同期実行プログラムは、対応する同期実行プログラムと同じ光ディスク2に記録されていることが好ましい。また、同期タイミング情報は、タイミング指定情報とともに、実行すべき同期実行プログラムを示すフィールドaction_id(アクション指定情報)と、フィールドaction_idで示された同期実行プログラムが統合同期実行プログラムであるか否かを示す統合同期実行プログラム識別情報(フィールドmerged_flag)を含む。

[0125]

<同期タイミング情報>

ここで、図12を参照しながら、本実施の形態での同期タイミング情報のデータ構造について説明する。図12(a)(b)は、同期タイミング情報のデータ構造を示す説明図である。

[0126]

図12(a)に示すように、同期タイミング情報は、エントリ数を示すnumber_of_sync_infoとエントリである0個以上のsync_info()で構成される。図12(b)に示すように、エントリsync_info()は、timing, target, action_id、independent_flag, merged_flagの5個のフィールドで構成される。このうち、フィールドtiming(タイミング指定情報)、フィールドtarget、フィールドaction_id(アクション指定情報)については、実施の形態1と同一であるため、説明を省略する。なお、同期タイミング中の各sync_info()はフィールドtimingの値の順に並べられていることが好ましい。

[0127]

フィールド independent_flagは、このフラグが含まれる sync_info()の処理および処理結果が、直前までのすべての sync_info()のフィールド action_idに対応する処理の結果に依存するか否かを示すフラグであり、依存する場合には"0"が、依存しない場合には"1"がセットされる。

[0128]

ここで、図13(a)~(d)は、フィールドindependent_flagの設定例を示す説明図である。

[0129]

例えば、1番目のsync_info()であるsync_info(1)のaction_idに対応する処理がグラフィックスAを描画し、2番目のsync_info()であるsync_info(2)のaction_idに対応する処理がグラフィックスBを追加描画する場合(図13(a))、sync_info(2)のaction_idに対応する処理の結果はsync_info(1)のaction_idに対応する処理結果に依存するため、sync_info(2)のindependent_flagに"0"をセットする(図13(b))。

[0130]

一方、sync_info(2)のaction_idに対応する処理が一旦グラフィックスAを消去し、新たにグラフィックスBを描画する場合(図13(c))、sync_info(2)のaction_idに対応する処理結果は、sync_info(1)のaction_idに対応する処理結果に依存しないため、sync_info(2)のindependent_flagに "1"をセットする(図13(d))。なお、以後i番目のsync_info()をsync_info(i)と表現する。

[0 1 3 1]

次に、フィールドmerged_flagは、このフラグが含まれるsync_info()の処理結果が、直 出証特2004-3106516 前までのすべてのsync_info()の処理結果をすべて反映したものであるか否かを示すフラグであり、すべて反映したものであれば"1"が、そうでなければ"0"がセットされる

[0132]

ここで、図14(a)(b)は、フィールドmerged_flagの設定例を示す説明図である

[0133]

例えば、図14(a)に示すように、sync_info(1)のaction_idに対応する処理がグラフィックスAを描画し、sync_info(2)のaction_idに対応する処理がグラフィックスBを追加描画すると仮定する。このとき、sync_info(3)のaction_idに対応する処理の結果が、sync_info(1)およびsync_info(2)の各action_idに対応する処理結果と等しい、すなわち、グラフィックスAおよびグラフィックスBを同時に描画する場合、merged_flagに "1"をセットする(図14(b))。なお、ここでsync_info(3)のaction_idに対応する処理を統合同期実行プログラムと呼ぶ。

[0134]

これらフィールドdependent_flagおよびフィールドmerged_flagは、後で説明するようにビデオデータの途中から再生を開始した場合のグラフィックス重畳表示処理を軽減するために用いる。

[0135]

<データ配置とファイル構成>

実施の形態1と同一であるため、説明を省略する。

[0136]

<再生処理>

本実施の形態と実施の形態1との違いは、プログラム実行処理にある。そのため、図15を参照しながら、プログラム実行処理に絞って説明する。なおここでは、ビデオデータの再生時間軸上の時刻Tから再生開始することを前提に説明する。図15は、ビデオディスクプレーヤ1(図1)のプログラム実行部10によるプログラム実行処理を示すフローチャートである。

[0137]

まず、プログラム実行部10は、ビデオ再生部20からの割り込みを扱うための、割り込みハンドラを登録する(S41)。次に、プログラム実行部10は、ビデオ再生部20に対して割り込み再現命令を発行し割り込み再生が完了するまで待ち(S42)、再生対象のビデオデータファイルを指定して、再生開始を指示する(S43)。最後に、プログラム実行部10は、ビデオ再生との同期が必要ない処理を実行する(S44)。

[0138]

次に、図16を参照しながら、割り込み再現処理について説明する。図16は、ビデオ 再生部20による割り込み再現処理を示すフローチャートである。

[0139]

ビデオ再生部20は、まず、再生開始時刻T以下で最大のtiming値を持つエントリpを同期タイミング情報から検索する(S51)。次に、エントリ番号iを1ずつデクリメントしながら、independent_flagの値が"1"(直前までのすべてのsync_info()のフィールドaction_idに対応する処理の結果に依存する)あるいはmerged_flagの値が"1"(直前までのすべてのsync_info()の処理結果をすべて反映したもの)のエントリを検索する(S52~S56)。検索の結果、条件を満たすエントリが存在したら、そのエントリから、エントリ番号pまで割り込みを順に起動する(S57~S59)。条件を満たすエントリが存在しなかった場合も、エントリ番号1から順にエントリ番号pまでの割り込みを順に起動する(S57~S59)。

[0140]

<具体例>

つづいて、図17を参照しながら、本実施の形態でのビデオディスクプレーヤ1におけ

[0141]

まず、ビデオデータの再生開始時刻T<T1の場合、ステップS42における割り込み 再現の必要はなく、ビデオ再生に従って、エントリ番号1から5まで順にフィールドtimi ngがクロック23の値に一致するタイミングでビデオ再生部20はプログラム実行部10 に対して割り込みを発生させる。ただし、エントリ番号3のエントリはmerged_flagの値 が"1"となっているため、割り込みを発生させない。

[0142]

次に、ビデオデータの再生開始時刻TがT1≦T<T2の場合:フィールドtimingの値がT1以下のエントリであるsync_info(1)のフィールドindependent_flagが"1"、sync_info(2)のフィールドindependent_flagおよびフィールドmerged_flagが"0"であるため、割り込み再現処理においてsync_info(1)、sync_info(2)に対応する割り込みを順に発生させる。

[0143]

次に、ビデオデータの再生開始時刻TがT 2 ≦T<T 3 の場合: sync_info(3) のmerged _flagの値が1であるため、割り込み再現処理においてsync_info(3)に対応する割り込みを発生させる。sync_info(3)はsync_info(2)における移動処理を行う必要が無いため、sync_info(1)およびsync_info(2)を順に実行するより処理量が少なくてすむ。すなわち時刻 Tから再生開始するときに実際に再生開始可能となるまでの時間が短縮されることになる

[0144]

次に、ビデオデータの再生開始時刻TがT $3 \leq T < T$ 4 の場合: sync_info(4)のindependent_flagの値が1 であるため、割り込み再現処理において、sync_info(1)およびsync_info(2)に対応する割り込みを発生させる必要がなくsync_info(4)に対応する割り込みのみを発生させればよい。

[0145]

次に、ビデオデータの再生開始時刻TがT4≦Tの場合:割り込み再現処理において、sync_info(4)およびsync_info(5)に対応する割り込みを発生させればよい。

[0146]

以上説明したように、同期タイミング情報を設けることで、ビデオデータの任意の時刻に対応するグラフィックスを生成する際に、その時刻までのビデオ用クロックの変化を再現してやる必要がなく、再生開始までの時間が短縮される。また、independent_flagを設けることで、グラフィックスの表示にかかる時間をさらに短縮することができる。また、個々の処理の結果を統合した処理を用意することで、グラフィックスの表示にかかる時間をさらに短縮することができる。

[0147]

上記のように、本発明の再生装置は、同期制御手段が、コンテンツデータの特定時刻から再生開始する前に、特定時刻より過去を指すタイミング指定情報を持つタイミング情報に従い、タイミング指定情報の若い順に期制御信号を送信するように構成されていてもよい。

[0148]

これにより、コンテンツデータの任意時刻から再生する際に、その時刻までのビデオ用 クロックの変化を再現してやる必要がなく、再生開始までの時間を短縮することが可能と なる。

[0149]

また、本発明の再生装置は、タイミング情報は複数存在しタイミング情報集合を構成し、タイミング情報はタイミング情報集合中の他のタイミング情報との依存関係を示す依存情報を含み、同期制御手段はコンテンツデータの特定時刻から再生開始する前に、依存情報をチェックし、他のタイミング情報に依存せず、特定時刻より過去を指しなおかつ最も

[0150]

これにより、不要な処理を実行する必要がなくなり、グラフィックスを表示し再生開始までの時間を短縮することが可能となる。

[0151]

また、本発明に係る再生装置は、同期実行プログラムは複数存在し同期実行プログラム集合を構成し、同期実行プログラム集合は、同期実行プログラム集合中の他の複数の同期実行プログラム処理結果と同一の結果が得られる同期実行プログラム(統合同期実行プログラム)を含み、アクション指定情報で指定される同期実行プログラムが統合同期実行プログラムが統合同期実行プログラムかどうかを識別する統合同期実行プログラム識別情報を含み、同期制御手段はコンテンツデータの特定時刻から再生開始する前に、統合同期実行プログラム識別情報をチェックし、統合同期実行プログラムを参照し、特定時刻より過去を指しなおかつ最も未来を指すタイミング指定情報を持つタイミング情報に従い、タイミング指定情報の若い順に同期制御信号を送信するように構成されていてもよい。

[0152]

これにより、不要な処理を実行する必要がなくなり、グラフィックスを表示し再生開始までの時間を短縮することが可能となる。

[0153]

[実施の形態3]

本発明のさらに他の実施の形態について図18に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記の実施の形態1、2において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1、2において定義した用語については、特に断らない限り本実施の形態においてもその定義に則って用いるものとする。

[0154]

本実施の形態は、高速再生等のいわゆる特殊再生を考慮した、実施の形態1の変形例である。よって、実施の形態1と共通する部分が多いため、実施の形態1と相違する部分に 絞って説明する。

[0155]

<システム構成>

実施の形態1と同一であるため、説明を省略する。

[0156]

<プログラム実行部>

実施の形態1と同一であるため、説明を省略する。

[0157]

<出力制御部>

実施の形態1と同一であるため、説明を省略する。

[0158]

くビデオ再生部>

実施の形態1とほぼ同一であるが、本実施の形態では、図4に示すように、同期制御部22は、デコーダ24の状態を監視するとともに、デコーダ24の状態と実行条件情報(後述するフィールドcondition())とに基づいて同期制御信号を送信する点が異なる。なお、そのために、同期タイミング情報は、同期実行プログラムが実行されるべき時のデコーダ24の状態を示す実行条件情報を含む。

[0159]

すなわち、同期制御部22は、デコーダ24の再生状態(例:通常再生中・高速再生中・逆再生中・スロー再生中)を常に監視しており、再生状態に応じて同期タイミング情報中の各エントリに対する割り込みを発生させるかどうかを切り替える。具体的には、各エントリの後述するフィールドnormal、FF、FR、SF、SRを見て、例えば、フィールドnormal

が "1" であれば通常再生中に割り込みを発生させ、フィールドFFが "1" であれば高速再生中に割り込みを発生させる。

[0160]

<同期タイミング情報>

ここで、図18を参照しながら、本実施の形態の同期タイミング情報のデータ構造について説明する。図18(a)(b)は、同期タイミング情報のデータ構造を示す説明図である。

[0161]

図18(a)に示すように、エントリsync_info()は、timing, target, action_id、condition()の4個のフィールドで構成される。このうち、フィールドtiming、フィールドtarget、フィールドaction_idについては実施の形態1と同一であるため、説明を省略する。なお、同期タイミング中の各sync_info()はフィールドtimingの値の順に並べられていることが好ましい。

[0162]

図18(b)に示すように、フィールドcondition()(実行条件情報)は、サブフィールドnormal、FF、FR、SF、SRで構成される。サブフィールドnormalは、そのサブフィールドを含むsync_info()に関する割り込みが通常再生時に発生させるかどうかを示す。具体的には、"1"の場合に割り込みを発生させ、"2"の場合に割り込みを発生させない。同様に、サブフィールドFF、FRは、それぞれ順方向高速再生と逆方向高速再生の場合の割り込みの有無を示す。また、サブフィールドSF、SRは、それぞれ順方向スロー再生と逆方向スロー再生の場合の割り込みの有無を示す。

[0163]

このように、再生状態に応じて割り込み処理を選択できるようにすることで、再生状態 に応じた処理が可能になる。例えば、早送りの場合だけ特別なグラフィックスを表示した りすることで、ユーザはコンテンツを繰り返し楽しむことが可能になり、コンテンツの付 加価値を向上させることが可能になる。

[0164]

上記のように、本発明の再生装置は、タイミング情報は同期実行プログラムが実行されるべきデコード手段の状態を示す実行条件情報を含み、同期制御手段はデコード手段の状態を監視し、デコード手段の状態と上記実行条件情報に従って同期制御信号を送信するように構成されていてもよい。

[0165]

これにより、再生状態に応じて割り込み処理を選択でき、再生状態に応じた処理が可能になる。例えば、早送りの場合だけ特別なグラフィックスを表示したりすることで、ユーザはコンテンツを繰り返し楽しむことが可能になり、コンテンツの付加価値を向上させることが可能になる。

[0166]

なお、本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲 で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組 み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

[0167]

上述した実施の形態においては、ビデオデータ、同期タイミング情報、プログラムは、 光ディスク上に記録されているが、ハードディスクなど別の記録媒体に記録されていても よい。また、ネットワーク越しの別の記録媒体に存在してもよい。また、それぞれのデー タが別の記録媒体に存在してもよい。

[0168]

上述した実施の形態においては、プログラムと同期タイミング情報を別のファイルで管理しているが、同一のファイルで管理することも考えられる。この場合、上述した実施の形態と異なり、同期タイミング情報はプログラム実行部からビデオ再生部に送られることになる。これにより、読み出すファイル数が減少するため、オーバーヘッドが減少すると

[0169]

上述した実施の形態においては、プログラム実行部とビデオ再生部の出力の合成の対象を映像としているが、音声とした場合でも同様の仕組みは適用可能である。

. [0170]

上述した実施の形態においては、プログラム実行部は汎用のプログラムを実行することを想定しているが、これに限定されるものではない。例えば、静止画スライドショー再生のような単機能の処理部であっても本発明の効果を得ることは可能である。

[0171]

上述した実施の形態においては、プログラム実行部と出力制御部の両方について、同期 タイミング情報に基づき制御しているが、両方を制御する必要はない。例えば、プログラ ム実行部では独自のクロックを用いてビットマップ生成のタイミングを設定して、出力制 御部のみを制御したとしてもフレーム単位の制御が可能という効果が得られる。

[0172]

上述した実施の形態においては、フィールドaction_idに基づいて、出力制御部では表示バッファメモリの切替のみを行っているが、それに限定されるものではない。

[0173]

上述した実施の形態においては、プログラム実行部および出力制御部を制御対象としているが、合成部を制御対象としてもよい。その場合、制御の種類としては、表示プレーンの順番を切り替えるなどが考えられる。

[0174]

上述した実施の形態においては、表示バッファメモリを2つ用いているが、それに限定されるものではない。表示バッファメモリを1つあるいは3つ以上を用いたとしても、本発明の効果を得ることは可能である。

[0175]

上述した実施の形態においては、ビデオ再生部と並行して映像を出力するブロックは1個のプログラム実行部のみであるが、複数の映像出力ブロックを用いたとしても、本発明の効果を得ることは可能である。

[0176]

上述した実施の形態においては、同期タイミング情報に基づく制御はビデオ再生部が行っているが、本発明はそれに限定されるものではない。ビデオ再生部と共通のクロックを用いている構成要素であれば、本発明の効果を得ることは可能である。

[0177]

上述した実施の形態においては、複数の同期実行プログラムを実行した結果と同一の結果が得られる統合同期実行プログラムを指定するsync_info()中のmerged_flagの値を"1"に設定しているが、本発明はそれに限定されない。例えば、ビデオの途中から再生した場合には、警告を表示するプログラムや先頭から再生した場合と異なるグラフィックスを表示するプログラムを指定することなどにも適用可能である。

....

(0.1.7.8)

すなわち、本発明の再生装置は、データ取得手段は、コンテンツデータの途中から再生を開始した場合にのみ実行される途中再生同期実行プログラムを取得するものであり、同期タイミング情報は、タイミング指定情報とともに、実行すべき同期実行プログラムを示すアクション指定情報と、該アクション指定情報で示された同期実行プログラムが途中再生同期実行プログラムであるか否かを示す途中再生同期実行プログラム識別情報(例えばmerged_flagに "1"以外の値をセット)を含み、コンテンツデータの途中から再生を開始する際、同期制御手段は、途中再生同期実行プログラムであることを示す途中再生同期実行プログラム識別情報を含む同期タイミング情報のうち、再生を開始する時刻に最も近い過去の時刻を示すタイミング指定情報を含む同期タイミング情報と、該同期タイミング情報よりも後の時刻を示すタイミング指定情報を含む同期タイミング情報とに従って、タイミング指定情報が前のものから順に同期制御信号を送信するように構成されていてもよ

い。なお、途中再生同期実行プログラムは、他の同期実行プログラムと同じ光ディスクに 記録されていてもよい。

[0179]

これにより、再生開始時刻に応じて異なる出力を得られるため、ユーザはコンテンツを繰り返し楽しむことが可能になり、コンテンツの付加価値を向上させることができるという効果が得られる。すなわち、意図的に、途中から再生した場合に異なる結果となるように、コンテンツを作成することが可能となる。

[0180]

なお、本発明の再生装置は、第1の出力生成部と第2の出力生成部とを備えた再生装置において、同期タイミング情報に従って、第1の出力生成部のクロックに基づき第2の出力生成部の出力を制御する手段を備えて構成されていてもよい。

[0181]

さらに、本発明の再生装置は、前記同期タイミング情報は、第1の出力生成部からの出力を生成するための情報とは分離されていてもよい。

[0 1 8 2]

さらに、本発明の再生装置は、前記同期タイミング情報は、第1の出力生成部の時間軸 上の時刻を含み、制御対象と制御内容とのうちの少なくとも一方を含んでいてもよい。

[0183]

さらに、本発明の再生装置は、第1の出力生成部はビデオ再生部であり、第2の出力生 成部はプログラム実行部であってもよい。

[0184]

また、本発明の再生装置の再生方法は、第1の出力生成部と第2の出力生成部とを備える再生装置の再生方法であって、同期タイミング情報と第1の出力生成部のクロックとを 比較するステップと、比較結果に従って制御信号を発行するステップとを含んでいてもよい。

[0185]

また、本発明の記録媒体は、第1の出力生成部からの出力を生成するための情報および 第2の出力生成部からの出力を生成するための情報を記録した記録媒体において、同期タ イミング情報を記録し、該同期タイミング情報が、第1の出力生成部のクロックに基づき 第2の出力生成部の出力を制御するためのものであってもよい。

[0186]

さらに、本発明の記録媒体は、前記タイミング情報は第2の出力生成部からの出力を生成するための情報の近傍に記録してあってもよい。

[0187]

さらに、本発明の記録媒体は、前記タイミング情報と前記プログラムとが同一ファイル に格納してあってもよい。

[0188]

最後に、ビデオディスクプレーヤ1の各プロック、特にプログラム実行部10および同期制御部22は、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよい。

[0189]

すなわち、ビデオディスクプレーヤ1は、各機能を実現する制御プログラムの命令を実行するCPU (central processing unit)、上記プログラムを格納したROM (read on ly memory)、上記プログラムを展開するRAM (random access memory)、上記プログラムを展開するRAM (random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアであるビデオディスクプレーヤ1の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記ビデオディスクプレーヤ1に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である

[0190]

上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EPROM/フラッシュROM等の半導体メモリ系などを用いることができる。

[0191]

また、ビデオディスクプレーヤ1を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。

【産業上の利用可能性】

[0192]

本発明の再生装置は、AVデータ等の再生に同期させて実行するプログラムを効率よく 実行することができるため、ビデオデータ再生時にコンピュータプログラムが生成するグ ラフィック出力を重畳表示させるビデオプレーヤーなどに好適に利用することができる。

【図面の簡単な説明】

[0193]

- 【図1】本発明の実施の形態に係るビデオディスクプレーヤの構成の概略を示す機能 ブロック図である。
- 【図2】図1に示したビデオディスクプレーヤのプログラム実行部の詳細な構成を示す機能ブロック図である。
- 【図3】図1に示したビデオディスクプレーヤの出力制御部の詳細な構成を示す機能 ブロック図である。
- 【図4】図1に示したビデオディスクプレーヤのビデオ再生部の詳細な構成を示す機能ブロック図である。
- 【図5】図5 (a) (b) は、同期タイミング情報のデータ構造を示す説明図である
- 【図 6 】図1に示したビデオディスクプレーヤが再生する光ディスクのデータ配置を示す説明図である。
- 一【図7】図1に示したビデオディスクプレーヤによる再生処理を示すフローチャート である。
 - 【図8】図1に示したビデオディスクプレーヤのプログラム実行部によるプログラム実行処理を示すフローチャートである。
 - 【図9】図1に示したビデオディスクプレーヤのプログラム実行部による割り込みハンドラの処理を示すフローチャートである。
 - 【図10】同期タイミング情報の具体例を示す説明図である。
 - 【図11】図10に示した同期タイミング情報の具体例に対応するタイミングチャートである。
 - 【図12】図12(a)(b)は、同期タイミング情報のデータ構造を示す説明図である。
 - 【図13】フィールドindependent_flagの設定例を示す説明図であり、図13(a)

ページ: 23/E

は表示例、図13(b)は図13(a)に対応するsync_info()、図13(c)は表示例、図13(d)は図13(c)に対応するsync_info()である。

- 【図14】フィールドmerged_flagの設定例を示す説明図であり、図14(a)は表示例、図14(b)は図14(a)に対応するsync_info()である。
- 【図15】図1に示したビデオディスクプレーヤのプログラム実行部によるプログラム実行処理を示すフローチャートである。
- 【図16】図1に示したビデオディスクプレーヤのビデオ再生部による割り込み再現 処理を示すフローチャートである。
- 【図17】同期タイミング情報の具体例を示す説明図である。
- 【図18】図18 (a) (b) は、同期タイミング情報のデータ構造を示す説明図である。
- 【図19】従来のAV機器の構成の概略を示す機能ブロック図である。

【符号の説明】

[0194]

- 1 ビデオディスクプレーヤ (再生装置)
- 2 光ディスク (コンテンツ記録媒体)
- 10 プログラム実行部(プログラム実行手段)
- 22 同期制御部(同期制御手段)
- 24 デコーダ (デコード手段)
- 23 クロック (クロック生成手段)
- 40 出力制御部(出力制御部手段)
- 50 ディスク読み出し部 (データ取得手段)
- 60 同期処理部(同期処理手段)
- 61A プログラム格納領域(同期プログラム格納領域)
- 61B 同期タイミング情報格納領域
- 62 ビデオデータ領域(コンテンツデータ格納領域)

【書類名】図面 【図1】

出証特2004-3106516

【図5】

(a)

```
同期タイミング情報 {
    number_of_sync_info;
    for (i=0; i < number_of_sync_info; i++) {
        sync_info();
    }
}
```

(b)

```
sync_info() {
          timing;
          target;
          action_id;
}
```


【図7】

【図8】

【図9】

【図10】

entry no	timing	target	action_id
1	T1	プログラム実行部	A1
2	T2	出力制御部	表示バッファメモリ#1切替
3	Т3	プログラム実行部	A2
4	T4	出力制御部	表示バッファメモリ#2切替
5	Т5	出力制御部	出力終了
5	Т6	プログラム実行部	A3

【図12】

```
number_of_sync_info;
for (i=0; i < number_of_sync_info; i++){
    sync_info();
                                                                                                                                                                               action_
同期タイミング情報 {
                                                                                                                                   sync_info() {
   timing;
                                                                                                                                                                                   @
                                      a
```


【図15】

[図17]

entry no	timing	action_id	independent_flag	merged_flag
-	Ţ	A1 (グラフィックスAを座標x描画)	1	0
2	T2	A2 (グラフィックスAを座標yに移動)	0	0
	T2	A3 (グラフィックスAを座標yに描画)	0	1
4	т Н	A4 (画面消去後、グラフィックスCを座標zに描画)	1	0
5	14	A5 (グラフィックスDを座標wに描画)	0	0

【図18】

【図19】

【要約】

【課題】 AVデータ等の再生に同期させて実行するプログラムを効率よく実行する。 【解決手段】 ビデオディスクプレーヤ1は、光ディスク2からビデオデータ、プログラ ム、同期タイミング情報を読み出すディスク読み出し部50と、クロック信号を生成する クロック、クロック信号に従ってビデオデータを再生出力のための非圧縮ビデオデータに 変換するデコーダ、クロック信号に従って同期タイミング情報に含まれるフィールドtimi ngで指定されたタイミングでプログラム実行部10へ同期制御信号を送信する同期制御部 を含むビデオ再生部20と、同期制御部より受信した同期制御信号に従ってプログラムを 実行するプログラム実行部10とを備える。

図 1 【選択図】

特願2004-205234

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所 氏 名 大阪府大阪市阿倍野区長池町22番22号

シャープ株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.