Secant Method

Requires two initial values (x_0, x_1)

Initial values do not have to lie on either side of root (not a bracketing method)

Iterative formula:
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Like Newton-Raphson but with numerically estimated derivative.

Newton – Raphson:
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - f(x_i) / f'(x_i)$$

Secant:
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)} = x_i - f(x_i) / \left[\frac{f(x_{i-1}) - f(x_i)}{(x_{i-1} - x_i)} \right]$$

Approximate derivative

Modified Secant Method

Only one initial value required (x_0)

Iterative formula:
$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

where δ is a small perturbation fraction

Same basic idea but derivative estimated in a slightly different way

Newton – Raphson:
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Approximate derivative

Modified Secant:
$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)} = x_i - f(x_i) / \left[\frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i} \right]$$

Choice of δ important: too small -> numerical errors too large -> inefficient, method may diverge

Technique	Key Formula	Notes	
Bisection	$x_{ROOT} = \frac{(x_{LOW} + x_{HIGH})}{2}$	Root must be bracketed Slow but sure Error absolute	
False Position	$x_{ROOT} = x_{HIGH} - \frac{f(x_{HIGH})(x_{HIGH} - x_{LOW})}{f(x_{HIGH}) - f(x_{LOW})}$	Variation on bisection Typically but not always faster Error approximate	
Newton-Raphson	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$	Fast but may go haywire Derivative required Error approximate	
Secant	$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$	Fast but may go haywire Derivative not required Error approximate	
Modified Secant	$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$	Fast but may go haywire Derivative not required Error approximate	

Function *fzero*:

Two basic choices (as introduced earlier):

```
fzero (f, [low, high]); % finds root between low and high fzero (f, value); % finds root in vicinity of value
```

Combines a number of techniques

When a single value is specified begins by using an iterative search to bracket a root (note: details not the same as the iterative search presented).

Uses faster methods (secant, inverse quadratic interpolation) when it can.

When things go wrong (e.g. guess moves outside bracket) reverts to sure and safe bisection search.

fzero Options:

```
Use optimset to create an option structure:
```

```
>> myOptions = optimset ('opt1', value1, 'opt2', value2, ...);
```

Then add structure to *fzero* arguments:

```
>> root = fzero (f, [a b], myOptions);
```

Possible options:

```
'Display ' - Level of display
```

'off' 'iter' 'notify' 'final'

'TolX' - Termination tolerance on x

a positive scalar

N.B. Option 'TolFun' is NOT used by *fzero*.

 $>> f = @(x) x^2 - 4;$

>> myOptions = optimset ('display', 'iter'); % display on each iteration
>> root = fzero (f, 3, myOptions);

Search for an interval around 3 containing a sign change:

Func-count	a	f(a)	b	f(b)	Procedure
1	3	5	3	5	initial interval
3	2.91515	4.49808	3.08485	5.51632	search
5	2.88	4.2944	3.12	5.7344	search
7	2.83029	4.01057	3.16971	6.04703	search
9	2.76	3.6176	3.24	6.4976	search
11	2.66059	3.07873	3.33941	7.15167	search
13	2.52	2.3504	3.48	8.1104	search
15	2.32118	1.38786	3.67882	9.53374	search
17	2.04	0.1616	3.96	11.6816	search
18	1.64235	-1.30267	3.96	11.6816	search

Search for a zero in the interval [1.64235, 3.96]:

Func-count	x	f(x)	Procedure
18	1.64235	-1.30267	initial
19	1.87488	-0.484837	interpolation
20	2.00723	0.0289713	interpolation
21	1.99977	-0.000932028	interpolation
22	2	-1.68174e-006	interpolation
23	2	3.53495e-013	interpolation
24	2	0	interpolation

Zero found in the interval [1.64235, 3.96]

Specifying an interval eliminates the initial search phase

Specifying a relatively high x tolerance ends the search sooner

```
>> myOptions = optimset ('display', 'iter', 'TolX', 1e-3);
>> root = fzero (f, [1 4], myOptions);
                        f(x)
                                       Procedure
Func-count
             X
   2
                  1
                                       initial
                              -3
                1.6 -1.44
                                       interpolation
            2.09451 0.386953
                                       interpolation
   5
            1.98977 -0.0408233
                                       interpolation
   6
                                       interpolation
            1.99976 -0.000946972
   7
                                       interpolation
            1.99976 -0.000946972
```

Zero found in the interval [1, 4]

See p153-154 in text for another example (or, better yet, play around yourself)

Function *roots*:

(Previously discussed)

Finds all of the roots of a polynomial:

Input is a vector containing the polynomial coefficients (highest order coefficient first).

Output is a column vector.