Algorithms & Complexity: Lecture 1

Sam Barrett

February 1, 2021

1 Defining the Turing machine model

In order to talk about the time taken or the space used by an algorithm, we require a precise **model of computation**. There are many proposed models, we will focus on the Turing machine as defined by Arora and Barak in their book.

1.1 Arora-Barak Turing machines

1.1.1 Tapes

A Turing machine is defined as having k tapes where $k \geq 2$

- The first tape is the *input tape* and is **read-only**
- The 2..k-1 tapes are work tapes and are read-write
- The k^{th} tape is the *output* tape.

Each tape has a leftmost cell and *potentially* infinitely many cells to the right of it. Potentially infinite meaning that at any given time, there are a finite number of cells but we can infinitely extend the tape over time.

Each tape has a **head** that sits on a cell and can move left and right.

1.1.2 Alphabet

A Turing machine also has an alphabet, denoted Γ . This is a **finite** set and it's elements are called *symbols*. There are 4 primary symbols: \triangleright , \square , 0, 1.

Here:

- $\{0,1\}^*$ is the set of bitstrings, the empty string is denoted with ε .
- $\bullet \; \rhd$ is the left-of-tape symbol and \square is the blank symbol

At any point in time, each cell of each tape contains a symbol. All but a finite number will be blank (\Box)

1.1.3 Inital configuration

The input tape has \triangleright on the leftmost cell, then a bitstring (the **input**) and the rest of the tape is blank. The work tapes (including the output tape) have \triangleright on the leftmost cell and the rest are blank. Each tape starts with it's head on it's the leftmost cell.

1.1.4 Computation step

In a single step of computation the machine:

- reads the character at each tape head
- writes a character at each work tape head
- may move each tape head to the left or to the right. **note: our tapes** are **not** recursive, if a head on the leftmost cell moves left, it stays put

1.1.5 Formal definition

A Turing machine is defined as a (6) tuple, $M=(k,\Gamma,Q,q_{\mathtt{start}},q_{\mathtt{halt}},\delta)$ consists of the following data:

- the number of tapes, $k, k \geq 2$
- the alphabet $\{0,1,\triangleright,\square\}\subseteq\Gamma$
- a finite set of Q states, including the start state $q_{\mathtt{start}}$ and the halt state $q_{\mathtt{halt}}$
- a transition function, $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, R, S\}^k$ Where:
 - the initial Q is the state at the start of transition
 - $-\Gamma^k$ is the set of symbols read
 - the final Q is the state at the end of transition
 - $-\Gamma^{k-1}$ is the set of symbols written
 - $-\{L,R,S\}^k$ is the set of movement instructions where:
 - * L means $move\ left$
 - * R means move right
 - * S means stay

Note: we read k symbols but only write k-1 symbols as we do not write on the input tape, we also have k movement instructions as we are able to move on all k of the tapes.

1.1.6 Example transition

Say we have k =, and $\Gamma = \{ \triangleright, \square, 0, 1 \}$ and $Q = \{4, 5, 6, 7, 8 \}$ with $q_{\mathtt{start}} = 4$ and $q_{\mathtt{halt}} = 8$. We are currently in state 7 and the three tapes respectively say 1 (input), 1 (work) and \square (output).

Say that $\delta(7, \langle 1, 1 \square \rangle) = (5, \langle 0, \square \rangle, \langle L, L, S \rangle)$ then we:

- transition to state 5
- overwrite this 1 on the work tape with 0
- overwrite the \square on the output tape with \square (no change)
- move left on the input tape (if possible)
- move left on the work tape (if possible)
- stay put on the output tape

We do not transition from the halt state (regardless of δ)

2 Computing with Turing machines

2.1 Computing a function

Given a function $f: \{0,1\}^* \to \{0,1\}^*$ a Turing machine $M = (k,\Gamma,Q,q_{\mathtt{start}},q_{\mathtt{halt}},\delta)$,

1. what does it mean to say that M computes f?

It means that for every bitstring $x \in \{0,1\}^*$, if we start in state $q_{\mathtt{start}}$ with the initial configuration showing x (meaning x appears on the input tape and and the work tapes are blank), when we run M, we eventually reach $q_{\mathtt{halt}}$ with the output tape showing \triangleright on the leftmost cell and then the bitstring f(x) followed by all blanks.

Our initial configuration can be shown as:

Given that f(x) = 0110111, our required output tape will then be as follows:

If the machine, M does this for every bitstring x then we say it **computes** f. In the Arora-Barak definition, it does not matter what is on the work tape at the end of execution or the location of the work heads.