NAME: Solution

ChBE 2130 Thermodynamics I Fall 2015 Exam 1

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________

Problem	Possible Points	Score		
1	20			
2	28			
3	28			
4	24			
Total	100			

- 1. Concept Questions [20 pts: 5 points each, no partial credit]
 - From diagram, what is the condition of water at 370 K and 15 MPa?
 - a. Vapor
 - b. Liquid

370K≈ 100°C

- c. Mixed Phase
- d. Supercritical
- From diagram, what is the approx. temperature in a 500 cm³ vessel containing 5 mole of water at 9 MPa?

500 cm3/5 mole =

b. 200° C

100 cm3/mol

d. 400° C

log, (100) = 2

- Water is in vapor-liquid (mixed) equilibrium in a fixed pressure container.
 Heat is added until the temperature increases by 5°C. How does the phase change?
 - a. Some vapor is condensed
 - b. All vapor is condensed
 - c. Some liquid evaporates
- d. All liquid evaporates

All liquid will evaporate

before temperature

will start to rise

- A gas undergoes reversible expansion from 40 bar and 500 K to 5 bar and 500 K by one of two pathways. Which process creates more work?
 - a. A constant pressure process to the final volume and then constant volume process to 5 bar.
 - b. A constant volume process to 5 bar and then constant pressure to the final volume.
 - c. Same work for both

Compare area under A versus area under B

--- isotherm 500 K

2 | Page

2. **[28 pts]** Consider an isothermal, mechanically reversible compression of a fluid from V_1 to V_2 . Develop the equation for heat (in terms of V_1 and V_2) using the van der Waals equation of state:

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$

Assume that the coefficients, a and b, are constant and the internal energy is only a function of temperature. $|Softward | \Rightarrow \Delta T = 0$

Show intermediate steps for complete credit.

$$Q = RT \ln \left(\frac{V_2 - b}{V_1 - b} \right) + a \left(\frac{1}{V_2} - \frac{1}{V_1} \right)$$

- 3. An ideal gas undergoes the following cyclic process in a closed system:
 - Initially at 30°C and 100 kPa (state 1)
 - Adiabatically compressed to 500 kPa (state 2)
 - Cooled at constant pressure to 30°C (state 3)
 - Expanded isothermally to the original state

The process steps are mechanically reversible. $C_p = (7/2) R$ and $C_v = (5/2) R$

a. [12 pts] Complete the following table: Note $\mathcal U$

State	Т (К)	P (kPa)	
1	303	100	
2	480	500	
3	303	500	

Adiabatic Step
$$T_2 = \left(\frac{P_2}{P_1}\right)^{R/Q} \Rightarrow T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{R/Q}$$

 $T_2 = 303 \left(\frac{500}{100}\right)^{2/2} = 479.9$

b. [16 pts] Determine W for each step and the total process

Step	W (J/mol)
12	3679
23	1472
31	-4054
Total	1096

$$dW = dU - dQ$$
 W_{12} adiabatic, $dQ = 0$
 $W_{12} = \Delta U_{12} = C_{r}dT$ Ideal

 $W_{12} = \frac{5}{2} \left(8.314 \right) (480 - 303) K$
 $W_{12} = 3678.9 \ 1/mol$

$$W_{23} \Rightarrow constant pressure $W_{23} = \int \left[R dT + \frac{RT}{R} \right] P = -R \Delta T$

$$W_{23} = -8.314 \frac{J}{mol \ K} \left(303 - 480 \right) = 1471.6 \ J/mol$$$$

$$W_{31} \Rightarrow isothermal$$
 $W_{31} = \int [-R_{0}^{i}T + R_{p}^{T}JP] = \frac{RT}{P}JP$
 $W_{31} = RT_{3} \ln \left(\frac{P_{1}}{P_{3}}\right) = 8.314 \text{ M} \left(303 \text{ K}\right) \ln \left(\frac{100}{500}\right)$
 $W_{31} = -4054.4 \text{ M/mal}$
 $W_{70T} = W_{12} + W_{23} + W_{31} = 3679 + 1472 - 4054$
 $W_{70T} = 1096 \text{ M/ml}$

- 4. Five mol/s of water enter a boiler at 1 atm and 25°C and exit at 130°C and 1 atm. At 1 atm, the heat of fusion at 0°C is 6.02 kJ/mol and the heat of vaporization at 100°C is 40.6 kJ/mol.
 - a. [2 pts] What is the phase of the inlet stream?
 - b. [2 pts] What is the phase of the outlet stream?

c. [20 pts] How much heat is required in kJ/s to be added to the boiler?

Table C.4: Standard Enthalpies and Gibbs Energies of Formation at 298.15 K^\dagger

Joules per mole of the substance formed

		State	Λ No	A.C.º
Classical :			$\Delta H_{f_{298}}^{\circ}$	$\Delta G_{f_{298}}^{\circ}$
Chemical species		(Note 2)	(Note 1)	(Note 1)
Paraffins:				
Methane	CH_4	(g)	-74,520	-50,460
Ethane	C_2H_6	(g)	-83,820	-31,855
Propane	C_3H_8	(g)	-104,680	-24,290
<i>n</i> -Butane	C_4H_{10}	(g)	-125,790	-16,570
<i>n</i> -Pentane	C_5H_{12}	(g)	-146,760	-8,650
n-Hexane	$C_{6}H_{14}$	(g)	-166,920	150
n-Heptane	$C_{7}H_{16}$	(g)	-187,780	8,260
n-Octane	C_8H_{18}	(g)	-208,750	16,260
1-Alkenes:				
Ethylene	C_2H_4	(g)	52,510	68,460
Propylene	C_3H_6	(g)	19,710	62,205
1-Butene	C_4H_8	(g)	-540	70,340
1-Pentene	C_5H_{10}	(g)	-21,280	78,410
1-Hexene	C_6H_{12}	(g)	-41,950	86,830
1-Heptene	C_7^{12}	(g)	-62,760	,
Miscellaneous organics:				
Acetaldehyde	C_2H_4O	(g)	-166,190	-128,860
Acetic acid	$C_2H_4O_2$	(l)	-484,500	-389,900
Acetylene	C_2H_2	(g)	227,480	209,970
Benzene	C_6H_6	(g)	82,930	129,665
Benzene	C_6H_6	(l)	49,080	124,520
1,3-Butadiene	C_4H_6	(g)	109,240	149,795
Cyclohexane	C_6H_{12}	(g)	-123,140	31,920
Cyclohexane	$C_{6}H_{12}$	(l)	-156,230	26,850
1,2-Ethanediol	$C_2H_6O_2$	(l)	-454,800	-323,080
Ethanol	C_2H_6O	(g)	-235,100	-168,490
Ethanol	C_2H_6O	(l)	-277,690	-174,780
Ethylbenzene	C_8H_{10}	(g)	29,920	130,890
Ethylene oxide	C_2H_4O	(g)	-52,630	-13,010
Formaldehyde	CH_2O	(g)	-108,570	-102,530
Methanol	CH_4O	(g)	-200,660	-161,960
Methanol	CH_4O	(l)	-238,660	-166,270
Methylcyclohexane	C ₇ H ₁₄	(g)	-154,770	27,480
Methylcyclohexane	C_7H_{14}	(l)	-190,160	20,560
Styrene	C_8H_8	(g)	147,360	213,900
Toluene	C_7H_8	(g)	50,170	122,050
Toluene	C_7H_8	(l)	12,180	113,630

		State	$\Delta H_{f_{298}}^{\circ}$	$\Delta G^{\circ}_{f_{298}}$
Chemical species		(Note 2)	(Note 1)	(Note 1)
Miscellaneous inorganics:				
Ammonia	NH_3	(g)	-46,110	-16,450
Ammonia	NH_3	$(\overset{\circ}{aq})$,	-26,500
Calcium cărbide	CaC ₂	(s)	-59,800	-64,900
Calcium carbonate	CaCO ₃	(s)	-1,206,920	-1,128,790
Calcium chloride	CaCl ₂	(s)	-795,800	-748,100
Calcium chloride	CaCl ₂	(aq)	, ,	-8,101,900
Calcium chloride	$CaCl_2 \cdot 6H_2O$	(s)	-2,607,900	, ,
Calcium hydroxide	$Ca(OH)_2$	(s)	-986,090	-898,490
Calcium hydroxide	$Ca(OH)_2$	(aq)	,	-868,070
Calcium oxide	CaO	(s)	-635,090	-604,030
Carbon dioxide	CO ₂	(g)	-393,509	-394,359
Carbon monoxide	CO	(g)	-110,525	-137,169
Hydrochloric acid	HCl	(g)	-92,307	-95,299
Hydrogen cyanide	HCN	(g)	135,100	124,700
Hydrogen sulfide	H_2S	(g)	-20,630	-33,560
Iron oxide	FeO	(s)	-272,000	22,200
Iron oxide (hematite)	Fe ₂ O ₃	(s)	-824,200	-742,200
Iron oxide (magnetite)	Fe ₃ O ₄	(s)	-1,118,400	-1,015,400
Iron sulfide (pyrite)	FeS ₂	(s)	-178,200	-166,900
Lithium chloride	LiCl	(s)	-408,610	100,500
Lithium chloride	LiCl·H ₂ O	(s)	-712,580	
Lithium chloride	LiCl·2H ₂ O	(s)	-1,012,650	
Lithium chloride	LiCl·3H ₂ O	(s)	-1,311,300	
Nitric acid	HNO ₃	(l)	-174,100	-80,710
Nitric acid	HNO ₃	(aq)	171,100	-111,250
Nitrogen oxides	NO	(g)	90,250	86,550
Titlogen oxides	NO ₂	(g)	33,180	51,310
	N_2O	(g)	82,050	104,200
	N_2O_4	(g)	9,160	97,540
Sodium carbonate	Na ₂ CO ₃	(s)	-1,130,680	-1,044,440
Sodium carbonate	Na ₂ CO ₃ ·10H ₂ O	(s)	-4,081,320	1,0 / 1,1 / 0
Sodium chloride	NaCl	(s)	-411,153	-384,138
Sodium chloride	NaCl	(aq)	111,155	-393,133
Sodium hydroxide	NaOH	(s)	-425,609	-379,494
Sodium hydroxide	NaOH	(aq)	125,000	-419,150
Sulfur dioxide	SO ₂	(g)	-296,830	-300,194
Sulfur trioxide	SO ₃	(g)	-395,720	-371,060
Sulfur trioxide	SO ₃	(l)	-441,040	371,000
Sulfuric acid	H ₂ SO ₄	(l)	-813,989	-690,003
Sulfuric acid	H ₂ SO ₄	(aq)	015,505	-744,530
Water	H ₂ SO ₄ H ₂ O		-241,818	-744,530 $-228,572$
Water	H ₂ O H ₂ O	(g) (l)	-285,830	-237,129
vv alti	1120	(1)	-205,050	-231,129

[†]From *TRC Thermodynamic Tables—Hydrocarbons*, Thermodynamics Research Center, Texas A & M Univ. System, College Station, TX; "The NBS Tables of Chemical Thermodynamic Properties," *J. Phys. and Chem. Reference Data*, vol. 11, supp. 2, 1982. *Notes*

- 1. The standard property changes of formation $\Delta H_{f_{298}}^{\circ}$ and $\Delta G_{f_{298}}^{\circ}$ are the changes occurring when 1 mol of the listed compound is formed from its elements with each substance in its standard state at 298.15 K (25°C).
- 2. Standard states: (a) Gases (g): pure ideal gas at 1 bar and 25° C. (b) Liquids (l) and solids (s): pure substance at 1 bar and 25° C. (c) Solutes in aqueous solution (aq): Hypothetical ideal 1-molal solution of solute in water at 1 bar and 25° C.