We claim:

A peptide compound of the formula (I) [SEQ. ID. NO.
 4]:

 Xaa_1 Xaa_2 Xaa_3 Gly Xaa_5 Xaa_6 Xaa_7 Xaa_8 Xaa_9 Xaa_{10} Xaa_{11} Xaa_{12} Xaa_{13} Xaa_{14} Xaa_{15} Xaa_{16} Xaa_{17} Ala Xaa_{19} Xaa_{20} Xaa_{21} Xaa_{22} Xaa_{23} Xaa_{24} Xaa_{25} Xaa_{26} Xaa_{27} Xaa_{28} - Z_1 ; wherein

Xaa₁ is His, Arg or Tyr;

Xaa2 is Ser, Gly, Ala or Thr;

Xaa₃ is Asp or Glu;

Xaa, is Ala or Thr;

Xaa₆ is Ala, Phe, Tyr or naphthylalanine;

Xaa, is Thr or Ser;

Xaa₈ is Ala, Ser or Thr;

Xaa, is Asp or Glu;

Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;

Xaa, is Ala or Ser;

Xaa₁₂ is Ala or Lys;

Xaa, is Ala or Gln;

Xaa, is Ala, Leu, Ile, pentylglycine, Val or Met;

Xaa₁₅ is Ala or Glu;

Xaa₁₆ is Ala or Glu;

Xaa, is Ala or Glu;

Xaa₁₉ is Ala or Val;

Xaa₂₀ is Ala or Arg;

Xaa21 is Ala or Leu;

Xaa₂₂ is Phe, Tyr or naphthylalanine;

 Xaa_{23} is Ile, Val, Leu, pentylglycine, tert-butylglycine

or Met;

```
Xaa24 is Ala, Glu or Asp;
Xaa<sub>25</sub> is Ala, Trp, Phe, Tyr or naphthylalanine;
Xaa<sub>26</sub> is Ala or Leu;
Xaa<sub>27</sub> is Ala or Lys;
Xaa<sub>28</sub> is Ala or Asn;
Z_1 is -OH,
      -NH_{2}
      Gly-Z_2,
      Gly Gly -Z<sub>2</sub>
      Gly Gly Xaa31-Z2,
      Gly Gly Xaa<sub>31</sub> Ser-Z<sub>2</sub>,
      Gly Gly Xaa31 Ser Ser-Z2,
      Gly Gly Xaa31 Ser Ser Gly-Z2,
      Gly Gly Xaa, Ser Ser Gly Ala-Z,
      Gly Gly Xaa31 Ser Ser Gly Ala Xaa36-Z2,
      Gly Gly Xaa31 Ser Ser Gly Ala Xaa36 Xaa37-Z2 or
      Gly Gly Xaa<sub>31</sub> Ser Ser Gly Ala Xaa<sub>36</sub> Xaa<sub>37</sub> Xaa<sub>38</sub>-Z<sub>2</sub>;
wherein
      Xaa<sub>31</sub>, Xaa<sub>36</sub>, Xaa<sub>37</sub> and Xaa<sub>38</sub> are independently
      selected from the group consisting of Pro,
      homoproline, 3Hyp, 4Hyp, thioproline,
      N-alkylglycine, N-alkylpentylglycine and
      N-alkylalanine; and
      Z_2 is -OH or -NH<sub>2</sub>;
```

provided that no more than three of Xaa_3 , Xaa_5 , Xaa_6 , Xaa_8 , Xaa_{10} , Xaa_{11} , Xaa_{12} , Xaa_{13} , Xaa_{14} , Xaa_{15} , Xaa_{16} , Xaa_{17} , Xaa_{19} , Xaa_{20} , Xaa_{21} , Xaa_{24} , Xaa_{25} , Xaa_{26} , Xaa_{27} , and Xaa_{28} are Ala; and pharmaceutically acceptable salts thereof.

2. A compound according to claim 1 wherein Xaa_1 is His or Tyr.

- 3. A compound according to claim 2 wherein Xaa, is His.
- 4. A compound according to claim 2 wherein Xaa2 is Gly.
- 5. A compound according to claim 4 wherein Xaa₁₄ is Leu, pentylglycine or Met.
- 6. A compound according to claim 5 wherein Xaa_{25} is Trp or Phe.
- 7. A compound according to claim 6 wherein Xaa_6 is Phe or naphthylalanine; and Xaa_{22} is Phe or naphthylalanine; Xaa_{23} is Ile or Val.
 - 8. A compound according to claim 7 wherein Z_1 is $-NH_2$.
- 9. A compound according to claim 7 wherein Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently selected from the group consisting of Pro, homoproline, thioproline and N-alkylalanine.
 - 10. A compound according to claim 9 wherein Z_2 is $-NH_2$.
 - 11. A compound according to claim 1 wherein Xaa2 is Gly.
- 12. A compound according to claim 1 wherein Xaa, is Leu, pentylglycine or Met.
- 13. A compound according to claim 1 wherein Xaa_{25} is Trp or Phe.
- 14. A compound according to claim 1 wherein Xaa₆ is Phe or naphthylalanine; Xaa₂₂ is Phe or naphthylalanine; Xaa₂₃ is

Ile or Val.

- 15. A compound according to claim 1 wherein Z_1 is $-NH_2$.
- 16. A compound according to claim 1 wherein Xaa_{31} , Xaa_{36} , Xaa_{37} and Xaa_{38} are independently selected from the group consisting of Pro, homoproline, thioproline and N-alkylalanine.
 - 17. A compound according to claim 1 wherein Z_2 is $-NH_2$.
- 18. A compound according to claim 1 which has an amino acid sequence selected from SEQ. ID. NOS. 5 to 65.
- 19. A peptide compound of the formula (I) [SEQ. ID. NO. 4]:

 $Xaa_1 \ Xaa_2 \ Xaa_3 \ Gly \ Xaa_5 \ Xaa_6 \ Xaa_7 \ Xaa_8 \ Xaa_9 \ Xaa_{10}$ $Xaa_{11} \ Xaa_{12} \ Xaa_{13} \ Xaa_{14} \ Xaa_{15} \ Xaa_{16} \ Xaa_{17} \ Ala \ Xaa_{18} \ Xaa_{19}$ $Xaa_{20} \ Xaa_{21} \ Xaa_{22} \ Xaa_{23} \ Xaa_{24} \ Xaa_{25} \ Xaa_{26} \ Xaa_{27} \ Xaa_{28}-Z_1;$

wherein

Xaa₁ is His or Arg;

Xaa2 is Gly or Ala;

Xaa₃ is Asp or Glu;

Xaas is Ala or Thr;

Xaa₆ is Ala, Phe or naphthylalanine;

Xaa, is Thr or Ser;

Xaa₈ is Ala, Ser or Thr;

Xaa, is Asp or Glu;

Xaa₁₀ is Ala, Leu or pentylglycine;

Xaa₁₁ is Ala or Ser;

```
Xaa<sub>12</sub> is Ala or Lys;
Xaa<sub>13</sub> is Ala or Gln;
Xaa, is Ala, Leu or pentylglycine;
Xaa<sub>15</sub> is Ala or Glu;
Xaa<sub>16</sub> is Ala or Glu;
Xaa<sub>17</sub> is Ala or Glu;
Xaa<sub>19</sub> is Ala or Val;
Xaa<sub>20</sub> is Ala or Arg;
Xaa21 is Ala or Leu;
Xaa22 is Phe or naphthylalanine;
Xaa23 is Ile, Val or tert-butylglycine;
Xaa24 is Ala, Glu or Asp;
Xaa<sub>25</sub> is Ala, Trp, or Phe;
Xaa<sub>26</sub> is Ala or Leu;
Xaa<sub>27</sub> is Ala or Lys;
Xaa<sub>28</sub> is Ala or Asn;
Z_1 is -OH,
       -NH_{2}
       Gly-Z_2
       Gly Gly -Z2,
       Gly Gly Xaa_{31}-Z_2,
       Gly Gly Xaa<sub>31</sub> Ser-Z<sub>2</sub>,
       Gly Gly Xaa31 Ser Ser-Z2,
       Gly Gly Xaa31 Ser Ser Gly-Z2,
       Gly Gly Xaa<sub>31</sub> Ser Ser Gly Ala-Z<sub>2</sub>,
       Gly Gly Xaa31 Ser Ser Gly Ala Xaa36-Z2,
       Gly Gly Xaa<sub>31</sub> Ser Ser Gly Ala Xaa<sub>36</sub> Xaa<sub>37</sub>-Z<sub>2</sub> or Gly Gly
       Xaa<sub>31</sub> Ser Ser Gly Ala Xaa<sub>36</sub> Xaa<sub>37</sub> Xaa<sub>38</sub>-Z<sub>2</sub>;
       Xaa_{31}, Xaa_{36}, Xaa_{37} and Xaa_{38} are independently selected
       from the group consisting of Pro, homoproline,
       thioproline and N-methylylalanine; and
       Z_2 is -OH or -NH<sub>2</sub>;
```

provided that no more than three of Xaa₃, Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala; and pharmaceutically acceptable salts thereof.

92

- 20. A compound according to claim 19 which has an amino acid sequence selected from SEQ. ID. NOS. 6-19.
- 21. A composition comprising a compound of any of claims 1 to 19 in a pharmaceutically acceptable carrier.
- 22. A composition comprising a compound of claim 20 in a pharmaceutically acceptable carrier.
- 23. A method for the treatment of diabetes mellitus comprising the administration of a therapeutically effective amount of a compound according to claim 1.
- 24. A method for the treatment of diabetes mellitus comprising the administration of a therapeutically effective amount of a compound according to claim 18.
- 25. A method for the treatment of diabetes mellitus comprising the administration of a therapeutically effective amount of a compound according to claim 19.
- 26. A method for the treatment of diabetes mellitus comprising the administration of a therapeutically effective amount of a compound according to claim 20.
- 27. The method of claim 23 further comprising the administration of a therapeutically effective amount of an insulin.

- 28. The method of claim 24 further comprising the administration of a therapeutically effective amount of an insulin.
- 29. The method of claim 25 further comprising the administration of a therapeutically effective amount of an insulin.
- 30. The method of claim 26 further comprising the administration of a therapeutically effective amount of an insulin.
- 31. A method for the treatment of a hyperglycemic condition in a mammal comprising the step of administering a therapeutically effective amount of a compound according to claim 1.
- 32. A method for the treatment of a hyperglycemic condition in a mammal comprising the step of administering a therapeutically effective amount of a compound according to claim 18.
- 33. A method for the treatment of a hypoglycemic condition in a mammal comprising the step of administering a therapeutically effective amount of a compound according to claim 19.
- 34. A method for the treatment of a hypoglycemic condition in a mammal comprising the step of administering a therapeutically effective amount of a compound according to claim 20.

Xaa₂₄ is Ala, Glu or Asp;

Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;

WO 99/25727 PCT/US98/24210

94

35. A peptide compound of the formula (II) [SEQ. ID. NO. 66]: 10 Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀ $Xaa_{21} Xaa_{22} Xaa_{23} Xaa_{24} Xaa_{25} Xaa_{26} X_1-Z_1$; wherein Xaa₁ is His, Arg or Tyr or 4-imidazopropionyl; Xaa2 is Ser, Gly, Ala or Thr; Xaa₃ is Asp or Glu; Xaa₅ is Ala or Thr; Xaa₆ is Ala, Phe, Tyr or naphthylalanine; Xaa, is Thr or Ser; Xaa₈ is Ala, Ser or Thr; Xaa, is Asp or Glu; Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met; Xaa₁₁ is Ala or Ser; Xaa₁₂ is Ala or Lys; Xaa₁₃ is Ala or Gln; Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met; Xaa₁₅ is Ala or Glu; Xaa₁₆ is Ala or Glu; Xaa₁₇ is Ala or Glu; Xaa₁₉ is Ala or Val; Xaa₂₀ is Ala or Arg; Xaa_{21} is Ala, Leu or Lys-NH^{ϵ}-R where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl or cycloalkylkanoyl; Xaa₂₂ is Phe, Tyr or naphthylalanine; Xaa23 is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;

Xaa₂₆ is Ala or Leu;

 X_1 is Lys Asn, Asn Lys, Lys-NH^{ϵ}-R Asn, Asn Lys-NH^{ϵ}-R, Lys-NH^{ϵ}-R Ala, Ala Lys-NH^{ϵ}-R where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl or cycloalkylalkanoyl

 Z_1 is -OH,

-NH₂,

 $Gly-Z_2$,

Gly Gly-Z₂

Gly Gly Xaa31-Z2,

Gly Gly Xaa31 Ser-Z2,

Gly Gly Xaa31 Ser Ser-Z2,

Gly Gly Xaa31 Ser Ser Gly-Z2,

Gly Gly Xaa_{31} Ser Ser Gly $Ala-Z_2$,

Gly Gly Xaa31 Ser Ser Gly Ala Xaa36-Z2,

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂ or

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; wherein

Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently

selected from the group consisting of Pro,

homoproline, 3Hyp, 4Hyp, thioproline,

N-alkylglycine, N-alkylpentylglycine and

N-alkylalanine; and

 Z_2 is -OH or -NH₂;

provided that no more than three of Xaa_3 , Xaa_5 , Xaa_6 , Xaa_8 , Xaa_{10} , Xaa_{11} , Xaa_{12} , Xaa_{13} , Xaa_{14} , Xaa_{15} , Xaa_{16} , Xaa_{17} , Xaa_{19} , Xaa_{20} , Xaa_{21} , Xaa_{24} , Xaa_{25} , and Xaa_{26} are Ala; and pharmaceutically acceptable salts thereof.

- 36. A compound according to claim 35 wherein Xaa₁ is His, Tyr or 4-imidazopropionyl.
 - 37. A compound according to claim 36 wherein Xaa, is His.

- 38. A compound according to claim 36 wherein Xaa₁ is 4-imidazopropionyl.
- 39. A compound according to claim 35 wherein Xaa_2 is Gly.
- 40. A compound according to claim 35 wherein Xaa_{14} is Leu, pentylglycine or Met.
- 41. A compound according to claim 35 wherein Xaa_{25} is Trp or Phe.
- 42. A compound according to claim 35 wherein Xaa_6 is Phe or naphthylalanine; Xaa_{22} is Phe or naphthylalanine; and Xaa_{23} is Ile or Val.
 - 43. A compound according to claim 35 wherein Z_1 is $-NH_2$.
- 44. A compound according to claim 35 wherein Xaa_{31} , Xaa_{36} , Xaa_{37} and Xaa_{38} are independently selected from the group consisting of Pro, homoproline, thioproline and N-alkylalanine.
 - 45. A compound according to claim 35 wherein Z_2 is $-NH_2$.
- 46. A compound according to claim 35 wherein X_1 is Lys Asn, Lys-NH^{ϵ}-R Asn, or Lys-NH^{ϵ}-R Ala where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl.
- 47. A compound according to claim 35 wherein Xaa_{21} is Lys-NH^e-R where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl or cycloalkylkanoyl.

WO 99/25727 PCT/US98/24210 97

- 48. A compound according to claim 35 wherein said compound has an amino acid sequence selected from SEQ. ID. NOS. 67-74.
- 49. A composition comprising a compound of any of claims 35-47 in a pharmaceutically acceptable carrier.
- 50. A composition comprising a compound of claim 48 in a pharmaceutically acceptable carrier.