#### **Dependency Grammar**

NASSLLI short course on Dependency Parsing Summer 2010

Sandra Kübler & Markus Dickinson

#### Where are we going?

```
Monday Dependency Grammar
Tuesday Transition-Based Parsing
Wednesday Accounting for Non-Projectivity
Thursday Graph-Based Parsing
Friday Practical Issues (Treebanks, Software, Conversions, ...)
```

A good book to cover this topic is: Kübler, McDonald, & Nivre (2009), *Dependency Parsing* 

#### **Dependency Grammar**

Dependency Grammar (DG) is based on word-word relations

- Not a coherent grammatical framework: wide range of different kinds of DG
  - just as there are wide ranges of "generative syntax"
- Different core ideas than phrase structure grammar
- ▶ We will base a lot of our discussion on [Mel'čuk(1988)]

Dependency grammar is important for those interested in CL:

► Increasing interest in dependency-based approaches to syntactic parsing in recent years (e.g., CoNLL-X shared task, 2006)

### **Dependency Syntax**

- The basic idea:
  - Syntactic structure consists of lexical items, linked by binary asymmetric relations called dependencies.
- ▶ In the (translated) words of Lucien Tesnière [Tesnière(1959)]:
  - The sentence is an *organized whole*, the constituent elements of which are *words*. [1.2] Every word that belongs to a sentence ceases by itself to be isolated as in the dictionary. Between the word and its neighbors, the mind perceives *connections*, the totality of which forms the structure of the sentence. [1.3] The structural connections establish *dependency* relations between the words. Each connection in principle unites a *superior* term and an *inferior* term. [2.1] The superior term receives the name *governor*. The inferior term receives the name *subordinate*. Thus, in the sentence *Alfred parle* [...], *parle* is the governor and *Alfred* the subordinate. [2.2]

#### **Overview:** constituency

(1) Small birds sing loud songs

What you might be more used to seeing:



#### Overview: dependency

The corresponding dependency tree representations [Hudson(2000)]:





### Constituency vs. Relations

- ▶ DG is based on relationships between words, i.e., dependency relations
  - ▶  $A \rightarrow B$  means A governs B or B depends on A ...
  - ▶ Dependency relations can refer to syntactic properties, semantic properties, or a combination of the two
    - ightarrow Some variants of DG separate syntactic and semantic relations by representing different layers of dependency structures
  - These relations are generally things like subject, object/complement, (pre-/post-)adjunct, etc.
    - ► Subject/Agent: *John* fished.
    - Object/Patient: Mary hit John.
- ▶ PSG is based on groupings, or constituents
  - Grammatical relations are not usually seen as primitives, but as being derived from structure

### Simple relation example

For the sentence John loves Mary, we have the relations:

- ▶ loves →<sub>subj</sub> John
- ightharpoonup loves ightharpoonup Mary

Both *John* and *Mary* depend on *loves*, which makes *loves* the head, or **root**, of the sentence (i.e., there is no word that governs *loves*)

► The structure of a sentence, then, consists of the set of pairwise relations among words.

## **Dependency Structure**



# **Terminology**

| Superior | Inferior    |
|----------|-------------|
| Head     | Dependent   |
| Governor | Modifier    |
| Regent   | Subordinate |
| :        | :           |









#### Phrase Structure



#### Comparison

- Dependency structures explicitly represent
  - head-dependent relations (directed arcs),
  - functional categories (arc labels),
  - possibly some structural categories (parts-of-speech).
- ► Phrase structures explicitly represent
  - phrases (nonterminal nodes),
  - structural categories (nonterminal labels),
  - possibly some functional categories (grammatical functions).
- ▶ Hybrid representations may combine all elements.

#### **Some Theoretical Frameworks**

- ▶ Word Grammar (WG) [Hudson(1984), Hudson(1990)]
- ► Functional Generative Description (FGD) [Sgall et al.(1986)Sgall, Hajičová and Panevová]
- ▶ Dependency Unification Grammar (DUG) [Hellwig(1986), Hellwig(2003)]
- ▶ Meaning-Text Theory (MTT) [Mel'čuk(1988)]
- (Weighted) Constraint Dependency Grammar ([W]CDG) [Maruyama(1990), Harper and Helzerman(1995), Menzel and Schröder(1998), Schröder(2002)]
- ► Functional Dependency Grammar (FDG)
  [Tapanainen and Järvinen(1997), Järvinen and Tapanainen(1998)]
- ► Topological/Extensible Dependency Grammar ([T/X]DG) [Duchier and Debusmann(2001), Debusmann et al.(2004)Debusmann, Duchier and Kruijff]

#### Some Theoretical Issues

- Dependency structure sufficient as well as necessary?
- ► Mono-stratal or multi-stratal syntactic representations?
- What is the nature of lexical elements (nodes)?
  - Morphemes?
  - Word forms?
  - Multi-word units?
- What is the nature of dependency types (arc labels)?
  - Grammatical functions?
  - Semantic roles?
- What are the criteria for identifying heads and dependents?
- What are the formal properties of dependency structures?

#### **Some Theoretical Issues**

- Dependency structure sufficient as well as necessary?
- ▶ Mono-stratal or multi-stratal syntactic representations?
- ▶ What is the nature of lexical elements (nodes)?
  - Morphemes?
  - Word forms?
  - Multi-word units?
- ▶ What is the nature of dependency types (arc labels)?
  - Grammatical functions?
  - Semantic roles?
- What are the criteria for identifying heads and dependents?
- What are the formal properties of dependency structures?

### Criteria for Heads and Dependents

- ► Criteria for a syntactic relation between a head *H* and a dependent *D* in a construction *C* [Zwicky(1985), Hudson(1990)]:
  - 1. H determines the syntactic category of C; H can replace C.
  - 2. H determines the semantic category of C; D specifies H.
  - 3. H is obligatory; D may be optional.
  - 4. H selects D and determines whether D is obligatory.
  - 5. The form of D depends on H (agreement or government).
  - 6. The linear position of D is specified with reference to H.
- Issues:
  - Syntactic (and morphological) versus semantic criteria
  - Exocentric versus endocentric constructions

#### **Some Clear Cases**

| Construction | Head | Dependent        |  |
|--------------|------|------------------|--|
| Exocentric   | Verb | Subject (sbj)    |  |
|              | Verb | Object (obj)     |  |
| Endocentric  | Verb | Adverbial (vmod) |  |
|              | Noun | Attribute (nmod) |  |



- ► Complex verb groups (auxiliary ← main verb)
- ▶ Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ← nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ▶ Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- ▶ Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ▶ Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- ▶ Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ← nominal)
- Punctuation



- ► Complex verb groups (auxiliary ← main verb)
- ► Subordinate clauses (complementizer ↔ verb)
- ▶ Coordination (coordinator ↔ conjuncts)
- ▶ Prepositional phrases (preposition ↔ nominal)
- Punctuation



#### Coordination

Many different ways to capture coordination ...





... including allowing some degree of constituency

### Valency and Grammaticality

An important concept in many variants of DG is that of **valency** = the ability of a word to take arguments

A lexicon might look like the following

[Hajič et al.(2003) Hajič, Panevová, Urešová, Bémová, Kolářová and Pajas]:

|                   | Slot <sub>1</sub> | $Slot_2$ | $Slot_3$  |
|-------------------|-------------------|----------|-----------|
| sink <sub>1</sub> | ACT(nom)          | PAT(acc) |           |
| $sink_2$          | PAT(nom)          |          |           |
| give              | ACT(nom)          | PAT(acc) | ADDR(dat) |

To determine grammaticality (roughly) ...

- 1. Words have valency requirements that must be satisfied
- 2. Apply general rules to the valencies to see if a sentence is valid

# **Capturing Adjuncts and Complements**

There are two main kinds of dependencies for  $A \rightarrow B$ :

- ► Head-Complement: if A (the head) has a slot for B, then B is a complement
- ► Head-Adjunct: if B has a slot for A (the head), then B is an adjunct

B is dependent on A in either case, but the selector is different

► The adjunct/complement distinction is captured in the type of dependency relation and/or in the lexicon

#### **Dependency Graphs**

- ▶ A dependency structure can be defined as a directed graph G, consisting of
  - ▶ a set V of nodes  $(V \subseteq \{w_0, w_1, ..., w_n\})$ ,
  - ▶ a set A of arcs (edges),
  - ▶ a linear precedence order < on V (not in every theory)
- Labeled graphs:
  - Nodes in V are labeled with word forms (and annotation)
  - Arcs in A are labeled with dependency types from a label set R
    - $A \subseteq V \times R \times V$
    - ▶ Also: if  $(w_i, r, w_j) \in A$ , then  $(w_i, r', w_j) \notin A$  for all  $r' \neq r$
- ▶ Notational conventions  $(i, j \in V)$ :
  - $i \rightarrow j \equiv (i,j) \in A$

### **Dependency Graphs**

A well-formed dependency graph  $G = (V, A) \dots$ 

- ▶ is a dependency graph that is a directed tree originating out of node w<sub>0</sub>
- ▶ has the spanning node set  $V = V_S$  (i.e., covers all words in the sentence S)

e.g., Economic news had little effect on financial markets .

- 1. G = (V, A)
- 2.  $V = V_S = \{\text{root, Economic, news, had, little, effect, on, financial, markets, .} \}$
- A = {(root, PRED, had), (had, SBJ, news), (had, OBJ, effect), (had, PU, .), (news, ATT, Economic), (effect, ATT, little), (effect, ATT, on), (on, PC, markets), (markets, ATT, financial)}

### Formal Conditions on Dependency Graphs

- Intuitions:
  - Syntactic structure is complete (Connectedness).
  - Syntactic structure is hierarchical (Acyclicity).
  - Every word has at most one syntactic head (Single-Head).
- ► Connectedness can be enforced by adding a special root node.



### Formal Conditions on Dependency Graphs

- Intuitions:
  - Syntactic structure is complete (Connectedness).
  - Syntactic structure is hierarchical (Acyclicity).
  - Every word has at most one syntactic head (Single-Head).
- ► Connectedness can be enforced by adding a special root node.



# Formal Conditions on Dependency Graphs

- ► *G* is (weakly) connected:
  - ▶ For every node i there is a node j such that  $i \rightarrow j$  or  $i \rightarrow i$ .
- ► *G* is acyclic:
  - ▶ If  $i \rightarrow j$  then not  $j \rightarrow^* i$ .
- ► G obeys the single-head constraint:
  - ▶ If  $i \rightarrow j$ , then not  $k \rightarrow j$ , for any  $k \neq i$ .
- ► *G* is projective:
  - ▶ If  $i \rightarrow j$  then  $i \rightarrow^* k$ , for any k such that i < k < j or j < k < i.

### **Projectivity**

Projectivity (or, less commonly, adjacency [Hudson(1990)])

- ▶ An arc  $(w_i, r, w_j) \in A$  is *projective* iff  $w_i \rightarrow^* w_k$  for all:
  - ▶ i < k < j when i < j
  - $\triangleright$  j < k < i when j < i
- (2) with great difficulty
- (3) \*great with difficulty
  - ▶ with → difficulty
  - ▶ difficulty → great

<sup>\*</sup>great with difficulty may be ruled out because branches would have to cross in that case

#### **Projectivity**

- Most theoretical frameworks do not assume projectivity.
- ▶ Non-projective structures are needed to account for
  - long-distance dependencies,
  - ▶ free word order.



Dependency Grammar 27(33

#### **Properties of Projective Trees**

- Planarity: it is possible to graphically configure all the arcs of the tree in the space above the sentence without any arcs crossing
  - e.g., drawing the tree for *A hearing is scheduled on the issue today* will result in non-planarity
- ▶ Nestedness: for all the nodes  $w_i \in V$ , the set of words  $\{w_j|w_i \rightarrow^* w_j\}$  is a contiguous subsequence of the sentence S

### Layers of dependencies

Before we move on to parsing, consider the fact that dependencies may capture different layers of information

► [Mel'čuk(1988)] allows for different dependency layers

It looks like a subject depends on the verb, but the form of the verb depends on the subject (mutual dependence):

- (4) a. The child is playing.
  - b. The children are playing.

#### One solution:

- ▶ Dependence of *child/children* on the verb is syntactic
- ▶ Dependence of the verb(form) on the subject is morphological

#### **Double dependencies**

Likewise, here it seems that *clean* depends both on the verb *wash* and on the noun *dish* 

(5) Wash the dish clean.

#### One solution:

- ▶ Dependence of *clean* on *wash* is syntactic (cf. case)
- ▶ Dependence of *clean* on *dish* is semantic (cf. gender)
- (6) My našli zal pust-ym We found the hall<sub>masc</sub> empty<sub>masc.sg.inst</sub>

# Double dependencies (2)

Hudson's Word Grammar [Hudson(2004)] explicitly allows for **structure-sharing**, explicitly violating the single-head constraint:

- ▶ wash → clean
- ▶ dish → clean

NB: Hudson also uses this to account for non-projectivity

Other approaches (e.g., annotation efforts for learner language) use multiple layers of dependencies for different types of information [Dickinson and Ragheb(2009)]

#### Relation to phrase structure

What is the relation between DG and PSG?

- ▶ If a PS tree has heads marked, then you can derive the dependencies
- ► Likewise, a DG tree can be converted into a PS tree by grouping a word with its dependents
  - ► To determine the constituents (binary-branching, flat) and phrase categorization, one needs features and arc labels [Rambow(2010)]

See [Rambow(2010)] for more discussion

# Advantages and Disadvantages of DG

#### Advantages:

- ▶ Close connection to semantic representation
- Easier to capture some typological regularities
- Vast & expanding body of computational work on dependency parsing

#### Disadvantages:

- ▶ No constituents makes analyzing coordination difficult
- No distinction between modifying a constituent vs. an individual word
- May be harder to capture things like, e.g., subject-object asymmetries

- Debusmann, Ralph, Denys Duchier and Geert-Jan M. Kruijff (2004). Extensible Dependency Grammar: A New Methodology. In Proceedings of the Workshop on Recent Advances in Dependency Grammar. pp. 78–85.
- Dickinson, Markus and Marwa Ragheb (2009). Dependency Annotation for Learner Corpora.
   In Proceedings of the Eighth Workshop on Treebanks and Linguistic Theories
- Duchier, Denys and Ralph Debusmann (2001). Topological Dependency Trees: A
  Constraint-based Account of Linear Precedence.
   In Proceedings of the 39th Annual Meeting of the Association for Computational
  Linguistics (ACL). pp. 180–187.

(TLT-8). Milan, Italy.

- Hajič, Jan, Jarmila Panevová, Zdeňka Urešová, Alevtina Bémová, Veronika Kolářová and Petr Pajas (2003). PDT-VALLEX: Creating a Large-coverage Valency Lexicon for Treebank Annotation.
  In Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT 2003). Växjö, Sweden, pp. 57–68.
  http://w3.msi.vxu.se/~rics/TLT2003/doc/hajic\_et\_al.pdf.
- Harper, Mary P. and R. A. Helzerman (1995). Extensions to constraint dependency parsing for spoken language processing. Computer Speech and Language 9, 187–234.

- Hellwig, Peter (1986). Dependency Unification Grammar. In Proceedings of the 11th International Conference on Computational Linguistics (COLING). pp. 195–198.
- Hellwig, Peter (2003). Dependency Unification Grammar. In Vilmos Agel, Ludwig M. Eichinger, Hans-Werner Eroms, Peter Hellwig, Hans Jürgen Heringer and Hening Lobin (eds.), *Dependency and Valency*, Walter de Gruyter, pp. 593–635.
- Hudson, Richard A. (1984). Word Grammar. Blackwell.
- Hudson, Richard A. (1990). English Word Grammar. Blackwell.
- Hudson, Richard A. (2000). Dependency Grammar Course Notes. http://www.cs.bham.ac.uk/research/conferences/esslli/notes/hudson.\html.
- Hudson, Richard A. (2004). Word Grammar. http://www.phon.ucl.ac.uk/home/dick/intro.htm.
- Järvinen, Timo and Pasi Tapanainen (1998). Towards an Implementable Dependency Grammar.
   In Sylvain Kahane and Alain Polguère (eds.), Proceedings of the Workshop on Processing of Dependency-Based Grammars. pp. 1–10.

- Maruyama, Hiroshi (1990). Structural Disambiguation with Constraint Propagation.
  - In Proceedings of the 28th Meeting of the Association for Computational Linguistics (ACL). pp. 31–38.
- Mel'čuk, Igor (1988). Dependency Syntax: Theory and Practice. State University of New York Press.
- Menzel, Wolfgang and Ingo Schröder (1998). Decision Procedures for Dependency Parsing Using Graded Constraints.
   In Sylvain Kahane and Alain Polguère (eds.), Proceedings of the Workshop on Processing of Dependency-Based Grammars. pp. 78–87.
- Rambow, Owen (2010). The Simple Truth about Dependency and Phrase Structure Representations: An Opinion Piece.
   In Human Language Technologies: The 2010 Annual Conference of the North
  - In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, California: Association for Computational Linguistics, pp. 337–340.
- Schröder, Ingo (2002). Natural Language Parsing with Graded Constraints. Ph.D. thesis, Hamburg University.
- Sgall, Petr, Eva Hajičová and Jarmila Panevová (1986). The Meaning of the Sentence in Its Pragmatic Aspects. Reidel

- ▶ Tapanainen, Pasi and Timo Järvinen (1997). A non-projective dependency parser. In Proceedings of the 5th Conference on Applied Natural Language Processing. pp. 64–71.
- Tesnière, Lucien (1959). Éléments de syntaxe structurale. Editions Klincksieck.
- Zwicky, A. M. (1985). Heads. Journal of Linguistics 21, 1–29.