

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

- **E1.- a)** Discutir para qué valores de $a \in \mathbb{R}$ la matriz $M = \begin{pmatrix} -5 & a \\ 10 & -a 1 \end{pmatrix}$ tiene inversa.

 Calcular M^{-1} para a = 0.

 (1,5 puntos)
 - **b)** Si B es una matriz cuadrada de orden 3 y |B| = -5, calcular $|2B^t|$, donde B^t denota la matriz traspuesta de B. (1 punto)
- **E2.- a)** Calcular un vector de módulo 4 que tenga la misma dirección, pero distinto sentido, que el vector $\vec{v} = (2,1,-2)$. (1 punto)
 - **b)** Calcular un punto de la recta $r = \frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-2}$ cuya distancia al punto A = (-1, 2, 0) sea mínima. (1,5 puntos)
- **E3.- a)** Calcular a, b y c para que la función $f(x) = x^3 + ax^2 + bx + c$ tenga pendiente nula en el punto (1,1) de su gráfica y, sin embargo, no tenga un extremo relativo en dicho punto. (1,25 puntos)
 - **b**) Probar que la ecuación $x^5 + x 1 = 0$ tiene una única solución real positiva.

(1,25 puntos)

E4.- a) Calcular
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$
. (1 punto)

b) Calcular el área de la región delimitada por la gráfica de la función $f(x) = 1 - x^2$ y las rectas tangentes a dicha gráfica en los puntos de abscisa x = 1 y x = -1.

(1,5 puntos)

OPCIÓN B

E1.- a) Discutir, según el valor del parámetro m, el sistema de ecuaciones lineales

$$\begin{cases} x + y + mz = 2\\ x + my + z = 2m\\ x + y - mz = 0 \end{cases}$$
 (1,5 puntos)

b) Resolverlo para m = 1.

(1 punto)

- **E2.-** Consideremos las rectas $r = \frac{x}{2} = y = \frac{z-1}{2}$ y $s = \frac{x}{2} = \frac{y-1}{3} = z$.
 - a) Comprobar que las rectas r y s se cruzan.

(1 punto)

- b) Hallar la ecuación de la recta que pasa por el origen de coordenadas y corta a las rectas r y s.
 (1,5 puntos)
- E3.- Tenemos un cartón cuadrado de 6 cm de lado y queremos construir con él una caja sin tapa. Para ello recortamos un cuadrado de x cm de lado en cada vértice del cartón. Calcular x para que el volumen de la caja sea máximo. (2,5 puntos)

E4.- a) Calcular
$$\lim_{x\to 0^+} (1+x^2)^{1/x}$$
. (1 punto)

b) Calcular el área de la región delimitada por la gráfica de la función $f(x) = \ln x$, el eje OX y la recta x = 3. (1,5 puntos)