Table 1: Statistics of contracts under normal losses

	No insurance	$\geq 70\%$ insurance	Consumer Surplus	Profit
Equilibrium	0.00358	11.0559	3047	-33
Monopoly	70.8433	11.3573	1308	915
Welfare-maximum	0	89.4112	5769	-2476

The CS and profit were calculated by generating a 1M population and applying over it the contracts from the original 40M simulation.

Table 2: Statistics of contracts under truncated normal losses

	No insurance	$\geq 70\%$ insurance	Consumer Surplus	Profit
Equilibrium	0.00393	5.81	5453	-40
Monopoly	78.27	7.87	2406	1393
Welfare-maximum	0	69.37	8084	-2133

Table 3: Calibration of each model

	Normal losses	Truncated normal losses
Mean loss	4340	4250
Std. dev. of losses	24470	3000
Mean risk aversion	1×10^{-5}	65×10^{-5}
Moral hazard parameter	1330	1330
CE	7335	10000

Mean loss and Std. dev. of losses for the truncated normal aren't parameters, but calculated averages after simulating a population. The underlying moments used were $\{\mu, \sigma\} = \{1500, 4500\}$.