Function of a Random Variable X is a r.v. e X+b X², logeX Sin (X), tan (X)Theorem: Let X be a Y.U. defined on (S2, Q, P). Let $g: R \to R$ be a measuseable function. Then }= g(X) is also a v. v.

Theorem: Given a r.u. X with cdf $F(\cdot)$ the distribution of r.u. Y=g(X), where g is measureable, can be defermined. Pf. The cdf of Y es $F(y) = P(Y \le y) = P(g(x) \le y)$ $= P(X \in \bar{g}^1(-\infty, \Im))$ Since g is measurable, the set $g'(-\infty, T)$ is measureable and 80 this term is well-defined.

Examples Let
$$X$$
 be a x . u . with $cdf F_{X}(\cdot)$.

Let $Y_1 = a \times +b$, $a \neq 0$, $b \in \mathbb{R}$
 $Y_2 = |X|$, $Y_3 = X^2$, $Y_4 = |\log X|$, $Y_5 = e^X$
 $Y_6 = \max(X, 0)$
 $cdf of Y_1$
 $F_{X}(X_1) = P(Y_1 \leq X_1) = P(a \times +b \leq X_1)$
 $F_{X_1}(X_2) = P(X_1 \leq X_2)$
 $f(X_1 \leq X_2) = P(a \times +b \leq X_1)$
 $f(X_1 \leq X_2) = P(a \times +b \leq X_1)$

$$\begin{aligned}
&= F_{X}\left(\frac{y_{1}-b}{a}\right) \\
&= P(x) \frac{y_{1}-b}{a} + P(x) + P(x) \\
&= P(x) \frac{y_{1}-b}{a} + P(x) \frac{y_{1}-b}{a} \\
&= P(x) \frac{y_{1}-b}{a} + P(x) \frac{y_{1}-$$

$$= P(X \le X_{2}) - P(X \le -J_{2}) + P(X = -J_{2})$$

$$= \{F_{X}(J_{2}) - F_{X}(-J_{2}) + P(X = -J_{2}), J_{3}\}_{3}$$

$$= P(-I_{3} \le X \le I_{3})$$

$$= P(-I_{3} \le X \le I_{3})$$

$$= \{F(I_{3}) - F_{X}(-I_{3}) + P(X = -I_{3})\}_{3} > 0$$

$$= \{F(I_{3}) - F_{X}(-I_{3}) + P(X = -I_{3})\}_{3} > 0$$

$$= \{F(I_{3}) - F_{X}(-I_{3}) + P(X = -I_{3})\}_{3} > 0$$

$$= \{F(I_{3}) - F_{X}(-I_{3}) + P(X = -I_{3})\}_{3} > 0$$

If X is a positive r.a., let 74= 18ex. $F_{\gamma_4}(\gamma_4) = P(\gamma_4 \leq \gamma_4) = P(\log_4 x \leq \gamma_4)$ $= P(x \leq e^{34}) = F_x(e^{34})$ Write cap'sol 45, 76, 77 etc. In case X is a discoete r.u. with pmf $\phi(x_i)$, we can consider

$$g: \{x_1, x_2, \dots\} \rightarrow \{x_1, x_2, \dots\}$$

$$P(Y = Y_i) = P(g(X) = Y_i)$$

$$= \sum_{y \in \mathcal{Y}} P(x = x_i) = \sum_{y \in \mathcal{Y}} p_x(x_i)$$

$$g(x_i) = y_i$$

Example:
$$\frac{1}{5}$$
, $\frac{1}{5}$, $\frac{1}{5}$, $\frac{1}{5}$, $\frac{1}{6}$
 $\frac{1}{5}$, $\frac{1}{5}$,

$$\gamma = \chi^{2} \longrightarrow 0, 1, 4$$
 $h_{y}(0) = h_{x}(0) = \frac{1}{5},$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$\frac{1}{4}(4) = \frac{1}{4}(-2) + \frac{1}{4}(2) = \frac{17}{30}$$

Theorem: Let X be a continuous Y. U. with pdf $f(\cdot)$. Let Y = g(x) is differentiable $f(\cdot)$.

for all x and either g'(x) >0 + x or g'(x) < 0 + x. Then Y = g(x) is a continuous r.u. with pay $f_{y}(y) = f_{x}(g(y)) \left| \frac{d}{dy} g'(y) \right|$ where range of y is determined from range of X.

Proof: Let g'(x) > 0 + x. Then g is strictly increasing and so it is a one-to-one function ℓ so g' is also

Strictly increasing 2
$$\frac{d}{dy} \vec{g}(y) > 0 + y$$

The cdf $\sqrt[3]{y} = P(y \leq y) = P(g(x) \leq y)$
 $= P(x \leq g^{-1}(y)) = F(g^{-1}(y))$
So the part of y is
 $f_{y}(y) = f(g^{-1}(y)) | d g^{-1}(y) |$
In case g is stoictly decreasing $(\frac{d}{dy}\vec{g}(y) \leq 0)$
So $F(y) = P(g(x) \leq y) = P(x \geq g^{-1}(y)) \rightarrow 0$
 $= 1 - F(g^{-1}(y)) + P(x = g^{-1}(y)) \rightarrow 0$

So part is
$$f(y) = -f(g(y)) = -f$$

Examples: Let \times have a Weibull distribution $f(x) = \begin{cases} 6x^2 e^{-2x^3}, & x>0 \\ x & 0, & x \leq 0 \end{cases}$

Ref
$$y = \chi^3$$

$$\chi = \chi^3$$

So the paper of y is
$$-2y$$
 $-2y$ $-2y$ $= 6 y^{1/3} e^{-2y}$, $y > 0$

$$= \int_{0}^{2} 2 e^{-2y}, \quad y \le 0$$

$$U = e^{-2y}, \quad u = e^{-2y}, \quad y = -\frac{1}{2} \ln u$$

$$du = -2 e^{-2y}, \quad f(u) = \int_{0}^{1} 1, \quad o \le u \le 1$$

$$du = -2 e^{-2y}, \quad of the runse$$

Probability Interval Transform Let X be a continuous r. U. besth cdf F(:). Define r. U. Y = F(X)

Then Y has a uniform dist on the interval [0,1].

Conversely of Y has U[0,1] doll 2 Fis a cof 1 a continuous v.U, then $\chi = F^{-1}(\gamma)$ has a cdf F. Learn some algorithms for generation Then the part of $f(y) = \int_{y}^{y} f(y) dy$ the part of $f(y) = \int_{y}^{y} f(y) dy$ and $f(y) = \int_{y}^{y} f(y) dy$