Problem R-11T ($C_{19}H_{25}FO_2$). Below are part of the 60 MHz ¹H NMR spectra of two stereoisomers (**A** and **B**) of the fluorinated steroids shown. To aid in your analysis, a conformational drawing is also provided (*J. Am. Chem. Soc.* **1963**, *85*, 3038; DOI: 10.1021/ja00902a046).

(a) Which protons are being shown here? Analyze the coupling, and report them in the standard format (give δ and identify any couplings you found).

Spectrum 1:

Spectrum 2:

(b) Which isomer corresponds to Spectrum 1 _____, which to Spectrum 2____. Explain briefly.

Problem R-11T ($C_{19}H_{25}FO_2$). Below are part of the 60 MHz ¹H NMR spectra of two stereoisomers (**A** and **B**) of the fluorinated steroids shown. To aid in your analysis, a conformational drawing is also provided (*J. Am. Chem.*

Soc. 1963, 85, 3038).

A

B

(a) Which protons are being shown here? Analyze the coupling, and report them in the standard format (give δ and identify any couplings you found).

 $^{2}J_{H6a-F} = 48 \text{ Hz}$ Spectrum 1: $^{3}J_{H6a-7a} = 11 \text{ Hz}$ δ 6.05, broad s, H⁴ 6 $^{3}J_{H6a-7e} = 6 \text{ Hz}$ $^{4}J_{H6a-4} = 2 \text{ Hz}$ δ 5.1, dddd, J = 48, 11, 6, 2 Hz $^{2}J_{H6e-F} = 51 \text{ Hz}$ Spectrum 2: $^{3}J_{H6e-7a} = 3 \text{ Hz}$ 7 δ 5.89, d, J = 5 Hz $^{3}J_{H6e-7e} = 3 \text{ Hz}$ δ 5.05, dt, J = 51, 3 Hz $^{4}J_{H6e-4} < 2 \text{ Hz}$

(b) Which isomer corresponds to Spectrum 1 A, which to Spectrum 2 B. Explain briefly.

The large H-H coupling in Spectrum 1 (${}^3J_{H6a-7a} = 11 \text{ Hz}$) requires that the proton at H⁶ be axial, to get one large ax-ax coupling. The vicinal couplings in Spectrum 2 are all small (3 Hz) so only eq-eq and eq-ax coupling, hence H⁶ must be equatorial.