Machine Learning for Graphs and Sequential Data Exercise Sheet 6 Graphs: Clustering

Problem 1: Given the graph below, find the following partitionings of the graph for k=2:

- a) The partitioning giving the global minimum cut
- b) A partitioning approximately minimizing the ratio cut
- c) A partitioning approximately minimizing the normalized cut

Problem 2: Consider minizing the ratio cut on a graph with two clusters C_1 and C_2 and N nodes in total. The indicator vector

$$f_{C_1,i} = \begin{cases} +\sqrt{\frac{|\overline{C_1}|}{|C_1|}} & \text{if } v_i \in C_1\\ -\sqrt{\frac{|C_1|}{|\overline{C_1}|}} & \text{otherwise} \end{cases}$$

is defined as in the lecture. Prove the following three properties about f_{C_1} .

- a) $1^T \mathbf{f}_{C_1} = \sum_i f_{C_1,i} = 0$
- b) $\mathbf{f}_{C_1}^T \mathbf{f}_{C_1} = \|\mathbf{f}_{C_1}\|_2^2 = |V|$
- c) $f_{C_1}^T L f_{C_1} = |V| \left[\frac{\text{cut}(C_1, C_2)}{|C_1|} + \frac{\text{cut}(C_1, C_2)}{|\overline{C_1}|} \right]$

Problem 3: Answer the following questions regarding the graph below. Formulate a conjecture first and then verify it computationally in a notebook.

a) How does	the first eigenvector change when increasing the weight between node $v6$ and $v9$?
	the spectral embedding change?
c) How does	this change affect the final clustering?