Práctico 8

Combinaciones Lineales, Dependencia e Independencia Lineal.

Combinaciones lineales y generadores

- 1. Investigar si el vector v se puede escribir como combinación lineal del conjunto A, y en caso afirmativo hallar alguna de ellas.
 - a) $A = \{(1,2,1), (3,-1,5), (1,1,0)\}$ y v = (3,0,6).
 - b) $A = \{(1,3,2,1), (2,-2,-5,4), (2,-1,3,6)\}$ y v = (2,5,-4,0).
 - c) $A = \{2 x, 2x x^2\}$ y $v = 6 5x + x^2$.
 - d) $A = \{3x^3 + x, -2x^2 + x 1, 3x^3 2x^2 + 2x 1\}$ y $v = -3x^3 + 4x^2 + x 2$.

$$e) \ \mathcal{A} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array} \right) \right\} \ y \ v = \left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array} \right).$$

$$f) \ \mathcal{A} = \left\{ \left(\begin{array}{cc} 2 & -3 \\ 4 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 5 \\ 1 & -2 \end{array} \right), \left(\begin{array}{cc} 6 & -19 \\ 10 & 7 \end{array} \right) \right\} \ y \ v = \left(\begin{array}{cc} 6 & 2 \\ 9 & 11 \end{array} \right).$$

- 2. Hallar un generador finito de los siguientes subespacios *S*.
 - a) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$.
 - b) $S = \{ p \in \mathbb{R}_3[x] : p(1-x) = p(1+x), \forall x \in \mathbb{R} \}.$
 - c) $S = \{ p \in \mathbb{R}_3[x] : p(0) = 0 \}.$
 - *d*) $S = \{A \in \mathcal{M}_{3\times 3}(\mathbb{R}) : A \text{ es simétrica}\}.$
 - *e*) $S = \{A \in \mathcal{M}_{3\times 3}(\mathbb{R}) : A \text{ es antisimétrica}\}.$
- 3. Determinar si el conjunto de vectores A es un generador del espacio vectorial V.
 - a) $V = \mathbb{R}^2$, $\mathcal{A} = \{(1, \pi), (\sqrt{2}, e)\}$.
 - b) $V = \mathbb{R}^3$, $A = \{(0,1,1), (0,0,1), (1,1,1), (1,-1,1)\}.$
 - c) $V = \mathbb{R}^4$, $A = \{(-1, 2, 0, 0), (2, 0, -1, 0), (3, 0, 0, 4), (0, 0, 5, 0)\}.$

$$d) \ \ V = \mathcal{M}_{2\times 2}(\mathbb{R}), \ \mathcal{A} = \left\{ \left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array} \right), \left(\begin{array}{cc} 3 & -1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 3 & 1 \end{array} \right) \right\}.$$

- e) $V = \mathbb{R}_2[x]$, $A = \{1, (x-2), (x-2)^2\}$.
- 4. Determinar si los conjuntos A_1 y A_2 generan el mismo subespacio vectorial de \mathbb{R}^3 .

$$A_1 = \{(1, 2, -1), (0, 1, 1), (2, 5, -1)\}, A_2 = \{(-2, -6, 0), (1, 1, -2)\}.$$

Conjuntos LI, conjuntos LD y conjuntos generadores

- 5. En los siguientes casos determinar si el conjunto \mathcal{A} es linealmente independiente. Cuando no lo sea encontrar un subconjunto linealmente independiente que permita expresar a los restantes vectores como combinación lineal del subconjunto seleccionado.
 - a) $A = \{(1,2,3), (0,1,2), (1,1,1), (2,3,4)\}.$
 - $b) \ \mathcal{A} = \left\{ \left(\begin{array}{cc} 4 & 0 \\ -2 & -2 \end{array} \right), \left(\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array} \right), \left(\begin{array}{cc} 0 & 2 \\ 1 & 4 \end{array} \right), \left(\begin{array}{cc} -1 & 5 \\ 7 & 1 \end{array} \right) \right\}.$
 - c) $A = \{p_1, p_2, p_3, p_4\} \subset \mathbb{R}_2[x]$, donde

$$p_1(x) = x^2 + 1$$
, $p_2(x) = x^2 + x$, $p_3(x) = x + 2$, $p_4(x) = x^2 + 3x$.

- 6. Discutir cuándo los siguientes conjuntos A son linealmente independientes según $a \in \mathbb{R}$. Cuando no lo sean, hallar un subconjunto linealmente independiente con la mayor cantidad de elementos posible.
 - a) $A = \{(a, a^2, 1), (-1, a, a), (0, 2a^2, a^2 + 1)\}.$
 - $b) \ \mathcal{A} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 1 & a \end{array} \right), \quad \left(\begin{array}{cc} -1 & 0 \\ a & 1 \end{array} \right), \quad \left(\begin{array}{cc} 2 & 0 \\ 1 & 3 \end{array} \right) \right\}.$
- 7. El conjunto \mathcal{A} dado genera un subespacio $S \subset \mathcal{M}_{2\times 2}(\mathbb{R})$. Eliminar elementos de \mathcal{A} hasta conseguir un generador de S que sea LI.

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \right\}.$$

- 8. En los siguientes ejemplos determine en qué casos el conjunto es LI.
 - *a*) En las siguientes figuras, determine si el conjunto $\{v, w\} \subset \mathbb{R}^2$ es LI.

b) En la siguientes figura, determine si el conjunto $\{u, v, w\} \subset R^3$ es LI.

c) Utilizando las siguientes figuras determine si el conjunto de funciones $\{f,g,h\}$ es LI.

d) En las siguientes figuras se expresan los gráficos (parciales) de funciones polnómicas, determine si $\{f,g\}$ o $\{f,g,h\}$ es un conjunto LI de $\mathbb{R}_2[x]$.

9. Considere el siguiente conjunto de funciones:

$$\mathcal{A} = \{ \operatorname{sen}(x), \, \cos(x), \, \operatorname{sen}(2x), \, \cos(2x) \}.$$

Probar que A es un conjunto LI.

- 10. Sea *V* un espacio vectorial.
 - a) Dado $A \subset V$ un conjunto LI y $v \in V$ un vector, probar que $C = A \cup \{v\}$ es LI si y solo si $v \notin [A]$.
 - b) Sean u, v, w tres vectores de V. Probar que $\{u, v, w\}$ es LI si y solo si $\{u + v, v, w v + u\}$ es LI.
- 11. Sean $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ una matriz, $C = \{v_1, v_2, \dots, v_\ell\}$ un subconjunto de vectores de \mathbb{R}^n y $\mathcal{B} = \{Av_1, Av_2, \dots, Av_\ell\} \subset \mathbb{R}^m$.

Discutir si las siguientes afirmaciones son verdaderas o falsas:

- a) Si \mathcal{C} es linealmente independiente entonces \mathcal{B} es linealmente independiente.
- b) Si $\mathcal B$ es linealmente independiente entonces $\mathcal C$ es linealmente independiente.
- c) Si \mathcal{C} es linealmente dependiente entonces \mathcal{B} es linealmente dependiente.

En el caso de que alguna de las afirmaciones sea falsa dar un contraejemplo, y estudiar cuál o cuáles hipótesis adicionales sobre *A* permiten asegurar que la afirmación es verdadera.

12. Sea $\{v_1, v_2, \dots, v_n\}$ un conjunto LI de un espacio vectorial V. Se considera el vector

$$v = \sum_{i=1}^{n} a_i v_i$$
, con $a_1, a_2, \dots, a_n \in \mathbb{R}$.

3

- a) Asumiendo que $\sum_{i=1}^{n} a_i \neq 1$, $\sum_{i=1}^{n} \lambda_i (v_i v) = 0$, probar que $\sum_{i=1}^{n} \lambda_i = 0$.
- b) Bajo la hipótesis que $\sum_{i=1}^{n} a_i \neq 1$, probar que $\{(v_1 v), (v_2 v), \dots, (v_n v)\}$ es LI.
- c) Si $\sum_{i=1}^{n} a_i = 1$ probar que $\{(v_1 v), (v_2 v), \dots, (v_n v)\}$ es linealmente dependiente.
- 13. Sea $\mathcal{F} = \{f : \mathbb{R}^+ \to \mathbb{R}\}$ el espacio vectorial de funciones con las operaciones usuales. Determinar si los siguientes conjuntos son LI.
 - a) $\{\sin(x), e^x, x^2\}$ b) $\{\cos(x), \cos(x+1), \cos(x+2).\}$
- 14. Probar que el conjunto $\{x^k \colon k \in \mathbb{N}\}$ es LI en el espacio vectorial de los polinomios $\mathbb{R}[x]$.
- 15. Probar que el conjunto $\{\sin(kx): k \in \mathbb{N}\}\$ es LI en el \mathbb{R} -espacio vectorial \mathcal{F} de las funciones de $[0, 2\pi]$ a \mathbb{R} .