ALLIED'S RADIO DATA HANDBOOK

ALLIED RADIO CORPORATION
CHICAGO

ALLIED'S RADIO DATA HANDBOOK

24,8 Queenston Rd.

Elineland Heighto 18, this

A Compilation of Formulas and Data Most Commonly Used in the Field of Radio and Electronics

Written and Compiled by the
Publications Division

ALLIED RADIO CORPORATION

Under the Direction of
EUGENE CARRINGTON

Edited by NELSON M. COOKE,

Lieutenant Commander, United States Navy,

Naval Research Laboratory, Anacostia Station, Washington, D. C. Member, Institute of Radio Engineers. Author, "Mathematics for Electricians and Radiomen".

19th Printing, January, 1954

Published by

Allied Radio Corporation, Chicago, Illinois, U.S.A.

100 N. Western AVR

Printed in U.S. A. Copyright 1943 by Allied Radio Corp.

ChiCA9080

FOREWORD

Allied Radio Corporation has long recognized the need for a comprehensive and condensed handbook of formulas and data most commonly used in the field of radio and electronics. It was felt also that such a book should serve entirely as a convenient source of information and reference and that all attempts to teach or explain the basic principles involved should be left to classroom instruction and to the many already existing publications written for this distinct purpose.

The Radio Data Handbook, therefore, consists entirely of formulas, tables, charts and data. Every effort has been made to present this information clearly and to arrange it in a convenient manner for instant reference. All material was carefully selected and prepared by Allied's technical staff to serve the requirements of many specific groups in the radio and electronics field. It is hoped that our objectives have been successfully attained and that this Handbook will serve as: (1) A valuable adjunct to classroom study and laboratory work for the student and instructor; (2) A dependable source of information for the beginner, experimenter and set builder; (3) A reliable guide for the service engineer and maintenance man in his everyday work; (4) A time-saving and practical reference for the radio amateur, technician and engineer, both in the laboratory and in the field of operations.

The publishers are indebted to the McGraw-Hill Book Company, Inc., for their permission to use material selected from "Mathematics for Electricians and Radiomen" by Nelson M. Cooke. Allied also takes this opportunity to thank those manufacturers who so generously permitted our use of current data prepared by their engineering personnel. Special recognition and our sincere appreciation are extended to Commander Cooke for his helpful suggestions and generous contribution of his time and specialized knowledge in editing the material contained in this book.

Any opinions or assertions contained herein are those of the publisher and are not to be construed as official or reflecting the views of the Navy Department or the naval service at large.

TABLE OF CONTENTS

Fundamental Mathematical Data							٠	. 4-5
Mathematical Constants								
Mathematical Symbols								. 4
Decimal Parts of an Inch								
Fundamental Algebraic Formulas								
Most Used Radio and Electronic Formulas								
Decibels								
Resistance								
Capacitance	٠			٠			٠	. 6
Inductance								
Reactance								
Resonance								
Frequency and Wavelength								
"Q" Factor								
Impedance								
Conductance								
Susceptance								
Admittance								
Transient I and E in LCR Circuits								
Steady State Current Flow								
Transmission Line Formulas								
Capacity of a Vertical Antenna	٠				٠	٠		. 14
Vacuum Tube Formulas and Symbols								
R.M.S., Peak and Average Volts and Current								
D-C Meter Formulas								
Ohms Law for A-C and D-C Circuits	•							18-19
Trigonometric Functions and Formulas			1	٠	٠	٠	٠	. 20
Engineering and Servicing Data								21-39
Metric Relationships and Conversion Chart .								
R-F Coil Winding Formulas								
Wire Tables								
R-F Coil Winding Data Chart								
Inductance, Capacitance and Reactance Charts								
Radio Color Codes								
Resistors								
Mica Capacitors								
Power Transformers								
Battery Cables								
Speaker Leads and Plug Connections								
I-F Transformers								
Audio and Output Transformers								
Pilot Lamp Data								
Plug-In Ballast Resistors	•		٠	*	*	•		34
Interchangeable Tubes								
Abbreviations and Letter Symbols						٠		38
Schematic Diagram Symbols								
		-						
Log and Trig Tables				•	•		•	40-47
Four-Place Common Log Tables			•	•	•	•	٠	40-41
Four-Place Trigonometric Functions	•		•		•	•		42-47
Cross Reference Index								18

Mathematical Symbols

× or · Multiplied by ÷ or : Divided by

Positive. Plus. Add

Negative. Minus. Subtract

Positive or negative. Plus or minus

Negative or positive. Minus or plus

= or :: Equals Identity

Is approximately equal to

Does not equal # Is greater than

Is much greater than

Is less than

Is much less than

Greater than or equal to

Less than or equal to

Therefore

Angle

Increment or Decrement

Perpendicular to

Parallel to

Absolute value of n |n|

Mathematical Constants

	the second secon
$\pi = 3.14$	$\sqrt{\pi} = 1.77$
$2\pi = 6.28$	$ \pi $
$(2\pi)^2 = 39.5$	$\sqrt{\frac{\pi}{2}} = 1.25$
$4\pi = 12.6$	$\sqrt{2} = 1.41$
$\pi^2 = 9.87$	$\sqrt{3} = 1.73$
$\frac{\pi}{2} = 1.57$	$\frac{1}{\sqrt{2}} = 0.707$
$\frac{1}{\pi} = 0.318$	$\frac{1}{\sqrt{3}} = 0.577$
$\frac{1}{2\pi}=0.159$	$\log \pi = 0.497$
$\frac{1}{\pi^2}=0.101$	$\log \frac{\pi}{2} = 0.196$
$\frac{1}{\sqrt{\pi}} = 0.564$	$\log \pi^2 = 0.994$ $\log \sqrt{\pi} = 0.248$

Decimal Inches

Inches X = Centimeters 2.540

Inches $\times 1.578 \times 10^{-5} = \text{Miles}$ 10^{3} Inches X = Mils

	Inches		Decimal Equivalent	Millimeter Equivalent
1/64	1/32		.0156	0.397 0.794
3/64		1/16	.0469	1.191
5/64	3/32		.0781	1.985
7/64	3/32		.1094	2.381
9/64		1/8	.1250	3.175
11/64	5/32		.1563	3.969 4.366
		3/16	.1875	4.762
13/64	7/32		.2031	5.159 5.556
15/64		1/4	.2344	5.953 6.350
17/64	9/32		.2656	6.747 7.144
19/64		5/16	.2969	7.541 7.937
21/64	11 /20	3/10	.3281	8.334
23/64	11/32		.3438	9.128
25/64		3/8	.3750	9.525
	13/32		.4063	10.319
27/64		7/16	.4219	10.716 11.112
29/64	15/32		.4531	11.509 11.906
31/64		1/2	.4844	12.303 12.700
33/64	17/32		.5156	13.097 13.494
35/64	.,,	0/16	.5469	13.891
37/64	10 (00	9/16	.5625	14.287
39/64	19/32		.5938	15.081 15.478
41/64		5/8	.6250	15.875 16.272
	21/32		.6563	16.669
43/64		11/16	.6719	17.067 17.463
45/64	23/32		.7031	17.860 18.238
47/64		3/4	.7344	18.635 19.049
49/64	25/32		.7656	19.446 19.842
51/64		12/10	.7969	20.239
53/64		13/16	.8125	20.636
55/64	27/32		.8438	21.430
57/64		7/8	.8750	22,224
	29/32		.9063	23.018
59/64		15/16	.9219	23.415 23.812
61/64	31/32		.9531	24 . 209 24 . 606
63/64		1.0	1.0000	25.004 25.400

 $\log\sqrt{\pi}=0.248$

Algebra

Exponents and Radicals

$$a^{x} \times a^{y} = a^{(x+y)}.$$

$$\frac{a^{x}}{a^{y}} = a^{(x-y)}.$$

$$(ab)^{x} = a^{x}b^{x}.$$

$$\sqrt[x]{\frac{a}{b}} = \frac{\sqrt[x]{a}}{\sqrt[x]{b}}.$$

$$(a^{x})^{y} = a^{xy}.$$

$$\sqrt[x]{\sqrt[x]{ab}} = \sqrt[x]{a}\sqrt[x]{b}.$$

$$a^{x} = \sqrt[x]{a}\sqrt[x]{a}.$$

$$a^{y} = \sqrt[x]{a^{x}}.$$

$$a^{y} = \sqrt[x]{a^{x}}.$$

$$a^{z} = \sqrt[x]{a^{x}}.$$

Solution of a Quadratic

Quadratic equations in the form $ax^2 + bx + c = 0$

may be solved by the following:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Transposition of Terms

If
$$A = \frac{B}{C}$$
 then $B = AC$, $C = \frac{B}{A}$.

If
$$\frac{A}{B}=\frac{C}{D}$$
, then $A=\frac{BC}{D}$,
$$B=\frac{AD}{C}, \quad C=\frac{AD}{B}, \quad D=\frac{BC}{A}.$$

If
$$A=\frac{1}{D\sqrt{BC}}$$
, then $A^2=\frac{1}{D^2BC}$,
$$B=\frac{1}{D^2A^2C}, \quad C=\frac{1}{D^2A^2B}, \quad D=\frac{1}{A\sqrt{BC}}$$

If
$$A = \sqrt{B^2 + C^2}$$
, then $A^2 = B^2 + C^2$,
 $B = \sqrt{A^2 - C^2}$, $C = \sqrt{A^2 - B^2}$.

Decibels

The number of db by which two power outputs P_1 and P_2 (in watts) may differ, is expressed by $10 \log \frac{P_1}{P_2};$

or in terms of volts,

$$20 \log \frac{E_1}{E_1}$$
;

or in current, $20 \log \frac{I_1}{I_2}$

While power ratios are independent of source and load impedance values, voltage and current ratios in these formulas hold true only when the source and load impedances R_1 and R_2 are equal. In circuits where these impedances differ, voltage and current ratios are expressed by,

$$db = 20 \log \frac{E_1 \sqrt{R_2}}{E_2 \sqrt{R_1}}$$
 or, $20 \log \frac{I_1 \sqrt{R_1}}{I_2 \sqrt{R_2}}$.

DB Expressed in Watts & Volts

*	Above Ze	ro Level	Below Ze	ro Level
DB	Watts	Volts	Watts	Volts
0	0.00600	1.73	6.00x10 ⁻⁸	1.73
1	0.00755	1.94	4.77x10 ⁻⁸	1.54
2	0.00951	2.18	3.78x10 ⁻⁸	1.38
3	0.0120	2.45	3.01x10 ⁻⁸	1.23
4	0.0151	2.74	2.39x10 ⁻⁸	1.09
5	0.0190	3.08	1.90x10 ⁻⁸	0.974
6 7 8 9	0.0239 0.0301 0.0378 0.0477 0.0600	3.46 3.88 4.35 4.88 5.48	1.51x10 ⁻⁸ 1.20x10 ⁻⁸ 9.51x10 ⁻⁴ 7.55x10 ⁻⁴ 6.00x10 ⁻⁴	0.868 0.774 0.690 0.614 0.548
11	0.0755	6.14	4.77x10 ⁻⁴	0.488
12	0.0951	6.90	3.78x10 ⁻⁴	0.435
13	0.120	7.74	3.01x10 ⁻⁴	0.388
14	0.151	8.68	2.39x10 ⁻⁴	0.346
15	0.190	9.74	1.90x10 ⁻⁴	0.308
16	0.239	10.93	1.51x10 ⁻⁴	0.275
17	0.301	12.26	1.20x10 ⁻⁴	0.245
18	0.378	13.76	9.51x10 ⁻⁵	0.218
19	0.477	15.44	7.55x10 ⁻⁵	0.194
20	0.600	17.32	6.00x10 ⁻⁵	0.173
25	1.90	30.8	1.90x10 ⁻⁵	0.0974
30	6.00	54.8	6.00x10 ⁻⁶	0.0548
35	19.0	97.4	1.90x10 ⁻⁶	0.0308
40	60.0	173.	6.00x10 ⁻⁷	0.0173
45	190.	308.	1.90x10 ⁻⁷	0.00974
50 60 70 80	600. 6,000. 60,000.	548. 1,730. 5,480. 17,300.	6.00x10 ⁻⁸ 6.00x10 ⁻⁹ 6.00x10 ⁻¹⁰ 6.00x10 ⁻¹¹	0.00548 0.00173 0.000548 0.000173

*Zero db = 6 milliwatts into a 500 ohm load. Power ratios hold for any impedance, but voltages must be referred to an impedance load of 500 ohms.

Most Used Formulas

Resistance Formulas

In series	4	R_t	=	R_1	+	R_2	+	R_3		-	etc.
-----------	---	-------	---	-------	---	-------	---	-------	--	---	------

In parallel
$$R_1 = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \cdot \cdot \cdot \cdot \text{etc.}}$$

Two resistors	D _	I	R_1R	2
in parallel	$R_t =$	R_1	+	R_2

Capacitance

In parallel
$$C_1 = C_1 + C_2 + C_3 \dots$$
 etc.

In series
$$C_{t} = \frac{1}{\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{2}} \cdot \cdot \cdot \cdot \text{ etc.}}$$

Two capacitors
$$C_1 = \frac{C_1 C_2}{C_1 + C_2}$$
 in series

The Quantity of Electricity Stored Within a Capacitor is Given by

Q = CE

where Q = the quantity stored, in coulombs,

E = the potential impressed across the condenser, in volts,

C =capacitance in farads.

The Capacitance of a Parallel Plate Capacitor is Given by

$$C = 0.0885 \, \frac{KS \, (N-1)}{d}$$

where C = capacitance in mmfd.,

K = dielectric constant,

*S = area of one plate in square centimeters,

N = number of plates,

*d = thickness of the dielectric in centimeters (same as the distance between plates).

*When S and d are given in inches, change constant 0.0885 to 0.224. Answer will still be in micromicrofarads.

DIELECTRIC CONSTANTS

Kind of	App	roximate*
Dielectric	K	Value
Air (at atmospheric pressure)		1.0
Bakelite		5.0
Beeswax		3.0
Cambric (varnished)		4.0
Fibre (Red)		5.0
Glass (window or flint)		8.0
Gutta Percha		4.0
Mica		6.0
Paraffin (solid)		2.5
Paraffin Coated Paper		3.5
Porcelain		6.0
Pyrex		4.5
Quartz		5.0
Rubber		3.0
Slate		7.0
Wood (very dry)		5.0

*These values are approximate, since true values depend upon quality or grade of material used, as well as moisture content, temperature and frequency characteristics of each.

Self-Inductance

In series
$$L_1 = L_1 + L_2 + L_3 \dots$$
 etc.

In parallel
$$L_i = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_4} \dots \text{etc.}}$$

Two inductors $L_{i} = \frac{L_{1} L_{2}}{L_{1} + L_{2}}$ in parallel.

Coupled Inductance

In series with fields aiding

$$L_t = L_1 + L_2 + 2M$$

In series with fields opposing

$$L_t = L_1 + L_2 - 2M$$

In parallel with fields aiding

$$L_{i} = \frac{1}{\frac{1}{L_{1} + M} + \frac{1}{L_{2} + M}}$$

In parallel with fields opposing

$$L_{i} = \frac{1}{\frac{1}{L_{1} - M} + \frac{1}{L_{2} - M}}$$

where L_t = the total inductance,

M =the mutual inductance,

 L_1 and L_2 = the self inductance of the individual coils.

Mutual Inductance

The mutual inductance of two r-f coils with fields interacting, is given by

$$M=\frac{L_A-L_O}{4}$$

where M = mutual inductance, expressed in same units as L_A and L_O ,

 L_A = Total inductance of coils L_1 and L_2 with fields aiding,

 L_0 = Total inductance of coils L_1 and L_2 with fields opposing.

Coupling Coefficient

When two r-f coils are inductively coupled so as to give transformer action the coupling coefficient is expressed by

$$K = \frac{M}{\sqrt{L_1 L_2}}$$

where K = the coupling coefficient; — $(K \times 10^2 = \text{coupling coefficient})$ cient in %),

M =the mutual inductance value,

 L_1 and L_2 = the self-inductance of the two coils respectively, both being expressed in the same units.

Resonance

The resonant frequency, or frequency at which inductive reactance X_L equals capacitive reactance X_C , is expressed by

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

also
$$L = \frac{1}{4\pi^2 f_r^2 C}$$

and
$$C = \frac{1}{4\pi^2 f_{\tau}^2 L}$$

where f_r = resonant frequency in cycles per second,

L = inductance in henrys,

C = capacitance in farads,

 $2\pi = 6.28$

 $4\pi^2 = 39.5$

Reactance

of an inductance is expressed by

$$X_L = 2\pi f L$$

of a capacitance is expressed by.

$$X_C = \frac{1}{2\pi fC}$$

where X_L = inductive reactance in ohms, (known as positive reactance),

 X_C = capacitive rectance in ohms, (known as negative reactance),

f = frequency in cycles per second,

L = inductance in henrys,

C =capacitance in farads,

 $2\pi = 6.28$

Frequency from Wavelength

$$f = \frac{3 \times 10^5}{\lambda} \text{ (kilocycles)}$$

where λ = wavelength in meters.

$$f = \frac{3 \times 10^4}{\lambda}$$
 (megacycles)

where λ = wavelength in centimeters.

Wavelength from Frequency

$$\lambda = \frac{3 \times 10^5}{f} \text{ (meters)}$$

where f = frequency in kilocycles.

$$\lambda = \frac{3 \times 10^4}{f} \text{ (centimeters)}$$

where f =frequency in megacycles.

Q or Figure of Merit

of a simple reactor

$$Q = \frac{X_L}{R_L}$$

of a single capacitor

$$Q = \frac{X_C}{R_C}$$

where Q = a ratio expressing the figure of merit,

 $X_L =$ inductive reactance in ohms,

 \dot{X}_{C} = capacitive reactance in ohms,

 R_L = resistance in ohms acting in series with inductance,

 R_C = resistance in ohms acting in series with capacitance,

Impedance

In any a-c circuit where resistance and reactance values of the R, L and C components are given, the absolute or numerical magnitude of impedance and phase angle can be computed from the formulas which follow.

In general the basic formulas expressing total impedance are:

for series circuits,

$$Z_t = \sqrt{R_t^2 + X_t^2},$$

for parallel circuits,

$$Z_t = \frac{1}{\sqrt{G_t^2 + B_t^2}}.$$

See page 11 for formulas involving impedance, conductance, susceptance and admittance.

In series circuits where phase angle and any two of the Z, R and X components are known, the unknown component may be determined from the expressions:

$$Z = \frac{R}{\cos \theta} \qquad \qquad Z = \frac{X}{\sin \theta}$$

$$R = Z \cos \theta$$
 $X = Z \sin \theta$

where Z = magnitude of impedance in ohms,

R = resistance in ohms,

X = reactance (inductive or capacitive) in ohms.

Nomenclature

Z = absolute or numerical value of impedance magnitude in ohms

R = resistance in ohms,

 $X_L = \text{inductive reactance in ohms,}$

 X_C = capacitive reactance in ohms,

L = inductance in henrys,

C =capacitance in farads,

 R_L = resistance in ohms acting in series with inductance,

 R_{C} = resistance in ohms acting in series with capacitance,

 θ = phase angle in degrees by which current leads voltage in a capacitive circuit, or lags voltage in an inductive circuit. In a resonant circuit, where X_L equals X_C , θ equals 0° .

Degrees \times 0.0175 = radians. 1 radian = 57.3°.

Numerical Magnitude of Impedance . . .

of resistance alone

$$Z = F$$

$$\theta = 0^{\circ}$$

of resistance in series

$$Z = R_1 + R_2 + R_3 \dots \text{ etc.}$$

$$\theta = 0^{\circ}$$

of inductance alone

$$Z = X_L$$
$$\theta = +90^{\circ}$$

of inductance in series

$$Z = X_{L_1} + X_{L_2} + X_{L_3} \dots \text{ etc.}$$

 $\theta = +90^{\circ}$

of capacitance alone

$$Z = X_C$$
$$\theta = -90^{\circ}$$

of capacitance in series

$$Z = X_{C_1} + X_{C_2} + X_{C_3} \dots \text{ etc.}$$

 $\theta = -90^{\circ}$

or where only 2 capacitances C_1 and C_2 are involved,

$$Z = \frac{1}{2\pi f} \left(\frac{C_1 + C_2}{C_1 C_2} \right)$$
$$\theta = -90^{\circ}$$

of resistance and inductance in series

$$Z = \sqrt{R^2 + X_L^2}$$

$$\theta = \arctan \frac{X_L}{R}$$

of resistance and capacitance in series

$$Z = \sqrt{R^2 + Xc^2}$$

$$\theta = \arctan \frac{X_C}{R}$$

of inductance and capacitance in series

$$Z = X_L - X_C$$

$$\theta = -90^{\circ} \text{ when } X_L < X_C$$

$$= 0^{\circ} \text{ when } X_L = X_C$$

$$= + 90^{\circ} \text{ when } X_L > X_C$$

of resistance, inductance and capacitance in series

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\theta = \arctan \frac{X_L - X_C}{R}$$

of resistance in parallel

$$Z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \cdot \cdot \cdot \text{ etc.}}$$

$$\theta = 0^{\circ}$$

or where only 2 resistances R_1 and R_2 are involved,

$$Z = \frac{R_1 R_2}{R_1 + R_2}$$

$$\theta = 0^{\circ}$$

of inductance in parallel

$$Z = \frac{1}{\frac{1}{X_{L1}} + \frac{1}{X_{L2}} + \frac{1}{X_{L3}} \dots \text{ etc.}}$$

$$\vartheta = +90^{\circ}$$

or where only 2 inductances L_1 and L_2 are involved,

$$Z = 2\pi f \left(\frac{L_1 L_2}{L_1 + L_2}\right)$$

$$\theta = +90^{\circ}$$

of capacitance in parallel

$$Z = \frac{1}{\frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}} \dots \text{ etc.}}$$

$$\theta = -90^{\circ}$$

or where only 2 capacitances C_1 and C_2 are involved,

$$Z = \frac{1}{2\pi f \left(C_1 + C_2\right)}$$

$$\theta = -90^{\circ}$$

of inductance and resistance in parallel,

$$Z = \frac{RX_L}{\sqrt{R^2 + X_L^2}}$$

$$\theta = \arctan \frac{R}{X_L}$$

of capacitance and resistance in parallel,

$$Z = \frac{RX_C}{\sqrt{R^2 + X_C^2}}$$

$$\theta = -\arctan \frac{R}{X_C}$$

of inductance and capacitance in parallel,

$$Z = \frac{X_L X_C}{X_L - X_C}$$

$$\theta = 0^{\circ} \text{ when } X_L = X_C$$

of inductance, resistance and capacitance in parallel

$$Z = \frac{RX_{L}X_{C}}{\sqrt{X_{L}^{2}X_{C}^{2} + (RX_{L} - RX_{C})^{2}}}$$

$$\theta = \arctan \frac{RX_C - RX_L}{X_L X_C}$$

of inductance and series resistance in parallel with capacitance

$$Z = X_C \sqrt{\frac{R^2 + X_L^2}{R^2 + (X_L - X_C)^2}}$$

$$\theta = \arctan\left(\frac{X_L X_C - X_L^2 - R^2}{RX_C}\right)$$

of capacitance and series resistance in parallel with inductance and series resistance

$$Z = \sqrt{\frac{(R_L^2 + X_L^2)(R_C^2 + X_C^2)}{(R_L + R_C)^2 + (X_L - X_C)^2}}$$

$$\theta = \arctan \frac{X_L(R_C^2 + X_C^2) - X_C(R_L^2 + X_L^2)}{R_L(R_C^2 + X_C^2) + R_C(R_L^2 + X_L^2)}$$

Conductance

In direct current circuits, conductance is expressed by

$$G=\frac{1}{R}$$

where G = conductance in mhos, R = resistance in ohms.

In d-c circuits involving resistances R_1 , R_2 , R_3 , etc., in parallel,

the total conductance is expressed by

$$G_{\text{total}} = G_1 + G_2 + G_3 \dots \text{etc.}$$

and the total current by

$$I_{\text{total}} = E G_{\text{total}}$$

and the amount of current in any single resistor, R_2 for example, in a parallel group, by

$$I_2 = \frac{I_{\text{total } G_2}}{G_1 + G_2 + G_3 \dots \text{ etc.}},$$

R, E and I in Ohm's law formulas for d-c circuits may be expressed in terms of conductance as follows:

$$R=rac{1}{G}, \qquad E=rac{I}{G}, \qquad I=EG,$$

where G = conductance in mhos,

R = resistance in ohms,

E =potential in volts,

I = current in amperes.

Susceptance

In an alternating current circuit, the susceptance of a series circuit is expressed by

$$B=\frac{X}{R^2+X^2}$$

or, when the resistance is 0, susceptance becomes the reciprocal of reactance, or

$$B = \frac{1}{X}$$

where B =susceptance in mhos

R = resistance in ohms,

X = reactance in ohms

Admittance

In an alternating current circuit, the admittance of a series circuit is expressed by

$$Y = \frac{1}{\sqrt{R^2 + X^2}}$$

Admittance is also expressed as the reciprocal of impedance, or

$$Y=\frac{1}{Z}$$

where Y = admittance in mhos,

R = resistance in ohms,

X = reactance in ohms,

Z = impedance in ohms.

R and X in Terms of G and B

Resistance and reactance may be expressed in terms of conductance and susceptance as follows:

$$R = \frac{G}{G^2 + B^2}, \qquad X = \frac{B}{G^2 + B^2}.$$

G, B, Y and Z in Parallel Circuits

In any given a-c circuit containing a number of smaller parallel circuits only,

the effective conductance G_i is expressed by

$$G_1 = G_1 + G_2 + G_3 \dots \text{ etc.},$$

and the effective susceptance B_i by

$$B_t = B_1 + B_2 + B_3 \dots \text{ etc.}$$

and the effective admittance Y, by

$$Y_t = \sqrt{G_t^2 + B_t^2}$$

and the effective impedance Zi by

$$Z_t = \frac{1}{\sqrt{G_t^2 + B_t^2}} \text{ or } \frac{1}{Y_t}$$

where R = resistance in ohms,

X = reactance (capacitive or inductive) in ohms,

G =conductance in mhos,

B =susceptance in mhos,

Y = admittance in mhos,

Z = impedance in ohms.

Transient I and E in LCR Circuits

The formulas which follow may be used to closely approximate the growth and decay of current and voltage in circuits involving L, C and R:

i = instantaneous current in amperes at any given time (t),

E =potential in volts as designated,

R = circuit resistance in ohms,

C =capacitance in farads,

L = inductance in henrys,

V = steady state potential in volts,

 V_C = reactive volts across C,

 V_L = reactive volts across L,

 V_R = voltage across R

RC = time constant of RC circuit in seconds,

 $\frac{L}{R}$ = time constant of RL circuit in seconds.

t =any given time in seconds after switch is thrown,

 $\epsilon = a \text{ constant}, 2.718 \text{ (base of the }$ natural system of logarithms),

Sw =switch

The time constant is defined as the time in seconds for current or voltage to fall to $\frac{1}{2}$ or 36.8% of its initial value or to rise to $(1-\frac{1}{\epsilon})$ or approximately 63.2% of its final value.

Charging a De-energized Capacitive Circuit

E = applied potential.

$$i = \frac{E}{R} \, \epsilon^{-\frac{t}{RC}}$$

$$V_C = E \left(1 - \epsilon^{-\frac{t}{RC}}\right) \qquad V_R = E \epsilon^{-\frac{t}{RC}}$$

$$V_R = E \epsilon^{-\frac{t}{RC}}$$

Discharging an Energized Capacitive Circuit

E =potential to which C is charged prior to closing S_w .

$$i = \frac{E}{R} \epsilon^{-\frac{t}{RC}}$$

$$V_C = V_R = E \, \epsilon^{-\frac{t}{RC}}$$

Voltage is Applied to a Deenergized Inductive Circuit

E = applied potential

$$i = \frac{E}{R} \left(1 - \epsilon^{-\frac{Rt}{L}} \right)$$

An Energized Inductive Circuit is Short Circuited

E = counter potential induced in coil when switch is closed.

$$i = \frac{E}{R} \epsilon^{-\frac{Rt}{L}}$$

Steady State Current Flow

In a Capacitive Circuit

In a capacitive circuit, where resistance loss components may be considered as negligible, the flow of current at a given alternating potential of constant frequency, is expressed by

$$I = \frac{E}{X_C} = \frac{E}{\left(\frac{1}{2\pi fC}\right)} = E\left(2\pi fC\right)$$

where I = current in amperes,

 X_{c} = capacitive reactance of the circuit in ohms,

E = applied potential in volts.

In an Inductive Circuit

In an inductive circuit, where inherent resistance and capacitance components may be so low as to be negligible, the flow of current at a given alternating potential of a constant frequency, is expressed by

$$I = \frac{E}{X_L} = \frac{E}{2\pi f L}$$

where I = current in amperes,

 X_L = inductive reactance of the circuit in ohms,

E = applied potential in volts.

Transmission Line Formulas

Concentric Transmission Lines

Characteristic impedance in ohms is given by

 $Z = 138 \log \frac{d_1}{d_2}$

R-f resistance in ohms per foot of copper line, is given by

$$r = \sqrt{f} \left(\frac{1}{d_1} + \frac{1}{d_2} \right) \times 10^{-8}$$

Attenuation in decibels per foot of line, is given by

$$\alpha = \frac{4.6\sqrt{f}(d_1 + d_2)}{d_1d_2\left(\log\frac{d_1}{d_2}\right)} \times 10^{-6}$$

where Z = characteristic impedance in ohms,

r = radio frequency resistance in ohms per foot of copper line,

a = attenuation in decibels per foot of line,

d₁ = the *inside* diameter of the *outer* conductor, expressed in inches,

 d_2 = the *outside* diameter of the *inner* conductor, expressed in inches,

f = frequency in megacycles.

Two-Wire Open Air Transmission Lines

Characteristic impedance in ohms is given by

 $Z = 276 \left(\log \frac{2D}{d} \right)$

Inductance in microhenrys per foot of line is given by

 $L = 0.281 \left(\log \frac{2D}{d} \right)$

Capacitance in micromicrofarads per foot of line is given by

$$C = \frac{3.68}{\log \frac{2D}{d}}$$

Attenuation in decibels per foot of wire is given by

 $db = \frac{0.0157 \, R_f}{\log \frac{2D}{d}}$

R-f resistance in Ohms per loop-foot of wire, is given by

 $R_f = \frac{2 \times 10^{-1} \sqrt{f}}{d}$

where Z = characteristic impedance in ohms,

D = spacing between wire centers in inches,

d = the diameter of the conductors in inches,

L = inductance in microhenrys per foot of line,

C = capacitance in micromicrofarads per foot of line,

db = attenuation in decibels per foot of wire,

 $R_f = r$ -f resistance in ohms per loopfoot of wire

f =frequency in megacycles

Vertical Antenna

The capacitance of a vertical antenna, shorter than one-quarter wave length at its operating frequency, is given by

$$C_{a} = \frac{17l}{\left[\left(\log \epsilon \frac{24l}{d}\right) - 1\right] \left[1 - \left(\frac{fl}{246}\right)^{2}\right]}$$

where C_a = capacitance of the antenna in micromicrofarads,

l = height of antenna in feet,

d = diameter of antenna conductor in inches,

f = operating frequency in megacycles.

 $\epsilon = 2.718$ (the base of the natural system of logarithms).

Vacuum Tube Formulas and Symbols

Vacuum Tube Constants

Amplication factor $(Mu \ or \ \mu)$ is given by

$$\mu = \frac{\Delta E_p}{\Delta E_m} \text{ (with } I_p \text{ constant)}$$

Dynamic plate resistance in ohms, is given by

$$r_p = \frac{\Delta E_p}{\Delta I_p}$$
 (with E_q constant)

Mutual conductance in mhos, is given by

$$g_m = \frac{\Delta I_p}{\Delta E_g}$$
 (with E_p constant)

Vacuum Tube Formulas

Gain per stage is given by

$$\mu\left(\frac{R_L}{R_L+r_p}\right)$$

Voltage output appearing in R_L is given by

$$\mu\left(\frac{E_s\,R_L}{r_p+R_L}\right)$$

Power output in R_L , is given by

$$R_L \left(\frac{\mu E_*}{r_p + R_L} \right)^2$$

Maximum power output in R_L which results when $R_L = r_p$, is given by

$$\frac{(\mu E_s)^2}{4r_p}$$

Maximum undistorted power output in R_L , which results when $R_L = 2r_p$, is given by

$$\frac{2(\mu E_s)^2}{9r_p}$$

Required cathode biasing resistor in ohms, for a single tube is given by

$$\frac{E_g}{I_k}$$

Vacuum Tube Symbols

 $Mu \text{ or } \mu = \text{Amplification factor}$

 $r_p = \text{Dynamic plate resistance in ohms,}$

 $g_m = Mutual conductance in mhos,$

 E_p = Plate voltage in volts,

 $E_g = \text{Grid voltage in volts},$

 I_p = Plate current in amperes,

 R_L = Plate load resistance in ohms,

 I_k = Total cathode current in amperes,

 E_s = Signal voltage in volts,

 Δ = change or variation in value, which may be either an increment (increase), or a decrement (decrease).

Peak, R.M.S., and Average A-C Values of E & I

Given		To get	
Value	Peak	R.M.S.	Av.
Peak		0.707 × Peak	$0.637 \times Peak$
R.M.S.	$1.41 \times R.M.S.$		$0.9 \times R.M.S.$
Av.	$1.57 \times Av.$	$1.11 \times Av.$	

D-C Meter Formulas

Meter Resistance

The d-c resistance of a milliammeter or voltmeter movement may be determined as follows:

- 1. Connect the meter in series with a suitable battery and variable resistance R_1 as shown in the diagram above.
- 2. Vary R_1 until a full scale reading is obtained.
- 3. Connect another variable resistor R_2 across the meter and vary its value until a half scale reading is obtained.
- 4. Disconnect R₂ from the circuit and measure its d-c resistance.

The meter resistance R_m is equal to the measured resistance of R_2 .

Caution: Be sure that R_1 has sufficient resistance to prevent an off scale reading of the meter. The correct value; depends upon the sensitivity of meter, and voltage of the battery. The following formula can be used if the full scale current of the meter is known:

 $R_1 = \frac{\text{voltage of the battery used}}{\text{full scale current of meter in amperes}}$

For safe results, use twice the value computed. Also, never attempt to measure the resistance of a meter with an ohmmeter. To do so would in all probability result in a burned-out or severely damaged meter, since the current required for the operation of some ohmmeters and bridges is far in excess of the full scale current required by the movement of the average meter you may be checking.

Ohms per Volt Rating of a Voltmeter

$$\Omega/V = \frac{1}{I_{fs}}$$

where $\Omega/V = \text{ohms per volt}$,

 I_{fs} = full scale current in amperes.

Fixed Current Shunts

R =shunt value in ohms,

N = the new full scale reading divided by the original full scale reading, both being stated in the same units.

 $R_m = \text{meter resistance in ohms.}$

Multi-Range Shunts

 R_1 = intermediate or tapped shunt value in ohms,

 R_{1+2} = total resistance required for the lowest scale reading wanted,

 $R_m = \text{meter resistance in ohms},$

N = the new full scale reading divided by the original full scale reading, both being stated in the same units.

Voltage Multipliers

$$R = \frac{E_{fs}}{I_{fs}} - R_m$$

R =multiplier resistance in ohms,

 E_{fs} = full scale reading required in volts,

 I_{fs} = full scale current of meter in amperes,

 $R_m = \text{meter resistance in ohms.}$

Measuring Resistance

with Milliammeter and Battery*

$$R_x = R_m \left(\frac{I_2}{I_1 - I_2} \right)$$

 R_x = unknown resistance in ohms,

 R_m = meter resistance in ohms, or effective meter resistance if a shunted range is used.

 $I_1 = \text{current reading with switch open,}$

 I_2 = current reading with switch closed,

 R_1 = current limiting resistor of sufficient value to keep meter reading on scale when switch is open.

* Approximately true only when current limiting resistor is large as compared to meter resistance.

Shunt Values for 27-Ohm 0-1 Milliammeter

FULL SCALE CURRENT	SHUNT
0-10 ma	3.0 ohms
0-50 ma	0.551 ohms
0-100 ma	0.272 ohms
0-500 ma	0.0541 ohms

Measuring Resistance—(Continued)

with Milliammeter, Battery and Known Resistor

$$R_x = \left(R_y + R_m\right) \left(\frac{I_1 - I_2}{I_2}\right)$$

 R_x = unknown resistance in ohms,

 $R_{\nu} = \text{known resistance in ohms,}$

 $R_m = \text{meter resistance in ohms},$

 I_1 = current reading with switch closed,

 I_2 = current reading with switch open.

with Voltmeter and Battery

$$R_x = R_m \left(\frac{E_1}{E_2} - 1 \right)$$

 R_x = unknown resistance in ohms,

 R_m = meter resistance in ohms, including multiplier resistance if a multiplied range is used,

 E_1 = voltmeter reading with switch closed,

 E_2 = voltmeter reading with switch open.

Multiplier Values for 27-Ohm 0-1 Milliammeter

FULL SCALE VOLTAGE	MULTIPLIER
0-10 volts	10,000 ohms
0-50 volts	50,000 ohms
0-100 volts	100,000 ohms
0-250 voits	250,000 ohms
0-500 volts	500,000 ohms
0-1,000 volts	1,000,000 ohms

Ohm's Law for A-C Circuits

The fundamental Ohm's law formulas for a-c circuits are given by

$$I = \frac{E}{Z}$$
, $Z = \frac{E}{I}$, $E = IZ$, $P = EI \cos \theta$

where I =current in amperes,

 $Z \doteq \text{impedance in Ohms,}$

E = volts across Z,

P =power in watts,

 θ = phase angle in degrees

Phase Angle

The phase angle is defined as the difference in degrees by which current leads voltage in a capacitive circuit, or lags voltage in an inductive circuit, and in series circuits is equal to the angle whose tangent is given by the

ratio
$$\frac{X}{R}$$
 and is expressed by

$$\frac{X}{R}$$

where X = the inductive or capacitive reactance in ohms,

R =the non-reactive resistance in ohms,

of the combined resistive and reactive components of the circuit under consideration.

Therefore

in a purely resistive circuit, $\theta = 0^{\circ}$ in a purely reactive circuit, $\theta = 90^{\circ}$ and in a resonant circuit, $\theta = 0^{\circ}$

also when

$$\theta = 0^{\circ}$$
, $\cos \theta = 1$ and $P = EI$, $\theta = 90^{\circ}$, $\cos \theta = 0$ and $P = 0$.

Degrees
$$\times$$
 0.0175 = radians.
1 radian = 57.3°.

Power Factor

The power-factor of any a-c circuit is equal to the true power in watts divided by the apparent power in volt-amperes which is equal to the cosine of the phase angle, and is expressed by

$$p.f. = \frac{EI \cos \theta}{EI} = \cos \theta$$

Where

p.f. =the circuit load power factor,

 $EI\cos\theta$ = the true power in watts,

EI = the apparent power in voltamperes,

E =the applied potential in volts,

I = load current in amperes.

Therefore

in a purely resistive circuit,

$$\theta = 0^{\circ}$$
 and $p.f. = 1$

and in a reactive circuit,

$$\theta = 90^{\circ}$$
 and $p.f. = 0$

and in a resonant circuit,

$$\theta = 0^{\circ}$$
 and $p.f. = 1$

Ohm's Law for D-C Circuits

The fundamental Ohm's law formulas for d-c circuits are given by,

$$I = \frac{E}{R}$$
, $R = \frac{E}{I}$, $P = EI$.

where I = current in amperes,

R = resistance in ohms,

E =potential across R in volts,

P =power, in watts.

Ohms Law Formulas for D-C Circuits

Known	Formulas for Determining Unknown Values of					
Values		· R	E	P		
I & R			IR	I^2R		
I & E		$\frac{E}{I}$		EI		
1 & P		$\frac{P}{I^2}$	$\frac{P}{I}$			
R & E	$rac{\mathbf{E}}{R}$			$\frac{E^2}{R}$		
R & P	$\sqrt{\frac{P}{R}}$		\sqrt{PR}			
E & P	$\frac{P}{E}$	$\frac{E^2}{P}$				

Ohm's Law Formulas for A-C Circuits

Known	Formulas for Determining Unknown Values of					
Values		Z	E	P		
1 & Z			IZ	$I^2Z\cos\theta$		
1 & E		$\frac{E}{I}$		$IE\cos \theta$		
1 & P		$\frac{P}{I^2 \cos \theta}$	$\frac{P}{I\cos\theta}$			
Z & E	$rac{E}{Z}$,		$rac{E^2 \cos heta}{Z}$		
Z & P	$\sqrt{\frac{P}{Z\cos\theta}}$		$\sqrt{\frac{PZ}{\cos \theta}}$			
E&P	$\frac{P}{E \cos \theta}$	$\frac{E^2\cos heta}{P}$				

Trigonometric Relationships

In any right triangle, if we let

 θ = the acute angle formed by the hypotenuse and the base legy

 ϕ = the acute angle formed by the hypotenuse and the altitude leg,

H =the hypotenuse,

A =the side adjacent θ and opposite ϕ ,

O =the side opposite θ and adjacent ϕ ,

then , sine of $\theta = \sin \theta = \frac{O}{H}$ cosine of $\theta = \cos \theta = \frac{A}{H}$ tangent of $\theta = \tan \theta = \frac{O}{A}$

cosecant of
$$\theta = \csc \theta = \frac{H}{O}$$

secant of $\theta = \sec \theta = \frac{H}{A}$
cotangent of $\theta = \cot \theta = \frac{A}{O}$

also $\sin \theta = \cos \phi \qquad \csc \theta = \sec \phi$ $\cos \theta = \sin \phi \qquad \sec \theta = \csc \phi$ $\tan \theta = \cot \phi \qquad \cot \theta = \tan \phi$

and $\frac{1}{\sin \theta} = \csc \theta$ $\frac{1}{\csc \theta} = \sin \theta$ $\frac{1}{\cos \theta} = \sec \theta$ $\frac{1}{\sec \theta} = \cos \theta$ $\frac{1}{\tan \theta} = \cot \theta$ $\frac{1}{\cot \theta} = \tan \theta$

The expression "arc sin" indicates, "the angle whose sine is"...; likewise arc tan indicates, "the angle whose tangent is"... etc. See formulas in table below.

Known		Formulas for De	termining Unknow	Formulas for Determining Unknown Values of								
Values	A	0	Н	θ	φ							
A & O			$\sqrt{A^2+O^2}$	$\arctan \frac{O}{A}$	arc tan							
A & H		$\sqrt{H^2-A^2}$		$arc cos \frac{A}{H}$	$\arcsin \frac{A}{H}$							
Α& θ		$A \tan \theta$	$\frac{A}{\cos \theta}$		90° — θ							
Α&φ		$\frac{A}{\tan \phi}$	$\frac{A}{\sin \phi}$	90° — φ								
O & H	$\sqrt{H^2-O^2}$			$\frac{1}{arc \sin \frac{O}{H}}$	$\frac{C}{E}$							
Ο& θ	$\frac{O}{\tan \theta}$		$\frac{O}{\sin \theta}$		90° — θ							
Ο&φ	$O \tan \phi$		$\frac{O}{\cos \phi}$	90° — φ								
Η & θ	$H \cos \theta$	$H \sin \theta$			90° — θ							
Н&ф	$H \sin \phi$	$H\cos\phi$		90° — φ	•							

Metric Relationships

The above chart shows the relation between the American and the metric systems of notation.

This chart also serves to quickly locate the decimal point in the conversion from one metric expression to another.

Example: Convert 5.0 milliwatts to watts. Place the finger on milli and count the number of steps from there to units (since the

term watt is a basic unit). The number of steps so counted is three, and the direction was to the left. Therefore, 5.0 milliwatts is the equivalent of .005 watts.

Example: Convert 0.00035 microfarads to micromicrofarads. Here the number of steps counted will be six to the right. Therefore 0.00035 microfarads is the equivalent of 350 micromicrofarads.

Metric Conversion Table

ORIGINAL	DESIRED VALUE									
VALUE	Mega	Kilo	Units	Deci	Centi	Milli	Micro	Micromicro		
Mega		3→	6→	7→	8->	9->	12→	18→		
Kilo	← 3		3→	4+	5→	6→	9->	15→		
Units	← 6	← 3		1→	2->	3→	6→	12->		
Deci	← 7	4 4	← 1		1→	2->	5→	11→		
Centi	← 8	← 5	← 2	← 1		1 →	4->	10→		
Milli	← 9	← 6		← 2	← 1		3→	9→		
Micro	←12	← 9	← 6	← 5	+ 4	← 3		6→		
Micromicro	← 18	← 15	←12	←11	←10	← S	← 6			

The above metric conversion table provides a fast and automatic means of conversion from one metric notation to another. The notation "Unit" represents the basic units of measurement, such as amperes, volts, ohms, watts, cycles, meters, grams, etc. To use the table, first locate the original or given value in the left-hand column. Now follow this line horizontally to the vertical column headed by the prefix of the desired value. The figure and arrow at this point indicates number of places and direction decimal point is to be moved.

Example: Convert 0.15 ampere to milliamperes. Starting at the "Units" box in the left-hand column (since ampere is a basic unit of measurement), move horizontally to the column headed by the prefix "Milli", and read 3. Thus 0.15 ampere is the equivalent of 150 milliamperes.

Example: Convert 50,000 kilocycles to megacycles. Read in the box horizontal to "Kilo" and under "Mega", the notation 43, which means a shift of the decimal three places to the left. Thus 50,000 kilocycles is the equivalent of 50 megacycles.

Coil Winding Data

Turns Per Inch

	Turns Per Inch									
(AWG)	Numbe	r of Turn	s per Line	ar Inch						
(B&S)	Enamel	s.s.c.	D.S.C. and S.C.C.	D.C.C.						
1 2 3 4 5			3.3 3.8 4.2 4.7 5.2	3.3 3.6 4.0 4.5 5.0						
6 7 8 9	7.6 8.6 9.6		5.9 6.5 7.4 8.2 9.3	5.6 6.2 7.1 7.8 8.9						
11	10.7		10.3	9.8						
12	12.0		11.5	10.9						
13	13.5		12.8	12.0						
14	15.0		14.2	13.8						
15	16.8		15.8	14.7						
16	18.9	18.9	17.9	16.4						
17	21.2	21.2	19.9	18.1						
18	23.6	23.6	22.0	19.8						
19	26.4	26.4	24.4	21.8						
20	29.4	29.4	27.0	23.8						
21	33.1	32.7	29.8	26.0						
22	37.0	36.5	34.1	30.0						
23	41.3	40.6	37.6	31.6						
24	46.3	45.3	41.5	35.6						
25	51.7	50.4	45.6	38.6						
26	58.0	55.6	50.2	41.8						
27	64.9	61.5	55.0	45.0						
28	72.7	68.6	60.2	48.5						
29	81.6	74.8	65.4	51.8						
30	90.5	83.3	71.5	55.5						
31	101.	92.0	77.5	59.2						
32	113.	101.	83.6	62.6						
33	127.	110.	90.3	66.3						
34	143.	120.	97.0	70.0						
35	158.	132.	104.	73.5						
36	175.	143.	111.	77.0						
37	198.	154.	118.	80.3						
38	224.	166.	126.	83.6						
39	248.	181.	133.	86.6						
40	282.	194.	140.	89.7						

Coil Winding Formulas

The following approximations for winding r-f coils are accurate to within approx. 1% for nearly all small air-core coils, where

L = self inductance in microhenrys,

N =total number of turns,

r = mean radius in inches,

l = length of coil in inches,

b = depth of coil in inches.

Single-Layer Wound Coils

$$N = \frac{\sqrt{L(9r + 10l)}}{r}$$

Multi-Layer Wound Coils

Single-Layer Spiral Wound Coils

Table of Standard Annealed Bare Copper Wire Using American Wire Gauge (B&S)

Gauge .	DIA	DIAMETER INCHES			WEIGHT	LENGTH	RESIS	TANCE A	T 68° F	Gau
(AWG) or (B & S)	Min.	Nom.	Max.	Circular	Pounds per M'	Feet per Lb.	Ohms per M'	Feet per Ohm	Ohms per Lb.	(AW or (B &
0000	.4554	.4600	.4646	211600.	640.5	1.561	.04901	20400.	.00007652	000
000	.4055	.4096	.4137	167800.	507.9	1.958	.06180	16180.	.0001217	00
00	.3612	.3648	.3684	133100.	402.8	2.482	.07793	12830.	.0001217	0
0	.3217	.3249	.3281	105500.	319.5	3.130	.09827	10180.	.0003076	· ·
1	.2864	.2893	.2922	83690.	253.3	3.947	.1239	9070	0004004	
2	.2550	.2576	.2602	66370.	200.9	4.977	.1563	8070.	.0004891	
3	.2271	.2294	.2317	52640.	159.3	6.276	.1970	6400. 5075.	.0007778	
4	.2023	.2043	.2063	41740.	126.4	7.914	.2485	4025.	.001237	
5	.1801	.1819	.1837	22100	100.0					
6	.1604	.1620	.1636	33100.	100.2	9.980	.3133	3192.	.003127	
7	.1429	.1443	.1457	26250.	79.46	12.58	.3951	2531.	.004972	
8	.1272	.1285	.1298	20820.	63.02	15.87	.4982	2007.	.007905	7
		.1203	.1230	16510.	49.98	20.01	.6282	1592.	.01257	
9	.1133	.1144	.1155	13090.	39.63	25.23	.7921	1262.	.01999	
10	.1009	.1019	.1029	10380.	31.43	31.82	.9989	1001.	.03178	10
11	.08983	.09074	.09165	8234.	24.92	40.12	1.260	794.	.05053	1
12	.08000	.08081	08162	6530.	19.77	50.59	1.588	629.6	.08035	12
13	.07124	.07196	.07268	5178.	15.68	63.80	2.003	499.3	.1278	
14	.06344	.06408	.06472	4107.	12.43	80.44	2.525	396.0	.2032	13
15	.05650	.05707	.05764	3257.	9.858	101.4	3.184	314.0	.3230	14
16	.05031	.05082	.05133	2583.	7.818	127.9	4.016	249.0	.5136	1:
17	.04481	.04526	.04571	2048.	6.200	101.2	5.004	40		
18	.03990	.04030	.04070	1624.	4.917	161.3	5.064	197.5	.8167	17
19	.03553	.03589	.03625	1288.	3.899	203.4 256.5	6.385		1.299	18
20	.03164	.03196	.03228	1022.	3.092	323.4	8.051 10.15		2.065 3.283	19 20
21	.02818	.02846	.02874	0101	0.450					
22	.02510	.02535	.02560	810.1 642.4	2.452	407.8	12.80	78.11	5.221	21
23	.02234	.02257	.02280	509.5	1.945	514.2	16.14	61.95	8.301	22
24	.01990	.02010	.02030	404.0	1.542	648.4 817.7	20.36 25.67	49.13	13.20	23
25	01770	01700	04040				20.01	30.30	20.99	24
26	.01 7 70	.01790	.01810	320.4	.9699	1031.	32.37	30.90	33.37	25
27	.01406	.01594	.01610	254.1	.7692	1300.	40.81	24.50	53.06	26
28	.01251	.01420	.01434	201.5	-6100	1639.	51.47	19.43	84.37	27
20	.01231	.01204	.01277	159.8	.4837	2067.	64.90	15.41	134.2	28
29	.01115	.01126	.01137	126.7	.3836	2607.	81.83	12.22	213.3	29
30	.00993	.01003	.01013	100.5	.3042	3287.	103.2	9.691	339.2	30
31	.008828	.008928	.009028	79.7	.2413	4145.	130.1	7.685	539.3	31
32	.007850	.007950	.008050	63.21	.1913	5227.	164.1	6.095	857.6	32
33	.006980	.007080	.007180	50.13	.1517	6591.	206.9	4.833	1264	20
34	.006205	.006305	.006405	39.75	.1203	8310.	260.9	3.833	1364. 2168.	33
35	.005515	.005615	.005715	31.52	.09542	10480.	329.0	3.040	3448.	34
36	.004900	.005000	.005100	25.00	.07568	13210.	414.8	2.411	5482.	35 36
37	.004353	.004453	.004553	19.83	00001	10000	500.4			
38	.003865	.003965	.004055	15.72	.06001	16660.	523.1	1.912	8717.	37
\$9	.003431	.003531	.003631	12.47	.04759	21010.	659.6	1.516	13860.	38
40	.003045	.003331	.003031	9.888	.03774	26500. 33410.	831.8		22040. 35040.	39 40
41	00070	00000	00000					0.0004	33040.	40
42	.00270	.00280	.00290	7.8400 6.2001	.02373	42140.	1323.	# P	55750.	41
43	.00212	.00222	.00233	4.9284	.01877	53270.	1673.		89120.	42
44	.00187	.00197	.00207	3.8809	.01492	67020.	2104.	_	41000.	43
45	.00166	.00176	.00186	3.0976	.01175	85100. 106600.	2672. 3348.		27380.	44
				WWWII	45 25 4, 24 34 3	TOTAL	1 16 2	· // U/ / 13	56890.	45

Courtesy, Belden Mfg. Co.

Single-Layer Wound Coil Chart

The chart on the opposite page provides a convenient means of determining the unknown factors of small sized single-layer wound r-f coils. Values thus found so closely approximate those determined by measurement or mathematical calculation as to be entirely satisfactory for all practical purposes of experimentation, design, and repair work. Since in all coils of this type, the difference between the mean and inner diameter of the winding is so slight as to be negligible, **D** in all instances may be either the mean or inner diameter as desired.

Example: Given the total number of turns, winding length and diameter of a coil,— to find the inductance;

1. Place a straightedge on the chart so as to form a line intersecting the number of turns N, and the ratio of diameter to length K, and note the point intersected on the linear axis column.

- 2. Now move the straightedge so as to form a second line which will intersect this same point on the axis column, and the diameter **D**.
- 3. The point where this line intersects the L column indicates the inductance of the coil in microhenries.

Example: Given the diameter, winding length and inductance in microhenries,— to find the number of turns;

- 1. Simply reverse the process outlined above for determining inductance.
- 2. After finding the number of turns, consult the wire table on page 22 and determine the size of wire to be used.

The dotted lines appearing on the chart illustrate the correct plotting of a 600-mi-crohenry coil consisting of 100 turns of wire, wound to 51/64" on a form 2" in diameter.

Inductance, Capacitance, Reactance Charts

The direct-reading charts appearing on the following three pages are designed for determining unknown values of frequency, inductance, capacitance and reactance components operating in a-f and r-f circuits.

The simplifications embodied in these charts make them extremely useful. The frequency range covered comprises the frequency spectrum from 1 cycle per second up to 1000 megacycles per second. All of the scales involved are plotted in actual magnitudes so that no computations are required to determine the location of the decimal point in the final result.

To make these conditions possible the frequency spectrum has been divided into three parts:

Chart I (page 26)—Covers the range from 1 cycle to 1000 cycles.

Chart II (page 27)—From 1 kilocycle to 1000 kilocycles.

Chart III (page 28)—From 1 megacycle to 1000 megacycles.

Inductance, capacitance, reactance and frequency have been plotted so that the reactance offered by an inductance or capacitance at any frequency may be readily determined by placing a straight-edge across the chart connecting the known quantities.

Since $X_L = X_C$ at resonance in most radio circuits, the charts may also be used to find the resonant frequency of any combination of L and C.

To illustrate with a simple example, suppose the reactance of a 0.01 μ f. capacitor is desired at a frequency of 400 cycles. Place a straight-edge across the proper chart so as to connect the points 0.01 μ f. and 400 cycles per sec. The quantity desired is the point of intersection with the reactance scale which is 40,000 ohms. The straight-edge also intersects the inductance scale at 15.8 henrys indicating that this value of inductance likewise has a reactance of 40,000 ohms at 400 cycles per sec. and furthermore, that these values of L and C produce resonance at this frequency.

There are many practical uses for these charts. The radio experimentor, maintenance man and engineer will find them helpful in the rapid solution of many reactance problems. Unusual care was exercised in laying out the various scales in order to secure a high degree of accuracy for the charts. Results should be obtainable which are at least as accurate as might be secured with a ten-inch slide rule.

Resistor Color Codes

Values in Ohms

Color	1st Significant Figure	Color	2nd Significant Figure	Color	Decimal Multiplier	Color	Resistive
Black	0	Black	0	Black		None	± 20%
Brown	1	Brown	1	Brown	10	Silver	± 10%
Red	2	Red	2	Red	100	Gold	± 5%
Orange	3	Orange	3	Orange	1,000		
Yellow	4	Yellow	4	Yellow	10,000		
Green	5	Green	5	Green	100,000		
Blue	6	Blue	6	Blue	1,000,000		
Violet	7	Violet	7	Violet	10,000,000		
Grey	8	Grey	8	Gold	0.1		
White	9	White	9	Silver	0.01		

Mica Capacitor Color Codes

Capacitance in micromicrofarads ($\mu\mu$ f.)

Dot	Significant Figures			Decimal Multiplier	Capacitive Tolerance	DC Test Voltage	Dot Color
Color	A	B	©	D	E	F	
Black Brown Red Orange Yellow Green Blue Violet Gray White Gold Silver No Color	0123456789	0123456789	0123456789	10 100 1,000 10,000 100,000 1,000,000 100,000,0	1 2 3 4 5 6 7 8 9 5 % % % % % % % % % % % % % % % % % %	100 200 300 400 500 600 700 800 900 1,000 2,000 500	Black Brown Red Orange Yellow Green Blue Violet Grey White Gold Silver No Color

RMA Color Codes

The color codes on the preceeding and two following pages are used by most radio and instrument manufacturers in the wiring of their products, and by parts manufacturers for identifying lead placement or resistor and capacitor values, ratings, and tolerances. These have been included for whatever help they may provide in identifying parts and

leads when shooting trouble. Since all manufacturers do not use these codes, however, due caution must be observed to determine whether or not the set, instrument, or part under examination does or does not follow the code colors given here. A quick check with a voltmeter, ohmmeter, or continuity meter is usually all that is needed to establish this fact.

RMA Color Codes—(Continued)

RMA Color Codes—(Continued)

ħ

-(Continued)

Speaker Lead Color Codes-

Audio & Output Transformer

GREEN

Transformers

ACK

FOUND ONLY ON PUSH-PULL PRIMARY OR SECONDARY

BLACK

#

WINDINGS

Pilot Lamp Data

Maximum Size See Chart below for dimensions				B	
Type No.	T-31/4	T-31/4	G-3½	G-3½	G-4½
Base	Screw (Miniature)	Bayonet (Miniature)	Screw (Miniature)	Bayonet (Miniature)	Bayonet (Miniature)
Bulb	Tubular	Tubular	Small Round	Small	Large Round
Lamp	40 41 42 46 48 292	40A 43 44 45 47 49 49A 292A	50	51	55

				RATING			Maximum Dimensions (See illustrations above)			
No. Bead Color	Base (Miniature)	Bulb Type	Volts	Amps.	Used for	А	В	С		
40	Brown	Screw	T-314	6-8	0.15	Dials	15,32"	29/32"	136"	
40A†	Brown	Bayonet	T-31/4	6-8	0.15	Dials	15 32"	29/32"	11/8"	
41	White	Screw	T-314	2.5	0.5	Dials	15,32"	29/32"	11/8"	
42	Green	Screw	T-314	3.2	‡ ‡	Dials	15 /2"	29/32"	11/8"	
43	White	Bayonet	T-31/4	2.5	0.5	Dials and Tuning Meters	15/32"	23/52"	1 1/8"	
44	Blue	Bayonet	T-314	6-8	0.25	Dials and Tuning Meters	15/32"	29/32"	11/8"	
45	*	Bayonet	T-31/4	3.2	++	Dials	15 / "	23/32"	11/8"	
46^	Blue	Screw	T-314	6-8	0.25	Dials and Tuning Meters	15/32	23/32"	11/8"	
47+	Brown	Bayonet	T-31/4	6-9	0.15	Dials	15/32"		11/8"	
48	Pink	Screw	T-31/4	2.0	0.06	Battery Set Dials	15/82"	29/32"	11/8"	
495	Pink	Bayonet	T-314	2.0	0.06	Battery Set Dials	15/32	23/32"	11/8"	
	White	Screw	T-31/4	2.1	0.12	Dials	15/32"			
49A§	White	Bayonet	T-31/4	2.1	0.12	Dials	15 32"	23/32"	11/8	
50	White	Screw	G-312	6-8	0.2	Auto-Radio Dials; Flashlights	1/2"	23/32"	15/16	
51 ⁴	White	Bayonet	G-31/2	6-8	0.2	Auto-Radio Dials; Panel Boards	1/2"	1/2"	15/16"	
-	White	Screw	G-41/2	6-8	0.4	Auto-Radio Dials; Flashlights	1/2"		_	
55	White	Bayonet	G-412	6-8	0.4	Auto-Radio Dials; Parking Lights	5/8"	1/2"	11/16"	
292•	White	Screw	T-31/4	2.9	0.17	Dials	15/32"	29/52"	11/8"	
292A*	White	Bayonet	T-31/4	2.9	0.17	Dials and Coin Machines	15,32"	23/32"	11/8"	
1455	Brown	Screw	G-5	18.0	0.25	Coin Machines			_	
1455A	Brown	Bayonet	G-5	18.0	0.25	Coin Machines				

- * White in G.E. and Sylvania; Green in National Union Raytheon and Tung-Sol.
- ‡ 0.35 in G.E. and Sylvania; 0.5 in National Union Raytheon and Tung-Sol.
- † 40A and 47 are interchangeable.
- § 49 and 49A are interchangeable.
- A Have frosted bulb.
- Replace with No. 48.
- Use in 2.5 volt sets where regular bulb burns out too frequently.

Plug-In Ballast Resistor Data

Plug-in ballast resistors which are numbered in accordance with RMA standards, are coded as follows:

First: A prefix K, L, or M, where

K denotes #40 6.3 v. 0.15 a. pilot lamp,
 L denotes #46 6.3 v. 0.25 a. pilot lamp,
 M denotes #51 6.3 v. 0.2 a. pilot lamp.

A letter B prefixing K, L, or M, indicates ballast action on pilot light section.

A letter X following K, L, or M, denotes a 4-prong base type mounting.

Second: A number, which indicates the voltage drop across the entire resistor unit, including pilot lamp section, at the standard current of 0.3 ampere.

Third: A letter A, B, C, D etc., repre-

senting the circuit arrangement as designated by the lettered diagrams shown below.

Fourth: A suffix G, MG, or J, where

G indicates a glass type envelope,

MG indicates a metal-glass type envelope,

J indicates a direct zero resistance connection between #3 and #4, or #6 and

#7, or #5 and #3 prongs of the base.

Voltage drop values and tube complements most commonly used with plug-in ballast resistors, are as follows:

80 V. drop for 2-6.3 V., and 1-25 V., tubes, 55 V. drop for 2-6.3 V., and 2-25 V., tubes, 49 V. drop for 3-6.3 V., and 2-25 V., tubes, 42 V. drop for 4-6.3 V., and 2-25 V., tubes, 36 V. drop for 5-6.3 V., and 2-25 V., tubes, 23 V. drop for 3-6.3 V., and 3-25 V., tubes.

Interchangeable Tubes

01.1				with
01A	5Z4MG	5Y3GT/G	6K5G	6K5GT
CK1003/0Z4A	6A7M	6A8	A115AT	(6K5G
1-v	6A8	•6A8GT	6K5GT	or 6K5GT/G
			6K6G	6K6GT/G
		•		6K6GT/G
		,		6K6GT/G
•				•6K7GT
				6K7
· ·				•6K7GT
		·		6K8GT
		· ·		▲6K8
				6L6G
				6L7G
				▲6L7
	6B8G1			
*	6C5			6AB5/6N5
				6N6G
	6C5G			6N6G
				6N7GT/G
	6C5GT			6N7GT/G
*				6N7GT/G
	6C5GT/G	,		6N7
1G6GT/G	6C5MG			6P5GT/G
1G6GT/G				6P5GT/G
1P5GT		•	· ·	6P5GT
1Q5GT/G		†6D6		6T7G
1Q5GT/G	6 F 5	•6F5GT		•6Q7GT
2A3	6F5MG	•6F5GT	6Q7MG	●6Q7GT
•2A6	6F6	6F6G	6R7	6R7GT
●2A7	6F6GT	6F6	6R7MG	6R7GT
●2B7	6F6GT/G	6F6G	6S7	6S7G
2X2/879	6F6M	6F6	6SA7	6SA7GT/G
305GT/G	6F6MG	6F6	6SA7GT	≜ §6SA7GT/G
	6F7S	●6F7	6SC7	*7F7
	6G5	6U5/6G5	6SF5	6SF5GT
		•	6SF5GT/G	6SF5GT
			6SJ7	6SJ7GT
			6SJ7GT/G	6SJ7GT
		· ·		6SK7GT/G
		,		6SK7GT/G
				6SQ7GT/G
				6SQ7GT/G
· ·		•		6SQ7GT/G
				6U5/6G5
		· ·		
*	· ·		, ,	6U5/6G5
	34 §1A4-P 1A5GT/G 1A5GT/G 32 32 §1B4P *1H6G 1B7GT 1B7G 1C5GT/G 1C5GT/G 1F7G 1G4GT/G 1G4GT/G 1G6GT/G 1Q5GT/G 1Q5GT/G 2A3 •2A6 •2A7 •2B7	34 6A8MG 34 6AB5 §1A4-P 6AC5GT 1A5GT/G 6AC5GT 32 6AE5G 32 6AE5GT \$1B4P 6B6M *1H6G 6B7M 1B7GT 6B8 1B7G 6B8GT 1C5GT/G 6C5 1C5GT/G 6C5GT 1G4GT/G 6C5GT 1G4GT/G 6C5GT 1G4GT/G 6C5MG 1P5GT 6D7 1Q5GT/G 6E7 1Q5GT/G 6F5 2A3 6F6MG •2A7 6F6GT •2B7 6F6GT/G 5Y3GT/G 6H6 5Y3GT/G 6H6G 5Y3GT/G 6J5G 5Y3GT/G 6J5GT 5Y3GT/G 6J5MG	34 6ABMG	34 6ABMG •6ABGT 6K6G 34 6ABS 6ABS/6N5 6K6GT 34 6ABS 6ABS/6N5 6K6GT \$1A4-P 6AC5G 6AC5GT/G 6K7 1A5GT/G 6AC5GT 6K7M 1A5GT/G 6AC5GT 6K7MG 32 6AE5G 6AE5GT/G 6K8 32 6AE5GT 6AE5GT/G 6K8 32 6AE5GT 6AE5GT/G 6K8 *1B4P 6B6M 6B6G 6K8G *1B7G 6B8 6B8G 6L7 1B7G 6B8 6B8G 6L7 1B7G 6B8GT 6B8G 6L7MG 1C5GT/G 6C5 6J5GT/G 6N5 1C5GT/G 6C5 6J5GT/G 6N5 1C5GT/G 6C5G 6J5GT/G 6N7G 1F7G 6C5GT 6J5GT/G 6N7G 1F7G 6C5GT 6J5GT/G 6N7G 1F7G 6C5GT 6J5GT/G 6N7MG </td

^{*} Socket change necessary.
† A close fitting shield is necessary.
‡ When heaters are connected in parallel.

Be sure power transformer can supply extra heater current.

In r-f or i-f stage use a close fitting tube shield.

[▲] In a pentagrid converter or mixer stage, it may be necessary to realign the oscillator tuning condenser with the r-f tuning condenser.

[§] Depends on receiver circuit.

[♦] Where space permits.

Interchangeable Tubes—(Continued)

Tube Number	Replace with	Number	Replace with	Tube Number	Replace With
6 V 6	6V6GT/G	13	80	40Z5GT	45 Z 5 G T
6V6G	6V6GT/G	13B	80		{25A6GT
6V6GT	6V6GT/G	14A7	14A7/12B7	43MG	or 25A6
6X5	6X5GT/G	14Z3	12 Z 3	44	39/44
6X5G	6X5GT/G	16	81		
6X5GT	6X5GT/G	16B		50Y6G	50Y6GT/G
	*		81	50Y6GT	50Y6GT/G
6X5MG	6X5GT/G	24	24A	51	35/51 or 35
6Y5S	6Y5	245	*111CO	515	•35
6Y6GT	♦6Y6G	25/25S	*1H6G	55S	•55
6Z3	1-V	25A6	25A6GT	56A	‡76
6Z4	84/6 Z 4	25A6G	§25A6GT	56AS	‡ • 76
6Z5/12Z5	6Z5	•	or 25A6GT/G	56S	•56
7A7LM	7A7	25A6GT	25A6GT/G	57A	‡6C6
7B5LT	7B5	25A6GT/G	25A6GT	57AS	‡•6C6
7B6LM	7B6	25A6MG	25A6GT	57S	• 57
12B7GL	14A7/12B7	25A7G	25A7GT/G	58A	‡6D6
12B7ML	14A7/12B7	25A7GT	25A7GT/G	58AS	‡•6D6
7B8LM	7B8	25AC5G	25AC5GT/G	58S	● 58
7C5LT	7C5	25AC5GT	25AC5GT/G	64	‡ 36
7G7	7G7/1232	25AC5GT/G	25AC5GT	64A	‡36
12800	12A8GT	25L6	25L6GT/G	65	139/44
12A8G	or 12A8GT/G	25L6G	25L6GT/G	65A	139/44
12A8GT	12A8GT/G	25L6GT	25L6GT/G	67	‡37
12B7	14A7/12B7	25S	1B5 /2 5S	67A	±37
12J7G	12J7GT/G	25Y5	25 Z 5	68	138
12J7GT	12J7GT/G		125Z6GT/G	68A	‡38
12K7G	12K7GT	25Z5MG	or 25Z6	71	71A
	12K7G		(25Z6GT/G	71B	71A
12K7GT	or 12K7GT/G	25 Z 6	or 25Z5MG	75S	6 75
12K8	12K8GT	25Z6G	25Z6GT/G	80M	► 83
12K8GT	12K8	25Z6GT	25Z6GT/G	84	84/6 Z4
	(1207GT	25Z6MG	25Z6GT/G	85 S	
12Q7G	or 12Q7GT/G	27HM	56		●85 ■02
12Q7GT	12Q7GT/G	27S	•27	88	20 5
12SA7	12SA7GT/G	35		95	2A5
12SA7G	12SA7GT/G	35A5LT	35/51 25 4 5	98	84
12SA7GT	· ·		35A5	110	10
12SA/G1	12SA7GT/G	35L6G	35L6GT/G	117L7GT	117L/M7GT
	12SF5GT	35L6GT	35L6GT/G	117L7GT }	117L/M7GT
12SF5GT/G	12SF5GT	35Z3LT	35Z3	117M7GT)	
12SJ7	12SJ7GT	35Z5G	35Z5GT/G	117L7GT/G	117L/M7GT
12SJ7GT/G	12SJ7GT	35Z5GT	35Z5GT/G	117M7GT	117L/M7GT
12SK7	12SK7GT/G	36A	36	117P7GT	117N7GT
12SK7GT	12SK7GT/G	37A	37	117Z6G	117Z6GT/G
12SQ7	12SQ7GT/G	38A	38	117Z6GT	117Z6GT/G
12SQ7GT	12SQ7GT/G	39	39/44	124	24A
12 Z 5/6 Z 5	6 Z 5	39A	39/44	126	26

^{*} Socket change necessary.
† A close fitting shield is necessary.
‡ When heaters are connected in parallel.

Be sure power transformer can supply extra heater current.

[•] In r-f or i-f stage use a close fitting tube shield.

[▲] In a pentagrid converter or mixer stage, it may be necessary to realign the oscillator tuning condenser with the r-f tuning condenser.

[§] Depends on receiver circuit.

[♦] Where space permits.

Interchangeable Tubes—(Continued)

Tube Number	Replace with	Tube Number	Replace	Tube Number	Replace with
127	27	240	40	430	30
130	30	245	45	431	31
131	31	247	47	432	32
132	32	250	50	433	33
133	33	264	864	434	34
134	34	280	80	435	35
135	35	281	81	436	36
136A	36	310	10	437	37
137A	37	313	80	438	38
138A	38	313B	80	439	39/44
139A	39/44	316	81	441	41
145	45	316B	81	442	42
147	Δ7	324A	24A	444	39/44
150	50	326	26	445	. 45
171A	71A	327	27	446	46
180	80	330	30	447	47
181	81	331	31	450	50
182A	71A	332	32	456	56
183	183/483	333	33	457	57
210	100/400	334	34	458	58
213	80	335	35	471A	71A
213B	80	336	36	480	80
216	81	337	37	481	81
216B	81	338	38	482	82
	24A	345	45	482A	71A
224A 226	26	347	A7	483	183/483
227	27	350	50	551	35
	30	371A	71A	585	50
230	32	374	874	586	50
232	33	380	80	951	32 or 1B4P
233	34	381	81	986	15 83
234	35	410	. 10	1232	7G7/1232
235			24A	1852	6AC7/1852
236	36	424A 426	24K	1853	6AB7/1853
237	3/		27	1033	OMD//1033
238	38	427			

Tube Number	Replace	Tube Number	Replace	Tube	Replace
AC22	24A .	H250	1223	PZH	2A5
AD	1-v	K27	27	RE1	80 4
AF	82	KR1	1-v	SS6C5G	SS6J5GT/G
AG	83	KR25	2A5	SS6K6G	.SS6K6GT/
D1/2	81	KR28	84	SS6N7G	SS6N7GT/
D1	80	LA	6A4	SS6V6G	SS6V6GT/
DE1	27	P861	84		*
G84/2Z2	2Z2/G84	PZ	47	SS6X5G	SS6X5GT/

* Socket change necessary.
† A close fitting shield is necessary.
† When heaters are connected in parallel.

Be sure power transformer can supply extra heater current.

• In r-f or i-f stage use a close fitting tube shield.

- ▲ In a pentagrid converter or mixer stage, it may be necessary to realign the oscillator tuning condenser with the r-f tuning condenser.
- § Depends on receiver circuit.
- ♦ Where space permits.

Abbreviations and Letter Symbols

Many of the abbreviations given are in lower-case letters. Obviously, however, there will be occasions such as when the abbreviations are used in titles where the original word would have been capitalized. In these cases, the abbreviation should be similarly capitalized.

A two-word adjective expression should contain a hyphen.

Term	Abbrevi- ation	Term	Abbrevi- ation
Admittance		Low-frequency (adjective)	
Alternating-current (adjective)	a-c	Low-frequency (noun)	
Alternating current (noun)	a.c.	Magnetic field intensity	
Ampere		Megacycle	
Angular velocity $(2\pi f)$	ω	Megohm	
Antenna	ant.	Meter	
	a-f		
Audio-frequency (adjective)		Microampere	_
Audio frequency (noun)	a.f.	Microfarad (mfd)	
Automatic volume control		Microhenry	
Automatic volume expansion		Micromicrofarad (mmfd)	
Capacitance		Microvolt	
Capacitive reactance		Microvolt per meter	
Centimeter		Microwatt	
Conductance	G	Milliampere	
Continuous waves	c.w.	Millihenry	
Current	I, i	Millivolt	mv
Cycle per second	~	Millivolt per meter	
Decibel	db	Milliwatt	mw
Direct-current (adjective)	d-c	Modulated continuous waves	m.c.w.
Direct current (noun)	d.c.	Mutual inductance	M
Double cotton covered	d.c.c.	Ohm	Ω
Double pole, double throw	d.p.d.t.	Power	\boldsymbol{P}
Double pole, single throw	d.p.s.t.	Power factor	p.f.
Double silk covered	-	Radio-frequency (adjective)	r-f
Electric field intensity		Radio frequency (noun)	r.f.
Electromotive force		Reactance	
Frequency		Resistance	
Frequency modulation		Revolutions per minute	
Ground		Root mean square	_
Henry	7	Self-inductance	
High-frequency (adjective)		Short wave	
High frequency (noun)		Single cotton covered	
Impedance		Single cotton enamel	
Inductance	_	Single pole, double throw	
Inductance		Single pole, single throw	_
		Single silk covered	_
Intermediate-frequency (adjective)		Tuned radio frequency	
Intermediate frequency (noun)			
Interrupted continuous waves		Ultra high frequency	
Kilocycle		Vacuum tube voltmeter	
Kilohm		Volt	
Kilovolt		Voltage	
Kilovolt ampere		Volt-Ohm-Milliammeter	v.o.m.
Kilowatt	kw	Watt	W

Schematic Symbols Used in Radio Diagrams

YYY	ANTENNA (AERIAL)	-00000-	IRON-CORE CHOKE COIL		SWITCH (ROTARY. OR SELECTOR)
= +	GROUND (OR CHASSIS CONNECTION)	36	R.F. TRANSFORMER (AIR CORE)	+	CRYSTAL DETECTOR
	LOOP AERIAL (USUALLY BUILT INTO CABINET OF RECEIVER)	3 8	A.F. TRANSFORMER (IRON CORE)		LIGHTNING ARRESTER
	CONNECTION	e-s _i	POWER TRANSFORMER P: 115-VOLT PRIMARY		FUSE
	NO CONNECTION	2000 S2	S: CENTER-TAPPED SECONDARY FOR FILAMENTS OF SIGNAL CIRCUIT TUBES So: SECONDARY WINDING FOR RECTIFIER TUBE	Q (1)	PILOT LAMP
	NO CONNECTION (WHEN CONNECTIONS ARE INDICATED BY DOTS)	00-S3	S3: CENTER-TAPPED HIGH-VOLTAGE SECONDARY WINDING	99	HEADPHONES
	CONNECTION (WHEN NO-CONNECTION CROSS-OVERS ARE INDICATED BY HALF- GIRGLES)	+	FIXED CONDENSER (MICA OR PAPER)	2000	LOUDSPEAKER, MAGNETIC
	TERMINAL	+	FIXED CONDENSER (ELECTROLYTIC)		LOUDSPEAKER, P.M. DYNAMIC
	ONE CELL OR	TOTOR TOTOR PLATES	VARIABLE		LOUDSPEAKER, ELECTRODYNAMIC
	MULTI-CELL OR "B" BATTERY	###	GANG TUNING CONDENSER	1888X	PHONO PICK-UP
www	RESISTOR	+. #	TRIMMER AND PADDER CONDENSER	YYY	FILAMENT
ww-	POTENTIOMETER	子。子	I.F. TRANSFORMER (DOUBLE-TUNED)	PP	CATHODE
	TAPPED RESISTOR OR VOLTAGE DIVIDER		POWER SWITCH (S.P.S.T.)		GRID
www		- 4	SWITCH (S.P.D.T.)	(4)(4)	PLATE
	RHEOSTAT		SWITCH (D.P.S.T.)		3-ELEMENT VACUUM TUBE
-00000-	AIR-CORE CHOKE COIL		SWITCH (D.P.D.T.)		ALIGNING KEY OF OCTAL BASE

Common Logarithms

N	0	1	2	3	4	5	6	7	8	9	N
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	10
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	11
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	12
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	13
	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	
14										1104	14
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	15
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	16
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	17
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	18
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	20
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	21
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	22
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	23
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	24
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	25
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	26
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	27
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	28
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	29
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	30
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	31
	5051	5065	5079	5092	5105	5119			5159		
32							5132	5145		5172	32
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	33
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	34
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	35
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	36
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	37
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	38
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	39
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	40
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	41
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	42
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	43
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	44
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	45
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	46
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	47
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	48
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	
											49
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	50
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	51
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	52
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	53
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	54
N	0	1	2	3	4	5	6	7	8	9	N

Common Logarithms (Continued)

N	0	1	2	3	4	5	6	7	8	9	N
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	55
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	56
	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	57
57					7664	7672	7679	7686	7694	7701	58
58	7634	7642	7649	7657					7767	7774	
59	7709	7716	7723	7731	7738	7745	7752	7760	1101	/ / / *±	59
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	60
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	61
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	62
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	63
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	64
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	65
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	66
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	67
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	68
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	69
03	0300	0000									
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	70
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	71
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	72
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	73
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	74
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	75
	0000	0014	0000	2005	0021	0007	8842	8848	8854	8859	76
76	8808	8814	8820	8825	8831	8837					
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	77
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	78
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	79
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	80
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	81
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	82
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	83
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	84
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	85
							0275	0220	0205	0200	
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	86
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	87
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	88
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	89
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	90
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	91
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	92
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	93
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	94
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	95
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	96
	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	97
97			111111111111111111111111111111111111111				9939	9943	9948	9952	98
98	9912	9917	9921	9926	9930	9934		9987	9991	9996	
99	9956	9961	9965	9969	9974	9978	9983	9901	9991	0000	99
	1					5	6		8	9	N

Natural Sines, Cosines, and Tangents 0°-14.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9*
0	sin ces tan	0 0000	0 0017 1 0000 0.0017	0 0035 1 0000 0.0035	0.0052 1 0000 0.0052	0 0070 1 0000 0.0070	0 0087 1 0000 0.0087	0.0105 0.9999 0.0105	0.0122 0.9999 0.0122	0.0140 0.9999 0.0140	0.015 0.999 0.015
1	sin	0.0175	0.0192	0.0209	0 0227	0 0244	0.0262	0.0279	0.0297	0.0314	0.033
	cos	0 9998	0.9998	0.9998	0 9997	0.9997	0.9997	0.9996	0.9996	0.9995	0.999
	tan	0.0175	0.0192	0.0209	0 0227	0.0244	0.0262	0.0279	0.0297	0.0314	0.033
2	sin	0 0349	0 0366	0 0384	0 0401	0.0419	0.0436	0.0454	0.0471	0.0488	0.050
	cos	0.9994	0.9993	0 9993	0 9992	0 9991	0.9990	0.9990	0.9989	0.9988	0.998
	tan	0.0349	0.0367	0.0384	0.0402	0.0419	0.0437	0.0454	0.0472	0.0489	0.050
3	cos	0 0523 0.9986 0.0524	0 0541 0.9985 0.0542	0.0558 0.9984 0.0559	0.0576 0.9983 0.0577	0 0593 0.9982 0.0594	0.0610 0.9981 0.0612	0.0628 0.9980 0.0629	0.0645 0.9979 0.0647	0.0663 0.9978 0.0664	0.068
4	sin	0 0598	0.0715	0.0732	0 0750	0.0767	0.0785	0.0802	0.0819	0.0837	0.085
	cos	0 9976	0.9974	0.9973	0 9972	0.9971	0.9969	0.9968	0.9966	0.9965	0.996
	tan	0.0699	0.0717	0.0734	0.0752	0.0769	0.0787	0.0805	0.0822	0.0840	0.085
5	sin	0 0872	0.0889	0 0906	0.0924	0 0941	0.0058	0.0976	0.0993	0.1011	0.102
	cos	0 9962	0.9960	0.9959	0.9957	0.9956	0.9954	0.9952	0.9951	0.9949	0.994
	tan	0.0875	0.0892	0.0910	0.0928	0.0945	0.0963	0.0981	0.0998	0.1016	0.103
6	sin	0 1045°	0.1063	0.1080	0.1097	0.1115	0.1132	0.1149	0.1167	0.1184	0.120
	cos	0 9945	0.9913	0.9942	0.9940	0.9938	0.9936	0.9934	0.9932	0.9930	0.992
	tan	0.1051	0.1069	0.1086	0.1104	0.1122	0.1139	0.1157	0.1175	0.1192	0.121
7	sin	0 1219	0 1236	0 1253	0.1271	0.1288	0.1305	0.1323	0.1340	0.1357	0.137
	cos	0 9925	0.9923	0.9921	0.9919	0.9917	0.9914	0.9912	0.9910	0.9907	0.990
	tan	0.1228	0.1246	0.1263	0.1281	0.1299	0.1317	0.1334	0.1352	0.1370	0.138
8	sin	0.1392	0.1409	0.1426	0 1444	0.1461	0 1478	0.1495	0.1513	0.1530	0.154
	cos	0.9903	0.9900	0.9898	0.9895	0.9893	0.9890	0.9888	0.9885	0.9882	0.988
	tan	0.1405	0.1423	0.1441	0.1459	0.1477	0.1495	0.1512	0.1530	0.1548	0.156
9	sin	0 1564	0.1582	0 1599	0.1616	0.1633	0.1650	0.1668	0.1685	0.1702	0.171
	cos	0.9877	0.9874	0.9871	0 9869	0.9866	0.9863	0.9860	0.9857	0.9854	0.985
	tan	0.1584	0.1602	0.1620	0.1633	0.1655	0.1673	0.1691	0.1709	0.1727	0.174
10	sin	0.1736	0.1754	0.1771	0 1788	0 1805	0 1822	0.1840	0.1857	0.1874	0.189
	cos	0.9848	0.9845	0.9842	0 9839	0.9836	0 9833	0.9829	0.9826	0.9823	0.982
	tan	0.1763	0.1781	0.1793	0.1817	0.1835	0.1853	0.1871	0.1890	0.1908	0.192
11	sin	0 1908	0.1925	0.1942	0 1959	0.1977	0.1994	0.2011	0.2028	0.2045	0.206
	cos	0 9816	0.9813	0.9810	0 9806	0.9803	0.9799	0.9796	0.9792	0.9789	0.978
	tan	0.1944	0.1962	0.1980	0.1998	0.2016	0.2035	0.2053	0.2071	0.2089	0.210
12	sin	0 2079	0.2096	0.2113	0.2130	0.2147	0.2164	0.2181	0.2198	0.2215	0.223
	cos	0 9781	0.9778	0.9774	0.9770	0.9767	0.9763	0.9759	0.9755	0.9751	0.974
	tan	0.2126	0.2144	0.2162	0.2180	0.2199	0.2217	0.2235	0.2254	0.2272	0.229
13	sin	0.2250	0.2267	0.2284	0.2300	0.2318	0.2334	0.2351	0.2368	0.2385	0.240
	cos	0.9744	0.9740	0.9736	0.9732	0.9728	0.9724	0.9720	0.9715	0.9711	0.970
	tan	0.2309	0.2327	0.2345	0.2364	0.2382	0.2401	0.2419	0.2438	0.2456	0.247
14	sin	0.2419	0.2436	0.2453	0.2470	0.2487	0.2504	0.2521	0.2538	0.2554	0.257
	cos	0.9703	0.9699	0.9694	0.9690	0.9686	0.9681	0.9677	0.9673	0.9668	0.966
	tan	0.2493	0.2512	0.2530	0.2549	0.2568	0.2586	0.2605	0.2623	0.2642	0.266
Degs.	Function	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'

Natural Sines, Cosines, and Tangents—(Continued) 15°-29.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
15	sin	0 2588 0 9659 0.2679	0.2605 0.9655 0.2698	0.2622 0.9650 0.2717	0.2639 0.9646 0.2735	0.2656 0.9641 0.2754	0 2672 0.9636 0.2773	0 2039 0 9632 0.2792	0.2706 0.9627 0.2811	0.2723 0.9622 0.2830	0.2740 0.9617 0.2849
16	sin	0.2756	0.2773	0.2790	0 2807	0 2823	0.2340	0.2857	0.2874	0.2890	0.290 7
	cos	0.9613	0.9608	0.9603	0.9598	0.9593	0.9588	0.9583	0.9578	0.9573	0.9568
	tan	0.2867	0.2886	0.2905	0.2924	0.2943	0.2952	0.2981	0.3000	0.3019	0.3038
17	sin	0 2924	0.2940	0.2957	0.2974	0.2990	0.3007	0.3024	0.3040	0.3057	0.3074
	cos	0 9563	0.9558	0.9553	0.9548	0.9542	0.9537	0.9532	0.9527	0.9521	0.9516
	tan	0.3057	0.3076	0.3096	0.3115	0.3134	0.3153	0.3172	0.3191	0.3211	0.3230
18	sin	0 3090	0.3107	0.3123	0.3140	0.3156	0,3173	0.3190	0.3206	0.3223	0.3239
	cos	0 9511	0.9505	0.9500	0.9494	0.9489	0,9483	0.9178	0.9472	0.9466	0.9461
	tan	0.3249	0.3269	0.3288	0.3307	0.3327	0,3346	0.3365	0.3385	0.3404	0.3424
19	sin	0.3256	0 3272	0.3289	0 3305	0.3322	0.3338	0.3355	0.3371	0.3387	0.3404
	cos	0.9455	0 9449	0.9444	0.9438	0.9432	0.9426	0.9421	0.9415	0.9409	0.9403
	tan	0.3443	0.3463	0.3482	0.3502	0.3522	0.3541	0.3561	0.3581	0.3600	0.3620
20	sin	0.3420	0 3437	0.3453	0.3469	0 3486	0.3502	0 3518	0.3535	0.3551	0 3567
	cos	0.9397	0 9391	0.9385	0.9379	0.9373	0.9367	0.9361	0.9354	0.9348	0.9342
	tan	0.3640	0.3659	0.3679	0.3699	0.3719	0.3739	0.3759	0.3779	0.3799	0 3819
21	sin cos tan	0.3584 0.9336 0.3839	0.3600 0.9330 0.3859	0.3616 0.9323 0.3879	0.3633 0.9317 0.3899	0.3649 0.9311 0.3919	0 3665 0.9304 0.3939	0 3631 0 9298 0.3959	0 3697 0.9291 0.3979	0 3714 0.9285 0.4000	0.3730
22	sin	0.3746	0 3762	0.3778	0.3795	0.3811	0.3827	0.3843	0.3859	0.3875	0.3891
	cos	0.9272	0 9265	0.9259	0 9252	0.9245	0.9239	0 9232	0.9225	0.9219	0.9212
	tan	0.4040	0.4061	0.4081	0.4101	0.4122	0.4142	0.4163	0.4183	0.4204	0.4224
23	sin	0.3907	0.3923	0.3939	0.3955	0 3971	0.3987	0 4003	0.4019	0.4035	0.405°
	cos	0 9205	0.9198	0.9191	0.9184	0.9178	0.9171	0.9164	0.9157	0.9150	0.914°
	tan	0.4245	0.4265	0.4286	0.4307	0.4327	0.4348	0.4369	0.4390	0.4411	0.443°
24	sin	0.4067	0.4083	0.4099	0.4115	0.4131	0.4147	0 4163	0 4179	0.4195	0.4210
	cos	0.9135	0.9128	0.9121	0.9114	0.9107	0.9100	0 9092	0.9085	0 9078	0.9070
	tan	0.4452	0.4473	0.4494	0.4515	0.4536	0.4557	0.4578	0.4599	0.4621	0.4642
25	sin	0.4226	0.4242	0.4258	0.4274	0.4289	0.4305	0.4321	0.4337	0.4352	0.4368
	cos	0.9063	0.9056	0.9048	0.9041	0.9033	0.9026	0.9018	0.9011	0.9003	0.8996
	tan	0.4663	0.4684	0.4706	0.4727	0.4748	0.4770	0.4791	0.4813	0.4834	0.4856
26	sin cos tan	0.4384 0.8988 0.4877	0.4399 0.8980 0.4899	0.4415 0.8973 0.4921	0.4431 0.8965 0.4942	0.4446 0.8957 0.4964	0.4462 0.8949 0.4986	0.4478 0.8942 0.5008	0.4493 0.8934 0.5029	0.4509 0.8926 0.5051	0.4524
27	sin	0.4540	0.4555	0.4571	0.4586	0.4602	0.4617	0.4633	0.4648	0.4664	0.4679
	cos	0.8310	0.8902	0.8894	0.8886	0.8878	0.8870	0.8862	0.8854	0.8846	0.8838
	tan	0.5095	0.5117	0.5139	0.5161	0.5184	0.5206	0.5228	0.5250	0.5272	0.5298
28	sin	0.4695	0.4710	0.4726	0.4741	0.4756	0.4772	0.4787	0.4802	0.4818	0.483
	cos	0.8829	0.8821	0.8813	0.8805	0.8796	0.8788	0.8780	0.8771	0.8763	0.875
	tan	0.5317	0.5340	0.5362	0.5384	0.5407	0.5430	0.5452	0.5475	0.5498	0.552
29	sin	0.4848 0 8746 0.5543	0.4863 0.8738 0.5566	0_4879 0.8729 0.5589	0 4894 0 8721 0.5612	0.4909 0.8712 0.5635	0 4924 0.8704 0.5658	0.4939 0.8695 0.5681	0.4955 0.8686 0.5704	0.4970 0.8678 0.5727	0.498 0.866 0.575
Degs.	Function	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'

Natural Sines, Cosines, and Tangents—(Continued) 30°-44.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	8.7°	0.8°	0.9°
30	sin	0.5000	0.5015	0.5030	0.5045	0.5060	0.5075	0.5090	0.5105	0.5120	0.513
	cos	0.8660	0.8652	0.8643	0.8634	0.8625	0.8616	0.8607	0.8599	0.8590	0.858
	tan	0.5774	0.5797	0.5820	0.5844	0.5867	0.5890	0.5914	0.5938	0.5961	0.598
31	sin	0.5150	0.5165	0.5180	0.5195	0.5210	0.5225	0.5240	0.5255	0.5270	0.528
	cos	0.8572	0.8563	0.8554	0.8545	0.8536	0.8526	0.8517	0.8508	0.8499	0.849
	tan	0.6009	0.6032	0.6056	0.6080	0.6104	0.6128	0.6152	0.6176	0.6200	0.622
32	sin	0.5299	0.5314	0.5329	0.5344	0.5358	0.5373	0.5388	0.5402	0.5417	0.543
	cos	0.8480	0.8471	0.8462	0.8453	0.8443	0.8434	0.8425	0.8415	0.8406	0.839
	tan	0.6249	0.6273	0.6297	0.6322	0.6346	0.6371	0.6395	0.6420	0.6445	0.646
33	sin	0.5446	0.5461	0.5476	0.5490	0.5505	0.5519	0.5534	0.5548	0.5563	0.557
	cos	0 8387	0.8377	0.8368	0.8358	0.8348	0.8339	0.8329	0.8320	0.8310	0.830
	tan	0.6494	0.6519	0.6544	0.6569	0.6594	0.6619	0.6644	0.6669	0.6694	0.672
34	sin	0.5592	0.5606	0.5621	0.5635	0.5650	0.5664	0.5678	0.5693	0.5707	0.572
	cos	0.8290	0.8281	0.8271	0.8261	0.8251	0.8241	0.8231	0.8221	0.8211	0.820
	tan	0.6745	0.6771	0.6796	0.6822	0.6847	0.6873	0.6899	0.6924	0.6950	0.697
35	sin	0.5736	0.5750	0.5764	0.5779	0.5793	0.5807	0.5821	0.5835	0.5850	0.586
	cos	0.8192	0.8181	0.8171	0.8161	0.8151	0.8141	0.8131	0.8121	0.8111	0.816
	tan	0.7002	0.7028	0.7054	0.7080	0.7107	0.7133	0.7159	0.7186	0.7212	0.723
36	sin	0.5878	0.5892	0.5906	0.5920	0.5934	0.5948	0.5962	0.5976	0.5990	0.600
	cos	0.8090	0.8080	0.8070	0.8059	0.8049	0.8039	0.8028	0.8018	0.8007	0.799
	tan	0.7265	0.7292	0.7319	0.7346	0.7373	0.7400	0.7427	0.7454	0.7481	0.750
37	sin	0.6018	0.6032	0.6046	0.6060	0.6074	0.6088	0.6101	0.6115	0.6129	0.614
	cos	0.7986	0.7976	0.7965	0.7955	0.7944	0.7934	0.7923	0.7912	0.7902	0.789
	tan	0.7536	0.7563	0.7590	0.7618	0.7646	0.7673	0.7701	0.7729	0.7757	0.778
38	sin	0.6157	0.6170	0.6184	0.6198	0.6211	0.6225	0.6239	0.6252	0.6266	0.628
	cos	0.7880	0.7869	0.7859	0.7848	0.7837	0.7826	0.7815	0.7804	0.7793	0.778
	tan	0.7813	0.7841	0.7869	0.7898	0.7926	0.7954	0.7983	0.8012	0.8040	0.808
39	sin	0.6293	0.6307	0.6320	0.6334	0.6347	0.6361	0.6374	0.6388	0.6401	0.64°
	cos	0.7771	0.7760	0.7749	0.7738	0.7727	0.7716	0.7705	0.7694	0.7683	0.76°
	tan	0.8098	0.8127	0.8156	0.8185	0.8214	0.8243	0.8273	0.8302	0.8332	0.836
40	sin	0.6428	0.6441	0.6455	0.6468	0.6481	0.6494	0.6508	0.6521	0.6534	0.654
	cos	0.7660	0.7649	0.7638	0.7627	0.7615	0.7604	0.7593	0.7581	0.7570	0.755
	tan	0.8391	0.8421	0.8451	0.8481	0.8511	0.8541	0.8571	0.8601	0.8632	0.866
41	sin	0.6561	0.6574	0.6587	0.6600	0.6613	0.6626	0.6639	0.6652	0.6665	0.667
	cos	0.7547	0.7536	0.7524	0.7513	0.7501	0.7490	0.7478	0.7466	0.7455	0.744
	tan	0.8693	0.8724	0.8754	0.8785	0.8816	0.8847	0.8878	0.8910	0.8941	0.897
42	sin	0.6691	0.6704	0.6717	0.6730	0.6743	0.6756	0.6769	0.6782	0.6794	0.680
	cos	0.7431	0.7420	0.7408	0.7396	0.7385	0.7373	0.7361	0.7349	0.7337	0.732
	tan	0.9004	0.9036	0.9067	0.9099	0,9131	0.9163	0.9195	0.9228	0.9260	0.929
43	sin	0.6820	0.6833	0.6845	0.6858	0.6871	0.6884	0.6896	0.6909	0.6921	0.693
	cos	0.7314	0.7302	0.7290	0.7278	0.7266	0.7254	0.7242	0.7230	0.7218	0.720
	tan	0.9325	0.9358	0.9391	0.9424	0.9457	0.9490	0.9523	0.9556	0.9590	0.962
44	sin cos tan	0.6947 0.7193 0.9657	0.6959 0.7181 0.9691	0.6972 0.7169 0.9725	0.6984 0.7157 0.9759	0.6997 0.7145 0.9793	0.7009 0.7133 0.9827	0.7022 0.7120 0.9861	0.7034 0.7108 0.9896	0.7046 0.7096 0.9930	0.708
Degs.	Function	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'

Natural Sines, Cosines, and Tangents—(Continued) 45°-59.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
45	sin	0.7071	0.7083	0.7096	0.7108	0.7120	0.7133	0.7145	0.7157	0.7169	0.718
	cos	0.7071	0.7059	0.7046	0.7034	0.7022	0.7009	0.6997	0.6984	0.6972	0.695
	tan	1.0000	1.0035	1.0070	1.0105	1.0141	1.0176	1.0212	1.0247	1.0283	1.031
46	sin	0.7193	0.7206	0.7218	0.7230	0.7242	0.7254	0.7266	0.7278	0.7290	0.730
	cos	0.6947	0.6934	0.6921	0.6909	0.6896	0.6884	0.6871	0.6858	0.6845	0.683
	tan	1.0355	1.0392	1.0428	1.0464	1.0501	1.0538	1.0575	1.0612	1.0649	1.068
47	sin	0.7314	0.7325	0.7337	0.7349	0.7361	0.7373	0.7385	0.7396	0.7408	0.742
	cos	0.6820	0.6807	0.6794	0.6782	0.6769	0.6756	0.6743	0.6730	0.6717	0.670
	tan	1.0724	1.0761	1.0799	1.0837	1.0875	1.0913	1.0951	1.0990	1.1028	1.106
48	sin	0.7431	0.7443	0.7455	0.7466	0.7478	0.7490	0.7501	0.7513	0.7524	0.753
	cos	0.6691	0.6678	0.6665	0.6652	0.6639	0.6626	0.6613	0.6600	0.6587	0.657
	tan	1.1106	1.1145	1.1184	1.1224	1.1263	1.1303	1.1343	1.1383	1.1423	1.146
49	sin	0.7547	0.7559	0.7570	0.7581	0.7593	0.7604	0.7615	0.7627	0.7638	0.764
	cos	0.6561	0.6547	0.6534	0.6521	0.6508	0.6494	0.6481	0.6468	0.6455	0.644
	tan	1.1504	1.1544	1.1585	1.1626	1.1667	1.1708	1.1750	1.1792	1.1833	1.187
50	sin	0.7660	0.7672	0.7683	0.7694	0.7705	0.7716	0.7727	0.7738	0.7749	0.776
	cos	0.6428	0.6414	0.6401	0.6388	0.6374	0.6361	0.6347	0.6334	0.6320	0.630
	tan	1.1918	1.1960	1.2002	1.2045	1.2088	1.2131	1.2174	1.2218	1.2261	1.230
51	sin cos tan	0.7771 0.6293 1.2349	0.7782 0.6280 1.2393	0.7793 0.6266 1.2437	0.7804 0.6252 1.2482	0.7815 0.6239 1.2527	0.7826 0.6225 1.2572	0.7837 0.6211 1.2617	0.7848 0.6198 1.2662	0.7859 0.6184 1.2708	0.617 1.275
52	sin	0.7880	0.7891	0.7902	0.7912	0.7923	0.7934	0.7944	0.7955	0.7965	0.797
	cos	0.6157	0.6143	0.6129	0.6115	0.6101	0.6088	0 6074	0.6060	0.6046	0.603
	tan	1.2799	1.2846	1.2892	1.2938	1.2985	1.3032	1.3079	1.3127	1.3175	1.323
53	sin	0.7986	0.7997	0.8007	0.8018	0.8028	0.8039	0.8049	0 8059	0.8070	0.808
	cos	0.6018	0.6004	0.5990	0.5976	0.5962	0.5948	0.5934	0.5920	0.5906	0.589
	tan	1.3270	1.3319	1.3367	1.3416	1.3465	1.3514	1.3564	1.3613	1.3663	1.37
54	sin	0.8090	0 8100	0.8111	0.8121	0.8131	0.8141	0.8151	0.8161	0.8171	0.818
	cos	0.5878	0 5864	0.5850	0.5835	0 5821	0.5807	0.5793	0.5779	0.5764	0.578
	tan	1.3764	1.3814	1.3865	1.3916	1.3968	1.4019	1.4071	1.4124	1.4176	1.428
55	sin	0.8192	0 8202	0.8211	0.8221	0.8231	0.8241	0.8251	0.8261	0.8271	0.828
	cos	0.5736	0.5721	0.5707	0.5693	0.5678	0.5664	0.5650	0.5635	0.5621	0.560
	tan	1.4281	1.4335	1.4388	1.4442	1.4496	1.4550	1.4605	1.4659	1.4715	1.47
56	sin	0.8290	0 8300	0.8310	0.8320	0.8329	0.8339	0.8348	0.8358	0.8368	0.83
	cos	0.5592	0.5577	0.5563	0.5548	0.5534	0.5519	0.5505	0.5490	0.5476	0.54
	tan	1.4826	1.4882	1.4938	1.4994	1.5051	1.5108	1.5166	1.5224	1.5282	1.53
57	sin	0.8387	0.8396	0.8406	0.8415	0.8425	0.8434	0.8443	0.8453	0.8462	0.843
	cos	0.5446	0.5432	0.5417	0.5402	0.5388	0 5373	0.5358	0.5344	0.5329	0.53
	tan	1.5399	1.5458	1.5517	1.5577	1.5637	1.5697	1.5757	1.5818	1.5880	1.59
58	sin	0.8480	0.8490	0.8499	0.8508	0.8517	0.8526	0.8536	0.8545	0.8554	0.85
	cos	0.5299	0.5284	0.5270	0.5255	0.5240	0.5225	0.5210	0.5195	0.5180	0.51
	tan	1.6003	1.6066	1.6128	1.6191	1.6255	1.6319	1.6383	1.6447	1.6512	1.65
59	sin	0.8572	0.8581	0.8590	0.8599	0.8607	0.8616	0.8625	0.8634	0.8643	0.86
	cos	0.5150	0.5135	0.5120	0.5105	0 5090	0.5075	0.5060	0.5045	0.5030	0.50
	tan	1.6643	1.6709	1.6775	1.6842	1.6909	1.6977	1.7045	1.7113	1.7182	1.72
Degs.	Function	0'	6'	12'	18'	24'	30′	36'	42'	48'	54

Natural Sines, Cosines, and Tangents—(Continued) 60°-74.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
	sin	0 8660	0 8669	0 8678	0 8686	0 8695	0 8704	0 8712	0 8721	0.8729	0.873
60	cos	0.5000	0.4985	0.4970	0.4955	0.4939	0.4924	0.4909	0 4894	0.4879	0 486
	tan	1.7321	1.7391	1.7461	1.7532	1.7603	1.7675	1.7747	1.7820	1.7893	1.796
61	sin	0.8746	0.8755	0.8763	0.8771	0.8780	0.8788	0.8796	0 8805	0.8813	0.882
61	tan	0.4848	0.4833	0.4818	0.4802	0.4787	0.4772	0.4756	0.4741	0.4726	1.872
	sin	0 8829	0.8838	0.8846	0.8854	0.8862	0.8870	0.8878	0.8886	0.8894	0.890
62	cos	0.4695	0.4679	0.4664	0.4648	0.4633	0.4617	0.4602	0.4586	0.4571	0.455
	tan	1.8807	1.8887	1.8967	1.9047	1.9128	1.9210	1.9292	1.9375	1.9458	1.954
	sin	0 8910	0.8918	0.8926	0 8934	0 8942	0 8949	0 8957	0 8965	0.8973	0.898
63	cos	0.4540	0.4524	0.4509	0 4493	0 4478	0.4462	0 4446	0.4431	0.4415	0.439
	tan	1.9626	1.9711	1.9797	1.9883	1.9970	2.0057	2.0145	2.0233	2.0323	2.041
CA	sin	0 8988	0 8996	0.9003	0 9011	0 9018	0 9026	0 9033	0 9041	0 9048	0.905
64	cos	0 4384	0.4368 2.0594	0 4352 2.0686	0 4337	0.4321	0 4305	0.4289	0.4274 2.1155	0.4258	0.424
	tan							2.1000	2.1155	2.1201	2.134
0=	sin	0.9063	0 9070	0.9078	0 9085	0 9092	0.9100	0 9107	0.9114	0 9121	0 912
65	cos	0.4226 2.1445	0.4210 2.1543	0.4195 2.1642	0.4179	0 4163	0.4147	0 4131	0.4115	0 4099	0.408
	tan						2.1040	2.2015	2.2140	2,2201	2.233
	sin	0 9135	0.9143	†	0.9157	0 9164	0.9171	0 9178		0 9191	0 919
66	tan	0.4067 2.2460	0.4051 2.2566	0.4035	0.4019 2.2781	0 4003	0 3987 2.2998	0.3971 2.3109	0.3955	0.3939	0.392
		0 9205	0.0010	0 9219	0.0005	0.0000	0.0000	0.0045	0.0000		
67	sin	0 3907	0.9212	0.3875	0 9225	0 9232	0 9239	0 9245	0 9252	0.9259	0 926
01	tan	2.3559	2.3673	2.3789	2.3906	2.4023	2.4142	2.4262	2.4383	2.4504	2.462
	sin	0 9272	0.9278	0.9285	0.9291	0 9298	0 9304	0 9311	0.9317	0 9323	0 9330
68	cos	0.3746	0.3730	0.3714	0.3697	0 3681	0 3665	0 3649	0.3633	0.3616	0 360
	tan	2.4751	2.4876	2.5002	2.5129	2.5257	2.5386	2.5517	2.5649	2.5782	2 591
	sin	0 9336	0 9342	0.9348	0.9354	0 9361	0 9367	0 9373	0 9379	0 9385	0 939
69	cos	0 3584	0.3567	0.3551	0.3535	0 3518	0.3502	0.3486	0.3469	0.3453	0 343
	tan	2.6051	2.6187	2.6325	2.6464	2.6605	2.6746	2.6889	2.7034	2.7179	2.732
70	sin	0 9397	0.9403	0 9409	0.9415	0 9421	0.9426	0 9432	0 9438	0.9444	0 944
70	tan	0.3420 2.7475	0.3404 2.7625	0.3387 2.7776	0.3371	0.3355	0.3338	0.3322 2.8397	0 3305 2.8556	0 3289	0.327 2.887
	Carr				2.7020	2.000	2.0200	2.0001	2.0000	2.0710	2.007
74	sin	0.9455	0.9461	0.9466	0.9472	0 9478	0 9483	0 9489	0.9494	0 9500	0 950
71	tan	0 3256 2.9042	0.3239 2.9208	0.3223 2.9375	0.3206 2.9544	0.3190 2.9714	0.3173 2.9887	0.3156 3.0061	0 3140 3.0237	0.3123 3.0415	0 3107 3.0598
		0.0511	0.0516	0.0501							
72	sin	0.3090	0.9516	0 9521 0.3057	0.9527	0 9532	0 9537	0 9542 0 2990	0 9548	0 9553 0.2957	0 9558
12	tan	3.0777	3.0961	3.1146	3.1334	3.1524	3.1716	3.1910	3.2106	3.2305	3.250
	sin	0.9563	0.9568	0.9573	0.9578	0.9583	0.9588	0 9593	0.9598	0.9603	0.9608
73	cos	0 2924	0.2907	0.2890	0.2874	0 2857	0.2840	0 2823	0 2807	0.2790	0.300
	tan	3.2709	3.2914	3.3122	3.3332	3.3544	3.3759	3.3977	3.4197	3.4420	3.4646
7.4	sin	0.9613	0.9617	0.9622	0 9627	0.9632	0.9636	0.9641	0.9646	0.9650	0 9655
74	cos	0.2756	0.2740	0.2723	0.2706	0.2689	0.2672	0.2656	0 2639	0.2622	0 260
	tan	3.4874	3.5105	3.5339	3.5576	3.5816	3.6059	3.6305	3.6554	3.6806	3.7062
Degs.	Function	0′	6′	12'	18'	24'	30'	36'	42'	48'	54'

Natural Sines, Cosines, and Tangents—(Continued) 75°-89.9°

75 76 77 78 79 80 81 82	sin cos tan sin cos tan	0.9659 0.2588 3.7321 0.9703 0.2419 4.0108	0.9664 0.2571 3.7583 0.9707 0.2402	0.9668 0.2554 3.7848	0.9673	0.9677	0.9681	0.9686	0.0000		
76 77 78 79 80 81	cos tan sin cos tan	0.2588 3.7321 0.9703 0.2419 4.0108	0.2571 3.7583 0.9707	0.2554	0.2538		W . W . 102	77.17.77.3	0.9590	0.9694	0.9699
76 77 78 79 80 81	sin cos tan	3.7321 0.9703 0.2419 4.0108	3.7583 0.9707			0.2521	0.2504	0.2487	0.2470	0.2453	0.2436
77 78 79 80 81	tan sin	0.2419 4.0108			3.8118	3.8391	3.8667	3.8947	3.9232	3.9520	3.9812
77 78 79 80 81	sin	4.0108	0.2402	0.9711	0.9715	0.9720	0.9724	0.9728	0.9732	0.9736	0.9740
78 79 80 81	sin		4.0408	0.2385	0.2368	0.2351 4.1335	0.2334 4.1653	0.2317 4.1976	0.2300 4.2303	0.2284 4.2635	4.2972
78 79 80 81	cos	0.9744	0.9748	0.9751	0.9755	0.9759	0.9763	0.9767	0.9770	0.9774	0.977
78 79 80 81		0.2250	0.2232	0.2215	0.2198	0.2181	0.2164	0.2147	0.2130	0.2113	0.2096
79 80 81	tan	4.3315	4.3662	4.4015	4.4374	4.4737	4.5107	4.5483	4.5864	4.6252	4.664
79 80 81	sin	0.9781	0.9785	0.9789	0.9792	0.9796	0.9799	0.9803	0.9806	0.9810	0.981
81	cos	0.2079	0.2062	0.2045	0.2028	0.2011	0.1994	0.1977	0.1959	0.1942	0.192
81	tan	4.7046	4.7453	4.7867	4.8288	4.8716	4.9152	4.9594	5.0045	5.0504	5.097
81	sin	0.9816	0.9820	0.9823	0.9826	0.9829	0.9833	0.9836	0.9839	0.9842	0.984
81	cos	0.1908 5.1446	0.1891 5.1929	0.1874	0.1857	0.1840	0.1822	0.1805 5.4486	0.1788 5.5026	0.1771 5.5578	5.614
81	tan										
81	sin	0.9848	0.9851	0.9854	0.9857	0.9860	0.9863	0.9866	0.9869	0.9871	0.987
82	tan	0.1736 5.6713	0.1719 5.7297	0.1702 5.7894	0.1685 5.8502	0.1668 5.9124	0.1650 5.9758	6.0405	0.1616 6.1066	6.1742	6.243
82	sin	0.9877	0.9880	0.9882	0.9885	0.9888	0.9890	0.9893	0.9895	0.9898	0.990
82	cos	0.1564	0.1547	0.1530	0.1513	0.1495	0.1478	0.1461	0.1444	0.1426	0.140
	tan	6.3138	6.3859	6.4596	6.5350	6.6122	6.6912	6.7720	6.8548	6.9395	7.026
	sin	0.9903	0.9905	0.9907	0.9910	0.9912	0.9914	0.9917	0.9919	0.9921	0.992
83	cos	7.1154	7.2066	7.3002	7.3962	7.4947	0.1305 7.5958	7.6996	7.8062	7.9158	8.028
83	tan .	7.1104	7.2000	7.3002	7.3902	7.4547					
83	sin	0.9925	0.9928	0.9930	0.9932	0.9934	0.9936	0.9938	0.9940	0.9942	0.9943
	tan	0.1219 8.1443	0.1201 8.2636	0.1184 8.3863	0.1167 8.5126	0.1149 8.6427	0.1132 8.7769	0.11.15 8.9152	9.0579	9.2052	9.357
	sin	0.9945	0.9947	0.9949	0.9951	0.9952	0.9954	0.9956	0.9957	0.9959	0.996
84	cos	0.1045	0.1028	0.1011	0.0993	0.0976	0.0958	0.0941	0.0924	0.0906	0.088
	tan	9.5144	9.6768	9.8448	10.02	10.20	10.39	10.58	10.78	10.99	11.20
0.5	sin	0.9962	0.9963	0.9965	0.9966	0.9968	0.9969	0.9971	0.9972	0.9973	0.997
85	tan	0.0872	0.0854	0.0837	0.0819	0.0802	0.0785	0.0767	0.0750	0.0732	0.071
								0.9982	0.9983	0.9984	0.998
86	cos	0.9976	0.9977	0.9978	0.9979	0.9980	0.9981	0.0593	0.9903	0.0558	0.054
00	tan	14.30	14.67	15.06	15.46	15.89	16.35	16.83	17.34	17.89	18.46
	sin	0.9986	0.9987	0.9988	0.9989	0.9990	0.9990	0.9991	0.9992	0.9993	0.999
87	cos	0.0523	0.0506	0.0488	0.0471	0.0454	0.0436	0.0419	0.0401	0.0384	0.036
	tan	19.08	19.74	20.45	21.20	22.02	22.90	23.86	24.90	26.03	27.27
	sin	0.9994	0.9995	0.9995	0.9996	0.9996	0.9997	0.9997	0.9997	0.9998	0.999
88	tan	0.0349	0.0332	0.0314	0.0297	0.0279 35.80	0.0262 38.19	0.0244	0.0227	0.0209	52.08
	sin	0.9998	0.9999	0.9999	0.9999	0.9999	1.000	1.000	1.000	1.000	1.000
89	COS	0.0175	0.0157	0.0140	0.0122	0.0105	0.0087	0.0070	0.0052	0.0035	0.001
	tan	57.29	63.66	71.62	81.85	95.49	114.6	143.2	191.0	286.5	573.0

INDEX

Abbreviations	Ohm's Law
Admittance11	Open-Air Transmission Lines14
Algebraic Formulas 5	
Algebraic Symbols4	Peak Current
Average Current	Peak Volts
Average Volts	Phase Angle
	Pilot Lamp Data
Ballast Resistors34	Plug-In Ballast Resistors34
Capacitance	Power Factor
Capacitors	"Q" Factor
Coefficient of Coupling	Quadratic Equations 5
Coils	
Concentric Transmission Lines	R-F Coils
Conductance	RMA Color Codes
Constants	R.M.S. Current
Conversion Chart	R.M.S. Volts
Coulombs	Radicals and Exponents 5
Coupled Inductance	Radio Color Codes
Coupling Coefficient	Reactance
	Resistance
Decay of E & I in LCR Circuits12-13	Resistors
Decibels	Resonance
Diagram Symbols39	Schomatic Cymhala 900
Dielectric Constants	Schematic Symbols
Exponents and Radicals	Self-Inductance
	Shunts
Fractional Inches	Solution of a Quadratic
Frequency	Steady State I and E
Growth of E & I in LCR Circuits 12-13	Susceptance
Impedance8-10, 14	Symbols
Inches to Millimeters4	Transients
Inductance	Transmission Lines14
Interchangeable Tubes	Trigonometric Formulas20
	Trigonometric Functions20
Log Tables	Trigonometric Tables 42-47
Mathematical Constants	
Mathematical Constants	Vacuum Tube Constants15
Meter Formulas	Vacuum Tube Formulas15
Metric Relationships	Vacuum Tube Symbols
Millimeters to Inches	Vertical Antenna, Capacitance 14
Multipliers	Warralan att
	Wavelength
Mutual Inductance	Wire Tables

Consult Your ALLIED Catalog for Everything in Radio, Television and Industrial Electronics

