

Prototype d'un outil d'anonymisation des transactions financières sur la blockchain Ethereum.

Master : Sécurité Informatique

Farold Hufranc ADOUKONOU

Encadreur: Prof Eugène EZIN

4 avril 2025

Sommaire

- ▶ État de l'Art
- ▶ Méthodoløgie et conception du prototype
- ► Résultats
- ▶ Perspectives et Conclusion

Contexte

- L'essor de la technologie Blockchain et des cryptomonnaies a révolutionné le secteur de la finance décentralisée.
- Les blockchains publiques permettent des transactions transparentes mais pose un problème de confidentialité.

Problématique

Introduction

Problématique

Comment anonymiser les transactions sur la block chain Ethereum tout en respectant les régulations ${\rm KYC/AML}\,?$

Objectifs du travail

Introduction

- Développer un outil d'anonymisation de transactions (mixeur de cryptomonnaies) basé sur Zero-Knowledge Proofs.
- Intégrer un mécanisme de vérification d'identité basé sur Zero-Knowledge Proofs (zk-KYC) pour assurer la conformité réglementaire.

Sommaire

- ▶ Introduction
- ▶ État de l'Art
- ▶ Méthodologie et conception du prototype
- ► Résultats
- ▶ Perspectives et Conclusion

Introduction à la blockchain État de l'Art

- Registre distribué qui enregistre les transactions de manière transparente et immuable.
- Contrairement aux systèmes traditionnelles, elle fonctionne sans autorité centrale et repose sur un réseau de nœuds interconnectés.
- Mécanisme de Consensus : Les nœuds doivent s'accorder sur l'ajout d'un nouveau bloc via un protocole (ex. : Proof of Work, Proof of Stake).

Fonctionnement de la blockchain

État de l'Art

Figure – Structure de la blockchain

Types de Blockchain État de l'Art

- Blockchain Publique : Accessible à tous, totalement transparente (ex. : Bitcoin, Ethereum).
- Blockchain Privée : Restreinte à un groupe d'utilisateurs (ex. : entreprises, consortiums).
- Blockchain de Consortium : Gérée par plusieurs entités avec des droits de validation limités.

La blockchain Ethereum

État de l'Art

- Ethereum est une blockchain publique
- Créée en 2015 par Vitalik Buterin

Spécificité

Ethereum permet l'exécution de smart contracts et la création d'applications décentralisées (dApps).

Caractéristiques clés d'Ethereum État de l'Art

- Smart Contracts : Programmes autonomes qui s'exécutent automatiquement lorsqu'une condition est remplie.
- Ethereum Virtual Machine (EVM) : Une machine virtuelle qui exécute les smart contracts de manière décentralisée.
- dApps (Applications Décentralisées) : Applications fonctionnant sans intermédiaire, construites sur des smart contracts.

Enjeux de confidentialité sur Ethereum

État de l'Art

Transparence vs Confidentialité

Ethereum est une blockchain publique où toutes les transactions sont enregistrées et visibles par n'importe qui via des explorateurs comme Etherscan.

- Les transactions sur les blockchains publiques sont pseudonymes, pas anonyme.
- La dé-anonymisation des transactions.

Enjeux de confidentialité sur Ethereum

État de l'Art

Sponsored: 5 bc.game - Free Bonus Up To 5 BTC Everyday! Earn While Playing! Play Now Titan Builder 🗹 (titanbuilder.eth (# MEV Builder Overview More Info ETH BALANCE PRIVATE NAME TAGS ♦ 5.285235071526032349 ETH + Add FTH VALUE TRANSACTIONS SENT \$16,046.72 (@ \$3,036.14/ETH) TOKEN HOLDINGS \$68.63 (108 Tokens)

Figure – Etherscan, l'explorateur de Blockchain Ethereum

Enjeux de confidentialité sur Ethereum

État de l'Art

Différence entre pseudonymat et anonymat

- Pseudonymat : Les utilisateurs sont identifiés par une adresse publique qui ne contient aucune information personnelle.
- Anonymat : Empêche d'associer une transaction à un utilisateur spécifique.

Défis liés aux Régulations (KYC/AML) État de l'Art

Risques liés au manque de confidentialité

- Les régulateurs imposent des contrôles Know Your Customer (KYC) et Anti-Money Laundering (AML) pour limiter les usages criminels.
- Défi : Comment concilier anonymat et respect des réglementations avec une solution comme le zk-KYC

Solutions d'anonymisation existantes État de l'Art

IFRÌ

- Les mixeurs (mixers/tumblers)
- Les privacy coins (ex. : Monero, Zcash)

Figure – Solutions existantes

Technologies cryptographiques avancées État de l'Art

Zero-Knowledge Proofs (ZKP): Preuves à Divulgation Nulle de Connaissance

- Permettent à une partie (le prouveur) de prouver à une autre (le vérificateur) qu'une déclaration est vraie sans révéler d'informations sensibles.
- Deux types de ZKP : Les Interactive ZKP et les Non Interactive ZKP

Figure – Fonctionnement du ZKP

Technologies cryptographiques avancées État de l'Art

zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge)

- Variante avancée des ZKP utilisée sur les blockchains.
- Permet de garantir la confidentialité des transactions.
- Vérification rapide et efficace, optimisé pour les blockchains

Arbres de Merkle : preuve d'inclusion et confidentialité

- Développée par Ralph Merkle dans les années 1980.
- Présente une structure arborescente dans laquelle chaque feuille est un bloc de données, et chaque nœud interne est le hash de ses nœuds enfants.
- Cas d'utilisation : Git, Bitcoin, Déduplication de données

Figure – Schéma d'un arbre de Merkle

Zero Knowledge Know Your Customer (zk-KYC) État de l'Art

Solution

- Permet de prouver qu'un utilisateur a fait une procédure KYC sans révéler son identité.
- Aucune information personnelle de l'utilisateur n'est exposée.
- Equilibre entre anonymat et conformité réglementaire (KYC/AML)

Sommaire

- ▶ Introduction
- ▶ État de l'Art
- ▶ Méthodologie et conception du prototype
- ► Résultats
- ▶ Perspectives et Conclusion

Approche Méthodologique

Pour atteindre les objectifs du projet, la méthodologie suivante a été adoptée :

<u>Méthodologie</u>

- Étude des solutions existantes
- Définition de l'architecture du système
- $\bullet\,$ Implémentation et développement du prototype

Architecture du prototype

Le système repose sur les composants suivants :

Implémentation et développement du prototype

- Module KYC (zk-KYC).
- Smart Contract du Mixer
- Interface Utilisateur (Frontend)
- Le relayeur de transaction

Architecture du prototype

Méthodologie et conception du prototype

Figure – Architecture du système

Fonctionnement du prototype

Méthodologie et conception du prototype

Flux de fonctionnement du système

- Vérification KYC
- Dépôt des fonds
- Génération des preuves et initiation du retrait
- Exécution du retrait par le relayeur et transfert des fonds

Méthodologie et conception du prototype

Figure – Protocole de mixage des fonds

Fonctionnement du système

Méthodologie et conception du prototype

Figure – Flux de fonctionnement du système

Méthodologie et conception du prototype

Circom

• Langage de description matérielle (HDL) spécialement utilisé pour créer des circuits arithmétiques qui sont ensuite utilisés pour générer des preuves à divulgation nulle de connaissance.

Développement des circuits ZK

- Développement du circuit kyc_verifier.circom
- Développement du circuit merkle_tree.circom
- Développement du circuit withdraw.circom

Méthodologie et conception du prototype


```
template MerkleTreeChecker(levels) {
    signal input leaf;
    signal input root;
    signal input pathElements[levels];
    signal input pathIndices[levels];
    component selectors[levels];
    component hashers[levels];
    for (var i = 0; i < levels; i++) {
        selectors[i] = DualMux();
        selectors[i].in[0] <== i == 0 ? leaf : hashers[i - 1].hash;</pre>
        selectors[i].in[1] <== pathElements[i];</pre>
        selectors[i].s <== pathIndices[i]:</pre>
        hashers[i] = HashLeftRight();
        hashers[i].right <== selectors[i].out[1];
```

Figure – Exemple de circuit circom

Méthodologie et conception du prototype

Développement et déploiement des smart contracts

- Développement du contrat de vérification KYC KYCRegistry.sol
- Développement du contrat MerkleTreeWithHistory.sol
- Développement du contrat du mixeur Mixer.sol

Fonctionnement du système

Figure – Processus détaillé avec les Merkle Trees

Méthodologie et conception du prototype

Développement des interfaces utilisateur

- Interface KYC
- Interface du Mixeur (Phantom ETH)

Méthodologie et conception du prototype

Mise en place du relayer de transactions

- Réception des informations du retrait
- Estimation des frais de gaz
- Signature de la transaction

Sommaire

- ► Introduction
- ▶ État de l'Art
- ▶ Méthodologie et conception du prototype
- ► Résultats
- ▶ Perspectives et Conclusion

Démo pratique Méthodologie et conception du prototype

DÉMO

Phantom ETH vs Tornado Cash

Caractéristiques	Phantom ETH	Tornado Cash
Fonctionnalités		
Anonymisation des transactions	✓	✓
Vérification KYC intégrée	✓	×
Whitelisting en cascade	✓	×
Support multi-denominations	×	✓
Technique		
Utilisation de zk-SNARK	√	✓
Arbre de Merkle on-chain	✓	✓
Relayeurs décentralisés	×	✓
Nullifier hash	✓	✓
Conformité		
Conformité réglementaire	✓	×
Traçabilité KYC	✓	×
Protection vie privée	✓	✓
Expérience Utilisateur		
Interface simplifiée	✓	✓
Gestion des notes	✓	✓

Figure – Comparaison entre Phantom ETH et Tornado Cash

Sommaire

- ▶ Introduction
- ▶ État de l'Art
- ▶ Méthodologie et conception du prototype
- ► Résultats
- ▶ Perspectives et Conclusion

Perspectives

Perspectives et Conclusion

- Support cross-chain
- Support de dénominations personnalisés
- Décentralisation du Relayeur
- Coût en Gaz

CONCLUSION