MedCoach Interim Presentation

Mai Werthaim & Maya Kimhi

Project Description

Medical students are often overwhelmed by theoretical study and lack practical diagnostic experience.

MedCoach offers an AI-driven learning environment with realistic, interactive case simulations that advance medical decisionmaking with immediate, relevant feedback

Dataset: Diseases and their Symptoms

Input: Diseases and their symptoms

Output: Patient cases and their diagnosis

Task: Text generation

Student Examination

Input: Partial patient case

Output: Student diagnosis and questions

Task: Question-Answering

Feedback Generation

Input: Doctor questions and diagnosis, Student questions and diagnosis,

Output: Student evaluation (avg questions to diagnosis & similarity

between doctor & student)

Task: Text similarity

Prior Art

Name	Med-PaLM 2	AMIE	ClinicalGPT-R1					
Source	Singhal, K., et al. (2025). Toward expert-level medical question answering with large language models. Nature	Tu, T., et al. (2025). Towards conversational diagnostic artificial intelligence. Nature.	Lan, W., et al. (2025). ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model. arXiv.					
Goal	Enhance reasoning and grounding in long-form medical question answering through ensemble refinement and chain-of-retrieval strategies	Conduct AI-driven diagnostic dialogue by simulating clinician–patient interactions	Improve generalist disease diagnosis					
Approach	Transformer+ fine-tuning on medical data; uses prompt tuning & ensemble refinement for reliable answers	Vignette generator Dialogue simulator Self-play loops	Synthetic Data Generation Two-Stage Fine-Tuning					
Data	USMLE-style questions (MedQA), medical research (PubMedQA), MedMCQA, and clinical topics in MMLU	Real-world transcripts (~99 K conversations from MIMIC-III) and a self-play multi-agent to synthesize new case	Real EHR records with long-chain CoT prompts					
Metrics	Accuracy	Clinicians scored AMIE's history-taking and diagnostic reasoning using PACES-style criteria	Accuracy					
Results	86.5 % accuracy on MedQA (+19 % over Med-PaLM)	Generated ~12K dialogues AMIE matched or exceeded benchmarks on key axes	Outperforms GPT-4o in Chinese diagnosis tasks and matches GPT-4o in English on MedBench-Hard					

NLP Pipeline

Case Preparation	Benchmark Generation	Student Stimulation	Evaluation				
Input: Raw Data:	Input: A table of 4 columns -	Input: Full patient case,	Input: Doctors question &				
100 random sample of	Diagnosis, full patient case,	80% patient case,	diadnosis, student question &				
Symptoms and diagnoses.	80% case, 50% case.	50% patient case.	diagnosis				
Output: Table of 4 columns -	Output: K pairs of columns	Output: K pairs of columns	Output: Similarity between doctor				
Diagnosis, full patient case,	(doctor's question, doctor's	(student question and	questions & student questions				
80% case, 50% case.	diagnosis)	diagnosis)					
Task: Patient Case Creation	Task: Doctor & patient role	Task: Student & patient role	Task: Comparing student to doctor				
	playing.	playing.					
Model: MedLlama2	Model: Me-LLaMA 13B as	Model: DeepSeek-R1 as sudent	Model: None (NLP Metrics)				
	doctor & MedLlama2 as patient	& MedLlama2 as patient					
Metric: Model-based	Metric: Accuracy, AUC	Metric: Accuracy, AUC	Metric: average questions to				
evaluation (PubMedBERT)			diagnosis, questions cosine similarity				

Data exploration

Raw data - Diseases and their Symptoms

- 2564 rows
- 400 symptoms
- 133 unique diseases
- 13 duplicate rows

	Unnamed:	pain	shortness of	dissince	acthonia	6-11	51/25020	tias	sweat sweating	1	nnadnama	humannatainamia	alcohol binge	abdomen	air fluid	catching	large-for- dates fetus	immahila	homicidal	nnomosis
	0	chest	breath		asthenia	Tall	Syncope	vertigo	increased	parbitation	 prourome	hypoproteinemia	episode	acute	level	breath	dates fetus	THHODITE	thoughts	prognosis
0	0	0	1	0	0	0	1	0	1	1	 0	0	0	0	0	0	0	0	0	hypertensive disease
1	0	0	1	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	0	0	diabetes
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	depression mental , depressive disorder
3	0	1	1	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	0	0	coronary arteriosclerosis ,coronary heart disease
4	0	0	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	pneumonia
2559	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2560	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2561	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2562	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2563	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	decubitus ulcer

Data exploration

Raw data statistics:

- Average rows per disease: 19.18
- Disease with most rows: bipolar disorder (43 rows)
- Disease with fewest rows: decubitus ulcer (3 rows)
- Each disease have 3-7 symptomes
- The most common symptom is pain (323 cases)
- The least common symptom is dizzy spells (1 case)

Data Treating:

- Duplicate deletion
- Removal of symptoms not associated with any disease
- Selection of cases with >=4 symptomes

Baseline

Random Sampling:

A random sample of 100 rows is selected from the original dataset. Each row represents a real disease profile with associated symptoms.

Patient Case Generation:

For each selected disease instance, a synthetic patient case is generated using a language model (MedLlama2). Each case includes:

- Full Case: All symptoms associated with the disease.
- 80% Case: Approximately 80% of the symptoms.
- 50% Case: Approximately 50% of the symptoms.

Text-Based Diagnosis Modeling as doctor:

PubMedBERT is fine-tuned on the generated case descriptions to simulate a doctor's diagnosis.

Accuracy Comparison Across Case Levels:

Accuracy is measured for each level to assess how case completeness affects diagnosis quality.

Baseline

As expected, the accuracy of the diagnosis increases as the percentage of available data in the case rises.

Insights

The data source is rich enough to provide good patient cases for diagnosis

There is a relationship between the amount of exposure and accuracy.

Recommendations

Assessment whether dataset size can be reduced.

Zero-shot diagnosis for further evaluate the robustness of the generated cases.

