

Learning Discriminative Features from Spectrograms using Center Loss for Speech Emotion Recognition

Dongyang Dai^{1,2}, Zhiyong Wu^{1,2,3}, Runnan Li^{1,2}, Xixin Wu³, Jia Jia^{1,2}, Helen Meng^{1,3}

1. Introduction

Motivation

- Identify emotions directly from raw data (spectrograms), getting rid of feature engineering
- Extract discriminative features with larger inter-class variance and smaller intra-class variance to improve performance

> Challenge

- Design suitable model architecture processing variable length spectrograms
- Adopt appropriate methods to extract discriminative features

Contribution

- Apply CNN + Bi-RNN to extract features directly from spectrograms with variable length
- Introduce center loss together with softmax cross-entropy loss in SER task to learn discriminative features
- Separable inter-class features
- More compact intra-class feature

Bi-RNN Reshape output: $L'_T \times d_{cnn}$ ($d_{cnn} = 96 \cdot d'_T$) Reshape(Keep time axis) 2D convolutions output: $L'_T \times L'_F \times 96$ Max-pooling: 2 × 2, strides [2, 2] Convolution: 96 filters of 3 × 3, strides [1, 1] Convolution: 80 filters of 3 × 3, strides[1, 1] Max-pooling: 2 × 2, strides [2, 2] Convolution: 64 filters of 3 × 3, strides [1, 1] Convolution: 48 filters of 7 × 7, strides [2, 2] Input: spectrogram $L_T \times L_F$ CNN layers

2. Proposed Method

> Model Architecture

- Input: variable length spectrograms
- CNN layers: extract spatial information from input outputs a variable length sequence
- Bi-RNN: compresses the variable length sequence down to a fixed-length vector, by concatenating the last output of forward RNN and backword
- FC1: outputs $z \in R^d$ as the learned feature, from which center loss is calculated
- FC2: outputs posterior class probabilities, from which softmax cross-entropy loss is computed
- Softmax Cross-entropy Loss: enables network to learn separable features
- Center Loss: pulls the features belonging to the same emotion category to their center

> Center Loss

$$L_{c} = \frac{1}{\sum_{i=1}^{m} \omega_{y_{i}}} \sum_{i=1}^{m} \omega_{y_{i}} |z_{i} - c_{y_{i}}|^{2}$$

$$c_{j}^{t+1} = \begin{cases} (1 - \alpha)c_{j}^{t} + \alpha \dot{c}_{j}^{t} & \sum_{i=1}^{m} \delta(y_{i} = j) > 0 \\ c_{j}^{t} & \sum_{i=1}^{m} \delta(y_{i} = j) = 0 \end{cases}$$

$$\dot{c}_{j} = \frac{\sum_{i=1}^{m} \delta(y_{i} = j)z_{i}}{\sum_{i=1}^{m} \delta(y_{i} = j)}$$

- c_i: the global class center of features corresponding to the j-th emotion class, updated per mini-batch iteration
- \dot{c}_i : the j-th class center of features from a mini-batch
- α : controls the update rate of c_i

> Softmax Cross-entropy Loss

 $L = L_s + \lambda L_c$ — Latitude

λ: trades off center loss against softmax cross-entropy length

> Experimental Setup

Dataset: IEMOCAP

4 emotion categories neutral, angry, happy and sad (happy and excited merged as happy)

5 subsets

- Randomly divided the total 5531 utterances, but keeping the distribution portion of emotion categories
- · 4 subsets for training, half of the last subset as development set and

Settings of spectrograms

- Model input: log scale STFT spectrogram or Mel-spectrogram
- Hamming window: 40ms window length and 10ms shift
- Sample rate: 16KHz
- ✓ DTF length: 1024
- The number of Mel bands: 128

Evaluation metrics 和変を大いへ

- Unweighted Accuracy (UA): the mean value of the recall for each
- Weighed Accuracy (WA): the number of correctly classified samples divided by the total amount of samples

3. Experiments and Results

- > Experiments
- The effect of hyperparameter α and λ on Mel-spectrogram
- (left) fixing $\lambda = 0.3$, (right) fixing $\alpha = 0.5$
- can be significantly improved with proper value of λ
- Experiments with different λ on Mel and STFT
- ✓ The UA and WA on setting 1 ~ setting 4 (%)

100	musion man	ix on sei	tting i jse	tting2 sett	ingsiset	tin	
	λ, α	Input	UA	WA		ne	
Setting1	λ=0	Mel	63.80	61.83	neu	57	

_																			
	λ, α	Input	UA	WA		neu	ang	hap	ad	neu	ang	hap	sad	neu	ang	hap	sad	neu	ang
Setting1	λ=0	Mel	63.80	61.83	neu	57.5	9.5	16.4	16.6	63.7	6.7	16.7	12.7	54.4	9.3	18.5	17.7	57.3	7.3
Setting2	λ =0.3, α =0.5	Mel	66.86	65.40	ang	11.9	69.1	15.5	3.5	10.8	70.5	16.7	2.0	12.7	68.1	16.7	2.5	10.3	72.0
Setting3	λ=0	STFT	60.97	58.93	hap	21.1	16.2	51.1	11.5	21.9	13.1	55.6	9.4	21.6	18.6	47.6	12.2	20.5	16.1
Setting4	λ =0.3, α =0.5	STFT	65.13	62.96	sad	13.8	2.6	6.0	77.6	12.8	2.5	7.0	77.7	16.1	3.9	6.2	73.7	12.5	2.8
									-										

PCA embedding of feature z: (a) training set on setting 1, (b) training set on setting 2, (c) test set on setting 1, (d) test set on setting 2

4. Conclusion

> Conclusion

- Introducing center loss with proper λ could effectively improve the SER performance on both STFT spectrogram and Mel-spectrogram input
- Mel-spectrogram input, reducing the dimension based on human hearing characteristics, outperforms STFT spectrogram input
- The 2-D PCA embedding illustrates the discriminative power of using center loss, which enables the neural network to learn more effective features for SER

>右称给左侧胡尾过

5. Acknowledgment

This work is supported by National Natural Science Foundation of China (NSFC) (61433018, 61375027), joint research fund of NSFC-RGC (Research Grant Council of Hong Kong) (61531166002, N CUHK404/15) and National Social Science Foundation of China (13&ZD189)

