Principles of Machine Learning

Lecture 2-1: Probability and Distributions

Sharif University of Technology Dept. of Aerospace Engineering

March 2, 2025

Table of Contents

- Introduction
- 2 Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Outline

- Introduction
- Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Chapter Overview: Probability and Statistics

- Understanding Uncertainty
 - Degree of Belief: How strongly we believe an event will happen.
 - Relative Frequency: How often an event occurs out of a number of trials.
- Quantifying Uncertainty:
 - Data: Collecting and analyzing data.
 - Model: Building models to represent data.
 - Prediction Uncertainty: Estimating uncertainty in model predictions.

Chapter Overview: Probability and Statistics

Understanding Uncertainty

- Degree of Belief: How strongly we believe an event will happen.
- Relative Frequency: How often an event occurs out of a number of trials.

Quantifying Uncertainty:

- Data: Collecting and analyzing data.
- Model: Building models to represent data.
- Prediction Uncertainty: Estimating uncertainty in model predictions.

Core Concepts:

- Random Variables: Variables whose values are determined by chance.
- Probability Distributions: Mathematical functions that describe the likelihood of different outcomes.

Building Knowledge:

- Probabilistic Modeling: Creating models that incorporate uncertainty.
- **Graphical Models:** Using graphs to represent relationships between variables.
- Model Selection: Choosing the best model based on criteria like accuracy and simplicity.

Key Definitions

Definition: Random Variable

A **Random Variable** is a mapping that assigns each outcome of a random experiment to a numerical value representing a specific property or characteristic.

Definition: Probability Distribution

A **Probability Distribution** is a function that assigns a probability to each possible outcome of a random variable, indicating the likelihood of each outcome.

Applications in ML

- Data Uncertainty
- Model Uncertainty
- Prediction Uncertainty
- Basis for Advanced Topics

March 2, 2025

Outline

- Introduction
- Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Mathematical Structure of Probability

- Need for formal structure: Systematic framework to quantify uncertainty
- Key observations:
 - Individual outcomes are unpredictable (e.g., single coin toss)
 - Regular patterns emerge in aggregate (e.g., 50% heads in 1000 tosses)
- Core components:
 - Sample space (complete outcome catalog)
 - Event space (meaningful outcome combinations)
 - Probability measure (quantified uncertainty)
- Why it matters:
 - Extends Boolean logic to uncertain reasoning
 - Provides foundation for statistical inference

From Everyday Reasoning to Probability

Classical Logic Limitations

- Binary truth values (True/False)
- No gradation for uncertainty
- Example: Friend's tardiness
 - Strict logic: Either late or not
 - Reality: Multiple plausible scenarios

Probabilistic Reasoning

- Continuous plausibility scale [0,1]
- Evidence-based belief updates
- Example: Tardiness hypotheses

On time: 20%

• Traffic delay: 75%

Alien abduction: 5%

Probability: Mathematics of plausible reasoning under uncertainty

Axiomatic Foundations (Cox-Jaynes)

Theorem (Cox-Jaynes Theorem)

Any system of plausible reasoning satisfying:

- **1 Representation:** Plausibilities as real numbers
- Onsistency:
 - Non-contradiction
 - Honesty
 - Reproducibility
- **③ Continuity:** Small evidence changes ⇒ small plausibility changes must obey probability axioms (up to isomorphism).

Deep Insight

- Probability theory is unique extension of Boolean logic
- Subjectivity vs Objectivity: Personal beliefs vs physical frequencies

Probability Space Triad

```
Sample Space (\Omega): Elementary outcomes (e.g., \Omega = \{H, T\} for coin toss)
```

Event Space (\mathcal{F}) : Space of potential results of the experiment (collection of subsets of Ω)

(e.g.,
$$\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\}$$
)

Probability Measure $(P): P: \mathcal{F} \rightarrow [0,1]$ with

- $P(\Omega) = 1$ (Certainty)
- $P(\bigcup_i A_i) = \sum_i P(A_i)$ for disjoint A_i

Kolmogorov's Axioms: Operational Perspective

Fundamental Probability Rules

- **1** Non-negativity: $P(A) \ge 0 \ \forall A \in \mathcal{F}$
- **2** Normalization: $P(\Omega) = 1$
- **3** Countable Additivity: For disjoint $\{A_i\}_{i=1}^{\infty}$,

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$$

Example

Die Roll Example

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- For fair die: $P(\{i\}) = 1/6$
- Event $A = \{2, 4, 6\}$: $P(A) = 3 \times 1/6 = 1/2$

Putting It All Together: Coin Toss Space

Components

•
$$\Omega = \{H, T\}$$

$$ullet$$
 ${\cal F}=2^\Omega$ (power set)

•
$$P(\{H\}) = p$$

•
$$P(\{T\}) = 1 - p$$

Random Variable

•
$$X(H) = 1$$

•
$$X(T) = 0$$

Event	Description	Probability
Ø	Impossible	0
{H}	Heads	р
{T}	Tails	1-p
Ω	Certain	1

Probability and Random Variables

Example

Two-Coin Draw (Biased Coins)

- Sample Space Ω : {(\$,\$),(\$,£),(£,\$),(£,£)}
- Random Variable X: Counts number of \$ drawn
- Mapping:
 - X((\$,\$)) = 2
 - $X((\$, \pounds)) = 1$
 - $X((\mathfrak{L},\$)) = 1$
 - $X((\pounds, \pounds)) = 0$
- PMF:
 - P(X = 2) = 0.09
 - P(X = 1) = 0.42
 - P(X=0)=0.49

Statistics vs. Probability in ML

- Probability: Models random processes; quantifies uncertainty.
- Statistics: Infers underlying processes from observed data.
- Machine Learning: Integrates both for model selection and generalization.

Outline

- Introduction
- Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Discrete vs. Continuous Distributions

- Discrete: Target space is countable (finite or countably infinite)
- Continuous: Target space is uncountably infinite (e.g., intervals in \mathbb{R})
- Nomenclature:
 - Discrete ⇒ Probability Mass Function (PMF)
 - Continuous ⇒ Probability Density Function (PDF)
- Cumulative Distribution Function (CDF): Used for continuous RVs, but also defined for discrete

Discrete Probabilities

- **PMF**: p(x) = P(X = x)
- Joint Probability: p(x, y)
- Marginal Probability: $p(x) = \sum_{y} p(x, y)$
- Conditional Probability: $p(y \mid x) = \frac{p(x,y)}{p(x)}$
- Applications: Categorical features, labels, finite mixture models

Definition: Probability Mass Function (PMF)

Definition: PMF

- Let X be a discrete random variable with target space T.
- The probability mass function p(x) assigns

$$p(x) = P(X = x), \quad x \in T.$$

• Satisfies $\sum_{x \in T} p(x) = 1$ and $p(x) \ge 0$.

Example: Joint Discrete PMF

Example (Example: Bivariate Discrete Distribution)

- Two discrete random variables X and Y with states $\{x_1, \ldots, x_5\}$ and $\{y_1, y_2, y_3\}$.
- Joint probability:

$$p(x_i, y_j) = \frac{n_{ij}}{N}$$
, where n_{ij} is the count of events with (x_i, y_j) .

- Marginal: $p(x_i) = \sum_j p(x_i, y_j), \quad p(y_j) = \sum_i p(x_i, y_j).$
- Conditional: $p(y_j \mid x_i) = \frac{p(x_i, y_j)}{p(x_i)}$.

Discrete Bivariate PMF

- Visualization of a discrete bivariate probability mass function.
- Random variables X and Y with a joint PMF p(x, y).

Continuous Probabilities

- Target space: Intervals in \mathbb{R} or \mathbb{R}^D
- Probability of exact value: Zero (P(X = x) = 0)
- Use integrals: $P(a \le X \le b) = \int_a^b f(x) dx$
- Applications: Real-valued features, Gaussian distributions

Definition: Probability Density Function (PDF)

Definition: PDF

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is a *PDF* if

$$f(x) \ge 0$$
 and $\int_{\mathbb{R}^D} f(x) dx = 1$.

• $\forall a, b \in \mathbb{R}$ (with a < b):

$$P(a \le X \le b) = \int_a^b f(x) \, dx.$$

Definition: Cumulative Distribution Function (CDF)

Definition: CDF

ullet For a real-valued random variable $X \in \mathbb{R}^D$, the *CDF* is

$$F_X(x) = P(X_1 \leq x_1, \ldots, X_D \leq x_D).$$

• Can be written as an integral of f(x) when f exists:

$$F_X(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_D} f(z) dz.$$

Example: Uniform Distributions

Example (Discrete vs. Continuous Uniform)

- **Discrete Uniform:** Finite states $\{z_1, z_2, z_3\}$, each with $p(z_i) = \frac{1}{3}$.
- Continuous Uniform: Interval [a, b] with

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

• Note: PDF can exceed 1 if interval is very small, but integrates to 1.

Discrete vs. Continuous Uniform

• Note the difference in how probabilities/densities are visualized.

Discrete vs. Continuous

- Discrete PMF: $\sum_{x \in T} p(x) = 1$; each $p(x) \in [0, 1]$.
- Continuous PDF: $\int f(x) dx = 1$; values of f(x) can exceed 1.
- Probability of exact point:
 - Discrete: P(X = x) can be nonzero.
 - Continuous: P(X = x) = 0.
- Common Notational Overlaps:
 - p(x) used for both PMF and PDF
 - $P(X \le x)$ also called distribution

Outline

- Introduction
- 2 Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

The Three Fundamental Rules

Probability Toolkit for Reasoning

Rule What it Does

Sum Rule Simplifies complex scenarios

Product Rule Connects joint & conditional probabilities

Bayes' Theorem Updates beliefs with new evidence

Sum Rule: Seeing the Big Picture

Weather Example

	Rainy	Sunny
Walk	0.2	0.3
Drive	0.1	0.4

Probability of walking: 0.2 + 0.3 = 0.5

The Rule in Action

- **Discrete:** $p(walk) = \sum_{weather} p(walk, weather)$
- **Continuous:** $p(\text{height}) = \int p(\text{height}, \text{weight}) d\text{weight}$

Key Idea

"Zoom out" by adding up details you don't need

Product Rule: Connecting Events

Cookie Jar

2 chocolate 3 oatmeal

Probability of first chocolate, then oatmeal:

$$\tfrac{2}{5} \times \tfrac{3}{4} = \tfrac{3}{10}$$

The Mathematics

$$p(A, B) = p(A|B)p(B) = p(B|A)p(A)$$

- Joint = Conditional Œ Marginal
- Works for dependent events

Bayes' Theorem: Learning from Data

Medical Testing

- 1% disease prevalence
- 90% test accuracy if sick
- 5% false positive rate $\Rightarrow p(\text{Sick}|+) = \frac{0.9 \times 0.01}{0.9 \times 0.01 + 0.05 \times 0.99} \approx 15\%$

The Formula

$$\underbrace{p(\mathsf{Hypothesis}|\mathsf{Evidence})}_{\mathsf{What we want}} = \underbrace{\frac{p(\mathsf{Evidence}|\mathsf{Hypothesis})}_{p(\mathsf{Evidence})} p(\mathsf{Hypothesis})}_{\mathsf{Normalizer}} \underbrace{\frac{p(\mathsf{Evidence})}_{\mathsf{Normalizer}}}_{\mathsf{Normalizer}}$$

Why It Matters

Updates beliefs systematically using evidence

Putting It All Together

Outline

- Introduction
- Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Expected Value: Definition

Definition (Expected Value)

For a random variable X and a function g,

$$E[g(X)] = \begin{cases} \sum_{x \in \mathcal{X}} g(x) p(x) & \text{(discrete)} \\ \int_{\mathcal{X}} g(x) p(x) dx & \text{(continuous)} \end{cases}$$

Linearity of Expectation

• For functions g(x) and h(x) with scalars a, b:

$$E[ag(x) + bh(x)] = aE[g(x)] + bE[h(x)]$$

Key property used in variance and covariance derivations.

Mean of a Random Variable

Definition (Mean)

The mean of X is given by

$$E[X] = \begin{cases} \sum_{x \in \mathcal{X}} x \, p(x) & \text{(discrete)} \\ \int_{\mathcal{X}} x \, p(x) \, dx & \text{(continuous)} \end{cases}$$

For multivariate $X \in \mathbb{R}^D$, E[X] is computed element-wise.

37 / 95

Other Averages: Median and Mode

- Median: The middle value where 50% of the data is below.
- Mode: The most frequently occurring value or peak in the density.
- Useful when distributions are skewed or multimodal.

Bimodal Distribution Example (Figure 6.4)

Example (Bimodal Distribution)

Consider a mixture model:

$$p(x) = 0.4 \mathcal{N}(x \mid \mu_1, \Sigma_1) + 0.6 \mathcal{N}(x \mid \mu_2, \Sigma_2)$$

Note: The joint distribution is bimodal, though one marginal may be unimodal.

Bimodal Example

- 2D mixture of Gaussians.
- Two distinct modes in the joint distribution.
- Marginal distributions can have different characteristics.

Covariance: Univariate Case

Definition (Covariance (Univariate))

For random variables X and Y,

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])]$$

Equivalently,

$$Cov[X, Y] = E[XY] - E[X] E[Y]$$

Variance: A Special Case of Covariance

Variance is defined as:

$$Var[X] = Cov[X, X] = E[(X - E[X])^2]$$

Standard deviation:

$$\sigma(X) = \sqrt{\mathsf{Var}[X]}$$

March 2, 2025

Covariance: Multivariate Case

Definition (Covariance (Multivariate))

For $X \in \mathbb{R}^D$ and $Y \in \mathbb{R}^E$,

$$\mathsf{Cov}[X,Y] = E[XY^{\top}] - E[X]E[Y]^{\top}$$

The result is a $D \times E$ matrix.

Variance for Multivariate Variables

Definition (Variance (Covariance Matrix))

For a multivariate random variable $X \in \mathbb{R}^D$ with mean μ ,

$$V[X] = \operatorname{Cov}[X, X] = E[(X - \mu)(X - \mu)^{\top}]$$

- Diagonals: individual variances.
- Off-diagonals: cross-covariances.

Empirical Mean and Covariance

Definition (Empirical Mean & Covariance)

Given data $x_1, \ldots, x_N \in \mathbb{R}^D$:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \Sigma = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^{\top}.$$

Note: The unbiased covariance uses 1/(N-1).

Three Expressions for Variance

Standard definition:

$$Var(X) = E[(X - \mu)^2]$$

Raw-score formula:

$$Var(X) = E[X^2] - (E[X])^2$$

Pairwise differences:

$$\frac{1}{N^2} \sum_{i,j} (x_i - x_j)^2 = 2 \left[\frac{1}{N} \sum_i x_i^2 - \left(\frac{1}{N} \sum_i x_i \right)^2 \right]$$

Affine Transformations of Random Variables

• For y = Ax + b:

$$E[y] = A E[x] + b$$

• Variance under affine transformation:

$$Var(y) = A Var(x) A^{\top}$$

Essential in linear models and dimensionality reduction.

Statistical Independence

Definition (Statistical Independence)

Random variables X and Y are independent if

$$p(x,y) = p(x) p(y)$$

Equivalently, $p(x \mid y) = p(x)$.

Conditional Independence

Definition (Conditional Independence)

X and Y are conditionally independent given Z if

$$p(x, y \mid z) = p(x \mid z) p(y \mid z) \quad \forall z.$$

Notation: $X \perp \!\!\!\perp Y \mid Z$.

Inner Products of Random Variables

• Define inner product as:

$$\langle X, Y \rangle := Cov[X, Y]$$

Length:

$$\|X\| = \sqrt{\mathsf{Var}[X]} = \sigma(X)$$

Angle between X and Y:

$$\cos \theta = \frac{\mathsf{Cov}[X, Y]}{\sigma(X)\,\sigma(Y)}$$

• Interpretation: Correlation as the cosine of the angle.

50 / 95

Figure 6.6: Covariance as Inner Product

- Visualizes inner-product structure using covariance.
- Zero covariance corresponds to orthogonality.

Summary of Key Mathematical Relationships

- Sum Rule: $p(x) = \sum_{y} p(x, y)$ or $\int p(x, y) dy$
- Product Rule: $p(x, y) = p(x \mid y)p(y)$
- Bayes' Theorem: $p(x \mid y) = \frac{p(y|x)p(x)}{p(y)}$
- Linearity: E[aX + bY] = aE[X] + bE[Y]
- Variance: $V[X] = E[X^2] (E[X])^2$
- Affine: E[Ax + b] = A E[X] + b, $V[Ax + b] = A V[X]A^{\top}$

Implications in Machine Learning

- I.I.D. assumption simplifies model training.
- Covariance and correlation are key in feature analysis.
- Statistical independence assumptions underpin many algorithms.
- Basis for probabilistic modeling and inference.

53 / 95

Closing Remarks on Summary Statistics & Independence

- Summary statistics capture essential aspects of distributions.
- Independence (and conditional independence) simplify joint models.
- Geometric interpretations (inner products, angles) provide intuition.
- These mathematical relationships are foundational in ML.

Outline

- Introduction
- Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Gaussian Distribution Overview

- Most well-studied continuous distribution
- Also called the Normal distribution
- Arises from the Central Limit Theorem
- Widely used in ML, signal processing, control, statistics

Key Properties

- Fully characterized by mean and covariance
- Closed-form expressions for marginals and conditionals
- Linear transformations preserve Gaussianity
- Computationally convenient in inference tasks

Univariate Gaussian Density

• Density formula:

$$p(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Standard case: $\mu = 0$, $\sigma^2 = 1$

Multivariate Gaussian Density

• For $x \in \mathbb{R}^D$:

$$p(x \mid \mu, \Sigma) = (2\pi)^{-D/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

• Denoted as $N(x \mid \mu, \Sigma)$

59 / 95

Bivariate Gaussian Mesh

- Mesh plot of a bivariate Gaussian
- Contour lines illustrate elliptical density shapes

Gaussian Samples

(a) Univariate (one-dimensional) Gaussian; The red cross shows the mean and the red line shows the extent of the variance.

(b) Multivariate (two-dimensional) Gaussian, viewed from top. The red cross shows the mean and the colored lines show the contour lines of the density.

- Left: Univariate Gaussian with samples
- Right: Bivariate Gaussian with overlaid samples

Marginals of Joint Gaussian

Joint Gaussian:

$$p(x,y) = N\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}\right)$$

• Marginal of x:

$$p(x) = N(x \mid \mu_x, \Sigma_{xx})$$

Joint, Marginal, and Conditional

- (a) Joint bivariate Gaussian
- (b) Marginal of joint Gaussian is Gaussian
- (c) Conditional distribution is also Gaussian

Product of Gaussian Densities

Definition (Product of Gaussians)

The product of two Gaussian densities is proportional to a Gaussian:

$$N(x \mid a, A) N(x \mid b, B) = c N(x \mid c, C)$$

with

$$C = (A^{-1} + B^{-1})^{-1}, \quad c = C(A^{-1}a + B^{-1}b),$$

and scaling constant

$$c = (2\pi)^{-D/2}|A+B|^{-1/2}\exp\Bigl(-\frac{1}{2}(a-b)^{\top}(A+B)^{-1}(a-b)\Bigr).$$

Scaling Constant for Product

• Expressible as a Gaussian:

$$c = N(a \mid b, A + B) = N(b \mid a, A + B)$$

• Compact notation for Gaussian products

March 2, 2025

Sums of Independent Gaussians

ullet If $X \sim \mathit{N}(\mu_{x}, \Sigma_{x})$ and $Y \sim \mathit{N}(\mu_{y}, \Sigma_{y})$ are independent,

$$X + Y \sim N(\mu_x + \mu_y, \Sigma_x + \Sigma_y)$$

Follows from linearity of expectation and variance additivity

66 / 95

Linear Transformations

• For
$$Y = AX + b$$
 and $X \sim N(\mu, \Sigma)$,

$$Y \sim N(A\mu + b, A\Sigma A^{\top})$$

Affine transformations preserve Gaussianity

Example: Weighted Sum

Example (Weighted Sum)

For independent Gaussian random variables:

$$p(ax + by) = N(a\mu_x + b\mu_y, \ a^2\Sigma_x + b^2\Sigma_y)$$

Gaussian Applications in ML

- Likelihoods and priors in linear regression
- Mixture models for density estimation
- Gaussian processes for regression and classification
- Kalman filters in signal processing and control

Outline

- Introduction
- 2 Construction of Probability Space
- 3 Discrete and Continuous Probabilities
- 4 Sum Rule, Product Rule, and Bayes Theorem
- 5 Summary Statistics and Independence
- 6 Gaussian Distribution
- Conjugacy & Exponential Family

Why Special Distributions Matter

The Challenge:

- Bayesian updating often changes distribution forms
- Want tractable math for:
 - Posterior calculations
 - Predictive distributions

The Solution:

- Conjugate families that:
 - Keep same distribution type after updating
 - Maintain fixed number of parameters
- Exponential families provide foundation

Key Distributions for Binary Outcomes

The Bernoulli-Beta Family

Likelihood Conjugate Prior

Single trial Bernoulli Beta Multiple trials Binomial Beta

Coin Flip Analogy

Bernoulli: Single flip result (H/T)

Binomial: Count of heads in 10 flips

• Beta: Describes our belief about fairness

Bernoulli Distribution Demystified

The Coin Flip Distribution

$$p(x \mid \mu) = \underbrace{\mu^{x}}_{\text{Success if } x=1} \underbrace{(1-\mu)^{1-x}}_{\text{Failure if } x=0}$$

Key Properties:

- $\mathbb{E}[X] = \mu$
- $Var[X] = \mu(1 \mu)$
- Maximum entropy for binary

From Single Flips to Multiple Trials: Binomial

Counting Successes

$$p(m \mid N, \mu) = \underbrace{\binom{N}{m}}_{\text{m successes}} \underbrace{\mu^m}_{N-m \text{ failures}} \underbrace{(1-\mu)^{N-m}}_{N-m \text{ failures}}$$

Dice Example

Probability of rolling exactly 3 sixes in 10 rolls:

$$\binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7 \approx 0.155$$

Exponential Family: The Unified Framework

Canonical Form

$$p(x \mid \eta) = h(x) \exp \left(\eta^{\top} T(x) - A(\eta)\right)$$

- η : Natural parameters
- T(x): Sufficient statistics
- $A(\eta)$: Log-normalizer

Why It Matters:

- Guarantees conjugacy
- Enables efficient computation
- Unifies discrete/continuous

Examples:

- Bernoulli
- Gaussian
- Poisson
- Beta

Conjugacy in Action: Beta-Bernoulli

Prior: Beta (α, β)

$$p(\mu) \propto \mu^{\alpha-1} (1-\mu)^{\beta-1}$$

Likelihood: Bern($x \mid \mu$)

$$\mu^{\mathsf{x}}(1-\mu)^{1-\mathsf{x}}$$

Posterior: Beta $(\alpha + x, \beta + 1 - x)$

$$p(\mu \mid x) \propto \mu^{\alpha+x-1} (1-\mu)^{\beta+(1-x)-1}$$

Binomial Distribution

- Illustrates probability mass vs. number of successes.
- Typical for coin-flip experiments.

Example: Beta Distribution

Example (Beta Distribution)

For $\mu \in [0,1]$ with parameters $\alpha, \beta > 0$,

$$p(\mu \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \mu^{\alpha - 1} (1 - \mu)^{\beta - 1}.$$

Also,

$$E[\mu] = \frac{\alpha}{\alpha + \beta}, \quad V[\mu] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$$

• Used to model uncertainty in a probability parameter.

Beta Distribution

- Shows effects of varying α and β .
- Special cases: Uniform ($\alpha = \beta = 1$), bimodal ($\alpha, \beta < 1$), unimodal ($\alpha, \beta > 1$).

Intuition: Beta Parameters

- α : Shifts mass toward 1.
- β : Shifts mass toward 0.
- Special cases yield uniform, bimodal, or symmetric unimodal shapes.

Conjugacy: Motivation

- Prior knowledge should be updated analytically.
- Desire for the posterior to be in the same family as the prior.
- Simplifies computation in Bayesian inference.

Definition: Conjugate Prior

Definition (Conjugate Prior)

A prior $p(\theta)$ is *conjugate* to a likelihood $p(x \mid \theta)$ if the posterior $p(\theta \mid x)$ is in the same family as $p(\theta)$.

Example: Beta-Binomial Conjugacy

Example (Beta-Binomial Conjugacy)

For $x \sim \text{Bin}(N, \mu)$,

$$p(x \mid N, \mu) = \binom{N}{x} \mu^{x} (1 - \mu)^{N-x}.$$

With prior $\mu \sim \text{Beta}(\alpha, \beta)$,

$$p(\mu \mid \alpha, \beta) \propto \mu^{\alpha-1} (1-\mu)^{\beta-1}$$
.

Then the posterior is

$$p(\mu \mid x, N, \alpha, \beta) \propto \mu^{x+\alpha-1} (1-\mu)^{N-x+\beta-1},$$

i.e., $\mu \mid x \sim \text{Beta}(x + \alpha, N - x + \beta)$.

Beta-Binomial Posterior Update

- Posterior parameters: $\alpha' = x + \alpha$, $\beta' = N x + \beta$.
- Conjugacy simplifies parameter updates.

Example: Beta-Bernoulli Conjugacy

Example (Beta-Bernoulli Conjugacy)

For $x \in \{0,1\}$ with

$$p(x \mid \theta) = \theta^{x} (1 - \theta)^{1 - x},$$

and prior $\theta \sim \text{Beta}(\alpha, \beta)$,

$$p(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}.$$

Then,

$$p(\theta \mid x, \alpha, \beta) \propto \theta^{\alpha+x-1} (1-\theta)^{\beta+(1-x)-1},$$

i.e., $\theta \mid x \sim \text{Beta}(\alpha + x, \beta + 1 - x)$.

Conjugate Priors in ML

- Conjugacy yields closed-form posteriors.
- Common pairs: Beta-Binomial/Bernoulli, Gaussian-Gaussian, Gamma-Poisson.
- Facilitates iterative updates with new data.

March 2, 2025

Sufficient Statistics: Motivation

- Statistics that capture all information about parameters.
- Enable data reduction without loss of inferential power.
- Underpin conjugacy and exponential families.

Theorem: Fisher-Neyman Factorization

Theorem (Fisher-Neyman)

Let X have density $p(x \mid \theta)$. Then a statistic $\phi(x)$ is sufficient for θ if and only if

$$p(x \mid \theta) = h(x) g_{\theta}(\phi(x)),$$

where h(x) is independent of θ .

Sufficient Statistics in ML

- Finite-dimensional summaries even for infinite data.
- Key for efficient maximum likelihood estimation.
- Basis for the exponential family formulation.

Definition: Exponential Family

Definition (Exponential Family)

A family of distributions is in the exponential family if it can be written as

$$p(x \mid \theta) = h(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta)),$$

where:

- $\phi(x)$: vector of sufficient statistics,
- θ : natural parameters,
- $A(\theta)$: log-partition function.

Exponential Family: Features

- Finite-dimensional sufficient statistics.
- Conjugate priors are easy to derive.
- Log-likelihood is concaveefficient optimization.
- Unifies many common distributions (e.g., Gaussian, Bernoulli, Poisson).

Natural Parameters and Sigmoid

• In the Bernoulli, relate μ and θ via:

$$\mu = \frac{1}{1 + \exp(-\theta)}.$$

- Sigmoid (logistic) function: maps $\theta \in \mathbb{R}$ to $\mu \in (0,1)$.
- Crucial for logistic regression and neural network activations.

Exponential Families & Conjugacy

- Every exponential family member has a conjugate prior.
- Posterior update involves only sufficient statistics.
- Simplifies Bayesian inference and parameter estimation.

Summary: Conjugacy & Exponential Family

- Conjugate priors yield posteriors of the same form.
- Sufficient statistics capture all necessary data information.
- Exponential families unify many common distributions.
- These properties enable efficient inference in ML.

Closing Remarks

- Understanding these concepts aids in selecting proper models.
- Conjugacy and exponential families simplify Bayesian updates.
- Fundamental for many advanced ML algorithms.

