Работа 3.4.2 Закон Кюри-Вейсса

Подлесный Артём группа 827

25 сентября 2019 г.

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медьконстантин.

Отчёт о работе

Общая теория

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом.

При повышении температуры T магнитная восприимчивость парамагнетиков убывает. В постоянном магнитном поле по закону Кюри:

$$\chi = \frac{C}{T},\tag{1}$$

где C – постоянная Кюри.

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными, формула (1) может быть видоизмененна. При $T \longrightarrow 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно малом поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков закон Кюри должен быть заменён законом Кюри-Вейсса:

$$\chi \sim \frac{1}{T - \Theta_p},\tag{2}$$

где Θ_p – температура, близкая к температуре Кюри.

Экспериментальная установка

Рис. 2: Экспериментальная установка

При изменении температуры образца меняется и его магнитная восприимчивость χ , а следовательно самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотометр.

Температура исследуемого образца всегда несколько отличается от температуры воды в сосуде. Разность их температур контролируется с помощью термопары и электронного вольтметра. Период колебаний автогенератора измерялся, когда эта разность становилась $\leq 0.5^{\circ}C$. Чувствительность термопары: k=24 град/мВ. Соответственно допустимое значение напряжения на вольтметре: $\Delta U=21$ мкВ.

Экспериментальные данные

Была исследованна зависимость колебаний LC-генератора от температуры образца. Измерялись: τ – период колебаний, T_d – показания температуры на дисплее термостата, ΔU – ЭДС термопары (с учетом знака). Отсюда была посчитана температура образца T по формуле:

$$T = T_d + k\Delta U,$$

Зависимость показана на таблице. Период колебаний без образца $au_0 = 6.9092$.

au, MKC	T_d , C	ΔU , мк ${ m B}$	T, C°	$ au^2- au_0^2$, MKC ²	$\frac{10^3}{\tau^2 - \tau_0^2}$, MKC ⁻²
7.92795	15.22	3	15.15	15.12	66.16
7.85581	17.08	22	16.55	31.97	31.28
7.70161	19.11	18.3	18.67	50.83	19.67
7.44928	21.1	18.6	20.65	71.68	13.95
7.27881	23.1	14.4	22.75	94.54	10.58
7.17764	25.08	20.1	24.60	119.39	8.38
7.12139	27.09	19.1	26.63	146.25	6.84
7.08831	29.08	18.8	28.63	175.11	5.71
7.06676	31.07	19.9	30.59	205.96	4.86
7.0502	33.07	17.3	32.65	238.82	4.19
7.0385	35.07	16.4	34.68	273.67	3.65
7.0225	37.07	16.9	36.66	310.53	3.22
7.0216	39.06	18.1	38.63	349.39	2.86
7.0161	41.07	6.1	40.92	390.24	2.56

Погрешность в определении ΔU составляла 0.3 мкВ, в определении T_d - 0.03 K, τ - 0.00012 мкс. Исходя из этого были посчитанны погрешности для всех остальных значений.

Обработка экспериментальных данных

Необходимо определить парамагнитную точку Кюри Θ_p . Для этого построим графики следующей зависимости: $(\tau^2 - \tau_0^2)^{-1} = f(T)$. Экстраполируя график, находим пересечение графика с осью абсцисс. Отсюда, используя погрешности коэффициента угла наклона графика и знач пересечения с осью ординат, получаем результат для парамагнитной температуры Кюри:

$$\Theta_p = \frac{Intercept}{Slope} = (287 \times 15) \text{ K.}$$
(3)

Рис. 3: Зависимость $(\tau^2 - \tau_0^2)^{-1} = f(T)$.

Табличное значение температуры Кюри для гадолиния составляет

$$\Theta_{pteor} = 290 \text{ K.} \tag{4}$$

Отсюда видно, что найденное значение соотвествует табличному с учетом погрешности.

Вывод

Таким образом была изучена температурная зависимость магнитной восприимчивости ферромагнетика выше точки Кюри. Было показано, что эта зависимость носит характер парамагнетика, и для нее выполняется закон Кюри-Вейсса, тк с большой точностью определена парамагнитная точка Кюри, которая совпадает с табличным значением.