WHAT IS CLAIMED IS:

1	1. A method for interactive volume rendering of substantial amounts of				
2	volume data in form of a stack of original 2-dimensional slices into displayable images on a				
3	display of a personal computer, said personal computer having at least one graphics				
4	processing unit, comprising:				
5	reconstructing a 3-dimensional texture map of said volume data from				
6	processed 2-dimensional slices taken from said original 2-dimensional slices;				
7	segmenting said 3-dimensional texture map into three stacks of 3-dimensional-				
8	textured slices;				
9	rescaling said 3-dimensional-textured slices so that each slice edge dimension				
10	is of an integer power of two to yield rescaled 2-dimensional slices;				
11	subdividing each said rescaled 2-dimensional slice into grids of blocks with				
12	corresponding depth and texture coordinate information;				
13	in response to input designating view and size of image display of said volume				
14	data, carrying out selected transformations, including at least translation, rotation, scaling and				
15	plane-clipping, on said grids of blocks;				
16	performing a two-pass rendering process on said grids of blocks comprising a				
17	virtual rendering pass in order to compute information of view-dependent unused blocks, and				
18	a main rendering pass in order to obtain processed blocks for further filtration; and				
19	applying block-based fragment filtration to the processed blocks to obtain				
20	image elements suited for display and to render a final image.				
1	2. The method according to claim 1 wherein said 3-dimensional-textured				
2	slices are axis-aligned.				
1	3. The method according to claim 1 wherein the slice subdividing step				
2	comprises:				
3	dividing each said rescaled 2-dimensional slice into a grid of regular square				
4	blocks of smaller texture, the edge dimension of each said block being of an integer power of				
5	two., while associating an index with each said block.				
1	4. The method according to claim 3 further including the step of storing				
2	vertex coordinates and corresponding texture coordinates of said blocks.				

1	5. The method according to claim 1 wherein				
2	said virtual rendering pass includes rendering said volume data to compute				
3	view dependent visibility information, and storing said visibility information in system				
4	memory; and wherein				
5	said main rendering pass includes static block filtration and dynamic block				
6	filtration while rendering said final image;				
7	storing current rendering status, including at least current translation status,				
8	current rotation status, current scaling status and current plane-clipping status in the system				
9	memory; and				
10	sharing said current rendering status between said main rendering pass and				
11	said virtual rendering pass.				
1	6. The method according to claim 5 wherein				
2	a main rendering thread is allocated to a single main graphics slot, and at least				
3	one virtual rendering thread is allocated to side graphics slots.				
1	7. The method according to claim 6 wherein said main rendering thread				
2	and at least one said virtual rendering thread are distributed among a plurality of graphics				
3	processing units.				
1	8. The method according to claim 5 wherein said virtual volume				
2	rendering step includes:				
3	selecting a corresponding stack out of three said axis-aligned grids of blocks				
4	according to current translational status and current rotational status of said volume data;				
5	retrieving vertex information of every said block;				
6	storing identity of every block within said corresponding stack as color				
7	texture;				
8	applying any clipping planes onto the rendering procedure;				
9	combining color texture, alpha texture and vertex buffer to yield combined				
10	texture; and				
11	rendering said combined texture to a virtual rendered item buffer, in order to				
12	compute information of any non-viewable blocks in preparation for transferring identity of				
13	viewable blocks of the virtual screen buffer to the system memory.				

1		9.	The method according to claim 8 wherein the combined texture			
2	rendering step is a multi-GPU process using a plurality of vertex shaders and fragment					
3	shaders in sai	d virtu	al rendering.			
1		10.	The method according to claim 9 wherein the multi-GPU process			
2	includes:					
3		divid	ing said grids of blocks into different sets according an available number			
4	of side graphi	of side graphics slots;				
5		rendering different sets of slices to the virtual screen individually;				
6	merging all visibility information; and					
7	copying the resultant merged visibility information to system memory.					
1		11.	The method according to claim 5 wherein said main rendering pass			
2	comprises:	11.	The method according to claim 3 wherein said main rendering pass			
3	comprises.	nerfo	rming the static block filtration to filter out view-independent blocks			
4	including mer	_	n-contributing signals and to obtain statically filtrated blocks; and			
5	merading mer	-	rming the dynamic block filtration to filter out view dependent blocks			
6	due to occlusion.					
Ū	due to occiusi					
1		12.	The method according to claim 11 wherein, during the static block			
2	filtration, each block in three said axis-aligned grids of blocks is processed to reduce unused					
3	data, includin	g:				
4		provi	ding the non-contributing signals as a set of specific color entries as a			
5	filter set;					
6		perfo	rming the static block filtration on each block in said grid of blocks to			
7	filter out the r	on-cor	ntributing signals from the rasterization process according to said filter			
8	set;					
9		identi	fying blocks as to-be-removed if and only if the whole block is filled			
10	only with colors from said filter set; and					
11		record	ding indices of statically filtrated blocks.			
1		13.	The method according to claim 11 wherein the dynamic block filtration			
2	step includes:					
_	step includes.					

3	selecting a corresponding stack out of the three said axis-aligned grids of			
4	blocks according to current translational status and current rotational status of said volume			
5	data;			
6	retrieving vertex information of said statically filtrated blocks;			
7	reading the visibility information and a current projection matrix from the			
8	system memory;			
9	determining filtrate-blocks using the visibility information;			
10	directing a vertex buffer of said filtrate-blocks to the vertex processor for			
11	rasterization and processed textures coordinates to the fragment processor; and			
12	rendering the final image by said vertex buffer with said 3-dimensional texture			
13	map.			