TIMER IC 555

- · Timing from MS to homes · astable se monostable modes · TTL compatible · adjustable duty cycle

Salient features of timer IC 555

- · Output can be taken either between 3 k 1 (bins) och between 8 and 3 (complementery output).
- · can sink about 200 m A.
- · Max frequency greater Kan 500 KHZ
- . Timing from us to homes
- . adjustable duty cycle
- . TTL compatible

Applications:

Precision timing, pulse generation, sequention, pulse circlette delay generation, pulse circlette modulation, pulse position modulation, pulse position modulation, pulse position modulation, pulse position modulation,

Analysis

Monostable mode:

At t=08, V_c(0)=0 and c' starts to charge via RA towards Vec ... we can chite

$$V_e(t) = V_{cc} \left(1 - e^{-\frac{t}{R_{AC}}}\right)$$

When $t = T_{on}$, $V_c(T_{on}) = \frac{2}{3}V_{cc}$.

ie, $\frac{2}{3}V_{cc} = V_{cc}(1 - e^{-T_{on}/RAE})$

of
$$e^{-\frac{T_{on}}{R_{A}C}} = (1-\frac{2}{3}) = \frac{1}{3}$$
of $l_n(3) = \frac{T_{on}}{R_{A}C}$

$$\Rightarrow T_{on} = l_n(3) R_{A}C$$

$$T_{on} = 1.1 R_{A}C$$
 on pulse time

Fig 3. Flow chart for successive applicaments

= n (constant)

There n= no. of lates
in the ADE.

Vont =
$$\frac{\chi}{255}$$
 * Very where

 $\chi = \text{decimal court}$

$$\chi = \frac{255}{255} + \frac{1}{255} +$$

OE: Output Enable

Fc = 640 KH3 (tyrically)

Conversion time: 100 MB (typically)

Selected	Addesslin		
	C	B	A
INO	4	L	L
PN1	۷	L	H
IN2	L	H	L
IN3	L	H	H
IN4	Н	L	L.
IN5	H	L	H
ING	H	1+	Ŀ
IN7	H	H	H

procedure for conversion

1. set ALE pin HIGH

2. set soc HIGH and then

LOW.

3. set ALE LOW.

4. EOC LED indicates

He Rud of conversion process.

Basically the logic circuits are divided into

- Combinational logic circuits
- Sequential logic circuits

S	R	Q_{N+1}	Q_N
0	0	Q_N	Q_N
0	1	0	1
1	0	1	0
1	1	Not Used	

(a) Logic diagram

(c) Characteristic equation

(b) Characteristic table

(c) Characteristic equation

