Elastomeric Bearing Design AASHTO LRFD Method A Design ~ English Units

Based upon 4th ed. AASHTO LRFD through Interim 2009 revisions.

Spreadsheet applies to rectangularly shaped bearings only. All boxed entities must be input by user.

Units: in, kips, psi unless noted otherwise

Loaded (DL) height =

3.36 in

Coordinates: x, L are p	erpendio		el, to the primary rotation axis	s. Osualiy VV>L.
Date:	10/6/09	IIV	PUT DATA	ABC
Job Title:	All Pass	Cooo	Designer:	ADC
JOD TITLE:	All Pass	Case		
G_{min}	(psi)	= 200	P _{DL} (kips)	= 20
	(psi)	= 220	P _{LL} (kips)	= 10
	(ksi)	= 36	Δ_{s} (in)	= 0.4
	(ksi)	= 24	θ_{x} (rads)	= 0.0001
h _{cover}	(in)	= 0.500	$ heta_{ m y}$ (rads)	= 0.0001
		BFAI	RING DESIGN	
		DEAL	into beolone	
		Max/min allowable		Actual values
Area	(In²)	≥ 24.0	P _{TL} (kips)	= 30.00
L	(in)	≥ 1.85	Area (in ²)	= 143.00
	(in)	≥ 2.18	L (in)	=11 OK
	(psi)	≤ 1250	W (in)	= 13 OK
			σ _{TL} (psi)	= 210
h _{ri} [TL]	(in)	≤ 3.55	$\sigma_{ t LL}$ (psi)	= 70
S [TL]	(-)	≥ 0.84		
S	(-)	≤ 10.49	h _{ri} (in)	= 0.500 OK
			S (-)	= 5.96
N lay [∆s]	. ,	≥ -0.4	h _{rt} (in)	= 3.00
N lay $[\theta_x]$		≥ 0.0		
N lay $[\theta_y]$		≥ 0.0	No. of int. layers (-)	= 4 OK
N lay [Stab _x]		≤ 4.5	No. of shims (-)	= 5
N lay [Stab _y]	(-)	≤ 5.7		
			Steel Shim Requirements	
h _s [service]		≥ 0.009	h _s (in)	= 0.0747 OK
h _s [fatigue]		≥ 0.003	h _{st} (in)	= 0.374
h _s [minimum]	(in)	≥ 0.063		
			Compressive I	
			E _c (psi)	≈ 44732
			$\delta_{DL-initial}$ (in)	≈ 0.01
			δ_{LL} (in)	≈ 0.00
[δ_{DL} and δ_{LL} value	alues are		d upon Commentary Eqn. C14.7	7.5.3.6-1.]
			UMMARY	
L =			Approx. weig	
W =			Allowable shear displaceme	
Unloaded height =	3.37	/ in	Maximum shear for	ce = 15.73 kips

(prog. by R. Dornsife; WSDOT; 2008)