1. Keep the heap property(assuming it is all max heap)

Function: heapfy()

a. Algorithm:

- 1) If left > root, swap(left, root), or if right > root, swap(right, root)
- 2) Recursively call heapfy() on the swap the child node till end so the heap property is reserved.

b. Code

```
// n size of array, i is start index.
Void heapfy(int[] arr, int n, int i)
{
    int largest = i;
    int I = 2i+1; // binary tree index relations
    int r = 2i+2;
    if(I<n && arr[I] > arr[largest])
      largest = i;
    if(r<n && arr[r]> arr[largest])
      largest = r;
   //swap
    If(largest != i)
      swap(arr[i], arr[largest]);
      heapfy(arr, n, largest);
     }
}
```

c. Time complexity

```
h is the height of the tree O(h) = O(log_2 n)
```

2. Build Heap

a. Algorithm

do heapfy() on all the nodes that have children, these nodes have index(n/2-1,0) (based on binary tree property)

b. Code

```
void buildHeap(int[] arr, int n)
{
  for(int i=n/2 -1; i>=0; i--)
  {
    heapfy(arr, n, i);
  }
}
```

c. Time Complexity

```
\label{eq:condition} Time = \sum_{h=0}^{\log_2n} [\frac{n}{2^{h+1}}] \ O(h) O(h) : time to call one heapfy() \\ [\frac{n}{2^{h+1}}] : number of nodes on the same tree level \\ \sum_{h=0}^{\log_2n} : sum \ over all the levels.
```

```
So time = O(n \sum_{h=0}^{g} h/(2^h))
= O(2n)
= O(n)
```

3. Heapsort

a. Algorithm

- 1) Build the heap
- 2) Start from the last element(index n-1),
- 3) swap it with the first element. Then the last element becomes sorted
- 4) Do heapfy on the unsorted elements
- 5) Move to the next unsorted element, in this case it is the last but two(index n-2), repeat 3) and 4) until all elements become sorted.

b. Code

```
Void heapsort(int arr[], int n)
// build heap
void buildHeap(arr, n);
for(int i = n-1; i>=0; i--)
{
    swap(arr[0], arr[i]);
    heapfy(arr, i, 0);
}
```

c. Time complexity

- 1) Build heap O(n)
- 2) Sort nlog_2 n

d. Comparison

1) Compare to quicksort

	QS	HS	comment
Average Speed	Faster		12nlogn vs 16 nlog n
Worst Speed		Faster	n^2 vs nlogn

2) Compare to mergesort

	MS	HS	comment
Space	O(n)	O(1)	MS needs additional space for merge
Stable s ort	Yes		MS keeps order for same element
Better Cache performanc e	Yes		MS accesses the caches that are near to each other.

4. Binary heap time complexity analysis

a. Time complexity table

	Average	Worst
Search	O(n)	O(n)
Insert	O(1)	O(h) = O(long(n))
Delete	O(log(n))	O(long(n))
Peek	O(1)	O(1)

b. Insert

- 1) Add the element to the bottom level of the heap
- 2) Compare the added element with its parent If they are in correct order, stop
- 3) If not swap the element with its parent and return to the 2) by keeping comparing the parent

c. Insert average time complexity

Assuming a uniform distribution of numbers, which means for any element in the heap, it has a one-half chance of being greater than its parent. And it has one-fourth chance of being greater than its grandparent. So the expected number of swap during the insertion is Probability of swapping with 1st parent * number of swap + Probability of swapping with 2st parent * number of swap + ...+ Probability of swapping with mst parent

$$= \frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{1}{8} * 3 + \frac{1}{2} m * m$$

- $= \sum_{m \in \{m\}{2^m}}$
- = 2 when m goes to \inf

Therefore the averaged time complexity is O(1)