2D Vision and Deep Learning Assignment 1

Rastiello, Alessandro — Pham, Tony — Rubinic, Marko — Bartmer-Freund, Aron November 10, 2020

Exercise 1

$$x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, y = \begin{bmatrix} 6 \\ 7 \end{bmatrix}, z = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$$

1.1

Inner product $\langle x, y \rangle = 4 * 6 + 5 * 7 = 59$

1.2

Outer product $x \otimes y = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 6 & 7 \end{bmatrix} = \begin{bmatrix} 24 & 28 \\ 30 & 35 \end{bmatrix}$

1.3

Determine
$$(x \otimes y)z = \begin{bmatrix} 24 & 28 \\ 30 & 35 \end{bmatrix} * \begin{bmatrix} 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 444 \\ 555 \end{bmatrix}$$

1.4

Rank of
$$x \otimes y \Longrightarrow \begin{bmatrix} 24 & 28 \\ 30 & 35 \end{bmatrix} = \begin{bmatrix} 30 & 35 \\ 30 & 35 \end{bmatrix} = \begin{bmatrix} 24 & 28 \\ 0 & 0 \end{bmatrix} \Longrightarrow Rank(x \otimes y) = 1$$

Exercise 2

$$R_1 = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, R_2 = \begin{bmatrix} \sin \alpha & \cos \alpha \\ \cos \alpha & -\sin \alpha \end{bmatrix}$$

2.1

Determine determinant of R_1 det $R_1 = \cos^2 \alpha + \sin^2 \alpha = 1$

Determine determinant of R_2 det $R_2 = -\sin^2 \alpha - \cos^2 \alpha = -1$ \checkmark

2.2

Matrices orthogonal when

$$A * A^T = E (1)$$

$$R_1 * R_1^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\implies R_1$ is orthogonal

$$R_2 * R_2^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\implies R_2 \text{ is orthogonal } \checkmark$$

2.3

Calculate inverse of R_1

Calculate inverse of
$$R_1$$

$$\begin{pmatrix} \cos\alpha & -\sin\alpha & 1 & 0 \\ \sin\alpha & \cos\alpha & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \cos\sin\alpha & -\sin^2\alpha & \sin\alpha & 0 \\ 0 & 1 & -\sin\alpha & \cos\alpha \end{pmatrix} \longrightarrow \begin{pmatrix} \cos\sin\alpha & 0 & \sin\alpha - \sin^3\alpha & \cos\sin^2\alpha \\ 0 & 1 & -\sin\alpha & \cos\alpha \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & \cos\alpha & \sin\alpha \\ 0 & 1 & -\sin\alpha & \cos\alpha \end{pmatrix}$$

$$\Longrightarrow R_1^{-1} = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \bigvee$$

Calculate inverse of R_2

$$\begin{pmatrix} \sin \alpha & \cos \alpha & 1 & 0 \\ \cos \alpha & -\sin \alpha & 0 & 1 \end{pmatrix} \longrightarrow \dots \longrightarrow \begin{pmatrix} 1 & 0 & \sin \alpha & \cos \alpha \\ 0 & 1 & \cos \alpha & -\sin \alpha \end{pmatrix}$$

$$\longrightarrow R_2^{-1} = \begin{pmatrix} \sin \alpha & \cos \alpha \\ \cos \alpha & -\sin \alpha \end{pmatrix} \checkmark$$

2.4

Difference between R_1 and R_2

$$R_D = \begin{pmatrix} \cos \alpha - \sin \alpha & -\sin \alpha - \cos \alpha \\ \sin \alpha - \cos \alpha & \cos \alpha + \sin \alpha \end{pmatrix} \qquad 0,5$$

Difference in what Ry and Rz do not Litteral difference

Exercise 3

Figure 1: Aufgabe 3 Beweis

Exercise 4

Draw the regions corresponding to vectors $\mathbf{x} \in \mathbb{R}^2$, where $||x|| \leq 1$ with the following norms.

4.1

/ ~

4.2

Abb. 2: Summennorm alias 1-Norm

4.3

Abb. 3: Euklidische Norm alias 2-Norm

4.4

Abb. 4: Maximum Norm alias Tschebyschew-Norm

13

Exercise 5

5.1

Derive $y = \frac{1}{1+e^{-x}}$

$$\longrightarrow y' = \frac{d}{dx} \left[\frac{1}{1 + e^{-x}} \right]$$

$$= -\frac{\frac{d}{dx}[e^{-x}+1]}{(e^{-x}+1)^2}$$

$$= -\frac{\frac{d}{dx}[e^{-x}] + \frac{d}{dx}[1]}{(e^{-x}+1)^2}$$

$$= -\frac{-e^{-x}}{(e^{-x}+1)^2} = \frac{e^{x}}{(e^{x}+1)^2} \left(\checkmark \right)$$

5.2

Derive y = |x|

$$\longrightarrow y' = \frac{d}{dx}[|x|]$$

$$= \frac{x}{|x|}$$

5.3

Derive $y = w^T x(x, w \in \mathbb{R}^n)$ with respect to x

$$\longrightarrow y' = \sum_{i=1}^n w_i$$

5.4

Derive $y = w^T x(x, w \in \mathbb{R}^n)$ with respect to w

$$\longrightarrow y' = \sum_{i=1}^n x_i$$

5.5

Derive $y = Mx(M \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n)$ with respect to x

$$\longrightarrow y' = \begin{bmatrix} \sum_{i=1}^{n} M_{1,i} \\ \sum_{j=1}^{n} M_{2,j} \\ \dots \\ \sum_{k=1}^{n} M_{m,k} \end{bmatrix} \quad - \underbrace{}$$

5.6

Derive y_i with respect to m_{ij} , where $y = Mx(M \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n)$

$$\longrightarrow y_i' = x_j$$

2,5

Exercise 6

$$S = 0, 0, 1, 1, 1, 1 \tag{2}$$

6.1

Sample mean of S $\overline{x} = \frac{4}{6} = \frac{2}{3}$

6.2

Sample variance of S $\frac{0-\frac{2}{3}+0-\frac{2}{3}+1-\frac{2}{3}+1-\frac{2}{3}+1-\frac{2}{3}+1-\frac{2}{3}}{6} = \frac{0}{6} = 0$

6.3

Probability of S if p(x=0) = p(x=1) = 0.5 $(\frac{1}{2})^6 = \frac{1^6}{2^6} = \frac{1}{2^6}$

6.4

Probability of S if p(x=1) = 0.6 $0.4^2 \cdot 0.6^4 = 2$

6.5

For which value of p(x=1) is the probability of S maximized? p(S) = $(1-p)^2 \cdot p^4$ = $(1-2p+p^2) \cdot p^4$ = $p^4 - 2p^5 + p^6$

p'(S) = $6p^5 - 10p^4 + 4p^3$ | : $6p^3$ (p can't be 0, because then S would be impossible) = $p^2 - \frac{10}{6}p + \frac{4}{6}$

 $\begin{array}{l} p^2 - \frac{10}{6}p + \frac{4}{6} = 0 \\ \longrightarrow p_1 = \frac{2}{3} \\ \longrightarrow p_2 = 1 \leftarrow \text{can't be 1 because then S would be impossible} \end{array}$

Therefore for $p(x=1) = \frac{2}{3}$ the probability of S is maximized. $\sqrt{4}$

Exercise 7

7.1

What is p(y=T,x=b)? $\longrightarrow p(y=T,x=b) = p(y=T\cap x=b) = 0.1$

7.2

What is p(y = T | x = b)? $\longrightarrow p(y = T | x = b) = \frac{p(x = b | y = T) \cdot p(y = T)}{p(x = b)} = \frac{p(y = T \cap x = b)}{p(x = b)} = \frac{0.1}{0.3} = 0.\overline{3}$

7.3

What is p(y=T)? $\longrightarrow p(y=T) = p(y=T,x=a) + p(y=T,x=b) + p(y=T,x=c) = 0.5$

/3