

Functions

Composite Functions

Given $f: x \mapsto f(x)$ and $g: x \mapsto g(x)$, the composite function of f and g is:

$$(f \circ g)(x) = f(g(x))$$
or
$$f \circ g : x \mapsto f(g(x))$$

In general, $(f \circ g)(x) \neq (g \circ f)(x)$.

Inverse Functions

An inverse function returns the original value from the output of a function. f(x) has an inverse if it is one-to-one, if f(a) = f(b) only when a = b, \therefore passes the horizontal line test.

For $f^{-1}(x)$, the inverse of f(x)

- Is a reflection of y = f(x) over y = x.
- $\bullet \ (f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$
- Domain of $f^{-1} = \text{Range of } f$.
- Range of f^{-1} = Domain of f.

Self-Inverse Functions

An invertible function which is symmetrical about y = x.

$$f^{-1}(x) = f(x)$$

Reciprocal Functions

A function of the form $f(x) = \frac{k}{x}$, where $k \neq 0$ is a constant.

Reciprocal of Other Functions

The reciprocal of a function f(x) is $\frac{1}{f(x)}$.

Graphing $y = \frac{1}{f(x)}$ from y = f(x):

- Zero $f(x) \to \text{vertical asymp } \frac{1}{f(x)}$
- Vertical asymp $f(x) \to \text{zero } \frac{1}{f(x)}$
- Local max $f(x) \to \text{local min } \frac{1}{f(x)}$
- Local min $f(x) \to \text{local max } \frac{1}{f(x)}$
- When f(x) > 0, $\frac{1}{f(x)} > 0$
- When f(x) < 0, $\frac{1}{f(x)} < 0$
- When $f(x) \to 0$, $\frac{1}{f(x)} \to \pm \infty$
- When $f(x) \to \pm \infty$, $\frac{1}{f(x)} \to 0$

Invariant Points:

Points which do not move under a transformation occurring at $y = \pm 1$.

Rational Functions

Results from the division of one polynomial by another.

Vertical asymptote occurs when denominator is zero.

Horizontal asymptote ascertained from behaviour of graph as $|x| \to \infty$.

- If the degree of denominator > numerator, horizontal asymptote at y = 0.
- If the degree of denominator < numerator, function has slated asymptote found through polynomial division.
- If the degree of denominator = numerator horizontal asymptote at $y = \frac{a}{b}$ where a and b are the leading coefficients.

Absolute Value Functions

The absolute value or modulus |x| of a real number x is its distance from 0 on the number line.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

Alternatively,

$$|x| = \sqrt{x^2}$$

Properties:

- |x| > 0
- $|x|^2 = x^2$
- $\bullet \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$
- $\bullet \mid -x \mid = |x|$
- \bullet |xy| = |x||y|
- $\bullet ||x y| = |y x|$

If |x| = a where a > 0, then $x = \pm a$. If |x| = |b| then $x = \pm b$.

Graphs Involving the Absolute Value Function

Graphing y = f(|x|) from y = f(x):

- Discard the graph for x < 0
- Reflect the graph for $x \ge 0$ in the y-axis
- \bullet Points on the y-axis are invariant

Graphing y = |f(x)| from y = f(x):

- Keep the graph for $f(x) \ge 0$
- Reflect the graph for f(x) < 0 in the x-axis
- Points on the x-axis are invariant

Mathematical Induction

The Principle of Mathematical Induction

Suppose P_n is a proposition which is defines for every integer $n \geq a$, $a \in \mathbb{Z}$. If P_a is true, and if P_{k+1} is true whenever P_k is true, then P_n is true for all $n \geq a$.

Complex Numbers

Imaginary Numbers

A number which cannot be placed on a number line in the form ai where $a \in \mathbb{R}$ and $i = \sqrt{-1}$.

.....

Complex Numbers

Any number in the form a+bi where $a,b\in\mathbb{R}$ and $i=\sqrt{-1}$.

If
$$z = a + bi$$

 $\Re \mathfrak{e}(z) = a$ $\Im \mathfrak{m}(z) = b$

The Complex Plane

Complex numbers can be plotted on the complex plane or Argand plane as a vector where the x-axis is the real axis and the y-axis is the imaginary axis.

$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 represents $x + yi$

Complex Conjugates

The complex conjugate of

$$z = a + bi$$
 is $\bar{z} = a - bi$

In the complex plane, \bar{z} is the reflection of z in the real axis.

.....

Modulus and Argument

The modulus of the complex number z=a+bi is the length of the vector $\begin{pmatrix} a \\ b \end{pmatrix}$, which is the real number:

$$|z| = \sqrt{a^2 + b^2}$$

The argument of z, arg z is the angle θ between the positive real axis and $\binom{a}{b}$. Real numbers have argument of 0 or π . Purely imaginary numbers have argument of $\frac{\pi}{2}$ or $-\frac{\pi}{2}$.

Properties of Modulus:

- $|\bar{z}| = |z|$
- $\bullet \ |\bar{z}| = z\bar{z}$
- $\bullet |z_1 z_2| = |z_1||z_2|$
- $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0$
- $|z_1 z_2 z_3 \dots z_n| = |z_1||z_2||z_3|\dots|z_n|$
- $|z^n| = |z|^n, \ n \in \mathbb{Z}^+$

Polar Form

$$cis \theta = cos \theta + i sin \theta$$

A complex number z has polar form

$$z = |z| \operatorname{cis} \theta$$

where $\theta = \arg z$.

The conjugate of z is:

$$\bar{z} = |z| \operatorname{cis} -\theta$$

Properties of $\operatorname{cis} \theta$:

- $\operatorname{cis} \theta \times \operatorname{cis} \phi = \operatorname{cis} (\theta + \phi)$
- $\frac{\operatorname{cis} \theta}{\operatorname{cis} \phi} = \operatorname{cis} (\theta \phi)$
- $\operatorname{cis}(\theta k2\pi) = \operatorname{cis}\theta, \ k \in \mathbb{Z}$

Euler's Form

$$e^{i\theta} = \cos\theta + i\sin\theta$$

De Moivre's Theorem

$$(|z|\operatorname{cis}\theta)^n = |z|^n\operatorname{cis} n\theta$$
, for all $n \in \mathbb{Q}$

Trigonometric Identities

Angle Relationships

$$\sin(-\theta) = -\sin\theta \qquad \cos(-\theta) = \cos\theta$$

$$\sin(\pi - \theta) = \sin\theta \qquad \cos(\pi - \theta) = -\cos\theta$$

$$\sin(\frac{\pi}{2} - \theta) = \cos\theta \qquad \cos(\frac{\pi}{2} - \theta) = \sin\theta$$

Pythagorean Theorem

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Double Angle Identities

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 1 - 2 \sin^2 \theta$$

$$= 2 \cos^2 \theta - 1$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

Angle Sum and Difference

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Sum to Product

$$\sin A \pm \sin B = 2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)$$
$$\cos A + \cos B = 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)$$
$$\cos A - \cos B = -2 \sin \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)$$

Product to Sum

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
$$2 \sin A \sin B = \cos (A-B) - \cos (A+B)$$
$$2 \cos A \cos B = \sin (A+B) + \cos (A-B)$$

Vectors

Vectors in Space

Any point P in space can be specified (x, y, z) corresponding to steps in the X, Y and Z direction from the origin O. The position vector of P is

$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\vec{i} + y\vec{k} + z\vec{k}$$

where $\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, the base unit vectors.

The Magnitude of a Vector

The magnitude or length of the vector $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ is

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Operations with Vectors

If
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ then:

$$-\vec{a} = \begin{pmatrix} -a_1 \\ -a_2 \\ -a_3 \end{pmatrix} \qquad \vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

$$\vec{a} - \vec{b} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix} \qquad k\vec{a} = \begin{pmatrix} ka_1 \\ ka_2 \\ ka_3 \end{pmatrix}$$

Vector Algebra

- $\bullet \ \vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- $\bullet \ \vec{a} + \vec{0} = \vec{0} + \vec{a}$
- $\vec{a} + (\vec{-a}) = (\vec{-a}) + \vec{a} = \vec{0}$
- $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$
- $|k\vec{a}| = |k||\vec{a}|$
- If $\vec{x} + \vec{a} = \vec{b}$ then $\vec{x} = \vec{b} = \vec{a}$
- If $k\vec{x} = a$, $k \neq 0$, then $\vec{x} = \frac{1}{k}\vec{a}$

Vector Between Two Points

If $A(a_1, a_2, a_3)$ and $B(b_1, b_2, b_3)$ then the position vector of B relative to A is

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$$

The distance from A to B Is

$$|\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$$