Sejam $u=f(x),\,v=g(x),\,u'=\frac{df(x)}{dx}$ e $v'=\frac{dg(x)}{dx}$. Sejam também $a,\,c$ e n constantes.

Derivadas

Regras Fundamentais

$$1. \ (au)' = au'$$

2.
$$(u+v)' = u' + v'$$

3.
$$(uv)' = u'v + uv'$$

$$4. \left(\frac{u}{v}\right)' = \frac{u'v - uv}{v^2}$$

5.
$$(u(v))' = u'(v) v'$$
 (Regra da Cadeia)

Funções Básicas

Função	Derivada	Restrições
a	0	
ax	a	
x^n	$n x^{n-1}$	
$\frac{1}{x}$	$-\frac{1}{x^2}$	
a^x	$a^x \ln a$	$(a > 0, a \neq 1)$
e^x	e^x	_
$\ln x$	$\frac{1}{x}$	

Funções Trigonométricas

Função	Derivada
$\sin u$	$u'\cos u$
$\cos u$	$-u'\sin u$
$\tan u$	$u' \sec^2 u$
$\cot u$	$-u'\csc^2 u$
$\sec u$	$u'\sec u \cdot \tan u$
$\csc u$	$-u'\csc u\cdot\cot u$

Funções Trigonométricas Inversas

Função	Derivada	Restrições
$\arcsin u$	$\frac{u'}{\sqrt{1-u^2}}$	
$\arccos u$	$\frac{-u'}{\sqrt{1-u^2}}$	
$\arctan u$	$\frac{u'}{\sqrt{1+u^2}}$	
arccotan u	$\frac{-u'}{\sqrt{1+u^2}}$	
arcsec u	$\frac{u'}{ u \sqrt{u^2-1}}$	u > 1
arccsc u	$\frac{-u'}{ u \sqrt{u^2-1}}$	u > 1

Funções Genéricas

Função	Derivada	Restrições
u^n	$nu^{n-1}u'$	
uv	u'v + v'u	
$\frac{u}{v}$	$\frac{u'v - v'u}{v^2}$	
a^u	$a^u \ln a u'$	$(a > 0, a \neq 1)$
e^u	$e^u u'$	
$\log_a u$	$\frac{u'}{u} \log_a e = \frac{u'}{u} \cdot \frac{1}{\ln a}$	
$\ln u$	$\frac{1}{u} u'$	
u^v	$vu^{v-1}u' + u^v \ln u \ v'$	

Integrais

Regras Fundamentais

- 1. $\int au \ dx = a \int u \ dx$
- 2. $\int (u+v) dx = \int u dx + \int v dx$
- 3. $\int u'v \ dx = uv \int uv' \ dx$

Funções Genéricas

Função	Integral	Restrições
$\int du$	u+c	
$\int u^n du$	$\frac{u^{n+1}}{n+1} + c$	$n \neq -1$
$\int \frac{1}{u} du$	$\ln u + c$	
$\int a^u du$	$\frac{a^u}{\ln a} + c$	$a > 0, a \neq 1$
$\int \ln x dx$	$x \ln x - x + c$	
$\int \log_a x dx$	$c \frac{x}{\ln a} + c - \frac{1}{\ln a}$	
	$e^u + c$	

Funções Racionais

Função	Integral	Restrições
$\int \frac{1}{u^2 + a^2} du$	$\frac{1}{a}\arctan\frac{u}{a} + c$	
$\int \frac{1}{u^2 - a^2} du$	$\frac{1}{2a}\ln\left \frac{u-a}{u+a}\right + c$	$u^2 > a^2$
$\int \frac{1}{a^2 - u^2} du$	$\frac{1}{2a}\ln\left \frac{a+u}{a-u}\right + c$	$u^2 < a^2$

Funções Irracionais

Função	Integral	Restrições
$\int \frac{1}{\sqrt{u^2 + a^2}} du$	$ \ln u + \sqrt{u^2 + a^2} + c $	
$\int \frac{1}{\sqrt{u^2 - a^2}} du$	$ \ln u + \sqrt{u^2 - a^2} + c $	$u^2 > a^2$
$\int \frac{1}{\sqrt{a^2 - u^2}} du$	$\arcsin\frac{u}{a} + c$	$u^2 < a^2$
$\int \frac{1}{u\sqrt{u^2 - a^2}} du$	$\frac{1}{a}$ arcsec $\left \frac{u}{a}\right + c$	$u^2 > a^2$

Funções Trigonométricas

Função	Integral	Restrições
$\int \sin u \ du$	$-\cos u + c$	
$\int \cos u \ du$	$\sin u + c$	
$\int \tan u \ du$	$\ln \sec u + c$	
$\int \cot u \ du$	$ \ln \sin u + c $	
$\int \sec u \ du$	$ \ln \sec u + \tan u + c $	
$\int \csc u \ du$	$\ln \csc u - \cot u + c$	
$\int \sec u \cdot \tan u \ du$	$\sec u + c$	
$\int \csc u \cdot \cot u \ du$	$-\csc u + c$	
$\int \sin^2 u \ du$	$\frac{1}{2} \left(u - \sin u \cos u \right) + c$	
$\int \cos^2 u \ du$	$\frac{1}{2}\left(u+\sin u \cos u\right)+c$	
$\int \sec^2 u \ du$	$\tan u + c$	
$\int \csc^2 u \ du$	$-\cot u + c$	

Última revisão: 14/04/2019

Definições e Identidades trigonométricas

1.
$$\tan(x) = \frac{\sin x}{\cos x}$$

2.
$$\sin(-x) = -\sin(x)$$

$$3. \cos(-x) = \cos(x)$$

$$4. \tan(-x) = -\tan(x)$$

5.
$$\sin x = \cos(\frac{\pi}{2} - x)$$

6.
$$\cos x = \sin(\frac{\pi}{2} - x)$$

7.
$$\tan x = \cot(\frac{\pi}{2} - x)$$

8.
$$\cot x = \tan(\frac{\pi}{2} - x)$$

9.
$$\sec x = \csc(\frac{\pi}{2} - x)$$

10.
$$\csc x = \sec(\frac{\pi}{2} - x)$$

11.
$$\sec x = \frac{1}{\cos x}$$

12.
$$\cos x = \frac{1}{\sin x}$$

13.
$$\cot x = \frac{1}{\tan x}$$

14.
$$\sin^2 x + \cos^2 x = 1$$

15.
$$\sec^2 x - \tan^2 x = 1$$

16.
$$\csc^2 x - \cot^2 x = 1$$

17.
$$\sin 2x = 2\sin x \cdot \cos x$$

18.
$$\cos 2x = \cos^2 x - \sin^2 x$$

19.
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

20.
$$\tan \frac{x}{2} = \frac{1-\cos x}{\sin x} = \frac{\sin x}{1+\cos x}$$

21.
$$\sin(x \pm y) = \sin(x) \cos(y) \pm \sin(y) \cos(x)$$

22.
$$\cos(x \pm y) = \cos(x) \cos(y) \mp \sin(x) \sin(y)$$

23.
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x + \tan y}$$

24.
$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x + \tan y}$$

25.
$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$

26.
$$2\sin x \cos y = \sin(x - y) + \sin(x + y)$$

27.
$$2\cos x \sin y = \sin(x+y) - \sin(x-y)$$

28.
$$2\sin x \sin y = \cos(x - y) - \cos(x + y)$$

29.
$$2\cos x \cos y = \cos(x - y) + \cos(x + y)$$

30.
$$1 + \cos x = 2 \cos^2 \frac{x}{2}$$

31.
$$1 - \cos x = 2 \sin^2 \frac{x}{2}$$

32.
$$\sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)$$

33.
$$\sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)$$

34.
$$\cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)$$

35.
$$\cos x - \cos y = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)$$

36.
$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$$