Sklearn

import sklearn.linear_model as skl_lm

오늘은 sklearn.linear_model.LinearRegression 에 대해서 알아볼 것이다.

형태는 class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize_False, copy_X=True, n_jobs=1)이다.

우선 parameter들을 살펴보면 다음과 같다.

-fit_intercept: boolean type이며, 선택적이고, default는 True이다. 여기서 intercept는 y절편으로, 선형회귀식에서는 β_0 이다. 기본적으로는 구하게 되어있지만, 예를 들어 data가 이미 centered 되어 있는 경우에는 False라고 설정해주면 된다.

-normalize: 역시 boolean type이고, 선택적인데, default는 False이다. 이 파라미터의 경우에는 위의 fit_intercept가 False인 경우에 무시된다. 왜냐하면, centered data이기 때문이다. centered를 한 것은 이미 자신이 조치를 취한 것이기 때문이다. 만약에 True라면, X들은 정규화(normalize)가 되는데, 이는 X값에서 평균을 빼고 이를 L2-norm으로 나눔으로써 실행된다. 그런데, 만약에 표준화 (standardize)를 하고 싶으면, normalize = True를 하기 전에, sklearn.preprocessing.StandardScaler을 사용하길 바란다. 보통은 표준화를 더 많이 하므로, False로 설정하면 될 것 같다.

-copy_X: boolean type, 선택적, default는 True이다. True이면, 계속 지정해줘야한다.

-n_jobs: 정수형태고, 선택적이며, default는 1이다. 이는 computation과 연관이 있다. n_jobs가 1이라면, 모든 CPU가 사용된다는 뜻이다. 선형회귀를 하는데, computation문제는 잘 일어나지 않을 거 같아서, 그냥 1로 설정하면 좋을 것 같다.

_

Statsmodels.

import statsmodels.api as sm

형태는 class statsmodels.regression.linear_model.OLS(endog, exog=None, missing='none',hasconst=None, **kwargs)

parameter들은 다음과 같다.

-endog: array 형태이다. 1-d endogenous 반응변수이다. 종속변수이다.

-exog: array 형태이다. nobs x k array 형태로 nobs는 관측치의 개수이고 k는 regressor의 개수이다. y절편은 default값으로 주어지지 않는다. 구하고 싶으면, statsmodels.tools.add.constant를 쓰면된다.(→독립변수라고 보면 된다.)

*이때, endog와 exog의 matrix size는 같아야한다.

-missing: 문자열 형태이다. 가능한 문자열은 'none', 'drop', 'raise'이다. 'none'이면, nan값 확인이 되지 않는다. 'drop'이면, nan값은 삭제된다. 'raise'이면, error가 뜬다.(If 'raise', an error is raised.) default는 'none'이다. nan값은 따로 처리하는 방법이 좋은 거 같아서 그런 것 같다.

-hasconst: none 또는 bool이다. 사용자가 상수를 지정했는지 여부를 나타낸다. True라면 상수는 체크되지 않고, k_constant가 1로 설정되어, 모든 통계량이 constant가 있는 것처럼 계산된다. 만약에 False라면 상수는 체크되지 않고 k_constant가 0으로 설정된다.

*이게 무슨 소리인지 몰라서 돌려보니, hasconst = True라고 하면, Prob(F-statistic) = 1로 설정되었다. none인 경우와 False인 경우에는 차이가 없었다.

est=sm.regression.linear_model.OLS(endog=y,exog=x,missing='raise',hasconst=True).fit()

C:#ProgramData#Anaconda3#lib#site—packages#scipy#stats#stats.py:1334: UserWarning: kurtosistest only valid for n>=2 "anyway, n=%i" % int(n))

OLS Regression Results

Dep. Variable:	у	R-squared:	-0.079
Model:	OLS	Adj. R-squared:	-0.214
Method:	Least Squares	F-statistic:	-0.5847
Date:	Fri, 16 Mar 2018	Prob (F-statistic):	1.00
Time:	21:24:53	Log-Likelihood:	-25.120
No. Observations:	10	AIC:	54.24
Df Residuals:	8	BIC:	54.85
Df Model:			
Covariance Type:	nonrobust		
coef std err	t P> t [0.	.025 0.975]	
x1 0.1385 0.097	1.428 0.191 -0.	.085 0.362	
x2 0.1498 0.091	1.647 0.138 -0.	.060 0.360	
Omnibus: 2	.821 Durbin-Wats	son: 0.401	
Prob(Omnibus): 0	.244 Jarque-Bera	(JB): 1.683	
Skew: 0	.965 Prob(JB):	0.431	
Kurtosis: 2	.438 Cond. No.	3.21	

est=sm.regression.linear_model.OLS(endog=y,exog=x,missing='raise',hasconst=None).fit()
est.summary()

C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:1334: User\arning: kurtosistest only valid for n>=20
"anyway, n=%i" % int(n))

OLS Regression Results

Dep. Variable:		у		R-sq	uared:	0.769	
Model:		OLS		Adj.	R-squar	0.711	
Method:		Least Squares		F-sta	itistic:	13.30	
Date:		Fri, 16 N	/lar 201	8 Prob	(F-stati	stic):	0.00286
Time:		21:25:25	5	Log-	Likeliho	od:	-25.120
No. Observat	tions:	10		AIC:			54.24
Df Residuals:		8		BIC:			54.85
Df Model:		2					
Covariance T	уре:	nonrob	ust				
coef	std err	t	P> t	[0.025	0.975]		
0 4305 (2007	4.400	0.404	0.005	0.262		

x1 0.1385 0.097 1.428 0.191 -0.085 0.362 x2 0.1498 0.091 1.647 0.138 -0.060 0.360 Om⊤ibus: 2.821 Durbin-Watson: 0.401

Table 3.4 & 3.6 - Statsmodels est = smf.ols('Sales ~ TV + Radio + Newspaper', advertising).fit() est.summary() Dep. Variable: Sales R-squared: 0.897 Model: OLS Adj. R-squared: 0.896 Method: F-statistic: 570.3 Least Squares Tue, 09 Jan 2018 Prob (F-statistic): 1.58e-96 Date: Time: 23:14:15 Log-Likelihood: -386.18 No. Observations: 200 780.4 AIC: **Df Residuals:** 196 793.6 BIC: Df Model: Covariance Type: nonrobust std err t P>|t| [0.025 0.975] coef 2.9389 0.312 9.422 0.000 2.324 3.554 Intercept ΤV 0.0458 0.001 32.809 0.000 0.043 0.049 Radio 0.1885 0.009 21.893 0.000 0.172 0.206 Newspaper -0.0010 0.006 -0.177 0.860 -0.013 0.011 60.414 Durbin-Watson: Omnibus: 2.084 Prob(Omnibus): 0.000 Jarque-Bera (JB): 151.241 Skew: -1.327 **Prob(JB)**: 1.44e-33 Kurtosis: Cond. No. 454. 6.332

statsmodel을 사용하면 method, r-squared값, F 검정통계량, 상관계수, p-value, 왜도, 첨도 등의 데 이터에 대해서 상세하게 나온다.

이를 바탕으로 각각의 변수들이 유의한지, 신뢰할 수 있는지, 우리의 데이터가 잘 적합됐는지를 확인할 수 있다.