

Agenda

- Cover (slide 1)
- Summary (slide 3)
- Methodology (slide 4)
- Current car revenue (slides 5,6)
- Strategies (slides 7-10)
- Recommendations (slide 11)

Summary

Objective:

Make a good decision about the business model to improve profit!

Strategies:

Strategy 1: Eliminate low-performance cars (car profit/car revenue<11%) and invest those car costs in the best-performance car

Strategy 2: Eliminate the low-performance cars (car profit/car revenue<40%) and invest those car costs in the best-performance car

Recommendations:

- Pick strategy 2 eliminate low-performance cars (car profit/car revenue<40%)
- And then invest those car costs in the best-performance cars

Impact:

If implement strategy 2, the business would increase by 8M in revenue!

Methodology

- Profit/revenue is used to decide which cars are performing better
- After eliminating the lowperformance cars, an improved cost/revenue ratio is calculated, which will be used to estimate using the same cost how much revenue and profit will be generated

Eliminate low-performance cars (car profit/car revenue<40%)

Invest those car costs in the best-performance car

Impact:

The business would increase 8M in revenue!

Current car revenue from 1/1/2018 - 11/11/2018 (315 days)

Current car profit: 24M

Current car revenue: 53M

Current car cost: 29M

• Ratio car cost/car revenue: 54.03%

(M: Millions)

Key: car profit = car revenue - car cost car cost = car rent + car insurance

Example of some car performance (315 days)

Profit of some low-performance cars

Row Labels	Sum of ca	ar profit
Jaguar	\$	(6,708)
Honda	\$	(4,502)
Daewoo	\$	(2,733)
Mercury	\$	(1,767)
Oldsmobile	\$	(1,715)
Toyota	\$	(1,536)
Volvo	\$	(544)
Bentley	\$	(293)
Saab	\$	(78)
Volkswagen	\$	(41)
Kia	\$	(14)
Lamborghini	\$	84
Scion	\$	134
Infiniti	\$	225
Acura	\$	255
Lotus	\$	423
Rolls-Royce	\$	567
Land Rover	\$	568
Suzuki	\$	586
Mercedes-Benz	\$	596
Merkur	\$	639
Chrysler	\$	663
Fiat	\$	855
Hyundai	\$	894
Saturn	\$	1,070
Isuzu	\$	1,108
Plymouth	\$	1,227
Morgan	\$	1,263
Hummer	\$	1,264
Maybach	\$	1,344
Corbin	\$	1,454
Ferrari	\$	1,525
Maserati	\$	1,728
Lincoln	\$	1,796
Lexus	\$	1,883
Buick	\$	1,971
Nissan	\$	2,028
Aston Martin	\$	2,057
Audi	\$	2,598
Cadillac	\$	2,786
Subaru	\$	2,873
Mitsubishi	\$	2,966
Porsche	\$	2,977
Jeep	\$	3,311
Mazda	\$	3,674
BMW	\$	5,429
Ford	\$	5,837
Pontiac	\$	6,833
GMC	\$	8,300
Dodge	\$	8,377
Chevrolet	\$	12,235

Table 1

Current car profit and car revenue

In table 1, some cars show very low profits, and some cars don't make any profit for the business

Eliminating those cars will improve business profit

Strategies to improve profit

Strategy 1:

Eliminate the low-performance cars
(car profit/car revenue<11%)
and using the would-be car costs to invest
in better-performance cars to increase the
revenue

Strategy 2:

Eliminate the low-performance cars (car profit/car revenue<40%) and using the would-be car costs to invest in better-performance cars to increase the revenue

Strategy 1:

Eliminate the low-performance cars (car profit/car revenue<11%) and invest in better-performance cars to increase the revenue

	Strategy 1
Current car revenue	\$ 52,830,207
🛊 Car revenue estimate with the same car cost	\$ 53,983,876
Increase revenue with the same cost	\$ 1,153,669
Current car cost	\$ 28,545,635
Decrease car cost	\$ 1,293,243
Car costs after eliminating cars	\$ 27,252,393
Current car profit	\$ 24,284,572
Car profit after eliminating cars	\$ 24,285,776
쳦 Car profit strategy 1 with the same cost	\$ 25,438,240
Increase profit with the same cost	\$ 1,153,669
Car costs/car revenue (after eliminating cars)	52.88%

- Eliminating the low-performance cars (car profit/car revenue<11%) decreases car costs by \$1.3M, the business obtains \$24M profit (about the same as current profit)
- Use money gained from decreased car cost (\$1.3M) to invest in better performance cars increase revenue by \$1.1 M

- Car revenue estimate with the same car cost = Current car cost/(car cost after eliminating cars/car revenue after eliminating cars)
- Car profit strategy 1 = car revenue estimate current car cost

Strategy 2:

Eliminate the low-performance cars (car profit/ car revenue < 40%) and invest in better-performance cars to increase the revenue

		Strategy 2
	Current car revenue	\$ 52,830,207
*	Car revenue estimate with the same car cost	\$ 60,831,257
	Increase revenue with the same cost	\$ 8,001,050
	Current car cost	\$ 28,545,635
	Decrease car cost	\$ 10,782,372
	Car cost after eliminating cars	\$ 17,763,264
	Current car profit	\$ 24,284,572
\Leftrightarrow	Car profit strategy 2 with the same cost	\$ 32,285,622
	Increase profit with the same cost	\$ 8,001,050
	Car costs/car revenue (after eliminating cars)	46.93%

Eliminate cars that have car profit/car revenue < 40% (decrease car costs about \$11M), use this money to invest in better performance cars improves business revenue by \$8M

- Car revenue estimate with the same car cost = Current car cost/(car cost after eliminating cars/car revenue after eliminating cars)
- Car profit strategy 2 = car revenue estimate current car cost

Strategy 1 vs Strategy 2

Recommendations

Recommendations:

- •Eliminate low-performance cars (car profit/car revenue<40%)
- Invest those car costs in the best-performance car

Impact:

•The business would increase 8M in revenue!