This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

MAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 352:Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

009266310

Image available

WPI Acc No: 1992-393722/199248

XRAM Acc No: C92-174597 XRPX Acc No: N92-300481

Photoelectromotive force device mfr. - comprises forming polycrystal semiconductor by heat-treating amorphous silicon@ contg. one of

germanium, tin@ and lead@ after forming silicon@ substrate NoAbstract

Patent Assignee: SANYO ELECTRIC CO (SAOL) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 4291967 A 19921016 JP 9157184 A 19910320 199248 B

Priority Applications (No Type Date): JP 9157184 A 19910320

Patent Details:

- Putent No Kind Lan Pg Main IPC Filing Notes

JP 4291967 A 4 H01L-031/04

Title Terms: PHOTOELECTROMOTIVE; FORCE; DEVICE; MANUFACTURE; COMPRISE; FORMING; POLYCRYSTALLINE; SEMICONDUCTOR; HEAT; TREAT; AMORPHOUS; SILICON; CONTAIN; ONE; GERMANIUM; TIN; LEAD; AFTER; FORMING; SILICON;

SUBSTRATE; NOABSTRACT Derwent Class: L03; U11; U12; X15

International Patent Class (Main): H01L-031/04

File Segment: CPI; EPI

DIALOG(R)File 347:JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

03926867

Image available

MANUFACTURE OF PHOTOVOLTAIC DEVICE

PUB. NO.:

04-291967 [JP 4291967 A]

PUBLISHED:

October 16, 1992 (19921016)

INVENTOR(s):

NOGUCHI SHIGERU

IWATA HIROSHI

SANO KEIICHI

APPLICANT(s): SANYO ELECTRIC CO LTD [000188] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

03-057184 [JP 9157184]

FILED:

March 20, 1991 (19910320)

INTL CLASS:

[5] H01L-031/04

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components); 35.1 (NEW

ENERGY SOURCES -- Solar Heat)

JAPIO KEYWORD:R096 (ELECTRONIC MATERIALS -- Glass Conductors)

- JOURNAL:

Section: E, Section No. 1328, Vol. 17, No. 104, Pg. 89, March

03, 1993 (19930303)

ABSTRACT

PURPOSE: To form a photovoltaic device formed of a polycrystalline silicon and an amorphous semiconductor at a relatively low temperature and to reduce various distortions generated by the polycrystalline semiconductor. CONSTITUTION: A manufacturing method for forming a photovoltaic device comprising the steps of heat-treating an amorphous silicon containing at least one of germanium, tin and lead and formed on a substrate 1 to gradually reduce its content from the side of the substrate 1 to form a polycrystalline semiconductor 2a, and then further sequentially laminating intrinsic amorphous silicon 4 and further conductive amorphous silicon to be formed, is provided.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-291967

(43)公開日 平成4年(1992)10月16日

(51) Int.Cl.* H 0 1 L 31/04	識別記号	庁内整理番号	Fí	技術表示箇所
		7376 — 4 M	H 0 1 L 31/04	Α
		7376 - 4M		В

審査請求 未請求 請求項の数1(全 4 頁)

特願平3-57184	(71)出願人	000001889	
		三洋電機株式会社	
平成3年(1991)3月20日		大阪府守口市京阪本通2丁目18番地	
	(72)発明者	能口繁	
		守口市京阪本通2丁目18番地 三洋電機株	
		式会社内****	
	(72)発明者	岩多 浩志	
		守口市京阪本通2丁目18番地 三洋電機株	
		式会社内	
	(72)発明者	佐野 景一	
		守口市京阪本通2丁目18番地 三洋電機株	
	•	式会社内	
	(74)代理人	弁理士 西野 草嗣	
		平成3年(1991)3月20日 (72)発明者 (72)発明者	

(54) 【発明の名称】 光起電力装置の製造方法

(57)【要約】

【目的】 多結晶半導体と非晶質半導体とからなる光起 電力装置を比較的低温で形成するとともに、前記多結晶 半導体により生ずる種々の歪みを低減することにある。

【構成】 基板(1)上に、ゲルマニュームあるいは錦若しくは鉛のうち少なくとも1つを含有しており、且つその含有量が基板(1)側から漸減するように形成された非晶質シリコンを熱処理することによって多結晶半導体(2a)を形成し、その後真性の非晶質シリコン(4)さらに導電性の非晶質シリコンを順次積層形成し光起電力装置を形成する製造方法である。

【特許請求の範囲】

【請求項1】 基板上に、ゲルマニュームあるいは錫若 しくは鉛のうち少なくとも1つを含有し且つその含有量 を前記基板側から漸減させた非晶質シリコンを成膜した 後、該非晶質シリコンを熱処理することによって多結晶 半導体を形成することを特徴とする光起電力装置の製造 方法.

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多結晶半導体を有する 10 光起電力装置の製造方法に関する。

[0002]

【従来の技術】近年、非晶質半導体からなる光起電力装 置が、その大面積形成の容易さや物性面での良好な光感 度特性に因り、広く利用されている。

【0003】然し乍ら、この光起電力装置を従前の単結 晶半導体や多結晶半導体からなる光起電力装置と特性面 で比較した場合、前記非晶質半導体によるそれは、未だ 同等な特性値を得るまでには至っていない。

【0004】そこで、非晶質半導体固有の特徴を活かし 20 つつその特性の向上を図るべく、この非品質半導体と多 結晶半導体とを組み合わせた光起電力装置の開発が試み られている。

【0005】特に、多結晶半導体の材料としては、良質 な膜特性が比較的得やすい多結晶シリコンが多用されて いる。この多結晶シリコンに関しては、特願平2-29 6438号に詳しく記載されている。

[0006]

【発明が解決しようとする課題】然し乍ら、この多結晶 半導体は、一般に非晶質半導体と比較して、その形成の 30 ための温度を高くする必要があることから、耐熱性に優 れた高コストの基板材料を使用しなければならず、又そ の多結晶半導体の光吸収係数が低いことにより、光起電 力装置として利用するにはその膜厚を厚くする必要があ ることから材料面での難点がある。

【0007】さらには多結晶半導体を使用した場合、そ の形成のための温度により下地となる基板との間で歪み が発生するとともに、更にはこの多結晶半導体とその後 に被着形成される半導体との間では、異種材料との接触 であることによる材料面での歪みが生じる。

【0008】そこで、本発明の目的とするところは、形 成温度が比較的低温で、且つこれら歪みを軽減しうる多 結晶半導体を有する光起電力装置の製造方法を提供する ことにある。

[0009]

【課題を解決するための手段】本発明光起電力装置の製 造方法の特徴とするところは、基板上に、ゲルマニュー ムあるいは錫若しくは鉛のうち少なくとも1つを含有し 且つその含有量を前記基板側から漸減させた非晶質シリ コンを成膜した後、該非晶質シリコンを熱処理すること 50 にプラズマCVD法によって、約100人の真性非晶質

によって多結晶半導体を形成することにある。

[0010]

【作用】本発明製造方法によれば、まず、基板側からゲ ルマニュームや錫あるいは鉛の含有量を漸減させた非晶 質シリコンを形成する。これにより、その基板近傍には 比較的ゲルマニュームなどの含有量の多い部分が形成さ れる.

【0011】一般に、この非晶質シリコンにあっては、 その膜内のゲルマニュームや錫、鉛の含有量が多くなる につれて多結晶化が容易となり、例えば多結晶化のため に必要な熱処理の温度が低くてすむ。従って、本発明に おけるようなゲルマニューム等の含有量を傾斜させた非 晶質シリコンの場合にあっては、初期に、非晶質シリコ ンが多結晶化されて成る結晶粒が以後の固相成長の核と して機能するため、結局この非晶質シリコン全体として の多結晶化のための前記熱処理温度が低温でできること となる。

【0012】又、前記ゲルマニューム、錫あるいは鉛の 含有量を漸減せしめた構造は、例えその熱処理を施して も斯る含有量の漸減状態、即ち分布状態は保持される。 このために、この基板側では、ゲルマニューム等の含有 量が多い多結晶半導体となり、一方、該多結晶半導体の 上部ではゲルマニューム含有量の小さい膜となる。

【実施例】図1乃至図3は、本発明光起電力装置の製造 方法を説明するための工程別素子構造断面図である。こ の光起電力装置の製造方法は以下のように行う。

【0014】図1に示す工程では、石英やガラス等から なる基板(1)上に非晶質シリコン(2)を形成する。

【0015】この非晶質シリコン(2)はプラズマCVD 法によって形成し、その形成条件は反応ガスであるシラ ンガスの流量、基板温度、放電電力、放電時のガス圧力 及び膜厚を夫々40sccm, 200℃, 10W, 0. 2 Torrそして100A一定とした。この非晶質シリ コン(2)形成の際には、基板(1)側において、GeH:ガ スの流量が40gccmとなるように前記シランガスに 添加し、その後このGeH、ガスの流量を漸減させた。

【0016】実施例では非晶質シリコン(2)に導電性を 具備せしめるためその形成の際に、フォスフィンガスに 40 よるリン (P) のドーピングを行い n 形半導体となるよ うにした。

【0017】次に、図2に示す工程では、この非晶質シ リコン(2)を真空内で430℃の熱処理を施し、固相成 長させ多結晶化する。これによりこの非晶質シリコン (2)は、多結晶シリコンから成るn型の多結晶半導体(2) a)となる。(3)は多結晶化によって形成された多結晶粒 の粒界を示している。

【0018】そして、図3に示す工程では、多結晶半導 体(2a)を約120℃で加熱した後、この多結晶半導体上 3

シリコン(4)及び約20人のp型非晶質シリコン(5)を形成した後、p型非晶質シリコン(5)上に蒸着法またはスパッタ法による透明導電膜(6)を形成する。

【0019】従来の光起電力装置の素子構造にあっては、通常 n型半導体と p型半導体との積層体の両側に一方を金属膜、他方に透明導電膜を形成しそれぞれを電極として使用する。 実施例にあっては、本発明製造方法で形成される多結晶半導体(2a)の抵抗が小さいことから前記金属膜による電極と同様な機能を同時に持たせている。 本発明はこれに限られず、従来のように基板(1)と前記多結晶半導体(2a)との間に電極として機能する金属膜を形成してもよい。

【0020】本発明光起電力装置の製造方法では、固相成長される非晶質シリコン(2a)中のゲルマニューム含有量が重要である。以下では、その含有量と固相成長のための熱処理温度との関係について詳述する。

【0021】図4は、本発明光起電力装置の製造方法で使用するゲルマニュームの含有量を膜厚方向に沿って漸次変化させた場合の非晶質シリコンについて、その形成条件と、それが固相成長のために必要とする熱処理温度 20の最小値との関係を示す特性図である。

【0022】この非晶質シリコンの形成方法としては、 その形成条件の内、反応ガスであるシランガスの流量、 基板温度、放電電力、放電時のガス圧力及び膜厚は前述 した実施例と同様としている。

【0023】変化させたパラメータとしては、そのシランガスに添加する、水素で希釈された GeH_1 ガスの流量で、その種類としては GeH_1 ガスの全く添加しないもの(a)、 $0\sim10$ s c c m(b)、 $0\sim20$ s c c m(c)、 $0\sim30$ s c c m(d)、 $0\sim40$ s c c m(e)、 $0\sim50$ s c c m(I)の6種類である。

【0024】このGeHiガス流量の制御に当っては、 前記非晶質シリコンの形成の際基板側でその流量が各範 囲内の最大値となるようにし、以後その流量を0scc 加にまで漸減させた。同図の機軸は、GeHiガス流量 の最大値を示している。

【0025】同図から判るように、GeHiガスの最大値が増加するにつれて、固相成長のために必要な熱処理温度の最小値が小さく、即ち低温化していることが判る。特に、前記(1)の場合にあっては、非晶質ゲルマニ 40ュームの場合のそれと同程度の温度にまで低温化していることが判る。

【0026】この関係は、この非晶黄シリコンに導電型決定不純物を添加した場合であっても、GeHiガスを添加することによって同様な熱処理温度の低温化ができることを確認しており、更に、この様な低温化の現象は、前記ゲルマニュームの他に錫や鉛を使用した場合においても同様に観察される。

【0027】図5は、前述した実施例光起電力装置の変 【図3】前記光起電力装置の換効率と、そのGeHiガス流量の最大値との関係を示 50 めの素子構造断面図である。

す特性図である。

【0028】同図によれば、GeHiガス流量の変化として、その最大値を40sccmとした場合においてこの変換効率が最も大きくなる。これは、この最大値が40sccm以下の領域では、ゲルマニュームの含有量が多くなるにつれて、光起電力装置としての長波長光感度が向上することによるためであり、一方40sccmを越えると、この長波長光の感度は更に向上するもののこのゲルマニューム含有量の増加により多結晶化の際に核が多数発生してしまい、多結晶粒が大きく成長しえず、結果として形成された多結晶半導体の電気的特性が低下してしまうためである。

【0029】従って、本発明製造方法によれば、基板 (1)との接触部にはゲルマニュームの含有量が多い多結晶半導体(2a)が配置され、又該多結晶半導体(2a)と接触する真性非晶質シリコン(4)との間にはゲルマニュームがほとんど含有しない多結晶半導体が配置されることとなることから、それぞれの接触部には、従来のような熱による歪みや、材料面での歪みが生ぜず光起電力装置としての特性向上が成し得る。

【0030】尚、本実施例では、プラズマCVD法によって形成される非晶質シリコンのゲルマニュームの添加用ガスとして GeH_4 ガスを使用したが、これに限られず GeF_1 ガスや $Ge(CH_1)_4$ ガスであってもよい。 錫や鉛を用いる場合に使用できる反応ガスとしては、 $Sn(CH_1)_4$ 、 $Pb(CH_1)_4$ などがある。

【0031】又、前記非品質シリコンの形成方法としては、前記プラズマCVD法の他にスパッタ法や蒸着法であっても実施例と同様の効果が得られる。

30 [0032]

【発明の効果】本発明製造方法によれば、形成のための 熱処理温度が低温化できるとともに、素子構造において 発生する多結晶半導体と基板との熱歪みや、該多結晶半 導体と真性非晶質シリコンとの間の材料面での歪みが低 減しえる。

【0033】又、本発明製造方法によれば、基板近傍に 位置する初期に形成された非晶質シリコンが、以後の多 結晶化の核となることから、この形成に従えば大きな結 晶粒を有する多結晶半導体を形成することができる。

0 【0034】さらに、本発明製造方法は、プラズマCV D法を行った場合、反応ガスの流量等を変化させること によって簡便に形成することができるという特徴も有している。

【図面の簡単な説明】

【図1】本発明光起電力装置の製造方法を説明するための一製造工程での素子構造断面図である。

【図 2】前記光起電力装置のその他の工程を説明するための素子構造断面図である。

【図3】前記光起電力装置のその他の工程を説明するための素子構造断面図である。

【図4】本発明製造方法で使用する非晶質シリコンの形成条件と、該非晶質シリコンを固相成長するために必要な熱処理温度の最小値との関係を示す特性図である。

【図 5】 前記製造方法で使用される非晶質シリコンの形成の際のG e H ε ガス流量の最大値と、これにより形成

Gellaガス流量の最大質(acca)

された光起電力装置の変換効率との関係を示す特性図である。

【符号の説明】

1---基板

2 a ——多結晶半導体

[図3] [図2] [図1] 【図4】 (a) 是 500 (b) [図5] (c) = 贯 n 安12 最 400 ሑ 催 **(1)** 10 20 30 40 50

#10

(%)

0 10 20 30 40 50 GeH₄ガス液量の最大値(secs.)