Elastomeric Bearing Design AASHTO LRFD Method B Design ~ English Units

Based upon AASHTO LRFD 9th Edition (2020)

Spreadsheet applies to rectangular shaped bearings only. All boxed entities must be input by user. Shear strain due to rotation in secondary direction is based upon 0.010 radian out-of-plumb tolerance. Peak hydrostatic stresses must be checked for bearings with externally bonded steel plates.

in, kips, psi unless noted otherwise

Coordinates: x, L are perpendicular; y, W are parallel, to the primary rotation axis. Usually W>L.

INPUT DATA

Date: 4/28/11 Designer:	ABC
-------------------------	-----

Job Title: Name of Job

\mathbf{G}_{min} (psi):	200	P_{DL}	(kips):	20
h_{ri} (in):	0.500	P_{LL}	(kips):	10
h cover (in):	0.500	$ heta_{s-st}$	(rads):	0.000
h s (in):	0.0747	$ heta_{s-cy}$	(rads):	0.000
F _y (ksi):	36	Δ_{s-st}	(in):	0.4
ΔF _{TH} (ksi):	24	Trans. fixed x?	(y/n):	n
		Trans. fixed y?	(y/n):	n
L (in):	11.00			
W (in):	13.00	No. of int. layers	(-):	4

BEARING DESIGN

Calculated Shear Strains

(secondary direction)

Area
$$(in^2) = 143.0$$
 $h_{rt} = 3.00 \text{ in}$ $> 2*\Delta_{s-st}$ **OK** S (-) = 5.96

Calculated Shear Strains (primary direction)

(6	nai y an oou	···,	(5555)	many and	J
γ_{s-st}	= .133		γ _{s-st}	= .000	
$\gamma_{\text{s-cy}}$	= .000		γ_{s-cy}	= .000	
γ _{a-st}	= .150	< 3.00 OK	γ _{a-st}	= .139	< 3.00 OK
γ̂а-су	= .075		γ́а-су	= .070	
$\gamma_{r\text{-st}}$	= .000		$\gamma_{r\text{-st}}$	= .555	
$\gamma_{r\text{-cy}}$	= .000		γ _{r-cy}	= .000	
γ _{comb} sum	0.414	< 5.00 OK	γ _{comb} sum	0.816	< 5.00 OK

Stability Requirements

Stability	y Requiren	nents		(Calculated	Stresses
σ _{TL} (psi)	· < 3	3298	OK (x - dir.)	($\sigma_{\rm DL} = \sigma_{\rm st}$	= 140 psi
σ_{TL} (psi)	< !	5315	OK (y - dir.)	C	$\sigma_{LL} = \sigma_{cy}$	= 70 psi
0.00	<1.00	NO REST	TRAINT REQD.		σ_{TL}	= 210 psi

Compressive Deformation Steel Shim Requirements

E_c	≈	42,602 psi	h _s (service)	≥	.009 in	OK
$\delta_{\text{DL-initial}}$	≈	.010 in	h _s (fatigue)	≥	.003 in	OK
δ_{LL}	≈	.005 in	h _s (minimum)	≥	.063 in	OK

[δ_{DL} and δ_{LL} values are approximate and based upon Commentary Eqn. C14.7.5.3.6-1.]

		SUMMARY
L =	11.00 in	Approx. weight = 33.9 lbs
W =	13.00 in	Allowable shear displacement = 1.50 in
Unloaded height =	3.37 in	Maximum shear force = 14.3 kips
Loaded (DL) height =	3.36 in	(prog. by R. Dornsife; WSDOT; 2008-2020)