

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ $\Pi O \Lambda \Upsilon T E X N I K H \Sigma X O \Lambda H$ T M H M A H Λ ΕΚΤΡΟΛΟΓΩΝ ΜΗΧ ΑΝΙΚΩΝ ΚΑΙ ΜΗΧ ΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

$TIT\Lambda O\Sigma$

Διδακτορική Διατριβή

του

Αλεξάνδρου Φιλοθέου του Χρήστου

ΔΙΠΛΩΜΑΤΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΩΝ $\text{APIΣΤΟΤΕΛΕΙΟΥ} \text{ ΠΑΝΕΠΙΣΤΗΜΙΟΥ } \Theta \text{ESSAΛONIKHS}$

KAI

ΜΕΤΑΠΤΥΧΙΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ${\rm BAΣΙΛΙΚΟΥ}\ {\rm INΣΤΙΤΟΥΤΟΥ}\ {\rm TEXNΟΛΟΓΙΑΣ}\ {\rm ΣΤΟΚΧΟΛΜΗΣ}$

που εκπονήθηκε ως μερική εκπλήρωση των απαιτήσεων για την απονομή του τίτλου του $\Delta {\rm i} \delta {\rm aktora} \ {\rm Mhc}$

Επιβλέπων Γεώργιος Δ. Σεργιάδης Καθηγητής

Συμβουλευτική Επιτροπή

Τραϊανός Β. Γιούλτσης Καθηγητής Ανδρέας Λ. Συμεωνίδης Αναπληρωτής Καθηγητής

Hκύρια αιτία των προβλημάτων είναι οι λύσεις.

—Έρικ Σέβαραϊντ

Περίληψη

Abstract

Περιεχόμενα

Ι	\mathbf{E}_{tc}	σαγωη	ιή	1
1	Πε	ριγραφ	ρή του πεδίου εφαρμογής	3
	1.1	Ρομπο	οτική κινητής βάσης	5
		1.1.1	Θεμελιώδεις λειτουργίες	5
		1.1.2	Πηγές και κύριοι τρόποι αντίληψης του περιβάλλοντος	7
		1.1.3	Τρέχουσα κατάσταση και Προκλήσεις	11
	1.2	Απαρο	άτητες έννοιες	11
		1.2.1	Εκτιμητέο διάνυσμα κατάστασης	11
		1.2.2	Τα δύο κύρια προβλήματα εκτίμησης στάσης	12
		1.2.3	Το φίλτρο σωματιδίων	14
		1.2.4	Ο αισθητήρας lidar δισδιάστατων μετρήσεων	17
		1.2.5	Ευθυγράμμιση σαρώσεων lidar	18
		1.2.6	Ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη	20
		1.2.7	Αναλλοίωτη ευθυγράμμιση Fourier-Mellin σε δύο διαστάσεις	23
		1.2.8	Κεντροειδές πολυγώνου	27
		1.2.9	Το λειτουργικό σύστημα ρομπότ ROS	29
2	Οδι	ιχός χ	άρτης	31
	2.1	Οδικό	ς χάρτης	31
3	Σ υį	μβολέο	ς και Διάρθρωση της διατριβής	37

	3.1	Συμβο	ολές της διατριβής	37
	3.2	Διάρθ	ρωση	37
II	Π_{ξ}	ροβλή	ήματα $-\Lambda$ ύσεις $-\Sigma$ υμβολές	39
4	Αξι	ολόγη	ηση αλγορίθμων αυτόνομης πλοήγησης	41
	4.1	Στόχο	οι του κεφαλαίου και δομή	42
	4.2	Σχετι	κή βιβλιογραφία	42
		4.2.1	Αλγόριθμοι χάραξης μονοπατιών	43
		4.2.2	Ελεγχτές χίνησης	46
		4.2.3	Αυτόνομη πλοήγηση με το ROS	48
	4.3	Μεθοδ	δολογία αξιολόγησης	55
		4.3.1	Μεθοδολογία αξιολόγησης, περιβάλλοντα, και συμβολισμοί	55
		4.3.2	Ορισμός μετριχών αξιολόγησης	58
		4.3.3	Μεθοδολογία συνολικής και ιεραρχημένης αξιολόγησης	62
		4.3.4	Ορισμός μετρικών ποιότητας πακέτων λογισμικών πλοήγησης	66
	4.4	Πειραί	αατική αξιολόγηση	68
		4.4.1	Προκαταρκτική αξιολόγηση	68
		4.4.2	Αξιολόγηση στο περιβάλλον CORRIDOR	70
		4.4.3	Αξιολόγηση στο περιβάλλον WILLOWGARAGE	75
		4.4.4	Αξιολόγηση στο περιβάλλον CSAL	78
		4.4.5	Συνολιχή αξιολόγηση	81
	4.5	Συμπε	εράσματα και περαιτέρω έρευνα	83
		4.5.1	Συμπεράσματα κεφαλαίου	83
		4.5.2	Αιτίες περαιτέρω έρευνας	84
5	Μέ	θοδοι	ελάττωσης σφάλματος εκτίμησης στάσης φίλτρου σωμα	-
	τιδί	ων		87
	5.1	Στόνο	οι του χεωαλαίου χαι δουή	87

ПЕРІЕХОМЕNА		iii
-------------	--	-----

	5.2	Σχετικ	κή βιβλιογραφία	. 90
		5.2.1	Ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα lidar	. 90
		5.2.2	Ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα lidar με σαρώσεις	
			χάρτη	. 99
	5.3	Μεθοδ	δολογία ελάττωσης σφάλματος εχτίμησης στάσης	. 104
		5.3.1	Μέσω επιλογής σωματιδίων	. 104
		5.3.2	Μέσω ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη	. 109
		5.3.3	Μέσω ανάδρασης	. 111
		5.3.4	Το ολικό σύστημα ελάττωσης του σφάλματος εκτίμησης	. 114
	5.4	Πειραμ	ιατική αξιολόγηση	. 116
		5.4.1	Πειραματική διαδικασία	. 116
		5.4.2	Αποτελέσματα	. 120
		5.4.3	Αξιολόγηση μεθόδων επιλογής σωματιδίων	. 122
		5.4.4	Αξιολόγηση ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη	. 125
		5.4.5	Αξιολόγηση μεθόδων ανάδρασης	. 125
	5.5	Συμπε	ράσματα και περαιτέρω έρευνα	. 127
		5.5.1	Συμπεράσματα κεφαλαίου	. 127
		5.5.2	Αιτίες περαιτέρω έρευνας	. 129
6	Eva	-íunan	η στάσης βάσει καθολικής αβεβαιότητος χωρίς τον υπολο	0-
Ū			τιστοιχίσεων	135
	6.1	•	οι του χεφαλαίου και δομή	
	6.2	^	κή βιβλιογραφία	
	0.2	Δχετι6.2.1		
			Εκτίμηση στάσης βάσει καθολικής αβεβαιότητος	
	<i>c</i> 0	6.2.2	Ο μετασχηματισμός Fourier-Mellin στη ρομποτική	
	6.3		δολογία εκτίμησης	
		6.3.1	Επισκόπηση	
		6.3.2	Εκτίμηση προσανατολισμού	. 150
		6.3.3	Εκτίμηση θέσης	. 154

iv	$\Pi EPIEXOMENA$

	6.3.4	Επιλογή βέλτιστης υπόθεσης	. 155
6.4	Πειραί	ιατική αξιολόγηση	. 157
	6.4.1	Πειραματική διαδικασία	. 157
	6.4.2	Αποτελέσματα	. 157
	6.4.3	Αξιολόγηση	. 157
6.5	Συμπε	ράσματα και περαιτέρω έρευνα	. 157
	6.5.1	Συμπεράσματα κεφαλαίου	. 157
	6.5.2	Αιτίες περαιτέρω έρευνας	. 157
III 2	Συμπε	ράσματα	159
IV A	Αναφο	ρές	161
V П	αραρτ	ήματα	191
Aξ	ιολόγη	ηση αλγορίθμων αυτόνομης πλοήγησης	193
.1		· · · · · · · · · · · · · · · · · · ·	ς 193
.2		μέρειες αξιολόγησης μεθόδων αυτόνομους πλοήγησης	
	.2.1	Στοιχεία αξιολόγησης στο περιβάλλον CORRIDOR	
	.2.2	Στοιχεία αξιολόγησης στο περιβάλλον WILLOWGARAGE	
	.2.3	Στοιχεία αξιολόγησης στο περιβάλλον CSAL	
	-	X 2 11 12 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
${f M}$ é	θοδοι	ελάττωσης σφάλματος στάσης φίλτρου σωματιδίων	217
.1	Σφάλμ	ιατα εκτίμησης στάσης μεθόδου επιλογής σωματιδίων	. 217
.2	Σφάλμ	ιατα εκτίμησης στάσης μεθόδου ανάδρασης σωματιδίων	. 217

Μέρος Ι

Εισαγωγή

Κεφάλαιο 1

Περιγραφή του πεδίου εφαρμογής

Η ρομποτιχή είναι η επιστήμη της αντίληψης και του χειρισμού του φυσικού κόσμου μέσω συσχευών που ελέγχονται από υπολογιστές [TBF05]. Ως επιστήμη συμβάλλεται από τους κλάδους του αυτομάτου ελέγχου, της επιστήμης των υπολογιστών, των μαθηματικών, και ως πράξη από την επιστήμη της φυσικής, της τεχνολογίας υλικών, της τεχνολογίας λογισμικού, και της ηλεκτρονικής. Το φυσικό αντικείμενο της ρομποτικής είναι το ρομποτ: μία τεχνητή σύνθεση αντλούσα πληροφορίες από το φυσικό περιβάλλον μέσω αισθητήριων συσκευών, επενεργούσα σε αυτό μέσω φυσικών δυνάμεων, αποτελούμενη κατ' ελάχιστον από κινητήρες, τερματικά, υπολογιστικά συστήματα, λογισμικό, και πηγή ενέργειας. Η μορφή της χρήσης των ρομπότ είναι πρόσθετική: 1 πολλαπλασιάζουν τις επιχειρησιακές ενέργειες του ανθρώπου διαιρώντας την απαιτούμενη προσπάθεια για την επίτευξη των σχοπών του χαι χατανέμοντάς την σε μη ανθρώπινους δράστες της βούλησής του. Στη σημερινή εποχή επιχουρούν, συνεργούν, ή επιχειρούν εξ ολοκλήρου στους τομείς της κατασκευής $[\mathrm{Wan}{+}19]$, πλανητικής εξερεύνησης [Wil+18], γεωργίας [VKA19; NB11], απομακρυσμένης ιατρικής πράξης [SCD20], μεταφοράς αγαθών και ανθρώπων [DB16; Lim+18; Sim+19], συνεχούς απογραφής αγαθών σε αποθήκες [Dim+21], καθαρισμού και απολύμανσης χώρων [KSL20], και αλλού [smp21; rev22; Che+21; NH08]. Σχοπός του ανθρώπου όσο αφορά στα ρομπότ είναι (α) η αντικατάστασή του ατόμου του από αυτά με στόχο την απελευθέρωσή του από τα τετριμμένα, χρονοβόρα, ή επιχίνδυνα έργα τα οποία έχει αυτοεπωμιστεί χαι (β) η ανάπτυξη τους ώστε να αποχτήσει

¹προσθετικός: ο διατεθειμένος να προσθέση, ο παρέχων πρόσθετον δύναμιν [LSK07]

τη δυνατότητα να πατήσει στους ώμους γιγάντων με στόχο τις δικές του επιδιώξεις. Η επιταχυνόμενη, εξαπλούμενη, και θεμελιωμένη χρήση της αυτοματικής λογικής που γέννησε τη ρομποτική έχει εκτρέψει αυτές τις αντικειμενικές επιδιώξεις με αποτέλεσμα την αυτονόμηση τους: ο οριακός σκοπός της αυτοματοποίησης είναι σήμερα η παράδοση των διαδικασιών που εμπλέκουν οργανικά τον άνθρωπο, ει και όπου δυνατόν, στον κόσμο των αυτοματοποιημάτων.

Προς το παρόν, και σε συνάφεια με το πεδίο εφαρμογής της παρούσας διατριβής, το περιεχόμενο αντικείμενο της ρομποτικής ταξινομείται σε τέσσερις τάξεις:

- ρομπότ των οποίων το σώμα μπορεί να κινηθεί ως μία μονάδα στο σύνολό του στο χώρο (ρομποτική κινητής βάσης) ή ρομπότ των οποίων μόνο μέρη έχουν τη δυνατότητα κίνησης στο χώρο (π.χ. βραχίονες)
- ρομπότ τα οποία δρουν αυτόνομα, χωρίς την ανάγκη για είσοδο από άνθρωπο (π.χ. αυτόνομη οδήγηση) ή ρομπότ των οποίων η δράση ορίζεται από ανθρώπινες εντολές
 (π.χ. ως μέσα εξουδετέρωσης εκρηκτικών μηχανισμών). Αυτή η τάξη διακρίνεται σε βαθμίδες αυτονομίας [BFR14]
- ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στη γη, τον αέρα, ή τη θάλασσα
- ρομπότ εσωτερικού ή εξωτερικού χώρου

Πεδίο Εφαρμογής ΠΕ. Το πεδίο εφαρμογής της παρούσας διατριβής είναι η ρομποτική αυτόνομης επίγειας κινητής βάσης εσωτερικού χώρου.

Πιό συγκεκριμένα: το μεγαλύτερο μέρος της διατριβής αφορά στην επίλυση προβλημάτων τα οποία είναι ανεξάρτητα από το βαθμό αυτονομίας, ενώ σε όλες τις συνθήκες προϋποτίθεται ότι το ρομπότ επιχειρεί εντός κλειστού (από όλες τις έξι πλευρές) χώρου. Η τελευταία προϋπόθεση-παραδοχή είναι κύριας σημασίας:

Παραδοχή Ι. Ο περιβάλλον χώρος είναι επιδεκτικός αίσθησης ως πλήρως οριοθετημένος, και κάθε πληροφορία που αποτελεί είσοδο (ή προϊόν επεξεργασίας της) των υπολογιστικών συστημάτων του ρομπότ προέρχεται αποκλειστικά από ίδια μέσα του ρομπότ και από την επίδραση του με τα όρια του χώρου—: το σύστημα ρομποτπεριβάλλων χώρος είναι κλειστό.

Παρατήρηση Ι. Αυτό σημαίνει ότι η μοντελοποίηση του κόσμου και η αυτοαντίληψη του ρομπότ πηγάζουν από τους δικούς του (πεπερασμένους) πόρους.

Η παρούσα διατριβή εστιάζει στο πεδίο εφαρμογής ΠΕ λόγω του διαρχώς αυξανόμενου ενδιαφέροντος στην έρευνα αυτόνομων επίγειων οχημάτων, η οποία εφορμάται από την τρέχουσα και προβλεπόμενη διάχυση τους σε (κρίσιμους και μη) τομείς της παγκόσμιας ανθρώπινης δραστηριότητας. Σκοπός της είναι η επίλυση τρέχοντων προβλημάτων του πεδίου εφαρμογής, τα οποία απαντώνται τόσο στην ερευνητική βιβλιογραφία όσο και στην ερευνητική πράξη. Σημείο εκκίνησής της είναι η έρευνα πάνω στην αυτόνομη πλοήγηση επί του πρακτέου. Από εκεί, βάσει μίας κρίσιμης παρατήρησης, ξεκινάει να εστιάζει στο πρόβλημα της εύρεσης της στάσης ενός ρομπότ στο χώρο, με βάσει παραδοχές και περιορισμούς που προσδιορίζονται από πραγματικές συνθήκες και επιδιώξεις και οι οποίες ποικίλουν ανάλογα με αυτές. Σε αυτό το κεφάλαιο ορίζεται η ρομποτική κινητής βάσης (ενότητα 1.1) ... ??

1.1 Ρομποτική κινητής βάσης

Ο όρος "ρομποτική κινητής βάσης" αναφέρεται σε ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στο περιβάλλον τους, σε αντίθεση με εκείνα των οποίων η βάση είναι πακτωμένη σε μία συγκεκριμένη θέση του χώρου. Ως εκ τούτου η έρευνα αυτού του τομέα ασχολείται με όλα εκείνα τα προβλήματα που απορρέουν από την πλοήγηση ενός ρομπότ από μία θέση σε μία άλλη.

1.1.1 Θεμελιώδεις λειτουργίες

Το πρόβλημα της πλοήγησης διαχρίνεται σε βαθμούς αυτονομίας. Κάθε επόμενη βαθμίδα αυτονομίας αφομοιώνει μία ανεξάρτητη μεταβλητή προηγούμενης βαθμίδας ως μία προς υπολογισμό, την οποία εξαρτά από τον αρχικό στόχο. Η αυτονομία πλοήγησης ξεκινάει από την τυχαία κίνηση στο χώρο με εντολές κίνησης υπολογιζόμενες από το ρομπότ, στην παραχολούθηση προχαθορισμένων τροχιών, ύστερα στην αυτόνομη χάραξη τροχιών προς προχαθορισμένους στόχους και την αυτόνομη παραχολούθηση των τροχιών, και καταλήγει στην αυτόνομη πλοήγηση με αυτόνομη επιλογή σημείων-στόχων.

Κοιτώντας την μη-τετριμμένη αυτόνομη πλοήγηση από το επίπεδο της επιφάνειας απαιτείται κατ' ελάχιστον η γνώση δύο μεταβλητών: του στόχου προς τον οποίο το ρομπότ θα κινηθεί και η τρέχουσα θέση του. Αυτές οι αθώες μεταβλητες ανοίγουν την πόρτα σε ένα σύμπαν προβλημάτων μερικών από των οποίων τη λύση αποπειράται η παρούσα διατριβή.

Για τον αχριβή προσδιορισμό ενός σημείου στο φυσικό χώρο απαιτείται αυτός ο χώρος να φέρει σύστημα συντεταγμένων, και κατά συνέπεια να είναι μετρικός. Έπειτα, με γνώμονα την ασφάλεια του ρομπότ και του περιβάλλοντός του, το ρομπότ πρέπει να έχει γνώση των κατειλειμένων και μη σημείων από εμπόδια σε αυτό το σύστημα. Από αυτές τις αιτίες προκύπτει η ανάγκη για την αναπαράσταση του περιβάλλοντος με τη μορφή μετρικού χάρτη. Εν γένει το σύστημα συντεταγμένων και ο χάρτης θα πρέπει να εφευρεθούν επί τούτου για κάθε περιβάλλον καθώς στη γενική περίπτωση τα αρχιτεκτονικά σχέδια χώρων δεν είναι γνωστά. Από αυτή την απαίτηση προχύπτει το πρόβλημα του SLAM (Simultaneous Localisation and Mapping), δηλαδή της ταυτόχρονης κατασχευής χάρτη και εύρεσης της στάσης ενός ρομποτ σε αυτόν.

Κατά συνέπεια η γνώση μιας οποιασδήποτε θέσης στο φυσικό χώρο μεσολαβείται από τη γνώση της στο χάρτη του, στο οικείο του σύστημα αναφοράς. Δεδομένου του χάρτη ενός χώρου ένα ρομπότ μπορεί να προσδιορίσει τη θέση του σε αυτόν χρησιμοποιώντας τους αισθητήρες του, αντιπαραβάλλοντας μετρήσεις από αυτούς με εικονικές μετρήσεις από κάποια υπόθεση-εκτίμηση για τη θέση του στο χάρτη. Το πρόβλημα της έυρεσης της θέσης ενός ρομπότ στο χάρτη είναι θεμελιώδους σημασίας στη ρομποτική κινητής βάσης, και διακρίνεται σε τριών ειδών προβλήματα (σχήμα 1.1 [PB21]):

- Εύρεση της θέσης βάσει καθολικής αβεβαιότητας (Global Localisation)
- Εύρεση και παρακολούθηση της θέσης βάσει περιορισμένης αβεβαιότητας (Pose Tracking)
- Ανίχνευση απαγωγής ρομπότ και εύρεση της νέας θέσης του (Kidnapped Robot Problem)

Παρατήρηση ΙΙ. Λόγω της παραδοχής Ι η θέση του ρομπότ δεν είναι μετρήσιμη αλλά παρατηρήσιμη.

Στο μεγαλύτερό της μέρος η παρούσα διατριβή εστιάζει στα δύο πρώτα προβλήματα, των οποίων η λύση απαιτείται στην πράξη σε κάθε σύστημα με πεδίο εφαρμογής ΠE που ικανοποιεί την παραδοχή I.

Σχήμα 1.1: Κατάτμηση του προβλήματος της εύρεσης θέσης σε κατηγορίες και τα ποσοστά έρευνας σε αυτές

Δεδομένης της γνώσης του χάρτη του περιβάλλοντος στο οποίο χινείται ένα ρομπότ χινητής βάσης, της αρχιχής και της επιθυμητής του θέσης, ενός αλγορίθμου παρακολούθησης της θέσης του (pose tracking), και αισθητήρων για την αντίληψη του περιβάλλοντος, στη γενικότερή του μορφή το πρόβλημα της αυτόνομης πλοήγησης είναι επιλύσιμο. Για την επίλυσή του απαιτούνται δύο μέθοδοι:

- Ένας αλγόριθμος χάραξης μονοπατιού που συνδέει την αρχική με την τελική του θέση (Path Planning)
- Ένας ελεγκτής κίνησης του ρομπότ για την παρακολούθηση του παραπάνω μονοπατιού (Motion Controller)

1.1.2 Π ηγές και κύριοι τρόποι αντίλη ψ ης του περιetaάλλοντος

Η επιτυχής λύση του προβλήματος της αυτόνομης πλοήγησης προϋποθέτει την ύπαρξη και χρήση εξωδεκτικών αισθητήρων. Χωρίς αυτούς τα προβλήματα των οποίων η λύση είναι αναγκαία για την αυτόνομη πλοήγηση (κατασκευή χάρτη, εύρεση και παρακολούθηση της θέσης του ρομπότ) δεν είναι επιλύσιμα. Για την αντίληψη των ορίων (επιφάνειες-εμπόδια) του περιβάλλοντος χρησιμοποιούνται αισθητήρες με ποικίλα χαρακτηριστικά, ανάλογα με τα χαρακτηριστικά του περιβάλλοντος και την αντικειμενική επιδίωξη της χρήσης ρομπότ κινητής βάσης. Όσο τα χρόνια περνούσαν και η τεχνολογία υλικών εκλεπτυνόταν, μαζί της εξελίσ-

σονταν και οι παραπάνω αλγόριθμοι, οξύνοντας την ακρίβεια εκτίμησης της αναπαράστασης του περιβάλλοντος χώρου και της θέσης ενός ρομπότ σε αυτό, ή παρέχοντας περισσότερη και πλουσιότερη πληροφορία για το περιβάλλον.

Τα πρώτα χρόνια της ρομποτικής χρησιμοποιούνταν αισθητήρες υπερήχων (sonar), εκκινώντας από την ανίχνευση εμποδίων στη γειτονιά ενός ρομπότ. Η τεχνολογία ήταν εκεί λόγω εκτεταμένης χρήσης τους σε στρατιωτικές επιχειρήσεις, και το κόστος τους ήταν χαμηλό. Η αρχή λειτουργίας τους βασίζεται στην εκτίμηση αποστάσεων προς τα γύρω εμπόδια μέσω της μέτρησης του χρόνου εκπομπής υπερήχων προς και ανάκλασης από αυτά. Αν και χρησιμοποιούνται μέχρι και σήμερα, η χρήση τους περιορίζεται στην ανίχνευση αντικειμένων σε χαμηλές αποστάσεις λόγω της αδρής λεπτομέρειας των μετρήσεών τους, το περιορισμένο τους γωνιακό πεδίο όρασης, και το εγγενές πρόβλημα της αμφισημίας των μετρήσεών τους λόγω των πολλαπλών διαδοχικών ενδεχόμενων ανακλάσεων του ήχου σε τρίτες επιφάνειες.

Την ίδια αρχή λειτουργίας εκμεταλλεύονται οι αισθητήρες lidar (σύντμηση του Light και Radar ή αλλιώς Light Detection and Ranging) χρησιμοποιώντας, αντί για ήχο, φως υπέρυθρης, ορατής, ή υπεριώδους ακτινοβολίας. Διακρίνονται σε αισθητήρες που αποτυπώνουν αποστάσεις σε εμπόδια του περιβάλλοντός τους σε ένα επίπεδο (δισδιάστατες μετρήσεις) ή σε πολλαπλά επίπεδα γύρω από αυτό (τρισδιάστατες μετρήσεις). Οι αισθητήρες LIDAR υστερούν σε κόστος, μέγεθος, και συχνότητα μετρήσεων σε σχέση με τους αισθητήρες υπερήχων, αλλά εμφανίζουν σημαντικά μεγαλύτερο εύρος όρασης (έως 360°), τόσο γωνιακά όσο και ακτινικά, και ακρίβεια μετρήσεων που μπορεί να φτάσει την τάξη των μερικών εκατοστών. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.2.

Η ανάπτυξη της τεχνολογίας αισθητήρων εικόνας και η βελτίωση της ποιότητάς τους τούς κατέστησε και πηγές εξωδεκτικών μετρήσεων στη ρομποτική. Το σημαντικό τους προτέρημα είναι η χρωματική πληροφορία του περιβάλλοντος, το μεγάλο οριζόντιο και κάθετο εύρος όρασής τους, και ο υψηλός ρυθμός ανανέωσης των μετρήσεών τους. Η εφεύρεση των αισθητήρων εικόνας και βάθους (RGBD, ή η χρήση στερεοειδών συστημάτων) εισάγει την επιπρόσθετη πληροφορία κατάληψης σημείων στον τρισδιάστατο χώρο από εμπόδια, αλλά ταυτόχρονα επιφέρει χαμηλότερες συχνότητες ανανέωσης αξιοποιήσιμης πληροφορίας λόγω του αυξημένου όγκου της χωρικής πλέον πληροφορίας. Λόγω του μεγάλου όγκου πληροφορίας που φέρουν απαιτούν αντίστοιχους υπολογιστικούς πόρους, οι οποίοι στα πλαίσια του πε

Σχήμα 1.2: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου sonar. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Qi+20]. Τα χρωματισμένα περιγράμματα περιχλείουν περιοχές τις οποίες ο αισθητήρας sonar απέτυχε να χαρτογραφήσει με πιστότητα προς το πραγματικό περιβάλλον

δίου εφαρμογής ΠΕ ενδέχεται να μην είναι διαθέσιμοι. Σε αντίθεση με τους προηγούμενους αισθητήρες εξαρτώνται από τις συνθήκες φωτισμού του χώρου στον οποίον λειτουργούν και συνεπώς η ποιότητα των μετρήσεων είναι ευμετάβλητη. Σε σχέση με τους αισθητήρες lidar εμφανίζουν σημαντικά περιορισμένο γωνιακό εύρος όρασης, ακρίβεια μετρήσεων που φθίνει τετραγωνικά σε σχέση με την απόσταση μέτρησης (αντί για γραμμικά όπως στους αισθητήρες lidar), και περιοχές μη αξιοποιήσιμων μετρήσεων λόγω σκιών που παράγονται ως συνέπεια της αρχής λειτουργίας τους [MDM14]. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.3.

Λόγω της μεγάλης τους μετρητικής ακρίβειας, της πυκνής τους γωνιακής δειγματολειψίας, του ικανού ρυθμού ανανέωσης μετρήσεων, του ευρύτατου πεδίου οράσεως τους, του μέτριου κόστους τους, και του γεγονότος ότι ο όγκος των μετρήσεων τους είναι κατά κύριο λόγο επεξεργάσιμος σε πραγματικό χρόνο (απαιτητέο από την επίλυση της πλειονότητας των προβλημάτων της υποενότητας 1.1.1), οι αισθητήρες τύπου lidar έχουν προκριθεί στη θέση των αισθητήρων εκ των ων ουκ άνευ όσο αφορά σε εφαρμογές αυτόνομους πλοήγησης, κατασκευής χάρτη, και εύρεσης της θέσης ενός ρομπότ, στο πεδίο εφαρμογής ΠΕ που ικανοποιούν την παραδοχή Ι. Οι ίδιες αρετές τούς έχουν καταστήσει ηγέτες στην ευρύτερη αγορά αισθητήρων για ρομποτικές εφαρμογές όπου επιζητείται επιπρόσθετη αντίληψη που να υπηρετεί σκοπούς αυτονομίας (σχήμα 1.4).

Σχήμα 1.3: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου RGBD προβεβλημένες στο οριζόντιο επίπεδο. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Oli+12]. Οι κόκκινες γραμμές αναπαραστούν το πραγματικό περιβάλλον

Σχήμα 1.4: Αριστερά: κατάτμηση της αγοράς αισθητήρων στην αυτοκινητοβιομηχανία [SSC21]. Μέση: πωλήσεις αισθητήρων lidar σε εκατομμύρια δολλάρια κατά έτος [staa]. Δεξιά: προβολή της κατάτμησης της αγοράς αισθητήρων και πωλήσεις σε δισεκατομμύρια δολλάρια το έτος 2027 [stab]

1.1.3 Τρέχουσα κατάσταση και Προκλήσεις

Τα θεμελιακά προβλήματα που απορρέουν από απαιτήσεις αυτόνομης πλοήγησης, δηλαδή η κατασκευή χάρτη, η εύρεση και παρακολούθηση της θέσης ενός ρομπότ στο χώρο, καθώς και η ίδια η αυτόνομη πλοήγηση, θεωρούνται σήμερα λυμένα στο πεδίο εφαρμογής ΠΕ με τη χρήση αισθητήρων lidar. Για την ακρίβεια αυτό που θεωρείται λυμένο είναι το πρόβλημα επί της αρχής: δηλαδή ότι υπάρχουν αναγκαίες συνθήκες στις οποίες η λύση κάθε προβλήματος είναι εφικτή. Η αφαίρεση αυτών των συνθηκών και η έρευνα με γνώμονα την ευρωστία στη μετέπειτα κατάσταση αποτελεί πρόκληση για κάθε μελλοντική λύση.

Επιπρόσθετα η λύση κάθε προβλήματος δεν είναι απαραίτητα "βέλτιστη". Παράδειγμα αποτελεί το πεδίο του εντοπισμού της θέσης ενός ρομπότ όπου, λόγω της παρατήρησης ΙΙ, η εκτίμηση για τη θέση του φέρει ένα αναπόφευκτο σφάλμα (λόγω μετρητικού θορύβου και σφαλμάτων μοντελοποίησης και λύσης). Η ανάγκη για πρόσθετη ή υψηλή ακρίβεια, αν και πάντα ευπρόσδεκτη, δεν ανήκει στις αυστηρές απαιτήσεις των ρομποτικών εφαρμογών, εκτός από αυτές της βιομηχανίας. Στις τελευταίες, ωστόσο, λόγω της ανάγκης για αυστηρές προδιαγραφές και υψηλή ακρίβεια, η αυτονομία ενός οχήματος είτε αποφεύγεται (η χειροκίνητη πλοήγηση καθιστά περιττό τον εντοπισμό της θέσης του) είτε, όπου υιοθετείται, αντικαθίσταται από εξωτερικές και δαπανηρές υποδομές λόγω των διακυβεύματων που υπάρχουν στα βιομηχανικό πλαίσια [Vas+16]. Σε αυτά τα πλαίσια αποτελεί πρόκληση η μείωση των σφαλμάτων εκτίμησης της θέσης ενός ρομπότ, καθώς μικρότερα σφάλματα σημαίνουν περισσότερο γόνιμο έδαφος για την περαιτέρω αυτοματοποίηση διαδικασιών, και την διεύρυνση υιοθέτησης ρομποτικών οχημάτων από τη βιοτεχνία/βιομηχανία.

1.2 Απαραίτητες έννοιες

1.2.1 Εκτιμητέο διάνυσμα κατάστασης

Κεντριχής σημασίας στη διατριβή είναι το εκτιμητέο διάνυσμα κατάστασης ενός επίγειου οχήματος. Μέχρι σε αυτό το σημείο χρησιμοποιείτο αντί αυτής η λέξη "θέση" για εισαγωγικούς λόγους.

Ορισμός Ι. Διάννσμα κατάστασης ή στάση

 Ω ς διάνυσμα κατάστασης θεωρούμε τη στάση ενός οχήματος στο δισδιάστατο επίπεδο: τον ειρμό της θέσης του με τον προσανατολισμό του, ως προς το σύστημα αναφοράς του χάρτη του περιβάλλοντος στο οποίο βρίσκεται το όχημα (σχήμα 1.5):

$$\boldsymbol{p} = [x \ y \ \theta]^{\top} \tag{1.1}$$

Σχήμα 1.5: Το διάνυσμα κατάστασης (στάση) ${m p}=[x,y,\theta]^{\top}$ ενός επίγειου οχήματος στο οριζόντιο επίπεδο

Η αχριβής γνώση της στάσης του οχήματος είναι απαγορευμένη (παρατήρηση II): η εκτί- $\mu \eta \sigma \eta \, \hat{\boldsymbol{p}}$ της στάσης του είναι το αντικείμενο των αλγορίμων εύρεσης στάσης.

1.2.2 Τα δύο κύρια προβλήματα εκτίμησης στάσης

Τα δύο κύρια προβλήματα εκτίμησης της στάσης ενός οχήματος (σχήμα 1.1) διακρίνονται βάσει του εύρους της αβεβαιότητας που διαθέτει το όχημα για αυτή. Και τα δύο προϋποθέτουν κατ' ελάχιστον τη γνώση του χάρτη του περιβάλλοντος στο οποίο βρίσκεται το όχημα (το μόνο σύστημα αναφοράς είναι αυτό του χάρτη και χωρίς αυτό είναι αδόκιμη η εκτίμηση της στάσης του) και μετρήσεις από τουλάχιστον έναν αισθητήρα αντίληψης του περιβάλλοντός του.

Το πρόβλημα της εύρεσης-εκτίμησης της στάσης του βάσει καθολικής αβεβαιότητος (global localisation) αναφέρεται στη συνθήκη όπου η μόνη επιπρόσθετη γνώση που διαθέτει το ρομπότ είναι ότι βρίσκεται εντός των ορίων του χάρτη: δεν υπάρχει εκ των προτέρων γνώση για τη στάση του. Για τη λύση του προβλήματος το ρομπότ πρέπει να συλλέξει μετρήσεις από τους αισθητηρες του και να τις αντιπαραβάλλει με το χάρτη του περιβάλλοντός. Εάν η εκτίμηση της στάσης ισούται με την πραγματική του στάση τότε εικονικές μετρήσεις ή χαρακτηριστικά του χάρτη που αντιλαμβάνεται το ρομπότ από την εκτίμήσή της στάσης του

προσεγγίζουν τις αντίστοιχες πραγματικές μετρήσεις ή χαρακτηριστικά του περιβάλλοντος με μεγαλύτερη πιστότητα από άλλες υποθέσεις για τη στάση του (σχήμα 1.6).

Σχήμα 1.6: Το πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητας της στάσης του. Το ρομπότ βρίσκεται στη θέση που σημειώνεται με πράσινο. Οι κουκίδες που σημειώνονται με πορτοκαλί δείχνουν υποθέσεις προς εξέταση για την εκτίμηση της στάσης του

Ορισμός ΙΙ. Παθητική και ενεργητική εκτίμηση βάσει καθολικής αβεβαιότητος

Ένας τρόπος ταξινόμησης των υπαρχουσών λύσεων στο πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος είναι μέσω του ίδιου του συστήματος πλοήγησης του ρομπότ. Προκειμένου να μεγιστοποιηθεί η πιθανότητα επιτυχούς εντοπισμού, οι προσεγγίσεις ενεργητικής εκτίμησης υπολογίζουν εντολές κίνησης που μετακινούν το ρομπότ εντός του περιβάλλοντός του σε στάσεις που επιτρέπουν στο σύστημα εκτίμησης της στάσης του να αποκτάει πρόσθετες πληροφορίες. Εάν οι εντολές κίνησης—εάν υπάρχουν—προσδιορίζονται χωρίς τη συμβουλή του συστήματος εκτίμησης στάσης τότε η προσέγγιση εκτίμησης ονομάζεται παθητική.

Παρατήρηση ΙΙΙ. Ακρίβεια λύσης

Μια αχριβής λύση στο πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος είναι αναγκαία προϋπόθεση για την επίλυση του επακόλουθου προβλήματος της παρακολούθησης της στάσης του καθώς αυτό κινείται στο χώρο. Τα τελευταία χρόνια οι πιθανοτικές προσεγγίσεις στο πρόβλημα της παρακολούθησης της στάσης έχουν έχουν καταστεί εκ των ων ουκ άνευ. Χάρει στην ανοχή τους για αυξημένη αβεβαιότητα στάσης, η απαίτηση μέγιστης ακρίβειας όσον αφορά στη λύση

του προβλήματος εχτίμησης βάσει χαθολιχής αβεβαιότητος έχει, κατα συνέπεια, μετριαστεί. Εάν χρησιμοποιούνται πιθανοτιχές μέθοδοι στο μετέπειτα έργο της εχτίμησης στάσης βάσει περιορισμένης αβεβαιότητος, τότε ως λύση στο πρόβλημα της εχτίμησης βάσει χαθολιχής αβεβαιότητας μπορεί να γίνει δεχτό ένα σύνολο αναχριβέστερων (χαι συνεπώς χωριχά εχτεταμένων) στάσεων. Μια λύση που βρίσχεται στη γειτονιά της πραγματιχή στάσης ενός ρομπότ, με άμεση οπτιχή επαφή σε αυτήν, θα αναφέρεται ως ορθή λύση ??.

Παρατήρηση ΙV. Λύση πραγματικού χρόνου

Στο πρόβλημα της εκτίμησης βάσει καθολικής αβεβαιότητος δεν υπάρχει αυστηρή απαίτηση για λύση σε πραγματικό χρόνο στην περίπτωση παθητικών προσεγγίσεων, εάν το ρομπότ δεν κινείται κατά τη διάρκεια της λύσης του προβλήματος εκτίμησης.

Αντιθέτως, το πρόβλημα της εκτίμησης της στάσης του βάσει περιορισμένης αβεβαιότητας (pose tracking) δέχεται ως δεδομένη τη γνώση της αρχικής του στάσης. Στόχος της λύσης του προβλήματος είναι η διαρκής εκτίμηση της στάσης του καθώς το ρομπότ κινείται μέσα στο χώρο στο πέρασμα του χρόνου. Για την επίλυσή του είναι εξαιρετικά επιτυχημένη η χρήση πιθανοτικών προσεγγίσεων, όπως το φίλτρο Kalman [May79] και το φίλτρο σωματιδιών [Thr02; Gus+02].

1.2.3 Το φίλτρο σωματιδίων

Οι πιθανοτικές προσεγγίσεις στο πρόβλημα της εκτίμησης της στάσης έχουν αυξημένη ακρίβεια και ευρωστία σε σύγκριση με τις μη πιθανοτικές, αλλά, ανάλογα με τη φύση τους, πάσχουν ή επιλύουν διάφορα προβλήματα που αφορούν στους σκοπούς εκτίμησης. Για παράδειγμα τα φίλτρα Kalman είναι γνωστό ότι είναι εύρωστα και ακριβή (βέλτιστα ακόμα όταν όλοι οι συστημικοί θόρυβοι είναι κατανεμημένοι κανονικα), αλλά δεν έχουν την ικανότητα να αναπαραστούν αμφισημίες (ambiguities) ως προς τη στάση ή να εντοπίζουν το ρομπότ στην περίπτωση άγνωστης αρχικής στάσης. Από την άλλη πλευρά η φύση των τεχνικών MCL [Del+99] τούς επιτρέπει να αναπαραστούν την αβεβαιότητα ως προς τη στάση του ρομπότ διατηρώντας ένα σύνολο υποθέσεων (που ονομάζονται σωματίδια) για αυτή, του οποίου η μορφή δεν δεσμεύεται από συναρτήσεις πυκνότητας πιθανότητας μίας κορυφής (unimodal)

όπως στα φίλτρα Kalman. Μεταξύ άλλων αυτή η αναπαράσταση επιτρέπει στις προσεγγίσεις MCL να εντοπίζουν καθολικά ένα ρομπότ και να παρακολουθούν τις αμφισημίες της στάσης του μέχρι να είναι σε θέση να τις επιλύσει, λόγω της δυνατότητας αναπαράστασης αυθαίρετα πολύπλοκων πυκνοτήτων πιθανότητας. Το σχήμα 1.7 απεικονίζει την κατανομή υποθέσεων στάσης μετά την αρχικοποίηση του φίλτρου σωματιδίων.

Σχήμα 1.7: Αρχικοποίηση κατανομής σωματιδίων δεδομένης εκτίμησης για την αρχική στάση. Η πληροφορία προσανατολισμού παραλείπεται για λόγους ευανάγνωσης. Στην αρχική φάση το φίλτρο δεν έχει συγκλίνει και συνεπώς η διακύμανσή του συνόλου υποθέσεων στάσης είναι μέγιστη

Τα φίλτρα σωματιδίων εκτιμούν αναδρομικά την εκ των υστέρων πυκνότητα πιθανότητας της στάσης ενός οχήματος βάσει λογικής Bayes [TBF05]:

$$p(\mathbf{p}_t|\mathbf{z}_{1:t}, \mathbf{u}_{0,t-1}, \mathbf{M}) \propto p(\mathbf{z}_t|\mathbf{p}_t) \int_{\mathbf{p}'} p(\mathbf{p}_t|\mathbf{p}', \mathbf{u}_{t-1}) \cdot p(\mathbf{p}'|\mathbf{z}_{1:t-1}, \mathbf{u}_{0:t-2}, \mathbf{M}) dx'$$
(1.2)

όπου η στάση του ρομπότ τη χρονική στιγμή t συμβολίζεται με p_t , η ακολουθία των εντολών κίνησης που εκτελούνται από το το ρομπότ με $u_{0:t-1}$, και με $z_{0:t}$ η ακολουθία των μετρήσεων που γίνονται από το τους αισθητήρες του. M είναι ο χάρτης που αναπαραστά το περιβάλλον στο οποίο κινείται το ρομπότ. Το μοντέλο κίνησης $p(p_t|p_{t-1},u_{t-1})$ υποδηλώνει την πιθανότητα ότι τη χρονική στιγμή χρονική στιγμή t το ρομπότ καταλήγει στην κατάσταση p_t δεδομένου ότι εκτελεί την εντολή κίνησης u_{t-1} ενώ βρίσκεται στην κατάσταση p_{t-1} τη χρονική στιγμή t-1. Σε ρομπότ με τροχούς οι εντολές κίνησης συνήθως αντικαθίστανται από μετρήσεις της περιστροφής τους μέσω κωδικοποιητών (encoders), οι οποίες αναφέρονται ως

οδομετρία. Το μοντέλο παρατήρησης $p(z_t|p_t,M)$ δηλώνει την πιθανότητα μέτρησης z_t ενώ το ρομπότ βρίσκεται στη στάση p_t . Δεδομένου ότι τα φίλτρα σωματιδίων διατηρούν ένα σύνολο διαφορετικών υποθέσεων ως προς την κατάσταση του ρομπότ, η κάθε μία σταθμίζεται σύμφωνα με την πιθανότητα το ρομπότ να διενεργήσει τη μέτρηση z_t υπό τη συγκεκριμένη υπόθεση στάσης ενός σωματιδίου p_t^i με βάση το μοντέλο παρατήρησης $p(z_t|p_t,M)$, όπου i δηλώνει τον δείκτη-αναγνωριστικό του σωματιδίου-υπόθεσης i. Αυτή η πιθανότητα ονομάζεται το βάρος του κάθε σωματιδίου, του οποίου το μέγεθος, θεωρητικά, είναι ευθέως ανάλογο της ακρίβειας της υπόθεσής του για τη στάση του ρομπότ. Η τελική εκτίμηση του φίλτρου είναι ο σταθμισμένος μέσος όρος των υποθέσεων στάσης όλων των σωματιδίων κατά το βάρος του καθενός.

Στην απλούστερή έχδοση των φίλτρων σωματιδίων ο αριθμός των τελευταίων είναι σταθερός. Για την αποφυγή απόκλισης της εκτίμησης λόγω εξάντλησης των σωματιδίων [ΤΒF05] ένας μεγάλος αριθμός δειγμάτων είναι απαραίτητος ώστε το ρομπότ να μπορεί να αντιμετωπίσει τόσο τον αρχικό εντοπισμό της στάσης του όσο και την παρακολούθηση της μετά από αυτόν. Η πρακτική του σταθερού αριθμού υποθέσεων μπορεί να είναι μια σοβαρή σπατάλη υπολογιστικών πόρων μετά τα αρχικά στάδια εντοπισμού. Η δειγματοληψία KLD [Fox01] χρησιμοποιείται προχειμένου το φίλτρο να προσαρμόζει τον αριθμό των σωματιδίων που απαιτούνται με την πάροδο του χρόνου, περιορίζοντας το σφάλμα που εισάγεται από την αναπαράσταση της εχ των υστέρων πυχνότητας πιθανότητας της στάσης του ρομπότ με βάση τα δείγματα, και μειώνοντας έτσι των αριθμό των απαιτούμενων υπολογισμών. Το σφάλμα υπολογίζεται με βάση την απόκλιση Kullback-Leibler μεταξύ της δειγματοληπτούμενης κατανομής και μιας διακριτής κατανομής που υπολογίζεται σε ολόκληρο το χάρτη. Στα αρχικά στάδια του εντοπισμού (όταν το φίλτρο πρέπει να εντοπίσει το ρομπότ βάσει καθολικής αβεβαιότητος), τα σωματίδια μπορούν να έχουν μεγαλύτερη διασπορά, έτσι ώστε να καλύπτουν μεγαλύτερο χώρο υποθέσεων. Αντίθετα, αφού το ρομπότ έχει εντοπιστεί με επιτυχία και το σφάλμα μεταξύ των δύο παραπάνω κατανομών έχει μειωθεί, το φίλτρο σωματιδίων μπορεί να διατηρήσει ένα μικρότερο σύνολο σωματιδίων για την παρακολούθηση της στάσης του ρομπότ.

Το φίλτρο σωματιδίων έχει τη δυνατότητα να αφομοιώσει μετρήσεις από αισθητήρες των οποίων το μοντέλο παρατήρησης μπορεί να ανακατασκευαστεί σε κλειστή μορφή, και συνήθως χρησιμοποιούνται αισθητήρες sonar, lidar, και εικόνας. Η παρούσα διατριβή εστιάζει

αποκλειστικά στη χρήση αισθητήρων lidar δισδιάστατων μετρήσεων.

Παρατήρηση V. Λύση πραγματικού χρόνου

Σε αντίθεση με τις παθητικές προσεγγίσεις εκτίμησης της στάσης του ρομπότ βάσει καθολικής αβεβαιότητος σε περίπτωση που το ρομπότ θεωρείται ακίνητο, η επίλυση του προβλήματος της εκτίμησης της στάσης του βάσει πεπερασμένης αβεβαιότητος εξ ορισμού απαιτεί τη συχνή ανανέωση εκτιμήσεων στάσης, καθώς η στάση του ρομπότ μεταβάλλεται μέσα στο χώρο και κατά τη διάρκεια του χρόνου.

1.2.4 Ο αισθητήρας lidar δισδιάστατων μετρήσεων

Ορισμός ΙΙΙ. Ορισμός μέτρησης αισθητήρα 2D lidar

Μία μέτρηση συμβατικού αισθητήρα 2D lidar αποτελείται από έναν πεπερασμένο αριθμό αποστάσεων σε αντικείμενα σε οπτική επαφή εντός της μέγιστης εμβέλειάς του. Οι μετρήσεις λαμβάνονται εγκαρσίως προς το σώμα του, σε κανονικά γωνιακά και χρονικά διαστήματα, σε ένα καθορισμένο γωνιακό εύρος [CRP18].

Μία μέτρηση (αλλιώς ονομαζόμενη σάρωση) $\mathcal S$ που απαρτίζεται από N_s ακτίνες σε γωνιακό εύρος λ είναι μία διατεταγμένη ακολουθία $\mathcal S:\Theta\to\mathbb R_{>0}$, όπου

$$\Theta = \{ \theta_n \in [-\frac{\lambda}{2}, +\frac{\lambda}{2}) : \theta_n = -\frac{\lambda}{2} + \lambda \frac{n}{N_s}, n = 0, 1, \dots, N_s - 1 \}$$
 (1.3)

Οι γωνίες θ_n εκφράζονται σε σχέση με τον προσανατολισμό του αισθητήρα στο τοπικό του σύστημα συντεταγμένων.

Το σχήμα 1.8 απεικονίζει τη γεωμετρία του ενός τυπικού αισθητήρα 2D lidar, όπου $d_n = \mathcal{S}[-\tfrac{\lambda}{2} + \tfrac{\lambda n}{N_s}]$ είναι η απόσταση που αφορά στην ακτίνα με αναγνωριστικό n.

Ορισμός IV. Πανοραμικός αισθητήρας 2D lidar

Το γωνιακό εύρος ενός 2D lidar είναι συμμετρικά κατανεμημένο ως προς τον τοπικό του x άξονα. Κάθε ακτίνα έχει την ίδια γωνιακή απόσταση από τις γειτονικές της, εξαιρέσει των δύο ακραίων ακτίνων όταν $\lambda < 2\pi$. Όταν $\lambda = 2\pi$ ο αισθητήρας ονομάζεται πανοραμικός.

Σχήμα 1.8: Κάτοψη του τοπικού συστήματος αναφοράς ενός τυπικού αισθητήρα αποστάσεων τύπου 2D lidar. Ο αισθητήρας είναι τοποθετημένος στο O(0,0) και ο προσανατολισμός του είναι αυτός του θετικού x άξονα. Το γωνιακό πεδίο οράσεώς του είναι λ

1.2.5 Ευθυγράμμιση σαρώσεων lidar

Η ευθυγράμμιση σαρώσεων μέσω αισθητήρων lidar βρίσκεται στο επίκεντρο των περισσότερων εφαρμογών χαρτογράφησης και εκτίμησης της στάσης ενός οχήματος λόγω της ιχανότητάς της να εξάγει τη σχέση μεταξύ στάσεων από όπου ελήφθησαν μετρήσεις του αισθητήρα. Έστω ένα ρομπότ εξοπλισμένο με έναν αισθητήρα 2D lidar που καταγράφει δύο σαρώσεις, z και z', την πρώτη ενώ ο αισθητήρας είναι τοποθετημένος στη στάση $p(x, y, \theta)$, και την δεύτερη ενώ βρίσκεται στη στάση $p'(x', y', \theta')$, σε κάποιο σύστημα αναφοράς. Αυτές οι σαρώσεις καταγράφουν μια οριζόντια τομή του περιβάλλοντος στο οποίο κινείται το ρομπότ. Υπό την προϋπόθεση ότι ορισμένα τμήματα του περιβάλλοντος είναι ορατά τόσο από τη στάση p όσο και από τη p' είναι γενικά δυνατή η εύρεση του τρισδιάστατου μετασχηματισμού q που προβάλλει τα τελικά σημεία του z^\prime σε εκείνα του z με τρόπο τέτοιο ώστε να ευθυγραμμιστούν μεταξύ τους. Η διαδικασία εξαγωγής του μετασχηματισμού q ονομάζεται ευθυγράμμιση σαρώσεων (scan-matching—εδώ σε μετρήσεις δύο διαστάσεων). Η λύση qαποτελείται από δύο μεταφορικές συνιστώσες, Δx και Δy , και μία περιστροφική συνιστώσα, $\Delta\theta$. Αυτή η λύση αντιστοιχεί στην αχριβώς αντίστροφη χίνηση του αισθητήρα από τη στάση $m{p}$ στην $m{p}'$: $m{p} = m{R}(\Delta \theta) \cdot m{p}' + [\Delta x, \Delta y]^{\top}$, όπου $m{R}(\cdot)$ είναι ο πίνακας περιστροφής σε δύο διαστάσεις.

Στο σχήμα 1.9 απειχονίζεται η ευθυγράμμιση δύο μετρήσεων που λήφθησαν από στάσεις σε χοντινή απόσταση χαι στο ίδιο περιβάλλον μέσω του τελεστή sm. Στην πράξη, η εφαρμογή του μετασχηματισμού q^{-1} στο διάνυσμα p δεν ισούται αχριβώς με p' λόγω (α) της παρουσίας

θορύβου στις μετρήσεις του αισθητήρα, (β) ενδεχόμενης ατελούς αλληλοεπικάλυψης των δύο μετρήσεων σε μη κυρτά περιβάλλοντα, (γ) του γεγονότος ότι ένας αλγόριθμος ευθυγράμμισης σαρώσεων δεν είναι απαραίτητα τέλειος τελεστής, και (δ) του γεγονότος ότι ο τελευταίος συνήθως απαιτεί τον καθορισμό πολλών παραμέτρων, κυριότερες από τις οποίες είναι εκείνες που διέπουν το χειρισμό των συσχετίσεων ανάμεσα στις ακτίνες των δύο μετρήσεων.

Σχήμα 1.9: Η ευθυγράμμιση των μετρήσεων 2D lidar z(p) και z'(p') (scan-matching) παράγει την εκτίμηση p' από την p

Ορισμός V. Ευθυγράμμιση σαρώσεων 2D lidar

Έστω δύο μετρήσεις ενός 2D lidar αισθητήρα που ικανοποιούν τον ορισμό III, S_R και S_V . Έστω ότι οι μετρήσεις λήφθηκαν στο ίδιο περιβάλλον και τις δύο χρονικές στιγμές καταγραφής τους. Έστω $\mathbf{p}_V(x_V,y_V,\theta_V)$ η στάση από την οποία ο αισθητήρας κατέγραψε την S_V , εκπεφρασμένη σε κάποιο σύστημα συντεταγμένων. Στόχος της ευθυγράμμισης σαρώσεων σε δύο διαστάσεις είναι να βρεθεί ο τρισδιάστατος μετασχηματισμός $\mathbf{q}=(\mathbf{t},\theta)$, $\mathbf{t}=(\Delta x,\Delta y)$, που ελαχιστοποιεί την απόσταση των τελικών σημείων της μετασχηματιζόμενης κατά \mathbf{q} μέτρησης S_V από την προβολή της στην S_R . Συμβολίζοντας τα τελικά σημεία του S_V με $\{\mathbf{p}_V^i\}$:

$$\min_{\mathbf{q}} \sum_{i} \left\| \mathbf{p}_{V}^{i} \oplus \mathbf{q} - \prod \{ \mathcal{S}_{R}, \mathbf{p}_{V}^{i} \oplus \mathbf{q}^{-1} \} \right\|^{2}$$
 (1.4)

Το σύμβολο " \oplus " δηλώνει τον τελεστή μετασχηματισμού $m{p}_V^i \oplus (m{t}, heta) riangleq m{R}(heta) m{p}_V^i + m{t},$

όπου ${m R}(\theta)$ είναι ο δισδιάστατος πίνακας περιστροφής με όρισμα θ , και $\prod \{{\cal S}_R, {m p}_V^i \oplus {m q}\}$ είναι η ευκλείδεια προβολή στην ${\cal S}_R$.

Παρατήρηση VI. Η ευθυγράμμιση σαρώσεων χρησιμοποιείται στη ρομποτική ως μέσο οδομετρίας, πρωτίστως σε μη τροχοφόρα οχήματα (τα οποία συνεπώς δεν έχουν τη δυνατότητα να φέρουν κωδικοποιητές), ή ως ένας χρήσιμος βελτιωτικός συντελεστής της διαρκώς παρεκκλίνουσας οδομετρίας με κωδικοποιητές: σαρώσεις που λαμβάνονται σε διαδοχικές χρονικές στιγμές, εισαγόμενες σε αλγόριθμο ευθυγράμμισης σαρώσεων, εξάγουν την εκτίμηση της στάσης του αισθητήρα σάρωσης κατά τη δεύτερη χρονική στιγμή καταγραφής σε σχέση με την πρώτη. Αλγόριθμοι ευθυγράμμισης σαρώσεων χρησιμοποιούνται με επιτυχία για την επίλυση του προβλήματος της ταυτόχρονης χαρτογράφησης και εκτίμησης της στάσης οχήματος [GK99; Hah+03; CTT03], κατασκευή τοπικών χαρτών [Lac+02; MMM04; MMM08], και σε συστήματα παρακολούθησης της τροχιάς ανθρώπων [Sch+01].

1.2.6 Ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη

Η τεχνική της ευθυγράμμισης μετρήσεων 2D lidar έχει αποκτήσει τα τελευταία χρόνια και μία ακόμη εφαρμογή: τη χρήση της για την εκτίμηση της στάσης ενός οχήματος εντός του χάρτη του περιβάλλοντος στο οποίο βρίσκεται. Η λογική εδώ είναι ότι εάν αντικατασταθεί η μία από τις δύο μετρήσεις που αναφέρονται στο περιβάλλον με μία σάρωση που αναφέρεται στο χάρτη του τότε η ευθυγράμμισή της σάρωσης του χάρτη με τη σάρωση του περιβάλλοντος παρέχει το μετασχηματισμό που ελαχιστοποιεί το σφάλμα εκτίμησης της στάσης του αισθητήρα στο σύστημα συντεταγμένων του χάρτη. Συνεπώς η ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη μπορεί να χρησιμοποιηθεί στα πλαίσια της λύσης προβλημάτων εκτίμησης της στάσης του αισθητήρα. Κατά συνέπεια, σε αντίθεση με το πρόβλημα της ευθυγράμμισης σαρώσεων μετρήσεων lidar, το οποίο δεν προϋποθέτει τη γνώση του χάρτη του περιβάλλοντος, στο πρόβλημα της ευθυγράμμισης σαρώσεων lidar με σαρώσεις χάρτη η γνώση του τελευταίου είναι αναγχαία συνθήκη.

Ορισμός VI. Ορισμός σάρωσης χάρτη

Μια σάρωση χάρτη είναι μια ειχονιχή σάρωση που ενσωματώνει τις ίδιες πληροφορίες με μια σάρωση που προέρχεται από έναν φυσιχό αισθητήρα. Μόνο η υποχείμενη αρχή λειτουργίας τους είναι διαφορετιχή λόγω του γεγονότος ότι η σάρωση χάρτη αναφέρεται σε αποστάσεις σε εμπόδια εντός του χάρτη του περιβάλλοντος του ρομπότ χαι όχι εντός του το ίδιου του περιβάλλοντος—εξ ου χαι η ειχονιχότητά του. Μία σάρωση χάρτη λαμβάνεται από έναν ειχονιχό αισθητήρα χαι προχύπτει μέσω του εντοπισμού των τομών των αχτίνων που προέρχονται από την εχτίμηση της στάσης του αισθητήρα χαι των ορίων των εμποδίων του χάρτη.

Ορισμός VII. Ευθυγράμμιση σαρώσεων 2D lidar με σαρώσεις χάρτη

Η ευθυγράμμιση σαρώσεων 2D lidar με σαρώσεις χάρτη ορίζεται με τον ίδιο τρόπο όπως η ευθυγράμμιση σαρώσεων 2D lidar (ορισμός V) αλλά με το S_V να προέρχεται όχι από το φυσικό περιβάλλον του ρομπότ αλλά από το χάρτη του.

Παρατήρηση VII. Το όφελος της ευθυγράμμισης α) μιας σάρωσης χάρτη που προέρχεται από έναν ειχονιχό αισθητήρα, από την εχτιμώμενη στάση του σε αυτόν με (β) μια σάρωση που προέρχεται από έναν φυσιχό αισθητήρα, από την πραγματιχή του στάση είναι ότι η διόρθωση της εχτίμησης της στάσης του αισθητήρα παρέχει τη διόρθωση της εχτίμησης της στάσης του ρομπότ: Έστω ότι η εχτίμηση της στάσης ενός ρομπότ βρίσχεται στη γειτονιά της πραγματιχής στάσης του. Αν υποτεθεί ότι ο αισθητήρας απόστασης είναι σταθερά στην ίδια στάση σε σχέση με το ρομπότ τόσο στο πραγματιχό όσο χαι στο ειχονιχό περιβάλλον τότε ο μετασχηματισμός των τελιχών σημείων της ειχονιχής σάρωσης που ελαχιστοποιεί την απόσταση από την προβολή τους στη φυσιχή σάρωση ισούται με το μετασχηματισμό που, όταν εφαρμοστεί στην εχτιμώμενη στάση του ρομπότ ελαχιστοποιεί το σφάλμα της σε σχέση με την πραγματιχή του στάση. Επομένως η εξαγωγή του σχετιχού μετασχηματισμού της ειχονιχής σάρωσης σε σχέση με την πραγματιχή σάρωση μπορεί να χρησιμοποιηθεί ως διόρθωση της εχτίμησης της θέσης του ρομπότ εντός του χάρτη. Η βαρύτητα της σημασίας αυτής της διόρθωσης έγχειται στο γεγονός ότι η τελευταία μπορεί να χρησιμοποιηθεί

για να να μειώσει το σφάλμα εκτίμησης της θέσης του ρομπότ κατά την παρακολούθηση της στάσης του, ή για να διευκολύνει την εύρεση της στάσης του υπό καθολική αβεβαιότητα.

Στο σχήμα 1.10 απειχονίζεται η ευθυγράμμιση μίας μέτρησης S_R με μία ειχονιχή μέτρηση S_V μέσω του τελεστή smsm.

Σχήμα 1.10: Η ευθυγράμμιση της 2D ειχονικής μέτρησης $\mathcal{S}_V(\hat{p})$ με τη φυσική μέτρηση 2D lidar $\mathcal{S}_R(p)$ (scan-to-map-scan matching) μειώνει το σφάλμα εχτίμησης σε $\hat{p}'\approx p$: $\|\hat{p}'-p\|<\|\hat{p}-p\|$. Τα χόχχινα σημεία υποδηλώνουν τη φυσική μέτρηση $\mathcal{S}_R(p)$, ενώ τα γχρι την ειχονική μέτρηση $\mathcal{S}_V(\hat{p})$. Η μεταβολή της μορφής της ειχονικής μέτρησης οφείλεται στο γεγονός ότι από διαφορετικές στάσεις εντός του χάρτη είναι ορατά διαφορετικά σημεία του: η ειχονική μέτρηση προσομοιάζει όλο και περισσότερο τη φυσική μέτρηση όσο το σφάλμα εχτίμησης της στάσης μειώνεται

Παρατήρηση VIII. Σε αντίθεση με το πρόβλημα της ευθυγράμμισης πραγματικών σαρώσεων, η ευθυγράμμιση πραγματικών και εικονικών σαρώσεων είναι ένα εγγενώς συζευγμένο πρόβλημα: δεδομένου του γεγονότος ότι η γεωμετρία των τελικών σημείων των ακτίνων της εικονικής σάρωσης μπορεί να ευθυγραμμιστεί, χωρίς βλάβη της γενικότητας, μόνο από την πραγματική στάση του ρομπότ, ο προσανατολισμός του ρομπότ μπορεί να εξαχθεί εάν και μόνον εάν η εκτίμηση της θέσης του συμπίπτει με την πραγματική του θέση, και η θέση του μπορεί να εξαχθεί μόνο εάν και μόνον εάν η εκτίμηση προσανατολισμού του είναι ίση με τον πραγματικό του προσανατολισμό. Ωστόσο, και τα δύο είναι, κατ' αρχήν, άνισα. Αυτή η σύζευξη είναι ο λόγος για τον οποίο απαιτείται μια επαναληπτική μέθοδος όσο αφορά στην λύση της ευθυγράμμισης πραγματικών και εικονικών σαρώσεων.

Παρατήρηση ΙΧ. Σε αντίθεση με την ευθυγράμμιση μετρήσεων, όπου η S_V είναι μια αμετάβλητη μέτρηση επιφορτωμένη με αναπόφευχτα σφάλματα λόγω τυφλών σημείων,

στην ευθυγράμμιση πραγματικών μετρήσεων και εικονικών σαρώσεων η S_V παράγεται από το χάρτη, ο οποίος αποτυπώνει το περιβάλλον του ρομπότ στο σύνολό του, μεταφέροντας έτσι αυτή την ιδιότητα στην εικονική σάρωση. Αυτή η λεπτή διαφορά καθιστά κατ' αρχήν δυνατή την ευθυγράμμιση της εικονικής σάρωσης S_V με την αμετάβλητη μέτρηση S_R

- με μέγιστη αχρίβεια: η ανάχτηση της πραγματιχής στάσης του ρομπότ μπορεί
 να γίνει με αυθαίρετη αχρίβεια (στην ιδανιχή περίπτωση τέλειων μετρήσεων χαι
 πλήρους σύμπτωσης χάρτη και περιβάλλοντος)
- χωρίς την ανάγκη να δημιουργηθούν αντιστιχίες μεταξύ των ακτίνων των δύο σαρώσεων (καθώς η λειτουργία αυτή επινοήθηκε για και κυρίως διευκολύνει την αντιστοίχιση συνόλων που κατ' αρχήν επικαλύπτονται σε ορισμένες περιοχές αλλά όχι σε άλλες, δηλαδή για το έργο της ευθυγράμμισης μετρήσεων)

Παρατήρηση Χ. Η σημασία της αποφυγής χρήσης αντιστοιχιών—εκτός από το γεγονός ότι δεν είναι αυστηρά απαραίτητες για την ευθυγράμμιση πραγματικών μετρήσεων και εικονικών σαρώσεων— έγκειται στο γεγονός ότι η αποφυγή τους συμπαρασύρει και την αποφυγή χρήσης των εξωτερικά καθορίσιμων παραμέτρων που διέπουν τη λειτουργία των αλγορίθμων ευθυγράμμισης. Μέθοδοι ευθυγράμμισης που βασίζονται στην εφεύρεση και χρήση αντιστοιχιών απαιτούν τη ρύθμιση των εν λόγω παραμέτρων, ο προσδιορισμός ορισμένων από τις οποίες έχει αποδειχθεί ότι είναι μη διαισθητικός, απαιτητικός, και όχι καθολικά αρμόζων σε οποιοδήποτε περιβάλλον ή ακόμη και για διαφορετικές στάσεις στο ίδιο περιβάλλον.

1.2.7 Αναλλοίωτη ευθυγράμμιση Fourier-Mellin σε δύο διαστάσεις

Σε αυτή την ενότητα αναφέρουμε πώς ο μετασχηματισμός Fourier-Mellin μπορεί να χρησιμοποιηθεί για την ευθυγράμμιση δύο δισδιάστατων πλεγμάτων, τα οποία στο εξής θα αναφέρονται επίσης ως "εικόνες", οι οποίες σχετίζονται μεταξύ τους μόνο με affine μετασχηματισμούς, δηλαδή μετατόπιση, περιστροφή ή/και κλιμάκωση. [CP76; QDD94; RC96].

Έστω δύο ειχόνες σταθερού μεγέθους, r(x,y), s(x,y), όπου η δεύτερη είναι ένα μετατοπισμένο, περιστραμμένο, και κλιμαχωμένο αντίγραφο της πρώτης:

$$s(x,y) = r(\sigma(x\cos\xi + y\sin\xi) - x_0, \sigma(-x\sin\xi + y\cos\xi) - y_0)$$

Εδώ x_0, y_0 είναι οι μετατοπίσεις κατά τους δύο άξονες x, y, ξ η γωνία περιστροφής, και σ ο συντελεστής κλίμακας. Έστω ο μετασχηματισμός Fourier μιας συνάρτησης h ότι συμβολίζεται με $\mathcal{H} = \mathcal{F}\{h\}$, ότι ο αντίστροφος μετασχηματισμός Fourier της \mathcal{H} συμβολίζεται με $h = \mathcal{F}^{-1}\{\mathcal{H}\}$, και ότι $|\mathcal{H}|$ συμβολίζει το μέγεθος του \mathcal{H} . Τότε ο μετασχηματισμοί Fourier των s, r συνδέονται με τις σχέσεις

$$S(u,v) = e^{-j\phi_s(u,v)}\sigma^{-2} |\mathcal{R}(\sigma^{-1}(u\cos\xi + v\sin\xi), \sigma^{-1}(-u\sin\xi + v\cos\xi))|$$

όπου $j^2=-1$, και ϕ_s είναι η φασματική φάση του s. Η φάση ϕ_s εξαρτάται από τη μετατόπιση, την περιστροφή, και την κλίμακα του s σε σχέση με το r, αλλά το φασματικό μέγεθος $|\mathcal{S}(u,v)|$:

$$\begin{aligned} \left| \mathcal{S}(u,v) \right| &= \left| e^{-j\phi_{\mathcal{S}}(u,v)} \sigma^{-2} \mathcal{R} \left(\sigma^{-1} (u\cos\xi + v\sin\xi), \sigma^{-1} (-u\sin\xi + v\cos\xi) \right) \right| \\ &= \left| \mathcal{R} \left(\sigma^{-1} (u\cos\xi + v\sin\xi), \sigma^{-1} (-u\sin\xi + v\cos\xi) \right) \right| \end{aligned}$$
(1.5)

είναι αναλλοίωτο της μετατόπισης. Η εξίσωση (1.5) δείχνει ότι περιστροφή της r περιστρέφει το φασματικό μέγεθος της s κατά την ίδια γωνία, και ότι κλιμάκωση της r κλιμακώνει το φασματικό μέγεθος της s κατά το αντίστροφο του συντελεστή κλίμακας. Τώρα που η μετατόπιση έχει απεμπλακεί από τις άλλες δύο γραμμικές πράξεις, η περιστροφή και η κλιμάκωση μπορούν να απεμπλακούν περαιτέρω με τον ορισμό των φασματικών μεγεθών των r και s σε πολικές συντεταγμένες:

$$m{r}_p(heta,
ho) \triangleq |\mathcal{R}(
ho\cos heta,
ho\sin heta)|$$
 $m{s}_p(heta,
ho) \triangleq |\mathcal{S}(
ho\cos heta,
ho\sin heta)|$

Χρησιμοποιώντας

$$\sigma^{-1}(u\cos\xi + v\sin\xi) = \frac{\rho}{\sigma}\cos(\theta - \xi)$$
$$\sigma^{-1}(-u\sin\xi + v\cos\xi) = \frac{\rho}{\sigma}\sin(\theta - \xi)$$

προχύπτει

$$s_p(\theta, \rho) = \sigma^{-2} r_p(\theta - \xi, \rho/\sigma)$$

Με τη μετατροπή σε πολικές συντεταγμένες, η περιστροφή της s ως προς r έχει μετατραπεί σε μετατόπιση της s_p ως προς r_p κατά μήκος του γωνιακού άξονα. Ωστόσο, η κλιμάκωση στο αρχικό πεδίο έχει δεν έχει μετασχηματιστεί: χρησιμοποιώντας όμως μια λογαριθμική κλίμακα για τον ακτινικό άξονα, η κλιμάκωση μπορεί επίσης να αναχθεί σε μετατόπιση. Έστω $\lambda = \log \rho$ και $\kappa = \log \sigma$. Τότε, ορίζοντας

$$\mathbf{r}_{pl}(\theta,\lambda) \triangleq \mathbf{r}_{p}(\theta,\rho)$$
 (1.6)

$$s_{pl}(\theta, \lambda) \triangleq s_p(\theta, \rho) = \sigma^{-2} r_{pl}(\theta - \xi, \lambda - \kappa)$$
 (1.7)

η περιστροφή και η κλιμάκωση ανάγονται σε μετατοπίσεις κατά τον γωνιακό και ακτινικό άξονα αντίστοιχα. Με μετασχηματισμό Fourier των εξισώσεων (1.6) και (1.7) λαμβάνουμε ότι:

$$S_{pl}(\alpha, \beta) = \sigma^{-2} e^{-2\pi j(\alpha\kappa + \beta\xi)} \mathcal{R}_{pl}(\alpha, \beta)$$

Εδώ η γωνία περιστροφής ξ και ο συντελεστής κλίμακας $\sigma=e^{\kappa}$ εμφανίζονται ως μετατοπίσεις φάσης. Η τεχνική που περιγράφηκε παραπάνω απεμπλέκει τη μετατόπιση, την περιστροφή, και την κλιμάκωση των δύο εικόνων ανάμεσά τους και επομένως είναι αποτελεσματική, αριθμητικά εφικτή, και αποδοτική.

Η τεχνική Symmetric Phase-Only Matched Filtering [QDD94] έχει βρεθεί ότι είναι αποτελεσματική στην ευθυγράμμιση δύο όμοιων (όχι απαραίτητα πανομοιότυπων) εικόνων, λόγω της ικανότητάς της να αποδίδει υψηλά επίπεδα λόγου σήματος προς θόρυβο (Signal-to-Noise ratio—SNR) και ευκρινείς κορυφές συσχετίσεων. Η βασική διαδικασία υπολογισμού

της γωνίας περιστροφής και της κλίμακας της εικόνας s σε σχέση με r συνοψίζεται σε ψευδοκώδικα στον αλγόριθμο I.

Αλγόριθμος Ι core FMI-SPOMF

```
Input: 2D grids / Images r, s
```

Output: $Q_0(\alpha, \beta)$

- 1: compute $\mathcal{R}_{pl}(\alpha, \beta) = \mathcal{F}\{\boldsymbol{r}_{pl}(\theta, \lambda)\}$
- 2: extract the phase $e^{-j\phi_{\boldsymbol{r}}(\alpha,\beta)}$
- 3: compute $S_{pl}(\alpha, \beta) = \mathcal{F}\{s_{pl}(\theta, \lambda)\}$
- 4: extract the phase $e^{-j\phi_{s}(\alpha,\beta)}$
- 5: determine $Q_0(\alpha, \beta) = e^{-j(\phi_s(\alpha, \beta) \phi_r(\alpha, \beta))}$
- 6: **return** $Q_0(\alpha, \beta)$

Μετά τον υπολογισμό του Q_0 η γωνία περιστροφής ξ και ο συντελεστής κλίμακας σ μπορούν να εξαχθούν με τον υπολογισμό του αντίστροφου μετασχηματισμού Fourier του $Q_0,\,q_0=\mathcal{F}^{-1}(Q_0),$ και τον υπολογισμό των ορισμάτων που τον μεγιστοποιούν.

Παρατήρηση ΧΙ. Υπό αυτή την έννοια, το $\max q_0$ μπορεί να ερμηνευτεί ως ένα μέτρο ομοιότητας των δύο εικόνων εισόδου.

Στα προβλήματα ευθυγράμμισης εικόνων οι δύο εικόνες εισόδου θεωρούνται ότι είναι πανομοιότυπες, και στόχος είναι να προσδιοριστούν και οι τέσσερις παράμετροι του γεωμετρικού μετασχηματισμού που συνδέιουν τη μία με την άλλη. Η διαδικασία που ακολουθείται για εξαγωγή τους συνοψίζεται σε ψευδοκώδικα στον αλγόριθμο ΙΙ.

Στα προβλήματα αναγνώρισης προτύπων, από την άλλη πλευρά, όπου ο στόχος είναι να εντοπιστούν μεταξύ ενός συνόλου εικόνων αναφοράς εκείνη που ταιριάζει καλύτερα με μια παρατηρούμενη εικόνα, μπορεί κανείς δυνητικά να βεβαιώσει την ύπαρξη αυτής της εικόνας εκτελώντας τον αλγόριθμο I ανάμεσα σε όλες τις εικόνες αναφοράς και την εικόνα εισόδου, να προσδιορίσει το μέγιστο κάθε εξόδου q_0 , και να τοποθετήσει ένα κατώφλι σε αυτό: εάν το υπερβαίνει τότε πρόκειται για ταύτιση. Τα ψευδώς θετικά αποτελέσματα μπορούν στη συνέχεια να φιλτραριστούν εκτελώντας τον αλγόριθμο II, συγκρίνοντας την παρατηρούμενη εικόνα με κάθε εικόνα αναφοράς μετά από μετατόπιση, περιστροφή, και κλιμάκωση κατά τις προσδιορισμένες παραμέτρους, και εφαρμόζοντας ένα κατώφλι στο μέγιστο του q_0 .

Αλγόριθμος ΙΙ FMI-SPOMF for image registration

Input: 2D grids / Images r, s

Output: Translation (x_0, y_0) , rotation angle ξ , scale σ , similarity measure w

- 1: $Q_0(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (r, s)$
- 2: Compute $q_0(\theta, \lambda) = \mathcal{F}^{-1}\{Q_0(\alpha, \beta)\}$
- 3: Determine $(\xi, \kappa) \leftarrow \arg \max_{\theta, \lambda} q_0(\theta, \lambda)$
- 4: $\mathbf{s} \leftarrow \text{Rescale } \mathbf{s} \text{ by } \sigma^{-1} = e^{-\kappa}$
- 5: $s' \leftarrow s$
- 6: $s \leftarrow \text{rotate } s \text{ by } \xi$
- 7: $s' \leftarrow \text{rotate } s' \text{ by } \xi + \pi$
- 8: $Q_1(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (r, s)$
- 9: $Q_2(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (\boldsymbol{r}, \boldsymbol{s}')$
- 10: $q_1(\theta, \lambda) \leftarrow \mathcal{F}^{-1}\{Q_1(\alpha, \beta)\}$
- 11: $q_2(\theta, \lambda) \leftarrow \mathcal{F}^{-1}\{Q_2(\alpha, \beta)\}$
- 12: Determine $q(\theta, \lambda) \leftarrow \arg\max_{q_1, q_2} \{q_1, q_2\}$
- 13: Determine similarity measure $w = \max q$
- 14: $(x_0, y_0) \leftarrow \arg \max_{\theta} q$
- 15: **return** $(x_0, y_0), \xi, \sigma, w$

1.2.8 Κεντροειδές πολυγώνου

Το θεώρημα του Green [Rie51] δηλώνει ότι για μια ομαλή καμπύλη C που αποτελεί το όριο μιας περιοχής D:

$$\oint_C P(x,y) dx + Q(x,y) dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$
 (1.8)

όπου $A=\iint_D dA$ είναι το εμβαδόν του D. Το εμβαδόν A μπορεί να να υπολογιστεί επιλέγοντας κατάλληλα P, Q έτσι ώστε $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$. Έστω P=0 και Q=x, τότε $\oint_C x\,dy=\iint_D dA=A$. Έστω το πολύγωνο του σχήματος 1.11, το οποίο ορίζεται από τη διατεταγμένη ακολουθία κορυφών n $\{C_0,C_1,\ldots,C_{n-1}\}$, του οποίου η περιοχή οριοθετείται από το όριο $C=(C_0C_1)\cup(C_1C_2)\cup\cdots\cup(C_{n-1}C_0)$. Επειδή η επικαμπύλια ολοκληρώματα πάνω σε ομαλές καμπύλες είναι προσθετικά σε μήκος:

$$A = \oint_C x \, dy = \int_{C_0 C_1} x \, dy + \dots + \int_{C_{n-1} C_0} x \, dy \tag{1.9}$$

Για να υπολογίσουμε το k-οστό ολοχλήρωμα C_kC_{k+1} , έστω ότι το ευθύγραμμο τμήμα

Σχήμα 1.11: Ένα πολύγωνο n κορυφών του οποίου το όριο $C=C_0C_1\cup C_1C_2\cup\cdots\cup C_{n-1}C_0$ οριοθετεί την περιοχή D

από (x_k, y_k) έως (x_{k+1}, y_{k+1}) παραμετροποιείται από την ακόλουθη σχέση:

$$C_k C_{k+1} : \vec{r} = ((x_{k+1} - x_k)t + x_k, (y_{k+1} - y_k)t + y_k)$$
(1.10)

όπου $t \in \mathbb{R}: 0 \le t \le 1, \ k \in \mathbb{Z}: 0 \le k \le n-1,$ και k+1 είναι 0 εάν k=n-1. Ένα ολοκλήρωμα της δεξιά πλευρά της εξίσωσης (1.9) επί του C_kC_{k+1} εκφράζεται ως

$$\int_{C_k C_{k+1}} x \, dy = \int_0^1 \left((x_{k+1} - x_k)t + x_k \right) (y_{k+1} - y_k) \, dt \tag{1.11}$$

Θέτοντας αυτή την παραμετροποίηση στην εξίσωση (1.9) και αθροίζοντας για όλες τις γραμμές, καταλήγουμε ότι:

$$A = \frac{1}{2} \sum_{k=0}^{n-1} (x_{k+1} + x_k)(y_{k+1} - y_k)$$
 (1.12)

όπου $(x_n, y_n) \equiv (x_0, y_0)$.

Ο υπολογισμός του εμβαδού του πολυγώνου επιτρέπει την εύρεση του κέντρου μάζας του, δηλαδή το κεντροειδές του. Το κεντροειδές (x_c, y_c) ενός πολυγώνου δίνεται από τη σχέση:

$$(x_c, y_c) \equiv \left(\frac{1}{A} \iint_A x \, dx \, dy, \frac{1}{A} \iint_A y \, dx \, dy\right) \tag{1.13}$$

Για να υπολογίσουμε το x_c , έστω P=0 και $Q=\frac{1}{2}x^2$. Τότε από την εξίσωση (1.8):

$$x_c = \frac{1}{A} \iint_A x \, dx \, dy = \frac{1}{A} \oint_C \frac{1}{2} x^2 \, dy \tag{1.14}$$

Χρησιμοποιώντας την ίδια παραμετροποίηση για κάθε όριο C_kC_{k+1} όπως στην εξίσωση (1.11):

$$x_c = \frac{1}{2A} \int_0^1 (x_k^2 + 2x_k(x_{k+1} - x_k)t + (x_{k+1} - x_k)^2 t^2)(y_{k+1} - y_k) dt$$
$$= \frac{1}{6} (x_{k+1}^2 + x_{k+1}x_k + x_k^2)(y_{k+1} - y_k)$$

Επομένως, για ένα πολύγωνο με πεπερασμένο αριθμό κορυφών:

$$x_{c} = \frac{1}{6A} \sum_{k=0}^{n-1} (x_{k+1}^{2} + x_{k+1}x_{k} + x_{k}^{2})(y_{k+1} - y_{k})$$

$$= \frac{1}{6A} \sum_{k=0}^{n-1} (-y_{k}x_{k+1}^{2} + y_{k+1}x_{k+1}x_{k} - y_{k}x_{k+1}x_{k} + y_{k+1}x_{k}^{2})$$

$$= \frac{1}{6A} \sum_{k=0}^{n-1} (x_{k+1} + x_{k})(x_{k}y_{k+1} - x_{k+1}y_{k})$$

$$(1.15)$$

Με τον ίδιο τρόπο καταλήγουμε ότι:

$$y_c = \frac{1}{6A} \sum_{k=0}^{n-1} (y_{k+1} + y_k)(x_k y_{k+1} - x_{k+1} y_k)$$
 (1.16)

όπου και στις δύο εξισώσεις (1.15), (1.16) η συντεταγμένες του n-οστού σημείου είναι αυτές του 0-οστού, και το εμβαδόν A δίνεται από την εξίσωση (1.12).

Παρατήρηση ΧΙΙ. Το κεντροειδές ενός πολυγώνου είναι μοναδικό. Η θέση του σε σχέση με τα σημεία που αποτελούν το πολύγωνο είναι ανεξάρτητη από το σύστημα αναφοράς στο οποίο εκφράζονται όλα τα σημεία (συμπεριλαμβανομένου του κεντροειδούς).

1.2.9 Το λειτουργικό σύστημα ρομπότ ROS

Το ROS είναι ένα μετα-λειτουργικό σύστημα ανοικτού κώδικα για την εκτέλεση εφαρμογών που αφορούν στη ρομποτική από το υπολογιστικό σύστημα που φέρει ένα ρομπότ [Ng09]. Παρέχει αφαίρεση υλικού (hardware abstraction), έλεγχο συσκευών χαμηλού επιπέδου, υλοποίηση συχνά χρησιμοποιούμενων λειτουργιών, διακίνηση μηνυμάτων μεταξύ διεργασιών, και διαχείριση πακέτων. Παρέχει επίσης εργαλεία και βιβλιοθήκες για την απόκτηση, την κατασκευή, τη συγγραφή, και την εκτέλεση κώδικα. Ο "γράφος" του ROS σε χρόνο εκτέλεσης είναι ένα δίκτυο peer-to-peer διεργασιών που συνδέονται χρησιμοποιώντας την υποδομή επικοινωνίας του ROS.

Ένα από τα κύρια πλεονεκτήματα του ROS είναι η τυποποίηση των τύπων μηνυμάτων επικοινωνίας, χρησιμοποιώντας μια απλή γλωσσικά ουδέτερη IDL (Interface Definition Language) για την περιγραφή τους, με αποτέλεσμα την ικανότητα υλοποίησης λογισμικού χωρίς γλωσσικές ιδιαιτερότητες. Αυτή η τυποποίηση επιτρέπει την ανάπτυξη αποσυνδεδεμένων πακέτων ROS, δηλαδή εύκολα επαναχρησιμοποιήσιμων συλλογών κόμβων. Ένας κόμβος είναι μια υπολογιστική διεργασία που εκτελεί υπολογισμούς που προσφέρουν συγκεκριμένη λειτουργικότητα. Οι κόμβοι συνδυάζονται μαζί σε έναν γράφο και επικοινωνούν μεταξύ τους ασύχγρονα, χρησιμοποιώντας θέματα (topics), ή/και σύγχρονα, μέσω υπηρεσιών κλήσης απομακρυσμένων διαδικασιών. Στο ROS ένα ρομποτικό σύστημα αποτελείται συνήθως από πολλούς κόμβους. Οι απαιτήσεις του υλικού του ROS είναι ελάχιστες σε επεξεργαστική ισχύ και μνήμη, καθιστώντας το ικανό να εκτελεστεί σε ένα Raspberry Pi ή ένα BeagleBone, ωστόσο οι πραγματικές απαιτήσεις του ποικίλουν ανάλογα με το ανάλογα με τον αριθμό και τον τύπο των κόμβων που έχει αναλάβει να εκτελέσει ένα ρομπότ.

Για τους σχοπούς της διατριβής το ROS χρησιμοποιείται σε συνδυασμό με πραγματικά ή προσομοιωμένα περιβάλλοντα, αισθητήρες, και ρομπότ, για την εμβάθυνση της έρευνας στο πεδίο εφαρμογής ΠΕ, και για την διεξαγωγή πειραμάτων και προσομοιώσεων με βάση προτεινόμενες μεθόδους και μεθόδους της βιβλιογραφίας.

²http://wiki.ros.org/Nodes

Κεφάλαιο 2

Οδικός χάρτης

2.1 Οδικός χάρτης

Αυτό το κεφάλαιο έχει ως σκοπό την παροχή μίας συνοπτικής κάτοψης των προβλημάτων στων οποίων τη λύση συμβάλλει η διατριβή. Το σχήμα 2.1 λειτουργεί τροχιοδεικτικά ως προς τα προβλήματα-σταθμούς, των συνδετικών βημάτων ανάμεσά τους, και τις ιδιότητές των λύσεών τους.

Όλα ξεχινούν από την ανάγχη διαλεύχανσης ενός προβλήματος του οποίου η λύση είναι χρίσιμη σε πραχτιχές εφαρμογές ρομποτιχής χινητής βάσης: της επίδοσης χαι ποιότητας των διαφορετιχών παχέτων λογισμιχού που αφορούν στην αυτόνομη πλοήγηση με το λειτουργιχό σύστημα ROS (ενότητα 1.2.9). Καθώς η δημοφιλία τού τελευταίου έχει εξαπλωθεί στην έρευνα, έχει ενσωματωθεί σε αυτό ένας ιχανός αριθμός αλγορίθμων αυτόνομους πλοήγησης (χάραξης μονοπατιών σε δισδιάστατο χάρτη χαι ελεγχτών χίνησης: ενότητα 1.1.1), των οποίων η συνδυαστιχή χρήση αποτελεί αντιχείμενο χρονοβόρας έρευνας χαι πειραματισμού για ερευνητές χαι επαγγελματίες του πεδίου εφαρμογής ΠΕ. Σχοπός αυτής της μελέτης είναι η παροχή μίας μεθόδου αξιολόγησης της επίδοσης αλγορίθμων αυτόνομους πλοήγησης, χαθώς χαι η πειραματιχή αξιοποίησή της σε ό,τι αφορά τρέχοντες διαθέσιμους αλγορίθμους.

Κατά τη διενέργεια της πειραματικής αξιολόγησης των μεθόδων πλοήγησης παρατηρήσαμε το φαινόμενο της αστάθειας της εκτίμησης της στάσης από το φίλτρο σωματιδίων, και το γενικευμένο φαινόμενο του σφάλματός της ως προς την πραγματική στάση ενός ρομπότ, ανεξαρτήτως μεθόδου πλοήγησης (σχήμα 2.1-A). Η μικρή αυτή παρατήρηση αποδεικνύεται

ότι είναι καίριας σημασίας καθώς μάς εισάγει στον δρόμο της έρευνας επί της βελτίωσης της εκτίμησης της στάσης ενός ρομπότ.

Προς αυτόν το στόχο επικεντρωθήκαμε στην πηγή του προβλήματος: την εκτίμηση της στάσης ενός ρομπότ βάσει περιορισμένης αβεβαιότητας (pose tracking) με φίλτρο σωματιδίων (ενότητα 1.2.3). Με σκοπό τη μείωση του σφάλματος εκτίμησης θέσαμε έναν αριθμό από υποθέσεις και εξακριβώσαμε πειραματικά την ευστάθειά τους. Τα συμπεράσματα που εξήγαμε αφορούν στη βελτίωση της ακρίβειας εκτίμησης του φιλτρου σωματιδίων (α) επιλέγοντας ως πηγές της τελικής εκτίμησης του υποσύνολα των πιό βαρέων σωματιδίων, (β) με τον προσθετικό τρόπο χρήσης της μεθόδου ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη (ενότητα 1.2.6), και (γ) με την ανατροφοδότηση της εκτίμησης της τελευταίας στον πληθυσμό σωματιδίων του φίλτρου (σχήμα 2.1-Β).

Για την υλοποίηση της ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη χρησιμοποιήσαμε τον αλγόριθμο ευθυγράμμισης μετρήσεων lidar με την καλύτερη επίδοση στη βιβλιογραφία. Κατά την υλοποίηση της μεθόδου β' παρατηρήσαμε ότι η λύσεις του εν λόγω αλγορίθμου παρουσίαζαν σημαντικές διακυμάνσεις στην ακρίβειά τους (α) με μικρές αλλαγές στις παραμέτρους που αφορούν στη διαδικασία υπολογισμού αντιστοιχιών ανάμεσα στις ακτίνες των δύο σαρώσεων, και (β) με την ακρίβεια να μειώνεται όσο ο θόρυβος στις δύο σαρώσεις αυξάνεται.

Για αυτούς τους λόγους ξεκινήσαμε να ερευνούμε τη βιβλιογραφία για μεθόδους ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη που να μην χρησιμοποιούν αντιστοιχίες και που να είναι εύρωστες ως προς τον θόρυβο εισόδου. Το ενδιαφέρον εδώ είναι ότι τόσο οι μέθοδοι ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη όσο και οι μέθοδοι ευθυγράμμισης μετρήσεων lidar (οι οποίες είναι δυνατόν και αυτές να χρησιμοποιηθούν για την ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη) χρησιμοποιούν στο σύνολό τους αντιστοιχίσεις ανάμεσα σε δύο εισόδους για να φέρουν εις πέρας την ευθυγράμμιση. Για να πετύχουμε τους στόχους στραφήκαμε εν τέλει στο πεδίο της μηχανικής όρασης, από όπου χρησιμοποιήσαμε μία μέθοδο που εκπληρώνει και τα δύο κριτήρια. Για την πειραματική εξακρίβωση του οφέλους χρήσης της τήν στρέψαμε στο πρόβλημα της εύρεσης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος (σχήμα 2.1-Γ). Η πειραματική διαδικασία της μεθόδου εστιάζει στην εξακρίβωση των ποστοστών των αληθώς θετικών εκτιμήσεων στάσεων και των σφαλμάτων τους σε σχέση με την καλύτερη μέθοδο ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη της βιβλιογραφίας.

Ο λόγος που η μέθοδος δεν χρησιμοποιήθηκε απευθείας για την εκτίμηση της στάσης ενός

οχήματος βάσει περιορισμένης αβεβαιότητος είναι ότι ο χρόνος εκτέλεσής της είναι τέτοιος που δεν μπορεί να συμβαδίσει με το ρυθμό ανανέωσης των μετρήσεων που προέρχονται από έναν συμβατικό αισθητήρα lidar. Αντιθέτως, στο πρόβλημα της εκτίμησης βάσει καθολικής αβεβαιότητος, ο χαμηλός χρόνος εκτέλεσης είναι επιθυμητός αλλά όχι αυστηρά απαιτητέος ή αναγκαίος.

Σε αυτό το σημείο είχαν γίνει κατανοητά τέσσερα σημεία: (α) η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη είναι ικανή να επιλύσει με επιτυχία τα προβλήματα εύρεσης και παρακολούθησης της στάσης ενός ρομπότ (δηλαδή βάσει καθολικής και πεπερασμένης αβεβαιότητος), (β) η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη με βάση τον υπολογισμό αντιστοιχιών ανάμεσα στις εισόδους—ο de facto και καθ' ολοκληρίαν τρόπος επίλυσης του προβλήματος—είναι υπό συνθήκες επιβλαβής ως προς την ποιότητα της ευθυγράμμισης, (γ) η ανάπτυξη μεθόδων ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών που εκτελείται σε πραγματικό χρόνο αποτελεί ως εκ τούτου σημαντική συμβολή στη λύση του προβλήματος, και (δ) οποιαδήποτε προσπάθεια για τη δημιουργία μεθόδου ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών θα έπρεπε να προέλθει από έρευνα έξω από τη σχετική βιβλιογραφία.

Ως εκ τούτων η έρευνα μας επικεντρώθηκε στην επίλυση του προβλήματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών και σε πραγματικό χρόνο. Προς αυτόν το σκοπό εστιάσαμε σε μία κλάση αισθητήρων lidar των οποίων η χρήση έχει αυξηθεί τα τελευταία χρόνια για σκοπούς εύρεσης της στάσης, οι οποίοι έχουν να επωφεληθούν τα μέγιστα από τέτοιες μεθόδους λόγω του αυξημένου θορύβου μέτρησης που φέρουν. Επιπρόσθετα, αυτή η κλάση αισθητήρων εμφανίζει πανοραμικό γωνιακό πεδίο όρασης: κατά συνέπεια η περιοδικότητα του σήματος μετρήσεων αποτελεί γόνιμο έδαφος για την απαλλαγή από τον υπολογισμό αντιστοιχιών (σχήμα 2.1-Δ). Το αποτέλεσμα αυτής της έρευνας ήταν η ανάπτυξη μίας τριλογίας μεθόδων, αντλούσα την αποτελεσματικότητά της από πρώτες αρχές, το πεδίο της κρυσταλλογραφίας, και το πεδίο της μηχανικής όρασης. Κάθε μία από τις τρεις μεθόδους εκτελείται σε πραγματικό χρόνο και εμφανίζει μεγαλύτερη ευρωστία και μικρότερα σφάλματα στάσης από τις μεθόδους της βιβλιογραφίας.

Το επόμενο και τελευταίο βήμα ήταν το πιό σημαντικό, το λιγότερο τεχνικό, και με τη γενικότερη συμβολή: εάν ο χάρτης αντικατασταθεί με μία δεύτερη φυσική μέτρηση τότε η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη μετατρέπεται στη γενικότερη μέθοδο ευθυγράμ-

μισης μετρήσεων lidar, η οποία χρησιμοποιείται ως μέσο οδομετρίας (απαραίτητη στα φίλτρα σωματιδίων και Kalman), και βρίσκεται στην καρδιά της επίλυσης του προβλήματος της ταυτόχρονης χαρτογράφησης και παρακολούθησης της στάσης ενός ρομπότ (παρατήρηση VI). Το τελευταίο λοιπόν βήμα είναι η ανάπτυξη μίας μεθόδου για την ευθυγράμμιση μετρήσεων 2D lidar που δεν χρησιμοποιεί αντιστοιχίες, που εκτελείται σε πραγματικό χρόνο, και που εμφανίζει μεγαλύτερη ευρωστία στο θόρυβο μέτρησης και μικρότερα σφάλματα ευθυγράμμισης σε σχέση με αντίστοιχες μεθόδους της βιβλιογραφίας.

Σχήμα 2.1: Ο οδικός χάρτης της διατριβής

Κεφάλαιο 3

Συμβολές και Διάρθρωση της διατριβής

- 3.1 Συμβολές της διατριβής
- 3.2 Διάρθρωση

Μέρος ΙΙ

Προβλήματα—Λύσεις— Συμβολές

Κεφάλαιο 4

Αξιολόγηση αλγορίθμων αυτόνομης πλοήγησης

Μια από τις θεμελιώδεις λειτουργίες ενός αυτόνομου ρομπότ χινητής βάσης είναι η ιχανότητα να διασχίζει το περιβάλλον στο οποίο δραστηριοποιείται με ελάχιστο ή χαθόλου χειροχίνητο έλεγχο από άνθρωπο, χαι με ασφάλεια. Η ιχανότητα αυτή ονομάζεται πλοήγηση. Η αυτόνομη πλοήγηση χωρίζεται σε δύο διαχριτές λειτουργίες: (α) τον σχεδιασμό της πλοήγησης, που αποτελείται από έναν αλγόριθμο χάραξης μονοπατιών, ο οποίος αναλαμβάνει τη δημιουργία ενός μονοπατιού από μια αρχιχή σε μια τελιχή θέση-στόχο εντός του χάρτη του περιβάλλοντος στο οποίο χινείται το ρομπότ, χαι (β) την εχτέλεση της πλοήγησης, που αποτελείται από έναν ελεγχτή χίνησης, ο οποίος είναι επιφορτισμένος με τη διάσχιση του προαναφερθέντος μονοπατιού. Ο τελευταίος πρέπει χατα τη λειτουργία του να αντιμετωπίζει με επιτυχία προβλήματα, χινήσεις, χαι αβεβαιότητες που προχύπτουν μέσα στο- χαι από το περιβάλλον του, μέσω των αισθητήρων του.

Το έργο της επιλογής του πρακτικά βέλτιστου συνδυασμού αλγορίθμων αυτόνομους πλοήγησης είναι αρκετά δύσκολο, δεδομένου της ανεπαρκούς έρευνας σχετικά με το ποιος συνδυασμός είναι ο αποτελεσματικότερος δεδομένων των περιορισμών και των ικανοτήτων των υποκείμενων αλγορίθμων πλοήγησης και των σκοπών των εφαρμογών αυτόνομους πλοήγησης. Το ερώτημα της επιλογής του βέλτιστου συνδυασμού είναι σημαντικό καθώς η έρευνα επί των αυτόνομων επίγειων οχημάτων αυξάνει σε αναλογία και με την υιοθέτησή τους σε πραγματικά περιβάλλοντα, και η απάντησή του αναλόγως των διαφόρων εφαρμογών επιφέρει δαπανηρούς χρόνους έρευνας και δοκιμών.

4.1 Στόχοι του κεφαλαίου και δομή

Στόχος αυτού του κεφαλαίου είναι (α) ο σχεδιασμός μίας ολοκληρωμένης, περιεκτικής, και επεκτάσιμης μεθοδολογίας αξιολόγησης μεθόδων αυτόνομους πλοήγησης κινητών βάσεων ρομπότ του πεδίου εφαρμογής ΠΕ, και (β) η εφαρμογή της για την αξιολόγηση της επίδοσης τρεχόντων υλοποιήσεών τους στο και μέσω του μεσολογισμικού ROS.

Στην ενότητα 4.2 γίνεται η επισκόπηση των χαρακτηριστικών γνωρισμάτων των αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που απαντώνται στη ερευνητική βιβλιογραφία ως θεωρητικές μέθοδοι και ως υλοποιήσεις πακέτων λογισμικού. Στην ενότητα 4.3 εκτίθεται η μεθοδολογία αξιολόγησης. Αρχικά παρουσιάζεται η διάταξη της πειραματικής διαδικασίας, και στη συνέχεια η μεθοδολογία αξιολόγησης με βάση ποσοτικές μετρικές, οι οποίες αποτελούν αντιχειμενιχά χριτήρια της επίδοσης ενός ρομπότ στο έργο της αυτόνομους πλοήγησης. Όσο αφορά στις υλοποιήσεις των μεθόδων αυτόνομους πλοήγησης, δεδομένου ότι η αξιολόγηση είναι στραμμένη στην πράξη, συστήνεται μία μεθοδολογία προκαταρκτικής αξιολόγησής τους με βάσει ποιοτικά κριτήρια που τίθενται από την εμπειρία ανάπτυξης και συντήρησης λογισμικού, προκειμένου να διακριθούν τα εύρωστα και εύχρηστα πακέτα λογισμικού από τα μη. Η πειραματική αξιολόγηση διενεργείται επί μεθόδων αυτόνομους πλοήγησης των οποίων οι υλοποιήσεις δεν απορρίπτονται με βάση αυτά τα ποιοτικά κριτήρια. Η πειραματική διαδικασία και η εφαρμογή της μεθοδολογίας ποσοτικής αξιολόγησης διενεργείται σε εννιά συνδυασμούς παχέτων λογισμιχού στην ενότητα 4.4. Το αποτέλεσμα είναι μία ιεράρχηση των συνδυασμών τους. Τέλος, η ενότητα 4.5 παρέχει τα συμπεράσματα του κεφαλαίου και οδούς για περαιτέρω έρευνα, οι οποίες οδηγούν στο κεφάλαιο 5.

4.2 Σχετική βιβλιογραφία

Για να διασχίσει ένα αυτόνομο επίγειο ρομπότ το περιβάλλον του πρέπει να είναι διαθέσιμες μία σειρά από προϋποθέσεις και λειτουργίες. Πρώτον είναι αναγκαία η ύπαρξη ενός στόχου για να φτάσει το ρομπότ. Αυτός ο στόχος είναι συνήθως η επιθυμητή τελική στάση του στον 2D χώρο $([x,y,\theta]$ —σχήμα 1.5). Στη συνέχεια πρέπει να χρησιμοποιηθεί ένας αλγόριθμος ικανός να λάβει ως είσοδο τη ρομποτική αντίληψη για τον περιβάλλοντα κόσμο (συνήθως ένας 2D ή

3D χάρτης), καθώς και την εκτίμηση για την αρχική στάση του ρομπότ, ώστε να είναι δυνατή η εκτίμηση της στάσης του ρομπότ ενόσω αυτό κινείται αυτόνομα προς τον ανωτέρω στόχο (pose tracking—ενότητα 1.2.2). Έπειτα απαιτείται η ύπαρξη ενός γεωμετρικού μονοπατιού το οποίο, εάν ακολουθηθεί από το ρομπότ, θα το οδηγήσει από την αρχική στην επιθυμητή του στάση. Αυτό το μονοπάτι παράγεται από έναν αλγόριθμο χάραξης μονοπατιών, του οποίου το αντικείμενο είναι το σύνολο του (στατικού) χάρτη. Τέλος, ένας ελεγκτής κίνησης είναι απαραίτητος, ο οποίος θεωρεί ως εισόδους του το μονοπάτι, την τρέχουσα στάση του ρομπότ, και την τοπική του αντίληψη, και παράγει ταχύτητες κινητήρων έτσι ώστε να οδηγηθεί το ρομπότ στο να ακολουθήσει το μονοπάτι. Ταυτόχρονα, είναι αρμοδιότητα τού τελευταίου να πλοηγείται το ρομπότ με την μεγαλύτερη δυνατή ασφάλεια (υποθέτοντας ότι το ρομπότ θα πρέπει να αποφεύγει συγκρούσεις με στατικά ή κινούμενα αντικείμενα, αν και αυτό δεν αποτελεί πάντοτε προϋπόθεση [GPG17]).

Σε αυτή την ενότητα παρέχεται μία επισκόπηση των αλγορίθμων χάραξης μονοπατιών της βιβλιογραφίας, των ελεγκτών κίνησης για επίγειες κινητές βάσεις, καθώς και των υλοποιήσεών τους σε υπολογιστή με το λειτουργικό σύστημα ROS.

4.2.1 Αλγόριθμοι χάραξης μονοπατιών

Όσον αφορά στους αλγορίθμους χάραξης μονοπατιών αυτοί συνήθως ανήκουν σε μία από τις παρακάτω έξι κύριες αλγοριθμικές οικογένειες: Γράφοι Ορατότητας (Visibility Graphs), Τεχνικές Βασισμένες στη Σκελετοποίηση, Πιθανοτικοί Οδικοί Χάρτες (Probabilistic Roadmaps—PRM), Τυχαία Δένδρα Ταχείας Εξερεύνησης (Rapidly exploring Random Trees—RRT), Πλέγματα Κατάστασης (State Lattices), και Συναρτήσεις Πλοήγησης (Navigation Functions—NF).

Οι Γράφοι Ορατότητας ήταν μία από τις πρώτες μεθόδους σχεδιασμού μονοπατιών. Προτάθηκαν από τους Losano-Perez και Wesley το 1979 [LW79], και περιγράφουν μια μέθοδο δημιουργίας μονοπατιών σε κυρτά περιβάλλοντα, όπου τα εμπόδια μετασχηματίζονται με τρόπο τέτοιο ώστε να απεικονίζουν περιοχές που δεν μπορούν να διασχιστούν λόγω των γεωμετρικών περιορισμών του αποτυπώματος του ρομπότ. Μετά την κατασκευή του γράφου ορατότητας, ο οποίος περιέχει ως κόμβους τα μετασχηματισμένα εμπόδια, εφαρμόζεται ένας

¹Με τον όρο τοπική αντίληψη εννοούνται τα ακατέργαστα αισθητηριακά δεδομένα που αντιπροσωπεύουν τις δυναμικές μεταβολές του περιβάλλοντος, σε αντιδιαστολή με τον στατικό συνολικό χάρτη.

αλγόριθμος αναζήτησης για τη δημιουργία της τελικής διαδρομής. Όπως περιγράφεται στα [Gho07] και [GG13] οι γράφοι ορατότητας υποφέρουν από υψηλές απαιτήσεις σε υπολογιστικούς πόρους και από την πολυπλοκότητα των γεωμετρικών περιορισμών των εμποδίων. Ως εκ τούτων, έχουν προταθεί άλλες προσεγγίσεις για την αντιμετώπιση αυτών των ζητημάτων [KKK11].

Μεταξύ των τεχνικών σκελετοποίησης το Γενικευμένο Διάγραμμα Voronoi (Generalised Voronoi Diagram—GVD) είναι ο κυρίαρχος αλγόριθμος που χρησιμοποιείται προκειμένου να παραχθεί ένας σκελετός του ελεύθερου χώρου στον οποίο κινείται το ρομπότ, και συνεπώς μονοπατιών πλοήγησης των οποίων τα σημεία ισαπέχουν από τα εμπόδια του περιβάλλοντος. Παραδείγματα χρήσης του GVD σε αλγορίθμους χάραξης μονοπατιών αναφέρονται (α) στο [Gar+06], όπου το GVD ακολουθείται από την εφαρμογή της μεθόδου Fast Marching για την ελαχιστοποίηση του μήκους της διαδρομής, (β) στο [BG07], όπου το GVD χρησιμοποιείται για τη δημιουργία μιας ομαλής διαδρομής που εάν ακολουθηθεί κατά γράμμα δεν επιφέρει συγκρούσεις του ρομπότ με το περιβάλλον του, και (γ) στο [Ok+13], το οποίο εισάγει τα Πεδία Αβεβαιότητας Voronoi (VUF), και που συνδυάζει το GVD για την κατασκευή μονοπατιών και έναν ελεγκτή κίνησης για την πλοήγηση του οχήματος.

Μια από τις πιο διάσημες οιχογένειες αλγορίθμων σχεδιασμού διαδρομής είναι αυτή των Πιθανοτιχών Οδιχών Χαρτών. Η ιδέα τους είναι απλή: πραγματοποιείται δειγματοληψία στον ελεύθερο χώρο του χάρτη του περιβάλλοντος χαι δημιουργείται ένας γράφος του οποίου οι αχμές είναι ασφαλείς για προσπέλαση. Στη συνέχεια εφαρμόζεται ένας αλγόριθμος αναζήτησης στον γράφο για την εύρεση της διαδρομής που εμφανίζει ελάχιστο χόστος με βάση τη μετριχή του μήχους του συνολιχού μονοπατιού από την αρχιχή προς την τελιχή στάση. Τα PRM εισήχθησαν αρχιχά από τους Καντακί χ.α. [Kav+96], ωστόσο έχουν προταθεί διάφορες τροποποιήσεις, όπως (α) στο [NSL99], όπου οι έννοιες των Γράφων Ορατότητας χρησιμοποιούνται για την ενίσχυση του PRM, (β) στο [BK00] που εισάγει τον αλγόριθμο Lazy PRM, ο οποίος ελαχιστοποιεί δυναμιχά τις συνδέσεις του γράφου, χαι (γ) στο [HSZ05] όπου προτείνεται ο υβριδιχός PRM, δηλαδή ένας συνδυασμός διαφορετιχών PRM ανάλογα με τις ιδιότητες του περιβάλλοντος.

Μια άλλη μεθοδολογία σχεδιασμού μονοπατιών είναι αυτή των Τυχαίων Δένδρων Ταχείας Εξερεύνησης, που προτάθηκε αρχικά από τον La Valle το 1998 [Lav98]. Τα RRT δημιουργούν επαναληπτικά δενδροειδείς δομές, ξεκινώντας από έναν κόμβο-ρίζα και τερματίζουν όταν ένα

φύλλο φτάσει στον επιθυμητό στόχο. Υπάρχουν διάφορες τροποποιήσεις του, όπως, μεταξύ άλλων, το Execution Extended RRT (ERRT) [BV02], τα αμφίδρομα RRT [MWS07], Cell-RRT [GFC09], RRT* [KF10], και T-RRT [JCS10].

Ο σχεδιασμός μονοπατιών σε Πλέγματα Καταστάσεων εμφανίστηκε το 2005 από τους Pivtoraiko και Kelly [Mik05]. Ένα πλέγμα καταστάσεων είναι ένας χώρος αναζήτησης που περιλαμβάνει ένα διακριτοποιημένο σύνολο από τις προσβάσιμες-εφικτές καταστάσεις ενός συστήματος (του κινηματικού μοντέλου του ρομπότ εν προκειμένω), το οποίο μπορεί να κωδικοποιήσει ακολουθήσιμα-εφικτά μονοπάτια. Τα μονοπάτια σχηματίζονται από τοπικές συνδέσεις μεταξύ καταστάσεων που συμμορφώνονται στους εκάστοτε κινηματικούς περιορισμούς της κινητής βάσης, και στους περιορισμούς που θέτει ο περιβάλλον χώρος. Μετά την ανάπτυξη του χώρου αναζήτησης δημιουργείται ένα σύνολο χωρικά διακριτών μονοπατιών. Αυτός ο χώρος κωδικοποιεί τις τοπικές συνδέσεις και εξαλείφει τους πλεονασμούς έτσι ώστε ένα ερώτημα σχεδιασμού στο συνδεδεμένο γράφημα αναζήτησης να μπορεί να εκτελεστεί με αποδοτικό τρόπο.

Οι Συναρτήσεις Πλοήγησης είναι μια ειδική κατηγορία Συναρτήσεων Δυναμικού για την πλοήγηση ρομπότ χινητής βάσης [Lat91]. Η συναρτήσεις δυναμιχού προϋποθέτουν έναν γνωστό χάρτη, και αποδίδουν μια τιμή δυναμικού σε κάθε σημείο του (σε χάρτες που βασίζονται σε ορόσημα) ή σε κάθε κελί πλέγματος (σε χάρτες που βασίζονται σε πλέγμα): κάθε ένα από αυτά λαμβάνει τιμή δυναμιχού αντιστρόφως ανάλογη με την απόστασή του από ένα εμπόδιο. Αντίθετα, στη στάση του στόχου αποδίδεται χαμηλή τιμή δυναμικού. Η αρχή του δυναμικού πεδίου είναι ελχυστική λόγω της απλότητας και της κομψότητάς της, ωστόσο, στη βιβλιογραφία αναφέρεται ένας αριθμός ουσιαστικών ελλείψεων [ΚΒ91][GC00], όπως η ευαισθησία της μεθόδου στο να παγιδεύει το ρομπότ σε τοπικά ελάχιστα, και η αύξηση των ταλαντώσεων όταν ένα ρομπότ πλησιάζει εμπόδια ή στενά περάσματα. Οι Συναρτήσεις Πλοήγησης προσπαθούν να ξεπεράσουν αυτά τα προβλήματα: είναι συναρτήσεις (α) για τις οποίες το δυναμικό του στόχου λαμβάνει μηδενική τιμή ή, εάν ο στόχος είναι απρόσιτος, άπειρη τιμή, και (β) που έχουν μονοτονική κλίση, δηλαδή δεν περιλαμβάνουν τοπικά ελάχιστα, εκτός από αυτό του στόχου. Ωστόσο, η μέθοδος της συνάρτησης πλοήγησης μπορεί παρουσιάσει αργή σύγκλιση, ιδίως όταν το περιβάλλον του ρομπότ περιλαμβάνει στενά περάσματα, και επομένως απαιτεί προσαρμοσμένη ρύθμιση [Kow19]. Επιπλέον, στην χώρους υψηλών διαστάσεων, όπου τα σχήματα του ρομπότ ή των εμποδίων είναι πολύπλοχα, το υπολογιστιχό χόστος αυξάνεται

απότομα [Par16].

4.2.2 Ελεγκτές κίνησης

Αφού δημιουργηθεί το μονοπάτι που συνδέει την αρχική με την επιθυμητή στάση του ρομπότ, ένας ελεγκτής κίνησης πρέπει να χρησιμοποιηθεί προκειμένου το ρομπότ να ακολουθήσει το μονοπάτι στον πραγματικό χώρο, με βάση μετρήσεις από τους εξωδεκτικούς του αισθητήρες. Ο ελεγκτής πρέπει ταυτόχρονα να βεβαιωθεί ότι αποφεύγει τόσο τα στατικά όσο και τα δυναμικά εμπόδια του περιβάλλοντος του ρομπότ Οι ελεγκτές κίνησης ανήκουν κατά κύριο λόγο σε μία από πέντε οικογένειες προσεγγίσεων: Ιστογράμματα Διανυσματικών Πεδίων (Vector-Field Histograms-VFH), Προσέγγιση Δυναμικού Παραθύρου (Dynamic Window Approach—DWA), Δένδρα Πλοήγησης Κενών (Gap Navigation Trees—GNT), Προσέγγιση Πλοήγησης με Διαγράμματα Εγγύτητας (Nearness Diagram navigation approach—ND), και Ελαστικής Ζώνης (Elastic Band).

Ένας από τους παλαιότερους ελεγχτές χίνησης είναι τα Ιστογράμματα Διανυσματιχού Πεδίου, που προτάθηκαν το 1991 από τους Borenstein και Koren [BK91]. Τα VFH δημιουργούν ένα πολικό ιστόγραμμα σε σχέση με τον προσανατολισμό του ρομπότ μέσω των μετρήσεων των αισθητήρων του, αποδίδοντας σε κάθε προσανατολισμό την πιθανότητα η κατεύθυνση αυτή να είναι κατειλημμένη από εμπόδιο. Στη συνέχεια εντοπίζονται επαρχώς μεγάλα ανοίγματα για να μπορεί το ρομπότ να πλοηγηθεί με ασφάλεια μέσα από αυτά, και υπολογίζεται μια συνάρτηση κόστους για κάθε άνοιγμα, όπου και τελικά επιλέγεται αυτό με το μικρότερο κόστος. Βελτιώσεις των VFH είναι τα VFH+, τα οποία ενσωματώνουν τοξοειδείς τοπικές τροχιές, σε αντίθεση με τις ευθείες γραμμές των VFH [UB98], και τα VFH* τα οποία επαληθεύουν ότι μια υποψήφια κατεύθυνση οδηγεί το ρομπότ γύρω από ένα εμπόδιο, χρησιμοποιώντας τον αλγόριθμο Α* και τις κατάλληλες συναρτήσεις κόστους και ευρηστικών συναρτήσεων [UB00].

Μια άλλη διάσημη προσέγγιση είναι η Προσέγγιση Δυναμικού Παραθύρου, που προτάθηκε από τους Fox, Burgard, και Thrun [FBT97]. Η DWA δειγματοληπτεί το τοπικό περιβάλλον του ρομπότ με πιθανές τροχιές που προκύπτουν άμεσα από το κινηματικό μοντέλο του, υπολογίζοντας ένα κόστος για κάθε δείγμα. Η συνάρτηση αυτή περιλαμβάνει την κατεύθυνση του ρομπότ σε σχέση με τον επιθυμητό στόχο, την απόσταση της τροχιάς του από το πλησιέστερο εμπόδιο, και την προηγούμενη γραμμική ταχύτητα προκειμένου να ληφθεί υπόψη η αδράνεια

του σώματος του. Στη συνέχεια το σύνολο ταχυτήτων που μεγιστοποιεί μια αντικειμενική συνάρτηση επιλέγεται για εφαρμογή στους κινητήρες του.

Τα Δένδρα Πλοήγησης Κενών είναι δενδροειδείς δομές που δημιουργούνται από τρέχουσες μετρήσεις των αισθητήρων του ρομπότ που κωδικοποιούν διαδρομές από την τρέχουσα θέση του ρομπότ σε οποιοδήποτε σημείο του περιβάλλοντος [TGL05]. Ένα GNT ενημερώνεται καθώς το ρομπότ κινείται, και παράγει βέλτιστες διαδρομές εάν το περιβάλλον είναι απλά συνδεδεμένο, υπό την προϋπόθεση ότι τα όρια του περιβάλλοντος είναι ομαλά, αφού προσπαθεί να εντοπίσει "κενά" στις μετρήσεις των αισθητήρων.

Μία άλλη προσέγγιση ελεγχτών χίνησης ξεχίνησε το 2004 με την Προσέγγιση Πλοήγησης με Διάγραμμα Εγγύτητας από τους Minguez και Montano [MM00]. Η μεθοδολογία ND παράγει αρχικά δύο διαγράμματα εγγύτητας: το PND (από το κεντρικό σημείο του ρομπότ) και το RND (από τα άκρα του ρομπότ) για την αναπαράσταση των πληροφοριών σχετικά με την εγγύτητα των εμποδίων σε αυτό. Τόσο το PND όσο και το RND αναλύονται περαιτέρω, και ειδικά τμήματα και κενά ασφαλείας υπολογίζονται, με βάση τα οποία το ρομπότ λαμβάνει μια κατάσταση ασφαλείας μεταξύ πέντε διαθέσιμων. Τελικά αξιολογούνται πέντε νόμοι χίνησης, σύμφωνα με την κατηγορία ασφαλείας του ρομπότ, με αποτέλεσμα τις κατάλληλες εντολές ταχύτητας τη δεδομένη χρονική στιγμή. Η μεθοδολογία ND+ προτείνει την προσθήκη ενός έχτου σεναρίου για την εξισορρόπηση της διαίρεσης των νόμων χίνησης, αυξάνοντας την ομαλότητα των μεταβάσεων μεταξύ ορισμένων από τα σενάρια [MOM04]. Τέλος, η πλοήγηση SND (Smooth Nearness-Diagram) είναι μια εξέλιξη της ND+, όπου ένας μόνο νόμος χίνησης εφαρμόζεται σε όλες τις πιθανές καταστάσεις του ρομπότ γύρω από τα εμπόδια, αφαιρώντας την εμφάνιση απότομων μεταβατικών φαινομένων όταν το ρομπότ πλοηγείται χοντά σε εμπόδια [DB08].

Η προσέγγιση Ελαστικής Ζώνης των Quinlan και Khatib [QK93] γεφυρώνει το μονοπάτι προς ακολούθηση με τη θεωρία ελέγχου: με βάση ένα συνολικό μονοπάτι ο ελεγκτής κίνησης παράγει μια παραμορφώσιμη διαδρομή σε πραγματικό χρόνο, έτσι ώστε οι αλλαγές στο περιβάλλον (που ανιχνεύονται από τους αισθητήρες του ρομπότ), οι αβεβαιότητες στις μετρήσεις, το μοντέλο αβεβαιότητας του κινηματικού μοντέλου, και τα κινούμενα αντικείμενα να ενσωματώνονται στον σχεδιασμό και την ακολούθηση της προγραμματισμένης διαδρομής. Για την επίτευξη των στόχων του (ένας από τους οποίους είναι η διατήρηση της ακεραιότητας της προγραμματισμένης διαδρομής), η προσέγγιση βασίζεται σε τεχνητές δυνάμεις: προκαθο-

 Σ χήμα 4.1: Εποπτική άποψη του λογισμικού αυτόνομης πλοήγησης move_base. Πηγή: http://wiki.ros.org/move_base

ρισμένες εσωτερικές δυνάμεις συστέλλουν τη διαδρομή και την καθιστούν πιο ομαλή, ενώ εξωτερικές δυνάμεις διατηρούν τον διαχωρισμό από τα εμπόδια. Ωστόσο, η αρχική προσέγγιση δεν ενσωματώνει ρητά χρονικούς περιορισμούς ή περιορισμούς που επιτάσσονται από το ίδιο το κινηματικό μοντέλο του ρομπότ. Μια επέκταση της αρχικής προσέγγισης, που παραμορφώνει τις τροχιές αλλά όχι τα προγραμματισμένα μονοπάτια, παρουσιάζεται στο [KF07].

Η προσέγγιση Χρονισμένης Ελαστικής Ζώνης (Timed-Elastic Band) [Rös+12], από την άλλη πλευρά, εμπνευσμένη από την ιδέα της μεθόδου της Ελαστικής Ζώνης, λαμβάνει υπόψη τόσο τους χρονικούς περιορισμούς όσο και τους περιορισμούς του κινηματικού μοντέλου της κινητής βάσης. Η αρχική προσέγγιση παρέχει σε πραγματικό χρόνο τον προγραμματισμό της τροχιάς για ρομπότ με διαφορική κίνηση. Μιμούμενη έναν ελεγκτή πρόβλεψης μέσω μοντέλου (Model Predictive Controller), αναδιαμορφώνει το σχεδιασμό της τροχιάς και τον υπολογισμό ταχυτήτων σε ένα πρόβλημα βελτιστοποίησης που υπόκειται σε κινηματοδυναμικούς περιορισμούς και περιορισμούς αποφυγής εμποδίων, ενώ ταυτόχρονα λαμβάνει υπόψη και το συνολικό χρόνο πλοήγησης. Μια επέκταση της προσέγγισης Χρονισμένης Ελαστικής Ζώνης παρουσιάζεται στο [RHB17], όπου παρουσιάζεται μια πιο γενική διατύπωση, επεκτείνοντάς την στην υποστήριξη κινηματικών μοντέλων τύπου Ackermann.

4.2.3 Αυτόνομη πλοήγηση με το ROS

Το ROS έχει γίνει ευρέως δημοφιλές στην κοινότητα της ρομποτικής καθώς προσφέρει μια πληθώρα δωρεάν πακέτων, από ερευνητικές ομάδες όλου του κόσμου. Προσφέρει δυνατό-

τητες πλοήγησης με τη μορφή στοιβών (stacks), δηλαδή συλλογών παχέτων λογισμιχού. Το πιο γνωστό και συχνά χρησιμοποιούμενο από αυτά είναι το move_base, το οποίο εσωτεριχά χρησιμοποιεί έναν αλγόριθμο χάραξης μονοπατιών και έναν ελεγχτή χίνησης για να φέρει εις πέρας το έργο της αυτόνομους πλοήγησης ρομπότ χινητής βάσης. Στην εσωτεριχή ονοματολογία του ROS αυτά τα δύο συστατιχά ονομάζονται αντίστοιχα global planner και local planner. Το move_base παίρνει πληροφορίες από την οδομετρία, μετρήσεις από αισθητήρες, και μια στάση-στόχο, και εξάγει ασφαλείς εντολές ταχύτητας προς είσοδο στους χινητήρες χινητής βάσης.²

Ένα υψηλού επιπέδου διάγραμμα αρχιτεχτονιχής της στοίβας πλοήγησης απειχονίζεται στο σχήμα 4.1. Κοιτώντας το move_base ως ένα μαύρο χουτί, αυτό εξάγει ταχύτητες χινητήρων, χαι προϋποθέτει την ύπαρξη των αχόλουθων εισόδων, είτε σε μορφή μηνυμάτων ROS (δομημένα δεδομένα) ή μετασχηματισμών (σχέσεις μεταξύ συστημάτων αναφοράς):

- Την εκτιμώμενη στάση του ρομπότ με τη μορφή ενός μετασχηματισμού μεταξύ του οδομετρικού συστήματος αναφοράς του ρομπότ και του συστήματος αναφοράς του χάρτη, που παρέχεται εδώ από το πακέτο amcl³. AMCL σημαίνει Adaptive Monte Carlo Localisation [Fox01; GSB07] και είναι επί του παρόντος ο de facto αλγόριθμος παρακολούθησης της στάσης ενός ρομπότ μέσα στον δισδιάστατο χώρο στο ROS
- Πληροφορίες οδομετρίας και (προαιρετικά) τον χάρτη του περιβάλλοντος
- Δεδομένα απόστασης είτε από έναν αισθητήρα αποστάσεων τύπου lidar, είτε από έναν αισθητήρα που μπορεί να εξάγει νέφη σημείων σε τρεις διαστάσεις, όπως μια κάμερα βάθους
- Τους μετασχηματισμούς μεταξύ των συστημάτων αναφοράς των αισθητήρων και των τελικών στοιχείων (effectors) του ρομπότ χρησιμοποιώντας τον μηχανισμό μετασχηματισμού του ROS (tf)

Επιπλέον, το ROS προσφέρει την αναπαράσταση του περιβάλλοντος με τη μορφή χαρτών κόστους (costmaps), που περιλαμβάνουν πληροφορίες σχετικά με τη δυνατότητα διέλευσης του ρομπότ μέσα στο περιβάλλον του και μέσα στον χάρτη αυτού, με βάση το αποτύπωμα

²http://wiki.ros.org/navigation

³http://wiki.ros.org/amcl

του ρομπότ και τα στατικά και δυναμικά εμπόδια (υποθέτοντας ότι είναι πιο δαπανηρό να να κινηθεί κοντά σε εμπόδια). Όταν θεωρείται ως λευκό κουτί, το move_base περιλαμβάνει:

- Έναν ολικό χάρτη κόστους (global costmap), που αναπαριστά το κόστος διέλευσης
 πλησίον των στατικών εμποδίων του χάρτη
- Έναν τοπικό χάρτη κόστους (local costmap), ο οποίος δημιουργείται και ανανεώνεται σε πραγματικό χρόνο στην άμεση γειτονιά του ρομπότ, και που βασίζεται στις μετρήσεις των εξωδεκτικών αισθητήρων, προκειμένου να αντιμετωπίσει τα στατικά και δυναμικά εμπόδια του πραγματικού περιβάλλοντός του
- Έναν αλγόριθμο χάραξης μονοπατιών (global planner), ο οποίος λαμβάνει ως είσοδο μία στάση-στόχο, και τον ολικό χάρτη κόστους, και παράγει το γεωμετρικό μονοπάτι που ενώνει την αρχική στάση του ρομπότ με την επιθυμητή
- Έναν ελεγχτή χίνησης (local planner), ο οποίος δέχεται ως είσοδο το ως άνω μονοπάτι και τον τοπικό χάρτη χόστους, και υπολογίζει εντολές ταχύτητας
- Μια ενότητα που ονομάζεται συμπεριφορές ανάχτησης (recovery_behaviours) που δέχεται και τους δύο χάρτες κόστους ως είσοδο, εντοπίζει πότε το ρομπότ δεν μπορεί να προχωρήσει με την επιθυμητή ταχύτητα, και εφαρμόζει προκαθορισμένα σύνολα κινήσεων, με στόχο την "απεγκλωβισμό" του. Αυτές οι ενέργειες ενεργοποιούνται κάθε φορά που (α) το ρομπότ γίνεται αντιληπτό ότι ταλαντώνεται, (β) ένα σχέδιο κίνησης δεν έχει ληφθεί για πάνω από κάποιο χρονικό διάστημα, ή (γ) ο ελεγκτής κίνησης έχει αποτύχει να εξάγει έγκυρες εντολές ταχύτητας για ένα καθορισμένο χρονικό διάστημα. Συγκεκριμένα, το move_base εφαρμόζει δύο είδη ανάκτησης του ελέγχου του ρομπότ: (α) μια περιστροφή 360 μοιρών που στοχεύει στην εκκαθάριση του τοπικού χάρτη κόστους από τυχόν ψευδείς μετρήσεις (ψευδώς θετικά αντιληπτά εμπόδια) και (β) μια επαναφορά του χάρτη κόστους που καθαρίζει την στοίβα πλοήγησης, επαναφέροντάς τον στον στατικό χάρτη έξω από τα όρια μιας δεδομένης ακτίνας μακριά από το ρομπότ⁴. Η τελευταία χρησιμοποιείται συνήθως πολλαπλές φορές και σε έναν ιεραρχικό τρόπο, ξεκινώντας από κάποια ακτίνα εντός του ημιπλάτους του τοπικού χάρτη κόστους και προχωρώντας πιο κοντά στο ίχνος του ρομπότ. Εάν το ρομπότ εξακολουθεί

⁴http://wiki.ros.org/clear_costmap_recovery

να θεωρείται παγιδευμένο μετά την εκτέλεση όλων των προκαθορισμένων συμπεριφορών ανάκτησης του ελέγχου του, η πλοήγηση διακόπτεται και το ρομπότ σταματά την κίνησή του, τουλάχιστον μέχρι να δοθεί ένας νέος στόχος.

4.2.3.1 Αλγόριθμοι χάραξης μονοπατιών

Αυτή η ενότητα παρέχει μια επισκόπηση των αλγορίθμων-πακέτων χάραξης μονοπατιών των οποίων οι υλοποιήσεις είναι διαθέσιμες στο ROS.

Ο navfn⁵ βασίζεται στην προσέγγιση των Συναρτήσεων Πλοήγησης NF1 [Lat91]. Παρέχει μια παρεμβαλλόμενη συνάρτηση που μπορεί να χρησιμοποιηθεί για την παραγωγή μονοπατιών για χινητή βάση που προϋποτίθεται ότι έχει χυχλιχό αποτύπωμα. Η συνάρτηση πλοήγησης δέχεται ως είσοδο τον ολιχό χάρτη χόστους, μία στάση εχχίνησης και μία στάση τερματισμού, και παράγει το σχέδιο ελάχιστου χόστους από την αρχή έως το τέλος χρησιμοποιώντας τους αλγορίθμους Dijkstra ή A*. Τα χύρια μειονεχτήματα του NF1 (χαι συνεπώς του navfn) είναι η έλλειψη ομαλότητας των παραγόμενων διαδρομών, χαθώς αυτές αποτελούνται από ευθύγραμμα τμήματα που ενώνονται με γωνίες που είναι αχέραια πολλαπλάσια του π/4, χαι, το σημαντιχότερο, ότι παράγει διαδρομές που περνούν ξυστά από εμπόδια, χαθώς δεν λαμβάνει υπόψιν το μέγεθος του αποτυπώματος των ρομπότ [Phi04].

Το παχέτο global_planner σχεδιάστηκε ως ένας ευέλικτος διάδοχος του navfn και είναι σε θέση να παράγει μονοπάτια χρησιμοποιώντας είτε τον αλγόριθμο Α* είτε τον αλγόριθμο του Dijkstra, έτσι ώστε ο υπολογιστικός φόρτος να μπορεί να μειωθεί (αυτός του τελευταίου είναι μεγαλύτερος από αυτόν του πρώτου), αν και τα παραγόμενα μονοπάτια δεν θεωρούνται βέλτιστα με την έννοια της 8-συνδεδεμένης διαδρομής.

Το παχέτο asr_navfn⁶ ουσιαστικά λειτουργεί με τον ίδιο αχριβώς τρόπο όπως το navfn, με την προσθήκη του πλεονεκτήματος ότι, σε περίπτωση που ο επιθυμητός στόχος είναι ανέφικτος (δηλαδή εντός εμποδίου ή πάρα πολύ κοντά σε αυτό), υπολογίζει έναν εφικτό στόχο που να είναι ο εγγύτερος του αρχικού.

Σε αντίθεση με τον navfn και την πλειονότητα των άλλων πακέτων χάραξης μονοπατιών που παρουσιάζονται εδώ, το MoveIt! δεν αποτελεί ένα plugin του move_base [CSC12]. Οι κύριοι περιορισμοί του σε σχέση με το σχεδιασμό διαδρομών για ρομπότ κινητής βάσης

⁵http://wiki.ros.org/navfn

⁶http://wiki.ros.org/asr_navfn

είναι ότι (α) απευθύνεται και αναπτύχθηκε κυρίως για ρομποτικούς βραχίονες πολλαπλών αρθρώσεων, (β) δεν μπορεί να σχεδιάσει διαδοχικές διαμορφώσεις για αρθρώσεις πολλαπλών βαθμών ελευθερίας (δηλαδή μπορεί να χρησιμοποιηθεί μόνο για το σχεδιασμό της κίνησης ολονομικών (holonomic) βάσεων), και γ) απαιτεί την μετατροπή των χαρτών κόστους στο δικό του χώρο καταστάσεων ΟΜΡL. Όσον αφορά στους αλγορίθμους σχεδίασης διαδοχικών διαμορφώσεων, το MoveIt! μπορεί να χρησιμοποιήσει εσωτερικά το ΟΜΡL (Open Motion Planning Library⁷), STOMP (Στοχαστική βελτιστοποίηση τροχιάς για κίνηση). Planning⁸), SBPL (Βιβλιοθήκη σχεδιασμού με βάση την αναζήτηση⁹) ή CHOMP (Covariant Hamiltonian Optimisation for Motion Planning¹⁰).

Το πακέτο sbpl_lattice_planner¹¹ αποτελεί μια προσέγγιση Πλέγματος Καταστάσεων [Mik05] που χρησιμοποιεί τη βιβλιοθήκη SBPL. Σε πλήρη αντίθεση με όλους τους άλλους αλγορίθμους που αναφέρονται σε αυτήν την ενότητα, τα μονοπάτια παράγονται συνδυάζοντας μια σειρά από πρωτότυπα κίνησης, δηλαδή έγκυρες και εφικτές κινήσεις που βασίζονται στο κινηματικό μοντέλο της βάσης του ρομπότ. Μεταξύ των πλεονεκτημάτων του είναι ότι (α) λαμβάνοντας υπόψη του το κινηματικό μοντέλο του ρομπότ, η παραγόμενη διαδρομή καθίσταται αυτομάτως εφικτή από έναν ελεγκτή κίνησης και (β) παρέχει τη δυνατότητα στάθμισης των κινήσεων ανάλογα με το ποιές από αυτές είναι προτιμητέες (για παράδειγμα, ένας μηχανικός ρομποτικής μπορεί να επιλέξει αν είναι πιο επιθυμητό το ρομπότ να στρίβει επιτόπια ή να διασχίζει ένα τόξο όταν αυτό καλείται να εκτελέσει στροφή). Οι ανεπιθύμητες κινήσεις τιμωρούνται έτσι ώστε η τροχιά του ρομπότ να συντονίζεται και να ταιριάζει με δεδομένες προδιαγραφές, εάν αυτές υπάρχουν. Ο σχεδιασμός εκτελείται με βάση το σύνολο της κατάστασης του ρομπότ και άρα λαμβάνεται υπόψη και ο προσανατολισμός του. Τέλος, οι αλγόριθμοι χαμηλού επιπέδου ΑRA* [LGT03] ή AD* [Lik+05] χρησιμοποιούνται για τη δημιουργία του συνολικού μονοπατιού.

Το παχέτο sbpl_dynamic_env_global_planner¹² είναι παρόμοιο με το sbpl_lattice_planner, ωστόσο είναι ιχανό να ενσωματώνει πληροφορίες τόσο από τον ολιχό (στατιχό) χάρτη χόστους όσο χαι από προβλεπόμενες μελλοντιχές τροχιές των χινούμενων εμποδίων, οι οποίες

⁷http://ompl.kavrakilab.org/

 $^{^{8} \}verb|http://wiki.ros.org/stomp_motion_planner|$

⁹http://wiki.ros.org/sbpl

 $^{^{10} \}verb|http://www.nathanratliff.com/thesis-research/chomp|$

¹¹http://wiki.ros.org/sbpl_lattice_planner

 $^{^{12} \}verb|http://wiki.ros.org/sbpl_dynamic_env_global_planner[PL11]$

εξάγονται από τον τοπικό (δυναμικό) χάρτη κόστους. Αυτό γίνεται με την ομαδοποίηση χωροχρονικών πληροφοριών για το πού και πότε η κίνηση θα είναι ασφαλής, και ο σχεδιασμός πραγματοποιείται στις τυπικές τρεις χωρικές διαστάσεις, συμπεριλαμβανομένης μιας τέταρτης που είναι σχετική με την ασφάλεια.

Το παχέτο lattice_planner¹³ παρέχει ένα χρονικά περιορισμένο αλγόριθμο χάραξης μονοπατιών τύπου πλέγματος καταστάσεων Α*. Αυτός ο τύπος χρησιμοποιεί τον ολικό χάρτη κόστους ROS και μπορεί να παράγει χρονοεξαρτώμενες, δυναμικά εφικτές διαδρομές πλοήγησης για ρομπότ με διαφορικούς περιορισμούς κίνησης.

Ένας ακόμη αλγόριθμος χάραξης μονοπατιών είναι ο waypoint_global_planner. Δέχεται ως είσοδο ενδιάμεσα σημεία διαδρομής τα οποία οι ίδιοι οι μηχανικοί πρέπει να παρέχουν ως εφικτές στάσεις, καθώς ο αλγόριθμος δεν έχει γνώση των εμποδίων του χάρτη, και παράγει μια διαδρομή που τα διασχίζει διαδοχικά. Το μονοπάτι αποτελείται από ευθύγραμμα τμήματα που συνδέουν ένα εισαγόμενο σημείο με το επόμενο, και η τελική θέση του ρομπότ υιοθετεί τον προσανατολισμό του ευθύγραμμου τμήματος που συνδέει το προτελευταίο σημείο της διαδρομής με το τελευταίο.

Το παχέτο voronoi_planner 15 δημιουργεί ένα συνολικό μονοπάτι από ένα σημείο σε ένα άλλο χρησιμοποιώντας το GVD του περιβάλλοντος [BG07]. Το GVD κατασχευάζεται από τα εμπόδια των χαρτών κόστους και περιέχει όλα τα σημεία που ισαπέχουν από τα πλησιέστερα εμπόδια, παρέχοντας έναν σχελετό του ελεύθερου χώρου. Το τελικό μονοπάτι περιορίζεται στο να υπάρχει στο GVD (σε αντίθεση με τους αλγορίθμους που χρησιμοποιούν αλγόριθμους αναζήτησης όπως ο A^*). Αυτή η δυνατότητα αναγκάζει τον αλγόριθμο να παράγει ασφαλέστερα αλλά μη βέλτιστα σε μήχος μονοπάτια.

Θα πρέπει να σημειωθεί ότι μεταξύ όλων των αλγορίθμων χάραξης μονοπατιών που εξετάζονται σε αυτή την ενότητα μόνο ο sbpl_dynamic_env_global_planner είναι σε θέση να λάβει υπόψη του τα κινούμενα αντικείμενα στο περιβάλλον λειτουργίας του ρομπότ, δηλαδή να εκτιμά την κίνηση τους και να την προβάλλει στο μέλλον δεδομένης της θέσης και της ταχύτητάς τους. Τα υπόλοιπα μπορούν να λειτουργήσουν μόνο θεωρώντας τα εμπόδια ως ακίνητα για το χρονικό διάστημα μεταξύ δύο διαδοχικών εκδόσεων του σχεδιασθέντος μονοπατιού.

¹³https://github.com/marinaKollmitz/lattice_planner

¹⁴https://github.com/gkouros/waypoint-global-planner

¹⁵http://wiki.ros.org/voronoi_planner

Ένα ενδιαφέρον σχόλιο σχετικά με τους διαθέσιμους στο ROS αλγορίθμους χάραξης μονοπατιών είναι ότι σχεδόν όλοι είναι αφελείς όσον αφορά στον χρόνο και τους πόρους. Για παράδειγμα σχεδόν όλοι χρησιμοποιούν εκδόσεις του γνωστού αλγορίθμου αναζήτησης $\mathrm{A}^*,$ ο οποίος, αν και είναι βέλτιστος ως προς το μήκος, μπορεί να είναι πολύ αργός σε χρόνο εκτέλεσης όταν ο χάρτης είναι μεγάλος σε εμβαδό.

4.2.3.2 Ελεγκτές Κίνησης

Αυτή η ενότητα παρέχει μια σύντομη επισχόπηση των ελεγχτών χίνησης που είναι διαθέσιμοι στο ROS. Σε αντίθεση με τους αλγορίθμους χάραξης μονοπατιών, λίγοι ελεγκτές είναι διαθέσιμοι και ευρέως διαδεδομένοι.

Ο ελεγκτής κίνησης dwa_local_planner 16 βασίζεται στην εργασία των Fox κ.α. [FBT97]. Όπως εξηγήθηκε προηγουμένως ο DWA δειγματοληπτεί διακριτά το χώρο καταστάσεων του ρομπότ, εκτελεί προσομοίωση προς τα εμπρός (χρονικά) για κάθε δείγμα, αξιολογεί κάθε τροχιά σε σχέση με τον τοπιχό χάρτη χόστους, απορρίπτει τις μη εφιχτές τροχιές, χαι τέλος επιλέγει την τροχιά με την υψηλότερη βαθμολογία που ικανοποιεί τόσο τους κινηματικούς περιορισμούς του ρομπότ όσο και την ασφάλεια διέλευσης. Ο dwa_local_planner δεν υποστηρίζει την αποφυγή εμποδίων για δυναμικά εμπόδια.

O eband_local_planner 17 βασίζεται στη θεωρία των ελαστικών ζωνών [QK93]. Μια ελαστική ζώνη είναι ένα παραμορφώσιμο μονοπάτι χωρίς συγκρούσεις με εμπόδια που δημιουργείται από ένα συνολικό μονοπάτι και από πληροφορίες για την εγγύτητα των εμποδίων. Αυτή η παραμόρφωση από το προγραμματισμένο μονοπάτι πραγματοποιείται κατά τη διάρκεια της εκτέλεσης καθώς αλλάζει η τοπική αντίληψη. Ο eband_local_planner δεν υποστηρίζει την αποφυγή δυναμικών εμποδίων.

O teb_local_planner 8 δέχεται ως είσοδο το προγραμματισμένο μονοπάτι που δημιουργείται από τον αλγόριθμο χάραξης μονοπατιών και ελαχιστοποιεί κατά τη διάρκεια της εκτέλεσης τον χρόνο ακολούθησής του, ικανοποιώντας τους περιορισμούς αποφυγής εμποδίων, τους περιορισμούς του χινηματιχού μοντέλου του ρομπότ, χαθώς χαι περιορισμούς που αφορούν σε μέγιστες και ελάχιστες ταχύτητες και επιταχύνσεις κίνησης. Βασίζεται στη θεωρητική ερ-

¹⁶http://wiki.ros.org/dwa_local_planner

¹⁷http://wiki.ros.org/eband_local_planner

¹⁸http://wiki.ros.org/teb_local_planner

γασία που παρουσιάστηκε στο [RHB17], η οποία βελτιώνει τη θεωρία των ελαστικών ζωνών. Ο teb_local_planner υποστηρίζει την αποφυγή κινουμένων εμποδίων.

4.3 Μεθοδολογία αξιολόγησης

4.3.1 Μεθοδολογία αξιολόγησης, περιβάλλοντα, και συμβολισμοί

Η αξιολόγηση όλων των συνδυασμών των μεθόδων χάραξης μονοπατιών και ελεγκτών κίνησης που εξετάζονται στην παρούσα διατριβή πραγματοποιείται σε προσομοιωμένα και πραγματικά περιβάλλοντα. Το ρομπότ που χρησιμοποιήθηκε σε όλες τις συνθήκες είναι η δεύτερη έκδοση του Turtlebot, 19 ένα ρομπότ με διαφορική κίνηση και κυκλικό αποτύπωμα ακτίνας $r=0.175~\mathrm{m}$. Τα δύο προσομοιωμένα περιβάλλοντα στα οποία έγινε συγκριτική αξιολόγηση όλων των αλγορίθμων είναι διαθέσιμοι κόσμοι του περιβάλλοντος προσομοίωσης Gazebo. 20 Αυτοί οι κόσμοι προσομοιώνουν με ακρίβεια τις περισσότερες από τις συνθήκες που θα αντιμετώπιζε μια επίγεια κινητή βάση σε ένα στατικό περιβάλλον εσωτερικού χώρου: διαδρόμους διαφορετικού πλάτους, στενά περάσματα όπου η ικανοποίηση των περιορισμών είναι κρίσιμη και ευκολότερα παραβιάσιμη ενώ δοκιμάζουν την ικανότητα των ελεγκτών κίνησης να εκτελούν λεπτές κινήσεις, αναστροφές, πολλαπλές διαδοχικές στροφές, και εμπόδια που ο ελεγκτής κίνησης πρέπει να αποφύγει στην πορεία του ρομπότ προς τον στόχο. Το πραγματικό περιβάλλον όπου δοκιμάστηκαν οι μέθοδοι είναι το εργαστήριο Αρχιτεκτονικής Υπολογιστικών Συστημάτων (CSAL) του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του ΑΠΘ.

Στο σχήμα 4.2 απεικονίζεται ο χάρτης του προσομοιωμένου κόσμου CORRIDOR, που στο εξής συμβολίζεται με M_C . Το σχήμα 4.3 απεικονίζει ένα τμήμα από τον σημαντικά μεγαλύτερο σε μέγεθος χάρτη WILLOWGARAGE, ο οποίος συμβολίζεται με M_W . Το σχήμα 4.4 απεικονίζει το χάρτη του CSAL, που συμβολίζεται με M_L . Τα πράσινα βέλη υποδηλώνουν την αρχική στάση του ρομπότ, ενώ τα κόκκινα τον στόχο. Οι χάρτες των δύο προσομοιωμένων περιβαλλόντων κατασκευάστηκαν με τη χρήση του ROS πακέτου SLAM gmapping²¹, ενώ αυτός του πραγματικού περιβάλλοντος κατασκευάστηκε με τη χρήση του

¹⁹https://www.turtlebot.com/turtlebot2/

²⁰http://gazebosim.org/

²¹https://openslam-org.github.io/gmapping.html

Σχήμα 4.2: Ο χάρτης M_C του προσομοιωμένου περιβάλλοντος CORRIDOR. Το πράσινο βέλος (άνω δεξιά) δείχνει την αρχική στάση του ρομπότ p_0^C . Το κόκκινο βέλος (κάτω αριστερά) δείχνει τη στάση-στόχο p_G^C

open-karto²². Ενώ ο M_C είναι ένας χάρτης που μοιάζει με τη δομή μιας τυπικής αποθήκης, ο χάρτης M_W είναι μια κάτοψη που μοιάζει με αυτή ενός τυπικού ορόφου γραφείων. Η δυσκολία του πρώτου είναι σημαντικά χαμηλότερη σε σύγκριση με εκείνη του δεύτερου: οι διάδρομοι είναι φαρδείς, δεν υπάρχουν στενά περάσματα και υπάρχουν μόνο δύο στροφές των οποίων η απόσταση είναι αρκετά μεγάλη ώστε να αναμένεται ότι οι αλγόριθμοι πλοήγησης θα κατευθύνουν το ρομπότ μακριά και από τα δύο άκρα των τοίχων με ευκολία—αν και τα αποτελέσματα δείχνουν ότι ακόμη και αυτή η προσδοκία είναι αισιόδοξη για ορισμένους συνδυασμούς μεθόδων πλοήγησης.

Οι αρχικές και τελικές στάσεις ορίστηκαν έτσι ώστε να μεγιστοποιηθεί η δυσκολία των αλγορίθμων χάραξης μονοπατιών στην εύρεση ενός εφικτού μονοπατιού και η δυσκολία των ελεγκτών κίνησης στη διάσχισή του. Ως εκ τούτου διευκολύνουν την έκθεση των αδυναμιών των τύπων αλγορίθμων. Οι στάσεις που τέθηκαν ως αρχικές και τελικές συνθήκες στα τρία περιβάλλοντα καταγράφονται στον πίνακα 4.1.

Κάθε συνδυασμός από global και local planner δοκιμάστηκε σε κάθε περιβάλλον με τις ίδιες αρχικές και τελικές στάσεις για N=10 φορές, και επομένως η αξιολόγηση των απόδοσης όλων των συνδυασμών έγινε με τη χρήση στατιστικών μέσων. Κάθε συνδυασμός έλαβε μια χρονική περίοδο για να εκτελέσει την πλοήγησή του από την αρχή ως τον στόχο,

²²http://wiki.ros.org/open_karto

Σχήμα 4.3: Ο χάρτης M_W τμήματος του προσομοιωμένου περιβάλλοντος WILLOWGARAGE. Το πράσινο βέλος (άνω δεξιά) δείχνει την αρχική στάση του ρομπότ p_0^W . Το κόκκινο βέλος (κάτω αριστερά) δείχνει τη στάση-στόχο p_G^W

Σχήμα 4.4: Ο χάρτης M_L του πραγματικού περιβάλλοντος του εργαστηρίου Αρχιτεκτονικής Υπολογιστών του ΤΗΜΜΥ ΑΠΘ (CSAL). Το πράσινο βέλος (άνω δεξιά) δείχνει την αρχική στάση του ρομπότ p_0^L . Το κόκκινο βέλος (κάτω αριστερά) δείχνει τη στάση-στόχο p_G^L

Στάση	(m,m,rad)
$oldsymbol{p}_0^C$	(12.2, 12.2, 0.0)
$oldsymbol{p}_G^C$	$(5, 6.5, \pi/2)$
$oldsymbol{p}_0^W$	(69.0, 79.0, 0.0)
\boldsymbol{p}_0^W	$(58.0, 45.0, \pi/2)$
$oldsymbol{p}_0^L$	(18.6, 11.3, 0.0)
$oldsymbol{p}_G^L$	(11.3, 2.86, 0.0)

Πίνακας 4.1: Αρχικές p_0 και τελικές p_G στάσεις αυτόνομους πλοήγησης στα τρία περιβάλλοντα CORRIDOR, WILLOWGARAGE, και CSAL

η οποία ορίστηκε σε $t_C^{max}=120$ sec για τον κόσμο CORRIDOR, $t_W^{max}=180$ sec για τον κόσμο WILLOWGARAGE, και $t_L^{max}=600$ sec στο περιβάλλον CSAL.

Όλες οι προσομοιώσεις πραγματοποιήθηκαν στο λειτουργικό σύστημα Linux Ubuntu 16.04, σε υπολογιστή με επεξεργαστή 12 νημάτων, 32GB μνήμης, και συχνότητα ρολογιού 4.00 GHz. Όλα τα πειράματα που πραγματοποιήθηκαν στο περιβάλλον CSAL πραγματοποιήθηκαν σε Linux Ubuntu 16.04, σε υπολογιστή με επεξεργαστή με 4 νήματα, 8 GB μνήμης, και συχνότητα ρολογιού 3.20 GHz.

4.3.2 Ορισμός μετρικών αξιολόγησης

Σε αυτήν την ενότητα κάνουμε τις ακόλουθες παραδοχές και ορισμούς.

Ορισμός VIII. Ένα μονοπάτι $\mathbf{P}:[1,n]\to\mathbb{R}^2\times[-\pi,\pi)$ είναι μια αχολουθία στάσεων $\mathbf{p}_i,i=1,2,\ldots,n$, δηλαδή $\mathbf{P}\equiv\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$, όπου $\mathbf{p}_i=(x_i,y_i,\theta_i)$, είναι οι συντεταγμένες μίας στάσης στον \mathbb{R}^2 και θ_i είναι ο προσανατολισμός του διανύσματος που ξεχινά από το σημείο (x_i,y_i) ως προς τον άξονα x του συστήματος αναφοράς του χάρτη.

Το μέγεθος (cardinality) του \mathbf{P} αναφέρεται ως $|\mathbf{P}|$ και είναι ίσο με τον αριθμό των στάσεων του \mathbf{P} . Συμβολίζουμε μία συλλογή N μονοπατιών $\mathbf{P}_j,\ j=1,2,\ldots,N$ με $\mathbf{P}=\{\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_N\}$.

Ορισμός ΙΧ. Η απόσταση μεταξύ δύο στάσεων p_i και p_j είναι η Ευκλείδεια απόσταση $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$.

59

Ορισμός **Χ.** Ένας χάρτης πλέγματος πληρότητας (Occupancy Grid Map—OGM) $\boldsymbol{M}: [1,q] \to \mathbb{R}^2 \text{ είναι ένα μη ταξινομημένο σύνολο σημείων στο καρτεσιανό επίπεδο: <math display="block"> \boldsymbol{M} \equiv ((x_1^M,y_1^M),(x_2^M,y_2^M),\dots,(x_q^M,y_q^M)).$

Ορισμός ΧΙ. Το μήχος ενός μονοπατιού P συμβολίζεται με l(P) και υπολογίζεται ως:

$$l(\mathbf{P}) = \sum_{i=1}^{|\mathbf{P}|-1} d(p_i, p_{i+1})$$
(4.1)

δηλαδή είναι το άθροισμα των αποστάσεων μεταξύ διαδοχικών θέσεων p_i και p_{i+1} .

Ορισμός ΧΙΙ. Η ομαλότητα ενός μονοπατιού P, s(P), ορίζεται ως:

$$s(\mathbf{P}) = \left(\frac{1}{|\mathbf{P}| - 2} \sum_{i=1}^{|\mathbf{P}| - 1} (\theta_{i+1} - \theta_i)^2\right)^{1/2}$$
(4.2)

Ορισμός ΧΙΙΙ. Η μέση ελάχιστη απόσταση ενός μονοπατιού P από τα εμπόδια του χάρτη M είναι η μέση απόσταση των στάσεων που αποτελούν το μονοπάτι από το πλησιέστερο εμπόδιο της κάθε μίας. Συμβολίζεται με d(P,M) και ορίζεται ως:

$$d(\mathbf{P}, \mathbf{M}) = \frac{1}{|\mathbf{P}|} \sum_{k=1}^{|\mathbf{P}|} \min_{i=1,2,\dots,q} d(\mathbf{p}_k, \mathbf{m}_i)$$
(4.3)

όπου $\boldsymbol{p}_k \in \boldsymbol{P}, \, k=1,2,\ldots, |\boldsymbol{P}|$, και $\boldsymbol{m}_i \in \boldsymbol{M}, \, i=1,2,\ldots,q.$

Ορισμός XIV. Η ολική ελάχιστη απόσταση μιας συλλογής μονοπατιών $\mathcal{P}=\{P_1,P_2,\ldots,P_N\}$ από τα εμπόδια του M συμβολίζεται με $\inf(d(\mathcal{P},M))$ (για να επισημανθεί η απόλυτη φύση αυτής της ελάχιστης τιμής), και ορίζεται ως:

$$\inf(d(\mathcal{P}, \mathbf{M})) = \min_{j=1,2,\dots,N} \left\{ \min_{\substack{k=1,2,\dots,|\mathbf{P}_j|\\i=1,2,\dots,q}} d(\mathbf{p}_k^j, \mathbf{m}_i) \right\}$$
(4.4)

όπου $m{P}_j\in\mathcal{P}, \ m{p}_k^j\inm{P}_j, \ k=1,2,\ldots,|m{P}_j|,$ και $m{m}_i\inm{M}, \ i=1,2,\ldots,q.$

Ορισμός XV. Η μέση απόχλιση ενός μονοπατιού P_1 από ένα μονοπάτι P_2 υπολογίζεται ως η μέση απόσταση χάθε στάσης του P_1 από την πλησιέστερη στάση της που ανήχει στο P_2 :

$$d_{\delta}(\mathbf{P}_{1}, \mathbf{P}_{2}) = \frac{1}{|\mathbf{P}_{1}|} \sum_{k=1}^{|\mathbf{P}_{1}|} \min_{l=1,2,\dots,|\mathbf{P}_{2}|} d(\mathbf{p}_{k}, \mathbf{p}_{l})$$
(4.5)

όπου $m{p}_k \in m{P}_1,\, k=1,2,\ldots,|m{P}_1|,$ και $m{p}_l \in m{P}_2,\, l=1,2,\ldots,|m{P}_2|.$

Ορισμός XVI. Η ολική απόκλιση ενός μονοπατιού P_1 από ένα μονοπάτι P_2 υπολογίζεται ως το άθροισμα της απόστασης κάθε στάσης που αποτελεί το P_1 από την πλησιέστερη στάση της στο P_2 :

$$d_{\Delta}(\mathbf{P}_1, \mathbf{P}_2) = |\mathbf{P}_1| \cdot d_{\delta}(\mathbf{P}_1, \mathbf{P}_2) \tag{4.6}$$

Η μετρική απόστασης Frechet, η οποία εισήχθη από τον Maurice Frechet για συνεχείς καμπύλες σε ένα μετρικό χώρο το 1906 [Fré06], είναι ένα μέτρο της ομοιότητας μεταξύ δύο καμπυλών. Στα πλαίσια της διατριβής προτιμάται από την μετρική απόστασης Pompeiu-Hausdorff [RW98] λόγω του ότι η τελευταία δεν λαμβάνει υπόψη της τη θέση και τη διάταξη των σημείων κατά μήκος μιας καμπύλης (εν προκειμένω ενός μονοπατιού).

Ορισμός XVII. Για διαχριτές χαμπύλες $P_1:[1,m]\to V$ και $P_2:[1,n]\to V$ (όπως τα δείγματα στάσης ενός μονοπατιού και τα ολικά μονοπάτια) που αποτελούνται από αχολουθίες διαχριτών σημείων $\lambda(P_1)\equiv\{P_1(1),\ P_1(2),\ \dots\ P_1(m)\}\equiv\{v_1,v_2,\dots v_p\}$ και $\lambda(P_2)\equiv\{P_2(1),\ P_2(2),\ \dots\ P_2(n)\}\equiv\{u_1,u_2,\dots u_g\}$ αντίστοιχα, η διαχριτή απόσταση Frechet ορίζεται ως:

$$\delta_d^F({m P}_1,{m P}_2) = \min\{\|{m L}\| \mid {m L}$$
 είναι μια σύζευξη μεταξύ ${m P}_1$ και ${m P}_2\}$

όπου $\|L\|=\max_{i=1,\dots q}d(\boldsymbol{u}_{a_i},\boldsymbol{u}_{b_i})$. Μια σύζευξη L είναι μια αχολουθία διαφορετικών ζευγών από το $\lambda(\boldsymbol{P}_1)\times\lambda(\boldsymbol{P}_2)$: $L\equiv \}(\boldsymbol{u}_{a_1},\boldsymbol{v}_{b_1}),(\boldsymbol{u}_{a_2},\boldsymbol{v}_{b_2}),\dots,(\boldsymbol{u}_{a_q},\boldsymbol{v}_{b_q})\}$, και $d(\boldsymbol{a},\boldsymbol{b})$ είναι ένα μετρική της απόστασης (εδώ ίση με την ευχλείδεια απόσταση όπως ορίζεται παραπάνω) μεταξύ των σημείων \boldsymbol{a} και \boldsymbol{b} .

Επιπλέον, έστω ότι συμβολισμοί $\mu(x)$, $\sigma(x)$ να υποδηλώνουν τη μέση τιμή και την τυπική απόκλιση της μεταβλητής x. Συμβολίζοντας με $\mathcal G$ μια συλλογή από N συνολικά μονοπάτια προς ακολούθηση που παράγονται σε N πειράματα και προσομοιώσεις που πραγματοποιήθηκαν, $\mathcal G = \{G_1, G_2, \ldots, G_N\}$, και με $\mathcal P$ μια συλλογή από N διανυόμενες διαδρομές $\mathcal P = \{P_1, P_2, \ldots, P_N\}$, οι μετρικές αξιολόγησης για τους κατασκευαστές μονοπατιών global planners, τους ελεγκτές κίνησης local planners, και τους συνδυασμούς τους παρουσιάζονται στους πίνακες 4.2, 4.3, και 4.4.

Μετρική αξιολόγησης global planner	Τύπος	Τύπος αναλογικότητας
$\mu_l(\mathcal{G})$	Το μέσο μήχος των συνολιχών σχεδιασθέντων μονοπατιών $\mu_l(\mathcal{G}) = \mu(l(G_j))$ [m], $j=1,2,\ldots,N$	\searrow
$\sigma_l(\mathcal{G})$	Η τυπική απόκλιση γύρω από το μέσο μήκος μονοπατιών $\sigma_l(\mathcal{G})=\sigma(l(\mathbf{G}_j))$ [m], $j=1,2,\ldots,N$ —ένα μέτρο της συνέπειας σχεδιασμού μονοπατιών	\searrow
$\mu_r(\mathcal{G})$	Ο μέσος αριθμός των στάσεων του συνολικού μονοπατιού επί του μέσου μήκους του συνολικού μονοπατιού $\mu_r(\mathcal{G})=\mu(\mathbf{G}_j /l(\mathbf{G}_j))$ [θέσεις / m], $j=1,2,\ldots,N$ —ένα μέτρο της αναλυτικότητας μονοπατιών: όσο υψηλότερη η ανάλυση, τόσο λεπτομερέστερα τα μονοπάτια και τόσο λεπτότεροι οι ελιγμοί του ρομπότ (εάν, για παράδειγμα, το απαιτούν οι προδιαγραφές)	7
$\mu_s(\mathcal{G})$	Η μέση ομαλότητα των παραγόμενων μονοπατιών $\mu_s(\mathcal{G})=\mu(s(\mathbf{G}_j))$ [rad], $j=1,2,\ldots,N$	\searrow
$\sigma_s(\mathcal{G})$	Η τυπική απόκλιση γύρω από τη μέση ομαλότητα σχεδιασθέντων μονοπατιών $\sigma_s(\mathcal{G})=\sigma(s(G_j))$ [rad], $j=1,2,\ldots,N$	¥
$\inf(d(oldsymbol{\mathcal{G}},oldsymbol{M}))$	Η συνολιχή ελάχιστη απόσταση σχεδιασθέντων μονοπατιών από τα εμπόδια του χάρτη $M\inf(d(\mathcal{G},M))$ [m]—ένα μέτρο του πόσο καλή είναι η σχεδίαση ενός μονοπατιού με βάση την απόσταση από εμπόδια του χάρτη	7
$\mu(d({m{\mathcal{G}}},{m{M}}))$	Η μέση ελάχιστη απόσταση των σχεδιασθέντων μονοπατιών από τα εμπόδια του χάρτη ${m M}, \mu(d({m G}_j,{m M}))$ [m], $j=1,2,\ldots,N$	7
$\sigma(d({m{\mathcal{G}}},{m{M}}))$	Η τυπική απόκλιση γύρω από τη μέση ελάχιστη απόσταση των μονοπατιών από τα εμπόδια του χάρτη ${m M},\ \sigma(d({m G}_j,{m M}))$ [m], $j=1,2,\ldots,N$	``

Πίνακας 4.2: Μετρικές αξιολόγησης για τους αλγορίθμους κατασκευής μονοπατιών (global planners) (αριστερά), η περιγραφή τους (μέση) και η φύση της συμβολής τους στην τιμήαξία ενός συνδυασμού αλγορίθμων για αυτόνομη πλοήγηση (δεξιά): τα βέλη που δείχνουν προς τα πάνω υποδηλώνουν ότι όσο υψηλότερη είναι η τιμή μιας μετρικής τόσο υψηλότερη είναι η αξία του συνδυασμού. Τα βέλη που δείχνουν προς τα κάτω υποδεικνύουν ότι η αξία ενός συνδυασμού είναι τόσο υψηλότερη όσο χαμηλότερη είναι η τιμή της εν λόγω μετρικής

Μετρική αξιολόγησης local planner	Τύπος	Τύπος αναλογικότητας
μ_A/N	Ο μέσος αριθμός των ματαιωμένων αποστολών επί του συνολικού αριθμού των προσομοιώσεων ή πειραμάτων που πραγματοποιήθη- καν	\searrow
μ_{RR}	Ο μέσος αριθμός των ανακτήσεων με περιστροφή	\searrow
σ_{RR}	Η τυπική απόκλιση γύρω από τον μέσο αριθμό των ανακτήσεων με περιστροφή	¥
μ_{CC}	Ο μέσος αριθμός των εκκαθαρίσεων του χάρτη κόστους	\searrow
σ_{CC}	Η τυπική απόκλιση γύρω από τον μέσο αριθμό των εκκαθαρίσεων του χάρτη κόστους	¥
μ_{PF}	Ο μέσος αριθμός αποτυχιών διαδρομής—ένα μέτρο του πόσες φορές ο ελεγκτής κίνησης απέτυχε να υπολογίσει έγκυρες ταχύτητες κίνησης	\searrow
σ_{PF}	Η τυπική απόκλιση γύρω από το μέσο αριθμό αποτυχιών διαδρομής	¥
μ_{PF}/μ_{LPC}	Ο μέσος αριθμός αποτυχιών διαδρομής επί του μέσου αριθμού κλήσεων του ελεγκτή κίνησης— ένα μέτρο του πόσο συχνά ο τοπικός σχεδιαστής απέτυχε να ελέγξει την τροχιά του ρομπότ	``

Πίναχας 4.3: Μετριχές αξιολόγησης για τους ελεγχτές χίνησης (local planners) (αριστερά), η περιγραφή τους (μέση) και η φύση της συμβολής τους στην τιμή-αξία ενός συνδυασμού αλγορίθμων για αυτόνομη πλοήγηση (δεξιά): τα βέλη που δείχνουν προς τα πάνω υποδηλώνουν ότι όσο υψηλότερη είναι η τιμή μιας μετριχής τόσο υψηλότερη είναι η αξία του συνδυασμού. Τα βέλη που δείχνουν προς τα χάτω υποδειχνύουν ότι η αξία ενός συνδυασμού είναι τόσο υψηλότερη όσο χαμηλότερη είναι η τιμή της εν λόγω μετριχής

4.3.3 Μεθοδολογία συνολικής και ιεραρχημένης αξιολόγησης

Η συνολιχή αξιολόγηση κάθε συνδυασμού global και local planner πραγματοποιείται με βάση την κοινή τους επίδοση και τις επιδόσεις των δύο συνιστωσών του. Κάθε μετριχή m που περιγράφεται ανωτέρω λαμβάνεται υπόψη και της αποδίδεται ένα βάρος $w_m \in \mathbb{R}_{\geq 0}$, έτσι ώστε η γενιχή αξιολόγηση να είναι εφιχτή για μεταβλητές προδιαγραφές (ανάλογα με την εφαρμογή, ένας μηχανιχός μπορεί να προτιμήσει να αποδώσει περαιτέρω σημασία, για παράδειγμα, στο μήχος των διαδρομών του σε σχέση με το συνολιχό χρόνο πλοήγησης). Απώτερος στόχος είναι η απόδοση μίας τιμής-αξίας σε χάθε συνδυασμό αλγορίθμων πλοήγησης, η οποία θα τους διαχρίνει και θα τους κατατάσσει με βάση της συνολιχή τους επίδοση.

Αρχικά κάνουμε την παραδοχή ότι η τιμή ενός συνδυασμού πρέπει να είναι αυστηρά αύ-

Μετρική αξιολόγησης συνδυασμών global και local planner	Τύπος	Τύπος αναλογικότητας
$\mu_{\delta}(\mathcal{P},\mathcal{G})$	Η μέση απόχλιση μεταξύ των πραγματιχών διαδρομών ${\cal P}$ που αχολούθησε το ρομπότ σε σύγχριση με τα σχεδιασθέντα μονοπάτια ${\cal G}$ που επρόχειτο να αχολουθήσει $\mu_{\delta}({\cal P},{\cal G})=\mu(d_{\delta}({\cal P}_j,{\cal G}_j))$ [m], $j=1,2,\ldots,N$	¥
$\mu_{\Delta}(\mathcal{P},\mathcal{G})$	Η μέση συνολική απόκλιση μεταξύ των πραγματικών διαδρομών $\mathcal P$ που ακολούθησε το ρομπότ σε σύγκριση με τα σχεδιασθέντα μονοπάτια $\mathcal G$ που επρόκειτο να ακολουθήσει $\mu_{\Delta}(\mathcal P,\mathcal G)=\mu(d_{\Delta}(\mathcal P_j,\mathcal G_j))$ [m], $j=1,2,\ldots,N$	\searrow
$\mu^F_{\delta}({m P},{m {\cal G}})$	Η μέση απόσταση Frechet μεταξύ των πραγματικών διαδρομών $\mathcal P$ που ακολούθησε το ρομπότ και των αντίστοιχων σχεδιασθέντων μονοπατιών $\mathcal G$, $\mu_\delta^F(\mathcal P,\mathcal G)=\mu(\delta_{dF}(P_j,G_j))$ [m], $j=1,2,\ldots,N$	\searrow
μ_t	Ο μέσος χρόνος διαδρομής από την αρχική στάση $m{p}_0$ στη στάσηστόχο $m{p}_G$ [sec]	\searrow
σ_t	Η τυπική απόκλιση γύρω από το μέσο χρόνο διαδρομής [sec]	\searrow
$\mu_l(\mathcal{P})$	Το μέσο μήχος των πραγματικών διαδρομών ${\cal P}$ που ακολούθησε το ρομπότ ως αποτέλεσμα του ελεγκτή κίνησης $\mu_l({\cal P})=\mu(l({\cal P}_j))$ $[{\bf m}],j=1,2,\ldots,N$	\searrow
$\sigma_l({m {\cal P}})$	Η τυπική απόκλιση γύρω από το μέσο πραγματικό μήκος διαδρομής $\sigma_l(\mathcal{P})=\sigma(l(P_j))$ [m], $j=1,2,\ldots,N$ —ένα μέτρο της συνέπειας των διαδρομών που υπαγόρευσε ο ελεγκτής κίνησης στο ρομπότ	`\
$\mu_s(\mathcal{P})$	Η μέση ομαλότητα των διανυόμενων διαδρομών $\mu_s(\mathcal{P})=\mu(s(\mathbf{P}_j))$ [rad], $j=1,2,\ldots,N$	\searrow
$\sigma_s(\mathcal{P})$	Η τυπική απόκλιση γύρω από τη μέση ομαλότητα των διανυόμενων διαδρομών $\sigma_s({\bf P})=\sigma(s({\bf P}_j))$ [rad], $j=1,2,\ldots,N$	\searrow
$\inf(d(oldsymbol{\mathcal{P}},oldsymbol{M}_C))$	Η συνολική ελάχιστη απόσταση των πραγματικών διαδρομών που ακολούθησε το ρομπότ από τα εμπόδια του χάρτη M σε όλα τα πειράματα ή τις προσομοιώσεις $\inf(d(\mathcal{P},M))$ [m]—ένα μέτρο του πόσο καλά ο ελεγκτής κίνησης σχεδιάζει και εκτελεί τη διαδρομή του ρομπότ γύρω από τα εμπόδια ώστε να μην παραβιάζει περιορισμούς αποφυγής σύγκρουσης	7
$\mu(d(\mathcal{P}, M_C))$	Η μέση ελάχιστη απόσταση των πραγματικών διαδρομών που διέσχισε το ρομπότ από τα εμπόδια του χάρτη ${m M},$ $\mu(d({m P}_j,{m M}))$ [m], $j=1,2,\ldots,N$	7
$\sigma(d({m {\cal P}},{m M}_C))$	Η τυπική απόκλιση γύρω από τη μέση ελάχιστη απόσταση των	\searrow

Πίναχας 4.4: Μετρικές αξιολόγησης για τον συνδυασμό ενός αλγορίθμου χάραξης μονοπατιών (global planner) με έναν ελεγκτή κίνησης (local planner), η περιγραφή τους (μέση) και η φύση της συμβολής τους στην τιμή-αξία του συνδυασμού τους (δεξιά): τα βέλη που δείχνουν προς τα πάνω υποδηλώνουν ότι όσο υψηλότερη είναι η τιμή μιας μετρικής τόσο υψηλότερη είναι η αξία του συνδυασμού. Τα βέλη που δείχνουν προς τα κάτω υποδεικνύουν ότι η αξία ενός συνδυασμού τόσο υψηλότερη όσο χαμηλότερη είναι η τιμή της εν λόγω μετρικής

πραγματικών διαδρομών του ρομπότ από τα εμπόδια του χάρτη

 $M, \sigma(d(P_j, M)) [m], j = 1, 2, ..., N$

ξουσα, έτσι ώστε οι μεγαλύτερες τιμές να αντιχατοπτρίζουν χαλύτερες επιδόσεις. Η τιμή αυτή εξαρτάται όχι μόνο από την τιμή χάθε μετριχής που συζητήθηχε μέχρι τώρα, αλλά, πιο συγχεχριμένα, από τη φύση της συμβολής μιας μετριχής. Για παράδειγμα, οι χρόνοι πλοήγησης μεταξύ $p_0^{M_C}$ και $p_G^{M_C}$ συμβάλλουν περισσότερο όσο μιχρότερη είναι η τιμή τους, αλλά, σε σχέση με τη συνολιχή απόσταση μεταξύ των εμποδίων, η τιμή ενός συνδυασμού θα πρέπει να αυξάνεται όσο μεγαλύτερη είναι αυτή η απόσταση. Επομένως, η τιμή ενός συνδυασμού αλγορίθμων εξαρτάται από τον τύπο της αναλογιχότητας της συνεισφοράς χάθε συγχεχριμένης μετριχής. Οι πίναχες 4.2-4.4 συνοψίζουν τη συμβολή χάθε μετριχής που αφορά τους αλγορίθμους χατασχευής μονοπατιών, τους ελεγχτές χίνησης, χαι του συνδυασμού τους. Τα βέλη που δείχνουν προς τα πάνω υποδηλώνουν ευθεία αναλογιχότητα. Τα βέλη που δείχνουν προς τα χάτω υποδηλώνουν αντίστροφη αναλογιχότητα. Περισσότερες λεπτομέρειες υπάρχουν στο παράρτημα Δ' .1.

 Δ εδομένου ότι αυτό που επιδιώχουμε είναι η απόδοση μιας χλιμαχωτής τιμής V(C) σε κάθε συνδυασμό C από αλγορίθμους σχεδιασμού μονοπατιών και ελεγκτών κίνησης, πρέπει να περάσουμε από την κατασκευή μιας έγκυρης συνάρτησης αξίας $V.\ {
m H}$ συνάρτηση V πρέπει (α) να είναι γνησίως αύξουσα (ώστε να εκφράζει με ακρίβεια την αξία ενός συνδυασμού με βάση τις μετριχές επίδοσης του, χαι ταυτόχρονα να παρέχει ένα νόημα στις διαφορές τους, η οποία να μπορεί να αναχθεί στη διαφορά μεταξύ της επίδοσης ξεχωριστών μετριχών τους) και (β) να λαμβάνει υπόψη μετριχές διαφορετιχών μονάδων μέτρησης. Για τον σχοπό αυτό ξεχινάμε με την κανονικοποίηση των τιμών των μετρικών εντός του αντίστοιχου διαστήματος ελάχιστων και μέγιστων τιμών για όλους τους συνδυασμούς—έτσι ώστε η τιμή όλων των μετρικών να εκφράζεται στο διάστημα [0,1] άνευ μονάδας μέτρησης—και ανάλογα με τα συμφραζόμενα. Το τελευταίο σημαίνει ότι η τιμή, για παράδειγμα, του μέσου μήχους N σχεδίων μονοπατιών θα εχφράζεται μεταξύ του ελάχιστου μέσου μήχους και του μέγιστου μέσου μήχους όλων των μονοπατιών και όλων των συνδυασμών—αφού αυτή η μετρική είναι ανεξάρτητη από την επιτυχία ή την αποτυχία της αποστολής ενός συνδυασμού—, αλλά ο μέσος χρόνος πλοήγησης μεταξύ p_0^M και p_G^M στον χάρτη M, ο οποίος εξαρτάται από την επιτυχία της αποστολής, ϑ α εκφράζεται μόνο μεταξύ του ελάχιστου μέσου και του μέγιστου μέσου χρόνου διαδρομής των συνδυασμών που κατάφεραν να μεταφέρουν το ρομπότ από τη στάση $m{p}_0^M$ στην p_G^M . Η

κανονικοποιητική συνάρτηση για μία μετρική m είναι N(m):

$$N(m) = \frac{m - \min m}{\max m - \min m} \tag{4.8}$$

Έστω S το σύνολο των συνδυασμών C που κατάφεραν να κάνουν το ρομπότ να πλοηγηθεί από τη στάση p_0^M στην p_G^M για τον χάρτη M. Έστω D το σύνολο των μετρικών που δεν εξαρτώνται από την επιτυχία μιας αποστολής (με την παραπάνω έννοια), δηλαδή μετρικές που αφορούν αποκλειστικά σε global και local planners αλλά όχι στο συνδυασμό τους. Έστω επίσης η συνάρτηση-δείκτης (indicator function) $I_A(x)$ για τη μετρική x και το σύνολο A: η $I_A(x)$ ισούται με ένα αν $x \in A$ και με μηδέν αλλιώς. Τότε η συνάρτηση δείκτης για το συνδυασμό C όσον αφορά στη μετρική m, $I(C,m) = I_S(C) \mid\mid I_D(m)$, είναι μηδέν όταν ο C ήταν ανεπιτυχής στην αποστολή του και m είναι μετρική που αφορά το συνδυασμό αλγορίθμων—σε όλες τις άλλες περιπτώσεις η I(C,m) ισούται με ένα. Η διατύπωση αυτής της συνάρτησης δείκτη με τέτοιο τρόπο καθιστά δυνατή τη συνεκτίμηση όλων των μετρικών που περιγράφηκαν μέχρι σε αυτό το σημείο, και μέσω αυτής ο υπολογισμός της V είναι εφικτός.

Για τους αλγορίθμους παραγωγής μονοπατιών, τους ελεγκτές κίνησης, ή τους συνδυασμούς τους, εάν η τιμή τους όσον αφορά στη μετρική m είναι ευθέως ανάλογη της τιμής της m (όπως η τιμή της μετρικής της συνολικής ελάχιστης απόστασης του ρομπότ από τα εμπόδια), η τιμή-αξία που αποδίδεται σε έναν αλγόριθμο, ελεγκτή, ή συνδυασμό τους C για τη μετρική m εκφράζεται στο διάστημα $\mathbb{R}_{\geq 0} \times [0,1]$ και εκφράζεται ως $V_q(C,m)$:

$$V_a(C,m) = w_m \cdot I(C,m) \cdot N(m) \tag{4.9}$$

Κατ' αναλογία, για τους αλγορίθμους παραγωγής μονοπατιών, τους ελεγκτές κίνησης, ή τους συνδυασμούς τους, εάν η τιμή τους όσον αφορά στη μετρική m είναι αντιστρόφως ανάλογη της τιμής της m (όπως η τιμή της μετρικής του χρόνου που απαιτείται για να πλοηγηθεί το ρομπότ από την αρχική του στάση στη στάση-στόχο), η τιμή-αξία που αποδίδεται σε έναν αλγόριθμο, ελεγκτή, ή συνδυασμό τους C για τη μετρική m εκφράζεται στο διάστημα $\mathbb{R}_{\geq 0} \times [0,1]$ και εκφράζεται ως $V_{\overline{q}}(C,m)$:

$$V_{\overline{g}}(C,m) = w_m \cdot I(C,m) \cdot (1 - N(m)) \tag{4.10}$$

Επομένως, με βάση τα παραπάνω, ένας γενικός αλλά ακριβής τύπος για την ανάθεση τιμής V(C) σε κάθε συνδυασμού αλγορίθμων και ελεγκτών C για όλες τις προαναφερθείσες μετρικές αξιολόγησης σε N προσομοιώσεις ή πειράματα στο χάρτη M είναι μέσω της

$$V_{\mathbf{M}}(C) = \sum_{m} I_{Q}(m) \cdot V_{q}(C, m) + I_{\overline{Q}}(m) \cdot V_{\overline{q}}(C, m)$$

$$(4.11)$$

όπου Q συμβολίζει το σύνολο των μετριχών των οποίων η τιμή είναι ευθέως ανάλογη της τιμής ενός συνδυασμού, και $I_Q(m)$ είναι η συνάρτηση-δείκτης για τη μετριχή m. Η συνάρτηση V_M , όπως ορίζεται στην εξίσωση 4.11, είναι γνησίως αύξουσα για όλες τις τιμές μιας μετριχής $m \in [\min m, \max m]$ σε ένα δεδομένο χάρτη, δηλαδή για όλες τις τιμές των μετριχών που προχύπτουν είτε από επιτυχείς είτε από ανεπιτυχείς συνδυασμούς C στον εν λόγω χάρτη (όπως αναφέρθηχε προηγουμένως, επιτυχημένοι με την έννοια της ολοχλήρωσης του συνόλου των αποστολών πλοήγησης).

Η τελική συνολική κατάταξη των επιδόσεων όλων των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης σε έναν χάρτη M είναι επομένως το αποτέλεσμα της ταξινόμησης των τιμών της $V_M(C)$, όπως δίνεται από την εξίσωση 4.11, με φθίνουσα σειρά. Η τελική συνολική κατάταξη της επίδοσης όλων των συνδυασμών σε διαφορετικούς χάρτες θα είναι το αποτέλεσμα μιας πράξης ταξινόμησης στα αθροίσματα των τιμών του V_M σε όλους τους χάρτες M.

4.3.4 Ορισμός μετρικών ποιότητας πακέτων λογισμικών πλοήγησης

Μαζί με τις ποσοτικές μετρικές αξιολόγησης που αναφέρθηκαν παραπάνω θα αξιολογήσουμε επίσης και την κατάσταση της μορφής του λογισμικού των διαθέσιμων αλγορίθμων χάραξης μονοπατιών (ενότητα 4.2.3.1) και ελεγκτών κίνησης (ενότητα 4.2.3.1) σε σχέση με τις μετρικές που ακολουθούν:

 Η ποιότητα και ο πλούτος της τεκμηρίωσής τους—μια ποιότητα που έχει αξία για τους μηχανικούς και προγραμματιστές ρομποτικής, καθώς χωρίς τεκμηρίωση δυσχεραίνεται η χρήση τους

- Η επικαιροποίησή τους—μια σύνθετη ποιότητα που αθροίζει (α) το πόσο ενημερωμένο είναι ένα πακέτο λογισμικού σε σχέση με τα ομοειδή του, (β) την υποστήριξη που προσφέρεται από τους συντηρητές του, (γ) την κατάσταση συντήρησης του πακέτου και (δ) την ικανότητά του να εγκατασταθεί σε ένα ρομπότ, δηλαδή τη συμβατότητά του με ενημερωμένα λειτουργικά συστήματα, μεταγλωττιστές και διερμηνευτές
- Η ευχολία εγχατάστασής τους
- Η αυτοτέλειά τους, δηλαδή κατά πόσο ένα πακέτο εξαρτάται από άλλα, ξεχωριστά εγκαταστάσιμα, πακέτα
- Οι υπολογιστικές τους ανάγκες
- Η δυνατότητα παραμετροποίησής τους. Αν και ο αριθμός των παραμέτρων ενός πακέτου αυξάνει την πολυπλοκότητα του, η ικανότητα προσαρμογής της επίδοσης και συμπεριφοράς αλγορίθμων ανάλογα με (α) συγκεκριμένες ιδιότητες των ρομπότ (τη γεωμετρία τους στο χώρο, το κινηματικό τους μοντέλο, κ.λπ.), και (β) κάτω από διάφορες και μεταβλητές προδιαγραφές, είναι υψίστης σημασίας για την επίτευξη της επιθυμητής επίδοσης κίνησης από ένα ρομπότ. Αυτή η ποιότητα συνδυάζεται με την πρώτη μετρική: ο πλούτος των παραμέτρων προς ρύθμιση είναι μη σχετικός εάν υπάρχει ανεπαρκής τεκμηρίωση σχετικά με την ταυτότητα/επιρροή τους στη συμπεριφορά του ρομπότ
- Η συνέπειά ως προς την απόδοσή τους, δηλαδή αστοχίες που παρουσιάζουν που οφείλονται σε ανεπαρκή μετάφραση της θεωρίας σε κώδικα προγραμματισμού (αυτό περιλαμβάνει την (μη) συνέπεια στην εμφάνιση σφαλμάτων λογισμικού και την ταχύτητα εκτέλεσης)

Προτού προχωρήσουμε στην αξιολόγηση των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης, θα φιλτράρουμε τα αντίστοιχα συνιστώντα πακέτα του λογισμικού τους με βάση τις ποιοτικές μετρικές που ορίστηκαν παραπάνω. Καθώς η αξιολόγηση περνάει αναγκαστικά μέσα από τη διαδικασία της πειραματικής υλοποίησης μέσω λογισμικού, η ποιοτική αξιολόγηση έχει ως σκοπό να εξετάσει την ποιότητα των διαθέσιμων υλοποιήσεων των αλγορίθμων που πραγματώνουν το έργο της αυτόνομους πλοήγησης, και να απορρίψει εκείνες που είναι ακατάλληλες για σταθερή και βιώσιμη χρήση: ένα παρωχημένο, μη αυτοτελές ή δυσεγκαταστάσιμο πακέτο είναι ένα πακέτο που δεν μπορεί να χρησιμοποιηθεί στην πράξη. Ένα

πακέτο που στερείται τεκμηρίωσης είναι ένα πακέτο το οποίο, ακόμη και αν είναι χρησιμοποιήσιμο, στερεί από τον μηχανικό την εικόνα της μεθόδου του, παρεμποδίζει την πρόσβαση ή συσκοτίζει το νόημα των παραμέτρων του και συνεπώς παρεμποδίζει την παραμετροποίησή του και, τελικά, τη χρηστικότητα και τη μακροζωία της χρήσης του. Τέλος, ένα πακέτο που καταναλώνει αρκούντως πολλούς πόρους είναι ένα πακέτο που αρνείται σε άλλους κόμβους τους πόρους που αυτοί χρειάζονται, και συνεπώς θέτει σε κίνδυνο την επίδοσή τους και την επίδοση του συνολικού ρομποτικού συστήματος.

4.4 Πειραματική αξιολόγηση

4.4.1 Προκαταρκτική αξιολόγηση

Τα πακέτα navfn και global_planner θεωρούνται ότι είναι οι προεπιλεγμένες επιλογές για αλγορίθμους χάραξης μονοπατιών στο ROS: είναι οι παλαιότερες και (θεωρούνται ότι είναι οι—) ασφαλέστερες επιλογές για το έργο της πλοήγησης. Επιπλέον, απαιτούν ελάχιστη παραμετροποίηση. Συντηρούνται συνεχώς από την απαρχή του ROS (αυτό ισχύει ειδικά για το navfn) και, ως οι de facto global planners του ROS, θα θεωρηθούν ως το βασικό μέτρο σύγκρισης για όλους τους άλλους global planners που θα περάσουν από την αρχική φάση διαλογής.

Θεωρούμε ότι το παχέτο asr_navfn είναι περιττό χαθώς (α) η συμπεριφορά του είναι αχριβώς η ίδια με αυτή του navfn χαι (β) η δυνατότητά χρήσης του βασίζεται στην πιθανή αποτυχία του επιλογέα στόχου του ρομπότ. Επιπλέον, δεν συντηρείται επί του παρόντος. Ως εχ τούτου, αυτό το παχέτο δεν θα αξιολογηθεί σύμφωνα με την δεύτερο χριτήριο της ενότητος 4.3.4.

Παρόλο που το παχέτο MoveIt! είναι επαρχώς τεχμηριωμένο, υποστηριζόμενο, και ενημερωμένο, δεν απευθύνεται σε πλοήγηση χινητών βάσεων στον δισδιάστατο χώρο. Επομένως, το παχέτο αυτό θα δεν θα αξιολογηθεί, σύμφωνα με το δεύτερο χριτήριο.

Το παχέτο sbpl_lattice_planner τεχμηριώνεται τόσο στη θεωρία όσο χαι από άποψης παραμέτρων. Είναι επί του παρόντος ενημερωμένο στην τελευταία έχδοση του ROS, συντηρείται, χαι υποστηρίζεται από τους συντηρητές του ROS (ένα σφάλμα λογισμιχού που αναχαλύφθηχε χατά τη διάρχεια της αξιολόγησής που διενεργήσαμε εξαλείφθηχε μέσα σε 8 ημέρες). Για την εγκατάστασή του (εκτός από εκείνη της βασικής βιβλιοθήκης SBPL) δεν απαιτείται κάποια ιδιαίτερη προσπάθεια.

Η δυναμική έκδοση του sbpl_lattice_planner, το πακέτο sbpl_dynamic_env_global_planner, θεωρείται περιττό δεδομένου ότι η παρούσα μελέτη ασχολείται με την πλοήγηση σε στατικά περιβάλλοντα. Παρ' όλα αυτά, η σελίδα αναφοράς του προειδοποιεί τον αναγνώστη ότι ο ιχνηλάτης που χρησιμοποιείται για την παρακολούθηση κινούμενων αντικειμένων δεν είναι εύρωστος (ειδικά όταν το ρομπότ κινείται), συμβουλεύοντάς τον να κατευθυνθεί σε κάποια καλύτερη εναλλακτική λύση. Επιπλέον, απαιτεί την αντικατάσταση ολόκληρου του πακέτου move_base με μια τροποποίηση αυτού, έτσι ώστε οι global και local planners να εκτελούνται ταυτόχρονα. Τέλος, αξιολογείται ως μη επικαιροποιημένο πακέτο, δεδομένου ότι η τελευταία υποστηριζόμενη διανομή ROS είναι η diamondback, και η τελευταία ενημέρωσή της ήταν πάνω από οκτώ χρόνια πριν, κατά το χρόνο συγγραφής της διατριβής. Συνεπώς αυτό το πακέτο δεν είναι αυτοτελές, ενημερωμένο, και, σύμφωνα με το δεύτερο, το τέταρτο, και το έβδομο κριτήριο, δεν θα ληφθεί υπόψη στην προσεχή αξιολόγηση.

Παρόλο που το παχέτο lattice_planner είναι τεχμηριωμένο χαι αυτοτελές, δεν συντηρείται ενεργά (η τελευταία του έχδοση του στο github είναι πέντε ετών) χαι, ως εχ τούτου, δεν θα αξιολογηθεί, σύμφωνα με την δεύτερο χριτήριο αξιολόγησης ποιότητας.

Το ίδιο ισχύει και για το πακέτο waypoint_global_planner: είναι ελάχιστα τεκμηριωμένο, δεν συντηρείται ενεργά, και δεν είναι αυτοτελές, με την έννοια ότι η παροχή της αρχικής και τελικής στάσης του ρομπότ δεν επαρκούν για τη δημιουργία μιας διαδρομής που τις συνδέει, δεδομένου ότι ο αλγόριθμος δεν είναι σε θέση να λάβει υπόψη του τα εμπόδια του χάρτη κόστους. Συνεπώς, θα δεν θα ληφθεί υπόψη για αξιολόγηση, σύμφωνα με το πρώτο, το δεύτερο, και το τέταρτο κριτήριο.

Όσον αφορά το παχέτο voronoi_planner, είναι επίσης ανεπαρχώς τεχμηριωμένο, και δεν συντηρείται ενεργά (η τελευταία υποστηριζόμενη έχδοση ROS είναι η indigo και η τελευταία έχδοσή του στο github είναι έξι ετών). Ως εχ τούτου, δεν θα ληφθεί υπόψη για αξιολόγηση, σύμφωνα με το πρώτο και δεύτερο χριτήριο.

Όσον αφορά στους ελεγκτές κίνησης, η κατάσταση του dwa_local_planner είναι ισοδύναμη με εκείνη των navfn και global_planner: είναι το βασικό πακέτο υλοποίησης ελεγκτή κίνησης στο ROS.

Ο ελεγκτής κίνησης eband_local_planner τεκμηριώνεται, εγκαθίσταται μέσω της τυ-

πικής διαδικασίας εγκατάστασης πακέτων, και είναι αυτοτελής. Ωστόσο, δεν έχει ενημερωθεί ώστε να ταιριάζει με την τελευταία έκδοση του ROS,²³ και φαίνεται ότι δεν συντηρείται επί του παρόντος. Παρ' όλα αυτά θα το συμπεριλάβουμε στην αξιολόγηση των τοπικών σχεδιαστών μας ως εξαίρεση λόγω της κρίσιμης έλλειψης ελεγκτών κίνησης στο ROS. Στον πίνακα 4.5, κάτω από τη στήλη για τις υπολογιστικές ανάγκες, ο eband_local_planner λαμβάνει δύο κύκλους λόγω της ανάγκης επίλυσης ενός προβλήματος μη γραμμικής βελτιστοποίησης με περιορισμούς κατά τη διάρκεια εκτέλεσης.

Τέλος, ο ελεγκτής κίνησης teb_local_planner είναι το πιο διεξοδικά τεκμηριωμένο πακέτο λογισμικού μεταξύ όλων αυτών που έχουμε αναφέρει μέχρι στιγμής, τόσο σε θεωρητικό επίπεδο, όσο και σε επίπεδο παραμέτρων. Είναι ενημερωμένο στην τελευταία έκδοση του ROS, αυτοτελές, και είναι ο πιο παραμετροποιήσιμος ελεγκτής κίνησης. Ακριβώς όπως και ο eband_local_planner, ο teb_local_planner λαμβάνει δύο κύκλους στη στήλη για υπολογιστικών αναγκών στον πίνακα 4.5 λόγω της αρχής λειτουργίας του που περιλαμβάνει την επίλυση ενός προβλήματος μη γραμμικής βελτιστοποίησης με χωροχρονικούς περιορισμούς κατά τη διάρκεια εκτέλεσής του.

Συνολικά, κανένας από τους σχεδιαστές που συζητήθηκαν παραπάνω δεν έχει υπερβολικές απαιτήσεις σε πόρους, και επομένως η ταυτόχρονη λειτουργία τους μαζί με άλλα πακέτα (παρακολούθησης στάσης ή χαρτογράφησης SLAM, για παράδειγμα) δεν θέτει σε κίνδυνο τη λειτουργία των τελευταίων.

Ο πίναχας 4.5 απειχονίζει τον πλήρη κατάλογο αξιολόγησης με βάση τα ποιοτιχά χριτήρια της ενότητος 4.3.4 για όλα τα παχέτα λογισμιχού αυτόνομους πλοήγησης των ενοτήτων 4.2.3.1 χαι 4.2.3.2.

Ο πίνακας 4.6 δείχνει την τελική λίστα των πακέτων ROS που θα αξιολογηθούν πειραματικά. Οι συμβολισμοί GP και LP που χρησιμοποιούνται στη συνέχεια στην επικεφαλίδα των πινάκων είναι συντομογραφία των φράσεων "Global Planner" και "Local Planner" αντίστοιχα.

4.4.2 Αξιολόγηση στο περιβάλλον CORRIDOR

Συνολικά, όλοι οι συνδυασμοί του dwa_local_planner με οποιονδήποτε global planner απέτυχαν να πλοηγήσουν το ρομπότ στην επιθυμητή στάση, και το ίδιο παρατηρείται για το

²³https://github.com/utexas-bwi/eband_local_planner/issues/28

teb_local_planner

	Ποιοτικές Μετρικές							
Planner	DOC	UTD	INST	SC/C	PARAM	CON	COMP	Αποδοχή
navfn	•	•	••	•	•	•	•	•
global_planner	•	•	••	•	•	•	•	•
asr_navfn	•	0	•	•	•	•	•	0
MoveIt!	•••	•	••	•	• • •	?	• • •	0
sbpl_lattice_planner	••	•	••	•	•	0	•	•
${\tt sbpl_dynamic_[]}$	•	0	•	0	•	?	•	0
lattice_planner	•	0	•	•	•	•	•	0
waypoint_global_planner	•	0	•	0	0	•	•	0
voronoi_planner	•	0	•	•	•	•	•	0
dwa_local_planner	•	•	••	•	•	•	•	•
eband_local_planner	•	0	••	•	••	•	••	•

Πίνακας 4.5: Αξιολόγηση των πακέτων ROS που αποτελούν συνιστώσες αυτόνομους πλοήγησης με βάση τις μετρικές που ορίζονται στην ενότητα 4.3.4, και απόφαση αποδοχής για συμπερίληψη στην πειραματική αξιολόγηση. Οι συντομογραφίες εισάγονται για λόγους εξοικονόμησης χώρου. DOC: συντομογραφία ποιότητας τεκμηρίωσης, UTD περί του αν είναι ενημερωμένο, INST της ευκολίας εγκατάστασης του, SC/C για την αυτοτέλεια/πληρότητα του, PARAM για την παραμετροποιησιμότητα του, CON της συνέπειας στην εκτέλεσή του, και COMP για τις ανάγκες του σε υπολογιστικούς πόρους. Οι κενές κουκκίδες υποδηλώνουν ανεπάρκεια σε σχέση με κάθε μετρική. Τα ερωτηματικά υποδηλώνουν άγνωστη κατάσταση.

Global planners (GP)	Local planners (LP)
navfn	dwa_local_planner
global_planner	eband_local_planner
sbpl_lattice_planner	teb_local_planner

Πίναχας 4.6: Ο κατάλογος των πακέτων ROS των αλγορίθμων κατασκευής μονοπατιών (Global Planners) και ελεγκτών κίνησης (Local Planners) των οποίων η ξεχωριστή και συνδυαστική χρήση θα αξιολογηθεί πειραματικά. Κάθε πακέτο ικανοποιεί όλα τα κριτήρια της λίστας της ενότητας 4.3.4

GP	LP	επιτυχημένες αποστολές $/\ N$	V_{M_C}	Κατάταξη
navfn	teb	10/10	21.41	1
sbpl	teb	10/10	20.35	2
<pre>global_planner</pre>	teb	10/10	19.29	3
navfn	eband	10/10	15.96	4
<pre>global_planner</pre>	eband	10/10	14.70	5
sbpl	eband	0/10	10.99	6
sbpl	dwa	0/10	6.56	7
navfn	dwa	0/10	6.46	8
global_planner	dwa	0/10	5.50	9

Πίνακας 4.7: Οι αριθμοί επιτυχίας αποστολών, η τιμή-αξία V_{M_C} , και η κατάταξη όλων των συνδυασμών των αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογούνται για την επίδοσή τους στο περιβάλλον CORRIDOR σε N=10 προσομοιώσεις

συνδυασμό του sbpl_lattice_planner με τον eband_local_planner.

Το σχήμα 4.5 απεικονίζει τα μονοπάτια προς ακολούθηση που παρήχθησαν από όλους τους global planners που εμφανίζονται στην πρώτη στήλη του πίνακα 4.6, για όλους τους συνδυασμούς global και local planner του ίδιου πίνακα, για N=10 προσομοιώσεις κάθε συνδυασμού.

Το σχήμα 4.6 απειχονίζει τις πραγματιχές διαδρομές που διήνυσε το ρομπότ για όλους τους συνδυασμούς αλγορίθμων σχεδίασης μονοπατιών και ελεγκτών κίνησης του ίδιου πίνακα, για N=10 προσομοιώσεις για κάθε συνδυασμό.

Ο πίνακας 4.7 καταγράφει την τιμή-αξία V_{M_C} και την κατάταξη όλων των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογήθηκαν με βάση τις τιμές όλων των μετρικών που παρουσιάζονται στους πίνακες $\Delta'.1$ - $\Delta'.7$, όσον αφορά στις επιδόσεις τους στην πλοήγηση στο περιβάλλον CORRIDOR. Για τον υπολογισμό της τιμής όλων των συνδυασμών, όλα τα βάρη $w_m=1.0$ εκτός από αυτό που αφορά στη μετρική μ_{PF}/μ_{LPC} , λόγω του γεγονότος ότι ο eband_local_planner δεν παρέχει πρόσβαση στον αριθμό των κλήσεων του ελεγκτή. Συνολικά, ο ελεγκτής κίνησης teb_local_planner κατέλαβε όλες τις θέσεις του βάθρου, με τον συνδυασμό του με τον αλγόριθμο navfn να είναι αυτός με τις καλύτερες επιδόσεις μεταξύ των τριών αλγορίθμων χάραξης μονοπατιών. Λεπτομέρειες σχετικά με τις επιδόσεις των αλγορίθμων χάραξης μονοπατιών, των ελεγκτών κίνησης, και των συνδυασμών τους, βρίσκονται στο παράρτημα $\Delta'.2.1$.

Σχήμα 4.5: Τα σχεδιασθέντα μονοπάτια προς ακολούθηση ${\cal G}$ που παρήχθησαν από τους τρεις αλγορίθμους χάραξης μονοπατιών για κάθε συνδυασμό τους με ελεγκτή κίνησης του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος CORRIDOR

Σχήμα 4.6: Τα διανυθέντα μονοπάτια $\mathcal P$ του ρομπότ, όπως ορίστηκαν από τους τρεις ελεγκτές κίνησης για κάθε συνδυασμό τους με αλγόριθμο παραγωγής μονοπατιών του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος CORRIDOR

4.4.3 Αξιολόγηση στο περιβάλλον WILLOWGARAGE

Συνολικά, όλοι οι συνδυασμοί των αλγορίθμων χάραξης μονοπατιών με τους ελεγκτές κίνησης dwa_local_planner και eband_local_planner απέτυχαν να πλοηγήσουν το ρομπότ στην τελική του στάση. Οι υπόλοιποι συνδυασμοί (όλοι με τον teb_local_planner ως ελεγκτή κίνησής τους) ήταν αξιόπιστοι σε κάθε προσομοίωση.

Το σχήμα 4.7 απεικονίζει τα μονοπάτια προς ακολούθηση που παρήχθησαν από όλους τους global planners που εμφανίζονται στην πρώτη στήλη του πίνακα 4.6, για όλους τους συνδυασμούς global και local planner του ίδιου πίνακα, για N=10 προσομοιώσεις κάθε συνδυασμού.

Το σχήμα 4.8 απειχονίζει τις πραγματιχές διαδρομές που διένυσε το ρομπότ για όλους τους συνδυασμούς αλγορίθμων σχεδίασης μονοπατιών και ελεγκτών κίνησης του ίδιου πίνακα, για N=10 προσομοιώσεις για κάθε συνδυασμό.

Ο πίναχας 4.8 καταγράφει την τιμή-αξία V_{M_W} και την κατάταξη όλων των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογήθηκαν με βάση τις τιμές όλων των μετρικών που παρουσιάζονται στους πίνακες $\Delta'.8$ - $\Delta'.14$ όσον αφορά στις επιδόσεις τους στην πλοήγηση στο περιβάλλον WILLOWGARAGE. Για τον υπολογισμό της τιμής όλων των συνδυασμών, όλα τα βάρη $w_m=1.0$ exτός από αυτό που αφορά στη μετρική μ_{PF}/μ_{LPC} , λόγω του γεγονότος ότι ο eband_local_planner δεν παρέχει πρόσβαση στον αριθμό των κλήσεων του ελεγκτή. Συνολικά, ο ελεγκτής κίνησης teb_local_planner κατέλαβε και πάλι όλες τις θέσεις του βάθρου (αυτή τη φορά λόγω της αποτυχίας όλων των άλλων ελεγκτών κίνησης να ολοκληρώσουν την αποστολή του ρομπότ), με το συνδυασμό του με τον global_planner να ξεπερνά αυτόν με τον navfn, ο οποίος ήταν ο συνολικά καλύτερος στο περιβάλλον CORRIDOR. Ενδιαφέρον αποτελεί ότι ο sbpl_lattice_planner βοήθησε την επίδοση του dwa_local_planner περισσότερο από τους άλλους global planners, κάτι που πιθανότατα οφείλεται στο γεγονός ότι ο πρώτος λαμβάνει υπόψιν του κατά την σχεδίαση των μονοπατιών τους περιορισμούς του κινηματικού μοντέλου της βάσης του ρομπότ, το οποίο σε αυτήν την περίπτωση είναι διαφορικής κίνησης.

Λεπτομέρειες σχετικά με τις επιδόσεις των αλγορίθμων χάραξης μονοπατιών, των ελεγκτών κίνησης, και των συνδυασμών τους, βρίσκονται στο παράρτημα $\Delta'.2.2$.

Σχήμα 4.7: Τα σχεδιασθέντα μονοπάτια προς ακολούθηση ${\cal G}$ που παρήχθησαν από τους τρεις αλγορίθμους χάραξης μονοπατιών για κάθε συνδυασμό τους με ελεγκτή κίνησης του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος WILLOWGARAGE

Σχήμα 4.8: Τα διανυθέντα μονοπάτια $\mathcal P$ του ρομπότ, όπως ορίστηκαν από τους τρεις ελεγκτές κίνησης για κάθε συνδυασμό τους με αλγόριθμο παραγωγής μονοπατιών του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος WILLOWGARAGE

GP	LP	επιτυχημένες αποστολές $\ /\ N$	$V_{oldsymbol{M}_W}$	Κατάταξη
globalplanner	teb	10/10	21.90	1
navfn	teb	10/10	20.00	2
sbpl	teb	10/10	12.27	3
globalplanner	eband	0/10	11.95	4
navfn	eband	0/10	11.76	5
sbpl	eband	0/10	9.85	6
navfn	dwa	0/10	9.31	7
globalplanner	dwa	0/10	8.86	8
sbpl	dwa	0/10	4.85	9

Πίνακας 4.8: Οι αριθμοί επιτυχίας αποστολών, η τιμή-αξία V_{M_W} , και η κατάταξη όλων των συνδυασμών των αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογούνται για την επίδοσή τους στο περιβάλλον WILLOWGARAGE σε N=10 προσομοιώσεις

4.4.4 Αξιολόγηση στο περιβάλλον CSAL

Συνολικά, όπως και στις προσομοιώσεις, όλοι οι συνδυασμοί αλγορίθμων χάραξης μονοπατιών με τον ελεγκτή κίνησης dwa_local_planner απέτυχαν να πλοηγήσουν το ρομπότ από την αρχική του στάση στην τελική. Οι υπόλοιποι συνδυασμοί ήταν αξιόπιστοι σε κάθε εκτέλεση.

Το σχήμα 4.9 απεικονίζει τα μονοπάτια προς ακολούθηση που παρήχθησαν από όλους τους global planners που εμφανίζονται στην πρώτη στήλη του πίνακα 4.6, για όλους τους συνδυασμούς global και local planner του ίδιου πίνακα, για N=10 προσομοιώσεις κάθε συνδυασμού.

Το σχήμα 4.10 απειχονίζει τις εχτιμώμενες 24 διαδρομές που διένυσε το ρομπότ για όλους τους συνδυασμούς αλγορίθμων σχεδίασης μονοπατιών χαι ελεγχτών χίνησης του ίδιου πίναχα, για N=10 προσομοιώσεις για χάθε συνδυασμό.

Ο πίνακας 4.9 καταγράφει την τιμή-αξία V_{M_L} και την κατάταξη όλων των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογήθηκαν με βάση τις τιμές όλων των μετρικών που παρουσιάζονται στους πίνακες $\Delta'.15$ - $\Delta'.21$ όσον αφορά στις επιδόσεις τους στην πλοήγηση στο περιβάλλον CSAL. Για τον υπολογισμό της τιμής όλων των

²⁴Το εργαστήριο CSAL, σε αντίθεση με το περιβάλλον προσομοίωσης Gazebo, δεν διαθέτει υποδομή μέτρησης της πραγματικής στάσης ενός οχήματος. Οι εκτιμώμενες διαδρομές βασίζονται στην εκτίμηση της στάσης του ρομπότ, η οποία εξάγεται μέσω της χρήσης φίλτρου σωματιδίου. Η λειτουργία του φίλτρου βασίζεται στο κινηματικό μοντέλο της βάσης του Turtlebot, η οποία είναι διαφορικής φύσης, και σε έναν αισθητήρα αποστάσεων 2D lidar.

Σχήμα 4.9: Τα σχεδιασθέντα μονοπάτια προς ακολούθηση ${\cal G}$ που παρήχθησαν από τους τρεις αλγορίθμους χάραξης μονοπατιών για κάθε συνδυασμό τους με ελεγκτή κίνησης του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος ${\rm CSAL}$

Σχήμα 4.10: Τα διανυθέντα μονοπάτια $\mathcal P$ του ρομπότ, όπως ορίστηκαν από τους τρεις ελεγκτές κίνησης για κάθε συνδυασμό τους με αλγόριθμο παραγωγής μονοπατιών του πίνακα 4.6, σε σχέση με τις ορισμένες αρχικές και τελικές στάσεις του περιβάλλοντος CSAL

συνδυασμών, όλα τα βάρη $w_m=1.0$ εκτός από αυτό που αφορά στη μετρική μ_{PF}/μ_{LPC} , λόγω του γεγονότος ότι ο eband_local_planner δεν παρέχει πρόσβαση στον αριθμό των κλήσεων του ελεγκτή. Λεπτομέρειες σχετικά με τις επιδόσεις των αλγορίθμων κατασκευής μονοπατιών, των ελεγκτών κίνησης, και των συνδυασμών τους, βρίσκονται στο παράρτημα $\Delta'.2.3$.

Αυτό που ξεχωρίζει στα πειράματα στο πραγματικό περιβάλλον CSAL είναι ότι η επίδοση των συνδυασμών του sbpl_lattice_planner με ελεγκτές κίνησης μειώθηκε, επιτρέποντας στον eband_local_planner και τους συνδυασμούς του να εκτοπίσουν τον συνδυασμό του teb_local_planner με τον sbpl_lattice_planner από τις πρώτες θέσεις. Εκτός από αυτήν την αλλαγή, οι συνδυασμοί των υπόλοιπων αλγορίθμων παρουσιάζουν το ίδιο μοτίβο που παρατηρήθηκε στις προσομοιώσεις: (α) δεδομένου ενός αλγορίθμου κατασκευής μονοπατιών, ο teb_local_planner υπερτερεί του eband_local_planner, ο οποίος με τη σειρά του υπερτερεί του dwa_local_planner, και (β) δεδομένου ενός ελεγκτή κίνησης, ο navfn υπερτερεί του global_planner.

GP	LP	επιτυχημένες αποστολές $/\ N$	$V_{oldsymbol{M}_C}$	Κατάταξη
navfn	teb	10/10	18.74	1
globalplanner	teb	10/10	16.84	2
navfn	eband	10/10	14.77	3
globalplanner	eband	10/10	14.26	4
sbpl	teb	10/10	13.57	5
navfn	dwa	0/10	8.10	6
sbpl	eband	10/10	7.80	7
sbpl	dwa	0/10	6.47	8
globalplanner	dwa	0/10	6.13	9

Πίνακας 4.9: Οι αριθμοί επιτυχίας αποστολών, η τιμή-αξία V_{M_L} , και η κατάταξη όλων των συνδυασμών των αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που αξιολογούνται για την επίδοσή τους στο περιβάλλον CSAL σε N=10 πειράματα

4.4.5 Συνολική αξιολόγηση

Ο πίναχας 4.10 καταγράφει τις τελικές συνδυαστικές τιμές-αξίες όλων των συνδυασμών των αλγορίθμων χάραξης μονοπατιών της αριστερής στήλης του πίναχα 4.6 με όλους τους

GP	LP	$V_{oldsymbol{M}_C}$	V_{M_W}	$V_{m{M}_L}$	V	Κατάταξη
navfn	teb	21.41	20.00	18.74	60.15	1
globalplanner	teb	19.29	21.90	16.84	58.03	2
sbpl	teb	20.35	12.27	13.57	46.19	3
navfn	eband	15.96	11.76	14.77	42.49	4
globalplanner	eband	14.70	11.95	14.26	40.91	5
sbpl	eband	10.99	9.85	7.80	28.94	6
navfn	dwa	6.46	9.31	8.10	28.64	7
globalplanner	dwa	5.50	8.86	6.13	20.49	8
sbpl	dwa	6.56	4.85	6.47	17.88	9

Πίναχας 4.10: Η σύνθετη τελική τιμή V και η κατάταξη όλων των συνδυασμών αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης του πίνακα 4.6 ως αποτέλεσμα της αξιολόγησης της επίδοσής τους βάσει των μετρικών των πινάκων 4.2, 4.3, και 4.4, σε επαναληπτικές προσομοιώσεις και πειράματα στα περιβάλλοντα CORRIDOR (σχήμα 4.2), WILLOWGARAGE (σχήμα 4.3) και CSAL (σχήμα 4.4)

ελεγκτές κίνησης της δεξιάς στήλης του ίδιου πίνακα, για όλα τα πειράματα και προσομοιώσεις που διεξήχθησαν.

Με βάση τα παραπάνω στοιχεία δύο καθοριστικά πρότυπα αναδύονται με σαφήνεια: Όσον αφορά στους ελεγκτές κίνησης: ο teb_local_planner υπερτερεί του eband_local_planner, ο οποίος υπερτερεί με τη σειρά του του dwa_local_planner. Όσον αφορά στους αλγορίθμους σχεδιασμού μονοπατιών: δεδομένου ενός ελεγκτή κίνησης, ο navfn υπερτερεί του global_planner με μικρή διαφορά, μικρότερη από εκείνη μεταξύ του τελευταίου και του sbpl_lattice_planner.

Με βάση τα πειραματικά δεδομένα (ενότητα 4.3.1 και παράρτημα Δ'), τις μετρικές αξιολόγησης τους (ενότητα 4.3.2), τη μεθοδολογία αξιολόγησης (ενότητα 4.3.3) και τις ποιοτικές μετρικές αξιολόγησης πακέτων λογισμικού ROS (ενότητα 4.3.4), συμπεραίνουμε ότι ο πιο αποτελεσματικός συνδυασμός πακέτων για χρήση στην αυτόνομη πλοήγηση στο πεδίο εφαρμογής ΠΕ χρησιμοποιεί τον navfn ως αλγόριθμο χάραξης μονοπατιών (ενότητα 4.2.3.1), και τον teb_local_planner ως ελεγκτή κίνησης (ενότητα 4.2.3.2).

Επιπλέον, οι καλύτεροι υποψήφιοι για την αντικατάσταση των παραπάνω αλγορίθμων, ανάλογα με τις συνθήκες του περιβάλλοντος και τις απαιτήσεις/στόχους πλοηγήσεις, είναι o global_planner και o eband_local_planner αντίστοιχα.

4.5 Συμπεράσματα και περαιτέρω έρευνα

4.5.1 Συμπεράσματα κεφαλαίου

Σε αυτό το κεφάλαιο αξιολογήσαμε την επίδοση των τελευταίας τεχνολογίας πακέτων λογισμικού ROS που είναι ικανά να φέρουν εις πέρας το έργο της αυτόνομους πλοήγησης στο πεδίο εφαρμογής ΠΕ. Οι αλγόριθμοι αυτοί είναι δύο ειδών: αλγόριθμοι χάραξης μονοπατιών ανάμεσα σε δύο στάσεις του χάρτη του περιβάλλοντος στο οποίο κινείται μία κινητή βάση ρομπότ, και αλγόριθμοι ελέγχου της κίνησης του ρομπότ στο περιβάλλον του. Ο συνδυασμός τους αποτελεί τον πυρήνα της πλοήγησης μίας κινητής βάσης ρομπότ άνευ εξωτερικών χειροκίνητων χειρισμών της.

Η αξιολόγηση είχε ως στόχους

- το σχεδιασμό μίας ολοκληρωμένης, περιεκτικής, και επεκτάσιμης μεθοδολογίας αξιολόγησης μεθόδων αυτόνομους πλοήγησης κινητών βάσεων ρομπότ, και
- την εφαρμογή της για την αξιολόγηση της επίδοσης τρεχόντων υλοποιήσεών τους μέσω του μεσολογισμικού ROS

Προχειμένου να διαχρίνουμε τα εύρωστα χαι εύχρηστα παχέτα λογισμικού από τα μη, συστήσαμε μία μεθοδολογία προχαταρχτικής αξιολόγησής τους με βάσει ποιοτικά χριτήρια που τίθενται από την εμπειρία ανάπτυξης και συντήρησης λογισμικού. Στη συνέχεια σχεδιάσαμε μία μεθοδολογία αξιολόγησης με βάση ποσοτικές μετρικές, οι οποίες αποτελούν αντικειμενικά χριτήρια της επίδοσης ενός ρομπότ στο έργο της αυτόνομους πλοήγησης, και στις οποίες ένας μηχανικός ρομποτικής μπορεί να θέσει επιπλέον ή λιγότερο βάρος αναλόγως των σχοπών της εφαρμογής των εν λόγω παχέτων αυτόνομους πλοήγησης. Έπειτα εφαρμόσαμε τη μεθοδολογία ποσοτικής αξιολόγησης σε εννιά συνδυασμούς παχέτων, πραγματοποιώντας χρήση τους για αυτόνομη πλοήγηση σε δύο ετερογενή προσομοιωμένα περιβάλλοντα και σε ένα πραγματικό. Τα περιβάλλοντα και οι διαδρομές πλοήγησης επιλέχθηκαν έτσι ώστε να δοχιμάσουν τους υποχείμενους αλγορίθμους με μία σειρά χριτηρίων, και με κλιμαχωτή δυσχολία. Το αποτέλεσμα ήταν μία ιεράρχηση των συνδυασμών των παχέτων λογισμικού, στην χορυφή της οποίας βρίσχεται ένας συνδυασμός ο οποίος φέρει εις πέρας το έργο της αυτόνομους πλοήγησης με ελάχιστα σφάλματα πλοήγησης, σε εύλογους χρόνους, και, συνολικά, άριστη επίδοση στο σύνολο των τριών περιβαλλόντων δοχιμής.

4.5.2 Αιτίες περαιτέρω έρευνας

Για το σχοπό της αυτόνομους πλοήγησης είναι απαραίτητη η γνώση ή η εχτίμηση της τρέχουσας στάσης του ρομπότ: μόνο με βάση αυτήν είναι δυνατή η εύρεση ταχυτήτων προς είσοδο στους χινητήρες των τροχών της χινητής βάσης έτσι ώστε να αχολουθείται το σχεδιασθέν μονοπάτι. Στο πεδίο εφαρμογής ΠΕ η γνώση της στάσης δεν είναι δυνατή: μόνο η παρατήρησή της είναι δυνατή, μέσω των αισθητήρων που φέρει το ρομπότ (παρατήρηση Ι). Για την παρατήρηση της στάσης του ρομπότ χατά τη διενέργεια της πειραματιχής διαδιχασίας χρησιμοποιήσαμε το φίλτρο σωματιδίων (ενότητα 1.2.3).

Αυτό που παρατηρήσαμε δια ζώσης και με γυμνό μάτι κατά τη διάρκεια της πειραματικής διαδικασίας ήταν ότι η εκτίμηση της στάσης του ρομπότ δεν σύναδε πάντοτε με την πραγματική του στάση: σε λίγες περιπτώσεις παρατηρήσαμε ότι η εκτίμηση της θέσης ταλαντωνόταν απότομα ανάμεσα σε μερικές υποψήφιες θέσεις—σε άλλες στιγμές παρατηρούσαμε ότι η εκτίμηση της στάσης του ρομπότ είχε ορατό σφάλμα σε σχέση με την πραγματική του στάση. Το σχήμα 4.11 δείχνει την εξέλιξη του μέσου όρου των σφαλμάτων κατάστασης (του διανύσματος της στάσης) κατά τις δέκα διαδρομές του συνδυασμού του ελεγκτή teb_local_planner με τον αλγόριθμο χάραξης μονοπατιών navfn στο περιβάλλον CORRIDOR (αριστερά) και με τον global_planner στο περιβάλλον WILLOWGARAGE (δεξιά). Σε αυτά τα σχήματα παρατηρούμε τέσσερα πράγματα για το σφάλμα κατάστασης: (α) δεν έχει σταθερά μηδενική (ή αμελητέα) τιμή, (β) δεν έχει σταθερή τιμή μέσα στο χώρο και κατά τη διάρκεια του χρόνου, (γ) δεν έχει παρόμοιες καμπύλες εξέλιξης σε διαφορετικά περιβάλλοντα, και (δ) δεν έχει το ίδιο άνω ή κάτω όριο σε διαφορετικά περιβάλλοντα.

Ανάλογα με τους σκοπούς ρομποτικών εφαρμογών το σφάλμα κατάστασης μπορεί να έχει μεταβλητές προδιαγραφές. Για παράδειγμα, σε αποθήκες με μεγάλους χώρους και πλατειά περάσματα, όπου ο στόχος είναι η απογραφή της θέσης προϊόντων με αδρή ακρίβεια θέσης (της τάξης των δεκάδων εκατοστών του μέτρου), ούτε η πλοήγηση δυσχεραίνεται, ούτε και διαταράσσεται η ακρίβεια της απογραφής. Αντιθέτως, σε περιβάλλοντα με στενά περάσματα ή απαιτήσεις ακριβείας στάσης (για παράδειγμα σε αυτόνομα παλετοφόρα οχήματα), η αυτόνομη πλοήγηση δυσχεραίνεται σε αναλογία με το σφάλμα στάσης και το πόσο στενά είναι τα περάσματα, και το έργο που απαιτεί ακρίβεια στάσης του ρομπότ (η φόρτωση των παλετών

²⁵Από την ανάλυση των αποτελεσμάτων για όλους τους συνδυασμούς αλγορίθμων χάραξης μονοπατιών με ελεγχτές χίνησης προχύπτει, όπως είναι εύλογο, ότι το σφάλμα χατάστασης είναι ανεξάρτητο από αυτούς.

από το όχημα) σε αναλογία με το μέγεθος του σφάλματος στάσης. Στο πλαίσιο της βιομηχανίας η ελάττωση του σφάλματος εκτίμησης της στάσης ενός αυτόνομου ρομπότ προς το παρόν επιτυγχάνεται είτε με επιπρόσθετο και κοστοβόρο εξοπλισμό, είτε με την απόρριψη της αυτονομίας λόγω των υψηλών διακυβευμάτων σε κόστος και ασφάλεια.

Η έρευνα επί της ελάττωσης του σφάλματος της εχτίμησης της στάσης ενός ρομπότ στο πεδίο εφαρμογής ΠΕ θα είναι επιχερδής για τους σχοπούς της διάχυσης της αυτονομίας, χαι σε υπάρχουσες εφαρμογές που απαιτούν αυξημένη αχρίβεια εχτίμησης σε σχέση με τις συμβατιχές προσεγγίσεις εχτίμησης της στάσης ενός αυτόνομου ρομπότ στο χώρο.

Σχήμα 4.11: Μέσος όρος σφαλμάτων εκτίμησης στάσης κατά τη διάρκεια του χρόνου σε δέκα πειράματα αυτόνομους πλοήγησης με τη χρήση φίλτρου σωματιδίων

Κεφάλαιο 5

Μέθοδοι ελάττωσης σφάλματος εκτίμησης στάσης φίλτρου σωματιδίων

Η έρευνα που παρουσιάζεται στο παρόν χεφάλαιο αντλεί τις πηγές της από τις αιτίες περαιτέρω έρευνας του προηγούμενου χεφαλαίου, όπως αυτές διατυπώθηκαν στην τελευταία του ενότητα. Στο παρόν χεφάλαιο επιζητούμε την αύξηση της αχρίβειας εχτίμησης της στάσης ενός ρομπότ μέσω της ελάττωσης του σφάλματος εχτίμησης στάσης που προέρχεται από φίλτρο σωματιδίων, το οποίο αντιλαμβάνεται το περιβάλλον του μέσω ενός δισδιάστατου αισθητήρα αποστάσεων lidar.

Παράλληλα, στον παρόν κεφάλαιο αρχίζει δειλά να προβάλει ο θεματικός άξονας που θα μας απασχολήσει στο επόμενο και κυρίως στο μεθεπόμενο κεφάλαιο, και το όφελος του σε ό,τι αφορά την εύρεση της στάσης ενός ρομπότ και τη βελτίωση της εκτίμησής της, ήτοι η ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα αποστάσεων lidar με σαρώσεις χάρτη.

5.1 Στόχοι του κεφαλαίου και δομή

Ο στόχος του κεφαλαίου είναι η εφεύρεση μεθόδων μείωσης του σφάλματος εκτίμησης της στάσης ενός ρομπότ κινητής βάσης του πεδίου εφαρμογής ΠΕ, η οποία εκτίμηση είναι αποτέλεσμα της διεργασίας του φίλτρου σωματιδίων βάσει των μετρήσεων ενός αισθητήρα δισδιάστατων μετρήσεων απόστασης τύπου lidar. Πιο συγκεκριμένα επιζητούμε τη λύση του

προβλήματος Π1 με βάση την παραδοχή ΙΙ και τα επακόλουθα Ι και ΙΙ. Οι παραδοχές του εν λόγω σύνθετου προβλήματος είναι οι συνθήκες αυτόνομους πλοήγησης του κεφαλαίου 4, και οι αιτίες έρευνας επί αυτού είναι αυτές της ενότητας 4.5.2.

Πρόβλημα Π1. Έστω ένα ρομπότ κινητής βάσης του πεδίου εφαρμογής ΠΕ, ικανό να κινείται στο επίπεδο x-y εξοπλισμένο με έναν οριζόντια τοποθετημένο αισθητήρα lidar μετρήσεων δύο διαστάσεων που εκπέμπει N_s ακτίνες. Έστω επίσης ότι τα ακόλουθα είναι διαθέσιμα ή ευσταθούν:

- ullet Ο χάρτης M του περιβάλλοντος στο οποίο κινείται το ρομπότ
- Μια δισδιάστατη μέτρηση \mathcal{S}_R , που λαμβάνεται από την—άγνωστη και αναζητούμενη—στάση $p(m{l}, \theta), \ m{l} = (x,y)$
- Μια εκτίμηση της θέσης του αισθητήρα $\hat{p}(\hat{l},\hat{\theta})$ στο σύστημα αναφοράς του χάρτη, όπου $\hat{l}=(\hat{x},\hat{y})$ είναι σε μία γειτονιά του l

Τότε ο στόχος είναι να μειωθεί το μέγεθος του σφάλματος στάσης του αισθητήρα $e(p,\hat{p})\triangleq p-\hat{p} \text{ από την αρχιχή του τιμή}$

$$\|\mathbf{e}(\mathbf{p},\hat{\mathbf{p}})\|_2 = ((x-\hat{x})^2 + (y-\hat{y})^2 + (\theta-\hat{\theta})^2)^{1/2}$$
 (5.1)

βελτιώνοντας την εκτίμηση της στάσης του αισθητήρα σε $\hat{p}'(\hat{x}',\hat{y}',\hat{\theta}')$ έτσι ώστε

$$\|e(p, \hat{p}')\|_2 < \|e(p, \hat{p})\|_2$$
 (*)

Υποθέτοντας ότι η στάση του αισθητήρα σε σχέση με το σύστημα αναφοράς του ρομπότ είναι γνωστή, η διόρθωση της εκτίμησης της στάσης του αισθητήρα στο σύστημα αναφοράς του χάρτη είναι ίση με το διόρθωση της εκτίμησης της στάσης του ρομπότ σε σχέση με το ίδιο σύστημα αναφοράς. Ένα παράδειγμα μιας συνήθους συνθήκης του προβλήματος $\Pi 1$ απεικονίζεται στο σχήμα 5.1. Η εκτίμηση της στάσης \hat{p} παρέχεται εξωτερικά από ένα σύστημα εντοπισμού στην περίπτωση της παρακολούθησης της στάσης (εδώ το φίλτρο σωματιδίων), ή ως υπόθεση στάσης στην περίπτωση του προβλήματος εύρεσης της στάσης του ρομπότ βάσει καθολικής αβεβαιότητος.

Σχήμα 5.1: Μια επί της αρχής τυπική συνθήκη εντοπισμού: Η πραγματική στάση του ρομπότ είναι p αλλά η εκτίμησή της \hat{p}' είναι μετατοπισμένη ως προς τη θέση και τον προσανατολισμό. Ο ρυθμός των μεταβολών του τμήματος του περιβάλλοντος που περιβάλλεται με κόκκινο χρώμα είναι μεγαλύτερος από εκείνον του τμήματος που περιβάλλεται με πράσινο

Παραδοχή ΙΙ. Για τη λύση του προβλήματος Π1 θεωρούμε ότι το σύστημα εκτίμησης και παροχής της στάσης του αισθητήρα αποστάσεων είναι το φίλτρο σωματιδίων.

Επακόλουθο Ι. Συνέπεια της παραδοχής ΙΙ είναι ότι τα συμφραζόμενα της επίλυσης του προβλήματος Π1 είναι εκείνα της εύρεσης της στάσης του ρομπότ βάσει περιορισμένης αβεβαιότητος (pose tracking).

Επακόλουθο ΙΙ. Συνέπεια του επακόλουθου Ι είναι ότι η επίλυση του προβλήματος πρέπει να αναζητηθεί κατά τη διάρκεια πλοήγησης, και με χρόνο εκτέλεσης που να συμβαδίζει με το ρυθμό ανανέωσης εκτιμήσεων στάσης που παρέχει η βασική μέθοδος εκτίμησης στάσης.

Για την επίλυση του εν λόγω προβλήματος εμβαθύνουμε στη βιβλιογραφία του φίλτρου σωματιδίων (1.2.3), και τη βιβλιογραφία της ελάττωσης του σφάλματος του. Αρχικά αναζητούμε μία λύση του προβλήματος εντός του μηχανισμού του φίλτρου: δεδομένου ότι σε κάθε υπόθεσή (ένα διακριτό "σωματίδιο") του κωδικοποιείται ένα βαθμωτό μέγεθος της ακρίβειας εκτίμησής της, σκεφτόμαστε ορθολογικά και συμπεραίνουμε ότι, θεωρητικά, η επιλογή υποθέσεων μεγαλύτερου δείκτη ακριβείας για την εξαγωγή της εκτίμησης του φίλτρου οφείλει

να εμφανίζει χαμηλότερα σφάλματα εκτίμησης στάσης. Το περιεχόμενο αυτής της συλλογιστικής βρίσκεται στην ενότητα 5.3.1.

Στη συνέχεια, δεδομένου ότι οι πιθανοτικές προσεγγίσεις εκτίμησης της στάσης ενός ρομπότ φέρουν εγγενώς ένα σφάλμα εκτίμησης λόγω των θορύβων μέτρησης και συστήματος που υποθέτουν, δοκιμάζουμε την άρμωση μίας τεχνικής της βιβλιογραφίας στην έξοδο του φίλτρου, η οποία στη βιβλιογραφία προκαλεί το σύνθετο σύστημα να εμφανίζει χαμηλότερα σφάλματα σε σχέση με εκείνα του φίλτρου: την ευθυγράμμιση μετρήσεων του αισθητήρα αποστάσεων με σαρώσεις χάρτη (ενότητα 1.2.6). Η συλλογιστική και το περιεχόμενο της εν λόγω τεχνικής παρουσιάζονται στην ενότητα 5.3.2.

Έπειτα παρατηρούμε ότι η εκτίμηση-έξοδος του συστήματος που αποτελείται από την αλυσίδα του φίλτρου σωματιδίων και της μεθόδου ευθυγράμμισης είναι μία εκτίμηση για την οποία το φίλτρο (α) δεν είναι ενημερωμένο, και (β) υποθέτοντας ότι εμφανίζει χαμηλότερο σφάλμα από αυτό της εκτίμησης του ίδιου του φίλτρου, το τελευταίο θα ωφελούτο από την εισαγωγή της στον πληθυσμό του. Βάσει ανεπάρκειας των διαθέσιμων στη βιβλιογραφία μεθόδων ανατροφοδότησης αυτής της εκτίμησης στο φίλτρο σωματιδίων, προτείνουμε μία μέθοδο ανάδρασης που ελαττώνει τα σφάλματα εκτίμησης, και που ταυτόχρονα είναι εύρωστη σε αποτυχίες τις μεθόδου ευθυγράμμισης. Η εν λόγω συλλογιστική βρίσκεται στην ενότητα 5.3.3.

Στην ενότητα 5.3.4 παρουσιάζουμε το σύστημα που περιλαμβάνει όλες τις παραπάνω συνιστώσες μείωσης του σφάλματος εκτίμησης, οι οποίες ελέγχονται στην πράξη ως προς την ευστάθειά της θεωρητικής τους συλλογιστικής στην ενότητα 5.4. Τέλος, στην ενότητα 5.5 παρουσιάζουμε τα συμπεράσματα της μελέτης μας, και τις αιτίες για περαιτέρω έρευνα στο πεδίο της ευθυγράμμισης δισδιάστατων μετρήσεων αισθητήρα lidar με σαρώσεις χάρτη. Η επόμενη ενότητα προσφέρει την επισκόπηση της βιβλιογραφίας, η οποία συμπληρώνεται με επιπρόσθετες αναφορές στις επιμέρους υποενότητες της ενότητας 5.3.

5.2 Σχετική βιβλιογραφία

5.2.1 Ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα lidar

Η ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα lidar (ενότητα 1.2.5) ήταν το αποτέλεσμα της γενικότερης έρευνας επί της ευθυγράμμισης νεφών σημείων (point clouds) στον

τρισδιάστατο χώρο. Η ευθυγράμμιση νεφών σημείων προέχυψε από τις ανάγχες της χοινότητας της υπολογιστιχής όρασης με το θεμελιώδες άρθρο των Besl και McKay [BM92], στο οποίο εισήγαγαν τον αλγόριθμο Iterative Closest Point (ICP). Ο ICP προσδιορίζει τον πλήρη χωρικό μετασχηματισμό έξι βαθμών ελευθερίας που ευθυγραμμίζει βέλτιστα δύο σύνολα τρισδιάστατων σημείων ελεύθερης μορφής—βέλτιστα σύμφωνα με τη μετρική της μέσης τετραγωνικής ευκλείδειας απόστασης. Στον ICP κάθε σημείο του δεύτερου συνόλου συσχετίζεται με ένα σημείο αναφοράς του πρώτου μέσω του προσδιορισμού του πλησιέστερου σε αυτό σημείου. Μόλις προσδιοριστεί αυτό το σύνολο αντιστοιχίσεων, ο ICP υπολογίζει το μετασχηματισμό που ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα μεταξύ των δύο συνόλων ζευγαρωμένων σημείων. Σε κάθε του βήμα εφαρμόζει αυτόν τον μετασχηματισμό στα σημεία του δεύτερου συνόλου σημείων και ενημερώνει το μέσο τετραγωνικό σφάλμα. Αυτή η διαδικασία επαναλαμβάνεται μέχρι το μέσο τετραγωνικό σφάλμα να πέσει κάτω από ένα προκαθορισμένο όριο.

Οι Lu και Milios ήταν οι πρώτοι που διατύπωσαν και χρησιμοποίησαν μεθόδους ευθυγράμμισης μετρήσεων δισδιάστατου αισθητήρα lidar προχειμένου να εχτιμηθεί η σχετιχή μετατόπιση και περιστροφή μεταξύ δύο στάσεων του. Παρόλο που μια μέτρηση αντιπροσωπεύει ένα 2D σχήμα (ένα περίγραμμα του ορατού κόσμου από την προοπτική του ρομπότ), το σχήμα αυτό αναπαρίσταται από θορυβώδη διαχριτά σημεία αντί για ένα μοντέλο υψηλής ποιότητας και πιστότητας, γεγονός που καθιστά τον αξιόπιστο ορισμό ή την εξαγωγή χαρακτηριστικών (features) από αυτό ένα δύσκολο και ενδεχομένως ανακριβές εγχείρημα [Gri91]. Στο [FM94] διατυπώνονται δύο αλγόριθμοι που χειρίζονται τον θόρυβο του αισθητήρα και δεν βασίζονται σε διαχριτά χαραχτηριστικά του περιβάλλοντος λειτουργίας του αισθητήρα (όπως γραμμές ή γωνίες), αποφεύγοντας έτσι τη διαδικασία εξαγωγής χαρακτηριστικών και της αντιστοίχισής τους. Η πρώτη μέθοδος, που ονομάστηκε Iterative Matching Range to Point (IMPR), εξετάζει ξεχωριστά τις περιστροφικές και μεταφορικές συνιστώσες του προβλήματος ευθυγράμμισης, θεωρώντας σταθερή εναλλάξ τη μία και βελτιστοποιώντας την άλλη. Η λύση του προβλήματος διατυπώνεται ως αναζήτηση σε μια συνάρτηση απόστασης για την εχτίμηση της σχετιχής περιστροφής μεταξύ των μετρήσεων εισόδου και χρησιμοποιεί μια διαδικασία ελαχίστων τετραγώνων για την επίλυση της σχετικής μετατόπισης. Η δεύτερη μέθοδος, η οποία ονομάζεται Iterative Dual Correspondence (IDC), αποδίδει σημαντικά ακριβέστερες εκτιμήσεις της περιστροφής από την IMPR, και βασίζεται σε επαναληπτικές λύσεις ελαχίστων τετραγώνων, χρησιμοποιώντας αντιστοιχίσεις από σημείο σε σημείο, παρομοίως με τον αλγόριθμο ICP. Ουσιαστικά ο IDC συνδυάζει τον ICP και τον IMPR, χρησιμοποιώντας τον ICP για τον υπολογισμό της μετατόπισης μεταξύ των δύο σαρώσεων και τον IMPR για τον υπολογισμό της σχετικής τους περιστροφής.

Οι συγγραφείς του [Pfi+02] ήταν οι πρώτοι που επεξέτειναν τη συμπερίληψη πηγών αβεβαιότητας στη λύση του προβλήματος ευθυγράμμισης, αναπτύσσοντας μοντέλα που λαμβάνουν υπόψη τους τις επιδράσεις του θορύβου των μετρήσεων, της γωνίας πρόσπτωσης του αισθητήρα, και του σφάλματος ευθυγράμμισης μεταξύ των μετρημένων οριακών σημείων του περιβάλλοντος. Παρόλο που δεν λαμβάνουν υπόψη τους την αβεβαιότητα της στάσης του αισθητήρα, ενσωματώνουν την οδομετρία του ρομπότ. Σε αυτό το άρθρο εισάγεται ένας σταθμισμένος αλγόριθμος ευθυγράμμισης δισδιάστατων μετρήσεων lidar για την εκτίμηση του μετασχηματισμού κίνησης του ρομπότ μεταξύ των στάσεων από όπου λαμβάνονται διαδοχικές μετρήσεις, με καλύτερες επιδόσεις από τις μη σταθμισμένες μεθόδους, όπως οι αλγόριθμοι του [FM94]. Επιπλέον, με τον υπολογισμό της πραγματικής συνδιακύμανσης των μετασχηματισμών, ο σταθμισμένος αλγόριθμος ευθυγράμμισης παρέχει την βάση για τη βέλτιστη συγχώνευση αυτών των εκτιμήσεων με οδομετρικές ή/και αδρανειακές μετρήσεις, καθιστώντας τον έτσι υποψήφιο για την υποστήριξη των έργων του εντοπισμού στάσης και της ταυτόχρονης χαρτογράφησης και παρακολούθησης της στάσης ενός ρομπότ.

Στο [Che+02] παρουσιάζεται μια εύρωστη επέκταση του ICP, η οποία ονομάζεται Trimmed Iterative Closest Point (TrICP). Αυτός ο αλγόριθμος αίρει την υπόθεση του ICP για την ισότητα των μεγεθών των δύο μετρήσεων εισόδου και, υποθέτοντας τη γνώση (ή τη δυνατότητα απόκτησης) του ελάχιστου αριθμού εγγυημένων αντιστοιχίσεων μεταξύ των δύο συνόλων, κάνει εκτεταμένη χρήση της μεθόδου ελαχίστων τετραγώνων [Rou84] προκειμένου να ενισχύσει τον βρόχο εκτέλεσης του ICP. Ο ICP διαπιστώνεται ότι αποτελεί ειδική περίπτωση του TrICP στην περίπτωση που τα δύο σύνολα έχουν το ίδιο μέγεθος και όλα τα σημεία των δύο συνόλων μπορούν να αντιστοιχιστούν το ένα με το άλλο.

Οι Biber και Strasser εισήγαγαν τον μετασχηματισμό κανονικών κατανομών Normal Distributions Transform (NDT) στο [BS03], σε μια προσπάθεια να υποστηρίξουν το έργο της κατασκευής χαρτών από ρομπότ. Υποθέτοντας 2D μετρήσεις lidar ως είσοδο, ο NDT υποδιαιρεί το οριζόντιο επίπεδο σε ένα πλέγμα παρόμοιο με ένα πλέγμα κατάληψης—αλλά σε αντίθεση με το πλέγμα κατάληψης που αντιπροσωπεύει δυαδικά εάν ένα κελί είναι κατει-

λημμένο, ο NDT αναπαριστά σε αυτό την πιθανότητα μέτρησης ενός σημείου-δείγματος μιας μέτρησης απόστασης για κάθε θέση εντός ενός κελιού. Το αποτέλεσμα του μετασχηματισμού είναι μία συνεχής και διαφορίσιμη πυκνότητα πιθανότητας που μπορεί να χρησιμοποιηθεί για την αντιστοίχιση μιας δεύτερης μέτρησης, εδώ χρησιμοποιώντας τον αλγόριθμο του Νεύτωνα [SM03]. Τα πλεονεκτήματα αυτού του τρόπου αναπαράστασης είναι ότι (α) όλες οι εμπλεκόμενες παράγωγοι μπορούν να υπολογιστούν αναλυτικά, γρήγορα, και με εγκυρότητα, και, το σημαντικότερο, (β) η αντιστοίχιση σημείων της δεύτερης μέτρησης σε κατανομές σημείων της πρώτης σημαίνει ότι δεν υπάρχει καμία ρητή αντιστοίχιση μεταξύ δύο διακριτών σημείων μεταξύ δύο μετρήσεων, μειώνοντας έτσι το βαθμό στον οποίο όλες οι αντιστοιχίσεις σάρωσης είναι επιρρεπείς σε σφάλματα. Η σχετική μετατόπιση και περιστροφή μεταξύ μιας μέτρησης εισόδου και μιας μέτρησης αναφοράς υπολογίζονται επαναληπτικά με μεγιστοποίηση (μέσω της εκτέλεσης ενός βήματος του αλγορίθμου του Νεύτωνα) μιας συνάρτησης βαθμολογίας, η οποία είναι το άθροισμα της αξιολόγησης όλων των κατανομών της μέτρησης εισόδου που αντιστοιχίζονται στο σύστημα αναφοράς της πρώτης μέτρησης, με βάση μια αρχική εκτίμησή τους (π.χ. που λαμβάνεται από οδομετρικές μετρήσεις).

Στο [CIG05] οι συγγραφείς επεκτείνουν τη δυνατότητα εφαρμογής της ευθυγράμμισης μετρήσεων στα προβλήματα εύρεσης της στάσης ενός ρομπότ βάσει πεπερασμένης και καθολικής αβεβαιότητας. Μεταφέροντας το πρόβλημα της ευθυγράμμισης μετρήσεων στο πεδίο Hough, εκμεταλλεύονται αρκετές από τις ιδιότητές του: συγκεκριμένα ότι δεν υπάρχει απώλεια πληροφορίας κατά τη διαδικασία μετασχηματισμού, και ότι η αναλλοιότητα (invariance) του μετασχηματισμού επιτρέπει την απεμπλοκή του προβλήματος της εύρεσης της διαφοράς προσανατολισμού ανάμεσα σε δύο μετρήσεις από το πρόβλημα εύρεσης της διαφοράς της θέσης από τις οποίες ελήφθησαν. Ο αλγόριθμος Hough Scan Matching (HSM) είναι ένας καθολικός, πολυτροπικός (multi-modal), μη επαναληπτικός αλγόριθμος ευθυγράμμισης δισδιάστατων μετρήσεων απόστασης που μπορεί να λειτουργήσει σε μη δομημένα περιβάλλοντα. Ο HSM δεν βασίζεται στην εξαγωγή χαρακτηριστικών, αλλά αντιστοιχίζει πυκνά δεδομένα, δηλαδή σαρώσεις απόστασης που μπορούν να ερμηνευθούν ως κατανομές χαρακτηριστικών σε ένα διαφορετικό χώρο παραμέτρων, επιτρέποντας του την ευθυγράμμιση μη γραμμικών επιφανειών, με ταυτόχρονη ευρωστία ως προς το θόρυβο μέτρησης.

Στο [ΜΜΜ05] οι συγγραφείς παρουσιάζουν μια πιθανοτική μέθοδο για την ευθυγράμμιση μετρήσεων που λαμβάνονται σε μη δομημένα περιβάλλοντα. Ενώ ο αλγόριθμός τους,

probabilistic Iterative Correspondence (pIC), έχει σχεδιαστεί ώστε να χειρίζεται τον θόρυβο μέτρησης του αισθητήρα, σε αντίθεση με τον [Pfi+02], είναι επίσης σε θέση να χειριστεί και την αβεβαιότητα της στάσης του αισθητήρα. Ο pIC ακολουθεί μια διαδικασία δύο βημάτων, σύμφωνα με την οποία προσδιορίζει πιθανοτικά αντιστοιχίσεις μεταξύ δύο μετρήσεων. Στη συνέχεια αποτυπώνει ταυτόχρονα τη σχετική μετατόπιση και περιστροφή τους. Πειράματα έναντι των ICP και IDC δείχνουν ταχύτερη σύγκλιση της ευθυγράμμισης σε σχέση με τον ICP και, στο έργο της χαρτογράφησης, αποδεικνύεται ότι ο pIC υπερτερεί και των δύο όσον αφορά στην ευρωστία, την ακρίβεια, και την ταχύτητα σύγκλισης.

Σε αντίθεση με τις προαναφερθείσες μεθόδους, οι συγγραφείς του [DK05] υποστηρίζουν ότι είναι επωφελές για έναν αλγόριθμο ευθυγράμμισης μετρήσεων να λειτουργεί στο εγγενές πολικό σύστημα συντεταγμένων του αισθητήρα. Η μέθοδός τους, Polar Scan Matching (PSM), ανήκει στην οικογένεια των προσεγγίσεων ευθυγράμμισης αναζήτησης αντιστοιχίσεων από-σημείο-σε-σημείο. Ο PSM αποφεύγει την αναζήτηση συσχετίσεων μέσω της αντιστοίχισης σημείων παρόμοιας κατεύθυνσης, και εναλλάσσεται μεταξύ προβολής μέτρησης ακολουθούμενη από εκτίμηση μετατόπισης, και προβολής μέτρησης ακολουθούμενη από εκτίμηση προσανατολισμού. Σε πειράματα ο PSM αποδεικνύεται ότι είναι υπολογιστικά ταχύτερος από τον ICP, τόσο όσον αφορά στον αριθμό επαναλήψεων όσο και στο χρόνο επεξεργασίας, καθώς και από απόψεως ακρίβειας.

Μια νέα συνάρτηση απόστασης εισάγεται στο [MLM05], κατάλληλη για διανύσματα καταστάσεων στο χώρο (x,y,θ) : η απόσταση μεταξύ δύο πλήρων διανυσμάτων στάσης (σε αντίθεση με την περίληψη μόνο της θέσης στη μετρική της απόστασης) είναι ο μικρότερος μετασχηματισμός στερεού σώματος που οδηγεί τη μία στάση στην άλλη. Αυτό το μέτρο απόστασης χρησιμοποιείται και στα δύο βήματα του αλγορίθμου που εισάγουν οι συγγραφείς του, ο οποίος ονομάζεται Metric-Based Iterative Closest Point (MB-ICP): τα σημεία από μια δισδιάστατη μέτρηση αποστάσεων αρχικά αντιστοιχίζονται με εκείνα μιας μέτρησης αναφοράς (η ακριβώς προηγούμενη μέτρηση), και στη συνέχεια η σχετική μετατόπιση και περιστροφή μεταξύ των δύο μετρήσεων υπολογίζεται ταυτόχρονα, χάρει στην ενσωμάτωση του ολικού μετασχηματισμού στη μετρική απόστασης, με επαναληπτική ελαχιστοποίηση του σφάλματος ελαχίστου τετραγώνου της νέας μετρικής σε σχέση με τα αντιστοιχισμένα σημεία. Με αυτή τη διατύπωση οι συγγραφείς είναι σε θέση να βελτιώσουν τον IDC όσον αφορά στην ευρωστία, την ταχύτητα σύγκλισης, και την ακρίβεια.

Ο Censi, με χίνητρο το γεγονός ότι οι αντιστοιχίσεις μεταξύ δύο μετρήσεων μπορεί να μην υπάρχουν—αφού ο αισθητήρας δειγματοληπτεί αραιά το περιβάλλον και συνεπώς διαφορετιχές μετρήσεις μπορεί να δειγματοληπτούν διαφορετιχά μέρη του—, αντί να χρησιμοποιήσει μια μετρική απόστασης σημείου-προς-σημείο, χρησιμοποιεί μια μετρική σημείου-προς-γραμμή στο [Cen08]. Σε αυτό το άρθρο εισάγεται ο αλγόριθμος Point-to-Line Iterative Closest Point (PLICP). Το πλεονέχτημα της χρήσης μιας μετριχής απόστασης από σημείο σε γραμμή είναι ότι μπορεί να βρεθεί μία κλειστή μορφή για την ελαχιστοποίηση αυτής της μετρικής απόστασης, αυξάνοντας έτσι την αχρίβεια και την ταχύτητα σύγκλισης της ευθυγράμμισης. Πράγματι, ο αλγόριθμος που προχύπτει συγκλίνει τετραγωνικά (ενώ ο ICP συγκλίνει γραμμικά) και σε πεπερασμένο αριθμό βημάτων. Στο ίδιο άρθρο ο PLICP συγκρίνεται με τους ICP, IDC και ΜΒ-ΙCΡ, και διαπιστώνεται ότι είναι ανώτερος ως προς την ακρίβεια, τον αριθμό των επαναλήψεων που απαιτούνται για τη σύγκλιση (περισσότερες από τρεις φορές λιγότερο), και στο χρόνο εκτέλεσης (περισσότερο από 40 φορές λιγότερο). Η διαισθητική εξήγηση πίσω από αυτή την αύξηση της αχρίβειας είναι ότι η μετριχή σημείου-προς-γραμμή προσεγγίζει την πραγματική απόσταση επιφάνειας καλύτερα από τη μετρική σημείο-προς-σημείο. Ωστόσο, ειδικά σε αντίθεση με την MB-ICP, ο PLICP είναι τόσο επιρρεπής σε σφάλματα όσο αυξάνει η απόσταση θέσης και η περιστροφή μεταξύ των στάσεων από όπου ελήφθησαν οι μετρήσεις. Παρ' όλα αυτά ο αλγόριθμος PLICP έχει υιοθετηθεί ευρέως λόγω της αυξημένης του αχρίβειας ανάμεσα στις παραλλαγές του ΙCP, και της διαθεσιμότητας του πηγαίου κώδικα της υλοποίησής του.

Γενικότερα, ο ICP και οι παραλλαγές του παρουσιάζουν διακυμάνσεις στις επιδόσεις τους [DAM17], οι οποίες ορίζονται από το επίπεδο θορύβου που φέρουν οι μετρήσεις εισόδου, την ανάγκη για επιλογή της εκ-των-προτέρων υπόθεσης για τον μετασχηματισμό εξόδου και της τιμής του, και τη διαμόρφωση των τιμών των παραμέτρων που διέπουν την απόκρισή τους. Για τους λόγους αυτούς, καθώς και για λόγους ευρωστίας, η έρευνα πάνω στις μεθόδους ευθυγράμμισης με τη χρήση αντιστοιχίσεων μετατοπίστηκε από προσεγγίσεις βασισμένες στην εύρεση αντιστοιχίσεων από-σημείο-προς-σημείο ή σημείο-προς-γραμμή σε χαρακτηριστικά προς-χαρακτηριστικά (feature-to-feature). Συνήθως χρησιμοποιούμενα χαρακτηριστικά για αναγνώριση είναι τα ευθύγραμμα τμήματα [XLX03; Moh+17; Wen+18], οι γωνίες [Wan+18], χαρακτηριστικά SIFT [Li+16], ή, ιδίως τα τελευταία χρόνια, χαρακτηριστικά που εξάγονται μέσω της χρήσης τεχνικών βαθειάς μάθησης (deep learning) [Li+17; LW20]. Παράλληλα,

και για λόγους ανεξαρτησίας από τυχαία χαρακτηριστικά του περιβάλλοντος ή των αισθητήρων, ή προσαρμογής των μεθόδων σε συγκεκριμένες συνθήκες τους, αναπτύχθηκε έρευνα γύρω από μεθόδους που εξάγουν ή εκμεταλλεύονται μαθηματικές ιδιότητες από μετρήσεις αποστάσεων, ή που εξετάζουν το πρόβλημα της ευθυγράμμισης σαρώσεων ως πρόβλημα βελτιστοποίησης. Παραδείγματα είναι οι τεχνικές βασισμένες στην συσχέτιση (correlation) [Ols09; Ols15; Kon+16], και στη θεωρία πιθανοτήτων. Μεταξύ των τελευταίων, ο NDT έχει κερδίσει δημοτικότητα λόγω της ρητής μοντελοποίησης των αβεβαιοτήτων μέτρησης και στάσης, και την επεκτασιμότητά του σε τρεις διαστάσεις [MLD07; Zho+17; WHZ18; CJK19; QJ19; Lee+20].

Συγκεκριμένα, ο Olson [Ols09] υποστηρίζει ότι τα σύγχρονα υπολογιστικά μηχανήματα είναι αρχετά ιχανά επεξεργαστικά ώστε οι μέθοδοι ευθυγράμμισης μετρήσεων να προχωρήσουν από τις ευρηστικές μεθόδους σε αναλυτικές μεθόδους μεγαλύτερης ακριβείας. Πράγματι, ο χύριος όγχος των μεθόδων ευθυγράμμισης δισδιάστατων μετρήσεων χρησιμοποιεί ευρηστικές μεθόδους οι οποίες είναι ατελείς και επιρρεπείς σε αστάθεια λόγω αδύναμων εκτων-προτέρων υποθέσεων για τη στάση του ρομπότ. Αυτές οι ευρηστικές εφαρμόζονται για να προσδώσουν ταχύτητα εκτέλεσης, αντί να εστιάζουν πρώτα στην ποιότητα ευθυγράμμισης και στη συνέχεια στην ταχύτητα. Υποστηρίζει ότι η ευθυγράμμιση σαρώσεων είναι σπανίως κυρτό πρόβλημα βελτιστοποίησης, με την επιφάνεια της συνάρτησης κόστους να έχει πολλά τοπικά ελάχιστα, καθιστώντας έτσι έναν τοπικό βελτιστοποιητή ευάλωτο στο να παγιδευτεί σε αυτά. Ταυτόχρονα, καθίσταται δυσκολότερος ο εντοπισμός του ολικού ελαχίστου της συνάρτησης. Στο [Ols09] διατυπώνεται ένας πιθανοτικός αλγόριθμος ευθυγράμμισης δισδιάστατων μετρήσεων αποστάσεων ο οποίος παράγει αποτελέσματα υψηλότερης ποιότητας σε σχέση με αυτούς της βιβλιογραφίας, με κόστος τον πρόσθετο υπολογιστικό χρόνο εκτέλεσης, αν και η μέθοδος είναι σε θέση να εκτελεστεί σε πραγματικό χρόνο. Αντί να εμπιστεύεται έναν τοπιχό αλγόριθμο αναζήτησης για την εύρεση του ολιχού μεγίστου (ο μετασχηματισμός στερεού σώματος που μεγιστοποιεί την πιθανότητα να έχει παρατηρηθεί η δεύτερη μέτρηση), ο προτεινόμενος αλγόριθμος εκτελεί αναζήτηση σε ολόκληρο το χώρο των πιθανών μετασχηματισμών. Η περιοχή αυτή προκύπτει από μια εκ των προτέρων πιθανότητα, η οποία με τη σειρά της προχύπτει από οδομετριχές μετρήσεις. Η μέθοδος που παρουσιάζεται με βάση τη συσχέτιση αποδειχνύεται ότι είναι πολύ αχριβής και εύρωστη στην αβεβαιότητα της στάσης του αισθητήρα.

Η Πολική Ευθυγράμμιση μετρήσεων με βάση την Περίμετρο (Perimeter-based polar scan matching—PB-PSM) [FCR15] είναι μια τεχνική που βασίζεται στην [DK05], η οποία ευνοεί τις ευθυγραμμίσεις με τη μεγαλύτερη περιμετρική επικάλυψη μεταξύ των δύο εισόδων, ενώ χρησιμοποιεί μια διαδικασία ελαχιστοποίησης του κόστους, δηλαδή μια προσαρμοστική μέθοδο άμεσης αναζήτησης, η οποία καθίσταται δυνατή χάρη σε μία τεχνική συσχέτισης δεδομένων γραμμικής πολυπλοκότητας. Σε αντίθεση με άλλες μεθόδους δεν απαιτείται ως είσοδος μία αρχική υπόθεση για τη στάση του ρομπότ, αν και, εάν αυτή παρέχεται, έχει ως αποτέλεσμα την αύξηση της ευρωστίας και τη μείωση των υπολογιστικών απαιτήσεων. Οι μετρήσεις εισόδου πρώτα φιλτράρονται, στη συνέχεια αναζητούνται συσχετίσεις σημείων ανάμεσά τους και, τέλος, προσδιορίζεται μια συνάρτηση κόστους η οποία κατασκευάζεται από τα συσχετιζόμενα ζεύγη σημείων. Το κόστος είναι ανάλογο της επικάλυψης μεταξύ των μετρήσεων, και η βέλτιστη λύση βρίσκεται με την ελαχιστοποίηση του, χρησιμοποιώντας μια μορφή εξαντλητικής αναζήτησης. Η διαδικασία ελαχιστοποίησης εκτελείται πρώτα για την περιστροφή, ακολουθούμενη από τη μετατόπιση, και η διαδικασία επαναλαμβάνεται έως ότου επιτευχθεί επαρκής σύγκλιση.

Οι συγγραφείς του [Kon+16] ανέπτυξαν μια μέθοδο για την εξαγωγή του μετασχηματισμού μεταξύ δύο μετρήσεων με την κατασκευή μιας συνάρτησης συσχέτισης που αντικατοπτρίζει το βαθμό ευθυγράμμισής τους σύμφωνα με κάποιο όρισμα περιστροφο-μετατόπισης. Αυτό εξάγεται φυσικά μεγιστοποιώντας την εν λόγω συνάρτηση. Η μέθοδός τους έχει χαμηλές υπολογιστικές απαιτήσεις και απευθύνεται σε ενσωματωμένες συσκευές χαμηλής κατανάλωσης ενέργειας, που συναντώνται συνήθως σε πλατφόρμες ρομπότ κινητής βάσης. Σε σύγκριση με τον ICP είναι περίπου δέκα φορές ταχύτερη και έχει ευρύτερο εύρος λειτουργίας. Ωστόσο, τα διανύσματα μετασχηματισμού πάσχουν από μια σχετικά αδρή ανάλυση και ελαφρώς υψηλότερα σχετικά σφάλματα στάσης.

Στα [YZD18] και [Jia+18] εμφανίζονται δύο από τις ελάχιστες μεθόδους που δεν χρησιμοποιούν αντιστοιχίσεις: χρησιμοποιούν Phase-Only Matched Filtering (POMF) [QDD94] για τη λύση της εκτίμησης της περιστροφής και της μετατόπισης: η πρώτη σε μία διάσταση και η δεύτερη σε δύο διαστάσεις. Στην τελευταία οι απαιτήσεις για λύση σε πραγματικό χρόνο και επαρκή ακρίβεια δεν μπορούν να ικανοποιηθούν ταυτόχρονα λόγω της αδυναμίας εξισορρόπησης της υψηλής ανάλυσης πλέγματος (και συνεπώς υψηλής ακρίβειας) με τακτικές ενημερώσεις των μετρήσεων του αισθητήρα απόστασης. Η πρώτη αμβλύνει αυτόν τον περιο-

ρισμό λειτουργώντας σε μία διάσταση, αλλά η ακρίβεια των λύσεών της πάσχει από τις ίδιες αιτίες με την πρώτη, δηλαδή τα σφάλματα διακριτοποίησης. Ενώ η δεύτερη εξαρτάται από την ανάλυση του πλέγματος, η πρώτη εξαρτάται από την αμετάβλητη διακριτική γωνία του αισθητήρα (angle increment). Και στις δύο περιπτώσεις επηρεάζεται τόσο η περιστροφική όσο και η μεταφορική συνιστώσα, αλλά καμία τεχνική αποσόβησης ή μετριασμού δεν χρησιμοποιείται για τη μείωση των σφαλμάτων των συνιστωσών τους.

Τα τελευταία χρόνια ένας αριθμός νέων μεθόδων ευθυγράμμισης μετρήσεων έχει παρουσιαστεί, οι οποίες προσφέρουν βελτιώσεις σε καθιερωμένες μεθόδους ή εισάγουν νέες καινοτομίες. Στα [BBA20; BBA21] ο NDT χρησιμοποιείται για τη μοντελοποίηση του περιβάλλοντος του αισθητήρα προκειμένου να αντιμετωπιστούν οι αβεβαιότητες και οι περιορισμοί του. Ο μετασχηματισμός μεταξύ διαδοχικών στάσεων—η λύση του προβλήματος βελτιστοποίησης της εξίσωσης 1.4—δίνεται από μία τροποποιημένη προσέγγιση βελτιστοποίησης στοχαστικού σμήνους σωματιδίων που ενσωματώνει στη διατύπωσή της βάρη αδράνειας. Αυτά τα βάρη κωδικοποιούν την ορμή που εκφράζεται από δυνάμεις που έλκουν το σωματίδιο στη διατήρηση της τρέχουσας ταχύτητάς του, δυνάμεις που στρέφουν την κίνησή του προς την κατεύθυνση της ατομικά βέλτιστης στάσης του σωματιδίου, και δυνάμεις που το κατευθύνουν προς την ολικά βέλτιστη στάση του σμήνους.

Σε αντίθεση όμως με τον NDT, ο οποίος υπολογίζει αντιστοιχίσεις λαμβάνοντας υπόψη την απόσταση των θέσεων των σημείων από κατανομές κελιών πλέγματος, η VGICP [Koi+21] αθροίζει την κατανομή κάθε σημείου στο κελί και υπολογίζει αντιστοιχίσεις μεταξύ αυτών των κατανομών και των κατανομών της μέτρησης-στόχου, καθιστώντας έτσι τον VGICP μια προσέγγιση ευθυγράμμισης αναζήτησης αντιστοιχίσεων κατανομών-με-κατανομές. Αυτή η προσέγγιση αποδίδει έγκυρες κατανομές πλέγματος ακόμη και όταν υπάρχουν λίγα σημεία σε ένα κελί, με αποτέλεσμα έναν αλγόριθμο που είναι εύρωστος σε αλλαγές στην ανάλυση του πλέγματος. Ο VGICP επεκτείνει τον GICP [SHT09] προκειμένου να αποφεύγονται οι δαπανηροί υπολογισμοί αναζήτησης των πλησιέστερων γειτόνων, μειώνοντας παράλληλα τον χρόνο εκτέλεσής του.

Στο [YSC21] εισάγεται ένας πιστοποιήσιμος αλγόριθμος ευθυγράμμισης νεφών σημείων στις τρεις διαστάσεις. Ο μετασχηματισμός του δεύτερου νέφους προς το πρώτο γίνεται αρχικά αναίσθητος σε μεγάλο αριθμό ή ψευδείς αντιστοιχίες με την αναδιατύπωση του προβλήματος εύρεσης του μετασχηματισμού ευθυγράμμισης με τρόπο που χρησιμοποιεί ένα αποχομμένο

κόστος ελαχίστων τετραγώνων. Η περιστροφή, η μετατόπιση, και η κλίμακα μεταξύ των δύο εισόδων απεμπλέκονται μεταξύ τους με τη χρήση ενός γενικού θεωρητικού πλαισίου γράφων, το οποίο επιτρέπει το κλάδεμα των ακραίων τιμών με την εύρεση της μέγιστης "κλίκας" του γράφου. Η κλίμακα και η μετατόπιση αποδεικνύεται ότι είναι επιλύσιμες σε πολυωνυμικό χρόνο μέσω ενός προσαρμοστικού συστήματος ψηφοφορίας, ενώ η περιστροφή επιλύεται με χαλάρωση σε ένα ημιπεριορισμένο πρόγραμμα (semi-definite programming).

5.2.2 Ευθυγράμμιση μετρήσεων δισδιάστατου αισθητήρα lidar με σαρώσεις χάρτη

Το έργο της ευθυγράμμισης μετρήσεων με ειχονιχές σαρώσεις (ενότητα 1.2.6) είναι υποπρόβλημα αυτού της ευθυγράμμισης μετρήσεων, χαθώς το πρώτο χάνει την επιπρόσθετη παραδοχή ότι ο χάρτης του περιβάλλοντος είναι διαθέσιμος. Ως εχ τούτου το πρώτο πρόβλημα επιδέχεται λύσης από οποιονδήποτε αλγόριθμο που επιλύει το γενιχό πρόβλημα. Παρ' όλα αυτά, έχει αναπτυχθεί ένας αριθμός μεθόδων που προσπαθεί στοχευμένα να επιλύσει το υπο-πρόβλημα, μοχλεύοντας επιπρόσθετες πληροφορίες για την επίλυση του προβλήματος από τη γνώση του χάρτη.

Η ευθυγράμμιση μετρήσεων για τον εντοπισμό ρομπότ βάσει καθολικής αβεβαιότητος έχει διερευνηθεί στο [XLX03]. Υποθέτοντας ότι το περιβάλλον λειτουργίας ενός ρομπότ είναι δομημένο και ότι ευθύγραμμα τμήματα είναι διάσπαρτα σε αυτό, ο αλγόριθμος των συγγραφέων, που ονομάστηκε Complete Line Segments (CLS), αντιστοιχίζει πλήρη ευθύγραμμα τμήματα που εξάγονται από τις δισδιάστατες μετρήσεις εισόδου σε πλήρη ευθύγραμμα τμήματα που εξάγονται από το χάρτη που αναπαριστά το περιβάλλον λειτουργίας του ρομπότ, παρέχοντας έτσι έναν ακριβή τρόπο εξαγωγής της συνολικής στάσης του ρομπότ στο χάρτη.

Στο [Lin+05] παρουσιάζεται ένας αλγόριθμος ευθυγράμμισης πραγματικών με εικονικές μετρήσεις που εξάγει χαρακτηριστικά από αυτές για την επίλυση του προβλήματος ευθυγράμμισης. Ο αλγόριθμος λειτουργεί ανιχνεύοντας χαρακτηριστικά των πραγματικών και των εικονικών σαρώσεων που είναι αναλλοίωτα κατά την περιστροφή και τη μετατόπιση, τα οποία είναι υπολογίσιμα μόνο σε πραγματικό χρόνο (όπως ακραίες τιμές στην πολική αναπαράσταση των μετρήσεων). Στη συνέχεια δημιουργούνται αντιστοιχίσεις μεταξύ των χαρακτηριστικών που εξήχθησαν. Η μετατόπιση μεταξύ των δύο σαρώσεων υπολογίζεται ως ο βέλτιστος μετα-

σχηματισμός για την αντιστοίχιση των χαρακτηριστικών της δεύτερης στα χαρακτηριστικά της πρώτης.

Στο [SWW09] παρουσιάζεται ένας στοιχειώδης στοχαστικός αλγόριθμος αναζήτησης που διορθώνει τα μεταφορικά και περιστροφικά σφάλματα ενός ρομπότ λόγω της αποκλίνουσας οδομετρίας του. Αυτή η βοηθητική συμπεριφορά εντοπισμού και διόρθωσης της στάσης του ρομπότ ενεργοποιείται κάθε φορά που μία μετρική σφάλματος διαπιστώνεται ότι είναι πάνω από ένα προκαθορισμένο όριο. Η μετρική αυτή βασίζεται στη σχετική απόκλιση των ανιχνευόμενων αποστάσεων μεταξύ των ακτίνων μίας πραγματικής σάρωσης και μιας σάρωσης χάρτη. Για την αποφυγή της διόρθωση της χίνησης του ρομπότ χατά τη διάρχεια της ευθυγράμμισης το ρομπότ θεωρείται ότι παραμένει αχίνητο χαθ' όλη τη διάρχεια της. Επομένως, όποτε η μετριχή σφάλματος βρίσκεται πάνω από το προκαθορισμένο όριο, ο αλγόριθμος σταματά την χίνηση του ρομπότ χαι επιλέγει μια τυχαία στάση στη γειτονιά της εχτιμώμενης στάσης του. Σ τη συνέχεια, πραγματοποιεί μία εικονική μέτρηση από αυτή τη στάση και υπολογίζει την τιμή της παραπάνω μετρικής. Εάν αυτή είναι χαμηλότερη από αυτήν που βρέθηκε για την προηγούμενη εκτιμώμενη στάση, ξεκινά μια νέα επανάληψη, αυτή τη φορά με επίκεντρο τη νέα στάση. Εάν όχι, ο αλγόριθμος συνεχίζει να μαντεύει στάσεις με τυχαίο τρόπο, μέχρι να βρει μία της οποίας το σφάλμα να είναι μικρότερο από το προηγούμενο. Η τελική στάση λαμβάνεται στη συνέχεια ως η πραγματική στάση του ρομπότ, επιτρέποντας τη διόρθωση της οδομετρίας. Τα πειράματα που πραγματοποιήθηκαν με αυτή τη μέθοδο έδειξαν ότι ήταν σε θέση να διορθώσει ένα ακτινικό σφάλμα της τάξεως των $0.3~\mathrm{m}$ στα $0.07~\mathrm{m}$, και ένα γωνιακό σφάλμα από 0.393 rad σε 0.01 rad.

Οι συγγραφείς του [ΖΖΥ11] χρησιμοποιούν την ευθυγράμμιση πραγματικών με εικονικές σαρώσεις προκειμένου να βελτιώσουν τη λύση του συνολικού προβλήματος εντοπισμού της στάσης ενός ρομπότ. Υποθέτοντας ότι το περιβάλλον του είναι δομημένο και χωρίς κανενός είδους συμμετρίες, η μέθοδος προσδιορίζει τον προσανατολισμό του ρομπότ χρησιμοποιώντας τη μέθοδο του HSM. Έχοντας βρει τον προσανατολισμό του ρομπότ, η μέθοδος εκτιμά τη θέση του ρομπότ υπολογίζοντας την πιθανότητα ότι κάθε θέση στο πλέγμα του χάρτη παρήγαγε την μέτρηση που προέρχεται από τον φυσικό αισθητήρα lidar. Αυτή η πιθανότητα εξάγεται με τη χρήση του μοντέλου τελικού σημείου δέσμης [ΤΒF05]. Η θέση του ρομπότ είναι η θέση από την οποία αποτυπώθηκε η εικονική σάρωση που σημειώνει τη μέγιστη πιθανότητα.

Ομοίως, στα πλαίσια της επίλυσης του προβλήματος εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής, αυτή τη φορά αβεβαιότητας, η μέθοδος του [PP14] παράγει πρώτα το γενιχευμένο διάγραμμα Voronoi του δεδομένου δισδιάστατου χάρτη πλέγματος. Οι χόμβοι του θεωρούνται ως αρχικές υποθέσεις για τη θέση του ρομπότ. Από αυτούς τους κόμβους υπολογίζονται ειχονιχές μετρήσεις σε γωνιαχό εύρος 2π με τη χρήση δεσμοβολής (raycasting) στο χάρτη. Στη συνέχεια υπολογίζονται αντιστοιχίες μεταξύ κάθε εικονικής σάρωσης και της σάρωσης που καταγράφηκε από τον φυσικό αισθητήρα με τη χρήση μίας φασματικής τεχνικής [LH05]. Η τελευταία βρίσκει γεωμετρικές σχέσεις μεταξύ των δύο σαρώσεων εισόδου κατά ζεύγη σημείων. Αυτές οι αντιστοιχίσεις χρησιμοποιούνται στη συνέχεια για τη δημιουργία γεωμετρικών δισδιάστατων ιστογραμμάτων που κωδικοποιούν μια αίσθηση ομοιότητας μεταξύ της πραγματικής σάρωσης και όλων των εικονικών σαρώσεων. Στη συνέχεια οι κόμβοι από τους οποίους αποτυπώθηκαν οι τελευταίες κατατάσσονται σύμφωνα με αυτό το μέτρο ομοιότητας, και ένα κατώφλι που βασίζεται στο συντελεστή συσχέτισης όλων των συνδυασμών των σαρώσεων χρησιμοποιείται για την εξαγωγή ενός υποσυνόλου υποψήφιων στάσεων. Αυτή η διαδικασία χρησιμοποιείται για να φιλτράρει γρήγορα όλες τις υποψήφιες στάσεις. Η τελική εκτίμηση στάσης είναι εκείνη που επιτυγχάνει τον μέγιστο αριθμό αντιστοιχούντων ζευγών.

Στο [Zha+17] ο χάρτης πλέγματος πληρότητας μετατρέπεται πρώτα σε μία μορφή χάρτη προσημασμένης καταλληλότητας (fitness map). Αυτός κωδικοποιεί σε κάθε κελί του την απόσταση του πλησιέστερου εμποδίου για μία δεδομένη εκτίμηση της θέσης του αισθητήρα. Μέσω του χάρτη καταλληλότητας οι μετρήσεις του αισθητήρα συσχετίζονται με το χάρτη του περιβάλλοντος χωρίς να εξάγονται χαρακτηριστικά από κανένα από τα δύο δεδομένα. Το πρόβλημα της εύρεσης της στάσης του αισθητήρα διατυπώνεται στη συνέχεια ως ένα πρόβλημα βελτιστοποίησης. Εδώ χρησιμοποιείται βελτιστοποίηση σμήνους σωματιδίων για την εξερεύνηση του χώρου στάσεων για την αναζήτηση της πιο πιθανής λύσης. Αυτό γίνεται με τη μεγιστοποίηση της συνάρτησης καταλληλότητας. Για την περαιτέρω βελτίωση της ακρίβειας αναζήτησης, γίνεται μία σειρά ευθυγραμμίσεων της πραγματικής μέτρησης με εικονικές μετρήσεις από τις εκτιμήσεις της στάσης του αισθητήρα μέσω του ICP: από τις στάσεις των σωματιδίων που κατέχουν την κορυφαίες καταλληλότητες συλλαμβάνονται εικονικές σαρώσεις και αντιστοιχίζονται με την πιο πρόσφατη σάρωση-μέτρηση. Η εκτίμηση της στάσης που εξάγεται από τον αλγόριθμο είναι αυτή της οποίας η ενημερωμένη τιμή καταλληλότητας είναι η μέγιστη μεταξύ όλων των υπο-επεξεργασία σωματιδίων.

Αντίθετα, για την επίλυση του προβλήματος Π1, στα πλαίσια της εκτίμησης της στάσης αυτόνομων περονοφόρων ανυψωτικών μηχανημάτων, η μέθοδος που παρουσιάζεται στο [Vas+16] επιλύει την ευθυγράμμιση μετρήσεων με σαρώσεις σε δύο βήματα: Δ εδομένης της εχτίμησης της στάσης ενός οχήματος, που γίνεται μέσω της χρήσης φίλτρου σωματιδίων με δειγματοληψία ΚLD (ενότητα 1.2.3), επιχειρείται η μείωση του σφάλματος της εκτίμησης του προσανατολισμού της στάσης μέσω ευθυγράμμισης της πραγματικής και της εικονικής σάρωσης χρησιμοποιώντας μία παραλλαγή του ICP. Συγκεκριμένα, η ευθυγράμμιση πραγματοποιείται μέσω της ολοχληρωμένης, υψηλής αχρίβειας, αποδοτιχή, χαι με τις χαλύτερες επιδόσεις μέθοδο του PLICP. Τα ευρήματα των συγγραφέων δείχνουν ότι η βελτίωση της εκτίμησης της θέσης μέσω του ίδιου μηχανισμού και με τη χρήση του PLICP είναι ασταθής. Επομένως καταλήγουν στο συμπέρασμα ότι η χρήση του PLICP προκειμένου να εξαχθεί η σχετική μετατόπιση μεταξύ των δύο σαρώσεων σε βιομηχανικές συνθήκες, όπου απαιτείται αχρίβεια χιλιοστών του μέτρου, είναι επισφαλής και ακατάλληλη. Για αυτόν τον λόγο, δεδομένου ότι το το σφάλμα εχτίμησης του προσανατολισμού ενός οχήματος έχει μειωθεί σε μόλις 0.13°, το σφάλμα εκτίμησης θέσης διορθώνεται με επαναληπτική εκτέλεση ευθυγράμμισης μετρήσεων με ειχονιχές σαρώσεις, μέσω μίας διαδιχασίας που εχτιμά το σφάλμα μετατόπισης μεταξύ των δύο με έναν επαναληπτικό τρόπο και μέσω μίας συνάρτησης του πρώτου όρου του Διαχριτού Μετασχηματισμού Fourier της διαφοράς των δύο σημάτων-σαρώσεων.

Ένας παρόμοιος τρόπος ευθυγράμμισης παρουσιάζεται στο [Pen+18]. Αντί της χρήσης του PLICP οι συγγραφείς αναπτύσσουν έναν αλγόριθμο ευθυγράμμισης με τη χρήση του αλγορίθμου Gauss-Newton. Αυτή η ευθυγράμμιση πραγματοποιείται με κλιμακωτά αυξανόμενη ανάλυση του χάρτη από τον οποίον εξάγονται οι εικονικές μετρήσεις. Τα πειράματα που πραγματοποιήθηκαν με ένα πραγματικό ρομπότ σε μη δομημένα περιβάλλοντα δείχνουν ότι η μέθοδός τους επιτυγχάνει κατά μέσο όρο ακρίβεια θέσης 0.017 m και μέση ακρίβεια προσανατολισμού 0.5°. Στα [CHM19] και [Liu+19] ο PLICP χρησιμοποιείται επιπλέον ως μέσο οδομετρίας κάθε φορά που μία μετρική σφάλματος οδομετρίας βρίσκεται να είναι μεγαλύτερη από ένα κατώτατο όριο. Ωστόσο, σε αντίθεση με τη μέθοδο του [Pen+18], η ευθυγράμμιση πραγματικών με εικονικές μετρήσεις πραγματοποιείται με την αλυσιδωτή σύνδεση του PLICP με τον GPM [Cen06] προκειμένου να μετριαστούν οι επιπτώσεις των μεγάλων γωνιακών σφαλμάτων του PLICP.

Η μέθοδος που παρουσιάζεται στο [ΒΑJ19] εξετάζει από χοινού την οδομετρία, την ευθυ-

γράμμιση δισδιάστατων μετρήσεων αισθητήρα lidar, και την ευθυγράμμιση πραγματικών με εικονικές σαρώσεις χάρτη, σε κτηματολογικούς χάρτες, και συγκεκριμένα για τον εντοπισμό αυτόνομων οχημάτων σε εξωτερικούς χώρους. Αυτές χρησιμοποιούνται ως περιορισμοί στην επίλυση ενός προβλήματος βελτιστοποίησης γράφου που υπολογίζει την πιο πιθανή στάση του οχήματος δεδομένων των μετρήσεων αισθητήρα απόστασης. Όσον αφορά στα κτηματολογικά σχέδια, τα μη κτιριακά αντικείμενα φιλτράρονται από την πραγματική παρατήρηση του αισθητήρα με τη χρήση μιας προσέγγισης διαχωρισμού και συγχώνευσης (split and merge), η οποία συνδυάζεται με σταθμισμένη άρμωση γραμμών (line fitting). Η μέτρηση εισόδου και αυτή που προκύπτει από την εκτιμώμενη στάση της στο χάρτη ευθυγραμμίζονται στη συνέχεια μέσω του GICP, και ο προκύπτον μετασχηματισμός στάσης προστίθεται στο γράφο εάν και μόνο εάν ο αλγόριθμος που τον παρήγαγε έχει συγκλίνει. Παράλληλα, στο ίδιο άρθρο εισάγεται μια μέθοδος για τη λύση της ασάφειας όσον αφορά στη διαμήκη θέση του οχήματος που προκύπτει σε περιβάλλοντα που προσομοιάζουν σε διαδρόμους.

Στο [Wan+21] η προτεινόμενη μέθοδος εντοπισμού της στάσης ενός οχήματος βάσει πεπερασμένης αβεβαιότητας χωρίζεται σε δύο φάσεις: μια offline και μια online. Κατά τη διάρχεια της πρώτης ο χάρτης χωρίζεται σε ένα δισδιάστατο πλέγμα χαθορισμένης ανάλυσης. Στη συνέχεια δημιουργείται μια υπογραφή θέσης, η οποία είναι αναλλοίωτη σε περιστροφές, για κάθε εικονική πανοραμική σάρωση που λαμβάνεται από κάθε διασχίσιμο κελί του χάρτη. Όλες οι προχύπτουσες υπογραφές εισάγονται στη συνέχεια σε μια αναζήτηση δένδρου ΑΝΝ. Σ τη δεύτερη φάση, για κάθε εισερχόμενη πραγματική μέτρηση παράγεται η υπογραφή της με τον ίδιο τρόπο όπως και κατά την πρώτη φάση. Στη συνέχεια η υπογραφή χρησιμοποιείται για την ανάχτηση των γειτονιχών υποψήφιων θέσεων από το δένδρο αναζήτησης: η θέση της εκτίμησης στάσης είναι εκείνη η θέση της οποίας η υπογραφή της εικονικής μέτρησης είναι ο πλησιέστερος γείτονας της υπογραφής της πραγματιχής μέτρησης. Για να ληφθεί ο προσανατολισμός της στάσης του ρομπότ δημιουργείται μια ειχονιχή σάρωση από την εχτιμώμενη θέση και η οποία ευθυγραμμίζεται με την πανοραμική μέτρηση μετά από βήματα προεπεξεργασίας και προ-ευθυγράμμισης. Η γωνιακή ευθυγράμμιση πραγματοποιείται σε βήματα μίας μοίρας και ο προσανατολισμός του ρομπότ είναι αυτός που καταγράφει την ελάχιστη σχετική εντροπία μεταξύ της εικονικής και της πραγματικής μέτρησης.

5.3 Μεθοδολογία ελάττωσης σφάλματος εκτίμησης στάσης

5.3.1 Μέσω επιλογής σωματιδίων

Έστω ένα ρομπότ κινητής βάσης του πεδίου εφαρμογής ΠΕ. Τα φίλτρα σωματιδίων διατηρούν την εκτίμηση της στάσης του σε κάθε χρονικό βήμα t, $\hat{x}_t(x,y,\theta)$, εντός ενός χάρτη M, με τη μορφή ενός συνόλου από "σωματίδια", δηλαδή τυχαία δείγματα από την κατανομή πιθανότητας $p(x_t|z_t,M)$. Εδώ z_t είναι το διάνυσμα παρατηρήσεων, οι οποίες ανιχνεύονται τη χρονική στιγμή t από το ρομπότ μέσω της χρήσης των αισθητήρων του, και οι οποίοι, στα συμφραζόμενα της παρούσας διατριβής, αποτελούνται αποκλειστικά από έναν δισδιάστατο αισθητήρα αποστάσεων τύπου lidar. Η αναπαράσταση της κατανομής $p(x_t|z_t,M)$ από ένα σύνολο δειγμάτων οφείλεται στην ουσιαστική δυϊκότητα μεταξύ των δύο [SG92].

Αυτή η ιδιότητα των φίλτρων σωματιδίων τους επιτρέπει την ικανότητα αναπαράστασης πολυτροπικών (multi-modal) κατανομών—μια προϋπόθεση για τον εντοπισμό της στάσης του ρομπότ βάσει καθολικής αβεβαιότητος—αλλά, με την ίδια λογική, καθιστά ασαφή την απάντηση στο ερώτημα του συνδυασμού όλων των πιθανών υποθέσεων (κάθε σωματίδιο εκφράζει μια διαχριτή υπόθεση για την κατάσταση του ρομπότ εντός του M) μέσω του υπολογισμού μιας ενιαίας εκτίμησης της στάσης του ρομπότ. Στα φίλτρα Kalman, σε αντίθεση, τα οποία είναι αυστηρά μονοτροπικοί (uni-modal) εκτιμητές, για την εκτίμηση του φίλτρου αρχεί το διάνυσμα της στάσης και η συνδιαχύμανση της για τον υπολογισμό της εχτίμησης της κατάστασης x_t [May79]. Αντιθέτως, στα φίλτρα σωματιδίων δεν υπάρχει μia ενιαία λύση κλειστής μορφής για αυτό το πρόβλημα. Η επικρατούσα προσέγγιση για τον υπολογισμό της εχτιμώμενης στάσης είναι έμμεση, χαι υποθέτει την ταυτοποίηση μέσα στην χατανομή των σωματιδίων της υποκατανομής με το μεγαλύτερο συνολικό βάρος (ενότητα 1.2.3), προτού στη συνέχεια προχωρήσει στον υπολογισμό του σταθμισμένου χέντρου της. Στην περίπτωση όπου η εκτίμηση έχει συγκλίνει και η κατανομή έχει γίνει μονοτροπική, αυτή η προσέγγιση είναι ισοδύναμη με τη εξαγωγή της μέσης τιμής των εχτιμήσεων όλων των σωματιδίων, σταθμισμένη με το ατομικό βάρος του καθενός.

Η βιβλιογραφία σχετικά με την εξαγωγή της τελικής εκτίμησης στάσης ενός φίλτρου σωματιδίων με βάση κάποια συγκεκριμένα χαρακτηριστικά τους είναι μάλλον ισχνή: μόνο τα

[LCV10] και [CV13] επικεντρώνονται σε αυτό το έργο στα συμφραζόμενα των ανθρωποειδών ρομπότ, λόγω της ανάγκης ελάττωσης του αρκούντως υψηλού σφάλματος εκτίμησης της στάσης τους, η οποία προχύπτει από τη χρήση μικρών σε μέγεθος και θορυβωδών αισθητήρων. Αρχικά, τη χρονική στιγμή t προσδιορίζουν το σωματίδιο με το μεγαλύτερο βάρος μέσα σε συγκεκριμένα όρια μεταφορικής και περιστροφικής απόστασης από την εκτίμηση της στάσης τη χρονική στιγμή t-1. Οι συγγραφείς εκτελούν την επιλογή με αυτόν τον τρόπο προκειμένου να αμβλυνθεί η ασυνέχεια της εκτίμησης της στάσης στο χώρο. Στη συνέχεια η τελική στάση υπολογίζεται ως το κεντροειδές όλων των σωματιδίων εντός μιας προκαθορισμένης ακτίνας γύρω από αυτό το σωματίδιο, εάν το βάρος της συστάδας τους ξεπερνά ένα κατώφλι βάρους. Ωστόσο, εάν η τιμή του είναι μικρότερη από το κατώφλι, η τελική εκτίμηση του φίλτρου εξάγεται ως το σωματίδιο με το μεγαλύτερο βάρος. Στη συνέχεια θα αποδείξουμε ότι αυτή η δεύτερη απόφαση, ενώ διαισθητικά ορθή, στην πραγματικότητα δεν είναι σοφή και, επομένως, δεν αποτελεί βιώσιμη λύση για επέκταση σε άλλες συνθήκες πέρα από τα πλαίσια αυτών των δύο έργων.

Στα φίλτρα σωματιδίων κάθε σωματίδιο χαρακτηρίζεται από έναν δείκτη βαρύτητας, ο οποίος ονομάζεται "βάρος" του κάθε σωματιδίου. Το βάρος w_t^i ενός σωματιδίου i τη χρονική στιγμή t ποσοτικοποιεί την πιθανότητα το ρομπότ να έχει παρατηρήσει τις πραγματικές μετρήσεις z_t από την εκτιμώμενη στάση του σωματιδίου $\hat{x}_t^i(x_i,y_i,\theta_i)$. Αυτό σημαίνει ότι, δεδομένου ενός χάρτη M πιστότητας στη λειτουργική κατάσταση του περιβάλλοντος, όσο πιο ακριβής είναι η εκτίμηση της στάσης του ρομπότ $\hat{x}_t^i(x_i,y_i,\theta_i)$, τόσο πιο κοντά είναι στην πραγματική του στάση $x_t(x,y,\theta)$, και επομένως τόσο μεγαλύτερη είναι η συμφωνία των πραγματικών μετρήσεων z_t και των προβλεπόμενων μετρήσεων \hat{z}_t^i . Επομένως, θεωρητικά, υπάρχει μια άμεση δυσαναλογία μεταξύ του σφάλματος εκτίμησης ενός σωματιδίου (η απόκλιση της εκτιμώμενης στάσης από την πραγματική της τιμή) και της τιμής του βάρους του: όσο μικρότερο είναι το σφάλμα εκτίμησης της στάσης του, τόσο μεγαλύτερο είναι το βάρος του, και αντίστροφα.

Αυτό το τελικό συμπέρασμα, σε αντιδιαστολή με την κυρίαρχη προσέγγιση εξαγωγής της εκτίμησης του φίλτρου, αποτέλεσε το κίνητρό μας για τη διερεύνηση της εξαγωγής της εκτίμησης της στάσης του μέσω άλλων μεθόδων από την επικρατούσα. Θεωρητικά, λοιπόν, θα περιμέναμε ότι η επιλογή σωματιδίων με υψηλό βάρος (που ισοδυναμεί με την απόρριψη σωματιδίων με χαμηλό βάρος—σωματίδια των οποίων η εκτίμηση της στάσης εξηγεί τις μετρήσεις z_t με λιγότερο ικανοποιητικό τρόπο σε σύγκριση με άλλα σωματίδια του πληθυσμού)

για τον υπολογισμό της σύνθετης εκτίμησης του φίλτρου θα είχε ως αποτέλεσμα καλύτερες εκτιμήσεις στάσης, δηλαδή εκτιμήσεις με μικρότερο σφάλμα ως προς τη στάση ρομπότ σε κάθε χρονικό βήμα. Δεδομένου ότι το βάρος ενός σωματιδίου είναι ένα καθορισμένο, ποσοτικοποιήσιμο, και οριστικό μέτρο της ευθυγράμμισης των μετρήσεων των αισθητήρων και των αναμενόμενων μετρήσεων τους, και δεδομένου ότι η τιμή που αποδίδεται στο βάρος ενός σωματιδίου γίνεται με αναλογικό τρόπο, όλες οι μέθοδοι επιλογής σωματιδίων για την εξαγωγή της εκτίμησης του φίλτρου που θα καλύψουμε είναι βασισμένες στο βάρος. Περιορίζουμε τις μεθόδους επιλογής μας σε προσεγγίσεις με βάση το βάρος διότι στα πλαίσια των φίλτρων σωματιδίων το βάρος ενός σωματιδίου είναι ο μοναδικός δείκτης της ποιότητας (του σφάλματος) της εκτίμησής του.

Έστω P_t το σύνολο του πληθυσμού των σωματιδίων τη χρονιχή στιγμή t. Τότε $P_t \equiv \{(\hat{x}_t^i, w_t^i)\}, i = 0, 1, \ldots, |P_t| - 1$, όπου \hat{x}_t^i είναι η εχτίμηση του i-οστού σωματιδίου της στάσης του ρομπότ τη χρονιχή στιγμή t, χαι w_t^i είναι το βάρος που σχετίζεται με το σωματίδιο i την ίδια χρονιχή στιγμή. Επιπλέον, έστω $\overline{W}_t = \frac{1}{|P_t|} \sum_{i=0}^{|P_t|-1} w_t^i$ το μέσο βάρος των σωματιδίων του P_t . Στη συνέχεια διαχρίνουμε δύο διαχριτές μεθόδους επιλογής: (α) απόλυτες χαι (β) σχετιχές μεθόδους. Στις μεθόδους απόλυτης επιλογής ένα απόλυτο ποσοστό του πληθυσμού P_t χαλείται να ψηφίσει για την εχτίμηση της στάσης του ρομπότ τη χρονιχή στιγμή t. Η επιχρατούσα μέθοδος υπολογισμού της στάσης είναι μια ειδιχή περίπτωση της απόλυτης επιλογής, όπου το ποσοστό των επιλεγμένων σωματιδίων είναι 100%. Στις μεθόδους σχετιχής επιλογής τα σωματίδια επιλέγονται για ψηφοφορία υπό την προϋπόθεση ιχανοποίησης χάποιας σχέσης των βαρών τους w_t^i με το συνολιχό βάρος του πληθυσμού \overline{W}_t : για παράδειγμα, μόνο τα σωματίδια των οποίων $w_t^i > \overline{W}_t$ επιλέγονται να έχουν λόγο στην συνολιχή εχτίμηση της στάσης του φίλτρου. Ο αλγόριθμος ΙΙΙ απειχονίζει σε ψευδοχώδιχα τη διαδιχασία επιλογής σωματιδίων για την εξαγωγή της τελιχής εχτίμησης του φίλτρου, η οποία στοχεύει στην επίλυση του προβλήματος ΠΙ ύπο την παραδοχή ΙΙ.

Στον αλγόριθμο III, αν επιλεγεί ο απόλυτος τρόπος επιλογής (absolute), ο πληθυσμός σωματιδίων ταξινομείται πρώτα με βάση το βάρος του καθενός σε φθίνουσα σειρά (γραμμή 4), και στο ταξινομημένο σύνολο σωματιδίων δίνεται η ονομασία P'_t . Στη συνέχεια τα πρώτα $[fraction \cdot |P'_t|]$ σωματίδια λαμβάνονται υπόψιν προς υπολογισμό της τελικής εκτίμησης, όπου το fraction $\in [0,1]$ εκφράζει την αναλογία των σωματιδίων που θα ληφθούν υπόψη (γραμμή 6)—η σύμβαση fraction = 0 προορίζεται για την επιλογή του σωματιδίου με το μεγαλύτερο

Αλγόριθμος III particle_selection

18: **end for** 19: **return** $\hat{m{x}}_t$

```
Input: P_t \equiv \{(\hat{x}_t^i, w_t^i)\}, selection manner, fraction
Output: pose estimate \hat{x}_t
 1: assert selection_manner = ABSOLUTE | | RELATIVE
 2: assert fraction \in [0, 1]
 3: if selection manner = ABSOLUTE then
        P'_t \leftarrow \text{sort } P_t \text{ by weight } w_t^i, \text{ descending}
         if fraction > 0.0 then
            P_t'' \leftarrow P_t'[0 : [fraction \cdot |P_t'|] - 1]
 7:
            \boldsymbol{P}_t'' \leftarrow \boldsymbol{P}_t'[0]
 8:
          end if
 9:
10: end if
11: if selection manner = RELATIVE then
         \overline{W}_t \leftarrow \frac{1}{|\boldsymbol{P}_t|} \sum_{i=0}^{|\boldsymbol{P}_t|-1} w_t^i
12:
         P_t'' \leftarrow \hat{x}_t^i : w_t^i > \overline{W}_t
13:
14: end if
15: \hat{\boldsymbol{x}}_t \leftarrow (0,0,0)
16: for j = 0 : |P''_t| - 1 do
         \hat{\boldsymbol{x}}_t \leftarrow \hat{\boldsymbol{x}}_t + \boldsymbol{P}_t''[j].w_t \cdot \boldsymbol{P}_t''[j].\hat{\boldsymbol{x}}_t
```

βάρος μεταξύ όλων του συνόλου P_t . Ο συμβολισμός $P_t'[a]$ δηλώνει το σωματίδιο του P_t' με δείχτη a, και ο συμβολισμός $P_t'[a:b]$ δηλώνει το σύνολο των σωματιδίων που αποτελούνται από τα στοιχεία του P_t' από τον δείχτη a μέχρι και τον δείχτη b. Από την άλλη πλευρά, αν επιλεγεί η σχετιχή επιλογή (relative), πρώτα υπολογίζεται το μέσο βάρος του πληθυσμού (γραμμή 12), και στη συνέχεια όλα τα σωματίδια των οποίων το βάρος υπερβαίνει αυτή την τιμή περιλαμβάνονται στο σύνολο σωματιδίων που μεταφέρεται εμπρός (γραμμή 13). Και στις δύο περιπτώσεις το σύνολο P_t'' περιλαμβάνει τις υποθέσεις του συνόλου σωματιδίων που έχουν επιλεγεί για να προσδώσουν την τελιχή εχτίμηση του φίλτρου. Στη συνέχεια υπολογίζεται ο σταθμισμένος χατά βάρος μέσος όρος των εχτιμήσεων στάσης αυτού του συνόλου (γραμμή 17) χαι η προχύπτουσα στάση θεωρείται ως η έξοδος του συστήματος επιλογής σωματιδίων. Ο συμβολισμός $P_t''[j].a$ για το σύνολο σωματιδίων P_t'' δηλώνει τη συνιστώσα a (δηλαδή το βάρος w_t ή την εχτίμηση της στάσης \hat{x}_t) του στοιχείου του P_t'' στο δείχτη p_t για τη χρονιχή στιγμή p_t .

Ένα εύλογο ερώτημα που μπορεί να τεθεί είναι γιατί δεν χρατάμε το συνολικό μέγεθος του πληθυσμού στο κλάσμα επιλογής $fraction \cdot |P_t|$ ώστε να απαλλαγούμε συνολικά από τον μηχανισμό επιλογής. Αυτό θα ήταν δυνητικά καταστροφικό, καθώς η διατήρηση ενός χαμηλότερου αριθμό σωματιδίων θα αύξανε τον κίνδυνο αποστέρησης σωματιδίων (particle deprivation) [TBF05]. Έπειτα, καθώς το μέγεθος του πληθυσμού αυξάνει, αυξάνεται και η πιστότητα της εκ των υστέρων πιθανότητας εκτίμησης της στάσης του ρομπότ (εξίσωση 1.2) ως προς την αληθινή του στάση. Αντίστροφα, όσο μικρότερος είναι ο αριθμός των σωματιδίων του φίλτρου τόσο μεγαλύτερη είναι η πιθανότητα απόκλισης της εκτίμησής του. Με τον παραπάνω τρόπο προσέγγισης προφυλασσόμαστε και από τη στέρηση σωματιδίων (διατηρώντας ένα αυξημένο μέγεθος του πληθυσμού) και ταυτόχρονα χρησιμοποιούμε ένα καθεστώς επιλογής ώστε το σύστημα να αυξάνει την ακρίβειά του χωρίς να θυσιάζει την ποιότητα/ακρίβεια της εκ των υστέρων πιθανότητας εκτίμησης της στάσης του ρομπότ ή την ευστάθεια του φίλτρου.

Αν και θεωρητικά οι παραπάνω μέθοδοι επιλογής είναι ορθές (δεδομένου ότι η επιλογή βαρύτερων σωματιδίων, η οποία απορρίπτει τα σωματίδια με περισσότερο ανακριβή εκτίμηση, βελτιώνει την ποιότητα της συνολικής εκτίμησης), στην πράξη (ενότητα 5.4.3) παρατηρούμε ποικίλα ή δυσμενή αποτελέσματα, τα οποία μπορούν να αποδοθούν (α) στην απώλεια συνολικής πληροφορίας, (β) στον υψηλότερο βαθμό επιρροής που αποκτούν τα σωματίδια όταν

η πληθικότητα του συνόλου ψηφοφορίας μειώνεται, ή/και (γ) στην απομάκρυνση σωματιδίων με σχεδόν συμμετρικές θέσεις που υπάρχουν στον πληθυσμό λόγω της τυχαιότητας που εισάγεται κατά τη διάρκεια του φίλτρου κατά τη φάση πρόβλεψης (prediction stage) του φίλτρου.

Στην επόμενη ενότητα αιτιολογούμε πώς το χάσμα μεταξύ της εχτιμώμενης στάσης του MCL και της πραγματικής στάσης μπορεί να μειωθεί με τον επιπρόσθετο τρόπο της ευθυγράμμισης ειχονιχών μετρήσεων που λαμβάνονται εντός του χάρτη M από την πρώτη με πραγματιχές μετρήσεις που λαμβάνονται από τον φυσιχό αισθητήρα από την δεύτερη.

5.3.2 Μέσω ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη

Στην παρούσα μελέτη επιδιώχουμε να βελτιώσουμε την εχτίμηση ενός φίλτρου σωματιδίων με διάφορα μέσα: στην προηγούμενη ενότητα αναλύσαμε θεωρητικά τον τρόπο με τον οποίο η επιλογή σωματιδίων με μεγάλη βαρύτητα για τον προσδιορισμό της στάσης εξόδου του φίλτρου στρέφει το φίλτρο στον υπολογισμό αχριβέστερων εχτιμήσεων. Σε αυτή την ενότητα θα εξετάσουμε πώς η ευθυγράμμιση πραγματιχών με ειχονιχές μετρήσεις μπορεί να χρησιμοποιηθεί προσθετιχά στο φίλτρο σωματιδίων (ή σε οποιαδήποτε άλλη τεχνιχή εντοπισμού μέσω της χρήσης δισδιάστατου αισθητήρα lidar), έτσι ώστε η τελιχή εχτίμηση του συστήματος να πλησιάζει περισσότερο στην αληθινή στάση του ρομπότ, χαι συνεπώς να επιλύει το πρόβλημα Π1. Αυτή η τεχνιχή είναι εμπνευσμένη από το [Vas+16] και καλύπτεται λεπτομερέστερα εδώ για τους λόγους σχολαστιχότητας και πληρότητας.

Έστω ότι ένα ρομπότ του πεδίου εφαρμογής ΠΕ φέρει έναν δισδιάστατο αισθητήρα αποστάσεων τύπου lidar, και ότι λειτουργεί σε ένα καθορισμένο περιβάλλον το οποίο αναπαρίσταται μέσω ενός χάρτη πλέγματος κατάληψης M. Έστω επίσης ότι τη χρονική στιγμή t το φίλτρο σωματιδίων έχει εξάγει μια εκτιμώμενη στάση $\hat{x}_t(x,y,\theta)$ χρησιμοποιώντας κάποια μέθοδο επιλογής σωματιδίων, και ότι μία μέτρηση S^R_t μέσω του αισθητήρα, η οποία έχει ληφθεί από την πραγματική στάση του ρομπότ, είναι επίσης διαθέσιμη τη χρονική στιγμή t. Τότε, αν συλλάβουμε μια εικονική σάρωση S^V_t από την εκτιμώμενη στάση \hat{x}_t , η οποία είναι το αποτέλεσμα της προσομοίωσης της αρχής λειτουργίας του πραγματικού αισθητήρα αλλά αυτή τη φορά στο χάρτη M για το ίδιο γωνιακό εύρος και μέγιστη αισθητή απόσταση του, είναι δυνατόν με την ευθυγράμμιση των δύο σαρώσεων (ενότητα 1.2.6) να προκύψει ο

μετασχηματισμός q_t ο οποίος, αν εφαρμοστεί στην εκτίμηση \hat{x}_t , ϑ α την κάνει συμπίπτει με την πραγματική στάση x_t .

Ωστόσο, λόγω (α) της παρουσίας θορύβου στις μετρήσεις \mathcal{S}_t^R του αισθητήρα, (β) της αναπόφευχτης αναντιστοιχίας μεταξύ του χάρτη M του περιβάλλοντος λειτουργίας χαι του ίδιου του περιβάλλοντος, (γ) της διαχριτής φύσης του χάρτη (ο M είναι ένας χάρτης πλέγματος πεπερασμένης ανάλυσης), χαι (δ) του γεγονότος ότι ο χρησιμοποιούμενος αλγόριθμος ευθυγράμμισης δεν είναι απαραίτητα ένας τέλειος τελεστής, αναμένουμε ότι αυτό που πραγματιχά θα συμβαίνει είναι ότι η εφαρμογή του \mathbf{q}_t στην εχτίμηση της στάσης $\hat{\mathbf{x}}_t$ θα μεταχινήσει την εχτίμηση αυτή σε μία γειτονιά της πραγματιχής στάσης χαι όχι αχριβώς σε αυτήν. Το προχύπτον σφάλμα εχτίμησης εξαρτάται από ένα πλήθος παραμέτρων, μεταξύ άλλων, από την ποιότητα της οδομετρίας του ρομπότ, την αντιστοιχία του χινηματιχού μοντέλου του ρομπότ με την πραγματιχή δυναμιχή του, το μέγεθος του θορύβου του αισθητήρα, την ανάλυση του χάρτη, την αχρίβεια του αλγορίθμου ευθυγράμμισης στην εχτίμηση του μετασχηματισμού μεταξύ των δύο συνόλων σημείων, το μέγεθος του πληθυσμού των σωματιδίων, την χατάσταση του χάρτη σε συνδυασμό με την ιχανότητα του αλγορίθμου ευθυγράμμισης στο να απορρίπτει αχραίες ή μη-αντιστοιχούσες τιμές, το μέγιστο εύρος του αισθητήρα σάρωσης, χαθώς χαι το γωνιαχό του εύρος.

Ανάλογα με τη διαμόρφωση του MCL, θα θέλαμε να χρησιμοποιήσουμε έναν αλγόριθμο ευθυγράμμισης που να μπορεί να συμβαδίζει με τη συχνότητα των εχτιμήσεων του φίλτρου, δηλαδή να λειτουργεί σε πραγματικό χρόνο ως προς το ρυθμό ανανέωσής τους (επαχόλουθο ΙΙ). Ο αλγόριθμος που επιλέγουμε είναι ο PLICP [Cen08] για τους αχόλουθους λόγους: (α) ξεπερνά τους τελευταίας τεχνολογίας αλγορίθμους ευθυγράμμισης σε αχρίβεια, αριθμό επαναλήψεων μέχρι τη σύγκλιση, και μέσο χρόνο εχτέλεσης, και (β) διαθέτει μία πληθώρα ρυθμιστιχών παραμέτρων, οι οποίες μπορούν να προσαρμοστούν στον χρησιμοποιούμενο αισθητήρα και γενικότερα στα χαραχτηριστικά των ορισμάτων του προβλήματος ευθυγράμμισης.

Στην επόμενη ενότητα αιτιολογούμε πώς το σφάλμα της εκτιμώμενης στάσης του MCL σε συνδυασμό με έναν αλγόριθμο ευθυγράμμισης πραγματικών και εικονικών σαρώσεων μπορεί να μειωθεί περαιτέρω με την ανάδραση της εκτίμησης του συνολικού τους συστήματος πίσω στον πληθυσμό του φίλτρου σωματιδίων.

5.3.3 Μέσω ανάδρασης

Παρόλο που η εξαγώμενη από την τεχνική ευθυγράμμισης πραγματικών με εικονικές σαρώσεις εκτίμηση \hat{x}' υποφέρει από τις παραπάνω πηγές σφάλματος, είναι, με βάση τη βιβλιογραφία (ενότητα 5.2.2), ακριβέστερη από την εκτίμηση \hat{x} που εξάγεται από τον MCL. Αυτό σημαίνει ότι το συνολικό σύστημα που αποτελείται από το φίλτρο σωματιδίων και τον αλγόριθμο ευθυγράμμισης κατέχει μια εκτίμηση την οποία αγνοεί το ίδιο το φίλτρο. Συνεπώς, καταλήγουμε ότι η εισαγωγή της εκτίμησης \hat{x}' στον πληθυσμό υποθέσεών του είναι επωφελής, και, στη βιβλιογραφία, αυτό επιτυγχάνεται με δύο τρόπους:

- Ο πρώτος τρόπος ανατροφοδότησης της βελτιωμένης εκτίμησης \hat{x}' στον MCL είναι η αρχικοποίησή του με αυτή την εκτίμηση. Αυτό σημαίνει ότι ο πληθυσμός σωματιδίων που διατηρείται από το φίλτρο δημιουργείται εκ νέου σε κάθε εκτέλεση, με τα σωματίδια να διασκορπίζονται γύρω από την \hat{x}' με προκαθορισμένη διακύμανση. Αυτή είναι η προσέγγιση που ακολουθείται στο [Vas+16], και θα αναφέρεται στο υπόλοιπο της παρούσας μελέτης ως hard loop-closure.
- Ο δεύτερος τρόπος είναι η εισαγωγή στον πληθυσμό των σωματιδίων μίας επιπρόσθετης διαχριτής υπόθεσης που αντιπροσωπεύει την εχτίμηση \hat{x}' . Αυτή είναι η προσέγγιση που αχολουθείται στο [Pen+18], χαι θα αναφέρεται στο εξής ως soft-1 loop-closure.

Ένα από τα πιθανά προβλήματα μπορεί να δημιουργηθούν με τον πρώτο τρόπο ανάδρασης είναι ότι δεν μπορεί να είναι εύρωστος σε αποτυχίες εντοπισμού: εάν η έξοδος του αλγορίθμου ευθυγράμμισης σαρώσεων είναι αναχριβής (έστω μία φορά και για οποιοδήποτε μέγεθος σφάλματος), τότε το σύνολο του πληθυσμού του MCL θα αρχικοποιηθεί γύρω από αυτή τη στάση, με ενδεχόμενες καταστροφικές επιπτώσεις στον εντοπισμό της πραγματικής στάσης του ρομπότ: καθώς το σφάλμα εκτίμησης του αλγορίθμου ευθυγράμμισης μπορεί να είναι μη φραγμένο, η πρώτη αναχρίβεια εκτίμησης (α) θα μεταφέρει την εκτίμηση του φίλτρου αυτομάτως σε μία κατάσταση απόκλισης, (β) θα θέσει το ρομπότ και το περιβάλλον του σε πιθανό κίνδυνο (ενδέχεται να νομίζει ότι βρίσκεται ολοκληρωτικά αλλού από ότι βρίσκεται), και (γ) θα πρέπει να προκαλέσει εν τέλει τον πρόωρο τερματισμό της πλοήγησής του (επακόλουθο Ι).

Επιπλέον, όσον αφορά στον δεύτερο τρόπο ανάδρασης, η εισαγωγή ενός σωματιδίου σε έναν πληθυσμό αρχετών εχατοντάδων σωματιδίων χρειάζεται περισσότερο χρόνο σύγχλισης σε μιχρότερα σφάλματα από ό,τι αν ένα μεγαλύτερο μέρος του πληθυσμού αντιχαθίστατο από τη βελτιωμένη εχτίμηση. Συνεπώς, είναι λογιχό να υποθέσουμε ότι η εισαγωγή στον πληθυσμό των σωματιδίων της βελτιωμένης εχτίμησης με τη μορφή πλειάδας σωματιδίων θα χαταστήσει τη σύγχλισή του πιο ταχεία χαι βελτιωμένη σε σχέση με την εισαγωγή της μέσω ενός σωματιδίου (με επιφύλαξη για την περίπτωση όπου όλα τα σωματίδια αντιχαθίστανται από πολλαπλά αντίγραφα της ίδιας εχτίμησης της στάσης—η επισφάλεια αυτής της προσέγγισης έγχειται στην απουσία της διαχύμανσης του φίλτρου χαι στους πιθανούς χινδύνους που εγχυμονούνται για τον πρώτο τρόπο ανάδρασης).

Παραχινούμενοι από τις παραπάνω υποθέσεις, εισάγουμε μια υβριδιχή στρατηγιχή χλεισίματος του βρόχου, όπου η εχτίμηση \hat{x}' εισάγεται στον πληθυσμό των σωματιδίων ως μια πληθώρα σωματιδίων. Η αναλογία τους στο συνολιχό τελιχό πληθυσμό είναι σταθερή χαι έχει οριστεί εχ των προτέρων. Εδώ, υποθέτοντας ότι το μέγιστο μέγεθος του πληθυσμού είναι N_{max} , ότι το επιθυμητό μέγεθος του εισαγόμενου πληθυσμού σε σύγχριση με το μέγεθος του πληθυσμού μετά την εισαγωγή του είναι $q \in (0,1)$, χαι ότι τη χρονιχή στιγμή t το μέγεθος του πληθυσμού είναι N_t , διαχρίνουμε τρεις περιπτώσεις:

• $N_t = N_{max}$

Όταν ο πληθυσμός βρίσκεται στη μέγιστη χωρητικότητά του, τα σωματίδια ταξινομούνται κατά φθίνουσα βαρύτητα, και τα χαμηλότερα $\lfloor qN_{max} \rfloor$ σωματίδια διαγράφονται, δίνοντας τη θέση τους σε ίσο αριθμό σωματιδίων, όλα κλώνους της εκτίμησης \hat{x}' . Είναι προφανές ότι $qN_{max}/N_{max}=q$.

• $N_t \leq (1-q)N_{max}$ Σε αυτή την περίπτωση, δεν διαγράφονται σωματίδια και προστίθενται $\frac{q}{1-q}N_t$ σωματίδια. Είναι εύκολο να δούμε ότι

$$\frac{\frac{q}{1-q}N_t}{\frac{q}{1-q}N_t + N_t} = \frac{qN_t}{qN_t + (1-q)N_t} = \frac{qN_t}{N_t} = q$$

• $(1-q)N_{max} < N_t < N_{max}$ Στην περίπτωση αυτή, ο πληθυσμός των σωματιδίων N_t ταξινομείται κατά φθίνουσα βαρύτητα, διαγράφονται τα χαμηλότερα $\lfloor N_t - (1-q)N_{max} \rfloor$ σωματίδια, και $\lfloor qN_{max} \rfloor$ αντίγραφα της υπόθεσης που εξάγεται από την ευθυγράμμιση σαρώσεων εισάγονται στο πληθυσμό. Και πάλι ο πληθυσμός που εισάγεται είναι, ως ποσοστό, q φορές το τελιχό μέγεθος του πληθυσμού:

$$\frac{qN_{max}}{N_{t} - (N_{t} - (1 - q)N_{max}) + qN_{max}} = \frac{qN_{max}}{N_{max}} = q$$

Η προτεινόμενη στρατηγική ανάδρασης (α) μπορεί να κατευθύνει το σύστημα μακριά από την παγίδα ελαττωματικών εκτιμήσεων στάσης που εξάγονται από την ευθυγράμμιση σαρώσεων—κάτι αναπόφευκτο για την προσέγγιση hard loop-closure—με τη μη αντικατάσταση του συνόλου των σωματιδίων στο πληθυσμό του MCL, αλλά αντίθετα διατηρώντας ένα μέρος των καλύτερων εκτιμήσεών του (καλύτερων με την έννοια της υψηλότερης βαρύτητας) από τη μία επανάληψη του φίλτρου στην επόμενη, έτσι ώστε, ακόμη και αν η ευθυγράμμιση σαρώσεων παράγει μια αποκλίνουσα εκτίμηση, το φίλτρο να μπορεί να διατηρήσει την ευστάθεία του λόγω της διατήρησης των προηγούμενων εκτιμήσεων που βρίσκονται κοντά στην πραγματική στάση, και (β) μπορεί να επιταχύνει τη σύγκλιση και να διατηρήσει χαμηλότερα σφάλματα στάση εισάγοντας όχι μόνο ένα σωματίδιο—όπως στην περίπτωση της προσέγγισης soft-1 loop-closure—αλλά ένα πλήθος σωματίδίων χαμηλότερου σφάλματος εκτίμησης από αυτού του ίδιου του φίλτρου.

Η προτεινόμενη στρατηγική ανατροφοδότησης θα αναφέρεται στο εξής ως soft-p loop-closure, όπου το το γράμμα p εκφράζει ποσοστό: π.χ. στο καθεστώς κλεισίματος βρόχου soft-50, κάθε φορά που το φίλτρο σωματιδίων εξάγει ένα αποτέλεσμα στον PLICP, ο τελευταίος βελτιώνει την εκτίμησή του φίλτρου, και ο μηχανισμός ανάδρασης εισάγει—και ενδεχομένως διαγράφει—τόσα σωματίδια όσα απαιτούνται ώστε η τελική αναλογία των αντιγράφων της εξόδου του PLICP να είναι το 50% του τελικού συνολικού πληθυσμού του φίλτρου σωματιδίων. Ο όρος soft-1 loop-closure θα διατηρηθεί για την αναφορά στην αρχική ιδέα της εισαγωγής μόνο ενός σωματιδίου στον πληθυσμό του φίλτρου.

Η αλγοριθμική μορφή του μηχανισμού ανατροφοδότησης απεικονίζεται σε ψευδοκώδικα στον αλγόριθμο IV, και η διαδικασία του μηχανισμού ανάδρασης απεικονίζεται σε μορφή μπλοκ στο σχήμα 5.2. Στον αλγόριθμο IV οι ενδείξεις "HARD", "SOFT_1, "SOFT_P" είναι συντομογραφίες των τριών προαναφερθέντων τρόπων ανάδρασης. Η συντομογραφία "OPEN"

Σχήμα 5.2: Εσωτερικά στην τροποποιημένη έκδοση του MCL υπάρχουν τέσσερις διαφορετικοί και αμοιβαίως αποκλειόμενοι τρόποι ανατροφοδότησης. Με \hat{x}' συμβολίζεται η έξοδος της διαδικασίας ευθυγράμμισης σαρώσεων, με P ο πληθυσμός σωματιδίων του φίλτρου, και με P' ο πληθυσμός του φίλτρου μετά την εφαρμογή της ανατροφοδότησης. Το κόκκινο χρώμα χρησιμοποιείται για να προσδιορίσει τη συμβολή της προσέγγισής μας σε σχέση με την ανατροφοδότηση σε συστήματα φίλτρων σωματιδίων συνδυασμένα με ευθυγράμμιση σαρώσεων της τρέχουσας βιβλιογραφίας

εννοεί την έλλειψη ανάδρασης.

5.3.4 Το ολικό σύστημα ελάττωσης του σφάλματος εκτίμησης

Η δομή του ολικού συστήματος ελάττωσης του σφάλματος εκτίμησης της στάσης ενός φίλτρου σωματιδίων απεικονίζεται στο σχήμα 5.3. Το προτεινόμενο συνολικό σύστημα είναι πιο ευέλικτο από έναν συνδυασμό φίλτρου σωματιδίων με δειγματοληψία KLD και ευθυγράμμιση μετρήσεων με σαρώσεις, καθώς αυτή είναι μία ειδική περίπτωση του προτεινόμενου συστήματος: επιλέγοντας 100% των σωματιδίων από τον πληθυσμού του MCL για την εξαγωγή της εκτίμησης της στάσης του και δίχως ανατροφοδότηση, το προκύπτον σύστημα μεταβάλλεται στην απλούστερη περίπτωση του εισαγόμενου συστήματος, δηλαδή στον απλό MCL με δειγματοληψία KLD. Επιπρόσθετα, οι δύο προσεγγίσεις που παρουσιάζονται στα [Vas+16] και [Pen+18] αποτελούν ειδικές διαμορφώσεις του προτεινόμενου συστήματος. Στη συνέχεια, όταν αναφερόμαστε στην εκτίμηση της στάσης που εξάγεται από τον MCL θα αναφερόμαστε στην \hat{x}_t , και όταν αναφερόμαστε στην έξοδο του συστήματος, ή του σύνθετου συστήματος, ή του συνολικού συστήματος, θα αναφερόμαστε στην εκτίμηση \hat{x}_t' .

$\overline{ m A}$ λγόριhetaμος $\overline{ m IV}$ feedback_selection

```
Input: P_t \equiv \{(\hat{x}_t^i, w_t^i)\}, q, \hat{x}_t', \text{ feedback manner}
Output: P_{t+1}
 1: assert
      feedback\_manner \in \{HARD, SOFT\_1, SOFT\_P, OPEN\}
 2: if feedback manner = HARD then
          P_{t+1} \leftarrow \overbrace{\{\hat{x}_t'\} \cup \{\hat{x}_t'\} \cup \dots \{\hat{x}_t'\}}^{N_{max}}
          Perturb P_{t+1}.\hat{x}_t^i according to MCL init params
  4:
 5: end if
  6: if feedback manner = SOFT 1 then
          if |P_t| = N_{max} then
              P_t \leftarrow \text{Sort } P_t \text{ by weight, ascending}
              Delete P_t[0]
  9:
          end if
10:
          P_{t+1} \leftarrow P_t \cup \hat{x}'_t
11:
12: end if
13: if feedback manner = SOFT P then
          assert q \in (0,1)
14:
          S \leftarrow \{\}
15:
          if |P_t| \leq (1-q)N_{max} then
16:
              S \leftarrow \underbrace{\{\hat{\boldsymbol{x}}_t'\} \cup \{\hat{\boldsymbol{x}}_t'\} \cup \dots \{\hat{\boldsymbol{x}}_t'\}}_{\left|\frac{q}{1-q}|P_t|\right|}
17:
          else if |P_t| = N_{max} then
18:
              P_t \leftarrow \text{Sort } P_t \text{ by weight, ascending}
19:
              Delete P_t[0: \lfloor qN_{max} \rfloor - 1]
20:
              S \leftarrow \underbrace{\{\hat{oldsymbol{x}}_t'\} \cup \{\hat{oldsymbol{x}}_t'\} \cup \dots \{\hat{oldsymbol{x}}_t'\}}_{|aN_{max}|}
21:
22:
          else
              P_t \leftarrow \text{Sort } P_t \text{ by weight, ascending}
23:
              Delete P_t[0: \lfloor |P_t| - (1-q)N_{max} \rfloor - 1]
24:
              oldsymbol{S} \leftarrow \underbrace{\{\hat{oldsymbol{x}}_t'\} \cup \{\hat{oldsymbol{x}}_t'\} \cup \dots \{\hat{oldsymbol{x}}_t'\}}_{\left \lfloor qN_{max} 
floor}
25:
          end if
26:
          P_{t+1} \leftarrow P_t \cup S
27:
28: end if
29: if feedback manner = OPEN then
          P_{t+1} \leftarrow P_t
31: end if
32: return P_{t+1}
```


Σχήμα 5.3: Το συνολικό σύστημα που στοχεύει στην επίλυση του προβλήματος $\Pi1$ υπό την παραδοχή Π σε δομή μπλοκ. Τα παραλληλόγραμμα υποδεικνύουν υποσυστήματα, ενώ οι ελλείψεις τις εισόδους τους. Το κόκκινο χρώμα χρησιμοποιείται για να προσδιορίσει τα σημεία των συμβολών της προσέγγισής μας στα συστήματα συνδυασμού φίλτρων σωματιδίων με ευθυγράμμιση πραγματικών και εικονικών σαρώσεων δισδιάστατου αισθητήρα lidar. Εδώ η ευθυγράμμιση σαρώσεων αντιμετωπίζεται ως προσθετικό σύστημα του MCL. Ο πληθυσμός του MCL P_t υπόκειται σε πιθανή επιλογή σωματιδίων τη χρονική στιγμή t>0. Η εκτίμηση εξόδου του μηχανισμού επιλογής προκύπτει από το σταθμισμένο μέσο όρο των στάσεων των επιλεγμένων στάσεων. Η προκύπτουσα στάση χρησιμοποιείται ως η στάση από την οποία συλλαμβάνεται μία εικονική σάρωση εντός του χάρτη. Η πραγματική και η εικονική σάρωση ευθυγραμμίζονται στη συνέχεια χρησιμοποιώντας τον αλγόριθμο PLICP. Η έξοδος της διαδικασίας ευθυγράμμισης \hat{x}_t' είναι, καταρχήν, πιο ακριβής από εκείνη του MCL, \hat{x}_t , το οποίο σημαίνει ότι θα μπορούσε να χρησιμοποιηθεί ως βοηθητικό μέσο ελάττωσης του σφάλματος εκτίμησης του ίδιου το MCL με την ανατροφοδότησή της πίσω στον πληθυσμό του

5.4 Πειραματική αξιολόγηση

5.4.1 Πειραματική διαδικασία

Το περιεχόμενο της παρούσας ενότητας εξυπηρετεί τον έλεγχο τριών διακριτών υποθέσεων, όπως αρθρώθηκαν στις ενότητες 5.3.1, 5.3.2, και 5.3.3:

- (Η1) Η επιλογή σωματιδίων υψηλού βάρους από τον πληθυσμό του MCL—ισοδύναμα: η απόρριψη σωματιδίων χαμηλού βάρους από αυτόν—και ο υπολογισμός της εκτίμησης του φίλτρου ως ο σταθμισμένος μέσος όρος των στάσεων τους έχει ως αποτέλεσμα αυξημένη ακρίβεια στάσης σε σύγκριση με την επιλογή όλων των σωματιδίων από τον πληθυσμό
- (H2) Η ευθυγράμμιση μεταξύ α) μιας μέτρησης που λαμβάνεται μέσω του φυσιχού αισθητήρα lidar του ρομπότ από την πραγματιχή του στάση και (β) μιας ειχονιχής σάρωσης που λαμβάνεται εντός του χάρτη στον οποίο πλοηγείται το ρομπότ από την εχτιμώμενη

στάση του αισθητήρα, και η εφαρμογή του προκύπτοντος μετασχηματισμού στην εκτίμηση της στάσης του MCL έχει ως αποτέλεσμα αυξημένη ακρίβεια στάσης σε σύγκριση με τον MCL απουσία ανατροφοδότησης

(Η3) Η ανατροφοδότηση της (υποθετικά βελτιωμένης) στάσης στον πληθυσμό του MCL με τη μορφή μιας ομάδας σωματιδίων που αποτελούν το p% του τελικού πληθυσμού σωματιδίων, όπου p είναι αρκετά μικρότερο από 100 και αρκετά μεγαλύτερο από 1, (α) έχει ως αποτέλεσμα αυξημένη ακρίβεια στάσης σε σύγκριση με τον MCL, (β) έχει ως αποτέλεσμα αυξημένη ακρίβεια στάσης σε σύγκριση με την ανατροφοδότηση μόνο ενός σωματιδίου με την εν λόγω διορθωμένη στάση, και (γ) είναι πιο εύρωστη από την εκ νέου αρχικοποίηση του MCL γύρω από τη μετασχηματισμένη στάση

Στην τρίτη υπόθεση αναφερόμαστε στην ευρωστία με την έννοια της ικανότητας ενός συστήματος να αποφεύγει την αποτυχία και όχι να ανακάμπτει από αυτήν, η οποία ικανότητα αναφέρεται ως "ανθεκτικότητα" (resilience) [ZB11; TBD11]. Η ικανότητα ανάκαμψης από αποτυχίες είναι μια ιδιότητα του ίδιου του φίλτρου σωματιδίων, ενώ η ικανότητα αποφυγής αποτυχίας (στην προκειμένη περίπτωση η επανεκκίνηση γύρω από μία καταστροφικά λανθασμένη στάση) είναι ιδιότητα της μεθόδου ανατροφοδότησης.

Οι υποθέσεις αυτές δοχιμάζονται σε δύο διαχριτά προσομοιωμένα περιβάλλοντα. Το πρώτο περιβάλλον ονομάζεται CORRIDOR, συμβολίζεται με M_C , χαι παρουσιάζεται στο σχήμα $5.4(\alpha')$. Το δεύτερο ονομάζεται WAREHOUSE, συμβολίζεται με M_W , χαι παρουσιάζεται στο σχήμα $5.4(\beta')$. Η ανάλυση και των δύο χαρτών είναι $0.01~\rm m$ $\times 0.01~\rm m$ ανά χελί πλέγματος. Ο πρώτος χρησιμοποιείται για να δείξει την αποτελεσματιχότητα του προτεινόμενου συστήματος σε μη σύνθετα περιβάλλοντα, όπου όλα τα όριά του βρίσχονται εντός της μέγιστης εμβέλειας του αισθητήρα lidar του ρομπότ ανά πάσα στιγμή. Αντίθετα, το δεύτερο είναι μια μεγάλη αποθήχη, που προορίζεται να θέσει μεγαλύτερη πρόχληση στο σύστημα χαι συνεπώς στην απόδοσή του: τα εμπόδια βρίσχονται σε μεγαλύτερη απόσταση μεταξύ τους από ότι στο CORRIDOR, πράγμα που σημαίνει ότι είτε δεν φέρουν όλες οι αχτίνες του αισθητήρα αξιοποιήσιμη πληροφορία, είτε αλλοιώνονται περισσότερο από θόρυβο, χαθώς το σφάλμα απόστασης αυξάνεται με την μετρήσιμη απόσταση, ή χαι τα δύο. Η πρώτη πρόχληση επηρεάζει (α) τον MCL, χαθώς πρέπει να βασίζεται περισσότερο στην οδομετρία του, η οποία είναι επιρρεπής στη συσσώρευση σφαλμάτων, χαι λιγότερο στις μετρήσεις απόστασης χαι (β) την ευθυγράμ-

μιση σαρώσεων, καθώς υπάρχουν λιγότερα μετρούμενα σημεία σάρωσης και άρα μεγαλύτερη ανεπάρχεια πληροφοριών χατά την ευθυγράμμιση μετρήσεων με σαρώσεις. Η δεύτερη πρόκληση επηρεάζει (α) τον MCL δεδομένου ότι η εκτίμηση της στάσης διαταράσσεται από θόρυβο μέτρησης, και (β) την ευθυγράμμιση μετρήσεων με σαρώσεις, καθώς ο θόρυβος αυξάνει την πιθανότητα λανθασμένων αντιστοιχίσεων και, γενικά, της εσφαλμένης ευθυγράμμισης συνολικά. Για το σκοπό αυτό ρυθμίσαμε τον αισθητήρα αποστάσεων ώστε να λειτουργεί με μέγιστη εμβέλεια $r_{\rm max}=10.0$ μέτρα. Σε όλες τις προσομοιώσεις χρησιμοποιήθηκε ο MCL παράλληλα με τη δειγματοληψία KLD, με ελάχιστο και μέγιστο αριθμό σωματιδίων $N_{\min}=200$ και $N_{\rm max}=500$. Οι τρεις ως άνω υποθέσεις δοκιμάζονται κατά τη διαδικασία αυτόνομης πλοήγησης στα δύο ως άνω περιβάλλοντα. Οι αρχικές και τελικές στάσεις για κάθε χάρτη ήταν (α) M_C : $x_0^{M_C} \equiv (11.56 \text{ m}, 12.20 \text{ m}, 0.0 \text{ rad})$, και $x_C^{M_C} \equiv (5.0 \text{ m}, 6.0 \text{ m}, 0.0 \text{ rad})$, αντίστοιχα, хац (β) M_W : $x_0^{M_W} \equiv (17.98 \text{ m}, 2.08 \text{ m}, \pi/2 \text{ rad})$, хац $x_G^{M_W} \equiv (6.0 \text{ m}, 40.0 \text{ m}, \pi/2 \text{ rad})$ αντίστοιχα. Οι αρχικές και οι τελικές στάσεις για κάθε χάρτη σχεδιάζονται με πράσινο και κόκκινο χρώμα στα αντίστοιχα σχήματα. Το ρομπότ που χρησιμοποιήθηκε κατά την πειραματική διαδικασία είναι το Turtlebot v.2, εξοπλισμένο με αισθητήρα απόστασης γωνιακού εύρους $\alpha=260^\circ$, και αριθμό ακτίνων $N_s=640$, του οποίου οι μετρήσεις αλλοιώνονται από θόρυβο κανονικά κατανεμημένο, με μηδενική μέση τιμή, και τυπική απόκλιση $\sigma_R=0.01~\mathrm{m}.$

Για να ελέγξουμε την πρώτη υπόθεση πραγματοποιούμε προσομοιώσεις με το σύνθετο σύστημα (σχήματα 5.2 και 5.3) σε λειτουργία ανοικτού βρόχου. Συμβολίζοντας με $|P_t|$ το μέγεθος του πληθυσμού σε χρόνο t>0, πραγματοποιούμε N=100 προσομοιώσεις πλοήγησης για κάθε μέθοδο επιλογής σωματιδίων, όπως αυτές ορίστηκαν στην ενότητα 5.3.1: (α) $100\% \times |P_t|$ των σωματιδίων (η ονομαστική λειτουργία του MCL), (β) υποσυνόλου σωματιδίων $\{i\}$ από το P_t των οποίων το βάρος w_t^i είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού $\overline{W_t}$ τη χρονική στιγμή t>0, (γ) $10\% \times |P_t|$, και (δ) μόνο το σωματίδιο με το μεγαλύτερο βάρος από όλα τα σωματίδια του P_t .

Για να ελέγξουμε τη δεύτερη υπόθεση παρατηρούμε τα αποτελέσματα όλων των παραπάνω $2 \times 4 \times N$ προσομοιώσεων (δύο εχτιμήσεις—μία του MCL και μία του σύνθετου συστήματος—, και τέσσερις μέθοδοι επιλογής σωματιδίων) που εχτελούνται ανά μέθοδο επιλογής σωματιδίων και σε κατάσταση ανοιχτού βρόχου (η ανάδραση του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις στον MCL εχ των πραγμάτων αλλοιώνει την τυπιχή επίδοσή του χαι, συνεπώς, δεν επιτρέπει την εξαγωγή χρήσιμων συμπερασμάτων για τη

Σχήμα 5.4: Οι χάρτες των περιβαλλόντων CORRIDOR, M_C και WAREHOUSE M_W . Η αρχική στάση του ρομπότ φαίνεται με πράσινο χρώμα, ενώ η στάση στόχος του με κόκκινο χρώμα

συμβολή της ευθυγράμμισης σαρώσεων σε διάχριση με το συνολιχό σύστημα σε χατάσταση κλειστού βρόχου).

Για να ελέγξουμε την τρίτη υπόθεση πραγματοποιούμε N=100 προσομοιώσεις πλοήγησης για κάθε τρόπο ανάδρασης, όπως αυτοί ορίστηκαν στην ενότητα 5.3.3, επιλέγοντας όλα τα σωματίδια $|P_t|$ για τον υπολογισμό της τελικής στάσης του MCL, δοκιμάζοντας την απόδοση του σύνθετου συστήματος (σχήματα 5.2 και 5.3) όταν ο τρόπος ανάδρασης που χρησιμοποιείται είναι (α) κανένας (ανοικτός βρόχος), (β) soft-1 loop-closure, (γ) soft-50 loop-closure, και (δ) hard loop-closure.

Το χριτήριο στο οποίο στηρίζεται η αξιολόγηση όλων των ελέγχων είναι το πλάτος του συνολιχού σφάλματος στάσης (εξίσωση 5.1) όπου $(\hat{x},\hat{y},\hat{\theta})$ είναι η εχτιμώμενη στάση του ρομπότ (η οποία εχτιμάται από τον MCL ή το σύστημα μετά την ευθυγράμμιση σαρώσεων, ανάλογα με τα συμφραζόμενα), χαι (x,y,θ) είναι η πραγματιχή του στάση, χαι επιλέχθηχε ως τέτοιο λόγω της έχφρασης του συνολιχού σφάλματος της χατάστασης του συστήματος χαι της ιχανότητάς του να παρέχει έναν χεντριχό τόπο που διευχολύνει την άμεση σύγχριση των επιδόσεων της χάθε παραλλαγής του συστήματος όσον αφορά στην αχρίβεια της εχτίμησης της συνολιχού διανύσματος χατάστασης.

Σε αντίθεση με τις στάσεις από όπου αξιολογήθηκαν οι επιδόσεις των συστημάτων των $[{\rm Row}+12]$ και $[{\rm Vas}+16]$ (τα σφάλματα των συστημάτων τους αξιολογήθηκαν μόνο κοντά σε προκαθορισμένες θέσεις ενδιαφέροντος του περιβάλλοντος), εδώ αξιολογούμε την επίδοση των ανωτέρω διαμορφώσεων κατά μήκος ολόκληρης της διαδρομής από x_0 έως x_G : αυτό προσφέρει πιο πλήρη εικόνα για την επίδοση των εν λόγω διαμορφώσεων. Για κάθε στάση που εξάγεται από τον MCL σε μία διαδρομή πλοήγησης (συμβολίζεται με \hat{x}_t στο σχήμα 5.3) και το σύστημα μετά την ευθυγράμμιση σαρώσεων (\hat{x}_t') κατά τη διάρκεια μίας προσομοίωσης, καταγράφουμε τα σφάλματά τους από την πραγματική στάση του ρομπότ με τη μορφή του συνολικού σφάλματος. Στη συνέχεια καταγράφουμε το μέσο όρο των σφαλμάτων τους για μία προσομοίωση, και αναφέρουμε την κατανομή αυτών των τιμών για όλες τις N=100 προσομοίωσεις της ίδιας διαμόρφωσης. Η μονάδα μέτρησης του συνολικού σφάλματος κατάστασης είναι $({\rm m}^2+{\rm rad}^2)^{1/2}$, και παραλείπεται στα σχήματα των παρακάτω ενοτήτων για λόγους οικονομίας χώρου.

Οι προσομοιώσεις πραγματοποιήθηκαν στο περιβάλλον προσομοίωσης Gazebo¹ μέσω ROS^2 στο λειτουργικό σύστημα Linux Ubuntu 16.04, με έναν επεξεργαστή 12 νημάτων και συχνότητας 4.00 GHz, χρησιμοποιώντας έως και 32 Gb μνήμης RAM. Για την υλοποίηση του MCL με δειγματοληψία KLD χρησιμοποιήσαμε το ROS πακέτο amcl,³ το οποίο τροποποιήσαμε προκειμένου για την επιλογή και εισαγωγή σωματιδίων από και στον πληθυσμό του φίλτρου. Το σύστημα καταλαμβάνει δύο διεργασίες επεξεργαστή, περίπου 300MB μνήμης, ενώ η διαδικασία ευθυγράμμισης σαρώσεων χρησιμοποιεί περίπου 5.2% ενός νήματος της CPU.

5.4.2 Αποτελέσματα

Στα σχήματα 5.5(α') και 5.5(β') απεικονίζονται οι κατανομές των μέσων σφαλμάτων στάσης του MCL σε κατάσταση ανοικτού βρόχου και του σύνθετου συστήματος (σχήμα 5.3) ανά διαδρομή του ρομπότ στα περιβάλλοντα CORRIDOR και WAREHOUSE, ανά μέθοδο επιλογής σωματιδίων. Τα υποκείμενα σφάλματα θέσης και προσανατολισμού απεικονίζονται στα σχήματα του παραρτήματος Ε΄.1.

¹http://gazebosim.org/

²https://www.ros.org/

³http://wiki.ros.org/amcl

Κατανομή μέσων σφαλμάτων εκτίμησης στάσης ανά μέθοδο επιλογής σωματιδίων

(α') Περιβάλλον CORRIDOR

(β΄) Περιβάλλον WAREHOUSE

Σχήμα 5.5: Η κατανομή του μέσου σφάλματος στάσης ανά διαδρομή πλοήγησης για τον MCL σε ανοιχτό βρόχο (στα αριστερά κάθε υποδεικνυόμενης μεθόδου επιλογής, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο), σε N=100 προσομοιώσεις, ανάλογα με την μέθοδο επιλογής πληθυσμού. Το σύμβολο "100%" υποδηλώνει τη διαμόρφωση του συστήματος όπου όλα τα σωματίδια του συνόλου του πληθυσμού επιλέγονται κατά τη διαδικασία εξαγωγής της εκτίμησης της στάσης του συστήματος, το σύμβολο " $>\overline{W}$ " υποδηλώνει εκείνη της επιλογής των σωματιδίων των οποίων το βάρος είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού του φίλτρου, το "10%" εκείνη που μόνο το άνω 10% των βαρύτερων σωματιδίων επιλέγονται, και "top" τη διαμόρφωση όπου επιλέγεται μόνο το σωματίδιο με το μεγαλύτερο βάρος μεταξύ όλων των σωματιδίων του πληθυσμού

Στα σχήματα 5.6(α') και 5.6(β') απεικονίζονται οι κατανομές των μέσων σφαλμάτων στάσης του MCL κλειστού βρόχου και του σύνθετου συστήματος ανά διαδρομή του ρομπότ στα περιβάλλοντα CORRIDOR και WAREHOUSE, ανά μέθοδο ανάδρασης. Τα υποκείμενα σφάλματα θέσης και προσανατολισμού απεικονίζονται στα σχήματα του παραρτήματος Ε΄.2.

5.4.3 Αξιολόγηση μεθόδων επιλογής σωματιδίων

Όσον αφορά στις μεθόδους επιλογής σωματιδίων εστιάζουμε στα σφάλματα του MCL ανοιχτού βρόχου (τα boxplots μαύρου χρώματος του σχήματος 5.5) διότι η επίδοση της κάθε μεθόδου επιλογής σωματιδίων μπορεί να διαχριθεί με σαφήνεια, χαθώς δεν αλλοιώνεται από την ανατροφοδότηση ή την επίδοση της ευθυγράμμισης σαρώσεων. Στρέφοντας την προσοχή μας στα σχήματα διαχρίνουμε καταρχάς ότι επιλέγοντας σωματίδια των οποίων το βάρος είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού κατά τη στιγμή της επιλογής τους έχει ως αποτέλεσμα χαμηλότερα σφάλματα στάσης σε σύγχριση με την επιλογή όλων των σωματιδίων, και στα δύο προσομοιωμένα περιβάλλοντα. Το αποτέλεσμα αυτό είναι διαισθητικά λογικό, δεδομένου ότι αναμένει κανείς ότι τα σωματίδια που συμβάλλουν στη συνολική στάση με βάρος μιχρότερο από το μέσο βάρος του πληθυσμού έχουν συνολικά αρνητική συνεισφορά στην αχρίβεια της στάσης, η οποία, όπως φαίνεται από τα δεδομένα, είναι σχεδόν αμελητέα. Επιπλέον, σε αντίθεση με τις άλλες δύο πρακτικές επιλογής σωματιδίων που παρουσιάστηκαν, αυτή είναι η λιγότερο καταστροφική, αφού αγκυροβολεί την πρακτική απόρριψης σωματιδίων στη μεταβαλλόμενη μέση τιμή βάρους του πληθυσμού και, επομένως, επιλέγει σωματίδια των οποίων ο αριθμός είναι δυναμικός, αντί να την βασίζει στον αριθμό των βαρύτερων σωματιδίων και να επιλέγει σωματίδια των οποίων ο αριθμός είναι σταθερός.

Τούτου λεχθέντος, η επιλογή του 10% των βαρύτερων σωματιδίων σε κάθε επανάληψη υπερτερεί της επιλογής σωματιδίων των οποίων το βάρος είναι μεγαλύτερο του μέσου βάρους του πληθυσμού. Για την ακρίβεια, το μοτίβο της ελάττωσης του σφάλματος στάσης και στα δύο περιβάλλοντα είναι το ίδιο: η επιλογή του 10% των βαρύτερων σωματιδίων σε κάθε επανάληψη υπερτερεί της επιλογής σωματιδίων των οποίων το βάρος είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού κατά τη στιγμή της επιλογής τους, η οποία, με τη σειρά της, υπερτερεί της τυπικής επιλογής όλων των σωματιδίων.

Αυτό που είναι αντιδιαισθητικό είναι τα αυξημένα σφάλματα στάσης όταν επιλέγεται μόνο το βαρύτερο σωματίδιο ως εκτίμηση της στάσης του φίλτρου, και στα δύο περιβάλλοντα: αυτό

Κατανομή μέσων σφαλμάτων εκτίμησης στάσης ανά μέθοδο ανάδρασης

(α') Περιβάλλον CORRIDOR

(β΄) Περιβάλλον WAREHOUSE

Σχήμα 5.6: Η κατανομή του μέσου σφάλματος στάσης ανά διαδρομή πλοήγησης για τον MCL (στα αριστερά κάθε υποδεικνυόμενης μεθόδου ανάδρασης, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο) σε N=100 προσομοιώσεις, ανάλογα με τη μέθοδο ανατροφοδότησης του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη. Η φράση "open" είναι συντομογραφία για την έλλειψη ανάδρασης (ανοιχτός βρόχος), η φράση "soft-1" για τη διαμόρφωση όπου η έξοδος του συνολικού συστήματος επιστρέφει στο φίλτρο σωματιδίων με τη μορφή ενός σωματιδίου, "soft-50" για την περίπτωση που επιστρέφει με τη μορφή τόσων σωματιδίων όσα το μισό μέγεθος του πληθυσμού, και "hard" για τη διαμόρφωση όπου το φίλτρο σωματιδίων αρχικοποιείται γύρω από τη στάση που υπολογίζεται μετά τη διαδικασία ευθυγράμμισης

που θα περίμενε χανείς είναι ότι το σωματίδιο με το μεγαλύτερο βάρος, δηλαδή το σωματίδιο του οποίου η εκτίμηση στάσης εξηγεί καλύτερα από όλα τα υπόλοιπα σωματίδια του πληθυσμού τις εισερχόμενες μετρήσεις, και το οποίο είναι τότε, θεωρητικά, η καλύτερη εκτίμηση του φίλτρου—θα περίμενε κανείς ότι θα παρουσίαζε το χαμηλότερο σφάλμα στάσης. Στην πραγματικότητα όμως, σύμφωνα με τα δεδομένα αποτελέσματα, το βαρύτερο σωματίδιο είναι λιγότερο αχριβές από τη συλλογική εκτίμηση του φίλτρου. Αυτή η ασυμφωνία υποδηλώνει ότι ίσως υπάρχει ένα κατώφλι αριθμού των βαρύτερων σωματιδίων από το οποίο και άνω επιβεβαιώνεται η ελεγχόμενη υπόθεση 4 και ότι, δεδομένων των αποδεικτικών στοιχείων, το σωματίδιο που υπολογίζει καλύτερα τις εισερχόμενες μετρήσεις δεν κατέχει την καλύτερη αξιοπιστία σε σύγχριση με εχείνη του πληθυσμού ως συλλογιχότητα. Αυτή είναι ουσιαστιχά η θεωρία πίσω από τη μη απόρριψη σωματιδίων με χαμηλό βάρος, δεδομένου ότι το χαλύτερο σωματίδιο μπορεί να είναι βέλτιστο τοπικά (για τις τελευταίες επαναλήψεις) αλλά όχι σε καθολικό επίπεδο. Αυτή η συμπεριφορά μας ωθεί να θεωρήσουμε ότι ένα φίλτρο σωματιδίων δεν μπορεί να θεωρηθεί ως μια συνάθροιση ξεχωριστών εχτιμήσεων, αλλά μάλλον ως μια κατακερματισμένη εκτίμηση, όπου κανένα κέρμα 5 δεν μπορεί να υποκαταστήσει το σύνολο χωρίς ανεπανόρθωτη απώλεια πληροφορίας και μείωση της ποιότητας της εκτίμησης. Αυτή η αντιστροφή στην ποιότητα της εκτίμησης μπορεί να αποδοθεί στην περιθωριοποίηση της πληροφορίας που φέρει ο υπόλοιπος πληθυσμός, συμπεριλαμβανομένης της τυχαιότητας που εισάγει η δειγματοληψία ΚLD καθώς δημιουργεί νέα σωματίδια.

Αυτή η συμπεριφορά δεν υποσκάπτει τη μέθοδο επιλογής των κορυφαίων 10% βαρύτερων σωματιδίων, καθώς, αν και αναδεικνύει την πιθανότητα ότι θα είχε την ίδια τύχη αν το μέγιστο μέγεθος του πληθυσμού ήταν σημαντικά μικρότερο, η αξιοπιστία του φίλτρου θα διακυβευόταν επίσης με ένα τόσο χαμηλό μέγιστο μέγεθος—και εν πάση περιπτώσει ένα χαμηλό μέγεθος πληθυσμού μειονεκτεί όσον αφορά τόσο στην ποιότητα της εκτίμησης του συνολικού πληθυσμού (η εξάντληση των σωματιδίων είναι ο κίνδυνος εδώ) όσο και σε ό,τι αφορά εκείνη ενός υποσυνόλου του.

⁴Αν το βαρύτερο σωματίδιο εμφανίζει υψηλότερο σφάλμα από το συλλογικό πληθυσμό, αλλά το 10% των βαρύτερων σωματιδίων εμφανίζει χαμηλότερο σφάλμα από τον πληθυσμό, τότε, επί της αρχής, υπάρχει ένα κατώφλι αριθμού βαρύτερων σωματιδίων των οποίων ο σταθμισμένος μέσος όρος εκτίμησης εμφανίζει την ίδια ακρίβεια με εκείνον του πληθυσμού, κατ' αναλογία με το θεώρημα Bolzano.

⁵**χέρμα, -ατος, τό (χείρω)**, 1. τεμάχιο· απ' όπου, μιχρό νόμισμα, οβολός.

 $^{^{6}}$ [...] πάντων γὰρ όσα πλείω μέρη εχει καὶ μὴ ἔστιν οἷον σωρὸς τὸ πᾶν ἀλλ' ἔστι τι τὸ ὅλον παρὰ τὰ μόρια [...]. Αριστοτέλης, Μετά τα Φυσικά

5.4.4 Αξιολόγηση ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη

Όσον αφορά στη συγκριτική επίδοση της ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη σε σχέση με την επίδοση του φίλτρου σωματιδίων, εστιάζουμε στα σφάλματα του συνολικού συστήματος (τα boxplots κόκκινου χρώματος του σχήματος 5.5), και τα μεγέθη τους σε σχέση με τα σφάλματα στάσης του MCL σε κατάσταση ανοικτού βρόχου (τα boxplots μαύρου χρώματος του ιδίου σχήματος).

Εν γένει η στάση που εξάγεται μέσω της ευθυγράμμισης μετρήσεων με σαρώσεις είναι λιγότερο εσφαλμένη από εχείνη που εξάγεται από τον MCL για όλες τις διαμορφώσεις μεθόδων επιλογής σωματιδίων σε ανοικτό βρόχο, με τη μείωση του σφάλματος να χυμαίνεται από 11% έως 27% (στην περίπτωση του απλού χάρτη CORRIDOR) έως 77% (στην περίπτωση του πιο σύνθετου χάρτη WAREHOUSE). Το σύστημα ευθυγράμμισης μετρήσεων με σαρώσεις κατάφερε σε γενικές γραμμές να συμβαδίζει με το ρυθμό ανανέωσης των εχτιμήσεων του MCL σε βαθμό άνω του 99% (ο ρυθμός ανανέωσης εχτιμήσεων είναι δυναμικός καθώς εξαρτάται από τη γωνία περιστροφής και το μήχος μετατόπισης του ρομπότ), και συνεπώς ικανοποίησε τις απαιτήσεις του επαχόλουθου ΙΙ.

5.4.5 Αξιολόγηση μεθόδων ανάδρασης

Όσον αφορά στις μεθόδους ανάδρασης εστιάζουμε στα σφάλματα του MCL (τα boxplots μαύρου χρώματος του σχήματος 5.6). Η διαφορά της επίδοσης μεταξύ της μεθόδου soft-50 loop-closure και του MCL σε κατάσταση ανοιχτού βρόχου είναι εμφανής: τα σφάλματα στάσης της πρώτης είναι περίπου 32% χαμηλότερα από εκείνα του MCL στο περιβάλλον CORRIDOR, και περίπου 89% χαμηλότερα στο περιβάλλον WAREHOUSE. Η διαφορά της επίδοσης της μεθόδου κλεισίματος βρόχου soft-50 loop-closure σε σύγκριση με εκείνη της soft-1 είναι αμελητέα στο απλό περιβάλλον CORRIDOR, ωστόσο, στο σύνθετο περιβάλλον WAREHOUSE τα σφάλματα της πρώτης μεθόδου είναι μειωμένα κατά σχεδόν 121% έναντι της δεύτερης.

Κατά τη σύγκριση της διαφοράς της επίδοσης των μεθόδων ανατροφοδότησης soft-50 και hard-loop-closure παρατηρούμε ότι στο περιβάλλον CORRIDOR είναι συγκρίσιμες, με την πρώτη να υπερέχει της δεύτερης συνολικά. Αυτό που είναι εντυπωσιακό όμως είναι η διαφορά στις επιδόσεις τους στο περιβάλλον WAREHOUSE (σχήμα 5.6(β'), αριστερά): κατά

το κλείσιμο του βρόχου με τη μέθοδο hard-loop-closure το σύστημα δεν μπόρεσε να ανακάμψει από σοβαρά σφάλματα εκτίμησης στάσης μετά την εφαρμογή του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη, καθώς ο πληθυσμός του φίλτρου αρχικοποιείται εκ νέου σε κάθε στάση που εξάγεται από την τελευταία, ανεξάρτητα από την ακρίβειά της. Αντιθέτως, υποθέτοντας ότι, στατιστικά, ένας αριθμός παρόμοιων σφαλμάτων προέκυψε στα πειράματα όπου χρησιμοποιήθηκε το κλείσιμο του βρόχου soft-50, αυτή η συμπεριφορά απουσίαζε. Ο λόγος για αυτή την εύρωστη συμπεριφορά είναι ο ακόλουθος: μετά την εισαγωγή του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις στον πληθυσμό του φίλτρου σωματιδίων ως ένας αριθμός νέων υποθέσεων, το φίλτρο αποδίδει εσωτερικά ένα βάρος σε κάθε μία από αυτές (ενότητα 1.2.3), και, εάν οι στάσεις αυτών των σωματιδίων είναι σοβαρά λανθασμένες, αυτό αντικατοπτρίζεται στις τιμές των βαρών τους, καθώς αυτές οι στάσεις εξηγούν τις εισερχόμενες μετρήσεις μάλλον ανεπαρχώς. Δεδομένου ότι η στάση εξόδου του MCL είναι ο σταθμισμένος μέσος όρος όλων των εχτιμήσεων του πληθυσμού, αυτά τα σωματίδια συμμετέχουν στην τελική ψηφοφορία σε ελάχιστο ποσοστό και, επομένως, η εχτίμηση του φίλτρου είναι σε μεγάλο βαθμό αδιατάραχτη από τις χαμηλής ποιότητας υποθέσεις, παρουσιάζοντας την ίδια εύρωστη συμπεριφορά με τον τυπικό MCL. Το πλεονέκτημα της ενσωμάτωσης της δειγματοληψίας ΚLD στον MCL είναι ότι τα σωματίδια των οποίων το βάρος είναι ελάχιστο απορρίπτονται στη συνέχεια από τον πληθυσμό, μην αφήνοντάς τους χώρο να επηρεάσουν την συνοχή της εσωτερικής του εκτίμησης στις επόμενες επαναλήψεις. Αντιθέτως, κατά την ανατροφοδότηση του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη μέσω της μεθόδου ανάδρασης hard-loop-closure, το σύνολο του πληθυσμού των σωματιδίων του φίλτρου μεταφέρεται και διασπείρεται γύρω από την εσφαλμένη στάση, την οποία το φίλτρο εσφαλμένα θεωρεί ως μία στη γειτονιά της πραγματικής στάσης του ρομπότ. Στη συνέχεια, η μέθοδος MCL αδυνατεί να γεφυρώσει μεγάλα κενά είτε στη θέση είτε στον προσανατολισμό ανάμεσα σε διαδοχικές εκτελέσεις, με αποτέλεσμα τον κίνδυνο της αχεραιότητας του ρομπότ, του περιβάλλοντός του, χαι, εν πάση περιπτώσει, την αδυναμία συνέχισης της πλοήγησής του, και συνεπώς της αποστολής του.

5.5 Συμπεράσματα και περαιτέρω έρευνα

5.5.1 Συμπεράσματα κεφαλαίου

Σε αυτό το κεφάλαιο μάς απασχόλησε η ελάττωση του σφάλματος εκτίμησης στάσης με αιτία τα ευρήματά μας στο προηγούμενο κεφάλαιο (ενότητα 4.5.2). Με δεδομένο τη χρήση του φίλτρου σωματιδίων για το έργο της παρακολούθησης της στάσης ενός ρομπότ, αναλύσαμε τη διαθέσιμη βιβλιογραφία γύρω από την ελάττωση του σφάλματος εκτίμησης του, και προτείναμε δύο επιπρόσθετους τρόπους με τους οποίους είναι δυνατή η επίτευξη του στόχου. Πιο συγκεκριμένα:

- Επιχεντρωθήχαμε στο μοντέλο παρατηρήσεων του φίλτρου, χαι, σχεπτόμενοι αναλυτιχά, θέσαμε την υπόθεση ότι η επιλογή υποσυνόλων από υποθέσεις στάσης του, των οποίων οι αναμενόμενες μετρήσεις από αυτές συμβαδίζουν περισσότερο με τις εισερχόμενες στο φίλτρο μετρήσεις του αισθητήρα αποστάσεων σε σχέση με άλλες υποθέσεις— η επιλογή αυτών των υποθέσεων στάσης ως η εχτίμηση του φίλτρου οφείλει να παράγει χαμηλότερα σφάλματα στάσης (ενότητα 5.3.1). Τα ευρήματά μας επιβεβαιώνουν την υπόθεση, αλλά έως ένα χατώφλι πληθιχότητας αυτών των υποσυνόλων: στο όριο, η μοναδιχή υπόθεση στάσης που εμφανίζει τη μεγαλύτερη πιθανότητα παρατήρησης των μετρήσεων από αυτήν εμφανίζει μεγαλύτερα σφάλματα στάσης από ότι η συλλογιχή εχτίμηση του φίλτρου. Βάσει αυτού του ευρήματος συμπεράναμε ότι το φίλτρο σωματιδίων δεν αποτελεί άθροισμα υποθέσεων, αλλά μία χαταχερματισμένη μορφή εχτίμησης.
- Ερευνήσαμε και ζητήσαμε να ελέγξουμε την ευστάθεια της υπόθεσης ότι το αποτέλεσμα της εφαρμογής του μετασχηματισμού της ευθυγράμμισης μετρήσεων δισδιάστατου αισθητήρα lidar με σαρώσεις χάρτη από την παραγώμενη εκτίμηση του φίλτρου στην ίδια την εκτίμηση του εμφανίζει χαμηλότερα σφάλματα εκτίμησης στάσης σε σχέση με την αρχική εκτίμηση (ενότητα 5.3.2). Με βάση τη διαμόρφωση της πειραματικής διαδικασίας, τα ευρήματα αποδεικνύουν ότι η εφαρμογή της διαδικασίας ευθυγράμμισης έχει σημαντικά οφέλη στην ελάττωση του σφάλματος εκτίμησης.
- Παραχινούμενοι από ελλείψεις και μειονεχτήματα μεθόδων της τρέχουσας βιβλιογραφίας προτείναμε έναν τρόπο ανάδρασης του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη στον πληθυσμό του φίλτρου σωματιδίων (ενότητα 5.3.3). Με βάση

τα πειραματικά δεδομένα, και δεδομένων ότι το αποτέλεσμα της ευθυγράμμισης (α) είναι πιο ακριβές από την εκτίμηση του φίλτρου και (β) είναι άγνωστο στο ίδιο το φίλτρο, ο μηχανισμός ανάδρασης που προτείναμε (i) προκαλεί πιο γρήγορη σύγκλιση και χαμηλότερα σφάλματα εκτίμησης σε σχέση με έναν μηχανισμό ανάδρασης της βιβλιογραφίας, (ii) προκαλεί την αποφυγή απόκλισης του φίλτρου σε σχέση με έναν δεύτερο μηχανισμό ανάδρασης της βιβλιογραφίας, και (iii) εμφανίζει χαμηλότερα σφάλματα στάσης σε σχέση με το φίλτρο σε κατάσταση ανοιχτού βρόχου.

Στο σχήμα 5.7 απειχονίζονται συνοπτικά οι βελτιώσεις των σφαλμάτων εχτίμησης στάσης ανά εχτιμώμενη στάση στα διενεργηθέντα πειράματα του παρόντος χεφαλαίου, ανά μεθοδολογία ελάττωσης σφάλματος που επιχειρήθηκε.

Σχήμα 5.7: Μέσο σφάλμα εχτίμησης ανά στάση στα διενεργηθέντα πειράματα. Αριστερά: με μαύρο χρώμα το αποτέλεσμα του MCL και με άλλα χρώματα το αποτέλεσμα της επιλογής υποσυνόλων σωματιδίων στο περιβάλλον CORRIDOR. Μέση: με μαύρο χρώμα το αποτέλεσμα του MCL και με κόκκινο το αποτέλεσμα της ευθυγράμμισης μετρήσεων δισδιάστατου αισθητήρα lidar με σαρώσεις χάρτη (smsm). Δεξιά: με διαχεχομμένη γραμμή το αποτέλεσμα του MCL και με συνεχή το αποτέλεσμα του ολικού συστήματος (σχήμα 5.3) μετά την ανατροφοδότηση του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη στον πληθυσμό του φίλτρου μέσω της προτεινόμενης μεθόδου ανατροφοδότησης

5.5.2 Αιτίες περαιτέρω έρευνας

Η χυριότερη αιτία και το πιο γόνιμο έδαφος για περαιτέρω έρευνα αφορά στη μέθοδο ευθυγράμμισης δισδιάστατων μετρήσεων αισθητήρα lidar με σαρώσεις χάρτη. Κατά τη διάρχεια διεξαγωγής της υλοποίησης του σύνθετου συστήματος περάσαμε από το στάδιο ενσωμάτωσης μίας εκ των υλοποιήσεών της, ήτοι του PLICP, και, προτού την ενσωματώσουμε οριστικά στο σύνθετο σύστημα, την υποβάλαμε σε μία σειρά από δοχιμές ώστε να επαληθεύσουμε τη ορθότητά των αποτελεσμάτων που εμφανίζονται στη βιβλιογραφία και αφορούν σε αυτήν, αλλά στα συμφραζόμενα της έρευνας μας. Κατά τη διάρχεια αυτών των δοχιμών καταλήξαμε σε μία σειρά από πορίσματα που στηρίζουν το συμπέρασμα της πρώτης πρότασής μας, τα οποία παρουσιάζουμε παραχάτω.

Ένα κύριο πρόβλημα—αν όχι το κυριότερο—στο οποίο πρέπει να δοθεί προσοχή όσο αφορά στους αλγορίθμους ευθυγράμμισης σαρώσεων είναι η πρακτική της εύρεσης αντιστοιχίσεων ανάμεσα στις αχτίνες των εισόδων τους. Αυτό αφορά σε όλες τις προσεγγίσεις ευθυγραμμίσεων σαρώσεων με σαρώσεις (πραγματικών μετρήσεων με πραγματικές μετρήσεις ή με ειχονιχές μετρήσεις από χάρτη), και όχι μόνο στη μέθοδο ICP και την πληθώρα των παραλλαγών της. Το πρόβλημα εδώ είναι ότι, δεδομένου του θορύβου του αισθητήρα μέτρησης και των αποκλίσεων μεταξύ του χάρτη και περιβάλλοντος που αναπαριστά, η δημιουργία αντιστοιχίσεων μπορεί να οδηγήσει σε αναχριβή αποτελέσματα ή συνολικά σε αποκλίνοντα αποτελέσματα. Στην πράξη, όσον αφορά στις μεθόδους που λειτουργούν απευθείας στο χώρο των μετρήσεων, η αντιστοίχιση πραγματοποιείται μέσω διαδικασιών που εξαρτώνται από την ικανοποίηση παραδοχών-υποθέσεων, και από την ακριβή ρύθμιση εξωτερικά παρεχόμενων παραμέτρων. Αυτές οι παράμετροι περιλαμβάνουν, για παράδειγμα, την εκτίμηση της τυπικής απόκλισης του κανονικά κατανεμημένου θορύβου μηδενικής μέσης τιμής που επιδρά στις μετρήσεις ενός αισθητήρα αποστάσεων—όταν οι μετρήσεις του αισθητήρα μπορεί στην πραγματικότητα να είναι μεροληπτικές (biased), ή να μην ικανοποιούν την παραδοχή της κανονικής κατανομής του θορύβου τους [CRP18]—, ή την εκτίμηση του ποσοστού των ακτίνων που δεν αντιστοιχούν σε άλλες μεταξύ των εισόδων τους (κάτι που είναι εκ των προτέρων θεμελιωδώς άγνωστο και αδύνατο να εκτιμηθεί).

Αυτό μας οδηγεί σε ένα άλλο κρίσιμο σημείο: το ζήτημα της παραμετροποίησης. Η επίδοση της πλειονότητας των μεθόδων ευθυγράμμισης σάρωσης στηρίζεται στον ακριβή καθορισμό

Σχήμα 5.8: Ο χάρτης του περιβάλλοντος CORRIDOR, M_C , και δύο στάσεις μέσα σε αυτόν, $x_a(11.56,12.2,0.0)$, και $x_b(4.56,10.2,0.0)$

της τιμής των παραμέτρων που διέπουν τις εσωτερικές τους διαδικασίες. Γενικά, θεωρείται ορθά ότι οι εν λόγω παράμετροι πρέπει να καθορίζονται για ένα συγκεκριμένο περιβάλλον και για συγκεκριμένο επίπεδο θορύβου, αλλά στην πραγματικότητα, ελλείψει αυτόματης ρύθμισης των παραμέτρων, διαφορετικές παραμετροποιήσεις μπορεί να οδηγήσουν σε ασταθή ή μη διαισθητικά αποτελέσματα—και το αποτέλεσμα αυτό μπορεί να εμφανιστεί ακόμη και για την ίδια στάση στο ίδιο περιβάλλον. Θα αποσαφηνίσουμε αυτές τις ιδιότητες με ένα απλό αλλά χαρακτηριστικό παράδειγμα.

Στο σχήμα 5.8 παρουσιάζεται ο χάρτης του μη σύνθετου περιβάλλοντος CORRIDOR, M_C , στο οποίο πραγματοποιήσαμε έναν αριθμό πειραμάτων ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη, με τη χρήση ενός πανοραμικού αισθητήρα δισδιάστατων μετρήσεων και τον αλγόριθμο ευθυγράμμισης PLICP. Η πειραματική διαδικασία είναι η εξής: μέσα στον ελεύθερο χώρο του χάρτη διασπείρεται ένας αριθμός από υποθέσεις στάσεων, ενώ η πραγματική στάση του αισθητήρα τίθεται ως x_a ή x_b . Στη συνέχεια πραγματοποιούνται τόσες ευθυγραμμίσεις μετρήσεων με σαρώσεις χάρτη όσες αυτές οι υποθέσεις, ανάμεσα στη μέτρηση του πραγματικού αισθητήρα, που λαμβάνεται από την πραγματική του στάση, και εικονικές σαρώσεις που λαμβάνονται από τις στάσεις των υποθέσεων. Ω ς τελική εκτίμηση λαμβάνεται η διορθωμένη στάση της υπόθεσης για την οποία το σφάλμα ευθυγράμμισης (εξ. 1.4) καταγράφει τη μικρότερη τιμή ανάμεσα σε όλες τις διορθώσεις των στάσεων-υποθέσεων. Ένα αρχικό σύνολο παραμέτρων αποτελεί τη βάση από την οποία τροποποιούνται 8 βασικές παρά-

Σωάλμα στάσης

			Δφαλμα στασης			
			$\ oldsymbol{e}(oldsymbol{x}_a,\hat{oldsymbol{x}}_a^*)\ _2$		$\ \hat{oldsymbol{e}}(oldsymbol{x}_b,\hat{oldsymbol{x}}_b^*)\ _2$	
Θόρυβος μέτρησης $\mathcal{N}(0,\sigma),\sigma$:			0.0	0.01	0.0	0.01
Αρχικό σύνολο παραμέτρων			0.0065	0.0056	0.0368	0.0377
Τροποποιημένη παράμετρος	Τιμή	Αρχική				
use_corr_tricks	true	false	0.0065	0.0064	0.0368	0.0377
restart	true	false	0.0065	0.0074	0.0368	0.0377
clustering_threshold	1.025	0.025	0.0065	0.0060	0.0368	0.0381
do_alpha_test	false	true	0.0065	0.0069	0.0368	0.0384
orientation_neighbourhood	2	20	0.0065	0.0066	0.0368	0.0372
	200		15.425	15.425	9.9153	9.9153
outliers_maxPerc	0.9	1.0	0.0043	0.0060	0.0357	0.0358
	0.8		0.0044	0.0051	0.0359	0.0384
	0.7		4.7091	0.0047	10.298	0.0377
outliers_adaptive_order	0.9	1.0	0.0044	0.0047	0.0355	0.0363
	0.8		0.0043	0.0057	0.0366	0.0368
	0.7		0.0042	0.0040	2.9225	4.4985
outliers_remove_doubles	true	false	0.0062	0.0064	0.0362	0.0367

Πίνακας 5.1: Το σφάλμα στάσης $\|e(x,\hat{x}^*)\|_2$ της διορθωμένης υπόθεσης \hat{x}^* η οποία εμφανίζει το χαμηλότερο σφάλμα ευθυγράμμισης που βρέθηκε από τον PLICP στο περιβάλλον CORRIDOR (εικ. 5.8) σε N πειράματα, για ένα προεπιλεγμένο σύνολο παραμέτρων και για διαφορετικές τιμές βασικών παραμέτρων, και δύο επίπεδα θορύβου του αισθητήρα, ο οποίος υποτίθεται ότι είναι κανονικά κατανεμημένος με τυπική απόκλιση σ [m]. Η μονάδα του μέτρησης του σφάλματος στάσης είναι $(m^2+{\rm rad}^2)^{1/2}$

μετροι για μία φορά και στη συνέχεια τίθενται στην προεπιλεγμένη τιμή τους. Προκειμένου να ερευνηθεί η συμπεριφορά του PLICP εκτελέσαμε την παραπάνω πειραματική διαδικασία για τις στάσεις x_a και x_b , και δύο διαφορετικά επίπεδα θορύβου, με σταθερό αριθμό σταθερών στάσεων-υποθέσεων, για 10 φορές, διενεργώντας έτσι $N=2\times2\times14\times10=560$ πειράματα. Η τοποθέτηση των στάσεων διατηρήθηκε σταθερή ώστε να είναι δυνατή η εκτέλεση άμεσων συγκρίσεων ανάμεσα σε όλες τις διαμορφώσεις. Ο πίνακας 5.1 απεικονίζει τις παραμέτρους υπό τροποποίηση και το συνολικό σφάλμα στάσης για κάθε λύση. Λεπτομέρειες σχετικά με τη σημασία και τη χρήση κάθε παραμέτρου βρίσκονται στα [Cena] και [Cenb].

Θα ξεκινήσουμε την ανάλυση της άστατης συμπεριφοράς του PLICP εστιάζοντας στα αποτελέσματα που αφορούν στην ευθυγράμμιση ελλείψει μετρητικού θορύβου. Για τις δύο συγκεκριμένες στάσεις, του συγκεκριμένου περιβάλλοντος, η τροποποίηση των παραμέτρων που σχετίζονται με τη χρήση ενισχυμένων μεθόδων εύρεσης αντιστοιχίσεων (use_corr_tricks), την επανεκκίνηση όταν μια λύση υπερβαίνει ένα κατώφλι (restart), την ομαδοποίηση σημείων (clustering_threshold), τη δοκιμή μιας λύσης λαμβάνοντας υπόψη τον προσανατολισμό του κάθετου στην επιφάνεια των σαρώσεων διανύσματος (do_alpha_test), και τον

αριθμό των γειτονικών ακτίνων που χρησιμοποιούνται για την εκτίμηση του προσανατολισμού (orientation_neighbourhood)—η τροποποίηση αυτών των παραμέτρων έχει μηδενική επίδραση στη λύση του αλγορίθμου, για κάθε στάση του αισθητήρα. Εάν εξετάσουμε το σφάλμα στάσης σε σχέση με αυτές τις παραμέτρους όταν υπάρχει θόρυβος τότε παρατηρούμε ότι η τροποποίηση μιας παραμέτρου μπορεί να έχει θετικό αντίκτυπο στη λύση για μια στάση, αλλά αρνητικό για άλλη (π.χ. use_corr_tricks, clustering_threshold). Επιπλέον, η τροποποίηση παραμέτρων που αφορούν σε λειτουργικότητες των οποίων ο σκοπός είναι η βελτίωση της επίδοσης της μεθόδου δεν οδηγεί πάντα στο επιθυμητό αποτέλεσμα (π.χ. use_corr_tricks, restart). Η τροποποίηση άλλων παραμέτρων προς τη θετική κατεύθυνση (δηλαδή τροποποίηση που έχει ως σκοπό τη μείωση του σφάλματος ευθυγράμμισης, π.χ. outliers_remove_doubles) παράγει συνεπή αποτελέσματα για όλα τα επίπεδα θορύβου των μετρήσεων του αισθητήρα για μια στάση (x_b) , ασυνεπή για άλλα (x_a) , ή συνολικά καταστροφικά λανθασμένα αποτελέσματα (orientation_neighbourhood = 200).

Η υψηλότερη ευαισθησία των λύσεων του PLICP, ωστόσο, παρουσιάζεται όσον αφορά παραμέτρους που σχετίζονται με το φιλτράρισμα των μη έγχυρων αντιστοιχίσεων, οι οποίες συμβολίζονται με το πρόθεμα outliers.. Η τιμή 1.0-outliers_maxPerc καθορίζει το ποσοστό των αντιστοιχίσεων με το μεγαλύτερο σφάλμα που πρέπει να απορριφθούν, ενώ η τιμή outliers_adaptive_order καθορίζει το κατώτερο ποσοστό των αντιστοιχίσεων (ανάλογα με το σφάλμα τους) για το οποίο εκτελείται προσαρμοστικός (adaptive) αλγόριθμος για την απόρριψη τους. Όσον αφορά στην πρώτη παράμετρο, αυτό που παρατηρούμε και για τις δύο πραγματικές στάσεις του αισθητήρα είναι ότι η απόρριψη του κορυφαίου 30% των πιο λανθασμένων αντιστοιχίσεων οδηγεί σε καταστροφική αποτυχία ελλείψει θορύβου, αλλά αχριβή συμπεριφορά στην αντίθετη περίπτωση. Όσον αφορά σε άλλες τιμές, δεν παρατηρείται συνεπής συμπεριφορά, αν και όλες οδηγούν σε σωστή σύγκλιση. Όσον αφορά στη δεύτερη παράμετρο, η ασυνέπεια μεταξύ των αποτελεσμάτων προχύπτει στο επίπεδο διαφορετιχών στάσεων—η ρύθμιση αυτής της παραμέτρου στην τιμή 70% παρουσιάζει αυξημένη αχρίβεια για τη στάση x_a , αλλά καταστροφική αποτυχία σύγκλισης για την x_b . Ακόμη και αν όλες οι τιμές που δοχιμάστηκαν είχαν ως αποτέλεσμα τη σωστή σύγχλιση, θα παρέμενε το ζήτημα της (α-)συνέπειας σε διαφορετικά επίπεδα θορύβου του αισθητήρα και διαφορετικές στάσεις εντός του ίδιου χάρτη, και, μαζί με αυτό, το ζήτημα της διαισθητικής ασυνέπειας σχετικά με την επίδρασή τους.

Η παραπάνω ανάλυση καταδεικνύει τις παγίδες στις οποίες μπορεί να βρεθεί μια μέθοδος επίλυσης του προβλήματος VII όταν βασίζεται στην ανάπτυξη αντιστοιχίσεων και τον ακριβή καθορισμό λεπτών εσωτερικών παραμέτρων (οι οποίες αφορούν και σε αυτές). Πιο συγκεκριμένα, με βάση τα παραπάνω αποδεικτικά στοιχεία, καταλήγουμε στα κάτωθι συμπεράσματα:

- Η δυνατότητα προσαρμογής παραμέτρων σε συγκεκριμένες περιστάσεις δεν είναι χωρίς τα πλεονεκτήματά της, αλλά ταυτόχρονα και χωρίς τις παρενέργειές της. Η αύξηση του μεγέθους του συνόλου των παραμέτρων αυξάνει την πολυπλοκότητα του συστήματος, και μειώνει την προβλεψιμότητα και τη συνέπειά των λύσεών του.
- Σε συμφωνία με τα αποτελέσματα της βιβλιογραφίας [DAM17; Ber+21], η μεθοδολογία ευθυγράμμισης συνόλων σημείων που λειτουργεί χωρίς την ανακάλυψη αντιστοιχίσεων ανάμεσα στις ακτίνες των σαρώσεων εισόδου θα ήταν άξια ερευνητικής προσπάθειας. Αυτό το συμπέρασμα στηρίζεται στο γεγονός ότι (α) όσο αυξάνει ο θόρυβος μέτρησης τόσο δυσχεραίνεται η διάκριση έγκυρων από άκυρες αντιστοιχίες, και (β) η αφαίρεση αυτής της δομικής βάσης λειτουργίας μειώνει την πολυπλοκότητα του συστήματος λόγω της ταυτόχρονης αφαίρεσης της ανάγκης καθορισμού των παραμέτρων που διέπουν την απόκρισή της

Κεφάλαιο 6

Εκτίμηση στάσης βάσει καθολικής αβεβαιότητος χωρίς τον υπολογισμό αντιστοιχίσεων

Η έρευνα που παρουσιάζεται στο παρόν κεφάλαιο αντλεί τις πηγές της από τις αιτίες περαιτέρω έρευνας του προηγούμενου κεφαλαίου, όπως αυτές διατυπώθηκαν στην τελευταία του ενότητα. Στο παρόν κεφάλαιο επιζητούμε

6.1 Στόχοι του κεφαλαίου και δομή

Πρόβλημα Π2. Έστω ένα ρομπότ χινητής βάσης του πεδίου εφαρμογής ΠΕ, εξοπλισμένο με έναν οριζόντια τοποθετημένο αισθητήρα lidar μετρήσεων δύο διαστάσεων που εχπέμπει N_s αχτίνες. Έστω επίσης ότι τα αχόλουθα είναι διαθέσιμα ή ευσταθούν:

- ullet Ο χάρτης M του περιβάλλοντος στο οποίο χινείται το ρομπότ
- Μια δισδιάστατη μέτρηση \mathcal{S}_R , που λαμβάνεται από την—άγνωστη και αναζητούμενη—στάση $p(m{l}, m{\theta}), \ m{l} = (x,y)$

Τότε, δεδομένων των παρατηρήσεων ΙΙΙ και IV ο στόχος είναι η εκτίμηση της στάσης p του ρομπότ στο σύστημα αναφοράς του χάρτη M.

Παραδοχή III. Το γωνιακό εύρος του αισθητήρα lidar είναι 360° .

Παραδοχή IV. Η λύση του προβλήματος Π2 πρέπει δοθεί μέσω ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη.

Παραδοχή V. Η επίλυση του προβλήματος της παραδοχής IV πρέπει να δοθεί χωρίς τον υπολογισμό αντιστοιχίσεων ανάμεσα στις εισόδους της μεθόδου επίλυσης.

6.2 Σχετική βιβλιογραφία

6.2.1 Εκτίμηση στάσης βάσει καθολικής αβεβαιότητος

Το πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητας όπως ορίζεται στην ενότητα 1.2.2 ως διακριτή συνιστώσα του προβλήματος της εκτίμησης της στάσης ενός ρομπότ κινητής βάσης έχει τύχει εκτεταμένης προσοχής με την πάροδο των ετών. Οι προσεγγίσεις που έχουν υιοθετηθεί για την επίλυσή του, πέρα από την κατηγοριοποίηση τους σε παθητικές και ενεργητικές (ορισμός ΙΙ), μπορούν επίσης να χωριστούν σε δύο ακόμη κατηγορίες: προσεγγίσεις που λειτουργούν στο χώρο χαρακτηριστικών (features), και προσεγγίσεις που λειτουργούν απευθείας στο χώρο των μετρήσεων. Επιπλέον, οι προσεγγίσεις μπορεί να είναι πιθανοτικές ή ντετερμινιστικές. Ορισμένες προσεγγίσεις λαμβάνουν την μινιμαλιστική οδό, βασιζόμενες αποκλειστικά σε μετρήσεις που εξάγονται από έναν αισθητήρα, ενώ άλλες συγχωνεύουν πληροφορίες από διάφορες πηγές για να επιτύχουν ένα βελτιωμένο αποτέλεσμα.

Οι ενεργείς προσεγγίσεις εχτίμησης της στάσης ενός ρομπότ χινητής βάσης χάνουν την παραδοχή ότι το ρομπότ είναι ιχανό να χινείται ελεύθερα στο περιβάλλον του προτού χαθοριστεί οριστιχά η στάση του—χαθιστώντας το έτσι δυνητιχά ευάλωτο σε συγχρούσεις με αυτό. Η χίνηση του ρομπότ στο χώρο είναι, χατ' αρχήν, επωφελής για τη λύση του εντοπισμού του, χαθώς αυξάνονται οι μετρήσεις από τους αισθητήρες του, χαι επομένως η πιθανότητα δειγματοληψίας ποιχίλων χαι μοναδιχών τμημάτων του περιβάλλοντος. Κατά συνέπεια αυξάνεται η πιθανότητα επιτυχούς εχτίμησης της στάσης του, χαι η μείωση της αβεβαιότητάς της. Στο [JK01] προτείνεται μια υβριδιχή προσέγγιση με βάση την θεωρία του Bayes [TBF05] χαι την παραχολούθηση πολλαπλών υποθέσεων στάσης με χρήση του φίλτρου Kalman [May79].

Το τελευταίο και ένας τοπολογικός χάρτης του κόσμου χρησιμοποιούνται για τη δημιουργία εντολών χίνησης ώστε να αποχομίζονται επιπρόσθετες πληροφορίες από το περιβάλλον, να αντισταθμίζεται η παρέχχλιση της οδομετρίας, να φιλτράρονται οι τρέχουσες υποθέσεις στάσης, και να επιλύεται η ασάφεια που αφορά στη στάση του ρομπότ. Οι εντολές κίνησης παράγονται ευρηστικά με την κίνηση στις άκρες του τοπολογικού χάρτη (έτσι ώστε το ρομπότ να είναι απίθανο να συγκρουστεί με εμπόδια), αποφεύγοντας να επισκεφθεί το ίδιο μέρος δύο φορές (αφού είναι απίθανο να αποκτηθούν νέες πληροφορίες από την ίδια θέση), και επιλέγοντας να επισχεφθεί τον γειτονικό του κόμβο με τον μέγιστο αριθμό χαραχτηριστικών στην περιοχή του. Τα χαρακτηριστικά γνωρίσματα σε αυτή την περίπτωση εξάγονται από έναν αισθητήρα δισδιάστατων μετρήσεων απόστασης τύπου lidar, και περιλαμβάνουν χαρακτηριστικά πορτών, γραμμών, και ζευγών σημείων, και χρησιμοποιούνται είτε για τη δημιουργία νέων υποθέσεων, είτε για την υποστήριξη των ήδη υπαρχουσών. Κάθε ανιχνευόμενο χαρακτηριστικό δημιουργεί ένα σύνολο πιθανών στάσεων του ρομπότ, οι οποίες αντιμετωπίζονται ως μετρήσεις της πραγματικής στάσης του. Οι εσωτερικές λειτουργίες κάθε φίλτρου Kalman που συνδέεται με κάθε υποψήφια στάση στη συνέχεια εξασφαλίζουν ότι η πιθανότητα των έγχυρων υποθέσεων αυξάνεται, ενώ οι λανθασμένες απορρίπτονται μέσω πρόσθετης εφαρμογής ενός εξωτερικά προσδιοριζόμενου κατωφλίου πιθανότητας.

Μια άλλη προσέγγιση ενεργής εχτίμησης βάσει χαθολιχής αβεβαιότητος [OKa06] εχχινεί από μια αχόμη πιο μινιμαλιστιχή στάση όσον αφορά στον αριθμό χαι τον τύπο των αισθητήρων που χρησιμοποιούνται, χρησιμοποιώντας μόνο αισθητήρες οδομετρίας χαι προφυλαχτήρα (bumper sensor). Η προσέγγιση φτάνει στο εχπληχτιχό (θεωρητιχό) συμπέρασμα ότι, δεδομένου ενός αχριβούς χάρτη, η λύση του προβλήματος μπορεί να επιτευχθεί με τη χρήση μόνο αυτών των δύο τύπων αισθητήρων, παρόλο που το χινηματιχό μοντέλο του ρομπότ περιορίζεται στο να είναι χωρίς σφάλματα, χαι ότι το ρομπότ επιτρέπεται να συγχρούεται με το περιβάλλον του. Η υποχείμενη μέθοδος θέτει το πρόβλημα στον χώρο πληροφορίας του ρομπότ, χαι επιλύει ένα πρόβλημα σχεδιασμού διαχριτού χρόνου, δείχνοντας ότι, με σχετιχά συνήθεις περιορισμούς του χόσμου/χάρτη, η εχτίμηση της στάσης του ρομπότ είναι πράγματι δυνατή, αλλά με ένα βαθμό ασάφειας ανάλογο του βαθμού συμμετριών που υπάρχουν στον περιβάλλον.

Στο [Gas+07] για την επίλυση του προβλήματος χρησιμοποιείται ένα φίλτρο σωματιδίων λόγω της εγγενούς του ικανότητας του να αναπαριστά αυθαίρετα πολυτροπικές (multi-

modal) κατανομές πυκνότητας πιθανότητας της στάσης ενός ρομπότ. Σε αντίθεση με το [JK01] χρησιμοποιείται ένας αισθητήρας σόναρ ως μέσο αντίληψης του περιβάλλοντος, και δεν χρησιμοποιούνται χαρακτηριστικά των μετρήσεων ή του χάρτη. Στη φάση αρχικοποίησης τα σωματίδια διασκορπίζονται ομοιόμορφα εντός του ελεύθερου χώρου του χάρτη, και υπολογίζεται ένα βάρος για το καθένα, σύμφωνα με το σφάλμα ελάχιστης τετραγωνικής απόστασης μεταξύ της πραγματικής μέτρησης του αισθητήρα και της εξόδου του μοντέλου παρατήρησης του αισθητήρα για τη συγκεκριμένη υπόθεση στάσης. Ο αλγόριθμος εκτελείται επαναληπτικά, χωρίς το ρομπότ να κινείται, υλοποιώντας έναν αλγόριθμο βελτιστοποίησης. Προχειμένου να αποφευχθεί η εξάντληση των σωματιδίων σε αυτό το στάδιο, νέα δείγματα δημιουργούνται στη βάση της εξελικτικής θεωρίας, όπου τα επιζώντα σωματίδια—αυτά που δεν έχουν αμελητέα βάρη—χρησιμεύουν ως ο τόπος γύρω από τον οποίο εισάγονται νέα σωματίδια, προχειμένου να ενισχυθεί η παρουσία των σωματιδίων όπου η πιθανότητα εύρεσης του ρομπότ είναι υψηλότερη. Προχειμένου να μειωθεί η πιθανότητα παγίδευσης του φίλτρου σε τοπικά ελάχιστα, νέα σωματίδια που εγγυώνται την ελάχιστη κάλυψη του χώρου εισάγονται τυχαία στο χώρο στάσεων. Ο αλγόριθμος σταματά όταν εντοπιστούν ευσταθείς λύσεις. Αυτές χρησιμοποιούνται στη συνέχεια ως αρχικές θέσεις από τις οποίες εντοπίζεται το πλησιέστερο εμπόδιο σε μια υπόθεση μέσω του αισθητήρα σόναρ, και στην περιοχή του οποίου δίνεται εντολή στο ρομπότ να κινηθεί. Κατά τη διάρκεια της πλοήγησης κάθε υποψήφια υπόθεση παραχολουθείται από ένα Εχτεταμένο φίλτρο Kalman, και ένα τετραγωνικό τεστ χ με χρήση της απόστασης Mahalanobis χρησιμοποιείται για την επικύρωση των υποψηφίων στάσεων κατά τη διάρκεια της συσχέτισης δεδομένων μεταξύ παρατηρούμενων και θεωρητικά αναμενόμενων μετρήσεων.

Η έρευνα στις ενεργές μεθόδους παγκόσμιου εντοπισμού φαίνεται να έχει μειωθεί τα τελευταία χρόνια, με παλαιότερες προσεγγίσεις, συμπεριλαμβανομένων των [MMS88; Kle94; RS96; DRW98; OL05; RDW07], να δίνουν ώθηση στην έρευνα προς την κατεύθυνση της πιο απαιτητικής έκδοσης του προβλήματος, δηλαδή της παθητικής εκτίμησης στάσης. Σε αυτόν τον τρόπο λύσης το ρομπότ δεν εκτελεί κινήσεις πλοήγησης προτού εκτιμηθεί η στάση του, και στερείται πρόσθετες μετρήσεις αισθητήρων εκτός από εκείνες που λαμβάνονται από την άγνωστη αρχική του στάση.

Στο [SLL01] χρησιμοποιείται μια τριοπτρική (trinocular) κάμερα για τη δημιουργία ενός τρισδιάστατου χάρτη των χαρακτηριστικών SIFT που υπάρχουν στο περιβάλλον του ρομπότ,

ο οποίος ενημερώνεται με την πάροδο του χρόνου, ενώ προσαρμόζεται σε δυναμικά περιβάλλοντα, δημιουργώντας, διατηρώντας, και ενημερώνοντας ένα φίλτρο Kalman για κάθε ξεχωριστό ορόσημο-χαρακτηριστικό που ανιχνεύεται στο οπτικό πεδίο της κάμερας ανά καρέ εισόδου. Αυτός ο τρισδιάστατος χάρτης ορόσημων κατασκευάζεται πριν από το χρόνο εκτίμησης της στάσης του ρομπότ. Για την επίλυση του προβλήματος εκτίμησης της στάσης του, τα χαρακτηριστικά SIFT που εξάγονται μέσω της κάμερας του ρομπότ από την πραγματική του στάση αντιστοιχίζονται με εκείνα που είναι ήδη αποθηκευμένα στον τρισδιάστατο χάρτη μέσω κατακερματισμού μετασχηματισμού Hough (Hough Transform Hashing—[Hou60]), προκειμένου να αποκτηθεί μια πρόχειρη εκτίμηση της στάσης του ρομπότ (οι κάδοι-bins του μετασχηματισμού με τις περισσότερες ψήφους αντιστοιχούν σε εκτιμήσεις στάσεων που είναι πιο πιθανό να επιτύχουν μεγαλύτερο αριθμό αντιστοιχότοων). Στη συνέχεια εκτελείται επαναληπτική ελαχιστοποίηση ελαχίστων τετραγώνων προκειμένου να επιτευχθεί προοδευτικά καλύτερη εκτίμηση της στάσης. Η τελική στάση είναι εκείνη που έχει τον μέγιστο αριθμό ταυτίσεων αντιστοιχίσεων και το μικρότερο σφάλμα ελαχίστων τετραγώνων.

Αντιθέτως, στο [ΗΜ06] ο αισθητήρας αντίληψης του περιβάλλοντος είναι ένας αισθητήρας δισδιάστατων μετρήσεων απόσταση τύπου lidar. Σε πρώτη, προεπεξεργαστική φάση, εξάγονται χαραχτηριστικά από το χάρτη του περιβάλλοντος του ρομπότ, και δημιουργείται μία βάση δεδομένων ορατών χαρακτηριστικών από κάθε κελί πλέγματος του χάρτη. Τα χαρακτηριστικά αυτά είναι φυσικά ορόσημα που βρίσκονται τόσο στο χάρτη όσο και στις μετρήσεις του αισθητήρα του ρομπότ, και περιλαμβάνουν τοίχους—που εξάγονται ως ευθύγραμμα τμήματα μέσω της χρήσης του μετασχηματισμού Hough—, χοίλες γωνίες, και ασυνέχειες μεταξύ διαδοχικών ακτίνων σάρωσης. Στη συνέχεια τα ορόσημα και από τις δύο πηγές αντιστοιχίζονται μεταξύ τους με μια διαδικασία δύο βημάτων: ένα αρχικό φίλτρο αφαιρεί το μεγαλύτερο μέρος των λανθασμένων υποθέσεων στάσης μετρώντας τον αριθμό των χαρακτηριστικών που έχουν εξαχθεί από τις μετρήσεις του αισθητήρα τα οποία ταιριάζουν με την απόσταση, τον προσανατολισμό, και τον τύπο του ορόσημου που είναι αποθηκευμένα στη βάση δεδομένων του χάρτη. Στη συνέχεια χρησιμοποιείται ένας τροποποιημένος αλγόριθμος διαχριτής χαλάρωσης, χρησιμοποιώντας τις πληροφορίες των χαρακτηριστικών που σχετίζονται με κάθε αποθηχευμένο ορόσημο. Το χελί πλέγματος που αντιστοιχεί στη θέση του ρομπότ προσδιορίζεται μεταξύ των υποθέσεων με τη χρήση ενός χριτηρίου ελαχίστων τετραγώνων της διαφοράς απόστασης μεταξύ (α) αυτού του κελιού από κάθε ορόσημο του χάρτη, και (β) της

απόστασης από ένα ορόσημο που προχύπτει από τη μέτρηση του αισθητήρα, για όλα τα υποψήφια χελιά. Η στάση του ρομπότ υπολογίζεται στη συνέχεια ως η μέση γωνιαχή απόχλιση μεταξύ (α) της θέσης του ρομπότ χαι ενός ορόσημου που έχει εξαχθεί από το διάνυσμα της μέτρησης, χαι (β) της εχτιμώμενης θέσης του ρομπότ χαι χάθε ορατό ορόσημου στο χάρτη από το συγχεχριμένο χελί.

Μια γενική μεθοδολογία για την ανάλυση του σχεδιασμού σημείων-κλειδιών (keypoints) για την εκτίμηση στάσης παρουσιάζεται στο [ΒΖ09]. Η μεθοδολογία αυτή μπορεί να χρησιμοποιηθεί για την επίλυση του προβλήματος Π2 στα πλαίσια της πλοήγησης ρομπότ χινητής βάσης και της χαρτογράφησης, και είναι ιδιαίτερα χρήσιμη στη διαδικασία καθορισμού των παραμέτρων για την επιλογή συγκεκριμένων τύπων σημείων-κλειδιών, καθώς δεν είναι όλα αξιόπιστα παρουσία θορύβου ή τυφλών περιοχών (occlusions). Οι συγγραφείς θέτουν το πρόβλημα της εκτίμησης της στάσης ως ένα πρόβλημα αναζήτησης πλησιέστερου γείτονα, επιλέγοντας πρώτα ένα σύνολο σημείων-χλειδιών που εξάγονται από το οπτιχό πεδίο ενός αισθητήρα δισδιάστατων μετρήσεων lidar, τα οποία κωδικοποιούν την τοπική περιοχή γύρω από το ρομπότ. Στη συνέχεια αναζητούν σε μια βάση δεδομένων τα σημεία κλειδιά που έχουν προηγουμένως δημιουργηθεί με βάση τον χάρτη, με σχοπό τον εντοπισμό σημείων με χοινά χαραχτηριστικά. Ο χάρτης γύρω από το ρομπότ και τα τμήματα του χάρτη του περιβάλλοντος που εντοπίζονται να έχουν κοινά χαρακτηριστικά τροφοδοτούνται στη συνέχεια σε μία αλυσιδωτή διαδικασία τεσσάρων μεθόδων επαλήθευσης (μία εκ των οποίων είναι η παραδοσιακή μέθοδος ευθυγράμμισης σαρώσεων ICP), οι οποίες φιλτράρουν τα ψευδή θετικά αποτελέσματα, έως ότου βρεθεί η βέλτιστη αντιστοίχιση ανάμεσά τους.

Αν και το [Bre10] ασχολείται με το πρόβλημα της εκτίμησης της στάσης ενός οχήματος σε εξωτερικά περιβάλλοντα, η αρχή λειτουργίας της μεθόδου του είναι ανάλογη με αυτές που χρησιμοποιούνται σε εσωτερικούς χώρους. Ο συγγραφέας υποστηρίζει ότι η ευθυγράμμιση τρισδιάστατων νεφών σημείων που εξάγονται μέσω ενός αισθητήρα lidar με νέφη σημείων που εξάγονται από το χάρτη του περιβάλλοντός του δεν είναι αποδοτική στο πλήρες τρισδιάστατο σενάριο και, ως εκ τούτου, είναι επιθυμητό να κατασκευαστούν αφαιρέσεις (abstractions) με τη μορφή ορόσημων. Το ορόσημα που χρησιμοποιούνται εδώ για την ευθυγράμμιση τους είναι στύλοι, όπως αυτές των πινακίδων κυκλοφορίας, των φαναριών, και τα δέντρων. Τα ευρήματα του συγγραφέα δείχνουν ότι αυτός ο τύπος ορόσημου δεν είναι αξιόπιστος για την εκτίμηση της στάσης ενός οχήματος βάσει καθολικής ή πεπερασμένης αβεβαιότητος, αφού περίπου το

40% όλων των λαμβανόμενων μετρήσεων δεν περιέχουν στύλους, είτε λόγω πραγματιχής απουσίας τους είτε λόγω δημιουργίας ψευδώς θετιχών αποτελεσμάτων από τον προτεινόμενο μηχανισμό ανίχνευσης στύλων.

Στο [ΖΖΥ11] οι συγγραφείς υποστηρίζουν ότι σε εσωτερικά περιβάλλοντα οι σημαντικότερες δομές είναι οι τοίχοι, οι πόρτες, και τα ντουλάπια, δηλαδή δομές που μπορούν να προσεγγιστούν με ευθείες γραμμές στον δισδιάστατο χώρο. Χρησιμοποιώντας αυτή την παραδοχή κατασκευάζουν μία μέθοδο που αρχικά εκτιμά τον προσανατολισμό του ρομπότ εξάγοντας χαρακτηριστικά γραμμών από το χάρτη του περιβάλλοντος και από έναν αισθητήρα δισδιάστατων μετρήσεων απόστασης, προτού στη συνέχεια ευθυγραμμιστούν με τη χρήση του αλγορίθμου HSM. Η εξαγώμενη εκτίμηση εξαρτάται από την απουσία συμμετριών στο περιβάλλον. Δεδομένης της εκτίμησης του προσανατολισμού του ρομπότ, η θέση του εκτιμάται μέσω του μοντέλου ακραίου σημείου δέσμης [ΤΒΓ05], όπου υπολογίζεται η πιθανότητα ότι ένα κελί του χάρτη πλέγματος ήταν η θέση από την οποία έγινε η μέτρηση σάρωσης, για όλα τα κελιά του χάρτη. Μετά από αυτήν την εξαντλητική αναζήτηση, το κελί με την υψηλότερη πιθανότητα επιλέγεται ως η εκτίμηση της θέσης του ρομπότ. Στη συνέχεια χρησιμοποιείται ένας αλγόριθμος κατάβασης (gradient descent) για την περαιτέρω εξάλειψη του σφάλματος διακριτοποίησης που προκαλείται από την αναπαράσταση του χάρτη μέσω πλέγματος.

Εκτός από τον χάρτη, η μέθοδος που παρουσιάζεται στο [Xie+10] χρησιμοποιεί προαποθηκευμένες σαρώσεις αναφοράς, οι οποίες εξάγονται μέσω ενός αισθητήρα δισδιάστατων μετρήσεων lidar, και τις στάσεις από τις οποίες αποτυπώθηκαν αυτές στο σύστημα αναφοράς του χάρτη, σε μία φάση πριν από την εκτέλεση του αλγορίθμου εκτίμησης της στάσης του ρομπότ. Κατά την έναρξη της εκτέλεσής του κατασκευάζεται ένας τοπικός χάρτης πλέγματος με βάση την πρώτη μέτρηση από τον πραγματικό αισθητήρα. Στη συνέχεια κατασκευάζεται ένας αριθμός αντιγράφων του μέσω περιστροφής κατά ακέραια πολλαπλάσια τεσσάρων μοιρών, έως ότου σχηματιστεί ένας πλήρης κύκλος. Έπειτα δημιουργείται ένας τοπικός χάρτης πλέγματος από τις προαποθηκευμένες σαρώσεις αναφοράς για κάθε αντίστοιχη στάση αναφοράς, όπου κάθε μία θεωρείται ως μια πιθανή υποψήφια στάση του ρομπότ. Στη συνέχεια τα δύο σύνολα τοπικών χαρτών ευθυγραμμίζονται μεταξύ τους μέσω μιας διαδικασίας βελτιστοποίησης που έχει ως στόχο τη μεγιστοποίηση της επικάλυψης μεταξύ των δύο συνόλων υπο-χαρτών. Η διαδικασία αυτή ξεκινά με χάρτες χαμηλής ανάλυσης, και η ανάλυσή τους σταδιακά αυξάνεται.

Μια εναλλακτική λύση για τη σύγκριση των περιγραφών τόπων (place descriptions) ανά

ζεύγη προτείνεται στο [BZ13], η οποία μειώνει τον γραμμικό χρόνο αναζήτησης σε υπογραμμικά επίπεδα. Η προτεινόμενη μέθοδος αποσκοπεί στην αντικατάσταση των συγκρίσεων σε επίπεδο περιγραφέα τόπου με περιγραφείς σημείων-κλειδιών, δεδομένου ότι οι τελευταίοι βρίσκονται σε χαμηλότερο επίπεδο από τους πρώτους, και ότι τα αποτελέσματα σε δύο διαστάσεις έχουν δείξει ότι η χρήση τους οδηγεί σε υψηλά ποσοστά αναγνώρισης τόπων. Από μία βάση δεδομένων προ-αποθηκευμένων τοπικών περιγραφέων του χάρτη, ένας σταθερός αριθμός πλησιέστερων γειτόνων ψηφίζει για κάθε σημείο-κλειδί που εξάγεται από τρισδιάστατες μετρήσεις αισθητήρα lidar, και η άθροισή τους καθορίζει τις πιθανές αντιστοιχίες τόπων. Οι συγγραφείς διαπιστώνουν ότι ένα τέτοιο σύστημα οδηγεί σε αποτελέσματα ψηφοφορίας των οποίων η κατανομή ακολουθεί μια λογαριθμο-κανονική κατανομή, και έτσι είναι σε θέση να προσαρμόσουν ένα παραμετρικό μοντέλο υπερπαραμέτρων προκειμένου να καθοριστεί ένα ουσιαστικό κατώφλι ψηφοφορίας, το οποίο μπορεί να διακρίνει αξιόπιστα μεταξύ αληθινών και ψευδών θετικών αποτελεσμάτων, παρέχοντας έναν αυτόματο τρόπο ρύθμισης κρίσιμων αλγοριθμικών παραμέτρων.

Η πρώτη χρήση της τεχνικής ευθυγράμμισης πραγματικών μετρήσεων με σαρώσεις χάρτη σε δύο διαστάσεις (ενότητα 1.2.6) στα πλαίσια της εκτίμησης της στάσης ρομπότ κινητής βάσης βάσει καθολικής αβεβαιότητας εμφανίζεται στο [PP14]. Η προτεινόμενη μέθοδος παράγει πρώτα το γενικευμένο διάγραμμα Voronoi του δισδιάστατου χάρτη πλέγματος, του οποίου οι κόμβοι λαμβάνονται ως αρχικές υποθέσεις για τη θέση του ρομπότ. Από αυτές τις θέσεις λαμβάνονται ειχονιχές σαρώσεις σε ένα γωνιαχό εύρος 360 μοιρών με τη χρήση δεσμοβολής εντός του χάρτη. Έπειτα υπολογίζονται αντιστοιχίσεις μεταξύ κάθε εικονικής σάρωσης και της σάρωσης που λαμβάνεται από τον αισθητήρα με τη χρήση της φασματικής τεχνικής [LH05], η οποία βρίσκει γεωμετρικές σχέσεις ανά ζεύγη σαρώσεων. Αυτές οι αντιστοιχίες χρησιμοποιούνται στη συνέχεια για τη δημιουργία δισδιάστατων γεωμετρικών ιστογραμμάτων που χωδιχοποιούν ένα μέτρο της ομοιότητας μεταξύ της πραγματιχής σάρωσης χαι όλων των ειχονιχών σαρώσεων. Οι χόμβοι από τους οποίους αποτυπώθηχαν οι τελευταίες χατατάσσονται στη συνέχεια σύμφωνα με αυτό το μέτρο ομοιότητας, και ένα κατώφλι που βασίζεται στον συντελεστή συσχέτισης όλων των συνδυασμών σαρώσεων χρησιμοποιείται για την εξαγωγή ενός υποσυνόλου υποψήφιων στάσεων. Η τελική εκτίμηση της στάσης είναι εκείνη που επιτυγχάνει τον μέγιστο αριθμό αντιστοιχούντων ζευγών μετά από την ίδια φασματική μέθοδο ευθυγράμμισης που χρησιμοποιήθηκε στο προηγούμενο βήμα.

Εμπνευσμένη από έρευνα του κλάδου υπολογιστικής όρασης, η μέθοδος που παρουσιάζεται στο [Him+14] χρησιμοποιεί υπογραφές ορόσημων που εξάγονται από δισδιάστατες μετρήσεις αισθητήρα lidar για την εύρεση της στάσης του ρομπότ. Τα ορόσημα που χρησιμοποιούνται είναι σημεία υψηλής καμπυλότητας, τα οποία αποδεικνύεται ότι είναι επαρχώς περιγραφικά στον τομέα των δεδομένων απόστασης [ΤΑ10]. Για κάθε σύνολο ορόσημων που εξάγονται και αποθηκεύονται εκ των προτέρων κατά τη διάρκεια της ταυτόχρονης χαρτογράφησης και παρακολούθησης της στάσης του ρομπότ (SLAM), καταγράφεται και αποθηκεύεται η κατανομή των χωρικών σχέσεων μεταξύ τους. Στη συνέχεια δημιουργείται ένα δισδιάστατο ιστόγραμμα από ένα πλέγμα δυαδικών ψηφίδων, στο οποίο οι σχέσεις αυτές κωδικοποιούνται κεντράροντας μια κανονική κατανομή σε κάθε κάδο (bin) του ιστογράμματος. Η υπογραφή κάθε ορόσημου υπολογίζεται ως το άθροισμα όλων των κατανομών για το εν λόγω ορόσημο, και η υπογραφή της σάρωσης υπολογίζεται ως το άθροισμα όλων των υπογραφών των ορόσημων της εν λόγω σάρωσης. Αφού αποθηκευτούν οι υπογραφές σε μια βάση δεδομένων, η εχτίμηση της στάσης πραγματοποιείται με βάση τον χατά προσέγγιση πλησιέστερο γείτονα των υπογραφών που είναι αποθηκευμένες στη βάση δεδομένων με αυτήν που εξάγεται από τον αισθητήρα πραγματικής σάρωσης κατά τη στιγμή της εκτέλεσης του αλγορίθμου εκτίμησης. Η στάση-έξοδος του συστήματος είναι εκείνη της οποίας η υπογραφή έχει τη μικρότερη απόσταση από εκείνη της μέτρησης εισόδου.

Οι συγγραφείς του [KR16] υποστηρίζουν ότι στο [Him+14] οι γεωμετρικές υπογραφές σχέσεων ορόσημων, αν και συμπερασματικά ισχυρές, δεν είναι αναλλοίωτες σε περιστροφές. Η μέθοδος τους χρησιμοποιεί βελτιωμένα σημεία-κλειδιά τύπου falko και γρήγορη σημείοπρος-σημείο αντιστοίχιση των σαρώσεων για την αναγνώριση τόπων. Αν και αυτή η τεχνική περιορίζεται στην αναγνώριση τόπων στο πλαίσιο του κλεισίματος βρόχου κατά τη διάρκεια του SLAM, διαπιστώνουμε ότι θα μπορούσε να επεκταθεί και στην ευθυγράμμιση πραγματικών με εικονικές σαρώσεις για τον εντοπισμό της στάσης του ρομπότ.

Μακριά από τις καθιερωμένες τεχνικές της έρευνας γύρω από την επίλυση του προβλήματος Π2, η μέθοδος που παρουσιάζεται στο [Lyr+14] χρησιμοποιεί νευρωνικά δίκτυα ως μέσο εκτίμησης της στάσης ηρεμίας ενός ρομπότ, και χωρίς τη χρήση χάρτη. Αντ' αυτού, στο αρχικό βήμα, το ρομπότ διασχίζει το περιβάλλον του, και αποθηκεύει σε μια βάση δεδομένων ένα ζεύγος (α) μιας εικόνας από την εμπρόσθια κάμερα RGB του ρομπότ και (β) μιας στάσης από την οποία αποτυπώθηκε. Μετά τη συλλογή όλων των ζευγών ένα νευρωνικό

δίκτυο εκπαιδεύεται στις εικόνες που έχουν ληφθεί έτσι ώστε το σύστημα να μάθει να εξάγει τον μοναδικό δείκτη κάθε εικόνας. Κατά τη διαδικασία αυτή κάθε νευρώνας δειγματοληπτεί την εικόνα εισόδου στο σύνολό της, και τη φιλτραρισμένη με φίλτρο κανονικής κατανομής εκδοχή της ίδιας εικόνας, έτσι ώστε να εξαλειφθεί ο θόρυβος υψηλής συχνότητας, αλλά να διατηρούνται οι λεπτομέρειες κάθε σκηνής. Όταν κατά τη διάρκεια της εκτίμησης της στάσης του ρομπότ το σύστημα συλλάβει μια εικόνα, την εισάγει στο νευρωνικό δίκτυο, όπου όλοι οι νευρώνες εξάγουν έναν δείκτη για αυτήν. Η ψηφοφορία για κάθε δείκτη αποφασίζει την τελική εκτίμηση της στάσης του ρομπότ.

Η μέθοδος που παρουσιάζεται στα [Su+17] και [Che+19] εντοπίζει ένα ρομπότ χρησιμοποιώντας έναν οπτικό αισθητήρα RGBD μαζί με έναν αισθητήρα δισδιάστατων μετρήσεων τύπου lidar, χρησιμοποιώντας οπτικά χαρακτηριστικά που εξάγονται από τις μετρήσεις του πρώτου σε βοήθεια της χρήσης των μετρήσεων του τελευταίου. Για το σκοπό αυτό κατά τη διάρχεια χατασχευής του χάρτη του περιβάλλοντος, ταυτόχρονα με τον χάρτη που οιχοδομείται από τον αισθητήρα απόστασης, ένας χάρτης οπτικών πληροφοριών κατασκευάζεται σε ένα βήμα προεπεξεργασίας, προτού στη συνέχεια αποθηκευθούν οι στάσεις από τις οποίες καταγράφονται οι οπτικές πληροφορίες. Αυτές αποτελούνται από μια σειρά από καρέ-κλειδιά και τους αντίστοιχοι περιγραφείς GIST τους [Sin10; Azz15]. Όταν εκτελείται ο αλγόριθμος εντοπισμού υπολογίζεται το διάνυσμα GIST από την εικόνα RGB του πραγματικού αισθητήρα της κάμερας, και η απόσταση Minkowski από όλα τα προ-αποθηκευμένα διανύσματα GIST χρησιμοποιείται για την κατάταξη των n κορυφαίων αντιστοιχίσεων ανάμεσά τους. Αυτές στη συνέχεια ομαδοποιούνται, και ο μετασχηματισμός μεταξύ της στάσης του ρομπότ και του συστήματος αναφοράς του χάρτη προχύπτει από τον υπολογισμό του μετασχηματισμού μεταξύ της ειχόνας εισόδου και της πλησιέστερης ειχόνας στο χεντροειδές της συστάδας, λαμβάνοντας υπόψη τη στάση από την οποία αποτυπώθηκε η πλησιέστερη σε αυτό εικόνα.

Οι συγγραφείς του [CBD18] παρουσιάζουν έναν νέο περιγραφέα για τρισδιάστατες σαρώσεις αισθητήρων lidar, ο οποίος βασίζεται όχι στη συνιστώσα της απόστασης, αλλά στη συνιστώσα της έντασής (intensity). Αυτός ο περιγραφέας χρησιμοποιείται για κάθε ένα από τα τρισδιάστατα νέφη σημείων που έχουν προ-αποθηκευθεί κατά τη στιγμή της δημιουργίας του χάρτη του περιβάλλοντος, και επίσης για το νέφος σημείων που καταγράφηκε κατά την εκτέλεση του αλγορίθμου εκτίμησης της στάσης του ρομπότ. Το τελευταίο διαιρείται αρχικά σε κάδους, για τους οποίους υπολογίζεται ένα ιστόγραμμα έντασης. Τα ιστογράμματα αυτά

συνδυάζονται στη συνέχεια σε έναν καθολικό περιγραφέα με βάση την ένταση, του οποίου η ομοιότητα συγκρίνεται με εκείνους που εξάγονται από τα προ-αποθηκευμένα νέφη. Όταν ταυτοποιηθεί το περισσότερο όμοιο νέφος σημείων, χρησιμοποιούνται τοπικοί γεωμετρικοί περιγραφείς για την εύρεση αντιστοιχίσεων σημείου-κλειδιού-προς-σημείο-κλειδί, και αυτές χρησιμοποιούνται για την παροχή του πλήρους μετασχηματισμού 6 βαθμών ελευθερίας μεταξύ των δύο νεφών σημείων εισόδου.

Η μέθοδος που προτείνεται στο [WMO19], ονομαζόμενη GLFP, δεν βασίζεται σε έναν εκ των προτέρων κατασκευασμένο χάρτη, αλλά σε ένα σχέδιο κάτοψης του περιβάλλοντος στο οποίο το ρομπότ καλείται να εντοπιστεί. Προκειμένου να ξεπεραστεί το χάσμα μεταξύ της απουσίας προηγούμενης επίσκεψης στο περιβάλλον και της διαθεσιμότητας μόνο μιάς κάτοψής του, η GLFP εντοπίζει χαρακτηριστικά που συνυπάρχουν τόσο σε έναν χάρτη χαμηλής ποιότητας της κάτοψης, όσο και στις τρισδιάστατες μετρήσεις του αισθητήρα lidar του ρομπότ. Στη συνέχεια εξάγει τις κάθετες ακμές από το νέφος σημείων εισόδου και τις γωνίες από την κάτοψη του χάρτη. Η συσχέτιση των δεδομένων πραγματοποιείται στη συνέχεια με τη χρήση max-mixtures [OA13] και της μεθόδου αναζήτησης του πλησιέστερου γείτονα. Η στάση του ρομπότ εκτιμάται στη συνέχεια μέσω ενός αλγορίθμου βασισμένου στον γράφο παραγόντων (factor-based graph), ένα πρόβλημα βελτιστοποίησης όπου και τα δύο ορόσημα και η στάση του ρομπότ αντιμετωπίζονται ως μεταβλητές.

Η μέθοδος που παρουσιάζεται στο [ΥΤ19] επεκτείνει τη μέθοδο SA-MCL [ZZL09] για χρήση σε συνθήκες που χρησιμοποιούνται πολλαπλοί δισδιάστατοι ή τρισδιάστατοι αισθητήρες lidar για την εκτίμηση της στάσης ενός ρομπότ κινητής βάσης. Και οι δύο μέθοδοι χρησιμοποιούν τον υποκείμενο μηχανισμό MCL [Gus+02] για την εκτέλεση της εκτίμησης της στάσης του: σωματίδια διασκορπίζονται στο χάρτη και το πεδίο πιθανοφάνειας (likelihood field [TBF05]) χρησιμοποιείται ως μοντέλο μέτρησης προκειμένου να εντοπιστεί το σωματίδιο που εξηγεί καλύτερα τις μετρήσεις μεταξύ όλων των σωματίδιων. Ωστόσο, στον SA-MCL τα σωματίδια δεν διασκορπίζονται ομοιόμορφα στο σύνολο του χάρτη, αλλά μόνο σε παρόμοιες ενεργειακά περιοχές: Σε ένα βήμα προεπεξεργασίας, κάθε κελί του χάρτη πλέγματος συσχετίζεται με μια τιμή ενέργειας η οποία κωδικοποιεί την εγγύτητα του ρομπότ σε εμπόδια. Στη συνέχεια, κατά την εκτέλεση της εκτίμησης της στάσης του ρομπότ, υπολογίζεται η ενέργεια της μέτρησης εισόδου και συγκρίνεται με εκείνη όλων των κελιών του πλέγματος. Εκείνα που βρίσκονται κάτω από ένα ορισμένο όριο που έχει οριστεί χειροκίνητα είναι εκείνα στα οποία

θα κατανεμηθούν σωματίδια-υποθέσεις για τη στάση του ρομπότ.

6.2.2 Ο μετασχηματισμός Fourier-Mellin στη ρομποτική

Ο μετασχηματισμός Fourier-Mellin (Fourier-Mellin Transform—FMT) έχει λάβει περιορισμένη προσοχή στα πλαίσια του πεδίου εφαρμογής ΠΕ, χυρίως λόγω του περιορισμού εφαρμογής του σε δισδιάστατα πλέγματα-εικόνες. Οι περισσότερες από τις εφαρμογές περιορίζονται συνεπώς σε ρομπότ που φέρουν αισθητήρες των οποίων οι μετρήσεις είναι ή μπορούν να χρησιμοποιηθούν για να παράγουν δισδιάστατες εικόνες, π.χ. αισθητήρες κάμερας, σόναρ, ή ραντάρ. Επιπλέον, έχει χρησιμοποιηθεί στη συγχώνευση/ευθυγράμμιση ψηφιακών χαρτών, ενώ οι περισσότερες εφαρμογές εκμεταλλεύονται τον FMT για το έργο της χαρτογράφησης ή της εκτίμησης της οδομετρίας ενός οχήματος.

Μία μέθοδος για την εκτίμηση της κίνησης ενός ρομπότ εξοπλισμένο με πανοραμικό αισθητήρα ραντάρ παρουσιάζεται στα [Che+10] και [Viv+13], βασισμένη στην τεχνολογία Συνεχούς Κύματος με Διαμόρφωση Συχνότητας [Mon95], στα πλαίσια εκτέλεσης αλγορίθμου SLAM. Οι συγγραφείς υποστηρίζουν ότι η ευαισθησία των αισθητήρων δισδιάστατων μετρήσεων lidar στις ατμοσφαιρικές συνθήκες εξωτερικών χώρων έχει δώσει το έναυσμα για τη διεξαγωγή SLAM με ραντάρ και σόναρ, τα οποία είναι λιγότερο ευαίσθητα σε αυτές. Η έρευνά τους επικεντρώνεται στη χρήση ραντάρ μεγάλης εμβέλειας με χαμηλή ισχύ εκπομπής, και εκμεταλλεύεται την εγγενή ικανότητά τους να εκτιμούν πιο εύκολα τις απότομες μεταβολές των χρονικών μεταβλητών στη συχνότητα παρά στο πεδίο του χρόνου. Η εκτίμηση της κίνησης του ρομπότ με βάση το ραντάρ πραγματοποιείται μέσω του FMT, στον οποίον εισάγονται διαδοχικές εικόνες ραντάρ, και από τον οποίον εξάγεται η σχετική τους μετατόπιση και περιστροφή, οι οποίες παράμετροι είναι ακριβώς εκείνες που αφορούν στη στάση του ρομπότ από την οποία λήφθηκε η δεύτερη εικόνα σε σχέση με εκείνη από την οποία λήφθηκε η πρώτη.

Στα πλαίσια του ελέγχου αυτόνομων υποβρύχιων οχημάτων και χαρτογράφησης σε υποβρύχιες συνθήκες [BPB10], η βασική αρχή του FMT συνδυάζεται με την τεχνική Phase-Only Matched Filtering (POMF, σε αντίθεση με την Symmetric Phase-Only Matched Filtering—SPOMF, ενότητα 1.2.7), λόγω της έλλειψης ανάγκης εξαγωγής της κλίμακας ανάμεσα σε διαδοχικές σαρώσεις απόστασης ενός σόναρ. Οι συγγραφείς παρατηρούν ότι ένας βασικός αλγόριθμος ευθυγράμμισης μετρήσεων σόναρ που κάνει χρήση αντιστοιχίσεων ανάμεσά στις

μετρήσεις του, όπως ο ICP ή η ιδιαίτερα αποδοτιχότερη παραλλαγή του, ο PLICP, δεν μπορούν να χρησιμοποιηθούν με μετρήσεις απόστασης τύπου σόναρ ως είσοδο, χαθώς αυτοί αναφέρουν όχι μόνο μία μέτρηση απόστασης, αλλά ένα πλήθος τιμών, οι οποίες αντιστοιχούν χαι σε ηχούς σε διαφορετιχές αποστάσεις, παραβιάζοντας έτσι τη θεμελιώδη παραδοχή της μοναδιχότητας της απόστασης ανά διαχριτή μονάδα χώρου που υποθέτει ο ICP και οι παραλλαγές του. Επιπλέον, οι αισθητήρες σόναρ παρουσιάζουν τέτοια επίπεδα θορύβου που προχαλούν τους αλγορίθμους τύπου ICP να εμφανίζουν μη βέλτιστα αποτελέσματα, και συνηθέστερα όταν μια δέσμη σόναρ προσχρούει σε μια επιφάνεια υπό γωνία. Στο [BB11] αυτή η προσέγγιση επεχτείνεται σε τρεις διαστάσεις, χαι στο [Pfi+10] προσαρμόζεται σε πιθανοτιχά πλαίσια, όπου οι πίναχες συνδιαχύμανσης προσαρμόζονται γύρω από τις τρεις μετατοπίσεις, περιστροφές, χαι κλιμαχώσεις, ανάλογα με την ένταση σε χάθε παραμετριχό χώρο, χαι αντιμετωπίζονται ως συναρτήσεις πυχνότητας πιθανότητας. Η διαδιχασία αυτή ενσωματώνεται σε ένα πλαίσιο χαρτογράφησης μέγιστης πιθανοφάνειας που χρησιμοποιείται για τη δημιουργία χαρτών υποβρύχιων δομών από αχολουθίες μονοπτριχών ειχόνων (αντί για αισθητήρες σόναρ) μέσω βελτιστοποίησης γράφων με βάση τη στάση (pose-based graph optimisation).

Η ίδια αρχή εφαρμόζεται στο [BB09] αλλά με μια βελτιωμένη μέθοδο FMT, στο πλαίσιο μη επανδρωμένων εναέριων οχημάτων (Unmanned Aerial Vehicles—UAV), με σχοπό την καταγραφή χαρτών κάτοψης από έναν αισθητήρα κάμερας, μέσω της συρραφής διαδοχικών εικόνων. Η μέθοδος αυτή μπορεί ταυτόχρονα να χρησιμοποιηθεί ως μια μορφή (οπτικής) οδομετρίας του οχήματος. Η ίδια μέθοδος χρησιμοποιείται στο [Bir10] για την επίλυση του προβλήματος του εντοπισμού δομικών σφαλμάτων στους χάρτες πλέγματος κατάληψης που παράγονται από αλγορίθμους SLAM που εκτελούνται σε μη επανδρωμένα επίγεια οχήματα (Unmanned Ground Vehicles—UGV). Αυτά προκύπτουν όταν περιοχές του συνολικού χάρτη είναι τοπικά συνεπείς σε σχέση με έναν καθολικό χάρτη, αλλά ασυνεπείς μεταξύ τους, εισάγοντας έτσι την έννοια του σπασίματος (brokenness) ενός χάρτη. Η επίλυση αυτού του προβλήματος είναι ιδιαίτερα χρήσιμη στο έργο χαρτογράφησης πολλαπλών ρομπότ ή κατά τη διάρκεια εκτελέσεων SLAM όπου συμμετρίες στο περιβάλλον οδηγούν σε λανθασμένο κλείσιμο βρόχου. Οι κατατμήσεις της ευθυγράμμισης μεταξύ ενός χάρτη αναφοράς και ενός δυνητικά εσφαλμένα ευθυγραμμισμένου χάρτη ανιχνεύονται με τη χρήση ενός μέτρου ομοιότητας που παρέχεται από αυτή τη βελτιωμένη έκδοση του FMT.

Στο [KG11] ο FMT χρησιμοποιείται για να παρέχει τη μετατόπιση και την περιστροφή

ενός UGV σε σχέση με μια παρελθούσα στάση, δηλαδή για την εξαγωγή οδομετρικών πληροφοριών. Αυτές οι παράμετροι εξάγονται με την τροφοδοσία δύο εικόνων που έχουν ληφθεί σε διαδοχικές χρονικές στιγμές από μια κάμερα RGB τοποθετημένη στην κάτω πλευρά ενός οχήματος και στραμμένη προς την έδαφος σε έναν αλγόριθμο POMF, από τον οποίο προκύπτει η μετατόπιση και η περιστροφή της πιο πρόσφατης εικόνας σε σχέση με την προηγούμενη. Στη συνέχεια οι παράμετροι ανά άξονα της εικόνας μετατρέπονται σε κινήσεις του ρομπότ μέσω των εγγενών παραμέτρων βαθμονόμησης του αισθητήρα της κάμερας, και από από εκεί εκφράζεται η στάση από την οποία λήφθηκε η δεύτερη εικόνα σε σχέση με εκείνη από την οποία λήφθηκε η πρώτη.

Ομοίως με το [BPB10], ο FMT χρησιμοποιείται σε συνθήκες υποβρύχιας χαρτογράφησης στο [Hur+12]. Οι συγγραφείς σημειώνουν ότι η χρήση οπτικών καμερών είναι απαγορευτική σε υποβρύχιες καταστάσεις λόγω του περιορισμένου εύρους ορατότητάς τους, αλλά οι αισθητήρες σόναρ δεν επηρεάζονται από αυτή την άποψη. Ωστόσο, η εχθρικότητα του περιβάλλοντος, σε συνδυασμό με την ακουστική φύση της αρχής λειτουργίας των αισθητήρων του σόναρ θέτει σοβαρές προκλήσεις, καθώς οι εικόνες του έχουν χαμηλή ανάλυση, χαμηλό λόγο σήματος προς θόρυβο, ενώ είναι ιδιαίτερα ευαίσθητες σε ανομοιογενή ηχοβολισμό (insonification), και σε αλλοιώσεις της έντασης λόγω αλλαγών της οπτικής γωνίας του αισθητήρα. Οι δυσκολίες αυτές εμποδίζουν την επιτυχή λειτουργία των μεθόδων που βασίζονται σε χαρακτηριστικά [KNI05; Low04], ειδικά όταν πρέπει να δημιουργηθεί ακριβές κλείσιμο βρόχου. Θέτοντας το πρόβλημα χαρτογράφησης με ένα αισθητήρα σόναρ ως πρόβλημα βελτιστοποίησης γράφου με βάση τη στάση, οι συγγραφείς δείχνουν ότι η ευθυγράμμιση εικόνων σόναρ με βάση τον FMT είναι εύρωστη στις προαναφερθείσες πηγές εμποδίων και στην έλλειψη χαρακτηριστικών, με τη μέθοδό τους να παράγει συνολικά συνεπή αποτελέσματα.

Ο FMT χρησιμοποιείται στο [ORD13] στα πλαίσια των δημιουργούμενων από SLAM χαρτών πλέγματος μέσω της χρήσης τυπικών αισθητήρων δισδιάστατων σαρώσεων απόστασης. Ο FMT χρησιμοποιείται για την ευθυγράμμιση υπο-χαρτών μεταξύ τους: κατά τη διάρκεια της χαρτογράφησης, κάθε φορά που ένας σταθερός αριθμός νέων μετρήσεων έχει υποστεί επεξεργασία, δημιουργείται ένας τοπικός υπο-χάρτης ο οποίος αποθηκεύεται σε μια βάση δεδομένων, μαζί με τη στάση του σε σχέση με το σύστημα αναφοράς του συνολικού χάρτη, και τη στάση του ρομπότ σε σχέση με τον υποχάρτη. Όταν χρειάζεται να γίνει κλείσιμο βρόχου ή όταν δύο χάρτες από δύο διαφορετικές συνεδρίες χαρτογράφησης του ίδιου περιβάλλοντος πρέπει

να συγχωνευθούν, ο FMT χρησιμοποιείται για την εκτίμηση του σχετικού μετασχηματισμού μεταξύ του τελευταίου κατασκευασμένου υποχάρτη και ενός υποχάρτη που δημιουργήθηκε από την προηγούμενη φορά που το ρομπότ επισκέφθηκε το ίδιο μέρος, ο οποίος είναι αποθηκευμένος στη μνήμη, ή μεταξύ των υποχαρτών που δημιουργήθηκαν και αποθηκεύτηκαν κατά τη διάρκεια των δύο διαφορετικών συνεδριών, αυξάνοντας έτσι την επιχειρησιακή λειτουργικότητα, την αξιοπιστία, και το χρόνο λειτουργίας ενός τυπικού αλγορίθμου SLAM.

Στο [Roh+16] ο FMT χρησιμοποιείται στα πλαίσια του εντοπισμού ενός οχήματος σε εξωτεριχούς χώρους με την χρήση ενός αισθητήρα lidar μετρήσεων τριών διαστάσεων, οδομετρίας, και ενός αισθητήρα GPS, ως μέσο υπολογισμού μιας πρόσθετης πηγής οδομετρίας και της παραχολούθησης της στάσης του οχήματος. Όσον αφορά στην οδομετρία, διαδοχικές τρισδιάστατες σαρώσεις προβάλλονται στο οριζόντιο επίπεδο, μετατρέπονται σε πλέγματα, και ευθυγραμμίζονται μεταξύ τους με τη χρήση FMT-SPOMF. Οι εξαγόμενες παράμετροι μετασχηματισμού του τελευταίου παρέχουν τη μετατόπιση και την περιστροφή μιας σάρωσης σε σχέση με αυτήν που προηγήθηκε, και επομένως εχείνες μεταξύ των δύο διαδοχικών στάσεων από τις οποίες αποτυπώθηκαν οι μετρήσεις. Όσον αφορά στην εχτίμηση στάσης, μια τρισδιάστατη σάρωση μετατρέπεται σε ειχόνα πλέγματος μετά την προβολή της στο οριζόντιο επίπεδο, με χέντρο τη στάση που μετράει ο αισθητήρας GPS. Στη συνέχεια αυτή η ειχόνα ευθυγραμμίζεται με έναν χάρτη του οποίου οι διαστάσεις εξαρτώνται από την αβεβαιότητα της στάσης του οχήματος. Η χονδροειδής γνώση της θέσης του αισθητήρα lidar χαθιστά δυνατή την εξαγωγή μίας διόρθωσης της εχτίμησης της στάσης που παρέχεται από τον αισθητήρα GPS.

6.3 Μεθοδολογία εκτίμησης

6.3.1 Επισκόπηση

Η δομή του συστήματος που προτείνουμε προς επίλυση του προβλήματος Π2 δεδομένων των παραδοχών ΙΙΙ, IV, και V, το οποίο συμβολίζεται με το ακρωνύμιο PGL-FMIC (Passive Global Localisation—Fourier-Mellin Invariant matching with Centroids for translation), απεικονίζεται στο σχήμα 6.1. Το σύστημα απαιτεί ως είσοδο ένα διάνυσμα δισδιάστατων μετρήσεων S_R , το οποίο λαμβάνεται από τον αισθητήρα lidar του ρομπότ από την πραγματική του στάση, τον χάρτη M του περιβάλλοντος του ρομπότ, και τον αριθμό των υποθέσεων

στάσης οι οποίες θα διασχοριστούν στον ελεύθερο χώρο που οριοθετείται από τα σύνορα του χάρτη, $|\mathcal{H}|$.

Αρχικά παράγεται ένα σύνολο υποθέσεων στάσης $\mathcal{H}=\{h_i\},\ i=\{0,1,\dots,|\mathcal{H}|-1\}$ εντός του ελεύθερου χώρου του χάρτη, με τυχαίο τρόπο. Οι περιεχόμενες στο σύνολο \mathcal{H} στάσεις τοποθετούνται σε μια ουρά q, και εξάγονται σειριακά από αυτήν προτού εισαχθούν στη βασική μέθοδο, η οποία συμβολίζεται με το ακρωνύμιο FMIC (αναλυτικότερα στις ενότητες 6.3.2 και 6.3.3). Η έξοδός της αναφέρει μια εκτίμηση στάσης h_i'' του ρομπότ, έναν συντελεστή κλίμακας σ_i , και ένα μέτρο ομοιότητας w_i για κάθε εκτίμηση—το νόημα των δύο τελευταίων περιγράφεται λεπτομερώς στις ενότητες 1.2.7 και 6.3.2, και η χρησιμότητά τους στην ενότητα 6.3.4. Οι τρεις έξοδοι ανά υπόθεση αποθηκεύονται και, όταν αδειάσει η ουρά, η ολικά καταλληλότερη εκτίμηση στάσης αναφέρεται ως η στάση του ρομπότ από το σύστημα. Αυτό γίνεται μέσω μιας διαδικασίας διαλογής και κατάταξης η οποία απορρίπτει τις υποψήφιες εκτιμήσεις στάσης του συνόλου $\{h_i''\}$ με βάση τον αναφερόμενο συντελεστή κλίμακας σ_i προτού επιλέξει εκείνη της οποίας το μέτρο ομοιότητας w_i είναι το υψηλότερο μεταξύ όλων των υποψηφίων εκτιμήσεων (ενότητα 6.3.4).

Το σχήμα 6.2 απειχονίζει την εσωτεριχή δομή της βασιχής μεθόδου που προτείνεται, ονομαζόμενη FMIC. Μόλις σε αυτήν εισαχθεί μια υπόθεση h_i , η μέθοδος προσπαθεί να εχτιμήσει πρώτα τον προσανατολισμό του ρομπότ χαι στη συνέχεια τη θέση του σε σχέση με την υπόθεση, στο σύστημα αναφοράς του χάρτη M.

6.3.2 Εκτίμηση προσανατολισμού

Δεδομένης μιας υπόθεσης στάσης h_i , της μέτρησης S_R που λαμβάνεται από τον πανοραμικό αισθητήρα δισδιάστατων μετρήσεων lidar, και του χάρτη M, το υποσύστημα εκτίμησης του προσανατολισμού του ρομπότ (Orientation Estimation στο σχήμα 6.2) προσπαθεί να εκτιμήσει (α) τον σχετικό προσανατολισμό του S_R σε σχέση με την δισδιάστατη και ομοίως πανοραμική εικονική σάρωση που λαμβάνεται από την υπόθεση στάσης h_i , (β) τον συντελεστή κλίμακας μεταξύ των δύο σαρώσεων σ_i , και (γ) ένα μέτρο της ομοιότητάς τους w_i . Στο σχήμα 6.3 απεικονίζονται οι εσωτερικές διεργασίες του υποσυστήματος σε μορφή μπλοκ διαγράμματος.

Το υποσύστημα υπολογίζει πρώτα την ειχονιχή σάρωση S_V^i από τη στάση h_i εντός του χάρτη M. Σε αυτό το σημείο είναι διαθέσιμες δύο σαρώσεις: μία από τον φυσιχό αισθητήρα

Σχήμα 6.1: Η δομή του προτεινόμενου συστήματος PGL-FMIC επίλυσης του προβλήματος Π2. Αφού δημιουργηθεί το σύνολο των υποθέσεων στάσης $\mathcal H$ και εισαχθεί στην ουρά $\mathbf q$, το περιεχόμενό της τροφοδοτείται ένα προς ένα στο σύστημα εκτίμησης των υποψηφίων στάσεων, FMIC, από το οποίο εξάγονται οι εκτιμήσεις στάσης $\mathbf h_i^w$ και μετρικές της ποιότητας εκτίμησης σ_i και w_i . Μετά το τέλος της επεξεργασίας όλων των υποθέσων στάσης αυτές οι μετρικές χρησιμεύουν για την εξαγωγή της τελικής εκτίμησης στάσης $\hat{\mathbf p}$ του ρομπότ από το σύστημα

του ρομπότ, η οποία έχει ληφθεί από την πραγματική του στάση (ορισμός III), και μία από έναν εικονικό αισθητήρα, που καταγράφεται από την τυχαία στάση h_i (ορισμός VI). Στη συνέχεια τα τελικά σημεία των ακτίνων των δύο σαρώσεων προβάλλονται στο επίπεδο x-y:

$$x_n = x_0 + d_n \cos(\frac{2\pi n}{N_s} - \pi + \theta_0)$$
 (6.1)

$$y_n = y_0 + d_n \sin(\frac{2\pi n}{N_s} - \pi + \theta_0)$$
 (6.2)

όπου (x_n,y_n) είναι οι συντεταγμένες του τελικού σημείου της ακτίνας $n,n=\{0,1,\ldots,N_s-1\},\ d_n$ η μέτρηση απόστασης που αφορά στην ακτίνα n, και N_s ο αριθμός των ακτίνων που εκπέμπονται από τον αισθητήρα lidar. Το διάνυσμα $(x_0,y_0,\theta_0)\triangleq(0,0,0),$ δηλαδή τα τελικά σημεία και των δύο σαρώσεων προβάλλονται στο τοπικό σύστημα συντεταγμένων του κάθε αισθητήρα. Από τη διαδικασία προβολής των δύο σαρώσεων προκύπτουν δύο σύνολα σημείων στον δισδιάστατο χώρο, \mathcal{P}_R και \mathcal{P}_V^i . Τα σύνολα σημείων \mathcal{P}_R και \mathcal{P}_V^i υπόκεινται στη συνέχεια σε διακριτοποίηση με ένα σταθερό μέγεθος πλέγματος $N_G \times N_G$ (το οποίο συνιστάται να

Σχήμα 6.2: Η δομή της βασιχής μεθόδου εκτίμησης στάσης του συστήματος PGL-FMIC, FMIC. Δεδομένου του χάρτη M του περιβάλλοντος του ρομπότ, της μέτρησης S_R από έναν πανοραμικό αισθητήρα δισδιάστατων μετρήσεων τύπου lidar που καταγράφεται από την πραγματική στάση του ρομπότ, και μια υπόθεση στάσης h_i , πρώτα εκτελείται η εκτίμηση του προσανατολισμού ξ_i του ρομπότ σε σχέση με την h_i , και υπολογίζονται οι μετρικές σ_i , w_i , οι οποίες καθορίζουν την αξία της στάσης εξόδου h'' ως μια υποψήφια στάση του ρομπότ. Στη συνέχεια προσδιορίζεται η θέση της εκτίμησης στάσης

είναι δύναμη του δύο: $N_G=2^c$, όπου $c\in\mathbb{Z}^+$, λόγω της αποτελεσματικότητας του FFT στην εκτέλεση πράξεων με πίνακες δύο διαστάσεων των οποίων το μέγεθος είναι δύναμη του δύο [BPB10]), η οποία παράγει τα δισδιάστατα πλέγματα-εικόνες \boldsymbol{r} και \boldsymbol{v}_i αντίστοιχα. Τα πλέγματα αυτά στη συνέχεια εισάγονται στη διαδικασία FMI-SPOMF (αλγόριθμος II), η οποία εξάγει τη γωνία περιστροφής ξ_i , τον συντελεστή κλίμακας σ_i , και το μέτρο ομοιότητας \boldsymbol{w}_i μεταξύ των δύο εικόνων \boldsymbol{r} και \boldsymbol{v}_i , και συνεπώς μεταξύ των σαρώσεων \boldsymbol{S}_R και \boldsymbol{S}_V^i .

Η εφαρμοσιμότητα του FMI-SPOMF σε σχέση με τις διακριτοποιημένες εκδόσεις των συνόλων σημείων \mathcal{P}_R και \mathcal{P}_V^i είναι εφικτή και έγκυρη τόσο στην περίπτωση όπου μια υπόθεση στάσης βρίσκεται κοντά στην πραγματική στάση του ρομπότ, όσο και σε αυτήν που αυτό δεν ισχύει:

Στην πρώτη περίπτωση τα δύο σύνολα σημείων αποτελούνται από μία πλειοψηφία από σημεία που αντιπροσωπεύουν τμήματα του περιβάλλοντος/χάρτη που είναι ορατά και από τις δύο στάσεις, και από μία μειοψηφία σημείων που είναι ορατά αποκλειστικά από τη μία αλλά όχι από την άλλη. Αυτό το γεγονός αποδίδεται αποκλειστικά στη μετατόπιση της θέσης της υπόθεσης σε σχέση με την πραγματική θέση του ρομπότ. Τα σημεία της πρώτης κατηγορίας σχετίζονται μεταξύ τους μέσω μετατόπισης και περιστροφής λόγω της αναπαράστασης του περιβάλλοντος σε χάρτη (με την κλίμακα να παίζει ρόλο, η βα-

Σχήμα 6.3: Η εσωτερική δομή του υποσυστήματος εκτίμησης περιστροφής και κλίμακας του συστήματος FMIC (σχήμα 6.2)

ρύτητα του οποίου είναι αντιστρόφως ανάλογη της ανάλυσης του χάρτη). Τα σημεία της δεύτερης κατηγορίας μπορούν να θεωρηθούν ως θόρυβος ή μη γραμμικές παραμορφώσεις, έχοντας έτσι φθίνουσα επίδραση στο μέτρο ομοιότητας μεταξύ των εικόνων που αντιστοιχούν στα δύο σύνολα σημείων. Ανεξάρτητα από αυτό το είδος της ασυμφωνίας, η ομοιότητα μεταξύ των δύο εικόνων και η ποιότητα της εκτίμησης της μετατόπισης, περιστροφής, και κλίμακας, είναι ανάλογες με το ποσοστό των σημείων της πρώτης κατηγορίας σε σχέση με εκείνο της δεύτερης—ένα αποτέλεσμα που σε μεγάλο βαθμό αποδίδεται στην τεκμηριωμένη ευρωστία του FMI-SPOMF [QDD94].

Στην δεύτερη περίπτωση η έξοδος των αλγορίθμων Ι και ΙΙ, και, κυρίως, η τιμή του μέτρου ομοιότητας w είναι αυθαίρετες—ωστόσο, αν μια δεύτερη υπόθεση στάσης τυγχάνει να βρίσκεται πλησίον της πραγματικής στάσης του ρομπότ, τότε, επιπροσθέτως, το μέτρο ομοιότητας που αφορά στην πρώτη (λανθασμένη) υπόθεση είναι μικρότερο σε μέγεθος από εκείνο της δεύτερης, καθιστώντας έτσι εφικτή τη διάκριση μεταξύ των δύο.

Παρόλο που ο FMI-SPOMF είναι σε θέση να εξάγει τη μετατόπιση μεταξύ δύο εικόνων, το γεγονός ότι στα συμφραζόμενα του κεφαλαίου (α) αυτές έχουν ληφθεί από το τοπικό σύστημα αναφοράς κάθε αισθητήρα, και (β) η πραγματική θέση του ρομπότ είναι άγνωστη—

αυτά τα δύο καθιστούν το εξαγώμενο διάνυσμα μετατόπισης χωρίς φυσική σημασία. Ω στόσο, εάν η υπόθεση στάσης h_i βρίσκεται σε μία γειτονιά της πραγματικής θέσης του ρομπότ, αφού περιστραφεί κατά ξ_i , μπορεί να εξαχθεί μια εκτίμηση της μετατόπισής της σε σχέση με την πραγματική του στάση. Η διαδικασία διόρθωσης της θέσης περιγράφεται στην ενότητα 6.3.3.

6.3.3 Εκτίμηση θέσης

Μετά την περιστροφή της υπόθεσης h_i κατά τη γωνία που υπολογίστηκε από το υποσύστημα εκτίμησης προσανατολισμού ξ_i , η προκύπτουσα στάση-υπόθεση, η οποία συμβολίζεται στη συνέχεια με h_i' , εισάγεται στο υποσύστημα εκτίμησης θέσης, το μπλοκ διάγραμμα του οποίου απεικονίζεται στο σχήμα 6.4. Δεδομένης της περιεστραμμένης υπόθεσης στάσης h_i' , της μέτρησης S_R που λαμβάνεται από τον πανοραμικό αισθητήρα δισδιάστατων μετρήσεων lidar, και του χάρτη M, το υποσύστημα εκτίμησης της θέσης του ρομπότ (Position Estimation στο σχήμα 6.2) προσπαθεί να εκτιμήσει τη σχετική θέση του S_R σε σχέση με την δισδιάστατη και ομοίως πανοραμική εικονική σάρωση που λαμβάνεται από την υπόθεση στάσης h_i' .

Σχήμα 6.4: Η εσωτερική δομή του υποσυστήματος εκτίμησης θέσης του συστήματος FMIC (σχήμα 6.2)

Αρχικά υπολογίζεται μια νέα σάρωση χάρτη $\mathcal{S}_V^{i\prime}$ από τη διορθωμένη κατά γωνία υπόθεση στάσης h_i^{\prime} . Τα τελικά της σημεία, μαζί με εκείνα του διανύσματος μέτρησης του φυσικού αι-

σθητήρα S_R , προβάλλονται εκ νέου στο επίπεδο x-y, με τη χρήση των εξισώσεων (6.1) και (6.2). Σε αυτές τις εξισώσεις, έχοντας ήδη εκτιμήσει τον προσανατολισμό του ρομπότ, η τιμή της μεταβλητής θ_0 αντικαθίσταται από την εκτίμηση προσανατολισμού του, $\theta_{{m h}_i'}=\theta_{{m h}_i}+\xi_i.$ Τα δύο σύνολα σημείων που προχύπτουν, \mathcal{P}_R' και $\mathcal{P}_V^{i\prime}$, είναι τώρα ευθυγραμμισμένα ως προς τον προσανατολισμό, και κεντραρισμένα γύρω από την αρχή O(0,0). Στη συνέχεια υπολογίζεται το κεντροειδές κάθε πολυγώνου με κορυφές \mathcal{P}_R' και $\mathcal{P}_V^{i\prime}$ μέσω των εξισώσεων (1.15)και (1.16). Η θέση της υπόθεσης στάσης h_i' διορθώνεται στη συνέχεια με την πρόσθεση σε αυτήν της διαφοράς θέσης μεταξύ των δύο κεντροειδών $m{C}_V^i$ και $m{C}_R$, και η διαδικασία αυτή επαναλαμβάνεται έως ότου επιτευχθεί σύγκλιση ή συμπληρωθεί ένας μέγιστος αριθμός επαναλήψεων. Εάν η θέση της υπόθεσης h_i' βρίσκεται σε μία γειτονιά της πραγματικής θέσης του ρομπότ, τότε η διαφορά των συντεταγμένων των χεντροειδών προσεγγίζει τη διαφορά των δύο αυτών θέσεων-λόγω των παρατηρήσεων VII και ΧΙΙ-συν κάποια επιπρόσθετη μετατόπιση που προχαλείται από τα σημεία τα οποία είναι ορατά από τη μία θέση αλλά όχι από την άλλη. Αυτό οφείλεται και πάλι στο γεγονός ότι διαφορετικά μέρη του περιβάλλοντος/χάρτη καθίστανται (μη) ορατά από διαφορετικές θέσεις. Αντιθέτως, εάν η υπόθεση h_i δεν είναι ορθή, η θέση της υπόθεσης $m{h}_i'$ θα μετατοπιστεί σε μία τυχαία θέση. Η έξοδος της παραπάνω διαδικασίας είναι η τελική εκτίμηση της στάσης $oldsymbol{h}_i''.$

6.3.4 Επιλογή βέλτιστης υπόθεσης

Μετά την επεξεργασία του συνόλου των υποθέσεων \mathcal{H} έχει εξαχθεί μια συλλογή από ίσες σε αριθμό τριπλέτες $\{h_i'', \sigma_i, w_i\}$, $i=0,1,\ldots, |\mathcal{H}|-1$. Προχειμένου να προσδιοριστεί η τελιχή εχτίμηση της στάσης του ρομπότ θα πρέπει η εχτίμηση της χάθεμίας να αξιολογηθεί ως προς τις μετριχές ευθυγράμμισης που εξήχθησαν χατά την εχτίμηση του προσανατολισμού της υπόθεσης h_i . Θεωρητιχά, για την πλησιέστερη στο ρομπότ υπόθεση στάσης h_c , ο FMI-SPOMF θα πρέπει να αναφέρει έναν συντελεστή χλίμαχας $\sigma_c=1.0$, χαι τον υψηλότερο μεταξύ όλων των υποθέσεων στάσης βαθμό ομοιότητας $w_c=\max\{w_0,w_1,\ldots,w_{|\mathcal{H}|-1}\}$. Ωστόσο, στην πράξη μπορεί να προχύψει παραβίαση αυτών των ειχασιών, για παράδειγμα λόγω ασάφειας που προχύπτει από ομοιότητες μεταξύ διαχριτών τμημάτων του χάρτη¹ ή λόγω

¹Έστω για παράδειγμα ένας χάρτης δύο χενών δωματίων, πανομοιότυπων σε αναλογίες αλλά όχι σε μήχος και πλάτος. Οι συντελεστές ομοιότητας που αναφέρονται για δύο υποθέσεις που βρίσχονται στο χέντρο χάθε δωματίου μπορεί να είναι ίσοι, αλλά ο συντελεστής χλίμαχας μεταξύ τους θα διαφέρει, χαι η υπόθεση στάσης που θα πρέπει να αναφερθεί ως εχτίμηση της στάσης του ρομπότ θα πρέπει να είναι εχείνη για την οποία ο συντελεστής χλίμαχας είναι πλησιέστερος στην τιμή 1.0

του γεγονότος ότι αυτός μπορεί να αναπαρίσταται μέσω πλέγματος κατάληψης πεπερασμένης ανάλυσης (όπως είναι τυπικό σε εφαρμογές ρομποτικής του πεδίου εφαρμογής ΠΕ): προφανώς όσο μικρότερη είναι η ανάλυση τόσο περισσότερο η τιμή του συντελεστή κλίμακας αποκλίνει από το θεωρητικό της όριο.

Αν και η σχετική βιβλιογραφία δεν λαμβάνει υπόψη της τον συντελεστή κλίμακας (δεδομένου ότι το περιβάλλον, οι πραγματικές σαρώσεις που προκύπτουν σε αυτό, ο χάρτης του, και οι εικονικές σαρώσεις εντός του είναι όλα της ίδιας κλίμακας), διαπιστώσαμε ότι λόγω σφαλμάτων διακριτοποίησης,² θόρυβο του αισθητήρα μέτρησης lidar, αποκλίσεις του χάρτη σε σχέση με το μοντελοποιημένο περιβάλλον, και της προσεγγιστικής ανάλυσης του χάρτη—διαπιστώσαμε ότι ο συντελεστής κλίμακας κυμαίνεται γ ύ ρ ω από την τιμή 1.0 ακόμη και για υποθέσεις που βρίσκονται κοντά στην πραγματική θέση του ρομπότ. Για τις θεσεις υποθέσεων σε μία γειτονιά της πραγματικής, οι τιμές των αντίστοιχων συντελεστών κλίμακας μπορεί να είναι πιο κοντά στη μονάδα από ό,τι για εκείνες τις στάσεις που δεν είναι. Επομένως ένα αρχικό φιλτράρισμα των υποψηφίων στάσεων συνίσταται στην απόρριψη υποθέσεων h_i για τις οποίες: $\sigma_i \not\in [\underline{\sigma}, \overline{\sigma}]$, όπου $\underline{\sigma} \le 1.0$ και $\overline{\sigma} \ge 1.0$. Όσον αφορά στις υπόλοιπες υποθέσεις, η τιμή του βαθμού ομοιότητας w_i μεταξύ των εικόνων r και v_i είναι, θεωρητικά, ανάλογη της ομοιότητας τους. Επομένως, το ίδιο ισχύει και μεταξύ των δύο σαρώσεων \mathcal{S}_R και S_i^{V} , και συνεπώς για την εγγύτητα μεταξύ της πραγματικής στάσης του ρομπότ και της υπόθεσης h_i . Κατά συνέπεια, η υπόθεση με τον υψηλότερο βαθμό ομοιότητας, μετά από κατάλληλη περιστροφή και μετατόπιση, είναι η αναφερόμενη τελική εκτίμηση της στάσης \hat{p} του συστήματος PGL-FMIC.

?? παραδειγμα αππεντιξ

²Σφάλματα διακριτοποίησης προκύπτουν λόγω (α) των τομών των ακτίνων με τον χάρτη κατά τον υπολογισμό μιας εικονικής σάρωσης όταν ο χάρτης αναπαρίσταται από ένα πλέγμα κατάληψης το οποίο είναι πεπερασμένης ανάλυσης, και (β) της απώλειας ανάλυσης κατά τη διακριτοποίηση που λαμβάνει χώρα όταν μια σάρωση μετατρέπεται σε δισδιάστατο πλέγμα

6.4 Πειραματική αξιολόγηση

- 6.4.1 Πειραματική διαδικασία
- 6.4.2 Αποτελέσματα
- 6.4.3 Αξιολόγηση
- 6.5 Συμπεράσματα και περαιτέρω έρευνα
- 6.5.1 Συμπεράσματα κεφαλαίου
- 6.5.2 Αιτίες περαιτέρω έρευνας

Μέρος III

Συμπεράσματα

Μέρος ΙV

Αναφορές

- [Rie51] Bernhard Riemann. "Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse". Διδακτορική διατρ. 1851.
- [Fré06] M. Maurice Fréchet. "Sur quelques points du calcul fonctionnel". Στο: Rendiconti del Circolo Matematico di Palermo 22.1 (Δεχ. 1906), σσ. 1–72. ISSN: 0009-725X. DOI: 10.1007/BF03018603. URL: http://link.springer.com/10.1007/BF03018603.
- [Hou60] Paul V C Hough. Method and means for recognizing complex patterns. 1960.

 URL: https://patents.google.com/patent/US3069654A/en.
- [CP76] David Casasent και Demetri Psaltis. "Position, rotation, and scale invariant optical correlation". Στο: Applied Optics 15.7 (Ιούλ. 1976), σ. 1795. ISSN: 0003-6935. DOI: 10.1364/A0.15.001795. URL: https://opg.optica.org/abstract.cfm?URI=ao-15-7-1795.
- [LW79] Tomás Lozano-Pérez και Michael A. Wesley. "An algorithm for planning collision-free paths among polyhedral obstacles". Στο: Communications of the ACM 22.10 (Οκτ. 1979), σσ. 560–570. ISSN: 0001-0782. DOI: 10.1145/359156. 359164. URL: https://dl.acm.org/doi/10.1145/359156.359164.
- [May79] Peter S. Maybeck. "Stochastic models, estimation, and control Introduction". Στο: Stochastic models, estimation, and control. Τόμ. 1. 1979.
- [Rou84] Peter J. Rousseeuw. "Least Median of Squares Regression". Στο: Journal of the American Statistical Association 79.388 (Δεχ. 1984), σσ. 871–880. ISSN: 0162-1459. DOI: 10.1080/01621459.1984.10477105. URL: http://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10477105.
- [MMS88] Mark Manasse, Lyle McGeoch και Daniel Sleator. "Competitive algorithms for on-line problems". Στο: Proceedings of the twentieth annual ACM symposium on Theory of computing STOC '88. New York, New York, USA: ACM Press, 1988, σσ. 322–333. ISBN: 0897912640. DOI: 10.1145/62212.62243. URL: http://portal.acm.org/citation.cfm?doid=62212.62243.
- [BK91] J. Borenstein και Y. Koren. "The vector field histogram-fast obstacle avoidance for mobile robots". Στο: *IEEE Transactions on Robotics and Automation* 7.3

- (Ιούν. 1991), σσ. 278-288. ISSN: 1042296X. DOI: 10.1109/70.88137. URL: http://ieeexplore.ieee.org/document/88137/.
- [Gri91] W. Eric L. Grimson. Object Recognition by Computer. 1991. ISBN: 9780262071307.

 URL: https://mitpress.mit.edu/books/object-recognition-computer.
- [KB91] Y. Koren και J. Borenstein. "Potential field methods and their inherent limitations for mobile robot navigation". Στο: Proceedings. 1991 IEEE International Conference on Robotics and Automation. IEEE Comput. Soc. Press, 1991, σσ. 1398–1404.
 ISBN: 0-8186-2163-X. DOI: 10.1109/ROBOT.1991.131810. URL: http://ieeexplore.ieee.org/document/131810/.
- [Lat91] Jean-Claude Latombe. Robot Motion Planning. 1991. ISBN: 978-1-4615-4022-9.
- [BM92] P.J. Besl και Neil D. McKay. "A method for registration of 3-D shapes". Στο: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Φεβ. 1992), σσ. 239–256. ISSN: 0162-8828. DOI: 10.1109/34.121791. URL: http://ieeexplore.ieee.org/document/121791/.
- [SG92] A. F. M. Smith και A. E. Gelfand. "Bayesian Statistics without Tears: A Sampling-Resampling Perspective". Στο: *The American Statistician* 46.2 (Μάι. 1992), σσ. 84-88. ISSN: 0003-1305. DOI: 10.1080/00031305.1992.10475856. URL: http://www.tandfonline.com/doi/abs/10.1080/00031305.1992. 10475856.
- [QK93] S. Quinlan και O. Khatib. "Elastic bands: connecting path planning and control".
 Στο: [1993] Proceedings IEEE International Conference on Robotics and Automation.
 IEEE Comput. Soc. Press, 1993, σσ. 802-807. ISBN: 0-8186-3450-2. DOI: 10.
 1109/ROBOT.1993.291936. URL: http://ieeexplore.ieee.org/document/
 291936/.
- [FM94] Feng Lu και Milios. "Robot pose estimation in unknown environments by matching 2D range scans". Στο: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94. IEEE Comput. Soc. Press, 1994, σσ. 935-938. ISBN: 0-8186-5825-8. DOI: 10.1109/CVPR.1994.323928. URL: http://ieeexplore.ieee.org/document/323928/.

- J.M. Kleinberg. "The localization problem for mobile robots". Στο: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput.
 Soc. Press, 1994, σσ. 521–531. ISBN: 0-8186-6580-7. DOI: 10.1109/SFCS.1994.
 365739. URL: http://ieeexplore.ieee.org/document/365739/.
- [QDD94] Qin-Sheng Chen, M. Defrise και F. Deconinck. "Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition". Στο: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 16.12 (1994), σσ. 1156–1168. ISSN: 01628828. DOI: 10.1109/34.387491. URL: http://ieeexplore.ieee.org/document/387491/.
- [Mon95] Villard Monod. "Frequency Modulated Radar: a new sensor for natural environment and mobile robotics". Διδακτορική διατρ. 1995.
- [Kav+96] L.E. Kavraki κ.ά. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces". Στο: *IEEE Transactions on Robotics and Automation* 12.4 (1996), σσ. 566–580. ISSN: 1042296X. DOI: 10.1109/70.508439. URL: http://ieeexplore.ieee.org/document/508439/.
- [RC96] B.S. Reddy και B.N. Chatterji. "An FFT-based technique for translation, rotation, and scale-invariant image registration". Στο: IEEE Transactions on Image Processing 5.8 (Αύγ. 1996), σσ. 1266–1271. ISSN: 1057-7149. DOI: 10. 1109/83.506761. URL: https://ieeexplore.ieee.org/document/506761/.
- [RS96] Kathleen Romanik και Sven Schuierer. "Optimal robot localization in trees". Στο: Proceedings of the twelfth annual symposium on Computational geometry SCG '96. New York, New York, USA: ACM Press, 1996, σσ. 264–273. ISBN: 0897918045. DOI: 10.1145/237218.237395. URL: http://portal.acm.org/citation.cfm?doid=237218.237395.
- [FBT97] D. Fox, W. Burgard και S. Thrun. "The dynamic window approach to collision avoidance". Στο: *IEEE Robotics & Automation Magazine* 4.1 (Μαρ. 1997), σσ. 23–33. ISSN: 10709932. DOI: 10.1109/100.580977. URL: http://ieeexplore.ieee.org/document/580977/.

- [DRW98] Gregory Dudek, Kathleen Romanik και Sue Whitesides. "Localizing a Robot with Minimum Travel". Στο: SIAM Journal on Computing 27.2 (Απρ. 1998), σσ. 583–604. ISSN: 0097-5397. DOI: 10.1137/S0097539794279201. URL: http://epubs.siam.org/doi/10.1137/S0097539794279201.
- [Lav98] S. Lavalle. Rapidly-exploring random trees: a new tool for path planning.
 Αδημοσίευτη ερευνητική εργασία. 1998, σ. 4.
- [RW98] R. Tyrrell Rockafellar xaı Roger J. B. Wets. *Variational Analysis*. 1998. ISBN: 978-3-642-02431-3.
- [UB98] I. Ulrich και J. Borenstein. "VFH+: reliable obstacle avoidance for fast mobile robots". Στο: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146). Τόμ. 2. IEEE, 1998, σσ. 1572-1577. ISBN: 0-7803-4300-X. DOI: 10.1109/ROBOT.1998.677362. URL: http://ieeexplore.ieee.org/document/677362/.
- [Del+99] F. Dellaert κ.ά. "Monte Carlo localization for mobile robots". Στο: Proceedings
 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).
 Τόμ. 2. IEEE, 1999, σσ. 1322-1328. ISBN: 0-7803-5180-0. DOI: 10.1109 /
 ROBOT. 1999. 772544. URL: http://ieeexplore.ieee.org/document/
 772544/.
- [GK99] J.-S. Gutmann και K. Konolige. "Incremental mapping of large cyclic environments".
 Στο: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375). IEEE, 1999, σσ. 318–325. ISBN: 0-7803-5806-6. DOI: 10.1109/CIRA.1999.810068. URL: http://ieeexplore.ieee.org/document/810068/.
- [NSL99] C. Nissoux, T. Simeon και J.-P. Laumond. "Visibility based probabilistic roadmaps".
 Στο: Proceedings 1999 IEEE/RSJ International Conference on Intelligent
 Robots and Systems. Human and Environment Friendly Robots with High
 Intelligence and Emotional Quotients (Cat. No.99CH36289). Τόμ. 3. IEEE,
 1999, σσ. 1316–1321. ISBN: 0-7803-5184-3. DOI: 10.1109/IROS.1999.811662.
 URL: http://ieeexplore.ieee.org/document/811662/.

- R. Bohlin και L.E. Kavraki. "Path planning using lazy PRM". Στο: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000, 521–528 vol.1. ISBN: 0-7803-5886-4. DOI: 10.1109/ROBOT.2000.844107. URL: http://ieeexplore.ieee.org/document/844107/.
- [GC00] S.S. Ge και Y.J. Cui. "New potential functions for mobile robot path planning". Στο: *IEEE Transactions on Robotics and Automation* 16.5 (2000), σσ. 615–620. ISSN: 1042296X. DOI: 10.1109/70.880813. URL: http://ieeexplore.ieee.org/document/880813/.
- [MM00] J. Minguez και L. Montano. "Nearness diagram navigation (ND): a new real time collision avoidance approach". Στο: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
 Τόμ. 3. IEEE, 2000, σσ. 2094–2100. ISBN: 0-7803-6348-5. DOI: 10.1109/IROS.
 2000.895280. URL: http://ieeexplore.ieee.org/document/895280/.
- [UB00] I. Ulrich και J. Borenstein. "VFH*: local obstacle avoidance with look-ahead verification". Στο: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Τόμ. 3. IEEE, 2000, σσ. 2505-2511. ISBN: 0-7803-5886-4. DOI: 10.1109/ROBOT.2000.846405. URL: http://ieeexplore.ieee.org/document/846405/.
- [Fox01] Dieter Fox. KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization.

 Αδημοσίευτη ερευνητική εργασία. 2001. URL: https://www.semanticscholar.

 org/paper/KLD-Sampling%7B%5C%%7D3A-Adaptive-Particle-Filtersand-Mobile-Fox/bc83280b12828a45366368294001f5890c07e02b.
- [JK01] P. Jensfelt και S. Kristensen. "Active global localization for a mobile robot using multiple hypothesis tracking". Στο: *IEEE Transactions on Robotics and Automation* 17.5 (2001), σσ. 748–760. ISSN: 1042296X. DOI: 10.1109/70. 964673. URL: http://ieeexplore.ieee.org/document/964673/.
- [Sch+01] D. Schulz κ.ά. "Tracking multiple moving targets with a mobile robot using particle filters and statistical data association". Στο: *Proceedings 2001 ICRA*.

- IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
 Τόμ. 2. IEEE, 2001, σσ. 1665-1670. ISBN: 0-7803-6576-3. DOI: 10.1109 /
 ROBOT. 2001. 932850. URL: http://ieeexplore.ieee.org/document/932850/.
- [SLL01] S. Se, D. Lowe και J. Little. "Local and global localization for mobile robots using visual landmarks". Στο: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). Τόμ. 1. IEEE, 2001, σσ. 414–420. ISBN: 0-7803-6612-3. DOI: 10.1109/IROS.2001.973392. URL: http://ieeexplore.ieee.org/document/973392/.
- [BV02] J. Bruce και M. Veloso. "Real-time randomized path planning for robot navigation".
 Στο: IEEE/RSJ International Conference on Intelligent Robots and System.
 Τόμ. 3. IEEE, 2002, σσ. 2383–2388. ISBN: 0-7803-7398-7. DOI: 10.1109/IRDS.
 2002.1041624. URL: http://ieeexplore.ieee.org/document/1041624/.
- [Che+02] D. Chetverikov x.ά. "The Trimmed Iterative Closest Point algorithm". Στο:

 *Object recognition supported by user interaction for service robots. Τόμ. 3.

 IEEE Comput. Soc, 2002, σσ. 545-548. DOI: 10.1109/ICPR.2002.1047997.

 URL: http://ieeexplore.ieee.org/document/1047997/.
- [Gus+02] Fredrik Gustafsson x.ά. "Particle filters for positioning, navigation, and tracking". Στο: IEEE Transactions on Signal Processing 50.2 (2002). ISSN: 1053587X. DOI: 10.1109/78.978396.
- [Lac+02] Simon Lacroix κ.ά. "Autonomous Rover Navigation on Unknown Terrains: Functions and Integration". Στο: The International Journal of Robotics Research 21.10-11 (Οκτ. 2002), σσ. 917-942. ISSN: 0278-3649. DOI: 10.1177/0278364902021010841. URL: http://journals.sagepub.com/doi/10.1177/0278364902021010841.
- [Pfi+02] S.T. Pfister κ.ά. "Weighted range sensor matching algorithms for mobile robot displacement estimation". Στο: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292). Τόμ. 2. IEEE, 2002, σσ. 1667–1674. ISBN: 0-7803-7272-7. DOI: 10.1109/ROBOT.2002.1014782. URL: http://ieeexplore.ieee.org/document/1014782/.

- [Thr02] Sebastian Thrun. "Particle Filters in Robotics". $\Sigma \tau o:$ Smithsonian 1.4 (2002). ISSN: 00222275.
- [BS03] P. Biber και W. Strasser. "The normal distributions transform: a new approach to laser scan matching". Στο: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). Τόμ. 3. IEEE, 2003, σσ. 2743–2748. ISBN: 0-7803-7860-1. DOI: 10.1109/IROS.2003. 1249285. URL: http://ieeexplore.ieee.org/document/1249285/.
- [CTT03] Chieh-Chih Wang, C. Thorpe και S. Thrun. "Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas". Στο: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Τόμ. 1. IEEE, 2003, σσ. 842–849. ISBN: 0-7803-7736-2. DOI: 10.1109/ROBOT.2003.1241698.

 URL: http://ieeexplore.ieee.org/document/1241698/.
- [Hah+03] D. Hahnel κ.ά. "An efficient fastslam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements". Στο: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). Τόμ. 1. IEEE, 2003, σσ. 206-211. ISBN: 0-7803-7860-1. DOI: 10.1109/IROS.2003.1250629. URL: http://ieeexplore.ieee.org/document/1250629/.
- [LGT03] Maxim Likhachev, Geoff Gordon και Sebastian Thrun. "ARA*: Anytime A* with Provable Bounds on Sub-Optimality". Στο: Proceedings of (NeurIPS) Neural Information Processing Systems. 2003.
- [SM03] Endre Süli και David F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, Αύγ. 2003. ISBN: 9780511801181. DOI: 10.1017/ CB09780511801181. URL: https://www.cambridge.org/core/product/ identifier/9780511801181/type/book.
- [XLX03] Xu Zezhong, Liu Jilin και Xiang Zhiyu. "Scan matching based on CLS relationships".
 Στο: IEEE International Conference on Robotics, Intelligent Systems and
 Signal Processing, 2003. Proceedings. 2003. Τόμ. 1. IEEE, 2003, σσ. 99–104.

- ISBN: 0-7803-7925-X. DOI: 10.1109/RISSP.2003.1285556. URL: http://ieeexplore.ieee.org/document/1285556/.
- [Low04] David G. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Στο: International Journal of Computer Vision 60.2 (Noέ. 2004), σσ. 91–110. ISSN: 0920-5691. DOI: 10.1023/B:VISI.0000029664.99615.94. URL: http://link.springer.com/10.1023/B:VISI.0000029664.99615.94.
- [MMM04] J. Minguez, L. Montesano και L. Montano. "An architecture for sensor-based navigation in realistic dynamic and troublesome scenarios". Στο: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Τόμ. 3. IEEE, 2004, σσ. 2750–2756. ISBN: 0-7803-8463-6. DOI: 10.1109/IROS.2004.1389825. URL: http://ieeexplore.ieee.org/document/1389825/.
- [MOM04] J. Minguez, J. Osuna και L. Montano. "A "divide and conquer" strategy based on situations to achieve reactive collision avoidance in troublesome scenarios".
 Στο: IEEE International Conference on Robotics and Automation, 2004. Proceedings.
 ICRA '04. 2004. IEEE, 2004, 3855–3862 Vol.4. ISBN: 0-7803-8232-3. DOI:
 10.1109/ROBOT.2004.1308869. URL: http://ieeexplore.ieee.org/document/1308869/.
- [Phi04] Roland Philippsen. "Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments". Διδακτορική διατρ. EPFL, 2004. DOI: 10.5075/epfl-thesis-3146.
- [CIG05] A. Censi, L. Iocchi και G. Grisetti. "Scan Matching in the Hough Domain". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005, σσ. 2739–2744. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT. 2005.1570528. URL: http://ieeexplore.ieee.org/document/1570528/.
- [DK05] A. Diosi και L. Kleeman. "Laser scan matching in polar coordinates with application to SLAM". Στο: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005, σσ. 3317–3322. ISBN: 0-7803-

- 8912-3. DOI: 10.1109/IROS.2005.1545181. URL: http://ieeexplore.ieee. org/document/1545181/.
- [HSZ05] D. Hsu, G. Sanchez-Ante και Zheng Sun. "Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005, σσ. 3874–3880. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT.2005.1570712. URL: http://ieeexplore.ieee.org/document/1570712/.
- [KNI05] K. Kim, N. Neretti και N. Intrator. "Mosaicing of acoustic camera images".
 Στο: IEE Proceedings Radar, Sonar and Navigation 152.4 (2005), σ. 263.
 ISSN: 13502395. DOI: 10.1049/ip-rsn:20045015. URL: https://digital-library.theiet.org/content/journals/10.1049/ip-rsn_20045015.
- [LH05] M. Leordeanu και M. Hebert. "A spectral technique for correspondence problems using pairwise constraints". Στο: Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005, 1482–1489 Vol. 2. ISBN: 0-7695-2334-X. DOI: 10.1109/ICCV.2005.20. URL: http://ieeexplore.ieee.org/document/1544893/.
- [Lik+05] Maxim Likhachev κ.ά. "Anytime Dynamic A*: An Anytime, Replanning Algorithm".
 Στο: Proceedings of 15th International Conference on Automated Planning and
 Scheduling. 2005.
- [Lin+05] Kai Lingemann κ.ά. "High-speed laser localization for mobile robots". Στο:
 Robotics and Autonomous Systems 51.4 (Ιούν. 2005), σσ. 275-296. ISSN: 09218890.
 DOI: 10.1016/j.robot.2005.02.004. URL: https://linkinghub.elsevier.
 com/retrieve/pii/S0921889005000254.
- [Mik05] Alonzo Kelly Mikhail Pivtoraiko. "Efficient constrained path planning via search in state lattices". Στο: Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2005.
- [MLM05] J. Minguez, F. Lamiraux και L. Montesano. "Metric-Based Scan Matching Algorithms for Mobile Robot Displacement Estimation". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE,

- 2005, $\sigma\sigma$. 3557-3563. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT.2005. 1570661. URL: http://ieeexplore.ieee.org/document/1570661/.
- [MMM05] L. Montesano, J. Minguez και L. Montano. "Probabilistic scan matching for motion estimation in unstructured environments". Στο: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005, σσ. 3499–3504.
 ISBN: 0-7803-8912-3. DOI: 10.1109/IROS.2005.1545182. URL: http://ieeexplore.ieee.org/document/1545182/.
- [OL05] J.M. O'Kane και S.M. LaValle. "Almost-Sensorless Localization". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
 IEEE, 2005, σσ. 3764–3769. ISBN: 0-7803-8914-X. DOI: 10.1109/R0B0T.2005.
 1570694. URL: http://ieeexplore.ieee.org/document/1570694/.
- [TBF05] Sebastian Thrun, Wolfram Burgard και Dieter Fox. *Probabilistic robotics*. Cambridge, Mass.: MIT Press, 2005. ISBN: 9780262201629. URL: http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance% 7B%5C&%7Dn=283155%7B%5C&%7Dn=507846%7B%5C&%7Ds=books%7B%5C&%7Dv=glance.
- [TGL05] Benjamín Tovar, Luis Guilamo και Steven M. LaValle. "Gap Navigation Trees: Minimal Representation for Visibility-based Tasks". Στο: Οκτ. 2005, σσ. 425–440. DOI: 10.1007/10991541_29. URL: http://link.springer.com/10.1007/10991541_29.
- [Cen06] A. Censi. "Scan matching in a probabilistic framework". Στο: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, σσ. 2291–2296. ISBN: 0-7803-9505-0. DOI: 10.1109/ROBOT. 2006.1642044. URL: http://ieeexplore.ieee.org/document/1642044/.
- [Gar+06] Santiago Garrido x.ά. "Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching". Στο: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οχτ. 2006, σσ. 2376–2381. ISBN: 1-4244-0258-1. DOI: 10.1109/IROS.2006.282649. URL: http://ieeexplore.ieee.org/document/4058742/.

- [HM06] Sergio Hernandez-alamilla και Eduardo Morales. "Global Localization of Mobile Robots for Indoor Environments Using Natural Landmarks". Στο: 2006 IEEE Conference on Robotics, Automation and Mechatronics. IEEE, Δεκ. 2006, σσ. 1–6. ISBN: 1-4244-0024-4. DOI: 10.1109/RAMECH.2006.252692. URL: http://ieeexplore.ieee.org/document/4018808/.
- [OKa06] J.M. O'Kane. "Global localization using odometry". Στο: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, σσ. 37-42. ISBN: 0-7803-9505-0. DOI: 10.1109/ROBOT. 2006.1641158. URL: http://ieeexplore.ieee.org/document/1641158/.
- [BG07] Priyadarshi Bhattacharya και Marina L. Gavrilova. "Voronoi diagram in optimal path planning". Στο: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). IEEE, Ιούλ. 2007, σσ. 38–47. ISBN: 0-7695-2869-4. DOI: 10.1109/ISVD.2007.43. URL: http://ieeexplore.ieee.org/document/4276103/.
- [Gas+07] Andrea Gasparri κ.ά. "A Hybrid Active Global Localisation Algorithm for Mobile Robots". Στο: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, Απρ. 2007, σσ. 3148-3153. ISBN: 1-4244-0602-1. DOI: 10.1109/ROBOT.2007.363958. URL: http://ieeexplore.ieee. org/document/4209576/.
- [Gho07] Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge: Cambridge University Press, 2007. ISBN: 9780511543340. DOI: 10.1017/CB09780511543340.
 URL: https://www.cambridge.org/core/product/identifier/9780511543340/type/book.
- [GSB07] Giorgio Grisetti, Cyrill Stachniss και Wolfram Burgard. "Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters". Στο: IEEE Transactions on Robotics 23.1 (Φεβ. 2007), σσ. 34–46. ISSN: 1552-3098. DOI: 10.1109/TRO. 2006.889486. URL: http://ieeexplore.ieee.org/document/4084563/.
- [KF07] Hanna Kurniawati και Thierry Fraichard. "From path to trajectory deformation".
 Στο: IEEE International Conference on Intelligent Robots and Systems. IEEE,

- Οχτ. 2007, σσ. 159–164. ISBN: 1424409128. DOI: 10.1109/IROS.2007.4399235.

 URL: http://ieeexplore.ieee.org/document/4399235/.
- [LSK07] Henry. G. Liddell, Robert Scott και Α. Κωνσταντινίδου. Επιτομή του μεγάλου λεξικού της ελληνικής γλώσσης. 2007.
- [MLD07] Martin Magnusson, Achim Lilienthal και Tom Duckett. "Scan registration for autonomous mining vehicles using 3D-NDT". Στο: Journal of Field Robotics 24.10 (Οκτ. 2007), σσ. 803–827. ISSN: 15564959. DOI: 10.1002/rob.20204. URL: https://onlinelibrary.wiley.com/doi/10.1002/rob.20204.
- [MWS07] Sean R. Martin, Steve E. Wright και John W. Sheppard. "Offline and Online Evolutionary Bi-Directional RRT Algorithms for Efficient Re-Planning in Dynamic Environments". Στο: 2007 IEEE International Conference on Automation Science and Engineering. IEEE, Σεπτ. 2007, σσ. 1131–1136. ISBN: 978-1-4244-1153-5. DOI: 10.1109/COASE.2007.4341761. URL: http://ieeexplore.ieee.org/document/4341761/.
- [RDW07] Malvika Rao, Gregory Dudek και Sue Whitesides. "Randomized Algorithms for Minimum Distance Localization". Στο: The International Journal of Robotics Research 26.9 (Σεπτ. 2007), σσ. 917–933. ISSN: 0278-3649. DOI: 10.1177/0278364907081234. URL: http://journals.sagepub.com/doi/10.1177/0278364907081234.
- [Cen08] Andrea Censi. "An ICP variant using a point-to-line metric". Στο: 2008 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2008, σσ. 19–25. ISBN: 978-1-4244-1646-2. DOI: 10.1109/ROBOT.2008.4543181. URL: http://ieeexplore.ieee.org/document/4543181/.
- [DB08] J.W. Durham και F. Bullo. "Smooth Nearness-Diagram Navigation". Στο: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Σεπτ. 2008, σσ. 690–695. ISBN: 978-1-4244-2057-5. DOI: 10.1109/IROS.2008. 4651071. URL: http://ieeexplore.ieee.org/document/4651071/.
- [MMM08] Luis Montesano, Javier Minguez και Luis Montano. "Modeling dynamic scenarios for local sensor-based motion planning". Στο: Autonomous Robots 25.3 (Οκτ.

- 2008), σσ. 231-251. ISSN: 0929-5593. DOI: 10.1007/s10514-008-9092-9. URL: http://link.springer.com/10.1007/s10514-008-9092-9.
- [NH08] J. W. Nicholson και A. J. Healey. "The present state of Autonomous Underwater Vehicle (AUV) applications and technologies". Στο: Marine Technology Society Journal 42.1 (2008), σσ. 44–51. ISSN: 00253324. DOI: 10.4031/002533208786861272.
- [BZ09] Michael Bosse και Robert Zlot. "Keypoint design and evaluation for place recognition in 2D lidar maps". Στο: Robotics and Autonomous Systems 57.12 (Δεκ. 2009), σσ. 1211–1224. ISSN: 09218890. DOI: 10.1016/j.robot.2009. 07.009. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889009000992.
- [BB09] Heiko Bulow και Andreas Birk. "Fast and robust photomapping with an Unmanned Aerial Vehicle (UAV)". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 3368–3373. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354505. URL: http://ieeexplore.ieee.org/document/5354505/.
- [GFC09] Julien Guitton, Jean-Loup Farges και Raja Chatila. "Cell-RRT: Decomposing the environment for better plan". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 5776–5781. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354106. URL: http://ieeexplore.ieee.org/document/5354106/.
- [Ng09] Morgan Quigley; Ken Conley; Brian Gerkey; Josh Faust; Tully Foote; Jeremy Leibs; Rob Wheeler; Andrew Y. Ng. ROS: an open-source Robot Operating System. 2009.
- [Ols09] E.B. Olson. "Real-time correlative scan matching". Στο: 2009 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2009, σσ. 4387–4393.

 ISBN: 978-1-4244-2788-8. DOI: 10.1109/ROBOT.2009.5152375. URL: http://ieeexplore.ieee.org/document/5152375/.
- [SWW09] David Sandberg, Krister Wolff και Mattias Wahde. "A Robot Localization Method Based on Laser Scan Matching". Στο: 2009, σσ. 171–178. DOI: 10. 1007/978-3-642-03983-6_21. URL: http://link.springer.com/10.1007/978-3-642-03983-6_21.

- [SHT09] A. Segal, D. Haehnel και S. Thrun. "Generalized-ICP". Στο: Robotics: Science and Systems V. Robotics: Science και Systems Foundation, Ιούν. 2009. ISBN: 9780262514637. DOI: 10.15607/RSS.2009.V.021. URL: http://www.roboticsproceedings.org/rss05/p21.pdf.
- [ZZL09] Lei Zhang, Rene Zapata και Pascal Lepinay. "Self-adaptive Monte Carlo localization for mobile robots using range sensors". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 1541–1546. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354298. URL: http://ieeexplore.ieee.org/document/5354298/.
- [Bir10] Andreas Birk. "Using recursive spectral registrations to determine brokenness as measure of structural map errors". Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2010, σσ. 3472–3477. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.2010.5509322. URL: http://ieeexplore.ieee.org/document/5509322/.
- [Bre10] Claus Brenner. "Vehicle localization using landmarks obtained by a lidar mobile mapping system". Στο: PCV 2010 Photogrammetric Computer Vision And Image Analysis. 2010. DOI: 28061230.
- [BPB10] Heiko Bülow, Max Pfingsthorn και Andreas Birk. "Using Robust Spectral Registration for Scan Matching of Sonar Range Data". Στο: *IFAC Proceedings Volumes* 43.16 (2010), σσ. 611–616. ISSN: 14746670. DOI: 10.3182/20100906-3-IT-2019.00105. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016351254.
- [Che+10] Paul Checchin κ.ά. "Radar Scan Matching SLAM Using the Fourier-Mellin Transform". Στο: 2010, σσ. 151–161. DOI: 10.1007/978-3-642-13408-1_14. URL: http://link.springer.com/10.1007/978-3-642-13408-1_14.
- [JCS10] Léonard Jaillet, Juan Cortés και T Siméon. "Sampling-Based Path Planning on Configuration-Space Costmaps". Στο: IEEE Transactions on Robotics 26.4 (Αύγ. 2010), σσ. 635–646. ISSN: 1552-3098. DOI: 10.1109/TRO.2010.2049527. URL: http://ieeexplore.ieee.org/document/5477164/.

- [KF10] S. Karaman και E. Frazzoli. "Incremental Sampling-based Algorithms for Optimal Motion Planning". Στο: Robotics: Science and Systems VI. Robotics: Science και Systems Foundation, Ιούν. 2010. ISBN: 9780262516815. DOI: 10.15607/RSS.2010.VI.034. URL: http://www.roboticsproceedings.org/rss06/p34.pdf.
- [LCV10] Somchaya Liemhetcharat, Brian Coltin και Manuela Veloso. "Vision-Based Cognition of a Humanoid Robot in Standard Platform Robot Soccer". Στο: Proceedings of the 5th Workshop on Humanoid Soccer Robots. Nashville USA, 2010.
- [Pfi+10] Max Pfingsthorn κ.ά. "Maximum likelihood mapping with spectral image registration".
 Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE,
 Μάι. 2010, σσ. 4282–4287. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.
 2010.5509366. URL: http://ieeexplore.ieee.org/document/5509366/.
- [Sin10] Gautam Singh. "Visual Loop Closing using Gist Descriptors in Manhattan World". $\Sigma \tau o$: 2010.
- [TA10] Gian Diego Tipaldi και Kai O Arras. "FLIRT Interest regions for 2D range data". Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2010, σσ. 3616–3622. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.2010.5509864. URL: http://ieeexplore.ieee.org/document/5509864/.
- [Xie+10] Jianping Xie x.ά. "A real-time robust global localization for autonomous mobile robots in large environments". Στο: 2010 11th International Conference on Control Automation Robotics & Vision. IEEE, Δεχ. 2010, σσ. 1397–1402. ISBN: 978-1-4244-7814-9. DOI: 10.1109/ICARCV.2010.5707329. URL: http://ieeexplore.ieee.org/document/5707329/.
- [BB11] Heiko Bülow και Andreas Birk. "Spectral registration of noisy sonar data for underwater 3D mapping". Στο: Autonomous Robots 30.3 (Απρ. 2011), σσ. 307– 331. ISSN: 0929-5593. DOI: 10.1007/s10514-011-9221-8. URL: http://link. springer.com/10.1007/s10514-011-9221-8.

- [KG11] Tim Kazik και Ali Haydar Goktogan. "Visual odometry based on the Fourier-Mellin transform for a rover using a monocular ground-facing camera". Στο:
 2011 IEEE International Conference on Mechatronics. IEEE, Απρ. 2011, σσ. 469–474. ISBN: 978-1-61284-982-9. DOI: 10.1109/ICMECH.2011.5971331. URL: http://ieeexplore.ieee.org/document/5971331/.
- [KKK11] Jungtae Kim, Munsang Kim και Daijin Kim. "Variants of the Quantized Visibility Graph for Efficient Path Planning". Στο: Advanced Robotics 25.18 (Ιαν. 2011), σσ. 2341-2360. ISSN: 0169-1864. DOI: 10.1163/016918611X603855.
 URL: https://www.tandfonline.com/doi/full/10.1163/016918611X603855.
- [NB11] Noboru Noguchi και Oscar C. Barawid. "Robot Farming System Using Multiple Robot Tractors in Japan Agriculture". Στο: IFAC Proceedings Volumes 44.1 (Ιαν. 2011), σσ. 633–637. ISSN: 14746670. DOI: 10.3182/20110828-6-IT-1002.03838. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016436815.
- [PL11] Mike Phillips και Maxim Likhachev. "SIPP: Safe interval path planning for dynamic environments". Στο: 2011 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2011, σσ. 5628–5635. ISBN: 978-1-61284-386-5.

 DOI: 10.1109/ICRA.2011.5980306. URL: http://ieeexplore.ieee.org/document/5980306/.
- [TBD11] Madjid Tavana, Timothy E. Busch και Eleanor L. Davis. "Fuzzy Multiple Criteria Workflow Robustness and Resiliency Modeling with Petri Nets". Στο: International Journal of Knowledge-Based Organizations 1.4 (Οκτ. 2011), σσ. 72-90. ISSN: 2155-6393. DOI: 10.4018/ijkbo.2011100105. URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijkbo.2011100105.
- [ZZY11] Jihua Zhu, Nanning Zheng και Zejian Yuan. "An Improved Technique for Robot Global Localization in Indoor Environments". Στο: International Journal of Advanced Robotic Systems 8.1 (Μαρ. 2011), σ. 7. ISSN: 1729-8814. DOI: 10.5772/10525. URL: http://journals.sagepub.com/doi/10.5772/10525.

- [ZB11] Quanyan Zhu και Tamer Basar. "Robust and resilient control design for cyber-physical systems with an application to power systems". Στο: *IEEE Conference on Decision and Control and European Control Conference*. IEEE, Δεκ. 2011, σσ. 4066–4071. ISBN: 978-1-61284-801-3. DOI: 10.1109/CDC.2011.6161031. URL: http://ieeexplore.ieee.org/document/6161031/.
- [CSC12] Sachin Chitta, Ioan Sucan και Steve Cousins. "MoveIt! [ROS Topics]". Στο: IEEE Robotics & Automation Magazine 19.1 (Μαρ. 2012), σσ. 18–19. ISSN: 1070-9932. DOI: 10.1109/MRA.2011.2181749. URL: http://ieeexplore.ieee.org/document/6174325/.
- [Hur+12] Natalia Hurtos x.ά. "Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing". Στο: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οχτ. 2012, σσ. 5298–5305. ISBN: 978-1-4673-1736-8. DOI: 10.1109/IROS.2012.6385813. URL: http://ieeexplore.ieee.org/document/6385813/.
- [Oli+12] Ayrton Oliver x.ά. "Using the Kinect as a navigation sensor for mobile robotics". Στο: Proceedings of the 27th Conference on Image and Vision Computing New Zealand IVCNZ '12. New York, New York, USA: ACM Press, 2012, σσ. 509–514. ISBN: 9781450314732. DOI: 10.1145/2425836.2425932. URL: http://dl.acm.org/citation.cfm?doid=2425836.2425932.
- [Rös+12] Christoph Rösmann κ.ά. "Trajectory modification considering dynamic constraints of autonomous robots". Στο: 7th German Conference on Robotics, ROBOTIK 2012. 2012, σσ. 74–79.
- [Row+12] Jorg Rowekamper x.ά. "On the position accuracy of mobile robot localization based on particle filters combined with scan matching". Στο: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οχτ. 2012, σσ. 3158–3164. ISBN: 978-1-4673-1736-8. DOI: 10.1109/IROS.2012.6385988. URL: http://ieeexplore.ieee.org/document/6385988/.
- [BZ13] Michael Bosse και Robert Zlot. "Place recognition using keypoint voting in large 3D lidar datasets". Στο: 2013 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2013, σσ. 2677–2684. ISBN: 978-1-4673-5643-5.

- DOI: 10.1109/ICRA.2013.6630945. URL: http://ieeexplore.ieee.org/document/6630945/.
- [CV13] Brian Coltin και Manuela Veloso. "Multi-observation sensor resetting localization with ambiguous landmarks". Στο: Autonomous Robots 35.2-3 (Οκτ. 2013), σσ. 221–237. ISSN: 0929-5593. DOI: 10.1007/s10514-013-9347-y. URL: http://link.springer.com/10.1007/s10514-013-9347-y.
- [GG13] Subir K. Ghosh και Partha P. Goswami. "Unsolved problems in visibility graphs of points, segments, and polygons". Στο: ACM Computing Surveys 46.2 (Noέ. 2013), σσ. 1–29. ISSN: 0360-0300. DOI: 10.1145/2543581.2543589. URL: https://dl.acm.org/doi/10.1145/2543581.2543589.
- [ORD13] Jan Oberlander, Arne Roennau και Rudiger Dillmann. "Hierarchical SLAM using spectral submap matching with opportunities for long-term operation".
 Στο: 2013 16th International Conference on Advanced Robotics (ICAR). IEEE,
 Noé. 2013, σσ. 1–7. ISBN: 978-1-4799-2722-7. DOI: 10.1109/ICAR.2013.
 6766479. URL: http://ieeexplore.ieee.org/document/6766479/.
- [Ok+13] Kyel Ok κ.ά. "Path planning with uncertainty: Voronoi Uncertainty Fields".
 Στο: 2013 IEEE International Conference on Robotics and Automation. IEEE,
 Μάι. 2013, σσ. 4596-4601. ISBN: 978-1-4673-5643-5. DOI: 10.1109/ICRA.2013.
 6631230. URL: http://ieeexplore.ieee.org/document/6631230/.
- [OA13] Edwin Olson και Pratik Agarwal. "Inference on networks of mixtures for robust robot mapping". Στο: The International Journal of Robotics Research 32.7 (Ιούν. 2013), σσ. 826–840. ISSN: 0278-3649. DOI: 10.1177/0278364913479413. URL: http://journals.sagepub.com/doi/10.1177/0278364913479413.
- [Viv+13] Damien Vivet x.ά. "Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches". Στο: International Journal of Advanced Robotic Systems 10.8 (Αύγ. 2013), σ. 307. ISSN: 1729-8814. DOI: 10.5772/56636. URL: http://journals.sagepub.com/doi/10.5772/56636.
- [BFR14] Jenay M Beer, Arthur D Fisk και Wendy A Rogers. "Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction". Στο: Journal of Human-Robot Interaction 3.2 (Ιούν. 2014), σ. 74. ISSN: 2163-0364. DOI:

- 10.5898/JHRI.3.2.Beer. URL: http://dl.acm.org/citation.cfm?id=3109833.
- [Him+14] Marian Himstedt x.ά. "Large scale place recognition in 2D LIDAR scans using Geometrical Landmark Relations". Στο: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Σεπτ. 2014, σσ. 5030–5035. ISBN: 978-1-4799-6934-0. DOI: 10.1109/IROS.2014.6943277. URL: http://ieeexplore.ieee.org/document/6943277/.
- [Lyr+14] Lauro J. Lyrio x.ά. "Image-based global localization using VG-RAM Weightless Neural Networks". Στο: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, Ιούλ. 2014, σσ. 3363-3370. ISBN: 978-1-4799-1484-5. DOI: 10.1109/IJCNN.2014.6889888. URL: https://ieeexplore.ieee.org/document/6889888/.
- [MDM14] Tanwi Mallick, Partha Pratim Das και Arun Kumar Majumdar. "Characterizations of Noise in Kinect Depth Images: A Review". Στο: *IEEE Sensors Journal* 14.6 (Ιούν. 2014), σσ. 1731–1740. ISSN: 1530-437X. DOI: 10.1109/JSEN.2014. 2309987. URL: http://ieeexplore.ieee.org/document/6756961/.
- [PP14] Soonyong Park και Sung-Kee Park. "Global localization for mobile robots using reference scan matching". Στο: International Journal of Control, Automation and Systems 12.1 (Φεβ. 2014), σσ. 156–168. ISSN: 1598-6446. DOI: 10.1007/s12555-012-9223-0. URL: http://link.springer.com/10.1007/s12555-012-9223-0.
- [Azz15] Charbel Azzi. "Efficient Image-Based Localization Using Context". Διδακτορική διατρ. 2015. URL: https://www.semanticscholar.org/paper/EfficientImage-Based-Localization-Using-Context-Azzi/1c7125987fe893d78cbbfa7e0ba1ec019fe
- [FCR15] Chen Friedman, Inderjit Chopra και Omri Rand. "Perimeter-Based Polar Scan Matching (PB-PSM) for 2D Laser Odometry". Στο: Journal of Intelligent & Robotic Systems 80.2 (Noέ. 2015), σσ. 231–254. ISSN: 0921-0296. DOI: 10. 1007/s10846-014-0158-y. URL: http://link.springer.com/10.1007/s10846-014-0158-y.

- [Ols15] Edwin Olson. "M3RSM: Many-to-many multi-resolution scan matching". Στο: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2015, σσ. 5815–5821. ISBN: 978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.7140013. URL: http://ieeexplore.ieee.org/document/7140013/.
- [DB16] Murat Dikmen και Catherine M. Burns. "Autonomous Driving in the Real World". Στο: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA: ACM, Οκτ. 2016, σσ. 225–228. ISBN: 9781450345330. DOI: 10.1145/3003715. 3005465. URL: https://dl.acm.org/doi/10.1145/3003715.3005465.
- [KR16] Fabjan Kallasi και Dario Lodi Rizzini. "Efficient loop closure based on FALKO lidar features for online robot localization and mapping". Στο: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Οκτ. 2016, σσ. 1206–1213. ISBN: 978-1-5090-3762-9. DOI: 10.1109/IROS. 2016.7759202. URL: http://ieeexplore.ieee.org/document/7759202/.
- [Kon+16] Jaromir Konecny κ.ά. "Novel Point-to-Point Scan Matching Algorithm Based on Cross-Correlation". Στο: Mobile Information Systems 2016 (2016), σσ. 1–11. ISSN: 1574-017X. DOI: 10.1155/2016/6463945. URL: http://www.hindawi.com/journals/misy/2016/6463945/.
- [Li+16] Jiayuan Li κ.ά. "Feature-Based Laser Scan Matching and Its Application for Indoor Mapping". Στο: Sensors 16.8 (Αύγ. 2016), σ. 1265. ISSN: 1424-8220.
 DOI: 10.3390/s16081265. URL: http://www.mdpi.com/1424-8220/16/8/1265.
- [Par16] Jong Jin Park. "Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments". Διδαχτοριχή διατρ. University of Michigan, Horace H. Rackham School of Graduate Studies, 2016.
- [Roh+16] Jan Rohde κ.ά. "Precise vehicle localization in dense urban environments". Στο: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, Noé. 2016, σσ. 853–858. ISBN: 978-1-5090-1889-5. DOI:

- 10.1109/ITSC.2016.7795655. URL: http://ieeexplore.ieee.org/document/7795655/.
- [Vas+16] Goran Vasiljević x.ά. "High-accuracy vehicle localization for autonomous warehousing". Στο: Robotics and Computer-Integrated Manufacturing 42 (Δεχ. 2016), σσ. 1–16. ISSN: 07365845. DOI: 10.1016/j.rcim.2016.05.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0736584515300314.
- [DAM17] F.A. Donoso, K.J. Austin και P.R. McAree. "How do ICP variants perform when used for scan matching terrain point clouds?" Στο: Robotics and Autonomous Systems 87 (Ιαν. 2017), σσ. 147–161. ISSN: 09218890. DOI: 10.1016/j.robot. 2016.10.011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889016301282.
- [GPG17] Dhiraj Gandhi, Lerrel Pinto και Abhinav Gupta. "Learning to fly by crashing". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 3948–3955. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS.2017.8206247. URL: http://ieeexplore.ieee.org/document/8206247/.
- [Li+17] Jiaxin Li x.ά. "Deep learning for 2D scan matching and loop closure". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 763-768. ISBN: 978-1-5386-2682-5. DOI: 10. 1109/IROS.2017.8202236. URL: http://ieeexplore.ieee.org/document/8202236/.
- [Moh+17] Haytham Mohamed x.ά. "A Novel Real-Time Reference Key Frame Scan Matching Method". Στο: Sensors 17.5 (Μάι. 2017), σ. 1060. ISSN: 1424-8220. DOI: 10. 3390/s17051060. URL: http://www.mdpi.com/1424-8220/17/5/1060.
- [RHB17] Christoph Rosmann, Frank Hoffmann και Torsten Bertram. "Kinodynamic trajectory optimization and control for car-like robots". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 5681–5686. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS. 2017.8206458. URL: http://ieeexplore.ieee.org/document/8206458/.

- [Su+17] Zerong Su x.ά. "Global localization of a mobile robot using lidar and visual features". Στο: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, Δεx. 2017, σσ. 2377–2383. ISBN: 978-1-5386-3742-5. DOI: 10.1109/ROBIO.2017.8324775. URL: http://ieeexplore.ieee.org/document/8324775/.
- [Zha+17] Qibin Zhang x.ά. "Mobile Robot Global Localization Using Particle Swarm Optimization with a 2D Range Scan". Στο: Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence ICRAI 2017. New York, New York, USA: ACM Press, 2017, σσ. 105–109. ISBN: 9781450353588. DOI: 10.1145/3175603.3175618. URL: http://dl.acm.org/citation.cfm? doid=3175603.3175618.
- [Zho+17] Bo Zhou x.ά. "A LiDAR Odometry for Outdoor Mobile Robots Using NDT Based Scan Matching in GPS-denied environments". Στο: 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, Ιούλ. 2017, σσ. 1230–1235. ISBN: 978-1-5386-0490-8. DOI: 10.1109/CYBER.2017.8446588. URL: https://ieeexplore.ieee.org/document/8446588/.
- [CRP18] Matthew Cooper, John Raquet και Rick Patton. "Range Information Characterization of the Hokuyo UST-20LX LIDAR Sensor". Στο: Photonics 5.2 (Μάι. 2018), σ. 12. ISSN: 2304-6732. DOI: 10.3390/photonics5020012. URL: http://www.mdpi.com/2304-6732/5/2/12.
- [CBD18] Konrad P Cop, Paulo V K Borges και Renaud Dube. "Delight: An Efficient Descriptor for Global Localisation Using LiDAR Intensities". Στο: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2018, σσ. 3653–3660. ISBN: 978-1-5386-3081-5. DOI: 10.1109/ICRA.2018. 8460940. URL: https://ieeexplore.ieee.org/document/8460940/.
- [Jia+18] Guolai Jiang κ.ά. "FFT-Based Scan-Matching for SLAM Applications with Low-Cost Laser Range Finders". Στο: Applied Sciences 9.1 (Δεκ. 2018), σ. 41. ISSN: 2076-3417. DOI: 10.3390/app9010041. URL: http://www.mdpi.com/ 2076-3417/9/1/41.

- [Lim+18] Pedro F. Lima κ.ά. "Experimental validation of model predictive control stability for autonomous driving". Στο: Control Engineering Practice 81 (Δεκ. 2018), σσ. 244–255. ISSN: 09670661. DOI: 10.1016/j.conengprac.2018.09.021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967066118305926.
- [Pen+18] Gang Peng x.ά. "An Improved AMCL Algorithm Based on Laser Scanning Match in a Complex and Unstructured Environment". Στο: Complexity 2018 (Δεχ. 2018), σσ. 1–11. ISSN: 1076-2787. DOI: 10.1155/2018/2327637. URL: https://www.hindawi.com/journals/complexity/2018/2327637/.
- [Wan+18] Yun-Ting Wang x.ά. "A Single LiDAR-Based Feature Fusion Indoor Localization
 Algorithm". Στο: Sensors 18.4 (Απρ. 2018), σ. 1294. ISSN: 1424-8220. DOI:
 10.3390/s18041294. URL: http://www.mdpi.com/1424-8220/18/4/1294.
- [Wen+18] Jian Wen x.ά. "A Novel 2D Laser Scan Matching Algorithm for Mobile Robots Based on Hybrid Features". Στο: 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, Αύγ. 2018, σσ. 366-371. ISBN: 978-1-5386-6869-6. DOI: 10.1109/RCAR.2018.8621744. URL: https://ieeexplore.ieee.org/document/8621744/.
- [WHZ18] Weisong Wen, Li-Ta Hsu και Guohao Zhang. "Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong". Στο: Sensors 18.11 (Noé. 2018), σ. 3928. ISSN: 1424-8220. DOI: 10.3390/s18113928. URL: http://www.mdpi.com/1424-8220/18/11/3928.
- [Wil+18] Kenneth H. Williford x.ά. "The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life". Στο: From Habitability to Life on Mars. Elsevier, 2018, σσ. 275–308. DOI: 10.1016/B978-0-12-809935-3.00010-4. URL: https://linkinghub.elsevier.com/retrieve/pii/B9780128099353000104.
- [YZD18] Heng Yu, Yadan Zeng και Houde Dai. "A Novel Scan Matching Method for Mobile Robot Based on Phase Only Matched Filtering *". Στο: 2018 IEEE International Conference on Information and Automation (ICIA). IEEE, Αύγ. 2018, σσ. 391–394. ISBN: 978-1-5386-8069-8. DOI: 10.1109/ICInfA.2018. 8812336. URL: https://ieeexplore.ieee.org/document/8812336/.

- [BAJ19] Guillaume Bresson, Zayed Alsayed και Sylvain Jonchery. "Graph-based Map-Aided Localization using Cadastral Maps as Virtual Laser Scans". Στο: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, Οκτ. 2019, σσ. 4074–4080. ISBN: 978-1-5386-7024-8. DOI: 10.1109/ITSC.2019. 8917506. URL: https://ieeexplore.ieee.org/document/8917506/.
- [CHM19] Weili Chen, Ting Huang και Allam Maalla. "Research on Adaptive Monte Carlo Location Method Based on Fusion Posture Estimation". Στο: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, Οκτ. 2019, σσ. 1209–1213. ISBN: 978-1-7281-0513-0. DOI: 10.1109/IMCEC46724.2019.8983808. URL: https://ieeexplore.ieee.org/document/8983808/.
- [Che+19] Yonggang Chen x.ά. "A Study of Sensor-Fusion Mechanism for Mobile Robot Global Localization". Στο: Robotica 37.11 (Noέ. 2019), σσ. 1835–1849. ISSN: 0263-5747. DOI: 10.1017/S0263574719000298. URL: https://www.cambridge.org/core/product/identifier/S0263574719000298/type/journal_article.
- [CJK19] Baehoon Choi, HyungGi Jo και Euntai Kim. "Normal Distribution Mixture Matching based Model Free Object Tracking Using 2D LIDAR". Στο: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Noέ. 2019, σσ. 455–461. ISBN: 978-1-7281-4004-9. DOI: 10.1109/IROS40897. 2019.8967876. URL: https://ieeexplore.ieee.org/document/8967876/.
- [Kow19] Wojciech Kowalczyk. "Rapid Navigation Function Control for Two-Wheeled Mobile Robots". Στο: Journal of Intelligent & Robotic Systems 93.3-4 (Μαρ. 2019), σσ. 687–697. ISSN: 0921-0296. DOI: 10.1007/s10846-018-0879-4.
 URL: http://link.springer.com/10.1007/s10846-018-0879-4.
- [Liu+19] Xiaohui Liu x.ά. "Research on Improved Localization and Navigation Algorithm for Automatic Guided Vehicle". Στο: IOP Conference Series: Materials Science and Engineering 611.1 (Οχτ. 2019), σ. 012076. ISSN: 1757-8981. DOI: 10.1088/1757-899X/611/1/012076. URL: https://iopscience.iop.org/article/10.1088/1757-899X/611/1/012076.

- [QJ19] Wang Qingshan και Zhang Jun. "Point Cloud Registration Algorithm Based on Combination of NDT and PLICP". Στο: 2019 15th International Conference on Computational Intelligence and Security (CIS). IEEE, Δεκ. 2019, σσ. 132– 136. ISBN: 978-1-7281-6092-4. DOI: 10.1109/CIS.2019.00036. URL: https: //ieeexplore.ieee.org/document/9023760/.
- [Sim+19] Jesse R. Simpson κ.ά. "An estimation of the future adoption rate of autonomous trucks by freight organizations". Στο: Research in Transportation Economics 76 (Σεπτ. 2019), σ. 100737. ISSN: 07398859. DOI: 10.1016/j.retrec.2019. 100737. URL: https://linkinghub.elsevier.com/retrieve/pii/S0739885919302495.
- [VKA19] Juan P. Vasconez, George A. Kantor και Fernando A. Auat Cheein. "Human-robot interaction in agriculture: A survey and current challenges". Στο: Biosystems Engineering 179 (Μαρ. 2019), σσ. 35–48. ISSN: 15375110. DOI: 10.1016/j. biosystemseng. 2018. 12.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1537511017309625.
- [Wan+19] L. Wang x.ά. "Symbiotic human-robot collaborative assembly". Στο: CIRP Annals 68.2 (2019), σσ. 701-726. ISSN: 00078506. DOI: 10.1016/j.cirp. 2019.05.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0007850619301593.
- [WMO19] Xipeng Wang, Ryan J. Marcotte και Edwin Olson. "GLFP: Global Localization from a Floor Plan". Στο: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Noé. 2019, σσ. 1627–1632. ISBN: 978-1-7281-4004-9. DOI: 10.1109/IROS40897.2019.8968061. URL: https://ieeexplore.ieee.org/document/8968061/.
- [YT19] Abdurrahman Yilmaz και Hakan Temeltas. "Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data". Στο: Robotics and Autonomous Systems 122 (Δεκ. 2019), σ. 103285. ISSN: 09218890. DOI: 10. 1016/j.robot.2019.103285. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889019302106.
- [BBA20] Sara Bouraine, Abdelhak Bougouffa και Ouahiba Azouaoui. "NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization". Στο:

- 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, $\Delta \epsilon x$. 2020, $\sigma \sigma$. 321–326. ISBN: 978-1-7281-7709-0. DOI: 10.1109/ICARCV50220.2020.9305519. URL: https://ieeexplore.ieee.org/document/9305519/.
- [KSL20] Zeashan Hameed Khan, Afifa Siddique και Chang Won Lee. "Robotics Utilization for Healthcare Digitization in Global COVID-19 Management". Στο: International Journal of Environmental Research and Public Health 17.11 (Μάι. 2020), σ. 3819. ISSN: 1660-4601. DOI: 10.3390/ijerph17113819. URL: https://www.mdpi.com/1660-4601/17/11/3819.
- [Lee+20] Sumyeong Lee κ.ά. "Robust 3-Dimension Point Cloud Mapping in Dynamic Environment Using Point-Wise Static Probability-Based NDT Scan-Matching".
 Στο: IEEE Access 8 (2020), σσ. 175563–175575. ISSN: 2169-3536. DOI: 10.
 1109 / ACCESS . 2020 . 3025537. URL: https://ieeexplore.ieee.org/document/9201452/.
- [LW20] Zhichao Li και Naiyan Wang. "DMLO: Deep Matching LiDAR Odometry".
 Στο: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Οκτ. 2020, σσ. 6010-6017. ISBN: 978-1-7281-6212-6.
 DOI: 10.1109/IROS45743.2020.9341206. URL: https://ieeexplore.ieee.org/document/9341206/.
- [Qi+20] Xianyu Qi κ.ά. "Building semantic grid maps for domestic robot navigation".
 Στο: International Journal of Advanced Robotic Systems 17.1 (Iαν. 2020).
 ISSN: 1729-8814. DOI: 10.1177/1729881419900066. URL: http://journals.
 sagepub.com/doi/10.1177/1729881419900066.
- [SCD20] Kyle H. Sheetz, Jake Claffin και Justin B. Dimick. "Trends in the Adoption of Robotic Surgery for Common Surgical Procedures". Στο: JAMA Network Open 3.1 (Ιαν. 2020), e1918911. ISSN: 2574-3805. DOI: 10.1001/jamanetworkopen. 2019.18911. URL: https://jamanetwork.com/journals/jamanetworkopen/ fullarticle/2758472.

- [Ber+21] Lukas Bernreiter κ.ά. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration". Στο: *IEEE Robotics and Automation Letters* 6.2 (2021), σσ. 855–862.
- [BBA21] Sara Bouraine, Abdelhak Bougouffa και Ouahiba Azouaoui. "Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform". Στο: Evolutionary Intelligence (Ιαν. 2021). ISSN: 1864-5909. DOI: 10.1007/s12065-020-00545-y. URL: http://link.springer.com/10.1007/s12065-020-00545-y.
- [Che+21] Cheng Chen κ.ά. "The adoption of self-driving delivery robots in last mile logistics". Στο: Transportation Research Part E: Logistics and Transportation Review 146 (Φεβ. 2021), σ. 102214. ISSN: 13665545. DOI: 10.1016/j.tre. 2020.102214. URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554520308565.
- [Dim+21] Antonis Dimitriou x.ά. "Autonomous Robots, Drones and Repeaters for Fast, Reliable, Low-Cost RFID Inventorying & Localization". Στο: 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, Σεπτ. 2021, σσ. 01–06. ISBN: 978-953-290-112-2. DOI: 10.23919/SpliTech52315. 2021.9566425. URL: https://ieeexplore.ieee.org/document/9566425/.
- [Koi+21] Kenji Koide κ.ά. "Voxelized GICP for Fast and Accurate 3D Point Cloud Registration". Στο: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2021, σσ. 11054-11059. ISBN: 978-1-7281-9077-8. DOI: 10.1109/ICRA48506.2021.9560835. URL: https://ieeexplore.ieee.org/document/9560835/.
- Prabin Kumar Panigrahi και Sukant Kishoro Bisoy. "Localization strategies for autonomous mobile robots: A review". Στο: Journal of King Saud University

 Computer and Information Sciences (Μαρ. 2021). ISSN: 13191578. DOI: 10.
 1016/j.jksuci.2021.02.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1319157821000550.
- [SSC21] Bogdan Ilie Sighencea, Rareș Ion Stanciu xon Cătălin Daniel Căleanu. "A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction".

- Στο: Sensors 21.22 (Noέ. 2021), σ. 7543. ISSN: 1424-8220. DOI: 10.3390/s21227543. URL: https://www.mdpi.com/1424-8220/21/22/7543.
- [smp21] smprobotics. 2021. URL: https://smprobotics.com/security_robot.
- [Wan+21] Zhong Wang κ.ά. "Global Localization With a Single-Line LiDAR by Dense 2D Signature and 1D Registration". Στο: IEEE Sensors Journal 21.10 (Μάι. 2021), σσ. 11497–11506. ISSN: 1530-437X. DOI: 10.1109/JSEN.2020.3021049. URL: https://ieeexplore.ieee.org/document/9184826/.
- [YSC21] Heng Yang, Jingnan Shi και Luca Carlone. "TEASER: Fast and Certifiable Point Cloud Registration". Στο: IEEE Transactions on Robotics 37.2 (Απρ. 2021), σσ. 314–333. ISSN: 1552-3098. DOI: 10.1109/TRO.2020.3033695. URL: https://ieeexplore.ieee.org/document/9286491/.
- [rev22] revfine. 2022. URL: https://www.revfine.com/hotel-robots/.
- [Cena] Andrea Censi. PLICP code headers. URL: https://github.com/AndreaCensi/csm/blob/master/sm/csm/algos.h.
- [Cenb] Andrea Censi. PLICP manual. URL: https://github.com/AndreaCensi/csm/blob/master/csm_manual.pdf.
- [staa] statista.com. URL: https://www.statista.com/statistics/430086/automotive-sales-of-automotive-lidar-systems-worldwide/.
- [stab] statista.com. URL: https://www.statista.com/statistics/880147/global-robotic-vehicle-sensors-market-size-by-segment/.

Μέρος V

Παραρτήματα

Παράρτημα Α΄

Αξιολόγηση αλγορίθμων αυτόνομης πλοήγησης

Α΄.1 Τύποι αναλογικότητας μετρικών αξιολόγησης μεθόδων αυτόνομης πλοήγησης

Σχετικά με την τιμή-αξία ενός συνδυασμού αλγορίθμου χάραξης μονοπατιών και ελεγκτή κίνησης που αφορά στις μετρικές αξιολόγησης ενός global planner του κάνουμε τις εξής παραδοχές. Η αξία ενός συνδυασμού είναι:

- υψηλότερη όσο πιο σύντομο σε μήχος είναι ένα σχέδιο μονοπατιού—ένα ρομπότ που το διασχίζει σε σταθερή ταχύτητα χρειάζεται λιγότερο χρόνο για να φτάσει από την αρχική στάση στην τελική
- υψηλότερη όσο υψηλότερη είναι η ανάλυση του σχεδιασθέντος μονοπατιού—όσο πιο λεπτομερής είναι η ανάλυση ενός μονοπατιού τόσο περισσότερο πιο πιθανό είναι να υπάρχει ένας (υπο)στόχος εντός του ορίζοντα του τοπικού χάρτη κόστους, και τόσο πιο ομαλή μπορεί να είναι η διαδρομή
- υψηλότερη όσο πιο ομαλό είναι το σχεδιασθέν μονοπάτι—όσο πιο ομαλό είναι το μονοπάτι τόσο πιο πιθανό είναι ότι το ρομπότ χρειάζεται λιγότερο χρόνο για να διασχίσει τη διαδρομή από την αρχική στάση μέχρι τη στάση-στόχο (η πιστή τήρηση του συνολικού

194 ΠΑΡΑΡΤΗΜΑ Α΄. ΑΞΙΟΛΟΓΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΥΤΟΝΟΜΗΣ ΠΛΟΗΓΗΣΗΣ

σχεδίου είναι θέμα του ελεγκτή κίνησης ως προς το πόσο κατάλληλο και εφικτό θεωρεί το μονοπάτι προς ακολούθηση)

- τόσο υψηλότερη όσο μεγαλύτερη είναι η μέση ελάχιστη απόστασή των στάσεων που το απαρτίζουν από τα εμπόδια του χάρτη—ώστε οι συγκρούσεις με εμπόδια να είναι λιγότερο πιθανό να συμβούν
- υψηλότερη όσο μεγαλύτερη είναι η ολική ελάχιστη απόστασή του μονοπατιού από τα εμπόδια σε ένα χάρτη σε όλα τα πειράματα και τις προσομοιώσεις, και
- χαμηλότερη όσο πιο μεγάλη είναι η διακύμανση της τιμή κάθε μετρικής—έτσι ώστε
 ένας μηχανικός ρομποτικής να μπορεί να υπολογίζει στην προβλεψιμότητά της

Σχετικά με την τιμή-αξία ενός συνδυασμού αλγορίθμου χάραξης μονοπατιών και ελεγκτή κίνησης που αφορά στις μετρικές αξιολόγησης ενός **local planner** του κάνουμε τις εξής παραδοχές. Η αξία ενός συνδυασμού είναι:

- χαμηλότερη όσο υψηλότερος είναι ο μέσος αριθμός των ματαιωμένων αποστολών κατά
 το σύνολο των πειραμάτων και προσομοιώσεων
- χαμηλότερη όσο υψηλότερος είναι ο μέσος αριθμός ανακτήσεων με περιστροφή που εκτελέστηκαν
- χαμηλότερη όσο υψηλότερος είναι ο μέσος αριθμός εκτελούμενων εκκαθαρίσεων χαρτών κόστους
- χαμηλότερη όσο υψηλότερος είναι ο μέσος αριθμός αποτυχιών διαδρομής
- χαμηλότερη όσο υψηλότερος είναι ο σχετικός αριθμός αποτυχιών διαδρομής, και
- χαμηλότερη όσο πιο μεγάλη είναι η διαχύμανση των τιμών της κάθε μετριχής

Όπως είναι προφανές όλες οι παραπάνω μετριχές είναι ανεξάρτητες από την επιτυχία ή την αποτυχία των συνδυασμών των αλγορίθμων κατασκευής μονοπατιών και ελεγκτών κίνησης στην επίτευξη της πλοήγησης στην στάση-στόχο p_G από την αρχική p_0 . Συνεπώς οι τιμές τους περιλαμβάνονται στον υπολογισμό της αξίας κάθε συνδυασμού ανεξάρτητα από το αν ο εν λόγω συνδυασμός απέτυχε να ολοκληρώσει όλες τις αποστολές.

Α΄.1. ΤΥΠΟΙ ΑΝΑΛΟΓΙΚΟΤΗΤΑΣ ΜΕΤΡΙΚΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΜΕΘΟΔΩΝ ΑΥΤΟΝΟΜΗΣ ΠΛΟΗΓΗ

Σχετικά με την τιμή-αξία ενός συνδυασμού αλγορίθμου χάραξης μονοπατιών και ελεγκτή κίνησης που αφορά στις μετρικές αξιολόγησης του συνδυασμού τους κάνουμε τις εξής παραδοχές. Η αξία ενός συνδυασμού είναι:

- χαμηλότερη όσο μεγαλύτερη είναι η μέση απόκλιση των πραγματικών διαδρομών που ακολούθησε το ρομπότ ως αποτέλεσμα της δράσης του ελεγκτή κίνησης από τα μονοπάτια που ο αλγόριθμος κατασκευής μονοπατιών σχεδίασε για να ακολουθήσει
- χαμηλότερη όσο μεγαλύτερη είναι η μέση συνολική απόκλιση των πρώτων από τα δεύτερα
- χαμηλότερη όσο μεγαλύτερη είναι η μέση απόσταση Frechet των πρώτων από τα δεύτερα
- υψηλότερη όσο χαμηλότερος είναι ο χρόνος διαδρομής από την αρχική προς την τελικήεπιθυμητή στάση
- υψηλότερη όσο μικρότερη σε μήκος είναι η πραγματική διαδρομή που ακολούθησε το ρομπότ
- χαμηλότερη όσο λιγότερο ομαλές είναι οι πραγματικές διαδρομές που ακολούθησε το ρομπότ
- υψηλότερη όσο μεγαλύτερη είναι η μέση ελάχιστη απόσταση του ρομπότ από τα εμπόδια του χάρτη
- υψηλότερη όσο μεγαλύτερη είναι η ολική ελάχιστη απόσταση του ρομπότ από τα εμπόδια
 σε έναν χάρτη σε όλες τις προσομοιώσεις και τα πειράματα, και
- χαμηλότερη όσο πιο μεγάλη η διακύμανση της τιμής της κάθε μετρικής

Οι παραπάνω μετρικές εξαρτώνται από την επιτυχία ή την αποτυχία του συνδυασμού των αλγορίθμων κατασκευής μονοπατιών και ελεγκτών κίνησης στην επίτευξη της πλοήγησης στην στάση-στόχο και, επομένως, δεν συμπεριλαμβάνονται στον υπολογισμό της τιμής-αξίας ενός συνδυασμού εάν ο συνδυασμός αυτός απέτυχε να πλοηγηθεί μέχρι την επιθυμητή στάση για κάθε προσομοίωση ή πείραμα που συνέβη αυτό.

Α΄.2 Λεπτομέρειες αξιολόγησης μεθόδων αυτόνομους πλοήγησης

Α΄.2.1 Στοιχεία αξιολόγησης στο περιβάλλον CORRIDOR

Α΄.2.1.1 Σχετικά με τους αλγορίθμους κατασκευής μονοπατιών

Οι πίναχες A'.1 και A'.2 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους αλγορίθμους κατασκευής μονοπατιών που ορίζονται στον πίναχα 4.2 και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον CORRIDOR.

Όσον αφορά στα παραγόμενα μονοπάτια ο global_planner παρήγαγε διαδρομές με το μικρότερο μήκος (πίνακας A'.1), o sbpl_lattice_planner εκείνα με το μεγαλύτερο μήκος και τη μικρότερη ανάλυση αλλά με τη μεγαλύτερη ομαλότητα (μικρότεροι αριθμοί υποδηλώνουν υψηλότερη ομαλότητα), και ο navfn παρήγαγε τα λιγότερο πυκνά μονοπάτια αλλά με τη χαμηλότερη ομαλότητα. Οι επιδόσεις του sbpl_lattice_planner σε σχέση με το μήχος είναι λογικές, δεδομένου ότι λαμβάνει υπόψη το κινηματικό μοντέλο του ρομπότ, το οποίο, όντας διαφορικής κίνησης, και επομένως μη ολόνομικό (non-holonomic), περιορίζεται στην χίνησή του. Αντίθετα, οι navfn και global_planner δεν λαμβάνουν υπόψη τέτοιους περιορισμούς και, καθώς ο τελευταίος είναι ο διάδοχος του πρώτου, παράγουν ελαφρώς παρόμοια μονοπάτια (αυτό παρατηρείται επίσης όταν εξετάζονται τα στοιχεία των δύο παραγόμενων μονοπατιών: φαίνονται σχεδόν πανομοιότυπα με γυμνό μάτι, σε πλήρη αντίθεση με εκείνα του sbpl_lattice_planner). Μια άλλη παρατηρήσιμη διαφορά στο σχήμα 4.5 είναι ότι τα μονοπάτια που χαράζει ο navfn και τα περισσότερα του sbpl_lattice_planner είναι ντετερμινιστικά: δεδομένης μιας αρχικής στάσης $m{p}_0$, μιας θέσης στόχου $m{p}_G$, και ενός χάρτη, αυτά παράγουν το ίδιο μονοπάτι κάθε φορά, ενώ ο global_planner εισάγει έναν μικρό βαθμό τυχαιότητας, το οποίο εξηγεί γιατί η τυπική απόκλιση των σχεδίων του είναι μη μηδενική σε σύγχριση με τους άλλους δύο αλγορίθμους.

Όσον αφορά στην κρίσιμη ικανότητα ενός αλγορίθμου κατασκευής μονοπατιών να σχεδιάζει γύρω από εμπόδια (πίνακας A'.2), ο global_planner παρήγαγε διαδρομές που δεν λαμβάνουν πλήρως υπόψη τους το αποτύπωμα του ρομπότ στο οριζόντιο επίπεδο (η αφαίρεση της ακτίνας του ρομπότ από την ολικά ελάχιστη απόσταση των μονοπατιών του από το πλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m), και επομένως ένας ελεγκτής κίνησης πλήρους πισοπαλησιέστερο εμπόδιο δίνει -0.02 m).

3 T /	10	`	' 0	, ~	,
METOLYÉC	επίδοσης	$\alpha \lambda \gamma$	OUTHOON	VACACAC	μονοπατιών

GP	LP	$\mu_l(\mathcal{G})$ [m]	$\sigma_l(\mathcal{G})$ [m]	$\mu_r({m{\mathcal{G}}})$ [στάσεις/m]	$\mu_s(\mathcal{G})$ [rad]	$\sigma_s(\mathcal{G})$ [rad]
navfn	dwa	19.63	0.00	76.18	2.42	0.00
navfn	eband	19.63	0.00	76.18	2.42	0.00
navfn	teb	19.61	0.02	76.20	2.42	0.00
<pre>global_planner</pre>	dwa	19.60	0.01	74.43	2.40	0.00
<pre>global_planner</pre>	eband	19.59	0.01	74.70	2.40	0.00
<pre>global_planner</pre>	teb	19.60	0.01	74.70	2.40	0.00
sbpl	dwa	22.92	0.00	53.25	2.39	0.00
sbpl	eband	22.92	0.00	53.41	2.39	0.00
sbpl	teb	22.92	0.00	53.33	2.39	0.00

Πίνακας Α΄.1: Μέσο συνολικό μήκος μονοπατιών $\mu_l(\mathcal{G})$ και τυπική απόκλιση $\sigma_l(\mathcal{G})$, μέση ανάλυση μονοπατιών $\mu_r(\mathcal{G})$, μέση τιμή ομαλότητας $\mu_s(\mathcal{G})$, και τυπική απόκλιση $\sigma_s(\mathcal{G})$, για N=10 προσομοιώσεις στο περιβάλλον CORRIDOR

στότητας στο σχεδιασθέν μονοπάτι θα ανάγχαζε, με βεβαιότητα, το ρομπότ να ματαιώσει την αποστολή του (μέχρι να τεθεί ίσως ένας νέος στόχος), ή αχόμη και να συγχρουστεί με εμπόδια στο περιβάλλον του. Οι δύο εναπομείναντες αλγόριθμοι παρήγαγαν διαδρομές που θα ανάγχαζαν το ρομπότ να συγχρουστεί με εμπόδια τουλάχιστον μία φορά. Επιπλέον, ο sbpl_lattice_planner θέτει το ρομπότ να χινηθεί παράλληλα με τοίχους, μια συμπεριφορά που μπορεί στην πραγματιχότητα να υπαγορευτεί στον αλγόριθμο (ο οποίος ρυθμίστηχε έτσι ώστε το ρομπότ να προτιμά να χινείται σε ευθείες γραμμές), το οποίο μπορεί να θεωρηθεί πλεονέχτημα, δεδομένου ότι υπάρχει πάντα ένα εμπόδιο αρχετά χοντά ώστε να μπορεί να αξιοποιηθεί ως σημείο αναφοράς χατά τη διάρχεια χαρτογράφησης ή εντοπισμού της στάσης ενός ρομπότ.

Α΄.2.1.2 Σχετικά με τους ελεγκτές κίνησης

Ο πίνακας Α΄.3 καταγράφει τις τιμές των ποσοτικών μετρικών που αφορούν στους ελεγκτές κίνησης που ορίζονται στον πίνακα 4.3 και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον CORRIDOR.

Κανένας από τους συνδυασμούς του ελεγκτή κίνησης dwa_local_planner με αλγορίθμους χάραξης μονοπατιών δεν ολοκλήρωσε αποστολή, και αυτό οφείλεται στο γεγονός ότι ο ελεγκτής ξόδεψε τον περισσότερο χρόνο του εκτελώντας συμπεριφορές ανάκτησης (έχει τον

3 / /	10	\ /^	, ~	,	,	10
ハルミエクリスミク	$\epsilon \pi i \rho \rho \sigma \rho \sigma$	$\alpha \gamma \Delta OO(H)(0)$	U VADAKME II	ιονοπατιών ο	マンとエレスとく ロミ	SUTUDING
						CMILOCIA

GP	LP	$\inf(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_C))$ [m]	$\mu(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_{C}))$ [m]	$\sigma(d(\mathcal{G}, M_C))$ [m]
navfn	dwa	0.00	0.52	0.32
navfn	eband	0.00	0.52	0.32
navfn	teb	0.00	0.52	0.32
<pre>global_planner</pre>	dwa	0.00 (-0.02)	0.48	0.31
<pre>global_planner</pre>	eband	0.00 (-0.02)	0.48	0.31
<pre>global_planner</pre>	teb	0.00 (-0.02)	0.48	0.32
sbpl	dwa	0.00	0.29	0.20
sbpl	eband	0.00	0.29	0.20
sbpl	teb	0.00	0.29	0.20

Πίνακας A'.2: Ολικά ελάχιστη απόσταση μονοπατιών ${\cal G}$ από οποιοδήποτε εμπόδιο $\inf(d({\cal G},{\cal M}_C))$, μέση ελάχιστη απόσταση $\mu(d({\cal G},{\cal M}_C))$ και τυπική απόκλιση $\sigma(d({\cal G},{\cal M}_C))$ από όλα τα εμπόδια, για N=10 προσομοιώσεις στο περιβάλλον CORRIDOR

υψηλότερο μέσο όρο ανακτήσεων με περιστροφή και εκκαθαρίσεων χαρτών κόστους μεταξύ των τριών ελεγκτών). Αυτό το γεγονός είχε ως αποτέλεσμα είτε τη ματαίωση των αποστολών, είτε την αποτυχία λόγω χρονικού time-out. Εν τέλει αυτό οφείλεται στο γεγονός ότι ο dwa_local_planner ακολουθεί τα σχεδιασθέντα μονοπάτια με υψηλή πιστότητα, τα οποία όμως είναι στην πραγματικότητα ανέφικτα, αφού η ολικά ελάχιστη απόσταση από τα εμπόδια είναι το πολύ μηδέν (πίνακας Α΄.2). Επιπλέον, διαθέτει την υψηλότερη αναλογία αποτυχιών διαδρομής ανά σύνολο κλήσεών του.

Ο ελεγκτής eband_local_planner είχε καλύτερες επιδόσεις από τον dwa_local_planner: δεν διέκοψε ποτέ αποστολή, και δεν εκτέλεσε συμπεριφορές ανάκτησης. Η τελική αποτυχία του είναι ότι δεν προκαλεί κινήσεις σε εύλογα χρονικά διαστήματα (αυτό μπορεί να παρατηρηθεί στους μέσους χρόνους διαδρομής που παρουσιάζονται στον πίνακα A'.4—υπενθυμίζουμε ότι $t_C^{max}=120~{
m sec}$), δηλαδή η προσέγγισή του είναι υπερβολικά ασφαλής. Ο συνδυασμός του με τον αλγόριθμο ${
m shpl}$ lattice_planner ήταν ο χειρότερος, κάτι που θα μπορούσε θεωρητικά να αποδοθεί εν μέρει στο γεγονός ότι ο τελευταίος παράγει τα πιο πυκνά και μακρύτερα σχέδια, αλλά στην πραγματικότητα οφείλεται σε ένα άγνωστο ζήτημα που προκαλεί τον ελεγκτή να ανακηρύξει ότι το ρομπότ έφτασε στο στόχο του ενώ στην πραγματικότητα εξακολουθεί να βρίσκεται στη μέση της διαδρομής σε ορισμένες προσομοιώσεις (αυτός είναι ο δεύτερος λόγος για τον οποίο στον ${
m shpl}$ lattice_planner δόθηκε κατάσταση ανεπάρκειας

Α΄.2. Λ ΕΠΤΟΜΕΡΕΙΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΜΕΘΟ Δ ΩΝ ΑΥΤΟΝΟΜΟΥΣ ΠΛΟΗΓΗΣΗΣ199

στον πίνακα 4.5—ο πρώτος είναι το σφάλμα που βρέθηκε και επιλύθηκε που αναφέρθηκε στην ενότητα 4.4.1).

Αντίθετα, ο ελεγκτής κίνησης teb_local_planner είχε την καλύτερη επίδοση ανά μετρική: δεν ματαίωσε ποτέ αποστολή, δεν εκτέλεσε ούτε μία συμπεριφορά ανάκτησης, δεν απέτυχε ποτέ να υπολογίσει έγκυρες ταχύτητες κινητήρων, και ποτέ δεν απέτυχε στο να οδηγήσει το ρομπότ στη στάση-στόχο μέσα στο προκαθορισμένο χρονικό όριο.

Μετρικές επίδοσης ελεγκτών κίνησης

GP	LP	μ_A/N	μ_{RR}	σ_{RR}	μ_{CC}	σ_{CC}	μ_{PF}	σ_{PF}	μ_{PF}/μ_{LPC}
navfn	dwa	0.90	2.90	0.57	3.30	0.67	53.50	17.35	0.11
<pre>global_planner</pre>	dwa	0.90	3.30	1.16	2.70	0.95	58.90	22.29	0.10
sbpl	dwa	0.50	3.30	0.67	3.00	1.41	8.50	5.58	0.02
navfn	eband	0.00	0.00	0.00	0.00	0.00	1.10	1.66	N/A
<pre>global_planner</pre>	eband	0.00	0.00	0.00	0.00	0.00	1.60	1.84	N/A
sbpl	eband	0.00	0.00	0.00	0.00	0.00	0.20	0.42	N/A
navfn	teb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<pre>global_planner</pre>	teb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sbpl	teb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Πίνακας ${\rm A}'.3$: Μέσος αριθμός ματαιωμένων αποστολών επί του αριθμού των προσομοιώσεων που πραγματοποιήθηκαν μ_A/N , μέσος αριθμός ανακτήσεων με περιστροφή μ_{RR} και η τυπική τους απόκλιση σ_{RR} , μέσος αριθμός εκκαθαρίσεων χαρτών κόστους μ_{CC} και η τυπική τους απόκλιση σ_{CC} , μέσος αριθμός αποτυχιών διαδρομής μ_{PF} και η τυπική τους απόκλιση σ_{PF} , και μέσος αριθμός αποτυχιών διαδρομής επί του μέσου αριθμού των κλήσεων του ελεγκτή κίνησης μ_{PF}/μ_{LPC} , για όλους τους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που παρουσιάζονται στον πίνακα 4.6, για N=10 προσομοιώσεις στο περιβάλλον CORRIDOR

Α΄.2.1.3 Σχετικά με το συνδυασμό τους

Οι πίνακες Α΄.4, Α΄.5, Α΄.6, και Α΄.7 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που ορίζονται στον πίνακα 4.4, και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον CORRIDOR.

Σε όρους χρόνου που απαιτείται για την επίτευξη πλοήγησης από την αρχική στάση στην στάση-στόχο (πίνακας A'.4), όλοι οι συνδυασμοί των αλγορίθμων χάραξης μονοπατιών με τον $dwa_local_planner$ αποκλείονται από αξιολόγηση (αφού αποτελεί προϋπόθεση το ρομπότ να φτάσει στο στόχο του), και το ίδιο ισχύει και για το συνδυασμό των

sbpl_lattice_planner και eband_local_planner. Για τους υπόλοιπους συνδυασμούς (α) η χρήση του teb_local_planner επιφέρει τις χαμηλότερου χρόνου διαδρομές (πράγμα αναμενόμενο, αφού προσεγγίζει το πρόβλημα της πλοήγησης με όρους βελτιστοποίησης σε σχέση με το χρόνο), (β) ο eband_local_planner είναι ο πιο αργός μεταξύ των δύο—με σημαντική διαφορά, αφού χρειάζεται περισσότερο από το διπλάσιο χρόνο για να ολοκληρώσει μια αποστολή, και (γ) οι διαδρομές του πρώτου είναι οι πιο συνεπείς μεταξύ τους. Το γεγονός ότι ο sbpl_lattice_planner παράγει μονοπάτια μεγαλύτερου μήκους—περίπου 17% μακρύτερα από εκείνα των άλλων δύο αλγορίθμων (πίνακας A'.1)—έκανε τον συνδυασμό του με τον teb_local_planner να εμφανίσει χρόνους πλοήγησης με διαφορά άνω των δύο δευτερολέπτων, το οποίο μεταφράζεται σε περίπου 10% αύξηση του χρόνου διαδρομής σε σύγκριση με εκείνους του teb_local_planner με τον navfn και τον global_planner.

Μετρικές που αφορούν στον χρόνο πραγματικής διαδρομής GP LP $\mu_t [\sec]$ σ_t [sec] navfn dwa 47.5314.85 global_planner 55.98 24.87dwa 78.72 25.80 sbpl dwa navfn 107.520.81eband global_planner eband 106.86 1.00 70.80 17.93 sbpl eband 44.89 0.44 teb navfn global_planner teb 44.83 0.44 0.24 teb 46.61 sbpl

Πίνακας Α΄.4: Μέσος χρόνος διαδρομής μ_t από την αρχική στην τελική στάση και τυπική απόκλιση σ_t για N=10 προσομοιώσεις στο περιβάλλον CORRIDOR. Οι συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές και οι τιμές των αντίστοιχων μετρικών σημειώνονται με έντονη γραφή

Όσον αφορά στο μέσο μήχος των διανυόμενων διαδρομών (πίναχας Α΄.5), οι ίδιοι συνδυασμοί global planners με τους eband_local_planner και teb_local_planner έκαναν το ρομπότ να διανύσει μεγαλύτερα μήκη σε σύγκριση με τα σχεδιασθέντα μονοπάτια τους: και οι δύο προσεγγίσεις παραμορφώνουν το παγκόσμιο σχέδιο προκειμένου να κερδίσουν μεγαλύτερη απόσταση από εμπόδια, και αυτός είναι ο λόγος για τον οποίο ο dwa_local_planner αποτυγχάνει σε κάθε προσομοίωση. Επιπλέον, οι διαδρομές που ο teb_local_planner υπαγόρευσε στο ρομπότ ήταν οι μακρύτερες αλλά οι πιο συνεπείς, και η πιο συνεπής από όλες

παρατηρήθηκε όταν χρησιμοποιήθηκε ο navfn ως αλγόριθμος χάραξης μονοπατιών, κάτι που είναι αναμενόμενο, αφού τα σχεδιασθέντα μονοπάτια του είναι ντετερμινιστικά. Όσον αφορά στην ομαλότητα των διαδρομών, ο συνδυασμός του sbpl_lattice_planner με τον teb_local_planner παρουσίασε την υψηλότερη τιμή και τη μικρότερη διακύμανση.

		Μετρικές σχετικές με τις διανυθείσες διαδρομές					
GP	LP	$\mu_l(\mathbf{P})$ [m]	$\sigma_l(\mathcal{P})$ [m]	$\mu_s(\mathbf{P})$ [rad]	$\sigma_s(\mathcal{P})$ [rad]		
navfn	dwa	9.24	3.37	1.56	0.16		
<pre>global_planner</pre>	dwa	8.62	3.23	1.66	0.15		
sbpl	dwa	9.12	3.01	1.60	0.23		
navfn	eband	20.15	0.09	2.36	0.01		
<pre>global_planner</pre>	eband	20.04	0.07	2.36	0.01		
sbpl	eband	12.79	3.52	1.78	0.27		
navfn	teb	20.87	0.03	1.66	0.06		
<pre>global_planner</pre>	teb	20.88	0.04	1.69	0.09		
sbpl	teb	22.99	0.06	1.65	0.02		

Πίνακας Α΄.5: Μέσο μήκος διαδρομής $\mu_l(\mathcal{P})$ και τυπική απόκλιση $\sigma_l(\mathcal{P})$, και μέση τιμή ομαλότητας διαδρομής $\mu_s(\mathcal{P})$ και τυπική απόκλιση $\sigma_s(\mathcal{P})$ για N=10 προσομοιώσεις στο περιβάλλον CORRIDOR. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

Όσον αφορά στην απόσταση από τα εμπόδια στο χάρτη M_C (πίναχας A'.6), ο συνδυασμός του eband_local_planner με τον sbpl_lattice_planner δεν επέφερε συγκρούσεις με εμπόδια, ενώ οι αποστάσεις του από αυτά ήταν χαμηλότερες από εκείνες του teb_local_planner. Η δυνατότητα παραμετροποίησης του τελευταίου όσον αφορά στην ελάχιστη απόσταση από τα εμπόδια (που ορίστηκε σε 0.10m) έπαιξε σαφώς σημαντικό ρόλο στην απόσταση του ρομπότ από τα εμπόδια: όντας 0.18 m σε όλα τα πειράματα έδωσε στο ρομπότ τη μεγαλύτερη ελάχιστη απόσταση από εμπόδια σε σύγκριση με του άλλους ελεγκτές (αυτός ήταν ένας ακόμη λόγος για τον οποίο σημείωσε τέτοια βαθμολογία όσον αφορά στην ποιοτική μετρική της παραμετροποιησιμότητας στον πίνακα 4.5). Επιπλέον, το ίδιο παρατηρείται όσον αφορά στη μέση απόσταση κάθε στάσης του ρομπότ από το πλησιέστερο εμπόδιο στο χάρτη του κόσμου CORRIDOR, ενώ η διακύμανσή της είναι η μικρότερη (σε σύγκριση με τους συνδυασμούς που ολοκλήρωσαν την αποστολή). Παρεμπιπτόντως, ο ελεγκτής dwa_local_planner απέτυχε να αποφύγει εμπόδιο τουλάχιστον μία φορά σε N προσομοιώσεις όταν ο αντίστοιχος αλγόριθμος χάραξης μονοπατιών που χρησιμοποιήθηκε λειτουργεί με άγνοια του κινηματικού

202 ΠΑΡΑΡΤΗΜΑ Α΄. ΑΞΙΟΛΟΓΗΣΗ ΑΛΓΟΡΙΘΜΏΝ ΑΥΤΟΝΟΜΗΣ ΠΛΟΗΓΗΣΗΣ

μοντέλου του ρομπότ. Από την άλλη πλευρά, όταν χρησιμοποιήθηκε ως αλγόριθμος χάραξης μονοπατιών ο sbpl_lattice_planner το ρομπότ δεν συγκρούστηκε ούτε μία φορά με εμπόδιο. Επιπλέον, η μέση απόστασή του από εμπόδια ήταν η υψηλότερη μεταξύ των αλγορίθμων χάραξης μονοπατιών που χρησιμοποιήθηκαν, ενώ η τυπική της απόκλιση ήταν η χαμηλότερη.

Μετρικές που αφορούν στα εμπόδια και τις πραγματικές διαδρομές

GP	LP	$\inf(d(\mathcal{P}, M_C))$ [m]	$\mu(d(\mathcal{P}, M_C))$ [m]	$\sigma(d(\mathcal{P}, M_C))$ [m]
navfn	dwa	0.00 (-0.02)	0.17	0.19
<pre>global_planner</pre>	dwa	0.00 (-0.02)	0.15	0.18
sbpl	dwa	0.06	0.21	0.16
navfn	eband	0.07	0.55	0.27
<pre>global_planner</pre>	eband	0.09	0.53	0.27
sbpl	eband	0.10	0.40	0.17
navfn	teb	0.18	0.64	0.19
global_planner	teb	0.18	0.64	0.20
sbpl	teb	0.18	0.49	0.16

Πίναχας Α΄.6: Ολικά ελάχιστη απόσταση των πραγματικών διαδρομών $\mathcal P$ που διήνυσε το ρομπότ από οποιοδήποτε εμπόδιο σε όλες τις προσομοιώσεις $\inf(d(\mathcal P,M_C))$, μέση ελάχιστη απόσταση $\mu(d(\mathcal P,M_C))$ από όλα τα εμπόδια για N=10 προσομοιώσεις στο χάρτη CORRIDOR M_C , και μέση τυπική απόκλιση $\sigma(d(\mathcal P,M_C))$. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

Όσον αφορά στην απόχλιση των διανυθέντων μονοπατιών από τα αντίστοιχα σχεδιασθέντα μονοπάτια (πίναχας Α΄.7), ο ελεγχτής χίνησης dwa_local_planner παρουσίασε τη χαμηλότερη μέση απόχλιση θέσης στους συνδυασμούς του με αλγορίθμους χάραξης μονοπατιών που δεν λαμβάνουν υπόψη τους το χινηματιχό μοντέλο του ρομπότ, χάτι που είναι αναμενόμενο, χαθώς, όπως συζητήθηκε προηγουμένως, είναι ο ελεγχτής με τη μεγαλύτερη πιστότητα στο σχεδιασθέν μονοπάτι μεταξύ των τριών ελεγχτών. Ωστόσο, λόγω της αδυναμίας του να ολοχληρώσει έστω χαι μία αποστολή, όλοι οι συνδυασμοί του με αλγορίθμους χάραξης μονοπατιών αποχλείονται από την αξιολόγηση, χαι το ίδιο ισχύει χαι για τον συνδυασμό του sbpl_lattice_planner με τον eband_local_planner. Από τους υπόλοιπους συνδυασμός, εχείνοι που χρησιμοποιούν τον teb_local_planner παρουσιάζουν τη μιχρότερη μέση απόχλιση χάθε στάσης σε σχέση με το συνολιχό σχέδιο, χαι, ειδιχότερα, ο συνδυασμός του με τον sbpl_lattice_planner παρουσιάζει τη μιχρότερη συνολιχή απόχλιση μεταξύ όλων των άλλων συνδυασμών. Επιπλέον, η μέση διαχριτή απόσταση Frechet ήταν σταθερά χαμηλότερη

από εκείνη του eband_local_planner.

3 / /	,	/)	0 0 1	,	2 01	,
METOIXEC	CAELIAEC HE	την αποχλίσι	u prapobnich.	$\alpha \pi \alpha$	σχεδιασθέντα	ΠΟΛΟΨάτια
1110 (01)(05	o ke tintes pe	cija wicoscittoi		$\alpha n c c$	O X COMMO OC F LM	provonce con

GP	LP	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu^F_{\delta}(\mathcal{P},\mathcal{G})$ [m]
navfn	dwa	0.04	45.98	5.58
<pre>global_planner</pre>	dwa	0.04	39.39	5.28
sbpl	dwa	0.09	101.28	5.08
navfn	eband	0.10	104.96	0.38
<pre>global_planner</pre>	eband	0.13	139.69	0.47
sbpl	eband	0.13	145.06	5.06
navfn	teb	0.07	$\boldsymbol{81.96}$	0.26
<pre>global_planner</pre>	teb	0.08	89.89	0.29
sbpl	teb	0.07	$\boldsymbol{73.59}$	0.26

Πίνακας Α΄.7: Μέση απόκλιση $\mu_{\delta}(\mathcal{P},\mathcal{G})$, μέση συνολική απόκλιση $\mu_{\Delta}(\mathcal{P},\mathcal{G})$, και μέση απόσταση Frechet $\mu_{\delta}^F(\mathcal{P},\mathcal{G})$ μεταξύ των πραγματικών διαδρομών \mathcal{P} που ακολούθησε το ρομπότ και των αντίστοιχων σχεδιασθέντων μονοπατιών \mathcal{G} για N=10 προσομοιώσεις στο χάρτη CORRIDOR M_C . Συνδυασμοί που ολοκλήρωσαν τουλάχιστον μία αποστολή σημειώνονται με έντονη γραφή

Α΄.2.2 Στοιχεία αξιολόγησης στο περιβάλλον WILLOWGARAGE

Α΄.2.2.1 Σχετικά με τους αλγορίθμους κατασκευής μονοπατιών

Οι πίναχες A'.8 και A'.9 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους αλγορίθμους κατασκευής μονοπατιών που ορίζονται στον πίνακα 4.2 και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE.

Όσον αφορά στα παραγόμενα μονοπάτια (πίναχας Α΄.8), και σε σχέση με τις μετρικές που αφορούν την αξιολόγηση των αλγορίθμων χάραξης μονοπατιών, τίποτα δεν άλλαξε σε σύγκριση με εκείνες που αφορούν στο περιβάλλον CORRIDOR: o global_planner παρήγαγε και πάλι μονοπάτια με το μικρότερο μήκος, o sbpl_lattice_planner εκείνα με το μεγαλύτερο μήκος και τη χαμηλότερη ανάλυση αλλά με τη μεγαλύτερη ομαλότητα, και ο navfn παρήγαγε τα λιγότερο πυκνά μονοπάτια, αλλά με τη χαμηλότερη ομαλότητα.

Αυτό που άλλαξε ήταν η ολικά ελάχιστη απόσταση των μονοπατιών του sbpl_lattice_planner από τα εμπόδια (πίνακας Α΄.9): ενώ στο χάρτη του κόσμου CORRIDOR δεν σχεδίασε ούτε μία φορά μέσα από εμπόδια, στο χάρτη του κόσμου WILLOWGARAGE το έκανε—όπως έκανε και πάλι ο global_planner. Εκτός από αυτό, παρουσίασε και πάλι τη χαμηλότερη μέση ελάχιστη απόσταση από εμπόδια και τη μεγαλύτερη συνέπεια απόστασης γύρω από τη

204 ΠΑΡΑΡΤΗΜΑ Α΄. ΑΞΙΟΛΟΓΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΥΤΟΝΟΜΗΣ ΠΛΟΗΓΗΣΗΣ

Μετρικές επίδοσης αλγορίθμων χάραξης μονοπατιών

GP	LP	$\mu_l(\mathcal{G})$ [m]	$\sigma_l(\mathcal{G})$ [m]	$\mu_r({m{\mathcal{G}}})$ [στάσεις/m]	$\mu_s(\mathcal{G})$ [rad]	$\sigma_s(\mathcal{G})$ [rad]
navfn	dwa	44.50	0.02	37.15	1.99	0.00
navfn	eband	44.50	0.02	37.15	1.99	0.00
navfn	teb	44.53	0.04	37.10	1.99	0.00
<pre>global_planner</pre>	dwa	44.48	0.00	36.76	1.97	0.00
<pre>global_planner</pre>	eband	44.49	0.01	36.61	1.97	0.00
<pre>global_planner</pre>	teb	44.49	0.01	36.64	1.97	0.00
sbpl	dwa	48.01	0.00	30.93	2.02	0.00
sbpl	eband	48.01	0.00	30.93	2.02	0.00
sbpl	teb	48.01	0.01	30.95	2.02	0.00

Πίναχας Α΄.8: Μέσο συνολικό μήκος μονοπατιών $\mu_l(\mathcal{G})$ και τυπική απόκλιση $\sigma_l(\mathcal{G})$, μέση ανάλυση μονοπατιών $\mu_r(\mathcal{G})$, μέση τιμή ομαλότητας $\mu_s(\mathcal{G})$, και τυπική απόκλιση $\sigma_s(\mathcal{G})$, για N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE

μέση τιμή. Από την άλλη πλευρά, ο navfn κέρδισε, κατά μέσο όρο, ένα εκατοστό απόστασης, και η απόδοσή του σε σχέση με τη μέση ελάχιστη απόσταση κάθε στάσης από εμπόδια ήταν ισοδύναμη με εκείνη του global_planner, όπως ήταν επίσης και η τυπική του απόκλιση.

Μετρικές επίδοσης αλγορίθμων χάραξης μονοπατιών σχετικές με εμπόδια

GP	LP	$\inf(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_W))$ [m]	$\mu(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_W))$ [m]	$\sigma(d(\mathcal{G}, M_W))$ [m]
navfn	dwa	0.01	0.51	0.52
navfn	eband	0.01	0.51	0.52
navfn	teb	0.01	0.51	0.52
<pre>global_planner</pre>	dwa	0.00 (-0.02)	0.51	0.53
<pre>global_planner</pre>	eband	0.00 (-0.02)	0.51	0.53
<pre>global_planner</pre>	teb	0.00 (-0.02)	0.51	0.53
sbpl	dwa	0.00 (-0.02)	0.35	0.43
sbpl	eband	0.00 (-0.02)	0.35	0.43
sbpl	teb	0.00 (-0.02)	0.35	0.43

Πίνακας Α΄.9: Ολικά ελάχιστη απόσταση μονοπατιών ${\cal G}$ από οποιοδήποτε εμπόδιο $\inf(d({\cal G},{\cal M}_W))$, μέση ελάχιστη απόσταση $\mu(d({\cal G},{\cal M}_W))$ και τυπική απόκλιση $\sigma(d({\cal G},{\cal M}_W))$ από όλα τα εμπόδια, για N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE

Α΄.2.2.2 Σχετικά με τους ελεγκτές κίνησης

Ο πίνακας Α΄.10 καταγράφει τις τιμές των ποσοτικών μετρικών που αφορούν στους ελεγκτές κίνησης που ορίζονται στον πίνακα 4.3 και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE.

Το αυξημένο επίπεδο δυσχολίας πλοήγησης του χόσμου WILLOWGARAGE εξέθεσε τις περισσότερες αδυναμίες των ελεγχτών χίνησης. Αυτό που είναι εντυπωσιαχό είναι ότι όλοι οι συνδυασμοί αλγορίθμων χάραξης μονοπατιών με τους dwa_local_planner και eband_local_planner απέτυχαν να μεταφέρουν το ρομπότ από την αρχική στην τελική στάση σε όλες τις προσομοιώσεις που πραγματοποιήθηκαν. Όταν χρησιμοποιήθηκαν αλγόριθμοι χάραξης μονοπατιών που δεν λαμβάνουν υπόψη το χινηματικό μοντέλο του ρομπότ, ο πρώτος ματαίωσε όλες τις αποστολές, ενώ ματαίωσε τις περισσότερες από αυτές (7 στις 10) στην αντίθετη περίπτωση (—είναι σαφές ότι η χρήση ενός αλγορίθμου χάραξης μονοπατιών που λαμβάνει υπόψη τους περιορισμούς χίνησης του ρομπότ είναι πλεονέχτημα στην περίπτωση ενός "άχαμπτου" ελεγχου στην πρώτη περίπτωση και, στη δεύτερη περίπτωση, τον υψηλότερο αριθμό αποτυχιών ελέγχου στην πρώτη περίπτωση και, στη δεύτερη περίπτωση, τον υψηλότερο μέσο αριθμό εχαθαρίσεων χαρτών χόστους.

Όσον αφορά στην επίδοση του eband_local_planner στο χάρτη M_W , ισχύει το ίδιο που ισχύει και στο χάρτη M_C στην περίπτωση του συνδυασμού του με τον sbpl_lattice_planner: παρουσίασε τον χαμηλότερο αριθμό αποτυχιών διαδρομής (τουλάχιστον τρεις φορές μικρότερο από τον αμέσως επόμενο χαμηλότερο συνδυασμό). Παρόλο που ο eband_local_planner κατάφερε να κάνει το ρομπότ να διανύσει σημαντικά μεγαλύτερες αποστάσεις σε σύγκριση με τον dwa_local_planner (εικόνα 4.8), και παρόλο που ήταν συνεπής στην πλοήγησή του (το σφάλμα λογισμικού που αναφέρθηκε στην προηγούμενη ενότητα σχετικά με το συνδυασμό του με sbpl_lattice_planner δεν εμφανίστηκε στο περιβάλλον WILLOWGARAGE), χρειάστηκε και πάλι περισσότερο από τον προκαθορισμένο χρόνο σε κάθε προσομοίωση, δείχνοντας την υπερβολικά ασφαλή προσέγγισή του (οι μέσοι χρόνοι του ήταν σταθερά αργοί, όπως παρατηρήθηκε και στις προσομοιώσεις του στο περιβάλλον CORRIDOR). Οι μέσοι χρόνοι πλοήγησης απεικονίζονται στον πίνακα Α΄.11 (υπενθυμίζεται ότι $t_W^{max} = 180$ sec).

Σε αντίθεση με όλους τους συνδυασμούς των αλγορίθμων χάραξης μονοπατιών με τους dwa_local_planner και eband_local_planner, όλοι οι συνδυασμοί τους με τον teb_local_planner κατάφεραν να διανύσουν τη διαδρομή από την αρχική στην τελική στάση. Και πάλι ήταν πρώτος στη μη ματαίωση αποστολής, στην επίτευξη της στάσης στόχου σε όλες τις προσομοιώσεις, στη μη εκτέλεση έστω και μιας συμπεριφορά ανάκαμψης. Μόνο ο συνδυασμός του με τον αλγόριθμο χάραξης μονοπατιών sbpl_lattice_planner απέτυχε να εξασφαλίσει έγκυρες εισόδους κινητήρων, αλλά μόνο ελάχιστα (—η χρήση ενός global planner που λαμβάνει υπόψη του το κινηματικό μοντέλο της βάσης του ρομπότ δεν φαίνεται να είναι ιδιαίτερα επωφελής στην περίπτωση ενός ευέλικτου ελεγκτή κίνησης όπως στην περίπτωση ενός άκαμπτου ελεγκτή).

Μετρικές επίδοσης ελεγκτών κίνησης

GP	LP	μ_A/N	μ_{RR}	σ_{RR}	μ_{CC}	σ_{CC}	μ_{PF}	σ_{PF}	μ_{PF}/μ_{LPC}
navfn	dwa	1.00	2.00	0.00	3.00	0.00	45.80	10.97	0.09
<pre>global_planner</pre>	dwa	1.00	2.30	0.48	3.00	0.00	35.40	10.94	0.08
sbpl	dwa	0.70	3.20	1.48	3.60	1.07	12.00	4.85	0.03
navfn	eband	0.00	0.00	0.00	0.00	0.00	20.10	25.78	N/A
<pre>global_planner</pre>	eband	0.00	0.00	0.00	0.00	0.00	8.00	10.87	N/A
sbpl	eband	0.00	0.00	0.00	0.00	0.00	3.20	2.15	N/A
navfn	teb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<pre>global_planner</pre>	teb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sbpl	teb	0.00	0.00	0.00	0.00	0.00	0.10	0.32	0.00

Πίναχας A'.10: Μέσος αριθμός ματαιωμένων αποστολών επί του αριθμού των προσομοιώσεων που πραγματοποιήθηκαν μ_A/N , μέσος αριθμός ανακτήσεων με περιστροφή μ_{RR} και η τυπική τους απόκλιση σ_{RR} , μέσος αριθμός εκκαθαρίσεων χαρτών κόστους μ_{CC} και η τυπική τους απόκλιση σ_{CC} , μέσος αριθμός αποτυχιών διαδρομής μ_{PF} και η τυπική τους απόκλιση σ_{PF} , και μέσος αριθμός αποτυχιών διαδρομής επί του μέσου αριθμού των κλήσεων του ελεγκτή κίνησης μ_{PF}/μ_{LPC} , για όλους τους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που παρουσιάζονται στον πίνακα 4.6, για N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE

Α΄.2.2.3 Σχετικά με το συνδυασμό τους

Οι πίναχες Α΄.11, Α΄.12, Α΄.13, και Α΄.14 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που ορίζονται στον πίναχα 4.4, και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE.

Όσον αφορά στο χρόνο που απαιτείται για την επίτευξη της πλοήγησης από την αρχική στην επιθυμητή στάση (πίνακας Α΄.11), όλοι οι συνδυασμοί που περιλαμβάνουν τους

dwa_local_planner και eband_local_planner αποκλείονται από την αξιολόγηση λόγω της αδυναμίας τους να οδηγήσουν το ρομπότ στο στόχο του. Ωστόσο, πρέπει να σημειωθεί ότι ενώ οι συνδυασμοί του dwa_local_planner με αλγορίθμους χάραξης μονοπατιών που αγνοούν το κινηματικό μοντέλο του ρομπότ δεν μπόρεσαν να το περάσουν ούτε από το πρώτο άνοιγμα (μια πόρτα), ο συνδυασμός του με τον sbpl_lattice_planner κατάφερε να το κάνει, και μάλιστα για τα επόμενα τέσσερα ανοίγματα, προτού κολλήσει στο έκτο. Οι υπόλοιποι συνδυασμοί—όλοι εκείνοι που διαθέτουν τον teb_local_planner ως ελεγκτή κίνησής τους—έκαναν το ρομπότ να χρειαστεί λίγο περισσότερο από το μισό του μέγιστου χρόνου για να διανύσει το σύνολο της διαδρομής από τη στάση p_0^W στην p_G^W . Το γεγονός ότι ο sbpl_lattice_planner παράγει σχέδια μεγαλύτερου μήκους—περίπου 4.5% μακρύτερα από αυτά των άλλων δύο αντίστοιχων αλγορίθμων (πίνακας Α΄.8)—είχε αντίκτυπο στο συνολικό χρόνο πλοήγησης του ρομπότ στον συνδυασμό του με τον teb_local_planner, με αύξηση λίγο πάνω από 5 δευτερόλεπτα, η οποία μεταφράζεται σε περίπου την ίδια (5%) αύξηση στους χρόνους διαδρομής σε σύγκριση με εκείνους τους συνδυασμού του teb_local_planner με τον navfn και τον global_planner.

Μετρικές που αφορούν στον χρόνο πραγματικής διαδρομής

GP	LP	$\mu_t [\sec]$	σ_t [sec]
navfn	dwa	20.46	19.24
<pre>global_planner</pre>	dwa	22.76	18.85
sbpl	dwa	78.91	48.12
navfn	eband	158.14	5.25
<pre>global_planner</pre>	eband	151.23	2.00
sbpl	eband	147.53	2.46
navfn	teb	95.45	0.34
<pre>global_planner</pre>	teb	95.50	0.41
sbpl	teb	100.55	1.56

Πίνακας A'.11: Μέσος χρόνος διαδρομής μ_t από την αρχική στην τελική στάση και τυπική απόκλιση σ_t για N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE. Οι συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές και οι τιμές των αντίστοιχων μετρικών σημειώνονται με έντονη γραφή

Όσον αφορά στο μέσο μήχος των διανυόμενων διαδρομών (πίναχας Α΄.12), παρατηρείται και πάλι ότι, λόγω της παραμόρφωσης του σχεδιασθέντος μονοπατιού από το teb_local_planner έτσι ώστε να επιτυγχάνεται η καθορισμένη ελάχιστη απόσταση από εμπόδια, οι πραγματικές

διαδρομές είναι μεγαλύτερες από τα αντίστοιχα σχεδιασθέντα μονοπάτια—και αυτό σε βαθμό περίπου 4.5% όσον αφορά στον navfn και τον global_planner, και 1.5% όσον αφορά στο sbpl_lattice_planner. Όσον αφορά στην ομαλότητα της διαδρομής, ο συνδυασμός του με τον navfn έδωσε τα πιο ομαλά μονοπάτια, με τους άλλους δύο συνδυασμούς να ακολουθούν σε κοντινή απόσταση.

		Μετρικές σχετικές με τις διανυθείσες διαδρομές				
GP	LP	$\mu_l(\mathbf{P})$ [m]	$\sigma_l(\mathbf{P})$ [m]	$\mu_s(\mathbf{P})$ [rad]	$\sigma_s(\mathcal{P})$ [rad]	
navfn	dwa	2.35	0.03	0.67	0.13	
<pre>global_planner</pre>	dwa	2.35	0.03	0.63	0.17	
sbpl	dwa	7.94	7.62	0.81	0.35	
navfn	eband	29.80	1.26	1.83	0.02	
<pre>global_planner</pre>	eband	28.83	0.43	1.84	0.01	
sbpl	eband	26.98	0.53	1.78	0.02	
navfn	teb	46.53	0.08	1.57	0.04	
<pre>global_planner</pre>	teb	46.55	0.04	1.61	0.02	
sbpl	teb	48.73	0.09	1.61	0.01	

Πίνακας Α΄.12: Μέσο μήκος διαδρομής $\mu_l(\mathcal{P})$ και τυπική απόκλιση $\sigma_l(\mathcal{P})$, και μέση τιμή ομαλότητας διαδρομής $\mu_s(\mathcal{P})$ και τυπική απόκλιση $\sigma_s(\mathcal{P})$ για N=10 προσομοιώσεις στο περιβάλλον WILLOWGARAGE. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

Όσον αφορά στην απόσταση σε σχέση με τα εμπόδια του χάρτη M_W (πίναχας Α΄.13), ο teb_local_planner κατάφερε να επιτύχει την ελάχιστη τεθειμένη απόσταση ρομπότεμποδίων (που έχει οριστεί όπως προηγουμένως σε $0.10~\mathrm{m}$) όταν συνδυάστηκε με τους προεπιλεγμένους αλγορίθμους χάραξης μονοπατιών του ROS. Όταν συνδυάστηκε με τον sbpl_lattice_planner, ωστόσο, απέτυχε. Ο συνδυασμός του με τον navfn έδωσε στο ρομπότ τη μεγαλύτερη μέση απόσταση από τα εμπόδια σε όλες τις προσομοιώσεις. Ο συνδυασμός του με τον sbpl_lattice_planner του έδωσε το μικρότερο μέσο όρο απόστασης και τη μικρότερη διακύμανση γύρω από αυτήν (5 cm λιγότερο), μια συμπεριφορά που συνάδει με αυτή που παρουσιάζεται στο χάρτη του κόσμου CORRIDOR.

Όσον αφορά στην απόκλιση των διανυθέντων μονοπατιών από τα αντίστοιχα σχεδιασθέντα μονοπάτια (πίνακας A'.14), δεν παρατηρείται συνέπεια σε σύγκριση με τα αποτελέσματα των προσομοιώσεων στο περιβάλλον CORRIDOR. Ενώ ο συνδυασμός του teb_local_planner με τον global_planner στον χάρτη M_C του περιβάλλοντος CORRIDOR παρουσίασε τη

		πετρικές που αφορο	ον ο τα εμποσια παι τις	πραγματικές σιασρομές
GP	LP	$\inf(d(\mathcal{P}, M_W))$ [m]	$\mu(d(\boldsymbol{\mathcal{P}}, \boldsymbol{M}_W))$ [m]	$\sigma(d(\mathcal{P}, M_W))$ [m]
navfn	dwa	0.33	0.37	0.14
global_planner	dwa	0.30	0.38	0.14
sbpl	dwa	0.01	0.36	0.23
navfn	eband	0.03	0.61	0.51
global_planner	eband	0.01	0.61	0.52
sbpl	eband	0.00	0.65	0.53
navfn	teb	0.10	0.82	0.47
global_planner	teb	0.10	0.79	0.48
sbpl	teb	0.09	0.67	0.42

Μετρικές που αφορούν στα εμπόδια και τις πραγματικές διαδρομές

Πίνακας A'.13: Ολικά ελάχιστη απόσταση των πραγματικών διαδρομών $\mathcal P$ που διήνυσε το ρομπότ από οποιοδήποτε εμπόδιο σε όλες τις προσομοιώσεις $\inf(d(\mathcal P,M_W))$, μέση ελάχιστη απόσταση $\mu(d(\mathcal P,M_W))$ από όλα τα εμπόδια για N=10 προσομοιώσεις στο χάρτη WILLOWGARAGE M_W , και μέση τυπική απόκλιση $\sigma(d(\mathcal P,M_W))$. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

μεγαλύτερη μέση απόκλιση, τη μεγαλύτερη συνολική μέση απόκλιση, και τη μεγαλύτερη μέση διακριτή απόσταση Frechet, στον χάρτη M_W του περιβάλλοντος WILLOWGARAGE παρουσίασε τις μικρότερες—και ο συνδυασμός του με τον sbpl_lattice_planner έδωσε τη μεγαλύτερη μέση διακριτή απόσταση Frechet, όταν στον χάρτη M_C έδωσε τη μικρότερη.

Α΄.2.3 Στοιχεία αξιολόγησης στο περιβάλλον CSAL

Α΄.2.3.1 Σχετικά με τους αλγορίθμους κατασκευής μονοπατιών

Οι πίναχες A'.15 και A'.16 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους αλγορίθμους κατασκευής μονοπατιών που ορίζονται στον πίναχα 4.2 και που προέκυψαν κατά τις N=10 προσομοιώσεις στο περιβάλλον CSAL.

Όσον αφορά στα παραγόμενα μονοπάτια (πίνακας Α΄.15), και όσον αφορά στις μετρικές αξιολόγησης των αλγορίθμων χάραξης μονοπατιών, ο navfn παρήγαγε τα μονοπάτια με το μικρότερο μήκος, και ο sbpl_lattice_planner εκείνα με το μεγαλύτερο, με τη μεγαλύτερη διακύμανση, με τη χαμηλότερη πυκνότητας στάσεων, αλλά και την υψηλότερης ομαλότητας. Ο global_planner παρήγαγε τα λιγότερο πυκνά σχέδια.

Ο αλγόριθμος χάραξης μονοπατιών sbpl_lattice_planner παρουσίασε την ίδια συμπεριφορά με εχείνη στον προσομοιωμένο χόσμο WILLOGARAGE: η ολιχά ελάχιστη από-

		- 1/ 3 - 70	3 ()	
GP	LP	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu^F_{\delta}(\mathcal{P},\mathcal{G})$ [m]
navfn	dwa	0.14	226.98	34.12
<pre>global_planner</pre>	dwa	0.12	185.54	34.06
sbpl	dwa	0.27	457.42	31.29
navfn	eband	0.12	194.53	11.98
<pre>global_planner</pre>	eband	0.12	190.02	12.74
sbpl	eband	0.18	271.59	15.89
navfn	teb	0.11	174.18	0.43
<pre>global_planner</pre>	teb	0.10	152.02	0.43

162.33

Μετρικές σχετικές με την απόκλιση διαδρομών από σχεδιασθέντα μονοπάτια

0.54

Πίνακας Α΄.14: Μέση απόκλιση $\mu_{\delta}(\mathcal{P},\mathcal{G})$, μέση συνολική απόκλιση $\mu_{\Delta}(\mathcal{P},\mathcal{G})$, και μέση απόσταση Frechet $\mu_{\delta}^F(\mathcal{P},\mathcal{G})$ μεταξύ των πραγματικών διαδρομών \mathcal{P} που ακολούθησε το ρομπότ και των αντίστοιχων σχεδιασθέντων μονοπατιών \mathcal{G} για N=10 προσομοιώσεις στο χάρτη WILLOWGARAGE M_W . Συνδυασμοί που ολοκλήρωσαν τουλάχιστον μία αποστολή σημειώνονται με έντονη γραφή

0.11

teb

sbpl

σταση των σχεδίων του από τα εμπόδια (πίνακας Α΄.16) ήταν μηδέν, όπως και εκείνη του global_planner, ο οποίος και στις τρεις περιπτώσεις σχεδίασε σταθερά μέσα από εμπόδια. Εκτός από αυτό, ο sbpl_lattice_planner παρουσίασε και πάλι τη χαμηλότερη μέση ελάχιστη απόσταση από τα εμπόδια και τη μεγαλύτερη συνέπεια απόστασης γύρω από αυτά. Από την άλλη πλευρά, ο navfn παρήγαγε τα καλύτερα σχέδια όσον αφορά στη μέση απόσταση από εμπόδια, αλλά με τη μεγαλύτερη ασυνέπεια μεταξύ των τριών αλγορίθμων.

Α΄.2.3.2 Σχετικά με τους ελεγκτές κίνησης

Ο πίνακας Α΄.17 καταγράφει τις τιμές των ποσοτικών μετρικών που αφορούν στους ελεγκτές κίνησης που ορίζονται στον πίνακα 4.3 και που προέκυψαν κατά τα N=10 πειράματα στο περιβάλλον CSAL.

Αυτό που είναι εντυπωσιαχό εδώ είναι ότι όλοι οι συνδυασμοί των αλγορίθμων χάραξης μονοπατιών με τον ελεγχτή χίνησης dwa_local_planner απέτυχαν χαι πάλι να μεταφέρουν το ρομπότ από την αρχιχή στην τελιχή στάση σε όλα τα πειράματα που διεξήχθησαν. Όσον αφορά στην επίδοση του teb_local_planner στο περιβάλλον CSAL, δεν ματαίωσε ποτέ αποστολή χαι δεν έχανε χαμία προσπάθεια ανάχαμψης, παρόλο που παρουσίασε έναν μιχρό αριθμό αποτυχιών διαδρομής. Όσον αφορά στον eband_local_planner αυτός παρουσίασε ελάχιστες προσπάθειες ανάχαμψης, αλλά σημαντιχές αποτυχίες διαδρομής όταν συνδυάστηχε

		Μετρικές επίδοσης αλγορίθμων χάραξης μονοπατιών				
GP	LP	$\mu_l(\mathcal{G})$ [m]	$\sigma_l(\mathcal{G})$ [m]	$\mu_r({m{\mathcal{G}}})$ [στάσεις/m]	$\mu_s(\mathcal{G})$ [rad]	$\sigma_s(\mathcal{G})$ [rad]
navfn	dwa	21.87	0.14	199.84	2.33	0.00
navfn	eband	21.78	0.13	199.96	2.33	0.00
navfn	teb	21.87	0.16	199.95	2.33	0.00
<pre>global_planner</pre>	dwa	21.90	0.06	200.06	2.33	0.00
<pre>global_planner</pre>	eband	21.89	0.10	200.06	2.33	0.00
<pre>global_planner</pre>	teb	21.84	0.13	200.07	2.33	0.00
sbpl	dwa	22.07	0.04	131.61	2.31	0.01
sbpl	eband	22.09	0.10	131.66	2.31	0.01
sbpl	teb	22.12	0.39	133.03	2.30	0.04

Πίνακας Α΄.15: Μέσο συνολικό μήκος μονοπατιών $\mu_l(\mathcal{G})$ και τυπική απόκλιση $\sigma_l(\mathcal{G})$, μέση ανάλυση μονοπατιών $\mu_r(\mathcal{G})$, μέση τιμή ομαλότητας $\mu_s(\mathcal{G})$, και τυπική απόκλιση $\sigma_s(\mathcal{G})$, για N=10 προσομοιώσεις στο περιβάλλον CSAL

με αλγορίθμους χάραξης μονοπατιών που δεν λαμβάνουν υπόψη τους το κινηματικό μοντέλο του ρομπότ.

Α΄.2.3.3 Σχετικά με το συνδυασμό τους

Οι πίναχες A'.18, A'.19, A'.20, και A'.21 καταγράφουν τις τιμές των ποσοτικών μετρικών που αφορούν στους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που ορίζονται στον πίνακα 4.4, και που προέκυψαν κατά τα N=10 πειράματα στο περιβάλλον CSAL.

Όσον αφορά στο χρόνο που απαιτείται για την επίτευξη της πλοήγησης από τη στάση p_0^L προς τη στάση-στόχο p_G^L (πίναχας Α΄.18), όλοι οι συνδυασμοί που περιλαμβάνουν τον dwa_local_planner αποκλείονται από αξιολόγηση λόγω της αδυναμίας του να πλοηγήσει το ρομπότ με τρόπο τέτοιο ώστε να φτάσει στην επιθυμητή στάση. Ο ελεγκτής κίνησης teb_local_planner διέσχισε τα σχεδιασθέντα μονοπάτια σε λιγότερο μέσο χρόνο σε σύγκριση με τον eband_local_planner για τον ίδιο αλγόριθμο χάραξης μονοπατιών.

Όσον αφορά στο μέσο μήκος των διανυόμενων διαδρομών (πίνακας Α΄.19), ο teb_local_planner δεν παραμόρφωσε τα σχεδιασθέντα μονοπάτια στο βαθμό που το έκανε στις προσομοιώσεις, και αυτό είναι παρατηρήσιμο καθώς παρήγαγε διαδρομές με το μικρότερο μέσο μήκος. Από την άλλη πλευρά, οι διαδρομές που παρήγαγε ο eband_local_planner ήταν οι μακρύτερες,

7 L / /C) //	, ~	,	,	10
Μετρικές επίδοσης	αλγοοιθμων	λ γαραζης μο	ονοπατιών	σγετιχες με	ε εμποοια
1.10 (60.00)	30, 1 3 5 5 6 5 6 6 6 6	Varia 212.12 lar	o , o , tot tteo ,	2 V 2 111 12 2 121	. 0 00.00

GP	LP	$\inf(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_L))$ [m]	$\mu(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_L))$ [m]	$\sigma(d(\boldsymbol{\mathcal{G}}, \boldsymbol{M}_L))$ [m]
navfn	dwa	0.01	0.47	0.42
navfn	eband	0.01	0.47	0.42
navfn	teb	0.01	0.47	0.42
<pre>global_planner</pre>	dwa	0.00 (-0.02)	0.45	0.40
<pre>global_planner</pre>	eband	0.00 (-0.02)	0.45	0.40
<pre>global_planner</pre>	teb	0.00 (-0.02)	0.45	0.41
sbpl	dwa	0.00 (-0.02)	0.41	0.37
sbpl	eband	0.00 (-0.02)	0.41	0.37
sbpl	teb	0.00 (-0.02)	0.41	0.37

Πίνακας A'.16: Ολικά ελάχιστη απόσταση μονοπατιών ${\cal G}$ από οποιοδήποτε εμπόδιο $\inf(d({\cal G},{\cal M}_L))$, μέση ελάχιστη απόσταση $\mu(d({\cal G},{\cal M}_L))$ και τυπική απόκλιση $\sigma(d({\cal G},{\cal M}_L))$ από όλα τα εμπόδια, για N=10 πειράματα στο περιβάλλον CSAL

αλλά οι πιο συνεπείς σε μήχος. Ο τελευταίος παρήγαγε μονοπάτια με χαμηλότερη ομαλότητα σε σύγχριση με τον teb_local_planner, και μονοπάτια με τη μεγαλύτερη συνέπεια όσον αφορά την ομαλότητα.

Όσον αφορά στην απόσταση από τα εμπόδια στο χάρτη M_L (πίνακας A'.20), ο teb_local_planner δεν κατάφερε να επιτύχει την ελάχιστη τεθειμένη απόσταση ρομπότ-εμποδίων (που είχε οριστεί όπως προηγουμένως σε 0.10 m), ωστόσο, υπό τον έλεγχό του, η μέση ελάχιστη απόσταση του ρομπότ από τα εμπόδια και η τυπική απόκλισή της ήταν μικρότερες από εκείνες του eband_local_planner. Ο τελευταίος ήταν ο μόνος ελεγκτής που κατάφερε να παρουσιάσει απόσταση ρομπότ-εμποδίων μεγαλύτερη από το κατώφλι που τέθηκε, και μάλιστα με συνέπεια.

Όσον αφορά στην απόκλιση των διανυθέντων διαδρομών από τα αντίστοιχα σχεδιασθέντα μονοπάτια (πίνακας Α΄.21), ο teb_local_planner παρήγαγε μονοπάτια με τη χαμηλότερη μέση και συνολική απόκλιση, η οποία είναι σύμφωνη με τη μέση ελάχιστη απόσταση ρομπότεμποδίων που παρουσιάστηκε. Αντίθετα, ο eband_local_planner παρήγαγε διαδρομές με τη μεγαλύτερη μέση και συνολική απόκλιση από σχεδιασθέντα μονοπάτια, και, συνολικά, διαδρομές με τη μεγαλύτερη απόσταση Frechet.

Μετρικές επίδοσης ελεγκτών κίνησης

GP	LP	μ_A/N_s	μ_{RR}	σ_{RR}	μ_{CC}	σ_{CC}	μ_{PF}	σ_{PF}	μ_{PF}/μ_{LPC}
navfn	dwa	1.00	2.20	0.42	3.00	0.00	37.40	17.85	0.08
<pre>global_planner</pre>	dwa	1.00	2.60	0.70	3.20	0.63	30.20	23.66	0.06
sbpl	dwa	1.00	2.40	0.70	3.30	0.95	4.10	3.14	0.01
navfn	eband	0.00	0.60	0.97	0.90	1.45	57.00	26.72	N/A
<pre>global_planner</pre>	eband	0.00	1.00	0.67	0.40	0.97	65.00	29.84	N/A
sbpl	eband	0.00	1.40	0.52	1.10	1.37	5.80	4.13	N/A
navfn	teb	0.00	0.00	0.00	0.00	0.00	1.10	0.88	0.00
<pre>global_planner</pre>	teb	0.00	0.00	0.00	0.00	0.00	1.40	1.17	0.00
sbpl	teb	0.00	0.00	0.00	0.00	0.00	2.70	3.27	0.00

Πίναχας ${\rm A}'.17$: Μέσος αριθμός ματαιωμένων αποστολών επί του αριθμού των προσομοιώσεων που πραγματοποιήθηκαν μ_A/N , μέσος αριθμός ανακτήσεων με περιστροφή μ_{RR} και η τυπική τους απόκλιση σ_{RR} , μέσος αριθμός εκκαθαρίσεων χαρτών κόστους μ_{CC} και η τυπική τους απόκλιση σ_{CC} , μέσος αριθμός αποτυχιών διαδρομής μ_{PF} και η τυπική τους απόκλιση σ_{PF} , και μέσος αριθμός αποτυχιών διαδρομής επί του μέσου αριθμού των κλήσεων του ελεγκτή κίνησης μ_{PF}/μ_{LPC} , για όλους τους συνδυασμούς αλγορίθμων χάραξης μονοπατιών και ελεγκτών κίνησης που παρουσιάζονται στον πίνακα 4.6, για N=10 πειράματα στο περιβάλλον ${\rm CSAL}$

Μετρικές που αφορούν στον χρόνο πραγματικής διαδρομής

GP	LP	μ_t [sec]	$\frac{\sigma_t \text{ [sec]}}{\sigma_t \text{ [sec]}}$
navfn	dwa	47.47	15.29
llavi li	uwa	41.41	10.29
<pre>global_planner</pre>	dwa	56.24	15.44
sbpl	dwa	60.30	22.58
navfn	eband	356.25	9.88
<pre>global_planner</pre>	eband	354.89	10.05
sbpl	eband	392.16	21.29
navfn	teb	326.70	12.88
<pre>global_planner</pre>	teb	330.25	13.77
sbpl	teb	363.16	42.35

Πίνακας Α΄.18: Μέσος χρόνος διαδρομής μ_t από την αρχική στην τελική στάση και τυπική απόκλιση σ_t για N=10 πειράματα στο περιβάλλον CSAL. Οι συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές και οι τιμές των αντίστοιχων μετρικών σημειώνονται με έντονη γραφή

Μετρικές σχετικές με τις διανυθείσες διαδρομές

GP	LP	$\mu_l(\mathbf{P})$ [m]	$\sigma_l(\mathbf{P})$ [m]	$\mu_s(\mathbf{P})$ [rad]	$\sigma_s(\mathcal{P})$ [rad]
navfn	dwa	2.97	1.00	0.58	0.42
global_planner	dwa	2.65	1.50	1.16	0.51
sbpl	dwa	2.99	1.36	0.79	0.54
navfn	eband	22.81	0.12	2.32	0.01
<pre>global_planner</pre>	eband	22.79	0.13	2.33	0.01
sbpl	eband	22.78	0.13	2.32	0.01
navfn	teb	22.71	0.18	2.35	0.02
<pre>global_planner</pre>	teb	22.73	0.28	2.34	0.02
sbpl	teb	23.47	0.87	2.30	0.04

Πίνακας Α΄.19: Μέσο μήκος διαδρομής $\mu_l(\mathcal{P})$ και τυπική απόκλιση $\sigma_l(\mathcal{P})$, και μέση τιμή ομαλότητας διαδρομής $\mu_s(\mathcal{P})$ και τυπική απόκλιση $\sigma_s(\mathcal{P})$ για N=10 πειράματα στο περιβάλλον CSAL. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

Μετρικές που αφορούν στα εμπόδια και τις πραγματικές διαδρομές

GP	LP	$\inf(d(\mathcal{P}, M_L))$ [m]	$\mu(d(\mathcal{P}, M_L))$ [m]	$\sigma(d(\mathcal{P}, M_L))$ [m]
navfn	dwa	0.02	0.24	0.09
<pre>global_planner</pre>	dwa	0.02	0.25	0.07
sbpl	dwa	0.03	0.26	0.04
navfn	eband	0.11	0.52	0.20
global_planner	eband	0.11	0.54	0.20
sbpl	eband	0.13	0.57	0.19
navfn	teb	0.08	0.51	0.18
<pre>global_planner</pre>	teb	0.08	0.52	0.19
sbpl	teb	0.08	0.56	0.17

Πίνακας A'.20: Ολικά ελάχιστη απόσταση των πραγματικών διαδρομών $\mathcal P$ που διήνυσε το ρομπότ από οποιοδήποτε εμπόδιο σε όλες τις προσομοιώσεις $\inf(d(\mathcal P,M_L))$, μέση ελάχιστη απόσταση $\mu(d(\mathcal P,M_L))$ από όλα τα εμπόδια για N=10 πειράματα στο χάρτη CSAL M_L , και μέση τυπική απόκλιση $\sigma(d(\mathcal P,M_L))$. Συνδυασμοί που ολοκλήρωσαν όλες τις αποστολές σημειώνονται με έντονη γραφή

Μετρικές σχετικές με την απόκλιση διαδρομών από σχεδιασθέντα μονοπάτια

GP	LP	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu_{\delta}(\mathcal{P},\mathcal{G})$ [m]	$\mu_{\delta}^{F}(\mathcal{P},\mathcal{G})$ [m]
navfn	dwa	0.03	1.74	12.69
<pre>global_planner</pre>	dwa	0.05	3.41	12.43
sbpl	dwa	0.04	2.32	12.58
navfn	eband	0.12	$\boldsymbol{48.34}$	0.35
<pre>global_planner</pre>	eband	0.13	51.63	0.35
sbpl	eband	0.15	$\boldsymbol{62.71}$	0.43
navfn	teb	0.10	40.19	0.31
<pre>global_planner</pre>	teb	0.11	$\boldsymbol{42.84}$	0.33
sbpl	teb	0.12	50.56	0.35

Πίνακας A'.21: Μέση απόκλιση $\mu_{\delta}(\mathcal{P},\mathcal{G})$, μέση συνολική απόκλιση $\mu_{\Delta}(\mathcal{P},\mathcal{G})$, και μέση απόσταση Frechet $\mu_{\delta}^F(\mathcal{P},\mathcal{G})$ μεταξύ των πραγματικών διαδρομών \mathcal{P} που ακολούθησε το ρομπότ και των αντίστοιχων σχεδιασθέντων μονοπατιών \mathcal{G} για N=10 πειράματα στο χάρτη CSAL M_L . Συνδυασμοί που ολοκλήρωσαν τουλάχιστον μία αποστολή σημειώνονται με έντονη γραφή

Παράρτημα Β΄

Μέθοδοι ελάττωσης σφάλματος στάσης φίλτρου σωματιδίων

Β΄.1 Σφάλματα εκτίμησης στάσης μεθόδου επιλογής σωματιδίων

Τα σχήματα Β΄.1 και Β΄.2 δείχνουν την κατανομή όλων των σφαλμάτων εκτίμησης προσανατολισμού και θέσης, αντίστοιχα, των μεθόδων επιλογής σωματιδίων από τον πληθυσμό του MCL για την ελάττωση του σφάλματος εκτίμησής του.

Β΄.2 Σφάλματα εκτίμησης στάσης μεθόδου ανάδρασηςσωματιδίων

Τα σχήματα Β΄.3 και Β΄.4 δείχνουν την κατανομή όλων των σφαλμάτων εκτίμησης προσανατολισμού και θέσης, αντίστοιχα, των μεθόδων ανάδρασης του αποτελέσματος της διαδικασίας ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη στον πληθυσμό του MCL για την ελάττωση του σφάλματος εκτίμησής του.

Κατανομή σφαλμάτων εχτίμησης προανατολισμού ανά μέθοδο επιλογής σωματιδίων [rad]

(α') Περιβάλλον CORRIDOR

Σχήμα B'.1: Η κατανομή του μέσου σφάλματος προσανατολισμού ανά διαδρομή πλοήγησης για τον MCL σε ανοιχτό βρόχο (στα αριστερά κάθε υποδεικνυόμενης μεθόδου επιλογής, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο), σε N=100 προσομοιώσεις, ανάλογα με την μέθοδο επιλογής πληθυσμού. Το σύμβολο "100%" υποδηλώνει τη διαμόρφωση του συστήματος όπου όλα τα σωματίδια του συνόλου του πληθυσμού επιλέγονται κατά τη διαδικασία εξαγωγής της εκτίμησης της στάσης του συστήματος, το σύμβολο " $>\overline{W}$ " υποδηλώνει εκείνη της επιλογής των σωματιδίων των οποίων το βάρος είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού του φίλτρου, το "10%" εκείνη που μόνο το άνω 10% των βαρύτερων σωματιδίων επιλέγονται, και "top" τη διαμόρφωση όπου επιλέγεται μόνο το σωματίδιο με το μεγαλύτερο βάρος μεταξύ όλων των σωματιδίων του πληθυσμού

(α') Περιβάλλον CORRIDOR

Σχήμα Β΄.2: Η κατανομή του μέσου σφάλματος θέσης ανά διαδρομή πλοήγησης για τον MCL σε ανοιχτό βρόχο (στα αριστερά κάθε υποδεικνυόμενης μεθόδου επιλογής, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο), σε N=100 προσομοιώσεις, ανάλογα με την μέθοδο επιλογής πληθυσμού. Το σύμβολο "100%" υποδηλώνει τη διαμόρφωση του συστήματος όπου όλα τα σωματίδια του συνόλου του πληθυσμού επιλέγονται κατά τη διαδικασία εξαγωγής της εκτίμησης της στάσης του συστήματος, το σύμβολο " $>\overline{W}$ " υποδηλώνει εκείνη της επιλογής των σωματιδίων των οποίων το βάρος είναι μεγαλύτερο από το μέσο βάρος του πληθυσμού του φίλτρου, το "10%" εκείνη που μόνο το άνω 10% των βαρύτερων σωματιδίων επιλέγονται, και "top" τη διαμόρφωση όπου επιλέγεται μόνο το σωματίδιο με το μεγαλύτερο βάρος μεταξύ όλων των σωματιδίων του πληθυσμού

Κατανομή σφαλμάτων εκτίμησης προανατολισμού ανά μέθοδο ανάδρασης [rad]

(α') Περιβάλλον CORRIDOR

Σχήμα B'.3: Η κατανομή του μέσου σφάλματος προσανατολισμού ανά διαδρομή πλοήγησης για τον MCL (στα αριστερά κάθε υποδεικνυόμενης μεθόδου ανάδρασης, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο) σε N=100 προσομοιώσεις, ανάλογα με τη μέθοδο ανατροφοδότησης του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη. Η φράση "open" είναι συντομογραφία για την έλλειψη ανάδρασης (ανοιχτός βρόχος), η φράση "soft-1" για τη διαμόρφωση όπου η έξοδος του συνολικού συστήματος επιστρέφει στο φίλτρο σωματιδίων με τη μορφή ενός σωματιδίου, "soft-50" για την περίπτωση που επιστρέφει με τη μορφή τόσων σωματιδίων όσα το μισό μέγεθος του πληθυσμού, και "hard" για τη διαμόρφωση όπου το φίλτρο σωματιδίων αρχικοποιείται γύρω από τη στάση που υπολογίζεται μετά τη διαδικασία ευθυγράμμισης

(α') Περιβάλλον CORRIDOR

Σχήμα B'.4: Η κατανομή του μέσου σφάλματος θέσης ανά διαδρομή πλοήγησης για τον MCL (στα αριστερά κάθε υποδεικνυόμενης μεθόδου ανάδρασης, με μαύρο χρώμα) και του σύνθετου συστήματος (δεξιά, με κόκκινο) σε N=100 προσομοιώσεις, ανάλογα με τη μέθοδο ανατροφοδότησης του αποτελέσματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη. Η φράση "open" είναι συντομογραφία για την έλλειψη ανάδρασης (ανοιχτός βρόχος), η φράση "soft-1" για τη διαμόρφωση όπου η έξοδος του συνολικού συστήματος επιστρέφει στο φίλτρο σωματιδίων με τη μορφή ενός σωματιδίου, "soft-50" για την περίπτωση που επιστρέφει με τη μορφή τόσων σωματιδίων όσα το μισό μέγεθος του πληθυσμού, και "hard" για τη διαμόρφωση όπου το φίλτρο σωματιδίων αρχικοποιείται γύρω από τη στάση που υπολογίζεται μετά τη διαδικασία ευθυγράμμισης