EAiIB	Autor 1		Rok	Grupa	Zespół
Informatyka	Autor 2		II	V	II
Pracownia	Temat:				nr ćwiczenia:
FIZYCZNA		ili cwiczellia.			
WFiIS AGH	Opracowanie o	U			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
7.10.2015	14.10.2015				

1 Wstęp

Wahadłem matematycznym nazywamy ciało masie m i o niezmiernie małej objętości (czyli punkt materialny), zawieszone na nieważkiej i nierozciągliwej nici o długości l. W praktyce takim wahadłem jest ciało, którego wymiary liniowe są znacznie mniejsze od długości nici. Jeśli wahadło wychylimy o niewielki kąt α to jego okres można wyrazić wzorem:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Przekształcając ten wzór możemy wyznaczyć wartość przyspieszenia ziemskiego:

$$g = \frac{4\pi^2 l}{T^2}$$

2 Układ pomiarowy

Badane wahadło stanowi mosiężny obciążnik zawieszony na cienkiej lince. Linka jest podwieszona na wolnostojącym statywie. Pomiary były dokonywane za pomocą stopera o dokładności 0,01 s. Do niepewności pomiaru stopera należy dodać czas reakcji osoby wykonującej pomiary, który został ustalony na 0,1s. Długość wahadła wyznaczono mierząc długość linki miarką o dokładności 1 mm. Dokładność wyznaczenia długości wahadła jest jednak zdecydowanie mniejsza (konieczność oszacowania odległości mocowania linki do środka kulki, punkt zawieszenia linki) i została określona na 5 mm. Długość linki może być regulowana.

Rysunek 1: Schemat wahadła matematycznego

3 Wykonanie ćwiczenia

3.1 Wyznaczenie przyspieszenia ziemskiego:

1. Zmierzenie długości linki, poczynając od środka obciążnika(nie jest możliwe dokładne wyznaczenie środka obciążnika, co powoduje błędy pomiaru)

- 2. Wychylenie wahadła o niewielki kąt z położenia równowagi i puszczenie
- 3. Odczekanie aż wahania się ustabilizują
- 4. Zmierzenie przy pomocy stopera 10 pełnych okresów wahadła

3.2 Badanie zależności okresu drgań od długości wahadła

Pomiary są wykonywane podobnie jak w poprzedniej części doświadczenia. Zmierzono czas trwania 10 pełnych okresów wahadła dla 7 różnych długości linki.

4 Wyniki i ich opracowanie

4.1 Wyznaczanie wartości przyspieszenia ziemskiego

l(m)	10 T(s)	T(s)
	13,78	1,378
	13,71	1,371
	13,96	1,396
	13,90	1,390
0,485	13,84	1,384
0,465	13,87	1,387
	13,74	1,374
	13,93	1,393
	13,84	1,384
	13,90	1,390
	T _{śr}	1,385

Rysunek 2: Wyniki pomiarów 10 okresów wahadła

Najbardziej prawdopodobną wartością okresu jest wartość średnia:

$$T_{\text{sr}} = \frac{1}{n} \sum_{i=1}^{n} T_i$$

Wartość przyspieszenia ziemskiego:

$$g = \frac{4\pi^2 l}{T_{\text{fr}}^2} = \frac{4 \cdot 3,141^2 \cdot 0,485}{1,385^2} \approx 9,986 \left[\frac{m}{s^2} \right]$$

4.2 Badanie zależności okresu drgań od długości wahadła

I[m]	T[s]	T^2[s^2]
0,540	1,472	2,167
0,485	1,385	1,918
0,400	1,262	1,593
0,398	1,264	1,598
0,340	1,159	1,343
0,281	1,060	1,124
0,161	0,807	0,651

Rysunek 3: Tabela pomarów dla badania zależnośći okresu drgań od długości wahadła

Wykres T(l) jest wykresem typu $y = \sqrt{x}$, który jest trudny w analizie

Rysunek 4: Wykres T(l)

Podnosząc wzór na okres wahadła matematycznego obustronnie do kwadratu otrzymamy następującą zależność:

$$T^2 = \frac{4\pi^2}{g}l$$

Wykres tej zależności przedstawionej na Rysunku 5 jest liniowy. Poniżej przedstawiony jest wykres zależności $T^2(l)$ od długości wahadła wraz z linią regresji uzyskany przy pomocy programu Excel

Znając współczynnik a nachylenia wykresu możemy wyznaczyć przyspieszenie ziemskie g:

$$T^{2} = \frac{4\pi^{2}}{g}l$$

$$a = \frac{4\pi^{2}}{g} \Longrightarrow g = \frac{4\pi^{2}}{a} \approx 9,930 \left[\frac{m}{s^{2}}\right]$$

Rysunek 5: Wykres $T^2(l)$

5 Szacowanie niepewności pomiarowych

5.1 Wyznaczanie wartości przyspieszenia ziemskiego

5.1.1 Niepewność pomiaru okresu

Jako, że posiadamy serię pomiarów okresu wahadła dla tej samej długości, jego niepewność obliczamy metodą typu A, czyli jako estymator odchylenia standardowego wielkości średniej:

$$u(T) = \sqrt{\frac{\sum_{i=1}^{n} (T_i - T_{\text{sr}})^2}{n(n-1)}} \approx 0,0026[s]$$

5.1.2 Niepewność pomiaru długości wahadła

Niepewność pomiaru długości jest szacowana na podstawie dokładności pomiaru:

$$u(l) = \frac{\Delta l}{\sqrt{3}} = \frac{0,005}{\sqrt{3}} \approx 0,0029[m]$$

5.1.3 Niepewność złożona pomiaru przyspieszenia ziemskiego

Jako, że przyspieszenie ziemskie jest wyznaczane pośrednio, stosuję prawo przenoszenia niepewności:

$$u_c(g) = \sqrt{\left(\frac{\delta g}{\delta T}\right)^2 u(T)^2 + \left(\frac{\delta g}{\delta l}\right)^2 u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T^6} U(T)^2 + \frac{16\pi^4}{T^4} u(l)^2} \approx 0,070 \left[\frac{m}{s^2}\right]$$

Aby porównać wyznaczoną wartość z wartością tablicową obliczamy niepewność rozszerzoną:

$$U_c(g) = k \cdot u_c(g) = 2 \cdot 0,070 = 0,140 \left[\frac{m}{s^2} \right]$$

Tak więc wyznaczone przyspieszenie ziemskie ma wartość:

$$g = (9,986 \pm 0,140) \left\lceil \frac{m}{s^2} \right\rceil$$

Wartość tablicowa przyspieszenia ziemskiego wynosi $g = 9,811 \left[\frac{m}{s^2} \right]$ i nie mieści się w wyznaczonym przez nas przedziale.

5.2 Badanie zależności okresu drgań od długości wahadła

Ponownie stosujemy prawo przenoszenia niepewności. Tym razem mamy do czynienia z funkcją jednej zmiennej: $g=\frac{4\pi^2}{a}$

$$u(g) = \frac{\delta g}{\delta a}u(a) = -4\pi^2 a^{-2} \cdot u(a)$$

$$|u(g)| = 4\pi^2 a^{-2} \cdot u(a) \approx 0,101 \left[\frac{m}{s^2} \right]$$

$$U_c(g) = k \cdot u_c(g) \approx 2 \cdot 0,101 = 0,202 \left[\frac{m}{s^2} \right]$$

Tak więc przyspieszenie ziemskie wyznaczone na podstawie wykresu zależności $T^2(l)$ ma wartość:

$$g = (9,930 \pm 0,202) \left[\frac{m}{s^2} \right]$$

6 Podsumowanie pomiarów

Opis wielkości	Wynik $\left[\frac{m}{s^2}\right]$	$u(g)\left[\frac{m}{s^2}\right]$	$U_c(g)$ $\left[\frac{m}{s^2}\right]$
g za pomocą 10 pomiarów przy tej samej dł wahadła	9,986	0,070	0,140
g za pomocą wykresu $T^2(l)$	9,930	0,101	0,202
Wartość tablicowa g	9,811	-	-

7 Wnioski

- Wahadło matematyczne jest dosyć dokładnym i prostym do wykonania sposobem wyznaczenia przyspieszenia ziemskiego, ponieważ uzyskane niepewności są niewielkie
- ullet Zakres uzyskanej wartości przyspieszenia ziemskiego wraz z niepewnością uzyskanych za pomocą badania wykresu $T^2(l)$ zawiera w sobie wartość tabelaryczną przyspieszenia ziemskiego, a w przypadku drugiej metody zakresy niepewności mijają wartość tabelaryczną o bardzo małą wartość. Świadczy to o poprawności pomiarów
- Powodem uzyskania wyniku odchylonego od wartości rzeczywistej może być fakt, że wahadło mogło poruszać się w więcej niż jednej płaszczyźnie