Database week 1

1, 2

MySQL

발표자: 박지원

MySQL Connectors

MySQL Shell

MySQL engine

Storage engine

mysql> show global status like	'%handler%
Variable_name	Value
Handler_commit Handler_delete Handler_discover	729 8 0 7227 0 1 53 2183 0 4599 0 1 4744 0 1 0 1 331
Handler_write	1303
18 rows in set (0.02 sec)	

Storage engine

InnoDB: 트랜잭션, 대용량

MyISAM: <u>트랜잭션 X, Read Only</u>

MEMORY

Table 18.1 Storage Engines Feature Summary

Feature	MyISAM	Memory	InnoDB	Archive	NDB
B-tree indexes	Yes	Yes	Yes	No	No
Backup/point- in-time recovery (note 1)	Yes	Yes	Yes	Yes	Yes
Cluster database support	No	No	No	No	Yes
Clustered indexes	No	No	Yes	No	No
Compressed data	Yes (note 2)	No	Yes	Yes	No
Data caches	No	N/A	Yes	No	Yes
Encrypted data	Yes (note 3)	Yes (note 3)	Yes (note 4)	Yes (note 3)	Yes (note 5)
Foreign key support	No	No	Yes	No	Yes
Full-text search indexes	Yes	No	Yes (note 6)	No	No
Geospatial data	Yes	No	Yes	Yes	Yes

Mysql threading

foreground thread

innoDB: buffer, cache, read

MyISAM: + read and write

background thread

insert buffer merge (change buffer)

log write (log thread)

buffer pool write (write thread)

buffer read (read thread)

lock monitor

Shared Memory (global)

Buffer Pool

Change Buffer

Log Buffer

Key Cache

Table Cache

Local Memory (per thread)

sort buffer

join buffer

read buffer

connection buffer

Binlog Cache(Transaction)

query parser

preprocessor

optimizer

execution engine

handler API

Query cache → Deprecated → Delete

Query cache

string match
queries that are a subquery of an outer query
SELECT privilege for all databases
change → removed table relative cache
query cache lock (per table)

```
SELECT * FROM tbl_name
Select * from tbl_name
```

InnoDB

In-memory Structure
On-Disk Structure

In-memory Structure

클러스터링 인덱스, 논클러스터 인덱스

indexTest14

indexTest5

indexTest10

indexTest6

indexTest12

indexTest2

indexTest3

indexTest11

indexTest15

indexTest7

indexTest8

In-memory Structure

Buffer poll
midpoint insert
New Sublist → LRU
Old Sublist → MRU

Change buffer

Adaptive Hash Index

Head New Sublist 5/8 Accessed pages Unused pages Tail Midpoint insertion Head Old Sublist 3/8 Tail Evicted pages

Figure 17.2 Buffer Pool List

Figure 17.3 Change Buffer

Log buffer

Summary

용어정리

필드, 레코드, 튜플, ROW, COLUMN, 속성

슈퍼키: 유일성을 보장하는 속성들의 집합, 최소성은 만족하지 않는다.

후보키: 유일성과 최소성을 보장하는 집합

기본키: 후보키 중 하나

대체키: 기본키를 제외한 후보키

PK

기본키는 수정이 가능할까요?

사실 MySQL의 경우, 기본키를 설정하지 않아도 테이블이 만들어집니다. 어떻게 이게 가능한 걸까요?

외래키 값은 NULL이 들어올 수 있나요?

어떤 칼럼의 정의에 UNIQUE 키워드가 붙는다고 가정해 봅시다. 이 칼럼을 활용한 쿼리의 성능은 그렇지 않은 것과 비교해서 어떻게 다를까요?

mysql에서 auto increment는 어떻게 처리될까요? (inno db)

PK

수정이 가능은 하나 위험하다.

기본키를 설정하지 않는경우에 innoDB에서 유니크 인덱스를 찾아 클러스터링 키로 생성하거나, 내부 컬럼을 추가한다.

가능하다.

unique 에 대한 인덱스를 찾으면 되기 때문에 빠르다고 생각한다. (중복 체크에서 추가비용이 발생할 수 있다.)

AI

mysql에서 auto increment는 어떻게 처리될까요?


```
• • • insert into member (name) values ("홍승택");
```

AI

mysql에서 auto increment는 어떻게 처리될까요?


```
• • • • insert into member (name) values ("김동민");
```

NoSQL

RDB와 NoSQL의 차이에 대해 설명해 주세요.

NoSQL의 강점과, 약점이 무엇인가요?

RDB의 어떠한 특징 때문에 NoSQL에 비해 부하가 많이 걸릴 "수" 있을까요? (주의: 무조건 NoSQL이 RDB 보다 빠르다라고 생각하면 큰일 납니다!)

NoSQL

RDB는 table 형태로 데이터를 저장하는 것과 달리 NoSQL는 json,key-value 형식으로 데이터를 저장하고 데이터간의 관계를 정의하지 않는다, RDB는 엄격하게 ACID를 지키는 반면 NoSQL은 그렇지 않다.

Nosql은 비정형 데이터에 대한 처리에 적합하다. 특정 로직에 대해서 좋은 효과를 낼 수 있다. (read-only)

JOIN연산에 대해서 Nosql이 더 좋은 성능이점을 얻을 수 있다.

출처

https://dev.mysql.com/doc/refman/8.4/en/innodb-architecture.html