Laboratorium 8 - Modelowanie struktury fullerenów metodą symulowanego wyżarzania

Piotr Żeberek | 407663 | gr. 2

1 Wstęp

1.1 Cel laboratorium

Celem laboratorium była zastosowanie metody symulowanego wyżarzania do modelowania struktury fullerenów oraz zbadania wpływu parametrów symulacji na wyniki. Do modelowania użyto potencjału Brennera.

1.2 Potencjał Brennera

Do określania energii układu użyto potencjału Brennera, który oddziaływania dwuciałowe uwzględniając ilość utworzonych wiązań. Kolejne wzory służące do liczenia energii układu:

$$E_{\text{brenner}} = V_{tot} = \frac{1}{2} \sum_{i=1}^{n} V_i \tag{1}$$

Energia oddziaływania atomu i z sąsiadami:

$$V_{i} = \sum_{j=1, j \neq i}^{n} V_{ij} = \sum_{j=1, j \neq i}^{n} f_{cut}(r_{ij}) \left[V_{R}(r_{ij}) - \overline{B}_{ij} V_{A}(r_{ij}) \right]$$
(2)

Fukcja obcinająca sąsiadów:

$$f_{cut}(r_{ij}) = \begin{cases} 1 & \text{dla } r_{ij} < R_1 \\ \frac{1}{2} \left[1 + \cos \left(\frac{r_{ij} - R_1}{R_2 - R_1} \pi \right) \right] & \text{dla } R_1 \leqslant r_{ij} \leqslant R_2 \\ 0 & \text{dla } r_{ij} > R_2 \end{cases}$$
(3)

Potencjał odpychania:

$$V_R(r_{ij}) = \frac{D_e}{S - 1} \exp\left[-\sqrt{2S}\lambda(r_{ij} - R_0)\right]$$
(4)

Potencjał przyciągania:

$$V_A(r_{ij}) = \frac{D_e S}{S - 1} \exp\left[-\sqrt{\frac{2}{S}}\lambda(r_{ij} - R_0)\right]$$
 (5)

Czynnik skalujący niosący informację o ilości wiązań:

$$\overline{B}_{ij} = \frac{B_{ij} + B_{ji}}{2} \tag{6}$$

$$B_{ij} = (1 + \xi_{ij})^{-\delta} \tag{7}$$

$$\xi_{ij} = \sum_{k=1, k \neq i, j}^{n} f_{cut}(r_{ik})g(\theta_{ijk})$$
(8)

$$g(\theta_{ijk}) = a_0 \left[1 + \frac{c_0^2}{d_0^2} - \frac{c_0^2}{d_0^2 + (1 + \cos(\theta_{ijk}))^2)} \right]$$
(9)

 θ_{ijk} - kąt między wektorami $\vec{r}_{ij}=\vec{r}_j-\vec{r}_i$ i $\vec{r}_{ik}=\vec{r}_k-\vec{r}_i$

Parametryzacja potencjału Brennera:

Unikanie czterech wiązań

W celu uniknięcia tworzenia czterech wiązań, stosuje się dodatkowy warunek. Przy czterech wiązaniach i symetrycznym rozłożeniu atomów, kąty między wektorami \vec{r}_{ij} i \vec{r}_{ik} wynoszą 90° (przybliżając płaszczyzną), a dla trzech wiązań 120°. Dlatego też dokłada się karę do potencjału kiedy kąt między wektorami jest 90° lub mniej, co sprowadza się do warunku:

$$\cos(\theta_{ijk}) > 0 \to \xi_{ij} = 10 \tag{10}$$

Wartość 10 jest arbitralna, ale dobrana tak, aby B_{ij} znacznie zmalało, co z kolei wpłynie na zmniejszenie wkładu od potencjału przyciągania.

1.3 Funkcja korelacji par

Funkcja ta (oznaczana jako PCF - Pair Correlation Function) opisuje jakie jest prawdopodobieństwo znalezienia drugiego atomu w odległości r od atomu w początku układu.

$$PCF(r) = \frac{2\Omega}{n^2 d\Omega} \sum_{i=1}^{n} \sum_{j=1, j>i}^{n} \delta(r - r_{ij})$$
(11)

gdzie Ω to objętość układu, n to liczba atomów, a r_{ij} to odległość między atomami i i j.

Jeśli potraktujemy nasz układ jako płaski, to możemy zapisać:

$$\Omega = 4\pi r_{avg}^2, \quad d\Omega = 2\pi r dr \tag{12}$$

gdzie r_{avq} to średnia odległość atomów od środka układu.

Delty diraca można się pozbyć traktując PCF jako histogram, gdzie zliczamy wkładu od każdego atomu do odpowiedniego przedziału m:

$$r_{max} = 2.5 \cdot r_{avg}, \quad dr = \frac{r_{max}}{M}, \quad m = floor\left(\frac{r_{ij}}{r_{max}}\right)$$
 (13)

Iterując zgodnie z sumą w oryginalnym wzorze:

$$PCF[m] + = \frac{2\Omega}{n^2 d\Omega} \tag{14}$$

Dobór M oraz czynnika skalującego w r_{max} (tutaj 2.5) jest zależny m.in. od rozmiaru układu. Należy także dodać zabezpieczenie m < M.

1.4 Metoda symulowanego wyżarzania

W metodzie tej będziemy wykonywać dwa główne kroki w każdej iteracji: losowe przesunięcia wszystkich atomów oraz zbiorowa zmiana promienia sfery.

1.4.1 Losowe przesunięcia

Iterujemy po wszystkich atomach (prawidłowo powinny być wybierane losowo, ale stosujemy uproszczenie, żeby zaoszczędzić na czasie obliczeń) i dokonujemy zmiany jego współrzędnych (tutaj sferycznych) sterując zmianami poprzez parametry w_r , w_ϕ oraz w_θ .

$$r' = r + r(2 \cdot U(0, 1) - 1)w_r \tag{15}$$

$$\phi' = \phi + (2 \cdot U(0, 1) - 1)w_{\phi} \tag{16}$$

$$\theta' = \theta + (2 \cdot U(0, 1) - 1)w_{\theta} \tag{17}$$

gdzie U(0,1) to liczba losowa z rozkładu jednorodnego na przedziale [0,1).

Sprawdzamy czy współrzędne kątowe mieszczą się w odpowiednich przedziałach, a jeśli nie to je poprawiamy.

$$\phi' = \begin{cases} \phi' + 2\pi & \text{dla } \phi' < 0\\ \phi' - 2\pi & \text{dla } \phi' > 2\pi \end{cases}$$
 (18)

$$\theta' = \theta \, \operatorname{dla} \, \theta' \notin [0, \pi] \tag{19}$$

Akceptacji nowego położenia dokonujemy zgodnie z zasadą Metropolis-Hastingsa:

$$p_{\text{accept}} = \min\left(1, \exp\left(-\beta(E_{\text{new}} - E_{\text{old}})\right)\right),\tag{20}$$

gdzie E to energia atomu którego dotyczą zmiany (liczone jako V_i z potencjału Brennera - to też jest uproszczenie, bo powinno być liczone dla całego układu).

$$U(0,1) < p_{\text{accept}} \to \text{akceptacja przesunięcia}$$
 (21)

1.4.2 Zbiorowa zmiana promienia sfery

Zmiana promienia sfery jest sterowana przez parametr W_{all} . Określamy czynnik skalujący s:

$$s = 1 + (2 \cdot U(0, 1) - 1)W_{all} \tag{22}$$

Następnie przesuwamy kolejne atomy wykonując:

$$r_i' = r_i \cdot s \tag{23}$$

Akceptacja zmiany promienia sfery również odbywa się zgodnie z zasadą Metropolis-Hastingsa, ale tym razem wykorzystujemy energię całego układu.

1.4.3 Dobór parametru β

Parametr β wiaże się z temperatura:

$$\beta = \frac{1}{k_b T} \tag{24}$$

i wpływa na akceptację zmian położeń opisanych wcześniej. Aby symulować proces wyżarzania, β może zmieniać się w czasie symulacji. Startując od małej wartości β_{min} (duża temperatura) i stopniowo ją zmniejszając do β_{max} (mała temperatura). Wartość β uzależniamy od numeru iteracji reprezentującego czas:

$$\beta = \beta_{min} + \left(\frac{it}{N_{iter}}\right)^p (\beta_{max} - \beta_{min}) \tag{25}$$

gdzie it to numer iteracji, N_{iter} to liczba iteracji, a p to kolejny parametr symulacji, określający sposób narastania β .

2 Wyniki

Parametry symulacji:

- n = 60 (przeważnie)
- $\beta_{min} = 1.0, \ \beta_{max} = 100.0, \ p = 2.0$
- $N_{iter} = 2 \cdot 10^5$
- $w_r = 10^{-4}$, $w_\phi = 0.05$, $w_\theta = 0.05$, $W_{all} = 10^{-4}$
- M = 100

Struktura teoretyczna:

Rysunek 1: Struktura fullerenu C60 oraz funkcja korelacji par. Na podstawie współrzędnych atomów dostarczonych przez prowadzącego. Energia wynosiła -421.6 eV, a średnia odległość atomów od środka układu 3.52~Å.

Symulacja z dozwolonymi czterema wiązaniami:

Rysunek 2: Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z dozwolonymi czterema wiązaniami oraz dla $r_{init}=3.5$ Å.

 ${\bf Z}$ uwagi na brak kar do potencjału od czterech wiązań, widzimy rzeczone równania w strukturze fullerenu C60.

Symulacja z unikaniem czterech wiązań:

Rysunek 3: Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=3.5$ Å.

Wprowadzenie kary za cztery wiązania pozwoliło na uzyskanie struktury bardziej zbliżonej do teoretycznej. Warto zauważyć, znaczne obniżenie energii układu o około 40 eV.

Symulacja z unikaniem czterech wiązań i zmniejszonym promieniem początkowym:

Rysunek 4: Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=2.5$ Å.

W tym przypadku końcowe r_{avg} jest zbliżone do wyników z poprzednich symulacji, ale pozwolenie na rozrośnięcie się układu pozwoliło zmniejszyć energię.

Symulacje ze zmienionymi parametrami:

Rysunek 5: Modyfikowany parametr: $\beta_{min}=0.1$. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=2.5$ Å.

Zmniejszenie β_{min} nie wpłynęło znacząco na wyniki. E oraz r_{avg} zaczęły się stabilizować później, co jest zgodne z oczekiwaniami.

Rysunek 6: Modyfikowany parametr: $\beta_{max}=500.0$. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=2.5$ Å.

Zwiększenie β_{max} spowodowało długi okres stabilizacji E oraz r_{avg} , co odpowiada niskiej temperaturze (małe prawdopodobieństwo akceptacji zmian). Same wyniki są zbliżone do poprzednich symulacji.

Rysunek 7: Modyfikowany parametr: p=3.0. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=2.5$ Å.

Zwiększenie p do 3.0 spowodowało wolniejsze narastanie β , czyli dłuższy okres akceptacji zmian. Stąd też duże oscylacje E na początku symulacji. Końcowa wartość E ciut wzrosła.

Rysunek 8: Modyfikowany parametr: $w_r = 5 \cdot 10^{-4}$. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init} = 2.5$ Å.

Pięciokrotny wzrost w_r nie wpłynął znacząco na wyniki, co najwyżej r_{avg} nie jest tak stabilne jak w poprzednich przypadkach.

Rysunek 9: Modyfikowany parametr: $w_{\phi}=0.25$. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init}=2.5$ Å.

Pięciokrotny wzrost w_ϕ nie wpłynął znacząco na wyniki.

Rysunek 10: Modyfikowany parametr: $w_{\theta} = 0.25$. Struktura fullerenu C60, funkcja korelacji par, zmiany energii oraz średniej odległości atomów od środka układu w zależności od iteracji wraz ze zmianami parametru β . Przypadek z unikaniem czterech wiązań oraz dla $r_{init} = 2.5$ Å.

Pięciokrotny wzrost w_{θ} pogorszył wyniki. Końcowa energia jest wyższa niż w poprzednich przypadkach, a r_{avg} nie ustabilizowało się.

Symulacja dla różnej ilości atomów:

Rysunek 11: Zależność energii wiązania na jeden atom od ilości atomów. Średnie ze 100 ostatnich iteracji wraz z błędem standardowym (jak widać niewielkim).

Rysunek 12: Zależność średniej odległości atomów od środka układu od ilości atomów. Średnie ze 100 ostatnich iteracji wraz z błędem standardowym (jak widać niewielkim).

Początkowa odległość atomów od środka układu zmieniała się liniowo od 1.3 Å do 2.5 Å w zależności od ilości atomów. Dodatkowo podkręcono β_{max} do 200.0. Z otrzymanych wyników wynika, że fullereny bliżej n=60 są bardziej stabilne z uwagi na bardziej ujemną energię wiązania (silniej związane).