		-
R	F	Frage
X		Die absolute Kondition ist eine Eigenschaft des Problems.
X		Die Kondition einer Matrix bezüglich einer Zeilensummennorm ist immer größer gleich 1.
X		Im Intervall [99,101] gibt es zwölf Zahlen in G(10,3).
X		Es gibt Funktionsauswertungen deren relative Kondition echt kleiner eins ist.
	X	Die Durchführung des Gauß'schen Algorithmus in Gleitkommaarithmetik ergibt gerundet die exakte Lösung.
X		Die Addition von Gleitkommazahlen ist nicht Assoziativ.
	X	Die Zifferndarstellung von Z induziert eine Zifferndarstellung in R.
	X	Der relative Rundungsfehler ist nicht abhängig von der Maschinengenauigkeit.
	X	Die relative Kondition ist unabhängig von den Eingabedaten.
X		Für a,b element N mit a>b gilt ggT(a,b) = ggT(b,a-b) .
	X	Im Dualsystem sind alle reellen Zahlen exakt darstellbar.
X		Der relative Rundungsfehler ist nie größer als die Maschinengenauigkeit.
X		Die Stabilität ist eine Eigenschaft des Algorithmus.
	X	Die Stabilität ist eine Eigenschaft des Problems.
	X	Die relative Kondition ist immer größer als die absolute Kondition.
	X	Die Auswertung einer linearen Funktion hat die absolute Kondition K_abs = 1.
X		Ist f nicht differenzierbar in x_0 , so hat die Auswertung von $f(x_0)$ die absolute Kondition $K_{abs} = Infinity$.
		Das Gaußsche Eliminationsverfahren ist für alle Koeffizientenmatrizen A ohne Zeilentausch durchführbar.
		Wird durch das Gaußsche Eliminationsverfahren aus einer regulären Matrix A die obere Dreiecksmatrix R erzeugt, so gilt immer K(R) <= K(A).
	X	Es gibt keine natürliche Zahl x mit x element [91,101] und x element G(10, 1).
X		Für alle x element N mit x element G(6, 5) gilt x element G(7, 5).
X		Gesamtfehler = K_rel * Eingabefehler + Stabilität_rel * Ausgabefehler.
	X	Im Dualsystem sind alle Zahlen exakt darstellbar.
	X	Sei f nicht stetig. Dann gilt für alle x element R : $K_rel(f, x) = Infinity$.
	X	Sei $f(x) := n^*x^n$. Dann gilt für alle x element $N : K_abs(f, x) = (n^2)^*x^n$.
	X	Der Vorteil der expliziten Form der Drei-Term-Rekursion ist der, dass man nur einen Startwert braucht.
X		Die Multiplikation ist -relativ betrachtet- genauso gut konditioniert wie die Division.
X		Sei f(x) := mx + b. Dann ist die absolute Kondition der Nullstellenbestimmung K_abs = 1 bei konstantem m und variablem b.

R	F	Frage
X		Sei $f(x) = x^6$ mit $f(x) = g_1(x) = x^6$ bzw. $f(x) = g_3(g_2(x))$ mit $g_2(x) = x^3$, $g_3(y) = y^2$. Dann gilt: Stabilität_g1 <= Stabilität_(g3 g2).
	X	Die relative Stabilität ist die Eigenschaft eines gegebenen Problems.
X		Es gibt eine konstante Funktion f mit $f = o(x), x \rightarrow 0$.
	X	Es gibt Algorithmen, deren Stabilität kleiner ist als 1.
X		Die RELATIVE Kondition ist die Eigenschaft eines beschriebenen Problems.
	X	In [1,100] gibt es unendlich viele Zahlen mit der Mantissenlänge 8.
X		Der Aufwand der LR-Zerlegung ist nicht größer als der bei der herkömmlichen Bestimmung von x mit Ax = b.
	X	Für alle Funktionen f gilt: K_abs(f, x) >= 1.
	X	Im Zweierkomplement sind ohne Weiteres alle Rechnungen problemlos durchführbar.
	X	Die Abbildung Theta, die natürliche 4-adische Zahlen in 2-adische Zahlen umwandelt, ist keine Bijektion.
	X	Die LR-Zerlegung ist eine Entdeckung des norwegischen Mathematikers Tocha Stik.
	X	Reelle Zahlen lassen sich im Computer eindeutig darstellen.
	X	G(q, I) ist abgeschlossen bezüglich der Addition.
X		Die Kondition ist die Eigenschaft eines Problems.
	X	$f(x) := x^2 => K_abs(x) = 2x.$
X		Sei A = L * R. Ohne Zeilentausch gilt: Die erste Zeile von A entspricht immer der ersten Zeile von R.
	X	Für Lipschitz-stetige Funktionen gilt: K_rel <= L (L ist Lipschitz-Konstante).
	X	$f(x) := x! => f(x) = O(x)$ für $x \rightarrow$ Infinity.
X		Der relative Rundungsfehler ist nie größer als die Maschinengenauigkeit.
X		Jeder endliche fünfadische Bruch ist ein endlicher Dezimalbruch.
	X	Für alle Matrizen A : K(A) > 1.
	X	Sei $f(x) = e^x$. Dann gilt für alle x element R : $K_rel(x) \le K_abs(x)$.
	X	$f(x) = O(g(x)) => f(x) = o(g(x))$ für $x \to Infinity$.
X		$f(x) = o(g(x)) \Rightarrow f(x) = O(g(x))$ für $x \to Infinity$.