APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Fall 2015

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

- Introduction
- MATLAB as calculator
- Array operation

Ready to Launch?

MATLAB Programming Modes

- Command line (in command window)
- Scripts (.m files)

MATLAB as A Calculator

- Operators: + * / ^
- Result is computed, and displayed as ans
- Precedence rules:
 - Left-to-right within a precedence group
 - Precedence groups are (highest first):
 - 1. Parenthesis ()
 - 2. Power (^)
 - 3. Multiplication and division (*, /)
 - 4. Addition and subtraction (+, -)

Exercise

Calculate:

$$\cdot \cos\left(\sqrt{\frac{(1+2+3+4)^3}{5}}\right)$$

- $\sin(\sqrt{\pi}) + \ln(\tan(1))$
- $2^{3.5 \times 1.7}$
- $e^{\sin(10)}$
- Your best friend on-line help

Elementary Math Functions

- Function list:
 - http://www.mathworks.com/help/matlab/functionlist.html
 - Arithmetic
 - Trigonometry
 - Exponents and Logarithms
 - Complex Numbers
 - Cartesian Coordinate System Conversion

Embedding Functions

Functions may be embedded into other functions,

```
sin(cos(pi))

cos(pi)
sin(ans)
```

 Many lines of code can be condensed into one single command

Variables

- Variables do <u>NOT</u> need to be declared before assignment
- A single "equal" sign (=) is the assignment operator:

```
>> LHS = RHS
```

$$>> A = 10$$

- 1. Upper case/lower case make difference?
- 2. Can variable names can begin with a number?

Numeric Variable (Data) Type

Special Variables and Constants

- ans
- i, j: complex number
- Inf: ∞
- eps: 2.2204e-016
- NaN: not a number
- pi: π

 What's the answer from MATLAB after typing?

To list keywords:

>> iskeyword

MATLAB Calling Priority

High

Variable

Built-in function

Subfunction

Private function:

- MEX-file
- P-file
- M-file

```
cos='This string.';
cos(8)
```

```
clear cos
cos(8)
```

Numeric Display "Format"

>> format long

Style	Result	Example
short	Short, fixed-decimal format with 4 digits after the decimal point.	3.1416
long	Long, fixed-decimal format with 15 digits after the decimal point fordouble values, and 7 digits after the decimal point for single values.	3.141592653589793
shortE	Short scientific notation with 4 digits after the decimal point.	3.1416e+00
longE	Long scientific notation with 15 digits after the decimal point fordouble values, and 7 digits after the decimal point for single values.	3.141592653589793 e+00
bank	Currency format with 2 digits after the decimal point.	3.14
hex	Hexadecimal representation of a binary double-precision number.	400921fb54442d18
rat	Ratio of small integers.	355/113

Exercise

Calculate:

$$\frac{3}{13} + \frac{4}{14} + \frac{5}{15} =$$

1. 232/273

a. 0.84981384981682

2. 233/273

b. 0.84981484981683

3. 131/275

c. 0.84981584981684

4. 132/2730

d. 0.84981684981685

Command Line Terminal

Observe the difference between

$$>> a = 10$$

 $>> b = 10;$

- ; at the end of a command suppresses output to the terminal
- † display previous commands

Some Useful Functions

- clc: clear command window display
- clear: remove all variables in the workspace
- who: variables in the workspace
- whos: variable information of the workspace

Array (Vector and Matrix)

Row vector:

$$>> a = [1 2 3 4]$$

Column vector:

$$>> b = [1; 2; 3; 4]$$

• Try:

Key in the following matrix in MATLAB:

$$A = \begin{bmatrix} 1 & 21 & 6 \\ 5 & 17 & 9 \\ 31 & 2 & 7 \end{bmatrix}$$

Array Indexing

Select a certain subset of elements inside a matrix

$$A = \begin{bmatrix} 1 & 21 & 6 \\ 5 & 17 & 9 \\ 31 & 2 & 7 \end{bmatrix}$$

What's the answer from MATLAB after typing?

```
>> A(8)
>> A([1 3 5])
>> A([1 3; 1 3])
>> A(3,2)
>> A([1 3], [1 3])
```

Replacing Entries

Change the following elements in the matrix:

$$A = \begin{bmatrix} 1 & 21 & 6 \\ 5 & 17 & 9 \\ 31 & 2 & 7 \end{bmatrix} \quad \begin{bmatrix} 1 & 76 & 6 \\ 5 & 17 & 9 \\ 31 & 0 & 7 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 5 & 0 & 0 \\ 31 & 0 & 7 \end{bmatrix}$$

Colon Operator

- Want to create a long array: A = [1 2 3 ... 100]
- Creates vectors or arrays, and specify for iterations
- Syntax: $j:k \Rightarrow [j, j+1, j+2,..., j+m]$ $j:i:k \Rightarrow [j, j+i, j+2i, ..., j+m*i]$

What's the answer from MATLAB after typing?

```
>> B = 1:5
>> B = 1:2:5
>> B = [1:5; 2:3:15; -2:0.5:0]
>> str = 'a':2:'z'
```

Indexing Using Colon Operator

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 0 & 0 \\ 31 & 0 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 0 & 0 \end{bmatrix}$$

How do we delete a row or a column of A?

Exercise: try the expression

Array Concatenation

 Arrays can be formed through concatenation as long as the rectangular shape is preserved

 Create matrices A, B, C, and D and concatenate them into F:

$$F = \begin{bmatrix} A & 1 & 2 & 9 & 9 \\ 3 & 4 & 9 & 9 \\ C & 5 & 6 & 7 & 8 \\ D & -2 & -1 & 0 & 1 \end{bmatrix} B$$

Array Manipulation

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 3 & 3 \\ 2 & 4 & 9 \\ 1 & 3 & 1 \end{bmatrix}$$

$$a = 2$$

- Operators on array: + * / ^ .
- Type the following command and observe the results:

Array Manipulation

Symbol	Operation	Form	Examples
+	Scalar-array addition	A+b	[6,3]+2=[8,5]
_	Scalar-array subtraction	A-b	[8,3]-5=[3,-2]
+	Array addition	A+B	[6,5]+[4,8]=[10,13]
_	Array subtraction	A-B	[6,5]-[4,8]=[2,-3]
*	Matrix multiplication	A*B	[3,5]*[4,8]'=52
• *	Array multiplication	A.*B	[3,5].*[4,8]=[12,40]
• /	Array right division	A./B	[2,5]./[4,8]=[2/4,5/8]
. \	Array left division	A.\B	[2,5].\[4,8]=[4/2,8/5]
• ^	Array exponentiation	A.^B	[3,5].^[2,4]=[3^2,5^4]

Some Special Matrix

- eye (n): n×n identity matrix
- zeros (n1, n2): n1×n2 zero matrix
- ones (n1, n2): n1×n2 matrix with every entry as 1
- diag(): diagonal matrix

Some Matrix Related Functions

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 7 & 0 & 9 \end{bmatrix}$$

Type the following command and observe the results:

End of Class

