Midterm 2 Solutions

Math 521 Section 001, UW-Madison, Spring 2024

April 6, 2024

Each item is worth 5 points, for a total of 45.

- 1. The space X is compact if every open cover of X admits a finite subcover.
- 2. (a) The sequence $p_n \to p$ if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N \Rightarrow d(p_n, p) < \varepsilon$.
 - (b) Let $\varepsilon > 0$. Since $p_n \to p$, there exists N_1 such that $n \ge N_1 \Rightarrow d(p_n, p) < \varepsilon/2$. Since $p_n \to q$, there exists N_2 such that $n \ge N_1 \Rightarrow d(p_n, q) < \varepsilon/2$. Hence, for $n \ge N = \max\{N_1, N_2\}$, by the triange linequality, we have

$$d(p,q) \le d(p,p_n) + d(p_n,q) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary and $d(p,q) \ge 0$, we must have d(p,q) = 0. This implies that p = q, as desired.

- (c) It has a convergent subsequence.
- 3. (a) Let $t_n = \sum_{k=n}^{2n} a_k$. We claim that $t_n \to 0$. Given $\varepsilon > 0$, by the Cauchy criterion for series, there exists N such that $m \ge n \ge N$ implies $|\sum_{k=n}^m a_k| < \varepsilon$. Applying this with m = 2n, we obtain $|t_n| = |t_n 0| < \varepsilon$ for $n \ge N$. Since $\varepsilon > 0$ was arbitrary, we are done.
 - (b) The series $\sum (-1)^n a_n/n$ need not converge. For a counterexample, we take $a_n = (-1)^n/\log n$ for $n \geq 2$. Since $\log n$ is monotonically increasing and tends to infinity, $1/\log n$ is monotonically decreasing and tends to zero. By the alternating series test (on HW), the series $\sum a_n$ converges. However, $\sum (-1)^n a_n/n = \sum 1/(n \log n)$ diverges, by class / textbook.
- 4. (a) Let $q \in X$. We shall use the following variant of the triangle inequality:

$$|d(p,x) - d(p,q)| \le d(x,q).$$
 (0.1)

To prove the inequality, first note that

$$d(p,x) \le d(p,q) + d(q,x) = d(p,q) + d(x,q)$$

by the triangle inequality and symmetry of $d(\cdot,\cdot)$. Subtracting d(p,q) from both sides, we obtain

$$d(p,x) - d(p,q) \le d(x,q). \tag{0.2}$$

We also have

$$d(p,q) \le d(p,x) + d(x,q).$$

Subtracting d(p,x) from both sides, we get

$$d(p,q) - d(p,x) \le d(x,q). \tag{0.3}$$

Combining the two inequalities (0.2-0.3), we obtain (0.1).

Now, to show continuity, let $\varepsilon > 0$. We take $\delta = \varepsilon$. Then for $d(q, x) < \delta$, we have

$$|f(x) - f(q)| = |d(p, x) - d(p, q)| \le d(x, q) < \delta = \varepsilon,$$

by (0.1).

(b) The extreme value theorem: given a continuous function $f: X \to \mathbb{R}$, where X is compact, f is bounded and attains its supremum, i.e. there exists $q \in X$ such that

$$f(q) = \sup_{x \in X} f(x).$$

(c) Let $r = d(p,q) = \sup_{x \in X} d(p,x)$. We claim that f(X) = [0,r].

Since $p \in X$, we know that f(p) = d(p, p) = 0, hence $0 \in f(X)$. By (b), we know that $r = f(q) \in f(X)$. But f is continuous, by (a), and since X is connected, f(X) is also connected. By a theorem from class/textbook, for any 0 < c < r, we must have $c \in f(X)$. Hence $[0, r] \subset f(X)$. Meanwhile, f(X) contains only nonnegative numbers less than or equal to $r = \sup_{x \in X} f(x)$, so clearly $f(X) \subset [0, r]$. We are done.