Exercise Session n. 1 (24 February 2023)

Algorithms and Data Structures

Median Value

Write a function $[median_value(a,b,c)]$ that, given three numbers a,b,c returns their median value.

Examples

```
>>> median_value(1,2,3)
2
>>> median_value(3,2,1)
2
>>> median_value(7, 3, 21)
7
>>> median_value(7, 3, 5)
5
>>> median_value(7, 3, 3)
3
>>> median_value(7, 3, 7)
7
```

Leap Year

Write a function $extbf{leap_year}(y)$ that, given a year number $extbf{y}$ in the Gregorian calendar, return $extbf{True}$ if $extbf{y}$ is a leap year, or $extbf{False}$ otherwise. Recall that a leap year is one whose number is divisible by 4, excluding the year numbers divisible by 100, but including the year numbers divisible by 400.

Examples

```
>>> leap_year(2000)
True
>>> leap_year(1969)
False
>>> leap_year(2023)
False
>>> leap_year(1984)
True
>>> leap_year(2022)
False
>>> leap_year(2022)
False
>>> leap_year(2200)
False
```

```
>>> leap_year(2400)
True
>>> leap_year(1900)
False
```

Classify Triangle

Write a function <code>classify_triangle(a,b,c)</code> that, given three positive numbers representing the lengths of three segments, respectively, output a classification of the triangle obtained by connecting the three segments. The output consists of one or two words printed on a single line and separated by a single space. The first word is one of <code>acute</code>, <code>right</code>, <code>obtuse</code>, or <code>impossible</code>. <code>impossible</code> indicates that it is impossible to form a triangle with the given segment lengths, in which case the output ends there. <code>acute</code>, <code>right</code>, and <code>obtuse</code> indicate that the resulting triangle has all acute angles, one right angle, or one obtuse angle. In these cases, the output must contain a second word that can be either <code>scalene</code>, <code>isosceles</code>, or <code>equilateral</code>, indicating the type of triangle.

Examples

```
>>> classify_triangle(10,10,10)
acute equilateral
>>> classify_triangle(4,3,5)
right scalene
>>> classify_triangle(4,3,8)
impossible
>>> classify_triangle(3,4,3)
acute isosceles
>>> classify_triangle(3,5,3)
obtuse isosceles
>>> classify_triangle(5,5,7)
acute isosceles
```