Wärmepumpe

Themen Heizungs-Varianten Kostenvergleich Umweltwärme nutzen Wärme pumpen Wärmepumpe Phasenübergänge Folgerungen Kältemittel Wärmepumpenprozess Prozessschritte

Zustandsänderungen

Schritt I - IV

1. Hauptsatz

Wärme pumpen?

COP Werte

Quellen

Enthalpie & Wärmepumpe Wärmepumpenprozess Carnot Carnot-Wirkungsgrad n Carnot-Wärmepumpe η_C COP_{real} **COP** Erfahrungswerte Vorlauftemperaturen lg p,h Diagramme Heizkennlinie Carnot: $COP_{MAX} \& COP_{real}$ von VT $COP_{h:1.0}$ & $COP_{h:0.65}$ & Grädigkeit von AT & VT $COP_{h:1.0} \& COP_{h:0.65} \& Grädigkeit von TC-TV$ COP Internet

Wärme pumpen?

- Wärme pumpen?
- Mit "gefühlt" kalter Außenluft heizen?
- Wie kann aus einer kalten (0 °C) Außentemperatur eine hohe Innentemperatur werden?
- Was geschieht, wenn die Außentemperatur unter 0 °C liegt?

Themen	
Technik & Physik	Es soll um physikalische, technische Inhalte gehen, also kein Exkurs über das Für und Wider von Wärmepumpen.
Einführung	Der Unterschied zwischen einem Kühlschrank und einer Wärmepumpe.
ldee der Wärmepumpe	Elektroheizung versus Wärmepumpe.
Physik	Wasser und Wasserdampf.
	Isotherme, Isobare, Isochore, Isovapore, Isentrope
	Enthalpie
	lg p,h Diagramm feuchte Luft
	lg p,h-Diagramm Kältemittel
	Carnot-Prozeß

Heizungs-Varianten

	Brennwertgerät	Elektroheizung	Wärmepumpe	
Elektr. Energie	Kein Beitrag zur Erzeugung von Wärme. Pumpen, Regelung 50 – 100 W	Wärme aus Strom: Infrarotheizung ca. 100 %	Aus 1 kWh elektr. Energie werden 3 kWh Heizenergie. COP = 3	
Fossile Brennstoffe	Erdgas	(Erdgas 60 % E-Werk)	(Erdgas 60 % E-Werk)	
Regenerierbare Energie			Umwelt (Luft, Erde,)	
Kosten	7.000 – 10.000 €	max. 1.500 € je Raum (Raumgröße)	Je nach Leistung, ab 20.000 €	
Fazit	Analog zum Verbrauch entsteht CO ₂ .	Ideal, wenn elektr. Energie autark erzeugt wird.	Energie aus der Umwelt. CO ₂ neutral?	
Graue Energie	Mittel (Herstellung)	Gering	Hoch (Herstellung)	

Kostenvergleich

	Gas	Strom
Verbrauch	8000 kWh/Jahr	2800 kWh/Jahr
Kosten	20 ct/Jahr (Januar 2022)	45 ct/Jahr (Januar 2022)
Kosten	1600 €	1260 €
	Wärmepumpe und elektr. E i	nergie
Kennzahl COP	$COP = \frac{q_{Nutz}}{W}$ gewoni	nene Energie / aufgewandte Arbeit
<i>COP</i> = 3	$W_E = \frac{q_{Nutz}}{COP} W_E = \frac{8000}{3} = 2$	2666 kWh untere Grenze
COP = 4	$W_E = \frac{8000}{4} =$	2000 kWh anzustreben
	Brennwert (nur Gasanteil)	Wärmepumpe (nur Stromanteil)
Kosten	1600 € (20 ct/Jahr) 960 € (12 ct/Jahr)	$Kosten_3 = 2666 \times 45 = 1199 €$ $Kosten_4 = 2000 \times 45 = 900 €$

Quelle: Strompreisentwicklung 2024: So entwickelt sich der Strompreis | VERIVOX

Gaspreis aktuell: So viel kostet die Kilowattstunde | NDR.de - Nachrichten - NDR Info

Umweltwärme nutzen

Absolute Temperaturskala in **Kelvin!**

Null Grad Celsius ist nur gefühlt kalt. Tatsächlich liegt eine thermische Energie analog zu 273 K vor.

Aufgabe: Aus Umweltwärme Raumwärme ernten.

Wärme pumpen

Aufgabe: Kältemittel von "5 °C" auf "51 °C" pumpen.

Wärmepumpe

Kühlschrank:

links Innenraum rechts Außenraum

Wärmepumpe:

rechts Innenraum links Außenraum

Link: Kühlschrank in Physik | Schülerlexikon | Lernhelfer

Phasenübergänge

Temperatur in °C

Energie in kJ (für 1 kg)

Phasen:

- Festkörper: Eis

Eis + Wasser

- Flüssigkeit: Wasser

- Nassdampf: Wasser und Dampf

- Heißdampf: Dampf

Isotherme: t = konst

p = konst

Phasenübergänge:

Eis & Wasser -> Wasser

Wasser & Dampf -> Dampf

Bei 1 bar Luftdruck.

Dietzel: Technische Wärmelehre

Folgerungen			
Wasser verdampfen	Um Wasser bei p=1 bar zu verdampfen:		
	spez. Enthalpie Wasser: $h_1=417J/kg$ spez. Enthalpie Wasserdampf $h_2=2673J/kg$ spez. zugeführte Energie: $\Delta h=h_2-h_1$ $\Delta h=2673-417$ $\Delta h=2256kJ/kg$		
Folgerungen Wärmepumpe			
Verdampfen	Der Wärmepumpen-Prozess macht sich, die mit dem Phasenübergang vom flüssigen in den gasförmigen Aggregatzustand des Kältemittels verbundene physikalische Eigenschaft zu Nutze, ein hohes Maß an thermische Energie aufnehmen zu können.		
Verflüssigen	Phasenübergang vom gasförmigen in den flüssigen Aggregatzustand.		

Kältemittel

Warum Wasser nicht geht!	Wasser siedet bei Umgebungsdruck erst bei 100 °C.
	Bei ca. 1/100 bar würde Wasser erst bei 0°C sieden.
Anforderungen	Bei geringen Temperaturen verdampfen
	Bei höheren Temperaturen kondensieren
	 Beide Vorgänge müssen bei beherrschbaren Drücken stattfinden.
	Die "latente" Wärme sollte möglichst groß sein.
	Kein Treibhausgaspotenzial.
	Kein Ozonschädigungspotenzial.
	Optimale Betriebssicherheit (Brennbarkeit)

Wärmepumpenprozess

Prozessschritte

Schritt	Zustände	Vorgang	
1.	$4 \rightarrow 1$	verdampfen	Zufuhr von Wärme. Phasenübergang von "flüssig → gasförmig".
II.	$1 \rightarrow 2$	verdichten	Einbringen von Arbeit (W _{elekt}). Führt zu einer Druck- und Temperaturhöhung. Wärme pumpen.
III.	$2 \rightarrow 3$	verflüssigen	Abgabe von Wärme. Phasenübergang von "gasförmig → flüssig.
IV.	3 → 4	entspannen	Drosselung des flüssigen Kältemittels. Führt zu einer Druck- und Temperatursenkung. Frei werdende Energie geht in das Kältemittel über. Keine Änderung der spez. Enthalpie des Kältemittels.

Zustandsänderungen

		(Definition für ideale Gase)	
Isobare Zustandsänderung	p = konst	Je größer die Temperatur, desto größer das Volumen.	Linien gleichen Druckes: Isobaren
Isotherme Zustandsänderung	T = konst	Je größer der Druck, desto kleiner das Volumen.	Linien gleicher Temperatur: Isothermen
Isentrope (adiabatische) Zustandsänderung	p, T ändern sich	Je größer die eingebrachte Enthalpie, desto größer Druck und Temperatur.	Linien gleicher Entropie: Isentropen
Isochore Zustandsänderung	v = konst	Je größer die Temperatur, desto größer der Druck.	Linien gleichen Volumes: Isochoren

Schritt I

1. Hauptsatz

Wärme und Arbeit.	Erst 1842 sprach Robert Mayer von der "Gleichwertigkeit von Wärme und Arbeit".
1. Hauptsatz der Wärmelehre ^[1]	Wärme kann aus mechanischer Arbeit erzeugt und in solche umgewandelt werden.
	Elektrische Arbeit kann in Wärme umgewandelt werden.
Wärmegleichung	Q = ΔU + W U: Innere Energie W: Arbeit

Schritt II

Schritt II: verdichten

 $T_2 = 51 \text{ °C}$ $p_1 = 13,51 \text{ bar}$ $v_2 < v_1$

$$T_1 = 0 \,^{\circ}\text{C}$$

 $p_1 = 2,93 \, \text{bar}$
 v_1

(isentroper Prozess)

 $Q = \Delta U + W_{elekt}$

U: Innere Energie

W_{elekt}: elektrische Arbeit

Annahme: Q = 0

Innere Energie:

 $\Delta U = W_{elekt}$

Vorgang

Kältemitteltemperatur auf Vorlauftemperatur (+Grädigkeit) erhöhen.

Thermodynamik

Adiabatische (isentrope) Volumenänderungsarbeit W_{elekt.}

Ohne Wärmeverluste (nicht realistisch) Q.

Temperatur erhöht sich. Druck erhöht sich.

Volumen verkleinert sich.

Quelle: FS_Thermodynamik_und_Kaeltetechnik.pdf

Schritt III

Vorgang	Abgabe von Wärme.
Thermodynamik	Phasenübergang von "gasförmig → flüssig. Temperatur bleibt konstant. Druck bleibt konstant.

Schritt IV

Schritt IV: entspannen

$T_3 = 51 \text{ °C}$ $p_3 = 13,51 \text{ bar}$ v_3

$$T_4 = 0 \,^{\circ}\text{C}$$

 $p_4 = 2,93 \, \text{bar}$
 $v_4 > v_3$

(isentroper Prozess)

Vorgang

Thermodynamik

Kältemitteltemperatur auf Umlufttemperatur (-Grädigkeit) senken.

Adiabatische (isentrope) Drosselung ohne Wärmeverluste.

Frei werdende Energie geht in latente Wärme über.

Phasenübergang von flüssig nach gasförmig.

Temperatur erniedrigt sich. Druck erniedrigt sich.

Volumen erhöht sich.

Enthalpie & Wärmepumpe

Enthalpie ^[2]	Die Enthalpie H ist die Summe aus innerer Energie " U " und der Volumenarbeit " pV " (oder W).
	Die Enthalpie H ist eine Zustandsgröße, wie $\it U,p$ und $\it V$.
Verdampfer	Der Phasenübergang von "flüssig -> gasförmig", Zufuhr von Wärme, führt zu einer anwachsenden spez. Enthalpie h .
Verdichter	Die Einbringung von Arbeit ($\mathbf{W}_{\mathrm{elekt}}$) führt zu einer anwachsenden spez. Enthalpie h .
Kondensator	Der Phasenübergang von "gasförmig -> flüssig", Abgabe von Wärme, führt zu einer abnehmenden spez. Enthalpie h .
Expansionsventil	Die Drosselung des flüssigen Kältemittels verläuft ohne Änderung der spez. Enthalpie.

Wärmepumpenprozess

Link: https://waerme-mit-system.de/waermepumpe/

Carnot

rechtslaufend

T_H lsotherme

Adiabate

 q_{ab}

linkslaufend

Wärmekraftmaschine

 T_K

Volumen

Isotherme

$$\eta = \frac{T_H - T_K}{T_H}$$

Wärmepumpe

$$\eta_C = \frac{T_H}{T_H - T_K}$$

Carnot-Wirkungsgrad η

Rechtslaufender Carnot-Prozess.					
allgemein	$\eta = \frac{Nutzen}{Aufwand}$				
Wärmekraftmaschine	$\eta = \frac{W}{q_{zu}}$	gewonnene Arbeit /	aufgewandte Energie		
Carnot	$\eta = \frac{q_{Nutz}}{q_{zu}}$	$\eta = \frac{q_{zu} - q_{ab}}{q_{zu}}$			
			Energie im Benzin 100 % 35 %		
Carnot-Wirkungsgrad	$\eta = \frac{T_H - T_K}{T_H}$	η ist kleiner als 1	Abgase		

(35 % Abgase)

Carnot-Wärmepumpe η_C

Linkslaufer	nder (Carnot-F	Prozess.

$$\eta = \frac{\textit{Nutzen}}{\textit{Aufwand}}$$

$$\eta = \frac{q_{Nutz}}{W}$$

gewonnene Energie / aufgewandte Arbeit

$$\eta = \frac{q_{ab}}{W}$$

$$W = q_{ab} - q_{zi}$$

$$W = q_{ab} - q_{zu} \qquad \eta = \frac{q_{ab}}{q_{ab} - q_{zu}}$$

Theoretischer Carnot Wirkungsgrad

$$\eta_C = \frac{T_H}{T_H - T_K}$$

η ist größer als 1

CO	P	
-	•	rea

COP Coefficient of Performance

COP bewertet mit Gütegrad der Wärmepumpe.

Carnot-Wirkungsgrad $\eta_C = \frac{T_H}{T_H - T_K}$

Gütegrad $\eta_{C,WP} = \frac{realer\ COP}{Carnot-Wirkungsgrad}$

Erfahrungswerte:

 $\eta_{C,WP} =$ 0,45 bis = 0,55

 $\mathsf{COP}_{\mathsf{real}}$

$$COP_{real} = \eta_{C,WP} \times \eta_C$$

$$COP_{real} = \eta_{C,WP} \times \frac{T_H}{T_H - T_K}$$

COP Erfahrungswerte

Angaben von BOSCH: Generell liegen gute COP-Werte zwischen 3 und 5. Ein COP unter 3 spricht in der Regel dafür, dass die Wärmepumpe nicht wirtschaftlich arbeitet. Für gewöhnlich erreichen Wärmepumpen für Hochtemperatur eine geringere Leistungszahl als herkömmliche Wärmepumpen, da sie

mehr Strom verbrauchen.

- Welcher COP-Wert als gut befunden wird, unterscheidet sich je nach Art der Wärmepumpe.
- Für Luftwärmepumpen gilt ein COP ab 3 als gut.
- Das bedeutet, dass eine Kilowattstunde Strom drei Kilowattstunden Wärme bereitstellt.

Quelle: <u>COP Wärmepumpe</u>: <u>Werte, Bedeutung, Berechnung | Bosch (bosch-homecomfort.com)</u>

Vorlauftemperaturen

Quelle: Vorlauftemperatur: Die Heizung optimal einstellen | Vaillant

lg p,h R-134a Carnot

- Wärmepumpe
- Carnot-Prozess
- Kältemittel R-134a

$$T_H = 50 \text{ °C}$$

 $T_K = 0 \text{ °C}$

lg p,h R-134a real

- Wärmepumpe
- Realer Prozess
- Kältemittel R-134a

Einfluss von:

- Grädigkeit
- Verdichter-Wirkungsgrad

Quelle 4

Heizkennlinie

Brennwertgerät

a = 17,5 °C

c = 25 °C

d (Nachtabsenkung)

e = 75 °C

AT °C	VT °C
10	39
5	46
0	54
-5	61
-10	68

Carnot: COP_{MAX} & COP_{real} von AT

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

 COP_{MAX} COP_{real}

Carnot: $COP_{MAX} \& COP_{real}$ von VT

$\eta_{C;WP}$	Gütegrad: $\eta_{C;WP} = 0.5$
COP_{MAX}	Entspricht Carnot-
	Wirkungsgrad (η _C)
COP_{real}	Bewerteter COP
AT	Außentemperatur
VT	Vorlauftemperatur

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

 $\begin{array}{cccc} & & COP_{MAX} \\ \hline & & COP_{real} \end{array}$

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von AT

 $COP_{h;0,65;Gr\ddot{a}d}$. Grädigkeit

AT Außentemperatur

VT Vorlauftemperatur

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit	
bei TC	5
bei TV	5

 $COP_{h;1,0} \ COP_{h;0,65} \ COP_{h;0,65;Gr\"{a}digkeit}$

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von VT

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit	
bei TC	5
bei TV	5

 $COP_{h;1,0}$ $COP_{h;0,65}$ $COP_{h;0,65;Gr\"{a}digkeit}$

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von TC-TV

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit	
bei TC	5
bei TV	5

COP Internet

 COP_h über spez. Enthalpie. $\eta_{Verdichter} = 0,65$

$$AT = 0 °C$$

 $VT = 54 °C$

Quelle [5]

COP Werte

СОР	Coefficient of Performance
COP < 1	Die Wärmepumpe verbraucht mehr elektrische Energie als sie zum Heizen liefert. Jede andere Heizung wäre besser.
COP = 1	Wärmepumpe wirkt wie Widerstandsheizung. Schlecht für das Klima und teuer.
COP = 1-2	Unwirtschaftlich, da Strom meist mit einem Wirkungsgrad von unter 50 % aus Wärme erzeugt wird.
COP > 3	Normaler Arbeitsbereich. Öl- und Gasheizungen überlegen
COP = 1-2	Unwirtschaftlich, da Strom meist mit einem Wirkungsgrad von unter 50 % aus Wärme erzeugt wird.

Prof. Dr. G. Ganteför

Link: WÄRMEPUMPE: Wie geht das eigentlich? | #58 Energie und Klima - YouTube

Quellen	
1	Dietzel, Fritz: Technische Wärmelehre, Kamprath-Reihe
2	Enthalpie – Wikipedia
3	W10 Wärmepumpe (tu-darmstadt.de)
4	https://de.wikipedia.org/wiki/W%C3%A4rmepumpe
5	Log ph Diagramm online I TLK Energy (tlk-energy.de)
6	www.schuelerlexikon.de
7	Online - Berechnung - Tetrafluorethan - R134a (peacesoftware.de)
8	<u>Thermodynamische Funktionen: Zustandsgrößen für R134a (Tetrafluorethan)</u> (enthalpos.blogspot.com)