Probabilitati si Statistica

Oancea Elena-Antonia, Hurloi Selena-Andreea

2022

Contents

1	Cur	sul 1		5
	1.1	Introd	ucere in Probabilitati si Statistica	5
1.2 Camp de probabilitate. Operatii cu evenimente			de probabilitate. Operatii cu evenimente	6
		1.2.1	Exemplul 1	6
		1.2.2	Exemplul 2	6
		1.2.3	Exemplul 3	7
		1.2.4	Exemplul 4	7
		1.2.5	Exemplul 5	8
	1.3	Diagra	amele Venn	9
2	Cur	sul 2		11
	2.1	Camp	de probabilitate. Operatii cu evenimente. Formule de calcul	11
		2.1.1	Aruncatul cu banul	12
		2.1.2	Aruncatul cu zarul	12
		2.1.3	Proprietati	13
-		ul clasic de posibilitate.Modelul lui Laplace	14	
		2.2.1	Formula sumei	14
		2.2.2	Formula produsului	15
3	Cur	~ 3		15
	3.1	Schem	aa cu revenire	15

	3.2	Schema de extragere fara revenire				
		3.2.1	Experimentul 1			
		3.2.2	Experimentul 2			
		3.2.3	Experimentul 3.Problema aniversarilor			
		3.2.4	Experimentul 4			
	3.3	3.3 Problema lui Newton-Pepys				
	3.4	Partitii - coeficientul multinomial				
		3.4.1	Experimentul 1			
		3.4.2	Experimentul 2			
		3.4.3	Extragere cu revenire in care ordinea nu conteaza			
4	Cur	sul 4	20			
	4.1	Proba	bilitati conditionate			
		4.1.1	Experimentul 1			
		4.1.2	Exemplul 2			
		4.1.3	Exemplul 3			
		4.1.4	Exemplul 4			
	4.2	Formula lui Bayes				
		4.2.1	Experimentul 1			
		4.2.2	Exemplul 2			
5	Cursul 5					
	5.1	Experimentul 1				
	5.2 Independenta		endenta			
		5.2.1	Experimentul 1			
		5.2.2	Experimentul 2			
		5.2.3	Experimentul 3(continuare experimentul 1)			
		5.2.4	Experimentul 4(continuare experiment covid)			
		5.2.5	Experimentul 5			
	5.3	oile aleatoare				
		5.3.1	Experiment			
		5.3.2	Repartitia unei variabile aleatoare			
		5.3.3	Experiment			

		5.3.4	Proprietati functia de repartitie	30		
6	Cursul 6					
	6.1	6.1 Variabile aleatoare				
	6.2	Functia de repartitie/cumulativa(CDF)				
		6.2.1	Experiment	31		
		6.2.2	Proprietatile functiei de repartitie	32		
	6.3	Variab	oile aleatoare discrete	33		
		6.3.1	Experiment	33		
		6.3.2	Proprietatile functiei de masa	34		
		6.3.3	Exemple de variabile discrete	35		
7	Cursul 7					
	7.1	Exper	iment	39		
	7.2	Indepe	endenta	41		
	7.3	Media	unei variabile aleatoare discrete	41		
8	Cur	sul 8		42		
	8.1	Media	si momentele de ordin superior	42		
		8.1.1	Experiment 1	42		
		8.1.2	Experimentul 2	42		
	8.2	Interp	retare fizica.Proprietati	42		
		8.2.1	Proprietati	44		
	8.3	Exemp	ple de calcul al mediei si variantei	44		
	8.4	Variab	oile aleatoare continue	45		
9	Cur	s 9		46		
10	Cur	s 10		46		
	10.1 Repartitia normala			46		
10.2 Repartitii comune, marginale si conditionate			titii comune, marginale si conditionate	47		
	10.3	Formu	ıla probabilitatii totale	48		
	10.4	Formu	ıla lui Bayes	49		
	10.5	Modia	unoi functii do y a	40		

11	Curs 11	49
12	Curs 12	49
	12.1 Repartitia conditionata	49
	12.2 Media conditionata	50
	12.3 Repartitii conditionate	5
	12.4 Formula probabilitatii totale	5
13	Curs 13	5.
	13.1 Independeta v.a	5
	13.2 Media unei functii de v.a	5
	13.3 Media conditionata	5
	13.4 Formula probabilitatii totale	5
	13.5 Covarianta si corelatie	5
	13.6 Inegalitati si termeni limita	5
14	Curs 14	58
	14.1 Inegalitati	5
	14.2 Teoreme limite	5
	14.3 Legea numerelor mari	6
	14.4 Integrarea Monte-Carlo	6
	14.5 Teorema limita centrala(TLC)	6

1 Cursul 1

1.1 Introducere in Probabilitati si Statistica

Experiment: Urna cu bile albe si negre, proportia bile
lor albe este p ϵ (0,1) necunoscut.

Probabilitati: p=0,17 ,extragem 10 bile.

Care este probabilitatea ca in cele 10 bile sa avem 4 bile de culoare alba?

Statistica: Am extras 10 bile (cu intoarcere) si 4 sunt albe.

Ce pot spune despre p?

1.2 Camp de probabilitate. Operatii cu evenimente

Experiment aleator = sir de actiuni care conduc la un rezultat necunoscut inaintea realizarii lui.

 Ω = multimea evenimentelor elementare / spatiul starilor / spatiul probelor.

 $\Omega = \{ H(head), T(tail) \}$ pentru ban

 $\Omega = \{1,\!2,\!3,\!4,\!5,\!6\}$ pentru zar

 $\omega \in \Omega$

 Ω :

- a) mutual exclusivitate
- b) colective exhaustive

Dau cu banul si ma uit la vreme:

- 1) H si ploua
- 2) T si ploua
- 3) H si nu ploua
- 4) T si nu ploua
- $\Omega = \{ H, T \}$ pentru ca vremea nu influenteaza experimentul

1.2.1 Exemplul 1

Arunc cu 3 monede.

$$\Omega = \{ (x,y,z) \mid x,y,z \in \{H,T\} \}$$

1.2.2 Exemplul 2

Arunc cu 2 zaruri.

$$\Omega = \{ (x,y) \mid x,y \in \{1,2,3,4,5,6\} \}$$

1.2.3 Exemplul 3

$$\Omega = [0,\!T]$$
 , T $\geq\!0$

1.2.4 Exemplul 4

$$\Omega = \{(x,y)\big|x^2+y^2 \le R^2\}$$

1.2.5 Exemplul 5

$$\Omega = \{(x,y)\big| -a \leq x \leq a, -b \leq y \leq b\big| a,b > 0\}$$

Definitie O submultime A $\epsilon\Omega$ se numeste eveniment.

Spunem ca evenimentul A se realizeaza daca in urma desfasurarii experimentului aleator rezulta $\omega \epsilon A$.

	Teoria multimii	Teoria probabilitatilor
Ω	multimea Ω	spatiul starilor/eveniment sigur
ω	un element din Ω	evenimentul elementar
Ø	multimea vida	evenimentul imposibil
A	multimea	evenimentul A
A^C	complemetara lui A in Ω	eveniment cotrar lui A
$A \cup B$	reuniune	cel putin un eveniment
		din A sau B se realizeaza
$A \cap B$	intersectie	evenimentele din A si evemenimentele
		din B se realizeaza simultan
$A \setminus B$	diferenta	A se realizeaza, dar B nu
$A \triangle B$	diferenta simetrica	sau A sau B se realizeaza, dar nu amandoua

1.3 Diagramele Venn

REUNIUNE

INTERSECTIE

COMPLEMENTARA

 $A\setminus B$

$A \triangle B$

Definitie Multimea evenimentelor posibile asociate experimentelor aleatoare cu spatiul starilor Ω este o submultime

 $F\subseteq \mathbb{P}(\Omega)$ care verifica urmatoarele proprietati:

- a) $\Omega \in F$
- b) daca A $\epsilon F \Rightarrow A^C \epsilon F$
- c) daca A,B $\epsilon\:F\Rightarrow A\:\cup\:B\:\epsilon\:F$

Aruncam cu banul pana obtinem pentru prima oara H.

$$\Omega = \{\ 1,\!2,\!3,\!..\} = N^*$$

 $\mathbf{A} = \{ \text{am obtinut pentru prima data H dupa un numar par de ori} \} = \{2,4,..\} = \bigsqcup_{n=1}^{\infty} \{2i\}$

 $c^{'})$ Daca $(A_{n})_{n} \in F$ atunci $\bigsqcup_{n=1}^{\infty} A_{n} \epsilon \ F$

Fcare verifica a,
b si $c^{'}$ se numeste $\sigma\text{-algebra}$

 Ω - spatial starilor

 (Ω, F) spatiul probabilizabil (spatiul masurabil) experiment aleator $\to (\Omega, F, \mathbb{P})$

Proprietati Avem (Ω, F) :

1)
$$\Omega = \{H,T\}$$

 $F = \mathbb{P}(\Omega) = \{\emptyset, \{H\}, \{T\}, \Omega\}$
2) $\Omega = \{1,2,3,4,5,6\}$
 $F = \mathbb{P}(\Omega) \simeq \{0,1\}^{|\Omega|}$

2 Cursul 2

2.1 Camp de probabilitate. Operatii cu evenimente. Formule de calcul

experiment aleator
$$\rightarrow (\Omega, F)$$

 $\mathbb{P}: F \rightarrow [0,1]$

Presupunem ca avem un experiment aleator si un eveniment A de interes. Repetam experimentul (in conditii similare) de un numar mare de ori(N).

 N_A - numar de realizari ale lui A $\frac{N_A}{N}$ - frecventa relativa de realizare a lui A $N_A = \{0,1,2,..,N\}$ $\mathbb{P}(A) \simeq \lim_{N \to \infty} \frac{N(A)}{B}$ $\frac{N(A)}{N} \epsilon[0,1]$ $\mathbb{P}(A) \epsilon[0,1]$ $\mathbb{P}(A) \epsilon[0,1]$ $\mathbb{P}(A) = \Omega \implies N(\Omega) = N \implies \frac{N(A)}{N} = 1 \implies \mathbb{P}(A)$

Daca
$$A = \Omega \implies N(\Omega) = N \implies \frac{N(A)}{N} = 1 \implies \mathbb{P}(A) = 1$$

 $\mathbb{P}(A)\epsilon[0,1]$
 $\mathbb{P}(\Omega) = 1$

Presupunem ca A,B $\epsilon F, A \cap B = \emptyset$

$$A \cup B \epsilon F$$

$$N(A \cup B) = N(A) + N(B)$$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \text{ - finit aditivitate}$$

Definitie O functie $\mathbb{P}: F \to [0,1]$ se numeste masura de probabilitate pe (Ω,F) daca verifica urmaroarele proprietati:

- a) $\mathbb{P}(\Omega) = 1$
- b) oricare ar fi $(A_n)_n\subseteq F$ disjuncte 2 cate 2

Experiment aleator $\rightarrow (\Omega, F, \mathbb{P}(B))$ camp de probabilitate

2.1.1 Aruncatul cu banul

$$\begin{split} \Omega &= \{H,T\} \\ F &= P(\Omega) = \{\emptyset, \{H\}, \{T\}, \Omega\} \\ \mathbb{P} : F &\to [0,1] \\ \mathbb{P}(\Omega) &= 1 \ , \, \mathbb{P}(\emptyset) = 0 \\ \mathbb{P}\{H\} &= p \, \epsilon[0,1) \Longrightarrow \mathbb{P}\{T\} = 1 - p \\ \text{Moneda echilibrata} &\Longrightarrow \mathbf{p} = \frac{1}{2} \end{split}$$

2.1.2 Aruncatul cu zarul

$$\begin{split} \Omega &= \{1,2,3,4,5,6\} \\ F &= P(\Omega) \Longrightarrow 2^6 \text{ elemente} \\ \{0,1\}^{\Omega} &= \{f: \Omega \to \{0,1\}\} \end{split}$$

$$\begin{split} \mathbb{P} : F &\to [0, 1] \\ \mathbb{P}(\Omega) &= 1 \ , \ \mathbb{P}(\emptyset) = 0 \\ \mathbb{P}(\{i\}) &= p_i \ \epsilon[0, 1], i \epsilon\{1, 2, 3, 4, 5, 6\} \end{split}$$

2.1.3 Proprietati

a)
$$\mathbb{P}(\emptyset) = 0$$

 $\Omega \cup \emptyset = \Omega$
 $\Omega \cap \emptyset = \emptyset$
Sirul $A_n = \emptyset$
 $\bigcup_n A_n = \emptyset$
Presupunem ca $\mathbb{P}(\emptyset) > 0$
 $\mathbb{P}(\emptyset) = \sum_n \mathbb{P}(\emptyset) \to \infty \Longrightarrow contradictie$

b)
$$\mathbb{P}(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i)$$
, $A_1, A_2, ..., A_n$ disjuncte 2 cate 2

$$c)A \epsilon F \Longrightarrow \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

$$(1) A \cap A^c = \emptyset$$

(2)
$$A \cup A^c = \Omega$$

Din (1) si (2)
$$\Longrightarrow \mathbb{P}(A \cup A^c) = \mathbb{P}(\Omega) = 1 = \mathbb{P}(A) + \mathbb{P}(A^c)$$

d)
$$A \subseteq B \Longrightarrow \mathbb{P}(A) \le \mathbb{P}(B)$$

e) A,B
$$\epsilon F$$
, $\mathbb{P}(A \cup B) = ?$ $A \cup B = A \cup (B \setminus A) = \emptyset$
 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) = \mathbb{P}(A) + \mathbb{P}(B \setminus (A \cap B)) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

$$e') \text{ A,B,C, } \mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

f) Formula lui Poincar \acute{e}

$$\mathbb{P}(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i< j}^n \mathbb{P}(A_i \cap A_j) + \sum_{i< j< k}^n \mathbb{P}(A_i \cap A_j \cap A_k) + ... + (-1)^{n+1} \mathbb{P}(A_1 \cap ... \cap A_n)$$

$$\mathbb{P}(A \cup B) \le \mathbb{P}(A) + \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B) > \mathbb{P}(A) + \mathbb{P}(B) - 1$$

2.2 Modelul clasic de posibilitate. Modelul lui Laplace

Fie $N \geq 1, N \in \mathbb{N}$ si consideram un experiment aleator cu N rezultate posibile.

$$\Omega = \{\omega_1, \omega_2, ..m\omega_n\}$$

$$F = \mathbb{P}(\Omega) \Longrightarrow 2^N elemente$$

$$\mathbb{P}: F \to [0,1], \ \mathbb{P}(\{N_i\}) = \frac{1}{N}, \ i\epsilon\{1,2,3,..,N\}$$
 echirepartitie

Fie A ϵF

$$\mathbb{P}(A) = \mathbb{P}(\bigcup_{\omega_i \in A} \{\omega_i\}) = \sum_{\omega_i \in A} \mathbb{P}(\{\omega_i\})$$

A - multimea evenimentelor favorabile

$$\mathbb{P}(A) = \frac{1}{N} \sum_{\omega_i \in A} 1 = \frac{|A|}{N} = \frac{|A|}{|\Omega|} = \frac{numar\ cazuri\ favorabile}{numar\ cazuri\ posibile}$$

2.2.1 Formula sumei

A,B finite disjuncte
$$\Longrightarrow |A \cup B| = |A| + |B|$$

A,B finite oarecare
$$\Longrightarrow |A \cup B| = |A| + |B| - |A \cap B|$$

Principiul includerii si excluderii

$$A_1, A_2, ..., A_n$$
 finita

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i< j}^n |A_i \cap A_j| + \sum_{i< j< k}^n |A_i \cap A_j \cap A_k| + ... + (-1)^{n+1} |A_1 \cap A_2 \cap ... \cap A_n|$$

Aplicatie

 $\varphi(n)$ - numar de numere prime cu n \leq n (functia lui Euler)

$$\varphi(n) = n\Pi_{p|n}(1 - \frac{1}{p})$$

2.2.2 Formula produsului

A,B finite A × B =
$$\{(a, b)|a\epsilon A, b\epsilon B\}$$

 $|A \times B| = |A| \times |B|$

3 Curs 3

3.1 Schema cu revenire

Urna cu n bile 1..n si efectuam k extrageri cu revenire.

In cate moduri?(1)

Reformulare: k bile (1..k) si n nume

 $(x_1,x_2,..,x_k),x_i$ -numarul urnei in care am pus bila i $\Longrightarrow n^k noduri$

 $\Longrightarrow_{(1)}$ numarul de siruri de lungime k
 cu termeni din $\{1,2,..,n\}$

3.2 Schema de extragere fara revenire

Urna cu n bile $\{1, 2, ..., n\}$ si efectuam k extrageri fara intoarcere. In cate moduri?

Reformulare: Numarul de siruri de lungime k
 de termeni distincti din $\{1,2,..,n\}$

$$n(n-1)(n-2)...(n-k+1) = A_n^k = \frac{n!}{(n-k)!}$$

3.2.1 Experimentul 1

Cate cuvinte puteti forma cu literele cuvantului "MATE"?

cu revenire $\implies 4^4 = 256 \ cuvinte$

fara revenire \implies 4! = 24 cuvinte

3.2.2 Experimentul 2

4 carti de matematica, 3 de fizica, 2 de istorie, 1 de geografie

Vrem sa pastram grupate cartiile pe domenii.

$$\implies$$
 4! * (4! * 3! * 2! * 1!)

3.2.3 Experimentul 3.Problema aniversarilor

n persoane

Vrem sa vedem care este probabilitatea ca cel putin 2 persoane sa se fi nascut in aceeasi zi.

 $\underline{Ipoteza}$: - anul are 365 de zile

-echirepartitia

-nu avem gemeni

Campul de probabilitate pe care lucram:

$$\Omega = \{(z_1, z_2, ..., z_n) | z_i \in \{1, 2, ..., 365\} \}$$

$$|\Omega| = 365^n$$

 $F=\mathbb{P}(\Omega)$ - multimea evenimentelor posibile

$$\mathbb{P}: F \to [0,1]$$

$$\mathbb{P}(\{\omega\}) = \frac{1}{365^n}$$
 echirepartitia

A - cel putin 2 persoane s-au nascut in aceeasi zi

$$A = \{(z_1, z_2, .., z_n)\epsilon\Omega | \exists i, j, i \neq j \text{ a.i. } z_i = z_j\}$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

 A^c - toate cele n persoane s-au nascut in zile diferite

$$\mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365*364*..*(365-n+1)}{365^n}$$

$$\mathbb{P}(A) = 1 - \frac{\frac{365!}{(365-n)!}}{365^n}$$

Pentru n=23 $\Longrightarrow \mathbb{P}(A) \approx 51\%$

3.2.4 Experimentul 4

Avem n persoane si am vrea sa formam comisii de cate 4 persoane.

Reformulare: Numarul de submultimi cu k elemente a unor submultimi cu n elemente. Ordinea nu conteaza!

$$C_n^k = \frac{n!}{k!(n-k)!}$$

 $(x_1, x_2, ..., x_k) \to \frac{n!}{(n-k)!}$
 $k!$

Exemplul 1. 52 carti. Cate maini de 5 carti? $\rightarrow C_{52}^5$

Exemplul 2. Cate maini de 5 carti contin 2 asi, 2 popi si o dama? $\rightarrow \binom{4}{2} * \binom{4}{2} * \binom{4}{4}$

Exemplul 3. In jocul de Poker vreau sa determin probabilitatea sa obtin Fullhouse(Q,Q,3,3,3).

$$\Omega = \{(\omega_1, \omega_2, \omega_3, \omega_4, \omega_5) | \omega_i \ \epsilon \ cartidejoc \}$$

$$|\Omega| = C_{52}^5$$

$$F = \mathbb{P}(\Omega)$$

$$\mathbb{P}: F \to [0,1]$$

$$\mathbb{P}(\{\omega_1,..,\omega_5\}) \epsilon \ echirepartitie = \frac{1}{C_{52}^5}$$

A - evenimentul prin care am obtinut Fullhouse

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

|A|-putem alege figura pentru pereche in C_{13}^1 , culoarea o putem alege in C_4^2 , pentru cele 3 carti avem C_{12}^1 moduri de a alege figura, iar C_4^3 pentru culoare.

$$|A| = \binom{13}{1} * \binom{4}{2} * \binom{12}{1} * \binom{4}{3}$$

Exemplul 4. Probabilitatea sa obtinem o pereche?

B- evenimentul prin care obtinem o pereche

$$\binom{13}{1} * \binom{4}{2} * \binom{12}{3} * \binom{4}{1}$$

3.3 Problema lui Newton-Pepys

a)Cel putin un 6 apare atunci cand aruncam cu 6 zaruri.

$$\Omega = \{1, 2, 3, 4, 5, 6\}^6$$

A - evenimentul de interes

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = 1 - \mathbb{P}(A^c) = 1 - \frac{5^6}{6^6}$$

b)Cel putin 2 valori de 6 apar cand aruncam cu 12 zaruri.

$$\Omega = \{1, 2, 3, 4, 5, 6\}^{12}$$

B - cel putin 2 valori de 6 in 12 zaruri

$$\mathbb{P}(B) = 1 - \mathbb{P}(B^c) = 1 - \mathbb{P}(nici\ o\ valoare\ de\ 6) - \mathbb{P}(exact\ o\ valoare\ de\ 6) = 1 - \frac{5^{12}}{6^{12}} - \frac{C_{12}^{11}*5^{11}}{6^{12}}$$

c)Cel putin 3 valori de 6 apar cand aruncam cu 18 zaruri.

C - evenimentele cu cel putin 3 valori de 6 in 18 aruncari.

$$\Omega = \{1, 2, 3, 4, 5, 6\}^{18}$$

$$\mathbb{P}(C) = 1 - \mathbb{P}(C^c)$$

$$\mathbb{P}(C^c) = \frac{5^{18}}{6^{18}} + \frac{\binom{18}{1}*5^{17}}{6^{18}} + \frac{\binom{18}{2}*5^{16}}{6^{18}}$$

3.4 Partitii - coeficientul multinomial

Avem o multime cu n elemente si fie $n_1, n_2, ..., n_k$ e $\mathbb N$ a.i. $n_1+n_2+...+n_k=n$

Consideram o partitie cu k submultimi a.i. submultimea i sa aiba n elemente.

Pentru k=2 ,
$$n_1 + n_2 = n \Longrightarrow \binom{n}{n_1}$$

Echivalent cu multimea sirurilor de lungime n cu n_1 elemente de tip 1, n_2 elemente de tip 2,..., n_k elemente de tip k.

$$\binom{n}{n_1}*\binom{n-n_1}{n_2}*\binom{n-n_1-n_2}{n_3}*..*\binom{n-n_1-n_2-..-n_{k-1}}{n_k}=\binom{n}{n_1,n_2,..,n_k}$$

3.4.1 Experimentul 1

Numarul de anagrame a cuvantului "MATEMATICA". $M \rightarrow 2$

- $A \rightarrow 3$
- $T \rightarrow 2$
- $E \rightarrow 1$
- $I \rightarrow 1$
- $C \rightarrow 1$
- $\Longrightarrow \binom{10}{2,3,2,1,1}$

3.4.2 Experimentul 2

4 baieti si 12 fete

Profesorul formeaza in mod aleator 4 subgrupe de cate 4 studenti. Care e probabilitatea ca in fiecare subgrupa sa fie un baiat?

$$\binom{16}{4,4,4,4}$$

$$\mathbb{P}(\omega) = \frac{1}{\binom{16}{4,4,4,4}}$$

4! moduri pentru baieti

$$\frac{4!{*}\binom{12}{3,3,3,3}}{\binom{16}{4,4,4,4}}$$

3.4.3 Extragere cu revenire in care ordinea nu conteaza

In cate moduri putem plasa k bile (care nu se disting intre ele) din n urne?

Pentru n=6, k=12

$$x_1 + x_2 + \dots + x_n = k, x_i \in \mathbb{N}^*$$

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

4 Cursul 4

4.1 Probabilitati conditionate

4.1.1 Experimentul 1

Aruncam cu o moneda de 3 ori.

a)Care este probabilitatea sa optinem HHH?

$$\Omega = \{H,T\}^3 = \{HHH,HHT,THH,THT,HTH,HTT,TTH,TTT\}$$

$$A = \{HHH\}$$

$$\mathbb{P}(A) = \frac{1}{8}$$

b)Stim ca la prima aruncare am obtinut H.

$$\Omega_2 = \{HHH, HHT, HTH, HTT\}$$

$$\mathbb{P}(A|B) = \frac{1}{4}$$

B- evenimentul prin care la prima aruncare am obtinut H.

 $\mathbb{P}(A|B)$ - probabilitatea realizarii lui A stiind ca B s-a realizate || probabilitatea conditionata a lui A la B

Din perspectiva frecventionala: Avem un experiment pe care il repetam de un numar N de ori. Ne intereseaza evenimentele A si B.

$$\frac{N(A \cap B)}{N(B)} = \frac{\frac{N(A \cap B)}{N}}{\frac{N(B)}{N}} \simeq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Definitie. Fie (Ω, F, \mathbb{P}) un camp de probabilitate , A,B ϵF cu $\mathbb{P}(B) > 0$ atunci definim probabilitatea conditionata a lui A la evenimentul B si notam $\mathbb{P}(A|B)$ prin $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

 $\mathbb{P}(A)$ -prior sau probabilitate a priori

 $\mathbb{P}(A|B)$ -posterior sau probabilitate a posteriori

4.1.2 Exemplul 2

Carti de joc. Extragem in mod aleator 2 carti succesiv fara intoarcere.

A - prima carte de inima rosie

B - a doua carte este de inima rosie

C - a doua carte este de culoare rosie

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\frac{13*12}{52*51}}{\frac{13}{52}} = \frac{12}{51}$$

$$\mathbb{P}(C|A) = \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(A)} = \frac{\frac{13*25}{52*51}}{\frac{13}{52}} = \frac{25}{51}$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\frac{13*12}{52*51}}{\frac{1}{A}} = \frac{12}{51} = \mathbb{P}(B|A)$$

$$\mathbb{P}(A|C) = \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(C)} = \frac{\frac{13*25}{52*51}}{\frac{25}{52}} = \frac{25}{102} \neq \mathbb{P}(C|A)$$

4.1.3 Exemplul 3

O familie are 2 copii.

- a)Care este probabilitatea ca cei 2 copii sa fie de sex feminin stiind ca cel mai in varsta este fata?
- b)Care este probabilitatea ca cei 2 copii sa fie de sex feminin stiind ca cel putin unul dintre ei este fata?

 $Ipoteza: \{F, B\}$

$$\mathbb{P}(F) = \mathbb{P}(B) = \frac{1}{2}$$

sexul unui copil nu este influentat de celalalt copil

$$\Omega = \{BB, BF, FB, FF\}$$

$$A = \{FF\}$$

a) B - cel mai mic este fata = $\{FB, FF\}$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{1/4}{2/4} = 1/2$$

b) C - cel putin unul este fata = $\{FB, BF, FF\}$

$$\mathbb{P}(A|C) = \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(C)} = \frac{1/4}{3/4} = 1/3$$

4.1.4 Exemplul 4

Daca o aeronava apare in zona de interes scanata de un radar atunci se declanseaza o alarma cu probabilitatea de 0,99. Daca nu avem o aeronava alarma se declanseaza cu probabilitatea de 0,1. Sansa sa treaca o aeronava prin zona de interes este 0,05. a)Care este probabilitatea ca in zona de interes sa nu avem avion si sa avem alarma? b)Care este probabilitatea sa avem avion nedectat?

A - sa avem avion in zona de inters

B - sa se declanseze alarma

a)
$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B|A^c) * \mathbb{P}(A^c) = \mathbb{P}(B|A^c) * (1 - \mathbb{P}(A)) = 0, 1 * 0, 95$$

b)
$$\mathbb{P}(A \cap B^c) = \mathbb{P}(B^c|A) * \mathbb{P}(A) = (1 - \mathbb{P}(B|A)) * (P)(A) = 0.01 * 0.05$$

Pentru formula produsului. (Ω, F, \mathbb{P}) camp de probabilitate

$$A_1, A_2, ..., A_n \in F, \ \mathbb{P}(A_1 \cap A_2 \cap ... \cap A_n) > 0$$

Atunci

$$\mathbb{P}(A_1 \cap A_2 \cap ... \cap A_n) = \mathbb{P}(A_1) * \mathbb{P}(A_2 | A_1) * ... * \mathbb{P}(A_n | A_1 \cap A_2 \cap ... \cap A_n)$$

Formula probabilitatii totale

 (Ω, F, \mathbb{P}) camp de probabilitate o partitie a lui $\Omega, \{B_1, B_2, B_3\}$ si A ϵF

$$B_1, B_2, B_3 \subseteq \Omega$$

$$B_1 \cup B_2 \cup B_3 = \Omega$$

$$B_1 \cap B_2 = \emptyset$$

$$B_2 \cap B_3 = \emptyset$$

$$B_1 \cap B_3 = \emptyset$$

$$A = A \cap \Omega = A \cap (B_1 \cap B_2 \cap B_3) = (A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3)$$

$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + \mathbb{P}(A \cap B_2) + \mathbb{P}(A \cap B_3) = \mathbb{P}(A|B_1) * \mathbb{P}(A|B_1) + \mathbb{P}(A \cap B_2) + \mathbb{P}(A \cap B_3) = \mathbb{P}(A|B_1) * \mathbb{P}(B_1) + \mathbb{P}(A|B_2) * \mathbb{P}(B_2) + \mathbb{P}(A|B_3) * \mathbb{P}(B_3)$$

Propozitie. Fie (Ω, F, \mathbb{P}) un camp de probabilitate si $B_1, B_2, ..., B_i \in F$ o partitie pe $\Omega \operatorname{cu} \mathbb{P}(A) > 0, i \in \{1, ..., n\}.$

Daca
$$A \in F atunci : \mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) * \mathbb{P}(B_i)$$

4.2 Formula lui Bayes

Fie
$$(\Omega, F, \mathbb{P})$$
 camp de probabilitate $A, B\epsilon F cu \mathbb{P}(A) > 0, \mathbb{P}(B) > 0.$ a) $\mathbb{P}(B|A) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B)*\mathbb{P}(B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B)*\mathbb{P}(B)}{\mathbb{P}(A|B)*\mathbb{P}(B)+\mathbb{P}(A|B^c)*\mathbb{P}(B^c)}$

b)
$$A \epsilon F$$
, $B_1, ..., b_n \epsilon F$ o partitie a lui $\Omega, \mathbb{P}(B_1) > 0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) * \mathbb{P}(B_i)}{\sum_{j=1}^n \mathbb{P}(A|B_j) * \mathbb{P}(B_j)}$$

4.2.1 Experimentul 1

Sa presupunem ca prevalenta unei boli in populatie este de 1%. Presupunem ca efectuam un test de detectie cu o acuratete de 95%.

acuratete=senzitivitatea si specificacitatea testului

$$\mathbb{P}(T|D) = \text{senzitivitate} = \text{rata de true positive}$$

$$\mathbb{P}(T^c|D^c) = \text{specificacitatea} = \text{rata}$$
 de true negative

D - pacientul este infectat

T - test pozitiv

 $\mathbb{P}(T|D^c)$ = false positive

 $\mathbb{P}(T^c|D) = \text{false negative}$

Presupunem ca am efectuat testul si a iesit pozitiv . Care este probabilitatea sa avem virusul stiind ca testul este pozitiv?

$$\begin{split} \mathbb{P}(D|T) & \stackrel{Formula\ lui\ Bayes}{===} \frac{\mathbb{P}(T|D)*\mathbb{P}(D)}{\mathbb{P}(T)} = \frac{\mathbb{P}(T|D)*\mathbb{P}(D)}{\mathbb{P}(T|D)*\mathbb{P}(D)+\mathbb{P}(T|D^c)*\mathbb{P}(D^c)} \\ \mathbb{P}(T|D^c) &= 1 - \mathbb{P}(T^c|D^c) = 0.05 \\ \mathbb{P}(D|T) &= \frac{0.95*0.01}{0.95*0.01+0.05*0.99} = 0.16 \end{split}$$

Propozitie. Probabilitatea conditionata este o probabilitate.

$$(\Omega, F, \mathbb{P})$$
 camp de probabilitate si $A\epsilon F$, $\mathbb{P}(A)>0$ definim $\mathrm{Q}(.)=\mathbb{P}(B|A)$
$$Q(B)=\mathbb{P}(B|A)$$
 $(A, F\cap A)$

$$\begin{aligned} \mathbf{Q}(\mathbf{A}) &= 1 = \mathbb{P}(A|A) = \frac{\mathbb{P}(A \cap A)}{\mathbb{P}(A)} \\ (A_n)_n &\subseteq F \cap A \text{ disjuncte 2 cate 2} \\ Q(\bigcup_n A_n) &= \sum_{n} Q(A_n) \\ \mathbb{P}(\bigcup_n A_n|A) &= \frac{\mathbb{P}(\bigcup_n A_n \cap A)}{\mathbb{P}(A)} = \frac{\sum_{n} \mathbb{P}(A_n \cap A)}{\mathbb{P}(A)} = \sum_{n} Q(A_n) \end{aligned}$$

4.2.2 Exemplul 2

 Ω, F, \mathbb{P} camp de probabilitate

A,B,C
$$\epsilon F$$
, $\mathbb{P}(A \cap B) > 0$
 $\mathbb{P}(A \cap C) > 0$
 $\mathbb{P}(B \cap C) > 0$
 $\mathbb{P}(A|B,C) = \frac{\mathbb{P}(B|A,C)*\mathbb{P}(A|C)}{\mathbb{P}(B|C)}$
 $Q(.) = \mathbb{P}(.|C)$

5 Cursul 5

$$\Omega, F, \mathbb{P}, A\epsilon F, \mathbb{P}(A) > 0$$

 $Q(B) = \mathbb{P}(B|A), \forall B\epsilon F \cap A = \{F \cap A | F\epsilon F\}$

Formula lui Bayes.
$$Q(.) = \mathbb{P}(.|C)$$

 $Q(A|B) = \frac{Q(B|A)*Q(A)}{Q(B)}$
 $\mathbb{P}(A|B,C) = \frac{\mathbb{P}(B|A,C)*\mathbb{P}(A|C)}{\mathbb{P}(A|C)}$
 $Q(A|B) = \mathbb{P}(A|B,C)$

5.1 Experimentul 1

Avem 2 monede (1 echilibrata si 1 trucata)

La cea trucata $\mathbb{P}(H) = 3/4$

Sansa sa alegem oricare dintre cele 2 monede este 1/2. Obtinem in urma celor 3 aruncari HHH

a) Care este probabilitatea ca moneda sa fi fost echilibrata?

- b) Presupunem ca arunca pentru a 4-a oara moneda, care este probabilitatea sa fi obtinut H?
- a) A evenimentul prin care in primele 3 aruncari am obtinut HHH

B - evenimentul prin care am ales moneda echilibrata

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B) * \mathbb{P}(B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B) * \mathbb{P}(B)}{\mathbb{P}(A|B) * \mathbb{P}(B) + \mathbb{P}(A|B^c) * \mathbb{P}(B^c)} = \frac{(\frac{1}{2})^3 * \frac{1}{2}}{(\frac{1}{2})^3 * \frac{1}{2} + (\frac{3}{4})^3 * \frac{1}{2}} = \frac{1}{1 + \frac{3^3}{23}}$$

b) C - evenimentul prin care la a 4-a aruncare am obtinut H

$$\mathbb{P}(C|A) = ?$$

$$Q(.) = Q(.|A)$$

$$Q(C) = \mathbb{P}(C|A) = Q(C|B) * Q(B) + Q(C|B^c) * Q(B^c)$$

$$Q(B) = \mathbb{P}(B|A)$$

$$Q(B^c) = 1 - Q(B)$$

$$Q(C|B) = 1/2$$
(moneda echilibrata)

$$Q(C|B^c) = 3/4$$
(moneda trucata)

$$Q(C) = \frac{1}{2} + \frac{1}{1 + \frac{3^2}{2^3}} + \frac{3}{4} * \left(1 - \frac{1}{1 + \frac{3^3}{2^3}}\right)$$

5.2 Independenta

Doua evenimente sunt independente daca realizarea uneia nu aduce informatii suplimentare despre realizarea celeilalte. $(\Omega, F, \mathbb{P}), A, B \in F$

$$\Longrightarrow \mathbb{P}(A|B) = \mathbb{P}(B|A) \Longleftrightarrow \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A) \Longleftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(A)$$

Definitie. Fie (Ω, F, \mathbb{P}) un camp de probabilitate $A, B\epsilon F$. Spunema ca A si B sunt independente si notam $A \perp \!\!\!\perp B$ daca $\mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(B)$.

Exemplu: Daca $A \perp\!\!\!\perp B$ atunci $A^c \perp\!\!\!\perp B, \ A \perp\!\!\!\perp B^c, \ A^c \perp\!\!\!\perp B^c$

5.2.1 Experimentul 1

Aruncam cu banul de 2 ori

 A_1 - evenimentul prin care la prima aruncare am obtinut H

 A_2 - evenimentul prin care la a 2-a aruncare am obtinut H

$$\begin{split} \Omega &= \{H, T\}^2 \\ A_1 &= \{HH, HT\} \\ A_2 &= \{TH, HH\} \\ A_1 \cap A_2 &= \{HH\} \\ \mathbb{P}(A_1 \cap A_2) &= \frac{1}{4}, \ \mathbb{P}(A_1) = \mathbb{P}(A_2) = \frac{1}{2} \Longrightarrow \mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) * \mathbb{P}(A_2) \end{split}$$

5.2.2 Experimentul 2

Zar cu 4 fete

Aruncam de 2 ori $\Longrightarrow \Omega = \{1, 2, 3, 4\}^2$

$$A = \{primul\ zar\ are\ fata\ 1\} = \{(1,x)|x\epsilon\{1,2,3,4\}\} \Longrightarrow \mathbb{P}(A) = \tfrac{1}{4}$$

$$B = \{suma\ punctelor\ este\ 5\} = \{(1,4),(2,3),(3,2),(4,1)\} \Longrightarrow \mathbb{P}(B) = \frac{1}{4}$$

$$C = \{minimul\ este\ 2\} \Longrightarrow \mathbb{P}(C) = \frac{5}{12}$$

$$D = \{maximul\ este\ 3\} \Longrightarrow \mathbb{P}(D) = \frac{3}{16}$$

$$A \cap B = \{(1,4)\} \Longrightarrow \mathbb{P}(A \cap B) = \frac{1}{16} \Longrightarrow A \text{ si B sunt independente}$$

$$\mathbb{P}(C \cap D) = \frac{1}{16} \Longrightarrow C$$
 si D nu sunt independente

Definitie. Fie (Ω, F, \mathbb{P}) camp de probabilitate si $A_1, A_2, ..., A_n \epsilon F$.

Spunem ca $A_1, ..., A_n$ sunt independente (mutual independente) daca:

$$\mathbb{P}(\bigcap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i), \ \forall \ I = \{1, 2, ..., n\}$$

Observatie. A_1, A_2, A_3 sunt independente \iff

$$\iff \mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1 \cap A_3) = \mathbb{P}(A_2 \cap A_3), \ \mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1) * \mathbb{P}(A_2) * \mathbb{P}(A_3)$$

Pentru n=2
$$\Longrightarrow$$
 2ⁿ - n - 1 conditii = $C_n^2 + C_n^3 + ... + C_n^n$

5.2.3 Experimentul 3(continuare experimentul 1)

$$A_3 = cele \ 2 \ sunt \ differite = \{HT, TH\}$$

$$A_1 \perp \!\!\! \perp A_2$$

$$\mathbb{P}(A_1) = \mathbb{P}(A_2) = \mathbb{P}(A_3) = \frac{1}{2}$$

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1 \cap A_3) = \mathbb{P}(A_2 \cap A_3) = \frac{1}{4}$$

 A_1, A_2, A_3 sunt independente 2 cate 2

$$A_1 \cap A_2 \cap A_3 = \emptyset \Longrightarrow \mathbb{P}(A_1 \cap A_2 \cap A_3) = 0 \neq \frac{1}{8} \Longrightarrow A_1, A_2, A_3 \text{ nu sunt independente}$$

Definitie. (Ω, F, \mathbb{P}) camp de probabilitate si $A, B, C\epsilon F, \mathbb{P}(C) > 0$ Spunem ca A si B sunt independente conditionat la C daca $\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) * \mathbb{P}(B|C)$ $Q(.) = \mathbb{P}(.|C) \Longrightarrow Q(A \cap B) = Q(A) * Q(B)$

5.2.4 Experimentul 4(continuare experiment covid)

D - {o persoana are afectiunea}

 $T - \{testul \ a \ iesit \ pozitiv\}$

$$\mathbb{P}(D) = 1\%$$

acuratetea (sensibilitatea, specificacitatea) = 95%

$$\mathbb{P}(T|D) = \mathbb{P}(T^c|D^c) = 95\%$$

$$\mathbb{P}(D|T) \approx 15\%$$

Sa presupunem ca persoanele mai efectueaza un test (presupunem ca rezultatele celor 2 teste sunt independente in raport cu statusul bolii respective) si testul este tot pozitiv. Care este probabilitatea sa avem COVID?

 T_1 - primul test pozitiv

 T_2 - al 2-lea test pozitiv

$$\mathbb{P}(T_1 \cap T_2|D) = \mathbb{P}(T_1|D) * \mathbb{P}(T_2|D)$$

$$\mathbb{P}(T_1 \cap T_2 | D^c) = \mathbb{P}(T_1 | D^c) * \mathbb{P}(T_2 | D^c)$$

$$\mathbb{P}(D|T_1 \cap T_2) = \frac{\mathbb{P}(T_1 \cap T_2|D) * \mathbb{P}(D)}{\mathbb{P}(T_1 \cap T_2)} \approx 0,78$$

$$\mathbb{P}(T_1 \cap T_2) = \mathbb{P}(T_1 \cap T_2 | D) * \mathbb{P}(D) + \mathbb{P}(T_1 \cap T_2 | D^c) * \mathbb{P}(D^c)$$

5.2.5 Experimentul 5

a)Subsistem serie

$$\mathbb{P}_{AC} = \mathbb{P}_{AB} * \mathbb{P}_{BC}$$

b)Subsistem paralel

 $\mathbb{P}(transmit\ mesaj\ sistem\ paralel) = 1 - p(sa\ nu\ transmit) =$

$$= 1 - p(esec\ in\ nodul\ 1,..,n) =$$

 $= 1 - p(esec\ in\ nodul\ 1) * p(esec\ in\ nodul\ 1) * \dots * p(esec\ in\ nodul\ n) =$

$$= 1 - (1 - p_1)(1 - p_2)...(1 - p_n)$$

$$\mathbb{P}(C \to B) = 1 - (1 - \mathbb{P}(C \to E, E \to B)) * (1 - \mathbb{P}(C \to F, F \to B)) =$$

$$= 1 - (1 - \mathbb{P}_{CE} * \mathbb{P}_{EB}) * (1 - \mathbb{P}_{CF} * \mathbb{P}_{FB})$$

5.3 Variabile aleatoare

Definitie. Fie (Ω, F, \mathbb{P}) camp de probabilitate si $X : \Omega \to \mathbb{R}$ o functie reala. Spunem ca X este o variabila aleatoare daca multimea $\{\omega \epsilon \Omega | X(\omega) \le x\} \epsilon F, \forall x \epsilon \mathbb{R}$.

5.3.1 Experiment

2 zaruri. Definim X={suma punctelor de pe cele 2 zaruri}

$$3 \quad 5 \to 8$$

$$X((3,5)) = 8$$

 $X=\{numarul\ de\ H\ din\ cele\ 2\ aruncari\}$

$$\Omega = \{HH, HT, TH, TT\}$$

$$X(\Omega) = \{2, 1, 1, 0\}$$

 $X \in \mathbb{R}$

Observatie. $\{X \leq x\} \subset \{\omega \epsilon \Omega | X(\omega) \leq x\}$

$${X \epsilon A} = {\omega \epsilon \Omega | X(\omega) \epsilon A} = X^{-1}(A)$$

$$X^{-1}(\{0\}) = \{TT\}$$

$$X^{-1}(\{1\}) = \{HH\}$$

$$X^{-1}(\{2\}) = \{HT, TH\}$$

$$\{X \leq x\} \epsilon \mathit{F} (= \mathbb{P}(\Omega))$$

Daca $X < 0, \{X \le x\} = \emptyset$

$$X \in [0, 1), \{X \le x\} = \{TT\}$$

$$X \in [1, 2), \{X \le x\} = \{HT, TH\} \cup \{TT\}$$

$$X\epsilon[2,+\infty), \{X\leq x\} = \{HT,TH,TT,HH\} = \Omega$$

5.3.2 Repartitia unei variabile aleatoare

Fie (Ω, F, \mathbb{P}) camp de probabilitate si $X : \Omega \to \mathbb{R}$. Se numeste repartitia lui X probabilitatea pe \mathbb{R} definite prin

$$\mathbb{P}_x(A) = \mathbb{P}(X \leftarrow A) = \mathbb{P}(X^{-1}(A)) = (\mathbb{P} \circ X_{-1})(A), \forall A \ interval \ in \ \mathbb{R}$$

Definitie. Functia de repartitie. Fie (Ω, F, \mathbb{P}) camp de probabilitate $X : \Omega \to \mathbb{R}$ Definim functia de repartitie a lui $X, F : \mathbb{R} \to [0, 1]$ prin $F(x) = \mathbb{P}(X \le x), \forall x \in \mathbb{R}$

5.3.3 Experiment

Aruncam de 2 ori cu banul si X=numarul de H din cele doua aruncari

$$F(x) = \mathbb{P}(X \le x) = 0, x < 0$$

$$F(x) = \mathbb{P}(X \le x) = \frac{1}{4}, x \in [0, 1)$$

$$F(x) = \mathbb{P}(X \le x) = \frac{3}{4}, x\epsilon[1, 2)$$

$$F(x) = \mathbb{P}(X \le x) = 1, x \in [2, +\infty)$$

5.3.4 Proprietati functia de repartitie

a) F este crescatoare

$$x < y \Longrightarrow F(x) \le F(y)$$

b) F este continua la dreapta

$$\lim_{x \to x_0} F(x) = F(x_0)$$

c)
$$\lim_{x\to\infty} F(x) = 0$$

$$\lim_{x\to\infty} F(x) = 1$$

$$\mathbb{P}(X = x) = \mathbb{P}(X \le x) - \mathbb{P}(X < x) = F(x_0) - F(X - x)$$

6 Cursul 6

6.1 Variabile aleatoare

$$X: \Omega \to \mathbb{R}$$
$$\{X \le x\} \epsilon F, \ \forall x \epsilon \mathbb{R}$$

$$(\Omega, F, \mathbb{P}), \ X \ variabila \ aleatoara \ si \ \mathbb{P}_x(A) = \mathbb{P}(x\epsilon A), \ \forall A\epsilon \mathbb{R} \ interval \ \{X\epsilon A\} = \{\omega\epsilon \mathbb{R} | x(\omega)\epsilon A\} = X^{-1}(A)$$

$$\mathbb{P}_x(.) = (\mathbb{P} \circ X^{-1})(.)$$

6.2 Functia de repartitie/cumulativa(CDF)

$$F: \mathbb{R} \to [0, 1]$$

$$F(x) = \mathbb{P}_x((-\infty, x]) = \mathbb{P}(X \le x), \ \forall x \in \mathbb{R}$$

6.2.1 Experiment

Aruncam de 3 ori cu banul.

X = numarul de H in cele 3 aruncari

Care este functia de repartitie a lui X? $\Omega = \{H, T\}^3, X \in \{0, 1, 2, 3\}$

$$\mathbb{P}(x=0) = \mathbb{P}(TTT) = \frac{1}{8}$$

$$\mathbb{P}(x=1) = \mathbb{P}(\{HTT, THT, TTH\}) = \frac{3}{8}$$

$$\mathbb{P}(x=2) = \mathbb{P}(\{HHT, HHT, THH\}) = \frac{3}{8}$$

$$\mathbb{P}(x=3) = \mathbb{P}(HHH) = \frac{1}{8}$$

$$F(x)=?$$

$$F(x) = 0 = \mathbb{P}(\emptyset), \ x < 0$$

$$F(x) = \frac{1}{8}, \ 0 \le x < 1$$

$$F(x) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}, \ 1 \le x < 2$$

$$F(x) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}, \ 2 \le x < 3$$

$$F(x) = 1, 3 \le x$$

6.2.2 Proprietatile functiei de repartitie

- a) F crescatoare: $\forall x < y \implies F(x) \le F(y)$
- b) F continua la dreapta: $\lim_{x\to x_0,x>x_0}F(x)=F(x_0)\,\forall\,x_0\epsilon\mathbb{R}$

c)
$$\lim_{x \to -\infty} F(x) = 0$$

 $\lim_{x \to +\infty} F(x) = 1$

In plus,

d)
$$\mathbb{P}(X > x) = 1 - \mathbb{P}(X \le x) = 1 - F(x)$$

e)
$$\mathbb{P}(X < x_0) = \mathbb{P}(X \le x_0) - \mathbb{P}(X = x_0) = \lim_{x \to x_0, x < x_0} F(x)$$

f)
$$\mathbb{P}(X = x) = F(x) - \lim_{x \to x_0, x < x_0} F(x)$$

6.3 Variabile aleatoare discrete

 $X: \Omega \to \mathbb{R}$ variabila aleatoare $X(\Omega) = multimea\ valorilor\ lui\ X$

 $X(\Omega) \Longrightarrow finita \ sau \ numarabila \longrightarrow X \ este \ variabila \ aleatoare \ discreta$

 $\implies infinita\ sau\ numarabila \longrightarrow X\ este\ variabila\ continua$

X variabila aleatoare discreta, $X:\Omega\to\mathbb{R}$

 $A\epsilon\mathbb{R}$

$$\mathbb{P}(x\epsilon A) = ?$$

$$\Omega = \bigcup_{n>1} X = x_n$$

$$\mathbb{P}(x\epsilon A) = \mathbb{P}(x\epsilon \bigcup_{x\epsilon A \cap X(\Omega)} \{x\}) = \sum_{x\epsilon A \cap X(\Omega)} \mathbb{P}(X=x)$$

Definitie. Fie (Ω, F, \mathbb{P}) un camp de probabilitate si $X : \Omega \to \mathbb{R}$ o variabila aleatoare distincta. Se numeste functie de masa asociata:

$$f(x) = \mathbb{P}(X = x), \ \forall x \in X(\Omega), \ f: X(\Omega) \to [0, 1]$$

Observatie. Se mai foloseste si notatia p(x) sau $p_x(x)$.

6.3.1 Experiment

Aruncam de 3 ori cu banul , X= numarul de H din cele 3 aruncari. Determinati functia de masa a lui X.

$$f(x) = \mathbb{P}(X > x) \,\forall \, x \in \{0, 1, 2, 3\} = X(\Omega)$$

$$f(0) = \frac{1}{8}, \ f(1) = \frac{3}{8}, \ f(2) = \frac{3}{8}, \ f(3) = \frac{1}{8}$$

Observatie. $X \in \{x_1, x_2, ..., x_n\}$

$$\mathbb{P}(X = x_i = p_i)$$

$$X \sim \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}$$

6.3.2Proprietatile functiei de masa

a)
$$f(x) = \mathbb{P}(X = x) \ge 0$$
 ($pozitiva$)

b)
$$\mathbb{P}(\Omega) = 1$$

$$\begin{split} \Omega = \bigcup_{x \in X(\Omega)} \{X = x\} &\Longrightarrow \mathbb{P}(\bigcup \{X = x\}) = 1 \Longrightarrow \\ &\Longrightarrow \sum_{x \in X(\Omega)} f(x) = 1 \text{ (masa totala = 1)} \end{split}$$

Observatie. (Legatura dintre functia de masa si functia de repartitie)

$$\begin{aligned} F(x) &= \mathbb{P}(X \leq x) = \sum_{y \in x, y \in X(\Omega)} f(y) \\ f(x) &= F(x) - F(x-) \end{aligned}$$

$$f(x) = F(x) - F(x-)$$

6.3.3 Exemple de variabile discrete

1) Variabila aleatoare X = c(constanta)

$$f(x) = \mathbb{P}(X = x) = 1, \ x = c$$

$$= 0, x \neq c$$

$$F(x) = \mathbb{P}(X \le x) = 0, \ x < c$$

$$= 1, x \ge c$$

Daca x;c $\Longrightarrow \{X \le x\} = \{\omega | X(\omega) \le x\} = \{c \le x\} = \emptyset$

2) Variabila aleatoare discrete Bernoulli

Avem un experiment si un eveniment A de interes. Presupunem ca $\mathbb{P}(A) = p \, \epsilon[0, 1]$

$$X:\Omega\to\mathbb{R}$$

$$X(\Omega) = 1, \ \omega \epsilon A$$
$$= 0, \ alt fel$$

$$f(1) = \mathbb{P}(x=1) = \mathbb{P}(A) = p$$

$$f(0) = \mathbb{P}(x = 0) = \mathbb{P}(A^c) = 1 - p$$

$$F(x)=0, x < 0$$
=1-p, $0 \le x < 1$
= 1, $x \ge 1$

Variabila aleatoare indicator:
$$1_A(\omega) = 1$$
, $\omega \in A$
= 0, $\omega \notin A$

 $Scriere a \, sub \, forma \, compacta \, a \, functiei \, de \, masa$

$$f(x) = p^x (1-p)^{1-x}, x \in \{0, 1\}$$

3)
$$X: \Omega \to \mathbb{R}$$

$$X(\Omega) = \{x_1, x_2, ..., x_n\} \text{ si sa presupunem ca } x_1 < x_2 < ... < x_n$$

$$\mathbb{P}(X = x_i) = p_i \in (0, 1), x \in \{0, 1\}$$

Graficul functiei de masa

$$F(x) = \mathbb{P}(X \le x) = \begin{cases} 0 & x \le x_1 \\ p_1 & x_1 \le x < x_2 \\ p_1 + p_2 & x_2 \le x < x_3 \\ \dots & \dots \\ 1 & x \ge x_n \end{cases}$$

4) Variabile aleatoare de tip binomial

Presupunem ca avem un experiment aleator si A un eveniment de interes. Repetam experimentul de n ori si ne interesam la numarul de realizari ale evenimentului A. X = numarul de realizari al evenimentului A in n repetari ale experimentului $X \sim B(n,p)$ - variabila aleatoare repartizata binomial de parametru n si p $X \in \{0,1,2,..,n\}$

$$\frac{Functia\ de\ masa}{\mathbb{P}(X=k)=C_n^k(1-p)^{n-k}*p^k}=?,\ k\in\{0,1,..,n\}$$

Observatie.
$$X = y_1 + y_2 + ... + y_n$$

 $y_i \sim B(p)$

Experiment. Urna cu bile albe si negre: N bile, M negre.

Extragem n bile cu intoarcere.

X = numarul de bile negre dintre cele extrase

$$X \sim B(n, \frac{M}{N})$$

5) Variabila aleatoare repartizata hipergeometric

Avem o urna cu N bile albe si negre si M de culoare neagra. Extragem n bile fara intoarcere si ne intereseaza numarul de bile negre din cele n extrase.

X = numarul de bile negre din cele n extrase este reprezentat hipergeometric HG(n,N,M)

$$\begin{split} X \sim HG(n,N,M), & X \in \{0,1,..,min\{M,n\}\} \\ \mathbb{P}(X=k) = \frac{\binom{M}{k}*\binom{N-M}{n-k}}{\binom{N}{n}} \end{split}$$

$$\underline{Loto\ 6\ din\ 49:} \left\{ \begin{array}{c} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1\,, 17\,, 23\,, 41\,, 39\,, 5 \end{array} \right.$$

Care este probabilitatea sa fi nimerit k=3 numere?

$$N = 49$$

$$M=6$$

n=6
$$\mathbb{P}(X=3) = \frac{\binom{6}{3}\binom{43}{3}}{\binom{49}{6}}$$

$$\mathbb{P}(X \in \{3,4,5,6\}) = 1 - \mathbb{P}(X=0) - \mathbb{P}(X=1) - \mathbb{P}(X=2) \approx 0.18$$

$$\sum_{k=0}^{\min(n,M)} \binom{M}{k} \binom{N-M}{n-k} = \binom{N}{n}$$

6)
 Uniforma pe
$$\{1,2,..,n\}$$
 (Echirepartitia)

$$X:\Omega\to\mathbb{R}$$

$$X(\Omega) = \{1, 2, ..., n\}$$
 (D finita)

$$f(k) = \mathbb{P}(X = k) = \frac{1}{n} = \frac{1}{|D|} \, \forall k \in \{1, 2, ..., n\}$$

$\underline{Functia\ de\ masa}$

$Functia\ de\ repartitie$

$$\mathbb{P}(X \in A) = \frac{|A \cap D|}{|D|}, \, \forall \, A \in \mathbb{R}$$

7 Cursul 7

7.1 Experiment

O urna cu bile numerotate de la 1 la 100. Extragem 5 bile din urna (succesiv).

- a) Care este repartitia variabilei aleatoare care ne da numarul bileleor ≥ 70 ?
- b) Cum este repartitia variabilei aleatoare care ne da a 17-a extragere?
- c) Care este probabilitatea ca numarul 79 sa fie extras cel putin o data?

$1.Extragere\ cu\ revenire$

- a) $X \sim B(5(numarul\ de\ extrageri), \frac{31}{100}(probabilitatea\ sa\ avem\ succes))$
- b) $X_1, X_2, ..., X_5 \in \{1, ..., 100\}$

$$X_1 \sim U(\{1, 2, ..., 100\})$$

$$X_2 \sim U(\{1, 2, ..., 100\})$$

 $c)\mathbb{P}(\{79\ sa\ fie\ extras\ cel\ putin\ o\ data\}) =$

$$= \mathbb{P}(\{X_1 = 79\} \cup \{X_2 = 79\} \cup \{X_3 = 79\} \cup \{X_4 = 79\} \cup \{X_5 = 79\}) =$$

$$= 1 - \mathbb{P}(\{X_1 \neq 79\} \cup \{X_2 \neq 79\} \cup \{X_3 \neq 79\} \cup \{X_4 \neq 79\} \cup \{X_5 \neq 79\}) =$$

$$= 1 - \mathbb{P}(\{X_1 \neq 79\}) * \mathbb{P}(\{X_2 \neq 79\}) * \mathbb{P}(\{X_3 \neq 79\}) * \mathbb{P}(\{X_4 \neq 79\}) * \mathbb{P}(\{X_5 \neq 79\}) =$$

$$= 1 - \left(\frac{99}{100}\right)^5$$

$1. Extragere\ fara\ revenire$

a)
$$Y \sim HG(5, 100, 31)$$

b)
$$y_1, y_2, ..., y_5$$

$$y_1 \sim U(\{1, 2, ... 100\})$$

$$y_2 \sim U(\{1, 2, ... 100\})$$

$$\mathbb{P}(y_2 = j) = \sum_{i=1}^{100} \mathbb{P}(y_2 = j | y_2 = i) * \mathbb{P}(y_2 = i)$$

O partitie a lui $\Omega = B_1 \cap B_2 \cap ... \cap B_n$ (disjuncte 2 cate 2)

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) * \mathbb{P}(B_u)$$

$$\mathbb{P}(y_2 = j | y_2 = i) = \begin{cases} 0, \ j = i \\ \frac{1}{99}, \ j \neq i \end{cases}$$

$$\mathbb{P}(y_2 = j) = \sum_{i=1}^{100} \mathbb{P}(y_2 = j | y_2 = i) * \mathbb{P}(y_1 = i) = 99 * \frac{1}{99} * \frac{1}{100} = \frac{1}{100}$$

c)
$$\mathbb{P}(..) = \mathbb{P}(\{y_1 = 79\} \cup \{y_2 = 79\} \cup ... \cup \{y_5 = 79\}) = \sum_{i=1}^{5} \mathbb{P}(y_1 = 79) = \frac{5}{100}$$

$Repartitia\ geometrica\ si\ negativ\ binomiala$

Aruncam cu o moneda in mod repetat, iar sansa de succes = $p(\mathbb{P}\{H\} = p)$

X= variabila aleatoare care ne da numarul de aruncari pana obtinem pentru prima oara succes(H) incluzand primul succes

$$X \in \{1, 2, 3, ..\}$$

$$TTH \Longrightarrow x = 3$$

$$H \Longrightarrow x = 1$$

$$\mathbb{P}(x = k) = (1 - p)^{k-1} * p , k \ge 1$$

$$X \sim G(p)$$

$$\sum_{k=1}^{\infty} (1 - p)^{k-1} * p = p * \sum_{k=1}^{\infty} = \frac{p}{1-p} = \frac{p}{q} \to 1$$

$$\text{Daca } x \in (0, 1), \ n \to \infty \Longrightarrow \sum_{x \ge 0} x^k = \frac{1}{1-x}$$

Definitie. Variabila aleatoare Z care ne da numarul de aruncari necesare pana phinem pentru a r-a oara succes de numeste Negativ Binomiala.

$$Z \sim NB(r, p)$$

$$\{r, r + 1, ..\}$$

$$k \ge r, \ \mathbb{P}(z = k) = {\binom{k-1}{r-1}} * (1-p)^{(k-r)} * p^{r}$$

Variabila aleatoare de tip Poisson

Definitie. Spunem ca o variabila aleatoare este repartizata Poisson de parametru λ daca $x \in \mathbb{N}$ si $\mathbb{P}(x=k) = e^{-\lambda} * \frac{\lambda^k}{k!}$

Cand se foloseste?

$$\sum_{k \ge 10} e^{-\lambda} * \frac{\lambda^k}{k!} = 1?$$

$$e^x = \sum_{k \ge 0} \frac{x^k}{k!}$$

Functia de variabila aleatoare

 (Ω, F, \mathbb{P}) camp de probabilitate , X si g
 variabile aleatoare atunci $g \circ X$ este o variabila aleatoare.

Observatie. Daca X este discreta $\Longrightarrow g \circ X$ este o variabila aleatoare discreta.

7.2 Independenta

Doua variabile aleatoare X si Y sunt independente daca realizarea uneia nu influenteaza in niciun fel realizarea celeilalte.

Definitie. Fie (Ω, F, \mathbb{P}) un camp de probabilitate si X si Y doua variabile aleatoare. Spunem ca X si Y sunt independente, $X \perp \!\!\!\perp Y$, daca evenimentele $\{X = x\}$ si $\{Y = y\}$ sunt independente $\forall x, y$

P. Fie X si Y doua variabile aleatoare (discrete). Atunci $X \perp\!\!\!\perp Y$ daca si numai daca

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) * \mathbb{P}(Y \le y), \ \forall x, y \in \mathbb{R}$$

P.
$$X \perp \!\!\!\perp Y \Leftrightarrow \mathbb{P}(X \in A, Y \in B\mathbb{P}(X \in A) * \mathbb{P}(Y \in B), \forall A, B \subseteq \mathbb{R}(interval)$$

P. Daca X si Y variabile aleatoare astfel incat $X \perp \!\!\! \perp Y$ si g si h doua functii, atunci $g(x) \perp \!\!\! \perp h(y)$

Definitie. $X_1, X_2, ..., X_n$ sunt independente daca:

$$\mathbb{P}(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) * \mathbb{P}(X_2 \le x_2) * ... * \mathbb{P}(X_n \le x_n), \ \forall x_1, x_2, ..., x_n \in \mathbb{R}$$

7.3 Media unei variabile aleatoare discrete

Repetam un experiment de N ori si ne interesam la valorile unei variabile aleatoare X de interes.

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$$

$$1 \quad 1 \quad 1 \quad 3 \quad 3 \quad 5 \quad 8 \quad 8$$

$$m = \frac{x_1 + x_2 + ... + x_N}{N}$$

Definitie. Fie X o variabila aleatoare discreta. Se numeste media lui X valoarea

$$\mathbb{E}[X] = \sum_{x} x f(x) = \sum_{x} x \mathbb{P}(X = x)$$

ori de cate ori $\sum_{x} |x| f(x) < \infty$

Daca $|x|f(x) = \infty$ atunci spunem ca X nu are medie.

Cursul 8 8

Media si momentele de ordin superior 8.1

Definitie. Fie (Ω, F, \mathbb{P}) camp de probabilitate si $X : \Omega \to \mathbb{R}$ variabila aleatoare discreta, definim media variabilei aleatoare X:

$$\mathbb{E}[X] = \sum_x x * \mathbb{P}(X = x) = \sum_x x * f(x)$$

ori de cate ori $\sum |x| * f(x) < \infty$. In cazul in care seria este infinita atunci spunem ca variabila aleatoare X nu are medie.

Experiment 1 8.1.1

Aruncam cu un zar, $X \in \{1, 2, 3, 4, 5, 6\}$.

$$\mathbb{P}(X=x) = \frac{1}{6}$$

$$\mathbb{E}[X] = \sum x * \mathbb{P}(X = x) = 1 * \frac{1}{6} + 2 * \frac{1}{6} + \dots + 6 * \frac{1}{6} = 3.5$$

8.1.2 Experimentul 2

$$X \sim \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}$$

$$\mathbb{E}[X] = x_1*p_1 + x_2*p_2 + \ldots + x_n*p_n$$

ex:
$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

ex:
$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

 $\mathbb{E}[X] = -\frac{1}{2} + \frac{1}{4} = -\frac{1}{4}$

Interpretare fizica. Proprietati. 8.2

- 1) Daca X este constanta i.e. X=c $\Longrightarrow \mathbb{E}[X] = c$
- 2) Daca X > 0 atunci $\mathbb{E}[X] \ge 0$ (pozitivitate)

- 3) Daca X > Y atunci $\mathbb{E}[X] \ge \mathbb{E}[Y]$ (monotonie)
- 4) (Liniaritate) Daca X si Y variabila aleatoare discreta si a,b $\in \mathbb{R}$ atunci $\mathbb{E}[ax+by]=a*\mathbb{E}[x]+b*\mathbb{E}[y]$
- 5) (Legatura dintre medie si probabilitati)

Fie
$$A \in F$$
 eveniment
$$\mathbb{1}_A = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

$$\mathbb{P}(\mathbb{1}_A = 1) = \mathbb{P}(A)$$

$$\mathbb{1}_A \sim \begin{pmatrix} 0 & 1 \\ 1 - \mathbb{P}(A) & \mathbb{P}(A) \end{pmatrix}$$

6) Fie X variabila aleatoare discreta si $g: \mathbb{R} \to \mathbb{R}$

Y=g(x). Atunci
$$\mathbb{E}[g(x)] = \sum_{x} g(x) * \mathbb{P}(X = x)$$

7) Fie X,Y variabile aleatoare independente

$$\mathbb{E}[x * y] = \mathbb{E}[x] * \mathbb{E}[y]$$

Daca g si h sunt 2 functii atunci g(x) si h(y) sunt independente.

Definitie. Fie X o varianta aleatoare discreta. Numim momentul de ordin k $(k \ge 1)$ $\mathbb{E}[(x - \mathbb{E}[x])^k]$.

Definitie. Varianta sau dispersia variantei aleatoare X este momentul centrat de ordin Ω si se noteaza cu $\text{Var}(\mathbf{x}) = \mathbb{E}[(x - \mathbb{E}[x])^2]$.

Observatie. Arata gradul de impartire a obs fata de medie.

Experiment.

$$X_{1} \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{pmatrix}$$

$$X_{2} \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1/10 & 1/10 & 1/10 & 1/10 & 1/10 \end{pmatrix}$$

$$X_{3} \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1/2 & 0 & 3 & 4 & 5 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{pmatrix}$$

$$X_{4} \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbb{E}[x_{1}] = \mathbb{E}[x_{2}] = \mathbb{E}[x_{3}] = \mathbb{E}[x_{4}] = 3$$

$$Var(X_{1}) = \mathbb{E}[(x_{1} - 3)^{2}] = \frac{(1 - 3)^{2}}{5} + \frac{(2 - 3)^{2}}{5} + \frac{(3 - 3)^{2}}{5} + \frac{(4 - 3)^{2}}{5} + \frac{(5 - 3)^{2}}{5} = 2$$

$$Var(X_{2}) = \mathbb{E}[(x_{2} - 3)^{2}] = \frac{12}{10}$$

$$Var(X_{3}) = 4$$

$$Var(X_{4}) = 0$$

8.2.1 Proprietati

- 1) Daca X constant $\Longrightarrow Var(x)=0$
- 2) $Var(x) \ge 0$!MEREU!
- 3) Daca X variabila aleatoare si $a \in \mathbb{R}$ atunci Var(a+X)=Var(X)
- 4) Daca X variabila aleatoare si b
 $\in \mathbb{R}^*$ atunci Var(bX) = b^2 Var(X) Var(a+bX)=
 b^2 Var(X)
- 5) $\operatorname{Var}(\mathbf{x}) = \mathbb{E}[x^2] \mathbb{E}[x]^2$
- 6) X si Y independente $\in Var(X+Y)=Var(X)+Var(Y)$

Definitie. Fie X si Y doua variabile aleatoare . Se numeste covarianta lui X si Y:

$$Cov(X,Y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$

In general proprietatea 6 este Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)

Definitie. Se numeste abatere standard: $SD(x) = \sqrt{Var(x)}$

 $\sigma = Varianta$

 σ^2 = Abatere standard

8.3 Exemple de calcul al mediei si variantei

1)
$$X \sim B(p)$$
, $X \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$
 $\mathbb{E}[X]=p$
 $\operatorname{Var}(X)=\mathbb{E}[X^2]-\mathbb{E}[X]^2=p-p^2=p(1-p)$

2)
$$X \sim B(n, p)$$

 $\mathbb{P}(X = k) = \binom{n}{k} * p^k * (1 - p)^{n-k}$
 $\mathbb{E}[X] = \sum_{k=0}^{n} k * \mathbb{P}(X = k) = \sum_{k=0}^{n} k * \binom{n}{k} * p^k * (1 - p)^{n-k}$

$$\mathbb{E}[X] = \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} * p^{k} * (1-p)^{n-k} = n * p$$

$$X = x_{1} + x_{2} + ... + x_{n}$$

$$Var(X) = Var(X_{1} + X_{2} + ... + X_{n}) = \sum_{i=1}^{n} Var(X_{i}) = n * p * (1-p)$$

3) Hipergiometrica HG(n,N,M)

$$\mathbb{P}(X=k) = \frac{\binom{M}{k} * \binom{N-M}{n-k}}{\binom{N}{n}}$$

ex: x_j la extragerea j avem bila neagra $x_j=1$, alba $x_j=0$

$$X=x_1+x_2+..+x_n$$

extragere fara intoarcere

$$\mathbb{E}[X] = \mathbb{E}[x_1] + ... + \mathbb{E}[x_n] = n * \frac{M}{N}$$

$$x_j \in \{0, 1\}$$

$$\mathbb{P}(x_j = 1) = \frac{M}{N}$$

 $4)X \sim Pois(\Omega)$

$$\mathbb{P}(x=k) = e^{-\lambda} * \frac{\lambda^k}{k!}$$

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} k * \mathbb{P}(X=k) = \sum k * e^{-\lambda} * \frac{\lambda^k}{k!} = \lambda$$

$$Var(X) = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

$$\mathbb{E}[x^2] = \sum_{k=0}^{\infty} k^2 * \mathbb{P}(x=k) = \sum k^2 * e^{-\lambda} * \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} k * e^{-\lambda} * \frac{\lambda^k}{(k-1)!} = \lambda^2 + \lambda$$

$$\implies \text{Var}(X) = \lambda$$

5) $X \sim \text{Geom}(p)$

$$X \sim \{1, 2, ..., n\}$$

$$\mathbb{P}(x = k) = (1 - p)^{k - 1} * p$$

$$\mathbb{E}[X] = \frac{1}{n}$$

8.4 Variabile aleatoare continue

Definitie. Fie (Ω, F, \mathbb{P}) camp de probabilitate si x: $\Omega \to \mathbb{R}$ o variabila aleatoare.

Variabila aleatoare X este continua (absolut continua) daca exista o functie $f: \mathbb{R} \to \mathbb{R}_+$ cu proprietatea ca $\mathbb{P}(x \in A) = \int_A f(x) dx, \forall A \subseteq \mathbb{R}$

Observatie. Daca A=(a,b), $\mathbb{P}(a < X < b) = \int_a^b f(x) dx$.

Observatie. In definitia de mai sus f se numeste densitate de repartitie.

Propozitie. Daca f este densitate de repartitie, atunci

1)
$$f \ge 0$$

2)
$$\int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{\infty} f(x)dx = 1$$

Observatie.
$$\mathbb{P}(\mathbf{x}=\mathbf{a}) = \int_a^a f(x) dx = 0$$

$$A = \{a\}$$

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b) = \mathbb{P}(a < X \le b)$$

Curs 9 9

Curs 10 10

Repartitia normala

$$\varphi = \frac{e^{\frac{-x^2}{2}}}{\sqrt{2\pi}}$$

$$\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$$

$$\varphi(x) = \varphi(-x)$$
 (simetric fata de origine)

 φ densitate

$$1) \varphi(x) \ge 0$$

$$2) \int_{-\infty}^{+\infty} \varphi(x) dx = 1$$

 $X \sim N(0,1)$ normala standard

$$X \sim N(0,1)$$
 normala standard
$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} \varphi(x) dx = \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx = 0 \text{ (functie impara)}$$

$$Var(x) = \mathbb{E}[X^2] - \underbrace{\mathbb{E}[X]^2}_{0}$$

$$Var(x) = \mathbb{E}[X^2] - \underbrace{\mathbb{E}[X]^2}$$

$$\mathbb{E}[X^2] = \int x^2 \varphi(x) dx = 1 \Longrightarrow Var(X) = 1$$

Daca X

$$\sim N(0,1)$$
atunci $\mathbb{E}[X]=0$ si Var(X)=1

$$\phi(x) = 1 - \phi(-x)$$

Definitie. Spunem ca X ~ N(μ , σ^2) daca admite densitate de repartitie: $f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

Propozitie. Daca $X \sim N(\mu, \sigma^2)$ atunci $\exists Z \sim N(0,1)$ astfel incat

$$X = \mu + \sigma Z$$

$$X \sim N(\underbrace{\mu}_{media}, \underbrace{\sigma^{2}}_{variatia})$$

$$\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z] = \mu + \sigma \mathbb{E}[Z] = \mu$$

$$Z \sim N(2.1)$$

$$Var(X)=Var(\mu+\sigma Z)=\sigma^{2}Var(Z)=\sigma^{2}$$

$$F(x)=\mathbb{P}(X\leq x)=\mathbb{P}(\mu+\sigma Z\leq x)=\mathbb{P}(Z\leq \frac{x-\mu}{\sigma})=\phi(\frac{x-\mu}{\sigma})$$

$$f(x)=\frac{d}{dx}F(x)=\frac{d}{dx}\phi(\frac{x-\mu}{\sigma})=\varphi(\frac{x-\mu}{\sigma})*\frac{1}{\sigma}$$

$$(f\circ q)'=f'(q)*q'$$

Proprietatea 68-95-99,7%

Daca X
$$\sim N(\mu, \sigma^2)$$
 atunci
$$\mathbb{P}(|X - \mu| \le \sigma) \simeq 68\%$$

$$\mathbb{P}(|X - \mu| \le 2\sigma) \simeq 95\%$$

$$\mathbb{P}(|X - \mu| \le 3\sigma) \simeq 99, 7\%$$

10.2 Repartitii comune, marginale si conditionate

X, Y doua variabile aleatoare (Ω, F, \mathbb{P})

$$\mathbb{P}((x,y) \in A \times B)$$

$$\mathbb{P}(X \in A) \operatorname{sau} \mathbb{P}(Y \in B)$$

$$\mathbb{P}(X \in A | Y \in B)$$

$Cazul\ discret$

Fie (Ω, F, \mathbb{P}) camp de probabilitate si $X:\Omega \to \mathbb{R}, Y:\Omega \to \mathbb{R},$ $X(\Omega) = \{x_1, x_2, ..., x_m\}$ $Y(\Omega) = \{y_1, y_2, ..., y_n\}$ Perechea $(X,Y):\Omega \to \mathbb{R}^2$ $(X,Y)(\Omega) = \{(x_i, y_i) | i = \overline{1, m}, j = \overline{1, n}\} \to m*n valori$

Functia de masa a (X, Y)

$$f_{XY}(x,y) = \mathbb{P}(X=x,Y=y), \forall x \in \{x_1,..,x_m\}, y \in \{y_1,..,y_n\}$$

Proprietati

a)
$$f_{XY}(x,y) \ge 0, \forall x,y$$

b)
$$\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} f_{XY}(x, y) = 1$$

$$A \subset \mathbb{R}$$

$$B \subset \mathbb{R}$$

$$\mathbb{P}((X,Y) \in A \times B) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} f_{XY}(x,y)$$

$$f_x(x) = \sum_y f_{xy}(x,y)$$
 (functia de masa a lui X, repartitia marginala a lui X)

$$f_y(y) = \sum_x f_{xy}(x,y)$$
 (functia de masa a lui Y, repartitia marginala a lui Y)

Fie X o variabila aleatoare discreta si $A \in F, \mathbb{P}(A) > 0$

$$\mathbb{P}(X = x | A) = \frac{\mathbb{P}(\{X = x\} \cap A)}{\mathbb{P}(A)}$$

Daca
$$A = \{Y = y\}$$
 atunci $\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{x|y}(x,y)}{f_y(y)}$ (functia de masa conditionata a lui X la Y)

10.3 Formula probabilitatii totale

$$B, A_1, A_2, ..., A_n \in F$$

$$A_1,A_2,..,A_n$$
 formeaza o partitie pe Ω

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i) * \mathbb{P}(A_i)$$

Daca B=x=x
$$\Longrightarrow \mathbb{P}(X = x) = \sum_{i=1}^{n} \mathbb{P}(X = x | A_i) * \mathbb{P}(A_i)$$

$$A_i = \{Y = y_i\} \Longrightarrow \mathbb{P}(X = x) = \sum_{i=1}^n \mathbb{P}(X = x | Y = y_i) * \mathbb{P}(Y = y_i)$$

$$f_x(x) = \sum_{i=1}^{n} f_{x|y}(x|y_i) f_y(y_i)$$

$$\mathbb{P}(A\cap B) = \mathbb{P}(A)*\mathbb{P}(B|A) = \mathbb{P}(B)*\mathbb{P}(A|B)$$

$$A = \{X = x\}, B = \{Y = y\}$$

$$\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) * \mathbb{P}(Y=y|X=x) = \mathbb{P}(Y=y) * \mathbb{P}(X=x|Y=y)$$

$$f_{x,y}(x,y) = f_x(x) * f_{y|x}(y|x) = f_y(y) * f_{x|y}f(x|y)$$

10.4 Formula lui Bayes

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{\mathbb{P}(X = x) * \mathbb{P}(Y = y | X = x)}{\sum \mathbb{P}(X = x) \mathbb{P}(Y = y | X = x)}$$
$$f_{x|y}(x|y) = \frac{f_x(x) * f_{y|x}(y|x)}{\sum_{x!} f_x(x!) f_{y|x}(y|x!)}$$

10.5 Media unei functii de v.a.

$$\begin{split} X \sim X : \Omega \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R} \\ \mathbb{E}[g(x)] &= \sum_x g(x) \mathbb{P}(X = x) \\ X, Y : \Omega \to \mathbb{R}, g : \mathbb{R}^2 \to \mathbb{R} \\ \mathbb{E}[g(x, y)] &= \sum_x g(x, y) * \mathbb{P}(X = x, Y = y) \end{split}$$

Ex: X,Y
$$\mathbb{E}[XY] = \sum_{x,y} xy \mathbb{P}(X = x, Y = y)$$

11 Curs 11

12 Curs 12

a) Cazul discret

X Y v.a discrete,
$$X \in \{x_1, ..., x_n\}$$
 $Y \in \{y_1, ..., y_n\}$ $f_{x,y}(x,y) = \mathbb{P}(X=x,Y=y)$ repartitie comuna $f_x(x) = \mathbb{P}(X=x) = \sum_y f_x(x,y)$ repartitie marginala $f_y(y) = \mathbb{P}(Y=y) = \sum_x f_{x,y}(x,y)$ repartitie marginala

12.1 Repartitia conditionata

$$f_{x|y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{f_{x,y}(x,y)}{f_y(y)}$$

$$f_{y|x}(y|x) = \mathbb{P}(Y = y|X = x) = \frac{f_{x,y}(x,y)}{f_x(x)}$$

12.2 Media conditionata

Daca X v.a discreta si $A \in Y$, $\mathbb{P}(A) \geq 0$ atunci am vazut ca $f_{X|A}(x) = \mathbb{P}(X = x|A)$ Media conditionata a lui X la A: $\mathbb{E}[X|A] = \sum_x x \mathbb{P}(X = x|A) = \sum_x x f_{X|A}(x)$ Daca g este o functie atunci g(x) este o v.a discreta si $\mathbb{E}[g(x)|A] = \sum_x g(x) f_{x|A}(x)$ Daca $A = \{Y = y\}$ atunci $\mathbb{E}[X|Y = y] = \sum_x x f_{x|y}(x|y)$ (media conditionata a lui x la y)

Experiment

x/y	-1	0	2	Σ
1	1/18	3/18	2/18	6/18
2	2/18	0	3/18	5/18
3	0	4/18	3/18	7/18
\sum	3/18	7/18	8/18	1

$$X \sim \begin{pmatrix} 1 & 2 & 3 \\ 6/18 & 5/18 & 7/18 \end{pmatrix}$$

$$Y \sim \begin{pmatrix} -1 & 0 & 2 \\ 3/18 & 7/18 & 8/18 \end{pmatrix}$$

$$X|Y=0 \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{3}{18} & 0 & \frac{4}{8/18} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3/7 & 0 & 4/7 \end{pmatrix}$$

$$\mathbb{E}[X|Y=0] = 1 \cdot \frac{3}{7} + 2 \cdot 0 + 3 \cdot \frac{4}{7} = \frac{15}{7}$$

$$X-Y = -1 \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{1}{118} & \frac{2}{218} & 3 \\ \frac{3}{18} & \frac{3}{3/18} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1/3 & 2/3 & 0 \end{pmatrix}$$

$$\mathbb{E}[X|Y=-1] = 1 \cdot \frac{1}{3} + 3 \cdot \frac{2}{3} + 3 \cdot 0 = \frac{5}{3}$$

$$\text{Analog } X-Y=2 \sim \begin{pmatrix} 1 & 2 & 3 \\ 2/8 & 3/8 & 3/8 \end{pmatrix}$$

$$\mathbb{E}[X|Y=2] = 1 \cdot \frac{2}{9} + 2 \cdot \frac{3}{9} + 3 \cdot \frac{3}{9} = \frac{17}{9}$$

Daca X si Y sunt v.a discrete atunci $\mathbb{E}[X] = \sum \mathbb{E}[X|Y=y]y \circ \mathbb{P}(Y=y)$

$$\mathbb{E}[X|Y=y] = \sum_{x} x f_{x|y}(x,y), f_{x|y}(x|y) = \frac{f_{x,y}(x,y)}{f_{y}y}$$

$$\sum_{y} \sum_{x} x f_{x|y}(x|y) \cdot f_{y}(y) = \sum_{y} \sum_{x} x f_{x,y}(x,y) = \underbrace{\sum_{x} x \sum_{y} f_{x,y}(x,y)}_{f_{x}(x)} = \mathbb{E}[X]$$

Definitie Fie X si Y doua v.a discrete. Se numeste media conditionata a lui X la Y si se not $\mathbb{E}[X|Y]$, v.a de forma h(y) pentru care $h(y) = \sum [X|Y=y], \forall y$ Experiment

Am vazut ca
$$\mathbb{E}[X|Y=-1]=\frac{5}{3}$$

 $\mathbb{E}[X|Y=0]=\frac{15}{7}$
 $\mathbb{E}[X|Y=2]=\frac{17}{8}$

$$\mathbb{E}[X|Y] = h(y) \text{ Ce valori ia aceasta v.a? } h(y) = \mathbb{E}[X|Y = y]$$

$$\mathbb{E}[X|Y] \sim \begin{pmatrix} 5/3 & 15/7 & 17/8 \\ \mathbb{P}(Y=-1) & \mathbb{P}(Y=0) & \mathbb{P}(Y=2) \end{pmatrix} = \begin{pmatrix} 5/3 & 15/7 & 17/8 \\ 3/18 & 7/18 & 8/18 \end{pmatrix}$$

$$\mathbb{E}[\mathbb{E}[X|Y]] = \frac{5}{3} \cdot \frac{3}{18} + \frac{15}{7} \cdot \frac{7}{18} + \frac{17}{8} \cdot \frac{8}{18} = \frac{5+15+17}{18} = \frac{37}{18} = \mathbb{E}[X]$$

$$\mathbb{E}[X] = \frac{6+10+21}{18} = \frac{37}{18}$$

$$\begin{array}{lll} \textbf{Media mediei conditionate este} \ \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[x] \\ \mathbb{E}[X|Y] \sim \begin{pmatrix} \mathbb{E}[X|Y=y] & \dots & \mathbb{E}[X|Y=y_n] \\ \mathbb{P}(Y=y_1) & \dots & \mathbb{P}(Y=y_n) \end{pmatrix} \\ \end{array}$$

Observatie
$$Var(X - A) = \mathbb{E}[(X - \mathbb{E}[X|A])^2|A] = \mathbb{E}[x^2|A] - (\mathbb{E}[X|A])^2$$

 $Var(X-Y=y)=\mathbb{E}[X^2|Y=y]-\mathbb{E}[X|Y=y]^2$ b) Cazul v.a continue: repartitia comuna, repartitia marginala, repartitia conditionata

Definitie Fie (Ω, F, \mathbb{P}) c.p si X,Y doua v.a const. Spunem ca vectorul (X,Y) formeaza o pereche de v.a continue daca exista o functie $f_{(x,y)}(x,y) \geq 0$ c prop:

$$\mathbb{P}((x,y) \in A) = \iint_A f_{(x,y)}(x,y) dx dy, \forall A \in \mathbb{R}^{\neq}$$

Functia $f_{(x,y)}(x,y): \mathbb{R}^2 \to \mathbb{R}$ se numeste densitatea comuna a (x,y)

Daca A=[a,b]x[c,d]

$$\mathbb{P}((X,Y) \in [a,b]x[c,d]) = \mathbb{P}(a \le x \le b, c \le y \le d) = \int_{A} \int_{A} f(x,y)(x,y)dxdy = \int_{a}^{b} \int_{c}^{d} f_{(x,y)}(x,y)dydx$$

$$\text{Daca A} = \mathbb{R}^{2} \text{ atunci } \mathbb{P}((x,y) \in \mathbb{R}^{2}) = \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} f_{(x,y)}(x,y)dxdy = 1$$

 $f_{(x,y)}$ este desitate $a)f_{(x,y)} \ge 0$

b)
$$\int \int f_{(x,y)}(x,y)dxdy = 1$$

Interpretare $f_{(x,y)}(x,y)$

$$\mathbb{P}(X \in (x, x + dx), y \in (y, y + dy)) = \int_{x}^{x + dx} \int_{y}^{y + dy} f_{(x,y)}(u, v) dvuv$$

$$dx, dy \to 0 f_{(x,y)}(x, y) dxdy$$

$$f_{(x,y)}(x, y) \sim \frac{\mathbb{P}X \in (x, x + dx), Y \in (y, y + dy)}{dxdy} \sim \frac{probabilitatea}{unitatea dearie}$$

$$f_{(x,y)}(x,y) \sim \frac{\mathbb{P}X \in (x,x+dx), Y \in (y,y+dy)}{dxdy} \sim \frac{probabilitatea}{unitatea dearie}$$

Observatie Daca stim $f_{(x,y)}(x,y)$ atunci putem calcula price probabilitate de tipul $\mathbb{P}(X \in A, Y \in B)$

Vrem sa calculam $\mathbb{P}x \in A = \mathbb{P}(x \in A, y \in \mathbb{R}) = \int_A \int_{\mathbb{R}} f_{(x,y)}(x,y) dx dy$

Presupunem ca X si Y v.a continua cu densitatile f_x , respectiv $f_y = \mathbb{P}(X \in A) =$ $\int_{A} f_{x}(x)$

Avem $\int_{A} f_{x}(x)dx = \int_{A} \int_{\mathbb{R}} f_{x,y}(x,y)dydx$

 $f_x(x) = \int_{\mathbb{R}} f_{(x,y)}(x,y) dy$ desitatea marginala a lui X

Similar $f_y(y) = \int_{\mathbb{R}} f_{(x,y)}(x,y) dx$ desnitatea marginala a lui y

Cazul discret Cazul continuu

$$f_{(x,y)}(x,y) = \mathbb{P}(X = x, Y = y)$$
 $f_{(x,y)}(x,y)$

Repartitie uniforma pe $S \subseteq \mathbb{R}^2$

Presupunem $S \subseteq \mathbb{R}^2 marginita$ (triunghi,dreptunghi,...)

$$(X, y) \sim \mu(S) daca \exists f_{(x,y)}(x, y) \ge 0$$

$$f_{(x,y)}(x,y) = \begin{cases} c, (x,y) \in S \\ 0, alt fel \end{cases}$$

Cum $f_{(x,y)}$ este densitate rezulta $c \ge 0$ si

$$\int \int_{\mathbb{R}^2} \int f_{(x,y)x,y}(x,y) dx dy = 1 \Rightarrow \int \int_{\mathbb{R}^2} c \cdot 1_s(x,y) dx dy = 1$$

$$c = \frac{1}{\int \int dx dy} = \frac{1}{Aria(A)}$$

$$c = \frac{1}{\int \int dx dy} = \frac{1}{Aria(A)}$$

$$S{=}[a,b]{\times}[c,d]$$

$$(X, y) \sim \mu(S) daca \exists f_{(x,y)}(x, y) \ge 0$$

$$f_{(x,y)}(x,y) = \begin{cases} \frac{1}{\int \int_{\mathbb{R}}} (x,y) \in S & 0, alt fel \end{cases}$$

Problema acului lui Buffon

O suprafata marcata cu linii paralele aflate la distanta d una fata de celelalte. Presupunem ca aruncam cu un ac de lungime lid. Care este probabilitatea ca acum sa intersecteze una dintre linii? $\Theta - unghiulascutit format de accudre apta$

X - distanta de la mijlocul acului la cea mai apropriata dreapta

$$(X,\Theta) \sim U(S), S = \{(X,\Theta) | 0 \leq \Theta \leq \frac{u}{2}, 0 \leq x \leq d/2\}$$

Conditia ca acul sa intersecteze o linie:

$$x \le \frac{l/2}{\sin\Theta}$$

Vrem sa calculam $\mathbb{P}(X \leq l/2sin\Theta)$

Functia de repartitie(X,Y)

$$\mathbb{F}(x,y)(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{(x,y)}(u,v) dv du$$

12.3 Repartitii conditionate

Fie (Ω, F, \mathbb{P}) un c.p., X o v.a. continua si un $A \in F \operatorname{cu} \mathbb{P}(A) \geq 0$

Definim densitatea conditionata a lui X la A, $f_{(x|A)}x$, functia $f_{x|A} \ge 0$ care verifica

$$\mathbb{P}(x \in B|A) = S_B f_{x|A} x dx \forall B \subseteq \mathbb{R}$$

Observatie

In locul lui A consideram ev $\{x \in A\}$ astefel incat $\mathbb{P}(X \in A) \geq 0$ $\mathbb{P}(x \in B | x \in A) = \frac{\mathbb{P}(x \in b, x \in A)}{\mathbb{P}x \in A} = \frac{\mathbb{P}(x \in A \cap B)}{\mathbb{P}(x \in A)}$

$$\int_{A \cap B} f dx = \int_{A \cap B} f(x) dx = \int_{B} f(x) \cdot 1_{A}(x) dx$$

12.4 Formula probabilitatii totale

 $FieA_1, A_2, ..., A_n \in F$ care sa formeze o partitie pe $\Omega siB \in Fatunci\mathbb{P} = \sum_{i=1}^n \mathbb{P}(B|A_i)$. $\mathbb{P}A_i$

Daca $B = \{X \leq x\}$ atunci X v.a cont fx densitate

$$\mathbb{P}X \le x = \sum_{i=1}^{n} \mathbb{P}X \le x | A_i \cdot \mathbb{P}A_i = \int_{-\infty}^{x} f_x(t) dt = \int_{-\infty}^{f_{x|A_i}} \mathbb{P}(A_i)$$

Observatie

 $A \in F, \mathbb{P}(A) \ge 0 \text{ X va cont } f_x(x)$

$$f_x x = f_{x|A} \mathbb{P}(A) + F_{x|A^C}(x) \cdot \mathbb{P}(A^C)$$

Experiment:

Presupunem ca metroul circula la intervalul de 15 minute incepand la ora 5 am, Presupunem ca ajungem in statie in intervalul 7-7:30 in mod aleator (uniform pe acest interval). Ne propunem sa determinam rep. timpului de astepare pana la sosirea primului metrou.

Solutie: Fie Y- timpul de asteptare pana la sesiunea primului metrou. Vrem sa determinam densitatea a lui Y, f_y . Fie X timupul de sosire in statie $U[7^{10}-7^{30}]$

$$A = \{7^{10} \leq x \leq 7^{15}\}$$
– Urcam in metrou la 7:15

$$B = \{7^{15} \le x \le 7^{30}\}$$
– Urcam in metrou la 7:30

$$f_y(y) = f_{Y|A}(y) \cdot \mathbb{P}(A) + f_{y|B}(y) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(B) = \frac{15}{20} = \frac{3}{4}$$

$$f_Y(y) = f_{y|A}(y) \cdot \frac{1}{4} + f_{y|B}(y) \cdot \frac{3}{4}$$

$$f_{Y|A}(y) = \frac{1}{5}, 0 \le y \le 5$$

$$f_{Y|B}(y) = \frac{1}{15}, 0 \le y \le 15$$

$$f_{Y}(y) = f_{Y|A}(y) * \mathbb{P}(A) + f_{Y|B}(Y) * \mathbb{P}(B) = \frac{1}{5} * 1_{[0,5]}(y) * \frac{1}{4} + \frac{1}{15} * 1_{[0,15]}(y) = \frac{3}{4}$$

$$\frac{1}{10}, 0 \le y \le 5$$

$$\frac{1}{20}, 5 \le y \le 15$$

13 Curs 13

13.1 Independeta v.a

$$x \perp y$$

$$\mathbb{P}(x \in A, Y \in B) = \mathbb{P}(x \in A) \cdot \mathbb{P}(y \in B), \forall A, B \subseteq \mathbb{R}$$

$$A = (-\infty, x]$$

$$B = (-\infty, y]$$

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) * \mathbb{P}(Y \le y) \forall x, y$$

$$\int_{-\infty}^{x} \int_{-\infty}^{y} f_{(x,y)}(u, v) dv du = \int_{-\infty}^{x} f_{x}(u) du \int_{-\infty}^{y} f_{x}(v) dv$$
Derivam dupa y si x
$$\frac{\partial^{2}}{\partial x \partial y} \int_{-\infty}^{x} \int_{-\infty}^{y} f_{(x,y)}(u, v) dv du = f_{(x,y)}(x, y) = f_{x}(x) f_{y}(y)$$

P Fie X si Y v.a cu densitate fx si repartitia fy. Atunci $x \perp f_{(x,y)}(x,y) = f_x(x) f_y(y)$

P Fie X si Y 2 va si g si h 2 fete. Daca $f_{(x|y)}(x|y) = g(x) \cdot h(y) \forall x, y \ atunci \ x \perp y$

 $\mathbf P$ Daca X si Y sunt 2 v.a independente $\mathbb E[g(x)\cdot h(y)]=\mathbb E[g(x)]\cdot \mathbb E[h(y)]$

Formula lui Bayes

X Y v.a continua

$$f_{x|y}(x,y) = f_{x|y}(x|y)f_yy = \frac{f_{x,y}(x,y)}{f_y(y)} = \frac{f_{y|x}(y|x)f_x(x)}{f_y(y)} = \frac{f_{y|x}(y|x)*f_x(x)}{\int f_{y|x}(y|x')*f_xx'*dx'}$$

Experiment A Si B durata de viata pt telefonul din firma A este $\text{Exp}(\alpha_0)$, B $\text{Exp}(\alpha_1)$

Presupunem ca primim un telefon de la A cu prob ${\rm P0}$ si de la B cu ${\rm P1}=1\text{-}{\rm P0}$

Fie T durata de viata a telefonului primit

a) functia de repartitie si densitatea lui T

b) Probabilitatea ca telefonul sa fi provenit de la B stiind ca T=t

T v.a continua Fie I v.a 0, telefon produs de A; 1, telefon produs de B

$$\mathbb{P}(I=0) = p0$$

$$\mathbb{P}(I = 1) = p1 = 1 - p0$$

$$T-I = 0 \sim Exp(\alpha_0)$$

$$T-I = 1 \sim Exp(\alpha_1)$$

$$\mathbb{P}(T \le t) = \mathbb{P}(T \le t | I = 0) \cdot \mathbb{P}(I = 0) + \mathbb{P}T \le t | I = 1 \cdot \mathbb{P}(I = 1)$$

13.2 Media unei functii de v.a

X si Y doua v.a $f_{x,y}(x,y)si~g:\mathbb{R}^2\to\mathbb{R}$

$$\mathbb{E}[g(x,y)] = \int \int g(x,y) \cdot f_{x,y}(x,y) dx dy$$

In particular,

$$\mathbb{E}[xy] = \int \int xy f_{x,y}(x,y) dx dy$$

13.3 Media conditionata

X v.a continua si A un ev P(A)>0 $\mathbb{E}[X|A]=\int x f_{x|A}(x) dx$

Daca A=
$$\{Y = y\}$$

$$\mathbb{E}[X|Y=y] = \int x f_{x|y}(x,y) dx$$

13.4 Formula probabilitatii totale

$$f_x(x) = \sum_{i=1}^n f_{x|A_i}(x) * \mathbb{P}(A_i)$$

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A] * \mathbb{P}(A_i)$$

$$\mathbb{E}[X] = \int \mathbb{E}[X|Y = y] f_y(y) dy$$

Definitie

Fie g(y) =
$$\mathbb{E}[X|Y=y]$$
. Atunci v.a $\mathbb{E}[X|Y]=g(y)$

Proprietate

a)
$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[x]$$

$$Var(X) = Var(\mathbb{E}[X|Y] + \mathbb{E}[Var(x|y)])$$

N clienti

 $X_1, X_2 \cdots$ sumele pe care le-au achitat

$$T = X_1 + X_2 + \cdots + X_{\lambda}$$

$$N(\omega_1) = 10$$

$$T(\omega_1) = X_1(\omega_1) + \cdots \times X_{10}(\omega_1)$$

13.5 Covarianta si corelatie

Definitie. Fie X si Y doua v.a se numesc covariante dintre X si Y

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Convarianta este $\mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definitie

Spunem ca X si Y sunt necorelate daca convarianta lor este 0 Daca $X \perp Y \Rightarrow$ X si Y sunt necorelate

Proprietati.// a) Cov(X,X) = Var(X)

- b) Cov(X,a) = 0, a const
- c) Cov(a+bx, y)=b Cov(X,Y)
- d) Cov(X,Y) = Cov(Y,X)
- e) Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)

$$Var(x_1 \cdots x_n) = \sum_{i=1} Var(x_i) + 2 \sum_{i < j} Cov(x_i, x_j)$$

f) Cov(x+y,z)=Cov(x,z)+Cov(y,z)

Definitie

Fie X si Y doua v.a si definim coeficientul de corelatie dintre X si Y

$$\rho(X,Y) = \frac{Cov(X,Y)}{Var(X)\sqrt{Var(Y)}}$$

$$\rho > 0(stanga) \ rho < 0(dreapta)$$

$$\rho = 0 (independent) \qquad \rho = 0$$

Proprietate

$$\rho \in [-1,1] Daca \ \rho = 1 \ sau \ \rho = -1 \ atunci$$

$$X = a + by \ (y = a + bx) as. \mathbb{P}(X = a + by) = 1$$

13.6 Inegalitati si termeni limita

Inegalitatea Cauchy Schwartz

Fie X si Y v.a cu Var(x)< ∞ , Atunci $|\mathbb{E}[XY] \leq \sqrt{\mathbb{E}[x^2]\mathbb{E}[y^2]}$

a) Functia convexa

Inegalitatea lui Jensen

Fie X v.a pozitiva. Atunci $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$

14 Curs 14

14.1 Inegalitati

- 1) Cauchy-Schwartz: $\mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}[X^2] * \mathbb{E}[Y^2]}$
- 2) Jensen:

 φ convexa : $\mathbb{E}[\varphi(x)] \ge \varphi(\mathbb{E}[X])$

 φ concava : $\mathbb{E}[\varphi(x)] \leq \varphi(\mathbb{E}[X])$

3) Marcov:

$$X > 0, \ a > 0$$

$$\mathbb{P}(X > a) \le \frac{\mathbb{E}[X]}{a}$$

4) Cebîşev:

X v.a.
$$\mathbb{E}[X] = \mu$$
, $Var(x) = \sigma^2$
 $\mathbb{P}((X - \mu) \ge a) \le \frac{Var(X)}{a^2}$, $a > 0$

5) Chernoff:

X v.a. ,
$$a>0,\;t>0$$
atunci $\mathbb{P}(X\geq a)\leq \frac{\mathbb{E}[e^{tx}]}{e^{ta}}$

14.2 Teoreme limite

Definitie. Fie $(X_n)_{n\geq 1}$ un sir de v.a. si X o v.a peste (Ω, F, \mathbb{P}) . Spunem ca $(X_n)_n$ converge la X aproape sigur si notam $X_n \xrightarrow{a.s.} X$ daca :

$$\mathbb{P}(\lim_{n} X_{n} = X) = 1$$
$$A = \{\omega \in \Omega | \lim_{n} X_{n}(\omega) = X(\omega) \}$$

Fie $(X_n)_n$ un sir de v.a. si X o v.a. def (Ω, F, \mathbb{P}) . Spunem ca X_n converge in probabilitate la X, si notam $X_n \xrightarrow{\mathbb{P}} X$ daca $\forall \epsilon > 0$, $\lim_n \mathbb{P}(|X_n - x| \ge \varepsilon) \ge 0$.

Pentru $\forall \epsilon>0,\;\forall \delta>0,\;\exists n_0\in\mathbb{N}$ a.i. $n\geq n_0$

$$\mathbb{P}(|X_n - x| \ge \underbrace{\varepsilon}_{acuratete}) \le \underbrace{\delta}_{nivel\ de\ incredere}$$

Definitie. Numim esantion de volum n din populatia Q , v.a. $x_1, x_2, ..., x_n$ independente si identic repartizate (i.i.d)

Media esantionului : $\overline{X_n} = \frac{x_1 + x_2 + \ldots + x_n}{n}$

Repartitia $x_1, x_2, ..., x_n$ esantion de medie μ si varianta σ^2

$$(\mathbb{E}[X_1] = \mu, \ Var(X_1) = \sigma^2)$$

$$\mathbb{E}[X_n] = \mathbb{E}\left[\frac{x_1 + x_2 + \dots + x_n}{n}\right] = \frac{1}{n}(\mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]) = \mu$$

$$Var(X_n) = Var\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) = \frac{1}{n}(Var(X_1) + \dots + Var(X_n)) = \frac{\sigma^2}{n}$$

14.3 Legea numerelor mari

Versiune slaba

Fie
$$(X_n)_n$$
 sir de v.a. i.i.d. cu $\mathbb{E}[X_1] = \mu$, $Var(X_1) = \sigma^2 < \infty$ Atunci $X_n \stackrel{\mathbb{P}}{\to} X$

Versiune tare

$$(X_n)$$
 v.a. i.i.d. $\mathbb{E}[|X_1|] < \infty$, $\mathbb{E}[X_1] = \mu$
Atunci $X_n \xrightarrow{a.s.} X$

 $\underline{Demonstratie}$ Pentru $\varepsilon>0$

$$\mathbb{P}(|X_n - \mu| \ge \varepsilon) \xrightarrow{n \to \infty} X$$

Inegalitatea lui Cebisev:

$$\mathbb{P}(|X_n - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X_1)}{\varepsilon^3} = \frac{\sigma^2}{\varepsilon^2} \xrightarrow{n \to \infty} 0$$

Pentru un nivel de acuratete dat $\mathbb{P}(\mu - \varepsilon, \mu + \varepsilon) \to X_n \xrightarrow{n \to \infty} 1$

14.4 Integrarea Monte-Carlo

Presupunem ca avem o functie g si vrem sa calculam $\int_a^b g(x)dx$. Presupunem ca pe [a,b] avem $0 \le g(x) \le c$.

$$A = [a, b] \times [0, c]$$
-dreptunghi

$$B = \{(x, y) | a \le x \le b, 0 \le y \le g(x)\}$$

Generam puncte Unif(A)

$$(x_1, y_1), ..., (x_n, y_n) \sim U(A)$$

$$(x,y) \sim U(A) \text{ daca } f_{(x,y)}(x,y) = \{\frac{1}{Arie(A)}, (x,y) \in A , 0 \text{ alt } fel \}$$

$$\text{Arie}(\mathbf{a}) = \mathbf{c}(\mathbf{b} - \mathbf{a})$$

$$X \sim U([a,b]) \text{ indep de } Y \sim U([a,c])$$

$$f_x(x) = \frac{1}{b-a} * \mathbbm{1}_{[a,c]}(y)$$

$$f_{(x,y)}(x,y) = f_x(x) * f_y(y) = \frac{1}{a(b-a)} * \mathbbm{1}_{[a,c]}(x,y)$$

$$\text{Fie } Z_i = \begin{cases} 1 & (x_i,y_i) \in B \\ 0 & \text{alt } fel, \ Z_i \sim B(p) \end{cases}$$

$$\text{Din LNM} \Longrightarrow \sum_i = \frac{Z_1 + Z_2 + \ldots + Z_n}{n} \overset{\mathbb{P}}{\to} p = \frac{Arie(B)}{c(b-a)} = \frac{\int_a^b g(x) dx}{c(b-a)}$$

14.5 Teorema limita centrala(TLC)

Din LNM:
$$\overline{X_n} \xrightarrow{\mathbb{P}} \mathbb{E}[X_n]$$

Fie $x_1, ..., x_n$ i.i.d. $\mathbb{E}[x_1] = \mu$, $Var(x_1) = \sigma^2$
 $\frac{X - \mathbb{E}[X]}{\sqrt{Var(X)}} = 1$
 $Z = \frac{X - \mathbb{E}[X]}{\sqrt{Var(X)}} = 1 - Z$ s.n. variabila normalizata
 $Z_n = \frac{x_1 + ... + n - \mathbb{E}[x_1 + ... + x_n]}{\sqrt{Var(x_1 + ... + x_n)}} = \frac{x_1 + ... + x_n - n * \mu}{\sqrt{n\sigma^2}}$ - variabila de scor $Z_n = \sqrt{n}(\frac{\overline{X_n} - \mu}{\sigma})$

TLC

Fie
$$(X_n)_n$$
 sir de v.a. i.i.d. $\mathbb{E}[X_1] = \mu < \infty$, $Var(X_1) = \sigma^2 < \infty$.
Atunci $\lim_n \mathbb{P}(Z_n \le x) = \phi(x) \, \forall x$
unde $Z_n = \sqrt{x} * \frac{\overline{X_n} - \mu}{\sigma} \Longrightarrow \phi(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} * e^{-t^2/2} dt$ (functia de repartitie a N(0,1)

Observatie.
$$x_1, x_1, ..., x_n$$
 i.i.d. $\mathbb{E}[x_i] = \mu$, $Var(x_i) = \sigma^2$, $S_n = x_1 + x_2 + ... + x_n$ $\mathbb{P}(S_n \leq c) = \mathbb{P}(\frac{S_n - \mathbb{E}[S_n]}{Var(S_n)} \leq \frac{c - \mathbb{E}[S_n]}{\sqrt{Var(S_n)}}) = \mathbb{P}(Z_n \leq \frac{c * n\mu}{\sqrt{n\sigma^2}}) \overset{TLC}{\simeq} \phi(\frac{x - n\mu}{\sigma\sqrt{n}})$