Exercice 1 - Matrices, produits et composition

Soient S et T les deux endomorphismes de \mathbb{R}^2 définis par

$$S(x,y) = (2x - 5y, -3x + 4y)$$
 et $T(x,y) = (-8y, 7x + y)$.

- 1. Déterminer les matrices de S et T dans la base canonique de \mathbb{R}^2 .
- 2. Déterminer les applications linéaires S+T, $S\circ T$, $T\circ S$ et $S\circ S$ ainsi que leurs matrices dans la base canonique de \mathbb{R}^2 .

EXERCICE 2 - Réduction

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. En déduire que $M^n=0$ pour tout $n\geq 2$.

Exercice 3 - Application linéaire définie sur les matrices

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 4 - Surjective?

Soient α, β deux réels et

$$M_{\alpha,\beta} = \left(\begin{array}{cccc} 1 & 3 & \alpha & \beta \\ 2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 0 \end{array} \right).$$

Déterminer les valeurs de α et β pour lesquelles l'application linéaire associée à $M_{\alpha,\beta}$ est surjective.

EXERCICE 5 - Rang par blocs

Soit B la matrice diagonale par blocs

$$B = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & 0 & A_n \end{pmatrix}.$$

Calculer le rang de B en fonction du rang des A_i .

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net