Water Sustainability in the Panama Canal

Blaise Pasqal Quantum Challenge

Who we are?

Quantum Beech Hill

01

INTRODUCTION

Panama Canal Water Usage

03

METHOD

Implementation

02

THEORY

QUBO and Adiabatic Computing

04

CONCLUSION

Proof of concept and summary

01 Introduction

The Panama Canal System

The Panama Canal

Vital maritime route connecting the
 Atlantic and Pacific Oceans

 Operates on a system of locks using freshwater to cross the canal

Panama Canal Water Usage

Miraflores Lake Water Levels

- Gatún Lake is the primary source of drinking water for Panama City
- A ship uses 200 million litres of freshwater per crossing
- Climate change has caused an increase in droughts

Cross Filling at Panamax Locks

Details

Parallel lanes which utilize **subterranean culverts** to transfer water

Trade-Off

- Causes Delays in Vessel Movement
- Saves 6 crossings of water per day
- Requires lots of coordination and scheduling

Tandem Lockage

Details

Simultaneously **transits two ships** in a single lock chamber

Trade-Off

- Constrained to ships whose combined length does not exceed lock capacity
- Reduces number of required lockages
- Requires complex scheduling

02

Theory

QUBO & Ising problems, and adiabatic computing

QUBO and Ising Problems

$$f_{Q}(x) = x^{T}Qx = \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} x_{i} x_{j}$$
 $H = \sum_{i,i'} J_{i,i'} s_{i} s_{i'} + \sum_{i} h_{i} s_{i}$

$$H = \sum_{i,i'} J_{i,i'} S_i S_{i'} + \sum_i h_i S_i$$

A **QUBO** problem finds a binary vector x* that is minimal with respect to the function.

It transfers to an **Ising** problem by converting binary variables to spin variables.

Adiabatic Quantum Computing (AQC)

AQC applies the **adiabatic theorem** to find the **optimal solution** of a problem

The problem is mapped onto an energy landscape where the **ground state** is the optimal solution

Neutral Atoms

- Ground state |0> and highly excited Rydberg state |1>
- Laser pulse sequence applied to an array of atoms.

- Pulse drives system towards final quantum state
- Global measurement via fluorescence imaging.

03

Implementation

How to apply QUBO for optimisation

Implementing QUBO

Define binary decision variable

Define penalty coefficients

Define constraints

04 Results

Optimising the Panama

Schedule

Current vs Timetabled Operations

4 Qubit Pulse

4 Qubit Embedding

Reduction in runtimes

Thanks!

Optimizing Ship Scheduling in The Panama Canal

Tackles **SDG Sustainable Industries and Transport** challenge by aiming to optimise ship scheduling in the Panama Canal.

Tackles current issues such as **freshwater scarcity** and reduced ship transits during droughts.

QUBO used to formulate optimisation problem with quantum annealing being explored via **neutral atoms**.

Explores Al Reinforcement Learning to dynamically adjust QUBO parameters

Simulated annealing proof of concept shows a 40% reduction in freshwater usage.