3D Transformation

Course Code: CSC 3224 Course Title: Computer Graphics

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	8	Week No:	07	Semester:	
Lecturer:					

Transformations

*Franslation > Moving Object *Scaling > Resizing Object

3D Axis

3D Transformations

* Translation -> tx, ty, tz

* Scaling -> Sx, Sy, Sz

* Rotation -> Rotating with 0' -> 4 Walahan

* Translation -> Rotating with 0' -> 4 Walahan

* Translation -> Tx, ty, tz

* Translation

Reflection > Rotate with - 180 7xy Plane
72x Plane

3D Translation

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$$

3D Scaling

$$S_{\chi} \quad \chi' = \chi * S_{\chi}$$

$$S_{\chi} \quad \chi' = \chi * S_$$

3D Rotation

7X ROII -> Rotation respect X Axis

Y ROII -> Rotation respect X Asix

72 ROII -> Rotation respect 2 Axis

3D Rotation

$$Z = Z$$

$$\chi' = \chi \cos \theta - \psi \sin \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \sin \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

$$\chi' = \chi \cos \theta + \psi \cos \theta$$

3D Scaling

Reflection

• XY Plane:

• YZ Plane

Books

- Foley, van Dam, Feiner, Hughes, Computer Graphics: principles and practice, Addison Wesley, Second Edition.
- Schaum's Outline of Theory & Problems of Computer Graphics.
- Peter Shirley Steve Marschner, "Fundamental of computer graphics",
 Third Edition.

References

- 1. https://www.gatevidyalay.com/3d-translation-in-computer-graphics-definition-examples/
- 2. https://en.wikipedia.org/wiki/Transformation_matrix
- 3. https://www.javatpoint.com/computer-graphics-3d-transformations
- 4. https://www.slideshare.net/DelwarHossain8/3d-transformation-computer-graphics
- 5. https://en.ppt-online.org/31501
- 6. https://www.slideserve.com/thomas-kirby/2d-and-3d-transformation-powerpoint-ppt-presentation
- 7. https://slideplayer.com/slide/5061630/