Week 8: Joint Distributions

Yilin

DigiPen

JOINT DISTRIBUTIONS

Joint Distributions

Chapter Goal

This chapter is devoted to studying how multiple random variables behave with each other.

- Most processes in life are multivariate.
- Joint distributions serve as a tool to model processes with more than one random variable.
- We will focus most of our attention to discrete joint distributions rather than continuous.
- The continuous ones require multivariable calculus in most cases.

Drawing from an urn without replacement

Question

We have four balls in an urn, two marked with 1 and two marked with 0. Draw two without replacement. What are the probabilities of each combination of 0 and 1?

Drawing from an urn without replacement

Question

We have four balls in an urn, two marked with 1 and two marked with 0. Draw two without replacement. What are the probabilities of each combination of 0 and 1?

Let X_1 be the first ball and X_2 be the second (now order matters). Compute

$$P(X_{1} = 0 \text{ and } X_{2} = 0) = P(X_{2} = 0 | X_{1} = 0) P(X_{1} = 0) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$$

$$P(X_{1} = 1 \text{ and } X_{2} = 0) = P(X_{2} = 0 | X_{1} = 1) P(X_{1} = 1) = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}$$

$$P(X_{1} = 0 \text{ and } X_{2} = 1) = P(X_{2} = 1 | X_{1} = 0) P(X_{1} = 0) = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}$$

$$P(X_{1} = 1 \text{ and } X_{2} = 1) = P(X_{2} = 1 | X_{1} = 1) P(X_{1} = 1) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}.$$

Displaying the Joint Probabilities

We can write this **joint distribution** more neatly in a table:

Joint Prob.
$$X_2 = 0$$
 $X_2 = 1$
 $X_1 = 0$ $1/6$ $1/3$
 $X_1 = 1$ $1/3$ $1/6$

We can learn a lot from this information.

• We can compute individual or marginal probabilities like

$$P(X_2 = 0) = P(X_1 = 0, X_2 = 0) + P(X_1 = 1, X_2 = 0) = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}.$$

• We see that X_1 and X_2 are **dependent** because, e.g.,

$$P(X_{1} = 0, X_{2} = 0) = \begin{pmatrix} 1 \\ 6 \end{pmatrix} \text{ but } P(X_{1} = 0) P(X_{2} = 0) = \frac{1}{2} \cdot \frac{1}{2} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$P(X_{1} = 0, X_{2} = 0) \neq P(X_{1} = 0) P(X_{2} = 0) = \frac{1}{2} \cdot \frac{1}{2} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Drawing from an urn with replacement

Replacement

Now replace the first ball before drawing the second. Then X_1 and X_2 would be **independent**, since the selection of the first would not affect the selection of the second.

For example,

$$\rightarrow$$
 $P(X_2 = 1|X_1 = 0) = P(X_2 = 1).$

From this we would compute that

$$P(X_1 = i, X_2 = j) = P(X_1 = i)P(X_2 = j) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Thus

$$P(X_{1}=0, X_{2}=0) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \text{ Joint Prob.} \quad X_{2}=0 \quad X_{2}=1 \quad P(X_{1}=0) = \frac{1}{2} = P(X_{1}=1) \quad X_{1}=0 \quad \frac{1}{4} \quad \frac{1}{4} \quad P(X_{1}=0, X_{2}=0) = \frac{1}{4} = P(X_{1}=0) = \frac{1}{$$

$$P(X_2=0)=\frac{1}{2}=P(X_2=1)$$

$$P(X_1=0)=\frac{1}{2}=P(X_1=1)$$

$$P(X_1=0)=\frac{1}{2}=P(X_1=1)$$

Definition

Definition

Let X and Y be discrete r.v.s, where X takes values in (x_1, \ldots, x_n) and Y takes values in (y_1, \ldots, y_m) . Then the **joint distribution of** X and Y is given by the **joint probabilities**:

$$\underline{p_{ij}} := \underline{P(X = x_i \text{ and } \underline{Y} = y_j)} = P(X = x_i, Y = y_j),$$

$$1 \le i \le n, \ 1 \le j \le m.$$

For two r.v.s, this is easily displayed in a table:

Joint Prob.	$Y = y_1$	$y=y_2$	• • •	$y=y_m$	
$X = x_1$	<i>p</i> ₁₁	P ₁₂	• • •	p_{1m}	PCX=X1)
:	:	:	• •	:	
X = n	p _{n1}	p _{n2}	• • •	p _{nm}	P(X=Xn)

A Joint Game

Flip a coin and roll a six-sided die.

- Let X be 1 if heads, 0 if tails.
- Let Y be the score of the die roll, 1 through 6.
- Assume the flip and the roll are independent.

We can compute the joint probabilities. For i = 0, 1, and

$$j = 1, \dots, 6,$$
Independence
$$P(X = i, Y = j) = P(X = i)P(Y = j) \neq \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12},$$

We can display the joint distribution

Joint Prob.						
X=0						1/12 P(X=0)==
X = 1	1/12 P(Y=1)=7	1/12 P(Y=2)=t	1/12 P(Y=3)=7	1/12 P(Y=4)=7	1/12	1/12 P(X=1)= = = = = = = = = = = = = = = = = = =

MARGINAL DISTRIBUTIONS

Marginal Distributions for an urn without replacement

Question

Find the distribution of X_2 , that is the **marginal distribution** of X_2 .

Solution: Since all the possibilities for X_1 are only 0 or 1, we get

$$P(X_2 = 0) = P(X_1 = 0, X_2 = 0) + P(X_1 = 1, X_2 = 0) = \frac{1}{2}$$
 $P(X_2 = 1) = P(X_1 = 0, X_2 = 1) + P(X_1 = 1, X_2 = 1) = \frac{1}{2}$

In a table, the marginal distribution for X_2 is displayed as

$$X_2 = 0$$
 1
Probability 1/2 1/2

This tells us that the probability of the second ball being 0 or 1 is the same!

A Rigged Game

Suppose an enterprising thief sets up a rigged game.

- The mark flips a biased coin and selects a random card from the three: A♠ 2♦ 3♣.
- Let X be the outcome of the coin flip 1 for heads, 0 for tails
- Let Y represent the card, 1 for A line 1, 2 for 2 line 1 and 3 for 3 line 1.
- Suppose we observe the following joint distribution for X and Y:

Joint Prob.
$$Y = 1$$
 $Y = 2$ $Y = 3$
tail. $X = 0$ 0.02 0.31 0.37
head. $X = 1$ 0.03 0.11 0.16 0.3

Question

How is X distributed? How is Y distributed?

Marginals for the Rigged Game

Answer

If we know how exactly how Y behaves when X = i, we can determine P(X = i):

$$P(X = 0) = P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 0, Y = 3)$$

= 0.02 + 0.31 + 0.37
= 0.7,

and P(X = 1) = 1 - P(X = 0) = 0.3. We can do the same with Y,

$$P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1) = 0.02 + 0.03 = 0.05$$

$$P(Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) = 0.31 + 0.11 = 0.42$$

$$P(Y = 3) = P(X = 0, Y = 3) + P(X = 1, Y = 3) = 0.37 + 0.16 = 0.53$$

Marginal Distributions

Definition

The **marginal distributions** for a jointly distributed pair of r.v.s (X, Y) are the individual distributions for each r.v. If $p_{ij} = P(X = x_i, Y = y_j)$, then we compute the **marginal probabilities** by adding up the joint probabilities over the other index:

$$p_{X,i} = P(X = i) = p_{i1} + p_{i2} + \cdots + p_{im} = \sum_{j=1}^{m} p_{ij}, \quad 1 \le i \le n,$$

and

$$p_{Y,j} = P(Y = j) = p_{1j} + p_{2j} + \dots + p_{nj} = \sum_{i=1}^{n} p_{ij}, \qquad 1 \le j \le m$$

Independence of Random Variables

We can tell if two r.v.s are independent if their joint probablities are the product of their respective marginals.

Definition

Two discrete r.v.s X and Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$
, for all i, j .

Rigged Game in New Notation

X and Y are jointly distributed via

Joint Prob.
$$Y = y_1 = 1$$
 $Y = y_2 = 2$ $Y = y_3 = 3$ P_X $X = x_1 = 0$ $p_{11} = 0.02$ $p_{12} = 0.31$ $p_{13} = 0.37$ $p_{X,1} = 0.7$ $X = x_2 = 1$ $p_{21} = 0.03$ $p_{22} = 0.11$ $p_{23} = 0.16$ $p_{X,2} = 0.3$ $p_{Y,1} = 0.05$ $p_{Y,2} = 0.42$ $p_{Y,3} = 0.53$ $p_{X,1} = 0.7$ $p_{X,2} = 0.3$ $p_{X,3} = 0.53$ $p_{X,4} = 0.5$ $p_{X,5} = 0.5$

CONDITIONAL DISTRIBUTIONS

Definition

Definition

Let X and Y be discrete r.v.s with respective outcomes x_1, \ldots, x_n and y_1, \ldots, y_m . The **conditional distribution of** X **conditional on** $Y = y_j$ is given by

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{Y,j}},$$
where the probability

where p_{ij} is from the joint distribution and $p_{Y,j}$ is from the marginal distribution for Y.

Similarly, the conditional distribution of Y conditional on $X = x_i$ is given by

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{p_{ij}}{p_{X,i}} \leftarrow \text{marginal probability}$$

Rigged Game Conditional Distributions

Question

Find the conditional distributions of X conditioned on Y = 1, Y = 2, and Y = 3. Then find the conditional distributions of Y conditioned on X = 0, then X = 1.

If Y = 1, we see that

$$P(X = 0|Y = 1) = \frac{P(X = 0, Y = 1)}{P(Y = 1)} = \frac{0.02}{0.05} = 0.4,$$

and

$$P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{0.03}{0.05} = 0.6.$$

Conditionals for X conditioned on Y = 2,3

For
$$Y = 2$$
 we can compute
$$P(X = 0|Y = 2) = \frac{.31}{.42} \approx 0.7381 \text{ and } P(X = 1|Y = 2) = \frac{.11}{.42} \approx 0.2619$$
For $Y = 3$ we can compute
$$P(X = 0|Y = 3) = \frac{.37}{.53} \approx 0.6981, \text{ and } P(X = 1|Y = 3) = \frac{.16}{.53} \approx 0.3019,$$

$$P(Y = 3) = \frac{.37}{.53} \approx 0.6981, \text{ and } P(X = 1|Y = 3) = \frac{.16}{.53} \approx 0.3019,$$

$$P(Y = 3) = \frac{.37}{.53} \approx 0.6981, \text{ and } P(X = 1|Y = 3) = \frac{.16}{.53} \approx 0.3019,$$

Conditionals for Y conditioned on X=0 and X=1

The conditional distribution of Y conditioned on X = 0 can be found via

$$P(Y = 1|X = 0) = \frac{0.02}{0.7} \approx 0.0286,$$

$$P(Y = 2|X = 0) = \frac{0.31}{0.7} \approx 0.4429,$$

$$P(Y = 3|X = 0) = \frac{0.37}{0.7} \approx 0.5286,$$

and conditioned on X = 1,

$$P(Y = 1|X = 1) = \frac{0.03}{0.3} \approx 0.1,$$

$$P(Y = 2|X = 1) = \frac{0.11}{0.3} \approx 0.3667,$$

$$P(Y = 3|X = 1) = \frac{0.16}{0.3} \approx 0.5333,$$

Independence implies Conditionals = Marginals

Suppose X and Y are independent and distributed via

$$P(X = 0) = 0.2$$
, $P(X = 2) = 0.3$, $P(X = 4) = 0.5$,

and

$$P(Y = 1) = 0.6, P(Y = 2) = 0.1, P(Y = 3) = 0.3.$$

Since they are independent r.v.s, we have $p_{ij} = p_{X,i}p_{Y,j}$. The joint and marginal probabilties can be displayed as

Joint Probability	Y = 1	Y = 2	Y=3	P_X
X=0	0.12	0.02	0.06	$p_{X,1} = 0.2$
X=2	0.18	0.03	0.09	$p_{X,2} = 0.3$
X=4	0.3	0.05	0.15	$p_{X,3} = 0.5$
Py marginal	$p_{Y,1} = 0.6$	$p_{Y,2} = 0.1$	$p_{Y,3} = 0.3$	

. . .

Joint Probability	Y = 1	Y = 2	Y=3	P_X
X=0	0.12	0.02	0.06	$p_{X,1} = 0.2$
X = 2	0.18	0.03	0.09	$p_{X,2} = 0.3$
X = 4	0.3	0.05	0.15	$p_{X,3} = 0.5$
P_Y	$p_{Y,1} = 0.6$	$p_{Y,2} = 0.1$	$p_{Y,3} = 0.3$	

then since X and Y are independent,

$$P(X = 0|Y = 3) = P(X = 0) = 0.2, P(X = 2|Y = 3) = P(X = 2) = 0.3,$$

and

$$P(X = 4|Y = 3) = P(X = 4) = 0.5.$$

Thus the conditional distribution of X conditioned on Y=3 is the same as the marginal distribution of X.

X, Y continuous random variables with joint CDF

$$F(x, y) = P(X \le x, Y \le y).$$

Their **joint PDF** is a function f(x, y):

- (i) $f(x, y) \ge 0$ for any $x, y \in \mathbb{R}$.
- (ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1.$

(iii)
$$P((X, Y) \in A) = \iint_A f(x, y) dy dx$$
 for any region A on $x - y$ plane.

PDF for continuous r.v.

(1)
$$f(x) \ge 0$$
 for all x

(2) $\int_{-\infty}^{+\infty} f(x) dx = 1$

(3) $P(a \le x \le b)$

$$= \int_{a}^{b} f(x) dx$$

Fundamental theorem of multivariable calculus

• Applying (iii) with
$$\underline{A} = \{(X, Y) : X \le x, Y \le y\},\$$

$$COF: F(x, y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \underbrace{f(u, v) dv du}_{joint PDF}.$$
(1)

By (1) and the fundamental theorem of calculus,

$$\underbrace{f(x,y)}_{\mathsf{FDF}} = \frac{\partial^2}{\partial x \partial y} \underbrace{F(x,y)}_{\mathsf{CDF}}$$

whenever the partial derivatives are defined.

Marginal PDFs of X and Y

- X, Y jointly distributed variables with joint PDF f(x, y).
- The marginal PDF f_X of X and f_Y of Y are

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy \quad \text{integrale w.r.t. y.}$$

$$f_y(y) = \int_{-\infty}^{\infty} f(x,y) dx \quad \text{marginal in } Y$$

$$\text{integrale w.r.t. x.}$$

Joint CDF and marginal CDFs

• The joint CDF and marginal PDFs of X and Y are

joint CDF
$$\leftarrow F(x,y) = P(X \le x, Y \le y)$$

marginal PPFs $\begin{cases} F_X(x) = P(X \le x) \\ F_Y(y) = P(Y \le y) \end{cases}$

Concrete formula for joint CDF and marginal PDFs

• If X and Y are discrete with joint PMF p(x, y), then

$$\text{CDF} \quad F(x,y) = \sum_{\substack{x_i \leq x, y_j \leq y \\ x_i \leq x}} p(x_i, y_j),$$

$$\text{marginal} \quad F_X(x) = \sum_{\substack{x_i \leq x \\ x_i \leq x}} p_X(x_i), \ F_Y(y) = \sum_{\substack{y_j \leq y \\ y_j \leq y}} p_Y(y_j).$$

• If X and Y are continuous with joint PDF f(x, y), then

$$CPF: F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) dv du,$$

$$Marginals F_X(x) = \int_{-\infty}^{x} f_X(u) du, F_Y(y) = \int_{-\infty}^{y} f_Y(v) dv.$$

Example

Let X and Y be continuous random variables with joint PDF

$$f(x,y) = \begin{cases} \frac{8}{3}x^3y & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find the marginal PDFs $f_X(x)$ of X and $f_Y(y)$ of Y.

Example solution

$$f_{x}(x) = \int_{1}^{2} f(x,y) dy.$$

$$= \int_{1}^{2} (\frac{8}{3}x^{3}y) dy = \frac{8}{3}x^{3} \int_{1}^{2} y dy.$$

$$= \frac{8}{3}x^{3} \cdot (\frac{y^{2}}{2}|_{1}^{2}) = \frac{8}{3}x^{3} \left(\frac{2^{2}}{2} - \frac{1^{2}}{2}\right) = 4x^{3}$$

$$f_{y}(y) = \int_{0}^{1} f(x,y) dx$$

$$= \int_{0}^{1} (\frac{8}{3}x^{3}y) dx = \frac{8}{3}y \int_{0}^{1} x^{3} dx$$

$$= \frac{8}{3}y \cdot (\frac{x^{4}}{4})|_{0}^{1} = \frac{8}{3}y \cdot \frac{1}{4} = \frac{2}{3}y$$

Example

Not Tested.

$$f_{\times}(u) = 4u^3.$$

Find the joint CDF of X and Y for this example

$$F_{x}(x) = \int_{0}^{x} 4u^{3} du = u^{4} \Big|_{0}^{x} = x^{4} \quad 0 \le x \le 1.$$

$$F_{x}(x) = \int_{-\infty}^{x} 0 du = 0 \qquad x < 0$$

$$F_{x}(x) = \int_{-\infty}^{x} 4u^{3} du = \int_{0}^{1} 4u^{3} du = u^{4} \Big|_{0}^{1} 1 \times z = 1$$

$$F_{x}(x) = \int_{0}^{x} 4u^{3} du = \int_{0}^{1} 4u^{3} du = u^{4} \Big|_{0}^{1} 1 \times z = 1$$

$$F_{x}(x) = \int_{0}^{x} 4u^{3} du = \int_{0}^{1} 4u^{3} du = u^{4} \Big|_{0}^{1} 1 \times z = 1$$

$$F_{x}(x) = \int_{0}^{x} 4u^{3} du = \int_{0}^{1} 4u^{3} du = u^{4} \Big|_{0}^{1} 1 \times z = 1$$

$$F_{x}(x) = \int_{0}^{x} 4u^{3} du = \int_{0}^{1} 4u^{3} du = u^{4} \Big|_{0}^{1} 1 \times z = 1$$

Example solution

Not tosted For Y
$$\begin{aligned}
& \int_{-10}^{10} y & dv = 0 \\
& F_{Y}(y) = \int_{-10}^{10} y & dv = 0
\end{aligned}$$

$$\begin{aligned}
& F_{Y}(y) = \int_{-10}^{10} y & dv = \frac{2}{3} \frac{y^{2}}{2} \Big|_{1}^{1} = \frac{y^{2}}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3} +$$

Example

Consider the following function

$$f(x,y) = \begin{cases} a(x^2 + xy) & \text{if } 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

For what value of a is f(x, y) a joint PDF?

- Yby Find marginal PDFs f_X of X and f_Y of Y.
 - X Find the joint CDF F(x, y) of X and Y.
- Find P(X < Y).

Example solution

(a) As
$$f$$
 is a joint PDF,
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$$
$$\int_{0}^{1} \int_{0}^{1} a(x^{2} + xy) dx dy = 1$$
$$\int_{0}^{1} \left(a(\frac{x^{3}}{3} + \frac{x^{2}}{2}y)\right)_{0}^{1} dy = 1$$

$$\int_0^1 a \left(\frac{1}{3} + \frac{1}{2} y \right) \underline{dy} = 1$$

$$a\left(\frac{y}{3} + \frac{y^2}{4}\right)\Big|_0^1 = 1$$

$$a = \left(\frac{12}{7}\right)$$

(b)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

• Case 1: x < 0 or x > 1

$$f_X(x) = \int_{-\infty}^{\infty} \underbrace{f(x,y)dy} = \int_{-\infty}^{\infty} 0dy = 0.$$

• Case 2: $0 \le x \le 1$.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
marginal for Y

• Conclusion for f_X

$$f_X(x) = \begin{cases} \frac{12}{7} \left(x^2 + \frac{x}{2} \right) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, we obtain

$$f_Y(y) = \begin{cases} \frac{12}{7} \left(\frac{1}{3} + \frac{y}{2} \right) & \text{if } 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(c)
$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) dv du$$

Not tested .

- Case 1: x < 0. f(u, v) = 0 for any $u \le x \Rightarrow F(x, y) = 0$.
- Case 2: $0 \le x \le 1$. Three subcases concerning y.
 - Subcase 1: y < 0. f(u, v) = 0 for any $v \le y \Rightarrow F(x, y) = 0$.
 - Subcase 2: $0 \le y \le 1$.

$$F(x,y) = \int_0^x \int_0^y \frac{12}{7} (u^2 + uv) dv du = \int_0^x \left(\frac{12}{7} (u^2 v + u \frac{v^2}{2}) \Big|_{v=0}^y \right) dv dv dv = \int_0^x \frac{12}{7} \left(\frac{u^2 v}{7} + \frac{u^2 v^2}{2} \right) dv = \frac{12}{7} \left(\frac{x^3 y}{3} + \frac{x^2 y^2}{4} \right).$$

- Subcase 3: *y* > 1.

$$F(x,y) = \int_0^x \int_0^1 \frac{12}{7} \left(u^2 + uv \right) dv du = \frac{12}{7} \left(\frac{x^3}{3} + \frac{x^2}{4} \right).$$

(c)
$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) dv du$$

Not Toxed.

- Case 3: x > 1. Three subcases concerning y.
 - Subcase 1: y < 0.f(u, v) = 0 for any $v \le y \Rightarrow F(x, y) = 0$.
 - Subcase 2: $0 \le y \le 1$.

$$F(x,y) = \int_0^1 \int_0^y \frac{12}{7} (u^2 + uv) dv du = \frac{12}{7} (\frac{y}{3} + \frac{y^2}{4}).$$
• Subcase 3: $y > 1$.

$$F(x,y) = \int_0^1 \int_0^1 \frac{12}{7} (u^2 + uv) dv du = 1,$$

where the last equation follows from property (ii) of f(x, y).

(c)
$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) dv du$$

Not tested.

Conclusion

$$F(x,y) = \begin{cases} \frac{0 \text{ if } x < 0 \text{ or } y < 0,}{\frac{12}{7} \left(\frac{x^3 y}{3} + \frac{x^2 y^2}{4}\right) \text{ if } 0 \le x \le 1 \text{ and } 0 \le y \le 1,} \\ \frac{\frac{12}{7} \left(\frac{x^3}{3} + \frac{x^2}{4}\right) \text{ if } 0 \le x \le 1 \text{ and } y > 1,} \\ \frac{\frac{12}{7} \left(\frac{y}{3} + \frac{y^2}{2}\right) \text{ if } x > 1 \text{ and } 0 \le y \le 1,} \\ 1 \text{ if } x > 1 \text{ and } y > 1.} \end{cases}$$

(d) P(X < Y)

Not tessed • Region $A = \{(x, y) : x < y\}$

Hence

$$P(X < Y) = \iint_{A} f(x, y) dy dx$$

$$= \int_{0}^{1} \int_{x}^{1} \frac{12}{7} (x^{2} + xy) dy dx$$

(d) P(X < Y)

$$P(X < Y) = \int_{0}^{1} \int_{x}^{1} \frac{12}{7} (x^{2} + xy) dy dx$$

$$= \int_{0}^{1} \left(\frac{12}{7} (x^{2}y + \frac{xy^{2}}{2}) \Big|_{y=x}^{1} \right) dx$$

$$= \int_{0}^{1} \frac{12}{7} (x^{2} + \frac{x}{2} - \frac{3x^{3}}{2}) dx$$

$$= \left(\frac{5}{14} \right)$$

Exercise

Consider the following function.

$$f(x,y) = \begin{cases} ae^{-\lambda y} & \text{if } 0 \le x \le y, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) For what value of a is f(x, y) a joint PDF?
- (b) Find marginal PDFs of *X* and *Y*.

Exercise solution

$$= a \int_{0}^{+\infty} \int_{0}^{y} e^{-\lambda y} dx dy$$

$$= a \int_{0}^{+\infty} (e^{-\lambda y} \times) |_{0}^{y} dy$$

$$= a \int_{0}^{+\infty} y e^{-\lambda y} dy = a \lim_{t \to \infty} \int_{0}^{t} y e^{-\lambda y} dy$$

$$u = y \qquad du = 1 dy$$

$$dv = e^{-\lambda y} dy \qquad v = -\frac{1}{\lambda} e^{-\lambda y}$$

$$= a \lim_{t \to \infty} \left[-\frac{1}{\lambda} e^{-\lambda y} |_{0}^{t} + \int_{0}^{t_{1}} x e^{-\lambda y} dy \right]$$

Exercise solution

$$= a \lim_{t \to \infty} \left[-\frac{1}{\lambda} e^{-\lambda t} \right] - \left(\frac{1}{\lambda^2} e^{-\lambda y} \right) \Big]^{\frac{1}{\lambda^2}}$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} \right] = 1$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t} \right]$$

$$= a \left[\frac{1}{\lambda^2} e^{-\lambda t} + \frac{1}{\lambda^2} e^{-\lambda t$$

 $Lf_y(y)=\int_0^y \lambda^2 e^{-\lambda y} dx.$