GEOMETRÍA ANALÍTICA I

Reposición del Primer Parcial

Grupo 4072

Semestre 2025-1

Profesor: Ramón Reyes Carrión

Fecha de aplicación: Martes 10 de diciembre de 2024

<u>Instrucciones</u>: Resuelve los 5 ejercicios indicados debajo. Cada uno vale 2 puntos. Para el segundo ejercicio, puede elegir entre 2) y 2'), y análogamente para el tercero. El examen es individual. Cualquier conducta que falte a las normas de honestidad académica y ética universitaria anulará la entrega del examen.

1. Dados dos vectores \mathbf{u} y \mathbf{v} en \mathbb{R}^n linealmente independientes, el paralelogramo que definen tiene como vértices los puntos $O, \mathbf{u}, \mathbf{v}$ y $\mathbf{u} + \mathbf{v}$ (como en la figura). Demuestra que sus diagonales, es decir, los segmentos de O a $\mathbf{u} + \mathbf{v}$ y de \mathbf{u} a \mathbf{v} se intersectan en su punto medio.

- 2. Demuestra que tres puntos \mathbf{a} , \mathbf{b} y \mathbf{c} son no colineales si, y sólo si, los vectores $\mathbf{u} = (\mathbf{b} \mathbf{a})$ y $\mathbf{v} = (\mathbf{c} \mathbf{a})$ son linealmente independientes.
- 2. Usando coordenadas, demuestra que dos vectores \mathbf{u} y \mathbf{v} en \mathbb{R}^2 son perpendiculares si, y sólo si, $\mathbf{v} \parallel \mathbf{u}^{\perp}$.
- 3. Da una expresión paramétrica para el plano que pasa por los siguientes puntos $\mathbf{a}=(2,0,1), \mathbf{b}=(0,1,1)$ y $\mathbf{c}=(-1,2,0).$
- 3.' Sea ${\boldsymbol n}$ un vector no nulo en \mathbb{R}^n . Demuestra que para cualquier $d\in\mathbb{R}$, el conjunto $\Pi_d=\{{\boldsymbol x}\in\mathbb{R}^n\mid {\boldsymbol n}\cdot{\boldsymbol x}=d\}$ es no vacío ${\boldsymbol y}$ es un trasladado de Π_0 ; es decir, que existe un $P\in\mathbb{R}^n$ tal que $\Pi_d=\Pi_0+P=\{{\boldsymbol y}+P\mid {\boldsymbol y}\in\Pi_0\}.$
- 4. Determina cómo se intersectan las rectas siguientes, usando únicamente el determinante.

$$L_1 = \{(3,-2) + t(1,-2) \mid t \in \mathbb{R}\} \qquad L_2 = \{(1,3) + s(-2,4) \mid s \in \mathbb{R}\} \qquad L_3 = \{(-1,6) + r(3,-6) \mid r \in \mathbb{R}\}$$

Dibújalas para entender qué está pasando.

- 5. Resuelva los siguientes incisos.
 - a) Da una descripción paramétrica de la recta dada por la ecuación: 2x y = 2
 - b) Encuentra una ecuación normal para la recta que pasa por los puntos: (2,0) y (1,1)

¡Mucha suerte!