Linear algebra drills

April 4, 2022

1 Valid matrix multiplication and addition

• Notation: A matrix A is described as $A \in \mathbb{R}^{m \times n}$ (read as: A is in the set of real matrices of size m times n) if A is table of numbers of the form:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn}, \end{bmatrix}$$

and each a_{ij} is a real number also denoted as $a_{ij} \in \mathbb{R}$ (read as: a_{ij} is in the set of real numbers); for all $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$.

- Rule 1: Transpose of matrix swaps rows and columns. If $A \in \mathbb{R}^{m \times n}$, then $A^{\top} \in \mathbb{R}^{n \times m}$.
- Notation: A column vector is a matrix with only one column. Vectors are usually denoted by a boldface small letter $\mathbf{x} \in \mathbb{R}^{m \times 1}$ and sometimes the second dimension is omitted: $\mathbf{x} \in \mathbb{R}^m$.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

A row vector is a matrix with only one row. Row vectors are often denoted as transpose of column vector $\mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}$. The 1 dimension of row vector is never omitted,

$$\mathbf{x}^{\top} = \begin{bmatrix} x_1 & \dots & x_m \end{bmatrix}$$

• Rule 2: Matrix multiplication between $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is only valid when n = p. When matrix multiplication is valid, resulting matrix has size $C = AB \in \mathbb{R}^{m \times q}$.

- Role 3: Scalar-Matrix multiplication is not a type of matrix multiplication. It is a multiplication of a different type. Scalar-matrix multiplication is always valid irrespective of the size of the matrix.
- Rule 4: Matrix addition between $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is only valid when m = p and n = q.
- Rule 5: Matrix division and matrix fractions are not defined. $\frac{A}{B}$ or A/B are not defined. (Matrix inverse (when defined) is just another matrix $C = A^{-1}$ that can be multiplied or added with other matrices. If $A \in \mathbb{R}^{m \times n}$ then $C = A^{-1} \in \mathbb{R}^{n \times m}$.)

Problem 1. Are the following matrix operations valid? If not, which dimensions are unequal? If yes, what is the size of final matrix?

- 1. AB, where $A \in \mathbb{R}^{2\times 3}$ and $B \in \mathbb{R}^{3\times 4}$.
- 2. PQ, where $P \in \mathbb{R}^{2\times 4}$ and $B \in \mathbb{R}^{2\times 4}$.
- 3. $A^{\top}B$, where $A \in \mathbb{R}^{3 \times 5}$ and $B \in \mathbb{R}^{3 \times 4}$.
- 4. AB^{\top} , where $A \in \mathbb{R}^{2\times 3}$ and $B \in \mathbb{R}^{3\times 4}$.
- 5. $A^{\top}B^{\top}$, where $A \in \mathbb{R}^{2\times 3}$ and $B \in \mathbb{R}^{3\times 4}$.
- 6. $(BA)^{\top}$, where $A \in \mathbb{R}^{2\times 3}$ and $B \in \mathbb{R}^{3\times 4}$.
- 7. $A\mathbf{x}$, where $A \in \mathbb{R}^{2\times 3}$ and $\mathbf{x} \in \mathbb{R}^3$.
- 8. $A^{\top}\mathbf{x}$, where $A \in \mathbb{R}^{2\times 3}$ and $\mathbf{x} \in \mathbb{R}^{3\times 1}$.
- 9. $\mathbf{x}A$, where $A \in \mathbb{R}^{2\times 3}$ and $\mathbf{x} \in \mathbb{R}^3$.
- 10. $\mathbf{x}^{\top} B$, where $\mathbf{x} \in \mathbb{R}^3$ and $B \in \mathbb{R}^{3 \times 4}$.
- 11. $\mathbf{x}B$, where $\mathbf{x} \in \mathbb{R}^3$ and $B \in \mathbb{R}^{3 \times 4}$.

- 12. $\mathbf{x}B^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$ and $B \in \mathbb{R}^{3 \times 4}$.
- 13. $\mathbf{x}^{\top}B^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$ and $B \in \mathbb{R}^{3\times 4}$.
- 14. $\mathbf{x}^{\top}\mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{y} \in \mathbb{R}^3$.
- 15. $\mathbf{y}^{\top}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{y} \in \mathbb{R}^3$.
- 16. $\mathbf{y}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{y} \in \mathbb{R}^3$.
- 17. $\mathbf{y}^{\top}\mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{y} \in \mathbb{R}^3$.
- 18. $\mathbf{y}\mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{y} \in \mathbb{R}^3$.
- 19. $\mathbf{y} A \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$.
- 20. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$. 48. $\mathbf{x}^{\top} A^{\top} \mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.
- 21. $\mathbf{x}^{\top} A \mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$.
- 22. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$.
- 23. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$.
- 24. $\mathbf{x}^{\top} A^{\top} \mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 4}$ and $\mathbf{y} \in \mathbb{R}^4$.
- 25. AB, where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- 26. PQ, where $P \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{m \times p}$.
- 27. $A^{\top}B$, where $A \in \mathbb{R}^{n \times 5}$ and $B \in \mathbb{R}^{n \times p}$.
- 28. AB^{\top} , where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- 29. $A^{\top}B^{\top}$, where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- 30. $(BA)^{\top}$, where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- 31. $A\mathbf{x}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$.
- 32. $A^{\top}\mathbf{x}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n \times 1}$.
- 33. $\mathbf{x}A$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$.
- 34. $\mathbf{x}^{\top}B$, where $\mathbf{x} \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times p}$.
- 35. $\mathbf{x}B$, where $\mathbf{x} \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times p}$.
- 36. $\mathbf{x}B^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times p}$.
- 37. $\mathbf{x}^{\top}B^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times p}$.
- 38. $\mathbf{x}^{\top}\mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.
- 39. $\mathbf{y}^{\top}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.

- 40. $\mathbf{y}\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.
- 41. $\mathbf{y}^{\top}\mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.
- 42. $\mathbf{y}\mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.
- 43. $\mathbf{y} A \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.
- 44. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.
- 45. $\mathbf{x}^{\top} A \mathbf{y}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.
- 46. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.
- 47. $\mathbf{y}^{\top} A^{\top} \mathbf{x}^{\top}$, where $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^p$.