Generate Collection

L9: Entry 29 of 43

File: DWPI

Jan 15, 1990

DERWENT-ACC-NO: 1990-230413

DERWENT-WEEK: 199030

COPYRIGHT 2000 DERWENT INFORMATION LTD

TITLE: Purificn. of aq. effluents from hydrolysis-yeast processes - involves adding mixt of anion-exchange resin and treatment with hypochlorite-contg. reagent

INVENTOR: AFANASEV, A G; BUKHTOYARO, V A ; GASHENKO, S I

PATENT-ASSIGNEE:

ASSIGNEE CODE
KRASD CHEM COMBINE KDCHR
ZAPORO TITAN MAGNE ZAPOR

PRIORITY-DATA:

1987SU-4295037

August 11, 1987

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

SU 1535847 A January 15, 1990 N/A 000 N/A

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-NO

SU 1535847A August 11, 1987 1987SU-4295037 N/A

INT-CL (IPC): C02F 1/76

ABSTRACTED-PUB-NO: SU 1535847A

BASIC-ABSTRACT:

Proposed method comprises adding 15-50 mg/l of mixt. of anion-exchange resins AN-1 (RTM) and EDE-10P (RTM), at wt. ratio 1:1, to the aq. effluent from hydrolysis-yeast prodn. and contg. post-yeast liquor, and then treating the prod. with hypochlorite reagent (in amt. 1 vol.%), mixing and leaving to stand.

The anion-exchange resin AN-1 (RTM) is the prod. of polycondensation of ammonia, polyethylene polyamine and epichlorohydrin while anion exchange resin EDE-10P (RTM) is the prod. of polycondensation of polyethylene polyamines with

epichlorohydrin at ratio 1:1.

Tests show that the proposed method increases the degree of purificn. of aq. effluents w.r.t. their COD and BOD by 1.5-3 times, compared to the known method.

USE/ADVANTAGE - In purificn. of aq. effluents from hydrolysis-yeast processes. Increased degree of purificn. is achieved. Bul. 2/15.1.90

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: PURIFICATION AQUEOUS EFFLUENT HYDROLYSIS YEAST PROCESS ADD MIXTURE ANION EXCHANGE RESIN TREAT HYPOCHLORITE CONTAIN REAGENT

DERWENT-CLASS: A97 D15

CPI-CODES: A05-J09; A10-E19; A12-M04; D04-A01G; D04-B04;

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:
Key Serials: 0004 0013 0231 1279 3193 1601 1745 1969 3264 2708

Multipunch Codes: 014 028 038 04- 147 153 157 185 191 199 225 336 54& 57& 61- 642 720

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1990-099568

Generate Collection

L9: Entry 3 of 43

File: JPAB

May 31, 1989

PUB-NO: JP401139187A

DOCUMENT-IDENTIFIER: JP 01139187 A

TITLE: TREATMENT OF FERMENTATION WASTE LIQUID

PUBN-DATE: May 31, 1989

INVENTOR - INFORMATION:

NAME

MICHIKI, YASUTOKU
MURAKAMI, KATSUSHI
ITOMINE, ATSUHITO
SHIMADA, SHOJI
SAEKI, TAKAMICHI
FUSE, TATSUO
HIRASAWA, TERUTAKA
KOSEKI, MASANOBU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SHOKUHIN SANGYO MAKU RIYOU GIJUTSU KENKYU KUMIAI

N/A

APPL-NO: JP62297708

APPL-DATE: November 27, 1987

US-CL-CURRENT: 210/917; 210/652

INT-CL (IPC): C02F 1/44

ABSTRACT:

PURPOSE: To economically perform treatment of the title waste liquid with capableness of decoloration by filtering fermentation waste liquid obtained after utilizing waste molasses with a membrane such as a reverse osmosis membrane or an ultrafiltration membrane treated by charging.

CONSTITUTION: In a method that waste molasses in used for culture or fermentation, etc., and is subjected to membrane filtration, firstly waste liquid is pretreated by precision filtration and centrifugal filtration, etc., in accordance with necessity. Then it is subjected to membrane filtration with a charged above membrane in which electric chargeable synthetic high molecules incorporating insoluble polyamine and sulfonic acid group such as polyaminosulphone is stuck and filled to a skin layer. By such a way, waste liquid can be concentrated to

skin layer. By such a way, waste liquid can be concentrated to 10 times or more and decoloration not less than 70% is enabled and this treatment is utilizable for fermentation industry such as bread yeast industry and alcohol industry.

COPYRIGHT: (C) 1989, JPO&Japio

			or spermine or spermidine	15:19:53
<u>S485</u>	<u>U</u>	USPT,JPAB,EPAB,DWPI	polyamine or putrescine or spermine or spermidine	2000-09-08 15:19:37
<u>S484</u>	<u>U</u>	USPT	((polyamine or putrescine or spermine or spermidine)same (yeast or torula or candida or saccharomyces)) same (food or edible or comestible)	2000-09-08 15:08:53
<u>S483</u>	<u>U</u>	USPT	food or edible or comestible	2000-09-08 15:08:15
<u>S482</u>	<u>U</u>	USPT	(polyamine or putrescine or spermine or spermidine) same (yeast or torula or candida or saccharomyces)	15:07:40
<u>S481</u>	<u>U</u>	USPT	yeast or torula or candida or saccharomyces	2000-09-08 15:07:13
<u>S480</u>	<u>U</u>	USPT	polyamine or putrescine or spermine or spermidine	2000-09-08 15:06:40
<u>S479</u>	<u>U</u>	USPT	polyamine or putrescine or spermine or spermidine	2000-09-08 15:05:50
<u>S478</u>	<u>Ū</u>	USPT	(inhibit or prevent or suppress) same ((microbe or microorganism)same (cereal or grain))	2000-09-08 11:17:42
<u>S477</u>	<u>U</u>	USPT	inhibit or prevent or suppress	2000-09-08 11:15:41
<u>S476</u>	<u>U</u>	USPT	(microbe or microorganism) same (cereal or grain)	2000-09-08 11:15:18
<u>S475</u>	<u>U</u>	USPT	cereal or grain	2000-09-08 11:14:48
<u>S474</u>	<u>U</u>	USPT	(seed head) same (microbe or microorganism)	2000-09-08 11:10:02
<u>S473</u>	<u>U</u>	USPT	microbe or	2000-09-08

Searches for User imarx (Count = 497)

Queries 448 through 497.

S #	Updt	Database	Query	Time	Comment
<u>S497</u>	<u>U</u>	USPT	((yeast near5 extract)same (autolysis or autolyze)) same (alkali)	2000-09-08 15:39:50	
<u>S496</u>	<u>Ū</u>	USPT	(yeast near5 extract) same (autolysis or autolyze)	2000-09-08 15:39:23	
<u>S495</u>	<u>U</u>	USPT	autolysis or autolyze	2000-09-08 15:38:47	
<u>5494</u>	<u>U</u>	USPT	heat or hot	2000-09-08 15:36:59	
<u>S493</u>	<u>U</u>	USPT	alkali	2000-09-08 15:36:31	
<u>S492</u>	<u>U</u>	USPT	yeast near5 extract	2000-09-08 15:35:51	
<u>S491</u>	<u>U</u>	USPT,JPAB,EPAB,DWPI	yeast near5 extract	2000-09-08 15:35:36	
<u>S490</u>	<u>U</u>	JPAB,EPAB,DWPI	52291	2000-09-08 15:31:17	
<u>S489</u>	<u>U</u>	USPT	52291	2000-09-08 15:31:05	
<u>S488</u>	<u>П</u>	JPAB,EPAB,DWPI	(polyamine or putrescine or spermine or spermidine) and (yeast or torula or candida or saccharomyces)	2000-09-08 15:21:08	
<u>S487</u>	<u>U</u>	JPAB,EPAB,DWPI	yeast or torula or candida or saccharomyces	2000-09-08 15:20:13	
<u>S486</u>	<u>U</u>	JPAB,EPAB,DWPI	polyamine or putrescine	2000-09-08	

Generate Collection

L20: Entry 1 of 2

File: JPAB

Apr 27, 1982

PUB-NO: JP357068760A

DOCUMENT-IDENTIFIER: JP 57068760 A TITLE: PRODUCTION OF YEAST ESSENCE

PUBN-DATE: April 27, 1982

INVENTOR - INFORMATION:

NAME

MIWA, HARUFUMI SASAKI, YUKIO OKUNISHI, MASAHIKO

SHIBAI, HIROSHIRO YATANI, TOMOYOSHI

TAKASHIMA, HIROSHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

AJINOMOTO CO INC

N/A

APPL-NO: JP55142663

APPL-DATE: October 13, 1980

INT-CL (IPC): A23L 1/28

ABSTRACT:

PURPOSE: After the cells of yeast are pretreated at a specific temperature and a pH, they are subjected to autolysis to produce yeast essence of delicious and good taste by no use of an autolysis accelerator.

CONSTITUTION: A slurry of yeast cells are adjusted in pH to 3.0∼4.5 and kept at a temperature not exceeding 60°C for 120min, or adjusted to over 4.5 and kept at 60∼100°C for 1∼30min or the cells are frozen and thawed. Then, the pretreated yeast cells is kept at a pH of 5.0∼8.0 and 40∼60°C for 10∼40hr to effect autolysis, then insoluble substances are removed from the autolysis mixture.

COPYRIGHT: (C) 1982, JPO&Japio

End of Result Set

Generate Collection

L20: Entry 2 of 2

File: DWPI

Feb 8, 1979

DERWENT-ACC-NO: 1979-21007B

DERWENT-WEEK: 197911

COPYRIGHT 2000 DERWENT INFORMATION LTD

TITLE: Yeast extract prepn. - by adding autolysis accelerator to yeast body suspension, autolysing, heating and reacting with

nuclease

PATENT-ASSIGNEE:

ASSIGNEE

CODE

AJINOMOTO KK

AJIN

PRIORITY-DATA:

1977JP-0081156

July 7, 1977

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE PAGES MAIN-IPC

JP 54017167 A

February 8, 1979

N/A N/A 000

JP 82003345 B January 21, 1982

000

N/AN/A

INT-CL (IPC): A23L 1/28

ABSTRACTED-PUB-NO: JP54017167A

BASIC-ABSTRACT:

Process comprises (a) adding the accelerator for autolysis to a suspension of the yeast body; (b) autolysing; (c) heating; (d) reacting with the nuclease obtd. by inactivating harmful enzymes in malt root; and opt. (e) adding lactic acid to the reaction mixt.

Prod. has good taste and texture and is free of malt odour, is prepd. using inexpensive malt extract and can be used as seasoning or the base for complex seasoning.

TITLE-TERMS: YEAST EXTRACT PREPARATION ADD AUTOLYSATE ACCELERATE YEAST BODY SUSPENSION AUTOLYSATE HEAT REACT NUCLEASE

DERWENT-CLASS: D13 D16

CPI-CODES: D03-H01C; D05-B;

Generate Collection

L9: Entry 1 of 43

File: JPAB

Feb 24, 1998

PUB-NO: JP410052291A

DOCUMENT-IDENTIFIER: JP 10052291 A TITLE: PREPARATION OF POLYAMINE

PUBN-DATE: February 24, 1998

INVENTOR - INFORMATION:

NAME

SATO, NORIBUMI

TANIMOTO, YOSHIHIRO

NAKANO, HIROSHI

IDOTA, TADASHI

ASSIGNEE-INFORMATION:

NAME

SNOW BRAND MILK PROD CO LTD

COUNTRY

N/A

APPL-NO: JP08212910

APPL-DATE: August 12, 1996

INT-CL (IPC): C12P 13/00; A23C 9/152

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain an high-purity polyamine capable of providing food to which a polyamine is added, free from taste and odor, especially a nutrient composition for infants in large amounts without impairing the quality of food by treating yeast cell, cultured solution, etc., of yeast under acidic conditions.

SOLUTION: An acid solution such as 1N hydrochloric acid is added to a cell of a yeast such as Saccharomyces cerevisiae, Saccharomyces arbergensis or Candida utilis and/or cultured solution of the yeast so that pH becomes ≤2 and the yeast cell is physically subjected to crushing treatment and then subjected to acid extraction treatment and centrifuged to recover a supernatant and the supernatant is neutralized with 10-30% sodium hydroxide solution and then, the neutralized solution is passed through a column for gel permeation and a polyamine is fractionated from impurities by fractionation of molecular weight to provide the objective polyamine useful for foods, especially a nutrient composition for infants in high purity and large amounts without impairing quality of foods

purity and large amounts without impairing quality of foods when it is added to foods.

COPYRIGHT: (C) 1998, JPO

2 of 2

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-52291

(43)公開日 平成10年(1998)2月24日

(51) Int.Cl. ⁶ Cl2P # A23C (Cl2P Cl2R (Cl2P)	9/152 13/00 1:72)	談別記号	庁内整理番号	F I C 1 2 I A 2 3 0						技術表示箇所
(0121	10,00		審查請求	未耐求 韶	青求马	質の数 4	OL	(全	6 頁)	最終頁に続く
(21)出願番号		特願平8-212910		(71)出	顏人		6699 L業株式:	会社	-	
(22)出顧日		平成8年(1996)8月	112日	(72)発	明者	北海道 佐藤	红虎市 即文 川越市	東区古		丁目1番1号
				(72)発	明者	谷本 埼玉県		新宿園	T 5 – 11	- 3 - 209
				((72)発	明者	中埜	拓	大字》	比入曾75	5-1 ガーデ
				(72)発	明者	井戸田 埼玉県	1 正 (川 越市)	大字小	/室513-	- 7

(54) 【発明の名称】 ポリアミンの調製方法

(57)【要約】

【課題】 酵母からのポリアミンの調製方法、及びこの方法で得られたポリアミンを添加する、異臭味のないポリアミン添加食品の調製方法の提供。

【解決手段】 酵母を酸性条件下で処理することを特徴とする、ポリアミンの調製方法、及びこの方法で得られたポリアミンを添加する、異臭味のないポリアミン添加食品の調製方法。

【効果】 本発明により、高純度且つ大量にポリアミンを提供することができ、さらに得られたポリアミンは異臭味がなく、さらに母乳のポリアミンに近い組成を有するので、食品に添加しても食品の品質を損なうことなく、食品、特に乳幼児用栄養組成物に有効に利用できる。

が挙げられる。

【特許請求の範囲】

【請求項1】 酵母菌体及び/又は酵母培養液を酸性条件下で処理することを特徴とする、ポリアミンの調製方法。

【請求項2】 pHが2以下になるように酸溶液を添加することを特徴とする、請求項1記載のポリアミンの調製方法。

【請求項3】 精製法がイオン交換法、ゲルろ過法、膜 分画法、電気透析法、溶媒抽出法、又は加熱処理法のい ずれか1以上の方法である、請求項1又は2記載のポリ アミンの調製方法。

【請求項4】 酵母菌体又はその培養液から調製したポリアミンを添加することを特徴とする、異臭味のないポリアミン添加食品の調製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、酵母あるいは酵母培養液を原料とし、ポリアミンを効率良く大量に調製する方法に関する。詳しくは、酵母菌体及び/又は酵母培養液を酸性条件下で処理することを特徴とする、ポリア 20 ミンの調製方法に関する。さらに、これらの方法により得られた酵母由来のポリアミンを添加することを特徴とする、ポリアミン添加食品の調製方法に関する。本発明によって得られたポリアミンは異臭味がなく、さらに母乳のポリアミン組成に近い組成を有し、食品、特に乳幼児用の栄養組成物に有効に利用できる。

[0002]

【従来の技術】ポリアミンは、プトレッシン、スペルミ ジン及びスペルミン等、第一級アミノ基を2つ以上もつ 直鎖状の脂肪族炭化水素である。ポリアミンの生理作用 30 としては、(1)核酸との相互作用による核酸の安定化と 構造変化、(2)種々の核酸合成系への促進作用、(3)蛋 白質の合成系の活性化、(4)ヒストンのアセチル化、非 ヒストンクロマチン蛋白質のリン酸化促進、(5)細胞膜 の安定化や物質の膜透過性の強化、及び(6)2価金属イ オンに影響を受ける種々の酵素の活性化等多岐にわたる ことが知られている(今掘和友、山川民夫監修、生化学 辞典、第2版、p. 1266, 1990)。又、最近では、細胞の増 殖や分化を促進する効果が報告されており、特に経口摂 取したポリアミンは、消化管粘膜の成熟化を促進するこ とが報告されている (Buts J.-P. et al., Digestive D iseases and Science, Vol.38, p1091 (1993); Grant, A.L. et al., J.Anim.Sci., Vol.68, p363 (1990); Du four, C.et al., Gastroenterology, Vol. 95, p112 (198) 8))。さらに、経口摂取したポリアミンは、速やかに体 内に取り込まれ、組織で利用されることも報告されてい る(Bardocz, S. et al., J.Nutr.Biochem, Vol.4, p66 (1993)).

【0003】ポリアミンを食品に利用した例としては、アミンを調製する方法を提供することを課題とする。さコンニャク製造時にスペルミンやスペルミジンを添加す 50 らに、酵母由来のポリアミンを添加することを特徴とす

ることにより、コンニャク特有の臭いが少なく、他の食品と調理しても他の食品に悪影響を与えないコンニャクの製造方法(特開平6-38690号)、ポリアミンを配合することにより、蛋白質の吸収を促進させ、良好な発育及び健康状態を保つポリアミン配合栄養組成物(特開平6-305956号)などが、又、ポリアミンを医薬品として利用した例として、胃酸分泌を阻止する方法及び胃酸分泌阻止用摂取用組成物(特開昭58-131914号)、並びに免疫賦活剤(特開昭59-98015及び特開平2-223514号)

【0004】このようにポリアミンには種々の効果が知られており、近年、その重要性が認識されはじめていることから、元来ポリアミン含量の少ない栄養組成物に強化することは、栄養学的観点からも望ましいと考えられる。しかし、食品に利用可能な高濃度のポリアミンの調製方法は、未だ確立されていない。ポリアミンの食品中の含量は、肉類やチーズに多く、乳や野菜には少ないことや味噌などの醗酵食品に多いことが知られている(Bardocz, S. et al., J. Nutr. Biochem, Vol. 4, p66 (1993);ポリアミン研究会、第12回研究発表会講演要旨集、

4頁、1995年)。しかしながら、乳児用調製粉乳などの 栄養組成物は、牛乳を主原料とするためにポリアミンは ほとんど含まれていないことから、ポリアミン含量の少 ない乳児用調製粉乳などに利用可能な高純度のポリアミンを大量に調製する必要がある。

【0005】唯一、ポリアミン含量の高い栄養組成物として、蛋白質加水分解乳が挙げられる。Butsらは、膵臓由来の粗精製酵素で蛋白質源を分解した育児用粉乳中にポリアミンが多く含まれていることを報告した(Buts, J. P. et al., J. Pediatr. Gastroenterol. Nutr., Vol. 21, p44 (1995))。この場合、ポリアミンは、蛋白質分解の目的に用いた粗酵素由来であり、ポリアミンを強化することを目的としたものではなかった。さらに、通常の組成物に膵臓由来の粗酵素を用いた場合、その中には蛋白質だけでなく、脂肪、糖質、核酸等を分解する酵素が含まれているため、組成物中のそれらの成分が不必要に分解される可能性もあり、ポリアミンを可能な限り精製した後、添加しかければならない。

[0006]

40 【発明が解決しようとする課題】これらの状況に鑑み、木発明者らはポリアミン含量の高い天然物を求め鋭意探索した結果、酵母にスペルミジン及びスペルミンが高濃度に含まれること、さらには酵母由来のポリアミンは母乳中のポリアミン組成に非常に近い組成を有することを見出した。さらに、このポリアミンに着目し鋭意研究を重ねた結果、高純度のポリアミンを効率良く、大量に調製する方法を見い出した。即ち木発明は、酵母菌体あるいは酵母培養液を原料として、大量に且つ効率良くポリアミンを調製する方法を提供することを課題とする。さ

る、異臭味のないポリアミン添加食品の調製方法を提供 することを課題とする。

[0007]

*きる。

[0008]

【発明の実施の形態】木発明の原料として使用する酵母としてはSaccharomyces 属、Candida 属、Zyrosasccharomyces属に属する酵母が挙げられ、特に好ましくはS. cerevisiae 、S. carbergensis 、S. uvarum 、S. diastaticus 、S. rosei 、C. utilis 、Z. rouxii などが挙げられる。これらの酵母菌体とその培養液、さらには母乳やその他の天然物中のポリアミン含量を表1に示す。

【0009】 【表1】

	ブトレッシン	スペルミジン	スペルミン	その他の497ミン
人乳 (μg/100ml)				
必乳期 3-5 日	2	40	80	n.d.
必乳期31-60 日	3	50	80	n.d.
S. cerevisiae				
菌体 (μg/100g) *	511	4920	7015	507
培養液 (μg/100mT)	5	131	158	19
S. idáastaticus				
图体 (μg/100g) =	967	8320	11783	2113
培養液 (μg/100ml)	15	122	98	20
C. utilis				
苗体 (μg/100g) *	2898	50130	49051	1100
培養液 (μg/100ml)	5	193	250	28
サケ白子 (μg/100g) *	54060	n.d.	31291	199

(*:乾燥物100g当たり、n.d.;検出限界以下)

【0010】これらの酵母類のポリアミン組成は、スペルミン及びスペルミジンの合計で70%以上である特徴を有し、母乳の組成に比較的近い。そのため、母乳代替品である乳児用調製粉乳等に利用した場合、母乳に近づけるという観点からは非常に望ましい。サケの白子にも多くのポリアミンが含まれるが、スペルミジンがほとんど含まれていないために、母乳のポリアミン組成に近づ※

※けるという目的には好ましくない。又、一般に販売されている栄養組成物中のポリアミン含量を表2に示す。市販乳児用栄養組成物には、ポリアミンがほとんど含まれていないことが明らかである。

[0011]

【表2】

	ナトレッシン	スペルミラン	スペルミン	その他の#97ミン (μg/100ml)
乳兒用麵製粉乳	n. đ.	n.đ.	n.d.	30
未熟兒用篔製粉乳	n. d.	n.d.	n.d.	25
フォローアップミキタ	n. d.	n.d.	n.d.	20

(n.d.: 検出限界以下)

【0012】酵母からのボリアミンの抽出は、以下のよ うに行うことができる。即ち、酵母菌体及び/又は酵母 培養液を酸性条件下で処理することにより得られる。詳★50 添加した後、破砕、均質化を行い、得られた抽出液を精

製するか、あるいは酵母培養液に直接酸溶液を添加して 得られた抽出液を精製することによって得られる。この 時、液体培養後の酵母菌体を遠心分離により回収し、超 音波法やフレンチプレス法等の物理的破砕法等により菌 体を破壊する。また、酵母エキスを製造する際に利用す るような自己消化法(トルエン、酢酸エチル等の有機溶 媒の利用)も利用できる。この時、酵母を培養するため に用いる培地は特に限定されないが、YM培地、糖蜜培 地、麦芽エキス培地、馬鈴薯・グルコース培地などが挙 げられ、特に糖蜜培地やYM培地が好ましい。又、ビー ル発酵後に除去した酵母類も利用できる。酵母の培養 は、20~37℃、pH3~7で1~3週間程培養す る。その後、pHが2以下になるように酸溶液を加え、 30~80℃、0.5~6時間程度攪拌してポリアミン を抽出する。この時、酸性溶液として0.01~6 N硫 酸、塩酸、酢酸、リン酸、トリクロル酢酸、過塩素酸、 スルホサリチル酸等の無機酸が挙げられる。次いで、遠 心分離によって、上清画分と沈澱画分に分離し、それぞ れを回収する。以降の精製処理に必要な画分は、上清画 分であるが、沈澱画分についても再度酸溶液を添加し、 同様の抽出操作によって上清画分を得る。これらの上清 画分には、高濃度でポリアミンが抽出されるが、ポリア ミン以外の蛋白質、脂質成分などが混入する可能性があ るため、さらに精製、濃縮する必要がある。この時、上 清画分をイオン交換法、ゲルろ過法、膜分画法、電気透 析法、溶媒抽出法、又は加熱処理法の何れか1つ以上の 方法を用いて精製処理することにより、ポリアミンの純 度を高めることができる。

【0013】この時、イオン交換法としては、イオン交 換基がスルホン酸基、スルホプロピル基、リン酸基、カ ルボキシルメチル基、アミノエチル基、ジエチルアミノ 基、4級アミノエチル基及び4級アンモニウム基等を有 したものであれば何れでも良く、各工程で得られた上清 画分を中和して通液することにより、ポリアミンが吸着 され、さらに硫酸や塩酸等の酸性溶液で溶出して回収す る。又、上清画分中に含有されるポリアミンと他の成分 とは、分子量が大きく異なるため、ゲルろ過法や膜分画 法で分画することができる。それぞれの分子量は、プト レッシンが88、スペルミジンが145、スペルミンが 202である。一方、ポリアミンを含む上清画分中のき ょう雑物には、比較的高分子の蛋白質などが含まれるた め、ゲル沪過等で分画することが可能である。ゲルろ過 法は、各工程で得られた上清画分を中和し、ゲルろ過担 体を充填したカラムに通液して分子量分画により純度を 高めて回収する。尚、ゲルろ過担体は、デキストラン 系、アクリルアミド系、アガロース系、セルロース系、 ポリビニル系、ガラス系、ポリスチレン系等何れの担体 でも良く、分画分子量が100~100,000の範囲 であれば良い。膜分画法は、膜素材としてセルロース 系、酢酸セルロース系、ポリスルホン系、ポリアミド

6

系、ポリアクリロニトリル系、ポリ四フッ化エチレン 系、ポリエステル系、ポリプロピレン系等の限外ろ過膜 で、分画分子量が100~100,000の範囲であれ ば何れの膜も使用できる。又、脱塩を目的とするなら ば、通常の透析膜を使用できる。電気透析法は、陽イオ ン交換膜と陰イオン交換膜によって仕切られた各膜間 に、上記の方法で回収した上清画分と食塩水を交互に供 給して、電気透析を行う。その条件は、初期電流密度 0.5~15A/dm²、電圧0.1~1.5V/槽が 適当である。溶媒抽出法は、酸によって抽出された溶液 をアルカリ性にした後、クロロホルム、アミルアルコー ル、n-ブタノール等の有機溶媒を用いてポリアミンを 抽出する方法である。加熱処理法は、上清画分に混入し ている酵母由来の酵素を加熱変性、失活させる方法であ る。上清画分あるいは精製工程中で溶液状の場合に、8 0~130℃に温度を上昇させ、酵素を失活させること ができる。尚、このような精製処理工程を組み合わせて 処理すると、より高純度のポリアミンを得ることができ

【0014】さらに、各工程で得られた上清画分中の酸は、必要に応じて中和、透析、電気透析あるいは減圧濃縮等によって除去する。又、各工程で得られた上清画分は、液状あるいは凍結乾燥や噴霧乾燥等によって粉末状にすることができ、使用形態によって適宜選択する。このようにして得られたポリアミンは異臭味がなく、さらに母乳のポリアミンに近い組成を有するため、食品、特に乳幼児用の栄養組成物に有効に利用できる。本発明のポリアミンを添加した食品あるいは栄養組成物としては、蛋白質、脂肪、糖質、ビタミン類、ミネラル類を主成分として構成されるものであるが、特に乳児用調製粉乳を挙げることができる。乳児用調製粉乳としては成熟児用調製粉乳、フォローアップミルク、アレルギー乳さらに未熟児用調製粉乳などを挙げることができる。

【0015】蛋白質としては、カゼイン、乳清蛋白質濃 縮物、乳清蛋白質分離物、乳蛋白質分画物(αーカゼイ ン、 β ーカゼイン、 β ーラクトグロブリンや α ーラクト アルブミン、ラクトフェリン等)、大豆蛋白質さらには これらの得自質をプロテアーゼやペプチダーゼで処理し た加水分解物等を利用できる。脂肪としては、魚油、ラ ード、乳脂肪等の動物性油脂、酵母、藻類などの微生物 油、大豆油等の植物性油脂のほかに、これらの分別油、 水添油、エステル交換油等を適宜組み合わせて利用でき る。糖質には、澱粉、可溶性多糖類、デキストリン、蔗 糖、乳糖、ブドウ糖、オリゴ糖などが利用できる。ビタ ミンとミネラルについては「日本国際酪農連盟発行、乳 幼児食品を含む特殊用途食品のCODEX規格及び関連 衛生作業規則、CAC/VOL. IX-第1版及びSu pplement 1, 2, 3, 4 (1993)]; 「食品と科学社発行、1993年版指定品目食品添加物

50 便覧(改定第31版)(1993)」、「食品と科学社

発行、届け出制食品添加物・食品素材天然物便覧(第12版)(1992)」に記載のビタミン、ミネラルのうち乳児用調製粉乳に使用可能なものを1種以上利用する。蛋白質、脂肪、糖質、ビタミン、ミネラルの配合比率は、固形あたりそれぞれ5~40重量%、5~40重量%、30~80重量%、0.005~5重量%とすることが望ましい。

【0016】本発明で製造したポリアミンは、栄養組成物100gあたり0.1mg~500mg、好適には0.2~20mgのポリアミン含量になるように配合する。その配合量は、ポリアミンの純度にもよるが、栄養組成物の固形に対して0.001~10重量%ほど添加すればよい。先にも述べたように、酵母から調製したポリアミンでは、スペルミジン、スペルミンが計70%以上となり、またその組成も母乳に近似できるため、栄養組成物の固形に対して、本発明のポリアミンを0.001~10重量%ほど添加することで、固形あたりの量及び組成の両方で母乳レベルのポリアミンを確保できる。【0017】

【実施例】以下の実施例によって本発明をより詳細に説 20 明するが、これらは単に例示するのみであり、本発明は これらによって何ら限定されるものではない。

[0018]

【実施例1】

ポリアミンの調製・1

C. utilis からポリアミンを調製した。即ち、YM培地 にて培養した後、十分に水洗したC. utilis 1kg (湿 重量)に水31を加え、物理的破砕を行った。これに1 N塩酸31を加え、40℃、2時間、攪拌しながら酸抽 出をおこなった。この時のpHは2以下であることを確 30 認した。抽出終了後、遠心分離し上清を回収した。上清 を10~30%水酸化ナトリウム溶液で中和した後、さ らに中和液をゲルろ過用担体(Superose12 及びSephadex G-25F、ファルマシアバイオテク社) を充填したカラム に通し、分子量分画によりポリアミンと不純物を分画し た。この分画液を121℃、2秒間の加熱殺菌処理した 後、凍結乾燥した。得られたポリアミン調製物中に含ま れるポリアミン量を用上らの方法(日本小児栄養消化器 病学会雑誌、9巻、115~121頁、1995年)に 従い測定した結果、得られたポリアミン調製物1g中に は、ポリアミンが400mg含まれていた。なお、ポリ アミン調製物中のスペルミン及びスペルミジンは、合計 で370mg含まれていた。

[0019]

【実施例2】

ポリアミンの調製・2

S. cerevisiae からポリアミンを調製した。即ち、乾燥 酵母(S. cerevisiae) 2 k g に 2 N 硫酸を 4 1 加え、物 理的破砕を行った後、35℃、5 時間、攪拌しながら酸 抽出をおこなった。この時の p H は 2 以下であることを 50

確認した。抽出終了後、遠心分離し上清画分を回収した。上清を陽イオン交換樹脂(Dowex 50-X8(II・型)、室町化学工業社)を充填したカラムに通し、ポリアミンを吸着させた。0.5 M食塩水で樹脂を充分に洗浄して、不純物を除去した後、6 N塩酸にてポリアミンを溶出した。溶出液に10~30%水酸化ナトリウム溶液を加えて中和した後、電気透析装置(マイクロ・アシライザーS1、旭化成工業社、膜カートリッジ:AC-121-10)によって脱塩し、ポリアミン濃縮画分を得、この分画液を121℃、3秒間の加熱殺菌処理をした後、凍結乾燥した。実施例1と同様の方法により得られたボリアミン調製物中に含まれるボリアミン量を測定した結果、得られたボリアミン調製物1g中には、ポリアミンが200mg含まれていた。なお、ポリアミン調製物中のスペルミン及びスペルミジンは、合計で180mg含まれていた。

8

[0020]

【実施例3】

ポリアミンの調製・3

S. carbergensis からポリアミンを調製した。即ち、S. carbergensis 1 kg (湿重量)に水3 lを加え、物理 的破砕を行った後、1 N硫酸を3 1 加え、3 5℃、4 時 間、攪拌しながら酸抽出をおこなった。この時のpHは 2以下であることを確認した。抽出終了後、遠心分離し 上清を回収した。上清を陽イオン交換樹脂(Dowex 50-X8 (H+型)、室町化学工業社)を充填したカラムに通し、 ポリアミンを吸着させた。0.8M食塩水で樹脂を充分 に洗浄して、不純物を除去した後、5N硫酸にてポリア ミンを溶出した。溶出液に10~30%水酸化ナトリウ ム溶液を加えて中和した後、透析膜によって脱塩し、ポ リアミン濃縮画分を得た。この画分を凍結乾燥した。実 施例1と同様の方法により得られたポリアミン調製物中 に含まれるポリアミン量を測定した結果、得られたポリ アミン調製物1g中には、ポリアミンが90mg含まれ ていた。なお、ポリアミン調製物中のスペルミン及びス ペルミジンは、合計で70mg含まれていた。

[0021]

【実施例4】

オ"リアミンの調製・4

C. utilis からポリアミンを調製した。即ち、C. utilis を実施例1と同様の培地を用いて培養し、その培養液101に2N硫酸501を加え、ホモジナイザーにてホモジネートを調製した。このホモジネートを40℃、4時間、攪拌しながら酸抽出をおこなった。この時のp日は2以下であることを確認した。抽出終了後、遠心分離し上清画分を回収した。上清に10~30%水酸化ナトリウム溶液を加えてアルカリ性にした後、n-ブタノールにて溶媒抽出を行った。抽出液をロータリーエバボレーターで濃縮し、溶媒を除去した。濃縮液を中和した後、電気透析装置(マイクロ・アシライザーS1、旭化成工業社、膜カートリッジ:AC-121-10)によって脱塩し、

ボリアミン濃縮画分を得、凍結乾燥した。実施例1と同様の方法により得られたボリアミン調製物中に含まれるボリアミン量を測定した結果、得られたポリアミン調製物の.5g中には、ポリアミンが35mg含まれていた。なお、ポリアミン調製物中のスペルミン及びスペルミジンは、合計で30mg含まれていた。

[0022]

【実施例5】

ポリアミン添加粉乳の調製

脱脂乳470kg、乳清蛋白質濃縮物(WPC;デンマ 10 ークプロテイン社)を20kgと乳糖93kg添加溶解 し、これに水溶性ビタミン成分(ビタミンB1、B2、 B6 、B12、C、ナイアシン、葉酸、パントテン酸、ビ オチン、コリン、イノシトールなど) とミネラル成分 (炭酸カルシウム、塩化カリウム、硫酸マグネシウム、 クエン酸第一鉄ナトリウム、硫酸銅、硫酸亜鉛など)を それぞれ1kgと、実施例1で調製したポリアミン調製 物4gを温水300gに懸濁・溶解した液、及び脂溶性 ビタミン類 (ビタミンA、D、E、K、β-カロチンな ど)を溶解し、リノール酸、γ-リノレン酸、アラキド ン酸、 α -リノレン酸、EPA(エイコサペンタエン 酸)、DHA(ドコサヘキサエン酸)、及びコレステロ ←ルを含む調製脂肪47.8kgを混合して均質化し た。得られた溶液を殺菌し、常法により濃縮し、乾燥し て、粉乳200kgを得た。尚、この粉乳を温水に溶解 して、固形率13%に調整した調製乳には、ポリアミン

1.0

が約100 µg / 100 ml含まれていた。

[0023]

【実施例6】

ポリアミン添加粉乳の調製

WPC90kgと乳糖550kgを温湯に溶解し、これにカゼイン75kgを所定量のアルカリで溶解した溶液に、ビタミン及び及びミネラル成分(実施例5と同様)をそれぞれ10kgと、実施例3で調製したポリアミン調製物40gを水1000gに懸濁・溶解した液、及び実施例5と同様の脂溶性ビタミン類を溶解した調製脂肪239kgを混合して均質化した。得られた溶液を殺菌し、常法により濃縮し、乾燥して、粉乳1000kgを得た。尚、この粉乳を温水に溶解して、固形率13%に調整した調製乳には、ポリアミンが100μg/100 ml含まれていた。

[0024]

【発明の効果】以上の結果より、本発明により酵母あるいは酵母培養液を原料とし、ボリアミンを効率良く大量に調製する方法が提供される。詳しくは、酵母菌体及び/又は酵母培養液を酸性条件下で処理することにより、ボリアミンを高純度且つ大量に調製する方法が提供される。さらに、これらの方法により得られた酵母由来のボリアミンを添加することを特徴とする、ポリアミン添加食品の調製方法が提供される。本発明によって得られたボリアミンは異臭味がなく、食品に添加しても食品の品質を損なうことなく有効に利用できる。

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FI

技術表示箇所

C12R 1:865)

Generate Collection

L9: Entry 11 of 43

File: DWPI

Feb 24, 1998

DERWENT-ACC-NO: 1998-200637

DERWENT-WEEK: 199818

COPYRIGHT 2000 DERWENT INFORMATION LTD

TITLE: Prepn. of polyamine from yeast - comprises treating cells or cultured liq. of yeast under acidic conditions

PATENT-ASSIGNEE:

ASSIGNEE CODE
SNOW BRAND MILK PROD CO LTD SNOW

PRIORITY-DATA:

1996JP-0212910

August 12, 1996

PATENT-FAMILY:

PUB-NO PUB-DATE

LANGUAGE PAGES MAIN-IPC

JP 10052291 A February 24, 1998 N/A

006 C12P013/00

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-NO

JP10052291A

August 12, 1996

1996JP-0212910

N/A

INT-CL (IPC): A23C 9/152; C12P 13/00; C12P 13/00; C12R 1/72; C12P 13/00; C12R 1/865

ABSTRACTED-PUB-NO: JP10052291A

BASIC-ABSTRACT:

Prepn. of <u>polyamine</u> comprises treating cells and/or a cultured liq. of <u>yeast</u> under acidic conditions. Also claimed is prepn. of <u>polyamine</u>-adde d foods without malodour comprising addn. of the <u>polyamine</u>.

USE - The <u>polyamine</u> is typically used in foods for babies and infants.

ADVANTAGE - The method permits efficient prepn. of polyamine in large amts. The food contg. it has no malodour.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: PREPARATION YEAST COMPRISE TREAT CELL CULTURE

LIQUID YEAST ACIDIC CONDITION

DERWENT-CLASS: D13 D16 E19

CPI-CODES: D03-H; D05-A04; D05-C; E10-B01E;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

Fragmentation Code

H100 H101 H102 H103 H182 H183 L640 L699 M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225 M226 M231 M232 M233 M273 M280 M281 M282 M283 M311 M312 M313 M314 M315 M316 M321 M322 M323 M331 M332 M333 M334 M340 M342 M383 M391 M392 M393 M416 M620 M720 M903 M904 N132 N421 N512 N513 Q211 Q220 Q233

Markush Compounds

199818-B4501-P

Chemical Indexing M3 *02*

Fragmentation Code

H101 H102 H183 M280 M313 M314 M321 M332 M342 M383 M392 M416 M620 M720 M903 M904 N132 N421 N512 N513 Q211 Q220 Q233 Specfic Compounds 03721P

Chemical Indexing M3 *03*

Fragmentation Code

H100 H101 H102 H183 M280 M313 M314 M321 M322 M332 M342 M383 M393 M416 M620 M720 M903 M904 N132 N421 N512 N513 Q211 Q220 Q233 Specfic Compounds 03722P

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1998-063432

West

Generate Collection

L9: Entry 10 of 43

File: DWPI

Oct 6, 1998

DERWENT-ACC-NO: 1999-002470

DERWENT-WEEK: 199935

COPYRIGHT 2000 DERWENT INFORMATION LTD

TITLE: Nutritional composition for babies and children -

contains RNA and poly-amine, particularly spermine, spermidine,

putrescine and/or cadaverine

PATENT-ASSIGNEE:

ASSIGNEE CODE
SNOW BRAND MILK PROD CO LTD SNOW

PRIORITY-DATA:

1997JP-0076946

March 28, 1997

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE PAGES MAIN-IPC

JP 10262607 A October 6, 1998 N/A

007 A23L001/30

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

APPL-DESCRIPTOR

JP10262607A March 28, 1997 1997JP-0076946 N/A

INT-CL (IPC): A23L 1/30; A61K 31/70

ABSTRACTED-PUB-NO: JP10262607A

BASIC-ABSTRACT:

Nutritional composition for babies and children contains RNA and polyamine, particularly spermine, spermidine, putrescine and/or cadaverine, especially in amounts of 10-90, 10-90, 0-90 and/or 0-20%, respectively.

The composition preferably contains 1-200 mg of RNA and 10-2000 mu g in 100 g of solid mass. The composition is made from soft roe of fish, <u>yeast</u> and viscera of animals.

ADVANTAGE - The composition stimulates maturation of the digestive tract.

ABSTRACTED-PUB-NO: JP10262607A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/4

DERWENT-CLASS: B05 D13

CPI-CODES: B04-C03D; B04-E01; B10-B01B; D03-H01T;