

Taller 07, Factorización Álgebra 8°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	Curso:	Fecha:

Guía

Factorizar es un proceso mediante el cual se puede expresar como un producto un número o un polinomio. Los números enteros se pueden clasificar en números primos y compuestos. Todos los números enteros compuestos, se pueden factorizar como producto de números primos o potencias de primos y ésta factorización es única.

Por ejemplo el número 35, es compuesto, ya que se puede factorizar así:

$$35 = 5 \cdot 7$$

donde 5 y 7 son números primos

También el número 48 se puede expresar como el producto de primos o potencias de primos así:

$$48 = 2^4 \cdot 3$$

Generalizando, se puede decir que la factorización es un proceso inverso a multiplicación. Anteriormente hemos usado la propiedad distributiva para encontrar el producto de un monomio y un polinomio, tal como se ve en la siguiente tabla:

Expresión	Aplicando P. distributiva	Producto
3(x+2)	3(x) + 3(2)	3x+6
5(2x-1)	5(2x) + 5(-1)	10x - 5
$x(x^2 + 6x - 4)$	$x(x^2) + x(6x) + x(-4)$	$x^3 + 6x^2 - 4x$

Ahora usaremos la propiedad recolectiva para reversar lo hecho por la propiedad distributiva. Así si tenemos

$$ab + ac = a(b+c)$$

Expresión	Expresión reescrita	Expresión factorizada
3x+6	3(x) + 3(2)	3(x+2)
10x - 5	5(2x) + 5(-1)	5(2x-1)
$x^3 + 6x^2 - 4x$	$x(x^2) + x(6x) + 2(-4)$	$x(x^2 + 6x - 4)$

Como podrá notar cada ejemplo ha sido factorizado como el producto de un monomio y un polinomio. Obviamente, los polinomios pueden ser factorizados de varias maneras. Considere factorizar $3x^2+12x$

$$3x^2 + 12x = 3x(x+4)$$
 o $3x^2 + 12x = 3(x^2 + 4x)$ o $3x^2 + 12x = x(3x+12)$ o $3x^2 + 12x = \frac{1}{2}(6x^2 + 24x)$

Taller

Quiz de conceptos

Para los problemas 1-10, conteste V o F

- 1. La factorización es el proceso inverso a la multiplicación.
- 2. La propiedad distributiva de la forma ab+ac=a(b+c) es aplicada para factorizar polinomios
- 3. Un polinomio puede ser factorizado de múltiples formas, pero solo una es la completa.
- 4. El factor común mayor de $6x^2y^3 12x^3y^2 + 18x^4y$ es $2x^2y$
- 5. Si el producto de x y y es cero, entonces x es cero y/o y es cero.
- 6. El factor común siempre es un monomio
- 7. Si la factorización de un polinomio puede ser factorizada nuevamente, entonces el polinomio no está completamente factorizado
- 8. El polinomio factorizado, $3a(2a^2 + 4)$, está completamente factorizado.
- 9. Las soluciones de la ecuación x(x+2) = 7 son 7 y 5
- 10. El conjunto solución para $x^2 = 7x$ es 7

Ejercicios

Para los ejercicios 1-10, clasifique cada número como primo o compuesto

- 1. 63
- 3. 59
- 5. 51
- 7. 91
- 9. 71

- 2. 81
- 4. 63
- 6. 69
- 8. 119
- 10. 101

Para los problemas 11–20, factorice cada número compuesto como producto de números primos. Por ejemplo, $30=2\cdot 3\cdot 5$

11. 28

13. 44

15. 56

17. 72

19.87

12. 39

14. 49

16. 64

18. 84

20. 91

Para los problemas 21-24, determine si el polinomio está completamente factorizado

$$21. \ 6x^2 + 12xy^2 = 2xy(3x + 6y)$$

22.
$$2a^3b^2 + 4a^2b^2 = 4a^2b^2(\frac{1}{2}a + 1)$$

23.
$$10m^2n^3 + 15m^4n^2 = 5m^2n(2n^2 + 3m^2n)$$

24.
$$24ab + 12bc - 18bd = 6b(4a + 2c - 3d)$$

Para los ejercicios 25–37, factorice completamente

25. 12x + 8y

32. $6x^5 - 18x^3 + 24x$

26. $15x^2 + 6x$

33. $9x^2 - 17x^4 + 21x^5$

27. $42y^2 - 6y$

34. $8x^5y^3 - 6x^4y^5 + 12x^2y^3$

28. 27xy - 36y

35. x(y-1) + 5(y-1)

29. $12x^3 - 10x^2$

36. 5x(a-b) + y(a-b)

30. $24a^3b^2 + 36a^2b$ 31. $15x^4y^2 - 45x^5y^4$

37. x(x-1) - 3(x-1)

Para los ejercicios 38–46, factorice por agrupación de términos

38. ax - 2x + ay - 2y

 $43. \ 2bx + cy + cx + 2by$

 $39. \ 2ax - bx + 2ay - by$

44. $2a^2 - 3bc - 2ab + 3ac$

40. 5ax - 5bx - 2ay + 2by

45. $x^2 - 2x + 5x - 10$

41. 3bx + 3x + by + y42. $ax^2 - 2x^2 + 3a - 6$

46. $3x^2 + 18x - 2x - 12$

Para los ejercicios 47–54, resuelva cada ecuación

47. $x^2 + 9x = 0$

 $50. -6x = 2x^2$

48. $x^2 - 14x = 0$

 $51. -4x^2 + 9x = 0$

49. $b^2 = -7b$

52. $3x = 11x^2$

53.
$$x - 6x^2 = 0$$
 54. $-5a = -a^2$

Para los ejercicios 55–58, solucione cada ecuación para la variable indicada

55.
$$ax^2 + bx = 0$$
 para x 57. $y^2 - ay + 2by - 2ab = 0$ para y

56.
$$3ay^2 = by$$
 para y 58. $x^2 + ax + bx + ab = 0$ para x

Para los problemas ??-??, plantee la ecuación y solucione el problema

- 59. Suponga que el área de un cuadrado es seis veces su perímetro. Encuentre la longitud del lado del cuadrado
- 60. Encuentre la longitud del radio de un círculo cuya circunferencia es numéricamente igual a su área.
- 61. Encuentre la longitud del radio de un esfera cuya superficie es numéricamente igual a su volumen. (Recuerde que la superficie de la esfera es $S_s = 4\pi r^2$ y su volumen es $V_s = \frac{4}{3}\pi r^3$)
- 62. El área de un cuadrado es la cuarta parte del área de un triángulo. Un lado del triángulo mide 16 cm y la altura de este lado mide lo mismo que el lado del cuadrado. Encuentre la longitud del lado del cuadrado. (sugerencia: Haga un dibujo)
- 63. Suponga que el radio de una esfera es igual al radio de un círculo. Si el volumen de la esfera es numéricamente igual a cuatro veces el área del círculo, encuentre la longitud del radio para la esfera y el círculo.

Pensamiento en palabras

64. Suponga que un amigo, factoriza $36x^2y + 48xy^2$ como sigue:

$$36x^{2}y + 48xy^{2} = (4xy)(9x + 12y)$$
$$= (4xy)(3)(3x + 4y)$$
$$= 12xy(3x + 4y)$$

¿Es correcto el procedimiento? ¿Podría sugerir algo a su amigo?