



| Ù&@^œ^¦ÊÁQ}&È |                                          | HÍ »Á√ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;} |
|---------------|------------------------------------------|---------------------------------|
| PÔX           | Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{          |                                 |
|               | Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€ |                                 |

### 1. INTRODUCTION



### 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

### 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 1700 mm        | Height =    | 1550 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

### 1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

### 2. LOAD ACTIONS

### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

Self-weight of the PV modules.

### 2.2 Snow Loads

| Ground Snow Load, $P_g =$      | 30.00 psf |                        |
|--------------------------------|-----------|------------------------|
| Sloped Roof Snow Load, $P_s =$ | 14.43 psf | (ASCE 7-10, Eq. 7.4-1) |
| l <sub>s</sub> =               | 1.00      |                        |
| $C_s =$                        | 0.64      |                        |
| Co =                           | 0.90      |                        |

1.20

 $C_t =$ 

### 2.3 Wind Loads

| Design Wind Speed, V = | 115 mph | Exposure Category = C    |
|------------------------|---------|--------------------------|
| Height <               | 15 ft   | Importance Category = II |

Peak Velocity Pressure,  $q_z = 20.76$  psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

### **Pressure Coefficients**

| Cf+ <sub>TOP</sub>    | = | 1.200 (Property)                 |                                                                                                                   |
|-----------------------|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Cf+ BOTTOM            | = | 1.200<br>2.000 <i>(Pressure)</i> | Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are |
| Cf- TOP, OUTER PURLIN | = | -2.700                           | located in test report # 1127/0611-1e. Negative forces are                                                        |
| Cf- TOP, INNER PURLIN | = | -2.100 (Suction)                 | applied away from the surface.                                                                                    |
| Cf- BOTTOM            | = | -1.200                           | <i>прристанта</i> ) и ин инс санисти.                                                                             |

### 2.4 Seismic Loads - N/A

| S <sub>S</sub> = | 0.00 | R = 1.25        | ASCE 7, Section 12.8.1.3: A maximum $S_s$ of 1.5         |
|------------------|------|-----------------|----------------------------------------------------------|
| $S_{DS} =$       | 0.00 | $C_S = 0$       | may be used to calculate the base shear, $C_s$ , of      |
| $S_1 =$          | 0.00 | $\rho = 1.3$    | structures under five stories and with a period, T,      |
| $S_{D1} =$       | 0.00 | $\Omega = 1.25$ | of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
| $T_a =$          | 0.00 | $C_{d} = 1.25$  | calculate C <sub>s</sub> .                               |



### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

### Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

### Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W <sup>M</sup> (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E <sup>O</sup> 1.1785D + 0.65625E + 0.75S <sup>O</sup> 0.362D + 0.875E <sup>O</sup>

### 3. STRUCTURAL ANALYSIS

### 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

### 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Purlins</u> | <b>Location</b> | <b>Diagonal Struts</b> | <b>Location</b> | Front Reactions Location |
|----------------|-----------------|------------------------|-----------------|--------------------------|
| M13            | Тор             | M3                     | Outer           | N7 Outer                 |
| M14            | Mid-Top         | M7                     | Inner           | N15 Inner                |
| M15            | Mid-Bottom      | M11                    | Outer           | N23 Outer                |
| M16            | Bottom          |                        |                 |                          |
|                |                 |                        |                 |                          |
| <u>Girders</u> | <b>Location</b> | Rear Struts            | <b>Location</b> | Rear Reactions Location  |
| M1             | Outer           | M2                     | Outer           | N8 Outer                 |
| M5             | Inner           | M6                     | Inner           | N16 Inner                |
| M9             | Outer           | M10                    | Outer           | N24 Outer                |
|                |                 |                        |                 |                          |
| Front Struts   | <b>Location</b> |                        |                 |                          |
| M4             | Outer           |                        |                 |                          |
| M8             | Inner           |                        |                 |                          |
| M12            | Outer           |                        |                 |                          |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

### 4. MEMBER DESIGN CALCULATIONS



### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



### 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





### 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



### 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





### 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



### 5. FOUNDATION DESIGN CALCULATIONS

### 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | <u>Front</u>  | Rear           |   |
|----------------------|---------------|----------------|---|
| Tensile Load =       | 102.21        | 6095.32        | k |
| Compressive Load =   | 3147.24       | <u>4868.49</u> | k |
| Lateral Load =       | <u> 19.65</u> | 4301.55        | k |
| Moment (Weak Axis) = | 0.04          | 0.00           | k |



### 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 149644.2 in-lbs Resisting Force Required = 2267.34 lbs A minimum 132in long x 30in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3778.89 lbs to resist overturning. Minimum Width = Weight Provided = 5981.25 lbs Sliding Force = 991.91 lbs Use a 132in long x 30in wide x 18in tall Friction = 0.4 Weight Required = 2479.79 lbs ballast foundation to resist sliding. Resisting Weight = 5981.25 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 991.91 lbs Cohesion = 130 psf Use a 132in long x 30in wide x 18in tall 27.50 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 2990.63 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

|                                                                                |              | Ballas       | t Width  |          |
|--------------------------------------------------------------------------------|--------------|--------------|----------|----------|
|                                                                                | <u>30 in</u> | <u>31 in</u> | 32 in    | 33 in    |
| $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.5 \text{ ft}) =$ | 5981 lbs     | 6181 lbs     | 6380 lbs | 6579 lbs |

| ASD LC             | 1.0D + 1.0S |             |             |             | 1.0D + 0.6W |             |             | 1.0D + 0.75L + 0.45W + 0.75S |             |             | 0.6D + 0.6W |             |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Width              | 30 in       | 31 in       | 32 in       | 33 in       | 30 in       | 31 in       | 32 in       | 33 in                        | 30 in       | 31 in       | 32 in       | 33 in       | 30 in       | 31 in       | 32 in       | 33 in       |
| FA                 | 1205 lbs    | 1205 lbs    | 1205 lbs    | 1205 lbs    | 1030 lbs    | 1030 lbs    | 1030 lbs    | 1030 lbs                     | 1529 lbs    | 1529 lbs    | 1529 lbs    | 1529 lbs    | 71 lbs      | 71 lbs      | 71 lbs      | 71 lbs      |
| F <sub>B</sub>     | 1088 lbs    | 1088 lbs    | 1088 lbs    | 1088 lbs    | 2074 lbs    | 2074 lbs    | 2074 lbs    | 2074 lbs                     | 2239 lbs    | 2239 lbs    | 2239 lbs    | 2239 lbs    | -2804 lbs   | -2804 lbs   | -2804 lbs   | -2804 lbs   |
| F <sub>V</sub>     | 200 lbs     | 200 lbs     | 200 lbs     | 200 lbs     | 1824 lbs    | 1824 lbs    | 1824 lbs    | 1824 lbs                     | 1495 lbs    | 1495 lbs    | 1495 lbs    | 1495 lbs    | -1984 lbs   | -1984 lbs   | -1984 lbs   | -1984 lbs   |
| P <sub>total</sub> | 8274 lbs    | 8474 lbs    | 8673 lbs    | 8872 lbs    | 9085 lbs    | 9285 lbs    | 9484 lbs    | 9683 lbs                     | 9749 lbs    | 9948 lbs    | 10148 lbs   | 10347 lbs   | 856 lbs     | 976 lbs     | 1095 lbs    | 1215 lbs    |
| M                  | 3576 lbs-ft | 3576 lbs-ft | 3576 lbs-ft | 3576 lbs-ft | 2850 lbs-ft | 2850 lbs-ft | 2850 lbs-ft | 2850 lbs-ft                  | 4383 lbs-ft | 4383 lbs-ft | 4383 lbs-ft | 4383 lbs-ft | 3959 lbs-ft | 3959 lbs-ft | 3959 lbs-ft | 3959 lbs-ft |
| е                  | 0.43 ft     | 0.42 ft     | 0.41 ft     | 0.40 ft     | 0.31 ft     | 0.31 ft     | 0.30 ft     | 0.29 ft                      | 0.45 ft     | 0.44 ft     | 0.43 ft     | 0.42 ft     | 4.63 ft     | 4.06 ft     | 3.61 ft     | 3.26 ft     |
| L/6                | 1.83 ft                      | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     |
| f <sub>min</sub>   | 230.0 psf   | 229.6 psf   | 229.2 psf   | 228.8 psf   | 273.8 psf   | 272.0 psf   | 270.3 psf   | 268.7 psf                    | 267.6 psf   | 266.0 psf   | 264.4 psf   | 263.0 psf   | 0.0 psf     | 0.0 psf     | 0.0 psf     | 0.0 psf     |
| f <sub>max</sub>   | 371.8 psf   | 366.8 psf   | 362.2 psf   | 357.8 psf   | 386.9 psf   | 381.4 psf   | 376.3 psf   | 371.5 psf                    | 441.4 psf   | 434.2 psf   | 427.4 psf   | 421.1 psf   | 260.9 psf   | 174.6 psf   | 145.2 psf   | 131.4 psf   |

Maximum Bearing Pressure = 441 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 30in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in



### Weak Side Design

### Overturning Check

 $M_0 = 885.3 \text{ ft-lbs}$ 

Resisting Force Required = 708.25 lbs S.F. = 1.67

Weight Required = 1180.41 lbs Minimum Width = 30 in in Weight Provided = 5981.25 lbs A minimum 132in long x 30in wide x 18in tall ballast foundation is required to resist overturning.

### Bearing Pressure

| ASD LC             | 1         | .238D + 0.875 | SE .      | 1.1785    | D+0.65625E | + 0.75S   | 0.362D + 0.875E |           |          |  |
|--------------------|-----------|---------------|-----------|-----------|------------|-----------|-----------------|-----------|----------|--|
| Width              |           | 30 in         |           |           | 30 in      |           | 30 in           |           |          |  |
| Support            | Outer     | Inner         | Outer     | Outer     | Inner      | Outer     | Outer           | Inner     | Outer    |  |
| F <sub>Y</sub>     | 280 lbs   | 693 lbs       | 280 lbs   | 729 lbs   | 1960 lbs   | 729 lbs   | 82 lbs          | 203 lbs   | 82 lbs   |  |
| F <sub>V</sub>     | 3 lbs     | 0 lbs         | 3 lbs     | 8 lbs     | 0 lbs      | 8 lbs     | 1 lbs           | 0 lbs     | 1 lbs    |  |
| P <sub>total</sub> | 7685 lbs  | 5981 lbs      | 7685 lbs  | 7778 lbs  | 5981 lbs   | 7778 lbs  | 2247 lbs        | 5981 lbs  | 2247 lbs |  |
| М                  | 9 lbs-ft  | 0 lbs-ft      | 9 lbs-ft  | 26 lbs-ft | 0 lbs-ft   | 26 lbs-ft | 3 lbs-ft        | 0 lbs-ft  | 3 lbs-ft |  |
| е                  | 0.00 ft   | 0.00 ft       | 0.00 ft   | 0.00 ft   | 0.00 ft    | 0.00 ft   | 0.00 ft         | 0.00 ft   | 0.00 ft  |  |
| L/6                | 0.42 ft   | 0.42 ft       | 0.42 ft   | 0.42 ft   | 0.42 ft    | 0.42 ft   | 0.42 ft         | 0.42 ft   | 0.42 ft  |  |
| f <sub>min</sub>   | 278.6 psf | 217.5 psf     | 278.6 psf | 280.5 psf | 217.5 psf  | 280.5 psf | 81.4 psf        | 217.5 psf | 81.4 psf |  |
| f <sub>max</sub>   | 280.2 psf | 217.5 psf     | 280.2 psf | 285.1 psf | 217.5 psf  | 285.1 psf | 82.0 psf        | 217.5 psf | 82.0 psf |  |



Maximum Bearing Pressure = 285 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 30in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 30in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

### 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.





### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.



Strut Bearing Capacity =



### **6.2 Strut Connections**

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut               |            |                  |
|---------------------------|------------|------------------|
| Maximum Axial Load =      | 2.421 k    |                  |
| M12 Bolt Capacity =       | 12.808 k   |                  |
| Strut Bearing Capacity =  | 7.421 k    |                  |
| Utilization =             | <u>33%</u> |                  |
| Diagonal Strut            |            |                  |
| Maximum Axial Load =      | 2.710 k    |                  |
| M12 Bolt Shear Capacity = | 12.808 k   | Bolt and bearing |

7.421 k

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Maximum Axial Load =

Strut Bearing Capacity =

M12 Bolt Capacity =

Utilization =



Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

4.014 k

7.421 k

12.808 k

54%

### 7. SEISMIC DESIGN

### 7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height,  $h_{sx} = 53.78$  in Allowable Story Drift for All Other Structures,  $\Delta = \{ 0.020h_{sx} \\ 1.076$  in Max Drift,  $\Delta_{MAX} = 0.095$  in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.



### APPENDIX A



### A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5** 

### Strong Axis:

### 3.4.14

$$L_b = 135 \text{ in}$$

$$J = 0.432$$

$$373.473$$

$$\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.0 \text{ ksi}$$

## Weak Axis:

### 3.4.14

$$L_{b} = 135$$

$$J = 0.432$$

$$237.507$$

$$C_{1} = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\frac{\theta_{y}}{\theta_{b}}Fcy}\right)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.3$$

### 3.4.16

$$b/t = 32.195$$

$$\theta_{v}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

# 3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

### 3.4.16.1

Rb/t =

$$Bt - 1.17 \frac{\theta_y}{\Omega} Fcy$$

$$1.6Dt$$
 S1 = 1.1

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

## 3.4.16.1

N/A for Weak Direction

### 3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 
$$S1 = 36.9$$
 
$$m = 0.65$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$y = 41.015 \text{ mm}$$
  
 $Sx = 1.335 \text{ in}^3$ 

$$M_{max}St = 2.788 \text{ k-ft}$$

### 3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$32 = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max}Wk = 1.152 \text{ k-ft}$$



### Compression

### 3.4.9

b/t = 32.195  
S1 = 12.21 (See 3.4.16 above for formula)  
S2 = 32.70 (See 3.4.16 above for formula)  

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$
  
 $\phi F_L = 25.1 \text{ ksi}$   
b/t = 37.0588  
S1 = 12.21  
S2 = 32.70  
 $\phi F_L = (\phi c k2^* \sqrt{(BpE)})/(1.6b/t)$ 

### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$   
 $\phi F_L = 1215.13 \text{ mm}^2$   
 $\phi F_L = 1.88 \text{ in}^2$   
 $\phi F_L = 41.32 \text{ kips}$ 

 $\phi F_L = 21.9 \text{ ksi}$ 

### A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

## Girder = BF0

Strong Axis:

## 3.4.14 88.9 in $L_b =$ J= 1.08

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_I &= 29.4 \text{ ksi} \end{split}$$

### Weak Axis:

3.4.14

## 88.9 J=

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_1 = 29.2$$

### 3.4.16

b/t = 16.2  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

### 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$



3.4.16.1 Us  
Rb/t = 18.1
$$\int_{C1}^{C1} \left(Bt - 1.17 \frac{\theta_y}{\theta_b} Fc_y\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

N/A for Weak Direction

### 3.4.18

 $\phi F_L =$ 

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

 $\phi F_L = 1.3 \phi y F c y$ 

43.2 ksi

 $\phi F_L =$ 

$$\begin{aligned} \phi F_L St &= & 29.4 \text{ ksi} \\ lx &= & 984962 \text{ mm}^4 \\ & & 2.366 \text{ in}^4 \\ y &= & 43.717 \text{ mm} \\ Sx &= & 1.375 \text{ in}^3 \\ M_{max} St &= & 3.363 \text{ k-ft} \end{aligned}$$

3.4.18 
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

### Compression

### 3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 =  $\phi F_L = \phi y F c y$  $\phi F_L =$ 33.3 ksi

### 3.4.10

Rb/t = 18.1  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

 $P_{max} =$ 

Rev. 11.05.2015

58.55 kips

## A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = 55x55

### Strong Axis:

### 3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$ 
 $38.7028$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

### Weak Axis:

### 3.4.14

$$L_b = 24.8$$
 $J = 0.942$ 
 $38.7028$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$51 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

### 3.4.16.1

Rb/t = 
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

### 3.4.16.1

N/A for Weak Direction

### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$c_{1} = k_{1}Bbr$$

 $C_0 =$ 

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$ 

$$0.672 \text{ in}^4$$
  
y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

## 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

## SCHLETTER

### Compression

3.4.7 
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

### 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

### 3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

### A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

### $Strut = \underline{55x55}$

 $P_{max} =$ 

#### Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.6 ksi $\phi F_1 =$ 29.6

## SCHLETTER

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

# **3.4.16.1** Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

## $\underline{\text{Compression}}$

### 3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

### 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

### 3.4.16.1

N/A for Weak Direction

### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$ 

0.621 in<sup>3</sup>

1.460 k-ft



### 3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

### 3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

### A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

### Strong Axis:

### 3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

### Weak Axis:

$$L_b = 78.03$$
 $J = 0.942$ 
 $121.773$ 

$$\left(Bc - \frac{\theta_y}{\theta_h}Fcy\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{by}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

S2 = 46.7

## 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$



3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\frac{\theta_b}{\theta_b}}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

### 3.4.16.1

N/A for Weak Direction

### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18 
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$ 

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

### Compression

### 3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83271 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

### 3.4.9

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$



### 3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left( \frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{$\phi$F}_L &= & \text{$\phi$F}_L \text{$\psi$F}_L \text{$\psi$F}$$

### **APPENDIX B**

### B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



Schletter, Inc.HCV

Job Number : Model Name : Standard P

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_

## **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me | Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|----------|----------|
| 1 | Dead Load, Max       | DĽ       |           | -1        | ,         |       |       | 4         | ,        | ,        |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 4         |          |          |
| 3 | Snow Load            | SL       |           |           |           |       |       | 4         |          |          |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 4         |          |          |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 4         |          |          |
| 6 | Seismic - Lateral    | EL       |           |           |           |       |       |           |          |          |

## Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 2 | M14          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 3 | M15          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 4 | M16          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |

## Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 2 | M14          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 3 | M15          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 4 | M16          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |

## Member Distributed Loads (BLC 3: Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -32.97                   | -32.97                 | 0                    | 0                  |
| 2 | M14          | Υ         | -32.97                   | -32.97                 | 0                    | 0                  |
| 3 | M15          | Υ         | -32.97                   | -32.97                 | 0                    | 0                  |
| 4 | M16          | Y         | -32 97                   | -32 97                 | 0                    | 0                  |

## Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -69.488                  | -69.488                | 0                    | 0                  |
| 2 | M14          | ٧         | -69.488                  | -69.488                | 0                    | 0                  |
| 3 | M15          | V         | -115.813                 | -115.813               | 0                    | 0                  |
| 4 | M16          | ٧         | -115.813                 | -115.813               | 0                    | 0                  |

## Member Distributed Loads (BLC 5: Wind Load - Suction)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | 156.347                  | 156.347                | 0                    | 0                  |
| 2 | M14          | V         | 121.603                  | 121.603                | 0                    | 0                  |
| 3 | M15          | V         | 69.488                   | 69.488                 | 0                    | 0                  |
| 4 | M16          | V         | 69 488                   | 69 488                 | 0                    | 0                  |

## **Load Combinations**

|   | Description                  | S    | P | S | В | Fa   | В | Fa  | В | Fa | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | . B | Fa | В | .Fa |
|---|------------------------------|------|---|---|---|------|---|-----|---|----|---|------|---|----|---|----|---|----|---|----|-----|----|---|-----|
| 1 | LRFD 1.2D + 1.6S + 0.5W      | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .5 |   |      |   |    |   |    |   |    |   |    |     |    |   |     |
| 2 | LRFD 1.2D + 1.0W + 0.5S      | Yes  | Υ |   | 1 | 1.2  | 3 | .5  | 4 | 1  |   |      |   |    |   |    |   |    |   |    |     |    |   |     |
| 3 | LRFD 0.9D + 1.0W             | Yes  | Υ |   | 2 | .9   |   |     |   |    | 5 | 1    |   |    |   |    |   |    |   |    |     |    |   |     |
| 4 | LATERAL - LRFD 1.54D + 1.3E  | .Yes | Υ |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |     |    |   |     |
| 5 | LATERAL - LRFD 0.56D + 1.3E  | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |     |    |   |     |
| 6 | LATERAL - LRFD 1.54D + 1.25  | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |     |    |   |     |
| 7 | LATERAL - LRFD 0.56D + 1.25E | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |     |    |   |     |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

## **Load Combinations (Continued)**

|    | Description                   | S   | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|----|-------------------------------|-----|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 8  |                               |     |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 10 | ASD 1.0D + 0.6W               | Yes | Υ |   | 1 | 1    |   |     | 4 | .6  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.45W + 0  | Yes | Υ |   | 1 | 1    | 3 | .75 | 4 | .45 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 0.6W               | Yes | _ |   | 2 | .6   |   |     |   |     | 5 | .6   |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
|    | LATERAL - ASD 1.1785D + 0.65  |     |   |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |

## **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]    | LC | Z [lb]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|-----------|----|---------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 844.281   | 2  | 1135.081  | 2  | .772    | 1  | .003      | 1  | Ó         | 1  | Ó         | 1  |
| 2  |         | min | -1036.02  | 3  | -1427.349 | 3  | .048    | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 3  | N7      | max | .041      | 9  | 995.443   | 1  | 861     | 15 | 002       | 15 | 0         | 1  | 0         | 1  |
| 4  |         | min | 174       | 2  | 50.826    | 15 | -15.113 | 1  | 029       | 1  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | .231      | 3  | 2420.957  | 1  | 0       | 1  | 0         | 14 | 0         | 1  | 0         | 1  |
| 6  |         | min | -1.851    | 2  | 106.196   | 15 | 0       | 2  | 0         | 2  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 3096.43   | 2  | 3744.992  | 2  | 0       | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 8  |         | min | -3308.885 | 3  | -4688.707 | 3  | 0       | 9  | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | .041      | 9  | 995.443   | 1  | 15.113  | 1  | .029      | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 174       | 2  | 50.826    | 15 | .861    | 15 | .002      | 15 | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 844.281   | 2  | 1135.081  | 2  | 048     | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 12 |         | min | -1036.02  | 3  | -1427.349 | 3  | 772     | 1  | 003       | 1  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 4782.793  | 2  | 9528.586  | 2  | 0       | 14 |           |    |           |    |           |    |
| 14 |         | min | -5380.626 | 3  | -7090.727 | 3  | 0       | 10 |           |    |           |    |           |    |

## **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC |          | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|----|--------|-----|-----|-----------|----|-------------|----|----------|----|--------------|----|----------|----|----------|----|
| 1  | M13    | 1   | max | 140.267   | 1  | 387.463     | 2  | -11.138  | 15 | .002         | 3  | .336     | 1  | 0        | 2  |
| 2  |        |     | min | 7.802     | 15 | -641.012    | 3  | -201.006 | 1  | 012          | 2  | .019     | 15 | 0        | 3  |
| 3  |        | 2   | max | 140.267   | 1  | 271.595     | 2  | -8.576   | 15 | .002         | 3  | .114     | 1  | .683     | 3  |
| 4  |        |     | min | 7.802     | 15 | -451.066    | 3  | -154.692 | 1  | 012          | 2  | .006     | 15 | 412      | 2  |
| 5  |        | 3   | max | 140.267   | 1  | 155.728     | 2  | -6.015   | 15 | .002         | 3  | 001      | 12 | 1.128    | 3  |
| 6  |        |     | min | 7.802     | 15 | -261.119    | 3  | -108.379 | 1  | 012          | 2  | 051      | 1  | 679      | 2  |
| 7  |        | 4   | max | 140.267   | 1  | 39.861      | 2  | -3.453   | 15 | .002         | 3  | 008      | 12 | 1.335    | 3  |
| 8  |        |     | min | 7.802     | 15 | -71.172     | 3  | -62.065  | 1  | 012          | 2  | 157      | 1  | 801      | 2  |
| 9  |        | 5   | max | 140.267   | 1  | 118.774     | 3  | 891      | 15 | .002         | 3  | 011      | 12 | 1.306    | 3  |
| 10 |        |     | min | 7.802     | 15 | -76.007     | 2  | -15.751  | 1  | 012          | 2  | 206      | 1  | 779      | 2  |
| 11 |        | 6   | max | 140.267   | 1  | 308.721     | 3  | 30.562   | 1  | .002         | 3  | 011      | 15 | 1.038    | 3  |
| 12 |        |     | min | 7.802     | 15 | -191.874    | 2  | 1.115    | 12 | 012          | 2  | 197      | 1  | 611      | 2  |
| 13 |        | 7   | max | 140.267   | 1  | 498.668     | 3  | 76.876   | 1  | .002         | 3  | 007      | 15 | .534     | 3  |
| 14 |        |     | min | 7.802     | 15 | -307.741    | 2  | 3.676    | 12 | 012          | 2  | 13       | 1  | 299      | 2  |
| 15 |        | 8   | max | 140.267   | 1  | 688.615     | 3  | 123.189  | 1  | .002         | 3  | 0        | 10 | .158     | 2  |
| 16 |        |     | min | 7.802     | 15 | -423.609    | 2  | 6.238    | 12 | 012          | 2  | 004      | 1  | 208      | 3  |
| 17 |        | 9   | max | 140.267   | 1  | 878.561     | 3  | 169.503  | 1  | .002         | 3  | .178     | 1  | .76      | 2  |
| 18 |        |     | min | 7.802     | 15 | -539.476    | 2  | 8.799    | 12 | 012          | 2  | .007     | 12 | -1.188   | 3  |
| 19 |        | 10  | max | 140.267   | 1  | 638.963     | 12 | 215.816  | 1  | .012         | 2  | .419     | 1  | 1.507    | 2  |
| 20 |        |     | min | 7.802     | 15 | -1068.508   | 3  | -121.292 | 14 | 002          | 3  | .02      | 12 | -2.405   | 3  |
| 21 |        | 11  | max | 140.267   | 1  | 539.476     | 2  | -8.799   | 12 | .012         | 2  | .178     | 1  | .76      | 2  |
| 22 |        |     | min | 7.802     | 15 | -878.561    | 3  | -169.503 | 1  | 002          | 3  | .007     | 12 | -1.188   | 3  |
| 23 |        | 12  | max | 140.267   | 1  | 423.609     | 2  | -6.238   | 12 | .012         | 2  | 0        | 10 | .158     | 2  |
| 24 |        |     | min | 7.802     | 15 | -688.615    | 3  | -123.189 | 1  | 002          | 3  | 004      | 1  | 208      | 3  |
| 25 |        | 13  | max | 140.267   | 1  | 307.741     | 2  | -3.676   | 12 | .012         | 2  | 007      | 15 | .534     | 3  |
| 26 |        |     | min | 7.802     | 15 | -498.668    | 3  | -76.876  | 1  | 002          | 3  | 13       | 1  | 299      | 2  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|          | Member | Sec      |     | Axial[lb] | LC |          | LC |                  | LC | Torque[k-ft] | LC | y-y Mome | LC      | z-z Mome    | LC |
|----------|--------|----------|-----|-----------|----|----------|----|------------------|----|--------------|----|----------|---------|-------------|----|
| 27       |        | 14       | max | 140.267   | 1  | 191.874  | 2  | -1.115           | 12 | .012         | 2  | 011      | 15      | 1.038       | 3  |
| 28       |        |          | min | 7.802     | 15 | -308.721 | 3  | -30.562          | 1  | 002          | 3  | 197      | 1       | 611         | 2  |
| 29       |        | 15       | max | 140.267   | 1  | 76.007   | 2  | 15.751           | 1  | .012         | 2  | 011      | 12      | 1.306       | 3  |
| 30       |        |          | min | 7.802     | 15 | -118.774 | 3  | .891             | 15 | 002          | 3  | 206      | 1       | 779         | 2  |
| 31       |        | 16       | max | 140.267   | 1  | 71.172   | 3  | 62.065           | 1  | .012         | 2  | 008      | 12      | 1.335       | 3  |
| 32       |        |          | min | 7.802     | 15 | -39.861  | 2  | 3.453            | 15 | 002          | 3  | 157      | 1       | 801         | 2  |
| 33       |        | 17       | max | 140.267   | 1  | 261.119  | 3  | 108.379          | 1  | .012         | 2  | 001      | 12      | 1.128       | 3  |
| 34       |        |          | min | 7.802     | 15 | -155.728 | 2  | 6.015            | 15 | 002          | 3  | 051      | 1       | 679         | 2  |
| 35       |        | 18       | max | 140.267   | 1  | 451.066  | 3  | 154.692          | 1  | .012         | 2  | .114     | 1       | .683        | 3  |
| 36       |        |          | min | 7.802     | 15 | -271.595 | 2  | 8.576            | 15 | 002          | 3  | .006     | 15      | 412         | 2  |
| 37       |        | 19       | max | 140.267   | 1  | 641.012  | 3  | 201.006          | 1  | .012         | 2  | .336     | 1       | 0           | 2  |
| 38       |        |          | min | 7.802     | 15 | -387.463 | 2  | 11.138           | 15 | 002          | 3  | .019     | 15      | 0           | 3  |
| 39       | M14    | 1        | max | 60.567    | 1  | 406.481  | 2  | -11.451          | 15 | .007         | 3  | .378     | 1       | 0           | 1  |
| 40       | IVIT   | <u> </u> | min | 3.375     | 15 | -505.979 | 3  | -206.66          | 1  | 009          | 2  | .021     | 15      | 0           | 3  |
| 41       |        | 2        | max | 60.567    | 1  | 290.614  | 2  | -8.889           | 15 | .007         | 3  | .149     | 1       | .541        | 3  |
| 42       |        |          | min | 3.375     | 15 | -359.462 | 3  | -160.347         | 1  | 009          | 2  | .008     | 15      | 436         | 2  |
| 43       |        | 3        |     | 60.567    | 1  | 174.746  | 2  | -6.327           | 15 | .007         | 3  | .003     | 3       | .899        | 3  |
| 44       |        | 3        | max | 3.375     |    | -212.945 | 3  |                  | 1  | 009          | 2  | 023      | 1       |             | 2  |
|          |        | 1        | min |           | 15 |          |    | -114.033         |    |              |    |          | _       | 727         |    |
| 45       |        | 4        | max | 60.567    | 1  | 58.879   | 2  | -3.766           | 15 | .007         | 3  | 006      | 12      | 1.073       | 3  |
| 46       |        | _        | min | 3.375     | 15 | -66.429  | 3  | -67.72           | 1_ | 009          | 2  | 136      | 1       | 873         | 2  |
| 47       |        | 5        | max | 60.567    | 1  | 80.088   | 3  | -1.204           | 15 | .007         | 3  | 01       | 12      | 1.065       | 3  |
| 48       |        |          | min | 3.375     | 15 | -56.988  | 2  | -21.406          | 1_ | 009          | 2  | 192      | 1_      | 874         | 2  |
| 49       |        | 6        | max | 60.567    | 1  | 226.605  | 3  | 24.907           | 1_ | .007         | 3  | 011      | 15      | .873        | 3  |
| 50       |        |          | min | 3.375     | 15 | -172.856 | 2  | .817             | 12 | 009          | 2  | 19       | 1       | 73          | 2  |
| 51       |        | 7        | max | 60.567    | 1_ | 373.122  | 3  | 71.221           | 1  | .007         | 3  | 007      | 15      | .498        | 3  |
| 52       |        |          | min | 3.375     | 15 | -288.723 | 2  | 3.379            | 12 | 009          | 2  | 13       | 1       | 442         | 2  |
| 53       |        | 8        | max | 60.567    | 1  | 519.638  | 3  | 117.534          | 1  | .007         | 3  | 0        | 10      | .006        | 9  |
| 54       |        |          | min | 3.375     | 15 | -404.59  | 2  | 5.94             | 12 | 009          | 2  | 012      | 1       | 06          | 3  |
| 55       |        | 9        | max | 60.567    | 1  | 666.155  | 3  | 163.848          | 1  | .007         | 3  | .164     | 1       | .57         | 2  |
| 56       |        |          | min | 3.375     | 15 | -520.458 | 2  | 8.501            | 12 | 009          | 2  | .007     | 12      | 801         | 3  |
| 57       |        | 10       | max | 60.567    | 1  | 812.672  | 3  | 210.161          | 1  | .009         | 2  | .398     | 1       | 1.293       | 2  |
| 58       |        |          | min | 3.375     | 15 | -636.325 | 2  | -118.108         | 14 | 007          | 3  | .019     | 12      | -1.725      | 3  |
| 59       |        | 11       | max | 60.567    | 1  | 520.458  | 2  | -8.501           | 12 | .009         | 2  | .164     | 1       | .57         | 2  |
| 60       |        |          | min | 3.375     | 15 | -666.155 | 3  | -163.848         |    | 007          | 3  | .007     | 12      | 801         | 3  |
| 61       |        | 12       | max | 60.567    | 1  | 404.59   | 2  | -5.94            | 12 | .009         | 2  | 0        | 10      | .006        | 9  |
| 62       |        |          | min | 3.375     | 15 | -519.638 | 3  | -117.534         | 1  | 007          | 3  | 012      | 1       | 06          | 3  |
| 63       |        | 13       | max | 60.567    | 1  | 288.723  | 2  | -3.379           | 12 | .009         | 2  | 007      | 15      | .498        | 3  |
| 64       |        |          | min | 3.375     | 15 | -373.122 | 3  | -71.221          | 1  | 007          | 3  | 13       | 1       | 442         | 2  |
| 65       |        | 14       | max | 60.567    | 1  | 172.856  | 2  | 817              | 12 | .009         | 2  | 011      | 15      | .873        | 3  |
| 66       |        |          | min | 3.375     | 15 | -226.605 | 3  | -24.907          | 1  | 007          | 3  | 19       | 1       | 73          | 2  |
| 67       |        | 15       |     |           | 1  | 56.988   | 2  | 21.406           | 1  | .009         | 2  | 01       | 12      | 1.065       | 3  |
| 68       |        |          | min | 3.375     | 15 | -80.088  | 3  | 1.204            | 15 | 007          | 3  | 192      | 1       | 874         | 2  |
| 69       |        | 16       | max |           | 1  | 66.429   | 3  | 67.72            | 1  | .009         | 2  | 006      | 12      | 1.073       | 3  |
| 70       |        | 10       | min | 3.375     | 15 | -58.879  | 2  | 3.766            | 15 | 007          | 3  | 136      | 1       | 873         | 2  |
| 71       |        | 17       | max |           | 1  | 212.945  | 3  | 114.033          | 1  | .009         | 2  | .001     | 3       | .899        | 3  |
| 72       |        | 17       | min | 3.375     | 15 | -174.746 | 2  | 6.327            | 15 | 007          | 3  | 023      | 1       | 727         | 2  |
|          |        | 10       |     |           |    |          |    |                  |    |              |    |          | _       |             |    |
| 73<br>74 |        | 18       | max |           | 1  | 359.462  | 3  | 160.347<br>8.889 | 1  | .009<br>007  | 3  | .149     | 1<br>15 | .541<br>436 | 2  |
|          |        | 40       | min | 3.375     | 15 | -290.614 | 2  |                  | 15 |              |    |          |         |             |    |
| 75       |        | 19       | max |           | 1  | 505.979  | 3  | 206.66           | 1  | .009         | 2  | .378     | 1       | 0           | 1  |
| 76       | MAE    | 4        | min | 3.375     | 15 | -406.481 | 2  | 11.451           | 15 | 007          | 3  | .021     | 15      | 0           | 3  |
| 77       | M15    | 1        | max |           | 15 | 601.927  | 2  | -11.448          | 15 | .009         | 2  | .378     | 1_      | 0           | 2  |
| 78       |        |          | min | -63.898   | 1_ | -286.207 | 3  | -206.628         | 1_ | 007          | 3  | .021     | 15      | 0           | 3  |
| 79       |        | 2        | max | -3.562    | 15 | 428.154  | 2  | -8.886           | 15 | .009         | 2  | .149     | 1_      | .307        | 3  |
| 80       |        |          | min | -63.898   | 1  | -204.834 | 3  | -160.314         |    | 007          | 3  | .008     | 15      | 644         | 2  |
| 81       |        | 3        | max |           | 15 | 254.38   | 2  | -6.324           | 15 | .009         | 2  | 0        | 3       | .512        | 3  |
| 82       |        |          | min |           | 1  | -123.461 | 3  | -114.001         | 1  | 007          | 3  | 023      | 1       | -1.07       | 2  |
| 83       |        | 4        | max | -3.562    | 15 | 80.606   | 2  | -3.763           | 15 | .009         | 2  | 007      | 12      | .616        | 3  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec      |      | Axial[lb]                  | LC             | y Shear[lb]         | LC | z Shear[lb]        | LC | Torque[k-ft]     | LC | y-y Mome       | LC    | z-z Mome          | LC_ |
|------------|--------|----------|------|----------------------------|----------------|---------------------|----|--------------------|----|------------------|----|----------------|-------|-------------------|-----|
| 84         |        |          | min  | -63.898                    | 1              | -42.088             | 3  | -67.687            | 1  | 007              | 3  | 136            | 1     | -1.28             | 2   |
| 85         |        | 5        | max  | -3.562                     | 15             | 39.285              | 3  | -1.201             | 15 | .009             | 2  | 01             | 12    | .617              | 3   |
| 86         |        |          | min  | -63.898                    | 1              | -93.167             | 2  | -21.374            | 1  | 007              | 3  | 192            | 1     | -1.272            | 2   |
| 87         |        | 6        | max  | -3.562                     | 15             | 120.658             | 3  | 24.94              | 1  | .009             | 2  | 011            | 15    | .517              | 3   |
| 88         |        |          | min  | -63.898                    | 1              | -266.941            | 2  | .863               | 12 | 007              | 3  | 19             | 1     | -1.047            | 2   |
| 89         |        | 7        | max  | -3.562                     | 15             | 202.031             | 3  | 71.253             | 1  | .009             | 2  | 007            | 15    | .316              | 3   |
| 90         |        |          | min  | -63.898                    | 1              | -440.715            | 2  | 3.425              | 12 | 007              | 3  | 13             | 1     | 605               | 2   |
| 91         |        | 8        | max  | -3.562                     | 15             | 283.404             | 3  | 117.567            | 1  | .009             | 2  | 0              | 10    | .055              | 2   |
| 92         |        |          | min  | -63.898                    | 1              | -614.488            | 2  | 5.986              | 12 | 007              | 3  | 012            | 1     | 0                 | 15  |
| 93         |        | 9        | max  | -3.562                     | 15             | 364.777             | 3  | 163.88             | 1  | .009             | 2  | .164           | 1     | .932              | 2   |
| 94         |        |          | min  | -63.898                    | 1              | -788.262            | 2  | 8.547              | 12 | 007              | 3  | .007           | 12    | 393               | 3   |
| 95         |        | 10       | max  | -3.562                     | 15             | 962.035             | 2  | 32.472             | 10 | .007             | 3  | .398           | 1     | 2.026             | 2   |
| 96         |        |          | min  | -63.898                    | 1              | -536.836            | 10 | -210.194           | 1  | 009              | 2  | .019           | 12    | 9                 | 3   |
| 97         |        | 11       | max  | -3.562                     | 15             | 788.262             | 2  | -8.547             | 12 | .007             | 3  | .164           | 1     | .932              | 2   |
| 98         |        |          | min  | -63.898                    | 1              | -364.777            | 3  | -163.88            | 1  | 009              | 2  | .007           | 12    | 393               | 3   |
| 99         |        | 12       | max  | -3.562                     | 15             | 614.488             | 2  | -5.986             | 12 | .007             | 3  | 0              | 10    | .055              | 2   |
| 100        |        |          | min  | -63.898                    | 1              | -283.404            |    | -117.567           | 1  | 009              | 2  | 012            | 1     | 0                 | 15  |
| 101        |        | 13       | max  | -3.562                     | 15             | 440.715             | 2  | -3.425             | 12 | .007             | 3  | 007            | 15    | .316              | 3   |
| 102        |        |          | min  | -63.898                    | 1              | -202.031            | 3  | -71.253            | 1  | 009              | 2  | 13             | 1     | 605               | 2   |
| 103        |        | 14       | max  | -3.562                     | 15             | 266.941             | 2  | 863                | 12 | .007             | 3  | 011            | 15    | .517              | 3   |
| 104        |        |          | min  | -63.898                    | 1              | -120.658            | 3  | -24.94             | 1  | 009              | 2  | 19             | 1     | -1.047            | 2   |
| 105        |        | 15       | max  |                            | 15             | 93.167              | 2  | 21.374             | 1  | .007             | 3  | 01             | 12    | .617              | 3   |
| 106        |        |          | min  | -63.898                    | 1              | -39.285             | 3  | 1.201              | 15 | 009              | 2  | 192            | 1     | -1.272            | 2   |
| 107        |        | 16       | max  |                            | 15             | 42.088              | 3  | 67.687             | 1  | .007             | 3  | 007            | 12    | .616              | 3   |
| 108        |        |          | min  | -63.898                    | 1              | -80.606             | 2  | 3.763              | 15 | 009              | 2  | 136            | 1     | -1.28             | 2   |
| 109        |        | 17       | max  | -3.562                     | 15             | 123.461             | 3  | 114.001            | 1  | .007             | 3  | 0              | 3     | .512              | 3   |
| 110        |        |          | min  | -63.898                    | 1              | -254.38             | 2  | 6.324              | 15 | 009              | 2  | 023            | 1     | -1.07             | 2   |
| 111        |        | 18       | max  | -3.562                     | 15             | 204.834             | 3  | 160.314            | 1  | .007             | 3  | .149           | 1     | .307              | 3   |
| 112        |        | 10       | min  | -63.898                    | 1              | -428.154            | 2  | 8.886              | 15 | 009              | 2  | .008           | 15    | 644               | 2   |
| 113        |        | 19       | max  | -3.562                     | 15             | 286.207             | 3  | 206.628            | 1  | .007             | 3  | .378           | 1     | 0                 | 2   |
| 114        |        | '        | min  | -63.898                    | 1              | -601.927            | 2  | 11.448             | 15 | 009              | 2  | .021           | 15    | 0                 | 3   |
| 115        | M16    | 1        | max  |                            | 15             | 583.582             | 2  | -11.147            | 15 | .009             | 2  | .338           | 1     | 0                 | 2   |
| 116        | IVITO  | <u> </u> | min  | -151.279                   | 1              | -271.481            | 3  | -201.247           | 1  | 01               | 3  | .019           | 15    | 0                 | 3   |
| 117        |        | 2        | max  | -8.427                     | 15             | 409.808             | 2  | -8.586             | 15 | .009             | 2  | .115           | 1     | .288              | 3   |
| 118        |        |          | min  | -151.279                   | 1              | -190.108            | 3  | -154.933           | 1  | 01               | 3  | .006           | 15    | 621               | 2   |
| 119        |        | 3        | max  | -8.427                     | 15             | 236.035             | 2  | -6.024             | 15 | .009             | 2  | 002            | 12    | .475              | 3   |
| 120        |        |          | min  | -151.279                   | 1              | -108.735            | 3  | -108.62            | 1  | 01               | 3  | 05             | 1     | -1.025            | 2   |
| 121        |        | 4        | max  | -8.427                     | 15             | 62.261              | 2  | -3.462             | 15 | .009             | 2  | 008            | 12    | .56               | 3   |
| 122        |        | 7        | min  |                            | 1              | -27.362             | 3  | -62.306            | 1  | 01               | 3  | 157            | 1     | -1.211            | 2   |
| 123        |        | 5        | max  | -8.427                     | 15             | 54.01               | 3  | 901                | 15 | .009             | 2  | 011            | 12    | .544              | 3   |
| 124        |        | J        |      | -151.279                   | 1              |                     | 2  | -15 992            | 1  | 01               | 3  | 206            | 1     |                   | 2   |
| 125        |        | 6        | max  |                            | 15             |                     | 3  | 30.321             | 1  | .009             | 2  | 200<br>011     | 15    | .425              | 3   |
| 126        |        |          | min  |                            |                | -285.286            |    | 1.263              | 12 | 01               | 3  | 197            | 1     | 932               | 2   |
| 127        |        | 7        | max  |                            | 15             | 216.756             | 3  | 76.635             | 1  | .009             | 2  | 197<br>007     | 15    | .205              | 3   |
| 128        |        |          | min  | -151.279                   | 1              | -459.06             | 2  | 3.824              | 12 | 01               | 3  | 007<br>13      | 1     | 467               | 2   |
| 129        |        | 8        | max  |                            | 15             | 298.129             | 3  | 122.948            | 1  | .009             | 2  | <u>13</u><br>0 | 10    | .215              | 2   |
| 130        |        | 0        | min  |                            | 1              | -632.833            | 2  | 6.386              | 12 | 01               | 3  | 005            | 1     | 117               | 3   |
|            |        | 9        |      |                            |                |                     |    |                    | 1  |                  | 2  | .178           | 1     |                   | 2   |
| 131<br>132 |        | 3        | max  | -0.42 <i>T</i><br>-151.279 | 15             | 379.502<br>-806.607 | 3  | 169.262            | 12 | .009             |    |                | 12    | 1.115<br>54       | 3   |
|            |        | 10       | max  |                            |                | 782.049             | 1  | 8.947<br>142.779   | 9  | <u>01</u><br>.01 | 3  | .008<br>.418   | 1     | 54<br>2.232       | 2   |
| 133<br>134 |        | 10       |      |                            | <u>15</u><br>1 | -980.381            | _  | -215.575           |    | 009              | 2  | .021           | 12    |                   | 3   |
|            |        | 11       | min  |                            |                |                     | 2  |                    |    |                  |    |                |       | -1.065<br>1 1 1 5 |     |
| 135        |        | 11       | max  |                            | 15             | 806.607             | 2  | -8.947<br>-169.262 | 12 | .01              | 3  | .178           | 1     | 1.115             | 3   |
| 136        |        | 10       | min  |                            |                | -379.502            |    |                    |    | 009              | 2  | .008           | 12    | 54                |     |
| 137        |        | 12       | max  |                            | 15             | 632.833             | 2  | -6.386             | 12 | .01              | 3  | 0              | 10    | .215              | 2   |
| 138        |        | 12       | min  | -151.279                   | 1_             | <u>-298.129</u>     | 3  | -122.948           |    | 009              | 2  | 005            | 1 1 5 | 117               | 3   |
| 139        |        | 13       | max  |                            | 15             | 459.06              | 2  | -3.824             | 12 | .01              | 3  | 007            | 15    | .205              | 3   |
| 140        |        |          | THIN | -151.279                   | 1              | -216.756            | 3  | -76.635            |    | 009              | 2  | 13             | 1     | 467               | 2   |



Model Name

Schletter, Inc.

HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |            | Axial[lb]            | LC | y Shear[lb]   | LC         | z Shear[lb]  | LC      | Torque[k-ft]  | LC | v-v Mome     | LC | z-z Mome          | . LC |
|------------|-----------|-----|------------|----------------------|----|---------------|------------|--------------|---------|---------------|----|--------------|----|-------------------|------|
| 141        |           |     | max        | -8.427               | 15 | 285.286       | 2          | -1.263       | 12      | .01           | 3  | 011          | 15 | .425              | 3    |
| 142        |           |     | min        | -151.279             | 1  | -135.383      | 3          | -30.321      | 1       | 009           | 2  | 197          | 1  | 932               | 2    |
| 143        |           | 15  | max        | -8.427               | 15 | 111.512       | 2          | 15.992       | 1       | .01           | 3  | 011          | 12 | .544              | 3    |
| 144        |           |     | min        | -151.279             | 1  | -54.01        | 3          | .901         | 15      | 009           | 2  | 206          | 1  | -1.18             | 2    |
| 145        |           | 16  | max        | -8.427               | 15 | 27.362        | 3          | 62.306       | 1       | .01           | 3  | 008          | 12 | .56               | 3    |
| 146        |           |     | min        | -151.279             | 1  | -62.261       | 2          | 3.462        | 15      | 009           | 2  | 157          | 1  | -1.211            | 2    |
| 147        |           | 17  | max        | -8.427               | 15 | 108.735       | 3          | 108.62       | 1       | .01           | 3  | 002          | 12 | .475              | 3    |
| 148        |           |     | min        | -151.279             | 1  | -236.035      | 2          | 6.024        | 15      | 009           | 2  | 05           | 1  | -1.025            | 2    |
| 149        |           | 18  | max        | -8.427               | 15 | 190.108       | 3          | 154.933      | 1       | .01           | 3  | .115         | 1  | .288              | 3    |
| 150        |           |     | min        | -151.279             | 1  | -409.808      | 2          | 8.586        | 15      | 009           | 2  | .006         | 15 | 621               | 2    |
| 151        |           | 19  | max        | -8.427               | 15 | 271.481       | 3          | 201.247      | 1       | .01           | 3  | .338         | 1  | 0                 | 2    |
| 152        |           |     | min        | -151.279             | 1  | -583.582      | 2          | 11.147       | 15      | 009           | 2  | .019         | 15 | 0                 | 3    |
| 153        | <u>M2</u> | 1_  | max        |                      | 2  | 2.016         | 4          | .475         | 1       | 0             | 12 | 0            | 3  | 0                 | 1    |
| 154        |           |     | min        | -1221.32             | 3  | .474          | 15         | .026         | 15      | 0             | 1  | 0            | 2  | 0                 | 1    |
| 155        |           | 2   | max        | 939.686              | 2  | 1.898         | 4          | .475         | 1       | 0             | 12 | 0            | 1  | 0                 | 15   |
| 156        |           |     | min        | -1220.929            | 3  | .446          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 0                 | 4    |
| 157        |           | 3   | max        |                      | 2  | 1.779         | 4          | .475         | 1       | 0             | 12 | 0            | 1  | 0                 | 15   |
| 158        |           |     | min        | -1220.539            | 3  | .419          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 001               | 4    |
| 159        |           | 4   | max        | 940.728              | 2  | 1.66          | 4          | .475         | 1       | 0             | 12 | 0            | 1  | 0                 | 15   |
| 160        |           | _   | min        | -1220.148            | 3  | .391          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 002               | 4    |
| 161        |           | 5   | max        | 941.248              | 2  | 1.541         | 4          | .475         | 1       | 0             | 12 | 0            | 1  | 0                 | 15   |
| 162        |           | 6   | min        | -1219.758<br>941.769 | 3  | .363          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 003               | 4    |
| 163        |           | 0   | max        | -1219.367            | 3  | 1.422<br>.335 | 4          | .475<br>.026 | 1       | 0             | 12 | 0            | 1  | 0                 | 15   |
| 164<br>165 |           | 7   | min        | 942.29               |    | 1.303         | 1 <u>5</u> | .475         | 15<br>1 | 0             | 12 |              | 15 | 003<br>0          | 15   |
| 166        |           |     | max<br>min | -1218.977            | 3  | .307          | 15         | .026         | 15      | <u>0</u><br>0 | 1  | <u>0</u><br> | 15 | 004               | 4    |
| 167        |           | 8   | max        | 942.81               | 2  | 1.184         | 4          | .475         | 1       | 0             | 12 | .001         | 1  | - <u>004</u><br>0 | 15   |
| 168        |           | 0   | min        | -1218.586            | 3  | .279          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 004               | 4    |
| 169        |           | 9   | max        | 943.331              | 2  | 1.066         | 4          | .475         | 1       | 0             | 12 | .001         | 1  | 001               | 15   |
| 170        |           |     | min        | -1218.196            | 3  | .251          | 15         | .026         | 15      | 0             | 1  | 0            | 15 | 004               | 4    |
| 171        |           | 10  | max        | 943.852              | 2  | .947          | 4          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 172        |           |     | min        | -1217.805            | 3  | .221          | 12         | .026         | 15      | 0             | 1  | 0            | 15 | 005               | 4    |
| 173        |           | 11  | max        |                      | 2  | .828          | 4          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 174        |           |     | min        | -1217.415            | 3  | .175          | 12         | .026         | 15      | 0             | 1  | 0            | 15 | 005               | 4    |
| 175        |           | 12  | max        | 944.893              | 2  | .732          | 2          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 176        |           |     | min        | -1217.024            | 3  | .128          | 12         | .026         | 15      | 0             | 1  | 0            | 15 | 005               | 4    |
| 177        |           | 13  | max        | 945.414              | 2  | .639          | 2          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 178        |           |     | min        | -1216.634            | 3  | .082          | 12         | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 179        |           | 14  | max        | 945.934              | 2  | .547          | 2          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 180        |           |     | min        | -1216.243            | 3  | .028          | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 181        |           | 15  | max        | 946.455              | 2  | .454          | 2          | .475         | 1       | 0             | 12 | .002         | 1  | 001               | 15   |
| 182        |           |     | min        | -1215.853            | 3  | 041           | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 183        |           | 16  | max        | 946.976              | 2  | .361          | 2          | .475         | 1       | 0             | 12 | .003         | 1  | 001               | 15   |
| 184        |           |     | min        | -1215.462            | 3  | 11            | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 185        |           | 17  | max        |                      | 2  | .269          | 2          | .475         | 1       | 0             | 12 | .003         | 1  | 001               | 15   |
| 186        |           |     | min        | -1215.072            | 3  | 18            | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 187        |           | 18  |            | 948.017              | 2  | .176          | 2          | .475         | 1       | 0             | 12 | .003         | 1  | 001               | 15   |
| 188        |           |     | min        | -1214.681            | 3  | 249           | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 189        |           | 19  |            | 948.538              | 2  | .084          | 2          | .475         | 1       | 0             | 12 | .003         | 1  | 001               | 12   |
| 190        |           |     | min        | -1214.291            | 3  | 319           | 3          | .026         | 15      | 0             | 1  | 0            | 15 | 006               | 4    |
| 191        | <u>M3</u> | 1_  | max        |                      | 2  | 7.66          | 4          | .401         | 1       | 0             | 12 | 0            | 1  | .006              | 4    |
| 192        |           |     | min        | -854.879             | 3  | 1.801         | 15         | .022         | 15      | 0             | 1  | 0            | 15 | .001              | 12   |
| 193        |           | 2   |            | 707.206              | 2  | 6.899         | 4          | .401         | 1       | 0             | 12 | 0            | 1  | .003              | 2    |
| 194        |           |     | min        | -855.006             | 3  | 1.622         | 15         | .022         | 15      | 0             | 1  | 0            | 15 | 0                 | 3    |
| 195        |           | 3   | max        |                      | 2  | 6.138         | 4          | .401         | 1       | 0             | 12 | 0            | 1  | .001              | 2    |
| 196        |           |     | min        | -855.134             | 3  | 1.443         | 15         | .022         | 15      | 0             | 1  | 0            | 15 | 001               | 3    |
| 197        |           | 4   | max        | 706.865              | 2  | 5.377         | 4          | .401         | 1       | 0             | 12 | .001         | 1  | 0                 | 15   |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | . LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|------|
| 198 |        |     | min | -855.262  | 3  | 1.264       | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 003      | 3    |
| 199 |        | 5   | max | 706.695   | 2  | 4.616       | 4  | .401        | 1  | 0            | 12 | .001     | 1  | 0        | 15   |
| 200 |        |     | min | -855.39   | 3  | 1.085       | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 004      | 4    |
| 201 |        | 6   | max | 706.524   | 2  | 3.855       | 4  | .401        | 1  | 0            | 12 | .001     | 1  | 001      | 15   |
| 202 |        |     | min | -855.517  | 3  | .907        | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 006      | 4    |
| 203 |        | 7   | max | 706.354   | 2  | 3.094       | 4  | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 204 |        |     | min | -855.645  | 3  | .728        | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 007      | 4    |
| 205 |        | 8   | max | 706.184   | 2  | 2.334       | 4  | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 206 |        |     | min | -855.773  | 3  | .549        | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 008      | 4    |
| 207 |        | 9   | max | 706.013   | 2  | 1.573       | 4  | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 208 |        |     | min | -855.901  | 3  | .37         | 15 | .022        | 15 | 0            | 1  | 0        | 15 | 009      | 4    |
| 209 |        | 10  | max | 705.843   | 2  | .812        | 4  | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 210 |        |     | min | -856.028  | 3  | .189        | 12 | .022        | 15 | 0            | 1  | 0        | 15 | 01       | 4    |
| 211 |        | 11  | max | 705.673   | 2  | .193        | 2  | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 212 |        |     | min | -856.156  | 3  | 182         | 3  | .022        | 15 | 0            | 1  | 0        | 15 | 01       | 4    |
| 213 |        | 12  | max | 705.502   | 2  | 167         | 15 | .401        | 1  | 0            | 12 | .002     | 1  | 002      | 15   |
| 214 |        |     | min | -856.284  | 3  | 71          | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 01       | 4    |
| 215 |        | 13  | max | 705.332   | 2  | 346         | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 002      | 15   |
| 216 |        |     | min | -856.412  | 3  | -1.471      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 009      | 4    |
| 217 |        | 14  | max | 705.162   | 2  | 524         | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 002      | 15   |
| 218 |        |     | min | -856.539  | 3  | -2.232      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 009      | 4    |
| 219 |        | 15  | max | 704.991   | 2  | 703         | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 002      | 15   |
| 220 |        |     | min | -856.667  | 3  | -2.993      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 008      | 4    |
| 221 |        | 16  | max | 704.821   | 2  | 882         | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 001      | 15   |
| 222 |        |     | min | -856.795  | 3  | -3.754      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 006      | 4    |
| 223 |        | 17  | max | 704.651   | 2  | -1.061      | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 001      | 15   |
| 224 |        |     | min | -856.923  | 3  | -4.515      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 004      | 4    |
| 225 |        | 18  | max | 704.48    | 2  | -1.24       | 15 | .401        | 1  | 0            | 12 | .003     | 1  | 0        | 15   |
| 226 |        |     | min | -857.051  | 3  | -5.276      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 002      | 4    |
| 227 |        | 19  | max | 704.31    | 2  | -1.419      | 15 | .401        | 1  | 0            | 12 | .004     | 1  | 0        | 1    |
| 228 |        |     | min | -857.178  | 3  | -6.037      | 4  | .022        | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 229 | M4     | 1   | max | 992.377   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | .003     | 1  | 0        | 1    |
| 230 |        |     | min | 49.901    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 0        | 15 | 0        | 1    |
| 231 |        | 2   | max | 992.547   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | .002     | 1  | 0        | 1    |
| 232 |        |     | min | 49.952    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 0        | 15 | 0        | 1    |
| 233 |        | 3   | max | 992.717   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 12 | 0        | 1    |
| 234 |        |     | min | 50.003    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 0        | 1  | 0        | 1    |
| 235 |        | 4   | max | 992.888   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 236 |        |     | min | 50.055    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 002      | 1  | 0        | 1    |
| 237 |        | 5   | max | 993.058   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 238 |        |     | min |           | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 004      | 1  | 0        | 1    |
| 239 |        | 6   | max | 993.228   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 240 |        |     | min | 50.158    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 006      | 1  | 0        | 1    |
| 241 |        | 7   | max | 993.399   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 242 |        |     | min | 50.209    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 007      | 1  | 0        | 1    |
| 243 |        | 8   | max | 993.569   | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 244 |        |     | min | 50.26     | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 009      | 1  | 0        | 1    |
| 245 |        | 9   | max |           | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 246 |        |     | min | 50.312    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 011      | 1  | 0        | 1    |
| 247 |        | 10  | max |           | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 248 |        |     | min | 50.363    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 013      | 1  | 0        | 1    |
| 249 |        | 11  | max |           | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 250 |        |     | min | 50.415    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 014      | 1  | 0        | 1    |
| 251 |        | 12  | max |           | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 0        | 15 | 0        | 1    |
| 252 |        |     | min | 50.466    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 016      | 1  | 0        | 1    |
| 253 |        | 13  | max |           | 1  | 0           | 1  | 862         | 15 | 0            | 1  | 001      | 15 | 0        | 1    |
| 254 |        |     | min | 50.517    | 15 | 0           | 1  | -15.525     | 1  | 0            | 1  | 018      | 1  | 0        | 1    |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 055        | Member | Sec |     | Axial[lb]         |                |       |    |                |                | Torque[k-ft] |               |           |         |        | 1  |
|------------|--------|-----|-----|-------------------|----------------|-------|----|----------------|----------------|--------------|---------------|-----------|---------|--------|----|
| 255        |        | 14  | max |                   | 1_             | 0     | 1  | 862<br>-15.525 | <u>15</u>      | 0            | <u>1</u><br>1 | 001       | 15<br>1 | 0<br>0 | 1  |
| 256<br>257 |        | 15  | min | 50.569<br>994.762 | <u>15</u><br>1 | 0     | 1  | -15.525<br>862 | <u>1</u><br>15 | 0            | 1             | 02<br>001 | 15      | 0      | 1  |
| 258        |        | 13  | max | 50.62             | 15             | 0     | 1  | -15.525        | 1              | 0            | 1             | 022       | 1       | 0      | 1  |
| 259        |        | 16  | max |                   | 1 <u>.</u>     | 0     | 1  | 862            | 15             | 0            | 1             | 022       | 15      | 0      | 1  |
| 260        |        | 10  | min | 50.672            | 15             | 0     | 1  | -15.525        | 1              | 0            | 1             | 023       | 1       | 0      | 1  |
| 261        |        | 17  | max |                   | 1              | 0     | 1  | 862            | 15             | 0            | 1             | 001       | 15      | 0      | 1  |
| 262        |        | - ' | min | 50.723            | 15             | 0     | 1  | -15.525        | 1              | 0            | 1             | 025       | 1       | 0      | 1  |
| 263        |        | 18  | max |                   | 1              | 0     | 1  | 862            | 15             | 0            | 1             | 001       | 15      | 0      | 1  |
| 264        |        |     | min | 50.774            | 15             | 0     | 1  | -15.525        | 1              | 0            | 1             | 027       | 1       | 0      | 1  |
| 265        |        | 19  | max |                   | 1              | 0     | 1  | 862            | 15             | Ö            | 1             | 002       | 15      | 0      | 1  |
| 266        |        |     | min | 50.826            | 15             | 0     | 1  | -15.525        | 1              | 0            | 1             | 029       | 1       | 0      | 1  |
| 267        | M6     | 1   | max | 3039.415          | 2              | 2.213 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 1  |
| 268        |        |     | min |                   | 3              | .307  | 12 | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 1  |
| 269        |        | 2   | max | 3039.936          | 2              | 2.12  | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 270        |        |     | min | -4013.97          | 3              | .26   | 12 | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 2  |
| 271        |        | 3   | max | 3040.457          | 2              | 2.027 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 272        |        |     | min | -4013.579         | 3              | .214  | 12 | 0              | 1              | 0            | 1             | 0         | 1       | 002    | 2  |
| 273        |        | 4   | max | 3040.978          | 2              | 1.935 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 274        |        |     | min | -4013.189         | 3              | .168  | 12 | 0              | 1              | 0            | 1             | 0         | 1       | 002    | 2  |
| 275        |        | 5   | max | 3041.498          | 2              | 1.842 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 276        |        |     | min | -4012.798         | 3              | .101  | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 003    | 2  |
| 277        |        | 6   | max | 3042.019          | 2              | 1.75  | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 278        |        |     | min | -4012.408         | 3              | .032  | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 004    | 2  |
| 279        |        | 7   | max | 3042.54           | 2              | 1.657 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 12 |
| 280        |        |     | min | -4012.017         | 3              | 038   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 004    | 2  |
| 281        |        | 8   | max | 3043.06           | 2              | 1.564 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 282        |        |     | min | -4011.627         | 3              | 107   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 005    | 2  |
| 283        |        | 9   | max | 3043.581          | 2              | 1.472 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 284        |        |     | min | -4011.236         | 3              | 177   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 005    | 2  |
| 285        |        | 10  | max | 3044.102          | 2              | 1.379 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 286        |        |     | min | -4010.846         | 3              | 246   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 006    | 2  |
| 287        |        | 11  |     | 3044.622          | 2              | 1.287 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 288        |        |     |     | -4010.455         | 3              | 315   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 006    | 2  |
| 289        |        | 12  | max | 3045.143          | 2              | 1.194 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 290        |        |     | min | -4010.065         | 3              | 385   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 007    | 2  |
| 291        |        | 13  |     | 3045.664          | 2              | 1.101 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 292        |        |     | min | -4009.674         | 3              | 454   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 007    | 2  |
| 293        |        | 14  | max | 3046.184          | 2              | 1.009 | 2  | 0              | 1              | 0            | 1             | 0         | 1       | 0      | 3  |
| 294        |        |     | min |                   | 3              | 524   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 007    | 2  |
| 295        |        | 15  | max | 3046.705          | 2              | .916  | 2  | 0              | _1_            | 0            | 1             | 0         | 1       | 0      | 3  |
| 296        |        |     | min | -4008.893         | 3              | 593   | 3  | 0              | 1_             | 0            | 1             | 0         | 1       | 008    | 2  |
| 297        |        | 16  |     | 3047.226          | 2              | .823  | 2  | 0              | _1_            | 0            | 1             | 0         | 1       | 0      | 3  |
| 298        |        |     |     | -4008.503         | 3              | 663   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 008    | 2  |
| 299        |        | 17  |     | 3047.747          | 2              | .731  | 2  | 0              | _1_            | 0            | 1             | 0         | 1       | .001   | 3  |
| 300        |        |     |     | -4008.112         | 3              | 732   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 008    | 2  |
| 301        |        | 18  |     | 3048.267          | 2              | .638  | 2  | 0              | _1_            | 0            | 1             | 0         | 1       | .001   | 3  |
| 302        |        |     |     | -4007.722         | 3              | 802   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 009    | 2  |
| 303        |        | 19  |     | 3048.788          | 2              | .546  | 2  | 0              | 1_             | 0            | 1             | 0         | 1       | .002   | 3  |
| 304        |        |     |     | -4007.331         | 3              | 871   | 3  | 0              | 1              | 0            | 1             | 0         | 1       | 009    | 2  |
| 305        | M7     | 1   |     | 2668.792          | 2              | 7.694 | 4  | 0              | _1_            | 0            | 1             | 0         | 1       | .009   | 2  |
| 306        |        |     | min | -2708.077         | 3              | 1.806 | 15 | 0              | 1              | 0            | 1             | 0         | 1       | 002    | 3  |
| 307        |        | 2   |     | 2668.622          | 2              | 6.933 | 4  | 0              | 1_             | 0            | 1             | 0         | 1       | .006   | 2  |
| 308        |        |     |     | -2708.205         | 3              | 1.628 | 15 | 0              | 1              | 0            | 1             | 0         | 1       | 003    | 3  |
| 309        |        | 3   |     | 2668.452          | 2              | 6.172 | 4  | 0              | _1_            | 0            | 1             | 0         | 1       | .004   | 2  |
| 310        |        |     |     | -2708.333         | 3              | 1.449 | 15 | 0              | 1_             | 0            | 1             | 0         | 1       | 004    | 3  |
| 311        |        | 4   | max | 2668.281          | 2              | 5.411 | 4  | 0              | 1_             | 0            | 1             | 0         | 1       | .002   | 2  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 312 |        |     | min | -2708.461 | 3  | 1.27        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 005      | 3  |
| 313 |        | 5   | max | 2668.111  | 2  | 4.65        | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 2  |
| 314 |        |     | min | -2708.588 | 3  | 1.091       | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 006      | 3  |
| 315 |        | 6   | max | 2667.941  | 2  | 3.889       | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 316 |        |     | min | -2708.716 | 3  | .912        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 007      | 3  |
| 317 |        | 7   | max | 2667.77   | 2  | 3.128       | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 318 |        |     | min | -2708.844 | 3  | .733        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 008      | 3  |
| 319 |        | 8   | max | 2667.6    | 2  | 2.368       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 320 |        |     | min | -2708.972 | 3  | .499        | 12 | 0           | 1  | 0            | 1  | 0        | 1  | 008      | 4  |
| 321 |        | 9   | max | 2667.43   | 2  | 1.775       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 322 |        |     | min | -2709.1   | 3  | .202        | 12 | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 323 |        | 10  | max | 2667.259  | 2  | 1.182       | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 324 |        |     | min | -2709.227 | 3  | 211         | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 01       | 4  |
| 325 |        | 11  | max | 2667.089  | 2  | .589        | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 326 |        |     | min | -2709.355 | 3  | 656         | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 01       | 4  |
| 327 |        | 12  | max | 2666.919  | 2  | 004         | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 328 |        |     | min | -2709.483 | 3  | -1.1        | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 01       | 4  |
| 329 |        | 13  | max | 2666.748  | 2  | 34          | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 330 |        |     | min | -2709.611 | 3  | -1.545      | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 331 |        | 14  | max | 2666.578  | 2  | 519         | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 332 |        |     | min | -2709.738 | 3  | -2.199      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 333 |        | 15  | max | 2666.407  | 2  | 698         | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 334 |        |     | min | -2709.866 | 3  | -2.96       | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 007      | 4  |
| 335 |        | 16  | max | 2666.237  | 2  | 877         | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 336 |        |     | min | -2709.994 | 3  | -3.721      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 006      | 4  |
| 337 |        | 17  | max | 2666.067  | 2  | -1.056      | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 338 |        |     | min | -2710.122 | 3  | -4.482      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 004      | 4  |
| 339 |        | 18  | max | 2665.896  | 2  | -1.234      | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 15 |
| 340 |        |     | min | -2710.249 | 3  | -5.243      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 4  |
| 341 |        | 19  | max | 2665.726  | 2  | -1.413      | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 342 |        |     | min | -2710.377 | 3  | -6.004      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 343 | M8     | 1   | max | 2417.89   | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 344 |        |     | min | 105.271   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 345 |        | 2   | max | 2418.061  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 346 |        |     | min | 105.323   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 347 |        | 3   | max | 2418.231  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 348 |        |     | min | 105.374   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 349 |        | 4   | max | 2418.401  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 350 |        |     | min | 105.425   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 351 |        | 5   | max | 2418.572  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 352 |        |     | min | 105.477   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 353 |        | 6   |     | 2418.742  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 354 |        |     | min | 105.528   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 355 |        | 7   | max | 2418.912  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 356 |        |     | min | 105.58    | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 357 |        | 8   |     | 2419.083  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 358 |        |     | min | 105.631   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 359 |        | 9   | max | 2419.253  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 360 |        |     |     | 105.682   |    | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 361 |        | 10  |     | 2419.423  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 362 |        |     | min |           | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 363 |        | 11  | max | 2419.594  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 364 |        |     | min |           | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 365 |        | 12  |     | 2419.764  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 366 |        |     | min | 105.837   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 367 |        | 13  |     | 2419.934  | 1  | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 368 |        |     |     | 105.888   | 15 | 0           | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
|     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member  | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb]           | LC    | Torque[k-ft] | LC | y-y Mome        | LC      | z-z Mome   | LC |
|-----|---------|-----|-----|-----------|----|-------------|----|-----------------------|-------|--------------|----|-----------------|---------|------------|----|
| 369 |         | 14  | max | 2420.105  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 370 |         |     | min | 105.939   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 371 |         | 15  | max | 2420.275  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 372 |         |     | min | 105.991   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 373 |         | 16  | max | 2420.445  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 374 |         |     | min | 106.042   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 375 |         | 17  | max | 2420.616  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 376 |         |     | min | 106.093   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 377 |         | 18  | max | 2420.786  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 378 |         |     | min | 106.145   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 379 |         | 19  | max | 2420.957  | 1  | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 380 |         |     | min | 106.196   | 15 | 0           | 1  | 0                     | 1     | 0            | 1  | 0               | 1       | 0          | 1  |
| 381 | M10     | 1   | max | 939.165   | 2  | 2.016       | 4  | 026                   | 15    | 0            | 1  | 0               | 2       | 0          | 1  |
| 382 |         |     | min | -1221.32  | 3  | .474        | 15 | 475                   | 1     | 0            | 12 | 0               | 3       | 0          | 1  |
| 383 |         | 2   | max | 939.686   | 2  | 1.898       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 384 |         |     | min |           | 3  | .446        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 0          | 4  |
| 385 |         | 3   | max | 940.207   | 2  | 1.779       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 386 |         |     | min | -1220.539 | 3  | .419        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 001        | 4  |
| 387 |         | 4   | max | 940.728   | 2  | 1.66        | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 388 |         |     | min | -1220.148 | 3  | .391        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 002        | 4  |
| 389 |         | 5   | max |           | 2  | 1.541       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 390 |         |     | min | -1219.758 | 3  | .363        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 003        | 4  |
| 391 |         | 6   | max |           | 2  | 1.422       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 392 |         |     | min | -1219.367 | 3  | .335        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 003        | 4  |
| 393 |         | 7   | max | 942.29    | 2  | 1.303       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 394 |         |     | min | -1218.977 | 3  | .307        | 15 | 475                   | 1     | 0            | 12 | 0               | 1       | 004        | 4  |
| 395 |         | 8   | max | 942.81    | 2  | 1.184       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |
| 396 |         |     | min | -1218.586 | 3  | .279        | 15 | 475                   | 1     | 0            | 12 | 001             | 1       | 004        | 4  |
| 397 |         | 9   | max | 943.331   | 2  | 1.066       | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 398 |         | Ĭ   | min | -1218.196 | 3  | .251        | 15 | 475                   | 1     | 0            | 12 | 001             | 1       | 004        | 4  |
| 399 |         | 10  | max | 943.852   | 2  | .947        | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 400 |         | 10  | min | -1217.805 | 3  | .221        | 12 | 475                   | 1     | 0            | 12 | 002             | 1       | 005        | 4  |
| 401 |         | 11  | max |           | 2  | .828        | 4  | 026                   | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 402 |         |     | min | -1217.415 | 3  | .175        | 12 | 475                   | 1     | 0            | 12 | 002             | 1       | 005        | 4  |
| 403 |         | 12  | max | 944.893   | 2  | .732        | 2  | 026                   | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 404 |         | 12  | min |           | 3  | .128        | 12 | 475                   | 1     | 0            | 12 | 002             | 1       | 005        | 4  |
| 405 |         | 13  | max |           | 2  | .639        | 2  | 026                   | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 406 |         | 13  | min | -1216.634 | 3  | .082        | 12 | 475                   | 1     | 0            | 12 | 002             | 1       | 006        | 4  |
| 407 |         | 14  | max |           | 2  | .547        | 2  | 026                   | 15    | 0            | 1  | <u>.002</u>     | 15      | 001        | 15 |
| 408 |         | 14  | min | -1216.243 | 3  | .028        | 3  | 475                   | 1     | 0            | 12 | 002             | 1       | 006        | 4  |
| 409 |         | 15  |     | 946.455   | 2  | .454        | 2  | <del>475</del>        | 15    | 0            | 1  | 0               | 15      | 001        | 15 |
| 410 |         | 10  |     | -1215.853 | 3  | 041         | 3  | 475                   | 1     | 0            | 12 | 002             | 1       | 006        | 4  |
| 411 |         | 16  | _   | 946.976   | 2  | .361        | 2  | <del>475</del><br>026 | 15    | 0            | 1  | <u>002</u><br>0 | 15      | 000<br>001 | 15 |
| 412 |         | 10  |     | -1215.462 | 3  | 11          | 3  | 026<br>475            | 1     | 0            | 12 | 003             | 1       | 006        | 4  |
| 413 |         | 17  |     | 947.497   | 2  | .269        | 2  | <del>475</del><br>026 | 15    | 0            | 1  | <u>003</u><br>0 | 15      | 000<br>001 | 15 |
| 414 |         | 17  |     | -1215.072 | 3  | 18          | 3  | 026<br>475            | 1     | 0            | 12 | 003             | 1       | 006        | 4  |
| 415 |         | 18  |     | 948.017   | 2  | .176        | 2  | <del>475</del><br>026 | 15    | 0            | 1  | <u>003</u><br>0 | 15      | 000<br>001 | 15 |
| 416 |         | 10  |     | -1214.681 | 3  | 249         | 3  | 026<br>475            | 1     | 0            | 12 | 003             | 1       | 001<br>006 | 4  |
| 417 |         | 19  |     | 948.538   | _  | .084        | 2  | 475<br>026            | 15    | 0            | 1  | 003<br>0        | 15      | 006<br>001 | 12 |
| 417 |         | 19  |     | -1214.291 | 3  | 319         | 3  | 026<br>475            | 15    | 0            | 12 | 003             | 1       | 001<br>006 | 4  |
| 419 | M11     | 1   |     | 707.376   | 2  | 7.66        | 4  | 475<br>022            | 15    | 0            | 1  | <u>003</u><br>0 | 15      | .006       | 4  |
|     | IVI I I |     |     | -854.879  |    |             | 15 |                       |       |              | 12 |                 |         |            | 12 |
| 420 |         | 2   |     | 707.206   | 3  | 1.801       |    | 401<br>022            | 1 1 5 | 0            |    | 0               | 1 1 5   | .001       | _  |
| 421 |         | 2   |     |           | 2  | 6.899       | 4  |                       | 15    | 0            | 12 | 0               | 15      | .003       | 2  |
| 422 |         | 2   |     | -855.006  | 3  | 1.622       | 15 | 401                   | 1     | 0            |    | 0               |         | 0          | 3  |
| 423 |         | 3   | max |           | 2  | 6.138       | 4  | 022                   | 15    | 0            | 12 | 0               | 15      | .001       | 2  |
| 424 |         | 1   |     | -855.134  | 3  | 1.443       | 15 | 401                   | 1     | 0            | _  | 0               | 1 1 1 5 | 001        | 3  |
| 425 |         | 4   | max | 706.865   | 2  | 5.377       | 4  | 022                   | 15    | 0            | 1  | 0               | 15      | 0          | 15 |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |        | Axial[lb]       | LC |        |    |        | LC | Torque[k-ft] | LC |                 | LC | z-z Mome |    |
|-----|--------|-----|--------|-----------------|----|--------|----|--------|----|--------------|----|-----------------|----|----------|----|
| 426 |        |     | min    | -855.262        | 3  | 1.264  | 15 | 401    | 1  | 0            | 12 | 001             | 1  | 003      | 3  |
| 427 |        | 5   | max    | 706.695         | 2  | 4.616  | 4  | 022    | 15 | 0            | 1  | 0               | 15 | 0        | 15 |
| 428 |        |     | min    | -855.39         | 3  | 1.085  | 15 | 401    | 1  | 0            | 12 | 001             | 1  | 004      | 4  |
| 429 |        | 6   | max    | 706.524         | 2  | 3.855  | 4  | 022    | 15 | 0            | 1  | 0               | 15 | 001      | 15 |
| 430 |        |     | min    | -855.517        | 3  | .907   | 15 | 401    | 1  | 0            | 12 | 001             | 1  | 006      | 4  |
| 431 |        | 7   | max    | 706.354         | 2  | 3.094  | 4  | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 432 |        |     | min    | -855.645        | 3  | .728   | 15 | 401    | 1  | 0            | 12 | 002             | 1  | 007      | 4  |
| 433 |        | 8   | max    | 706.184         | 2  | 2.334  | 4  | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 434 |        |     | min    | -855.773        | 3  | .549   | 15 | 401    | 1  | 0            | 12 | 002             | 1  | 008      | 4  |
| 435 |        | 9   | max    | 706.013         | 2  | 1.573  | 4  | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 436 |        |     | min    | -855.901        | 3  | .37    | 15 | 401    | 1  | 0            | 12 | 002             | 1  | 002      | 4  |
| 437 |        | 10  |        | 705.843         |    | .812   |    | 022    | 15 |              | 1  | 0               | 15 | 003      | 15 |
|     |        | 10  | max    |                 | 2  |        | 12 |        | 1  | 0            | 12 | 002             | 1  | 002      |    |
| 438 |        | 4.4 | min    | -856.028        | 3  | .189   |    | 401    |    | 0            |    |                 |    |          | 4  |
| 439 |        | 11  | max    | 705.673         | 2  | .193   | 2  | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 440 |        | 40  | min    | <u>-856.156</u> | 3  | 182    | 3  | 401    | 1  | 0            | 12 | 002             | 1_ | 01       | 4  |
| 441 |        | 12  | max    | 705.502         | 2  | 167    | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 442 |        | 10  | min    | -856.284        | 3  | 71     | 4  | 401    | 1_ | 0            | 12 | 002             | 1_ | 01       | 4  |
| 443 |        | 13  | max    | 705.332         | 2  | 346    | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 444 |        |     | min    | -856.412        | 3  | -1.471 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 009      | 4  |
| 445 |        | 14  | max    | 705.162         | 2  | 524    | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 446 |        |     | min    | -856.539        | 3  | -2.232 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 009      | 4  |
| 447 |        | 15  | max    | 704.991         | 2  | 703    | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 002      | 15 |
| 448 |        |     | min    | -856.667        | 3  | -2.993 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 008      | 4  |
| 449 |        | 16  | max    | 704.821         | 2  | 882    | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 001      | 15 |
| 450 |        |     | min    | -856.795        | 3  | -3.754 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 006      | 4  |
| 451 |        | 17  | max    | 704.651         | 2  | -1.061 | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 001      | 15 |
| 452 |        |     | min    | -856.923        | 3  | -4.515 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 004      | 4  |
| 453 |        | 18  | max    | 704.48          | 2  | -1.24  | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 0        | 15 |
| 454 |        |     | min    | -857.051        | 3  | -5.276 | 4  | 401    | 1  | 0            | 12 | 003             | 1  | 002      | 4  |
| 455 |        | 19  | max    | 704.31          | 2  | -1.419 | 15 | 022    | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 456 |        | 1.0 | min    | -857.178        | 3  | -6.037 | 4  | 401    | 1  | 0            | 12 | 004             | 1  | 0        | 1  |
| 457 | M12    | 1   | max    |                 | 1  | 0.007  | 1  | 15.525 | 1  | 0            | 1  | 0               | 15 | 0        | 1  |
| 458 | 10112  |     | min    | 49.901          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 003             | 1  | 0        | 1  |
| 459 |        | 2   | max    | 992.547         | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | <u>.005</u>     | 15 | 0        | 1  |
| 460 |        |     | min    | 49.952          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 002             | 1  | 0        | 1  |
| 461 |        | 3   |        |                 | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | <u>002</u><br>0 | 1  | 0        | 1  |
| 462 |        | 3   | max    |                 |    | _      |    |        |    |              |    |                 | 12 |          |    |
|     |        | 1   | min    | 50.003          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               |    | 0        | 1  |
| 463 |        | 4   | max    |                 | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .002            | 1  | 0        | 1  |
| 464 |        | -   | min    | 50.055          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 465 |        | 5   | max    | 993.058         | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .004            | 1  | 0        | 1  |
| 466 |        |     |        | 50.106          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 467 |        | 6   |        | 993.228         | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .006            | 1  | 0        | 1  |
| 468 |        |     | min    | 50.158          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 469 |        | 7   | max    | 993.399         | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .007            | 1  | 0        | 1  |
| 470 |        |     | min    | 50.209          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 471 |        | 8   | max    |                 | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .009            | 1  | 0        | 1  |
| 472 |        |     | min    | 50.26           | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 473 |        | 9   | max    |                 | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .011            | 1  | 0        | 1  |
| 474 |        |     | min    | 50.312          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 475 |        | 10  | max    | 993.91          | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .013            | 1  | 0        | 1  |
| 476 |        |     | min    | 50.363          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 477 |        | 11  | max    | 994.08          | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .014            | 1  | 0        | 1  |
| 478 |        |     | min    | 50.415          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 479 |        | 12  | max    | 994.251         | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .016            | 1  | 0        | 1  |
| 480 |        |     | min    | 50.466          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | 0               | 15 | 0        | 1  |
| 481 |        | 13  | max    |                 | 1  | 0      | 1  | 15.525 | 1  | 0            | 1  | .018            | 1  | 0        | 1  |
| 482 |        | 10  | min    | 50.517          | 15 | 0      | 1  | .862   | 15 | 0            | 1  | .001            | 15 | 0        | 1  |
| TUZ |        |     | 111111 | 00.017          | IU | U      |    | .002   | IU | U            |    | .001            | IU | U        |    |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 1883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 483 |        | 14  | max |           | 1  | 0           | 1  |             |    | 0            | 1  |          |    | 0        | 1  |
| Bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 484 |        |     | min | 50.569    | 15 | 0           | 1  | .862        | 15 | 0            | 1  | .001     | 15 | 0        | 1  |
| ABR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 485 |        | 15  | max | 994.762   | 1  | 0           | 1  | 15.525      | 1  | 0            | 1  | .022     | 1  | 0        | 1  |
| AB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 486 |        |     | min |           | 15 | 0           | 1  | .862        | 15 | 0            | 1  | .001     | 15 | 0        | 1  |
| AB9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 487 |        | 16  | max | 994.932   | 1  | 0           | 1  | 15.525      | 1  | 0            | 1  | .023     | 1  | 0        | 1  |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 488 |        |     | min | 50.672    | 15 | 0           | 1  | .862        | 15 | 0            | 1  | .001     | 15 | 0        | 1  |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 489 |        | 17  | max | 995.102   | 1  | 0           | 1  | 15.525      | 1  | 0            | 1  | .025     | 1  | 0        | 1  |
| 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     | min |           | 15 |             | 1  |             | 15 |              | 1  |          | 15 | 0        | 1  |
| 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 18  |     |           |    | 0           | 1  |             |    | 0            | 1  |          |    | 0        | 1  |
| 493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |     |           |    |             | 1  |             |    |              | 1  |          |    |          | 1  |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 19  |     |           |    |             | 1  |             |    |              | 1  |          |    |          | _  |
| 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |     |           |    |             | -  |             | _  |              |    |          |    |          | _  |
| 496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | M1     | 1   |     |           |    |             |    |             |    |              |    |          |    |          | _  |
| 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 2   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | _   |     | 11 386    |    |             |    |             |    |              |    |          |    |          |    |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 3   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 3   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 1   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 503         5         max         535,223         3         457,545         2         -7,776         15         0         3         .041         1         -0,03         15           504         min         -303,248         2         -472,912         3         -139,862         1         0         2         .002         15        088         3           506         min         -302,426         2         -473,792         3         -139,862         1         0         2         .033         1        338         2           507         7         max         536,455         3         455,198         2         -7,776         15         0         3         -006         15         .338         2           509         8         max         537,071         3         454,024         2         -7,776         15         0         3         -006         15         .589         3           510         min         300,783         2         -475,552         3         -139,862         1         0         2         -181         1         -889         3           511         9         max         555,761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | 4   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | _   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 505   6   max   535,839   3   456,371   2   -7,776   15   0   3  002   15   0.88   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 5   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 507         7         max         536.455         3         455.198         2         -7.776         15         0         3        006         15         .338         3           508         mini         -301.605         2         -474.672         3         -139.862         1         0         2         -107         1         -579         2           509         8         max         557.071         3         454.024         2         -7.776         15         0         3        01         15         .589         3           510         mini         -300.783         2         -475.552         3         -111.151         15         0         9         .01         1         .686         3           511         9         max         555.761         3         49.19         2         -11.151         15         0         9         .006         15         -939         2           513         10         max         556.377         3         48.017         2         -11.151         15         0         9         0         15         .609         3           514         min         -10.200.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 6   |     |           |    |             |    |             |    |              |    |          |    |          |    |
| Sob   Min   301.605   2   -474.672   3   -139.862   1   0   2   -107   1   -579   2   509   8   max   537.071   3   454.024   2   -7.776   15   0   3   -011   15   .589   3   3   .510   min   -300.783   2   -475.552   3   -139.862   1   0   2   -181   1   -819   2   .511   9   max   555.761   3   49.19   2   -11.151   15   0   9   .104   1   .686   3   .512   min   -209.887   2   .359   15   -200.479   1   0   3   .006   15   -393   2   .513   10   max   556.377   3   48.017   2   -11.151   15   0   9   0   15   .669   3   .514   min   -209.887   2   .359   15   -200.479   1   0   3   -001   1   -964   2   .514   min   -209.066   2   .005   15   -200.479   1   0   3   -001   1   -964   2   .515   11   max   556.993   3   46.844   2   -11.151   15   0   9   -0.06   15   .652   3   .516   min   -208.244   2   -1.413   4   -200.479   1   0   3   -107   1   -989   2   .517   12   max   575.608   3   319.648   3   -7.589   15   0   2   .178   1   .569   3   .518   min   -117.336   2   -555.34   2   -136.668   1   0   3   .011   15   -878   2   .520   min   -116.515   2   -556.514   2   -136.668   1   0   3   .006   15   -585   2   .521   14   max   576.84   3   317.888   3   -7.589   15   0   2   .106   1   4   3   .522   min   -115.693   2   -557.687   2   -136.668   1   0   3   .006   15   -585   2   .523   15   max   577.456   3   317.008   3   -7.589   15   0   2   .004   15   .232   3   .524   min   -114.871   2   -558.861   2   -136.668   1   0   3   .002   15   .291   2   .525   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526   .526  |     |        |     | min |           | 2  |             |    |             |    | 0            |    |          |    |          |    |
| Solution   Solution |     |        | 7   | max |           | 3  |             | 2  |             | 15 | 0            |    |          | 15 |          |    |
| STID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508 |        |     | min | -301.605  | 2  | -474.672    | 3  |             | 1  | 0            | 2  | 107      |    |          |    |
| 511         9 max         555.761         3         49.19         2         -11.151         15         0         9         .104         1         .686         3           512         min         -209.887         2         .359         15         -200.479         1         0         3         .006         15        939         2           513         10         max         556.977         3         48.017         2         -11.151         15         0         9         0         15         .669         3           514         min         -209.066         2         .005         15         -200.479         1         0         3        001         1        964         2           515         11         max         576.693         3         48.844         2         -11.151         15         0         9         .006         15         .652         3           516         min         -208.244         2         -1.413         4         -200.479         1         0         3         .107         1         -989         2           517         12         max         575.6224         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 509 |        | 8   | max | 537.071   | 3  | 454.024     | 2  | -7.776      | 15 | 0            | 3  | 01       | 15 | .589     | 3  |
| S12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 510 |        |     | min | -300.783  | 2  | -475.552    | 3  | -139.862    | 1  | 0            | 2  | 181      | 1  | 819      | 2  |
| 512         min         -209.887         2         .359         15         -200.479         1         0         3         .006         15        939         2           513         10         max         556.377         3         48.017         2         -11.151         15         0         9         0         15         .669         3           514         min         209.066         2         .005         15         -200.479         1         0         3        001         1        964         2           515         11         max         556.993         3         46.844         2         -11.151         15         0         9        006         15         .652         3           516         min         -208.244         2         -1.413         4         -200.479         1         0         3        017         1        989         2           517         12         max         575.608         3         319.648         3         -7.589         15         0         2         .106         1         .4         3         .506         3         .01         15         .652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511 |        | 9   | max | 555.761   | 3  | 49.19       | 2  | -11.151     | 15 | 0            | 9  | .104     | 1  | .686     | 3  |
| 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 512 |        |     | min | -209.887  | 2  | .359        | 15 | -200.479    | 1  | 0            | 3  | .006     | 15 | 939      |    |
| 514         min         -209.066         2         .005         15         -200.479         1         0         3        001         1        964         2           515         11         max         556.993         3         46.844         2         -11.151         15         0         9        006         15         .652         3           516         min         -208.244         2         -1.413         4         -200.479         1         0         3        107         1        989         2           517         12         max         575.608         3         319.648         3         -7.589         15         0         2         .178         1         .569         3           518         min         -117.336         2         -555.34         2         -136.668         1         0         3         .01         15         -878         2           519         13         max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.515         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | 10  |     |           | 3  |             |    | -11.151     | 15 | 0            | 9  | 0        | 15 |          | 3  |
| 515         11         max         556.993         3         46.844         2         -11.151         15         0         9        006         15         .652         3           516         min         -208.244         2         -1.413         4         -200.479         1         0         3         -107         1        989         2           517         12         max         575.608         3         319.648         3         -7.589         15         0         2         .178         1         .569         3           518         min         -117.336         2         -555.34         2         -136.668         1         0         3         .01         15        878         2           519         13         max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.515         2         -556.514         2         -136.668         1         0         3         .006         15         .289           521         14         max         577.456         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     |     |           |    |             |    |             |    |              | 3  | 001      |    |          |    |
| 516         min         -208.244         2         -1.413         4         -200.479         1         0         3        107         1        989         2           517         12         max         575.608         3         319.648         3         -7.589         15         0         2         .178         1         .569         3           518         min         -117.336         2         -555.34         2         -136.668         1         0         3         .01         15        878         2           519         13         max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.615         2         -556.514         2         -136.668         1         0         3         .006         15         -585         2           521         14         max         576.84         3         317.088         3         -7.589         15         0         2         .034         1         .232         3           522         min         -114.871         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | 11  |     |           |    |             |    |             | 15 |              |    |          | 15 |          |    |
| 517         12 max         575.608         3         319.648         3         -7.589         15         0         2         .178         1         .569         3           518         min         -117.336         2         -555.34         2         -136.668         1         0         3         .01         15        878         2           519         13 max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.515         2         -556.514         2         -136.668         1         0         3         .006         15         -585         2           521         max         576.84         3         317.888         3         -7.589         15         0         2         .034         1         .232         3           522         min         -114.871         2         -558.861         2         -136.668         1         0         3         .002         15         .291         2           523         15         max         577.456         3         317.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 518         min         -117.336         2         -555.34         2         -136.668         1         0         3         .01         15        878         2           519         13         max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.515         2         -556.514         2         -136.668         1         0         3         .006         15        585         2           521         14         max         576.84         3         317.888         3         -7.589         15         0         2         .034         1         .232         3           522         min         -115.693         2         -557.687         2         -136.668         1         0         3         .002         15         .291         2           523         15         max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .291         2           524         min         -114.871         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 12  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 519         13         max         576.224         3         318.768         3         -7.589         15         0         2         .106         1         .4         3           520         min         -116.515         2         -556.514         2         -136.668         1         0         3         .006         15        585         2           521         14         max         576.84         3         317.888         3         -7.589         15         0         2         .034         1         .232         3           522         min         -115.693         2         -557.687         2         -136.668         1         0         3         .002         15         -291         2           523         15         max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .065         3           524         min         -114.871         2         -558.861         2         -136.668         1         0         3        019         9           525         16         max         578.073         3         316.128<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 520         min         -116.515         2         -556.514         2         -136.668         1         0         3         .006         15        585         2           521         14         max         576.84         3         317.888         3         -7.589         15         0         2         .034         1         .232         3           522         min         -115.693         2         -557.687         2         -136.668         1         0         3         .002         15         -291         2           523         15         max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .065         3           524         min         -114.871         2         -558.861         2         -136.668         1         0         3        038         1        019         9           525         16         max         578.073         3         316.128         3         -7.589         15         0         2        006         15         .299         2           526         min         -113.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | 13  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 521         14 max         576.84         3         317.888         3         -7.589         15         0         2         .034         1         .232         3           522         min         -115.693         2         -557.687         2         -136.668         1         0         3         .002         15        291         2           523         15 max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .065         3           524         min         -114.871         2         -558.861         2         -136.668         1         0         3        038         1        019         9           525         16 max         578.073         3         316.128         3         -7.589         15         0         2        006         15         .299         2           526         min         -114.05         2         -560.034         2         -136.668         1         0         3        11         1         -102         1         .299         2         .528         min         -113.228         2         -561.207 <td></td> <td></td> <td>10</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | 10  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 522         min         -115.693         2         -557.687         2         -136.668         1         0         3         .002         15        291         2           523         15         max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .065         3           524         min         -114.871         2         -558.861         2         -136.668         1         0         3        038         1        019         9           525         16         max         578.073         3         316.128         3         -7.589         15         0         2        006         15         .299         2           526         min         -114.05         2         -560.034         2         -136.668         1         0         3        11         1        102         3           527         17         max         578.689         3         315.248         3         -7.589         15         0         2        01         15         .595         2           528         min         -113.228 <th< td=""><td></td><td></td><td>1/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        | 1/  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 523         15 max         577.456         3         317.008         3         -7.589         15         0         2        002         15         .065         3           524         min         -114.871         2         -558.861         2         -136.668         1         0         3        038         1        019         9           525         16 max         578.073         3         316.128         3         -7.589         15         0         2        006         15         .299         2           526         min         -114.05         2         -560.034         2         -136.668         1         0         3        11         1        102         3           527         17 max         578.689         3         315.248         3         -7.589         15         0         2        01         15         .595         2           528         min         -113.928         2         -561.207         2         -136.668         1         0         3        182         1        269         3           529         18 max         -11.395         15         585.325         2 </td <td></td> <td></td> <td>17</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 17  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 524         min         -114.871         2         -558.861         2         -136.668         1         0         3        038         1        019         9           525         16         max         578.073         3         316.128         3         -7.589         15         0         2        006         15         .299         2           526         min         -114.05         2         -560.034         2         -136.668         1         0         3        11         1        102         3           527         17         max         578.689         3         315.248         3         -7.589         15         0         2        01         15         .595         2           528         min         -113.228         2         -561.207         2         -136.668         1         0         3        182         1        269         3           529         18         max         -11.395         15         585.325         2         -8.428         15         0         3        014         15         .3         2           530         min         -202.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 15  |     |           |    |             |    |             | _  |              | _  |          |    |          |    |
| 525       16       max       578.073       3       316.128       3       -7.589       15       0       2      006       15       .299       2         526       min       -114.05       2       -560.034       2       -136.668       1       0       3      11       1      102       3         527       17       max       578.689       3       315.248       3       -7.589       15       0       2      01       15       .595       2         528       min       -113.228       2       -561.207       2       -136.668       1       0       3      182       1      269       3         529       18       max       -11.395       15       585.325       2       -8.428       15       0       3      014       15       .3       2         530       min       -202.062       1       -270.69       3       -151.47       1       0       2      258       1      133       3         531       19       max       -11.147       15       584.151       2       -8.428       15       0       3      019       15 </td <td></td> <td></td> <td>10</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | 10  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 526         min         -114.05         2         -560.034         2         -136.668         1         0         3        11         1        102         3           527         17         max         578.689         3         315.248         3         -7.589         15         0         2        01         15         .595         2           528         min         -113.228         2         -561.207         2         -136.668         1         0         3        182         1        269         3           529         18         max         -11.395         15         585.325         2         -8.428         15         0         3        014         15         .3         2           530         min         -202.062         1         -270.69         3         -151.47         1         0         2        258         1        133         3           531         19         max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1 </td <td></td> <td></td> <td>16</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 16  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 527         17 max         578.689         3         315.248         3         -7.589         15         0         2        01         15         .595         2           528         min         -113.228         2         -561.207         2         -136.668         1         0         3        182         1        269         3           529         18 max         -11.395         15         585.325         2         -8.428         15         0         3        014         15         .3         2           530         min         -202.062         1         -270.69         3         -151.47         1         0         2        258         1        133         3           531         19 max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1         max         431.617         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 10  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 528         min         -113.228         2         -561.207         2         -136.668         1         0         3        182         1        269         3           529         18         max         -11.395         15         585.325         2         -8.428         15         0         3        014         15         .3         2           530         min         -202.062         1         -270.69         3         -151.47         1         0         2        258         1        133         3           531         19         max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1         max         431.617         1         2136.825         3         0         1         0         1         0         1         .004         2           534         min         22.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 47  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 529         18 max         -11.395         15         585.325         2         -8.428         15         0         3        014         15         .3         2           530         min         -202.062         1         -270.69         3         -151.47         1         0         2        258         1        133         3           531         19 max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1 max         431.617         1         2136.825         3         0         1         0         1         0         1         .024         2           534         min         22.723         12         -1306.471         2         0         1         0         1         0         1         .004         3           535         2 max         432.438         1         2135.945         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 17  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 530         min         -202.062         1         -270.69         3         -151.47         1         0         2        258         1        133         3           531         19         max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1         max         431.617         1         2136.825         3         0         1         0         1         0         1         .024         2           534         min         22.723         12         -1306.471         2         0         1         0         1         0         1         .004         3           535         2         max         432.438         1         2135.945         3         0         1         0         1         0         1         .714         2           536         min         23.134         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 40  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 531         19         max         -11.147         15         584.151         2         -8.428         15         0         3        019         15         .01         3           532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1         max         431.617         1         2136.825         3         0         1         0         1         0         1         .024         2           534         min         22.723         12         -1306.471         2         0         1         0         1         0         1         .004         3           535         2         max         432.438         1         2135.945         3         0         1         0         1         0         1         .004         3           536         min         23.134         12         -1307.645         2         0         1         0         1         0         1         -1.131         3           537         3         max         1724.414         3 </td <td></td> <td></td> <td>18</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 18  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 532         min         -201.24         1         -271.571         3         -151.47         1         0         2        338         1        009         2           533         M5         1         max         431.617         1         2136.825         3         0         1         0         1         0         1         .024         2           534         min         22.723         12         -1306.471         2         0         1         0         1         0         1        004         3           535         2         max         432.438         1         2135.945         3         0         1         0         1         0         1         .714         2           536         min         23.134         12         -1307.645         2         0         1         0         1         0         1         -1.131         3           537         3         max         1724.414         3         1416.89         2         0         1         0         1         0         1         -2.214         3           538         min         -1087.494         2         -1536.078<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |     |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 533         M5         1         max         431.617         1         2136.825         3         0         1         0         1         0         1         .024         2           534         min         22.723         12         -1306.471         2         0         1         0         1         0         1        004         3           535         2         max         432.438         1         2135.945         3         0         1         0         1         0         1         .714         2           536         min         23.134         12         -1307.645         2         0         1         0         1         0         1         -1.131         3           537         3         max         1724.414         3         1416.89         2         0         1         0         1         0         1         -2.214         3           538         min         -1087.494         2         -1536.078         3         0         1         0         1         0         1         -2.214         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 19  |     |           |    |             |    |             |    |              |    |          |    |          |    |
| 534         min         22.723         12         -1306.471         2         0         1         0         1         0         1        004         3           535         2         max         432.438         1         2135.945         3         0         1         0         1         0         1         .714         2           536         min         23.134         12         -1307.645         2         0         1         0         1         -1.131         3           537         3         max         1724.414         3         1416.89         2         0         1         0         1         0         1         1.372         2           538         min         -1087.494         2         -1536.078         3         0         1         0         1         0         1         -2.214         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     |     |           |    |             |    | _           |    |              |    |          |    |          |    |
| 535     2     max     432.438     1     2135.945     3     0     1     0     1     0     1     .714     2       536     min     23.134     12     -1307.645     2     0     1     0     1     0     1     -1.131     3       537     3     max     1724.414     3     1416.89     2     0     1     0     1     0     1     1.372     2       538     min     -1087.494     2     -1536.078     3     0     1     0     1     0     1     -2.214     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | M5     | 1   | max |           | 1  |             | 3  | 0           | 1  | 0            | 1  | 0        | 1  |          |    |
| 536         min         23.134         12         -1307.645         2         0         1         0         1         -1.131         3           537         3         max         1724.414         3         1416.89         2         0         1         0         1         0         1         1.372         2           538         min         -1087.494         2         -1536.078         3         0         1         0         1         0         1         -2.214         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |     | min |           | 12 |             | 2  | 0           |    | 0            | 1  | 0        | 1  |          |    |
| 537     3     max     1724.414     3     1416.89     2     0     1     0     1     0     1     1.372     2       538     min     -1087.494     2     -1536.078     3     0     1     0     1     0     1     -2.214     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 535 |        | 2   | max |           | 1  | 2135.945    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .714     |    |
| 537     3     max     1724.414     3     1416.89     2     0     1     0     1     0     1     1.372     2       538     min     -1087.494     2     -1536.078     3     0     1     0     1     0     1     -2.214     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |     |     |           | 12 | -1307.645   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -1.131   |    |
| 538 min -1087.494 2 -1536.078 3 0 1 0 1 0 1 -2.214 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 3   |     |           |    | 1416.89     |    |             | 1  |              | 1  |          | 1  |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |     |     |           |    |             |    |             | 1  |              | 1  |          | 1  |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | 4   |     | 1725.03   | 3  | 1415.717    |    |             | 1  |              | 1  |          | 1  |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec |         | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome           | LC |
|------------|--------|-----|---------|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|--------------------|----|
| 540        |        |     | min     | -1086.672 | 2  | -1536.958   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -1.403             | 3  |
| 541        |        | 5   | max     | 1725.646  | 3  | 1414.543    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0                  | 9  |
| 542        |        |     | min     | -1085.85  | 2  | -1537.838   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 592                | 3  |
| 543        |        | 6   | max     | 1726.262  | 3  | 1413.37     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .22                | 3  |
| 544        |        |     | min     | -1085.029 | 2  | -1538.718   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 869                | 2  |
| 545        |        | 7   | max     | 1726.878  | 3  | 1412.196    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 1.032              | 3  |
| 546        |        |     | min     | -1084.207 | 2  | -1539.598   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -1.614             | 2  |
| 547        |        | 8   | max     | 1727.495  | 3  | 1411.023    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 1.845              | 3  |
| 548        |        |     | min     | -1083.386 | 2  | -1540.478   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -2.359             | 2  |
| 549        |        | 9   | max     | 1761.122  | 3  | 164.244     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.118              | 3  |
| 550        |        |     | min     | -897.111  | 2  | .357        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | -2.69              | 2  |
| 551        |        | 10  | max     | 1761.738  | 3  | 163.07      | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.059              | 3  |
| 552        |        |     | min     | -896.289  | 2  | .003        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | -2.776             | 2  |
| 553        |        | 11  | max     | 1762.354  | 3  | 161.897     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2                  | 3  |
| 554        |        |     | min     | -895.468  | 2  | -1.233      | 4  | 0           | 1  | 0            | 1  | 0        | 1  | -2.862             | 2  |
| 555        |        | 12  |         | 1796.13   | 3  | 1036.44     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 1.76               | 3  |
| 556        |        |     | min     | -709.217  | 2  | -1745.211   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -2.565             | 2  |
| 557        |        | 13  | max     | 1796.746  | 3  | 1035.56     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 1.213              | 3  |
| 558        |        |     |         | -708.396  | 2  | -1746.385   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -1.644             | 2  |
| 559        |        | 14  |         | 1797.363  | 3  | 1034.68     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .667               | 3  |
| 560        |        |     |         | -707.574  | 2  | -1747.558   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 722                | 2  |
| 561        |        | 15  |         | 1797.979  | 3  | 1033.8      | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .2                 | 2  |
| 562        |        |     |         | -706.752  | 2  | -1748.731   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 004                | 13 |
| 563        |        | 16  |         | 1798.595  | 3  | 1032.92     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 1.123              | 2  |
| 564        |        |     |         | -705.931  | 2  | -1749.905   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 424                | 3  |
| 565        |        | 17  |         | 1799.211  | 3  | 1032.04     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 2.047              | 2  |
| 566        |        |     |         | -705.109  | 2  | -1751.078   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 969                | 3  |
| 567        |        | 18  | max     |           | 12 | 1965.327    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 1.054              | 2  |
| 568        |        |     |         | -431.985  | 1  | -921.46     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 506                | 3  |
| 569        |        | 19  | max     | -23.016   | 12 | 1964.154    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .018               | 2  |
| 570        |        |     |         | -431.164  | 1  | -922.34     | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 02                 | 3  |
| 571        | M9     | 1   | max     |           | 1  | 640.972     | 3  | 140.069     | 1  | 0            | 3  | 019      | 15 | .002               | 3  |
| 572        |        |     | min     | 11.138    | 15 | -386.784    | 2  | 7.801       | 15 | 0            | 2  | 336      | 1  | 012                | 2  |
| 573        |        | 2   | max     | 201.835   | 1  | 640.092     | 3  | 140.069     | 1  | 0            | 3  | 015      | 15 | .192               | 2  |
| 574        |        |     | min     | 11.386    | 15 | -387.958    | 2  | 7.801       | 15 | 0            | 2  | 262      | 1  | 336                | 3  |
| 575        |        | 3   | max     | 533.99    | 3  | 459.891     | 2  | 139.862     | 1  | 0            | 2  | 01       | 15 | .387               | 2  |
| 576        |        |     | min     | -304.891  | 2  | -471.152    | 3  | 7.776       | 15 | 0            | 3  | 188      | 1  | 66                 | 3  |
| 577        |        | 4   | max     |           | 3  | 458.718     | 2  | 139.862     | 1  | 0            | 2  | 006      | 15 | .149               | 1  |
| 578        |        |     |         | -304.069  | 2  | -472.032    | 3  | 7.776       | 15 | 0            | 3  | 114      | 1  | 412                | 3  |
| 579        |        | 5   | max     |           | 3  | 457.545     | 2  | 139.862     | 1  | 0            | 2  | 002      | 15 | 003                | 15 |
| 580        |        |     |         | -303.248  | 2  | -472.912    |    |             | 15 | 0            | 3  | 041      | 1  | 162                | 3  |
| 581        |        | 6   |         | 535.839   | 3  | 456.371     | 2  | 139.862     | 1  | 0            | 2  | .033     | 1  | .088               | 3  |
| 582        |        |     |         | -302.426  | 2  | -473.792    | 3  | 7.776       | 15 | 0            | 3  | .002     | 15 | 338                | 2  |
| 583        |        | 7   |         | 536.455   | 3  | 455.198     | 2  | 139.862     | 1  | 0            | 2  | .107     | 1  | .338               | 3  |
| 584        |        |     |         | -301.605  | 2  | -474.672    | 3  | 7.776       | 15 | 0            | 3  | .006     | 15 | 579                | 2  |
| 585        |        | 8   |         | 537.071   | 3  | 454.024     | 2  | 139.862     | 1  | 0            | 2  | .181     | 1  | .589               | 3  |
| 586        |        |     |         | -300.783  | 2  | -475.552    | 3  | 7.776       | 15 | 0            | 3  | .01      | 15 | 819                | 2  |
| 587        |        | 9   |         | 555.761   | 3  | 49.19       | 2  | 200.479     | 1  | 0            | 3  | 006      | 15 | .686               | 3  |
| 588        |        |     |         | -209.887  | 2  | .359        | 15 | 11.151      | 15 | 0            | 9  | 104      | 1  | 939                | 2  |
| 589        |        | 10  |         | 556.377   | 3  | 48.017      | 2  | 200.479     | 1  | 0            | 3  | .001     | 1  | .669               | 3  |
| 590        |        | 10  |         | -209.066  | 2  | .005        | 15 | 11.151      | 15 | 0            | 9  | 0        | 15 | 964                | 2  |
| 591        |        | 11  |         | 556.993   | 3  | 46.844      | 2  | 200.479     | 1  | 0            | 3  | .107     | 1  | .652               | 3  |
| 592        |        |     |         | -208.244  | 2  | -1.413      | 4  | 11.151      | 15 | 0            | 9  | .006     | 15 | 989                | 2  |
| 593        |        | 12  |         | 575.608   | 3  | 319.648     | 3  | 136.668     | 1  | 0            | 3  | 01       | 15 | <u>969</u><br>.569 | 3  |
| 594        |        | 14  |         | -117.336  | 2  | -555.34     | 2  | 7.589       | 15 | 0            | 2  | 178      | 1  | 878                | 2  |
| 595        |        | 13  |         | 576.224   | 3  | 318.768     | 3  | 136.668     | 1  | 0            | 3  | 006      | 15 | <u>070</u><br>.4   | 3  |
| 596        |        | 13  |         | -116.515  | 2  | -556.514    | 2  | 7.589       | 15 | 0            | 2  | 106      | 1  | <u>585</u>         | 2  |
| <b>980</b> |        |     | 1111111 | -110.010  |    | -550.514    |    | 7.509       | IJ | U            |    | 100      |    | 565                |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 597 |        | 14  | max | 576.84    | 3  | 317.888     | 3  | 136.668     | 1  | 0            | 3  | 002      | 15 | .232     | 3  |
| 598 |        |     | min | -115.693  | 2  | -557.687    | 2  | 7.589       | 15 | 0            | 2  | 034      | 1  | 291      | 2  |
| 599 |        | 15  | max | 577.456   | 3  | 317.008     | 3  | 136.668     | 1  | 0            | 3  | .038     | 1  | .065     | 3  |
| 600 |        |     | min | -114.871  | 2  | -558.861    | 2  | 7.589       | 15 | 0            | 2  | .002     | 15 | 019      | 9  |
| 601 |        | 16  | max | 578.073   | 3  | 316.128     | 3  | 136.668     | 1  | 0            | 3  | .11      | 1  | .299     | 2  |
| 602 |        |     | min | -114.05   | 2  | -560.034    | 2  | 7.589       | 15 | 0            | 2  | .006     | 15 | 102      | 3  |
| 603 |        | 17  | max | 578.689   | 3  | 315.248     | 3  | 136.668     | 1  | 0            | 3  | .182     | 1  | .595     | 2  |
| 604 |        |     | min | -113.228  | 2  | -561.207    | 2  | 7.589       | 15 | 0            | 2  | .01      | 15 | 269      | 3  |
| 605 |        | 18  | max | -11.395   | 15 | 585.325     | 2  | 151.47      | 1  | 0            | 2  | .258     | 1  | .3       | 2  |
| 606 |        |     | min | -202.062  | 1  | -270.69     | 3  | 8.428       | 15 | 0            | 3  | .014     | 15 | 133      | 3  |
| 607 |        | 19  | max | -11.147   | 15 | 584.151     | 2  | 151.47      | 1  | 0            | 2  | .338     | 1  | .01      | 3  |
| 608 |        |     | min | -201.24   | 1  | -271.571    | 3  | 8.428       | 15 | 0            | 3  | .019     | 15 | 009      | 2  |

## **Envelope Member Section Deflections**

|    | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|----|--------|-----|-----|--------|----|--------|----|--------|----------------|----|---------------|----|---------------|----|
| 1  | M13    | 1   | max | .001   | 1  | .095   | 2  | .009   | 3 8.048e-3     | 2  | NC            | 1_ | NC            | 1  |
| 2  |        |     | min | 0      | 15 | 014    | 3  | 005    | 2 -1.689e-3    | 3  | NC            | 1  | NC            | 1  |
| 3  |        | 2   | max | .001   | 1  | .416   | 3  | .063   | 1 9.388e-3     | 2  | NC            | 5  | NC            | 2  |
| 4  |        |     | min | 0      | 15 | 148    | 1  | .004   | 15 -1.887e-3   | 3  | 626.845       | 3  | 4390.743      | 1  |
| 5  |        | 3   | max | .001   | 1  | .765   | 3  | .154   | 1 1.073e-2     | 2  | NC            | 5  | NC            | 3  |
| 6  |        |     | min | 0      | 15 | 337    | 2  | .009   | 15 -2.086e-3   | 3  | 346.473       | 3  | 1770.464      | 1  |
| 7  |        | 4   | max | 0      | 1  | .976   | 3  | .233   | 1 1.207e-2     | 2  | NC            | 15 | NC            | 3  |
| 8  |        |     | min | 0      | 15 | 445    | 2  | .013   | 15 -2.284e-3   | 3  | 272.598       | 3  | 1163.468      | 1  |
| 9  |        | 5   | max | 0      | 1  | 1.024  | 3  | .275   | 1 1.341e-2     | 2  | NC            | 15 | NC            | 5  |
| 10 |        |     | min | 0      | 15 | 455    | 2  | .016   | 15 -2.482e-3   | 3  | 259.98        | 3  | 986.696       | 1  |
| 11 |        | 6   | max | 0      | 1  | .913   | 3  | .266   | 1 1.475e-2     | 2  | NC            | 5  | NC            | 5  |
| 12 |        |     | min | 0      | 15 | 371    | 2  | .015   | 15 -2.681e-3   | 3  | 291.205       | 3  | 1018.438      | 1  |
| 13 |        | 7   | max | 0      | 1  | .675   | 3  | .21    | 1 1.609e-2     | 2  | NC            | 5  | NC            | 5  |
| 14 |        |     | min | 0      | 15 | 22     | 1  | .012   | 15 -2.879e-3   | 3  | 391.573       | 3  | 1293.194      | 1  |
| 15 |        | 8   | max | 0      | 1  | .374   | 3  | .123   | 1 1.743e-2     | 2  | NC            | 5  | NC            | 5  |
| 16 |        |     | min | 0      | 15 | 037    | 1  | .007   | 15 -3.077e-3   | 3  | 695.626       | 3  | 2224.226      | 1  |
| 17 |        | 9   | max | 0      | 1  | .156   | 2  | .035   | 1 1.877e-2     | 2  | NC            | 4  | NC            | 2  |
| 18 |        |     | min | 0      | 15 | .004   | 15 | 006    | 10 -3.276e-3   | 3  | 2347.185      | 3  | 7922.599      | 1  |
| 19 |        | 10  | max | 0      | 1  | .234   | 2  | .029   | 3 2.011e-2     | 2  | NC            | 3  | NC            | 1  |
| 20 |        |     | min | 0      | 1  | 023    | 3  | 02     | 2 -3.474e-3    | 3  | 1941.621      | 2  | NC            | 1  |
| 21 |        | 11  | max | 0      | 15 | .156   | 2  | .035   | 1 1.877e-2     | 2  | NC            | 4  | NC            | 2  |
| 22 |        |     | min | 0      | 1  | .004   | 15 | 006    | 10 -3.276e-3   | 3  | 2347.185      | 3  | 7922.599      | 1  |
| 23 |        | 12  | max | 0      | 15 | .374   | 3  | .123   | 1 1.743e-2     | 2  | NC            | 5  | NC            | 5  |
| 24 |        |     | min | 0      | 1  | 037    | 1  | .007   | 15 -3.077e-3   | 3  | 695.626       | 3  | 2224.226      | 1  |
| 25 |        | 13  | max | 0      | 15 | .675   | 3  | .21    | 1 1.609e-2     | 2  | NC            | 5  | NC            | 5  |
| 26 |        |     | min | 0      | 1  | 22     | 1  | .012   | 15 -2.879e-3   | 3  | 391.573       | 3  | 1293.194      | 1  |
| 27 |        | 14  | max | 0      | 15 | .913   | 3  | .266   | 1 1.475e-2     | 2  | NC            | 5  | NC            | 5  |
| 28 |        |     | min | 0      | 1  | 371    | 2  | .015   | 15 -2.681e-3   | 3  | 291.205       | 3  | 1018.438      | 1  |
| 29 |        | 15  | max | 0      | 15 | 1.024  | 3  | .275   | 1 1.341e-2     | 2  | NC            | 15 | NC            | 5  |
| 30 |        |     | min | 0      | 1  | 455    | 2  | .016   | 15 -2.482e-3   | 3  | 259.98        | 3  | 986.696       | 1  |
| 31 |        | 16  | max | 0      | 15 | .976   | 3  | .233   | 1 1.207e-2     | 2  | NC            | 15 | NC            | 3  |
| 32 |        |     | min | 0      | 1  | 445    | 2  | .013   | 15 -2.284e-3   | 3  | 272.598       | 3  | 1163.468      |    |
| 33 |        | 17  | max | 0      | 15 | .765   | 3  | .154   | 1 1.073e-2     | 2  | NC            | 5  | NC            | 3  |
| 34 |        |     | min | 001    | 1  | 337    | 2  | .009   | 15 -2.086e-3   | 3  | 346.473       | 3  | 1770.464      | 1  |
| 35 |        | 18  | max | 0      | 15 | .416   | 3  | .063   | 1 9.388e-3     | 2  | NC            | 5  | NC            | 2  |
| 36 |        |     | min | 001    | 1  | 148    | 1  | .004   | 15 -1.887e-3   | 3  | 626.845       | 3  | 4390.743      | 1  |
| 37 |        | 19  | max | 0      | 15 | .095   | 2  | .009   | 3 8.048e-3     | 2  | NC            | 1  | NC            | 1  |
| 38 |        |     | min | 001    | 1  | 014    | 3  | 005    | 2 -1.689e-3    | 3  | NC            | 1  | NC            | 1  |
| 39 | M14    | 1   | max | 0      | 1  | .209   | 3  | .008   | 3 4.747e-3     | 2  | NC            | 1  | NC            | 1  |
| 40 |        |     | min | 0      | 15 | 316    | 2  | 004    | 2 -3.587e-3    | 3  | NC            | 1  | NC            | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|          | Member | Sec      |            | x [in] | LC | y [in]                | LC       | z [in]       | LC      |                       |          | (n) L/y Ratio  |                | <del>,</del>   |   |
|----------|--------|----------|------------|--------|----|-----------------------|----------|--------------|---------|-----------------------|----------|----------------|----------------|----------------|---|
| 41       |        | 2        | max        | 0      | 1  | .613                  | 3        | .044         | 1       | 5.736e-3              | 2        | NC             | 5_             | NC             | 2 |
| 42       |        |          | min        | 0      | 15 | 676                   | 2        | .003         |         | -4.411e-3             | 3        | 667.723        | 3              | 6296.3         | 1 |
| 43       |        | 3        | max        | 0      | 1  | .952                  | 3        | .125         | 1       | 6.725e-3              | 2        | NC             | <u>15</u>      | NC             | 3 |
| 44       |        |          | min        | 0      | 15 | 982                   | 2        | .007         |         | -5.235e-3             | 3_       | 363.125        | 3              | 2176.227       | 1 |
| 45       |        | 4        | max        | 0      | 1  | 1.182                 | 3        | .202         | 1       | 7.714e-3              | 2        | NC             | <u>15</u>      | NC             | 3 |
| 46       |        | _        | min        | 0      | 15 | -1.201                | 2        | .011         |         | -6.059e-3             | 3        | 277.436        | 3              | 1344.404       |   |
| 47       |        | 5        | max        | 0      | 1  | 1.281                 | 3        | .246         | 1       | 8.703e-3              | 2        | 9173.649       | <u>15</u>      | NC             | 5 |
| 48       |        | _        | min        | 0      | 15 | -1.312                | 2        | .014         |         | -6.883e-3             | 3        | 251.943        |                | 1102.604       |   |
| 49       |        | 6        | max        | 0      | 1  | 1.249                 | 3        | .244         | 1       | 9.692e-3              | 2        | 9253.711       | <u>15</u>      | NC             | 5 |
| 50       |        | <b>-</b> | min        | 0      | 15 | -1.317                | 2        | .014         |         | -7.707e-3             | 3        | 259.611        | 3              | 1114.244       |   |
| 51       |        | 7        | max        | 0      | 1  | 1.111                 | 3        | .195         | 1       | 1.068e-2              | 2        | NC             | <u>15</u>      | NC             | 5 |
| 52       |        |          | min        | 0      | 15 | -1.233                | 2        | .011         |         | -8.531e-3             | 3        | 294.414        | 2              | 1393.882       | 1 |
| 53       |        | 8        | max        | 0      | 1  | <u>.913</u>           | 3        | .115         | 1       | 1.167e-2              | 2        | NC             | <u>15</u>      | NC             | 3 |
| 54       |        |          | min        | 0      | 15 | <u>-1.096</u>         | 2        | .007         |         | -9.355e-3             | 3        | 346.323        | 2_             | 2368.343       |   |
| 55       |        | 9_       | max        | 0      | 1  | .724                  | 3        | .034         | 1       | 1.266e-2              | 2        | NC<br>100 1 10 | _5_            | NC             | 2 |
| 56       |        | 40       | min        | 0      | 15 | 959                   | 2        | 005          |         | -1.018e-2             | 3        | 420.146        | 2              | 8280.044       |   |
| 57       |        | 10       | max        | 0      | 1  | .637                  | 3        | .026         | 3       | 1.365e-2              | 2        | NC<br>407.005  | 5_             | NC<br>NC       | 1 |
| 58       |        | 4.4      | min        | 0      | 1  | 894                   | 2        | 018          | 2       | -1.1e-2               | 3        | 467.285        | 2              | NC<br>NC       | 1 |
| 59       |        | 11       | max        | 0      | 15 | .724                  | 3        | .034         | 1       | 1.266e-2              | 2        | NC<br>100 1 10 | _5_            | NC<br>2000 044 | 2 |
| 60       |        | 40       | min        | 0      | 1  | 959                   | 2        | 005          |         | -1.018e-2             | 3        | 420.146        | 2              | 8280.044       |   |
| 61       |        | 12       | max        | 0      | 15 | .913                  | 3        | .115         | 1       | 1.167e-2              | 2        | NC<br>040,000  | <u>15</u>      | NC<br>0000 040 | 3 |
| 62       |        | 40       | min        | 0      | 1  | -1.096                | 2        | .007         |         | -9.355e-3             | 3        | 346.323        | 2              | 2368.343       |   |
| 63       |        | 13       | max        | 0      | 15 | 1.111                 | 3        | .195         | 1       | 1.068e-2              | 2        | NC<br>204 444  | <u>15</u>      | NC<br>4000 000 | 5 |
| 64       |        | 4.4      | min        | 0      | 1  | -1.233                | 2        | .011         |         | -8.531e-3             | 3        | 294.414        | 2              | 1393.882       |   |
| 65       |        | 14       | max        | 0      | 15 | 1.249                 | 3        | .244         | 1       | 9.692e-3              | 2        | 9253.711       | <u>15</u>      | NC             | 5 |
| 66       |        | 4.5      | min        | 0      | 1  | -1.317                | 2        | .014         |         | -7.707e-3             | 3        | 259.611        | 3              | 1114.244       |   |
| 67       |        | 15       | max        | 0      | 15 | 1.281                 | 3        | .246         | 1       | 8.703e-3              | 2        | 9173.649       | 15             | NC<br>4400 CO4 | 5 |
| 68       |        | 4.0      | min        | 0      | 1  | -1.312                | 2        | .014         |         | -6.883e-3             | 3        | 251.943        | 3              | 1102.604       |   |
| 69       |        | 16       | max        | 0      | 15 | 1.182                 | 3        | .202         | 1       | 7.714e-3              | 2        | NC             | <u>15</u>      | NC             | 3 |
| 70<br>71 |        | 17       | min        | 0      | 15 | <u>-1.201</u><br>.952 | 3        | .011<br>.125 | 15<br>1 | -6.059e-3             | 2        | 277.436<br>NC  | <u>3</u><br>15 | 1344.404<br>NC | 3 |
| 72       |        | 17       | max        | 0      | 1  | 982                   | 2        | .007         |         | 6.725e-3<br>-5.235e-3 | 3        | 363.125        | 3              | 2176.227       | 1 |
|          |        | 10       | min        |        | 15 |                       | 3        |              |         |                       |          | NC             |                | NC             | 2 |
| 73<br>74 |        | 18       | max        | 0      | 1  | .613<br>676           | 2        | .044         | 15      | 5.736e-3<br>-4.411e-3 | 3        | 667.723        | <u>5</u><br>3  | 6296.3         | 4 |
| 75       |        | 19       | min        | 0      | 15 |                       | 3        | .003         | 3       |                       | 2        | NC             | <u>ა</u><br>1  | NC             | 1 |
| 76       |        | 19       | max        | 0      | 1  | .209<br>316           | 2        | 004          |         | 4.747e-3<br>-3.587e-3 | 3        | NC<br>NC       | 1              | NC<br>NC       | 1 |
| 77       | M15    | 1        | min        | 0      | 15 | .212                  | 3        | .008         | 3       | 3.171e-3              |          | NC<br>NC       | 1              | NC<br>NC       | 1 |
| 78       | IVITO  |          | max        | 0      | 1  | 315                   | 2        | 004          |         | -4.991e-3             | <u>3</u> | NC<br>NC       | 1              | NC<br>NC       | 1 |
|          |        | 2        | min        | 0      | 15 | <u>315</u><br>.469    | 3        | .044         | 1       | 3.907e-3              |          | NC<br>NC       | 5              | NC<br>NC       | 2 |
| 79<br>80 |        |          | max<br>min | 0      | 1  | 806                   | 2        | .003         |         | -6.036e-3             | 2        | 549.936        | 2              | 6268.36        | 1 |
| 81       |        | 3        | max        | 0      | 15 | .689                  | 3        | .126         |         | 4.643e-3              |          |                | 15             |                | 3 |
| 82       |        | 1        | min        | 0      | 1  | -1.219                | 2        | .007         |         | -7.081e-3             |          | 298.557        |                | 2170.596       |   |
| 83       |        | 4        | max        | 0      | 15 | .847                  | 3        | .202         | 1       | 5.379e-3              | 3        | NC             | 15             | NC             | 3 |
| 84       |        | -        | min        | 0      | 1  | -1.502                | 2        | .011         |         | -8.125e-3             | 2        | 227.414        |                | 1341.716       |   |
| 85       |        | 5        | max        | 0      | 15 | .929                  | 3        | .247         | 1       | 6.115e-3              | 3        | 9189.477       | 15             | NC             | 5 |
| 86       |        | J        | min        | 0      | 1  | -1.629                | 2        | .014         | 15      | -9.17e-3              | 2        | 205.52         |                | 1100.615       |   |
| 87       |        | 6        | max        | 0      | 15 | .936                  | 3        | .244         | 1       | 6.851e-3              | 3        | 9273.053       | 15             | NC             | 5 |
| 88       |        |          | min        | 0      | 1  | -1.6                  | 2        | .014         |         | -1.021e-2             | 2        | 210.156        |                | 1112.166       |   |
| 89       |        | 7        | max        | 0      | 15 | .88                   | 3        | .195         | 1       | 7.587e-3              | 3        | NC             | 15             | NC             | 5 |
| 90       |        |          | min        | 0      | 1  | -1.443                | 2        | .011         |         | -1.126e-2             | 2        | 239.313        | 2              | 1390.7         | 1 |
| 91       |        | 8        | max        | 0      | 15 | .786                  | 3        | .116         | 1       | 8.323e-3              | 3        | NC             | 15             | NC             | 3 |
| 92       |        |          | min        | 0      | 1  | -1.214                | 2        | .007         | 15      | -1.23e-2              | 2        | 300.34         | 2              | 2359.576       |   |
| 93       |        | 9        | max        | 0      | 15 | .691                  | 3        | .034         | 1       | 9.06e-3               | 3        | NC             | 5              | NC             | 2 |
| 94       |        |          | min        | 0      | 1  | 994                   | 2        | 004          |         | -1.335e-2             | 2        | 397.763        |                | 8178.607       |   |
| 95       |        | 10       | max        | 0      | 1  | .646                  | 3        | .024         | 3       | 9.796e-3              | 3        | NC             | 5              | NC             | 1 |
| 96       |        | 10       | min        | 0      | 1  | 891                   | 2        | 017          |         | -1.439e-2             | 2        | 468.446        | 2              | NC             | 1 |
| 97       |        | 11       | max        | 0      | 1  | .691                  | 3        | .034         | 1       | 9.06e-3               | 3        | NC             | 5              | NC             | 2 |
| UI       |        |          | παλ        | U      |    | .001                  | <u> </u> | .004         | 1 1     | J.JUG-J               |          | 110            |                | 110            |   |



Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member     | Sec |     | x [in] | LC | y [in]        | LC | z [in] | LC x Rotate [r |    |               |           |                |   |
|-----|------------|-----|-----|--------|----|---------------|----|--------|----------------|----|---------------|-----------|----------------|---|
| 98  |            |     | min | 0      | 15 | 994           | 2  | 004    | 10 -1.335e-2   | 2  | 397.763       | 2         | 8178.607       |   |
| 99  |            | 12  | max | 0      | 1  | <u>.786</u>   | 3  | .116   | 1 8.323e-3     | 3  | NC            | <u>15</u> | NC             | 3 |
| 100 |            | 40  | min | 0      | 15 | <u>-1.214</u> | 2  | .007   | 15 -1.23e-2    | 2  | 300.34        | 2         | 2359.576       |   |
| 101 |            | 13  | max | 0      | 1  | .88           | 3  | .195   | 1 7.587e-3     | 3  | NC            | 15        | NC<br>1000 7   | 5 |
| 102 |            | 4.4 | min | 0      | 15 | -1.443        | 2  | .011   | 15 -1.126e-2   | 2  | 239.313       | 2         | 1390.7         | 1 |
| 103 |            | 14  | max | 0      | 1  | .936          | 3  | .244   | 1 6.851e-3     | 3  | 9273.053      | <u>15</u> | NC             | 5 |
| 104 |            | 45  | min | 0      | 15 | <u>-1.6</u>   | 2  | .014   | 15 -1.021e-2   | 2  | 210.156       | 2         | 1112.166       | 1 |
| 105 |            | 15  | max | 0      | 1  | .929          | 3  | .247   | 1 6.115e-3     | 3  | 9189.477      | 15        | NC<br>4400 045 | 5 |
| 106 |            | 4.0 | min | 0      | 15 | <u>-1.629</u> | 2  | .014   | 15 -9.17e-3    | 2  | 205.52        |           | 1100.615       |   |
| 107 |            | 16  | max | 0      | 1  | .847          | 3  | .202   | 1 5.379e-3     | 3  | NC<br>007.444 | <u>15</u> | NC             | 3 |
| 108 |            | 4-7 | min | 0      | 15 | -1.502        | 2  | .011   | 15 -8.125e-3   | 2  | 227.414       | 2         | 1341.716       |   |
| 109 |            | 17  | max | 0      | 1  | .689          | 3  | .126   | 1 4.643e-3     | 3  | NC See See    | <u>15</u> | NC             | 3 |
| 110 |            | 10  | min | 0      | 15 | -1.219        | 2  | .007   | 15 -7.081e-3   | 2  | 298.557       | 2         | 2170.596       |   |
| 111 |            | 18  | max | 0      | 1  | .469          | 3  | .044   | 1 3.907e-3     | 3  | NC            | 5         | NC             | 2 |
| 112 |            | 4.0 | min | 0      | 15 | 806           | 2  | .003   | 15 -6.036e-3   | 2  | 549.936       | 2         | 6268.36        | 1 |
| 113 |            | 19  | max | 0      | 1  | .212          | 3  | .008   | 3 3.171e-3     | 3  | NC            | _1_       | NC             | 1 |
| 114 |            |     | min | 0      | 15 | 315           | 2  | 004    | 2 -4.991e-3    | 2  | NC            | _1_       | NC             | 1 |
| 115 | <u>M16</u> | 1   | max | 0      | 15 | .084          | 2  | .007   | 3 5.439e-3     | 3  | NC            | 1_        | NC             | 1 |
| 116 |            |     | min | 002    | 1  | 067           | 3  | 004    | 2 -6.53e-3     | 2  | NC            | 1_        | NC             | 1 |
| 117 |            | 2   | max | 0      | 15 | .098          | 3  | .062   | 1 6.522e-3     | 3  | NC            | _5_       | NC             | 2 |
| 118 |            |     | min | 001    | 1  | 293           | 2  | .004   | 15 -7.505e-3   | 2  | 717.661       | 2         | 4422.173       | 1 |
| 119 |            | 3   | max | 0      | 15 | .229          | 3  | .153   | 1 7.604e-3     | 3  | NC            | 5         | NC             | 3 |
| 120 |            |     | min | 001    | 1  | 594           | 2  | .009   | 15 -8.48e-3    | 2  | 398.401       | 2         | 1776.773       | 1 |
| 121 |            | 4   | max | 0      | 15 | .301          | 3  | .233   | 1 8.687e-3     | 3  | NC            | 5         | NC             | 3 |
| 122 |            |     | min | 001    | 1  | 771           | 2  | .013   | 15 -9.455e-3   | 2  | 316.008       | 2         | 1165.418       | 1 |
| 123 |            | 5   | max | 0      | 15 | .305          | 3  | .274   | 1 9.769e-3     | 3  | NC            | 15        | NC             | 5 |
| 124 |            |     | min | 0      | 1  | 8             | 2  | .015   | 15 -1.043e-2   | 2  | 305.704       | 2         | 986.887        | 1 |
| 125 |            | 6   | max | 0      | 15 | .242          | 3  | .266   | 1 1.085e-2     | 3  | NC            | 5_        | NC             | 5 |
| 126 |            |     | min | 0      | 1  | 684           | 2  | .015   | 15 -1.141e-2   | 2  | 351.6         | 2         | 1016.942       | 1 |
| 127 |            | 7   | max | 0      | 15 | .128          | 3  | .211   | 1 1.193e-2     | 3  | NC            | 5_        | NC             | 5 |
| 128 |            |     | min | 0      | 1  | 456           | 2  | .012   | 15 -1.238e-2   | 2  | 500.655       | 2         | 1287.856       |   |
| 129 |            | 8   | max | 0      | 15 | 0             | 15 | .124   | 1 1.302e-2     | 3  | NC            | 4         | NC             | 3 |
| 130 |            |     | min | 0      | 1  | 171           | 2  | .007   | 15 -1.336e-2   | 2  | 1058.753      | 2         | 2200.694       | 1 |
| 131 |            | 9   | max | 0      | 15 | .098          | 1  | .037   | 1 1.41e-2      | 3  | NC            | _1_       | NC             | 2 |
| 132 |            |     | min | 0      | 1  | 133           | 3  | 003    | 10 -1.433e-2   | 2  | 4060.733      | 3         | 7564.565       | 1 |
| 133 |            | 10  | max | 0      | 1  | .199          | 2  | .02    | 3 1.518e-2     | 3  | NC            | 4         | NC             | 1 |
| 134 |            |     | min | 0      | 1  | 188           | 3  | 016    | 2 -1.531e-2    | 2  | 2222.997      | 3         | NC             | 1 |
| 135 |            | 11  | max | 0      | 1  | .098          | 1  | .037   | 1 1.41e-2      | 3  | NC            | 1         | NC             | 2 |
| 136 |            |     | min | 0      | 15 | 133           | 3  | 003    | 10 -1.433e-2   | 2  | 4060.733      | 3         | 7564.565       | 1 |
| 137 |            | 12  | max | 0      | 1  | 0             | 15 | .124   | 1 1.302e-2     | 3  | NC            | 4         | NC             | 3 |
| 138 |            |     | min | 0      | 15 | 171           | 2  | .007   | 15 -1.336e-2   | 2  | 1058.753      | 2         | 2200.694       |   |
| 139 |            | 13  | max | 0      | 1  | .128          | 3  | .211   | 1 1.193e-2     | 3  | NC            | 5         | NC             | 5 |
| 140 |            |     | min | 0      | 15 | 456           | 2  | .012   | 15 -1.238e-2   | 2  | 500.655       | 2         | 1287.856       | 1 |
| 141 |            | 14  | max | 0      | 1  | .242          | 3  | .266   | 1 1.085e-2     | 3  | NC            | 5         | NC             | 5 |
| 142 |            |     | min | 0      | 15 | 684           | 2  | .015   | 15 -1.141e-2   | 2  | 351.6         | 2         | 1016.942       | 1 |
| 143 |            | 15  | max | 0      | 1  | .305          | 3  | .274   | 1 9.769e-3     | 3  | NC            | 15        | NC             | 5 |
| 144 |            |     | min | 0      | 15 | 8             | 2  | .015   | 15 -1.043e-2   | 2  | 305.704       | 2         | 986.887        | 1 |
| 145 |            | 16  | max | .001   | 1  | .301          | 3  | .233   | 1 8.687e-3     | 3  | NC            | 5         | NC             | 3 |
| 146 |            |     | min | 0      | 15 | 771           | 2  | .013   | 15 -9.455e-3   | 2  | 316.008       | 2         | 1165.418       | 1 |
| 147 |            | 17  | max | .001   | 1  | .229          | 3  | .153   | 1 7.604e-3     | 3  | NC            | 5         | NC             | 3 |
| 148 |            |     | min | 0      | 15 | 594           | 2  | .009   | 15 -8.48e-3    | 2  | 398.401       | 2         | 1776.773       |   |
| 149 |            | 18  | max | .001   | 1  | .098          | 3  | .062   | 1 6.522e-3     | 3  | NC            | 5         | NC             | 2 |
| 150 |            |     | min | 0      | 15 | 293           | 2  | .004   | 15 -7.505e-3   | 2  | 717.661       | 2         | 4422.173       |   |
| 151 |            | 19  | max | .002   | 1  | .084          | 2  | .007   | 3 5.439e-3     | 3  | NC            | 1         | NC             | 1 |
| 152 |            |     | min | 0      | 15 | 067           | 3  | 004    | 2 -6.53e-3     | 2  | NC            | 1         | NC             | 1 |
| 153 | M2         | 1   | max | .007   | 2  | .008          | 2  | .011   | 1 -1.79e-5     | 15 | NC            | 1         | NC             | 2 |
| 154 |            |     | min | 009    | 3  | 014           | 3  | 0      | 15 -3.221e-4   | 1  | 9072.236      |           | 7114.709       |   |
|     |            |     |     |        |    |               |    |        |                | _  |               | _         |                |   |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in]                 | LC | z [in] | LC | x Rotate [r |                |                | LC               |          |   |
|-----|--------|-----|-----|--------|----|------------------------|----|--------|----|-------------|----------------|----------------|------------------|----------|---|
| 155 |        | 2   | max | .007   | 2  | .007                   | 2  | .01    | 1  | -1.694e-5   | <u>15</u>      | NC             | _1_              | NC       | 2 |
| 156 |        |     | min | 009    | 3  | 014                    | 3  | 0      | 15 | -3.047e-4   | 1_             | NC             | 1_               | 7754.07  | 1 |
| 157 |        | 3   | max | .006   | 2  | .006                   | 2  | .009   | 1  | -1.597e-5   | <u> 15</u>     | NC             | _1_              | NC       | 2 |
| 158 |        |     | min | 008    | 3  | 013                    | 3  | 0      | 15 | -2.873e-4   | 1              | NC             | 1                | 8515.019 | 1 |
| 159 |        | 4   | max | .006   | 2  | .005                   | 2  | .008   | 1  | -1.5e-5     | <u>15</u>      | NC             | 1_               | NC       | 2 |
| 160 |        |     | min | 008    | 3  | 013                    | 3  | 0      | 15 | -2.699e-4   | 1              | NC             | 1                | 9429.49  | 1 |
| 161 |        | 5   | max | .005   | 2  | .003                   | 2  | .007   | 1  | -1.404e-5   | 15             | NC             | 1                | NC       | 1 |
| 162 |        |     | min | 007    | 3  | 013                    | 3  | 0      | 15 | -2.525e-4   | 1              | NC             | 1                | NC       | 1 |
| 163 |        | 6   | max | .005   | 2  | .002                   | 2  | .006   | 1  | -1.307e-5   | 15             | NC             | 1                | NC       | 1 |
| 164 |        |     | min | 007    | 3  | 012                    | 3  | 0      | 15 | -2.352e-4   | 1              | NC             | 1                | NC       | 1 |
| 165 |        | 7   | max | .005   | 2  | .001                   | 2  | .006   | 1  | -1.21e-5    | 15             | NC             | 1_               | NC       | 1 |
| 166 |        |     | min | 006    | 3  | 011                    | 3  | 0      | 15 | -2.178e-4   | 1              | NC             | 1                | NC       | 1 |
| 167 |        | 8   | max | .004   | 2  | 0                      | 2  | .005   | 1  | -1.114e-5   | 15             | NC             | 1                | NC       | 1 |
| 168 |        |     | min | 006    | 3  | 011                    | 3  | 0      | 15 | -2.004e-4   | 1              | NC             | 1                | NC       | 1 |
| 169 |        | 9   | max | .004   | 2  | 0                      | 2  | .004   | 1  | -1.017e-5   | 15             | NC             | 1                | NC       | 1 |
| 170 |        |     | min | 005    | 3  | 01                     | 3  | 0      | 15 | -1.83e-4    | 1              | NC             | 1                | NC       | 1 |
| 171 |        | 10  | max | .003   | 2  | 001                    | 2  | .003   | 1  | -9.204e-6   | 15             | NC             | 1                | NC       | 1 |
| 172 |        |     | min | 005    | 3  | 01                     | 3  | 0      | 15 | -1.656e-4   | 1              | NC             | 1                | NC       | 1 |
| 173 |        | 11  | max | .003   | 2  | 001                    | 15 | .003   | 1  | -8.238e-6   | 15             | NC             | 1                | NC       | 1 |
| 174 |        |     | min | 004    | 3  | 009                    | 3  | 0      | 15 | -1.482e-4   | 1              | NC             | 1                | NC       | 1 |
| 175 |        | 12  | max | .003   | 2  | 001                    | 15 | .002   | 1  | -7.272e-6   | 15             | NC             | 1                | NC       | 1 |
| 176 |        |     | min | 004    | 3  | 008                    | 3  | 0      | 15 | -1.308e-4   | 1              | NC             | 1                | NC       | 1 |
| 177 |        | 13  | max | .002   | 2  | 001                    | 15 | .002   | 1  | -6.305e-6   | 15             | NC             | 1                | NC       | 1 |
| 178 |        |     | min | 003    | 3  | 007                    | 3  | 0      | 15 | -1.134e-4   | 1              | NC             | 1                | NC       | 1 |
| 179 |        | 14  | max | .002   | 2  | 001                    | 15 | .001   | 1  | -5.339e-6   | 15             | NC             | 1                | NC       | 1 |
| 180 |        |     | min | 003    | 3  | 006                    | 3  | 0      | 15 | -9.6e-5     | 1              | NC             | 1                | NC       | 1 |
| 181 |        | 15  | max | .002   | 2  | 001                    | 15 | 0      | 1  | -4.373e-6   | 15             | NC             | 1                | NC       | 1 |
| 182 |        |     | min | 002    | 3  | 005                    | 3  | 0      | 15 | -7.861e-5   | 1              | NC             | 1                | NC       | 1 |
| 183 |        | 16  | max | .001   | 2  | 0                      | 15 | 0      | 1  | -3.406e-6   | 15             | NC             | 1                | NC       | 1 |
| 184 |        |     | min | 002    | 3  | 004                    | 4  | 0      | 15 | -6.122e-5   | 1              | NC             | 1                | NC       | 1 |
| 185 |        | 17  | max | 0      | 2  | 0                      | 15 | 0      | 1  | -2.44e-6    | 15             | NC             | 1                | NC       | 1 |
| 186 |        |     | min | 001    | 3  | 003                    | 4  | 0      | 15 | -4.382e-5   | 1              | NC             | 1                | NC       | 1 |
| 187 |        | 18  | max | 0      | 2  | 0                      | 15 | 0      | 1  | -1.473e-6   | 15             | NC             | 1                | NC       | 1 |
| 188 |        | - ' | min | 0      | 3  | 001                    | 4  | 0      | 15 | -2.643e-5   | 1              | NC             | 1                | NC       | 1 |
| 189 |        | 19  | max | 0      | 1  | 0                      | 1  | 0      | 1  | -5.071e-7   | 15             | NC             | 1                | NC       | 1 |
| 190 |        | -10 | min | 0      | 1  | 0                      | 1  | 0      | 1  | -9.034e-6   | 1              | NC             | 1                | NC       | 1 |
| 191 | M3     | 1   | max | 0      | 1  | 0                      | 1  | 0      | 1  | 1.378e-6    | 1              | NC             | 1                | NC       | 1 |
| 192 | 1410   |     | min | 0      | 1  | 0                      | 1  | 0      | 1  | 7.802e-8    | 15             | NC             | 1                | NC       | 1 |
| 193 |        | 2   | max | 0      | 3  | 0                      | 15 | 0      | 15 | 2.924e-5    | 1              | NC             | 1                | NC       | 1 |
| 194 |        |     | min | 0      | 2  | 002                    | 4  | 0      | 1  | 1.623e-6    | 15             | NC             | 1                | NC       | 1 |
| 195 |        | 3   | max | 0      | 3  | 0                      | 15 | 0      |    | 5.711e-5    | 1              | NC             | 1                | NC       | 1 |
| 196 |        | Ĭ   | min | 0      | 2  | 004                    | 4  | 0      | 1  | 3.168e-6    | 15             | NC             | 1                | NC       | 1 |
| 197 |        | 4   | max | .001   | 3  | 00 <del>4</del><br>001 | 15 | 0      | 1  | 8.497e-5    | 1              | NC             | 1                | NC       | 1 |
| 198 |        |     | min | 001    | 2  | 006                    | 4  | 0      | 3  | 4.713e-6    | 15             | NC             | 1                | NC       | 1 |
| 199 |        | 5   | max | .002   | 3  | 002                    | 15 | 0      | 1  | 1.128e-4    | 1              | NC             | 1                | NC       | 1 |
| 200 |        |     | min | 001    | 2  | 002                    | 4  | 0      | 12 | 6.258e-6    | 15             | NC             | 1                | NC       | 1 |
| 201 |        | 6   | max | .002   | 3  | 002                    | 15 | 0      | 1  | 1.407e-4    | 1              | NC             | 1                | NC       | 1 |
| 202 |        | U   | min | 002    | 2  | 002<br>01              | 4  | 0      | 12 | 7.803e-6    |                | 9242.098       | 4                | NC<br>NC | 1 |
| 203 |        | 7   |     | .002   | 3  | 003                    | 15 | 0      | 1  | 1.686e-4    | <u>15</u><br>1 | NC             | _ <del>4</del> _ | NC<br>NC | 1 |
|     |        | /   | max |        |    |                        |    |        | 15 |             |                | 7992.855       | 4                |          | 1 |
| 204 |        | 0   | min | 002    | 2  | 012                    | 15 | 0      |    | 9.348e-6    | <u>15</u>      |                |                  | NC<br>NC | - |
| 205 |        | 8   | max | .003   | 3  | 003                    | 15 | 0      | 1  | 1.964e-4    | 1_             | NC             | 2                | NC<br>NC | 1 |
| 206 |        | 0   | min | 002    | 2  | 013                    | 4  | 0      | 15 | 1.089e-5    | <u>15</u>      | 7224.093       | 4_               | NC<br>NC | 1 |
| 207 |        | 9   | max | .003   | 3  | 003                    | 15 | .001   | 1  | 2.243e-4    | 1_             | NC<br>C77F C4C | 5_4              | NC<br>NC | 1 |
| 208 |        | 40  | min | 003    | 2  | 014                    | 4  | 0      | 15 |             |                | 6775.646       | 4_               | NC<br>NC | 1 |
| 209 |        | 10  | max | .004   | 3  | 003                    | 15 | .001   | 1  | 2.522e-4    | 1_             | NC<br>CE70 400 | 5                | NC<br>NC | 1 |
| 210 |        | 4.4 | min | 003    | 2  | 014                    | 4  | 0      | 15 | 1.398e-5    | -              | 6570.406       | 4_               | NC<br>NC | 1 |
| 211 |        | 11  | max | .004   | 3  | 003                    | 15 | .002   | 1  | 2.8e-4      | <u>1</u>       | NC             | 5                | NC       | 1 |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
| 215         13         max         .005         3        003         15         .003         1         3.358e-4         1         NC         2         NC           216         min        004         2        013         4         0         15         1.862e-5         15         7296.104         4         NC           217         14         max         .005         3        003         15         .004         1         3.636e-4         1         NC         1         NC           218         min        004         2        012         4         0         15         2.016e-5         15         8157.802         4         NC           219         15         max         .006         3        002         15         .005         1         3.915e-4         1         NC         1         NC           220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16         max         .006         3        002         15         .006         1         4.194e-4                                                                                                 | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
| 216         min        004         2        013         4         0         15         1.862e-5         15         7296.104         4         NC           217         14         max         .005         3        003         15         .004         1         3.636e-4         1         NC         1         NC           218         min        004         2        012         4         0         15         2.016e-5         15         8157.802         4         NC           219         15         max         .006         3        002         15         .005         1         3.915e-4         1         NC         1         NC           220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16         max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15 <t< td=""><td>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1</td></t<>  | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
| 217         14 max         .005         3        003         15         .004         1         3.636e-4         1         NC         1         NC           218         min        004         2        012         4         0         15         2.016e-5         15         8157.802         4         NC           219         15 max         .006         3        002         15         .005         1         3.915e-4         1         NC         1         NC           220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16 max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17 max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC                                                                                             | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
| 218         min        004         2        012         4         0         15         2.016e-5         15         8157.802         4         NC           219         15         max         .006         3        002         15         .005         1         3.915e-4         1         NC         1         NC           220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16         max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17         max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC <td>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1</td>             | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1                          |
| 219         15         max         .006         3        002         15         .005         1         3.915e-4         1         NC         1         NC           220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16         max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17         max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1                                                                                                     | 1                                                                                           |
| 220         min        005         2        01         4         0         15         2.171e-5         15         9625.531         4         NC           221         16         max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17         max         .007         3        001         15         .009         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1         NC         1         NC           226         min        006         2        004         3         0         15         2.634e-5         15         NC                                                                                                         | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 2<br>742 1<br>C 3<br>825 1<br>C 3 |
| 221         16         max         .006         3        002         15         .006         1         4.194e-4         1         NC         1         NC           222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17         max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1         NC         1         NC           226         min        006         2        004         3         0         15         2.634e-5         15         NC         1         NC           227         19         max         .007         3         0         10         .01         1         5.03e-4         1         NC <td>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 1<br/>C 2<br/>742 1<br/>C 3<br/>825 1<br/>C 3</td> | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 2<br>742 1<br>C 3<br>825 1<br>C 3               |
| 222         min        005         2        008         4         0         15         2.325e-5         15         NC         1         NC           223         17         max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1         NC         1         NC           226         min        006         2        004         3         0         15         2.634e-5         15         NC         1         NC           227         19         max         .007         3         0         10         .01         1         5.03e-4         1         NC         1         NC           228         min        006         2        002         3         0         15         2.789e-5         15         NC         1                                                                                                       | C 1<br>C 1<br>C 1<br>C 1<br>C 1<br>C 2<br>742 1<br>C 3<br>825 1<br>C 3                      |
| 223         17         max         .007         3        001         15         .007         1         4.472e-4         1         NC         1         NC           224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1         NC         1         NC           226         min        006         2        004         3         0         15         2.634e-5         15         NC         1         NC           227         19         max         .007         3         0         10         .01         1         5.03e-4         1         NC         1         NC           228         min        006         2        002         3         0         15         2.789e-5         15         NC         1         8756           229         M4         1         max         .002         1         .006         2         0         15         1.665e-4         1                                                                                                  | C 1<br>C 1<br>C 1<br>C 2<br>742 1<br>C 3<br>825 1<br>C 3<br>527 1                           |
| 224         min        005         2        006         4         0         15         2.48e-5         15         NC         1         NC           225         18         max         .007         3         0         15         .009         1         4.751e-4         1         NC         1         NC           226         min        006         2        004         3         0         15         2.634e-5         15         NC         1         NC           227         19         max         .007         3         0         10         .01         1         5.03e-4         1         NC         1         NC           228         min        006         2        002         3         0         15         2.789e-5         15         NC         1         8756           229         M4         1         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           230         min         0         15        008         3        01         1         9.247e-6         15         NC                                                                                                       | C 1<br>C 1<br>C 2<br>742 1<br>C 3<br>825 1<br>C 3<br>527 1                                  |
| 225       18 max       .007       3       0       15       .009       1 4.751e-4       1 NC       1 NC         226       min      006       2004       3       0       15       2.634e-5       15       NC       1 NC         227       19 max       .007       3       0       10       .01       1 5.03e-4       1 NC       1 NC         228       min      006       2002       3       0       15 2.789e-5       15 NC       1 8756         229       M4       1 max       .002       1 .006       2       0       15 1.665e-4       1 NC       1 NC         230       min       0       15008       301       1 9.247e-6       15 NC       1 2417         231       2 max       .002       1 .006       2       0       15 1.665e-4       1 NC       1 NC         232       min       0       15007       3009       1 9.247e-6       15 NC       1 2621         233       3 max       .002       1 .005       2       0       15 1.665e-4       1 NC       1 NC                                                                                                                                                                                                                                       | 742 1<br>3 825 1<br>5 2<br>742 1<br>5 3                                                     |
| 226         min        006         2        004         3         0         15         2.634e-5         15         NC         1         NC           227         19         max         .007         3         0         10         .01         1         5.03e-4         1         NC         1         NC           228         min        006         2        002         3         0         15         2.789e-5         15         NC         1         8756           229         M4         1         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           230         min         0         15        008         3        01         1         9.247e-6         15         NC         1         2417           231         2         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           232         min         0         15        007         3        009         1         9.247e-6         15         NC                                                                                                     | 2 1<br>2 2<br>742 1<br>3 825 1<br>2 3<br>527 1                                              |
| 227         19 max         .007         3         0         10         .01         1 5.03e-4         1 NC         1 NC         1 NC           228         min        006         2        002         3         0         15 2.789e-5         15 NC         1 8756           229         M4         1 max         .002         1 .006         2         0         15 1.665e-4         1 NC         1 NC         1 NC           230         min         0         15008         301         1 9.247e-6         15 NC         1 2417           231         2 max         .002         1 .006         2 0         15 1.665e-4         1 NC         1 NC           232         min         0 15007         3009         1 9.247e-6         15 NC         1 2621           233         3 max         .002         1 .005         2 0         15 1.665e-4         1 NC         1 NC                                                                                                                                                                                                                                                                                                                               | 742 1<br>3<br>825 1<br>3<br>527 1                                                           |
| 228         min        006         2        002         3         0         15         2.789e-5         15         NC         1         8756           229         M4         1         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           230         min         0         15        008         3        01         1         9.247e-6         15         NC         1         2417           231         2         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           232         min         0         15        007         3        009         1         9.247e-6         15         NC         1         2621           233         3         max         .002         1         .005         2         0         15         1.665e-4         1         NC         1         NC                                                                                                                                                                                                                                  | 742 1<br>3 825 1<br>2 3 527 1                                                               |
| 229     M4     1     max     .002     1     .006     2     0     15     1.665e-4     1     NC     1     NC       230     min     0     15    008     3    01     1     9.247e-6     15     NC     1     2417       231     2     max     .002     1     .006     2     0     15     1.665e-4     1     NC     1     NC       232     min     0     15    007     3    009     1     9.247e-6     15     NC     1     2621       233     3     max     .002     1     .005     2     0     15     1.665e-4     1     NC     1     NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>825 1<br>3<br>527 1                                                                    |
| 230         min         0         15        008         3        01         1         9.247e-6         15         NC         1         2417           231         2         max         .002         1         .006         2         0         15         1.665e-4         1         NC         1         NC           232         min         0         15        007         3        009         1         9.247e-6         15         NC         1         2621           233         3         max         .002         1         .005         2         0         15         1.665e-4         1         NC         1         NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 825 1<br>2 3<br>527 1                                                                       |
| 231     2     max     .002     1     .006     2     0     15     1.665e-4     1     NC     1     NC       232     min     0     15    007     3    009     1     9.247e-6     15     NC     1     2621.       233     3     max     .002     1     .005     2     0     15     1.665e-4     1     NC     1     NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>527 1                                                                                  |
| 232 min 0 15007 3009 1 9.247e-6 15 NC 1 2621.<br>233 3 max .002 1 .005 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 527 1                                                                                       |
| 233 3 max .002 1 .005 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{}$                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                           |
| 234 min 0 15007 3009 1 9.247e-6 15 NC 1 2864.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 457 1                                                                                       |
| 235 4 max .002 1 .005 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 236 min 0 15006 3008 1 9.247e-6 15 NC 1 3156.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 721 1                                                                                       |
| 237 5 max .002 1 .005 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 238 min 0 15006 3007 1 9.247e-6 15 NC 1 3512.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 239 6 max .002 1 .004 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 240 min 0 15006 3006 1 9.247e-6 15 NC 1 3949.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 241 7 max .002 1 .004 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 242 min 0 15005 3006 1 9.247e-6 15 NC 1 4496.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 243 8 max .001 1 .004 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 244 min 0 15005 3005 1 9.247e-6 15 NC 1 5191.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 245 9 max .001 1 .003 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 246 min 0 15004 3004 1 9.247e-6 15 NC 1 6094.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 248 min 0 15004 3003 1 9.247e-6 15 NC 1 7298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                           |
| 254 min 0 15003 3002 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 256 min 0 15002 3001 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 258 min 0 15002 3 0 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 259 16 max 0 1 0 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 260 min 0 15001 3 0 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 261 17 max 0 1 0 2 0 15 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 262 min 0 15 0 3 0 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                           |
| 264 min 0 15 0 3 0 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| 265 19 max 0 1 0 1 0 1 1.665e-4 1 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 266 min 0 1 0 1 9.247e-6 15 NC 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |
| 267 M6 1 max .023 2 .032 2 0 1 0 1 NC 3 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 268 min03 3045 3 0 1 0 1 2373.989 2 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                           |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |            | x [in]      | LC | y [in]     | LC | z [in]   | LC | x Rotate [r | LC            | (n) L/y Ratio | LC            | (n) L/z Ratio | LC |
|-----|--------|-----|------------|-------------|----|------------|----|----------|----|-------------|---------------|---------------|---------------|---------------|----|
| 269 |        | 2   | max        | .021        | 2  | .03        | 2  | Ö        | 1  | 0           | 1             | NC            | 3             | NC            | 1  |
| 270 |        |     | min        | 028         | 3  | 043        | 3  | 0        | 1  | 0           | 1             | 2608.832      | 2             | NC            | 1  |
| 271 |        | 3   | max        | .02         | 2  | .027       | 2  | 0        | 1  | 0           | 1             |               | 3             | NC            | 1  |
| 272 |        |     | min        | 026         | 3  | 04         | 3  | 0        | 1  | 0           | 1             | 2892.521      | 2             | NC            | 1  |
| 273 |        | 4   | max        | .019        | 2  | .024       | 2  | 0        | 1  | 0           | 1             |               | 3             | NC            | 1  |
| 274 |        |     | min        | 025         | 3  | 038        | 3  | 0        | 1  | 0           | 1             | 3238.752      | 2             | NC            | 1  |
| 275 |        | 5   | max        | .018        | 2  | .021       | 2  | 0        | 1  | 0           | 1_            | NC            | 3             | NC            | 1  |
| 276 |        |     | min        | 023         | 3  | 035        | 3  | 0        | 1  | 0           | 1             | 3666.545      | 2             | NC            | 1  |
| 277 |        | 6   | max        | .016        | 2  | .018       | 2  | 0        | 1  | 0           | 1_            | NC            | 3             | NC            | 1  |
| 278 |        |     | min        | 021         | 3  | 033        | 3  | 0        | 1  | 0           | 1             | 4202.933      | 2             | NC            | 1  |
| 279 |        | 7   | max        | .015        | 2  | .016       | 2  | 0        | 1  | 0           | _1_           | NC            | 1_            | NC            | 1  |
| 280 |        |     | min        | 02          | 3  | 03         | 3  | 0        | 1  | 0           | 1_            | 4887.368      | 2             | NC            | 1  |
| 281 |        | 8   | max        | .014        | 2  | .013       | 2  | 0        | 1  | 0           | <u>1</u>      | NC            | 1_            | NC            | 1  |
| 282 |        |     | min        | 018         | 3  | 028        | 3  | 0        | 1  | 0           | 1             | 5779.269      | 2             | NC            | 1  |
| 283 |        | 9   | max        | .013        | 2  | .011       | 2  | 0        | 1  | 0           | _1_           | NC            | <u>1</u>      | NC            | 1_ |
| 284 |        |     | min        | 017         | 3  | 025        | 3  | 0        | 1  | 0           | 1             | 6971.529      | 2             | NC            | 1  |
| 285 |        | 10  | max        | .011        | 2  | .009       | 2  | 0        | 1  | 0           | _1_           | NC            | <u>1</u>      | NC            | 1  |
| 286 |        |     | min        | 015         | 3  | 023        | 3  | 0        | 1  | 0           | 1_            | 8616.075      | 2             | NC            | 1  |
| 287 |        | 11  | max        | .01         | 2  | .007       | 2  | 0        | 1  | 0           | _1_           | NC            | 1             | NC            | 1  |
| 288 |        |     | min        | 013         | 3  | 02         | 3  | 0        | 1  | 0           | 1_            | NC            | 1_            | NC            | 1  |
| 289 |        | 12  | max        | .009        | 2  | .005       | 2  | 0        | 1  | 0           | _1_           | NC            | 1_            | NC            | 1  |
| 290 |        |     | min        | 012         | 3  | 018        | 3  | 0        | 1  | 0           | <u>1</u>      | NC            | 1_            | NC            | 1  |
| 291 |        | 13  | max        | .008        | 2  | .004       | 2  | 0        | 1  | 0           | _1_           | NC            | 1_            | NC            | 1  |
| 292 |        |     | min        | 01          | 3  | 015        | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 293 |        | 14  | max        | .006        | 2  | .003       | 2  | 0        | 1  | 0           | 1             | NC            | 1_            | NC            | 1  |
| 294 |        |     | min        | 008         | 3  | 012        | 3  | 0        | 1  | 0           | 1_            | NC            | 1_            | NC            | 1  |
| 295 |        | 15  | max        | .005        | 2  | .001       | 2  | 00       | 1  | 0           | _1_           | NC            | 1_            | NC            | 1  |
| 296 |        |     | min        | 007         | 3  | 01         | 3  | 0        | 1  | 0           | 1_            | NC            | 1_            | NC            | 1  |
| 297 |        | 16  | max        | .004        | 2  | 0          | 2  | 0        | 1  | 0           | 1_            | NC            | 1_            | NC            | 1  |
| 298 |        |     | min        | 005         | 3  | 007        | 3  | 0        | 1  | 0           | 1             | NC            | 1_            | NC            | 1  |
| 299 |        | 17  | max        | .003        | 2  | 0          | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 300 |        | 4.0 | min        | 003         | 3  | 005        | 3  | 0        | 1  | 0           | _1_           | NC            | 1_            | NC<br>NC      | 1  |
| 301 |        | 18  | max        | .001        | 2  | 0          | 2  | 0        | 1  | 0           | 1             | NC            | 1_            | NC<br>NC      | 1  |
| 302 |        | 40  | min        | 002         | 3  | 002        | 3  | 0        | 1  | 0           | 1_            | NC            | 1_            | NC            | 1  |
| 303 |        | 19  | max        | 0           | 1  | 0          | 1  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC      | 1  |
| 304 | N 4-7  | 4   | min        | 0           | 1  | 0          | 1  | 0        | 1  | 0           | 1             | NC NC         | 1_            | NC<br>NC      | 1  |
| 305 | M7     | 1   | max        | 0           | 1  | 0          | 1  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC      | 1  |
| 306 |        |     | min        | 0           | 1  | 0          | 1  | 0        | 1  | 0           | 1_            | NC<br>NC      | 1_            | NC<br>NC      | 1  |
| 307 |        | 2   | max        | .001        | 3  | 0          | 2  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC      | 1  |
| 308 |        | 2   | min        | 001<br>.003 | 2  | 003        | 3  | 0        | -  | 0           |               | NC<br>NC      | 1             | NC<br>NC      | •  |
| 309 |        | 3   | max        |             | 3  | 0          | 15 | 0        | 1  | 0           | 1             |               | 1             | NC<br>NC      | 1  |
| 310 |        | 4   | min        | 003         | 3  | 005        | 3  | 0        | 1  | 0           | <u>1</u><br>1 | NC<br>NC      | <u>1</u><br>1 | NC<br>NC      | 1  |
| 311 |        | 4   | max        | .004<br>004 | 2  | 001<br>008 | 15 | <u> </u> | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC      | 1  |
| 313 |        | 5   | min<br>max | 004<br>.005 | 3  | 008<br>002 | 15 | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC      | 1  |
| 314 |        | 3   | min        | 005         | 2  | 002<br>01  | 3  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC      | 1  |
| 315 |        | 6   | max        | .005        | 3  | 002        | 15 | 0        | 1  | 0           | 1             | NC            | +             | NC            | 1  |
| 316 |        | U   | min        | 006         | 2  | 002        | 3  | 0        | 1  | 0           | 1             | 9067.551      | 3             | NC<br>NC      | 1  |
| 317 |        | 7   | max        | .008        | 3  | 003        | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 318 |        | -   | min        | 008         | 2  | 003<br>014 | 3  | 0        | 1  | 0           | 1             | 8093.744      | 3             | NC            | 1  |
| 319 |        | 8   | max        | .009        | 3  | 003        | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 320 |        | J   | min        | 009         | 2  | 005<br>015 | 3  | 0        | 1  | 0           | 1             | 7359.593      | 4             | NC            | 1  |
| 321 |        | 9   | max        | .01         | 3  | 003        | 15 | 0        | 1  | 0           | +             | NC            | 1             | NC            | 1  |
| 322 |        | 3   | min        | 01          | 2  | 003<br>016 | 3  | 0        | 1  | 0           | 1             | 6895.086      | 4             | NC            | 1  |
| 323 |        | 10  | max        | .012        | 3  | 003        | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 324 |        | 10  | min        | 012         | 2  | 003<br>016 | 3  | 0        | 1  | 0           | 1             | 6679.96       | 4             | NC            | 1  |
| 325 |        | 11  | max        | .013        | 3  | 003        | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC            | 1  |
| 020 |        |     | παλ        | .010        | J  | .000       | IU | <u> </u> |    | U           |               | 110           |               | 110           |    |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC  | (n) L/y Ratio |     |          |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|-----|---------------|-----|----------|----|
| 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 326 |        |     | min | 013    | 2  | 016    | 3  | 0      | 1  | _           | 1_  | 6682.772      | 4   | NC       | 1  |
| 13 max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 327 |        | 12  | max | .014   |    | 003    |    | 0      | 1  | 0           | 1_  |               | 1_  |          | 1  |
| 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 328 |        |     | min | 014    | 2  | 016    | 3  | 0      | 1  | 0           | 1   | 6908.611      | 4   | NC       | 1  |
| 1331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | 13  | max | .016   |    |        |    | 0      | 1  | 0           | 1_  |               | 1_  |          | 1_ |
| 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     | min |        |    |        |    | 0      | 1  |             | 1   |               | 4   |          | 1  |
| 1333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 331 |        | 14  | max | .017   |    | 003    | 15 | 0      | 1  | 0           | _1_ |               | _1_ | NC       | 1  |
| 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 332 |        |     | min | 017    |    | 015    |    | 0      | 1  | 0           | 1   |               | 4   |          | 1  |
| 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 333 |        | 15  | max |        |    |        |    | 0      | 1  | 0           | 1_  |               | 1_  |          | 1  |
| 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     | min |        |    |        |    | 0      | 1  | 0           | 1   |               | 4   |          | 1  |
| 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 16  |     |        |    |        |    | 0      |    | 0           |     |               | 1_  |          | _  |
| 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 336 |        |     | min | 019    |    | 012    | 3  | 0      | 1  | 0           | 1   |               | 1   | NC       | 1  |
| 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 337 |        | 17  | max | .021   |    |        |    | 0      | 1  | 0           | 1_  |               | 1_  |          | 1  |
| 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 338 |        |     | min |        | 2  |        |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 339 |        | 18  | max | .022   |    | 0      |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     | min |        |    |        |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 343   M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 341 |        | 19  | max | .023   | 3  | .002   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 342 |        |     | min | 023    | 2  |        |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 343 | M8     | 1   | max | .006   |    | .023   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     | min | 0      | 15 | 025    |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 345 |        | 2   | max | .005   |    | .021   |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 346 |        |     | min | 0      | 15 | 023    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 347 |        | 3   | max | .005   |    | .02    |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 348 |        |     | min | 0      | 15 | 022    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 349 |        | 4   | max | .005   |    | .019   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350 |        |     | min | 0      | 15 | 02     | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 351 |        | 5   | max | .004   | 1  | .018   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 352 |        |     | min | 0      | 15 | 019    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 353 |        | 6   | max | .004   | 1  | .016   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 354 |        |     | min | 0      | 15 | 018    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 355 |        | 7   | max | .004   | 1  |        | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 356 |        |     | min | 0      | 15 | 016    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 357 |        | 8   | max | .004   |    | .014   |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 358 |        |     | min | 0      | 15 | 015    | 3  | 0      | 1  | 0           | 1_  | NC            | 1_  | NC       | 1  |
| 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 359 |        | 9   | max | .003   |    | .013   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360 |        |     | min | 0      | 15 | 014    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 363         11         max         .003         1         .01         2         0         1         0         1         NC         1         NC         1           364         min         0         15        011         3         0         1         0         1         NC         1         NC         1           365         12         max         .002         1         .009         2         0         1         0         1         NC         1         NC         1           366         min         0         15        01         3         0         1         0         1         NC         1         NC         1           367         13         max         .002         1         .008         2         0         1         0         1         NC         1         NC         1           368         min         0         15        008         3         0         1         0         1         NC         1         NC         1           369         14         max         .002         1         .006         2         0         1         NC </td <td>361</td> <td></td> <td>10</td> <td>max</td> <td>.003</td> <td>1</td> <td>.011</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td> | 361 |        | 10  | max | .003   | 1  | .011   | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 364         min         0         15        011         3         0         1         0         1         NC         1         NC         1           365         12         max         .002         1         .009         2         0         1         0         1         NC         1         NC         1           366         min         0         15        01         3         0         1         0         1         NC         1         NC         1           367         13         max         .002         1         .008         2         0         1         0         1         NC         1         NC         1           368         min         0         15        008         3         0         1         0         1         NC         1         NC         1         NC         1           369         14         max         .002         1         .006         2         0         1         0         1         NC         1         NC         1           370         min         0         15        007         3         0         1 <td>362</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>15</td> <td>012</td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>                | 362 |        |     | min | 0      | 15 | 012    |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 365         12         max         .002         1         .009         2         0         1         0         1         NC         1         NC         1           366         min         0         15        01         3         0         1         0         1         NC         1         NC         1           367         13         max         .002         1         .008         2         0         1         0         1         NC         1         NC         1           368         min         0         15        008         3         0         1         0         1         NC         1         NC         1           369         14         max         .002         1         .006         2         0         1         0         1         NC         1         NC         1           370         min         0         15        007         3         0         1         0         1         NC         1         NC         1           371         15         max         .001         1         .005         2         0         1         0 </td <td>363</td> <td></td> <td>11</td> <td>max</td> <td>.003</td> <td>1</td> <td>.01</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>  | 363 |        | 11  | max | .003   | 1  | .01    | 2  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 366         min         0         15        01         3         0         1         0         1         NC         1         NC         1           367         13         max         .002         1         .008         2         0         1         0         1         NC         1         NC         1           368         min         0         15        008         3         0         1         0         1         NC         1         NC         1           369         14         max         .002         1         .006         2         0         1         0         1         NC         1         NC         1           370         min         0         15        007         3         0         1         0         1         NC         1         NC         1           371         15         max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1 <td>364</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>15</td> <td>011</td> <td>3</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>                | 364 |        |     | min | 0      | 15 | 011    | 3  | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 366         min         0         15        01         3         0         1         0         1         NC         1         NC         1           367         13         max         .002         1         .008         2         0         1         0         1         NC         1         NC         1           368         min         0         15        008         3         0         1         0         1         NC         1         NC         1           369         14         max         .002         1         .006         2         0         1         0         1         NC         1         NC         1           370         min         0         15        007         3         0         1         0         1         NC         1         NC         1           371         15         max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1 <td></td> <td></td> <td>12</td> <td>max</td> <td>.002</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>                            |     |        | 12  | max | .002   |    |        |    | 0      |    | 0           |     |               |     |          |    |
| 367         13 max         .002         1 .008         2 0 1 0 1 NC 1 NC 1         1 NC 1           368         min         0 15008         3 0 1 0 1 NC 1 NC 1         1 NC 1           369         14 max         .002 1 .006 2 0 1 0 1 NC 1 NC 1         1 NC 1           370         min         0 15007 3 0 1 0 1 NC 1 NC 1         1 NC 1           371         15 max         .001 1 .005 2 0 1 0 1 NC 1 NC 1         1 NC 1           372         min         0 15005 3 0 1 0 1 NC 1 NC 1         1 NC 1           373         16 max 0 1 .004 2 0 1 0 1 NC 1 NC 1         1 NC 1           374         min 0 15004 3 0 1 0 1 NC 1 NC 1         1 NC 1           375         17 max 0 1 .003 2 0 1 0 1 NC 1 NC 1         1 NC 1           376         min 0 15003 3 0 1 0 1 NC 1 NC 1         1 NC 1           377         18 max 0 1 .001 2 0 1 0 1 NC 1 NC 1         1 NC 1           378         min 0 15001 3 0 1 0 1 NC 1 NC 1           379         19 max 0 1 0 1 0 1 0 1 NC 1 NC 1           380         min 0 1 max .007 2 .008 2 0 15 3.221e-4 1 NC 1 NC 1                                                                                                                                                                                                            | 366 |        |     |     |        | 15 | 01     | 3  | 0      | 1  | 0           | 1   |               | 1   | NC       | 1  |
| 369         14 max         .002         1         .006         2         0         1         0         1         NC         1         NC         1           370         min         0         15        007         3         0         1         0         1         NC         1         NC         1           371         15 max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1         NC         1         NC         1           373         16 max         0         1         .004         2         0         1         0         1         NC         1         NC         1           374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17 max         0         1         .003         2         0         1         0         1         NC         1 <td< td=""><td></td><td></td><td>13</td><td></td><td>.002</td><td></td><td>.008</td><td></td><td>0</td><td>1</td><td>0</td><td>1</td><td></td><td>1</td><td></td><td>1</td></td<>                      |     |        | 13  |     | .002   |    | .008   |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 370         min         0         15        007         3         0         1         0         1         NC         1         NC         1           371         15         max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1         NC         1         NC         1           373         16         max         0         1         .004         2         0         1         0         1         NC         1         NC         1           374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1                                                                                                                                                                                                            | 368 |        |     | min | 0      | 15 | 008    |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 371         15         max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1         NC         1         NC         1           373         16         max         0         1         .004         2         0         1         0         1         NC         1         NC         1           374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0                                                                                                                                                                                                          | 369 |        | 14  | max | .002   |    |        | 2  | 0      | 1  |             | 1   |               | 1   |          | 1  |
| 371         15         max         .001         1         .005         2         0         1         0         1         NC         1         NC         1           372         min         0         15        005         3         0         1         0         1         NC         1         NC         1           373         16         max         0         1         .004         2         0         1         0         1         NC         1         NC         1           374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0                                                                                                                                                                                                          |     |        |     | min |        |    | 007    |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 373         16         max         0         1         .004         2         0         1         0         1         NC         1         NC         1           374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0         1         NC         1         NC         1           378         min         0         15        001         3         0         1         0         1         NC         1         NC         1           380         min         0         1         0         1         0         1         0         1 <td< td=""><td>371</td><td></td><td>15</td><td></td><td>.001</td><td></td><td>.005</td><td></td><td>0</td><td>1</td><td>0</td><td>1</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>                        | 371 |        | 15  |     | .001   |    | .005   |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0         1         NC         1         NC         1           378         min         0         15        001         3         0         1         0         1         NC         1         NC         1           379         19         max         0         1         0         1         0         1         NC         1         NC         1           380         min         0         1         0         1         0         1         NC         1         NC         1                                                                                                                                                                                                                  | 372 |        |     | min | 0      | 15 | 005    |    | 0      | 1  | 0           | 1   |               | 1   |          | 1  |
| 374         min         0         15        004         3         0         1         0         1         NC         1         NC         1           375         17         max         0         1         .003         2         0         1         0         1         NC         1         NC         1           376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0         1         NC         1         NC         1           378         min         0         15        001         3         0         1         0         1         NC         1         NC         1           379         19         max         0         1         0         1         0         1         NC         1         NC         1           380         min         0         1         0         1         0         1         NC         1         NC         1                                                                                                                                                                                                                  | 373 |        | 16  | max | 0      | 1  | .004   | 2  | 0      | 1  | 0           | 1   |               | 1   | NC       | 1  |
| 375         17 max         0         1 .003         2         0         1 0         1 NC         1 NC         1           376         min         0         15003         3         0         1 0         1 NC         1 NC         1           377         18 max         0         1 .001         2         0         1 0         1 NC         1 NC         1           378         min         0         15001         3         0         1 0         1 NC         1 NC         1           379         19 max         0         1 0         1 0         1 0         1 NC         1 NC         1           380         min         0         1 0         1 0         1 NC         1 NC         1           381         M10         1 max         .007         2 .008         2         0         15 3.221e-4         1 NC         1 NC         1                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |     |     | 0      | 15 | 004    |    | 0      | 1  | 0           | 1   | NC            | 1   | NC       | 1  |
| 376         min         0         15        003         3         0         1         0         1         NC         1         NC         1           377         18         max         0         1         .001         2         0         1         0         1         NC         1         NC         1           378         min         0         15        001         3         0         1         0         1         NC         1         NC         1           379         19         max         0         1         0         1         0         1         NC         1         NC         1           380         min         0         1         0         1         0         1         NC         1         NC         1           381         M10         1         max         .007         2         .008         2         0         15         3.221e-4         1         NC         1         NC         2                                                                                                                                                                                                                                                                                                                                                  |     |        | 17  |     | 0      |    | .003   |    | 0      | 1  | 0           | 1   | NC            | 1   |          | 1  |
| 377     18 max     0     1 .001     2     0     1 0     1 NC     1 NC     1       378     min     0     15001     3     0     1 0     1 NC     1 NC     1       379     19 max     0     1 0     1 0     1 0     1 NC     1 NC     1       380     min     0     1 0     1 0     1 0     1 NC     1 NC     1       381     M10     1 max     .007     2 .008     2     0     15 3.221e-4     1 NC     1 NC     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |     |     |        | 15 |        |    |        | 1  |             | 1   |               | 1   |          | 1  |
| 378         min         0         15        001         3         0         1         0         1         NC         1         NC         1           379         19         max         0         1         0         1         0         1         0         1         NC         1         NC         1           380         min         0         1         0         1         0         1         NC         1         NC         1           381         M10         1         max         .007         2         .008         2         0         15         3.221e-4         1         NC         1         NC         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | 18  |     | 0      |    |        |    | 0      | 1  |             | 1   |               | 1   |          | 1  |
| 379     19     max     0     1     0     1     0     1     0     1     NC     1     NC     1       380     min     0     1     0     1     0     1     0     1     NC     1     NC     1       381     M10     1     max     .007     2     .008     2     0     15     3.221e-4     1     NC     1     NC     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |     |     |        |    |        |    |        | 1  |             | 1   |               | 1   |          | 1  |
| 380         min         0         1         0         1         0         1         NC         1         NC         1           381         M10         1         max         .007         2         .008         2         0         15         3.221e-4         1         NC         1         NC         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 19  |     |        |    |        |    |        | 1  |             | 1   |               | 1   |          | 1  |
| 381 M10 1 max .007 2 .008 2 0 15 3.221e-4 1 NC 1 NC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |     |     |        |    |        |    |        | 1  |             | _1  |               | _1  |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | M10    | 1   |     |        | 2  |        | 2  |        | 15 | 3.221e-4    | 1   |               | 1   |          | 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 382 |        |     | min | 009    |    | 014    |    | 011    |    | 1.79e-5     | 15  |               | 2   | 7114.709 |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |            | x [in]          | LC | y [in]      | LC | z [in]             |            | x Rotate [r          | LC             |                |               |               |   |
|-----|--------|-----|------------|-----------------|----|-------------|----|--------------------|------------|----------------------|----------------|----------------|---------------|---------------|---|
| 383 |        | 2   | max        | .007            | 2  | .007        | 2  | 00                 | 15         | 3.047e-4             | _1_            | NC             | _1_           | NC            | 2 |
| 384 |        |     | min        | 009             | 3  | 014         | 3  | 01                 | 1          | 1.694e-5             | 15             | NC             | 1_            | 7754.07       | 1 |
| 385 |        | 3   | max        | .006            | 2  | .006        | 2  | 0                  | 15         | 2.873e-4             | _1_            | NC             | 1_            | NC            | 2 |
| 386 |        |     | min        | 008             | 3  | 013         | 3  | 009                | 1          | 1.597e-5             | 15             | NC             | 1_            | 8515.019      |   |
| 387 |        | 4   | max        | .006            | 2  | .005        | 2  | 0<br>008           | 15         | 2.699e-4             | 1_             | NC<br>NC       | <u>1</u><br>1 | NC            | 1 |
| 388 |        | -   | min        | 008<br>.005     | 2  | 013<br>.003 | 2  | 008<br>0           | 15         | 1.5e-5<br>2.525e-4   | <u>15</u>      | NC<br>NC       | 1             | 9429.49<br>NC | 1 |
| 390 |        | 5   | max        | 005<br>007      | 3  | 013         | 3  | 007                | 1          | 1.404e-5             | <u>1</u><br>15 | NC<br>NC       | 1             | NC<br>NC      | 1 |
| 391 |        | 6   | min<br>max | .005            | 2  | .002        | 2  | <u>007</u><br>0    | 15         | 2.352e-4             | 1 <u>5</u>     | NC             | 1             | NC            | 1 |
| 392 |        | 0   | min        | 007             | 3  | 012         | 3  | 006                | 1          | 1.307e-5             | 15             | NC             | 1             | NC            | 1 |
| 393 |        | 7   | max        | .005            | 2  | .001        | 2  | _ <del>000</del> _ | 15         | 2.178e-4             | 1              | NC             | 1             | NC            | 1 |
| 394 |        |     | min        | 006             | 3  | 011         | 3  | 006                | 1          | 1.21e-5              | 15             | NC             | 1             | NC            | 1 |
| 395 |        | 8   | max        | .004            | 2  | 0           | 2  | 0                  | 15         | 2.004e-4             | 1              | NC             | 1             | NC            | 1 |
| 396 |        | Ŭ   | min        | 006             | 3  | 011         | 3  | 005                | 1          | 1.114e-5             | 15             | NC             | 1             | NC            | 1 |
| 397 |        | 9   | max        | .004            | 2  | 0           | 2  | 0                  | 15         | 1.83e-4              | 1              | NC             | 1             | NC            | 1 |
| 398 |        |     | min        | 005             | 3  | 01          | 3  | 004                | 1          | 1.017e-5             | 15             | NC             | 1             | NC            | 1 |
| 399 |        | 10  | max        | .003            | 2  | 001         | 2  | 0                  | 15         | 1.656e-4             | 1              | NC             | 1             | NC            | 1 |
| 400 |        |     | min        | 005             | 3  | 01          | 3  | 003                | 1          | 9.204e-6             | 15             | NC             | 1             | NC            | 1 |
| 401 |        | 11  | max        | .003            | 2  | 001         | 15 | 0                  | 15         | 1.482e-4             | 1              | NC             | 1             | NC            | 1 |
| 402 |        |     | min        | 004             | 3  | 009         | 3  | 003                | 1          | 8.238e-6             | 15             | NC             | 1             | NC            | 1 |
| 403 |        | 12  | max        | .003            | 2  | 001         | 15 | 0                  | 15         | 1.308e-4             | <u>1</u>       | NC             | _1_           | NC            | 1 |
| 404 |        |     | min        | 004             | 3  | 008         | 3  | 002                | 1          | 7.272e-6             | 15             | NC             | 1             | NC            | 1 |
| 405 |        | 13  | max        | .002            | 2  | 001         | 15 | 0                  | 15         | 1.134e-4             | _1_            | NC             | _1_           | NC            | 1 |
| 406 |        |     | min        | 003             | 3  | 007         | 3  | 002                | 1          | 6.305e-6             | 15             | NC             | 1_            | NC            | 1 |
| 407 |        | 14  | max        | .002            | 2  | 001         | 15 | 0                  | 15         | 9.6e-5               | 1_             | NC             | 1_            | NC            | 1 |
| 408 |        |     | min        | 003             | 3  | 006         | 3  | 001                | 1          | 5.339e-6             | 15             | NC             | 1_            | NC            | 1 |
| 409 |        | 15  | max        | .002            | 2  | 001         | 15 | 0                  | 15         | 7.861e-5             | 1_             | NC             | 1             | NC<br>NC      | 1 |
| 410 |        | 40  | min        | 002             | 3  | 005         | 3  | 0                  | 1_         | 4.373e-6             | <u>15</u>      | NC<br>NC       | 1_            | NC<br>NC      | 1 |
| 411 |        | 16  | max        | .001            | 2  | 0           | 15 | 0                  | 15         | 6.122e-5             | 1_             | NC             | 1             | NC            | 1 |
| 412 |        | 17  | min        | 002             | 2  | 004<br>0    | 15 | 0                  | 1 1 5      | 3.406e-6<br>4.382e-5 | <u>15</u>      | NC<br>NC       | <u>1</u><br>1 | NC<br>NC      | 1 |
| 414 |        | 17  | max        | 0<br>001        | 3  | 003         | 4  | 0                  | 1 <u>5</u> | 2.44e-6              | <u>1</u><br>15 | NC<br>NC       | 1             | NC<br>NC      | 1 |
| 415 |        | 18  | min<br>max | <u>001</u><br>0 | 2  | 003<br>0    | 15 | 0                  | 15         | 2.44e-6<br>2.643e-5  | 1 <u>1</u>     | NC<br>NC       | 1             | NC<br>NC      | 1 |
| 416 |        | 10  | min        | 0               | 3  | 001         | 4  | 0                  | 1          | 1.473e-6             | 15             | NC             | 1             | NC            | 1 |
| 417 |        | 19  | max        | 0               | 1  | 0           | 1  | 0                  | 1          | 9.034e-6             | 1              | NC             | 1             | NC            | 1 |
| 418 |        | 10  | min        | 0               | 1  | 0           | 1  | 0                  | 1          | 5.071e-7             | 15             | NC             | 1             | NC            | 1 |
| 419 | M11    | 1   | max        | 0               | 1  | 0           | 1  | 0                  | 1          | -7.802e-8            | 15             | NC             | 1             | NC            | 1 |
| 420 |        |     | min        | 0               | 1  | 0           | 1  | 0                  | 1          | -1.378e-6            | 1              | NC             | 1             | NC            | 1 |
| 421 |        | 2   | max        | 0               | 3  | 0           | 15 | 0                  | 1          | -1.623e-6            | 15             | NC             | 1             | NC            | 1 |
| 422 |        |     | min        | 0               | 2  | 002         | 4  | 0                  | 15         | -2.924e-5            | 1              | NC             | 1             | NC            | 1 |
| 423 |        | 3   | max        | 0               | 3  | 0           | 15 | 0                  |            | -3.168e-6            | 15             |                | 1             | NC            | 1 |
| 424 |        |     | min        | 0               | 2  | 004         | 4  | 0                  | 15         |                      | 1              | NC             | 1             | NC            | 1 |
| 425 |        | 4   | max        | .001            | 3  | 001         | 15 | 0                  | 3          | -4.713e-6            | 15             | NC             | 1             | NC            | 1 |
| 426 |        |     | min        | 001             | 2  | 006         | 4  | 0                  | 1          | -8.497e-5            | 1              | NC             | 1             | NC            | 1 |
| 427 |        | 5   | max        | .002            | 3  | 002         | 15 | 0                  | 12         | -6.258e-6            | 15             | NC             | 1             | NC            | 1 |
| 428 |        |     | min        | 001             | 2  | 008         | 4  | 0                  | 1          | -1.128e-4            | 1              | NC             | 1             | NC            | 1 |
| 429 |        | 6   | max        | .002            | 3  | 002         | 15 | 0                  | 12         | -7.803e-6            | 15             | NC             | _1_           | NC            | 1 |
| 430 |        |     | min        | 002             | 2  | 01          | 4  | 0                  | 1          | -1.407e-4            | <u>1</u>       | 9242.098       | 4_            | NC            | 1 |
| 431 |        | 7   | max        | .002            | 3  | 003         | 15 | 0                  |            | -9.348e-6            |                | NC             | _1_           | NC            | 1 |
| 432 |        |     | min        | 002             | 2  | 012         | 4  | 0                  | 1          | -1.686e-4            | 1_             | 7992.855       | 4_            | NC<br>NC      | 1 |
| 433 |        | 8   | max        | .003            | 3  | 003         | 15 | 0                  |            | -1.089e-5            |                | NC             | 2             | NC<br>NC      | 1 |
| 434 |        |     | min        | 002             | 2  | 013         | 4  | 0                  | 1          | -1.964e-4            | 1_             | 7224.093       | 4_            | NC<br>NC      | 1 |
| 435 |        | 9   | max        | .003            | 3  | 003         | 15 | 0                  |            | -1.244e-5            |                | NC<br>C77F C4C | 5_            | NC<br>NC      | 1 |
| 436 |        | 40  | min        | 003             | 2  | 014         | 4  | 001                | 1          | -2.243e-4            | 1_             | 6775.646       | 4_            | NC<br>NC      | 1 |
| 437 |        | 10  | max        | .004            | 3  | 003         | 15 | 0                  | 15         | -1.398e-5            | <u>15</u>      | NC<br>6570,406 | 5_4           | NC<br>NC      | 1 |
| 438 |        | 11  | min        | 003             | 2  | 014         | 15 | 001                | 1 1 5      | -2.522e-4            | 1_             | 6570.406       | 4_            | NC<br>NC      | 1 |
| 439 |        | 11  | max        | .004            | 3  | 003         | 15 | 0                  | 15         | -1.553e-5            | 15             | NC             | 5             | NC            | 1 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |            | x [in] | LC   | y [in]          | LC | z [in] | LC | x Rotate [r            | LC         |          | LC |          | LC |
|-----|--------|-----|------------|--------|------|-----------------|----|--------|----|------------------------|------------|----------|----|----------|----|
| 440 |        |     | min        | 003    | 2    | 014             | 4  | 002    | 1  | -2.8e-4                | 1_         | 6578.407 | 4  | NC       | 1  |
| 441 |        | 12  | max        | .005   | 3    | 003             | 15 | 0      | 15 | -1.707e-5              | <u>15</u>  | NC       | 3  | NC       | 1  |
| 442 |        |     | min        | 004    | 2    | 014             | 4  | 003    | 1  | -3.079e-4              | 1_         | 6805.316 | 4  | NC       | 1  |
| 443 |        | 13  | max        | .005   | 3    | 003             | 15 | 0      | 15 | -1.862e-5              | 15         | NC       | 2  | NC       | 1  |
| 444 |        |     | min        | 004    | 2    | 013             | 4  | 003    | 1  | -3.358e-4              | 1          | 7296.104 | 4  | NC       | 1  |
| 445 |        | 14  | max        | .005   | 3    | 003             | 15 | 0      | 15 | -2.016e-5              | 15         | NC       | 1_ | NC       | 1  |
| 446 |        |     | min        | 004    | 2    | 012             | 4  | 004    | 1  | -3.636e-4              | 1          | 8157.802 | 4  | NC       | 1  |
| 447 |        | 15  | max        | .006   | 3    | 002             | 15 | 0      | 15 | -2.171e-5              | 15         | NC       | 1  | NC       | 1  |
| 448 |        |     | min        | 005    | 2    | 01              | 4  | 005    | 1  | -3.915e-4              | 1          | 9625.531 | 4  | NC       | 1  |
| 449 |        | 16  | max        | .006   | 3    | 002             | 15 | 0      | 15 | -2.325e-5              | 15         | NC       | 1_ | NC       | 1  |
| 450 |        |     | min        | 005    | 2    | 008             | 4  | 006    | 1  | -4.194e-4              | 1          | NC       | 1  | NC       | 1  |
| 451 |        | 17  | max        | .007   | 3    | 001             | 15 | 0      | 15 | -2.48e-5               | 15         | NC       | 1  | NC       | 1  |
| 452 |        |     | min        | 005    | 2    | 006             | 4  | 007    | 1  | -4.472e-4              | 1          | NC       | 1  | NC       | 1  |
| 453 |        | 18  | max        | .007   | 3    | 0               | 15 | 0      | 15 | -2.634e-5              | 15         | NC       | 1  | NC       | 1  |
| 454 |        |     | min        | 006    | 2    | 004             | 3  | 009    | 1  | -4.751e-4              | 1          | NC       | 1  | NC       | 1  |
| 455 |        | 19  | max        | .007   | 3    | 0               | 10 | 0      | 15 | -2.789e-5              | 15         | NC       | 1  | NC       | 2  |
| 456 |        |     | min        | 006    | 2    | 002             | 3  | 01     | 1  | -5.03e-4               | 1          | NC       | 1  | 8756.742 | 1  |
| 457 | M12    | 1   | max        | .002   | 1    | .006            | 2  | .01    | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 458 |        |     | min        | 0      | 15   | 008             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 2417.825 | 1  |
| 459 |        | 2   | max        | .002   | 1    | .006            | 2  | .009   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 460 |        |     | min        | 0      | 15   | 007             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 2621.527 | 1  |
| 461 |        | 3   | max        | .002   | 1    | .005            | 2  | .009   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 462 |        |     | min        | 0      | 15   | 007             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 2864.457 | 1  |
| 463 |        | 4   | max        | .002   | 1    | .005            | 2  | .008   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 464 |        |     | min        | 0      | 15   | 006             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 3156.721 | 1  |
| 465 |        | 5   | max        | .002   | 1    | .005            | 2  | .007   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 466 |        |     | min        | 0      | 15   | 006             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 3512.054 | 1  |
| 467 |        | 6   | max        | .002   | 1    | .004            | 2  | .006   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 3  |
| 468 |        |     | min        | 0      | 15   | 006             | 3  | 0      | _  | -1.665e-4              | 1          | NC       | 1  | 3949.511 | 1  |
| 469 |        | 7   | max        | .002   | 1    | .004            | 2  | .006   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 2  |
| 470 |        |     | min        | 0      | 15   | 005             | 3  | 0      | 15 |                        | 1          | NC       | 1  | 4496.137 | 1  |
| 471 |        | 8   | max        | .001   | 1    | .004            | 2  | .005   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 2  |
| 472 |        |     | min        | 0      | 15   | 005             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 5191.369 | 1  |
| 473 |        | 9   | max        | .001   | 1    | .003            | 2  | .004   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 2  |
| 474 |        |     | min        | 0      | 15   | 004             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 6094.563 | 1  |
| 475 |        | 10  | max        | .001   | 1    | .003            | 2  | .003   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 2  |
| 476 |        | 10  | min        | 0      | 15   | 004             | 3  | 0      | 15 | -1.665e-4              | 1          | NC       | 1  | 7298.471 | 1  |
| 477 |        | 11  | max        | .001   | 1    | .003            | 2  | .003   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 2  |
| 478 |        |     | min        | 0      | 15   | 003             | 3  | 0      | 15 |                        | 1          | NC       | 1  | 8954.77  | 1  |
| 479 |        | 12  | max        | 0      | 1    | .002            | 2  | .002   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 1  |
| 480 |        | 14  | min        | 0      | 15   | 003             | 3  | 0      |    | -1.665e-4              | 1          | NC       | 1  | NC       | 1  |
| 481 |        | 13  | max        | 0      | 1    | .002            | 2  | .002   | 1  | -9.247e-6              | 15         | NC       | 1  | NC       | 1  |
| 482 |        | 10  | min        | 0      | 15   | 003             | 3  | 0      | 15 |                        | 1          | NC       | 1  | NC       | 1  |
| 483 |        | 14  | max        | 0      | 1    | .002            | 2  | .001   | 1  | -9.247e-6              | •          | NC       | 1  | NC       | 1  |
| 484 |        | 14  | min        | 0      | 15   | 002             | 3  | 0      | 15 |                        | 1          | NC<br>NC | 1  | NC<br>NC | 1  |
| 485 |        | 15  | max        | 0      | 1    | .002            | 2  | 0      | 1  | -9.247e-6              |            | NC<br>NC | 1  | NC<br>NC | 1  |
| 486 |        | 10  | min        | 0      | 15   | 002             | 3  | 0      | 15 |                        | 1          | NC<br>NC | 1  | NC<br>NC | 1  |
| 487 |        | 16  |            | 0      | 1    | <u>002</u><br>0 | 2  | 0      | 1  | -1.003e-4<br>-9.247e-6 | 15         | NC<br>NC | 1  | NC<br>NC | 1  |
| 488 |        | 10  | max<br>min | 0      | 15   | 001             | 3  | 0      | _  | -9.247e-6<br>-1.665e-4 | 1 <u>1</u> | NC<br>NC | 1  | NC<br>NC | 1  |
|     |        | 17  |            |        |      |                 |    |        |    |                        |            |          | 1  |          | 1  |
| 489 |        | 17  | max        | 0      | 1 15 | 0               | 3  | 0      | 1  |                        | <u>15</u>  | NC<br>NC | 1  | NC<br>NC | 1  |
| 490 |        | 10  | min        |        |      | 0               |    | 0      |    | -1.665e-4              | 1.5        | NC<br>NC | _  | NC<br>NC |    |
| 491 |        | 18  | max        | 0      | 1    | 0               | 2  | 0      | 1  | -9.247e-6              | <u>15</u>  | NC<br>NC | 1  | NC<br>NC | 1  |
| 492 |        | 40  | min        | 0      | 15   | 0               | 3  | 0      | 15 |                        | 1_         | NC<br>NC | 1_ | NC<br>NC | 1  |
| 493 |        | 19  | max        | 0      | 1    | 0               | 1  | 0      | 1  | -9.247e-6              |            | NC<br>NC | 1  | NC<br>NC | 1  |
| 494 | N // 4 |     | min        | 0      | 1    | 0               | 1  | 0      | 1  | -1.665e-4              | 1_         | NC<br>NC | 1_ | NC<br>NC | 1  |
| 495 | M1     | 1_  | max        | .009   | 3    | .095            | 2  | .001   | 1  | 1.668e-2               | 2          | NC       | 1  | NC<br>NC | 1  |
| 496 |        |     | min        | 005    | 2    | 014             | 3  | 0      | 15 | -2.978e-2              | 3          | NC       | 1_ | NC       | 1  |



Model Name

: Schletter, Inc. : HCV

нсу

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |            | x [in]      | LC | y [in]             | LC | z [in]      |    |                       |             | (n) L/y Ratio     |                |          | LC |
|------------|-----------|-----|------------|-------------|----|--------------------|----|-------------|----|-----------------------|-------------|-------------------|----------------|----------|----|
| 497        |           | 2   | max        | .009        | 3  | .044               | 2  | 0           | 15 | 8.174e-3              | 2           | NC                | 4              | NC       | 1  |
| 498        |           |     | min        | 005         | 2  | 003                | 3  | 007         | 1  | -1.474e-2             | 3           | 2255.144          | 2              | NC       | 1  |
| 499        |           | 3   | max        | .009        | 3  | .015               | 3  | 0           | 15 | 9.135e-6              | <u>10</u>   | NC                | 5_             | NC       | 2  |
| 500        |           |     | min        | 005         | 2  | 011                | 2  | 011         | 1  | -2.276e-4             | 1_          | 1086.094          | 2              | 9498.872 | 1  |
| 501        |           | 4   | max        | .009        | 3  | .045               | 3  | 0           | 15 | 4.535e-3              | 2           | NC<br>224.647     | _5_            | NC       | 1  |
| 502        |           | _   | min        | 005         | 2  | 073                | 2  | 01          | 1_ | -5.271e-3             | 3           | 684.917           | 2              | NC<br>NC | 1  |
| 503        |           | 5   | max        | .009        | 3  | .084               | 3  | 0           | 15 | 9.106e-3              | 2           | NC<br>400,000     | 5              | NC<br>NC | 1  |
| 504        |           |     | min        | 005         | 2  | 138                | 2  | 007         | 1  | -1.039e-2             | 3           | 493.898           | 2              | NC<br>NC | 1  |
| 505        |           | 6   | max        | .009        | 3  | .125               | 3  | 0           | 15 | 1.368e-2              | 2           | NC<br>200.744     | <u>15</u>      | NC<br>NC | 1  |
| 506        |           | 7   | min        | 004         | 2  | 201                | 3  | 003         | 1  | -1.551e-2             | 3           | 388.744<br>NC     | <u>2</u><br>15 | NC<br>NC | 1  |
| 507        |           | -   | max        | .008        | 3  | .165<br>258        | 2  | 0<br>0      | 12 | 1.825e-2              | 3           | 326.711           | 2              | NC<br>NC | 1  |
| 508<br>509 |           | 8   | min        | 004<br>.008 | 3  | <u>256</u><br>.199 | 3  | .001        | 1  | -2.063e-2<br>2.282e-2 | 2           | 9430.853          | 15             | NC<br>NC | 1  |
| 510        |           | 0   | max        | 004         | 2  | 302                | 2  | <u>.001</u> | 15 | -2.575e-2             | 3           | 290.04            | 2              | NC<br>NC | 1  |
| 511        |           | 9   | max        | .008        | 3  | .22                | 3  | 0           | 15 | 2.635e-2              | 2           | 8808.559          | 15             | NC       | 1  |
| 512        |           | -   | min        | 004         | 2  | 331                | 2  | 0           | 1  | -2.589e-2             | 3           | 270.959           | 2              | NC       | 1  |
| 513        |           | 10  | max        | .008        | 3  | .228               | 3  | 0           | 1  | 2.918e-2              | 2           | 8619.186          | 15             | NC       | 1  |
| 514        |           | 10  | min        | 004         | 2  | 34                 | 2  | 0           | 12 | -2.271e-2             | 3           | 265.387           | 2              | NC       | 1  |
| 515        |           | 11  | max        | .008        | 3  | .222               | 3  | 0           | 1  | 3.202e-2              | 2           | 8808.223          | 15             | NC       | 1  |
| 516        |           |     | min        | 004         | 2  | 33                 | 2  | 0           | 15 | -1.952e-2             | 3           | 271.994           | 2              | NC       | 1  |
| 517        |           | 12  | max        | .007        | 3  | .203               | 3  | 0           | 15 | 3.127e-2              | 2           | 9430.155          | 15             | NC       | 1  |
| 518        |           |     | min        | 004         | 2  | 301                | 2  | 001         | 1  | -1.631e-2             | 3           | 293.219           | 2              | NC       | 1  |
| 519        |           | 13  | max        | .007        | 3  | .173               | 3  | 0           | 15 | 2.509e-2              | 2           | NC                | 15             | NC       | 1  |
| 520        |           |     | min        | 004         | 2  | 253                | 2  | 0           | 1  | -1.305e-2             | 3           | 334.514           | 2              | NC       | 1  |
| 521        |           | 14  | max        | .007        | 3  | .134               | 3  | .003        | 1  | 1.891e-2              | 2           | NC                | 15             | NC       | 1  |
| 522        |           |     | min        | 004         | 2  | 194                | 2  | 0           | 15 | -9.796e-3             | 3           | 405.52            | 2              | NC       | 1  |
| 523        |           | 15  | max        | .007        | 3  | .092               | 3  | .007        | 1  | 1.274e-2              | 2           | NC                | 5              | NC       | 1  |
| 524        |           |     | min        | 004         | 2  | 13                 | 2  | 0           | 15 | -6.538e-3             | 3           | 528.651           | 2              | NC       | 1  |
| 525        |           | 16  | max        | .007        | 3  | .047               | 3  | .01         | 1  | 6.561e-3              | 2           | NC                | 5              | NC       | 1  |
| 526        |           |     | min        | 004         | 2  | 065                | 2  | 0           | 15 | -3.28e-3              | 3           | 758.755           | 2              | NC       | 1  |
| 527        |           | 17  | max        | .007        | 3  | .005               | 3  | .01         | 1  | 6.76e-4               | 1_          | NC                | 5              | NC       | 2  |
| 528        |           |     | min        | 004         | 2  | 006                | 2  | 0           | 15 | -2.187e-5             | 3           | 1255.057          | 2              | 9868.238 | 1  |
| 529        |           | 18  | max        | .007        | 3  | .042               | 2  | .007        | 1  | 1.3e-2                | 2           | NC                | 4_             | NC       | 1  |
| 530        |           |     | min        | 004         | 2  | 032                | 3  | 0           | 15 | -5.632e-3             | 3           | 2688.138          | 2              | NC       | 1  |
| 531        |           | 19  | max        | .007        | 3  | .084               | 2  | 0           | 15 | 2.605e-2              | 2           | NC                | 1_             | NC       | 1  |
| 532        |           |     | min        | 004         | 2  | 067                | 3  | 002         | 1  | -1.145e-2             | 3           | NC                | 1_             | NC       | 1  |
| 533        | <u>M5</u> | 1   | max        | .029        | 3  | .234               | 2  | 0           | 1  | 0                     | 1           | NC                | 1_             | NC       | 1  |
| 534        |           |     | min        | 02          | 2  | 023                | 3  | 0           | 1  | 0                     | 1_          | NC                | _1_            | NC       | 1  |
| 535        |           | 2   | max        | .029        | 3  | .105               | 2  | 0           | 1  | 0                     | 1_          | NC                | 5              | NC<br>NC | 1  |
| 536        |           |     | min        | 02          | 2  | .001               | 3  | 0           | 1  | 0                     | 1_          | 899.396           | 2              | NC<br>NC | 1  |
| 537        |           | 3   | max        | .029        | 3  | .048               | 3  | 0           | 1  | 0                     | 11          | NC<br>40F COC     | 5              | NC<br>NC | 1  |
| 538        |           | 1   | min        | 02          | 2  | 038                | 2  | 0           | 1  | 0                     | 1_          | 425.636           | 2              | NC<br>NC | 1  |
| 539        |           | 4   | max        | .028        | 3  | .136               | 2  | <u> </u>    | 1  | 0                     | 1           | 9709.607          | <u>15</u>      | NC<br>NC | 1  |
| 540        |           | -   | min        | 02          |    | 206                | 3  |             | 1  | 0                     | 1           | 262.558<br>6801.9 | <u>2</u>       | NC<br>NC | 1  |
| 541<br>542 |           | 5   | max<br>min | .027<br>019 | 3  | .252<br>387        | 2  | <u> </u>    | 1  | 0                     | 1           | 185.962           | <u>15</u><br>2 | NC<br>NC | 1  |
| 543        |           | 6   | max        | .027        | 3  | .379               | 3  | 0           | 1  | 0                     | 1           | 5240.636          | 15             | NC       | 1  |
| 544        |           | -0  | min        | 019         | 2  | 565                | 2  | 0           | 1  | 0                     | 1           | 144.411           | 2              | NC       | 1  |
| 545        |           | 7   | max        | .026        | 3  | .503               | 3  | 0           | 1  | 0                     | 1           | 4338.225          | 15             | NC       | 1  |
| 546        |           |     | min        | 018         | 2  | 726                | 2  | 0           | 1  | 0                     | 1           | 120.196           | 2              | NC       | 1  |
| 547        |           | 8   | max        | .026        | 3  | .605               | 3  | 0           | 1  | 0                     | 1           | 3813.176          | 15             | NC<br>NC | 1  |
| 548        |           |     | min        | 018         | 2  | 855                | 2  | 0           | 1  | 0                     | 1           | 106.023           | 2              | NC       | 1  |
| 549        |           | 9   | max        | .025        | 3  | .671               | 3  | 0           | 1  | 0                     | 1           | 3543.788          | 15             | NC       | 1  |
| 550        |           |     | min        | 018         | 2  | 936                | 2  | 0           | 1  | 0                     | 1           | 98.718            | 2              | NC       | 1  |
| 551        |           | 10  | max        | .025        | 3  | .694               | 3  | 0           | 1  | 0                     | 1           | 3462.62           | 15             | NC       | 1  |
| 552        |           |     | min        | 017         | 2  | 964                | 2  | 0           | 1  | 0                     | 1           | 96.588            | 2              | NC       | 1  |
| 553        |           | 11  | max        | .024        | 3  | .676               | 3  | 0           | 1  | 0                     | <del></del> | 3543.899          | 15             | NC       | 1  |
|            |           |     | ITTIGA     | .027        |    | .070               |    |             |    |                       |             | 30 10.000         |                | .,,      |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |         | x [in] | LC | y [in] | LC | z [in]      | LC | x Rotate [r           | LC  | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|-----|--------|-----|---------|--------|----|--------|----|-------------|----|-----------------------|-----|---------------|----|---------------|----|
| 554 |        |     | min     | 017    | 2  | 936    | 2  | 0           | 1  | 0                     | 1   | 99.107        | 2  | NC            | 1  |
| 555 |        | 12  | max     | .023   | 3  | .618   | 3  | 0           | 1  | 0                     | 1_  | 3813.444      | 15 | NC            | 1  |
| 556 |        |     | min     | 017    | 2  | 85     | 2  | 0           | 1  | 0                     | 1   | 107.286       | 2  | NC            | 1  |
| 557 |        | 13  | max     | .023   | 3  | .524   | 3  | 0           | 1  | 0                     | 1_  | 4338.791      | 15 | NC            | 1  |
| 558 |        |     | min     | 017    | 2  | 713    | 2  | 0           | 1  | 0                     | 1   | 123.449       | 2  | NC            | 1  |
| 559 |        | 14  | max     | .022   | 3  | .406   | 3  | 0           | 1_ | 0                     | _1_ | 5241.772      | 15 | NC            | 1  |
| 560 |        |     | min     | 016    | 2  | 543    | 2  | 0           | 1  | 0                     | 1_  | 151.7         | 2  | NC            | 1  |
| 561 |        | 15  | max     | .022   | 3  | .275   | 3  | 0           | 1  | 0                     | 1_  | 6804.186      | 15 | NC            | 1  |
| 562 |        |     | min     | 016    | 2  | 358    | 2  | 0           | 1  | 0                     | 1   | 201.74        | 2  | NC            | 1  |
| 563 |        | 16  | max     | .021   | 3  | .141   | 3  | 0           | 1  | 0                     | 1   | 9714.445      | 15 | NC            | 1  |
| 564 |        |     | min     | 016    | 2  | 178    | 2  | 0           | 1  | 0                     | 1   | 297.898       | 2  | NC            | 1  |
| 565 |        | 17  | max     | .02    | 3  | .016   | 3  | 0           | 1  | 0                     | 1   | NC            | 5  | NC            | 1  |
| 566 |        |     | min     | 016    | 2  | 02     | 2  | 0           | 1  | 0                     | 1   | 511.806       | 2  | NC            | 1  |
| 567 |        | 18  | max     | .02    | 3  | .1     | 2  | 0           | 1  | 0                     | 1   | NC            | 5  | NC            | 1  |
| 568 |        |     | min     | 016    | 2  | 091    | 3  | 0           | 1  | 0                     | 1   | 1131.042      | 2  | NC            | 1  |
| 569 |        | 19  | max     | .02    | 3  | .199   | 2  | 0           | 1  | 0                     | 1   | NC            | 1  | NC            | 1  |
| 570 |        |     | min     | 016    | 2  | 188    | 3  | 0           | 1  | 0                     | 1   | NC            | 1  | NC            | 1  |
| 571 | M9     | 1   | max     | .009   | 3  | .095   | 2  | 0           | 15 | 2.978e-2              | 3   | NC            | 1  | NC            | 1  |
| 572 |        |     | min     | 005    | 2  | 014    | 3  | 001         | 1  | -1.668e-2             | 2   | NC            | 1  | NC            | 1  |
| 573 |        | 2   | max     | .009   | 3  | .044   | 2  | .007        | 1  | 1.474e-2              | 3   | NC            | 4  | NC            | 1  |
| 574 |        |     | min     | 005    | 2  | 003    | 3  | 0           | 15 | -8.174e-3             | 2   | 2255.144      | 2  | NC            | 1  |
| 575 |        | 3   | max     | .009   | 3  | .015   | 3  | .011        | 1  | 2.276e-4              | 1   | NC            | 5  | NC            | 2  |
| 576 |        |     | min     | 005    | 2  | 011    | 2  | 0           | 15 | -9.135e-6             | 10  | 1086.094      | 2  | 9498.872      | 1  |
| 577 |        | 4   | max     | .009   | 3  | .045   | 3  | .01         | 1  | 5.271e-3              | 3   | NC            | 5  | NC            | 1  |
| 578 |        |     | min     | 005    | 2  | 073    | 2  | 0           | 15 | -4.535e-3             | 2   | 684.917       | 2  | NC            | 1  |
| 579 |        | 5   | max     | .009   | 3  | .084   | 3  | .007        | 1  | 1.039e-2              | 3   | NC            | 5  | NC            | 1  |
| 580 |        |     | min     | 005    | 2  | 138    | 2  | 0           | 15 | -9.106e-3             | 2   | 493.898       | 2  | NC            | 1  |
| 581 |        | 6   | max     | .009   | 3  | .125   | 3  | .003        | 1  | 1.551e-2              | 3   | NC            | 15 | NC            | 1  |
| 582 |        |     | min     | 004    | 2  | 201    | 2  | 0           | 15 | -1.368e-2             | 2   | 388.744       | 2  | NC            | 1  |
| 583 |        | 7   | max     | .008   | 3  | .165   | 3  | 0           | 12 | 2.063e-2              | 3   | NC            | 15 | NC            | 1  |
| 584 |        |     | min     | 004    | 2  | 258    | 2  | 0           | 1  | -1.825e-2             | 2   | 326.711       | 2  | NC            | 1  |
| 585 |        | 8   | max     | .008   | 3  | .199   | 3  | 0           | 15 | 2.575e-2              | 3   | 9430.853      | 15 | NC            | 1  |
| 586 |        |     | min     | 004    | 2  | 302    | 2  | 001         | 1  | -2.282e-2             | 2   | 290.04        | 2  | NC            | 1  |
| 587 |        | 9   | max     | .008   | 3  | .22    | 3  | 0           | 1  | 2.589e-2              | 3   | 8808.559      | 15 | NC            | 1  |
| 588 |        |     | min     | 004    | 2  | 331    | 2  | 0           | 15 | -2.635e-2             | 2   | 270.959       | 2  | NC            | 1  |
| 589 |        | 10  | max     | .008   | 3  | .228   | 3  | 0           | 12 | 2.271e-2              | 3   | 8619.186      | 15 | NC            | 1  |
| 590 |        |     | min     | 004    | 2  | 34     | 2  | 0           | 1  | -2.918e-2             | 2   | 265.387       | 2  | NC            | 1  |
| 591 |        | 11  | max     | .008   | 3  | .222   | 3  | 0           | 15 | 1.952e-2              | 3   | 8808.223      | 15 | NC            | 1  |
| 592 |        |     | min     | 004    | 2  | 33     | 2  | 0           | 1  | -3.202e-2             | 2   | 271.994       | 2  | NC            | 1  |
| 593 |        | 12  | max     | .007   | 3  | .203   | 3  | .001        | 1  | 1.631e-2              | 3   | 9430.155      | 15 | NC            | 1  |
| 594 |        | · - | min     |        | 2  | 301    | 2  | 0           |    | -3.127e-2             | 2   | 293.219       | 2  | NC            | 1  |
| 595 |        | 13  | max     | .007   | 3  | .173   | 3  | 0           | 1  | 1.305e-2              | 3   | NC            | 15 | NC            | 1  |
| 596 | _      |     | min     | 004    | 2  | 253    | 2  | 0           | _  | -2.509e-2             | 2   | 334.514       | 2  | NC            | 1  |
| 597 |        | 14  | max     | .007   | 3  | .134   | 3  | 0           | 15 |                       | 3   | NC            | 15 | NC            | 1  |
| 598 |        |     | min     | 004    | 2  | 194    | 2  | 003         | 1  | -1.891e-2             | 2   | 405.52        | 2  | NC            | 1  |
| 599 |        | 15  | max     | .007   | 3  | .092   | 3  | <u>.000</u> | 15 | 6.538e-3              | 3   | NC            | 5  | NC            | 1  |
| 600 |        |     | min     | 004    | 2  | 13     | 2  | 007         | 1  | -1.274e-2             | 2   | 528.651       | 2  | NC            | 1  |
| 601 |        | 16  | max     | .007   | 3  | .047   | 3  | 0           | 15 | 3.28e-3               | 3   | NC            | 5  | NC            | 1  |
| 602 |        | 1.0 | min     | 004    | 2  | 065    | 2  | 01          | 1  | -6.561e-3             | 2   | 758.755       | 2  | NC            | 1  |
| 603 |        | 17  | max     | .007   | 3  | .005   | 3  | 0           | 15 | 2.187e-5              | 3   | NC            | 5  | NC            | 2  |
| 604 |        |     | min     | 004    | 2  | 006    | 2  | 01          | 1  | -6.76e-4              | 1   | 1255.057      | 2  | 9868.238      |    |
| 605 |        | 18  | max     | .007   | 3  | .042   | 2  | 0           | 15 | 5.632e-3              | 3   | NC            | 4  | NC            | 1  |
| 606 |        | 10  | min     | 004    | 2  | 032    | 3  | 007         | 1  | -1.3e-2               | 2   | 2688.138      | 2  | NC            | 1  |
| 607 |        | 19  | max     | .007   | 3  | .084   | 2  | .002        | 1  | 1.145e-2              | 3   | NC            | 1  | NC            | 1  |
| 608 |        | 13  | min     | 004    | 2  | 067    | 3  | 0           | 15 | -2.605e-2             | 2   | NC            | 1  | NC            | 1  |
| 000 |        |     | 1111111 | .00+   |    | .001   | J  | U           | 10 | 2.000 <del>0</del> -Z |     | INO           |    | 140           |    |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 1/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

# **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$ 

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 2/5        |
| Project:  | Standard PVMax - Worst Case, 14 | -42 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:   | 11/17/2015 |
|-----------|----------------------------------|---------|------------|
| Engineer: | HCV                              | Page:   | 3/5        |
| Project:  | Standard PVMax - Worst Case, 14- | 42 Inch | Width      |
| Address:  |                                  |         |            |
| Phone:    |                                  |         |            |
| E-mail:   |                                  |         |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 1723.0                                | 23.0                                   | 593.0                                  | 593.4                                                      |  |
| Sum    | 1723 0                                | 23.0                                   | 593.0                                  | 593 4                                                      |  |

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>



### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

# 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                                | $f'_c$ (psi)                 | h <sub>ef</sub> (in) | $N_b$ (lb)    |            |        |                    |
|-----------------------------|--------------------------------------------------|------------------------------|----------------------|---------------|------------|--------|--------------------|
| 17.0                        | 1.00                                             | 2500                         | 5.247                | 10215         |            |        |                    |
| $\phi N_{cb} = \phi (A_N$   | $_{lc}$ / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,N}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. | D.4.1 & Eq. D-4      | )             |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                     | $\Psi_{ed,N}$                | $arPsi_{c,N}$        | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 220.36                      | 247 75                                           | 0.967                        | 1.00                 | 1 000         | 10215      | 0.65   | 5710               |

### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| $	au_{k,cr}$ (psi)             | <b>f</b> <sub>short-term</sub>                                  | $K_{sat}$            | $	au_{k,cr}$ (psi)             |                      |        |                 |
|--------------------------------|-----------------------------------------------------------------|----------------------|--------------------------------|----------------------|--------|-----------------|
| 1035                           | 1.00                                                            | 1.00                 | 1035                           |                      |        |                 |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | h <sub>ef</sub> (Eq. D-16f)                                     |                      |                                |                      |        |                 |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                                             | h <sub>ef</sub> (in) | $N_{a0}$ (lb)                  |                      |        |                 |
| 1035                           | 0.50                                                            | 6.000                | 9755                           |                      |        |                 |
| $\phi N_a = \phi (A_{Na})$     | / <b>A</b> <sub>Na0</sub> ) Ψ <sub>ed,Na</sub> Ψ <sub>p,i</sub> | NaNa0 (Sec. D.4      | 1.1 & Eq. D-16a)               |                      |        |                 |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                                    | $\Psi_{\sf ed,Na}$   | $arPsi_{	extsf{p},	extsf{Na}}$ | N <sub>a0</sub> (lb) | $\phi$ | $\phi N_a$ (lb) |
| 109.66                         | 109.66                                                          | 1.000                | 1.000                          | 9755                 | 0.55   | 5365            |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 4/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

# 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

# Shear perpendicular to edge in y-direction:

| $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. | . D-24) |
|------------------------------------------------------------------------------|---------|
|------------------------------------------------------------------------------|---------|

| le (in)                     | da (in)                                                    | λ                            | f'c (psi)       | Ca1 (in)     | V <sub>by</sub> (lb) |        |                     |
|-----------------------------|------------------------------------------------------------|------------------------------|-----------------|--------------|----------------------|--------|---------------------|
| 4.00                        | 0.50                                                       | 1.00                         | 2500            | 7.00         | 6947                 |        |                     |
| $\phi V_{cby} = \phi (A_1)$ | $_{ m Vc}$ / $A_{ m Vco}$ ) $\Psi_{ m ed,V}$ $\Psi_{ m c}$ | $_{V}\Psi_{h,V}V_{by}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |                      |        |                     |
| Avc (in <sup>2</sup> )      | $A_{Vco}$ (in <sup>2</sup> )                               | $\Psi_{\sf ed,V}$            | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{by}$ (lb)        | $\phi$ | $\phi V_{cby}$ (lb) |
| 192.89                      | 220.50                                                     | 0.925                        | 1.000           | 1.000        | 6947                 | 0.70   | 3934                |

### Shear perpendicular to edge in x-direction:

| V <sub>bv</sub> = ' | 7(1,/  | $d_{a})^{0.2}$ | Vd-22  | f'cCa1 1.5 | (Fa  | D-24) |
|---------------------|--------|----------------|--------|------------|------|-------|
| <b>v</b> bx -       | / Vie/ | uai            | VUaz V | I cLai     | ıLu. | D-241 |

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                            | f'c (psi)       | Ca1 (in)     | $V_{bx}$ (lb) |        |                     |
|-----------------------------|------------------------------|------------------------------|-----------------|--------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                         | 2500            | 7.87         | 8282          |        |                     |
| $\phi V_{cbx} = \phi (A_1)$ | vc / A vco) Ψed, v Ψc,       | $_{V}\Psi_{h,V}V_{bx}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ed,V}$                | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 165.27                      | 278.72                       | 0.878                        | 1.000           | 1.000        | 8282          | 0.70   | 3018                |

### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| I <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                                | f'c (psi)         | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                             | 2500              | 7.00                        | 6947          |        |                     |
| $\phi V_{cbx} = \phi (2)$   | (Avc/Avco) $\Psi_{ed,V}$     | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,V}$                | $\varPsi_{c,V}$   | $\Psi_{h,V}$                | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 192.89                      | 220.50                       | 1.000                            | 1.000             | 1.000                       | 6947          | 0.70   | 8508                |

# Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$  (Eq. D-24)

|                            | u)                            | (-4)                             |                   |                 |                      |        |                     |  |
|----------------------------|-------------------------------|----------------------------------|-------------------|-----------------|----------------------|--------|---------------------|--|
| le (in)                    | da (in)                       | λ                                | f'c (psi)         | Ca1 (in)        | V <sub>bx</sub> (lb) |        |                     |  |
| 4.00                       | 0.50                          | 1.00                             | 2500              | 7.87            | 8282                 |        |                     |  |
| $\phi V_{cby} = \phi (2)($ | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |                      |        |                     |  |
| Avc (in <sup>2</sup> )     | Avco (in <sup>2</sup> )       | $\Psi_{ed,V}$                    | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{bx}$ (lb)        | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 165.27                     | 278.72                        | 1.000                            | 1.000             | 1.000           | 8282                 | 0.70   | 6875                |  |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$ 

| Kcp                         | A <sub>Na</sub> (In²)        | A <sub>Na0</sub> (In²) | $arPsi_{\sf ed,Na}$ | $arPsi_{ m 	extsf{p},Na}$ | Na0 (ID)   | Na (ID)       |        |                    |  |
|-----------------------------|------------------------------|------------------------|---------------------|---------------------------|------------|---------------|--------|--------------------|--|
| 2.0                         | 109.66                       | 109.66                 | 1.000               | 1.000                     | 9755       | 9755          |        |                    |  |
|                             |                              |                        |                     |                           |            |               |        |                    |  |
| 4 (:-2)                     | A (:2)                       | 177                    | 177                 | 177                       | A / /II- \ | A / /II- \    | ,      |                    |  |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> ) | $arPsi_{ed,N}$         | $arPsi_{c,N}$       | $arPsi_{cp,N}$            | $N_b$ (lb) | $N_{cb}$ (lb) | $\phi$ | $\phi V_{cp}$ (lb) |  |
| 220.36                      | 247.75                       | 0.967                  | 1.000               | 1.000                     | 10215      | 8785          | 0.70   | 12298              |  |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 5/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|-----------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                       | 1723                                | 6071                      | 0.28          | Pass           |
| Concrete breakout           | 1723                                | 5710                      | 0.30          | Pass           |
| Adhesive                    | 1723                                | 5365                      | 0.32          | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                       | 593                                 | 3156                      | 0.19          | Pass (Governs) |
| T Concrete breakout y+      | 593                                 | 3934                      | 0.15          | Pass           |
| T Concrete breakout x+      | 23                                  | 3018                      | 0.01          | Pass           |
| Concrete breakout y+        | 23                                  | 8508                      | 0.00          | Pass           |
| Concrete breakout x+        | 593                                 | 6875                      | 0.09          | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.15          | Pass           |
| Pryout                      | 593                                 | 12298                     | 0.05          | Pass           |
| Interaction check Nu        | a/φNn Vua/φVn                       | Combined Rat              | o Permissible | Status         |
| Sec. D.7.1 0.3              | 32 0.00                             | 32.1 %                    | 1.0           | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 1/5        |
| Project:  | Standard PVMax - Worst Case, 21- | -30 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

# **Base Plate**

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:                                         | 11/17/2015 |  |  |  |  |
|-----------|---------------------------------|-----------------------------------------------|------------|--|--|--|--|
| Engineer: | HCV                             | Page:                                         | 2/5        |  |  |  |  |
| Project:  | Standard PVMax - Worst Case, 21 | Standard PVMax - Worst Case, 21-30 Inch Width |            |  |  |  |  |
| Address:  |                                 |                                               |            |  |  |  |  |
| Phone:    |                                 |                                               |            |  |  |  |  |
| E-mail:   |                                 |                                               |            |  |  |  |  |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 3/5        |
| Project:  | Standard PVMax - Worst Case, 21 | -30 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load $x$ , $V_{uax}$ (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |
|--------|---------------------------------------|---------------------------------|----------------------------------------|------------------------------------------------------------|
| 1      | 2344.5                                | 1654.5                          | 0.0                                    | 1654.5                                                     |
| 2      | 2344.5                                | 1654.5                          | 0.0                                    | 1654.5                                                     |
| Sum    | 4689.0                                | 3309.0                          | 0.0                                    | 3309.0                                                     |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



# 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| $N_{sa}$ (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|---------------|--------|--------------------|
| 8095          | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$  (Eq. D-7)

| Kc                          | λ                            | f'c (psi)                                   | h <sub>ef</sub> (in) | $N_b$ (lb)                    |                |            |        |                     |
|-----------------------------|------------------------------|---------------------------------------------|----------------------|-------------------------------|----------------|------------|--------|---------------------|
| 17.0                        | 1.00                         | 2500                                        | 6.000                | 12492                         |                |            |        |                     |
| $\phi N_{cbg} = \phi (A_N$  | ıc / ΑΝco) Ψec,N Ψea         | $_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3 | Sec. D.4.1 & Eq      | . D-5)                        |                |            |        |                     |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> ) | $\Psi_{ec,N}$                               | $\Psi_{ed,N}$        | $arPsi_{	extsf{c},	extsf{N}}$ | $arPsi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (lb) |
| 378.00                      | 324 00                       | 1 000                                       | 0.972                | 1.00                          | 1 000          | 12492      | 0.65   | 9208                |

#### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| ,                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                |                                                 |              |        |                    |
|--------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------------------------------------------------|--------------|--------|--------------------|
| τ <sub>k,cr</sub> (psi)        | <b>f</b> <sub>short-term</sub>                 | $K_{sat}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $	au_{k,cr}$ (psi)            |                |                                                 |              |        |                    |
| 1035                           | 1.00                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1035                          |                |                                                 |              |        |                    |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | hef (Eq. D-16f)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                |                                                 |              |        |                    |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                            | h <sub>ef</sub> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N <sub>a0</sub> (lb)          |                |                                                 |              |        |                    |
| 1035                           | 0.50                                           | 6.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9755                          |                |                                                 |              |        |                    |
| $\phi N_{ag} = \phi (A_{Na})$  | $_{a}$ / $A_{Na0}$ ) $\Psi_{ed,Na}$ $\Psi_{g}$ | $_{	extstyle _{	extstyle _{ 	extstyle _{	extstyle _{	extstyle _{	extstyle _{	extstyle _{	extstyle _{ 	extstyle _{ 	extstyle _{ 	extstyle _{ 	extstyle _{ 	extstyle _{ 	extsty$ | l <sub>a0</sub> (Sec. D.4.1 & | Eq. D-16b)     |                                                 |              |        |                    |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                   | $\Psi_{\sf ed,Na}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $arPsi_{g,Na}$                | $\Psi_{ec,Na}$ | $\mathscr{\Psi}_{	extsf{	extsf{p}},	extsf{Na}}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |
| 158.66                         | 109.66                                         | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.043                         | 1.000          | 1.000                                           | 9755         | 0.55   | 8093               |



| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 4/5        |
| Project:  | Standard PVMax - Worst Case, 21 | -30 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

# 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

# 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

### Shear perpendicular to edge in x-direction:

| 378 00                      | 648.00                                                  | 1 000                                    | 0 836              | 1 000        | 1 000                | 15503         |   | φν cbgx (ID)         |
|-----------------------------|---------------------------------------------------------|------------------------------------------|--------------------|--------------|----------------------|---------------|---|----------------------|
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                            | $\Psi_{ec.V}$                            | $arPsi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$         | $V_{bx}$ (lb) | φ | $\phi V_{cbqx}$ (lb) |
| $\phi V_{cbgx} = \phi (A$   | $(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$                | $_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$ | (Sec. D.4.1 & Ed   | ą. D-22)     |                      |               |   |                      |
| 4.00                        | 0.50                                                    | 1.00                                     | 2500               | 12.00        | 15593                |               |   |                      |
| le (in)                     | da (in)                                                 | λ                                        | f'c (psi)          | Ca1 (in)     | V <sub>bx</sub> (lb) |               |   |                      |
| $V_{bx} = 7(I_e/d_e)$       | $(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$ | <sup>5</sup> (Eq. D-24)                  |                    |              |                      |               |   |                      |

# Shear parallel to edge in x-direction:

| $V_{by} = 7(I_e/d$          | $_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$ | <sup>5</sup> (Eq. D-24)                             |                   |                 |               |        |                     |
|-----------------------------|-----------------------------------------------------------|-----------------------------------------------------|-------------------|-----------------|---------------|--------|---------------------|
| I <sub>e</sub> (in)         | da (in)                                                   | λ                                                   | f'c (psi)         | Ca1 (in)        | $V_{by}$ (lb) |        |                     |
| 4.00                        | 0.50                                                      | 1.00                                                | 2500              | 8.16            | 8744          |        |                     |
| $\phi V_{cbx} = \phi (2)($  | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$                             | $\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                              | $\Psi_{ed,V}$                                       | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 299.64                      | 299.64                                                    | 1.000                                               | 1.000             | 1.000           | 8744          | 0.70   | 12241               |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

| $\phi V_{cpg} = \phi  \text{mi}$   | n  <i>kcpNag</i> ; <i>kcpN</i> | $ c_{bg}  = \phi \min  k_{cp} $ | (ANa/ANa0)Ψe       | $_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$ | Ψ <sub>p,Na</sub> Na0 ; Kcp(A | Nc / ANco) $\Psi_{\text{ec},N} \Psi$ | $\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$ | (Eq. D-30b) |
|------------------------------------|--------------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------------------------------|-------------|
| Kcp                                | $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )    | $\Psi_{\sf ed,Na}$ | $arPsi_{g,Na}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Psi_{\sf ec,Na}$            | $arPsi_{p,Na}$                       | $N_{a0}$ (lb)                                         | Na (lb)     |
| 2.0                                | 158.66                         | 109.66                          | 1.000              | 1.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                         | 1.000                                | 9755                                                  | 14715       |
| A <sub>Nc</sub> (in <sup>2</sup> ) | Anco (in²)                     | $\Psi_{ec,N}$                   | $\Psi_{ed,N}$      | $\Psi_{c,N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Psi_{cp,N}$                 | N <sub>b</sub> (lb)                  | Ncb (lb)                                              | $\phi$      |
| 378.00                             | 324.00                         | 1.000                           | 0.972              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                         | 12492                                | 14166                                                 | 0.70        |

φV<sub>cpg</sub> (lb) 19833

# 11. Results

### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                  | 2345                                | 6071                      | 0.39          | Pass           |
| Concrete breakout      | 4689                                | 9208                      | 0.51          | Pass           |
| Adhesive               | 4689                                | 8093                      | 0.58          | Pass (Governs) |
| Shear                  | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                  | 1655                                | 3156                      | 0.52          | Pass           |
| T Concrete breakout x+ | 3309                                | 5323                      | 0.62          | Pass (Governs) |
| Concrete breakout y-   | 1655                                | 12241                     | 0.14          | Pass (Governs) |
| Pryout                 | 3309                                | 19833                     | 0.17          | Pass           |
| Interaction check Nua/ | φNn Vua/φVn                         | Combined Rat              | o Permissible | Status         |



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |
|-----------|-----------------------------------------------|-------|------------|
| Engineer: | HCV                                           | Page: | 5/5        |
| Project:  | Standard PVMax - Worst Case, 21-30 Inch Width |       |            |
| Address:  |                                               |       |            |
| Phone:    |                                               |       |            |
| E-mail:   |                                               |       |            |

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.