называется абсолютно сходящимся, если сходится ряд

$$\sum_{n=1}^{\infty} |a_n| \,. \tag{2}$$

В этом случае ряд (1) также сходится. Сумма абсолютно сходяшегося ряда не зависит от порядка слагаемых.

Для определения абсолютной сходимости ряда (1) достаточно применить к ряду (2) известные признаки сходимости для знако-

постоянных рядов.

Если ряд (1) сходится, а ряд (2) расходится, то ряд (1) называется условно (не абсолютно) сходящимся. Сумму условно сходящегося ряда путем перестановки слагаемых можно сделать равной любому числу (теорема Римана).
2°. Признак Лейбница. Знакочередующийся ряд

$$b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n-1} b_n + \dots$$

 $(b_n \geqslant 0)$ сходится (вообще говоря, не абсолютно), если a) $b_n \geqslant b_{n+1}$ $(n=1,\ 2,\ \ldots)$ и б) $\lim_{n \to \infty} b_n = 0$. В этом случае для остатка ряда

$$R_n = (-1)^n b_{n+1} + (-1)^{n+1} b_{n+2} + \cdots$$

имеем оценку

$$R_n=(-1)^n\, heta_n b_{n+1} \ (0\leqslant heta_n\leqslant 1).$$
 З°. Признак Абеля. Ряд

$$\sum_{n=1}^{\infty} a_n b_n \tag{3}$$

еходится, если: 1) ряд $\sum_{n=0}^{\infty} a_n$ сходится; 2) числа b_n ($n=1,2,\ldots$) образуют монотонную и ограниченную последовательность.

- 4°. Признак Дирихле. Ряд (3) сходится, если:
- 1) частичные суммы $A_n = \sum_{i=1}^n a_i$ ограничены в совокупности;
- 2) b_n монотонно стремится к нулю при $n \to \infty$.
- 2656. Доказать, что члены не абсолютно сходящегося ряда можно без перестановки сгруппировать так. что полученный новый ряд будет абсолютно сходящимся.
- 2657. Доказать, что ряд $\sum_{n=1}^{\infty} a_n$ является сходящимся, если выполнены условия: a) общий член этого ряда a_n стремится к нулю при $n \to \infty$; б) ряд $\sum A_n$, полученный в результате группировки членов данного ряда без нарушения их порядка, сходится; в) число слагае-