딥러닝을 이용한 Image Super-Resolution

권영훈

Order

- Super-Resolution 문제정의
- · 기존의 Learning 방법
- · Learning 방법 변경
- · SRCNN + Residual 결과
- 한계점

Objective - Super-Resolution

Big but Blurry

Big & Sharp

Small

Super-Resolution

SRCNN Learning 방법

SRCNN Learning 방법

Output Image

 $F(X; \theta)$

Original Image

Output 이미지와 Original이미지를 비교하여 두 이미지 차이가 최소가 되는 방향으로 $oldsymbol{ heta}$ 업데이트

Accurate Image Super-Resolution using Very Deep Convolutional Networks

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee

Computer Vision Lab.
Dept. of ECE, ASRI
Seoul National University
http://cv.snu.ac.kr

- · Input 이미지를 필터를 통해 바로 High Resolution 이미지로 얻는 것이 아닌
- · Original 이미지와 Input이미지를 뺀 Residual image를 구하기위해 러닝하기
- Residual image = 원본 이미지 인풋 이미지 :; 입력을 넣으면 Residual image가 출력
- · 최적화된 Residual image를 구하여 Input image와 더하면 High Resolution 결과

Output 이미지와 실제 Residual이미지를 비교하여 두 이미지 차이가 최소가 되는 방향으로 $oldsymbol{ heta}$ 업데이트

Loss Function

$$\cdot loss = \frac{1}{2} ||\mathbf{r} - F(\mathbf{x}; \boldsymbol{\theta})||^2$$

- * X = 입력 이미지 (저 화질 이미지)
- * r = Original 이미지 Y 입력이미지 X (residual 이미지)
- f(x) = 네트워크를 거쳐서 나온 결과 Output residual 이미지

SRCNN + Residual 실험 결과

Original Image

Input Image

SRCNN

Ouput Image

SRCNN+
Residual
Output Image

Overflow Problem

RGB에서 YCbCr로 변환하는 과정에서 Overflow가 발생하여 다음과 같은 문제가 생김.

Overflow를 해결하기 위해 RGB에서 YCbCr로 변환하기 전에 0보다 작거나 1보다 큰경우의 값을 0과 1로 바꿔주는 작업을 한다.

Original Image

Input Image

Output Image

Original Image or

Input Image

Output Image

Original Image _o

Input Image

Output Image

Original Image

Input Image

Output Image

한계점

• 심하게 왜곡된 input 이미지에 효과 미비

• 여백을 포함한 테두리 부분은 트레이닝 되지 않았기 때문에 왜곡

한계점

• 심하게 왜곡된 input 이미지에 효과 미비

• 여백을 포함한 테두리 부분은 트레이닝 되지 않았기 때문에 왜곡

한계점

· 심하게 왜곡된 input 이미지에 효과 미비

• 여백을 포함한 테두리 부분은 트레이닝 되지 않았기 때문에 왜곡

· 서울대 논문 20개 레이어 쌓고나서 더 좋은 결과 바랬으나 Cost가 잘 줄어들지 않음 > 추가 논문 내용 구현 필요