МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №5

по дисциплине «Методы машинного обучения»

Тема: «Линейные модели, SVM и деревья решений»

ИСПОЛНИТЕЛЬ:	Паршева Анна		
группа ИУ5-22М	ФИО		
1 pyllilu 113 3 22141	подпись	подпись	
	" "	2020 г.	

Москва - 2020

1. Задание

- Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- Обучите следующие модели: одну из линейных моделей; SVM; дерево решений.
- Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

2. Подготовка данных

Выбранный набор данных представляет из себя набор характеристик различных автомобилей, целевой переменной является - цена автомобиля

```
In [12]: import pandas as pd

df = pd.read_csv('CarPrice.csv')
    df.head()
```

Out[12]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd
3	4	2	audi 100 ls	gas	std	four	sedan	fwd
4	5	2	audi 100ls	gas	std	four	sedan	4wd

5 rows × 26 columns

```
In [14]: row_number = df.shape[0]
    column_number = df.shape[1]

    print('Данный датасет содержит {} строк и {} столбцов.'.format(row_number, column_number))
```

Данный датасет содержит 205 строк и 26 столбцов.

```
In [15]: null_flag = False
null_columns = {}

for col in df.columns:
    null_count = df[df[col].isnull()].shape[0]
    if null_count > 0:
        null_flag = True
        column_type = df[col].dtype
        null_columns[col] = column_type
        percent = round((null_count / row_number) * 100, 3)
        print('{} - {} - {}. Тип - {}'.format(col, null_count, percent, column_type))

if not null_flag:
    print('Пропуски в данных отсутствуют.')
```

Пропуски в данных отсутствуют.

CarName
fueltype
aspiration
doornumber
carbody
drivewheel
enginelocation
enginetype
cylindernumber
fuelsystem

```
In [18]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for col in df.columns:
    df[col] = le.fit_transform(df[col])
```

```
In [19]: for col in df.columns:
    column_type = df[col].dtype
    if column_type == 'object':
        print(col)
```

```
In [43]: row_number_train = train_x_df.shape[0]
    column_number_train = train_x_df.shape[1]

print('Тренировочный датасет содержит {} строки и {} столбцов.'.for
    mat(row_number_train, column_number_train))
```

Тренировочный датасет содержит 143 строки и 25 столбцов.

```
In [42]: row_number_test = test_x_df.shape[0]
    column_number_test = test_x_df.shape[1]

    print('Tectobum датасет содержит {} строки и {} столбцов.'.format(r
    ow_number_test, column_number_test))
```

Тестовый датасет содержит 62 строки и 25 столбцов.

3. Обучение моделей

3.1 Линейная модель

3.1.1 Матрица корреляции

```
In [38]: corr_matrix = df.corr()
corr_matrix
```

Out[38]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	ca
car_ID	1.000000	-0.151621	0.967077	-0.125568	0.067729	-0.190352	0.0!
symboling	-0.151621	1.000000	-0.107095	0.194311	-0.059866	0.664073	-0.5!
CarName	0.967077	-0.107095	1.000000	-0.069435	0.019914	-0.171745	0.0
fueltype	-0.125568	0.194311	-0.069435	1.000000	-0.401397	0.191491	-0.1،
aspiration	0.067729	-0.059866	0.019914	-0.401397	1.000000	-0.031792	0.0
doornumber	-0.190352	0.664073	-0.171745	0.191491	-0.031792	1.000000	-0.6
carbody	0.098303	-0.596135	0.099691	-0.147853	0.063028	-0.680358	1.00
drivewheel	0.051406	-0.041671	-0.016129	-0.132257	0.066465	0.098954	-0.1
enginelocation	0.051483	0.212471	0.055968	0.040070	-0.057191	0.137757	-0.2
wheelbase	0.162792	-0.535721	0.051429	-0.296072	0.246290	-0.466657	0.40
carlength	0.162165	-0.357163	0.051896	-0.196281	0.244096	-0.382903	0.3
carwidth	0.104421	-0.234801	-0.010630	-0.231914	0.311695	-0.229790	0.14
carheight	0.255711	-0.516952	0.194678	-0.299030	0.121833	-0.550000	0.5
curbweight	0.119667	-0.208850	0.007118	-0.201092	0.345925	-0.211981	0.1
enginetype	-0.075130	0.050372	-0.090381	0.082695	-0.102963	0.062431	-0.0
cylindernumber	-0.040912	0.197762	0.047154	0.110617	-0.133119	0.154322	-0.0
enginesize	0.028107	-0.102395	-0.090497	-0.126387	0.197266	-0.036787	-0.0
fuelsystem	0.204898	0.091163	0.123845	0.041529	0.288086	0.015519	-0.0
boreratio	0.271661	-0.129044	0.201561	-0.043657	0.210910	-0.117787	0.0
stroke	-0.175206	-0.018198	-0.205093	-0.302867	0.223521	0.004591	-0.0
compressionratio	0.175895	-0.053801	0.168305	-0.634479	-0.143321	-0.058337	0.0
horsepower	-0.003477	0.054142	-0.095958	0.160982	0.307844	0.092022	-0.1
peakrpm	-0.217333	0.275404	-0.149881	0.487600	-0.181173	0.239094	-0.1
citympg	0.033055	-0.049180	0.111351	-0.257728	-0.204284	-0.005580	0.0
highwaympg	0.022503	0.019534	0.116787	-0.173238	-0.264490	0.021068	-0.0
price	0.012452	-0.089579	-0.096100	-0.140119	0.307676	-0.115160	0.0

26 rows × 26 columns

```
In [37]: corr_matrix['price'].nlargest(4)
```

Out[37]: price 1.000000 curbweight 0.905891 horsepower 0.846130 enginesize 0.818392

Name: price, dtype: float64

```
In [27]: import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.heatmap(corr_matrix)
```

Out[27]: <matplotlib.axes. subplots.AxesSubplot at 0x1229205c0>


```
In [32]: import plotly.express as px
fig = px.scatter(df, x='price', y='curbweight')
fig.show()
```

```
In [33]: fig = px.scatter(df, x='price', y='horsepower')
fig.show()
```

```
In [39]: fig = px.scatter(df, x='price', y='enginesize')
fig.show()
```

3.1.2 Вычисление коэффициентов регрессии матричным способом

$$B = (X^T X)^{-1} X^T Y$$

```
In [40]: import numpy as np
```

```
In [110]: X 0 = np.ones(row number train).T
          X = np.column stack((X 0, train x df))
          B = np.dot(np.dot(np.linalg.inv(np.dot(X.T,X)),X.T),train y df)
Out[110]: array([ 5.24106398e+01, -1.02311681e-01, 2.18470564e+00, -2.11642
          101e-02,
                 -2.92692816e+01, -5.83570818e+00, -7.93128553e+00, -4.40863
          223e+00,
                  2.52699519e+00, 3.20434750e+01, 6.34225165e-01, -2.06578
          965e-01,
                  7.36209558e-01, 2.50456405e-01, 3.60955023e-01, 9.91672
          740e-01,
                  4.48711749e-01, -4.77936652e-01, 3.58618089e+00, -2.09333
          506e-01,
                 -5.03714418e-01, 5.71833312e-01, 1.43046552e+00, -1.12281
          838e-01,
                 -2.40925647e+00, 1.50738855e+00])
```

3.1.3 Использование класса LinearRegression библиотеки scikitlearn

3.1.3.1 Обучение с произвольным гиперпараметром

```
In [194]:
          from sklearn.linear model import Lasso
          reg1 = Lasso(alpha=0.1).fit(np.array(train_x_df),
                                        np.array(train y df).reshape(-1, 1))
          B 1 = (reg1.intercept_, reg1.coef_)
In [195]: B 1
Out[195]: (array([42.14887115]),
           array([-1.11567509e-01, 1.84913331e+00, -1.05906495e-02, -2.0189
          2043e+01,
                  -6.63162812e-01, -7.31529743e+00, -4.77816533e+00, 1.8302
          3531e+00,
                   2.38949769e+01, 6.35998365e-01, -2.13153098e-01, 6.5925
          4648e-01,
                   2.64508407e-01, 3.75002489e-01, 9.35438073e-01, 4.1329
          2452e-01,
                  -2.53813867e-01, 3.67533788e+00, -1.76396306e-01, -4.9812
          8698e-01,
                   8.44526642e-01, 1.25702856e+00, -1.09337548e-02, -2.5537
          7484e+00,
                   1.55622583e+00]))
```

3.1.3.2 Оценка качества модели

```
In [196]: | predicted_y_reg = reg1.predict(np.array(test_x_df))
In [197]: | predict_test_df = pd.DataFrame(test_y_df)
          predict test df['predicted y'] = predicted y
In [198]: import plotly.graph_objects as go
          fig = go.Figure()
          fig.add trace(go.Scatter(x=np.arange(predict test df['predicted y']
          .shape[0]),
                                    y=predict_test_df['predicted_y'],
                                    name='predicted'
                        ))
          fig.add trace(go.Scatter(x=np.arange(predict test df['predicted y']
           .shape[0]),
                                    y=predict_test_df['price'],
                                    name='test'
                                   ))
          fig.show()
```

```
In [212]: from sklearn.metrics import r2_score, mean_absolute_error r2_reg = round(r2_score(test_y_df, predicted_y_reg), 2) mae_reg = round(mean_absolute_error(test_y_df, predicted_y_reg), 2) print('Коэффициент детерминации - %.2f' % r2_reg) print('Средняя абсолютная ошибка - %.2f' % mae_reg)
```

Коэффициент детерминации – 0.88 Средняя абсолютная ошибка – 14.93

3.1.3.3 Подбор гиперпараметра

```
In [209]: from sklearn.model selection import GridSearchCV
          from sklearn.model selection import RepeatedKFold
          n range = np.arange(0.1, 1.2, 0.1)
          tuned parameters = [{'alpha': n range}]
          gs = GridSearchCV(Lasso(),
                                 param grid=tuned parameters,
                                 cv=RepeatedKFold(n splits=3, n repeats=2),
                                 scoring='r2')
          gs.fit(train x df, train y df)
Out[209]: GridSearchCV(cv=RepeatedKFold(n repeats=2, n splits=3, random stat
          e=None),
                       error score=nan,
                       estimator=Lasso(alpha=1.0, copy X=True, fit intercept
          =True,
                                       max iter=1000, normalize=False, posit
          ive=False,
                                        precompute=False, random state=None,
                                        selection='cyclic', tol=0.0001, warm
          start=False),
                       iid='deprecated', n jobs=None,
                       param grid=[{'alpha': array([0.1, 0.2, 0.3, 0.4, 0.5,
          0.6, 0.7, 0.8, 0.9, 1., 1.1])
                       pre dispatch='2*n jobs', refit=True, return train sco
          re=False,
                       scoring='r2', verbose=0)
```

3.1.3.4 Обучение с наилучшим гиперпараметром

```
In [210]: gs.best_estimator_.fit(train_x_df, train_y_df)
predicted_y_best_reg = gs.best_estimator_.predict(test_x_df)

In [211]: r2_reg_best = round(r2_score(test_y_df, predicted_y_best_reg), 2)

print('Коэффициент детерминации при случайном гиперпараметре - %.2f

% r2_reg)
print('Коэффициент детерминации при наилучшем гиперпараметре - %.2f

% r2_reg_best)
```

Коэффициент детерминации при случайном гиперпараметре - 0.88 Коэффициент детерминации при наилучшем гиперпараметре - 0.89

3.2 **SVM**

3.2.1 Обучение с произвольным гиперпараметром

```
In [156]: from sklearn.svm import SVR
    svr = SVR(kernel='linear', C=100)
    svr.fit(train_x_df, train_y_df)
    predicted_y_svr = svr.predict(test_x_df)
```

3.2.2 Оценка качества модели

```
In [162]: r2 = round(r2_score(test_y_df, predicted_y_svr), 2)
print('Koэффициент детерминации - %.2f' % r2)
```

Коэффициент детерминации - 0.87

3.2.3 Подбор гиперпараметра

```
In [158]: from sklearn.model selection import GridSearchCV
          from sklearn.model selection import RepeatedKFold
          n range = np.arange(0.1,1,0.1)
          tuned parameters = [{'C': n range}]
          gs = GridSearchCV(SVR(kernel='linear'),
                                 param grid=tuned parameters,
                                 cv=RepeatedKFold(n splits=3, n repeats=2),
                                 scoring='r2')
          gs.fit(train x df, train y df)
Out[158]: GridSearchCV(cv=RepeatedKFold(n repeats=2, n splits=3, random stat
          e=None),
                       error score=nan,
                       estimator=SVR(C=1.0, cache size=200, coef0=0.0, degre
          e=3,
                                      epsilon=0.1, gamma='scale', kernel='lin
          ear',
                                      max iter=-1, shrinking=True, tol=0.001,
                                      verbose=False),
                        iid='deprecated', n_jobs=None,
                       param grid=[{'C': array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6
          , 0.7, 0.8, 0.9])}],
                       pre dispatch='2*n jobs', refit=True, return train sco
          re=False,
                       scoring='r2', verbose=0)
In [1591:
          'Наилучшее значение параметра C - ' + str(gs.best params ['C'])
Out[159]: 'Наилучшее значение параметра с – 0.9'
```

3.2.4 Обучение с наилучшим гиперпараметром

```
In [160]: gs.best_estimator_.fit(train_x_df, train_y_df)
predicted_y_best_svr = gs.best_estimator_.predict(test_x_df)

In [164]: r2_best = round(r2_score(test_y_df, predicted_y_best_svr), 2)

print('Коэффициент детерминации при случайном гиперпараметре - %.2f
' % r2)
print('Коэффициент детерминации при наилучшем гиперпараметре - %.2f
' % r2_best)

Коэффициент детерминации при случайном гиперпараметре - 0.87
```

Коэффициент детерминации при наилучшем гиперпараметре - 0.88

3.3 Дерево решений

3.3.1 Обучение с произвольным гиперпараметром

3.3.2 Оценка качества модели

```
In [167]: r2_dtr = round(r2_score(test_y_df, predict_y_dtr), 2)
    print('Коэффициент детерминации при случайном гиперпараметре - %.2f
' % r2_dtr)
```

Коэффициент детерминации при случайном гиперпараметре - 0.80

3.3.3 Подбор гиперпараметра

```
In [168]:
          params = {
               'max depth': [3, 4, 5, 6],
               'min_samples_leaf': [0.04, 0.06, 0.08],
               'max features': [0.2, 0.4, 0.6, 0.8]
          }
          grid = GridSearchCV(estimator=DecisionTreeRegressor(random state=1)
                               param_grid=params, scoring='r2', cv=3, n_jobs=-
          1)
          grid.fit(train x df, train y df)
Out[168]: GridSearchCV(cv=3, error score=nan,
                        estimator=DecisionTreeRegressor(ccp alpha=0.0, criter
          ion='mse',
                                                        max depth=None, max f
          eatures=None,
                                                        max leaf nodes=None,
                                                        min impurity decrease
          =0.0,
                                                        min impurity split=No
          ne,
                                                        min samples leaf=1,
                                                        min samples split=2,
                                                        min weight fraction 1
          eaf=0.0,
                                                        presort='deprecated',
                                                        random state=1, split
          ter='best'),
                        iid='deprecated', n jobs=-1,
                        param grid={'max depth': [3, 4, 5, 6],
                                    'max features': [0.2, 0.4, 0.6, 0.8],
                                    'min samples leaf': [0.04, 0.06, 0.08]},
                       pre dispatch='2*n jobs', refit=True, return train sco
          re=False,
                        scoring='r2', verbose=0)
In [170]:
          for param in params.keys():
              print('Наилучшее значение параметра %s - ' % param + str(grid.b
          est params [param]))
          Наилучшее значение параметра max depth - 6
          Наилучшее значение параметра min samples leaf - 0.04
          Наилучшее значение параметра max features - 0.2
```

3.2.4 Обучение с наилучшим гиперпараметром

```
In [171]: grid.best_estimator_.fit(train_x_df, train_y_df)
predicted_y_best_dtr = grid.best_estimator_.predict(test_x_df)

In [172]: r2_best_dtr = round(r2_score(test_y_df, predicted_y_best_svr), 2)

print('Коэффициент детерминации при случайном гиперпараметре - %.2f
' %

r2_dtr)
print('Коэффициент детерминации при наилучшем гиперпараметре - %.2f
' %
r2_best_dtr)
```

Коэффициент детерминации при случайном гиперпараметре - 0.80 Коэффициент детерминации при наилучшем гиперпараметре - 0.88

3.2.5 Наиболее важные признаки

3.2.6 Визуализация дерева

In [231]: from IPython.display import Image
 from sklearn.externals.six import StringIO
 Image(get_png_tree(grid.best_estimator_, train_x_df.columns), heigh
 t="500")

Out[231]:

