

Global United Technology Services Co., Ltd.

Report No.: GTS201809000059F01

FCC Report (Bluetooth)

Applicant: Crazybaby Inc.

Address of Applicant: 10 East South Temple Ste 850 Salt Lake City, UT 84133,

USA

Manufacturer Shenzhen Fogaap Technologies Co., Ltd.

Address of Manufacturer 4F, Tower B, Wanhai Building, Shekou Net Valley, 1031

Nanhai Blvd, Nanshan, Shenzhen

Factory Wata Electronics Co., Ltd.

Address of Factory NO.142, South Tanshen Road, Tanzhou, Zhongshan City,

Guangdong Province, P.R.China, 528467

Equipment Under Test (EUT)

Product Name: Movebeauty LP

Model No.: H182, H182XX

Trade Mark: Crazybaby

FCC ID: 2ALVIH182

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: September 7, 2018

Date of Test: September 7, 2018 – September 14, 2018

Date of report issued: September 14, 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	September 14, 2018	Original

Prepared By:	Trankly	Date:	September 14, 2018
	Project Engineer		
Check By:	Andy w	Date:	September 14, 2018
	Reviewer		

3 Contents

		Page
1	I COVER PAGE	1
2	2 VERSION	2
3		
4		
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 Test mode	
	5.3 TEST FACILITY	
	5.4 TEST LOCATION	
	5.5 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.7 ADDITIONAL INSTRUCTIONS	
6		
7 7		
	7.1 ANTENNA REQUIREMENT	
	7.1 ANTENNA REQUIREMENT	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
	7.10 Spurious Emission	
	7.10.1 Conducted Emission Method	37
	7.10.2 Radiated Emission Method	39
8	TEST SETUP PHOTO	47
9	EUT CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according ANSI C63.10:2013

Both the left earphone and the right earphone have RF charater, and the test result is to test the left earphone.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Movebeauty LP
Model No.:	H182, H182XX
Test Model No:	H182
Remark: All above models an The differences are model na	re identical in the same PCB layout, interior structure and electrical circuits.
Serial No.:	00000000000
Test sample(s) ID:	GTS2018090000059-1
Sample(s) Status	Engineer sample
Hardware:	v02
Software:	v03
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Antenna Type:	PCB Antenna
Antenna gain:	-2.5dBi
Power supply:	DC 3.7V

Operation Frequency each of channel Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
Onamici	Trequency	Onamici	Trequency	Onamici	rrequeries	Orialino	Trequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
SAMSUNG	Adapter	ETAOU80EBE	N/A
Lenovo	Notebook computer	E470C	PF-10FB5C
MOVEBEAUTY	Charging base	N/A	N/A

5.7 Additional Instructions

EUT Software Settings

	Special software is used.
Mode	The software provided by client to enable the EUT under transmission condition
	continuously at specific channel frequencies individually.

Power level setup in software						
Test Software Name	Software Name Airoha AB152x(verC)LAB Test Tool					
Mode	Channel Frequency (MHz) Soft Set					
GFSK, π/4-DQPSK, 8DPSK	CH01	2402				
	CH40 2441 TX level : (
	CH79 2480					

Run Software

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019		
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019		

Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019	

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is -2.5dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto		
Limit:	Limit (dRu\/)			
	Prequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	of the frequency.		
Test setup:	Reference Plane			
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN Filter AC power EMI Receiver			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			
เ ธอเ เธอนแอ.	1 033			

Measurement data:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Line:

EUT: Movebeauty LP Probe: L1

Model: Power Source: AC120V/60Hz

Mode: BT mode **Temp./Hum.(%H):** 26℃/60%RH

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.4580	31.08	10.04	41.12	56.73	-15.61	QP
2	0.4580	20.89	10.04	30.93	46.73	-15.80	AVG
3	1.4540	23.55	9.84	33.39	56.00	-22.61	QP
4	1.4540	16.65	9.84	26.49	46.00	-19.51	AVG
5	2.0660	27.11	9.82	36.93	56.00	-19.07	QP
6	2.0660	17.63	9.82	27.45	46.00	-18.55	AVG
7	5.9660	20.75	9.74	30.49	60.00	-29.51	QP
8	5.9660	10.82	9.74	20.56	50.00	-29.44	AVG
9	7.8340	18.98	9.76	28.74	60.00	-31.26	QP
10	7.8340	9.60	9.76	19.36	50.00	-30.64	AVG
11	13.9980	14.65	9.81	24.46	60.00	-35.54	QP
12	13.9980	5.81	9.81	15.62	50.00	-34.38	AVG

Neutral:

EUT: Movebeauty LP Probe: N

Model: Power Source: AC120V/60Hz

Mode: BT mode **Temp./Hum.(%H):** 26 ℃/60%RH

Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.4580	26.58	10.18	36.76	56.73	-19.97	QP
*	0.4580	18.50	10.18	28.68	46.73	-18.05	AVG
	1.4819	23.49	10.00	33.49	56.00	-22.51	QP
	1.4819	16.32	10.00	26.32	46.00	-19.68	AVG
	2.0260	25.24	10.00	35.24	56.00	-20.76	QP
	2.0260	15.03	10.00	25.03	46.00	-20.97	AVG
	6.1260	21.31	9.95	31.26	60.00	-28.74	QP
	6.1260	9.14	9.95	19.09	50.00	-30.91	AVG
	7.9540	18.89	9.96	28.85	60.00	-31.15	QP
	7.9540	8.42	9.96	18.38	50.00	-31.62	AVG
	14.2740	17.56	9.99	27.55	60.00	-32.45	QP
	14.2740	5.35	9.99	15.34	50.00	-34.66	AVG
_		MHz 0.4580 * 0.4580 1.4819 1.4819 2.0260 2.0260 6.1260 6.1260 7.9540 7.9540 14.2740	Mk. Freq. Level MHz dBuV 0.4580 26.58 * 0.4580 18.50 1.4819 23.49 1.4819 16.32 2.0260 25.24 2.0260 15.03 6.1260 21.31 6.1260 9.14 7.9540 18.89 7.9540 8.42 14.2740 17.56	Mk. Freq. Level Factor MHz dBuV dB 0.4580 26.58 10.18 * 0.4580 18.50 10.18 1.4819 23.49 10.00 2.0260 25.24 10.00 2.0260 25.24 10.00 6.1260 21.31 9.95 6.1260 9.14 9.95 7.9540 18.89 9.96 7.9540 8.42 9.96 14.2740 17.56 9.99	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.4580 26.58 10.18 36.76 * 0.4580 18.50 10.18 28.68 1.4819 23.49 10.00 33.49 1.4819 16.32 10.00 26.32 2.0260 25.24 10.00 35.24 2.0260 15.03 10.00 25.03 6.1260 21.31 9.95 31.26 6.1260 9.14 9.95 19.09 7.9540 18.89 9.96 28.85 7.9540 8.42 9.96 18.38 14.2740 17.56 9.99 27.55	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.4580 26.58 10.18 36.76 56.73 * 0.4580 18.50 10.18 28.68 46.73 1.4819 23.49 10.00 33.49 56.00 2.0260 25.24 10.00 26.32 46.00 2.0260 25.24 10.00 35.24 56.00 2.0260 15.03 10.00 25.03 46.00 6.1260 21.31 9.95 31.26 60.00 7.9540 18.89 9.96 28.85 60.00 7.9540 8.42 9.96 18.38 50.00 14.2740 17.56 9.99 27.55 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.4580 26.58 10.18 36.76 56.73 -19.97 * 0.4580 18.50 10.18 28.68 46.73 -18.05 1.4819 23.49 10.00 33.49 56.00 -22.51 1.4819 16.32 10.00 26.32 46.00 -19.68 2.0260 25.24 10.00 35.24 56.00 -20.76 2.0260 15.03 10.00 25.03 46.00 -20.97 6.1260 21.31 9.95 31.26 60.00 -28.74 6.1260 9.14 9.95 19.09 50.00 -30.91 7.9540 18.89 9.96 28.85 60.00 -31.15 7.9540 8.42 9.96 18.38 50.00 -31.62 14.2740 17.56 9.99 27.55 60.0

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +Correct Factor
- 4. Correct Factor = LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	30dBm(for GFSK),20.97dBm(for EDR)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	4.34		
GFSK	Middle	5.58	30.00	Pass
	Highest	5.27		
Pi/4QPSK	Lowest	4.14		Pass
	Middle	5.39	20.97	
	Highest	5.02		
	Lowest	4.38		
8DPSK	Middle	5.57	20.97	Pass
	Highest	5.20		

Test plot as follows:

Test mode: GFSK mode

Date: 12.SEP.2018 14:18:51

Lowest channel

Date: 12.SEP.2018 14:21:01

Middle channel

Date: 12.SEP.2018 14:22:05

Highest channel

Date: 12.SEP.2018 14:45:44

Lowest channel

Date: 12.SEP.2018 14:49:14

Middle channel

Date: 12.SEP.2018 14:50:30

Highest channel

Test mode: 8DPSK mode

Date: 12.SEP.2018 14:52:00

Lowest channel

Date: 12.SEP.2018 14:56:02

Middle channel

Date: 12.SEP.2018 14:59:23

Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
Lowest		0.860	
GFSK	Middle	0.848	Pass
	Highest	0.848	
	Lowest	1.242	
Pi/4QPSK	Middle	1.242	Pass
	Highest	1.248	
	Lowest	1.224	
8DPSK	Middle	1.224	Pass
	Highest	1.224	

Test plot as follows:

Test mode: GFSK mode

Date: 12.SEP.2018 16:59:45

Lowest channel

Date: 12.SEP.2018 17:04:17

Middle channel

Date: 12.SEP.2018 17:06:51

Highest channel

Date: 12.SEP.2018 15:55:02

Lowest channel

Date: 12.SEP.2018 16:36:05

Middle channel

Date: 12.SEP.2018 16:39:15

Highest channel

Test mode: 8DPSK mode

Date: 12.SEP.2018 16:55:45

Lowest channel

Date: 12.SEP.2018 16:45:34

Middle channel

Date: 12.SEP.2018 16:42:54

Highest channel

7.5 Carrier Frequencies Separation

	<u> </u>		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1000	573.33	Pass
GFSK	Middle	1004	573.33	Pass
	Highest	1000	573.33	Pass
	Lowest	1004	832.00	Pass
Pi/4QPSK	Middle	1004	832.00	Pass
	Highest	1004	832.00	Pass
8DSK	Lowest	1000	816.00	Pass
	Middle	1004	816.00	Pass
	Highest	1004	816.00	Pass

Note: According to section 7.4

Note: According to Section 1.4							
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)					
GFSK	860	573.33					
Pi/4QPSK	1248	832.00					
8DSK	1224	816.00					

Test plot as follows:

Modulation mode: GFSK

Date: 12.SEP.2018 17:48:37

Lowest channel

Date: 12.SEP.2018 17:49:11

Middle channel

Date: 12.SEP.2018 17:49:46

Highest channel

Date: 12.SEP.2018 17:43:50

Lowest channel

Date: 12.SEP.2018 17:44:38

Middle channel

Date: 12.SEP.2018 17:45:17

Highest channel

Test mode: 8DPSK mode

Date: 12.SEP.2018 17:46:12

Lowest channel

Date: 12.SEP.2018 17:46:46

Middle channel

Date: 12.SEP.2018 17:47:56

Highest channel

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details Pass		
Test mode:			
Test results:			

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
Pi/4QPSK	79	15	Pass
8DPSK	79	15	Pass

Date: 12.SEP.2018 15:12:44

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Frequency	uency Packet Dwell time(ms) L		Limit(ms)	Result
2441MHz	DH1/2-DH1/3-DH1	142.08	400	Pass
2441MHz	DH3/2-DH3/3-DH3	274.56	400	Pass
2441MHz	DH5/2-DH5/3-DH5	316.16	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1/2-DH1/3-DH1 time slot=0.444(ms)*(1600/(2*79))*31.6=142.08ms DH3/2-DH3/3-DH3 time slot=1.716(ms)*(1600/(4*79))*31.6=274.56ms DH5/2-DH5/3-DH5 time slot=2.964(ms)*(1600/(6*79))*31.6=316.16ms

Test plot as follows:

Date: 12.SEP.2018 15:14:40

DH1/2-DH1/3-DH1

Date: 12.SEP.2018 15:15:39

DH3/2-DH3/3-DH3

Date: 12.SEP.2018 15:17:04

DH5/2-DH5/3-DH5

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

GFSK Mode:

Pi/4QPSK Mode:

8DPSK Mode:

Date: 12.SEP.2018 17:34:18

No-hopping mode Hopping mode

Date: 12.SEP.2018 17:41:44

7.9.2 Radiated Emission Method

Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the	7.9.2 Radiated Emission W						
Test Frequency Range: All restriction band have been tested, and 2310MHz to 2390MHz, 2483.5MHz to 2500MHz band is the worse case Receiver setup: Frequency Detector RBW VBW Remark Abowe 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Frequency Limit (dBuV/m @3m) Remark Abowe 1GHz Frequency Limit (dBuV/m @3m) Remark Abowe 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Tawa placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rotat able was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Peak Value Above 1GHz Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did no	Test Method:						
Receiver setup: Frequency	Test Frequency Range:						
Above 1GHz Peak 1MHz 1MHz Average Value Peak Value Peak 1MHz 10Hz Average Value Frequency Limit (dBuVm @3m) Remark Above 1GHz 54.00 Average Value 74.00 Peak Value Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	Test site:	Measurement D	istance: 3m				
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and then the antenna was tuned to heights from 1 meter to 4 meters and then the antenna was tuned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.2 for details	Receiver setup:	Frequency	Detector	<u> </u>			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-lested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details		Above 1GHz					
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details	Limit:	Freque	1				
Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.2 for details				54.0	0	Č	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details				74.0	0	Peak Value	
ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details		Test Antenna- Company Company					
Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB 					
	Test Instruments:	Refer to section 6.0 for details					
Test results: Pass	Test mode:	Refer to section 5.2 for details					
	Test results:	Pass					

Remark:

1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Peak value:

i can value.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	56.37	-15.12	41.25	74.00	-32.75	Horizontal
2390.00	58.96	-15.05	43.91	74.00	-30.09	Horizontal
2310.00	55.19	-15.12	40.07	74.00	-33.93	Vertical
2390.00	60.38	-15.05	45.33	74.00	-28.07	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	45.26	-15.12	30.14	54.00	-23.96	Horizontal
2390.00	46.64	-15.05	31.59	54.00	-22.41	Horizontal
2310.00	44.19	-15.12	29.07	54.00	-24.93	Vertical
2390.00	52.17	-15.05	37.12	54.00	-16.88	Vertical

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	64.76	-14.68	50.08	74.00	-23.92	Horizontal
2500.00	54.17	-14.60	39.57	74.00	-34.43	Horizontal
2483.50	63.36	-14.68	48.68	74.00	-25.32	Vertical
2500.00	53.39	-14.60	38.79	74.00	-35.21	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.62	-14.68	37.94	54.00	-16.06	Horizontal
2500.00	43.52	-14.60	28.92	54.00	-25.08	Horizontal
2483.50	53.89	-14.68	39.21	54.00	-14.79	Vertical
2500.00	42.31	-14.60	27.71	54.00	-26.29	Vertical

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	·				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5 209						
Test Method:	FCC Part15 C Section 15.209 ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector	RB\	N	VBW	Va	lue	
	9KHz-150KHz	Qι	ıasi-peak	2001	Hz	600H	z Quas	i-peak	
	150KHz-30MHz	Qı	uasi-peak	9KF	Ηz	30KH	z Quas	i-peak	
	30MHz-1GHz	Qı	uasi-peak	100K	Ήz	300KF	Iz Quas	i-peak	
	Above 4011-		Peak	1MF	Ηz	3MHz	z Pe	eak	
	Above 1GHz		Peak	1MF	Ηz	10Hz	Ave	rage	
Limit: (Spurious Emissions)	Frequency	Frequency Limit		ıV/m)		'alue		Measurement Distance	
	0.009MHz-0.490M	1Hz	2400/F(k	KHz)		QP	300m		
	0.490MHz-1.705M	1Hz	24000/F(00/F(KHz)		QP	300m		
	1.705MHz-30MH	łz	30	30		QP	30m		
	30MHz-88MHz		100			QP			
	88MHz-216MHz	Z	150			QP			
	216MHz-960MH	z	200		QP				
	960MHz-1GHz		500		QP		3m		
	AL 4011		500		Average				
	Above 1GHz 5000)						
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								

	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

■ Below 1GHz

EUT:Movebeauty LPPolarziation:HorizontalModel:H182Power Source:AC120V/60HzMode:BT modeTemp./Hum.(%H):26℃/60%RHNote:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	32.2925	56.91	-32.99	23.92	40.00	-16.08	QP
2		55.8047	56.41	-34.82	21.59	40.00	-18.41	QP
3		93.7685	56.79	-38.95	17.84	43.50	-25.66	QP
4		148.4410	50.29	-34.72	15.57	43.50	-27.93	QP
5		196.5098	54.78	-38.63	16.15	43.50	-27.35	QP
6		290.0172	51.75	-35.22	16.53	46.00	-29.47	QP

EUT:Movebeauty LPPolarziation:VerticalModel:H182Power Source:AC120V/60HzMode:BT modeTemp./Hum.(%H):26℃/60%RHNote:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	33.5624	56.43	-33.11	23.32	40.00	-16.68	QP
2		57.9993	56.35	-35.08	21.27	40.00	-18.73	QP
3		94.0979	57.72	-38.94	18.78	43.50	-24.72	QP
4		148.4410	52.53	-34.72	17.81	43.50	-25.69	QP
5		179.3863	53.27	-37.32	15.95	43.50	-27.55	QP
6		420.5803	48.57	-31.87	16.70	46.00	-29.30	QP

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

■ Above 1GHz

est channel:	Lowest
--------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	58.54	-7.43	51.11	74.00	-22.89	Vertical
7206.00	57.32	-2.42	54.90	74.00	-19.10	Vertical
9608.00	56.13	-2.38	53.75	74.00	-20.25	Vertical
12010.00	*			74.00		Vertical
14412.00	*			74.00		Vertical
4804.00	59.51	-7.43	52.08	74.00	-21.92	Horizontal
7206.00	58.28	-2.42	55.86	74.00	-18.14	Horizontal
9608.00	56.27	-2.38	53.89	74.00	-20.11	Horizontal
12010.00	*			74.00		Horizontal
14412.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.20	-7.43	39.77	54.00	-14.23	Vertical
7206.00	48.63	-2.42	46.21	54.00	-7.79	Vertical
9608.00	47.28	-2.38	44.90	54.00	-9.10	Vertical
12010.00	*			54.00		Vertical
14412.00	*			54.00		Vertical
4804.00	46.59	-7.43	39.16	54.00	-14.84	Horizontal
7206.00	47.23	-2.42	44.81	54.00	-9.19	Horizontal
9608.00	47.04	-2.38	44.66	54.00	-9.34	Horizontal
12010.00	*			54.00		Horizontal
14412.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	58.17	-7.49	50.68	74.00	-23.32	Vertical
7323.00	58.23	-2.40	55.83	74.00	-18.17	Vertical
9764.00	57.42	-2.38	55.04	74.00	-18.96	Vertical
12205.00	*			74.00		Vertical
14646.00	*			74.00		Vertical
4882.00	64.15	-7.49	56.66	74.00	-17.34	Horizontal
7323.00	58.73	-2.40	56.33	74.00	-17.67	Horizontal
9764.00	57.69	-2.38	55.31	74.00	-18.69	Horizontal
12205.00	*			74.00		Horizontal
14646.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.96	-7.49	39.47	54.00	-14.53	Vertical
7323.00	48.47	-2.40	46.07	54.00	-7.93	Vertical
9764.00	47.03	-2.38	44.65	54.00	-9.35	Vertical
12205.00	*			54.00		Vertical
14646.00	*			54.00		Vertical
4882.00	48.28	-7.49	40.79	54.00	-13.21	Horizontal
7323.00	47.63	-2.40	45.23	54.00	-8.77	Horizontal
9764.00	48.71	-2.38	46.33	54.00	-7.67	Horizontal
12205.00	*			54.00		Horizontal
14646.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct facto
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Highest
1 001 01101111011	19

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	63.24	-7.47	55.77	74.00	-18.23	Vertical
7440.00	58.36	-2.45	55.91	74.00	-18.09	Vertical
9920.00	57.19	-2.37	54.82	74.00	-19.18	Vertical
12400.00	*			74.00		Vertical
14880.00	*			74.00		Vertical
4960.00	66.74	-7.47	59.27	74.00	-14.73	Horizontal
7440.00	59.14	-2.45	56.69	74.00	-17.31	Horizontal
9920.00	58.35	-2.37	55.98	74.00	-18.02	Horizontal
12400.00	*			74.00		Horizontal
14880.00	*			74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.12	-7.47	40.65	54.00	-13.35	Vertical
7440.00	49.01	-2.45	46.56	54.00	-7.44	Vertical
9920.00	47.26	-2.37	44.89	54.00	-9.11	Vertical
12400.00	*			54.00		Vertical
14880.00	*			54.00		Vertical
4960.00	49.03	-7.47	41.56	54.00	-12.44	Horizontal
7440.00	48.77	-2.45	46.32	54.00	-7.68	Horizontal
9920.00	48.35	-2.37	45.98	54.00	-8.02	Horizontal
12400.00	*			54.00		Horizontal
14880.00	*			54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----