SVD and Low-rank **Approximation**

Lecture 23 April 18, 2019

Singular Value Decomposition (SVD)

Let **A** be a $m \times n$ real-valued matrix

- a_i denotes vector corresponding to row i
- m rows. think of each row as a data point in \mathbb{R}^n
- Data applications: $m \gg n$
- Other notation: **A** is a $n \times d$ matrix.

Singular Value Decomposition (SVD)

Let **A** be a $m \times n$ real-valued matrix

- a_i denotes vector corresponding to row i
- m rows. think of each row as a data point in \mathbb{R}^n
- Data applications: $m \gg n$
- Other notation: **A** is a $n \times d$ matrix.

SVD theorem: \mathbf{A} can be written as \mathbf{UDV}^{T} where

- V is a $n \times n$ orthonormal matrix
- D is a $m \times n$ diagonal matrix with $\leq \min\{m, n\}$ non-zeroes called the singular values of A
- U is a $m \times m$ orthonormal matrix

Let $d = \min\{m, n\}$.

- u_1, u_2, \ldots, u_m columns of U, left singular vectors of A
- v_1, v_2, \ldots, v_n columns of V (rows of V^T) right singular vectors of A
- $\sigma_1 \geq \sigma_2 \geq \ldots, \geq \sigma_d$ are singular values where $d = \min\{m, n\}$. And $\sigma_i = D_{i,i}$

$$A = \sum_{i=1}^{d} \sigma_i u_i v_i^T$$

SVD

Let $d = \min\{m, n\}$.

- u_1, u_2, \ldots, u_m columns of U, left singular vectors of A
- v_1, v_2, \ldots, v_n columns of V (rows of V^T) right singular vectors of A
- $\sigma_1 \ge \sigma_2 \ge \dots, \ge \sigma_d$ are singular values where $d = \min\{m, n\}$. And $\sigma_i = D_{i,i}$

$$A = \sum_{i=1}^{d} \sigma_i u_i v_i^T$$

We can in fact restrict attention to r the rank of A.

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

Chandra (UIUC) CS498ABD 3 Spring 2019

Interpreting A as a linear operator $A: \mathbb{R}^n \to \mathbb{R}^m$

- Columns of V is an orthonormal basis and hence $V^T x$ for $x \in \mathbb{R}^n$ expresses x in the V basis. Note that $V^T x$ is a rigid transformation (does not change length of x).
- Let $y = V^T z$. D is a diagonal matrix which only stretches y along the coordinate axes. Also adjusts dimension to go from n to m with right number of zeroes.
- Let z = Dy. Then Uz is a rigid transformation that expresses z in the basis corresponding to rows of U.

Thus any linear operator can be broken up into a sequence of three simpler/basic type of transformations

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.

That is, $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ is the best rank k approximation to A

$$||A - A_k||_F = \min_{B: \operatorname{rank}(B) \le k} ||A - B||_F$$

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.

That is, $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ is the best rank k approximation to A

$$||A - A_k||_F = \min_{B: rank(B) \le k} ||A - B||_F$$

Why this magic? Frobenius norm and basic properties of vector projections

Consider k = 1. What is the best rank 1 matrix B that minimizes $||A - B||_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

Chandra (UIUC) CS498ABD 6 Spring 2019 6 / 18

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why?

Consider k = 1. What is the best rank 1 matrix B that minimizes $||A - B||_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why? For fixed v, $u(i) = \langle a_i, v \rangle$

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why? For fixed v, $u(i) = \langle a_i, v \rangle$

 $||a_i - \langle a_i, v \rangle v||_2$ is distance of a_i from line described by v.

What is the best rank 1 matrix B that minimizes $||A - B||_F$

It is to find unit vector/direction \mathbf{v} to minimize

$$\sum_{i=1}^{m} ||a_i - \langle a_i, v \rangle v||^2$$

which is same as finding unit vector \mathbf{v} to maximize

$$\sum_{i=1}^{m} \langle a_i, v \rangle^2$$

What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

It is to find unit vector/direction \mathbf{v} to minimize

$$\sum_{i=1}^{m} ||a_i - \langle a_i, v \rangle v||^2$$

which is same as finding unit vector \mathbf{v} to maximize

$$\sum_{i=1}^{m} \langle a_i, v \rangle^2$$

How to find best \mathbf{v} ? Not obvious: we will come to it a bit later

Chandra (UIUC) CS498ABD 7 Spring 2019 7 / 18

Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes $||A - B||_F$

Since B has rank 2 we can assume without loss of generality that $B = u_1 v_1^T + u_2 v_2^T$ where v_1 , v_2 are orthogonal unit vectors (span a space of dimension 2)

Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes $||A - B||_F$

Since B has rank $\mathbf{2}$ we can assume without loss of generality that $B = u_1 v_1^T + u_2 v_2^T$ where v_1, v_2 are orthogonal unit vectors (span a space of dimension $\mathbf{2}$)

Minimizing $||A - B||_F^2$ is same as finding orthogonal vectors v_1, v_2 to maximize

$$\sum_{i=1}^{m} (\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2)$$

in other words the best fit 2-dimensional space

Greedy algorithm

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_2 solve $\arg\max_{v \perp v_1, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$.

Alternatively: let
$$a_i' = a_i - \langle a_i, v_1 \rangle v_1$$
. Let $v_2 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i', v \rangle^2$

Greedy algorithm

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_2 solve $\arg\max_{v\perp v_1,\|v\|_2=1}\sum_{i=1}^m \langle a_i,v\rangle^2$.

Alternatively: let
$$a_i' = a_i - \langle a_i, v_1 \rangle v_1$$
. Let $v_2 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i', v \rangle^2$

Greedy algorithm works!

Proof that Greedy works for k = 1.

Suppose w_1 , w_2 are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_1 , w_2 .

Suffices to prove that

$$\sum_{i=1}^{m} (\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2) \geq \sum_{i=1}^{m} (\langle a_i, w_1 \rangle^2 + \langle a_i, w_2 \rangle^2)$$

Proof that Greedy works for k = 1.

Suppose w_1 , w_2 are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_1 , w_2 .

Suffices to prove that

$$\sum_{i=1}^{m} (\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2) \geq \sum_{i=1}^{m} (\langle a_i, w_1 \rangle^2 + \langle a_i, w_2 \rangle^2)$$

If $v_1 \subset H$ then done because we can assume wlog that $w_1 = v_1$ and v_2 is at least as good as w_2 .

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H.

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H. Note that $\|v_1'\|^2 + \|v_1''\|_2^2 = \|v_1\|_2^2 = 1$.

Wlog we can assume by rotation that $w_1 = \frac{1}{\|v_1'\|_2}v_1'$ and w_2 is orthogonal to v_1' . Hence w_2 is orthogonal to v_1 .

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H. Note that $\|v_1'\|^2 + \|v_1''\|_2^2 = \|v_1\|_2^2 = 1$.

Wlog we can assume by rotation that $w_1 = \frac{1}{\|v_1'\|_2}v_1'$ and w_2 is orthogonal to v_1' . Hence w_2 is orthogonal to v_1 .

Therefore v_2 is at least as good as w_2 , and v_1 is at least as good as w_1 which implies the desired claim.

Greedy algorithm for general k

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_k solve $\arg\max_{v\perp v_1,v_2,\dots,v_{k-1},\|v\|_2=1}\sum_{i=1}^k\langle a_i,v\rangle^2$ which is same as solving k=1 with vectors a_1',a_2',\dots,a_m' that are residuals. That is $a_i'=a_i-\sum_{i=1}^{k-1}\langle a_i,v_j\rangle v_j$

Proof of correctness is via induction and is a straight forward generalization of the proof for k=2

Summarizing

$$\sigma_j^2 = \sum_{i=1}^m \langle a_i, v_j \rangle^2$$

By greedy contruction $\sigma_1 \geq \sigma_2 \dots$,

Let r be the (row) rank of A. v_1, v_2, \ldots, v_r span the row space of A and $\sigma_j = 0$ for j > r

 u_1 determined by v_1 and u_2 determined by v_1 , v_2 and so on. Can show that they are orthogonal.

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

Power method

Thus SVD relies on being able to solve k = 1 case

Given m vectors $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ solve

$$\max_{\mathbf{v}\in\mathbb{R}^n,\|\mathbf{v}\|_2=1}\langle a_i,\mathbf{v}\rangle^2$$

How do we solve the above problem?

Let $B = A^T A$ Then

$$B = \left(\sum_{i=1}^{m} \sigma_i v_i u_i^T\right) \left(\sum_{i=1}^{r} \sigma_i u_i v_i^T\right)$$
$$= \sum_{i=1}^{r} \sigma_i^2 v_i v_i^T$$

14

Let $B = A^T A$ Then

$$B^{2} = \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)$$
$$= \sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}.$$

More generally

$$B^k = \sum_{i=1}^r \sigma_i^k v_i v_i^T$$

Let $B = A^T A$ Then

$$B^{2} = \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)$$
$$= \sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}.$$

More generally

$$B^k = \sum_{i=1}^r \sigma_i^k v_i v_i^T$$

If $\sigma_1 > \sigma_2$ then B^k converges to $\sigma_1^k v_1 v_1^T$ and we can identify v_1 from B^k . But expensive to compute B^k

Pick a random (unit) vector $x \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n \lambda_i v_i$ since v_1, v_2, \ldots, v_n is a basis for \mathbb{R}^n .

$$B^k x = (\sum_{i=1}^r \sigma_i^k v_i v_i^T)(\sum_{i=1}^d \lambda_i v_i) \rightarrow \sigma_1^{2k} \lambda_1 v_1$$

Can obtain v_1 by normalizing $B^k x$ to a unit vector.

Computing $B^k x$ is easier via a series of matrix vector multiplications

Pick a random (unit) vector $x \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n \lambda_i v_i$ since v_1, v_2, \ldots, v_n is a basis for \mathbb{R}^n .

$$B^k x = (\sum_{i=1}^r \sigma_i^k v_i v_i^T)(\sum_{i=1}^d \lambda_i v_i) \rightarrow \sigma_1^{2k} \lambda_1 v_1$$

Can obtain v_1 by normalizing $B^k x$ to a unit vector.

Computing $B^k x$ is easier via a series of matrix vector multiplications

Why random x?

What if $\sigma_1 \simeq \sigma_2$? Power method still works. See references.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Chandra (UIUC) CS498ABD 17 Spring 2019 17 / 18

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to b is the projection of b into the column space of A so it is "obvious" geometrically. How do we find it?

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of \boldsymbol{A} . Compute projection \boldsymbol{b}' as $\boldsymbol{b}' = \sum_{j=1}^r \langle \boldsymbol{b}, z_j \rangle z_j$ and output answer as $\|\boldsymbol{b} - \boldsymbol{b}'\|_2$.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of \boldsymbol{A} . Compute projection \boldsymbol{b}' as $\boldsymbol{b}' = \sum_{j=1}^r \langle \boldsymbol{b}, z_j \rangle z_j$ and output answer as $\|\boldsymbol{b} - \boldsymbol{b}'\|_2$.

Finding the basis is the expensive part. Recall SVD gives v_1, v_2, \ldots, v_r which form a basis for the *row* space of \boldsymbol{A} but then $u_1^T, u_2^T, \ldots, u_m^T$ form a basis for the *column* space of \boldsymbol{A} . Hence SVD gives us all the information to find \boldsymbol{b}' . In fact we have

$$\min_{x} ||Ax - b||_{2}^{2} = \sum_{i=r+1}^{m} \langle u_{i}^{T}, b \rangle^{2}$$