

Factual Probing is [MASK]: Learning vs. Learning to Recall

Zexuan Zhong*

Dan Friedman*

Danqi Chen

Princeton University

Language Models Capture Factual Knowledge

Language Models Capture Factual Knowledge

Fact: (DirectX, developer, Microsoft)

Language Models Capture Factual Knowledge

Fact: (DirectX, developer, Microsoft)

[MASK] released the DirectX \implies Microsoft

This Work

- 1. How to **generate** good prompts for factual probing?
- 2. Can we **trust** the probing results of optimized prompts?
- 3. How can we better **interpret** the probing results?

This Work

- 1. How to **generate** good prompts for factual probing?
- 2. Can we **trust** the probing results of optimized prompts?
- 3. How can we better interpret the probing results?

Prompts Matter!

[MASK] released the DirectX \implies Microsoft

Prompts Matter!

[MASK] released the DirectX Microsoft DirectX was developed by [MASK] Intel

Prompts Matter!

[MASK] released the DirectX Microsoft DirectX was developed by [MASK] Intel

LAMA (Petroni et al., 2019): manually defined

[X] is [MASK] citizen

LAMA (Petroni et al., 2019): manually defined

[X] is [MASK] citizen

LPAQA (Jiang et al., 2020): mined & paraphrased

[X] is a citizen of [MASK]

LAMA (Petroni et al., 2019): manually defined

[X] is [MASK] citizen

LPAQA (Jiang et al., 2020): mined & paraphrased

[X] is a citizen of [MASK]

AutoPrompt (Shin et al., 2020): discrete-token search

[X] m³ badminton pieces internationally representing [MASK]

LAMA (Petroni et al., 2019): manually defined

[X] is [MASK] citizen

[X] is a citizen of [MASK]

AutoPrompt (Shin et al., 2020): discrete-token search

[X] m³ badminton pieces internationally representing [MASK]

Why do prompts have to be a sequence of **tokens**?

LAMA (Petroni et al., 2019): manually defined

[X] is [MASK] citizen

LPAQA (Jiang et al., 2020): mined & paraphrased

[X] is a citizen of [MASK]

AutoPrompt (Shin et al., 2020): discrete-token search

[X] m³ badminton pieces internationally representing [MASK]

OptiPrompt (**ours**): dense-vector optimization

OptiPrompt

Prompt definition

OptiPrompt

Prompt definition

OptiPrompt

Prompt definition

$$[X]$$
 $\bullet \bullet \bullet \bullet \cdots \bullet \bullet \bullet \bullet \bullet$ $[MASK]$

Training

$$\mathcal{L}_r = -rac{1}{|D_r|} \sum_{(s,o) \in D_r} \log P(\texttt{[MASK]} = o \mid t_r(s))$$

Results are based on BERT-base

Results are based on BERT-base

Results are based on BERT-base

This Work

- How to generate good prompts for factual probing?
- 2. Can we **trust** the probing results of optimized prompts?
- 3. How can we better interpret the probing results?

Analogy to Linguistic Probing

Training

Testing

Analogy to Linguistic Probing

Training Testing The chef made pizzas Alice saw Bob BERT BERT probe: classifier → nsub

Disentangle the information **encoded in the representations** from the information **learned by the probe**.

Training

Training

Testing

Are there 48.6% facts stored in the pre-trained BERT?

No!

Are there 48.6% facts stored in the pre-trained BERT?

No!

1. Unseen facts can be predicted from training data

Are there 48.6% facts stored in the pre-trained BERT?

No!

- 1. Unseen facts can be predicted from training data
- 2. Prompts can exploit training data

Majority model

- always predicts the **majority** class
- 17.3% accuracy in LAMA

Majority model

- always predicts the **majority** class
- 17.3% accuracy in LAMA

Imbalanced distributions

• native_language: **60**% French

continent: 72% Antarctica

Naive Bayes model

- simple **bag-of-words** classifier
- 24.6% accuracy in LAMA

Naive Bayes model

- simple **bag-of-words** classifier
- 24.6% accuracy in LAMA

Correlations between subject tokens and object tokens

- *Chevrolet* manufactures the *Chevrolet Impala*
- Ghana Football Association is a member of FIFA

Random controls

- Random Model: optimize prompts on a random initialized model
- Random Embeddings: optimize prompts on a model with random embeddings

Results of random controls

Results of random controls

Results of random controls

We cannot interpret the LAMA probing results of optimized prompts as a **lower bound** of the amount of knowledge in BERT.

This Work

- 1. How to **generate** good prompts for factual probing?
- 2. Can we **trust** the probing results of optimized prompts?
- 3. How can we better **interpret** the probing results?

Partition LAMA examples

1. LAMA-Easy

 Facts that can be predicted by the Naive Bayes model or by fine-tuning a random BERT on the training set

2. LAMA-Hard

• The remain facts

Method	All (34,039)	Easy (10,546)	Hard (23,493)
Manual	31.1	41.5	24.3
LPAQA	34.1	47.0	25.6
AUTOPROMPT	42.2	68.2	26.7
OPTIPROMPT	48.6	75.6	33.0

Method	All (34,039)	Easy (10,546)	Hard (23,493)
Manual	31.1	41.5	24.3
LPAQA	34.1	47.0	25.6
AUTOPROMPT	42.2	68.2	26.7
OPTIPROMPT	48.6	75.6	33.0

Method	All (34,039)	Easy (10,546)	Hard (23,493)
Manual	31.1	41.5	24.3
LPAQA	34.1	47.0	25.6
AUTOPROMPT	42.2	68.2	26.7
OPTIPROMPT	48.6	75.6	33.0

Learning from training set

Learning to recall facts

Method	All	Easy	Hard
	(34,039)	(10,546)	(23,493)
Manual	31.1	41.5	24.3
LPAQA	34.1	47.0	25.6
A UTO P ROMPT	42.2	68.2	26.7
OPTIPROMPT	48.6	75.6	33.0

Learning from training set

Conclusions

- 1. **OptiPrompt:** a simple & effective approach to generate prompts
- 2. Optimized prompts can **exploit training data** to make correct predictions
 - Probing results cannot be directly interpreted as a lower bound of amount of knowledge stored in the LM
- 3. Random controls can help us better interpret the probing results

Thank You!

Paper: https://arxiv.org/pdf/2104.05240.pdf

Code: https://github.com/princeton-nlp/OptiPrompt