

IDENTIFICATION AND FAILURE DETECTION IN A DIDACTIC MANUFACTURE SYSTEM

Rafael Accácio Nogueira

Projeto de Graduação apresentado ao Curso de Engenharia de Controle e Automação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro de Controle e Automação.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro Abril de 2019

IDENTIFICATION AND FAILURE DETECTION IN A DIDACTIC MANUFACTURE SYSTEM

Rafael Accácio Nogueira

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO DE CONTROLE E AUTOMAÇÃO.

Examinado por:	
	Prof. Marcos Vicente de Brito Moreira. D.Sc.

RIO DE JANEIRO, RJ – BRASIL ABRIL DE 2019 Nogueira, Rafael Accácio

Identificação e Detecção de Falhas em um Sistema de Manufatura Didático/Rafael Accácio Nogueira.

- Rio de Janeiro: UFRJ/ Escola Politécnica, 2019.

XII, 7 p.: il.; 29,7cm.

Orientador: Marcos Vicente de Brito Moreira

Projeto de Graduação – UFRJ/ Escola Politécnica/ Curso de Engenharia de Controle e Automação, 2019.

Bibliography: p. 5-6.

- 1. Failure Detection. 2. Discrete Event Systems.
- I. Moreira, Marcos Vicente de Brito. II. Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia de Controle e Automação. III. Identification and Failure Detection in a Didactic Manufacture System.

"It's a dangerous business going out your door. You step onto the road, and if you don't keep your feet, there's no knowing where you might be swept off to." (J.R.R Tolkien)

Agradecimentos

Gostaria de agradecer primeiramente a Deus, pois sem Ele nada é possível e por **to-das** as pessoas qu'Ele colocou em meu caminho, que me fizeram crescer e ser o indivíduo que hoje sou.

Agradeço aos meus pais, Rosemeri e Rogério. Por todo amor e carinho, pela atenção dada e a primeira educação, pontapé inicial essencial para toda minha trajetória, educação não só acadêmica, mas também moral. Agradeço também por terem sempre escolhido as melhores escolas que proporcionaram o conhecimento necessário para entrar no Colégio Pedro II.

Gostaria de agradecer a todos meus professores e professoras por terem mostrado o quão importante e bonita é a profissão e por terem sempre instigado a sede pelo aprendizado. Agradeço a todos que contribuíram para minha base acadêmica e profissional.

Agradeço a todas as amizades que fiz, principalmente as do Pedro II, com os quais convivi durante 7 anos, passando o fim da infância e por grande parte da adolêscencia e também as da UFRJ, mais especificamente da nossa turma T17, pois se chegamos até onde chegamos foi porque estivemos juntos, fortes, lado a lado, ombro no ombro, não deixando o outro cair, mas quando alguém caía sempre uma mão se estendia para ajudar a levantar e recomeçar. Dos amigos da T17 alguns não poderiam não ser mencionados:

Os melhores companheiros de grupo, Gabriel Pelielo e Rodrigo Moysés, um verdadeiro "Power Trio", sinergia define bem todos trabalhos que fizemos. E também os amigos Philipe Moura e Felipe Matheus, que me incentivaram a sair da minha zona de conforto e me fizeram compreender de fato o sentido do quão "perigoso" é sair pela porta de casa, pois quando saímos da nossa zona de conforto, coisas mágicas podem acontecer e pessoas mágicas podem aparecer em nossas vidas.

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the requirements for the degree of Automation and Control Engineering.

IDENTIFICATION AND FAILURE DETECTION IN A DIDACTIC MANUFACTURE SYSTEM

Rafael Accácio Nogueira

April/2019

Advisor: Marcos Vicente de Brito Moreira

Course: Automation and Control Engineering

This work has as primary objective to propose tools and a methodology for identification and failure detection on discrete events systems using the Deterministic Automaton with Outputs and Conditional Transitions (DAOCT) model. In order to accomplish this, the control of a didactic manufacture system will be designed, using petri nets in a first phase converting it into Ladder. Once the control is implemented, it will be showed how to make the input and output data acquisition necessary to feed the DAOCT model identification algorithm. The DAOCT model identified by the offline program, using data acquired when the system was operational in normal conditions, will be used online to detect failures in tests where the failures will be created by fiddling around with the sensors and actuators, this way the model will be tested using relatively larger systems.

1. Failure Detection. 2. Discrete Event Systems.

vi

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ como parte dos requisitos necessários para a obtenção do grau de Engenheiro de Controle e Automação.

IDENTIFICAÇÃO E DETECÇÃO DE FALHAS EM UM SISTEMA DE MANUFATURA DIDÁTICO

Rafael Accácio Nogueira

Abril/2019

Orientador: Marcos Vicente de Brito Moreira

Curso: Engenharia de Controle e Automação

Este trabalho tem como objetivo propor ferramentas e uma metodologia para a identificação e detecção de falhas em sistemas a eventos discretos, utilizando o modelo DAOCT. Para tanto, será realizado o projeto de controle de um sistema de manufatura didático, utilizando em uma primeira fase redes de petri, depois convertendo na linguagem Ladder. Uma vez implementado o controle será mostrado como fazer a aquisição dos dados de entrada e saída da planta, necessários para o algoritmo de identificação do modelo DAOCT. O modelo DAOCT identificado pelo programa offline, usando dados colhidos em diversos testes no qual a planta se comporta normalmente, será usado para detectar falhas online em testes onde situações de falhas serão causadas ao alterar o comportamento de sensores e atuadores, assim testando o modelo para sistemas de relativamente maiores dimensões

1. Failure Detection. 2. Discrete Event Systems.

vii

Contents

Li	st of Figures	ix
Li	st of Tables	x
Li	st of Acronyms	xi
Li	st of Symbols	xii
1	Examples	1
	1.1 teste	1
	1.1.1 teste	1
2	Introduction	2
3	Results	3
	3.1 Teste	3
4	Conclusion	4
Bi	bliography	5
\mathbf{A}	Complete Petri Net	7

List of Figures

List of Tables

List of Acronyms

DAOCT

Deterministic Automaton with Outputs and Conditional Transitions, p. vi, vii

List of Symbols

 Ω Set of IO vectors, p. 1

Examples

1.1 teste

1.1.1 teste

teste

```
Input: scalar \epsilon, matrix \mathbf{A} = (a_{ij}), vector \vec{b} and initial vector \vec{x}^{(0)} for k \leftarrow 1 to maximum iterations do

| for i \leftarrow 1 to n do
| x_i^{(k)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}}{a_{ii}};
end
| if |\vec{x}^{(k)} - \vec{x}^{(k-1)}| < \epsilon then
| Stop
| end
| end
```

Algorithm 1: Gauss-Seidel Algorithm

 Ω

Figure 1.1: Petri net of Initialization module.

Table 1.1: Lugares do Módulo de Inicialização

Places	Meaning
$\overline{p_0}$	System Stopped
p_1	Retract MAG 1 Cylinder *
p_2	MAG1's Cylinder Retracted
p_3	Retract MAG 2 Cylinder *
p_4	MAG2's Cylinder Retracted
p_5	Retract Right Discharge Cylinder *
p_6	Right Discharge Cylinder Retracted
p_7	Retract Center Discharge Cylinder
p_8	Center Discharge Cylinder Retracted
p_9	Retract Left Discharge Cylinder *
p_{10}	Left Discharge Cylinder Retracted
p_{11}	Turn Conveyor Belt On (Reverse)
p_{12}	No Pieces On Conveyor Belt
p_{13}	Reset Variables ¹
p_{14}	Retract Joining Cylinder
p_{15}	Open Safety Door
p_{16}	Extend Assembly Unit Holder
p_{17}	Assembly Unit Ready
p_{18}	Arm Lowered and Retracted, and Storage Device Retracted On The Z Axis
p_{19}	Move Storage Device to the Right
p_{20}	Storage Device ready (horizontal)
p_{21}	Move Storage Device Downwards
p_{22}	Storage Device ready (vertical)
p_{23}	Rotate Arm CCW
p_{24}	Arm Stopped
p_{25}	Rotate Arm CW e Turn HSC ON
p_{26}	Arm Stopped (facing conveyor belt)
p_{27}	System Ready

Variáveis IEC_{COUNTER}, IEC_{CO}

Table 1.2: Transições do Módulo de Inicialização

Transitions	Meaning
t_0	Initialization Button
t_1	Sensor MAG 1 Cylinder Retracted
t_2	Sensor MAG 2 Cylinder Retracted
t_3	Sensor Right Discharge Cylinder Retracted
t_4	Sensor Center Discharge Cylinder Retracted
t_5	Sensor Left Discharge Cylinder Retracted
t_6	
t_7	$\mathrm{T}{=}15\mathrm{s}$
t_8	$T{=}2.5\mathrm{s}$
t_9	Sensor Safety Door Opened
t_{10}	Sensor Assembly Unit Holder Extended
t_{11}	Sensor Storage Device Retracted and Arm Lowered and Retracted
t_{12}	Fim de curso direito do armazenador de cubos
t_{13}	Fim de curso inferior do armazenador de cubos
t_{14}	T=2s
t_{15}	Sensor Indutivo do braço
t_{16}	T=1s
t_{17}	$Count_300C.DB.Countval = -1690$
t_{18}	
t_{19}	Botão Começar

Figure 1.2: Petri net of metal cube half sorting module.

Table 1.3: Lugares do Módulo 2 pt $1\,$

Places	Meaning
p_{28}	Mag1 vazio
p_{29}	Mag1 com peça
p_{30}	Estender Mag1 Horizontal*
p_{31}	Retrair Mag1 Horizontal*
p_{32}	Mag1 Horizontal retraído
p_{33}	Ligar esteira sentido normal
p_{34}	
p_{35}	Peça de Plástico
p_{36}	Ligar esteira sentido normal
p_{37}	Estender Pistão de descarte D*
p_{38}	Retrair Pistão de descarte D*
p_{39}	Ligar esteira sentido normal
p_{40}	Estender Pistão de descarte C*
p_{41}	Retrair Pistão de descarte C*
p_{42}	
p_{43}	Peça de Metal
p_{44}	Ligar esteira sentido normal
p_{45}	Estender Pistão de descarte E*
p_{46}	Retrair Pistão de descarte E*
p_{47}	Ligar esteira sentido normal
p_{48}	Ligar esteira sentido normal
p_{49}	Peça Metal Pronta
p_{50}	Esteira Parada

Table 1.4: Transições do Módulo 2 pt $\boldsymbol{1}$

Transitions	Meaning
t_{20}	Sensor Chave de Presença de Peça Mag1
t_{21}	
t_{22}	Mag1 Horizontal estendido ↑
t_{23}	Mag1 Horizontal retraído ↑
t_{24}	$T{=}0.5s$
t_{25}	Presença ↑ T=0.5s
t_{26}	Sensor Metal
t_{27}	Sensor Preto
t_{28}	Presença Pistão de D↑
t_{29}	Sensor pistão de descarte D estendido
t_{30}	Sensor pistão de descarte D retraído
t_{31}	Sensor Branco
t_{32}	Presença Pistão de C↑
t_{33}	Sensor pistão de descarte C estendido
t_{34}	Sensor pistão de descarte C retraído
t_{35}	Sensor Metal
t_{36}	Sensor peça concavidade para baixo
t_{37}	Presença Pistão de E↑
t_{38}	Sensor pistão de descarte E estendido
t_{39}	Sensor pistão de descarte E retraído
t_{40}	
t_{41}	Sensor peça concavidade para cima
t_{42}	Sensor final da esteira ↑
t_{43}	$T{=}0.5s$
t_{44}	Sensor final da esteira ↓
t_{45}	

Figure 1.3: Petri net of plastic cube half sorting module.

Table 1.5: Lugares do Módulo 2 pt $2\,$

Places	Meaning
p_{51}	Mag2 vazio
p_{52}	Mag2 com peça
p_{53}	Estender Mag2 Horizontal*
p_{54}	Retrair Mag2 Horizontal*
p_{55}	Mag2 Horizontal Retraído
p_{56}	Ligar esteira sentido normal
p_{57}	
p_{58}	Ligar esteira sentido normal
p_{59}	Estender Pistão de descarte E*
p_{60}	Retrair Pistão de descarte E*
p_{61}	Peça de Metal
p_{62}	Ligar esteira sentido normal
p_{63}	Estender Pistão de descarte D*
p_{64}	Retrair Pistão de descarte D*
p_{65}	Peça Branca
p_{66}	Ligar esteira sentido normal
p_{67}	Estender Pistão de descarte C*
p_{68}	Retrair Pistão de descarte C*
p_{69}	
p_{70}	Ligar esteira sentido normal
p_{71}	Ligar esteira sentido normal
p_{72}	Peça branca pronta
p_{73}	Esteira parada

Table 1.6: Transições do Módulo 2 p
t $2\,$

Transitions	Meaning
t_{46}	Sensor Chave de Presença de Peça Mag2
t_{47}	
t_{48}	Mag2 Horizontal estendido ↑
t_{49}	Mag2 Horizontal retraído ↑
t_{50}	T=0.5s
t_{51}	Presença \uparrow T=0.5s
t_{52}	Sensor Metal
t_{53}	Presença Pistão de E↑
t_{54}	Sensor pistão de descarte E estendido
t_{55}	Sensor pistão de descarte E retraído
t_{56}	Sensor Metal
t_{57}	Sensor Preto
t_{58}	Presença Pistão de D↑
t_{59}	Sensor pistão de descarte D estendido
t_{60}	Sensor pistão de descarte D retraído
t_{61}	Sensor Branco
t_{62}	Sensor peça concavidade para cima
t_{63}	Presença Pistão de C↑
t_{64}	Sensor pistão de descarte C estendido
t_{65}	Sensor pistão de descarte C retraído
t_{66}	
t_{67}	Sensor peça concavidade para baixo
t_{68}	Sensor final da esteira ↑
t_{69}	$T{=}0.5s$
t_{70}	Sensor final da esteira ↓
t_{71}	

Figure 1.4: Petri net of manipulator taking a cube half from conveyor belt to assembly unit module.

Table 1.7: Lugares do Módulo Braço Esteira Prensa

Places	Meaning
p_{74}	Estender verticalmente o braço
p_{75}	Estender vertical e horizontalmente o braço e Ligar o vácuo
p_{76}	Estender horizontalmente o braço e Ligar o vácuo
p_{77}	Estender vertical e horizontalmente o braço e Ligar o vácuo
p_{78}	Estender verticalmente o braço e Ligar o vácuo
p_{79}	Habilita HSC e Estender verticalmente o braço, Ligar o vácuo e Girar Braço no sentido hora
p_{80}	Estender vertical e horizontalmente o braço e Ligar o vácuo
p_{81}	Estender horizontalmente o braço e Ligar o vácuo
p_{82}	Estender horizontalmente o braço
p_{83}	Estender vertical e horizontalmente o braço
p_{84}	Estender verticalmente o braço
p_{85}	Habilita HSC e Estender verticalmente o braço e Girar Braço no sentido antihorário
p_{86}	Estender Verticalmente o braço e HALFPIECECOUNTER:=HALFPIECECOUNTER+1

Table 1.8: Transições do Módulo Braço Esteira Prensa

Transitions	Meaning
t_{72}	Sensor vertical braço estendido
t_{73}	$T{=}1.5\mathrm{s}$
t_{74}	T=1.5s e Sensor vertical braço retraído
t_{75}	T=1.5s e Sensor vertical braço estendido
t_{76}	T=1.5s e Sensor vertical braço estendido
t_{77}	$Count_300C.DB.CountVal = -3330$
t_{78}	T=1.5s e Sensor vertical braço estendido
t_{79}	T=1.5s e Sensor vertical braço retraído
t_{80}	$T{=}1.5\mathrm{s}$
t_{81}	T=1.5s e Sensor vertical braço estendido
t_{82}	HALFPIECECOUNTER0=1 e Sensor Hz prensa estendido e porta prensa aberta
t_{83}	T=1.5s e HALFPIECECOUNTER $=0$ e Sensor vertical braço estendido
t_{84}	$Count_300C.DB.CountVal = -1690$
t_{85}	

Figure 1.5: Petri net of assembly unit module.

Table 1.9: Lugares do Módulo prensa cubo

Places	Meaning
p_{87}	Retrair atuador horizontal prensa*
p_{88}	Fechar Porta prensa*
p_{89}	Estender atuador vertical prensa*
p_{90}	Retrair atuador vertical prensa*
p_{91}	Abrir Porta prensa*
p_{92}	Estender atuador horizontal prensa*
p_{93}	Cubo pronto
p_{94}	Estender horizontalmente o braço e Ligar Vácuo
p_{95}	Estender verticalmente o braço

Transitions	Meaning
t_{86}	T=1s e Sensosr horizontal prensa retraído
t_{87}	T=1s e Sensor porta fechada
t_{88}	T=1s
t_{89}	T=1s
t_{90}	T=1s e sensor porta aberta
t_{91}	T=1s e sensor horizontal prensa estendido
t_{92}	
t_{93}	T=1.5s e Sensor horizontal do braço estendido

Figure 1.6: Petri net of manipulator taking cube from assembly unit to storage module.

Table 1.10: Lugares do Módulo braço prensa armazenador

Places	Meaning
p_{96}	Estender horizontalmente o braço e Ligar Vácuo
p_{97}	Estender vertical e horizontalmente o braço e Ligar Vácuo
p_{98}	Resetar IEC _{COUNTER0} *, estender verticalmente o braço e Ligar Vácuo
p_{99}	Habilita HSC e Estender verticalmente o braço, Ligar Vácuo e Girar o Braço no sentido ho
p_{100}	Estender vertical e horizontalmente o braço e Ligar Vácuo
p_{101}	Estender horizontalmente o braço e Ligar Vácuo
p_{102}	Estender horizontalmente o braço
p_{103}	Estender vertical e horizontalmente o braço
p_{104}	Girar o braço no sentido antihorário
p_{105}	Braço parado
p_{106}	Habilita HSC e Girar o braço no sentido horário
p_{107}	Braço na esteira

Table 1.11: Transições do Módulo braço prensa armazenador

Transitions	Meaning
t_{94}	T=1.5s e Sensor vertical braço retraído
t_{95}	Sensor vertical braço estendido, Fim de curso inferior e direito armazenador
t_{96}	
t_{97}	$Count_300C.DB.CountVal = -4920$
t_{98}	$T{=}2\mathrm{s}$
t_{99}	$T{=}2\mathrm{s}$
t_{100}	Sensor vertical braço retraído
t_{101}	Sensor vertical braço estendido, Fim de curso inferior e direito armazenador
t_{102}	Sensor indutivo do braço
t_{103}	T=1s
t_{104}	$Count_300C.DB.CountVal = -1690$

Figure 1.7: Petri net of storage unit positioning module (y axis).

Table 1.12: Lugares do Módulo armazenador y

Places	Meaning
p_{108}	Cubo On Storage Unit
p_{109}	Move Storage Unit to the Right
p_{110}	
p_{111}	Move Storage Unit Upwards
p_{112}	Move Storage Unit Upwards
p_{113}	Move Storage Unit Upwards
p_{114}	Move Storage Unit Upwards
p_{115}	COUNTER3:=COUNTER3+1
p_{116}	RESET COUNTER3*
p_{117}	

Table 1.13: Transições do Módulo armazenador y

Transitions	Meaning
t_{105}	T=2s
t_{106}	T=2s
t_{107}	COUNTER2=0
t_{108}	COUNTER3=4
t_{109}	Vertical Encoder
t_{110}	COUNTER2=1
t_{111}	COUNTER3=3
t_{112}	Vertical Encoder
t_{113}	COUNTER2=2
t_{114}	COUNTER3=2
t_{115}	Vertical Encoder
t_{116}	COUNTER2=3
t_{117}	COUNTER3=1
t_{118}	Vertical Encoder
t_{119}	
t_{120}	

Figure 1.8: Petri net of storage unit positioning module (x axis).

Table 1.14: Lugares do Módulo armazenador (\mathbf{x})

Places	Meaning
p_{118}	COUNTER1:=COUNTER1+1 e COUNTER4:=COUNTER4+1
p_{119}	Move Storage Unit to the Left
p_{120}	Move Storage Unit to the Left
p_{121}	Move Storage Unit to the Left
p_{122}	Move Storage Unit to the Left
p_{123}	Move Storage Unit to the Left
p_{124}	Move Storage Unit to the Left
p_{125}	Move Storage Unit to the Left
p_{126}	COUNTER5 := COUNTER5 + 1
p_{127}	Reset COUNTER5*
p_{128}	Reset COUNTER4*, COUNTER2:=COUNTER2+1
p_{129}	

Table 1.15: Transições Módulo armazenador (\mathbf{x})

Transitions	Meaning
t_{121}	COUNTER4=1
t_{122}	COUNTER5=1
t_{123}	Horizontal Encoder
t_{124}	COUNTER4=2
t_{125}	COUNTER5=2
t_{126}	Horizontal Encoder
t_{127}	COUNTER4=3
t_{128}	COUNTER5=3
t_{129}	Horizontal Encoder
t_{130}	COUNTER4=4
t_{131}	COUNTER5=4
t_{132}	Horizontal Encoder
t_{133}	COUNTER4=5
t_{134}	COUNTER5=5
t_{135}	Horizontal Encoder
t_{136}	COUNTER4=6
t_{137}	COUNTER5=8
t_{138}	Horizontal Encoder
t_{139}	COUNTER4=7
t_{140}	COUNTER5=9
t_{141}	Horizontal Encoder
t_{142}	
t_{143}	
t_{144}	

Figure 1.9: Petri net of cube storage module.

Table 1.16: Places from the cube storage module.

Places	Meaning
p_{130}	Extend horizontalmente armazenador
p_{131}	Estender horizontalmente armazenador e mover armazenador para baixo
p_{132}	Estender horizontalmente armazenador
p_{133}	Piece Stored
p_{134}	Move Storage Unit to the Right
p_{135}	Storage Unit Ready (horizontal)
p_{136}	Move Storage Unit Downwards
p_{137}	Storage Unit Ready (vertical)
p_{138}	
p_{139}	Storage Unit Ready

Table 1.17: Transitions from the cube storage module.

Transitions	Meaning
t_{145}	T=2s
t_{146}	T=3s
t_{147}	$T{=}0.25\mathrm{s}$
t_{148}	T=3s
t_{149}	T=7s
t_{150}	Storage Unit Right Limit Switch
t_{151}	Storage Unit Inferior Limit Switch
t_{152}	
t_{153}	COUNTER1<28
t_{154}	COUNTER1=28

Introduction

Results

3.1 Teste

Conclusion

Bibliography

- CABRAL, F. G., MOREIRA, M. V. "Synchronous Codiagnosability of Modular Discrete-Event Systems", *IFAC-PapersOnLine*, v. 50, n. 1, pp. 6831–6836, 2017.
- CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. "Petri net diagnoser for discrete event systems modeled by finite state automata", *IEEE Transactions on Automatic Control*, v. 60, n. 1, pp. 59–71, 2015a.
- CABRAL, F. G., MOREIRA, M. V., DIENE, O. "Online fault diagnosis of modular discrete-event systems". In: *Decision and Control (CDC)*, 2015 IEEE 54th Annual Conference on, pp. 4450–4455. IEEE, 2015b.
- CASSANDRAS, C. G., LAFORTUNE, S. Introduction to discrete event systems. Springer Science & Business Media, 2009.
- DAVID, R., ALLA, H. L. Du Grafcet aux réseaux de Petri. Hermes, 1989.
- FRANÇA, T. C. Projeto de um sistema supervisório para uma planta mecatrônica de estocagem de Peças. Projeto de Graduação, Universidade Federal do Rio de Janeiro, 2015.
- JOURDAN, G., BOCHMANN, G. V. "On testing 1-safe Petri nets". In: 2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering, pp. 275–281. IEEE, 2009.
- KUMAR, R., TAKAI, S. "Comments on "Polynomial Time Verification of Decentralized Diagnosability of Discrete Event Systems" versus "Decentralized Failure Diagnosis of Discrete Event Systems": Complexity Clarification", *IEEE Transactions on Automatic Control*, v. 59, n. 5, pp. 1391–1392, 2014.

- LANCELLOTE JÚNIOR, F. P. Automação de uma planta mecatrônica modelada por uma rede de petri interpretada para controle. Projeto de Graduação, Universidade Federal do Rio de Janeiro, 2014.
- LUCIO, M. L. Diagnóstico de falhas sincronizado de uma planta de manufatura. Projeto de Graduação, Universidade Federal do Rio de Janeiro, 2015.
- MOREIRA, M. V., LESAGE, J.-J. "Enhanced discrete event model for system identification with the aim of fault detection", *IFAC-PapersOnLine*, v. 51, n. 7, pp. 160–166, 2018.
- MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. ""Polynomial Time Verification of Decentralized Diagnosability of Discrete Event Systems" Versus "Decentralized Failure Diagnosis of Discrete Event Systems: A Critical Appraisal", *IEEE Transactions on Automatic Control*, v. 61, n. 1, pp. 178–181, 2016.
- OLIVEIRA, V. D. S. L. *Protocolo de comunicação profinet para redes de automação*. Projeto de Graduação, Universidade Federal do Rio de Janeiro, 2016.
- VERAS, M. Z., CABRAL, F. G., MOREIRA, M. V. "Distributed Synchronous Diagnosability of Discrete-Event Systems", *IFAC-PapersOnLine*, v. 51, n. 7, pp. 88–93, 2018.

Appendix A

Complete Petri Net

