

BAKALÁŘSKÁ PRÁCE

Anna Gajdová

Jonesův polynom

Katedra algebry

Vedoucí bakalářské práce: doc. RNDr. Stanovský David, Ph.D.

Studijní program: Matematika

Studijní obor: obecná matematika

	zalářskou práci vypracoval(a) samostatně a výhradně enů, literatury a dalších odborných zdrojů.
zákona č. 121/2000 Sb., auto	noji práci vztahují práva a povinnosti vyplývající ze orského zákona v platném znění, zejména skutečnost, rávo na uzavření licenční smlouvy o užití této práce odst. 1 autorského zákona.
V dne	Podpis autora

Poděkování.

Název práce: Jonesův polynom

Autor: Anna Gajdová

Katedra: Katedra algebry

Vedoucí bakalářské práce: doc. RNDr. Stanovský David, Ph.D., Katedra algebry

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Jones polynomial

Author: Anna Gajdová

Department: Department of Algebra

Supervisor: doc. RNDr. Stanovský David, Ph.D., Department of Algebra

Abstract: Abstract.

Keywords: key words

Obsah

Ú	vod	2
1	Definice a vlastnosti Jonesova polynomu	3
	1.1 Co uvnitř	3
	1.2 začátek	3
	1.3 Definice	3
	1.4 Závorkový polynom	3
2	Druhá	5
	2.1 Co v ní	5
3	Třetí	6
	3.1 Co v ní	6
Zá	ivěr	7
Se	znam použité literatury	8
Se	znam obrázků	9
Se	eznam tabulek	10
Se	znam použitých zkratek	11
\mathbf{A}	Přílohy	12
	A.1 První příloha	12

$\mathbf{\acute{U}vod}$

Následuje několik ukázkových kapitol, které doporučují, jak by se měla bakalářská práce sázet. Primárně popisují použití TEXové šablony, ale obecné rady poslouží dobře i uživatelům jiných systémů.

1. Definice a vlastnosti Jonesova polynomu

1.1 Co uvnitř

Definice, důkaz ekvivalence definic, #P Předpokládám reudenaistra a pod Studium invariantů, polynomů Skein relation Uzel Link Pro linky? Uzly? Diagramy - popsat?

Ukázat, že ampirichal knot má substituci (wiki říká, že přes kauffman) Uzel, orientace, link.

1.2 začátek

Popis kladných a záporných křížení

Pro popis polynomů na uzlech se používají skein (česky přadeno) vztahy. Skein vztah popisuje, jaký je vztah mezi polynomy tří linků L_+ , L_- a L_0 , jejichž diagramy jsou identické až na oblast jednoho křížení. V linku L_+ má toto křížení kladnou orientaci, v L_- zápornou a v L_0 je křížení rozpojené, viz obrázek.

1.3 Definice

Definice 1. Jonesův polynom orientovaného uzlu K je laurentův polynom značený $V_K(t)$ v proměnné \sqrt{t} (tj. polynom v $Z[\sqrt{t}, \sqrt{t^{-1}}]$), který

- je uzlový invariant
- je normalizovaný, tedy polynom triviálního uzlu V_{\circlearrowleft} má hodnotu 1
- splňuje skein vztah

$$\frac{1}{t}V_{K+} - tV_{K-} = (\sqrt{t} + \frac{1}{\sqrt{t}})V_{K_0}$$

Zmena, musi to byt s linky

Korektnost definice plyne z faktu, že z každého uzlového diagramu lze změnou křížení z kladného na záporné či obracéně získat diagram triviálního uzlu. Jonesův polynom každého uzlu lze tedy díky skein vztahu rekurzivně spočítatz jeho libovolného diagramu.

Ekvivalentní definice Jonesova polynomu, kterou použijeme v k výpočtu, je založena na závorkovém polynomu (bracket polynomial, Kauffman bracket).

1.4 Závorkový polynom

Závorkový polynom je definovaný pouze pro diagramy neorientovaných linků (tedy nikoli pro samotné linky). Je počítán z jednodušších uzlů.

Definice 2. Závorkový polynom neorientovaného diagramu D, značení $\langle D \rangle$, je Laurentův polynom v proměnné A, definovaný třemi odvozovacími pravidly:

- i. $\langle \bigcirc \rangle = 1$, $kde \bigcirc značí diagram s jednou komponentou bez křížení$
- ii. $\langle krizeni \rangle = A \langle vert \rangle + A^{-1} \langle hor \rangle$, kde krizeni značí diagram obsahující křížení, vert je diagram, který je shodný až na dané křížení, které je vertikální rozpojeno a hor je diagram, v němž je křížení rozpojeno horizontálně.
- iii. $\langle D \cup \bigcirc \rangle = (-A^2 A^{-2})\langle D \rangle$, kde $D \cup \bigcirc$ značí sjednocení diagramu D a diagramu s jednou komponentou bez křížení.

Důsledek. $\langle krizeniopacne \rangle = A \langle hor \rangle + A^{-1} \langle vert \rangle$

Lemma 1. $\langle smycka \rangle = A^{-3} \langle odsmycka \rangle \langle smyckanaopak \rangle = A^{3} \langle odsmycka \rangle$

Důkaz. Par obrazku

Dva diagramy jsou ekvivalentni, pokud mezi nimi existuje série Reidematre Obrázek Reidemastra

Tvrzení 2. Závorkový polynom je invariantní vůči druhému Reidemastrovi

Důkaz. Par obrazku

Důsledek. Závorkový polynom je invariantní vůči třetímu Reidemastrovi.

Důkaz. Par obrazku

Definice 3. Zakroucení (writhe) orientovaného diagramu D je součet znamení všech křížení v D, značí se w(D).

Definice 4. Normalizovaný závorkový polynom orientovaného linku L definijeme $X(L) = (-A^3)^{-w(D)} \langle D \rangle$, kde je libovolný diagram linku L.

Korektnost definice plyne z následujícího tvrzení.

Tvrzení 3. Normalizovaný závorkový polynom je uzlový (linkový) invariant.

 $D\mathring{u}kaz$. Již víme, že je invariatní vůčí dva a tři, podle lemmatu bla bla je i podle jedna a je to hotovo.

Věta 4. Normalizovaný závorkový polynom se substituovanou proměnnou je roven Jonesovu polynomu.

Důkaz. Jedna sedi podle tvrzení Dva sedi podle definice Tři se musí nějak dokázat

2. Druhá

2.1 Co v ní

Popis algoritmu, horní odhad exponenciální, dolní odhad pro nějakou třídu uzlů, na které se to rozbije, skripta z počítačové algebry, důkaz správnosti algoritmu Odhad složitosti

3. Třetí

3.1 Co v ní

Experiment, náhodné uzly, sehnat skripty od Tomáše, různé algoritmy

Závěr

Seznam použité literatury

- Anděl, J. (1998). *Statistické metody*. Druhé přepracované vydání. Matfyzpress, Praha. ISBN 80-85863-27-8.
- Anděl, J. (2007). Základy matematické statistiky. Druhé opravené vydání. Matfyzpress, Praha. ISBN 80-7378-001-1.
- Cox, D. R. (1972). Regression models and life-tables (with Discussion). *Journal* of the Royal Statistical Society, Series B, **34**(2), 187–220.
- DEMPSTER, A. P., LAIRD, N. M. a RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*, **39**(1), 1–38.
- Genberg, B. L., Kulich, M., Kawichai, S., Modiba, P., Chingono, A., Kilonzo, G. P., Richter, L., Pettifor, A., Sweat, M. a Celentano, D. D. (2008). HIV risk behaviors in sub-Saharan Africa and Northern Thailand: Baseline behavioral data from project Accept. *Journal of Acquired Immune Deficiency Syndrome*, 49, 309–319.
- Kaplan, E. L. a Meier, P. (1958). Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, **53**(282), 457–481.
- LEHMANN, E. L. a CASELLA, G. (1998). Theory of Point Estimation. Second Edition. Springer-Verlag, New York. ISBN 0-387-98502-6.
- STUDENT (1908). On the probable error of the mean. Biometrika, 6, 1–25.

Seznam obrázků

Seznam tabulek

Seznam použitých zkratek

A. Přílohy

A.1 První příloha