Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 8: RM I + RA I Relational Model + Relational Algebra

(Chapter 5.2-5.3, 6.1 Elmasri-Navathe 7ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Περιεχόμενο Διάλεξης

Κεφάλαιο 5: Το Σχεσιακό Μοντέλο Δεδομένων

- Περιορισμοί Σχεσιακού Μοντέλου και Σχεσιακά Σχήματα
- Πράξεις Ενημερώσεων και Αντιμετώπιση Παραβιάσεων των Περιορισμών

Κεφάλαιο 6: Τυπικές Γλώσσες Επεξεργασίας Σχέσεων

- Εισαγωγή (Σχεσιακή Άλγεβρα, Λογισμός Πλειάδων, Λογισμός Πεδίων), Τύποι Τελεστών Σχεσιακής Άλγεβρας (Μοναδιαίοι, Δυαδικοί, Τελεστές Συνάθροισης, κτλ)
- Μοναδιαίοι Τελεστές Σχεσιακής Άλγεβρας
 - Τελεστής **Επιλογής (σ)** και Ιδιότητες
 - Τελεστής **Προβολής (π)** και **Ι**διότητες
 - Τελεστής Μετονομασίας (ρ)

Σχεσιακοί Κανόνες Ακεραιότητας (Relational Integrity Constraints)

• Μέχρι τώρα είδαμε διαφόρους **ορισμούς** και τα **χαρακτηριστικά** τα οποία αφορούν μια **Σχέση**.

	Relation Name		Attr	ibutes			_
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
,	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
12	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
1	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
`	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

- Σε μια Σχεσιακή Βάση ωστόσο υπάρχουν πολλές Σχέσεις
 - Θυμηθείτε τις οντότητες και τις συσχετίσεις του ER Μοντέλου οι οποίες αναπαριστώνται και οι δυο σαν Σχέσεις (Πίνακες) στο Σχεσιακό Μοντέλο.
- Σε μια σχεσιακή βάση υπάρχουν επίσης πολλοί τύποι περιορισμών, οι οποίοι αναφέρονται
 - Σε μια σχέση (π.χ., περιορισμός κλειδιού, πεδίου ορισμού και οντότητας)
 - Σε πολλαπλές σχέσεις (π.χ., περιορισμός αναφορικής ακεραιότητας)

Σχεσιακοί Κανόνες Ακεραιότητας (Relational Integrity Constraints)

- Σχεσιακοί Περιορισμοί (Relational Constraints) είναι συνθήκες οι οποίες πρέπει να ισχύουν για κάθε έγκυρη κατάσταση σχέσης (state).
- Στο σχεσιακό μοντέλο υπάρχουν τρεις τύποι περιορισμών:
 - A. Κλειδιού (Key constraints)
 - Άτυπα: Κάθε σχέση έχει ένα πρωτεύων κλειδί.
 - B. Ακεραιότητας Οντοτήτων (Entity integrity constraints)
 - **Άτυπα:** Το πρωτεύων Κλειδί δεν μπορεί να είναι NULL
 - C. Αναφορικής Ακεραιότητας (Referential integrity constraints)
 - **Άτυπα:** Εάν μια πλειάδα Α αναφέρεται σε άλλη πλειάδα Β τότε η Β πρέπει να υπάρχει.
- Τέλος, υπάρχει και ο Περιορισμός Πεδίου Ορισμού (Domain Constraint) ο οποίος εξυπακούεται.
 - Η τιμή κάθε πλειάδας πρέπει να ορίζεται στο αντίστοιχο της πεδίο ορισμού (ή μπορεί να είναι NULL, εάν επιτρέπεται για το εν λόγω γνώρισμα)
 ΕΡΕ342: Databases Demetris Zeinalipour (University of Cyprus) ©

Σχεσιακοί Κανόνες Ακεραιότητας Περιορισμοί Κλειδιού (Key Constraints)

- Κλειδί Σχέσης (Relation Key): Ο ελάχιστος αριθμός γνωρισμάτων που προσδιορίζει μοναδικά μια πλειάδα κάποιας σχέσης R.
 - − Π.χ., SSN ή StudentID για Student.
- Εναλλακτικά (και πιο αυστηρά):
 - Υπερκλειδί της R (Superkey of R): Ένα σύνολο γνωρισμάτων SK
 της R για τα οποία ισχύει το ακόλουθο:
 - Σε κάθε έγκυρη κατάσταση βάσης r(R), δυο διαφορετικές
 πλειάδες t₁ ≠ t₂ έχουν διαφορετικές τιμές στα γνωρίσματα SK.
 - δηλ., για t₁ ≠ t₂ στο r(R), t₁[SK] ≠ t₂[SK]
 - Κλειδί της R (Key of R):
 - Ένα «ελάχιστο» υπερκλειδί: ελάχιστο υποδηλώνει ότι αναγνωρίζει τις πλειάδες σε μια σχέση μοναδικά.

Σχεσιακοί Κανόνες Ακεραιότητας Περιορισμοί Κλειδιού (Key Constraints)

- Εάν μια σχέση έχει πολλαπλά Εναλλακτικά Κλειδιά (candidate keys), τότε ένα από αυτά επιλέγεται από τον σχεδιαστή ως το Πρωτεύων Κλειδί (Primary key).
 - Τα γνωρίσματα ενός πρωτεύων κλειδιού <u>υπογραμμίζονται</u>.
- **Α) Κανόνας Πρωτεύοντος Κλειδιού**: Κάθε Σχέση έχει ένα (1) Πρωτεύων Κλειδί.
- Παράδειγμα: Θεωρήστε την Σχήμα Σχέσης CAR :
 - CAR(State, Reg#, <u>SerialNo</u>, Make, Model, Year)
 - Το πρωτεύων κλειδί SerialNo χρησιμοποιείται
 - Α) Για να ξεχωρίζει **μοναδικά** κάθε πλειάδα στη σχέση (η ταυτότητα της)
 - Β) Για να αναφερόμαστε σε άλλες σχέσεις από μια πλειάδα.
- Γενικός Κανόνας: Επιλέξτε ως πρωτεύων κλειδί το μικρότερο εκ' των εναλλακτικών κλειδιών (σε άποψη μεγέθους).
 - Π.χ., (State, Reg#) αντί <u>SerialNo</u> (ο οποίος είναι πολύ μεγαλύτερος σε μέγεθος). Βέβαια στο παράδειγμα, SerialNo είναι 1 πεδίο ενώ το (State, Reg#) δυο πεδία οπόταν μάλλον επιλέγουμε το SerialNo

Σχεσιακοί Κανόνες Ακεραιότητας Ακεραιότητα Οντοτήτων (Entity Integrity)

- Β) Κανόνας Ακεραιότητας Οντοτήτων (Entity Integrity) ορίζει ότι τα γνωρίσματα ενός πρωτεύοντος κλειδιού PK ΔΕΝ μπορεί να είναι NULL
 - δηλ., τιμή πρωτεύοντος κλειδιού t[PK]≠NULL
 για οποιαδήποτε πλειάδα t που ανήκει στο r(R)
 - Εάν το **PK** είναι σύνθετο, τότε το **NULL** δεν επιτρέπεται σε **KANENA** από τα γνωρίσματα του **PK**
 - Π.χ., WORKS_ON(ESSN, PNO, Hours)//PK είναι σύνθετο
 - (<u>123, 4, 5</u>)

OK

• (<u>123, 4</u>, **NULL**)

OK

• (NULL, 4, 5)

ERROR

Σχεσιακοί Κανόνες Ακεραιότητας Αναφορική Ακεραιότητα (Referential Integrity)

 Θεωρήστε την N:1 συσχέτιση μεταξύ Employee-Department (χωρίς περιορισμούς συμμετοχής)

- Είχαμε αναφέρει ότι σε N:1 συσχετίσεις το κλειδί της οντότητας στη πλευρά του 1 γίνεται γνώρισμα στη πλευρά του N, συνεπώς:
 - Σχέση που Αναφέρει (Referencing Relation)
 Π.χ., EMPLOYEE(ssn, name, dno)
 Γιος, EMPLOYEE(ssn, name, dno)
 - Σχέση που Αναφέρεται (Referenced Relation) ηρωτεύων Κλειδί
 Π.χ., DEPARTMENT(dno, name, location) (Foreign Key)
- Το dno της σχέσης EMPLOYEE ονομάζεται ξένο κλειδί (foreign key) και έχει τα ακόλουθα χαρακτηριστικά
 - Α) Έχει το ίδιο πεδίο ορισμού με το αντίστοιχο πεδίο του DEPARTMENT
 - Β) Έχει τημή ή είναι Νυμε (εάν επιτρέπεται κάτι (τέτοιο από σο σχήμα)

Σχεσιακοί Κανόνες Ακεραιότητας Αναφορική Ακεραιότητα (Referential Integrity)

- Γ) Κανόνας Αναφορικής Ακεραιότητας (Referential Integrity) ορίζει ότι τα ξένα κλειδιά (FK) πρέπει να είναι είτε υπαρκτά ή NULL
 - Π.χ., EMPLOYEE(<u>SSN</u>, Fname, Lname, **Dno**)
 - (123, Costas, Ioannou, 5)
 OK (υπάρχει το 5)
 - (123, Costas, Ioannou, NULL) **ΟΚ** (εφόσον επιτρέπεται NULL)
 - (123, Costas, Ioannou, 1000) **ERROR** (ΔΕΝ υπάρχει το 1000)
- Νοείται, ότι στη περίπτωση που το FK είναι μέρος του PK μιας σχέσης (FK⊆PK), τότε to FK δεν μπορεί να είναι NULL (κανόνας πρωτεύοντος κλειδιού)
 - Π.χ., DEPENDENT(<u>ESSN,Dname</u>,Sex,Bdate,Relation)_g

Σχεσιακοί Κανόνες Ακεραιότητας Αναφορική Ακεραιότητα (Referential Integrity)

Σχεσιακοί Κανόνες Ακεραιότητας Άλλοι Περιορισμοί (Other Constraints)

- Κανόνες Σημασιολογικής Ακεραιότητας (Semantic Integrity Constraints):
 - Στηρίζονται σε έννοιες που σχετίζονται με την εφαρμογή όχι το μοντέλο και τα οποία ΔΕΝ μπορούν να διατυπωθούν από το Σχεσιακό Μοντέλο
 - Π.χ., «Ο μέγιστος αριθμός ωρών ενός υπαλλήλου σε ένα project είναι 56»
- Για την διατύπωση αυτών των περιορισμών χρειάζονται εξειδικευμένες εκφράσεις.
 - H SQL-99 επιτρέπει την χρήση ελέγχων (CHECK), σκανδαλών (triggers) και βεβαιώσεων (assertions)
 - CREATE TABLE (.... integer hours; CHECK hours<=56;)
 - Εφαρμόζεται σε περιπτώσεις μιας σχέσης.
 - CREATE ASSERTION CHECK (NOT EXIST (....))
 - Εφαρμόζεται σε περιπτώσεις πολλαπλών σχέσεων.
 - CREATE TRIGGER a BEFORE INSERT ON EMP sendmail();

- Μια βάση δεδομένων έχει μια συνεπή αρχική κατάσταση
 - Συγκεκριμένα, πληρούνται όλοι οι περιορισμοί όπως ορίστηκαν από τον σχεδιαστή.
- Όποτε η βάση αλλάζει προκύπτει μια νέα της κατάσταση.
- Οι **βασικές πράξεις** για <u>αλλαγή</u> της κατάστασης μιας βάσης δεδομένων είναι :
 - INSERT: Εισαγωγή νέας πλειάδας στη σχέση.
 - DELETE: Διαγραφή Υφιστάμενης(ων) Πλειάδας(ων)
 - MODIFY: Τροποποίηση πεδίων συγκεκριμένης(ων) πλειάδων
- Η επόμενη διαφάνεια δείχνει την αρχική κατάσταση της
 UNIVERSITY DB που θα χρησιμοποιηθεί στη συζήτηση
 - Θεωρήστε ότι ισχύουν οι κανόνες ακεραιότητας (κλειδιού, οντότητας, και αναφοράς) που συζητήθηκαν νωρίτερα.

Αρχική Κατάσταση Βάσης **UNIVERSITY**

EMPLOYEE

* Περιορισμός Κλειδιού / Οντοτητας

	the the the December 2011 and the								
Fname	Minit	Lname	Ssn *	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Αναφορικός Περιορισμός

DEPT_LOCATIONS

5

Dlocation

Houston

Stafford

Bellaire

Sugarland

Houston

					-
Dname	* Dnumber	Mgr_ssn	Mgr_start_date	Dnumber *	,
Research	5	333445555	1988-05-22	1	
Administration	4	987654321	1995-01-01	4	
Headquarters	1	888665555	1981-06-19	5	
				5	Г

Αρχική Κατάσταση Βάσης UNIVERSITY

WORKS	0	N	_ /

PROJECT

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4
* Περιορισμ	 ιός Κλειδι	 ού / Οντοτη	ιτας

DEPENDENT

Αναφορικός Περιορισμός

DEI ENDENT				
Essn *	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

- Τι γίνεται σε περιπτώσεις παραβίασης των κανόνων ακεραιότητας από μια πράξη;
 - A) (Default Πράξη) Ακύρωση πράξης. NO ACTION
 - Β) Επιτρέπεται η πράξη (σπάνια) αλλά ενημερώνεται ο χρήστης
 - Μπορεί να συμβεί σε **άπλες περιπτώσεις** μόνο (π.χ., εάν υπάρχει περιορισμός **TELEPHONE NOT NULL**).
 - Δεν μπορεί να συμβεί σε περιπτώσεις κανόνων ακεραιότητας (κλειδιού, οντότητας, αναφοράς) και γενικά δεν υποστηρίζεται.
 - Γ) Εκτέλεση επιπλέον λειτουργιών. Π.χ., Στην SQL υπάρχει η έννοια του CASCADE, SET NULL, SET DEFAULT.
 - ∏.χ., CREATE TABLE EMPLOYEE (.... CONSTRAINT MGR

FOREIGN KEY(Super_ssn) REFERENCES EMPLOYEE(ssn)
ON DELETE SET NULL ON UPDATE CASCADE

- Εάν σβηστεί ο Supervisor τότε ο Emp.Super_ssn γίνεται NULL
- Εάν ενημερωθεί το SSN του Supervisor τότε ο Emp.Super_ssn (σχέσεων που την αναφέρουν) ενημερών εται επίσης prus) ©

- Το INSERT μπορεί να παραβιάζει όλους τους περιορισμούς:
 - Πεδίου Ορισμού:
 - π.χ., EMPLOYEE(SSN:integer): εισαγωγή (123.3) (πραγματικού αριθμού)
 - Κλειδιού:
 - π.χ., **EMPLOYEE(SSN):** εισαγωγή **(123)**, όπου η σχέση EMPLOYEE περιέχει ήδη το 123, π.χ., {1,2,4,**123**,300}
 - Αναφορικής Ακεραιότητας:
 - π.χ., EMPLOYEE(SSN, DNO): εισαγωγή (123, 1000), θεωρώντας ότι το DNO 1000 δεν υπάρχει.
 - Οντότητας:
 - π.χ., EMPLOYEE(SSN, Name): εισαγωγή (NULL, "Costas")

- Το DELETE μπορεί να παραβιάζει τους ακόλουθους περιορισμούς:
 - Πεδίου Ορισμού: ΟΧΙ
 - Κλειδιού: ΟΧΙ
 - Αναφορικής Ακεραιότητας:
 - Π.χ., εάν η εγγραφή που διαγράφεται αναφέρεται από άλλη σχέση.
 - Όπως αναφέραμε ήδη, η αναφορική ακεραιότητα μπορεί να επιβληθεί στην SQL με χρήση των επιπλέον ενεργειών: CASCADE, SET NULL, SET DEFAULT
 - Οντότητας: ΟΧΙ

- Το UPDATE από→προς μπορεί να παραβιάζει τους ακόλουθους περιορισμούς:
 - Πεδίου Ορισμού:
 - π.χ., EMPLOYEE(SSN:integer): ενημέρωση 121→123.0 (πραγματικού αριθμού)
 - Κλειδιού:
 - Π.χ., EMPLOYEE(SSN): ενημέρωση 121→123, όπου η σχέση περιέχει ήδη το 123, π.χ., {1,2,4,123,300}
 - Αναφορικής Ακεραιότητας:
 - π.χ., EMPLOYEE(SSN, DNO): ενημέρωση (1,5)→(1,1000),
 θεωρώντας ότι το DNO 1000 δεν υπάρχει ενώ το 5 υπάρχει.
 - Οντότητας:
 - Π.χ., EMPLOYEE(SSN): ενημέρωση 1→NULL

Τυπικές Γλώσσες Σχεσιακού Μοντέλου (Formal Languages for the Relational Model)

- Για την εκτέλεση επερωτήσεων σε σχέσεις ορίζονται οι ακόλουθες τυπικές (θεωρητικές) γλώσσες:
 - Σχεσιακή Άλγεβρα (Relational Algebra)
 - Λογισμός Πλειάδων (Tuple Relational Calculus)
 - Λογισμός Πεδίων (Domain Relational Calculus)
- Αυτές οι γλώσσες είναι **εκφραστικά ισοδύναμες**!
 - Δηλαδή μπορούν να εκφράσουν αντίστοιχες επερωτήσεις.
 - Οποιαδήποτε γλώσσα είναι εκφραστικά ισοδύναμη με την Σχεσιακή Άλγεβρα ονομάζεται Σχεσιακά Πλήρης Γλώσσα (Relationally-Complete Language)
 - Η SQL είναι μια relationally complete γλώσσα yprus)

Τυπικές Γλώσσες Σχεσιακού Μοντέλου (Formal Languages for the Relational Model)

- Πάνω σε αυτές τις θεωρητικές γλώσσες έχουν δημιουργηθεί πραγματικές γλώσσες βάσεων δεδομένων (π.χ., SQL, QBE)
 - Σχεσιακή Άλγεβρα (Relational Algebra)
 - Προστακτική: ορίζεται η σειρά εκτέλεσης των πράξεων.
 - Μια Επερώτηση του χρήστη σε SQL μεταφράζεται από την βάση σε μια έκφραση σχεσιακής άλγεβρας, το λεγόμενο πλάνο εκτέλεσης (query plan).
 - Λογισμός Πλειάδων (Tuple Calculus)
 - Δηλωτική: δεν ορίζεται η σειρά εκτέλεσης των πράξεων απλά το επιθυμητό αποτέλεσμα,
 - Η **SQL** στηρίζεται πάνω στην δηλωτική φύση του **Λογισμού Πλειάδων** εάν SQL επερωτήσεις εκτελούνται σαν εκφράσεις **Σχεσιακής Άλγεβρας**
 - Λογισμός Πεδίων (Domain Calculus)
 - Όμοια με Λογισμό Πλειάδων (οι μεταβλητές είναι γνωρίσματα και όχι πλειάδες)
 - Δηλωτική και πάνω σ' αυτή στηρίζεται η QBE
 - Υλοποιείται LBMaQMFp MSt Access και Paradoxtyκα cyprus) ©

Τυπικές Γλώσσες Σχεσιακού Μοντέλου (Formal Languages for the Relational Model)

- Παράδειγμα SQL (πραγματικής γλώσσας βάσης)
 - SELECT fname, Iname, salary
 - FROM EMPLOYEE
 - WHERE dno=5

Δηλωτική διατύπωση, Προστακτική εκτέλεση

Προστακτική διατύπωση

& εκτέλεση

- Παράδειγμα Σχεσιακής Άλγεβρας:
 - − TEMP ← $\sigma_{DNO=5}$ (EMPLOYEE)
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (TEMP)
- Παράδειγμα Λογισμού Πλειάδων:
 - { t.Fname, t.Lname, t.salary | EMPLOYEE(t) AND t.Dno=5}
 - Η πιο πάνω έκφραση ονομάζεται Set Builder Notation
 (Σημειογραφία Δημιουργίας Συνόλων) {<γνωρίσματα αποτελέσματος> | <συνθήκες>}

Δηλωτική διατύπωση & εκτέλεση

Δηλωτική διατύπωση

& εκτέλεση

- Παράδειγμα Λογισμού Πεδίων:
 - Ομοια με Λογισμό Πλειάδων (οι μεταβλητές είναι γνωρίσματα περιορισμοί στο πεδίο ορισμού και όχι πλειάδες)
 - { qsx | EMPLOYEE(qrstuvwxyz) AND z=5}
 - Η έκφραση σε QBE (η οποία υλοποιεί το πιο πάνω) δεν
 διαφέρει ουσιαστικά (μπορεί να είναι διαγραμματική ωστόσο)
 EPL342: Databases Demetris Zeinalipour (University of Cyprus) ©

8-24

Εισαγωγή στη Σχεσιακή Άλγεβρα

- Η Σχεσιακή Άλγεβρα αποτελείται από ένα **βασικό σύνολο πράξεων** (τελεστών) για το σχεσιακό μοντέλο.
 - Είναι ουσιαστικά η πιο διαδεδομένη τυπική γλώσσα του Σχε. Μοντ.
- Αυτοί οι τελεστές επιτρέπουν σε κάποιο να διατυπώσει βασικές πράξεις ανάκτησης, δηλ., επερωτήσεις (queries).
- Το αποτέλεσμα εκτέλεσης **ΟΛΩΝ** των τελεστών μας επιστρέφει πίσω μια **νέα σχέση**, η οποία μπορεί να δημιουργείται από 1 ή περισσότερες σχέσεις εισόδου.
 - Αυτή η ιδιότητα κάνει την Σχεσιακή Άλγεβρα «Κλειστή»
 ("closed"), δηλ., ΌΛΑ τα αντικείμενα στη σχεσιακή άλγεβρα είναι σχέσεις (ακόμη και μια απλή αριθμητική τιμή)
- Έκφραση σχεσιακής άλγεβρας (Relational Algebra Expression): Ακολουθία εφαρμογής τελεστών πάνω σε σχέσεις, π.χ., π _{FNAME, LNAME, SALARY} (σ _{DNO=5}(EMPLOYEE))

Εισαγωγή στη Σχεσιακή Άλγεβρα

- Η Σχεσιακή Άλγεβρα παρέχει τους τελεστές (operators):
 - Μοναδιαίοι Σχεσιακοί Τελεστές (Unary Relational Ops)
 - Επιλογή (Select, σ (sigma))
 - Προβολή (Project, π (pi))
 - **Μετονομασία** (Rename, ρ (rho))
 - Σχεσιακοί Τελεστές από την Θεωρία Συνόλων
 - Ένωση (UNION, \cup), Τομή (INTERSECTION, \cap), Διαφορά Συνόλων (DIFFERENCE ή MINUS,)
 - Καρτεσιανό Γινόμενο (CARTESIAN PRODUCT, x)
 - Δυαδικοί Σχεσιακοί Τελεστές (Binary Relational Ops)
 - **Συνένωση** (JOIN, ΣΟΙ)(υπάρχουν πολλαπλές εκδοχές)
 - − Εφόσον το Σ δεν υποστηρίζεται σαν σύμβολο θα χρησιμοποιείται το ⊗
 - Διαίρεση (DIVISION, /)
 - Επιπλέον Σχεσιακοί Τελεστές
 - Συναρτήσεις Συνάθροισης AGGREGATE FUNCTIONS (π.χ., SUM, COUNT, AVG, MIN, MAX)
 - Εξωτερική Συνένωση και, (OUTER JOINS) prus) ©

Μοναδιαίοι Τελεστές Επιλογή (σ)

Ο Τελεστής Επιλογής (συμβολίζεται με σ (sigma))
 χρησιμοποιείται για να επιλέξουμε ένα υποσύνολο των πλειάδων μιας σχέσης βάσει κάποιου κριτηρίου επιλογής (selection condition)

- Το κριτήριο επιλογής λειτουργεί ως φίλτρο (δηλ., επιστρέφει μόνο τις πλειάδες που ικανοποιούν την συνθήκη)
- Π.χ., :
 - Εύρεση των EMPLOYEE που δουλεύουν στο department 4:

$$\sigma_{DNO=4}$$
 (EMPLOYEE)

Εύρεση των ΕΜΡΙΟΥΕΕ που έχουν μισθό πάνω από \$30,000:

Μοναδιαίοι Τελεστές Επιλογή (σ)

^σ <Κριτήρια Επιλογής>(R)

Το κριτήριο επιλογής αποτελείται από μια (1) ή περισσότερες προτάσεις (clauses) της μορφής:

Κριτήριο Επιλογής := <όνομα γνωρίσματος>
<τελεστής>
<σταθερή τιμή | όνομα γνωρίσματος>

– Τελεστής:

- Δυαδικός **Τελεστής Σύγκρισης** {<,>,=,!=, >=, <=}
- Οι προτάσεις μπορεί να συνδέονται με
 - Λογικούς Τελεστές: AND ή OR

 $-\Pi.\chi.$, $\sigma_{DNO=4 \text{ AND SALARY} > 30,000}$ (EMPLOYEE)

Μοναδιαίοι Τελεστές Επιλογή (σ)

- Ιδιότητες Τελεστή Επιλογής (σ)
- Ο τελεστής σ _{<selection condition>}(R) παράγει μια νέα σχέση S ή οποία έχει το ίδιο σχήμα με την R, όπου |S| == |R| και |r(S)| <= |r(R)|
- Ισχύει η αντιμεταθετική ιδιότητα (commutative) :
 - $\sigma_{\text{condition}} (\sigma_{\text{condition}} (R)) = \sigma_{\text{condition}} (\sigma_{\text{condition}} (R))$
 - Επίσης, μπορούμε να διαδώσουμε (cascade) μια επιλογή δηλ., σ_{cond1} (σ_{cond2}) (σ_{cond3}) (σ_{cond1}) (σ_{cond2}) (σ_{cond3}) (σ_{cond3
 - Επίσης, μια διάδοση τελεστών σ μπορεί να αντικατασταθεί από μια και μόνο επιλογή η οποία θα είναι η σύζευξη όλων των συνθηκών:
 - $\delta\eta\lambda.,\ \sigma_{<cond1>}(\sigma_{<\,cond2>}\ (\sigma_{<\,cond3>}(R)) = \sigma_{<cond1>\,\textbf{AND}\,<\,cond2>\,\textbf{AND}\,<\,cond3>}(R)))$ $\pi.\chi.,\ \sigma_{<dno=5>\,\textbf{AND}\,<fname="Chris">\,\textbf{AND}\,<sex="M">}\ (EMPLOYEE)$

Μοναδιαίοι Τελεστές Παραδείγματα Επιλογής (σ)

EMPLOYEE

Δεδομένα

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Επερώτηση

σ_{(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)} (EMPLOYEE).

Αποτέλεσμα

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5

Μοναδιαίοι Τελεστές Προβολή (π)

• Ο Τελεστής Προβολής συμβολίζεται με π (pi)) χρησιμοποιείται για να επιλέξουμε ένα υποσύνολο γνωρισμάτων μιας σχέσης:

 $\pi_{\text{Attribute1,Attribute2,...,AttributeN}}(R)$

- Συνεπώς, ο τελεστής αυτός μπορεί να ειδωθεί σαν μια κατακόρυφη διαμέριση (vertical partitioning) της αρχικής σχέσης R
- Π.χ., : Ανάκτησε όλα τα Επίθετα, Ονόματα, Μισθούς των ΕΜΡLΟΥΕΕ π_{LNAME, FNAME,SALARY}(EMPLOYEE)
- Ο τελεστής προβολής διαγράφει εξ' ορισμού τα διπλότυπα (duplicate tuple elimination)
 - Αυτό διότι το αποτέλεσμα ΠΡΕΠΕΙ να είναι ΣΥΝΟΛΟ πλειάδων και όπως αναφέραμε τα σύνολα δεν επιτρέπουν τα διπλότυπα.

Μοναδιαίοι Τελεστές Προβολή (π)

- Ιδιότητες Τελεστή Προβολής π
- 1. Ο τελεστής **π**<Attributes>(**R**) παράγει μια νέα σχέση **S** για την οποία ισχύει |**S**| <= |**R**| αλλά και |**r**(**S**)| <= |**r**(**R**)| (λόγω της ενδεχόμενης διαγραφής διπλοτύπων)
 - Εάν το Attribute περιλαμβάνει κάποιο κλειδί της R τότε $|\mathbf{r}(\mathbf{S})| == |\mathbf{r}(\mathbf{R})|$
 - Προφανώς, και στις δυο πιο πάνω περιπτώσεις ο αριθμός των γνωρισμάτων του S είναι υποσύνολο του R.
- 2. Ο τελεστής π ΔΕΝ είναι αντιμεταθετικός (not commutative):

$$\pi_{< \text{list} > } (\pi_{< \text{list} > } (R)) = \pi_{< \text{list} > } (\pi_{< \text{list} > } (R))$$
Το πιο πάνω ισχύει MONO εάν list1 \subseteq list2

Π.χ., $\pi_{\text{csn,fname,dno}}(\pi_{\text{csn,fname,lname,dno}}(\text{EMPLOYEE}))$ **ΣΩΣΤΟ**

 π .χ., π _{<ssn,fname,Iname,dno>}(π _{<ssn,fname,dno>}(EMPLOYEE)) ΛΑΘΟΣ

3. Η Προβολή μπορεί να αντιμετατεθεί με την Επιλογή σε ορισμένες περιπτώσεις

$$\pi_{a_1,...,a_n}(\sigma_A(R)) = \sigma_A(\pi_{a_1,...,a_n}(R))$$
 where fields in $A \subseteq \{a_1,...,a_n\}$

Μοναδιαίοι Τελεστές Παραδείγματα Προβολής (π)

Διπλότυπα

EMPLOYEE

Δεδομένα

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	88865555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Επερώτηση

 $\pi_{\text{Sex, Salary}}(\text{EMPLOYEE}).$

Αποτέλεσμα

Sex	Salary
М	30000
М	40000
F	25000
F	43000
М	38000
М	25000
М	55000

7 εγγραφές αντί 8 εγγραφές (γογω duplicates) 8-33

Εκφράσεις Σχεσιακής Άλγεβρας (Relational Algebra Expressions)

- Οι εκφράσεις σχεσιακής άλγεβρας μπορούν να διατυπωθούν κατά τους ακόλουθους τρόπους:
 - Α) Μια έκφραση η οποία θα αποτελείται από εμφωλευμένες (nested) εκφράσεις:
 - $\Pi.\chi.$, $\pi_{FNAME, LNAME, SALARY}$ ($\sigma_{DNO=5}$ (EMPLOYEE))
 - B) Πολλαπλές εκφράσεις με επί μέρους αποτελέσματα
 - $\Pi.\chi.$, TEMP $\leftarrow \sigma_{DNO=5}$ (EMPLOYEE) RESULT $\leftarrow \pi_{FNAME, LNAME, SALARY}$ (TEMP)
- Στην Β περίπτωση πρέπει να δηλώσουμε ονόματα για τα ενδιάμεσα αποτελέσματα.

Μοναδιαίοι Σχεσιακοί Τελεστές **Τελεστής RENAME**

- Σε ορισμένες περιπτώσεις θέλουμε να **μετονομάσουμε** τα **γνωρίσματα** μιας **σχέσης** ή τη **σχέση** (ή και τα δυο)
 - Χρήσιμο όταν μια επερώτηση χρειάζεται πολλαπλές πράξεις
 - Απαραίτητα σε ορισμένες **περιπτώσεις** (π.χ., joins).
- Ο τελεστής **Μετονομασίας (RENAME)** μπορεί να χρησιμοποιείται καθ' οποιοδήποτε απ' τους πιο κάτω τρόπους:
 - $\rho_{S (B1, B2, ..., Bn)}(R)$:
 - Αλλαγή Ονόματος Σχέσης από R σε S
 - **B1**, **B2**, ..., **Bn**: Νέα Ονόματα Γνωρισμάτων
 - $\rho_s(R)$
 - Αλλαγή Ονόματος Σχέσης από R σε S
 - ρ_(B1, B2, ..., Bn)(R): Για επερωτήσεις δεν χρησιμοποιείται γενικά
 - B1, B2, ..., Bn: Νέα Ονόματα Γνωρισμάτων Αποτελέσματος
 - $\rho_{R'(a->b)}(R)$
 - Αλλαγή Ονόματος Γνωρίσματος R.a σε R'.b

Fname	Lname	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

No Renaming

(A) $\pi_{\text{FNAME, LNAME, SALARY}}$ $\sigma_{\text{DNO=5}}(\text{EMPLOYEE})$

TEMP

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary	
John	Smith	30000	
Franklin	Wong	40000	
Ramesh	Narayan	38000	
Joyce	English	25000	

(B) With Renaming

TEMP $\leftarrow \sigma_{DNO=5}(EMPLOYEE)$

R(First_Name, Last_Name, Salary)

 $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}} \text{(TEMP)}$