Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

ВАРИАЦИОННО-ПРОЕКЦИОННЫЕ МЕТОДЫ В ЗАДАЧАХ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Содержание

Лекци	я 1	4		
1.1	Исторический экскурс	4		
1.2	Метод Дирихле	4		
1.3	Контрпример Вейерштрасса.	4		
1.4	Контрпример Адамара	4		
1.5	Метод Ритца	5		
Лекци	я 2	8		
2.1	Метод Бубнова – Галеркина	8		
2.2	Повторение	S		
тт		10		
Лекци		$\frac{12}{10}$		
3.1	Формулы Грина	12		
3.2	Положительные операторы	14		
3.3	Положительно определенные операторы	15		
3.4	Энергетическая норма	16		
Лекци	я 4	17		
4.1	Энергетическое пространство	17		
4.2	Энергетический метод	18		
4.3	Обобщение решения задачи о min для ф.э	19		
1.0	Оооощение решении зада и о ини дли ф.э	10		
Лекци	я	20		
5.1	Применение энергетического метода для краевых задач	20		
	5.1.1 Теорема	21		
	5.1.2 Теорема	22		
5.2	Основные кр задачи для ур-я Пуассона	23		
Лекци	_ 0	2.4		
лекци	и	2 4		
Лекция 7		25		
7.1	Не-во Пуанкаре	26		
7.2	Неоднородные краевые условия	27		
7.3	ур-е с переменным коэф	29		
_				
Лекци		30		
8.1	Энергетический метод для пложительных операторов	31		
8.2	Эллиптические уравнения в бесконечной области	32		
	8.2.1 Эллиптическое уравнение в бесконечной области	33		
Лекци	я 8	34		
9.1	метод Бубнова-Галеркина	34		
9.2	Применение метода Б-Г к интегральному уравнению Фредгольма	34		
9.3	Элементы теории приближение	35		
9.3	• •	37		
9.4	Введение в теорию степенных сплайнов	31		
Лекци	Лекция 3			
	Степенные сплайны	37		
Лекци	R	40		

11.1	Билинейные базисные функции в \mathcal{R}	40
11.2	Построение проекционно сеточной схемы для ОЛУ 2-го порядка	4:

Лекция 1

1.1 Исторический экскурс

Лекции с 9:30 два часа.

Вариационная постановка для задача мат физики. задача - условие на границе + начальное. (Экстремум функционала энергии, поэтому энергетические пространства).

Соболев - прямые методы решения задач. позволяют найти решение с помощью СЛАУ. Наиболее известен метод Рица.

1.2 Метод Дирихле

Дана область $\omega \in \mathbb{R}^2$.

$$M = u : u_0(x, y), (x, y) \in \partial\Omega$$
$$\iint_{\Omega} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy \to min$$

Интеграл Дирихле $\Rightarrow \overline{u}$ - гармонический в Ω

1.3 Контрпример Вейерштрасса.

$$\begin{split} M &= y; y(x) \in c'[-1;1], y(-1) = -1, y(1) = 1 \\ J(y) &= int_{-1}^{1} x^{2} (y')^{2} dx, J(y) \geq 0 \\ y_{\varepsilon}(x) &= \frac{arctg(\frac{x}{\varepsilon})}{arctg(\frac{1}{\varepsilon})} \\ y'_{\varepsilon}(x) &= \frac{1}{arctg(\frac{1}{\varepsilon})} \cdot \frac{1}{1 + \frac{x^{2}}{\varepsilon^{2}}} \cdot \frac{1}{\varepsilon} = \\ &= \frac{\varepsilon}{arctg(\frac{1}{\varepsilon})} \cdot \frac{1}{\varepsilon^{2} + x^{2}} \\ J(y_{\varepsilon}) &= \int_{-1}^{1} \frac{x^{2} \varepsilon^{2}}{arctg^{2}(\frac{1}{\varepsilon})} \cdot \frac{1}{(x^{2} + y^{2})^{2}} dx = frac2\varepsilon arctg(\frac{1}{\varepsilon}) = \frac{0}{\frac{\pi}{2}} \\ J(\overline{y}) &= \int_{-1}^{1} x^{2} y^{2} dx = 0 \Rightarrow y' = 0 \end{split}$$

1.4 Контрпример Адамара

Противоречие: y(-1) = -1, y(1) = 1

$$u(x,y) = \sum_{n=1}^{\inf} \frac{\rho^2}{2^n} cos(2^n \Theta), x = \rho cos\Theta, y = \rho sin\Theta$$

$$\rho \le 1$$

Непрерывны и гармоничны. Интеграл Дирихле в круге $\rho \leq r \leq 1$

$$\pi sum_{n=1}^{\inf} r^{2^{2n+1}} \rightarrow_{r \rightarrow 1} \inf$$

1.5 Метод Ритца

$$J(\omega) = int_a^b f(x, \omega, \omega', ..., \omega^{(k)}) dx \to inf$$

 $\omega \in M$ класс допустимых функций

 $\psi_0, \psi_1, ... \psi_n, ... ($ координатные функции)

Св-ва:

$$1)\forall a_1...a_n \in \mathbb{R}, \forall_n$$

$$\omega_n = \omega_0 + \sum_{i=1}^n a_i \omega_i \in M$$

$$2)\forall \omega \in M$$
и $\forall varepsilon > 0$

Уравнение полноты

$$H(\omega n) = F(a_1, ..., a_n) \rightarrow inf$$

$$||\omega - \psi_0 - \sum_{i=1} n a_i \psi_i|| < \varepsilon$$

Рассмотрим:

$$J(\omega_n) = F(\alpha_1, ..., \alpha_n) \to inf$$

$$\frac{\partial J}{\partial a_1}(\omega_n)=0,...\frac{\partial J}{\partial a_n}(\omega_n)=0$$
 – альтернативная система уранений $\Rightarrow a_1,...,a_n$ – решение

Насколько хорошо приближает метод искомое решение? На примере задачи об упругой поластине.

$$\Omega_{\mathbb{C}\mathbb{R}^2}$$
 — обл , $S=\partial\Omega$

изгиб $\omega(x,y)$ удовлетворяет ур-ю Сори Жульен

$$\Delta^{2}\omega = \frac{\partial^{4}}{\partial x^{2}} + 2\frac{\partial^{4}\omega}{\partial x^{2}\partial y^{2}} + \frac{\partial^{4}\omega}{\partial y^{4}} = \frac{q(xy)}{\mathcal{D}}; (x,y) \in \Omega$$

 $\mathcal{D}-$ жесткость пластины при упругом изгибе

q(x,y), - Интенсивность давления

$$\omega(x,y) = 0$$

$$J(\omega) = \iint_{Omega} (\frac{1}{2}(\Delta\omega)^2 - f(\omega)d\Omega \to inf)$$

$$f = \frac{q(x,y)}{\mathcal{D}} \in C'(\overline{\Omega})$$

$$\omega = \omega_1 + \omega_2$$

Рассмотрим без доказательства ограниченности снизу.

$$\omega_1 = \frac{1}{8\pi} \iint_{\Omega} r^2 lnr f(\xi, \eta) d\xi \eta$$

 $(x,y)(\xi,\eta)$ — точки из Ωr — расстояние между (x,y) и (ξ,η)

$$J(\omega) = J_0 + \frac{1}{2} \iint_{\Omega} (\Delta \omega_2)^2 dx dy$$

$$j(\omega) \ge J_0 \Rightarrow \exists inf J(\omega)$$

Введем $\psi_1(x,y),...,\psi_n(x,y)$ - координатные ф-ции

$$1)\psi_n(x,y), \frac{\partial^{k+l}\psi_n}{\partial x^k \partial x^l} \in C(\overline{\Omega}), k \le \varepsilon, l \le \varepsilon$$

 $2)\psi_n(x,y)$ удовлетворяет краевым условиям

$$3)\forall$$
 ф-ии $\zeta(x,y)$:

а) удовлетворяет пункту 1

б)
$$\zeta(x,y) \equiv 0(x,y) \in \Omega \rho$$

$$\Rightarrow \exists m \in \mathbb{N}, \alpha_1, ... \alpha_m \in \mathbb{R} :$$

$$|\zeta(x,y) - \sum_{i=1}^{m} \alpha_i \psi_i(x_i, y_i)| < \varepsilon$$

$$|\frac{\partial^{k+1}\zeta}{\partial x^k\partial y^l} - \sum_{i=1}^n \alpha_i \frac{\partial^{k+l}\psi_i(x,y)}{\partial x^k\partial y^l}| < \varepsilon$$

Условие полноты $k \le \varepsilon, l \le \varepsilon \Rightarrow$ приближенное решение :

$$\omega_n = \alpha_1 \psi_1 + \dots + \alpha_n \psi_n \to J(\omega)$$

$$J_n = \iint_{\Omega} \left(\frac{1}{2}(\Delta\omega_n)^2 - f(\omega_n)\right) dx dy$$

 α_i выбираем : $J(\omega_n) \to J(\omega)$

$$\sum_{k=1}^{n} A_{ik} a_k = B_i, i = \overline{1, n}$$

$$A_{ik} = \iint_{\Omega} \Delta \psi_i \Delta \psi_k dx dy \Rightarrow$$

 $\exists !$ решение $a_1,...,a_n$ в $\omega_n=...$ приближение решение

$$B_i = \iint_{\Omega} f \psi_i dx dy$$

 \rightarrow Сущ ед решения $a_1,...,a_n$ в $\omega_n=...$ (приближенное решение)

Рассмотрим $\forall b_1, ...b_n$

$$\zeta_n = b_1 \psi_n + \dots + b_n \xi_n$$

$$??b_i$$
 и $\sum_{i=1}^n$

$$\sum_{i=1}^{n} \sum_{k=1} n A_{ik} a_k b_i = \sum_{i=1}^{n} b_i B_i$$

$$\sum_{i=x}^{n} \sum_{k=1} n \iint_{\Omega} b_i \Delta \psi_i \Delta \psi_k a_k dx dy - \sum_{i=1}^{n} \iint_{\Omega} f b_i \psi_i dx dy = 0$$

$$\sum_{i=1}^{n} [\iint_{\omega} b_i \Delta \psi_i \sum_{k=1}^{n} a_k \Delta \xi_k dx dy - \iint_{\Omega f b_i \psi_i dx dy}] = 0$$

• •

$$\int_O mega(\Delta\omega_n \sum_{i=1} nb_i\psi_i) - f(\sum_{i=1} nb_i\psi_i) dxdy = 0$$

$$\iint_O mega(\Delta\Omega_n \zeta_n - f\zeta) dxdy = 0$$

$$J_n^{(0)} = -\frac{1}{2} \iint_O (\Delta\omega_u)^2 dxdy \text{ не возрастает y } \geq inf$$

 $\forall \varepsilon > 0$ по критерию Коши $\Rightarrow N(\varepsilon) \forall_n > N(\varepsilon)$

Лекция 2

$$\varphi_1(x,y),...,\varphi_n(x,y) - \text{координатные функции}, \qquad w_n = \alpha \varphi_1 + ... + \alpha_n \varphi_n$$

$$J_n^{(0)} = -\frac{1}{2} \iint_{\Omega} (\Delta w_n)^2 dx dy$$

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \quad \forall n \geq N(\varepsilon) \quad \forall m: 0 \leq J_n^{(0)} - J_{n+m}^{(0)} \leq \frac{1}{2} \varepsilon$$

$$\frac{\omega_{m+n} - \omega_n}{\sqrt{\varepsilon}} = \varphi(x,y)$$

$$\iint_{\Omega} (\Delta \varphi)^2 dx dy < 1$$

Обозначим $S=\partial\Omega$ — границу области Ω

$$\varphi(x,y) = \frac{1}{2\pi} \int_{S} \left(\varphi \frac{\partial (\ln r)}{\partial n} - \ln r \frac{\partial \varphi}{\partial N} \right) dS + \frac{1}{2\pi} \int_{\Omega} \Delta \varphi \ln r \, d\xi d\eta$$

$$\left| \int_{x} f(x) \overline{g}(x) dx \right|^{2} \leq \left(\int_{x} |f(x)|^{2} dx \right) \left(\int_{x} |g(x)|^{2} dx \right)$$

$$\left| \varphi(x,y) \right| \leq \frac{1}{2\pi} \left(\iint_{\Omega} (\Delta \varphi)^{2} d\xi d\eta \right)^{1/2} \left(\iint_{\Omega} \ln^{2} r \, d\xi d\eta \right)^{1/2}$$

$$\left| \varphi(x,y) \right| \leq C_{1}$$

$$\left| \omega_{n+m} - \omega_{n} \right| \leq C_{1} \sqrt{\varepsilon}$$

$$\omega_{n} \xrightarrow{\Omega} w_{n}(x,y) \in C(\Omega)$$

2.1 Метод Бубнова – Галеркина

$$w_n = \alpha_1 \varphi_1 + \dots + \alpha_n \varphi_n$$
 $Lw - \lambda Mw = 0$
 $L, M -$ дифференциальные операторы
$$\sum_{i=1}^{n} (A_{ik} - \lambda B_{ik}) a_k = 0, \quad k = \overline{1, n}$$

$$\begin{vmatrix} A_{11} - \lambda B_{11} & \dots & A_{1n} - \lambda B_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} - \lambda B_{n1} & \dots & A_{nn} - \lambda B_{nn} \end{vmatrix} = 0$$

$$N(x,y) = Lw_n - \lambda Mw_n$$
 — невязка $N(x,y) \perp \varphi_i, \quad i = \overline{1,n}$

2.2 Повторение

1.
$$f(x) \stackrel{\text{\tiny I.B.}}{=} 0 \Rightarrow \int_{\Omega} f(x) dx = 0$$

2.
$$\int_{\Omega} f(x)dx = 0$$
, $f(x) >= 0 \Rightarrow f(x) \stackrel{\text{\tiny I.B.}}{=} 0$

3.
$$|f(x)| < \varphi(x), \varphi$$
 — суммируема по Лебегу $\Rightarrow f(x)$ — суммируема по Лебегу

4. $\{\varphi_n(x)\}$ — суммируемы с квадратами по Лебегу

$$\lim_{n,k\to\infty} \int_{\Omega} |\varphi_k(x) - \varphi_n(x)|^2 dx = 0$$

Обозначим V – линейное пространство

 (φ,ψ) — скалярное произведение: $(\cdot,\cdot):V\times V\to\mathbb{C}$

1.
$$(\varphi, \psi) = \overline{(\psi, \varphi)}$$

2.
$$(a_1\varphi_1 + a_2\varphi_2, \psi) = a_1(\varphi_1, \psi) + a_2(\varphi_2, \psi)$$

3.
$$(\varphi, \varphi) \ge 0$$

4.
$$(\varphi, \varphi) = 0 \implies \varphi = \mathbf{0}$$

$$\|\varphi\| = \sqrt{(\varphi, \varphi)}$$

• Неравенство Коши-Буняковского

$$|(\varphi,\psi)| \le \|\varphi\| \|\psi\|$$

• Неравенство треугольника

$$\|\varphi + \psi\| \le \|\varphi\| + \|\psi\|$$

$$L_2(\Omega): \quad (\varphi, \psi) = \int_{\Omega} \varphi(x) \overline{\psi(x)} dx$$

$$L_2(\Omega, \sigma): \quad (\varphi, \psi) = \int_{\Omega} \varphi(x) \overline{\psi(x)} \sigma(x) dx$$

$$L_2(\Omega^m): \quad (\varphi, \varphi) = \int_{\Omega} \sum_{k=1}^m \varphi_k(x) \overline{\varphi_k(x)} dx$$

Критерий линейной зависимости системы функций

$$\varphi_1, ..., \varphi_n$$
 линейно зависима (ЛЗ) в H

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

Опр. M — плотно в H, если $\forall p \in H$ и $\forall \varepsilon > 0$ $\exists \varphi_n \in M : \|\varphi_n - \varphi\| < \varepsilon$.

 $C_0^{(\infty)}(\Omega)$ плотно в $L_2(\Omega)$

$$\forall \varepsilon > 0: \quad \forall \varphi \in H \qquad \exists \varphi_n^1 \in C_0^{(\infty)}(\Omega): \quad \|\varphi_n^1 - \varphi\| < \varepsilon/2$$

$$\exists \varphi_n^2 \in C_0^{\infty}(\Omega): \quad \|\varphi_n^2 - \varphi_n^1\| < \varepsilon/2$$

 $C_0^{(k)}(\Omega)$ плотно в $L_2(\Omega)$

$$\{\varphi_n\}$$
 — ортонормированная система (ОНС) $(\varphi_n, \varphi_m) = \delta_{nm}$

$$(\varphi_n, \varphi_m) = \delta_{nm}$$

 $\|\varphi\|^2 = \|\varphi_1\|^2 + \|\varphi_2\|^2 + \dots + \|\varphi_n\|^2 + \dots$

$$\{\varphi_n\}$$
 полная в H , если из $(\varphi,\varphi_k)=0 \ \forall k\in\mathbb{N} \Rightarrow \varphi=\mathbf{0}$ $\forall \varphi\in H: \quad a_k=(\varphi,\varphi_k)$ — коэффициенты Фурье

Теор. H — гильбертово, $\{\varphi_k\}$ — полная ортонормированная система (ПОНС)

$$\Rightarrow \|arphi\|^2 = \sum\limits_{k=1}^\infty |a_k|^2 = \sum\limits_{k=1}^\infty |(arphi,arphi_k)|^2$$
 — равенство Парсеваля

Теор.
$$\exists a_k: \quad \sum\limits_{k=1}^{\infty} |a_k|^2$$
 сходится, $\{\varphi_n\} - \Pi \text{OHC в } H,$ тогда:

$$\sum_{k=1}^{\infty} a_k \varphi_k \text{ сходится по } \| \cdot \| \text{ к } \varphi \in H, \text{ при этом } \| \varphi \| = \sum_{k=1}^{\infty} |a_k|^2.$$

Опр. H сепарабельно если $\exists M-$ счетное мн-во плотное в H.

Теор. H сепарабельно $\Leftrightarrow \exists \Pi OHC$ (счетная или конечная) в H.

$$\{u: \int\limits_{\Omega} u dx = 0\}$$
 — пример подпространства в $L_2(\Omega)$.

Пусть
$$H_1$$
 — подпространство в H

Пусть
$$H_1$$
 — подпространство в H $\forall \varphi \in H \quad \exists ! \varphi_1 \in H_1 : \|\varphi - \varphi_1\| = \min_{\psi \in H_1} \|\varphi - \psi\|$ — проекция φ на H_1 $\varphi = \varphi_1 + \varphi_2, \qquad H_2 = \varphi \perp H_1$ — ортогональное дополнение

l — линейный функционал : $M\subset H \to \mathbb{R}/\mathbb{C}$ $|l_{arphi}| \leq \|l\| \cdot \|arphi\|_H$ $\lim_{\psi \to \varphi} l_{\psi} = l_{arphi}$ orall arepsilon > 0 $\exists \delta: \|\psi - arphi\| < \delta: \quad |l_{\psi} - l_{arphi}| < arepsilon$

Теор. (Рисса) $\forall l$ — непрерывного линейного функционала в H $\exists ! \psi \in H : l_{\varphi} = (\varphi, \psi)$

Пусть M — плотно в H, $\Phi: M \times M \to \mathbb{C}(\mathbb{R})$ $\Phi(\varphi,\psi): \Phi(\varphi,\psi) = \overline{\Phi(\psi,\varphi)}$ $\Phi(\varphi,\varphi)$ — квадратичная форма

 $H:D_A\subset H$ — область определения некоторого оператора A Линейный оператор A ограничен $\Leftrightarrow A$ непрерывен $\varphi\in D_A,\quad A\varphi\in R_A$ — область значений оператора A $\varphi\in D_A\to !\ A\varphi\in R_A$

Лекция 3

$$Au = f$$

 $u, f \in H$ $\Omega \subset \mathbb{R}^m$, $H = L_2(\Omega)$

$$\begin{cases} -\Delta u = f, & f \in C(\overline{\Omega}) \\ u|_s = 0 \end{cases}$$

$$D_A = \{ u \in C^2(\overline{\Omega}); \ u|_s = 0 \}$$

 $A = -\Delta u$

Формула Остроградского

$$\int\limits_{\Omega} \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y} + \frac{\partial \omega}{\partial y} \right) d\Omega = \int\limits_{S} \bigg(\varphi \cos(\overline{n} \cdot x) + \psi \cos(\overline{n} \cdot y) + \omega \cos(\overline{n} \cdot z) \bigg) dS$$

$$W = \begin{pmatrix} \varphi \\ \psi \\ \omega \end{pmatrix} \qquad \int_{\Omega} \text{div} W d\Omega = \int_{S} W_{n} dS$$

Пусть $\varphi = uv$, $\psi = \omega = 0$

$$\int\limits_{\Omega}u\frac{\partial v}{\partial x}d\Omega=-\int\limits_{\Omega}v\frac{\partial u}{\partial x}d\Omega+\int\limits_{S}uv\cos(\overline{n}\cdot x)dS$$

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} d\Omega = -\int_{\Omega} v \frac{\partial u}{\partial x_i} d\Omega + \int_{S} uv cos(\overline{n} \cdot x_i) dS \qquad \text{B } \mathbb{R}^m$$
 (0)

3.1 Формулы Грина

$$Lu = -\sum_{i,k=1}^{m} \frac{\partial}{\partial x_i} \left(A_{ik}(P) \frac{\partial u(P)}{\partial x_k} \right) + C(P)u(P)$$

$$D_L = \{ u \in C^2(\overline{\Omega}) \}, \quad P \in \Omega \subset \mathbb{R}^m, \quad C(P) \in C(\overline{\Omega})$$

$$A_{ik}(P) \in C(\overline{\Omega}), \quad A_{ik}(P) = A_{ki}(P) \ \forall P, \quad i, k = \overline{1, n}$$

$$\int_{\Omega} v L u d\Omega = -\sum_{i,k=1}^{m} \int_{\Omega} v \frac{\partial}{\partial x_i} \left(A_{ik} \frac{\partial u}{\partial x_k} \right) d\Omega + \int_{\Omega} C u v d\Omega$$

в (0) подставим $u \to v, v \to A_{ik} \frac{\partial u}{\partial x_k}$

$$\int_{\Omega} v L u d\Omega = \int_{\Omega} \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} \frac{\partial v}{\partial x_i} d\Omega + \int_{\Omega} C u v d\Omega - \int_{S} v \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} cos(\overline{n} \cdot x_i) dS$$
 (1)

$$\int_{\Omega} uLud\Omega = \int_{\Omega} \left[\sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_k} + Cu^2 \right] d\Omega - \int_{S} u \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} cos(\overline{n} \cdot x_i) dS$$
 (2)

из (1) вычитаем ее же, но поменяв местами u и v: $(1) - (1)_{u \rightleftharpoons v}$

$$\int_{\Omega} (vLu - uLv) d\Omega = \int_{\Omega} \left[\sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{i}} \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{i}} \right] d\Omega - \int_{S} \left[v \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} cos(\overline{n} \cdot x_{i}) - u \sum_{i,k=1}^{m} A_{ik} \frac{\partial v}{\partial x_{k}} cos(\overline{n} \cdot x_{k}) \right] dS$$

$$N \cdot := \sum_{i,k=1}^{m} A_{ik} \frac{\partial \cdot}{\partial x_i} cos(\overline{n} \cdot x_i)$$

$$\int_{\Omega} (vLu - uLv) d\Omega = \int_{S} (uNv - vNu) dS$$
(3)

Частный случай формул Грина, это оператор Лапласа:

$$Lu = -\Delta u; \ A_{ii} = 1; \ A_{ik} = 0, \ i \neq k; \ C = 0$$

$$-\int_{\Omega} v \Delta u d\Omega = \int_{\Omega} \sum_{i=1}^{m} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d\Omega - \int_{S} v \frac{\partial u}{\partial n} dS$$

$$\tag{4}$$

$$-\int_{\Omega} u\Delta u d\Omega = \int_{\Omega} \left(\frac{\partial u}{\partial x_i}\right)^2 d\Omega - \int_{S} u \frac{\partial u}{\partial n} dS \tag{5}$$

$$-\int_{\Omega} (v\Delta u - u\Delta v)d\Omega = \int_{S} \left(v\frac{\partial u}{\partial n} - u\frac{\partial v}{\partial n}\right)dS \tag{6}$$

3.2 Положительные операторы

Пусть оператор A симметричен в H

Опр. Оператор называется положительным, если $\forall u \in D_A \subset H, \qquad (Au, u) \geq 0 \Leftrightarrow u = 0$

 $\Pi p. 1$

$$Bu = -\frac{d^2}{dx^2}u \qquad \text{B } L_2(0,1); \qquad D_B = \{u \in C_0^2(0,1) : u(0) = u(1) = 0\}$$

$$(Bu,v) = -\int_0^1 v \frac{d^2u}{dx^2} dx = \int_0^1 \frac{du}{dx} \frac{dv}{dx} dx - v \frac{du}{dx} \Big|_0^1 = -\int_0^1 u \frac{d^2v}{dx^2} = (u,Bv) \quad \forall u,v \in D_B$$

$$(Bu,u) = \int_0^1 \left(\frac{du}{dx}\right)^2 dx = 0$$

$$(Bu,u) = 0 \Rightarrow \frac{du}{dx} = 0 \Rightarrow u = const, u(0) = 0 \Rightarrow u = 0$$

 $\Pi p. 2$

$$Cu = -\frac{d^2}{dx^2}u, \qquad D_C = \left\{ u \in C^2(0,1), \begin{cases} u'(0) + \alpha u(0) = 0 \\ u'(1) + \beta u(1) = 0 \end{cases} \quad \alpha, \beta = const \right\}$$

$$(Cu, v) = \int_0^1 \frac{du}{dx} \frac{dv}{dx} dx + \alpha u(0)v(0) + \beta u(1)v(1) = (u, Cv)$$

$$\alpha > 0, \beta \ge 0$$

$$(Cu, u) = \int_0^1 \left(\frac{du}{dx} \right)^2 dx + \alpha u^2(0) + \beta u^2(1) \ge 0$$

 $\alpha=\beta=0,\quad u\equiv 1\Rightarrow (Cu,u)=0\Rightarrow C$ не является положительным

 $\Pi p. 3$

$$Au = -\Delta u, \qquad D_A = \{u \in C^2(\Omega) : \quad u|_s = 0, \quad \Omega \subset \mathbb{R}^m, S = \partial\Omega, H = L_2(\Omega)\}$$

$$(Au, u) = (-\Delta u, u) = -\int_{\Omega} u \Delta u d\Omega = \int_{\Omega} \sum_{i=1}^m \left(\frac{\partial u}{\partial x_i}\right)^2 d\Omega - \int_{\mathcal{S}} u \frac{\partial u}{\partial n} dS \ge 0$$

$$\frac{\partial u}{\partial x_i} = const, \ u|_s = 0 \Rightarrow u = 0$$

Рассмотрим мембрану

 Ω в плоскости $(x,y),\ u(x,y)$ — изгиб мембраны

$$-\Delta u = \frac{q}{T}$$

q — поперечная нагрузка на единицу площади

T — натяжение мембраны

 $u|_S=0$ — мембрана закреплена на краях

$$(Au, u) = (-\Delta u, u) = \iint_{\Omega} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy$$

3.3 Положительно определенные операторы

Опр. Симметричный оператор A называется положительно определенным, если

$$\exists \gamma > 0 : (Au, u) \ge \gamma^2 \|u\|^2 \tag{7}$$

Пр. 1 (продолжение)

$$B: u(0) = 0, u \in D_B$$

$$u(x) = \int_{0}^{x} u'(t)dt, \quad x \in [0, 1]$$

$$u^{2}(x) \leq \int_{0}^{x} 1^{2} dt \cdot \int_{0}^{x} (u'(t))^{2} dt = x \int_{0}^{x} (u'(t))^{2} dt \leq x \int_{0}^{1} (u'(t))^{2} dt$$

$$\int_{0}^{1} u^{2}(x)dx \le \frac{1}{2} \int_{0}^{1} (u'(t))^{2} dt$$

$$\gamma^2 \|u\|^2 \leq (Bu,u), \quad \gamma = \sqrt{2} \quad \Rightarrow B$$
 является положительно определенным

$\Pi p. 4$

$$Lu = -\frac{d}{dx} \left(x^3 \frac{du}{dx} \right) \quad \text{B } L_2(0,1)$$

$$D_L = \{u \in C^2[0,1], \ u(1) = 0\}$$

$$(Lu,v) - (u,Lv) = \int_{0}^{1} \frac{d}{dx} \left[x^{3} \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right] dx = \left[x^{3} \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right] \Big|_{0}^{1} = 0$$

$$(Lu,u)=\int\limits_0^1x^3\bigg(rac{du}{dx}\bigg)^2dx\geq 0\quad\Rightarrow L$$
 является положительно определенным

$$\frac{(Lu, u)}{\|u\|^2} \ge \gamma^2, \qquad u_{\delta}(x) = \begin{cases} (\delta - x)^3, & 0 \le x \le \delta \\ 0, & \delta \le x \le 1 \end{cases}, \qquad u_{\delta} \in \mathcal{D}_L$$

$$\frac{(Lu_{\delta}, u_{\delta})}{\|u_{\delta}\|^{2}} = \frac{\int_{0}^{1} x^{3} \left(\frac{du_{\delta}}{dx}\right)^{2} dx}{\int_{0}^{\delta} (\delta - x)^{3} dx} = \frac{9 \int_{0}^{1} x^{3} (\delta - x)^{4} dx}{\int_{0}^{\delta} (\delta - x)^{6} dx} = \frac{9}{40} \delta \quad \Rightarrow L \text{ не явл. положительно опр.}$$

3.4 Энергетическая норма

Пусть A — положительно определен в H (гильберт.)

Ha
$$D_A$$
: $[u, v]_A = (Au, v)_H$

Можно показать что выполняются все аксиомы скалярного произведения

1.
$$[u, v]_A = \overline{[v, u]_A}$$

 $(Au, v) = (u, Av) = \overline{(Av, u)} = \overline{[v, u]}$

2.
$$[a_1u + a_2u, v] = a_1[u, v] + a_2[u, v]$$

3.
$$(Au, u) = [u, u] \ge \gamma ||u||^2 \ge 0$$

4.
$$[u, u] = 0 \Leftrightarrow u = 0$$

$$|u| = [u, u]$$
 — энергетическая норма

 D_A предгильбертово, дополним его по $|\cdot|_A \Rightarrow$ гильбертово пр-во H_A

$$u \in H_A \Leftrightarrow \left[\begin{array}{c} u \in D_A \\ \exists u : \{u_n\} \in D_A : |u_n - u| \underset{n \to \infty}{\to} 0 \end{array}\right]$$

Лекция 4

4.1 Энергетическое пространство

Пусть A — положительно определен в H (гильберт.)

Ha
$$D_A$$
:
$$\begin{aligned} [u,v]_A &= (Au,v)_H \\ \|u\|_A &= [u,u]_A \end{aligned}$$

 H_A — энергетическое пространство

$$||u||_{H} \le \frac{1}{\gamma} ||u||_{A} \tag{4.0}$$

$$u \in H_A \le \frac{u \in D_A}{\exists \{u_n\} \in D_A : \lim_{n \to \infty} ||u_n - u||_A = 0}$$

Теор. $\forall u \in H_A \to \text{только}$ один элемент из H, причем различные $u_1, u_2 \in H_A$ отвечают различным элементам из H

Док-во.

1.
$$u_n : \lim_{n \to \infty} \|u_n - u\|_A = 0$$

 $\|u_n - u_m\|_A \le \|u_n - u\|_A + \|u_m - u\|_A \underset{n,m \to \infty}{\longrightarrow} 0$
 $\Rightarrow \|u_n - u_m\|_H \to 0$ при $n, m \to \infty$
 $\Rightarrow \exists \lim_{n \to \infty} \|u_n - u_m\|_H = 0$

$$2. \ u_{1,n} \underset{\|\cdot\|_A}{\to} u_1, \quad u_{2,n} \underset{\|\cdot\|_A}{\to} u_2 \\ u_1 \ u \ u_2 \to u \in H, \quad u = u_1 - u_2 \\ \exists \{u_n\} \in H_A \quad \|u_n - u\|_A \to 0 \\ \forall f \in H \quad |(f,u_n)| \overset{\mathrm{KB}}{\leq} \|f\| \cdot \|u_n\| \leq \|f\|_A \cdot \frac{1}{\gamma} \cdot \|u_n\|_A \to 0 \\ \forall \varphi \in D_A \quad A\varphi = f \in H \\ \mathsf{Тогда} \ (A\varphi,u_n) \to 0 \\ [\varphi,u_n]_A = (A\varphi,u_n) \to 0 \\ \mathsf{Переходя} \ \mathsf{K} \ \mathsf{пределу:} \ [\varphi,u]_A = 0 \ \forall \varphi \qquad \Rightarrow u = 0 \Rightarrow u_1 = u_2$$

Пример 1

$$Bu = -\frac{d^2}{dx^2}u, \qquad D_B = \{u \in C^2[0,1], \ u(0) = u(1) = 0\}$$
 $H = L_2(0,1), \ u \in H_B$
 $u \in H_B, \quad \exists \{u_n\} \in D_B \quad \|u_n - u\|_B \to 0$
 $\|u_n - u_k\|_B \le \|u_n - u\|_B + \|u_k - u\|_B \underset{n,k \to \infty}{\to} 0$
 $\|u_n - u_k\|_B^2 = \int_0^1 \left(\frac{du_n}{dx} - \frac{du_k}{dx}\right)^2 dx \underset{n,k \to \infty}{\to} 0$
 $\Rightarrow \{\frac{du_n}{dx}\}$ фундаментальна в $L_2(0,1) \Rightarrow \exists v(x) \in H$

$$u_n(x) = u_n(0) + \int\limits_0^x u_n'(t)dt, \quad u_n \in D_B, \qquad$$
при $x = 0: \ u_n(0) = 0$

Переходя к пределу:
$$u(x) = \int_{0}^{x} v(t)dt$$
 и $u(0) = 0$

$$u(1) = \int_{0}^{1} v(t)dt = \lim_{n \to \infty} \int_{0}^{1} u'_{n}(t)dt = \lim_{n \to \infty} (u_{n}(1) - u_{n}(0)) = 0$$

Следовательно, u абсолютно непрерывная $\operatorname{ha}[0,1]$, удовлетворяет граничным условиям $u' \in L_2(0,1)$

Пример 2

$$Cu = -\frac{d^2}{dx^2}u(x); \qquad u'(0) + \alpha u(0) = 0, \ u'(1) + \beta u(1) = 0$$

$$\exists \{u_n\} \in D_C, \quad \alpha > 0, \ \beta \ge 0$$

$$\int_0^1 \left(\frac{du_n}{dx} - \frac{du_k}{dx}\right)^2 dx \underset{n,k \to \infty}{\to} 0$$

$$|u_n(0) - u_k(0)| \underset{n,k \to \infty}{\to} 0$$

$$u_n(x) = u_n(0) + \int_0^x u'_n(t) dt$$

$$u(x) = c_0 + \int_0^x v(t) dt$$

Теор. Пусть оператор A положительный, но не положительно определенный. Тогда

$$u \in H_A: \quad u \in H \Leftrightarrow \exists \{u_n\} \in D_A$$

$$\|u = u_n\|_A \underset{n \to \infty}{\to} 0 \quad \text{и} \quad \|u_k - u_n\|_H \underset{n,k \to \infty}{\to} 0$$

Пример 3

4.2 Энергетический метод

(для положительно определенных операторов)

$$Au = f$$

$$A: \mathcal{D}(A) \in H \to H;$$

Теорема

А положителен в H уравнении ?? В не более одного решения. Доказательство

$$u_1, u_2$$
 — Решения ??...

Теорема о функциональной энергии

А - положительный в H; u - решение $\ref{eq:harmonical}$ \rightleftarrows доставляет минимум функционала

$$F(u) = (Au, u)_H - (f, u)_H - (u, f)_H$$

Доказательство

...

Пример 4

$$\Delta^2 \omega = \frac{\partial^4}{\partial x^4} \omega + 2 \frac{\partial^4 \omega}{\partial^2 \omega \partial^2 y} + \frac{\partial^4 \omega}{\partial y^4}$$

$$\mathcal{D}_A = \{ \omega \in c^4(\overline{\Omega}); \omega|_S = 0; \frac{\partial \omega}{\partial n}|_S = 0 \}$$

$$A - \omega = \frac{a(x, y)}{\mathcal{D}}$$

4.3 Обобщение решения задачи о min для ф.э.

A- Поллжительно определено в Н $Au=f??f\in H$

фикс $f \in H \forall u \in H_A(u,f)_H$: ф-ла : $H_A \to \mathcal{R}$

$$|(u, f)_H| \le ||f||_H ||u||_H \le ||f||_H \frac{1}{\gamma} ||u||_A; \gamma ||f||_H - const$$

Опр
$$(f,u) \Rightarrow \text{ по T Рисса } \exists u_0 \in H_A(f,u)_H = [u,u_0]_A$$

$$F(u) = [u, u]_A - [u, u_0] - [u_0, u]_A$$

$$+ - [u_0, u_0]_A$$

$$F(u) = ||u - u_0||_A^2 - ||u_0||_A^2$$

 $argmin_{u \in H_A} F(u) = u_0$ Обощенное решение Au = f

Если H сепарабельно, энергетическое про-во тоже сепарабельно, $\exists \{\omega_n\}$ ПОНС

$$r_0 = \sum_{n=1}^{\infty} [u_0, \omega_n] \omega_n ??$$

$$u = \omega_n [u_0 \omega_n]_A = (f, \omega_n)_H$$

$$u_0 = \sum_{n=1}^{\infty} (f, \omega_n)_H \omega_n$$

Лекция

5.1 Применение энергетического метода для краевых задач

1. Немного опазадал, пример часть примера пропустил ...

$$(Lu,u)_{H} = \sum_{k=0}^{m} \int_{x_{1}}^{x_{2}} p_{k}(x) (\frac{d^{k}u}{dx^{k}})^{2} dx > = \int_{x_{1}}^{x^{2}} p_{n_{1}}(x) (\frac{d^{m}u}{dx^{n}} dx^{3}) > = p_{0} \int_{x_{1}}^{x^{2}} (\frac{d^{m}u}{dx^{m}} dx = p_{0} ||u_{0}||_{H}^{2})$$

...

$$(Lu_M) >= \partial^2 ||u||_H^2, \gamma = \sqrt{p_0} (\frac{\sqrt{2}}{x_2 - x_1})^m$$

. . .

$$||u||_A \le \sqrt{p_0}||u||^{(m)}{}_H \exists \{u_N(x)\}$$

$$lim_{n\to\infty}=0;u_0$$
 — точное решение

$$||u_n - u_k||_A \le ||u_n - u_0||_A + ||u_k - u_0||_A \to 0$$

 $u_n^{(l)}(x_1) = u_k^{(l)}(x_1) = 0, l = \overline{0, m - 1}$

. . .

2. Изгиб балки

$$L_{\omega} = \frac{d^2}{dx^2} [EI(x) \frac{d^2 \omega}{dx^2}] + K\omega = q(x)$$

 ω — Прогиб балки

E — модуль Юнга

I(x) — момент инерции

q(x) — интенсивность нагрузки на балку

К – коэф податливости основания

$$\omega(0) = \omega(l) = 0$$

$$\omega'(0) = \omega'(l) = 0; A - Положительно определен$$

Аналогично задачи минимизации функционала

$$F(\omega) = \int_0^l (EI(x)\omega''^2 + K\omega^2 - 2q(x\omega))dx = (L\omega, \omega) - 2(\omega, q)$$

Воспользуемся методом Рица

$$u_n(x)_{n=1}^{\infty}, \phi_n(x) = (x-l)^2 x^{n+1}$$
, Полная система в H_A

$$\omega_n = \sum_{k=1}^n a_k \phi_k(x) = (x - l)^2 \sum_{k=1}^n a_k x^{k+1}
\sum_{k=1}^n a_k A_{1k} = b_{ij}; i = \overline{1, n}
b_j = (q, \phi_j)_H = \int_0^l a(x)(x - l)x dx
A_{ik} = (L\phi_i, \phi_k)_H = \int_0^l (EI(x) \frac{d^2\phi_i}{dx^2} \frac{d^2\phi_k}{dx^2} + k\phi_i \phi_k) dx
\omega(0) = 0; \omega''(l) = 0
\omega'(0) = 0$$

Тут тоже можно доказать полажительную определенность

3. Краевая задача для систем ОДУ

 $\frac{d}{dx}(EI(x)\frac{d^2\omega}{dx^2})_{x=0}^{x=l} = 0$

$$-\sum_{k=1}^{s} \left[\frac{d}{dx} (p_{jk}(x) \frac{du_k(x)}{dx}) - q_{jk}(x) u_k(x) \right] = f_j(x)$$

краевые ...

$$-\frac{d}{dx}[P(x)\frac{du}{dx}] + Q(x)u(x) = f(x)$$

$$u(x_1) = u(x_2) = 0$$

$$(u, v)_{H=L_2(x_1, x_2)} = \int_{x_1}^{x_2} u(x) \cdot v(x) dx = \int_{x_1}^{x_2} \sum_{k=1}^{s} u_k(x)v_k(x) dx$$

5.1.1 Теорема

$$P(x),Q(x) \text{ симметр. } x \in [x_1,x_2] \Rightarrow A \text{ Симметричный}$$
 Доказательство

$$(Au, v)_H = -\int_{x_1}^{x^2} v(x) \cdot \frac{d}{dx} [P(x) \frac{du}{dx}] dx + \int_{x_1}^{x_2} v(x) \cdot Q(xu(xdx)) =$$

$$= \int_{x_1}^{x_2} P \frac{du}{dx} \cdot \frac{dv}{dx} + v(x \cdot Q(x)u(x)) dx$$

$$Qu \cdot v = \sum_{j,k=1}^{s} q_{jku_k \cdot v_j} =$$

$$= \sum_{i,j=1}^{s} q_{k,j} v_j \cdot v_k$$

Следовательно оператор симметричен

5.1.2 Теорема

$$P(x), Q(x)$$
 симметрич на $[x_1, x_2]$

P(x) положит.
 опр. Q(x) неотр на $(x_1,x_2] \Rightarrow A$ положительно определен доказательство

$$P(x)$$
 пол. опр $\forall x \Rightarrow$ пусть $\lambda_1(x) > 0$
 $\exists \lambda > 0 = const; \lambda_1(x) > \hat{\lambda} > 0x \in [x_1, x_2]$

$$\forall t = (t, ..., s)$$

$$P(x)t \cdot t = \sum_{j,k=1}^{s} P_{jk}(x)t_{j}t_{k} \ge \lambda_{1}(x)\sum_{k=1}^{s} t_{k}^{2} \ge$$

$$\ge \hat{\lambda}\sum_{k=1}^{s} t_{k}^{2}$$

$$Q(x)t \cdot t = \sum_{k,k=1}^{s} q_{jk}t_{j}t_{k} \ge 0$$

$$(u,u)_{H} = \int_{x_{1}}^{x_{2}} (P\frac{du}{dx} \cdot \frac{du}{dx}) dx \ge \hat{\lambda} \int_{k=1}^{s} (\frac{du_{k}}{idx}^{2}) dx$$

$$(Au,u)_{H} \ge \frac{2\hat{\lambda}}{(x_{2}-x_{1})^{2}} \int_{x_{1}}^{x_{2}} (\sum_{k=1}^{s} u_{k}^{2}) dx = \frac{2\hat{\lambda}}{(x_{2}-x_{1})^{2}} dx = \frac{\hat{\lambda}}{(x_{2}-x_{1})^{2}} ||u||_{H}^{2}$$

$$(Au, u)_H \ge \gamma^2 ||u||_H^2$$

. . .

5.2 Основные кр задачи для ур-я Пуассона

$$-\Delta u = f(p)$$
 в $\Omega \in \mathcal{R}^m$

з. Дирихле

$$u|_{\partial\Omega} = 0$$

$$Au = -\Delta u = \sum_{k=1}^{m} \frac{\partial^2 u}{\partial x_k^2}$$

$$P_A = \{ u \in c^2(\overline{\Omega}_1)u|_{2\Omega} = 0 \}$$

$$H = L_2(\Omega)$$

$$(-\Delta, u)_h = \int_{\Omega} \sum_{i=1}^n \left(\frac{\partial n}{\partial x_i}\right)^2 d\Omega - \int_{\partial \Omega} u \frac{\partial u}{\partial n} dS = \int_{\Omega} (grubu)^2 d\Omega \ge 0$$

 \Longrightarrow

$$F(u) = (-\Delta u, u)_H - 2(u, f)_H$$

$$F(u) = \int_{\Omega} ((gradu)^2 - 2uf)d\Omega$$

$$\left[\frac{\partial u}{\partial n} + \gamma(P)u\right]|_{\partial\Omega} = 0$$

$$(-\Delta u, u)_H = \int_{\Gamma} (gradu)^2 d\Omega + \int_{\partial u^2} dS \ge 0$$

$$(-\Delta u, u)_H = 0 \Rightarrow u = condt \int_{\partial \xi} \gamma c^2 dS = 0 \Rightarrow c = 0 \Rightarrow u = 0$$

$$F(u) = \int_{\Omega} ((gradu)^2 - 2uf)d\Omega + \int_{\gamma\Omega} \gamma n^2 dS$$

$$\frac{\partial u}{\partial n}|_{\partial\Omega} = 0$$

з Неймана 5.2, 5.2

$$(-\Delta, u)_{H} = -\int_{\partial\Omega} u \frac{\partial u}{\partial n} dS + \int_{\Omega} (gradu)^{2} d\Omega \ge$$

$$u == 1(-\Delta u, u)_H = 0$$

при V == 1

$$\int_{\Omega} \Delta u d\Omega = \int_{\partial \overline{\Omega}} \frac{\partial u}{\partial n} dS = 0$$

$$S_{\Omega} f d\Omega = 0$$

Условие разрешимости 5.2 5.2

Лекция 6

**пропустил начало (почти треть) ** Уравнение Фридрехса в общем виде:

$$\int_{\omega} \sum_{k=1}^{m} \left(\frac{\partial n}{\partial x_k}\right)^2 d\Omega \ge x^2 \int_{\Omega} u^2 dx$$

$$u|_S = 0$$

$$\int_{\Omega} u^2 d\Omega = \le c \{ \int_{\Omega} (\frac{\partial u^2}{\partial x} + \frac{\partial n}{\partial y} d\Omega) + \int_{\Omega} u^2 dS \}$$

$$(\frac{\partial (fv)}{\partial x})^2 + (\frac{\partial (fv)}{\partial y})^2 = f^2[(\frac{\partial v}{\partial x} + (\frac{\partial v}{\partial y})^2)] - vf\Delta f + \frac{\partial}{\partial x}(v^2f\frac{\partial f}{\partial x})\frac{\partial}{\partial y}(v^2f\frac{\partial f}{\partial y})$$

Преобразуем правую и левую части

$$v^2((\frac{\partial f}{\partial x})^2+(\frac{\partial f}{\partial y})^2)+f^2((\frac{\partial v}{\partial x})^2+(\frac{\partial v}{\partial y})^2)+23\frac{\partial v}{\partial x}f\frac{\partial f}{\partial x}+2v\frac{\partial v}{\partial y}f\frac{\partial f}{\partial y}$$

$$v^{2}(\frac{\partial f}{\partial x})^{2} + v^{2}(\frac{\partial f}{\partial y})^{2} + 2v\frac{\partial v}{\partial x}f\frac{\partial f}{\partial x} + v^{2}f\frac{\partial^{2} f^{2}}{\partial y^{2}}\frac{\partial^{2} f}{\partial y^{2}} + 2v\frac{\partial v}{\partial y} + \frac{\partial f}{\partial y} - v^{2}f\Delta f + f[(\frac{\partial v}{\partial x})^{2} + (\frac{\partial v}{\partial x})^{2}]$$

Это предполагается очевидным XD

$$\int ((\frac{\partial (fv)}{\partial x})^2 + (\frac{\partial (fv)}{\partial y})^2) d\Omega \ge + \int_{\Omega} v f \Delta f d\Omega + \int_{\partial \Omega} v^2 f \frac{\partial f}{\partial n} dS$$

$$\begin{split} &-\int_{\Omega} vf\Delta f d\Omega \leq \int_{\Omega} ((\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2) d\Omega + \int_{\partial\Omega} v^2 f \frac{\partial f}{\partial n} dS \\ &f = \sin(\frac{\pi x}{a}) \cdot \sin(\frac{\pi y}{b}) \\ &\Delta f = -\pi^2 (\frac{1}{a^2} + \frac{1}{b^2}) \cdot f - \int_{\Omega} v^2 f \Delta u^2 = \int_{\Omega} u^2 s \Omega \pi^2 () \\ &|\int_{\partial u} v^2 f \frac{\partial f}{\partial n} dS| \leq \int_{\partial\Omega} v^2 f |\frac{\partial f}{\partial n}| dS \leq c_1 \int_{\partial\Omega} u^2 d\Omega \\ &\pi^2 (\frac{1}{a^2} + \frac{1}{b^2}) \int_{\Omega} y^2 d\Omega \leq ((\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial x})^2) dx + c_1 \int_{\partial\Omega} v^2 dS \\ &c = \min \{ \frac{c_1}{\pi^2 (\frac{1}{a^2} + \frac{1}{b^2})}; \frac{1}{\pi} (\frac{1}{a^2} + \frac{1}{b^2}) \} \\ &(-\Delta u, u)_H = \int_{\Omega} (gradu)^2 d\Omega - \int_{\partial\Omega} u \frac{\partial u}{\partial n} dS \geq \int_{\Omega} (gradu)^2 d\Omega + \sigma \int_{\partial\Omega u^2 dS} \geq \sigma \{ (gradu)^2 d\Omega + \int_{\partial\Omega} u^2 dS \} \\ &\frac{1}{c} ||u||_H^2 \leq \int_{\Omega} (gradu)^2 d\Omega + \int_{\partial\Omega} u^2 dS \end{split}$$

Лекция 7

 $\sigma = \sqrt{\frac{\sigma}{c}}$

$$-(\Delta u, u)_H \ge \frac{\sigma_1}{c}||u||_H$$

$$\Delta u = f$$
 в Ω

$$\frac{\partial u}{\partial n}|_{\Omega} = 0$$

7.1 Не-во Пуанкаре

$$(x_1, y_1), (x_2, x_2) \in \Omega$$

$$\Omega u^2 d\Omega \in A \int_{\Omega} (gradu)^2 d\Omega + B(\int_{\Omega} u d\Omega)^2$$

$$\int_{\Omega} u^2 d\Omega \le \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + B\left(\int_{\Omega} d\Omega\right)^2$$

$$u^{2}(x_{2}, y_{2}) + u^{2}(x_{1}, y_{1}) - 2u(x_{2}, y_{2})u(x_{1}, u_{1}) = \left(\int_{x_{1}}^{x_{2}} \frac{\partial n}{\partial x}(x, y_{1})dx\right)^{2} + \left(\int_{y_{1}}^{y_{2}} \frac{\partial n}{\partial y}(x_{2}, y)dy\right)^{2} + 2\int_{x_{1}}^{x_{2}} \frac{\partial n}{\partial x}(x_{1}, y_{1})dx = \int_{x_{1}}^{x_{2}} \frac{\partial n}{\partial x}(x_{1}, y_{2})dx + \int_{x_{1}}^{x_{2}} \frac{\partial n}{\partial y}(x_{2}, y)dy + 2\int_{x_{1}}^{x_{2}} \frac{\partial n}{\partial x}(x_{1}, y_{2})dx = 0$$

$$\iiint u^2(x_2, y_2) dx_1 dy_1 dx_2 dy_2 = ab \int_{\Omega} u^2 d\Omega$$

$$ab\int_{\Omega}u^2d\Omega$$

$$\iiint u(x_2,y_2)u(x_1,y_1)dx_1dy_1dx_2dy_2=(\int_{\Omega}ud\Omega)$$

$$\int_0^a \int_0^b \int_0^a \int_0^b a \int_0^a \left(\frac{\partial u}{\partial x}(x_1, y_1)^2\right) dx dx_1 dy_1 dx_2 dy_2 =$$

$$= a^2 b \dots \int \left(\frac{\partial u}{\partial x}(x, y)\right)^2 d\Omega$$

$$2ab\int_{\Omega}u^2d\Omega-2(\int_{\Omega}ud\Omega)^2\leq 2ab\{a^2\int_{\Omega}(\frac{\partial u}{\partial x}d\Omega+d\int_{\Omega}(\frac{\partial u}{\partial y})^2d\Omega)\}$$

$$A = max\{a^2, b^2\}, B = \frac{1}{ab} : ab$$

$$D_N = D(A_N) = \{ u \in C^2(\overline{\Omega}), \frac{\partial u}{\partial n} |_{\partial \Omega} = 0; \int_{\Omega} u d\Omega = 0 \}$$

$$||u||_H^2 \le A \int_{\Omega} \sum_{k=1}^m (\frac{\partial u}{\partial x_k})^2 d\Omega = \overline{A}(Lu, u)_H \omega = \frac{2}{\sqrt{\overline{A}}} (A_N u, u) \ge \omega^2 ||u||_H^2$$

Даже $A:A_n$ или A_D $[u,V]_A=\int_\Omega gradu\cdot fradVd\Omega, ||u||_A=\int_\Omega (gradu)^2d\Omega$

$$u, V \in L_2(\Omega); \psi \in C_0^{\infty}(\overline{\Omega})$$

Если
$$\forall \psi \in c_0^\infty \int_\Omega u \frac{\partial \psi}{\partial x} d\Omega V \psi d\Omega$$

Пусть
$$u \in H_{A_D} \exists \{u_N\} \in D_{A_D}$$

$$||u_n - u||_H \to_{n \to \infty} 0$$

$$||u_n - u||_{\Lambda} \to_{n \to \infty} 0$$

$$\int_{(gradu_n=gradu_0)^2}^2 d\Omega = \sum_{k=1}^m \int (\frac{\partial u_n}{\partial x_k} - \frac{u_l}{\partial x_k})^2 d\Omega \to 0$$

$$||\frac{\partial u_n}{\partial x_k} - V||_H \to 0$$
 покажем, что $\Omega \to 0$

Пусть
$$\psi \in c_0^{\infty}(\overline{\Omega})$$

$$\int_{\Omega} u_n \frac{\partial \psi}{\partial x_k} d\Omega = -\int_{\Omega} \psi \frac{\partial u_n}{\partial x_i} d\Omega$$

$$(u_n, \frac{\psi}{\partial x_k})_H = (\frac{\partial u_n}{\partial x_k; \psi})_H \to (u, \frac{\partial \psi}{\partial x_k})_H = -(\psi, V)_H$$

7.2 Неоднородные краевые условия

$$\Delta u = 0\Omega \in \mathcal{R}^{\updownarrow}$$

$$u|_{\partial\Omega} = \psi$$

Пусть
$$\exists \psi(P); \psi \in c(\overline{\Omega}),$$

$$\psi(P) = \phi(P)$$

$$\frac{\partial \psi}{\partial x_k} \in C(\Omega), k = 1\overline{1, m}$$

$$\Phi(u) = \int_{\Omega} (gradu)^2 d\Omega$$

$$D_{\Phi} = \{u : ref7_*\}\Phi(P) + \eta(P),$$

$$\eta : ?? + \eta|_{\partial\Omega} = 0$$

Пусть ф-ии $u_0(P)$ достигает $min\Phi(u):u_0(P)$ реш. ??, ?? ** 1-3 и еще на гарнице ноль

$$u_0 + t\eta \in D_{\Phi}, \forall t \in \mathcal{R}, \eta : 7.2$$

 $\Phi(u_0+th)$ достигает min при t=0 как скал функция t

$$\frac{d}{dt} \{\Phi(u_0 + t\eta)\}|_{t=0} = \{\frac{d}{dt} \int_{\Omega} \sum_{k=1}^{m} \left(\frac{\partial (u_0 + t\eta)}{\partial x_k}\right)^2 d\Omega\}|_{t=0} = \{\frac{d}{dt} \int_{\Omega} \sum_{k=1}^{m} \left[\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial \eta}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial \eta}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial \eta}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial \eta}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial \eta}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t^2\left(\frac{\partial u_0}{\partial x_k}\right)^2 + 2\frac{\partial u_0}{\partial x_k} \cdot t\frac{\partial u}{\partial x_k} + t\frac{\partial u}{\partial x_k$$

...

$$\Rightarrow \int_{\Omega} \eta \Delta u_0 d\Omega = 0 \Rightarrow$$

 η 7.2 плотность в $L_2(\Omega) = H$

$$\Rightarrow \Delta u_0 = 0$$

$$\Phi(u) = \int_{\Omega} (gradu)^2 d\Omega$$

$$\psi: ??u = \psi - V$$

$$\begin{split} &\Phi(u) = \Phi(\psi - V) = \int_{\Omega} (grad(u = V))^2 d\Omega = \\ &= \int_{\Omega} (grad\psi)^2 d\Omega - 2 \int gradV \cdot grad\psi d\Omega + \int_{\Omega} (gradV) d\Omega \end{split}$$

$$F(V) = ||V||_{A_D}^2 - 2 \int gradV grad\psi d\Omega; V \in H_D = H_{A_D}$$

$$lV = \int_{\Omega} grad\psi gradv d\Omega; \\ |lV| \leq \int_{\Omega} (grad\psi)^2 d\Omega \int_{\Omega} (gradV)^2 d\Omega = c||V||_{H_{A_D}} \Rightarrow l - \text{ ограничение}$$

 $I\forall$ ограничение Ω

 $\psi \in H'(\Omega)$: $\exists !$ Обобщен. реш Дирихле

 $u \in H(\Omega)$

7.3 ур-е с переменным коэф

$$Lu = -\sum_{j,k=1}^{m} \frac{\partial}{\partial x} (A_j k(P) \frac{\partial u}{\partial x_k}) + c(P)u; Lu = f\Omega \in \mathcal{R}^{\updownarrow}$$
$$u|_{\partial\Omega} = 0$$

$$(N[u] + \partial(P)u)|_{\partial\Omega} = 0$$

$$N(u)|\partial_{\partial\Omega} = u$$

Формула Грина

$$\int_{\Omega} (VLu - uLV)d\Omega = -\int_{\partial\Omega} (VN(u) - uN(V))dS$$

При условиях ?? и ?? интеграл сокращается к 0, поэтому останется только ??.

$$N(u) + \sigma u = 0$$

$$N(v) + \sigma v = 0$$

$$VN(u) + \sigma uV - bN(V) - \partial uV = 0$$

на
$$\partial \Omega V N(u) - u N(V) = 0$$

$$\Rightarrow$$
 rp. v. ??, ??, ??

Опр L элементт в $\overline{\Omega}$, если $A_{jk}(P)$:

$$\exists_{\mu_0} = const > 0 \forall t1, ... t_m \in \mathcal{R}; \forall P \in \overline{\Omega}$$

$$\sum_{j,k=0}^{m} A_j k(P) t_j t_k \ge \mu_0 \sum_{j,k=1}^{m} t_k^2$$

Пример оператор Триколи

$$Ly = y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$A_H = y, A_{22} = 1A_{21} = A_{12} = 0$$

$$yt_1^2 + 1 \cdot t_2^2 \ge Bt_1^2 + t_2^2 \ge \hat{B}(t_1^2 + t_2^2)$$

$$\forall \Omega: \overline{\Omega} \in \mathcal{R}x(x,+\infty)L$$
 элиптич в Ω

L эллептический в $\overline{\Omega}$

$$C(P) \ge 0$$
 ф-ла Грина

$$(Lu, u)_H = \int uLud\Omega = \int_{\Omega} (\sum_{i,k=1}^m A_i k \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_k} + Cu^2) d\Omega - \int_{\partial} uN(u)dS$$

$$\ref{eq:constraint} ??/??$$
 Дир Лейли $\int_{\partial\Omega}(\cdot)dS=0\gamma=\sqrt{c_0}$

$$(Lu, u)_H \ge a_1^2 d\Omega \ge c_0 \int_{\Omega} u^2 d\Omega =$$

$$= \Omega^2 ||u||_H^2$$

?? Смен кр з $N(u) = -\sigma u$ на $\partial \Omega \sigma(P) \ge \sigma_0 > 0$

$$(Lu, u)_H \ge \sigma \int_{\partial\Omega} u^2 dS \ge c_0 ||u||_H^2$$

Лекция 8

$$Lu = -\sum_{j,k=1}^{m} \frac{\partial}{\partial x_j} (J_{jk}(P) \frac{\partial n}{\partial x_k} + c(P)u = f(P))$$

1. з Дирихле

$$(Lu, u) = \mu \sum_{j=1}^{m} \int_{\Sigma} \left(\frac{\partial n}{\partial x_{j}}\right)^{2} d\Omega \ge \Sigma^{2} ||u||_{H}^{2}; \sigma = \sqrt{ae\mu_{0}}$$

2. з Робэна

$$(Lu, u) \ge \left(\alpha \left(\int_{\Sigma} \sum_{i=1}^{n}\right)^{n} \left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right) d\Omega + \int_{\partial\Omega} n^{2} dS\right); \Rightarrow (Lu, u) \ge \alpha ||u||^{2}$$

3. з Неймана

$$C(P)=0$$

$$Lu=-\sum_{j,j=1}^m\frac{\partial}{\partial x_j}(A_{jk}\frac{\partial n}{\partial x_k}l)=f(P)$$

$$\int_{\Omega}(\cdot)d\Omega+\text{ ф-ла Остроградского}$$

$$-\int_{S} \sum_{j,k=1}^{m} A_{j} \frac{\partial n}{\partial x_{k}} \cos(\overline{n}, x) dS = 0$$

$$\Rightarrow \int_{\Omega} f(P) d\Omega = 0$$

$$\int_{\Omega} u d\Omega = 0$$

$$D_{L_{N}} = \{ u \in C^{2}(\overline{\Omega}), N(u) |_{\partial\Omega} = 0, \int_{\Omega} u d\Omega = 0 \}$$

$$(L_{N}u, n) = -\int_{\Omega} u \sum_{j,k=1}^{m} \frac{\partial}{\partial x_{j}} (A_{jk} \frac{\partial n}{\partial x}) d\Omega =$$

$$= \int_{\Omega} \sum_{j,k=1}^{m} A_{jk} \frac{\partial n}{\partial x_{j}} \frac{\partial n}{\partial x_{n}} d\Omega \ge \mu_{0} \int_{k=1}^{m} (\frac{\partial n}{\partial x_{k}})^{2} d\Omega$$

$$\int_{\Omega} u^{2} d\Omega \le A \int_{\Omega} \sum_{j=1}^{m} (\frac{\partial n}{\partial x_{0}} dS + B(\int_{\Omega} u\Omega)^{2})$$

8.1 Энергетический метод для пложительных операторов

$$Au = f$$

Все еще работает теорема о функциональной энергии

$$F(u) = (Au, u)_H - 2(u, f)_H$$

Энергетическое пространство попрожденное опреатором H_A , вообще говоря его элементам нельзя соспоставить элементы из Гильбертова.

 H_A — Энергетическое пр-во

$$(u,f)$$
 на D_A — плотно в H и в H_A

(u,f)=lu Функционал \to может быть ограничен или не ограницен

Если ограничен в H_A прододжим на H_A

в H_A по теореме Рисса $\exists u_0 \in H_A(u,f) = [u,u_0]A$

$$[u - u_0, u - u_0] = ||u||_A^2 + ||u_0||_A^2 - 2[u, u_0]_A$$

$$F(u) = ||u||_A^2 - 2[u, u_0]_A = ||u - u_0||_A^2 - ||u_0||_A^2$$

Минимум достигается на элементе $F(u)=u_0$. Но u_0 может не лежать в энергетическом про-ве. Обобщенное решение с конечной энергией.

Если Н сепарабильно $\Rightarrow H_A$ сепарабильно $\Rightarrow \{\phi_n\}$ в H_A

$$u_o = \sum_{n=1}^{\infty} \left[u_0, \phi \right]_A \phi$$

$$[\phi_n, u_0] = l\phi_n$$

Если
$$\{\phi\} \in D_A \Rightarrow l\phi_n - (f,\phi_n) \Rightarrow u_o = \sum_{n=1}^{\infty} (f,\phi_n)\phi_n$$

$$u_k \sum_{n=1}^k (f, \phi_n) ||u_k - u_0||_A \to_{k \to \infty} 0$$

Если
$$\{\phi\} \in D_A \Rightarrow l\phi_n - (f,\phi_n) \Rightarrow u_o = \sum_{n=1}^{\infty} (f,\phi_n)\phi_n \Rightarrow = \sum_{n=1}^{\infty} (f,\phi_n)\phi_n$$

8.2 Эллиптические уравнения в бесконечной области

$$\Omega = \infty$$
 обл : $\partial \Omega$

$$-\sum_{j,k=1}^{m} \frac{\partial}{\partial x_j} (A_{kj}^{(P)} \frac{\partial u}{\partial x_k}) = f(P)$$

з Дирихле

$$U|_{\partial\Omega}=0; A_{ik} \text{ ord } A$$

$$D_A = \{ u \in C^2(\overline{\Omega}), u|_{\partial\Omega} = 0, b(P = 0), |P| >> 1 \}$$

A — положительно определен

 $HuD\exists u_0$ об реш с кон энергией

$$\exists g(P) : f(P = divg(P))$$

$$\int_{\Omega} |g(P)|^2 d\Omega < \infty$$

h(P)l обобщенная $\div g(P)$. Если $\forall \phi(P) \in c_0^\infty(\Omega)$

$$||u_0||_A^2 \leq C \int_{\Omega} (g(P))^2 d\Omega$$

Дост усл - я

$$m \ge 3 \int_{\Omega} |P|^2 f^2(P) d\Omega < \infty \Rightarrow ||u_0||_A^2 \le C^2 \int_{\Omega} |P|^2 f(\beta) d\Omega$$

$$m \geq 2 \int_{\Omega} f^2(P) d\Omega < \infty$$
 и $f(P) = 0 |P| \Rightarrow 1$

8.2.1 Эллиптическое уравнение в бесконечной области

$$\begin{split} H_{A_D} &= \{u \in H'(\Omega) \text{ и } u|_{\partial\Omega} = 0\} \\ H_{A_H} &= \{\exists 0 \delta \frac{\partial u}{\partial x} \in L_2(\Omega)\} \\ F(u) &= \int_{k,j=1}^m A_{jk} \frac{\partial n}{\partial x}, \frac{\partial n}{\partial x_n} d\Omega - 2lu \\ l_N n &= -\int_{\Omega} grubugd\Omega + \int_{\partial u} ug_{\overline{n}} dS \\ l_D u &= -\int_{\Omega} grubgd\Omega \\ lu &= \int_{\Omega} u(P) f(P) d\Omega \\ Au &= f \\ B_j u &= 0; j = 1, q \end{split}$$

знак принадлежит в обратную сторону

$$H_A$$

 $H > D_A$

При условии $u \in D_A$, но не обязятельно $u \in H_A$ естественные $B_j : u \in H_A$ главные гр условия для A.

$$\begin{split} &-\Delta u = f \\ &\frac{\partial u}{\partial n} + \partial u = 0, \sigma > 0 \\ &(-\Delta u, V)_H = -\int V \Delta u d\Omega \\ &\int grudugradV d\Omega - \int_{\partial \Omega} V \frac{\partial u}{\partial n} dS \\ &F(u, u) = ||u||_A^2 - 2(f, u) = \int_{\Omega} (grud^2 u - 2u) d\Omega + \int_{\partial \Omega} \partial u^2 dS \\ &u_0 = argminF; \\ &\frac{d}{dt} (F(u_0 + t\eta))|'_{t=0} = 0 \\ &-\int_{\Omega} \eta (\Delta u_0 + f) d\Omega + \int_{\partial \Omega} \eta (\frac{\partial u_0}{\partial n} + \partial u_0) dS = 0 \end{split}$$

Лекция 8

9.1 Метод Бубнова-Галеркина

$$Lu = f, D_2$$
 плотность в H

Опреатор L не обязательно положительный.

$$Bu = 0$$

 $\{\phi_n\}\in D_A$ координатные функции

Удовлетворяет (??)

$$u_n = \sum_{k=1}^n a_n \phi_k(P)$$

 a_k выбирается из условия, что $Au_n-f=\perp\phi_1,..,\phi_n$

$$\sum_{k=1}^{n} (L\phi_k, \phi) a_k = (f, \phi_j) j = \overline{1, n}$$

9.2 Применение метода Б-Г к интегральному уравнению Фредгольма

$$u(P) - \int_{\Omega} K(P,Q)u(Q)d\Omega f(P)p \in p \in \Omega$$

$$\int_{\Omega} \int_{\Omega} k^{2}(P,Q)d\Omega_{p}d\Omega_{;} : \Theta$$

$$\int f^{2}(P) < \infty \exists \text{ решение } u(P) \text{ в H}$$

$$H = L_{2}(\Omega)$$

$$\{\widetilde{\phi_{n}}\} \text{ ПОНС } ; (\phi_{i},\phi_{j}) = \delta_{ij}$$

$$u_{n} = \sum_{k=2}^{n} a_{k}\phi_{k}(P)$$

$$a_{m} - \sum_{k=1}^{n} \omega_{m}a_{k} = f_{m}$$

$$f_{m} = (f_{1},\phi_{m})$$

$$\Omega_{mk} = \int_{\Omega} \int_{\Omega} k(P,Q)\phi_{m}(P)\phi(Q)d\Omega_{P}d\Omega_{Q}$$

$$f_{n}(P) = \sum_{k=1}^{n} f_{k}\phi_{k}(P)$$

$$\lim_{n\to\infty} \int_{\Omega} \int_{\Omega} (K_{n}(P,Q) - K(P,Q))^{2}d\Omega_{P}d\Omega_{Q} = 0$$

$$\lim_{n\to\infty}\int_{\Omega} (f_n f^2) d\Omega$$

Вспомогательное уравнение

$$u_n(P) - \int_{\Omega} K_n(P,Q)u_n(Q)d\Omega = f_n$$

Из + ИУ при дос большом

$$u(n)$$
∃! реш и $||m_n - u||_H \to^{n \to \infty} 0$

$$u_n(P) = \sum_{k=1}^n A_k \phi_K(P)$$

$$A_k = \sum_{l=1}^{n} \omega_{kl} \int_{\Omega} u_l(Q) u_k(Q) d\Omega + (f, \phi_k)$$

$$A_k - \sum_{l=1}^n \omega A_k = f_k$$

9.3 Элементы теории приближение

 $H_A \supset H_N$ - конечномерное

∃ норм про-во Х: ∃ элемент наилучшего приближения

$$\forall u \in X : \rho(u, H_N) = \inf_{V \in H_N} \rho(u, V) X = C[a, b]$$

$$1,x,x^2,...,x^N,...$$

$$|C[a,b] \to P_{N-1}(x)$$

$$L_N(x) = \sum_{n=1}^n f(x_k) l_k(x)$$

 $\{l_k(x)\}$ — система фундаментальных многочленов

$$l_k(x) = \frac{(x - x^1)...(x - x_N)}{(x_k - x_1)...(x_k - x_N)} = \frac{\omega(x)}{(x - x_k)\omega'(x_K)}$$

$$l_k(x_m) = \delta_{km}; \omega(x) = {}_{k=1}^m (x = x_k)$$

$$||f - L_N(x)||_C \le (1 + ||P||)\rho_N(f, H_N)$$

$$||P|| = \max_{x \in [a,b]} \sum_{k=1}^{n} |l_k(x)| = \Lambda_N$$
 — построение Лебега

 Λ_N — неогр возростает при $n \to \infty$ для всего C[a,b]и сущ зависит от выбора сетки $x_1,...,x_N$

$$x_k = \frac{a+b}{2} + \frac{2}{b-a}t_k; t_K = -\cos\{\frac{\pi}{2N}(2k-1)\}$$

$$\Lambda_N \approx \frac{2}{\pi} lnN + 1 - q_N, 0 << q_N < \frac{1}{4}$$

$$Lu = -\frac{d}{dx}(p(x\frac{du}{dx}) + q(x)u)$$

$$Lu = f + \text{гр y } u(a) = u(b) + 0$$

$$u_n(x) = \sum_{k=1}^n a_k l_k(x); a_k = u_N(x_k)$$

$$\sum_{p=1}^n a_p(Ll_p, l_K) = (f, l_k) = \int_a^b f(x) ln(x) dx = f_K$$

$$l_k(x_m) = \delta_{km}, \omega(x) = \sum_{k=1}^m (x - x_k) \text{ СЛАУ с туравнений}$$

$$a_{kl} = (Ll_k, l_p) = \int_a^b p(x) \frac{dl_n(x)}{dx} \frac{dlp(x)}{dx} + \int_a^b a(x)q(x)l_k(x)f(x)dx$$

$$x_1 = a; x_N = b \Rightarrow$$

$$l_1(x_1) = 0; l_N(X_N) = 0$$

$$u_n(x) = \sum_{k=2}^{N-1} u(x_K) l_N(x)$$

$$\sum_{p=1}^{N-1} u_k a_{Kp} = f_k$$
$$p = w$$

Пример

$$p\equiv 1, a\equiv 0$$

$$f(x)=\{1,x\geq 0;-1,x<0\}$$

$$N=5; x_1=-1, x_2=-\frac{1}{2}, x_2=-\frac{1}{2}, x_3=0, x_4=\frac{1}{2}, x_5=1$$

$$l_2(x)=\frac{(x+1)x(x-\frac{1}{2})(x-1)}{\frac{1}{2}\cdot(-\frac{1}{2})-1-\frac{3}{2}}$$

$$l_3(x)=(x+1(x+\frac{1}{2})(x-\frac{1}{2})(x-\frac{1}{2}))$$

$$l_4(x)=\frac{(x+1(x+\frac{1}{2})x(x-1))}{\frac{3}{2}\cdot1\cdot\frac{1}{2}\cdot-\frac{1}{2}}$$

$$u_N-u_2l_2(x)+u_3l_3(x)+u_4l_4(x)$$

$$a_{kp}=\int_{-1}^1\frac{dl_k}{dx}\frac{dl_P}{dx}dx$$
 од гр у

период гр у

$$[a,b] = [0,2\pi]$$

$$u_N = \frac{a}{2} + \sum_{k=1} a_k cos(kx) + b_k sin(kx)$$

$$x_k = \frac{2\pi}{x} (k-1)a_0, a_k, b_k \text{ Упр.}$$

$$dim H_N - 2N - 1$$

$$a_k cos(kx) + b_k sin(kx)$$

$$\Lambda_N \frac{1}{\pi} lnN + \delta(2 - \frac{2}{\pi}), 0 < \delta < 1$$

9.4 Введение в теорию степенных сплайнов

$$[a, b]a = x_0 < x_1 < \dots < x_{N-1} < x_N = b, h_K = s_k - x_{k-1}k = \overline{0, N-1} h_k = x+1-x_k$$

Определение

Сплайн степени n, дефекта ν :

$$S_{n\nu} = P_n(x) = \sum_{k=0}^n a_p^{(k)} (x - x_k)^P = \sum_{p=0}^n b'_P (x_{k+1} - x)^P$$

$$(x - x_K)_t^P = \{(x - x_k)^P, x \ge x_k; 0, x \le x_k\}$$

Лекция

10.1 Степенные сплайны

$$\Omega = [a, b]$$
 Разбиение $a = x_0 < x_1 < ... < x_n = b$

$$h_I = x_i - x_{i-1}$$

$$h = max_{i=1.N}h_i$$

1. кусочнопостоянные сплайны

задается многочленами степени 0.

$$\phi_i(x) = 1, x \in (x_{i-1}, x_i); 0, x \not\in (x_{i-1}, x_i)$$

$$H_N = \lambda(\phi_1, ..., \phi_N)$$

(а) Система линейно независима

(b)
$$(\phi_i, \phi_i) = (h_i), i = j$$

Теорема:

$$\forall u \in W'_p(a,b) \exists V(x) \in H_N :$$

$$||u-v||_{L_2(a,b)} \le c \cdot h||u||_{W'_p}(a,b)$$

$$||u||_{W_p'}(a,b) = ||u||_{L_p(a,b)} + ||\frac{du}{dx}||_{L_p(a,b)}$$

Д

$$\begin{split} &= \int_{i=1}^{N} u_{i}\phi_{i}(x) \\ &u_{i} = \frac{1}{h_{i}} \int_{x_{i}}^{x_{i-1}} uu(\xi)d\xi \\ &||u - v||_{L_{p}(a,b)}^{p} = \int_{a}^{b} |u - v|^{p} dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}} |u(x) - \frac{1}{h_{i}} - \int_{x_{i-1}}^{x_{I}} u(\xi)d\xi = \\ &= \sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}} \left| \frac{1}{h_{i}} \right| \int_{x_{i-1}}^{x_{i}} (u(x) - u(\xi))d\xi|dx = \\ &\sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}} \left| \frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} d\xi \int_{\xi}^{x} \frac{du}{d\eta}d\eta|^{p} dx \le \\ &\leq \sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}} \left| \frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} d\xi \int_{x_{i-1}}^{x_{i}} \left| \frac{du}{d\eta}d\eta|^{p} dx = \\ &= h_{i} \left(\int_{x_{i-1}}^{x_{i}} \left(\frac{du}{d\eta}d\eta \right) \right)^{p} \end{split}$$

Неравенство Гелдера

$$\begin{split} &|\int_{\Omega} u(x)v(x)dx \leq (\int_{\Omega} |u(x)|^{q}dx)^{\frac{1}{q}} (\int_{\Omega} (u(x))^{P}dx)^{\frac{1}{p}} \\ &|\int_{x_{i-1}}^{x_{i}} 1 \cdot |\frac{du}{d\eta}| d\eta \leq (\int_{x_{i-1}}^{x_{i}} 1^{q}dx)^{\frac{1}{q}} (\int_{x_{i-1}}^{x_{i}} |\frac{du}{d\eta}|^{P}dx)^{\frac{1}{p}} \\ &(\int_{x_{i-1}}^{x_{i}} |\frac{du}{d\eta}| d\eta)^{P} \leq h_{i}^{\frac{p}{q}} \int_{x_{i-1}}^{x_{i}} |\frac{du}{d\eta}|^{P}d\eta \\ &||u-v||_{L_{P}(a,b)}^{P} \leq \sum_{i=1}^{N} h_{i}^{q+\frac{p}{q}} \int_{x_{i-1}}^{x_{i}} |\frac{du}{d\eta}|^{P}d\eta \leq h^{1+\frac{p}{q}} \int_{a}^{b} |\frac{du}{d\eta}d\eta \leq h^{P}||u||_{W'_{P}}^{P} \\ &|x_{(x)} - V^{(x)}| = |\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} (u(x) - u(\xi))s\xi| = |\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} d\xi \int_{\xi}^{x} \frac{du}{d\eta}d\eta| \leq \\ &\leq h_{i}sup_{(x_{i-1},x_{i})} \geq h||u||_{W'_{(a,b)}} \Rightarrow \\ &\Rightarrow ||u-v||_{L_{\infty}(a,b)} \leq h||u||_{W'_{\infty}(a,b)} \end{split}$$

Для устойчивости нам нужно чтобы матрица грамма $\widetilde{M}=((\phi_i,\phi_j))$ а с.н. были отр $a_1<|\Lambda|< a_2\ a_1,a_2$ не зав от N

$$wave\phi_i(x) = \frac{1}{\sqrt{h_i}} \{1, x \in (\phi_{i-1}, \phi_i); 0, x \mathcal{Z}()\}$$

$$\Omega \subset \mathcal{R}^m, \Omega = \bigcup_{i=1}^N \Omega_i$$

$$\max_{i=\overline{1,N}} \sup_{x_{i,i} < \Omega_i} |x - y| \le h$$

2. Кусочно линейные базисные функции

$$0 < x_0 < x_1 < \dots < x_N = b$$
 \forall узлы сетки $x_i \Rightarrow \phi_i(x) = \{\frac{x - x_{i-1}}{h_i}, x \in (x_{i-1}, x_i); \frac{x_{i_1} x_i}{h_{i+1}}, x \in (x_i, x_{i+1}); 0, x \not\in (x_{i-1}, x_{i+1})\}i = i$
$$\phi_0(x = \{\frac{x_1 - x}{h_1}, x \in (x_0, x_1)); 0, x \not\in (x_{N-1}, \dots, x_N)\}$$

$$(\phi_i, \phi_j)_{L_2(\Omega)} = \{\not=, |i - j| \le 1; 0, |i - j| > 1\}$$

$$\nu = \sum_{i=1}^{\phi_i(x)} \in H_N$$

Теорема

$$u \in W_2^2(\Omega) \Rightarrow \exists V \in H_N = W_2^{1,n}(\Omega)$$

$$||u - v||_{L_2(\Omega)} \leq c_1 h^2 ||u||_{W_2^2}(\Omega)$$

$$||u - v||_{W_2}(\Omega) \leq c_2 \cdot h||u||W_2^2(\Omega)$$

$$v(x) = \sum_{i=0}^N u(x_i)\psi_i(x)$$

$$\forall x \in (x_{i-1,x})$$

$$u(x) - v(x)$$

$$\frac{dv}{dx} = \frac{u(x_i) - u(x_{i-1})}{h_i} x \in (x_{i-1}, x_i)$$

$$u(x) - v(x) = \int_{x_{i-1}}^x \frac{d}{d\xi} (u - v) d\xi =$$

$$= \int_{x_{i-1}}^x \left[\frac{du(\xi)}{d\xi} - \frac{\phi(x_i) - u(x_{i-1})}{h_i} \right] d\xi$$

$$= \frac{1}{h_i} \int_{x_{i-1}}^{x_i} d\xi \int_{x_{i-1}}^{x_i} \left(\frac{du(\xi)}{d\xi} - \frac{du(\eta)}{du} \right) d\eta =$$

$$= \frac{1}{h_i} \int_{x_{i-1}}^{x_i} d\xi \int_{x_{[i-1]}}^{x_i} d\eta \int_{\eta}^{\xi} \frac{d^2u}{dt} (t) dt$$

$$\Rightarrow |u(x) - v(x)|^2 \leq h_i 4 \int_{x_{i-1}}^{x_i} \left| \frac{d^2u}{dt^2} \right|^2, x \in (x_{i-1}, x_i)$$

$$\sum_{i=1}^N (\cdot) ||u - v||_{L_2(\Omega)} \leq c_1 h^2 ||u||_{W_2^2}(\Omega)$$

Лекция

Получение нормы в 0v21

Теорема:

Если
$$n(x) \in W^2_{\infty}(\Omega)$$
, то $||u-v||_{L_{\infty}}(\Omega) \leq c_3 h^2 ||u||_{W^2_{\infty}}$

$$||u-v||_{W_{\infty}'} \le c_4 h||u||_{W_{\infty}^2}(\Omega)$$

Если
$$u \in c^2(\Omega)$$

$$||u - V||_{C(\omega)} \le c_5 h^2 ||u||_{c^2(\Omega)}$$

Докозательство - Упражнение

$$\phi_i(x) = \frac{1}{\sqrt(h)} \begin{cases} \frac{x - x_i}{h_i}, x \in (x_{i-1, x_i}) \\ \frac{x_{i+1-x}}{h_i + 1}, x \in (x_i, x_{i+1}) \\ 0, x \in (x_i - 1, x_i + 1) \end{cases}$$

$$V = \sum_{i=0}^{N} \sqrt{h}u(x_i)\phi_i(x)$$

Пример:

$$\begin{cases} -\frac{d}{dx}(p(x)\frac{du}{dx}) + q(x)u = f(x), x \in (a, b) \\ u(a) = 0; \frac{du}{dx}(a) = 0, f \in L_2(a, b) \end{cases}$$

$$H_A: ||u||_A = \sqrt{\int_a^b (p(\frac{du}{dx})^2 + qu^2)dx}$$

$$H_N - L_{in}(\phi_0, ...\phi_N);$$

11.1 Билинейные базисные функции в $\mathcal R$

Все рассматривается для прямоугольной области.

$$\Omega$$
 — прямоугольная в \mathcal{R}^{\in}

$$A_0 = x_0 < x_1 < \ldots < x_N < A_1, \Delta x_i = x_i - x_{i-1}, \Delta x = \max_{i=1,N} \Delta x_i$$

$$B_0 = y_0 < y_1 < \dots < y_N = B, \Delta y_1 = y_i - y_{i-1}, \Delta y = \max_{i=1,N} \Delta y_i$$

$$\phi_i(x) = \begin{cases} \frac{x_i - x_{i-1}}{\Delta x_i}, & x \in (x_{i-1}, x_i) \\ \frac{x_i + 1 - x}{\Delta x_{i+1}}, & x \in (x_i, x_{i+1}) \\ 0, & \mathcal{L}(x_{i-1}, x_i) \end{cases}$$

$$y_j = \{ u$$

$$Q_i j(x, y) = \phi_i(x)\phi_j(y)$$

$$y(x,y) = \sum_{i,i=1}^{N} a_{i,j} Q_{ij}(x,y), (x,y) \in \overline{\Omega}$$

$$L(Q_{ij}) = W_2^{1,h} \ni W'_2$$

Теорема

Если $uu \in C^2(\Omega) \Rightarrow \exists u^h \in W_2^{1,h}$

$$||u - u^h||_{L_2(\Omega)} \le c \cdot h^2 ||u||_{C^2\Omega}$$

$$||u - u^h||_{W'_2(\Omega)} \le c \cdot h||u||_{C^2(\Omega)}$$

$$\xi(x,y) = (x-x_l)\frac{\partial \xi}{\partial x}(x_l,y_k) + (uu-y_k)\frac{\partial \xi}{\partial y}(x_k,y_k) + \int_{x_l}^x dx' \int_{x_l}^{x'} \frac{\partial^2 x_l}{\partial x''^2}(x'',y_n)dx'' + \frac{\partial \xi}{\partial y}(x_l,y_k) + \frac{\partial$$

$$+ \int_{y_k}^{y} dy' \int_{y_k}^{y'} dy' \frac{\partial^2 \xi}{\partial y''^2}(x_l, y'') dy'' + \int_{x_l}^{x} \int_{y_k}^{y} \frac{\partial^2 \xi}{\partial x' \partial y'}(x', y') dx' dy'$$

...

$$(x - x_l) \frac{\partial \xi}{\partial x}(x_l, y_k) =$$

$$= \frac{x - x_l}{\Delta x_l H} \int_{x_{l+1}}^{x_l} dx' \int_{x'}^{x_l} \frac{\partial^2 u}{\partial x''^2}(x'', y_k) dx''$$

$$\int_{x_{l}}^{x} dx' \int_{x_{l}}^{x'} \frac{\partial^{2} \xi}{\partial x''} dx' \int_{y_{k}}^{y} \frac{\partial^{2} \xi}{\partial x' \partial y'} (x', y') dx' dy' =$$

$$= \frac{1}{\Delta x_{l+1}, \Delta y_{k+1}} \int_{x_{l}}^{x_{l+1}} dx'' \int_{y_{k}}^{y_{k+1}} dy'' \cdot \int_{x_{l}}^{x} dx' \int_{y_{k}}^{y} dy' (\frac{\partial u}{\partial x' \partial y'} (\frac{\partial u}{\partial x' \partial y'} (x', y') - \frac{\partial^{2} u}{\partial x'' \partial y''})) dy'$$

... здесь была получена первая оценка

ПОлучить вторую оценку это второе упражнение.

Более сильная оценка. Упр со *.

$$|x||u - y^h||_{C(\Omega)} \le C(\Delta x^2 + \Delta y^2) \sum_{i=2} ||D^{(1)}u_{\Omega}||_{C(\Omega)}$$

$$F(u) = \int_{\Omega} ((\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 + u^2 - 2uf) dx dy$$

$$H_A - \overset{0}{W}'_2(\Omega)$$

Теорема

$$\forall u \in W_2'(\Omega) \cup C^2(\Omega)$$

$$\exists u^h \in W_2^{1,h}$$
: оценить (T^1)

11.2 Построение проекционно сеточной схемы для ОДУ 2-го порядка

$$\begin{cases} -\frac{d}{dx}(p(x)\frac{du}{dx})\frac{du}{dx} + q(x)u(x) = f(x), f \in L_2(a, b) \\ u(a) = u(b) = 0 \\ Au = f, 0 < p_0 \le p(x) \le p, 0 \le (x) \le q \end{cases}$$

 $H=L_2(a,b)\Rightarrow A$ положительно определена $\Rightarrow \exists A^{-1}\Rightarrow !$ реш u(3)

$$||u||_{W_2^2}(\Omega) \le c||f||_H$$

$$H_A = \overset{0}{W}'_2(\Omega); c_0||u||_{W'_2} \le ||n||_A \le c_1||u||_{W'_2}$$

$$F(u)=[u,u]-2(u,f) o min$$
 на $W^{'}{}_2=H_A; u_i=rac{1}{\sqrt{h}}$ далее тоже самое что и раньше

$$u^{h}(x) = \sum_{i=1}^{N-1} a_{i}\phi_{i}(x)$$

$$\overset{0}{W}_{2}^{i,h} = \{v = \sum_{i=1}^{N-1} a_{i}\phi_{I}(x)\}$$

Минимизируем F(v) на $\overset{0}{W}_{2}^{1,h}$;

$$a_i$$
 из $\frac{\partial F}{\partial a}(u_n)=0, i=1, N-1$

$$\hat{A}a = f; \hat{A} = (A_{ij}) = ([[\phi_I, \phi_j]])$$

$$a = (a_i, ..., a_{N-1})^T$$

$$f = (f_1, ..., f_{N-1})^T$$

$$f_i = \int_{\Omega_i} f \phi_i dx$$

$$\phi_i = \int_{\Omega} \left(p \frac{d\phi_i}{dx} \frac{d\phi_i}{dx} + q\phi_i \phi_j \right)$$

$$\exists ! \text{ peii } (a_1, ..., a_{N-1})^T$$

кот однозначно определяется $u^h \leftarrow argminF(Vq)$

Упр Найти
$$A_{ij}pq$$

$$p_{i-\frac{1}{2}} = p(x)$$

$$x \in (x_{i-1}, x_i)i = \overline{1, N}$$

$$q_{i-\frac{1}{2}} = -...$$
 аналогично