# CS3SD3 - Assignment 3

### Hien Tu - tun1

#### December 5, 2021

## Question 1

The colour petri net is at the end of the file. The invariants of the petri net are:

- (i1)  $M(p_1) + M(p_2) + M(p_3) + M(p_4) + M(p_5) = ph1 + ph2 + ph3 + ph4 + ph5$
- (i2) LEFT(M(p<sub>3</sub>)) + LEFT(M(p<sub>4</sub>)) + RIGHT(M(p<sub>4</sub>)) + RIGHT(M(p<sub>5</sub>)) + M(p<sub>6</sub>) = f<sub>1</sub> + f<sub>2</sub> + f<sub>3</sub> + f<sub>4</sub> + f<sub>5</sub> where LEFT(X) =  $\sum_{x \in X}$  LEFT(x) and RIGHT(X) =  $\sum_{x \in X}$  RIGHT(x)

If  $M(p_4) \neq \emptyset$ , i.e.,  $phj \in M(p_4)$ , then (return\_left\_fork, x = phj) can be fired. If  $M(p_5) \neq \emptyset$ , i.e.,  $phj \in M(p_5)$ , then (return\_right\_fork\_and\_exit\_dining\_room, x = phj) can be fired.

- If  $M(p_4) = \emptyset$  and  $M(p_5) = \emptyset$ 
  - If  $M(p_3) \neq \emptyset$ 
    - Since we only have 4 tokens t, we know that only at most 4 philosophers (ph) can reach  $p_2$  and  $p_3$
    - Thus, only at most 4 forks (f) are not in p<sub>6</sub>
    - This means there is at least 1 fork in p<sub>6</sub>
    - So  $M(p_6) \neq \emptyset$
    - Since  $M(p_3) \neq \emptyset$  and  $M(p_6) \neq \emptyset$ , (take\_right\_fork, x = phi) where  $phi \in PH$ , can be fired.
  - If  $M(p_3) = \emptyset$ 
    - If  $M(p_2) \neq \emptyset$ 
      - \* Since  $M(p_3)=\emptyset$ ,  $M(p_4)=\emptyset$  and  $M(p_5)=\emptyset$ , from (i2), we know that  $M(p_6)=f_1+f_2+f_3+f_4+f_5$
      - \* This means  $M(p_6) \neq \emptyset$
      - \* Since  $M(p_2) \neq \emptyset$  and  $M(p_6) \neq \emptyset$ , (take\_left\_fork, x = phi) where  $phi \in PH$ , can be fired

```
- \text{ If } M(p_2) = \emptyset
```

- \* Then we know  $M(p_2)=\emptyset,\,M(p_3)=\emptyset,\,M(p_4)=\emptyset,\,M(p_5)=\emptyset$
- \* Thus, from (i1), we have M(p\_1) = ph1 + ph2 + ph3 + ph4 + ph5 and M(p\_7)  $\neq \emptyset$
- \* This case happens right at the start of the process (at the initial marking) and so, (enter\_dining\_room,  $\mathbf{x} = \mathbf{ph}i$ ) where  $\mathbf{ph}i \in \mathbf{PH}$ , can be fired.

Therefore, in any case, at least one state will be able to fire.

### Colour Petri Nets Solution to Dining Philosophers with Butler.

 $\begin{array}{l} colour\ PH=with\ ph1\mid ph2\mid ph3\mid ph4\mid ph\\ colour\ FORK=with\ f1\mid f2\mid f3\mid f4\mid f5\\ colour\ TOKENS=with\ t \end{array}$ 

var x: PH

var i: TOKENS

fun LF x = case of ph1  $\Rightarrow$  f2 | ph2  $\Rightarrow$  f3 | ph3  $\Rightarrow$  f4 | ph4  $\Rightarrow$  f5 | ph5  $\Rightarrow$  f1 fun RF x = case of ph1  $\Rightarrow$  f1 | ph2  $\Rightarrow$  f2 | ph3  $\Rightarrow$  f3 | ph4  $\Rightarrow$  f4 | ph5  $\Rightarrow$  f5



Interpretation of places:

p<sub>1</sub> - thinking room

p<sub>2</sub> - philosophers without forks in the dining room

p<sub>3</sub> - philosophers with left forks in the dining room

p<sub>4</sub> - philosophers that are eating

p<sub>5</sub> - philosophers that finished eating and still with right forks in the dining room

p<sub>6</sub> - unused forks

p<sub>7</sub> - butler or counter