Application of R for Finance - Assignment 2

Stocks Return Analysis and Fama-French 3 Model

Group 30

2025 - 10 - 17

Table of contents

Data P	reparation	3
Req	uired libraries	3
Dat	a Frame	3
Part I -	· Q&A	5
	Q1 - Unique tickers	5
	Q2 - Unique companies	5
	Q3 - Top 5 Mean Trading Volume Companies	5
	Q4 - Top 3 Total Trading Volume Exchanges	6
	Q5 - Visualisation of Top 3 Total Trading Volume Exchanges	6
	Q6 - Companies with More Than One Ticker	7
	Q7 - Ticker with the Largest Positive Mean Return	8
	Q8 - Company with the Largest Positive Mean Return	8
	Q9 - Industry Represented by the Most Companies	9
Part II	- Extended Analysis	9
	Q1 - Weekly Returns	10
	Q2 - Decile Classification	10
	Q3 - Top Ticker in each Decile Group	11
	Q4 - Ticker Selection from 60% Decile Group	11
	Q5 - Autocorrelation Anlysis	12
Part III	- Fama-French 3 Factor Model	13
Analysi	s Report	16
List o	f Figures	
$\frac{1}{2}$	Top 3 Exchanges by Total Trading Volume	7 13

Data Preparation

Required libraries

Load the following libraries for data analysis and visualisation.

```
library(dplyr)
library(lubridate)
library(ggplot2)
```

Data Frame

Load the dataset ${\bf sp500_2023_2024.csv}$ into a data frame.

This dataset contains company identifiers, trading information, and classification codes. List below summarises the main variables.

```
# load the data
data <- read.csv("sp500_2023_2024.csv")

# remove any rows with NA values in the prcod column
data <- data %>%
    filter(!is.na(prcod))

# inspect the strucutre
head(data)
```

A data.frame: 6×11

```
data-
       tic
              date
                      conm
                             chg
                                    \operatorname{sic}
                                            cshtrd prccd
                                                          prchd prcld
                                                                         prcod
       <chr> <chr> <chr>
                             <int>
                                    <int>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1
       PNW
              03/01/2 P23 N-
                             11
                                    4911
                                            144253474.63
                                                          76.412573.38076.25
                                                                                1075
                     NA-
                      CLE
                      WEST
                      CAP-
                     ITAL
                      CORP
```

		data-		ex-							
	tic	date	conm	chg	sic		-	prchd	-	-	gvkey
	<chr></chr>	<chr></chr>	<chr></chr>	<:nt>	<:nt>	<dbl></dbl>	<dbl></dbl>	<ldb>></ldb>	<ldb>></ldb>	<dbl></dbl>	<:nt>
2	PNW	04/01/2		11	4911	954218	75.39	76.0950	74.630	75.10	1075
			NA-								
			CLE								
			WEST								
			CAP- ITAL								
			CORP								
3	PNW	05/01/2		11	4911	994775	73.65	75.0950	73 305	74.88	1075
0	1 1 1 1 1 1	00/01/	NA-	11	4911	334110	15.00	10.0500	10.000	14.00	1010
			CLE								
			WEST								
			CAP-								
			ITAL								
			CORP								
4	PNW	06/01/2		11	4911	729808	75.46	76.0200	74.480	74.49	1075
			NA-								
			CLE								
			WEST CAP-								
			ITAL								
			CORP								
5	PNW	09/01/2		11	4911	656127	75.55	76.4800	75.240	75.24	1075
		, ,	NA-								
			CLE								
			WEST								
			CAP-								
			ITAL								
C	DAM	10/01/	CORP		4011	700054	7F 6F	75 0050	74.000	75 01	1075
6	PNW	10/01/2	2013N- NA-	11	4911	763254	75.65	75.6950	74.880	75.31	1075
			CLE								
			WEST								
			CAP-								
			ITAL								
			CORP								

Part I - Q&A

In the first section, we interrogate the data following the Assignment Specification.

Q1 - Unique tickers

```
# indentify the amount of unique tickers
length(unique(data$tic))
print(paste("There are", length(unique(data$tic)), "unique tickers"))
502
[1] "There are 502 unique tickers"
```

Q2 - Unique companies

```
# indentify the amount of unique companies
length(unique(data$conm))
print(paste("There are", length(unique(data$conm)), "unique companies"))

499
[1] "There are 499 unique companies"
```

Q3 - Top 5 Mean Trading Volume Companies

```
# indentify the top 5 companies by largest mean trading volume
top_5_volume <- data %>%
  group_by(conm) %>%
  summarize(mean_volume = mean(cshtrd, na.rm = TRUE)) %>%
  arrange(desc(mean_volume)) %>%
  slice_head(n = 5)

# display in a table
top_5_volume
```

A tibble: 5×2

conm <chr></chr>	mean_volume <dbl></dbl>
TESLA INC	115314383
NVIDIA CORP	113131835
PALANTIR TECHNOLOG INC	60056251
APPLE INC	57736403
ADVANCED MICRO DEVICES	57143415

Q4 - Top 3 Total Trading Volume Exchanges

```
# indentify the top 3 exchanges by total largest total trading volume
top_3_exchanges <- data %>%
  group_by(exchg) %>%
  summarize(total_volume = sum(cshtrd, na.rm = TRUE)) %>%
  arrange(desc(total_volume)) %>%
  slice_head(n = 3)

# display in a table
top_3_exchanges
```

A tibble: 3×2

exchg <int></int>	total_volume <dbl></dbl>
11	681415756062
14	570830885382
21	385399362

Q5 - Visualisation of Top 3 Total Trading Volume Exchanges

```
# display in a bar plot
ggplot(top_3_exchanges, aes(x = as.factor(exchg), y = total_volume)) +
  geom_col(width = 0.75, fill = "#0076AA", color = "black") +
  geom_text(aes(label = scales::comma(total_volume)), vjust = -0.4, size = 3.5) +
  labs(x = "Stock Exchange Code", y = "Total Trading Volume\n(Units)") +
  theme_minimal(base_size = 13) +
  theme(panel.border = element_rect(color = "black", fill = NA, size = 1))
```


Figure 1: Top 3 Exchanges by Total Trading Volume

Q6 - Companies with More Than One Ticker

```
# indentify companies have more than one ticker
ticker_counts <- data %>%
  group_by(conm) %>%
  summarize(ticker_count = n_distinct(tic)) %>%
  filter(ticker_count > 1)

# display the result
ticker_counts
```

A tibble: 3×2

conm <chr></chr>	ticker_count <int></int>
ALPHABET INC	2
FOX CORP	2
NEWS CORP	2

Q7 - Ticker with the Largest Positive Mean Return

```
# indentify the ticker with the largest positive mean return (simple daily return)
mean_returns <- data %>%
    group_by(tic) %>%
    mutate(ret = (prccd - lag(prccd)) / lag(prccd)) %>%
    summarize(mean_return = mean(ret, na.rm = TRUE)) %>%
    arrange(desc(mean_return)) %>%
    slice_head(n = 1)

# display the resuly
mean_returns
```

A tibble: 1×2

tic <chr></chr>	$mean_return < dbl >$		
PLTR	0.005785119		

Q8 - Company with the Largest Positive Mean Return

```
# indentify the company with the largest positive mean return (simple daily return)
mean_returns_company <- data %>%
   group_by(conm) %>%
   mutate(ret = (prccd - lag(prccd)) / lag(prccd)) %>%
   summarize(mean_return = mean(ret, na.rm = TRUE)) %>%
   arrange(desc(mean_return)) %>%
   slice_head(n = 1)

# display the result
mean_returns_company
```

A tibble: 1×2

conm <chr></chr>	${\rm mean_return} < {\rm dbl} >$
PALANTIR TECHNOLOG INC	0.005785119

Q9 - Industry Represented by the Most Companies

```
# indentify the industry is represented by the most companies
industry_counts <- data %>%
    group_by(sic) %>%
    summarize(company_count = n_distinct(conm)) %>%
    arrange(desc(company_count)) %>%
    slice_head(n = 1)

# display the result
industry_counts
```

A tibble: 1×2

sic < int >	company_count <int></int>
6798	28

Part II - Extended Analysis

In the second section, we first calculate the weekly returns with following formulas to carry out the extended analysis. After categorising the data into decile groups, a specific security is picked for further analysis.

$$R_{\text{weekly}} = \frac{P_t - P_{t-1}}{P_{t-1}}$$

where:

- P_t = Closing price at the end of the current week
- $P_{t-1} =$ Closing price at the end of the previous week

Q1 - Weekly Returns

```
# calculate the simple weekly returns
weekly_returns <- data %>%
  mutate(datadate = as.Date(datadate, format = "%d/%m/%Y")) %>%
  group_by(tic) %>%
  arrange(datadate) %>%
  mutate(Week = floor_date(datadate, unit = "week")) %>%
  group_by(tic, Week) %>%
  summarise(Weekly_Close = last(prccd)) %>%
  arrange(tic, Week) %>%
  mutate(Weekly_Return = (Weekly_Close / lag(Weekly_Close)) - 1) %>%
  ungroup()
```

Q2 - Decile Classification

```
# categorise data into decile groups, labelled 0%, 10%, 20%, ...
quantile_result <- weekly_returns %>%
  mutate(
    deciles = cut(
      Weekly_Return,
      breaks = quantile(
        Weekly_Return,
        probs = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),
        type = 5,
        na.rm = TRUE
      ),
      include.lowest = TRUE,
      labels = c("0%", "10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%")
    )
  )
# display the result
head(quantile_result)
```

A tibble: 6×5

tic <chr></chr>	Week <date></date>	Weekly_Close <dbl></dbl>	Weekly_Return <dbl></dbl>	deciles <fct></fct>
A	2023-01-01	147.67	NA	NA
A	2023-01-08	156.92	0.062639670	90%
A	2023-01-15	155.92	-0.006372674	30%
A	2023-01-22	155.69	-0.001475115	40%
A	2023-01-29	154.55	-0.007322243	30%
A	2023-02-05	152.55	-0.012940796	30%

Q3 - Top Ticker in each Decile Group

```
# identify the top ticker in each decile group
top_tickers <- quantile_result %>%
    group_by(deciles) %>%
    filter(Weekly_Return == max(Weekly_Return)) %>%
    select(deciles, tic, Weekly_Return) %>%
    arrange(deciles)

# display the result in a table
top_tickers
```

A grouped_df: 11×3

deciles <fct></fct>	tic <chr></chr>	Weekly_Return <dbl></dbl>
0%	DVN	-0.041509434
10%	FDS	-0.024781950
20%	CNC	-0.014084507
20%	TRMB	-0.014084507
30%	NWS	-0.005443235
40%	CDNS	0.002281542
50%	AIG	0.010124311
60%	HLT	0.018477517
70%	RL	0.029158383
80%	SJM	0.046984764
90%	SMCI	0.784176534

Q4 - Ticker Selection from 60% Decile Group

Here, we select the **top ticker** from 60% decile group for the following analysis.

```
# display the top ticker in 60% decile group
top_60_ticker <- top_tickers %>%
  filter(deciles == "60%")
print(top_60_ticker$tic)
```

[1] "HLT"

Q5 - Autocorrelation Anlysis

```
# plot the autocorrelation function for HLT's entire set of weekly returns
wdc_data <- weekly_returns %>%
   filter(tic == "HLT") %>%
   na.omit()

# Autocorrelate
acf(wdc_data$Weekly_Return, main="")
```

Figure 2: Autocorrelation HLT Weekly Returns

Part III - Fama-French 3 Factor Model

In the last section, we first load and clean the the **fama_french_weekly.csv** to provide the weekly Fama-French 3 factors for modelling. Next, the selected ticker **HLT** is fitted the Fama-French 3 factor model.

```
# load and clean the data
fama_french_data <- read.csv("fama_french_weekly.csv", skip=4)
fama_french_data$datadate <- as.Date(as.character(fama_french_data$X), format="%Y%m%d")
fama_french_data <- select(fama_french_data, datadate, Mkt.RF, SMB, HML, RF)

# for each column except datadate, divided by 100 to convert to decimal format
fama_french_data <- fama_french_data %>%
    mutate(across(-datadate, ~ . / 100))
```

```
fama_french_data %>%
    filter(datadate >= as.Date("2023-01-01")) %>%
    slice(1)
rearrange_wdc_data <- data %>%
  filter(tic == "HLT") %>%
  mutate(datadate = as.Date(datadate, format = "%d/%m/%Y")) %>%
  arrange(datadate)
# calculate the weekly returns for WDC and make sure the datadate is aligned with Fama-Frenc
rearrange_wdc_data <- rearrange_wdc_data %>%
  mutate(Week = floor_date(datadate, unit = "week", week_start = 5)) %>%
  group_by(Week) %>%
 summarise(Weekly_Close = last(prccd)) %>%
  arrange(Week) %>%
 mutate(Weekly_Return = (Weekly_Close / lag(Weekly_Close)) - 1) %%
 na.omit()
# display the data
head(rearrange_wdc_data)
```

A data.frame: 1×5

datadate				
<date $>$	Mkt.RF < dbl >	SMB < dbl >	$\mathrm{HML} < \mathrm{dbl} >$	RF < dbl >
2023-01-06	0.0137	0.0027	0.0125	9e-04

A tibble: 6×3

Week <date></date>	${\it Weekly_Close} < {\it dbl} >$	${\it Weekly_Return} < {\it dbl} >$
2023-01-06	135.00	0.0643330180
2023-01-13	135.06	0.0004444444
2023-01-20	144.06	0.0666370502
2023-01-27	147.09	0.0210329030
2023-02-03	150.80	0.0252226528
2023-02-10	148.28	-0.0167108753

```
# merge the data
merged_data <- merge(rearrange_wdc_data, fama_french_data, by.x = "Week", by.y = "datadate")</pre>
```

display the merged data head(merged_data)

A data.frame: 6×7

Weekly_Re-							
	Week <date></date>	Weekly_C <dbl></dbl>	Clotsærn <dbl></dbl>	Mkt.RF <dbl></dbl>	SMB <dbl></dbl>	HML <dbl></dbl>	RF $ $
1	2023-01- 06	135.00	0.0643330	018 0 .0137	0.0027	0.0125	9e-04
2	2023-01- 13	135.06	0.0004444	1440.0302	0.0337	-0.0324	9e-04
3	2023-01- 20	144.06	0.0666370	05020.0069	0.0012	-0.0115	9e-04
4	2023-01- 27	147.09	0.0210329	903 0 .0257	-0.0009	-0.0122	9e-04
5	2023-02- 03	150.80	0.0252226	652 8 .0181	0.0354	-0.0199	9e-04
6	2023-02- 10	148.28	- 0.0167108	-0.0149 8753	-0.0320	0.0266	9e-04

```
# calculate excess returns
merged_data <- merged_data %>%
mutate(Excess_Return = Weekly_Return - Mkt.RF)
```

```
# model fitting
model <- lm(Excess_Return ~ Mkt.RF + SMB + HML, data = merged_data)
summary(model)</pre>
```

Call:

lm(formula = Excess_Return ~ Mkt.RF + SMB + HML, data = merged_data)

Residuals:

Min 1Q Median 3Q Max -0.061769 -0.021092 0.001118 0.017433 0.063231

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.006137 0.002632 2.332 0.0217 *

```
Mkt.RF -0.760352 0.152090 -4.999 2.52e-06 ***

SMB -0.123988 0.172396 -0.719 0.4737

HML 0.080787 0.153443 0.526 0.5997

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.02573 on 98 degrees of freedom Multiple R-squared: 0.2763, Adjusted R-squared: 0.2541 F-statistic: 12.47 on 3 and 98 DF, p-value: 5.642e-07

Analysis Report

This report applied R-based analysis to stock returns and Fama-French 3 factor model.