

Data Lifecycle and DMP

Fundamentals of Data Management

Includes material from **DataONE Education Module: Data Management Planning**

DataONE. Retrieved Jan, 2014. http://www.dataone.org/sites/all/documents/ L03 DataManagementPlanning.pptx

> Dr Rob Baxter Software Development Group Manager, EPCC r.baxter@epcc.ed.ac.uk

+44 131 651 3579 | +44 7971 437749

Course outline

- What do we mean by "data lifecycle"?
- Why is this a useful concept?
- What is "data management planning"?
- What is it used for?
- How does it fit within the data lifecycle?

- After completing this lesson, you should be able to:
 - Describe the research data lifecycle
 - Understand the importance of preparing a data management plan
 - Identify the key components of a DMP

What do we mean by data lifecycle?

- It's a way of thinking about the different stages through which a digital object (file etc.) passes from creation to storage (or deletion)
- At each stage the DO can be regarded slightly differently, or used in a slightly different way
 - this makes you think about how to manage it accordingly
- The data lifecycle maps well onto a typical research experiment timeline
 - create or measure something
 - analyse and study it
 - file it away somewhere ready for next time

Data lifecycle models

Data lifecycle components

Create

Create

- Observe, measure, generate by simulation
- This is your raw data, part of your "laboratory notebook"
- Organise it from the start choose standard formats (see later)

Assure

Assure

- Validate, calibrate
- Checking the correctness of the methods used to create data
 - In simulation terms, testing your code properly!
- Perhaps recording the calibration methods used
 - If raw data need to be corrected for instrument bias before they can be interpreted correctly, you need to record this!

Data lifecycle components

Describe

Describe

- "SAM1 = the level of expression of gene..."
- Use meaningful variable names (not SAM1, SAM2...)
- Record units (metres, millimetres, parsecs?)
- Record information needed to interpret the data in 1, 10, 100 years
- Use metadata standards! (q.v.)

Preserve (store long-term)

Preserve

- If data get this far, they are becoming part of the scientific record
- Store them carefully. Think about
 - Backup and replication
 - Accessibility
 - Keeping data and metadata together

Data lifecycle components

Discover

Discover

- If you can't find data, they may as well not exist
- How should you make your data discoverable by others?
- How can you find other researchers' data that might be useful?
- Description and accessibility are key

Combine

Combine

- Combining, integrating, merging data to create new insights
- Good metadata are essential, as are good tools
- And an appreciation of licensing conditions

Process

Process

- Applying computer software to create "new data from old"
- Analysis of digital sensor data; simulation input; re-analysis of integrated third-party data

Data management planning

First part of the lifecycle

Plan

- Lays down plans for all the rest
 - What data will I create?
 - How will I describe them?
 - How will I store them?
 - Will I publish and share them? If not, why not?
 - How will others find them?
- What is a Data Management Plan?
 - A formal document that captures the above
 - Outlines what you will do with your data during and after you complete your research
 - Ensures your data are safe for the present and the future

Why prepare a DMP? (1)

- Save time
 - Less reorganization later
- Increase research efficiency
 - Ensures you and others will be able to understand and use data in future
- And, increasingly, you have to!
 - Research funding agencies now ask for DMPs for most proposals

CC image by Cathdew on FI

Why prepare a DMP? (2)

- Easier to preserve your data
- Prevents duplication of effort
- Can lead to new, unanticipated discoveries
- Increases visibility of research
- Makes research and data more relevant

And did we mention it's a funding agency requirement?

Components of a general DMP

- 1. Information about data & data formats
- 2. Metadata content and format
- 3. Policies for access, sharing and re-use
- 4. Long-term storage and data management
- 5. Budget

1. Information about data & data format

1.1 Description of data to be produced

- Experimental
- Observational
- Raw or derived
- Physical collections
- Models and their outputs
- Simulation outputs
- Curriculum materials
- Software
- Images
- Etc...

1. Information about data & data formats

- 1.2 How data will be created or acquired
 - When?
 - Where?

- 1.3 How data will be processed
 - Software used
 - Algorithms
 - Workflows

1. Information about data & data formats

1.4 File formats

- Justification
- Naming conventions
- 1.5 Quality assurance & control during sample collection, analysis, and processing

1. Information about data & data formats

1.6 Existing data

- If existing data are used, what are their origins?
- Will your data be combined with existing data?
- What is the relationship between your data and existing data?

1.7 How data will be managed in short-term

- Version control
- Backing up
- Security & protection
- Who will be responsible?

2. Metadata content & format

A quick definition of metadata:

- "Data about data"
- Documentation and reporting of data
- Contextual details: Critical information about the dataset
- Information important for using the data
- Descriptions of temporal and spatial details, instruments, parameters, units, files, etc.

2. Metadata content & format

- 2.1 What metadata are needed
 - Any details that make data meaningful
- 2.2 How metadata will be created and/or captured
 - Lab notebooks?
 - Simulation parameters?
 - Auto-saved on instrument?
- 2.3 What format will be used for the metadata
 - Standards for community
 - Justification for format chosen
- See later lectures for more detail on metadata standards

3. Policies for access, sharing, reuse

3.1 Obligations for sharing

- Funding agency
- Institution
- Other organization
- Legal

3.2 Details of data sharing

- How long?
- When?
- How access can be gained?
- Data creator/collector rights

3. Policies for access, sharing, reuse

3.4 Intellectual property & copyright issues

- Who owns the copyright?
- Institutional policies
- Funding agency policies
- Embargos for political/commercial reasons

3.5 Intended future uses/users for data

3.6 Citation

- How should data be cited when used?
- Persistent citation?

4. Long-term storage & data management

epcc

- 4.1 What data will be preserved
- 4.2 Where will it be archived
 - Most appropriate archive for data
 - Community standards
- 3.6 Data transformations/formats needed
 - Consider archive policies
- 4.4 Who will be responsible
 - Contact person for archive

5. Budget

5.1 Anticipated costs

- Time for data preparation & documentation
- Hardware/software for data preparation & documentation
- Personnel
- Archive costs

5.2 How costs will be paid

- Up front?
- Over time?

Tools for Creating Data Management Plans

dmponline.dcc.ac.uk

IISC

dmp.cdlib.org

Summary

The data lifecycle is a useful way to think about your research data Create

Process

- Like anything else, spending a little thought in advance planning data management will pay off later
- Data management & DMP are all about keeping a tidy lab notebook in the 21st Century

Discover Describe Preserve

Acknowledgements

- Includes material from
 - DataONE Education Module: Data Management Planning.
 - DataONE. Retrieved Jan, 2014.
 - http://www.dataone.org/sites/all/documents/ L03_DataManagementPlanning.pptx

