Independence of two random variables

Discrete Case:

Let X and Y be two discrete random variables with joint distribution p(x, y). X and Y are said to be independent if, for each pair of values x and y,

$$P(X = x, Y = y) = P(X = x) P(Y = y).$$

That is, X and Y are said to be independent if

$$p(x,y) = p_X(x) p_Y(y)$$

for each pair of values x and y.

Example

Let the joint pmf of *X* and *Y* be as follows. Are *X* and *Y* independent?

x	у			
	0	1	2	3
0	0.24	0.18	0.12	0.06
1	0.12	0.09	0.06	0.03
2	0.04	0.03	0.02	0.01

Solution

x	у				
	0	1	2	3	$p_X(x)$
0	0.24	0.18	0.12	0.06	0.60
1	0.12	0.09	0.06	0.03	0.30
2	0.04	0.03	0.02	0.01	0.10
$p_Y(y)$	0.40	0.30	0.20	0.10	1.00

$$p_X(0) p_Y(0) = 0.60 \times 0.40 = 0.24 = p(0,0)$$

It is true for each other pair of values of X and Y.

Therefore, *X* and *Y* are independent.

Example

Let the joint pmf of *X* and *Y* be as follows. Are *X* and *Y* independent?

x	у			
	0	1	2	3
0	0.24	0.18	0.12	0.06
1	0.12	0.09	0.07	0.02
2	0.04	0.03	0.01	0.02

Solution

x	у				
	0	1	2	3	$p_X(x)$
0	0.24	0.18	0.12	0.06	0.60
1	0.12	0.09	0.07	0.02	0.30
2	0.04	0.03	0.01	0.02	0.10
$p_Y(y)$	0.40	0.30	0.20	0.10	1.00

$$p_X(1) p_Y(2) = 0.30 \times 0.20 = 0.06 \neq p(1, 2)$$

Therefore, *X* and *Y* are NOT independent.

Continuous Case:

Let X and Y be two continuous random variables. X and Y are independent if

$$f(x,y) = f_X(x) f_Y(y)$$

for all x and y.

Example:

The joint pdf of *X* and *Y* is given below. Are *X* and *Y* independent?

$$f(x,y) = 4xy$$
, $0 < x < 1$, $0 < y < 1$

Solution:

$$f_X(x)$$
= $\int_0^1 4xy \, dy$
= $2x$, $0 < x < 1$
 $f_Y(y)$
= $\int_0^1 4xy \, dx$
= $2y$, $0 < y < 1$
 $f_X(x) f_Y(y) = 2x 2y = 4xy = f(x, y)$

Therefore, X and Y are independent.

Example

The joint pdf of *X* and *Y* is given below. Are *X* and *Y* independent?

$$f(x, y) = x + y$$
, $0 < x < 1$, $0 < y < 1$.

Solution

$$f_X(x)$$

$$= \int_0^1 (x+y) \, dy$$

$$= x + 0.5, \ 0 < x < 1$$

$$f_Y(y)$$

$$= \int_0^1 (x+y) \, dx$$

$$= y + 0.5, \ 0 < y < 1$$

$$f_X(x) f_Y(y) = (x + 0.5)(y + 0.5) \neq f(x,y)$$

Therefore, *X* and *Y* are NOT independent.