Genomic variants

Bioinformatics Applications (PLPTH813)

Sanzhen Liu

3/4/2021

Midterm

10:30am – 1pm on 3/11

Text editor
Unix
NGS technology
R
NGS tools
alignment (principle and Blast)
alignment II

Homework 4 will help you answer exam questions

review

Alignment algorithms

Outline

- Overview of genomic variants
- Data for variant discovery
- Bioinformatics of variant discovery
- the methods for variant (SNP) validation

Genomic variants (ploymorphisms)

- 3. genomic structural variation
- copy number variation (presence-absence variation)
- other re-arrangements

Genomic variants - SNPs

- SNP stands for single nucleotide polymorphism.
- Frequencies of SNPs are depended on species. For example, millions of SNPs have been discovered in human.
- Most SNPs are bi-allelic. (mutation rate per site is about 10⁻⁸)
- Most have no functional effects but some could have important phenotypic consequences.

Applications of SNPs

- Genetic markers to map the genetic controlling of traits (quality traits, quantitative traits, gene expression, etc)
- 2. Genetic markers to construct genetic maps
- Markers to construct phylogenetic trees

To monitor pathogen evolution

Next-Generation Sequencing to generate data for variant discovery

GATCTGCGTCATACGGAAT GATCTGCGTGATACGGAAT GATCTGCGTCATACGGAAT GATCTGCGTGATACGGAAT GATCTGCGTGATACGGAAT GATCTGCGTGATACGGAAT GATCTGCGTCATACGGAAT GATCTGCGTCATACGGAAT GATCTGCGTGATACGGAAT GATCTGCGTCATACGGAAT

----C/G-----

Heterozygous call (diploid genome)

Approaches for data generation

- Whole genome sequencing (WGS): high genome coverage but costly for large genomes
- Exome-capture sequencing: target on genic regions but still expensive to perform large number of samples
- RNA sequencing (RNA-Seq): obtain data on genic regions and provide expression information
- Genotyping-By-Sequencing (GBS): cost-efficient and high-throughput approach

Alignment-based SNP discovery

```
...GATCTGCGTCATACGGAAT... (reference)
 GATCTGCGTGATACGGAAT
 GATCTGCGTCATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTGATACGGAAT
                          reads
 GATCTGCGTCATACGGAAT
 GATCTGCGTCATACGGAAT
 GATCTGCGTGATACGGAAT
 GATCTGCGTCATACGGAAT
-----C/G-----
```

Alignment-based SNP discovery, cont.

General procedure

- Reads cleanup (adaptor, quality trimming, e.g., trimmomatic)
- Reads aligned to the reference genome with aligners
 - 1. BWA, Bowtie (DNA-Seq reads)
 - 2. HISAT2, STAR, GSNAP, Tophat (RNA-Seq reads)
- Post-alignment filtering and convert SAM (alignment file) to BAM
- SNP calling with software packages: Samtools, GATK, VarScan2
- Use population information or some criteria to filter SNP sets

an example of the alignment of a RNA-Seq read using GSNAP

Interpretation of the BWA alignment

SAM output:

CIGAR: 64M1D20M

NM: edit distance

edit distance is a way to quantify the dissimilarity of two strings (e.g., words) by counting the minimum number of edits (substitution, insertion, and deletion) required to transform one string into the other.

```
fact -> fit (2)
AACCT -> AAACT (1)
```

edit distance

- AACCT -> ACCTA (?)
- AATCCT -> ATCAT (?)

Polymorphism based on Alignment + reference genome

SAM output (BWA):

mapping position and CIGAR determine the alignment

Alignment-based SNP discovery: GATK (1)

- The Genome Analysis Toolkit (GATK) is a software package developed at the Broad Institute to primarily focus on variant discovery and genotyping.
- Input data: BAM files and reference genome
- Required tools: Picard and Samtools
- Code example:

```
java -jar GenomeAnalysisTK.jar \
   -T UnifiedGenotyper \
   -R your_reference \
   -I your_bam \
   -glm BOTH
### BOTH = SNP + INDEL
Version 3.7
```

GATK (2)

isolate 1

VCF (Variant Call Format) output

https://samtools.github.io/hts-specs/VCFv4.2.pdf

									.	<u> </u>
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	DH10B	MG1655
ref1	89089		С	А	782.76			GT:AD:DP:GQ:MLPSAC:MLPSAF:PL	1:0,18:18:99:1:1.00:781,0	0:27,0:27:99:0:0.00:0,1149
ref1	89103		G	С	690.76			GT:AD:DP:GQ:MLPSAC:MLPSAF:PL	1:0,16:16:99:1:1.00:689,0	0:29,0:29:99:0:0.00:0,1253
ref1	89143		Α	G	448.76			GT:AD:DP:GQ:MLPSAC:MLPSAF:PL	1:0,11:11:99:1:1.00:447,0	0:27,0:27:99:0:0.00:0,1165
ref1	89145		G	Т Т	405.76		l	GT:AD:DP:GQ:MLPSAC:MLPSAF:PL	1:0.10:10:99:1:1.00:404.0	0:28.0:28:99:0:0.00:0.1215

GT: AD : DP: GQ: MLPSAC: MLPSAF: PL

1:0,18:18:99:1 :1.00 :781,0

GT=Genotype (0 or 1)

AD=Allelic depths for the ref and alt alleles

DP=Approximate read depth

GQ=Genotype Quality

MLPSAC=Maximum likelihood expectation (MLE) for the alternate allele count MLPSAF=Maximum likelihood expectation (MLE) for the alternate allele fraction **PL=Normalized, Phred-scaled likelihoods for genotypes**

$$Prob(0) = 10^{-781/10} = 7.9e-79$$
 $Prob(1) = 10^{-9/10} = 1$

isolate 2

GATK (3)

GATK can be used to filter SNPs.

```
java GenomeAnalysisTK.jar \
   -T SelectVariants \
   -R your_reference \
   --variant your_vcf \
   -select 'DP >= 3.0' \
   --restrictAllelesTo BIALLELIC \
   --selectTypeToInclude SNP
```

 Filter variants based on the experimental purpose and genetic features

Falsely discovered SNPs

Can you think about what could result in falsely discovered SNPs using alignment-based SNP methods?

Alignment-based SNP discovery: alignment issues

- Misalignments
- Genome duplications
- Highly divergent regions

Examples:

Widespread RNA and DNA Sequence Differences in the Human **Transcriptome**

Mingyao Li et al. Science 333, 53 (2011); DOI: 10.1126/science.1207018

The misalignments of RNA-Seq data or DNA-Seq data led to this discovery

Comment on "Widespread RNA and DNA Sequence Differences in the **Human Transcriptome**"

Claudia L. Kleinman and Jacek Majewski

Science **335**, 1302 (2012); DOI: 10.1126/science.1209658

DeepVariant

(alignment-based but with deep learning to infer genotypes)

A universal SNP and small-indel variant caller using deep neural networks

Figure 1: We formulate consensus-based DNA sequencing error correction as a multiclass classification problem. Using Nucleus, we construct a matrix of normalized base counts in a genomic range.

TensorFlow allows us to train a neural network that can predict the correct base at the middle position of the window.

Assembly-based SNP discovery

- Cortex (Iqbal et al., 2012 Nature Genetics)
 de novo assembly and graphic comparison for variant discovery
- Fermi (Li H, 2012 Bioinformatics)
 de novo assembly to unitigs* and then alignment to the reference genome for variant discovery
 (Conceptually, unitigs are confident contigs)
- Discovar (Neil *et al.*, 2014 Nature Genetics)
 Region *de novo* assembly to contigs and then alignment to the reference genome for variant discovery

Table 2 Estimated sensitivity and specificity of variant call sets

				Percent false positives			
Call set	Read length (bp)	Percent false negatives	Number of heterozygous/ homozygous variants	Heterozygous variants	Homozygous variants	All variants	
GATK-250	250	12.3 ± 1.8	1.54	1.82 ± 0.45	0.74 ± 0.72	1.39 ± 0.39	
Cortex-250	250	39.3 ± 2.6	1.39	0.33 ± 0.18	3.46 ± 0.61	1.64 ± 0.28	
DISCOVAR-250	250	06.0 ± 1.2	1.57	1.44 ± 0.23	1.94 ± 0.40	1.63 ± 0.21	

Variant annotation

Gene coding regions

- Synonymous: changes that do not alter the encoded amino acid
- Non-synonymous
- 1. Missense: changes that alter encoded amino acid
- 2. Nonsense: changes that produce a stop codon from an amino acid codon, resulting in a shortened protein
- Frameshift (caused by insertion/deletion)

Splicing sites

Of an intron, a donor site (5' end of the intron) and an acceptor site (3' end of the intron) are required for splicing.

Variant annotation - SnpEff

SnpEff is a variant annotation and effect prediction tool. It annotates and predicts the effects of variants on genes.

Input data:

- Genome annotation database
- Variant data: VCF file

Running:

```
java -jar snpEff.jar GRCh37.75 my.vcf
```

Detailed effect list from SnpEff

Effect	Note
INTERGENIC	The variant is in an intergenic region
UPSTREAM	Upstream of a gene (default length: 5K bases)
UTR_5_PRIME	Variant hits 5'UTR region
UTR_5_DELETED	The variant deletes an exon which is in the 5'UTR of the transcript
START_GAINED	A variant in 5'UTR region produces a three base sequence that can be a START codon.
SPLICE_SITE_ACCEPTOR	The variant hits a splice acceptor site (defined as two bases before exon start, except for the first exon).
SPLICE_SITE_DONOR	The variant hits a Splice donor site (defined as two bases after coding exon end, except for the last exon).
START_LOST	Variant causes start codon to be mutated into a non-start codon.
SYNONYMOUS_START	Variant causes start codon to be mutated into another start codon.
CDS	The variant hits a CDS.
GENE	The variant hits a gene.
TRANSCRIPT	The variant hits a transcript.
EXON	The vairant hist an exon.
EXON_DELETED	A deletion removes the whole exon.
NON_SYNONYMOUS_CODING	Variant causes a codon that produces a different amino acid
SYNONYMOUS_CODING	Variant causes a codon that produces the same amino acid
FRAME_SHIFT	Insertion or deletion causes a frame shift
CODON_CHANGE	One or many codons are changed
CODON_INSERTION	One or many codons are inserted
CODON_CHANGE_PLUS_CODON_INSERTION	One codon is changed and one or many codons are inserted
CODON_DELETION	One or many codons are deleted
CODON_CHANGE_PLUS_CODON_DELETION	One codon is changed and one or more codons are deleted
STOP_GAINED	Variant causes a STOP codon
SYNONYMOUS_STOP	Variant causes stop codon to be mutated into another stop codon.
STOP_LOST	Variant causes stop codon to be mutated into a non-stop codon
INTRON	Variant hist and intron. Technically, hits no exon in the transcript.
UTR_3_PRIME	Variant hits 3'UTR region
UTR_3_DELETED	The variant deletes an exon which is in the 3'UTR of the transcript
DOWNSTREAM	Downstream of a gene (default length: 5K bases)
INTRON_CONSERVED	The variant is in a highly conserved intronic region
INTERGENIC_CONSERVED	The variant is in a highly conserved intergenic region 2

Summary

- The strategy to generate data for SNP discovery is depended on experimental purpose, genetic features of the population, timetable, and budget.
- A standard approach for SNP discovery is through mapping reads to the reference sequences, thereby identifying variants between reads and reference. The most popular method is GATK.