经济增长模型

- 1. 模型名称
- 2. 适用范围
- 3.概念
 - 3.1 参数说明与模型假设
 - 3.2 数学推导过程
 - 3.3 模型表达式
 - 3.4 应用
 - 3.4.1 资金与劳动力的最佳分配
 - 3.4.2 劳动生产率增长的条件
- 4. 求解方法
 - 4.1 正规化法
 - 4.2 回归估计法
 - 4.2 实例
- 4. 参考资料

经济增长模型

1. 模型名称

柯布-道格拉斯生产函数模型 (Cobb-Douglas production function model)

2. 适用范围

这里介绍的模型首先建立**产值**与**资金、劳动力**之间的关系,然后研究资金与劳动力的最佳分配,使投资效益最大,最后讨论如何调节资金与劳动力的增长率,以使得劳动生产率得到有效的增长。 ¹

3.概念

实)

3.1 参数说明与模型假设

参数: 用Q(t), K(t), L(t), 分别表示某一地区在t时刻的产值、资金、劳动力。

假设:产值随着劳动力和资金的增加而增加,而产值的增长率随着劳动力和资金的增加而减少。(客观事

目的: 建立Q(t)与K(t), L(t)之间的函数表达

3.2 数学推导过程

把Q(t), K(t), L(t)的关系记作

$$Q(t) = F(K(t), L(t))$$

其中F为待定函数,对于某固定时刻t,上述关系可以写作

$$Q = F(K, L)$$

为了寻求F的函数形式,引入记号

$$z = Q/L, \quad y = K/L$$

z是每个劳动力的产值,y是每个劳动力的投资。如下假设是合理的:z随着y的增长而增长,但是增长速度递减。进而简化地把这个假设表示为

$$z = cg(y), \quad g(y) = y^{\alpha}, \quad 0 < \alpha < 1$$

显然函数g(y)满足上面的假设,常数c可以看作是技术的作用。由以上两式即可的即可得到Q的表达式(生产函数)中F的具体形式为

$$Q = cK^{\alpha}L^{1-\alpha}, \quad 0 < \alpha < 1$$

由上式容易知道,Q有如下性质

$$\frac{\partial Q}{\partial K}, \frac{\partial Q}{\partial L} > 0, \quad \frac{\partial^2 Q}{\partial K^2}, \frac{\partial^2 Q}{\partial L^2} < 0$$

即产值随着劳动力和资金的增加而增加,而产值的增长率随着劳动力和资金的增加而减少。 记 $Q_K=\frac{\partial Q}{\partial K},\ Q_K$ 表示单位资金创造的产值; $Q_L=\frac{\partial Q}{\partial L},\ Q_L$ 表示单位劳动力创造的产值,则从生产函数可得

$$rac{KQ_K}{Q} = lpha, \quad rac{LQ_L}{Q} = 1 - lpha \ KQ_K + LQ_L = Q$$

上式可以解释为: α 是资金在产值中占有的份额, $1-\alpha$ 是劳动力在产值中占有的份额。

3.3 模型表达式

1. 生产函数表示为: 2

$$Q = cK^{\alpha}L^{1-\alpha}, \quad 0 < \alpha < 1$$

2. 更一般形式的生产函数表示为:

$$Q = cK^{\alpha}L^{\beta}, \quad 0 < \alpha, \beta < 1$$

3.4 应用

3.4.1 资金与劳动力的最佳分配

根据生产函数,讨论怎样分配资金和劳动力,使生产创造的效益最大。

假定资金来自贷款,利率为r,每个劳动力需付工资w,于是当资金K、劳动力L产生产值Q时,得到的效益为

$$S = Q - rK - wL$$

现在我们要求使效益S最大的资金与劳动力分配比例K/L (即每个劳动力占有的资金)。则令

$$\frac{\partial S}{\partial K} = 0, \frac{\partial S}{\partial L} = 0$$

得到

$$\frac{Q_K}{Q_L} = \frac{r}{w}$$

再利用

$$rac{KQ_K}{Q} = lpha, \quad rac{LQ_L}{Q} = 1 - lpha$$

有

$$\frac{K}{L} = \frac{\alpha}{1 - \alpha} \frac{w}{r}$$

这就是资金与劳动力的最佳分配,从上式中可以看出,当 α ,w变大,r变小时,分配比例K/L变大,这是符合常识的。

3.4.2 劳动生产率增长的条件 3

这个模型讨论的是K(t),L(t)满足什么条件才能使Q(t),z(t)保持增长。 首先需要对资金和劳动力的增加作出合理的简化假设:

- 1. 投资增长率与产值成正比,比例系数为 $\lambda > 0$,即用一定比例扩大再生产;
- 2. 劳动力的相对增长率与为常数 μ 可以为负数,表示劳动力减少。 这两个条件的数字表达式分别为

$$\frac{\mathrm{d}K}{\mathrm{d}t} = \lambda Q, \quad \lambda > 0$$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \mu L$$

方程的解为

$$L(t) = L_0 e^{\mu t}$$

下面建立y(t)的微分方程:

(1) 将生产函数代入,得

$$\frac{\mathrm{d}K}{\mathrm{d}t} = \lambda Q = \lambda c K^{\alpha} L^{1-\alpha} = c\lambda L y^{\alpha}$$

(2) 注意到有K = Ly,再用方程式可得

$$\frac{\mathrm{d}K}{\mathrm{d}t} = L\frac{\mathrm{d}y}{\mathrm{d}t} + \mu Ly$$

联立(1)(2)两式,得到关于y(t)的方程

$$\frac{\mathrm{d}y}{\mathrm{d}t} + \mu y = c\lambda y^{\alpha}$$

它的解是

$$y(t) = \left\{rac{c\lambda}{\mu} \left[1 - \left(1 - \murac{K_0}{rac{\mathrm{d}K}{\mathrm{d}t}ig|_{t=0}}
ight)e^{-(1-lpha)\mu t}
ight]
ight\}^{rac{1}{1-lpha}}$$

以下根据上式研究Q(t), z(t)保持增长的条件。

1.
$$Q(t)$$
增长,即 $rac{\mathrm{d}Q}{\mathrm{d}t}>0$ 。

由
$$Q = cLy^{\alpha}$$
及 $\frac{\mathrm{d}L}{\mathrm{d}t} = \mu L$ 和 $\frac{\mathrm{d}y}{\mathrm{d}t} + \mu y = c\lambda y^{\alpha}$ 可得
$$\frac{\mathrm{d}Q}{\mathrm{d}t} = cL\alpha y^{\alpha-1}\frac{\mathrm{d}y}{\mathrm{d}t} + c\mu Ly^{\alpha} = cLy^{2\alpha-1}[c\lambda\alpha + \mu(1-\alpha)y^{1-\alpha}]$$

将其中的y以之前的解代入,可知条件 $\frac{dQ}{dt} > 0$ 等价于

$$\left(1 - \mu \frac{K_0}{\frac{\mathrm{d}K}{2}\Big|_{t=0}}\right) e^{-(1-\alpha)\mu t} < \frac{1}{1-\alpha}$$

因为上式右端大于1, 所以:

当 $\mu > 0$ (即劳动力不减少) 时上式恒成立;

而当 $\mu < 0$ 时,上式成立的条件是

$$t < \frac{1}{(1-\alpha)\mu} ln \left[(1-\alpha) \left(1 - \mu \frac{K_0}{\frac{\mathrm{d}K}{\mathrm{d}t}|_{t=0}} \right) \right]$$

说明如果劳动力减少,Q(t)只能在有限时间内保持增长。但应注意,若上式中的

$$(1-lpha)\left(1-\murac{K_0}{rac{\mathrm{d}K}{\mathrm{d}t}ig|_{t=0}}
ight)\geq 1$$
,则不存在这样的增长时段。

2. z(t)增长,即 $\frac{\mathrm{d}z}{\mathrm{d}t} > 0$ 。

由 $z=cy^{lpha}$ 知,相当于 $rac{\mathrm{d}y}{\mathrm{d}t}>0$,由方程 $rac{\mathrm{d}y}{\mathrm{d}t}+\mu y=c\lambda y^{lpha}$ 知:

当 $\mu \leq 0$ 时,该条件恒成立;

当 $\mu > 0$ 时,由y的解可得, $\frac{\mathrm{d}y}{\mathrm{d}t} > 0$ 等价于

$$\left(1 - \mu \frac{K_0}{\frac{\mathrm{d}K}{\mathrm{d}t}\big|_{t=0}}\right) e^{-(1-\alpha)\mu t} > 0$$

显然,此式成立的条件为 $\mu \frac{K_0}{\frac{\mathrm{d} K}{2 t}|_{t=0}} < 1$,即

$$\mu < rac{rac{\mathrm{d} K}{\mathrm{d} t}|_{t=0}}{K_0}$$

这个条件的含义是, 劳动力增长率小于初始投资增长率。

4. 求解方法 4

4.1 正规化法 5

1. 列出

$$y=ak^{\beta_1}l^{\beta_2}$$

其中: y代表产出增长率, a代表科技进步率, k代表资本增长率, l代表劳动增长率, β_1 代表资本产出弹性系 数, β_2 代表劳动产出弹性系数。

2. 求解参数

计算公式为:

$$eta_1 = rac{rac{ar{y}}{ar{k}}}{rac{ar{y}}{ar{k}} + rac{ar{y}}{ar{l}}}$$
 $eta_2 = 1 - eta_1$

$$a = \bar{y} - \beta_1 \bar{k} - \beta_2 \bar{l}$$

3.求科技进步、资本增长、劳动增长对产出增长的贡献率

科技进步贡献率: $\frac{a}{\bar{y}}$

资本增长贡献率: $\frac{\beta_1 \bar{k}}{\bar{y}}$

产出增长贡献率: $\frac{\beta_2 \bar{l}}{\bar{y}}$

三者的关系式为:

$$rac{a}{ar{y}} + rac{eta_1 ar{k}}{ar{y}} + rac{eta_2 ar{l}}{ar{y}} = 1$$

4.2 回归估计法

1. 列出Q, K, L和时间的表格

设有n个统计数据(
$$Q_i, K_i, L_i$$
)($i = 1, 2, ..., n$),

$$\hat{Q} = A K^{lpha} L^{eta}, \quad 0 < lpha, eta < 1$$
 ,

2. 取对数,列出 y_i, x_{1i}, x_{2i} 和时间的表格:

$$\ln \hat{Q}=\ln A+lpha lnK+eta \ln L$$
设 $y_i=\ln Q_i, \hat{y}_i=\ln \hat{Q}_i, x_{1i}=\ln K_i, x_{2i}=\ln L_i, b_0=\ln A$,则: $\hat{y}_i=b_0+lpha x_{1i}+eta x_{2i}$

3. 列出 α , β 满足的方程组

$$\begin{cases} (\sum x_{1i}^2 - n\bar{x}_1^2)\alpha + (\sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2)\beta = \sum x_{1i}y_i - n\bar{x}_1\bar{y}, \\ (\sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2)\alpha + (\sum x_{2i}^2 - n\bar{x}_2^2)\beta = \sum x_{2i}y_i - n\bar{x}_2\bar{y}, \end{cases}$$
(1)

- 4. 用系数行列数求解 α , β
 - (1)(2)的系数行列式为:

$$D = egin{array}{c} \sum x_{1i}^2 - nar{x}_1^2 & \sum x_{1i}x_{2i} - nar{x}_1ar{x}_2 \ \sum x_{1i}x_{2i} - nar{x}_1ar{x}_2 & \sum x_{2i}^2 - nar{x}_2^2 \ \end{pmatrix} \ D_1 = egin{array}{c} \sum x_{1i}y_i - nar{x}_1ar{y} & \sum x_{1i}x_{2i} - nar{x}_1ar{x}_2 \ \sum x_{2i}y_i - nar{x}_2ar{y} & \sum x_{2i}^2 - nar{x}_2^2 \ \end{pmatrix} \ D_2 = egin{array}{c} \sum x_{1i}^2 - nar{x}_1^2 & \sum x_{1i}y_i - nar{x}_1ar{y} \ \sum x_{1i}y_i - nar{x}_1ar{y} \ \end{pmatrix} \ D_2 = egin{array}{c} \sum x_{1i}x_{2i} - nar{x}_1ar{y} & \sum x_{2i}y_i - nar{x}_2ar{y} \ \end{pmatrix} \ \end{array}$$

当 $D \neq 0$

$$\left\{egin{array}{l} lpha = rac{D_1}{D} \ eta = rac{D_2}{D} \end{array}
ight.$$

5. 求A

$$b_0 = ar{y} - lpha ar{x}_1 - eta ar{x}_2$$
 $A = e^{b_0}$

4.2 实例

1. **正规化法**估计参数 a, β_1, β_2

年份	增加值 (亿 元)	产出 增长 率 y	资本 量	资本 增长 率 K	职工 数 (干 人)	职工 增长 率 L	$lgrac{y}{L}$	$lgrac{K}{L}$
1995	12.24		3.99		4.34			
1996	13.21	7.93	4.28	7.27	4.73	8.99	-0.0545	-0.0922
1997	14.15	7.12	4.62	7.94	4.83	2.11	0.5282	0.5755
1998	14.92	5.44	4.94	6.93	4.93	2.07	0.4196	0.5248
1999	15.79	5.83	5.28	6.88	5.31	7.71	-0.1214	-0.0495
2000	16.87	6.84	5.51	4.36	5.66	6.59	0.0162	-0.1794
2001	18.52	9.78	5.93	7.62	5.96	5.30	0.2661	0.1577
2002	20.42	10.26	6.40	7.93	6.18	3.69	0.4441	0.3322
2003	22.71	11.21	6.83	6.72	6.47	4.69	0.3784	0.1562
2004	24.52	7.97	7.24	6.00	6.71	3.71	0.3321	0.2088
2005	26.27	7.14	7.76	7.18	6.87	2.38	0.4771	0.4795
年平 均增 长率		7.95		6.88		4.72		

求得 $eta_1=0.4070,eta_2=0.5930,a=2.3493$

科技进步、资本增长、劳动增长对产出增长的贡献率为0.295, 0.352, 0.352

2. **回归估计法** (1.2.2) 估计参数 α , β

2.1 例—

年份	产值 Q_i (百万元)	资金 K_i (百万元)	劳动力 L_i (百万日)
1958	16607.7	17803.7	275.5
1959	17511.3	18096.8	274.4
1960	20171.2	18217.8	269.7
1961	20932.9	19167.3	267.0
1962	20406.0	19647.6	267.0
1963	20831.6	20803.5	275.0
1964	24806.3	22076.6	285.0
1965	26465.8	23445.2	300.7
1966	27403.0	24939.0	307.5
1967	28628.7	26713.7	303.7
1968	29904.5	29957.8	304.7
1969	27508.2	31585.9	298.6
1970	29035.5	33474.5	295.5
1971	29281.5	34821.8	299.0
1972	31535.8	41794.3	288.1

对上表初步处理:

年份	y_i	x_{1i}	x_{2i}	x_{1i}^2	x_{2i}^2	$x_{1i}x_{2i}$	$x_{1i}y_i$	$x_{2i}y_i$
1958	9.717622	9.787162	5.618588	95.788532	31.568527	54.990025	95.107934	54.599309
1959	9.770602	9.803490	5.614587	96.108424	31.523586	55.042549	95.786000	54.857892
1960	9.912011	9.810154	5.597310	96.239130	31.329882	54.910478	97.238360	55.480601
1961	9.949077	9.860961	5.587249	97.238551	31.217348	55.095641	98.107464	55.587969
1962	9.923584	9.885710	5.587249	97.727272	31.217348	55.233923	98.101681	55.445533
1963	9.944226	9.942877	5.616771	98.860794	31.548118	55.846861	98.874215	55.854443
1964	10.118853	10.002274	5.652489	100.045475	31.950634	56.537743	101.211535	57.196707
1965	10.183609	10.062421	5.706113	101.252318	32.559727	57.417313	102.471758	58.108822
1966	10.218408	10.124188	5.728475	102.499185	32.815427	57.996159	103.453083	58.535894
1967	10.262165	10.192932	5.716040	103.895859	32.673118	58.263210	104.601548	58.658949
1968	10.305764	10.307545	5.719328	106.245484	32.710709	58.952228	106.227129	58.942043
1969	10.222239	10.360466	5.699105	107.339258	32.479796	59.045383	105.907165	58.257615
1970	10.276274	10.418539	5.688669	108.545960	32.360953	59.267619	107.063769	58.458322
1971	10.284711	10.457999	5.700444	109.369741	32.495057	59.615233	107.557498	58.627416
1972	10.358879	10.640515	5.663308	113.220565	32.073053	60.260511	110.223807	58.665517

我们有 $ar y=rac{1}{n}\sum y_i$, $ar x_1=rac{1}{n}\sum x_{1i}$, $ar x_2=rac{1}{n}\sum x_{2i}$,根据数据: ar y=10.096535, $ar x_1=10.110482$, $ar x_2=5.659715$

列出下面两个式子联立

 $(1534.376547 - 15 \times 102.221851)\alpha + (858.474875 - 15 \times 57.22244691)\beta = 1531.932943 - 15 \times 102.0808375$ $(858.474875 - 15 \times 57.22244691)\alpha + (480.523282 - 15 \times 32.032373)\beta = 857.277033 - 15 \times 57.143510$ 化简得:

$$\left\{ \begin{array}{l} 1.046874\alpha + 0.137948\beta = 0.719764 \\ 0.137984\alpha + 0.037690\beta = 0.124390 \end{array} \right.$$

所以:

$$D = \begin{vmatrix} 1.046874 & 0.137948 \\ 0.137948 & 0.037690 \end{vmatrix} = 0.020427$$

$$D_1 = \begin{vmatrix} 0.719764 & 0.137948 \\ 0.124390 & 0.037690 \end{vmatrix} = 0.009969$$

$$D_2 = \begin{vmatrix} 1.046874 & 0.719764 \\ 0.137948 & 0.124390 \end{vmatrix} = 0.009969$$

所以

$$\left\{ egin{array}{l} lpha = rac{D_1}{D} = 0.488031 \ eta = rac{D_2}{D} = 1.514221 \end{array}
ight.$$

并且 $b_0=ar y-lphaar x_1-etaar x_2=-3.407850,\;A=e^{-3.407850}=0.033112$ 所以柯布-----道格拉斯生产函数的回归公式为:

$$\hat{Q} = 0.033112 K^{0.488031} L^{1.514221}$$

2.2 例二

年份	总产值/万亿元	资金/万亿元	劳动力/亿人
1984	0.7171	0.0910	4.8179
1985	0.8964	0.2543	4.9873
1986	1.0202	0.3121	5.1282
1987	1.1962	0.3792	5.2783
1988	1.4928	0.4754	5.4334
1989	1.6909	0.4410	5.5329
1990	1.8548	0.4517	6.4749
1991	2.1618	0.5595	6.5491
1992	2.6638	0.8080	6.6152
1993	3.4634	1.3072	6.6808
1994	4.6759	1.7042	6.7455
1995	5.8478	2.0019	6.8065
1996	6.7885	2.2914	6.8950
1997	7.4463	2.4941	6.9820
1998	7.8345	2.8406	7.0637
1999	8.2068	2.9854	7.1394
2000	9.9468	3.2918	7.2085
2001	9.7315	3.7314	7.3025
2002	10.4791	4.3500	7.3740

根据数据: $\bar{y} = 1.190043, \bar{x}_1 = 0.015953, \bar{x}_2 = 1.842087$

$$D = \begin{vmatrix} \sum x_{1i}^2 - n\bar{x}_1^2 = 22.110381 & \sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2 = 2.652419 \\ \sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2 = 2.652419 & \sum x_{2i}^2 - n\bar{x}_2^2 = 0.369812 \end{vmatrix} = 1.141358$$

$$D_1 = \begin{vmatrix} \sum x_{1i}y_i - n\bar{x}_1\bar{y} = 17.956018 & \sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2 = 2.652419 \\ \sum x_{2i}y_i - n\bar{x}_2\bar{y} = 2.219490 & \sum x_{2i}^2 - n\bar{x}_2^2 = 0.369812 \end{vmatrix} = 0.753393$$

$$D_2 = \begin{vmatrix} \sum x_{1i}^2 - n\bar{x}_1^2 = 22.110381 & \sum x_{1i}y_i - n\bar{x}_1\bar{y} = 17.956018 \\ \sum x_{1i}x_{2i} - n\bar{x}_1\bar{x}_2 = 2.652419 & \sum x_{2i}y_i - n\bar{x}_2\bar{y} = 2.219490 \end{vmatrix} = 1.446886$$

所以

$$\begin{cases} \alpha = \frac{D_1}{D} = 0.660085 \\ \beta = \frac{D_2}{D} = 1.267688 \end{cases}$$

并且 $b_0 = \bar{y} - \alpha \bar{x}_1 - \beta \bar{x}_2 = -1.15568$, $A = e^{-1.15568} = 0.314843$

所以柯布----道格拉斯生产函数的回归公式为:

$$\hat{Q} = 0.314843 K^{0.660085} L^{1.267688}$$

4. 参考资料

- 1. 数学建模培训营---经济增长模型
- 2. 第五章微分方程模型
- 3. 生产函数----系数的求解
- 4. <u>柯布—道格拉斯(Cobb-Douglas)生产函数的实例求解</u>
- 5. 柯布—道格拉斯生产函数的回归公式
- 1. 发展经济、提高生产力有以下手段:增加投资、增加劳动力、技术革新。这里暂不考虑技术革新的作用,一是因为在经济发展的初期或者在不太长的时期内,技术相对稳定,而是由于技术革新量化比较困难。 e
- 2. α 是资金在产值中占有的份额, $1-\alpha$ 是劳动力在产值中占有的份额。 $\underline{\boldsymbol{c}}$
- 3. 常用的衡量经济增长的指标,一是总产值Q(t).,二是每个劳动力的产值z(t)=Q(t)/L(t) $\underline{\boldsymbol{c}}$
- 4. 估计参数α, β ←
- 5. 在假定<u>规模报酬不变</u>($\beta_1+\beta_2=1$)的条件下,利用产出量、资本量和劳动量三者平均增长率($ar{y},ar{k},ar{l}$)的比例关系,估计参数 a,β_1,β_2 ,进而测定科技进步、资本增长、劳动增长对产出增长的贡献率。 \underline{c}