<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

★ Course/ Unit 1: Functions of two vari... / Lecture 2: Linear approximations and tangent ...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Previous

44:46:20

☐ Bookmark this page

Lecture due Aug 4, 2021 20:30 IST Completed

Reflect

Testing approximations

Start of transcript. Skip to the end.

PROFESSOR: OK.

So that's the linear approximation of the function

f around this point (negative 1 positive 1).

And to see how it works, I'm going to show us all a picture of the level curves of this function.

▶ 0:00 / 0:00

▶ 2.0x

* 6

cc 66

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Recall the linear approximation of $f(x,y)=x^2+y^2$ near $(x_0,y_0)=(-1,1)$ found in the previous example:

$$f\left(-1+\Delta x,1+\Delta y
ight)pprox 2-2\Delta x+2\Delta y.$$

Here is an image of the level curves of f(x,y). We will use the linear approximation to estimate the value of the function at nearby points and compare with the value of the function.

Figure 4: Level curves of $f(x,y)=x^2+y^2$ near (-1,1).

■ Calculator

Hide Notes

For the choices that do not work, what is it about Δx (or Δy) that makes it a bad choice?

Remark 7.1 Linear approximation is only good when Δx and Δy are small, so let's try this experiment again but zoomed in closer to our point.

Test approximation against level curves

9/9 points (graded)

Here is a zoomed in image of the function $f\left(x,y
ight)=x^2+y^2$ near the point (-1,1).

Which of the following choices of Δx and Δy does the linear approximation give a good approximation?

For the choices that do not work, figure out whether Δx makes it a bad choice, or Δy makes it a bad choice. For the following choices of Δx and Δy , determine the linear approximation of f, the actual value, and the error.

Definition 7.2 The **error** is defined as the ratio

$$\frac{(\text{actual value}) - (\text{approximate value})}{\text{actual value}}$$

Round your answers to 4 decimal places.

 Δx and Δx and Δy The approximation of Δy $f(x+\Delta x,y+\Delta y)$ $f(x+\Delta x,y+\Delta y)$ f(-1,1.1)pprox f(-1,1.1)= Error Δx Hide Notes

Solution:

$$egin{array}{ll} f\left(-1+\Delta x,1+\Delta y
ight) \; pprox \;\; 2-2\Delta x+2\Delta y \ f\left(-1,1.1
ight) \; pprox \;\; 2+2\left(0.1
ight) = 2.2 \ f\left(-0.9,1
ight) \; pprox \;\; 2-2\left(0.1
ight) = 1.8 \ f\left(-0.9,1.1
ight) \; pprox \;\; 2-2\left(0.1
ight) + 2\left(0.1
ight) = 2 \end{array}$$

Note that the actual values are

$$egin{array}{lll} f(-1,1.1) &=& 1+1.21=2.21 \ f(-0.9,1) &=& 0.81+1=1.81 \ f(-0.9,1.1) &=& 0.81+1.21=2.02 \end{array}$$

So the errors are 0.0045, 0.0055, and 0.0099 respectively.

Note that with small values of Δx and Δy , the approximate values differ by much smaller amounts.

Submit

You have used 5 of 5 attempts

1 Answers are displayed within the problem

Take aways

Show all posts

Why do we need two partial derivatives f_x and f_y ?

If you only knew $f_x\left(-1,1
ight)$, you could make a good guess about $f\left(-0.9,1
ight)$, but not $f\left(-1,0.9
ight)$. Similarly, if you knew $f_y\left(-1,1
ight)$, you could make a good guess about $f\left(-1,0.9
ight)$, but not $f\left(-0.9,1
ight)$. But if we know both f_x and f_y , we get a nice approximate description of how f behaves in all directions!

Note that the linear approximation at (x_0,y_0) only works well for points close to (x_0,y_0) .

7. Test linear approximation against level curves

Hide Discussion

by recent activity >

Topic: Unit 1: Functions of two variables / 7. Test linear approximation against level

Add a Post

? Staff: Is grader grading correctly? 6 Hello! I would like to confirm whether the grader is grading correctly? I'm trying to input the answer obtained via the definition of the... Linear approximation **⊞** Calculator **Hide Notes** I have tried this question several times but I keep getting the wrong answers even for the actual values. Fo

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>