Mathematical Biostatistics Boot Camp: Lecture 6, Likelihood

Brian Caffo

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

Johns Hopkins University

September 19, 2012

Brian Caffo

Table of contents

Likelihood

- A common and fruitful approach to statistics is to assume that the data arises from a family of distributions indexed by a parameter that represents a useful summary of the distribution
- The likelihood of a collection of data is the joint density evaluated as a function of the parameters with the data fixed
- Likelihood analysis of data uses the likelihood to perform inference regarding the unknown parameter

Likelihood

Given a statistical probability mass function or density, say $f(x, \theta)$, where θ is an unknown parameter, the **likelihood** is f viewed as a function of θ for a fixed, observed value of x.

Interpretations of likelihoods

The likelihood has the following properties:

- Ratios of likelihood values measure the relative evidence of one value of the unknown parameter to another.
- ② Given a statistical model and observed data, all of the relevant information contained in the data regarding the unknown parameter is contained in the likelihood.
- 3 If $\{X_i\}$ are independent random variables, then their likelihoods multiply. That is, the likelihood of the parameters given all of the X_i is simply the product of the individual likelihoods.

- ullet Suppose that we flip a coin with success probability heta
- Recall that the mass function for x

$$f(x,\theta) = \theta^{x}(1-\theta)^{1-x}$$
 for $\theta \in [0,1]$.

where x is either 0 (Tails) or 1 (Heads)

- Suppose that the result is a head
- The likelihood is

$$\mathcal{L}(\theta, 1) = \theta^1 (1 - \theta)^{1-1} = \theta$$
 for $\theta \in [0, 1]$.

- Therefore, $\mathcal{L}(.5,1)/\mathcal{L}(.25,1) = 2$,
- There is twice as much evidence supporting the hypothesis that $\theta = .5$ to the hypothesis that $\theta = .25$

Example continued

- Suppose now that we flip our coin from the previous example 4 times and get the sequence 1, 0, 1, 1
- The likelihood is:

$$\mathcal{L}(\theta, 1, 0, 1, 1) = \theta^{1}(1 - \theta)^{1 - 1}\theta^{0}(1 - \theta)^{1 - 0} \\ \times \theta^{1}(1 - \theta)^{1 - 1}\theta^{1}(1 - \theta)^{1 - 1} \\ = \theta^{3}(1 - \theta)^{1}$$

- This likelihood only depends on the total number of heads and the total number of tails; we might write $\mathcal{L}(\theta,1,3)$ for shorthand
- Now consider $\mathcal{L}(.5,1,3)/\mathcal{L}(.25,1,3) = 5.33$
- There is over five times as much evidence supporting the hypothesis that $\theta=.5$ over that $\theta=.25$

Plotting likelihoods

- Generally, we want to consider all the values of θ between 0 and 1
- A **likelihood plot** displays θ by $\mathcal{L}(\theta, x)$
- Usually, it is divided by its maximum value so that its height is 1
- Because the likelihood measures relative evidence, dividing the curve by its maximum value (or any other value for that matter) does not change its interpretation

Duine Coff

Maximum likelihood

- The value of θ where the curve reaches its maximum has a special meaning
- ullet It is the value of heta that is most well supported by the data
- This point is called the **maximum likelihood estimate** (or MLE) of θ

$$MLE = \operatorname{argmax}_{\theta} \mathcal{L}(\theta, x).$$

• Another interpretation of the MLE is that it is the value of θ that would make the data that we observed most probable

Maximum likelihood, coin example

- ullet The maximum likelihood estimate for heta is always the proportion of heads
- Proof: Let x be the number of heads and n be the number of trials
- Recall

$$\mathcal{L}(\theta, x) = \theta^{x} (1 - \theta)^{n - x}$$

It's easier to maximize the log-likelihood

$$I(\theta, x) = x \log(\theta) + (n - x) \log(1 - \theta)$$

Taking the derivative we get

$$\frac{d}{d\theta}I(\theta,x) = \frac{x}{\theta} - \frac{n-x}{1-\theta}$$

Setting equal to zero implies

$$(1-\frac{x}{n})\theta = (1-\theta)\frac{x}{n}$$

- Which is clearly solved at $\theta = \frac{x}{n}$
- Notice that the second derivative

$$\frac{d^2}{d\theta^2}I(\theta,x) = -\frac{x}{\theta^2} - \frac{n-x}{(1-\theta)^2} < 0$$

provided that x is not 0 or n (do these cases on your own)

What constitutes strong evidence?

- Again imagine an experiment where a person repeatedly flips a coin
- Consider the possibility that we are entertaining three hypotheses: $H_1: \theta=0, H_2: \theta=.5$, and $H_3: \theta=1$

Brian Caff

Outcome X	$P(X \mid H_1)$	$P(X \mid H_2)$	$P(X \mid H_3)$	$\mathcal{L}(H_1)/\mathcal{L}(H_2)$	$\mathcal{L}(H_3)/\mathcal{L}(H_2)$
Н	0	.5	1	0	2
Т	1	.5	0	2	0
HH	0	.25	1	0	4
HT	0	.25	0	0	0
TH	0	.25	0	0	0
TT	1	.25	0	4	0
HHH	0	.125	1	0	8
HHT	0	.125	0	0	0
HTH	0	.125	0	0	0
THH	0	.125	0	0	0
HTT	0	.125	0	0	0
THT	0	.125	0	0	0
TTH	0	.125	0	0	0
TTT	1	.125	0	8	0

Benchmarks

- Using this example as a guide, researchers tend to think of a likelihood ratio
 - of 8 as being moderate evidence
 - of 16 as being moderately strong evidence
 - of 32 as being strong evidence

of one hypothesis over another

- Because of this, it is common to draw reference lines at these values on likelihood plots
- Parameter values above the 1/8 reference line, for example, are such that no other point is more than 8 times better supported given the data