Monomers and Polymers

- Monomers
 - Smaller units from larger polymers are made from
- Polymers
 - Molecules made from a large number of monomers joined together
- Condensation reactions
 - o Join monomers together into larger molecules, releasing water
 - Monosaccharides → Disaccharides → Polysaccharides: glycosidic bonds formed
 - o Amino acids → Polypeptides: peptide bonds
 - Glycerol + fatty acids → Triglycerides: ester bonds
- Condensation reactions
 - o Break down molecules, by using water

Carbohydrates

- Made up of monosaccharides (monomers of carbohydrates)
- Common monosaccharides glucose, galactose, fructose
- Disaccharides
 - o Formed by condensation reaction of 2 monosaccharides
 - Maltose → Glucose + Glucose
 - \circ Sucrose \rightarrow Glucose + Fructose
 - o Lactose → Glucose + Galactose
- Glucose
 - o Two isomers:

α-glucose: Carbon atom 1 has hydrogen pointing up, and hydroxyl group pointing down

β-glucose: Carbon atom 1 has hydrogen and hydroxyl groups flipped

ALPHA GLUCOSE

BETA GLUCOSE

- Polysaccharides
 - Formed by condensation of many monosaccharides
 - Glycogen \rightarrow condensation of α -glucose
 - Starch → condensation of α -glucose
 - Cellulose \rightarrow condensation of β-glucose
- Structure of Glycogen
 - Energy store in animals
 - o Highly branched structure, coiled so compact
 - Unable to diffuse out of cells, so stays where it is needed until energy is required
- Structure of Cellulose
 - Unbranched, linear chains
 - Used in plant cell wall provides rigidity to plants
 - Fibres group together to form microfibrils hydrogen bonds (strength in large numbers)
- Structure of Starch
 - Forms granules unable to move out of cells it is formed in doesn't have to diffuse far, so reasonably quick access to energy
 - o Branched chains, coiled compact

Lipids

- Triglycerides
 - Glycerol + 3 fatty acid tails
 - o Form oils, waxes, fats
 - Hydrophobic do not mix with water
- Phospholipids
 - o Form the cell wall phospholipid bilayer
 - Phosphate + glycerol + 2 fatty acid tails
 - Polar molecules phosphate head is hydrophilic (water loving) // fatty acid tails are hydrophobic (water hating)
- Fatty acids
 - Saturated all carbon atoms have single bonds with the maximum number of hydrogens possible
 - Unsaturated
 - Monounsaturated 1 pair of carbon atoms have a double bond;
 removes 2 hydrogens, causes a kink in the chain
 - Polyunsaturated More than 1 pair of carbon atoms have a double bond; removes more than 2 hydrogens, causes many kinks in the chain
 - Have less energy content than unsaturated fatty acids

Proteins

- Made up of amino acids
- Amine group: NH2 Carboxyl group: COOH
- R group the side chain causing the amino acid to be unique
- Dipeptides condensation of two amino acids
- Polypeptides condensation of many amino acids
- Proteins can be made up of multiple polypeptide chains
- Primary structure: order of amino acids polypeptide chain
- Secondary structure: α-helix or β-pleated sheet formed by hydrogen bonds between R-groups
- Tertiary structure: further coiling of α -helix / β -pleated sheet more compact
- Quaternary structure: linking together of multiple tertiary structure polypeptide chains
- Hydrogen bonds hold together the polypeptide chains in quaternary structure
- Ionic bonds join together amino acids into polypeptide chain
- Disulphide bridges strong bonds between R-groups holding α -helix / β -pleated sheet together

Enzymes

- Lower the activation energy of the reaction it catalyses
- Lock and Key model of enzyme action
 - Substrate fits perfectly in the enzyme
 - No explanation as to how the enzyme catalyses the reaction
- Induced Fit model of enzyme action
 - Enzyme active site changes shape slightly to allow the substrate to bind to it
 - o Active site puts stresses on the substrate, causing bonds to brake
 - Reaction is catalysed, causing the product(s) to be released
- Enzymes are only able to have 1 substrate fit it amylase only catalyses starch hydrolysis
- Enzyme concentration a higher concentration will cause the substrate to be broken down faster. The rate of reaction will plateau as the substrate concentration decreases, as collisions are less likely to occur

- Substrate concentration higher concentration of substrate means that the enzymes are more likely to collide with substrate. Increase rate of reaction, to a point. Once all of the enzyme has substrate in active site, reaction cannot continue further
- Inhibitor concentration higher concentration of competitive inhibitors will cause reaction to slow, as more competitive inhibitor blocks active sites Non-competitive inhibitors will have an impact, however it is not based on concentration as they do not block the active site
- pH outside of the enzymes optimum pH, the active site denatures quickly. This prevents the reaction from being catalysed
- Temperature below the optimum temperature, the reaction slows, as less energy to cause collisions

Above optimum temp – reaction stops – enzymes denature

Nucleic Acids

- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- Genetic material for living organisms
- Adenine (purine), Thymine / Uracil (pyramidal), Guanine (purine), Cytosine (pyramidal)
- Semi-Conservative Replication
 - o DNA unzips: DNA Helicase
 - Base pairs move in between the unzipped strands
 - o DNA Polymerase used to bind the new bases to the old strands
 - o Forms 2 DNA strands, each with 1 old strand and 1 new strand
- Proof for semi-conservative replication
 - DNA replicated until all Nitrogen is ¹⁵N this is heavier, causing the strand to be lower in solution
 - $\circ~$ DNA then replicated 1 generation with ^{14}N this creates a hybrid DNA, with 50% ^{15}N and 50% ^{14}N
 - \circ DNA replicated 1 further generation in ^{14}N solution creating DNA with 25% ^{15}N and 75% ^{14}N
 - This is repeated, eventually forming DNA only containing ¹⁴N
 - The solution can be centrifuged, DNA containing different Nitrogen isotopes to be identified

ATP – Adenosine Triphosphate

- Used to transfer energy within cells
- Made of: Adenine, 3× Phosphate groups, Ribose sugar
- $ATP + H_2O \rightarrow ADP + P_i$ condensation on ATP, forming ADP and a phosphate group; breaking the bond releases energy
- Low activation energy, so it is easy to release energy
- ATPase enzyme catalysing hydrolysis of ATP (break down of ATP into ADP)
- Photophosphorylation
 - Photosynthesis: Plants only, Using light to synthesise ADP → ATP
- Oxidative Phosphorylation
 - Using respiration to synthesise ADP → ATP; Plants and Animals
- Substrate-level Phosphorylation
 - When phosphate groups are transferred from donors; plants and animals
- Uses of ATP
 - Metabolic Processes provides energy to build up molecules from subunits
 - o Movement energy is required for muscular contraction
 - Active Transport movement of molecules against a concentration gradient
 - Secretion ATP is needed to form lysosomes to encase cell products
 - Activation of Molecules inorganic phosphate released in hydrolysis of ATP can phosphorylate other molecules

Water

- Essential for all living organisms
- Polar Molecule
 - Hydrogen bonds between water molecules require lots of energy to break
 - Causes water to have a high surface tension
- Solvent
 - o As water is polar, other polar molecules are able to dissolve in it
 - o Ionic compounds are surrounded by water molecules when dissolved
 - Allows gases to be dissolved CO₂, O₂, NH₃...
- High Specific Heat Capacity
 - A lot of energy is required to increase the temperature by 1° this is due to the strength of the hydrogen bonds
 - o This means that water acts as a buffer, reducing temperature fluctuations
- High Latent Heat of Vaporisation
 - A lot of energy is required to evaporate water (into steam)
 - Ideal for cooling an organism sweating (animals) or transpiring (plants)
- Cohesion between Molecules
 - High surface tension means that column of water is able to be pulled up a vessel (such as a xylem)
- Metabolite
 - Used in condensation / hydrolysis reactions to break / form bonds

Inorganic Ions

- Occur in solution in the cytoplasm / bodily fluids
- Some are in high concentrations, others in low concentrations
- Each ion has a specific role
- Iron ions Haemoglobin
- Sodium ions Co-transport of Glucose and Amino Acids
- Phosphate ions Part of DNA and ATP

Benedict's Test for Reducing Sugars

- Add 2cm³ of Benedict's reagent to 5cm³ of homogenised food sample
- Heat in gently boiling water bath for 5 mins
- Observe colour change:
 - Negative blue
 - o Positive Green (lowest concentration) → Brick red (highest concentration)

Benedict's Test for Non-Reducing Sugars

- Carry out Benedict's test as above
- If result is negative:
 - o Boil homogenised food sample in acid for 5 mins
 - Neutralise with sodium hydrogen carbonate powder
 - o Carry out Benedict's test again, as above

lodine Test for Starch

- Add a few drops of iodine in potassium iodide solution to the food sample
- Observe colour change
 - Yellow / orange (no change) no starch is present
 - o Blue / black starch is present

Emulsion Test for Lipids

- Add 2cm3 of homogenised food sample to 2cm3 of ethanol
- Shake, then add some water
- Observe whether an emulsion forms (emulsion present = lipids present)