离散数学第十四次作业-代数系统引论

Problem 1

设S为n元集,问

- (1) 集合 S 上可以定义多少个不同的二元运算?
- (2) 其中有多少个二元运算是可交换的?
- (3) 其中有多少个二元运算是幂等的?
- (4) 其中有多少个二元运算是既不可交换又不幂等的?

答案:

- (1) $n^{n^2} \uparrow$;
- (2) $n^{\frac{n(n+1)}{2}} \uparrow;$
- (3) $n^{n^2-n} \uparrow$;
- (4) $n^{n^2} n^{\frac{n(n+1)}{2}} n^{n^2 n} + n^{\frac{n(n-1)}{2}} \uparrow.$

Problem 2

设 $A = \{0, 1\}, S = A^A$,

- (1) 试列出 S 中的所有元素;
- (2) 给出 S 上函数复合运算的运算表,并指出单位元、零元和每一个可逆元素的逆元.

答案: (1)

$$f_1 = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle\}$$

$$f_2 = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$$

$$f_3 = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle\}$$

$$f_4 = \{\langle 0, 1 \rangle, \langle 1, 1 \rangle\}$$

(2)

0	f_1 f_2 f_3 f_4
f_1	f_1 f_1 f_4 f_4
f_2	f_1 f_2 f_3 f_4
f_3	f_1 f_3 f_2 f_4
f_4	f_1 f_4 f_1 f_4

单位元为 f_2 , 没有零元 (但有右零元), f_2 和 f_3 有逆元, 都是自己.

Problem 3

设 $A = \{a, b, c\}, a, b, c \in \mathbb{R}$, 能否确定 a, b, c 的值使得

- (1) A 对普通加法封闭?
- (2) A 对普通乘法封闭?

答案:

- (1) 不能. 假设存在满足题意的集合 A, 那么 A 中必然存在绝对值最大的非零元素, 不妨假设是 a, 那么 |a+a|=2|a|>|a| 比 A 中绝对值最大的元素还大, 因此不属于 A, 矛盾. 故不存在满足题意的集合.
- (2) 能, $A = \{-1, 0, 1\}$.

Problem 4

判断下列集合对所给的二元运算是否封闭:

- (1) 整数集合 Z 和普通的减法运算.
- (2) 非零整数集合 Z* 和普通的除法运算.
- (3) 全体 $n \times n$ 实数矩阵集合 $M_n(\mathbb{R})$ 和矩阵加法及乘法运算, 其中 $n \geq 2$.
- (4) 全体 $n \times n$ 实可逆矩阵集合关于矩阵加法和乘法运算, 其中 $n \ge 2$.
- (5) 正实数集合 ℝ+ 和。运算, 其中。运算定义为:

$$\forall a, b \in \mathbb{R}^+, a \circ b = ab - a - b$$

(6) $\mathbb{A} = \{a_1, a_2, \dots, a_n\}, n \geq 2.$ o 运算定义如下:

$$\forall a, b \in \mathbb{A}, a \circ b = b$$

(7) S = $\{0, 1\}$ 关于普通加法和乘法运算.

- (8) $\mathbb{S} = \{x | x = 2^n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算.
- (9) $\mathbb{S} = \{x | x = \ln n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算.

答案:

- (1) 封闭.
- (2) 不封闭.
- (3) 加法, 乘法都封闭.
- (4) 加法不封闭, 乘法封闭.
- (5) 不封闭.
- (6) 封闭.
- (7) 加法不封闭, 乘法封闭.
- (8) 加法不封闭, 乘法封闭.
- (9) 加法封闭, 乘法不封闭.

Problem 5

 \mathbb{R} 为实数集, 定义以下 4 个函数 f_1 , f_2 , f_3 , f_4 . $\forall x, y \in \mathbb{R}$ 有

$$f_1((x,y)) = x \cdot y,$$
 $f_2((x,y)) = x - y,$
 $f_3((x,y)) = \max(x,y),$ $f_4((x,y)) = |x-y|.$

- (1) 判断上述二元运算是否为可交换, 可结合, 幂等的.
- (2) 求上述二元运算的单位元, 零元以及每一个可逆元素的逆元.
- (3) 设 $A = \{a, b\}$, 试给出 A 上一个不可交换, 也不可结合的二元运算.

答案:

		可交换	可结合	幂等
	f_1	$\sqrt{}$	$\sqrt{}$	×
(1)	f_2	×	×	×
	f_3	\checkmark	\checkmark	
	f_4	\checkmark	×	×

		单位元	零元	逆元
	f_1	1	0	$1/x(x \neq 0)$
(2)	f_2	×	×	×
	f_3	×	×	×
	f_4	×	×	×

	0	a	b
(3)	a	b	b
	b	a	a

Problem 6

设 $S = \{1, 2, ..., 10\}$,问下面定义的运算能否与 S 构成代数系统 $\langle S, * \rangle$? 如果能,则说明 * 运算是否满足交换律、结合律,并给出单位元和零元.

- (1) $x * y = \gcd(x, y), \gcd(x, y)$ 是 x 与 y 的最大公约数.
- (2) x * y = lcm(x, y), lcm(x, y) 是 x 与 y 的最小公倍数.
- (3) $x * y = \max(x, y)$.
- (4) x * y = 质数 p 的个数, 其中 $x \le p \le y$.

答案:

	代数系统	交换律	结合律	单位元	零元
(1)	$\sqrt{}$	\checkmark		×	1
(2)	×				
(3)		\checkmark		1	10
(4)	×				

Problem 7

判断下列集合能否构成代数系统 $V = \langle \mathbb{N}, + \rangle$ 的子代数:

- (1) $\{x \mid x \in \mathbb{N} \land x \text{ 的某次幂可以被 16 整除 }\}$
- (2) $\{x \mid x \in \mathbb{N} \land y \in \mathbb{N} \land x$ 的某次幂可以被y整除}
- (3) $\{x \mid x \in \mathbb{N} \land x 与 5 互素 \}$
- (4) $\{x \mid x \in \mathbb{N} \land x \in \mathbb{N} \land x \in \mathbb{N} \times \mathbb{N} \in \mathbb{N} \in \mathbb{N} \times \mathbb{N} = \mathbb{N} \in \mathbb{N} \times \mathbb{N}$
- (5) $\{x \mid x \in \mathbb{N} \land x \in \mathbb{N} \land x \in \mathbb{N} \}$

答案:

- (1) 能.
- (2) 能.
- (3) 不能.
- (4) 不能.
- (5) 能.

Problem 8

设 $S = \{a, b, c, d\}$, 定义 S 上的一个二元运算。如下表所示:

0	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

- 1. 请指出代数系统 $V = \langle S, \circ \rangle$ 的单位元和零元, 并尝试给出 V 的所有子代数;
- 2. 如果保持 S 不变,同时要求代数系统有唯一单位元 a,且每个元素在运算。下都有逆元.若把将 b, c, d 三个元素任意交换后相同的运算表当作同一种情况(同构),且要求运算。满足结合律,请画出所有满足条件的。的运算表.

答案:

- (1) V 的单位元为 a, 没有零元, V 只有最小和最大两个平凡子代数.
- (2) 实际上还有四阶循环群一种,一个满足题意的运算表为

0	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	c	b	a

Problem 9

设 $\langle A, \oplus \rangle$ 和 $\langle B, \odot \rangle$ 是两个代数系统. f 是 $\langle A, \oplus \rangle$ 到 $\langle B, \odot \rangle$ 的同构映射. 证明:

- (1) 如果 ⊕ 是可结合的, 那么 ⊙ 也是可结合的.
- (2) 如果 e 是 $\langle A, \oplus \rangle$ 的单位元, 那么 f(e) 是 $\langle B, \odot \rangle$ 的单位元.
- (3) 如果在 $\langle A, \oplus \rangle$ 中 b 是 a 的逆元, 那么在 $\langle B, \odot \rangle$ 中 f(a) 是 f(b) 的逆元.

答案:易证.