МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет прикладной математики информатики и механики Кафедра ERP систем и бизнес процессов

«Криптосистема Эль-Гамаля. Лабораторная работа»

Магистерская диссертация
Направление 01.04.02 прикладная математика и информатика
Магистерская программа Математическое моделирование

Допущено к защите в ГЭК 31 мая 2018 года

Зав. Кафедрой	 Йорг Беккер
Обучающийся	 В. А. Ковун
Руководитель	 к.т.н. доцент Б. Н. Воронков

ОГЛАВЛЕНИЕ

Введение	2
Постановка задачи	3
1. Общая информация о криптосистеме Эль-Гамаля	4
1.1 Алгоритм создания открытого и закрытого ключей	5
1.2. Шифрование и расшифрование	5
1.3. Дешифрование	6
1.4. Особенности криптосистемы Эль-Гамаля	6
2. Алгоритмы решения задачи дискретного логарифмирования	8
2.1. В произвольной мультипликативной группе	8
2.2. В кольце вычетов по простому модулю	8
2.3. Алгоритмы с экспоненциальной сложностью	9
2.4. Субэкспоненциальные алгоритмы	11
3. Американский стандарт кодирования - ASCII	13
4. Анализ DES, ГОСТ 28147-89, Crypto03, El-Gamal	15
5. Описание электронной обучающей программы "El-Gamal_Tutor"	20
5.1 Общие сведения	20
5.2. Функциональное назначение	20
5.3. Используемые технические средства	20
5.4. Описание логической структуры	21
5.5. Описание алгоритма	22
5.6. Вызов и загрузка	48
5.7. Входные и выходные данные	48
6. Описание сценария лабораторной работы	49
6.1. Постановка задачи	49
6.2. Содержание отчета о выполнении лабораторной работы .	50
Заключение	51
Список используемых источников	52
Припожение	54

ВВЕДЕНИЕ

В настоящее время в вузах Российской Федерации базовые стандарты обучения для ряда специальностей включают в себя разделы, связанные с изучением методов и средств защиты информации. Для успешного освоения данных тем необходимо понимание принципов и знание основных элементов криптографического преобразования информации.

В Интернете можно найти десятки описаний лабораторных работ, посвященных криптографической системе Эль Гамаля [1-3]. К сожалению, подавляющее большинство из них содержат задания и примеры реализации схемы Эль Гамаля без учета особенностей длинной арифметики, не требуя обоснований алгоритмов и использования обучающих программ, не затрагивая вопросы криптоанализа.

обучающих Известно компьютерных несколько программ, позволяющих быстро и достаточно полно ознакомиться с алгоритмами шифрования и расшифрования данных, используемыми в традиционных симметричных современных асимметричных криптосистемах. И Интернет, сожалению, эти программы, представленные в сети сопровождаются исходными текстами, ограничиваются краткой справочной информацией и содержат большое число ошибок и недочетов. В связи с этим и было принято решение: разработать алгоритм и реализовать свою электронную обучающую программу для изучения криптосистемы Эль Гамаля, а также разработать сценарий лабораторной работы с использованием этой программы. Предлагаемый вариант лабораторной работы призван преодолеть указанные недостатки.

постановка задачи

- 1. Провести анализ криптографического алгоритма Эль Гамаля.
- 2. Разработать сценарий выполнения лабораторной работы по изучению алгоритма Эль Гамаля.
- 3. Ознакомиться с обучающими программами по криптографии: DES, ГОСТ 28147-89, Crypto-03, Elgamal, выявить их достоинства и недостатки.
- 4. Разработать и реализовать обучающую компьютерную программу "El-Gamal Tutor".

1. ОБЩАЯ ИНФОРМАЦИЯ О КРИПТОСИСТЕМЕ ЭЛЬ-ГАМАЛЯ

Схема Эль-Гамаля (Elgamal) — криптосистема с открытым ключом, основанная на трудности вычисления дискретных логарифмов в конечном поле. Криптосистема включает в себя алгоритм шифрования и алгоритм цифровой подписи. Схема Эль-Гамаля лежит в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94, ГОСТ Р 34.10-2001). Схема была предложена Тахером Эль-Гамалем в 1985 году. Эль-Гамаль разработал один из вариантов алгоритма Диффи-Хеллмана. Он усовершенствовал систему Диффи-Хеллмана и получил два алгоритма, которые использовались для шифрования и для обеспечения аутентификации. В отличие от RSA алгоритм Эль-Гамаля не был запатентован и, поэтому, стал более дешевой альтернативой, так как не требовалась оплата взносов за лицензию. Считается, что алгоритм попадает под действие патента Диффи-Хеллмана.

Криптографические системы с открытым ключом используют так называемые односторонние функции, которые обладают следующим свойством:

- ullet Если известно x, то f(x) вычислить относительно просто
- ullet Если известно y=f(x), то для вычисления x нет простого (эффективного) пути.

Под односторонностью понимается не теоретическая однонаправленность, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства, за обозримый интервал времени.

В основу криптографической системы Эль-Гамаля положена сложность задачи дискретного логарифмирования в конечном поле. Для шифрования используется операция возведения в степень по модулю большого числа. Для дешифрования за разумное время необходимо уметь вычислять дискретный логарифм в конечном поле по простому модулю, что является вычислительно трудной задачей.

В криптографической системе с открытым ключом каждый участник

располагает как открытым ключом (англ. public key), так и закрытым ключом (англ. private key). В криптографической системе Эль-Гамаля открытый ключ состоит из тройки чисел, а закрытый ключ состоит из одного числа. Каждый участник создаёт свой открытый и закрытый ключ самостоятельно. Закрытый ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их.

1.1. Алгоритм создания открытого и закрытого ключей

Ключи в схеме Эль-Гамаля генерируются следующим образом:

- 1. Генерируется случайное простое число p.
- 2. Выбирается целое число g первообразный корень p.
- 3. Выбирается случайное целое число x, такое, что 1 < x < p.
- 4. Вычисляется $y = g^x \mod p$.
- 5. Открытым ключом является тройка (p, g, y), закрытым ключом число x.

1.2. Шифрование и расшифрование

Предположим, пользователь A хочет послать пользователю Б сообщение . Сообщениями являются целые числа в интервале от 0 до p-1. Алгоритм для шифрования:

- 1. Взять открытый ключ пользователя Б
- 2. Взять открытый текст М
- 3. Выбрать сессионный ключ случайное целое число k такое, что 1 < k < p-1
- 4. Зашифровать сообщение с использованием открытого ключа пользователя Б, то есть вычислить числа: $a=g^k \mod p$, и $b=y^k M \mod p$.

Алгоритм для расшифрования:

- 1. принять зашифрованное сообщение (a, b) от пользователя A
- 2. Взять свой закрытый ключ M
- 3. Применить закрытый ключ для расшифрования сообщения: $M = b(a^x)^{-1} \bmod p$
- 4. При этом нетрудно проверить, что (x) = 1 -kx (x) = 1

$$(a^x)^{-1} \equiv g^{-kx} \pmod{p}$$
, и поэтому $b(a^x)^{-1} \equiv (y^k M) g^{-xk} \equiv (g^{xk} M) g^{-xk} \equiv M \pmod{p}$.

1.3. Дешифрование

Дешифрование - получение открытых данных по зашифрованным в условиях, когда алгоритм расшифрования и его секретные параметры не являются полностью известными и расшифрование не может быть выполнено обычным путем. Алгоритм для дешифрования криптосистемы Эль-Гамаля:

- 1. Перехватить зашифрованное сообщение (a, b).
- 2. Взять открытый ключ (p, g, y)
- 3. Решить относительно x уравнение $y \equiv g^x \pmod{p}$
- 4. Расшифровать сообщение по формуле $M = b(a^x)^{-1} mod p$

Собственно, самый главный вопрос из этого алгоритма — как по данным (p, g, y) найти x. Эта задача называется задачей дискретного логарифмирования [2].

1.4. Особенности криптосистемы Эль-Гамаля

- Криптосистема асимметричная (двухключевая).
- Блочная, с длиной блока открытого текста меньше или равной длине открытого (публичного) ключа.

- Длина открытого и закрытого ключей, по современным представлениям, 2048 бит или более.
- Используется лишь один метод шифрования метод аналитических преобразований.
- Базируется на вычислительно трудной задаче дискретного логарифмирования.
- Предоставляет возможность реализации электронной подписи.

2. АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ

2.1. В произвольной мультипликативной группе

Разрешимости и решению задачи дискретного логарифмирования в произвольной конечной абелевой группе посвящена статья J. Buchmann, M. J. Jacobson и E. Teske [8]. В алгоритме используется таблица, состоящая из $O(\sqrt{|g|})$ пар элементов, и выполняется $O(\sqrt{|g|})$ умножений. Данный алгоритм медленный и не пригоден для практического использования. Для конкретных групп существуют свои, более эффективные, алгоритмы.

2.2. В кольце вычетов по простому модулю

Рассмотрим сравнение

$$a^x \equiv b \pmod{p} \tag{1}$$

где p — простое, b не делится на p. Если a является образующим элементом группы $\mathbb{Z}/p\mathbb{Z}$, то сравнение (1) имеет решение при любых b. Такие числа a называются ещё первообразными корнями, и их количество равно $\phi(p)=p-1$, где ϕ — функция Эйлера. Решение сравнения (1) можно находить по формуле:

$$x \equiv \sum_{i=1}^{p=2} (1 - a^i)^{-1} b^i \pmod{p}$$
 (2)

Однако, сложность вычисления по этой формуле хуже, чем сложность полного перебора.

Следующий алгоритм [3] имеет сложность $O(\sqrt{p} \cdot \log p)$. Алгоритм

- 1. Присвоить $H := [\sqrt{p}] + 1$
- 2. Вычислить $c = a^H mod p$
- 3. Составить таблицу значений $c^u \ mod \ p$ для $1 \le u \le H$ и отсортировать её.

- 4. Составить таблицу значений $b \cdot a^v \mod p$ для $0 \le v \le H$ и отсортировать её.
- 5. Найти общие элементы в таблицах. Для них $c^u \equiv b \cdot a^v \pmod{p}$ откуда $a^{H \cdot u v} \equiv b \pmod{p}$
- 6. Выдать $H \cdot u v$.

Существует также множество других алгоритмов для решения задачи дискретного логарифмирования в поле вычетов [3]. Их принято разделять на экспоненциальные и субэкспоненциальные. Полиномиального алгоритма для решения этой задачи пока не найдено.

2.3. Алгоритмы с экспоненциальной сложностью

Алгоритм Гельфонда-Шенкса (алгоритм больших и малых шагов, baby-step giant-step) был предложен независимо советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году. Относится к методам встречи посередине. Идея алгоритма состоит в выборе оптимального соотношения времени и памяти, а именно в усовершенствованном поиске показателя степени.

Пусть задана циклическая группа G порядка n, генератор группы α и некоторый элемент группы β . Задача сводится к нахождению целого числа x, для которого выполняется $\alpha^x = \beta \mod m$.

Алгоритм Гельфонда — Шенкса основан на представлении x в виде $x=i\cdot m-j$, где $m=\lfloor \sqrt{n}\rfloor+1$, и переборе $1\leq i\leq m$ и $0\leq j\leq m$. Ограничение на i и j следует из того, что порядок группы не превосходит m, а значит указанные диапазоны достаточны для получения всех возможных из полуинтервала [0;m). Такое представление равносильно равенству

$$\alpha^{im} = \beta \alpha^j \tag{3}$$

Алгоритм предварительно вычисляет α^{im} для разных значений i и сохраняет их в структуре данных, позволяющей эффективный поиск, а затем перебирает всевозможные значения j и проверяет, если $\beta \alpha^j$ соответствует какому-то значению i. Таким образом находятся индексы

i и j, которые удовлетворяют соотношению (3) и позволяют вычислить значение $x=i\cdot m-j$.

Алгоритму Гельфонда — Шенкса требуется O(n) памяти. Возможно выбрать меньшее m на первом шаге алгоритма, но это увеличивает время работы программы до O(n/m).

Рис. 1: Мартин Хеллман

Другим методом дискретного логарифмирования является алгоритм Сильвера-Полига-Хеллмана. Он работает, если известно разложение числа $p-1=\prod_{i=1}^s q_i^{\alpha_i}$ на простые множители. Сложность оценивается как $O(\sum_{i=1}^s \alpha_i (\log p + q_i))$. Если множители, на которые раскладывается p-1, достаточно маленькие, то алгоритм чрезвычайно эффективен. Это необходимо учитывать в выборе параметров при разработке криптографических схем, основанных на вычислительной сложности дискретного логарифмирования, иначе схема будет ненадёжной.

Для применения алгоритма Сильвера-Полига-Хеллмана необходимо знать разложение p-1 на множители. В общем случае задача факторизации — достаточно трудоёмкая, однако если делители числа — небольшие, то это число можно быстро разложить на множители даже методом последовательного деления. Таким образом, в тех случаях, когда эффективен алгоритм Сильвера-Полига-Хеллмана, необходимость факторизации не усложняет задачу.

Ещё одним методом дискретного логарифмирования является ρ -метод Полларда, который был предложен Джоном Поллардом в 1978 году, основные идеи алгоритма похожи на ρ -алгоритм Полларда для

факторизации чисел. Условием работы ρ -метода Полларда является простота порядка группы, порождённой основанием a дискретного логарифма по модулю p.

Алгоритм имеет эвристическую оценку сложности $O(p^{\frac{1}{2}})$. По сравнению с другими методами дискретного логарифмирования ρ -метод Полларда является менее затратным как по отношению к вычислительным операциям, так и по отношению к затрачиваемой памяти. Например, при достаточно больших значениях числа p данный алгоритм является вычислительно менее сложным, чем алгоритм COS и алгоритм Адлемана. С другой стороны, условие работы алгоритма накладывает серьёзные ограничения на его использование.

2.4. Субэкспоненциальные алгоритмы

Данные алгоритмы имеют сложность, оцениваемую как $O(\exp(c(\log p \log p \log p)^d))$ арифметических операций, где c и $0 \le d \le 1$ — некоторые константы. Эффективность алгоритма во многом зависит от близости c к 1 и d — к 0.

Алгоритм Адлемана [9] появился в 1979 году. Это был первый субэкспоненциальный алгоритм дискретного логарифмирования. На практике он всё же недостаточно эффективен. В этом алгоритме $d=\frac{1}{2}$.

Алгоритм COS [3] был предложен в 1986 году математиками Копперсмитом (Don Coppersmith), Одлыжко (Andrew Odlyzko) и Шреппелем (Richard Schroeppel). В этом алгоритме константа $c=1, d=\frac{1}{2}$. В 1991 году с помощью этого метода было проведено логарифмирование по модулю $p\approx 10^{58}$. В 1997 году Вебер [3] провел дискретное логарифмирование по модулю $p\approx 10^{85}$ с помощью некоторой версии данного алгоритма. Экспериментально показано, что при $p\leq 10^{90}$ алгоритм COS лучше решета числового поля.

Дискретное логарифмирование при помощи решета числового поля [3] было применено к дискретному логарифмированию позднее, чем к факторизации чисел. Первые идеи появились в 1990-х годах. Алгоритм, предложенный Д. Гордоном в 1993 году [3], имел эвристическую сложность $O(\exp 3^{3/2}(\log p \log p \log p)^{\frac{1}{3}})$, но оказался достаточно непрактичным.

Позднее было предложено множество различных улучшений данного алгоритма. Было показано, что при $p \geq 10^{100}$ решето числового поля быстрее, чем COS [3]. Современные рекорды в дискретном логарифмировании получены именно с помощью этого метода.

Наилучшими параметрами в оценке сложности на данный момент является $c=(92+26\sqrt{13})^{1/3}/3\approx 1,902,\ d=\frac{1}{3}.$ Для чисел специального вида результат можно улучшить. В некоторых случаях можно построить алгоритм, для которого константы будут $c\approx 1,00475,\ d=\frac{2}{5}.$ За счёт того, что константа c достаточно близка к 1, подобные алгоритмы могут обогнать алгоритм с $d=\frac{1}{3}.$

Другая возможность эффективного решения задачи вычисления дискретного логарифма связана с квантовыми вычислениями. Теоретически доказано, что с их помощью дискретный логарифм можно вычислить за полиномиальное время. В любом случае, если полиномиальный алгоритм вычисления дискретного логарифма будет реализован, это будет означать практическую непригодность криптосистем на его основе [3].

3. АМЕРИКАНСКИЙ СТАНДАРТ КОДИРОВАНИЯ - ASCII

ASCII (англ. American Standard Code for Information Interchange) — американская стандартная 7-битная кодировочная таблица для печатных символов и некоторых специальных кодов, использующаяся в компьютерной коммуникации. ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов.

Таблица была разработана и стандартизована в 1963 году. Множество современных кодировок и стандартов (UTF-8, Win-1251, KOИ-8) являются расширениями стандарта ASCII. В СССЈ стандарт был утвержден в 1987 году в виде таблицы международной ссылочной версии кода КОИ-7 НО ГОСТ 27463-87 (СТ СЭВ 356-86) «Системы обработки информации. 7-битные кодированные наборы символов» [?].

Dec Hex	Oct Chr	Dec Hex	Oct	HTML	Chr	Dec Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000 NULL	32 20	040		Space	64 40	100	@	@	96	60	140	`	,
11	001 Start of Header	33 21	041	!	1	65 41	101	A	Α	97	61	141	a	a
2 2	002 Start of Text	34 22	042	"	n	66 42	102	B	В	98	62	142	b	b
3 3	003 End of Text	35 23	043	#	#	67 43	103	C	C	99	63	143	c	C
4 4	004 End of Transmission	36 24	044	\$	\$	68 44	104	D	D	100	64	144	d	d
5 5	005 Enquiry	37 25	045	%	%	69 45	105	E	E	101	65	145	e	e
6 6	006 Acknowledgment	38 26	046	&	&	70 46	106	F	F	102	66	146	f	f
7 7	007 Bell	39 27		'	•	71 47	107	G	G	103	67	147	g	g
8 8	010 Backspace	40 28	050	((72 48	110	H	Н	104	68	150	h	h
9 9	011 Horizontal Tab	41 29	051))	73 49	111	I	I	105	69	151	i	i
10 A	012 Line feed	42 2A	052	*	*	74 4A	112	J	J	106	6A	152	j	j
11 B	013 Vertical Tab	43 2B	053	+	+	75 4B	113	K	K	107	6B	153	k	k
12 C	014 Form feed	44 2C	054	,	,	76 4C	114	L	L	108	6C	154	l	1
13 D	015 Carriage return	45 2D	055	-	-	77 4D	115	M	M	109	6D	155	m	m
14 E	016 Shift Out	46 2E	056	.		78 4E	116	N	N	110	6E	156	n	n
15 F	017 Shift In	47 2F	057	/	/	79 4F	117	O	0	111	6F	157	o	0
16 10	020 Data Link Escape	48 30	060	0	0	80 50	120	P	P	112	70	160	p	p
17 11	021 Device Control 1	49 31	061	1	1	81 51	121	Q	Q	113	71	161	q	q
18 12	022 Device Control 2	50 32	062	2	2	82 52	122	R	R	114	72	162	r	r
19 13	023 Device Control 3	51 33	063	3	3	83 53	123	S	S	115	73	163	s	S
20 14	024 Device Control 4	52 34	064	4	4	84 54	124	T	T	116	74	164	t	t
21 15	025 Negative Ack.	53 35	065	5	5	85 55	125	U	U	117		165	u	u
22 16	026 Synchronous idle	54 36	066	6	6	86 56	126	V	V	118	76	166	v	V
23 17	027 End of Trans. Block	55 37	067	7	7	87 57	127	W	W	119	77	167	w	W
24 18	030 Cancel	56 38	070	8	8	88 58	130	X	X	120	78	170	x	X
25 19	031 End of Medium	57 39	071	9	9	89 59	131	Y	Υ	121	79	171	y	У
26 1A	032 Substitute	58 3A	072	:	:	90 5A	132	Z	Z	122	7A	172	z	Z
27 1B	033 Escape	59 3B	073	;	;	91 5B	133	[[123	7B	173	{	{
28 1C	034 File Separator	60 3C	074	<	<	92 5C	134	\	1	124	7C	174		Ì
29 1D	035 Group Separator	61 3D	075	=	=	93 5D	135]]	125	7D	175	}	}
30 1E	036 Record Separator	62 3E	076	>	>	94 5E	136	^	^	126	7E	176	~	~
31 1F	037 Unit Separator	63 3F	077	?	?	95 5F	137	_	_	127	7F			Del

Рис. 2: ASCII коды

В криптографических программах ASCII используется для

преобразования символов текста в цифры, чтобы текст было возможно представить в виде чисел и совершать над ним криптографические преобразования. Например: большим буквам английского алфавита соответствуют значения с 97 по 122.

Поскольку на подавляющем большинстве современных компьютеров минимально адресуемой единицей памяти является байт (размером в 8 бит), там используются 8-битные, а не 7-битные символы. Обычно символ ASCII расширяют до 8 бит, подставляя нулевой бит в качестве старшего. Таким образом, каждый преобразованный в число символ занимает ровно один байт. Уменьшение размера одного символа для криптосистем главным образом означает возможность передать больший шифротекст в одном блоке при неизменной длине ключа.

4. AHAЛИЗ DES, ГОСТ 28147-89, CRYPTO03, EL-GAMAL

Перед началом написания программы "El-Gamal_Tutor" были изучены другие приложения для обучения криптосистемам. Одними из них были: DES, ГОСТ 28147-89, Crypto-03 и El-Gamal.

Рис. 3: Главное меню программы "Система шифрования DES"

Программа "Система шифрования DES" предлагает режим обучения симметричной криптосистеме DES, а так же, в качестве дополнительной функции, возможность зашифровать и расшифровать произвольное сообщение используя криптосистему DES.

Ввод	начальных данных	x						
Для прохождения теста Вы должны ввести шифруемое сообщение и ключ шифрования. Размер шифруемого сообщения и ключа должен быть равен 8 байтам.								
Шифруемое сообщение								
Проверка	CF F0 EE E2 E5 F0 EA E0							
11001111 11110000 11101110 1	1100010 11100101 11110000 11101010 1110000)						
Ключ шифрования								
КлючКлюч	CA EB FE F7 CA EB FE F7							
11001010 11101011 11111110 1	1110111 11001010 11101011 11111110 1111011	1						
	<u>В</u> перед >>							

Рис. 4: Ввод начальных данных

Шифр	ование/Дешифрование	×
Ключевое слово Ключ	Ключевое	: СЛОВО
Шифруемое сообщение	Дешифру	емое сообщение
Проверка	<u>Ш</u> ифрование >> *8м-гу ^Δ << <u>Д</u> ешифрование <u>В</u> ыход	
CF F0 EE E2 E5 F0 EA E0	5C E6 38 EC 0B 72 F3	CO

Рис. 5: Шифрование/Расшифрование [4]

В данном случае в программе режим называется неправильно, так как на самом деле вместо дешифрования происходит расшифрование.

К сожалению, программа не предлагает дополнительных возможностей, таких, как отдельный режим проведения криптографических вычислений и преобразований.

Рис. 6: Ввод данных в обучающей программе ГОСТ 28147-89

Рис. 7: Первый шаг обучения ГОСТ 28147-89 [6]

Как и программа "Система шифрования DES", программа ГОСТ 28147-89 криптографических предлагает дополнительных не ИЛИ математических возможностей. Программа не предлагает дополнительных криптографических или математических функций И предлагает не криптографический алгоритм ГОСТ-89 опробовать возможности произвольном сообщении без необходимости проходить при этом шаги обучения криптосистеме.

Рис. 8: Основная форма программы вычислений, полезных в криптографии v.10.11.2003 – Crypto03 [4]

Программа Crypto03 представляет собой своего рода криптографический калькулятор, содержащий в себе ряд вычислительных функций, полезных в криптографии. Она не предоставляет режима обучения.

Рис. 9: Вычисление $X^N \mod M$ в программе Crypto03

Программа El-Gamal - обучающая программа, посвящённая криптосистеме Эль-Гамаля. Основными недостатками программы являются скупая подача обучающего материала и весьма неудобный интерфейс. Программа не предлагает дополнительных криптографических или математических функций, а также проблематична в освоении без использования документации.

Рис. 10: Основная форма обучающей программы El-Gamal [5]

После рассмотрения всех этих программ, была сформирована картина того, как должна выглядеть будущая электронная обучающая программа El-Gamal_Tutor.

5. ОПИСАНИЕ ЭЛЕКТРОННОЙ ОБУЧАЮЩЕЙ ПРОГРАММЫ "EL-GAMAL_TUTOR"

Посредством среды программирования Microsoft Visual Studio Community 2017 создано приложение, предназначенное для обучения основам криптографической системы Эль-Гамаля.

5.1. Общие сведения

Программа написана на языке программирования С# в визуальной среде Microsoft Visual Studio 2017 Community Edition с использованием программной платформы Microsoft .NET Framework 4.5. Проект общим объемом 1.84 Мб. Программа функционирует в операционной системе Windows 7 или новее.

При разработке использовались модули: System.Collections.Generic, System.ComponentModel, System.Data, System.Drawing, System.Linq, System.Text, System.Threading.Tasks, System.Windows.Forms, System.Numerics.

Размер генерируемых программой ключей теоретически ничем не ограничен, практически же он ограничен в соответствии с характеристиками компьютера, на котором запускается программа.

5.2. Функциональное назначение

Приложение предназначено для обучения методам и алгоритмам, используемым при реализации асимметричной криптографической системы Эль-Гамаля, а также частичной проверки знаний учащегося.

Дополнительные функции приложения позволяют использовать его в качестве программы для небольших полезных в криптографии вычислений.

5.3. Используемые технические средства

Компьютер с шестиядерным процессором 3.2 GHz, 8 Gb RAM, Microsoft Windows 10 x64.

5.4. Описание логической структуры

Программа логически разделена на две части: режим обучения и вспомогательные функции.

Рис. 11: Блок-схема программы "El-Gamal_Tutor"

В режиме обучения рассматриваются математические основы, на которых базируется криптосистема Эль-Гамаля, алгоритмы генерации ключей, шифрования и расшифрования, а также основы криптоанализа системы и некоторые алгоритмы дискретного логарифмирования. Дополнительный функционал включает в себя различные вычислительные возможности, так или иначе связанные с криптосистемой Эль-Гамаля. Они могут использоваться как в совокупности с обучением криптосистеме, так и отдельно от него.

5.5. Описание алгоритма

Рис. 12: Основное меню программы "El-Gamal_Tutor"

Генера	ация ключей и расшифрование —	□ ×							
Генер	Генерация/ввод ключей:								
Ко	л-во разрядов р (только для генерации):	30							
p =	517467185476731163468517378827	Сгенерировать							
g =	2	Степерировать							
x =	290187221376274324058782963120	Сгенерировать							
y =	308728593639302017025256895664	Вычислить							
Расш	ифрование:								
a =	496976537142753426250778832233								
b =	279270060747999426426084244771								
Расшифровать									
Раси	шифрованное сообщение: Эль-Гамаль								

Рис. 13: Генерация ключей и расшифрование

В режиме генерации ключей мы можем сгенерировать ключи для криптосистемы Эль-Гамаля, а также расшифровать необходимую фразу из шифротекста с использованием этих ключей.

Рис. 14: Результат шифрования

Режим шифрования позволяет зашифровать сообщение пользователя с помощью введённого открытого ключа.

Рис. 15: Тест простоты произвольного числа

Режим теста простоты позволяет проверить, является ли введённое целое неотрицательное число простым или составным. Для определения простоты числа в программе используется вероятностный тест Миллера-Рабина, количество «свидетелей простоты» - 4000.

Вычисление первообразного корня	_		×		
Введите или сгенерируйте модуль	кол-во разрядо				
18113443457355578543	20				
		Сгенериро	овать		
Вычислить:					
Полный метод 5					
Упрощённый метод 5					

Рис. 16: Вычисление перевообразного корня по заданному модулю

Режим вычисления первообразного корня позволяет вычислить первообразный (или примитивный) корень для большого числа. Поскольку полный метод вычисления первообразного корня очень медленен для больших чисел, в программе предусмотрена возможность вычисления первообразного корня по «упрощённому» методу, который даёт ответ, верный только с некоторой вероятностью.

Вычисление функции — 🗆	×
Введите число:	
150	
Вычислить	
Количество чисел, взаимно простых с введ	ённым:
40	

Рис. 17: Вычисление функции Эйлера

Режим вычисления функции Эйлера позволяет вычислить количество чисел, взаимно простых с заданным.

Рис. 18: Возведение в степень по модулю

Режим возведения в степень по модулю представляет собой калькулятор заданных степеней произвольных чисел по заданному модулю.

Дискретный логарифм	_		×
A^x = B mod M		Случай данні	
A 489089			
B 25430788			
M 555126753227			
Алгоритм Гельфонда-Шенкса		горитм I-Хеллмаі	на
X = 552147215997			

Рис. 19: Дискретное логарифмирование

Режим дискретного логарифмирования позволяет произвести поиск решения уравнения $A^X = B \mod M$ для произвольных целых чисел A и B и простого числа M. Для поиска решения пользователю предлагается использовать три алгоритма дискретного логарифмирования: алгоритм Гельфонда-Шенкса, ρ -метод Полларда и алгоритм Полига-Хеллмана.

Рис. 20: О программе

В окне «О программе» мы можем увидеть информацию о приложении El-Gamal_Tutor.

Теперь перейдем к режиму обучения. Он состоит из нескольких шагов.

Рис. 21: Введение

На первом шаге рассказывается про операцию возведения в степень по модулю и предлагается решить три примера. Условия заданий генерируются случайным образом.

Возведен	ние в степень по г	модулю	_		×
от делен степень (модуль Наприм с = 8 - э	ение в степень по г ния натурального ч е (показатель сте). ер, пусть нам дань то остаток от деле нение: c = b^e mod	исла b (основа пени), на натур ы b = 5, e = 3 и в ния 5^3 на 13.	ние), во: зальное ч	зведенног нисло m	0 В
Ответ: [9^4 mod Ответ: [6^4 mod	19 = 6 13 =	тепень 3 по мо	дулю 15		
Ответ:	9			Далее	

Рис. 22: Возведение в степень по модулю

На втором шаге рассказывается про функцию Эйлера и предлагается решить три примера. Условия заданий так же генерируются случайным образом.

Функция Эйлера	_		×
Функция Эйлера fi(n)— мультипл арифметическая функция, равна натуральных чисел, меньших n и При этом полагают, что число 1 всеми натуральными числами, и	ая количес: 1 взаимно г взаимно п	ростых с	сним.
Например, для числа 24 сущест взаимно простых с ним чисел (1 поэтому fi(24)=8.			
Для произвольного натурального Эйлера может быть вычислена где p[1]p[n] - простые числа, яв числа n согласно основной теор	по следуюц вляющиеся	цей форм делител	
$\varphi\left(\prod_{i=1}^{n} p_i^{k_i}\right) = \prod_{i=1}^{n}$	$[p_i^{k_i} -$	$-p_i^{k_i-}$	1)
fi(24) = 8			
fi(9) = 6			
fi(8) = 4			
Назад		Далее	

Рис. 23: Функция Эйлера

На третьем шаге объясняется операция нахождения обратного по модулю числа, и предлагается найти два таких числа для сгенерированных условий.

Нахождение обратного по модулю — 🗆 🗙	
В обычной арифметике a^-1 = 1/a, a*(a^-1) = 1, a!= 0. В модулярной арифметике х называется величиной, обратной а по модулю m, если выполняется сравнение a*x = 1 mod m, при этом (a, m) = 1 (т.е. а и m взаимно просты). Основные способы нахождения обратных по модулю величин: 1. Подставляя поочередно вместо х значения 1, 2,, (m-1), найти решение уравнения (a*x) mod m = 1	
x = 4^(-1) mod 9 = 7	
 Если известна функция Эйлера fi(m), то (a^-1)mod m = a^(fi(m)-1)mod m. 	
x = 18^(-1) mod 29 = 21	
Назад Далее	

Рис. 24: Обратное по модулю число

Четвёртый шаг рассказывает о Тахере Эль-Гамале.

Рис. 25: Тахер Эль-Гамаль

Пятый шаг рассказывает общую информацию о схеме Эль-Гамаля и основных стандартах где она использовалась или используется.

Рис. 26: Общая информация о криптосистеме

На пятом шаге мы видим конкретный пример генерирования ключей криптосистемы. Числа р и х можно как вводить с клавиатуры, так и случайно сгенерировать.

Рис. 27: Генерация ключей

На следующем шаге объясняется алгоритм шифрования по схеме Эль-Гамаля.

Шифрование		_		×
g = 2 p = 6117226434474 y = 5323310166900 Теперь получивша:	у каналу получен открытый ключ (g, p, y), со 22623837281716387 79393158023521900 я открытый ключ сторона может зашифров щение			
	ме Эль-Гамаля осуществляется в три этапа нонный ключ: случайное k, такое, что 1 < k <			
Сгенерировать	85358867846221101467	•		
2. Вычисляем числ	o a = g^k mod p.			
Вычислить	164495149760850741500294664111			
3. Вычисляем числ	o b = y^k * M mod p.			
Вычислить	259783102045393445813194326242			
Пара чисел (a, b) я	вляется шифротекстом.			
Назад			Далее	

Рис. 28: Шифрование

Следующий шаг показывает, как с помощью открытого и секретного ключей расшифровать сообщение, введённое и зашифрованное на предыдущем шаге.

Рис. 29: Расшифрование

На следующем шаге рассказывается о математической задаче дискретного логарифмирования, её связи с криптоанализом схемы Эль-Гамаля, а также предлагается вручную решить два задания. Задания на этом шаге генерируются случайным образом.

Јискрет	ное логар	ифмиро	вание		_		×
зашифр перехва g^x mod дискрет	ованных п этить открі І р = у. Зад тного лога	ю криптос ытый ключ ача вычис рифмиров	анализа) пережистеме Эль-Га и подобрать с пения такого ч ания. В данном ию д от числа	маля, н секретні исла на и случає	еобходи ый ключ зывает нам не	мо такж х, такой ся задач	, что ей
_		погарифі	и по основанию	2 и мо	дулю 5 (от числа	1:
Ответ:	4						
Логари Ответ:	фм по осн 2	ованию 5 і	и модулю 7 от ч]	исла 4:			
вычисл которь сегодн дискре	ительной іх базируе яшний ден тный лога	сложност тся крипто ь не суще рифм в ко	фиирования о бо и является ография с откр ствует алгорит нечном поле з	одной и ытым к мов, по а полин	з основі лючом. зволяю омиальн	ных зада На щих вычи ное врем	ислить ія.
Шенкса экспон	а (он же ал енциально	горитм бо ре время.	решения этой эльших и мальс	сшагов), решаю	т задачу	за
вычисл			можностей эф огарифма связ	-			дачи

Рис. 30: Дискретный логарифм

Ha следующем рассказывается существующих шаге O логарифма. нахождения дискретного экспоненциальных алгоритмах Для наглядной демонстрации вычислительной сложности дискретного логарифмирования пользователю предлагается реализовать алгоритм полного перебора для дискретного логарифмирования и убедиться в полной непригодности этого метода даже для сравнительно небольших модулей.

Алгоритмы решения задачи дискретного ло —
Примерами экспоненциальных алгоритмов дискретного погарифмирования являются такие методы как алгоритм полного перебора, алгоритм Гельфонда-Шенкса и ро-метод Полларда. Сложность алгоритма полного перебора можно оценить в O(p^2) операций, что делает его неприемлемым для криптоанализа даже сравнительно небольших ключей. Для наглядной демонстрации вычислительной трудоёмкости перебора, реализуйте на любом языке программирования алгоритм полного перебора для задачи дискретного логарифмирования и найдите х в следующих задачах:
79560^x = 182693 mod 68831671 Ответ: 61204888 72547^x = 22520254 mod 58656431 Ответ: 14521334
Назад

Рис. 31: Алгоритмы дискретного логарифмирования

На следующих трёх шагах рассказывается об одном из алгоритмов дискретного логарифмирования - алгоритме Гельфонда-Шенкса, также известном как алгоритм больших и малых шагов. На первом из этих шагов пользователь получает общую информацию об алгоритме Гельфонда-Шенкса.

Рис. 32: Общая информация об алгоритме Гельфонда-Шенкса

На следующем шаге пользователь знакомится с математическим обоснованием алгоритма Гельфонда-Шенкса и, на ещё одном шаге пользователю демонстрируются шаги алгоритма Гельфонда-Шенкса, записанные превдокодом.

Рис. 33: Математическое обоснование алгоритма Гельфонда-Шенкса

Рис. 34: Псевдокод алгоритма Гельфонда-Шенкса

Рис. 35: Общая информация об алгоритме Полига-Хеллмана

На следующих трёх шагах рассказывается о другом алгоритме дискретного логарифмирования - алгоритме Сильвера-Полига-Хеллмана. На первом из этих шагов пользователь получает общую информацию об этом алгоритме.

Рис. 36: Частный случай алгоритма Полига-Хеллмана

На втором из этих шагов обучения демонстрируется псевдокод частного случая алгоритма Полига-Хеллмана, применимого только для групп с простым порядком. Этот алгоритм используется в общем алгоритме Сильвера-Полига-Хеллмана.

Рис. 37: Общий случай алгоритма Полига-Хеллмана

На третьем из этих шагов обучения демонстрируется псевдокод общего случая алгоритма Полига-Хеллмана, использующего рассмотренный выше частный алгоритм Сильвера-Полига-Хеллмана и китайскую теорему об остатках.

Рис. 38: Общая информация о ρ -методе Полларда

На следующем шаге обучения пользователь знакомится с общей информацией об ещё одном алгоритме дискретного логарифмирования - ρ -методе Полларда, его преимуществами и ограничениями.

На следующих пяти шагах пользователю предлагается пройти небольшое теоретическое по пройденным темам. Тестирование состоит из десяти вопросов с четырьмя вариантами ответов для каждого из них.

ест, часть 1	_		×
Вопрос 1			
Функция Эйлера fi(n) - мультипликативная арифметическая функция, равная			
 Количеству целых неотрицательных чисел, меньших n и взаимно простых с н 	им		
○ Количеству целых неотрицательных чисел, меньших или равных n и взаимно	простых с	ним	
○ Количеству целых неотрицательных простых чисел, меньших п			
○ Количеству действительных чисел, меньших п и взаимно простых с ним			
В модулярной арифметике число x называется величиной, обратной числу а по м выполнено: О а = x mod m	подулю m, є	если	
O xm = 1 mod a			
• ax mod m = 1			
○ am = 1 mod x			
Назад		Далее	

Рис. 39: Тест, часть 1

Первая часть тестирования включает в себя вопросы, касающиеся определения функции Эйлера и определения обратного по модулю числа.

Рис. 40: Тест, часть 2

Вторая часть тестирования включает в себя два вопроса. Первый вопрос касается вычисления обратного числа по модулю с помощью функции Эйлера, второй вопрос касается вида широтекста в криптосистеме Эль-Гамаля.

Рис. 41: Тест, часть 3

Следующие два вопроса касаются оснований криптографической стойкости криптосистемы Эль-Гамаля и общей формулы вычисления функции Эйлера.

Рис. 42: Тест, часть 4

Седьмой вопрос посвящён вычислительной сложности алгоритма Гельфонда-Шенкса. Восьмой вопрос посвящён другим криптосистемам, основанным на криптографической стойкости дискретного логарифмирования.

Рис. 43: Тест, часть 5

Наконец, пятая часть теста посвящена границам применимости и вычислительной сложности алгоритмов дискретного логарифмирования.

Рис. 44: Результаты проверки знаний

На завершающем шаге обучения показаны результаты выполненных заданий и ответов на вопросы теста, и пользователь получает оценку своих знаний.

5.6. Вызов и загрузка

Вызов программы осуществляется стандартными средствами системы Windows с установленной платформой Microsoft .NET Framework 4.5. Имя загрузочного модуля – ElgamalTutor.exe.

5.7. Входные и выходные данные

Входные данные – ответы на поставленные вопросы, выходные данные – результаты тестирования и примеры работы криптосистемы.

6. ОПИСАНИЕ СЦЕНАРИЯ ЛАБОРАТОРНОЙ РАБОТЫ

6.1. Постановка задачи

- 1. Ознакомиться с обучающей компьютерной программой El-Gamal Tutor.
- 2. Изучить и привести описание алгоритма Эль Гамаля (в соответствии с обозначениями из [1]) с доказательством корректности алгоритма, его достоинствами и недостатками.
- 3. Зафиксировать (для отчета) последовательность этапов обучения в программе El-Gamal_Tutor.
- 4. Провести тестирование программы El-Gamal_Tutor с целью выявления ошибок и недочетов.
- 5. С помощью математического пакета прикладных программ произвести шифрование и расшифрование сообщения, заданного в виде одного блока открытого текста. При этом длина ключей должна удовлетворять условиям: $|p|, |\delta| \geq 80, |r|, |\alpha| \geq 40$. Ключи описываются соотношениями: $K = (p, \alpha, \beta, \delta) : \alpha^{\delta} \equiv \beta \pmod{p}$, где $K = (k_O; k_S); k_O = (p, \alpha, \beta)$ открытый ключ; $k_S = (\delta)$ закрытый ключ.
- 6. Сформулировать и обосновать принципы работы алгоритма Эль Гамаля.
- 7. Одним из методов решения задачи дискретного логарифмирования осуществить криптоанализ заданного шифрованного текста на основе известных составляющих открытого ключа (p, α, β) .
- 8. Ответить на контрольные вопросы.
- 9. Составить и защитить отчет о проделанной работе.

6.2. Содержание отчета о выполнении лабораторной работы

- 1. Постановка задачи
- 2. Описание криптосистемы Эль Гамаля.
- 3. Последовательность этапов и результаты обучения с использованием программы El-Gamal_Tutor.
- 4. Выявление ошибок и недочетов в обучающей программе El-Gamal_Tutor.
- 5. Результаты шифрования и расшифрования с использованием ППП Maple.
- 6. Принципы работы алгоритма Эль Гамаля.
- 7. Последовательность этапов и результаты криптоанализа.
- 8. Ответы на контрольные вопросы.
- 9. Выводы
- 10. Библиография

ЗАКЛЮЧЕНИЕ

Практически в каждой коммерческой, военной и государственной отрасли требуется наличие системы, позволяющей шифровать данные, делая информацию, заложенную в эти данные, невозможной для воспроизведения обычным пользователем. Для получения нужных для этого кадров необходим эффективный процесс обучения специалистов в данной отрасли.

В обучении будущих специалистов в любой области немаловажную роль играет использование наглядных средств обучения, эксперимент (в том числе вычислительный) и проверка полученных знаний на практике. В современной образовательной системе успешно используются обучающие программы, лучшие из которых, как правило, сочетают в себе все эти три фактора. В настоящей работе был предложен вариант лабораторной работы по защите информации, специально для которой была разработана обучающая программа, проектировавшаяся в первую очередь исходя из всех вышеуказанных принципов.

Программа была представлена на нескольких научно-практических конференциях [10–13], лабораторная работа была представлена на двух научно-практических конференциях [12, 13]. В настоящее время осуществляется государственная регистрация программы.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Воронков Б. Н. Криптографические методы защиты информации: учебное пособие / Б. Н. Воронков. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2008. 59 с.
- Схема Эль-Гамаля / Википедия [текст]. (URL: https://ru.wikipedia.org/wiki/Схема_Эль-Гамаля) (дата обращения 13.05.2018).
- 3. Дискретное логарифмирование / Википедия [текст]. (URL: https://ru.wikipedia.org/wiki/Дискретное_логарифмирование) (дата обращения 06.05.2018).
- 4. Вычисления, полезные в криптографии : Crypto03.exe, v. 10.11.03 [электронный ресурс]. Ставрополь : КубГТУ, 2003.
- 5. Витер В. Обучающая программа El-Gamal. Версия 1.0 / В. Витер [электронный ресурс], 1999 г. (vvvslava@hotmail.ru).
- 6. Воронков Б. Н. Обучающая компьютерная программа для изучения российского стандарта криптографического преобразования / Б. Н. Воронков, И. И. Проскурин // Современные информационные технологии и ИТ-образование. Сборник избранных трудов 6-ой международной НПК (г. Москва, 12 14 декабря 2011 г.). М.: ИНТУИТ.РУ, 2011. С. 121 127.
- 7. Кабанов Е. В. Программа обучения алгоритму шифрования DES / Е. В. Кабанов, М. В. Прокопов [электронный ресурс], 2001г. (URL: http://www.blackw.des.ru, nexus@mail.ru) (дата обращения 28.09.2009).
- 8. Buchmann J., Jacobson M. J., Teske E. «On some computational problems in finite abelian groups». Mathematics of Computation, 1997, 220(66), 1663-1687.

- 9. Алгоритм Адлемана / Википедия [текст]. (URL: https://ru.wikipedia.org/wiki/Алгоритм_Адлемана) (дата обращения 08.03.2018).
- 10. Ковун В. А. Электронная обучающая программа El-Gamal_Tutor / В. А. Ковун, Б. Н. Воронков // Информатика: проблемы, методология, технологии: сборник материалов XVI международной научно-методической конференции, г. Воронеж, 11 12 февраля 2016 г. Воронеж: Издательство «Научно-исследовательские публикации», 2016. 3078 с. Раздел 6. VII международная школа-конференция «Информатика в образовании». С. 171 176.
- 11. Ковун В. А. Криптосистема Эль Гамаля. Лабораторная работа / В. А. Ковун, Б. Н. Воронков // Информатика: проблемы, методология, технологии: сборник материалов XVII международной научно-методической конференции, г. Воронеж, 9 10 февраля 2017 г.: в 5-ти томах. Воронеж: Издательство «Научно-исследовательские публикации», 2017. Т. 5. Информатика в образовании: материалы VII Школы-конференции. Секция 6: «Применение информационных технологий в преподавании различных дисциплин». С. 169 174.
- 12. Ковун В. А. Криптоанализ в обучающей программе El-Gamal_Tutor / В. А. Ковун, Б. Н. Воронков // Информатика: проблемы, методология, технологии: сборник материалов XVIII международной научнометодической конференции, г. Воронеж, 8 9 февраля 2018 г.: в 7-ти томах. Воронеж: Издательство «Научно- исследовательские публикации» (ООО «Вэлборн»), 2018. Т. 7. С. 194 198.
- 13. То сё пятое десятое

ПРИЛОЖЕНИЕ

Текст программы "El-Gamal_Tutor".

Электронная обучающая программа для изучения асимметричной криптосистемы Эль-Гамаля.