Physics 120B: Lecture 7

Projects

The Rubric, Once Again

- Sense some real-world quantity
 - input: analog or digital
 - sensor or user input (switches, keypad)
- Process the information
 - code in software
 - analog processing could play a role
- Do something externally
 - in reaction to the input and processing
 - LCD display at simple end; controlled motion on the other

Getting Ready

- Find a partner
 - not committed to stay in initial group
- Bat around project ideas
 - useful to have several in mind, if you can
 - could be based around a sensor, a technology, an action
 - we'll look at a variety of examples from the past
- Create a written, detailed proposal so that
 - we can evaluate the feasibility and level-appropriateness of the project
 - we can suggest expansions or reductions, easier
 alternatives, or come up with fallback de-scope options
 - you think through what the project needs in advance

Proposal Contents

- Motivation and overall concept
 - the big picture: why and what
- Functional definition
 - more detailed description of what the thing should do, and how it will react to all foreseeable operating states/stimuli
 - when you code the behavior, it is this section that defines what you are trying to do

Sensors

- what input devices are you going to use
- how do they behave and how are they to be used

Proposal, Continued

Mechanical Considerations

- this is where things can get janky
- it's easy to wave this off as not a big issue, but can be the hardest part in getting the project to work well
- how is the device supported?
- how are elements attached?
- what custom pieces will have to be made?
- out of what material?
- do we have the necessary materials on hand?

Electrical Considerations

- what elements are needed, and how are they hooked up?
- analog electronics needs/functions
- circuit diagram
- wiring (mechanical aspect: what wires, connectors, etc.)

Proposal, continued

Interface

- what (presumably) Arduino unit?
- what pins/inputs/outputs are needed?
- what communications?

Software

- how will the programming go?
- what are the tricky parts?
- what libraries might you use?
- what new capabilities do you need to explore?

Testing

– how easy is it to test performance in the lab?

Safety

- flame, sharp objects, high velocity, high voltage, chemicals, etc.
- how will you manage safety if these things are involved?

Proposal, continued

- Parts and Reusability
 - what parts do you need?
 - what parts are on hand?
 - what new parts are needed?
 - which parts will be consumed vs. reusable by future projects?
 - are there long lead-time items on the list?
- Expansion Options
 - what enhancements might you consider if things are going very well?
- De-scope Options
 - what ambitions might you shed if things are tough
 - fallback positions defining minimum capability

Proposal, continued

- What you will turn in
 - a brief section of the proposal explaining the contents of the report you expect to hand in at the end
 - a well-written proposal can serve as 70% of the final report
- Why all the work?
 - proposals are a key part of science
 - a spear with which to chase down Mammoth (NSF, NASA, DoE)
 - proposals focus the mind to clearly think through a project
 - the proposal becomes a template or guide to your work
 - helps organize/prioritize actions
 - gives a chance to sync up to class expectations

A Template Proposal

- For the fourth-week lab, we will switch gears a bit and make a mini-project following a proposal-form write-up
 - light-tracker with optical collision sensor/interrupt
 - you get a good example of what a proposal contains
 - you learn more about what a project takes to accomplish,
 on a smaller scale
 - you are turned loose to apply the skills acquired in first few weeks of the course
 - look for e-mail announcing release of "proposal"
 - replaces lab instructions for fourth week

Due Dates

- Proposals are due by the end of 5th week; Feb. 8
 - Gives us weekend to read and offer feedback next week
- You will have about two weeks to work on both the project proposal and the mini-project
- Don't worry about a complete report for the miniproject
 - usual functionality check by TA/prof
 - turn in code
 - paragraph about contributions
- Mini-project due Feb. 12/13
- Will stick midterm sometime after these due dates

Equipment Needs

- We have an amazing array of useful junk/parts
 - start here
- Stuff we don't have, you either purchase yourself, or UCSD buys
 - will it be used in future student projects?
 - is it reasonably-priced?

Lecture X 11

List of previously used devices/techniques

- Compiled by Fred Driscoll;
 represent instances in past several years
 - I'm not clear on what all these things refer to
- Digital Out
 - many LEDs •••
 - Relay/Valve/Solenoid •••
 - AC power control (relay) ••••
 - Stepper motor ••
- Digital In
 - pushbutton •••••
 - light break (photogate) •••
 - magnetic sensor (present or not) •
 - IR proximity ••
 - Passive IR (thermal) •

Components, continued

Analog In

- potentiometer •
- joystick ••
- phototransistor •••
- thermistor •
- flex strip •••
- accelerometer •
- gas sensor ?
- weight •
- audio bands ••••
- coherent detection •
- 40 kHz ultrasonic ●●

Components, continued

- Analog Out (PWM)
 - LED brightness control ••••
 - motor speed (drive; optoisolated) •••••••
 - motor position (servo) •••••••••
- Timing
 - RPM ••
 - echo-distance •
 - valve time •••
 - data logging •
- Time Slicing
 - 7-segment display •
 - keypad ••
 - touch-sensitive caps ••
 - remotes ••

Components/techniques, continued

- Serial I/O
 - MIDI •••
 - I²C Temperature (?) •••••
 - blood pressure •
 - PC input ••
 - Camera •
 - Sound synthesizer •
 - USB
- Parallel I/O
 - Liquid Crystal Display (LCD) •••
 - DAC •
 - 8 LEDs

Some Time Touring Old Projects

- http://nnp.ucsd.edu/Phy120B/tour 121/
 - lots of images, and brief descriptions
- Should also be past project reports to thumb through (in lab 3574, rear bookshelves)
 - more complete descriptions and how they were done