

W3.Solutions()

Dokumen
Laporan
Homework
Unsupervised
Learning

1. EDA & Pre-Processing

a. tipe data, missing values, duplicated values, dan range value

<class 'pandas.core.frame.DataFrame'> RangeIndex: 62988 entries, 0 to 62987 Data columns (total 23 columns): Column Non-Null Count Dtype MEMBER NO 62988 non-null int64 FFP DATE 62988 non-null object FIRST FLIGHT DATE 62988 non-null object GENDER 62985 non-null object FFP TIER 62988 non-null int64 WORK CITY 60719 non-null object WORK PROVINCE 59740 non-null object WORK COUNTRY 62962 non-null object 62568 non-null float64 LOAD TIME 62988 non-null object 10 FLIGHT COUNT 62988 non-null int64 11 BP SUM 62988 non-null int64 12 SUM YR 1 62437 non-null float64 62850 non-null float64 13 SUM YR 2 62988 non-null int64 14 SEG KM SUM 15 LAST FLIGHT DATE 62988 non-null object 16 LAST TO END int64 17 AVG INTERVAL 62988 non-null float64 18 MAX INTERVAL 62988 non-null int64 19 EXCHANGE COUNT 62988 non-null int64 20 avg discount float64 21 Points Sum 62988 non-null int64 22 Point NotFlight 62988 non-null int64 dtypes: float64(5), int64(10), object(8) memory usage: 11.1+ MB

Tipe data sudah tepat

```
df.isna().sum()
MEMBER NO
FFP DATE
FIRST FLIGHT DATE
GENDER
FFP TIER
WORK CITY
                      2269
WORK PROVINCE
                      3248
WORK COUNTRY
AGE
LOAD TIME
FLIGHT COUNT
BP SUM
SUM YR 1
SUM YR 2
                       138
SEG KM SUM
LAST FLIGHT DATE
LAST TO END
AVG INTERVAL
MAX INTERVAL
EXCHANGE COUNT
avg discount
Points Sum
Point NotFlight
dtype: int64
```

terdapat missing values

```
[ ] df.duplicated().sum()

tidak ada duplicated values
```

- Pengisian data pada feature AGE, SUM_YR_1, dan
 SUM YR 2 dengan median
- Drop missing values pada feature kategorikal
 WORK_CITY, WORK_PROVINCE, WORK_COUNTRY
 dan GENDER df.isna().sum()

MEMBER NO FFP DATE FIRST FLIGHT DATE FFP TIER AGE LOAD TIME FLIGHT COUNT BP SUM SUM YR 1 SUM YR 2 SEG KM SUM LAST FLIGHT DATE LAST TO END AVG INTERVAL MAX INTERVAL EXCHANGE COUNT avg discount Points Sum Point NotFlight dtype: int64

data setelah handle duplicated dan missing values

a. tipe data, missing values, duplicated values, dan range value

penampakan outliers

b. **statistik kolom numerik dan kategorikal**, bentuk distribusi kolom (numerik), dan jumlah unique value (kategorikal)

statistik numerikal

nums= ['MEMBER_NO','FFP_TIER','AGE','FLIGHT_COUNT','BP_SUM','SUM_YR_1','SUM_YR_2','SEG_KM_SUM','LAST_TO_END','AVG_INTERVAL','MAX_INTERVAL','EXCHANGE_COUNT','avg_discount','Points_Sum','Point_NotFlight']

df[nums].describe()

	MEMBER_NO	FFP_TIER	AGE	FLIGHT_COUNT	BP_SUM	SUM_YR_1	SUM_YR_2	SEG_KM_SUM	LAST_TO_END	AVG_INTERVAL	MAX_INTERVAL	EXCHANGE_COUNT	avg_discount	Points_Sum	Point_NotFlight
count	62988.000000	62988.000000	62568.000000	62988.000000	62988.000000	62437.000000	62850.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.0000	62988.000000
mean	31494.500000	4.102162	42.476346	11.839414	10925.081254	5355.376064	5604.026014	17123.878691	176.120102	67.749788	166.033895	0.319775	0.721558	12545.7771	2.728155
std	18183.213715	0.373856	9.885915	14.049471	16339.486151	8109.450147	8703.364247	20960.844623	183.822223	77.517866	123.397180	1.136004	0.185427	20507.8167	7.364164
min	1.000000	4.000000	6.000000	2.000000	0.000000	0.000000	0.000000	368.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.0000	0.000000
25%	15747.750000	4.000000	35.000000	3.000000	2518.000000	1003.000000	780.000000	4747.000000	29.000000	23.370370	79.000000	0.000000	0.611997	2775.0000	0.000000
50%	31494.500000	4.000000	41.000000	7.000000	5700.000000	2800.000000	2773.000000	9994.000000	108.000000	44.666667	143.000000	0.000000	0.711856	6328.5000	0.000000
75%	47241.250000	4.000000	48.000000	15.000000	12831.000000	6574.000000	6845.750000	21271.250000	268.000000	82.000000	228.000000	0.000000	0.809476	14302.5000	1.000000
max	62988.000000	6.000000	110.000000	213.000000	505308.000000	239560.000000	234188.000000	580717.000000	731.000000	728.000000	728.000000	46.000000	1.500000	985572.0000	140.000000

statistik kategorikal

cats= ['FFP_DATE','FIRST_FLIGHT_DATE','GENDER','WORK_CITY','WORK_PROVINCE','WORK_COUNTRY','LOAD_TIME','LAST_FLIGHT_DATE']
df[cats].describe()

	FFP_DATE	FIRST_FLIGHT_DATE	GENDER	WORK_CITY	WORK_PROVINCE	WORK_COUNTRY	LOAD_TIME	LAST_FLIGHT_DATE
count	62988	62988	62985	60719	59740	62962	62988	62988
unique	3068	3406	2	3234	1165	118	1	731
top	1/13/2011	2/16/2013	Male	guangzhou	guangdong	CN	3/31/2014	3/31/2014
freq	184	96	48134	9386	17509	57748	62988	959

b. statistik kolom numerik dan kategorikal, **bentuk distribusi kolom (numerik)**, dan jumlah unique value (kategorikal)

insight:

Unique value categorical :

cats= ['FFP_DATE','FIRST_FLIGHT_DATE','GENDER','WORK_CITY','WORK_PROVINCE','WORK_COUNTRY','LOAD_TIME','LAST_FLIGHT_DATE']

df[cats].describe()

	FFP_DATE	FIRST_FLIGHT_DATE	GENDER	WORK_CITY	WORK_PROVINCE	WORK_COUNTRY	LOAD_TIME	LAST_FLIGHT_DATE
count	62988	62988	62985	60719	59740	62962	62988	62988
unique	3068	3406	2	3234	1165	118	1	731
top	1/13/2011	2/16/2013	Male	guangzhou	guangdong	CN	3/31/2014	3/31/2014
freq	184	96	48134	9386	17509	57748	62988	959

Feature Correlation:

Rakamin

- 0.0

-0.2

Berdasarkan heatmap pertama:

Fitur yang nilai korelasinya rendah dan dianggap tidak berhubungan dalam penyelesaian masalah akan didrop dari dataset: 'member_no', 'age', 'exchange_count', 'sum_yr_1', 'sum_yr_2', 'point_notflight', 'avg_interval', 'max_interval'.

Heatmap 1

Feature Correlation:

Berdasarkan heatmap kedua:

- Fitur penting: dipilih menggunakan model LRFMC dimana fitur yang digunakan untuk model ini adalah: 'load_time', 'ffp_date', 'last_to_end', 'flight_count', 'seg_km_sum', 'avg_discount'.
- Dari EDA (heatmap) dilihat juga fitur yang berkorelasi sangat tinggi seperti 'bp_sum', 'seg_km_sum', dan 'point_sum' sehingga dalam modeling bisa memilih salah satu saja yaitu 'seg_km_sum' sehingga 'bp_sum' dan 'point_sum' akan didrop

Heatmap 2

2. Feature Selection

Jadi 6 fitur yang dipakai adalah :

- 1. FFP_TIER,
- 2. SEG_KM_SUM,
- 3. LAST_TO_END,
- 4. avg_discount,
- 5. Meeting_Time
- 6. Flight_Count/Year

```
dfa.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 60041 entries, 0 to 62987
Data columns (total 6 columns):
    Column
                      Non-Null Count
                                      Dtype
                      60041 non-null int64
    FFP TIER
                      60041 non-null
    SEG KM SUM
                                     int64
   LAST TO END
                      60041 non-null int64
    avg_discount
                      60041 non-null float64
    Meeting Time
                      60041 non-null float64
    Flight Count/Year 60041 non-null float64
dtypes: float64(3), int64(3)
memory usage: 3.2 MB
```

Feature Engineering

- Dari feature LAST_FLIGHT_DATE, FIRST_FLIGHT_DATE, dan FLIGHT COUNT, dilakukan perhitungan untuk menentukan rata-rata penerbangan per tahun dengan output pada feature Flight_Count/Year.
- Dibuat feature Meeting_Time untuk menghitung jumlah bulan antara LOAD_TIME dan FPP_DATE.
- Setelah feature engineering, drop feature yang tidak digunakan kembali, dan handling outlier, dilakukan standarisasi pada dataset sehingga data dapat siap untuk modelling.
- Mengubah beberapa feature dengan tipe kategori menjadi tipe berformat tanggal atau datetime.

Dengan menggunakan Elbow method maka jumlah cluster yang digunakan sebanyak 4 cluster

Clustering K-Means

Melakukan clustering k-Means dengan jumlah 4 cluster

dfs['cluster'] = kmeans.labels_
dfs.head()

	SEG_KM_SUM	LAST_TO_END	avg_discount	Meeting_Time	Flight_Count/Year	cluster
0	2.946823	-0.433412	2.186105	-0.640830	2.364728	1
1	3.151836	-0.776593	1.816499	0.463661	0.441358	1
2	3.006257	-0.242755	2.044803	2.258308	-0.290352	0
3	3.039276	1.225298	1.937261	0.669624	-0.609352	0
4	3.069732	-0.871921	1.869654	0.002352	1.326259	1

Evaluasi Cluster

Menggunakan PCA untuk melihat visualisasi hasil clustering

```
data_pca = pd.DataFrame(data = pcs, columns = ['PC 1', 'PC 2'])
data_pca['cluster'] = dfs['cluster']
data_pca.head()
```

PC 1	PC 2	cluster
1.850496	2.894874	1
2.324234	0.969372	1
3.152077	-0.889668	0
1.945420	-0.335250	0
2.249357	1.870184	1
	1.850496 2.324234 3.152077 1.945420	1.850496 2.894874 2.324234 0.969372 3.152077 -0.889668 1.945420 -0.335250 2.249357 1.870184

Hasil Cluster PCA

Dan mendapatkan hasil clustering dengan PCA sebagai berikut :

4. Interpretasi Cluster

Dari hasil clustering dengan k-means diperoleh hasil statistik mean dan median dari setiap fitur di setiap cluster adalah sebagai berikut:

index		SEG_KM_SUM		LAST_TO_END		avg_discount		Meeting_Time		Flight_Count/Year	
mean	median	mean	median	mean	median	mean	median	mean	median	mean	median
26435.201628	23625	16563.558510	14608.0	87.372948	67	0.710600	0.713211	80.687529	80.395901	2.259611	1.875443
19195.172600	15982	22257.667047	21543.0	102.254593	59	0.712065	0.715332	29.596675	25.101131	10.550579	9.961159
40131.050767	39889	8195.435842	7196.0	113.475673	98	0.657686	0.662702	32.427532	30.850736	3.673931	3.290473
44748.749663	46522	5888.867640	4663.5	424.043820	419	0.735520	0.746035	51.683586	47.688864	2.944816	1.727888
	26435.201628 19195.172600 40131.050767	26435.201628 23625 19195.172600 15982 40131.050767 39889	26435.201628 23625 16563.558510 19195.172600 15982 22257.667047 40131.050767 39889 8195.435842	26435.201628 23625 16563.558510 14608.0 19195.172600 15982 22257.667047 21543.0 40131.050767 39889 8195.435842 7196.0	26435.201628 23625 16563.558510 14608.0 87.372948 19195.172600 15982 22257.667047 21543.0 102.254593 40131.050767 39889 8195.435842 7196.0 113.475673	26435.201628 23625 16563.558510 14608.0 87.372948 67 19195.172600 15982 22257.667047 21543.0 102.254593 59 40131.050767 39889 8195.435842 7196.0 113.475673 98	26435.201628 23625 16563.558510 14608.0 87.372948 67 0.710600 19195.172600 15982 22257.667047 21543.0 102.254593 59 0.712065 40131.050767 39889 8195.435842 7196.0 113.475673 98 0.657686	26435.201628 23625 16563.558510 14608.0 87.372948 67 0.710600 0.713211 19195.172600 15982 22257.667047 21543.0 102.254593 59 0.712065 0.715332 40131.050767 39889 8195.435842 7196.0 113.475673 98 0.657686 0.662702	26435.201628 23625 16563.558510 14608.0 87.372948 67 0.710600 0.713211 80.687529 19195.172600 15982 22257.667047 21543.0 102.254593 59 0.712065 0.715332 29.596675 40131.050767 39889 8195.435842 7196.0 113.475673 98 0.657686 0.662702 32.427532	26435.201628 23625 16563.558510 14608.0 87.372948 67 0.710600 0.713211 80.687529 80.395901 19195.172600 15982 22257.667047 21543.0 102.254593 59 0.712065 0.715332 29.596675 25.101131 40131.050767 39889 8195.435842 7196.0 113.475673 98 0.657686 0.662702 32.427532 30.850736	26435.201628 23625 16563.558510 14608.0 87.372948 67 0.710600 0.713211 80.687529 80.395901 2.259611 19195.172600 15982 22257.667047 21543.0 102.254593 59 0.712065 0.715332 29.596675 25.101131 10.550579 40131.050767 39889 8195.435842 7196.0 113.475673 98 0.657686 0.662702 32.427532 30.850736 3.673931

Deskripsi Masing-Masing Cluster

Adapun penjelasan terhadap ke-4 cluster yang terbentuk adalah sebagai berikut:

- 1. Cluster 0 merupakan pelanggan yang telah mendaftar sebagai member cukup lama (rata-rata 81 bulan) dengan frekuensi terbang sedang (rata-rata 16.564 km) atau sering melakukan penerbangan jarak jauh mengingat jumlah penerbangan per tahunnya cenderung rendah (rata-rata 2 kali per tahun).
- 2. Cluster 1 merupakan pelanggan baru (rata-rata 30 bulan) dengan frekuensi terbang tinggi (rata-rata 11 penerbangan per tahun), dengan penerbangan jarak jauh (rata-rata 22.258 km).
- 3. Cluster 2 merupakan pelanggan dengan durasi menjadi member, frekuensi terbang, dan jarak penerbangan sedang namun memiliki jarak waktu penerbangan terakhir ke pesanan penerbangan paling akhir rendah.
- 4. Cluster 3 merupakan pelanggan dengan durasi menjadi member, frekuensi terbang, dan jarak penerbangan sedang namun memiliki jarak waktu penerbangan terakhir ke pesanan penerbangan paling akhir tinggi.

Rekomendasi Strategi Bisnis

- 1. Memberikan apresiasi kepada member lama maupun member baru seperti diskon ataupun promo khusus untuk member agar mereka tetap berlangganan. promo ataupun diskon disesuaikan dengan segmentasi mereka seperti member yang suka berpergian jauh maka dikasih promo dengan jarak pererbangan jauh, begitu pula jarang penerbangan sedang maupun dekat.
- 2. Perusahaan dapat menarik pelanggan baru dan mempertahankan pelanggan lama dengan cara meningkatkan kualitas pelayanan dan memberikan inovasi berkelanjutan sesuai dengan segmentasi mereka.