Medical Image Processing for Diagnostic Applications

Iterative Closest Point Algorithm – Basics

Online Course – Unit 69 Andreas Maier, Joachim Hornegger, Eva Kollorz, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Iterative Closest Point (ICP)

Motivation

Problem

Basics

Summary

Take Home Messages

Further Readings

Registration of ToF and CT Data

Figure 1: Images courtesy of Kerstin Müller [3]

Registration of ToF and CT Data

Figure 2: Images courtesy of Kerstin Müller [3]

Registration of Range Images

Figure 3: Images courtesy of Felix Lugauer [5]

Problem

• Input: meshes Q, P

Output: rotation *R*, translation t

$$\hat{Q} = RQ + t$$
 $\min \left(\operatorname{dist} \left(\hat{Q}, P \right) \right)$

Figure 4: Images courtesy of Konrad Sickel [6]

Problem

• Input: point clouds Q, P

Output: rotation *R*, translation t

$$\hat{Q} = RQ + t$$
min $\left(\operatorname{dist} \left(\hat{Q}, P \right) \right)$

Figure 5: Scheme of a point cloud registration

Problem

• Input: point clouds Q, P

Output: rotation *R*, translation t

Figure 6: Curve alignment

Basics of Matching

1. Transformations:

- rigid (rotation, translation)
- affine (scaling)
- projective (perspective distortion)
- elastic (local deformation)

2. Applications of matching:

- multi-modal (different modalities)
- temporal (different time points)
- viewpoint (different perspectives)

Figure 7: Images courtesy of Wilhelm Nagel [4]

Original Work

ICP was originally applied to scan-matching tasks in the early 1990s.

There were three independently published papers:

- Besl and McKay [1]: registration of point clouds using point-to-point error metric,
- Chen and Medioni [2]:
 working with range data for object modeling and point-to-plane error metric,
- Zhang [7]: robust method of outlier rejection in the selection phase of the algorithm.

Geometric Data

ICP can be used with the following representations of geometric data [1]:

- point sets,
- line segment sets (polylines),
- implicit curves,
- parametric curves,
- triangle sets (faceted surfaces),
- implicit surfaces,
- parametric surfaces.

Basic Concept

ICP computes the registration by iterating the following steps [6]:

- 1. computation of correspondences between two point clouds,
- 2. computation of a transformation which minimizes the distance between the corresponding points.

Topics

Iterative Closest Point (ICP)

Motivation

Problem

Basics

Summary

Take Home Messages

Further Readings

Take Home Messages

- There are a lot of applications for registration of point clouds, and simple concepts for matching are desired.
- ICP supports a lot of different geometric data.
- ICP is an iterative algorithm that is based on the minimal distance of points at each iteration step.

Further Readings

- [1] Paul J. Besl and Neil D. McKay. "A Method for Registration of 3-D Shapes". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992), pp. 239–256. DOI: 10.1109/34.121791.
- [2] Yang Chen and Gérard Medioni. "Object Modeling by Registration of Multiple Range Images". In: *Proceedings of the* 1991 IEEE International Conference on Robotics and Automation, Sacramento, California. IEEE, Apr. 1991, pp. 2724-2729. DOI: 10.1109/R0B0T.1991.132043.
- [3] Kerstin Müller. "Multi-modal Organ Surface Registration using Time-of-Flight Imaging". Diploma Thesis. Erlangen: Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sept. 2010.
- [4] Wilhelm Nagel. "Matchen und Mergen von 3D Punktwolken". Seminararbeit, Universität Karlsruhe. 2002/2003.
- [5] Dominik Neumann et al. "Real-time RGB-D Mapping and 3-D Modeling on the GPU using the Random Ball Cover Data Structure". In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, Nov. 2011, pp. 1161-1167. DOI: 10.1109/ICCVW.2011.6130381.
- [6] Konrad Sickel. "Computerized Automatic Modeling of Medical Prostheses". PhD Thesis. Erlangen: Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Apr. 2013.
- [7] Zhengyou Zhang. "Iterative Point Matching for Registration of Free-form Curves and Surfaces". In: International Journal of Computer Vision 13.2 (Oct. 1994), pp. 119–152. DOI: 10.1007/BF01427149.