Н.Р. Кудлай Конспект по материалу "Аналитическая геометрия" Лекция №4

Санкт-Петербург 2021

МИНИСТР ОБРАЗОВАНИЯ И НАУКИ РЗ111

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ИНСТИТУТ ТЕПЛЫХ МУЖСКИХ ОТНОШЕНИЙ"

Н.Р. Кудлай

Конспект по материалу "Аналитическая геометрия" Лекция №4

УНИВЕРСИТЕТ ИТМО

Санкт-Петербург 2021 Кудлай

Никита

Уравнения линий

Уравнение F(x,y,z)=0* является *уравнением поверхности S* если ему удовлетворяют координаты $M(x,y,z) \in S$.

Уравнение сферы - $r^2 = (x - a)^2 + (y - b)^2 + (z - c)^2$ Уравнение окружности - $x^2 + y^2 = 1$

Уравнение F(x,y) = 0 - yравнение линии.

Полярная система координат задается точкой O, называемой полюсом и лучом Op, называемым полярной осью

Числа r и φ называются полярными координатами, r – полярным радиусом, φ – полярным углом

$$\begin{cases} -\pi \le \varphi \le \pi \\ 0 \le r \le \infty \end{cases}; \begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}; \begin{cases} r = \sqrt{x^2 + y^2} \\ tg \varphi = \frac{y}{x} \end{cases}$$

1)
$$r = R$$

2)
$$r = 2R \cos \varphi$$

3)
$$r = 2R \sin \varphi$$

4)
$$r = \sqrt{\cos \varphi}$$
 —
Лемниската Бернулли

5) r=Rcos3φ, R>0 - **Трёхлепестковая роза**

6) $r = b + a \cos \varphi$ – Улитка Паскаля (для a = b - Кардиоида)

7) r = ae - Cпираль Архимеда

Замечание: любую линию на плоскости можно задать системой из двух уравнений, где t называется napamempom, в систему уравнений или уравнение – napamempuческим ypashehuem линии

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

1)
$$y^2 = x^3$$
или $\begin{cases} x = t^2 \\ y = t^3 \end{cases}$

2) $x^{2/3} + y^{2/3} = a^{2/3}$ или $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$

Полукубическая парабола

$$3) \begin{cases} x = a(t - \cos t) \\ y = a(1 - \sin t) \end{cases}$$
 Циклоида

Прямую в пространстве можно задать как пересечение двух плоскостей

$$F_1(x,y,z) = 0$$
 — *уравнение прямой*, заданной как прямая пересечения плтей

Линию в пространстве можно задать как траекторию движения точки, тогда её задают *векторными* или *параметрическими уравнениям*

$$\begin{cases} x = R \cos t \\ y = R \sin t \\ z = \frac{h}{2\pi} t \end{cases}$$
 - Винтовая линия

Алгебраической поверхностью называют множество (.)* , заданное в виде $A_1 x^{k_1} y^{l_1} z^{m_1} + \cdots + A_5 x^{k_5} y^{l_5} z^{m_5} = 0$, а $\max\{k_i+l_i+m_i\}$ – степенью уравнения или порядком алгебраической поверхности. Так, например, сфера – поверхность второго порядка.

Алгебраической линией называют множество (.), заданное в виде $\boxed{A_1 x^{k_1} y^{l_1} + \dots + A_5 x^{k_5} y^{l_5} = 0}, \text{ а } \max \left\{k_i + l_i\right\} - \textbf{степенью уравнения }$ или порядком линии.

Алгебраическая поверхность не всегда будет поверхностью с точки интуитивного понимания

$$\begin{cases} x = \varphi(t_1, t_2) \\ y = \psi(t_1, t_2) \\ z = \chi(t_1, t_2) \end{cases}$$
 – Параметрическое уравнение поверхности

Уравнения плоскости

Существует несколько основных видов представления плоскости в пространстве.

1) **Векторное уравнение плоскости** – плоскость задается точкой и ненулевым вектором, перпендикулярным к плоскости – **нормальным вектором**

 $ar{r}$ — радиус вектор к (.) M $\overline{r_0}$ — радиус вектор к (.) M_0 $ar{r}$ — $\overline{r_0}$ \perp $ar{n}$ => $\boxed{(ar{r}-ar{r_0})ar{n}=0}$

Это векторное уравнение плоскости, если \bar{p} и \bar{q} — направляющие векторы плоскости, то $\bar{p}*\bar{q}=\bar{n}=>$

$$(\bar{r} - \bar{r_0})\bar{q}\bar{p} = 0$$

Это тоже считается векторным уравнением плоскости.

2) Уравнение плоскости, проходящей через данную точку.

$$Ax + By + Cz + d = 0$$
 или $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

3) Векторно-параметрические уравнения плоскости.

Пусть \bar{p} и \bar{q} – направляющие векторы плоскости \bar{r} и $\bar{r_0}$ - радиус векторы к (.) M и M_0 , то $\boxed{\bar{r} - \bar{r_0} = t_1 \ \bar{p} + t_2 \ \bar{q}} =>$

$$\begin{cases} x-x_0=t_1p_1+t_2q_1\ y-y_0=t_1p_2+t_2q_2\ z-z_0=t_1p_3+t_2q_3 \end{cases}$$
 —это параметрические уравнения плоскости

4) Уравнение плоскости, проходящей через три данные точки

 $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$ должны не лежать на одной прямой (.) M_1 – фиксирована, $\overline{M_1M_2}$ и $\overline{M_1M_3}$ – направляющие векторы =>

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

5) Уравнение плоскости в отрезках

Пусть плоскость отсекает на осях Ox, Oy и Oz соответственно отрезки |a|, |b| и |c|, то есть проходит через точки $M_1(a, 0, 0)$, $M_2(0, b, 0)$ и $M_3(0, 0, c)$

$$= \begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0 = bcx + acy + abz - abc = 0 = b\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
EVALUATION FOR THE TO KNOW PAULE TO KNOW

Если плоскость задана в другом виде, то коэффициенты a,b и c — длина отрезков, которые отсекает пл-ть от осей, а знак зависит от того, с какой стороны отсекаются отрезки.

6) Нормальные уравнения функции

Плоскость в пространстве однозначно задается единичным вектором $\bar{e} \uparrow \uparrow \overline{OK}$ $\overline{OK} \perp \pi \ (\pi - \text{плоскость}), (.)K \in \pi \ \text{и} \ \overline{OK} = \rho$. Пусть $\alpha = (\widehat{e}, \widehat{Ox}), \beta = (\widehat{e}, \widehat{Oy}),$ $\gamma = (\widehat{e}, \widehat{Oz}) \Rightarrow \bar{e} = (\cos \alpha, \cos \beta, \cos \gamma)$. Пусть $M(x, y, z) \in \pi$.

Проекция \bar{r} на $\bar{e} = p =>$ $\bar{r} * \bar{e} - p = 0$ — это нормальное уравнение плоскости в векторной форме Так как $\bar{r} = (x, y, z) =>$

$$x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$$

– это нормальное уравнение плоскости в координатной форме

Уравнение прямой в пространстве

1) Векторное уравнение прямой Если $\bar{a} \parallel e, \bar{a} \neq 0$, то \bar{a} — направляющий вектор прямой $e. \bar{a} \parallel (\bar{r} - \bar{r_0}) =>$

$$\overline{a} \parallel (\overline{r} - \overline{r_0}) * \overline{a} = \overline{0}$$

2) Векторно-параметрическое уравнение прямой

$$\overline{MM_0} \parallel \bar{a} = > \overline{\bar{r} - \bar{r_0} = t\bar{a}}, t \in R, t$$
 называется **параметром**

3) Параметрическое уравнение прямой

$$\bar{r} = (x, y, z), \begin{cases} \bar{z_0} = (x_0, y_0, z_0) \\ \bar{a} = (a_1, a_2, a_3) \end{cases} = > \begin{cases} x - x_0 = a_1 t \\ y - y_0 = a_2 t \\ z - z_0 = a_3 t \end{cases}$$

4) Каноническое уравнение прямой

Рассматривая
$$t$$
 в пункте 3 получим:
$$\begin{cases} t = \frac{x-x_0}{a_1}; a_1 \neq 0 \\ t = \frac{y-y_0}{a_2}; a_2 \neq 0 => \boxed{\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3}} \\ t = \frac{z-z_0}{a_3}; a_3 \neq 0 \end{cases}$$

Если
$$a_1 = 0 \Rightarrow \begin{cases} x = x_0 \\ \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3} \end{cases}$$

5) Уравнение прямой, проходящей через две заданные точки

Пусть в пространстве лежат точки $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$.

Пусть
$$\overline{M_1 M_2} \neq 0 \Rightarrow \boxed{\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}}$$

6) Общее уравнение прямой

Если прямая задана двумя не параллельными и несовпадающими плоскостями, то её система уравнений, задающей её имеет вид:

$$\begin{cases} A_1 x + B_1 y + C_1 y + D_1 = 0 \\ A_2 x + B_2 y + C_2 y + D_2 = 0 \end{cases}$$

Уравнение прямой на плоскости

1) Векторное уравнение прямой

Если \bar{n} — вектор нормали к прямой \bar{a} , а вектора \bar{r} и $\bar{r_0}$ берут начало в центре системы координат и окначиваются в точках M и M_0 , принадлежащих прямой \bar{a} , то $\bar{r} - \bar{r_0}$ $\perp \bar{n} =>$

$$(\bar{r} - \bar{r_0}) * \bar{n} = 0$$

2) Уравнение прямой, проходящей через данную точку

Если эта точка имеет координаты $M_0(x_0, y_0)$. $\bar{n} = (A, B)$, то уравнение будет:

$$A(x - x_0) + B(y - y_0) = 0$$
 или $Ax + By + C = 0$

(общее уравнение прямой)

3) Векторно-параметрическое уравнение прямой

При
$$t \in R$$
: $\overline{r} - \overline{r_0} = t\overline{a}$

4) Параметрическое уравнение прямой

5) Каноническое уравнение прямой

$$\left| \frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} \right|$$
 при $a_1 \neq 0$, $a_2 \neq 0$

6) Уравнение прямой с угловыми коэффициентами

Если прямая задана, как
$$\begin{cases} x - x_0 = a_1 t \\ y - y_0 = a_2 t \end{cases}$$
, $a_1 \neq 0 \Rightarrow \boxed{y - y_0 = \frac{a_2}{a_1}(x - x_0)} \Rightarrow$

$$y=kx+b$$
, где $k=rac{a_2}{a_1}$, $b=y_0-rac{x_0a_2}{a_1}$. k называют **угловым коэффициентом**

прямой, b – ордината точки пересечения с осью ординат (0y)

Если $e \parallel Oy \Rightarrow a_1 = 0 \Rightarrow e : x = x_0$, где x_0 – абсцисса (x) точки пересечения прямой с осью 0x.

7) Уравнение прямой, проходящей через две заданные точки

Если эти точки
$$M_1(x_1, y_1)$$
 и $M_2(x_2, y_2)$, то $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$

8) Уравнение прямой в отрезках

Если прямая пересекает оси в координата a и b, уравнение будет $\left| \frac{x}{a} + \frac{y}{a} \right| = 1$

$$\frac{x}{a} + \frac{y}{a} = 1$$

9) Полярное уравнение прямой

Для любой (.) $M \in e$: проекция \overline{OM} на $\overline{q} = p$, где \overline{q} – вектор нормали к прямой e, угол отклонения $\bar{q} = \alpha$, а угол отклонениея $\overline{OM} = \varphi$. С другой стороны эта проекц. = $|\overline{OM}|\cos(\varphi - \alpha)| = r\cos(\varphi - \alpha) = >$

$$r\cos(\varphi - \alpha) = p$$

10) Нормальное уравнение прямой

$$r\cos\alpha\cos\varphi + r\sin\varphi\sin\alpha - p = 0$$

$$\begin{cases} r\cos\alpha \\ r\sin\varphi \end{cases} \Rightarrow \boxed{x\cos\alpha + y\sin\alpha - p = 0}$$

Некоторые задачи о прямых и плоскостях

1) Угол между плоскостями

Если вектора нормалей плоскостей $\overline{n_1}$ и $\overline{n_2}$, то $\cos \varphi = \frac{|\overline{n_1}*\overline{n_2}|}{|\overline{n_1}||\overline{n_1}|}$

2) Условие параллельности двух прямых

Параллельные прямые, если их вектора нормали параллельны=> $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

Другое условие параллельности: $\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = 0$

3) Условие перпендикулярности двух плоскостей

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$$

4) Угол между двумя прямыми

Если угол φ – наименьший, то $\cos \varphi = \frac{|\overline{a_1}*\overline{a_2}|}{|\overline{a_1}||\overline{a_1}|}$

5) Условие параллельности двух прямых

Две прямые параллельны, если $\begin{cases} \overline{a_1} = (m_1, n_1, p_1) \\ \overline{a_2} = (m_2, n_2, p_2) \\ \hline \frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2} \end{cases}$

6) Условие перпендикулярности двух прямых

7) Взаимное расположение прямой и плоскости в пространстве Углом между прямой и плоскостью называют угол между прямой и её проекцией на эту плоскость

Если плоскость и прямые заданы каноническими формами, то $\sin \varphi = \frac{|\bar{n}*\bar{a}|}{|\bar{n}||\bar{a}|}$

Если плоскость и прямые параллельны, то $\bar{a}\bar{n}=0$

Если плоскость и прямые перпендикулярны, то $\overline{a*\bar{n}=0} => \overline{\frac{A}{m} = \frac{B}{n} = \frac{C}{p}}$

8) Расстояние от точки до плоскости

Если плоскость задана в виде $(\bar{r}-\bar{r_0})\bar{q}\bar{p}=0$, Пусть существует (.) $M(\bar{R})$, где

$$ar{R}$$
 – радиус-вектор (.) M , то $h=rac{|(ar{R}-\overline{r_0})ar{q}ar{p}|}{|ar{q}*ar{p}|}$ или $h=rac{|(ar{R}-\overline{r_0})ar{n}|}{|ar{n}|}$

При
$$M(x, y, z)$$
:
$$h = \frac{|Ax + By + Cz + D|}{\sqrt{A^2 + B^2 + C^2}}$$

9) Расстояние от точки до прямой на плоскости

$$h=rac{|(ar{R}-\overline{r_0})ar{a}|}{|ar{a}|}$$
 или $h=rac{|Ax+By+C|}{\sqrt{A^2+B^2}}$ $h=rac{|(ar{R}-\overline{r_0})ar{n}|}{|ar{n}|}$

10) Расстояние между непараллельными прямыми в пространстве

Если
$$\begin{cases} \overline{r} - \overline{r_1} = t\overline{a_1} \\ \overline{r} - \overline{r_2} = t\overline{a_2} \end{cases}$$
 , то $h = \frac{|(\overline{r_2} - \overline{r_1})\overline{a_1} \overline{a_2}|}{|\overline{a_1} * \overline{a_2}|}$