Lecture: Convex Functions

http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe's lecture notes

Introduction

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$

Examples on $\ensuremath{\mathbb{R}}$

convex:

- affine: ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$
- exponential: e^{ax} , for any $a \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on \mathbb{R} , for $p \ge 1$
- negative entropy: $x \log x$ on \mathbb{R}_{++}

concave:

- affine: ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \text{tr}(A^{T}X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \to \mathbb{R}$,

$$g(t) = f(x + tv), \quad \text{dom } g = \{t | x + tv \in \text{dom } f\}$$

is convex (in t) for any $x \in \text{dom } f, v \in \mathbb{R}^n$

can check convexity of f by checking convexity of functions of one variable

example.
$$f: \mathbb{S}^n \to \mathbb{R}$$
 with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbb{S}^n_{++}$
$$g(t) = \log \det (X + tV) = \log \det X + \log \det (I + tX^{-1/2}VX^{-1/2})$$
$$= \log \det X + \sum_{i=1}^n \log(1 + t\lambda_i)$$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$ g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- dom f is convex
- for $x, y \in \text{dom } f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is **differentiable** if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \text{dom } f$

first-order approximation of f is global underestimator

Second-order conditions

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbb{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, ..., n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \text{dom } f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbb{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succ 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{T}(Ax - b), \quad \nabla^{2}f(x) = 2A^{T}A$$

convex (for any A)

quadratic-over-linear: $f(x, y) = x^2/y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y>0

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \quad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{(\sum_{k} z_{k} v_{k}^{2})(\sum_{k} z_{k}) - (\sum_{k} v_{k} z_{k})^{2}}{(\sum_{k} z_{k})^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwartz inequality)

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

11/33

Epigraph and sublevel set

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \text{dom} \, f | f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\operatorname{epi} f = \{(x, t) \in \mathbb{R}^{n+1} | x \in \operatorname{dom} f, f(x) \le t\}$$

f is convex if and only if $\operatorname{epi} f$ is a convex set

Monotonicity

• A mapping $F: \mathbb{R}^n \to \mathbb{R}^n$ is monotone if

$$\langle F(x) - F(y), x - y \rangle \ge 0, \quad x, y \in \mathbb{R}^n.$$

• A mapping $F: \mathbb{R}^n \to \mathbb{R}^n$ is uniformly monotone if there exists a constant c>0 such that

$$\langle F(x) - F(y), x - y \rangle \ge c ||x - y||^2, \qquad x, y \in \mathbb{R}^n.$$

• Suppose that $f(x): \mathbb{R}^n \to \mathbb{R}$ is differentiable, then f(x) is convex if and only if $\nabla f(x)$ is monotone.

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}z) \leq \mathbf{E}f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$prob(z = x) = \theta$$
, $prob(z = y) = 1 - \theta$

Operations that preserve convexity

practical methods for establishing convexity of a function

- verify definition (often simplified by restricting to a line)
- ② for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$ **sum**: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) **composition with affine function**: f(Ax + b) is convex if f is convex **examples**

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x | a_i^T x < b_i, i = 1, ..., m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if $f_1,...,f_m$ are convex, then $f(x) = \max\{f_1(x),...,f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x, y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

 $f \text{ is convex if } \begin{array}{l} g \text{ convex}, h \text{ convex}, \tilde{h} \text{ nondecreasing} \\ g \text{ concave}, h \text{ convex}, \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

ullet note: monotonicity must hold for extended-value extension $ilde{h}$

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$$

f is convex if $egin{array}{l} g_i \ {
m convex}, h \ {
m convex}, \tilde{h} \ {
m nondecreasing} \ {
m in} \ {
m each} \ {
m argument} \ {
m g}_i \ {
m concave}, h \ {
m convex}, \tilde{h} \ {
m nnonincreasing} \ {
m in} \ {
m each} \ {
m argument} \ {
m proof} \ ({
m for} \ n=1, \ {
m differentiable} \ g, \ h) \end{array}$

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• $f(x, y) = x^T A x + 2x^T B y + y^T C y$ with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \quad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x$ g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

• distance to a set: $\operatorname{dist}(x,S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t)$$
, dom $g = \{(x,t)|x/t \in \text{dom } f, t > 0\}$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbb{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x|c^Tx + d > 0, (Ax + b)/(c^Tx + d) \in \text{dom } f\}$

The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- will be useful in chapter 5

examples

• negative logarithm $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x)$$

$$= \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbb{S}^n_{++}$

$$f^*(y) = \sup_{x} (y^T x - (1/2)x^T Q x)$$
$$= \frac{1}{2} y^T Q^{-1} y$$

24/33

Quasiconvex functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if dom f is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \text{dom} \, f | f(x) \le \alpha \}$$

are convex for all α

- \bullet f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on $\mathbb R$
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} | z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x | c^T x + d > 0\}$$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x | \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

internal rate of return

- cash flow $x = (x_0, ..., x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$$

• internal rate of return is smallest interest rate for which PV(x, r) = 0:

$$IRR(x) = \inf\{r \ge 0 | PV(x, r) = 0\}$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$IRR(x) \ge R \iff \sum_{i=0}^{n} (1+r)^{-i} x_i > 0 \text{ for } 0 \le r < R$$

Properties

modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

 $\begin{tabular}{ll} \textbf{first-order condition}: differentiable f with cvx domain is quasiconvex iff \end{tabular}$

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$

sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- ullet powers: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

ullet cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

Properties of log-concave functions

 twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \leq \nabla f(x)\nabla f(x)^T$$

for all $x \in \text{dom } f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then

$$g(x) = \int f(x, y) dy$$

is log-concave (not easy to show)

consequences of integration property

ullet convolution f*g of log-concave functions f , g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \operatorname{prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y)dy, \quad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

31/33

example: yield function

$$Y(x) = \operatorname{prob}(x + w \in S)$$

- $x \in \mathbb{R}^n$: nominal parameter values for product
- $w \in \mathbb{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if S is convex and w has a log-concave pdf, then

- Y is log-concave
- yield regions $\{x|Y(x) \ge \alpha\}$ are convex

Convexity with respect to generalized inequalities

 $f:\mathbb{R}^n o \mathbb{R}^m$ is *K*-convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

for $x,y\in \mathrm{dom}\, f$, $0\leq \theta \leq 1$

example $f: \mathbb{S}^m \to \mathbb{S}^m, f(X) = X^2 \text{ is } \mathbb{S}^m_+\text{-convex}$

proof: for fixed $z \in \mathbb{R}^m$, $z^T X^2 z = \|Xz\|_2^2$ is convex in X, *i.e.*,

$$z^{T}(\theta X + (1 - \theta)Y)^{2}z \le \theta z^{T}X^{2}z + (1 - \theta)z^{T}Y^{2}z$$

for $X, Y \in \mathbb{S}^m$, $0 \le \theta \le 1$

therefore $(\theta X + (1 - \theta)Y)^2 \leq \theta X^2 + (1 - \theta)Y^2$