

M58725P, -15

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

DESCRIPTION

This is a family of 2048-word by 8-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. These devices operate on a single 5V supply, as does TTL, and are directly TTL-compatible.

The input and output terminals are common, and an $\overline{\text{OE}}$ terminal is provided. $\overline{\text{S}}$ controls the power-down feature.

FEATURES

• Fast access time:

M58725P

200ns (max)

M58725 P-15

150ns (max)

• Low power dissipation:

Active:

250mW (typ)

Stand by:

25mW (typ)

- Power down by S
- Single 5V supply voltage (±10% tolerance)
- Requires neither external clock nor refreshing
- All inputs and outputs are directly TTL compatible
- All outputs are three-state, with OR-tie capability
- Easy memory expansion by chip-select (S) input
- Common data DQ terminals.
- Same pin configuration as M5L2716K 16 384-bit EPROM

APPLICATION

Small-capacity memory units

FUNCTION

These devices provide common data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept high to keep the DQ terminals in the input mode, signal \overline{W} goes low, and the data of the DQ signal at that time is written.

During a read cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept low to keep the DQ terminals in the output mode, signal \overline{W} goes high, and the data of the designated address is available at the I/O terminals.

When signal \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

Signal \overline{S} controls the power down feature. When \overline{S} goes high power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time.

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

FUNCTION TABLE

s	ŌĒ	w	DQ ₁ ~DQ ₈	Mode
Н	х	Х	Hi-Z	Deselect
L	х	L,	D _{IN}	Write
L	L	Н	Dout	Read
L	Н	н	Hi-Z	_

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test conditions	Limits	Unit
Voc	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to GND	-0.5~7	V
Vo	Output voltage		-0.5~7	V
Pd	Maximum power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air ambient temperature range		0~70	°C
Tstg	Storage temperature range		-65∼150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C, unless otherwise noted.)

			Unit		
Symbol	Parameter -		Nom	Max	Onit
V _{CC}	Supply voltage	4.5	5	5.5	V
VIL	Low-level input voltage	-1		0.8	V
V _{IH}	High-level input voltage	2		6	V

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

Cutata		T		11.2			
Symbol	Parameter	Parameter Test conditions		Min	Тур	Max	Unit
V _{IH}	High-level input voltage					6	V
VIL	Low-level input voltage			-1		0.8	V
VoH	High-level output voltage	I _{OH} =-1mA, V _{CC} =4.5V		2.4			V
VoL	Low-level output voltage	I _{OL} =3.2mA				0.4	V
l ₁	Input current	$V_1 = 0 \sim 5.5V$				10	μА
lozh	Off-state high-level output current	$V_{I(\overline{S})} = 2V, V_{0} = 2.4V \sim V_{CC}$				10	μA
IozL	Off-state low-level output current	V _{I(S)} =2V, V _O =0.4V		ı	-10	μА	
		$V_1 = 5.5V, V_1(\overline{S}) = 0.8V,$	Ta=25°C	,	50	80	mA
I _{CC1}	Supply current from VCC	outputs open	Ta=0℃			90	mA
		V _I =5.5V, V _{I(\$\overline{S}\$)=2V}	Ta=25°C		5	10	mA
I _{CC2}	Stand by current	outputs open	Ta = 70℃		7	15	mA
Ci	Input capacitance, all inputs	V _I =GND, Vi=25mVrms, f=1MHz			3	5	рF
Co	Output capacitance	$V_0 = GND, V_0 = 25mVrms, f = 1MHz$			5	- 8	pF

Note 1: Current flowing into an IC is positive, out is negative.

16384-BIT (2048-WORD BY 8-BIT) STATIC RAM

SWITCHING CHARACTERISTICS (For Read Cycle) (Ta=0 \sim 70°C, V_{CC}=5V \pm 10%, unless otherwise noted.)

Symbol		N	158725P-	15	M58725P			
	Parameter	Limits						Unit
		Min	Тур	Max	Min	Тур	Max	
toR	Read cycle time	150			200			ns
ta (A)	Address access time			150			200	ns
ta (₹)	Chip select access time			150			200	ns
ta(ŌE)	Output enable access time			50			60	ns
t _V (A)	Data valid time after address	20			20			ns
t _{PXZ(S)}	Output disable time after chip select			50			60	ns
t _{PZX(S)}	Output active time after chip select	10			20			ns
t _{PU}	Power up time after chip selection	0			0			ns
t _{PD}	Power down time after chip deselection			60			80	ns

TIMING REQUIREMENTS (For Write Cycle) ($Ta=0-70^{\circ}C$, $V_{CC}=5V\pm10\%$, unless otherwise noted.)

Symbol		N	M58725P-15			M58725P		
	Parameter		Limits					
		Min	Тур	Max	Min	Тур	Max	
t _{CW}	Write cycle time	150			200			ns
tsu(S)	Chip select setup time	100			120			ns
tsu(A)	Address setup time	20			20			ns
tw (w)	Write pulse width	80			100			ns
twr	Write recovery time	10			10			ns
tsu (ŌĒ)	Output enable setup time	40			40			ns
tsu (D)	Data setup time	60			60			ns
th (D)	Data hold time	10			10			ns
$t_{PXZ}(\overline{OE})$	Output disable time after output enable			40			40	ns
t _{PXZ(₩)}	Output disable time after write enable			40			40	ns

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

TIMING DIAGRAMS (Note 2) Read Cycle 1

Read Cycle 2

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

Write Cycle 1 (W Control Mode)

Write Cycle 2 (S Control Mode)

 $\overline{\rm OE}={\rm low\ level}$

Note 2. Testconditions

Input pulse level 0.4~2.4V
Input pulse rise time 10ns
Input pulse fall time 10ns
Reference level 1.5 V

Load 1TTL, $C_L = 100pF$

Note 3. Either the high or low state is possible.

 When the DQ pin is in the output state, a reverse phase signal should not be applied externally.

5. When the falling edge of \overline{W} is simultaneous to or prior to the falling edge of \overline{S} , the output is maintained in the high-impedance state.

16384-BIT (2048-WORD BY 8-BIT) STATIC RAM

TYPICAL CHARACTERISTICS

LOW-LEVEL OUTPUT CURRENT VS. LOW-LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT CURRENT VS. HIGH-LEVEL OUTPUT VOLTAGE

OUTPUT LOAD CAPACITANCE CL (pF)

SUPPLY CURRENT VS. SUPPLY VOLTAGE V_{CC}

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

