Convex Sets

Definition. A set $C \subset \mathcal{X}$ is *convex* if $\forall x, y \in C$ and $\forall \theta \in [0, 1]$ it holds that

Definition. The convex hull of a set $S \subset \mathcal{X}$ is the set of convex comb. of S $\operatorname{conv}(S) = \{\theta x + (1 - \theta)y \mid x, y \in \mathcal{A}, \ \theta \in [0, 1]\}.$

Theorem. The convex hull can be written as

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid \forall i \in \{0, \dots k\}. \ x_i \in \mathcal{M}, \quad \theta_i \in [0, 1], \quad \sum_{i=1}^k \theta_i = 1 \right\}.$$

Convex sets are closed under intersection!

Convex Functions

Definition. A function $f: \mathcal{X} \to \mathbb{R}$ is *convex* if $\forall x, y \in \mathbb{R}$ and $\forall \theta \in [0, 1]$,

$$\underbrace{f(\theta x + (1 - \theta)y)}_{\text{Output of convex comb}} \le \underbrace{\theta f(x) + (1 - \theta)f(y)}_{\text{Convex comb. of outputs}}$$

Examples
$$f(x) = a^{T}x + b$$

$$f(x) = x^{T}Q \times Q \ge 0$$

$$f(x) = e^{x}$$

$$f(x) = |x|^{p}$$

$$f(x) = |x|^{p}$$

Definition. Let $f: D \to \mathbb{R}$ be a function with $D \subset \mathcal{X}$. A point $x^* \in D$ is said to be

- 1. a local minimum if $\exists \delta > 0$ so $\forall x \in B_{\delta}(x^*) \cap D$, $f(x^*) \leq f(x)$.
- 2. a global minimum if $\forall x \in D$, $f(x^*) \leq f(x)$.

Theorem. If $D \subset \mathcal{X}$ and $f: D \to \mathbb{R}$ are convex, then any local minimum of f is a global minimum of f.

Convex Optimization Problem / Convex Program

Ain
$$f(x)$$
 Convex Objective/Cost

St. XED Convex Constraints

(fcasible set)

Theorem. If x^*, y^* are local/global minimizers of a convex optimization problem, then so is $\theta x^* + (1 - \theta)y^*$ for any $\theta \in [0, 1]$.

Definition. A set $\mathcal{H} \subset \mathbb{R}^n$ is called a half-space if $\mathcal{H} = \{x \in \mathbb{R}^n \mid a^{\intercal}x \leq b\}$ for some $a \in \mathbb{R}^n$ with $a \neq 0$ and $b \in \mathbb{R}$.

Definition. A set $\mathcal{A} \subset \mathbb{R}^n$ is called an (n-1)-dimensional *affine subspace* if $\mathcal{A} = \{x \in \mathbb{R}^n \mid a^\intercal x \not\bowtie b\}$ for some $a \in \mathbb{R}^n$ with $a \neq 0$ and $b \in \mathbb{R}$.

$$\left(\begin{array}{c|c} X & \alpha^{T} x = b \end{array} \right) =$$

$$\left(\begin{array}{c|c} X & \alpha^{T} x \leq b \end{array} \right) \cap$$

$$\left(\begin{array}{c|c} X & -\alpha^{T} x \leq -b \end{array} \right)$$

Definition. A set $P \subset \mathbb{R}^n$ is called a *polyhedron* if it is the intersection of a finite number of half-spaces and (n-1)-dimensional affine subspaces.

$$\left\langle 2 \left\langle A_{x} \right\rangle \right\rangle = \left\langle 2 \left\langle A_{z} \right\rangle \right\rangle = \left\langle 2 \left\langle A_{z} \right\rangle \right\rangle$$

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *affine* if $f(x) = a^{\mathsf{T}}x + b$ with $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

Definition. The *p*-norm for $p \in \mathbb{R}$ with $p \ge 1$ is the function $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.

$$\| \Theta \times + (1-\Theta)y \| \le \Theta \| \times \| + (1-\Theta)y \|$$

$$\| \Theta \times \| + \| (1-\Theta)y \|$$

$$\|$$

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *quadratic* if $f(x) = x^{\mathsf{T}}Qx + r^{\mathsf{T}}x + q$ with $Q \in \mathbb{R}^{n \times n}$, $r \in \mathbb{R}^n$, and $q \in \mathbb{R}$.

min F(x) V5 min F(x) +c -> Minimizers Special Convex Optimization Problems Linear Programs (LP) f-affine/linear function D- Polyhedron C $f(x) = C^{T}x$ Quadratic Programs (QP) f - Quadratic Function D- Polyhedron Q Z 0

Motion Planning - Obstacle Avoidance

Problem: Check if
$$z \in \mathbb{R}^{n}$$

is in Canv $(v_{1}...v_{k})$.

 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A \mid x \leq b\}$
 $P = \{x \mid A$

 $D = \left\langle \theta \middle| A \theta = b_{eq} \right\rangle$ $Lf has \quad (=) D \neq \emptyset \quad (=) \quad Z \in Conv(V_1 - - V_k)$ Solution

LP Gomalatin

See Recitation 13 for a QP formulation of an appimal control problem. Office Hows

Hybricube [-1,]^

		Vy
din	vertres	facets
2	4	Y
3	8	6
7	[6	8
. (2	2:n
		\mathcal{I}
had		

. 1

Show
$$\|x\|_{2}^{2} \stackrel{?}{>} 2 \|x\|_{\infty}^{2}$$

 $\chi_{1}^{2} + \chi_{2}^{2}$ $2 \max(\chi_{1}^{2}, \chi_{2}^{2})$
 $Either |\chi_{1}| \leq |\chi_{2}| \text{ or } |\chi_{1}| \geq |\chi_{2}|$
 $\chi_{1}^{2} \leq \chi_{2}^{2}$
 $\chi_{1}^{2} + \chi_{2}^{2} \leq 2\chi_{1}^{2}$
 $\chi_{1}^{2} + \chi_{2}^{2} \leq 2\chi_{1}^{2}$
 $2\chi_{1}^{2} \geq \chi_{1}^{2} + \chi_{2}^{2}$

$$S = (-1,1)$$

$$\overline{S} = (-1,1)$$

$$\overline{S} = [-1,1]$$

$$\overline{S} = \overline{S} \cap (\sim S)$$

$$\overline{S} = \overline{S} \cap (\sim S)$$

 $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$ $Find x \leftarrow \mathbb{R}^{n}$ $S_{0} \quad f_{0} = 0 \quad \text{if } x \in \mathbb{R}^{n}$ $J(x^{*}) = J(x)$

Z= [Yoao Yoan Yzaz wow]

Objection

Constrains

P = polyhedron

T(Z)

T(Z)

T(Z)

T(Z)

T(Z)

$$||x|| \le ||x|| \le ||x|| \le ||x||$$

Assum
 $||x|| \le \frac{2}{K_2} = \frac{5}{K_2} = \frac{5}{K_1}$
 $||x|| \le \frac{2}{K_2} = \frac{5}{K_1} = \frac{5}{K_1}$
 $||x|| \le \frac{2}{K_2} = \frac{5}{K_1} = \frac$

 $||X|| \leq ||X|| \times ||X|| = \frac{2}{5}$ $||X|| \leq ||X|| \times ||X|| = \frac{2}{5}$ ||X|| = ||X|| =

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\$

 $\begin{array}{lll}
\text{Min } & \text{Min$