

194317 DESIGN OF ENGINEERING EXPERIMENTS

(การทดลองความสุกของไข**่**)

กลุ่มที่ 7

นายพิสิทธิ์	บุญเฮ้า	553040382-7
นายธนวิชญ์	เลิศวุฒิชัยกุล	553040057-8
นายณัฐภัทร	พวงทับทิม	583040510-7
นายเดชา	แสงวงษา	583040517-3
นายตะวัน	ตันตระกูล	583040519-9
นายธนพนธ์	แสงเทียน	583040525-4
นายปัณณวัฒน์	เทียบมาก	583040561-0
นายพรหมเมศว์	ทรงทอง	583040577-5
นายพสธร	จันทร์เจริญ	583040579-1

ชื่อโครงงาน การทดลองความสุกของไข่

പ് ഉഗ	၅၅ ရှိ	عر ع	
ชื่อคณะผู้จัดทำ	นายพิสิทธิ	บุญเฮ้า	553040382-7
	นายธนวิชญ์	เลิศวุฒิชัยกุล	553040057-8
	นายณัฐภัทร	พวงทับทิม	583040510-7
	นายเดชา	แสงวงษา	583040517-3
	นายตะวัน	ตันตระกูล	583040519-9
	นายธนพนธ์	แสงเทียน	583040525-4
	นายปัณณวัฒน์	เทียบมาก	583040561-0
	นายพรหมเมศว์	ทรงทอง	583040577-5
	นายพสธร	จันทร์เจริญ	583040579-1

ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

อาจารย์ที่ปรึกษา ผศ.ดร. ชาญณรงค์ สายแก้ว

บทคัดย่อ

โครงงานการทดลองความสุกของไข่ มีวัตถุประสงค์เพื่อเพื่อหาปัจจัยที่มีผลต่อความสุกในการต้มไข่ โดย ปัจจัยที่นำมาพิจารณา คือ ระดับน้ำ เวลา และอุณหภูมิ เพื่อนำความรู้ในรายวิชาการออกแบบการทดลอง ทางวิศวกรรมมาใช้และเพื่อหาระดับของปัจจัยต่าง ๆ ที่เหมาะสมในการต้มไข่ โดย โครงงานการทดลองความ สุกของไข่ ดำเนินงานในวันเสาร์ ที่ 28 เมษายน พ.ศ. 2561 โดยทำการทดลองตามแผนงานที่กำหนด ซึ่งผล การดำเนินโครงงานสำเร็จไปได้ด้วยดี ผลการวิเคราะห์การทดลองด้วยวิธี 2^k แฟคตอเรียล โดยออกแบบเป็น 2³ แฟคตอเรียล 3 ปัจจัย แสดงให้เห็นว่ามีเพียงปัจจัยเดียวนั่นคืออุณหภูมิที่มีผลกระทบต่อค่าความสุกของไข่ ต้มอย่างมีนัยสำคัญ จึงนำอุณหภูมิมาเป็นปัจจัยในการทดลองแบบปัจจัยเดียวโดยแบ่งอุณหภูมิออกเป็น 4 ระดับ และทำการทดลอง 4 ซ้ำโดยกำหนดเวลาในการต้ม 12 นาที และระดับน้ำ 0.8 ลิตร เพราะเป็นระดับ ของปัจจัยที่ทำให้ไข่สุกที่สุด ทางคณะผู้จัดทำได้นำแนวคิดทฤษฎีหลักการและแนวคิดของการออกแบบการ ทดลองทางวิศวกรรม การออกแบบการทดลองเชิงแฟกทอเรียลแบบสองระดับและการออกแบบ 2^k ไปใช้ใน การทำงาน ซึ่งทำให้การดำเนินโครงงานผ่านไปได้ด้วยดี ทำให้บรรลุผลสำเร็จตามเป้าหมายได้และสำเร็จลุล่วง ด้วยดีตรงตามวัตถุประสงค์

กิตติกรรมประกาศ

โครงงานการทดลองความสุกของไข่ สำเร็จได้ด้วยความอนุเคราะห์ของบุคคลหลายท่าน ซึ่งผู้มีพระ คุณท่านแรกที่คณะผู้จัดทำใคร่ขอขอบพระคุณคือ ขอขอบคุณ อาจารย์ ผศ.ดร. ชาญณรงค์ สายแก้ว อาจารย์ผู้สอน วิชาสถิติและการออกแบบการทดลองทางวิศวกรรม ที่ได้ให้ความรู้ คำแนะนำ เพื่อให้การเขียนสมบูรณ์ที่สุด

ขอขอบพระคุณ อาจารย์ ที่อนุญาตให้ทางผู้จัดทำได้ไปดำเนินการตามแผนที่ได้วางไว้ รวมทั้งอนุเคราะห์ แนะนำ และให้คำปรึกษาในการดำเนินการ ตลอดจนผู้ที่เกี่ยวข้องทุกท่านที่ไม่ได้กล่าวนามไว้ ณ ที่นี้ ที่ได้ให้ กำลังใจและมีส่วนช่วยเหลือให้โครงงานฉบับนี้สำเร็จลุล่วงด้วยดี

ท้ายที่สุด คณะผู้จัดทำโครงงานขอขอบพระคุณทุกท่านที่มีส่วนเกี่ยวข้องในการจัดทำโครงงานครั้งนี้ไว้ ณ โอกาสนี้ด้วย

คณะผู้จัดทำ

30 เมษายน 2561

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	શ
สารบัญ	ନ
สารบัญตาราง	จ
สารบัญรูปภาพ	ฉ
บทที่ 1 ที่มาและความสำคัญ	1
1.1 แนวคิดที่มาของโครงงาน	1
1.2 วัตถุประสงค์ของโครงการ	1
1.3 ประโยชน์ที่คาดว่าจะได้รับ	1
1.4 สมมติฐานของโครงงาน	1
บทที่ 2 เอกสารที่เกี่ยวข้อง	2
2.1 หลักการและแนวคิดของการออกแบบการทดลองทางวิศวกรรม	2
2.2 การออกแบบการทดลองเชิงแฟกทอเรียลแบบสองระดับ	3
2.3 การออกแบบ 2 k	4
บทที่ 3 วิธีการดำเนินงาน	7
3.1 เครื่องมือและวัสดุอุปกรณ์	7
3.2 ขั้นตอนการดำเนินงาน	7
บทที่ 4 ผลการดำเนินงาน	9
4.1 ผลการทดลอง 2^3 แฟคตอเรียล	9

4.2. ผลการทดลองปัจจัยเดียว	15
4.3. การเปรียบเทียบพหุคูณ	19
บทที่ 5 สรุป อภิปรายผลและข้อเสนอแนะ	22
5.1 สรุปผลการดำเนินโครงการ	22
5.2 อภิปรายผล	22
5.3 ข้อเสนอแนะ	22
บรรณานุกรม	

ภาคผนวก

สารบัญตาราง

ตาราง	หน้า
ตาราง 4.1 ผลการทดลอง 2^3 แฟคตอเรียล	9
ตาราง 4.2 การวิเคราะห์ความแปรปรวนของความสุกของไข่ต้ม	12
ตารางที่ 4.3 ผลการทดลองปัจจัยเดียว	15
ตารางที่ 4.4 ตารางวิเคราะห์ความแปรปรวนในการทดสอบผลกระทบของอุณหภูมิต่อความสุกของ	18
ไข่ต้ม	

สารบัญรูปภาพ

รูปภาพ	หน้า
รูปที่ 4.1 ค่าเฉลี่ยผลตอบสนองในแต่ละทรีทเมนท์คอมบิเนชั่นของแผนการทดลองแบบ 2³ แฟค ตอเรียลในการทดลองต้มไข่	10
รูปที่ 4.2 ผลวิเคราะห์ความน่าจะเป็นแบบปกติของตัวประมาณของอิทธิพลทั้งหมด	11
รูปที่ 4.3 Pareto Chart ของข้อมูลที่ได้จากการทดลอง	11
การทดสอบความเพียงพอของรูปแบบ (ก)	13
การทดสอบความเพียงพอของรูปแบบ (ข)	13
การทดสอบความเพียงพอของรูปแบบ (ค)	13
การทดลองโดยใช้การตรวจสอบความเพียงพอของตัวแบบ (ก)	16
การทดลองโดยใช้การตรวจสอบความเพียงพอของตัวแบบ (ข)	16
การทดลองโดยใช้การตรวจสอบความเพียงพอของตัวแบบ (ค)	17

บทที่ 1

บทน้ำ

1.แนวคิดที่มาของโครงงาน

เนื่องจากในชีวิตประจำวันมีความจำเป้นที่ต้องประกอบอาหารอยู่บ่อยครั้งและสามารถนำไปประกอบ อาชีพได้ โดยมีเมนูที่ง่ายและยากแตกต่างกันออกไป โดยทางกลุ่มของเราได้เลือกเมนูอาหารคือไข่ต้ม ซึ่งในการต้ม ไข่มีปัจจัยดังนี้ อุณหภูมิน้ำของน้ำ ปริมาณของน้ำ เวลาในการต้ม เป็นต้น เพื่อที่จะให้ได้ไข่ออกมาในความสุกที่ ต้องการนั้นจำเป็นเป็นต้องมีปัจจัยที่เหมาะสม ทางผู้จัดทำจึงนำมาเป็นหัวข้อโครงงาน

2. วัตถุประสงค์ของโครงการ

- 2.1 เพื่อหาปัจจัยที่มีผลต่อความสุกในการต้มไข่ โดยปัจจัยที่นำมาพิจารณา คือ ระดับน้ำ เวลา และ อุณหภูมิ
 - 2.2 เพื่อนำความรู้ในรายวิชาการออกแบบการทดลองทางวิศวกรรมมาใช้
 - 2.3 หาระดับของปัจจัยต่าง ๆ ที่เหมาะสมในการต้มไข่

3.ประโยชน์ที่คาดว่าจะได้รับ

- 3.1 ได้รู้ถึงปัจจัยที่มีผลต่อความสุกในการต้มไข่
- 3.2 เพื่อให้สามารถประหยัดทรัพยากรในการต้มไข่โดยให้ได้ระดับความสุกของไข่ที่ต้องการ

4.สมมติฐานของโครงงาน

4.1 คาดว่าปัจจัยที่มีผลต่อความสุกของไข่ คือ อุณหภูมิ และเวลา

บทที่ 2

ทฤษฎีที่เกี่ยวข้อง

2.1หลักการและแนวคิดของการออกแบบการทดลองทางวิศวกรรม

การออกแบบการทดลองเชิงสถิติ (Statistical Design of Experiment) หมายถึงกระบวนการในการ วางแผนการทดลองเพื่อว่าจะได้มาซึ่งข้อมูลที่เหมาะสมที่สามารถนำไปใช้ในการวิเคราะห์โดยวิธีการทางสถิติ Montgomery (2005) ซึ่งจะทำให้ผู้วิเคราะห์สามารถหาข้อสรุปที่สมเหตุผลได้วิธีการออกแบบการทดลองในเชิง สถิติที่จำเป็น หากต้องการหาข้อสรุปที่มีความหมายจากข้อมูลที่เรามีอยู่ และถ้ายิ่งปัญหาที่สนใจนั้นเกี่ยวข้องกับ ความผิดพลาดในการทดลอง (Experimental Error) วิธีการทางสถิติเป็นวิธีการเพียงอย่างเดียวเท่านั้นที่ Montgomery (2005) จะสามารถนำไปใช้ในการวิเคราะห์ผลการทดลองนั้นได้ ดังนั้นสิ่งสำคัญ 2 ประการสำหรับ ู ปัญหาที่เกี่ยวกับการทดลองก็คือการออกแบบการทดลองและการวิเคราะห์ข[้]อมูลทางสถิติซึ่งศาสตร์ทั้งสองนั้นมี ความเกี่ยวข้องกันอย่างมาก ทั้งนี้เพราะว่าวิธีการวิเคาะห์เชิงสถิติที่เหมาะสมนั้นจะขึ้นกับการออกแบบการทดลอง ที่จะนำมาใช[้] หลักการพื้นฐาน 3 ประการของการออกแบบการทดลองคือ เรพลิเคชัน (Replication) แรนดอมไมเซชัน (Randomization) และบล็อกกิ่ง (Blocking) ในที่นี้เรากำหนดว่า เรพลิเคชัน หมายถึง การ ทดลองซ้ำ เรพลิเคชันมีคุณสมบัติที่สำคัญ 2 ประการคือ ประการแรกเรพลิเคชันทำให้ผู้ทดลองสามารถหา ค่าประมาณของความผิดพลาดในการทดลองได้ ตัวประมาณค่าความผิดพลาดนี้กลายเป็นหน่วยของการวัดขั้น พื้นฐานสำหรับพิจารณาว่า ความแตกต่างสำหรับข้อมูลที่ได้จากการทดลองนั้นมีความแตกต่างกันในเชิงสถิติหรือไม่ ประการที่สองถ้าค่าเฉลี่ย (ตัวอย่างเช่น) ถูกนำมาใชเพื่อประมาณผลที่เกิดจากปัจจัยหนึ่งในการทดลอง ดังนั้นเรพลิเคชันทำให้ผู้ทดลองสามารถหาตัวประมาณที่ถูกต้องยิ่งขึ้นในการประมาณผลกระทบนี้

แรนดอมไมเซชันเป็นพื้นฐานหลักสำหรับการใช้วิธีการเชิงสถิติในการออกแบบการทดลอง
แรนดอมไมเซชัน หมายถึง การทดลองที่มีทั้งวัสดุที่ใช้ในการทดลองและลำดับของการทดลองแต่ละครั้งเป็นแบบ
สุ่ม (Random) วิธีการเชิงสถิติกำหนดว่าข้อมูลหรือความผิดพลาดจะต้องเป็นตัวแปรแบบสุ่มที่มีการกระจาย
แบบอิสระ แรนดอมไมเซชันจะทำให้สมมุติฐานนี้เป็นจริง การที่เราแรนดอมไมซ์การทดลอง ทำให้เราสามารถลด
ผลของปัจจัยภายนอก เนื่องจากปัจจัยรบกวนต่างๆที่จะมีผลกับการทดลอง

บล็อกกิง เป็นเทคนิคที่ใช้สำหรับเพิ่มความเที่ยงตรง (Precision) ให้แก่การทดลอง บล็อกอันหนึ่งอาจจะ หมายถึงส่วนหนึ่งของวัสดุที่ใช้ในการทดลองที่ควรจะมีความเป็นอันหนึ่งอันเดียวกันมากกว่าเซ็ตทั้งหมดของวัสดุ การเปรียบเทียบเงื่อนไขที่น่าสนใจต่างๆภายในแต่ละบล็อกจะเกิดขึ้นได้จากการทำบล็อกกิง

2.2 การออกแบบการทดลองเชิงแฟกทอเรียลแบบสองระดับ

การออกแบบการทดลองเชิงแฟกทอเรียลใช้มากในการทดลองที่เกี่ยวกับปัจจัยหลายปัจจัย ซึ่งเราต้องการที่จะ ศึกษาถึงผลรวมที่มีต่อผลตอบซึ่งเกิดขึ้นจากปัจจัยเหล่านั้น กรณีพิเศษของการออกแบบเชิงแฟกทอเรียลที่มี ความสำคัญมากที่สุดคือ กรณีปัจจัย k ปัจจัย ซึ่งแต่ละปัจจัยประกอบด้วย 2 ระดับ ระดับเหล่านี้อาจจะเกิดจาก ข้อมูลเชิงปริมาณ เช่น อุณหภูมิ ความดัน หรือเวลา เป็นต้น หรืออาจจะเกิดจากข้อมูลเชิงคุณภาพได้ เช่น เครื่องจักร หรือคนงานเป็นต้น และใน 2 ระดับที่กล่าวถึงนี้จะแทนระดับ สูงหรือต่ำ ของปัจจัยหนึ่งๆหรือการ มี หรือไม่มีของปัจจัยนั้นๆได้ใน 1 เรพลิเคตที่บริบูรณ์สำหรับการออกแบบเช่นนี้จะประกอบด้วยข้อมูลทั้งสิ้น 2 \times 2 \times 2 \times \times 2 = 2kข้อมูลและเราเรียกการออกแบบลักษณะนี้ว่า การออกแบบเชิงแฟกทอเรียลการออกแบบ เช่นนี้จะทำให้เกิดการทดลองจำนวนน้อยที่สุดที่สามารถจะทำได้เพื่อศึกษาถึงผลของปัจจัยทั้ง k ชนิดได้อย่าง บริบูรณ์โดยใช้การออกแบบเชิงแฟกทอเรียล ดังนั้นจึงไม่แปลกใจเลยว่าการออกแบบ 2k จะถูกนำมาใช้

อย่างแพร่หลายเพื่อกรองปัจจัยที่มีอยู่เป็นจำนวนมากให้เหลือน้อยลง เนื่องจากแต่ละปัจจัยของการทดลองแบบ 2k ประกอบด้วย 2 ระดับ เราขอสมมติว่าผลตอบที่ได้จะมีลักษณะเป็นเส้นตรงตลอดช่วงของระดับปัจจัยที่เลือกขึ้นมา ทำการทดลองซึ่งสมมติฐานเช่นนี้เป็นสิ่งที่ยอมรับได้สำหรับการทดลองเพื่อกรองปัจจัยเมื่อเราเพิ่งเริ่มต้นศึกษา

2.3 การออกแบบ 2k

การออกแบบ 2kชนิดแรกที่จะกล่าวถึง คือ การออกแบบที่ประกอบด้วย 2 ปัจจัย A และ B แต่ละปัจจัย ประกอบด้วย 2 ระดับ การออกแบบชนิดนี้เรียกว่า การออกแบบเชิงแฟกทอเรียลแบบ 2k ระดับของปัจจัยแต่ละ ตัวจะอยู่ที่ ต่ำและสูง ตามปกติแล้วเราจะแสดงผลของปัจจัยด้วยตัวอักษรลาตินตัวใหญ่ดังนั้น A จะแทนผลของ ปัจจัย A B แทนผลของปัจจัย B และ AB แทนอันตรกิริยาของ ABในการออกแบบ 2k ระดับ ต่ำและสูง จะแทน ด้วยเครื่องหมาย + และ – บนแกน A และ B ตามลำดับ

ผลของอันตรกิริยาของ AB คือ ค่าเฉลี่ยของผลต่างระหว่างผลของ A ที่B ระดับสูงกับ ผลของ A ที่B ระดับต่ำ ซึ่งก็คือ

ในทางกลับกันเราอาจจะหาค่าของ ABได้จากค่าเฉลี่ยของผลต่างระหว่างผลของ B ที่
A ระดับสูงกับผลของ B ที่A ระดับต่ำ ซึ่งจะให้ผลออกมาเช่นเดียวกับสมการ (2-29)
สมการของผลของ A, B และ AB อาจจะหาได้โดยวิธีอื่นอีก เช่นผลของ Aสามารถหา
ได้จากความแตกต่างระหว่างค่าเฉลี่ยของผลตอบของการทดลองร่วมปัจจัยทั้งสองบนด้านขวามือ
ของรูปสี่เหลี่ยมจัตุรัสในรูปที่2-3 (เรียกว่า)เนื่องจากมันคือค่าเฉลี่ยของผลตอบของการทดลอง
ร่วมปัจจัยที่Aมีค่าสูง) กับการทดลองร่วมปัจจัยทั้งสองที่อยู่ทางด้านซ้ายมือ (เรียกว่า) นั่นคือ

ซึ่งผลที่ได้จะมีค่าเท่ากับค่าที่ได้จากสมการ (2-27) ทุกประการ ผลของ Bดังแสดงใน สมการ (2-28) ก็สามารถหาได้จากผลต่างระหว่างค่าเฉลี่ยของผลตอบของการทดลองร่วมปัจจัยทั้ง สองบนด้านบนของรูปสี่เหลี่ยมจัตุรัส (เรียกว่า)กับค่าเฉลี่ยของการทดลองร่วมปัจจัยทั้งสองที่ อยู่ด้านล่าง (เรียกว่า)นั่นคือ

สุดท้ายผลของอันตรกิริยาของ AB หาได้จากค่าเฉลี่ยของการทดลองร่วมปัจจัยจาก ขวาไปซ้ายตามแนวเส้นทแยงมุมของรูปสี่เหลี่ยมจัตุรัส (abและ (1)) ลบด้วยค่าเฉลี่ยของการทดลอง ร่วมปัจจัยจากซ้ายไปขวาตามแนวเส้นทแยงมุมของรูปสีเหลี่ยมจัตุรัส (a และ b) หรือ ซึ่งค[่]าที่ได้มีค[่]าเดียวกับสมการ (2-29)ทุกประการ

ในการทดลองที่เกี่ยวกับการออกแบบ 2kเราจะต้องตรวจสอบทั้งขนาดและทิศทางของ ปัจจัยที่มีผลเพื่อที่จะหาว่า ตัวแปรตัวใดน่าจะเป็นตัวการสำคัญที่ก่อให้เกิดผลขึ้น และใช้การ วิเคราะห์ความแปรปรวนมาเป็นตัวยืนยันข้อสรุปนั้น

พิจารณาผลรวมของกำลังสองของ A, B และ AB กำหนดให้ว่าคอนแทรสต์ที่จะใช้ใน การประมาณผลของ Aคือ

เราจะเรียกคอนแทรสต์นั้ว่า ผลทั้งหมด (Total Effect) ของ A จากสมการ (2-28) และ (2-29) เราพบว่าคอนแทรสต์นี้ยังสามารถใช้ในการประมาณผลของ B และ AB ได้อีกด้วย ยิ่งกว่านั้นคอนแทรสต์เหล่านี้ยังมีรูปแบบในเชิงตั้งฉาก (Orthogonal) และผลรวมของกำลังสองของ คอนแทรสต์ใดๆ จะหาได้จากคอนแทรสต์ยกกำลังสอง หารด้วยผลคูณของจำนวนของข้อมูล ทั้งหมดที่อยู่ที่ในคอนแทรสต์นั้น กับผลรวมกำลังสองของสัมประสิทธิ์ของคอนแทรสต์ ดังนั้น ผลรวมของกำลังสองของ A, B และ AB สามารถเขียนได้ดังนี้

และผลรวมทั้งหมดของกำลังสองสามารถหาได้จาก ปกติแล้ว จะมีระดับขั้นความเสรีเท่ากับ 4-1และค่าผิดพลาดของผลรวมของกำลังสองซึ่งมี ระดับขั้นความเสรีเท่ากับ 4(-1)สามารถคำนวณได้จาก

บทที่ 3 วิธีการดำเนินงาน

1. เครื่องมือและวัสดุอุปกรณ์

- 1.1 หม้อหุงข้าว
- 1.2 เตาแก๊ส
- 1.3 แก๊สกระป๋อง
- 1.4 เทอโมมิเตอร์
- 1.5 ไข่
- 1.6 มีด
- 1.7 ช้อนตัก
- 1.8 น้ำเปล่า

2. ขั้นตอนการดำเนินงาน

- 1. การกำหนดปัญหา
- 2. การกำหนัดตัวแปร เป็นการรวบบรวม/กำหนดตัวแปรที่เกี่ยวข้องในการทดลอง ซึ่งประกอบด้วย
 - 2.1 ตัวแปรต้น คือ ปัจจัยที่นำมาพิจารณา ซึ่งแบ่งเป็น 3 ปัจจัย คือ
 - 1.อุณหภูมิ
 - 2.เวลา
 - 3.ระดับน้ำ
 - 2.2 ตัวแปรตาม คือ ผลตอบสนอง กำหนดเป็นความสุกของไข่ ซึ่งแบ่งเป็นตามระดับ ดังนี้

- 3. การออกแบบการทดลองและวิเคราะห์ผลการทดลอง งานวิจัยนี้ทำการทดลองต้มไข่ ซึ่งมีทั้งหมดจำนวน 3 ตัวแปร และทำการออกแบบการทดลองแบบ $\mathbf{2}^k$ แฟคตอเรียล เพื่อหาปัจจัยที่มีผลต่อความสุกของไข่
 - 4. การทดลอง
 - 4.1 เตรียมไข่จำนวน 20 ฟองในขั้นต้น
 - 4.2 ต้มไขโดยควบคุมปัจจัยให้เป็นไปตาม Standard run ดังนี้

Run	А	В	С
1	-	+	-
2	+	+	-
3	-	-	-
4	+	-	-
5	-	+	+
6	+	+	+
7	-	-	+
8	+	-	+

- โดย A คือ อุณหภูมิ ซึ่งมีระดับสูง(+)ต่ำ(-) เป็น 80 องศาเซลเซียส และ 95 องศาเซลเซียส ตามลำดับ
 - B คือ เวลา ซึ่งมีระดับสูง(+)ต่ำ(-) เป็น 9 นาที และ 12 นาที ตามลำดับ
 - C คือ ระดับน้ำ ซึ่งมีระดับสูง(+)ต่ำ(-) เป็น 0.4 ลิตร และ 0.8 ลิตร ตามลำดับ
 - 4.3 จดบันทึกผลการทดลอง
- 5. วิเคราะห์ผลการทดลองโดยการใช้โปรแกรม Minitab เพื่อหาสภาวะที่เหมาะสมของระดับปัจจัย ถ้าผล การวิเคราะห์จากวิธีการทดลองแบบ 2^k แฟคตอเรียล ได้ปัจจัยที่มีผลตั้งแต่ 2 ปัจจัยขึ้นไปให้ใช้การเพิ่มจุดการ ทดลองใน 2^k แฟคตอเรียล ถ้าหากมีแค่ 1 ปัจจัย ให้ใช้การออกแบบการทดลองแบบปัจจัยเดียว (One-Way ANOVA)

บทที่ 4

ผลการดำเนินงาน

1.ผลการทดลอง 2³ แฟคตอเรียล

ลำดับ	อุณหภูมิ	เวลา	ระดับน้ำ	ระดับความสุกของไข่
1	80	9	0.4	3
2	95	9	0.4	6
3	80	12	0.4	4
4	95	12	0.4	7
5	80	9	0.8	4
6	95	9	0.8	6
7	80	12	0.8	5
8	95	12	0.8	8

ตาราง 4.1 ผลการทดลอง 2³ แฟคตอเรียล

จากข้อมูลในตาราง 4.1 สามารถเขียนให้อยู่ในรูปทรีทเมนท์คอมบิเนชั่นในแผนการทดลองแบบ 2³ แฟค ตอเรียล ดังแสดงในรูปที่ 4.1 ซึ่งเป็นการแสดงค่าเฉลี่ยผลตอบสนองใยแต่ละทรีทเมนท์คอมบิเนชั่นของแผนการ ทดลองแบบ 2³ แฟคตอเรียลในการทดลองต้มไข่

รูปที่ 4.1 ค่าเฉลี่ยผลตอบสนองในแต่ละทรีทเมนท์คอมบิเนชั่นของแผนการทดลองแบบ 2³ แฟคตอเรียลในการ ทดลองต้มไข่

รูปที่ 4.2 ผลวิเคราะห์ความน่าจะเป็นแบบปกติของตัวประมาณของอิทธิพลทั้งหมด

รูปที่ 4.3 Pareto Chart ของข้อมูลที่ได้จากการทดลอง

จากรูปที่ 4.2(ตารางความน่าจะเป็นแบบปกติของตัวประมาณของอิทธิพลทั้งหมด) และ 4.3(Pareto Chart) แสดงให้เห็นว่า อิทธิพลหลัก (Main Effect) คือ A(อุณหภูมิ) มีผลกระทบอย่างมีนัยสำคัญต่อความสุกของ ไข่ต้ม โดยสังเกตได้จาก A มีแนวโน้มไม่ได้อยู่บนเส้นตรงของแผนภาพความน่าจะเป็นแบบปกติของตัวประมาณ ของอิทธิพลใด ๆ การวิเคราะห์ผลกระทบอย่างมีนัยสำคัญของปัจจัยต่าง ๆ และอิทธิพลอื่น สามารถดูได้จากการ วิเคราะห์ความแปรปรวนในตาราง 4.2

ตาราง 4.2 การวิเคราะห์ความแปรปรวนของความสุกของไข่ต้ม

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-value	P-value
Main Effects	15.1250	1	15.1250	19.11	0.005
Temp	15.1250	1	15.1250	19.11	0.005
Residual Error	4.7500	6	0.7917		
Pure Error	4.7500	6	0.7917		
Total	19.8750	7			

โดยจากตาราง จะเห็นว่า ปัจจัย A มีผลกระทบต่อความสุกของไข่ต้มอย่างมีนัยสำคัญ(P-value < 0.05) ซึ่งเป็นการยืนยันผลการวิเคราะห์ที่ได้จากแผนภาพความน่าจะเป็นแบบปกติของตัวประมาณของอิทธิพลทั้งหมด

การทดสอบความเพียงพอของรูปแบบ

(ก)

(ข)

ร**ูปที่ 4.3** การทดสอบความเพียงพอของรูปแบบ โดยการวิเคราะห์ความคลาดเคลื่อนสุ่ม (ก) การทดสอบการแจก จงแบบปกติของข้อมูล (ข) การทดสอบความแปรปรวนคงที่ (ค) การทดสอบความเป็นอิสระของข้อมูล

การทดสอบความเพียงพอของรูปแบบทางสถิติของแผนการทดลองแสดงดังรูปที่ 4.3 ซึ่งแสดงให้เห็นว่า ข้อมูลที่ได้จากกผลการทดลองมีความเหมาะสมกับรูปแบบทางสถิติของแผนการออกแบบการทดลองแบบ 2³ แฟค ตอเรียล

จากการทดลองที่ผ่านมาทำให้ทราบว่ามีปัจจัยที่มีอิทธิพลต่อความสุกของไข่ต้มอย่างมีนัยสำคัญเพียง 1 ปัจจัย คือ อุณหภูมิ จึงนำมาทำการทดลองเพิ่มเติมด้วยวิธีการออกแบบการทดลองปัจจัยเดียว

2.ผลการทดลองปัจจัยเดียว

อุณหภูมิ		ค่าเฉลี่ย		
	1	2	3	
92	8	7	8	7.67
89	7	6	7	6.67
86	6	6	7	6.33
83	5	5	6	5.33

ตารางที่ 4.3 ผลการทดลองปัจจัยเดียว

การทดลองนี้สามารถใช้ one-way ANOVA เพื่อวิเคราะห์ความแตกต่างของค่าความสุกของไข่ต้มในระดับ อุณหภูมิต่าง ๆ กัน ซึ่งสามารถแสดงการวิเคราะห์ได้ดังนี้

ปัจจัย: มีจำนวน 1 ปัจจัย คือ อุณหภูมิ

ระดับ: มีจำนวน 3 ระดับ คือ 92 องศาเซลเซียส, 89 องศาเซลเซียส, 86 องศาเซลเซียส และ 83 องศา เซลเซียส

ผลตอบสนองคือ: ค่าความสุกของไข่ต้ม

จำนวนซ้ำในแต่ละระดับ: 3 ซ้ำ

จากการวิเคราะห์ข้างต้น สามารถใช้ one-way ANOVA เพื่อทดสอบความแตกต่างของค่าเฉลี่ยค่าความสุกของไข่ ต้มในระดับอุณหภูมิที่ต่างกัน แนวทางในการวิเคราะห์แสดงได้ดังนี้

สมมติฐานที่ใช้ในการตรวจสอบความสัมพันธ์ระหว่างอุณหภูมิต่าง ๆ กัน และค่าเฉลี่ยค่าความสุกของไข่ คือ

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_1: \mu_i \neq \mu_j$, for at least one pair (i,j)

โดยที่ μ_1 , μ_2 , μ_3 คือค่าเฉลี่ยค่าความสุกของไข่ในระดับการต้มที่อุณหภูมิ 92,89,86 และ 83 ตามลำดับ

ก่อนที่จะทำการวิเคราะห์ความแปรปรวนจำเป็นต้องตรวจสอบคุณภาพของข้อมูลที่ได้จากการทดลองโดย ใช้การตรวจสอบความเพียงพอของตัวแบบ (model adequacy checking)

(ก)

รูปที่ 4.4 การตรวจสอบความเพียงพอของตัวแบบในการศึกษาอุณหภูมิที่มีผลกระทบต่อความสุกของไข่ต้ม (ก) กราฟการแจกแจงแบบปกติของค่าความคลาดเคลื่อนสุ่ม (ข) กราฟความสัมพันธ์ระหว่างค่าความคลาดเคลื่อนสุ่ม และลำดับที่ (ค) กราฟความสัมพันธ์ระหว่างค่าคลาดเคลื่อนสุ่มและค่าประมาณของค่าสังเกต

จากรูปที่ 4.4 (ก) แสดงกราฟการแจกแจงแบบปกติของค่าคลาดเคลื่อนสุ่มในการศึกษาปัจจัยที่มี ผลกระทบต่อค่าความสุกของไข่ จากกราฟจะเห็นว่ากราฟมีแนวโน้มเป็นเส้นตรง ซึ่งแสดงให้เห็นว่าข้อมูลที่ได้จาก การทดลองมีการแจกแจงแบบปกติ รูปที่ 4.4 (ข) แสดงกราฟความสัมพันธ์ระหว่างค่าคลาดเคลื่อนสุ่มและลำดับที่ จากกราฟ จะเห็นได้ว่าไม่มีสัญญาณใดบ่งบอกให้เห็นถึงความผิดปกติของข้อมูลในเรื่องความเป็นอิสระต่ออกัน รูป ที่ 4.4 (ค) แสดงกราฟความสัมพันธ์ระหว่างค่าคลาดเคลื่อนสุ่มและค่าประมาณของค่าสังเกต จากกราฟจะเห็นว่า ไม่มีสัญญาณบ่งบอกให้เห็นถึงความผิดปกติของข้อมูลในเรื่องความไม่เท่ากันของความแปรปรวนของค่าสังเกตใน แต่ละระดับ จากการวิเคราะห์คุณภาพของข้อมูลที่ได้จากการทดลองด้วยการตรวจสอบความเพียงพอของตัวแบบ สรุปได้ว่า ค่าสังเกตที่ได้จากการศึกษาปัจจัยที่มีผลกระทบต่อค่าความสุกของไข่ต้มมีความเหมาะสมในการ วิเคราะห์ความแปรปรวนต่อไป โดยที่ไม่มีความจำเป็นต้องแปลงข้อมูล ซึ่งทำให้ผลการวิเคราะห์ข้อมูลที่ได้มีความ แม่นยำ และน่าเชื่อถือ

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-value	P-Value
Temperature	8.500	4	2.125	5.95	0.021
Error	2.500	7	0.357		
Total	11.000	11		I	

ตารางที่ 4.4 ตารางวิเคราะห์ความแปรปรวนในการทดสอบผลกระทบของอุณหภูมิต่อความสุกของไข่ต้ม

ในขณะที่ ค่าวิกฤติที่ระดับนัยสำคัญ = 0.05 ในการทดสอบสมมติฐาน คือ = นั่นคือ

F-value=5.95>
$$f_{0.05,4,7}$$
 = 4.12

แสดงให้เห็นว่า ปฏิเสธ H_0 และสรุปว่า อุณหภูมิมีผลกระทบต่อความสุกของไข่ หมายเหตุ การสรุปผลที่ ได้แสดงให้เห็นแต่เพียงว่า อุณหภูมิในระดับต่าง ๆ กัน มีผลกระทบต่อค่าความสุกของไข่ โดยเฉลี่ยอย่างมีนัยสำคัญ อย่างไรก็ตามการวิเคราะห์นี้ บอกแต่เพียงอิทธิพลของปัจจัยที่มีผลกระทบต่อผลตอบสนอง โดยเฉลี่ยอย่างมี นัยสำคัญเท่านั้น แต่ยังไม่สามารถบอกได้ว่าอุณหภูมิในระดับต่าง ๆ กันมีผลกระทบต่อค่าความสุกของไข่อย่างไร เราสามารถใช้การเปรียบเทียบพหุคุณในการตอบคำถามดังกล่าวได้ดังนี้

การเปรียบเทียบพหุคูณ

วิธี Tukey's test

Grouping Information Using Tukey Method

N	Mean	Grouping
3	7.6667	A
3	6.6667	AВ
3	6.3333	AВ
3	5.3333	В
	3 3 3	3 7.6667 3 6.6667

Means that do not share a letter are significantly different.

Tukey 95% Simultaneous Confidence Intervals All Pairwise Comparisons among Levels of temp

Individual confidence level = 98.74%

temp = 83 subtracted from:

temp	Lower	Center	Upper	+		+		
86	-0.5100	1.0000	2.5100		(*)		
89	-0.1767	1.3333	2.8433		(*))	
92	0.8233	2.3333	3.8433		(*_)	
				+		+	+	
				-2.0	0.0	2.0	4.0	

temp = 86 subtracted from:

89	Lower -1.1767 -0.1767	0.3333	1.8433	(()))
72	0.1707	1.0000	2.0100	+	+ 0 . 0		,

temp = 89 subtracted from:

temp	Lower	Center	Upper	+			
92	-0.5100	1.0000	2.5100		(-*)	
					+		+
				'	0.0	'	'

วิธี Fisher's test หรือ LSD

Grouping Information Using Fisher Method

temp	N	Mean	Grouping
92	3	7.6667	A
89	3	6.6667	AВ
86	3	6.3333	вс
83	3	5.3333	С

Means that do not share a letter are significantly different.

Fisher 95% Individual Confidence Intervals All Pairwise Comparisons among Levels of temp

Simultaneous confidence level = 82.43%

temp = 83 subtracted from:

-	Lower -0.0871				+	
	0.2463			`	*	,
92	1.2463	2.3333	3.4204	 1	`	*)
				0.0		

temp = 86 subtracted from:

temp	Lower	Center	Upper			+	
89	-0.7537	0.3333	1.4204		(*)	
92	0.2463	1.3333	2.4204		(*)
				+	+	+	+
					0.0		

temp = 89 subtracted from:

จากการเปรียบเทียบพหุคูณโดยวิธี Tukey's test และ LSD ได้ผลการผลสอบดังนี้

Grouping Information Using Tukey Method

```
temp N Mean Grouping
92 3 7.6667 A
89 3 6.6667 A B
86 3 6.3333 A B
83 3 5.3333 B
```

Means that do not share a letter are significantly different.

วิธี Tukey's test แสดงผลการทดสอบว่า ที่ระดับอุณหภูมิ 89°c และ 86°c ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ

Grouping Information Using Fisher Method

```
temp N Mean Grouping
92 3 7.6667 A
89 3 6.6667 A B
86 3 6.3333 B C
83 3 5.3333 C
```

Means that do not share a letter are significantly different.

วิธี LSD แสดงผลการทดสอบว่า ที่ระดับอุณหภูมิ 89°c และ 86°c ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ

บทที่ 5

สรุป อภิปรายผล และข้อเสนอแนะ

ผลการวิเคราะห์การทดลองด้วยวิธี 2^kแฟคตอเรียล โดยออกแบบเป็น 2³ แฟคตอเรียล 3 ปัจจัย แสดง ให้เห็นว่ามีเพียงปัจจัยเดียวนั่นคืออุณหภูมิที่มีผลกระทบต่อค่าความสุกของไข่ต้มอย่างมีนัยสำคัญ จึงนำอุณหภูมิทา เป็นปัจจัยในการทดลองแบบปัจจัยเดียวโดยแบ่งอุณหภูมิออกเป็น 4 ระดับ และทำการทดลอง 4 ซ้ำ โดย กำหนดเวลาในการต้ม 12 นาที และระดับน้ำ 0.8 ลิตร เพราะเป็นระดับของปัจจัยที่ทำให้ไข่สุกที่สุด จากผลการ ทดลองแบบ 2³ แฟคตอเรียล ผลจากทดลองแบบปัจจัยเดียวพบว่าที่อุณหภูมิ 92°C มีค่าเฉลี่ยความสุกของไข่ที่ 7.67 ที่อุณหภูมิ 89°C มีค่าเฉลี่ยความสุกของไข่ที่ 5.33 ซึ่งที่อุณหภูมิ 92°C ให้ค่าความสุกของไข่ที่ 6.67 ที่อุณหภูมิ 95°C ที่สุด ดังนั้นจึงพิจารณาเลือกระดับของอุณหภูมิเป็น 92°C เพราะคำนึงถึงปัจจัยทางเศรษฐศาสตร์ และผลจากการเปรียบเทียบพหุคูณ พบว่าที่อุณหภูมิ 89°c และ 86°c ไม่มีความแตกต่างกันอย่างมีนัยสำคัญ ใน การนำไปใช้ประโยชน์เชิงพาณิชย์ เช่น การต้มไข่เพื่อจำหน่าย ความสุกของไข่ที่ระดับ 6 นั้นเพียงพอแล้ว เนื่องจากไข่เปลี่ยนเป็นสถานะของแข็งทั้งใบที่ระดับ 6 และเป็นไข่ที่สุกกำลังพอดีไม่ดิบและไม่สุกมากจนเกินไป ไม่ จำเป็นต้องต้มไข่จนถึงระดับ 7 และ 8 เพราะจะทำให้สิ้นเปลืองพลังงานมาก เราจึงสามารถนำผลจากการ เปรียบเทียบพหุคูณมาพิจารณาเลือกอุณหภูมิ 86°c ซึ่งเป็นอุณหภูมิที่ต่ำที่สุดที่ได้จากการทดลองที่ทำให้ไข่สุกที่ ระดับ 6 โดยเฉลี่ย

ภาคผนวก

