scenario_2_r_markdown

Grace E. Seo

2/1/2022

Scenario 2

In Scenario 1, you performed some analysis and created a scatter plot of Pokemon bioinformatics class using student metadata.

To provide the result to your supervisor, you need to create a PDF output using R markdown.

Before you begin, let's learn how R markdown works briefly.

If you want to know more about R markdown, here is a great resource: https://bookdown.org/yihui/rmarkdown-cookbook/

In R markdown, you can create a Bookmark/table of contents by using #.

For example:

Header 1

Header 2

Header 3

Bullet points

If you want to include bullet points, use "-" in front of your sentence.

- Like this! Make sure you put a space before the dash!
- If you want to leave some blank lines between sentences, include a white space between two sentences by pressing "Enter".

Include a timestamp on this document

To know when this PDF file was generated, include a timestamp.

date: "Last compiled on 01 February, 2022, at 06:27:09"

Now, let's include all the codes from scenario 1 as well include outputs directly in this PDF file.

1. Load Pokemon class metadata

GitHub page: https://github.com/MMID-coding-workshop/2022-02-02-Introduction-to-R

Raw Pokemon class metadata: $https://github.com/MMID-coding-workshop/2022-02-02-Introduction-to-R/blob/main/class_metadata.csv$

```
## Raw csv file: https://github.com/MMID-coding-workshop/2022-02-02-Introduction-to-R/blob/main/class_m
## Two methods to load dataset: using a URL or directly from your folder.

# CODE: OBJECTNAME <- read.csv("FOLDERPATH/FILE.csv", header = TRUE)

# CODE: OBJECTNAME <- read.csv("URL/FILE.csv", header = TRUE)

#metadata <- read.csv("C:/Users/USERNAME/Desktop/intro_to_r/class_metadata.csv", header = TRUE)

metadata <- read.csv("https://raw.githubusercontent.com/MMID-coding-workshop/2022-02-02-Introduction-to

## NOTE: now you should see that "metadata" object is available in your "Environment" pane</pre>
```

View dataset

```
# CODE: View("OBJECTNAME")
View(metadata)
## NOTE: new window will pop-up beside this script. You can scroll through the content.
metadata # this will print data into console.
```

##		Numb	er	Student name	Student_number	Age	Year of study	Phone
	1	rumb	1	Mew	7991102	28		111-111-1111
##	2		2	Garchomp	7980475	18	=	111-111-1112
##	3		3 1	Kanto Starters	7779385	19		111-111-1113
##	4		4	Metagross	7620583	24	3	111-111-1114
##	5		5	Zoroark	8103955	25	3	111-111-1115
##	6		6	Tyranitar	8502931	21	4	111-111-1116
##	7		7	Eevee	8110291	29	4	111-111-1117
##	8		8	Snorlax	8110429	30	5	111-111-1118
##	9		9	Volcarona	7889281	34	4	111-111-1119
##	10		10	Mewtwo	8719237	21	3	111-111-1120
##	11		11	Charizard	7817241	22	3	111-111-1121
##	12		12	Milotic	7992930	21	3	111-111-1122
##	13		13	Kyurem	7293148	24	3	111-111-1123
##	14		14	Haxorus	7920394	31	3	111-111-1124
##	15		15	Arceus	7329523	19	4	111-111-1125
##	16		16	Ninetales	7978149	21	4	111-111-1126
##	17		17	Espeon	7918938	24	4	111-111-1127
##	18		18	Golurk	7083872	23	4	111-111-1128
##	19		19	Lapras	7051934	22		111-111-1129
##	20		20	Pikachu	7094583	24	5	111-111-1130
##				Address	Address_city		Major	:
##	1	111	Pok	emon Street	Pallet Town		Biology	Ţ

##	2	112	${\tt Pokemon}$	${\tt Street}$	Pallet	${\tt Town}$	Biology
##	3	113	${\tt Pokemon}$	${\tt Street}$	Pallet	${\tt Town}$	Microbiology
##	4	114	${\tt Pokemon}$	${\tt Street}$	Viridian	\mathtt{City}	Microbiology
##	5	115	${\tt Pokemon}$	${\tt Street}$	Pewter	\mathtt{City}	Microbiology
##	6	116	${\tt Pokemon}$	${\tt Street}$	Viridian	\mathtt{City}	Medical Microbiology
##	7	117	${\tt Pokemon}$	${\tt Street}$	Viridian	\mathtt{City}	Mathematics
##	8	118	${\tt Pokemon}$	${\tt Street}$	Pewter	\mathtt{City}	Mathematics
##	9	119	${\tt Pokemon}$	${\tt Street}$	Lavender	${\tt Town}$	Statistics
##	10	120	${\tt Pokemon}$	${\tt Street}$	Lavender	${\tt Town}$	Medical Microbiology
##	11	121	${\tt Pokemon}$	${\tt Street}$	Lavender	${\tt Town}$	Medical Microbiology
##	12	122	${\tt Pokemon}$	${\tt Street}$	Celadon	\mathtt{City}	Medical Microbiology
##	13	123	${\tt Pokemon}$	${\tt Street}$	Celadon	\mathtt{City}	Medical Microbiology
##	14	124	${\tt Pokemon}$	${\tt Street}$	Celadon	\mathtt{City}	Bioinformatics
##	15	125	${\tt Pokemon}$	${\tt Street}$	${\tt Saffron}$	\mathtt{City}	Bioinformatics
##	16	126	${\tt Pokemon}$	${\tt Street}$	${\tt Saffron}$	\mathtt{City}	Statistics
##	17	127	${\tt Pokemon}$	${\tt Street}$	Cerulean	\mathtt{City}	Bioinformatics
##	18	128	${\tt Pokemon}$	${\tt Street}$	Cerulean	\mathtt{City}	Chemistry
##	19	129	${\tt Pokemon}$	${\tt Street}$	${\tt Vermillion}$	\mathtt{City}	Biochemistry
##	20	130	${\tt Pokemon}$	${\tt Street}$	${\tt Vermillion}$	\mathtt{City}	Biochemistry

2. Install and load necessary package for your analysis if not already installed

3. Determine how many students are in your class

HINT: Row number matches student number

```
#CODE: nrow(OBJECTNAME) # counts how many rows are present in a dataframe
nrow(metadata)
```

[1] 20

ANSWER: 20 students

4. Determine how many columns are present in your metadata

```
# CODE: ncol(OBJECTNAME) # counts how many columns are present in a dataframe
ncol(metadata)
```

[1] 9

ANSWER: 9

5. Show the list of column headers in the metadata

```
# CODE: colnames(OBJECTNAME) # prints out list of column headers
colnames(metadata)
```

```
## [1] "Number" "Student_name" "Student_number" "Age"
## [5] "Year_of_study" "Phone" "Address" "Address_city"
## [9] "Major"
```

ANSWER: [1] "Number" "Student_name" "Student_number" "Age" "Year_of_study" "Phone" [7] "Address" "Address_city" "Major"

6. Print out row contents of only column "Student_name"

```
# CODE: OBJECTNAME$COLNAME
metadata$Student_name
                          "Garchomp"
  [1] "Mew"
                                            "Kanto Starters" "Metagross"
## [5] "Zoroark"
                          "Tyranitar"
                                            "Eevee"
                                                              "Snorlax"
                          "Mewtwo"
## [9] "Volcarona"
                                            "Charizard"
                                                              "Milotic"
## [13] "Kyurem"
                          "Haxorus"
                                            "Arceus"
                                                              "Ninetales"
                                            "Lapras"
## [17] "Espeon"
                          "Golurk"
                                                              "Pikachu"
ANSWER: [1] "Mew" "Garchomp" "Kanto Starters" "Metagross" "Zoroark" "Tyranitar"
[7] "Eevee" "Snorlax" "Volcarona" "Mewtwo" "Charizard" "Milotic"
[13] "Kyurem" "Haxorus" "Arceus" "Ninetales" "Espeon" "Golurk"
[19] "Lapras" "Pikachu"
```

7. Determine average age of all students in this class

```
# CODE: mean(OBJECTNAME$COLNAME)
mean(metadata$Age)
## [1] 24
```

... 2-3 --

ANSWER: 24

8. Determine the Pikachu's student number

```
# CODE: OBJECTNAME$COLNAME_CONTAIN_VALUE_YOU_WANT[OBJECTNAME$COLNAME_YOUR_SEARCH == "NAME"]
metadata$Student_number[metadata$Student_name=="Pikachu"]
```

[1] 7094583

ANSWER: 7094583

9. Scatter plot by student's Year_of_study vs. Age and create a figure legend by student's study Major

Figure 1: Student's Year of Study by Age and Major represented as simple scatter plot.

10. Scatter plot is too small to see.

Increase the size of each scatter point, remove grey background and rename the x-axis to "Year of Study".

```
plot_2 <- ggplot(data = metadata, aes(x = Year_of_study, y = Age, colour = Major)) +
    geom_point(size = 5) +
    xlab("Year of Study") +
    theme_bw()

plot_2 # view the plot</pre>
```


Figure 2: Student's Year of Study by Age and Major represented as scatter plot.

This is it! Now click "Knit" at top on this R markdown \rightarrow "Knit to PDF" or "Knit to HTML" and you'll get a file output.

The end of scenario 2

Upcoming workshops

Now try this with your own code and plots. In upcoming R workshops, you'll be able to learn in-depth on how to do:

- ullet more sophisticated data transformation
- include more options and make fancier graphs in ggplot, ggtree, etc.
- perform RNA-seq data analyses
- and build machine learning models!

References

If you want to practice R markdown in detail, here are helpful resources:

- 1. Yihui Xie, Christophe Dervieux, Emily Riederer. 2022. R Markdown Cookbook. Available at https://bookdown.org/yihui/rmarkdown-cookbook/.
- 2. Chester Ismay and Patrick C. Kennedy. 2021. Getting Used to R, RStudio, and R Markdown. https://ismayc.github.io/rbasics-book/index.html.