Using Channel Noise for Information theoretic Security

P Vidyadhar Rao

Research in Information Security

December 8, 2013

Information Theoretic Security

Assumption 1

Alice and Bob share a secret key K

Assumption 2

Bob and Eve have perfect access to the insecure channel

Definition

Shannon's perfect secrecy: I(M; C) = 0

Figure: Shannon's model [Sha49]

Theorem

Perfect secrecy is achievable iff $H(K) \ge H(M)$

Remark

Perfect secrecy is unachievable in practice!

Using channel noise

Assumption 1

Alice and Bob do not share secret keys

Assumption 2

Alice-Bob communicate over main channel

Assumption 3

Eve has access to messages over wiretap channel

Figure: Wiretap Channel Model [Wyn75]

Challenge

Is it possible to communicate at a transmission rate R with small error-rate, while keeping Eve with no significant information about messages sent over main channel?

Definition

For R>0 and d>0, pair (R,d) is achievable if, $\forall \epsilon>0$, $\exists (k,n,\Delta,P_e)$ encoder-decoder s.t:

- $k.\frac{H_S}{n} \ge R \epsilon$
- $lack \Delta \geq d \epsilon$, where $\Delta = rac{1}{k} H(S^k | Z^n)$.
- $P_e \leq \epsilon$, where $P_e = \frac{1}{k} \sum_{i=1}^k P(S_i \neq \hat{S}_i)$.

Let $p_X(x), x \in X$ be a probability mass function and P(R) denote the set of all distributions p_X s.t $I(X;Y) \ge R$.

For
$$0 \leq R \leq C_M$$
, let $\Gamma(R) = \sup_{PX \in P(R)} I(X;Y|Z) = \sup_{PX \in P(R)} [I(X;Y) - I(X;Z)]$.

Theorem

Wyner's main result on the set of all acheivable pairs is given by $\Re = \{(R, d): 0 \le R \le C_M, 0 \le d \le H_S, \frac{d}{H_C} \le \frac{\Gamma(R)}{R}\}$

Definition

The secrecy capacity of the channel pair (Q_M, Q_W) is defined by $C_S = \max_{(R,H_S) \in \Re} R$.

$\mathsf{Theorem}$

If $C_M > C_{MW}$, \exists unique solution C_S of $C_S = \Gamma(C_S)$. Further, C_S is the maximum R s.t $(R, H_S) \in \Re$ and satisfies $0 < C_M - C_{MW} < \Gamma(C_M) < C_S < C_M$.

Remark

Here, it requires that $C_M > C_{MW}$ to have strictly positive secrecy capacity i.e., in order to be able to communicate with perfect secrecy, Alice and Bob must have a better channel than the wiretap channel.

Using public insecure channel

Assumption 1

Alice-Bob share a small key required for authentication in the public channel.

Assumption 2

Eve can listen to the communication over public channel, but cannot perform an identity spoofying attack.

Figure: Broadcast channel with a public channel [Mau93]

Challenge

To acheive strictly positive secrecy capacity, even if Eves channel is better than main channel.

General Key Agreement protocol

- Alice, Bob and Eve know random variables X,Y and Z with joint probability distribution P_{XYZ} .
- Alice and Bob share no secrect key initially, other than a short key required for authentication in the public channel.
- Eve knows the protocol and the codes used.
- Alice sends messages at odd steps $[C_1, C_3, ...]$.
- Bob sends messages at even steps $[C_2, C_4, \ldots]$.
- At the end of t-steps,
 - Alice computes secret key S as a function of X and $C^t = [C_1, C_2, ...]$
 - Bob computes secret key S' as a function of Y and C^t

Definition

A secret key agreement protocol is (ϵ, δ) -secure if, for some specified (small) ϵ and δ , satisfies:

- **1** For odd i, $H(C_i|C^{i-1}X) = 0$; and for even i, $H(C_i|C^{i-1}Y) = 0$;
- **2** $H(S|C^tX) = 0$; and $H(S'|C^tY) = 0$;
- $P(S \neq S') \leq \epsilon;$
- $I(S; C^t Z) \leq \delta;$

The secret key rate, denoted S(X;Y||Z), is the maximum rate R s.t, $\forall \epsilon > 0$, \exists a protocol, for sufficiently large n, that satisfies:

- conditions 1-3
- $\frac{1}{n}H(S) \geq R \epsilon$

$\mathsf{Theorem}$

For discrete memoryless channels, the secret key rate S(X; Y||Z) is shown to satisfy:

```
\textit{max}[\textit{I}(\textit{Y};\textit{X}) - \textit{I}(\textit{Z};\textit{X}),\textit{I}(\textit{X};\textit{Y}) - \textit{I}(\textit{Z};\textit{Y})] \leq \textit{S}(\textit{X};\textit{Y}||\textit{Z}) \leq \textit{min}[\textit{I}(\textit{X};\textit{Y}),\textit{I}(\textit{X};\textit{Y}|\textit{Z})];
```

For a general broadcast channels, specified by P(YZ|X), the secrecy capacity, $\hat{C}(P_{YZ|X})$, is shown to satisfy:

 $\mathit{max}_{P_{\underset{}{X}}}\mathit{S}(X;Y||Z) \leq \hat{\mathit{C}}(P_{YZ|X}) \leq \mathit{min}[\mathit{max}_{P_{\underset{}{X}}}\mathit{I}(X;Y), \mathit{max}_{P_{\underset{}{X}}}\mathit{I}(X;Y|Z)].$

Remark

If Eve has less information about Y than Alice or less information about X than Bob, then such a difference of information can be exploited.

Even if the eavesdropper has a better channel than the legitimate users, perfect secure communication can still be achieved.

Information theoretic security has two striking benefits over conventional cryptography

- 1 no computational assumptions: useful to
 - governments worried about require long-term security.
 - organizations worried about quantum computing.
- 2 no keys and hence no key distribution: useful when
 - vulnerable, low-power devices are proliferating.
 - key distribution and key management obstruct security.

Practical challenge

We need definitions that yield information theoretic security in applications.

 Government-sponsored Ziva Corporation [Cor] is using optical techniques to build a receiver channel so that wiretapping results in a degraded channel.

Moving forward

- Develop practical codes that achieve the secrecy capacity under these definitions.
- Design new models for different security problems that exploit uncertainity by physical means.

References I

Ziva Corporation, http://www.ziva-corp.com/.

Ueli M Maurer, Secret key agreement by public discussion from common information.

Claude E Shannon, The mathematical theory of communication.

Aaron D Wyner, The wire-tap channel.

