Ordenação dos dois terços

O algoritmo mais interessante do oeste

Referências

Michal Forišek, Stooge Sort -

Disponível em

https://www.quora.com/What-algorithms-have-the-most-unexpected-big-O-time-complexity

Exemplo de Implementação -

Disponível em https://www.geeksforgeeks.org/stooge-sort/

Recursively sort last 2/3rd element

Again, recursively sort initial 2/3rd element

Initial 2/3rd element sorted

Complexidade:

Recorrência:

$$a(x) = 3a(\frac{2}{3}x) + 1$$

(CLRS3d) Para n inteiro, seja uma recorrência DC a(n) com custo de combinar f(n):

$$a(n) = \alpha a(n/\beta) + f(n)$$

(caso 1) se
$$f(n) = O(n^{\log_{\beta} \alpha - \epsilon})$$
 e $\epsilon > 0$ $a(n) = \Theta(n^{\log_{\beta} \alpha})$ (caso 2) se $f(n) = \Theta(n^{\log_{\beta} \alpha})$ $a(n) = \Theta(n^{\log_{\beta} \alpha})$ $a(n) = \Theta(n^{\log_{\beta} \alpha})$ (caso 3) se $f(n) = \Omega(n^{\log_{\beta} \alpha + \epsilon})$ e $\epsilon > 0$ $a(n) = \Theta(f(n))$

Complexidade

(caso 1) se
$$f(n) = O(n^{\log_{\beta} \alpha - \epsilon})$$
 e $\epsilon > 0$ $a(n) = \Theta(n^{\log_{\beta} \alpha})$

$$a(n)=3.a(rac{2}{3}n)+1$$
 $a=3$ $f(n)=O(n^{\lograc{3}{2}3-e})$ escolhendo $e=2$, $g=rac{3}{2}$ $f(n)=1$ $f(n)=O(n^{\lograc{3}{2}1})=O(n^{\lograc{3}{2}1})=O(n^0)=O(1)$

$$a(n) = \Theta(n^{\log_{rac{3}{2}}3}) = \Theta(n^{2.7095})$$

Variação

$$a(n)=2.a(rac{2}{3}n)+rac{2}{3}n$$

(caso 1) se
$$f(n) = O(n^{\log_{\beta} \alpha - \epsilon})$$
 e $\epsilon > 0$ $a(n) = \Theta(n^{\log_{\beta} \alpha})$

$$f(n) = O(n^{\log rac{3}{2} 3 - e}) = O(n^{\log rac{3}{2} rac{3}{2}}) = O(n)$$

$$a(n) = \Theta(n^{\log_{rac{3}{2}}2}) = \Theta(n^{1.7095})$$