Detrended Fluctuation Analysis

<u>Features</u>

- proven method to detect long-range correlation in noisy, nonstationary and highly heterogeneous data [Peng et al., 1994]
- handle short length data [Coronado & Carpena, 2005]
- ldentify correlation in discontinuous data [Chen et al., 2002]

1. Obtain profile using cumulative sum

$$Y(i) = \sum x_k - \overline{x}$$

- 2. Divide profile into various sized scales
- 3. Detrend all segments
- 4. Obtain Fluctuation profile F(s) by computing local RMS variation $F(s) = \left(\frac{1}{s} \sum_{i=1}^{s} Y_i y_{fit}\right)^{1/2}$
- 5. Linear fit to F(s) on log-log scale yields exponent α

Computational Steps

Log (box size)

CAP239

Detrended fluctuation analysis

- $\alpha = 0.5$
 - uncorrelated data
- $0 < \alpha < 0.5$
 - anti-correlated data
- $0.5 < \alpha$
 - correlated data

Crossover (why???)

change of correlation properties over two different scales

Intrinsic crossover

Apply different detrending order

For each order

α should differ with crossover at different scale

CAP239

Detrended fluctuation analysis

- $\alpha = 0.5$ uncorrelated data
- $0 < \alpha < 0.5$ anti-correlated data
- 0.5 < α correlated data

 $\alpha = f(h)$??? \rightarrow but H=f(D) Then \rightarrow more than one attractor? Therefore must exist a structure function $\tau(s,q,\alpha(h))$!!!!

Mono to Multifractal?

- change of correlation properties over various scales
- superposition of monofractals describe a multitude of scaling exponents
- Multifractal DFA [Kantelhardt et al., 2002] characterize multiple scaling behavior in data.

CAP239

Multifractal DFA

Mono to Multi fractal

- change of correlation properties over various scales
- superposition of monofractals describe a multitude of scaling exponents

Multifractal DFA [Kantelhardt et al., 2002] characterize

multiple scaling behavior in data.

variance over ne as DFA) fluctuation function $(s)^{\frac{q}{2}}$

Therefore must exist a structure

function $\tau(s,q,\alpha(h))$!!!!

log scale yields the

$$\tau(q) = qh(q) - 1$$
Sonent $\tau(q)$

and multifractal spectrum α and $f(\alpha)$

$$\alpha = h(q) + qh'(q)$$

$$f(\alpha) = q[\alpha - h(q)] + 1$$

Computational Steps

The multifractal signature is inside the antipersistent component because different attractors are defined by the different families of amplitudes (structure function) which are frequency independent (hilen, 2012, Frontiers in Physiology 3:141)

<u>Understanding analysis</u>

Fluctuation function

Methods

Multifractal DFA

Multifractal measures

Degree of multifractality

$$\Delta \alpha = \alpha_{\text{max}} - \alpha_{\text{min}}$$

Higher the $\Delta \alpha$, stronger the multifractality

Measure of Asymmetry

$$A = \frac{\left(\alpha_0 - \alpha_{\min}\right)}{\left(\alpha_{\max} - \alpha_0\right)}$$

A < 1; right skewed spectrum

→ dominance of smaller
amplitude fluctuations

A = 1; symmetric spectrum

A > 1 ; left skewed spectrum→ dominance of largeramplitude fluctuations

Methods

P model

- shows multifractal properties of one-dimensional sections of the dissipation field [Meneveau & Sreenivasan, 1987].
- Analytical formulation to determine the singularity spectrum [Halsey et al., 1986].

$$\alpha = \frac{\ln p_1 + (n/m - 1) \ln p_2}{\ln l_1 + (n/m - 1) \ln l_2}$$

$$f(\alpha) = \frac{(n/m - 1)\ln(n/m - 1) - (n/m)\ln(n/m)}{\ln l_1 + (n/m - 1)\ln l_2}$$

Probability parameters: p_1 and p_2 where $p_1 + p_2 = 1$ with dissipation parameter dp, $p_1 + p_2 + dp = 1$ Length scales: l_1 and l_2 where $l_1 = l_2 = 0.5$

Methods

Multiplicative cascade model

C

Ionospheric in situ data

E-F valley region

December 8, 2012 at 19:00 LT Alcântara (2.31° S; 44.4° W) Apogee ~ 428 km; range ~ 384 km Langmuir probe:

electron density fluctuations

F region

December 18, 1995 at 21:17 LT Alcântara (2.31° S; 44.4° W) Apogee ~ 557 km; range ~ 589 km Electric field probe:

electric field fluctuations

Ionospheric downleg profile

E-F valley region

December 8, 2012 at 19:00 LT

Valley region: 130 - 300 km

Small to medium scale irregularities

F region

December 18, 1995 at 21:17 LT

F region: 250 km onwards

medium to large scale irregularities

DFA: Valley region

<height> (km)</height>	exponent	DFAI	DFA2	DFA3	DFA4	DFA5
	αΙ	0.39	0.15	0.12	0.10	0.13
143.03	α2	1.50	1.93	2.08	2.26	2.53
	scale	16	33	53	70	101

DFA: Valley region

Date	Altitude (km)	β	<β>	σm	References	
17/07/1979	250 to 370	-1.20 to -3.4	-2.3	110%	Rino et al., 1981	
17/07/1979	250 to 485	-2.00 to -3.4	-2.7	70%	Kelley et al., 1982	
31/10/1986	100 to 220	-1.54 to -3.30	-2.42	88%	Muralikrishna et al., 2007	
15/01/2007	- to 127	-1.60 to -2.70	-2.15	55%	Sinha et al., 2010	
08/12/2012	100 to 317	-0.98 to -2.14	-1.56	58%	This work	

Kolmogorov's spectral exponent $= -1.66 \pm 2\%$ α = 1.33 ± 2%

$$\beta = 2\alpha - 1$$

<263.47> km

MFDFA: valley region

MFDFA: valley region data

< height >	degree of multifractality	measure of asymmetry	p model fit parameters		
(km)	$\Delta \alpha$	A	p_1	l_1	dp
194.58	0.61	0.54	0.3650	0.5	0.0500
214.64	0.46	0.91	0.4010	0.5	0.0150
219.19	0.59	1.05	0.3780	0.5	0.0180
237.61	0.38	0.94	0.4190	0.5	0.0080
259.34	0.47	5.51	0.4300	0.5	0.0000
263.47	0.47	3.25	0.4180	0.5	0.0000
			0.0785	0.12	0.005
275.67	0.27	2.98	0.4050	0.5	0.0100
283.95	0.46	4.46	0.4250	0.5	0.0000

Type I solar noise storm

- non-thermal solar radio emissions
- last for several hours to days distinguished characteristic
- well known for their dissipative and intermittent nature
- PSD indices are found to deviating from -5/3 [Veronese et al., 2011; Sodré et

al., 2015]

Figure 2. The hardware of CALLISTO shown in the foreground consists of the main board for data acquisition and interface with a RISC processor ATmega16 (left) and of two synchronous receivers (right). The complete spectrometer is shown in the background. Its physical size (width) is 24 cm.

E-Callisto

- worldwide network of the Compact Astronomical Low-cost Lowfrequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) type radio spectrometers
- Eight time series of frequency 263.3MHz recorded by BLEN7M spectrogram (Switzerland) on July 30, 2011

Preliminary Results

Data5 (6:45 UT)

Data	start time	p_1	dp	$\Delta \alpha$	A
	(UT)				
data1	05:45	0.445	0.0	0.18	1.00
data2	06:00	0.405	0.009	0.38	1.31
data3	06:15	0.437	0.0	0.21	1.33
data4	06:30	0.412	0.001	0.28	1.70
data5	06:45	0.413	0.004	0.30	2.00
data6	10:00	0.434	0.0	0.33	1.75
data7	11:00	0.422	0.018	0.25	0.50
data8	11:45	0.375	0.038	0.53	0.41