Nonparametric learning with matrix-valued predictors in high dimensions

Chanwoo Lee¹, Lexin Li², Helen Zhang³, and Miaoyan Wang¹

¹University of Wisconsin-Madison ²University of California-Berkley ³University of Arizona

Problems & Existing methods

Problems: Let $\{(\boldsymbol{X}_i, y_i) \in \mathbb{R}^{d_1 \times d_2} \times \{-1, 1\} : i = 1, \dots, n\}$ denote an i.i.d. sample from unknown distribution $\mathcal{X} \times \mathcal{Y}$.

Classification: How to efficiently classify high-dimensional matrices with limited sample size:

 $n \ll d_1 d_2 = \text{dimension of feature space}$?

• Regression: How to robustly predict the label probability when little is known to function:

$$\mathbb{P}(y=1|\boldsymbol{X}) \stackrel{\mathsf{def}}{=} \boldsymbol{p}(\boldsymbol{X})?$$

Existing methods:

- Classification: Decision tree, Nearest neighbor, Neural network, and Support vector machine. However, most of methods have focused on vector valued features.
- Regression: Logistic regression and Linear discriminant analysis. However, it is often difficult to justify the assumptions made when features are matrices because of high-dimensionality.

Goal: We propose nonparametric learning approach with matrix-valued predictors. Unlike classical approach, our approach find classification rule first and address regression problem.

Methods: 1. Classification

• We develop a large-margin classifiers for matrix predictors.

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i f(\boldsymbol{X}_i)) + \lambda J(f), \tag{1}$$

- We set $\mathcal{F}=\{f:f(\cdot)=\langle \boldsymbol{B},\cdot\rangle \text{ where } \mathrm{rank}(\boldsymbol{B})\leq r,\|\boldsymbol{B}\|_F\leq C\},$ $J(f)=\|\boldsymbol{B}\|_F^2$, and, $L(x)=(1-x)_+$.
- We can extend linear classifiers to nonlinear classifiers with a new definition of matrix feature mapping.

Large margin classifier for vector predictors (Picture source: Wiki).

Methods: 2. Regression

• We consider weighted loss function from (1),

$$\hat{f}_{\pi} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \omega_{\pi}(y_i) L(y_i f(\mathbf{X}_i)) + \lambda J(f),$$

where $\omega_{\pi}(y) = 1 - \pi$ if y = 1 and π if y = -1.

ullet We estimate $oldsymbol{p}(oldsymbol{X})$ through two steps of approximations:

$$m{p}(m{X}) \overset{ ext{1st step}}{pprox} rac{1}{H} \sum_{h \in [H]} \mathbb{1} \left\{ m{X} : m{p}(m{X}) \leq rac{h}{H}
ight\} \ \overset{ ext{2nd step}}{pprox} rac{1}{H} \sum_{h \in [H]} \mathbb{1} \left\{ m{X} : ext{sign} \left[\hat{f}_{rac{h}{H}}(m{X})
ight] = -1
ight\},$$

where $H \in \mathbb{N}_+ \to \infty$ is the smoothing parameter.

1st step is discretization

2nd step is from

Application: Regression

- Binary matrix probability estimation.
- Goal: estiamte probability matrix $P \in [0,1]^{d_1 \times d_2}$ from binary observations $Y = \{0,1\}^{d_1 \times d_2}$ such that $y_{ij} = Bernoulli(p_{ij})$.
- ullet Procedure: 1. Generate training set: $\{(\boldsymbol{X}_{ij},y_{ij}):(i,j)\in[d_1]\times[d_2]\}$ where

$$[\mathbf{X}_{ij}]_{pq} = \begin{cases} 1 & \text{if } (p,q) = (i,j) \\ 0 & \text{otherwise} \end{cases}.$$

2. Estimate $\hat{\boldsymbol{P}}_{ij} = \mathbb{P}(y_{ij} = 1 | \boldsymbol{X}_{ij})$.

Algorithms

- ullet We factor the coefficient matrix $m{B}=m{U}m{V}^T$ where $m{U}\in\mathbb{R}^{d_1 imes r}$ and $m{V}\in\mathbb{R}^{d_2 imes r}.$
- We take alternating optimization approach to solve non-convex problem. (1).

```
Algorithm 1: Classification algorithm

Input: (X_1, y_1), \dots, (X_n, y_m), and prespecified rank r

Initizlize: (\boldsymbol{U}^{(0)}, \boldsymbol{V}^{(0)}) \in \mathbb{R}^{d_1 \times r} \times \mathbb{R}^{d_2 \times r}

Do until converges

Update \boldsymbol{U} fixing \boldsymbol{V}:

\boldsymbol{U} = \arg\min_{\boldsymbol{U}} \frac{1}{n} \sum_{i=1}^{n} \left(1 - \langle \boldsymbol{U}\boldsymbol{V}^T, \boldsymbol{X}_i \rangle\right)_+ + \lambda \|\boldsymbol{U}\boldsymbol{V}^T\|_F.

Update \boldsymbol{V} fixing \boldsymbol{U}:

\boldsymbol{V} = \arg\min_{\boldsymbol{V}} \frac{1}{n} \sum_{i=1}^{n} \left(1 - \langle \boldsymbol{U}\boldsymbol{V}^T, \boldsymbol{X}_i \rangle\right)_+ + \lambda \|\boldsymbol{U}\boldsymbol{V}^T\|_F.

Output: \hat{f}(\boldsymbol{X}) = \langle \boldsymbol{U}\boldsymbol{V}^T, \boldsymbol{X} \rangle
```

Theoretical results

Theorem 1. Assume that $\{X_i\}_{i=1}^n$ be set of i.i.d. Gaussian distribution with bounded variation. Then with high probability,

$$\mathbb{P}[Y \neq \textit{sign}(f^*(\boldsymbol{X})]] - \mathbb{P}[Y \neq \textit{sign}(\hat{f}(\boldsymbol{X}))] \leq \frac{4C\sqrt{r(d_1 + d_2)}}{\sqrt{n}},$$

where f^* is the best predictor in \mathcal{F} .

Theorem 2. Denote \hat{p} as an estimated probability function from our method. Under some assumptions, we have

$$\mathbb{E}\|\hat{oldsymbol{p}}-oldsymbol{p}\|_1=\mathcal{O}\left(\left(rac{\log\left(n/r(d_1+d_2)
ight)}{\left(n/r(d_1+d_2)
ight)}
ight)^{1/(2-lpha\wedge 1)}
ight),$$

where α is a constant determined by true probability. If $\alpha>1$ and $d_1=d_2=d$, we have

$$\mathbb{E} \|\hat{oldsymbol{p}} - oldsymbol{p}\|_1 = \mathcal{O}\left(rac{\log\left(n/rd
ight)}{\left(n/rd
ight)}
ight).$$

References

[1] Junhui Wang, Xiaotong Shen, and Yufeng Liu. "Probability estimation for large-margin classifiers". In: *Biometrika* 95.1 (2008), pp. 149–167.