Linear Regression Models P8111

Lecture 06

Jeff Goldsmith February 9, 2016

Today's lecture

- Multiple Linear Regression
 - Assumptions

Motivation

Most applications involve more that one covariate – if more than one thing can influence an outcome, you need multiple linear regression.

- Improved description of y|x = (3/8)
- More accurate estimates and predictions
- Allow testing of multiple effects
- Includes multiple predictor types

Why not bin all predictors?

- Divide x_i into k_i bins
- Stratify data based on inclusion in bins across *x*'s
- Find mean of the y_i in each category
- Possibly a reasonable non-parametric model

Why not bin all predictors?

Why not bin all predictors?

- More predictors = more bins
- If each x has 5 bins, you have 5^p overall categories
- May not have enough data to estimate distribution in each category
- Curse of dimensionality is a problem in a lot of non-parametric statistics

Multiple linear regression model

E(y|x) = $\{(x_i, \beta)\}$ Observe data $(y_i, x_{i1}, \dots, x_{ip})$ for subjects $1, \dots, n$. Want to estimate $\beta_0, \beta_1, \dots, \beta_n$ in the model estimate $\beta_0, \beta_1, \dots, \beta_p$ in the model

$$\int y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_2 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Assumptions (residuals have mean zero, constant) variance, are independent) are as in SLR
- Impose linearity which (as in the SLR) is a big assumption
 - Our primary interest will be E(y|x)
 - Eventually estimate model parameters using least squares

Predictor types

- Continuous
- Categorical
- Ordinal

Interpretation of coefficients

$$\beta_0 = E(y|x_1 = 0, \dots, x = 0)$$

$$\gamma_i = \beta_b + \beta_i x_{i_1} + \dots + \beta_p x_{i_p} + \epsilon_i$$

■ Centering some of the *x*'s may make this more interpretable

Interpretation of coefficients

Example with two predictors

$$E(y|x_1=10, x_2=0)$$

 $x_2=1)$

Suppose we want to regress weight on age and sex.

- Model is $y_i = \beta_0 + \beta_1 x_{i,age} + \beta_2 x_{i,sex} + \epsilon_i$
- Age is continuous starting with age 0; sex is binary, coded so that $x_{i,sex} = 0$ for men and $x_{i,sex} = 1$ for women
 - ► In your dataset, sex should be a factor variable ... (

Example with two predictors

$$\beta_1 = \text{themse} \quad \text{Te(y)} \quad \text{for a lunt Dage,}$$

$$\frac{\text{keeping sex fixed.}}{\beta_2 = \text{('} \quad \text{(')}$$

$$\frac{\text{Comparing familes}}{\text{comparing age fixed}} \quad \text{to unales.} \quad \text{(')}$$

Example with two predictors


```
> summary(data.mlr)
     age
                             weight
                female:20
Min. :56.86
                            Min. :147.3
1st Qu.:62.71
                male :20
                            1st Qu.:168.3
Median :65.72
                            Median :181.4
Mean :66.70
                            Mean :180.9
 3rd Qu.:70.23
                            3rd Qu.:193.0
Max.
       :76.60
                            Max.
                                   :216.6
```

```
> summary(linmod)
Call:
lm(formula = weight ~ age + sex, data = data.mlr)
Residuals:
   Min
       10 Median
                           30
-8.8987 -3.2152 -0.2969 2.3688 14.8074
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0605
                     12.2596 0.087
                                      0.932
age
            2.5378
                    0.1828 13.883 3.02e-16 ***
sexmale
           21.1160
                      1.8471 11.432 1.06e-13 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05
Residual standard error: 5.841 on 37 degrees of freedom
Multiple R-squared: 0.8977, Adjusted R-squared: 0.8921
F-statistic: 162.3 on 2 and 37 DF, p-value: < 2.2e-16
```



```
> tail(data.mlr)
Source: local data frame [6 x 3]
       age
              sex
                    weight
     (dbl) (fctr)
                    (dbl)
1 64.75572 female 158.9645
2 63.64315 female 158.6567
3 64.08004 female 172.2003
4 64.32532 female 163.0857
5 68.96513 female 170.1063
6 64.93602 female 179.5558
> model.matrix(linmod) %>% tail
   (Intercept)
                    age sexmale
             1 64.75572
             1 63.64315
             1 64.08004
38
             1 64.32532
39
             1 68.96513
40
             1 64.93602
```

Omitted variable bias

What happens if we ignore x_2 and fit the simple linear regression:

$$y_i = \beta_0^* + \beta_1^* x_{i,1} + \epsilon_i^*$$

Does $\beta_1^* = \beta_1$? Does "total" association equal "partial" association?

Omitted variable bias

Omitted variable bias

There are two conditions under which $E(\beta_1^*) = \beta_1$:

- The omitted variable is unrelated to the outcome
- The omitted variable is uncorrelated with the retained variable

Still only two predictors

Suppose we think that the effect of age on weight is different for men and women. How might we approach this problem?

- Separate models?
- Interactions?

Interpretation of coefficients

$$\frac{x_{i}}{g_{i}} = 0$$

$$\frac{d}{dy_{i}} = \beta_{0} + \beta_{1} \times i_{1} \text{ age } + C_{i}$$

$$\beta_{0} = E(y) \text{ for a limit } \Delta \text{ age for men}$$

$$\beta_{1} = \Delta E(y) \text{ for a limit } \Delta \text{ age } \text{ for men}$$

Yisex = |

$$y_i = (\beta_0 + \beta_0)_i + (\beta_1 + \beta_3) \times \text{iage} + \epsilon_i$$
 $\beta_0 + \beta_0 = \text{Lit} \quad \text{for women}$
 $\beta_1 + \beta_2 = (\beta_0 + \beta_2) - (\beta_0)$
 $\beta_3 = (\beta_1 + \beta_3) - (\beta_1)$
 $\beta_3 = (\beta_1 + \beta_3) - (\beta_1)$

Example: Interactions

Example: Interactions

Example: Interactions

```
> tail(data.mlr)
Source: local data frame [6 x 3]
       age
                    weight
     (dbl) (fctr)
                      (dbl)
  57.73764 female 116.8223
 63.51003 female 140.5238
3 63.63426 female 136.4259
4 65.64412 female 144.1169
5 72.60015 female 161.9464
6 70.57905 female 152.9105
> model.matrix(linmod) %>% tail
   (Intercept)
                    age sexmale age:sexmale
             1 57.73764
               63.51003
             1 63.63426
             1 65.64412
             1 72.60015
40
             1 70.57905
```

Categorical predictors

- Assume X is a categorical / nominal / factor variable with k levels
- With only one categorical *X*, we have the classic one-way ANOVA design
- Can't use a single predictor with levels 1, 2, ..., K this has the wrong interpretation
- Need to create *indicator* or *dummy* variables/

Indicator variables

- Let x be a categorical variable with k levels (e.g. with k = 3 "low", "med", "high").
- Choose one group as the baseline (e.g. "low")
- Create (k-1) binary terms to include in the model:

$$\frac{x_{\text{med},i}}{x_{\text{high},i}} = I(x_i = \text{"med"}) \\ \times \text{high} \\ \times \text{high} \\ \times \text{high} \Rightarrow low!$$

■ For a model with no additional predictors, pose the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$$

and estimate parameters using least squares

■ Note distinction between *predictors* and *terms*

Categorical predictor design matrix

ANOVA model interpretation

Using the model
$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$$
, interpret $\beta_0 = \mathbb{E}(y)$ before $y_{i_1} = y_{i_2} = y_{i_{k+1}} = 0$

$$\beta_1 = \mathbb{E}(y) \times_{i_1} = 1, \text{ all else } = 0) - \mathbb{E}(y) \text{ all } 0$$
Reference
$$\beta_2 = \mathbb{E}(y) \times_{i_2} = 1, \quad 0 = 0$$
Reference

Equivalent model

Define the model $y_i = \beta_1 x_{i1} + \ldots + \beta_k x_{i,k} + \epsilon_i$ where there are indicators for each possible group

$$\beta_1 = \mathbb{E}(\gamma | \chi_{i_1} = 1)$$

$$\beta_2 = \mathcal{E}(g|\chi_{i_2} = 1)$$

Suppose you want to compare the effect of placebo, exercise and a drug on blood pressure. You set up a trial to do this and gather data y_i , treatment_i on n subjects.

where x_i 1 indicates that subject i exercised and x_i 2 indicates that subject *i* received medication.

```
> ## load data
> load("BPDat.RDA")
> ## see what we've loaded
> head(BP)
    149.5939
                        y = Po + Bixi
   1 155.5605
  1 129.5920
  1 149.3057
  1 139.2455
  1 120.3280
> summary (BP)
Min. :1 Min. :107.5
 1st Qu.:1 1st Qu.:128.0
 Median :27 Median :136.8
Mean
        :2 Mean
                   :169.9
 3rd Qu.:37
            3rd Qu.:144.8
            Max.
 Max.
```

```
> ## tidy data
> BP = BP %>% rename(Treatment = x1, BP = x2) %>%
   mutate(Treatment = factor(Treatment, levels =
                             labels = c("placebo", "exercise", "drug"))) %>%
    filter(BP != 999)
> summary(BP)
    Treatment
(placebo :47 / Min.
/exercise:47 1st Qu.:127.0
/drug :50 / Median :136.7
              Mean
              3rd Ou.:143.5
              Max. :159.7
> BP %>% group by (Treatment) %>% summarize (n = n(),
                                         group_mean = mean(BP),
                                         group median = median(BP))
Source: local data frame [3 x 4]
  Treatment
               n group_mean group_median
                   (dbl)
                                 (dbl)
  placebo 47 140.3368
                              139.8598
  exercise 47, 130.6135 /
                               131.4055
   drug 50, 135.0942/ 135.3504
```



```
bp_i = \beta_0 + \beta_1 t x_{\text{exer},i} + \beta_2 t x_{\text{drug},i} + \epsilon_i
> lm(BP ~ Treatment, data = BP) %>% tidv
                      stimate statistic
                                                      p.value
      (Intercept) 140.336772 1.647753 85.168558 3.906601e-123
 Treatmentexercise -9.723234 2.338275 -4.172569 5.240892e-05
      Treatmentdrug -5.242587 22.295055 -2.284297 2.384739e-02
 lm(BP ~ Treatment, data = BP) %>% model.matrix %>% head
  (Intercept) Treatmentexercise Treatmentdrug
```

Example: releveling categorical predictor

$$bp_i = \beta_0 + \beta_1 tx_{\mbox{plac},i} + \beta_2 tx_{\mbox{drug},i} + \epsilon_i \\ > \mbox{BP. $\$$ mutate(Treatment = relevel(Treatment, ref = "exercise")) $\$ \$ + \frac{1 \mathbb{m}(BP)^{-} \mathbb{T} \mathbb{reatment}, \data = 0) $\$ \$ \$ + \frac{1 \mathbb{m}(BP)^{-} \mathbb{T} \mathbb{reatment}, \data = 0) $\$ \$ \$ + \frac{1 \mathbb{m}(BP)^{-} \mathbb{T} \mathbb{reatment}, \data = 0) $\$ \$ \$ \$ \$ + \frac{1 \mathbb{m}(BP)^{-} \mathbb{T} \mathbb{reatment}, \data = 0) $\$ \$ \$ \$ \$ \$ \$ \$ \\ \text{tidy} \quad \text{term estimate std.error statistic p.value} $1 \quad \text{(Intercept) } 130.613538 \quad 1.647753 \quad 79.267654 \quad 7.929548e-119 $2 \quad \text{Treatmentplacebo} \quad 9.723234 \quad 2.330275 \quad 4.172569 \quad 5.240892e-05 $3 \quad \text{Treatmentdrug} \quad 4.480647 \quad 2.295055 \quad 1.952305 \quad 5.288319e-02$$

Example: no intercept

```
bp_i = \beta_1 t x_{\text{exer},i} + \beta_2 t x_{\text{plac},i} + \beta_3 t x_{\text{drug},i} + \epsilon_i
> lm(BP ~_10 + Treatment, data = BP) %>% tidy
             term estimate std.error statistic p.value
  Treatmentplacebo 140.3368 1.647753 85.16856 3.906601e-123
Treatmentdrug 135.0942 1.597556 84.56303 1.048075e-122
> BP %>% group_by(Treatment) %>% summarize(n = n(),
                                       group_mean = mean(BP),
                                       group median = median(BP))
Source: local data frame [3 x 4]
              n group_mean group_median
 Treatment
    (fctr) (int) (dbl)
                          (dbl)
  placebo 47 140.3368 139.8598
  exercise 47 130.6135 131.4055
   drug 50 135.0942 135.3504
```

Today's big ideas

 Multiple linear regression models, interpretation, interactions, categorical predictors

■ Suggested reading: Faraway Ch 2.2 - 2.3; ISLR 3.2