HW7 (Corrections) (CSCI-C241)

Lillie Donato

March 20, 2024

ullet Question 2

- An empty relation

- $B \times C$ (The Cartesian Product)

Question 5	
- Part (d) Claim, M is anti-gummetria	
Claim: M is anti-symmetric	
Proof.	
Choose $x, y \in \mathbb{N}$ and Assume $M(x, y)$ and $M(y, x)$	(1)
Since $M(x,y)$ and $M(y,x)$, we know x is a multiple of y and y is a multiple of x	(2)
Since x is a multiple of y, there exists some $k \in \mathbb{N}$ such that $x = ky$	(3)
Since y is a multiple of x, there exists some $j \in \mathbb{N}$ such that $y = jx$	(4)
Since $x = ky$ and $y = jx$, we know $y = jky$	(5)
Since $y = jky$, we know $jk = 1$ or $y = 0$	(6)
Case 1: $jk = 1$	(7)
Since $jk = 1$ and $j, k \in \mathbb{N}$, we know $j = 1$ and $k = 1$	(8)
Since $j = 1$ and $k = 1$, we know $x = 1y$	(9)
Since $x = 1y$, we know $x = y$	(10)
Case 2: $y = 0$	(11)
Since $y = 0$ and $x = ky$, we know $x = 0k$	(12)
Since $x = 0k$, we know $x = 0$	(13)
Since $y = 0$ and $x = 0$, we know $x = y$	(14)
In either case, we proved $x = y$, so we know $x = y$ in general	(15)
Under the assumption of $M(x,y)$ and $M(y,x)$, we proved $x=y$, so M is anti-symmetric	(16)
Question 7	
- Part (c) Claims, I had proporty, E	
Claim: I has property F	
Proof.	
Choose $x, y, z \in \mathbb{R}$ and Assume $I(x, y)$ and $I(x, z)$	(1)
Since $I(x,y)$ and $I(x,z)$, we know $x \cdot y = 1$ and $x \cdot z = 1$	(2)
Since $x \cdot y = 1$ and $x \cdot z = 1$, we know $x \cdot y = x \cdot z$	(3)
Since $x \cdot y = x \cdot z$, we know $y = z$	(4)
Under the assumption of $I(x,y)$ and $I(x,z)$, we proved $y=z$, therefore I has property F	(5)