• Топология

- \circ топологическое пространство упорядоченная пара $\langle X,\Omega \rangle$, где X(носитель) множество, а Ω (топология) множество каких-то его подмножеств + аксиомы:
 - ullet $arnothing\in\Omega,X\in\Omega$ (пустое множество и всё пространство открыты)
 - Если $\{A_i\}$, $A_i \in \Omega$ некоторое семейство элементов Ω , то $\bigcup_i A_i \in \Omega$ (объединение произвольного семейства открытых множеств открыто);
 - Если A_1, A_2, \dots, A_n , $A_i \in \Omega$ конечное множество открытых множеств, то его пересечение также открыто: $A_1 \cap A_2 \cap \dots \cap A_n \in \Omega$
- открытое и замкнутое множество

Oткрытое множество — множество из Ω .

Замкнутое множество — мн-во, дополнение которого открыто.

• внутренность и замыкание множества

внутренность A — максимальное открытое множество A° , входящее в A

замыкане A — минимальное замкнутое множество A, содержащее A

- \circ топология стрелки $X=\mathbb{R}, \Omega=\{(x,+\infty)|x\in\mathbb{R}\}\cup\{\emptyset\}$
- \circ дискретная топология $X
 eq \emptyset, \Omega = 2^X$
- топология на частично упорядоченном множестве
- индуцированная топология на подпространстве

Пусть лано какое-то $S\subseteq X$. Индуцированная топология на подпространстве $X-\Omega'=\{y\cup X|y\in\Omega\}$

• связность

• Исчисление высказываний

• высказывание — Строка в некотором алфавите, строящаяся по ледующим правилам:

```
высказывание :=
{пропозициональная переменная}
(высказывание | высказывание)
(высказывание & высказывание)
(высказывание -> высказывание)
```

 $A,B,C \dots - пропозициональные переменные X,Y,Z \dots - метапеременные для переменных$

- метапеременные "Plaseholder" for variables
- пропозициональные переменные символы, обозначающие высказывания
- аксиома высказывание
- схема аксиом шаблон для генерации аксиом

```
1 a -> b -> a

2 (a -> b) -> (a -> b -> c) -> (a -> c)

3 a -> b -> (a & b)

4 a & b -> a

5 a & b +> b

6 a -> a | b

7 b -> a | b

8 (a -> c) -> (b -> c) -> ((a | b) -> c)

9 (a -> b) -> (a -> !b) -> !a

10 !!a -> a
```

Интуиционисты меняют посленюю аксиому на a -> !a -> b

- \circ правило Modus Ponens Если доказано lpha и lpha o eta, то считаем доказанным eta
- доказательство последовательность высказываний, каждое из которых либо аксиома, либо Modus Ponens.
- вывод из гипотез

 α выводимо из Γ , где Γ — список высказываний, если существует вывод, то есть последовательность высказываний такая, что каждое из них либо аксиома, либо из Γ , либо получается по M. P.

о доказуемость (⊢)

Высказывание lpha доказуемо, если существует доказательство $lpha_1 \dots lpha_k$, где $lpha_k = lpha$.

- множество истинностных значений
- модель (оценка переменных)
- \circ оценка высказывания Отображение: формула o множество истинностных значений
- общезначимость (⊨) истинность при любой оценке
- выполнимость: существует оценка, при которой формула выполнена
- невыполнимость: нет такой оценки, что см выше
- \circ следование: формула X следует из $G_1 \dots G_n$, если в любой оценке, в которой истинны $G_1 \dots G_n$ истинна и X.
- корректность доказуемость ⇒ общезначимость
- \circ **полнота** общезначимость \Longrightarrow доказуемость
- противоречивость когда выводится любая формула
- \circ формулировка теоремы о дедукции $\Gamma \vdash \alpha \stackrel{.}{ o} \stackrel{.}{eta} \iff \Gamma. \alpha \vdash eta$
- Интуиционистское исчисление высказываний (заменили аксиому снятия двойного отрицания на lpha o
 eg lpha o eta)
 - \circ закон исключённого третьего $\alpha \vee \neg \alpha$
 - \circ закон снятия двойного отрицания $eg \neg lpha o lpha$
 - \circ закон Пирса ((lpha
 ightarrow eta)
 ightarrow lpha)
 ightarrow lpha
 - Все эти законы не выводятся в ИИВ
 - ВНК-интерпретация логических связок
 - $\alpha\&\beta$, если есть доказательство lpha и eta
 - $\alpha \vee \beta$, если есть доказательство α или β и мы знаем, чего именно
 - lpha oeta, если мы умеем строить доказательство eta из доказательства lpha \lnotlpha , если из lpha можно построить противоречие (lpha oot)
 - \circ теорема Гливенко (формулировка) Если $\vdash_{\mathsf{w}} \alpha$, то $\vdash_{\mathsf{w}} \neg \neg \alpha$

• решётка

 $\langle A, \leq \rangle$ — решётка, если:

- ullet $orall a,b\in A:$ \exists наименьший $c=a+b:a\leq c,b\leq c$
- ullet $\forall a,b\in A:$ \exists наибольший $c=a\cdot b:c\leq a,c\leq b$
- дистрибутивная решётка

решётка + свойство: $a + (b \cdot c) = a \cdot b + a \cdot c$

лемма: $a\cdot(b+c)=a\cdot b+a\cdot c$

теорема: решётка дистрибутивна 👄 не содержит ни диаманта ни пентагона

• импликативная решётка

дистрибутивная решётка + определена операция псевдодополнения (относительно b): $c=a \to b=max\{x|x\cdot a \le b\}$ **теорема**: дистрибутивность в определении можно опустить

 \mathbf{def} : 1 — наибольший элемент решётки

def: 0 — наименьший элемент решётки

 $\circ\,$ алгебра Гейтинга — Импликативная решётка с 0

 $ar{ extbf{def}}$: $ar{ extbf{nce}}$ вдодополнение $\,a=a o 0\,$

Всякая алгебра Гейтинга — модель ИИВ

- \circ булева алгебра алгебра Гейтинга такая, что orall a: a+a=1
- Гёделева алгебра

Алгебра Гейтинга $z\ddot{e}\partial e$ лева, если $\forall a,b:(a+b=1\implies a=1|b=1)$

- \circ операция Γ (A) Добавим к алгебре Гейтинга новую "1", большую всех элементов, а старую переименуем в " ω ".
- \circ алгебра Линденбаума Пусть lpha, eta формулы, $lpha \leq eta$, если $eta \leq eta$, если $lpha \leq eta$ $lpha \leq eta$

Тогда, алгебра Линденбаума — ИИВ $/_pprox$ [факторизация по операции pprox]

теорема: Алгебра Линденбаума — точная модель ИИВ. Но нифига не конечная.

теорема: Алгебра Линденбаума — Гёделева

- \circ формулировка свойства дизъюнктивности и.и.в $\vdash \alpha \lor \beta \implies \vdash \alpha$ или $\vdash \beta$
- Определить модель, значит задать логические связки и истинностные значения
- Модель корректна, если любое доказуемое утверждение в ней истинно
- Модель полна, если любое истинное в ней утверждение доказуемо
- Модель точная, она корректна и полна
- Исчисление называют табличным, если существует конечная точная модель этого исчисления
- формулировка свойства нетабличности и.и.в.: ИИВ не таблично (см выше)

• Исчисление предикатов

- предикатные и функциональные символы, константы и пропозициональные переменные
- свободные и связанные вхождения предметных переменных в формулу
- свобода для подстановки
 - **D** предметное множество

```
ФУНКЦИЯ : D<sup>n</sup> -> D
ПРЕЛИКАТ : D^n \rightarrow V
Предметная переменная
                             a, b, c, x, y, z, a<sub>0</sub>, a' ...
Терм
Предикатный символ
Формула
TEPM =
         (предметная переменная)
         (функциональный символ) (ТЕРМ₀, ТЕРМ₁, ...)
ФОРМУЛА =
         (ФОРМУЛА | ФОРМУЛА)
         (ФОРМУЛА & ФОРМУЛА)
         (ФОРМУЛА -> ФОРМУЛА)
         (!ФОРМУЛА) |
         (∀ предметная переменная.ФОРМУЛА) |
         (З предметная переменная.ФОРМУЛА) |
         (предикатный символ) (TEPM₀, TEPM₁, ...)
```

Связанное вхождение - вхождение в области действия квантора.

Связывающее вхождение — вхождение непосредственно рядом с квантором.

Ех: (∀х. … х …) первое вхождение — связывающее, второе вхождение — связанное.

Не связанные и не связывающие вхождения - свободные.

Терм Ө *свободен для подстановки* в формулу ψ вместо x, если после подстановки Ө вместо свободных вхождений x, Ө не станет связанным.

• два правила для кванторов

$$egin{aligned} 11.(orall x,\phi) & o \phi[x:=\Theta] \ 12.\phi[x:=\Theta] & o \exists x.\phi \end{aligned}
ight\}$$
 , где Θ свободна для подстановки вместо x в ϕ

• две аксиомы для кванторов

$$\left. egin{align*} 2.rac{\psi o\phi}{\psi o\psi} > \psi & , \phi \ 3.rac{\phi o\psi}{(\exists x.\phi) o\psi} \end{array}
ight.$$
 , где x не входит свободно в ψ

• оценки и модели в исчислении предикатов

Чтобы оценить значение формулы в ИП, нужно задать кортеж $\langle D, E, P, R
angle$, где:

- D предметное множество
- lacksquare D- оценка для функциональных символов $(D^n o D)$

- lacksquare D- оценка для предикатов $D^n o V$
- D свободные предметные переменные
- теорема о дедукции для И. П.
 - $\Gamma, \alpha \vdash \beta$, в доказательстве нет применений правил для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$ $\Gamma \vdash \alpha \to \beta$ ⇒ $\Gamma, \alpha \vdash \beta$
- \circ лемма: $\llbracket \psi
 Vert^{x:=\llbracket heta
 Vert} = \llbracket \psi
 Vert x := \llbracket heta
 Vert^{\parallel}
 Vert
 Vert^{\parallel}$, если heta свободна для подстановки вместо x
- теорема о корректности для И. П. каждое доказуемое утв. общезначимо
 - lacktriangle Множество Γ непротиворечиво, если нет lpha такого, что $\Gamma \vdash lpha$ и $\Gamma \vdash \lnot lpha$
 - Формула замкнута, если она не содержит свободных переменных
 - Формула бескванторна, если она не содержит кванторов
 - полное непротиворечивое множество (бескванторных) формул непротиворечивое множество (бескванторных) формул + св-во: $\forall \alpha: \quad \alpha \in \Gamma | \neg \alpha \in \Gamma$
- \circ модель для формулы модель $\langle D, E, R \rangle$
- теорема Гёделя о полноте исчисления предикатов (формулировка) лемма: Для любой формулы ИП найдётся эквив. ей ф-ла с поверхностными кванторами **теорема**: Γ — непротиворечивое множество формул ИП. Тогда, существует модель для Γ
- следствие из теоремы Гёделя о исчислении предикатов: полнота???

Шень, Верещагин Инт. логика Конспект 2011