SONY

Vision and Sensing Application SDK モデル量子化 機能仕様書

Copyright 2022 Sony Semiconductor Solutions Corporation

Version 0.1.0 2022 - 11 - 16

目次

1. 更新履歴
2. 用語・略語
3. 参照資料
4. 想定ユースケース
5. 機能概要、アルゴリズム 5
5.1. Functional Overview5
6. 操作性仕様、画面仕様
6.1. How to start each function
6.2. Notebook実行向けセットアップ
6.3. Notebook実行向け設定ファイル編集 8
6.4. Notebook編集
6.5. Notebook実行
7. 目標性能
8.制限事項
9. その他特記事項
10. 未決定事項

SONY 1. 更新履歴

1. 更新履歴

Date	What/Why
2022/11/16	初版作成

SONY

2. 用語・略語

Terms/Abbreviations	Meaning
MCT	モデルを量子化するためのオープンソースソフ トウェア
Keras	AIモデルのフォーマットの一種
TFLite	TensorFlow Liteのこと AIモデルのフォーマットの一種
イテレーション	(1回あたりの)学習

SONY 3. 参照資料

3. 参照資料

- ◆ Reference/Related documents (関連資料)
 - Model Compression Toolkit (MCT)

https://github.com/sony/model_optimization

4. 想定ユースケース

◆ モデルの量子化を行いたい 量子化を行うことでモデルのサイズを抑え、ターゲットエッジAIデバイスにデプロイできる ようにしたい

◆ 量子化前と後のモデルを使用して推論実行し精度を確認したい

5. 機能概要、アルゴリズム

5.1. Functional Overview

- ◆ SDKにて下記のフローでImage ClassificationのAIモデル(Keras)を量子化しAIモデル(TFLite)に変換できる
- ◆ 量子化前と後のAIモデルで推論実行し、推論実行結果の統計値(Top1 accuracy)を取得できる
- ◆ SDKにてサポートするAIモデルは、MCTの supported-features に準拠する

◆ フロー概要

◆ フロー詳細

- 1. Notebook実行向けセットアップ
 - 変換対象となるAIモデル(Keras)を用意する
 - 量子化のキャリブレーションに使用するため、AIモデルのtrainingに使用した 画像を用意する
 - 推論評価時に入力として使用するため、AIモデルのvalidationに使用する画像 とそのground truth情報を用意する
- 2. Notebook実行向け設定ファイル編集
 - 設定ファイルconfiguration.jsonを編集してNotebook実行時の設定を行う
- 3. Notebook編集
 - 使用するAIモデルに応じてNotebook内のcalibration用preprocessing処理部の実装を修正する
- 4. Notebook実行
 - AIモデル(Keras)を量子化しAIモデル(TFLite)に変換し、推論評価するNotebook を実行する

6. 操作性仕様、画面仕様

6.1. How to start each function

- 1. SDK環境を立ち上げ、Topの README.md をプレビュー表示する
- 2. SDK環境Topの README.md に含まれるハイパーリンクから、 tutorials ディレクトリ の README.md にジャンプする
- 3. tutorials ディレクトリの README.md に含まれるハイパーリンクから、quantize modelディレクトリの README.md にジャンプする
- 4. quantize modelディレクトリの README.md に含まれるハイパーリンクから、image classificationディレクトリの README.md にジャンプする
- 5. image classificationディレクトリの各ファイルから各機能に遷移する

6.2. Notebook実行向けセットアップ

- 1. 変換対象となるAIモデル(Keras)を用意する
 - ◆ 変換対象となるAIモデル(Keras)を、SDK実行環境に格納する
- 2. 量子化のキャリブレーションに使用するため、AIモデルのtrainingに使用した画像を用意 する
 - ◆ AIモデルのtrainingに使用した画像(300ファイル程度)が含まれるフォルダを、SDK実 行環境に格納する
- 3. 推論評価時に入力として使用するため、AIモデルのvalidationに使用する画像とそのground truth情報を用意する
 - ◆ AIモデルのvalidationに使用する画像が含まれるフォルダを、SDK実行環境に格納する
 - ◆ AIモデルのvalidationに使用する画像のground truth情報ファイルを、SDK実行環境 に格納する
 - ground truth情報ファイルを作成する場合は、下記の形式で作成する
 - validationに使用する画像をファイル名で昇順にソートした順に、一行ごとに画像のground truthのidを記載する
 - 例:idとラベル、各画像ファイルが下記の場合、下記のground_truth.txt となる

idとラベル

0 : car 1 : bike 2 : human

各画像ファイル

bike1.JPG
bike2.JPG
car1.JPG
human1.JPG
human2.JPG

ground_truth.txt

1 1 0 2 2

後述の「実行ディレクトリ」について、image classificationを実行する場合は quantize_model/image_classification ディレクトリとなる。

6.3. Notebook実行向け設定ファイル編集

1. 実行ディレクトリの設定ファイル(configuration.json)を編集する

特別な記載がある場合を除き、原則として大文字小文字を区別する。

Configuration	Meaning	Range	Initial	Remarks

source_keras_m odel	変換元となるAIモデル(Keras) パス。Keras のSaved Model形式のフォルダまたはh5形式のファイルを指定する	はNotebook(*.ip ynb)からの相対パ	未指定(空文字)	
dataset_image_ dir	量子化の際にキャ リブレーションを 行うためのデータ セット画像を格納 したディレクトリ	はNotebook(*.ip ynb)からの相対パ	./images	
batch_size	量子化の際にキャリブレーションを 行う画像を小分けにして重みやバイアスなどの特徴を 見つけるセット枚数	つ、dataset_im age_dirに含ま	50	
<pre>input_tensor_s ize</pre>	AIモデルの入力テ ンソルのサイズ(画 像の一辺のピクセ ル数)	AIモデルの入力テ ンソルに準拠	224	
iteration_coun t	量子化時のイテレ ーション回数	1以上	10	
output_dir	変換結果AIモデル の出力先となるデ ィレクトリ	絶対パスまた はNotebook(*.ip ynb)からの相対パ ス	./output	
evaluate_image _dir	推論実行時に入力 する画像を含むディレクトリ	絶対パスまた はNotebook(*.ip ynb)からの相対パ ス	./evaluate/imag es	
evaluate_image _extension	推論実行時に入力 する画像の拡張子	文字列	JPEG	

<pre>evaluate_groun d_truth_file</pre>	推論実行時に入力 する画像について のground truth情 報ファイルのパス	はNotebook(*.ip ynb)からの相対パ	./evaluate/grou nd_truth.json	
evaluate_resul t_dir	推論実行結果の統 計情報を保存する ディレクトリ	絶対パスまた はNotebook(*.ip ynb)からの相対パ ス	./evaluate/result s	

6.4. Notebook編集

- 1. 実行ディレクトリの量子化実行用Notebook(*.ipynb)を開く
- 2. Notebookの中のcalibration用preprocessing処理部 (FolderImageLoader の引数 preprocessing=[resize, normalization])を編集する
 - ◆ 使用するAIモデルの学習時のpreprocessing処理に相当する処理となるよう、編集する

6.5. Notebook実行

- 1. 実行ディレクトリの量子化実行用Notebook(*.ipynb)を開き、その中のPythonスクリプトを実行する
 - ◆ その後下記の動作をする
 - 実行ディレクトリのconfiguration.json存在をチェックする
 - エラー発生時はその内容を表示し、中断する
 - configuration.json source_keras_model 、dataset_image_dir の存在をチェックする
 - エラー発生時はその内容を表示し、中断する
 - configuration.json の下記の内容を読み取り、MCTへ必要な設定を行い、AIモデル(Keras)を量子化し変換する
 - configuration.json source_keras_model
 - configuration.json dataset_image_dir
 - configuration.json batch_size
 - configuration.json input_tensor_size
 - configuration.json iteration_count

- MCTなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示し、中断する
- configuration.json output_dir に、MCTで量子化したAIモデル(TFLite)ファイル model_quantized.tflite と、TensorFlow標準機能でTFLiteに変換したAIモデル(TFLite)ファイル model.tflite を出力する
 - output_dir で指定するディレクトリがなければ作成し、そこに出力する
- 変換中はNotebookに下記のような表示をする(iteration_count が10の場合)

```
0%| | 0/10 [00:00<?, ?it/s]
...
30%| | 3/10 [00:15<00:35, 5.10s/it]
...
100%| | 10/10 [00:50<00:00, 5.07s/it]
```

- configuration.json output_dir、evaluate_image_dir
 cevaluate_ground_truth_file の存在をチェックする
 - エラー発生時はその内容を表示し、中断する
- configuration.json の下記の内容を読み取り、tflite interpreterへ必要な設定を行う
 - configuration.json output_dir
 - configuration.json evaluate_image_dir
 - configuration.json evaluate_image_extension
 - configuration.json evaluate_ground_truth_file
 - configuration.json evaluate result dir
- 元のAIモデル(Keras)、TensorFlow標準機能でTFLiteに変換したAIモデル(TFLite)、MCTで量子化したAIモデル(TFLite)の3種のAIモデルで推論実行し、統計情報を表示する
- 統計情報を、evaluate_result_dir 配下に results.json ファイルとして保存する
- TensorFlowなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示し、中断する
- AIモデル(TFLite)の推論実行中は下記のような表示をする(画像数が10の場合)


```
0%| | 0/10 [00:00<?, ?it/s]
...
40%| | 4/10 [00:03<00:05, 1.08it/s]
...
100%| | 10/10 [00:09<00:00, 1.08it/s]
```

- AIモデル(Keras)の推論実行中はTensorFlowライブラリによるログを表示する
- 処理中でもNotebook Cell機能のStop Cell Executionで中断できる

SONY 7. 目標性能

7. 目標性能

◆ SDKの環境構築完了後、追加のインストール手順なしに、AIモデル(Keras)を量子化しAIモデル(TFLite)に変換できること

- ◆ UIの応答時間が1.2秒以内であること
- ◆ 処理に5秒以上かかる場合は、処理中の表現を逐次更新表示できること

SONY 8. 制限事項

8. 制限事項

◆ なし

SONY 9. その他特記事項

9. その他特記事項

◆ なし

SONY 10. 未決定事項

10. 未決定事項

◆ なし