- **2.** Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.
- a) the set of sophomores taking discrete mathematics in your school

 $A \cap B$

b) the set of sophomores at your school who are not taking discrete mathematics

A - B

c) the set of students at your school who either are sophomores or are taking discrete mathematics

d) the set of students at your school who either are not sophomores or are not taking discrete mathematics

```
A U B
```

4. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$.

Find

a) A ∪ B.

b) $A \cap B$.

c) A – B.

none φ

d) B – A.

- **12.** Prove the first absorption law from Table 1 by showing that if A and B are sets, then $A \cup (A \cap B) = A$. Show each side is a subset of the other.
- -In a union, $x \in A$ or $x \in A \cap B$.
- -Intersection states that either $x \in A$ or $x \in A$ and $x \in B$, so $x \in A$.
- -We can then say that $AU(A \cap B) \subseteq A$
- -if $x \in A$ then x by the definition of union, $\in A \cup (A \cap B)$, because $x \in A$ can also be $x \in A$ and $x \in B$, which also means that $A \subseteq A \cup (A \cap B)$
- We can therefore conclude that $A \cup (A \cap B) = A$
- 16. Let A and B be sets. Show that
- a) $(A \cap B) \subseteq A$.

Show $x \in (A \cap B)$

- x∈A and x∈B by intersection
- -because $x \in A$, we can then conclude $(A \cap B) \subseteq A$, proving the statement

b)
$$A \subseteq (A \cup B)$$

Show $x \in A$

- $-x \in A \text{ or } x \in$
- -by union we know that $x \in A \cup B$,
- because $x \in A \cup B$ we can thus conclude that $A \subseteq (A \cup B)$

c)
$$A - B \subseteq A$$
.

- $-x \in A B$
- $-x \in A$ and $x \notin B$ because of their difference, so $x \in A$

because $x \in A$, we can conclude $A - B \subseteq A$.

d)
$$A \cap (B - A) = \emptyset$$
.

Show contradiction

- A \cap (B - A) does not = \emptyset

- $-x \in A$ and $x \in (B-A)$ by union
- through difference, we can find that $x \in A$, $x \in B$, but also $x \notin A$.
- -This contradiction proves that $A \cap (B A) = \emptyset$.
- **e)** A U(B A) = AU B.

Α	В	B - A	A U (B - A)	AUB
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

Because A U (B - A) and A U B have the same values, we can conclude that they are equal.

- 18. Let A, B, and C be sets. Show that
- a) $(A \cup B) \subseteq (A \cup B \cup C)$.
- -if $x \in (A \cup B)$, then by union $x \in A$ or $x \in B$.
- -x then is also ∈ C
- -Again using union, we can conclude then that because $x \in (A \cup B \cup C)$ that $(A \cup B) \subseteq (A \cup B \cup C)$.
- **b)** $(A \cap B \cap C) \subseteq (A \cap B)$.
- by interstection, $x \in A$, $x \in B$, $x \in C$, which would also give that $x \in (A \cap B)$
- -We can then conclude that $(A \cap B \cap C) \subseteq (A \cap B)$.
- c) $(A B) C \subseteq A C$.
- To show the left, we can assume $x \in (A-B)-C$.
- -Through difference, this returns $x \in A$, while $x \in B$ and $x \notin C$.
- -Intersection then gives us $x \in (A \cap B)$.
- -We can thus conclude that $(A \cap B \cap C) \subseteq (A \cap B)$.

d)
$$(A - C) \cap (C - B) = \emptyset$$
.

Show the contradiction to prove. (That there is a value that exists so that $(A - C) \cap (C - B) \neq \emptyset$.)

- -By intersection, we can show $x \in (A C)$ and $x \in (C B)$.
- -By difference, $x \in A$ and $x \notin C$
- -By difference, x ∈ C and x ∉ B
- -Because x \notin C and x ∈ C contradict eachother, we can conclude that (A C) \cap (C B) = \emptyset .

e)
$$(B - A) \cup (C - A) = (B \cup C) - A$$
.

Α	В	С	B - A	C - A	BUC	(B - A) U (C - A)	(B U C) - A
1	1	1	0	0	1	0	Ō
1	1	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	0	1	1	0	1	1	1
0	0	0	0	0	0	0	0

Because the values for (B - A) U (C - A) are equal to (B U C) - A, we can conclude that (B - A) U (C - A) = $(B \cup C) - A$.

- **20.** Show that if A and B are sets with $A \subseteq B$, then
- a) $A \cup B = B$.
- -Assume that $A \subseteq B$
- -if $x \in A \cup B$ then $x \in A$ or $x \in B$
- -Assume $x \in A$
- -if $x \in A$, then because $A \subseteq B$, x must also be $\in B$
- This shows $B \subseteq A \cup B$, and thus that $B = A \cup B$.
- -Together, this proves B = A U B
- **b)** $A \cap B = A$.
- -Assume that $A \subseteq B$
- If $x \in A \cap B$, then $x \in A$ and $x \in B$ by intersection, so $x \in A$.
- -This shows $A \cap B \subseteq A$.
- -if $x \in A$, then $x \in B$, too, so $x \in A \cap B$.
- -This shows $A \subseteq A \cap B$, and thus that $A = A \cap B$.
- If $x \in A$, then $x \in A \cap B$, so $x \in A$ and $x \in B$.
- This proves $A \subseteq B$, so we can conclude that if $A \subseteq B$, where A and B are sets, then $A \cap B = A$.