

Simülasyon hidrolik_tasima

Tarih: 15 Ağustos 2025 Cuma Tasarımcı: Solidworks

Etüt adı: Static 1 Analiz tipi: Static

İcindekiler

Etüt Özellikleri	• • • • •
Birimler	
Malzeme Özellikleri	2-
Yükler ve Fikstürler	•••••
Etkileşim Bilgisi	
Mesh bilgisi	
Sonuç Kuvvetleri	10
Etüt Sonuçları	11-1
Sonuc	1.

Etüt Özellikleri

Ltdt OZettikieri	_
Etüt adı	Static 1
Analiz tipi	Static
Mesh tipi	Katı Mesh
Termal Etki:	Açık
Termal seçenek	Sıcaklık yüklerini ekle
Sıfır gerilim sıcaklığı	298 Kelvin
SOLIDWORKS Flow Simulation'dan akışkan basınç etkilerini ekle	Kapalı
Çözümleyici tipi	Otomatik
Düzlemde Etkisi:	Kapalı
Yumuşak Yay:	Kapalı
Atalet Kabartması:	Kapalı
Uyumsuz bağlama seçenekleri	Otomatik
Büyük yer değiştirme	Kapalı
Serbest gövde kuvvetlerini hesapla	Açık
Sürtünme	Kapalı
Uyumlu Yöntemi Kullan:	Kapalı
Sonuç klasörü	SOLIDWORKS belgesi (C:\Users\Cem Onur\Downloads\hidrov3\hidroyeni)

Birimler

Birim sistemi:	SI (MKS)
Uzunluk/Yer Değiştirme	mm
Sıcaklık	Kelvin
Açısal hız	Rad/sn
Basınç/Gerilim	N/m^2

Malzeme Özellikleri

Model Referansı	Özel	likler	Bileşenler		
	Ad: Nodel tipi: Varsayılan hata kriteri: Akma mukavemeti: Gerilme mukavemeti: Elastik modül: Poisson oran: Kütle yoğunluğu: Yırtılma modülü: Termal genleşme katsayısı:	Dövme Paslanmaz Çelik İzotropik Doğrusal Elastik Analizi Maks. von Mises Gerilimi 2,06807e+08 N/m^2 5,17017e+08 N/m^2 2e+11 N/m^2 0,26 8.000 kg/m^3 7,9e+10 N/m^2 1,1e-05 /Kelvin	SolidBody 1(Döndür1)(Parça7^hidrolik_t asima-1), SolidBody 1(Döndür1)(Parça8^hidrolik_t asima-1), SolidBody 1(Yükseklik- Ekstrüzyon1)(bar-1), SolidBody 1(Yükseklik- Ekstrüzyon1)(bar-2), SolidBody 1(Yükseklik- Ekstrüzyon1)(bar-5), SolidBody 1(Yükseklik- Ekstrüzyon1)(bar-6), SolidBody 1(Kes- Ekstrüzyon13)(base_1-1), SolidBody 1(Kes- Ekstrüzyon13)(base_2-1), SolidBody 1(Boss- Extrude1)(model 9-1/ase 1- 1), SolidBody 1(Boss- Extrude1)(model 9-1/ase 1- 2), SolidBody 1(Boss- Extrude1)(model 9-1/ase 1- 3), SolidBody 1(Boss- Extrude1)(model 9-1/ase 1- 4), SolidBody 1(Cut- Extrude1)(model 9-1/ase 3- 1), SolidBody 1(Cut- Extrude4)(model 9-1/ase 4- 1), SolidBody 1(Cut- Extrude4)(model 9-1/ase 4- 1), SolidBody 1(Cut- Extrude4)(model 9-1/ase 5- 1), SolidBody 1(Cut- Extrude4)(model 9-1/ase 5- 1), SolidBody 1(Cut- Extrude4)(model 9-1/ase 5- 1), SolidBody 2(Boss- Extrude5)(model 9-1/ase 5- 1), SolidBody 2(Boss- Extrude5)(model 9-1/ase 5- 2),		

SolidBody 1(Boss-Extrude1)(model 9-2/ase 1-1), SolidBody 1(Boss-Extrude1)(model 9-2/ase 1-SolidBody 1(Boss-Extrude1)(model 9-2/ase 1-3), SolidBody 1(Boss-Extrude1)(model 9-2/ase 1-4), SolidBody 1(Chamfer1)(model 9-2/ase 2-1), SolidBody 1(Cut-Extrude1)(model 9-2/ase 3-SolidBody 1(Cut-Extrude4)(model 9-2/ase 4-1), SolidBody 1(Cut-Extrude4)(model 9-2/ase 4-2), SolidBody 1(Chamfer1)(model 9-2/ase 5-1), SolidBody 2(Boss-Extrude5)(model 9-2/ase 5-1), SolidBody 1(Chamfer1)(model 9-2/ase 5-2), SolidBody 2(Boss-Extrude5)(model 9-2/ase 5-SolidBody 1(Boss-Extrude1)(model 9-3/ase 1-1), SolidBody 1(Boss-Extrude1)(model 9-3/ase 1-2), SolidBody 1(Boss-Extrude1)(model 9-3/ase 1-SolidBody 1(Boss-Extrude1)(model 9-3/ase 1-4), SolidBody 1(Chamfer1)(model 9-3/ase 2-1), SolidBody 1(Cut-Extrude1)(model 9-3/ase 3-SolidBody 1(Cut-Extrude4)(model 9-3/ase 4-1), SolidBody 1(Cut-Extrude4)(model 9-3/ase 4-2),

SolidBody 1(Chamfer1)(model 9-3/ase 5-1), SolidBody 2(Boss-Extrude5)(model 9-3/ase 5-SolidBody 1(Chamfer1)(model 9-3/ase 5-2), SolidBody 2(Boss-Extrude5)(model 9-3/ase 5-2), SolidBody 1(Boss-Extrude1)(model 9-4/ase 1-SolidBody 1(Boss-Extrude1)(model 9-4/ase 1-SolidBody 1(Boss-Extrude1)(model 9-4/ase 1-3), SolidBody 1(Boss-Extrude1)(model 9-4/ase 1-4), SolidBody 1(Chamfer1)(model 9-4/ase 2-1), SolidBody 1(Cut-Extrude1)(model 9-4/ase 3-1), SolidBody 1(Cut-Extrude4)(model 9-4/ase 4-1), SolidBody 1(Cut-Extrude4)(model 9-4/ase 4-SolidBody 1(Chamfer1)(model 9-4/ase 5-1), SolidBody 2(Boss-Extrude5)(model 9-4/ase 5-1), SolidBody 1(Chamfer1)(model 9-4/ase 5-2), SolidBody 2(Boss-Extrude5)(model 9-4/ase 5-SolidBody 1(Yükseklik-Ekstrüzyon1)(pim-1), SolidBody 1(Yükseklik-Ekstrüzyon1)(pim-2), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-1), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-2), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-3), SolidBody 1(Yükseklik-Ekstrüzyon1)(pin-4)

Yükler ve Fikstürler

Bileşenler

Tepki kuvveti(N)

Tepki Momenti(N.m)

Fikstür adı	Fikstür Resmi	Fikstür Detayları
Sabitlenmiş-1		Objeler: 1 kenarlar, 14 yüzler Tip: Sabit Geometri
Sonuc Kuvvetler	i	

25.145,8

Χ

6,29236

0

Sonuç

25.145,8

0

Z

17,1852

Yük adı	Resim Yükle	Yük Detayları
Yerçekimi-1		Referans: Üst Düzlem Değerler: 0 0 -9,81 Birimler: m/s^2
Kuvvet-1		Objeler: 1 yüzler Tip: Normal kuvvet uygula Değer: 15.000 N

Etkileşim Bilgisi

Etkileşim	Etkileşim Görüntüsü	Etkileşim Özellikleri
Global Etkileşim	*	Tip: Birleşmiş Bileşenler: 1 bileşenler Seçenekler: Bağımsız mesh

Mesh bilgisi

Mesh tipi	Katı Mesh
Kullanılan Meshleyici:	Karışık eğrilik tabanlı mesh
Yüksek kaliteli mesh için jakoben noktalar	16 Noktalar
Maksimum eleman boyutu	147,051 mm
Minimum eleman boyutu	7,35255 mm
Mesh Kalitesi	Yüksek
Başarısız parçaları bağımsız olarak yeniden meshle	Kapalı
Bir montajdaki aynı gövdeler için meshi yeniden kullan (Yalnızca karışık eğrilik tabanlı meshleyici)	Kapalı

Mesh bilgisi - Detaylar

Toplam Düğüm	134630
Toplam Elemanlar	71858
Maksimum En Boy Oranı	10,632
En-Boy oranı < 3 olan elemanların % oranı	91,7
En-Boy Oranı > 10 olan elemanların yüzdesi	0,025
Şekli bozulmuş elemanların yüzdesi	0
Mesh tamamlama süresi (sa;dk;sn):	00:00:16
Bilgisayar adı:	

Mesh Kalitesi Grafikleri

Ad	Tip	Min	Maks.
Kalite1	Mesh	-	-

Sonuç Kuvvetleri

Tepki kuvvetleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N	6,29236	25.145,8	17,1852	25.145,8

Tepki Momenti

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N.m	0	0	0	0

Serbest gövde kuvvetleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N	-54,6126	6.217,99	-15,8379	6.218,25

Serbest gövde momentleri

Seçim seti	Birimler	Toplam X	Toplam Y	Toplam Z	Sonuç
Tüm Model	N.m	0	0	0	1e-33

Etüt Sonuçları

Ad	Tip	Min	Maks.
Yer değiştirme1	URES: Sonuç Yer Değiştirmesi	0,000e+00mm Düğüm: 51830	5,380e+00mm Düğüm: 2908

Resim-1

Resim-2

Sonuç:

Ortalama 800kg olan araç için güvenlik faktörünü 1,875 olarak ele alıp 15000 N kuvvet uygulandığındaki test sonuçlarımız görüldüğü gibidir.

Etüt sonuçları detaylı incelendiğinde von Misses stress testimiz oldukça iyi sonuçlar vermiştir. Gerilme testleri de mükemmel istikrardadır. Yer değiştirme testi de risk oluşturmayacak şekilde 5mm civarında esnemiştir. Demirin dayanabildiği Pascal basıncının maksimumunu 208 MPa olarak ele aldığımızda bizim mevcut MPa basıncımız da 3,032 MPa olduğundan demirin deforme olmadan bütünlülüğünü koruyacağı sonucuna ulaştık.