Polymer Mechanical Properties

Contents

- √ Stress-Strain relationship
- ✓ Parameter models
- ✓ Stress-Strain behavior
- ✓ Fracture & Fatigue
- ✓ Factors affecting mechanical behavior

Stress – Strain Relationship

- The force-deformation relationship in a polymer is governed by the loading rate.
- The Stress(σ)–Strain(ε) relationship, in the most general case for the polymers is,

$$[a_o + a_1\left(\frac{\partial}{\partial t}\right) + a_2\left(\frac{\partial^2}{\partial t^2}\right) + \ldots + a_n\left(\frac{\partial^n}{\partial t^n}\right)]\sigma = [b_o + b_1\left(\frac{\partial}{\partial t}\right) + b_2\left(\frac{\partial^2}{\partial t^2}\right) + \ldots + b_m\left(\frac{\partial^m}{\partial t^m}\right)]\varepsilon$$

Or
$$a_0\sigma + \sum_{i=1}^n a_i \frac{d^i\sigma}{dt^i} = b_0\varepsilon + \sum_{j=1}^m b_j \frac{d^j\varepsilon}{dt^j}$$
 Generalized Hooke's Law

If all the coefficients a_o,a₁..a_n and b_o,b₁..b_m are constant – Linear Viscoelastic Material

For metals,
$$a_1....a_n = 0$$

 $b_1...b_m = 0$
Then, $a_0\sigma = b_0\varepsilon$
Thus, $\sigma = (b_0/a_0) \varepsilon = \mathsf{E}\varepsilon$

Kelvin-Voight (K-V) Mechanical Model

Parallel combination of a linear spring of stiffness k and a viscous dashpot of damping coefficient n

 σ_2 , ε

Linear Spring (elastic): Stress is proportional to strain $\sigma_1 = E \varepsilon_1$

Linear Viscous dashpot: Stress is proportional to strain rate

$$\sigma_2 = \eta \frac{d\varepsilon_2}{dt}$$
 $\eta = viscosity$

For parallel combination

$$\varepsilon = \varepsilon_1 = \varepsilon_2$$
 $\sigma = \sigma_1 + \sigma_2$

$$\sigma = E\varepsilon + \eta \frac{d\varepsilon}{dt}$$

$$\sigma = E\varepsilon + \eta \frac{d\varepsilon}{dt}$$
 Or $a_0\sigma + a_1\frac{d\sigma}{dt} = b_0\varepsilon + b_1\frac{d\varepsilon}{dt}$

$$a_0\sigma + \sum_{i=1}^n a_i \frac{d^i\sigma}{dt^i} = b_0\varepsilon + \sum_{j=1}^m b_j \frac{d^j\varepsilon}{dt^j} \qquad \begin{array}{l} \text{Hence, for this model} \\ \text{$a_0 = 1, $a_1 = 0,$} \\ \text{$b_0 = E, $b_1 = \eta.$} \end{array}$$

$$a_0 = 1$$
, $a_1 = 0$

Maxwell Mechanical Model

In this model, the **spring and dashpot** are connected in **series**. In this case,

$$\varepsilon = \varepsilon_1 + \varepsilon_2$$
(1)

$$\sigma = \sigma_1 = \sigma_2$$
(2)

Taking derivative of strain w.r.t time (eq.1), we get

$$\frac{d\varepsilon}{dt} = \frac{d\varepsilon_1}{dt} + \frac{d\varepsilon_2}{dt} \quad(3)$$

Since,
$$\frac{d\sigma_1}{dt} = E \frac{d\varepsilon_1}{dt}$$

On Substituting the values in right hand side, we get

$$\frac{d\varepsilon}{dt} = \frac{1}{E} \frac{d\sigma}{dt} + \frac{\sigma}{\eta}$$

$$a_0\sigma + \sum_{i=1}^n a_i \frac{d^i\sigma}{dt^i} = b_0\varepsilon + \sum_{j=1}^m b_j \frac{d^j\varepsilon}{dt^j}$$
 Hence, for this material is a property and the second second

Hence, for this model

$$a_0 = 1/ \eta$$
, $a_1 = 1/E$,
 $b_0 = 0$, $b_1 = 1$

Parameter Models

1 PARAMETER

Linear Elastic Spring

σ, ε σ,ε, $\sigma = E\varepsilon$

• Perfectly elastic behaviour

Linear Viscous dashpot

· Perfectly viscous behaviour

2 PARAMETER

Maxwell model

$Kelvin-Voight\ model$

- Predicts fluid-like behavior.
- Do not describe recovery.

- Predicts solid-like behavior.
- Do not describe stress relaxation.

3 PARAMETER MODELS

Standard Linear Solid

$$a_0 = 1$$
, $a_1 = \frac{\eta}{E_2}$
 $b_0 = E_1$, $b_1 = \frac{\eta(E_1 + E_2)}{E_2}$

Standard Linear Fluid

$$a_0 = 1$$
, $a_1 = \frac{\eta_2}{E}$
 $b_0 = 0$, $b_1 = (\eta_1 + \eta_2)$, $b_2 = \frac{(\eta_1 \eta_2)}{E}$

Viscoelastic deformation

- An amorphous polymer may behave like a
 - Glassy polymer at low temperatures.
 - A rubbery solid at intermediate temperatures (above T_g).
 - A viscous liquid as the temperature is further raised.
- For intermediate temperatures the polymer is a rubbery solid –
 Viscoelastic behavior.

 t_a = Load applied time t_r = Load release time

Stress – Strain Behavior

Comparison

Moduli of elasticity

- Polymers ≈ 7 MPa 4 GPa
- Metals ≈ 50 400 GPa

Tensile strengths

- Polymers ≈ 10 100 MPa (fracture point)
- Metals ≈100 1000 MPa

Elongation

- Polymers up to 1000 % in some cases
- Metals < 10%

Fracture in Polymers

- Low fracture strength compared to metals and ceramics.
- Fracture mode in thermosetting polymers (highly crosslinked) Brittle
- Fracture mode in thermoplastic polymers Both brittle & ductile possible.
- Crack forms at region of localized stress
 concentration scratches, notches, sharp flaws.
- Factors favoring brittle fracture: -
 - ✓ Temperature reduction.
 - ✓ Increase in strain rate.
 - ✓ Sharp notch presence.
 - ✓ Increased specimen thickness.

Reference: Engineering Materials 2: Ashby & Jones, 4th Ed.

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

Fracture mechanism

Amorphous thermoplastics

- ✓ Below T_g Brittle (low fracture resistance)
- ✓ Above T_g Ductile (high fracture resistance)
- ✓ Plastic yielding prior to fracture
- Fracture phenomenon Crazing
- Crazes Region of localized plastic deformation
 - ✓ Form at highly stressed regions associated with scratches, flaws, and molecular in-homogeneities.
 - ✓ Leads to the formation of small and interconnected micro-voids.
 - ✓ Region between micro-voids : Fibrillar bridges
 - ✓ Under **load** ,the fibrillar bridges **elongate and break**.
 - ✓ Micro-voids grow and merge.
 - ✓ Thus, **crack propagate** perpendicular to the applied tensile stress.

Fatigue

- Polymers undergo fatigue failure under cyclic loading.
- Fatigue behavior more sensitive to loading frequency than for metals.
- High frequencies and/or relatively large stresses can cause localized heating which softens the material leading to failure.

Reference: W.D Callister, 7 Ed.

Factors affecting Mechanical Properties

1. Temperature

An increase in temperature produces:-

- ✓ Decrease in elastic modulus
- ✓ Reduction in tensile strength
- ✓ Enhancement of ductility

Reducing the strain rate also produces the same effects.

Reference: W.D Callister, 7 Ed.

2. Molecular Weight

• For many polymers tensile & impact strength increases with increasing molecular

weight due to increased chain entanglements.

Viscosity also increases.

3. Degree of Crystallinity

- Higher the crystallinity higher the close packing.
- Thus, higher density, more strength, higher resistance to both dissolution and softening by heating.

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

4. Cold Drawing

- Analogous to strain hardening in metals.
- Used in production of fibers and films.
- Molecular chains become highly oriented.
- Properties of drawn material are anisotropic. (perpendicular to the chain alignment direction strength is reduced).

Cold drawing (Linear polymer)

In the **next lecture**, we will learn about

- ✓ Basics of Composites
- ✓ Classification

