EECE 5550: Mobile Robotics

Lecture 12: Localization

Recap

Last time: mapping

Given: Robot poses $x_{0:t}$, measurements $z_{1:t}$

Estimate: Belief $p(m|x_{0:t}, z_{1:t})$ over the map M

This time: localization

Given: Prior $p(x_0)$, map m, controls $u_{0:t}$, obs. $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

Plan of the day

- Monte Carlo localization
- Models:
 - Probabilistic motion models
 - Forward beam sensor models
- Practicalities:
 - Particle diversity / depletion
 - Tracking localization performance
 - Adaptive sample sets: KLD-sampling

References

Chapters 5, 6, and 8 of "Probabilistic Robotics"

Monte Carlo Localization

Main idea: Monte Carlo localization (MCL) is simply localization using the Particle Filter

Given: Prior $p(x_0)$, map m, controls $u_{0:t}$, observations $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                      \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                     for m = 1 to M do
3:
                            sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
4:
                           w_t^{[m]} = p(z_t \mid x_t^{[m]})
\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
5:
6:
                     endfor
8:
                     for m = 1 to M do
                            draw i with probability \propto w_t^{[i]}
9:
                            add x_t^{[i]} to \mathcal{X}_t
10:
                     endfor
11:
12:
                     return \mathcal{X}_t
```


Example application

Move right

Monte Carlo Localization

Main idea: Monte Carlo localization (MCL) is simply localization using the Particle Filter

Given: Prior $p(x_0)$, map m, controls $u_{0:t}$, observations $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                           \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                           for m = 1 to M do
3:
                                 \begin{array}{l} \text{sample } x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]}) & \longleftarrow & \text{Motion model} \\ w_t^{[m]} = p(z_t \mid x_t^{[m]}) & \longleftarrow & \text{Sensing model} \\ \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle & \end{array}
4:
5:
6:
                           endfor
                          for m = 1 to M do
8:
                                   draw i with probability \propto w_t^{[i]}
9:
                                   add x_t^{[i]} to \mathcal{X}_t
10:
                          endfor
11:
12:
                          return \mathcal{X}_t
```


Requires:

- A sampler for the motion model
- Likelihood function for the sensor model

Robot motion models

We will consider two primary types of robot motion models:

- Velocity-based
- Odometry-based

Velocity-based motion models

Goal: We need a procedure for drawing samples $x_{t+1} \sim p(x_{t+1}|x_t, u_t)$ from the robot's motion model

Recall: In Lecture 7 we derived the kinematic equations for a differential-drive robot. These give the robot's body-centric velocity $\dot{v}_r \triangleq (\dot{x}_r, \dot{y}_r, \dot{\theta}_r)$ as a function of its wheel speeds $(\dot{\varphi}_l, \dot{\varphi}_r)$.

In the *noiseless* case, we can integrate \dot{v}_r to calculate the next pose x_{t+1} given the current pose x_t . (You will do this in Lab #2.)

We can model *noisy motion* by supposing that the robot's velocity \dot{v}_r is subject to noise. This leads to a very natural sampling algorithm:

sample_velocity_motion_model(x_t , $\dot{\varphi}_l$, $\dot{\varphi}_r$):

- 1. Calculate body-centric velocity \dot{v}_r from $(\dot{\varphi}_l, \dot{\varphi}_r)$ using kinematic model
- 2. Add noise: $\tilde{v}_r \triangleq \dot{v}_r + \Delta v_r$, where Δv_r is sampled from a noise distribution (e.g. Gaussian)
- 3. Calculate next pose x_{t+1} by integrating *noisy* velocity \tilde{v}_r

The Banana Distribution

This velocity-based motion model induces a "banana"-shaped marginal distribution over position

In robotics, this is often referred to (appropriately enough) as the "banana distribution"

Odometry-based motion models

Velocity-based motion models provide a simple means of simulating noisy robot motion.

But: They are often grossly oversimplified (⇒not very accurate)

Alternative: Treat an odometry measurement $z_t \approx x_{t-1}^{-1} x_t$ between pose x_{t-1} and x_t as if it were a motion command u_{t-1} . That is, consider:

$$x_t \sim p(x_t \mid x_{t-1}, z_t)$$

Payoffs:

- Often significantly more accurate than velocity models
- Odometry can be gotten from several sources:
 - Wheel encoders
 - Inertial measurement units
 - Scan matching or visual odometry

Con: Only available *post hoc* – can't use for planning

Estimating odometry via scan matching

Suppose I have two scans of environment taken from nearby poses (so that they partially overlap)

Question: What is the coordinate transformation T_{21} that relates their overlap?

Recall: If T_{W1} and T_{W2} are poses of the scanner in the world frame W, and p is a point, then:

$$T_{W1}p_1 = p_W = T_{W2}p_2$$

 $\Rightarrow p_2 = T_{W2}^{-1}T_{W1}p_1$
 $= T_{21}$

Punchline: Scan matching provides a means of *directly measuring odometry*

But: How can we actually *find* T_{21} given only the two scans?

Pointcloud registration

Problem: Given point sets $X = \{x_i\}_{i=1}^n$ and $Y = \{y_i\}_{i=1}^n$ in \mathbb{R}^d , find the transformation $T = (t, R) \in SE(d)$ that *optimally aligns* them:

$$(t,R) = argmin \sum_{i=1}^{n} ||y_i - (Rx_i + t)||^2$$

Pointcloud registration

Given: particle sets $X = \{x_i\}_{i=1}^n$ and $Y = \{y_i\}_{i=1}^n$ in \mathbb{R}^d

Horn's method:

1. Calculate centroids:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$,

- 2. Center the pointclouds: $x_i' \triangleq x_i \bar{x}$, $y_i' \triangleq y_i \bar{y}$
- 3. Construct outer product matrix W:

$$W \triangleq \sum_{i} y_{i}' x_{i}'^{T}$$

4. Recover optimal rotation *R*:

$$R = U \cdot diag(1, ..., 1, \det(UV^T)) \cdot V^T$$

where $W = U\Sigma V^T$ is the singular value decomposition of W

5. Recover optimal translation t: $t = \bar{y} - R\bar{x}$

Iterative Closest Point

Catch: Horn's method assumes that we know the *point correspondences* $x_i \leftrightarrow y_i$. What if we don't have these?

One approach: Estimate these together with the registration T = (t, R)!

Iterative closest point (ICP): Given $X = \{x_i\}_{i=1}^n$ and $Y = \{y_j\}_{j=1}^m$, initial guess $T = (t_0, R_0)$, maximum association distance d > 0:

For k = 0, ... until convergence:

1. Estimate matches: Let $y_{l_i} = argmin_j ||y_j - (R_k x_i + t_k)||$ be the closest point in Y to the image of x_i under the current registration estimate $T_k = (t_k, R_k)$.

If
$$||y_{l_i} - (R_k x_i + t_k)|| \le d$$
, accept $x_i \leftrightarrow y_{l_i}$ as a match

2. Estimate registration: Compute next registration estimate $T_{k+1} = (t_{k+1}, R_{k+1})$ by applying Horn's method to matches $\{x_i \leftrightarrow y_{l_i}\}$.

Iterative closest point

Odometry estimation using ROS's Canonical Scan Matcher

Monte Carlo Localization

Main idea: Monte Carlo localization (MCL) is simply localization using the Particle Filter

Given: Prior $p(x_0)$, map m, controls $u_{0:t}$, observations $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

```
1:
                   Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
                           \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                           for m = 1 to M do
3:
                                 \begin{array}{l} \text{sample } x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]}) & \longleftarrow & \text{Motion model} \\ w_t^{[m]} = p(z_t \mid x_t^{[m]}) & \longleftarrow & \text{Sensing model} \\ \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle & \end{array}
4:
5:
6:
                           endfor
                          for m = 1 to M do
8:
                                   draw i with probability \propto w_t^{[i]}
9:
                                   add x_t^{[i]} to \mathcal{X}_t
10:
                          endfor
11:
12:
                          return \mathcal{X}_t
```


Requires:

- A sampler for the motion model
- Likelihood function for the sensor model

Beam sensor likelihood model

Last time: (Approximate) *inverse* sensor model: $p(m_i|x_t, z_t)$ \Rightarrow Approximate likelihood of *map* given *pose and measurement*

Today: Forward sensor model $p(z|x_t, m)$ \Rightarrow Likelihood of measurement given pose and map

Beam sensor likelihood model

We consider a more physically-faithful sensor model that accounts for 4 distinct sources of error

Correct return w/ small measurement noise

- Nominal case for operation
- Modeled as a Gaussian p_{hit} centered on true range

Unexpected / transient objects

- Corresponds to e.g. people moving in the scene
- Causes a short return
- Modeled as an *exponential* distribution p_{short} (one can justify this mathematically by appealing to e.g. survival analysis).

Failed detection

- Sensor does not detect a reflected beam can be caused by e.g. specular reflection or absorption of the beam on target
- Appears as a maximum range return
- Can be modeled as a *point mass* (or very narrowly peaked distribution) p_{max} at the sensor's maximum range

Otherwise unexplained

- Catch-all category for other general weirdness
- Modeled as a *uniform distribution* p_{rand} over the sensor's range

Beam sensor likelihood model

Our overall beam sensor model $p(z|x_t,m)$ is a *mixture* of these 4 components:

$$p(z|x_t, m) = w_{hit} p_{hit} + w_{short} p_{short} + w_{max} p_{max} + w_{rand} p_{rand}$$

where w_{hit} , w_{short} , w_{max} , w_{rand} are the mixture weights (nonnegative and sum to 1).

We also assume that each beam is sampled *independently*, so the joint probability for an entire (*n*-beam) scan is:

$$p(z_t|x_t,m) = \prod_{k=1}^n p(z_t^k|x_t,m)$$

Complete (mixture) beam sensor model $p(z|x_t, m)$

Beam sensor measurement model

Laser scan (robot's true position)

Heatmap for scan likelihood as a function of position

Monte Carlo Localization

Main idea: Monte Carlo localization (MCL) is simply localization using the Particle Filter

Given: Prior $p(x_0)$, map m, controls $u_{0:t}$, observations $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

```
1:
                   Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
                           \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                           for m = 1 to M do
3:
                                 \begin{array}{l} \text{sample } x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]}) & \longleftarrow & \text{Motion model} \\ w_t^{[m]} = p(z_t \mid x_t^{[m]}) & \longleftarrow & \text{Sensing model} \\ \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle & \end{array}
4:
5:
6:
                           endfor
                          for m = 1 to M do
8:
                                   draw i with probability \propto w_t^{[i]}
9:
                                   add x_t^{[i]} to \mathcal{X}_t
10:
                          endfor
11:
12:
                          return \mathcal{X}_t
```


Requires:

- A sampler for the motion model
- Likelihood function for the sensor model

Monte Carlo localization

Monte Carlo localization on a RACECAR

Practicalities

Recall (from Lecture 10) two major issues with particle filters:

- Particle depletion: Need to preserve diversity in the particle set
- ⇒Augmented MCL: Method for increasing particle diversity
- Computational cost: Might need a lot of particles to model complex beliefs
- ⇒Adaptive sampling: *Dynamically* adjust particle set size

The "kidnapped robot" problem

Def: A scenario in which a robot must relocalize itself after being (instantly) moved to an *arbitrary* location in a map

Ex: Repositioning a robot that is powered off (Moving a Roomba up / down a floor)

Particle depletion and the kidnapped robots

Preserving particle diversity: Augmented MCL

Problem: We need to preserve *diversity* in the filter's particle set

⇒Need to have particles near the true state to recover from localization failures

Idea: We can increase diversity by resampling a small fraction of (purely) *random* particles

Approach: Use *measurement likelihood* (weights) as a measure of localization quality

⇒Sudden decrease in avg particle likelihood vs. historical avg may indicate localization failure

⇒In that case, we should increase diversity of particle set

```
Algorithm Augmented_MCL(\mathcal{X}_{t-1}, u_t, z_t, m):
1:
2:
                    static w_{\rm slow}, w_{\rm fast}
3:
                    \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
4:
                    for m = 1 to M do
                         x_t^{[m]} = sample_motion_model(u_t, x_{t-1}^{[m]})
5:
                         w_t^{[m]} = \text{measurement\_model}(z_t, x_t^{[m]}, m)
6:
                         \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
7:
                         w_{\text{avg}} = w_{\text{avg}} + \frac{1}{M} w_t^{[m]}
8:
9:
                    endfor
10:
                    w_{\text{slow}} = w_{\text{slow}} + \alpha_{\text{slow}}(w_{\text{avg}} - w_{\text{slow}})
11:
                    w_{\text{fast}} = w_{\text{fast}} + \alpha_{\text{fast}}(w_{\text{avg}} - w_{\text{fast}})
12:
                   for m = 1 to M do
                         with probability \max(0.0, 1.0 - w_{\text{fast}}/w_{\text{slow}}) do
13:
                               add random pose to \mathcal{X}_t
14:
15:
                          else
                               draw i \in \{1, \dots, N\} with probability \propto w_t^{[i]}
16:
                               add x_t^{[i]} to \mathcal{X}_t
17:
                         endwith
18:
19:
                    endfor
20:
                   return \mathcal{X}_t
```

Table 8.3 An adaptive variant of MCL that adds random samples. The number of random samples is determined by comparing the short-term with the long-term likelihood of sensor measurements.

Example: Kidnapped robot revisited

KLD-sampling

KLD-sampling is a method for *dynamically adjusting* the number of particles that we maintain in the sample set

Main idea: The number of particles that we need is related to the *uncertainty* in our current belief:

More uncertainty \Rightarrow belief is more "spread out" \Rightarrow need more particles to model

Approach: *Dynamically adjust* the number of particles based upon an estimate of the Kullback-Leibler divergence between particle set and true posterior

KLD-Sampling

```
Algorithm KLD_Sampling_MCL(\mathcal{X}_{t-1}, u_t, z_t, m, \varepsilon, \delta):
                    \mathcal{X}_t = \emptyset
                    M = 0, M_{\chi} = \infty, k = 0
                    for all b in H do
                          b = empty
                    endfor
                    do
                          draw i with probability \propto w_{t-1}^{[i]}
                          \begin{split} x_t^{[M]} &= \mathbf{sample\_motion\_model}(u_t, x_{t-1}^{[i]}) \\ w_t^{[M]} &= \mathbf{measurement\_model}(z_t, x_t^{[M]}, m) \end{split}
 9:
10:
                          \mathcal{X}_t = \mathcal{X}_t + \langle x_t^{[M]}, w_t^{[M]} \rangle
11:
                          if (x_t^{[M]}) falls into empty bin b) then
12:
13:
                                k = k + 1
14:
                                b = non-empty
                                if (k > 1) then
15:
                                 M_{\chi} := \frac{k-1}{2\varepsilon} \left\{ 1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta} \right\}^3
16:
17:
                          endif
18:
                         M = M + 1
19:
                    while (M < M_{\chi})
20:
                    return \mathcal{X}_t
```

