Network Flow

Max-Flow-Min-Cut Theorem, Max-Matching on Bipartite Graphs

Flow-Definition

- Capacity Constraint:
 - for each $e \in E$, $f(e) \le c(e)$.
- Flow Conservation:
 - for each $u \in V \setminus \{s, t\}$, $\sum_{v:(u,v)\in E} f(v,u) = \sum_{w:(u,w)\in E} f(u,w)$.
- Total flow:
 - $v(f) = \sum_{v:(s,v)\in E} f(s,v).$

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Correctness of Ford-Fulkerson

What we have?

What we have?

What we have?

Cut: An edge set to partition vertices.

Some cut block us!

The blocking cut: No one can do better!

The blocking cut: FF has made it!

Thus, v(f) = 7 is optimal!

In fact, every "cut" gives an upper-bound to v(f).

The Minimum Cut Problem

- We want to find a tightest upper-bound to v(f) by a carefully chosen cut.
- Given weighted graph G = (V, E, c) and $s, t \in V$, an s-t cut is a partition of V to L, R such that $s \in L$ and $t \in R$.
- The value of the cut is defined by

$$c(L,R) = \sum_{(u,v)\in E, u\in L, v\in R} c(u,v)$$

• Min-Cut Problem: Given G = (V, E, c) and $s, t \in V$, find the s-t cut with the minimum value.

Max-Flow-Min-Cut Theorem

• The value of every s-t cut is an upper-bound to v(f).

Max-Flow-Min-Cut Theorem. The value of the maximum flow is exactly the value of the minimum cut:

$$\max_{f} v(f) = \min_{L,R} c(L,R)$$

Proving Max-Flow-Min-Cut Theorem

- Lemma 1. For any flow f and any cut $\{L,R\}$, we have $v(f) \le c(L,R)$.
 - Formalize the idea that the value of any cut is an upper-bound to the value of any flow.
- Lemma 2. There exists a cut $\{L,R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f) = c(L,R).
 - Concludes Max-Flow-Min-Cut Theorem.
 - Proves the correctness of Ford-Fulkerson Algorithm.

Notations: in flow and out flow

Notations: value of a flow

Notations: flow across a s-t cut

$$f_{in}(L) = \sum_{(u,v) \in E, u \in L, v \in R} f(v,u)$$

$$f_{ou}(L) = \sum_{(u,v) \in E, u \in L, v \in R} f(u,v)$$

Claim:
$$v(f) = f_{ou}(L) - f_{in}(L)$$

- Flow conservation:
 - $f_{ou}(u) = f_{in}(u)$ for $u \in V \setminus \{s, t\}$
 - $f_{ou}(s) = v(f), f^{in}(s) = 0$
- Summing up vertices in L:

$$\sum_{u\in L} \left(f_{ou}(u) - f_{in}(u)\right) = f_{ou}(s) + \sum_{u\in L\setminus\{s\}} 0 = v(f).$$

Claim:
$$v(f) = f_{ou}(L) - f_{in}(L)$$

Look at the summation again. Can you see the following?

$$\sum_{u\in L} (f_{ou}(u) - f_{in}(u)) = f_{ou}(L) - f_{in}(L).$$

- For each f(u, v) with $u, v \in L$, it contributes +f(u, v) to the summation by $f_{ou}(u)$ and contributes -f(u, v) by $f_{in}(v)$. Cancelled!
- For each f(u, v) with $u \in L, v \in R$, it contributes +f(u, v) to the summation.
- For each f(u, v) with $u \in R, v \in L$, it contributes -f(u, v) to the summation.

Claim:
$$v(f) = f_{ou}(L) - f_{in}(L)$$

We have

$$\sum_{u\in L} (f_{ou}(u) - f_{in}(u)) = f_{ou}(s) + \sum_{u\in L\setminus\{s\}} 0 = v(f).$$

and

$$\sum_{u \in L} (f_{ou}(u) - f_{in}(u)) = f_{ou}(L) - f_{in}(L).$$

• Putting together:

$$v(f) = f_{ou}(L) - f_{in}(L).$$

Proof of Lemma 1

Lemma 1. For any flow f and any cut $\{L, R\}$, we have $v(f) \le c(L, R)$.

- Fix *L*, *R*.
- Claim: $v(f) = f_{ou}(L) f_{in}(L)$
- If the claim holds, Lemma 1 is proved:

$$v(f) \le f_{ou}(L) = \sum_{(u,v) \in E, u \in L, v \in R} f(u,v) \le \sum_{(u,v) \in E, u \in L, v \in R} c(u,v) = c(L,R)$$

Proving Max-Flow-Min-Cut Theorem

- Lemma 1. For any flow f and any cut $\{L, R\}$, we have $v(f) \le c(L, R)$.
 - Formalize the idea that the value of any cut is an upper-bound to the value of any flow.
- Lemma 2. There exists a cut $\{L,R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f) = c(L,R).
 - Concludes Max-Flow-Min-Cut Theorem.
 - Proves the correctness of Ford-Fulkerson Algorithm.

Proof of Lemma 2

Lemma 2. There exists a cut $\{L, R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f) = c(L, R).

• L: reachable from s in G^f .

f: output of Ford-Fulkerson 1

- Claim A: $f_{ou}(L) = c(L, R)$
- Claim B: $f_{in}(L) = 0$
- $v(f) = f_{ou}(L) f_{in}(L)$

Proof of Lemma 2

Lemma 2. There exists a cut $\{L, R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f) = c(L, R).

- Claim A: $f_{ou}(L) = c(L, R)$
 - Otherwise, exist (u, v) with $u \in L, v \in R$ such that f(u, v) < c(u, v).
 - Thus, (u, v) is in G^f and v is reachable from s.
 - Contradict to $v \in R$ by our definition of L.
- Claim B: $f_{in}(L) = 0$
 - Otherwise, exist (v, u) with $u \in L, v \in R$ such that f(v, u) > 0.
 - Thus, (u, v) is in G^f and v is reachable from s
 - Contradict to $v \in R$ by our definition of L.

Proving Max-Flow-Min-Cut Theorem

- Lemma 1. For any flow f and any cut $\{L, R\}$, we have $v(f) \le c(L, R)$.
 - Formalize the idea that the value of any cut is an upper-bound to the value of any flow.

- Lemma 2. There exists a cut $\{L,R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f)=c(L,R).
 - Concludes Max-Flow-Min-Cut Theorem.
 - Proves the correctness of Ford-Fulkerson Algorithm.

Proof of Max-Flow-Min-Cut Theorem

Lemma 1. For any flow f and any cut $\{L, R\}$, we have $v(f) \le c(L, R)$.

Lemma 2. There exists a cut $\{L, R\}$ such that the flow f output by Ford-Fulkerson Algorithm satisfies v(f) = c(L, R).

Do you know how to find a minimum s - t cut?

Algorithm for finding a minimum cut

Min-Cut Problem: Given G = (V, E, w) and $s, t \in V$, find the s-t cut with the minimum value.

- Solve the max-flow problem with $\forall (u,v) \in E : c(u,v) = w(u,v)$
- Let f be the maximum flow and construct G^f
- L: vertices reachable from s in G^f
- $R = V \setminus L$
- Return $\{L, R\}$

Time Complexity?

- Correctness: Max-Flow-Min-Cut Theorem
- Time Complexity:
 - Question 1: Does the algorithm always halt?
 - Question 2: If so, what is the time complexity?

Does the algorithm always halt?

- Let's start from simplest case: all the capacities are integers.
- Each while-loop iteration increase the value of f by at least 1.
- Thus, the algorithm will halt within f_{max} iterations.

- **Theorem**. If each c(e) is an integer, then the value of the maximum flow f is an integer.
- Proof. The value of f is always an integer throughout Ford-Fulkerson Algorithm.

Does the algorithm always halt?

- How about rational capacities?
- Rescale capacities to make them integers.
- Yes, the algorithm will halt!

Does the algorithm always halt?

- How about possibly irrational capacities?
- No, the algorithm do not always halt!

Non-terminating example [edit]

Consider the flow network shown on the right, with source s, sink t, capacities of edges e_1 , e_2 and e_3 respectively 1, $r=(\sqrt{5}-1)/2$ and 1 and the capacity of all other edges some integer $M \geq 2$. The constant r was chosen so, that $r^2 = 1 - r$. We use augmenting paths according to the following table, where $p_1 = \{s, v_4, v_3, v_2, v_1, t\}$, $p_2 = \{s, v_2, v_3, v_4, t\}$ and $p_3 = \{s, v_1, v_2, v_3, t\}$.

Step	Augmenting path	Sent flow	Residual capacities		
			e_1	e_2	e_3
0			$r^0=1$	r	1
1	$\{s,v_2,v_3,t\}$	1	r^0	r^1	0
2	p_1	r^1	r^2	0	r^1
3	p_2	r^1	r^2	r^1	0
4	p_1	r^2	0	r^3	r^2
5	p_3	r^2	r^2	r^3	0

Note that after step 1 as well as after step 5, the residual capacities of edges e_1 , e_2 and e_3 are in the form r^n , r^{n+1} and 0, respectively, for some $n \in \mathbb{N}$. This means that we can use augmenting paths p_1 , p_2 , p_1 and p_3 infinitely many times and residual capacities of these edges will always be in the same form. Total flow in the network after step 5 is $1+2(r^1+r^2)$. If we continue to use augmenting paths as above, the total flow converges to $1+2\sum_{i=1}^{\infty}r^i=3+2r$. However, note that there is a flow of value 2M+1, by sending M units of flow along sv_1t , 1 unit of flow along sv_2v_3t , and M units of flow along sv_4t . Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow. [4]

Another non-terminating example based on the Euclidean algorithm is given by Backman & Huynh (2018), where they also show that the worst case running-time of the Ford-Fulkerson algorithm on a network G(V, E) in ordinal numbers is $\omega^{\Theta(|E|)}$.

Time Complexity?

- Assume all capacities are integers, what is the time complexity?
- Each iteration requires O(|E|) time:
 - O(|E|) is sufficient for finding p, updating f and G^f
- There are at most f_{max} iterations.
- Overall: $O(|E| \cdot f_{max})$
- Can we analyze it better?

Time Complexity?

- Can we analyze it better?
- It depends on how you choose p in each iteration!
- The complexity bound $O(|E| \cdot f_{max})$ is tight if choices of p are not carefully specified!

Method vs Algorithm

- Different choices of augmenting paths p give different implementation of Ford-Fulkerson.
- The description of Ford-Fulkerson Algorithm is incomplete.
- For this reason, it is sometimes called Ford-Fulkerson Method.
- Next Lecture Preview: Edmonds-Karp Algorithm, which implement Ford-Fulkerson Method with time complexity $O(|V| \cdot |E|^2)$.

Integrality Theorem.

- **Theorem**. If each c(e) is an integer, then the value of the maximum flow f is an integer.
- **Understanding**. If each c(e) is an integer, there exists a flow f to maximize the total flow value, such that each edge's flow is an integer.
- Why?

Applications of Integrality Theorem

- **Theorem**. If each c(e) is an integer, then the value of the maximum flow f is an integer.
- Application 1: Tournament example you have seen in the last lecture.
- The max-flow f must satisfy $\forall e : f(e) \in \mathbb{Z}$.

	Wins	Max Num of Additional Wins
Α	40	1
В	38	3
C	37	4
D	41	

Application 2: Maximum Bipartite Matching

- Top vertices are girls, bottom vertices are boys.
- An edge represent a possible match for a boy and a girl.
- Problem: find a maximum matching for boys and girls.

Maximum Bipartite Matching - Formal

- Given a graph G = (V, E), a matching M is a subset of edges that do not share vertices in common.
- The size of a matching is the number of edges in it.
- Problem: Given a bipartite graph G = (A, B, E) find a matching with the maximum size.

Dessert

- A graph is regular if all the vertices have the same degree.
- A matching is perfect if all the vertices are matched.
- Prove that a regular bipartite graph always has a perfect matching.

Hall's Marriage Theorem

- Consider the matching problem on a bipartite graph G = (A, B, E).
- For a subset $S \subseteq A$, let $N(S) \subseteq B$ be the set of vertices that are incident to vertices in S.
- Hall's Marriage Theorem. There exists a matching of size |A| if and only if $|S| \le |N(S)|$ for every $S \subseteq A$.

Exist a matching of size $|A| \Rightarrow \forall S: |S| \leq |N(S)|$.

- Suppose for the sake of contraction that $\exists S: |S| > |N(S)|$.
- There is no way to match all the vertices in S.
- Thus, there is no way to match all the vertices in A.

Exist a matching of size $|A| \leftarrow \forall S: |S| \leq |N(S)|$.

- Given $\forall S: |S| \leq |N(S)|$, suppose the maximum matching has size M < |A|.
- The maximum flow has value M.
 - Integrality Theorem
- The minimum cut has value M.
 - Max-Flow-Min-Cut Theorem

Three cases for minimum cut $\{L, R\}$:

- 1) $L = \{s\}, R = A \cup B \cup \{t\}, 2$ $L = \{s\} \cup A \cup B, 3$ $L_A, L_B, R_A, R_B \neq \emptyset$.

Exist a matching of size $|A| \leftarrow \forall S: |S| \leq |N(S)|$.

Case 1) $L = \{s\}, R = A \cup B \cup \{t\}$:

- The minimum cut has size |A|
- But we have assumed the minimum cut has size M < |A|.
- Case 1) cannot happen!

Exist a matching of size $|A| \leftarrow \forall S: |S| \leq |N(S)|$.

Case 2) $L = \{s\} \cup A \cup B, R = \{t\}$:

- The minimum cut has size |B|
- We have assumed the minimum cut has size M, so |B| = M < |A|.
- Contradiction with $|A| \le |N(A)| \le |B|$

Exist a matching of size $|A| \leftarrow \forall S: |S| \leq |N(S)|$.

Case 3) L_A , L_B , R_A , $R_B \neq \emptyset$:

- Minimum cut size: $M = |L_B| + |R_A|$
- We also have $|L_A| + |R_A| = |A|$
- $M < |A| \Longrightarrow |L_A| > |L_B|$
- No edge can go from L_A to R_B Such an edge has weight ∞
- Thus, $N(L_A) \subseteq L_B$, which implies $|N(L_A)| \le |L_B| < |L_A|$
- Contradicts to our assumption

Today's Lecture

- Max-Flow-Min-Cut Theorem
 - Equivalence of Max-Flow and Min-Cut problems
 - Correctness of Ford-Fulkerson Method
- Flow Integrality Theorem
 - Follows immediately from Ford-Fulkerson Method
- Maximum Bipartite Matching
 - Translate the problem to Max-Flow applying integrality theorem
 - Hall's Marriage Theorem: application of Max-Flow-Min-Cut Theorem
- Edmonds-Karp Algorithm