Introduction to Computer Programming

Week 9.2: Curve Fitting

It can be useful to define a relationship between two variables, x and y.

We often want to 'fit' a function to a set of data points (e.g. experimental data).

Python has several tools (e.g. Numpy and Scipy packages) for finding relationships in a set of data.

In [31]:

- import numpy as np
- import matplotlib.pyplot as plt
- 3 %matplotlib inline

Fitting a linear function

Linear function:

Has form

$$f(x) = mx + c$$

where *m* and *c* are constants.

Linear regression calculates a **linear function** that minimizes the combined error between the fitted line and the data points.

Fitting a polynomial function

Polynomial function: a function involving only non-negative integer powers of *x*.

1st degree polynomial $y = ax^1 + bx^0$

(linear function)

2nd degree polynomial $y = cx^2 + dx^1 + ex^0$

3rd degree polynomial $y = fx^3 + gx^2 + hx^1 + ix^0$

Fitted function

A polynomial function can be fitted using the numpy.polyfit function.

Inputs:

- independent variable
- dependent variable
- · degree of the polynomial

Returns:

coefficients of each term of the polynomial.

Example 1:

Fit a first degree polynomial (linear function) to the x,y data.

Print the coefficients of the fitted function.

[1.07272727e+00 -5.61733355e-15] 1.07272727272728 -5.61733354972272e-15

We can now plot the fitted linear function

$$y = ax^1 + bx^0$$

Try it yourself

Example 2:

Fit a second degree polynomial to the x,y data. (Remember to import numpy to use polyfit).

Print the coefficients of the fitted function.

0.19318181818181812 -1.05227272727261 4.24999999999999

Fitted data

As the degree increases, the code to generate the fitted line gets longer.

Fitted data

numpy.polyval : generates fitted y values.

Inputs:

- coefficients of the fitted polynomial function
- x data (monotonically sorted if plotting a line graph)

Returns:

fitted y data

Example 3:

Use numpy.polyval to generate x,y data of the fitted linear function.

```
In [40]: 1 x_new = np.array(sorted(x))
2 
3 yfit1 = np.polyval(c1, x_new)
```

Try it yourself

Example 4:

Use numpy.polval to generate x,y data of the fitted second degree polynomial function.

Plotting fitted data

Example 5: Plot the raw data as a scatter plot and fitted linear function as a line graph ont eh same figure.

```
In [42]:  # plot data
2  plt.plot(x, y, 'o', label='raw data')
4  plt.plot(x_new, yfit1, label='1st degree poly')
5  6  plt.legend()
7  plt.xlabel('x')
9  plt.ylabel('y')
10  plt.show()
```


Try it yourself

Example 6: Plot the raw data as a scatter plot and second degree polynomial function as a line graph on the same figure.

```
In [44]:
```

```
# plot data
plt.plot(x, y, 'o', label='raw data')

plt.plot(x_new, yfit1, label='1st degree poly')

plt.plot(x_new, yfit2, label='2nd degree poly')

plt.legend()

plt.xlabel('x')
plt.ylabel('y')

plt.show()
```


Fitting an Arbitrary Function

Curve fitting is not limited to polynomial functions.

We can fit any function with unknown constants to the data using the function curve_fit from the scipy package.

Fitted function

Choose a function to fit e.g.

$$y = ae^{bx}$$

Define the function in the following format:

Fitted function

Use scipy.optimize.curve_fit to find the constants that best fit the function to the data.

Inputs:

- the function to fit
- the independent variable
- the dependent variable

Returns:

- constants of fitted function
- the covariance of the parameters (measure of the tendancy of one parameter to vary linearly with the other)

Fitted data

Generate fitted data by running the function we defined (exponential), on:

- x data (sorted monotonically if plotting)
- fitted constants (* allows c to be a data structure of any length)
- remember c is the variable we created to store the output of curve_fit

```
In [49]:  # input to function to get fitted data
2  # use monotonically sorted x data
3  x_new = np.array(sorted(x))
4  
5  yfit = exponential(x_new, *c)
```

Plotting fitted data

In [50]:

```
# plot data
plt.plot(x, y, 'o', label='raw data')  # raw data
plt.plot(x_new, yfit, label='fitted data'); # fitted function
plt.legend()

# equation of the fitted line
print(f'y={round(c[0],2)}exp({round(c[1],2)}x)')
```

y=1.4exp(0.22x)

How does polyfit / curve_fit determine which coefficients/constants give the best fit?

How can we measure 'goodness' of fit e.g. when choosing degree of polynomial for best fit line?

Root Mean Square Error (RMSE)

(least squares approach)

A widely used measure of the error between fitted values and raw data.

Error/residual, ε :

The difference between the raw value y(x) and the fitted value a(x).

$$\varepsilon = a(x) - y(x)$$

Sum of the squared errors for N data points: (error squared so that negative and positive errors do not cancel)

$$S = \sum_{i=1}^{N} \varepsilon_i^2$$

RMSE:

$$RMSE = \sqrt{\frac{1}{N}S} = \sqrt{\frac{1}{N}\sum_{i=1}^{N} \varepsilon_i^2}$$

Smaller RMSE indictes smaller error (i.e. a better fit between raw and fitted data).

We can optimise the fitted function by minimising the RMSE (used by curve_fit).

RMSE tells us statistically which line gives the best fit.

```
In [51]:
```

```
def RMSE(x, y, yfit):
    "Returns the RMSE of a y data fitted to x-y raw data"
    # error
    e = (yfit - y)
    # RMSE
    return np.sqrt(np.sum(e**2)/ len(x))
```

Let's compare the RMSE of each polynomial we fitted to the x,y data earlier

```
In [52]:
```

```
for degree in range(1, 3):
   c = np.polyfit(x, y, degree) # coefficients of fitte
   yfit = np.polyval(c,x)
                                    # no need to sort x mon
   rmse = RMSE(x, y, yfit)
                                    # goodness of fit
   print(f'polynomial order {degree}, RMSE = {rmse}')
```

```
polynomial order 1, RMSE = 1.8964080880347554
polynomial order 2, RMSE = 1.2751114033327013
```

The second order polynomial gives a better fit.

Example 7

Fit the function $y = ae^{bx}$ which we defined earlier as exponential and find the RMSE:

RMSE = 1.3338248760975626

Of the three functions tested, the second order polynomial gives a better fit, statitically.

Summary

- 1. Find constants of fitted function
 - Polynomial functions: Find coefficients of polynomial by running polyfit on data and specifying degree of polynomial.
 - **Arbitrary functions:** Find constants of arbitrary function by defining function to fit and running curve_fit on raw data and function to fit.
- 2. Generate fitted data (arrange x data monotonically if plotting as graph):
 - **Polynomial functions:** Use polyval to generate the fitted data using fitted coefficients for given input range.
 - **Arbitrary functions:** Call function defined in step 1 using a range of x data and fitted coefficients as inputs.
- 3. Test goodness of fit: RMSE or other optimisation method.