

Y=a+b*X; где:

- Y зависимая переменная,
- а константа
- b угловой коэффициент
- X независимая переменная

Для многомерной регрессии:

$$Y = a + b1*X1 + b2*X2 + ... + bp*Xp$$

Для аналитического описания связи между признаками могут быть использованы следующие виды уравнений:

$$\bar{y} = a_0 + a_1 x$$

– прямая, линейная функция;

$$\bar{y} = a_0 + a_1 x^2 + a_2 x$$
 — парабола;

 $y = a_0 + a_1 x + a_2 x$ — параоола

$$\bar{y} = a_0 + a_1 \frac{1}{x}$$
 — гипербола;

$$\overline{y} = a_0 x^{a_1}$$
 — степенная функция;

$$\overline{y} = \exp(a_0 + a_1 x)$$
 — экспонента и др.

Смысл коэффициента регрессии

В общем случае коэффициент регрессии k показывает, как в среднем изменится результативный признак (Y), если факторный признак (X) увеличится на единицу.

Свойства коэффициента регрессии

- Коэффициент регрессии принимает любые значения.
- Коэффициент регрессии *не симметричен*, т.е. изменяется, если *X* и У поменять местами.
- Единицей измерения коэффициента регрессии является отношение единицы измерения Y к единице измерения X ([Y] / [X]).
- Коэффициент регрессии изменяется при изменении единиц измерения X и Y.

Единица измерения коэффициента регрессии

В уравнении Y = 87610 + 2984 X коэффициент регрессии равен 2984.

В каких единицах он измеряется?

Если результативный признак Y измеряется в zривнах, а факторный признак X в количестве рабочих (чел), то коэффициент регрессии измеряется в zривнах на человека (zph/ven)

Сравнение коэффициентов корреляции и регрессии

Коэффициент корреляции

- Принимает значения в диапазоне от -1 до +1
- Безразмерная величина
- Показывает силу связи между признаками
- Знак коэффициента говорит о направлении связи

Коэффициент регрессии

- Может принимать любые значения
- Привязан к единицам измерения обоих признаков
- Показывает структуру связи между признаками
- Знак коэффициента говорит о направлении связи

Величина *R-квадрат* - мера определенности

характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].

Регрессионная статистика							
Множественный R	0,99836371						
R-квадрат	0,9967301						
Нормированный R-квадрат	0,99632137						
Стандартная ошибка	0,42404974						
Наблюдения	10						

			Стандартная	
		Коэффициенты	ошибка	t-cmamucmика
	Ү-пересечение	2,694545455	0,33176878	8,121757129
.85	х	2,305454545	0,04668634	49,38177965

Наблюдение	Предсказанное у	Остатки 🖣
1	9,610909091	-0,610909
2	7,305454545	-0,305454 ³⁰ j
3	11,91636364	0,083636
4	14,22181818	0,778181
	16,52727273	0,472727 10
8	18,83272727	0,167272 5
7	21,13818182	-0,138181i o l
8	23,44363636	-0,0436363b4
_		

F - критерий

Адекватность построенного уравнения данным генеральной совокупности проверяется по статистической значимости коэффициента детерминации R^2 на основе F-критерия Фишера:

 $F = \frac{R^2}{1 - R^2} \cdot \frac{n - m - 1}{m},$

где n – число наблюдений; T^{-1} M – число факторов в уравнении регрессии.

Если в уравнении регрессии свободный член \mathcal{Q}_0 = 0, то числитель n-m-1 следует увеличить на 1, т.е. он будет равен n-m.

F - критерий

В математической статистике доказывается, что если гипотеза $H_0: R^2 = 0$

выполняется, то величина F имеет F-распределение с k=m и i=n-m-1 числом степеней свободы, т.е.

$$\frac{R^2}{1-R^2} \cdot \frac{n-m-1}{m} = F(k=m, l=n-m-1).$$

Гипотеза H_0 о незначимости коэффициента детерминации отвергается, если

$$F_p > F_{i\eth,\alpha}^{\hat{e}\delta}.$$

При значениях $R^2 > 0.7$ считается, что вариация результативного признака Y обусловлена в основном влиянием включенных в регрессионную модель факторов X.

Ошибка аппроксимации

Для оценки адекватности уравнения регрессии часто также используют показатель средней ошибки аппроксимации

$$\overline{\varepsilon} = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}|}{y_i} \cdot 100\%.$$

Возможна ситуация, когда часть вычисленных коэффициентов регрессии не обладает необходимой степенью значимости, т.е. значения данных коэффициентов будут меньше их стандартной ошибки. В этом случае такие коэффициенты должны быть исключены из уравнения регрессии. Поэтому проверка адекватности построенного уравнения регрессии наряду с проверкой значимости коэффициента детерминации R^2 включает также и проверку значимости каждого коэффициента регрессии.

t-критерий

Для оценки адекватности уравнения регрессии часто также используют показатель средней ошибки аппроксимации

$$t = \frac{a_i}{\sigma_{a_i}},$$

где σ_{a_i} - стандартное значение ошибки для коэффициента регрессии α_i

t-критерий

Если гипотеза

 H_0 : $a_i = 0$ выполняется, то величина t имеет распределение Стьюдента с k=n-m-1 числом степеней свободы, т.е.

$$\frac{a_i}{\sigma_{a_i}} = t(k = n - m - 1).$$

Гипотеза H_0 : $a_i = 0$ о незначимости коэффициента регрессии отвергается, если $|t_p| > |t_{\hat{e}p}|$.

Границы доверительных интервалов

Зная значение $t_{\hat{e}p}$, можно найти границы доверительных интервалов для коэффициентов регрессии

$$a_i^{\min} = a_i - t_{\hat{e}\delta} \sigma_{a_i};$$
 $a_i^{\max} = a_i + t_{\hat{e}\delta} \sigma_{a_i}.$

$$a_i^{\max} = a_i + t_{\hat{e}\check{o}} \sigma_{a_i}.$$

		ORP	ZPL	OEX								
	АРК	22596	2849	849275								
	Вінницька	22732	2651	622175								
	Волинська	10187	2580	585473								
	Дніпропетров											
ļ,	ська	202318	3335	8967464								
	Донецька	205594	3755	11335389								
	Житомирська	15665	2561	550107								
	Закарпатська	9224	2553	1205576								
	Запорізька	75835	3142	3320827								
	Івано-Франк.	20487	2679	435835								
	Київська	40280	3351	1787605								
	Кіровоградськ			The regres	sion	equation	is					
	a	14382	26	ORP = 1527	70 -	54.3 ZPL	+ 0	.0222 OE	X			
	Луганська	67740	33	D		C		Z+ D				
	Львівська	30845	211	Predictor Constant	1	<u>Coef</u> 52770		5tDev 37322	T 4.09		P 000	
	Миколаївська	21645	3()	ZPL		54.27		14.11	-3.85		001	
	Одеська	25016	29	OEX		22164		02404	9.22		000	
	Полтавська	63646	29									
	Рівненська	14474		S = 20737		$R-\underline{Sq} =$	85.29	% R−	Sg(adj)	= 83.9	8	
	Сумська	22332	27	Analysis of Variance								
	Тернопільськ			inidiyolo (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-unoc						
	а	7609		Source	DF		SS		MS	F	P	
	Харківська	62815		Regression		5921439				68.85	0.000	
	Херсонська	10828	= -	Error		1032050		43002	0923			
	Хмельницька	16524	20	Total	26	6953489	5331					
	Черкаська	28249	26	Source	DF	Se	g SS					
_	Чернівецька	4011	24	ZPL		2265730						
	Чернігівська	14129		OEX	1	3655709	2656					
	м. Ки	73284	50									
	м.Севастопол			Unusual Ok Obs	serva ZPL	tions OR	D	Fit	StDev	Fit I	Residual	St Resid
	Ь	3652	31		335	20231		170527		655	31791	1.94 X
					755	20559		200216		391	5378	0.36 X
				26 5	007	7328	4	124629	16	699	-51346	-4.18RX

R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.

1. Методы первичной обработки данных

1. Методы первичной обработки данных

The regression equation is v = -120802 + 55.3 x

Predictor Coef StDev T P
Constant -120802 47278 -2.56 0.017
x 55.29 15.91 3.48 0.002

S = 43302 R-Sq = 32.6% R-Sq(adj) = 29.9%

Analysis of Variance

Source DF SS MS F P Regression 1 22657300530 22657300530 12.08 0.002

Error 25 46877594802 1875103792

Total 26 69534895331

(Ctrl) ▼

$$\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (\hat{y}_i - \overline{y})^2 + \sum_{i} (y_i - \hat{y}_i)^2$$

Общая сумма квадратов Сумма квадратов Остаточная сумма отклонений = отклонений, объясненная + квадратов отклонений

= $\text{FPAC}\Pi(F_p; df(\text{регрессия}); df(\text{остаток})).$

Нормальный закон распределения

- 1) Количество вариантов (значений СВ), превышающих среднее значение, равно количеству вариантов, которые меньше его (примерная симметричность диаграммы).
- 2) Частота вариантов тем больше, чем ближе к среднему значению они расположены (гистограмма имеет наибольшие ординаты в центре и наименьшие у краев).

- 1. Хорошо изучен, методика проста и отработана
- 2. При увеличении объёма выборки

Если результаты измерений вызывают сомнение в применимости Н3, необходимо увеличить объём выборки

По своему виду кривые нормального распределения могут быть:

- **>** нормальновершинными;
- > туповершинными;
- **островершинными**
- иметь положительную асимметрию;
- > иметь отрицательную асимметрию.

Кривые нормального распределения

Кривые нормального распределения с положительной и отрицательной асимметрией