Capítulo 1

Introducción a las Redes de Computadoras – Parte 1

- ¿Qué tipos de máquinas queremos poder interconectar por medio de redes?
- Hosts o sistemas finales: dispositivos de cómputo
 - PCs, notebooks, tablets, smartphones, TVs, consolas de juegos, sistemas de seguridad hogareños, automóviles, etc.
 - Incluye: distintos tipos de computadoras (celulares, tablets, pcs, notebooks) y dispotitivos IoT (de internet de las cosas).

"Fun" Internet-connected devices

IP picture frame http://www.ceiva.com/

Smart watch

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Internet refrigerator

Smart lighting

Pet tracking

Internet phones

Dispositivos IoT

Dispositivos IoT pueden:

- Intercambiar datos con otros dispositivos y aplicaciones interconectados.
- Recolectar datos de otros dispositivos y procesar los datos localmente o enviarlos a servidores centralizados para procesar los datos.
- Realizar algunas tareas localmente y otras tareas dentro de la infraestructura de la red basadas en restricciones temporales y de espacio como:
 - o memoria, capacidades de procesamiento, velocidades de comunicación y plazos.

- ¿Qué es una red de computadoras?
- Una red de computadoras es un conjunto de sistemas finales interconectados.
 - ¿Qué significa que dos computadoras están interconectadas?
 - Dos computadoras (o host interconectados) están interconectadas si pueden intercambiar información.
 - ¿De qué manera puede hacerse la interconexión?
 - La conexión puede hacerse por medios de transmisión: cable de cobre, fibra óptica, microondas, etc.
 - El intercambio de información entre hosts se hace por medio de señales que viajan en los medios de transmisión.

- ¿Qué servicios o usos proporcionan las redes de computadoras?
 - Compartir recursos:
 - Recursos de hardware (p.ej. impresoras, almacenamiento, etc.)
 - Compartir información (datos, archivos, etc.).
 - Usarlas como medio de comunicación entre personas:
 - Mail, chat, mensajería, teleconferencia, telefonía IP, etc.
 - Socializar:
 - uso de redes sociales.
 - Incluye aspectos de las dos anteriores
 - Trabajo colaborativo
 - Por ejemplo, creación de documentos entre varias personas en distintas localizaciones geográficas.
 - Comercio electrónico
 - Entretenimiento:
 - Distribución de contenidos de TV por suscripción (IPTV)
 - Juegos

- Hay distintos tipos de redes de computadoras.
 - Las redes de computadoras pueden venir en varios tamaños, formas y cumplir distintos propósitos.
- ¿Qué hacer para que los hosts de varias redes de distinto tipo se puedan comunicar entre sí?
 - Varias redes de computadoras pueden ser interconectadas entre sí para formar redes más grandes.
 - La internet es el ejemplo de red de redes más grande.

Tipos de Redes

Sistemas Operativos de Red

Aplicaciones de Red

aplicaciones de red

APIs, middlewares

SO de red

redes de computadoras

p.ej. socket API, web, etc.

p.ej. TCP/IP

- Las redes de computadora se usan para proveer distintos servicios:
 - Ejemplo: compartir recursos, comunicación entre personas, socializar, trabajo colaborativo, comercio electrónico, entretenimiento, etc.
- Para proveer servicios se crean aplicaciones de red.
 - Para programarlas se usan APIs y middlewares.
 - Y estos últimos se basan en el sistema operativo de red.

¿Por qué se enseña la materia?

- 1. Para que comprendan cómo están organizadas las redes desde las más sencillas hasta las más complejas.
- 2. Para que comprendan el funcionamiento de las redes y las tecnologías que las soportan.
- 3. Para que puedan entender en detalle la organización y funcionamiento de sistemas operativos de redes en sus diversas partes y los **problemas** que resuelven.
- Para que puedan desarrollar aplicaciones de red.

Metas de la introducción

Agenda:

- 1. Comprender los distintos tipos de redes de computadora.
- Entender la arquitectura de los sistemas operativos de redes (SOR).
- Aprender fundamentos sobre cómputo en la nube
- Entender algunas convenciones a respetar en la materia

¿Por qué estudiar los tipos de redes?

- Los hogares, empresas, instituciones educativas, proveedores de servicios de internet, usan distintos tipos de redes.
- Para poder comprender las redes de esos lugares, cómo están organizadas y cómo funcionan hay que estudiar los distintos tipos de redes.
- Además saber sobre tipos de redes sirve para poder diseñar redes para esos lugares.

Tipos de Redes

- Para cada tipo de red se va a:
 - Entender cómo está organizado.
 - Comprender cómo se envían mensajes dentro del mismo.
 - Indicar problemas a resolver para enviar mensajes dentro de un tipo de red.

Tipos de Redes: Agenda

Agenda:

- Interredes y estructura de la internet
- Internet de las cosas
- Redes de área amplia: sus distintos tipos
- Redes metropolitanas: sus distintos tipos
- Redes de área local: sus distintos tipos

Interredes

- Existen muchas redes, con hardware y software diferente.
- Problema: ¿Cómo comunicar personas pertenecientes a redes diferentes?
- Solución: usar interredes
 - Interred = conjunto de redes interconectadas
 - puertas de enlace: conectan redes de distintas tecnologías.
 - Internet es una interred.

La Internet

- La internet está formada por billones de dispositivos de computación conectados entre sí.
- En la internet se ejecutan aplicaciones de red.
- La internet es una red de redes que interconecta varias redes entre sí.
- Para envío y recepción de mensajes entre sistemas finales se usan protocolos.

- Hosts acceden a la internet a través de proveedores de servicios de internet de acceso (ISPs de acceso).
- ¿Qué tipos de ISP de acceso existen?
 - Uso de ISP residenciales (p.ej. compañías de cable, telefónicas, fibra a la casa (FTTH), etc.).
 - Uso de ISP empresarial (da acceso a sus empleados).
 - Uso de ISPs universitaria (da acceso a docentes, estudiantes y personal).
 - Celulares.
 - ISPs que proveen acceso a WiFI (p.ej. en aeropuertos, hoteles, restaurantes, etc.

- ¿Cómo hacer para que dos hosts que están conectados a diferentes ISPs de acceso puedan enviarse paquetes entre sí?
- ISPs de acceso deben estar interconectados.

Problema: Dados miles de ISP de acceso, cómo conectarlos entre sí?

Idea: conectar cada ISP de acceso a todo otro ISP de acceso.

Idea 2: conectar cada ISP de acceso a un ISP global de tránsito? Las ISP cliente and provedora tienen acuerdo económico.

Idea 3: Es más conveniente tener ISPs globales de tránsito que conectan los ISP de acceso. ¿Por qué es más conveniente?

- Las ISP de acceso son interconectadas a través de redes ISP nacionales e internacionales de más alto nivel llamados ISPs de capa superior o globales de tránsito.
 - Estas son ISP que proveen servicios de tránsito.
 - Las ISP de tránsito pueden competir entre si.
 - Una ISP de capa superior consiste de interconectados con enlaces de fibra óptica de alta velocidad.
- ¿Qué conclusiones pueden sacar del dibujo anterior?
 - Las ISP globales de tránsito deben estar interconectadas entre sí.
 - Cada red ISP, ya sea de acceso o de capa superior, es manejada independientemente.

- Problema: Los ISP globales de tránsito no tienen presencia en cada ciudad o región del mundo.
- ¿Y esto qué implica?
- Hay ISPs de acceso que no se pueden conectar a ISP globales.
- ¿Qué hacer entonces?

Solución, en una región puede haber un **ISP regional** al cual se conectan los ISP de acceso en la región.

- ¿Cuáles son las consecuencias de la solución anterior?
 - Luego cada ISP regional se conecta con ISPs globales de tránsito.
 - Los ISP de acceso pagan al ISP regional al cual se conectan, y cada ISP regional paga al ISP global de tránsito al cual se conecta.
 - En algunos lugares un ISP regional puede cubrir un país entero y a ese ISP regional se conectan otros ISP regionales.

- Finalmente tenemos las redes proveedoras de contenido (por ejemplo, Google, Facebook, Microsoft, Apple, etc.).
- ¿Por qué se usan estas redes?
 - Para reducir pagos a redes de tránsito global.
 - Para tener control sobre cómo sus servicios son entregados a los usuarios finales.
- ¿A qué redes se conectan las redes proveedoras de contenido?
 - A ISP regionales e ISP de acceso.
 - Podrían llegar a usar un ISP de tránsito si no le queda otra.

... y redes proveedoras de contenido (e.g., Google, Microsoft, Akamai) pueden ejecutar su propia red, para traer servicios, y contenido cerca de los usuarios

- Si pensáramos a la internet como una red formada por niveles que forman una jerarquía,
- ¿Qué redes tenemos en cada nivel de la jerarquía?
- Ayuda: pensar en una jearquía de 3 niveles.

- "tier-I" ISPs comerciales (p.ej. redes globales de tránsito) cobertura nacional e internacional.
- Redes proveedoras de contenido
- En el medio ISP regionales.
- Finalmente ISPs de acceso

Tipos de Redes: Agenda

Agenda:

- Interredes y estructura de la internet
- Internet de las cosas
- Redes de área amplia: sus distintos tipos
- Redes metropolitanas: sus distintos tipos
- Redes de área local: sus distintos tipos

¿Qué es el IoT?

¿Qué es el loT? – Está de moda, pero en realidad es extender Internet desde "computadoras" a "objetos", sin necesidad de un "humano" en el medio.

- IOT nace de paradigmas de redes anteriores y los abarca:
 - Machine-to-Machine (M2M): redes para conectar máquinas entre sí.
 - Radio-Frequency ID (RFID): para chips embebidos en productos que hacen saltar alarmas en locales.
 - Wireless Sensor Networks (WSN): sensores distribuidos conectados a una red.
 - Mobile Ad-Hoc Networks (MANET): p.ej. redes de autos que se comunican entre ellos.
 - Domótica (Smart home): dispositivos hogareños conectados en red
 - Ciudades, rural (Smart cities)
 - Vehículos (Vehicle to everything)
 - Industria (Industria 4.0): se conectan dispositivos en sistema productivo, en una fábrica.
 - Cyber-physical systems (CPS)

- loT viene a mezclar todo junto y lo logras gracias a la combinación de técnicas de computación de las siguientes áreas:
 - Procesamiento de tiempo real
 - Ambient intelligence
 - Inteligencia artificial
 - Machine learning: includes deep learning.
 - Big data
 - Cómputo en la nube

Tipos de Redes: Agenda

Agenda:

- Interredes y estructura de la internet
- Internet de las cosas
- Redes de área amplia: sus distintos tipos
- Redes metropolitanas: sus distintos tipos
- Redes de área local: sus distintos tipos

Redes de área amplia (WANs)

 Una red de área amplia (WAN) cubre un área geográfica grande, típicamente un país o hasta un continente.

Redes de área amplia (WANs)

¿De acuerdo a la figura cómo está organizada una WAN?

- Subred: varios enrutadores conectados entre sí forman un grafo
 - Un arco representa cable que une 2 enrutadores.
- A una subred pueden estar conectadas computadoras o LAN enteras.
- Para ir de una máquina a otra hay distintas rutas alternativas.

Redes de área amplia (WANs)

 Una red de área amplia va a permitir interconectar varias redes hogareñas e institucionales (llamadas redes de área local - LAN).

- ¿Cómo se hace para enviar mensajes en una WAN?
- Solución: Algoritmo de almacenamiento y reenvío.
 - Un paquete sigue una ruta de enrutadores.
 - El paquete se almacena enteramente en cada enrutador de la ruta.
 - El paquete almacenado en un enrutador espera allí hasta que la línea requerida de salida esté libre y luego se reenvía al siguiente enrutador.

■ Toma L/R segundos transmitir paquete de L-bit en un enlace de R bps.

Ejemplo:

- L = 7.5 Mbits
- *R* = 1.5 Mbps
- Demora de transmisión en un salto = 5 sec

Encolado y pérdida de paquetes

- Si la tasa de llegada al enlace (en bits) excede la tasa de transmisión del enlace por un período de tiempo.
- ¿Qué va a suceder?
 - Los paquetes se van a encolar, y esperarán a ser transmitidos en el enlace.
 - Los paquetes pueden ser descartados (perdidos) si la memoria (el búfer) se llena.

Algoritmos de enrutamiento

- En general hay varios caminos que conectan dos enrutadores.
- El algoritmo de enrutamiento decide cuál de ellos usar.

¿Cuánto demora el almacenamiento y reenvío?

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc}: procesamiento del nodo

- Chequeo de errores
- Determinar la línea de salida
- typically < msec

d_{queue}: demora por encolado

- Tiempo de espera en el enlace de salida para transmisión.
- Depende de cuán congestionado está el enrutador

Sistema telefónico fijo (p.ej. DSL):

- Cada domicilio está conectado por un cable de cobre a una End office (oficina central)
- Toda oficina central está conectada a una Toll office.
- Toll offices son usadas para reenvío de mensajes.
- Toll offices unidas por cables (de fibra óptica).

Redes de área amplia: DSL

- Se usa una línea telefónica a la oficina central DSLAM
 - Los datos sobre la línea DSL van a la internet
 - La voz sobre la línea DSL va a la red telefónica
- < 2.5 Mbps para subida de datos (typically < 1 Mbps)</p>
- < 24 Mbps para bajada de datos (typically < 10 Mbps)</p>

Redes de área amplia: Ejemplos

Arquitectura de red celular

MSC

- conecta células a red telefónica
- maneja seteo de llamadas
- maneja movilidad

célula

- cubre una región geográfica
- estación base (BS)
- usuarios móviles se enlazan a la red a través de la BS

Redes de área amplia: ejemplos

Sistema de fibra a la casa:

- Divisor óptico (optical splitter) para subdividir un cable de fibra óptica en varios (cada uno va a una casa), usualmente menos de 100.
- Cada casa tiene un terminador de red óptica (optical network terminator ONT) para convertir entre señales ópticas y eléctricas.
- Tasas de transferencia de 100 Mbps o 300 Mbps.

Internet en la Argentina

¿Cómo se conecta la Argentina?

- Interno: Fibra óptica, (e.g., +40mil km REFEFO (red federal de fibra óptica) – red pública que se construyó con ARSAT)
- Externo: cables submarinos (99%) que salen de las Toninas (van a Europa, USA y Brasil) y satélites (1%).

Tipos de Redes: Agenda

Agenda:

- Interredes y estructura de la internet
- Internet de las cosas
- Redes de área amplia: sus distintos tipos
- Redes metropolitanas: sus distintos tipos
- Redes de área local: sus distintos tipos

Redes de Área Metropolitana (MAN)

- Una red de área metropolitana (MAN) cubre una ciudad.
- Hay de dos tipos:
 - Redes de cable: se basan en la red de TV por cable.
 - Redes móbiles: son redes inalámbricas de alta velocidad.

Redes de Área Metropolitana (MAN)

MAN basada en TV por cable

- Cable coaxial sirve para unir varias casas.
- Elementos de commutación son para comunicar viviendas en distintos cables coaxiales
- Elementos de communtación se unen por cables de fibra óptica.

Access net: cable network

- El servicio es asimétrico: hasta 30Mbps de bajada de datos, hasta 2 Mbps de subida de datos
 - Uso de cable modem...
- Divisor entre TV y cable modem.
- En una red de cable se conectan las casas a un proveedor de servicios de internet.
 - Las casas comparten el acceso a un cable headend para ello.

Redes de Área Metropolitana (MAN)

Otro ejemplo: MAN Wimax (estándar 802.16).

- Hay estación base que permite enviar paquetes por el aire en lugar de usar cable o redes telefónicas.
- La estación base se conecta a internet.
- Se puede acceder a la red Wimax desde computadoras en casas o edificios, o desde vehículos en movimiento.

Tipos de Redes: Agenda

Agenda:

- Interredes y estructura de la internet
- Internet de las cosas
- Redes de área amplia: sus distintos tipos
- Redes metropolitanas: sus distintos tipos
- Redes de área local: sus distintos tipos

- Una red de área local (LAN) es una red operada privadamente dentro de un edificio o casa.
 - También puede operar en un campus de varios edificios.
- ¿Dónde puede usarse una LAN?
 - Una LAN puede usarse en un hogar o en una organización (pública o privada).
 - Las LAN usadas por compañías se llaman redes empresariales.
- ¿Qué tipos de hosts se comunican a una LAN?
 - Las LAN se usan para comunicar PCs, notebooks, celulares, impresoras, electrónicos del hogar, etc.
 - La idea es que los hosts puedan compartir recursos e intercambiar información.

Wireless and wired LANs. (a) 802.11 (WIFI). (b) Switched Ethernet.

Hay dos tipos de LAN:

- LAN inalámbricas: en su forma más simple las máquinas se comunican entre sí (sin uso de cables) por medio de una estación base (access point).
- La Ethernet: En su forma más simple, las máquinas se conectan por medio de cables a un commutador (switch).

Difusión:

- Si una máquina envía un mensaje, todas las demás lo reciben.
- ¿A quién puede estar destinado un mensaje cuando se usa difusión? ¿Qué casos se les ocurren?
 - Estar destinado a una única máquina
 - Ser enviado a todas las máquinas (broadcasting)
 - Ser enviado a un grupo de máquinas en particular (multicasting)
 - P.ej. a las máquinas del departamento de ventas

- Situación indeseable: Se envían mensajes en una red de difusión y se pierden.
- ¿Por qué puede pasar esto?
- Causa: Colisión: más de una máquina manda simultáneamente un mensaje.
 - Los mensajes colisionan y se dañan.
- ¿Qué hay que hacer en relación a las colisiones?
- Evitar o minimizar colisiones.
- Detectar las colisiones
- Tratar las colisiones

Red hogareña

Redes de acceso empresarial

- Típicamene usada en compañías, universidades, etc.
- Tasas de transmisión de 10 Mbps, 100Mbps, 1Gbps, 10Gbps
- Típicamente se usan conmutadores Ethernet.

Internet

- Hay redes dorsales
- Red dorsales (backbone) están conectadas a varias WAN
- Redes metropolitanas pueden conectarse a WANs
- LANs están conectadas a WANs o a redes metropolitanas

Overview of the Internet architecture.

Protocolos

Un protocolo humano y un protocolo de redes de computadoras

Protocolos

Protocolos

- Los sistemas operativos de red consisten de varios protocolos de comunicación.
- ¿De acuerdo al ejemplo anterior, qué sería un protocolo de comunicación?
- Protocolos de comunicación definen: formato, orden de mensajes enviados y recibidos entre máquinas de la red, y acciones tomadas en la transmisión y recepción de mensajes

Capítulo 1

Introducción a las Redes de Computadoras – Parte 1

