Package 'trackR'

May 19, 2020

Type	Package
1.) PC	1 ackage

Title R tools and functions to compute jump analysis, describe and infer from single-molecule tracking data

Version 0.1.3

Author Julien Godet

Maintainer JuG < julien.godet@unistra.fr>

Description The jump-distance (JD), defined as the distance travelled by a single molecule during a fixed time lag Tau has a distribution (JDD) over the population of molecules that reflects fine features of the underlying transport. The JDD analysis takes advantage of the fact that modern, powerful imaging systems and tracking algorithm produce generally a large number of individual trajectories allowing to plot well-resolved JD distributions

License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.1.0

Index

R topics documented:

calcDist	2
calcMSD	2
cleanNearest	3
clusterTraces	3
createSpheroCylinderCoord	4
createTestEllipse	5
drawRod	5
fitEllipse	6
fitJumpDistECDF	7
fitJumpDistHist	8
getContour	9
getEllipse	9
histJd	C
jump	C
plotDiffusionMap	1
plotMSD	2
readTrackMateXML	2
readTrackMateXmlTrace	3

14

2 calcMSD

calcDist

Compute euclidian distance between 2 points

Description

Compute euclidian distance between 2 points

Usage

```
calcDist(data, spaceRes = 1)
```

Arguments

data

a dataframe with 2 lines and 2 or 3 columns (x,y,(z))

Author(s)

JuG

Examples

```
data2D <- data.frame(x =c(0,1), y=c(0,1)) 
 calcDist(data2D) 
 data3D <- data.frame(x =c(0,1), y=c(0,1), z=c(0,1)) 
 calcDist(data3D)
```

calcMSD

Calculate Mean Square Distance

Description

Calculate Mean Square Distance

Usage

```
calcMSD(data, N)
```

Arguments

data frame (including trace, x, y and t)

N for MSD, dt should be up to 1/N of number of data points (4 recommended)

Author(s)

JuG

cleanNearest 3

Examples

```
xmlPath <- "//Users/jgodet/Seafile/MaBibliotheque/Hanna/1_3_MMStack_Pos0.ome.xml"
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1.xml"
data <- readTrackMateXML(XMLpath = xmlPath)
data$jump<-jump(data, spaceRes=1)
msdMat <- calcMSD(data, N=3)
plotMSD(msdMat, col='blue')</pre>
```

cleanNearest

Do something

Description

Do something

Usage

```
cleanNearest(data, k = 10)
```

Author(s)

JuG

clusterTraces

cluster traces in space (and/or time) using DBscan

Description

cluster traces in space (and/or time) using DBscan

Usage

```
clusterTraces(dtf, coord = c("x", "y"), eps, minPts, method, ...)
```

Arguments

dtf	data frame with coordinates and traces ID
coord	coordinates dataframe (x,y) or (x,y,t)
eps	Reachability distance, see Ester et al. (1996).

minPts Reachability minimum no. of points, see Ester et al. (1996).

method "dist" treats data as distance matrix (relatively fast but memory expensive),

"raw" treats data as raw data and avoids calculating a distance matrix (saves memory but may be slow), "hybrid" expects also raw data, but calculates partial

distance matrices (very fast with moderate memory requirements).

Author(s)

JuG

Examples

```
xmlPath <- "//Users/jgodet/Seafile/MaBibliotheque/Hanna/1_3_MMStack_Pos0.ome.xml"
data <- readTrackMateXML(XMLpath = xmlPath)
data$jump<-jump(data, spaceRes=1)
bacteria <- clusterTraces(dtf = data, eps = .2,minPts = 100)
table(bacteria)
bact1 <- data[which(bacteria==7),]
summary(bact1)
bact1 %>% select(x,y) %>% plot(., asp=1)
drawRod(data = getContour(bact1),col='green')
drawRod(data = getContour(cleanNearest(data = bact1,k = 3)),col='blue')
```

createSpheroCylinderCoord

Do something

Description

None

Usage

```
createSpheroCylinderCoord(
    N = 1000,
    l = 2,
    r = 0.3,
    initialPos = c(1, 1, 0),
    rot = 0
)
```

Arguments

N umber of points

length of the rod
r radius
initialPos Initial position
rot Rotation

Details

None

Author(s)

JuG

```
coord <- createSpheroCylinderCoord(rot=10)
plot(coord,asp=1)</pre>
```

createTestEllipse 5

createTestEllipse

Create a test ellipse

Description

Create a test ellipse

Usage

```
createTestEllipse(
    Rx = 300,
    Ry = 200,
    Cx = 250,
    Cy = 150,
    Rotation = 0.4,
    N = 200,
    NoiseLevel = 10
)
```

Arguments

Rx	X-radius
Ry	Y-radius
Cx	X-center
Су	Y-center
Rotation	Radians
N	Nb of points

NoiseLevel Gaussian Noise level

Author(s)

JuG

drawRod

Draw rod contour

Description

Draw rod contour

Usage

```
drawRod(data, lwd, ...)
```

Arguments

data

coordinates of the contour

6 fitEllipse

Author(s)

JuG

Examples

```
coord <- createSpheroCylinderCoord( 1 =1.8,r=.3,rot=120)
plot(coord[,1:2],asp=1,pch='.')
gcont <- getContour(coord[,1:2],drawContour = TRUE)
drawRod(gcont,lty=3)</pre>
```

fitEllipse

Adjust an ellipse on a contour plot

Description

Least squares fitting of an ellipse to point data

Usage

```
fitEllipse(x, y = NULL)
```

Arguments

x x.coordinatesy y.coordinates

Details

Least squares fitting of an ellipse to point data using the algorithm described in Radim Halir & Jan Flusser. 1998 Adapted from the original Matlab code by Michael Bedward (2010) michael.bedward@gmail.com Subsequently improved by John Minter (2012) http://lastresortsoftware.blogspot.fr/2012/09/fitting-ellipse-to-point-data.html

Author(s)

JuG

References

Radim Halir & Jan Flusser. 1998. Numerically stable direct least squares fitting of ellipses. Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG '98, p. 125-132

```
ellipse <- createTestEllipse(NoiseLevel = 50)
plot(ellipse)
efit <- fitEllipse(ellipse)
e <- getEllipse(efit)
lines(e,col='red')</pre>
```

fitJumpDistECDF 7

 $\verb|fitJumpDistECDF| \\$

Do something

Description

Do something

Usage

```
fitJumpDistECDF(
  data,
  nbPop = 1,
  initECDF = list(D1 = 0.05),
  timeRes = 1,
  xlab,
  ylab,
  main,
  cex,
  colLine = "red",
  breaks = 150,
  ...
)
```

Arguments

data dataframe with jump nbPop number of populations of diffusing species (1 or 2) timeRes time resolution per unit of jump initHist initialisation parameters for the nls fit for exmaple list(D2 = 200, D1=0.1) or list(D2 = .01, D1=.1, D3=10, D4=100)

Author(s)

JuG

```
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1.xml"
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv3.xml"
data <- readTrackMateXML(XMLpath = xmlPath)
data$jump<-jump(data, spaceRes=1)
fitJumpDistECDF(data=data, nbPop = 1)
fitJumpDistECDF(data=data, nbPop = 1, cex=.85, colLine = 'green')
fitJumpDistECDF(data=data, nbPop = 2, initECDF = list(D1=0.001, D2=.4, D3=.1), cex=.85, colLine = 'green')</pre>
```

8 fitJumpDistHist

fitJumpDistHist

Fit jump distribution histogram

Description

Fit jump distribution histogram

Usage

```
fitJumpDistHist(
   data,
   nbPop = 1,
   initHist = list(D2 = 200, D1 = 0.1),
   timeRes = 1,
   breaks = 100,
   xlim,
   ylim,
   xlab,
   main,
   ...
)
```

Arguments

data dataframe with jump

nbPop number of populations of diffusing species (1 or 2)

initHist initialisation parameters for the nls fit for exmaple list(D2 = 200, D1=0.1) or list(D2 = .01, D1=.1, D3=10, D4=100)

timeRes time resolution per unit of jump

breaks binning of the histogram (number of breaks)

Author(s)

JuG

```
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1.xml"
data <- readTrackMateXML(XMLpath = xmlPath)
data$jump<-jump(data, spaceRes=1)
fitJumpDistHist(data=data, nbPop = 1, initHist = list(D2 = 200, D1=0.1))
fitJumpDistHist(data=data, xlim=c(0,10), col=rgb(.2,.2,.2,.2), main="test")
# Results are affected by the histogram binning
fitJumpDistHist(data=data, breaks = 30)
fitJumpDistHist(data=data, breaks = 150)
fitJumpDistHist(data=data, nbPop=3)
fitJumpDistHist(data=data, nbPop=2, initHist = list(D2 = .01, D1=.1, D3=10, D4=100))</pre>
```

getContour 9

getContour

Return the convexhull contour of coordinates

Description

Return the convexhull contour of corrdinates

Usage

```
getContour(data, drawContour = FALSE, ...)
```

Arguments

data coordinate data

 ${\tt drawContour} \qquad \text{if TRUE draw a convex} \\ {\tt hull contour line} \\$

nbPix box size for the owin in ppp object

Author(s)

JuG

getEllipse

Create coordinates of an ellipse from fit ellipse parameters

Description

Create coordinates of an ellipse from fit ellipse parameters

Usage

```
getEllipse(fit, n = 360)
```

Arguments

fit a fit object from fitEllipse

n number of corrdinates points to build

Author(s)

JuG

10 jump

histJd

Plot JD histogram

Description

Plot JD histogram (inherit from hist)

Usage

```
histJd(jd, breaks, xlim, freq, pixSize, xlab, panel.first, ...)
```

Arguments

jd jump distribution vector breaks histogram breaks

xlim xlim

pixSize pixel size in µm (if picels are not calibrated in trackMate)

xlab xlab

panel.first panel first options (use for exmaple grid())

Value

graph

Author(s)

JuG

Examples

```
histJd(jd, main="", panel.first=grid())
box()
```

jump

Compute jump distance

Description

Compute jump distance within a frame between two consecutive frames. Note that if a gap exist between consecutive frames (gap-closing frame gap) the jump is calculated as the average displacement (distance / delta frame)

Usage

```
jump(data, spaceRes)
```

Arguments

data Dataframe with track (trace identification) and Frame variable

spaceRes Pixel size

plotDiffusionMap 11

Author(s)

Julien Godet

Examples

```
a <- 2
b <- 2 * a
```

 ${\tt plotDiffusionMap}$

Plot Diffusion Map

Description

Plot Diffusion Map

Usage

```
plotDiffusionMap(data, traceNb, nbPix = 20, jumpMax, nbCol = 10)
```

Arguments

data frame (muste contain trace, x, y, and jump)

traceNb (optional) number id of the traces to plot

nbPix number of pixel (or calibrated distance) to add on each x-and y-range tail

Details

Plot Diffusion Map or more exactly jump distance map as in Fig 2c of Gasser et al. 2020 doi:10.1017/S003358351900015

Value

plot

Author(s)

JuG

```
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1.xml"
data <- readTrackMateXML(XMLpath = xmlPath)
data$jump<-jump(data, spaceRes=1)
plotDiffusionMap(data = data,traceNb = c(12),nbPix = 5 )
plotDiffusionMap(data = data,nbPix = 5 )</pre>
```

12 readTrackMateXML

plotMSD Plot MSD

Description

Plot MSD

Usage

```
plotMSD(
   msdData,
   deltaT,
   fitMSD = TRUE,
   printMSDfit = TRUE,
   npoint4fit = 4,
   ...
)
```

Arguments

msdData MSD data (list) (output of calcMSD function)
deltaT time elapsed between two consecutive frame

fitMSD boolean printMSDfit boolean

npoint4fit number of points to use for MSD fitting

Author(s)

JuG

readTrackMateXML

read TrackMate XML output files

Description

```
read TrackMate XML output files
```

Usage

```
readTrackMateXML(XMLpath, multiCore = TRUE)
```

Arguments

```
XMLpath path to the xml file multiCore use multi-cores (boolean)
```

Value

data frame

readTrackMateXmlTrace 13

Author(s)

JuG

Examples

```
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1.xml"
system.time(
data <- readTrackMateXML(XMLpath = xmlPath)
)
data <- readTrackMateXML(XMLpath = xmlPath, multiCore = FALSE)
data$jump<-jump(data, spaceRes=1)
hist(data$jump, breaks=150)</pre>
```

readTrackMateXmlTrace read TrackMate XML traces output files

Description

Function to read TrackMate XML traces output files: much faster than reading the complete TRack Mate XML file

Usage

```
readTrackMateXmlTrace(XMLpath, timeRes = 1)
```

Arguments

XML path XML file path

timeRes time exposure per frame

Author(s)

JuG

```
xmlPath <- "/Users/jgodet/Seafile/MaBibliotheque/Code/TrackMate/nmeth.2808-sv1Trace.xml"
data <- readTrackMateXmlTrace(XMLpath = xmlPath)

data$jump<-jump(data, spaceRes=1)
hist(data$jump, breaks=150)
fitJumpDistHist(data=data, breaks = 150)
msdMat <- calcMSD(data, N=2)
plotMSD(msdMat, col='blue')</pre>
```

Index

```
calcDist, 2
calcMSD, 2
cleanNearest, 3
clusterTraces, 3
{\tt createSpheroCylinderCoord, 4}
{\tt createTestEllipse}, {\tt 5}
drawRod, 5
fitEllipse, 6
fitJumpDistECDF, 7
\verb|fitJumpDistHist|, 8|
getContour, 9
getEllipse, 9
histJd, 10
jump, 10
plotDiffusionMap, 11
plotMSD, 12
readTrackMateXML, 12
{\tt readTrackMateXmlTrace,\,13}
```