

About ViSER and Myself

VISER

Started in Jan 2019 in NY:

- Promotes STEM, Finance, and OpenData learning among kids and adults through bootcamps, after-school classes, and workshops for 3rd grade - high school kids, financial literacy classes for women
- Provides Al-backed, data-driven solutions to small / medium businesses - market Research, training, software development
- Now based in South Carolina Events with the University of South Carolina for high school and middle school students in Data Analysis and Al
- website: https://www.go-viser.com/
- email: viserllc@gmail.com

Education

Ph.D. (Computer Science) Student, University of South Carolina

MBA (Financial Management), Pace University, NY MS (Computational Mathematics), Arizona State University, AZ

MSc(Mathematics), University of Lucknow, India

Work Experience (10+ years)

- Founder ViSER, educational services company, USA (2019 -)
- · Vice President, Tantiv4, USA
- Guest Faculty, Indian Institute of Technology (IIT), Delhi, India
- Incentive Analyst IBM Corporate Office, Armonk, USA
- Assistant Professor- JSS Academy of Technical Education, Amity University, India

https://www.linkedin.com/in/v-srivastava/

CODE.

EEG and its applications

- A non-invasive method to record electrical activity in the brain
- Method
- Tiny electrodes, attached to a wire are placed on the scalp at different locations
- The electrodes detect small charges generated by neuronal activity in the brain and record them when presented with a stimulus
- The activity is measured in microvolts (μV)

Conditions that can be diagnosed using EEG include:

- Epilepsy
- Sleep disorders (such as narcolepsy)
- Head injuries
- Brain infection and hemorrhage
- Alzheimer's disease
- Degeneration of brain tissue
- · Metabolic conditions that affect brain tissue
- Hormonal conditions that affect brain tissue
- Stroke, brain tumor, and more

WOMEN WHO

Major Concepts in EEG

Types of Recordings

Event Related

- EEG is recorded during specific events (stimulus presentation) at intervals
- · Example: Different categories of sounds were played for the participants at different intervals

Sleeping

- · EEG is recorded when the participant is sleeping
- · Can be used to study sleep disorders

Resting State

• EEG is recorded while the participant is awake but resting (not performing any specific activity) with closed or open eyes

Channel and Montage

EEG systems use a differential amplifier to produce each channel or trace of activity

- Differential amplifiers measure the voltage difference between the two signals at each of its inputs
- Resulting signal is amplified and then displayed as a channel of EEG activity
- Arrangement in which the input electrodes are connected to the amplifier of the EEG machine is called a montage
- "Electrode" and "Channel" can be used interchangeably

Analysis of Neuroscience data: (Spring 2022); Prof Christian O'Reillv. UoSC

https://www.ebme.co.uk/articles/clinical-engineering/introduction-to-eeg

WOMEN WHO

EEG Analysis – Data Structures

Raw

- · Continuous data as a time
- Spectral density of continuous data, sensor locations, information about data, etc
- Shape

Epoch

- Representing and analyzing equal-duration chunks of the EEG signal called epochs
- Shape

(n_epochs, n_channels, n_sample

Evoked

- Data that is averaged across trials (epochs)
- Array of shape

(n_channels, n_samples)
https://mne.tools/stable/auto_tutorials/raw/40_visualize_raw.html#tut-visualize-raw

WOMEN WHO

MRI and Its Applications

- Well suited for imaging the non-bony parts or soft tissues of the body
- Brain, spinal cord, and nerves, as well as muscles, ligaments, and tendons are seen much more clearly with MRI than with regular xrays and CT
- In the brain, MRI can differentiate between white matter and grey matter and can also be used to diagnose aneurysms and tumors
- Non-invasive, does not use x-rays or other radiation, preferred when frequent imaging is required for diagnosis or therapy
- fMRI, a special MRI is used to observe brain structures and determine the "activated" (consume more oxygen) brain regions during various cognitive functions

shutterstock.com · 2162500141

https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri

CODE

MRI Data

- Volume data is collected to create the complete, 3D image of the brain, recorded at one single timepoint
- Data is measured in voxels, which are like the pixels used to display images on screen, only in 3D
- Each voxel has a specific dimension, say, 1mm x 1mm x 1mm: a cube
- Each voxel contains one value which stands for the average signal measured at the given location
- A standard anatomical volume, with a voxel resolution of 1mm contains almost 17 million voxels, which are arranged in a 3D matrix of 256 x 256 x 256 voxels
- MRI data formats will have an image and a header part:
 - The image is the actual data and is represented by a 3D matrix that contains a value (e.g. gray value) for each voxel
 - The header contains information about the data like voxel dimension, voxel extend in each dimension, number of measured time points, a transformation matrix that places the 3D matrix from the image part in a 3D coordinate system, etc.

nttps://miykael.github.io/nipype-beginner-s-guide/neuroimaging.html

CODE

Data Formats in EEG and Neuroimaging

Electroencephalography

Format	Extension(s)	Description
European data format	.edf	Each recording consists of a single .edf file
BrainVision Core Data Format	.vhdr, .vmrk, .eeg	Each recording consists of a .vhdr, .vmrk, .eeg file triplet
EEGLAB	.set, .fdt	Each recording consists of a .set file with an optional .fdt file
Biosemi	.bdf	Each recording consists of a single .bdf file

Neuroimaging

Format	Extension(s)	Description
Nifti	* nii * nii.gz, if compressed	Stores both the data matrix and a header that contains meta data
Dicom	None or sometimes .dcm	Stores raw brain scan data directly from the MRI scanner
Gifti	.gii	Stores surface geometry and vertex-wise data
Cifti, minc, mgh	.nii, .mnc, .mgh	

https://tinyurl.com/3be6uu5y

BIDS (Brain Imaging Data Structure)^[1] standardizes the recording of Brain data (EEG, MRI, MEG, PET,)

https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/03-electroencephalography.html

Major Data Analysis Tools for EEG/MEG and Neuroimaging

- mne: python
- eegkit: R
- Neural Data Toolbox (NDTb) Matlab
- **livioivil/neuR:** R package for neuroscience data processing and statistical analysis
- **DIPY** is the 3D/4D+ imaging library in Python
- NiBabel: provides read/write access to some common medical and neuroimaging file formats, including <u>ANALYZE</u>, <u>GIFTI</u>, <u>NIFTII</u>, <u>NIFTII</u> 2, <u>CIFTI-2</u>, <u>MINC1</u>, <u>MINC2</u>, <u>AFNI</u> <u>BRIK/HEAD</u>, <u>MGH</u>
- NiPype
- fmri, fsbrain R packages

Some Resources to Learn More...

- edx (accessed July 21, 2022)
 - Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
 - Fundamentals of Neuroscience (series)
- Coursera (accessed July 21, 2022)
 - Neuroscience and Neuroimaging Specialization
 - Computational Neuroscience
- Udemy
 - Complete neural signal processing and analysis: Zero to hero
- Mike X Cohen
 - youtube series on neuroscience ---- for a crash course
- Software documentation (mne, nibabel, etc)
- Support forums:
 - mne

If planning to pursue a career in neuroscience, find the degree programs!

"Neural Networks in Al", Inspired by Brain

- "Neural Network" concept in Al is inspired by the brain architecture
- Now the NNs are being used to study brain
- Deep learning models are used to show how convolutional layers and recurrent connections in the brain's cerebral cortex control functions, like visual processing, memory, and motor control [1]
- Machine learning can be used to recognize patterns that may be buried inside overly complex neural data [2]
- Detection and classification of brain abnormalities are some of the applications of Al in neuroscience

Why Brain is an Important Application Area of Al?

- Can be used to improve the diagnosis of mental health conditions^[1]
 - · Need for data-driven assessment: diagnosis today relies on self-reporting, specific feelings, or actions
 - Data is under-utilized: Between 2000 2019, ONLY 54 academic papers were published (2020 article, 'ACM Transactions on Computer-Human Interaction')
 - Applying ML to brain scans, medical data, and the results of a questionnaire about habits, mood, personal
 circumstances, and demographic data, from large population cohorts can yield "proxy measures" for brain-related
 health issues without the need for a specialist's assessment (GigaScience, Oct 2021, Denis Engemann, Inria Saclay
 Institute, France)
- Availability of data
 - Human Brain Project an EU funded initiative to share and analyze brain data
 - Human Connectome Project
 - NIH The BRAIN Initiative
- More computation power to process images, many software, better diagnostic tools

[1] Communications of ACM, May 2022

EEG recording for a classification problem

Some examples of applications (see reference section for details):

- Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
- EEG being used as a biomarker in the early detection and classification of dementia
- Detecting and predicting epileptic seizures using machine learning methods

https://journals.sagepub.com/doi/full/10.26599/BSA.2020.9050017

Statistics on Deep Learning for EEG Data

- 154 papers that apply DL to EEG, published between January 2010 and July 2018 and across different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring were analyzed
- Research questions:
 - a) What are the most frequently used architectures?
 - b) How has this changed across years?
 - c) Is the choice of architecture related to input characteristics?
 - d) How deep are the networks used in DL-EEG?

Summary

- · People from diverse backgrounds can work in the neuroscience field
- Lot of potential in the research, development, and analysis in the field
- A great opportunity for collaboration
- An exciting area of application for data scientists

References

- Image credits: Google and Bing images
- https://nipy.org/nibabel/
- https://dipy.org/
- https://rdrr.io/github/livioivil/neuR/
- https://www.biorxiv.org/content/10.1101/2020.09.18.302935v1.full.pdf (fsbrain)
- https://www.researchgate.net/figure/Sketch-of-how-to-record-an-Electroencephalogram-An-EEG-allows-measuring-theelectrical_fig1_338423585 (EEG picture)
- https://www.nature.com/articles/s41598-020-78784-3#citea (Al and EEG)
- https://www.hindawi.com/journals/tswj/2014/906038/ (Al and EEG)
- Subasi, A., Kevric, J. & Abdullah Canbaz, M. Epileptic seizure detection using hybrid machine learning methods. Neural Comput & Applic 31, 317–325 (2019) (Al and EEG)
- https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogrameeg#:":text=An%20EEG%20is%20a%20test,activity%20of%20your%20brain%20cells
- $\bullet \qquad \text{https://www.ebme.co.uk/articles/clinical-engineering/introduction-to-eeg}$
- [1] Tom Macpherson, Anne Churchland, Terry Sejnowski, James DiCarlo, Yukiyasu Kamitani, Hidehiko Takahashi, Takatoshi Hikida, Natural and Artificial Intelligence: A brief introduction to the interplay between Al and neuroscience research, Neural Networks, Volume 144, 2021, Pages 603-613, ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2021.09.018
- [2] Neil Savage, How Al and neuroscience drive each other forwards, Nature 571, S15-S17 (2019), doi: https://doi.org/10.1038/d41586-019-02212-4

For Questions or Comments or Slides

- GITHUB: https://github.com/vsrivas/WWCode_BlockDataPy_July2022
- Email: 1vandana.Srivastava@gmail.com / viserllc@gmail.com
- Linkedin: https://www.linkedin.com/in/v-srivastava/
- Personal website: https://bipvan.wixsite.com/vsrivastava

CG8E.