Mathematical Finance Solution 5

Solution 5-1

a) Assume first that \mathcal{G}^1 is bounded in L^0 . That is,

$$\lim_{m \to \infty} \sup_{G \in G^1} P[|G| \ge m] = 0.$$

Observe now that for every sequence $\varepsilon_n \downarrow 0$ and every sequence of admissible strategies ϑ^n with $G(\vartheta^n) \geq -\varepsilon_n$, we have $\frac{\vartheta^n}{\varepsilon_n} \in \mathcal{G}^1$ for every n. Thus

$$\lim_{m \to \infty} \sup_{n \in \mathbb{N}} P \left[\left| G_T \left(\frac{\vartheta^n}{\varepsilon_n} \right) \right| \ge m \right] = 0.$$

This means that for every $\delta > 0$ there exists some M independent of n such that

$$\delta \ge P \left[\left| G_T \left(\frac{\vartheta^n}{\varepsilon_n} \right) \right| \ge M \right] = P \left[\left| G_T (\vartheta^n) \right| \ge M \varepsilon_n \right].$$

Now, fix any $\eta > 0$. Since $\varepsilon_n \downarrow 0$, we find some N such that for all $n \geq N$, we have $\varepsilon_n M \leq \eta$. Therefore, we obtain that for all $n \geq N$

$$P[|G_T(\vartheta^n)| \ge \eta] \le P[|G_T(\vartheta^n)| \ge M\varepsilon_n] \le \delta.$$

As $\delta > 0$ was arbitrary, we obtain that for any $\eta > 0$

$$\lim_{n \to \infty} P[|G_T(\vartheta^n)| \ge \eta] = 0,$$

which proves the convergence of $(G_T(\vartheta^n))$ to 0 in L^0 .

Conversely, assume by contradiction that \mathcal{G}^1 is not bounded in L^0 . Then there exist $\alpha > 0$ and a sequence $(\vartheta^k) \subseteq \mathcal{G}^1$ such that for all k,

$$P[|G_T(\vartheta^k)| \ge k] \ge \alpha > 0.$$

Now, let $\delta > 0$ and define a sequence $\varepsilon_k := \frac{\delta}{k}$. Then $\varepsilon_k \downarrow 0$ and $G(\frac{\delta \vartheta^k}{k}) \ge -\varepsilon_k$, but for any k

$$P\left[\left|G_T\left(\frac{\delta\vartheta^k}{k}\right)\right| \ge \delta\right] \ge \alpha > 0$$

so that $(G_T(\frac{\delta\vartheta^k}{k}))$ does not converge to 0 in L^0 .

- b) (i) S_{-} is predictable being adapted and left-continuous. Consider the sequence of stopping times $T_{n} := \inf\{t \geq 0 \mid |S_{t}| \geq n + |s_{0}|\}$. $T_{n} \uparrow \infty$ P-a.s., as S has RCLL paths and therefore is bounded on compacts. Moreover, we see that for each n, the stopped process $S_{-}^{T_{n}} \leq n + |s_{0}|$ by definition of T_{n} .
 - (ii) As $S = S_{-} + \Delta S$, we get the result directly from (i).
 - (iii) For each n, consider the stopping time $T_n := \inf\{t \ge 0 \mid |S_t| \ge n + |s_0|\}$. We claim that each T_n is a predictable time. Indeed, as S is predictable, we obtain that

$$[T_n] := \{(\omega, t) \mid T_n(\omega) = t\} = [0, T_n] \cap S^{-1}([n + |s_0|, \infty)) \in \mathcal{P}.$$

For each n, take a foretelling sequence $(\tau_{k,n})_{k\in\mathbb{N}}$ for T_n and define the stopping time $\sigma_n := \max_{i,j=1,\dots,n} \tau_{i,j}$. Then, $\sigma_n \uparrow \infty$ P-a.s. as $\tau_{k,n}$ converges to T_n and $T_n \uparrow \infty$ P-a.s.. Moreover, as $\tau_{k,n} < T_n$ we have $\sigma_n < T_n$ and hence, by definition of T_n , we have for each n that $|S_{\sigma_n}| \le n + |s_0|$. This implies that S^{σ_n} is bounded for each n, hence S is locally bounded.

Solution 5-2

a) $\mathcal{P}(\mathcal{O}X)$ is predictable by definition. Let τ be any predictable time. As $\mathcal{F}_{\tau-} \subseteq \mathcal{F}_{\tau}$, we obtain by the tower property that

$$(\mathcal{P}(\mathcal{O}X))_{\tau} 1_{\{\tau < \infty\}} = E\left[(\mathcal{O}X)_{\tau} 1_{\{\tau < \infty\}} \mid \mathcal{F}_{\tau-}\right] = E\left[E\left[X_{\tau} 1_{\{\tau < \infty\}} \mid \mathcal{F}_{\tau}\right] \mid \mathcal{F}_{\tau-}\right] = E\left[X_{\tau} 1_{\{\tau < \infty\}} \mid \mathcal{F}_{\tau-}\right].$$

Thus, by uniqueness of the predictable projection, we get that ${}^{\mathcal{P}}({}^{\mathcal{O}}X) = {}^{\mathcal{P}}X$.

b) By right-continuity of A, we have $A_{C_t} \geq t$. Thus if $C_t \leq s$ we get $A_s \geq A_{C_t} \geq t$ as A is increasing. On the other hand, if $A_s \geq t$ we get $C_t \leq s$ as C_t by definition is the inf over all times u with $A_u \geq t$. To see that C_t is a predictable stopping time, observe that

$$[\![C_t]\!] := \{(\omega, s) \mid C_t(\omega) = s\} = [\![0, C_t]\!] \cap A^{-1}([t, \infty)) \in \mathcal{P}.$$

Now let H be of the form $\xi 1_{[0,u)}$ with $u \in [0,\infty]$ and ξ being a bounded \mathcal{F} -measuable random variable. From above, we see that for any $0 \le t_1 < t_2 < \infty$, we have $A_{t_1} < s \le A_{t_2}$ if and only if $t_1 < C_s \le t_2$. Thus, we see that

$$\int_0^\infty H_s(\omega) \, dA_s(\omega) = \xi \int_0^\infty 1_{[0,u)}(s) \, dA_s = \xi \int_0^\infty 1_{[0,u)}(C_s) \, ds = \int_0^\infty H_{C_s}(\omega) \, 1_{\{C_s(\omega) < \infty\}} \, ds. \quad (1)$$

Now, we define

 $\mathcal{H} := \{ \text{bounded processes } H \text{ for which } (1) \text{ holds true} \}$

as well as

 $\mathcal{M} := \{ \xi \, \mathbb{1}_{\llbracket 0, u \rrbracket} \text{ with } u \in [0, \infty] \text{ and } \xi \text{ a bounded } \mathcal{F}\text{-measurable random variable} \}.$

From the above calculation, we see that $\mathcal{M} \subseteq \mathcal{H}$. Moreover, \mathcal{M} is closed under multiplication. Furthermore, \mathcal{H} is a vector space of bounded processes containing the constant process 1 and by monotone convergence it is also closed under monotone bounded convergence. Thus, $(\mathcal{H}, \mathcal{M})$ satisfy the conditions needed for being able to apply the monotone class theorem. As every product measurable process is $\sigma(\mathcal{M})$ -measurable, we are done.

c) Let τ be any stopping time. It is enough to show that

$$E\Big[\int_0^\infty M_\tau \, 1_{\{s \le \tau\}} \, dA_s \,\Big] = E\Big[\int_0^\infty M_{s-1} \, 1_{\{s \le \tau\}} \, dA_s \,\Big].$$

Using **b)** and the predictable stopping theorem, which we can apply as each C_s is a predictable time, we obtain that

$$\begin{split} E\Big[\int_{0}^{\infty} M_{\tau} \, \mathbf{1}_{\{s \leq \tau\}} \, dA_{s} \,\Big] &= E\Big[\int_{0}^{\infty} M_{\tau} \, \mathbf{1}_{\{C_{s} \leq \tau\}} \, \, \mathbf{1}_{\{C_{s} < \infty\}} \, ds \,\Big] \\ &= \int_{0}^{\infty} E\Big[M_{\tau} \, \mathbf{1}_{\{C_{s} \leq \tau\}} \, \, \mathbf{1}_{\{C_{s} < \infty\}} \,\Big] \, ds \\ &= \int_{0}^{\infty} E\Big[M_{C_{s} - 1}_{\{C_{s} \leq \tau\}} \, \, \mathbf{1}_{\{C_{s} < \infty\}} \,\Big] \, ds \\ &= E\Big[\int_{0}^{\infty} M_{C_{s} - 1}_{\{C_{s} \leq \tau\}} \, \, \mathbf{1}_{\{C_{s} < \infty\}} \, ds \,\Big] \\ &= E\Big[\int_{0}^{\infty} M_{s - 1}_{\{s \leq \tau\}} \, dA_{s} \,\Big]. \end{split}$$

Solution 5-3

For any semimartingale S and any S-integrable process H we write $H \bullet S$ for $\int H dS$ to keep the notation short.

a) Since $A^1 - A^2$ is adapted, continuous, of finite variation and null at 0, it suffices to show that $A^1 - A^2$ is a local martingale. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, T] : \max(A_t^1, A_t^2) \ge n\} \land T.$$
 (2)

Then for each $n \in \mathbb{N}$, the stopped processes $(A^1)^{\tau_n}$ and $(A^2)^{\tau_n}$ are both uniformly bounded by n, and $(\tau_n)_{n\in\mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n\to\infty} P[\tau_n=T]=1$. We proceed to show that for each $n\in\mathbb{N}$, the stopped process $(A^1-A^2)^{\tau_n}$ is a uniformly integrable martingale. So fix $n\in\mathbb{N}$. It suffices to show that for each stopping time σ , $E[(A^1)^{\tau_n}_{\sigma}]=E[(A^2)^{\tau_n}_{\sigma}]$. So let σ be an arbitrary stopping time. Then

$$E[(A^{1})_{\sigma}^{\tau_{n}}] = E\left[\int_{0}^{T} 1_{]0,\sigma \wedge \tau_{n}]} dA_{s}^{1}\right] = (P \otimes A^{1}) \left[[0,\sigma \wedge \tau_{n}]\right]$$

$$= (P \otimes A^{2}) \left[[0,\sigma \wedge \tau_{n}]\right] = E\left[\int_{0}^{t} 1_{[0,\sigma \wedge \tau_{n}]} dA_{s}^{2}\right]$$

$$= E[(A^{2})_{\sigma}^{\tau_{n}}]. \tag{3}$$

b) Consider the σ -finite measures $P \otimes B$ and $P \otimes C$ on $(\bar{\Omega}, \mathcal{P})$. Then by the Lebesgue decomposition theorem, there exist unique σ -finite measures $\nu_a \ll P \otimes C$ and $\nu_s \perp P \otimes C$ on $(\bar{\Omega}, \mathcal{P})$ such that $\nu_a + \nu_s = P \otimes B$. In particular, there exists a predictable set $\bar{N} \in \mathcal{P}$ such that $\nu_s = 1_{\bar{N}}(P \otimes B)$, $\nu_a = 1_{\bar{\Omega}\setminus\bar{N}}(P \otimes B)$ and $(P \otimes C)[\bar{N}] = 0$. Define the processes $B^1 = (B_t^1)_{t\in[0,T]}$, $B^2 = (B_t^2)_{t\in[0,T]}$ and $C^1 = (C_t^1)_{t\in[0,T]}$ by

$$B_t^1 = \int_0^t 1_{\bar{N}} dB_s, \quad B_t^2 = \int_0^t 1_{\bar{\Omega}\setminus\bar{N}} dB_s \quad \text{and} \quad C_t^1 := \int_0^t 1_{\bar{N}} dC_s.$$
 (4)

Then B^1 , B^2 and C^1 are increasing, adapted, continuous and null at 0, $B^1 + B^2 = B$, $\nu_s = P \otimes B^1$ and $\nu_a = P \otimes B^2$, and for all $\bar{A} \in \mathcal{P}$,

$$(P \otimes C^1)[\bar{A}] = E\left[\int_{\bar{A}} 1_{\bar{N}} dC_s\right] = (P \otimes C)[\bar{A} \cap \bar{N}] = 0 = (P \otimes 0)[\bar{A}], \tag{5}$$

where 0 denotes the zero process. Thus by part a), we may deduce that $C^1 \equiv 0$. Next, by the Radon–Nikodým theorem, there exists a predictable process $H \geq 0$ such that

$$\nu_a = P \otimes B^2 = H(P \otimes C). \tag{6}$$

We proceed to show that $H \in L(C)$ and hence $H(P \otimes C) = P \otimes (H \bullet C)$. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, T] : \max(B_t^2, C_t) \ge n\} \land T.$$
(7)

Then for each $n \in \mathbb{N}$, the stopped processes $(B^2)^{\tau_n}$ and C^{τ_n} are both uniformly bounded by n, and $(\tau_n)_{n\in\mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n\to\infty} P[\tau_n=T]=1$. Hence, it suffices to show that $H\in L(C^{\tau_n})$ for all $n\in\mathbb{N}$. So fix $n\in\mathbb{N}$. Then by the definition of H,

$$E\left[\int_{0}^{T} H_{s} dC_{s}^{\tau_{n}}\right] = E\left[\int_{0}^{T} H_{s} 1_{[0,\tau_{n}]} dC_{s}\right] = \int_{\bar{\Omega}} 1_{[0,\tau_{n}]} H d(P \otimes C)$$

$$= \int_{\bar{\Omega}} 1_{[0,\tau_{n}]} d(P \otimes B^{2}) = E\left[\int_{0}^{T} 1_{[0,\tau_{n}]} dB_{s}^{2}\right] = E[B_{\tau_{n}}^{2}] \leq n.$$
(8)

Finally, since $P \otimes (H \bullet C) = P \otimes B^2$, it follows from part a) that $B^2 = H \bullet C$, which together with the above establishes the claim.

c) Suppose that S satisfies NA.

First, write $\operatorname{Var}(A) = (\operatorname{Var}(A)_t)_{t \in [0,T]}$, $A^+ = (A_t^+)_{t \in [0,T]}$ and $A^- = (A_t^-)_{t \in [0,T]}$ for the total, the positive and the negative variation of A, respectively. Then $\operatorname{Var}(A)$, A^+ and A^- are all increasing, adapted, continuous and null at 0, and $A = A^+ - A^-$ and $\operatorname{Var}(A) = A^+ + A^-$. On the level of measures, this means that

$$P \otimes A^+, P \otimes A^- \ll P \otimes \text{Var}(A)$$
 and $(P \otimes A^+) + (P \otimes A^-) = P \otimes \text{Var}(A)$. (9)

Hence there exist $\bar{D}^+ \in \mathcal{P}$ and $\bar{D}^- = \bar{\Omega} \setminus \bar{D}^+$ such that

$$P \otimes A^{+} = 1_{\bar{D}^{+}}(P \otimes \operatorname{Var}(A)) = P \otimes (1_{\bar{D}^{+}} \bullet \operatorname{Var}(A)),$$

$$P \otimes A^{-} = 1_{\bar{D}^{-}}(P \otimes \operatorname{Var}(A)) = P \otimes (1_{\bar{D}^{-}} \bullet \operatorname{Var}(A)).$$
(10)

By part (a), it follows that $A^+ = 1_{\bar{D}^+} \bullet \operatorname{Var}(A)$ and $A^- = 1_{\bar{D}^-} \bullet \operatorname{Var}(A)$.

Next, if there exist predictable processes $H^+, H^- \in L(\langle M \rangle)$ such that

$$A_t^+ = \int_0^t H_s^+ d\langle M \rangle_s \quad \text{and} \quad A_t^- = \int_0^t H_s^- d\langle M \rangle_s, \quad t \in [0, T],$$
 (11)

we are done by setting $H:=H^+-H^-$. So, seeking a contradiction, assume without loss of generality that there does not exist $H^+ \in L(\langle M \rangle)$ such that $A^+ = \int H^+ d\langle M \rangle$. Then by part b), there exists $\widetilde{H}^+ \in L(\langle M \rangle)$ and $\overline{N}^+ \in \mathcal{P}$ such that

$$A_t^+ = \int_0^t \widetilde{H}_s^+ d\langle M \rangle_s + \int_0^t 1_{\bar{N}^+} dA_s^+ \quad \text{and} \quad \int_0^t 1_{\bar{N}^+} d\langle M \rangle_s = 0, \quad t \in [0, T], \tag{12}$$

with $P\left[\int_0^T 1_{\bar{N}^+} dA_s^+ > 0\right] > 0$. (Otherwise, we could set $H^+ := \widetilde{H}^+$.) We define the strategy $\theta = (\theta_t)_{t \in [0,T]}$ by $\theta := 1_{\bar{N}^+} 1_{\bar{D}^+}$. Then $\theta \in L(S)$ as it is predictable and bounded, and it satisfies $\theta \bullet M \equiv 0$ as

$$\theta \bullet \langle M \rangle = (1_{\bar{N}^+} 1_{\bar{D}^+}) \bullet \langle M \rangle = 1_{\bar{D}^+} \bullet (1_{\bar{N}^+} \bullet \langle M \rangle) = 1_{\bar{D}^+} \bullet 0 \equiv 0. \tag{13}$$

Moreover,

$$\theta \bullet A = \theta \bullet A^{+} - \theta \bullet A^{-}$$

$$= (1_{\bar{N}^{+}} 1_{\bar{D}^{+}}) \bullet (1_{\bar{D}^{+}} \bullet \operatorname{Var}(A)) - (1_{\bar{N}^{+}} 1_{\bar{D}^{+}}) \bullet (1_{\bar{D}^{-}} \bullet \operatorname{Var}(A))$$

$$= 1_{\bar{N}^{+}} \bullet \left((1_{\bar{D}^{+}} 1_{\bar{D}^{+}}) \bullet \operatorname{Var}(A) \right) - 1_{\bar{N}^{+}} \bullet \left((1_{\bar{D}^{+}} 1_{\bar{D}^{-}}) \bullet \operatorname{Var}(A) \right)$$

$$= 1_{\bar{N}^{+}} \bullet (1_{\bar{D}^{+}} \bullet \operatorname{Var}(A)) - 1_{\bar{N}^{+}} \bullet (0 \bullet \operatorname{Var}(A))$$

$$= 1_{\bar{N}^{+}} \bullet A^{+} - 1_{\bar{N}^{+}} \bullet 0 = 1_{\bar{N}^{+}} \bullet A^{+}. \tag{14}$$

Thus,

$$\theta \bullet S = 1_{\bar{N}^+} \bullet A^+ \ge 0 \text{ and } P[\theta \bullet S_T > 0] = P\left[\int_0^T 1_{\bar{N}^+} dA_s^+ > 0\right] > 0.$$
 (15)

Thus θ is 0-admissible and S fails NA for 0-admissible strategies, in contradiction to the hypothesis.