1、设
$$y = \sqrt{x} \sin^2(2x+1)$$
,则 $y' =$ _____.

2.
$$\exists \lim_{x\to 0} \frac{\sin 2x + xf(x)}{x^3} = 0$$
, $\lim_{x\to 0} \frac{2 + f(x)}{x^2} = \underline{\qquad}$.

3、设
$$f(x)$$
在[1,3]上具有连续导数,则 $\int_1^3 \frac{f'(x)dx}{1+[f(x)]^2} =$ _____.

4、 直线
$$\begin{cases} x + y + 3z = 0 \\ x - y - z = 0 \end{cases}$$
 与平面 $x - y - z = 1$ 的夹角为 ______.

5、当
$$x \to 1$$
时,已知 $x^x - 1$ 和 $a(x-1)^k$ 是等价无穷小,则 $a =$ _____, $k =$ _____.

6、
$$(1,3)$$
为曲线 $y = ax^3 + bx^2$ 的拐点,则 $a = _____$, $b = _____$.

7、
$$x = 0$$
 是函数 $y = \frac{1}{1 + e^{\frac{1}{x}}} + \frac{x}{\sin x}$ 的 ____ 间断点.

(请填;跳跃,可去,无穷,振荡之一)

8、已知
$$f(x) = \frac{1}{x^2 - x - 6}$$
,则 $f^{(100)}(0) =$ _____.

9、设 y = y(x) 是由放程 $\int_0^{xy} e^{t^2} dt + y e^x = 2$ 所确定的隐函数,

则
$$\frac{dy}{dx}\Big|_{x=0} = \underline{\qquad}$$
.

10、若已知向量 $a = \{1,2,-1\}$, $b = \{2,-1,3\}$,则由a,b构成的平行四边形的面积为_____.

11、曲线
$$\begin{cases} x^2 + y^2 + z = 8 \\ x + 2y + 2z = 1 \end{cases}$$
 在 $x \cdot 0y$ 坐标面上的投影曲线方程为 ______.

12、曲线 $y = \ln x$ 上曲率最大的点为 _____.

13、极限
$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}$$
 的结果为_____.

二、计算题(4×6)

$$1, \ \ \vec{x} \lim_{x \to 0} \frac{x - \sin x}{\int_0^{\sin x} \frac{\ln(1 + t^2)}{t} dt}$$

$$2, \ \ \, \mathop{\sharp \lim}_{x\to 0} \left(\frac{3-e^x}{x+2}\right)^{\frac{1}{\sin x}}$$

$$3, \int x^2 \cos 2x dx$$

$$4, \int \frac{dx}{1 + 2\cos x}$$

$$5, \int_{-\infty}^{+\infty} e^{-|x|} dx$$

$$6, \int_{1}^{\sqrt{3}} \frac{dx}{x^2 \sqrt{1+x^2}}$$

三、 (6) 求
$$y = e^{x^2 - x}$$
在[0,2]上的最大,小值,并证明: $2e^{-\frac{1}{4}} \le \int_0^2 e^{x^2 - x} dx \le 2e^2$.

四、
$$(6)$$
 求过点 $(2,0,-3)$ 且与直线 $l:$ $\begin{cases} x-2y+4z-7=0\\ x+y-z+1=0 \end{cases}$ 垂直的平面方程,并求点 $(1,2,2)$ 到该平面的距离.

五、(6)已知曲线
$$y = y(x)$$
的参数方程
$$\begin{cases} x = \arctan 2t \\ y = t + \ln(1 + 4t^2) \end{cases}$$
,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

六、(6 分) 求由曲线 $y^2 = 2x 与 y^2 = 1 - x$ 所围图形的面积.

七、 (6分) 设
$$x \ge 0$$
, 证明: $\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$, 其中 $\frac{1}{4} \le \theta(x) \le \frac{1}{2}$.

解:
$$\theta(x) = \frac{1}{4} + \frac{1}{2} \left[\sqrt{x^2 + x} - x \right], \theta'(x) > 0, \lim_{x \to +\infty} \theta(x) = \frac{1}{2}, \lim_{x \to 0^+} \theta(x) = \frac{1}{4}$$