中国科学技术大学数学科学学院

2016 ~ 2017学年 第 1 学期期末考试试卷

■A卷 □B卷

紅

课程名称	课程名称 计算方法(B) 考试时间 2017年1月12日 生名 学号		课程:			1511		
考试时间			考试			闭卷		
姓名				学 院				
题号 —	二	三	四	五.	六	七	总计	
得分								
评卷人								
注意事项:								
	生务必将所在	系、姓名、	学号等填写》	青楚。				
2. 本试卷共 7	道试题, 满	分 100 分	,考试时间	120 分钟	1 0			
3. 计算结果保	留4位小数。							
(00 (1) 1+ +								
(30分)填空								
(1) (9分) 用	规范的幂法求统	矩阵A的特征	正值。若A的	按模最大	、特征值只有	一个,则	亨列表现为	
若 <i>A</i> 的按	模最大特征值是	是互为反号的	的两个实数,	则序列表	 			
(2) (6分) 解	非线性方程ƒ(a	x) = 0的Nev	vton迭代格式	弋为				
若已知方	若已知方程的根是3重根,则格式应该改为							
才能保证	格式具有2阶收	(敛速度。						
(3) (3分) 6~	个点的数值积分	·公式至多豆	丁以到	阶代数	〔精度。			
(4) (6分) 類	阵 $A = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$	3 9	$\ \cdot\ $	=	$\ A\ _{\infty}$	=		
(-) (-) (-)		0 0)				_	
	\ 1	8 -7	1					
(5) (6分) 〒	$\int 4$ 知 $f(1) = 0.12$.	6 - 2 $f(2) = 0.25$	\int $5, f(3) = 0.2$	0,则用S	impson公式	得到的承罗	女 f(x) 存[1]	
(5) (6分) 巨	4知 $f(1) = 0.12$,分为	f(2) = 0.25	5, f(3) = 0.2	0,则用S	impson公式	得到的函数	abla f(x)在 $[1,$	

二、(10分)用Courant分解求解线性方程组

$$\begin{cases} x_1 + 5x_2 - 2x_3 = 13 \\ 3x_1 + 2x_2 - x_3 = -12 \\ 3x_1 - 4x_2 + 5x_3 = -54 \end{cases}$$

提示: A = LU, 其中U为单位上三角阵,L为下三角阵,称为A的Courant分解。

三、(12分)按下列数据,用最小二乘法做出 $f(x) = a + bx^2$ 形式的拟合函数。

x_i	-1	0	0.5	2	2.5
y_i	0.60	0.71	0. 75	0.8	1.0

四、(12分)确定下面求积分公式中的待定参数*A*,使其代数精度尽可能高,写出公式并指出该求积公式所具有的代数精度:

$$\int_0^h f(x)dx \approx \frac{h}{2}(f(0) + f(h)) + Ah^2(f'(0) - f'(h))$$

五、(12分)给定线性方程组
$$Ax=b$$
,其中 $A=\left(egin{array}{cc} 3 & 2 \\ 1 & 2 \end{array}\right)$, $b=\left(egin{array}{cc} 3 \\ -1 \end{array}\right)$ 。若使用迭代公式

$$x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)}), \alpha \in \mathbb{R}$$

求解方程。

- 1. 写出迭代公式的迭代矩阵;
- 2. 求出 α 的取值范围,使得迭代收敛,并指出 α 取何值时迭代收敛速度最快。

- 六、(12分)函数f(x)足够光滑,以点2.0,4.0,6.0,8.0为节点构造的Lagrange插值多项式为 $l_1(x)$;以4.0,6.0,8.0,10.0为插值节点的插值多项式为 $l_2(x)$,若 $l_1(7.0)=0.325$, $l_2(7.0)=0.315$,
 - 1. 用事后估计方法,估计 $l_1(7.0)$ 处的误差;
 - 2. l(x)是以2.0,4.0,6.0,8.0,10.0为节点的插值多项式,试计算l(7.0)的值。给出计算公式,并证明。

七、(12分)对常微分方程 $\left\{ \begin{array}{ll} y'=f(x,y) \\ \\ y(a)=b \end{array} \right. , \quad \text{在等距节点下构造如下的线性多步格式}$

$$y_{n+1} + (\alpha - 1)y_n - \alpha y_{n-1} = \frac{h}{4}[(\alpha + 3)f_{n+1} + (3\alpha + 1)f_{n-1}]$$

假定节点间距为h

- 1. 证明 $\alpha \neq -1$ 时格式是二阶精度的(即格式的局部截断误差为 $O(h^3)$),当 $\alpha = -1$ 时格式是三阶精度的。
- 2. 当 $\alpha = -1$ 时,说明格式是几步几阶显式还是隐式格式。

答案

1. 序列会收敛到一个向量(当特征值>0),或奇、偶序列收敛到互为反号的两个向量(特征值 <0)(6分)

奇、偶序列会收敛到两个向量,这两个向量不是互为反号的(3分)

2.
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 (3分)
$$x_{k+1} = x_k - 3\frac{f(x_k)}{f'(x_k)}$$
 (3分)

- 3. 11(3分)
- 4. 16 (3分), 14 (3分)
- 5. 0.22 (3分) , -0.09 (3分)

2.

$$\begin{pmatrix} 1 & 5 & -2 \\ 3 & 2 & -1 \\ 3 & -4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & -13 & 0 \\ 3 & -19 & \frac{48}{13} \end{pmatrix} \begin{pmatrix} 1 & 5 & -2 \\ 0 & 1 & \frac{-5}{13} \\ 0 & 0 & 1 \end{pmatrix}$$

Ly = b,

$$y = \begin{pmatrix} 13 \\ \frac{51}{13} \\ \frac{97}{4} \end{pmatrix}$$

Ux = y

$$x = \begin{pmatrix} -7\\2\\-5 \end{pmatrix}$$

3.

$$\begin{pmatrix} 5.0 & 11.5 \\ 11.5 & 56.125 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3.86 \\ 10.2375 \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0.6666 \\ 0.045813 \end{pmatrix}$$

4.

$$\int_0^h 1 dx = h = \frac{h}{2} (1+1) + Ah^2 (0-0)$$

$$\int_0^h x dx = \frac{h^2}{2} = \frac{h}{2} (0+h) + Ah^2 (1-1)$$

$$\int_0^h x^2 dx = \frac{h^3}{3} = \frac{h}{2} (0+h^2) + Ah^2 (0-2h)$$

则
$$A = \frac{h}{12}$$
 (8分)

 ∇

$$\int_0^h x^3 dx = \frac{h^4}{4} = \frac{h}{2}(0+h^3) + \frac{h}{12}h^2(0-3h^2)$$

$$\int_0^h x^4 dx = \frac{h^5}{5} \neq \frac{h}{2}(0+h^4) + \frac{h}{12}h^2(0-4h^3) = \frac{h^5}{6}$$

5. 1). 迭代矩阵

$$I - \alpha A = \begin{pmatrix} 1 - 3\alpha & -2\alpha \\ -\alpha & 1 - 2\alpha \end{pmatrix}$$

(6分)

2). 谱半径

$$\det \begin{pmatrix} \lambda - 1 + 3\alpha & 2\alpha \\ \alpha & \lambda - 1 + 2\alpha \end{pmatrix} = (\lambda - 1 + 4\alpha)(\lambda - 1 + \alpha)$$

谱半径为 $\min(|4\alpha-1|,|\alpha-1|)$ (2分)

分析可得 $0 < \alpha < \frac{1}{2}$ (2分)

$$\alpha = \frac{2}{5}$$
收敛最快(2分)

6. 1).

$$\frac{f(7.0) - l_1(7.0)}{f(7.0) - l_2(7.0)} \approx \frac{7.0 - 2.0}{7.0 - 10.0}$$
$$f(7.0) \approx \frac{5l_2(7.0) + 3.0l_1(7.0)}{8.0} = 0.31875$$
$$f(7.0) - l_1(7.0) \approx 0.31875 - 0.325 = -0.00625$$

2).

=

- 7. 1).
 - 2). 2阶Runge-Kutta格式 (2分)