Vote Net architecture

- 1. The entire network can be splitted into 2 parts:
 - . process existing points to generate votes
 - . use the votes to propose & clossify objects

Vote generation

- 1. Given N point clouds, they generate M votes.
- 2. Each vote has a 3D coordinate and a high dimensional vector.
- 3. There are 2 major steps:
 - . point cloud feature learning through a bockbone network.
 - . learned Hough voling from seed points.

Point Cloud Feature Loorning

- 1. PointNet++ is used as the backbone
- 2. The backbone network outputs a subset of the input points with XYZ and a C-dimensional feature vector.
- 3. The results are M seed points of dimension (3+C).
- 4. Each seed corresponds to one vote.

Hough voling

1. Given a set of seed point $\{S_i\}_{i=1}^M$ where $S_i = [x_i; f_i]$ $f_i \in \mathbb{R}^C$ a voting module generator. a voting module generates votes from each seed independently.

- 2. The voting module is a MLP, Relu w BN.
- 3. The MLP takes seed feature f_i outputs. Enclide an space offset $\Delta x_i \in \mathbb{R}^3$. feature off-set $\Delta f_i \in \mathbb{R}^C$.
- 4. The vote $v_i = [y_i; g_i]$ generated from the seed g_i . $y_i = x_i + \Delta x_i$, $g_i = f_i + \Delta f_i$.
- 5. The predicted effect Δα; is explicitly supervised by a regression lose:

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}^{*}\| \Delta s_{i}$ on obj.

Lyste-reg = $\frac{1}{N_{pos}} \sum_{i} \|\Delta x_{i} - \Delta x_{i}^{*}\| \Delta s_{i}^{*}\| \Delta s_{i}^{*}\|$

- 6. An essential afference b/t votes & seeds: votes generated from seeds on the same obj are now closer to each other than the seeds are.
- 7. This is referred to as semantic aware locality.

. 1. Given the votes, they:

. cluster them

. use the clusters to generate obj. proposal & classify them.

1. is done through uniform sampling & spatial proximity.

2. From a set of votes $\{v_i = [y_i; g_i] \in \mathbb{R}^{3+C}\}_{i=1}^M$:

, sample a subset of K points with farthest point sampling.

. get frik }

3. Form K clusters by finding neighboring votes to each of the Vik's 30 location:

4 k=1, ..., K. $C_{k} = \begin{cases} v_{i}^{(k)} \mid \|v_{i} - v_{i_{k}}\| \leq r \end{cases}$

Obj. proposal and elassification

1. Given a vote cluster C= \(\varphi_i \) \(\frac{1}{3} \) i=1 where \(\varphi_i \) \(\int \) [\(\partial i \) i \)

, Zi E R3; vote location

. hi ERC: vote feature

2. Locally normalized the vote location: $z_i' = (z_i - z_j)/v$.

3. Obj proposal is generated by passing C through a Point Net-like $\rho(C) = MLP_2 \left\{ \max_{i=1,\dots,n} \left\{ MLP_i \left(\left[z_i'; h_i \right] \right) \right\} \right\}$

max-pooled channel wise

4. The proposal p is a vector with an objness score, bounding box parameters (cuter, heading, scale) and semantic classification scores.

loss function

1. The loss fun in the proposal & clossification stage consists g: objectness. bounding box regression semantic classification