Algebraic Geometry

Erzhuo Wang

December 11, 2024

Contents

1	The	eory of Scheme	5
	1.1	Sheaf Theory	5
	1.2	Ringed Space	12
	1.3	Basic Propositions	15
	1.4	Immersions	30
	1.5	Fibered Products	33
	1.6	Dimension of Scheme over k	38
	1.7	Separated Morphisms	39
	1.8	Quasi-coherent modules	41

4 CONTENTS

Chapter 1

Theory of Scheme

1.1 Sheaf Theory

Definition 1.1.1 (presheaf). Let (Ouv_X) be the category whose objects are the open sets of X and, for two open sets $U, V \subseteq X$, Hom(U, V) is empty if $U \not\subseteq V$, and consists of the inclusion map $U \to V$ if $U \subseteq V$ (composition of morphisms being the composition of the inclusion maps). A presheaf is a contravariant functor \mathscr{F} from the category (Ouv_X) to the category of category \mathscr{C} (such as the category of abelian groups, the category of rings, the category of R-modules, or the category of R-algebras)

Definition 1.1.2. Let \mathscr{F} be a presheaf on a topological space X, let U be an open set in X and let $\mathscr{U} = (U_i)_{i \in I}$ be an open covering of U. We define maps (depending on \mathscr{U})

$$\rho: \mathscr{F}(U) \to \prod_{i \in I} \mathscr{F}(U_i) , \quad s \mapsto \left(s_{|U_i}\right)_i$$

$$\sigma: \prod_{i \in I} \mathscr{F}(U_i) \to \prod_{(i,j) \in I \times I} \mathscr{F}(U_i \cap U_j) , \quad (s_i)_i \mapsto \left(s_{i|U_i \cap U_j}\right)_{(i,j)},$$

$$\sigma': \prod_{i \in I} \mathscr{F}(U_i) \to \prod_{(i,j) \in I \times I} \mathscr{F}(U_i \cap U_j) , \quad (s_i)_i \mapsto \left(s_{j|U_i \cap U_j}\right)_{(i,j)}.$$

The presheaf \mathscr{F} is called a sheaf, if it satisfies for all U and all coverings (U_i) as above the following condition:

$$\mathscr{F}(U) \xrightarrow{\rho} \prod_{i \in I} \mathscr{F}(U_i) \xrightarrow{\sigma} \prod_{(i,j) \in I \times I} \mathscr{F}(U_i \cap U_j)$$

is exact. This means that the map ρ is injective and that its image is the set of elements $(s_i)_{i\in I} \in \prod_{i\in I} \mathscr{F}(U_i)$ such that $\sigma((s_i)_i) = \sigma'((s_i)_i)$.

In other words, a presheaf \mathscr{F} is a sheaf if and only if for all open sets U in X and every open covering $U = \bigcup_i U_i$ the following two conditions hold:

- (1) (Sh1) Let $s, s' \in \mathcal{F}(U)$ with $s_{|U_i} = s'_{|U_i}$ for all i. Then s = s'.
- (2) (Sh2) Given $s_i \in \mathscr{F}(U_i)$ for all i such that $s_{i|U_i \cap U_j} = s_{j|U_i \cap U_j}$ for all i, j. Then there exists an $s \in \mathscr{F}(U)$ such that $s_{|U_i} = s_i$ (note that s is unique by (Sh1)).

Definition 1.1.3 (restriction of sheaf). If \mathscr{F} is a presheaf on a topological space X and U is an open subspace of X, we obtain a presheaf $\mathscr{F}|_{U}$ on U by setting $\mathscr{F}|_{U}(V) = \mathscr{F}(V)$ for every open subset V in U. If \mathscr{F} is a sheaf, $\mathscr{F}|_{U}$ is a sheaf on U. We call $\mathscr{F}|_{U}$ the restriction of \mathscr{F} to U.

Definition 1.1.4. The inductive limit

$$\mathscr{F}_x := \varinjlim_{U \ni x} \mathscr{F}(U)$$

is called the stalk of \mathscr{F} in x. In other words, \mathscr{F}_x is the set of equivalence classes of pairs (U, s), where U is an open neighborhood of x and $s \in \mathscr{F}(U)$. Here two such pairs (U_1, s_1) and (U_2, s_2) are equivalent, if there exists an open neighborhood V of x with $V \subseteq U_1 \cap U_2$ such that $s_{1|V} = s_{2|V}$. For each open neighborhood U of x we have a canonical map

$$\mathscr{F}(U) \to \mathscr{F}_x, \quad s \mapsto s_x$$

which sends $s \in \mathscr{F}(U)$ to the class of (U, s) in \mathscr{F}_x . We call s_x the germ of s in x. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of presheaves on X, we have an induced map

$$\mathscr{F}_x o \mathscr{G}_x$$

of the stalks in x by Proposition 3.1.30. We obtain a functor $\mathscr{F} \mapsto \mathscr{F}_x$ from the category of presheaves on X to the category of sets.

If \mathscr{F} is a presheaf with values in \mathscr{C} , where \mathscr{C} is the category of abelian groups, of rings, or any category in which filtered inductive limits exist, then the stalk \mathscr{F}_x is an object in \mathscr{C} and we obtain a functor $\mathscr{F} \mapsto \mathscr{F}_x$ from the category of presheaves on X with values in \mathscr{C} to the category \mathscr{C} .

Proposition 1.1.5. Let X be a topological space, \mathscr{F} and \mathscr{G} presheaves on X, and let φ, ψ : $\mathscr{F} \to \mathscr{G}$ be two morphisms of presheaves.

- (1) The induced maps on stalks $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ are injective for all $x \in X$ if $\varphi_U : \mathscr{F}(U) \to \mathscr{G}(U)$ is injective for all open subsets $U \subseteq X$.
- (2) Assume that \mathscr{F} is a sheaf. Then the induced maps on stalks $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ are injective for all $x \in X$ if and only if $\varphi_U : \mathscr{F}(U) \to \mathscr{G}(U)$ is injective for all open subsets $U \subseteq X$.
- (3) If \mathscr{F} and \mathscr{G} are both sheaves, the maps φ_x are bijective for all $x \in X$ if and only if φ_U is bijective for all open subsets $U \subseteq X$.
- (4) If \mathscr{F} and \mathscr{G} are both sheaves, the morphisms φ and ψ are equal if and only if $\varphi_x = \psi_x$ for all $x \in X$.

Proof: For $U \subseteq X$ open consider the map

$$\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x, \quad s \mapsto (s_x)_{x \in U}$$

1.1. SHEAF THEORY 7

We claim that this map is injective if \mathscr{F} is a sheaf. Indeed let $s,t\in\mathscr{F}(U)$ such that $s_x=t_x$ for all $x\in U$. Then for all $x\in U$ there exists an open neighborhood $V_x\subseteq U$ of x such that $s_{|V_x}=t_{|V_x}$. Clearly, $U=\bigcup_{x\in U}V_x$ and therefore s=t by sheaf condition (Sh1). Using the commutative diagram

$$\mathcal{F}(U) \longrightarrow \prod \mathcal{F}_x
\downarrow^{\varphi_U} \qquad \qquad \downarrow^{\prod \varphi_x}
\mathcal{G}(U) \longrightarrow \prod \mathcal{G}_x$$

and Proposition 3.1.31, (1) and (3) hold.

(2): By proposition 3.1.31, it suffice to show the bijectivity of φ_x for all $x \in U$ implies the surjectivity of φ_U . Let $t \in \mathscr{G}(U)$. For all $x \in U$ we choose an open neighborhood U^x of x in U and $s^x \in \mathscr{F}(U^x)$ such that $(\varphi_{U^x}(s^x))_x = t_x$. Then there exists an open neighborhood $V^x \subseteq U^x$ of x with $\varphi_{V^x}(s^x|_{V^x}) = t_{|V^x}$. Then $(V^x)_{x \in U}$ is an open covering of U and for $x, y \in U$

$$\varphi_{V^x \cap V^y}\left(s^x_{\mid V^x \cap V^y}\right) = t_{\mid V^x \cap V^y} = \varphi_{V^x \cap V^y}\left(s^y \mid V^x \cap V^y\right).$$

As we already know that $\varphi_{V^x \cap V^y}$ is injective, this shows $s^x | V^x \cap V^y = s^y | V^x \cap V^y$ and the sheaf condition (Sh2) ensures that we find $s \in \mathscr{F}(U)$ such that $s_{|V^x} = s^x_{|V^x}$ for all $x \in U$. Clearly, we have $\varphi_U(s)_x = t_x$ for all $x \in U$ and hence $\varphi_U(s) = t$.

Definition 1.1.6. A morphism $\varphi : \mathscr{F} \to \mathscr{G}$ of sheaves injective (resp. surjective, resp. bijective) if $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ is injective (resp. surjective, resp. bijective) for all $x \in X$.

Remark 1.1.7. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves, φ is surjective if and only if for all open subsets $U \subseteq X$ and every $t \in \mathscr{G}(U)$ there exist an open covering $U = \bigcup_i U_i$ (depending on t) and sections $s_i \in \mathscr{F}(U_i)$ such that $\varphi_{U_i}(s_i) = t_{|U_i}$, i.e., locally we can find a preimage of t. But the surjectivity of φ does not imply that $\varphi_U : \mathscr{F}(U) \to \mathscr{G}(U)$ is surjective for all open sets U of X

Definition 1.1.8. If \mathscr{F},\mathscr{G} are (pre-)sheaves on X such that $\mathscr{F}(U) \subseteq \mathscr{G}(U)$ for all $U \subseteq X$ open, and such that the following diagram commute

$$\begin{array}{ccc} \mathscr{F}(U) & \stackrel{\subset}{\longrightarrow} \mathscr{G}(U) \\ \operatorname{res}_U^V & & & \uparrow \operatorname{res}_U^V \\ \mathscr{F}(V) & \stackrel{\subset}{\longrightarrow} \mathscr{G}(V) \end{array}$$

we call \mathscr{F} sub(pre-)sheaf of \mathscr{G} .

Definition 1.1.9 (sheafification). Let \mathscr{F} be a presheaf on a topological space X. Then there exists a pair $(\tilde{\mathscr{F}}, \iota_{\mathscr{F}})$, where $\tilde{\mathscr{F}}$ is a sheaf on X and $\iota_{\mathscr{F}} : \mathscr{F} \to \tilde{\mathscr{F}}$ is a morphism of presheaves, such that the following holds: If \mathscr{G} is a sheaf on X and $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of presheaves, then there exists a unique morphism of sheaves $\tilde{\varphi} : \tilde{\mathscr{F}} \to \mathscr{G}$ with $\tilde{\varphi} \circ \iota_{\mathscr{F}} = \varphi$. And the following properties hold:

(1) For all $x \in X$ the map on stalks $\iota_{\mathscr{F},x} : \mathscr{F}_x \to \tilde{\mathscr{F}}_x$ is bijective.

(2) For every presheaf \mathscr{G} on X and every morphism of presheaves $\varphi: \mathscr{F} \to \mathscr{G}$ there exists a unique morphism $\tilde{\varphi}: \tilde{\mathscr{F}} \to \tilde{\mathscr{G}}$ making the diagram

$$\begin{array}{ccc} \mathscr{F} & \stackrel{\iota_{\mathscr{F}}}{\longrightarrow} & \tilde{\mathscr{F}} \\ \varphi \Big| & & \downarrow_{\tilde{\varphi}} \\ \mathscr{G} & \xrightarrow{\iota_{\mathscr{G}}} & \tilde{\mathscr{G}} \end{array}$$

commutative.

In particular, $\mathscr{F} \mapsto \tilde{\mathscr{F}}$ is a functor from the category of presheaves on X to the category of sheaves on X.

Proof: For $U \subseteq X$ open, elements of $\tilde{\mathscr{F}}(U)$ are by definition families of elements in the stalks of \mathscr{F} which locally give rise to sections of \mathscr{F} . More precisely, we define

$$\tilde{\mathscr{F}}(U) := \left\{ (s_x) \in \prod_{x \in U} \mathscr{F}_x : \forall x \in U, \exists \text{ an open neighborhood } W \subseteq U \text{ of } x, \right.$$

and
$$t \in \mathcal{F}(W)$$
 s.t. $\forall w \in W : s_w = t_w$ }.

For $U \subseteq V$ the restriction map $\tilde{\mathscr{F}}(V) \to \tilde{\mathscr{F}}(U)$ is induced by the natural projection $\prod_{x \in V} \mathscr{F}_x \to \prod_{x \in U} \mathscr{F}_x$. Then it is easy to check that $\tilde{\mathscr{F}}$ is a sheaf.

For $U \subseteq X$ open, we define $\iota_{\mathscr{F},U} : \mathscr{F}(U) \to \tilde{\mathscr{F}}(U)$ by $s \mapsto (s_x)_{x \in U}$. The definition of $\tilde{\mathscr{F}}$ shows that $\iota_{\mathscr{F},x} : \mathscr{F}_x \to \tilde{\mathscr{F}}_x$ is bijective.

Now let \mathscr{G} be a presheaf on X and let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism. Sending $(s_x)_x \in \tilde{\mathscr{F}}(U)$ to $(\varphi_x(s_x))_x \in \tilde{\mathscr{G}}(U)$ defines a morphism $\tilde{\mathscr{F}} \to \tilde{\mathscr{G}}$. By Proposition 1.1.5, this is the unique morphism making the diagram commutative.

If we assume in addition that \mathscr{G} is a sheaf, then the morphism of sheaves $\iota_{\mathscr{G}}:\mathscr{G}\to\tilde{\mathscr{G}}$, which is bijective on stalks, is an isomorphism by Proposition 1.1.5(3). Composing the morphism $\tilde{\mathscr{F}}\to\tilde{\mathscr{G}}$ with $\iota_{\mathscr{G}}^{-1}$, we obtain the morphism $\tilde{\varphi}:\tilde{\mathscr{F}}\to\mathscr{G}$. Finally, the uniqueness of $(\tilde{\mathscr{F}},\iota_{\mathscr{F}})$ is a formal consequence.

Remark 1.1.10.

Definition 1.1.11 (direct image). Let $f: X \to Y$ be a continuous map of topological spaces. Let \mathscr{F} be a presheaf on X. We define a presheaf $f_*\mathscr{F}$ on Y by

$$\left(f_{*}\mathscr{F}\right)\left(V\right)=\mathscr{F}\left(f^{-1}(V)\right)$$

the restriction maps given by the restriction maps for \mathscr{F} . We call $f_*\mathscr{F}$ the direct image of \mathscr{F} under f.

Whenever $\varphi : \mathscr{F}_1 \to \mathscr{F}_2$ is a morphism of presheaves, the family of maps $f_*(\varphi)_V := \varphi_{f^{-1}(V)}$ for $V \subseteq Y$ open is a morphism $f_*(\varphi) : f_*\mathscr{F}_1 \to f_*\mathscr{F}_2$. Therefore f_* is a functor from the category of presheaves on X to the category of presheaves on Y.

Proposition 1.1.12. (1) If \mathscr{F} is a sheaf on X, $f_*\mathscr{F}$ is a sheaf on Y. Therefore f_* also defines a functor $f_*: (\operatorname{Sh}(X)) \to (\operatorname{Sh}(Y))$.

1.1. SHEAF THEORY 9

(2) If $g: Y \to Z$ is a second continuous map, there exists an identity $g_*(f_*\mathscr{F}) = (g \circ f)_*\mathscr{F}$ which is functorial in \mathscr{F} .

Definition 1.1.13 (inverse image). Let $f: X \to Y$ be a continuous map and let \mathscr{G} be a presheaf on Y. Define a presheaf on X by

$$U \mapsto \varinjlim_{V \supseteq f(U)} \mathscr{G}(V),$$

the restriction maps being induced by the restriction maps of $\mathcal G$ and the universal property of direct limit:

We denote this presheaf by $f^+\mathscr{G}$. Let $f^{-1}\mathscr{G}$ be the sheafification of $f^+\mathscr{G}$. We call $f^{-1}\mathscr{G}$ the inverse image of \mathscr{G} under f.

Proposition 1.1.14. f^{-1} is a functor from category of presheaf on Y to category of sheaf on X.

Proof: If $\varphi : \mathscr{G}_1 \to \mathscr{G}_2$ is a morphism of presheaf on Y, then $f^{-1}\varphi : f^{-1}\mathscr{G}_1 \to f^{-1}\mathscr{G}_1$ is induced by universal property of direct limit and Proposition 1.1.9.

Proposition 1.1.15 (stalks of inverse image). Notice that

$$\left(f^{-1}\mathscr{G}\right)_x\cong\left(f^{+}\mathscr{G}\right)_x=\varinjlim_{x\in U}\left(f^{+}\mathscr{G}\right)(U)$$

Since f is continous, by uniqueness of direct limit,

$$\varinjlim_{x \in U} \varinjlim_{f(U) \subset V} \mathscr{G}(V) \cong \varinjlim_{f(x) \in V} \mathscr{G}(V)$$

Proof:

$$\varinjlim_{x \in U} \varinjlim_{f(U) \subset V} \mathscr{G}(V) \cong \varinjlim_{f(x) \in V} \mathscr{G}(V)$$

is given by $[[s]], s \in \mathscr{G}(V) \to [s], s \in \mathscr{G}(V)$ since f is continous.

Proposition 1.1.16. Now let $g: Y \to Z$ be a second continuous map and let \mathscr{H} be a presheaf on Z. By the definition of f^+ and g^+ , $f^+(g^+\mathscr{H}) \cong (g \circ f)^+\mathscr{H}$. By taking sheafification,

$$f^{-1}\left(g^{+}\mathcal{H}\right) \cong (g \circ f)^{-1}\mathcal{H}$$

Since there's natural morphism of sheaves $f^{-1}g^+\mathcal{H} \to f^{-1}(g^{-1})\mathcal{H}$ and the morphism at stalks are isomorphism, we have

$$f^{-1}\left(g^{-1}\mathscr{H}\right)\cong f^{-1}\left(g^{+}\mathscr{H}\right)\cong (g\circ f)^{-1}\mathscr{H},$$

Theorem 1.1.17 (adjoint pair (f^{-1}, f_*)). Let $f: X \to Y$ be a continuous map, let \mathscr{F} be a sheaf on X and let \mathscr{G} be a presheaf on Y. Then there is a bijection

$$\operatorname{Hom}_{(\operatorname{Sh}(X))}\left(f^{-1}\mathscr{G},\mathscr{F}\right) \leftrightarrow \operatorname{Hom}_{(\operatorname{PreSh}(Y))}\left(\mathscr{G},f_{*}\mathscr{F}\right),$$
$$\varphi \to \varphi^{b},$$
$$\psi^{\sharp} \leftarrow \psi$$

and (f^{-1}, f_*) is an adjoint pair between PreSh(Y) and Sh(X).

Proof: Let $\varphi: f^{-1}\mathscr{G} \to \mathscr{F}$ be a morphism of sheaves on X, and let $V \subseteq Y$ be open. Since $f(f^{-1}(V)) \subseteq V$, we have a map $\mathscr{G}(V) \to f^+\mathscr{G}(f^{-1}(V))$, and we define φ_V^b as the composition

$$\mathscr{G}(V) \to f^+\mathscr{G}\left(f^{-1}(V)\right) \longrightarrow f^{-1}\mathscr{G}\left(f^{-1}(V)\right) \xrightarrow{\varphi_{f^{-1}(V)}} \mathscr{F}\left(f^{-1}(V)\right) = f_*\mathscr{F}(V).$$

Conversely, let $\psi: \mathscr{G} \to f_*\mathscr{F}$ be a morphism of presheaves on Y. To define the morphism ψ^{\sharp} it suffices to define a morphism of presheaves $f^+\mathscr{G} \to \mathscr{F}$, which we call again ψ^{\sharp} . Let U be open in X, and $s \in f^+\mathscr{G}(U)$. If V is some open neighborhood of f(U), U is contained in $f^{-1}(V)$. Let V be such a neighborhood such that there exists $s_V \in \mathscr{G}(V)$ representing s. Then $\psi_V(s_V) \in f_*\mathscr{F}(V) = \mathscr{F}(f^{-1}(V))$. Let $\psi_U^{\sharp}(s) \in \mathscr{F}(U)$ be the restriction of the section $\psi_V(s_V)$ to U.

Proposition 1.1.18. Let $f: X \to Y$ be a continuous map, let \mathscr{F} be a sheaf on X and let \mathscr{G} be a presheaf on Y, and a morphism of presheaves $\psi: \mathscr{G} \to f_*\mathscr{F}$. Then for each $x \in X$, the map

$$\psi_x^{\sharp}: \mathscr{G}_{f(x)} \cong (f^{-1}\mathscr{G})_x \longrightarrow \mathscr{F}_x$$

induced by $\psi^{\sharp}: f^{-1}\mathscr{G} \to \mathscr{F}$ on stalks can be described in terms of ψ as follows: For every open neighborhood $V \subseteq Y$ of f(x), we have maps

$$\mathscr{G}(V) \xrightarrow{\psi_V} \mathscr{F}\left(f^{-1}(V)\right) \longrightarrow \mathscr{F}_x,$$

and taking the inductive limit over all V we obtain the map $\psi_x^{\sharp}:\mathscr{G}_{f(x)}\to\mathscr{F}_x$.

Proposition 1.1.19. X be a topological space, then category of sheaves on X is an abelian category.

Proof: Cokernel exists: If \mathcal{F}, \mathcal{G} are sheaves and $\varphi : \mathcal{F} \to \mathcal{G}$ is a sheaf map, then coker φ exists.

Here + denotes the sheafification and θ is induced by universal property of sheafification.

Ab2:

By the construction of cokernel, $(\mathcal{F}/\text{Ker}\varphi)^+$ is the cokernel of u. Since kernel of v contains $\text{im}\mathcal{F}$, by universal property of sheafification, l_U is injective for all U open in X and the image of l lie in the kernel of v. Now it suffice to show $l:(\text{im}\mathcal{F})^+ \to \text{ker}(v)$ is isomorphism on stalk. Notice that morphisms on stalk is clearly injective and for some $[g] \in \text{ker}(v)_x$, where $g \in \mathscr{G}(U)$, since $\pi_x([g]) = 0$ (By Proposition 1.1.9), there's $V \subset U$ such that $\pi_V(g|_V) = 0$. Hence, $g|_V \in \text{im}(\mathscr{F})(V)$ which implies l_x is surjective. Hence, $(\text{im}\mathcal{F})^+$ is the kernel of v.

Proposition 1.1.20. $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves, then coker $\varphi = 0$ if and only if φ_x be surjective for all $x \in X$.

Proof: coker= 0 implies φ_x is surjective for all x: By above diagram, if coker $\varphi = 0$, we have $l: (\text{im}\mathcal{F})^+ \to \mathcal{G}$ is an isomorphism of sheaves. Hence, the map $\text{im}\mathcal{F} \to \mathcal{G}$ is surjective on stalks. Hence, it suffice to check $\mathcal{F} \to \mathcal{F}/\text{Ker}\varphi$ is surjective on stalk, which is obvious.

 φ_x is surjective for all ximplies coker= 0: it suffice to show $(\operatorname{coker}\varphi)_x$ for all $x \in X$. Since φ_x is surjective, $l: (\operatorname{im}\mathcal{F})^+ \to \mathcal{G}$ is an isomorphism of sheaves. Hence, the kernel of v is \mathcal{G} . Then v_x is surjective and = 0 for all $x \in X$.

Proposition 1.1.21. Let X be a topological space and $i: Z \to X$ the inclusion of a subspace Z. Let \mathscr{F} be a sheaf on Z. Show the following properties for the stalks $i_*(\mathscr{F})_x$.

- (1) For all $x \notin \bar{Z}$, $i_*(\mathscr{F})_x$ is a singleton (i.e., a set consisting of one element).
- (2) For all $x \in Z$, $i_*(\mathscr{F})_x = \mathscr{F}_x$.
- (3) If $Z = \{x\}$ and \mathscr{F} is a constant sheaf on Z with value E, then $i_*(\mathscr{F})$ is called skyscraper sheaf in x with value E.

Theorem 1.1.22. X be a topological space and Z be a closed subset of X with $i: Z \to X$ be the embedding, \mathscr{G} is a sheaf on X supported on Z(That is, $\operatorname{Supp}\mathscr{G} \subset Z)$, then $i^{-1}\mathscr{G}$ is a sheaf on Z. On the other hand, if \mathscr{F} is a sheaf on Z, by Proposition 1.1.15, $i_*\mathscr{F}$ is a sheaf supported

on Z.

$$\{\text{sheaf on }X \text{ suppoted on } \overline{Z}\} \xrightarrow{i^{-1}} \{\text{sheaf on }Z\}$$

$$\mathscr{F} \longrightarrow i^{-1}\mathscr{F}$$

$$i_*\mathscr{G} \longleftarrow \mathscr{G}$$

Moreover, for a sheaf $\mathscr F$ supported on Z, the identify map $i^{-1}\mathscr F\to i^{-1}\mathscr F$ induces φ a natural isomorphism of sheaves

$$\mathscr{F} \to i_* i^{-1} \mathscr{F}$$

And, for a sheaf \mathscr{G} on Z, the identify map $i_*\mathscr{G} \to i_*\mathscr{G}$ induces φ a natural isomorphism of sheaves

$$i^{-1}i_*\mathscr{G} \to \mathscr{G}$$

Proof: Since for all $x \in Z$

$$\varphi_x:\mathscr{F}_x\to (i_*i^{-1}\mathscr{F})_x\simeq (i^{-1}\mathscr{F})_x\simeq \mathscr{F}_x$$

is an identity map and for all $x \notin Z$, $\mathscr{F}_x = 0 = (i_*i^{-1}\mathscr{F})_x = 0$ by Proposition 1.1.15, we have $\mathscr{F} \simeq i_*i^{-1}\mathscr{F}$

1.2 Ringed Space

Definition 1.2.1. A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space and where \mathcal{O}_X is a sheaf of (commutative) rings on X.

If (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are ringed spaces, we define a morphism of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ as a pair (f, f^b) , where $f: X \to Y$ is a continuous map and where $f^b: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a homomorphism of sheaves of rings on Y.

Definition 1.2.2. If A is a local ring, we denote by \mathfrak{m}_A its maximal ideal and by $\kappa(A) = A/\mathfrak{m}_A$ its residue field. A homomorphism of local rings $\varphi: A \to B$ is called local, if $\varphi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$.

A morphism $(f, f^b): X \to Y$ of ringed spaces induces morphisms on the stalks as follows. Let $x \in X$. Let $f^{\sharp}: f^{-1}\mathscr{O}_Y \to \mathscr{O}_X$ be the morphism corresponding to f^b by adjointness. Using the identification $(f^{-1}\mathscr{O}_Y)_x = \mathscr{O}_{Y,f(x)}$, we get

$$f_x^{\sharp}: \mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$$

Definition 1.2.3. A locally ringed space is a ringed space (X, \mathcal{O}_X) such that for all $x \in X$ the stalk $\mathcal{O}_{X,x}$ is a local ring.

A morphism of locally ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces (f, f^b) such that for all $x \in X$ the induced homomorphism on stalks

$$f_x^{\sharp}: \left(f^{-1}\mathscr{O}_Y\right)_x = \mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$$

1.2. RINGED SPACE

is a local ring homomorphism.

Definition 1.2.4. Let (X, \mathscr{O}_X) be a locally ringed space and $x \in X$. We call the stalk $\mathscr{O}_{X,x}$ the local ring of X in x, denote by \mathfrak{m}_x the maximal ideal of $\mathscr{O}_{X,x}$, and by $\kappa(x) = \mathscr{O}_{X,x}/\mathfrak{m}_x$ the residue field. If U is an open neighborhood of x and $f \in \mathscr{O}_X(U)$, we denote by $f(x) \in \kappa(x)$ the image of f under the canonical homomorphisms $\mathscr{O}_X(U) \to \mathscr{O}_{X,x} \to \kappa(x)$.

Definition 1.2.5 (sheaf of ring on $\operatorname{Spec}(A)$). For each prime ideal $\mathfrak{p} \subseteq A$, let $A_{\mathfrak{p}}$ be the localization of A at \mathfrak{p} . For an open set $U \subseteq \operatorname{Spec} A$, we define $\mathcal{O}(U)$ to be the set of functions

$$s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$$

, such that $s(\mathfrak{p}) \in A_p$ for each \mathfrak{p} , and such that s is locally a quotient of elements of A: to be precise, we require that for each $\mathfrak{p} \in U$, there is a neighborhood V of \mathfrak{p} , contained in U, and elements $a, f \in A$, such that for each $\mathfrak{q} \in V, f \notin \mathfrak{q}$, and $s(\mathfrak{q}) = a/f$ in $A_{\mathfrak{q}}$.

Proposition 1.2.6. Let A be a ring, and (Spec A, \mathcal{O}) its spectrum.

- (1) For any $\mathfrak{p} \in \operatorname{Spec} A$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of the sheaf \mathcal{O} is isomorphic to the local ring $A_{\mathfrak{p}}$.
- (2) For any element $f \in A$, the ring $\mathcal{O}(D(f))$ is isomorphic to the localized ring A_f .
- (3) In particular, $\Gamma(\operatorname{Spec} A, \mathcal{O}) \cong A$.

Proof: (1):First we define a homomorphism from $\mathcal{O}_{\mathfrak{p}}$ to $A_{\mathfrak{p}}$ by sending any local section s in a neighborhood of \mathfrak{p} to its value $s(\mathfrak{p}) \in A_{\mathfrak{p}}$. This gives a well-defined homomorphism φ from $\mathcal{O}_{\mathfrak{p}}$ to $A_{\mathfrak{p}}$. The map φ is surjective, because any element of $A_{\mathfrak{p}}$ can be represented as a quotient a/f, with $a, f \in A, f \notin \mathfrak{p}$. Then D(f) will be an open neighborhood of \mathfrak{p} , and a/f defines a section of \mathcal{O} over D(f) whose value at \mathfrak{p} is the given element. To show that φ is injective, let U be a neighborhood of \mathfrak{p} , and let $s, t \in \mathcal{O}(U)$ be elements having the same value $s(\mathfrak{p}) = t(\mathfrak{p})$ at \mathfrak{p} . By shrinking U if necessary, we may assume that s = a/f, and t = b/g on U, where $a, b, f, g \in A$, and $f, g \notin \mathfrak{p}$. Since a/f and b/g have the same image in $A_{\mathfrak{p}}$, it follows from the definition of localization that there is an $h \notin \mathfrak{p}$ such that h(ga - fb) = 0 in A. Therefore a/f = b/g in every local ring $A_{\mathfrak{q}}$ such that $f, g, h \notin \mathfrak{q}$. But the set of such \mathfrak{q} is the open set $D(f) \cap D(g) \cap D(h)$, which contains \mathfrak{p} .

(2): We define a homomorphism $\psi: A_f \to \mathcal{O}(D(f))$ by sending a/f^n to the section $s \in \mathcal{O}(D(f))$ which assigns to each \mathfrak{p} the image of a/f^n in $A_{\mathfrak{p}}$.

Corollary 1.2.7. (Spec A, $\mathcal{O}_{\text{Spec}(A)}$) is a locally ringed space.

Proposition 1.2.8. A, B are commutative rings,

(1) If $\varphi:A\to B$ is a homomorphism of rings, then φ induces a natural morphism of locally ringed spaces

$$(f, f^b)$$
: (Spec $B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$

where

$$f_U^b: \mathcal{O}_{\mathrm{Spec}(A)}(U) \to f_* \mathcal{O}_{\mathrm{Spec}(A)}(U)$$

$$(s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}) \mapsto (s': f^{-1}(U) \to U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}} \to \coprod_{\mathfrak{q} \in f^{-1}(U)} B_{\mathfrak{q}})$$

(2) If A and B are rings, then any morphism of locally ringed spaces from Spec B to Spec A is induced by a homomorphism of rings $\varphi: A \to B$ as in (1).

Proof: (1): Assume $\mathfrak{p} \in \operatorname{Spec}(B)$ and $\varphi^{-1}(\mathfrak{p}) = \mathfrak{q}$. Then the ring homomorphism

$$\varphi_{\mathfrak{p}}:A_{\mathfrak{q}}\to B_{\mathfrak{p}}$$

induced by universal property of localization is a local ring homomorphism.

(2): Conversely, suppose given a morphism of locally ringed spaces $(f, f^{\#})$ from Spec B to Spec A. Taking global sections, $f^{\#}$ induces a homomorphism of rings $\varphi : \Gamma (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}) \to \Gamma (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B})$. These rings are A and B, respectively, so we have a homomorphism $\varphi : A \to B$. For any $\mathfrak{p} \in \operatorname{Spec} B$, we have an induced local homomorphism on the stalks(universal property of direct limit), $\mathcal{O}_{\operatorname{Spec} A, f(p)} \to \mathcal{O}_{\operatorname{Spec} B, p}$ or $A_{f(p)} \to B_p$, which must be compatible with the map φ on global sections. In other words, we have a commutative diagram

$$A \xrightarrow{\varphi} B$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_{f(\mathfrak{p})} \xrightarrow{f_{\mathfrak{p}}^{\#}} B_{\mathfrak{p}}$$

Since $f^{\#}$ is a local homomorphism, it follows that $\varphi^{-1}(\mathfrak{p}) = f(\mathfrak{p})$, which shows that f coincides with the map $\operatorname{Spec} B \to \operatorname{Spec} A$ induced by φ .

By universal property of localization, $\varphi_{\mathfrak{p}} = f_{\mathfrak{p}}^{\#}$. Then by Theorem 1.1.5(3), $(f, f^{\#})$ is induced by φ .

Corollary 1.2.9.

Definition 1.2.10. A locally ringed space (X, \mathscr{O}_X) is called affine scheme, if there exists a ring A such that (X, \mathscr{O}_X) is isomorphic to $(\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A})$.

Definition 1.2.11. A scheme is a locally ringed space (X, \mathscr{O}_X) which admits an open covering $X = \bigcup_{i \in I} U_i$ such that all locally ringed spaces $(U_i, \mathscr{O}_X|_{U_i})$ are affine schemes. A morphism of schemes is a morphism of locally ringed spaces.

Definition 1.2.12 (principal oepn subschmems of an affine scheme). Let $X = \operatorname{Spec} A$ be an affine scheme. For $f \in A$ let $j : \operatorname{Spec} A_f \to \operatorname{Spec} A$ be the morphism of affine schemes that corresponds to the canonical homomorphism $A \to A_f$. Then j induces a homeomorphism of $\operatorname{Spec} A_f$ onto D(f). Moreover, for all $x \in D(f)$, j_x^{\sharp} is the canonical isomorphism $A_{\mathfrak{p}_x} \stackrel{\sim}{\to} (A_f)_{\mathfrak{p}_x}$ by Algebra Theorem 2.4.26. Hence we see that (j,j^{\sharp}) induces an isomorphism of the affine scheme $\operatorname{Spec} A_f$ with the locally ringed space $(D(f), \mathscr{O}_{X|D(f)})$.

Definition 1.2.13 (closed subschmems of affine schemes). Let $X = \operatorname{Spec} A$ be an affine scheme. For an ideal \mathfrak{a} of A let $i : \operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$ be the morphism of affine schemes that corresponds to the canonical homomorphism $A \to A/\mathfrak{a}$. Then i induces a homeomorphism of $\operatorname{Spec} A/\mathfrak{a}$ onto the closed subset $V(\mathfrak{a})$ of $\operatorname{Spec} A$. Moreover, for all $x \in V(\mathfrak{a})$ the morphism i_x^b is the canonical surjective homomorphism $A_{\mathfrak{p}_x} \to (A/\mathfrak{a})_{\overline{\mathfrak{p}_x}}$ where $\overline{\mathfrak{p}}_x$ is the image of \mathfrak{p}_x in A/\mathfrak{a} .

1.3 Basic Propositions

Definition 1.3.1. Let S be a fixed scheme. The category (Sch/S) of schemes over S (or of S-schemes) is the category whose objects are the morphisms $X \to S$ of schemes, and whose morphisms $Hom(X \to S, Y \to S)$ are the morphisms $X \to Y$ of schemes with the property that

commutes.

Proposition 1.3.2 (open subscheme). (1) Let X be a scheme, and $U \subseteq X$ an open subset. Then the locally ringed space $(U, \mathcal{O}_{X|U})$ is a scheme. We call U an open subscheme of X. If U is an affine scheme, then U is called an affine open subscheme.

- (2) Let X be a scheme. The affine open subschemes are a basis of the topology.
- (3) There's a canonical morphism between scheme $(U, \mathscr{O}_X|_U)$ and (X, \mathscr{O}_X) .
- (4): $(f, f^b): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of scheme and $f(X) \subset U$ for some open subset of Y, then there's a natrual morphism $(X, \mathcal{O}_X) \to (U, \mathcal{O}_Y|_U)$ making the following diagram commute

$$(X, \mathscr{O}_X) \longrightarrow (Y, \mathscr{O}_Y)$$

$$\uparrow$$

$$(U, \mathscr{O}_Y|_U)$$

Proof: (3): For all the V open in X, the restriction maps

$$\Gamma(V, \mathscr{O}_X) \to \Gamma(V \cap U, \mathscr{O}_X|_U)$$

induce a morphism $j^b: \mathscr{O}_X \to j_*(\mathscr{O}_X|_U)$ of sheaves.

Hence, there's a canonical morphism $(U, \mathscr{O}_X|_U) \to (X, \mathscr{O}_X)$ of scheme.

Lemma 1.3.3 (Nike's Trick). Let X be a scheme, and let U, V be affine open subschemes of X. Then there exists for all $x \in U \cap V$ an open subscheme $W \subseteq U \cap V$ with $W \ni x$ such that W is principal open in U as well as in V.

Proof: We may assume $x \in V \subset U$ and U, V are all open affine, hence

$$(j, j^b): (V, \mathscr{O}_X|_V) \to (U, \mathscr{O}_X|_U)$$

is a morphism of scheme.

$$(V, \mathscr{O}_X|_V) \xrightarrow{\simeq} (\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A}) \qquad B$$

$$\downarrow^j \qquad \qquad \downarrow^{\varphi} \qquad \qquad \phi \uparrow$$

$$(U, \mathscr{O}_X|_U) \xrightarrow{\simeq} (\operatorname{Spec} B, \mathscr{O}_{\operatorname{Spec} B}) \qquad A$$

Take $f \in B$ such that the principal open subset D(f) satisfies $x \in D(f) \subset V \subset U$, then

$$D(f) = j^{-1}(D(f)) = \varphi^{-1}(D(f)) = D(\phi(f))$$

Lemma 1.3.4 (Gluing of morphisms). Let X,Y be schemes. If $X = \bigcup_i U_i$ is an open covering, then a family of morphisms $\varphi_i : (U_i, \mathscr{O}_X|_{U_i}) \to (Y, \mathscr{O}_Y)$ glues to a morphism $(f, f^b) : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ if and only if the morphisms coincide on intersections $U_i \cap U_j$, and the resulting morphism $X \to Y$ is uniquely determined.

Proof: Firstly, define

$$f: X \to Y, x \mapsto \varphi_i(x) \text{ if } x \in U_i$$

For some V open in Y, we can obtain φ_V by the following diagram:

$$\begin{array}{ccc} \mathscr{O}_{Y}(V) & \xrightarrow{\varphi_{V}} & \xrightarrow{\varphi_{V}} & f_{*}\mathscr{O}_{X}(V) = \mathscr{O}_{X}(f^{-1}(V)) \\ & \downarrow_{\mathrm{id}} & & \mathrm{glue} \uparrow \\ & \mathscr{O}_{Y}(V) & \xrightarrow{(\varphi_{i})_{V}} & (\varphi_{i})_{*} & \mathscr{O}_{X}|_{U_{i}}(V) = \mathscr{O}_{X}(U_{i} \cap f^{-1}(V)) \end{array}$$

Example 1.3.5 (zero section). Consider $\mathbb{A}_R^{n+1} = \operatorname{Spec}(R[T_0, \dots, T_n])$, define

$$\mathbb{A}_{R}^{n+1} - \{0\} = \bigcup_{i=0}^{n} D(T_{i})$$

be an open subscheme of \mathbb{A}_R^{n+1} . Since there's natural morphism p_i given by

$$p_i: D\left(T_i\right) = \operatorname{Spec} R\left[T_0, \dots, T_n, T_i^{-1}\right] \to D_+\left(X_i\right) = \operatorname{Spec} R\left[\frac{X_0}{X_i}, \dots, \frac{\widehat{X_i}}{X_i}, \dots, \frac{X_n}{X_i}\right]$$

, by gluing of morphisms of scheme, there's a natural morphism

$$p: \mathbb{A}^{n+1}_R - \{0\} \to \mathbb{P}^n_R$$

Example 1.3.6. Consider $X = \operatorname{Spec}(\mathbb{R}[x,y]) - \{0\}$ and $p: X \to \mathbb{P}^1_{\mathbb{R}}$. For $(\alpha,\beta) \neq (0,0)$,

$$p((x - \alpha, y - \beta)) = (\alpha y - \beta x)$$

Example 1.3.7. Let A be an R-algebra, let $f: \operatorname{Spec} A \to \mathbb{A}^n_R$ be an R-morphism, and denote the corresponding R-algebra homomorphism by $\varphi: R[T_1, \ldots, T_n] \to A$. Set $a_i = \varphi(T_i) \in A$. Then f factors through $\mathbb{A}^n_R - \{0\}$ if and only if for all $\mathfrak{p} \in \operatorname{Spec}(A)$,

$$f(\mathfrak{p}) \in \bigcup_{i=0}^{n} D(T_i)$$

Equivalently, there's no such prime ideal $\mathfrak{p} \subset A$ such that $\varphi^{-1}(\mathfrak{p}) \supset (T_1, \ldots, T_n)$. Since $\varphi^{-1}(\mathfrak{p}) \supset (T_1, \ldots, T_n)$ if and only if $\mathfrak{p} \supset (\varphi(T_1), \ldots, \varphi(T_n))$, we have

$$\operatorname{Hom}_{R}(\operatorname{Spec}(A), \mathbb{A}^{n}_{R} - \{0\}) = \left\{ \varphi \in \operatorname{Hom}_{(R-\operatorname{Alg})}(R[x_{1}, \dots, x_{n}], A) : (\varphi(x_{1}), \dots, \varphi(x_{n})) = (1) \right\}$$

Example 1.3.8 (\mathbb{G}_m). Set $X = \operatorname{Spec} R[U, U^{-1}] = R[U, T]/(UT - 1)$. Then we obtain for every R-scheme T

$$\operatorname{Hom}_{R}(T, X) = \operatorname{Hom}_{(R-\operatorname{Alg})} \left(R \left[U, U^{-1} \right], \Gamma \left(T, \mathscr{O}_{T} \right) \right) = \Gamma \left(T, \mathscr{O}_{T} \right)^{\times}.$$

Proposition 1.3.9. Let (X, \mathcal{O}_X) be a scheme, $Y = \operatorname{Spec} A$ an affine scheme. Then the natural map

$$\operatorname{Hom}(X,Y) \longrightarrow \operatorname{Hom}(A,\Gamma(X,\mathscr{O}_X)), \quad (f,f^b) \mapsto f_Y^b,$$

is a functorial bijection. Here the set on the left side denotes the set of morphisms $X \to Y$ of scheme, and the set on the right side denotes the set of ring homomorphisms $A \to \Gamma(X, \mathcal{O}_X)$.

Proof:

$$\begin{array}{ccc} \operatorname{Hom}(X,Y) & ----- & \operatorname{Hom}(A,\Gamma(X,\mathscr{O}_X)) \\ & & \operatorname{glue} \bigcap \operatorname{clue} \end{array}$$

$$\operatorname{Hom}(U_i,Y) & \stackrel{\simeq}{\longrightarrow} & \operatorname{Hom}(A,\Gamma(U_i,\mathscr{O}_X)) \end{array}$$

Injective: For $f: X \to Y$, define $f_i: U_i \to X \to Y$ a morphism of scheme. It's easy to check the follow diagram commutes

$$A \xrightarrow{f_Y^b} \Gamma(X, \mathscr{O}_X)$$

$$\downarrow^{j_X^b}$$

$$\Gamma(U_i, \mathscr{O}_X)$$

Hence, $(f, f^b) = (g, g^b)$ iff $(f_i, f_i^b) = (g_i, g_i^b)$ iff $(f_i)_Y^b = (g_i)_Y^b$ iff $f_Y^b = g_Y^b$ Surjective:

$$U_{i} \xrightarrow{f_{i}} Y \qquad \Gamma(U_{i}, \mathscr{O}_{X}) \longleftarrow A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \tilde{f}_{i} \qquad \downarrow \qquad \qquad \tilde{f}_{j} \downarrow$$

$$V \xrightarrow{l_{j}} U_{j} \qquad \Gamma(V, \mathscr{O}_{X}) \longleftarrow \Gamma(U_{j}, \mathscr{O}_{X})$$

Take $\tilde{f} \in \text{Hom}(A, \Gamma(X, \mathcal{O}_X))$, and define $\tilde{f}_i : \tilde{f} \circ \text{Res}_{U_i}^X$ and f_i be the corresponding morphisms with respect to category equivalence(commutative rings and affine schemes). Consider above diagram, V is an affine open subset of $U_i \cap U_j$. Since opposite category of commutative rings is equivalent to category of affine scheme, the fact that the right diagram commutes implies the left diagram commute.

Proposition 1.3.10. Let (X, \mathcal{O}_X) be a k-scheme, A be a k-algebra and $Y = \operatorname{Spec} A$ an affine scheme over k. Then the natural map

$$\operatorname{Hom}_{\operatorname{Spec}(k)}(X,Y) \longrightarrow \operatorname{Hom}_{k}(A,\Gamma(X,\mathscr{O}_{X})), \quad (f,f^{b}) \mapsto f_{Y}^{b},$$

is a functorial bijection. Here the set on the left side denotes the set of morphisms $X \to Y$ of k-scheme, and the set on the right side denotes the set of k-algebra homomorphisms $A \to \Gamma(X, \mathcal{O}_X)$.

Proposition 1.3.11. Let X be a scheme. Let $x \in X$, and let $U \subseteq X$ be an affine open neighborhood of x, say $U = \operatorname{Spec} A$. Denote by $\mathfrak{p} \subset A$ the prime ideal of A corresponding to x. Then $\mathscr{O}_{X,x} = \mathscr{O}_{U,x} = A_{\mathfrak{p}}$, and the natural homomorphism $A \to A_{\mathfrak{p}}$ gives us a morphism

$$j_x : \operatorname{Spec} \mathscr{O}_{X,x} = \operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} A = U \subseteq X$$

of schemes. This morphism is independent of the choice of U.

Proof: Assume V is an open affine subset of U with $x \in V$, $V = \operatorname{Spec}(B)$ and $x = \mathfrak{q}$. Then, it suffices to show j_x induced by V and j_x induced by U identifies. Consider the following commutative diagram

$$\operatorname{Spec}\mathcal{O}_{X,x} \xrightarrow{\simeq} \operatorname{Spec}A_{\mathfrak{p}} \longrightarrow \operatorname{Spec}A \xrightarrow{\simeq} U$$

$$\uparrow_{\operatorname{id}} \qquad \uparrow \qquad \uparrow^{\varphi} \qquad \uparrow$$

$$\operatorname{Spec}\mathcal{O}_{X,x} \xrightarrow{\simeq} \operatorname{Spec}B_{\mathfrak{q}} \longrightarrow \operatorname{Spec}B \xrightarrow{\simeq} V$$

where the morphism $\operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is induced both by universal propoty of localization and the morphism of sheaves $\mathscr{O}_{\operatorname{Spec}(A)} \to \varphi_* \mathscr{O}_{\operatorname{Spec}(B)}$.

Proposition 1.3.12. The image of the canonical map $j_x : \operatorname{Spec} \mathcal{O}_{X,x} \to X$ is

$$Z = \left\{ y \in X : x \in \overline{\{y\}} \right\} = \bigcap_{x \in W, W \text{ open in } X} W$$

Proof: Trivial.

Proposition 1.3.13. Let $\kappa(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ be the residue class field of x in X. We obtain a morphism of schemes

$$i_x : \operatorname{Spec} \kappa(x) \longrightarrow \operatorname{Spec} \mathscr{O}_{X,x} \longrightarrow X$$

called canonical. The image point of the unique point in Spec $\kappa(x)$ is x. Notice that the map $\mathscr{O}_{X,x} \to \kappa(x)$ induced by considering the stalk of i_x is exactly the projective map.

Now let K be any field, let $f: \operatorname{Spec} K \to X$ be a morphism, and let $x \in X$ be the image point of the unique point p of $\operatorname{Spec} K$. Since f is a morphism of locally ringed spaces, f induces a local homomorphism $\mathscr{O}_{X,x} \to K = \mathscr{O}_{\operatorname{Spec} K,p}$, and hence a homomorphism $\iota: \kappa(x) \to K$ between the residue class fields.

Then, the morphism f factors as $f = i_x \circ (\operatorname{Spec} \iota) : \operatorname{Spec} K \to \operatorname{Spec} \kappa(x) \to X$ since we have a commutative diagram in stalks of those sheaves:

The above construction gives rise to a bijection

$$\operatorname{Hom}(\operatorname{Spec} K, X) \longrightarrow \{(x, \iota); x \in X, \iota : \kappa(x) \to K\}$$

This is because, we can map an element $(x, \iota : \kappa(x) \to K)$ of the right hand side to the morphism

$$\operatorname{Spec} K \xrightarrow{\operatorname{Spec} \iota} \operatorname{Spec} \kappa(x) \xrightarrow{i_x} X,$$

and these two maps are inverse to each other.

Proposition 1.3.14. Assume $(X, \mathcal{O}_X) \to \operatorname{Spec}(k)$ be a k-scheme, then this map induces a local ring homomorphism

$$k \to \mathscr{O}_{X,x}$$

which induces a field extension

$$k \to \kappa(x)$$

Hence there's natural k-scheme structure on $\operatorname{Spec}(\kappa(x))$. Moreover, above natural morphism i_x becomes a k-scheme morphism:

Hence, if $k \to K$ be a field extension, there's a bijection

$$\operatorname{Hom}_k(\operatorname{Spec} K, X) \longrightarrow \{(x, \iota) : x \in X, \iota : \kappa(x) \to K \quad k\text{-algebra homomorphism}\}$$

And for an arbitrary k-scheme, define $X(K) = \operatorname{Hom}_k(\operatorname{Spec} K, X)$ to be its K-points.

Definition 1.3.15 (Structure sheaf on ProjS). Let S be a graded ring, we will define a sheaf of rings \mathscr{O} on Proj S. For each $\mathfrak{p} \in \operatorname{Proj} S$, we consider the ring $S_{(\mathfrak{p})}$ of elements of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system consisting of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subseteq \operatorname{Proj} S$, we define $\mathscr{O}(U)$ to be the set of functions $s: U \to \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U, s(\mathfrak{p}) \in S_{(\mathfrak{p})}$, and such that s is locally a quotient of elements of S: for each $\mathfrak{p} \in U$, there exists a neighborhood V of \mathfrak{p} in U, and homogeneous elements a, f in S, of the same degree, such that for all $\mathfrak{q} \in V, f \notin \mathfrak{q}$, and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. Now it is clear that \mathscr{O} is a presheaf of rings, with the natural restrictions, and it is also clear from the local nature of the definition that \mathscr{O} is a sheaf.

Proposition 1.3.16. Let S be a graded ring.

(1) For any $\mathfrak{p} \in \operatorname{Proj} S$, the stalk $\mathscr{O}_{\mathfrak{p}}$ is isomorphic to the local ring $S_{(\mathfrak{p})}$.

(2) For any homogeneous element $f \in S_+$, let $D_+(f) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p} \}$. Then $D_+(f)$ is open in Proj S. Furthermore, these open sets cover Proj S, and for each such open set, we have an isomorphism of locally ringed spaces

$$\left(D_{+}(f), \mathscr{O}|_{D_{+}(f)}\right) \cong \operatorname{Spec} S_{(f)}$$

where

$$S_{(f)} = \{a/f^n \in S_f : a \text{ homogeneous and } \deg(a) = n \deg(f), n \ge 0\}$$

In particular, the global section of S is S_0 .

Proof: (1): $S_{(\mathfrak{p})}$ is a local ring: The unique maximal ideal of $S_{(\mathfrak{p})}$ is of the form

$$\{a/f : a \in \mathfrak{p}, f \notin \mathfrak{p}, \deg a = \deg f\}$$

(2): Define

$$\varphi: D_+(f) \to \operatorname{Spec}(S_{(f)}), \mathfrak{a} \mapsto \mathfrak{a}S_f \cap S_{(f)}$$

 φ is injective: If $\mathfrak{a}S_f \cap S_{(f)} = \mathfrak{b}S_f \cap S_{(f)}$, for some homogeneous element $s \in \mathfrak{a}$, there's $b \in \mathfrak{b}$ such that

$$\frac{s^n}{f^m} = \frac{b}{f^t}$$

for some integer n, m, t. Hence, $s^n \in \mathfrak{b}$ which implies $s \in \mathfrak{b}$.

 φ is surjective: P be a prime ideal of $S_{(f)}$, define

$$\mathfrak{p} = \{ s \in S : s/f^n \in P \text{ for some } n \ge 0 \}$$

Then $\varphi(\mathfrak{p}) = P$.

Isomorphism on stalk: For $\mathfrak{p} \in D_+(f)$, there's a natural ring homomorphism

$$S_{(f)} \to S_{(\mathfrak{p})}, a/f^n \mapsto a/f^n$$

and by universal property of localization, it induces a ring homomorphism

$$\varphi_{\mathfrak{p}}: (S_{(f)})_{\varphi(\mathfrak{p})} \to S_{(\mathfrak{p})}$$

Acturally, $\varphi_{\mathfrak{p}}$ is an isomorphism: injective is easy to check, and for some $a/g \in S_{\mathfrak{p}}$, notice that

$$\frac{a}{g} = \frac{ag^{\deg f - 1}}{f^{\deg g}} \frac{f^{\deg g}}{g^{\deg f}}$$

Hence, $\varphi_{\mathfrak{p}}$ is surjective.

Isomorphism $\varphi_{\mathfrak{p}}$ induces a isomorphism of sheaves

$$\varphi^b: \mathscr{O}_{\mathrm{Spec}S_{(f)}} \simeq \varphi_*(\mathscr{O}_{\mathrm{Proj}S}|_{D^+(f)})$$

Proposition 1.3.17 (morphisms between projective spectrum). Let S be a graded ring.

(1) Let $\varphi: S \to T$ be a graded homomorphism of graded rings (preserving degrees). Let $U = \{ \mathfrak{p} \in \operatorname{Proj} T \mid \mathfrak{p} \not\supseteq \varphi(S_+) \}$. Show that U is an open subset of Proj T, and show that φ determines a natural morphism $f: U \to \operatorname{Proj} S$.

- (2) The morphism f can be an isomorphism even when φ is not. For example, suppose that $\varphi_d: S_d \to T_d$ is an isomorphism for all $d \geqslant d_0$, where d_0 is an integer. Then show that $U = \operatorname{Proj} T$ and the morphism $f: \operatorname{Proj} T \to \operatorname{Proj} S$ is an isomorphism.
- (3) Let $\varphi: S \to T$ be a surjective homomorphism of graded rings, preserving degrees. Then, the open set U of is equal to Proj T, and the morphism $f: \operatorname{Proj} T \to \operatorname{Proj} S$ is a closed immersion.
- (4) If $I \subseteq S$ is a homogeneous ideal, take T = S/I and let Y be the closed subscheme of $X = \operatorname{Proj} S$ defined by the closed immersion $\operatorname{Proj} S/I \to X$. Show that different homogeneous ideals can give rise to the same closed subscheme. For example, let d_0 be an integer, and let $I' = \bigoplus_{d \geq d_0} I_d$. Show that I and I' determine the same closed subscheme.

Proof: (1): Since graded homomorphism preserves order, $\mathfrak{p} \in U \mapsto \varphi^{-1}(\mathfrak{p})$ is a well-define map from U to Proj S. Notice that

$$U = \bigcup_{g \in \varphi(S_+)} D_+(g),$$

U is a open subset of Proj T. And the morphism of presheaves f^b is induced by the natural local ring homomorphism

$$\varphi_{\mathfrak{p}}:S_{(f(\mathfrak{p}))}\to T_{(\mathfrak{p})}$$

And it's easy to check f together with f^b forms a morphism of scheme $(f, f^b): U \to \text{Proj } S$.

(2): For $U = \operatorname{Proj} T$, assume $\mathfrak{p} \supset \varphi(S_+)$ and $\mathfrak{p} \not\supseteq T_+$, there's $a \in T_r$ with $r \geq 1$ such that $a \notin \mathfrak{p}$. Consider the element a^k for k sufficiently large. Next step, we are going to show $f : \operatorname{Proj} T \to \operatorname{Proj} S$ is an isomorphism.

Since, φ_d are isomorphic for all $d \geq d_0$,

$$\{\{D_+(t_i)\}: t_i \in T_+, \deg t_i \ge d_0\}$$

be a open covering of Proj T. Put $s_i = \varphi^{-1}(t_i)$, we also have

$$\{\{D_+(s_i)\}: s_i \in S_+, \deg s_i \ge d_0\}$$

be a open covering of Proj S

 $f_i = f|_{D_+(t_i)} \to D_+(s_i)$ is a morphism of affine schemes (as $D_+(t_i) \simeq \operatorname{Spec} T_{(t_i)}$ and $D_+(s_i) \simeq \operatorname{Spec} S_{(s_i)}$) corresponding to the ring homomorphism $\varphi_i : S_{(s_i)} \to T_{(t_i)}$ induced by φ . But φ_i is an isomorphism since s_i has degree at least d_0 , and φ_d is an isomorphism for all $d \geq d_0$. Hence, f is surjective.

To show f is injective, take $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Proj} T$ with $f(\mathfrak{p}_1) = f(\mathfrak{P}_2)$. We have $\mathfrak{p}_1 \cap T_d = \mathfrak{p}_2 \cap T_d$ for all $d \geq d_0$. If $t_r \in \mathfrak{p}_1 \cap T_r$, take $s \notin \mathfrak{p}_2$, we have $s^k t_r \in \mathfrak{p}_2$. It implies $t_r \in \mathfrak{p}_2 \cap T_r$.

(3):Since $\varphi: S \to T$ is surjective, f is injective and

$$\varphi_{\mathfrak{p}}:S_{(f(\mathfrak{p}))}\to T_{(\mathfrak{p})}$$

is surjective.

Then, it suffice to check f(ProjT) is a closed subset. Notice that $\text{Ker}\varphi$ be a homogenous ideal and for all $\mathfrak{p} \in \text{Proj}(T)$, we have

$$f(\mathfrak{p}) \subset \mathrm{Ker}\varphi$$

Hence, $f(\text{Proj}(T)) \subset V(\text{Ker}\varphi)$. On the other hand, Since φ is surjective, $T \simeq S/\text{Ker}\varphi$ as graded ring. Hence, it's easy to show $V(\text{Ker}\varphi) \subset f(\text{Proj}(T))$.

(4): By (2).

Example 1.3.18. Let $f_1, \ldots, f_r \in k[X_0, \ldots, X_n]$ be homogeneous polynomials and let $X = \text{Proj } k[X_0, \ldots, X_n]/(f_1, \ldots, f_r)$. For every field extension $k \hookrightarrow K$ we have

$$X(K) = \{x = (x_0 : \dots : x_n) \in \mathbb{P}^n(K) : f_1(x) = \dots = f_r(x) = 0\}$$

Definition 1.3.19 (Galois Actions). Assume K/k be a Galois extension and $G = \operatorname{Gal}(K/k)$. Let X be a k-scheme, we obtain an action of G on X(K) by composition of the morphism $x : \operatorname{Spec} K \to X$ with ${}^a\sigma : \operatorname{Spec} K \to \operatorname{Spec} K$ for $\sigma \in G$. Hence, by Proposition 1.3.14, the Galois group action on X(K) by $\sigma \in G$ is actually a transform of k-algebra homeomorphism through composition

$$l \in \operatorname{Hom}_k(\kappa(x), K) \mapsto \sigma \circ l \in \operatorname{Hom}_k(\kappa(x), K).$$

Denote the K-points which is stable under a subgroup H of G by $X(K)^H$, we have

$$X(K)^H = X(K^H).$$

Proposition 1.3.20. k be a perfect field. Then \bar{k}/k is a Galois extension. Denote $G = \operatorname{Gal}(\bar{k}/k)$. Let X be a k-scheme locally of finite type. There's a one-to-one correspondence between G-orbits of $X(\bar{k})$ and closed point of X.

Proof: Since the point in $X(\bar{k})$ is the pair (x,l), where $x \in X$ and l be a k-algebra homeomorphism from $\kappa(x)$ to \bar{k} . By Proposition 1.3.40, for all $(x,l) \in X(\bar{k})$, x is a closed point. Moreover, G-action doesn't change x, so $(x,l) \mapsto x$ be a map from G-orbits of $X(\bar{k})$ to closed point of X. By Algebra 1.4.15, $(x,l) \mapsto x$ is surjective. By Numebr Theory Theorem 2.2.3, $(x,l) \to x$ is injective.

Proposition 1.3.21. A gluing datum of schemes consists of the following data:

- (1) an index set I,
- (2) for all $i \in I$ a scheme U_i ,
- (3) for all $i, j \in I$ an open subset $U_{ij} \subseteq U_i$ (we consider U_{ij} as open subscheme of U_i),
- (4) for all $i, j \in I$ an isomorphism $\varphi_{ji} : U_{ij} \to U_{ji}$ of schemes, such that $U_{ii} = U_i$ for all $i \in I$ and the cocycle condition holds: $\varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$ on $U_{ij} \cap U_{ik}, i, j, k \in I$.

Remark 1.3.22. In the cocycle condition we implicitly assume that in particular φ_{ji} $(U_{ij} \cap U_{ik}) \subseteq U_{jk}$, such that the composition is meaningful.

For i = j = k, the cocycle condition implies that $\varphi_{ii} = \mathrm{id}_{U_i}$ and for i = k that $\varphi_{ij}^{-1} = \varphi_{ji}$.

Moreover, φ_{ji} is an isomorphism $U_{ij} \cap U_{ik} \to U_{ji} \cap U_{jk}$. This is because, consider the cocycle conditions $\varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$ and $\varphi_{ki} \circ \varphi_{ij} = \varphi_{kj}$. We obtain two natural morphisms $\varphi_{ji} : U_{ij} \cap U_{ik} \to U_{ji} \cap U_{jk}$ and $\varphi_{ij} : U_{ji} \cap U_{jk} \to U_{ij} \cap U_{ik}$. Then, the claim follows from the fact $\varphi_{ji}^{-1} = \varphi_{ij}$.

Proposition 1.3.23. Let $\left((U_i)_{i\in I}, (U_{ij})_{i,j\in I}, (\varphi_{ij})_{i,j\in I}\right)$ be a gluing datum of schemes. Then there exists a scheme X together with morphisms $\psi_i: U_i \to X$, such that

(1) for all i the map ψ_i is a isomorphism of U_i onto the open subscheme $\psi_i(U_i)$ of X.

$$U_i \xrightarrow{\psi_i} \psi_i(U_i)$$

- (2) $\psi_j \circ \varphi_{ji} = \psi_i$ on U_{ij} for all i, j,
- (3) $X = \bigcup_{i} \psi_{i}(U_{i}),$
- (4) $\psi_i(U_i) \cap \psi_i(U_j) = \psi_i(U_{ij}) = \psi_i(U_{ji})$ for all $i, j \in I$.

Furthermore, X together with the ψ_i is uniquely determined up to unique isomorphism.

Proof: Underlying topological space: To define the underlying topological space of X, we start with the disjoint union $\coprod_{i\in I} U_i$ of the (underlying topological spaces of the) U_i and define an equivalence relation \sim on it as follows: points $x_i \in U_i, x_j \in U_j, i, j \in I$, are equivalent, if and only if $x_i \in U_{ij}, x_j \in U_{ji}$ and $x_j = \varphi_{ji}(x_i)$. The cocycle condition implies that \sim is in fact an equivalence relation. As a set, define X to be the set of equivalence classes,

$$X := \coprod_{i \in I} U_i / \sim .$$

The natural maps $\psi_i: U_i \to X$ are injective and we have $\psi_i(U_{ij}) = \psi_i(U_i) \cap \psi_j(U_j)$ for all $i, j \in I$. We equip X with the quotient topology, i. e. with the finest topology such that all ψ_i are continuous. That means that a subset $U \subseteq X$ is open if and only if for all i the preimage $\psi_i^{-1}(U)$ is open in U_i . In particular, the $\psi_i(U_i)$ and the $\psi_i(U_{ij}) = \psi_i(U_i) \cap \psi_j(U_j)$ are open in X.

Structure sheaf: Define for W open in X,

$$\mathscr{O}_X(W) = \left\{ (s_i)_{i \in I} : s_i \in \mathscr{O}_{U_i}(W \cap U_i), \varphi_{ji}(s_i|_{W \cap U_{ij}}) = s_j|_{W \cap U_{ji}} \right\}$$

where $W \cap U_i$ is actually $\psi_i^{-1}(W)$.

morphism of sheaves ψ_i^b :

$$\psi_i^b: (\psi_i)_* \mathscr{O}_X \to \mathscr{O}_{U_i}, (s_i)_{i \in I} \mapsto s_i$$

Example 1.3.24 (line with double origin). We denote the line with double origin by X. It is obtained by gluing $\operatorname{Spec}[u]$ and $\operatorname{Spec}[t]$ along the isomorphism $D(u) \simeq \operatorname{Spec}(k[u,1/u]) \simeq \operatorname{Spec}(k[t,1/t]) = D(t)$. Notice taht (X, \mathcal{O}_X) is affine if the morphism $(f, f^b) : (X, \mathcal{O}_X) \to \operatorname{Spec}(\Gamma(X, \mathcal{O}_X))$ induced by $\operatorname{id} : \Gamma(X, \mathcal{O}_X) \to \Gamma(X, \mathcal{O}_X)$ is an isomorphism.

An element of $\Gamma(X, \mathcal{O}_X)$ is the same as giving two polynomials $\sum_n f_n u^n$ and $\sum_m g_m t^m$ such that $\sum_n f_n u^n = \sum_m g_m u^m$ in k[u, 1/u]. Note that this just means that $f_n = g_n$ for all n. Hence $\Gamma(X, \mathcal{O}_X)$ is isomorphic to k[u]. If X is affine, then we have isomorphisms

$$(X, \mathcal{O}_X) \xrightarrow{(f, f^b)} \operatorname{Spec} \Gamma(X, \mathscr{O}_X) \to \operatorname{Spec} k[u]$$

Now consider the vanishing set V(u) of X where V(f) for some f in global section consists of all those points $x \in X$ such that $f_x = 0$ modulo \mathfrak{m}_x , and u denotes the global section u = v of $\Gamma(X, \mathscr{O}_X)$.

Note that V(u) contains at least two points, the two origins of X. But V(u) in Spec k[u] consists of only one point. Hence line with double origin is not affine.

Example 1.3.25 (projective space). R is a ring and $S = R[X_0, \ldots, X_n]$ be a graded ring. Consider the scheme $\mathbb{P}_R^n = \text{Proj}S$. For $f = x_i, i = 1, \ldots n$, we have

$$S_{(f)} = \{a/X_i^n \in R[X_0, \dots, X_n]_{X_i} : a \in R[X_0, \dots, X_n]_n\} = R\left[\frac{X_0}{X_i}, \dots, \frac{X_{i-1}}{X_i}, \frac{X_{i+1}}{X_i}, \dots, \frac{X_n}{X_i}\right]$$

and for $U_i = D_+(f)$,

$$(U_i, \mathscr{O}_{\mathbb{P}_R^n}|_{U_i}) = \left(D_+(f), \mathscr{O}|_{D_+(f)}\right) \simeq \operatorname{Spec} R\left[\frac{X_0}{X_i}, \dots, \frac{X_{i-1}}{X_i}, \frac{X_{i+1}}{X_i}, \dots, \frac{X_n}{X_i}\right]$$

We define a gluing datum with index set $\{0,\ldots,n\}$ as follows: For $0 \leq i,j \leq n$ let $U_{ij} = D_{U_i}\left(\frac{X_j}{X_i}\right) \subseteq U_i$ if $i \neq j$, and $U_{ii} = U_i$. Further, let $\varphi_{ii} = \mathrm{id}_{U_i}$ and for $i \neq j$ let

$$\varphi_{ji}:U_{ij}\to U_{ji}$$

be the isomorphism defined by the equality

$$R\left[\frac{X_0}{X_i}, \dots, \frac{\widehat{X_i}}{X_i}, \dots, \frac{X_n}{X_i}\right]_{\frac{X_j}{X_i}} \longleftarrow R\left[\frac{X_0}{X_j}, \dots, \frac{\widehat{X_j}}{X_j}, \dots, \frac{X_n}{X_j}\right]_{\frac{X_i}{X_j}},$$

(as subrings of $R[X_0, \ldots, X_n, X_0^{-1}, \ldots, X_n^{-1}]$) of the affine schemes U_{ij} and U_{ji} .

Corollary 1.3.26. If R = k be a ring, the global section of \mathbb{P}^n_k is k. Hence, \mathbb{P}^n_k is not affine.

Example 1.3.27 (structure of $\mathbb{P}^1_{\mathbb{R}}$). For U_x, U_y , there are \mathbb{R} -scheme isomorphisms

$$(U_x, \mathscr{O}_{\mathbb{P}^1_{\mathbb{R}}}\Big|_{U_x}) \simeq \operatorname{Spec}\mathbb{R}[y]$$

and

$$(U_y, \mathscr{O}_{\mathbb{P}^1_{\mathbb{R}}}\Big|_{U_y}) \simeq \operatorname{Spec}\mathbb{R}[x]$$

Hence,

$$\mathbb{P}_{\mathbb{R}}^{1} = \{(x - ay) : a \in \mathbb{R}\} \bigcup \{(y - ax) : a \in \mathbb{R}\} \bigcup \{(ax^{2} + bxy + cy^{2}) : b^{2} - 4ac < 0\}$$

Definition 1.3.28. (1) A scheme is called connected, if the underlying topological space is connected.

- (2) A scheme is called quasi-compact, if the underlying topological space is quasi-compact, i. e., if every open covering admits a finite subcovering.
- (3) A scheme is called irreducible, if the underlying topological space is irreducible, i. e., if it is non-empty and not equal to the union of two proper closed subsets.
- (4) A morphism $f: X \to Y$ of schemes is called injective, surjective or bijective, respectively, if the continuous map $X \to Y$ of the underlying topological spaces has this property.
- (5) f is called open, closed, or a homeomorphism, respectively, if the underlying continuous map has this property.
- (6) f is called dominant if f(X) is a dense subspace of Y.
- (7) A scheme X is called locally noetherian, if X admits an affine open cover $X = \bigcup U_i$, such that all the affine coordinate rings $\Gamma(U_i, \mathscr{O}_X)$ are noetherian. If in addition X is quasi-compact, X is called noetherian.
- (8) A scheme X is called reduced, if all local rings $\mathcal{O}_{X,x}, x \in X$, are reduced rings.
- (9) An integral scheme is a scheme which is reduced and irreducible.

Proposition 1.3.29. Let $X = \operatorname{Spec} A$ be an affine scheme. Then X is noetherian if and only if A is a noetherian ring.

Proof: By Nike's Trick, Spec A can be covered by affine open subschemes of the form $D(f_i)$, $f_i \in A$, i = 1, ..., n, such that all A_{f_i} are noetherian rings.

If I is an ideal of A, $I_{f_i} = IA_{f_i}$ is finitely generated ideal in A_{f_i} . By Algebra 2.4.29, I is finitely generated ideal in A.

Proposition 1.3.30. X is any noetherian scheme, the underlying topological space of X is noetherian

Proof: Since spectrum of a noetherian ring is a noetherian topological space. Then this proposition follows from the fact that a topological space covered by finite many noetherian subspace is notherian.

Proposition 1.3.31. Let X be a (locally) noetherian scheme and $U \subseteq X$ an open subscheme. Then U is (locally) noetherian.

Proof: In a noetherian topological space, every open subset is quasi-compact.

Proposition 1.3.32. Let X be a scheme. The mapping

$$X \longrightarrow \{Z \subseteq X; Z \text{ closed, irreducible }\}$$

 $x \mapsto \overline{\{x\}}$

is a bijection, i. e. every irreducible closed subset contains a unique generic point.

Proof: Step 1: If Z is a closed irreducible subset of X and U is an affine open subset of X, $Z \cap U$ is irreducible. This is because, for W_1, W_2 be open subsets of X and $Y_j = W_j \cap Z \cap U_i \neq \emptyset$, j = 1, 2, since Z is irreducible, the intersection of Y_1 and Y_2 is non-empty. Hence, $Z \cap U_i$ is irreducible.

Step 2: Since Z is closed, $\overline{Z \cap U} \subset Z$. Since Z is irreducible, $Z \cap U$ is a dense subset of Z. Then $\overline{Z \cap U} \cap Z = Z$.

Step 3: Since $Z \cap U$ is a irreducible closed subset of U, there's $x \in Z \cap U$ such that $\overline{\{x\}} \supset \overline{\{x\}} \cap U = Z \cap U$. Hence, $\{x\} \supset \overline{Z \cap U} = Z$.

Step 4: To show the uniqueness of x, consider $x, y \in X$ such that $\overline{\{x\}} = \overline{\{y\}} = Z$ and U be an open affine subset of X with $U \cap Z \neq \emptyset$. Since there's $z \in \overline{\{x\}} \cap U$, we have $x \in U$. Similarly, $y \in U$. Then, $\overline{\{x\}} \cap U = \overline{\{y\}} \cap U = Z \cap U$, by the uniqueness of affine case, x = y.

Proposition 1.3.33. Let X be a scheme, let $f \in \Gamma(X, \mathcal{O}_X)$, and define X_f to be the subset of points $x \in X$ such that the stalk f_x of f at x is not contained in the maximal ideal \mathfrak{m}_x of the local ring \mathcal{O}_x .

If $U = \operatorname{Spec} B$ is an open affine subscheme of X, and if $\bar{f} \in B = \Gamma(U, \mathscr{O}_X|_U)$ is the restriction of f, show that $U \cap X_f = D(\bar{f})$. Conclude that X_f is an open subset of X.

Proof: For $\mathfrak{p} \in \operatorname{Spec}(B)$, $\mathfrak{p} \in D(\bar{f})$ iff $\bar{f} \notin \mathfrak{p}$ iff \bar{f} viewed as an element in $A_{\mathfrak{p}}$ does not lie in $\mathfrak{p}A_{\mathfrak{p}}$.

Proposition 1.3.34. (1) A scheme X is reduced if and only if for every open subset $U \subseteq X$ the ring $\Gamma(U, \mathcal{O}_X)$ is reduced.

- (2) A non-empty scheme X is integral if and only if for every open subset $\emptyset \neq U \subseteq X$ the ring $\Gamma(U, \mathscr{O}_X)$ is an integral domain.
- (3) If X is an integral scheme, then for all $x \in X$ the local ring $\mathcal{O}_{X,x}$ is an integral domain.
- (4) An affine scheme $X = \operatorname{Spec} A$ is integral if and only if A is a domain.
- (5) Let X be an integral scheme, and let $\eta \in X$ be its generic point. Then the local ring $\mathcal{O}_{X,\eta}$ is a field.

Proof: (1): Trivial.

(2): Let X be integral. Because all open subschemes of X are integral, too, it is enough to show that $\Gamma(X, \mathscr{O}_X)$ is a domain. Take $f, g \in \Gamma(X, \mathscr{O}_X)$ such that fg = 0. Then $\varnothing = X_f \cap X_g$ since $f_x g_x \in \mathfrak{m}_x$ for all $x \in X$. By the irreducibility we get $X_f = \varnothing$ or $X_g = \varnothing$. Assume $X_f = \varnothing$. We want to show that f must then be 0. We can check this locally on X, so we may assume that X is affine. Then f lies in the intersection of all prime ideals, i. e. in the nil-radical of the affine coordinate ring of X. Since X is reduced, by (1) the nil-radical is the zero ideal.

If conversely all $\Gamma(U, \mathcal{O}_X)$ are integral domains, then by (1) X is reduced. If there existed non-empty affine open subsets $U_1, U_2 \subseteq X$ with empty intersection, then the sheaf axioms imply that

$$\Gamma\left(U_1 \cup U_2, \mathscr{O}_X\right) = \Gamma\left(U_1, \mathscr{O}_X\right) \times \Gamma\left(U_2, \mathscr{O}_X\right)$$

But the product on the right hand side obviously contains zero divisors.

- (3): Trivial.
- (4): A is integral domain, then it has a unique minimal prime ideal. Hence, $\operatorname{Spec}(A)$ is irreducible. Since $A_{\mathfrak{p}}$ is a subring of $\operatorname{Frac}(A)$, $\operatorname{Spec}(A)$ is reduced scheme. Hence, $\operatorname{Spec}(A)$ is an integral scheme. By (2), if $\operatorname{Spec}(A)$ is an integer scheme, A is an integral domain.
- (5): If η is a generic point of X, for all affine open subscheme U such that $\eta \in U$, η is a generic point of $U = \operatorname{Spec}(A)$. That is, η corresponds to (0) in A. Then, $\mathscr{O}_{X,x} \simeq A_{(0)} = \operatorname{Frac}(A)$ is a field.

Definition 1.3.35. Let X be an integral scheme, and let $\eta \in X$ be its generic point. Then the local ring $\mathcal{O}_{X,\eta}$ is a field, which is called the function field of X and denoted by K(X).

Proposition 1.3.36. X be an integral scheme with generic point η .

(1) Let $U \subseteq V \subseteq X$ be non-empty open subsets. Then the maps

$$\Gamma\left(V,\mathscr{O}_{X}\right) \xrightarrow{\operatorname{res}_{U}^{V}} \Gamma\left(U,\mathscr{O}_{X}\right) \xrightarrow{f \mapsto f_{\eta}} K(X)$$

- (2) For all $x \in X$, there's a canonical injective map $\mathscr{O}_{X,x} \to \mathscr{O}_{X,\eta}$ gievn by $[s] \mapsto [s]$ and under this map, $\operatorname{Frac}(\mathscr{O}_{X,x}) = \mathscr{O}_{X,\eta}$.
- (3) For every non-empty open subset $U \subseteq X$ and for every covering $U = \bigcup_i U_i$ by non-empty open subsets U_i we have

$$\Gamma\left(U,\mathscr{O}_{X}\right) = \bigcap_{i} \Gamma\left(U_{i},\mathscr{O}_{X}\right) = \bigcap_{x \in U} \mathscr{O}_{X,x},$$

where the intersection takes place in K(X).

Proof: (1): It suffice to show the map $f \mapsto f_{\eta}$ is injective. Since $f_{\eta} = 0$ is equivalent to $f|_{W} = 0$ for all W open affine subscheme of U, we may assume U is an affine open subscheme. Consider the following commutative diagram

$$\mathcal{O}_{X,\eta} \xrightarrow{\simeq} \mathcal{O}_{\operatorname{Spec} A,(0)} \xrightarrow{\simeq} \operatorname{Frac}(A)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathcal{O}_X(U) \xrightarrow{\simeq} \mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} A) \xrightarrow{\simeq} A$$

Since $A \to \operatorname{Frac}(A)$ is injective, we have f = 0.

(2): By (1) and the following diagram

$$\begin{array}{cccc} \mathscr{O}_{X,\eta} & \stackrel{\simeq}{\longrightarrow} & \mathscr{O}_{\mathrm{Spec}A,(0)} & \stackrel{\simeq}{\longrightarrow} & \mathrm{Frac}(A) \\ \uparrow & & \uparrow & & \uparrow \\ \mathscr{O}_{X,x} & \stackrel{\simeq}{\longrightarrow} & \mathscr{O}_{\mathrm{Spec}A,\mathfrak{p}} & \stackrel{\simeq}{\longrightarrow} & A_{\mathfrak{p}} \end{array}$$

(3): Consider the following commutative diagram

and notice that \mathcal{O}_X is a sheaf.

Notice we define locally finite type and finite type k-scheme. The morphisms below are all in the category (Sch/k).

Definition 1.3.37. Let k be a field, and let $X \to \operatorname{Spec} k$ be a k-scheme. We call X a k-scheme locally of finite type or say that X is locally of finite type over k, if there is an affine open cover $X = \bigcup_{i \in I} U_i$ such that for all i, there's a k-algebra A_i such that

$$(U_i, \mathscr{O}_X|_{U_i}) \simeq (\operatorname{Spec}(A_i), \mathscr{O}_{\operatorname{Spec}(A_i)})$$

as k-scheme. We say that X is of finite type over k if X is locally of finite type and quasi-compact.

Proposition 1.3.38. Every (locally) finite type k-scheme is (locally) noetherian.

Proposition 1.3.39. Let X be a k-scheme locally of finite type and let $U \subseteq X$ be an open affine subset. Then the k-algebra $\Gamma(U, \mathcal{O}_X)$ is a finitely generated k-algebra.

Proof: Let $B = \Gamma(U, \mathcal{O}_X)$. Since the localization of a finitely generated k-algebra with respect to a single element is again finitely generated, we see, by Nike's Trick, that we can cover U by finitely many(since spectrum of a ring is compact) principal open subsets $D(f_i), f_1, \ldots, f_n \in B$, such that all localizations B_{f_i} are finitely generated k-algebras. The claim now follows from Algebra Proposition 2.4.30

Proposition 1.3.40. Let k be a field, let X be a k-scheme locally of finite type, and let $x \in X$. Then the following assertions are equivalent.

- (1) The point $x \in X$ is closed.
- (2) The field extension $k \hookrightarrow \kappa(x)$ is finite.
- (3) The field extension $k \hookrightarrow \kappa(x)$ is algebraic.

Proof: (1) implies (2): Take U with $x \in U$ and there's k-scheme

$$(U, \mathscr{O}_X|_U) \simeq (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$$

where A be a finitely generated k-algebra and x corresponds to a maximal ideal \mathfrak{m} of A. Consider the follow commutative diagram

Since A/\mathfrak{m} is a field and finite generated k-algebra, by Algebra 2.8.2, $\kappa(x)$ is a finte extension of k.

(3) implies (1): Again take U with $x \in U$ and there's k-scheme

$$(U, \mathscr{O}_X|_U) \simeq (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$$

where A be a finitely generated k-algebra and x corresponds to a prime ideal \mathfrak{p} of A.

Since $\kappa(x)$ is algebraic over k, A/\mathfrak{p} is integral over k. Hence \mathfrak{p} is a closed point in U. Consider all such U, we have x is closed in X.

Corollary 1.3.41. Let k be algebraically closed and let X be a k-scheme locally of finite type. Then

$${x \in X; x \text{ closed }} = {x \in X; k = \kappa(x)} = \text{Hom}_k(\text{Spec } k, X),$$

Proof: Field extension $k \to \kappa(x)$ is an isomorphism if and only if there's k-algebra homomorphism $\kappa(x) \to k$. And if there's k-algebra homomorphism $\kappa(x) \to k$, it is obviously unique.

Example 1.3.42. \mathbb{P}_k^n is an integral, finite type scheme over k.

Proof: reduced: \mathbb{P}_k^n is reduced since for all $x \in \mathbb{P}_k^n$, we may find $i \in \{0, \dots, n\}$ such that $x \in U_i = D_+(x_i)$. Then $\mathscr{O}_{\mathbb{P}_k^n, x}$ is a localization of a polynomial ring at a prime ideal, hence reduced.

irreducible: $D_+(f) \cap D_+(g) = D_+(fg)$ and notice that for all $h \in k[x_0, \dots, x_n]_+$, $D_+(h)$ is non-empty.

locally finite type: trivial

quasi-compact: \mathbb{P}_k^n is a finite union of compact open subset U_i .

Example 1.3.43. For $X = \operatorname{Spec}(\mathbb{Q}[x,y]/(x^n + y^n - 1))$ be a \mathbb{Q} -scheme, then

$$X(\mathbb{R}) = \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Q})}(X, \operatorname{Spec}(\mathbb{R})) = \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}[x, y] / (x^n + y^n - 1), \mathbb{R}) = \{(x, y) \in \mathbb{R}^2 : x^n + y^n = 1\}$$
 and

$$X(\mathbb{Q}) = \mathrm{Hom}_{\mathrm{Spec}(\mathbb{Q})}(X, \mathrm{Spec}(\mathbb{Q})) = \mathrm{Hom}_{\mathbb{Q}}(\mathbb{Q}[x,y]/(x^n + y^n - 1), \mathbb{Q}) = \left\{(x,y) \in \mathbb{Q}^2 : x^n + y^n = 1\right\}$$

Moreover, since closed point corresponds to the maximal ideal of $\mathbb{Q}[x,y]/(x^n+y^n-1)$ and $X(\mathbb{Q})$ be those maximal ideals \mathfrak{m} of $\mathbb{Q}[x,y]$ which contain x^n+y^n-1 and have a \mathbb{Q} -algebra isomorphism $\mathbb{Q}[x,y]/\mathfrak{m} \to \mathbb{Q}$. Therefore, \mathfrak{m} is of the form $(x-x_0,y-y_0)$ where (x_0,y_0) be a solution of $x^n+y^n=1$.

1.4 Immersions

Definition 1.4.1. A morphism $j: Y \to X$ of schemes is called an open immersion, if the underlying continuous map is a homeomorphism of Y with an open subset U of X, and the sheaf homomorphism $\mathscr{O}_X \to j_*\mathscr{O}_Y$ induces an isomorphism $\mathscr{O}_{X|U} \cong (j_*\mathscr{O}_Y)_{|U}$ (of sheaves on U).

Remark 1.4.2. There's a natural one-to-one correspondence between open immersion and open subscheme.

Definition 1.4.3. Given a scheme (X, \mathcal{O}_X) , we call a subsheaf $\mathscr{J} \subseteq \mathcal{O}_X$ a sheaf of ideals, if for every open subset $U \subseteq X$ the sections $\Gamma(U, \mathscr{J})$ are an ideal in $\Gamma(U, \mathcal{O}_X)$. The quotient sheaf $\mathscr{O}_X/\mathscr{J}$ is defined as the sheafification of the presheaf $U \mapsto \mathscr{O}_X(U)/\mathscr{J}(U)$. It is a sheaf of rings. The canonical projection $\mathscr{O}_X \to \mathscr{O}_X/\mathscr{J}$ is surjective.

Definition 1.4.4. Let X be a scheme.

- (1) A closed subscheme of X is given by a closed subset $Z \subseteq X$ with inclusion map $i: Z \to X$ and an ideal sheaf $\mathscr{J} \subseteq \mathscr{O}_X$ such that $Z = \{x \in X : (\mathscr{O}_X/\mathscr{J})_x \neq 0\}$ and $(Z, i^{-1}\mathscr{O}_X/\mathscr{J})$ is a scheme.
- (2) A morphism $i:(Z,\mathcal{O}_Z)\to (X,\mathcal{O}_X)$ of schemes is called a closed immersion, if the underlying continuous map is a homeomorphism between Z and a closed subset of X, and the sheaf homomorphism $i^b:\mathcal{O}_X\to i_*\mathcal{O}_Z$ is surjective.

Proposition 1.4.5. X be a scheme and Z be a closed subscheme associated to ideal sheaf \mathscr{J} . Then, the morphism of ringed space $(Z, i^{-1}\mathscr{O}_X/\mathscr{J}) \to (X, \mathscr{O}_X)$ induced by the natural projection $\mathscr{O}_X \to \mathscr{O}_X/\mathscr{J}$ and the isomorphism $\mathscr{O}_X/\mathscr{J} \to i_*i^{-1}\mathscr{O}_X/\mathscr{J}$ is a morphism of locally ringed space and closed immersion.

Proof: Step 1: The stalk of the morphism of sheaves $\mathscr{O}_X \to \mathscr{O}_X/\mathscr{J}$ is a local ring homomorphism.

It's clear for the case when $x \notin Z$, since $(\mathscr{O}_X/\mathscr{J})_x = 0$. For $x \in Z$, since the stalk of the presheaf $U \mapsto \mathscr{O}_X(U)/\mathscr{J}(U)$ at x is $\mathscr{O}_{X,x}/\mathscr{J}_x$ where $J_x \neq \mathscr{O}_{X,x}$. And notice that the projection $\mathscr{O}_{X,x} \to \mathscr{O}_{X,x}/\mathscr{J}_x$ is a local ring homomorphism.

1.4. IMMERSIONS 31

Step 2: $\mathcal{O}_X \to \mathcal{O}_X/\mathcal{J}$ is surjective.

By taking stalks, it suffice to show $\mathscr{O}_X(U) \to \mathscr{O}_X(U)/\mathscr{J}(U)$ is surjective for all U open in X.

Proposition 1.4.6. If $i:(Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ is a closed immersion, consider the kernel of the morphism of sheaves $\varphi: \mathcal{O}_X \to i_*\mathcal{O}_Z$. It's clear that $\operatorname{Ker}\varphi$ is an ideal sheaf. By Proposition 1.1.9, the natural morphism

$$\mathscr{O}_X/\mathrm{Ker}\varphi \to i_*\mathscr{O}_Z$$

is an isomorphism of sheaves.

Moreover, since (Z, \mathcal{O}_Z) is a scheme and Z is closed in X, Supp $(i_*\mathcal{O}_Z) = Z$. Hence the support of $\mathcal{O}_X/\mathrm{Ker}\varphi$ is Z. Then by Proposition 1.1.22, a closed immersion induces a closed subscheme.

Theorem 1.4.7 (closed subscheme of affine scheme). Let $X = \operatorname{Spec} A$ be an affine scheme. $i: (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ be a closed immersion. Then the global section map

$$\varphi: A \to \Gamma(Z, \mathscr{O}_Z)$$

induces a commutative diagram of scheme:

Then ψ is an isomorphism of scheme.

Proof: Since i is an closed immersion, ψ is closed and injective. Hence, ψ is also a closed immersion. To prove ψ is surjective, it suffices to show the following lemma:

Lemma 1.4.8. Let $X = \operatorname{Spec} A$ be an affine scheme. $i: (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ be a closed immersion such that the induced map on global section $\varphi: A \to \Gamma(Z, \mathcal{O}_Z)$ is injective. Then, i is surjective.

Proof of the lemma: Assume X - Z is non-empty. Let $s \in A$ with $\emptyset \neq D(s) = X_s \subset X - Z$. Then $Z \subset X - X_s$. Hence, $Z \subset Z \cap (X - X_s)$. For all $x \in Z$, we have the following commutative diagram

$$\Gamma(Z, \mathscr{O}_Z) \longleftarrow A$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathscr{O}_{Z,x} = i_*(\mathscr{O}_Z)_x \longleftarrow \mathscr{O}_{X,x}$$

Hence, $Z \subset Z \cap (X - X_s) \subset Z - Z_{\varphi(s)}$. If $U \subseteq Z$ is open, such that $(U, \mathscr{O}_{Z|U}) \simeq \operatorname{Spec}(B)$ is affine. By Proposition 1.3.33, $U \subset \operatorname{Spec}(B) - D(\varphi(s)|_U)$. Hence, $\varphi(s)|_U$ is nilpotent. Moreover, since Z can be covered by finite many affine open subscheme, there's some sufficiently large N such that $\varphi(s)^N$ is nilpotent. Hence, $s^N = 0$. It contradicts to $\varnothing \neq X_s$.

To show that ψ is an isomorphism of scheme. We still need the following lemma

Lemma 1.4.9. Let $X = \operatorname{Spec} A$ be an affine scheme. $(i, i^b) : (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ be a closed immersion such that the induced map on global section $\varphi : A \to \Gamma(Z, \mathcal{O}_Z)$ is injective. Then, i^b is injective.

Proof of the lemma: For $x \in X$, $\mathscr{O}_{X,x} = A_{\mathfrak{p}_x}$, and we see that it is enough to show that every element of Ker $(\mathscr{O}_{X,x} \to \mathscr{O}_{Z,x})$ of the form g/1 is 0 in $\mathscr{O}_{X,x}$. Given g, we cover $Z = U \cup \bigcup_{i \in I} U_i$ by finitely many open subsets U, U_i , such that: (1) The schemes $(U, \mathscr{O}_{Z|U})$ and $(U_i, \mathscr{O}_{Z|U_i})$ for all i are affine. (2) We have $x \in U$ and $\varphi(g)_{|U} = 0$.

Choose $s \in A$ with $x \in D(s) \subseteq U$. If we can show that $\varphi(s^N g) = 0$ for some N, then $s^N g = 0$ because φ is injective, and it follows that g/1 = 0 in $\mathscr{O}_{X,x}$, as desired, since s is a unit in $\mathscr{O}_{X,x}$. Since $\varphi(g)_{|U} = 0$ by assumption, we have $\varphi(sg)_{|U} = 0$. Now I is finite, so we can search a suitable N for each U_i separately. Because

$$D_{U_i}\left(\varphi(s)_{|U_i}\right) = Z_{\varphi(s)} \cap U_i \subset D(s) \cap U_i$$

, we obtain $\varphi(g)_{|D_{U_i}(\varphi(s)|_{U_i})}=0$. In other words, the image of $\varphi(g)$ in the localization $\Gamma\left(U_i,\mathscr{O}_Z\right)_{\varphi(s)|_{U_i}}$ is 0.

Definition 1.4.10 (immersion). (1) Let X be a scheme. A subscheme of X is a scheme (Y, \mathcal{O}_Y) , such that $Y \subseteq X$ is a locally closed subset, and such that Y is a closed subscheme of the open subscheme $U \subseteq X$, where U is the largest open subset of X which contains Y and in which Y is closed. We then have a natural morphism of schemes $Y \to X$.

(2) An immersion $i: Y \to X$ is a morphism of schemes whose underlying continuous map is a homeomorphism of Y onto a locally closed subset of X, and such that for all $y \in Y$ the ring homomorphism $i_y^{\sharp}: \mathscr{O}_{X,i(y)} \to \mathscr{O}_{Y,y}$ between the local rings is surjective.

It's easy to check there's one-to-one correspondence between immersion and open subscheme.

Definition 1.4.11. Let k be a field.

- (1) A k-scheme X is called projective, if there exist $n \geq 0$ and a closed immersion $X \hookrightarrow \mathbb{P}_k^n$.
- (2) A k-scheme X is called quasi-projective, if there exist $n \geq 0$ and an immersion $X \hookrightarrow \mathbb{P}_k^n$.

Proposition 1.4.12. Let **P** be the property of a morphism of schemes being an "open immersion" (resp. a "closed immersion", resp. an "immersion").

- (1) The property **P** is local on the target, i.e.: If $f: Z \to X$ is a morphism of schemes, and $X = \bigcup_i U_i$ is an open covering, then f has **P** if and only if for all i the restriction $f^{-1}(U_i) \to U_i$ of f satisfies **P**.
- (2) The composition of two morphisms having property **P** has again property **P**.

Proposition 1.4.13. Every affine k-scheme X of finite type is quasi-projective: Indeed, let $X = \operatorname{Spec} A$, where $A \cong k [T_1, \ldots, T_n] / \mathfrak{a}$. Therefore there exists a closed immersion $i : X \to \mathbb{A}^n_k$. Moreover, projective space \mathbb{P}^n_k is covered by open subschemes which are isomorphic to \mathbb{A}^n_k . Hence, he composition $j \circ i$ is then an immersion $X \to \mathbb{P}^n_k$.

Example 1.4.14. Consider $X = \operatorname{Proj}\mathbb{C}[x,y,z]/(zy^2 - (4x^3 - a_2xz^2 - a_3z^3))$ with $a_2^3 - 27a_2^2 \neq 0$ as a \mathbb{C} - scheme. Firstly, the natural morphism $X \to \mathbb{P}^2_{\mathbb{C}}$ is a closed immersion. Moreover, consider the \mathbb{C} -points $X(\mathbb{C})$ of X. We have

$$X(\mathbb{C}) = \{\infty\} \cup \{(x,y) \in \mathbb{C}^2 : y^2 = 4x^3 - a_2x - a_3\}$$

where ∞ represents the point (x,z) in Proj $\mathbb{C}[x,y,z]/(zy^2-(4x^3-a_2xz^2-a_3z^3))$.

Now we show that X is an integral, projective, \mathbb{C} -finite type scheme.

irreducible: show that $D_+(z) \cap D_+(f) \neq \emptyset$ for all $D_+(f) \neq \emptyset$.

reduced: It suffice to show

$$Spec(\mathbb{C}[x,y]/(y^2-(4x^3-a_2x-a_3)))$$

is integral and

$$\operatorname{Spec}(\mathbb{C}[x,z]/(z-(4x^3-a_2xz^2-a_3z^3)))$$

is integral.

C-finite type: trivial.

Definition 1.4.15 (reduced subscheme of a scheme).

1.5 Fibered Products

Proposition 1.5.1. Let S be a scheme and let X and Y be two S-schemes. Then the fiber product $X \times_S Y$ exists in the category of schemes.

Proposition 1.5.2. Let $f: X \to S$ and $g: Y \to S$ be morphisms of schemes with the same target. Let $(X \times_S Y, p, q)$ be the fibre product. Suppose that $U \subset S, V \subset X, W \subset Y$ are open subschemes such that $f(V) \subset U$ and $g(W) \subset U$. Then the canonical morphism $V \times_U W \to X \times_S Y$ is an open immersion which identifies $V \times_U W$ with $p^{-1}(V) \cap q^{-1}(W)$.

Corollary 1.5.3. Let k be a field and let X and Y be k-schemes (locally) of finite type. Then $X \times_k Y$ is (locally) of finite type over k.

Example 1.5.4. Let $A \leftarrow R \rightarrow B$ be homomorphisms of rings, let $S = \operatorname{Spec}(R)$, $X = \operatorname{Spec}(A)$, and $Y = \operatorname{Spec}(B)$. Set $Z = \operatorname{Spec}(A \otimes_R B)$ and let $p : Z \rightarrow X$ and $q : Z \rightarrow Y$ be the morphisms of schemes corresponding to the ring homomorphisms

$$\alpha: A \to A \otimes_R B, \quad a \mapsto a \otimes 1$$

 $\beta: B \to A \otimes_R B, \quad b \mapsto 1 \otimes b$

Then (Z, p, q) is a fiber product of X and Y over S in the category of schemes.

Example 1.5.5. Let R be a ring, and $\mathbb{A}_R^n = \operatorname{Spec}(R[T_1, \dots, T_n])$ be the affine space over R. For integers $n, m \geq 0$ one has $R[T_1, \dots, T_n] \otimes_R R[T_{n+1}, \dots, T_{n+m}] \cong R[T_1, \dots, T_{n+m}]$ and therefore the description of fiber products for affine schemes that

$$\mathbb{A}^n_R \times_R \mathbb{A}^m_R \cong \mathbb{A}^{n+m}_R$$

Definition 1.5.6 (Relative Frobenius). Let p be a prime number and let S be a scheme over \mathbb{F}_p . We denote by $\operatorname{Frob}_S: S \to S$ the absolute Frobenius of S: Frob_S is the identity on the underlying topological spaces and Frob_S^b is the map $x \mapsto x^p$ on $\Gamma(U, \mathscr{O}_S)$ for all open subsets U of S.

Now let $f: X \to S$ be an S-scheme. Note that Frob_X is in general not an S-morphism. Instead of the absolute Frobenius we therefore introduce a relative variant.

Let $X^{(p)}$ be the fiber product of $S \xrightarrow{\text{Frob}_S} S$ and $X \to S$, then $F_{X/S}$ is called relative Frobenius of X over S.

Example 1.5.7. Let $\mathbb{F}_q = \mathbb{F}_{p^n}$ be a finite field over \mathbb{F}_p . If $f = \sum a_{\alpha} x^{\alpha} \in \mathbb{F}_q[x_1, \dots, x_n]$, define $f^{(p)} = \sum a_{\alpha}^p x^{\alpha}$. Assume X is a scheme, consider the following commutative diagram

where h is defined by $h(\alpha_i x_i) = g(\alpha_i) f(x_i)$. This shows that $\operatorname{Spec}(\mathbb{F}_q[x_1, \dots, x_n]/(f_j^{(p)}))$ is the fiber product of $\operatorname{Spec}(\mathbb{F}_q) \xrightarrow{\operatorname{Frob}} \operatorname{Spec}(\mathbb{F}_q)$ and $\operatorname{Spec}(\mathbb{F}_q[x_1, \dots, x_n]/(f_j)) \to \operatorname{Spec}(\mathbb{F}_q)$.

In particular, if $X = \operatorname{Spec}(\mathbb{F}_q[x_1, \dots, x_n]/(f_j))$, $f = \operatorname{Frob}_X$ and $g = \operatorname{id}$, then h is a \mathbb{F}_p -algebra homomorphism such that $h(x_i) = x_i^p$.

That is, although $f \to f^p$ can factor through two \mathbb{F}_p -algebra homomorphisms.

Example 1.5.8. Since fiber product exists in category of scheme, consider a morphism $\operatorname{Spec}(\mathbb{C}) \to \operatorname{Spec}(\mathbb{R})$ and a \mathbb{R} -scheme Y, we have

$$\operatorname{Hom}_{\operatorname{Spec}(\mathbb{R})}(\operatorname{Spec}(\mathbb{C}), Y) = \operatorname{Hom}_{\operatorname{Spec}(\mathbb{C})}(\operatorname{Spec}(\mathbb{C}), Y \times_{\mathbb{R}} \operatorname{Spec}(\mathbb{C}))$$

Example 1.5.9. If field K is a extension of k, consider a morphism $\operatorname{Spec}(\mathbb{K}) \to \operatorname{Spec}(\mathbb{K})$ and k-schemes X, Y, we have

$$\operatorname{Hom}_k(\operatorname{Spec}(K), X \times_k Y) = \operatorname{Hom}_k(\operatorname{Spec}(K), X) \times \operatorname{Hom}_k(\operatorname{Spec}(K), Y)$$

Proposition 1.5.10. Let S be a scheme, X and Y two S-schemes, and let $f: X' \to X$ be a morphism of S-schemes. Let g be the morphism induced by universal property of fiber product

Then all squares in the following diagram are cartesian

$$Z' = X' \times_S Y \xrightarrow{-g} Z = X \times_S Y \xrightarrow{q} Y$$

$$\downarrow^{p'} \qquad \qquad \downarrow^{p} \qquad \qquad \downarrow$$

$$X' \xrightarrow{f} X \xrightarrow{g} X \xrightarrow{g} X$$

In addition, assume that $f: X' \to X$ can be written as the composition of scheme morphisms which satisfy the following condition: each morphism is a homeomorphism onto its image and also satisfies one of the assumptions (1), (2):

- (1) For each point $x' \in X'$, the homomorphism $f_{x'}^{\sharp}: \mathscr{O}_{X,f(x')} \to \mathscr{O}_{X',x'}$ is surjective, and there exists an open affine neighborhood V of f(x') such that $f^{-1}(V)$ is quasi-compact.
- (2) For each point $x' \in X'$, the homomorphism $f_{x'}^{\sharp} : \mathscr{O}_{X,f(x')} \to \mathscr{O}_{X',x'}$ is bijective.

Then, the morphism g is a homeomorphism of Z' onto

$$g(Z') = p^{-1}(f(X'))$$

Besides, for all $z' \in Z'$, consider following diagram

$$\mathcal{O}_{Z',z'} \leftarrow g_{z'}^{\sharp} \qquad \mathcal{O}_{Z,g(z')} \\
\uparrow \qquad \qquad \uparrow p_{g(z')}^{\sharp} \\
\mathcal{O}_{X',p'(z')} \leftarrow f_{p'(z')}^{\sharp} \qquad \mathcal{O}_{X,p(g(z'))}$$

induced by the "left square" of above diagram. We have the homomorphism $g_{z'}^{\sharp}$, is surjective and its kernel is generated by the image of the kernel of $f_{p'(z')}^{\sharp}$ under $p_{g(z')}^{\sharp}$.

Example 1.5.11. The following f satisfying above assumption

(1) f is an immersion of schemes

- (2) f is the canonical morphism Spec $\mathcal{O}_{X,x} \to X$ for some point $x \in X$.
- (3) f is the canonical morphism Spec $\kappa(x) \to X$ for some point $x \in X$.

Proof:

Definition 1.5.12 (fibers of morphism). Consider the natural morphism Spec $\kappa(s) \to S$ and a morphism $f: X \to S$. We define $X_s = X \times_S \operatorname{Spec} \kappa(s)$ be the fiber of $f: X \to S$ in s.

By Proposition 1.5.10, the underlying topological space of X_s is $f^{-1}(s)$.

Example 1.5.13. Consider a integral k-scheme of finite type be

$$X = \operatorname{Spec} k[U, T, S]/(UT - S)$$

Let $f: X \to \mathbb{A}^1_k = \operatorname{Spec}_k[S]$ be the natural morphism, then Spec_kA_s be the fiber of f in (S-s) where

$$A_s = k[U, T, S]/(UT - S) \otimes_{k[S]} k[S]/(S - s) = k[U, T, S]/(UT - S, S - s) = k[U, T]/(UT - s)$$

Hence, $X_s(k) = \{(x, y) \in k^2 : xy = s\}$

Definition 1.5.14 (inverse image of Z under f). Let $f: X \to Y$ be a morphism of schemes and let $i: Z \to Y$ be an immersion. Proposition 1.5.10 shows that the base change $i_{(X)}: Z \times_Y X \to X$ is surjective on stalks and a homeomorphism of $Z \times_Y X$ onto the locally closed subspace $f^{-1}(Z)$.

Therefore $i_{(X)}$ is an immersion.

Proposition 1.5.15. In above definition, if Z is closed subscheme of Y, then $f^{-1}(Z)$ is closed which implies $i_{(X)}$ is a closed immersion. By the second result of Proposition??, if i is open immersion, $i_{(X)}$ is also open immersion.

Definition 1.5.16 (intersection of subscheme). As a special case of the inverse image of a subscheme we can define the intersection of two subschemes: Let $i: Y \to X$ and $j: Z \to X$ be two subschemes.

Then the map $j \circ p$ is an immersion onto the locally closed subset $Y \cap X$.

Definition 1.5.17. For an arbitrary scheme S, define $\mathbb{P}_S^n = \mathbb{P}_{\mathbb{Z}} \times_{\mathbb{Z}} S$.

Definition 1.5.18. Let (Grp) be the category of groups and $V: (Grp) \to (Sets)$ the forgetful functor. Let S be a scheme and let G be an S-scheme. The following data for G are equivalent by Yoneda's lemma

- (1) A factorization of the functor $h_G: (\operatorname{Sch}/S)^{\operatorname{opp}} \to (\operatorname{Sets})$ through the forgetful functor $V: (\operatorname{Grp}) \to (\operatorname{Sets})$.
- (2) For all S-schemes T the structure of a group on $G_S(T)$ which is functorial in T (i.e., for all S-morphisms $T' \to T$ the associated map $G_S(T) \to G_S(T')$ is a homomorphism of groups).

Definition 1.5.19. A homomorphism of S-group schemes G and H is a morphism $G \to H$ of S-schemes such that for all S-schemes T the induced map $G(T) \to H(T)$ is a group homomorphism.

Example 1.5.20. $S = \operatorname{Spec} \mathbb{Z}$ and $G := \operatorname{GL}_n$ with $\operatorname{GL}_n(T) := \operatorname{GL}_n(\Gamma(T, \mathcal{O}_T))$, the group of invertible $(n \times n)$ -matrices over $\Gamma(T, \mathcal{O}_T)$, for any scheme T and for a fixed integer $n \geq 1$. The underlying scheme of GL_n is $\operatorname{Spec} A$ with $A = \mathbb{Z}\left[(T_{ij})_{1 \leq i,j \leq n}\right] \left[\det^{-1}\right]$, where $\det := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) T_{1\sigma(1)} \cdots T_{n\sigma(n)}$ is the determinant of the matrix $(T_{ij})_{i,j}$. This group scheme is called the general linear group scheme. We call $\mathbb{G}_m := \operatorname{GL}_1$ the multiplicative group scheme.

Example 1.5.21. The additive group scheme $\mathbb{G}_{a,S}$ over S is defined by $\mathbb{G}_{a,S}(T) = \Gamma(T, \mathscr{O}_T)$ for every S-scheme T. Its underlying S-scheme is \mathbb{A}^1_S .

1.6 Dimension of Scheme over k

Even for noetherian schemes the notion of dimension is sometimes quite counter-intuitive. If one restricts oneself to the case of schemes of finite type over a field, then the theory of dimension works mostly as expected, and is a very useful invariant.

Proposition 1.6.1. Let X be a topological space.

- (1) Let Y be a subspace of X. Then $\dim Y \leq \dim X$. If X is irreducible, $\dim X < \infty$, and $Y \subsetneq X$ is a proper closed subset, then $\dim Y < \dim X$.
- (2) Let $X = \bigcup_{\alpha} U_{\alpha}$ be an open covering. Then

$$\dim X = \sup_{\alpha} \dim U_{\alpha}.$$

(3) Let I be the set of irreducible components of X. Then

$$\dim X = \sup_{Y \in I} \dim Y.$$

(4) Let X be a scheme. Then

$$\dim X = \sup_{x \in X} \dim \mathscr{O}_{X,x}$$

Example 1.6.2. dim $\mathbb{A}_k^n = \dim \mathbb{P}_k^n = n$

Proposition 1.6.3. Let $i: Y \to X$ be a closed immersion of schemes, where X is integral. If $\dim X = \dim Y < \infty$, then i is an isomorphism.

Proof: By Proposition 1.6.1, i is a homeomorphism. Hence, we need to show the map on stalks $\mathscr{O}_{X,i(x)} \to \mathscr{O}_{Y,x}$ is injective. Since X is integral, take $i(\eta)$ be the generic point of X. It's easy to check the follow diagram commute

$$\begin{array}{ccc}
\mathscr{O}_{X,i(x)} & \longrightarrow & \mathscr{O}_{Y,x} \\
\downarrow & & \downarrow \\
\mathscr{O}_{X,i(\eta)} & \longleftarrow & \mathscr{O}_{Y,\eta}
\end{array}$$

Since $\mathscr{O}_{X,i(\eta)}$ is a field, $\mathscr{O}_{X,i(\eta)} \to \mathscr{O}_{Y,\eta}$ is injective. Hence, $\mathscr{O}_{X,i(x)} \to \mathscr{O}_{Y,x}$ is injective.

Lemma 1.6.4. Let $A \to B$ be a finitely generated A-algebra. Then all fibers of the morphism $\operatorname{Spec} B \to \operatorname{Spec} A$ are finite (as sets).

Proof: Let $\mathfrak{p} \subset A$ be a prime ideal. We must show that the ring $B \otimes_A \kappa(\mathfrak{p})$ has only finitely many prime ideals. However, this ring is a finite-dimensional $\kappa(\mathfrak{p})$ -vector space and thus it is Artinian (every ideal is also a $\kappa(\mathfrak{p})$ -subvector space, and every descending chain of subvector spaces of a finite-dimensional vector space becomes stationary) and therefore its spectrum has only finitely many points by Algebra Proposition 2.3.9.

1.7 Separated Morphisms

Proposition 1.7.1. Equalizer exists in category Sch/S.

Proof: Conisder $f, g: X \to Y$ be two S-morphisms and $h: T \to X$ be S-morphisms such that $f \circ h = g \circ h$.

By universal property of fiber product, there's unique S-morphism (f, g), making the following diagram commutes:

Consider the following diagram

It's easy to check $f \circ \pi_X = \pi_Y = g \circ \pi_X$. Moreover, $p \circ (f,g) \circ h = p \circ \Delta_{Y/S} \circ f \circ h$ and $q \circ (f,g) \circ h = q \circ \Delta_{Y/S} \circ f \circ h$ implies $(f,g) \circ h = \Delta_{Y/S} \circ f \circ h$. Hence, there's unique θ such that above diagram commutes.

Proposition 1.7.2. Let $S = \operatorname{Spec} R$ be an affine scheme, let $X = \operatorname{Spec} B \to S$ and $Y = \operatorname{Spec} A \to S$ be affine S-schemes and let $f: X \to Y$ be an S-morphism corresponding to an R-algebra morphism $\varphi: A \to B$. Then the diagonal morphism $\Delta_{X/S}$ and graph morphism Γ_f correspond to the following surjective ring homomorphisms.

$$\Delta_{B/R}: B \otimes_R B \to B, \quad b \otimes b' \mapsto bb',$$

 $\Gamma_{\varphi}: A \otimes_R B \to B, \quad a \otimes b \mapsto \varphi(a)b.$

In particular $\Delta_{X/S}$ and Γ_f are closed immersions.

Proposition 1.7.3. Let S be a scheme, let X and Y be S-schemes, and let $f, g: X \to Y$ be morphisms of S-schemes. Then $\Delta_{X/S}, \Gamma_f$, and the canonical morphism $\text{Eq}(f,g) \to X$ are immersions.

Proof: $\Delta_{X/S}$: Assume S is affine. By Proposition 1.5.2, Proposition 1.7.2, we may find $U_i \times_S U_i$, $i \in I$ open in $Y \times_S Y$ such that U_i are affine open subschemes of Y which cover the image of Y (notice that $U_i \times_S U_i$ may not cover $Y \times_S Y$). Then the diagonal morphism is locally a closed immersion, which implies the image of Y is locally closed.

 Γ_f : the same as $\Delta_{X/S}$.

Eq(f,g): Since immersion is stable under base change, then it follows from the proof of existence of equalizer in category of schemes.

Lemma 1.7.4. Let $u: X \to S, v: Y \to S$ be S-objects, let $p: X \times_S Y \to X$ and $q: X \times_S Y \to Y$ be the projections, and $f, g: X \to Y$ two S-morphisms.

$$\Delta_{X/S} = \Gamma_{\mathrm{id}_X}, \quad \Gamma_f = \left(\mathrm{can} : \mathrm{Eq}\left(X \times_S Y \xrightarrow{q \atop f \circ p} Y\right) \to X \times_S Y\right).$$

Proof:

$$X \xrightarrow{\Gamma_f} X \times_S Y \xrightarrow{f \circ p} Y$$

$$T$$

Definition 1.7.5. A morphism of schemes $v: Y \to S$ is called separated if the following equivalent conditions are satisfied.

- (1) The diagonal morphism $\Delta_{Y/S}$ is a closed immersion.
- (2) For every S-scheme X and for any two S-morphisms $f, g: X \to Y$ the equalizer $\text{Eq}(f, g) \subseteq X$ is a closed subscheme of X.
- (3) For every S-scheme X and for any S-morphism $f: X \to Y$ its graph Γ_f is a closed immersion.

Proof: (1) implies (2): closed immersion stalbe under base change

- (2) implies (3): By Lemma 1.7.4.
- (3) implies (1): Take X = Y and f = id.

Proposition 1.7.6. These are basic examples of separated morphism.

- (1) Every monomorphism of schemes (and in particular every immersion) is separated.
- (2) The property of being separated is stable under composition, stable under base change, and local on the target.

Proof: (1): $f: X \to S$ be a monomorphism, then X is isomorphic to $X \times_S X$ under $\Delta_{X/S}$ since X also satisfies the universal property of fiber product.

Proposition 1.7.7. Let $S = \operatorname{Spec} R$ be an affine scheme and let X be an S-scheme. Then the following assertions are equivalent.

- (1) X is separated.
- (2) For every two open affine sets $U, V \subseteq X$ the intersection $U \cap V$ is affine and

$$\rho_{U,V}:\Gamma\left(U,\mathscr{O}_{X}\right)\otimes_{R}\Gamma\left(V,\mathscr{O}_{X}\right)\to\Gamma\left(U\cap V,\mathscr{O}_{X}\right),\quad\left(s,t\right)\mapsto s_{|U\cap V}\cdot t_{|U\cap V}$$

is surjective.

(3) There exists an open affine covering $X = \bigcup_i U_i$ such that $U_i \cap U_j$ is affine and $\rho_{U_i,U_j} : \Gamma(U_i, \mathscr{O}_X) \otimes_R \Gamma(U_j, \mathscr{O}_X) \to \Gamma(U_i \cap U_j, \mathscr{O}_X)$ is surjective for all i, j.

Example 1.7.8. k be a field, \mathbb{P}_k^n is separated.

1.8 Quasi-coherent modules