PSTAT	100R	410	4
TSIAL	12012	nu	

-	131A 1 100 2
	Reading Outline
1)	- A confidence interval is defined as interval estimators
	where it is a rule specifying the method for using the
	Sample measurements to calculate two numbers that form
	the endpoints of the interval.
	- They can be used if there is a high probability of
	enclosing our target parameter, giving us more confidence
	Versus a point estimator which is almost certain to never
	equal to the target parameter.
4)	
	Ex: By definition, a 1-00 confidence interval is:
	P(0 < 0 < 0) = 1 - a
	- Upper Confidence Bound is 8
	- Lower Confidence Bound is &
	- Target Parameter is 8
	- Confidence Coefficient is 1-00
3)	- The photal quantity is a function of the sample measurements
	and the only unknown parameter &
	- For a random value Y, and for sign than
	1 (4 = 7 < 6) = 7 0 /
4)	nas a sel
-	- Bounds should be as follows: $9(-2\alpha/2(Z(Z\alpha/2))=1-\alpha$
+	$(-\alpha/2 \cdot 2 \cdot 2 \cdot 2\alpha/2) = (-\alpha$
-	- Substitute Z value and some to get P(B-Za/28 50 & B+Za/28)=1-0,
1	which results in a $100(1-\alpha)$ % confidence interval

1.)
$$f(y) = \begin{cases} \frac{1}{\theta} e^{-y/\theta} & y > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{O}_1 = Y_1, \quad \hat{O}_2 = \frac{Y_1 + Y_2}{2}$$

$$\hat{O}_2 = Y_1 + 2Y_2, \quad \hat{O}_3 = \frac{Y_1 + Y_2}{2}$$

$$\hat{O}_{3} = \frac{Y_{1} + Y_{2}}{3}$$
, $\hat{O}_{4} = \min(Y_{1}, Y_{2}, Y_{3})$
 $\hat{O}_{5} = \overline{Y}$

Var
$$(\hat{\theta}_2) = (\frac{1}{2}\theta)^2 + (\frac{1}{2}\theta)^2 = \frac{1}{2}\theta^2$$

$$Var(\hat{\theta}_5) = (\frac{1}{3}0)^2 = \frac{10^2}{9}$$

C)
$$MSE(\hat{\Theta}_1) = \Theta^2$$
 $MSE(\hat{\Theta}_2) = \frac{1}{2}\Theta^2$
 $MSE(\hat{\Theta}_3) = \frac{5}{9}\Theta^2$
 $MSE(\hat{\Theta}_3) = \frac{5}{9}\Theta^2$
 $MSE(\hat{\Theta}_3) = \frac{5}{9}\Theta^2$

2) a)
$$E(n(Y|n)(1-Y|n))$$

= $nE((Y|n)(1-Y|n))$
= $nE((Y|n)-nE(Y^2|n^2))$
=> $np - \frac{1}{n}E(Y^2)$
= $np - \frac{1}{n}((1-p)np+n^2p^2)$
= $np - p(1-p)-np^2$

Because of this, the estimate should be:

$$\frac{n^2}{n-1} \left(\frac{Y}{n}\right) \left(1-\frac{Y}{n}\right)$$

3) $Y_{1}Y_{n} \stackrel{iid}{\sim} f(y)$ $EY_{i} \overline{Y} = \hat{\mu}$ $P(\overline{Y} - N > \kappa) \leq \frac{\sigma^{2}}{n\kappa}$ a) $P(E > .01) \geq .99$ $1 - \frac{\sigma^{2}}{n\kappa^{2}} = .99$	c) When large population variances occur, the error of estimation should be higher as a result
$\frac{\theta^2}{n(.01)^2} \le .01$ $\frac{\theta^2}{(.01)^3} \le n$	
b)i)(when $0^2 = 1$, $\frac{1}{(.01)^3} \le n$	
$n = 1,000,000$ When $0^2 = 4$, $(.01)^3 \leq n$	
$n = 4,000,000$ (iii) When $0^2 = 9$, q (.01)3 $= n$	
n = 9,000,000	

4)
$$Z \sim N(1,0)$$

 $P(1\overline{Y} - \mu | > \kappa) = 1 - P(-\kappa \leq \overline{Y} - \mu \leq \kappa)$
 $= 1 - P(-\frac{\kappa\sqrt{n}}{\sigma} \leq Z \leq \frac{\kappa\sqrt{n}}{\sigma})$
 $= 2 \overline{\Xi} (-\frac{\kappa\sqrt{n}}{\sigma})$
 $= 2 \overline{\Xi} (-\frac{\kappa\sqrt{n}}{\sigma})$

$$\Rightarrow P(z \leq \frac{k\sqrt{n}}{4}) - P(z \leq \frac{-k\sqrt{n}}{4})$$

$$\Rightarrow 1-P(Z < \frac{-K\sqrt{n}}{6}) - P(Z \leq \frac{-K\sqrt{n}}{6})$$

$$= 1-2 \mp (\frac{-K\sqrt{n}}{6})$$

$$\Rightarrow -k\sqrt{5} = -2.757 \quad n = \left(\frac{2.7570}{0.01}\right)^2$$

c)
$$n_1 = \left(\frac{2.757}{.01}\right)^2 = \left[\frac{76016.49}{.01}\right]$$

$$n_{4} = \left(\frac{2.757(2)}{.01}\right)^{2} = 304041.96$$