# Generative Models for Clustering, GMM, and Intro to EM

Piyush Rai

Machine Learning (CS771A)

Sept 26, 2016

• A probabilistic way to think about the data generation process



A probabilistic way to think about the data generation process



• Idea: First generate a random latent variable z from a prior distr.  $p(z|\phi)$  and then generate x conditioned on z from the data distr.  $p(x|z,\theta)$ 

• A probabilistic way to think about the data generation process



- Idea: First generate a random latent variable z from a prior distr.  $p(z|\phi)$  and then generate x conditioned on z from the data distr.  $p(x|z,\theta)$
- Some exceptions to this general view/definition of a generative model:

• A probabilistic way to think about the data generation process



- Idea: First generate a random latent variable z from a prior distr.  $p(z|\phi)$  and then generate x conditioned on z from the data distr.  $p(x|z,\theta)$
- Some exceptions to this general view/definition of a generative model:
  - Not all generative models have latent variables (e.g., for each observation, the other observations may play the role of latent variables)



A probabilistic way to think about the data generation process



- Idea: First generate a random latent variable z from a prior distr.  $p(z|\phi)$  and then generate x conditioned on z from the data distr.  $p(x|z,\theta)$
- Some exceptions to this general view/definition of a generative model:
  - Not all generative models have latent variables (e.g., for each observation, the other observations may play the role of latent variables)



• The z to x map may be a deterministic fn. (e.g., a neural or deep neural net)

A probabilistic way to think about the data generation process



- Idea: First generate a random latent variable z from a prior distr.  $p(z|\phi)$  and then generate x conditioned on z from the data distr.  $p(x|z,\theta)$
- Some exceptions to this general view/definition of a generative model:
  - Not all generative models have latent variables (e.g., for each observation, the other observations may play the role of latent variables)



- The z to x map may be a deterministic fn. (e.g., a neural or deep neural net)
- We will focus on probabilistic generative models with latent variables



# Generative Models for Clustering

- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- Let  $0 \le \pi_k \le 1$  denote the "mixing weight" of the *k*-th Gaussian. It means:
  - $\pi_k$  is the fraction of points generated from the k-th Gaussian

- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- Let  $0 \le \pi_k \le 1$  denote the "mixing weight" of the *k*-th Gaussian. It means:
  - $\pi_k$  is the fraction of points generated from the k-th Gaussian
  - $\pi_k = p(z_n = k)$  is the prior prob. of  $x_n$  belonging to the k-th Gaussian

- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- Let  $0 \le \pi_k \le 1$  denote the "mixing weight" of the *k*-th Gaussian. It means:
  - $\pi_k$  is the fraction of points generated from the k-th Gaussian
  - $\pi_k = p(z_n = k)$  is the prior prob. of  $x_n$  belonging to the k-th Gaussian
- Let  $\pi = (\pi_1, \pi_2, \dots, \pi_K)$  denote the vector of mixing wts of K Gaussians. This is a probability vector and sums to 1, i.e.,  $\sum_{k=1}^K \pi_k = 1$

- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- Let  $0 \le \pi_k \le 1$  denote the "mixing weight" of the *k*-th Gaussian. It means:
  - $\pi_k$  is the fraction of points generated from the k-th Gaussian
  - $\pi_k = p(z_n = k)$  is the prior prob. of  $x_n$  belonging to the k-th Gaussian
- Let  $\pi = (\pi_1, \pi_2, \dots, \pi_K)$  denote the vector of mixing wts of K Gaussians. This is a probability vector and sums to 1, i.e.,  $\sum_{k=1}^{K} \pi_k = 1$
- Notation  $z_n = k$  is equivalent to a size K one-hot vector  $z_n$

$$z_n = \underbrace{\begin{bmatrix} 0 & 0 & \dots & 1 & 0 & 0 \end{bmatrix}}_{\text{output}}$$

all zeros except the k-th bit, i.e.,  $z_{nk}\,=\,1$ 

- A generative model for data clustering
- Data assumed generated from a mixture of K Gaussians



- Let  $0 \le \pi_k \le 1$  denote the "mixing weight" of the k-th Gaussian. It means:
  - $\pi_k$  is the fraction of points generated from the k-th Gaussian
  - $\pi_k = p(z_n = k)$  is the prior prob. of  $x_n$  belonging to the k-th Gaussian
- Let  $\pi = (\pi_1, \pi_2, \dots, \pi_K)$  denote the vector of mixing wts of K Gaussians. This is a probability vector and sums to 1, i.e.,  $\sum_{k=1}^{K} \pi_k = 1$
- Notation  $z_n = k$  is equivalent to a size K one-hot vector  $z_n$

$$\mathbf{z}_n = [0 \ 0 \dots 1 \ 0 \ 0]$$

all zeros except the k-th bit, i.e.,  $z_{nk}=1$ 

• Note: The prior  $p(\boldsymbol{z}|\pi)$  on each  $\boldsymbol{z}_n$  is a multinomial, i.e.,  $p(\boldsymbol{z}_n|\pi) = \prod_{k=1}^K \pi_k^{\boldsymbol{z}_{nk}}$ 

• The generative story for each  $x_n$ , n = 1, 2, ..., N

- The generative story for each  $x_n$ , n = 1, 2, ..., N
  - First choose one of the K mixture components as

 $z_n \sim \text{Multinomial}(z_n|\pi)$  (from the prior p(z) over z)

- The generative story for each  $x_n$ , n = 1, 2, ..., N
  - First choose one of the K mixture components as

$$z_n \sim \text{Multinomial}(z_n|\pi)$$
 (from the prior  $p(z)$  over  $z$ )

• Suppose  $z_n = k$ . Now generate  $x_n$  from the k-th Gaussian as

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (from the data distr.  $p(\mathbf{x} | \mathbf{z})$ )

- The generative story for each  $x_n$ , n = 1, 2, ..., N
  - First choose one of the K mixture components as

$$z_n \sim \text{Multinomial}(z_n|\pi)$$
 (from the prior  $p(z)$  over  $z$ )

• Suppose  $z_n = k$ . Now generate  $x_n$  from the k-th Gaussian as

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (from the data distr.  $p(\mathbf{x} | \mathbf{z})$ )



• Multivariate Gaussian in D dimensions

$$p(\pmb{x}|\mu,\pmb{\Sigma}) = rac{1}{(2\pi)^{D/2}|\pmb{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(\pmb{x}-\mu)^{ op}\pmb{\Sigma}^{-1}(\pmb{x}-\mu)
ight)$$

• Multivariate Gaussian in D dimensions

$$p(\pmb{x}|\mu,\pmb{\Sigma}) = rac{1}{(2\pi)^{D/2}|\pmb{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(\pmb{x}-\mu)^{ op}\pmb{\Sigma}^{-1}(\pmb{x}-\mu)
ight)$$

• Given N i.i.d. observations  $\{x_n\}_{n=1}^N$  from this Gaussian

• Multivariate Gaussian in D dimensions

$$p(oldsymbol{x}|\mu,oldsymbol{\Sigma}) = rac{1}{(2\pi)^{D/2}|oldsymbol{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(oldsymbol{x}-\mu)^{ op}oldsymbol{\Sigma}^{-1}(oldsymbol{x}-\mu)
ight)$$

- Given N i.i.d. observations  $\{x_n\}_{n=1}^N$  from this Gaussian
  - ullet MLE for the D imes 1 mean  $\mu \in \mathbb{R}^D$

$$\hat{\mu} = rac{1}{N} \sum_{n=1}^{N} x_n$$

• Multivariate Gaussian in D dimensions

$$p(oldsymbol{x}|\mu,oldsymbol{\Sigma}) = rac{1}{(2\pi)^{D/2}|oldsymbol{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(oldsymbol{x}-\mu)^{ op}oldsymbol{\Sigma}^{-1}(oldsymbol{x}-\mu)
ight)$$

- Given N i.i.d. observations  $\{x_n\}_{n=1}^N$  from this Gaussian
  - ullet MLE for the D imes 1 mean  $\mu\in\mathbb{R}^D$

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• MLE for the  $D \times D$  p.s.d. covariance matrix  $\Sigma$ 

$$\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \hat{\mu}) (\mathbf{x}_n - \hat{\mu})^{\top}$$

• Multivariate Gaussian in D dimensions

$$p(oldsymbol{x}|\mu,oldsymbol{\Sigma}) = rac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left(-rac{1}{2}(oldsymbol{x}-\mu)^{ op}oldsymbol{\Sigma}^{-1}(oldsymbol{x}-\mu)
ight)$$

- Given N i.i.d. observations  $\{x_n\}_{n=1}^N$  from this Gaussian
  - $\bullet$  MLE for the  $D\times 1$  mean  $\mu\in\mathbb{R}^D$

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• MLE for the  $D \times D$  p.s.d. covariance matrix  $\Sigma$ 

$$\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \hat{\mu}) (\mathbf{x}_n - \hat{\mu})^{\top}$$

• Note: The "trace trick" simplifies the derivative calculations

$$\underbrace{\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x}}_{\text{a scalar}} = \operatorname{trace}(\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x}) = \operatorname{trace}(\boldsymbol{\Sigma}^{-1}\boldsymbol{x}\boldsymbol{x}^{\top})$$



ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ 

- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$

- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$
- The conditional p.d.f. of a data point x if it comes from Gaussian k

$$p(x|z=k) = \mathcal{N}(x|\mu_k, \Sigma_k)$$

- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$
- The conditional p.d.f. of a data point x if it comes from Gaussian k

$$p(x|z=k) = \mathcal{N}(x|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Since z is NOT known, we need to look at the marginal p.d.f. of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x} | \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$
- The conditional p.d.f. of a data point x if it comes from Gaussian k

$$p(\mathbf{x}|\mathbf{z}=k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Since z is NOT known, we need to look at the marginal p.d.f. of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x} | \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Note: Here  $p(\mathbf{x})$  means  $p(\mathbf{x}|\Theta)$  where  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 



- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$
- The conditional p.d.f. of a data point x if it comes from Gaussian k

$$p(\mathbf{x}|\mathbf{z}=k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Since z is NOT known, we need to look at the marginal p.d.f. of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x} | \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Note: Here  $p(\mathbf{x})$  means  $p(\mathbf{x}|\Theta)$  where  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$
- To learn the GMM parameters  $\Theta$ , we have to do MLE on p(x)



- ullet Let's do MLE for estimating GMM parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$
- We basically have to estimate K multivariate Gaussians with wts  $\pi_1, \ldots, \pi_K$
- The conditional p.d.f. of a data point x if it comes from Gaussian k

$$p(\mathbf{x}|\mathbf{z}=k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Since z is NOT known, we need to look at the marginal p.d.f. of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x} | \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Note: Here  $p(\mathbf{x})$  means  $p(\mathbf{x}|\Theta)$  where  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$
- To learn the GMM parameters  $\Theta$ , we have to do MLE on p(x)
- In general, it is not an easy problem due to the difficult form of p(x) (for "why", see the next slide)

$$\mathcal{L} = \log \prod_{n=1}^{N} p(\mathbf{x}_n) = \sum_{n=1}^{N} \log p(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Given N observations  $x_1, \ldots, x_N$ , the log-likelihood will be

$$\mathcal{L} = \log \prod_{n=1}^{N} \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
params get coupled!

• Due to the coupling of parameters, MLE by simply taking derivatives of  $\mathcal{L}$  and setting to zero won't give a closed form solution of  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 

$$\mathcal{L} = \log \prod_{n=1}^{N} \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
params get coupled!

- Due to the coupling of parameters, MLE by simply taking derivatives of  $\mathcal{L}$  and setting to zero won't give a closed form solution of  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 
  - Gradient based iterative methods can be used

$$\mathcal{L} = \log \prod_{n=1}^{N} \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \rho(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
params get coupled!

- Due to the coupling of parameters, MLE by simply taking derivatives of  $\mathcal{L}$  and setting to zero won't give a closed form solution of  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 
  - Gradient based iterative methods can be used
  - However, we will use Expectation Maximization (EM) a more general way of solving such problems (i.e., parameter estimation with latent variables)

$$\mathcal{L} = \log \prod_{n=1}^{N} p(\mathbf{x}_n) = \sum_{n=1}^{N} \log p(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Due to the coupling of parameters, MLE by simply taking derivatives of  $\mathcal{L}$  and setting to zero won't give a closed form solution of  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 
  - Gradient based iterative methods can be used
  - However, we will use Expectation Maximization (EM) a more general way of solving such problems (i.e., parameter estimation with latent variables)
- Note: For problems where  $z_n$  is continuous or comes from a combinatorially large space (e.g., it's a binary vector), doing MLE will be even harder!

$$\mathcal{L} = \sum_{n=1}^{N} \log \underbrace{\int_{z_n} p(x_n | z_n) p(z_n) dz_n}_{\text{Ouch! Intractable integral!!!}}$$



• Given N observations  $x_1, \ldots, x_N$ , the log-likelihood will be

$$\mathcal{L} = \log \prod_{n=1}^{N} p(\mathbf{x}_n) = \sum_{n=1}^{N} \log p(\mathbf{x}_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Due to the coupling of parameters, MLE by simply taking derivatives of  $\mathcal{L}$  and setting to zero won't give a closed form solution of  $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ 
  - Gradient based iterative methods can be used
  - However, we will use Expectation Maximization (EM) a more general way of solving such problems (i.e., parameter estimation with latent variables)
- Note: For problems where  $z_n$  is continuous or comes from a combinatorially large space (e.g., it's a binary vector), doing MLE will be even harder!

$$\mathcal{L} = \sum_{n=1}^{N} \log \underbrace{\int_{z_n} p(x_n | z_n) p(z_n) dz_n}_{\text{Ouch! Intractable integral!!!}}$$

In such cases, something like EM becomes even more important



• MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$ 

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

• With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood"  $(z_n \text{ makes } x_n \text{ "complete"})$

- ullet MLE for GMM will be simplified if we "knew" the  $oldsymbol{z}_n$  for each  $oldsymbol{x}_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood"  $(z_n \text{ makes } x_n \text{ "complete"})$
  - $p(x_n)$  is known as "incomplete data likelihood"

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N}\log\left(\mathbf{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\right)$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood" ( $z_n$  makes  $x_n$  "complete")
  - $p(x_n)$  is known as "incomplete data likelihood"
- Since we don't know the "true"  $z_n$ , we will have to rely on a "guess" for  $z_n$

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N}\log\left(\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})\right)$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood" ( $z_n$  makes  $x_n$  "complete")
  - $p(x_n)$  is known as "incomplete data likelihood"
- Since we don't know the "true"  $z_n$ , we will have to rely on a "guess" for  $z_n$ 
  - ullet This guess for  $oldsymbol{z}_n$  will be based on the current values of params  $\Theta$

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood"  $(z_n \text{ makes } x_n \text{ "complete"})$
  - $p(x_n)$  is known as "incomplete data likelihood"
- Since we don't know the "true"  $z_n$ , we will have to rely on a "guess" for  $z_n$ 
  - ullet This guess for  $oldsymbol{z}_n$  will be based on the current values of params  $\Theta$
  - Can do MLE on  $p(x_n, z_n)$  to re-estimate  $\Theta$  using these guesses, and repeat

- MLE for GMM will be simplified if we "knew" the  $z_n$  for each  $x_n$
- Reason: If  $z_n$  is known, the summation over  $z_n$  isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- With  $z_n$  "known", we can try doing MLE on  $p(x_n, z_n)$ , instead of on  $p(x_n)$ 
  - $p(x_n, z_n)$  is known as "complete data likelihood"  $(z_n \text{ makes } x_n \text{ "complete"})$
  - $p(x_n)$  is known as "incomplete data likelihood"
- Since we don't know the "true"  $z_n$ , we will have to rely on a "guess" for  $z_n$ 
  - This guess for  $z_n$  will be based on the current values of params  $\Theta$
  - Can do MLE on  $p(x_n, z_n)$  to re-estimate  $\Theta$  using these guesses, and repeat
  - A more formal view of this iterative procedure is given by the Expectation Maximization (EM)
    algorithm (next lecture)

• The complete data log-likelihood over the N obs.

$$\sum_{n=1}^{N} \log p(x_n, z_n) = \sum_{n=1}^{N} \log p(x_n|z_n)p(z_n) = \sum_{n=1}^{N} \log \prod_{k=1}^{K} [p(x_n|z_n = k)p(z_n = k)]^{z_{nk}}$$
(note that, for each n, only one  $z_{nk}$  will be 1)

• The complete data log-likelihood over the *N* obs.

$$\sum_{n=1}^{N} \log p(\mathbf{x}_n, \mathbf{z}_n) = \sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n) = \sum_{n=1}^{N} \log \underbrace{\prod_{k=1}^{K} [p(\mathbf{x}_n | \mathbf{z}_n = k) p(\mathbf{z}_n = k)]^{z_{nk}}}_{\text{(note that, for each } n, \text{ only one } z_{nk} \text{ will be 1)}}$$

The above gets further simplified to

$$\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(z_n = k) p(x_n | z_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)]$$

• The complete data log-likelihood over the *N* obs.

$$\sum_{n=1}^{N} \log p(x_n, z_n) = \sum_{n=1}^{N} \log p(x_n|z_n)p(z_n) = \sum_{n=1}^{N} \log \underbrace{\prod_{k=1}^{K} [p(x_n|z_n = k)p(z_n = k)]^{z_{nk}}}_{\text{(note that, for each } n, \text{ only one } z_{nk} \text{ will be 1)}}$$

The above gets further simplified to

$$\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(z_n = k) p(x_n | z_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)]$$

• If we know value of each  $z_{nk}$  deterministically, we can plug these in and do MLE on the above objective (which has a simple and separable structure)

• The complete data log-likelihood over the *N* obs.

$$\sum_{n=1}^{N} \log p(x_n, z_n) = \sum_{n=1}^{N} \log p(x_n|z_n)p(z_n) = \sum_{n=1}^{N} \log \underbrace{\prod_{k=1}^{K} [p(x_n|z_n = k)p(z_n = k)]^{z_{nk}}}_{\text{(note that, for each } n, \text{ only one } z_{nk} \text{ will be 1)}}$$

The above gets further simplified to

$$\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(z_n = k) p(x_n | z_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)]$$

- If we know value of each  $z_{nk}$  deterministically, we can plug these in and do MLE on the above objective (which has a simple and separable structure)
- What if we don't have a *deterministic* guess for  $z_{nk}$ ?

• The complete data log-likelihood over the *N* obs.

$$\sum_{n=1}^{N} \log p(x_n, z_n) = \sum_{n=1}^{N} \log p(x_n|z_n)p(z_n) = \sum_{n=1}^{N} \log \underbrace{\prod_{k=1}^{K} [p(x_n|z_n = k)p(z_n = k)]^{z_{nk}}}_{\text{(note that, for each } n, \text{ only one } z_{nk} \text{ will be 1)}}$$

The above gets further simplified to

$$\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(z_n = k) p(x_n | z_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)]$$

- If we know value of each  $z_{nk}$  deterministically, we can plug these in and do MLE on the above objective (which has a simple and separable structure)
- What if we don't have a deterministic guess for  $z_{nk}$ ?
  - In such cases, we can use the posterior expectations of the  $z_{nk}$ 's (which are basically posterior probabilities of cluster assignments of points to clusters)

$$\mathbb{E}[z_{nk}] = \mathbf{0} \times p(z_{nk} = 0 | \mathbf{x}_n) + 1 \times p(z_{nk} = 1 | \mathbf{x}_n)$$

$$\mathbb{E}[z_{nk}] = 0 \times \rho(z_{nk} = 0 | \mathbf{x}_n) + 1 \times \rho(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \rho(z_{nk} = 1 | \mathbf{x}_n)$$

$$\mathbb{E}[z_{nk}] = 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n)$$

$$= p(z_{nk} = 1 | x_n)$$

$$\propto p(z_{nk} = 1) p(x_n | z_{nk} = 1)$$
 (Bayes Rule)

```
\begin{split} \mathbb{E}[\mathbf{z}_{nk}] &= \mathbf{0} \times p(\mathbf{z}_{nk} = \mathbf{0} | \mathbf{x}_n) + 1 \times p(\mathbf{z}_{nk} = 1 | \mathbf{x}_n) \\ &= p(\mathbf{z}_{nk} = 1 | \mathbf{x}_n) \\ &\propto p(\mathbf{z}_{nk} = 1) p(\mathbf{x}_n | \mathbf{z}_{nk} = 1) \quad \text{(Bayes Rule)} \end{split} Thus \mathbb{E}[\mathbf{z}_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \quad \text{(Posterior prob. of } \mathbf{x}_n \text{ belonging to cluster } k)
```

• Posterior expectations  $\mathbb{E}[z_{nk}]$  can be computed using current estimates of  $\Theta$ 

```
\begin{split} \mathbb{E}[z_{nk}] &= 0 \times \rho(z_{nk} = 0 | x_n) + 1 \times \rho(z_{nk} = 1 | x_n) \\ &= \rho(z_{nk} = 1 | x_n) \\ &\propto \rho(z_{nk} = 1) \rho(x_n | z_{nk} = 1) \quad \text{(Bayes Rule)} \end{split} Thus \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \quad \text{(Posterior prob. of } x_n \text{ belonging to cluster } k) \end{split}
```

• The final expression of  $\mathbb{E}[z_{nk}]$  makes intuitive sense

$$\begin{array}{rcl} \mathbb{E}[z_{nk}] & = & \mathbf{0} \times p(z_{nk} = \mathbf{0} | \mathbf{x}_n) + 1 \times p(z_{nk} = 1 | x_n) \\ & = & p(z_{nk} = 1 | \mathbf{x}_n) \\ & \propto & p(z_{nk} = 1) p(\mathbf{x}_n | z_{nk} = 1) \qquad \text{(Bayes Rule)} \end{array}$$
 Thus  $\mathbb{E}[z_{nk}] \propto & \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \text{(Posterior prob. of } \boldsymbol{x}_n \text{ belonging to cluster } k)$ 

- The final expression of  $\mathbb{E}[z_{nk}]$  makes intuitive sense
- Note: We can finally normalize  $\mathbb{E}[z_{nk}]$  as  $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$  since  $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$

$$\begin{array}{rcl} \mathbb{E}[\mathsf{z}_{nk}] & = & \mathbf{0} \times p(\mathsf{z}_{nk} = \mathbf{0} | \mathbf{x}_n) + 1 \times p(\mathsf{z}_{nk} = 1 | \mathbf{x}_n) \\ & = & p(\mathsf{z}_{nk} = 1 | \mathbf{x}_n) \\ & \propto & p(\mathsf{z}_{nk} = 1) p(\mathsf{x}_n | \mathsf{z}_{nk} = 1) \qquad \text{(Bayes Rule)} \end{array}$$
 Thus  $\mathbb{E}[\mathsf{z}_{nk}] \propto & \pi_k \mathcal{N}(\mathsf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \text{(Posterior prob. of } \boldsymbol{x}_n \text{ belonging to cluster } k)$ 

- The final expression of  $\mathbb{E}[z_{nk}]$  makes intuitive sense
- Note: We can finally normalize  $\mathbb{E}[z_{nk}]$  as  $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$  since  $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$
- Given  $\mathbb{E}[z_{nk}]$ , we can now define expected complete data log-lik.

ullet Posterior expectations  $\mathbb{E}[z_{nk}]$  can be computed using current estimates of  $\Theta$ 

$$\begin{array}{rcl} \mathbb{E}[\mathsf{z}_{nk}] & = & \mathbf{0} \times p(\mathsf{z}_{nk} = \mathbf{0} | \mathbf{x}_n) + 1 \times p(\mathsf{z}_{nk} = 1 | \mathbf{x}_n) \\ & = & p(\mathsf{z}_{nk} = 1 | \mathbf{x}_n) \\ & \propto & p(\mathsf{z}_{nk} = 1) p(\mathsf{x}_n | \mathsf{z}_{nk} = 1) \qquad \text{(Bayes Rule)} \end{array}$$
 Thus  $\mathbb{E}[\mathsf{z}_{nk}] \propto & \pi_k \mathcal{N}(\mathsf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \text{(Posterior prob. of } \boldsymbol{x}_n \text{ belonging to cluster } k)$ 

- The final expression of  $\mathbb{E}[z_{nk}]$  makes intuitive sense
- Note: We can finally normalize  $\mathbb{E}[z_{nk}]$  as  $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$  since  $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$
- Given  $\mathbb{E}[z_{nk}]$ , we can now define expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}] [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

.. and do MLE for the parameters  $\Theta$  using this as the objective function



• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$ , the expected complete data log-lik.

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$\frac{\partial \mathcal{L}}{\partial \mu_k} = \frac{\partial}{\partial \mu_k} \sum_{i=1}^{N} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \mu_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mu_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Taking derivatives w.r.t.  $\mu_k$  and  $\Sigma_k$ ,  $\forall k = 1, ..., K$ 

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{i=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{i=1}^{N} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

• For each k, it's a "weighted" version of the MLE problem for the multivariate Gaussian  $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ , given observations  $\{\boldsymbol{x}_n\}_{n=1}^N$  with weights  $\{\gamma_{nk}\}_{n=1}^N$ 

• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{i=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

- For each k, it's a "weighted" version of the MLE problem for the multivariate Gaussian  $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ , given observations  $\{\boldsymbol{x}_n\}_{n=1}^N$  with weights  $\{\gamma_{nk}\}_{n=1}^N$
- Can also solve for  $\pi_k$  likewise (subject to contraint  $\sum_{k=1}^K \pi_k = 1$ )



• Given  $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ , the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$\frac{\partial \mathcal{L}}{\partial \mu_k} = \frac{\partial}{\partial \mu_k} \sum_{i=1}^{N} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \mu_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mu_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\Sigma}_k} = \frac{\partial}{\partial \boldsymbol{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\Sigma}_k \text{ can be ignored)}$$

- For each k, it's a "weighted" version of the MLE problem for the multivariate Gaussian  $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ , given observations  $\{\boldsymbol{x}_n\}_{n=1}^N$  with weights  $\{\gamma_{nk}\}_{n=1}^N$
- Can also solve for  $\pi_k$  likewise (subject to contraint  $\sum_{k=1}^K \pi_k = 1$ )
- Derivations are a bit tedious (but straightforward). I will provide a note.



## **GMM Parameter Update Equations**

ullet The final expressions for updates of  $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ 

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

# **GMM Parameter Update Equations**

ullet The final expressions for updates of  $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ 

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

- Note:  $N_k = \sum_{n=1}^N \gamma_{nk}$  is the effective num. of pts. assigned to Gaussian k
- Update equations make intuitive sense

## **GMM Parameter Update Equations**

ullet The final expressions for updates of  $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ 

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

- Note:  $N_k = \sum_{n=1}^N \gamma_{nk}$  is the effective num. of pts. assigned to Gaussian k
- Update equations make intuitive sense
- Also note that each point  $\mathbf{x}_n$  contributes to each  $\{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$  but fractionally (based on the values of  $\gamma_{nk}$ )

## The Full Algorithm for Learning GMM

• Initialize the parameters  $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$  randomly, or using K-means

## The Full Algorithm for Learning GMM

- ullet Initialize the parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(x|\Theta)$  ceases to increase)

- ullet Initialize the parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(x|\Theta)$  ceases to increase)
  - Given  $\Theta$ , compute each expectation  $z_{nk}$  (post. prob. of  $z_{nk} = 1$ ),  $\forall n, k$

- Initialize the parameters  $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(x|\Theta)$  ceases to increase)
  - Given  $\Theta$ , compute each expectation  $z_{nk}$  (post. prob. of  $z_{nk} = 1$ ),  $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t.  $\sum_{k=1}^K \gamma_{nk} = 1$ )

- Initialize the parameters  $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(\mathbf{x}|\Theta)$  ceases to increase)
  - Given  $\Theta$ , compute each expectation  $z_{nk}$  (post. prob. of  $z_{nk} = 1$ ),  $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t.  $\sum_{k=1}^K \gamma_{nk} = 1$ )

• Given  $\gamma_{nk}=\mathbb{E}[z_{nk}]$  and  $N_k=\sum_{n=1}^N\gamma_{nk}$ , update  $\Theta=\{\pi_k, \pmb{\mu}_k, \pmb{\Sigma}_k\}_{k=1}^K$  as

- Initialize the parameters  $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(\mathbf{x}|\Theta)$  ceases to increase)
  - Given  $\Theta$ , compute each expectation  $z_{nk}$  (post. prob. of  $z_{nk} = 1$ ),  $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t.  $\sum_{k=1}^K \gamma_{nk} = 1$ )

• Given  $\gamma_{nk}=\mathbb{E}[z_{nk}]$  and  $N_k=\sum_{n=1}^N\gamma_{nk}$ , update  $\Theta=\{\pi_k, \mu_k, \mathbf{\Sigma}_k\}_{k=1}^K$  as

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x}_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

$$\pi_k = \frac{N_k}{N_k}$$

- ullet Initialize the parameters  $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$  randomly, or using K-means
- Iterate until convergence (e.g., when  $\log p(x|\Theta)$  ceases to increase)
  - Given  $\Theta$ , compute each expectation  $z_{nk}$  (post. prob. of  $z_{nk} = 1$ ),  $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t.  $\sum_{k=1}^K \gamma_{nk} = 1$ )

• Given  $\gamma_{nk}=\mathbb{E}[z_{nk}]$  and  $N_k=\sum_{n=1}^N\gamma_{nk}$ , update  $\Theta=\{\pi_k, \pmb{\mu}_k, \pmb{\Sigma}_k\}_{k=1}^K$  as

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x}_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

$$\pi_k = \frac{N_k}{N_k}$$

(It's basically an Expectation Maximization (EM) algorithm for learning GMM. We will look at EM more formally in the next class.)

## **Illustration of GMM Clustering**



Notice the "mixed" colored points in the overlapping regions in the final clustering

# Illustration of GMM Clustering



Notice the "mixed" colored points in the overlapping regions in the final clustering

Also check out this demo of GMM: https://www.youtube.com/watch?v=B36fzChfyGU

#### **GMM** vs *K*-means

For the GMM clustering (rightmost figure), the most probable cluster for each point has been labeled



#### **GMM** vs *K*-means

For the GMM clustering (rightmost figure), the most probable cluster for each point has been labeled



Note that K-means, unlike GMM, tends to learn equi-sized clusters.

#### **GMM** vs *K*-means

For the GMM clustering (rightmost figure), the most probable cluster for each point has been labeled



Note that K-means, unlike GMM, tends to learn equi-sized clusters.

GMM with  $\Sigma_k = I$  and  $\pi_k = 1/K$ , and soft assignments converted to hard assign. (setting the largest prob. to 1, rest to 0), is equivalent to K-means.

• Other types of component distributions can be used

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

Also used in supervised learning problems (mixture of experts)

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$
  - Experts and points-to-experts assignments can be learned iteratively as in GMM

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$
  - Experts and points-to-experts assignments can be learned iteratively as in GMM
- Can be used for performing generative classification (e.g., naïve Bayes)

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$
  - Experts and points-to-experts assignments can be learned iteratively as in GMM
- Can be used for performing generative classification (e.g., naïve Bayes)

$$p(y_n = k | \mathbf{x}_n) \propto p(y_n = k) p(\mathbf{x}_n | y_n = k)$$
 (cluster ids are the known classes)

- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$
  - Experts and points-to-experts assignments can be learned iteratively as in GMM
- Can be used for performing generative classification (e.g., naïve Bayes)

$$p(y_n = k | \mathbf{x}_n) \propto p(y_n = k) p(\mathbf{x}_n | y_n = k)$$
 (cluster ids are the known classes)

p(y = k) and p(x|z = k) can be efficiently estimated using training data



- Other types of component distributions can be used
- Sequence data models, such as HMM, can also be seen as mixture models

$$p(\mathbf{z}_n|\phi) = p(\mathbf{z}_n|\mathbf{z}_{n-1})$$
 (Current cluster/state depends on previous)

- Also used in supervised learning problems (mixture of experts)
  - For data  $x_n$ , first choose one of K experts, and then use that expert's predictive model for  $p(y_n|x_n)$
  - Experts and points-to-experts assignments can be learned iteratively as in GMM
- Can be used for performing generative classification (e.g., naïve Bayes)

$$p(y_n = k | \mathbf{x}_n) \propto p(y_n = k) p(\mathbf{x}_n | y_n = k)$$
 (cluster ids are the known classes)

p(y = k) and p(x|z = k) can be efficiently estimated using training data

• Number of clusters (K) in a mixture model can be learned from data using nonparametric Bayesian methods (e.g., "infinite" mixture models)

#### **Next Class**

- The general Expectation Maximization (EM) algorithm
- Generative models for dimensionality reduction
  - Factor Analysis and Probabilistic PCA (and extensions)
  - EM based parameter estimation for these models