Заметки курса по общей физики «Оптика»

Авторы конспекта: Хоружий К.

Примак Е.

От: 20 мая 2021 г.

Содержание

1	Эле	ементы фурье-оптики	•
	1.1	Дифракция на решетке как краевая задача	4
		1.1.1 Метод Рэлея	
		1.1.2 Метод Аббе	
2	Kpi	исталлооптика	ļ
	2.1	Плоские волны в кристаллах	ļ
	2.2	Оптически одноосные кристаллы	(
	2.3	Двойное преломление в электрическом и магнитном полях (эффект Керра)	
	2.4	Линейный электрооптический эффект Поккельса	į
	2.5	Вращение плоскости поляризации	6
	2.6	Магнитное вращение плоскости поляризации (эффект Фарадея)	!
3	HeJ	тинейная оптика	L(
	3.1	Нелинейная поляризацим среды	L(
		Первое приближение. Генерация вторых гармоник.	
		Второе приближение. Самофокусировка.	

Элементы фурье-оптики 1

1.1 Дифракция на решетке как краевая задача

1.1.1 Метод Рэлея

Пусть решетка – бесконечна, её переднюю поверхность будем называть входом, а заднюю – выходом. Плоскость решетки примем за XY, а ось Z по распространению волны.

Падающую волну представим в виде: $E_0 = Ae^{i(\omega t - kr)}$. Тут полагаем z=0, ищем поле на входе решетки, в силу линейности:

$$E_{\text{вых}} = DE_{\text{вх}}.$$

3десь введен коэффициент пропускания D решетки. Теперь чтобы решить задачу о дифракции на решетки нам достаточно найти D, тогда мы уже будем знать поле на выходе из решетки, а значит и во всем пространстве дальше. Уравнение

$$\Delta E + k^2 E = 0$$

должно при z=0 переходить в $E_{\text{вых}}(x,y)=D(x,y)E_{\text{вх}}(x,y)$. Такой подход к решению задача называется

Для одномерной решетки можно представить D как функцию с периодом d:

$$D = \sum_{m=-\infty}^{+\infty} D_m e^{-impx}, \quad p = \frac{2\pi}{d}.$$

Таким образом:

$$E_{\text{вых}} = DE_{\text{вх}} = \sum_{m=-\infty}^{+\infty} AD_m e^{i[\omega t - (k_x + mp)x]}.$$

Общим решением нашего волнового уравнения будет

$$E = \sum_{m=-\infty}^{+\infty} a_m e^{i(\omega t - q_m r)},$$

на которое надо наложить в связи с граничным условием:

$$q_{mx} = k_x + mp, \quad q_{my} = 0.$$

 $q_{mx}=k_x+mp, \quad q_{my}=0.$ И так как ${m q}^2-k^2$, то $q_{mz}=\sqrt{k^2-q_{mx}^2}$ — для однородных волн и $q_{mz}=-i\sqrt{k^2-q_{mx}^2}$ для неоднородных (поверхностных).

Тогда для поля на выходе можно написать:

$$E_{\text{вых}} = \sum_{-\infty}^{+\infty} a_m e^{i(\omega t - q_{mx} x)} \quad \Rightarrow \quad a_m = AD_m.$$

Теперь если $k_x = \left(\frac{2\pi}{\lambda}\right) \sin \theta$, $q_{mx} = \left(\frac{2\pi}{\lambda}\right) \sin \vartheta_m$ и $p = 2\pi/d$ то получаем основную формулу дифракционной решетки:

$$d(\sin \vartheta_m - \sin \theta) = m\lambda.$$

Что видим? Спектр за решеткой состоит из одних только главных максимумов, но это нормально, так как решетка бесконечна. В формулу для волны входят как однородные так и не однородные волны, а значит она описывает поле на любых расстояниях от решетки. При нормальном падении света наивысший порядок однородных волн $m \leq d/\lambda$, иначе имеем неоднородные волны, которые затухают как $\exp(-\chi_m z)$, где

$$\chi_m = \sqrt{k^2 - q_{mz}^2} = \frac{2\pi}{d} \sqrt{m^2 - (d/\lambda)^2}.$$

Интересно по-исследовать поле далеко от решетки. При $z\gg d$ оно состоит только из однородных волн. А если $d < \lambda$ то вообще из одной плоской волны (m = 0).

Тут можно найти красивый эффект саморепродукции. Каждое слагаемое в разложении нашей волны – поле плоской волны с пространственной частотой: $u_n = n \frac{2\pi}{d}$. Для точки отстоящей на z от решетки фаза n-ой плоской волны:

$$\varphi_n = \chi_n z = \sqrt{k^2 - q_{nx}^2} \approx kz - \frac{zq_{nx}^2}{2k},$$

что верно для волн с узким спектром $|q| \ll k$.

Сравним набег фаз n-ой плоской волны с $\varphi_0 = kz$:

$$\Delta \varphi_n = \varphi_0 - \varphi_n = \frac{z}{2k} \left(\frac{2\pi}{d}\right)^2 n^2 = \pi \frac{\lambda z}{d^2} n^2.$$

В плоскости наблюдения отстоящую от решетки на $z_1=\frac{2d^2}{\lambda}$ (это будет находится в зоне френелевской дифракции) будем иметь разность фаз $\Delta\varphi_n=2\pi n^2$. Заметим так же, что разность фаз от любых двух плоских волн будет $\Delta\varphi=2\pi(n_1^2-n_2^2)$ тоже кратна 2π . Значит в разложении волны ничего не меняется, так как это период, значит в плоскости z_1 поле повторяет по интенсивности пропускающую функцию решетки, ну а точнее:

$$f(x, z_1) = e^{ikz_1} f_0(x).$$

Это же свойство повторения характерно и для

$$z_m = m \frac{2d^2}{\lambda} (m = 1, 2 \ldots).$$

Этот эффект еще также носит названия эффекта Таблота.

Теперь посмотрим на небесконечную решетку.

$$D(x) = \int_{-\infty}^{+\infty} C(f)e^{-ifx}df.$$

На выходе поле:

$$E_{\text{вых}} = A \int_{-\infty}^{+\infty} C(f) e^{-f(k_x + f)x} df.$$

Решение тогда будет:

$$E = A \int_{-\infty}^{+\infty} C(f)e^{-iqr}df.$$

Задавая функцию пропускания для такой конечной решетки:

$$D(x) = \begin{cases} 0, \text{ если } -\infty < x < -L, \\ \sum_{-\infty}^{\infty} D_m e^{impx} \text{ если } -L < x < +L, \\ 0 \text{ если } +L < x < +\infty. \end{cases}$$

Вычислим коэффициент Фурье:

$$C(f) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} D(x)e^{ifx}dx = \frac{1}{\pi} \sum_{m=0}^{+\infty} D_m \frac{\sin[L(f-mp)]}{f-mp}.$$

И получаем:

$$E = \sum_{m} E_{m} = \frac{A}{\pi} \int_{-\infty}^{+\infty} D_{m} \frac{\sin[L(f - mp)]}{f - mp} e^{-iqr} df = \frac{Ad}{\pi} \int_{-\infty}^{+\infty} D_{m} \frac{\sin[(N/a)(fd - 2m\pi)]}{fd - 2m\pi} e^{iqr} df.$$

Интенсивность такой волны достигает максимума когда знаменатель обращается в нуль, то есть когда $q_x = k_x + mp = 0$. Получаем направление на главный максимум:

$$\frac{\sin[(N/2)(fd-2m\pi)]}{(fd-2m\pi)} = \frac{N}{2}$$

Так же можно определить направления на главные минимумы. В итоге получили все очень зачетающимся с теорией про диф решетки и даже больше!

Стоит ещё сказать про соотношение неопределенности.

Рассматривая щель b освещаемую нормально падающей волной имеем для выходной волны:

$$f_0(x) = \{1, |x| \le b, 0, |x| \ge b.$$

Фурье коэффициент находим как:

$$C_0(u) = b \frac{\sin \frac{b}{2} u}{\frac{b}{2} u}$$

Тут ширина первого максимума составляет $|\Delta u| \lesssim \frac{2\pi}{b}$ Посмотрев на пропускание щели заметим соотношение неопределенности:

$$\Delta x \cdot \Delta u \sim 2\pi$$
.

Пространственная протяженность Δx определяется характером самого препятствия. Разброс же плоских волн

за отверстием даёт дифракционную расходимость пучка света за отверстием:

$$\Delta u = k\Delta(\sin\alpha) \quad \Rightarrow \quad \Delta(\sin\alpha) \approx \frac{\lambda}{b} \quad \Rightarrow \quad \Delta\alpha \approx \frac{\lambda}{b}.$$

1.1.2 Метод Аббе

Работаем все с теми же понятиями. Сначала за объект возьмём дифракционную решетку. Так же при падении параллельных лучей монохроматического света у нас до какого-то порядка максимума будут однородные волны, а дальше неоднородными, которые затухая, на расстояниях порядка λ в наш объектив не попадут.

Поставим перед объективом диафрагму, пропускающую определенные порядки спектров. Например, если пропускается лишь нулевой, то о решетке (объекте) мы никакой информации не получим, а в плоскости изображения получим равномерно освещенное поле.

Поэтому возьмём диафрагму, пропускающую m и m+1 порядки. Которые оставят только плоские волны, которые будут интерферировать между собой:

$$E_m = a_m \cos(\omega t - \mathbf{k}_m \mathbf{r}),$$
 $E_{m+1} = a_{m+1} \cos(\omega t - \mathbf{k}_{m+1} \mathbf{r}).$

Примем за плоскость решетки XY, волна распространяется в сторону Z. Посмотрим на какую-нибудь плоскость $z = {\rm const}$ и найдём расстояние между интерференционными полосами в ними:

$$\Delta \varphi = (k_{m+1,x} - k_{m,x}) \Delta x.$$

Видим, что интенсивность света будет периодически повторяться $\Delta \varphi = 2\pi, 4\pi, \dots$ (типа саморепродукция). И шириной интерференционной полосы возьмём Δx при $\Delta \varphi = 2\pi$.

Направления на взятые максимумы:

$$d \cdot (\sin \vartheta_m - \sin \theta) = m\lambda, \qquad d \cdot (\sin \vartheta_{m+1} - \sin \theta) = (m+1)\lambda.$$

Так же знаем:

$$k_{m,x} = \left(\frac{2\pi}{\lambda}\right) \sin \vartheta_m \qquad k_{m+1,x} = \left(\frac{2\pi}{\lambda}\right) \sin \vartheta_{M+1}$$

Тогда получаем:

$$k_{m+1,x} - k_{m,x} = \left(\frac{2\pi}{\lambda}\right) (\sin \vartheta_{m+1} - \sin \vartheta_m) = \frac{2\pi}{d}.$$

Таким ширина полосы: $\Delta x = \frac{2\pi}{2\pi d} = d$. И экстраполируя не на ближайшие максимумы аналогично получаем

$$\Delta x = \frac{d}{\Delta m}.$$

Стоит обобщить, сказав, что чем больше дифрагированных волн различных порядков проходит через диафрагму, тем совершеннее получается изображение.

Решетка бралась как простейший объект, для которого хватает оставить наименее совершенное изображение, которое даст только понятие о её периодичности. Тогда оценим разрешающую способность объектива в который нормально попали 1ый и -1ый максимумы. Пусть у объектива ещё показатель преломления n. Минимальные период решетки, при котором:

$$d\sin\alpha = \frac{\lambda}{n}$$
 \Rightarrow $l_{\text{muh}} = \frac{\lambda}{n\sin\alpha}$.

Нормальная такая оценка получилось, с точностью до домножения на константу порядка единицы.

Упрощение связанное с рассмотрением объекта-решетки не принципиально. За объектом произвольной формы возникнут самые разные дифрагировавшие пучки. Угол дифракционной расходимости на первый минимум будет таким, что

$$nl\sin\vartheta\sim\lambda$$
.

для l – линейного размера объекта. Минимальные же размеры объекта для лучей падающих под углом α будет определятся условием $\vartheta \sim \alpha$, а именно опять

$$l_{\min} \sim \frac{\lambda}{n \sin \alpha}.$$

О чем же думал Аббе? Что давайте смотреть на изображения, которые даёт нам линза в такой же манере (или любой другой оптический прибор). В фокусе мы получаем дифракционную картину из точек C_k , которую

Аббе назвал первичным изображением объекта. Далее по Гюйгенсу-Френелю можно рассчитать световое поле далее за фокальной плоскостью, пусть они соберутся нашим объективом хоть где-то дальше, тогда получим вторичное изображение или вторичную дифракцию.

Разрешающая способность при когерентном и некогерентном освещении

Рассматриваем идеальные оптические системы, а конечный рассматриваемый объект как совокупность точечных источников, каждый из которых изображается кружком Эйри(с окружающими его дифракционными кольцами). Наша задача сводится к рассмотрению двух случаев точечных

- 1. некогерентных источников складываются их интенсивности самосветящиеся телескоп;
- 2. когерентых источнико складываются их напряженности освещаемые микроскоп.

Разрешающие способности соответственно:

телескоп:
$$\vartheta_{\text{мин}}=1,22\frac{\lambda}{D}$$
 микроскоп: $l_{\text{мин}}=0.61\frac{\lambda}{n\sin\alpha}$

где α – апертурный угол, l – расстояние между кружками Эйри, ϑ – угловой размер наблюдаемого объекта.

2 Кристаллооптика

2.1 Плоские волны в кристаллах

Поведение света всё также описывается уравнениями Максвелла

$$\operatorname{rot} \boldsymbol{H} = \frac{1}{c}\dot{\boldsymbol{D}}, \quad \operatorname{rot} E = -\frac{1}{c}\dot{\boldsymbol{H}},$$

однако усложняются материальные уравнения:

$$D^j = \varepsilon_i^j E^i,$$

где ε_{ij} — тензор диэлектрической проницаемости, или диэлектрический тензор.

Рассмотрим плоские монохроматические волны вида

$$\mathbf{A} = \mathbf{A}_0 e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})},$$

где $A \in \{E, H, D\}$. Понятно, что

$$rot \mathbf{H} = -i \left[\mathbf{k} \times \mathbf{H} \right], \quad \partial_t \mathbf{D} = -i \omega \mathbf{D}, \quad \dots$$

Подставив это в уравнения Максвелла, вводя верно волновой нормали $N = \frac{v}{\omega} k$, получаем

$$m{D} = -rac{c}{v} \left[m{N} imes m{H}
ight], \quad m{H} = rac{c}{v} \left[m{N} imes m{E}
ight],$$

где v – нормальная скорость волны.

Актуально, как никогда, значение вектора Пойтинга

$$m{S} = rac{c}{4\pi} \left[m{E} imes m{H}
ight].$$

Lem 2.1. Вектор пойтинга S определяет направление световых лучей, то есть $S \parallel u = d_k \omega$.

Стоит заметит, что в кристаллая S и N не совпадают по направлению. Однако, как видно из формул, плоские волны в кристалле поперечн в отношении векторов D и H. Вектора E, D, N, S лежат в плоскости, перпендикулярной к вектору H.

Получается, что если E и D не сонаправлены, то зная направление E мы знаем направление и D, а тогда и H, и N, S соответственно тоже. При $E \parallel D$ любая прямая $\bot E$ может служить направлением магнитного поля. Подставляя H в D можем найти

$$\boldsymbol{D} = \frac{c^2}{v^2} \boldsymbol{E} - \frac{c^2}{v^2} \left(\boldsymbol{N} \cdot \boldsymbol{e} \right) \boldsymbol{N},$$

и, т.к. $(\boldsymbol{D} \cdot \boldsymbol{N}) = 0$, то скалярно умножая на \boldsymbol{D} находим

$$v^2 = c^2 \frac{(\boldsymbol{D} \cdot \boldsymbol{E})}{D^2}.$$

Таким образом вектор E в кристале является главным.

2.2 Оптически одноосные кристаллы

Def 2.2. Оптически одноосными называют кристаллы, свойства которых обладают симметрей вращения относительно некоторого направления, называемого оптической осью кристалла.

Разложим E и D на составляющие параллельные оптической оси, и нормальный к ней, тогда

$$D_{\parallel} = \varepsilon_{\parallel} E_{\parallel}, \quad D_{\perp} = \varepsilon_{\perp} E_{\perp},$$

где ε_{\parallel} и ε_{\perp} – продольная и поперечные диэлектрические проницаемости кристалла. Плоскости, в которой лежат оптическая ось кристалла и нормаль N, называется *главным сечением кристалла*.

Def 2.3. Если электрический вектор D перпендикулярен к главному сечению, то скорость волны не зависит от направдения её распространения, такая волна называется обыкновенной.

Тогда $m{D} \equiv m{D}_{\perp},$ тогда и $m{D} = \varepsilon_{\perp} \bar{E},$ соответственно

Def 2.4. Если электрический вектор D лежит в главном сечении, то скорость волны зависит от направления распространения D и такую волну называют *необыкновенной*.

Вектор E в таком случае также лежит в главном сечении, и $E = e_N + E_D$. В таком случае, верно

$$m{H} = rac{c}{v} \left[m{N} imes m{E}_D
ight], \hspace{0.5cm} E_D = rac{m{E} \cdot m{D}}{D} = rac{E_\parallel D_\parallel + E_\perp D_\perp}{D} = rac{1}{D} \left(rac{D_\parallel^2}{arepsilon_\parallel} + rac{D_\perp^2}{arepsilon_\perp}.
ight)$$

Соответсвующие проекции можно заменить на $D\sin\alpha$, где α – угол между оптической осью и волновой нормалью. Вводя $\frac{1}{\varepsilon}=\frac{N_\perp^2}{\varepsilon_\parallel}+\frac{N_\parallel^2}{\varepsilon_\perp}$ можем перейти к

$$E_D = D\left(\frac{\sin^2\alpha}{\varepsilon_{\parallel}} + \frac{\cos^2\alpha}{\varepsilon_{\perp}}\right) = \frac{D}{\varepsilon}, \quad H = \frac{c}{v}E_D, \quad \Rightarrow \quad v = \frac{c}{\sqrt{\varepsilon}} = c\sqrt{\frac{N_{\perp}^2}{\varepsilon_{\parallel}} + \frac{N_{\parallel}^2}{\varepsilon_{\perp}}} \equiv v_{\parallel}.$$

Когда $N_{\perp}=0$, то понятно, что $v=c/\sqrt{\varepsilon_{\perp}}=v_{\perp}=v_{\rm o}$, – нет разницы между обыкновенной и необыкновенной. В случае $N_{\parallel}=0$ верно, что $v=v_{\rm e}\stackrel{\rm def}{=}c/\sqrt{\varepsilon_{\parallel}}$.

Термин оптическая ось введен для обозначения прямой, вдоль которой обе волны распростаняются с одинаковыми скоростями, и таким прямых в общем случае, поэтому кристалл называется *оптически двуосным*. В рассмотренном частном случае оси совпали, и получился *оптически одноосный* кристалл.

Lem 2.5. В общем случае волна, вступающая в кристалл изотропной среды, разделяется внутри кристалла на две линейно поляризованные волны: обыкновенную, вектор электрической индукции которой перпендикулярен к главному сечению, и необыкновенную с вектором электрической индукции, лежащим в главном сечении.

Про показатели преломления. В кристаллая верны законы преломления для *волновых нормалей*: их направления подчиняются закону Снеллиуса

$$\frac{\sin \varphi}{\sin \psi_{\perp}} = n_{\perp}, \quad \frac{\sin \varphi}{\sin \psi_{\parallel}} = n_{\parallel},$$

где n_{\perp} и n_{\parallel} – показатели прелоления обыкновенной и необыкноуенной волн, т.е.

$$n_{\perp} = \frac{c}{v_{\perp}} = n_{\text{o}}, \quad n_{\parallel} = \frac{c}{v_{\parallel}} = \left(\frac{N_{\perp}^2}{\varepsilon_{\parallel}} + \frac{N_{\parallel}^2}{\varepsilon_{\perp}}\right)^{-1/2}.$$

Постоянная n_0 называется обыкновенным показателем преломления. Когда необыкновенная волна распространяется перпендикулярно к оптической оси $(N_{\perp}=1)$,

$$n_{\parallel} = \sqrt{\varepsilon_{\parallel}} \stackrel{\text{def}}{=} n_{\text{e}}.$$

Величина $n_{\rm e}$ – необыкновенный показатель преломления кристалла.

Двойное лучепреломление. При преломлении на первой поверхности пластинки волна внутри кристалла разделяется на обыкновенную, и необыкновенную. Эти волны поляризованы во взаимно перпендикулярных плоскостях и распространяются внутри пластинки в разных направлниях и с разными скоростями. Таким образом можно добиться пространственного разделения двух лучей.

Поляризационные устройства. Комбинация кристаллов – поляризационная призма¹ . Существуют *одно- лучевые* (на полном внутренне отражении) и *двулучевые*.

Def 2.6. Допустимая разность углов наклона между крайними лучами падающего на призму пучка называется апертурой полной поляризации призмы.

Def 2.7. Дихроизм – свойство кристаллов, состоящее в различном поглощении веществом света в зависимости от его поляризации. Всего различают: линейный дихроизм (при \bot направлениях линейной поляризации); эллиптический дихроизм (различное поглощение для правой и левой эллиптической поляризации); круговой дихроизм (различные направления круговой поляризации, иначе – эффект Коттона).

Анализ поляризованного света. Пластинка в четверть волны $(\lambda/4)$, вносит дополнительную разность фаз в $\pi/2$ между проходящими через неё лучами, поляризованными во взаимно перпедикулярных плоскостях.

Интерференция поляризованных лучей.

Волны в двуосных кристаллах.

Лучи и волновые нормали.

2.3 Двойное преломление в электрическом и магнитном полях (эффект Керра)

Электрический эффект Керра состоит в том, что многие изотропные тела при введении в постоянное электрическое поле становится оптически анизотропным. В частности, ведут себч как одноосные двупреломляющие кристаллы, оптическая ось которых параллельна приложенному электрическому полю.

Пусть внешнее поле E_0 однородно. Понятно, что $n_e - n_o$ зависит от E_0 в виде

$$n_{\rm e} - n_{\rm o} = qE_0^2,$$

для малых полей, где q зависит только от вещества и от λ . В таком случае разность фаз между обыкновенной и необыкновенными лучами будет

$$\varphi = \frac{2\pi}{\lambda}(n_{\rm e} - n_{\rm o})l = 2\pi B l E^2,$$

где l – толщина образца, а $B\equiv q/\lambda$ – nocmoshhas Keppa. Явление Keppa объясняется анизотропией самих молекул.

Для эффекта Керра в газах, в случае полностью анизотропных молекул, можно показать, что при $E \parallel E_0$ показатель преломления будет *необыкновенным*, тогда

$$n = 1 + \frac{2\pi}{3} N\beta,$$

 $^{^{1}}$ Самая первая призма — николь, 1828 г.

где β – поляризуемость молекулы вдоль оси молекулы. Если же $E \bot E_0$, то показатель преломления будет обыкновенным, и

$$n_0 = 1 + 2\pi N\beta \langle \sin^{\theta} \rangle$$
,

где ϑ – угол 2 между \boldsymbol{E} и \boldsymbol{s} .

Забавный факт: из полученных соотноешний можем получить

$$\frac{n_{\rm e} - n}{n_{\rm o} - n} = -2,$$

что выполняется для большинства веществ.

Проводя некоторый аккуратны расчёт можем получить выражение для постоянной Керра:

$$n_{\rm e} - n_{\rm o} = \frac{n-1}{5} \frac{\beta}{kT} E_0^2.$$

2.4 Линейный электрооптический эффект Поккельса

Рассмотрим ангармонический осциллятор при наличии внешнего постоянного электрического поля E_0

$$\ddot{r} + 2\gamma \dot{r} + \omega_0^2 r + \beta r^2 = -\frac{e}{m} E_0,$$

где β – постоянная. Считая $r=r_0+q$ можем перейти к уравнению с новой частотой

$$\ddot{q} + 2\gamma \dot{q} + (\omega_0^2 + 2\beta r_0)q = 0,$$

откужа видно изменение частоты колебания на

$$\Delta\omega_0^2 = -\frac{2e\beta}{m\omega_0^2}E_0^2.$$

Смещение собственных частот меняет кривую дисперсии, т.е. показатель преломления n среды. В простейшем случае, когда ω_0 одна (см. §84), изменение n определяется выражением

$$\Delta n = \frac{\partial n}{\partial \omega_0^2} \Delta \omega_0^2 = -\frac{\partial n}{\partial \omega_0^2} - \frac{\partial n}{\partial \omega_0^2} \frac{2e\beta}{m\omega_0^2} E_0 = \frac{\partial n}{\partial \omega} \frac{e\beta}{m\omega\omega_0^2} E_0.$$

При фиксированном внешнем E_0 величина Δn зависит от направления распространения света. Это сказывается на двойном преломлении среды. Изменеие двойного преломления вещества из-за смещения собственной частоты во внешнем электрическом поле называется электрооптическим эффектом Поккельса.

В этом эффекте изменения пропорциональны первой степени E_0 . Эффект Поккельса может наблюдаться только в кристаллах, не обладающих центром симметрии. Устройство, основанное на эффекте Поккельса, называют ячейкой Поккельса.

Она представляет собой кристалл, помещаемый между двумя скрещенными николями. Такое устройство действует так же, как и ячейка Керра. Николи не пропускают свет, когда нет внешнего электрического поля, но при наложении такого поля пропускание появляется. Необходимо, чтобы кристалл до наложения внешнего электрического поля не давал двойного преломления. Этого можно достигнуть, если взять оптически одноосный кристалл, вырезанный перпендикулярно к оптической оси, а свет направить вдоль этой оси. Внешнее поле Еq может быть направлено либо перпендикулярно (поперечный модулятор света), либо параллельно распространению света (продольный модулятор).

2.5 Вращение плоскости поляризации

Если линейно поляризованный свет проходит через плоскопараллельный слой вещества, то в некоторых случаях плоскость поляризации света оказывается повернутой относительно своего исходного положения. Это явление называется вращением плоскости поляризации или оптической активностью. Если вещество не находится во внешнем магнитном поле, то оптическая активность и вращение плоскости поляризации называются естестыенными. В противоположнос случае говорят о магнитном вращении плоскости поляризации, или эффекте Фарадея.

Вращение против часовов — nonoж umenьноe, по часовой — ompu umenьноe. Это свойство, как и в случе с шурупом, не зависит от того, в каком из двух прямо противоположных напралний распространяетя свет 3 .

 $^{^2}$ Дописать.

³ Если свет заставить пройти туда и обратно через естественно-активное вещество, отразив его от зеркала, то плоскость поляризации возвратится к своему исходисходному направлению.

В области прозрачности и малого поглощения эта история хорошо согласуется с опытом формула Друде

$$\xi = \alpha L, \quad \alpha = \sum_{i} \frac{B_i}{\lambda^2 - \lambda_i^2},$$

где B_i – постоянные, λ_i – длины волн, соответсвующие собтсвенным чатсота рассматриваемого вещества.

По Френелю вращение плоскости поляризации – проявление *кругового двойного лучепрпеломления*. Две волны, которые могут распространятся в оптически активной среде с разными скоростями, поляризованы *по кругу*: по левому и по правому.

Покажем достаточность такого предположения:

$$E_x = A\cos\xi\cos(\omega t - kz),$$

$$E_y = A\sin\xi\cos(\omega y - kz),$$

$$\xi = -\alpha z,$$

$$\Rightarrow E_x = \frac{A}{2}\cos(\omega t - kz + \alpha z) + \frac{A}{2}\cos(\omega t - kz - \alpha z),$$

$$E_y = \frac{A}{2}\cos(\omega t - kz + \alpha z + \pi/2) + \frac{A}{2}\cos(\omega t - kz - \alpha z - \pi/2).$$

Разложим полученную волну на две: $E = E_{\Pi} + E_{\Lambda}$, где для E_{Π} и E_{Λ} имеет смысл ввеси $k_{\Pi} = k - \alpha$ и $k_{\Lambda} = k + \alpha$. Полученные волны соответствуют правой и левой круговой поляризации. Скорости этих волн определяются выражениями

$$v_{\scriptscriptstyle \Pi} = \frac{\omega}{k - \alpha}, \quad v_{\scriptscriptstyle \Pi} = \frac{\omega}{k + \alpha},$$

и соответсвующие покзатели преломления n=c/v

Френель выдвинул гипотезу, что возможно независимое распространения поляризованных по кругу волн, с сохранением поляризации, которую подтвердил эксперементально. Тем самым задача объяснения вращения плоскости поляризации была сведена к задаче объяснения кругового двойного лучепреломления.

Поляризованные по кругу в противоположных направлениях волны в окрестности полос или линий поглощения могут отличаться не только скоростями распространения, но и коэффициентами поглощения. Тогда они выйдут с различными амплитудами. Если падающий свет был поляризован линейно, то выходящий будет поляризован эллиптически. Это явление называется круговым дихроизмом.

2.6 Магнитное вращение плоскости поляризации (эффект Фарадея)

Опыты Фарадея показали, что при наличии внешнего магнитного поля вдоль оптической оси системы, угол поворота зависит от длины пути l и напряженноести внешнего поля B, как

$$\mathcal{E} = R l R$$

де R – постоянная Верде, или магнитная вращательная способность.

При внесении в магнитное поле \boldsymbol{B} у осцилляторов вещества появляются две новые резонансные частоты $\omega_0 + \Omega$ и $\omega_0 - \Omega$, где Ω – ларморовская частота. Эти собственны частоты проявляеются не только в испускании (прямой эффект Зеемана), но и в поглощении света (обратный эффект Зеемана).

Нормальные волны, которые могут распространятся вдоль магнитного поля, поляризованы по кругу. Когда направления распространения света и магнитного поля совпадают, большей частоте $\omega_+ = \omega_0 + \Omega$ соответсвует вращение по, а меньшей ω_- – против часовой стрелки, если смотреть в направлении магнитного поля. Так как ω_+ и ω_- различны, то происходит сдвиг фаз волн, а соответсвенно, и повород плоскости поляризации на гол

$$\xi = \frac{\omega l}{2c}(n_- - n_+) = \frac{\pi l}{\lambda}(n_- - n_+).$$

Если построить $n_- - n_+$, то можно увидеть, что, как и в случае ларморовского вращения Ω , вращение плоскости поляризации определяется только направлением магнитного поля B и не зависят от направления распространения света. При изменение на противоположное направления распространеняи света не изменятся, в противоположность естественного вращения.

Вообще, в эффекте Фарадея, воспользовавшись формулой Зеемана можно получить формулу Беккереля для постоянной Верде:

$$R = -\frac{e}{2mc^2} \lambda \frac{dn}{d\lambda},$$

где m – масса электрона, e > 0 – его абсолютный заряд.

Ещё можно было бы поговорить про *эффект Макалюзо и Корбино*, объясненный Фохтом, но оставим это на светлое будущее.

3 Нелинейная оптика

3.1 Нелинейная поляризацим среды

При распространении света в среде нелинейные явления в оптике связаны прежде всего с *нелинейной зави-симостью* вектора поляризации среды P от напряженности электрического поля E световой волны. Если поле E ещё не «очень сильное», то вектор P можно разложить во степеням E:

$$P_j = \alpha_{jk}E_k + \alpha_{jkl}E_kE_l + \alpha_{jklm}E_kE_lE_m + \dots,$$

где α_{jk} – линейная поляризуемость среды, а тензоры высших порядков называют соответственно квадратичной, кубичной, и т.д. поляризуемостями. Поле E предполагаем монохроматичным, среду однородной немагнитной, без дисперсии, а α – функции частот ω . Для изотропной среды все тензоры α вырождаются в скаляры.

В средах, в которых все точки явяются центрами симметрии, квадратичный член равен нулю. Однако, можем рассмотреть *качественно* процессы, полагая

$$\mathbf{P} = \alpha \mathbf{E} + \alpha_2 E \mathbf{E} + \alpha_3 E^2 \mathbf{E} + \dots,$$

где мы принимаем ущербность такого приближения, но зато можем сделать несколько правильных шагов. Разобьем поляризацию, а также индукцию, на линейную и нелиненую: $P = P_1 + P_{\rm nl}$, где нелинейная часть $P_{\rm nl} = \alpha_2 E E + \alpha_3 E^2 E + \ldots$, а линейная $P_1 = \alpha E$. Тогда и $D = E + 4\pi P$ предсавится, как $D_{l=E} + 4\pi P_1$ и нелинейная $D_{\rm nl} = 4\pi P_{\rm nl}$. Линейная часть $D_1 = \varepsilon E$, где ε – диэлектрическая проницаемость. Теперь можем записать уравнения Максвелла в виде

$$\begin{split} \operatorname{rot} \boldsymbol{H} &= \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}, & \operatorname{rot} \boldsymbol{H} &= \frac{\varepsilon}{c} \frac{\partial \boldsymbol{E}}{\partial t} + \frac{4\pi}{c} \frac{\partial \boldsymbol{P}_{\mathrm{nl}}}{\partial t}, \\ \operatorname{rot} \boldsymbol{E} &= -\frac{1}{c} \frac{\partial \boldsymbol{H}}{\partial c}, & \Rightarrow & \operatorname{rot} \boldsymbol{E} &= \frac{1}{c} \frac{\partial \boldsymbol{H}}{\partial t}, \\ \operatorname{div} \boldsymbol{D} &= 0, & \operatorname{div}(\varepsilon \boldsymbol{E}) &= -4\pi \operatorname{div} \boldsymbol{P}_{\mathrm{nl}}, \\ \operatorname{div} \boldsymbol{H} &= 0, & \operatorname{div} \boldsymbol{H} &= 0. \end{split}$$

Система решается методом последовательных приближений. В нулевом приближение $P_{\rm nl}=0$, получаются уравнения линейной электродинамики. В качестве нулевого приближения рассмотрим

$$\boldsymbol{E} = \boldsymbol{E}_0 = \boldsymbol{A}\cos(\omega t - \boldsymbol{k} \cdot \boldsymbol{r}),$$

где $k^2 = \varepsilon \omega^2/c^2$. Для нахождения первого приближения вместо E подставим E_0 , после чего снова получим линейные уравнения, но неоднородные. Правые части могут восприниматься как если бы каждый dV переизлучал волны аки $\partial unonb$ $\Gamma epua$ с моментом $P_{\rm nl}$ dV. Такими итерациями может найти сколь угодно приближений.

Вообще среда диспергирует. Формально всё будет работать если взять эту охапку диффуров и решать её оидельно для слагаемых с частотой ω , частотой 2ω , и т.д., подставляя везде свои ε . По идее это работает.

3.2 Первое приближение. Генерация вторых гармоник.

В нулевом приближении можем найти нелинейную добавку

$$P_{\rm nl} = \alpha_2 E_0^2 = \frac{\alpha_2 A^2}{2} + \frac{\alpha_2 A^2}{2} \cos \left[2(\omega t - \boldsymbol{k} \cdot \boldsymbol{r}) \right].$$

Как ни странно – это вполне адекватный результат, первое слагаемое называют *оптическим детектированием*, – возникновением в нелинейной среде постоянной электрической поляризации при прохождении мощной световой волны.

Второе слагаеоме гармонически меняется во времени. Оно вызывает генерацию второй гармоники в нелинейной среде, т.е. волны с частотой $\omega_2 = 2\omega$. Найдём поле этой гармоники:

$$de$$
, т.е. волны с частотой $\omega_2=2\omega$. Найдем поле этой гармоники:
$$\cot m{H}=\frac{\varepsilon[2\omega]}{c}\frac{\partial m{E}}{\partial t}+i\omega\frac{4\pi\alpha_2}{c}AAe^{2(i\omega t-kr)},$$

$$\cot m{E}=\frac{1}{c}\frac{\partial m{H}}{\partial t}, \qquad \Rightarrow \qquad m{E}=A_1e^{2i(\omega t-kr)}, \qquad m{H}=B_1e^{2i(\omega t-kr)},$$

$$\operatorname{div} m{E}=\operatorname{div} m{H}=0,$$

что соответсвует частному решению от вынужденных колебаний. Из второго уравнения следует, что $E \perp H$, также верно, что $(k \cdot A_1) = (k \cdot \bar{B}_1) = 0$, т.е плоская волна поперечна относительно E и H. Учитывая, что $k^2c^2 = \omega^2\varepsilon[\omega]$ можем получить:

$$\mathbf{A}_1 = \frac{2\pi\alpha_2}{\varepsilon[\omega] - \varepsilon[2\omega]} A\mathbf{A}.$$

Если же к частном решению, добавим общее, то увидем, что можем подобрать такую его амплитуду, чтобы интенсивность второй гармоники в начале координат обращалась в нуль:

$$\boldsymbol{E}_1 = \frac{2\pi\alpha_2}{\varepsilon[\omega] - \varepsilon[2\omega]} A\boldsymbol{A} \left(\cos[2(\omega t - \boldsymbol{k} \cdot \boldsymbol{r})] - \cos[2\omega t - \boldsymbol{k}_2 \cdot \boldsymbol{r}]\right),$$

где $k_2^2 = \omega_2^2 \varepsilon [2\omega]/c^2$. Возводя в квадрат и усредняя можем найти интенсивность

$$I_1 \sim \frac{\alpha_2^2 \omega^2 x^2 I^2}{n^2 c^2} \left(\frac{\sin \beta}{\beta}\right)^2, \quad \beta = \frac{(2\boldsymbol{k} - \boldsymbol{k}_2) \cdot \boldsymbol{r}}{2} = \frac{(2k - k_2)x}{2},$$

где x – пройденное расстояние. Тут принебрегли различием $n[\omega]$ и $n[2\omega]$.

Таким образом с возрастанием x возрастает интенсивность второй гармоники, когда $\beta \in [0, \pi/2] \cup [\pi, 3\pi/2]$, и т.д. В этих сдучаях энергия переходит от исходной волны ко второй гармоники. На других интервалах энергия возвращается от второй, к первой. Условие $\beta = \pi/2$ определяет расстояние, до которого происходит перекачка энергии. Это расстояние называется когерентной длиной, для которого верно, что

$$L_{\rm coh} = \frac{\lambda}{4|n[\omega] - n[2\omega]},$$

где λ – длина исходной волны.

 $\Phi_{\rm W}$ 3 $T_{\rm F}$ X

Когда $n[\omega] = n[2\omega]$ верно, что $2k = k_2$, тогда и $L_{\rm coh}$ обращается в бесконечность. Это условие – ϕ азовый синхронизм.

Ещё в 1962 году было эксперментально продемонстрирована возможность осущиствить фазовый синхронизм на частотах ω и 2ω между обыкновенной и необыкновенной волной в некоторых кристаллах.

Аналогичное явление – генерация волн с суммарной и разностной частотами. Если на нелинейную среду направить два можных пучка света с различными частотами ω_1 и ω_2 , то из неё будет выходить свет с частотами $\{\omega_1, \omega_2, 2\omega_1, 2\omega_2, \omega_1 + \omega_2, \omega_1 - \omega_2\}$. Так можно получить излучение в инфракрасной и ультрафиолетовой области, например, ≈ 80 нм.

3.3 Второе приближение. Самофокусировка.