

Trees

- ➤ Binary trees: introduction (complete and extended binary trees),
- Memory representation (sequential, linked)
- ➤ Binary tree traversal: pre-order, in-order and post-order (traversal algorithms using stacks)

Definition of Tree

- A tree is a finite set of zero or more nodes such that:
- There is a specially designated node called the root.
- ♦ The remaining nodes are partitioned into n>=0 disjoint sets T1, ..., Tn, where each of these sets is a tree.
- We call T1, ..., Tn the subtrees of the root.

Level and Depth

Terminology

- The degree of a node is the number of subtrees of the node
 - The degree of A is 3; the degree of C is 1.
- The node with degree o is a leaf or terminal node.
- A node that has subtrees is the *parent* of the roots of the subtrees.
- The roots of these subtrees are the *children* of the node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes along the path from the root to the node.

Terminology

- The depth of a node is the number of edges from the node to the tree's root node. A root node will have a depth of o.
- The height of a node is the number of edges on the longest path from node to a leaf node. A leaf node will have a height of o.

Tree Properties

Property	Value
Number of nodes	9
Height	5
Root Node	A
Leaves	5
Interior nodes	A,B,E,G
Number of levels	4
Ancestors of H	G,E,B,A
Descendants of B	D,E,F,G,H,I
Siblings of E	D,F
degree of node A	2
Height of A: 4 and depth of A: 0	

Binary Trees

- A special class of trees: max degree for each node is 2
- Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left subtree* and *the right subtree*.

Samples of Trees

Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2ⁱ, i>=0.
- ♣ The maximum number of nodes in a binary tree of depth k is 2^k-1, k>=1.

Full BT vs. Complete BT

- A full binary tree of depth k is a binary tree of depth k having 2^k-1 nodes, k>=1.
- A binary tree with n nodes and depth k is complete *iff* its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

Full binary tree of depth 4

Complete Binary Tree

• If a complete binary tree with n nodes $(depth = \lfloor \log n + 1 \rfloor)$

is represented sequentially,

then for any node with index i, 1 <= i <= n, we have:

- parent(i) is at $\lfloor i/2 \rfloor$ if i!=1. If i=1, i is at the root and has no parent.
- leftChild(i) is at 2i if 2i <= n. If 2i > n, then i has no left child.
- rightChild(i) is at 2i+1 if 2i+1 <= n. If 2i+1 > n, then i has no right child.

- A binary tree listed to lead the orange tree if each node N has either o or 2 children.
- The nodes with 2 children are called internal nodes.
- The nodes with o children are called external nodes.

[2]B Sequential Representation [3] [4](1) waste space [1]A (2) insertion/deletion [5] [2]B problem [6] F [3] [7]B [4][8][5] [9] [6] [7]В [8] [9] F G D E E [16] Η

Linked Representation

```
struct btnode {
  int data;
  btnode *left, *right;
};
```

left data right

Binary Tree Traversals

- There are three standard ways of traversing a binary tree T with root R.
- These three algorithms, called:
 - preorder
 - inorder
 - postorder

Arithmetic Expression Using BT

preorder traversal
+ * * / A B C D E
prefix expression

inorder traversal A / B * C * D + E infix expression

postorder traversal A B / C * D * E + postfix expression

Preorder Traversal (recursive version)

```
Algorithm:
1. Process the root R.
2. Traverse the left subtree of R in preorder.
3. Traverse the right subtree of R in preorder.
Pseudo-Code:
void preorder(btnode ptr)
/* preorder tree traversal */
    if (ptr!=NULL) {
        cout<<ptr>>data;
        preorder(ptr->left);
        predorder(ptr->right);
```


Inorder Traversal (recursive version)

```
Algorithm:
1. Traverse the left subtree of R in inorder.
2. Process the root R.
3. Traverse the right subtree of R in inorder.
                                        A / B * C * D + E
Pseudo-Code:
void inorder(btnode ptr)
/* inorder tree traversal */
    if (ptr!=NULL) {
        inorder(ptr->left);
        cout<<ptr->data;
        indorder(ptr->right);
```


Postorder Traversal (recursive version)

```
Algorithm:
1. Traverse the left subtree of R in postorder.
2. Traverse the right subtree of R in postorder.
3. Process the root R.
                                     A B / C * D * E +
Pseudo-Code:
void postorder(btnode ptr)
/* postorder tree traversal */
    if (ptr!=NULL) {
       postorder(ptr->left);
       postorder(ptr->right);
       cout<<ptr->data;
```


Thank You