

AXI 帧缓存

2024.09.15

一 修订

版本	日期	编辑人	内容
1.00	2024.09.15	陈家耀	创建了第一个正式版本

二 简介和特性

AXI 帧缓存是视频源和显示的数据交换枢纽,它将视频源提供的帧写入像素流和显示端帧读取像素流转换为 1 个 AXI 主机。由于视频源和显示端像素流的速率不可能完全一致,帧缓存通常是必须使用的,以实现整帧刷新并提供连续的显示像素流。AXI 帧缓存由帧缓存核心、4KB 边界保护和 AXI 寄存器片组成。帧缓存核心使用读写指针和帧填充向量来管理帧缓存区,分别在读/写通道加入事务控制逻辑和数据缓存以生成读/写地址和保证读/写数据传输的连续性,另有位宽变换模块用于实现帧写入 AXIS 到 AXI 写数据通道之间、AXI 读数据通道到帧读取 AXIS 之间的位宽转换。4KB 边界保护是可选的,用于保证 AXI 读写突发不跨越 4KB 边界,是否使用 4KB 边界保护需要考查总线互联的要求。AXI 寄存器片是可选的,用来改善 AXI 读写通道的时序。

图 2-1 AXI 帧缓存组成框图

AXI 帧缓存使用读写指针和帧填充向量来管理帧缓存区。初始时写指针处于帧缓存区第 1 帧的位置,读指针处于帧缓存区最后 1 帧的位置,最后 1 帧在一开始被填充。当写指针的下 1 帧已经被填充时,判定满。当读指针的下 1 帧尚未被填充时,判定空。表 2-1 展示了 4 帧缓存下读写指针和帧填充向量的变化情况。显示端连续地从帧缓存区取像素流,若帧缓存区空则重复取当前帧(帧缓存区空时读指针所指向的帧已经被填充),否则取下 1 帧并清理当前帧。视频源端只能在帧缓存区非满时提交有效的帧写使能(帧缓存区满时写使能保持直到非满),有效的帧写使能令写指针跳到下一帧,而当前帧被填充。

进程序号	写指针	读指针	帧填充向量	满	空
0	0001	1000	1000	×	~
1	0010	1000	1001	×	×
2	0100	1000	1011	√	×
3	0100	0001	0011	×	×
4	0100	0010	0010	×	√
5	1000	0010	0110	×	×

表 2-1 AXI 帧缓存管理

三 IP 功能

AXI 帧缓存将视频源端提供的帧写入像素流转换到 AXI 写通道,将 AXI 读通道转换到显示端的帧读取像素流。AXI 帧缓存使用 AXIS 位宽变换模块来实现 32 位 AXI 总线与帧写入/读取像素流 AXIS 总线之间的转换。AXI 帧缓存可用于实现显示端的整帧刷新,并允许接入任意速率的视频源端像素流。AXI 帧缓存主要实现以下功能:

- 1、**帧缓存区管理**。AXI 帧缓存使用**读写指针**和**帧填充向量**来管理帧缓存区,如果下 1 帧未被填充,显示端像素流会重复输出当前帧,否则输出下 1 帧,从而匹配任意速率的视频源,实现整帧刷新。
- 2、**像素流位宽变换**。AXI 帧缓存支持每 clk 处理多个像素的帧写入/读取像素流, 并使用 AXIS 位宽变换模块实现同步(同一时钟)的位宽变换。
- 3、读写数据缓存。AXI 帧缓存支持写数据缓存,当写缓存包含了一个及以上写 突发时,才产生有效的写地址,从而保证了 AXI 写通道数据发送的连续性。AXI 帧缓存支持读数据缓存,当读缓存能够存下一个及以上读突发时,才产生有效的 读地址,从而保证了 AXI 读通道数据接收的连续性。
- **4、可配置的 AXI 最大突发长度**。选择合适的 AXI 最大突发长度以在吞吐率和总线影响程度之间折衷。
- 5、**可选的 4KB 边界保护**。可以启用 4KB 边界保护来确保 AXI 主机上的每次突发不跨越 4KB 边界。
- 6、**可选的 AXI 寄存器片**。可以在 AXI 总线的 5 个通道插入 AXIS 寄存器片以改善时序。

目前已为 AXI 帧缓存搭建了 testbench,如需仿真,请修改以下位置的配置 参数:

tb_axi_frame_buffer.sv 第 18~41 行 test_cases.sv 第 14~15、72~75 行

四 IO 描述

表 4-1 AXI 帧缓存 IO 表

衣 4-1 AXI				
端口名	方向	位宽	含义	
	<u> </u>	付钟和复位		
clk	input	1	时钟	
rst_n	input	1	复位,低有效	
		AXI 主机		
m_axi_araddr	output	32	AXI 读地址通道	
m_axi_arburst	output	2		
m_axi_arlen	output	8		
m_axi_arsize	output	3		
m_axi_arvalid	output	1		
m_axi_arready	input	1		
m_axi_rdata	input	32	AXI 读数据通道	
m_axi_rresp	input	2		
m_axi_rlast	input			
m_axi_rvalid	input			
m_axi_rready	output			
m_axi_awaddr	output	32	AXI 写地址通道	
m_axi_awburst	output	2		
m_axi_awlen	output	8		
m_axi_awsize	output	3		
m_axi_awvalid	output	1		
m_axi_awready	input	1		
m_axi_bresp	input	2	AXI 写响应通道	
m_axi_bvalid	input	1		
m_axi_bready	output	1		
m_axi_wdata	output	32	AXI 写数据通道	
m_axi_wstrb	output	4		
m_axi_wlast	output	1		
m_axi_wvalid	output	1		
m_axi_wready	input	1		
帧写入 AXIS 从接口				
s_axis_pix_data	input	pix_data_width*	AXIS 接口	
		pix_per_clk_for_wt		
s_axis_pix_valid	input	1		
s_axis_pix_ready	output	1		
帧读取 AXIS 主接口				
m_axis_pix_data	output	pix_data_width*	AXIS 接口	
		pix_per_clk_for_rd		

m_axis_pix_user	output	8		
m_axis_pix_last	output	1		
m_axis_pix_valid	output	1		
m_axis_pix_ready	input	1		
帧缓存控制和状态				
disp_suspend	input	1	暂停取新的一帧,标志	
			信号,高有效	
rd_new_frame	output	1	读取新的一帧,指示信	
			号	

注: AXI 帧缓存使用 32 位 AXI 主接口, 突发大小固定为 32 位, 不支持窄带传输、非对齐传输和写字节使能, 应当保证<u>帧缓存区的基地址和每帧的字节总数可被 4 整除</u>。

五 可配置参数描述

表 5-1 AXI 帧缓存 可配置参数表

配置参数名	含义	可取值
en_4KB_boundary_protect	是否启用 4KB 边界保护	"true" "false"
en reg slice at m axi ar	是否在 AXI 主机的 AR 通	"true" "false"
	道插入寄存器片	
en_reg_slice_at_m_axi_aw	是否在AXI主机的AW通	
	道插入寄存器片	
en reg slice at m axi r	是否在 AXI 主机的 R 通	
	道插入寄存器片	
en_reg_slice_at_m_axi_w	是否在 AXI 主机的 W 通	
	道插入寄存器片	
en_reg_slice_at_m_axi_b	是否在 AXI 主机的 B 通	
	道插入寄存器片	
frame_n	缓冲区帧个数	[3, 16]
frame_buffer_baseaddr	帧缓冲区首地址	能被4整除的自然数
img_n	图像大小,以像素个数	帧大小
	计	(img_n * pix_data_width
		/8)必须能被 4 整除
pix_data_width	像素位宽	像素位宽
		(pix_data_width) 必须能
		被8整除
pix_per_clk_for_wt	每 clk 写的像素个数	图像大小(img_n)必须能
		被每 clk 写的像素个数
		(pix_per_clk_for_wt)整除
pix_per_clk_for_rd	每 clk 读的像素个数	图像大小(img_n)必须能
		被每 clk 读的像素个数
		(pix_per_clk_for_rd)整除
axi_raddr_outstanding	AXI 读地址缓冲深度,指	1 2 4 8 16
	定可以缓存多少个读地	
	址	
axi_rchn_max_burst_len	AXI 读通道最大突发长	2 4 8 16 32 64
	度	128 256
axi_waddr_outstanding	AXI 写地址缓冲深度,指	1 2 4 8 16
	定可以缓存多少个写地	
	址	
axi_wchn_max_burst_len	AXI 写通道最大突发长	2 4 8 16 32 64
	度	128 256
axi_wchn_data_buffer_depth	AXI 写通道数据 buffer 深	0 16 32 64 ,设
	度,一般需要使用以保	为0时表示不使用
	证写数据的连续性	

axi_rchn_data_buffer_depth	AXI 读通道数据 buffer 深度,一般需要使用以保证读数据的连续性	
simulation_delay	仿真延时,可用于仿真时模拟D到Q延迟	0.1f~100.0f

注:AXI 读地址缓冲深度(axi_raddr_outstanding)和 AXI 读通道数据 buffer 深度 (axi_rchn_data_buffer_depth)共同决定了 AR 通道的握手,仅当 <u>AXI 读地址缓存未满且读数据 buffer 未满时 AR 通道可以有效</u>。

六 应用指南

AXI 帧缓存用于解决视频源和显示端速率不匹配的问题,实现整帧刷新。AXI 帧缓存采用标准的 AXI 和 AXIS 接口,对外部存储器、视频源和显示设备的类型没有特别的要求,具有较强的通用性。用户主要关心视频源的**帧写入像素流 AXIS 接口**和显示端的**帧读取像素流 AXIS 接口**。

一种参考的应用方案如图 6-1 所示,将 AXI 帧缓存的 AXI 主机接入 AXI 总线互联以访问外部存储器,将帧读取像素流 AXIS 接入视频输出模块以显示到 hdmi、mipi 等接口的屏幕上,提供一个 AXIS 视频源作为帧写入显示流 AXIS,AXIS 视频源可以来自于 SD 卡、摄像头、网口等设备。

本 IP 所提供的同步 FIFO 的顶层 RTL 文件为 ram_fifo_wrapper.v, 由于 fifo 使用到的 RAM 可能与器件类型有关,必要时请根据设计要求进行替换。

图 6-1 AXI 帧缓存参考应用图