System Check Body 835MHz

DUT: D835V2-4d200

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850_170206 Medium parameters used: f = 835 MHz; $\sigma = 1.005$ S/m; $\epsilon_r = 56.076$; $\rho = 1.005$ Medium: $\epsilon_r = 56.076$

Date: 2017/2/6

 1000 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.3 °C

DASY5 Configuration

- Probe: EX3DV4 SN3955; ConvF(10.18, 10.18, 10.18); Calibrated: 2016/11/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2016/11/17
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.58 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.87 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 3.89 W/kg

SAR(1 g) = 2.61 W/kg; SAR(10 g) = 1.72 W/kgMaximum value of SAR (measured) = 3.44 W/kg

0 dB = 3.44 W/kg = 5.37 dBW/kg

System Check_Body_1750MHz

DUT: D1750V2-1068

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL_1750_170207 Medium parameters used: f = 1750 MHz; σ = 1.501 S/m; ϵ_r = 55.502; ρ

Date: 2017/2/7

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration

- Probe: EX3DV4 SN3955; ConvF(8.31, 8.31, 8.31); Calibrated: 2016/11/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2016/11/17
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.4 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 95.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.4 W/kg

SAR(1 g) = 9.14 W/kg; SAR(10 g) = 5.06 W/kgMaximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

System Check_Body_1900MHz

DUT: D1900V2-5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_170206 Medium parameters used: f = 1900 MHz; σ = 1.541 S/m; ϵ_r = 55.581; ρ

Date: 2017/2/6

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C

DASY5 Configuration

- Probe: EX3DV4 SN3955; ConvF(8, 8, 8); Calibrated: 2016/11/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2016/11/17
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.8 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg