Linear Regression

Mario Parente

How do you measure the biomass of a forest?

How do you measure the biomass of a forest?

Hard to measure:

► Mass of tree

How do you measure the biomass of a forest?

Hard to measure:

- ► Mass of tree
- ► Height of tree (but can be done)

How do you measure the biomass of a forest?

Hard to measure:

- ► Mass of tree
- ► Height of tree (but can be done)

Easy to measure:

▶ Diameter at breast height (DBH)

How do you measure the biomass of a forest?

Hard to measure:

- ► Mass of tree
- ► Height of tree (but can be done)

Easy to measure:

► Diameter at breast height (DBH)

Let's simplify the problem: devise method to easily estimate the height of a tree

Idea?

Idea?

Collect data on DBH and height for some trees

Idea?

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height

Idea?

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- Use DBH to predict height for a new tree

Some data

Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China

Yan-qiong Li, Xiang-wen Deng M, Zhi-hong Huang, Wen-hua Xiang, Wen-de Yan, Pi-feng Lei, Xiao-lu Zhou, Chang-hui Peng

Some data

Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China

Yan-giong Li, Xiang-wen Deng 🖾, Zhi-hong Huang, Wen-hua Xiang, Wen-de Yan, Pi-feng Lei, Xiao-lu Zhou, Chang-hui Peng

What do you predict for the height of a tree with DBH 15cm? 35cm? Why?

Idea:

- Collect data on DBH and height for some trees
- Determine relationship between DBH and height
- ► Use DBH to predict height for a new tree

Idea:

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- Use DBH to predict height for a new tree

This is **supervised learning**:

Idea:

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- Use DBH to predict height for a new tree

This is **supervised learning**:

Collect training data

Idea:

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- Use DBH to predict height for a new tree

This is **supervised learning**:

- Collect training data
- Use a learning algorithm to fit a model

Idea:

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- Use DBH to predict height for a new tree

This is **supervised learning**:

- ► Collect **training data**
- Use a learning algorithm to fit a model
- Use model to make a prediction

Idea:

- Collect data on DBH and height for some trees
- ▶ Determine relationship between DBH and height
- ► Use DBH to predict height for a new tree

This is **supervised learning**:

- ► Collect training data
- Use a learning algorithm to fit a model
- Use model to make a prediction

What model? What algorithm? Largely what this class is about.

Supervised Learning

DBH (x)	Height (y)
17	63
19	65
20.5	66
•••	•••

Supervised Learning

DBH (x)	Height (y)
17	63
19	65
20.5	66
• • •	• • •

Find h such that $h(x) \approx y$

- \blacktriangleright Observe m "training examples" of form $(x^{(i)},y^{(i)})$
 - $ightharpoonup x^{(i)}$: features / input / what we observe / DBH
 - $ightharpoonup y^{(i)}$: target / output / what we want to predict / height

- \blacktriangleright Observe m "training examples" of form $(x^{(i)},y^{(i)})$
 - $\blacktriangleright x^{(i)}$: **features** / input / what we observe / DBH
 - $ightharpoonup y^{(i)}$: target / output / what we want to predict / height
 - \blacktriangleright Training set $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$

- $lackbox{ Observe }m$ "training examples" of form $(x^{(i)},y^{(i)})$
 - $\blacktriangleright x^{(i)}$: **features** / input / what we observe / DBH
 - $\blacktriangleright y^{(i)}$: target / output / what we want to predict / height
 - ▶ Training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- ▶ Find function ("hypothesis") h such that $h(x) \approx y$

- $lackbox{ Observe }m$ "training examples" of form $(x^{(i)},y^{(i)})$
 - $ightharpoonup x^{(i)}$: **features** / input / what we observe / DBH
 - $\blacktriangleright y^{(i)}$: target / output / what we want to predict / height
 - ▶ Training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- Find function ("hypothesis") h such that $h(x) \approx y$
 - $lackbox{h}(x^{(i)}) pprox y^{(i)}$ good fit on training data

- ▶ Observe m "training examples" of form $(x^{(i)}, y^{(i)})$
 - $\blacktriangleright x^{(i)}$: **features** / input / what we observe / DBH
 - $\blacktriangleright y^{(i)}$: target / output / what we want to predict / height
 - ▶ Training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- Find function ("hypothesis") h such that $h(x) \approx y$
 - $\blacktriangleright h(x^{(i)}) \approx y^{(i)}$ good fit on training data
 - ► **Generalize** well to new *x* values

- ▶ Observe m "training examples" of form $(x^{(i)}, y^{(i)})$
 - $\blacktriangleright x^{(i)}$: **features** / input / what we observe / DBH
 - $ightharpoonup y^{(i)}$: target / output / what we want to predict / height
 - ▶ Training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- ▶ Find function ("hypothesis") h such that $h(x) \approx y$
 - $\blacktriangleright h(x^{(i)}) \approx y^{(i)}$ good fit on training data
 - ► **Generalize** well to new *x* values

Variations: type of x, y, h

First example of supervised learning. Assume hypothesis is a linear function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

First example of supervised learning. Assume hypothesis is a linear function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 \blacktriangleright θ_0 : intercept, θ_1 : slope

First example of supervised learning. Assume hypothesis is a linear function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- \blacktriangleright θ_0 : intercept, θ_1 : slope
- ▶ "parameters" or "weights"

First example of supervised learning. Assume hypothesis is a linear function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- \blacktriangleright θ_0 : intercept, θ_1 : slope
- "parameters" or "weights"

How to find "best" θ_0 , θ_1 ?

Simplification: "slope-only" model $h_{\theta}(x) = \theta_1 x$

Simplification: "slope-only" model $h_{\theta}(x) = \theta_1 x$

ightharpoonup We only need to find θ_1

Simplification: "slope-only" model $h_{\theta}(x) = \theta_1 x$

ightharpoonup We only need to find $heta_1$

Idea: design cost function $J(\theta_1)$ to numerically measure the quality of hypothesis $h_{\theta}(x)$

Simplification: "slope-only" model $h_{\theta}(x) = \theta_1 x$

lackbox We only need to find $heta_1$

Idea: design cost function $J(\theta_1)$ to numerically measure the quality of hypothesis $h_{\theta}(x)$

Exercise: which cost functions below make sense?

A.
$$J(\theta_1) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

B.
$$J(\theta_1) = \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

C.
$$J(\theta_1) = \sum_{i=1}^{m} |h_{\theta}(x^{(i)}) - y^{(i)}|$$

- 1. A only
- 2. B only
- 3. C only
- 4. B and C
- 5. A, B, and C

Simplification: "slope-only" model $h_{\theta}(x) = \theta_1 x$

lackbox We only need to find $heta_1$

Idea: design cost function $J(\theta_1)$ to numerically measure the quality of hypothesis $h_{\theta}(x)$

Exercise: which cost functions below make sense?

A.
$$J(\theta_1) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

B.
$$J(\theta_1) = \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

C.
$$J(\theta_1) = \sum_{i=1}^{m} |h_{\theta}(x^{(i)}) - y^{(i)}|$$

- 1. A only
- 2. B only
- 3. C only
- 4. B and C
- 5. A, B, and C

Answer. 4

Squared Error Cost Function

The "squared error" cost function is:

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

The "squared error" cost function is:

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\begin{array}{cccc} x & y & (3x-y)^2/2 \\ \hline 17 & 63 & (51-63)^2/2 = 144/2 \end{array}$$

The "squared error" cost function is:

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

The "squared error" cost function is:

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

x	y	$(3x - y)^2/2$
17	63	$(51 - 63)^2 / 2 = 144 / 2$
19	65	$(57 - 65)^2/2 = 64/2$
20.5	66	$(61.5 - 66)^2/2 = 20.25/2$

The "squared error" cost function is:

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{x}{17} \quad \frac{y}{63} \quad \frac{(3x-y)^2/2}{(51-63)^2/2 = 144/2}$$

$$19 \quad 65 \quad (57-65)^2/2 = 64/2$$

$$20.5 \quad 66 \quad (61.5-66)^2/2 = 20.25/2$$

$$J(3) = (144+64+20.25)/2 = 220.25/2$$

$$J(\theta_1) = \frac{1}{2} \Big((17 \cdot \theta_1 - 63)^2 + (19 \cdot \theta_1 - 65)^2 + (20.5 \cdot \theta_1 - 66)^2 \Big)$$

$$J(\theta_1) = \frac{1}{2} \Big((17 \cdot \theta_1 - 63)^2 + (19 \cdot \theta_1 - 65)^2 + (20.5 \cdot \theta_1 - 66)^2 \Big)$$

= 535.125 \cdot \theta_1^2 - 3659 \cdot \theta_1 + 6275

$$J(\theta_1) = \frac{1}{2} \Big((17 \cdot \theta_1 - 63)^2 + (19 \cdot \theta_1 - 65)^2 + (20.5 \cdot \theta_1 - 66)^2 \Big)$$
$$= 535.125 \cdot \theta_1^2 - 3659 \cdot \theta_1 + 6275$$
$$0 = \frac{d}{d\theta_1} J(\theta_1) = 1070.25 \cdot \theta_1 - 3659$$

We can use calculus to find the hypothesis of minimum cost. Set the derivative of J to zero and solve for θ_1 . For this example:

$$J(\theta_1) = \frac{1}{2} \Big((17 \cdot \theta_1 - 63)^2 + (19 \cdot \theta_1 - 65)^2 + (20.5 \cdot \theta_1 - 66)^2 \Big)$$

$$= 535.125 \cdot \theta_1^2 - 3659 \cdot \theta_1 + 6275$$

$$0 = \frac{d}{d\theta_1} J(\theta_1) = 1070.25 \cdot \theta_1 - 3659$$

$$\theta_1 = \frac{3659}{1070.25} = 3.4188$$

(See http://www.wolframalpha.com)

Our First Algorithm In Action

The General Algorithm

In general, we don't want to plug numbers into $J(\theta_1)$ and solve a calculus problem *every time*.

The General Algorithm

In general, we don't want to plug numbers into $J(\theta_1)$ and solve a calculus problem *every time*.

Instead, we can solve for θ_1 in terms of $x^{(i)}$ and $y^{(i)}$.

The General Algorithm

In general, we don't want to plug numbers into $J(\theta_1)$ and solve a calculus problem $\emph{every time}.$

Instead, we can solve for θ_1 in terms of $x^{(i)}$ and $y^{(i)}$.

The general problem: find θ_1 to minimize

$$J(\theta_1) = \frac{1}{2} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

You will solve this in HW1.

Two Problems Remain

Problem one: we only fit the slope. What if $\theta_0 \neq 0$?

Two Problems Remain

Problem one: we only fit the slope. What if $\theta_0 \neq 0$?

Problem two: we will need a better optimization algorithm than "Set $\frac{d}{d\theta}J(\theta)=0$ and solve for θ ."

- Wiggly functions
- ► Equation(s) may be non-linear, hard to solve

Two Problems Remain

Problem one: we only fit the slope. What if $\theta_0 \neq 0$?

Problem two: we will need a better optimization algorithm than "Set $\frac{d}{d\theta}J(\theta)=0$ and solve for θ ."

- Wiggly functions
- Equation(s) may be non-linear, hard to solve

Exercise: ideas for problem one?

Solution to Problem One

Design a cost function that takes two parameters:

$$J(\theta_0, \theta_1) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{2} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Find θ_0, θ_1 to minimize $J(\theta_0, \theta_1)$

Functions of multiple variables!

Here is an example cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2}(\theta_0 + 17 \cdot \theta_1 - 63)^2 + \frac{1}{2}(\theta_0 + 19 \cdot \theta_1 - 65)^2 + \frac{1}{2}(\theta_0 + 20.5 \cdot \theta_1 - 66)^2 + \frac{1}{2}(\theta_0 + 18.9 \cdot \theta_1 - 62.9)^2 + \dots$$

Gain intuition on http://www.wolframalpha.com

- Surface plot
- Contour plot

Solution to Problem Two: Gradient Descent

► **Gradient descent** is a general purpose optimization algorithm. A "workhorse" of ML.

Solution to Problem Two: Gradient Descent

- ► **Gradient descent** is a general purpose optimization algorithm. A "workhorse" of ML.
- ► Idea: repeatedly take steps in steepest downhill direction, with step length proportional to "slope"

Solution to Problem Two: Gradient Descent

- ► **Gradient descent** is a general purpose optimization algorithm. A "workhorse" of ML.
- ► Idea: repeatedly take steps in steepest downhill direction, with step length proportional to "slope"
- ► Illustration: contour plot and pictorial definition of gradient descent

Gradient Descent

To minimize a function $J(\theta_0, \theta_1)$ of two variables

- ▶ Intialize θ_0, θ_1 arbitrarily
- Repeat until convergence

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

 $ightharpoonup lpha = ext{step-size}$ or **learning rate** (not too big)

- ▶ The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative

- ▶ The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative
- Example

$$\frac{\partial}{\partial u} 5u^2 v^3 =$$

- ► The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative
- Example

$$\frac{\partial}{\partial u} 5u^2 v^3 = 5v^3 \frac{\partial}{\partial u} u^2$$

- ► The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative
- Example

$$\frac{\partial}{\partial u} 5u^2 v^3 = 5v^3 \frac{\partial}{\partial u} u^2$$
$$= 5v^3 \cdot 2u$$

- ▶ The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative
- Example

$$\frac{\partial}{\partial u} 5u^2 v^3 = 5v^3 \frac{\partial}{\partial u} u^2$$
$$= 5v^3 \cdot 2u$$
$$= 10v^3 u$$

- ► The partial derivative with respect to θ_j is denoted $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$
- ▶ Treat all other variables as constants, then take derivative
- Example

$$\frac{\partial}{\partial u} 5u^2 v^3 = 5v^3 \frac{\partial}{\partial u} u^2$$
$$= 5v^3 \cdot 2u$$
$$= 10v^3 u$$
$$\frac{\partial}{\partial v} 5u^2 v^3 = ??$$

Partial derivative intuition

Interpretation of partial derivative: $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ is the rate of change along the θ_j axis

Example: illustrate function with elliptical contours

- ▶ Sign of $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$?
- ▶ Sign of $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$?
- ► Which has larger absolute value?

Gradient Descent

► Repeat until convergence

$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

- ► Issues (explore in HW1)
 - ► Pitfalls
 - ▶ How to set step-size α ?
 - ► How to diagnose convergence?

The Result in Our Problem

$$h_{\theta}(x) = 39.75 + 1.25x$$

Gradient descent intuition

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

- Why does this move in the direction of steepest descent?
- ▶ What would we do if we wanted to maximize $J(\theta_0, \theta_1)$ instead?

Gradient descent for linear regression

Algorithm

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{ for } j = 0, 1$$

Cost function

$$J(\theta_0, \theta_1) = \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

We need to calculate partial derivatives.

Let's first do this with a single training example (x, y):

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$$

Let's first do this with a single training example (x, y):

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) \end{split}$$

Let's first do this with a single training example (x, y):

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \big(h_\theta(x) - y \big)^2 \\ &= 2 \cdot \frac{1}{2} \big(h_\theta(x) - y \big) \cdot \frac{\partial}{\partial \theta_j} \big(h_\theta(x) - y \big) \\ &= \big(h_\theta(x) - y \big) \cdot \frac{\partial}{\partial \theta_i} \Big(\theta_0 + \theta_1 x - y \Big) \end{split}$$

Let's first do this with a single training example (x, y):

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \big(h_\theta(x) - y \big)^2 \\ &= 2 \cdot \frac{1}{2} \big(h_\theta(x) - y \big) \cdot \frac{\partial}{\partial \theta_j} \big(h_\theta(x) - y \big) \\ &= \big(h_\theta(x) - y \big) \cdot \frac{\partial}{\partial \theta_i} \Big(\theta_0 + \theta_1 x - y \Big) \end{split}$$

So we get

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = (h_{\theta}(x) - y)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = (h_{\theta}(x) - y)x$$

More generally, with many training examples (work this out):

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

More generally, with many training examples (work this out):

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

So the algorithm is:

$$\theta_0 := \theta_0 - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Demo: parameter space vs. hypotheses

Show gradient descent demo

Summary

- What to know
 - Supervised learning setup
 - Cost function
 - ► Convert a learning problem to an optimization problem
 - Squared error
 - ► Gradient descent
- ► Next time
 - ► More on gradient descent
 - Linear algebra review