Note that: x > lucx12 for x ze. We can see this in at least two ways.

(1) Dowing x and ln(x)2 gives:

So it is not true that $x > \ln(x)^2$ for all x, but it is true that $x > \ln(x)^2$ for $x \ge e$ (and even earlier, but x = e will make computations easier).

(2) Consider the function $f(x) = x - \ln(x)^2$. We now show that f(x) > 0 for $x \ge e$.

Since $f(e) = e - \ln(e)^2 = e - 1 > 0$, it suffices to show that f(x) is increasing. We see this using derivatives: $f'(x) = 1 - 2 \cdot \ln(x) \cdot \frac{1}{x} = \frac{x - 2 \cdot \ln(x)}{x}$. We claim that f'(x) > 0

for x > e. For this, it suffices to show that the numerator x-2·ln(x)>0.

Consider the function $g(x) = x - 2 \cdot \ln(x)$, since $g(c) = e - 2 \cdot \ln(c) = e - 2 > 0$, to see that g(x) > 0 for $x \ge e$ it suffices to show that g(x) is increasing.

Again, we use derivatives for this: $g'(x) = 1-2 \cdot \frac{1}{x} = \frac{x-2}{x}$, where it is now

clear that glex1>0 for x>e.

diverges.

That is, $g'(x) = \frac{x-2}{x} > 0$ for $x \ge e$, so $g(x) = x-2 \cdot \ln(x)$ is increasing for $x \ge e$. Since g(e) > 0 then g(x) > 0 for $x \ge e$, so $f'(x) = \frac{x-2 \cdot \ln(x)}{x} > 0$ for $x \ge e$, so $f(x) = x - \ln(x)^2$ is increasing for $x \ge e$. Since f(e) > 0 then f(x) > 0 for $x \ge e$.

Thus x-ln(x)2= f(x)>0 so x> ln(x)2 for x>e.

Once we establish $x>\ln(x)^2$ for $x \ge e$, this means $n>\ln(u)^2$ for $n \ge 3$. Thus $\frac{1}{n}<\frac{1}{\ln(u)^2}$ for $n \ge 3$. Moreover, note that $\frac{\infty}{n=3}\frac{1}{n}$ diverges by the Integral Test. We now use the Comparison Test with M=3, since $\sum_{n=3}^{\infty}\frac{1}{n}$ diverges than $\sum_{n=3}^{\infty}\frac{1}{\ln(n)^2}$ diverges. Finally, $\sum_{n=3}^{\infty}\frac{1}{\ln(n)^2}<\sum_{n=2}^{\infty}\frac{1}{\ln(n)^2}$ so $\sum_{n=2}^{\infty}\frac{1}{\ln(n)^2}$