Registro e Mosaico de Imagens Obtidas por Câmera Digital a bordo de VANT

Marcos Eduardo Gomes Borges *
Marina Laís da Silva Nascimento *
Juliano E. C. Cruz *
Leila Maria Garcia Fonseca †

Instituto Nacional de Pesquisas Espaciais – INPE
Programa de Mestrado em Computação e Matemática Aplicada *
Divisão de Processamento de Imagens †
São José dos Campos, Brasil
{marcoseborges, marina.lsnascimento, juliano.ecc}@gmail.com, leila@dpi.inpe.br

Resumo—Neste trabalho foi pesquisado soluções para registro e mosaico de imagens adquiridas por câmera digital a bordo de VANT. A ideia é apresentar soluções para dois tipos de problemas que ocorrem ao mosaicar sequências de imagens aéreas: i) distorções geométricas inseridas na imagens devido às variações de altitude, ii) distorções (escala, projeção e ângulo de visada) nas imagens de baixas altitudes e que possuem cenas de objetos altos, tais como prédios e montanhas.

Index Terms—Registro de Imagens, Mosaico, VANT, TerraLib, SIFT.

I. Introdução

Utilização de Veículos Aéreos não Tripulados (VANTs) tem apresentado grande crescimento nos últimos anos devido a diversos fatores, tais como ausência de tripulação em tarefas tediosas, cansativas ou que envolvem riscos à tripulação, baixo custo operacional e de fabricação comparados às aeronaves convencionais, entre outros. Imagens aéreas obtidas através de VANTs possuem grandes aplicabilidades [1] e o objetivo geral deste trabalho é encontrar solução para distorções geométricas no mosaico de imagens adquiridas por câmera digital a bordo de aeronaves não tripuladas.

O mosaico de sequências de imagens aéreas apresenta alguns problemas de distorções geométricas devido às variações de altitudes da aeronave e distorções devido as diferenças de escala, projeção e ângulo de visada em cenas de baixa altitude e que apresentam prédios e montanhas. Outro problema também enfrentado ao mosaicar esse tipo de imagem, é que quando a aeronave realiza curvas para seguir o plano de voo traçado captura imagens com sistema de coordenadas rotacionadas em ângulos diferentes e desconhecidos, e isso também gera distorções que buscamos resolver neste trabalho.

Na Figura 1 pode-se observar o exemplo de um plano de voo para um VANT. As imagens adquiridas pela câmera digital não possuem georeferenciamento e são coletadas a cada um segundo. Após o término da aquisição das imagens, as mesmas necessitam ser mosaicadas. O procedimento inicial para essa tarefa é o registro de imagens, que inicia a busca por correspondências entre imagens diferentes que representam a mesma cena [2]. Neste trabalho, a busca por correspondências entre pontos de imagens diferentes é realizada e comparada entre os algoritmos: SIFT proposto por [3] e pelos algoritmos de registro implementados na biblioteca TerraLib.

II. ALGORITMO SIFT

O algoritmo SIFT - Scale Invariant Feature Transform foi desenvolvido por [1] em 1999 e sua função é construir descritores de pontoschaves de uma imagem, sendo este descritores independentes das

1

Fig. 1. Exemplo de Plano de Voo do VANT

mudanças de escala, rotação, translação e luminosidade que uma imagem pode sofrer. Utilizamos neste trabalho a implementação em C++ obtida em [4]. O SIFT é utilizado na busca por correspondências entre sequência de imagens diferentes que contenham partes da mesma cena. A busca é feita através de pontos-chave correspondentes, utilizando-se seus descritores. Nesta pesquisa a distância euclidiana é utilizada em três abordagens diferentes para avaliar a mais apropriada para imagens obtidas por VANTs. Os algoritmos de cada abordagem são: DistEuclidConvencional, o qual aplica a função de busca diretamente, sem tratar seus resultados. DistEuclidRedundante, que chama a função de busca duas vezes, a segunda chamada é feita invertendo-se os parâmetros da função, somente correspondências que ocorram em ambas são guardadas. DistEuclidEsc onde observa-se a continuidade de escala entre segmentos de reta traçados entre os pontos pertencentes e às correspondências geradas por esta função.

2

III. TRANSFORMADAS GEOMÉTRICAS

Ransformação geométrica é o nome que se dá à aplicação de uma determinada função matemática em uma determinada figura geométrica em que o resultado é geometricamente igual ou semelhante à figura original.

A. Transformações elementares

1) Translação: A translação desloca um determinado ponto ou conjunto de pontos uma determinada distância em um determinado sentido.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Onde t_x e t_y são respectivamente as taxas de translação no eixo x e y.[5]

Fig. 2. Exemplo de translação em um espaço bidimensional

2) Variação de escala: A variação de escala é o fato de se esticar ou encolher uma determinada figura em relação ao eixos x e y.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} v_x & 0 \\ 0 & v_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Onde v_x e v_y são respectivamente as taxas de escala no eixo x e y.[5]

Fig. 3. Exemplo de variação de escala em um espaço bidimensional

3) Rotação: Na rotação rotaciona-se a figura em torno de um determinado eixo.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -sen\theta \\ \cos\theta & sen\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Onde θ é o ângulo que a figura será rotacionada em relação a posição original levando em consideração a origem como eixo. [5]

Fig. 4. Exemplo de rotação em um espaço bidimensional

4) Cisalhamento: O cisalhamento resulta em um movimento translacional na direção de um eixo no qual a magnitude aumenta ao longo do outro eixo.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & c \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Onde c é o coeficiente de cisalhamento.[5]

Fig. 5. Exemplo de cisalhamento em um espaço bidimensional

5) *Projeção*: Projeção é o processo no qual se obtém uma figura bidimensional a partir de uma cena tridimensional.[5]

$$\begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Fig. 6. Exemplo de projeção

3

B. Tipos de transformação

É necessário primeiramente

1) Linear: A transformação linear ou também chamada de euclidiana, pode ser definida como:

$$F(x) = Qx$$

Sendo que $Q=n\times m$. Ou seja, transformações do tipo lineares são aquelas obtidas através de mutliplicações matriciais. Assim, através das transformações lineares pode-se realizar operações de rotação, cisalhamento e variação de escala.[5]

2) Afim: A transformação Afim é uma transformação que compreende as operações que a transformação linear consegue executar mais a operação de translação. A transformada em questão pode ser definida como:

$$F(x) = Qx + q$$

Sendo que $Q = n \times m$ e q tem tamanho m. [5]

- 3) Polinômio Segundo Grau: $F(x) = a_0 + a_1x + a_2y + a_3xy + a_4x^2 + a_5y^2$
- 4) Projeção: A projeção é nada mais que uma transformação linear em um espaço projetivo.[5] A forma geral da transformação projetiva é descrita como:

$$f(x) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + a_{1n}x_{1(n+1)} \\ b_1x_1 + b_2x_2 + \dots + b_nx_n + b_{n+1} \end{pmatrix}, \cdots,$$

$$\frac{a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + a_{mn}x_{m(n+1)}}{b_1x_1 + b_2x_2 + \dots + b_nx_n + b_{n+1}} \end{pmatrix}$$

IV. DETECÇÃO DE PONTOS DE INTERESSE

Ponto de interesse é como é chamado qualquer ponto de uma imagem em que o sinal mude bidimensionalmente. Cantos ou ângulos no formato L, T e Y obecem essa definição assim como pontos pretos em um fundo branco, o final de ramificações ou qualquer textura bidimensional significante.[6]

A. Detector Moravec

O operador Moravec foi uma dos primeiros detectores de ponto de interesse a serem desenvolvidos, sendo descrito primeiramente em 1977 por Hans Moravec.[7] Esse operador é baseado na função de auto-correlação do signal. Ele compara as diferenças de nível de cinza entre a janela atual e de janelas deslocadas em quatro direções paralelas à colunas e linhas. Se o mínimo dessas quatro diferenças é superior a um determinado limiar, então um ponto de interesse foi encontrado.[6]

O operador Moravec pode ser definido matematicamente como:

$$V_{1} = \frac{1}{p(q-1)} \sum_{i=-k}^{k} \sum_{j=-l}^{l-1} (g(i,j) - g(i,j+1))^{2}$$

$$V_{2} = \frac{1}{(p-1)q} \sum_{i=-k}^{k-1} \sum_{j=-l}^{l} (g(i,j) - g(i+1,j))^{2}$$

$$V_{3} = \frac{1}{(p-1)(q-1)} \sum_{i=-k}^{k-1} \sum_{j=-l}^{l-1} (g(i,j) - g(i+1,j+1))^{2}$$

$$V_{4} = \frac{1}{(p-1)(q-1)} \sum_{i=-k}^{k-1} \sum_{j=-l}^{l-1} (g(i,j+1) - g(i+1,j))^{2}$$

$$V = \min(V1, V2, V3, V4)$$

Onde p=2k+1 e q=2l+1, sendo que $k\times l$ é o tamanho da janela utilizada.

B. Fluxo Ótico

Fluxo ótico é a distribuição de velocidades aparentes do movimento de padrões de brilho em uma imagem.[8] Assim, pode-se obter informações importantes a respeito da distribuição espacial dos objetos visualizados e da taxa de mudança dessa distribuição. Discontinuidades do fluxo ótico podem ajudar a segmentar uma determinada imagem em regiões que correspondem a diferentes a diferentes objetos. Esse

conceito começou a ser estudado na década de 1940 e foi publicado primeiramente pelo psicólogo americano James Gibson.[9] [10]

Um pixel tendo a localização (x,y,t) com intensidade I será movido em $\Delta x, \Delta y$ and Δt entre os quadros de uma mesma imagem. Assim, chega-se a equação:

$$\frac{\partial I}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial I}{\partial y} \frac{\Delta y}{\Delta t} + \frac{\partial I}{\partial t} \frac{\Delta t}{\Delta t} = 0$$

simplificando tem-se que,

$$\frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0$$

Onde V_x e V_y são os componentes x e y do fluxo ótico.

V. FLUXOGRAMA PARA GERAR O MOSAICO

A montagem do mosaico se baseia em duas classes do Terralib, o arquivo MMIOMatching recebe duas imagens e apresenta como resultado os pontos de controle da cena, que são representados através de dois vetores para calculo da função de transformação. Esses pontos localizados são acrescentados na imagem que é salva com outro nome. (Talvez colocar algo da dissetação do Dmitri Fedorov) Já o segundo arquivo Mosaic recebe como entrada a saida do arquivo MMIOMatching, ou seja, os vetores que representam os pontos de controle, além das imagens que serão mosaicadas e o nome da nova imagem. (Devemos definir as configurações nesse item, qual foi a função de transformação que usamos entre outros detalhes, seria interessante fazer um desenho com explicando esse clico)

VI. RESULTADOS

Devemos descrever quanto tempo levou para executar, quantas imagens foram utilizadas para gerar o mosaico, quais as vantagens.

VII. COMPARAÇÃO DOS ALGORITMOS

Comparação do SIFT e dos algoritmos do Terralib

VIII. CONCLUSÃO

Conclusão aqui.

REFERÊNCIAS

- M. A. P. Domiciano A. Canhoto, E. H. Shiguemori, "Image sequence processing applied to autonomous aerial navigation," Signal and Image Processing Applications, 2009.
- [2] E. H. Shiguemori G. A. M. Goltz, "Aplicação do algoritmo sift em imagens de navegação autônoma," Workshop Anual de Pesquisa e Desenvolvimento do IEAv, 2008.
- [3] David G. Lowe, "Distinctive image features from scale-invariant keypoints," *International Journal of Computer Vision*, 2004.
- [4] A. Vedaldi, "Sift++: A lightweight c++ implementation of sift," http://www.vlfeat.org/~vedaldi/code/siftpp.html, 2011.
- [5] Computer Graphics: Principles and Practice 2nd Edition in C, Addison-Wesley, 1995.
- [6] C. Schmid; R. Mohr; C. Bauckhage, "Evaluation of interest point detectors," *International Journal of Computer Vision*, 2000.
- [7] H. P. Moravec, "Towards automatic visual obstacle avoidance," 5th International Joint Conference on Artificial Intelligence, 1977.
- [8] The Perception of the Visual World, Riverside Press, 1950.
- [9] J.J Gibson, "On the analysis of change in the optic array," Scandinavian J. PsychoL 18, 1977.
- [10] B. Horn; B. Schunck, "Determining optical flow," Artificial Intelligence 17, 1981.