SOLUCIONES

Ejercicio: Sea (X, \mathcal{A}, μ) un espacio de medida arbitrario. Demostrar que las funciones simples son densas en $L^1(d\mu)$, es decir, dada $f \in L^1(d\mu)$ y $\epsilon > 0$, existe una función simple $s \in L^1(d\mu)$ tal que

$$\int_X |f(x) - s(x)| \, d\mu(x) < \epsilon.$$

Indicación: Empezar suponiendo que f es positiva.

SOL: Supongamo primero que $f \ge 0$. Puesto que $\int_X f \, d\mu < \infty$, se tiene, por la definición de la integral a través de un supremo, que existe una función simple, s(x), con $0 \le s(x) \le f(x)$ tal que

$$\int_X f \, d\mu - \epsilon \quad \le \quad \int_X s \, d\mu.$$

Por lo tanto, $\int_X (f-s) d\mu = \int_X f d\mu - \int_X s d\mu \le \epsilon$. Usando que (f-s) = |f-s|, por ser $f-s \ge 0$, y que $s \in L^1(d\mu)$, al estar mayorada por f, obtenemos el resultado.

En general, para una $f \in L^1(d\mu)$ cualquiera (real) escribimos $f = f^+ - f^-$. Como sabemos, se tiene que $f^+, f^- \in L^1(d\mu)$ y son positivas. Por el resultado anterior, existen dos funciones simples s_1, s_2 (integrables) tales que $\int_X |f^+ - s_1| \, d\mu < \epsilon/2$, $\int_X |f^- - s_2| \, d\mu < \epsilon/2$. Si llamamos $s = s_1 - s_2$, se tiene que s es simple, integrable y

$$\int_{X} |f - s| \, d\mu \le \int_{X} \left(|f^{+} - s_{1}| + |f^{-} - s_{2}| \right) \, d\mu < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Observación: El caso en que $f \ge 0$ también puede resolverse utilizando el Lema Técnico visto en clase.