Working with DataFrames

October 26, 2013 | Tags: python pandas sql tutorial data science

UPDATE: If you're interested in learning pandas from a SQL perspective and would prefer to watch a video, you can find video of my 2014 PyData NYC talk here.

This is part two of a three part introduction to pandas, a Python library for data analysis. The tutorial is primarily geared towards SQL users, but is useful for anyone wanting to get started with the library.

Part 1: Intro to pandas data structures

Part 2: Working with DataFrames

Part 3: Using pandas with the MovieLens dataset

Working with DataFrames

in G+⊜ふ

abundance of functionality, far too much for me to cover in this introduction. I'd encourage anyone interested in diving deeper into the library to check out its excellent documentation. Or just use Google there are a lot of Stack Overflow questions and blog posts covering specifics of the library.

We'll be using the MovieLens dataset in many examples going forward. The dataset contains 100,000 ratings made by 943 users on 1,682 movies.

Inspection

pandas has a variety of functions for getting basic information about your DataFrame, the most basic of which is using the info method.

in G+⊜ふ

The output tells a few things about our DataFrame.

- 1. It's obviously an instance of a DataFrame.
- 2. Each row was assigned an index of 0 to N-1, where N is the number of rows in the DataFrame. pandas will do this by default if an index is not specified. Don't worry, this can be changed later.
- 3. There are 1,682 rows (every row must have an index).
- Our dataset has five total columns, one of which isn't populated at all (video_release_date) and two that are missing some values (release_date and imdb_url).
- 5. The last datatypes of each column, but not necessarily in the corresponding order to the listed columns. You should use the dtypes method to get the datatype for each column.
- An approximate amount of RAM used to hold the DataFrame. See the .memory_usage method

movies.dtypes

movie_id int64
title object
release_date object
video_release_date float64
imdb_url object
dtype: object

in G+⊜ふ

numeric columns. Be careful though, since this will return information on all columns of a numeric datatype.

users.describe()

	user_id	age
count	943.000000	943.000000
mean	472.000000	34.051962
std	272.364951	12.192740
min	1.000000	7.000000
25%	236.500000	25.000000
50%	472.000000	31.000000
75%	707.500000	43.000000
max	943.000000	73.000000

Notice *user_id* was included since it's numeric. Since this is an ID value, the stats for it don't really matter.

We can quickly see the average age of our users is just above 34 years old, with the youngest being 7 and the oldest being 73. The median age is 31, with the youngest quartile of users being 25 or younger, and the oldest quartile being at least 43.

in G+⊜ ৯

head displays the first five records of the dataset, while tail displays the last five.

movies.head()

	movie_id	title	release
0	1	Toy Story (1995)	01-Jan-
1	2	GoldenEye (1995)	01-Jan
2	3	Four Rooms (1995)	01-Jan-
3	4	Get Shorty (1995)	01-Jan
4	5	Copycat (1995)	01-Jan

in (G+		<i>?</i>
------	----	--	----------

	movie_id	title	releas
1679	1680	Sliding Doors (1998)	01-Jan
1680	1681	You So Crazy (1994)	01-Jan
1681	1682	Scream of Stone (Schrei aus Stein) (1991)	08-Mar

Alternatively, Python's regular slicing syntax works as well.

movies[20:22]

	movie_id	title	releas
20	21	Muppet Treasure Island (1996)	16-Fel
21	22	Braveheart (1995)	16-Fel

in G+⊜ふ

this case the column headers). This makes it easy to select specific columns.

Selecting a single column from the DataFrame will return a Series object.

```
users['occupation'].head()

0  technician
1   other
2  writer
3  technician
4  other
Name: occupation, dtype: object
```

To select multiple columns, simply pass a list of column names to the DataFrame, the output of which will be a DataFrame.

```
print(users[['age', 'zip_code']].head())
print('\n')
# can also store in a variable to use later
columns_you_want = ['occupation', 'sex']
print(users[columns_you_want].head())
  age zip_code
  24 85711
  53 94043
2
  23 32067
  24
        43537
  33
         15213
  occupation sex
0 technician M
      other F
      writer M
3 technician M
      other F
```


in G+⊜ふ

typically easiest.

```
# users older than 25
print(users[users.age > 25].head(3))
print('\n')
# users aged 40 AND male
print(users[(users.age == 40) & (users.sex == 'M
print('\n')
# users younger than 30 OR female
print(users[(users.sex == 'F') | (users.age < 30</pre>
  user_id age sex occupation zip_
1 2 53 F other 9
      5 33 F
                  other
4
5
      6 42 M executive 9
   user_id age sex occupation a
18 19 40 M librarian
       83 40 M
82
                    other
115
       116 40 M healthcare
  user_id age sex occupation zip
0 1 24 M technician
      2 53 F
                  other
      3 23 M
                   writer
```

Since our index is kind of meaningless right now, let's set it to the _userid using the set_index method. By default, set_index returns a new DataFrame, so you'll have to specify if you'd like the changes to occur in place.

This has confused me in the past, so look carefully at the code and output below.

in G+⊜ふ

```
with_new_index = users.set_index('user_id')
print(with_new_index.head())
print("\n^^^ set_index actually returns a new Da
        age sex occupation zip_co
user_id
        24 M technician
            F other 940
M writer 320
2
        53
3
        23 M
4
        24 M technician
                            435
        33 F
                   other
                            152
  user_id age sex occupation zip
    1 24 M technician
      2 53 F other
3 23 M writer
1
2
      3 23 M
3
       4 24 M technician
       5 33 F
                      other
^^^ I didn't actually change the Da
        age sex occupation zip_co
user_id
        24 M technician 857
        53 F other 940
23 M writer 320
2
3
4
        24 M technician 435
        33 F other 152
^^^ set_index actually returns a ne
```

If you want to modify your existing DataFrame, use the inplace parameter. Most DataFrame methods return new a DataFrames, while offering an inplace parameter. Note that the inplace version might not actually be any more efficint (in terms of speed or memory usage) that the regular version.

	age	sex	occupation	:
user_id				
1	24	М	technician	i
2	53	F	other	:
3	23	М	writer	[;
4	24	М	technician	[,
5	33	F	other	

Notice that we've lost the default pandas 0-based index and moved the user_id into its place. We can select rows *by position* using the iloc method.

```
print(users.iloc[99])
print('\n')
print(users.iloc[[1, 50, 300]])
age
                   36
sex
occupation executive
zip_code
Name: 100, dtype: object
        age sex occupation zip_coc
user_id
2
                  other 9404
51
        28 M educator 1650
        24 M student
301
                           5543
```

And we can select rows *by label* with the loc method.

age

BLOG

sex	М			
occupatio	on	exe	ecutive	
zip_code			90254	
Name: 100	9, d1	type	: object	
	age	sex	occupation	zip_coc
user_id				
2	53	F	other	9404
51	28	М	educator	1656
301	24	М	student	5543

36

If we realize later that we liked the old pandas default index, we can just reset_index. The same rules for inplace apply.

users.reset_index(inplace=True) users.head()

	user_id	age	sex	occupation
0	1	24	М	technician
1	2	53	F	other
2	3	23	М	writer
3	4	24	М	technician
4	5	33	F	other

in G+⊜ふ

Use iloc for positional indexing

I've found that I can usually get by with boolean indexing, loc and iloc, but pandas has a whole host of other ways to do selection.

in G+⊜ふ

typically stored in a relational manner.

Our MovieLens data is a good example of this - a rating requires both a user and a movie, and the datasets are linked together by a key in this case, the user_id and movie_id. It's possible for a user to be associated with zero or many ratings and movies. Likewise, a movie can be rated zero or many times, by a number of different users.

Like SQL's JOIN clause, pandas.merge allows two DataFrames to be joined on one or more keys. The function provides a series of parameters (on, left_on, right_on, left_index, right_index) allowing you to specify the columns or indexes on which to join.

By default, pandas.merge operates as an *inner join*, which can be changed using the how parameter.

From the function's docstring:

how: {'left', 'right', 'outer', 'inner'}, default 'inner'

 left: use only keys from left frame (SQL: left

in G+⊜ふ

pr	int(r	right_frame)	
	key	left_value	
0	0	а	
1	1	b	
2	2	С	
3	3	d	
4	4	е	
	key	right_value	
0	2	f	
1	3	g	
2	4	h	
3	5	i	
4	6	i	

inner join (default)

pd.merge(left_frame, right_frame, on='key', how=

	key	left_value	right_value
0	2	С	f
1	3	d	g
2	4	е	h

in G+⊜ふ

SELECT left_frame.key, left_frame.left_
FROM left_frame
INNER JOIN right_frame
ON left_frame.key = right_frame.key

Had our *key* columns not been named the same, we could have used the *left_on* and *right_on* parameters to specify which fields to join from each frame.

pd.merge(left_frame, right_frame, left_on

Alternatively, if our keys were indexes, we could use the left_index or right_index parameters, which accept a True/False value. You can mix and match columns and indexes like so:

pd.merge(left_frame, right_frame, left_on

left outer join

	key	left_value	right_value
0	0	а	NaN
1	1	b	NaN
2	2	С	f
3	3	d	g
4	4	е	h

We keep everything from the left frame, pulling in the value from the right frame where the keys match up. The right_value is NULL where keys do not match (NaN).

SQL Equivalent:

```
SELECT left_frame.key, left_frame.left_value
FROM left_frame
LEFT JOIN right_frame
ON left_frame.key = right_frame.key;
```

right outer join

pd.merge(left_frame, right_frame, on='key', how=

	key	left_value	right_value
0	2	С	f
1	3	d	g
2	4	е	h
3	5	NaN	i
4	6	NaN	j

in G+⊜ ৯

key did not find a match.

SQL Equivalent:

```
SELECT right_frame.key, left_frame.left_val
FROM left_frame
RIGHT JOIN right_frame
ON left_frame.key = right_frame.key;
```

full outer join

	key	left_value	right_value
0	0	а	NaN
1	1	b	NaN
2	2	С	f
3	3	d	g
4	4	е	h
5	5	NaN	i
6	6	NaN	j

in G+⊜ふ

Where there was not a match, the values corresponding to that key are NULL.

SQL Equivalent (though some databases don't allow FULL JOINs (e.g. MySQL)):

```
SELECT IFNULL(left_frame.key, right_frame.left_value, right_frame
FROM left_frame
FULL OUTER JOIN right_frame
ON left_frame.key = right_frame.key;
```

Combining

pandas also provides a way to combine DataFrames along an axis - pandas.concat. While the function is equivalent to SQL's UNION clause, there's a lot more that can be done with it.

pandas.concat takes a list of Series or DataFrames and returns a Series or DataFrame of the concatenated objects. Note that because the function takes list, you can combine many objects at once.

in G+⊜ふ

	key	left_value	right_value
0	0	а	NaN
1	1	b	NaN
2	2	С	NaN
3	3	d	NaN
4	4	е	NaN
0	2	NaN	f
1	3	NaN	g
2	4	NaN	h
3	5	NaN	i
4	6	NaN	j

By default, the function will vertically append the objects to one another, combining columns with the same name. We can see above that values not matching up will be NULL.

Additionally, objects can be concatentated side-by-side using the function's *axis* parameter.

pd.concat([left_frame, right_frame], axis=1)

	key	left_value	key	right_va
0	0	а	2	f
1	1	b	3	g
2	2	С	4	h
3	3	d	5	i
4	4	е	6	j

in G+⊜ふ

Series/DataFrames into one unified object. The documentation has some examples on the ways it can be used.

in G+ ⊜ ふ

awesome once it clicks.

pandas groupby method draws largely from the split-apply-combine strategy for data analysis. If you're not familiar with this methodology, I highly suggest you read up on it. It does a great job of illustrating how to properly think through a data problem, which I feel is more important than any technical skill a data analyst/scientist can possess.

When approaching a data analysis problem, you'll often break it apart into manageable pieces, perform some operations on each of the pieces, and then put everything back together again (this is the gist splitapply-combine strategy). pandas groupby is great for these problems (R users should check out the plyr and dplyr packages).

If you've ever used SQL's GROUP BY or an Excel Pivot Table, you've thought with this mindset, probably without realizing it.

Assume we have a DataFrame and want to get the average for each group - visually, the split-apply-combine method looks like this:

in G+⊜ふ

some basic groupby examples using this data.

```
!head -n 3 city-of-chicago-salaries.csv
```

Name, Position Title, Department, Empl "AARON, ELVIA J", WATER RATE TAKER, "AARON, JEFFERY M", POLICE OFFICER,

Since the data contains a dollar sign for each salary, python will treat the field as a series of strings. We can use the converters parameter to change this when reading in the file.

converters : dict. optional

 Dict of functions for converting values in certain columns. Keys can either be integers or column labels

in G+⊜ふ

	name	title
0	AARON, ELVIA J	WATER RATE TAKER
1	AARON, JEFFERY M	POLICE OFFICER
2	AARON, KIMBERLEI R	CHIEF CONTRACT EXPEDITER
3	ABAD JR, VICENTE M	CIVIL ENGINEER IV
4	ABBATACOLA, ROBERT J	ELECTRICAL MECHANIC

pandas groupby returns a
DataFrameGroupBy object which has
a variety of methods, many of which
are similar to standard SQL aggregate
functions.

```
by_dept = chicago.groupby('department')
by_dept
```

Calling count returns the total number of NOT NULL values within each column. If we were interested in the total number of records in each group, we could use size.

<pandas.core.groupby.DataFrameGroup</pre>

in G+ ⊜ ふ department	name	title	sal
ADMIN HEARNG	42	42	
ANIMAL CONTRL	61	61	
AVIATION	1218	1218	1
BOARD OF ELECTION	110	110	
BOARD OF ETHICS	9	9	
TREASURER	926 2070 1168 25 1857		

Summation can be done via sum, averaging by mean, etc. (if it's a SQL function, chances are it exists in pandas). Oh, and there's median too, something not available in most databases.

in G+⊜ふ

		salary
dep	partment	
HUM	MAN RESOURCES	4850928.0
INS	SPECTOR GEN	4035150.0
IPF	RA	7006128.0
LAV	N	31883920.2
LIC	CENSE APPL COMM	65436.0
		_
		salary
-	partment	
	MAN RESOURCES	
	SPECTOR GEN	80703.000000
IPF		82425.035294
LAV	·=	70853.156000
LIC	CENSE APPL COMM	65436.000000
		salary
der	partment	Jaca, y
-	MAN RESOURCES	68496
_	SPECTOR GEN	76116
IPF		82524
LAV	N	66492
LIC	CENSE APPL COMM	65436

Operations can also be done on an individual Series within a grouped object. Say we were curious about the five departments with the most distinct titles - the pandas equivalent to:

```
SELECT department, COUNT(DISTINCT title)
FROM chicago
GROUP BY department
ORDER BY 2 DESC
LIMIT 5;
```

pandas is a lot less verbose here ...

118

Name: title, dtype: int64

HEALTH

in G+⊜ふ

What if we wanted to see the highest paid employee within each department. Given our current dataset, we'd have to do something like this in SQL:

```
SELECT *
FROM chicago c
INNER JOIN (
    SELECT department, max(salary) max_sala
    FROM chicago
    GROUP BY department
) m
ON c.department = m.department
AND c.salary = m.max_salary;
```

This would give you the highest paid person in each department, but it would return multiple if there were many equally high paid people within a department.

Alternatively, you could alter the table, add a column, and then write an update statement to populate that column. However, that's not always an option.

Note: This would be a lot easier in PostgreSQL, T-SQL, and possibly Oracle due to the existence of partition/window/analytic functions. I've chosen to use MySQL syntax throughout this tutorial because of it's popularity. Unfortunately, MySQL doesn't have similar functions.

in G+⊜ふ

where N is the number of employees within the department. We can then call apply to, well, *apply* that function to each group (in this case, each department).

```
def ranker(df):
    """Assigns a rank to each employee based on
    Assumes the data is DESC sorted."""
    df['dept_rank'] = np.arange(len(df)) + 1
    return df
chicago.sort_values('salary', ascending=False, i
chicago = chicago.groupby('department').apply(ra
print(chicago[chicago.dept_rank == 1].head(7))
                        name
18039 MC CARTHY, GARRY F SUPE
8004
             EMANUEL, RAHM
8004 EMANUEL, RAHM
25588 SANTIAGO, JOSE A
763 ANDOLINO, ROSEMARIE S COMM
4697 CHOUCAIR, BECHARA N
       PATTON, STEPHEN R
21971
12635
          HOLT, ALEXANDRA D
      salary dept_rank
18039 260004
8004 216210
                      1
25588 202728
                     1
                     1
763 186576
                      1
4697 177156
21971 173664
                      1
12635 169992
```

Move onto part three, using pandas with the MovieLens dataset.

in G+⊜⋒