Random Forest

In [24]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [25]: test_df=pd.read_csv(r"C:\Users\sneha\Downloads\Mobile_Price_Classification_test.csv")
 test_df

Out[25]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_height
0	1	1043	1	1.8	1	14	0	5	0.1	193	 16	226
1	2	841	1	0.5	1	4	1	61	0.8	191	 12	746
2	3	1807	1	2.8	0	1	0	27	0.9	186	 4	1270
3	4	1546	0	0.5	1	18	1	25	0.5	96	 20	295
4	5	1434	0	1.4	0	11	1	49	0.5	108	 18	749
							•••				 	
995	996	1700	1	1.9	0	0	1	54	0.5	170	 17	644
996	997	609	0	1.8	1	0	0	13	0.9	186	 2	1152
997	998	1185	0	1.4	0	1	1	8	0.5	80	 12	477
998	999	1533	1	0.5	1	0	0	50	0.4	171	 12	38
999	1000	1270	1	0.5	0	4	1	35	0.1	140	 19	457

1000 rows × 21 columns

Out[26]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height
0	842	0	2.2	0	1	0	7	0.6	188	2	 20
1	1021	1	0.5	1	0	1	53	0.7	136	3	 905
2	563	1	0.5	1	2	1	41	0.9	145	5	 1263
3	615	1	2.5	0	0	0	10	0.8	131	6	 1216
4	1821	1	1.2	0	13	1	44	0.6	141	2	 1208
1995	794	1	0.5	1	0	1	2	8.0	106	6	 1222
1996	1965	1	2.6	1	0	0	39	0.2	187	4	 915
1997	1911	0	0.9	1	1	1	36	0.7	108	8	 868
1998	1512	0	0.9	0	4	1	46	0.1	145	5	 336
1999	510	1	2.0	1	5	1	45	0.9	168	6	 483

2000 rows × 21 columns

```
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):
    Column
                    Non-Null Count Dtype
                    -----
0
    battery_power
                   2000 non-null
                                    int64
 1
    blue
                    2000 non-null
                                    int64
 2
    clock_speed
                    2000 non-null
                                    float64
 3
     dual_sim
                    2000 non-null
                                    int64
 4
    fc
                    2000 non-null
                                    int64
 5
     four_g
                    2000 non-null
                                    int64
                                    int64
 6
     int memory
                    2000 non-null
 7
    m dep
                    2000 non-null
                                    float64
 8
    mobile_wt
                    2000 non-null
                                    int64
                    2000 non-null
 9
    n cores
                                    int64
 10
    рс
                    2000 non-null
                                    int64
 11
    px height
                    2000 non-null
                                    int64
                    2000 non-null
 12
    px width
                                    int64
 13
    ram
                    2000 non-null
                                    int64
 14 sc_h
                    2000 non-null
                                    int64
                    2000 non-null
 15 sc w
                                    int64
 16 talk_time
                    2000 non-null
                                    int64
 17 three g
                    2000 non-null
                                    int64
 18 touch_screen
                    2000 non-null
                                    int64
 19 wifi
                    2000 non-null
                                    int64
 20 price range
                    2000 non-null
                                    int64
dtypes: float64(2), int64(19)
memory usage: 328.2 KB
```

In [28]: test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):

```
#
    Column
                   Non-Null Count Dtype
                    -----
---
 0
                    1000 non-null
                                   int64
     battery_power 1000 non-null
 1
                                   int64
 2
    blue
                    1000 non-null
                                   int64
                   1000 non-null
                                   float64
 3
    clock_speed
 4
                   1000 non-null
                                   int64
    dual sim
 5
                   1000 non-null
                                   int64
    fc
 6
    four g
                   1000 non-null
                                   int64
     int memory
 7
                   1000 non-null
                                   int64
 8
                   1000 non-null
                                    float64
    m dep
 9
    mobile wt
                   1000 non-null
                                   int64
                   1000 non-null
                                   int64
 10
    n cores
                   1000 non-null
                                    int64
 11
    рс
                    1000 non-null
 12
    px height
                                    int64
 13
    px width
                   1000 non-null
                                    int64
 14
    ram
                   1000 non-null
                                    int64
 15
    sc h
                   1000 non-null
                                    int64
 16 sc_w
                   1000 non-null
                                   int64
                   1000 non-null
 17 talk time
                                   int64
                   1000 non-null
                                    int64
 18 three_g
                   1000 non-null
 19
    touch screen
                                    int64
 20 wifi
                    1000 non-null
                                    int64
dtypes: float64(2), int64(19)
memory usage: 164.2 KB
```

```
In [29]: | x=train_df.drop('wifi',axis=1)
         y=train_df['wifi']
In [30]: x=test df.drop('wifi',axis=1)
         y=test_df['wifi']
In [31]: train df['dual sim'].value counts()
Out[31]: dual_sim
         1
              1019
               981
         Name: count, dtype: int64
In [32]: test df['blue'].value counts()
Out[32]: blue
         1
              516
              484
         Name: count, dtype: int64
In [33]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.7,random_state=42)
         x_train.shape,x_test.shape
Out[33]: ((700, 20), (300, 20))
In [34]: | from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[34]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [35]: rf = RandomForestClassifier()
In [36]: params={'max_depth':[2,3,5,10,20],
           'min_samples_leaf':[5,10,20,50,100,200],
          'n_estimators':[10,25,30,50,100,200]}
In [37]: from sklearn.model selection import GridSearchCV
         grid search=GridSearchCV(estimator=rf,param grid=params,cv=2,scoring='accuracy')
         grid_search.fit(x_train,y_train)
Out[37]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [38]: grid_search.best_score_
Out[38]: 0.5557142857142857
```

```
In [39]:
         rf_best=grid_search.best_estimator_
         rf best
Out[39]:
                                    RandomForestClassifier
         RandomForestClassifier(max depth=20, min samples leaf=100, n estimators=30)
In [40]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rf_best.estimators_[5], feature_names = x.columns,class_names=['Yes',"No"],filled=True
Out[40]: [Text(0.5, 0.8333333333333334, 'fc <= 3.5\ngini = 0.5\nsamples = 425\nvalue = [349, 351]\nclass
          Text(0.25, 0.5, 'mobile wt <= 133.5\ngini = 0.494\nsamples = 208\nvalue = [156, 194]\nclass =
          Text(0.125, 0.16666666666666666, 'gini = 0.5\nsamples = 101\nvalue = [86, 91]\nclass = No'),
          Text(0.375, 0.16666666666666666, 'gini = 0.482\nsamples = 107\nvalue = [70, 103]\nclass = N
         ο'),
          Text(0.75, 0.5, 'blue <= 0.5\ngini = 0.495\nsamples = 217\nvalue = [193, 157]\nclass = Yes'),
          Text(0.625, 0.16666666666666666, 'gini = 0.499\nsamples = 111\nvalue = [90, 83]\nclass = Ye
          Text(0.875, 0.16666666666666666, 'gini = 0.487\nsamples = 106\nvalue = [103, 74]\nclass = Ye
         s')]
                                                  fc <= 3.5
                                                  gini = 0.5
                                                samples = 425
                                              value = [349, 351]
                                                  class = No
                      mobile wt <= 133.5
                                                                        blue \leq 0.5
                          gini = 0.494
                                                                        qini = 0.495
                        samples = 208
                                                                       samples = 217
                      value = [156, 194]
                                                                     value = [193, 157]
                           class = No
                                                                         class = Yes
               gini = 0.5
                                     gini = 0.482
                                                            gini = 0.499
                                                                                    gini = 0.487
             samples = 101
                                    samples = 107
                                                           samples = 111
                                                                                  samples = 106
            value = [86, 91]
                                   value = [70, 103]
                                                           value = [90, 83]
                                                                                 value = [103, 74]
                                      class = No
               class = No
                                                             class = Yes
                                                                                     class = Yes
```

```
In [41]: from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
        plot_tree(rf_best.estimators_[7], feature_names = x.columns,class_names=['Yes',"No"],filled=True
Out[41]: [Text(0.4, 0.83333333333333334, 'm dep <= 0.45\ngini = 0.498\nsamples = 444\nvalue = [371, 329]
        \nclass = Yes'),
         Text(0.2, 0.5, 'gini = 0.497\nsamples = 179\nvalue = [134, 158]\nclass = No'),
         Text(0.6, 0.5, 'sc h <= 10.5\ngini = 0.487\nsamples = 265\nvalue = [237, 171]\nclass = Yes'),
         Text(0.4, 0.16666666666666666, 'gini = 0.499\nsamples = 101\nvalue = [83, 77]\nclass = Yes'),
         Text(0.8, 0.16666666666666666, 'gini = 0.471\nsamples = 164\nvalue = [154, 94]\nclass = Yes')]
                                   m dep <= 0.45
                                     gini = 0.498
                                   samples = 444
                                 value = [371, 329]
                                      class = Yes
                                                      sc h <= 10.5
                   gini = 0.497
                                                       gini = 0.487
                  samples = 179
                                                     samples = 265
                value = [134, 158]
                                                   value = [237, 171]
                    class = No
                                                       class = Yes
                                     gini = 0.499
                                                                         gini = 0.471
                                   samples = 101
                                                                       samples = 164
                                   value = [83, 77]
                                                                     value = [154, 94]
                                      class = Yes
                                                                         class = Yes
```

```
In [43]: imp_df=pd.DataFrame({'Varname':x_train.columns,'Imp':rf_best.feature_importances_})
imp_df.sort_values(by='Imp',ascending=False)
```

Out[43]:

	Varname	lmp
13	px_width	0.167718
9	mobile_wt	0.114032
7	int_memory	0.106749
5	fc	0.086067
14	ram	0.085995
3	clock_speed	0.074475
0	id	0.062864
12	px_height	0.060329
15	sc_h	0.038501
17	talk_time	0.036121
1	battery_power	0.033531
6	four <u>g</u>	0.031501
8	m_dep	0.028650
11	рс	0.023356
16	sc_w	0.019342
4	dual_sim	0.015982
2	blue	0.014789
18	three_g	0.000000
10	n_cores	0.000000
19	touch_screen	0.000000

In []: