A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

19 1.4. Chloride channels

1.4.1. Calcium dependent Chloride Channels (CaCC)

Calcium dependent Chloride Channels (CaCC)		Ref
$I''^{M-N}_{Cl,CaCC} = n''^{M-N}_{CaCC} g^{M-N}_{Cl} f^{Cl,CaCC}_{o}(V^{M-N}_{m} - V^{M-N(a)}_{Cl})$	(81)	
where:		
1. Hill model:		[5]
$f_o^{Cl, CaCC} = \frac{1}{1 + \left(\frac{K_{CaCC}}{[Ca]_i}\right)^{\eta_{CaCC}}}$	(82)	
2. High positive voltage (HPV) enhanced calcium activation CaCC model:		
$f_o^{Cl, CaCC} = f_o^{CaCC, HPV} \frac{1}{1 + (\frac{K_{CaCC}}{[Ca]_i})^{\eta_1}}$	(83)	[3]
$\frac{\mathrm{d}f_o^{CaCC,HPV}}{\mathrm{d}t} = \frac{\bar{f}_o^{CaCC,HPV} - f_o^{CaCC,HPV}}{\tau_{CaCC}}$	(84)	
$\bar{f}_o^{CaCC,HPV} = \frac{1}{1 + exp \frac{-(V_m - V_{half max}^{CaCC})}{V_{CaCC}}}$	(85)	
$V_{half\ max}^{CaCC} = \sigma \sqrt{2ln^2} + \mu$	(86)	
$\tau_{CaCC}(V_m) = \frac{1}{\sigma \sqrt{2\pi}} exp\left(-\left(\frac{V_m - \mu}{\sqrt{2}\sigma}\right)^2\right)$	(87)	
3. Steady state Arreola model:		
$f_o^{Cl, CaCC} = \frac{1}{1 + K_2 \left(\frac{K_1^2}{[Ca]_i^2} + \frac{K_1}{[Ca]_i} + 1\right)}$	(88)	[7, 24, 25]
$K_1 = 234 \ exp\left(\frac{-0.13FV_m^{M-N}}{RT}\right), \ K_2 = 0.58exp\left(\frac{-0.24FV_m^{M-N}}{RT}\right)$		
$V_{Cl}^{M-N(a)} = \frac{RT}{z_{Cl}F} ln\left(\frac{[Cl]_{N(l)}}{[Cl]_{M(i)}}\right)$	(89)	

Table 7: The corresponding equations describing the flux and current transported via calcium dependent chloride channels (CaCC) across the cell membrane