#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

데이터 프레임 생성

3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

서브플롯

Matplotlib를 사용하여 하나의 그래픽 영역을 나누어 두 개 이상의 시각화 결과물을 하나의 화면에서 표현할 수 있다.

#01. 필요한 패키지 및 샘플 데이터 준비

1) 패키지 참조

```
import numpy as np
from pandas import read_excel
from matplotlib import pyplot as plt
```

2) 데이터 가져오기

데이터 출처: KOSIS 국가통계포털

데이터 프레임 생성

```
df = read_excel("https://data.hossam.kr/D01/traffic_acc_year.xlsx", inde
df
```

file:///D:/04-서브플롯.ipynb

23. 7. 4. 오후 7:31 04-서브플롯.ipynb

서브플롯

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기 x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

	발생건수	사망자수	부상자수
년도			
2005	214171	6376	342233
2006	213745	6327	340229
2007	211662	6166	335906
2008	215822	5870	338962
2009	231990	5838	361875
2010	226878	5505	352458
2011	221711	5229	341391
2012	223656	5392	344565
2013	215354	5092	328711
2014	223552	4762	337497
2015	232035	4621	350400
2016	220917	4292	331720
2017	216335	4185	322829
2018	217148	3781	323037

3) 그래프에 대한 전역 환경 설정

Pyplot 객체의 한글 폰트, 글자크기, 그래픽 사이즈를 설정한다. 이 코드가 다시 실행되기 전까지 모든 그래프 출력에 대해 적용된다.

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 v축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 v축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
plt.rcParams['font.family'] = 'Malgun Gothic'
#plt.rcParams['font.family'] = 'AppleGothic'
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (12, 8)
plt.rcParams['axes.unicode_minus'] = False
```

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

```
# 서브플롯 생성 --> 2행 3열
# -> fig객체: 그래픽 처리 기능을 제공
# -> ax객체: 분할된 각 그래프 영역(리스트)
fig, ax = plt.subplots(2, 3)
# 전체 제목
fig.suptitle('서브플롯 영역 나누기', fontsize=28, color='#006600')
# 각 그래프 간의 가로(wspace),세로(hspace) 간격 지정
fig.subplots_adjust(wspace=0.2, hspace=0.2)
plt.show()
plt.close()
```

서브플롯

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

- 1) 샘플 데이터 만들기
 x축 데이터 (공용)
 첫 번째 y축 데이터
 두 번째 y축 데이터
- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

서브플롯 영역 나누기

#03. 서브플롯에 그래프 그리기

2행 2열의 영역을 생성한다.

- # -> ax에 반환되는 객체는 서브플롯의 행,열에 대한 n차원 리스트이다
- # -> figsize 파라미터는 그래픽의 크기. plt.rcParams["figure.figsize"] 설정보

서브플롯

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
fig, ax = plt.subplots(2, 2, figsize=(20, 12))

# 데이터프레임을 기반으로 각 영역에 그래프를 종류별로 표시

df.plot(ax=ax[0][0]) # 선

df.plot.bar(ax=ax[0][1]) # 막대

df['발생건수'].plot.pie(ax=ax[1][0]) # 파이

df.plot.scatter(x='발생건수', y='부상자수', ax=ax[1][1]) # 산점도

# 그래프 출력하기

plt.show()
plt.close()
```

23. 7. 4. 오후 7:31

서브플롯

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

#04. 서브플롯 영역에 옵션 지정하기

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 v축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 v축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
# 각 그래프 간의 가로(wspace),세로(hspace) 간격 지정
fig.subplots adjust(wspace=0.2, hspace=0.3)
# 첫 번째 영역 그래프 표시 -> 년도별 교통사고에 대한 선 그래프
df.plot(ax=ax1, color=['#66ff00', '#ff6600', '#0000ff'])
# 그래프 제목의 텍스트, 글자크기, 색상
ax1.title.set text("교통사고 발생 건수 변화")
ax1.title.set fontsize(24)
ax1.title.set color('#ff0000')
# x축과 y축의 라벨을 지정 (불필요한 부분은 생략 가능)
ax1.set(xlabel='년도', ylabel='교통사고')
# plt을 직접 사용할 경우 xticks(x축좌표, 표시할 텍스트) 형식으로 지정 하지만
# 서브플롯은 x축의 좌표와 표시할 텍스트를 나누어서 처리한다.
start = min(df.index)
end = max(df.index)
x = list(range(start, end+1))
# → 좌표 설정
ax1.set xticks(x)
# \rightarrow 지정된 x축 좌표에 표시될 텍스트 리스트를 지정함.
ax1.set xticklabels(df.index, fontsize=12, color='#ff0000')
# x축, y축의 범위
ax1.set xlim([start-0.5, end+0.5])
ax1.set vlim([0, 400000])
```

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 v축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
# 두 번째 영역 그래프 표시 -> 막대 그래프
# 막대 그래프 표시
# -> x축의 텍스트가 90도로 표시되므로 rot 파라미터를 사용하여 0도로 재지정
# -> 데이터프레임의 각 컬럼에 대한 색상 지정
df.plot.bar(ax=ax2, rot=0, color=['#ff6633', '#000000', '#0066ff'])
# 배경 격자 표시
ax2.grid()
# 그래프 제목의 텍스트, 글자크기, 색상
ax2.title.set text("2005~2018년 교통사고 현황")
ax2.title.set fontsize(24)
ax2.title.set color('#0000ff')
# x축의 좌표만 지정함 (막대그래프의 경우 x축 좌표는 무조건 0부터 시작함)
ax2.set xticks(list(range(0, len(df.index))))
# 지정된 x축 좌표에 표시될 텍스트 리스트를 지정함.
ax2.set xticklabels(df.index, fontsize=12, color='#0000ff')
# x축과 v축의 라벨을 지정 (불필요한 부분은 생략 가능)
ax2.set(xlabel='년도', ylabel='교통사고')
# 세 번째 영역 그래프 표시 -> 파이 그래프
# 파이그래프
df['발생건수'].plot.pie(ax=ax3, labels=df.index, autopct="%0.1f%",
```

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

- 1) 2행 3열을 갖는 서브플롯 영역 생성하기
- #03. 서브플롯에 그래프 그리기
- #04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
textprops={'color':"#ff6600", 'fontsize': 12})
# 그래프 제목
ax3.title.set text("년도별 교통사고 발생비율")
# 격자표시 --> 파이그래프인 경우는 표시 안됨
ax3.grid()
# y축 라벨이 불필요하므로 제거
ax3.set(vlabel=None)
# 범주 표시
ax3.legend(labels=df.index, title='범주', bbox to anchor=(1.4, 0.9))
# 네 번째 영역 그래프 표시 -> 산점도 그래프
# 산점도 그래프
df.plot.scatter(ax=ax4, x='발생건수', y='부상자수', color='#ff6600', marke:
# 그래프 제목 지정
ax4.title.set text("교통사고 발생건수와 부상자수의 상관관계")
# 배경 격자
ax4.grid()
# x축,y축 라벨
ax4.set(xlabel='발생건수', ylabel='부상자수')
```

서브플롯

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기 x축 데이터 (공용) 첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

그래프 출력하기 #----plt.show() plt.close()

2005~2018년 교통사고 현황

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
x = list(range(0, 10))
x
```

첫 번째 y축 데이터

```
y1 = list(range(0, 10, 1))
y1
```

두 번째 y축 데이터

```
y2 = list(np.arange(0, 5, 0.5))
y2
```

$$[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]$$

2) 기본 그래프 구현

```
plt.rcParams["figure.figsize"] = (7, 4)
```

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

plt.figure()
plt.plot(x, y1)
plt.plot(x, y2)
plt.show()
plt.close()

2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
# 그래프 시작
fig, ax1 = plt.subplots(1,1, figsize=(7, 4))

# ax1에 겹쳐지는 쌍둥이 서브플롯을 생성
ax2 = ax1.twinx()
```

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

데이터 프레임 생성

3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
# ax1에 그래프 그리기
ax1.plot(x, y1, color="#ff00ff")
ax1.set_xlabel('X data')
ax1.set_ylabel('Y1 data', color='#ff00ff')
ax1.grid()
ax1.grid()
ax1.set_ylim([0, 10])

# ax2에 그래프 그리기
ax2.plot(x, y2, color="#0000ff")
ax2.set_ylabel('Y2 data', color='#0000ff')
ax2.set_ylim([0, 10])

plt.show()
plt.close()
```

서브플롯

#01. 필요한 패키지 및 샘플 데이터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정 하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

06. (예제) 교통사고 발생건수와 사망자수 변화 시각화하기

우리나라는 2008년도에 자동차안전기준에 관한 규칙 일부개정령(안) 을 개정한 이후 꾸준히 교통사고안전기준을 강화해 왔다.

이러한 노력이 교통사고 부상자수를 줄이는데 효과가 있었는지 알아보자.

그래프 그리기

fig, ax1 = plt.subplots(1, 1, figsize=(16, 8)) # 그래프 시작 ax2 = ax1.twinx() # ax1에 겹쳐지는 서브플롯 생성

ax1에 그래프 그리기

서브플롯

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기

데이터 프레임 생성

3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기

x축 데이터 (공용)

첫 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

```
df['발생건수'].plot(ax=ax1, color='#ff0000')
ax1.set xlabel('년도')
ax1.set_ylabel('발생건수', color='#ff0000')
ax1.grid()
# x축 좌표위의 텍스트 처리
start = min(df.index);
end = max(df.index)
ax1.set xticks(list(range(start, end+1)))
ax1.set_xticklabels(df.index, fontsize=12, color='#000000')
# ax2에 그래프 그리기
df['부상자수'].plot(ax=ax2, color='#0000ff')
ax2.set ylabel('부상자수', color='#0000ff')
plt.show()
plt.close()
```

#01. 필요한 패키지 및 샘플 데이 터 준비

- 1) 패키지 참조
- 2) 데이터 가져오기 데이터 프레임 생성
- 3) 그래프에 대한 전역 환경 설정

#02. 서브플롯 영역 나누기

1) 2행 3열을 갖는 서브플롯 영역 생성하기

#03. 서브플롯에 그래프 그리기

#04. 서브플롯 영역에 옵션 지정하기

#05. 두 개의 y축을 갖는 그래프

1) 샘플 데이터 만들기 x축 데이터 (공용) 첫 번째 y축 데이터 두 번째 y축 데이터

- 2) 기본 그래프 구현
- 2) 서브플롯으로 2개의 y축을 갖는 그래프 구현

