Quadric Surfaces

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.7 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to compute & traces of quadic surfaces; in particular, be able to recognize the resulting conic sections in the given plane.
- Given an equation for a quadric surface, be able to recognize the type of surface (and, in particular, its graph).

PRACTICE PROBLEMS:

For problems 1-9, use traces to identify and sketch the given surface in 3-space.

1.
$$4x^2 + y^2 + z^2 = 4$$

$$2. -x^2 - y^2 + z^2 = 1$$

$$3. \ 4x^2 + 9y^2 - 36z^2 = 36$$

4.
$$z = 4x^2 + y^2$$

$$5. \ z^2 = x^2 + y^2$$

6.
$$x^2 + y^2 - z^2 = 1$$

7.
$$z = 4 - x^2 - y^2$$

 $8. \ 3x^2 + 4y^2 + 6z^2 = 12$

9. $-4x^2 - 9y^2 + 36z^2 = 36$

10. Identify each of the following surfaces.

(a)
$$16x^2 + 4y^2 + 4z^2 - 64x + 8y + 16z = 0$$

(a) $16x^2 + 4y^2 + 4z^2 - 64x + 8y + 16z = 0$ After completing the square, we can rewrite the equation as:

$$16(x-2)^2 + 4(y+1)^2 + 4(z+2)^2 = 84$$

This is an ellipsoid which has been shifted. Specifically, it is now centered at

(b)
$$-4x^2 + y^2 + 16z^2 - 8x + 10y + 32z = 0$$

After completing the square, we can rewrite the equation as:

$$-4(x-1)^{2} + (y+5)^{2} + 16(z+1)^{2} = 37$$

This is a hyperboloid of 1 sheet which has been shifted. Specifically, its central axis is parallel to the x-axis. In fact, the equation of its central axis is $\overrightarrow{\ell}(t) = \langle 1, -5, -1 \rangle + t \langle 1, 0, 0 \rangle$.

- 11. Consider the paraboloid $z = x^2 + y^2$
 - (a) Compute equations for the traces in the z = 0, z = 1, z = 2, and z = 3 planes.

Plane	Trace
z = 0	Point $(0,0)$
z = 1	$Circle x^2 + y^2 = 1$
z = 2	Circle $x^2 + y^2 = 2$
z = 3	Circle $x^2 + y^2 = 3$

(b) Sketch all the traces that you found in part (a) on the same coordinate axes.

(c) Compute equations for the traces in the $y=0,\,y=1,\,y=2,$ and y=3 planes.

Plane	Trace
y = 0	Parabola $z = x^2$
y = 1	Parabola $z = x^2 + 1$
y = 2	Parabola $z = x^2 + 4$
y = 3	Parabola $z = x^2 + 9$
	I

(d) Sketch all the traces that you found in part (c) on the same coordinate axes.

(e) Below is the graph of $z = x^2 + y^2$. On the graph of the surface, sketch the traces that you found in parts (a) and (c).

For problems 12-13, find an equation of the trace of the surface in the indicated plane. Describe the graph of the trace.

12. Surface: $8x^2 + y^2 + z^2 = 9$; Plane: z = 1

The trace in the z=1 plane is the ellipse $x^2 + \frac{y^2}{8} = 1$, shown below.

13. Surface: $-4x^2 - 4y^2 + 9z^2 = 35$; Plane $x = \frac{1}{2}$

The trace in the $x = \frac{1}{2}$ plane is the hyperbola $-\frac{y^2}{9} + \frac{z^2}{4} = 1$, shown below.

For problems 14-15, sketch the indicated region.

14. The region bounded below by $z = \sqrt{x^2 + y^2}$ and bounded above by $z = 2 - x^2 - y^2$.

15. The region bounded below by $2z = x^2 + y^2$ and bounded above by z = y.

16. Match each equation to an appropriate graph from the table below.

(a)
$$x^2 - y + z^2 = 0$$

(b)
$$4x^2 - 9y^2 + 36z^2 = -36$$

(c)
$$4x^2 + 4y^2 + 4z^2 = 36$$

(d)
$$x^2 + z^2 = 16$$

(e)
$$x^2 + z - y^2 = 0$$

(f)
$$4x^2 - 36y^2 + 9z^2 = 36$$

_	
Equation	Graph
a	V
b	III
c	I
d	IV
e	II
f	VI
1	•

