20: Multiobjective EA

- Multi-objective optimization problems (MOP)
- Pareto optimality
- EC approaches to MOP
- Textbook chapter 12

Multi-objective problems (MOPs)

- The presence of a number of possibly conflicting objectives
 - buying a house
 - designing an electric car
- Two steps
 - find a set of good solutions
 - choice of best for particular applications

Objective space

Objective 2

Comparing solutions

- Optimization task
 - minimize both f₁ and f₂
- Compare the solutions
 - a vs. b
 - a vs. c
 - a vs. e
 - a vs. d

Dominance relation

- Solution x dominates solution y
 - x is not worse than y in all objectives
 - x is better than y in at least one objective

Pareto optimality

- Solution x is non-dominated among a set of solutions Q: no solution from Q dominates x
- A set of non-dominated solutions from the entire feasible solution space: the Pareto-optimal set, its members Pareto-optimal solutions
- Pareto-optimal front or Pareto front: a visualization of the Pareto-optimal set in the objective space

Goal of multi-objective optimization

- Find a set of non-dominated solutions (approximation set)
 - convergence (as close as possible to the Pareto-optimal front)
 - diversity (spread, distribution)

Single- vs. multi-objective optimization

Single-objective	Multi-objective
1	>1
x is better than y	x dominates y
one or more equally good solution(s)	Pareto-optimal set
convergence	convergence, diversity
	1 x is better than y one or more equally good solution(s)

Approaches to multi-objective optimization

- Preference-based approaches:
 - need good understanding on importance of different objectives
 - combine multiple objective optimizers
 - assign weights to multiple objectives
 - optimize weighted sum

$$F(\mathbf{X}) = \sum_{m=1}^{M} w_m f_m(\mathbf{X}), \quad w_m \in [0,1], \quad \sum_{m=1}^{M} w_m = 1$$

Could be better if

- Solve the multi-objective optimization problem using one method that
 - finds multiple trade-off solutions
 - later for users to decide on a particular trade-off solution
 - with higher-level domain knowledge

Multi-objective evolutionary algorithms

- Population-based method
- No need to assume the weights
- No assumption about the shape of Pareto-front (convex, continuous, etc.)
- Can return a set of trade-off solutions (approximation set) in a single run
- Allows for users to pick the more suitable trade-off solutions
 - preference may change for different instances
 - for different users
 - under different circumstances

Multi-objective EAs

- Fitness function
 - usually based on dominance
 - e.g., in MOGA, number of individuals of the current population one dominates
- Preservation of diversity
 - techniques discussed for multi-modal problems, crowding, fitness sharing, etc.
 - e.g., in NPGA, tournament selection on dominance and then similarity
- Remember all the non-dominated solutions ever seen
 - usually use elitism or an archive

Non-dominated sorting genetic algorithm (NSGA II)

- Proposed by Deb et al. in 1994 (NSGA) and 2002 (NSGA II)
- Divide a current population into fronts of equal domination
- $(\mu + \lambda)$ survivor selection (elitism)

NSGA II crowding

- Secondary selection criterium preserve diversity
- Crowding distance the average side length of the cuboid defined by its nearest neighbors in the same front

Deb et al., IEEE Transaction on Evolutionary Computation, 6(2):182-197, 2002