Yacine MEHADJI

Passionné par l'électronique et l'intelligence artificielle embarquée avec deux années d'expérience professionnelle, motivé par les défis techniques, je suis en recherche constante d'opportunités pour enrichir mes compétences et contribuer à des projets innovants. Mon objectif est de mettre mon expertise au service de réalisation ambitieuses tout en poursuivant mon développement professionnel.

06 71 02 60 57

yacine.mehadji@outlook.com

linkedin.com/in/yacinemehadji

Permis B

Langues

Français Courant

Anglais Professionnel

Arabe Langue maternelle

Compétences

Langages de description matérielle (HDL):

System Verilog, VHDL, Verilog.

Conception et vérification : Vivado, Modelsim, Cadence Virtuoso, Spectre. Calibre : DRC (Design Rule

Calibre: DRC (Design Rule Check), (LVS) Layout vs Schematic, PEX (Parasitic Extraction).

Langage de programmation : C/C++, Python, Assembleur, Java.

Frameworks et bibliothèques : Tensorflow, Pytorch, OpenGL, Glut.

Logiciels:

Altium, KiCAD, Matlab, Microsoft office (Word, Excel, Power Point).

Systèmes Embarqués : Développement sur STM32, FPGA (Basys 3), Rasperry Pi, Arduino.

Ingénieur en Électronique et Systèmes Embarqués

Motivé, Rigoureux, doté d'un esprit analytique et collaboratif.

Ingénieur d'études en électronique à CEA - SPINTEC | (Mars 2024-Février 2025).

Conception et simulation de réseaux de neurones stochastiques de type Bayésien.

-Implémenter des modèles de réseaux neuronaux convolutionnels (CNN) sous **Tensorflow** et **entraînement** sur des jeux de données complexes.

-Modéliser, simuler des circuits spintroniques avec **Cadence Virtuoso**, intégrant des modèles physiques au niveau transistor pour faire de la **conception analogique**.

Outils utilisés: Python, Jupyter, Frameworks IA: Pytorch et Tensorflow, Cadence Virtuoso.

Ingénieur de recherche en électronique à L'Ecole Polytechnique Fédérale de Lausanne (EPFL) – Groupe de Recherche BIOROB | (Mars 2023-Février 2024).

Développement d'une stratégie de réeducation par Electrostimulation musculaire.

-Personnaliser et vérifier les fonctions du firmware de la carte de l'électrostimulateur 16 canaux intégrée dans un système embarqué.

-Développer une application avec **interface graphique (GUI) en C++** et proposer une structure de configuration de la stratégie de réeducation.

-Vérifier et valider le fonctionnement via tests matériels et instrumentation (oscilloscope). Outils utilisés: Linux, C, C++, Matlab, Qt creator, STM32CubeIDE, Oscilloscope.

Stagiaire au Laboratoire d'Informatique de Robotique et de Microélectronique (LIRMM)

(Octobre-Février 2022) : Développement d'un modèle compact pour la simulation de circuits d'architecture BEYOND CMOS pour le calcul neuromorphique.

-Calibrer le modèle compact à partir de données expérimentales et de simulations TCAD.

-Utiliser le modèle **pour la conception et simulation numérique/analogique d'architectures de réseaux neuronaux oscillatoires - Outils utilisés** : Synopsys TCAD, SPICE, MATLAB.

(Septembre-Février 2022): Conception d'un contrôleur VGA en SystemVerilog.

-Développer un contrôleur vidéo pour générer les signaux de synchronisation horizontale et verticale conforme à la norme VGA.

-Implémenter la logique de gestion des timings (résolution, fréquence d'horloge, sync pulse).

-Simuler et vérifier la conception à l'aide d'un testbench en SystemVerilog (Modelsim).

-Synthétiser et **implanter** sur FPGA (Basys 3), valider le fonctionnement sur écran externe. **Outils utilisés** : SystemVerilog, ModelSim, Implantation FPGA : Vivado, Carte Basys 3.

(<u>Septembre-Janvier 2022)</u>: Développement en C++ d'un simulateur logique pour circuits numériques.

-Concevoir et implémenter les algorithmes de simulation logique appliqués aux circuits numériques.

-Mettre en place d'une architecture modulaire pour optimiser la simulation et faciliter l'extension du simulateur - **Outils utilisés** : C+++, Linux.

(Mai-Juin 2021): Développement d'un démonstrateur d'architecture de tolérance aux fautes hybrides sur FPGA.

-Concevoir une architecture hybride tolérante aux fautes en VHDL.

-Simuler et vérifier la conception à l'aide d'un testbench en VHDL (Modelsim).

-Synthétiser et implanter sur FPGA Xilinx Basys 3 via Vivado avec validation expérimentale des fonctionnalités **- Outils utilisés** : VHDL, ModelSim, Vivado, FPGA Basys 3.

(Septembre-Février 2021): Développement d'un jeu vidéo Twenty Game en C avec GLUT.

-Concevoir et implémenter les mécanismes de jeu et de l'interface graphique en C utilisant GLUT. -Tester, déboguer et optimiser le code pour garantir la stabilité et la performance.

-Tester, déboguer et **optimiser** le code pour garantir la stabilité et la performance **Outils utilisés :** C, GLUT, OpenGL.

(Septembre-Janvier 2021): Commande d'un robot parallèle type Delta avec Matlab.

-Simuler les trajectoires et planifier les mouvements (prise et dépose) dans Matlab pour assurer la précision et la fluidité.

-Analyser les performances et optimiser les paramètres de commande pour améliorer la stabilité et la rapidité du robot - **Outils utilisés** : Matlab.

(Mars-Juin 2020): Conception de PCB du circuit au Layout jusqu'à la production.

-Concevoir les schémas et router les circuits imprimés (PCB) en respectant les contraintes électriques.

-Vérifier la conception à l'aide de **Design Rule Check (DRC)** et préparer les fichiers de fabrication pour production - **Outils utilisés :** Altium, KiCAD.

8

DIPLOME

Master Électronique Énergie Électrique Automatique (EEA) parcours Systèmes Électroniques Intégrés et Embarqués (SEIE) - Université de Montpellier.

*CENTRES D'INTERET

Natation (10 ans en club).

Pratique de tennis et de la musculation.