Buzjakova's Theorem. A pseudocompact space X condenses onto a compact space if and only if the space $X \times T(|\beta X|^+ + 1)$ condenses onto a normal space.

Proof.

(\Rightarrow :) Let X be a pseudocompact space that condenses onto a compact space K. So there exists $f: X \to K$ such that f is one-to-one, onto, and continuous. Define $g: X \times T(|\beta X|^+ + 1) \to K \times T(|\beta X|^+ + 1)$ by $g(x, \alpha) = (f(x), \alpha)$. Then, g is one-to-one, onto, and continuous. Hence $X \times T(|\beta X|^+ + 1)$ condenses onto a normal space.

(\Rightarrow :) By Fact 3.4, we know that $X \times T(|\beta X|^+)$ condenses onto $X \times T(|\beta X|^+ + 1)$. Since $X \times T(|\beta X|^+ + 1)$ condenses onto some normal space Z, the space $X \times T(\beta X|^+)$ must condenses onto Z, too. So, there exists $f: X \times T(|\beta X|^+) \to Z$, where f is one-to-one, onto, and continuous. Let $C_1 = \{x \in \beta X \setminus X : |\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| = |\beta X|^+\}$, and $C_2 = \{x \in \beta X \setminus X : |\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| < |\beta X|^+$ and for any $\alpha \in T(|\beta X|^+)$, there exists $\alpha_1 \in T(|\beta X|^+)$ such that $\alpha_1 > \alpha$ and $\bar{f}(x, \alpha_1) \in Z\}$.

Let $T = \bigcap \{T_x : x \in C_1\}$, where T_x was defined in **Lemma 3.10**. By **Fact 3.3**, T is closed in $T(\tau)$ and $|T| = |\beta X|^+$.

Let $x \in \overline{C_2}^{\beta X}$. Since $\overline{C_2}^{\beta X} \cap C_1$, by **Lemma 3.11**, $x \notin C_1$. Thus, $|\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| < |\beta X|^+$. Let $\alpha_x = \sup\{\alpha \in T(|\beta X|^+) : f(y,\alpha) \in \bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z \text{ for some } y \in X\}$. Since $|\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| < |\beta X|^+$, such α_x exists in $T(|\beta X|^+)$.

Now, for any $\alpha_1 > \alpha_x$, we have either $\bar{f}(x,\alpha_1) \in \beta Z \setminus Z$ or $\bar{f}(x,\alpha_1) \in Z$. If $\bar{f}(x,\alpha_1) \in Z$, we must have $\bar{f}(x,\alpha_1) = f(x,\alpha_2)$ because f is onto. Because $\alpha_1 > \alpha_x$, and by our definition of α_x , $\alpha_1 > \alpha_2$ must hold.

Let $\alpha^* = \sup\{\alpha_x : x \in \overline{C_2}^{\beta X}\}$. Such α^* exists because $\left|\overline{C_2}^{\beta X}\right| \leq |\beta X| < cf(|\beta X|^+)$. For any $\alpha > \alpha^*, \alpha \in T$,

$$f\left[X\times\{\alpha\}\right]\cap\bar{f}\left[\overline{C_{2}}^{\beta X}\times\{\alpha\}\right]=\emptyset$$

holds.

This is because if $z \in f[X \times \{\alpha\}] \cap \bar{f}[\overline{C_2}^{\beta X} \times \{\alpha\}]$, we can write $z = \bar{f}(x, \alpha)$

for some $x \in \overline{C_2}^{\beta X}$. From the definition of α^* and the fact that $\alpha > \alpha^*$, we have either $\overline{f}(x,\alpha) = f(y,\alpha_2)$ where $y \in X$ and $\alpha_2 < \alpha$, or, we have $\overline{f}(x,\alpha) \in \beta Z \backslash Z$. We reach contradiction in the first case because f is one-to-one, so $\overline{f} = f(y,\alpha_2) \neq f(y',\alpha)$ for any $y' \in X$. We reach contradiction again in the second case because since $z \in f[X \times \{\alpha\}], z \in Z$. So $z = \overline{f}(x,\alpha) \in \beta Z \backslash Z$ is a contradiction.

We have two cases:

CASE I. For all $\alpha \in T$, $\alpha > \alpha^*$, the set $f[X \times \{\alpha\}] \cup \bar{f}[\overline{C_2}^{\beta X} \times \{\alpha\}]$ is not compact.

Let

$$C_3 = (\beta X \backslash X) \backslash (C_1 \cup \overline{C_2}^{\beta X}).$$

 C_3 is nonempty because if it is , then $\beta X \backslash X = C_1 \cup \overline{C_2}^{\beta X}$. We will show that $f [\beta X \times \{\alpha\}] \subseteq f [X \times \{\alpha\}] \cup \overline{f} \left[\overline{C_2}^{\beta X} \times \{\alpha\}\right]$. Let $x \in \beta X \backslash X$, if $x \in C_1$, then $\overline{f}(x,\alpha) = f(y_x,\alpha)$ for some $y_x \in X$ because $\alpha \in T \subseteq T_x$. Hence $\overline{f}(x,\alpha) \in f [X \times \{\alpha\}]$. If $x \in \overline{C_2}^{\beta X}$, then $\overline{f}(x,\alpha) \in \overline{f} \left[\overline{C_2}^{\beta X} \times \{\alpha\}\right]$. The other inclusion is trivial. So now, we have

$$\bar{f}[\beta X \times {\{\alpha\}}] = f[X \times {\{\alpha\}}] \cup \bar{f}\left[\overline{C_2}^{\beta X} \times {\{\alpha\}}\right].$$

However, as \bar{f} is continuous as $\beta X \times \{\alpha\}$ is compact, $\bar{f}[\beta X \times \{\alpha\}]$ is compact. But by our assumption, $f[X \times \{\alpha\}] \cup \bar{f}[\overline{C_2}^{\beta X} \times \{\alpha\}]$ is not compact, contradiction.

For each $x \in C_3$, there exist $\alpha_x \in T(|\beta X|^+)$ such that for $\alpha > \alpha_x$, $\bar{f}(x,\alpha) \in \beta Z \setminus Z$ holds. This follows from the definition of C_1 and C_2 . Let $\beta^* = \sup\{\alpha_x : x \in C_3\}$. Such β^* exists because $|C_3| < cf(|\beta X|^+)$.

Let

$$\gamma^* = \max\{\alpha^*, \beta^*\}.$$

Fix an arbitrary $\lambda \in T, \lambda > \gamma^*$.

The set $f[X \times {\lambda}]$ is closed in Z. Suppose not, by **Lemma 3.9**, there exists

$$(x,\lambda) \in \overline{X \times \{\lambda\}}^{\beta X \times T(|\beta X|^+ + 1)} \backslash X \times \{\lambda\}$$

such that

$$\bar{f}(x,\lambda) \in \overline{f[X \times {\{\lambda\}}]}^Z \backslash f[X \times {\{\lambda\}}].$$

So, $x \in \beta X \setminus X$. If $x \in C_1$, then since $\lambda \in T \subseteq T_x$, there exists $y_x \in X$ such that $\bar{f}(x,\lambda) = f(y_x,\lambda) \in f[X \times \{\lambda\}]$, contradiction. If $x \in C_2$, then either $\bar{f}(x,\lambda) = f(y,\lambda_2)$ and $\lambda > \lambda_2$, or $\bar{f}(x,\lambda) \in \beta Z \setminus Z$. Contradiction in the first case because $\bar{f}(x,\lambda) = \notin Z$. Contradiction in both cases. If $x \in C_3$, then $\bar{f}(x,\lambda) \in \beta Z \setminus Z$, contradiction. Therefore, $f[X \times \{\lambda\}]$ is closed in Z.

By Fact 3.5, there exists a system $D = \{D_{\alpha}\}$ satisfying the first 4 conditions:

- 1. For each α , the set D_{α} is non-empty and closed in $f[X \times \{\lambda\}]$.
- 2. For $\alpha > \beta$, $D_{\alpha} \subseteq D_{\beta}$, and if β is a limit ordinal, then $D_{\beta} = \bigcap \{D_{\alpha} : \alpha < \beta\}$.

3.
$$\bigcap \{D_{\alpha}\} = \emptyset$$
.

4.
$$\overline{D_1}^{\beta Z} \cap \overline{f} \left[\overline{C_2}^{\beta X} \times \{\lambda\} \right] = \emptyset.$$

Since f is one-to-one, by condition 4, $f^{-1}[D_{\alpha}] \subseteq X \times \{\lambda\}$ for any α . Define a system $A = \{A_{\alpha}\}$ of subsets of X such that $f^{-1}[D_{\alpha}] = A_{\alpha} \times \{\lambda\}$. A satisfies the following conditions:

- 5. For each α , the set A_{α} is closed in X. Proof- Since D_{α} is closed in $f[X \times \{\lambda\}]$ and $f[X \times \{\lambda\}]$ is closed in Z, D_{α} must be closed Z as well. As f is continuous, $f^{-1}[D_{\alpha}]$ must be closed in $X \times T(|\beta X|^+)$. But $f^{-1}[D_{\alpha}] = A_{\alpha} \times \{\lambda\}$, so it means that A_{α} is closed in X.
- 6. $\bigcap \{A_{\alpha}\} = \emptyset$. Proof- By our definition of A_{α} , we have $f^{-1}[\bigcap \{D_{\alpha}\}] = \bigcap \{f^{-1}[D_{\alpha}]\} = \bigcap \{A_{\alpha}\}\} = \bigcap \{A_{\alpha}\} \times \{\lambda\}$. Since $\bigcap \{D_{\alpha}\} = \emptyset$ by condition 3, we must have $\bigcap \{A_{\alpha}\}\emptyset$.
- 7. For $\alpha > \beta, A_{\alpha} \subseteq A_{\beta}$ and if β is a limit ordinal, then $A_{\beta} = \bigcap \{A_{\alpha}\}$. Proof- If $\alpha > \beta, D_{\alpha} \subseteq D_{\beta}$ holds by condition 2. So, $f^{-1}[D_{\alpha}] \subset f^{-1}[D_{\beta}] \Rightarrow A_{\alpha} \times \{\lambda\} \subseteq A_{\beta} \times \{\lambda\{\lambda\} \Rightarrow A_{\lambda} \subseteq A_{\beta}$. If β is a limit ordinal, then by condition 2, $D_{\beta} = \bigcap \{D_{\alpha}\}$. So $A_{\beta} \times \{\lambda\} = f^{-1}[D_{\beta}] = f^{-1}[\bigcap \{D_{\alpha}\}] = \bigcap f^{-1}[D_{\alpha}] = \bigcap \{A_{\alpha} \times \{\lambda\}\}$. Thus, $A_{\beta} = \bigcap \{A_{\alpha}\}$.
- $8. \ \overline{A_1}^{\beta X} \cap \overline{C_2}^{\beta X} = \emptyset.$ Proof- Suppose there exists $x \in \overline{A_1}^{\beta X} \cap \overline{C_2}^{\beta X}$. Since $x \in \overline{A_1}^{\beta X}, \bar{f}(x,\lambda) \in \bar{f}\left[\overline{A_1}^{\beta X} \times \{\lambda\}\right] \subseteq \bar{f}\left[A_1 \times \{\lambda\}\right]^{\beta Z} = \bar{f}\left[A_1 \times \{\lambda\}\right]^{\beta Z} = \overline{D_1}^{\beta Z}$. On the other hand, since $x \in \overline{C_2}^{\beta X}, \ \bar{f} \in \bar{f}\left[\overline{C_2}^{\beta X} \times \{\lambda\}\right]$. Therefore, $\bar{f}(x,\lambda) \in \overline{D_1}^{\beta Z} \cap \bar{f}\left[\overline{C_2}^{\beta X} \times \{\lambda\}\right]$. This contradicts condition 4.
- 9. If $x\in\bigcap\overline{A_{\alpha}}^{\beta X}$, then $x\in C_3$. Proof- Since $\beta X\backslash X$ is partitioned in to $C_1,\overline{C_2}^{\beta X}$, and C_3 , we need to show that $x\notin C_1$ and $x\notin\overline{C_2}^{\beta X}$. Suppose that $x\in C_1$, then $\bar{f}(x,\lambda)=f(y_x,\lambda)$ for some $y_x\in X$. Since
- 10. $f\left[A_{\alpha} \times \{\alpha\}\right]$ is closed in Z for each $\gamma > \gamma^*, \gamma \in T$.

 Proof- By Lemma 3.9, there $x \in \overline{A_{\alpha}} \backslash A_{\alpha}$ such that $\overline{f}(x,\gamma) \in \overline{f\left[A_{\alpha} \times \{\alpha\}\right]}^Z \backslash f\left[A_{\alpha} \times \{\alpha\}\right]$

holds. Since $\overline{A_1}^{\beta X}\cap \overline{C_2}^{\beta X}=\emptyset, x\notin \overline{C_2}^{\beta X}$. Also, if $x\in C_3$, then $\bar{f}(x,\gamma)=f(x,\gamma')$ for some $\gamma'>\gamma^*$, contradictin, so $x\notin C_3$. Thus, $x \in C_1$. But $f[A_{\alpha} \times \{\lambda\}] = D_{\alpha}$ closed in Z. So $\bar{f}(x,\lambda) \in f[A_{\alpha} \times \{\lambda\}]$. As $x \in C_1$, $\bar{f}(x,\lambda) = f(y_x,\lambda)$, so we have $\bar{f}(x,\gamma) \in f[A_\alpha \times \{\gamma\}]$. Contradiction.

Let $|A| = \gamma$. Choose a closed subset $G = \{\gamma_{\alpha} : \alpha \leq \gamma\}$ of T such that $\gamma_1 > \gamma^*$ and for $\alpha > \beta, \gamma_\alpha > \alpha_\beta$. Define

$$B_1 = \bigcup \{A_\alpha \times \{\gamma_\alpha\}\}\$$
$$B_2 = A_1 \times \{\gamma_\gamma\}\$$

 B_1 is closed in $X \times T(|\beta X|^+)$ because $\bigcap \{A_\alpha\} = \emptyset$ by condition 6. B_2 is closed in $X \times T(|\beta X|^+)$ because A_1 is closed by condition 5 and by our choice of G. B_1 and B_2 are disjoint because B_1 doesn't contain any element with the second coordinate equal to γ_{γ} .

Now, as each $\overline{A_{\alpha}}^{\beta X} \neq \emptyset$, $x \in \bigcap \left\{ \overline{A_{\alpha}}^{\beta X} \right\}$. Thus $(x, \gamma_{\gamma}) \in \overline{B_2}^{\beta X \times T(|\beta X|^+ + 1)}$. On the other hand, we have $(x, \gamma_{\gamma}) \in \overline{B_1}^{\beta X \times T(|\beta X|^+ + 1)}$. Thus, $(x, \gamma_{\gamma}) \in \overline{B_1}^{\beta X \times T(|\beta X|^+ + 1)} \cap \overline{B_2}^{\beta X \times T(|\beta X|^+ + 1)}$. By **Fact 3.6**, the sets B_1 and B_2 are not completely separated in $X \times T(|\beta X|^+)$.

Let us consider the $f[B_1]$ and $f[B_2]$. Since f is one-to-one, we have $f[B_1] \cap$ $f[B_2] = \emptyset$. By condition 10, $f[B_2]$ is closed in Z. We shall prove that $f[B_1]$ is closed in Z. Assume the contrary. Then, by **Lemma 3.9**, there exists $(x, \gamma_{\alpha}) \in \overline{B_1}^{\beta X \times T(|\beta X|^+ + 1)} \setminus B_1 \text{ such that } \overline{f}(x, \gamma_{\alpha}) \in \overline{f[B_1]}^Z \setminus f[B_1].$

$$\begin{aligned} & \textbf{Case 1.} \ \alpha < \gamma: \\ & \textbf{Since} \ (x, \gamma_{\alpha}) \in \overline{B_{1}}^{\beta X \times T(|\beta X|^{+}+1)}, (x, \gamma_{\alpha}) \in \overline{A_{\alpha} \times \{\gamma_{\alpha}\}}^{\beta X \times T(|\beta X|^{+}+1)}. \ \textbf{So} \ \bar{f}(x, \gamma_{\alpha}) \in \\ & \bar{f} \left[\overline{A_{\alpha} \times \{\gamma_{\alpha}\}}^{\beta X \times T(|\beta X|^{+}+1)} \right] \subset \overline{\bar{f} \left[A_{\alpha} \times \{\gamma_{\alpha}\} \right]}^{\beta Z} = \overline{f \left[A_{\alpha} \times \{\gamma_{\alpha}\} \right]}^{\beta Z}. \end{aligned}$$

By 10, $f[A_{\alpha} \times \{\gamma_{\alpha}\}]$ is closed in Z. So either $\bar{f}(x,\gamma_{\alpha}) \notin Z$ or $\bar{f}(x,\gamma_{\alpha}) \in f[A_{\alpha} \times \{\gamma_{\alpha}\}]$. If $\bar{f}(x,\gamma_{\alpha}) \notin Z$, then $\bar{f}(x,\gamma_{\alpha}) \notin f[B_{1}]^{Z}$, contradiction. If $\bar{f}(x,\gamma_{\alpha}) \in f[A_{\alpha} \times \{\gamma_{\alpha}\}]$, then $\bar{f}(x,\gamma_{\alpha}) \in f[B_{1}]$, contradiction.

Case 2. $\alpha = \gamma$:

The only way (x, γ_{γ}) qualifies to be in $\overline{B_1}^{\beta \times T(|\beta X|^+ + 1)}$ but not in B_1 is if $x \in C_{\alpha\beta X}$ $\bigcap \left\{ \overline{A_{\alpha}}^{\beta X} \right\}. \text{ By condition } 9, \ x \in C_3. \text{ But since } \gamma_{\gamma} > \gamma^* \geq \beta^*, \overline{f}(x, \gamma_{\gamma}) \in \beta Z \setminus Z.$ This contradicts that $\bar{f}(x, \gamma_{\gamma}) \in \overline{f[B_1]}^Z$.

Hence, $f[B_1]$ is closed in Z.

Now, the sets $f[B_1]$ and $f[B_2]$ and closed and disjoint in Z. Since Z is normal, by Urysohn's Lemma, there exists a continuous function $g:Z\to [0,1]$ such that $g[f[B_1]]\subseteq \{0\}$ and $g[f[B_2]]\subseteq \{1\}$. Let $h=g\circ f$. Then B_1 and B_2 are completely separated by the continuous function h. This is a contradiction, so **CASE I** cannot happen.

CASE II There exists an ordinal $\alpha \in T$, $\alpha > \alpha^*$ such that the set $f[X \times \{\alpha\}] \cup \bar{f}[\overline{C_2}^{\beta X} \times \{\alpha\}]$ is compact.

Since $f[X \times \{\alpha\}] \cap \bar{f}\left[\overline{C_2}^{\beta X} \times \{\alpha\}\right] = \emptyset$ and the set $\bar{f}\left[\overline{C_2}^{\beta X} \times \{\alpha\}\right]$ is compact, the set $f[X \times \{\alpha\}]$ is locally compact. This is because for any $z \in f[X \times \{\alpha\}]$, $z \notin \bar{f}\left[\overline{C_2}^{\beta X} \times \{\alpha\}\right]$. By Z being normal and hence regular, there exists a closed nhood N_z of z such that $z \in N_z \subseteq \beta Z \setminus \bar{f}\left[\overline{C_2}^{\beta X} \times \{\alpha\}\right]$. As βZ is compact, N_z is a compact nhood of z. Hence, $f[X \times \{\alpha\}]$ is locally compact.

By Fact 3.7, $f[X \times \{\alpha\}]$ condenses onto a compact space. Hence, $X \times \{\alpha\}$ condenses onto a compact space as well. Since X is homeomorphic to $X \times \{\alpha\}$, X condenses onto a compact space, too. The theorem is proved.