

Amendment to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of claims:

Claim 1 (Original) A vibration damper for damping torsional and bending vibrations in a rotating shaft having an axis of rotation, the vibration damper comprising:

a hub adapted to be coupled to the shaft for rotational movement therewith;

an inertia element concentric with the hub; and

an elastic element adapted to non-rigidly couple the hub and the inertia element;

wherein the elastic element possesses a first shear modulus in a first direction and a second shear modulus in a second direction and wherein the first shear modulus and the second shear modulus are different.

Claim 2 (Original) The vibration damper of claim 1 wherein the elastic element comprises a composite material.

Claim 3 (Original) The vibration damper of claim 2 wherein the composite material comprises an elastomer having a plurality of fibers dispersed therein.

Claim 4 (Original) The vibration damper of claim 3 wherein the plurality of fibers are dispersed within the elastomer in a unidirectional orientation.

Claim 5 (Original) The vibration damper of claim 3 wherein the plurality of fibers are dispersed within the elastomer in a longitudinal orientation with respect to the elastic element.

Claim 6 (Original) The vibration damper of claim 3 wherein the plurality of fibers are dispersed within the elastomer in an axial orientation that is substantially parallel to the axis of rotation.

Application No.: 10/802,104

Attorney Docket No.: 02-10 (444407-00039)

Amendment

Page 4 of 11

Claim 7 (Currently Amended) The vibration damper of claim 3 wherein the plurality of fibers are dispersed within the elastomer in a radial orientation with respect to the axis if of rotation.

Claim 8 (Original) The vibration damper of claim 1 wherein a first surface located on the inertia element is spaced radially outwardly from a second surface located on the hub, and wherein the elastic element is located between the first surface and the second surface.

Claim 9 (Original) The vibration damper of claim 1 wherein an outer surface of the inertia element is adapted to receive a power-transmitting belt.

Claim 10 (Cancelled)

Claim 11 (Original) The vibration damper of claim 1 wherein an outer surface of the hub is adapted to receive a power-transmitting belt.

Claims 12 – 23 (Cancelled)

24. (New) A vibration damper for damping torsional and bending vibrations in a rotating shaft having an axis of rotation, the vibration damper comprising:

a hub adapted to be coupled to the shaft for rotational movement therewith;

an inertia element concentric with the hub; and

an anisotropic elastic element adapted to non-rigidly couple the hub and the inertia element, the anisotropic elastic element having a first shear modulus in a first direction and a second shear modulus in a second direction that is different from the first shear modulus.