ing. Edwin Steffens

Practical lecturer – Informatics Institute - Faculty of Science

Computer Architecture

Lab 1 – Performance measurement

Computer Architecture course

Lab Experiments

Expectations
Introduction SIM-PL
Kickstart Lab 1

Lab Experiments

Expectations

- Labs are compulsory.
- Lab descriptions and quizzes are on Canvas.
- Lab-notes are handed in via Canvas before each deadline.
- Dedication, curious, critical and active.
- Respect your fellow students.
- No loud talking, music or gaming!
- Tidiness and don't leave without cleaning up your mess!

Introduction SIM-PL Logic simulator

SIM-PL

build and simulate computer architectures

SIM-PL

building and simulate computer architectures

- Editor application for building (complex) components and architectures.
- **Executer** application for simulating architectures
- Developed in Java

SIM-PL - Executer

SIM-PL - Executer

Executer is started at the command prompt java –jar Executer.jar

Architectures are loaded in the Component view.

Programs are loaded in the **Program editor**.

SIM-PL – Executer Running Simulations

- Designs are loaded in the "Component view".
 - File -> open or new
- Programs are loaded in the "Program editor".
 - File -> open
 - Compile
- Compiled code transferred to the design
 - Press the Red arrow button
- Simulation starts by pressing the
 - Green or Yellow or Orange button.

Downloads available

Manual
SIM-PL 2.3.2
Additional components

@Canvas

Lab 1

Performance of Computer Architectures

Lab 1 experiment - Performance

Goal

To understand how performance is measured.

How

By doing experiments in SIM-PL the logic simulator. Researching by running three small programs on three architectures

Tools

SIM-PL (Logic simulator)

Results

The results of the experiments are used to answer the questions in the Canvas quiz.

Kick-start Lab 1

Description and Quiz

Lab 1 – Experiment 1

- Goal

- Calculating the **CPI** of a computer architecture.

- How?

- Load an architecture in SIM-PL.
- Execute a program.
- Count the clock cycles and instructions until the program ends.
- Determine the CPI (#clocks / #instructions).

Lab 1 – Loading an architecture

- Start the SIM-PL executer.
 - java –jar executer.jar (Linux case sensitive)
- Load the SingleCycle architecture worksheet.
 - File->Open -> SingleCycle-architecture.sim-pl-ws
- Let's start with an addition of two numbers.
- Load the assembly program addition.wasm in the Program Editor.
 - File->Open -> addition.wasm
- Press the button "Compile" and wait for the checkmark

Lab 1 – Running the source code

- Load the compiled source code
 - Press the "Red arrow" button
 - First instruction is highlighted
- Execute the first instruction
 - Press the "Orange arrow" button
 - Clock cycle appears in Timing window

- No more highlighted instructions is end of program.
- Don't forget to count!
- Write down the results in your lab-notes.
- Continue with the other programs and architectures.
- And complete this answer answer the Canvas quiz.

End of kick start session

Are there any questions?

See you next time

Success!