Übung 3

Ausgabe: 29.04.2014, Abgabe: 06.05.2014, Besprechung: 08./09.05.2014

3.1 Fouriertransformation

Die Fouriertransformation (FT) $\mathcal{F}\{\phi\}$ einer Funktion $\phi: \mathbb{R} \to \mathbb{C}$ ist definiert durch

$$\mathcal{F}\{\phi\}(\vec{k}) = \frac{1}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} d^n x \, \phi(\vec{x}) \, e^{-i\vec{k}\vec{x}}$$
 (1)

Zur Unterscheidung von Funktion und Fouriertransformierter schreibt man auch \vec{k} statt \vec{x} als Argument und lässt \mathcal{F} weg, also $\mathcal{F}\{\phi\}(\vec{k}) = \phi(\vec{k})$.

1. Zeigen Sie, dass die FT einen Ableitungsoperator auf eine Multiplikation abbildet, d.h.

$$\mathcal{F}\left\{\frac{\partial}{\partial x_{\alpha}}\right\}(\vec{k}) = ik_{\alpha} \quad \text{und} \quad \mathcal{F}\left\{\frac{\partial}{\partial k_{\alpha}}\right\}(\vec{x}) = -ix_{\alpha}$$
 (2)

2. Zerlegen Sie die Funktion $\phi(t)$ in ihren geraden und ungeraden Anteil bezüglich der Variablen t, also $\phi(t) = \phi_e(t) + \phi_0(t)$ mit $\phi_e(t) = \phi_e(-t)$ und $\phi_0(t) = -\phi_0(-t)$. Berechnen Sie nun die FT $\phi(\omega)$ und geben Sie deren Real- und Imaginärteil an.

Die Faltung zweier Funktionen ϕ_1 und ϕ_2 ist definiert als

$$(\phi_1 * \phi_2)(\vec{x}) = \int_{-\infty}^{\infty} d^n y \, \phi_1(\vec{x} - \vec{y}) \, \phi_2(\vec{y}) \tag{3}$$

3. Zeigen Sie für n=1, dass die FT ein Produkt in eine Faltung überführt:

$$\sqrt{2\pi}\mathcal{F}\{\phi_1 \cdot \phi_2\}(k) = \int_{-\infty}^{\infty} \phi_1(x)\phi_2(x)e^{-ikx} = (\mathcal{F}\{\phi_1\} * \mathcal{F}\{\phi_2\})(k)$$
 (4)

4. Zeigen Sie, dass eine Ableitung in einen der beiden Faktoren der Faltung gezogen werden kann,

$$\frac{\partial}{\partial x_{\alpha}} \left[(\phi_1 * \phi_2)(\vec{x}) \right] \equiv \left(\left[\partial_{\alpha} \phi_1 \right] * \phi_2 \right) (\vec{x}) = \left(\phi_1 * \left[\partial_{\alpha} \phi_2 \right] \right) (\vec{x}), \tag{5}$$

wobei $\partial_{\alpha}\phi(\vec{y}) = \frac{\partial}{\partial y_{\alpha}}\phi(\vec{y}).$

3.2 Gaußintegrale

Es sei die Wahrscheinlichkeitsdichte

$$p(x) = Ce^{-\frac{1}{2}ax^2 + bx} \tag{6}$$

der Zufallsgröße x mit $a, b \in \mathbb{R}$ und a > 0 gegeben.

1. Zeigen Sie

$$\mathcal{I} = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi} \tag{7}$$

Hinweis: Berechnen Sie $\mathcal{I} \cdot \mathcal{I}$ in Polarkoordinaten.

- 2. Berechnen Sie die Normierung C
- 3. Berechnen Sie den Mittelwert $\langle x \rangle = \int_{-\infty}^{\infty} x |p(x)|^2 dx$

3.3 Freies Wellenpaket

 $\Psi(x,0)$, ein eindimensionales Wellenpaket zur Zeit t=0, sei durch seine Fouriertransformierte

$$\phi(k) = A \exp[(k - k_0)^2 d^2] \tag{8}$$

gegeben. k_0 und A, d > 0 sind reelle Konstanten. Für ein freies Teilchen mit der Masse m ist dann

$$\Psi(x,t) = \frac{A}{\sqrt{2}\pi} \int_{-\infty}^{\infty} dk \exp\left[-(k-k_0)^2 d^2 - i\frac{\hbar k^2}{2m}t + ikx\right]$$
(9)

- 1. Skizzieren Sie die Impulsverteilung $\phi(k)$ des Teilchens.
- 2. Führen Sie das obige Integral aus und berechnen Sie die Dichte $|\Psi(x,t)|^2$ der Aufenthaltswahrscheinlichkeit des Teilchens.
- 3. Mit welcher Geschwindigkeit bewegt sich der wahrscheinlichste Aufenthaltsort ?
- 4. Wie ändert sich die Schwankung des Ortes mit der Zeit?
- 5. Berechnen Sie die Normierungskonstante A so, dass $\int |\Psi(x,t)|^2 dx = 1$ gilt.

Hinweis: Auch für komplexe Zahlen a und b gilt unter der Bedingung Re(a) > 0

$$\int_{-\infty}^{\infty} e^{-a(y+b)^2} dy = \frac{\sqrt{\pi}}{\sqrt{a}} \tag{10}$$

Unter \sqrt{a} ist diejenige Wurzel zu verstehen, deren Realteil > 0 ist.

3.4 δ -Potential im Impulsraum

In Aufgabe 2.2 wurde bereits das δ -Potential im Ortsraum behandelt. Dieses Potential soll nun im Impulsraum betrachtet werden: Bestimmen Sie aus der Eigenwertgleichung die fouriertransformierte Wellenfunktion $\tilde{\Psi}(p)$ als Funktion von p, E, α und $\Psi(0)$. Die entstehende Integralgleichung kann auf einfache Weise gelöst werden. Zeigen Sie, dass nur negative Werte für E möglich sind. Überzeugen Sie sich, dass die gefundene Lösung die Fouriertransformierte der in 2.2 bestimmten Lösung ist.