18CSC305J - ARTIFICIAL INTELLIGENCE End Semester Notes

UNIT - 1

Types of Agents:

Agent	Description	Example
Simple Reflex	Makes decisions based on the current	A thermostat that turns on or off based
Agent	input without considering the history or	on a temperature threshold.
	future consequences.	
Model-Based	Maintains an internal model or	A self-driving car that uses maps, sensor
Agent	representation of the world and uses it to	data, and its internal model to navigate
	make decisions considering both current	and plan routes.
	input and knowledge about the world.	
Goal-Based	Pursues specific goals or objectives,	A personal assistant that schedules
Agent	selecting actions based on their	appointments based on user
	expected outcome in achieving the	preferences, availability, and efficiency
	goals.	constraints.
Utility-Based	Maximizes a utility or reward function to	A recommendation system that suggests
Agent	select actions that yield the highest	movies based on user preferences,
	expected utility or reward.	ratings, and predicted utility scores.
Learning	Improves performance over time by	A spam filter that learns from user-
Agent	learning from experience, updating its	marked emails to improve its accuracy in
	knowledge or model based on feedback.	identifying and filtering spam messages.
Hybrid Agent	Combines multiple agent types or	A robot vacuum cleaner that uses
	approaches to benefit from their	reactive reflexes for immediate obstacle
	complementary strengths.	avoidance and a model-based approach
		for planning efficient cleaning routes.

Crypto Arithmetic Problem:

Crypto arithmetic, also known as alphametic or verbal arithmetic, is a type of puzzle where letters or symbols represent digits, and the objective is to find the numerical value of each letter to solve the equation. In terms of AI, this is one of the constraint satisfaction problems (CSPs).

Some examples of the CSP are: SEND+MORE=MONEY TWO+TWO=FOUR FORTY+TEN+TEN=SIXTY, etc.

(PRACTICE)

Problem Solving with Al:

Problem solving in AI refers to the process of using artificial intelligence techniques and algorithms to address complex problems or challenges. It involves designing and implementing computational methods that can analyse data, reason about it, and generate solutions or make decisions based on the problem at hand.

Stage	Description
Problem	Clearly defining the problem is the first crucial step. It involves understanding the problem
Definition	statement, identifying the desired outcome, and setting specific goals or objectives.
Problem	Once the problem is defined, it's essential to analyse and break it down into smaller
Analysis and	components. This step may involve gathering data, conducting research, identifying
Representation	constraints or dependencies, and representing the problem in a structured format.
Planning	Planning involves developing a strategy or roadmap to solve the problem. This includes
	determining the sequence of actions, allocating resources, setting priorities, and
	considering potential alternative approaches.
Execution	Execution refers to implementing the planned solution. It involves carrying out the actions
	outlined in the plan, utilizing appropriate tools, techniques, or technologies, and addressing
	any obstacles or challenges encountered during the process.
Evaluating	After executing the solution, it's crucial to evaluate its effectiveness. This step involves
Solution	assessing whether the solution achieves the desired outcome, measuring its performance
	against predefined criteria or metrics, and analysing any potential drawbacks.
Consolidating	Once a solution is successfully implemented, it's important to consolidate the gains
Gains	achieved. This step involves documenting lessons learned, capturing best practices, and
	integrating the solution into existing processes or systems to ensure long-term benefits.

Al Models:

Let us learn about semiotic models and statistical models in brief.

Semiotic Models	Statistical Models
Semiotic models focus on the interpretation and	Statistical models aim to analyse and understand
representation of meaning, symbols, and signs in a	patterns, relationships, and trends within data using
given context.	mathematical techniques.
Semiotic models are based on semiotics, which is	Statistical models are based on mathematical and
the study of signs, symbols, and their	probabilistic principles, utilizing statistical methods for
interpretation in communication.	analysis and modelling.
Semiotic models can incorporate a wide range of	Statistical models rely on numerical data, as they are
data types, including textual, visual & cultural data.	designed to perform quantitative analysis & inference.
Semiotic models focus on understanding the	Statistical models provide insights through numerical
meaning and context of symbols, signs, and	analysis, quantifying relationships and making
communication in a given domain.	predictions based on data.
Semiotic models are commonly used in areas	Statistical models find application across various
such as linguistics, literature, cultural studies, and	domains, including finance, healthcare, marketing, and
visual arts.	social sciences.
Roland Barthes' semiotic analysis, Peircean	Linear regression, logistic regression, decision trees,
semiotics, symbolic interactionism, visual	neural networks, clustering algorithms, time series
semiotics.	analysis.

UNIT - 2

For the examples of each algorithm, kindly refer to YouTube videos.

BFS vs DFS:

Breadth-First Search (BFS)	Depth-First Search (DFS)
BFS explores nodes in a breadth-wise manner,	DFS explores nodes in a depth-wise manner, starting
starting from the root or a given node, visiting all	from the root or a given node, traversing as far as
neighbours at the current depth before moving to	possible along each branch before backtracking.
the next depth level.	
BFS typically uses a queue data structure to maintain	DFS typically uses a stack or recursion to keep track
the order of nodes to be visited.	of nodes to be visited and backtracked.
BFS is implemented iteratively or using a queue data	DFS can be implemented using recursion or a stack
structure.	data structure.
BFS may require more memory as it needs to store	DFS typically uses less memory as it only needs to
all nodes at each level of the tree or graph.	store nodes along the current path being explored.
BFS is complete for finite graphs or trees if there is a	DFS is not guaranteed to find a goal state unless the
goal state, as it guarantees finding the shallowest	search space is finite or the goal state is reachable
goal state first.	from the start node.
Example: Finding the shortest path in a maze.	Example: Finding a path in a maze without
	considering its length.

A* Algorithm:

A* is an informed search algorithm that combines the features of both Dijkstra's algorithm (which guarantees finding the shortest path) and Greedy Best-First Search (which focuses on reaching the goal quickly). It uses heuristics to guide the search and make more informed decisions about which paths to explore. The algorithm maintains a priority queue of nodes to visit, prioritizing nodes with lower estimated costs to reach the goal.

Let's say we have a grid-based map representing a maze. Each cell in the grid can be either open or blocked. We want to find the shortest path from a starting cell to a target cell. The A* algorithm can help us achieve this.

Min-Max Algorithm:

The Min-Max algorithm is a decision-making algorithm commonly used in game theory and artificial intelligence to determine the optimal move for a player in a two-player, zero-sum game. It aims to minimize the maximum possible loss (hence the name "Min-Max") for a player assuming that the opponent plays optimally.

Step	Description
Define the game	Represents the current state of the game, including positions of pieces, scores, or
state	any other relevant information.
Generate the	Creates a tree structure representing all possible moves and their outcomes.
game tree	Each node represents a game state, and edges depict moves between states.
Evaluate terminal	Assigns a score to each terminal state (game over) based on its favourability for
states	the player. Positive score indicates a win, negative score indicates a loss, and
	zero represents a draw.
Perform	Recursively traverses the game tree, alternating between maximizing and
recursive search	minimizing scores. Maximizing player selects the move with the highest score,
	while the minimizing player chooses the move with the lowest score.
Backpropagation	Updates parent nodes' scores based on the scores of their children as the
	recursive search progresses back up the tree.
Choose the best	Selects the move leading to the child node with the highest or lowest score once
move	the search reaches the root node.

The Min-Max algorithm assumes perfect play from both players and explores the entire game tree up to a certain depth, which is typically limited to make the algorithm computationally feasible. The Min-Max algorithm provides a systematic way to search through the possibilities in a game and make optimal decisions based on the current state and predicted future outcomes.

Hill Climbing Algorithm:

The Hill Climbing algorithm is a local search algorithm used to find an optimal solution in an optimization problem. It is a simple iterative algorithm that starts with an initial solution and incrementally improves it by making small adjustments.

Step	Description
Initialize a solution	Start with an initial solution.
Evaluate the solution	Calculate the quality or fitness of the current solution using an objective
	function or cost measurement.
Generate solutions	Create a set of neighbouring solutions by making small modifications to the
	current solution.
Evaluate solutions	Calculate the quality or fitness of each neighbouring solution.
Select the best	Choose the neighbouring solution with the highest improvement or lowest
solution	cost compared to the current solution.
Update the current	If the best neighbouring solution is an improvement, update the current
solution	solution to be the best neighbouring solution.

Iterate the process by evaluating and generating neighbouring solutions until a stopping criterion is met.

UNIT - 3

For the examples of each algorithm, kindly refer to YouTube videos.

Forward Chaining vs Backward Chaining:

Forward Chaining	Backward Chaining
From known facts to new	From the goal or desired outcome to
conclusions.	supporting facts.
Deductive reasoning method that	Deductive reasoning method that
starts with known facts and uses	starts with the goal or desired
rules to derive new conclusions until	outcome and works backward to find
a goal is reached.	the supporting facts or conditions.
Top-down inference order.	Bottom-up inference order.
Based on availability and	Based on the relevance and
applicability of rules.	applicability of rules.
Data-driven.	Goal-driven.
Occurs at the end of the process.	Occurs at the beginning of the
	process.
More efficient for problems with a	More efficient for problems with a
large number of facts.	small number of facts.
Used in diagnostic systems, decision	Used in theorem proving, planning
support systems and rule based	systems, program analysis and
expert systems.	debugging.

Predicate Logic vs First Order Logic:

Predicate Logic	First-Order Logic	
Universal (∀) & Existential (∃) quantifiers are used.		
Variables represent objects or individuals.		
Constants represent specific objects or individuals.		
Predicates represent properties or relations between objects.		
Functions represent operations or transformations.		
Less expressive compared to FOL.	More expressive compared to predicate logic.	
Limited to individual sentences or formulas.	Variables can have scope over multiple	
	sentences or formulas.	
Simple and limited syntax.	More complex and rich syntax.	
Examples:	Examples:	
P(x): "x is a prime number."	P(x): "x is a prime number."	
Q(x, y): "x is taller than y."	Q(x, y): "x is taller than y."	
	∀x: "For all x."	
	∃x: "There exists an x."	
Predicate logic allows us to express	First-order logic expands on predicate logic by	
statements about properties or relations	introducing quantifiers that allow us to make	
between objects using predicates.	general statements about objects in a domain.	

Unification:

Unification is a process in logic and artificial intelligence that aims to find a common substitution for variables in two or more logical expressions, making them syntactically equivalent. It involves finding values for variables such that the expressions can be unified or made equal. Unification is commonly used in automated theorem proving, logic programming, and natural language processing.

The unification process involves the following steps:

Variable	When encountering variables in logical expressions, they can be bound to specific terms or
Binding	values during the unification process.
Matching	The unification algorithm attempts to match terms or literals between the expressions being
	unified. It checks if the terms are identical or if one can be instantiated to make them identical.
Substitution	If a match is found, a substitution is performed, where variables are replaced with the
	corresponding terms. This substitution is applied consistently throughout the unification
	process.
Failure	If a match cannot be found or if there is a conflict during unification, the unification process
	fails, indicating that the expressions cannot be unified.

Consider the following expressions:

Expression 1: P(a, X, Y) Expression 2: P(Z, b, c)

To unify these expressions, we try to find a substitution that makes them equal. In this case, the unification algorithm would find the following bindings:

X = b Y = cZ = a

After unification, the expressions become syntactically equivalent:

Unified Expression 1: P(a, b, c) Unified Expression 2: P(a, b, c)

UNIT - 4

STRIPS (Block World Problem):

STRIPS (Stanford Research Institute Problem Solver) is a classic planning system for artificial intelligence developed at the Stanford Research Institute in the late 1960s and early 1970s. It was one of the earliest planning systems and had a significant influence on subsequent research in this area.

It represents the world as a set of predicates, each of which is either true or false. An action is represented by a set of preconditions, which must be true for the action to be applicable, and a set of effects, which describe the changes that occur in the world when the action is performed. The key idea behind STRIPS is to use a backward-chaining algorithm to search for a sequence of actions that will achieve a desired goal state.

Initial state: Lights Off Goal state: Lights On

Actions:

//Flip the switch

Precondition: switch is off;

Effect: switch is on;

Mean End Analysis:

Mean-End Analysis (MEA) is a problem-solving strategy in artificial intelligence that involves identifying differences between the current state and the desired goal state and then developing subgoals that can help bridge the gap between the two states. It is often used in conjunction with other problem-solving techniques, such as STRIPS planning or heuristic search.

To use MEA, the problem solver first identifies the differences between the current state and the goal state. Next, the problem solver develops subgoals and bring the current state closer to the goal state.

MEA can be a powerful problem-solving technique, but it does have some limitations. For example, it can be difficult to identify all the differences between the current state and the goal state, and the subgoals developed may not always be the most efficient or effective way to reach the goal.

Nonetheless, MEA is still widely used in artificial intelligence and other problem-solving domains.

Types of Learning:

Learning Type	Description	Example
Supervised	The model learns from labelled input-	Image classification: Training a model to
Learning	output pairs.	recognize objects based on labelled
		images of different classes.
Unsupervised	The model learns from unlabelled data	Clustering: Grouping similar data points
Learning	to discover patterns or structures.	together without prior knowledge of their
		labels or classes.
Reinforcement	The model learns through trial-and-	Game playing: Training an Al agent to play
Learning	error interactions with an environment,	chess, where it receives rewards for
	receiving rewards or penalties.	winning and penalties for losing or making
		bad moves.
Semi-	The model learns from a combination	Text classification: Utilizing a large amount
supervised	of labelled and unlabelled data.	of unlabelled text data along with a small
Learning		labelled dataset for training a sentiment
		analysis model.
Transfer	The model leverages knowledge from	Pretrained models: Using a pre-trained
Learning	one task to improve performance on	image classification model as a starting
	another related task.	point for a new image recognition task,
		fine-tuning it on a smaller labelled dataset.
Deep Learning	Utilizes neural networks with multiple	Natural language processing: Training a
	layers to learn hierarchical	deep learning model to understand and
	representations of data.	generate human-like text from huge data.

Support Vector Machine (SVM):

Support Vector Machine (SVM) is a popular supervised machine learning algorithm used for classification and regression tasks. It is particularly effective in cases where the data is separable into distinct classes or can be transformed into a higher-dimensional space where separation is possible. SVM finds an optimal hyperplane that maximally separates the classes by maximizing the margin between the data points of different classes.

SVM works by representing data points as vectors in a multi-dimensional space and finding the optimal hyperplane that separates the classes with the largest margin. The hyperplane is chosen in such a way that it maximizes the distance between the closest data points of different classes, known as support vectors.

Classification: Given a dataset of emails labelled as "spam" or "non-spam" based on their content, SVM can be trained to classify new, unlabelled emails as either spam or non-spam.

Regression: SVM can also be used for regression tasks, where the goal is to predict a continuous value. For example, given a dataset of housing prices with features such as area, number of bedrooms, and location, SVM can be trained to predict the price of a new house based on its features.

SVMs are known for their ability to handle high-dimensional data, work well with limited training samples, and have solid theoretical foundations. They can handle both linearly separable and non-linearly separable data by using kernel functions to transform the data into a higher-dimensional space.

Goal Stack Planning vs Non-Linear Planning:

Goal Stack Planning	Non-Linear Planning
Hierarchy of goals.	Directed Acyclic Graph (DAG) of
	actions and states.
Top-down decomposition.	Finding a sequence of actions.
Decomposes main goal into subgoals.	Focuses on finding actions to reach the
	goal state.
Backtracks and repairs plan if subgoal	Utilizes forward and backward search
is not immediately achievable.	to expand the graph.
Effective for decomposable problems.	Suitable for problems requiring finding
	a sequence of actions.
Used in automated reasoning,	Used in graph-based planning, STRIPS
hierarchical task planning.	planning.

Machine Learning vs Human Learning:

14 11 1 (14)	
Machine Learning (ML)	Human Learning (HL)
Requires structured and labelled data.	Learns from unstructured data and experiences.
Can process vast amounts of data quickly.	Learning speed varies between individuals.
Can adapt to new data patterns and make	Adapts through reasoning, intuition, and cognitive
predictions.	flexibility.
Lacks common sense and contextual	Learns through context, background knowledge,
understanding.	and real-world cues.
Lacks creativity and cannot generate new ideas.	Creative thinking and innovation are fundamental
	to human learning.
Lacks emotional intelligence and empathy.	Emotional intelligence plays a crucial role in
	human learning.
Can generalize patterns based on training data.	Human learning can generalize and transfer
	knowledge across domains.
Requires specific training for each domain.	Humans can acquire expertise across multiple
	domains.
Raises ethical questions regarding data privacy and	Ethical considerations in learning are shaped by
biases.	societal values.

UNIT - 5

Expert System Architecture:

An expert system architecture typically consists of several components that work together to provide intelligent reasoning and decision-making capabilities. The following are some of the key components of an expert system architecture:

Knowledge Base: This is the component that stores all the domain-specific knowledge that the expert system uses to make decisions and provide recommendations. The knowledge base is usually organized in a structured manner, using a knowledge representation language such as frames or rules.

Inference Engine: This is the component that performs reasoning on the knowledge base to make decisions or provide recommendations. The inference engine uses various techniques such as forward chaining, backward chaining, and fuzzy logic to perform reasoning.

<u>User Interface</u>: This is the component that allows users to interact with the expert system. The user interface can be text-based or graphical, and it typically includes tools for entering inputs, displaying outputs, and navigating the knowledge base.

Explanation Facility: This is the component that allows the expert system to explain its reasoning and recommendations to the user. The explanation facility can generate natural language explanations, visualizations, or other forms of output that help the user understand how the expert system arrived at its conclusion.

Developing an Expert System

Rule-Based Expert Systems	Frame-Based Expert Systems	
Represent knowledge as if-then rules.	Represent knowledge as frames with slots and	
	values.	
Use forward or backward chaining to apply	Use slot-filling and inheritance to reason about	
rules.	data.	
Can handle a wide variety of problem domains	More specialized and typically used for	
and knowledge structures.	structured domains.	
Requires explicit knowledge to be coded into	Can acquire knowledge from a domain expert	
rules by a knowledge engineer.	through interviews or other means.	
Efficient at processing large amounts of data.	May require more computational resources to	
	process large numbers of frames.	

Business Intelligence and Business Analytics:

Business Intelligence (BI)	Business Analytics (BA)
Historical data analysis to understand past	Use of data analytics to make data-driven
performance and identify trends.	decisions for future actions.
Limited to the analysis of structured data from	Broader scope including both structured and
internal systems.	unstructured data from both internal and
	external sources.
Internal systems such as ERP, CRM, SCM, etc.	Internal and external sources including social
	media, customer feedback, market data, etc.
Focused on descriptive analytics, providing	Includes descriptive, predictive, and
insights into what happened in the past.	prescriptive analytics to gain insights and take
	actions based on data.
Traditional BI tools such as dashboards,	Advanced analytics tools such as data mining,
reporting, and OLAP.	machine learning, and predictive modelling.
Primarily used by managers and executives to	Used by managers, executives, and data
monitor and analyse performance.	scientists to make data-driven decisions across
	all levels of the organization.
Help organizations make better decisions by	Help organizations make data-driven decisions
providing historical data analysis and insights.	for future actions to improve business
	performance and achieve strategic goals.

Deep Learning:

Deep learning is a subfield of machine learning that uses neural networks with multiple layers to model and solve complex problems. Neural networks are a type of algorithm that are inspired by the structure and function of the human brain. In deep learning, these neural networks are composed of many layers of interconnected nodes, which can learn to represent complex features and patterns in the input data.

Deep learning algorithms are designed to automatically learn and extract features from raw data, without the need for manual feature engineering. This makes them well-suited for a wide range of tasks, including image recognition, speech recognition, natural language processing, and predictive analytics.

Convolutional Neural Network:

A convolutional neural network (CNN) is a type of deep neural network that is designed to process and analyse images and other multidimensional data. CNNs are widely used in computer vision applications, such as image recognition, object detection, and facial recognition.

Some of the key features of a CNN include:

- Convolutional layers that perform local feature extraction using filters.
- Pooling layers that down sample the output and reduce the dimensionality of the data.
- Activation functions, such as ReLU, that introduce non-linearity into the model.
- Dropout and regularization techniques to prevent overfitting.
- Backpropagation algorithm to optimize the weights of the network during training.

Here are the steps of creating a CNN model. Convolution: Input Image Feature Feature Map Max Pooling: Max Pooling Pooled Feature Map Feature Map Flattening: Flattening Pooled Feature Map

Full Connection:

Natural Language Processing(NLP):

It is a subfield of artificial intelligence and linguistics that focuses on the interaction between computers and human language. NLP involves the development of algorithms and models that enable computers to understand, interpret, and generate human language in a way that is meaningful and useful.

NLP Task	Description
Text classification	Categorizing and organizing text into predefined categories or topics.
Sentiment analysis	Determining the sentiment or emotion expressed in a piece of text, such as
	positive, negative, or neutral.
Named entity	Identifying and classifying named entities in text, such as names of people,
recognition	organizations, locations, or dates.
Machine translation	Automatically translating text from one language to another.
Speech recognition	Converting spoken language into written text.
Question answering	Providing accurate answers to questions posed in natural language.
Text summarization	Generating concise summaries of longer texts, such as articles or documents.
Chatbots and virtual	Creating conversational agents that can interact with users in natural language.
assistants	

To accomplish these tasks, NLP relies on various techniques and methods, including statistical models, machine learning, deep learning, and linguistic rules. Large language models like GPT-3 have significantly advanced the capabilities of NLP by capturing the nuances of human language and generating coherent and contextually relevant responses.

Advantages	Disadvantages	
Automates language-related tasks and saves	Difficulty in handling ambiguous or context	
time.	dependent language.	
Enables efficient analysis of large volumes of text	Challenges with languages and dialects other than	
data.	major ones.	
Enhances customer support and user experience.	Reliance on availability of high-quality training data.	
Improves information retrieval and search	Limited understanding of sarcasm, irony, or	
capabilities.	figurative language.	
Supports sentiment analysis for market research	Privacy concerns when processing personal data.	
and feedback.		

Pattern Analytics & Knowledge Acquisition System:

Pattern Analytics & Knowledge Acquisition System (PAKAS) refers to a system or framework that combines pattern analytics and knowledge acquisition techniques to gain insights and extract valuable information from data. PAKAS is designed to analyse patterns, trends, and relationships within data to uncover hidden knowledge and make informed decisions.

The components of PAKAS are as follows:

Component	Description
Pattern	Utilizes statistical analysis, machine learning algorithms, and data mining techniques
Analytics	to identify patterns and relationships within datasets.
Knowledge	Extracts explicit and tacit knowledge from domain experts, documents, databases,
Acquisition	and other relevant sources.
Data	Integrates and consolidates data from diverse sources to provide a comprehensive
Integration	view of the information landscape.
Data	Utilizes visualization techniques, such as charts, graphs, and interactive dashboards,
Visualization	to present patterns and insights in a visually appealing manner.

The benefits of PAKAS are as follows:

Benefit	Description
Decision Making	Supports evidence-based decision making by providing valuable insights and
	patterns from data.
Knowledge	Helps uncover hidden patterns and trends in large volumes of data, leading to
Discovery	new discoveries and actionable knowledge.
Efficiency and	Automates pattern identification and knowledge extraction, reducing manual
Accuracy	effort and potential errors.
Predictive Analytics	Provides predictive analytics capabilities by leveraging historical data and
	patterns.
Domain Expertise	Facilitates the capture and preservation of domain knowledge from experts
Capture	for decision making and problem-solving.
Data-Driven	Transforms raw data into meaningful insights, enabling a deeper
Insights	understanding of operations, customers, and market dynamics.