XXXXXXXXXX 学院

2020 至 2021 学年第 一 学期

《机器学习》 期末考试试题评分标准(A卷)

一、单选题(本题共25小题,满分50分)

			· / — · · · ·	***	* '					
题号	1	2	3	4	5	6	7	8	9	10
答案	D	D	С	A	В	A	С	В	A	В
题号	11	12	13	14	15	16	17	18	19	20
答案	В	В	В	В	С	A	A	В	A	D
题号	21	22	23	24	25					
答案	В	A	D	A	В					

二、计算题(本题共5小题,满分50分)

1. 使用公式正确(2分)计算正确(2分)

SSE = $(-0.2)^2 + (0.4)^2 + (-0.8)^2 + (1.3)^2 + (-0.7)^2 = 3.02$

- 2. (本小题 8 分)已知逻辑回归模型得到一组逻辑回归结果,要求:
- (1) 假设阈值为 0.6, 写出预测结果。(2分)

逻辑回归结果	逻辑回归预测结果	真实结果	
0.40	0	1	
0.65	1	0	
0.20	0	0	
0.80	1	1	
0.70	1	1	

- (2) 计算出损失函数的值(即真实值与预测值之间的损失值)。(6分)
- 样本 1 为正样本, 损失为: 1*log(0.4)
- 样本 2 为负样本, 损失为: (1-0)*log(1-0.65)
- 样本 3 为负样本, 损失为: (1-0)*log(1-0.2)
- 样本 4 为正样本, 损失为: 1*log(0.8)
- 样本 5 为正样本, 损失为: 1*log(0.7)
- (以上过程4分:公式错误1处1分,扣完2分为止,计算错误1处1分,扣完2分为止)
- 总损失函数= $\log(0.4) + \log(0.35) + \log(0.8) + \log(0.8) + \log(0.7)$
- 或总损失函数= $-(\log(0.4) + \log(0.35) + \log(0.8) + \log(0.8) + \log(0.8)$
- log以10为底结果= -1.2026 或1.2026
- log以2为底结果 = -3.9949 或 3.9949
- log以e为底结果 = -2.7691 或 2.7691
- (2分, 其中公式1分, 计算1分)
- 3. (本小题 10 分)

	真实好瓜 P	真实坏瓜 N
预测好瓜 P	TP = 14	FP = 2
预测坏瓜 N	FN = 1	TN = 3

(表格内每空1分,共4分)

P = 14/(14+2) = 7/8 = 0.875(2分)(公式和计算各1分)R = 14/(14+1) = 14/15 = 0.933(2分)(公式和计算各1分)

F1 = 2*P*R/(P+R) = 28/31 = 0.903(2 分)(公式和计算各 1 分)

$_{4}$ (1) $\hat{\omega} = (X^{T}X)^{-1}X^{T}y$ (2.4)

(2) def standRegres(xArr, yArr):

$$xMat = np. mat(xArr)$$
 (1 $\%$)
 $yMat = np. mat(yArr).T$ (1 $\%$)

$$xTx = xMat. T * xMat$$
 (1 $\%$)

if np. linalg.
$$det(xTx) = 0.0$$
: (1 $\%$)

return
$$(1分)$$

ws = xTx.I * (xMat.T*yMat)

return ws

此外:格式3分,错一处扣一分,扣完为止

5. 我们需要最大化 P(X|Ci)P(Ci), i=1,2。每个类的先验概率 P(C)可以根据训练样本计算:

P(C1) = 9/14 = 0.643

P(C2) = 5/14 = 0.357

(1分)

(2分,公式和计算各1分)

为计算. P(X/Ci) i=1,2,我们计算下面的条件概率:

P(天气="雨" | C1)=3/9=0.333

P(天气="雨" | C2)=2/5=0.400

(2分,公式和计算各1分)

P(温度="凉" | C1)=3/9=0.333

P(温度="凉" | C2)=1/5=0.200

(2分,公式和计算各1分)

P(湿度="高" | C1)=3/9=0.333

P(湿度="高" | C2)=4/5=0.800

(2分,公式和计算各1分)

P(风力="弱" | C1)=6/9=0.667

P(风力="弱" | C2)=2/5=0.400

(2分,公式和计算各1分)

使用以上概率,我们得到:

 $P(X \mid C1) = 0.333 \times 0.333 \times 0.333 \times 0.667 = 0.0247$

 $P(X \mid C2) = 0.400 \times 0.200 \times 0.800 \times 0.400 = 0.0256$

(2分,公式和计算各1分)

 $P(X|C1)P(C1)=0.0247\times0.643=0.01588$ $P(X|C2)P(C2)=0.0256\times0.357=0.00914$

或者

P(X|C1)P(C1)/P(X)=49/90=0.5444 P(X|C2)P(C2)/P(X)=196/625=0.3136

(2分,公式和计算各1分)

因此,对于样本 X,朴素贝叶斯分类预测 C1 (2分)