- 1. (15 поена) Нека је низ $\{x_n\}_{n\in\mathbb{N}}$ такав да је $x_1=a>0$ и $x_{n+1}=\sqrt[4]{1+4x_n}-1$ за свако $n\in\mathbb{N}$.
 - (a) Доказати да је $x_n > 0$ за свако $n \in \mathbb{N}$.
 - (б) Доказати да овај низ конвергира и израчунати његову граничну вредност. (в) Доказати да важи $x_{n+1} = x_n \frac{3}{2}x_n^2 + o\left(x_n^2\right)$, кад $n \to \infty$.

 - (г) Израчунати $\lim_{n\to\infty} nx_n$.
- **2.** (15 поена)
 - (a) Одредити константе $a,b,c,d\in\mathbb{R}$ такве да важи $\operatorname{arctg} x=a+bx+cx^2+dx^3+o\left(x^3\right),\ x\to 0.$
 - (б) Доказати да за свако $x \neq 0$ важи $e^{2x^2} > 1 + 2x^2$.
 - (в) Одредити константу $L \in \mathbb{R}$ такву да функција $f(x) = \begin{cases} \frac{x \sin(\arctan x) x^2}{e^{2x^2} 1 2x^2}, & x \neq 0 \\ L, & x = 0 \end{cases}$ буде непрекидна на скупу \mathbb{R} .
- **3.** (20 поена) Дата је функција $f(x) = \ln \left| \frac{x-1}{x} \right| + |x+1|$.
 - (a) Испитати ток и скицирати график функције f.
 - (б) Одредити број решења једначине |f(x)| = 2021.
- 4. (10 поена) Нека су $a,b\in\mathbb{R},\ a< b$ и функције $f,g:[a,b]\to\mathbb{R}$ непрекидне на [a,b] и диференцијабилне на (a,b) за које важи f(a)g(b)=f(b)g(a) и $f(x)g(x)\neq 0$ за свако $x\in [a,b]$. Доказати да постоји $c\in (a,b)$ такво да важи $\frac{f'(c)}{f(c)} = \frac{g'(c)}{g(c)}$.

(Писмени испит укупно вреди 60 поена. Време за рад је 3 сата.)