Project 1

Sirish

2022-10-03

`geom_smooth()` using formula 'y ~ x'

Price Vs Carat


```
result <- lm(price~carat, Data)
Data$yhat<-result$fitted.values
Data$res<-result$residuals
ggplot(Data, aes(x=yhat,y=res))+
   geom_point()+
   geom_hline(yintercept=0, color="red")+</pre>
```


Price Vs Clarity

Price Vs Color

Price Vs Cut

Carat Vs Cut

Price Vs Carat vs Cut

#Carat vs Cut is really low when you get to Astor Ideal. Even though that Astor Ideal is what Astor spe

Carat Vs Color

Carat Vs Clarity

$geom_smooth()$ using formula 'y ~ x'

Price Vs Carat vs Clarity

#What is surprising about this is that The general price trend tends to be higher in FL, however the Ca

Price Vs Carat

Price Vs Carat vs Cut


```
## Warning: Ignoring unknown parameters: method, se
## `geom_smooth()` using formula 'y ~ x'
```

Price Vs Carat vs Clarity

Price Vs Carat vs Color

Price Vs Carat vs Cut vs Clarity

Price Vs Carat vs Cut vs Color

Price Vs Carat vs Cut vs Color vs Clarity

LogPrice Vs LogCarat vs Cut

Price Vs Carat vs Cut vs Color


```
ggplot(Data)+
  aes(x=clarity)+
  geom_bar(fill="blue",color="orange")+
  labs(title = "Distributions of Clarity") +
   theme(
        plot.title = element_text(hjust = 0.5),
        axis.text.x = element_text(angle = 0)
   )
```

Distributions of Clarity


```
ggplot(Data)+
  aes(x=cut)+
  geom_bar(fill="blue",color="orange")+
  labs(title = "Distributions of Cut") +
  theme(
     plot.title = element_text(hjust = 0.5),
     axis.text.x = element_text(angle = 0)
    )
```

Distributions of Cut


```
ggplot(Data)+
  aes(x=color)+
  geom_bar(fill="blue",color="orange")+
  labs(title = "Distributions of Color") +
  theme(
     plot.title = element_text(hjust = 0.5),
     axis.text.x = element_text(angle = 0)
  )
```

Distributions of Color

Histogram and Density plot of LogPrice

