



### GBI Tutorium Nr. 2<sup>5</sup>

Tutorium 7

Dominik Muth - dominik.muth@student.kit.edu | 5. Dezember 2012



### **Outline/Gliederung**



- ① Übungsblatt 6
- Wiederholung
- Graphen
  - gerichtete Graphen
  - ungerichtete Graphen
  - Graphen mit Markierungen
- 4 Fragen



# Überblick



- ① Übungsblatt 6
- Wiederholung
- 3 Graphen
- 4 Fragen



# Übungsblatt 6



### Aufgabe 6.2)

Gegeben seien die beiden Abbildungen  $f: X \to Y$  und  $g: Y \to Z$ . Zeigen Sie:

- f und g sind injektiv  $\Rightarrow$  g  $\circ$  f ist injektiv.
- f ist nicht surjektiv und g ist injektiv  $\Rightarrow$   $g \circ f$  ist nicht surjektiv.

# Überblick



- ① Übungsblatt 6
- Wiederholung
- 3 Graphen
- 4 Fragen





- Ein Huffman -Baum ist eindeutig
- f(x) = 42x ist ein Homomorphismus
- Num<sub>-3</sub> existiert nicht
- Der Nikolaus verschenkt Punkte



- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus
- Num<sub>-3</sub> existiert nicht X
- Der Nikolaus verschenkt Punkte



- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus  $\sqrt{\phantom{a}}$
- Num<sub>3</sub> existiert nicht X
- Der Nikolaus verschenkt Punkte



- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus  $\sqrt{\phantom{a}}$
- Num<sub>3</sub> existiert nicht X
- Der Nikolaus verschenkt Punkte



- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus  $\sqrt{\phantom{a}}$
- Num<sub>-3</sub> existiert nicht X
- Der Nikolaus verschenkt Punkte \( \frac{X}{X} \)



### Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
,  $Num_{-3}(1) = -1$ ,  $Num_{-3}(2) = -2$ .

- ightharpoonup Num $_{-3}(\epsilon) =$
- $Num_{-3}(201) =$
- $Num_{-3}(1222) =$



### Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
,  $Num_{-3}(1) = -1$ ,  $Num_{-3}(2) = -2$ .

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) =$
- $Num_{-3}(1222) =$



### Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
,  $Num_{-3}(1) = -1$ ,  $Num_{-3}(2) = -2$ .

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) = -19$
- $Num_{-3}(1222) =$



### Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
,  $Num_{-3}(1) = -1$ ,  $Num_{-3}(2) = -2$ .

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) = -19$
- $Num_{-3}(1222) = 13$

### Wiederholung



#### Huffman-Codierung

Gegeben seien folgende absolute Häufigkeiten:

Häufigkeit 1 3 5 6 Zeichen c b d a

Decodieren sie folgendes Wort:

1110101110110001011011111100111

Achten sie beim aufstellen des Huffman-Baumes auf folgendes:

- sortieren Sie die Elemente aufsteigend.
- beschriften Sie Kanten nach rechts mit 1.

### Überblick



- ① Übungsblatt 6
- Wiederholung
- Graphen
  - gerichtete Graphen
  - ungerichtete Graphen
  - Graphen mit Markierungen
- 4 Frager





#### Erläuterung

- Was sind Graphen?
  - Knoten verbunden mit Kanten
- Wofür sind sie da?
  - Um Strukturen/Beziehungen darzustellen
  - Zum darstellen von Methoden
  - ...





#### Darstellung

Da ein Graph aus Knoten und Kanten besteht, kann man folgendes schreiben:

$$G = (V, E)$$

Mit V = vertex = Knoten

und E = edges = Kanten

wobei  $E \subseteq V \times V$ 

Wenn  $(x, y) \in E \Rightarrow$  es existiert eine gerichtete Kante von x nach y.



### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?



### **Beispiel**

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?



### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?





### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?





#### Pfade und Erreichbarkeit

Als Pfad definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

#### Zykler

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

#### Schlinger

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.





#### Pfade und Erreichbarkeit

Als Pfad definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

### Zyklen

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

#### Schlinger

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.





#### Pfade und Erreichbarkeit

Als Pfad definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

### Zyklen

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

### Schlingen

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.





### Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn  $(x, y) \in E \Rightarrow$  es existiert eine ungerichtete Kante zwischen x und y.  $\Rightarrow (x, y) = (y, x)$ 

#### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

#### Achtung

Einbahnstraßen"gibt es in ungerichteten Graphen nicht.





### Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn  $(x, y) \in E \Rightarrow$  es existiert eine ungerichtete Kante zwischen x und y.  $\Rightarrow (x, y) = (y, x)$ 

### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

#### Achtung

Einbahnstraßen"gibt es in ungerichteten Graphen nicht.





### Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn  $(x, y) \in E \Rightarrow$  es existiert eine ungerichtete Kante zwischen x und y.  $\Rightarrow (x, y) = (y, x)$ 

### Beispiel

$$V = \{0, 1, 2, 3\}$$
 und  $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$ 

### **Achtung**

Ëinbahnstraßen"gibt es in ungerichteten Graphen nicht.



# Allgemeine Eigenschaften



### Teilgraphen

Ein Teilgraph G' von einem Graphen G hat folgende Eigenschaften:

 $V' \subseteq V \text{ und } E' \subseteq E'$ 

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

Außerdem muss für jede Kante aus E' gelten, dass deren zwei Knoten im Teilgraph enthalten sind.

### Beispiel

siehe Tafel



# Allgemeine Eigenschaften



#### Isomorphie

Graphen sind Isomorph, falls sie bis auf die Benennung der Knoten gleich sind.

Einen Isomorphismus kann man als Tabelle darstellen, Beispiel folgt

### Beispiel

Geben Sie den Isomorphismus zwischen:

$$G_1 = (\{1,2,3,4\},\{(1,2),(2,3),(3,4)\})$$
 und

$$G_1 = (\{a,b,c,d\},\{(a,c),(c,b),(b,d)\})$$



# **Aufgabe**



Für welche der folgenden sechs Graphen gibt es einen Isomorphismus zu einem der anderen fünf Graphen? Geben Sie jeweils den zugehörigen Isomorphismus an.



### Bäume



#### Definition

Bäume sind Spezielle Graphen mit besonderen Eigenschaften:

- G ist zusammenhängend
- |E| = |V| 1
- G ist zyklenfrei
- G ist Schlingenfrei

# **Aufgabe**



Beweisen Sie: Ein ungerichteter Graph G = (V, E) ist ein Baum  $\Leftrightarrow (|V| = |E| + 1 \text{ und } G \text{ hat keine Zyklen}).$ 



### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum
- ...

#### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)





#### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- ...

#### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)



#### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- ...

#### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)





#### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- **...**

### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

...





### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- ...

### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

...





#### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- ...

### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

...





#### kantenmarkierte Graphen

#### Wozu?

- Codierung (siehe Huffman Baum)
- ...

### Graphen mit gewichteten Kanten

Kanten werden mit Werden versetzt.

#### Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

...



### **Aufgaben**



### ÜB7 (WS08/09)

Gegeben sei der Graph G = (V, E) mit  $V = \{0, 1\}^3$  und  $E = \{(xw, wy) \mid x, < \in \{0, 1\} \land w \in \{0, 1\}^2\}.$ 

- Zeichen Sie den Graphen
- Geben Sie einen Zyklus in G an, der außer dem Anfangs- und Endknoten jeden Knoten von G genau einmal enthält.
- Geben Sie einen geschlossenen Pfad in G an, der jede Kante von G genau einmal enthält.

# Überblick



- ① Übungsblatt 6
- Wiederholung
- Graphen
- 4 Fragen

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

Wiederholung

### Fragen



- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?
- Feedback?

### **EOF**





source: http://imas.xkcd.com/comics/academia\_vs\_business.png