Введение в теорию меры

А. Плахин, Н. Аверьянов

Клуб теории вероятностей ФЭН ВШЭ

30 августа 2021 г.

Мотивация

- Современная теория вероятностей полностью основывается на теории меры;
- Для того, чтобы темы связанные со стохастикой излагались достаточно строго, мы должны их рассказывать, используя ряд понятий из теории меры;
- Сегодняшний доклад ставит своей целью ввести слушателей в курс дела относительно базовых понятий из теории меры, которые будут релевантны для дальнейшего изучения вероятностных дисциплин;

Алгебры

Сигма-алгебры, с которыми мы работаем в теории вероятностей в качестве множества возможных событий, являются частным случаем более общей структуры: алгебры.

Определение (Алгебра)

Алгеброй ${\mathcal A}$ называется любая система подмножеств множества X, удовлетворяющая следующим условиям:

- \emptyset , $X \in \mathcal{A}$;

Определение (σ -алгебра)

Алгебра ${\mathcal A}$ называется σ -алгеброй, если она замкнута относительно операции счетного объединения.

σ -алгебры

Определение (σ -алгебра, альтернативное)

 σ -алгеброй Σ называется любая система подмножеств X, удовлетворяющая условиям:

- \bullet $X \in \Sigma$;
- $oldsymbol{2}$ Если $A \in \Sigma$, то $A^c \in \Sigma$;
- $oldsymbol{\circ}$ Σ замкнута относительно счетного объединения.

Множества, принадлежащие Σ , называются измеримыми множествами, а пространство (X,Σ) называется измеримым пространством.

Отметим, что σ -алгебры замкнуты и относительно счетных пересечений.

Пересечение σ -алгебр

Важным для дальнейших рассуждений является следующий факт:

Утверждение

Пусть дано некоторое семейство σ -алгебр на множестве X $\{\Sigma_{\alpha}\}$, тогда $\bigcap_{\alpha} \Sigma_{\alpha}$ также будет являться σ -алгеброй. (доказательство на доске)

Вопрос: будет ли любое объединение σ -алгебр также являться σ -алгеброй?

Определение

Пусть Y – некоторый набор подмножеств X. Обозначим за $\mathcal F$ семейство всех сигма-алгебр, содержащих внутри себя Y. Тогда

$$\Sigma(Y) = \bigcap_{\mathcal{F}} \Sigma$$

будет минимальной σ -алгеброй, содержащей Y (ее еще называют σ -алгеброй, порождаемой Y).

Борелевская σ -алгебра

Для дальнейших рассуждений мы по техническим причинам будем оперировать с особым видом σ -алгебр.

Определение (Борелевская σ -алгебра)

Обозначим за $\mathcal C$ множество всех открытых подмножеств $\mathbb R$. Тогда $\Sigma(\mathcal C)\equiv\mathcal B(\mathbb R)$ будем называть борелевской σ -алгеброй. Множества, включенные в борелевскую σ -алгебру, будут называться борелевскими. $\mathcal B(\mathbb R^n)$ определяется аналогичным образом.

Отметим, что σ -алгебра, порожденная множеством всех закрытых подмножеств \mathbb{R} , также будет борелевской (более того, σ -алгебра, порожденная любой из совокупностей подмножеств в пунктах 1-9 следующего слайда будет борелевской).

Борелевская σ -алгебра

Следующие типы подмножеств включены в $\mathcal{B}(\mathbb{R})$:

- $(-\infty,a), \forall a \in \mathbb{R}$
- $(a,\infty), \forall a \in \mathbb{R}$
- **③** [a, b], ∀a < b;
- $[0, (-\infty, a], \forall a \in \mathbb{R}]$
- $[a,\infty), \forall a \in \mathbb{R}$
- **②** [a, b), ∀a < b;
- **3** $(a, b], \forall a < b;$
- $oldsymbol{0}$ Все закрытые подмножества ${\mathbb R}$

Почему именно борелевская σ -алгебра?

Вероятно, у многих возникает разумный вопрос: зачем нам понадобилось конструировать такую сложную структуру как сигма-алгебра (еще и борелевская)? Интуитивно, кажется возможным просто использование булеана $2^{\mathbb{R}}$, но оказывается, что с точки зрения теории вероятностей существуют некоторые проблемы.

- Мы действительно можем использовать булеан в случае, когда мощность нашего sample set не более, чем счетно (такой булеан будет являться σ -алгеброй).
- Проблемы возникают с булеаном на множестве мощности континуум.
- Если мы используем в качестве вероятностной меры, например, отношение объемов, то мы не сможем аккуратно определить вероятность для некоторых множеств из-за их неизмеримости (см. парадокс Банаха-Тарского).

Измеримые функции

Определение

Пусть (X, Σ_X) и (Y, Σ_Y) – измеримые пространства, а $f: X \to Y$ некоторая функция. Функция f называется измеримой, если $\forall B \in \Sigma_Y$ выполняется $f^{-1}(B) \in \Sigma_X$.

Замечание: вообще говоря, можно дать такое определение не только для измеримых пространств, а для множеств, на которых задана некоторая алгебра множеств.

Если в роли обоих пространств в определении выступают $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, то функция f называется борелевской.

Борелевские функции

Выпишем ряд полезных свойств борелевских функций:

- Если f борелевская, а g непрерывная, то $g \circ f$ борелевская;
- ullet Теперь пусть f и g борелевские. Тогда $af+bg+c, (a,b,c)\in \mathbb{R}^3$ борелевская;
- $|f|^{\alpha}, \alpha \ge 0$ борелевская;
- Если f не обращается в 0, то 1/f борелевская.
- fg борелевская;
- ullet max $\{f,g\}$, min $\{f,g\}$ борелевские

Мера

Определение (Мера)

Мерой на измеримом пространстве (X,Σ) называется такое отображение $\mu:\Sigma\to [0,\infty)$, что если $A_1,A_2,...$ любая последовательность попарно непересекающихся элементов Σ , то:

$$\mu(\cup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mu(A_n)$$

(это условие еще можно назвать счетная аддитивность или σ -аддитивность)

Определение (Пространство с мерой)

Пространством с мерой называется тройка (X, Σ, μ) , где μ это мера на σ -алгебре Σ из подмножеств X

Мера

Замечание: если $\mu(X)=1$, то μ называется вероятностной мерой и (X,Σ,μ) называется вероятностным пространством. X в данном случае будет пространством элементарных событий и элементы Σ называются событиями

Утверждение

Пусть μ мера на Σ . Тогда верно следующее:

- $\bullet \ \mu(\emptyset) = 0$
- $m{2}$ Если $A_1,...,A_N\in \Sigma$ и $A_i\cap A_j=\emptyset$ для i
 eq j, тогда: $\mu(A_1\cup A_2\cup...\cup A_n)=\mu(A_1)+\mu(A_2)+...+\mu(A_n)$
- ullet Если $A,B\in\Sigma$ и $A\subseteq B$, то $\mu(A)\leq\mu(B)$
- ullet Если $A_1\subseteq A_2\subseteq ...$ и A_n , n=1,2,..., тогда мы имеем $\mu(A_n)\uparrow \mu(\cup_m A_m)$ при $n\to\infty$
- ullet Если $A_1\supseteq A_2\supseteq ...$ и $A_n,\ n=1,2,...$, тогда мы имеем $\mu(A_n)\downarrow \mu(\cap_m A_m)$ при $n\to \infty$

Мера

Утверждение

Пусть $\mu: \Sigma \to [0,\infty)$ и $\mu(A \cup B) = \mu(A) + \mu(B)$, когда $A,B \in \Sigma$ и $A \cap B = \emptyset$ (это значит, что μ конечно-аддитивная мера). Тогда μ σ -аддитивная мера тогда и только тогда, когда $\mu(E_n) \downarrow 0$ для любой последовтельности (E_n) из Σ при условии, что $E_1 \supseteq E_2 \supseteq \dots$ и $\cap_n E_n = \emptyset$

Пример

Пусть X это счетное множество (скажем $X=\{x_1,x_2,...\}$ с σ -алгеброй Σ , содержащей все подмножества X). Пусть (p_n) любая последовательность неотрицательных действительных чисел с конечной суммой $\sum_n p_n$. Если мы определим $\mu(A)$ для любого множества $A \in \Sigma$, как $\mu(A) = \sum_{n \in I} p_n$ (где $I=i: x_i \in A$), тогда μ это мера на (X,Σ)

Продолжение меры

Пример (мотивирующий)

Предположим, что у нас есть пространство с мерой (X, Σ, μ) и множество $A \in \Sigma$ такое, что $\mu(A) = 0$. Пусть $C \subset A$. Тогда из $\mu(A) = 0$ следует $\mu(C) = 0$. Однако, это работает только в случае, когда $C \in \Sigma$. В ином случае $\mu(C)$ неопределено. Можно либо принять эту странную на интуитивном уровне ситуацию, либо попытаться как-то эту штуку довести до определенности. Мы приходим таким образом к процедуре продолжение меры.

Продолжение меры

Давайте за Σ' обозначать набор подмножеств X, которые удовлетворяют следующему условию: $E \in \Sigma'$ тогда и только тогда, когда если существуют такие множества $A, B \in \Sigma$, что $A \subseteq E \subseteq B$ и $\mu(B \backslash A) = 0$ (это равносильно условию $\mu(A) = \mu(B)$). Из этого следует, что $\Sigma \subseteq \Sigma'$.

Утверждение

 Σ' is σ -алгебра

Теперь нужно подумать, как мы можем сконструировать меру μ' на Σ' . Достаточно интуитивно будет доопределить μ' следующим образом: $\mu'(E) = \mu(A) = \mu(B)$. Оказывается, что значение $\mu'(E)$ не зависит от выбора A и B.

Продолжение меры

Утверждение

 μ' является продолжением μ на Σ до меры на Σ' , то есть μ' мера на Σ' и $\mu'(A)=\mu(A)$ для всех $A\in\Sigma$

Определение

Пространство с мерой (X, Σ', μ') называется продолжением пространства (X, Σ, μ)

Определение

Пространство с мерой (X,Σ,μ) называется полным (complete) если из $E\subseteq A$ (где $A\in \Sigma$) и $\mu(A)=0$ следует, что $E\in \Sigma$

Литература

- Measure, Integration & Probability, Ivan F Wilde;
- Measure and Integration MIT course;
- Лекции по теории вероятностей МФ ВШЭ;
- Незаконченный учебник по стохастическому анализу Б. Б. Демешева :)