Homework 1

Park Jae Un 2019-12551

4190.408 001, Artificial Intelligence September 15, 2025

1 Linear algebra

1. (Matrix norm) Show that for matrix $A \in \mathbb{R}^{n \times n}$ and its maximum singular value σ_{max} , the following holds:

$$||A||_2 = \sigma_{\max}.$$

spectral norm

$$||A||_2 = \sup_{||x||=1} ||Ax||_2$$

으로 정의된다. $A = U\Sigma V^T$ (SVD)라 두고 $y = V^T x$ 라 하면

$$||Ax||_2 = ||\Sigma y||_2, \quad ||\Sigma y||_2^2 = \sum_i \sigma_i^2 y_i^2.$$

y의 길이가 1일 때 이 값의 최대는 가장 큰 singular value σ_{\max} 에서 달 성된다. 따라서

$$||A||_2 = \sigma_{\max}.$$

2. (Ax = 0) For some $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, solve

$$\arg\min_{\|x\|=1} \|Ax\|_2^2$$

using SVD.

 $A = U\Sigma V^T$, x = Vy, ||y|| = 1이라 하면

$$||Ax||_2^2 = \sum_i \sigma_i^2 y_i^2.$$

최소값은 σ_{\min} 에 대응하는 singular vector 방향에서 얻어진다. 만약 $\sigma_{\min}=0$ 이면 해는 $\ker(A)$ 에 속하는 단위 벡터들이다.

3. (Ax = b) Derive the pseudo-inverse of $A = U\Sigma V^T$.

A의 pseudo-inverse는

$$A^+ = V\Sigma^+ U^T,$$

여기서

$$\Sigma^{+} = \operatorname{diag}(\sigma_{1}^{-1}, \dots, \sigma_{r}^{-1}, 0, \dots, 0)^{T}.$$

이를 사용하면 minimum least-squares 해이자 minimal norm 해는

$$x^* = A^+ b.$$

2 Probability

1. (Bayes' theorem) A factory has M_1, M_2, M_3 with priors 0.2, 0.3, 0.5, and failure rates 0.03, 0.02, 0.01. Find $P(M_i|F)$ when a failed product is observed.

전체 불량 확률은

$$P(F) = 0.2 \cdot 0.03 + 0.3 \cdot 0.02 + 0.5 \cdot 0.01 = 0.017.$$

Bayes' theorem에 의해

$$P(M_1|F) = 6/17$$
, $P(M_2|F) = 6/17$, $P(M_3|F) = 5/17$.

2. (Gaussian distributions) If $X,Y \sim N(0,1)$ independent, show Z = X + Y is Gaussian.

X, Y가 independent N(0,1)이라면

$$M_X(t) = e^{t^2/2}, \quad M_Y(t) = e^{t^2/2}.$$

따라서

$$M_Z(t) = M_X(t)M_Y(t) = e^{t^2}.$$

이는 N(0,2)의 MGF와 같으므로

$$Z \sim N(0,2)$$
.

3. (KL Divergence) Show that for $p, q \in \mathbb{R}^n$, $D_{KL}(p||q) \geq 0$.

정의:

$$D_{KL}(p||q) = \sum_{i} p_i \log \frac{p_i}{q_i}.$$

- log가 convex function이므로 Jensen's inequality를 적용하면

$$D_{KL}(p||q) \ge 0.$$

등호는 p = q일 때만 성립한다.

3 Optimization

1. (Directional derivative and steepest descent) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. (a) Show $D_v f(x) = \nabla f(x)^T v$. (b) Among all unit vectors u with $||u||_2 = 1$, show that the steepest descent direction at x is $-\nabla f(x)/||\nabla f(x)||_2$.

(a)
$$g(t) = f(x + tv)$$
라 하면

$$D_v f(x) = g'(0) = \nabla f(x)^T v.$$

(b)
$$||u|| = 1일$$
 때

$$\nabla f(x)^T u \ge -\|\nabla f(x)\|_2.$$

최솟값은

$$u^* = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}.$$

2. (Convex minimizer) Show that any local minimizer of a convex function is also global.

$$f(y) < f(x^*)$$
라 가정하면

$$f(tx^* + (1-t)y) \le tf(x^*) + (1-t)f(y) < f(x^*).$$

이는 모순이므로 x^* 는 global minimizer이다.