Benjamin S. Kirk

ben jamin.kirk@nasa.gov

NASA Lyndon B. Johnson Space Center

November 9, 2006

- 1 Introduction
- Governing Equations

Background

- Godunov's Theorem
- 2 SUPG Galerkin Finite Element Methods Weak Formulation
- Shock Capturing
- Inviscid Flux Discretization
- Time Discretization
- Implicit Solution Strategies
- 3 Applications
- Type IV Shock Interaction
 - Forward-Facing Cavity
- AEDC Sharp Double Cone
- 4 Bibliography

Background Outline

The physical phenomenon of interest is high-speed gas dynamics

Physics

- equations describe fluid flow for all The compressible Navier-Stokes Mach numbers
- almost always such that the flows interest the Reynolds number is For aerospace applications of are convection dominated
- Transonic & greater Mach number flows usually exhibit shockwaves, nearly-discontinuous changes in flowfield properties which allow for

Numerics

- Discretization of the conservation convergence to physically valid law form of the Navier-Stokes equations is required for solutions
- Convective terms must be treated with some form of upwinding
- of limiting or shock capturing, both Shocks are treated with some form of which amount to artificial diffusion

Aerodynamics

result predominantly from the surface pressure distribution but also ... is concerned predicting aerodynamic forces on a vehicle which from viscous shear stress.

Background Outline

Aerothermodynamics

... is concerned with predicting the instantaneous heat transfer and integrated heat load into a vehicle.

The conservation of mass, momentum, and energy for a compressible fluid may be written as

$$0 \equiv (mo) \cdot \mathbf{\Delta} + \frac{\partial}{\partial t}$$

$$rac{\partial
ho}{\partial t} + oldsymbol{
abla} \cdot (
ho oldsymbol{u}) = 0$$

$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u u) = -\nabla P + \nabla \cdot \tau \tag{2}$$

$$\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E u) = -\nabla \cdot q - P \nabla \cdot u + \nabla \cdot (\tau u)$$
 (3)

where ρ is the density, **u** is the velocity, E is the total energy per unit mass, and P is the pressure.

The viscous stress tensor τ and the heat flux vector \boldsymbol{q} are defined as

$$\tau = \mu \left(\nabla u + \nabla^T u \right) + \lambda \left(\nabla \cdot u \right) I \tag{4}$$

$$\mathbf{q} = -k\nabla T \tag{5}$$

where μ is the dynamic viscosity, λ is the second coefficient of viscosity, k is the thermal conductivity, and T is the fluid temperature. The two coefficients of viscosity are related to the bulk viscosity κ by

$$\kappa = \frac{2}{3}\mu + \lambda \tag{6}$$

In general, the bulk viscosity is negligible except in detailed studies of shock acoustic waves [1]. Under this assumption, $\kappa = 0$ in Equation (6) and λ is wave structure or for investigations of the adsorption and attenuation of defined as

$$\lambda = -\frac{2}{3}\mu\tag{7}$$

Equation (4) with (7) is known as Stokes' hypothesis for a Newtonian fluid [2].

Governing Equations

In the literature equations (1)–(3) are often treated as the system

$$\frac{\partial U}{\partial t} + \frac{\partial F_i}{\partial x_i} = \frac{\partial G_i}{\partial x_i} \tag{8}$$

which can be written in terms of the unknowns $\pmb{U} = [\rho, \rho u, \rho v, \rho w, \rho E]^T$ as

$$\frac{\partial U}{\partial t} + A_i \frac{\partial U}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\mathbf{K}_{ij} \frac{\partial U}{\partial x_j} \right) \tag{9}$$

where $A_i = \frac{\partial F}{\partial U}$ is the inviscid flux Jacobian, and the viscous flux vector G_i may be written as

$$\frac{\partial G_i}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\mathbf{K}_{ij} \frac{\partial U}{\partial x_j} \right) \tag{10}$$

jilji

- is convenient for high-speed compressible flows ($M \gtrsim 0.3$) as it • The choice of the *conserved variables* $U = [\rho, \rho u, \rho v, \rho w, \rho E]^T$ allows for explicit algorithms for (9).
- Other choices are possible which have applicability to a larger range of flow problems [3]
- Equation (9) may be transformed for any set of variables V via $U=A_0V$ where $A_0\equivrac{\partial U}{\partial V}.$
- Ease of applying boundary conditions varies widely with variable choice

Godunov's theorem [4] is particularly relevant for numerical methods applied to high-speed gas dynamics:

Any linear monotone scheme cannot be better than first-order accurate.

For the model linear convection-diffusion problem

$$-\varepsilon\Delta u + \mathbf{v}\cdot\nabla u = f$$

with ν specified independently of u this implies two important results

- Linear second-order (or higher) accurate schemes cannot be monotone
- Even for linear problems, a monotone second-order (or higher) scheme is necessarily nonlinear

which have important implications going forth on the interplay between upwinding, shock capturing, and solution limiting.

SUPG FEM

The Streamline-Upwind Petrov-Galerkin Finite Element Method

Standard Galerkin procedure & SUPG-upwinding applied to (9) to produce the stabilized weak form: find U such that

$$\int_{\Omega} \left[\boldsymbol{W} \cdot \left(\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A}_i \frac{\partial \boldsymbol{U}}{\partial x_i} \right) + \frac{\partial \boldsymbol{W}}{\partial x_i} \cdot \left(\boldsymbol{K}_{ij} \frac{\partial \boldsymbol{U}}{\partial x_j} \right) \right] d\Omega$$

$$+ \sum_{e=1}^{n_e} \int_{\Omega_e} \boldsymbol{\tau}_{SUPG} \frac{\partial \boldsymbol{W}}{\partial x_k} \cdot \boldsymbol{A}_k \left[\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A}_i \frac{\partial \boldsymbol{U}}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\boldsymbol{K}_{ij} \frac{\partial \boldsymbol{U}}{\partial x_j} \right) \right] d\Omega$$

for all W in an appropriate function space

Upwinding is required to stabilize convection-dominated flows. For compressible flows τ_{SUPG} is generally diagonal [3].

$$\int_{\Omega} \left[\mathbf{W} \cdot \left(\frac{\partial \mathbf{U}}{\partial t} + A_i \frac{\partial \mathbf{U}}{\partial x_i} \right) + \frac{\partial \mathbf{W}}{\partial x_i} \cdot \left(\mathbf{K}_{ij} \frac{\partial \mathbf{U}}{\partial x_j} \right) \right] d\Omega$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \boldsymbol{\tau}_{SUPG} \frac{\partial \mathbf{W}}{\partial x_k} \cdot A_k \left[\frac{\partial \mathbf{U}}{\partial t} + A_i \frac{\partial \mathbf{U}}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{U}}{\partial x_j} \right) \right] d\Omega$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \delta \left(\frac{\partial \mathbf{W}}{\partial x_i} \cdot \frac{\partial \mathbf{U}}{\partial x_i} \right) d\Omega = \int_{\Gamma} \mathbf{W} \cdot \mathbf{g} d\Gamma$$

for all W in an appropriate function space

and a discretization of (12) is only first-order in regions of appreciable δ . A definition of δ may be found in [5, 6]. Note that consistency is lost with (9)

Expand U(x,t) and $F_i(x,t)$ in terms of the nodal finite element basis functions:

$$U_h(\mathbf{x},t) = \sum_{j} \phi_j(\mathbf{x}) U_h(\mathbf{x}_j,t)$$
(13)

$$F_i(\mathbf{x},t) = \sum_i \phi_j(\mathbf{x}) F_i(\mathbf{x}_j,t)$$
 (14)

where $U(\mathbf{x}_i,t)$ and $F_i(\mathbf{x}_i,t) = A_i\left(U\left(\mathbf{x}_i,t\right)\right)U(\mathbf{x}_i,t)$ are the nodal solution values and nodal Lagrange basis is chosen for $\{\phi\}$, which yields a nominally second-order accurate scheme. inviscid flux components at time t, respectively. In this work a standard piecewise linear

$$F_{i}(x) = \sum_{j} \phi_{j}(x)F_{i}(x_{j})$$

$$= \sum_{j} \phi_{j}(x)A_{i} \left(U\left(x_{j}\right)\right)U\left(x_{j}\right) \tag{15}$$

$$F_i(x) = A_i\left(U\left(x
ight)
ight)U(x$$

Inviscid Flux Discretization

 $U_h(x,t) = \sum \phi_j(x) U_h(x_j,t)$

$$F_i(\mathbf{x},t) = \sum \phi_j(\mathbf{x}) F_i(\mathbf{x}_j,t)$$
(14)

This approach is in contrast to previous SUPG discretizations for compressible flows. [5, 6, 3, 7] where $U(\mathbf{x}_i,t)$ and $F_i(\mathbf{x}_i,t) = A_i\left(U\left(\mathbf{x}_i,t\right)\right)U(\mathbf{x}_i,t)$ are the nodal solution values and nodal Lagrange basis is chosen for $\{\phi\}$, which yields a nominally second-order accurate scheme. inviscid flux components at time t, respectively. In this work a standard piecewise linear

$$F_{i}(\mathbf{x}) = \sum_{j} \phi_{j}(\mathbf{x}) F_{i}(\mathbf{x}_{j})$$

$$= \sum_{j} \phi_{j}(\mathbf{x}) A_{i} \left(U\left(\mathbf{x}_{j}\right) \right) U\left(\mathbf{x}_{j}\right)$$
(15)

$$F_i(x) = A_i(U(x))U(x)$$

Inviscid Flux Discretization

Introduction

Expand U(x,t) and $F_i(x,t)$ in terms of the nodal finite element basis functions:

$$U_h(x,t) = \sum_{j} \phi_j(x) U_h(x_j,t)$$
 (13)

$$F_i(\mathbf{x},t) = \sum_j \phi_j(\mathbf{x}) F_i(\mathbf{x}_j,t)$$
(14)

This approach is in contrast to previous SUPG discretizations for compressible flows. [5, 6, 3, 7] where $U(\mathbf{x}_i,t)$ and $F_i(\mathbf{x}_i,t) = A_i\left(U\left(\mathbf{x}_i,t\right)\right)U(\mathbf{x}_i,t)$ are the nodal solution values and nodal Lagrange basis is chosen for $\{\phi\}$, which yields a nominally second-order accurate scheme. inviscid flux components at time t, respectively. In this work a standard piecewise linear

$$F_i(\mathbf{x}) = \sum_j \phi_j(\mathbf{x}) F_i(\mathbf{x}_j)$$

$$= \sum_j \phi_j(\mathbf{x}) A_i \left(U(\mathbf{x}_j) \right) U(\mathbf{x}_j)$$
(15)

contrasts to the typical approach in which

$$F_i(x) = A_i\left(U\left(x
ight)
ight)U(x)$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) = 0$$
$$\frac{\partial \rho u}{\partial t} + \frac{\partial}{\partial x} (\rho u^2 + P) = 0$$
$$\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x} (\rho u H) = 0$$

and, at steady state, reduce to

$$\frac{\partial}{\partial x} (\rho u) = \frac{\partial}{\partial x} (\rho u^2 + P) = \frac{\partial}{\partial x} (\rho u H) \equiv 0 \tag{17}$$

which implies that ρu , $\rho u^2 + P$, and $\rho u H$ are all constant.

A Illi

illil T

Outline

$$I_n = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_n - t_{n+1}) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(t_n - t_{n+1})^2}{2}$$

$$U_{n-1} = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_{n-1} - t_{n+1}) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(t_{n-1} - t_{n+1})^2}{2}$$

$$n = U_{n+1} - \frac{\partial U_{n+1}}{\partial t} \Delta t_{n+1} + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{\Delta^2 n + 1}{2} - \mathcal{O}\left(\Delta t_{n+1}^3\right)$$

$$U_{n-1} = U_{n+1} - \frac{\partial U_{n+1}}{\partial t} \left(\Delta t_{n+1} + \Delta t_n \right) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{\left(\Delta t_{n+1} + \Delta t_n \right)^2}{2}$$

Outline

$$U_{n} = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_{n} - t_{n+1}) + \frac{\partial^{2} U_{n+1}}{\partial t^{2}} \frac{(t_{n} - t_{n+1})^{2}}{2} + \mathcal{O}\left((t_{n} - t_{n+1})^{3}\right)$$

$$U_{n-1} = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_{n-1} - t_{n+1}) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(t_{n-1} - t_{n+1})^2}{2} + \mathcal{O}\left((t_{n-1} - t_{n+1})^3\right)$$

$$U_n = U_{n+1} - \frac{OO_{n+1}}{\partial t} \Delta t_{n+1} + \frac{OO_{n+1}}{\partial t^2} \frac{\Delta t_{n+1}}{2} - O\left(\Delta t_{n+1}^3\right)$$

$$U_{n-1} = U_{n+1} - \frac{\partial U_{n+1}}{\partial t} \left(\Delta t_{n+1} + \Delta t_n \right) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{\left(\Delta t_{n+1} + \Delta t_n \right)^2}{2}$$

Outline

difference scheme. Both first and second-order accurate in time schemes may be derived from The semidiscrete weak form in equation (12) is discretized in time using a backwards finite Taylor series expansions in time about U_{n+1} :

$$U_n = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_n - t_{n+1}) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(t_n - t_{n+1})^2}{2} + \mathcal{O}\left((t_n - t_{n+1})^3\right)$$

$$U_{n-1} = U_{n+1} + \frac{\partial U_{n+1}}{\partial t} (t_{n-1} - t_{n+1}) + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(t_{n-1} - t_{n+1})^2}{2} + \mathcal{O}\left((t_{n-1} - t_{n+1})^3 \right)$$

which, upon substituting $t_{n+1} - t_n \equiv \Delta t_{n+1}$ and $t_{n+1} - t_{n-1} = \Delta t_{n+1} + \Delta t_n$, becomes

$$U_n = U_{n+1} - \frac{\partial U_{n+1}}{\partial t} \Delta t_{n+1} + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{\Delta t_{n+1}^2}{2} - \mathcal{O}\left(\Delta t_{n+1}^3\right)$$

$$U_{n-1} = U_{n+1} - rac{\partial U_{n+1}}{\partial t} \left(\Delta t_{n+1} + \Delta t_n
ight) + rac{\partial^2 U_{n+1}}{\partial t^2} rac{\left(\Delta t_{n+1} + \Delta t_n
ight)^2}{2} - \mathcal{O} \left(\left(\Delta t_{n+1} + \Delta t_n
ight)^3
ight)$$

Time Discretization

Which can be rewritten for $\frac{\partial U_{n+1}}{\partial t}$ as:

$$\frac{\partial U_{n+1}}{\partial t} = \frac{U_{n+1}}{\Delta t_{n+1}} - \frac{U_n}{\Delta t_{n+1}} + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{\Delta t_{n+1}}{2} - \mathcal{O}\left(\Delta t_{n+1}^2\right) \tag{18}$$

$$\frac{\partial U_{n+1}}{\partial t} = \frac{U_{n+1}}{\Delta t_{n+1} + \Delta t_n} - \frac{U_{n-1}}{\Delta t_{n+1} + \Delta t_n} + \frac{\partial^2 U_{n+1}}{\partial t^2} \frac{(\Delta t_{n+1} + \Delta t_n)}{2} \\ - \mathcal{O}\left((\Delta t_{n+1} + \Delta t_n)^2\right)$$

(19)

The familiar backwards Euler time discretization follows directly from (18) by recognizing

$$\frac{\partial U_{n+1}}{\partial t} = \frac{U_{n+1} - U_n}{\Delta t_{n+1}} + \mathcal{O}\left(\Delta t_{n+1}\right) \tag{20}$$

which provides a first-order in time approximation upon neglecting the $\mathcal{O}(\Delta t_{n+1})$ term.

A linear combination of $\left(1 + \frac{\Delta t_{n+1}}{\Delta t_n}\right) \times (18)$ and $-\frac{\Delta t_{n+1}}{\Delta t_n} \times (19)$ can be used to annihilate the

leading $\frac{\partial^2 U_{n+1}}{\partial l^2}$ term to create a backwards, second-order accurate approximation to $\frac{\partial U_{n+1}}{\partial l}$ This approximation, along with (20), can be generalized in the form

$$\frac{\partial U_{n+1}}{\partial t} = \alpha_t U_{n+1} + \beta_t U_n + \gamma_t U_{n-1} + \mathcal{O}\left(\Delta_{n+1}^p\right) \tag{21}$$

to yield either a first or second-order accurate scheme. The weights α_t , β_t , and γ_t are given below for p = 1 and p = 2.

- Time-marching to steady-state is almost always used for high-speed flows
- Implicit techniques required for viscous problems with tight wall spacing
- resulting nonlinear problem is usually solved only approximately (usually 1 Newton step) For steady problems, at each time step the
- DOF coupling defined via standard finite element basis function overlap
- Matrix-free GMRES with block-diagonal preconditioning used in earlier work [6]
- I have used matrix & matrix-free GMRES with full ILU-0 preconditioning linearization is important •

Type IV Shock Interaction

de Recherches Aérospatiales (ONERA) to investigate shock-shock interactions produced by an An experimental test program was conducted in 1998 by France's Office National d'Etudes et oblique shock impinging on the bow shock of a cylinder [8]. This configuration is examined here to assess the quality of surface heat transfer predictions.

phy

Type IV Shock Interaction

Nondimensional Static Temperature (T/T,,)

jii)

•

Type IV Shock Interaction

9 6 θ (degrees)

-30

Normalized Heat Transfer (q/q_{c,s})

o oºo

Normalized Surface Pressure (P/P $_{\rm c,s})$

jii)

illi)

2 6

Computed Heat Transfer Ratio Measured Heat Transfer Ratio Measured Pressure Ratio Computed Pressure Ratio

Forward-Facing Cavity

response in both experimental investigations and numerical simulations. [9, 10] The flowfield configuration, shown schematically below, has been observed to exhibit transient flowfield Hypersonic flow over a missile nose tip with a forward facing cavity is considered. This

tunnel verify the computational results, indicating freestream noise is the mechanism for driving threshold L/D of approximately 1.25 for transient response. Subsequent studies in a quiet wind shallow cavities, suggesting a threshold L/D of 0.4. Numerical simulations predict a higher Experimental studies in conventional tunnels report oscillatory response even for relatively response characteristics are largely driven by the cavity length-to-diameter ratio (L/D). unsteady response in shallow cavities. [11]

Applications

The Figure below shows the cavity base pressure vs. time for the series of simulations which were conducted to assess time convergence.

AEDC Sharp Double Cone

Background

- A sharp 25°-55° double cone was tested in N2 at CUBRC
- properly modeled for CFD to match vibrational nonequilibrium must be It was discovered that freestream experiment [12]
- Tunnel No. 9 also uses N2 as its test The AEDC Hypervelocity Wind
- A series of tests were conducted at vibrational nonequilibrium in the AEDC using the same model to investigate the presence of freestream [13]

AEDC Sharp Double Cone

Observations

- Four Reynolds numbers were tested in the nominally Mach 14
- No appreciable vibrational nonequilibrium effects observed
- Highly unsteady flow observed for all Reynolds numbers tested
- For a uniform freestream, CFD predicts steady flow for the two lowest Reynolds numbers

R	Run	2890	2891	2893	2894	
	M_{∞}	13.6	13.17	12.73	12.63	
Ä	ReD	1.12×10^6	4.11×10^5	8.44×10^4	5.86×10^4	
ď	8	7.8077×10^{-3}	2.9604×10^{-3}	5.8967×10^{-4}	3.9783×10^{-4}	kg/m^3
		2006.6	1949.8	1763.5	1682.6	m/sec
[-	503	707	16.1	7 07	74

Steady states, runs 2893 and 2894

AEDC Sharp Double Cone

Computed schlieren, run 2890

AEDC Sharp Double Cone

- For a uniform inflow, CFD converges to a steady-state for the two lowest Reynolds numbers tested
- This is in contrast to the experimental results
- My conjecture is that freestream noise drives the unsteady behavior at these low Reynolds number
- Current analysis is focused on testing this theory

jilji

AEDC Sharp Double Cone

Noise Characterization [14]

Noise Characterization [14]

AEDC Sharp Double Cone

Variation of Pitot Pressure Fluctuation With Varying Reynolds Number y = -0.0051Ln(x) + 0.1102 M10 y = -0.0032Ln(x) + 0.0709 y = -0.0086Ln(x) + 0.1628

$M_{\infty} = 12.63$ $Re_{D} = 58,600$ 6.4% RMS, 25 kHz Noise

- J. C. Tannehill, D. A. Anderson, and R. H. Pletcher.
- Faylor & Francis, Washington, D.C., 2nd edition, 1997.
- Ronald L. Panton.
- Incompressible Flow.
- John Wiley & Sons, 2nd edition, 1996.
- G. Hauke and T. J. R. Hughes.
- A comparative study of different sets of variables for solving compressible and incompressible flows.
 - Computer Methods in Applied Mechanics and Engineering, 153:1-44, 1998.
- Finite difference methods for numerical computation of discontinous solutions of the equations of fluid dynamics. Mat. Sbornik, 47:271-295, 1959.
 - G. J. LeBeau.

S. K. Godunov.

- The finite element computation of compressible flows.
 - Master's thesis, The University of Minnesota, 1990.
- S. K. Aliabadi.
- Parallel Finite Element Computations in Aerospace Applications.
 - PhD thesis, The University of Minnesota, 1994.
- Improving convergence to steady state of implicit SUPG solution of Euler equations. Communications in Numerical Methods in Engineering, 18(5):345-353, May 2002. L. Catabriga and A. L. G. A. Coutinho.
- T. Pot, B. Chanetz, M. Lefebvre, and P. Bouchardy.
- Fundamental study of shock/shock interference in low density flow. 21st International Symposium on Rarefied Gas Dynamics, 1998.

Bibliography

Nose-tip surface heat reduction mechanism.

34th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1996-354, January 1996.

Sidra I. Silton and David B. Goldstein.

Iournal of Thermophysics and Heat Transfer, 14(3):421–434, July–September 2000. Ablation onset in unsteady hypersonic flow about nose tip with cavity.

W. A. Engblom, D. B. Goldstein, D. Landoon, and S. P. Schneider. Fluid dynamics of hypersonic forward-facing cavity flow. 34th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1996-667, January 1996.

Effect of Vibrational Nonequilibrium on Hypersonic Double-Cone Experiments. Ioannis Nompelis, Graham V. Candler, and Michael S. Holden.

AIAA Journal, 41(11):2162-2169, November 2003.

Joseph J. Coblish, Michael S. Smith, Terrell Hand, Graham V. Candler, and Ioannis Nompelis.

Double-Cone Experiment and Numerical Analysis at AEDC Hypervelocity Wind Tunnel No. 9. 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-0902, January 2005

Pitot Noise Measurement During FY06 NASA MSL Test. McNalley.

Arnold Engineering Delvelopment Center Memorandum, September 2006.

