

Студенческих практикум

Разработка Ускорителей вычислений

08 ноября 2021

Супер ЭВМ DGX2

Производительность: 2 ПФлопс

Ускорителей NVidia Tesla V100: 16

Память GPU: 512 ГБ

Количество CUDA ядер: 81920

Хранилище данных SSD: 30 ТБ

Студенческие исследовательские проекты ИИ

Поддержка учебного процесса в области ИИ

Коммерческие проекты и фундаментальные исследования

 $\frac{1}{2}$

Сравнение принципов ускорения CPU, GPU ~ FPGA

- Как CPU, так GPU имеют предопределенную архитектуру с фиксированным количеством ядер, фиксированным набором инструкций и жесткой архитектурой памяти.
- Традиционная разработка программного обеспечения связана с программированием функциональности на заранее определенной архитектуре.
- CPU достигают высокой скорости работы благодаря глубокой конвейеризации, аппаратной предвыборке данных и скорости доступа к памяти.
- Графические процессоры масштабируют производительность за счет количества ядер и использования параллелизма SIMD / SIMT.

- Программируемые устройства представляют собой полностью настраиваемые архитектуры. Разработчик создает вычислительные блоки, оптимизированные для нужд приложений.
- Производительность достигается за счет создания глубоко конвейерных каналов данных, а не за счет увеличения количества вычислительных единиц.
- Разработка программируемых устройств это программирование архитектуры для реализации желаемой функциональности.

CPU

Сравнение принципов ускорения GPU FPGA

Преимущества FPGA на многих видах задач

AREA	PARTNER WORKLOAD	ALVEO ACCELERATION VS CPU
Database Search and Analytics	BlackLynx Unstructured Data Elasticsearch	90X
Financial Computing	Maxeler Value-at-Risk (VAR) Calculation	89X
Machine Learning	Xilinx Real-Time Machine Learning Inference	20X
Video Processing / Transcoding	NGCodec HEVC Video Encoding	12X
Genomics	Falcon Computing Genome Sequencing	10X

Ускорительная карта Xilinx Alveo U200

- Интерфейс PCI Express ® Gen3 x16
- Максимальное энергопотребление 225W
- Память: 4 x 288-pin DDR4 DIMM, каждая планка DIMM 2Gb x 72, ECC, Single rank, Номинал микросхем памяти: MTA18ASF2G72PZ-2G3B1
- Базовая микросхема ПЛИС FPGA: Xilinx ® UltraScale+ XCU200.
- Ресурсы ПЛИС: Look-Up tables (LUTs) (K) 892;
 Registers (K) 1831; 36 Kb block RAMs 1766; 288
 Kb UltraRAMs 800; DSP slices 5867

Структура Xilinx RunTime Library

XRT Software Stack

Сравнение версий окружения XRT

Typical XDMA Shell

- > FPGA memory accessible by x86 Host
- Maps to DIMM (off-chip DRAM) and PLRAM (on-chip SRAM)
- > 15 kernel interfaces per SLR
 - Alveo U200=45 and Alveo U250=60

QDMA Shell

- Streaming for direct kernel access
- > Optimized for high bandwidth and low latency transfers
- > 48 kernel interfaces and 48 queue sets

Облачная платформа Amazon AWS EC2

AWS EC2 FPGA Development Kit - это набор инструментов разработки, моделирования, отладки, компиляции и запуска приложений с аппаратным ускорением на узлах Amazon EC2 F1.

Облачная платформа Amazon AWS EC2

Структурная схема Alveo U200

PLRAM[2]

Пример ускорителя

Vitis AI: платформа для ИИ на FPGA

Vitis™ Unified Software Platform

Архитектура xDNN ядра Xilinx (DPUCADX8G)

Пример разработки устройства ускорения с Xilinx Vivado High Level Synthesis Tool

1. Разработать ускоритель

Пример разработки устройства ускорения с Xilinx Vivado High Level Synthesis Tool

2. Подключить окружение платформы Alveo

3. Синтезировать kernel ускорителя

```
In [3]: ► !v++ -c vadd.c -t hw --kernel vadd -f $platform -o vadd.xo
```

3. Выполнить линковку нескольких ускорителей

```
In [4]: ► !v++ -l -t hw -o vadd.xclbin -f $platform vadd.xo
```

Пример разработки устройства ускорения с Xilinx Vivado High Level Synthesis Tool

5. Запустить вычисления на ускорителе

```
H import pyng
import numpy as np
ol = pyng.Overlay('vadd.xclbin')
vadd = ol.vadd inst1
in1 = pyng.allocate((10000000,), 'u4')
in2 = pynq.allocate((10000000,), 'u4')
out = pyng.allocate((10000000,), 'u4')
in1[:] = np.random.randint(low=0, high=1000000, size=(10000000,), dtype='u4')
in2[:1 = 200]
in1.sync to device()
in2.sync to device()
vadd.call(in1, in2, out, 10000000)
out.sync from device()
np.array equal(in1 + in2, out)
```


Практикум 8 ноября — 7 декабря

 Лабораторная работа №1 Методология разработки и верификации ускорителей вычислений на платформе Xilinx Alveo

II. Лабораторная работа №2. Разработка ускорителей вычислений средствами САПР высокоуровневого синтеза Xilinx Vitis HLS

III. Хакатон. Командная разработка концепции ускорителя

вычислений

Вторник 13.50 — 17.00 Среда 10.15 — 13.30 Суббота 10.15 — 13.30

Веб аудитория: https://webinar10.bmstu.ru/b/2mg-euu-zpz-pdu

Страница практикума: https://alexbmstu.github.io/2021/

Телеграмм: Электронная почта: @alexpopov_bmstu alexpopov@bmstu.ru