

Chapter 4

Basic Concepts in Number Theory and Finite Fields

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers
- b divides a if there is no remainder on division
- The notation b | a is commonly used to mean b divides a
- If b | a we say that b is a divisor of a

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24 13 | 182; - 5 | 30; 17 | 289; - 3 | 33; 17 | 0

Properties of Divisibility

- If $a \mid 1$, then $a = \pm 1$
- If $a \mid b$ and $b \mid a$, then $a = \pm b$
- Any $b \neq 0$ divides 0
- If a | b and b | c, then a | c

If b | g and b | h, then b | (mg + nh) for arbitrary integers m and n

Properties of Divisibility

- To see this last point, note that:
 - If $b \mid g$, then g is of the form $g = b * g_1$ for some integer g_1
 - If b | h, then h is of the form h = b * h₁ for some integer h₁
- So:
 - $mg + nh = mbg_1 + nbh_1 = b * (mg_1 + nh_1)$ and therefore b divides mg + nh

```
b = 7; g = 14; h = 63; m = 3; n = 2

7 \mid 14 and 7 \mid 63.

To show 7 \mid (3 * 14 + 2 * 63),

we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),

and it is obvious that 7 \mid (7(3 * 2 + 2 * 9)).
```

Division Algorithm

 Given any positive integer n and any nonnegative integer a, if we divide a by n we get an integer quotient q and an integer remainder r that obey the following relationship:

$$a = qn + r$$
 $o \le r < n; q = [a/n]$

Figure 4.1 The Relationship a = qn + r; $0 \le r < n$

Euclidean Algorithm

- One of the basic techniques of number theory
- Procedure for determining the greatest common divisor of two positive integers
- Two integers are relatively prime if their only common positive integer factor is 1

Greatest Common Divisor (GCD)

- The greatest common divisor of a and b is the largest integer that divides both a and b
- We can use the notation gcd(a,b) to mean the greatest common divisor of a and b
- We also define gcd(0,0) = 0
- Positive integer c is said to be the gcd of a and b if:
 - c is a divisor of a and b
 - Any divisor of a and b is a divisor of c
- An equivalent definition is:

$$gcd(a,b) = max[k, such that k | a and k | b]$$

GCD

- Because we require that the greatest common divisor be positive, gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- In general, gcd(a,b) = gcd(|a|, |b|)

$$gcd(60, 24) = gcd(60, -24) = 12$$

- Also, because all nonzero integers divide o, we have gcd(a,o) = | a |
- We stated that two integers a and b are relatively prime if their only common positive integer factor is 1; this is equivalent to saying that a and b are relatively prime if gcd(a,b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

GCD

- Euclid algorithm for easily finding the greatest common divisor of two integers.
- Suppose we have integers a, b such that d = gcd(a, b).
 - Now dividing a by b and applying the division algorithm

$$a = q_1 b + r_1$$
 $0 \le r_1 < b$
 $b = q_2 r_1 + r_2$ $0 \le r_2 < r_1$

$$a = q_1b + r_1 & 0 < r_1 < b \\ b = q_2r_1 + r_2 & 0 < r_2 < r_1 \\ r_1 = q_3r_2 + r_3 & 0 < r_3 < r_2 \\ \vdots & \vdots & \vdots \\ r_{n-2} = q_nr_{n-1} + r_n & 0 < r_n < r_{n-1} \\ r_{n-1} = q_{n+1}r_n + 0 \\ d = \gcd(a, b) = r_n$$

Euclidean Algorithm Example

To find $d = \gcd(a,b) = \gcd(1160718174, 316258250)$							
$a = q_1 b + r_1$	1160718174 = 3	3 × 316258250 + 1	211943424	d = gcd(316258250, 211943424)			
$b = q_2 r_1 + r_2$	316258250 = 1	× 211943424 +	104314826	d = gcd(211943424, 104314826)			
$r_1 = q_3 r_2 + r_3$	211943424 = 2	2 × 104314826 +	3313772	$d = \gcd(104314826, 3313772)$			
$r_2 = q_4 r_3 + r_4$	104314826 =	31 × 3313772 +	1587894	d = gcd(3313772, 1587894)			
$r_3 = q_5 r_4 + r_5$	3313772 =	2 × 1587894 +	137984	d = gcd(1587894, 137984)			
$r_4 = q_6 r_5 + r_6$	1587894 =	11 × 137984 +	70070	$d = \gcd(137984, 70070)$			
$r_5 = q_7 r_6 + r_7$	137984 =	1 × 70070 +	67914	$d = \gcd(70070, 67914)$			
$r_6 = q_8 r_7 + r_8$	70070 =	1 × 67914 +	2156	$d = \gcd(67914, 2156)$			
$r_7 = q_9 r_8 + r_9$	67914 =	31 × 2516 +	1078	$d = \gcd(2156, 1078)$			
$r_8 = q_{10}r_9 + r_{10}$	2156 =	2 × 1078 +	0	$d = \gcd(1078, 0) = 1078$			
Therefore, $d =$	gcd(1160718174,	316258250) = 103	78				

Table 4.1 Euclidean Algorithm Example

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$
b = 316258250	$r_1 = 211943424$	$q_2 = 1$	$r_2 = 104314826$
$r_1 = 211943424$	$r_2 = 104314826$	$q_3 = 2$	$r_3 = 3313772$
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	$r_4 = 1587894$
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	$r_5 = 137984$
$r_4 = 1587894$	$r_5 = 137984$	$q_6 = 11$	$r_6 = 70070$
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	$r_7 = 67914$
$r_6 = 70070$	r ₇ = 67914	$q_8 = 1$	$r_8 = 2156$
$r_7 = 67914$	$r_8 = 2156$	$q_9 = 31$	$r_9 = 1078$
$r_8 = 2156$	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$

(This table can be found on page 91 in the textbook)

Modular Arithmetic

- The modulus
 - If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the **modulus**
 - thus, for any integer a:

$$a = qn + r$$
 $0 \le r < n; q = [a/n]$
 $a = [a/n] * n + (a mod n)$

$$11 \mod 7 = 4$$
; - $11 \mod 7 = 3$

Modular Arithmetic

- Congruent modulo n
 - Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n)
 - This is written as $a = b \pmod{n}$
 - Note that if $a = o \pmod{n}$, then $n \mid a$

 $73 = 4 \pmod{23}$; $21 = -9 \pmod{10}$

Properties of Congruences

Congruences have the following properties:

1.
$$a = b \pmod{n}$$
 if $n \mid (a - b)$

2.
$$a = b \pmod{n}$$
 implies $b = a \pmod{n}$

3.
$$a = b \pmod{n}$$
 and $b = c \pmod{n}$ imply $a = c \pmod{n}$

- To demonstrate the first point, if n|(a-b), then (a-b) = kn for some k
 - So we can write a = b + kn
 - Therefore, $(a \mod n) = (remainder when b + kn is divided by n) = (remainder when b is divided by n) = (b mod n)$

```
23 = 8 (mod 5) because 23 - 8 = 15 = 5 * 3

- 11 = 5 (mod 8) because - 11 - 5 = -16 = 8 * (-2)

81 = 0 (mod 27) because 81 - 0 = 81 = 27 * 3
```

Modular Arithmetic

- Modular arithmetic exhibits the following properties:
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - 3. $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$

Remaining Properties:

Examples of the three remaining properties:

```
11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5
```

Table 4.2(a) Arithmetic Modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Table 4.2(b) Multiplication Modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Table 4.2(c)

Additive and Multiplicative Inverses Modulo 8

W	-w	w^{-1}
0	0	
1	7	1
2	6	_
3	5	3
4	4	_
5	3	5
6	2	_
7	1	7

Table 4.3

Properties of Modular Arithmetic for Integers in Z_n

Property	Expression
Commutative Laws	$(w+x) \bmod n = (x+w) \bmod n$
	$(w \times x) \bmod n = (x \times w) \bmod n$
Associative Laws	$\left[\left[(w+x) + y \right] \bmod n = \left[w + (x+y) \right] \bmod n \right]$
1 issociative Laws	$[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
Distributive Law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
	$(1 \times w) \bmod n = w \bmod n$
Additive Inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z \equiv 0 \mod n$

Extended Euclidean Algorithm Example

x	-3	-2	-1	0	1	2	3
y							
-3	-216	-174	-132	-90	-48	-6	36
-2	-186	-144	-102	-60	-18	24	66
-1	-156	-114	-72	-30	12	54	96
0	-126	-84	-42	0	42	84	126
1	-96	-54	-12	30	72	114	156
2	-66	-24	18	60	102	144	186
3	-36	6	48	90	132	174	216

Table 4.4

Extended Euclidean Algorithm Example

	CONTRACTOR OF THE STREET			
i	r_i	q_{i}	x_i	Y_i
-1	1759		1	0
0	550		0	1
1	109	3	1	-3
2	5	5	-5	16
3	4	21	106	-339
4	1	1	-111	355
5	0	4		

Result: d = 1; x = -111; y = 355

Summary

- Divisibility and the division algorithm
- The Euclidean algorithm
- Modular arithmetic
- Groups, rings, and fields

- Finite fields of the form GF(p)
- Polynomial arithmetic
- Finite fields of the form GF(2ⁿ)