Universidade de Évora Curso de Engenharia Informática

Física Geral. II

Relatório da atividade experimental nº1: Queda Livre 2018/2019

Leonardo Catarro nº43025 Daniel Montinho nº41894 João Silveirinha nº42575 José Gomes nº42363 Miguel Mendes nº42160

<u>Introdução</u>

No estudo deste movimento recorreu-se a duas esferas metálicas de dimensões variadas. Para a realização da atividade laboratorial teve-se em consideração a montagem da figura 1. Uma esfera metálica, que se encontra presa a um eletroíman, é libertada. A esfera passa pelos *Photogates* A e B que se encontram associados a um cronómetro pronto a acionar o início e o fim da contagem de tempo que a esfera leva a passar pelas células, respetivamente.

Figura 1

A equação do movimento a ser estudado pelas esferas ao passarem pelos Photogates A e B:

$$y_B = y_A + v_A t + \frac{1}{2}gt^2$$
 ou $\Delta y = v_A t + \frac{1}{2}gt^2$

 $\rightarrow y_A$ é a posição da esfera ao passar no *Photogate* A, no início da contagem do tempo (t=0s);

- $\rightarrow v_A$ é a velocidade no instante inicial;
- $\rightarrow g$ é a aceleração gravítica;
- $\rightarrow y_B$ é a posição da esfera ao passar no *Photogate* B, no instante t;
- → ∆y é o espaço percorrido pela esfera entre os dois Photogates, no intervalo de tempo t;

Objetivos

Este trabalho tem como finalidade a exploração da lei referente à queda livre dos corpos e ao cálculo experimental da aceleração gravítica. A lei mencionada refere que:

Em movimento de queda livre, a aceleração gravítica de um corpo largado permanece constante. Independentemente da massa do corpo e da altura a que foi interrompido o estado de repouso.

Procedimento

1) Prepare uma montagem experimental como na fig.1;

(Fig.1: Esquema de montagem)

- 2) Mantendo fixo o *photogate* A e variando a posição do *photogate* B, obtenha para a mesma velocidade inicial, v_A , diferentes pares de valores experimentais ($\Delta y/t$, t);
- →A partir da representação gráfica de Δy/t, e t, verifique que a relação entre estas grandezas é linear.
 - →Usando os parâmetros da regressão linear que caracteriza este caso, determine o valor da velocidade da esfera ao passar pelo *photogate* A e valor da aceleração.
 - → Comentar os resultados finais.

Recolha de Dados

(Nota: foram recolhidos dados referentes as duas esferas, com massas distintas, para se poder confirmar a lei duas páginas acima enunciada)

a) Esfera de maior massa: m=28,2 g

Δy(cm)	t(s)
58,0	0,267
55,6	0,252
52,4	0,250
50,1	0,244
47,0	0,234
40,4	0,212
35,1	0,194
30,9	0,178
27,0	0,163
22,2	0,142

b) Esfera de menor massa: m=16,8g

Δy(cm)	t(s)
61,5	0,279
57,4	0,262
53,3	0,254
46,9	0,235
40,0	0,210
36,0	0,195
32,4	0,182
29,2	0,170
25,6	0,155
21,6	0,138

Tratamento de Dados

Nesta etapa, tivemos que converter Δy e m para metros(m), e quilograma (Kg), respetivamente, ou seja, para as unidades S.I correspondentes. Para depois podermos esboçar os gráficos e utilizar estes valores em outras etapas.

Seguidamente, criou-se uma terceira coluna($\Delta y/t$) para usar, posteriormente, no gráfico.

Após isso, representou-se o gráfico em papel milimétrico. Verificou-se que se assemelha a uma reta, logo extraímos a sua regressão linear ($\Delta y/t = \frac{1}{2}gt + v_0$)

Desta expressão retiramos v_0 , que é a ordenada na origem e a aceleração (m = $\frac{1}{2}g$);

a) Esfera 1: m=0,0282 Kg

Δy(m)	t(s)	$\frac{\Delta y}{t}$ (m/s)
0,580	0,267	2,17
0,556	0,252	2,20
0,524	0,250	2,09
0,501	0,244	2,05
0,470	0,234	2,00
0,404	0,212	1,90
0,351	0,194	1,77
0,309	0,178	1,73
0,270	0,163	1,65
0,222	0,142	1,56

b) Esfera 2: m=0,0168 Kg

Δy(m)	t(s)	$\frac{\Delta y}{t}$ (m/s)
0,615	0,279	2,20
0,574	0,262	2,19
0,533	0,254	2,09
0,469	0,235	1,99
0,400	0,210	1,90
0,360	0,195	1,84
0,324	0,182	1,78
0,292	0,170	1,71
0,256	0,155	1,65
0,216	0,138	1,56

Representação dos gráficos no papel milimétrico

(Gráficos em anexo)

Cálculo da Aceleração Gravítica (Esfera 1):

Nota: Os gráficos representados são do tipo: y= mx + b. Em que:

$$y = \frac{\Delta y}{t}$$
; $m = \frac{1}{2}g$; $b = v_0$

De acordo com o gráfico da Esfera 1:

$$\rightarrow \frac{1}{2}g = 5,21 \, m/s^2$$

$$\rightarrow v_0 = 0.80 \text{m/s}$$

Cálculo da Aceleração Gravítica:

$$\frac{1}{2}g$$
=5,21 \Leftrightarrow g=10,42 m/s^2

Cálculo da Aceleração Gravítica (Esfera 2)

De acordo com o gráfico da Esfera 2:

$$\rightarrow \frac{1}{2}g = 4,63m/s^2$$

$$\rightarrow v_0$$
=0,90m/s

Cálculo da aceleração Gravítica:

$$\frac{1}{2}g$$
=4,63 \Leftrightarrow g=9,26 m/s^2

Comentários Críticos

Após a realização da experiência foi possível reconhecer possíveis erros na recolha dos dados. Tal como é possível verificar pelos resultados obtidos nas diferentes esferas. Um erro possível poderá ter sido algo como um ligeiro deslocamento do *photogate* na hora de medir a distância de uma célula a outra, alterando, assim, o valor da distância. Para evitar erros tipo estes, apenas com uma nova realização da atividade.

As esferas usadas também poderão estar na origem de alguns erros possíveis.

É importante reter é que quando as esferas são largadas, do repouso, independentemente da altura a que isso é feito a aceleração gravítica das mesmas permanece constante (aspeto percetível através da visualização dos gráficos representados).

Concluímos ainda que os objetivos da atividade foram cumpridos, isto é, percebemos que as grandezas $\frac{\Delta y}{t}$ e t são lineares, interpretar os gráficos obtidos e, finalmente, calcular a aceleração gravítica das esferas a partir desses mesmos gráficos.