Fiabilité des systèmes mécaniques

Utilisation de la loi de Weibull

$$\lambda(t) = \frac{\beta}{\eta} \cdot \left(\frac{t-\gamma}{\eta}\right)^{(\beta-1)}$$

Trois composantes

$$\lambda(t) = \frac{\beta}{\eta} \cdot \left(\frac{t - \gamma}{\eta}\right)^{(\beta - 1)}$$

Taux de panne

Différents comportements du taux de panne

LA FIABILITÉ

MTBF

Taux de défaillance croissant

Taux de défaillance constant

Taux de défaillance décroissant

Le paramètre $oldsymbol{eta}$

Paramètre de forme

Le mode de défaillance

Evolution du taux de défaillance

Le paramètre $oldsymbol{eta}$

Paramètre de forme

Le mode de défaillance

Evolution du taux de défaillance

Le paramètre γ

Paramètre de position

Retard de la fiabilité

Evolution du taux de défaillance

Le paramètre γ

Paramètre de position

Retard de la fiabilité

Evolution du taux de défaillance

Achat d'un équipement exploité

$$\lambda(t) = \frac{\beta}{\eta} \cdot \left(\frac{t - \gamma}{\eta}\right)^{(\beta - 1)}$$

$$\lambda(t) = \frac{1}{\eta} \cdot \left(\frac{t-0}{\eta}\right)^{(1-1)}$$

$$\lambda(t) = \frac{1}{\eta} = \frac{1}{MTBF}$$

Le paramètre η

Paramètre d'échelle

La Dispersion

Papier Weibull

Ordre	TBE	Fi 7
1	165	0,109
2	330	0,265
3	515	0,421
4	740	0,578
5	915	0,734
6	1320	0,891

Calcul de MTBF

1. PRÉPARATION DES DONNÉES

MÉTHODE DES RANGS MÉDIANS

$$F_i = \frac{i - 0.3}{N + 0.4}$$

Calculer la fiabilité

$$R(t) = \exp{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$

$$R(t) = \exp{-\left(\frac{t-0}{700}\right)^{1,2}}$$

CALCULER MTBF

β	A	В	
0,20	120	1901	
0,25	24	199	
0,30	9,2605	50,08	
0,35	5,0291	19,98	
0,40	3,3234	10,44	
0,45	2,4786	6,46	
0,50	2	4,47	
0,55	1,7024	3,35	
0,60	1,5046	2,65	
0,65	1,3663	2,18	
0,70	1,2638	1,85	
0,75	1,1906	1,61	
0,80	1,1330	1,43	
0,85	1,0880	1,29	
0,90	1,0522	1,17	
0,95	1,0234	1,08	
1	1	1	
1,05	0,9603	0,934	
1,10	0,9649	0,878	
1,15	0,9517	0,830	
1,20	0,9407	0,787	
1,25	0,9314	0,750	
1,30	0,9236	0,716	
1,35	0,9170	0,687	
1,40	0,9114	0,660	
1,45	0,9067	0,635	

β	A	В
1,50	0,9027	0,613
1,55	0,8994	0,593
1,60	0,8966	0,574
1,65	0,8942	0,556
1,70	0,8922	0,540
1,75	0,8906	0,525
1,80	0,8893	0,511
1,85	0,8882	0,498
1,90	0,8874	0,486
1,95	0,8867	0,474
2	0,8862	0,463
2,1	0,8857	0,443
2,2	0,8856	0,425
2,3	0,8859	0,409
2,4	0,8865	0,393
2,5	0,8873	0,380
2,6	0,8882	0,367
2,7	0,8893	0,355
2,8	0,8905	0,344
2,9	0,8917	0,334
3	0,8930	0,325
3,1	0,8943	0,316
3,2	0,8957	0,307
3,3	0,8970	0,299
3,4	0,8984	0,292
3,5	0,8997	0,285
3,6	0,9011	0,278
3,7	0,9025	0,272
3,8	0,9038	0,266
3,9	0,9051	0,260

	β	A	В
	4	0,9064	0,254
	4,1	0,9077	0,249
	4,2	0,9089	9,244
1	4,3	0,9102	0,239
1	4,4	0,9114	0,235
	4,5	0,9126	0,230
1	4,6	0,9137	0,226
1	4,7	0,9149	0,222
1	4,8	0,9160	0,218
-	4,9	0,9171	0,214
	5	0,9182	0,210
	5,1	0,9192	0,207
	5,2	0,9202	0,203
	5,3	0,9213	0,200
	5,4	0,9222	0,197
	5,5	0,9232	0,194
1	5,6	0,9241	0,191
ŀ	5,7	0,9251	0,188
	5,8	0,9260	0,185
	5,9	0,9269	0,183
	6	0,9277	0,180
	6,1	0,9286	0,177
	6,2	0,9294	0,175
	6,3	0,9302	0,172
	6,4	0,9310	0,170
	6,5	0,9318	0,168
	6,6	0,9325	0,166
	6,7	0,9333	0,163
	6,8	0,9340	0,161
	6,9	0,9347	0,160

MTBF=
$$A. \eta + \gamma$$

$$MTBF = 0.9407.700$$

$$MTBF = 685,49$$

$$\sigma(MTBF) = B. \eta$$

$$\sigma(MTBF) =$$

$$\sigma(MTBF) = 550,9$$