20 Decomposition theorems

Definition 20.1. Two measures ν and μ on a measurable space (X, \mathcal{B}) are called <u>mutually singular</u>, or we say that ν is singular with regard to μ , if there is $N \in \mathcal{B}$ such that $\nu(N^c) = 0$, $\mu(N) = 0$. We then write $\nu \perp \mu$.

Theorem 20.2. (<u>Lebesgue decomposition theorem</u>) Assume ν, μ are σ -finit measures on (X, \mathcal{B}) . Then there exists unique measures ν_a and ν_s s.t.

$$\nu = \nu_a + \nu_s, \quad \nu_a << \mu, \quad \nu_s \perp \mu$$

Theorem 20.3. (Polar decomposition of complex measures) Assume ν is a complex measure on (X, \mathcal{B}) . Then there exists a finite measure μ on (X, \mathcal{B}) and a measurable function $f: X \to \Pi$ such that $d\nu = f d\mu$. If $(\tilde{\mu}, \tilde{f})$ is another such pair, then $\tilde{\mu} = \mu$ and $\tilde{f} = f$ μ -a.e.

For signed measures we have the following decomposition

Theorem 20.4. (<u>Hahn decomposition theorem</u>) Assume ν is a finite signed measure on (X, \mathcal{B}) . Then there exists $P, N \in \mathcal{B}$ such that $X = P \cup N$, $P \cap N = \emptyset$, $\nu(A \cap P) \geq 0$, $\nu(A \cap N) \leq 0 \ \forall A \in \mathcal{B}$. Moreover, then $|\nu|(A) = \nu(A \cap P) - \nu(A \cap N)$, and if $X = \tilde{P} \cup \tilde{N}$ is another such decomposition, then

$$|\nu|(P\Delta \tilde{P}) = |\nu|(N\Delta \tilde{N}) = 0.$$

Corollary 20.5. (<u>Jordan's decomposition theorem</u>) Assume ν is a finite signed measure on (X, \mathcal{B}) . Then there exists unique finite measures ν_+, ν_- on (X, \mathcal{B}) such that

$$\nu = \nu_+ - \nu_-$$
 and $\nu_+ \perp \nu_-$.

Moreover, then $|\nu| = \nu_+ + \nu_-$, hence

$$\nu_{+} = \frac{|\nu| + \nu}{2}, \quad \nu_{-} = \frac{|\nu| - \nu}{2}.$$

21 Duals of L^p-spaces

Assume (X, \mathcal{B}, μ) is a measure space, $1 \leq p < \infty$. What is the dual of $L^p(X, d\mu)$? When does a measurable function $g: X \to \mathbb{C}$ define a bounded linear functional on $L^p(X, d\mu)$ by

$$\phi(f) = \int_X fgd\mu?$$

Theorem 21.1. (Young's inequality) Assume $f:[0,a] \to [0,b]$ is a strictly increasing continuous functions, f(0) = 0, f(a) = b. Then for all $s \in [0,a]$ and $t \in [0,b]$ we have

$$st \leq \int_0^s f(x)dx + \int_0^t f^{-1}dydy$$

and the equality holds if and only if t = f(s).

If we apply this to $f(s) = s^{p-1}$. Then $f^{-1}(t) = t^{q-1}$, where q is the <u>Hölder conjugate</u> of p. (p-1)(q-1) = 1, that is

$$\frac{1}{p} + \frac{1}{q} = 1.$$

We get

$$st \le \int_0^s x^{p-1} dx + \int_0^t y^{q-1} dy = \frac{s^p}{p} + \frac{t^q}{q}.$$

Theorem 21.2. (Hölder's inequality) If $f \in L^p(X, d\mu)$, $g \in L^q(X, d\mu)$, 1 and <math>1/p + 1/q = 1. Then

$$fg \in L^1(X, d\mu)$$
 and $||fg||_1 \le ||f||_p ||g||_q$.

It follows that every $g \in L^q(X, d\mu)$ defines a bounded linear functional

$$l_g: L^p(X, d\mu) \to \mathbb{C}, \quad l_g(f) = \int_X fg d\mu, \text{ and } ||l_g|| \le ||g||_q.$$

The same makes sense for $p=1, q=\infty$ and $p=\infty, q=1$, when μ is σ -finite as

$$\int_{X} |fg| d\mu \le \int_{X} |f| d\mu ||g||_{\infty} = ||f||_{1} ||g||_{\infty}.$$

Lemma 21.3. Assume $1 \le p \le \infty$, 1/p + 1/q = 1 and μ is σ -finite if p = 1 or $p = \infty$. For $g \in L^q(X, d\mu)$ consider $l_g \in L^p(X, d\mu)^*$. Then

$$||l_g|| = ||g||_q.$$

Therefore we can view $L^q(X, d\mu)$ as a subspace of $L^p(X, d\mu)^*$ using the isometric embedding

$$L^q(X, d\mu) \hookrightarrow L^p(X, d\mu), \ g \mapsto l_g.$$

Theorem 21.4. Assume (X, \mathcal{B}, μ) is a σ -finit measure space, $1 \le p < \infty$, 1/p + 1/q = 1. Then

$$L^{P}p(X, d\mu)^{*} = L^{q}(X, d\mu).$$

Remark. This is usually not true for $p = \infty$.