МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студентка гр. 8304	Сершеев А.Д.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1)—ой и і—ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}} = 10$, СКО $s_{\text{равн}} = 20/(2*\text{sqrt}(3)) = 5.8$.
- Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, c параметром b=0.1 и соответственно $m_{3\kappa c \Pi} = s_{3\kappa c \Pi} = 1/b = 10.$

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pen} = c*sqrt(\pi/2), s_{pen} = c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах
 - ${X_i}$ использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время навыполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1) РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, равномерно распределённых на интервале [0, 20].

Генерация происходила с помощью функции np.random.uniform(0, 20, 30). Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
Xi	1.851	2.745	2.922	3.94	3.972	4.619	4.743	5.201	7.14	7.365
i	11	12	13	14	15	16	17	18	19	20
Xi	7.454	7.513	7.638	9.362	9.781	11.084	11.151	11.938	12.739	12.821
i	21	22	23	24	25	26	27	28	29	30
Xi	13.293	13.457	13.527	13.684	13.724	13.831	13.93	14.42	14.941	18.754

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 19.392 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 2.

Таблица 2 — Расчёт значений функций для равномерного распределения (100%).

	0070).								
m	31	32	33	34	35	36	37	38	39
fn(m)	3.995	3.027	2.559	2.255	2.035	1.863	1.725	1.609	1.51
g(m, A)	2.585	2.38	2.205	2.054	1.922	1.806	1.704	1.612	1.53
fn(m) - g(m, A)	1 41	0.640	0.254	0.202	0.112	0.057	0.021	0.004	0.03
АЛ	1.41	0.648	0.354	0.202	0.113	0.057	0.021	0.004	0.02

Минимум разности достигается при m = 38.

Первоначальное количество ошибок B = m - 1 = 37.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.006$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 3.

Таблица 3 – Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

i	31	32	33	34	35	36	
Xi	25.656	29.931	35.918	44.897	59.863	89.794	179.588

Время до полного завершения тестирования: 465.647

Полное время: 755

80% входных данных:

Был сгенерирован массив из 24-х элементов, равномерно распределённых на интервале [0, 20]. Генерация происходила с помощью функции пр.random.uniform(0, 20, 24). Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

Таблица 4 – Равномерное распределение, n = 24 (80%).

							(/ -			
i	1	2	3	4	5	6	7	8	9	10
X_i	0.386	2.079	2.508	3.279	4.687	5.7	7.632	8.677	9.121	10.198
i	11	12	13	14	15	16	17	18	19	20
X_i	10.602	11.637	11.64	11.859	12.736	15.559	16.973	17.835	18.349	19.024
i	21	22	23	24						
X_i	19.251	19.525	19.656	19.782						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 16.156 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m, A) = \frac{n}{m-A}$.

Результаты представлены в таблице 5.

Таблица 5 — Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28	29	30
fn(m)	3.776	2.816	2.354	2.058	1.844	1.678
g(m, A)	2.714	2.438	2.213	2.026	1.869	1.734
fn(m) - g(m, A)	1.062	0.378	0.141	0.032	0.025	0.055

Минимум разности достигается при m = 29.

Первоначальное количество ошибок B = m - 1 = 28.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.007

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2 \dots, n+k$.

Результат представлен в таблице 6.

Таблица 6 – Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

i		25	26	27	28
×	(i	37.286	49.715	74.572	149.145

Время до полного завершения тестирования: 310.718

Полное время: 589

60% входных данных:

Был сгенерирован массив из 18-ти элементов, равномерно распределённых на интервале [0, 20]. Генерация происходила с помощью функции пр.random.uniform(0, 20, 18). Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 7 – Равномерное распределение, п = 18 (60%).

	1 4 6 6 1	тца , з	e erbironite	pme o pac	петриопределение, и те (ее/е).					
i	1	2	3	4	5	6	7	8	9	10
X_i	0.631	0.668	1.135	5.31	6.546	6.702	9.52	10.011	10.407	12.273
i	11	12	13	14	15	16	17	18		
X_i	13.612	14.476	14.742	15.413	15.809	18.563	18.826	19.467		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12,43 > 12.354$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21	22
fn(m)	3.495	2.548	2.098	1.812
g(m, A)	2.709	2.354	2.082	1.866
fn(m) - g(m, A)	0.787	0.193	0.016	0.054

Минимум разности достигается при m = 21.

Первоначальное количество ошибок B=m-1=20. $K=\frac{n}{(B+1)\sum_{i=1}^{n}X_i-\sum_{i=1}^{n}iX_i}$

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.011$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2 \dots, n+k$.

Результат представлен в таблице 9.

Таблица 9 – Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

i	19	20
Xi	46.617	93.233

Время до полного завершения тестирования: 139.849

Полное время: 333

2) ЭКСПОНЕНЦИАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y),y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 30).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 10.

Таблица 10 - Экспоненциальное распределение, <math>n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.505	1.288	1.289	2.234	2.627	2.972	3.273	3.608	3.633	3.66
i	11	12	13	14	15	16	17	18	19	20
X_i	3.674	3.762	4.205	4.539	4.868	4.985	5.564	5.706	5.776	6.638
i	21	22	23	24	25	26	27	28	29	30
X_i	6.679	10.114	10.119	10.257	10.374	27.566	31.381	40.123	43.124	51.422

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i}$$

$$A = 23.882 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 11.

Таблица 11 — Расчёт значений функций для экспоненциального распределения (100%).

m	31	32
fn(m)	3.995	3.027
g(m, A)	4.215	3.696
fn(m) - g(m, A)	0.22	0.668

Минимум разности достигается при m = 31.

Первоначальное количество ошибок B = m - 1 = 30.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.013

Условие B > n не выполняется.

Полное время: 315

80% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y), y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 24).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 12.

Таблица 12 - Экспоненциальное распределение, <math>n = 24 (80%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.095	0.497	0.787	0.818	1.439	1.556	1.671	1.926	2.259	2.339
i	11	12	13	14	15	16	17	18	19	20
X_i	2.637	2.887	4.525	4.866	5.495	6.574	6.657	12.669	12.731	13.017
i	21	22	23	24						
X_i	18.185	19.767	24.332	36.021						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 19.356 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i} \quad \text{if} \quad g(m, A) = \frac{n}{m-A}.$$

Результаты представлены в таблице 13.

Таблица 13 — Расчёт значений функций для экспоненциального распределения (80%).

m	25	26
fn(m)	3.776	2.816
g(m, A)	4.252	3.612
fn(m) - g(m, A)	0.476	0.796

Минимум разности достигается при m = 25.

Первоначальное количество ошибок B = m - 1 = 24.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.0231

Условие B > n не выполняется.

Полное время: 183

60% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону W(y) = b*exp(-b*y),y>=0, с параметром b=0.1.

Генерация происходила с помощью функции np.random.exponential(10, 18).

Массив был упорядочен по возрастанию.

Результаты представлены в таблице 14.

Таблица 14 - Экспоненциальное распределение, <math>n = 18 (60%).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.925	1.943	2.5	3.541	3.949	3.991	4.701	5.502	7.421	10.765
-	11	12	13	14	15	16	17	18		
X_i	12.331	13.074	15.43	16.819	17.065	17.084	24.498	26.826		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 13.095 > 9.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m, A) = \frac{n}{m-A}$.

Результаты представлены в таблице 15.

Таблица 15 — Расчёт значений функций для экспоненциального распределения (60%).

m	19	20	21
fn(m)	3.495	2.548	2.098
g(m, A)	3.048	2.607	2.277
fn(m) - g(m, A)	0.447	0.059	0.179

Минимум разности достигается при m = 20.

Первоначальное количество ошибок B = m - 1 = 19.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.0124

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 16.

Таблица 16 – Расчет времени обнаружения следующих ошибок для экспоненциального распределения (60%).

i	19
Xi	72.641

Время до полного завершения тестирования: 72.641

Полное время: 262

3) РЕЛЕЕВСКИЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

100% входных данных:

Был сгенерирован массив из 30-ти элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0. Генерация происходила с помощью функции np.random.rayleigh(8, 30). Массив был упорядочен по возрастанию.

Результаты представлены в таблице 17.

Таблица 17 – Релеевское распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	3.736	3.771	4.385	4.816	5.083	6.065	6.426	7.364	7.799	8.939
i	11	12	13	14	15	16	17	18	19	20
X_i	9.246	9.681	10.071	10.391	11.184	11.264	12.044	12.898	13.529	14.003
i	21	22	23	24	25	26	27	28	29	30
X_i	14.192	14.661	15.647	16.116	16.359	16.6	17.59	19.549	20.085	20.43

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 19.222 > 15.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 18.

Таблица 18 — Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35	36	37
fn(m)	3.995	3.027	2.559	2.255	2.035	1.863	1.725
g(m,A)	2.547	2.348	2.177	2.03	1.901	1.788	1.687
fn(m) - g(m, A)	1.448	0.68	0.381	0.225	0.134	0.075	0.037
m	38	39	40				
fn(m)	1.609	1.510	1.425				
g(m,A)	1.598	1.517	1.444				
fn(m) - g(m, A)	0.011	0.007	0.019				

Минимум разности достигается при m = 39.

Первоначальное количество ошибок B = m - 1 = 38.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

K = 0.004

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2 \dots, n+k$.

Результат представлен в таблице 19.

Таблица 19 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

i	31	32	33	34	35	36	37	38
Xi	28.343	32.392	37.791	45.349	56.686	75.581	113.372	226.743

Время до полного завершения тестирования: 616.256

Полное время: 960

80% входных данных:

Был сгенерирован массив из 24-х элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0$, с параметром c=8.0. Генерация происходила с помощью функции np.random.rayleigh(8, 24). Массив был упорядочен по возрастанию. Результаты представлены в таблице 20.

Таблица 20 – Релеевское распределение, n = 24 (80%).

i	1	2	3	4	5	6	7	8	9	10
X_i	2.131	2.403	2.995	3.169	3.362	3.464	3.542	3.65	4.379	4.596
i	11	12	13	14	15	16	17	18	19	20
X_i	4.699	7.573	8.123	9.216	10.891	10.991	12.106	12.312	12.694	12.711
i	21	22	23	24						
X_i	14.115	15.217	15.741	15.886						

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 16.428 > 12.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 21.

Таблица 21 — Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29
fn(m)	3.776	2.816	2.354	2.058	1.844
g(m, A)	2.8	2.507	2.27	2.074	1.909
fn(m) - g(m, A)	0.976	0.309	0.084	0.016	0.065

Минимум разности достигается при m = 28.

Первоначальное количество ошибок B = m - 1 = 27.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.011$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 22.

Таблица 22 – Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

i	25	26	27
Xi	31.497	47.245	94.49

Время до полного завершения тестирования: 173.232

Полное время: 369

60% входных данных:

Был сгенерирован массив из 18-ти элементов, распределённых по закону $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0. Генерация происходила с помощью функции np.random.rayleigh(8, 18). Массив был упорядочен по возрастанию. Результаты представлены в таблице 23.

Таблица 23 – Релеевское распределение, п = 18 (60%).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.58	3.393	4.18	4.729	6.07	8.553	9.583	9.827	10.526	10.647
i	11	12	13	14	15	16	17	18		
X_i	10.744	11.043	11.633	13.821	14.042	15.286	16.257	27.132		

Условие сходимости: A > (n+1)/2

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12.08 > 9.5$$

Были вычислены значения

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
 и $g(m,A) = \frac{n}{m-A}$.

Результаты представлены в таблице 24.

Таблица 24 — Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22	23
fn(m)	3.495	2.548	2.098	1.812	1.607
g(m, A)	2.601	2.273	2.018	1.815	1.648
fn(m) - g(m, A)	0.894	0.275	0.08	0.003	0.04

Минимум разности достигается при m = 22.

Первоначальное количество ошибок B = m - 1 = 21.

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i}$$

$$K = 0.01$$

Было рассчитано среднее время обнаружения следующих ошибок.

$$X_j = \frac{1}{K(B-j+1)}$$
, где $j = n+1, n+2..., n+k$.

Результат представлен в таблице 25.

Таблица 25 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

i	19	20	21
Xi	34.727	52.09	104.18

Время до полного завершения тестирования: 190.997

Полное время: 380

4) РЕЗУЛЬТАТЫ РАСЧЕТОВ

В таблицах 26 и 27 представлены сводные результаты оценки первоначального числа ошибок и полного времени выполнения тестирования соответственно.

Таблица 26 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные,	Равномерное	Экспоненциальное	Релеевское
	%	_		
30	100	37	30	38
24	80	28	24	27
18	60	20	19	21

Таблица 27 – Оценка полного времени проведения тестирования

n	Входные	Распределение		
	данные,	Равномерное	Экспоненциальное	Релеевское
	%	_		
30	100	755	315	960
24	80	589	183	369
18	60	333	262	380

Результаты при экспоненциальном распределении оказались ниже остальных, что связано с тем, что модель Джелинского-Моранды основана на том, что время до следующего отказа программы распределено экспоненциально. По сравнению с равномерным распределением, релеевское оказывается хуже.

Выводы.

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.