РЕШЕНИЕ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ДЕКОМПОЗИЦИИ

д.А. ЗАЙЦЕВ

Введены и исследованы специальные подмножества уравнений линейной системы, именуемые кланами. Предложено использовать декомпозицию на кланы для ускорения решения линейной системы. Сложность декомпозиции равна кубу от размера системы. Поэтому, ускорение вычислений получено для методов, сложность которых превышает кубическую. Для целочисленных систем, решаемых в целой неотрицательной области, ускорение вычислений является экспоненциальным.

ВВЕДЕНИЕ

Задача решения линейной системы является классической задачей линейной алгебры [1]. Имеется широкое разнообразие известных методов решения линейной системы [1,2]. Следует отметить, что выбор метода существенно зависит от множества используемых чисел. Точнее, от алгебраической структуры, образуемой переменными и коэффициентами. Наиболее изучено решение систем в полях и телах, например, в действительных и рациональных числах. Эти алгебраические структуры содержат всюду определённую операцию деления, что является удобным для построения простых и мощных методов. Различают точные и приближённые методы решения систем. Наиболее известным является метод Гаусса, состоящий в последовательном исключении переменных и получении треугольной матрицы.

Алгебраическая структура кольца, например, целых чисел, требует разработки специальных методов, так как деление не является всюду определённой операцией в кольце. Известный универсальный метод решения систем в кольцах основан на использовании унимодулярных преобразований матрицы системы для приведения её к нормальной форме Смита [1,2]. Результирующая матрица имеет диагональную форму и позволяет получить простую форму представления решений. К сожалению, этот метод является экспоненциальным. К настоящему времени были предложены более сложные, но полиномиальные методы [3,4,5]. Наиболее интересные из них основаны на последовательном решении систем в полях классов вычетов по модулям простых чисел и последующем построении общего решения исходной системы [3].

Развитие таких областей компьютерных наук как теория сетей Петри [6], логическое программирование [7], искусственный интеллект [8] потребовало решения целочисленных систем на множестве неотрицательных целых чисел. Заметим, что неотрицательные целые обладают алгебраической структурой моноида. В моноиде даже вычитание не всюду определено. Все известные методы решения целочисленной системы в неотрицательных целых

числах являются экспоненциальными [9,10,11], что создаёт существенные трудности в применении этих методов для анализа реальных систем и процессов.

Например, если сложность метода приближённо равна 2^q , где q – размер системы, то для решения системы размера 100 потребуется около 10^{30} операций. Компьютер с быстродействием 10^9 операций в секунду будет выполнять эту работу в течение 10^{21} секунд или 10^{12} лет.

Таким образом, задача разработки эффективных методов решения линейных систем, особенно в целых неотрицательных числах, является достаточно актуальной. Целью настоящей работы является представление метода решения линейной системы с помощью декомпозиции на кланы. Применение этого метода позволяет существенно ускорить вычисления. В случае экспоненциальной сложности исходного метода решения системы полученное ускорение также является экспоненциальным.

1. ПРЕДСТАВЛЕНИЕ ОБЩЕГО РЕШЕНИЯ ЛИНЕЙНОЙ СИСТЕМЫ

Рассмотрим линейную однородную систему из m уравнений с n неизвестными

$$A \cdot \bar{x} = 0, \tag{1}$$

где A — матрица коэффициентов размерности $m \times n$, \overline{x} — вектор-столбец неизвестных размерности n. Мы не будем указывать точно множества значений переменных и коэффициентов. Предположим только, что известен метод, позволяющий решить систему (1) и представить общее решение в форме

$$\bar{x} = G \cdot \bar{y} \,, \tag{2}$$

где G — матрица базисных решений, а \overline{y} — вектор-столбец свободных переменных. Каждый из столбцов матрицы G является базисным решением. Для получения частного решения системы, значения компонентов вектора \overline{y} могут быть выбраны произвольно из множества значений переменных \overline{x} . Заметим, что система (1) всегда имеет, по крайней мере, тривиальное нулевое решение. Для краткости мы будем далее называть однородную систему несовместимой, если она имеет только тривиальное решение.

Рассмотрим неоднородную систему

$$A \cdot \overline{x} = \overline{b} \ , \tag{3}$$

где \overline{b} — вектор-столбец свободных членов размерности m . Будем предполагать также, что существует метод решения системы (3), позволяющий представить общее решение в форме

$$\bar{x} = \bar{x}' + \bar{y} \cdot G \,, \tag{4}$$

где $\overline{y} \cdot G$ — общее решение соответствующей однородной системы (1), а \overline{x}' — минимальное частное решение неоднородной системы (3).

В соответствии с классической алгеброй [1], приведенные выше результаты справедливы для произвольных полей и колец. Кроме того, в соответствии с [11] они также справедливы для решений структуры моноида при структуре кольца элементов матрицы A и вектора \overline{b} . В последнем случае, для неоднородной системы следует рассматривать множество минимальных решений \overline{x}' .

2. ДЕКОМПОЗИЦИЯ СИСТЕМЫ

Представим систему (1) в виде предиката

$$S(\overline{x}) = L_1(\overline{x}) \wedge L_2(\overline{x}) \wedge \dots \wedge L_m(\overline{x}), \tag{5}$$

где $L_i(\overline{x})$ – уравнения системы:

$$L_i(\overline{x}) = (\overline{a}^i \cdot \overline{x} = 0),$$

 \overline{a}^i — і-я строка матрицы A . Будем предполагать также, что \overline{a}^i — ненулевой вектор, то есть, по крайней мере, один из компонентов \overline{a}^i ненулевой. Обозначим X множество неизвестных системы. Рассмотрим множество уравнений $\mathfrak{T} = \{L_i\}$ системы S . Введём отношения на множестве \mathfrak{T} .

Определение 1. Отношение близости. Два уравнения $L_i, L_j \in \mathfrak{I}$ близки и обозначаются как $L_i \circ L_j$ если и только если $\exists x_k \in X: a_{i,k}, a_{j,k} \neq 0$, $sign(a_{i,k}) = sign(a_{j,k})$.

Утверждение 1. Отношение близости рефлексивно и симметрично. *Доказательство*.

- а) Рефлексивность: $L_i \circ L_i$. Так как \overline{a}^i ненулевой вектор, то существует $x_k \in X$: $a_{i,k} \neq 0$. Тогда тривиально $sign(a_{i,k}) = sign(a_{i,k})$.
- b) Симметричность: $L_i \circ L_j \Rightarrow L_j \circ L_i$. Отношение симметрично в соответствии с симметричностью отношения равенства: $sign(a_{i,k}) = sign(a_{j,k}) \Rightarrow sign(\underline{a_{j,k}}) = sign(a_{i,k})$.

Определение 2. Отношение клана. Два уравнения $L_i, L_j \in \mathfrak{I}$ принадлежат к одному и тому же клану и обозначаются $L_i \circ L_j$, если и только если существует последовательность (возможно пустая) уравнений $L_{l_1}, L_{l_2}, ..., L_{l_k}$ таких что: $L_i \circ L_{l_1} \circ ... \circ L_{l_k} \circ L_j$. Заметим, что отношение клана представляет собой транзитивное замыкание отношения близости.

Теорема 1. Отношение клана является отношением эквивалентности.

Доказательство. Требуется доказать, что отношение клана рефлексивно, симметрично и транзитивно.

- а) Рефлексивность: $L_i \circ L_i$. Так как Определение 2 допускает пустые последовательности уравнений и отношение близости рефлексивно в соответствии с Утверждением 1, то и отношение клана рефлексивно.
- b) Симметричность: $L_i \circ L_j \Rightarrow L_j \circ L_i$. Так как $L_i \circ L_j$, то в соответствии с Определением 2 существует последовательность $L_{l_1}, L_{l_2}, ..., L_{l_k}$ такая что $L_i \circ L_{l_1} \circ ... \circ L_{l_k} \circ L_j$. Так как отношение близости симметрично в соответствии с Утверждением 1, то для обратной последовательности $L_{l_k}, L_{l_{k-1}}, ..., L_{l_1}$ выполняется $L_j \circ L_{l_k} \circ ... \circ L_{l_1} \circ L_i$ тогда $L_j \circ L_i$.
- с) Транзитивность: $L_i \cap L_j, L_j \cap L_l \Rightarrow L_i \cap L_l$. Так как $L_i \cap L_j$, $L_j \cap L_l$, то в соответствии с Определением 2 существуют $\sigma = L_{i_1}, L_{i_2}, ..., L_{i_k}$ и $\varsigma = L_{l_1}, L_{l_2}, ..., L_{l_r}$ такие что $L_i \circ L_{i_1} \circ ... \circ L_{i_k} \circ L_j$ и $L_j \circ L_{l_1} \circ ... \circ L_{l_r} \circ L_l$. Рассмотрим конкатенацию $\sigma L_j \varsigma$. Эта последовательность связывает элементы L_i и L_l цепочкой из элементов, удовлетворяющих отношению близости. Таким образом $L_i \cap L_l$.

Следствие. Отношение клана задаёт разбиение множества $\mathfrak{F}: \mathfrak{F} = \bigcup_j C^j$, $C^i \cap C^j = \emptyset$, $i \neq j$.

Определение 3. *Клан.* Элемент разбиения $\{\mathfrak{I}, \mathfrak{O}\}$ будем называть *кланом* и обозначать C^j .

Определение 4. Переменные $X^j = X(C^j) = \{x_i | x_i \in X, \exists L_k \in C^j : a_{k,i} \neq 0\}$ будем называть переменными клана C^j . Переменные $x_i \in X(C^j)$ являются внутренними переменными клана C^j , если и только если для всех остальных кланов C^l , $l \neq j$ выполняется $x_i \notin X^l$. Множество внутренних переменных клана C^j будем обозначать \widehat{X}^j . Переменная $x_i \in X$ является контактной переменной если и только если существуют такие кланы C^j и C^l , что $x_i \in X^j$, $x_i \in X^l$. Множество всех контактных переменных обозначим X^0 . Обо-

значим также множество контактных переменных клана C^j как $reve{X}^j$ таким образом что $X^j = \widehat{X}^j \cup reve{X}^j$ и $\widehat{X}^j \cap reve{X}^j = \varnothing$.

Лемма 1. Контактная переменная $x_i \in X^0$ не может принадлежать различным кланам с одним и тем же знаком.

Доказательство. Предположим противное. Пусть переменная $x_i \in X$ содержится в различных кланах $C^{j_1}, C^{j_2}, ..., C^{j_k}$ с одним и тем же знаком, причём k>1. Следовательно в соответствии с Определением 3 существуют уравнения $L_{l_1} \in C^{j_1}, \ L_{l_2} \in C^{j_2}, ..., \ L_{l_k} \in C^{j_k}$ такие что $a_{l_1,i} \neq 0$, $a_{l_2,i} \neq 0$,..., $a_{l_k,i} \neq 0$ и $sign(a_{l_1,i}) = sign(a_{l_2,i}) = ... = sign(a_{i_k,i})$. Тогда в соответствии с Определениями 2 и 3 уравнения $L_{l_1}, L_{l_2}, ..., L_{l_k}$ принадлежат к одному и тому же клану. Таким образом, получаем противоречие.

Теорема 2. Контактная переменная $x_i \in X^0$ содержится ровно в двух кланах.

Доказательство. Предположим противное. Пусть контактная переменная $x_i \in X$ содержится в q различных кланах, и $q \neq 2$. Рассмотрим отдельно два случая:

- а) q < 2 . Тогда в соответствии с Определением 5 переменная x_i не является контактной.
- b) q>2 . Получаем противоречие с Леммой 1 так как существуют только два различных знака: плюс и минус.

Определение 5. Клан C^j будем называть *входным кланом контактной переменной* $x_i \in X^0$ и обозначать $I(x_i)$, если и только если он содержит эту переменную со знаком плюс. Клан C^j будем называть *выходным кланом контактной переменной* $x_i \in X^0$ и обозначать $O(x_i)$, если и только если он содержит эту переменную со знаком минус. Аналогичную классификацию на входные и выходные можно ввести также и для контактных переменных.

Таким образом, получено с одной стороны разбиение множества уравнений на кланы, а с другой стороны, разбиение переменных на внутренние и контактные. Введём новую нумерацию уравнений и переменных. Нумерацию уравнений начнём с уравнений первого клана и так далее до последнего клана разбиения. Нумерацию переменных начнём с контактных переменных и продолжим далее для внутренних переменных в порядке возрастания номеров

кланов. Упорядочим множества уравнений и переменных в соответствии с новой нумерацией. В результате получим следующую блочную форму представления матрицы A:

$$A = \begin{vmatrix} A^{0,1} & \widehat{A}^1 & 0 & 0 & 0 \\ A^{0,2} & 0 & \widehat{A}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A^{0,k} & 0 & 0 & 0 & \widehat{A}^k \end{vmatrix}.$$

Более наглядным является представление матрицы A в Таблице 1, в которой явно указаны кланы и подмножества переменных, соответствующие блокам матрицы.

Таблица 1.

Клан/Переменные	X^{0}	\hat{X}^1	\widehat{X}^2		\widehat{X}^k
C^1	$A^{0,1}$	\widehat{A}^1	0		0
C^2	$A^{0,2}$	0	\widehat{A}^2		0
					•
	•	٠	•	•	•
- ck	10,k	0	0	•	$\frac{1}{2k}$
C''	$A^{\circ,\kappa}$	U	0	• • •	$A^{"}$

Заметим, что строка матрицы представляет клан, а столбцы матрицы соответствуют вектору разбиения множества переменных $\left(X^0 \quad \widehat{X}^1 \quad \widehat{X}^2 \quad \dots \quad \widehat{X}^k\right)$. Рассмотрим более подробно структуру матрицы для контактных переменных. В соответствии с Определением 4 \widehat{X}^j обозначает контактные переменные клана C^j . Тогда $X^0 = \bigcup_j \widehat{X}^j$, но это не является разбиением множества X^0 , так как каждая контактная переменная $x_i \in X^0$ в соответствии с Теоремой 2 принадлежит двум кланам. Далее мы будем также использовать матрицы \widehat{A}^j . Заметим, что в отличие от $A^{0,j}$, которая содержит значения для всех контактных переменных X^0 , матрица \widehat{A}^j содержит значения только для контактных переменных \widehat{X}^j клана C^j . Другими словами матрица \widehat{A}^j содержит только ненулевые столбцы матрицы $A^{0,j}$. В результате применения Теоремы 2 к матрице A мы заключаем, что каждая контактная переменная $x_i \in X^0$ содержится с ненулевыми коэффициентами ровно в двух матрицах множества $A^{0,j}$, $j=\overline{1,k}$ и, кроме того, появляется в одной из матриц с положительными коэффициентами, а в другой — с отрицательными коэффициентами.

3. РЕШЕНИЕ СИСТЕМЫ

Решим систему отдельно для каждого клана. Если рассматривать только переменные клана, то имеем систему уравнений

$$A^j \cdot \overline{x}^j = 0. (6)$$

где

$$A^{j} = \left\| \widecheck{A}^{j} \quad \widehat{A}^{j} \right\|, \ \overline{x}^{j} = \left\| \widecheck{\overline{x}}^{j} \right\|.$$

Систему (6) обозначим также $S^{C^j}(\overline{x})$. Заметим, что значения $X\setminus X^j$ могут быть выбраны произвольно. Более подробно

$$S^{C_j}(\overline{x}) = \sum_{L_l \in C^j} L_l(\overline{x}).$$

Теорема 3. Если система (1) имеет нетривиальное решение, то каждая из систем (6) также имеет нетривиальное решение.

Доказательство. Рассмотрим представление (5) системы (1). Так как в соответствии с Теоремой 1 отношение клана задаёт разбиение множества уравнений, то представление (5) может быть записано в форме

$$S(\overline{x}) = S^{C_1}(\overline{x}) \wedge S^{C_2}(\overline{x}) \wedge \dots \wedge S^{C_k}(\overline{x}). \tag{7}$$

Таким образом, произвольное решение (1) является решением каждой из (6).

Следствие. Если, по крайней мере, одна из систем (6) несовместима, то и вся система (1) несовместима.

Пусть общее решение системы (6) в соответствии с (2) имеет вид

$$\bar{x}^j = G^j \cdot \bar{v}^j \tag{8}$$

Каждая внутренняя переменная $x_i \in \widehat{X}^j$ входит ровно в одну систему (6); таким образом, для всех внутренних переменных кланов справедливо

$$\widehat{\overline{x}}^j = \widehat{G}^j \cdot \overline{y}^j$$
.

Каждая контактная переменная $x_i \in \overline{X}^j$ в соответствии с Теоремой 2 принадлежит ровно двум системам $S^{C^j}(\overline{x})$ и $S^{C^l}(\overline{x})$, где $C^j = O(x_i)$, $C^l = I(x_i)$. Следовательно, её значения должны совпадать

$$\overline{x}_i^j = \overline{x}_i^l$$
 или $G_i^j \cdot \overline{y}^j = G_i^l \cdot \overline{y}^l$,

где G_i^j обозначает строку матрицы G^j соответствующую переменной x_i . Таким образом, мы получаем систему

$$\begin{cases}
\overline{x}^{j} = \overline{y}^{j} \cdot G^{j}, & j = \overline{1, k}, \\
G_{i}^{j} \cdot \overline{y}^{j} = G_{i}^{l} \cdot \overline{y}^{l}, & x_{i} \in X^{0}, & C^{j} = O(x_{i}), & C^{l} = I(x_{i}).
\end{cases}$$
(9)

Так как выражение (7) является эквивалентным представлением исходной системы (1) и имеется разбиение множества X на контактные и внутренние переменные, то приведенные выше рассуждения доказывают следующую теорему.

Теорема 4. Система (9) эквивалентна системе (1).

Уравнения системы (9) для контактных переменных

$$G_i^j \cdot \overline{y}^j = G_i^l \cdot \overline{y}^l$$

можно представить как

$$\left\|G_i^j - G_i^l\right\| \cdot \left\|\frac{\overline{y}^j}{\overline{y}^l}\right\| = 0.$$

Занумеруем все переменные \bar{y}^j так чтобы получить общий вектор

$$\overline{y} = \left\| \overline{y}^1 \quad \overline{y}^2 \quad \dots \quad \overline{y}^k \right\|^T$$

и объединим матрицы G_i^j , $-G_i^l$ в общую матрицу F . Тогда получим систему

$$F \cdot \overline{y} = 0$$
.

Полученная система имеет вид (1) следовательно, её общее решение имеет вид (2):

$$\overline{y} = R \cdot \overline{z} \ . \tag{10}$$

Построим объединённую матрицу G решений (8) системы (6) для всех кланов таким образом, что

$$\bar{x} = G \cdot \bar{y} \,. \tag{11}$$

Матрица имеет следующую блочную структуру

$$G = \begin{vmatrix} J^1 & \widehat{G}^1 & 0 & 0 & 0 \\ J^2 & 0 & \widehat{G}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ J^k & 0 & 0 & 0 & \widehat{G}^k \end{vmatrix}^T.$$

Поясним структуру первого столбца блочного представления, который соответствует контактным переменным. Для каждой контактной переменной $x_i \in X^0$ строим столбец так, что либо блок J^j , либо J^l содержит соответствующий столбец из \breve{G}^j , либо \breve{G}^l , где

 $C^{j} = O(x_{i}), \ C^{l} = I(x_{i})$. Действительно, так как контактная переменная принадлежит двум кланам, то её значения могут быть вычислены как в соответствии с общим решением для входного клана, так и в соответствии с общим решением для выходного клана.

Подставим (10) в (11):

$$\overline{x} = G \cdot R \cdot \overline{z}$$
.

Таким образом

$$\bar{x} = H \cdot \bar{z}, H = G \cdot R.$$
 (12)

Так как только эквивалентные преобразования были использованы, представленные выше рассуждения доказывают следующую теорему.

Теорема 5. Выражение (12) представляет общее решение однородной системы (1).

Выполним аналогичные преобразования для неоднородной системы (3). Общее решение системы для каждого клана в соответствии с (4) имеет вид

$$\overline{x}^j = \overline{x}^{\prime j} + G^j \cdot \overline{y}^j. \tag{13}$$

Уравнения для контактных переменных можно представить следующим образом

$$\overline{x}_{i}^{\prime j} + G_{i}^{j} \cdot \overline{y}^{j} = \overline{x}_{i}^{\prime l} + G_{i}^{l} \cdot \overline{y}^{l}$$

и далее

$$G_i^j \cdot \overline{y}^j - G_i^l \cdot \overline{y}^l = \overline{b}_i', \ \overline{b}_i' = \overline{x}_i'^l - \overline{x}_i'^j$$

либо в матричной форме

$$F \cdot \overline{y} = \overline{b}'$$
.

Общее решение этой системы в соответствии с (4) можно представить как

$$\overline{y} = \overline{y}' + R \cdot \overline{z}$$
.

Используя объединённую матрицу G, представим (13) как

$$\overline{x} = \overline{x}' + G \cdot \overline{y}$$

или

$$\overline{x} = \overline{x}' + G \cdot (\overline{y}' + R \cdot \overline{z}) = \overline{x}' + G \cdot \overline{y}' + G \cdot R \cdot \overline{z}$$

и, далее

$$\overline{x} = \overline{y}'' + H \cdot \overline{z}, \ \overline{y}'' = \overline{x}' + G \cdot \overline{y}', \ H = G \cdot R.$$
 (14)

Так как были использованы только эквивалентные преобразования, доказана следующая теорема.

Теорема 6. Выражение (14) представляет общее решение неоднородной системы (2).

Таким образом, в настоящем разделе построены общие решения однородных и неоднородных линейных систем, полученные с помощью декомпозиции системы на кланы.

4. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ СИСТЕМЫ

В соответствии с теоремами 3, 5, решение линейной однородной системы уравнений (1) с помощью декомпозиции включает в себя следующие этапы:

Этап 1. Выполнить декомпозицию системы (1) на множество кланов: $\{C^j\}$.

Этап 2. Для каждого из кланов C^j решить систему (6): $\overline{x}^j = \overline{y}^j \cdot G^j$. Если, по крайней мере, одна из систем (6) несовместима, то исходная система (1) также несовместима. Останов.

Этап 3. Построить и решить систему (9) для контактных переменных: $\overline{y} = \overline{z} \cdot R$. Если система несовместима, то исходная система (1) также несовместима. Останов.

Этап 4. Скомпоновать матрицу G и вычислить матрицу H базисных решений: $H=R\cdot G$. Останов.

Заметим, что Этапы 2, 3 используют некоторый известный метод решения линейной системы. Выбор этого метода определяется используемым множеством чисел. Например, это может быть метод Гаусса для рациональных чисел, приведение к нормальной форме Смита для целых чисел и метод Тудика при нахождении целых неотрицательных решений. Кроме того, аналогичный подход в соответствии с теоремой 6 может быть применён также и для неоднородных систем.

Следует описать более подробно алгоритм декомпозиции, используемый на Этапе 1. Пусть q — максимальный размер матрицы A: $q = \max(m,n)$. Отношение клана может быть вычислено стандартным способом, как транзитивное замыкание отношения близости. Но этот способ является достаточно трудоёмким с вычислительной точки зрения.

Представлен следующий алгоритм декомпозиции (Рис. 1), имеющий вычислительную сложность пропорциональную q^3 :

```
j\coloneqq 1;
while \Im \neq \varnothing
do
C^j\coloneqq \varnothing;
curC\coloneqq L,(L\in \Im);
\Im\coloneqq \Im \setminus L;
do
newC\coloneqq \varnothing;
for L' in curC
for L'' in \Im
```

```
 \text{if } L' \circ L'' \text{ then do } \mathfrak{I} \coloneqq \mathfrak{I} \setminus L''; \ newC \coloneqq newC \cup L''; \text{ od}; \\ C^j \coloneqq C^j \cup curC; \\ curC \coloneqq newC; \\ \text{od until } newC = \varnothing \\ j \coloneqq j+1; \\ \text{od};
```

Рис 1. Алгоритм декомпозиции системы

Алгоритм формирует кланы C^j из исходного множества уравнений $\mathfrak T$ системы. Для построения транзитивного замыкания алгоритм сравнивает каждое уравнение множества curC с каждым уравнением множества $\mathfrak T$. Уравнения, включенные в клан, исключаются из множества $\mathfrak T$. Использование двух вспомогательных подмножеств curC и newC позволяет сравнивать каждую пару уравнений однократно. Так как вычисление отношения близости имеет линейную трудоёмкость, то общая сложность алгоритма пропорциональна q^3 .

Пусть M(q) — сложность решения линейной системы размера q. Оценим общую сложность решения линейной системы с помощью декомпозиции. Пусть исходная система (1) состоит из k кланов. Тогда размер каждого из кланов можно оценить, как p=q/k. Мы не будем рассматривать остаток от деления. Будем предполагать также, что количество контактных позиций также около p. Следующее выражение представляет сложность решения системы с помощью декомпозиции:

$$V(q) = V(k \cdot p) = (k \cdot p)^{3} + k \cdot M(p) + M(p) + (k \cdot p)^{3}$$
.

Каждое из слагаемых этого выражения представляет собой оценку вычислительной сложности соответствующего этапа. Упростим выражение:

$$V(k \cdot p) = 2 \cdot k^3 \cdot p^3 + (k+1) \cdot M(p) \approx k^3 \cdot p^3 + k \cdot M(p).$$

Оценим ускорение вычислений от использования декомпозиции. Искомое выражение имеет вид:

$$Acc(k \cdot p) = \frac{M(k \cdot p)}{k^3 \cdot p^3 + k \cdot M(p)}.$$

Таким образом, даже для полиномиальных методов степени, превышающей кубическую, получаем ускорение большее единицы. Оценим ускорение для методов, имеющих экспоненциальную сложность $M(q)=2^q$, таких, как, например, метод Тудика [9,10]:

$$AccE(q) = \frac{2^{q}}{k^{3} \cdot p^{3} + k \cdot 2^{p}} \approx \frac{2^{q}}{2^{p}} = 2^{q-p}.$$

Получено экспоненциальное ускорение, что является достаточно хорошим результатом.

5. ПРИМЕР РЕШЕНИЯ СИСТЕМЫ

Решим однородную систему вида (1) из 9 уравнений с 10 переменными. Пусть матрица системы имеет вид

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 2 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Этап 1. Декомпозиция. Система состоит из двух кланов

$$C^1 = \{L_1, L_2, L_5, L_6\}, C^2 = \{L_3, L_4, L_7, L_8, L_9\}.$$

Она имеет следующие множества переменных кланов

$$X^{1} = \{x_{3}, x_{6}, x_{8}, x_{10}, x_{1}, x_{2}, x_{7}\}, X^{2} = \{x_{3}, x_{6}, x_{8}, x_{10}, x_{4}, x_{5}, x_{9}\},$$

контактные переменные

$$X^0 = \breve{X}^1 = \breve{X}^2 = \{x_3, x_6, x_8, x_{10}\}$$

и внутренние переменные

$$\hat{X}^1 = \{x_1, x_2, x_7\}, \ \hat{X}^2 = \{x_4, x_5, x_9\}.$$

В соответствии с новой нумерацией переменных

$$nx = (3 \ 6 \ 8 \ 10 \ 1 \ 2 \ 7 \ 4 \ 5 \ 9)$$

и новой нумерацией уравнений

$$nL = \begin{pmatrix} 1 & 2 & 5 & 6 & 3 & 4 & 7 & 8 & 9 \end{pmatrix}$$

матрица A имеет вид

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}.$$

Этап 2. *Решение систем для кланов*. Применение алгоритма Тудика [9,10] даёт следующие матрицы базисных решений для кланов:

$$G^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^{T}, G^{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^{T}$$

по отношению к векторам свободных переменных $\overline{y}^1 = (y_1^1, y_2^1, y_3^1)^T$ и $\overline{y}^2 = (y_1^2, y_2^2)^T$.

Этап 3. *Решение системы для контактных переменных.* Система уравнений для контактных переменных имеет вид:

$$\begin{cases} y_1^1 - y_1^2 = 0, \\ y_1^1 - y_1^2 = 0, \\ y_2^1 - y_1^2 = 0, \\ y_2^1 - y_1^2 = 0. \end{cases}$$

Отметим, что уравнения соответствуют контактным переменным x_3, x_6, x_8, x_{10} ; первое уравнение совпадает со вторым; третье уравнение совпадает с четвёртым. Базисные решения системы имеют вид

$$R = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{T}.$$

 \Im тап 4. Компоновка решения исходной системы. Как было ранее отмечено, матрица G может быть построена различными способами:

И, наконец, результирующая матрица базисных решений системы (1) имеет вид

$$H = R \cdot G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^{T}.$$

Полученный результат совпадает с базисными решениями, вычисленными обычным способом с помощью алгоритма Тудика [9,10].

ЗАКЛЮЧЕНИЕ

В настоящей работе представлен новый метод решения линейных систем с помощью декомпозиции на кланы. Применение метода целесообразно в случае, если используемый алгоритм

решения системы имеет вычислительную сложность, превышающую полином третьей степени, а также в случае, если система может быть разложена не менее чем на два клана.

В результате применения представленного метода к решению ряда конкретных систем уравнений можно сделать вывод, что хорошая способность к разложению присуща разрежённым матрицам. А это достаточно реалистичная ситуация, так как модели реальных объектов большой размерности содержат, как правило, хорошо локализованные взаимосвязи элементов.

Следует отметить также взаимосвязь декомпозиции систем уравнений и сетей Петри [12]. Действительно, матрицу D = sign(A) можно рассматривать как матрицу инцидентности некоторой сети Петри.

Наиболее существенное ускорение вычислений получено для целочисленных систем, решаемых на множестве неотрицательных целых чисел. Для таких систем известны только экспоненциальные методы решения. Полученное ускорение вычислений также является экспоненциальным.

ЛИТЕРАТУРА

- 1. Б.Л. ван дер Варден. Алгебра.- М: Наука, 1979.- 624 с.
- 2. Схрейвер А. Теория линейного и целочисленного программирования. В 2-х т.- М.: Мир, 1991.- 726 с.
- 3. Фрумкин М.А. Алгоритм решения систем линейных уравнений в целых числах // Исследования по дискретной оптимизации, М., Наука, 1976, с. 97-127.
- 4. Pottie L., Minimal Solutions of linear Diophantine systems: bounds and algorithms // Proc. of the Fourth Intern. Conf. on Rewriting Techn. and Appl., Como, Italy, 1991, p. 162-173.
- 5. Contejan E., Ajili F. Avoiding slack variables in solving linear Diophantine equations and inequations // Theoretical Computer Science, Vol. 173, 1997, p. 183-208.
- 6. Мурата Т. Сети Петри: Свойства, анализ, приложения // ТИИЭР, т. 77, № 4, 1989, с. 541-580.
 - 7. Lloyd J. Foundation of logic programming.- Berlin, Springer-Verlag, 1987.- 216 c.
- 8. Baader F., Ziekmann J. Unification theory. Handbook of logic in artificial intelligence and logic programming, Oxford: Univ. Press, 1994, p. 1-85.
- 9. Toudic J.M. Linear Algebra Algorithms for the Structural Analysis of Petri Nets // Rev. Tech. Thomson CSF, Vol. 14, No. 1, 1982, p. 136-156.
- 10. Zaitsev D.A. Formal Grounding of Toudic Method // Proceedings of the 10th Workshop "Algorithms and Tools for Petri Nets".- Eichstaett, Germany, September 26-27, 2003, p. 184-190.

- 11. Крывый С.Л. О некоторых методах решения и критериях совместимости систем линейных диофантовых уравнений в области натуральных чисел // Кибернетика и системный анализ, 1999, № 4, с. 12-36.
- 12. Zaitsev D.A. Subnets with Input and Output Places // Petri Net Newsletter, Vol. 64, April 2003, p. 3-6, Cover Picture Story.

<u>Опубликовано:</u> Системні дослідження та інформаційні технології, 2005, №2, с. 131-143.