EEC133 Lab 1 Report

Tao Wang

October 28, 2024

Contents

Part 1	1
Part 2	2
Step 1	2
Step 2	2
Short Circuit S-Parameter	2
Open Circuit S-Parameter	3
50Ω Load Circuit S-Parameter	
Part 3	5
Step 1	5
•	6
•	6
Step 4	7
Part 4	7
1	7
	7
	7
	7

Part 1

Figure 1: Dipole Antenna

Part 2

Step 1

Step 2

Cable Length: 25 inches long

Short Circuit S-Parameter

Figure 2: S_{11} in a Short Circuit Transmission Line

Figure 3: Reactance of \mathcal{S}_{11} in a Short Circuit Transmission Line

Open Circuit S-Parameter

Figure 4: S_{11} in a Open Circuit Transmission Line

Figure 5: Reactance of \mathcal{S}_{11} in a Open Circuit Transmission Line

50Ω Load Transmission Line S-Parameter

Figure 6: S_{11} in a 50Ω Load Transmission Line

Figure 7: Reactance of S_{11} in a 50Ω Load Circuit Transmission Line

Part 3

Step 1

Figure 8: Dipole Antenna's S_{11} Magnitude

Figure 9: Dipole Antenna's Real Part of S_{11}

Figure 10: Dipole Antenna's Imaginary Part of \mathcal{S}_{11}

Step 2 Distance between the two antennas: 10 feet.

Step 3

Angle (degrees)	S_{21} (dB)
0	-48.0
10	-53.0
20	-50.0
30	-54.8
40	-53.0
50	-45.0
60	-45.04
70	-48.0
80	-54.0
90	-64.0
100	-55.0
110	-47.0
120	-44.0
130	-44.0
140	-44.6
150	-45.6
160	-48.0
170	-50.0
180	-56.0

Table 1: S_{21} values at different angles

Step 4

 $S_{21} = -64dB$

Part 4

- 1
- $\mathbf{2}$
- 3
- 5