

Modelling of Digital Radar

Chalmers University of Technology

Presentation June 12, 2015

Setup

Setup

Data handling

Propagation module Sequence diagram

Simulation of wave propagation against target SágaPropagationModule WavePropagationRadarEquation TargetModel(s) ReadTxFile time Time Position, velocity, swirling Transmitted wave matfile with voltage, time Repeat for each pulse TargetModel(s) SágaPropagationModule WavePropagationRadarEquation ReadTxFile

Rx module Sequence diagram

Tx module Sequence diagram

Signal after Rx

Sampling of signal

convert to baseband

LP filter and rangebinrate ("Fålltakt")

Rescaled

${\sf Sampled} \ {\sf Rx}$

Sampled Rx high power input, cutoff

Correlation of signal

Correlation of signal Real

$\begin{array}{ll} \mbox{Doppler plot} \\ \mbox{$\sigma=1$m$}^2, \mbox{$100$m/s}, \mbox{$128$ pulse} \end{array}$

Doppler plot

 $\sigma=1 {
m m}^2$, 100m/s, 128 pulse and clutter echo from target with $\sigma=1e6 {
m m}^2$

What's next?

- Check least detectable input power
- Different scenarios

First title

First title

First title

