1

Logical Expression through IDE

Md. Naveed Ahmed

Contents	3	SOLUTION:

1	1 Abstract 2 Components		1	3.1 Theoretical Solution	
2			1	Based on Demorgans Law	
3	Soluti	ion:	1		
	3.1	Theoretical Solution	1	$\overline{AB} = \overline{A} + \overline{B}$	(1)
4	Proce	edure	1		, ,
	4.1	LED Blinking	1	_	
	4.2	Truth table for Boolean Logic	2	$\overline{A} = A$	(2)

1 Abstract

In the ciruit A,B,C and D are digital inputs, Y is digital output. The equivalent circuit shows the logical expression Y=AB+CD.

Fig. 1: Y=AB+CD

As per the boolean circuit A,B,C and D are inputs and Y is the output. The equivalent expression of the boolean logic is

$$Y = \overline{\overline{AB}.\overline{CD}}$$

By using equation(1) then the output Y is

$$Y = \overline{\overline{AB}} + \overline{\overline{CD}}$$

Again by using equation(2) then the output Y is

$$Y = AB + CD$$

2 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment		1
Display		
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

TABLE I

4 Procedure

4.1 LED Blinking

- 1) Connect Arduino ground to the led resistor end
- 2) Connect Arduino 13 pin to the LED Positive
- 3) Execute the following code
- 4) Observe the results as per below TABLE III by changing input values

4.2 Truth table for Boolean Logic

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

TABLE II

Observe the circuit and verify the program by executing the link provided below.

https://github.com/naveed790/FWC/assembly