

Taller, Límites de funciones en Cálculo 11°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	Curso:	_ Fecha:
---------	--------	----------

Introducción

Materiales: Regla, escuadra, calculadora, esferos o lápices de diferentes colores.

1. Grafica cada una de las siguientes funciones definidas en el conjunto de los números Reales:

a)
$$y = f(x) = 2x + 1$$
 b) $y = g(x) = x^2 - 4$ c) $y = h(x) = x^3 - 2x$

b)
$$y = g(x) = x^2 - 4$$

$$c) y = h(x) = x^3 - 2x$$

2. En la siguiente recta numérica, escoge un par de unidades consecutivas y cada una divídelas en 10 partes iguales. Coloca el número correspondiente a cada división. ¿Cuáles serían los números si cada unidad es dividida en 100 partes iguales?

3. A continuación encontrarás dibujadas dos rectas. Traza perpendiculares por los puntos dibujados

4. Consideremos la función definida mediante la expresión $y = j(x) = 4 - x^2$. Observemos los valores del recorrido (y) cuando los del dominio (x) están cerca de 1. Para ello:

a) Elaboramos una tabla de valores donde se observen los valores de "y" cuando los de "x" se están acercando a 1:

	Por la izquierda de 1				Por la derecha de 1			
	\longrightarrow							
\overline{x}	0.97	0.98	0.99	1	1.01	1.02	1.03	
\overline{y}								

b) Construimos su gráfica conectando mediante segmentos de rectas, los elementos del Dominio próximos a 1, con su correspondiente elemento del recorrido:

- c) Hacia que valores se aproximan los de "y", cuando los de "x" se acercan a 1?
- d) Observemos que ocurre gráficamente. Para ello haz cuatro gráficas de la función. En cada una de ellas:
 - Dibuja en el eje "y", una de las siguientes vecindades del 3: $V_1(3)$, $V_{\frac{1}{2}}(3)$, $V_{\frac{1}{4}}(3)$ y $V_{\frac{1}{10}}(3)$. (Vecindad $V_{\frac{1}{2}}(3)$ significa que cerca de tres se construye una vecindad de radio $\frac{1}{2}$, es decir de radio 0.5; tenemos entonces el invervalo abierto (-2.5,3.5))
 - Escoge varios puntos de la vecindad (pueden ser dos, por encima y por debajo de 3). Levanta en cada uno de ellos una perpendicular que llegue hasta la gráfica. A continuación, traza desde aquí, otra perpendicular que llegue hasta el eje "x".
 - lacktriangle ¿Dentro de qué vecindad quedan los puntos de los extremos de los segmentos que llegan hasta el eje "x"?

- ¿Qué pasa cuando la vecindad es más pequeña?
- 5. De lo anterior, podemos darnos cuenta que no importa la vecindad de 3 que escojamos, que siempre tendremos una vecindad (del número 1) en el eje "x" dentro de la cual se encuentran los valores del dominio próximo a él, pero que cuanta más pequeña sea la vecindad escogida en el eje "y", más cercanos al número 1 estarán los valores de "x". Ver gráficos:

La situación anterior es descrita en matemáticas diciendo que el Límite de la función $j(x) = 4 - x^2$, cuando x esta próxima (o tiende) a 1, es igual a 3. También suele decirse que "j(x) tiende a 3, cuando x tiende a 1" y se escribe:

$$\lim_{x \to 1} j(x) = 3$$