Computational design

HARMONY HOMES

A PROJECT BY SHERLOCK HOMES

Suzanne Erenst, Lapo den Hollander, Bart Koppejan // BK7083 // 2024 // TUDelft

Contents

Design Process

01

Initialization

02

Shaping

03

Analyses

04

Growing

05

Plans

06

Facade

Assignment

Computationally designed

Well-connected to surroundings

Students

Starters

Content Analysis

Design Principles

Connect Yellow route

Keep noise sensitive functions away from noisy areas

Open space in front of entrances from clubs

Shared semi-private areas

Atrium to get light into the building

two towers

Rainwater harvesting

Program Of Requirements

Housing Requirements

Student units: 400 units

Studios:

- With bathroom and kitchen
- $> 25 \text{ m}^2$

Multi-units:

- Shared bathroom, kitchen and living room
- 8 students per unit
- $> 25 \text{ m}^2$

Elderly units: 200 units

- 50-80 m²
- Dependent eldery connected to care center
- Accessible by elevator
- Exterior space with sunlight

Starter units: 200 units

- Accessible by stroller
- 25 m² per person
- up to two adults and 2 children
- With a bathroom, kitchen, 3 room apartment

Additional Requirements

Mobility

- 1.33 private bike parking spot per resident
- 0.8 private car parking spot per dwelling
- 10 publicly accesible bike parking spots per 200 m² of other programs
- 4 publicly accessible car parking spots per 200 m² of other programs

Environment

- Area for greenery equal to total plot surface area
- System for rain water harvesting in the building

Surroundings

- No blind facades on ground level
- Preserve existing functions of surroundings
- Keep biergarten intact
- Distance of 10 meter to other facades

Computational goals

- Minimise blocking of sunlight on other buildings
- Maximise social integration
- Balance between privacy and community

REL Chart

					Independent	dependent		Supermarket							
	Housing	Starter	Student	Private	elderly	elderly	shared	and	Care center		Loading dock-			Public	
	entree	houses	houses	parking	houses	houses	workspaces	stockroom	elderly	Cafe	supermarket	gym	Outside	parking	
Housing entree	self		5	5	1 5	5 !	5	3 2	. 3	1	1	2	2	2 1	
Starter houses	5	Self		3	4 3	3	3	3 2	. 1	2	1	2	3	3 2	
Student houses	5	5	3 Self		3	2	2	1 2	. 1	3	1	2	2	2 1	
Private parking	4	1	4	3 Self	4	1	3	1 1	. 1	1	1	1	2	2 1	
Independent elderly houses	5	5	3	2	4 Self	4	1 2	2 4	3	2	1	2	3	3 2	
dependent elderly houses	5	5	3	2	3	4 Self	2	2 4	4	2	1	2	3	3 2	
Shared workspaces	3	3	3	4	1 2	2	2 Self	2	. 2	2	1	2	2	2 3	
Supermarket and stockroom	2	2	2	2	1	1 4	1 2	2 Self	4	3	5	3	2	2 4	
Care center elderly	3	3	1	1	1 3	3	1 2	2 4	Self	2	1	3	4	3	
Cafe	1	1	2	3	1 2	2	2	2 3	2	Self	3	3	3	3	
Loading dock- supermarket	1	1	1	1	1 1	1	1 1	1 5	1	3	Self	2	3	3 2	
Gym	2	2	2	2	1 2	2	2 2	2 3	3	3	2	Self	3	3 4	
Outside	2	2	3	2	2	3	3	2 2	4	3	3	3	Self	2	
Public parking	1	1	2	1	1 2	2	2	3 4	3	3	2	4	2	Self	

Building enveloppe

Shaped by

- Yellow route from biergarten
- Amount of floors
- Voxelsize
- Threshold values for sun and shadow analysis

Sunlight analysis

Shadow Casting Analysis

nd = amount of sunhours for day d

1/nd = shadow contribution score for voxel

Blocking score

Shadow contribution score

Distance to core analysis

Closeness to ground analysis

Function Growing

Find Shape

Procedurality

Variables:
Voxel width
Voxel height
Amount of floors
Sun hits minimum
Shadow contribution maximum
Floor area per function
Weights
"flatness"

Minimum and maximum radius windows topfloor and first floor

1:500 /

Tower 1:200 ->

Module plans 1:100 →

Student home ~ 25 m²

Elderly home ~ 56 m²

Concept


```
r min,top
r max,top
r min,firstfloor
r max,firstfloor
area = pi * r2
n_windows = ceil(Ae / area)

Ae = Ad * Cb
Ad = total_area * (1 - 0.6 / floorheight)
Cb = 0.7
```


Tiles

Final project

Thank You

