### Lab Book

Cientific Iniciation - Coral Metagenomes Letcia Costa Cavalcante

> Pedro Meirelles Institute of Biology - UFBA

> > 2018

## Sumário

| 1  | May 2018                                          |   |  |  |
|----|---------------------------------------------------|---|--|--|
|    | 1.1 13                                            |   |  |  |
|    | 1.1.1 Learning LaTeX                              |   |  |  |
|    | 1.1.2 Math environment                            |   |  |  |
|    | 1.1.3 15 - Short-term project proposal            |   |  |  |
| 2  | Creation of data base of metagenomes and genomes  | ( |  |  |
|    | 2.1 28                                            |   |  |  |
|    | 2.1.1 Bibliographic search for genomes            | 1 |  |  |
|    | 2.2 28                                            | 1 |  |  |
|    | 2.2.1 Bibliographic search for metagenomes        | 1 |  |  |
| 3  | Download of metagenomes                           | 1 |  |  |
|    | 3.1 Download of mg-rast files                     | 1 |  |  |
|    | 3.2 Download of NCBI metagenomes                  | 1 |  |  |
| 4  | Format Conversion of NCBI metagenomes             |   |  |  |
| 5  | Adaptacao dos identificadores                     |   |  |  |
| 6  | Quality filter                                    |   |  |  |
| 7  | Uniformity filter (size and N bases)              | 2 |  |  |
|    | 7.1 Command line                                  | 2 |  |  |
| 8  | Profilling metagenomes                            | 2 |  |  |
|    | 8.1 Mg-Rast metagenomes                           | 2 |  |  |
|    | 8.2 Kraken-biom                                   | 6 |  |  |
|    | 8.3 Teste com o kraken no scratch                 | 2 |  |  |
|    | 8.4 Profiling no Atlantico com a ajuda do Rilquer | 2 |  |  |
|    | 8.5 Analises e obtencao de figuras                | 4 |  |  |
| 9  | Functional annotation of metagenomes              | 3 |  |  |
| 10 | references                                        | 3 |  |  |
|    | Softwares, instalação e linhas                    | 3 |  |  |
| 11 | Softwared instalaced a linkas                     |   |  |  |

| 12 Fundamentos teoricos | 36 |
|-------------------------|----|
| 13 meetings             | 37 |

## May 2018

#### 1.1 13

#### 1.1.1 Learning LATEX

- Working folder: path

LATEX is a high-quality typesetting system, available as free software, which allows to produce scientific or technical documents [?]. I am using LATEX to create a Bioinformatics Lab Book. To compile my Lab Book, I can use command lines (pdflatex and bibtex). Afterwards I can visualise the produced .pdf file with evince or another reader. Alternatevily, I can use a Latex editor, such as TexWorks (https://www.tug.org/texworks/), which allows me to write the code and control the pdf file in the same environment (Figure 1.1).

To compile the .tex file in the command line:

\$pdflatex lab-book \$bibtex lab-book \$pdflatex lab-book \$pdflatex lab-book

To visualise the .pdf:

\$evince lab-book.pdf &



Figura 1.1: TexWorks editor (https://www.tug.org/texworks/) layout in a Linux machine.

#### 1.1.2 Math environment

This is the equation environment, which numbers equations:

$$F(x) = \int_{b}^{a} \frac{1}{3}x^{3} \tag{1.1}$$

This is the align environment, without numbering equations (uses package amsmath):

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$F(x) = \int_{b}^{a} \frac{1}{3}x^{3}$$

### 1.1.3 15 - Short-term project proposal

Some text here. Incluing and referencing a table (table 1.1).

- $\bullet\,$  First numbered list item
- Second numbered list item

Tabela 1.1: table0

| species   | changes | score |
|-----------|---------|-------|
| Macaque   | 4       | 0.0   |
| Human     | 2       | 14.9  |
| Orangutan | 0       | 0.0   |
| Pan       | 0       | 0.0   |
| Gorilla   | 0       | 0.0   |

## Creation of data base of metagenomes and genomes

#### 2.1 28

#### 2.1.1 Bibliographic search for genomes

Found a new possibility of phyla list. Because of this, there are four possibilities of list of microorganisms phyla, one of them, the SILVA database, is based in RNA sequences:

- The list of Prokariotic names with stading nomenclature http://www.bacterio.net/-classifphyla.html
- SILVA database LSU(large subunit of ribosome) https://www.arb-silva.de/browser/lsu/
- SILVA database SSU(small subunit of ribosome) https://www.arb-silva.de/browser/ssu/
- PATRIC GENOMES https://www.patricbrc.org/view/Taxonomy/2#view\_tab= taxontree

The list of articles used until now is:

- 10.1038/nature14486
- 10.1038/ismej.2013.111
- 10.1038/ismej.2013.174
- 10.1038/ismej.2016.43
- 10.1038/nature12352
- 10.1038/nature14486
- 10.1038/nature21031
- 10.1038/ismej.2015.233

- 10.1038/ncomms13219
- $\bullet$  10.1073/pnas.0801980105
- 10.1111/1462-2920.13362
- 10.1126/science.1132690
- 10.1186/s40168-015-0077-6

Tabela 2.1: table 1

| DOI                           | DI I                          |
|-------------------------------|-------------------------------|
| DOI                           | Phylum                        |
| 10.1038/nature14486           | Candidatus Falkowbacteria     |
| 10.1038/nature14486           | Candidatus Kuenenbacteria     |
| 10.1038/nature14486           | Candidatus Magasanikbacteria  |
| 10.1038/nature14486           | Candidatus Uhrbacteria        |
| 10.1038/nature14486           | Candidatus Moranbacteria      |
| 10.1038/nature14486           | Candidatus Azambacteria       |
| 10.1038/nature14486           | Candidatus Yanofskybacteria   |
| 10.1038/nature14486           | Candidatus Jorgensenbacteria  |
| 10.1038/nature 14486          | Candidatus Wolfebacteria      |
| 10.1038/nature 14486          | Candidatus Giovannonibacteria |
| 10.1038/nature 14486          | Candidatus Nomurabacteria     |
| 10.1038/nature 14486          | Candidatus Campbellbacteria   |
| 10.1038/nature 14486          | Candidatus Adlerbacteria      |
| 10.1038/nature 14486          | Candidatus Kaiserbacteria     |
| 10.1038/nature14486           | C. S. yataiensis              |
| 10.1038/nature14486           | Pacebacteria                  |
| 10.1038/nature14486           | Candidatus Collierbacteria    |
| 10.1038/nature14486           | Candidatus Beckwithbacteria   |
| 10.1038/nature14486           | Candidatus Roizmanbacteria    |
| 10.1038/nature14486           | Candidatus Saphirobacteria    |
| 10.1038/nature14486           | Candidatus Amesbacteria       |
| 10.1038/nature 14486          | Candidatus Woesebacteria      |
| 10.1038/nature14486           | Candidatus Gottesmanbacteria  |
| 10.1038/nature14486           | Candidatus Levybacteria       |
| 10.1038/nature14486           | Candidatus Daviesbacteria     |
| 10.1038/nature14486           | Candidatus Curtissbacteria    |
| 10.1038/nature 14486          | WWE3                          |
| 10.1038/nature14486           | CPR3                          |
| 10.1038/nature 14486          | WS6                           |
| 10.1038/nature14486           | Candidatus Berkelbacteria     |
| $10.1038^{'}$ /nature $14486$ | Candidatus Peregrinibacteria  |
| 10.1038/nature 14486          | Candidatus Gracilibacteria    |
| $10.1038/{ m nature} 14486$   | CPR2                          |
| 10.1038/nature14486           | Kazan                         |
| 10.1038/nature14486           | Saccharibacteria (TM7)        |
| $10.1038/{ m nature} 14486$   | SR1                           |
| 10.1038/ncomms13219           | Candidatus Kerfeldbacteria    |
| 10.1038/ncomms13219           | Candidatus Komeilibacteria    |
| 10.1038/ncomms13219           | Candidatus Andersenbacteria   |
| 10.1038/ncomms13219           | Candidatus Ryanbacteria       |
| 10.1038/ncomms13219           | Candidatus Niyogibacteria     |
| 10.1000/110011111010210       |                               |

| 40.40==1                                   | G 1.1                         |
|--------------------------------------------|-------------------------------|
| 10.1038/ncomms13219                        | Candidatus Tagabacteria       |
| 10.1038/ncomms13219                        | Candidatus Terrybacteria      |
| 10.1038/ncomms13219                        | Candidatus Vogelbacteria      |
| 10.1038/ncomms13219                        | Candidatus Zambryskibacteria  |
| 10.1038/ncomms13219                        | Candidatus Taylorbacteria     |
| 10.1038/ncomms13219                        | Candidatus Sungbacteria       |
| 10.1038/ncomms13219                        | Candidatus Brennerbacteria    |
| 10.1038/ncomms13219                        | Candidatus Spechtbacteria     |
| $10.1038 \rm /ncomms 13219$                | Candidatus Staskawiczbacteria |
| 10.1038/ncomms13219                        | Candidatus Wildermuthbacteria |
| 10.1038/ncomms13219                        | Candidatus Portnoybacteria    |
| 10.1038/ncomms13219                        | Candidatus Woykebacteria      |
| 10.1038/ncomms13219                        | Candidatus Blackburnbacteria  |
| 10.1038/ncomms13219                        | Candidatus Chisholmbacteria   |
| ·                                          | Candidatus Buchananbacteria   |
| 10.1038/ncomms13219                        | Candidatus Jacksonbacteria    |
| 10.1038/ncomms13219                        |                               |
| 10.1038/ncomms13219                        | Candidatus Veblenbacteria     |
| 10.1038/ncomms13219                        | Candidatus Nealsonbacteria    |
| 10.1038/ncomms13219                        | Candidatus Colwellbacteria    |
| 10.1038/ncomms13219                        | Candidatus Liptonbacteria     |
| 10.1038/ncomms13219                        | Candidatus Harrisonbacteria   |
| 10.1038/ncomms13219                        | Candidatus Yonathbacteria     |
| 10.1038/ncomms13219                        | Candidatus Lloydbacteria      |
| 10.1038/ncomms13219                        | Candidatus Abawacabacteria    |
| 10.1038/ncomms13219                        | Candidatus Doudnabacteria     |
| 10.1038/ismej.2013.111                     | Candidatus Poribacteria       |
| 10.1111/1462-2920.13362                    | Candidatus Desantisbacteria   |
| 10.1038/nature 12352                       | Candidatus Omnitrophica       |
| 10.1038/nature 12352                       | Candidatus Aminicenantes      |
| 10.1126/science.1132690                    | Candidatus Micrarchaeota      |
| $10.1038/{\rm nature} 14486$               | Candidatus Magasanikbacteria  |
| 10.1073/pnas.0801980105                    | Candidatus Korarchaeota       |
| 10.1038/nature12352                        | Candidatus Fervidibacteria    |
| 10.1038/nature12352                        | Candidatus Aenigmarchaeota    |
| 10.1038/ismej.2016.43                      | Candidatus Fermentibacteria   |
| 10.1038/ismej.2013.174                     | Candidatus Bathyarchaeota     |
| 10.1036/j.cub.2015.01.014                  | Candidatus Woesearchaeota     |
| , •                                        |                               |
| 10.1016/j.cub.2015.01.014                  | Candidatus Kryptonia          |
| 10.1038/nature12352                        | Candidatus Diapherotrites     |
| 10.1038/nature12352                        | Candidatus Latescibacteria    |
| 10.1038/nature21031 10.1038/ismej.2015.233 | Candidatus Thorarchaeota      |
| 10.1038/ncomms13219                        | Candidatus Lindowbacteria     |
| 10.1038/nature 12352                       | Candidatus Parvarchaeota      |
| 10.1038/nature12352                        | Candidatus Cloacimonetes      |
| 10.1038/nature 12352                       | Candidatus Hydrogenedentes    |
| 10.1038/nature 12352                       | Candidatus Acetothermia       |
|                                            |                               |

| 10.1038/nature 12352      |
|---------------------------|
| 10.1038/ncomms13219       |
| 10.1186/s40168-015-0077-6 |
| 10.1038/nature 21031      |
| 10.1038/nature 21031      |
| 10.1038/nature21031       |

Candidatus Nanohaloarchaeota Candidatus Eisenbacteria candidate division WOR-3 Lokiarchaeota Odinarchaeota Heimdallarchaeota

### 2.2 28

### 2.2.1 Bibliographic search for metagenomes

The reserarch for coral metagenomes started last year. The actual list is:

Tabela 2.2: table 1

| IDs                     |
|-------------------------|
| mgm4440319.3            |
| mgm4440370.3            |
| mgm4440371.3            |
| mgm4440372.3            |
| mgm4440373.3            |
| mgm4440374.3            |
| mgm4440375.3            |
| mgm4440376.3            |
| mgm4440377.3            |
| mgm4440378.3            |
| mgm4440379.3            |
| mgm4440380.3            |
| mgm4440381.3            |
| mgm4445755.3            |
| mgm4445756.3            |
| mgm4480739.3            |
| mgm4480740.3            |
| mgm4480741.3            |
| mgm4480748.3            |
| mgm4480750.3            |
| mgm4487909.3            |
| mgm4487910.3            |
| mgm4487911.3            |
| mgm4516541.3            |
| $\mathrm{mgm}4516694.3$ |
| mgm4653307.3            |
| mgm4694757.3            |
| mgm4694758.3            |
|                         |

mgm4694759.3mgm4694760.3SRR1275409 SRR1275449 SRR1283349 SRR1283371 SRR1283377 SRR1283433 SRR1283435 SRR1283437 SRR1286223 SRR1286225 SRR1286226 SRR1286227 SRR1286229 SRR1286232 SRR1822488 SRR1822516 SRR3499156 SRR3569370 SRR3694369 SRR3694370 SRR3694371 SRR3694372 SRR5215424 SRR5215454 SRR5215455 SRR5215456 SRR5215457 SRR5215458 SRR5215462

I found these metagenomes in the article: "Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont"

SRR5605611

SRR2937345 SRR2937346 SRR2937347 SRR2937348 SRR2937350 SRR2937351 SRR2937351 SRR2937353 SRR2937354 SRR2937355 SRR2937356

Espcie: Platygyra carnosa Healthy

I found other metagenomes of coral from article doi 10.3389/fmars.2018.001011 uptated the file pmc\_results\_1.txt in the repository Lab\_book. I continue to look the articles in results. Estou atualizando a lista pmc\_results\_2.txt Na pesquisa bibliografica olhando o ttulo ja me faz perceber se devo descartar e olhar. E olho aqueles que marquei para olhar. Ao olhar, leio o resumo procurando por metodos. E vou para os metodos do artigo para checar. Checking the sizes of metagenomes files. The mg-rast metagenomes base have 72 Gb.

The pipeline of bioinformatic is different for MGRAST and NCBI. The size of NCBI should be superestimated, because the ncbi says the file size of sra file, but most of them is paired-end metagenomes, so when we apply fastq-dump, its generate two files fastq.

## Download of metagenomes

### 3.1 Download of mg-rast files

Espao no SDU Disponvel para o ebiodiv: 10Tb Bia: 5Tb Rilquer: 2T Remanescente: 3Tb

- Working folder:  $scratch/ebiodiv/leticia.cavalcante/mg\_rast$ 

I insert the list of metagenomes in the files before using it. After this, I used the following command line:

- Command: nohup bash download\_curl\_mgrast\_corais.sh  $_{\dot{c}}$  download\_curl\_mgrast\_corais.nohupout &

### 3.2 Download of NCBI metagenomes

I use the script download\_sra\_wget\_corais.sh, libs folder. I used the wget, because the curl is getting some problem in SDU. I noted that the size of the files is different:

Tabela 3.1: Comparing sizes of files

| ID of metagenome | the size in NCBI site   | size of file in SDU |
|------------------|-------------------------|---------------------|
| SRR6785058       | $317.00 \; \mathrm{Mb}$ | 318M                |
| SRR6785057       | $364.00 \; \text{Mb}$   | 365M                |
| SRR6785056       | $560.00 \; \mathrm{Mb}$ | 561M                |
| SRR6785055       | 624.00  Mb              | 625M                |

So I checked the others files:

A Bia me informou que o SDU arrendonda os valores de tamanho dos arquivos, entao at o momento nao tive problemas com o download dos arquivos do mg\_rast

Tabela 3.2: Comparing sizes of files 2

| ID of of a reason a | the size in NCBI site | size of file in SDU | size of cleanned file |
|---------------------|-----------------------|---------------------|-----------------------|
| ID of metagenome    | 30M                   | 29.1 MB             | 28M                   |
| mgm4440319.3.299.1  |                       |                     |                       |
| mgm4440370.3.299.1  | 3,6M                  | 3.5 MB              | 3,5M                  |
| mgm4440371.3.299.1  | 5,0M                  | 4.9 MB              | 4,8M                  |
| mgm4440372.3.299.1  | 6,0M                  | 6.0 MB              | 5,9M                  |
| mgm4440373.3.299.1  | 6,2M                  | 6.1 MB              | 6,0M                  |
| mgm4440374.3.299.1  | 4,1M                  | 4.1 MB              | 4,0M                  |
| mgm4440375.3.299.1  | 3.8M                  | 3.7 MB              | 3.7M                  |
| mgm4440376.3.299.1  | 3.9M                  | 3.9 MB              | 3.8M                  |
| mgm4440377.3.299.1  | 3,5M                  | 3.5  MB             | $3{,}4M$              |
| mgm4440378.3.299.1  | 6,2M                  | 6.2 MB              | $6{,}1M$              |
| mgm4440379.3.299.1  | $7{,}0M$              | $7.0~\mathrm{MB}$   | $6{,}9M$              |
| mgm4440380.3.299.1  | $5{,}2M$              | 5.2  MB             | $5{,}2M$              |
| mgm4440381.3.299.1  | $6{,}4M$              | $6.4~\mathrm{MB}$   | $6{,}4M$              |
| mgm4445755.3.299.1  | 158M                  | 157.0  MB           | 155M                  |
| mgm4445756.3.299.1  | 150M                  | 149.9  MB           | 147M                  |
| mgm4480739.3.299.1  | $8{,}0M$              | 7.9  MB             | $7{,}9M$              |
| mgm4480740.3.299.1  | 12M                   | 11.3 MB             | 12M                   |
| mgm4480741.3.299.1  | 8,5M                  | 8.5  MB             | 8,5M                  |
| mgm4480742.3.299.1  | 10M                   | 12.9  MB            | 10M                   |
| mgm4480743.3.299.1  | 15M                   | 10.0  MB            | 14M                   |
| mgm4484839.3.299.1  | 13M                   | 14.1 MB             | 13M                   |
| mgm4487909.3.299.1  | 17M                   | 16.5  MB            | 17M                   |
| mgm4487910.3.299.1  | 36M                   | 35.6  MB            | 36M                   |
| mgm4487911.3.299.1  | 12M                   | 11.4 MB             | 12M                   |
| mgm4516541.3.299.1  | 161M                  | $160.2~\mathrm{MB}$ | 163M                  |
| mgm4516694.3.299.1  | 193M                  | 192.9 MB            | 193M                  |
| mgm4653307.3.299.1  | 17M                   | $16.0~\mathrm{MB}$  | 17M                   |
| mgm4694757.3.299.1  | 1,9G                  | 1.8 GB              | 1.9G                  |
| mgm4694758.3.299.1  | $2{,}2G$              | $2.1~\mathrm{GB}$   | $2{,}2G$              |
| mgm4694759.3.299.1  | 1,7G                  | $1.7~\mathrm{GB}$   | 1,8G                  |
| mgm4694760.3.299.1  | 592M                  | 1.6 GB              | 597M                  |

# Format Conversion of NCBI metagenomes

Adaptei o script da Bia para fazer a conversao do dos arquivos .sra Inicialmente submeti apenas um na cpu\_dev para testar:

Script: teste\_slurm\_job\_fastq\_dump\_corais.sh

Numero do job: *220896* 

Deu certo.

O Rilquer me ajudou a criar um script que cria jobs de anotacao com o kraken2 para cada dois metagenomas.

O nome do script 'creatijobfile.sh', ele unir dois scripts: 'header' e 'ending' Adaptei para criar jobs do fastq-dump para cada 2 arquivos .sra, haja visto que no tenho uma boa ideia do quanto cada fastq-dump demorar.

Jobs submetidos dia 27/09/2018:

- job\_0.sh job 221475
- job\_100.sh job 221476
- job\_102.sh job 221477
- job\_104.sh job 221478
- job\_106.sh job 221480
- job\_108.sh job 221481
- job\_10.sh job 221482
- job\_110.sh job 221483
- job\_112.sh job 221484
- job\_114.sh job 221485

- job\_116.sh job 221486
- job\_118.sh job 221487
- job\_120.sh job 221488
- job\_122.sh job 221489
- job\_124.sh job 221490
- job\_126.sh job 221493
- job\_12.sh job 221495

#### Jobs submetidos dia 09/10/2018:

- $\bullet$  job\_14.sh slurm 226902
- job\_16.sh slurm 226903
- job\_18.sh slurm 226904
- $\bullet$ job\_20.sh slurm 226905
- job\_22.sh slurm 226906
- $\bullet$  job\_24.sh slurm 226907
- $job_26.sh slurm 226908$
- job\_28.sh slurm 226909
- $\bullet$  job\_2.sh slurm 226910
- job\_30.sh slurm 226911
- job\_32.sh slurm 226912

#### Jobs submetidos dia 19/10/2018:

- job\_34.sh slurm 231744
- $job_36.sh slurm 231745$
- $\bullet$  job\_38.sh slurm 231746
- job\_40.sh slurm 231747
- job\_42.sh slurm 231748
- job\_44.sh slurm 231749
- $job_46.sh slurm 231750$
- job\_48.sh slurm 231751

- $\bullet \ \, \text{job\_4.sh}$  slurm 231752
- $\bullet \ \, \text{job\_50.sh}$  slurm 231753
- $\bullet \ \, \text{job\_52.sh}$  slurm 231754
- $\bullet \ \, \text{job\_54.sh}$  slurm 231755

## Adaptacao dos identificadores

Esse passo fez-se necessrio nas anlises anteriores, pois quando eu fazia a limpeza, os arquivos de outputs que saiam eram apenas os singletons. The output files were named as SRAXXX\_good\_singletons\_1 and SRAXXX\_good\_singletons\_2 and there arent any other output files beyond these and the files with bad sequences. O Pablo fez a seguinte sugesto:

```
cat SRR1275409_pass_1.fastq | sed -r 's/(SRR1275409.[0-9]+)
.([0-9]+)/\1_left/' > SRR1275409_pass_1.corr.fastq

cat SRR1275409_pass_2.fastq | sed -r 's/(SRR1275409.[0-9]+)
.([0-9]+)/\1_right/' > SRR1275409_pass_2.corr.fastq
```

## Quality filter

This step is only required for NCBI metagenomes. The command line was proposed by Bia:

- trim\_qual\_left 25
- $\bullet$  trim\_qual\_right 25

## Uniformity filter (size and N bases)

#### 7.1 Command line

#### Parameters:

- min\_len 80
- $ns_max_p 2$
- out\_format 1
- Command: nohup bash slurm\_job\_prinseq\_single\_corais\_FASTA.bash & slurm\_prinseq\_corais.out &

Deu erro o job nohup: ignorando entrada

Location of PRINSEQ dir and scripts: /scratch/app/prinseq/0.20.4/bin srun Warning: can't run 1 processes on 21 nodes, setting nnodes to 1 srun Requested partition configuration not available now srun job 212425 queued and waiting for resources srun Force Terminated job 212425 srun Job has been cancelled srun error: Unable to allocate resources: No error srun Warning: can't run 1 processes on 21 nodes, setting nnodes to 1 srun Requested partition configuration not available now srun job 212428 queued and waiting for resources srun Force Terminated job 212428 srun Job has been cancelled

#### Ressubmeti o job com:

- Command: sbatch slurm\_job\_prinseq\_single\_corais\_FASTA.bash

Figura 7.1: Erro no job no SDU

## Profilling metagenomes

### 8.1 Mg-Rast metagenomes

I used the following script in the following folder:

- Folder:  $scratch/ebiodiv/leticia.cavalcante/mg\_rast/filtered\_prinseq\_good$
- Command: sbatch slurm\_job\_kraken2\_corais.sh

The job doesn't work, o erro aparece na proxima figura

Ressubmeti o job, modificando a localizaca<br/>o da DB do Kraken para a home do Rilquer. Numero do job<br/>:  $216410\,$ 

Esse problema foi resolvido modificando o endereco da base para o scratch do Rilquer.

#### 8.2 Kraken-biom

Pasta onde est instalado kraken-biom:

/home/leticia/.local/bin

Para executar: python2.7 .kraken-biom

Executar o help do kraken-biom:

kraken-biom -h

Abrir no vim o arquivo .bashrc e inserir: export PATH=\$PATH:/home/leticia/.local/bin/kraken-biom

Executar o help do kraken-biom:

kraken-biom -h

Eu fiz um teste da etapa "Creation of BIOM table of abundances" da pipeline da bia com os seguintes passos: Na pasta /home/leticia/Documentos/libs/leticia\_profiling\_metagenomes:

- kraken-biom selected\_file -o table.biom -max D -min P
- biom convert -i table.biom -o table.from\_biom\_with\_taxonomy.txt -to-tsv -header-key taxonomy



Figura 8.1: 20 erro no job no SDU

• perl filterRank.pl input table.from\_biom\_with\_taxonomy.txt -rank p ; abundance.matrix

#### 8.3 Teste com o kraken no scratch

Linha de teste:

perl select Groups.pl input mgm4440370\_prinseq\_good\_SiDP.fasta\_kraken.report –file\_groups groups.txt  $\+i$  selected\_file

- First Command:  $sbatch\ slurm\_job\_kraken2\_corais.sh$
- Second Command:

 $kraken2-db\ /prj/ebiodiv/rilquer.silva/Serrapilheira \\ /Kraken2\_custom\_DB/\ mgm4440370\_prinseq\_good\_SiDP.fasta$ 

- $-output\ mgm4440370\_prinseq\_good\_SiDP.fasta\_kraken.profiled$
- -use-names -report mgm4440370\_prinseq\_good\_SiDP.fasta\_kraken.report

Ja testei o comando acima na home do SDU e agora no scratch



Figura 8.2: Pipeline of taxonomic annotation

### 8.4 Profiling no Atlantico com a ajuda do Rilquer

O Rilquer fez um script que automatiza o processo, em que a limpeza e anotacao ocorrem simultanetamente. Fiz um teste com esse script para um metagenoma com a seguinte linha:

- Comand: taxon profiling -s mgm4440378.3.299.1 -f MGRAST -k  $/home/pedro/-Kraken2\_custom\_DB$ 

- Script: taxonprofiling

- Folder: /fsprofpedro/holobionts/mgrast

- Para chamar o script: taxonprofiling

#### Sairam 4 outputs:

- $\bullet$  mgm4440378\_kraken\_class
- mgm4440378\_kraken\_output
- mgm4440378\_kraken\_report
- mgm4440378\_kraken\_unclass

De acordo com a pipeline da Bia, o arquivo a ser usado e o report. Teste a seguir com a pasta com os metagenomas do mg-rast inteiro:

-Comand: taxon profiling -d /fsprofpedro/holobionts/mgrast -f MGRAST -k /home/-pedro/Kraken2\_custom\_DB

- Folder: /fsprofpedro/holobionts

No email do Rilquer, vi que tenho que submeter o job para uma fila que no tem acesso ao fsprofpedro. Ento criei uma pasta temporaria chamada mgrast\_temp, no home/pedro

- Job: profiling\_metagenomes\_corais\_mgrast.sh
- Folder temporario em que as amostras foram copiadas: /home/pedro/m-grast\_temp
- -Folder de submissao: /home/pedro/

Na pasta /fsprofpedro/holobionts, tem um exemplo de job chamado jobexample. Submissao:

-Folder de submissao: /home/pedro/mgrast\_temp

- Numero: 122283.atlantico

- Command: qsub profiling\_metagenomes\_corais\_mgrast.sh

### 8.5 Analises e obtencao de figuras

Apliquei o tutorial do professor para obteno de figuras no R para visualizao dos resultados.

- Script: analisys.R- Folder: /home/leticia/Documentos/libs/R

Figuras obtidas:



Figura 8.3: Anlise de componentes principais com todos os filos como variaveis

Na analise acima, as variaveis so muitas e ficam muito sobrepostas, fazendo com que haja grande poluicao visual. O professor recomendou em marco a utilizar uma analise de Random Forest, para que as variaveis mais importantes para os metagenomas que trabalho sejam ranqueadas. O random forest um algoritmo de machine learning que, a partir das duas categorias de sade (categorias de supervisao), elencar as variveis mais importantes para classificar as amostras nesses dois estados. o random forest abaixo su-



Figura 8.4: Random Forest ranqueando filos

Eu utilizei os 20 primeiros filos ranqueados para fazer o PCA. Segue esse PCA abaixo:



Figura 8.5: PCA com 20 filos utilizados no PCA

Uma tendencia se manteve: foi a separao das amostras por genero. Mas a poluicao visual ainda continuou, por isso fiz um random forest com os 15 primeiros filos indicados pelo random forest. Segue abaixo:



Figura 8.6: PCA com 15 filos como variaveis

Algumas tendencias tambem se mantiveram e a explicao dos eixos melhorou levemente. As amostras agrupadas no quadrante direito superior so mais diferentes das que esto no quadrante esquerdo do que das que esto no quadrante inferior direito. Na reuniao feita no dia 03/10/2018, o Amaro, o professor e Miguel me sinalizaram que existe uma separacao forte entre generos, indicando que os grupos candidatos podem ser genero específicos. Surgiu a sugesto de leitura de textos em core microbiome e específicidade de filos entre generos e o professor sugeriu fazer um random forest nao supervisionado que segue abaixo. O professor Garcia no congresso sugeriu utilizar os auto valores do PCA para ver quais podem ser mais relevantes (?).



Figura 8.7: Random Forest nao supervisionado

Fiz um p<br/>ca (libs/R/analisys.R) a partir dos primeiros 15 filos indicados no Random Forest na<br/>o supervisionado acima. Segue abaixo:



Figura 8.8: PCA a partir dos 20 filos primeiros filos que aparecem acima no random forest



Figura 8.9: PCA a partir dos 15 filos primeiros filos que aparecem acima no random forest nao supervisionado

# Functional annotation of metagenomes



Figura 9.1: Pipeline of functional annotation

### references

#### Articles list:

- 10.1371/journal.pone.0071301: Relata resultados que eu acreditava ter sido a primeira a encontrar
- 10.1038/nature14486: reconstruction of microorganism's genomes we use
- 10.1038/nmicrobiol.2016.48: three of life, including the Candidate Phyla Radiation
- 10.1146/annurev.micro.57.030502.090759: speaks about the uncultured majority of microorganisms
- 10.1038/ismej.2016.174: revision of rare biosphere
- 10.1038/nrmicro3400: another revision of rare biosphere
- 10.1126/science.1224041: metabolic activities of Candidatus Parcubacteria, one of super-phyla of CPR
- 10.1128/MMBR.00009-08: Revision of bioinformatic methods and steps for metagenomic
- 10.1186/s40168-018-0428-1: Sponge as holobiont. Note: This article has a important information about microbial ecology: "Network and modeling analyses aim to disentangle the strength and nature (positive, negative, or neutral) of the interactions and predict their dynamics. Bacteria-bacteria network analysis of the core microbiota in different sponge species has revealed a low connective network with very few strong and many weak unidirectional interactions (i.e., amensalism [/0] and commensalism [+/0] prevailed over cooperation [+/+] and competition [/]. These findings are consistent with mathematical models that predict that weak and non-cooperative interactions help to stabilize highly diverse microbial communities, whereas cooperation yields instability in the long term by fueling positive feedbacks"
- 10.1016/j.tim.2009.09.004: Microbial disease and the coral holobiont
- 10.3389/fmicb.2017.00618: Comparative Metagenomics of the Polymicrobial Black Band Disease of Corals

- 10.1038/nrmicro1643: The role of ecological theory in microbial ecology
- 10.1038/nrmicro3218: Explaining microbial genomic diversity in light of evolutionary ecology
- 10.1111/j.1462-2920.2009.01935.x: Metagenomic analysis of stressed coral holobionts
- 10.1038/nature06810: Functional metagenomic profiling of nine biomes
- 10.3389/fcimb.2014.00176: Microbes in the coral holobiont: partners through evolution, development, and ecological interactions
- 10.1038/ismej.2015.39: The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts
- 10.1111/j.1462-2920.2007.01383.x: Metagenomic analysis of the microbial community associated with the coral Porites astreoides
- 10.1038/nmicrobiol.2015.32: Metagenomics uncovers gaps in amplicon-based detection of microbial diversity
- 10.1038/ismej.2016.45: Challenges in microbial ecology: building predictive understanding of community function and dynamics
- 10.1111/j.1462-2920.2009.02113.x: Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies
- 10.1111/j.1758-2229.2010.00234.x:
- 10.1038/ismej.2011.116: Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

## Softwares, instalacao e linhas

### 11.1 Profilling metagenomes

## Fundamentos teoricos

## meetings

#### Instalar o kraken-biome

Folder: /home/leticia
Command: pip install kraken-biom
Site: https://github.com/smdabdoub/kraken-biom

#### Para atualizacao:

git commit git push origin master

#### Para transferencia:

 $maquina\ remota\ para\ local:\ scp\ leticia.caval cante@login.sdumont.lncc.br:/scratch/ebiodiv/leticia.caval cantegrate.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.gov.printer.$ /home/leticia/Documentos/dados