	16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3 11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6 14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7 19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3 16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7. 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9 22. 11.9] Print (boston.DESCR) Boston House Prices dataset Notes
	Example 2. Set Characteristics: :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive :Median Value (attribute 14) is usually the target :Attribute Information (in order): - CRIM
	:Creator: Harrison, D. and Rubinfeld, D.L. This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.
	The Boston house-price data has been used in many machine learning papers that address regression problems. **References** - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 198 0. 244-261. - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann. - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) import pandas as pd
3]:	bos = pd.DataFrame(boston.data) print(bos.head()) 0 1 2 3 4 5 6 7 8 9 10 \ 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 11 12 0 396.90 4.98 1 396.90 9.14 2 392.83 4.03 3 394.63 2.94 4 396.90 5.33 bos['PRICE'] = boston.target X = bos.drop('PRICE', axis = 1) Y = bos['PRICE'] print(bos.head())
	0 1 2 3 4 5 6 7 8 9 10 \ 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 11 12 PRICE 0 396.90 4.98 24.0 1 396.90 9.14 21.6 2 392.83 4.03 34.7 394.63 2.94 33.4 4 396.90 5.33 36.2
5]:	# applying column standardization on train and test data from sklearn.preprocessing import StandardScaler s=StandardScaler() X_data=s.fit_transform(np.array(X)) Y_data=s.fit_transform(np.array(Y).reshape(-1,1)) results=pd.DataFrame(columns=['sno', 'algo', 'alpha', 'init_lr_rate', 'n_iter', 'weight', 'intercept', 'error']) Applying manual SGD on Boston Dataset
7]:	<pre>def manual_sqd(alpha, lr_rate, n_iter): wj_plusl=np.zeros(shape=(1,13)) bj_plusl=0 n=1 r=lr_rate n iter=n iter while(n<=n_iter): wj=ylplusl bj=bj_plusl bj=bj_plusl w=np.zeros(shape=(1,13)) b=0 for i in range(10): # for getting the derivatives using sgd with k=10</pre>
	<pre>manual_error=mean_squared_error(Y_data,y_pred) print('error=',manual_error) print('************************************</pre>
:]:	Applying sklearn SGD on boston dataset import seaborn as sns import numpy as np from sklearn.linear_model import SGDRegressor def sklearn.sgd(alpha, lr_rate, n_iter): clf=SGDRegressor(alpha=alpha,eta0 = lr_rate, max_iter=n_iter) clf.fit(X_data, Y_data.ravel()) y_pred=clf.predict(X_data) #scatter plot plt.scatter(Y_data, y_pred) plt.title('scatter plot between actual y and predicted y') plt.ylabel('actual y') plt.ylabel('predicted y') plt.grid(b=True, linewidth=0.5) plt.show() #kdeplot
	<pre>sgd_error=mean_squared_error(Y_data,y_pred) print('mean sq error=', sgd_error) print('Maximum number of iteration=', n_iter) print('************************************</pre>
	Scatter plot between actual y and predicted y 0.015
	error= 0.9985375823741602 ************************************
	mean sq error= 0.29601678286263233 Maximum number of iteration= 1 ************************************
	results.loc[4]=[4, 'Manual_SGD', 0.0001,0.01,100, w, b, error] w,b,error=sklearn_sgd(alpha=0.0001,lr_rate=0.01,n_iter=100) results.loc[5]=[5, 'SKlearn_SGD', 0.0001,0.01,100, w,b,error] scatter plot between actual y and predicted y 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
	a -0.1 -0.2 -0.3 -2 -1 0 actual y error= 0.8763587488454847 **********************************
	mean sq error= 0.25963379106823126
.]:	Maximum number of iteration= 100 **********************************
	0.5 0.0 -0.5 -1.0 -1.5 -2 -1 0 actual y error= 0.5771405881414906
	scatter plot between actual y and predicted y 1 2 1 -2
2]:	mean sq error= 0.2594973128390944 Maximum number of iteration= 1000 *********************************
	scatter plot between actual y and predicted y 2 1 -1 -2
	-2 -1 0 i 2 3 error= 0.5310184235628574 ************************************
	mean sq error= 0.25939250646535666 Maximum number of iteration= 10000 *********************************
]:	Simple S
	<pre>for i in range(len(results)):</pre>
]:	From both above manual and sklearn SGD implementations, we can observe that as we increase the number of iterations upto 1000 the error value comes close to sklearn SGD error.But after 1000 iterations, the manual SGD error increases as the number of iterations increases. # code source:https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a8077 5ef from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt

In []: # Linear Regression Algorithm With Stochastic Gradient Descent
def linear_regression_sgd(train, test, l_rate, n_epoch):
 predictions = list()
 coef = coefficients_sgd(train, l_rate, n_epoch)

yhat = predict(row, coef)
predictions.append(yhat)

for row in test:

return (predictions)

In [67]: **from sklearn.datasets import** load_boston

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

import numpy as np

boston = load_boston()