Territor Indamon Harfour Space Milsermil In= p, t p t .. t fi swer y=r.v with pollowerd distribution p(pi=1)= f=p(yi=-1) Problem 1 jind solder g (Sn), where We know that vortance (Sa) = second central Proment = D(Sn), In is itself a rendom verieble

P(Sn) = E[Sn] - E[Sn]

We know, that E[Sn] = 0 since mean g a random

well a " compute E[Sn] = SSE (Digi) = = 2 1 (4·(1·1)+ f(1·(-1))+(-1·1)+(1·(1)) = 55 (0) = 0 : Est E [Di Ji] = (6), since Vi=j , & E[ni,nj]=f=> Elso] = FElyin, J=6 and rity Ecsnot=0 -> E(snot=1)=17

and
$$G(S_n) = Vou(S_n) = Vn$$

for number g steps = $3n$

$$G(S_n) = Von$$

$$G$$

Why pyroms = 3.4.(=(1) Veig = 3 - 3 - 3 = 45 P(B) = 0

 $C[1-f_3(x)]dx = \int [1-f_3(x)]dx + \int [1-f_3(x)]dx$ + SEI-FE(X)Jdx + SEI-FE(X)Jdx 0 = (1-P1)x, + (1-P2)x - (1-P1)x, + (f-P3)x3 - (f-P2)x2 + (f-P4)x4 - (f-P3)x3 = Xy - PYXY = p,x,+p+x2+p3x3+p4x4 - x4-pux4= = P1x1+P2x2+P3x3-X4

1/20 blen 4 Real Approach is horder and nove computations requires a) Play different begge in different years) = num g all cours Consider having a boday of routh n is the some so wen n=42 12 rough (chairs), we hower 12.11.10.9 - different variations Assumption: Every month is equiprobable, and p (blog in jon) = phall oner robm) So we have 12 chairs. Ist Person has 12 charces, Ind Person has 11 (since he does not went to sit in the some) and so on me will have 12-11.10.9 outcomes, for a rester A. thus |A| = 12.11.10.9 Now we want to celevilate 1521 here we have 1521 = 124 .. So P(ppl have blays in different months) = 12.11.10.9 B) Consider Again Propabilistic Model where each month is equipropoble, and we will look et this problem from the "cheil' perspective. So P(atleast two in one worth) = = P (num >2)= P(num=2)+P(num=3)+P(num=4)an/ P(min=1) = look at this as from the perspective two people already sit on the same chetr, and remaining three can sit on Any chein = = 1A1 = 11-11-12/121 Same for Plnum=3): [A]= 11-11-18 / []

$$P(num = 4) = 12 \cdot 11 \cdot / \cdot | \Omega |$$

$$P(num = 5) = 12 \cdot | A | \Omega |$$

$$= > P(A) = 12 \cdot | 11 \cdot | 11 + 12 \cdot | 11 \cdot | 11 + 12 \cdot | 12 + 11 \cdot | 12 \cdot | 1$$