ECE-S 632: Fundamentals of Stochastic DSP Prof. John Walsh

Zexi Liu Mar 1st, 2010

Electrical and Computer Engineering Drexel University

4.1 Project Proposal Write an abstract, complete with background references, on a statistical signal processing problem or problem area interesting to you and/or relevant to your job/research that you would like to investigate for your course project. The abstract is to ensure that your assignment matches your interests. Email me your abstract when it is ready. Over email, you and I will use the abstract to craft a specific mini-research problem of reasonable but limited scope.

The email was sent to Dr. Walsh on Mon 2/22/2010 9:55 PM.

Write a MATLAB program which calculates the order 20 forward linear prediction coefficients for a real valued wide sense stationary Gaussian process with mean zero and auto-correlation using the Levinson-Durbin algorithm. Also calculate the MSE of the order 20 linear predictor using the Levinson-Durbin algorithm, and compare it with an empirically observed MSE which you calculate by running the linear predictor on a length 10000 randomly generated sample from the given Gaussian random process and averaging the squared error.

The order 20 forward linear prediction coefficients:

The order	20 forward fillear prediction of		
Order	Coefficients		
1	0.726636900430018		
2	0.00626520788895617		
3	0.00412685827773906		
4	0.00271833907682490		
5	0.00179055519325446		
6	0.00117942905352016		
7	0.000776883662657109		
8	0.000511729304903103		
9	0.000337073719683742		
10	0.000222029256190734		
11	0.000146250425834925		
12	9.63358246606418e-05		
13	6.34581095886934e-05		
14	4.18028923690078e-05		
15	2.75404713240350e-05		
16	1.81485527615082e-05		
17	1.19661860704105e-05		
18	7.90002640694090e-06		
19	5.23097784495583e-06		
20	6.60879642726521e-06		

The MSE of the order 20 linear predictor (theoretical value):

Order	Coefficients		
0	0.800000000000000		
1	0.366957265248439		
2	0.366903263616263		
3	0.366879842199477		
4	0.366869681793097		
5	0.366865273720419		
6	0.366863361210659		
7	0.366862531424750		
8	0.366862171400546		
9	0.366862015194173		
10	0.366861947419659		
11	0.366861918013769		
12	0.366861905255187		
13	0.366861899719514		
14	0.366861897317704		
15	0.366861896275611		
16	0.366861895823469		
17	0.366861895627294		
18	0.366861895542178		
19	0.366861895505248		
20	0.366861895489225		

Empirically observed MSE:

0.225752490827718

```
% HW4-1
clc;
clear;
R = zeros(20, 1);
for i = 1 : 20
  R(i) = 0.2 * exp(-0.5*abs(i)) + 0.6 * exp(-0.25*abs(i));
R0 = 0.2 * exp(-0.5*0) + 0.6 * exp(-0.25*0);
f = zeros(20, 20);
MSE = zeros(20, 1);
MSE0 = R0;
MSE(1) = (1-(R(1)/R0)^2)*MSE0;
f(1,1) = R(1) / MSE0;
for P = 2 : 20
  SUM = 0;
  for i = 1:P-1
    SUM = SUM + f(P-1,i) * R(P-i);
  f(P,P) = (R(P) - SUM) / MSE(P-1);
```

```
for i = 1 : P-1
    f(P,i) = f(P-1,i) - f(P,P) * f(P-1,P-i);
  MSE(P) = (1 - abs(f(P,P))^2) * MSE(P-1);
end
a = levinson([R0; R], 20)';
co = f(20, :)';
X = normrnd(0, R0, 10000, 1);
                                % zero mean Gaussian noise with variance R0
N = numel(X);
Xp = zeros(N, 1);
XX = conv(X, R);
for i = 21 : N
  Xp(i) = sum( co(1:20) .* XX( i-1:-1:i-20 ) );
end
Err = (XX(1:10000) - Xp).^2;
eMSE = sum(Err(21:10000))/numel(Err(21:10000));
```

- **4.3** Select an audio way file of your choice that contains speech and load it into Matlab. Speech is a quasi-stationary signal: on short segments (e.g. 32 millisecond blocks) it appears stationary, but it is in its changing spectrum across different such blocks in which carries its information.
 - (a) Using a spectrogram, find a temporal region of the _le over which the spectrum appears to be constant. Select the portion of the audio _le associated with this temporal region and build an autocorrelation estimate for this region. Generate a linear predictor from this autocorrelation estimate using Levinson Durbin. Record the performance you achieve with this.

 The spectrogram of input speech signal.

0.6 0.5 0.4 0.3 0.2

1000 1200

Frequency (Hz)

1400

1600

1800

0.1

0

400

200

600

Auto-correlation of the chosen temporal region:

The order 20 forward linear prediction coefficients:

The order	1 20 101 ward fillear prediction of			
Order	Coefficients			
1	0.661028210250749			
2	-0.596467931594581			
3	0.189793085195174			
4	-0.398600394902704			
5	0.247440532874425			
6	-0.384625222492282			
7	0.136756443330365			
8	-0.354829424009870			
9	0.167945542621277			
10	-0.370210092367595			
11	0.0360700626582739			
12	-0.175716001727205			
13	0.0455643928929486			
14	-0.277896122026717			
15	0.116536461547976			
16	-0.370036261793053			
17	0.758057349156431			
18	-0.365226131399721			
19	0.120926824176675			
20	-0.0149783145425018			

Original signal compare with estimated signal:

(b) Compare the empirical average squared prediction error over the block you used to calculate the auto-correlation estimate with the theoretical MSE given by Levinson Durbin. Make a plot of these two values as a function of the maximal auto-correlation lag estimated. Why are these two numbers different from one another?

Empirical MSE vs. Theoretical MSE

(c) Repeat this experiment, but by measuring the average squared prediction error over a larger block than the one you used to calculate the auto-correlation estimate. Choose the size of this block to be one over which you can see that spectral properties of the data changing in the spectrogram. How do your estimated squared prediction errors compare now with the ones you obtained with the smaller (original) block? Why?

Block size vs. MSE


```
% HW4-2
eMSE = zeros(20, 1);
tMSE = zeros(20, 1);
for i = 1:20
  [eMSE(i) tMSE(i)] = HW42(i+10, 128);
end
x = 11:30;
figure(1);
subplot(2,1,1);
plot( x, eMSE, '-o' );
xlabel('Auto-correlation lag');
ylabel('Empirical MSE');
grid on
subplot(2,1,2);
plot( x, tMSE, '-o' );
xlabel('Auto-correlation lag');
ylabel('Theoretical MSE');
grid on;
```

```
% HW4-2
eMSE = zeros(8, 1);
tMSE = zeros(8, 1);
k = 1;
for i = 128 : 128 : 1280
  [eMSE(k) tMSE(k)] = HW42(20, i);
  k = k + 1;
end
x = 128 : 128 : 1280;
figure(1);
subplot(2,1,1);
plot( x, eMSE, '-o' );
xlabel('Block size');
ylabel('Empirical MSE');
grid on
subplot(2,1,2);
plot( x, tMSE, '-o' );
xlabel('Block size');
ylabel('Theoretical MSE');
grid on;
function [eMSE tMSE]= HW42(lag)
Female = wavread('d.wav');
% figure(1);
% spectrogram(Female,256,250,256,4e3);
R = xcorr(Female(1600:1600+128), lag);
R0 = R(lag+1);
R = R(lag+2:numel(R));
f = zeros(lag, lag);
MSE = zeros(lag, 1);
MSE0 = R0;
MSE(1) = (1-(R(1)/R0)^2)*MSE0;
f(1,1) = R(1) / MSE0;
for P = 2 : lag
  SUM = 0;
  for i = 1:P-1
    SUM = SUM + f(P-1,i) * R(P-i);
  f(P,P) = (R(P) - SUM) / MSE(P-1);
  for i = 1 : P-1
    f(P,i) = f(P-1,i) - f(P,P) * f(P-1,P-i);
  MSE(P) = (1 - abs(f(P,P))^2) * MSE(P-1);
end
R = [R0; R];
a = levinson(R, lag)';
co = f( lag, : )';
X = Female(1600:1600+128);
N = numel(X);
```

```
\begin{split} Xp &= zeros(\ N,\ 1\ ); \\ for \ i &= lag+1:\ N \\ &\quad Xp(i) = sum(\ co(1:lag)\ .*\ X(\ i-1:-1:i-lag\ )\ ); \\ end \\ Err &= (X(lag+1:129) - Xp(lag+1:129)).^2; \\ eMSE &= sum(Err)/numel(Err); \\ tMSE &= MSE(numel(MSE)); \end{split}
```

Write a MATLAB function which implements the root-MUSIC frequency estimation method. Test it out on a length 1000 signal containing a sinusoid with frequency !1 = 3_=8 and phase 0 with amplitude :6, and a sinusoid at frequency !2 = _=17 with phase _=16 and amplitude :2 observed through complex Gaussian white noise with variance _2 = 1 and mean 0. Try other lengths and observe how the performance of the estimate varies with different lengths and different Monte Carlo trials.

Different lengths and different Monte Carlo trials:

Length	Trials	Est. frequencies	True frequencies
10	10	-1.3704 1.2929	0.1848 1.1781
	100	-1.3160 1.3906	
	1000	-1.3121 1.3250	
100	10	-0.6402 1.1813	
	100	-0.7394 1.2539	
	1000	-0.6690 1.2889	
1000	10	0.2598 1.1900	
	100	0.1417 1.2514	
	1000	0.1705 1.2157	
10000	10	0.1884 1.1751	
	100	0.1749 1.1763	
	1000	0.1833 1.1779	

```
% HW4-3
clc;
clear;
N = 10000;
T = 1000;
% randn( 'state', 1 );
W = zeros(T, 2);
P = zeros(T, 2);
n = 0:N-1;
  s = 0.6 * exp(1i*3*pi/8*n) + 0.2 * exp(1i*pi/17*n+pi/16) + normrnd(0, 1, N, 1)';
% Hs = spectrum.music(2, 20);
% pseudospectrum( Hs, s );
  [W(i,:) \sim] = sort(rootmusic(s, 2));
end
mean(W)
[ pi/17 3*pi/8 ]
```