学会助手使用手册

一、连接设备

支持蓝牙模块(HC-05、HC-06、HC-08、BLE、BT04 等)与 WiFi 模块(ESP826、ESP32 等)。

- ▶ 推荐使用经典蓝牙 (蓝牙 2.0 如 HC-05、HC-06、BT04 等)
- ➤ 低功耗蓝牙高速传输数据可能导致数据丢失(如 115200bit)

1.1 连接

- 蓝牙: 工具->蓝牙->单击连接
- Wifi: 打开手机 wifi 连接到模块热点,工具->wifi->右上角->添加 wifi->输入 IP 地址、端口号,确定->单击连接
- Wifi 长按可删除设备
- ➤ Wifi 只能用作 TCP 客户端

1.2 自动连接

- ▶ 在工具->设置中打开自动连接
- ▶ 软件打开后首次连接需手动
- ➤ 蓝牙模块与 wifi 模块连接独立运行
- ▶ 进入连接界面自动连接将暂停,期间若无设备成功连接,退出时,自动连接继续
- ▶ 程序被后台杀死,自动连接停止

1.3 断开连接

● 单击已连接设备,选择断开连接。

二、串口

- ▶ 接收区接收大量数据会导致卡顿甚至 APP 卡死,仅用于功能测试与少量数据的接收。
- ▶ 使用经典蓝牙时,由于中文由多个字节组成,且分包发送,可能出现乱码。
- ➤ 在设置中选择字符编码格式,编码格式对整个 APP 均有效

三、图像上位机

支持彩色图像(RGB565)、灰度图像(256)与二值化图像(一个字节8个像素)。

3.1 窗口

- 图片宽高:不能超过999*999,太小可能导致丢帧。
- 点击阈值修改,阈值在 L 于 H 之间显示为白,不符合为黑
- 保存图片: 彩色图片格式*.color 灰度图片格式*.grey 二值化图片格式*.bin
- 彩色图像格式: 低八位在前, 高八位在后
- 灰度图像亮度取反:关闭:值越大越亮 开启:值越小越亮
- 二值化图像字节顺序:正序:高位在前 倒序:低位在前
- 单击小窗口切换视图
- 点击游标两端拖动游标

3.2 下位机上传图像程序

}

四、虚拟示波器

4.1 窗口

- 单击波形名称设置波形是否可见,长按修改波形名称
- 点击"CH1"选择参数组,点击发送发送当前参数组
- 单击发送发送当前参数组到下位机
- 单击参数名称选择是否加入发送队列,长按修改参数相关参数
- 开启定时发送,以设置时间为单位定时发送当前参数组
- 未开启定时发送时,点击定时时间可修改时长
- 导出文件后缀*.wave
- ▶ 最多仅可接收 300 万数据
- ▶ 手势无法缩放时,尝试使用左下角方向按键缩放

4.2 APP 下发参数格式

- ▶ 未勾选参数不发送
- ▶ 例:参数组选择 CH1,参数 1 为 0,参数 2 不勾选,参数 3 为 3.1,参数 4 为 3.14 下发数据: c11:0,c13:3.1,c14:3.14,\r\n (字符串,注意手动补零)
- ▶ 可在下位机例程中参考数据提取方法。

4.3 下位机上传波形程序

4.3.1 使用字符串发送

- ▶ 使用方法:点击数据格式选择字符串。
- ▶ 下位机上传字符串格式: "w:"+数据 1+','+数据 2+','+数据 3+','+数据 4+"\r\n", 数据数量与上位机通道数量对应。

例: printf("w:1987,37,3.141\r\n",num);为发送三个数据 1987,73,3.141 到上位机。

4.3.2 使用发送函数

```
➤ 数据格式: 0x03 0xFC 通道 1 通道 2... 0xFC 0x03
*函数名称: XHZS_SendWave
     介: 学会助手 APP 虚拟示波器下位机程序(兼容山外)
     入: wareaddr:数组地址 waresize:数组大小
*输
*输
     出:无
*注意事项:无
   **********************
void XHZS_SendWave(uint8_t *waveaddr, uint16_t wavesize)
{
  uint8_t cmdf[2] = {0x03, 0xFC}; //帧头
  uint8_t cmdr[2] = {0xFC, 0x03}; //帧尾
  Uart_SendArray(USART1,cmdf, sizeof(cmdf));
                                    //发送帧头
  Uart_SendArray(USART1,(uint8_t *)waveaddr, wavesize); //发送数据
                                    //发送帧尾
  Uart_SendArray(USART1,cmdr, sizeof(cmdr));
/******************
*函数名称: SendWave
*简 介: 发送数据到学会助手 APP 虚拟示波器
*输 入: 无
   出:无
*输
*注意事项:将要发送的数据赋值给 Wave 数组即可
**********************
void SendWave()
{
  uint32_t Wave[4]={0}; //注意换数据类型;数组大小即为通道数量,最多四条通道
 //需要发送的变量赋值给 Wave 数组即可
  XHZS_SendWave((uint8_t *)Wave, size of(Wave));
}
```

五、UI

5.1 控件简介

- ◆ TextView 文本框
- ◆ Button 按键
- ◆ EditText 文本输入框
- ◆ Switch 开关
- ◆ SeekBar 拖动条(进度条)
- ◆ LineChart 折线图
- ◆ JoyStick 摇杆

5.2 文件

UI 底层文件:

phone_ui.c UI 底层文件 phone_ui.h UI 底层文件头文件 UI 编写文件: main_window.c 可在此文件中构建 UI main_window.h UI 头文件

5.3 文件移植

- (1)添加 UI 相关文件 phone_ui.c、phone_ui.h、main_window.c、main_window.h 到工程中。
- (2)添加串口收发相关头文件。在 phone_ui.c 中添加串口发送所在头文件;将 phone_ui.h 添加到串口接收中断函数所在文件中。
 - (3) 修改 phone_ui.c 中串口发送函数

```
...
//串口发送一个字节
void UI_SendByte(unsigned char byte)
{
    Uart_SendByte(USART1,byte); //修改此处为工程中串口发送一个字节函数
}
```

- (4) 在串口接收中断中添加 UI_ByteDeal(Res), Res 为串口接收到的一个字节
- (5)在 phone_ui.h 中宏定义 REAL_TIME_PROCESSING 的值选择实时处理(接收一帧后在串口中断中直接处理)与在主程序中处理。

#define REAL_TIME_PROCESSING 0 //(1)实时处理(0)在主程序中处理

如选择在主程序中处理,在主程序中运行 UI BufferDeal()即可。

5.4 控件使用

以下操作在 main_window.c 以及 main_window.h 中构建, 或参考 main window.c 与 main window.h 另外新建文件构建页面。

5.4.1 窗口设置

Window_Clear(); //清空屏幕

Window_SetBackground(0XFFFFFFF); //设置窗口颜色

Window_SetSize(1000,2000,0);//设置窗口宽高

5.4.2 添加一个 TextView 控件

(1) 在 main_window.c 中创建一个 TextView 的结构体变量

TextView_TypeDef main_tv;

(2) 在 main_window.h 中将控件声明为全局变量

extern TextView_TypeDef main_tv;

(3) 调用 TextView 初始化函数

TextView Init(main tv,50,50,500,500);

(4) TextView 显示文本

TextView_SetText(main_tv,"文本");

5.4.3 添加一个 Button 控件

(1) 创建一个 Button 结构体变量

Button_TypeDef main_bt;

(2) 在.h 中将控件声明为全局变量

extern Button_TypeDef main_bt;

(3) 调用 Button 初始化函数

Button_Init(main_bt,50,50,300,150);

(4) 查询 Button 状态

main_bt.isPressed //(=0)按钮抬起,(=1)按钮按下 main_bt.isUpdated; //(=1)数值已更新,需手动置 0

5.4.4 添加一个 EditText 控件

(1) 创建一个 EditText 结构体变量

EditText TypeDef main et;

(2) 在.h 中将控件声明为全局变量

extern EditText_TypeDef main_et;

(3) 调用 EditText 初始化函数

EditText_Init(main_et,50,50,700,160);

(4) 查询 EditText 输入字符串

main_et.text[EditText_MaxNum]; //输入字符串,有效字符串以'\0'结尾 main_et.isUpdated; //(=1)数值已更新,需手动置 0

5.4.5 添加一个 Switch 控件

(1) 创建一个 Switch 结构体变量

Switch_TypeDef main_sw;

(2) 在.h 中将控件声明为全局变量

extern Switch_TypeDef main_sw;

(3) 调用 Switch 初始化函数

Switch_Init(main_sw,50,50,150,150);

(4) 查询 Switch 状态

main_sw.isChecked; //(=0)开关关闭,(=1)开关打开 main_sw.isUpdated; //(=1)数值已更新,需手动置 0

5.4.6 添加一个 SeekBar 控件

(1) 创建一个 SeekBar 结构体变量

SeekBar_TypeDef mian_sb;

(2) 在.h 中将控件声明为全局变量

extern SeekBar_TypeDef mian_sb;

(3) 调用 SeekBar 初始化函数

SeekBar_Init(mian_sb,50,50,700,100);

(4) SeekBar 相关用法

mian_sb.progress; //当前值

mian_sb.isUpdated; //(=1)数值已更新,需手动置 0

SeekBar_SetProgress(main_sb,50); //设置 SeekBar 当前值,用作进度条

5.4.7 添加一个 LineChart 控件

(1) 创建一个 LineChart 结构体变量

LineChart_TypeDef mian_lc;

(2) 在.h 中将控件声明为全局变量

extern LineChart_TypeDef mian_lc;

(3) 调用 LineChart 初始化函数

LineChart_Init(mian_lc,50,50,700,350);

(4) LineChart 添加数据

LineChart_AddData(main_lc,50); //曲线添加一个函数

5.4.8 添加一个 SeekBar 控件

(1) 创建一个 JoyStick 结构体变量

JoyStick_TypeDef mian_js;

(2) 在.h 中将控件声明为全局变量

extern JoyStick_TypeDef mian_js;

(3) 调用 JoyStick 初始化函数

JoyStick_Init(mian_js,50,50,400,400);

(4) 查询 JoyStick 的值

mian_js.xValue; //X 的值(0-200) mian_js.yValue;//Y 的值(0-200) mian_js.isUpdated;//(=1)数值已更新,需手动置 0 其他方法参考例程

5.4.9 其他

- ▶ 其他方法在 phone ui.h 最下方查看。
- ➤ 当需要多个样式类似控件时,可以使用 UI 中控件 Style 结构体为控件快速设置样式。

5.5 其他操作

- 蓝牙连接: 点击右上角三个点, 可快速进入蓝牙连接界面
- 设置壁纸:点击右上角三个点->设置->更换壁纸
- 设置屏幕方向:点击右上角三个点->设置->切换屏幕方向
- 当使用拖动条、摇杆这类频繁传输数据的控件时,建议使用经典蓝牙(蓝牙 2.0), 并将波特率设置为 115200,否则数据传输可能会有延迟

六、遥控器

- 开启设置可选择摇杆与方向按键
- 开启设置后点击按键或开关名称可自定义按键与开关的名称,发送内容不可修改
- 开启设置后上划按键可将按键切换为开关
- 开启设置后点击时间可自定义发送间隔,默认发送间隔 100ms
- 下位机发送的数据将在屏幕中心显示,以"\r\n"检测结尾,超过 64 字节自动显示

6.2 数据格式

6.2.1 按扭

	按下 (开)	抬起 (关)
左上	11	10
左下	21	20
左左	31	30
左右	41	40
右上	51	50
右下	61	60
右左	71	70
右右	81	80
按键/开关 A	A1	A0
按键/开关 B	B1	ВО
按键/开关 C	C1	CO
按键/开关 D	D1	D0
开关 E	E1	EO
开关 F	F1	FO

6.2.2 摇杆

▶ 范围: X 0-200,Y 0-200

▶ 实时发送模式下数据格式: 高 4 位为命令, 低 4 位为数据

➤ 左摇杆: 1<u>X/16</u> 2<u>X%16</u> 3<u>Y/16</u> 4<u>Y%16</u>

➤ 右摇杆: 5X/16 6X%16 7Y/16 8Y%16

▶ 例: 在左摇杆为 X=50=3*16+2, Y=160=A*16+0 时 发送数据: 13 22 3A 40 (16 进制)

6.2.3 定时发送

左X+左Y(6字节) 右X+右Y(6字节) 按键A 按键B 按键C 按键D 或 + 或 + 或 + 或 + 或 + 或 + 开关E+开关F+"\r\n" 上+下+左+右(4字节) 上+下+左+右(4字节) 开关A 开关B 开关C 开关D

▶ 例: <u>0501601000100010\r\n</u> (字符) 表示左 X 为 50, 左 Y 为 160, 右上方向键按下, 按键 A 按下, 开关 E 打开

七、秒表

● 启动: 0x31

● 计次: 0x32

● 停止: 0x33

● 复位: 0x34

➤ 至多计次 500 次

八、时钟

● 数据格式:

例: 2022年5月21日周五21点35分24.1秒数据: 20220521052135241\r\n

- 数据每隔 100ms 发送一次,精度为 100ms
- 周日为00,周一为01,依次类推

九、语音播报

● 播放一句话: 语音内容+"\r\n"(0x0D 0x0A)

例:播放电子学会,下位机调用 printf("电子学会\r\n");

● 播方音频: 音频序号(16 进制)+0D+0A

例: 播方音频 1, 下位机发送 01 0D 0A (16 进制)

- ▶ 最多能添加 30 个音频
- ▶ 同时支持中文,英文。若无法播放可能是手机不支持
- ▶ 最多支持 50 汉字, 或 100 字符

十、GPS

10.1 窗口

- 分为 GPS 模式与自定义模式
- 自定义模式下点击"我的位置"可自定义我的位置
- GPS 模式下发送手机位置到下位机

例: 经度 115.546627 纬度 35.37776, 数据为:

115546627035377760\r\n(字符)

- ▶ 使用时打开 GPS 定位
- ▶ 室内可能无法获取定位
- ▶ 发送周期为 1s

10.2 下位机发送位置到上位机

```
*函数名称: SendLocation
*简 介: 发送经纬度到学会助手 APP
    入: longitude:经度 latitude:纬度
*输
    出:无
*输
*注意事项:无
************************************
void SendLocation(float longitude,float latitude)
 float Wave[2]={0};
  Wave[0] =longitude;
  Wave[1] = latitude;
  XHZS_SendWave((uint8_t *)&Wave, size of(Wave)); //虚拟示波器的下位机函数
*函数名称: SendXY
*简 介:发送坐标到学会助手 APP
   λ: x,v
*输
   出:无
*输
*注意事项:无
   ************************
void SendXY(int x,int y)
{
  int Wave[2]={0};
 Wave[0] =x;
  Wave[1] = y;
  XHZS_SendWave((uint8_t *)&Wave,sizeof(Wave)); //虚拟示波器的下位机函数
}
```

十一、画板

● APP 实时发送数据到下位机, X 与 Y 数据长度均为 4 例: X:568 Y: 627 数据格式为 <u>05680627\r\n</u>

十二、提示

- ▶ 使用前可将数据发送至电脑端串口查看,了解数据格式。
- ▶ 可在工具->设置->资料下载中下载例程