爬虫程序对比与前后处理二合一程序

斯军 10153700108 华东师范大学 统计系

2016年12月12日

目录

1	Mat	lab 金融相关爬虫程序详解	3
	1.1	关键命令 1: 建立空信息集	3
	1.2	关键命令 2: 读取网页	3
	1.3	关键命令 3: 网页编码展开	3
	1.4	关键命令 4: 指示所需数据	5
	1.5	关键命令 5: 数据写入空白矩阵	6
2	R语	音言爬虫程序基础编程展示与对比	6
3	R 语	音言金融专属爬虫程序	7
	3.1	$ quant mod \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	7
	3.2	quantmod+ggplot	9
4	前后	处理二合一程序编写	10
	4.1	获取数据并求波动率	10
	4.2	蒙特卡洛模拟	10
	4.3	绘图	11
	4.4	定价	11
	4.5	结果展示	12
	4.6	完整代码展示	13
5	声明		14

1 Matlab 金融相关爬虫程序详解

声明:源文件为作业样例 "readsinastu.m",以下为关键命令详解:

1.1 关键命令 1: 建立空信息集

图 1: 建立初始空信息集

作用:用于储存之后爬下来的数据。

1.2 关键命令 2: 读取网页

[sourcefile, status] = urlread(sprintf('http://

图 2: 建读取网页数据

示例程序中并不是完整语法,完整语法为:"S = urlread('URL','method',PARAMS)", 其中 URL 指的是网页链接,method 指的是的读取还是写入,通常与默认 情况用"get"(读取),第三个则是网页的性质,即编码特点,这里不写选择 默认的话则不支持中文录入,因为中文网页编码为 GBK 编码。

1.3 关键命令 3: 网页编码展开

disp sourcefile

图 3: 网页转换为编码

作用:用以下两幅图可以说明。此命令执行了一次提取网页编码的命令,相当于"检视元素"命令(如下图)。

图 4: 原始网站(存在检视元素功能)

图 5: 导入编码文字(即 body、div、th 结构)

1.4 关键命令 4: 指示所需数据

```
expr2 = '<div align="center">(\d*\.?\d*)</div>'; %从源文件中获取目标数据 [datafile, data_tokens] = regexp(sourcefile, expr2, 'match', 'tokens');
```

图 6: 精确指示所需数据位置

作用: 指示程序发现指定位置的数据。至于怎么发现的,请看下图

图 7: 精确指示所需数据位置

即先检视所需摘录网页,在网页元素中回溯找寻所需数据位置、前后编码。

先定义表达式形式,这里利用了 expr 定义了网页中的制定字符串,然后使用 regexp 正则表达式搜索,来确定数据位置。

1.5 关键命令 5:数据写入空白矩阵

```
for idx = 1:length(data_tokens)
  data(idx) = str2double(data_tokens{idx}{1});
```

图 8: 数据写入矩阵

用处:将原有字符串(str)形式的数据变成双精度浮点(double)形式数据,并且写入 data 矩阵。至于 for 循环,只是为了遍历所有数据,不做解释。

2 R 语言爬虫程序基础编程展示与对比

Rcurl 与 XML 为 R 语言基本爬虫包,可以进行几乎全部的爬虫任务, 其原理相当本质。下面给出一个例子。

```
library(RCurl)
library(XML)
res = data.frame()
for (i in 1:10) {
  urli = paste("http://sh.lianjia.com/ershoufang/d", i, "s7", sep = "")
  webi = getUR((urli, .encoding = "utf-8")
nodi = getNodeSet(htmi, path = "//div[@class='list-wrap']//div[@class='info-panel']//a[@name='selectDetail']")
  biaoti = sapply(nodi, function(X) xmlGetAttr(X, "title"))
  Encoding(biaoti) = "UTF-8"
  nodi = getNodeSet(htmi, path = "//div[@class='list-wrap']//div[@class='where']//span") \\
  xhmi = sapply(nodi, xmlValue)
  ximoqu = xhmi[(1:length(biaoti))*3 - 2]
huxingi = gsub("\\s+", "", xhmi[(1:length(biaoti))*3 - 1])
mianji = as.numeric(gsub("[^0-9]*$", "", xhmi[(1:length(biaoti))*3 - 0]))
  nodi = getNodeSet(htmi, path = "//div[@class='list-wrap']//div[@class='price']/span[@class='num']")
zongjia = as.numeric(gsub("[^0-9]", "", sapply(nodi, xmlValue)))
nodi = getNodeSet(htmi, path = "//div[@class='list-wrap']//div[@class='price-pre']")
  danjia = as.numeric(gsub("[^0-9]", ""
                                                     , sapply(nodi, xmlValue)))
  res = rbind(res, data.frame(biaoti, lianjie, xiaoqu, huxingi, mianji, quyu, diduan, zongjia, danjia, stringsAsFactors = FALSE))
  Sys.sleep(1)
```

图 9: Rcurl 与 XML 程序示例

不难发现,虽然一些细节性的语法与 Matlab 不同,但是,大体思路是相似的。下面给出一些同义核心语句:

- 1. R:paste(" 网页")+getURL(urli) \Leftrightarrow Matlab:[sourcefile, status] = url-read()
- 2. R:getNodeSet(htmi, path = "") \Leftrightarrow Matlab: expr = ""+ regexp(sourcefile, expr)

最后给出 R 示例运行成果展示:

	biaoti	xiaoqu	huxingi [‡]	mianji [‡]	zongjia [‡]	danjia [‡]
1	香樟苑(普陀),看房方便,房型正气,简约二室	香樟苑 (普陀)	2室1厅	67.83	330	48651
2	中虹华苑,业主信赖,看房有钥匙,成熟社区	中虹华苑	1室1厅	49.97	270	54032
3	成熟社区,新出房源,品质装修,简约二室	白金湾广场 (公寓)	2室2厅	127.68	1350	105733
4	人气房源,采光棒,满五税费低,新上房源	丰庄十二街坊	2室1厅	47.47	230	48451
5	满五税费低,配套完善,高清实拍,真实在售	石泉一村	1室0厅	34.79	210	60362
6	链家好房,正规成熟小区,抢鲜笋盘,简约二室	仁德路67弄10支弄	2室1厅	67.41	410	60821
7	梅园六街坊,空气清新,人气房源,真实在售	梅园六街坊	2室1厅	51.59	550	106609
8	人气房源,成熟社区,业主信赖,3房出售	君怡公寓	3室2厅	140.29	720	51322
9	古美八村,钥匙在店,新出房源,一链倾城	古美八村	1室1厅	43.91	280	63766
10	上门实拍,新出好房,如您所见,实地看房	虹二小区	1室0厅	36.72	285	77614
11	开鲁四村,上门实勘,满五年少税,如您所见	开鲁四村	2室1厅	57.84	325	56189
12	受欢迎好房,改善住房,好楼层,业主信赖	仁恒河滨城	3室2厅	151.44	1365	90134
	化人力压 安地南县 印尼卡茨 经市市场	would be to 1+++	orbs =			

图 10: 运行结果

3 R 语言金融专属爬虫程序

3.1 quantmod

所幸的是, R 语言是开源语言, 有前辈已经发明了金融项目的专属 R 包, 将繁琐的爬虫语句封锁在一行或几行简易的语句里, 大大方便了使用者。下面给出简易的的代码:

library(quantmod)
getSymbols("601988.ss")

图 11: 十分简易的语句

运行结果:

	601988.SS.Open ⁰	601988.SS.High [‡]	601988.SS.Low [‡]	601988.SS.Close [‡]	601988.SS.Volume ⁻	601988.SS.Adjusted
2007-01-01	4.85310	5.25995	4.83373	5.25995	0	3.61391
2007-01-02	4.85310	5.25995	4.83373	5.25995	0	3.61391
2007-01-03	4.85310	5.25995	4.83373	5.25995	0	3.61391
2007-01-04	5.51180	5.78303	5.20182	5.45368	751673900	3.74701
2007-01-05	5.13402	5.17276	4.91122	4.91122	812165700	3.37431
2007-01-08	4.71748	4.97903	4.67874	4.92091	574569700	3.38097
2007-01-09	4.90153	5.02746	4.79498	5.01778	447459100	3.44752
2007-01-10	5.08558	5.12433	4.89185	4.94028	384147600	3.39427
2007-01-11	4.91122	4.91122	4.74654	4.77560	337987500	3.28113
2007-01-12	4.72717	4.81435	4.55281	4.58187	240448100	3.14802
2007-01-15	4.56249	4.84341	4.50437	4.83373	256774000	3.32107
2007-01-16	4.89185	4.94028	4.69811	4.78529	267985100	3.28779
2007-01-17	4.78529	4.88216	4.66905	4.72717	244920700	3.24785
2007-01-18	4.67874	4.73686	4.50437	4.61093	210253200	3.16799
2007 01 10	4 62020	4 60011	4 56240	4 60011	107527400	2 22700

图 12: 运行结果

可见运行结果和 Matlab 程序运行结果一样,而且数据更加齐全。日开盘价、最高价、最低价、收盘价、成交量,以及 adjusted price,十分详细。除此以外还可以添加一些其他指标并作图,例如 Volume、MACD。只需使用 chartSeries()函数,下给出运行示例(Matlab 程序做的是中国银行的,这个也做中国银行的好了):

图 13: 运行结果

3.2 quantmod+ggplot

ggplot 作为可视化的代表,近年来风头正盛,其针对时间序列的展示确实效果极佳。以上证指数为例给出代码:

```
library(quantmod)
library(ggplot2)
getSymbols('^SSEC',src='yahoo',from = '1997-01-01')
close=(Cl(SSEC))
time=index(close)
value= as.vector(close)
data=data.frame(time,value)
ggplot(data,aes(time,value))+ geom_line()
```

图 14: ggplot 时间序列代码

其中数据传递一定要是 data 类型的数据。 结果呈现:

图 15: ggplot 时间序列呈现

其实功能还有很多,在此不一一呈现。

4 前后处理二合一程序编写

既然已经把数据获取的程序缩短,并且已经在 environment 内直接生成了矩阵,那么把前后处理并作一个程序便成为了可能。现在要做的是:

- 1. 根据所的矩阵在 R 环境内求得波动率
- 2. 在 R 环境内使用所得波动率进行蒙特卡洛模拟

下面, 仿照作业样本"作业样本", 我们一股票代码为 601288 的农业银行使用 R 语言进行一站式定价:

4.1 获取数据并求波动率

```
4 getSymbols("601288.ss")
5 ZGYH=as.matrix(`601288.SS`) #将中国银行表格数据转化为矩阵
6 Daily=as.matrix(dailyReturn(`601288.SS`)) #计算日收益率
7 sigma=sd(Daily)*(252)^0.5#求波动率
```

图 16: 获取数据求波动率

4.2 蒙特卡洛模拟

```
SPaths = matrix(NA,NReps,NSteps+1);
SPaths[,1] = S0;
dt = T/NSteps
nudt = (r-0.5*sigma^2)*dt
sidt = sigma*sqrt(dt)
for (i in 1:NReps){
   for (j in 1:NSteps){
     SPaths[i,j+1] = SPaths[i,j]*exp(nudt + sidt*rnorm(1))
   }
}#到这步数值模拟已经结束
```

图 17: 获取数据求波动率

核心语句: rnorm (1)。。。

4.3 绘图

```
step=c(1:(NSteps+1))
data=data.frame(step)#创建data数据
for (k in 1:NReps){
   data=data.frame(data,SPaths[k,])
}
dfidfm=melt(data,id.vars="step")#熔开data
ggplot(dfidfm,aes(x=step,y=value))+geom_line(aes(color=variable))#绘图
```

图 18: 形成 data 结构使用 ggplot

注意:一定要 data 结构,不可省略。

4.4 定价

```
payoff=matrix(0,NReps,1)
for (m in 1:NReps){
    ax=SPaths[m,];
    if (min(ax)<sb)
        payoff[m]=0
    else
        payoff[m]=max(0,K-ax[NSteps])
}
P=mean(exp(-r*T)*payoff)
Vector[1,n]=P</pre>
```

图 19: 毫无新意的定价

4.5 结果展示

图 20: 定价线路模拟

Average

0.397163749094592

图 21: 最终确定价格

4.6 完整代码展示

```
4 getSymbols("601288.ss")
5 ZGYH=as.matrix(`601288.SS`) #将中国银行表格数据转化为矩阵
6 Daily=as.matrix(dailyReturn(`601288.SS`)) #计算日收益率
7 sigma=sd(Daily)*(252)^0.5#求波动率
8 S0=2.6;#初始价格
9 r=0.0284;#无风险收益率
10 T=5/12;#设定时间
11 NSteps=700; #每支模拟步数
12 NReps=20;#平行支数
13 Recycles=15;#重复模拟次数
14 sb=1;#障碍水平
15 K=4;#敲定价格
16 Vector=matrix(0,1,Recycles)
17 - for (n in 1:Recycles){
     SPaths = matrix(NA,NReps,NSteps+1);
18
19
     SPaths[,1] = S0;
20
     dt = T/NSteps
21
     nudt = (r-0.5*sigma^2)*dt
22
     sidt = sigma*sqrt(dt)
23 -
     for (i in 1:NReps){
24 -
       for (j in 1:NSteps){
25
         SPaths[i,j+1] = SPaths[i,j]*exp(nudt + sidt*rnorm(1))
26
27
     }#到这步数值模拟已经结束
28
     step=c(1:(NSteps+1))
29
     data=data.frame(step)#创建data数据
30 -
     for (k in 1:NReps){
31
       data=data.frame(data,SPaths[k,])
32
     dfidfm=melt(data,id.vars="step")#熔开data
33
34
     ggplot(dfidfm,aes(x=step,y=value))+geom_line(aes(color=variable))#绘图
35
     payoff=matrix(0,NReps,1)
36 -
     for (m in 1:NReps){
37
       ax=SPaths[i,];
38
       if (min(ax)<sb)
39
         payoff[i]=0
40
       else
41
         payoff[i]=max(0,K-ax[NSteps])
42
43
     P=mean(exp(-r*T)*payoff)
44
     Vector[1,n]=P
45
46 Average=mean(Vector)
47 #Average即是定价。
```

图 22: 获取数据——运算分析——后处理展示一站式编程

5 声明 14

5 声明

此作品为本人原创, 未经允许, 请勿转载。