FCC and ISED Test Report

Apple Inc

Model: A2439

In accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN (ITE)

Prepared for: Apple Inc

One Apple Park Way

Cupertino California 95014 USA

FCC ID: 579C2439 IC: 579C-A2439

Document 75949506-08 Issue 01

SIGNATURE			
A3/ausan.			
NAME	JOB TITLE	RESPONSIBLE I	FOR ISSUE DATE
Andy Lawson	Senior Engineer	Authorised Signa	tory 11 February 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Connor Lee	11 February 2021	Mr.
Testing	Liang Tian	11 February 2021	hy-
Testing	Aasim Butt	11 February 2021	<u>Arsult</u>
Testing	Mohammad Malik	11 February 2021	moon probes

FCC Accreditation ISED Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2019, ICES-003: Issue 7: 2020 and ISED RSS-GEN: Issue 5 and A1 (2019-03) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	
1.4	Product Information	4
1.5	Deviations from the Standard	4
1.6	EUT Modification Record	4
1.7	Test Location	5
2	Test Details	6
2.1	Conducted Disturbance at Mains Terminals	6
2.2	Radiated Disturbance	
3	Test Equipment Information	20
3.1	General Test Equipment Used	20
4	Incident Reports	21
5	Measurement Uncertainty	22

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	11 February 2021

Table 1

1.2 Introduction

Applicant Apple Inc

Manufacturer Apple Inc

Model Number(s) A2439

Serial Number(s) C02DM00M0FTN

Hardware Version(s) REV 1.0
Software Version(s) 20W430340t

Number of Samples Tested 2

Test Specification/Issue/Date FCC 47 CFR Part 15B: 2019

ICES-003: Issue 7: 2020

ISED RSS-GEN: Issue 5 and A1 (2019-03)

 Order Number
 0540205414

 Date
 13-July-2020

Date of Receipt of EUT 11-December-2020
Start of Test 14-December-2020
Finish of Test 03-January-2021

Name of Engineer(s) Connor Lee, Liang Tian, Aasim Butt and Mohammad Malik

Related Document(s) ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN is shown below.

	Sp	Specification Clause	se	Tock December	+l000	Proposed Condition
Section	Part 15B	ICES-003 RSS-GEN	RSS-GEN	lest Description	Illinga	Collinging/Dase Statingin
Configuration	n and Mode: 12	Configuration and Mode: 120 V AC Powered - Transmitters	d - Transmitter	s Idle		
2.1	15.107	3.1	8.8	Conducted Disturbance at Mains Terminals	Pass	ANSI C63.4: 2014
2.2	15.109	3.2	7.1	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Product Information

1.4.1 Technical Description

The Equipment Under Test (EUT) was a desktop computer with Bluetooth, Bluetooth Low Energy and 802.11 a/b/g/n/ac/ax capabilities in the 2.4 GHz and 5 GHz bands.

1.4.2 EUT Port/Cable Identification

Port Max Cable Length specified Usage Type Scre		Screened			
Configuration and Mode: 120 \	/ AC Powered - Transmitters Id	le			
AC Power Port Live Line	AC Power Port Live Line 1 Metre Power 230 V AC Mains Power No				
AC Power Port Neutral Line	1 Metre	Power	230 V AC Mains Power	No	

Table 3

1.4.3 Test Configuration

Configuration	Description
	The EUT was powered by 120 V 60 Hz AC Mains.
120 V AC Powered	Connected to the EUT were:
	A set of headphones loading the headphone port.
	Two type C to USB connectors with a keyboard and mouse to load the type C ports.

Table 4

1.4.4 Modes of Operation

N	1ode	Description
Т	ransmitters Idle	The EUT was configured to display video on the EUT screen, whilst playing audio through the headphones. The display was set to maximum brightness and sleep mode was disabled. A ping request was established with the EUT using a support laptop. And all transmitters were disabled.

Table 5

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted			
Model: A2439, Seria	al Number: C02DM00M0FTN					
0	As supplied by the customer	Not Applicable	Not Applicable			
Model: A2388, Serial Number: C4H039400ELPQGK9G						
0	As supplied by the customer	Not Applicable	Not Applicable			

Table 6

1.7 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: 120 V AC Powered - Transm	itters Idle	
Conducted Disturbance at Mains Terminals	Connor Lee	UKAS
Radiated Disturbance	Mohammad Malik, Liang Tian and Aasim Butt	UKAS

Table 7

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Conducted Disturbance at Mains Terminals

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107 ICES-003, Clause 3.1 ISED RSS-GEN, Clause 8.8

2.1.2 Equipment Under Test and Modification State

A2439, S/N: C02DM00M0FTN - Modification State 0 A2388, S/N: C4H039400ELPQGK9G - Modification State 0

2.1.3 Date of Test

03-January-2021

2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

2.1.5 Example Calculation

Quasi-Peak level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB) Margin (dB) = Quasi-Peak level (dB μ V) - Limit (dB μ V)

CISPR Average level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB) Margin (dB) = CISPR Average level (dB μ V) - Limit (dB μ V)

2.1.6 Example Test Setup Diagram

Figure 1

2.1.7 Environmental Conditions

Ambient Temperature 18.7 °C Relative Humidity 34.6 %

2.1.8 Specification Limits

	Required Specifica	ation Limits - Class B	_
Line Under Test	Frequency Range (MHz)	Quasi-Peak Test Limit (dBµV)	CISPR Average Test Limit (dBµV)
	0.15 to 0.5	66 to 56 ⁽¹⁾	56 to 46 ⁽¹⁾
AC Power Port	0.5 to 5	56	46
	5 to 30	60	50
Supplementary information Note 1. Decreases with the lo			

Table 8

2.1.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitters Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Figure 2 - Graphical Results - AC Power Port Live Line

Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Quasi-Peak Margin (dB)	CISPR Average Level (dBµV)	CISPR Average Limit (dBµV)	CISPR Average Margin (dB)
0.215	37.7	63.0	-25.3	21.7	53.0	-31.2

Table 9

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.

Figure 3 - Graphical Results - AC Power Port Neutral Line

Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Quasi-Peak Margin (dB)	CISPR Average Level (dBµV)	CISPR Average Limit (dBµV)	CISPR Average Margin (dB)
0.153	38.0	65.8	-27.8	21.2	55.8	-34.6
0.202	37.0	63.5	-26.6	21.2	53.5	-32.4
0.228	35.3	62.5	-27.2	19.9	52.5	-32.6
11.090	25.7	60.0	-34.3	10.1	50.0	-39.9

Table 10

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
Compliance 5 Emissions	Teseq	V5.26.51	3275	-	Software
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	03-Jan-2021
Transient Limiter	Hewlett Packard	11947A	2377	12	26-Feb-2021
Transient Limiter	Hewlett Packard	11947A	2378	12	12-Oct-2021
2 Meter Cable	Teledyne	PR90-088-2MTR	5200	12	03-Sep-2021
Cable (18GHz)	Junkosha	MWX221- 04000NMSNMS/B	5262	12	22-Jul-2021
8m N Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5519	12	24-Mar-2021
8m N-Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5520	12	24-Mar-2021
3 Phase Artificial Mains Network (LISN)	Rohde & Schwarz	ESH2-Z5	16	12	17-Apr-2021
LISN	Rohde & Schwarz	ESH3-Z5	1390	12	27-Jan-2021

Table 11

2.2 Radiated Disturbance

2.2.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ICES-003, Clause 3.2 ISED RSS-GEN, Clause 7.1

2.2.2 Equipment Under Test and Modification State

A2439, S/N: C02DM00M0FTN - Modification State 0 A2388, S/N: C4H039400ELPQGK9G - Modification State 0

2.2.3 Date of Test

14-December-2020 to 19-December-2020

2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.2.5 Example Calculation

Below 1 GHz:

Quasi-Peak level ($dB\mu V/m$) = Receiver level ($dB\mu V$) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level ($dB\mu V/m$) - Limit ($dB\mu V/m$)

Above 1 GHz:

CISPR Average level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB/m) Margin (dB) = CISPR Average level $(dB\mu V/m)$ - Limit $(dB\mu V/m)$

Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m) Margin (dB) = Peak level (dB μ V/m) - Limit (dB μ V/m)

2.2.6 Example Test Setup Diagram

Figure 4

2.2.7 Environmental Conditions

Ambient Temperature 21.1-25.6 °C Relative Humidity 33.5-45.9 %

2.2.8 Specification Limits

Required Specification Limi	Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance					
Frequency Range (MHz)	Test Limit (μV/m)	Test Limit (dBµV/m)				
30 to 88	100	40.0				
88 to 216	150	43.5				
216 to 960	200	46.0				
Above 960	500	54.0				

Supplementary information:

Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.

Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.

Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 12

2.2.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitters Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 5825 MHz Which necessitates an upper frequency test limit of: 30 GHz

Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 13

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 14

^{*}No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 7 - 1 GHz to 30 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 15

^{*}No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 8 - 1 GHz to 30 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 16

^{*}No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 9 - 1 GHz to 30 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 17

^{*}No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 10 - 1 GHz to 30 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 18

^{*}No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

2.2.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
EmX Emissions Software	TUV SUD	V2.1.0	5125	-	Software
EMI Test Receiver	Rohde & Schwarz	ESW44	5527	12	06-Feb-2021
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Mast Controller	Maturo Gmbh	NCD	3917	-	TU
1m K-Type Cable	Junkosha	MWX241- 01000KMSKMS/A	5511	12	03-Apr-2021
1m -SMA Cable	Junkosha	MWX221- 01000AMSAMS/A	5513	12	01-Apr-2021
1m -SMA Cable	Junkosha	MWX221- 01000AMSAMS/A	5514	12	01-Apr-2021
2m SMA Cable	Junkosha	MWX221- 02000AMSAMS/A	5517	12	01-Apr-2021
8m N-Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5520	12	24-Mar-2021
2 m K Type Cable	Junkosha	MWX241- 02000KMSKMS/A	5523	12	03-Apr-2021
Antenna with permanent attenuator (Bilog)	Chase	CBL6143	2904	24	30-Sep-2021
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	10-Mar-2021
Antenna (DRG Horn 7.5- 18GHz)	Schwarzbeck	HWRD750	5348	12	22-Sep-2021
Antenna 18-40GHz (Double Ridge Guide)	Link Microtek Ltd	AM180HA-K-TU2	230	24	27-Jul-2022
Preamplifier (30dB 1GHz to 18GHz)	Schwarzbeck	BBV 9718 C	5261	12	07-Apr-2021
1200 MHz Low Pass Filter (01)	Mini-Circuits	VLF-1200+	5559	12	23-May-2021
8 - 18 GHz Amplifier	Wright Technologies	APS06-0061	5596	12	25-Aug-2021
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	18-Feb-2021

Table 19

TU - Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Multimeter	Iso-tech	IDM101	2424	12	14-Dec-2021
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB 40	5604	12	08-Sep-2021

Table 20

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Conducted Disturbance at Mains Terminals	150 kHz to 30 MHz, LISN, ±3.7 dB
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 21

Worst case error for both Time and Frequency measurement 12 parts in 106.

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.