Magnetic Human Hand Motion Reconstruction

FREIBURG

Daniel Müller

Embedded Systems Engineering

22.03.2016

Systems for Hand Motion Reconstruction Vision based

- High accuracy possible, often used as ground truth
- Usually big and static systems
- Price and number of cameras rises with demanded accuracy [1, 2]

Systems for Hand Motion Reconstruction Data gloves

- Mobile system
- IMUs or bend sensors used
- Accuracy is dependent on number of utilized sensor units [3]
- Placement of sensors is crucial
- Average error to vision based system around 7.1° [4]

Systems for Hand Motion Reconstruction Magnetic approach

- Passive magnetic system using magnets on fingertips [6]
 - → Few publications on this

Systems for Hand Motion Reconstruction Magnetic approach

- Passive magnetic system using magnets on fingertips [6]
 - → Few publications on this
 - → Promising approach to build a system which is:
 - Wearable
 - Cheap
 - Easy to use

Passive Magnetic Hand Motion Reconstruction

- Finger postures are determined by joint angles
- Minimizing a nonlinear objective function for estimating K fingers with N magnets

$$\underset{\mathbf{X}_K}{\text{minimize}} \ \frac{1}{2} ||\tilde{\mathbf{M}} - \mathbf{M}(\mathbf{X}_K)||_2^2$$

With \tilde{M} : sensor measurements

 $M(X_K)$: magnetic flux density for system state X_K

Modeling the Human Hand

- Position and orientation of magnet relative to sensor unit is given by the joint angles of the kinematic chain
 - → Exact determination of hand dimensions is important!
- ullet Anatomics constrain range of motion and set $heta_{
 m DIP}$ and $heta_{
 m PIP}$ into relation [7, 8]
 - ightarrow (single) Finger state vector $x = \left[heta_{ ext{MCP}} \; heta_{ ext{PIP}} \; \phi_{ ext{MCP}}
 ight]^T$
 - ightarrow State vector size for estimating K fingers $size(X_K) = (3 \times K)$

Modeling the static magnets

- Calculation of magnetic flux density by cylindrical model (numerical) [9]
- M is a cumulative sum over the K magnets for each of the N sensors

$$M \equiv \begin{bmatrix} B_1 & B_2 & \cdots & B_N \end{bmatrix}^T = \begin{bmatrix} \sum_{k=1}^K B_1(x_k) \\ \sum_{k=1}^K B_2(x_k) \\ \vdots \\ \sum_{k=1}^K B_N(x_k) \end{bmatrix} = M(X_K)$$

- Size of M: $size(M) = (3 \times N)$
- Nonlinearities introduced by position/orientation determination and magnetic models
- To get a fully determined system and unique solutions: N > K

Evaluation of the System

- Comparison to vision based system (Leap Motion)
- Post processing of recorded magnetic data for comparing different minimization formulations

Preliminary – Scaling the measurements

- High difference between model prediction and measurements
 - → Induced by hand measured anatomic parameters
- For estimating 1 finger with 1 sensor already 9 values have to be determined
 - → Estimation and tuning by trial-and-error not applicable
 - → Linear scaling of measurements to model prediction leads to reasonable results

Max deviation unscaled: 0.018mT

• Max deviation scaled: $0.005 \mathrm{mT}$

Preliminary - Characteristics of Leap Motion

- Minimum $\phi_{\mathrm{MCP}} = -16.845^{\circ}$
- Maximum $\phi_{\text{MCP}} = 12.147^{\circ}$

- Often false interpretation of lateral movement, which did not occur
 - → Possibly introduced by direction estimation of Leap
 - → Lateral movement of Leap has to be handled with care

Estimating four fingers

- Individual movements not detectable by magnetic system with this configuration due to:
 - → False measured hand dimensions
- Estimation takes 0.837s per measurement set
 - → No real time behaviour

Estimating one finger – best set

Estimating one finger – best set

- Flexion-extension of MCP joint:
 - $\rightarrow \mu_{\theta_{\text{MCP}}} = -7.448^{\circ} \pm 0.172$

Estimating one finger – best set

- Adduction-abduction of MCP joint:
 - $\rightarrow \mu_{\phi_{\text{MCP}}} = 4.698^{\circ} \pm 0.0$

Estimating one finger – best set

Bending to fist:

$$\rightarrow \mu_{\theta_{\rm MCP}} = 2.005^{\circ} \pm 0.229$$

$$\rightarrow \mu_{\theta_{\text{PIP}}} = -13.866^{\circ} \pm 3.552$$

Estimating one finger – bending to fist

- $\mu_{\theta_{\text{MCP}}} = 21.486^{\circ} \pm 6.188$
- $\mu_{\theta_{\text{PIP}}} = -26.413^{\circ} \pm 1.146$
- "0-cases" for θ_{MCP} values occur because no solution is found by the minimizer
- This is introduced by:
 - Bad accuracy of hand dimensions
 - Fitting gesture scales linearly for stretched finger only

Estimating one finger – Observations and Limitations

- Motion trackable for single flexion-extension of $\theta_{\rm MCP}$ and lateral movement of MCP joint $(=\phi_{\rm MCP})$
- Results while bending to fist lead to bad values for $heta_{
 m MCP}$
- Critical influence factors:
 - Accuracy of hand dimensions
 - → Can not totally be compensated by fitting gesture
 - Constant position of hand
 - System frequency → Motion speed
- Objective function formulation:
 - System has to be overdetermined N > K

Demo

Conclusion and Future Work

- Reconstruction of a single finger is possible, dependent on several influence factors:
 - Error prone determination of hand dimensions
 - → Find a more exact measuring method
 - Influence of earth magnetic field
 - → Find a method to cancel the surrounding field dynamically
 - Data acquisition rate of sensor system
 - → Employ faster sensors and microcontroller
 - \rightarrow Lowest mean difference to Leap Motion over all 4 joint angles for a whole set: $27.330^{\circ} \pm 0.974$
- Basic HCl could be one field of application for the presented system
 - Navigating cursor in two directions
 - Detecting gestures

Bibliography

- [1] Northern Digital: Optrak Certus Brochure
- [2] Vicon Motion Systems LTD: Vicon Vantage Brochure
- [3] Synertial Labs: Synertial, Glove Systems overview
- [4] Zecca, Massimiliano et al.: On the development of the bioinstrumentation system WB-1R for the evaluation of human-robot interaction. In: Advanced intelligent mechatronics, 2007 IEEE/ASME
- [5] Huang, Jiawei et al.: IM3D: magnetic motion tracking system for dexterous 3D interactions. In: ACM SIGGRAPH 2014 Emerging Technologies ACM
- [6] Ma, Yanru et al.: Magnetic hand motion tracking system for human-machine interaction. In: Electronics letters 46 (2010)
- [7] Bullock, Ian M. et al.: Assesing assumptions in kinematic hand models: a review. In: Biomedical Robotics and Biomechatronics (BioRob)
- [8] Lin, John et al.: Modeling the constraints of human hand motion. In: Human Motion, 2000. Proceedings. Workshop on IEEE
- [9] Derby, Norman et al.: Cylindrical magnets and ideal solenoids. In: Amercan Journal of Physics 78 (2010)

Kinematic Hand Model

$$h_x = \cos(-\theta_{\text{MCP}} - \theta_{\text{PIP}} - \theta_{\text{DIP}})$$

$$h_y = \cos(-\theta_{\text{MCP}} - \theta_{\text{PIP}} - \theta_{\text{DIP}})\sin(\phi)$$

$$h_z = \sin(-\theta_{\text{MCP}} - \theta_{\text{PIP}} - \theta_{\text{DIP}})\cos(\phi)$$

$$r_x = l_{Prox} \sin(\frac{\pi}{2} - \theta_{\text{MCP}}) +$$

$$l_{Mid} \sin(\frac{\pi}{2} - (\theta_{\text{MCP}} + \theta_{\text{PIP}})) +$$

$$l_{Dist} \sin(\frac{\pi}{2} - (\theta_{\text{MCP}} + \theta_{\text{PIP}} + \theta_{\text{DIP}})) + (P_{\text{MCP}_x} - P_{Sensor_x})$$

$$r_y = l_{Prox} \cos(\frac{\pi}{2} - \theta_{MCP}) + \dots$$

Cylindircal Magnetic Model

$$C(k_c, p, c, s) = \int_0^{\frac{\pi}{2}} \frac{c \cos^2 \varphi + s \sin^2 \varphi}{(\cos^2 \varphi + p \sin^2 \varphi) \sqrt{\cos^2 \varphi + k_c^2 \sin^2 \varphi}} d\varphi$$

Dynamic Cancellation of Earth Magnetic Field

- 1. Hold the hand with the sensors attached in a stable and calm position
- 2. The magnets for the fingertips are absent
- 3. Measure the orientation R_I of the sensors and the corresponding surrounding earth magnetic field B_{earth}
- 4. After this calibration phase, track the orientation of the hand R_h
- 5. Calculate the relative orientation $R_d = R_I R_h$
- 6. Convert R_d into a rotation matrix rot_d and apply this to B_{earth}
- 7. Subtract the rotated earth magnetic field from your actual measurement:

$$B = B_{meas} - rot_d \cdot B_{earth}$$