#### Vietnam National University Ho Chi Minh City, University of Science Department of Information Technology

# **Shannon theory and Symmetric Cipher**

Assoc. Prof. Trần Minh Triết PhD. Trương Toàn Thịnh



KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN



#### Contents

- ☐ Introduction Claude Shannon
- ☐ Perfect security
- □ Entropy
- ☐ Combination of crypto-systems



Claude E. Shannon (1916-2001)



- $\square$  Let *X* and *Y* be two random variables.
- ☐ Definition:

  - $\square$   $p(x \mid y)$  is a probability of X receiving value x if Y receives value y (conditional probability)
- $\square$  X and Y are independent random variables if only if p(x, y) = p(x) = p(y) for any value x of X and value y of Y



- Example: consider tossing 2 dices
  - $\square$  We have result-space  $\square = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),\dots,(1,5),(1,6),\dots,(1,5),(1,5),(1,5),\dots,(1,5),(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,(1,5),\dots,$

 $\square$  | = 36 elements, for  $w \mapsto X(w)$ 

Let X (based on  $\Box$ ) be sum of two dices =>  $X(w) = \{2, 3, 4, 5, 6, 7, 8, 4\}$ 



- Example: consider tossing 2 dices We have result-space  $_{\Box} = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),$ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,5),(6,6)
  - $\square$   $|\square| = 36$  elements, for  $w^{\square}$
  - Let X (based on  $\square$ ) be sum of 2 dices =>  $X(w) \stackrel{\square}{=} \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- □ Notation of mapping X:  $\Box$   $\subset$   $\mathbb{R}$

Consider X(w) = 4 Event of tossing 2 dices has 4 points

We have  $\Pr[X(w) = 4] = 3/36$ , due to  $\{\{1, 3\}, \{2, 2\}, \{3, 1\}\}\}$ , denote  $\Pr[X = 4]$ 



- ☐ Example: consider tossing 2 dices
  - □ We have result-space  $\Box$  = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

- $\square \mid_{\square} \mid = 36$  elements, for  $w = \square$
- Let Y (based on  $\square$ ) be the result of tossing 2 dices with the same point => Y(w) "2 same points", Y2 different points"}
- Should change "2 same points" to 1, & "2 different points" to  $0 \Rightarrow Y(w)$

Notation of mapping  $Y: \square \square \square$ 

Example: consider tossing 2 dices We have result-space  $\Box = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),$ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) $\square$  |  $\square$  | = 36 elements, for  $w^{\pm}$ Let Y (based on  $\Box$ ) be the result of tossing 2 dices with the same point  $\Longrightarrow Y(w)$ {"2 same points", "2 different points"}

Should change "2 same points" to 1, & "2 different points" to  $0 \Rightarrow Y(w) = \{0, 1\}$ 



#### Bayes theorem

 $\square$  Let *X* and *Y* be two random variables

$$p(x, y) = p(x \mid y) = p(y \mid x) = p(x)$$

☐ Bayes theorem

if 
$$p(y) > 0 = p(x | y) =$$

Aposteriori

Corollary: X and Y are two independent ones -|p(x|y) = p(x), x, y

#### Bayes theorem

- Reconsider: example of tossing 2 dices
  - □ We have result-space  $= \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),$

- $\square \mid_{\square} \mid = 36$  elements, for  $w = \square$
- $\square$  X: Sum of points of 2 dices =>  $X(w) = \{2, 3, 4, ..., 12\}$
- $\square$  Y: 2 dices with the same point =>  $Y(w)^{\square}$  {0, 1}
- $\square$  Compute  $\Pr[Y=1|X=4]$  (Probability of 4-point with 2 same faces)
  - $\square$  **Pr**[X = 4] = 3/36 => **Pr**[Y = 1 | X = 4] = 1/3 due to {(1, 3), (2, 2), (3, 1)}
- $\square$  Compute  $\Pr[X=4|Y=1]$  (Probability of 4-point with 2 same faces)
  - $\square$  **Pr**[Y=1] = 6/36 => **Pr**[X=4|Y=1] = 1/6 due to {(1, 1), (2, 2), ..., (6, 6)}
  - So Pr[Y=1|X=4] = Pr[X=4] = Pr[X=4|Y=1] = Pr[Y=1]



#### Context of cryptography

- ☐ Some probabilistic notation for crypto-context
  - $\square p_{P}(x)$ : Probability of appearing plaintext x
  - $\square p_{\kappa}(k)$ : Probability of choosing key k
  - $\square p_{C}(y)$ : Probability of ciphertext receiving value y
- □ Note:
  - $\square$  Notations  $p_P$ ,  $p_K$  and  $p_C$  are the probabilities for each distinct set
  - $\square$  It can be assumed that the key value k and the plaintext x are independent events
- □ From the probability distribution of plaintext and key on the set P and K, we can determine the conditional probability distribution of plaintext ???



### Context of cryptography

- For each  $k \stackrel{\square}{=} K$ , let  $C(k) = \{e_k(x) \mid x \stackrel{\square}{=} P\}$  be the set of ciphertext if encrypting plain-text  $x \stackrel{\square}{=} P$  with key  $k \stackrel{\square}{=} K$ .
- $\square$  So, we see that probability of cipher-text y is sum of probabilities of choosing k and  $x = d_k(y)$ .

$$p_{\rm C}(y) =$$

For each y = C and x = P,  $p_C(y \mid x)$  is probability of receiving cipher-text y when plain-text is x.

Thực chất là xác suất chọn các khóa k

$$p_{\rm C}(y \mid x) =$$

 $\square$  Using Bayes theorem to compute  $p_P(x \mid y)$ 

$$p_{\mathbf{p}}(x \mid y) = =$$



#### Example

$$\square$$
 Let  $P = \{a, b\}$  with  $p_P(a) = \frac{1}{4}$ ,  $p_P(b) = \frac{3}{4}$ 

$$\square$$
 Let  $K = \{k_1, k_2, k_3\}$  with  $p_K(k_1) = \frac{1}{2}$ ,  $p_K(k_2) = p_K(k_3) = \frac{1}{4}$ 

$$\square$$
 Let  $C = \{1, 2, 3, 4\}$ 

$$\square$$
 Let *E* be a set of encryption rules

$$\Box e_{k_1}(a) = 1, e_{k_1}(b) = 2$$

$$\Box e_{\wp}(a) = 2, e_{\wp}(b) = 3$$

$$\Box e_{k3}(a) = 3, e_{k3}(b) = 4$$



 $\square$  Let D be a set of decryption rules

$$\Box d_{k1}(1) = a, d_{k1}(2) = b$$

$$\Box d_{\nu 2}(2) = a, d_{\nu 2}(3) = b$$

$$\Box d_{k3}(3) = a, d_{k3}(4) = b$$



|       | a | b |
|-------|---|---|
| $k_1$ | 1 | 2 |
| $k_2$ | 2 | 3 |
| $k_3$ | 3 | 4 |

|       | 1 | 2 | 3 | 4 |
|-------|---|---|---|---|
| $k_1$ | a | b |   |   |
| $k_2$ |   | a | b |   |
| $k_3$ |   |   | a | b |



#### Example

$$\square$$
 Compute  $p_{\rm C}(y)$ 

$$p_C(y=1) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

$$p_{C}(y=2) = \frac{1}{2} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{7}{16}$$

$$p_C(y=4) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$$

 $\square$  Condition probability of  $p_p(x \mid y)$ 

$$p_{P}(x = a \mid y = 1) = 0 = 0$$



|                                 | $a \\ p_P = \frac{1}{4}$ | $b \\ p_P = \frac{3}{4}$ |
|---------------------------------|--------------------------|--------------------------|
| $k_1 \\ (p_K = \frac{1}{2})$    | 1                        | 2                        |
| $k_2 \atop (p_K = \frac{1}{4})$ | 2                        | 3                        |
| $k_3 \atop (p_K = \frac{1}{4})$ | 3                        | 4                        |

$$p_{P}(x = a|y = 3) = \frac{p_{P}(x = a) \times p_{C}(y = 3|x = a)}{p_{C}(y = 3)} = \frac{\frac{1}{4} \times \frac{1}{4}}{\frac{1}{4}} = \frac{1}{4}$$

$$p_{P}(x = b|y = 3) = \frac{p_{P}(x = b) \times p_{C}(y = 3|x = b)}{p_{C}(y = 3)} = \frac{\frac{3}{4} \times \frac{1}{4}}{\frac{1}{4}} = \frac{3}{4}$$

$$p_{P}(x = a|y = 4) = \frac{p_{P}(x = a) \times p_{C}(y = 4|x = a)}{p_{C}(y = 4)} = \frac{\frac{1}{4} \times 0}{\frac{3}{16}} = 0$$

$$p_{P}(x = b|y = 4) = \frac{p_{P}(x = b) \times p_{C}(y = 4|x = b)}{p_{C}(y = 4)} = \frac{\frac{3}{4} \times \frac{1}{4}}{\frac{3}{16}} = 1$$



### Perfect security

- ☐ Perfectly secure?
- ☐ Significance: The attacker gets nothing from the ciphertext

$$x = P, k = K, p_P(x \mid c) = p_P(x), p_K(k \mid c) = p_K(k)$$

- □ Evaluate Shift-cipher
  - ☐ Assume 26 keys in Shift-cipher are randomly chosen with uniform probability (1/26)
  - ☐ With set of plaintext having any probability distribution, Shift-cipher achieve perfect security???
  - $\square$  Let  $P = C = K = \mathbb{Z}_{26} = \{0, 1, 2, ..., 25\}$
  - $\Box e_k(x) = (x+k) \mod 26$  and  $d_k(y) = (y-k) \mod 26$



### Perfect security (on Shift Cipher)

Probability

$$p_{\mathcal{C}}(y) = =$$

Given y, when changing k from 0 to 25, we receive all 26 values of  $\mathbb{Z}_{26}$ .

$$= 1$$

- $\square$  So, for all  $y = \mathbb{Z}_{26}$ , we have  $p_{C}(y) = 1/26$  (1)
- $\square$  For (x, y), we have only one key  $k \stackrel{\blacksquare}{=} \mathbb{Z}_{26}$ , such that  $y = x + k \mod 26$ . Hence,  $p_{\mathbb{C}}(y \mid x) = p_{\mathbb{K}}(y x \mod 26) = 1/26$  (2)



### Perfect security (on Shift Cipher)

 $\square$  From (1) and (2), apply Bayes theorem we have:

$$p_{P}(x \mid y) = = = p_{P}(x)$$
 (satisfy standard)

- Shift cipher is perfect security if randomly choosing a new k for each plain-text x.
- $\square$  From Bayes theorem, we have  $p_P(x \mid y) = p_P(x)$ , x = P, y = C
  - $\square$  This is similar to:  $p_{C}(y \mid x) = p_{C}(y)$ , x = P, y = C
  - $\square$  Assume  $p_{C}(y) > 0$ ,  $y \stackrel{\text{def}}{=} C$  (All members of C are used)
  - $\square$  Crypto-system is secure if  $p_{C}(y \mid x) > 0$ , x = P, y = C = |C| = |P|
  - □ Due to  $p_{C}(y \mid x) > 0$  \_ \_. k = K:  $e_{k}(x) = y$  \_ \_ |K| \_ \_ |C|
- For the system to be perfect security, key-size used to encrypt must be at least equal to the size of the message to be encrypted:





#### Vernam Cipher

- $\square$  Is there a perfect secure crypto-system with |K| = |P|?
- Shannon theorem: Let (P, K, C, E, D) be a crypto-system with |K| = |P| = |C|. So, it is perfect secure if and only if:
  - $\Box c = C, x = P = k = K : e_k(x) = c(1)$
  - $\square k = K, p_K(k) = 1/|K|(2)$
- Proof: Let (P, K, C, E, D) be a crypto-system with |K| = |P| = |C|. Due to its perfect security, we have
  - $\square x = P$ ,  $p_P(x \mid c) = p_P(x)$  and Bayes theorem allows  $p_C(c \mid x) = p_C(c)$
  - $\square !k = \mathsf{K} : e_{\mathsf{k}}(x) = c \text{ for } (x, c), \text{ due to } |\mathsf{K}| = |\mathsf{P}| = |\mathsf{C}|$
  - $\square$  Fix c, for all  $x_i$ , let  $k_i$  be key such that  $(x_i) = c$
  - $\square$  From Bayes theorem:  $p_{p}(x_{i} \mid c) = -$
  - Due to  $p_{\mathbf{P}}(x_{\mathbf{i}} \mid c) = p_{\mathbf{P}}(x_{\mathbf{i}}) = p_{\mathbf{K}}(k_{\mathbf{i}}) = p_{\mathbf{C}}(c)$ .



### Vernam Cipher

- ☐ Gilbert Vernam (Bell Labs) proposed in 1919
  - $\square$  A key is a "long enough" random sequence of values. So,  $C = P \stackrel{\blacksquare}{=} K$
  - ☐ This method is proven to be perfect security
  - Limitation: the key is too long and cannot be reused
  - ☐ Advantage: simple
- Description:
  - $\square$  Let integer n = 1, and  $P = C = K = (\mathbb{Z}_2)^n$ . For each  $k = (\mathbb{Z}_2)^n$ , we let:
    - $e_k(x) = (x_1 + k_1, ..., x_n + k_n) \mod 2$ , where  $x = (x_1, ..., x_n)$  and  $k = (k_1, ..., k_n)$ .
    - $d_k(y) = (y_1 + k_1, ..., y_n + k_n) \mod 2$ , where  $y = (y_1, ..., y_n)$
- $\Box$  Note: operator (+ mod 2) is  $\equiv$  -bit



#### Informatic theory

- □ Some events are random but more common than others
- □ Some facts are more important than others
- Entropy is a measure of the uncertainty of a random variable, or the amount of information each event provides
- $\square$  If X is a random variable receiving values in X, so H(X) = -
- $\square$  Note:  $\lim_{x \to 0} (x \times \log_2 x) = 0$ 
  - $\square \lim_{x \to 0} (x \times \log_2 x) =$
  - $\square$  With L' Hopital, we have = = 0



### Entropy and Huffman encoding

- Recall the idea of Huffman encoding
- Example: we have  $X = \{a, b, c, d, e\}$  with probabilities p(a) = .05, p(b) = .10, p(c) = .12, p(d) = .13 and p(e) = .60

| a   | b  | C   | d   | e  |  |  |
|-----|----|-----|-----|----|--|--|
| .05 | .1 | .12 | .13 | .6 |  |  |
| 0   | 1  |     |     |    |  |  |
| .1  | 5  | .12 | .13 | .6 |  |  |
|     |    | 0   | 1   |    |  |  |
| .1  | 5  | .2  | .6  |    |  |  |
| (   | )  | 1   |     |    |  |  |
|     | .6 |     |     |    |  |  |
|     | 1  |     |     |    |  |  |
|     | 1  |     |     |    |  |  |



| X | f(x) |
|---|------|
| a | 000  |
| b | 001  |
| С | 010  |
| d | 011  |
| e | 1    |

Prefix-code



## Entropy and Huffman encoding

☐ Average length to transmit information for an event

$$l(f) = 0.05 = 3 + 0.1 = 3 + 0.12 = 3 + 0.13 = 3 + 0.6 = 1 = 1.8$$

Entropy: 0.2161 0.3322 0.3671 
$$H(X) = 0.05 = \log_2(0.05) + 0.1 = \log_2(0.1) + 0.12 = \log_2(0.12)$$

$$+0.13 = \log_2(0.13) + 0.6 = \log_2(0.6) = 1.7402$$

□ Result: H(X) ਜ l(f) ਜ H(X) + 1



#### Properties of Entropy

- ☐ Basic properties
  - $\square$  H(X) = 0, equality occurs if and only if the variable X is constant
  - $\square$   $H(X) = \log_2 |X|$ , equality occurs if and only if p(X = x) = 1/|X|
  - $\square$  H(X, Y) = H(X) + H(Y), '=' occurs  $\mid X \& Y$  are independent distribution
  - $\square$  H(X|Y) = H(X), equality occurs  $\mid X \& Y$  are independent distribution
- □ Entropy of components of crypto-system
  - $\square$  H(C|K) = H(P)
  - $\square H(C|P,K) = H(P|C,K) = 0$
  - $\square H(P, K) = H(P) + H(K)$
  - $\square H(C) = H(P)$
  - $\square$  H(C, P, K) = H(C, K) = H(P, K)
  - $\square H(K \cap E) = H(K) + H(P) H(C) \text{ và } H(K \mid C^n) = H(K) + H(P^n) H(C^n)$



#### Comments

- There are 26! = 10<sup>26</sup> encryption rule (substitution) for English text (includes normal characters)
- □ Equivalent to 88-bit security \_ why is it easy to be attacked in practice?
- ☐ Shannon: All approaches of mono-alphabetic cipher of English are easy to break if having 25 characters of cipher-text.



- □ Spurious keys: if using shift-cipher, we have cipher-texts "WNAJW"
  - ☐ There may be 5 and 22 to decrypt "RIVER" and "ARENA"
  - ☐ One of them is wrong
- ☐ Introduction of random variables
  - Let  $P = \{a, b, ..., z\}$  (|P| = 26): set of characters
  - Let  $P^2 = \{aa, ..., zz\}$  ( $|P^2| = 26^2$ ): set of digraphs
  - □ ...
  - $\square$  Let  $P^n = \{a...a, ..., z...z\}$  ( $|P^2| = 26^n$ ): set of *n*-graphs



- ☐ Some notations
  - $\square$  p(i) is probability of appearing of character 'i'
  - $\square p_i(j)$  is probability of appearing of character 'j' when 'i' appears
  - $\square$  p(i,j) is probability of appearing of 2 characters 'i' and 'j'
- $\square$  Example: compute entropy of  $P \stackrel{\square}{=} P = \{a, b, ..., z\} (|P| = 26)$ 
  - $\square$  H(P) = 20 4.14 bits/character (real data)
- Example: compute entropy of  $P^2 = \{aa, ..., zz\}$  ( $|P^2| = 26^2$ )
  - $\Box H(P^2) = = 7.7 \text{ bits}$
- Formular to compute entropy (for each character) of another language 'L':  $H_{\rm I}$  =
- $\square$  Let  $R_L = 1$  (Rate of "spurious elements" of a language 'L')

- Due to  $H_L = H(P^n)$  on  $H_L = n$  of  $(1 R_L)$  of  $\log_2 |P|$
- $\square$  Due to |P| = |C|,  $H(C^n)$  네  $n \in H(C)$  네  $n \in \log_2 |C| = n \in \log_2 |P|$ 
  - ☐ Where P and C are sets of plain-texts and cipher-texts
  - $\square$  K is a set of keys
- $\square$  We have  $H(K|C^n) = H(K) + H(P^n) H(C^n)$

$$=$$
  $H(K) + n = (1 - R_L)$ 

$$= \log_2 |\mathsf{P}| - n = \log_2 |\mathsf{P}|$$

$$=H(K)-n = R_L = \log_2$$

$$P| - log_2|K| - n = R_L = log_2|P|$$

□ Crypto-system is broken when:

$$H(K|C^n) = 0 - \log_2 |K| - n = R_L = \log_2 |P| = 0 - n =$$

Means: entropy of random variable K when  $C^n$  is zero  $\sqsubseteq$  there is only one key to decrypt.



- $\square$  Unicity of crypto-system is  $n_0$  such that a number of spurious-key are zero
- □ English case: (|P| = 26,  $R_L = 0.75$ , |K| = 26! due to using substitution cipher)

$$n_0 = 25$$
 (Language distance)

☐ Mean that: need a cipher-text with at least length of 25 characters to ensure that there exists only one key



#### Comments

- ☐ Data Compression
  - ☐ Good compression good encryption
  - ☐ Good encryption bad compression
- Combination of encryption approaches
  - ☐ "Weighted sum" of crypto-systems
    - Create new crypto-systems from existing crypto-systems
    - Choose 2 crypto-systems with the same message space, use system A with probability p, use system B with probability 1-p.
  - ☐ Product cipher: sequentially apply successive encryption algorithms



## Introduction

| Ш | Symmetric cryptosystem                                                                                              |
|---|---------------------------------------------------------------------------------------------------------------------|
|   | □ Conventional cryptosystem                                                                                         |
|   | $\square$ An encryption system in which the encryption and decryption processes both use the same key – secret key. |
|   | ☐ The security of information depends on the security of the key.                                                   |
|   | Traditional methods use:                                                                                            |
|   | ☐ Substitution: replace 1 word/character with another word/character                                                |
|   | ☐ Transposition: characters are changed their positions                                                             |
|   | Substitution/Transposition can be done with:                                                                        |
|   | ☐ Mono-alphabetic                                                                                                   |
|   | □ Poly-alphabetic                                                                                                   |



## Symmetric cipher















### Shift cipher

#### □ Shift Cipher:

- ☐ One of the oldest methods used for encryption
- $\Box$  The message is encrypted by rotating each character by k places in the alphabet
- $\square$  The case with k = 3 is called the Caesar encryption method.
- Let  $P = C = K = Z_n$ . For each k = K we have:
  - $\square$   $e_k(x) = x + k \mod n$  and  $d_k(y) = y k \mod n$ , for  $x, y \stackrel{\square}{=} Z_n$
  - $\square$  E = { $e_k$ ,  $k \stackrel{\blacksquare}{=} K$ } and D = { $d_k$ ,  $k \stackrel{\blacksquare}{=} K$ }
- ☐ Properties:
  - ☐ Simple
  - Encryption and decryption processing is done quickly
  - $\square$  Key-space  $K = \{0, 1, 2, ..., n 1\} = Z_n$
  - Easily broken by trying every possible key



### Shift cipher

- Example: to encrypte a message represented by the letters A to Z (26 letters), we use  $Z_{26}$ .
  - Encrypted messages are not secure and can be easily decrypted by trying one after another, 26 *keys*.
  - On average, an encrypted message can be decrypted in about 26/2 = 13 tries.
- Ciphertexts: JBCRCLQRWCRVNBJENBWRWN
- $\square$  Try  $k = 0, 1, 2, \dots 25$

| k = 0 | jbcrclqrwcrvnbjenbwrwn | k = 5 | ewxmxglmrxmqiweziwrmri |
|-------|------------------------|-------|------------------------|
| k = 1 | iabqbkpqvbqumaidmavqvm | k = 6 | dvwlwfklqwlphvdyhvqlqh |
| k = 2 | hzapajopuaptlzhclzupul | k = 7 | cuvkvejkpvkogucxgupkpg |
| k = 3 | gyzozinotzoskygbkytotk | k = 8 | btujudijoujnftbwftojof |
| k = 4 | fxynyhmnsynrjxfajxsnsj | k = 9 | astitchintimesavesnine |



#### Substitution cipher

- ☐ Well-known and widely used encryption method for hundreds of years
- □ Encrypt the message by permuting the elements of the alphabet or, more generally, permuting the elements in the source set P.
- $\square$  Let  $P = C = Z_n$ , K are the sets of permutations of *n* elements 0, 1,
  - ..., n-1. So, for each  $\Box$   $\Xi$  K, a permutation of n elements 0, 1,
  - ..., n-1. For each key  $\square$   $\stackrel{\square}{\sim}$  K, define:
  - $\Box e_{-}(x) = \Box (x)$  and  $d_{-}(y) = \Box -1(y)$ , for  $x, y = Z_n$
  - $\square$  E = { $e_{-}$ ,  $\square$   $\square$  K} and D = { $d_{-}$ ,  $\square$   $\square$  K} Really secure???

#### ☐ Properties:

- ☐ Simple, encryption and decryption are done quickly
- $\square$  Key-space K has n! keys
- Overcoming the limitation of the Shift-Cipher method: It is impossible to attack by exhausting the key values  $k \stackrel{\square}{=} K$



#### Substitution cipher

AO VCO JO IBU RIBU

AO VCO JO TEL At

?A H?A ?A

Attacks based on the occurrence of characters in the language

MA HOA VA UNG DUNG



#### Substitution cipher

L FDPH L VDZ L FRQTXHUHG

L FDPH L VDZ L FRQTXHUHG

i ?a?e i ?a? i ?????e?e?

came i saw i conquered

- ☐ Frequency analysis
  - $\square$  Character: E > T > R > N > I > O > A > S
  - $\square$  Digraph: TH > HE > IN > ER > RE > ON > AN > EN
  - $\square$  Trigraph: THE > AND > TIO > ATI > FOR > THA > TER > RES



#### Affine cipher

- Let  $P = C = Z_n$ ,  $K = \{(a, b) \stackrel{\text{def}}{=} Z_n : gcd(a, n) = 1\}$ . For each  $key \ k = (a, b) \stackrel{\text{def}}{=} K$ , define:
  - $\square e_{k}(x) = (ax + b) \mod n \text{ and } d_{k}(y) = a^{-1}(y b) \mod n, \text{ for } x, y \stackrel{\blacksquare}{} Z_{n}$
  - $\square$  E = { $e_k$ ,  $k \stackrel{\blacksquare}{=} K$ } and D = { $d_k$ ,  $k \stackrel{\blacksquare}{=} K$ }
- $\square$  For correct decrypt then  $e_k$  must be a bijection  $\sqsubseteq gcd(a, n) = 1$





#### Affine cipher

- Let  $\underline{=}(n)$  be a number of elements in  $Z_n$  and coprime with n
- ☐ If  $n = \text{ where } p_i \text{ are distinct prime numbers and } e_i \stackrel{\text{\tiny TL}}{=} Z^+, 1 \stackrel{\text{\tiny IL}}{=} i$   $\stackrel{\text{\tiny IL}}{=} m \text{ then } p_i = m \text{ then } p_i =$
- □ We have
  - $\square$  *n* ways of choosing *b*
  - $\square$  <sub>= $\bullet$ </sub> (n) ways of choosing a
  - $\square$   $n = \mathbb{R}_{0}(n)$  ways of choosing key k = (a, b)



#### Euclide algorithm

- $\square$  Consider 2 prime numbers a and b (a > b) we have:
  - $\Box a = q_0 b + r_0 (0 < r_0 < b)$

  - $\square r_0 = q_2 r_1 + r_2 (0 < r_2 < r_1)$
  - $\square r_1 = q_3 r_2 + r_3 (0 < r_3 < r_2)$
  - □ ...
- Easily see:
  - $\square$   $gcd(a, b) = gcd(b, r_0) = gcd(r_0, r_1) = \dots = gcd(r_{m-1}, r_m) = r_m.$
  - $\square$  Example: gcd(1071, 462) = gcd(462, 147) = gcd(147, 21) = 21



### Vigenere cipher

- $\square$  Choose a positive integer m. Let  $P = C = K = (Z_n)^m$ .
  - $\square K = \{(k_1, k_2, ..., k_m) \stackrel{\blacksquare}{} (Z_n)^m \}$
  - $\square$  For each key  $k = (k_1, k_2, ..., k_m)$   $\stackrel{\blacksquare}{}$  K and x, y  $\stackrel{\blacksquare}{}$   $(Z_n)^m$ , define:
    - $\Box e_{k}(x_{1}, x_{2}, ..., x_{m}) = ((x_{1} + k_{1}) \bmod n, (x_{2} + k_{2}) \bmod n, ..., (x_{m} + k_{m}) \bmod n)$
- Subtitution cipher: for each key k, plain-text  $x \stackrel{\square}{=} P$  is mapped to only one  $y \stackrel{\square}{=} C$ .
- $\square$  Vigenere cipher uses key with length m.
  - □ Named after Blaise de Vigenere (Century 16)
  - $\square$  The Vigenere cipher can be viewed as consisting of m displacement ciphers that are applied alternately on a periodic basis.
  - $\square$  Key-space K of Vigenere cipher is  $n^m$
  - For example: n = 26, m = 5 then key-space has  $\sim 1.1 \times 10^7$  keys



#### Vigenere cipher

- $\square$  Example: m = 6 and keyword CIPHER
- $\square$  Then, key k = (2, 8, 15, 7, 4, 17)
- Let plaintexts: **thiscryptosystemisnotsecure**

| t  | h  | i  | S  | c | r  |
|----|----|----|----|---|----|
| 19 | 7  | 8  | 18 | 2 | 17 |
| 2  | 8  | 15 | 7  | 4 | 17 |
| 21 | 15 | 23 | 25 | 6 | 8  |

| y  | p  | t  | 0  | S  | y  |
|----|----|----|----|----|----|
| 24 | 15 | 19 | 14 | 18 | 24 |
| 2  | 8  | 15 | 7  | 4  | 17 |
| 0  | 23 | 8  | 21 | 22 | 15 |

| S  | ι  | е  | 111 | 1  | S  |
|----|----|----|-----|----|----|
| 18 | 19 | 4  | 12  | 8  | 18 |
| 2  | 8  | 15 | 7   | 4  | 17 |
| 20 | 1  | 19 | 19  | 12 | 9  |

| n  | O  | t  | S  | e | c  |
|----|----|----|----|---|----|
| 13 | 14 | 19 | 18 | 4 | 2  |
| 2  | 8  | 15 | 7  | 4 | 17 |
| 15 | 22 | 8  | 25 | 8 | 19 |



#### Hill cipher

- ☐ Hill cipher (1929), author: Lester S. Hill
- $\square$  Main idea: use m linear-combinations of m characters in plaintext to produce m characters in ciphertext
- Example:

$$(y_1, y_2) = (x_1, x_2) =$$

$$(x_1, x_2) = (y_1, y_2) =$$



#### Hill cipher

- $\square$  Choose a positive integer m. Define
  - $\square P = C = (Z_n)^m$
  - $\square$  K is a set of inverse matrixes m = m, for each key  $k = \square$  K, Let:
    - $\Box e_{k}(x) = xk = (x_{1}, x_{2}, ..., x_{m})$  where  $x = (x_{1}, x_{2}, ..., x_{m})$   $\Box$  P
    - $\Box d_k(y) = yk^{-1}$  where y = C.
  - $\square$  All arithmetic operations are performed on  $Z_n$



#### Inverse matrix

- $\square$  Let inverse matrix K, define  $K^{-1}$
- ☐ Steps:
  - $\square$  Convert from matrix  $(K \mid I_n)$  to  $(I_n \mid K^{-1})$
  - ☐ Elementary transformations:
    - ☐ Multiply 1 line by 1 a number La 0
    - □ Replace 1 line by using that line adding/subtracting times to/from other lines



#### Permutation cipher

- The idea of the presented methods: replace each character in the source message with another character to form the encrypted message.
- The main idea of the Permutation Cipher method is to keep the characters in the source message the same, but only change the position of the characters.
- $\square$  Choose a positive integer m. Let
  - $\square P = C = (Z_n)^m$
  - $\square$  K is a set of permutations of m elements  $\{1, 2, ..., m\}$ . For each key  $\square$  K, define:
    - $\Box e_{\neg}(x_1, x_2, ..., x_m) = (x_{\neg(1)}, x_{\neg(2)}, ..., x_{\neg(m)})$
    - $\Box d_{-}(y_1, y_2, ..., y_m) = (, , ..., )$ , where  $\Box$  -1 is an inverse permutation of  $\Box$



#### Permutation cipher

- The permutation encryption method is a special case of Hill cipher.
- Example: choose m = 3, so  $= \begin{bmatrix} 1 & 2 & 3 \\ \hline 3 & 1 & 2 \end{bmatrix}$  &  $= \begin{bmatrix} -1 & 1 & 2 & 3 \\ \hline 2 & 3 & 1 \end{bmatrix}$ Let plain-text = EAT = (4, 0, 19)
  - $\square$  Compute  $(y_1, y_2, y_3) = (x_1, x_2, x_3) = \square = (4, 0, 19) = \square = (19, 4, 0) = \square$
  - $\Box$  So, cipher-text = TEA
  - $\square$  To decrypt to plain-text, we need an inverse matrix  $\square$  -1 =
    - Compute  $(x_1, x_2, x_3) = (y_1, y_2, y_3) = (19, 4, 0) = (4, 0, 19) = EAT$



#### Permutation cipher

 $\square$  Example: choose m = 6

$$\square So = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 3 & 5 & 1 & 6 & 4 & 2 \end{bmatrix}$$

$$\& = -1 = \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline = 3 & 6 & 1 & 5 & 2 & 4 \\ \hline \end{array}$$

Assume plain-texts = shesellsseashellsbytheseashore

| S | h | e | S | е |   |
|---|---|---|---|---|---|
| е | e | S | I | S | h |

| I | S | S | е | а | S |
|---|---|---|---|---|---|
| S | а | - | S | e | S |

| h | e | — | — | S | р |
|---|---|---|---|---|---|
| _ | S | h | b | - | е |

| У | t | h | е | S | е |
|---|---|---|---|---|---|
| h | S | У | е | е | t |