

Contract Report SL-96-2
UAST-CR-93-004

JOINT U.S./ROK R&D PROGRAM FOR NEW UNDERGROUND AMMUNITION STORAGE TECHNOLOGIES

FINAL REPORT

IMPROVED TECHNIQUES FOR MEASURING THERMAL EFFECTS OF PROPELLANT BURN TESTS IN CONFINED AREAS

by

E. C. Knox

DTIC QUALITY INSPECTED

REMTECH, Inc.
2905 West Corp Boulevard,
Suite 112
Huntsville, Alabama 35805

May 1996

Prepared for U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, Mississippi 39180-6199

19960619 064

DISTRIBUTION STATEMENT
Approved for public release; Distribution Unlimited

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

PRINTED ON RECYCLED PAPER

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.**

**US Army Corps
of Engineers**
Waterways Experiment
Station

Contract Report SL-96-2
May 1996

Joint U.S./ROK R&D Program for New Underground Ammunition Storage Technologies

Improved Techniques for Measuring Thermal Effects of Propellant Burn Tests in Confined Areas

by *E. C. Knox*
REMTECH, Inc.

WES

Approved For Public Release; Distribution Is Unlimited.

Improved Techniques for Measuring Thermal Effects of Propellant Burn Tests in Confined Areas

by E. C. Knox

REMTECH, Inc.
2905 West Corp Boulevard, Suite 112
Huntsville, AL 35805

Final report

Approved for public release; distribution is unlimited

Prepared for **U.S. Army Corps of Engineers**
Washington, DC 20314-1000

Monitored by **U.S. Army Engineer Waterways Experiment Station**
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

**US Army Corps
of Engineers**

Waterways Experiment
Station

Waterways Experiment Station Cataloging-in-Publication Data

Knox, E. C.

Improved techniques for measuring thermal effects of propellant burn tests in confined areas / by E.C. Knox ; prepared for U.S. Army Corps of Engineers ; monitored by U.S. Army Engineer Waterways Experiment Station.

54 p. : ill. ; 28 cm. — (Contract report ; SL-96-2)

"UAST-CR-93-004"—T.p.

Includes bibliographical references.

1. Ammunition — Storage. 2. Propellant actuated devices. 3. Propellants — Thermal properties. 4. Underground storage. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Structures Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Joint U.S./ROK R&D Program for New Underground Ammunition Storage Technologies. V. Title. VI. Series: Contract report (U.S. Army Engineer Waterways Experiment Station) ; SL-96-2.

TA7 W34c no.SL-96-2

Contents

List of Figures	iv
List of Tables	iv
Preface	v
Nomenclature	vi
Conversion Factors	vii
1 INTRODUCTION	1
2 OBJECTIVES	2
3 PROPELLANT THERMOCHEMICAL PROPERTIES	3
3.1 Propellant Thermochemical Properties	3
3.2 Propellant Burning Properties	4
4 ANALYTICAL FLOW MODEL	7
4.1 Flow Model Development	7
4.2 Flow Model Application	7
5 TEST RESULTS REVIEW AND COMPARISON WITH ANALYSIS	13
5.1 Plume, Bunker Pressure and Temperature Measurements Review	13
5.2 Vent Pipe Heat Flux Measurement Review	14
6 RECOMMENDED INSTRUMENTATION FOR FUTURE PROPELLANT BURN TESTS	18
6.1 Propellant Combustion Chamber Instrumentation	19
6.2 Vent Pipe Instrumentation	20
6.3 Plume Instrumentation	21
6.4 Recommended Data Reduction and Instrumentation Installation	22
7 REFERENCES	25
Appendix A ANALYSIS OF ADIABATIC BURNING CONDITION OF M-1 PROPELLANT USED IN KA-III, PHASE C, TESTS (CEC Code Output)	A-1
Appendix B ANALYSIS OF ISENTROPIC BURNING CONDITION OF M-1 PROPELLANT USED IN KA-III, PHASE C, TESTS (CEC Code Output)	B-1
Appendix C SPECIFICATION SHEETS FOR THE RECOMMENDED THERMAL INSTRUMENTATION	C-1

LIST OF FIGURES

1	M-1 Propellant Grain Geometry	5
2	Variation of Ejected Combustible Material with Vent Diameter (from Ref. [4])	6
3	KA-III, Phase C, Test C-3 Bunker Pressure Histories	10
4	KA-III, Phase C, Test C-3 Bunker Gas Temperature History	11
5	KA-III, Phase C, Test C-3 Post-peak Bunker Pressure Histories	12
6	KA-III, Phase C, Test C-3 Bunker Pressure and Gas Temperature Histories	15
7	Power-law Correlation of KA-III, Phase C, Test C-3 TF191 Heat Flux History to Bunker Pressure History	16
8	Power-law Correlation of KA-III, Phase C, Test C-3 TF192 Heat Flux History to Bunker Pressure History	17
9	Recommended Instrumentation in Combustion Chamber for WES May '93 Propellant Burn Tests	19
10	Recommended Instrumentation in Vent Pipe for WES May '93 Propellant Burn Tests	21
11	Recommended Instrumentation in Plume Region for WES May '93 Propellant Burn Tests	22
C-1	Recommended Chamber Total Temperature Instrumentation for WES May '93 Propellant Burn Tests	C-2
C-2	Recommended Total Heat Flux/Surface Thermocouple Instrumentation for WES May '93 Propellant Burn Tests	C-3
C-3	Recommended Radiometer Instrumentation for WES May '93 Propellant Burn Tests	C-4
C-4	Recommended Vent Pipe and Plume Total Temperature Instrumentation for WES May '93 Propellant Burn Tests	C-5

LIST OF TABLES

1	WES May '93 Propellant Burn Tests Recommended Instrumentation Summary	18
---	---	----

PREFACE

This study was conducted for the U.S. Army Engineer Waterways Experiment Station (WES) under contract DACA39-92-M-7281 as part of the Joint U.S./Republic of Korea (ROK) R&D Study for New Underground Ammunition Storage Technologies. Technical Managers for the Joint Program were Mr. Landon K. Davis, Geomechanics and Explosions Effects Division (GEED), WES, and Dr. So-young Song, Korean Agency for Defense Development. The Program Managers were Mr. Gary Abrisz, U.S. Army Technical Center for Explosives Safety, and COL Yeon Woo Chung, Logistics Bureau, Korean Ministry of Defense.

Mr. E. C. Knox, REMTECH, Inc., conducted the study reported herein and is the author of this report. The work was monitored by Mr. Charles E. Joachim, GEED, Structures Laboratory (SL), WES. Dr. Jimmy P. Balsara was Chief, GEED, and Mr. Bryant Mather was Director, SL.

At the time of preparation of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publishing, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

NOMENCLATURE

- A^* Chocked flow area (= vent pipe area)
- A_b Propellant burning area
- C_D Orifice flow coefficient
- P_c Pressure in bunker
- R Propellant combustion gas constant, $C_p - C_V$
- T_c Measured gas temperature in bunker
- V_c Bunker volume, $\sim 5 \text{ m}^3$
- r Propellant surface burn, or recession rate, in./sec
- t Time for propellant ignition
- γ Ratio of gas specific heats, C_p/C_V
- ρ Density, gas or propellant

Subscripts

- b Denotes burning or propellant characteristic
- c Denotes chamber or bunker conditions/characteristics
- p Denotes peak value, as in peak pressure

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain
atmospheres	101.325	kilopascals
BTU per square foot-second	1134.893	joule per square metre-second
calories per square inch-second	0.648521	joule per square centimetre-second
degrees	0.01745329	radians
degrees Fahrenheit	{5/9} {F-32}	Celsius
degrees Celsius	C + 273.15	Kelvins
degrees Kelvin	1.8	Ramkine
feet	0.3048	metres
feet per second	0.3048	metres per second
inches	2.54	centimetres
kilowatts per square metre	1.000000	joule per square metre
litres	0.001	cubic metres
pounds (mass)	0.4535924	kilograms
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
pound (mass) per cubic inch	27.67990	grams per cubic centimetres
pounds (force) per square inch (psi)	6.894757	kilopascals

Section 1

INTRODUCTION

The U.S. Army Corps of Engineers, Waterways Experiment Station (WES), is conducting a test program to study the effects of the accidental burning of propellants stored in a confined area. This work is a part of a broader program called the Joint U.S./ROK (Republic of Korea) R&D Study for New Underground Ammunition Storage Technologies. The goal of the 5-year U.S./ROK Study is to develop improved designs for underground magazines which will greatly reduce the present external hazard areas that are required by current U.S. and Korean military safety standards to protect against the possibility of accidental fires and explosions.

Documentation of propellant burn tests performed to date is presented in Ref. [1]. Additional tests are planned; however, improvements to the instrumentation for these tests have been deemed necessary before executing them. REMTECH, Inc., was tasked by WES to review the instrumentation performance during the Ref. [1] tests and recommend improvements/additions to the Ref. [1] instrumentation for application to a subscale test scheduled for May 1993 at WES. Instrumentation performance experience during these tests will be factored into the instrumentation selection for full-scale tests to be conducted at a later time.

The results of this review are documented in the subject report.

Section 2

OBJECTIVES AND TECHNICAL APPROACH

The objectives for this review were to:

1. Develop improved instrumentation/techniques for measuring the thermal effects of propellant burn tests in confined areas.
2. Develop empirical methods for estimation of the thermal and fluid dynamic environments of the propellant burns.

The technical approach adopted to accomplish these objectives was divided into several phases: review of the available recorded data from Ref. [1] for each instrument channel in terms of quality and inter-channel compatibility; development of a preliminary one-dimensional model of the flow process; characterization of the propellant thermochemical properties; and comparison of results from the model and propellant characterization with the experimental results.

Section 3

PROPELLANT THERMOCHEMICAL PROPERTIES

As a means of establishing a standard by which the performance of the instrumentation for KA-III, Phase C, tests could be measured in terms of possible total energy release and likely pressure rise times, the thermochemical and burning properties of the propellant used in these tests were examined.

3.1 Propellant Thermochemical Properties

The propellant used in the KA-III, Phase C, tests and planned for use in the WES May '93 tests is, in the U.S. Army notation demoted as M-1. Its chemical composition is defined in Ref [2] and repeated herein as

Ingredient	Percent by weight
Ethanol (C_2H_6O)	0.75
Nitrocellulose ($C_6H_{7.3715}N_{2.6355}O_{10.2715}$)	83.74
Dinitrotoluene ($C_7H_6N_2O_4$)	9.84
Diphenylamine ($C_{12}NH_{11}$)	0.99
Butyl Phthalate ($C_{16}H_{22}O_4$)	4.93
Water (liquid)	0.50

This composition was input to REMTECH's in-house version of the NASA Chemical Equilibrium Composition code (CEC) [3] to determine the propellant combustion product and the amount of energy released upon burning.

Two burning condition were analyzed; adiabatic, representing the maximum possible energy release, and isentropic, representative of the propellant burning at one pressure and expanding isentropically to another pressure (atmospheric in this case). The resultant pressure and temperatures for these cases are tabulated as follows:

Condition	Pressure, atm	Temperature, K
Adiabatic	1810.	2437.
Isentropic	1.00	1919.

The complete CEC code outputs for these conditions are included in Appendices A and B, respectively. Therein the combustion products are listed to be approximately 50 percent CO, 20 percent H₂, 13 percent water, 10 percent N₂, and 6 percent CO₂, with lesser amounts of other constituents.

Determination of the adiabatic properties was aided significantly by the assistance of Dr. A. J. Kotlar, USA Research Laboratory, Aberdeen Proving Ground, MD, which is hereby acknowledged.

3.2 Propellant Burning Properties

Mr. Michael M. Swisdak, Jr., Naval Surface Warfare Center/Dahlgren Division, is hereby acknowledged for his providing the geometry and burning characteristics for the M-1 propellant. Shown in Fig. 1 is the propellant geometry; its density is nominally 0.0566 lb/in.³, and its burn-rate equation is defined as

$$r = A * (\text{Pressure})^N \quad (1)$$

where

r = the propellant burning surface recession rate (in./sec),

A = 0.00161 in./sec/psi, and

N = 0.741.

The time for a propellant grain to be consumed by burning for the conditions of the KA-III, Phase C, tests (Test C-3), using the log-mean pressure from initial to peak and the grain cylindrical surface area (inside and external) with the above equation, was estimated to be 0.40 sec.

Comparing this result with the actual burn time of approximately 10 seconds with the theoretical value of 0.40 seconds has several potential implications which include:

1. The entire surface areas of the pellets are not being ignited simultaneously.
2. The mass of the air in the bunker is significant compared with the burned propellant gas mass during the initial pressure buildup.
3. Stacking methods and container type probably influence the burn history since they may control the amount of surface area available for burning as a function of time.

As will be shown later in the report, the vent pipe exit velocity exceeds the combustion gas speed-of-sound (~2000 ft/sec) for portions of the burn history prior to and after the pressure peak. Considering the average grain burn time, any burning grains that become airborne during the burning process could travel as much as 800 ft while in the burning state, thus giving credence to the likelihood of burning propellant being ejected out of the bunker during the KA-III, Phase C, tests.

Similar effects were observed for tests reported in Ref [4], in which upwards to 80 percent of the combustible material was ejected out of the combustion chamber, depending on the vent diameter. Shown in Fig. 2 is a curve of the observed variation of the ejecta material percent vs. the vent diameter.

The presence of this phenomena in the instant process raises concerns as to the scalability of any subscale results to full-scale applications without an attendant math model of the flow process.

Figure 1. M-1 propellant grain geometry

Figure 2. Variation of ejected combustible material with vent diameter, (Ref. [4])

Section 4

ANALYTICAL FLOW MODEL

As a means of establishing a standard by which the performance of the instrumentation for KA-III, Phase C, tests could be measured in terms of pressure histories and related heat transfer variations, a one-dimensional model of the flow process was developed.

4.1 Flow Model Development

Applying the conservation of mass principle to these tests, the combustion gas generated in the process of burning the propellant is accounted for in the accumulation of mass in the bunker and the mass that is vented out the connecting pipe. This balance is expressed in equation form as

$$A_b r \rho_b - \frac{d}{dt} (\rho_c V_c) = A P_c \sqrt{\frac{\gamma}{RT_c} \left(\frac{2}{\gamma - 1} \right)^{\frac{\gamma-1}{\gamma}}} \quad (2)$$

assuming the "chocked" flow condition governs the vented mass flow rate, i.e., the condition for which the bunker pressure is greater than 1.9 times atmospheric pressure. Another expression applies for the "unchoked" condition.

4.2 Flow Model Application

Shown in Fig. 3 are the bunker pressure histories for test C-3 of the KA-III, Phase C Tests as measured by instruments ABI180, -181B, and 182. Also shown on Fig 3 is the division between "chocked" and "unchoked" flow; at pressures greater than the division line, the "chocked" form of Eq. (2) applies. The comparison temperature (TF190) history is presented in Fig. 4.

The exhibited pressure trends in Fig. 3 are interpreted as propellant burning until the pressure peak, after which pressure decay occurs as the bunker is vented to atmosphere. Then, for the pressure decay portion of the process, the mass generation term goes to zero in Eq. (2) preceding. The reduced Eq. (2) takes the form

$$\frac{dP_c}{dt} = \frac{A}{V_c} \sqrt{RT_c \gamma \left(\frac{2}{\gamma - 1} \right)^{\frac{\gamma-1}{\gamma}}} P_c - 0 \quad (3)$$

Figure 3. KA-III, Phase C, Test C-3 Bunker Pressure Histories.

Figure 4. KA-III, Phase C, Test C-3 Bunker Gas Temperature History.

for which the solution takes the form

$$P_c(t) = (P_{c_p}) e^{-Bt}, \text{ where } B = \frac{A^*}{P_c} \sqrt{RT_c \gamma \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma+1}{\gamma-1}}} \quad (4)$$

The instant venting process may be related to venting through an orifice, so the constant, B , is redefined as $B * C_D$, where C_D is the discharge coefficient. C_D is a measure of the resistance offered by the orifice to passing the flow through it; a unity value denotes no resistance, i.e., isentropic flow, and values less than unity, increased resistance, typifying real flow with pressure losses and flow friction. The coefficient, B , was computed for the conditions of Test C-3 to be 5.666, treating the gas temperature as constant during the period of "choked" flow (≈ 14.0 to 15.0 sec). Hence, the particular solution for this case from Eq. (4) is

$$P_c(t) = (P_{c_p}) e^{-5.666 C_D t} \quad (5)$$

The pressure-decay portion of Fig. 3 is expanded in Fig. 5. Also presented in Fig. 5 are the computed pressure decay rates for $C_D = 1.0$ and 0.18 to illustrate the degree to which the measured decay is non-isentropic and the value of C_D required to match that decay. The normal range for the coefficient, C_D , to account for pressure losses in the orifice is $0.8 - 0.95$; the value required to match the measured decay indicates significant other resistance mechanisms in operation. One such mechanism is thermal choking in the vent pipe, caused by heat release with time. This observation is in concert with the likelihood of burning propellant being ejected, and its definition would require the development of a particle transport mechanism model.

In Fig. 3 an apparent acoustical phenomena of the order of 1 Hz is manifested in the pressure history. Attempts to relate this occurrence to any of the geometric or flow parameters of this case have thus far proved unsuccessful, hence, its cause is not currently understood.

Figure 5. Ka-III, Phase C, Test C-3 Post-peak Bunker Pressure Histories

Section 5

TEST RESULT REVIEW AND COMPARISON WITH ANALYSIS

A review of the KA-III, Phase C Tests and comparison with analytical results based on the information and insights developed in the prior Sections are now presented to gauge the instrumentation performance. Two primary data sources were used: the Test Report [1], and the video footage of the plume history.

5.1 Plume, Bunker Pressure and Temperature Measurements Review

Review of the video coverage of the plume behavior during the propellant burns for all of the tests (C-1 through C-4) showed marked unsteadiness in the plume character, i.e., its shape, radiation intensity, and its apparent mean velocity. Moreover, on one occasion the plume was observed to be completely extinguished only to be subsequently re-ignited.

The observed unsteadiness likely is related to the acoustical phenomena detected in the pressure histories, so understanding this phenomena has more than a causal interest. The re-ignition process could be related to the presence of burning propellant grains or burning of the H₂ produced in the combustion products of the propellant burning process. To gain understanding of these plume characteristics, additional instrumentation to the surface pressures measured in the subject tests is necessary. Recommendations to define the required additional instrumentation are presented in the next Section.

Review of the plotted results presented in Ref [1] provide a better opportunity for direct comparisons and analysis with what one might expect based on fundamental thermochemical and fluid dynamic considerations. Of the four tests presented, the results for Test C-3 provided the better quality plots, hence our review focused on this test exclusively.

Possibly the most surprising aspect of our review was the apparent low amount of energy released in the bunker during the propellant burning compared to the amount theoretically available (See Section 3.1). The comparatively low pressure is possible in view of the vent and/or the slow burning time compared to the fluid dynamic time scale, i.e., the grains can be exhausted well into the plume before burning is completed. Moreover, the pressure histories from three transducers agree well enough to confirm the measurements as being correct.

However, the indicated gas temperature is well below the maximum value one might expect (900K compared to 1900K), suggesting either incomplete combustion in the burning process or very low rate producing little combustion gas. In the latter case the ambient air in the bunker affects measurably the mixture temperature. In addition, the shielded

thermocouples may have had significant time lag and conduction loss resulting in lower than actual indicated temperature.

In this vein the one bunker gas temperature measurement was compared chronologically with one of the bunker pressure histories as shown in Fig. 6. The temperature does not peak until about two seconds after the peak pressure occurs. Remembering the inference that the peak pressure indicates the cessation of propellant burning, the continued increase in gas temperature measurement suggests a thermal lag in the temperature measurement device. Future gas temperature instrumentation should be selected to minimize these potential effects.

5.2 Vent Pipe Heat Flux Measurements Review

A means of evaluating the performance of the heat flux instrumentation is the fundamental fluid dynamic relationship between the heat flux and local pressure. This relationship states that the heat flux is proportional to the pressure to an exponent, i.e.,

$$\dot{q} \propto (p)^n \quad (6)$$

where

$$n = 0.85 \text{ for turbulent flow.}$$

Since the local pressure is related to the bunker pressure fluid dynamically and the bunker pressures were already digitized, one of the bunker pressure histories was used in the above equation with each of the two heat flux measurements (TF191 and -192). Shown in Figs. 7 and 8 are the heat flux histories for each measurement plotted against the bunker pressure in the log-log domain. Also shown is the 0.85 exponent line paired through the measurements. Good agreement with the fluid dynamic model is clearly evident, indicating the heat flux trends to be as expected and that the instrumentation is performing satisfactorily. It should be remembered, however, that instrumentation was severely overdriven in Test C-4, so for that reason a different type of instrument to measure heat flux is recommended in the following Section for the future tests.

Figure 6. KA-III, Phase C, Test C-3 Bunker Pressure and Gas Temperature History.

Figure 7. Power-law Correlation of KA-III, Phase C, Test C-3 TF191
Heat Flux History to Bunker Pressure History

Figure 8. Power-law Correlation of KA-III, Phase C, Test C-3 TF192
Heat Flux History to Bunker Pressure History

Section 6

Recommended Instrumentation for Future Propellant Burn Tests

Based on the review and analysis presented in the prior Sections, the following recommendations are made for instrumentation to be used in future propellant burn-type tests. The recommendations are made to improve the definition of the thermal and fluid dynamic aspects of the propellant burn process with the view to enhancing the understanding and definition of the process environments, particularly the amount of energy released and where it is distributed. The recommendations are presented by a generic subdivision of the regions of interest with a rationale of the need for each measurement. Specification sheets for the recommended thermal instrumentation are given in Appendix C identifying the type and recommended supplier. And a summary of all recommended instrumentation is presented in Table 1.

Table 1: WES May '93 Propellant Burn Tests Recommended Instrumentation Summary

		Specification	Number
Chamber			
Pressures	Selected by WES	6	
Total Temperature (T)	TCGT 130 Series-569	2	
Total Heat Flux (HT)	TCS-E-YY-ZZ-10196	6	
Radiometer (R)	32R-L-XX-140-ZZ-21096	6	
Vent Pipe			
Pressures	Selected by WES	7	
Total Temperature (T)	T/C-801	2	
Total Heat Flux (HT)	TCS-E-YY-ZZ-10196	3	
Radiometer (R)	32R-L-XX-140-ZZ-21096	3	
Plume			
Pressures	Selected by WES	2+	
Total Temperature (T)	T/C-801	1+	
Total Heat Flux (HT)	TCS-E-YY-ZZ-10196	3	
Radiometer (R)	32R-L-XX-140-ZZ-21096	3	

Note: Recording channels for T & HT instrumentation may require 10 MHz sampling rate.

6.1 Propellant Combustion Chamber Instrumentation

Shown in Fig. 9 is a geometrically scaled sketch of the combustion chamber hardware to be used in the WES May '93 tests with the recommended instrumentation located. The recommended instrumentation consists of gas total pressure and temperature and chamber wall total and gas radiative heat flux. The pressure instrumentation used in the KA-III, Phase C tests performed quite well and are recommended for use in the future tests. The sensing face of the transducer should be well shielded from the heat effects of gas radiation. Considering the length- to-diameter of the combustion chamber, it is recommended that three (3) pressure measurements be spaced equally along the chamber length to detect any possible gradients. The pressure measurements at each end are placed to detect any acoustical phenomena.

The gas total temperature measurements should be installed near the pressure measurements located at 0.25 and 0.75 of the chamber length. The measurement tip of the thermocouple should extend about 5 in. beyond the chamber side wall. The spec sheet for this transducer is presented as Fig. C-1 (Appendix C).

Figure 9. Recommended Instrumentation in Combustion Chamber for WES May '93 Propellant Burn Tests

Because of the indication of possible thermal lag of the thermocouple used in the KA-III, Phase C tests, the gauge of the thermocouple wire for this transducer should be as small as possible, consistent with the expected maximum temperature (1900K for the present case). If there is room in the data acquisition system, it would be desirable to add a third thermocouple of a different wire gauge near the bottom of the chamber at the same axial location as one of the top thermocouples to assess the lag effect.

The recommended heat flux measurements in the chamber are designed to allow determination of the amount of energy transferred to the walls before the gas is expelled out the vent pipe. Both total and radiative heat flux instrumentation are recommended to allow the determination of the convective heat transfer (total minus radiative), which may be used in conjunction with the simultaneous gas total and wall temperatures to compute the convective heat transfer coefficient. Having the measurements in this form provides the means to define the thermal environments for other test conditions more readily. The transducer for the total heat flux is actually a surface temperature measurement device; it was selected because it is extremely rugged, provides the direct measurement of the wall temperature, its temperature history can be used in an algorithm to determine the wall heat flux, and it is virtually impossible to overdrive its capability to define the heat flux (as was experienced in the vent pipe for Test C-4 of the KA-III, Phase C tests).

The specs sheets for the surface temperature (total heat flux) and the radiative heat flux gauges are presented as Fig. C-2 and C-3, respectively. The heat flux algorithm is discussed in Subsection 6.4: Recommended Data Reduction and Instrumentation Installation.

6.2 Vent Pipe Instrumentation

The recommended instrumentation in the vent pipe is designed to define the energy and velocity (and mass flow) of the entering and exiting flow, and the distributions with vent-pipe length of static pressure and total and radiative heat flux to the wall.. The placing of the vent-pipe instrumentation is shown in Fig. 10; the locations of the wall static pressure and heat flux transducers should be spaced logarithmically along the length for better definition of any pipe-flow characteristics the flow might exhibit.

The total and radiative heat flux gauges and total and static pressure transducers are the same as those recommended for use in the combustion chamber (See Fig. C-2 and C-3). The installation of the pressure transducers in the pitot probes (PT) is described in Subsection 6.4: Recommended Data Reduction and Instrumentation Installation.

The total temperature transducer recommended for use in the vent pipe is similar to the ones in the combustion chamber but has a different radiation shield. The specs sheet for this transducer is presented in Fig. C-4. The concerns for temperature response with thermocouple wire gauge expressed in the combustion chamber discussion apply here also.

Figure 10. Recommended Instrumentation in Vent Pipe for WES
May '93 Propellant Burn Tests.

6.3 Plume Instrumentation

Shown in Fig. 11 is a layout for an instrumentation package to minimally define the thermal/fluid dynamic characteristics of the propellant burn exhaust plume. The package consists of a radiometer positioned at three locations along the plume length (15m shown) and a pitot rake which can be positioned at any location along the plume. The pitot rake should facilitate mounting pitot probes and a total temperature transducer at up to eight (8) adjustable positions both vertically and horizontally plus a center position to provide survey type measurements of the plume cross section.

The pitot probes, total temperature instruments, and the radiometers are the same as those used in the vent pipe application.

Figure 11. Recommended Instrumentation in Plume Region for WES
May '93 Propellant Burn Tests.

6.4 Recommended Data Reduction and Instrumentation Installation

Data Reduction -- The total heat flux/surface temperature is the only measurement result for which the data reduction procedure is not straightforward multiplication of a gauge constant scale factor, supplied by the instrument vendor, times the instantaneous output of the instrument. Some thermocouple transducers are non-linear and require special digital data reduction.

The surface temperature is obtained by the tabular look-up in the millivolt output tables for Chromel-Constantan taking into account the thermocouple reference temperature, or input of the millivolt output into a curve fit equation of the tables. Computation of the heat flux is more complicated; it requires the time-wise integration of the surface temperature to get the heat flux.

The heat flux algorithm is based on the condition of one-dimensional conduction along the gauge, a condition that is satisfied if the gauge is installed in a material of similar thermophysical properties such that $\sqrt{\rho C_p k}$ for the gauge and the host material are as near the same as possible. For Chromel-Constantan, steel is the best match for these properties. The temperature variation of $\sqrt{\rho C_p k}$ over the range measured by the gauge is required in the data reduction procedure.

The simplest algorithms that for a gauge installed in a semi-infinite slab under a heating load from a time-invariant heat transfer coefficient. This algorithm is available in Ref [5]. However, it is not likely that the heat transfer coefficient for the conditions of the propellant burn tests will be constant with time.

A second algorithm for the time-variant heat transfer coefficient may be developed by solving the inverse of the equation presented in Ref [6] for the wall temperature as a function of the time-variant heat transfer coefficient. This approach requires the computation of the instantaneous slope of the wall temperature with time.

The most direct method of computing the heat transfer coefficient variation with time from the wall temperature time history is by the use if a one-dimensional conduction code which has this capability built in. The EXITS code, developed by REMTECH, Inc., has this capability and can be made available for use in this application.

This type gauge is recommended despite the difficult data reduction procedure required to compute the heat flux in view of the benefits of a very rugged transducer which is virtually impossible to destroy or over-range. Moreover, its use with the radiometer and gas total temperature measurement permits the computation of the convective heat transfer coefficient.

It should be emphasized here that in order to measure the total heat flux, the exposed surface of the gauge must be coated with a paint of known emissivity -- the closer to unity the better for greater accuracy.

Instrumentation Installation -- The installation requirements (hole diameter and thread type, etc.) for all the thermal instrumentation are called out on the spec sheets for each type. Additional installation considerations are discussed below.

The radiometer and heat flux gauge should be installed flush with the internal wall of the test hardware. The heat flux gauges may be contoured to the local radius. The radiometers should not be contoured and should be installed such that no part of the window is protruding into the flow.

In order to avoid the violation of thermal diffusion times, which complicates the data reduction procedure for the heat flux gauges, the minimum wall thickness into which these gauges should be installed is 1.5 in. This criterion is not satisfied in the vent pipe as it is presently designed; methods to effectively increase the local wall thickness around each gauge (1.0 in. radius) should be adopted.

The mounting of the total temperature and pitot probes in the vent pipe should be such as to minimize the interference effects of its presence in the passing flow; how much is too much is difficult to determine -- a rule of thumb is no more than 15 percent blockage area to the unblocked flow area.

The important aspect of the installation of the pressures in the pitot pressure probe is that the static pressure transducer be located sufficiently downstream of the probe front face so that the local pressure has returned to the stream static. A rule of thumb for that distance is 10 probe diameters. For all installations the pressure transducers should be protected from direct radiation from the combustion gases.

Section 7

REFERENCES

- [1] Joachim, Charles E., "KA-III' Phase C, M-1 Propellant Tests, Deflagration in Partial Confinement," Technical Report SL-91-11, U.S. Army Engineers Waterways Experiment Station, July 1991.
- [2] Freedman, Eli, "Thermodynamic Properties of Military Gun Propellants," in *Gun Propulsion Technology*, Vol. 109, *Prog. in Astro. & Aero.*, edited by Ludwig Stiefel, AIAA, Inc., Washington, DC, 1988, p. 103.
- [3] Gordon, Sanford and McBride, Bonnie J., "Computer program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, March 1976.
- [4] Bouhard, F., Veyssi  re, B., Leyer, J. -C., and Chaineaux, J., "Explosion in a Vented Vessel Connected to a Duct," in *Dynamics of Detonations and Explosions: Explosion Phenomena*, Vol. 134, *Prog. in Astro. & Aero.*, edited by A. L. Kuhl, et al., AAIA, Inc., Washington, DC, 1990, p. 85.
- [5] Cook, W. J., and Felderman, E. J., "Reduction of Data from Thin-Film Heat Transfer Gages: A Concise Numerical Technique," AAIA J., Vol. 4, No. 3, March 1966.
- [6] Goodman, T. R., "Application of Integral Methods to Transient Nonlinear Heat Transfer," *Advances in Heat Transfer*, edited by T. F. Irvine and J. P. Hartnett, Vol. 1, Academic Press, 1964.

Appendix A
ANALYSIS OF ADIABATIC BURNING
CONDITION OF M-1 PROPELLANT USED
IN KA-III, PHASE C, TESTS (CEC Code Output)

REACTANTS

C	2.0000	H	6.0000	O	1.0000	0.0000	0.0000	0.007500	-66420.00	S	298.300
C	6.0000	H	7.3715	N	2.6355	O	10.2715	0.837400	-164700.00	S	298.300
C	7.0000	H	6.0000	N	2.0000	O	4.0000	0.098400	-17100.00	S	298.300
C	12.0000	N	1.0000	H	11.0000	O	0.0000	0.009900	31070.00	S	298.300
C	16.0000	H	22.0000	O	4.0000	O	0.0000	0.049300	-201400.00	S	298.300
H	2.0000	O	1.0000	O	0.0000	O	0.0000	0.005000	-60315.00	S	298.300

F F F F F F

NAMELISTS

0 ***INPT2***
 OKSE = 1 IDEBUG = 0 TRACE = 0.00000D+00 IONS = F SIUNIT = F
 OTP = F HP = F SP = F TV = F UV = T SV = F RKT = F SHOCK = F DETN = F
 OTRNSPT = F TRPACC = 0.999950E+00 NODATA = F
 OF = F FA = F FPCT = F ERATIO = F PHI = F
 OSO = 0.0000000E+00 U = 0.00000000E+00 H = 0.00000000E+00
 OV = 0.50000E+01
 ORHO = 0.20000E+00
 OT = 0.00000E+00
 ONO INPT2 VALUE GIVEN FOR OF, EQRAT, FA, OR FPCT.
 OMIX = 0.00000E+00
 SPECIES BEING CONSIDERED IN THIS SYSTEM

J	3/78	C	J12/67	CH	J12/72	CH2	J 3/61	FORMALDEHYDE	L 4/85	FORMIC ACID
J	6/69	CH3	J12/67	L 9/85	HYDROXYMETHYLENE	L 9/85	CH4	L 9/85	METHANOL	
J	6/69	CN	J12/70	CNN RAD	J 6/66	METHYLOXIDE	J 5/84	CO2		
J	12/69	C2	J 3/67	C2H RAD	J 3/61	ACETYLENE	J 9/65	C2H3 RAD		
BUR	84	METHYL CYANIDE	BUR 84	CH3CO RAD	BUR 84	CH2CHO RAD	BUR 84	KETENE		
L	4/85	ACETIC ACID	L 4/85	(FORMIC ACID) 2	P10/83	ETHYL RAD	L 4/85	ETHYLENE		
BUR	84	AZOMETHANE	BUR 84	DIMETHYL ETHER	BUR 84	ETHYL OXIDE RAD	BUR 84	ACETALDEHYDE		
J	9/66	CCO RAD	J12/69	C3	DB6/61	C3H3 RAD	J 3/67	ETHANOL		
BUR	84	ALLENE	BUR 84	C3H5 RAD	BUR 84	CYCLOPROPANE	BUR 84	PROPENE		
L	9/85	I-PROPYL RAD	L 9/85	N-PROPYL RAD	L 4/85	PROPANE	L 9/85	PROPYLENE OXIDE		
J12/69	C4	BUTADIENE	BUR 84	BUTADIENE	P10/85	CYCLOBUTADIENE	J 6/68	CARBON SUBOXIDE		
BUR	84	2-BUTYNE	BUR 84	2-BUTENE TRANS	BUR 84	2-BUTENE CIS	P 4/84	1,3-BUTADIENE		
L	4/85	(ACETIC ACID) 2	L 9/85	T-BUTYL RAD	L 9/85	S-BUTYL RAD	BUR 84	ISOBUTENE		
L	4/85	ISOBUTANE	J 3/61	CARBON SUBNITRID	J12/69	C5	P10/83	1-BUTENE		
P12/52	1-PENTENE	L 5/87	T-PENTYL RAD	P10/83	N-PENTYL RAD	P10/85	N-BUTANE			
P10/85	CH3C(CH3)2CH3	BUR 84	HEXATRIYNE	L12/84	PHENYL RAD	P10/85	CYCLOPENTADIENE			
L12/84	PHENOL	BUR 84	CYCLOHEXENE	P10/83	N-HEXYL RAD	P10/84	PENTANE			
P12/52	1-HEPTENE	P10/83	N-HEPTYL RAD	P 4/81	N-HEPTANE	P12/52	ISOPENTANE			
P	4/85	OCTANE	P 4/85	ISO-OCTANE	P10/83	N-NONYL RAD	P10/83	1-OCTENE		
P10/83	N-DECYL RAD	L12/84	O-BIPHENYL RAD	L12/84	BIPHENYL	P10/85	N-CYCLOPENTANE			
L12/69	HCN	J12/70	HCO RAD	J12/70	HNC(O)	RUS 78	JET-A (G)			
RUS	78	HNO3	L 5/89	H2O	J 3/77	H2	RUS 78	HNO2		
L	3/85	H2O2	J 3/77	N	J12/70	NCO	J 3/79	H2O		
J	6/77	NH3	RUS 78	NH2OH	RUS 78	NO2	RUS 78	NH2		
							J12/64	NO3		

J 3/77 N2
RUS 78 N2O3
J 3/77 O
P10/80 BENZENE (L)
J 3/79 H2O (L)

0

RUS 78 N2H2
RUS 78 N2O4
J 6/77 OH
P10/80 TOLUENE (L)

0

RUS 78 NH2NO2
RUS 78 N2O5
J 3/77 O2
P10/80 OCTANE (L)

0

RUS 78 N2H4
RUS 78 N3
J 6/61 O3
L 6/88 JET-A (L)

0

RUS 78 N2O
RUS 78 N3H
J 3/78 C(GR)
L 3/81 H2O (S)

EFFECTIVE FUEL

	HPP (2)	
INTERNAL ENERGY (KG-MOL) (DEG K) /KG	-0.28176266E+03	0.0000000E+00
OKG-FORM.WT./KG	BOP (1, 2)	BOP (1, 1)
C	0.2534958E-01	0.0000000E+00
H	0.31067750E-01	0.0000000E+00
O	0.33694333E-01	0.0000000E+00
N	0.89330269E-02	0.0000000E+00
POINT ITN T	C	H
1 13 2437.49	-6.380	-7.089

-20.635 -11.217

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED VOLUME

CASE NO.

1

CHEMICAL FORMULA

FUEL	C 2.00000	H 6.00000	O 1.00000
FUEL	C 6.00000	H 7.37150	N 2.63550
FUEL	C 7.00000	H 6.00000	N 2.00000
FUEL	C 12.00000	N 1.00000	H 11.00000
FUEL	C 16.00000	H 22.00000	O 4.00000
FUEL	H 2.00000	O 1.00000	PERCENT FUEL= 100.0000
O/F= 0.0000			EQUIVALENCE RATIO= 1.9657

OTHER THERMODYNAMIC PROPERTIES

P, ATM	1810.19
T, DEG K	2437.49
RHO, G/CC	2.00000-1
H, CAL/G	-340.73
U, CAL/G	-559.92
G, CAL/G	-5703.39
S, CAL/(G) (K)	2.2001

M, MOL WT	22.099
(DLV/DLT) T	-1.00334
(DLV/DLT) P	1.0150
CP, CAL/ (G) (K)	0.4475
GAMMA (S)	1.2558
SON VEL,M/SEC	1073.2

OMOLE FRACTIONS

FORMALDEHYDE	0.000011
FORMIC ACID	0.00005
CH3	0.00001
CH4	0.00053

CO 0.50555
 CO₂ 0.05351
 H 0.00020
 HCN 0.00036
 HCO RAD 0.00003
 HNO₃ 0.00003
 H₂ 0.20902
 H₂O 0.13174
 NH₃ 0.00063
 N₂ 0.09819
 OH 0.00003

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.50000E-05 FOR ALL ASSIGNED CONDITIONS

C	CH	CH₂	CH₃	CH₄	C₂	C₂H	C₂H₂	C₂H₃	C₂H₆	C₃	C₃H₃	C₃H₆	C₃H₈	C₄	C₅	C₆	C₇	C₈	C₉	C₁₀	C₁₁	C₁₂	C₁₃	C₁₄	C₁₅	C₁₆	C₁₇	C₁₈	C₁₉	C₂₀	C₂₁	C₂₂	C₂₃	C₂₄	C₂₅	C₂₆	C₂₇	C₂₈	C₂₉	C₃₀	C₃₁	C₃₂	C₃₃	C₃₄	C₃₅	C₃₆	C₃₇	C₃₈	C₃₉	C₄₀	C₄₁	C₄₂	C₄₃	C₄₄	C₄₅	C₄₆	C₄₇	C₄₈	C₄₉	C₅₀	C₅₁	C₅₂	C₅₃	C₅₄	C₅₅	C₅₆	C₅₇	C₅₈	C₅₉	C₆₀	C₆₁	C₆₂	C₆₃	C₆₄	C₆₅	C₆₆	C₆₇	C₆₈	C₆₉	C₇₀	C₇₁	C₇₂	C₇₃	C₇₄	C₇₅	C₇₆	C₇₇	C₇₈	C₇₉	C₈₀	C₈₁	C₈₂	C₈₃	C₈₄	C₈₅	C₈₆	C₈₇	C₈₈	C₈₉	C₉₀	C₉₁	C₉₂	C₉₃	C₉₄	C₉₅	C₉₆	C₉₇	C₉₈	C₉₉	C₁₀₀	C₁₀₁	C₁₀₂	C₁₀₃	C₁₀₄	C₁₀₅	C₁₀₆	C₁₀₇	C₁₀₈	C₁₀₉	C₁₁₀	C₁₁₁	C₁₁₂	C₁₁₃	C₁₁₄	C₁₁₅	C₁₁₆	C₁₁₇	C₁₁₈	C₁₁₉	C₁₂₀	C₁₂₁	C₁₂₂	C₁₂₃	C₁₂₄	C₁₂₅	C₁₂₆	C₁₂₇	C₁₂₈	C₁₂₉	C₁₃₀	C₁₃₁	C₁₃₂	C₁₃₃	C₁₃₄	C₁₃₅	C₁₃₆	C₁₃₇	C₁₃₈	C₁₃₉	C₁₄₀	C₁₄₁	C₁₄₂	C₁₄₃	C₁₄₄	C₁₄₅	C₁₄₆	C₁₄₇	C₁₄₈	C₁₄₉	C₁₅₀	C₁₅₁	C₁₅₂	C₁₅₃	C₁₅₄	C₁₅₅	C₁₅₆	C₁₅₇	C₁₅₈	C₁₅₉	C₁₆₀	C₁₆₁	C₁₆₂	C₁₆₃	C₁₆₄	C₁₆₅	C₁₆₆	C₁₆₇	C₁₆₈	C₁₆₉	C₁₇₀	C₁₇₁	C₁₇₂	C₁₇₃	C₁₇₄	C₁₇₅	C₁₇₆	C₁₇₇	C₁₇₈	C₁₇₉	C₁₈₀	C₁₈₁	C₁₈₂	C₁₈₃	C₁₈₄	C₁₈₅	C₁₈₆	C₁₈₇	C₁₈₈	C₁₈₉	C₁₉₀	C₁₉₁	C₁₉₂	C₁₉₃	C₁₉₄	C₁₉₅	C₁₉₆	C₁₉₇	C₁₉₈	C₁₉₉	C₂₀₀	C₂₀₁	C₂₀₂	C₂₀₃	C₂₀₄	C₂₀₅	C₂₀₆	C₂₀₇	C₂₀₈	C₂₀₉	C₂₁₀	C₂₁₁	C₂₁₂	C₂₁₃	C₂₁₄	C₂₁₅	C₂₁₆	C₂₁₇	C₂₁₈	C₂₁₉	C₂₂₀	C₂₂₁	C₂₂₂	C₂₂₃	C₂₂₄	C₂₂₅	C₂₂₆	C₂₂₇	C₂₂₈	C₂₂₉	C₂₃₀	C₂₃₁	C₂₃₂	C₂₃₃	C₂₃₄	C₂₃₅	C₂₃₆	C₂₃₇	C₂₃₈	C₂₃₉	C₂₄₀	C₂₄₁	C₂₄₂	C₂₄₃	C₂₄₄	C₂₄₅	C₂₄₆	C₂₄₇	C₂₄₈	C₂₄₉	C₂₅₀	C₂₅₁	C₂₅₂	C₂₅₃	C₂₅₄	C₂₅₅	C₂₅₆	C₂₅₇	C₂₅₈	C₂₅₉	C₂₆₀	C₂₆₁	C₂₆₂	C₂₆₃	C₂₆₄	C₂₆₅	C₂₆₆	C₂₆₇	C₂₆₈	C₂₆₉	C₂₇₀	C₂₇₁	C₂₇₂	C₂₇₃	C₂₇₄	C₂₇₅	C₂₇₆	C₂₇₇	C₂₇₈	C₂₇₉	C₂₈₀	C₂₈₁	C₂₈₂	C₂₈₃	C₂₈₄	C₂₈₅	C₂₈₆	C₂₈₇	C₂₈₈	C₂₈₉	C₂₉₀	C₂₉₁	C₂₉₂	C₂₉₃	C₂₉₄	C₂₉₅	C₂₉₆	C₂₉₇	C₂₉₈	C₂₉₉	C₃₀₀	C₃₀₁	C₃₀₂	C₃₀₃	C₃₀₄	C₃₀₅	C₃₀₆	C₃₀₇	C₃₀₈	C₃₀₉	C₃₁₀	C₃₁₁	C₃₁₂	C₃₁₃	C₃₁₄	C₃₁₅	C₃₁₆	C₃₁₇	C₃₁₈	C₃₁₉	C₃₂₀	C₃₂₁	C₃₂₂	C₃₂₃	C₃₂₄	C₃₂₅	C₃₂₆	C₃₂₇	C₃₂₈	C₃₂₉	C₃₃₀	C₃₃₁	C₃₃₂	C₃₃₃	C₃₃₄	C₃₃₅	C₃₃₆	C₃₃₇	C₃₃₈	C₃₃₉	C₃₄₀	C₃₄₁	C₃₄₂	C₃₄₃	C₃₄₄	C₃₄₅	C₃₄₆	C₃₄₇	C₃₄₈	C₃₄₉	C₃₅₀	C₃₅₁	C₃₅₂	C₃₅₃	C₃₅₄	C₃₅₅	C₃₅₆	C₃₅₇	C₃₅₈	C₃₅₉	C₃₆₀	C₃₆₁	C₃₆₂	C₃₆₃	C₃₆₄	C₃₆₅	C₃₆₆	C₃₆₇	C₃₆₈	C₃₆₉	C₃₇₀	C₃₇₁	C₃₇₂	C₃₇₃	C₃₇₄	C₃₇₅	C₃₇₆	C₃₇₇	C₃₇₈	C₃₇₉	C₃₈₀	C₃₈₁	C₃₈₂	C₃₈₃	C₃₈₄	C₃₈₅	C₃₈₆	C₃₈₇	C₃₈₈	C₃₈₉	C₃₉₀	C₃₉₁	C₃₉₂	C₃₉₃	C₃₉₄	C₃₉₅	C₃₉₆	C₃₉₇	C₃₉₈	C₃₉₉	C₄₀₀	C₄₀₁	C₄₀₂	C₄₀₃	C₄₀₄	C₄₀₅	C₄₀₆	C₄₀₇	C₄₀₈	C₄₀₉	C₄₁₀	C₄₁₁	C₄₁₂	C₄₁₃	C₄₁₄	C₄₁₅	C₄₁₆	C₄₁₇	C₄₁₈	C₄₁₉	C₄₂₀	C₄₂₁	C₄₂₂	C₄₂₃	C₄₂₄	C₄₂₅	C₄₂₆	C₄₂₇	C₄₂₈	C₄₂₉	C₄₃₀	C₄₃₁	C₄₃₂	C₄₃₃	C₄₃₄	C₄₃₅	C₄₃₆	C₄₃₇	C₄₃₈	C₄₃₉	C₄₄₀	C₄₄₁	C₄₄₂	C₄₄₃	C₄₄₄	C₄₄₅	C₄₄₆	C₄₄₇	C₄₄₈	C₄₄₉	C₄₅₀	C₄₅₁	C₄₅₂	C₄₅₃	C₄₅₄	C₄₅₅	C₄₅₆	C₄₅₇	C₄₅₈	C₄₅₉	C₄₆₀	C₄₆₁	C₄₆₂	C₄₆₃	C₄₆₄	C₄₆₅	C₄₆₆	C₄₆₇	C₄₆₈	C₄₆₉	C₄₇₀	C₄₇₁	C₄₇₂	C₄₇₃	C₄₇₄	C₄₇₅	C₄₇₆	C₄₇₇	C₄₇₈	C₄₇₉	C₄₈₀	C₄₈₁	C₄₈₂	C₄₈₃	C₄₈₄	C₄₈₅	C₄₈₆	C₄₈₇	C₄₈₈	C₄₈₉	C₄₉₀	C₄₉₁	C₄₉₂	C₄₉₃	C₄₉₄	C₄₉₅	C₄₉₆	C₄₉₇	C₄₉₈	C₄₉₉	C₅₀₀	C₅₀₁	C₅₀₂	C₅₀₃	C₅₀₄	C₅₀₅	C₅₀₆	C₅₀₇	C₅₀₈	C₅₀₉	C₅₁₀	C₅₁₁	C₅₁₂	C₅₁₃	C₅₁₄	C₅₁₅	C₅₁₆	C₅₁₇	C₅₁₈	C₅₁₉	C₅₂₀	C₅₂₁	C₅₂₂	C₅₂₃	C₅₂₄	C₅₂₅	C₅₂₆	C₅₂₇	C₅₂₈	C₅₂₉	C₅₃₀	C₅₃₁	C₅₃₂	C₅₃₃	C₅₃₄	C₅₃₅	C₅₃₆	C₅₃₇	C₅₃₈	C₅₃₉	C₅₄₀	C₅₄₁	C₅₄₂	C₅₄₃	C₅₄₄	C₅₄₅	C₅₄₆	C₅₄₇	C₅₄₈	C₅₄₉	C₅₅₀	C₅₅₁	C₅₅₂	C₅₅₃	C₅₅₄	C₅₅₅	C₅₅₆	C₅₅₇	C₅₅₈	C₅₅₉	C₅₆₀	C₅₆₁	C₅₆₂	C₅₆₃	C₅₆₄	C₅₆₅	C₅₆₆	C₅₆₇	C₅₆₈	C₅₆₉	C₅₇₀	C₅₇₁	C₅₇₂	C₅₇₃	C₅₇₄	C₅₇₅	C₅₇₆	C₅₇₇	C₅₇₈	C₅₇₉	C₅₈₀	C₅₈₁	C₅₈₂	C₅₈₃	C₅₈₄	C₅₈₅	C₅₈₆	C₅₈₇	C₅₈₈	C₅₈₉	C₅₉₀	C₅₉₁	C₅₉₂	C₅₉₃	C₅₉₄	C₅₉₅	C₅₉₆	C₅₉₇	C₅₉₈	C₅₉₉	C₆₀₀	C₆₀₁	C₆₀₂	C₆₀₃	C₆₀₄	C₆₀₅	C₆₀₆	C₆₀₇	C₆₀₈	C₆₀₉	C₆₁₀	C₆₁₁	C₆₁₂	C₆₁₃	C₆₁₄	C₆₁₅	C₆₁₆	C₆₁₇	C₆₁₈	C₆₁₉	C₆₂₀	C₆₂₁	C₆₂₂	C₆₂₃	C₆₂₄	C₆₂₅	C₆₂₆	C₆₂₇	C₆₂₈	C₆₂₉	C₆₃₀	C₆₃₁	C₆₃₂	C₆₃₃	C₆₃₄	C₆₃₅	C₆₃₆	C₆₃₇	C₆₃₈	C₆₃₉	C₆₄₀	C₆₄₁	C₆₄₂	C₆₄₃	C₆₄₄	C₆₄₅	C₆₄₆	C₆₄₇	C₆₄₈	C₆₄₉	C₆₅₀	C₆₅₁	C₆₅₂	C₆₅₃	C₆₅₄	C₆₅₅	C₆₅₆	C₆₅₇	C₆₅₈	C₆₅₉	C₆₆₀	C₆₆₁	C₆₆₂	C₆₆₃	C₆₆₄	C₆₆₅	C₆₆₆	C₆₆₇	C₆₆₈	C₆₆₉	C₆₇₀	C₆₇₁	C₆₇₂	C₆₇₃	C₆₇₄	C₆₇₅	C₆₇₆	C₆₇₇	C₆₇₈	C₆₇₉	C₆₈₀	C₆₈₁	C₆₈₂	C₆₈₃	C₆₈₄	C₆₈₅	C₆₈₆	C₆₈₇	C₆₈₈	C₆₈₉	C₆₉₀	C₆₉₁	C₆₉₂	C₆₉₃	C₆₉₄	C₆₉₅	C₆₉₆	C₆₉₇	C₆₉₈	C₆₉₉	C₇₀₀	C₇₀₁	C₇₀₂	C₇₀₃	C₇₀₄	C₇₀₅	C₇₀₆	C₇₀₇	C₇₀₈	C₇₀₉	C₇₁₀	C₇₁₁	C₇₁₂	C₇₁₃	C₇₁₄	C₇₁₅	C₇₁₆	C₇₁₇	C₇₁₈	C₇₁₉	C₇₂₀	C₇₂₁	C₇₂₂	C₇₂₃	C₇₂₄	C₇₂₅	C₇₂₆	C₇₂₇	C₇₂₈	C₇₂₉	C₇₃₀	C₇₃₁	C₇₃₂	C₇₃₃	C₇₃₄	C₇₃₅	C₇₃₆	C₇₃₇	C₇₃₈	C₇₃₉	C₇₄₀	C₇₄₁	C₇₄₂	C₇₄₃	C₇₄₄	C₇₄₅	C₇₄₆	C₇₄₇	C₇₄₈	C₇₄₉	C₇₅₀	C₇₅₁	C₇₅₂	C₇₅₃	C₇₅₄	C₇₅₅	C₇₅₆	C₇₅₇	C₇₅₈	C₇₅₉	C₇₆₀	C₇₆₁	C₇₆₂	C₇₆₃	C₇₆₄	C₇₆₅	C₇₆₆	C₇₆₇	C₇₆₈	C₇₆₉	C₇₇₀	C₇₇₁	C₇₇₂	C₇₇₃	C₇₇₄	C₇₇₅	C₇₇₆	C₇₇₇	C₇₇₈	C₇₇₉	C₇₈₀	C₇₈₁	C₇₈₂	C₇₈₃	C₇₈₄	C₇₈₅	C₇₈₆	C₇₈₇	C₇₈₈	C₇₈₉	C₇₉₀	C₇₉₁	C₇₉₂	C₇₉₃	C₇₉₄	C₇₉₅	C₇₉₆	C₇₉₇	C₇₉₈	C₇₉₉	C₈₀₀	C₈₀₁	C₈₀₂	C₈₀₃	C₈₀₄	C₈₀₅	C₈₀₆	C₈₀₇	C₈₀₈	C₈₀₉	C₈₁₀	C₈₁₁	C₈₁₂	C₈₁₃	C₈₁₄	C₈₁₅	C₈₁₆	C₈₁₇	C₈₁₈	C₈₁₉	C₈₂₀	C₈₂₁	C₈₂₂	C₈₂₃	C₈₂₄	C₈₂₅	C₈₂₆	C₈₂₇	C₈₂₈	C₈₂₉	C₈₃₀	C₈₃₁	C₈₃₂	C₈₃₃	C₈₃₄	C₈₃₅	C₈₃₆	C₈₃₇	C₈₃₈	C₈₃₉	C₈₄₀	C₈₄₁	C₈₄₂	C₈₄₃	C₈₄₄	C₈₄₅	C₈₄₆	C₈₄₇	C₈₄₈</

Appendix B
ANALYSIS OF ISENTROPIC BURNING
CONDITION OF M-1 PROPELLANT USED
IN KA-III, PHASE C, TESTS (CEC Code Output)

REACTANTS

C	2.0000	H	6.0000	O	1.0000	0.0000	0.0000	0.007500	-66420.00	298.300
C	6.0000	H	7.3715	N	2.6355	O	10.2715	0.0000	0.837400	298.300
C	7.0000	H	6.0000	N	2.0000	O	4.0000	0.0000	0.096400	298.300
C	12.0000	N	1.0000	H	11.0000	O	0.0000	0.005900	31070.00	298.300
C	16.0000	H	22.0000	O	4.0000	O	0.0000	0.009300	-20140.00	298.300
H	2.0000	O	1.0000	O	0.0000	O	0.0000	0.005000	-68315.00	298.300

NAMELISTS

0 ***INPT2***

OKASE = 1 IDEBUG = 0 TRACE = 0.00000D+00
 OTP = F HP = F SP = F TV = F UV = F SV = F RKT = T SHOCK = F DETN = F
 OTRNSPT = F TRPACC = 0.99995DB+00 NODATA = F
 OOF = F FA = F EPECT = F ERATIO = F PHI = F
 OSO = 0.0000000E+00 U = 0.00000000E+00 H = 0.00000000E+00
 OP = 0.15000E+02
 OT = 0.00000E+00
 ONO INPT2 VALUE GIVEN FOR OF, EQRAT, FA, OR FPCT
 OMIX = 0.00000E+00

SPECIES BEING CONSIDERED IN THIS SYSTEM

J	3/78	C	J12/67	CH	J12/72	CH ₂	J	3/61	FORMALDEHYDE	L 4/85		
J	6/69	CH ₃	J12/70	HYDROXYMETHYLENE	L 9/85	METHYLOXIDE	L	9/85	FORMIC ACID	L 9/85		
J	6/69	CN	JCN RAD	J 6/66	CNN RAD	J 9/65	CO	J	9/65	METHANOL	C ₂	
J12/69	C ₂	J 3/67	C2H RAD	J 3/61	ACETYLENE	BUR 84	KETENE	BUR	84	PROPYLENE	C ₂	
BUR 84	METHYL CYANIDE	BUR 84	CH ₃ CO RAD	BUR 84	CH ₂ CHO RAD	L 4/85	ETHYLENE	BUR	84	C ₂ H RAD	C ₂	
L 4/85	ACETIC ACID	L 4/85	(FORMIC ACID)2	P10/83	ETHYL RAD	BUR 84	ETHYL OXIDE RAD	BUR	84	ACETALDEHYDE	C ₂	
BUR 84	AZOMETHANE	BUR 84	DIMETHYL ETHER	BUR 84	ETHANOL	J 3/67	CNC RAD	L	5/84	ETHANE	C ₂	
J	9/66	C ₂ O RAD	J12/69	C ₃	DB6/61	C3H ₃ RAD	BUR 84	CYCLOPROPENE	J 3/61	CYANOGEN	C ₂	
BUR 84	ALLENE	BUR 84	C3HS RAD	BUR 84	CYCLOPROPANE	L 4/85	PROPYLENE	BUR	84	PROPENE	C ₂	
L 9/85	1-PROPYL RAD	L 9/85	N-PROPYL RAD	L 4/85	PROpane	L 1/84	1-PROPANOL	L	9/85	PROPYLENE OXIDE	C ₂	
J12/69	C ₄	BUR 84	BUTADIENE	P10/85	CYCLOBUTADIENE	BUR 84	BUTAN-1EN-3YN	J	6/68	CARBON SUBOXIDE	C ₂	
BUR 84	2-BUTYNE	BUR 84	2-BUTENE TRANS	BUR 84	2-BUTENE CIS	BUR 84	ISOBUTENE	P	4/84	1,3-BUTADIENE	C ₂	
L 4/85	(ACETIC ACID)2	L 9/85	T-BUTYL RAD	L 9/85	S-BUTYL RAD	P10/83	N-BUTYL RAD	BUR	84	1-BUTENE	C ₂	
J	4/85	ISOBUTANE	J 3/61	CARBON SUBNITRID	J12/69	C ₅	P10/85	CYCLOCAPADIENE	L	4/85	N-BUTANE	C ₂
P12/52	1-PENTENE	L 5/87	T-PENTYL RAD	P10/83	N-PENTYL RAD	P10/85	PENTANE	P10/85	P12/52	CYCLOPENTANE	C ₂	
P10/85	CH ₃ C(CH ₃) ₂ CH ₃	BUR 84	HEXATRIYNE	L12/84	PHENYL RAD	L12/84	PHENOXY RAD	L12/84	J 3/77	ISOPENTANE	C ₂	
J12/84	PHENOL	BUR 84	CYCLOHEXENE	P10/83	N-HEXYL RAD	P10/84	TOLUENE	L12/84	H	BENZENE	C ₂	
P12/52	1-HEPTENE	P10/83	N-HEPTYL RAD	P 4/81	N-HEPTANE	P12/52	1-OCTENE	RUS 78	RUS 78	CRESOL	C ₂	
P 4/85	OCTANE	P 4/85	ISO-OCTANE	P10/83	N-NONYL RAD	BUR 84	NAPHTHENE	P10/83	J 3/79	N-OCTYL RAD	C ₂	
P10/83	N-DECYL RAD	L12/84	O-BIPHENYL RAD	L12/84	BIPHENYL	L 6/88	JET-A(G)	BUR 84	RUS 78	AZULENE	C ₂	
J12/69	HCN	J12/70	HCO RAD	J12/70	HNCO	RUS 78	HNO	RUS 78	RUS 78	HNO ₂	C ₂	
FUS 78	HN03	L 5/89	HO ₂	J 3/77	H ₂	J12/65	H2N ₂	RUS 78	RUS 78	NH ₂ O	C ₂	
L 3/85	H2O2	J 3/77	N	J12/70	NCO	RUS 78	NH	RUS 78	RUS 78	NH ₂	C ₂	
J 6/77	NH ₃	RUS 78	NH2OH	RUS 78	NO	RUS 78	NO ₂	RUS 78	RUS 78	NO ₃	C ₂	
J 3/77	N2	RUS 78	N2H2	RUS 78	N2HNO ₂	RUS 78	N2O	RUS 78	RUS 78	N2O	C ₂	

```

RUS 78 N203          RUS 78 N204          RUS 78 N3          RUS 78 N3H
J 3/77 O              J 6/77 OH             J 3/77 02         J 3/78 C(GR)
P10/80 BENZENE (L)   P10/80 TOLUENE (L)   P10/80 OCTANE (L)  L 3/81 H2O (S)
J 3/79 H2O (L)

0 **RKTPNP***
OEQL = T FROZ = T NF2 = 1 TCEST = 3800.000 FAC = F MA = 0.0000000E+00 ACAT = 0.0000000E+00 DEBUGF = F
OPCP = 0.10204000E+01

```

UOF	=	0.000000	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE
ENTHALPY	(KG-MOL) (DEG K) /KG		HBP (2)	HPP (1)	HSUB0
OKG-FORM.WT. /KG		-0.28176266E+03	0.0000000E+00	-0.28176266E+03	
C		BOP (1,2)	BOP (1,1)	BOP (1)	
H		0.25349588E-01	0.0000000E+00	0.25349588E-01	
O		0.31067750E-01	0.0000000E+00	0.31067750E-01	
N		0.33694333E-01	0.0000000E+00	0.33694333E-01	
		0.89330269E-02	0.0000000E+00	0.89330269E-02	
OPOND ITN	T	C	H	O	N
1	21	1927.03	-11.497	-10.417	-23.644
2	4	1703.22	-10.557	-10.505	-25.590
PC/PT=	1.808481	T = 1703.22			
2	2	1702.49	-10.654	-10.506	-25.597
PC/PT=	1.812162	T = 1702.49			
3	4	1919.02	-11.472	-10.420	-23.705
					-14.554

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

FROM INFINITE AREA COMBUSTOR									
OPINF	15.0 PSIA	CASE NO.	1	CHEMICAL FORMULA		WT FRACTION (SEE NOTE)	ENERGY CAL/MOL	STATE	TEMP DEG K
FUEL	C 2.00000	H 6.00000	O 1.00000			0.007444	-66420.000		298.30
FUEL	C 6.00000	H 7.37150	N 2.63550	O 10.27150		0.831166	-164700.000		298.30
FUEL	C 7.00000	H 6.00000	N 2.00000	O 4.00000		0.097667	-17100.000		298.30
FUEL	C 12.00000	N 1.00000	H 11.00000			0.009826	31070.000		298.30
FUEL	C 16.00000	H 22.00000	O 4.00000			0.048933	-201400.000		298.30
FUEL	H 2.00000	O 1.00000				0.004963	-68315.000		298.30
0	O/F= 0.0000	PERCENT FUEL= 100.0000			EQUIVALENCE RATIO= 1.9657		PHI= 0.0000		
0		CHAMBER	THROAT	EXIT					
PINE/P		1.0000	1.8122	1.0204					
P, ATM		1.0207	0.56324	1.0003					
T, DEG K		1927.03	1702.49	1919.02					
RHO, G/CC		1.4230-4	8.8898-5	1.4004-4					
H, CAL/G		-559.92	-657.06	-563.42					
U, CAL/G		-733.63	-810.50	-736.41					
G, CAL/G		-5901.06	-5378.49	-5885.34					
S, CAL/(G) (K)		2.7732	2.7732	2.7732					
M, MOL WT		22.046	22.050	22.046					
(DLV/DLP)T		-1.000012	-1.000003	-1.000011					
(DLV/DLT)P		1.0034	1.00008	1.0032					

CP, CAL/(G) (K)	0.4387	0.4293	0.4382
GAMMA (S)	1.2606	1.2662	1.2609
SON VEL,M/SEC	957.2	901.6	955.3
MACH NUMBER	0.0000	1.0000	0.179
OPERFORMANCE PARAMETERS			
AB/AT	1.0000	3.3440	
CSTAR, FT/SEC	4233	4233	
CF	0.699	0.133	
Ivac, LB-SEC/LB	164.5	448.7	
ISP, LB-SEC/LB	91.9	17.5	

OMOLE FRACTIONS

CO	0.49571	0.48821	0.49549
CO ₂	0.06313	0.07074	0.06336
H	0.00045	0.00010	0.00043
H ₂	0.22141	0.22921	0.22165
H ₂ O	0.12081	0.11326	0.12058
N ₂	0.09847	0.09848	0.09847
OH	0.00002	0.00000	0.00002

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.5000E-05 FOR ALL ASSIGNED CONDITIONS

CH	CH ₂	FORMALDEHYDE	CH ₃	HYDROXYMETHYLENE
METHYLOXIDE	CH ₄	CN	CN	C2
C ₂ H RAD	METHANOL	C ₂ H ₃ RAD	METHYL CYANIDE	CH ₂ CHO RAD
ETHYLENE	KETENE	ACETIC ACID	ETHYL RAD	ETHANE
AZOMETHANE	ACETALDEHYDE	ETHANOL	CYANOGEN	C3
C ₃ H ₃ RAD	DIMETHYL ETHER	(FORMIC ACID) 2	C ₃ H ₅ RAD	PROPYLENE
PROPYLENE	CYCLOPROPENE	CNC RAD	CCO RAD	C4
OXIDE	I-PROPYL RAD	PROPENE	CYCLOPROPANE	
BUTADIYNE	CYCLOBUTADIENE	PROPANE	CARBON SUBOXIDE	
ISOBUTENE	1-BUTENE	BUTAN-1EN-3YN	2-BUTENE TRANS	2-BUTENE CIS
ISOBUTANE	CARBON SUBNITRID	(ACETIC ACID) 2	S-BUTYL RAD	N-BUTANE
N-PENTYL RAD	PENTANE	C ₅	CYCLOPENTADIENE	T-PENTYL RAD
BENZENE	PHENOL	ISOPENTANE	CH ₃ C(CH ₃) ₂ CH ₃	PHENOXY RAD
N-HEPTYL RAD	N-HEPTANE	CYCLOHEXENE	N-HEXYL RAD	1-HEPTENE
NAPTHYLENE	AZULENE	1-OCTENE	N-OCTYL RAD	N-NONYL RAD
HCO RAD	HNO	N-DECYL RAD	O-BIPHENYL RAD	
H ₂ O ₂	N	HNO ₂	BIPHENYL	JET-A (G)
NO	NO ₂	NCO	HNO ₃	HCN
N ₂ O ₃	N ₂ O ₄	NO ₃	NH	H ₂ N ₂
O ₃	C (GR)	N ₂ O ₅	N ₂ H ₂	NH ₂ NO ₂
	H ₂ O (L)	BENZENE (L)	N ₃ H	N ₂ O
		TOLUENE (L)	O	O ₂
		OCTANE (L)	JET-A (L)	H ₂ O (S)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS
¹ THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION DURING EXPANSION

OPTNF = 15.0 PSIA
CASE NO. 1

CHEMICAL FORMULA

WT FRACTION (SEE NOTE)	ENERGY CAL/MOL	STATE	TEMP DEG K
---------------------------	-------------------	-------	---------------

FUEL	C	2.00000	H	6.00000	O	1.00000		
FUEL	C	6.00000	H	7.37150	N	2.63550	0	10.27150
FUEL	C	7.00000	H	6.00000	N	2.00000	0	4.00000
FUEL	C	12.00000	N	1.00000	H	11.00000		
FUEL	C	16.00000	H	22.00000	O	4.00000		
FUEL	H	2.00000	O	1.00000				
O/F=		0.00000	PERCENT FUEL=	100.00000	EQUIVALENCE RATIO=	1.9657	PHT=	0.00000
0			CHAMBER	THROAT	EXIT			
PINE/P			1.00000	1.8199	1.0204			
P, ATM			1.0207	0.56085	1.0003			
T, DEG K			1927.03	1693.47	1918.73			
RHO, G/C			1.4230-4	8.8975-5	1.4006-4			
H, CAL/G			-559.92	-657.52	-563.42			
U, CAL/G			-733.63	-810.17	-736.38			
G, CAL/G			-5904.06	-5353.93	-5884.54			
S, CAL/(G) (K)			2.7732	2.7732	2.7732			

M, MOL WT		22.046	22.046	22.046
CP, CAL/(G) (K)		0.4218	0.4136	0.4215
GAMMA (S)		1.2718	1.2787	1.2720
SON VEL, M/SEC		961.4	903.7	959.4
MACH NUMBER		0.000	1.000	0.178

OPERATION PARAMETERS

AE/AT		1.00000	3.3544
STAR, FT/SEC		4220	4220
CF		0.703	0.133
IVAC, LB-SEC/LB		164.2	448.6
ISP, LB-SEC/LB		92.2	17.5

OMOLE FRACTIONS

CO		0.49571	CO2	0.06313	H	0.00045	
H2O		0.12081	N2	0.09847	OH	0.00002	H2

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.50000E-05 FOR ALL ASSIGNED CONDITIONS

C	CH	CH2	FORMALDEHYDE	FORMIC ACID	CH3	HYDROXYMETHYLENE
METHYLOXIDE	CH4	METHANOL	CN	CNN RAD	CNN RAD	C2
C2H RAD		KETENE	C2H3 RAD	METHYL CYANIDE	CH3CO RAD	CH2CHO RAD
ETHYLENE		ACETALDEHYDE	(FORMIC ACID)2	ETHYL RAD	ETHYL OXIDE RAD	ETHANE
AZOMETHANE		DIMETHYL ETHER	CNC RAD	CYANOGEN	CCO RAD	C3
C3H3 RAD		CYCLOPROPENE	ETHANOL	C3H5 RAD	CYCLOPROPANE	PROPYLENE
PROPYLENE OXIDE		1-PROPYL RAD	PROPYNE	1-PROPANOL	CARBON SUBOXIDE	C4
BUTADIENE		CYCLOBUTADIENE	BUTAN-1EN-3YN	2-BUTENE	2-BUTENE TRANS	2-BUTENE CIS
ISOBUTENE		1-BUTENE	(ACETIC ACID)2	S-BUTYL RAD	N-BUTYL RAD	N-BUTANE
ISOBUTANE		CARBON SUBNITRID	C5	CYCLOPENTADTENE	1-PENTENE	T-PENTYL RAD
N-PENTYL RAD		PENTANE	ISOPENTANE	CH3C (CH3) 2CH3	PHENYL RAD	PHENOXY RAD
BENZENE		PHENOL	CYCLOHEXENE	N-HEXYL RAD	TOLUENE	1-HEPTENE
N-HEPTYL RAD		1-OCTENE	1-OCTENE	N-OCTYL RAD	OCTANE	N-NONYL RAD
NAPTHLENE		AZULENE	N-DECYL RAD	O-BIPHENYL RAD	JET-A (G)	HCN
HCO RAD		HNCO	HNO2		HO2	H2N2

H₂O₂
NO
N₂O₃
O₃
H₂O (L)

N
NO₂
N₂O₄
N₂O₅
C (GR)

NCO
NO₃
N₂O₅
BENZENE (L)

NH₂O₂
NH₂O
N₂O
O₂

NH₃
N₂H₄
O

NH₂
NH₂NO₂
N₃H

OCTANE (L)

JET-A (L)

ONOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS
1 STOP

Appendix C
SPECIFICATION SHEETS FOR THE
RECOMMENDED THERMAL INSTRUMENTATION

Figure C-1: Recommended Chamber Total Temperature Instrumentation for WES May '93 Propellant Burn Tests

1. The TCS-E-'L'-'YY'-'ZZ'-10196 is a chromel/constantan microsecond response time coaxial surface thermocouple in 304 CRES housing.
2. This fast response surface thermocouple is often used to determine surface heat transfer rates from calculations based on the measured surface temperature versus time history, assuming a semi-infinite one dimensional wall.
3. The unit is available with a second in-depth thermocouple for fast response heat transfer measurements when the total test times exceed the time limits of the semi-infinite wall theory.
4. The standard leadwire construction is "YY" Inches (4" std.) of 1/8 inch diameter stainless steel sheathed leadwire with a transition to "ZZ" inches (36" std.) of flexible 24 AWG fiberglass/thermocouple insulated duplex cable with metallic overbraid.
5. Other mounting configurations, materials, and leadwire options are available.

REVISIONS		UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES		MICROSECOND RESPONSE COAXIAL SURFACE THERMOCOUPLE		MEDTHERM CORPORATION	
SYM	DESCRIPTION	DATE APP		FRACTIONS	DECIMALS	ANGLES	POST OFFICE BOX 412 HUNTSVILLE, ALABAMA 35804
				$\pm 1/32$	$2PL \pm .01$	$\pm 30'$	SCALE:
					$3PL \pm .005$		ORIG. DWG 12/4 /84
	MATERIAL NOTED						CAD DWG 2/12 / 93
	FINISH	<u>64</u>					DR. GJ
						APP. <i>Set</i>	SHEET <i>of</i>

Figure C-2: Recommended Total Heat Flux/Surface Thermocouple Instrumentation for WES May '93 Propellant Burn Tests

NOTES:

- The 32R-L-'XX'-140-'ZZ'-21096 is an infrared radiometer with sapphire window and 140° view angle. The radiometer will provide a linear output directly proportional to the incident radiant flux within the 0.3 to 5.5 micrometer spectral passband of the window. The standard nominal output is 10 millivolts at the design heat flux level 'XX' in BTU/ $\text{ft}^2\text{ sec}$. Other outputs are available. Each unit is supplied with a certified calibration traceable to NIST.
- The unit is designed to operate at pressures to 3000 psi.
- The lead wire construction consist of 'ZZ' inches of 24 AWG stranded nickel plated copper duplex wire with teflon over each conductor (White positive, Black negative), nickel plated copper braid over both, teflon jacket overall.
- To order, specify Model No. by replacing drawing notation dimensions with the appropriate dimensions, in inches, to meet specific installation requirements.

'L' - Length of .50 sensing tip, inches
'XX' - Design heat flux level, BTU/ $\text{ft}^2\text{ sec}$
'ZZ' - Flexible lead wire length, inches

UNLESS OTHERWISE SPECIFIED			INFRARED RADIOMETER		MEDTHERM CORPORATION	
DIMENSIONS ARE IN INCHES			ANGLES		POST OFFICE BOX 412	
TOLERANCES			DEGREES		HUNTSVILLE, ALABAMA 35804	
FRACTIONAL			± 1/32		32R-'L'-'XX'-140-'ZZ'-21096	
DEGREES			SP. ± .015		SCALE	DWG SIZE
± 30'			SP. ± .005		ORIG. DWG / /	REV.
MATERIAL			NOTED		DES.	
FINISH			DR. G7		CHK.	
			2/28/93		APP. C	
			DR. G7		SHEET	or
			B 21096			

Figure C-3: Recommended Radiometer Instrumentation for WES May '93 Propellant Burn Tests

Figure C-4: Recommended Vent Pipe and Plume Total Temperature Instrumentation
for WES May '93 Propellant Burn Tests

DISTRIBUTION LIST
US/ROK Technical Organizations

<u>No. of Copies</u>	<u>No. of Copies</u>
Commander Office of the Assistant Secretary of the Army (Research, Development & Acquisition) ATTN: SARD-IN RM 3E416 Washington, DC 20310-0103	Chairman Department of Defense Explosives Safety Board ATTN: Technical Library Hoffman Building 1 2461 Eisenhower Avenue Alexandria, VA 22331
Ministry of National Defense Logistics Bureau ATTN: Colonel Yeon Woo Chung 1 Yongsan 3ka-dong Yongsan-ku Seoul KOREA 120-023	Applied Research Associates, Inc. ATTN: Mr. Charles Needham Suite A220 4300 San Mateo Blvd., NE Albuquerque, NM 87110
Director U.S. Army Defense Ammunition Center and School ATTN: SMCAC-PMUAST (Mr. Gary Abrisz) Savanna, IL 61074-9639	Agency For Defense Development ATTN: Dr. Song, So-Young ADD 1-3-7 P.O. Box 35 Dae-Jeon, 300-600 REPUBLIC OF KOREA
Chairman Department of Defense Explosives Safety Board ATTN: DDESB-KT (Dr. Chester Canada) 2461 Eisenhower Avenue Alexandria, VA 22331-0600	Director Defense Nuclear Agency ATTN: TDTR (Mr. Tom Kennedy) SPWE (Dr. Ed Tremba) SPSD (Dr. K. Goering) 6801 Telegraph Road Alexandria, VA 22310-3398
Commander U.S. Army Corps of Engineers Omaha District ATTN: CEMRO-ED-SH (Mr. William Gaube) 215 North 17th Street Omaha, NE 68102-4978	Air Force Armaments Laboratory ATTN: ASD/YQI (Mr. J. Jenus) Eglin AFB, FL 32542-5434
Naval Weapons Center Conventional Weapons Division Ordnance Evaluation Department ATTN: Mr. Carl C. Halsey (Code 3269) China Lake, CA 93555-6001	Commander Defense Nuclear Agency ATTN: FCTT (Dr. Byron Ristvit) FCTT (Dr. Eric J. Rinehart) 1680 Texas St., SE Kirtland AFB, NM 87117-5669
	Commander Air Warfare Center ATTN: Code 326B (Mr. L. Josephson) China Lake, CA 93555-6001

<u>No. of Copies</u>		<u>No. of Copies</u>
Commanding Officer Naval Ordnance Station ATTN: Technical Library Indian Head, MD 20640	1	Headquarters, U.S. Air Force ATTN: SEP (Mr. Paul Price) 1400 Air Force Pentagon Washington, DC 20330-1400
Commander Belvoir Research, Development and Engineering Center ATTN: AMXME-ND Fort Belvoir, VA 22060	1	Director U.S. Army Research Laboratory ATTN: AMSRL-WT-TB (Mr. John Starkenberg) Aberdeen PG, MD 21005-5066
Chief of Engineers Department of the Army ATTN: CERD-ZA 20 Massachusetts Ave. Washington, DC 20314	1	Commander Naval Surface Warfare Center Dahlgren Division ATTN: Code R10H (Mr. Michael Swisdak) 10901 New Hampshire Avenue Silver Spring, MD 20903-5000
Southwest Research Institute ATTN: Mr. K. Marchand 8500 Culebra Road San Antonio, TX 78206	1	Commander Naval Facilities Engineering Service Center ATTN: Code ESC-62 (Mr. James Tancreto) Port Hueneme, CA 93043-5003
Applied Research Associates ATTN: Mr. J. L. Drake 3202 Wisconsin Ave. Vicksburg, MS 39180	1	Commander Air Force Weapons Laboratory ATTN: NTEDE (Dr. Henny) Kirtland AFB, NM 87117-6008
PM AMMOLOG ATTN: AMCPM-AL (Mr. Bob Rossi) Picatinny Arsenal, NJ 07806-5000	1	Director Harry Diamond Laboratories ATTN: SLCHD-NW-RA 2800 Powder Mill Road Adelphi, MD 20783-1197
Bakhtar Associates ATTN: Dr. K. Bakhtar 2429 West Coast Highway, Suite 201 Newport Beach, CA 92663	1	
Commander U.S. Army Research Laboratory ATTN: SLCBR-TB-EE (Dr. R. Frey) (Mr. O. Lynn) Aberdeen Proving Ground, MD 21005	1	
U.S. Army Corps of Engineers Huntsville Division ATTN: CEHND-ED-CS (Mr. Paul Lahoud) P. O. Box 1600 Huntsville, AL 35807-4301	1	

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE May 1996		3. REPORT TYPE AND DATES COVERED Final report		
4. TITLE AND SUBTITLE Improved Techniques for Measuring Thermal Effects of Propellant Burn Tests in Confined Areas			5. FUNDING NUMBERS Contract No. DACA39-92-M-7281				
6. AUTHOR(S) E. C. Knox							
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REMTECH, Incorporated 2905 West Corp Boulevard, Suite 112 Huntsville, AL 35805			8. PERFORMING ORGANIZATION REPORT NUMBER RTR 256-01 UAST-CR-93-004				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Corps of Engineers Washington, DC 20314-1000			10. SPONSORING/MONITORING AGENCY REPORT NUMBER Contract Report SL-96-2				
11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.							
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE				
13. ABSTRACT (Maximum 200 words) During 1989, WES conducted a series of propellant burn experiments in a partially confined space to evaluate the potential for transition from deflagration to detonation. Pressure, temperature, and thermal flux-time histories were recorded. These data were analyzed in terms of quality and interchannel compatibility to develop improved instrumentation/techniques for measuring the thermal effects of propellant deflagration. In addition, a one-dimensional model was developed characterizing the propellant thermochemical properties and flow processes. This report documents the data analyses, thermal model development, comparison of model and measured data, and recommendations for improved thermal instrumentation.							
14. SUBJECT TERMS Deflagration M-1 propellant Propellant burn					15. NUMBER OF PAGES 54		
					16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED		19. SECURITY CLASSIFICATION OF ABSTRACT		20.L IMITATION OF ABSTRACT	