

Why Cartesian Control in Task Space?

IIIROS Control

Use ROS Control with the cartesian_controllers

Challenges with Industrial Robots

Often contact dominated tasks

Autonomous skills

Force-sensitive interaction

Robot independant

Formulation in task space

Let's go for more... Active Cartesian Compliance

Active compliance

$$\mathbf{x}(t) \to \mathbf{F}(t) \quad \tau(t) = \mathbf{J}^T \mathbf{F}(t)$$

- Torque-actuated robot joints
- Joint-torque sensors

Admittance:

$$\mathbf{F}(t) \to \mathbf{x}(t) \ \Delta \mathbf{q} = \mathbf{J}^{-1} \Delta \mathbf{x}$$

- Motion-actuated robot joints
- ▶ End effector force-torque sensor

The ROS framework... reuse it! make it available!

willowgarage.com

Documented ROS Robots

The number of different types of robots available to the community with ROS drivers.

Source: Ken Conley, Tully Foote, wiki.ros.org/Robots, 2017 changed over to robots.ros.org

wiki.ros.org/Metrics

The setting within :::ROS Control

You have:

- Joint position/velocity streaming interface
- ROS controlHW abstraction

Library of flexible controllers

 Applications with intuitive end effector control

Three main controllers in *cartesian_controllers*

- You want to follow a moving target
- The targets might be sparsely sampled
- You prefer smoothness over accuracy

- You want to control the robot with a wrench in contacts
- You have a wristFT sensor

- You want to follow a moving target
- You want to react to external disturbances
- You have a wristFT sensor

Our Approach

Instantaneous joint motion from Cartesian error

Rigid body dynamics

$$oldsymbol{ au} = oldsymbol{H}(oldsymbol{q}) \ddot{oldsymbol{q}} + oldsymbol{C}(oldsymbol{q}, \dot{oldsymbol{q}}) + oldsymbol{G}(oldsymbol{q})$$

Simplification

Virtual dynamics

$$\ddot{q} = H^{-1}J^Tf$$

Admittance:

- Directly to joint space!
- Common wrench interface

Our Approach

Instantaneous joint motion from Cartesian error

Virtual plant dynamics

$$\ddot{q} = H^{-1}J^Tf$$

 \downarrow

Cartesian error

Wrench representation

$$oldsymbol{f} = oldsymbol{K}_p oldsymbol{\epsilon} + oldsymbol{K}_d \dot{oldsymbol{\epsilon}}$$

Instantaneous acceleration

$$\ddot{m{q}} = m{H}^{-1} m{J}^T (m{K}_p m{\epsilon} + m{K}_d \dot{m{\epsilon}})$$

The control loop

The control loop

Task space linearization

Scherzinger et al, Inverse Kinematics with Forward Dynamics Solvers for Sampled Motion Tracking, IEEE ICAR 2019 (to appear)

Satellite assembly

INDUSTRIAL SETTINGS

- Contact-dominated assembly tasks
- Object poses with uncertainty
- ► More relevant for complex insertion

GOALS

Error correcting contact skills for autonomous execution that are transferable to different robots

Approach and Methods

50) FZI

Contact skill extraction in simulation

Let humans solve tilting and jamming for challenging configurations

Scherzinger et al, Contact Skill Imitation Learning for Robot-Independent Assembly Programming, IEEE IROS 2019

Summary

Control your robots in Cartesian task space!!!

Baseline

Joint position/velocity streaming interface

Goal

Application with fast, direct, task space control

III ROS Control

cartesian_controllers

cartesian motion controller

cartesian force controller

cartesian_compliance_controller

github.com/fzi-forschungszentrum-informatik/cartesian_controllers

More details here: Scherzinger et al., "Forward Dynamics Compliance Control: A new approach to cartesian compliance for robotic manipulators." IEEE IROS, 2017.

Scherzinger et al., "Inverse Kinematics with Forward Dynamics Solvers for Sampled Motion Tracking." IEEE ICAR, 2019.

Scherzinger et al., "Contact Skill Imitation Learning for Robot-Independent Assembly Programming.", IEEE IROS, 2019.

Further questions?...Ask us!... roennau@fzi.de scherzin@fzi.de