№17. Планиметрия

Для успешного решения задачи №17 нужно знать следующие темы:

- Счетная планиметрия: теоремы Менелая, косинусов, синусов, подобие, теорема о пропорциональных отрезках и др.
 - Высоты в треугольнике. Прямоугольные треугольники
 - Трапеция, параллелограмм, ромб
 - Комбинации двух окружностей
 - Вписанные и описанные окружности
 - Вписанные углы и четырехугольники
 - Отношение площадей

№17. Планиметрия. Задачи

№17.1 #829

Диагональ AC разбивает трапецию ABCD с основаниями AD и BC, из которых AD большее, на два подобных треугольника.

- а) Докажите, что $\angle ABC = \angle ACD$.
- б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что $BC=18, AD=50, \cos \angle CAD=\frac{3}{\epsilon}.$

№17.2 #16716

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E — на отрезке AB.

- а) Докажите, что FH = 2DH.
- б) Найдите площадь прямоугольника DEFH, если AB=4.

№17.3 #2120

Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.

- а) Докажите, что $\angle AHB_1 = \angle ACB$.
- б) Найдите BC, если AH = 21 и $\angle BAC = 30^{\circ}$.

№17.4 #828

К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B. Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причем отрезки CA и CD касаются одной окружности, а отрезки CB и CE – другой.

- а) Докажите, что периметр треугольника CDE вдвое больше расстояния между центрами окружностей.
- б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC=8.

№17.5 #1291

На медиане BM равнобедренного треугольника ABC как на диаметре построена окружность, которая второй раз пересекает основание BC в точке P.

- а) Докажите, что PB = 3CP.
- б) Пусть данная окружность пересекает сторону AB в точке L. Найдите AB, если BP=18, BL=17.

№17.6 #11628

В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая — боковых сторон, меньшего основания BC и первой окружности.

- а) Прямая, проходящая через центры окружностей, пересекает основание AD в точке P.
- Докажите, что $AP:PD=\sin D$.
- б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.

№17.7 #11100

Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC = CD.

- а) Докажите, что AB : BC = AP : PD.
- б) Найдите площадь треугольника COD, где O- центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB=6 и $BC = 6\sqrt{2}$.

№17.8 #1328

Дан остроугольный треугольник ABC. Около него описана окружность с центром в точке O и в него вписана окружность с центром в точке Q. Пусть H – точка пересечения высот треугольника, $\angle BAC = \angle OBC + \angle OCB$.

- а) Докажите, что точка H лежит на окружности, описанной около треугольника BOC.
- б) Найдите угол OHQ, если $\angle ABC = 40^{\circ}$.

№17.9 #20444

Дана транеция ABCD. Ее основание BC в четыре раза меньше основания AD. Точка M — середина AD. На боковой стороне AB взята такая точка E, что AE:EB=2:1. Диагональ AC пересекается с BM в точке A_1 и с EM в точке P.

- а) Докажите, что прямая BP содержит медиану треугольника ABM.
- б) Площадь трапеции ABCD равна 20. Найдите площадь треугольника A_1CM .

№17.10 #11101

В остроугольном треугольнике ABC проведены высоты AK и CM. На них из точек M и K опущены перпендикуляры ME и KH соответственно.

- а) Докажите, что прямые EH и AC параллельны.
- б) Найдите отношение EH:AC, если $\angle ABC=30^\circ$.

№17.11 #818

В трапеции ABCD боковая сторона AB перпендикулярна основаниям. Из точки A на сторону CD опустили перпендикуляр AH. На стороне AB отмечена точка E так, что прямые CD и CE перпендикулярны.

- а) Докажите, что прямые BH и ED параллельны.
- б) Найдите отношение BH : ED, если $\angle BCD = 150^{\circ}$.

№17.12 #11449

В треугольник ABC, в котором длина стороны AC меньше длины стороны BC, вписана окружность с центром O. Точка B_1 симметрична точке B относительно прямой CO.

- а) Докажите, что точки A, B, O и B_1 лежат на одной окружности.
- б) Найдите площадь четырёхугольника $AOBB_1$, если AB = 10, AC = 6 и BC = 8.

№17.13 #1105

В трапецию ABCD с основаниями AD и BC вписана окружность с центром в O.

- а) Докажите, что $\sin \angle AOD = \sin \angle BOC$.
- б) Найдите площадь трапеции, если $\angle BAD = 90^\circ$, а основания трапеции равны 5 и 7.

№17.14 #16718

Окружность, вписанная в трапецию ABCD, касается её боковых сторон AB и CD в точках M и N соответственно. Известно, что AM = 6MB и 2DN = 3CN.

- а) Докажите, что AD = 3BC.
- б) Найдите длину отрезка MN, если радиус окружности равен $\sqrt{105}$.

$\mathbb{N}_{17.15} \# 1112$

Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от точки A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.

- а) Докажите, что прямые PQ и BC параллельны.
- б) Известно, что $\sin \angle AOC = \frac{1}{4}\sqrt{15}$, прямые PC и AQ пересекаются в точке K. Найдите QK:KA. nkolkovo.oni

№17.16 #2605

В выпуклом четырехугольнике ABCD: AB = 3, BC = 5, CD = 5, AD = 8, AC = 7.

- а) Докажите, что около этого четырехугольника можно описать окружность.
- б) Найдите диагональ BD.

№17.17 #1309

Окружность проходит через вершины A, B и D параллелограмма ABCD. Эта окружность пересекает BC в точке E, а CD в точке K.

- а) Докажите, что отрезки AE и AK равны.
- б) Найдите AD, если известно, что EC = 48, DK = 20, а косинус угла BAD равен 0,4.

№17.18 #24570

На сторонах AB, BC, AC треугольника ABC отмечены точки C_1 , A_1 , B_1 соответственно, причём $AC_1:C_1B=8:3,\ BA_1:A_1C=1:2,\ CB_1:B_1A=3:1.$ Отрезки BB_1 и CC_1 пересекаются в точке D.

- а) Докажите, что ADA_1B_1 параллелограмм.
- б) Найдите CD, если отрезки AD и BC перпендикулярны и $AC=28,\,BC=18.$

№17.19 #30810

Дан треугольник ABC, в котором проведены три высоты: AA_1 , BB_1 и CC_1 . Через точку C_1 проведена прямая, параллельная BB_1 , которая пересекает AA_1 в точке K. Пусть H — точка пересечение высот треугольника ABC.

- а) Докажите, что $AB \cdot KH = BC \cdot C_1H$.
- б) Найдите отношение площадей треугольников C_1HK и ABC, если AB=4, BC=5 и $AC=\sqrt{17}$.

№17.20 #30812

В параллелограмме ABCD проведена биссектриса AL угла BAC. На прямой CD за точкой D отметили точку E такую, что AE=EC. Кроме того, $\angle BAC=2\angle CAD$.

- а) Докажите, что треугольники *BAC* и *BAL* подобны.
- б) Найдите EL, если $\operatorname{tg} \angle BCA = 0.25$ и AC = 12.

№17.21 #63299

Прямая, перпендикулярная стороне AD ромба ABCD, пересекает его диагональ AC в точке M, а диагональ BD в точке N, причем $AM:MC=1:2,\ BN:ND=1:3.$

- а) Докажите, что $\cos \angle BAD = \frac{1}{5}$.
- б) Найдите площадь ромба, если MN=5.

№17. Планиметрия. Ответы

17.1. 6) $8\sqrt{13}$

17.2. 6) $24 - 12\sqrt{3}$

 $\sqrt{7}\sqrt{3}$ (17.4. 6) 12,375 (17.5. 6) 17.6. б) $30 + 16\sqrt{3}$

17.7. б) $18\sqrt{3}$

17.9. 6) $\frac{8}{3}$

(5) 3:4 (17.11. 6) 1:4 17.10. 6) 3:4

shkolkovo.online

35 1.14. 6) 18 17.15. 6) 1:4 17.16. 6) 55

17.17. 6) 50 17.18. 6) 17 17.17 17.19. 6) $\frac{9}{256}$

o) 4,7 17.21. 6) 60√6 3) 6L