Name:

AMATH 515

Homework Set 2

(1) Recall that

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + f(x)$$
$$f_{t}(y) = \min_{x} \frac{1}{2t} ||x - y||^{2} + f(x).$$

Suppose f is convex.

- (a) Prove that f_t is convex.
- (b) Prove that prox_{tf} is a single-valued mapping.
- (c) Compute prox_{tf} and f_t , where $f(x) = ||x||_1$.
- (d) Compute prox_{tf} and f_t for $f = \delta_{\mathbb{B}_{\infty}}(x)$, where $\mathbb{B}_{\infty} = [-1, 1]^n$.
- (2) More prox identities.
 - (a) Suppose f is convex and let $g(x) = f(x) + \frac{1}{2} ||x x_0||^2$. Find formulas for \max_{tg} and g_t in terms of \max_{tf} and f_t .
 - (b) The elastic net penalty is used to detect groups of correlated predictors:

$$g(x) = \beta ||x||_1 + (1 - \beta) \frac{1}{2} ||x||^2, \quad \beta \in (0, 1).$$

Write down the formula for $prox_{tg}$ and g_t .

- (c) Let $f(x) = \frac{1}{2} ||Cx||^2$. Write $\operatorname{prox}_{tf}(y)$ in closed form.
- (d) Let $f(x) = ||x||_2$. Write $\operatorname{prox}_{tf}(y)$ in closed form.

Coding Assignment