









## III. országos magyar matematika<br/>olimpia XXX. EMMV Déva, 2020. február 11–16.

## VIII. osztály

1. feladat. Oldd meg a valós számok halmazán a következő egyenletet:

$$(2x^2 - 2x + 3)(45y^2 - 30y + 41) = 90.$$

- 2. feladat. Igazold, hogy
  - a)  $1 + a + a^2 + \dots + a^{n-1} = \frac{a^n 1}{a 1}$ , bármely  $n \in \mathbb{N}^*$  és  $a \in \mathbb{R} \setminus \{1\}$  esetén;
  - b)  $2020^{2020} 1$  osztható 2019-cel;
  - c)  $\frac{2020^{2020} 1}{2019}$  nem teljes négyzet!
- **3. feladat.** Bűvös piramist építenek 1 cm oldalélű kockákból. Ennek minden szintje négyzet alakú és a szintek rendre  $n^2$ ,  $(n-1)^2$ , ...,  $3^2$ ,  $2^2$ ,  $1^2$  darab kockát tartalmaznak. Miután egymáshoz rögzítik az építőelemeket, egy 2352 cm<sup>2</sup> teljes felszínű testet nyernek. Hány szintes az elkészített piramis?
- **4. feladat.** Az  $\alpha$ ,  $\beta$  és  $\gamma$  három páronként egymásra merőleges sík, melyek az O pontban metszik egymást, a teret 8 térnyolcadra osztva. Legyen  $\mathcal A$  azon pontok halmaza a térben, melyek távolsága az  $\alpha$ ,  $\beta$  és  $\gamma$  síktól rendre 8 cm, 6 cm és 4 cm, valamint  $\mathcal B$  azon pontok halmaza a térben melyek távolsága az  $\alpha$ ,  $\beta$  és  $\gamma$  síktól rendre 12 cm, 9 cm és 6 cm.
  - a) Igazold, hogy létezik, olyan  $P \in \mathcal{A}$  és  $Q \in \mathcal{B}$ , amelyre az O, P és Q pontok kollineárisak!
  - b) Hány olyan páronként egymással nem egybevágó téglatest létezik, amely rendelkezik az alábbi két tulajdonsággal:
    - lapjai rendre párhuzamosak az  $\alpha$ ,  $\beta$ ,  $\gamma$  síkok valamelyikével;
    - van olyan testátlója, amelynek az egyik végpontja az  $\mathcal{A}$ , a másik pedig a  $\mathcal{B}$  halmaz eleme?
  - c) Mennyi lehet a PQ szakasz hossza, ha  $P \in \mathcal{A}$ ,  $Q \in \mathcal{B}$  és mindkét pont ugyanabban a térnyolcadban helyezkedik el?