

ADVISORY & INTELLIGENCE SERVICE PROGRAM

產業研究報告

智慧製造需求下之邊緣運算與新興通訊發 展分析

前言

對製造業者而言,邊緣運算(Edge Computing)及新興通訊技術的落地結合,是邁向製造場域關鍵智慧應用的「最後一哩路」,因為如預測性維護、異質設備協作、MR/AR 巡檢等智慧製造應用,唯在低延遲、高可靠的邊緣運算與新興通訊框架下才可望實現。本文將從邊緣運算及新興通訊發展現況,展望智慧製造應用之革新,以及此波變革下國內應用業者契機。

楊智傑

Document Code: CDOC20230526001

Publication Date: May 2022

目錄

邊緣運算定義與範疇	1
邊緣運算於智慧製造發展現況	4
新興無線通訊於智慧製造應用解析	7
智慧製造應用現況與挑戰	10
結論	12
附錄	14

圖目錄

圖一、邊緣運算與新興通訊技術異構情境之一(示例)

10

表目錄

表一、不同智慧製造應用的最低延遲容許度	3
表二、5G、Wi-Fi 6 與 LPWAN 在製造業應用場景比較	9

邊緣運算定義與範疇

鑒於市場客層多樣化、產品需求變動快速,少量多樣、彈性生產等需求,成為製造業者面臨的新常態,而加速製造場域的「智慧化」也成為眾業者當務之急。由於製造場域具備高度複雜性及產業差異性,不同的生產需求、製造流程、機台部署、人力配置、場域樓層規劃等,對於技術導入的需求皆不盡相同。

近年邊緣運算、5G、Wi-Fi 6 以及 LPWAN 等新興通訊技術的發展,帶來低延遲 (Latency)、高可靠度(Reliability)、大量設備連結的多樣應用契機。然而邊緣運 算與新興通訊技術在智慧製造場域高度相關,邊緣運算的低延遲、高即時特性,需在高速的網路環境支持下才能發揮實際效益,兩者相互結合下,將使智慧製造的異質設備協作、AR / MR 巡檢、即時數據分析、預測性維護、遠距操作等不同類型的關鍵任務情境成為可能。

從「數據流」角度定義「邊緣運算」

根據工業物聯網聯盟(Industrial Internet Consortium, IIC)的定義來看,邊緣運算定義為「將運算靠近數據源,即數據產生或消耗的地點,目的為最小化延遲,節省網路頻寬,或滿足在處理地點附近執行的應用程式需求,例如安全性與合規性」,強調從數據流發生與消耗的位置,來定義邊緣運算。

製造場域智慧化的核心是設備、人員、環境以及生產相關的「數據」(Data)。若從數據流的角度來看,大量、即時的類比(如波形)及物理訊號(如溫度、濕度、震動、壓力),從機器設備、環境端產生,為感測器(Sensor)所捕捉接收,進行類比數位轉換後,經由 IoT、邊緣節點(如邊緣伺服器)與網路設備,進入到地端或雲端伺服器進行儲存或批次處理的過程,會經過如下步驟:

一、感測器(Sensor)

感測器用於收集生產製造過程中的各種物理訊號,例如溫度、壓力、光敏、濕度、震動、位置等,進行類比到數位的基礎轉換,上述訊號可能由設備內建感測器模組(如AMR 移動狀態、機械手臂負載數據),或由既有設備外裝的感測裝置,傳出特定參數與數據。

二、物聯網裝置(IoT Device)

感測器轉換後的數據·藉由無線方式傳送到物聯網裝置·如智慧控制器或嵌入式 (Embedded)硬體·並對數據進行初步處理和分析·並通常以無線方式與邊緣節點 進行通訊。

三、邊緣節點(Edge Node)

物聯網裝置進行初步數據處理後,將數據傳送到較上層的邊緣節點,如邊緣伺服器 (Edge Server)等。邊緣節點將進一步對數據進行分析,以減少向雲端傳輸的數據量。而部分 AI 模型亦可由雲端部署於邊緣節點,進行即時應用推論,降低往返的延遲時間。

四、網路裝置(Networking Device)

數據從邊緣節點經過網路裝置,如交換器(Switch)、路由器(Router)以及防火牆等,通過有線或無線網路(如 Wi-Fi 6 或 5G)連接到企業內或外部網路空間。在網路設備端,通常也會部署基礎資安控管機制。

五、地端 / 雲端伺服器 (On Premise / Cloud Server)

經過網路傳輸後,數據最終到達工廠機房的本地雲(On Premise Server)或外部雲端伺服器(Cloud Server)。在地端或雲端伺服器上,數據可以進行長期儲存、備援、或進一步進行大量的批次分析和應用,例如大數據分析、機器學習模型訓練等較繁重,無法在邊緣端執行的運算工作。

邊緣運算涵蓋範疇

不同業者對於邊緣運算有不同定義,但在製造場域中,「邊緣運算」意指在物聯網裝置或邊緣節點的位置,就先行針對設備或環境傳入的數據,進行初步運算、分析或推理,並即時做出部分關鍵決策,迅速回饋至機器端執行,另一方面,即時性較無限制的數據,則會傳至更上層的地端、雲端伺服器,進行數據儲存、批次處理、模型訓練等工作。

在製造場域端·需要進行邊緣運算的任務·通常包括即時監控和反饋、品質控制、生產速度調整和預測性維護等·藉由分析裝置即時數據·對潛在故障進行預測·提前警

示以減少意外停機或機件損毀,降低維修成本並提高生產效率。此外,邊緣結點亦可藉由部署機器學習和 AI 模型,進行即時決策優化。如將深度學習模型,部署於自動視覺檢測(AOI)設備,以即時偵測複雜元件的缺陷。

此外,如視覺巡檢、人員機器間的協同控制(如同一條生產線的 AMR、AOI 與機械手臂)、工廠自動化、遠距操作等應用場景,也有賴於低延遲、高可靠的邊緣運算,以避免碰撞、流程中斷,操作錯誤等情形發生,達到更高效的生產目標,以下為常見智慧製造應用案例的低延遲應用需求:

表一、不同智慧製造應用的最低延遲容許度

智慧製造應用案例	端對端容許延遲(毫秒/ms)	資料頻寬需求	超出延遲之影響	
MR / AR 視覺擴增巡檢	5-10 ms	高	低-中 (資料顯示不全)	
AMR 應用 人機安全協作	few ms	低-中	高 (機件碰撞、人員受 傷)	
工廠自動化 異直設備協作	1-10 ms	低-中	中 (自動流程中斷)	
遠距操作 遠距控制	10-40 ms	高	中-高 (操作錯誤、機件損 毀)	

資料來源: Latencytech、Ericsson, MIC 整理, 2023 年 5 月

最後,邊緣運算也可用於節省數據傳輸流量。經由在邊緣節點上對數據進行過濾 (Filter)和聚合(Aggregation),可減少需要傳輸到雲端的數據量,降低數據傳輸 成本。此外,邊緣運算亦更適合在本地端對敏感數據進行加密和處理,保護數據安全 和隱私,對於需要嚴守數據保護法規的製造業企業,具有重要意義。

邊緣運算於智慧製造發展現況

全球結合邊緣運算與 5G 應用的智慧製造市場快速發展,需求領域則聚焦於 AMR 與自動控制、AR/VR 裝置應用、物聯網設備控制以及 IT/OT 整合(如預測性維護、故障預警)等應用。以下將從近年資訊技術商(IT)、營運技術商(OT)、雲端服務商(CSP)的邊緣運算技術及解決方案,以及邊緣運算不同環節的技術發展焦點,剖析邊緣運算於智慧製造發展現況。

資訊技術商(IT)

NVIDIA

晶片大廠 NVIDIA 為近年邊緣伺服器的重要業者之一,尤以嵌入式邊緣系統 Jetson 系列以及邊緣 AI 伺服器 EGX 系列為主要代表,產品包括小型 IoT 嵌入式 AI 應用的 Jetson Nano,到企業級的邊緣 AI 伺服器平台,如內建 A100 GPU 的 EGX A100,最新產品則為 2022 年 9 月推出的 IGX 邊緣平台,強調高即時性的數位雙生(Digital Twin)和工業元宇宙支援。NVIDIA 發展關鍵優勢在於高效 AI 和深度學習(Deep Learning)功能,且具較完整泛用的軟體開發生態系(如 CUDA、TensorRT)。

IBM

IBM 在邊緣運算的產品布局,主要包括可將 IoT 工作負載,分配至邊緣裝置上進行部署及更新,以節省流量和管理成本的 IBM Edge Application Manager,以及能讓企業在任何邊緣位置執行 AI 應用的 IBM Watson Anywhere。IBM 邊緣運算產品和服務的特點,在於可自動化在大量邊緣裝置上執行、管理工作負載,並且提供深度 AI分析和 IoT 整合,以執行即時的邊緣決策和動作。此外,IBM 於 2022 年 12 月發布,與 Boston Dynamics 合作開發的邊緣 AI 視覺系統,可讓四足型態的機械載具在複雜或危險工業環境中,透過邊緣伺服器無線連接,進行精確的視覺分析辨認物件,並進行即時動作反饋。

營運技術商(OT)

Schneider

工控大廠 Schneider Electric 在邊緣運算的產品,主要以 EcoStruxure 為代表,其為 IoT 專用的、開放、具高度互操作性 (Interoperability) 的系統架構平台,主要功能

為連接異質設備進行邊緣控制,並整合上層應用、分析及服務,EcoStruxure Edge Control 則將即時邊緣監控、數據處理 AI、機器學習結合,可用於辨識潛在的設備故障、安全風險等問題。此外,Schneider 亦提供超融合(Hyperconvergence Infrastructure)的數據中心 EcoStruxure Micro Data Center 解決方案,可在嚴酷的環境中執行即時數據處理和分析的邊緣應用。

Honeywell

Honeywell 的應用平台 Honeywell Forge 具有從邊緣到雲的運算能力,能在邊緣端進行的數據處理和分析,並將重要訊息推送到雲端,進行進一步的分析和優化,期解決方案主要用於即時設備健康監控、維護管理、能源管理等,並可以透過機器學習進行預測性維護。此外 Honeywell 的 Experion PKS (Process Knowledge System)工業自動化系統,可收集和處理來自工廠各處的邊緣數據,並在邊緣端進行即時控制和優化。並提供整合的應用介面,使營運工程師可從單一地點監控和管理整個工廠的數據運作狀態。

雲端服務商(CSP)

Google

Google 於智慧製造的邊緣運算產品為 Google Cloud IoT Edge,以及 2022 年推出的 Google Cloud for Manufacture。Google 的優勢在於其強大的數據分析能力,並提供豐富的資料分析工具,如 BigQuery、Dataflow等,可讓企業在如預測性分析、製造營運流程優化、即時報表等應用上較能輕易存取。而其開放原始碼的軟體生態系統,也允許企業在一定程度上進行需求客製化。此外,Google 亦逐漸將 Edge TPU(專為 TensorFlow Lite 模型設計的硬體加速器)導入產品,讓邊緣裝置可執行已訓練好的模型,強化邊緣 AI 的執行效率。

Microsoft

作為雲端與軟體業者·微軟主要的邊緣伺服器產品包括 Azure Stack Edge 以及 Azure IoT Edge。同樣以混合雲協同運作效率為主要關注點·微軟的邊緣方案訴求工作負載與管理的平衡,可讓邊緣設備進行機器學習、推論及其他分析和處理任務,並將數據傳送到 Azure 雲端進一步處理、或進行訓練模型更新。而 Azure IoT Edge 則是專為物聯網設計的服務,其由容器構成,可靈活擴充功能,並支援部署 Azure Machine

Learning 和 Azure Cognitive Services 的人工智慧模型,讓邊緣位置設備獲得推論能力。

AWS

AWS 在邊緣運算產品線上,包括能讓使用者在地端執行 AWS 架構,將 AWS 基礎服務、操作模式「複製」到邊緣伺服器的 AWS Outposts,以及在邊緣環境下最佳化 5G延遲,以支援 AR / MR 巡檢、IoT 即時應用的 AWS Wavelength。AWS 發展邊緣運算的主要優勢與特色,在於邊緣與 AWS 雲端服務的緊密接合(如 S3、EC2),讓「邊緣+遠端」的混合雲(Hybrid Cloud)數據管理更一致、應用情境更統一。

邊緣運算於智慧製造技術發展焦點

感測層:感測器與物聯網裝置,降低功耗為重要考量

由於感測器需要大量布建於設備、工廠環境中,電池更換週期長,並通常須維持不斷電感測,因此低功耗一直是 Sensor 與 IoT 設備的重要議題。除了搭載小型太陽能面板外,近年利用收集機械運轉的震動能量,以維持裝置蓄電力的技術亦開始出現,而低功耗元件(如 ARM Cortex-M 系列的低功耗 MCU、MRAM、FeRAM 等低功耗記憶體)開始在 IoT 設備上普及採用,以及 2022 年開始利用微型 AI 晶片進行微機器學習(TinyML),預測使用峰值與離線時間的技術也逐漸成熟,可使 IoT 設備進行預測,並可在離峰時段進入休眠模式,進行節能。此外,近年亦出現高度整合多功能感測器,能在單一裝置同時監測多種物理特性,如溫度、壓力、濕度等,從而降低成本並簡化部署複雜度,同時提供較高的部署彈性。

運算層:邊緣 AI 晶片普及,提升生產靈活性

邊緣伺服器為組成邊緣運算的重要核心。近年因 AI 即時應用需求增加,如少量多樣需求下,需針對多樣、未經模型訓練的工件、產品快速進行視覺辨識,或進行異質設備(如不同品牌的 AMR、機械手臂)的生產流程協同應用、設備的預測維護等,在邊緣伺服器搭載 AI 晶片,進行邊緣推論已逐漸成趨勢,如搭載 NVIDIA GPU 的NVIDIA Jetson、搭載 TPU (Tensor Processing Unit)的 Google Coral 邊緣平台、聚焦視覺 AI 模組的 Intel Movidius Myriad X。除此之外,容器技術(如 Docker 和Kubernetes)和微服務架構在邊緣伺服器上的應用也逐漸普及,使應用程式能進行快速部署、擴展和維護,提高邊緣伺服器的資源利用率和靈活性。

架構層:超融合架構與邊緣運算加速整合

在系統架構層次,超融合架構 (Hyper-Converged Infrastructure, HCI)與邊緣運算結合應用趨勢也更加明顯。邊緣運算架構雖有即時性、低延遲等優勢,但也相對面對更多的設備、數據來源、管理站點、以及廣布設備的廠區缺乏現場 IT 維運人員等議題。部署於邊緣的超融合架構設計,由於整合了儲存、運算、網路管理及安全性相關功能,並提供單一的軟體介面,而能夠最大程度簡化邊緣部署的複雜性,提升遠距維運與管理的效率。

產業標準層:規格互通,提升異質設備互操作性

随著智慧製造領域各類設備和系統的不斷增加·不同廠商和設備之間的互通性變得越來越重要·近年產業標準組織陸續出現·以確保邊緣運算的互操作性和相容性。例如由 Linux 基金會主持的邊緣運算協會 (EdgeX Foundry)·提供通用的工業級物聯網邊緣運算開源平台·將異質設備、傳感器等設備進行標準化·並開放雲端 API 服務·提供使用者進行介面及連接整合·加速工業邊緣生態系的建立。

新興無線通訊於智慧製造應用解析

雖然邊緣運算發展快速,但在實際落地時,仍有賴於新一代通訊技術及標準的配合。 製造場域非僅使用單一技術建置,而是以不同通訊技術「共構」而成。例如廣布於廠 房內外、較無即時需求的環境汙染 IoT 檢測、資產追蹤與定位,適合以低功耗、低頻 寬、長距離的 LPWAN 模組布建,而 Wi-Fi 6 因其相對高速、低建置成本,則主要可 於人機操作介面(如工廠平板)導入應用,5G 則因其高頻寬、低延遲以及昂貴布建 成本特性,適合針對如機械手臂協作、AMR 協作、MR 維修與遠距操作等關鍵局部 應用。

若從實際場域來看,須從「人、機、料、環」產生的資料流、資料處理即時需求,以 及資料傳輸、分析成本等環節進行整體網路配置考量,將數據在最適當的環節進行處 理,以更彈性地因時因地,針對廠區應用需求進行導入規劃。

低功耗廣域網路(LPWAN):低耗能,適用於非即時應用

低功耗廣域網路(Low-Power Wide-Area Network, LPWAN),為適合應用於 IoT 環境感測設備的無線通訊技術,具低成本、低功耗、長距離和高可靠性等特點。在智

慧製造場域中·LPWAN 技術可以用於監控和追蹤機器設備位置、人員、資產和庫存, 收集和分析傳感器數據和設備狀態等數據·以進行資產管理、物流和運輸及基於淨零 碳排目標的能源管理優化等功能。

近年 LPWAN 的技術與規格發展,主要聚焦於低功率、高可靠性的 LoRaWAN 的規格提升,如 2020 年支援更多設備數的 1.0.4 版本,以及基於蜂窩網路(Cellular Network),具有更廣覆蓋,適於大型廠房的 NB-IoT(Narrowband Internet of Things)技術的普及。然而,低功耗廣域網路的傳輸頻寬相對小,延遲亦較高,在製造廠域中的應用,較適合用於非毫秒級、非關鍵性應用(如環境污染、照明、人員移動)、且須長時間穩定使用之應用情境。

Wi-Fi 6:部署成本較低,可滿足部分低延遲應用

Wi-Fi 6 (802.11ax)是繼 Wi-Fi 5 之後的新通訊標準,並因其支援更大的頻寬、更短的延遲和更多的可連接性,而被使用於工廠場域。Wi-Fi 6 可用於工廠內部通訊,如工作站、辦公設備和行動裝置(如工業平板、手機)、進行生產線上非關鍵的感測器、工業照相機或 AMR,進行即時數據收集和分析,此外相較於 Wi-Fi 5, Wi-Fi 6 具有TWT (Target Wake Time)節能機制,可延長 IoT 等裝置使用時間,更適於物聯網應用。

Wi-Fi 6 布建成本較低,如頻寬足夠的交換器 Switch 可沿用既有設施,因此可作為生產流程無線化的初步解決方案,然而其平均延遲相較 5G 亦高(約為2至8倍),其訊號也相對易受建築物隔層、設備金屬外殼、藍芽訊號等干擾,可靠性較不足,因此仍無法完全滿足關鍵製造應用(如MR巡檢、異質設備自動協作等)。

5G專網:部署成本高,可滿足最低延遲應用

應用於單一企業內部、封閉的 5G 私網(5G Private Network),為隔絕於公有 5G 頻段的網路配置,可提供企業安全、可控的網路應用環境。在智慧製造環境中,5G 因擁有最高頻寬(1-10 Gbps)以及最低延遲(1-10 ms),因而使要求高時序精密度的異質設備協作、遠端操控、MR 巡檢維修等應用成為可能,此外在大型廠區,相較於 Wi-Fi,5G 網路無移交控制(Handover)中斷問題,因此更適合如低延遲、快速移動型的 AMR 或無人機(Drone)廣域應用。然而相對其他解決方案,5G 私網建置成本相對昂貴,使企業導入意願相對受限。在 2022 年,國內已有電信業者提出 5G 私網租賃制方案,降低一次性導入成本,並已有 PCB 業者相續進行試行導入。

表二、5G、Wi-Fi 6 與 LPWAN 在製造業應用場景比較

			建置成				製造業應用場
技術	頻寬	傳輸延遲	本	連接性	優勢	劣勢	景
5G 專網	高(1-10 Gbps)	極低(1- 10 ms)	較高	高 (方可 可 (方可 (100) (1. 高速度 無線連接 2. 低延接 3. 高連接 密用 4.可場域	1.建置成 本高	1. 遠程控制 無人機和 AMR 2. 即時 IoT 數據分析、預 測性維護 3. 設備之間 的精密協同作 業
Wi-Fi 6	高(600 Mbps- 9.6 Gbps)	低(8- 20 ms)	中等	中 (數百 個設備 同時連 接)	1. 高速無線連接 2. 相對低 延遲	1. 覆蓋範 圍受限 2. 容易受 到干擾 3.無法用 於戶外之 場域	1. 無線數據 收集和監控 2.工業平板電 腦、工作站點 數據無線傳輸
LPWAN	極低(0.3 KBps – 50KBps)	高 (秒-分)	低	高 (數萬 以上設 備)	1. 低耗能 2. 支援長 距離傳輸·可用 於戶外 3.連接量大	1.頻 億 個 個 個 個 個 個 個 個 個 個 個 個 個 個 個 個 個 個	1. 環境污染 偵測、能耗偵 測 2.資產追蹤、 倉儲智慧管理

資料來源: Qualcomm、wi-fi.org、LoRa Alliance,MIC 整理, 2023 年 5 月

綜上所述,在智慧製造場域中,邊緣運算之能發揮作用,有賴於對感測器、IoT 裝置、邊緣節點到伺服器間「數據流」與「運算位置」的調控,而在不同的數據流程中,則需從建置成本、廠區大小範圍,以及關鍵應用類型,進行通訊技術的配置考量。不同生產需求配置方式差異極大,基於成本,也未必會部署高度複雜的異構網路環境,然下圖提出一種邊緣運算與雲運算、LPWAN、Wi-fi 6 及 5G 網路異構的配置情境作為示例:

圖一、邊緣運算與新興通訊技術異構情境之一(示例)

資料來源: MIC, 2023年5月

智慧製造應用現況與挑戰

以國內實際製造場域現況來說,不少製造業者使用之較舊型的生產設備(如傳統 SMT、DIP),許多並不直接支援數據導出、介接 Datacom 的設計,以致於常需額外購買授權、或冒破壞保固風險進行數據導出。因此,利用外掛 IoT 感測器偵測老舊機台數據,或者直接架設攝影機,讀取 HMI (Human-Machine Interface)上的畫面再進行 OCR 數值判讀,成為目前常見的間接數據收集解決之道,而感測資料與影像的即時資料擷取、分析,唯在 5G 或 Wi-Fi 6 的低延遲網路環境下較可能滿足。

另一方面,因應全球市場變化,國內業者少量多樣、彈性生產(如 AI 影像即時辨識 異質工件)、混線生產需求增加,而人口老化,製造業普遍缺工等狀況,使人機協作、 異質設備自動協作等低延遲關鍵應用逐漸成為重點,亦在 5G 及 Wi-Fi 6 發展下得以 實現。

此外,在淨零碳排需求迫近下,近年發展快速、部署成本較低的 LPWAN 搭配低耗能 AloT 裝置,可有效監測廠區環境,例如 PM2.5、溫度、濕度、二氧化碳等數據,而其低耗能、廣域特性,也適於安裝於人員難以進入、抽換電池不便(如排風道、管線、爐內)的場域應用,對我國製造業者而言,可作為節能解決方案之一。此外,目前國

內業者較多導入的 Wi-Fi 6 雖仍難滿足如工廠自動化、MR 巡檢等延遲低於 10ms 以下的應用·但 2023 年正由 Wi-Fi Alliance 審定中(Finalize)的 Wi-Fi 7(IEEE 802.11be) 通訊標準,則可進一步將延遲時間進一步降低至 5ms 以下,讓諸如 MR、AR 等應用可落地實現,企業並可部分使用既有網路骨幹設施(但須更新如交換器、橋接器等設備),且無須額外取得頻段,而成為昂貴的 5G 的可能替代方案。

然而以目前台灣 5G 發展現況,對中小型製造業者來說,5G 專網的架設與維運成本仍較高。依自行布建、與營運商租賃、或委託 SI 組建之不同,5G 專網每坪架設成本可能超過 2 萬元新台幣,而以 600 坪工廠來說,每月營運支出更可能超過 8 萬元新台幣,相比傳統 Wi-Fi 昂貴許多。此外,在頻譜布建上,Wi-Fi 及 LPWAN 都可使用免費頻譜,然而 5G 需要額外與營運商租用頻段,增加業者營運成本。

另一方面,5G 或 Wi-Fi 6 下的邊緣運算架構,也因其介於終端裝置與地端/雲端伺服器間,增加了數據處理的階層,從而提高維運與管理的複雜度。而相關的 AI 模型、App 部署、數據安全等議題,都需要進行額外部署,且由於邊緣伺服器處理之資料大部分未經機房或雲端伺服器,也需要設定新的數據權限管理機制,考驗製造業者 IT 人才及維運能力。

結論

邊緣運算朝節能化、AI化、超融合、規格標準化發展

智慧製造邊緣運算技術涉及感測器、IoT裝置、邊緣節點的硬體技術革新和產業標準。在感測器與物聯網裝置方面,降低功耗是主要考量,例如利用震動能量、低功耗元件、微機器學習和高度整合多功能感測器。邊緣節點方面,AI 晶片普及提升生產靈活性,容器技術和微服務架構則使應用程式快速部署、擴展和維護,提高資源利用率和靈活性,系統面則以結合超融合架構與邊緣運算,達到簡易部署與管理之趨勢。產業標準方面,規格互通可達到異質設備可互操作性,提供通用的邊緣運算開源平台,將異質設備進行標準化,綜上所述,「節能化、AI 化、超融合、規格標準化」將為未來邊緣裝置與系統持續發展的三大方向。

數據流量、處理成本、處理即時性為通訊技術布建三大考量

智慧製造中的新興無線通訊技術包括 LPWAN、Wi-Fi 6 和 5G 專網等。LPWAN 技術適用於非即時環境監測,具有低成本、低功耗、長距離和高可靠性等特點,適合在智慧製造中監控和追蹤機器設備位置、人員、資產和庫存。Wi-Fi 6 具有較低的部署成本,支援更大的頻寬、更短的延遲和更多的可連接性,適用於工廠內部通訊,如工作站、辦公設備和行動裝置,以及非關鍵的感測器、工業照相機或 AMR。然而,Wi-Fi 6 的延遲較高且容易受干擾,因此無法完全滿足關鍵製造應用。

5G 專網具最高頻寬和最低延遲,能夠實現高時序精密度的異質設備協作、遠端操控和 MR 巡檢維修等應用。然而,相對於其他解決方案,5G 私網建置成本較高,是企業導入之主要門檻。而不同無線通訊技術在智慧製造中各具特點,企業須根據「人、機、料、環」流程中產生的數據流、即時應用需求、布建與維運費用、選擇最適合的技術進行導入,以取得成本與效益之平衡點。

新製造模式帶動低延遲需求,但邊緣系統導入仍有挑戰

我國製造業以中小企業為主,且在近年面臨缺工、少量多樣、彈性生產等需求,對於製造轉型有一定迫切性,此外,傳統機台數據導出往往較不容易,5G、Wi-Fi6等低延遲技術有助於實現關鍵應用,如機台 OCR 影像辨識、AI 預測性維護、人機協作等。淨零碳排需求下,LPWAN 與低耗能 AIoT 裝置可監測廠區環境,作為綠能解決方案。

展望未來·Wi-Fi7 通訊標準可降低延遲至 5ms 以下·可能成為 5G 的替代方案。然而另一方面·對 IT 資源較少的中小型製造業者來說·5G 或 Wi-Fi6 下的異構邊緣運算架構,會增加維運與管理複雜度,而 AI 模型訓練、App 部署、數據安全等議題需額外學習,同時需設定新的數據權限管理機制,使相關應用面臨一定挑戰。

附錄

英文名詞縮寫對照表

Al Artificial Intelligence

AMR Autonomous Mobile Robot

AOI Automated Optical Inspection

GPU Graphics Processing Unit

HCI Hyper-Converged Infrastructure

IEEE Institute of Electrical and Electronics Engineers

Internet of Things

LPWAN Low-Power Wide Area Network

MCU Microcontroller Unit

MR Mixed Reality

MRAM Magnetoresistive Random Access Memory

FeRAM Ferroelectric Random Access Memory

SI System Integrator

TPU Tensor Processing Unit

中英文名詞對照表

延遲 Latency

感測器 Sensor

物聯網裝置 Internet of Things

互操作性 Interoperability

邊緣節點 Edge Node

地端伺服器 On Premise Server

雲端伺服器 Cloud Server

自動視覺檢測 Automated Optical Inspection 低功耗廣域網路 Low-Power Wide Area Network

蜂窩網路 Cellular Network

超融合架構 Hyper-Converged Infrastructure

發行所 財團法人資訊工業策進會 產業情報研究所 (MIC)

地址 106台北市大安區敦化南路二段 216號 19樓

電話 (02) 6631-1200 傳真 (02) 2732-1353

全球資訊網 https://mic.iii.org.tw

會員服務專線 (02) 2378-2306 會員傳真專線 (02) 2732-8943

E-mail members@iii.org.tw

AISP 會員網站 https://mic.iii.org.tw/aisp

以上研究報告經 MIC 整理分析所得·由於產業變動快速·並不保證上述報告於未來仍維持正確與完整·引用時請注意發佈日期·及立論之假設或當時情境。 著作權所有·非經 MIC 書面同意·不得翻印或轉載