Abstracting Complex Systems using Mixed Graphical Models

Jonas Haslbeck

Psychosystems lab University of Amsterdam, the Netherlands

psychosystems.org
jmbh.github.io

Complexity Laboratory Utrecht (CLUe) Lunch Meeting

Utrecht, October 20th

Multivariate System

Multivariate System

Gene Expressions

Voting Behavior of Members of Parliament

Symptoms of Mental Disorders

Sample observations

Recover the system

Sample observations

Approximate the system

True Model, Probability Distribution, Network Model

True Model

Approximate

Conditional Independence Network

Summarize

$$P(X_1,\ldots,X_p,\theta)$$

Multivariate Probability Distribution

Simple Example: Gaussian Graphical Model

$$\Sigma^{-1} = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 \\ X_1 & 3.45 & 0 & 0 & 3.18 \\ X_2 & 0 & 2.14 & 0 & 0.82 \\ X_3 & 0 & 0 & 3.21 & 1.05 \\ X_4 & 3.18 & 0.82 & 1.05 & 8.77 \end{pmatrix} \iff 1$$

$$P(X_1,\ldots,X_p) = \frac{1}{\sqrt{(2\pi)^p|\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

General Graphical Models

Goal:

Abstract structure of true system in simpler MGM model class

True System

Abstraction in simpler MGM model class

Study multivariate distribution as network

Mixed Graphical Models

Gaussian Graphical Model

Constructing MGMs

Each node/variable is a univariate exponential family distribution conditional on all other variables

$$P(X,\beta) = \exp \left\{ \eta(\theta)B(X) + C(X) - A(\theta) \right\}$$

and the natural parameter θ is a linear combination of all other variables:

$$\theta_{t,i} = \beta_{0,i} + \begin{bmatrix} \beta_{i,1} & \dots & \beta_{i,p} \end{bmatrix} \begin{bmatrix} X_2 \\ \vdots \\ X_p \end{bmatrix}$$

(Yang et al., 2014; Chen, Witten & Shojaie, 2015; Haslbeck & Waldorp, 2017)

Estimating Mixed Graphical Models

(Meinshausen & Buehlmann, 2006)

ℓ_1 -regularized Estimation

We minimize the negative log-likelihood $F(X_j, \theta_t)$ together with the ℓ_1 -norm over all parameters:

$$\arg_{\boldsymbol{\theta_t}} \min \left\{ \frac{1}{n} \sum_{j=1}^n w_{j,t_e} F(\boldsymbol{X_j}, \boldsymbol{\theta_t}) + \frac{\lambda_i ||\boldsymbol{\theta_t}||_1}{n} \right\}$$

This has two consequences:

- 1. We can control the bias (model too simple) vs. variance (model too complicated) trade-off with tuning parameter λ_i
- 2. Small parameters are set to exactly zero

Back to Applications

67 measurements of 150 gene expressions related to the immune system of Drosophila melanogaster (fruit fly) over its full life cycle

Votes of 623 members of the German parliament on 136 bills from Nov 2013 -April 2015

1476 measurements of 16 mood related variables of one individual over 238 consecutive days

Gene Expressions of Fruit Fly

67 Measurements of 150 genes expressions related to immune system of the fruit fly (Lebre et al., 2010)

Voting Behavior of Members of German Parliament

136 public votes, 623 members of parliament of 4 parties

Symptoms of Mental Disorder

1476 measurements of 14 variables related to mood, activity and social context of one individual over 238 consecutive days (Kossakowski et al., 2017)

Practical:

Estimate MGM on Symptom Data

RStudio Server:

http://clue.science.uu.nl:8787

Login: Your UU Solis-ID & password

Direction of Influence & Interactions as function of time

True Structure:

Instantaneous Influence

Influence over time (1h)

Does the system under investigation change over time?

- 1: Relaxed
- 2: Down
- 3: Irritated
- 4: Satisfied
- 5: Lonely
- 6: Anxious
- 7: Enthusiastic
- 8: Suspicious
- 9: Cheerful
- 10: Guilty
- 11: Doubt
- 12: Strong
- 13: Who with
- 14: Action

mgm: Summary

mgm package implements:

- Mixed Graphical Models (MGMs)
- ► Time-varying MGMs
- mixed Vector Autoregressive (mVAR) models
- Time-varying mVARs

Website: jmbh.github.io

Email: jonashaslbeck@gmail.com

References

- Haslbeck, J., & Waldorp, L. J. (2017). Estimating mixed graphical models in high-dimensional data. arXiv preprint arXiv:1510.05677.
- Yang, E., Baker, Y., Ravikumar, P., Allen, G., & Liu, Z. (2014, April). Mixed graphical models via exponential families. In Artificial Intelligence and Statistics (pp. 1042-1050).
- Chen, S., Witten, D. M., & Shojaie, A. (2014). Selection and estimation for mixed graphical models. Biometrika, 102(1), 47-64.
- Kossakowski, J., Groot, P., Haslbeck, J., Borsboom, D., & Wichers, M. (2017). Data from Critical Slowing Down as a Personalized Early Warning Signal for Depression. Journal of Open Psychology Data, 5(1).
- Lebre, S., Becq, J., Devaux, F., Stumpf, M. P., & Lelandais, G. (2010). Statistical inference of the time-varying structure of gene-regulation networks. BMC systems biology, 4(1), 130.
- Meinshausen, N., & Bhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 1436-1462.