Rappresentazione di Interi con segno

Fri, 11 Mar

Per gestire i casi di underflow, in cui da una sottrazione si ottiene un *numero negativo*, è sorta la necessita di creare una convenzione per rappresentare i numeri negativi.

Modulo e segno (MS)

Nel metodo di rappresentazione chiamato modulo e segno, prendendo in considerazione una serie di n bit, la si divide in due parti:

- **▼ II Most Significant Bit**
 - Il MSB indica il segno del numero rappresentato: 0 se positivo e 1 se negativo.
- ▼ I restanti n-1 bit
 - I restanti bit indicano il valore assoluto del numero rappresentato.

Problemi del MS

La rappresnetazione modulo e segno presenta principalmente due problemi:

- ▼ Una minore capacità di rappresentazione
 - Uno degli n bit viene utilizzato per rappresentare il segno
- ▼ Una duplice rappresentazione del numero zero

Considerando un byte: 00000000 e 10000000 sono entrambe valide rappresentazioni dello 0

Complemento a 1 (CA1)

La rappresentazione in complemento a 1 si basa sull'operazione del complemento, che si traduce nell'inversione di tutti i bit della sequenza.

Per ottenere il CA1 bisogna tenere in considerazone due casi:

- 1. Se il numero da rappresentare è positivo, la codifica è la normale conversione in base due.
- 2. Se il numero da rappresentare è negativo, si effettua la codifica binaria di tale numero in valore assoluto e la si complementa.

Problemi del CA1

▼ Nonostante si sia eliminato il problema della *capacità* di rappresentazione *ridotta*, persiste ancora il problema della **doppia** rappresentazione dello **zero**.

Considerando un byte, 00000000 e 111111111 sono entrambe valide rappresentazioni dello zero

Complemento a 2 (CA2)

La rappresentazione in complemento a 2 è un'evoluzione di quella in CA1.

Per effettuare la codifica bisogna tenere conto di due casi:

- 1. Se il numero da rappresentare è positivo, la codifica è la normale conversione in base due.
- 2. Se il numero da rappresentare è *negativo*, si effettua la codifica binaria di tale numero in **valore assoluto**, la si **complementa** e si **aggiunge 1**.

In questo modo si elimina anche il problema della duplice rappresentazione dello zero.

Operazioni in CA2

Addizione

L'operazione di addizione in CA2 funziona essenzialmente come l'operazione binaria, bisogna solo tenere in consiedrazione che eventuali carry generati dagli MSB influenzerebbero il segno e perciò vengono scartati.

▼ Esempio di addizione [+3 + (-8)] 00000011 + 11111000 = 11111011 \rightarrow -5

Sottrazione

L'operazione di sottrazione invece viene gestita come una somma tra il minuendo e il CA2 del sottraendo.

Shift

Si può individuare un'ulteriore operazione, denominata **shift**, e consiste nel **far scorrere** la sequenza di bit in una direzione. Per questo, si divide in due sotto operazioni:

▼ Shift left

Equivale a moltiplicare per la base l'intero numero.

▼ Shift right

Equivlae a dividere per la base l'interno numero.

✓ Eccesso 128

x+128