Submit your complete solution via MyCourses by Monday Nov 9, 23.59.

Exercise 1

The boom supports the two vertical loads. Neglect the size of the collars at D and B and the thickness of the boom, and compute the horizontal and vertical components of force at the pin A and the force in cable CB. Set $F_1=800$ N and $F_2=350$ N.

Answer: $A_x = 625$ N; $A_y = 681$ N; $F_{CB} = 782$ N.

Exercise 2Determine the reactions at the supports.

Exercise 3

Determine the tension in each cable and the components of reaction at D needed to support the load.

Exercise 4

Determine the force in each member of the truss and state if the members are in tension or compression. Set $P_1=8~{\rm kN}$ and $P_2=12~{\rm kN}$.

Answer: $F_{DE}=13.4$ kN (T); $F_{CB}=F_{DC}=6.0$ kN (C); $F_{CE}=0$; $F_{EB}=17.0$ kN (C); $F_{EF}=18.0$ kN (T); $F_{BA}=18.0$ kN (C); $F_{BF}=20.0$ kN (T); $F_{FA}=22.4$ kN (C); $F_{FG}=28.0$ kN (T).

Exercise 5

The Howe truss is subjected to the loading shown here. Determine the force in members GF, CD, and GC, and state if the members are in tension or compression.

