| Wydział                           | Dzień                 | poniedziałek $17^{15} - 19^{30}$ | Nr zespołu    |
|-----------------------------------|-----------------------|----------------------------------|---------------|
| Matematyki i Nauk Informatycznych | Data                  |                                  | 18            |
| Nazwisko i Imię:                  | Ocena z przygotowania | Ocena ze sprawozdania            | Ocena Końcowa |
| 1. Jasiński Bartosz               |                       |                                  |               |
| 2. Sadłocha Adrian                |                       |                                  |               |
| 3. Wódkiewicz Andrzej             |                       |                                  |               |
| Prowadzący                        |                       | Podpis prowadzącego              |               |
|                                   |                       |                                  |               |
|                                   |                       |                                  |               |

# Sprawozdanie nr 5

## 1. Opis ćwiczenia

Ćwiczenie złożone było z następujących części:

- 1. Badanie prawa Malusa
- 2. Badanie prawa Snella
- 3. Wyznaczenie kąta granicznego
- 4. Wyznaczenie kata Brewstera

### 1.1. Wstęp teoretyczny

**Polaryzacja fali** to właściwość fali poprzecznej (m.in. elektromagnetycznej), polegająca na uporządkowaniu relacji między kierunkiem oscylacji zaburzenia a kierunkiem rozchodzenia się fali. Wyróżniamy m.in. **polaryzację liniową**, przy której oscylacje fali zachodzą tylko w jednej płaszczyźnie, zawierającej kierunek rozchodzenia się fali

**Prawo Malusa** głosi, że gdy idealny polaryzator jest umiejscowiony na drodze spolaryzowanej wiązki światła, natężenie światła I przechodzące przez ten polaryzator jest równe:

$$I = I_0 \cos^2 \theta$$

gdzie  $I_0$  to natężenie początkowe, a  $\theta$  to kąt między kierunkiem polaryzacji światła a osią polaryzatora.

**Prawo Snella** głosi, że stosunek sinusów kątów padania i załamania jest wprost proporcjonalny do stosunku prędkości fazowych w tych ośrodkach oraz odwrotnie proporcjonalny do stosunku współczynników załamania tych ośrodków:

$$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

Kąt graniczny jest to maksymalny kąt, pod jakim światło może padać na granicę danych ośrodków, aby wciąż ulec załamaniu. Występuje on tylko w przypadku padania światła z ośrodka o większym współczynniku załamania do ośrodka o mniejszym współczynniku. Podstawiając do wzoru Snella maksymalny kąt załamania o mierze 90° otrzymujemy:

$$\begin{aligned} \frac{\sin \alpha_{gr}}{\sin 90^{\circ}} &= \frac{n_2}{n_1} \\ \alpha_{gr} &= \arcsin \left(\frac{n_2}{n_1}\right) \end{aligned}$$

Kąt Brewstera jest to kąt padania, przy którym wiązka światła odbitego jest całkowicie spolaryzowana liniowo. Zjawisko to zachodzi w przypadku, gdy promień odbity i załamany tworzą kąt prosty. Oscylacje wektora elektrycznego odbywają się zawsze prostopadle do kierunku ruchu fali – fala nie może poruszać się w kierunku własnych drgań. Kierunek ruchu światła odbitego jest prostopadły do kierunku ruchu światła załamanego. Dlatego światło odbite nie może zawierać światła o drganiach w płaszczyźnie odbicia, ponieważ są one równoległe do kierunku ruchu światła załamanego.

Mamy więc:

$$\alpha + \beta = 90^{\circ}$$

Z prawa Snella:

$$\frac{\sin \alpha_B}{\sin \beta} = \frac{n_2}{n_1}$$

Ponieważ kat padania = kat odbicia:

$$\frac{\sin \alpha_B}{\sin(90^\circ - \alpha_B)} = \frac{n_2}{n_1}$$

$$\frac{\sin \alpha_B}{\cos(\alpha_B)} = \frac{n_2}{n_1}$$

$$\operatorname{tg} \alpha_B = \frac{n_2}{n_1}$$

$$\alpha_B = \operatorname{arctg}\left(\frac{n_2}{n_1}\right)$$

#### 1.2. Układ pomiarowy

Układ pomiarowy składał się z 2 polaryzatorów (nazywanych dalej *polaryzatorem* i *analizato*rem), lasera, fotodetektora z amperomierzem, stolika goniometrycznego oraz płytki z pleksiglasu o przekroju półkola w płaszczyźnie poziomej.

## 2. Pomiary i obliczenia

#### 2.1. Badanie prawa Malusa

Przy pomocy obu polaryzatorów oraz fotodetektora została zmierzona wartość natężenia światła spolaryzowanego. Wpierw odnaleziony został taki kąt obrotu analizatora, przy którym mierzona wartość natężenia światła była maksymalna ( $\alpha_0 = 176^{\circ}$ ). Następnie, siedmiokrotnie dokonano obrotu analizatora o 15° i pomiaru wartości natężenia. Wyniki zostały przedstawione w tablicy 1. Na rysunku 1 przedstawione zostały 2 próby jak najlepszego dopasowania wykresu funkcji cos² uwzględniając wszystkie niepewności standardowe, przy założeniach:

- $\bullet$  kąt  $\alpha_0$  jest kątem, dla którego natężenie jest maksymalne kolor czerwony
- kąty obrotu analizatora zostały odczytane z przesunięciem 10°, pomiar k=1 jest błędem grubym, a kąt  $\alpha_0$  nie jest kątem maksymalnego natężenia kolor zielony

Biorąc pod uwagę trudności podczas przeprowadzania ćwiczenia, pomimo większej ilości założeń prawdziwy zdaje się być przypadek drugi (kolor zielony na wykresie).

| k | $\alpha_k$ (°) | $I~(\mu A)$ | $u_I \; (\mu \mathbf{A})$ |
|---|----------------|-------------|---------------------------|
| 0 | 176            | 260.0       | 3.662877                  |
| 1 | 161            | 240.0       | 3.662877                  |
| 2 | 146            | 225.0       | 3.662877                  |
| 3 | 131            | 160.0       | 3.662877                  |
| 4 | 116            | 94.0        | 1.414214                  |
| 5 | 101            | 32.0        | 1.414214                  |
| 6 | 86             | 2.2         | 0.036629                  |
| 7 | 71             | 13.0        | 0.366288                  |
|   |                |             |                           |

Tabela 1: Pomiary natężenia światła spolaryzowanego

Wykres funkcji  $266 \cdot \cos^2(\alpha + 9)$  (gdzie argument funkcji cosinus:  $(\alpha + 9)$  jest podany w stopniach) zdaje się dobrze odzwierciedlać uzyskane wyniki pomiarów, potwierdzając tym samym, że natężenie światła spolaryzowanego liniowo jest proporcjonalne do kwadratu cosinusa kąta między płaszczyzną polaryzacji światła padającego a płaszczyzną polaryzacji światła po przejściu przez polaryzator.

#### 2.2. Badanie prawa Snella

Następnie, wykonano pomiary prowadzące do wyznaczenia współczynnika załamania światła dla płytki z pleksiglasu. W tym celu zmierzono kąty padania światła, jak i kąty odbicia. Wyniki zostały przedstawione w tabeli 2. Niepewność pomiaru typu B wyniosła 1.5°, stąd standardowa niepewność pomiarowa, podana w radianach jest równa  $u_x = \frac{1.5 \cdot 2\pi}{360 \cdot \sqrt{3}} = 0.015115$ . Korzystając z metody propagacji błędu dla pomiarów pośrednich, jakimi są sinusy mierzonych kątów, otrzymujemy, że:

$$u_{\sin(x)} = \sqrt{\left(\frac{\partial \sin(x)}{\partial x}u_x\right)^2} = |\cos(x)u_x|$$

Pomiary wraz z niepewnościami na iksach i igrekach zostały naniesione na wykresie (rysunek 2). Następnie, korzystając z metody najmniejszych kwadratów, zostało odnalezione najlepsze dopasowanie funkcji liniowej, przedstawione na wykresie kolorem czerwonym. Skorzystano z po-



Rysunek 1: Prawo Malusa

niższych wzorów:

$$a = \frac{n\Sigma XY - \Sigma X\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2}$$

$$b = \frac{1}{n} (\Sigma Y - a\Sigma X)$$

$$u(a) = \sqrt{\frac{n}{n-2} \frac{\Sigma Y^2 - a\Sigma XY - b\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2}}$$

$$u(b) = u(a) \cdot \sqrt{\frac{\Sigma X^2}{n}}$$

gdzie  $X = \sin \alpha$ ,  $Y = \sin \beta$ , n = 7.

Współczynnik nachylenia prostej wyniósł a=0.66688, a wyraz wolny: b=0.00415. Niepewności uzyskanych wartości to odpowiednio:  $u_a=0.00591,\ u_b=0.00411$ 

| l.p. | α (°) | β (°) | $\alpha$ (rad) | $\beta$ (rad) | $\sin(\alpha)$ | $\sin(\beta)$ | $u_{\sin(\alpha)}$ | $u_{\sin(\beta)}$ |
|------|-------|-------|----------------|---------------|----------------|---------------|--------------------|-------------------|
| 0    | 5     | 3.5   | 0.087266       | 0.061087      | 0.087156       | 0.061049      | 0.015057           | 0.015087          |
| 1    | 15    | 10.5  | 0.261799       | 0.183260      | 0.258819       | 0.182236      | 0.014600           | 0.014862          |
| 2    | 30    | 19.5  | 0.523599       | 0.340339      | 0.500000       | 0.333807      | 0.013090           | 0.014248          |
| 3    | 45    | 28.0  | 0.785398       | 0.488692      | 0.707107       | 0.469472      | 0.010688           | 0.013346          |
| $_4$ | 60    | 36.0  | 1.047198       | 0.628319      | 0.866025       | 0.587785      | 0.007557           | 0.012228          |
| 5    | 70    | 39.0  | 1.221730       | 0.680678      | 0.939693       | 0.629320      | 0.005170           | 0.011747          |
| 6    | 75    | 40.5  | 1.308997       | 0.706858      | 0.965926       | 0.649448      | 0.003912           | 0.011494          |

Tabela 2: Pomiary zależności kąta odbicia  $(\beta)$  od kąta padania  $(\alpha)$ 

Zatem, korzystając z prawa Snella:

$$\begin{split} \frac{n_2}{n_1} &= \frac{\sin \alpha}{\sin \beta} \\ \frac{n_2}{n_1} &= \frac{\sin \alpha}{a \cdot \sin \alpha + b} \end{split}$$

Zakładając, że  $n_1 \approx 1, \ b \approx 0$  otrzymujemy:

$$n_2 = \frac{1}{a}$$

Stąd:  $n_2 = \frac{1}{0.66688} \approx 1.49952$ 

Niepewność standardową otrzymanego wyniku otrzymamy ponownie ze wzoru na propagację błędu:

$$u(n_2) = \sqrt{\left(\frac{\partial n_2(a)}{\partial a}u_a\right)^2} = \left|\frac{1}{a^2}u_a\right| = \frac{1}{0.66688^2} \cdot 0.00591 \approx 0.01329$$

Zatem uwzględniając niepewność standardową, współczynnik załamania światła płytki wykorzystanej w ćwiczeniu (obliczony przy użyciu metody wykorzystującej prawo Snella) wynosi

$$n_2 = 1.500(13)$$

### 2.3. Wyznaczenie kąta granicznego

Kolejnym ćwiczeniem było wyznaczenie kąta granicznego zadanej przezroczystej płytki. Obserwując załamaną wiązkę światła, przechodzącą przez granicę "szkło/powietrze", szukany był kąt  $\alpha_{gr}$ , powyżej którego wiązka światła zanikała. Wartość tego kąta została wyznaczona eksperymentalnie na:

$$\alpha_{gr} = 43^{\circ} \approx 0.7504916 \text{ rad}$$

Standardowa niepewność pomiaru została oszacowana na

$$u(\alpha_{gr}) = \sqrt{\left(\frac{0.0349}{\sqrt{3}}\right)^2 + \left(\frac{0.0175}{\sqrt{3}}\right)^2} \approx 0.02254 \text{ rad}$$

Ponieważ z definicji kąta granicznego mamy:

$$\frac{\sin \alpha_{gr}}{\sin 90^{\circ}} = \frac{n_{powietrze}}{n_{plytka}},$$

a zakładamy, że

$$n_{powietrze}=1,\\$$

stąd:

$$n_{plytka} = \frac{1}{\sin \alpha_{ar}} \approx 1.4662792$$

Propagacja niepewności:

$$u(n_{plytka}) = \sqrt{\left(\frac{\partial n_{plytka}}{\partial \alpha_{gr}} u(\alpha_{gr})\right)^2} = \left|\frac{2\cos(\alpha_{gr})}{\cos(2\alpha_{gr}) - 1} u(\alpha_{gr})\right| \approx 0.03544$$

Zatem współczynnik załamania światła obliczony za pomocą wyznaczenia kąta granicznego wynosi:

$$n_{plytka} = 1.466(35)$$

## 2.4. Wyznaczenie kąta Brewstera

Ostatnim ćwiczeniem było wyznaczenie kąta Brewstera. W tym celu szukano takiego kąta padania światła, dla którego wiązka odbita będzie tworzyła wraz z wiązką załamaną kąt 90°. Kąt ten został wyznaczony eksperymentalnie na ...? stopni, a niepewność standardowa została oszacowana na

$$u(\alpha_B) = \sqrt{\left(\frac{0.0175}{\sqrt{3}}\right)^2 + \left(\frac{0.0175}{\sqrt{3}}\right)^2 + \left(\frac{0.009}{\sqrt{3}}\right)^2} \approx 0.015 \text{ rad}$$

Korzystając z zależności:

$$tg\alpha_B = \frac{n_{plytka}}{n_{powietrze}}$$

i ponownie stosując podstawienie  $n_{powietrze} = 1$ , otrzymujemy:

$$n_{plytka} = \text{tg...} \approx ...$$

Propagacja niepewności:

$$u(n_{plytka}) = \sqrt{\left(\frac{\partial n_{plytka}}{\partial \alpha_B} u(\alpha_B)\right)^2} = \left|\frac{1}{\cos^2 \alpha_B} u(\alpha_B)\right| \approx \dots$$

Zatem współczynnik załamania światła obliczony za pomocą wyznaczenia kąta Brewstera wynosi:

$$n_{plytka} = \dots$$

## 2.5. Wnioski



Rysunek 2: Prawo Snella