Tests

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Introduction

- Impossible to determine the most appropriate model specification
- A good fit does not mean a good model
- Formal testing is necessary, but not sufficient
- No clear-cut rules can be given
- Subjective judgments of the analyst
- Good modeling = good judgment + good analysis

Introduction

- Informal tests
- Asymptotic t-test, Confidence interval
- Likelihood ratio tests
 - Test of generic attributes
 - Test of taste variations
 - Test of heteroscedasticity
- Goodness-of-fit measures
- Non nested hypotheses, Nonlinear specifications
- Prediction tests
 - Outlier analysis
 - Market segmentation tests

Informal tests

Sign of the coefficient

Example: Netherland Mode Choice Case

					Robust	Robust
	Name	Value	Std err	t-test	Std err	t-test
•	ASC_CAR	-0.80	0.27	-2.95	0.28	-2.90
	BETA_COST	-0.05	0.01	-4.85	0.01	-4.67
	BETA_TIME	-1.33	0.34	-3.86	0.35	-3.75

Informal tests

Value of trade-offs

- How much are we ready to pay for an improvement of the level-of-service?
- Example: reduction of travel time
- The increase in cost must be exactly compensated by the reduction of travel time

$$\beta_C(C + \Delta C) + \beta_T(T - \Delta T) + \dots = \beta_C C + \beta_T T + \dots$$

Therefore,

$$\frac{\Delta C}{\Delta T} = \frac{\beta_T}{\beta_C}$$

Informal tests

Value of trade-offs

In general:

• Trade-off: $\frac{\partial V/\partial x}{\partial V/\partial x_C}$

• Units: $\frac{1/\text{Hour}}{1/\text{Guilder}} = \frac{\text{Guilder}}{\text{Hour}}$

Name	Value	Guilders	Euros	CHF	
ASC_CAR	-0.80	15.97	7.25	11.21	
BETA_COST	-0.05				
BETA_TIME	-1.33	26.55	12.05	18.64	(/Hour)

Is the estimated parameter $\hat{\theta}$ significantly different from a given value θ^* ?

- $\bullet \ H_0: \hat{\theta} = \theta^*$
- $H_1: \hat{\theta} \neq \theta^*$

Under H_0 , if $\hat{\theta}$ is normally distributed with known variance σ^2

$$\frac{\hat{\theta} - \theta^*}{\sigma} \sim N(0, 1).$$

Therefore

$$P(-1.96 \le \frac{\hat{\theta} - \theta^*}{\sigma} \le 1.96) = 0.95 = 1 - 0.05$$

$$P(-1.96 \le \frac{\hat{\theta} - \theta^*}{\sigma} \le 1.96) = 0.95 = 1 - 0.05$$

 H_0 can be rejected at the 5% level if

$$\left| \frac{\hat{\theta} - \theta^*}{\sigma} \right| \ge 1.96.$$

- If $\hat{\theta}$ asymptotically normal
- If variance unknown
- ullet A t test should be used with n degrees of freedom.
- When $n \ge 30$, the Student t distribution is well approximated by a N(0,1)

Estimator of the asymptotic variance for ML

Cramer-Rao Bound with the estimated parameters

$$\hat{V}_{CR} = -\nabla^2 \ln L(\hat{\theta})^{-1}$$

• Berndt, Hall, Hall & Haussman (BHHH) estimator

$$\hat{V}_{BHHH} = \left(\sum_{i=1}^{n} \hat{g}_i \hat{g}_i^T\right)^{-1}$$

where

$$\hat{g}_i = \frac{\partial \ln f_X(x_i; \theta)}{\partial \theta}$$

Estimator of the asymptotic variance for ML

Robust estimator:

$$\hat{V}_{CR}\hat{V}_{BHHH}^{-1}\hat{V}_{CR}$$

- The three are asymptotically equivalent
- This one is more robust when the model is misspecified
- Biogeme uses Cramer-Rao and the robust estimators

Example: Netherland Mode Choice

				Robust	Robust
Name	Value	Std err	t-test	Std err	t-test
ASC_CAR	-0.80	0.27	-2.95	0.28	-2.90
BETA_COST	-0.05	0.01	-4.85	0.01	-4.67
BETA_TIME	-1.33	0.34	-3.86	0.35	-3.75

Warning with the ASCs (ex: residential telephone)

		Robust		Robust
Name	Value	t-test	Value	t-test
ASC_1			-1.22	-1.52
ASC_2	0.75	4.82	-0.48	-0.58
ASC_3	0.90	1.33	-0.32	-1.48
ASC_4	0.66	0.66	-0.57	-0.81
ASC_5	1.23	1.52		
B1_FCOST	-1.71	-6.25	-1.71	-6.25
B2_MCOST	-2.17	-8.90	-2.17	-8.90

Comparing two coefficients:

 $H_0: \beta_1 = \beta_2$. The t statistic is given by

$$\frac{\beta_1 - \beta_2}{\sqrt{\operatorname{var}(\beta_1 - \beta_2)}}$$

$$var(\beta_1 - \beta_2) = var(\beta_1) + var(\beta_2) - 2 cov(\beta_1, \beta_2)$$

Coefficient1	Coefficient2	Rob. cov.	Rob. corr.	Rob. t-test
ASC_2	ASC_4	0.08	0.14	0.09
ASC_2	ASC_3	0.12	0.66	-0.22
ASC_3	ASC_4	0.03	0.21	0.36
ASC_1	ASC_4	0.08	0.14	-0.66
ASC_1	ASC_3	0.12	0.68	-1.33
B1_FCOST	B2_MCOST	0.02	0.36	1.56
ASC_1	ASC_2	0.65	0.98	-4.82

Confidence intervals

$$\Pr\left(-t_{\alpha/2} \le \frac{\hat{\beta}_k - \beta_k}{\sqrt{\operatorname{var}(\hat{\beta}_k)}} \le t_{\alpha/2}\right) = 1 - \alpha$$

or, equivalently,

$$\Pr\left(\hat{\beta}_k - t_{\alpha/2}\sqrt{\operatorname{var}(\hat{\beta}_k)} \le \beta_k \le \hat{\beta}_k + t_{\alpha/2}\sqrt{\operatorname{var}(\hat{\beta}_k)}\right) = 1 - \alpha$$

for 95%, $\alpha = 0.05$, and $t_{0.025} = 1.96$.

Confidence intervals

When more than one parameter is considered, the quadratic form

$$(\hat{\beta} - \beta)^T \Sigma^{-1} (\hat{\beta} - \beta) \sim \chi_K^2$$

where

- $oldsymbol{eta} \in \mathbb{R}^K$ is the vector of true parameters,
- $oldsymbol{\hat{eta}} \in \mathbb{R}^K$ is the vector of estimates, and
- $\Sigma \in \mathbb{R}^{K \times K}$ is the covariance matrix.

$$\Pr\left((\hat{\beta} - \beta)^T \Sigma^{-1} (\hat{\beta} - \beta) \le \chi_{K,\alpha}^2\right) = 1 - \alpha.$$

In two dimensions, the "confidence interval" is an ellipse.

- Used for "nested" hypotheses
- One model is a special case of the other
- H_0 : the two models are equivalent

$$-2(\mathcal{L}(\hat{\beta}_R) - \mathcal{L}(\hat{\beta}_U)) \sim \chi^2_{(K_U - K_R)}$$

- $\mathcal{L}(\hat{\beta}_R)$ is the loglikelihood of the restricted model
- $\mathcal{L}(\hat{\beta}_U)$ is the loglikelihood of the unrestricted model

Example: Netherland Mode Choice Case. 3 models:

- Null model (equal probability): K = 0, $\mathcal{L} = -158.04$
- Constants only (reproduces the sample shares): K = J 1 = 1, $\mathcal{L} = -148.35$
- Model with cost and time: K = 3, $\mathcal{L} = -123.13$

$-2(\mathcal{L}(\beta_R) - \mathcal{L}(\beta_U))$			Unrestricted model			
			1		3	
			-148.35	-123	.13	
Restricted	0	-158.04	19.38	69	.81	
model	1	-148.35		50	.43	
				χ^2	1	3
				0	3.84	7.81
				1		5.99

Test of generic attributes (ex: residential telephone)

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C	
BM	1	0	0	0	ln(cost(BM))	•
SM	0	1	0	0	$\ln(\text{cost}(\text{SM}))$	
LF	0	0	1	0	$\ln(cost(LF))$	
EF	0	0	0	1	$\ln(cost(EF))$	
MF	0	0	0	0	$\ln(cost(MF))$	
	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_CM	BETA_CF
BM	ASC_BM	ASC_SM 0	ASC_LF	ASC_EF	BETA_CM ln(cost(BM))	BETA_CF 0
BM SM	<u> </u>				_	
	1		0	0	ln(cost(BM))	0
SM	1 0	0	0	0	ln(cost(BM))	0

- Loglikelihood of the restricted model: -477.557
- Loglikelihood of the unrestricted model: -476.608
- Test: 1.898
- Threshold 95% χ_1^2 : 3.841
- Cannot reject that the two models are equivalent
- The simplest model is preferred

Note about the *t*-test: If we test BETA_CM=BETA_CF, we obtain 1.56, which is below the 1.96 threshold

Test of taste variations (ex: residential telephone)

- Estimate a different model for each of the 5 income groups
- Pool the results together. $K = 6 \times 5 = 30$.
- Estimate a model for the whole sample. K=6
- The test is performed with 24 degrees of freedom

		data	loglike
Income group	1	115	-124.67
Income group	2	117	-120.86
Income group	3	104	-114.98
Income group	4	54	-59.23
Income group	5	44	-47.80
Pooled model		434	-467.55
Original model		434	-476.61
Test			18.11
Threshold	χ^2_{24}		36.42

- We cannot reject the hypothesis that the two models are equivalent
- There is no sign of segmentation per income
- The simplest model is preferred

Test of heteroscedasticity (ex: residential telephone) Model 1:

$$egin{array}{lll} V_{
m BM} &=& eta_1 &+& eta_5 \ln({
m cost}_{
m BM}) \ V_{
m SM} &=& eta_2 &+& eta_5 \ln({
m cost}_{
m SM}) \ V_{
m LF} &=& eta_3 &+& eta_6 \ln({
m cost}_{
m LF}) \ V_{
m EF} &=& eta_4 &+& eta_6 \ln({
m cost}_{
m EF}) \ V_{
m MF} &=& eta_6 \ln({
m cost}_{
m MF}) \end{array}$$

Model 2: scale for perimeter area and non-metropolitan area


```
\mathcal{L}(\text{model1}) = -476.608 \quad K = 6
\mathcal{L}(\text{model2}) = -464.068 \quad K = 8
Test = 25.08
Threshold 95% = 5.99
```

- We reject the hypothesis that the models are equivalent
- Homoscedasticity across individuals is rejected

Non-nested hypotheses

- Need to compare two different models
- If none of the models is a restricted version of the other, we talk about non-nested models
- The likelihood ratio test cannot be used
- Two possible tests:
 - Composite model
 - Davidson-MacKinnon J-test

Composite model

- We want to test model 1 against model 2
- We generate a composite model C such that both models 1 and 2 are restricted cases of model C.
- We test 1 against C using the likelihood ratio test
- We test 2 against C using the likelihood ratio test
- Possible outcomes:
 - Only one of the two models is rejected. Keep the other.
 - Both models are rejected. Better models should be developed.
 - Both models are accepted. Use $\bar{\rho}^2$ to choose.

Goodness-of-fit

$$\rho^2 = 1 - \frac{\mathcal{L}(\hat{\beta})}{\mathcal{L}(0)}$$

- $\rho^2 = 0$: trivial model, equal probabilities
- $\rho^2 = 1$: perfect fit.

Warning: $\mathcal{L}(\hat{\beta})$ is a biased estimator of the expectation over all samples. Use $\mathcal{L}(\hat{\beta}) - K$ instead.

$$\bar{\rho}^2 = 1 - \frac{\mathcal{L}(\hat{\beta}) - K}{\mathcal{L}(0)}$$

Composite model

Example: residential telephone

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C
BM	1	0	0	0	$\ln(\text{cost}(\text{BM}))$
SM	0	1	0	0	$\ln(\text{cost}(\text{SM}))$
LF	0	0	1	0	$\ln(\text{cost}(LF))$
EF	0	0	0	1	$\ln(cost(EF))$
MF	0	0	0	0	$\ln(cost(MF))$
	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C
BM	1	0	0	0	cost(BM)
SM	0	1	0	0	cost(SM)
LF	0	0	1	0	cost(LF)
EF	0	0	0	1	cost(EF)
MF	0	0	0	0	cost(MF)

Composite model

Composite model

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_CL	BETA_C
BM	1	0	0	0	$\ln(cost(BM))$	cost(BM)
SM	0	1	0	0	$\ln(\text{cost}(\text{SM}))$	cost(SM)
LF	0	0	1	0	$\ln(cost(LF))$	cost(LF)
EF	0	0	0	1	$\ln(cost(EF))$	cost(EF)
MF	0	0	0	0	$\ln(cost(MF))$	cost(MF)

Model	$\mathcal L$	K	test	conclusion
Composite	-476.80	6		
log	-477.56	5	1.51	No reject
linear	-482.72	5	11.84	Reject

Model with log is preferred

$$M_0: U = f(X,\beta) + \varepsilon_0$$

 $M_1: U = g(Z,\gamma) + \varepsilon_1$

- Estimate M_1 to obtain $\hat{\gamma}$
- Consider the model obtained by convex combination

$$U = (1 - \alpha)f(X, \beta) + \alpha g(Z, \hat{\gamma}) + \varepsilon_0$$

- Note that α and β are estimated, not γ
- If M_0 is true, the true value of α is zero
- Perform a t-test to test α against 0.

Example: residential telephone

- M_0 model with log(cost)
- M_1 model with cost

Estimate M_1

Name	Value	Robust Std err	Robust t-test
ASC_1	-0.53	0.15	-3.61
ASC_3	0.89	0.15	5.87
ASC_4	0.76	0.71	1.07
ASC_5	1.83	0.39	4.67
B1_COST	-0.15	0.02	-6.28


```
[Expressions]
ASCLIN1 = -5.2704884e-01
ASCLIN3 = +8.9308708e-01
ASCLIN4 = +7.5874800e-01
ASCLIN5 = +1.8310079e+00
BETALIN = -1.4908464e-01
UTILLIN1 = ASCLIN1 + BETALIN * cost1
UTILLIN2 =
                     BETALIN * cost2
UTILLIN3 = ASCLIN3 + BETALIN * cost3
UTILLIN4 = ASCLIN4 + BETALIN * cost4
UTILLIN5 = ASCLIN5 + BETALIN * cost5
[Utilities]
                avail1
        BM
                        ALPHA * UTILLIN1
        SM
                avail2
                        ALPHA * UTILLIN2
3
        LF
                avail3
                        ALPHA * UTILLIN3
4
                avail4 ALPHA * UTILLIN4
        EF
                avail5
        MF
                       ALPHA * UTILLIN5
```


[GeneralizedUtilities]

```
1 (1 - ALPHA ) * ( ASC_1 + B1_COST * logcost1 )
2 (1 - ALPHA ) * ( ASC_2 + B1_COST * logcost2 )
3 (1 - ALPHA ) * ( ASC_3 + B1_COST * logcost3 )
4 (1 - ALPHA ) * ( ASC_4 + B1_COST * logcost4 )
5 (1 - ALPHA ) * ( ASC_5 + B1_COST * logcost5 )
```

Name	Value	Robust Std err	Robust t-test
ALPHA	0.23	0.21	1.10
ASC_1	-0.72	0.19	-3.70
ASC_3	1.22	0.22	5.67
ASC_4	1.05	0.93	1.12
ASC_5	1.77	0.38	4.68
B1_COST	-2.07	0.31	-6.73

Conclusion:

- Cannot reject the hypothesis that ALPHA = 0.
- Cannot reject the hypothesis that the log specification is correct

- M_0 model with cost
- M_1 model with log(cost)

Estimate M_1

Name	Value	Robust Std err	Robust t-test
ASC_1	-0.72	0.15	-4.76
ASC_3	1.20	0.16	7.56
ASC_4	1.00	0.70	1.42
ASC_5	1.74	0.27	6.51
B1_COST	-2.03	0.21	-9.55


```
[Expressions]
ASCLOG1 = -7.2124491e-01
ASCLOG3 = +1.2012643e+00
ASCLOG4 = +9.9917468e-01
ASCLOG5 = +1.7364214e+00
COSTLOG = -2.0261980e+00
UTILLOG1 = ASCLOG1 + COSTLOG * logcost1
UTILLOG2 =
                     COSTLOG * logcost2
UTILLOG3 = ASCLOG3 + COSTLOG * logcost3
UTILLOG4 = ASCLOG4 + COSTLOG * logcost4
UTILLOG5 = ASCLOG5 + COSTLOG * logcost5
[Utilities]
                avail1 ALPHA * UTILLOG1
        BM
        SM
                avail2 ALPHA * UTILLOG2
3
                avail3 ALPHA * UTILLOG3
        _{
m LF}
4
                avail4 ALPHA * UTILLOG4
        EF
                avail5 ALPHA * UTILLOG5
        MF
```


[GeneralizedUtilities]

```
1 (1 - ALPHA ) * ( ASC_1 + B1_COST * cost1 )
2 (1 - ALPHA ) * ( ASC_2 + B1_COST * cost2 )
3 (1 - ALPHA ) * ( ASC_3 + B1_COST * cost3 )
4 (1 - ALPHA ) * ( ASC_4 + B1_COST * cost4 )
5 (1 - ALPHA ) * ( ASC_5 + B1_COST * cost5 )
```

Name	Value	Robust Std err	Robust t-test
ALPHA	0.79	0.21	3.70
ASC_1	-0.51	0.69	-0.73
ASC_3	0.95	0.69	1.38
ASC_4	0.91	3.37	0.27
ASC_5	1.96	1.44	1.36
B1_COST	-0.16	0.09	-1.88

Conclusions:

- Reject the hypothesis that ALPHA=0
- Reject the hypothesis that the linear specification is correct

Non linear specification

Three approaches

- Piecewise linear specifications
- Power series expansion
- Box-Cox transforms

- A coefficient may have different values
- For example

$$V_i = \beta_{T1}x_{T1} + \beta_{T2}x_{T2} + \beta_{T3}x_{T3} + \beta_{T4}x_{T4} + \dots$$

where

$$x_{T1} = \begin{cases} t & \text{if } t < 90 \\ 90 & \text{otherwise} \end{cases} \qquad x_{T2} = \begin{cases} 0 & \text{if } t < 90 \\ t - 90 & \text{if } 90 \le t < 180 \\ 90 & \text{otherwise} \end{cases}$$

$$x_{T3} = \begin{cases} 0 & \text{if } t < 180 \\ t - 180 & \text{if } 180 \le t < 270 \\ 90 & \text{otherwise} \end{cases} \qquad x_{T4} = \begin{cases} 0 & \text{if } t < 270 \\ t - 270 & \text{otherwise} \end{cases}$$

Note: coding in Biogeme

$$x_{Ti} = \begin{cases} 0 & \text{if } t < a \\ t - a & \text{if } a \le t < a + b \end{cases}$$
 $x_{Ti} = \max(0, \min(t - a, b))$ $b & \text{otherwise}$

$$x_{T1} = \min(t, 90)$$

 $x_{T2} = \max(0, \min(t - 90, 90))$
 $x_{T3} = \max(0, \min(t - 180, 90))$
 $x_{T4} = \max(0, t - 270)$

Examples:

t	TT1	TT2	TT3	TT4
40	40	0	0	0
100	90	10	0	0
200	90	90	20	0
300	90	90	90	30

Tests - p.45/60

- Perform a likelihood ratio test
- Example: Swissmetro
- Linear model: $\mathcal{L} = -5031.87 \ (K = 12)$
- Piecewise linear model: $\mathcal{L} = -5025 \ (K = 15)$
- Test = -2(-5031.87 + 5025) = 13.74
- Threshold 95% χ_3^2 = 7.81
- Reject the linear model

Power series

$$V_i = \beta_1 T + \beta_2 T^2 + \beta_3 T^3 + \dots$$

- In practice, these terms can be very correlated
- Example: Swissmetro with 2 terms
 - Linear model: $\mathcal{L} = -5031.87 \ (K = 12)$
 - Power series model: $\mathcal{L} = -5031.36 \ (K = 13)$
 - Test = -2(-5031.87 + 5031.36) = 1.02
 - Threshold 95% χ_1^2 = 3.84
 - Cannot reject the linear model

Power series

- Example: Swissmetro with 3 terms
 - Linear model: $\mathcal{L} = -5031.87 \ (K = 12)$
 - Power series model: $\mathcal{L} = -5023.79$ (K = 14)
 - Test = -2(-5031.87 + 5023.79) = 16.16
 - Threshold 95% χ_2^2 = 5.99
 - Reject the linear model

Box-Cox transforms

Box-Cox transforms

$$\beta \frac{x^{\lambda} - 1}{\lambda}, \ x > 0$$

Box-Tukey transforms

$$\beta \frac{(x+\alpha)^{\lambda} - 1}{\lambda}, \ x + \alpha > 0$$

where β , α and λ must be estimated

Box-Cox transforms

Example: Swissmetro

- Linear model: $\mathcal{L} = -5031.87 \ (K = 12)$
- Box-Cox model: $\mathcal{L} = -5029.83 \ (K = 13)$
- Test = -2(-5031.87+5029.83) = 4.08
- Threshold 95% χ_3^2 = 3.84
- Reject the linear model

Comparison

Tests - p.51/60

- Apply the model on the sample
- Examine observations where the predicted probability is the smallest for the observed choice
- Test model sensitivity to outliers, as a small probability has a significant impact on the loglikelihood
- Potential causes of low probability:
 - Coding or measurement error in the data
 - Model misspecification
 - Unexplainable variation in choice behavior

- Coding or measurement error in the data
 - Look for signs of data errors
 - Correct or remove the observation
- Model misspecification
 - Seek clues of missing variables from the observation
 - Keep the observation and improve the model
- Unexplainable variation in choice behavior
 - Keep the observation
 - Avoid overfitting of the model to the data

Example: residential telephone

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C
BM	1	0	0	0	ln(cost(BM))
SM	0	1	0	0	$\ln(cost(SM))$
LF	0	0	1	0	$\ln(cost(LF))$
EF	0	0	0	1	$\ln(cost(EF))$
MF	0	0	0	0	$\ln(\text{cost}(MF))$

- Observation with lowest probability of choice = 3.83%
- Choice: Metro Area Flat
- Costs: BM (5.39), SM (5.78), LF (8.48), EF (n.a.), MF (38.28)
- Area of residence: perimeter (without extended)
- Number of users in the household: 2 (20-29 years)
- Income: 30K-40K
- Conclusion: the model can be improved

- Compared predicted vs. observed shares per segment
- Let N_j be the set of samples individuals in segment j
- Observed share for alt. i and segment j

$$S(i,j) = \sum_{n \in N_j} y_{in}/N$$

Predicted share for alt. i and segment j

$$\hat{S}(i,j) = \sum_{n \in N_j} P_n(i)/N$$

Example: residential telephone

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C
BM	1	0	0	0	ln(cost(BM))
SM	0	1	0	0	$\ln(cost(SM))$
LF	0	0	1	0	$\ln(cost(LF))$
EF	0	0	0	1	$\ln(cost(EF))$
MF	0	0	0	0	$\ln(cost(MF))$

• Two segments: up to 2 users, more than 2 users

Predicted					Observed		
	<=2	> 2	Total		<=2	> 2	Total
1	57	16	73	1	61	12	73
2	92	31	123	2	102	21	123
3	120	58	178	3	108	70	178
4	2	1	3	4	3	0	3
5	33	24	57	5	29	28	57
	303	131	434		303	131	434

Error	<=2	> 2
1	-7.0%	35.8%
2	-10.2%	49.5%
3	11.2%	-17.3%
4	-37.6%	∞
5	12.9%	-13.4%

Note:

- With a full set of constants: $\sum_{n \in N_j} y_{in} = \sum_{n \in N_j} P_n(i)$
- Do not saturate the model with constants

