

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 7: BJTs

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Dr. Allen Robinson Academic Professional School of Electrical and Computer Engineering

Bipolar Junction Transistor Introduction

Introduce the bipolar junction transistor

Previous Lesson

Examined common source amplifier

Lesson Objectives

Introduce bipolar junction transistor

NPN BJT Structure

Symbol and Packages

Regions of Operation

Region	Collector-Base Junction	Base-Emitter Junction
Cutoff	Reverse	Reverse
Saturation	Forward	Forward
Active	Reverse	Forward
Reverse Active	Forward	Reverse

Summary

- Introduced bipolar junction transistor (BJT)
- Examined BJT symbol, structure, and uses

Next Lesson

BJT terminal characteristics

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

BJT Terminal Characteristics

Examine bipolar junction transistor terminal characteristics

Previous Lesson

Introduced the Bipolar Junction Transistor (BJT)

Lesson Objectives

Examine BJT terminal characteristics

Characteristic Curves

Characteristic Curves

Regions of Operation

Cutoff Region

$$V_{BE} \lesssim 0.5 \,\mathrm{V}$$

$$I_B = I_C = I_E = 0$$

Active Region

$$V_{BE} pprox 0.7\,\mathrm{V}$$

$$V_{CE} \gtrsim 0.2 \, \mathrm{V}$$

$$I_B > 0$$

$$I_C = \beta I_B = \alpha I_E$$

Saturation Region

$$V_{BE} \approx 0.7 \, \mathrm{V}$$

$$V_{CE}pprox0.2\,\mathrm{V}$$

$$I_B > 0$$

$$I_C < \beta I_B$$

 β = Base to collector current gain. Typical value = 100.

 α = Emitter to collector current gain. Typical value = 0.99.

Active Region

$$I_C = I_S e^{V_{BE}/V_T}$$
 $I_C = \beta I_B = \alpha I_E$

$$\beta = \beta_0 \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$I_S = I_{S0} \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$V_T = \frac{kT}{q} = 0.0259 \,\text{V} \quad (T = 300 \,\text{K})$$

 I_{SO} = Zero bias saturation current. Typical value = 1E-15 A.

 β_0 = Zero bias base to collector current gain.

Typical value = 100.

 α = Emitter to collector current gain = $\beta/(\beta+1)$.

Typical value = 0.99.

 V_A = Early Voltage. Typical value = 150.

Summary

Examined BJT terminal characteristics

Next Lesson

BJT parameters

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Bipolar Junction Transistor Parameters

Dr. Allen Robinson
Academic Professional
School of Electrical and
Computer Engineering

Examine bipolar junction transistor parameters

Previous Lesson

Introduced bipolar junction transistor

Lesson Objective

Relate BJT parameters to characteristic curves

Active Region

$$I_C = I_S e^{V_{BE}/V_T}$$

$$I_C = \beta I_B = \alpha I_E$$

$$\beta = \beta_0 \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$I_S = I_{S0} \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$V_T = \frac{kT}{q} = 0.0259 \,\mathrm{V}$$

$$(T = 300 \, \text{K})$$

Changing Early Voltage

Changing Beta

Changing Saturation Current I_S

Summary

Determined how BJT parameters affect characteristics

Next Lesson

BJT Curve Tracer Measurements

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Bipolar Junction Transistor Curve Tracer

Dr. Allen Robinson
Academic Professional
School of Electrical and
Computer Engineering

Determine BJT parameters from curve tracer measurements

Previous Lesson

Introduced bipolar junction transistor parameters

Lesson Objectives

- Introduce the curve tracer
- Solve for parameters from measured data

Curve Tracer

Measured Output Characteristics

$$V_A = \frac{I_C}{m} - V_{CE} \qquad \beta_0 = \frac{I_C/I_B}{1 + \frac{V_{CE}}{V_A}}$$

Measured Transfer Characteristics

$$I_C = I_S e^{V_{BE}/V_T}$$
 $I_{S0} = I_C \frac{e^{-V_{BE}/V_T}}{1 + \frac{V_{CE}}{V_A}}$

Summary

Determined BJT parameters from measured data

Next Lesson

BJT Switch

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Bipolar Junction Transistor Switch

Introduce bipolar junction transistor switch

Previous Lesson

Examined BJT parameters

Lesson Objectives

Introduce BJT switch

Schematic

I_C versus V_{in}

V_{CE} versus V_{in}

Example LED Load

Summary

- Introduced BJT switch
- Examined BJT switch characteristics

Next Lesson

BJT Common Emitter Amplifier

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

BJT Common Emitter Amplifier

Introduce bipolar junction transistor common emitter amplifier

Previous Lesson

Examined BJT switch

Lesson Objectives

- Introduce BJT common emitter (CE) amplifier
- Examine biasing of the CE amplifier

Common Emitter Circuit Schematic

Regions of Operation

Region	Collector- Base Junction	Base-Emitter Junction
Cutoff	Reverse	Reverse
Saturation	Forward	Forward
Active	Reverse	Forward
Reverse Active	Forward	Reverse

DC Bias Circuit

Bias Values

Summary

- Introduced BJT CE Amplifier
- Solved CE biasing example

Next Lesson

BJT Common Emitter Amplifier AC Analysis

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

BJT Common Emitter Amplifier AC Behavior

Dr. Allen Robinson
Academic Professional
School of Electrical and
Computer Engineering

Examine ac behavior of CE amplifier

Previous Lesson

- Introduced CE amplifier
- Examined dc biasing of the amplifier

Lesson Objectives

Examine ac behavior of the CE amplifier

Common Emitter Circuit Schematic

Amplifier Model

gm = transconductance

I-V Characteristic

i = gm*vin

CE Amplifier

I-V Characteristics

$$g_m = I_C/V_T$$

$$V_T = 0.0259V$$

Gain Equation

AC Analysis

Summary

Examined ac behavior of the CE amplifier