Jacob C. Botimer

1073 Barton Dr. Apt #204 Ann Arbor, MI 48105 (989)-460-7827

botimerj@umich.edu

Education

University of Michigan

Ann Arbor, MI

Bachelor of Science in Electrical Engineering

September 2014 - December 2016

GPA: 3.88/4.0

Relevant Courses: Integrated Microsystems, Analog Circuit Design, Digital Circuit Design, Digital Logic Design

Employment and Experience

University of Michigan

Ann Arbor, MI

Instructional Aide - ENGR 100

August 2015-Present

- Led a lab section of twenty students that conducted experiments on various electrical engineering principals
- Instructed students in lab and during office hours on course material and other related topics
- Developed the lab procedure for analyzing solar cell characteristics

Texas Instruments

Dallas, TX

Product Engineer Intern

May 2015-August 2016

- Performed an essential role in developing the characterization/validation plans for multiple types of battery gauges
- Utilized Labview, Teststand and BVP to implement automated test sequences on the device hardware
- Maintained multiple lab stations to perform several characterization projects in parallel
- Analyzed large amounts of data using Excel and Spotfire to create reports and present my findings on device performance to TI gauging team

Undergraduate Research Opportunity Program

Ann Arbor, MI

Research Assistant

September 2014-May 2015

- Worked with Dr. Nicholas Langhals on surface electrode testing for electrocardiogram measurement
- Tested multiple types of surface electrodes utilizing various in lab equipment such as oscilloscopes, function generators, filters and amplifiers.
- Developed an experimental method to advance our goal of finding surface electrodes with increased accuracy, SNR, and data quality
- Analyzed data using MATLAB scripts and built in functions to create professional reports of our findings

Project Experience

EECS 425 - Non-Volatile Actuated Gate-Lock System for Dielectrophoretic Devices

- Designed a fully functional MEMS device with actuating silicon arms and digital/analog controlling circuitry
- Fabricated the device in the Lurie Nanofabrication Laboratory and performed tests to ensure functionality

EECS 311 - Design of multi-stage transistor amplifier

- Designed a three stage transistor amplifier with consideration to gain, cutoff frequencies, input/output resistances, and power consumption
- Simulated and tested the amplifier using Cadence software and in lab equipment

Relevant Skills

Languages: C++, Verilog, Labview

Applications: MATLAB, Simulink, Cadence, Multisim, Teststand, Spotfire