

Free Probability & The Free Central Limit Theorem

18.338 Final Presentation, 12/13/23

Matthew Esmaili Mallory

Introduction

- Free probability is the study of non-commutative random variables
- Combines probability, random matrices, operator algebras, functional and complex analysis, and more
- Idea first came about when Voiculescu [10] equated free independence to freeness of subgroups $(G_i)_{i\in\mathcal{I}}$ of a group algebra $\mathbb{C}G$.
- Extends classical results in probability theory to this new setting: a free law of large numbers, free central limit theorem, etc.

Free Probability Background

To understand free probability, we first consider Kolmogorov's classical foundations:

- 1. We select a sample space Ω , with states $\omega \in \Omega$.
- 2. We then construct a σ -algebra $\mathcal{B}\subseteq 2^\Omega$ of **events**, such that $P(\Omega)=1$.
- 3. We build a commutative algebra of random variables $X : \Omega \to \mathbb{C}$, with an expectation function $\mathbb{E}(X)$.
- (Ω, \mathcal{B}, P) is our **probability space**. We "abstract away" both (1) and (2), to help us both compute limits and work with more general, non-commutative objects.

Free Probability Background

Definition

A (non-commutative) C*-probability space (\mathcal{A}, φ) consists of a unital C*-algebra \mathcal{A} over \mathbb{C} , and a unital, positive linear functional $\varphi: \mathcal{A} \to \mathbb{C}$.

ullet Recall that a C^* -algebra is a vector space over $\mathbb C$ equipped with a bi-linear product, and has a norm under which it is complete.

Free Probability Background

Definition

A (non-commutative) C*-probability space (\mathcal{A}, φ) consists of a unital C*-algebra \mathcal{A} over \mathbb{C} , and a unital, positive linear functional $\varphi: \mathcal{A} \to \mathbb{C}$.

- Recall that a C*-algebra is a vector space over $\mathbb C$ equipped with a bi-linear product, and has a norm under which it is complete.
- We often also assume that $\varphi(ab) = \varphi(ba)$ (tracial) and $\varphi(a^*a) = 0 \implies a = 0$ (faithful).
- A good working example to keep in mind is $\mathcal{A} = M_d (L^{\infty-}(\Omega, P))$, the space of $d \times d$ random matrices, and the linear functional

$$\varphi(a) = \frac{1}{d}\mathbb{E}[\mathsf{tr}(a)].$$

*-Distributions

- We now wish to understand the distribution of an arbitrary $a \in A$.
- Let $\mathbb{C}\langle X, X^* \rangle$ be the unital algebra freely generated by non-commuting X, X^* .

*-Distributions

- We now wish to understand the distribution of an arbitrary $a \in A$.
- Let $\mathbb{C}\langle X, X^* \rangle$ be the unital algebra freely generated by non-commuting X, X^* .

Definition

The *-distribution of $a \in \mathcal{A}$ is the linear functional $\mu: \mathbb{C}\langle X, X^* \rangle \to \mathbb{C}$ such that

$$\mu(X^{\varepsilon_1}\cdots X^{\varepsilon_k})=\varphi(a^{\varepsilon_1}\cdots a^{\varepsilon_k}),$$

where each $\varepsilon_i \in \{1, *\}$.

• Having a *-distribution makes computing moments such as $\varphi(a^k) = \int t^k d\mu(t)$ much easier.

Spectrum

Definition

The **spectrum** of $a \in A$ is given by

$$\operatorname{spec}(a) := \{ z \in \mathbb{C} : z 1_{\mathcal{A}} - a \text{ is not invertible} \}.$$

• This of course coincides with the usual spectrum (set of eigenvalues) in RMT, as does the following result:

Spectrum

Definition

The **spectrum** of $a \in A$ is given by

$$\operatorname{spec}(a) := \{z \in \mathbb{C} : z1_{\mathcal{A}} - a \text{ is not invertible}\}.$$

• This of course coincides with the usual spectrum (set of eigenvalues) in RMT, as does the following result:

Proposition

Let $a \in \mathcal{A}$ be normal. Then a has a *-distribution μ whose support is contained in spec(a). If φ is faithful, then the support is exactly spec(a).

Free Independence

Recall that in classical independence, $X \perp \!\!\! \perp Y$ if

$$\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0 \implies \mathbb{E}[f(X)g(Y)] = 0.$$

Free Independence

Recall that in classical independence, $X \perp \!\!\! \perp Y$ if

$$\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0 \implies \mathbb{E}[f(X)g(Y)] = 0.$$

Definition

Let (A, φ) be a C*-probability space. Then $(A_i)_{i \in \mathcal{I}}$ are **freely** independent (free) if

$$\varphi(a_1\cdots a_k)=0$$

whenever $a_j \in \mathcal{A}_{i_j}$ with $\varphi(a_j) = 0$ for all $1 \le j \le k$, and no neighboring indices are from the same subalgebra: $i_1 \ne i_2$, $i_2 \ne i_3$, ..., $i_{k-1} \ne i_k$.

• Random variables $(a_i)_{i \in \mathcal{I}}$ are free (*-free) when their generated subalgebras $\sigma(1, a_i)$ ($\sigma(1, a_i, a_i^*)$) are free.

Connection to Freeness

• Recall that in group theory, if G be a group, then subgroups $(G_i)_{i\in\mathcal{I}}$ are **free** if for every $k\geq 1$ and $i_1,\ldots,i_k\in\mathcal{I}$ all distinct, we have

$$g_1 \in G_{i_1} \setminus \{e\}, \dots, g_k \in G_{i_k} \setminus \{e\} \implies g_1 \cdots g_k \neq e.$$

Proposition

Let G be a group. Then the subgroups $(G_i)_{i\in\mathcal{I}}$ are free in G if and only if the subalgebras $(\mathbb{C}G_i)_{i\in\mathcal{I}}$ are freely independent in $(\mathbb{C}G, \tau_G)$.

- ullet The group algebra $\Bbb C G$ consists of all finite linear combinations of the form $\sum_{g\in G} \alpha_g g$ with coefficients in $\Bbb C$, and au_G maps such a linear combination to its identity coefficient $lpha_{\it e}$
 - This is a proper non-commutative probability space!

Free Central Limit Theorem

• In the non-commutative case, we say that a_N converges in distribution to a if every moment converges: $\varphi(a_N^n) \to \varphi(a^n)$.

Theorem (Free CLT)

Let (\mathcal{A}, φ) be a C*-probability space and $a_1, a_2, \ldots \in \mathcal{A}$ be free, identically distributed, and self-adjoint with common mean $\varphi(a_i) = 0$ and variance $\varphi(a_i^2) = \sigma^2$. Then

$$\frac{a_1 + \ldots + a_N}{\sqrt{N}} \xrightarrow{d} \mu_s,$$

where $\mu_{\rm S}$ is the distribution of a semi-circular element of radius 2σ .

• In the lecture notes, we are given a proof using R-transforms. I will provide a short combinatorial proof on the board!

Free Probability for Concentration Inequalities

• Free probability can be applied toward concentration inequalities in random matrix theory.

Theorem (Non-commutative Khintchine Inequality)

Let $X = \sum_{i=1}^{n} g_i A_i$ for $g_i \sim \mathcal{N}(0,1)$ independent and A_i fixed coefficient matrices. Then

$$\sigma(X) \lesssim \mathbb{E}||X|| \lesssim \sigma(X)\sqrt{\log(d)},$$

where
$$\sigma(X)^2 = ||E(X^2)|| = ||A_1^2 + \ldots + A_n^2||$$
.

- Bounds expected spectral norm up to $log(d)^{1/2}$ factor
- Can be sub-optimal in high dimensions $(d \gg n)$

Free Probability for Concentration Inequalities

• Let our original and "free" models be defined as

$$X := A_0 + \sum_{i=1}^n g_i A_i, \quad X_{\text{free}} := A_0 \otimes 1 + \sum_{i=1}^n A_i \otimes S_i.$$

Theorem 2.1 of [2]

For the above model with A_0, \ldots, A_n all self-adjoint, we have that for every $t \ge 0$,

$$P(\operatorname{spec}(X) \subseteq \operatorname{spec}(X_{\operatorname{free}}) \pm c_t) \ge 1 - e^{-t^2},$$

where $c_t := C\tilde{v}(X) \log(d)^{3/4} + C\sigma_*(X)t$ quantifies the non-commutativity of the matrices A_i (for some universal C > 0).

• They also provide bounds of the form

$$P(\|X\| > \|X_{\text{free}}\| + c_t) \le e^{-t^2}, \quad \mathbb{E}\|X\| \le \|X_{\text{free}}\| + C\tilde{v}(X)\log(d)^{3/4}.$$

Free Probability for Concentration Inequalities

• In order for these bounds to be useful, $||X_{free}||$ must be readily computable in practice, in which case the following lemma can help us:

Lemma

When the A_i are self-adjoint, we have

$$||X_{\text{free}}|| = \max_{\varepsilon = \pm 1} \inf_{Z > 0} \lambda_{\text{max}} \left(Z^{-1} + \varepsilon A_0 + \sum_{i=1}^n A_i Z A_i \right),$$

where this infimum is over all positive-definite, self-adjoint $Z \in M_d(\mathbb{C})$, and $\lambda_{\max}(\cdot)$ is the largest eigenvalue.

- In the proof, authors show that even though the moments of the matrix X might depend on all pairings, the crossing pairings still come close to vanishing in many cases via the non-commutativity of the A_i .
 - Similar to how only non-crossing pairings survive in free CLT

Extensions of Free CLT

- Of course, the Free CLT relies on the crucial assumption of free independence, and only works for empirical averages
- Not very desirable for real-world applications as independence is often violated, such as the case of a single random matrix of growing dimension
- Many popular statistics, such as *U*-statistics $\frac{1}{n^2}\sum_{i,j=1}^n f(a_i,a_j)$ do not fit this form
- Not a problem for the classical CLT, in which independence, taking empirical averages, and even identical distribution assumptions can be relaxed to varying degrees of generality.

Extensions of Free CLT

- In [1], they study under what conditions a free CLT can be extended to both empirical averages and *U*-statistics of dynamical systems
 - stationary or quantum exchangeable sequences

Definition

For a sequence of classical random variables, the **strong-mixing coefficients** are defined as

$$\alpha_i := \sup_{\substack{A \in \sigma(X_{-\infty:0})\\B \in \sigma(X_i:\infty)}} |P(A \cap B) - P(A)P(B)|.$$

Can do a similar method to define "free mixing" coefficients in the non-commutative case (but is much more elaborate), and these coefficients provide a bound on the normed difference between such a dynamical system and semi-circular elements.

Conclusion

- Many results in the non-commutative case mirror those in the classical setting, but with subtle changes
 - Partitions → non-crossing partitions
 - Normal distribution → semi-circular distribution
- Free probability has recently found applications in several fields, and is an active area of research (dependent free CLT, high-dimensional free CLT, etc.)
 - Another main goal is to construct new invariants of von Neumann algebras via free probability.

Thanks for a great course!!!

References

- [1] Austern, M., 2020. A free central-limit theorem for dynamical systems. *arXiv preprint arXiv:2005.10923*.
- [2] Bandeira, A.S., Boedihardjo, M.T. and van Handel, R., 2023. Matrix concentration inequalities and free probability. *Inventiones mathematicae*, pp.1-69.
- [3] Bercovici, H. and Pata, V., 1996. The law of large numbers for free identically distributed random variables. *The Annals of Probability*, 24(1), pp.453-465.
- [4] Bercovici, H. and Voiculescu, D., 1993. Free convolution of measures with unbounded support. *Indiana University Mathematics Journal*, 42(3), pp.733-773.
- [5] Edelman, A., 2022. Random matrix theory.
- [6] Kargin, V., 2008. Limit theorems in free probability theory. New York University.

References

- [7] Nica, A. and Speicher, R., 2006. *Lectures on the combinatorics of free probability* (Vol. 13). Cambridge University Press.
- [8] Speicher, R., 1990. A new example of 'independence' and 'white noise'. *Probability theory and related fields*, 84(2), pp.141-159.
- [9] Tao, T., 2023. *Topics in random matrix theory* (Vol. 132). American Mathematical Society.
- [10] Voiculescu, D., 1986. Addition of certain non-commuting random variables. *Journal of functional analysis*, 66(3), pp.323-346.