MATH 512 - Project 2

Kanav Malhotra

Wasif Ahmed, Haoxiang Deng, Jacob Fein-Ashley,

Question 1 (a)

We use the *Kolmogorov-Smirnov* test to test for the uniformity of the random numbers generated by the LCG. The test statistic is given by

$$D_n = \max_{1 \leqslant i \leqslant n} \left(\frac{i}{n} - U_{(i)} \right) \vee \max_{1 \leqslant i \leqslant n} \left(U_{(i)} - \frac{i-1}{n} \right)$$

where $U_{(i)}$ is the *i*-th order statistic of the U_i 's.

• H_{\circ} : the random numbers are uniformly distributed.

We find that $D_n = 0.0069$ and a p-value of 0.708. This means that we fail to reject H_o at the 5% significance level and conclude that the random numbers are uniformly distributed.

Question 1 (a)

Question 1 (b)

Parameters: a = 6, m = 11, $x_0 = 3$, c = 1 and n = 10

- The sequence is {3, 7, 9, 10, 5, 8, 4, 2, 1, 6}
- The period is 1

Parameters: a = 6, m = 10, $x_0 = 3$, c = 1 and n = 10

- The sequence is {3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}
- The period is 2

We notice that even a *small* change in the parameters results in a seemingly non-random sample.

Question 1 (c)

Question 1 (d)

• The two histograms look relatively similar, meaning both look relatively uniform.

Question 1 (e)

• I'm not seeing much of a pattern...

Question 1 (f)

Disadvantages of LCG:

- It can appear random with the right set of parameters, but as we saw, it can get "stuck" in a loop.
- The randomness depends on the bit position of the seed.
- The randomness depends on the choice of parameters.

