Beweisarchiv

August 2019

Dieses Heft steht unter der Lizenz Creative Commons CCO.

Inhaltsverzeichnis

1	Grundlagen 5				
	1.2	Aussagenlogik			
	1.4	Abbildungen 17 1.4.1 Definitionen 17 1.4.2 Grundlagen 17 1.4.3 Kardinalzahlen 17			
2	Ana	allysis 21			
		Folgen 27 2.1.1 Konvergenz 27 2.1.2 Wachstum und Landau-Symbole 24			
		Stetige Funktionen			
	2.4	2.3.2 Glatte Funktionen			
3		ologie 33 Grundbegriffe			
	3.2	3.1.1 Definitionen 33 Metrische Räume 33 3.2.1 Metrischer Räume 33 3.2.2 Normierte Räume 34 3.2.3 Homöomorphien 35			
4	Line 4.1	Peare Algebra 37 Matrizen 37 4.1.1 Definitionen 37 4.1.2 Rechenregeln 37 4.1.3 Rechenregeln für komplexe Matrizen 38			
	4.3	Eigenwerte384.2.1 Quadratische Matrizen40Bilinearformen41Euklidische Geometrie42			
5	Alg	ebra 43 Gruppentheorie			
		5.1.1 Grundlagen 43 Ringtheorie 44			
	5.3	5.2.1 Grundlagen44Polynomringe445.3.1 Einsetzungshomomorphismus44			
6		hrscheinlichkeitsrechnung Diskrete Wahrscheinlichkeitsräume			

1 Grundlagen

1.1 Aussagenlogik

Satz 1.1. (bool-dl: Distributivgesetze). Es gilt:

$$A \wedge (B \vee C) \iff A \wedge B \vee A \wedge C, \tag{1.1}$$

$$A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C). \tag{1.2}$$

1.2 Prädikatenlogik

Definition 1.1. (bounded: beschränkte Quantifizierung).

$$\forall x \in M (P(x)) :\iff \forall x (x \in M \implies P(x)), \tag{1.3}$$

$$\exists x \in M (P(x)) : \iff \exists x (x \in M \land P(x)). \tag{1.4}$$

Satz 1.2. (general-dl: allgemeine Distributivgesetze). Es gilt:

$$A \wedge \exists x (P(x)) \iff \exists x (A \wedge P(x)),$$
 (1.5)

$$A \lor \forall x (P(x)) \iff \forall x (A \lor P(x)).$$
 (1.6)

Satz 1.3. (exists-dl: Distributivgesetz). Es gilt:

$$\exists x (P(x) \lor Q(x)) \iff \exists x (P(x)) \lor \exists x (Q(x)).$$

Satz 1.4. (exists-asym-dl: asymmetrisches Distributivgesetz). Es gilt:

$$\exists x (P(x) \land Q(x)) \implies \exists x (P(x)) \land \exists x (Q(x)).$$

Satz 1.5. Es gilt:

$$\forall x (P(x) \Longrightarrow A) \Longleftrightarrow \exists x (P(x)) \Longrightarrow A.$$

Satz 1.6. (exists-cl: Kommutativgesetz). Es gilt:

$$\exists x\exists y(P(x,y)) \iff \exists y\exists x(P(x,y)).$$

Satz 1.7. (all-cl: Kommutativgesetz). Es gilt:

$$\forall x \forall y (P(x, y)) \iff \forall y \forall x (P(x, y)).$$

Satz 1.8. (bounded-general-dl: allgemeine Distributivgesetze). Es gilt:

$$A \wedge \exists x \in M(P(x)) \iff \exists x \in M(A \wedge P(x)),$$
 (1.7)

$$A \vee \forall x \in M(P(x)) \iff \forall x \in M(A \vee P(x)). \tag{1.8}$$

Beweis. Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$A \land \exists x \in M(P(x)) \iff A \land \exists x (x \in M \land P(x)) \iff \exists x (A \land x \in M \land P(x))$$

$$\iff \exists x (x \in M \land A \land P(x)) \iff \exists x \in M(A \land P(x)).$$

Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$A \lor \forall x \in M(P(x)) \iff A \lor \forall x (x \in M \implies P(x)) \iff A \lor \forall x (x \notin M \lor P(x))$$

$$\iff \forall x (A \lor x \notin M \lor P(x)) \iff \forall x (x \in M \implies A \lor P(x))$$

$$\iff \forall x \in M(A \lor P(x)). \ \Box$$

Satz 1.9. Es gilt:

$$\exists x \in A \ \exists y \in B \ (P(x,y)) \iff \exists y \in B \ \exists x \in A \ (P(x,y)).$$

Beweis. Nach Def. 1.1 (bounded), Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) gilt:

$$\exists x \in A \ \exists y \in B \ (P(x,y)) \iff \exists x (x \in A \land \exists y [y \in B \land P(x,y)])$$

$$\iff \exists x \exists y [x \in A \land y \in B \land P(x,y)] \iff \exists y \exists x [y \in B \land x \in A \land P(x,y)]$$

$$\iff \exists y (y \in B \land \exists x [x \in A \land P(x,y)]) \iff \exists y \in B \ \exists x \in A \ (P(x,y)). \ \Box$$

Satz 1.10. Es gilt:

$$\forall x \in A \ \forall y \in B \ (P(x,y)) \iff \forall y \in B \ \forall x \in A \ (P(x,y)).$$

Beweis. Nach Def. 1.1 (bounded), Satz 1.2 (general-dl) und Satz 1.7 (all-cl) gilt:

```
\forall x \in A \ \forall y \in B \ (P(x,y)) \iff \forall x(x \in A \Rightarrow \forall y[y \in B \Rightarrow P(x,y)])
\iff \forall x(x \notin A \lor \forall y[y \notin B \lor P(x,y)]) \iff \forall x \forall y[x \notin A \lor y \notin B \lor P(x,y)]
\iff \forall y \forall x[y \notin B \lor x \notin A \lor P(x,y)] \iff \forall y(y \notin B \lor \forall x[x \notin A \lor P(x,y)])
\iff \forall y(y \in B \Rightarrow \forall x[x \in A \Rightarrow P(x,y)]) \iff \forall y \in B \ \forall x \in A \ (P(x,y). \ \Box
```

Satz 1.11. Für eine Aussage P, die nicht von x abhängt, und ein nichtleeres Diskursuniversum gilt:

$$\exists x(P) \iff P.$$

Beweis. Nach 1.2 (general-dl) gilt:

$$\exists x(P) \iff \exists x(1 \land P) \iff \exists x(1) \land P \iff 1 \land P \iff P.$$

Im vorletzten Schritt wurde dabei ausgenutzt, dass für ein nichtleeres Diskursuniversum immer $\exists x(1) \iff 1$ gelten muss. \Box

$$\exists x \in M(P) \iff (M \neq \emptyset) \land P.$$

Beweis. Nach Def. 1.1 (bounded) und Satz 1.2 (general-dl) gilt:

$$\exists x \in M (P) \iff \exists x (x \in M \land P) \iff \exists x (x \in M) \land P \iff (M \neq \emptyset) \land P. \square$$

1.3 Mengenlehre

1.3.1 Definitionen

Definition 1.2. (seteq: Gleichheit von Mengen).

$$A = B : \iff \forall x (x \in A \iff x \in B).$$

Definition 1.3. (subseteq: Teilmenge).

$$A \subseteq B : \iff \forall x (x \in A \implies x \in B).$$

Definition 1.4. (filter: beschreibende Angabe).

$$a \in \{x \mid P(x)\} : \iff P(a).$$

Definition 1.5. (cap: Schnitt).

$$A\cap B:=\{x\mid x\in A\wedge x\in B\}.$$

Definition 1.6. (cup: Vereinigung).

$$A \cup B := \{x \mid x \in A \lor x \in B\}.$$

Definition 1.7. (intersection: Schnitt).

$$\bigcap_{i \in I} A_i := \{x \mid \forall i \in I (x \in A_i)\} = \{x \mid \forall i (i \in I \implies x \in A_i)\}.$$

Definition 1.8. (union: Vereinigung).

$$\bigcup_{i\in I}A_i:=\{x\mid \exists i\in I\,(x\in A_i)\}=\{x\mid \exists i\,(i\in I\land x\in A_i)\}.$$

Definition 1.9. (cart: kartesisches Produkt).

$$A \times B := \{(a, b) \mid a \in A \land b \in B\} = \{t \mid \exists a \exists b (t = (a, b) \land a \in A \land b \in B)\}.$$

1.3.2 Rechenregeln

Satz 1.13. (Kommutativgesetze). Es gilt $A \cap B = B \cap A$ und $A \cup B = B \cup A$.

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x (x \in A \cap B \iff x \in B \cap A).$$

Nach Def. 1.5 (cap) und Def. 1.4 (filter) gilt:

$$x \in A \cap B \iff x \in A \land x \in B \iff x \in B \land x \in A \iff x \in B \cap A.$$

Satz 1.14. (Assoziativgesetze). Es gilt $A \cap (B \cap C) = (A \cap B) \cap C$ und $A \cup (B \cup C) = (A \cup B) \cup C$.

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x[x \in A \cap (B \cap C) \iff x \in (A \cap B) \cap C].$$

Nach Def. 1.5 (cap) und Def. 1.4 (filter) gilt:

$$x \in A \cap (B \cap C) \iff x \in A \land x \in B \cap C \iff x \in A \land (x \in B \land x \in C)$$

 $\iff (x \in A \land x \in B) \land x \in C \iff x \in A \cap B \land x \in C \iff x \in (A \cap B) \cap C.$

Für die Vereinigung ist das analog. □

Satz 1.15. Es gilt $A \cap B \subseteq A$.

Beweis. Expansion liefert die Formel $x \in A \land x \in B \implies x \in A$. Gemäß boolescher Algebra gilt allgemein

$$\varphi \land \psi \Rightarrow \varphi \equiv \neg(\varphi \land \psi) \lor \varphi \equiv \neg \varphi \lor \neg \psi \lor \varphi \equiv 1 \lor \neg \psi \equiv 1.$$

Setze $\varphi := (x \in A)$ und $\psi := (x \in B)$. \square

Satz 1.16. Es gilt $A \subseteq B \iff A \cap B = A$.

Beweis. Aufgrund von Satz 1.15 muss lediglich $A \subseteq B \iff A \subseteq A \cap B$ gezeigt werden. Expansion führt zur Formel

$$x \in A \Rightarrow x \in B \iff x \in A \Rightarrow x \in A \land x \in B$$
.

Die Formel $\varphi \Rightarrow \psi \iff \varphi \Rightarrow \varphi \land \psi$ ist aber tautologisch, denn

$$\varphi \Rightarrow \varphi \land \psi \equiv \neg \varphi \lor (\varphi \land \psi) \equiv (\neg \varphi \lor \varphi) \land (\neg \varphi \land \psi) \equiv 1 \land (\varphi \Rightarrow \psi) \equiv \varphi \Rightarrow \psi.$$

Setze $\varphi := (x \in A)$ und $\psi := (x \in B)$. \square

Satz 1.17. Es gilt
$$a = b \iff \forall x (x = a \iff x = b)$$
.

Beweis. Die Implikation $a = b \implies \forall x (x = a \iff x = b)$. Wenn wir a = b voraussetzen, kann b gegen a ersetzt werden und es ergibt sich

$$\forall x(x=a\iff x=a)\iff \forall x(1)\iff 1.$$

Die andere Implikation bringen wir zunächst in ihre Kontraposition:

$$a \neq b \implies \exists x((x = a) \oplus (x = b)).$$

Auf einer leeren Grundmenge wird der Allquantifizierung über a,b immer genügt. Besitzt die Grundmenge nur ein Element, dann muss a=b sein, womit $a\neq b$ falsch ist und die Implikation somit erfüllt. Wir setzen nun $a\neq b$ voraus. Wählt man nun x=a, dann ist $x\neq b$, womit die Kontravalenz erfüllt wird. \square

Satz 1.18. Es gilt
$$a = b \iff \{a\} = \{b\}$$
.

Beweis. Es gilt:

$$\{a\} = \{b\} \iff \{x \mid x = a\} = \{x \mid x = b\} \iff \forall x(x = a \iff x = b).$$

Nach Satz 1.17 ist das aber äquivalent zu a = b. \Box

Satz 1.19. Es gilt:

$$\forall x \forall y (x = y \land P(x) \iff P(y))$$

Satz 1.20. Es gilt:

$$\forall t \in A \times B (P(t)) \iff \forall a \in A \ \forall b \in B (P(a, b)).$$

Beweis. Nach Def. 1.9 (cart) gilt:

$$\forall t \in A \times B \ (P(t)) \iff \forall t (t \in A \times B \implies P(t))$$

$$\iff \forall t (\exists a \exists b [t = (a, b) \land a \in A \land b \in B] \implies P(t))$$

Unter doppelter Anwendung von Satz 1.5 gilt weiter:

$$\iff \forall t \forall a \forall b [t = (a, b) \land a \in A \land b \in B \implies P(t)]$$

Substituiert man t := (a, b), dann ergibt sich:

$$\Rightarrow \forall a \forall b [a \in A \land B \in B \Rightarrow P(a, b)] \iff \forall a \in a \forall b \in B (P(a, b)),$$

wobei P(a, b) eine Kurzschreibweise für P((a, b)) ist. Von der Gegenrichtung bilden wir die Kontraposition:

$$\exists t \exists a \exists b [t = (a, b) \land a \in A \land b \in B \land \overline{P(t)}] \implies \exists a \exists b (a \in a \land b \in B \land \overline{P(a, b)}).$$

Dem $\exists t$ wird aber immer durch t := (a, b) genügt, so dass sich die äquivalente Formel

$$\exists \alpha \exists b [\alpha \in A \land b \in B \land \overline{P(\alpha, b)}] \implies \exists \alpha \exists b (\alpha \in A \land b \in B \land \overline{P(\alpha, b)}).$$

ergibt.

Satz 1.21. Es gilt:

$$\exists t \in A \times B (P(t)) \iff \exists a \in A \exists b \in B (P(a, b)).$$

Beweis. Nach Def. 1.9 (cart) gilt:

$$\exists t \in A \times B \ (P(t)) \iff \exists t (t \in A \times B \land P(t))$$

$$\iff \exists t (\exists a \exists b [t = (a, b) \land a \in A \land b \in B] \land P(t))$$

$$\iff \exists t \exists a \exists b [a \in A \land b \in B \land t = (a, b) \land P(t)]$$

$$\iff \exists a \in A \ \exists b \in B \ \exists t[t = (a, b) \land P(t)].$$

Nun gilt aber ganz offensichtlich

$$\exists t[t = (a, b) \land P(t)] \iff P(a, b).$$

Nimmt man P(a, b) an, dann lässt sich $\exists t[t = (a, b) \land P(t)]$ durch Wahl von t := (a, b) bestätigen. Nimmt man umgekehrt $\exists t[t = (a, b) \land P(t)]$ an, lässt sich P(a, b) daraus unter Anwendung von Satz 1.19 ableiten. Da $\exists t[t = (a, b) \land P(t)]$ gegen P(a, b) ersetzt werden darf, folgt die Behauptung. \Box

1 Grundlagen

Satz 1.22. Es gilt:

$$\bigcup_{t\in I\times J}A_t=\bigcup_{i\in I}\bigcup_{j\in J}A_{ij}.\quad (t=(i,j))$$

Beweis. Nach Def. 1.8 (union) und Satz 1.21 gilt:

$$x \in \bigcup_{t \in I \times J} A_t \iff \exists t \in I \times J \ (x \in A_t) \iff \exists i \in I \ \exists j \in J \ (x \in A_{ij})$$
$$\iff \exists i \in I \ (x \in \bigcup_{j \in J} A_{ij}) \iff x \in \bigcup_{i \in I} \bigcup_{j \in J} A_{ij}.$$

Nach Def. 1.2 (seteq) folgt die Behauptung. □

Satz 1.23. Es gilt:

$$\bigcup_{i\in I}\bigcup_{j\in J}A_{ij}=\bigcup_{j\in J}\bigcup_{i\in I}A_{ij}.$$

Beweis. Nach Def. 1.8 (union) und Satz 1.9 gilt:

$$x \in \bigcup_{i \in I} A_{ij} \iff \exists i \in I \ (x \in \bigcup_{j \in J} A_{ij}) \iff \exists i \in I \ \exists j \in J \ (x \in A_{ij})$$
$$\iff \exists j \in J \ \exists i \in I \ (x \in A_{ij}) \iff \exists j \in J \ (x \in \bigcup_{i \in I} A_{ij}) \iff x \in \bigcup_{j \in J} \bigcup_{i \in I} A_{ij}.$$

Nach Def. 1.2 (seteq) folgt die Behauptung. □

1.4 Abbildungen

1.4.1 Definitionen

Definition 1.10. (app: Applikation). Für eine Abbildung f ist

$$y = f(x) : \iff (x, y) \in G_f$$
.

Definition 1.11. (img: Bildmenge).

Für eine Abbildung $f: A \rightarrow B$ und $M \subseteq A$ wird die Menge

$$f(M) := \{ y \mid \exists x \in M (y = f(x)) \} = \{ y \mid \exists x (x \in M \land y = f(x)) \}$$

als Bildmenge von M unter f bezeichnet.

Definition 1.12. (preimg: Urbildmenge). Für eine Abbildung $f: A \rightarrow B$ wird

$$f^{-1}(M) := \{x \mid f(x) \in M\}$$

als Urbildmenge von M unter f bezeichnet.

Definition 1.13. (inj: Injektion).

Eine Abbildung $f: A \rightarrow B$ heißt genau dann injektiv, wenn gilt:

$$\forall x_1 \forall x_2 (f(x_1) = f(x_2) \implies x_1 = x_2)$$

bzw. äquivalent

$$\forall x_1 \forall x_2 (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)).$$

Definition 1.14. (sur: Surjektion).

Eine Abbildung $f: A \rightarrow B$ heißt genau dann surjektiv, wenn gilt:

$$B \subseteq f(A)$$
.

Definition 1.15. (composition: Verkettung).

Für Abbildungen $f: A \rightarrow B$ und $g: B \rightarrow C$ heißt

$$(g \circ f): A \to C$$
, $(g \circ f)(x) := g(f(x))$

Verkettung von f und g.

1.4.2 Grundlagen

Satz 1.24. (feq: Gleichheit von Abbildungen). Zwei Abbildungen $f: A \to B$ und $g: C \to D$ sind genau dann gleich, kurz f = g, wenn A = C und B = D und

$$\forall x (f(x) = g(x)).$$

Beweis. Nach Definition gilt f = g genau dann, wenn $(G_f, A, B) = (G_g, C, D)$, was äquivalent zu $G_f = G_g \land A = C \land B = D$ ist. Nach Def. 1.2 (seteq) gilt

$$G_f = G_q \iff \forall t (t \in G_f \iff t \in G_q).$$

Nach Satz 1.17 und Def. 1.10 (app) gilt

$$\forall x [f(x) = g(x)] \iff \forall x \forall y [y = f(x) \iff y = g(x)]$$

$$\iff \forall x \forall y [(x, y) \in G_f \iff (x, y) \in G_q] \iff \forall t (t \in G_f \iff t \in G_q).$$

Da die Quantifizerung auf $x \in A$, $y \in B$ und $t \in A \times B$ beschränkt ist, konnte im letzten

Satz 1.25. (preimg-dl: Distributivität der Urbildoperation).

Für $f: A \rightarrow B$ und beliebige Mengen M_i gilt:

$$f^{-1}(M_1 \cap M_2) = f^{-1}(M_1) \cap f^{-1}(M_2), \tag{1.9}$$

$$f^{-1}(M_1 \cup M_2) = f^{-1}(M_1) \cup f^{-1}(M_2), \tag{1.10}$$

$$f^{-1}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} f^{-1}(M_i), \tag{1.11}$$

$$f^{-1}(M_1 \cup M_2) = f^{-1}(M_1) \cup f^{-1}(M_2),$$

$$f^{-1}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} f^{-1}(M_i),$$

$$f^{-1}(\bigcup_{i \in I} M_i) = \bigcup_{i \in I} f^{-1}(M_i).$$

$$(1.11)$$

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall x[x \in f^{-1}(M_1 \cap M_2) \iff x \in f^{-1}(M_1) \cap f^{-1}(M_2)].$$

Nach Def. 1.12 (preimg) und Def. 1.5 (cap) zusammen mit Def. 1.4 (filter) gilt:

$$x \in f^{-1}(M_1 \cap M_2) \iff f(x) \in M_1 \cap M_2 \iff f(x) \in M_1 \land f(x) \in M_2$$

$$\iff x \in f^{-1}(M_1) \land x \in f^{-1}(M_2) \iff x \in f^{-1}(M_1) \cap f^{-1}(M_2).$$

Für die Vereinigung ist das analog.

Schnitt von beliebig vielen Mengen. Nach Def. 1.2 (seteg) expandieren:

$$\forall x[x\in f^{-1}(\bigcap_{i\in I}M_i)\iff x\in\bigcap_{i\in I}f^{-1}(M_i)].$$

Nach Def. 1.12 (preimg) und Def. 1.7 (intersection) zusammen mit Def. 1.4 (filter) gilt:

$$x \in f^{-1}(\bigcap_{i \in I} M_i) \iff f(x) \in \bigcap_{i \in I} M_i \iff \forall i (i \in I \implies f(x) \in M_i)$$

$$\iff \forall i (i \in I \implies x \in f^{-1}(M_i)) \iff x \in \bigcap_{i \in I} f^{-1}(M_i).$$

Satz 1.26. (img-cup-dl: Distributivität der Bildoperation über die Vereini**gung).** Für $f: A \rightarrow B$ und Mengen $M_i \subseteq A$ gilt:

$$f(M_1 \cup M_2) = f(M_1) \cup f(M_2), \tag{1.13}$$

$$f(M_1 \cup M_2) = f(M_1) \cup f(M_2), \tag{1.13}$$

$$f(\bigcup_{i \in I} M_i) = \bigcup_{i \in I} f(M_i). \tag{1.14}$$

Beweis. Nach Def. 1.2 (seteq) expandieren:

$$\forall y(y \in f(M_1 \cup M_2) \iff y \in f(M_1) \cup f(M_2)).$$

Nach Def. 1.11 (img), Def. 1.6 (cup), Satz 1.1 (bool-dl) und Satz 1.3 (exists-dl) gilt:

$$y \in f(M_1 \cup M_2) \iff \exists x [x \in M_1 \cup M_2 \land y = f(x)]$$

$$\iff \exists x[(x \in M_1 \lor x \in M_2) \land y = f(x)]$$

$$\iff \exists x[x \in M_1 \land y = f(x) \lor x \in M_2 \land y = f(x)]$$

$$\iff \exists x[x \in M_1 \land y = f(x)] \lor \exists x[x \in M_2 \land y = f(x)]$$

$$\iff$$
 $y \in f(M_1) \lor y \in f(M_2) \iff y \in f(M_1) \cup f(M_2).$

Nach Def. 1.2 (seteg) expandieren:

$$\forall y[y\in f(\bigcup_{i\in I}M_i)\iff y\in\bigcup_{i\in I}f(M_i)].$$

Nach Def. 1.11 (img), Def. 1.8 (union), Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) gilt:

$$y \in f(\bigcup_{i \in I} M_i) \iff \exists x (x \in \bigcup_{i \in I} M_i \land y = f(x))$$

$$\iff \exists x (\exists i (i \in I \land x \in M_i) \land y = f(x)) \iff \exists x \exists i (i \in I \land x \in M_i \land y = f(x))$$

$$\iff \exists i \exists x (i \in I \land x \in M_i \land y = f(x)) \iff \exists i (i \in I \land \exists x (x \in M_i \land y = f(x))$$

$$\iff \exists i (i \in I \land y \in f(M_i)) \iff y \in \bigcup_{i \in I} f(M_i). \square$$

Satz 1.27. Es gilt:

$$f(M_1 \cap M_2) \subseteq f(M_1) \cap f(M_2), \tag{1.15}$$

$$f(\bigcap_{i \in I} M_i) \subseteq \bigcap_{i \in I} f(M_i). \tag{1.16}$$

Beweis. Nach Def. 1.3 (subseteg) expandieren:

$$\forall y(y \in f(M_1 \cap M_2) \implies y \in f(M_1) \cap f(M_2)).$$

Nach Def. 1.11 (img), Def. 1.5 (cap) und Satz. 1.4 (exists-asym-dl) gilt:

$$y \in f(M_1 \cap M_2) \iff \exists x (x \in M_1 \cap x \in M_2 \land y = f(x))$$

$$\iff \exists x (x \in M_1 \land x \in M_2 \land y = f(x))$$

$$\iff \exists x (x \in M_1 \land y = f(x) \land x \in M_2 \land y = f(x))$$

$$\iff \exists x (x \in M_1 \land y = f(x)) \land \exists x (x \in M_2 \land y = f(x))$$

$$\iff y \in f(M_1) \land y \in f(M_2) \iff y \in f(M_1) \cap f(M_2).$$

Nach Def. 1.3 (subseteq) expandieren:

$$\forall y(y\in f(\bigcap_{i\in I}M_i)\implies y\in \bigcap_{i\in I}f(M_i))$$

Nach Def. 1.11 (img) und Def. 1.7 (intersection) gilt:

$$y \in f(\bigcap_{i \in I} M_i) \iff \exists x [x \in \bigcap_{i \in I} M_i \land y = f(x)]$$

$$\iff \exists x [\forall i (i \in I \implies x \in M_i) \land y = f(x)]$$

$$\iff \exists x \forall i (i \in I \implies x \in M_i \land y = f(x))$$

$$\iff \forall i \exists x [i \in I \implies x \in M_i \land y = f(x)]$$

$$\iff \forall i (i \in I \implies \exists x [x \in M_i \land y = f(x)])$$

$$\iff \forall i (i \in I \implies y \in f(M_i)) \iff y \in \bigcap_{i \in I} f(M_i). \square$$

Satz 1.28. Es gilt $M \subseteq N \implies f^{-1}(M) \subseteq f^{-1}(N)$.

Beweis 1. Gemäß Satz 1.16 ist $M \subseteq N$ äquivalent zu $M \cap N = M$. Man wendet die Urbildoperation f^{-1} nun auf beide Seiten der Gleichung an und erhält mittles Satz 1.25 (preimg-dl) dann

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N) = f^{-1}(M).$$

Nochmalige Anwendung von Satz 1.16 liefert das gewünschte Resultat

$$f^{-1}(M) \subseteq f^{-1}(N)$$
.

Beweis 2. Die Expansion der Aussage bringt

$$(y \in M \Rightarrow y \in N) \implies (f(x) \in M \Rightarrow f(x) \in N).$$

Trivialerweise kann die Prämisse mit y := f(x) spezialisiert werden werden. \Box

Satz 1.29. Es gilt $M \subseteq N \implies f(M) \subseteq f(N)$.

Beweis. Gemäß Satz 1.16 ist $M \subseteq N$ äquivalent zu $M \cap N = M$. Man wendet die Bildoperation nun auf beide Seiten der Gleichung an und erhält mittels Satz 1.27 dann

$$f(M) = f(M \cap N) \subseteq f(M) \cap f(N)$$
.

Laut Satz 1.15 ist folglich $f(M) = f(M) \cap f(N)$. Nochmalige Anwendung von Satz 1.16 bringt das gewünschte Resultat $f(M) \subseteq f(N)$. \square

Satz 1.30. Es gilt:

$$f(M) = \bigcup_{x \in M} \{f(x)\}.$$

Beweis. Nach Def. 1.11 (img) und Def. 1.8 (union) gilt:

$$y \in f(M) \iff \exists x \in M \ (y = f(x)) \iff \exists x \in M \ (y \in \{f(x)\}) \iff y \in \bigcup_{x \in M} \{f(x)\}.$$

Nach Def. 1.2 (seteq) folgt dann die Behauptung. □

Satz 1.31. Es gilt
$$(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M))$$
.

Beweis. Nach Def. 1.12 (preimg) und Def. 1.2 (seteq) expandieren und Def. 1.4 (filter) anwenden:

$$(g \circ f)(x) \in M \iff f(x) \in \{y \mid g(y) \in M\}.$$

Links Def. 1.15 (composition) anwenden und rechts nochmals Def. 1.4 (filter):

$$g(f(x)) \in M \iff g(f(x)) \in M. \square$$

Satz 1.32. Es gilt $(g \circ f)(M) = g(f(M))$.

Beweis. Nach Def. 1.11 (img) und Def. 1.2 expandieren, dann 1.4 (filter) anwenden:

$$\exists x(x \in M \land z = (g \circ f)(x)) \iff \exists y(y \in f(M) \land z = g(y)).$$

Die rechte Seite mit Def. 1.11 (img) expandieren und Def. 1.4 (filter) anwenden. Unter Anwendung von Satz 1.2 (general-dl) und Satz 1.6 (exists-cl) ergibt sich

$$\exists y (\exists x (x \in M \land y = f(x)) \land z = g(y))$$

$$\iff \exists y \exists x (x \in M \land y = f(x) \land z = g(y))$$

$$\iff \exists x (x \in M \land \exists y (y = f(x) \land z = g(y)))$$

$$\iff \exists x(x \in M \land z = g(f(x)))$$

$$\iff \exists x (x \in M \land z = (g \circ f)(x)). \ \Box$$

Satz 1.33. Sei $f: A \to B$ eine Abbildung und $A \neq \emptyset$. Man nennt eine Funktion $g: B \to A$ mit $g \circ f = \mathrm{id}_A$ Linksinverse zu f. Die Abbildung f ist genau dann injektiv, wenn eine Linksinverse zu f existiert.

Beweis. Sei f injektiv. Man wähle ein $\alpha \in A$, das wegen $A \neq \emptyset$ existieren muss. Man definiert nun $g: B \rightarrow A$ mit

$$g(y) := \begin{cases} x \text{ wobei } y = f(x), \text{ wenn } y \in f(A), \\ \alpha \text{ wenn } y \notin f(A). \end{cases}$$

Diese Funktion ist eindeutig definiert, weil f injektiv ist. Gemäß ihrer Definition gilt g(f(x)) = x, bzw. $g \circ f = id$.

Sei nun eine Linksinverse g mit $g \circ f = id$ gegeben. Dann gilt

$$f(a) = f(b) \implies g(f(a)) = g(f(b))$$

und

$$g(f(a)) = g(f(b)) \iff (g \circ f)(a) = (g \circ f)(a) \iff id(a) = id(b) \iff a = b.$$

Es ergibt sich

$$f(a) = f(b) \implies a = b. \square$$

Satz 1.34. Für jede Abbildung f gilt $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.

Beweis. Ergibt sich sofort gemäß Definition:

$$f^{-1}(A) \setminus f^{-1}(B) = \{ x \mid x \in f^{-1}(A) \land \neg x \in f^{-1}(B) \}$$

= $\{ x \mid f(x) \in A \land f(x) \notin B \} = \{ x \mid f(x) \in A \setminus B \} = f^{-1}(A \setminus B).$

Satz 1.35. Für jede Abbildung f gilt $f(f^{-1}(N) \subseteq N$.

Beweis. Gemäß Definition bekommt man

$$y \in f(f^{-1}(N)) \iff \exists x (x \in f^{-1}(N) \land y = f(x)) \iff \exists x (f(x) \in N \land y = f(x)).$$

Leicht ersichtlich ist nun, dass

$$\exists x (f(x) \in N \land y = f(x)) \implies y \in N. \square$$

Satz 1.36. Für jede Abbildung $f: A \to B$ gilt $f(f^{-1}(N)) = N$, sofern $N \subseteq f(A)$ ist.

Beweis. Laut Satz 1.35 bleibt zu zeigen

$$y \in N \implies \exists_{x \in A} (f(x) \in N \land y = f(x)).$$

Setzt man nun $N \subseteq f(A)$ voraus, dann ist $f(x) \in N$ allgemeingültig. Man bekommt

$$\exists_{x \in A} (f(x) \in N \land y = f(x)) \iff \exists_{x \in A} (y = f(x)) \iff y \in f(A).$$

Die Implikation $y \in N \implies y \in f(A)$ ist nun wiederum definitionsgemäß äquivalent zu $N \subseteq f(A)$, was Voraussetzung war. \square

Satz 1.37. Für jede Abbildung $f: A \to B$ gilt $\exists M(f(M) = N) \iff N \subseteq f(A)$.

Beweis. Hat man ein M mit f(M) = N, dann ist trivialerweise $f(M) \subseteq f(A)$, also $N \subseteq f(A)$. Liegt umgekehrt eine Menge $N \subseteq f(A)$ vor, dann kann man $M := f^{-1}(N)$ setzen, nach Satz 1.36 gilt dann f(M) = N. \square

Satz 1.38. Ist f injektiv, dann gilt $f(A \setminus B) = f(A) \setminus f(B)$.

Beweis. Da f injektiv ist, gibt es nach Satz 1.33 eine Linksinverse f^{-1} . Nach Satz 1.32 ist für eine beliebige Menge M die Gleichung

$$f^{-1}(f(M)) = (f^{-1} \circ f)(M) = id(M) = M$$

erfüllt. Unter Heranziehung von Satz 1.34 bekommt man

$$f^{-1}(f(A) \setminus f(B)) = f^{-1}(f(A)) \setminus f^{-1}(f(B)) = \operatorname{id}(A) \setminus \operatorname{id}(B) = A \setminus B.$$

Wendet man nun auf beide Seiten der Gleichung f an, dann ergibt sich nach Satz 1.36 das gesuchte Resultat $f(A) \setminus f(B) = f(A \setminus B)$. \square

Satz 1.39. Ist f eine bijektive Abbildung und f^{-1} die Umkehrabbildung von f, dann stimmt das Urbild $f^{-1}(N)$ mit der Bildmenge von N unter der Umkehrabbildung – zur Unterscheidung $(f^{-1})(N)$ geschrieben – überein.

Beweis. Expansion der Gleichung $f^{-1}(N) = (f^{-1})(N)$ führt zur Bedingung

$$f(x) \in \mathbb{N} \iff \exists y (y \in \mathbb{N} \land x = f^{-1}(y)).$$

Da f bijektiv ist, gilt $x = f^{-1}(y) \iff f(x) = f(f^{-1}(y)) = y$. Demnach ist

$$\exists y (y \in N \land x = f^{-1}(y)) \iff \exists y (f(x) \in N) \iff f(x) \in N.$$

Es genügt nicht, wenn f injektiv ist. Als Gegenbeispiel setze

$$f: \{0\} \to \{0, 1\}, f(x) := x.$$

Hier ist $f^{-1}(\{1\}) = \emptyset$. Jedoch ist $(f^{-1})(\{1\}) = \{0\}$.

Satz 1.40. (Rechtskürzbarkeit von Surjektionen).

Ist $f: X \to Y$ eine surjektive Abbildung, dann gilt

$$g \circ f = h \circ f \implies g = h$$
.

Beweis. Laut Prämisse und Satz 1.24 (feq) ist g(f(x)) = h(f(x)) für jedes $x \in X$. Da f surjektiv ist, lässt sich zu jedem $y \in Y$ ein $x \in X$ finden, so dass y = f(x). Demnach ist g(y) = h(y) für alle $y \in Y$, denn man kann immer mindestens ein x finden, so dass sich y := f(x) substituieren lässt. Laut Satz 1.24 (feq) ist daher g = h. \square

1.4.3 Kardinalzahlen

Satz 1.41. (acc: abzählbares Auswahlaxiom). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge nichtleerer Mengen. Dann existiert eine Funktion $f: \mathbb{N} \to \bigcup_{n\in\mathbb{N}} A_n$ mit $f(n) \in A_n$.

Definition 1.16. (equipotent: Gleichmächtigkeit). Zwei Mengen A, B heißen genau dann gleichmächtig, wenn eine Bijektion $f: A \rightarrow B$ existiert.

Satz 1.42. Sei M eine beliebige Menge. Die Potenzmenge 2^M ist zur Menge $\{0,1\}^M$ gleichmächtig.

Beweis. Für eine Aussage A sei

$$[A] := \begin{cases} 1 & \text{wenn } A \text{ gilt,} \\ 0 & \text{sonst.} \end{cases}$$

Für $A \subseteq M$ betrachte man nun die Indikatorfunktion

$$\chi_A : M \to \{0, 1\}, \quad \chi_A(x) := [x \in A].$$

Die Abbildung

$$\varphi: 2^M \to \{0, 1\}^M, \quad \varphi(A) := \chi_A$$

ist eine kanonische Bijektion.

Zur Injektivität. Nach Def. 1.13 (inj) muss gelten:

$$\varphi(A) = \varphi(B) \implies A = B$$
, d.h. $\chi_A = \chi_B \implies A = B$.

Nach Satz 1.24 (feq) und Def. 1.2 (seteq) wird die Aussage expandiert zu:

$$\forall x(\chi_A(x) = \chi_B(x)) \implies \forall x(x \in A \iff x \in B).$$

Es gilt aber nun:

$$\chi_A(x) = \chi_B(x) \iff [x \in A] = [x \in B] \iff (x \in A \iff x \in B).$$

Zur Surjektivität. Wir müssen nach Def. 1.14 (sur) prüfen, dass $\{0,1\}^M \subseteq \varphi(2^M)$ gilt. Expansion nach Def. 1.3 (subseteq) und Def. 1.11 (img) ergibt:

$$\forall f(f \in \{0,1\}^M \implies \exists A \in 2^M [f = \varphi(A)]).$$

Um dem Existenzquantor zu genügen, wähle

$$A := f^{-1}(\{1\}) = \{x \in M \mid f(x) \in \{1\}\} = \{x \in M \mid f(x) = 1\}.$$

Es gilt $f = \chi_A$, denn

$$\chi_A(x) = [x \in A] = [x \in \{x \mid f(x) = 1\}] = [f(x) = 1] = f(x).$$

Da φ eine Bijektion ist, müssen 2^M und $\{0,1\}^M$ nach Def. 1.16 (equipotent) gleichmächtig sein. \Box

Satz 1.43. Man setze Axiom 1.41 (acc) voraus. Die Vereinigung von abzählbar vielen abzählbar unendlichen Mengen ist abzählbar unendlich. Kurz $|\bigcup_{n\in\mathbb{N}}A_n|=|\mathbb{N}|$, wenn $|A_n|=|\mathbb{N}|$ für jedes n.

Beweis. Sei B_n die Menge der Bijektionen aus Abb(\mathbb{N} , A_n). Nach Axiom 1.41 (acc) kann aus jeder Menge B_n eine Bijektion $f_n : \mathbb{N} \to A_n$ ausgewählt werden. Man betrachte nun

$$\varphi: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n, \quad \varphi(n, m) := f_n(m).$$

Die Abbildung φ ist surjektiv, denn nach Satz 1.30 und Satz 1.22 gilt

$$\varphi(\mathbb{N} \times \mathbb{N}) = \bigcup_{(n,m) \in \mathbb{N} \times \mathbb{N}} \{f_n(m)\} = \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \{f_n(m)\}$$
$$= \bigcup_{n \in \mathbb{N}} f_n(\bigcup_{m \in \mathbb{N}} \{m\}) = \bigcup_{n \in \mathbb{N}} f_n(\mathbb{N}) = \bigcup_{n \in \mathbb{N}} A_n.$$

Daher gilt $|\bigcup_{n\in\mathbb{N}}A_n|\leq |\mathbb{N}\times\mathbb{N}|=|\mathbb{N}|$. Für eine beliebige der Bijektionen $f_n\in B_n$ lässt sich die Zielmenge erweitern, so dass man eine Injektion $f\colon\mathbb{N}\to\bigcup_{n\in\mathbb{N}}A_n$ erhält. Daher ist auch $|\mathbb{N}|\leq |\bigcup_{n\in\mathbb{N}}A_n|$. Nach dem Satz von Cantor-Bernstein gilt also $|\bigcup_{n\in\mathbb{N}}A_n|=|\mathbb{N}|$. \square

Satz 1.44. Wenn R abzählbar ist, dann ist auch der Polynomring R[X] abzählbar.

Beweis. Zu jedem Polynom vom Grad $n \ge 1$ gehört auf kanonische Weise genau ein Tupel aus $M_n := R^{n-1} \times R \setminus \{0\}$. Da R abzählbar ist, sind auch R^{n-1} und $R \setminus \{0\}$ abzählbar. Dann ist auch M_n abzählbar. Nach Satz 1.43 gilt

$$|R[X]| = 1 + |\bigcup_{n \in \mathbb{N}} M_n| = 1 + |\mathbb{N}| = |\mathbb{N}|. \square$$

Satz 1.45. Es gibt nur abzählbar unendlich viele algebraische Zahlen.

Beweis 1. Zu zeigen ist |A| = |N| mit

$$\mathbb{A} := \{ \alpha \in \mathbb{C} \mid \exists p (p \in \mathbb{Q}[X] \setminus \{0\} \land p(\alpha) = 0) \}.$$

Dass A unendlich ist, ist leicht ersichtlich, denn schon jede rationale Zahl q, von denen es unendlich viele gibt, ist Nullstelle von p(X) := X - q und daher algebraisch.

Ein Polynom vom Grad n kann höchstens n Nullstellen besitzen. Nach Satz 1.44 gilt $\mathbb{Q}[X] = |\mathbb{N}|$. Für $\mathbb{Q}[X]$ lässt sich also eine Abzählung angeben. Bei dieser Abzählung lässt sich für jedes Polynom p die Liste der Nullstellen von p einfügen. Streicht man alle Nullstellen, die schon einmal vorkamen, dann erhält man eine Abzählung der algebraischen Zahlen. Demnach gilt $|\mathbb{A}| = |\mathbb{N}|$. \square

Beweis 2. Jedem $p = \sum_{k=0}^n a_k X^k$ lässt sich eine Höhe $h := n + \sum_{k=0}^n |a_k|$ zuordnen. Zu einer festen Höhe kann es nur endlich viele Polynome $p \in \mathbb{Z}[X]$ geben, wodurch man eine Abzählung der Polynome erhält, wenn für h = 1, h = 2, h = 3 usw. jeweils die Liste der Polynome eingefügt wird. Für jedes Polynom p lässt sich die Liste der Nullstellen von p einfügen. Streicht man alle Nullstellen, die schon einmal vorkamen, dann erhält man eine Abzählung der algebraischen Zahlen. \square

Beweis 3. Für $n \in \mathbb{N}$ sei

$$A_n := \{x \in \mathbb{A} \mid x \text{ ist Nullstelle eines } p \in \mathbb{Z}[X] \setminus \{0\} \text{ mit deg}(p) = n,$$
 dessen Koeffizienten a_k alle $|a_k| \le n$ erfüllen $\}$.

Alle A_n sind endlich und es gilt $\mathbb{A} = \bigcup_{n \in \mathbb{N}} A_n$. Daher muss $|\mathbb{A}| \leq |\mathbb{N}|$ sein. \square

Definition 1.17. (Satz und Def. Multiplikation von Kardinalzahlen).

Die Operation $|X| \cdot |Y| := |X \times Y|$ ist wohldefiniert.

Beweis. Zu zeigen ist, dass $|X \times Y| = |X' \times Y'|$ aus |X| = |X'| und |Y| = |Y'| folgt. Nach Voraussetzung gibt es Bijektionen $f_1: X \to X'$ und $f_2: Y \to Y'$. Gesucht ist mindestens eine Bijektion $f: X \times Y \to X' \times Y'$. Diese erhält man gemäß folgender Konstruktion:

$$f(x, y) := (f_1(x), f_2(y)).$$

Die Abbildung f ist injektiv, denn

$$f(x_1, y_1) = f(x_2, y_2) \iff (f_1(x_1), f_2(y_1)) = (f_1(x_2), f_2(y_2))$$

$$\iff f_1(x_1) = f_1(x_2) \land f_2(y_1) = f_2(y_2) \iff x_1 = x_2 \land y_1 = y_2$$

$$\iff (x_1, y_1) = (x_2, y_2).$$

Für die Surjektivität muss es für jedes (x', y') mindestens ein (x, y) mit (x', y') = f(x, y)geben. Die Konstruktion ergibt

$$(x', y') = (f_1(x), f_2(y)) \iff x' = f_1(x) \land y' = f_2(y).$$

Man findet $x = f_1^{-1}(x')$ und $y = f_2^{-1}(y')$. Die Umkehrabbildung ist gegeben gemäß

$$f^{-1}(x',y') = f^{-1}((x',y')) := ((f_1^{-1} \circ \pi_1)(x',y'), (f_2^{-1} \circ \pi_2)(x',y'))$$

= $(f_1^{-1}(x'), f_2^{-1}(y')).$

Mit π_k ist die Projektion auf die k-te Komponente gemeint. \square

Definition 1.18. (Satz und Def. Addition von Kardinalzahlen).

Für $X \cap Y = \emptyset$ ist $|X| + |Y| := |X \cup Y|$ wohldefiniert. Das schließt den Spezialfall |X| + |Y| := $|X \sqcup Y|$ mit $X \sqcup Y := (\{0\} \times X) \cup (\{1\} \times Y)$ ein.

Beweis. Zu zeigen ist, dass $|X \cup Y| = |X' \cup Y'|$ aus |X| = |X'| und |Y| = |Y'| folgt. Nach Voraussetzung gibt es Bijektionen $f_1: X \to X'$ und $f_2: Y \to Y'$, wobei $X \cap Y = \emptyset$ und $X' \cap Y' = \emptyset$ gilt. Gesucht ist mindestens eine Bijektion $f: X \cup Y \to X' \cup Y'$. Diese erhält man gemäß folgender Konstruktion:

$$f(x) := \begin{cases} f_1(x) & \text{für } x \in X, \\ f_2(x) & \text{für } x \in Y. \end{cases}$$

Die Abbildung f ist injektiv, denn entweder ist $x' \in X'$ und somit

$$x' = f(a) = f(b) \iff x' = f_1(a) = f_1(b) \iff a = b$$

oder $x' \in Y'$ und somit

$$x' = f(a) = f(b) \iff x' = f_2(a) = f_2(b) \iff a = b.$$

Zusammengefasst folgt $f(a) = f(b) \iff a = b$ für alle $a, b \in X \cup Y$.

Für die Surjektivität muss es für jedes x' mindestens ein x mit x' = f(x) geben. Entweder ist $x' \in X'$, dann ist $x' = f_1(x)$ und daher $x = f_1^{-1}(x')$. Oder es ist $x' \in Y'$, dann ist $x' = f_2(x)$ und daher $x = f_2^{-1}(x')$. \square

Definition 1.19. (Satz und Def. Potenz von Kardinalzahlen).

Die Operation $|Y|^{|X|} := |Y^X|$ ist wohldefiniert.

Beweis. Zu zeigen ist, dass |Abb(X,Y)| = |Abb(X',Y')| aus |X| = |X'| und |Y| = |Y'| folgt. Nach Voraussetzung gibt es Bijektionen $f_1: X \to X'$ und $f_2: Y \to Y'$. Gesucht ist eine Bijektion $F: Abb(X,Y) \to Abb(X',Y')$. Diese erhält man gemäß folgender Konstruktion:

$$F(f) := f_2 \circ f \circ f_1^{-1}.$$

Die Abbildung F ist injektiv, da

$$F(f) = F(g) \iff f_2 \circ f \circ f_1^{-1} = f_2 \circ f \circ f_1^{-1} \iff f_2 \circ f = f_2 \circ g \iff f = g,$$

denn Bijektionen sind kürzbar. Für die Surjektivität muss es für jedes f' mindestens ein f mit f' = F(f) geben. Das führt auf die Gleichung $f' = f_2 \circ f \circ f_1^{-1}$. Diese lässt sich Umformen zu $f_2^{-1} \circ f' = f \circ f_1^{-1}$. Wendet man beide Seiten auf f_1 an, ergibt sich $f = f_2^{-1} \circ f' \circ f_1$. \square

2 Analysis

2.1 Folgen

2.1.1 Konvergenz

Definition 2.1. (open-ep-ball: offene Epsilon-Umgebung). Sei (M, d) ein metrischer Raum. Unter der offenen Epsilon-Umgebung von $\alpha \in M$ versteht man:

$$U_{\varepsilon}(\alpha) := \{x \mid d(x, \alpha) < \varepsilon\}$$

Setze zunächst speziell d(x, a) := |x - a| bzw. d(x, a) := ||x - a||.

Definition 2.2. (lim: konvergente Folge, Grenzwert).

$$\lim_{n\to\infty} \alpha_n = \alpha :\iff \forall \varepsilon > 0 \; \exists n_0 \; \forall n \geq n_0 \; (\alpha_n \in U_\varepsilon(\alpha))$$

bzw

$$\lim_{n\to\infty} a_n = a :\iff \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ (\|\alpha_n - \alpha\| < \varepsilon).$$

Definition 2.3. (bseq: beschränkte Folge). Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $|a_n| < S$ für alle n.

Eine Folge (a_n) von Punkten eines normierten Raums heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $||a_n|| < S$ für alle n.

Satz 2.1. (Grenzwert bei Konvergenz eindeutig bestimmt).

Eine konvergente Folge von Elementen eines metrischen Raumes besitzt genau einen Grenzwert.

Beweis. Sei (a_n) eine konvergente Folge mit $a_n \to g_1$. Sei weiterhin $g_1 \neq g_2$. Es wird nun gezeigt, dass g_2 kein Grenzwert von a_n sein kann. Wir müssen also zeigen:

$$\neg \lim_{n \to \infty} a_n = g_2 \iff \exists \varepsilon > 0 \ \forall n_0 \ \exists n \ge n_0 \ (a_n \notin U_{\varepsilon}(g_2))$$

mit $a_n \notin U_{\varepsilon}(g_2) \iff d(a_n, g_2) \geq \varepsilon$.

Um dem Existenzquantor zu genügen, wählt man nun $\varepsilon = \frac{1}{2}d(g_1,g_2)$. Nach Def. 3.3 (metric-space) gilt $d(g_1,g_2) > 0$, daher ist auch $\varepsilon > 0$. Nach Satz 3.2 sind die Umgebungen $U_{\varepsilon}(g_1)$ und $U_{\varepsilon}(g_2)$ disjunkt. Wegen $a_n \to g_1$ gibt es ein n_0 mit $a_n \in U_{\varepsilon}(g_1)$ für alle $n \ge n_0$. Dann gibt es für jedes beliebig große n_0 aber auch $n \ge n_0$ mit $a_n \notin U_{\varepsilon}(g_2)$. \square

Satz 2.2. (lim-scaled-ep: skaliertes Epsilon). Es gilt:

$$\lim_{n\to\infty} \alpha_n = \alpha \iff \forall \varepsilon > 0 \; \exists n_0 \; \forall n \geq n_0 \; (\|\alpha_n - \alpha\| < R\varepsilon),$$

wobei R > 0 ein fester aber beliebieger Skalierungsfaktor ist.

Beweis. Betrachte $\varepsilon > 0$ und multipliziere auf beiden Seiten mit R. Dabei handelt es sich um eine Äquivalenzumformung. Setze $\varepsilon' := R\varepsilon$. Demnach gilt:

$$\varepsilon > 0 \iff \varepsilon' > 0$$
.

Nach der Ersetzungsregel düfen wir die Teilformel $\varepsilon > 0$ nun ersetzen. Es ergibt sich die äquivalente Formel

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon' > 0 \ \exists n_0 \ \forall n \ge n_0 \ (\|a_n - a\| < \varepsilon').$$

Das ist aber genau Def. 2.2 (lim). □

Satz 2.3. Es gilt:

$$\lim_{n\to\infty} a_n = a \implies \lim_{n\to\infty} ||a_n|| = ||a||.$$

Beweis. Nach Satz 3.4 (umgekehrte Dreiecksungleichung) gilt:

$$|\|\alpha_n\|-\|\alpha\||\leq \|\alpha_n-\alpha\|<\varepsilon.$$

Dann ist aber erst recht $||a_n|| - ||a||| < \varepsilon$. \square

Satz 2.4. Ist (a_n) eine Nullfolge und (b_n) eine beschränkte Folge, dann ist auch (a_nb_n) eine Nullfolge.

Beweis. Wenn (b_n) beschränkt ist, dann existiert nach Def. 2.3 (bseq) eine Schranke S mit $|b_n| < S$ für alle n. Man multipliziert nun auf beiden Seiten mit $|\alpha_n|$ und erhält

$$|a_nb_n| = |a_n||b_n| < |a_n|S.$$

Wenn $a_n \to 0$, dann muss für jedes ε ein n_0 existieren mit $|a_n| < \varepsilon$ für $n \ge n_0$. Multipliziert man auf beiden Seiten mit S, und ergibt sich

$$|a_nb_n - 0| = |a_nb_n| < |a_n|S < S\varepsilon$$
.

Nach Satz 2.2 (lim-scaled-ep) gilt dann aber $a_n b_n \rightarrow 0$. \Box

Satz 2.5. Sind (a_n) und (b_n) Nullfolgen, dann ist auch (a_nb_n) eine Nullfolge.

Beweis 1. Wenn (b_n) eine Nullfolge ist, dann ist (b_n) auch beschränkt. Nach Satz 2.4 gilt dann die Behauptung.

Beweis 2. Sei $\varepsilon > 0$ beliebig. Es gibt ein n_0 , so dass $|a_n| < \varepsilon$ und $|b_n| < \varepsilon$ für $n \ge n_0$. Demnach ist

$$|a_nb_n| = |a_n||b_n| < |a_n|\varepsilon < \varepsilon^2$$
.

Wegen $\varepsilon > 0 \iff \varepsilon' > 0$ mit $\varepsilon' = \varepsilon^2$ gilt

$$\forall \varepsilon' > 0 \exists n_0 \forall n \geq n_0 (|\alpha_n b_n| < \varepsilon').$$

Nach Def. 2.2 (lim) gilt somit die Behauptung. □

Satz 2.6. (Grenzwertsatz zur Addition). Seien (a_n) , (b_n) Folgen von Vektoren eines normierten Raumes. Es gilt:

$$\lim_{n\to\infty} a_n = a \wedge \lim_{n\to\infty} b_n = b \implies \lim_{n\to\infty} a_n + b_n = a + b.$$

Beweis. Dann gibt es ein n_0 , so dass für $n \ge n_0$ sowohl $||a_n - a|| < \varepsilon$ als auch $||b_n - b|| < \varepsilon$. Addition der beiden Ungleichungen ergibt

$$||a_n-a||+||b_n-b||<2\varepsilon.$$

Nach der Dreiecksungleichung, das ist Axiom (N3) in Def. 3.5 (normed-space), gilt nun aber die Abschätzung

$$||(a_n + b_n) - (a + b)|| = ||(a_n - a) + (b_n - b)|| \le ||a_n - a|| + ||b_n - b||.$$

Somit gilt erst recht

$$\|(a_n+b_n)-(a+b)\|<2\varepsilon.$$

Nach Satz 2.2 (lim-scaled-ep) folgt die Behauptung. □

Satz 2.7. (Grenzwertsatz zur Skalarmultiplikation). Sei (a_n) eine Folge von Vektoren eines normierten Raumes und sei $r \in \mathbb{R}$ oder $r \in \mathbb{C}$. Es gilt:

$$\lim_{n\to\infty} a_n = a \implies \lim_{n\to\infty} ra_n \to ra.$$

Beweis. Sei $\varepsilon > 0$ fest aber beliebig. Es gibt nun ein n_0 , so dass $||a_n - a|| < \varepsilon$ für $n \ge n_0$. Multipliziert man auf beiden Seiten mit |r| und zieht Def. 3.5 (normed-space) Axiom (N2) heran, dann ergibt sich

$$||ra_n - ra|| = |r| ||a_n - a|| < |r|\varepsilon.$$

Nach Satz 2.2 (lim-scaled-ep) folgt die Behauptung. □

Satz 2.8. (Grenzwertsatz zum Produkt).

Seien (a_n) und (b_n) Folgen reeller Zahlen. Es gilt:

$$\lim_{n\to\infty}a_n=a\wedge\lim_{n\to\infty}b_n=b\implies\lim_{n\to\infty}a_nb_n=ab.$$

Beweis. Nach Voraussetzung sind $a_n - a$ und $b_n - b$ Nullfolgen. Da das Produkt von Nullfolgen wieder eine Nullfolge ist, gilt

$$(a_n-a)(b_n-b)=a_nb_n-a_nb-ab_n+ab\to 0.$$

Da nach Satz 2.7 aber $a_n b \rightarrow ab$ und $ab_n \rightarrow ab$, ergibt sich nach Satz 2.6 nun

$$(a_n - a)(b_n - b) + a_n b + ab_n = a_n b_n + ab \rightarrow 2ab.$$

Addiert man nun noch die konstante Folge -2ab und wendet nochmals Satz 2.6 an, dann ergibt sich die Behauptung

$$a_n b_n \rightarrow ab. \square$$

Satz 2.9. Sei M ein metrischer Raum und X ein topologischer Raum. Eine Abbildung $f: M \to X$ ist genau dann stetig, wenn sie folgenstetig ist.

Satz 2.10. (Satz zur Fixpunktgleichung). Sei M ein metrischer Raum und sei $f: M \to M$. Sei $x_{n+1} := f(x_n)$ eine Fixpunktiteration. Wenn die Folge (x_n) zu einem Startwert x_0 konvergiert mit $x_n \to x$, und wenn f eine stetige Abbildung ist, dann muss der Grenzwert x die Fixpunktgleichung x = f(x) erfüllen.

Beweis. Wenn $x_n \to x$, dann gilt trivialerweise auch $x_{n+1} \to x$. Weil f stetig ist, ist f nach Satz 2.9 auch folgenstetig. Daher gilt $\lim f(a_n) = f(\lim a_n)$ für jede konvergente Folge (a_n) . Somit gilt:

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x). \square$$

2.1.2 Wachstum und Landau-Symbole

Definition 2.4. Seien $f, g: D \to \mathbb{R}$ mit $D = \mathbb{N}$ oder $D = \mathbb{R}$. Man sagt, die Funktion f wächst nicht wesentlich schneller als g, kurz $f \in \mathcal{O}(g)$, genau dann, wenn

$$\exists (c > 0) \exists (x_0 > 0) \forall (x > x_0) (|f(x)| \le c|g(x)|).$$

Korollar 2.11. Ist $r \in \mathbb{R}$ mit $r \neq 0$ eine Konstante, dann gilt $\mathcal{O}(rg) = \mathcal{O}(g)$.

Beweis. Nach Def. 2.4 ist

$$f \in \mathcal{O}(rg) \iff \exists (c > 0)\exists (x_0 > 0) \forall (x > x_0)(|f(x)| \le c|rg(x)|).$$

Man hat nun

$$|f(x)| \le c|rg(x)| = c \cdot |r| \cdot |g(x)|.$$

Wegen $r \neq 0$ ist |r| > 0 und daher auch $c > 0 \iff c|r| > 0$. Sei c' := r|c|. Also gilt $c > 0 \iff c' > 0$. Nach der Ersetzungsregel darf c > 0 gegen c' > 0 ersetzt werden und man erhält die äquivalente Bedingung

$$\exists (c' > 0) \exists (x_0 > 0) \forall (x > x_0) (|f(x)| \le c' |g(x)|).$$

Nach Def. 2.4 ist das gerade $f \in \mathcal{O}(g)$. \square

2.2 Stetige Funktionen

Definition 2.5. (Grenzwert einer Funktion). Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ und sei p ein Häufungspunkt von p. Die Funktion p heißt konvergent gegen p für p wenn

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall (x \in D) (0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon).$$

Bei Konvergenz schreibt man $L = \lim_{x \to p} f(x)$ und nennt L den Grenzwert.

Definition 2.6. (cont: stetig). Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt stetig an der Stelle $x_0 \in D$, wenn

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall (x \in D)(|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon).$$

Definition 2.7. (Lipschitz-stetig).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt Lipschitz-stetig, wenn eine Konstante L existiert, so dass

$$|f(b)-f(a)| \le L|b-a|$$

für alle $a, b \in D$.

Definition 2.8. (Lipschitz-stetig an einer Stelle).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt Lipschitz-stetig an der Stelle $x_0 \in D$, wenn eine Konstante L existiert, so dass

$$|f(x_0)-(a)|\leq L|x_0-a|$$

für alle $\alpha \in D$.

Korollar 2.12. Eine Funktion ist genau dann Lipschitz-stetig, wenn sie an jeder Stelle Lipschitz-stetig ist und die Menge der optimalen Lipschitz-Konstanten dabei beschränkt.

Beweis. Eine Lipschitz-stetige Funktion ist trivialerweise an jeder Stelle Lipschitz-stetig. Ist $f: D \to \mathbb{R}$ an der Stelle b Lipschitz-stetig, dann existiert eine Lipschitz-Konstante L_b mit

$$\forall (a \in D)(|f(b) - f(a)| \le L_b|b - a|).$$

Nach Voraussetzung ist $L = \sup_{b \in D} L_b$ endlich. Alle L_b können nun zu L abgeschwächt werden und es ergibt sich

$$\forall (b \in D) \forall (a \in D)(|f(b) - f(a)| \le L|b - a|). \Box$$

Definition 2.9. (lokal Lipschitz-stetig).

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt lokal Lipschitz-stetig in der Nähe einer Stelle $x_0 \in D$, wenn es eine Epsilon-Umgebung $U_{\varepsilon}(x_0)$ gibt, so dass die Einschränkung von f auf diese Umgebung Lipschitz-stetig ist. Die Funktion heißt lokal Lipschitz-stetig, wenn sie in der Nähe jeder Stelle Lipschitz-stetig ist.

Satz 2.13. Ist die Funktion $f: D \to \mathbb{R}$ an der Stelle x_0 differenzierbar, dann gibt es ein $\delta > 0$, so dass die Einschränkung von f auf $U_{\delta}(x_0)$ an der Stelle x_0 Lipschitzstetig ist.

Beweis. Def. 2.5 wird in Def. 2.10 (diff) eingesetzt. Es ergibt sich:

$$0<|x-x_0|<\delta \implies \left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|<\varepsilon.$$

Nach der umgekehrten Dreiecksungleichung 3.4 gilt

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| - |f'(x_0)| \le \left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \varepsilon.$$

Daraus ergibt sich

$$|f(x)-f(x_0)| < (|f'(x_0)|+\varepsilon) \cdot |x-x_0|$$

und somit erst recht

$$|f(x)-f(x_0)| \le (|f'(x_0)| + \varepsilon) \cdot |x-x_0|,$$

wobei jetzt auch $x = x_0$ erlaubt ist. Demnach wird Def. 2.8 erfüllt:

$$\exists (\delta > 0) \forall (x \in U_{\delta}(x_0)) (|f(x) - f(x_0)| \le (|f'(x_0)| + \varepsilon) \cdot |x - x_0|). \ \Box$$

Satz 2.14. Eine differenzierbare Funktion ist genau dann Lipschitz-stetig, wenn ihre Ableitung beschränkt ist.

Beweis. Wenn $f: I \to \mathbb{R}$ Lipschitz-stetig ist, dann gibt es L mit

$$\left| \frac{f(b) - f(a)}{b - a} \right| \le L$$

für alle $a, b \in D$ mit $a \neq b$. Daraus folgt

$$|f'(a)| = \left| \lim_{b \to a} \frac{f(b) - f(a)}{b - a} \right| = \lim_{b \to a} \left| \frac{f(b) - f(a)}{b - a} \right| \le L.$$

Demnach ist die Ableitung beschränkt.

Sei nun umgekehrt die Ableitung beschränkt. Für $a, b \in I$ mit $a \neq b$ gibt es nach dem Mittelwertsatz ein $x_0 \in (a, b)$, so dass

$$|f'(x_0)| = \left| \frac{f(b) - f(a)}{b - a} \right|.$$

Da die Ableitung beschränkt ist gibt es ein Supremum $L = \sup_{x \in I} |f'(x)|$. Demnach ist $|f'(x)| \le L$ für alle x. Es ergibt sich

$$\left|\frac{f(b)-f(a)}{b-a}\right| \le L|b-a| \implies |f(b)-f(a)| \le L|b-a|.$$

Nun darf auch a = b gewählt werden. \Box

Satz 2.15. Eine auf einem kompakten Intervall [a, b] definierte stetig differenzierbare Funktion ist Lipschitz-stetig.

Beweis. Sei $f: [a, b] \to \mathbb{R}$ stetig differenzierbar. Dann ist f'(x) stetig. Nach dem Satz vom Minimum und Maximum ist |f'(x)| beschränkt. Nach Satz 2.14 muss f Lipschitzstetig sein. \square

Korollar 2.16. Eine stetig differenzierbare Funktion ist lokal Lipschitz-stetig.

Beweis. Sei $f: D \to \mathbb{R}$ stetig differenzierbar. Sei $[a,b] \in D$. Sei $x_0 \in [a,b]$. Die Einschränkung von f auf [a,b] ist Lipschitz-stetig nach Satz 2.15. Dann ist auch die Einschränkung von f auf $U_{\varepsilon}(x_0) \subseteq [a,b]$ Lipschitz-stetig. \square

Satz 2.17. Es gibt differenzierbare Funktionen, die nicht überall lokal Lipschitz-stetig sind.

Beweis. Aus Satz 2.14 ergibt sich also Kontraposition, dass eine Funktion mit unbeschränkter Ableitung nicht Lipschitz-stetig sein kann.

Ist $f: D \to \mathbb{R}$ an jeder Stelle differenzierbar und ist f' in jeder noch so kleinen Umgebung der Stelle x_0 unbeschränkt, dann kann f also in der Nähe dieser Stelle auch nicht lokal Lipschitz-stetig sein.

Ein Beispiel für eine solche Funktion ist $f: [0, \infty) \to \mathbb{R}$ mit

$$f(0) := 0$$
 und $f(x) := x^{3/2} \cos(\frac{1}{x})$.

Einerseits gilt

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} (h^{1/2} \cos(\frac{1}{h})) = 0.$$

Die Funktion ist also an der Stelle x=0 differenzierbar. Andererseits gilt nach den Ableitungsregeln

$$f'(x) = \frac{3}{2}\sqrt{x}\cos\left(\frac{1}{x}\right) + \frac{1}{\sqrt{x}}\sin\left(\frac{1}{x}\right).$$

für x > 0. Der Term $\frac{1}{\sqrt{x}}$ erwirkt für $x \to 0$ immer größere Maxima von |f'(x)|. Daher kann f in der Nähe von x = 0 nicht lokal Lipschitz-stetig sein. \Box

Satz 2.18. Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und f(x) konvergent für $x \to \infty$. Ist außerdem f' Lipschitz-stetig, zieht dies $f'(x) \to 0$ für $x \to \infty$ nach sich.

Beweis. Gemäß dem cauchyschen Konvergenzkriterium gibt es zu jedem $\varepsilon > 0$ eine Stelle x_0 , so dass

$$|f(b) - f(a)| < \varepsilon \tag{2.1}$$

für alle a, b mit $x_0 < a \le b$. Nun ist f' aufgrund der Lipschitz-Stetigkeit erst recht stetig, womit

$$\left| \int_{a}^{b} f'(x) \, \mathrm{d}x \right| = |f(b) - f(a)| \tag{2.2}$$

laut dem Fundamentalsatz gilt. Gezeigt wird nun, dass |f'(a)| beschränkt ist. Sei dazu L die Lipschitz-Konstante. Ohne Beschränkung der Allgemeinheit sei f'(a) > 0. Fallen darf f' maximal mit dem Anstieg -L. Geschieht dies linear bis zur Nullstelle b, ergibt sich ein rechtwinkliges Dreieck mit dem Flächeninhalt

$$\frac{1}{2L}f'(\alpha)^2 = \int_a^b f'(x) \, \mathrm{d}x < \varepsilon. \tag{2.3}$$

Demnach ist $f'(a) < \sqrt{2L\varepsilon}$. Weil dies für alle $a > x_0$ gilt, muss f' jede Beschränkung unterbieten, womit der Beweis der Behauptung erbracht ist. \square

Die Diskussion Gegenbeispiels f(0) := 0, $f(x) := \sin(x^2)/x$ macht ersichtlich, dass die Aussage ohne Lipschitz-Stetigkeit nicht einmal für glatte Funktionen gilt.

2.3 Differentialrechnung

2.3.1 Ableitungsregeln

Definition 2.10. (diff: differenzierbar, Ableitung). Eine Funktion $f: D \to \mathbb{R}$ heißt differenzieraber an der Stelle $x_0 \in D$, wenn der Grenzwert

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert. Man nennt $f'(x_0)$ die Ableitung von f an der Stelle x_0 .

Satz 2.19. Sei *I* ein Intervall und $f, g: I \to \mathbb{R}$. Sind f, g differenzierbar an der Stelle $x \in I$, dann ist auch

$$f + g$$
 dort differenzierbar mit $(f + g)'(x) = f'(x) + g'(x)$, (2.4)

$$f - g$$
 dort differenzierbar mit $(f - g)'(x) = f'(x) - g'(x)$, (2.5)

fg dort differenzierbar mit
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
. (2.6)

Beweis. Es gilt

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f+g)(x+h) - (f+g)(x)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right)$$
(2.7)
$$(2.8)$$

$$= \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h} \tag{2.8}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right) \tag{2.9}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x). \tag{2.10}$$

Da die Grenzwerte auf der rechten Seite nach Voraussetzung existieren, muss auch der Grenzwert der Summe existieren. Die Rechnung für die Subtraktion ist analog. Bei der Multiplikation wird ein Nullsummentrick angewendet:

$$g(x)f'(x) + f(x)g'(x) = g(x)\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + f(x)\lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
 (2.11)

$$= \lim_{h \to 0} \left[g(x+h) \frac{f(x+h) - f(x)}{h} \right] + \lim_{h \to 0} \left[f(x) \frac{g(x+h) - g(x)}{h} \right]$$
(2.12)

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h)}{h} + \lim_{h \to 0} \frac{f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} = (fg)'(x).$$
(2.13)

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$
(2.14)

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} = (fg)'(x). \tag{2.15}$$

Hierbei wurde $\lim_{h\to 0} g(x+h) = g(x)$ benutzt, was richtig ist, weil g an der Stelle x

Satz 2.20. Sei *I* ein Intervall. Sind $f, g: I \to \mathbb{R}$ an der Stelle x differenzierbar und ist

 $g(x) \neq 0$, dann ist auch f/g differenzierbar und es gilt

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$
 (2.16)

Beweis. Nach der Produktregel (2.6) gilt

$$0 = 1' = \left(g \cdot \frac{1}{g}\right)' = g' \cdot \frac{1}{g} + g \cdot \left(\frac{1}{g}\right)'. \tag{2.17}$$

Umstellen bringt $(1/g)'(x) = -g'(x)/g(x)^2$. Nochmalige Anwendung der Produktregel (2.6) bringt

$$\left(\frac{f}{g}\right)'(x) = \left(f \cdot \frac{1}{g}\right)'(x) = f'(x) \cdot \frac{1}{g(x)} + f(x)\left(\frac{1}{g}\right)'(x) \tag{2.18}$$

$$= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}. \quad \Box$$
 (2.19)

Satz 2.21. Für $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x^n$ mit $n \in \mathbb{N}$ gilt $f'(x) = nx^{n-1}$.

Beweis 1. Heranziehung des binomischen Lehrsatzes bringt

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{\sum_{k=0}^n {n \choose k} x^{n-k} h^k - x^n}{h}$$
 (2.20)

$$= \lim_{h \to 0} \left(nx^{n-1} + \sum_{k=2}^{n} \binom{n}{k} x^{n-k} h^{k-1} \right) = nx^{n-1}. \quad \Box$$
 (2.21)

Beweis 2. Induktiv. Der Induktionsanfang $\frac{d}{dx}x = 1$ ist klar. Induktionsschritt mittels Produktregel (2.6):

$$\frac{d}{dx}x^{n} = \frac{d}{dx}(x \cdot x^{n-1}) = x^{n-1} + x\frac{d}{dx}x^{n-1} = x^{n-1} + (n-1)x^{n-1} = nx^{n-1}. \quad \Box$$
 (2.22)

Satz 2.22. Für $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) := x^n \text{ mit } n \in \mathbb{Z} \text{ gilt } f'(x) = nx^{n-1}$.

Beweis. Der Fall n=0 ist trivial und $n \ge 1$ wurde schon in Satz 2.21 gezeigt. Sei nun $a \in \mathbb{N}$ und n=-a. Nach der Produktregel (2.6) und Satz 2.21 gilt

$$0 = \frac{d}{dx}1 = \frac{d}{dx}(x^{a}x^{-a}) = x^{-a}\frac{d}{dx}x^{a} + x^{a}\frac{d}{dx}x^{-a} = x^{-a}ax^{a-1} + x^{a}\frac{d}{dx}x^{-a}.$$
 (2.23)

Dividiert man nun durch x^a und formt um, dann ergibt sich

$$\frac{\mathrm{d}}{\mathrm{d}x}x^{-a} = -ax^{-a-1} \implies \frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}. \ \Box \tag{2.24}$$

2.3.2 Glatte Funktionen

Satz 2.23. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit der Eigenschaft f(x) = 0 für $x \le 0$ und f(x) > 0 für x > 0. Es gibt glatte Funktionen mit dieser Eigenschaft, jedoch keine analytischen.

Beweis. Wegen f(x) = 0 für $x \le 0$ muss die linksseitige n-te Ableitung an der Stelle x = 0 immer verschwinden. Wenn die n-te Ableitung stetig sein soll, muss auch die rechtsseitige Ableitung bei x = 0 verschwinden. Da die Funktion glatt sein soll, muss das für jede Ableitung gelten. Daher verschwindet die Taylorreihe an der Stelle x = 0. Da aber f(x) > 0 für x > 0, gibt es keine noch so kleine Umgebung mit Übereinstimmung von f und ihrer Taylorreihe. Daher kann f an der Stelle x = 0 nicht analytisch sein.

Eine glatte Funktion lässt sich jedoch konstruieren:

$$f(x) := \begin{cases} e^{-1/x} & \text{wenn } x > 0, \\ 0 & \text{wenn } x \le 0. \end{cases}$$

Ist nämlich g(x) an einer Stelle glatt, dann ist es nach Kettenregel, Produktregel und Summenregel auch $e^{g(x)}$. Die n-te Ableitung lässt sich immer in der Form

$$\sum\nolimits_{k} {{e^{g(x)}}{r_k}(x)} = {e^{g(x)}}\sum\nolimits_{k} {{r_k}(x)} = {e^{g(x)}}r(x)$$

darstellen, wobei die $r_k(x)$ bzw. r(x) in diesem Fall rationale Funktionen mit Polstelle bei x=0 sind. Da aber $e^{-1/x}$ für $x\to 0$ schneller fällt als jede rationale Funktion steigen kann, muss die rechtsseitige Ableitung an der Stelle x=0 immer verschwinden. \Box

2.4 Fixpunkt-Iterationen

Definition 2.11. (Kontraktion). Sei (M, d) ein vollständiger metrischer Raum. Eine Abbildung $\varphi: M \to M$ heißt Kontraktion, wenn sie Lipschitz-stetig mit Lipschitz-Konstante L < 1 ist, d. h.

$$d(\varphi(x), \varphi(y)) < L d(x, y)$$

für alle $x, y \in M$.

Satz 2.24. (**Fixpunktsatz von Banach**). Sei (M, d) ein nichtleerer vollständiger metrischer Raum und sei $\varphi: M \to M$ eine Kontraktion. Es gibt genau einen Fixpunkt $x \in M$ mit $x = \varphi(x)$ und die Folge $(x_n): \mathbb{N} \to M$ mit $x_{n+1} = \varphi(x_n)$ konvergiert gegen den Fixpunkt, unabhängig vom Startwert x_0 .

Satz 2.25. (Hinreichendes Konvergenzkriterium). Sei M = [a, b]. Ist $\varphi : M \to M$ differenzierbar und gibt es eine Zahl r mit $|\varphi'(x)| < r < 1$ für alle $x \in M$, dann hat φ genau einen Fixpunkt und die Folge (x_n) mit $x_{n+1} = \varphi(x_n)$ konvergiert für jeden Startwert $x_0 \in M$ gegen diesen Fixpunkt.

Beweis. Nach Satz 2.14 ist eine differenzierbare Funktion φ mit beschränkter Ableitung auch Lipschitz-stetig, und $L = \sup_{x \in M} |\varphi'(x)|$ eine Lipschitz-Konstante. Wegen $|\varphi'(x)| < r$ muss $L \le r$ sein, und somit L < 1. D. h. φ ist eine Kontraktion. Die Konvergenz der Folge (x_n) ist gemäß Satz 2.24 gewährleistet. \square

Satz 2.26. (Hinreichendes Konvergenzkriterium zum Newton-Verfahren).

Sei $f: [a, b] \to \mathbb{R}$ zweimal stetig differenzierbar und $f'(x) \neq 0$ für alle x. Sei

$$\varphi \colon [a,b] \to [a,b], \quad \varphi(x) := x - \frac{f(x)}{f'(x)}.$$

Man beachte $\varphi([a, b]) \subseteq [a, b]$. Gilt für alle x die Ungleichung

$$|\varphi'(x)| = \left|\frac{f(x)f''(x)}{f'(x)^2}\right| < 1,$$

dann besitzt f genau eine Nullstelle und die Folge (x_n) mit $x_{n+1} = \varphi(x_n)$ konvergiert gegen diese Nullstelle.

Beweis. Gemäß den Ableitungsregeln ist φ stetig differenzierbar und es gilt

$$\varphi'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)^2}.$$

Da $|\varphi'(x)|$ stetig ist, gibt es nach dem Satz vom Minimum und Maximum ein Maximum M und nach Voraussetzung ist M < 1. Man setze nun r := (M+1)/2. Dann ist $|\varphi'(x)| < r < 1$. Gemäß Satz 2.25 konvergiert die Iteration (x_n) gegen den einzigen Fixpunkt von φ . Wegen $f'(x) \neq 0$ gilt dabei

$$x = \varphi(x) = x - \frac{f(x)}{f'(x)} \iff \frac{f(x)}{f'(x)} = 0 \iff f(x) = 0.$$

Der Fixpunkt von φ ist also die einzige Nullstelle von f. \square

3 Topologie

3.1 Grundbegriffe

3.1.1 Definitionen

Definition 3.1. (nhfilter: Umgebungsfilter).

$$\underline{U}(x) := \{ U \subseteq X \mid \exists O(O \in T \land x \in O \land O \subseteq U) \}.$$

Definition 3.2. (int: offener Kern).

$$int(M) := \{x \in M \mid M \in \underline{U}(x)\}$$

Satz 3.1. Der offene Kern von M ist die Vereinigung der offenen Teilmengen von M. Kurz:

$$\operatorname{int}(M) = \bigcup_{O \in 2^M \cap T} O.$$

Beweis. Nach Def. 1.2 (seteq) und Def. 3.2 (int) expandieren:

$$\forall x[x\in M\land M\in\underline{U}(x)\iff x\in\bigcup_{O\in2^M\cap T}O].$$

Den äußeren Allquantor brauchen wir nicht weiter mitschreiben, da alle freien Variablen automatisch allquantifiziert werden. Nach Def. 3.1 (nhfilter) weiter expandieren, wobei die Bedingung $U \subseteq X$ als tautologisch entfallen kann, weil X die Grundmenge ist. Auf der rechten Seite wird nach Def. 1.8 (union) expandiert. Es ergibt sich:

$$x \in M \land \exists O(O \in T \land x \in O \land O \subseteq M) \iff \exists O(O \subseteq M \land O \in T \land x \in O).$$

Wegen $A \wedge \exists x (P(x)) \iff \exists x (A \wedge P(x))$ ergibt sich auf der linken Seite:

$$\exists O(x \in M \land O \in T \land x \in O \land O \subseteq M).$$

Wenn aber $O \subseteq M$ erfüllt sein muss, gilt $x \in O \implies x \in M$. Demnach kann $x \in M$ entfallen. Auf beiden Seiten steht dann die gleiche Bedingung. \square

3.2 Metrische Räume

3.2.1 Metrischer Räume

Definition 3.3. (metric-space: metrischer Raum). Man bezeichet (M, d) mit $d: M^2 \to \mathbb{R}$ genau dann als metrischen Raum, wenn die folgenden Axiome erfüllt sind:

(M1) $d(x, y) = 0 \iff x = y$, (Gleichheit abstandsloser Punkte)

(M2) d(x, y) = d(y, x), (Symmetrie)

(M3) $d(x, y) \le d(x, z) + d(z, y)$. (Dreiecksungleichung)

Definition 3.4. (open-ep-ball: offene Epsilon-Umgebung).

Für einen metrischen Raum (M, d) und $p \in M$:

$$U_{\varepsilon}(p) := \{x \mid d(p, x) < \varepsilon\}.$$

Bemerkung: Unter einer Epsilon-Umgebung ohne weitere Attribute versteht man immer eine offene Epsilon-Umgebung.

Satz 3.2. (Konstruktion disjunkter Epsilon-Umgebungen). Sei (M, d) ein metrischer Raum und $p, q \in M$ mit $p \neq q$. Betrachte die Streckenzerlegung d(p, q) = A + B. Für $a \leq A$ und $b \leq B$ sind die Epsilon-Umgebungen $U_a(p)$ und $U_b(q)$ disjunkt.

Beweis. Angenommen $U_a(p)$ und $U_b(q)$ wären nicht disjunkt, dann gäbe es mindestens ein x mit $x \in U_a(p)$ und $x \in U_b(q)$, d. h. d(p,x) < a und d(q,x) < b. Addition der beiden Ungleichungen bringt

$$d(p,x) + d(q,x) < a + b \le d(p,q).$$

Gemäß der Dreiecksungleichung Def. 3.3 Axiom (M3) gilt nun aber

$$d(p,q) \le d(p,x) + d(q,x)$$

für alle x. Sei c := d(p, x) + d(q, x). Wir erhalten damit nun $c < a + b \le c$ und somit den Widerspruch c < c. \square

Korollar 3.3. (Unterschiedliche Punkte eines metrischen Raumes besitzen disjunkte Epsilon-Umgebungen). Sei (M, d) ein metrischer Raum und $p, q \in M$. Wenn $p \neq q$ ist, dann gibt es disjunkte offene Epsilon-Umgebungen $U_q(p)$ und $U_b(q)$.

Beweis. Folgt trivial aus Satz 3.2. Wähle speziell z. B. a = b = d(p, q)/2. \Box

3.2.2 Normierte Räume

Definition 3.5. (normed-space: normierter Raum). Sei V ein Vektorraum über dem Körper der rellen oder komplexen Zahlen. Sei N(x) = ||x|| eine Abbildung, die jedem $x \in V$ eine reelle Zahl zuordnet. Man nennt (V, N) genau dann einen normierten Raum, wenn die folgenden Axiome erfüllt sind:

(N1) $||x|| = 0 \iff x = 0$, (Definitheit)

(N2) $\|\lambda x\| = |\lambda| \|x\|$, (betragsmäßige Homogenität)

(N3) $||x + y|| \le ||x|| + ||y||$. (Dreiecksungleichung)

Satz 3.4. (umgekehrte Dreiecksungleichung). In jedem normierten Raum gilt

$$|||x|| - ||y||| \le ||x - y||.$$

Beweis. Auf beiden Seiten von Def. 3.5 (normed-space) Axiom (N3) wird ||y|| subtrahiert. Es ergibt sich

$$||x + y|| - ||y|| \le ||x||$$
.

Substitution x := x - y bringt nun

$$||x|| - ||y|| \le ||x - y||$$
.

Vertauscht man nun x und y, dann ergibt sich

$$||y|| - ||x|| \le ||y - x|| \iff -(||x|| - ||y||) \le ||x - y||.$$

Wir haben nun $a \le b$ und $-a \le b$, wobei $a := \|x\| - \|y\|$ und $b := \|x - y\|$ ist. Multipliziert man die letzte Ungleichung mit -1, dann ergibt sich $a \ge -b$. Somit ist $-b \le a \le b$, kurz $|a| \le b$. \square

3.2.3 Homöomorphien

Satz 3.5. (Verallgemeinerung des Zwischenwertsatzes).

Ist $f: X \to Y$ eine stetige Abbildung zwischen topologischen Räumen und $A \subseteq X$ ein zusammenhängender Teilraum, dann ist auch f(A) zusammenhängend.

Satz 3.6. Eine injektive Abbildung $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ kann nicht stetig sein.

Beweis. Da f injektiv ist, ist die Rechnung

$$f(\mathbb{R}_{>0}) = f(\mathbb{R}_{\geq 0} \setminus \{0\}) = f(\mathbb{R}_{\geq 0}) \setminus f(\{0\}) = \mathbb{R} \setminus \{f(0)\}$$

gültig gemäß Satz 1.38. Da $\mathbb{R}_{>0}$ zusammenhängend ist, $\mathbb{R}\setminus\{f(0)\}$ aber nicht, kann f laut Satz 3.5 nicht stetig sein. \square

4 Lineare Algebra

4.1 Matrizen

4.1.1 Definitionen

Definition 4.1. (Transponierte Matrix). Sei R ein Ring und $A \in R^{m \times n}$ eine Matrix. Die Matrix $A^T \in R^{n \times m}$ mit $(A^T)_{ij} := A_{ji}$ heißt Transponierte von A.

Definition 4.2. (Konjugierte Matrix). Sei $A \in \mathbb{C}^{m \times n}$. Die Matrix \overline{A} mit $(\overline{A})_{ij} := \overline{A_{ij}}$ heißt konjugierte Matrix zu A. Mit $\overline{A_{ij}}$ ist die Konjugation der komplexen Zahl A_{ij} gemeint.

Definition 4.3. (Adjungierte Matrix). Sei $A \in \mathbb{C}^{m \times n}$. Die Adjungierte zu A ist definiert als $A^H := (\overline{A})^T$, d. h. die Transponierte der konjugierten Matrix zu A.

Definition 4.4. (Inverse Matrix). Sei K ein Körper und $A \in K^{n \times n}$ eine quadratische Matrix. Man nennt A invertierbar, wenn es eine Matrix B gibt, mit $AB = BA = E_n$, wobei E_n die Einheitsmatrix ist. Die Matrix $A^{-1} := B$ heißt dann inverse Matrix zu A.

4.1.2 Rechenregeln

Korollar 4.1. Sei R ein kommutativer Ring. Für Matrizen $A \in R^{m \times n}$ und $B \in R^{n \times p}$ gilt $(AB)^T = B^T A^T$.

Beweis. Es gilt:

$$(AB)^{T} = \left(\sum_{k=1}^{n} A_{ik} B_{kj}\right)^{T} = \left(\sum_{k=1}^{n} A_{jk} B_{ki}\right) = \left(\sum_{k=1}^{n} B_{ki} A_{jk}\right)$$
(4.1)

$$= \left(\sum_{k=1}^{n} (B^{\mathsf{T}})_{ik} (A^{\mathsf{T}})_{kj}\right) = B^{\mathsf{T}} A^{\mathsf{T}}. \square$$

$$(4.2)$$

Korollar 4.2. Sei $A \in K^{n \times n}$ eine invertierbare Matrix. Dann ist auch A^T invertierbar und es gilt $(A^{-1})^T = (A^T)^{-1}$.

Beweis. Aus $E = A^{-1}A = AA^{-1}$ und Korollar 4.1 folgt

$$E = E^{T} = (A^{-1}A)^{T} = A^{T}(A^{-1})^{T} = (AA^{-1})^{T} = (A^{-1})^{T}A^{T}.$$
 (4.3)

Dann muss A^T nach Def. 4.4 die inverse Matrix zu $(A^{-1})^T$ sein. \square

Korollar 4.3. Sei $v \in \mathbb{R}^n$ und $w \in \mathbb{R}^m$. Sei $A \in \mathbb{R}^{m \times n}$. Es gilt $\langle Av, w \rangle = \langle v, A^T w \rangle$, wobei links das Standardskalarprodukt auf dem \mathbb{R}^m und rechts das auf dem \mathbb{R}^n ausgewertet wird.

Beweis. Identifiziert man die Vektoren $x, y \in \mathbb{R}^k$ mit den Matrizen $x, y \in \mathbb{R}^{k \times 1}$, dann ist $\langle x, y \rangle = x^T y$. Gemäß Korollar 4.1 darf man rechnen:

$$\langle Av, w \rangle = (Av)^T w = v^T A^T w = \langle v, A^T w \rangle. \square$$

4.1.3 Rechenregeln für komplexe Matrizen

Korollar 4.4. Für Matrizen $A \in \mathbb{C}^{m \times n}$ und $B \in \mathbb{C}^{n \times p}$ gilt

$$\overline{AB} = \overline{A} \cdot \overline{B}$$

Beweis. Es gilt

$$\overline{AB} = \overline{\left(\sum_{k=1}^{n} A_{ik} B_{kj}\right)} = \left(\sum_{k=1}^{n} \overline{A_{ik} B_{kj}}\right) = \left(\sum_{k=1}^{n} \overline{A_{ik}} \cdot \overline{B_{kj}}\right) = \left(\sum_{k=1}^{n} (\overline{A})_{ik} (\overline{B})_{kj}\right) = \overline{A} \cdot \overline{B}. \square$$

Korollar 4.5. Für Matrizen $A \in \mathbb{C}^{m \times n}$ und $B \in \mathbb{C}^{n \times p}$ gilt

$$(AB)^H = B^H A^H$$
.

Beweis. Gemäß Korollar 4.4 und 4.1 gilt

$$(AB)^H = (\overline{AB})^T = (\overline{A} \cdot \overline{B})^T = (\overline{B})^T (\overline{A})^T = B^H A^H.$$

Korollar 4.6. Sei $v \in \mathbb{C}^n$ und $w \in \mathbb{C}^m$. Sei $A \in \mathbb{C}^{m \times n}$. Es gilt $\langle Av, w \rangle = \langle v, A^H w \rangle$, wobei links das Standardskalarprodukt auf dem \mathbb{C}^m ausgewertet wird und rechts das auf dem \mathbb{C}^n .

Beweis. Identifiziert man die Vektoren $x, y \in \mathbb{C}^k$ mit den Matrizen $x, y \in \mathbb{C}^{k \times 1}$, dann gilt $\langle x, y \rangle = x^H y$. Gemäß Korollar 4.5 darf man rechnen

$$\langle Av, w \rangle = (Av)^H w = v^H A^H w = \langle v, A^H w \rangle, \square$$

4.2 Eigenwerte

Satz 4.7. Gegeben sei eine quadratische Matrix $A \in \mathbb{R}^{n \times n}$. Dann ist die Matrix $M = A^T A$ symmetrisch und besitzt nur nichtnegative Eigenwerte, speziell bei $\det(A) \neq 0$ nur positive.

Beweis. Gemäß Satz 4.1 gilt

$$M^{T} = (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A = M.$$
(4.4)

Ist nun λ ein Eigenwert von M und ν ein Eigenvektor dazu, dann gilt $M\nu = \lambda\nu$. Unter Anwendung von Korollar 4.3 folgt daraus

$$\lambda |\nu|^2 = \langle \lambda \nu, \nu \rangle = \langle M \nu, \nu \rangle = \langle A^T A \nu, \nu \rangle = \langle A \nu, A \nu \rangle = |A \nu|^2 \ge 0. \tag{4.5}$$

Ergo ist $\lambda |v|^2 \geq 0$. Unter der Voraussetzung $v \neq 0$ ist |v| > 0. Dann muss auch $\lambda \geq 0$ sein. Wenn nun det(A) $\neq 0$ ist, also A eine reguläre Matrix, dann hat A trivialen Kern, also Av = 0 nur im Fall v = 0. Da $v \neq 0$ vorausgesetzt wurde, muss auch $Av \neq 0$, und damit |Av| > 0 sein. Dann ist auch $\lambda > 0$. Alternativ folgt $\lambda > 0$ daraus, dass det(A) das Produkt der Eigenwerte ist. \square

Satz 4.8. Gegeben sei eine Matrix $A \in \mathbb{C}^{m \times n}$. Dann ist die Matrix $M = A^H A$ hermitisch und besitzt nur nichtnegative reelle Eigenwerte.

Beweis. Gemäß Satz 4.5 gilt

$$M^{H} = (A^{H}A)^{H} = A^{H}(A^{H})^{H} = A^{H}A = M.$$
(4.6)

Ist nun λ ein Eigenwert von M und ν ein Eigenvektor dazu, dann gilt $M\nu = \lambda\nu$. Unter Anwendung von Korollar 4.6 folgt daraus

$$\lambda |\nu|^2 = \langle \lambda \nu, \nu \rangle = \langle M \nu, \nu \rangle = \langle A^H A \nu, \nu \rangle = \langle A \nu, A \nu \rangle = |A \nu|^2 \ge 0. \tag{4.7}$$

Ergo ist $\lambda |v|^2 \ge 0$. Unter der Voraussetzung $v \ne 0$ ist |v| > 0. Dann muss auch $\lambda \ge 0$ sein. \square

Definition 4.5. (Unitare Matrix).

Eine quadratische Matrix A heißt unitär, wenn $A^{H}A = E$ gilt.

Korollar 4.9. Ist A unitär, dann gilt |Av| = |v| für jeden Vektor v.

Beweis. Laut Korollar 4.6 gilt

$$|Av|^2 = \langle Av, Av \rangle = \langle v, A^H Av \rangle = \langle v, Ev \rangle = \langle v, v \rangle = |v|^2.$$

Radizieren ergibt |Av| = |v|. \square

Korollar 4.10. Für jeden Eigenwert λ einer unitären Matrix gilt $|\lambda| = 1$.

Beweis. Sei ν ein Eigenvektor zum Eigenwert λ . Laut Korollar 4.6 ist dann

$$|v|^2 = \langle v, v \rangle = \langle v, Ev \rangle = \langle v, A^H A v \rangle = \langle Av, Av \rangle = |Av|^2 = |\lambda v|^2 = |\lambda|^2 |v|^2.$$

Daher ist $|\lambda|^2 = 1$, und wegen $|\lambda| \ge 0$ folglich $|\lambda| = 1$. \square

4.2.1 Quadratische Matrizen

Satz 4.11. Sei

$$I:=\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}, \quad \alpha E+bI=\alpha\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}+b\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}=\begin{bmatrix}\alpha & -b\\b & \alpha\end{bmatrix}.$$

Die Menge $M := \{ aE + bI \mid a, b \in \mathbb{R} \}$ bildet bezüglich Matrizenaddition und Matrizenmultiplikation einen Körper $(M, +, \cdot)$. Die Abbildung

$$\Phi: \mathbb{C} \to M$$
, $\Phi(\alpha + bi) := \alpha E + bI$

ist ein Isomorphismus zwischen Körpern.

Beweis. Bei (M, +) handelt es sich um eine Untergruppe der kommutativen Gruppe $(\mathbb{R}^{2\times 2}, +)$, denn gemäß

$$(aE + bI) + (cE + dI) = (a + b)E + (b + d)I \in M$$
(4.8)

und

$$-(aE + bI) = (-a)E + (-b)I \in M$$

$$(4.9)$$

ist das Untergruppenkriterium erfüllt. Die Abgeschlossenheit bezüglich Multiplikation:

$$(aE + bI)(cE + dI) = aEcE + aEdI + bIcE + bIdI$$

= $acE + adI + bcI + bdI^2 = (ac - bd)E + (ad + bc)I \in M.$ (4.10)

Das Kommutativgesetz:

$$(aE + bI)(cE + dI) = (ac - bd)E + (ad + bc)I$$

= $(ca - db)E + (cb + da)I = (cE + dI)(aE + bI).$ (4.11)

Das Assoziativgesetz ist für Matrizen allgemeingültig. Das multiplikativ neutrale Element ist die Einheitsmatrix E. Wird nun $aE+bI\neq 0$ vorausgesetzt, dann ist $a\neq 0 \lor b\neq 0$. Daher ist $\det(aE+bI)=a^2+b^2\neq 0$. Demnach besitzt aE+bI eine Inverse. Somit muss $(M,+,\cdot)$ ein Körper sein.

Die Abbildung Φ ist invertierbar, denn jedes Bild A kann auf eindeutige Art in A = aE + bI zerlegt werden, wodurch a, b eindeutig bestimmt sind. Die Eigenschaften

$$\Phi((a+bi) + (c+di)) = \Phi(a+bi) + \Phi(c+di)$$
(4.12)

und

$$\Phi((\alpha + bi)(c + di)) = \Phi(\alpha + bi)\Phi(c + di) \tag{4.13}$$

ergeben sich aus den Rechnungen (4.8) und (4.10).

□

4.3 Bilinearformen

Definition 4.6. (Nicht ausgeartete Bilinearform).

Sei $B: V \times W \rightarrow K$ eine Bilinearform, sei

$$B_1: V \to W^*, \quad B_1(v)(w) := B(v, w),$$

 $B_2: W \to V^*, \quad B_2(w)(v) := B(v, w).$

Man nennt B nicht ausgeartet, wenn B_1 und B_2 injektiv sind.

Korollar 4.12. Eine Bilinearform $B: V \times W \to K$ ist genau dann nicht ausgeartet, wenn $B_1(v)$ für alle $v \neq 0$ und $B_2(w)$ für alle $w \neq 0$ nicht die Nullabbildung ist. Die Abbildungen B_1, B_2 aus Def. 4.6.

Beweis. Die lineare Abbildung B_1 ist genau dann injektiv, wenn

$$\{0\} = \text{Kern}(B_1) := \{v \mid B_1(v) = 0\} \tag{4.14}$$

ist. Wegen $B_1(0) = 0$ ist B_1 schon dann injektiv, wenn

$$B_1(v) = 0 \implies v = 0, \tag{4.15}$$

was per Kontraposition äquivalent ist zu $v \neq 0 \implies B_1(v) \neq 0$. Für B_2 gilt eine analoge Argumentation. \square

Korollar 4.13. Eine symmetrische Bilinearform $B: V \times V \to K$ ist genau dann nicht ausgeartet, wenn es für alle $v \neq 0$ ein w gibt, so dass $B(v, w) \neq 0$.

Beweis. Da B symmetrisch ist, ist $B_1 = B_2$ in Def. 4.6. Es genügt also, B_1 zu betrachten. Nun gilt

$$B_1(v) = 0 \iff (\forall w : B_1(v)(w) = 0(w)) \iff (\forall w : B(v, w) = 0). \tag{4.16}$$

Aus Korollar 4.12 ergibt sich dann die Behauptung, d. h. die Äquivalenz zu

$$v \neq 0 \implies \exists w : B(v, w) \neq 0. \square$$
 (4.17)

Korollar 4.14. Ein reelles Skalarprodukt (v, w) ist nicht ausgeartet.

Beweis. In Korollar 4.13 setze $B(v, w) := \langle v, w \rangle$. Wegen

$$\langle v, v \rangle = 0 \iff v = 0 \tag{4.18}$$

kann man für $v \neq 0$ immer w := v setzen, dann ist $B(v, w) = \langle v, v \rangle \neq 0$. \square

Satz 4.15. Sind V, W endlichdimensional, dann sind bei einer nicht ausgearteten Bilinearform $B: V \times W \to K$ die Abbildungen B_1, B_2 aus Def. 4.6 Isomorphismen.

Beweis. Es gilt $\dim B_1(V) \leq \dim W^*$ und $\dim B_2(W) \leq \dim V^*$. Gemäß Rangsatz erhält man $\dim V = \dim B_1(V)$ und $\dim W = \dim B_2(W)$, da B_1, B_2 nach Voraussetzung injektiv sind. Demnach ist

$$\dim V \le \dim W^* = \dim W \le \dim V^* = \dim V. \tag{4.19}$$

Folglich muss $\dim V = \dim W = \dim V^* = \dim W^*$ sein. Somit haben B_1, B_2 vollen Rang, sind also surjektiv. \square

4.4 Euklidische Geometrie

Satz 4.16. (Satz des Thales).

Gegeben seien zwei Punkte A,B, deren Strecke ein Durchmesser des Kreises ist. Sei C ein beliebiger weiterer Punkt auf dem Kreis. Dann ist das Dreieck $\triangle ABC$ rechtwinklig.

Beweis. Wählt man den Mittelpunkt des Kreises als Ursprung aus, wird die Ebene zu einem euklidischen Vektorraum. Jeder Punkt kann nun mit seinem Ortsvektor identifiziert werden, setze $\mathbf{a} := A$, $\mathbf{b} := B$, $\mathbf{c} := C$. Zu zeigen ist, dass $\mathbf{v} := \mathbf{c} - \mathbf{a}$ rechtwinklig auf $\mathbf{w} := \mathbf{c} - \mathbf{b}$ steht. Das ist genau dann der Fall, wenn $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ ist. Man beachte $\mathbf{b} = -\mathbf{a}$. Aufgrund der Bilinearität und Symmetrie des Skalarproduktes ergibt sich

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{c} - \mathbf{\alpha}, \mathbf{c} + \mathbf{\alpha} \rangle = \langle \mathbf{c}, \mathbf{c} \rangle + \langle \mathbf{c}, \mathbf{\alpha} \rangle - \langle \mathbf{c}, \mathbf{\alpha} \rangle - \langle \mathbf{\alpha}, \mathbf{\alpha} \rangle$$
 (4.20)

$$= |\mathbf{c}|^2 - |\mathbf{\alpha}|^2 = 0. \tag{4.21}$$

Die letzte Gleichung gilt wegen $|\mathbf{a}| = |\mathbf{c}|$. \square

Satz 4.17. (Kosinussatz).

Gegeben ist ein Dreieck $\triangle ABC$. Sei γ der Winkel $\angle ACB$. Dann gilt

$$c^2 = a^2 + b^2 - 2ab\cos\gamma.$$

Beweis. Sei $\mathbf{a} := \overrightarrow{CB}$, $\mathbf{b} := \overrightarrow{CA}$, und $\mathbf{c} := \mathbf{a} - \mathbf{b}$. Dann gilt $a = |\mathbf{a}|$, $b = |\mathbf{b}|$ und $c = |\mathbf{c}|$. Die Rechenregeln des Skalarproduktes gestatten nun die folgende Rechnung:

$$c^{2} = |\mathbf{a} - \mathbf{b}|^{2} = \langle \mathbf{a} - \mathbf{b}, \mathbf{a} - \mathbf{b} \rangle = \langle \mathbf{a}, \mathbf{a} \rangle + \langle \mathbf{b}, \mathbf{b} \rangle - 2\langle \mathbf{a}, \mathbf{b} \rangle$$
(4.22)

$$= a^2 + b^2 - 2ab\cos\gamma. \,\Box \tag{4.23}$$

Abbildung 4.1: Zeichnung zum Satz des Thales

Abbildung 4.2: Zeichnung zum Kosinussatz

5 Algebra

5.1 Gruppentheorie

5.1.1 Grundlagen

Definition 5.1. (Gruppe). Das Tupel (G, *) bestehend aus einer Menge G und Abbildung $*: G \times G \to \Omega$ heißt Gruppe, wenn die folgenden Axiome erfüllt sind:

- (G1) Für alle $a, b \in G$ gilt $a * b \in G$. D. h. man darf $G = \Omega$ setzen.
- (G2) Es gilt das Assoziativgesetz: für alle $a, b, c \in G$ gilt (a * b) * c = a * (b * c).
- (G3) Es gibt ein Element $e \in G$, so dass e * g = g = g * e für jedes $g \in G$ gilt.
- (G4) Zu jedem $g \in G$ gibt es ein $g^{-1} \in G$ so dass $g * g^{-1} = e = g^{-1} * g$ gilt.

Das Element e wird neutrales Element der Gruppe genannt. Das Element g^{-1} wird inverses Element zu g genannt. Anstelle von a*b schreibt man auch kurz ab. Ist (G, +) eine Gruppe, dann schreibt man immer a+b, und -g anstelle von g^{-1} .

Korollar 5.1. Das neutrale Element einer Gruppe *G* ist eindeutig bestimmt. D. h. es gibt keine zwei unterschiedlichen neutralen Elemente.

Beweis. Seien e, e' zwei neutrale Elemente von G. Nach Axiom (G3) gilt dann e = e'e, und weiter e'e = e' bei nochmaliger Anwendung von (G3). Daher ist e = e'. \square

Korollar 5.2. Sei G eine Gruppe. Zu jedem Element $g \in G$ ist das inverse Element g^{-1} eindeutig bestimmt. D. h. es kann keine zwei unterschiedlichen inversen Elemente zu g geben.

Beweis. Seien a, b zwei inverse Elemente zu g. Nach Axiom (G3), Axiom (G2) und Axiom (G4) gilt

$$a \stackrel{(G3)}{=} ae \stackrel{(G4)}{=} a(gb) \stackrel{(G2)}{=} (ag)b \stackrel{(G4)}{=} eb \stackrel{(G3)}{=} b.$$

Daher ist a = b. \square

Definition 5.2. (Untergruppe). Sei (G, *) eine Gruppe. Eine Teilmenge $U \subseteq G$ heißt Untergruppe von G, kurz $U \leq G$, wenn U bezüglich derselben Verknüpfung * selbst eine Gruppe (U, *) bildet.

Korollar 5.3. Jede Gruppe G besitzt die Untergruppen $\{e\} \leq G$ und $G \leq G$, wobei $e \in G$ das neutrale Element ist. Man spricht von den trivialen Untergruppen.

Beweis. Die Aussage $G \le G$ ist trivial, denn $G \subseteq G$ ist allgemeingültig und (G, *) bildet nach Voraussetzung eine Gruppe. Zu (G1): Es gilt ee = e. Da es nur diese eine Möglichkeit gibt, sind damit alle überprüft. Zu (G2): Das Assoziativgesetz wird auf Elemente der Teilmenge vererbt. Zu (G3): Das neutrale Element ist in $\{e\}$ enthalten. Zu (G4): Das neutrale Element ist gemäß ee = e zu sich selbst invers. Da e das einzige Element von $\{e\}$ ist, sind damit alle überprüft. \square

5.2 Ringtheorie

5.2.1 Grundlagen

Definition 5.3. (Ring). Eine Struktur $(R, +, \cdot)$ heißt genau dann Ring, wenn die folgenden Axiome erfüllt sind

- 1. (R, +) ist eine kommutative Gruppe.
- 2. (R, \cdot) ist eine Halbgruppe.
- 3. Für alle $a, b, c \in R$ gilt a(b+c) = ab + ac. (Linksdistributivgesetz)
- 4. Für alle $a, b, c \in R$ gilt (a + b)c = ac + bc. (Rechtsdistributivgesetz)

Bemerkung: Das neutrale Element von (R, +) wird als Nullelement bezeichnet und meist 0 geschrieben.

Definition 5.4. (Ring mit Eins). Ein Ring R heißt genau dann Ring mit Eins, wenn (R, \cdot) ein Monoid ist. Monoid heißt, es gibt ein Element $e \in R$, so dass $e \cdot a = a$ und $a \cdot e = a$ für alle $a \in R$.

Bemerkung: Man bezeichnet e als Einselement des Rings.

Korollar 5.4. Sei R ein Ring und $0 \in R$ das Nullelement. Für jedes $\alpha \in R$ gilt $0 \cdot \alpha = 0$ und $\alpha \cdot 0 = 0$.

Beweis. Man rechnet

$$0a = 0a + 0 = 0a + 0a - 0a = (0 + 0)a - 0a = 0a - 0a = 0.$$

Die Rechnung für $\alpha \cdot 0$ ist analog. \square

Korollar 5.5. Sei R ein Ring und $a, b \in R$, dann gilt (-a)b = -(ab) = a(-b).

Beweis. Man rechnet

$$(-a)b = (-a)b + 0 = (-a)b + ab - (ab) = ((-a) + a)b - (ab)$$
$$= 0b - (ab) = 0 - (ab) = -(ab). \square$$

Korollar 5.6. (»Minus mal minus macht plus«).

Sei R ein Ring und $a, b \in R$, dann gilt (-a)(-b) = ab.

Beachtung von -(-x) = x nach zweifacher Anwendung von Korollar 5.5 bringt

$$(-a)(-b) = -((-a)b) = -(-(ab)) = ab. \square$$

5.3 Polynomringe

5.3.1 Einsetzungshomomorphismus

Satz 5.7. Die Abbildung $\Phi: \mathbb{R}[X] \to \text{Abb}(\mathbb{R}, \mathbb{R})$ mit $\Phi(f)(x) := f(x)$ ist injektiv.

Beweis. Sei $f = \sum_{k=0}^{n} a_k X^k$ und $g = \sum_{k=0}^{n} b_k X^k$, wobei $n = \max(\deg f, \deg g)$. Zu zeigen ist

$$(\forall x \in \mathbb{R})(\Phi(f)(x) = \Phi(g)(x)) \implies f = g,$$

d.h.

$$(\forall x \in \mathbb{R})(\sum_k \alpha_k x^k = \sum_k b_k x^k) \implies (\forall k)(\alpha_k = b_k).$$

Die Umformung der Voraussetzung ergibt $\sum_k (b_k - a_k) x^k = 0$. D. h. jedes der $(b_k - a_k)$ muss verschwinden. Zu zeigen ist also lediglich

$$(\forall x)(\sum_{k=0}^n c_k x^k = 0) \implies (\forall k)(c_k = 0).$$

Wenn f(x) = 0 für alle x ist, muss auch die Ableitung $D^m f(x) = 0$ sein. Es gilt $D^k x^k = k!$, und daher

$$D^n \sum_{k=0}^n c_k x^k = n! \cdot c_n = 0 \implies c_n = 0.$$

Demnach ergibt sich dann aber auch

$$D^{n-1} \sum_{k=0}^{n} c_k x^k = (n-1)! \cdot c_{n-1} = 0 \implies c_{n-1} = 0$$

usw. Man erhält $c_k = 0$ für alle k. \square

6 Wahrscheinlichkeitsrechnung

6.1 Diskrete Wahrscheinlichkeitsräume

Definition 6.1. (Diskreter Wahrscheinlichkeitsraum).

Sei Ω eine höchstens abzählbare Menge. Das Paar (Ω, P) nennt man diskreten Wahrscheinlichkeitsraum, wenn

$$P: 2^{\Omega} \to [0,1], \quad P(A) := \sum_{\omega \in A} P(\{\omega\})$$

die Eigenschaft $\sum_{\omega \in \Omega} P(\{\omega\}) = 1$ besitzt.

Bemerkung: Man schreibt auch $P(\omega) := P(\{\omega\})$.

Definition 6.2. (Reelle Zufallsgröße).

Sei (Ω, P) ein diskreter Wahrscheinlichkeitsraum. Eine Funktion $X: \Omega \to \mathbb{R}$ nennt man Zufallsgröße. Die Verteilung von X ist definiert gemäß $P_X(A) := P(X^{-1}(A))$.

Definition 6.3. (Erwartungswert).

Sei (ω_k) eine beliebige Abzählung von Ω . Ist die Reihe $\sum_{k=0}^{|\Omega|} X(\omega_k) P(\{\omega_k\})$ absolut konvergent, dann nennt man

$$E(X) := \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$$

den Erwartungswert von X.

Satz 6.1. Es gilt

$$E(X) = \sum_{x \in X(\Omega)} x P(X^{-1}(x)) = \sum_{x \in X(\Omega)} x P(X = x).$$

Beweis. Zunächst gilt

$$\sum_{\substack{\omega \in \Omega \\ X(\omega) = x}} P(\omega) = P(\bigcup_{\substack{\omega \in \Omega \\ X(\omega) = x}} \{\omega\}) = P(\{\omega \in \Omega \mid X(\omega) = x\}) = P(X^{-1}(x)).$$

Da die Reihe zu E(X) nach Def. 6.3 absolut konvergent ist, darf sie beliebig umgeordnet werden und man bekommt

$$E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{x \in X(\Omega)} \sum_{\substack{\omega \in \Omega \\ X(\omega) = x}} x P(\omega) = \sum_{x \in X(\Omega)} x \sum_{\substack{\omega \in \Omega \\ X(\omega) = x}} P(\omega)$$
$$= \sum_{x \in X(\Omega)} x P(X^{-1}(x)). \square$$

Korollar 6.2. Der Erwartungswertoperator ist ein lineares Funktional, d.h. es gilt $E(\alpha X) = \alpha E(X)$ und E(X + Y) = E(X) + E(Y).

Beweis. Aufgrund der Konvergenz der Reihen gilt

$$E(aX) = \sum_{\omega \in \Omega} aX(\omega)P(\omega) = a\sum_{\omega \in \Omega} X(\omega)P(\omega) = aE(X)$$

und

$$\begin{split} E(X+Y) &= \sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) P(\omega) = \sum_{\omega \in \Omega} (X(\omega) P(\omega) + Y(\omega) P(\omega)) \\ &= \sum_{\omega \in \Omega} X(\omega) P(\omega) + \sum_{\omega \in \Omega} Y(\omega) P(\omega) = E(X) + E(Y). \ \Box \end{split}$$

Korollar 6.3. Ist $X \le Y$, dann ist auch $E(X) \le E(Y)$.

Beweis. Gemäß $P(\omega) \ge 0$ ist

$$X \le Y \iff X(\omega) \le Y(\omega) \iff 0 \le Y(\omega) - X(\omega) \iff 0 \le (Y(\omega) - X(\omega))P(\omega)$$

Somit hat man

$$X \le Y \implies 0 \le E(Y - X) = \sum_{\omega \in \Omega} (Y(\omega) - X(\omega))P(\omega),$$

und gemäß Linearität daher

$$X \le Y \implies 0 \le E(Y - X) = E(Y) - E(X) \iff E(X) \le E(Y)$$
. \square

Definition 6.4. (Unabhängige Ereignisse).

Zwei Ereignisse A, B heißen unabhängig, falls $P(A \cap B) = P(A)P(B)$.

Definition 6.5. (Unabhängige Zufallsgrößen).

Zwei Zufallsgrößen $X, Y: \Omega \to \mathbb{R}$ heißen unabhängig, wenn die Ereignisse $\{X \in A\}$ und $\{X \in B\}$ für alle Mengen $A, B \subseteq \mathbb{R}$ unabhängig sind.

Satz 6.4. Zwei Zufallsgrößen $X, Y: \Omega \to \mathbb{R}$ sind genau dann unabhängig, wenn für alle $x \in X(\Omega)$ und $y \in Y(\Omega)$ gilt:

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Beweis. Sind X, Y unabhängig, dann ist

$$P(X = x, Y = y) = P(\{X \in \{x\}\} \cap \{Y \in \{y\}\}) = P(\{X \in \{x\}\})P(\{Y \in \{y\}\})$$
$$= P(X = x)P(Y = y).$$

Umgekehrt gelte nun P(X = x, Y = y) = P(X = x)P(Y = y), dann ist

$$P(\{X \in A\} \cap \{Y \in B\}) = P(\bigcup_{x \in A} \{X = x\} \cap \bigcup_{y \in B} \{Y = y\})$$

$$= P(\bigcup_{x \in A} \bigcup_{y \in B} (\{X = x\} \cap \{Y = y\})) = \sum_{x \in A} \sum_{y \in B} P(\{X = x\} \cap \{Y = y\})$$

$$= \sum_{x \in A} \sum_{y \in B} P(X = x)P(Y = y) = \sum_{x \in A} P(X = x) \sum_{y \in B} P(Y = y)$$

$$= P(\bigcup_{x \in A} \{X = x\})P(\bigcup_{y \in B} \{Y = y\}) = P(X \in A)P(Y \in B). \square$$

Index

Abbildungen, 11 Ableitung, 28 abzählbares Auswahlaxiom, 17 adjungierte Matrix, 37 algebraische Zahlen Kardinalität, 18 Assoziativgesetz Mengen, boolesche Algebra, 8 Aussagenlogik, 5 Auswahlaxiom abzählbares, 17 Banach Fixpunktsatz von, 30 beschränkte Folge, 21 Bildmenge, 11 differenzierbar, 28 Distributivgesetz boolesche Algebra, 5 Urbildoperation, 12 Dreiecksungleichung, 34 umgekehrte, 34 Epsilon-Umgebung, 21 Fixpunkt-Iteration, 30 Fixpunktgleichung, 24 Fixpunktsatz von Banach, 30	Kontraktion, 30 konvergente Folge, 21 Mengenlehre, 7 metrischer Raum, 33 Newton-Verfahren, 31 normierter Raum, 34 offene Epsilon-Umgebung, 21 offener Kern, 33 Prädikatenlogik, 5 Produktregel, 28 Schnittmenge, 7 stetig folgenstetig, 24 Surjektion, 11 Teilmenge, 7 transponierte Matrix, 37 Umgebungsfilter, 33 umgekehrte Dreiecksungleichung, 34 unitäre Matrix, 39 Urbildmenge, 11 Vereinigungsmenge, 7 Verkettung, 11
folgenstetig, 24 Gleichheit von Abbildungen, 11 von Mengen, 7 gleichmächtig, 17 Grenzwert, 21 Grenzwertsätze, 23 Indikatorfunktion, 17 Injektion, 11 inverse Matrix, 37 kartesisches Produkt, 7 Kommutativgesetz Mengen, boolesche Algebra, 7 Komposition, 11 konjugierte Matrix, 37	