A - Add and Swap

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

You are given integers N, K, and a sequence $A = (A_1, \ldots, A_N)$ of length N.

Determine whether it is possible to make A non-decreasing by performing the following operation at most 500000 times, and if possible, provide one sequence of operations to do so.

• Choose an integer i between 1 and N-1, inclusive. Simultaneously replace A_i with $A_{i+1}+K$, and A_{i+1} with A_i .

Constraints

- All input numbers are integers.
- $2 \le N \le 50$
- 1 < K < 50
- $1 \le A_i \le 50$

Input

The input is given from Standard Input in the following format:

Output

If it is impossible to make A non-decreasing within 500000 operations, print No. Otherwise, print a solution in the following format, where M is the number of operations $(0 \le M \le 500000)$, and i_k is the i chosen in the k-th operation $(1 \le k \le M)$:

Yes
$$M$$
 $i_1 \ \ldots \ i_M$

If multiple valid solutions exist, any of them will be considered correct.

```
3 2
3 6 4
```

Sample Output 1

```
Yes 1 2
```

Let us perform the operation with i=2. This simultaneously replaces A_2 with $A_3+2=6$, and A_3 with $A_2=6$, making A=(3,6,6).

Now \boldsymbol{A} is non-decreasing, so this output satisfies the conditions.

Sample Input 2

```
3 3
1 5 8
```

Sample Output 2

```
Yes 2 2 2
```

It is not necessary to minimize the number of operations.

B-Sum of CC

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

For a sequence $A=(A_1,\ldots,A_N)$ of length N, define f(A) as follows.

• Prepare a graph with N vertices labeled 1 to N and zero edges. For every integer pair (i,j) satisfying $1 \leq i < j \leq N$, if $A_i \leq A_j$, draw a bidirectional edge connecting vertices i and j. Define f(A) as the number of connected components in the resulting graph.

You are given a sequence $B=(B_1,\ldots,B_N)$ of length N. Each element of B is -1 or an integer between 1 and M, inclusive.

By replacing every occurrence of -1 in B with an integer between 1 and M, one can obtain M^q sequences B', where q is the number of -1 in B.

Find the sum, modulo 998244353, of f(B') over all possible B'.

Constraints

- All input numbers are integers.
- $2 \le N \le 2000$
- $1 \le M \le 2000$
- Each B_i is -1 or an integer between 1 and M, inclusive.

Input

The input is given from Standard Input in the following format:

$$egin{array}{cccc} N & M & & & \ B_1 & \dots & B_N & & \end{array}$$

Output

Print the answer.

```
3 3
2 -1 1
```

Sample Output 1

6

There are three possible sequences B': (2,1,1), (2,2,1), and (2,3,1).

When B'=(2,1,1), an edge is drawn only between vertices 2 and 3, so the number of connected components is 2. Thus, f(B')=2.

Similarly, f(B')=2 for B'=(2,2,1) and f(B')=2 for B'=(2,3,1), so the answer is 2+2+2=6.

Sample Input 2

```
10 8
-1 7 -1 -1 -1 2 -1 1 -1 2
```

Sample Output 2

329785

Sample Input 3

```
11 12
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
```

Sample Output 3

529513150

Remember to find the sum modulo 998244353.

C - 1 Loop Bubble Sort

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 800 points

Problem Statement

For a permutation $P=(P_1,\ldots,P_N)$ of $(1,\ldots,N)$, let $P'=(P_1',\ldots,P_N')$ be the permutation obtained by performing the following operation once.

ullet For $i=1,2,\ldots,N-1$ in this order, if $P_i>P_{i+1}$, swap P_i and P_{i+1} .

You are given a sequence $Q=(Q_1,\dots,Q_N)$ of length N. Each Q_i is -1 or an integer between 1 and N, inclusive.

Find the number, modulo 998244353, of permutations P of $(1,\ldots,N)$ such that, for every i, if $Q_i\neq -1$ then $Q_i=P_i'$.

Constraints

- All input numbers are integers.
- 2 < N < 5000
- Each Q_i is -1 or an integer between 1 and N.
- Each of $1, 2, \ldots, N$ appears at most once in Q.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

```
4 -1 -1 2 4
```

Sample Output 1

6

For example, P=(3,1,4,2) satisfies the conditions. This can be confirmed by the following behavior of the operation.

- ullet For i=1, since $P_1>P_2$, swap P_1 and P_2 , resulting in P=(1,3,4,2).
- For i=2, since $P_2 < P_3$, do nothing.
- For i=3, since $P_3>P_4$, swap P_3 and P_4 , resulting in P=(1,3,2,4).
- Thus, P'=(1,3,2,4), satisfying $P_3'=2$ and $P_4'=4$.

There are six permutations P that satisfy the conditions:

- (1,3,4,2)
- (1,4,3,2)
- (3,1,4,2)
- (3,4,1,2)
- (4,1,3,2)
- (4,3,1,2)

Sample Input 2

```
6
-1 -1 -1 -1 2 -1
```

Sample Output 2

120

Sample Input 3

```
15
-1 -1 -1 -1 4 -1 -1 -1 7 -1 -1 -1
```

Sample Output 3

237554682

Remember to find the count modulo 998244353.

D - Many Easy Optimizations

Time Limit: 5 sec / Memory Limit: 1024 MiB

 $\mathsf{Score} : 900 \, \mathsf{points}$

Problem Statement

Define the **cost** of a sequence X as (the maximum value of X minus the minimum value of X).

You are given sequences $A=(A_1,\ldots,A_N)$ and $B=(B_1,\ldots,B_N)$ of length N. Solve the following problem for $k=1,2,\ldots,N$.

• Find the minimum possible cost of the sequence $C=(C_1,\ldots,C_k)$ whose i-th element C_i is A_i or B_i .

Constraints

- All input numbers are integers.
- $1 \le N \le 5 \times 10^5$
- $1 \le A_i, B_i \le 10^9$

Input

The input is given from Standard Input in the following format:

Output

Print N lines.

The i-th line $(1 \leq i \leq N)$ should contain the minimum possible cost of sequence C for k=i.

```
3
8 11 10
7 6 1
```

Sample Output 1

```
0
1
3
```

For k=1, if we choose C=(8), the cost of C is 0, which is the minimum.

For k=2, if we choose C=(7,6), the cost of C is 1, which is the minimum.

For k=3, if we choose C=(8,11,10), the cost of C is 3, which is the minimum.

Sample Input 2

```
10
43 35 36 58 25 7 61 4 96 3
55 29 88 15 99 49 67 57 92 49
```

Sample Output 2

```
      0

      8

      8

      23

      28

      33

      36

      36

      64

      64

      64
```

E - Replace Triplets

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 1000 points

Problem Statement

You are given a sequence $A=(A_1,\ldots,A_N)$ of length N. Here, N is an integer not less than 3.

You can perform the following operation any number of times (zero or more).

• Choose an integer i satisfying $1 \le i \le N$ and $A_i = A_{i+1} = A_{i+2}$. Replace two of A_i, A_{i+1} , and A_{i+2} with integers between 1 and N, inclusive. Here, assume $A_{N+1} = A_1$ and $A_{N+2} = A_2$.

Find the number, modulo 998244353, of possible resulting sequences A that are permutations of $(1, \ldots, N)$.

Constraints

- All input numbers are integers.
- $3 \le N \le 5 \times 10^5$
- $1 \leq A_i \leq N$

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

Sample Output 1

360

For example, we can obtain the permutation $A=\left(1,2,4,3,5,6\right)$ through the following steps.

- Perform the operation with i=5. Replace A_5 with 3 and A_6 with 6. Now, A=(1,2,3,3,3,6).
- Perform the operation with i=3. Replace A_3 with 4 and A_5 with 5. Now, A=(1,2,4,3,5,6).

There are 360 possible resulting sequences A that are permutations of $(1, \ldots, 6)$.

Sample Input 2

5 3 1 3 4 1

Sample Output 2

0

There are no possible resulting sequences A that are permutations of $(1, \ldots, 5)$.

Sample Input 3

10 1 1 1 8 8 8 7 7 7 10

Sample Output 3

604800