BioBlender 2.0 Manual

1. What is BioBlender

basic ideas on motion and visualization; why Blender, BB2.0 structure (as in computer sc. Meaning)

2. Install

3. Import molecule

The pdb file
Atoms and bonds
BioBlender Import

4. Visualization

Atoms Surface MLP EP

5. Motion

Moving molecules (cahnges of conformation)
Interpolation between conformations
Normal Mode Analisys
MD trajectory
Interacting molecules (moving relative to each other)

- 6. Make movies
- 7. Export data

1. What is BioBlender

BioBlender is an AddOn, a module that can be used with Blender, with the aim of providing a view of biological, or, better, molecular data according to a set of (visual) codes especially developed, as explained below.

It is based on a series of concepts aimed at showing molecules displaying the features that another molecule would sense. We could say that we try to see molecules with the eyes of other molecules. With this basic idea, we have developed two (for now) elements of a *visual code* which should help our visual and perceptive system to interpret the images in a direct, intuitive way. Although it is not a rigorous MD tool, BioBlender can also provide some approximate elaboration of protein motion, based on input of two or more conformations for a single protein.

Blender has been selected among the few 3D packages for several reasons: being the only one which is completely Open Source, it allows users, like us and you, to introduce whichever function at any level of its structure. Because it is distributed free of charge, biologists and other experimental scientists might be more prone to 'give it a try', without committing any of the always scarce resources dedicated to research. Blender is supported by a very generous global community that has produced plentiful material to help users, at all levels and in many languages. It will most likely continue to provide help, and BioBlender should make no exception. You, the user, are invited to make use of this material, and to contribute your own, to share with others.

BB2.0 structure

Main program side programs (distributed with BB) accessory programs (to be installed by the user)

Graph of BB2.0 structure (?)

2. Install

BioBlender must be installed on Blender, similar to many other AddOns.

In order to have all its functions working properly, BioBlender will need a few other software packages installed, besides Blender:

<u>ProDy</u> (used for the NMA option)<u>PyMOL</u> (necessary for building the molecular surface)<u>Python</u> 2.7

Once you have installed Blender 2.7 or later

Download BB2.0, and make sure you know where it is. Do not unzip.

Open Blender

Open the User Preferences panel (Ctrl+Alt+U), select tab Addons, click Install from file.

Locate the zipped BioBlender2.0.zip file, and activate it.

In the Scene panel, the BioBlender functions are now accessible.

(Eliminate from the default scene all object -Cube, Camera and Light- by pressing **a**, **x**, and **Enter.** You may want to save this starting scene, by pressing **Ctrl+u**).

3. Import molecule

3.1 The pdb file

The Protein Data Bank is the central repository for all structural data of molecular biology. It now contains over 100 thousands files, and it is the first source of information for structural and molecular biologists interested in the shape of molecular objects. Most objects are proteins (partial, complex, combined with other molecules etc.), but also nucleic acids, lipids, sugars, and many other small molecules are present, either by themselves, or in combination with one another. Complete information on the PDB and the pdb format can be found on any of the pdb mirror sites, for example here. The relevant features for now are that each atom of the molecule is described with:

- 1. a definition (ATOM or HETATM)
- 2. a (successive) number
- 3. a name that identify its 'role' (chemical position)
- 4. the subunit (aminoacid or nucleic acid base)
- 5. the chain to which it belongs
- 6. the number of the subunit
- 7. the three coordinates
 - 1. x
 - 2. y
 - 3. z
- 8. a temp parameter
- 9. a R factor
- 10. the atomic identity of the atom

1	TOAT	AIOM	3004	C	DEK .	F 102	50.920	44./92	-1/.34/	1.00	//.30	C
1	1892	MOTA	3005	0	SER	E 105	51.926	45.412	-16.982	1.00	77.64	0
	1893	ATOM	3006	CB	SER	E 105	49.359	44.854	-15.403	1.00	75.93	C
	1894	ATOM	3007	OG	SER	E 105	48.117	45.332	-14.916	1.00	76.08	0
-	1895	ATOM	3008	N	PHE	E 106	51.004	43.741	-18.156	1.00	78.96	N
	1896	MOTA	3009	CA	PHE	E 106	52.307	43.207	-18.556	1.00	80.08	С
1	1897	MOTA	3010	С	PHE	E 106	52.635	43.401	-20.046	1.00	80.75	С
	1898	MOTA	3011	0	PHE	E 106	53.655	42.906	-20.528	1.00	80.87	0
1	1899	MOTA	3012	CB	PHE	E 106	52.405	41.730	-18.166	1.00	80.15	C
	1900	MOTA	3013	CG	PHE	E 106	51.880	41.439	-16.787	1.00	80.37	C
1	1901	MOTA	3014	CD1	PHE	E 106	52.536	41.917	-15.666	1.00	80.54	C
1	1902	MOTA	3015	CD2	PHE	E 106	50.724	40.700	-16.612	1.00	80.64	C
1	1903	ATOM	3016	CE1	PHE	E 106	52.053	41.657	-14.397	1.00	80.64	C
1	1904	ATOM	3017	CE2	PHE	E 106	50.237	40.437	-15.346	1.00	80.75	C
1	1905	ATOM	3018	CZ	PHE	E 106	50.902	40.916	-14.238	1.00	80.75	C
1	1906	ATOM	3019	N	GLY	E 107	51.783	44.126	-20.767	1.00	81.32	N
1	1907	ATOM	3020	CA	GLY	E 107	52.049	44.441	-22.171	1.00	81.52	C
1	1908	ATOM	3021	С	GLY	E 107	50.808	44.865	-22.932	1.00	81.58	C
	1909	ATOM	3022	0	GLY	E 107	50.835	44.993	-24.164	1.00	81.57	0
1	1910	TER	3023		GLY	E 107						
1	1911	HETATM	11977	C1	NAG	D1052	31.230	39.532	-11.853	1.00	21.18	C
1	1912	HETATM	11978	C2	NAG	D1052	30.192	38.448	-11.830	1.00	19.74	C
1	1913	HETATM	11979	C3	NAG	D1052	30.240	37.810	-10.469	1.00	19.01	C
1	1914	HETATM	11980	C4	NAG	D1052	31.543	37.053	-10.544	1.00	20.97	C
1	1915	HETATM	11981	C5	NAG	D1052	32.665	37.954	-11.041	1.00	20.61	C
1	1916	HETATM	11982	C6	NAG	D1052	33.826	37.064	-11.421	1.00	20.45	C
1	1917	HETATM	11983	C7	NAG	D1052	27.933	39.155	-11.447	1.00	23.78	C
	1918	HETATM	11984	C8	NAG	D1052	26.610	39.567	-12.017	1.00	23.47	C
	1919	HETATM	11985	N2	NAG	D1052	28.905	38.885	-12.296	1.00	22.02	N
-	1920	HETATM	11986	03	NAG	D1052	29.200	36.872	-10.308	1.00	17.79	0
	1921	HETATM	11987	04	NAG	D1052	31.885	36.521	-9.275	1.00	24.42	0
	1922	HETATM	11988	05	NAG	D1052	32.332	38.706	-12.183	1.00	21.09	0
	1923	HETATM	11989	06	NAG	D1052	34.999	37.840	-11.315	1.00	22.18	0
	1924	HETATM	11990	07	NAG	D1052	28.090	39.061	-10.238	1.00	26.44	0
	1925	HETATM	11991	C1	NAG	D1078	21.249	83.555	-29.714	1.00	25.25	C

Plenty of other information is present in the pdb file, as well as in the website of the protein Data bank, and users are encouraged to peruse these sources.

Molecular structure is defined as the atomic position (atomic coordinates) of the atoms that compose the molecule.

3.2 Atoms and bonds

In biological molecules, it is extremely rare (but not unheard of) to find an isolated atom. The vast majority are combined (linked by chemical bonds) in large groups that ca reach up to hundreds of thousands atoms. Luckily, scientists have been able to decode the 'building blocks' of such large molecules, which are typically made up of few tens of atoms (*aminoacids*, such as Alanine, Serine, Glutammate etc., *nucleic acids*, such as Adenine, Guanine, etc, *sugars*, such as glucose, ribose etc, *lipids*, and others).

The bonds that link the atoms one to another can be roughly assimilated to rigid body joints: they have some degree of freedom, but quite limited. This feature makes it possible to use the Blender Game Engine to approximately simulate their behavior. We will see in Chapter 5 how BioBledner deals with molecular motion.

The activity of proteins is such because their atoms change position while staying linked.

3.3 BioBlender Import

- 1. Select a PDB file (1), either using the 4 letter code (for PDB.org fetch), or browse in your own files.
- 2. Click **Make Preview**, so that BioBlender can access the file, and prompt you with relevant options;

Next, consider one or more of the following situations that may apply:

- if your file is an NMR collection, BB will recognize how many models are present (1), and prompt you to select which models (2) to import (up to 100), in which order, and how separate (how many frames between each model 3).

- if your file contains only one model (e.g. X-ray), with 1 or more chains, BioBlender will prompt you to select which chains to import (default is ALL). In this case, the file contains 4 chians: 2 monomers of the DNA binding protein fis (A and B) and the 2 DNA strands (C and D). If you want to see it inBioBlender, you probably know what is in the pdb file; if you don't, you will have to check it by reading inside.

- if you wish to use the NMA feature (calculated by ProDy, wich must be installed in the computer independently), select the NMA parameters now, before importing. In case of NMR, ProDy will calculate NMA for the first Model in the NMR file.
- consider the opportunity of importing Hydrogens (if they are present at all in the file pdb): the default option is NOT. Including H will make the system very heavy, will significantly prolong the import time, and usually do not add much useful information. They are important when considering water interactions.

Now everything is set to **Import PDB**.

This may take few seconds to a minute or so, depending on the size and complexity of your molecule. Together with the molecule, BioBlender adds to the scene a set of lights and a camera. Press 0 to get a view form the camera, and adjust according to your need.

In the 3D viewport, your molecule is built as atoms.

In the Outliner there is a new Empty object, with the name of the PDB file (or its last 4 letters), and with all atoms as children of the Empty

To be continued...