

Plea	ase write clearly ir	n block capitals.
Cer	itre number	Candidate number
Sur	name	
For	ename(s)	
Car	ndidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Tuesday 10 January 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
TOTAL	

		Answer all questions in the spaces provided.	
1	(a)	The function f is defined by $f(x) = 3^x$ for all real values of x	
		Show that $f(x+1)-f(x-2)=kf(x)$	
		where k is a constant. [3 marks]	

1 (b) The function g is defined	/d b	defined	φ is	e function	(b)	1
--	------	---------	--------------	------------	-----	---

$$g(x) = \frac{3-x}{5+2x}$$
 for all real values of x , $x \neq -2.5$

The inverse of g is g^{-1}

1 (b) (i) Find $g^{-1}(x)$

	[3 marks]
Answer	

1 **(b) (ii)** State the range of g^{-1}

[1 mark]

Answer

7

Do not write outside the box

2	(a)	Express $8\cos\theta + 15\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and 0°	$< lpha < 90^{\circ}$,
		giving the value of α to the nearest degree.	[3 marks]
		Answer	
2	(b) (i)	Hence write down the minimum value of	
_	(D) (I)	Hence write down the minimum value of	
		$8\cos\theta + 15\sin\theta$	
			[1 mark]
		Answer	
_	(F) (;;)	Harris find a color of O at orbital the minimum value in mark (I-VI) account	
2	(D) (II)	Hence find a value of θ at which the minimum value in part (b)(i) occurs, giving your answer to the nearest degree.	
			[1 mark]
		Answer	

2 (c)		Use your answer to part (a) to solve the equation				
		$8\csc(2y+10^{\circ})+15\sec(2y+10^{\circ})=8.5\tan(2y+10^{\circ})+8.5\cot(2y+10^{\circ})$)			
		giving all solutions to the nearest degree in the interval $-180^{\circ} < y < 180^{\circ}$	i marks]			
		Answer				

10

3		The polynomial $f(x)$ is defined by
		$f(x) = 16x^3 + bx^2 + cx$
		where b and c are constants.
		When $f(x)$ is divided by $(2x+3)$ the remainder is -45
		When $f(x)$ is divided by $(4x-5)$ the remainder is 10
3	(a) (i)	Find the value of b and the value of c [4 marks]
		b = c =

3	(a) (ii)	Express $f(x)$ as a product of three linear factors.	
			[2 marks]
		Answer	
3	(b)	Hence express $\frac{f(x)}{16x^2-9}$ in the form	
	(5)	$16x^2 - 9$	
		$nr + a + \underline{\hspace{1cm}}^r$	
		$px+q+\frac{r}{mx+n}$	
		where p , q , r , m and n are constants.	
			[3 marks]
		Answer	

4 (a) Sketch on the axes below the graph of the curve that has equation

$$y = \sec x$$
 for $0 \le x \le \pi$

[2 marks]

4 (b) A curve has equation $y = \sec x$ where $0 \le x \le \frac{\pi}{4}$

This curve intersects the line y = 10x - 5 at a single point where $x = \alpha$

4 (b) (i) Show that α lies between 0.6 and 0.7

[2 marks]

4	(b) (ii)	The equation	$\sec x = 10x - 5$	can be rearranged into the form
---	----------	--------------	--------------------	---------------------------------

$$x = 0.1 \sec x + 0.5$$

Use the iterative formula

$$x_{n+1} = 0.1\sec x_n + 0.5$$

with $x_1 = 0.6$ to find the values of x_2 and x_3

Give your answers to three decimal places.

[2 marks]

 $x_2 = x_3 = x_3$

4 (c) Use the mid-ordinate rule with five strips to find an estimate for

$$\int_{0.6}^{0.7} \sec x \, \mathrm{d}x$$

Give your answer to ${f six}$ decimal places.

[4 marks]

Answer

10

5	(a)	Show that the binomial expansion of $(1-px)^{-\frac{1}{2}}$ up to and including the term if where p is a constant is	n x ³
		$1 + \frac{1}{2}px + \frac{3}{8}p^2x^2 + \frac{5}{16}p^3x^3$	
		2' 8' 16'	[2 marks]
5	(b)	Find the binomial expansion of $\sqrt{(4+px)}$ up to and including the term in x^3	
		Give all numerical coefficients as simplified fractions.	
			[3 marks]
		Answer	

5 (c) For particular values of p the binomial expansion up to and including the term in x^3 gives

$$\frac{3}{4}px + \sqrt{(4+px)} - 2(1-px)^{-\frac{1}{2}} = -x^2 + qx^3$$

where q is rational.

5 (c) (i) Show that $p = \pm \frac{8}{7}$

[4 marks]

5 (c) (ii) Hence find the exact values of $\,q\,$

[2 marks]

Answer

11

- **6** A curve *C* has equation $y = \left| e^{0.5x} 4 \right|$
- **6 (a)** Sketch on the axes below the graph of *C* indicating the coordinates of any points where the curve meets or cuts the axes.

[3 marks]

6 (b) Find an equation of the normal to C at the point P where $x = \ln 25$

Give your answer in the form ax + by = k where a, b and k are constants.

[5 marks]

				Do not write outside the box
		Answer		
6	(c)	The normal to C at the point P intersects the coordinate axes at A and B		
		Find the exact value of the finite area OAB		
		Give your answer in the form $p(q+\ln r)^2$ where p, q and r are constants.		
			[3 marks]	
		Answer		11

1		The coordinates of the points A and B are (1, 3, -3) and (-2, 3, 4) respective	very.
		The line l has equation $\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ c \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$ where c is a constant.	
7	(a) (i)	Find the vector \overrightarrow{AB}	[1 mark]
		Answer	
7	(a) (ii)	Find $\begin{vmatrix} \rightarrow \\ AB \end{vmatrix}$	[2 marks]
		Answer	
7	(a) (iii)	Calculate the acute angle between $\stackrel{\longrightarrow}{AB}$ and the line l , giving your answer to the nearest 0.1°	he
			[3 marks]
		Answer	

7	(a) (iv)	The line AB intersects the line I	Do not write outside the box
		Find the value of c	
		[3 marks]	
		Answer	
		7 w.ie.ne.i	
7	(b) (i)	Find the shortest distance from l to the origin. [4 marks]	
		Answer	
-	/b\ /!!\		
1	(D) (II)	Explain which of the line l or the line AB , is nearest to the origin. [2 marks]	
			15

Do not write outside the box

A curve has equation $x + y = (x - 2y)^2$
Find the equation of the tangent to the curve at (2, 2)
Give your answer in the form $y = mx + c$ where m and c are rational numbers. [6 marks]
Answer

9	(a)	Describe a single geometrical transformation that maps the graph of $y = \ln x$ onto the graph of $y = \ln(2x)$		
			[2 marks]	
9	(b)	The region bounded by the curve $y = \ln(2x)$, the line $x = 4$ and the x -axis from $x = 0.5$ to $x = 4$ is rotated through 2π radians about the x -axis to form		
		Find the value of the volume of the solid generated, giving your answer in an eform.	exact	
		Answer		

11

10	It is given that
	$\frac{\mathrm{d}y}{\mathrm{d}x} = b \left(3a - 2y\right) \left(a - y\right)$
	where a and b are positive constants.
	Solve the differential equation such that $y = 0$ when $x = 0$
	Give your answer in the form $y = f(x)$ [10 marks]

	Do not write outside the
	box
Answer	10
	1

Find $\int 4\cos^2\theta d\theta$			[2
Ar	iswer		
Use the substitution $t = \sin x$ to	find		
\int_{-1}^{2}	$\int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{3 + \cos^2 x} \mathrm{d}x$		
giving your answer in the form I	$n\left(\frac{a}{b}\right)$ where a and	nd b are integers.	
	, ,		[7

	Do not write outside the box
	JOX
Answer	9

12	A curve C is defined by the parametric equations	
	$x = 2\cos\theta$ and $y = 3\sin\theta$ for $0 \le \theta \le 2\pi$	
12 (a)	Find a Cartesian equation of <i>C</i>	[2 marks]
	Answer	
12 (b)	Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{6}$	
	Give your answer in the form $y + ax + b = 0$ where a and b are constants.	
	You are given $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$	
		[4 marks]
	Answer	

Do not write outside the box

constant in four distinct points only if $k^2 < 3$	[4

11

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the