Числовые характеристики случайных величин. Основные законы распределения случайных величин

Мода дискретной случайной величины

Значение случайной величины ξ , принимаемое с наибольшей вероятностью, называется *модой* и обозначается $m_o = m_o \xi$

$$\max_{i} P(\xi = x_{i}) = P(\xi = m_{o})$$

Мода называется еще *наивероятнейшим значением* случайной величины.

Если эксперимент описывается случайной величиной, то в результате проведенной серии этого эксперимента чаще всего встречается мода случайной величины.

Мода дискретной случайной величины

Если у некоторого распределения существует только одна мода, то его называют унимодальным. Отметим, что для некоторых распределений мода может не существовать или принимать несколько значений, так называемые мультимодальные распределения.

Мода непрерывной случайной величины

Определение моды непрерывного распределения. Модой d_x непрерывной случайной величины X называется точка локального максимума функции плотности распределения вероятностей f(x).

Если имеется только одна мода, то распределение называют унимодальным, а мода является наиболее вероятным значением случайной величины. Для некоторых распределений мода может не существовать. Если непрерывное распределение имеет более чем одну моду, то его называют мультимодальным распределением.

Медиана непрерывной случайной величины

Определение медианы непрерывного распределения. Медиана

 h_x непрерывной случайной величины X всегда существует, делит область значений случайной величины на две, равные по вероятности части, и определяется из любого из двух условий:

1)
$$P(X < h_x) = P(X \ge h_x)$$
; 2) $F(h_x) = 0.5$.

Переходя в первом определяющем условии от вероятностей к функции распределения, получим равенство $F(h_x) = 1 - F(h_x)$. Отсюда следует, что медиана является решением уравнения $F(h_x) = 0,5$.

Обратно, всегда справедливо равенство $P(X < h_x) = 1 - P(X \ge h_x)$. Используя второе условие $P(X < h_x) = F(h_x) = 0, 5$, получим $P(X \ge h_x) = 0, 5$, т. е. выполняется второе условие $P(X < h_x) = P(X \ge h_x)$.

Основные законы распределения дискретных случайных величин

Биноминальный закон распределения

Дискретная с. в. X имеет биномиальное распределение (или распределена по биномиальному закону), если она принимает значения $0, 1, 2, 3, \ldots, n$, с вероятностями:

$$p_m = P\{X = m\} = C_n^m p^m q^{n-m},$$

где
$$0 .$$

Случайная величина X, распределенная по биномиальному закону, является числом успехов с вероятностью p в схеме Бернулли проведения n независимых опытов.

Биноминальный закон распределения

Если требуется вычислить вероятность «не менее m успехов в n независимых опытах», т.е. $P\{X \geqslant m\}$, то имеем : $P_m = P\{X \geqslant m\} = P\{X = m\} + P\{X = m+1\} + \ldots + P\{X = n\}$. Вероятность P_m бывает удобно находить через вероятность противоположного события: $P_m = P\{X \geqslant m\} = 1 - P\{X < m\}$; та из двух формул лучше, где меньше слагаемых.

Ряд распределения д.с. в. X, имеющей биномиальное распределение, имеет вид:

X = m	0	1	2	 m	 n
$p_m = P\{X = m\}$	q^n	$C_n^1 p^1 q^{n-1}$	$C_n^2 p^2 q^{n-2}$	 $C_n^m p^m q^{n-m}$	 p^n

Контроль:
$$\sum_{m=0}^{n} p_m = (p+q)^n = 1$$
.

Биноминальный закон распределения

Функция распределения с. в. X, распределенной по биномиальному закону, имеет вид:

$$F(x) = egin{cases} 0, & \text{при } x \leqslant 0 \ \sum\limits_{m < x} C_n^m p^m q^{n-m}, & \text{при } 0 < x \leqslant n \ 1, & \text{при } n < x. \end{cases}$$

Найдем числовые характеристики этого распределения. Производящей функцией биномиального распределения является

$$\varphi(z) = \sum_{m=0}^{n} C_n^m p^m q^{n-m} z^m = \sum_{m=0}^{n} C_n^m (pz)^m q^{n-m} = (q+pz)^n,$$

т. е.
$$\varphi(z) = (q + pz)^n$$
. Тогда

$$\varphi'(z) = n(q+pz)^{n-1}p, \quad \varphi''(z) = n(n-1)p^2(q+pz)^{n-2}.$$

Биноминальный закон распределения

$$\varphi'(z) = n(q+pz)^{n-1}p, \quad \varphi''(z) = n(n-1)p^2(q+pz)^{n-2}$$

$$MX = \varphi'(1) = np$$
, t. k. $p + q = 1$,
$$DX = \varphi''(1) + \varphi'(1) - (\varphi'(1))^2 = n(n-1)p^2 + np - n^2p^2 = npq$$
.

$$MX = np, \qquad DX = npq.$$

Распределение Пуассона

Дискретная случайная величина X имеет распределение Пуассона, если ее возможные значения: $0,1,2,\ldots,m,\ldots$ (счетное множество значений), а соответствующие вероятности выражаются формулой Пуассона

$$p_m = P\{X = m\} = \frac{a^m \cdot e^{-a}}{m!},$$

где m = 0, 1, 2, ..., a — параметр.

Распределение Пуассона является предельным для биномиального, когда $n \to \infty$ и $p \to 0$ так, что np = a — постоянно. Примерами случайных величин, имеющих распределение Пуассона, являются: число вызовов на телефонной станции за время t; число опечаток в большом тексте; число бракованных деталей в большой партии; число α -частиц, испускаемых радиоактивным источником, и т. д. При этом считается, что события появляются независимо друг от друга с постоянной cped-ней интенсивностью, характеризующейся параметром a = np.

Распределение Пуассона

Случайная величина X, распределенная по закону Пуассона, имеет следующий ряд распределения

X =	= m	0	1	2	 m	
p	m	e^{-a}	$\frac{a \cdot e^{-a}}{1!}$	$\frac{a^2 \cdot e^{-a}}{2!}$	 $\frac{a^m \cdot e^{-a}}{m!}$	

Контроль:
$$\sum_{m=0}^{\infty} p_m = e^{-a} \sum_{m=0}^{\infty} \frac{a^m}{m!} = e^{-a} \cdot e^a = 1.$$

Найдем м. о. и дисперсию с. в. X, распределенной по закону Пуассона. Производящей функцией распределения Пуассона будет

$$\varphi(z) = \sum_{m=0}^{\infty} \frac{a^m \cdot e^{-a}}{m!} z^m = e^{-a} \sum_{m=0}^{\infty} \frac{(az)^m}{m!} = e^{-a} \cdot e^{az} = e^{a(z-1)},$$

т. е.
$$\varphi(z)=e^{a(z-1)}$$
. Тогда $\varphi'(z)=a\cdot e^{a(z-1)},\ \varphi''(z)=a^2\cdot e^{a(z-1)}$. Стало быть, $MX=\varphi'(1)=a,\ DX=\varphi''(1)+\varphi'(1)-(\varphi'(1))^2=a^2+a-a^2=a$. $MX=DX=a$

Геометрическое распределение

Дискретная с. в. X имеет геометрическое распределение, если ее возможные значения: $1,2,3,4,\ldots$, а вероятности этих значений:

$$p_m = P\{X = m\} = q^{m-1}p,$$

где $m = 0, 1, 2, \ldots$

Геометрическое распределение имеет с. в. X, равная числу опытов в схеме Бернулли, проведенной до первого успеха вероятность успеха $\mathfrak p$ в единичном опыте. Примерами реальных случайных величин, распределенных по геометрическому закону, являются: число выстрелов до первого попадания, число испытаний прибора до первого отказа, число бросаний монеты до первого выпадения решки и т. д.

Ряд распределения случайной величины X, имеющей геометрическое распределение, имеет вид

[X = m	$\frac{1}{p}$	2	$\frac{3}{a^2n}$	 Контроль: $\sum_{n=0}^{\infty} pq^{m-1} = p \sum_{n=0}^{\infty} q^{m-1} = p \cdot \frac{1}{1-n} = \frac{p}{n} = \frac{p}{n}$]
- 1	p_m	p	qp	$[q \ P]$	 m=1 $1-q$ p	

Вероятности p_m образуют геометрическую прогрессию p, qp, q^2p ,

Геометрическое распределение

Найдем математическое ожидание и дисперсию геометрического распределения. Производящей функцией для с. в. X является функция

$$\varphi(z) = \sum_{m=1}^{\infty} q^{m-1} p z^m = p z \sum_{m=1}^{\infty} (q z)^{m-1} = p z \frac{1}{1 - q z},$$

т. е.
$$\varphi(z) = \frac{pz}{1-qz}$$
. Для нее $\varphi'(z) = \frac{p}{(1-qz)^2}$, $\varphi''(z) = \frac{2pq}{(1-qz)^3}$. Стало быть,

$$MX = \varphi'(1) = \frac{p}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p},$$

$$DX = \varphi''(1) + \varphi'(1) - (\varphi'(1))^2 = \frac{2pq}{p^3} + \frac{1}{p} - \frac{1}{p^2} = \frac{q}{p^2},$$

т. е.
$$MX=rac{1}{p},\ DX=rac{q}{p^2}$$
 и, значит, $\sigma_X=rac{\sqrt{q}}{p}.$

Основные законы распределения непрерывных случайных величин Равномерный закон распределения

Непрерывная с. в. X имеет равномерное распределение на отрезке [a,b], если ее плотность вероятности f(x) постоянна на этом отрезке, а вне его равна нулю:

$$f(x)=egin{cases} rac{1}{b-a}, & ext{при } x\in[a,b], \ 0, & ext{при } x
otin [a,b], \end{cases}$$

(т. е. f(x) = c при $x \in [a, b]$, но

$$\int_{-\infty}^{+\infty} c \, dx = 1,$$

отсюда следует, что $cx\Big|_a^b=1,\ c=\frac{1}{b-a};$ вместо отрезка [a,b] можно писать (a,b) или $(a,b],\ [a,b),$ так как с. в. X — непрерывна.)

Равномерный закон распределения

График плотности f(x) для равномерного распределения н. с. в. X

Равномерное распределение с. в. X на участке [a,b] (или (a,b)) будем обозначать: $X \sim R[a,b]$.

Найдем функцию распределения F(x) для $X \sim R[a,b]$. Согласно формуле (см. п. 2.4)

$$F(x) = \int_{-\infty}^{x} f(x) \, dx,$$

Равномерный закон распределения

имеем

$$F(x) = \int_{a}^{x} \frac{dt}{b-a} = \frac{t}{b-a} \Big|_{a}^{x} = \frac{x-a}{b-a}$$

при $a < x \leqslant b$; F(x) = 0 при $x \leqslant a$, и

$$F(x) = \int_{-\infty}^{a} 0 \, dt + \int_{a}^{b} \frac{dt}{b-a} + \int_{b}^{x} 0 \, dt = \frac{t}{b-a} \Big|_{a}^{b} = 1$$

при x > b. Таким образом,

$$F(x) = egin{cases} 0, & ext{при } x \leqslant a, \ rac{x-a}{b-a}, & ext{при } a < x \leqslant b, \ 1, & ext{при } b < x. \end{cases}$$

Равномерный закон распределения

Определим MX и DX с. в. $X \sim R[a,b]$.

$$MX = \int_{-\infty}^{a} x \cdot 0 \, dx + \int_{a}^{b} \frac{x}{b-a} \, dx + \int_{b}^{+\infty} x \cdot 0 \, dx = \frac{a+b}{2}.$$

$$DX = \int_{a}^{b} \left(x - \frac{a+b}{2} \right)^{2} \cdot \frac{dx}{b-a} = \frac{1}{b-a} \cdot \frac{1}{3} \left(x - \frac{a+b}{2} \right)^{3} \Big|_{a}^{b} =$$

$$= \frac{1}{3(b-a)} \left(\frac{(b-a)^{3}}{8} - \frac{(a-b)^{3}}{8} \right) = \frac{(b-a)^{2}}{12}.$$

Таким образом, для н. с. в. $X \sim R[a,b]$ имеем

$$MX = \frac{a+b}{2}, \quad DX = \frac{(b-a)^2}{12}.$$

Непрерывная с. в. X распределена *по нормальному закону* с параметрами a и $\sigma>0$, если ее плотность распределения имеет вид

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in R.$$

Тот факт, что с. в. X имеет нормальное (или гауссовское) распределение с параметрами a и σ , сокращенно записывается так: $X \sim N(a, \sigma)$. Убедимся, что f(x) — это функция плотности. Очевидно, f(x) > 0.

Проверим выполнение условия нормировки $\int\limits_{-\infty}^{\infty} f(x) \, dx = 1.$ Имеем:

$$\int_{-\infty}^{\infty} \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \frac{\sigma \cdot \sqrt{2}}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{x-a}{\sqrt{2} \cdot \sigma}\right)^2} d\left(\frac{x-a}{\sqrt{2} \cdot \sigma}\right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \cdot \sqrt{\pi} = 1.$$

Здесь применили подстановку и использовали «интеграл Пуассона» $\int\limits_{-\infty}^{\infty}e^{-t^2}\,dt=\sqrt{\pi}.$

Функция распределения
$$F(x) = \int\limits_{-\infty}^{} f(t)\,dt$$
 н. с. в. $X \sim N(a,\sigma)$ имеет

вид

$$F(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt.$$

Если a=0 и $\sigma=1$, то нормальное распределение с такими параметрами называется *стандартным*. Плотность стандартной случайной величины имеет вид

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Функция распределения с. в. $X \sim N(0,1)$ имеет вид

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

и называется, функцией Лапласа.

Она связана с нормированной функцией Лапласа $\Phi_0(x)$

равенством

$$\Phi(x) = 0.5 + \Phi_0(x).$$

Установим смысл параметров a и σ нормального распределения. Для этого найдем математическое ожидание и дисперсию с.в. $X \sim N(a,\sigma)$.

$$\begin{split} MX &= \int\limits_{-\infty}^{\infty} x \cdot f(x) \, dx = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int\limits_{-\infty}^{\infty} x \cdot e^{-\frac{(x-a)^2}{2\sigma^2}} \, dx = \\ &= \left[\text{подстановка } \frac{x-a}{\sqrt{2}\sigma} = t\right] = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int\limits_{-\infty}^{\infty} (\sqrt{2}\sigma t + a) e^{-t^2} \sqrt{2}\sigma \, dt = \\ &= \frac{\sigma\sqrt{2}}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} t e^{-t^2} \, dt + \frac{a}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} e^{-t^2} \, dt = 0 + \frac{a}{\sqrt{\pi}} \cdot \sqrt{\pi} = a, \end{split}$$

т. е. MX = a. Первый интеграл равен нулю, так как подинтегральная функция нечетная, а пределы интегрирования симметричны относительно нуля, а второй интеграл равен $\sqrt{\pi}$ (см. равенство (2.39)). Таким образом, параметр a — математическое ожидание.

При нахождении дисперсии с. в. $X \sim N(a, \sigma)$ снова сделаем подстановку $\frac{x-a}{\sqrt{2}\sigma} = t$ и применим метод интегрирования по частям:

$$DX = \int_{-\infty}^{\infty} (x - a)^2 f(x) \, dx = \int_{-\infty}^{\infty} (x - a)^2 \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - a)^2}{2\sigma^2}} \, dx =$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} 2\sigma^2 t^2 e^{-t^2} \sigma \sqrt{2} \, dt = \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} t^2 e^{-t^2} \, dt =$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \left(-\frac{1}{2} t e^{-t^2} \Big|_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} e^{-t^2} \, dt \right) = \frac{2\sigma^2}{\sqrt{\pi}} \cdot \frac{1}{2} \sqrt{\pi} = \sigma^2.$$

Таким образом, $DX = \sigma^2$, а σ — среднее квадратичное отклонение.

График плотности распределения вероятности нормального закона

Найдем вероятность попадания с. в. $X \sim N(a, \sigma)$ на заданный участок (α, β) . Как было показано,

$$P\{a < X < b\} = \int_{a}^{b} f(x) dx$$

$$P\{\alpha < X < \beta\} = \frac{1}{\sigma\sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \left[\frac{x-a}{\sigma} = t\right] =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{\alpha-a}{\sigma}}^{\beta-a} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}} \int_{0}^{\beta-a} e^{-\frac{t^2}{2}} dt - \frac{1}{\sqrt{2\pi}} \int_{0}^{\alpha-a} e^{-\frac{t^2}{2}} dt.$$

Используя функцию Лапласа

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt,$$

получаем

$$P\{\alpha < X < \beta\} = \Phi_0 \left(\frac{\beta - a}{\sigma}\right) - \Phi_0 \left(\frac{\alpha - a}{\sigma}\right).$$

Через функцию Лапласа $\Phi_0(x)$ выражается и функция распределения F(x) нормально распределенной с. в. X.

$$F(x) = \frac{1}{2} + \Phi_0 \left(\frac{x-a}{\sigma} \right).$$

$$\Phi_0(\infty) = \frac{1}{2}$$

На практике часто приходиться вычислять вероятность попадания нормально распределенной случайной величины в интервал, симметричный относительно центра рассеяния a. Пусть таким интервалом будет (a-l,a+l) длины 2l. Тогда $P\{a-l < X < a+l\} = P\{|X-a| < l\} = \Phi_0\left(\frac{a+l-a}{\sigma}\right) - \Phi_0\left(\frac{a-l-a}{\sigma}\right) = 2\Phi_0\left(\frac{l}{\sigma}\right)$, т. е.

$$P\{|X-a| < l\} = 2\Phi_0\left(\frac{l}{\sigma}\right) = 2\Phi\left(\frac{l}{\sigma}\right) - 1$$

Полагая в равенстве $l=3\sigma,$ получим $P\{|X-a|<3\sigma\}=2\Phi_0(3).$

По таблице значений для $\Phi_0(x)$ находим: $\Phi_0(3) = 0.49865$. Следовательно, $P\{|X-a| < 3\sigma\} \approx 0.9973$, т.е. отклонение с.в. X от своего математического ожидания меньше, чем 3σ — почти достоверное событие.

Важный вывод: практически достоверно, что с. в. $X \sim N(a, \sigma)$ принимает свои значения в промежутке $(a-3\sigma, a+3\sigma)$. Это утверждение называется «правилом трех сизм».

Значение функции
$$\Phi_0(x)=rac{1}{\sqrt{2\pi}}\int\limits_0^x e^{-rac{t^2}{2}}\,dt$$

	v –										
	Сотые доли х										
x	0	1	2	3	4	5	6	7	8	9	
0,0	0,0000	0040	0080	0112	0160	0199	0239	0279	0319	0359	
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0754	
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141	
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517	
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879	
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224	
0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	2549	
0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852	
0,8	2881	2910	2939	2967	2996	3023	3051	3079	3106	3133	
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389	
1,0	3413	3438	3461	3485	3508	3531	3553	3577	3599	3621	
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830	
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015	
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177	
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319	
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4430	4441	
1,6	4452	4463	4474	4485	4495	4505	4515	4525	4535	4545	
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633	
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4700	4706	
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4762	4767	
					Десятые	е доли x					
x	0	1	2	3	4	5	6	7	8	9	
2,	4773	4821	4861	4893	4918	4938	4953	4965	4974	4961	
3,	4987	4990	4993	4995	4997	4998	4998	4999	4999	5000^{1}	

Определение показательного распределения. Случайная величина X называется распределённой по показательному или экспоненциальному закону с параметром $\lambda > 0$, если она непрерывного типа и её плотность распределения вероятностей задаётся формулой

$$f(x) = \lambda e^{-\lambda x}$$
, если $x \ge 0$; $f(x) = 0$, если $x < 0$.

Данная функция неотрицательна и при любом значении параметра $\lambda>0$ удовлетворяет обязательному условию нормировки:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} 0 \cdot dx + \int_{0}^{+\infty} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda} \int_{0}^{+\infty} e^{-\lambda x} d(\lambda x) = -e^{-\lambda x}|_{0}^{+\infty} = 0 + 1 = 1.$$

С помощью показательного распределения моделируют время ожидания в теории массового обслуживания или время безотказной работы в теории надёжности.

График плотности экспоненциального распределения

Функция распределения показательного закона выражается через плотность распределения по общей формуле $F(x) = \int\limits_{-\infty}^{x} f(t) \, dt$. Отсюда, при

$$x<0$$
 имеем $F(x)=\int\limits_{-\infty}^{x}0\cdot\,dt=0$. Соответственно, при $x\geq 0$ получим:

$$F(x) = \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{x} \lambda e^{-\lambda t} dt = \int_{0}^{x} e^{-\lambda t} d(\lambda t) = -e^{-\lambda t}|_{0}^{x} = 1 - e^{-\lambda x}.$$

Таким образом, функция распределения показательного закона имеет вид:

$$F(x) = 1 - e^{-\lambda x}$$
, если $x \ge 0$; $F(x) = 0$, если $x < 0$.

График функции распределения экспоненциального распределения

Математическое ожидание показательной случайной величины выражается через параметр распределения $\lambda > 0$ следующим образом:

$$\int_{-\infty}^{+\infty} x \, f(x) dx = \int_{0}^{+\infty} x \, \lambda e^{-\lambda x} dx = -x \, e^{-\lambda x} |_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = 0 - \frac{1}{\lambda} e^{-\lambda x} |_{0}^{+\infty} = \frac{1}{\lambda}.$$

Медиана h_x показательного распределения находится из уравнения $1-e^{-\lambda h_x}=0,5$ с помощью следующих преобразований:

$$e^{-\lambda h_x} = 0,5$$
; $e^{\lambda h_x} = 2$; $\lambda h_x = \ln 2$; $h_x = \ln 2/\lambda$.

Как видно из графика, плотность распределения имеет локальный максимум в точке нуль, так что мода распределения равна нулю.

Таким образом, характеристики положения показательного распределения не совпадают между собой и имеют следующие значения:

$$m_x = \frac{1}{\lambda}, \ h_x = \frac{\ln 2}{\lambda}, \ d_x = 0.$$

Дисперсию показательного распределения удобно находить с помощью формулы $D_x = M(X^2) - m_x^2$, выполнив следующие преобразования:

$$M(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{+\infty} x^{2} \lambda e^{-\lambda x} dx = -x^{2} e^{-\lambda x} \Big|_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx =$$

$$= 0 + \frac{2}{\lambda} \cdot \frac{1}{\lambda} = \frac{2}{\lambda^{2}}, \quad D_{x} = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}.$$

Стандартное отклонение вычисляется как корень квадратный из дисперсии в виде $\sigma_x = 1/\lambda$. Как видно, у показательного распределения математическое ожидание и стандартное отклонение одинаковы.

Итак, экспоненциальное распределение имеет такие характеристики:

$$MX = \frac{1}{\lambda}, \quad DX = \frac{1}{\lambda^2}, \quad \sigma_x = \frac{1}{\lambda}.$$

Случайные величины, подчиненные экспоненциальному распределению, используют при моделировании систем массового обслуживания. Например, случайное время между поступлением заявок на обслуживание нередко предполагают подчиненным экспоненциальному распределению. При расчете надежности оборудования, как правило, считают, что время работы прибора или станка до первого отказа имеет экспоненциальное распределение.

Пример. Пусть время T работы прибора до первого отказа подчиняется экспоненциальному распределению с $\lambda = 0.05$, так что $f(t) = 0.05e^{-0.05t}$ (T измеряется в часах). Работают четыре одинаковых прибора. Какова вероятность того, что все они проработают не меньше 8 часов?

Найдем вначале вероятность того, что один прибор проработает не меньше 8 часов:

$$P(T \ge 8) = 1 - F(8) = 1 - (1 - e^{-0.4}) = e^{-0.4}$$
.

Тогда вероятность того, что все четыре прибора проработают не меньше 8 часов, очевидно, равна:

$$P^4(T \ge 8) = e^{-1.6} \approx 0,202.$$