Дисперсионный анализ

Малов Сергей Васильевич

Санкт-Петербургский электротехнический университет

28 ноября 2020 г.

План

1 Однофакторный дисперсионный анализ

2 Двухфакторный анализ

3 Многофакторный анализ

Модель однофакторного анализа

Простая группировка

- Распределение наблюдаемой величины Y определяется значением фактора группировки z.
- \bullet Наблюдение (Y,z)
 - У наблюдаемая величина (исследуемая характеристика)
 - $z \in \{1,\dots,d\}$ фактор группировки, имеющий d уровней
- Модель:

$$\mathbb{E}_{\theta}(Y|z=i) = \eta_i, \quad i=1,\ldots,d$$

- $\eta = (\eta_1, ..., \eta_d)'$ средние по группам
- $\mathbb{D}_{\theta}Y = \sigma^2$ параметр дисперсии
- Соответствующая модель линейной регрессии

$$\mathbb{E}_{ heta}(Y|z)$$
 = $\mathbf{X}' oldsymbol{\eta}$

$$\bullet \ \mathbf{X} = \left(\begin{array}{ccccccc} 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & & & \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \underbrace{0 & 0}_{z=1} & \underbrace{0 & 0 & 0}_{z=2} & \dots & \underbrace{1}_{z=d} \\ \end{array} \right)$$

ullet Y_1,\ldots,Y_d — независимые величины

Модель однофакторного анализа

Запись с использованием группировки

- Y_{ij}, j -е наблюдение i-й группы, $j = 1, \dots, n_i, i = 1, \dots, d$
- Модель: $\mathbb{E}_{\theta} Y_{ij} = \eta_i, \ j = 1, \dots, n_i, \ i = 1, \dots, d$
- ullet Величины Y_{ij} независимы
- Дополнительные предположения: $Y_{ij} \sim \mathcal{N}(\eta_i, \sigma^2)$

Оценивание

• При наличии хотя бы одного наблюдения в группе $(n_i \ge 1)$:

$$\hat{\eta}_i = \overline{Y}_{i+} = \sum_{i=1}^{n_i} Y_{ij}/n_i$$

- $\hat{\eta}_1,\dots,\hat{\eta}_d$ независимы и $\mathbb{D}\hat{\eta}_i$ = σ^2/n_i
- При отсутствии наблюдений в группе $(n_i = 0)$ параметр η_i не может быть оценен
- При наличии пустых ячеек соответствующие параметры следует исключить из модели

Модель однофакторного анализа

Запись параметра с использованием сравнений

• Сравнение параметров $\eta_1, ..., \eta_d$:

$$\psi = \sum_{i=1}^d c_i \eta_i$$
, где $\sum_{i=1}^d c_i = 0$.

- Выбор весов $\{v_i\}_{i=1}^d \colon v_i \ge 0$ и $\sum_{i=1}^d v_i = 1$
- Параметризация

$$\eta_i = \mu + \alpha_i, \quad \alpha_* = \sum_{i=1}^d v_i \alpha_i = 0$$

- $\mu = \eta_* = \sum_{i=1}^d v_i \eta_i$ взвешенное среднее
- $\alpha_i = \eta_i \eta_*$ главные эффекты, $i = 1, \dots, d$.
- α_i сравнения параметров η
- Стандартный выбор весов
 - v_1 = 1, v_1 = 0 при $i \neq 1$ базовый первый уровень
 - v_d = 1, v_1 = 0 при $i \neq d$ базовый последний уровень
 - $v_i = 1/d$ равные веса

Изучение влияния фактора на результат

Гипотеза однородности групп: отсутствие влияния фактора на результат

• Нулевая гипотеза

$$H_0: \eta_1 = \ldots = \eta_d$$

• Эквивалентная форма записи

$$H_0: \alpha_1 = \ldots = \alpha_{d-1} (= \alpha_d) = 0$$

• Можно записать с использованием любых d-1 линейно независимых сравнений $\psi_1, \dots, \psi_{d-1}$

$$H_0: \psi_1 = \ldots = \psi_{d-1} = 0$$

Изучение влияния фактора на результат

Проверка гипотезы

• Статистика Г-критерия

$$\mathbb{F} = \frac{\overline{SS}_H}{\overline{SS}_e} = \frac{\overline{SS}_H/q}{\overline{SS}_e/(n-r)}$$

- $SS_H = SS(\hat{\eta}_H) SS_e = \sum_i k_i (\overline{Y}_{i+} \overline{Y}_{++})^2$
- $SS_e = \sum_{i=1}^d \sum_{i=1}^{n_i} (Y_{ij} \overline{Y}_{++})^2$
- ullet числа степеней свободы: $q=d-1,\; n-r=n_+-d$
- Распределение статистики \mathbb{F} -критерия при нулевой гипотезе $F_{d-1,n-d}$
- Распределение статистики \mathbb{F} -критерия при альтернативе $F_{\nu,d-1,n-d}$
 - параметр нецентральности $\nu = \sum_{i=1}^d n_i (\eta_i \bar{\eta})^2$.

Множественные сравнения

Уточнение результатов проверки $H_0: \psi_1 = \ldots = \psi_{d-1} = 0$

• Метод Шеффе позволяет получить совместные доверительные интервалы всех ψ_i и их линейных комбинаций $\psi = \alpha_1 \psi_1 + \ldots + \alpha_q \psi_q, \ q \le d-1$

$$\left[\hat{\psi} - \sqrt{x_{\alpha}q}\hat{\sigma}_{\psi}, \hat{\psi} + \sqrt{x_{\alpha}q}\hat{\sigma}_{\psi}\right]$$

- x_{α} : $F_{q,n-d}(x_{\alpha}) = \alpha$ квантиль распределения Фишера-Снедекора
- $\hat{\sigma}_{\psi}^2$ оценка дисперсии МНК оценки $\hat{\psi}$ параметра ψ
- \mathbb{F} -критерий принимает гипотезу в том, и только в том случае, если доверительный интервал для каждого ψ содержит 0.
- Метод Шеффе позволяет выявить сравнения, ответственные за отвержение гипотезы в случае ее отвержения

Множественные сравнения

С использованием метода Шеффе можно проверять односторонние гипотезы

• Например, для проврки гипотезы

$$H_0: \eta_1 < \ldots < \eta_d$$

следует:

- построить совместные доверительные интервалы для сравнений $\psi_i = \eta_{i+1} \eta_i, \ i = 1, \dots, d-1$
- если все доверительные интервалы полностью окажутся в положительной области, то гипотезу можно принять.

План

1 Однофакторный дисперсионный анализ

2 Двухфакторный анализ

3 Многофакторный анализ

Модель двухфакторного анализа

Формулировка в духе однофакторного анализа

- Распределение наблюдаемой величины Y определяется значением двух факторов группировки (z_1, z_2) .
- Наблюдение $(Y, z), z = (z_1, z_2)$
 - У наблюдаемая величина (исследуемая характеристика)
 - $z_l \in \{1,\dots,d_l\}$ фактор группировки, имеющий d_l уровней
 - z фактор простой группировки, имеющий d_1d_2 уровней
- Модель

$$\mathbb{E}_{\theta}(Y|z=(i,j)) = \eta_{ij}, \quad i=1,\ldots,d_1, \ j=1,\ldots,d_2$$

- $\eta_{ij}, \ i$ = 1, . . . , $d_1, \ j$ = 1, . . . , d_2 средние по группам
- $\mathbb{D}_{\theta}Y = \sigma^2$ параметр дисперсии
- ullet Статистические данные (Y,z)
 - $Y = (Y_1, ..., Y_d)'$ независимые величины
 - При $z_s = (i, j)$ наблюдение Y_s имеет нормальное распределение $\mathcal{N}(\eta_{ij}, \sigma^2)$
- Запись с группировкой

$$\mathbb{E}(Y_{ijk}) = \eta_{ij}, i = 1, \dots, d_1, j = 1, \dots, d_2, k = 1, \dots, n_{ij}$$

• n_{ij} – число наблюдений в группе $oldsymbol{z} = (i,j)$

Модель двухфакторного анализа

Двухфакторный подход

- ullet Выбор весов $\{v_i\}: \sum_{i=1}^{d_1} v_i$ = 1, $\{w_j\}: \sum_{i=1}^{d_2} w_j$ = 1
- Чтобы разделить влияние факторов используют параметризацию

$$\eta_{ij} = \mu + \alpha_i^{(1)} + \alpha_j^{(2)} + \alpha_{ij}^{(12)}$$

- µ взвешенное среднее
- $\alpha_i^{(1)}, \, \alpha_j^{(2)}$ главные эффекты
- $\alpha_{ij}^{(12)}$ взаимодействия
- Явные формулы для параметров модели

•
$$\mu = \eta_{**} = \sum_{i=1}^{d_1} \sum_{j=1}^{d_2} v_i w_j \eta_{ij}$$

•
$$\alpha_i^{(1)} = \eta_{i*} - \eta_{**} = \sum_{i=1}^{d_2} w_i \eta_{ij} - \eta_{**}$$

•
$$\alpha_j^{(2)} = \eta_{*j} - \eta_{**} = \sum_{i=1}^{d_1} v_i \eta_{ij} - \eta_{**}$$

$$\bullet \ \alpha_{ij}^{(12)} = \eta_{ij} - \eta_{i*} - \eta_{*j} + \eta_{**}$$

- Ограничения
 - $\alpha_*^{(1)} = \sum_{i=1}^{d_1} v_i \alpha_i^{(1)} = 0; \ \alpha_*^{(2)} = \sum_{j=1}^{d_2} w_j \alpha_j^{(2)} = 0$
 - $\alpha_{i*}^{(12)} = 0$ при всех $i; \alpha_{*j}^{(12)} = 0$ при всех j.

Аддитивная модель

Взаимодействия и главные эффекты

• Гипотеза отсутствия взаимодействий

$$H_{(12)}: \alpha_{ij}^{(12)} = 0, i = 1, \dots, d_1, j = 1, \dots, d_2$$

- $\alpha_{ij}^{(12)}$ сравнения параметров η_{ij}
- число степеней свободы (размерность параметра $\alpha^{(12)}$): $(d_1-1)(d_2-1)$
- \bullet При выполнении $H_{(12)}$ получаем аддитивную модель

$$\eta_{ij} = \mu + \alpha_i^{(1)} + \alpha_j^{(2)}$$

- факторы действуют независимо
- ullet размерность параметра аддитивной модели d_1 + d_2 1
- аддитивная модель может использоваться для некоторых неполных планов $(n_{ij} = 0 \text{ при некоторых } i, j)$
- Справедливость гипотезы не зависит от выбора весов

Некоторые примеры

Модель
$$\mathbb{E}(Y|z_1=i,z_2=j)=\mu+\alpha_i^{(1)}+\alpha_j^{(2)}+\alpha_{ij}^{(12)}$$

• $z_1 \in \{1, 2, 3\}; z_2 \in \{1, 2\}$

Согласованное действие

Пересечение 2

Проверка значимости взаимодействий

Проверка гипотезы отсутствия взаимодействий

• Нулевая гипотеза

$$H_{(12)}: \gamma_{ij} = 0, i = 1, \dots, d_1, j = 1, \dots, d_2$$

- может быть переписана с использованием $(d_1-1)(d_2-1)$ линейных комбинаций γ_{ij}
- при выборе весов с использованием для каждого фактора базового уровня, обращение в нуль $(d_1-1)(d_2-1)$ значений γ_{ij} , соответствующих нулевым значениям весов, задает гипотезу $H_{(12)}$
- Для проверки гипотезы используют Г-критерий
- В случае одного наблюдения n_{ij} = 1 при всех (i,j) проверка гипотезы $H_{(12)}$ невозможна
- Статситика критерия имеет $F_{(d_1-1)(d_2-1),n-d_1d_2}$ -распределение
- При альтернативе \mathbb{F} -статисика имеет нецентральное $F_{\nu,(d_1-1)(d_2-1),n-d_1d_2}$ -распределение
- Методы множественного сравнения позволяют делать более точные выводы о характере взаимодействий

Гипотезы о главных эффектах

Рассмотрим гипотезы

$$H_{(1)}: \alpha_i^{(1)} = 0, i = 1, \dots, d_1$$
 $H_{(2)}: \alpha_i^{(1)} = 0, j = 1, \dots, d_2$

• Гипотеза

$$H_{(1)}: \alpha_i^{(1)} = 0, i = 1, \dots, d_1$$

- размерность параметра d_1 1
- \bullet не влечет отсутствия влияния фактора z_1 на результат
- при отсутствии взаимодействий сравнения главных эффектов не зависят от выбора весов
- при наличии взаимодействий выполнение $H_{(1)}$ зависит от выбора весов
- Отсутствие влияния фактора z_1 на результат равносильно одновременному выполнению $H_{(12)}$ и $H_{(1)}$
- Отсутствие влияния двух факторов на результат определяется одновременным выполнением $H_{(12)}$, $H_{(1)}$ и $H_{(2)}$

План

1 Однофакторный дисперсионный анализ

2 Двухфакторный анализ

3 Многофакторный анализ

Многофакторный анализ

Однофакторный подход

- Распределение наблюдаемой величины Y определяется значением k факторов группировки (z_1, \ldots, z_k) .
- Наблюдение $(Y, z), z = (z_1, \ldots, z_k)$
 - У наблюдаемая величина (исследуемая характеристика)
 - $z_l \in \{1,\dots,d_l\}$ фактор группировки, имеющий d_l уровней
 - z фактор простой группировки, имеющий $d_1 \cdot \ldots \cdot d_k$ уровней
- Модель

$$\mathbb{E}_{\theta}(Y|z=(i_1,\ldots,i_k))=\eta_{i_1\ldots i_k}, \quad i_l=1,\ldots,d_l, \ l=1,\ldots,k$$

- $\eta_{i_1...i_k},\ i_l$ = 1, . . . , $d_l,\ l$ = 1, . . . , k средние по группам
- $\mathbb{D}_{\theta}Y = \sigma^2$ параметр дисперсии
- ullet Статистические данные (Y,z)
 - $Y = (Y_1, ..., Y_n)'$ независимые величины
 - При $z_s = (i_1, ..., i_k)$ наблюдение Y_s имеет нормальное распределение $\mathcal{N}(\eta_{i_1...i_k}, \sigma^2)$
- План полный, если каждому набору значениий факторов соответствует хоть одно наблюдение

Многофакторный анализ

Влияние факторов и их комбинаций

- Веса выбираются для каждого из факторов
- Помимо взаимодействий двух факторов появляются взаимодействия трех (и более) факторов – взаимодействия 2-го, 3-го и.т.д. порядков
- Главные эффекты и взаимодействия определяются рекурсивно для каждой комбинации факторов
- Взаимодействия и главные эффекты сравнения параметров η
- Взвешенные суммы взаимодействий по каждому индексу при любом фиксированном наборе остальных индексов равны нулю
- Взаимодействия высоких порядков трудно поддаются интерпретации

Многофакторный анализ

Выдвижение и проверка гипотез

- Объективными считаем гипотезы об отсутствии взаимодействий определенных факторов или главных эффектов
- Существует прямой и обратный подходы изучения модели
 - Прямой подход подразумевает последовательность выдвижения гипотез о взаимодействиях, начиная с более высоких порядков к гипотезам об отсутствии взаимодействий долее низких порядков
 - Обратный подход подразумевает введение параметров, начиная с главных эффектов к взаимодействиям высоких порядков
- Если не ставить задачу выбора наилучшей модели, то обычно достаточно ограничиться аддитивной моделью или моделью с взаимодействиями только 1-го порядка