Pole Shed App Ver 01 2022

 Job No.:
 2402002
 Address:
 58 Hamama Road, Takaka, New Zealand
 Date:
 14/02/2024

 Latitude:
 -40.897962
 Longitude:
 172.800447
 Elevation:
 33 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	46.82 m/s
Wind Pressure	1.32 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.6524

For roof CP,e from 0 m To 1.65 m Cpe = -0.94 pe = -0.60 KPa pnet = -1.10 KPa

For roof CP,e from 1.65 m To 3.30 m Cpe = -0.88 pe = -0.56 KPa pnet = -1.06 KPa

For wall Windward Cp, i = 0.6524 side Wall Cp, i = -0.5616

For wall Windward and Leeward CP,e from 0 m To 18 m Cpe = 0.7 pe = 0.83 KPa pnet = 1.63 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.77 KPa pnet = 0.03 KPa

Maximum Upward pressure used in roof member Design = 1.10 KPa

Maximum Downward pressure used in roof member Design = 1.04 KPa

Maximum Wall pressure used in Design = 1.63 KPa

Maximum Racking pressure used in Design = 1.42 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 4350 mm Try Purlin 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.47 S1 Downward =11.27 S1 Upward =24.64

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M 1.35D	0.64 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	348.44 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.54 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	116.93 %
M0.9D-WnUp	-1.66 Kn-m	Capacity	-1.76 Kn-m	Passing Percentage	106.02 %

First Page

		Pole Shed App	Ver 01 2022		
V _{1.35D}	0.59 Kn	Capacity	9.65 Kn	Passing Percentage	1635.59 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.33 Kn	Capacity	12.86 Kn	Passing Percentage	551.93 %
$V_{0.9D\text{-W}nUp}$	-1.52 Kn	Capacity	-16.08 Kn	Passing Percentage	1057.89 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 9.57 mm

Deflection under Dead and Service Wind = 16.26 mm

Limit by Woolcock et al, 1999 Span/240 = 17.92 mm Limit by Woolcock et al, 1999 Span/100 = 43.00 mm

Reactions

Maximum downward = 2.33 kn Maximum upward = -1.52 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4500 mm

Internal Rafter Span = 5850 mm

Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	3.05 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	330.49 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.70 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	235.79 %
$M_{0.9D\text{-W}nUp}$	11.05 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	152.04 %
$V_{1.35D}$	3.47 Kn	Capacity	28.94 Kn	Passing Percentage	834.01 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.51 Kn	Capacity	38.6 Kn	Passing Percentage	592.93 %
$ m V_{0.9D ext{-}WnUp}$	15.13 Kn	Capacity	-48.24 Kn	Passing Percentage	318.84 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7 mm

Deflection under Dead and Service Wind = 14 mm

Limit by Woolcock et al, 1999 Span/240 = 25.00 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 6.51 kn Maximum upward = 15.13 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Second page

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 21.67 Kn > 15.13 Kn

Prop on Sides = 2 2/SG820050Dry 1340mm Reaction Prop = 12.39 Kn down 22.10 Kn Up

Prop Combined axial and bending ratios (My/Phi x Mny)+(Nc/Phi x Ncy) should be less than or equal to 1

For Short Term Load = 0.97 < 1 OK

For Medium Term Load = 0.67 < 1 OK

For Long Term Load = 0.49 < 1 OK

Prop Connection check

Effective width of Pole used in Calculations = 200 mm - 20mm (Margin for chamfer)

Bolt Size = M12 Number of Bolts = 2

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Angle of prop = 45 degree

Prop Connection Capacity under Short term loads: 24.85 Kn > 22.1 Kn OK

Prop Connection Capacity under Medium term loads: 19.88~Kn~>~12.39~Kn~OK

Prop Connection Capacity under Long term loads: 14.91 Kn > 6.67 Kn OK

Intermediate Design Sides

Intermediate Spacing = 3000 mm Intermediate Span = 3150 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.67

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	3.03 Kn-m	Capacity	7.46 Kn-m	Passing Percentage	246.20 %
V0.9D-WnUp	3.85 Kn-m	Capacity	32.16 Kn-m	Passing Percentage	835.32 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.405 mm

Limit by Woolcock et al, 1999 Span/100 = 31.50 mm

Pole Shed App Ver 01 2022

Reactions

Maximum = 3.85 kn

Girt Design Front and Back

Girt's Spacing = 800 mm

Girt's Span = 4500 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =11.27 S1 Upward =14.55

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$

3.30 Kn-m

Capacity

3.42 Kn-m

Passing Percentage

103.64 %

 $V_{0.9D\text{-W}nUp}$

2.93 Kn-m

Capacity

16.08 Kn-m

Passing Percentage

548.81 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 31.18 mm

Limit by Woolcock et al, 1999 Span/100 = 45.00 mm

Sag during installation = 24.86 mm

Reactions

Maximum = 2.93 kn

Girt Design Sides

Girt's Spacing = 800 mm

Girt's Span = 3000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow

1.47 Kn-m

Capacity

1.65 Kn-m

Passing Percentage

112.24 %

 $V_{0.9D\text{-W}nUp}$

1.96 Kn-m

Capacity

12.06 Kn-m

Passing Percentage

615.31 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.60 mm

Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Middle Pole Design

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lataral Dactraint	1200 mm a/a		

Lateral Restraint 1300 mm c/c

Loads

Total Area over Pole = 13.5 m2

Dead	4.69 Kn	Live	3.45 Kn
Wind Down	14.42 Kn	Snow	0.00 Kn
Moment wind	6.76 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	510.45 Kn	PhiMnx Wind	27.34 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	306.27 Kn	PhiMnx Dead	16.41 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.38 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.16 < 1 \text{ OK}$

Deflection at top under service lateral loads = 27.92 mm < 33.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
L=	1700 mm	Pile embedment length

Pole Shed App Ver 01 2022

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 6.76 Kn-m Shear Wind = 5.74 Kn

Pile Properties

Safety Factory 0.55

Hu = 9.95 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 16.43 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.58 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 3300 mm

Area 27598 mm2 As 20698.2421875 mm2

Ix 60639381 mm4 Zx 646820 mm3 Iy 60639381 mm4 Zx 646820 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 13.5 m^2

 Dead
 3.38 Kn
 Live
 3.38 Kn

 Wind Down
 14.04 Kn
 Snow
 0.00 Kn

Moment Wind 7.74 Kn-m

 Phi
 0.8
 K8
 0.79

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

ft = 22 MPa E = 9257 MPa

Capacities

PhiNcx Wind 312.90 Kn PhiMnx Wind 14.79 Kn-m PhiVnx Wind 49.01 Kn PhiNcx Dead 187.74 Kn PhiMnx Dead 8.87 Kn-m PhiVnx Dead 29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.59 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.34 < 1 \text{ OK}$

Deflection at top under service lateral loads = 25.06 mm < 35.91 mm

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

fl = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 13.5 m^2

Moment Wind = 7.74 Kn-m Shear Wind = 2.87 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 7.74 Kn-m Shear Wind = 2.87 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1700) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1700)

Skin Friction = 23.34 Kn

Weight of Pile + Pile Skin Friction = 27.76 Kn

Uplift on one Pile = 11.81 Kn

Uplift is ok