How FP Deals With Effects

Source: 2024/01/24 (Wed)

목차

1st Session

- 1. 함수형 프로그래밍 Intro
 - Overall Structure
 - Historical Review (CS + Math)
- 2. SW 엔지니어링의 목표
 - SW Maintainability
 - FP vs OOP vs PP
- 3. FP는 정말 순수한가?
 - Purity of Functions
 - File I/O Scenario

2 X O Kno

2nd Session

- 1. 함수 합성을 위한 도구들
 - Partial Application
 - Kleisli Composition
- 2. ...중 하나인 모나드
 - Functor to Monad
 - IO Monad
- 3. 부수 효과의 관리
 - Action / Calculation / Data
 - Preventing Action Propagation

FP is all about **composing pure functions**.

[Procedural Promramming]

[Functional Programming]

How?

FP is all about composing pure functions.

[Procedural Promramming]

[Functional Programming]

Sum all. [stdin <- "5\n1 2 3 4 5"]</pre>

```
1 int main() {
2   int n, result;
3   std::cin >> n;
4   for (size_t i = 0; i < n; ++i) {
5    int a;
6    std::cin >> a;
7    result += a;
8   }
9   std::cout << result << '\n';
10   return 0;
11 }</pre>
```

```
Python3 (declarative)
from sys import stdin

print(sum(map(
   int, stdin.read().split()[1:]

)))
```

[Procedural Promramming]

[Functional Programming]

1. Purity

- Side Effect
- Referential Transparency
- Significance of ...

2. Immutability

- Recursion (feat. Tail Call Optimization)
- C vs Haskell in File IO

3. First Class Function

- Currying
- Linked List

1. Purity

- Side Effect
- Referential Transparency
- Significance of ...

2. Immutability

- Recursion (feat. Tail Call Optimization)
- C vs Haskell in File IO

3. First Class Function

- Currying
- Linked List

Historical Review (CS + Math)

Lambda Calculus

- 1. Very Basics
- 2. Boolean in Action

- 1. Very Basics
- 2. Functor in Action

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

 $\lambda x.fx$

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

$$\lambda x.fx$$

Lambda Abstraction

Py ver. lambda x: f(x) | JS ver. $(x) \Rightarrow f(x)$

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

Function Signifier $\leftarrow \lambda x.fx$

Lambda Abstraction

Py ver. lambda x: f(x) | JS ver. $(x) \Rightarrow f(x)$

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

Parameter Variable

Lambda Abstraction

Py ver. lambda x: f(x) | JS ver. $(x) \Rightarrow f(x)$

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

Parameter Variable \uparrow Function Signifier $\longleftarrow \underbrace{\lambda x.fx}$ Return $\underline{\text{Expression}}$ Lambda Abstraction

Py ver. lambda x: f(x) | JS ver. (x) => f(x)

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

 $\begin{array}{ll} \text{expression} ::= \text{variable} & \textit{identifier} \\ & | \text{expression expression} & \textit{application} \\ & | \lambda \; v_1 v_2 \cdots \text{. expression} & \textit{abstraction} \\ & | \text{(expression)} & \textit{grouping} \end{array}$

$$\beta$$
-reduction

$$((\lambda a.a) \lambda b.\lambda c.b)(x) \lambda e.f$$

$$= (\lambda b.\lambda c.b)(x)\lambda e.f$$

$$= (\lambda c.x)\lambda e.f$$

$$= x (\beta$$
-normal form)

Function Encoding

- 1. Variables (Immutable)
- 2. Functions (Curried)
- 3. Application

⇔ Turing Machine

ex) Church Encoding: Boolean Js

"Mathematics is the art of giving the same name to different things"

Henri Poincaré

Abstraction!

"Mathematics is the art of giving the same name to different things"

Henri Poincaré

Abstraction of numbers

 \rightarrow

Elementry Algebra

Abstraction of relationships

 \rightarrow

Graph Theory

Abstraction of vectors and their linear relationships

 \rightarrow

Linear Algebra

Abstraction of composition

 \rightarrow

Category Theory

Abstraction of numbers

 \rightarrow

Elementry Algebra

Abstraction of relationships

 \rightarrow

Graph Theory

Abstraction of vectors and their linear relationships

 \rightarrow

Linear Algebra

A category is a collection of...

Components

Objects

Morphisms (a.k.a. Arrows)

Composition of morphisms

A category is a collection of...

Components	For example
Objects	$\mathbb{Q},\;\mathbb{P}=\mathbb{R}-\mathbb{Q},\;i\mathbb{R}=\mathbb{C}-\mathbb{R}$
Morphisms (a.k.a. Arrows)	$f:\mathbb{Q} o \mathbb{P}, \ g:\mathbb{P} o i\mathbb{R}$
Composition of morphisms	$g\circ f:\mathbb{Q} o i\mathbb{R}$

Type

... let's ignore undefined situations

... let's ignore undefined situations

... let's ignore undefined situations