Суфиксни дървета част 2

11.12.2020 г.

(Алгоритъм на Уконен (Ukkonen))

$$V_{w} = \{\varepsilon\} \cup \underbrace{\{v \mid \exists a, b \in \Sigma (a \neq b) \ \& \ va, vb \in Inf(w)\}}_{V_{w}^{\geq 2}} \cup \underbrace{\{v \in Suff(w) \mid v \not\in Inf(w) \backslash Suff(w)\}}_{L_{w}}$$

$$\tilde{\delta}_w: \left(V_w^{\geq 2} \cup_w \varepsilon \times \Sigma\right) \longrightarrow V_w$$

 $\tilde{\delta}(v,a) = \stackrel{w}{\overrightarrow{va}}$ - най-късия инфикс във V_w , които започва с va.

Видяхме няколко неща до сега:

- **1.** Интуиция за това как може да поддържаме V_w :
 - Важни са суфиксите на w, които се срещат поне два пъти;
 - Листата не се променят (те стават по-дълги), те винаги си остават листа и никога нр се срещат като ссщински инфикс;
 - Евентуално част от инфиксите на w могат да преминат във $V_{wb}^{\geq 2}$ при добавянена нова буква b.
- 2. Другата посока, по която пое интуицията е чисто имплементационна:
 - Представяне на $V_w^{\geq 2} \cup \{\varepsilon\}$:

int start - начална позиция на срещане;

 $int \ len$ - дължина на съответния представител;

 $list\ ilde{\delta}$ - списък съответстващ на делта вълна;

 ${f int}\ s$ - указател или връзка към т.нар. суфикс линк, който всъщност е думата, която попада във V_w с отрязаната буква.

• представяне на L_w :

 $int \ start$ - единственото, което ни трябва е началната позиция.

Друго съображение, което направихме е, че фиксирахме представяне на произволен инфикс α - инфикс на w : наредена тройка (v , a , l), като смисъла е връх буква дължина следния:

или $\alpha=v,\, a=\bot$ и l=0 или α е префикс с дължина l на представителя \overrightarrow{va} с дължина l.

Използвайки гореописаното представяне се научихме да правим две неща:

- да проверяваме дали даден инфикс на думата *w* се следва от определена буква;
- като имаме произволен инфикс α на w да намираме $s(\alpha)$, т.е. да намираме представянето на инфикса на w като отрежем първата буква на α .

Необходимо е да покажем по-формално как се променя w при добавянето на буква, за да подкрепим интуицията, да преведем тази интуиция в реализация и накрая да анализираме времето, което ще похарчим за тази реализация.

Характеризация на обновяването:

Имаме $w,\ V_w,\ s_w,\ \tilde{\delta}_w$ и също така имаме $b\in \Sigma.$ Тогава:

- **1.** За върховете:
 - (листата) $L_w = \{vb \mid v \in L_w\} \cup \{vb \mid v \in Suff(w) \& vb \notin Inf(w)\}$

(разклоненията) $V_{wb}^{\geq 2}=V_w^{\geq 2}\cup\{v\in Suff(w)\},v$ се среща поне 2 пъти в w и $vb \notin Inf(w)$

$$s_{wb}(v) = \begin{cases} s_w(v) \text{ не се променя,} & \text{ако } v \in V_w^{\geq 2} \\ v', & \text{ако } v = av' \in V_{wb}^{\geq 2} \backslash V_w^{\geq 2} \end{cases}$$

Това беше интуицията, която си изградихме миналия път и сега само ще я потвърдим.

Доказателство:

1) $v \in L_{wb} \setminus \{\varepsilon\}$. Тогава $v = v'b \Rightarrow v' \in Suff(w)$.

Тъй като $v\in L_{wb}$, т.е. $v\not\in Inf(wb)\backslash Suff(wb)$, то $v\not\in Inf(w)$. Следователно или v' не принадлежи на Inf(w) или v'b не принадлежи на Inf(w) и в двата случая $v'b \notin Inf(w) \& v'b \in Suff(w) \stackrel{def.}{\Rightarrow} v \in$ дясната страна на равенството (листата).

Обратно, ако $v \in L_w \Rightarrow v$ се среща веднъж в w и единствено като суфикс $\Rightarrow vb \in Suff(wb)$ и $vb \notin Inf(w)$ (иначе v се среща поне 2 пъти в w)

Накрая, ако $v \in Suff(w) \& vb \notin Inf(w) \Rightarrow vb \in Suff(wb)$ (от първото) и vb се среща точно веднъж в wb (от второто) $\stackrel{def.}{\Rightarrow}$ по дефиниция $vb \in L_{wb}$.

2) $v \in V_w^{\geq 2}$. Тогава може да кажем, че $\exists a, c (a \neq c)$ и va и vc са инфикси на w (точно както беше в структурата на Blumer), т.е. на минималния суфиксен автомат - там беше с леви, а тук с десни контексти). Щом $va, vc \in Inf(w)$, значи те ще продължат да бъдат инфикси на wb $(v \in V_w^{\geq 2} \Rightarrow v \in V_{wb}^{\geq 2}).$

Сега остана да докажем, че разликата на тези две множества $V_{wb}^{\geq 2} \backslash V_w^{\geq 2}$ е $\{v \in Suff(w) \backslash V_w^{\geq 2} | v \text{ се среща поне 2 пъти в } w \text{ и } vb \notin w\}.$

Да разгледаме един елемент от множеството M. Трябва да докажем, че той е от множеството $V_{wb}^{\geq 2}$, защото и от двете страни сме махнали $V_w^{\geq 2}$.

Ако $v \in M \Rightarrow v$ се среща поне два пъти в $w \Rightarrow \exists$ буква a, за която $va \in Inf(w)$ (т.е. не се среща само като суфикс), но ние знаем, че $vb \notin Inf(w)$ и следователно $a \neq b$. Тогава va и vb са инфикси на wb, откъдето директно от дефиницията следва, че $v \in V_{wb}^{\geq 2}$.

Обратно. Нека $v\in V_{wb}^{\geq 2}\backslash V_w^{\geq 2}$. Тогава $\exists a,c(a\neq c):va,vc\in Inf(wb)$. Да допуснем, че va и vb едновременно са инфикси на w. Обаче тогава v ще се среща в различни десни контексти в w и ще попадне в $V_w^{\geq 2}$, което е противоречие с допускането. Следователно остава някоя от тези две думи да не бъде инфикс на w. Това показва, че както и да изберем различни букви $a \neq c$, така че va и vc да бъдат инфикси на wb, една от двете думи не е инфикс на w. Б.о.о. нека това е vc и $vc \notin Inf(w)$. Тъй като $vc \in Inf(wb)$, то $vc \in Suff(wb) \Rightarrow c = b$ и $v \in Suff(w)$. (Нещо повече: всички останали срещания на думата v вътре като инфикс на w се следват от буквата $a \mapsto v \in M$!

Относно суфикс линковете - нещата би трябвало да са ясни. Дефиницията дава отговор на тези въпроси с актуализацията. Нека я припомним:

 $s_w(v) = v' \Leftrightarrow v = av'$ за някоя буква $a \in \Sigma$. Предишния път стана ясно, че би било скъпо и неефективно да поддържаме суфикс линковете за всички върхове в дървото и ще ни трябва такава функционална стойност на s само за вътрешните върхове $V_w^{\geq 2}$ и се концентрираме върху нея.

Всъщност, ако $v\in V_{wb}^{\geq 2}$, то има различни букви $a\neq c$ такива, че $va,vc\in Inf(wb)$ и ако v=dv', то v'a и $v'c\in Inf(wb)\Rightarrow v'\in V_{wb}^{\geq 2}$.

(това, което човек трябва да забележи е може би следното: v' може да не е връх във $V_w^{\geq 2}$, но задължително ще се появи във $V_{wh}^{\geq 2}$)

v=dv' - той е нов връх, т.е. $v\in V_{wb}^{\geq 2}\backslash V_w^{\geq 2}$, $v'\notin V_{wb}^{\geq 2}\Rightarrow v'$, но тогава v' ще бъде добавено във $V_{wb}^{\geq 2}$.

Остана да покажем какво се случва с преходите.

За преходите:

$$\tilde{\delta}_{wb}(v,x) = \begin{cases} vb, & vb \in L_{wb}, b = x \\ u, & u \in V_{wb}^{\geq 2} \backslash V_w^{\geq 2} \text{ in } u \in Pref(\overrightarrow{vx}) \\ \tilde{\delta}_w(v,x) & \end{cases}$$

 $\alpha = (v, a, l)$ - най-дългия суфикс в w, който се среща поне 2 пъти в w.

```
procedure ProcessNextChar(v,a,l,b, n \ Mb = n + 1 \ b = w[n]
a \leftarrow (v,a,l)
last\_new\_v \leftarrow \bot
while v \neq \bot and !followedBy(v,a,l,b) do{
        if l \neq 0 then
O(1)
СъЗдава се
HOBO
Състояние
NV^{\geq 2}
if last\_new\_v \leftarrow v
if last\_new\_v \neq v then
last\_new\_v \neq v then
last\_new\_v \leftarrow new\_v
leaf \leftarrow new state(L_w)
\delta(new\_v,c) \leftarrow \delta(v,a)
\delta(v,a) \leftarrow new\_v
start(leaf) \rightarrow n - len(new\_v)
\Rightarrow start(leaf) = n - len(new\_v)
\Rightarrow start(leaf) = n - len(new\_v)
\Rightarrow start(leaf) = n - len(new\_v)
```

```
if v = \varepsilon and l = 0 then
                                v \leftarrow \bot
                      else
                               (v, a, l) \leftarrow FindNextStem(v, a, l)
         if last\_new\_v \neq \bot
s(last\_new\_v) \leftarrow v
if v = \bot then
                                   (arepsilon, \perp, 0) // arepsilon е най-дългия суфикс, който се среща поне 2 пъти в wb
O(1) { return followInfix(v, a, l, n, 1)
                                                      w[n]=b
  }
  procedure BuildSuffixTree(w){
            \varepsilon \leftarrow new \ state(V_w^{\geq 2})
            start(\varepsilon) \leftarrow 0
            len(\varepsilon) \leftarrow 0
            leaf \leftarrow new state(L_w)
            start(leaf) \leftarrow 0
            \tilde{\delta}(\varepsilon, w[0]) \leftarrow leaf
            (v, a, l) \leftarrow (\varepsilon, \perp, 0)
            for i = 1 to |w| - 1 do
                     (v, a, l) \leftarrow ProcessNextChar(v, a, l, w[i])
            done
  }
```

Забележка: Обърнете внимание, че в суфиксното дърво не всички суфикси са експлицитно представени. Има суфикси, които могат да се окажат вътрешни върхове и да имат единствено представяне. Това малко противоречи с концепцията на суфиксното дърво да представи всички суфикси на w. Поради тази причина, за да се избегне този проблем, обикновено към w се добавя специален маркер за край на дума (\$). Благодарение на него, всички суфикси на оригиналната дума w ще съответстват на суфикс, който ще бъде листо в w\$.

$$w \longmapsto w\$$$
 $\alpha \in Suff(w) \Leftrightarrow w\$ \in Suff(w\$)$ α се среща точно веднъж в $w\$$, заради особеноста на символа $\$$ (технически хак)

Знаем. че:

1)
$$NV^{\geq 2} + NL \leq V_w \leq 2|w| + 1$$

Остава да пресметнем времето загубено от рекурсивната функция FindNextStem.

Да разгледаме следния инвариант. С всеки $\alpha=(v,a,l)$ - суфикс на w, асоциираме цена $cost(\alpha)=|\alpha|+l$. Да разгледаме суфиксите $\alpha_0,\alpha_1,\ldots,\alpha_k$ в рамките на while цикъла на едно извикване на ProcessNextChar.

$$\alpha_i = (v_i, a_i, l_i)$$

Времето за преход от i-тата до i+1-вата фаза:

 $FindNextStem(v_i, a_i, l_i, b) = (v_{i+1}, a_{i+1}, l_{i+1}) \Rightarrow$ времето за това изпълнение е $\leq l_i - l_{i+1}$. Освен това ние знаем, че дължината на суфикса α намалява с точно 1-ца. Следователно

$$l_i - l_{i+1} \le 2(|\alpha_i| - |\alpha_{i+1}|) + l_i - l_{i+1} = cost(\alpha_i) - cost(\alpha_{i+1})$$

 \Rightarrow времето на всички изпълнения на FindNextStem в рамките на едно извикване на обработката на следващия символ ще бъде цената на началното α минус цената на следващото α_k , което ще получим от резултата на рекурсивната функция. Т.е. времето за цялото изпълнение на $FindNextStem \leq cost(\alpha_0) - cost(\alpha_k)$.

Ние искаме да направим амортиззиран анализ, за това трябва да вържем цената на α_k със цената на следващото α_0 , което ще дойде от следващата итерация.

Нека $\alpha^{(i)}$ е най-дългия повтарящ се суфикс на w[0...j]. Тогава, ако while цикъла с $ProcessNextChar(\,\cdot\,,\cdot\,,\cdot\,,j+1)$ завърши с $\alpha_k^{(j)}$, то $\alpha^{(j+1)}$ ще има цена

$$\begin{split} & cost\left(\alpha^{(j+1)}\right) \leq 2\left(\left|\alpha_k^{(j)}\right| + 1\right) + l_k^{(j)} + 1 \leq cost\left(\alpha_k^{(j)}\right) + 3 \\ & \Rightarrow cost\left(\alpha_0^{(j)}\right) - cost\left(\alpha_k^{(j)}\right) \leq cost\left(\alpha^{(j)}\right) - cost\left(\alpha^{(j+1)}\right) + 3 \end{split}$$

Следователно времето за

$$ProcessNextChar(\cdot, \cdot, \cdot, \cdot, j+1) \le cost(\alpha^{(j)}) - cost(\alpha^{(j+1)}) + 3$$

 \Rightarrow времето за BuildSuffixTree e \leq от

$$\sum_{j=0}^{|w|-2} \left[cost\left(\alpha^{(j)}\right) - cost\left(\alpha^{(j+1)}\right) + 3 \right] = 3\left(|w|-1\right) + cost\left(\alpha^{(0)}\right) - cost\left(\alpha^{(|w|-1)}\right) \le 3\left(|w|-1\right).$$

Коментари:

Отново имаме две дървета. Едното е очевидното суфиксно дърво, а другото е дървото, което е построено с функцията на бащите (суфиксните линкове). Интерпретацията на тези две дървета е дуална в някакъв смисъл на двете дървета, които имахме при суфиксния автомат.

$$\mathcal{S}_{\scriptscriptstyle W} = (V_{\scriptscriptstyle W}, \delta_{\scriptscriptstyle W}, \varepsilon)$$
 - суфиксно дърво.

 $1. \quad u,v \in V_w$

LCA(u, v) = x, който връх е префикс на u и v и при това ще бъде най-дългия общ префикс на u и v.

 $\mathscr{Y} = (V_{\scriptscriptstyle W}, s_{\scriptscriptstyle W}, \varepsilon)$ - второ дърво

- 1. $|s_w(u)| = |u| 1$, sa $u \in V_w^{\geq 2} \setminus \{\varepsilon\}$
- **2.** $L\overset{\cdot \cdot \cdot}{A}(u,d)=u_d$ ще бъде суфиксът на u с дължина $|u_d|=|u|-d$
- **3.** LCA(u, v) = y най-дългия суфикс на u и v.