

RGB-X Object Detection via Scene-Specific Fusion Modules

Sri Aditya Deevi^{1,*}, Connor Lee^{1,*}, Lu Gan^{1,*}, Sushruth Nagesh², Gaurav Pandey², and Soon-Jo Chung¹

¹California Institute of Technology

²Ford Motor Company

*Equal contribution

Background

Problem: Existing deep sensor fusion techniques for AV require:

- 1. Large coregistered, multimodal datasets to train.
- 2. Extensive training (fusion) time anytime a sensor component is changed.

Proposed Solution: We introduce an efficient RGB-X fusion network that fuses pretrained single-modal models using scene-specific fusion modules. Key advantages include:

- Superior performance over existing object detection methods on RGB-thermal and RGB-gated datasets.
- Overall framework achieves comparable results with 75% less coregistered, multimodal training data.
- Enables creation of DSF models using small multimodal datasets.

Approach

Our modular RGB-X object detection network is built using pretrained single-modal detectors and fused using scene-specific CBAM [5] modules.

Model Inference:

- 1. Modality-specific network encoders take in a pair of RGB-X images.
- 2. A scene classifier operates on RGB encodings to determine the current scene category.
- 3. Scene-specific fusion modules are retrieved based on the predicted scene and used in decoder of the network.
- 4. Detector head performs inference on the fused features to generate bounding box outputs.

Model Training:

- 1. Pretrained object detectors of each modality are obtained or trained on single-modality datasets.
- 2. A scene-classifier is added to RGB encoder and trained on RGB data.
- 3. (Fusion training) Scene-specific fusion modules are trained per scene category on multimodal datasets while encoders, scene classifier, and object detection head (set to pretrained thermal weights) are frozen.

Results

Improved RGB-T Object Detection Performance:

- Our algorithm performs better than existing RGB-T methods on the FLIR aligned object detection dataset.
- Scene-adaptive fusion modules provide a boost over scene-agnostic parameters.

Method	Person	Bicycle	Car	mAP@0.5	mAP	Inference Speed (s)
RGB only	60.79	37.25	73.94	57.32	24.7	0.016
Thermal only	82.86	50.80	82.83	72.16	37.0	0.016
RetinaNet + MFPT[6]	78.1	65.0	87.3	76.80	_	0.050
CFT [4]	_	_	_	78.7	40.2	0.026
FasterRCNN + MFPT[6]	83.2	67.7	89.0	80.00	_	0.080
LRAF-Net[2]	_	_	_	80.50	42.8	_
Scene-agnostic CBAM (ours)	88.26	77.43	90.68	85.45	46.8	0.028
Scene-adaptive CBAM (ours)	88.92	78.61	90.94	86.16	47.1	0.032

Visualized RGB-Gated Detections on the Seeing Through Fog Dataset [1]:

Visualized RGB-T Detections on the M³FD Dataset [3]:

Reduced Reliance on Multimodal Training Data for Fusion:

- Our approach heavily constrains the training process.
- Similar performance can be maintained even with 75% less fusion training data.

Network Part	# Params
Encoders (RGB + X)	24.8 M
Decoders (RGB + X)	0.12 M
Detection Head	1.60 M
Fusion Modules	0.21 M
Total	26.7 M
Total Trainable (per scene)	0.21 M

Conclusions

We presented a RGB-X object detection framework that fuses off-the-shelf networks using lightweight fusion modules. Our approach:

- Reduces the dependence on hard-to-obtain coregistered RGB-X datasets
- Reduces fusion training time when sensors/pretrained networks are swapped out.
- Provides improved adaptability via scene-specific fusion modules.

References

[1] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus, Werner Ritter, Klaus Dietmayer, and Felix Heide. Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In *CVPR*, June 2020. [2] Haolong Fu, Shixun Wang, Puhong Duan, Changyan Xiao, Renwei Dian, Shutao Li, and Zhiyong Li. Lraf-net: Long-range attention fusion network for visible-infrared object detection. *IEEE Transactions on Neural Networks and Learning Systems*, 2023. [3] Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng Liu, Wei Zhong, and Zhongxuan Luo. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In *CVPR*, pages 5802–5811, 2022. [4] Fang Qingyun, Han Dapeng, and Wang Zhaokui. Cross-modality fusion transformer for multispectral object detection. *arXiv preprint arXiv:2111.00273*, 2021. [5] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In *ECCV*, pages 3–19, 2018. [6] Yaohui Zhu, Xiaoyu Sun, Miao Wang, and Hua Huang. Multi-modal feature pyramid transformer for rgb-infrared object detection. *IEEE Transactions on Intelligent Transportation Systems*, 2023.