

	FOIOSIŢI IFD		(4p) pentru a gasi funcția de inter
	t	x	(,=0
	0	0	d=1
	1/4	1	
	1/2	0	
	3/4	-1	

Pentru un întreg par
$$n$$
, fie $t_j = c + j(d-c)/n$ pentru $j = 0, \dots, n-1$, şi fie $x = [x_0, \dots, x_{n-1}]^T$ un vector de n numere reale. Definim $[a_0, \dots, a_{n-1}]^T + [b_0, \dots, b_{n-1}]^T j = F_n x$, unde F_n este Transformata Fourier Discretă. Atunci funcția
$$P_n(t) = \frac{a_0}{\sqrt{n}} + \frac{2}{\sqrt{n}} \sum_{k=1}^{n/2-1} \left(a_k \cos \frac{2k\pi(t-c)}{d-c} - b_k \sin \frac{2k\pi(t-c)}{d-c} \right) + \frac{a_{n/2}}{\sqrt{n}} \cos \frac{n\pi(t-c)}{d-c}$$

satisface $P_n(t_j) = x_j$ pentru $j = 0, \dots, n-1$.

$$P_{4}(t) = \frac{2}{5\pi} + \frac{2}{5\pi} = \frac{2h\pi(t-0)}{h-1} - h\pi(t-0) - h\pi \sin \frac{2h\pi(t-0)}{1-0} + 5\pi \cos \frac{1-0}{1-0} = \frac{1}{5\pi} + \frac{2h\pi(t-0)}{1-0} + \frac{2h\pi(t-0)}{1-0} = \frac{1}{5\pi} + \frac{2h\pi(t-0)}{1-0} + \frac{2h\pi(t-0)}{1-0} = \frac{1}{5\pi} + \frac{2h\pi(t-0)}{1-0} = \frac{1}{5\pi} + \frac{2h\pi(t-0)}{1-0} = \frac{2h\pi(t-0)}{1-0} + \frac{2h\pi(t-0)}{1-0} = \frac{2h\pi(t-0)}{1-$$

$$P_{4}(0) = 4m0 = 0$$
 $P_{4}(\frac{1}{4}) = 4m \frac{3}{2} = 1$
 $P_{4}(\frac{3}{4}) = 4m \frac{3}{2} = -1$

