Scilab Quick Ref-Card

Basic operators

+	addition for scalers, vectors, matrices etc.
-	subtraction for scalers, vectors, matrices etc.
\	$2 \setminus 7 = 3.5$ i.e. 2 divides $7 \frac{7}{2}$
/	$2/7 = 0.2857143$ i.e. fraction $\frac{2}{7}$
*	multiplication of scaler, matrices
^	2^3 computes 2^3
//	comment line
:	Defines range 1:5 will print
	sequence of numbers as 1. 2. 3. 4. 5.
	with default increment as 1
;	to suppress output

Data types / objects

SC	caler	x=3 Assigns value to variable x which
		becomes scaler.
ra	ange	2 : .5 : 4 will print sequence of numbers
		starting from 2 with of increment .5
		in the range 2 to 4.
1:	inspace	e.g. linspace(2,3,11) will
	_	return sequence of equally space points
		in the interval [2, 3]
ve	ector	U=[2,9,-4]
		U becomes the vector of length 3
m	atrix	A=[3,4;5,11] $A = \begin{bmatrix} 3 & 4 \\ 5 & 11 \end{bmatrix}$
		; separates rows.
cc	$_{ m omplex}$	3+%i This will dislay complex number $3+i$
	umber	
Vâ	ariable x	x = poly(0, 'x') This will declare x
		as a variable x which is soln

Predefined constants

%pi	π with numerical value assigned
%e	e base in natural logarithm $e = 2.7182818$
%i	complex number $\sqrt{-1}$
%inf	Infinity
%eps	machine epsilon

of polynomialx = 0.

Extracting elements, rows & columns

X(n)	nth element of vector X
X(\$)	last element of vector X
X(\$-1)	second last element of vector X
A(2,3)	element of matrix A at 2nd row, 3rd column
A(:,2)	In matrix A second column, :all rows
A(n,:)	nth row and all entries in n th row
A(:,\$)	Last column of matrix A
A(\$-1,:)	Second last row
A(2:3,1:2)	submatrix i.e. entries from 2nd to 3rd row
	and 1st to 2nd column of matrix A

Advanced operations

.*	element wise multiplication, applicable to
	vectors, matrices
./	U, V are vectors(or matrices), U./V is
	$u_1./v_1, \cdots, u_k./v_k,$
	in other words $\frac{u_1}{v_1}, \cdots, \frac{u_k}{v_k}$
.\	U, V are vectors, U.\V is
	$v_1.\backslash u_1, \cdots, v_k.\backslash u_k,$
	in other words $\frac{v_1}{v_1}, \dots, \frac{v_k}{v_k}$
A \ B	Matrix A divides matrix B i.e. $A^{-1} \times B$
A / B	Matrix B divides matrix A i.e. $A\times B^{-1}$
n!	returns n factorial
;	2/3; will supress output
,	/ - / · · · · · · · · · · · · · · · · ·

Logical operators

Logical or	perations returns answers as TRUE or FALSE
a < b	is a strictly less than b?
0 > d	is d less than 0?
m <= n	is m is less than or equal to n?
a >= 0	is a great than on equal to 0?
A <> B	is A not equal to B
a == b	is a equals to b?

Standard functions

Trigonometric functions

Accepts	input in radians. For degrees use sind(45)	
sin	sin	
cos	cos	
tan	tan	
sec	sec	
csc	cosec	
cotg	cot	
asin	sin inverse	
acos	cos inverse	
atan	tan inverse	
asec	sec inverse	
acsc	cosec inverse	
acot	cot inverse	

Mathematical functions

exp log round floor ceil int modulo(x,y) factorial(n) factors(a) sqrt(5)	exponential logarithm rounding earlier highest integer next lowest integer only integer part $x \pmod{y}$ gives remainder will out put $n!$ will factor number a in prime numbers square root of a number
sqrt(5) abs(-5)	absolute value of a number

Miscellaneous functions

clear a	delete the predefined object a
<pre>disp(x)</pre>	Prints value of x
<pre>disp(''abc'')</pre>	Prints string as it is
find	find(A<3) will return index value
	(positions of values) in A which are < 3
<pre>clean(x)</pre>	will round x to 0
<pre>format('v',20)</pre>	set number of digits to 20
<pre>format('e',20)</pre>	represent number in scientific format
	e.g. $2345=2.345D+03$ which is equivalent to
	2.345×10^3
help("plot")	display help for plot command

Matrix related functions

If A is some matrix already defined.		
length(A)	It will return number of elements in A .	
size(A)	return number of rows, columns in A	
sum(A)	Addition of all elements of A	
<pre>prod(A)</pre>	Product of all elements	
,	transpose of matrix, e.g. A',	
	where A is a matrix	
trace(A)	Addition of all diagonal elements	
diag(A)	Extract all diagonal elements	
max(A)	maximum element in matrix A	
min(A)	minimum element in matrix A	
rank(A)	rank of matrix A	
<pre>det(A)</pre>	It will find the determinant	
	of the square matrix.	
inv(A)	if determinant is non singular (i.e. $\neq 0$)	
	then it will compute the inverse	
	of the matrix	
spec(A)	spectrum- it will compute eigen values	
[V,E]=spec(A)	will assign eigen values to E	
	in diagonal matrix form will assign	
	corresponding eigen vectors in column	
	form to matrix V	

Polynomial operations

x=poly(0,'x')	declare x as poly with
	variable x and root= 0
<pre>x=poly(v,'x','coef')</pre>	declare poly with variable x
	& coefficients from vector v
roots(f)	will find roots of polynomial f .
polfact(f)	will factorize polynomial f .
<pre>derivat(f)</pre>	derivative of polynomial f
horner(f,5)	evaluate poly f at 5.
coeff(f)	returns coefficient of the poly f
degree(f)	returns degree of poly f

Special Matrices

eye(3,3)	Identity matrix of size 3×3
ones(3,3)	Matrix of size 3×3 with
	each element= '1'.
zeros(1,2)	Matrix of size 1×2 with
	each element $=$ '0'.
rand(2,3)	Matrix of size 2×3 with entries
	generated randomly between 0 and 1
	will output matrix as $ \begin{bmatrix} 2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 7 \end{bmatrix} $
diag([2 -5 7])	will output matrix as $\begin{vmatrix} 0 & -5 & 0 \end{vmatrix}$
	0 0 7

Programming

```
Inline function defination
deff ('y=funname(x)','y=2*sin(x)')
y is temporary variable.
funname is name of the function.
y=2*sin(x) is function definition
For loop
```

```
k=0
for i=1:n
k=3*i+1
end
```

```
if (condn) then ...end
if (condn) then...else...end
while(codn)...end
```

function[output]=funname(input)
output=calculation
endfunction

```
function[f]=fibbo(n)
  f=[ 1 1]
  temp=0
  for i=2:n
    temp=f($) +f($-1)
    f=[f temp]
  end
endfunction
continue: continues with next
counter value, skip the current counter
```

Graphics

<pre>plot(sin(x))</pre>	
	plot sin graph Vs index value
<pre>plot(x,y)</pre>	${ t graph \ of} x \ { t Vs \ } y$
<pre>plot(x,y,x,w)</pre>	
plot2d	
fplot2d	2-d function plot
fplot3d	3-d function plot
fplot3d1	colourful 3D graph
<pre>subplot()</pre>	divide plot windows
xlabel()	horizontal label to graph
<pre>ylabel()</pre>	vertical label
legend()	list of graphs with colours used
clf()	close graphics window
pie()	pie graph
contour	contour plot
champ	vector field plot
champ1	

Advanced Matrix related functions

Points to be noted

- function returns more than one value.
- append operation is possible with a = [a, 2].
- Matrix in one variable (defined by poly command).
- works in same way. Operations for matrix works with it.
- matrix, polynomial are also valid inputs for functions.
- Scilab acts on whole vector at a time, use of loops can be avoided.