

CURSO DE ENGENHARIA DE SOFTWARE

RELATÓRIO – TRABALHO FINAL QUALIDADE DE SOFTWARE Swing JPA CRUD

Equipe:

Fabiany de Sousa Costa

Professora:

Carla Ilane Moreira Bezerra

QUIXADÁ

Julho, 2021

SUMÁRIO

1.	DES	CRIÇÃO DO PROJETO	2
1. 2.		LIAÇÃO DO PROJETO	2
	2.1.	Medição 1 – Antes de refatorar o projeto	2
	2.2.	Detecção dos Code Smells	4
	2.3.	Medição 2 – Após Refatorar Code Smell Long Method	5
	2.4.	Medição 3 – Após Refatorar Code Smell Feature Envy	6
	2.5.	Medição 4 – Após Refatorar Code Smell Dispersed Coupling	7
	2.6.	Medição 5 – Após Refatorar Code Smell God Class	8
	2.7.	Medição 6 – Após Refatorar Code Smell Refused Parent Bequest	8
3.	COM	IPARAÇÃO DOS RESULTADOS	9
4.	REF	ERÊNCIAS	11
5	APÊ	NDICE A	11

1 DESCRIÇÃO DO PROJETO

O projeto é uma demonstração de aplicativo desktop, com o código aberto, desenvolvido com as tecnologias Swing JPA (Java Persistence API) e Hibernate.

A aplicação utiliza o HSQLDB (HyperSQL DataBase), um banco de dados relacional escrito em Java, adequado para projetos com propósitos de estudos.

Essa aplicação disponibiliza um CRUD, com funcionalidades idênticas do projeto swing-jdbc-crud (https://github.com/yaw/swing-jdbc-crud). Além de utilizar uma tecnologia padrão para o mapeamento objeto relacional (ORM), essa aplicação define a arquitetura MVC (Model View Controller).

Tecnologias utilizadas na implementação:

Swing: utilizamos o framework para construção das interfaces e componentes gráficos da aplicação (camada cliente);

JPA: API alto nível, padrão da tecnologia Java, para definir o mapeamento objeto relacional (ORM).

Hibernate: provedor JPA para mapeamento objeto relacional (ORM).

Collection: reunimos uma relação de objeto em memória via coleções do Java;

Thread: algumas ações (eventos) dos componentes da tela com o banco de dados são tratados em outra thread (SwingUtilities), de forma que o usuário tenha uma melhor experiência no uso da aplicação.

Para facilitar o uso de bibliotecas externas e a construção, o projeto utiliza o Maven. Link do projeto: https://github.com/yaw/swing-jpa-crud

Tabela 1 – Características do Projeto

Projeto	LOC	# de classes	# de releases
Swing JPA CRUD	1.369	52	0

2 AVALIAÇÃO DO PROJETO

2.1 Medição 1 – Antes de refatorar o projeto

Segue o link da Tabela com a medição das métricas de coesão, acoplamento, complexidade, herança e tamanho, antes do projeto ser refatorado. Foi utilizado a ferramenta

Understand para a coleta das métricas. A Tabela 2 apresenta a descrição das métricas adquiridas pelo uso da ferramenta.

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema Coesão		oesão Complexidade		Hera			Acoplament o	Tamanl	Tamanho				
	LCOM 2	ACC	SCC	EVG	MaxNet	DIT	NOC	IFANIN	СВО	LO C	CLOC	NIM	CDL
S1 antes da refatoraçã o	927	106	924	86	109	77	29	79	94	1.369	556	178	52
S1 após refat. CS Long Method	971	103	988	89	115	75	29	78	94	1.426	556	195	52
S1 após refat. CS Feature Envy	989	97	964	89	114	75	29	78	94	1.410	559	189	52
S1 após refat. CS Dispersed Coupling	996	97	972	89	114	75	29	78	94	1.416	559	191	52
S1 após refat. CS God Class	1089	101	984	93	115	79	30	80	97	1.447	562	194	54
S1 após refat. CS Refused Parent Bequest	1083	101	980	93	115	79	30	80	97	1.439	559	193	54

Tabela 3 – Métricas dos atributos internos de qualidade (MCCABE, 1976; CHIDAMBER; KEMERER, 1994; LORENZ; KIDD, 1994; DESTEFANIS et al., 2014)

Atributos	Métricas	Descrição			
Coesão	Lack of Cohesion of Methods (LCOM2) (CHIDAMBER; KEMERER, 1994)	Mede a coesão de uma classe.			
S-37-5M35		Quanto maior o valor dessa métrica, menos coesiva é a classe			
Acoplamento	Coupling Between Objects (CBO) (CHIDAMBER; KEMERER, 1994)	Número de classes que uma classe está acoplada			
. Keepinine		Quanto maior o valor dessa métrica, maior é o acoplament de classes e métodos.			
Complexidade	Average Cyclomatic Complexity (ACC) (MCCABE, 1976)	Média da complexidade ciclomática de todos os métodos.			
Соприя	A source and a sound	Quanto maior o valor dessa métrica, mais complexa são classes e métodos.			
	Sum Cyclomatic Complexity (SCC) (MCCABE, 1976)	Somatório da complexidade ciclomática de todos os métodos			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Quanto maior o valor dessa métrica, mais complexos são a classes e métodos.			
	Nesting (MaxNest) (LORENZ; KIDD, 1994)	Nível máximo de aninhamento de construções de controle:			
	March Mayor and March Service Provided County Co.	Quanto maior o valor dessa métrica, maior é a complexidade de classes e métodos.			
	Essential Complexity (EVG) (MCCABE, 1976)	Mede o grau na qual um módulo contém construtores não estruturados. Quanto maior o valor dessa métrica mais complexas são a: classes e métodos.			
Usesess	Number Of Children (NOC)	Número de subclasses de uma classe.			
Herança	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica maior é o grau de herança de un sistema.			
	Depth of Inheritance Tree (DIT) (CHIDAMBER; KEMERER, 1994)	O número de níveis que uma subclasse herda de métodos o atributos de uma superclasse na árvore de herança. Quanto maior o valor dessa métrica maior é o grau de herança de um sistema.			
	Bases Classes (IFANIN)	Número imediato de classes base.			
	(DESTEFANIS et al., 2014)	Quanto maior o valor dessa métrica, maior o grau de herança de um sistema.			
Tamanho	Lines of Code (LOC) (LORENZ; KIDD, 1994)	Número de linhas de código, excluindo espaços e comentá rios. Quanto maior o valor dessa métrica, maior é o tamanho de sistema.			
	Lines with Comments (CLOC)	Número de linhas com comentários.			
	(LORENZ; KIDD, 1994)	Quanto maior o valor dessa métrica maior o tamanho do sis tema.			
	Classes (CDL) (LORENZ; KIDD, 1994)	Número de classes. Quanto maior o valor , maior o tamanho do sistema.			
	Instance Methods (NIM) (LORENZ; KIDD, 1994)	Número de métodos de instância. Quanto maior o valor dessa métrica maior é o tamanho do sistema.			

2.2 Detecção dos Code Smells

Utilizando as ferramentas JSPirit e JDeodorant foram detectados 5 code smells e um total de 41 ocorrências no projeto. A Tabela abaixo lista os code smells encontrados e a ordem de refatoração utilizada.

Tabela 3 – Code smells do projeto.

Nome do Code Smell	Quantidade
Long Method	25
Feature Envy	10
Dispersed Coupling	2
God Class	3
Refused Parent Bequest	1
Total:	41

2.3 Medição 2 – Após Refatorar Code Smell Long Method

Foram refatorados 25 evidências de code smells do tipo Long Method utilizando a técnica de refatoração Extract Method. Após a refatoração apenas os atributos de Herança e Acoplamento continuam sem alteração, o atributo de Coesão, LCOM2 aumentou de 927 para 971, já em Complexidade o SCC, EVG e MaxNet, que estavam consecutivamente com 912, 83 e 109, aumentaram para 988, 89 e 115, no Tamanho o NOC e NIM que estavam consecutivamente com 1.369 e 178, aumentaram para 1.426 e 195. Devido às técnicas utilizadas é normal o aumento em atributos como Coesão, Complexidade e Tamanho. Houve também o aumento no número de incidentes do Code Smell Featury Envy.

Tabela 4 – Code Smells após refatorar Long Method

Nome do Code Smell	Quantidade
Long Method	0
Feature Envy	12
Dispersed Coupling	2
God Class	3
Refused Parent Bequest	1
Total:	18

2.4 Medição 3 – Após Refatorar Code Smell Feature Envy

Foram refatorados 10 evidências de code smells do tipo Feature Envy utilizando as técnicas de refatoração Move Method e Extract Method. Após a refatoração houve um aumento no Coesão, LCMO2 de 971 para 989, na Complexidade houve diminuição no ACC, SCC e MaxNet, consecutivamente de 103 para 97, 988 para 964, 115 para 114, porém, o EVG, se manteve igual, a 89.Na Herança e no Acoplamento, os atributos continuam sem sofrer alterações. No atributo Tamanho, houve também uma diminuição no LOC, NIM e, de 1.426, 195 para 1.410 e 189, e o CLOC, CDL não foram alterados. Devido às técnicas utilizadas foi notável o aumento de evidências de code smells God Class e a diminuição de Dispersed Coupling..

Tabela 5 – Code Smells após refatorar Feature Envy

Nome do Code Smell	Quantidade
Long Method	0
Feature Envy	2
Dispersed Coupling	1
God Class	4
Refused Parent Bequest	1
Total:	8

2.5 Medição 4 – Após Refatorar Code Smell Dispersed Coupling

Foi refatorado 1 evidência de code smell do tipo Dispersed Coupling. Após a refatoração houve um aumento no Coesão, LCMO2 de 989 para 996, na Complexidade houve aumento no SCC e MaxNet, consecutivamente de 964 para 972 e o ACC e EVG continuam estáveis,. Na Herança e no Acoplamento, os atributos continuam sem sofrer alterações. No atributo Tamanho, houve aumento no LOC e NIM e, de 1.410, 189 para 1.416, 191, e o CLOC, CDL não foram alterados. Devido às técnicas utilizadas foi notável o aumento de evidências de code smells God Class.

Tabela 5 – Code Smells após refatorar Dispersed Coupling

Nome do Code Smell	Quantidade
Long Method	0
Feature Envy	2
Dispersed Coupling	0
God Class	5
Refused Parent Bequest	1
Total:	8

2.6 Medição 5 - Após Refatorar Code Smell God Class

Foram refatorados 2 evidências de code smells do tipo God Class. Após a refatoração houve um aumento no Coesão, LCMO2 de 996 para 1089, na Complexidade houve aumento no ACC, SCC, EVG e MaxNet, consecutivamente de 97, 972, 89, 114 para 1089, 101, 984, 93, 115. Na Herança o DIT, NOC e IFANIN, aumentaram de 75, 29, 78 para 79, 30 e 80. No atributo Tamanho, tambpem houve aumentos, LOC, CLOC, NIM e CDL foram alterados de 1.416, 559, 191, 52 para 1.447, 562, 194 e 54. Logo, podemos ver que após a refatoração de God Class, houve uma piora na qualidade do código e também o aumento do atributo Tamanho.

Tabela 5 – Code Smells após refatorar God Class

Nome do Code Smell	Quantidade
Long Method	0
Feature Envy	3
Dispersed Coupling	0
God Class	3
Refused Parent Bequest	1
Total:	7

2.7 Medição 6 – Após Refatorar Code Smell Refused Parent Bequest

Foi refatorado 1 evidência de code smell Refused Parent Bequest. Após a refatoração houve uma diminuição na Coesão, LCMO2 de 1089 para 1083, na Complexidade houve uma diminuição no SCC de 984 para 980 e os atributos ACC, EVG e MaxNet continuam estáveis,. Na Herança e no Acoplamento, os atributos continuam sem sofrer alterações. No atributo Tamanho, houve mininuição no LOC, CLOC e NIM, de 1.447, 562 e 194 para 1.439, 559 e 193, e o CDL não foi alterado.

Tabela 5 – Code Smells após refatorar Refused Parent Bequest

Nome do Code Smell	Quantidade
Long Method	0
Feature Envy	3
Dispersed Coupling	0
God Class	3
Refused Parent Bequest	0
Total:	6

3 COMPARAÇÃO DOS RESULTADOS

Na Tabela 9 apresentada abaixo mostramos brevemente as melhorias e pioras entre cada medição feita durante o projeto. A comparação é feita de forma a apresentar o dado de mudança percentual entre a medição de um determinado code smell e a medição anterior.

Tabela 9- Comparação percentual de atributos em relação à medição anterior

Sistema		S1 após refat. CS Long Method	S1 após refat. CS Feature Envy	S1 após refat. CS Dispersed Coupling	S1 após refat. CS God Class	S1 após refat. CS Parent Bequest
Coesão	LCOM2	+ 0,44%	+0.18%	+0,07%	+0,93%	-0,06%
Complexid	ACC	- 0,03%	-0,06%	0%	-0,06%	0%
ade	scc	+ 0,64%	-0,24%	+0,08	+0,12%	-0,04%
	EVG	+ 0,03%	0%	0%	+0,04	0%
	MaxNet	+0,06	0%	0%	+0,01%	0%
Herança	DIT	+0,02	0%	0%	+0,04%	0%
	NOC	0%	0%	0%	+0,01%	0%
	IFANIN	+0,01%	0%	0%	+0,02%	0%
Acoplamento	СВО	0%	0%	0%	+0,03%	0%
Tamanho	LOC	+0,57	-0,1%	+0,06	+0,31%	-0,08%
	CLOC	0%	+0,3%	0%	+0,03%	-0,03%
	NIM	+0,17%	-0,06%	+0,02%	+0,03%	-0,01%
	CDL	0%	0%	0%	+0,02%	0%

Com os dados apresentados, podemos afirmar que houve uma visível redução de code smells e também é notável o aumento dos atributos de qualidade ao decorrer da refatoração. Durante o processo de refatoração tivemos aumentos e diminuição de code smells e dúvidas quanto a real necessidade de refatorar alguns os smells detectados em pelas ferramentas.

Na Tabela 10 apresentada abaixo temos a comparação percentual da primeira e a última medição do projeto. Apenas o atributo de complexidade ACC obtive reduções em seus números em relação à primeira medição.

Tabela 10 – Comparação percentual da última medição de atributos em relação à primeira

Sistema	Porcentagem		
Coesão	LCOM2	+1,56%	
	ACC	-0,05%	
	SCC	+0,56%	
	EVG	+0,07%	
Complexidade	MaxNet	+0,06%	
	DIT	+0,02%	
	NOC	+0,01%	
Herança	IFANIN	+0,01%	
Acoplamento	СВО	+0,03%	
	LOC	+0,7%	
	CLOC	+0,03%	
	NIM	+0,15%	
Tamanho	CDL	+0,02%	

REFERÊNCIAS

AZEEM, Muhammad. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, v. 108, p. 115-138, 2019.

SABIR, Fatima. A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1, p. 3-39, 2019.

APÊNDICE A

Documentos utilizados para a agregação de dados estão disponíveis no .zip enviado.