Chapter 5: Multivariate Probability Distributions

5.1 a. The sample space S gives the possible values for Y_1 and Y_2 :

S	AA	AB	AC	BA	BB	BC	CA	СВ	CC
(y_1, y_2)	(2,0)	(1, 1)	(1, 0)	(1, 1)	(0, 2)	(1, 0)	(1, 0)	(0, 1)	(0, 0)

Since each sample point is equally likely with probably 1/9, the joint distribution for Y_1 and Y_2 is given by

b.
$$F(1, 0) = p(0, 0) + p(1, 0) = 1/9 + 2/9 = 3/9 = 1/3$$
.

5.2 a. The sample space for the toss of three balanced coins w/ probabilities are below:

Outcome	ННН	ННТ	HTH	HTT	ТНН	THT	TTH	TTT
(y_1, y_2)	(3, 1)	(3, 1)	(2, 1)	(1, 1)	(2, 2)	(1, 2)	(1, 3)	(0,-1)
probability	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

b.
$$F(2, 1) = p(0, -1) + p(1, 1) + p(2, 1) = 1/2.$$

5.3 Note that using material from Chapter 3, the joint probability function is given by

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2) = \frac{\binom{4}{y_1} \binom{3}{y_2} \binom{2}{3-y_1-y_2}}{\binom{9}{3}}, \text{ where } 0 \le y_1, 0 \le y_2, \text{ and } y_1 + y_2 \le 3.$$

In table format, this is

- **5.4 a.** All of the probabilities are at least 0 and sum to 1. **b.** $F(1, 2) = P(Y_1 \le 1, Y_2 \le 2) = 1$. Every child in the experiment either survived or didn't and used either 0, 1, or 2 seatbelts.
- **5.5 a.** $P(Y_1 \le 1/2, Y_2 \le 1/3) = \int_0^{1/2} \int_0^{1/3} 3y_1 dy_1 dy_2 = .1065$.
 - **b.** $P(Y_2 \le Y_1/2) = \int_0^1 \int_0^{y_1/2} 3y_1 dy_1 dy_2 = .5$.
- **5.6 a.** $P(Y_1 Y_2 > .5) = P(Y_1 > .5 + Y_2) = \int_0^{.5} \int_{y_2 + .5}^1 1 dy_1 dy_2 = \int_0^{.5} [y_1]_{y_2 + .5}^1 dy_2 = \int_0^{.5} (.5 y_2) dy_2 = .125.$
 - **b.** $P(Y_1Y_2 < .5) = 1 P(Y_1Y_2 > .5) = 1 P(Y_1 > .5/Y_2) = 1 \int_{.5}^{1} \int_{.5/y_2}^{1} 1 dy_1 dy_2 = 1 \int_{.5}^{1} (1 .5/y_2) dy_2$ = $1 - [.5 + .5 \ln(.5)] = .8466$.
- **5.7 a.** $P(Y_1 < 1, Y_2 > 5) = \int_0^1 \int_0^\infty e^{-(y_1 + y_2)} dy_1 dy_2 = \left[\int_0^1 e^{-y_1} dy_1 \right] \left[\int_0^\infty e^{-y_2} dy_2 \right] = \left[1 e^{-1} \right] e^{-5} = .00426.$
 - **b.** $P(Y_1 + Y_2 < 3) = P(Y_1 < 3 Y_2) = \int_0^3 \int_0^{3-y_2} e^{-(y_1 + y_2)} dy_1 dy_2 = 1 4e^{-3} = .8009.$
- **5.8** a. Since the density must integrate to 1, evaluate $\int_{0}^{1} \int_{0}^{1} ky_1 y_2 dy_1 dy_2 = k/4 = 1$, so k = 4.
 - **b.** $F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2) = 4 \int_{0}^{y_2, y_1} t_1 t_2 dt_1 dt_2 = y_1^2 y_2^2, 0 \le y_1 \le 1, 0 \le y_2 \le 1.$
 - **c.** $P(Y_1 \le 1/2, Y_2 \le 3/4) = (1/2)^2 (3/4)^2 = 9/64.$
- **5.9** a. Since the density must integrate to 1, evaluate $\int_{0}^{1} \int_{0}^{y_2} k(1-y_2) dy_1 dy_2 = k/6 = 1$, so k = 6.
 - **b.** Note that since $Y_1 \le Y_2$, the probability must be found in two parts (drawing a picture is useful):

$$P(Y_1 \le 3/4, Y_2 \ge 1/2) = \int_{1/2}^{1} \int_{1/2}^{1} 6(1 - y_2) dy_1 dy_2 + \int_{1/2}^{3/4} \int_{y_1}^{1} 6(1 - y_2) dy_2 dy_1 = 24/64 + 7/64 = 31/64.$$

- **5.10** a. Geometrically, since Y_1 and Y_2 are distributed uniformly over the triangular region, using the area formula for a triangle k = 1.
 - **b.** This probability can also be calculated using geometric considerations. The area of the triangle specified by $Y_1 \ge 3Y_2$ is 2/3, so this is the probability.

- 5.11 The area of the triangular region is 1, so with a uniform distribution this is the value of the density function. Again, using geometry (drawing a picture is again useful):
 - **a.** $P(Y_1 \le 3/4, Y_2 \le 3/4) = 1 P(Y_1 > 3/4) P(Y_2 > 3/4) = 1 \frac{1}{2} (\frac{1}{2}) (\frac{1}{4}) \frac{1}{2} (\frac{1}{4}) (\frac{1}{4}) = \frac{29}{32}$.
 - **b.** $P(Y_1 Y_2 \ge 0) = P(Y_1 \ge Y_2)$. The region specified in this probability statement represents 1/4 of the total region of support, so $P(Y_1 \ge Y_2) = 1/4$.
- **5.12** Similar to Ex. 5.11:
 - **a.** $P(Y_1 \le 3/4, Y_2 \le 3/4) = 1 P(Y_1 > 3/4) P(Y_2 > 3/4) = 1 \frac{1}{2} (\frac{1}{4}) (\frac{1}{4}) \frac{1}{2} (\frac{1}{4}) (\frac{1}{4}) = \frac{7}{8}$.
 - **b.** $P(Y_1 \le 1/2, Y_2 \le 1/2) = \int_0^{1/2} \int_0^{1/2} 2dy_1 dy_2 = 1/2.$
- **5.13 a.** $F(1/2, 1/2) = \int_{0}^{1/2} \int_{y_1-1}^{1/2} 30y_1y_2^2 dy_2 dy_1 = \frac{9}{16}$.
 - **b.** Note that:

 $F(1/2, 2) = F(1/2, 1) = P(Y_1 \le 1/2, Y_2 \le 1) = P(Y_1 \le 1/2, Y_2 \le 1/2) + P(Y_1 \le 1/2, Y_2 > 1/2)$ So, the first probability statement is simply F(1/2, 1/2) from part a. The second probability statement is found by

$$P(Y_1 \le 1/2, Y_2 > 1/2) = \int_{1/2}^{1} \int_{0}^{1-y_2} 30y_1y_2^2 dy_2 dy = \frac{4}{16}.$$

Thus, $F(1/2, 2) = \frac{9}{16} + \frac{4}{16} = \frac{13}{16}$

- **c.** $P(Y_1 > Y_2) = 1 P(Y_1 \le Y_2) = 1 \int_0^{1/2} \int_{y_1}^{1-y_1} 30y_1y_2^2 dy_2 dy_1 = 1 \frac{11}{32} = \frac{21}{32} = .65625.$
- **5.14 a.** Since $f(y_1, y_2) \ge 0$, simply show $\int_{0}^{1} \int_{y_1}^{2-y_1} 6y_1^2 y_2 dy_2 dy_1 = 1$.
 - **b.** $P(Y_1 + Y_2 < 1) = P(Y_2 < 1 Y_1) = \int_0^{.5} \int_{y_1}^{1 y_1} 6y_1^2 y_2 dy_2 dy_1 = 1/16$.
- **5.15 a.** $P(Y_1 < 2, Y_2 > 1) = \int_{1}^{2} \int_{1}^{y_1} e^{-y_1} dy_2 dy_1 = \int_{1}^{2} \int_{y_2}^{2} e^{-y_1} dy_1 dy_2 = e^{-1} 2e^{-2}$.
 - **b.** $P(Y_1 \ge 2Y_2) = \int_{0}^{\infty} \int_{2y_2}^{\infty} e^{-y_1} dy_1 dy_2 = 1/2$.
 - **c.** $P(Y_1 Y_2 \ge 1) = P(Y_1 \ge Y_2 + 1) = \int_0^\infty \int_{y_2 + 1}^\infty e^{-y_1} dy_1 dy_2 = e^{-1}$.

5.16 a.
$$P(Y_1 < 1/2, Y_2 > 1/4) = \int_{1/4}^{1} \int_{0}^{1/2} (y_1 + y_2) dy_1 dy_2 = 21/64 = .328125.$$

b.
$$P(Y_1 + Y_2 \le 1) = P(Y_1 \le 1 - Y_2) = \int_0^1 \int_0^{1 - y_2} (y_1 + y_2) dy_1 dy_2 = 1/3$$
.

5.17 This can be found using integration (polar coordinates are helpful). But, note that this is a bivariate uniform distribution over a circle of radius 1, and the probability of interest represents 50% of the support. Thus, the probability is .50.

5.18
$$P(Y_1 > 1, Y_2 > 1) = \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{8} y_1 e^{-(y_1 + y_2)/2} dy_1 dy_2 = \left[\int_{1}^{\infty} \frac{1}{4} y_1 e^{-y_1/2} dy_1 \right] \left[\int_{1}^{\infty} \frac{1}{2} e^{-y_2/2} dy_2 \right] = \frac{3}{2} e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) = \frac{3}{2} e^{-1} \left(e^{-\frac{$$

5.19 a. The marginal probability function is given in the table below.

- **b.** No, evaluating binomial probabilities with n = 3, p = 1/3 yields the same result.
- **5.20 a.** The marginal probability function is given in the table below.

<i>y</i> ₂	-1	1	2	3
$p_2(y_2)$	1/8	4/8	2/8	1/8

b.
$$P(Y_1 = 3 \mid Y_2 = 1) = \frac{P(Y_1 = 3, Y_2 = 1)}{P(Y_2 = 1)} = \frac{1/8}{4/8} = 1/4$$
.

- **5.21** a. The marginal distribution of Y_1 is hypergeometric with N = 9, n = 3, and r = 4.
 - **b.** Similar to part a, the marginal distribution of Y_2 is hypergeometric with N = 9, n = 3, and r = 3. Thus,

$$P(Y_1 = 1 \mid Y_2 = 2) = \frac{P(Y_1 = 1, Y_2 = 2)}{P(Y_2 = 2)} = \frac{\binom{4}{1}\binom{3}{2}\binom{2}{0}}{\binom{9}{3}} / \frac{\binom{3}{2}\binom{6}{1}}{\binom{9}{3}} = 2/3.$$

c. Similar to part b,

$$P(Y_3 = 1 \mid Y_2 = 1) = P(Y_1 = 1 \mid Y_2 = 1) = \frac{P(Y_1 = 1, Y_2 = 1)}{P(Y_2 = 1)} = \frac{\binom{3}{1}\binom{2}{1}\binom{4}{1}}{\binom{9}{3}} / \frac{\binom{3}{1}\binom{6}{2}}{\binom{9}{3}} = 8/15.$$

- **5.22** a. The marginal distributions for Y_1 and Y_2 are given in the margins of the table.
 - **b.** $P(Y_2 = 0 \mid Y_1 = 0) = .38/.76 = .5$ $P(Y_2 = 1 \mid Y_1 = 0) = .14/.76 = .18$ $P(Y_2 = 2 \mid Y_1 = 0) = .24/.76 = .32$
 - **c.** The desired probability is $P(Y_1 = 0 | Y_2 = 0) = .38/.55 = .69$.

bluekey

- **5.23 a.** $f_2(y_2) = \int_{y_2}^{1} 3y_1 dy_1 = \frac{3}{2} \frac{3}{2}y_2^2, \ 0 \le y_2 \le 1.$
 - **b.** Defined over $y_2 \le y_1 \le 1$, with the constant $y_2 \ge 0$.
 - **c.** First, we have $f_1(y_1) = \int_0^{y_1} 3y_1 dy_2 = 3y_2^2$, $0 \le y_1 \le 1$. Thus,

 $f(y_2 | y_1) = 1/y_1$, $0 \le y_2 \le y_1$. So, conditioned on $Y_1 = y_1$, we see Y_2 has a uniform distribution on the interval $(0, y_1)$. Therefore, the probability is simple:

$$P(Y_2 > 1/2 \mid Y_1 = 3/4) = (3/4 - 1/2)/(3/4) = 1/3.$$

- **5.24 a.** $f_1(y_1) = 1, 0 \le y_1 \le 1, f_2(y_2) = 1, 0 \le y_2 \le 1.$
 - **b.** Since both Y_1 and Y_2 are uniformly distributed over the interval (0, 1), the probabilities are the same: .2
 - **c.** $0 \le y_2 \le 1$.
 - **d.** $f(y_1 | y_2) = f(y_1) = 1, 0 \le y_1 \le 1$
 - **e.** $P(.3 < Y_1 < .5 \mid Y_2 = .3) = .2$
 - **f.** $P(.3 < Y_2 < .5 \mid Y_2 = .5) = .2$
 - g. The answers are the same.
- **5.25 a.** $f_1(y_1) = e^{-y_1}$, $y_1 > 0$, $f_2(y_2) = e^{-y_2}$, $y_2 > 0$. These are both exponential density functions with $\beta = 1$.
 - **b.** $P(1 < Y_1 < 2.5) = P(1 < Y_2 < 2.5) = e^{-1} e^{-2.5} = .2858.$
 - **c.** $y_2 > 0$.
 - **d.** $f(y_1 | y_2) = f_1(y_1) = e^{-y_1}, y_1 > 0.$
 - **e.** $f(y_2 | y_1) = f_2(y_2) = e^{-y_2}, y_2 > 0.$
 - **f.** The answers are the same.
 - **g.** The probabilities are the same.
- **5.26 a.** $f_1(y_1) = \int_0^1 4y_1y_2dy_2 = 2y_1, 0 \le y_1 \le 1; f(y_2) = 2y_2, 0 \le y_2 \le 1.$
 - **b.** $P(Y_1 \le 1/2 | Y_2 \ge 3/4) = \frac{\int_0^{1/2} \int_{3/4}^1 4y_1 y_2 dy_1 dy_2}{\int_{3/4}^1 2y_2 dy_2} = \int_0^{1/2} 2y_1 dy_1 = 1/4$.
 - **c.** $f(y_1 | y_2) = f_1(y_1) = 2y_1, 0 \le y_1 \le 1$.
 - **d.** $f(y_2 | y_1) = f_2(y_2) = 2y_2, 0 \le y_2 \le 1$.
 - **e.** $P(Y_1 \le 3/4 | Y_2 = 1/2) = P(Y_1 \le 3/4) = \int_0^{3/4} 2y_1 dy_1 = 9/16$.

5.27 a.
$$f_1(y_1) = \int_{y_1}^{1} 6(1 - y_2) dy_2 = 3(1 - y_1)^2, \ 0 \le y_1 \le 1;$$

$$f_2(y_2) = \int_{0}^{y_2} 6(1 - y_2) dy_1 = 6y_2(1 - y_2), \ 0 \le y_2 \le 1.$$

b.
$$P(Y_2 \le 1/2 | Y_1 \le 3/4) = \frac{\int_0^{1/2} \int_0^{y_2} 6(1 - y_2) dy_1 dy_2}{\int_0^{3/4} 3(1 - y_1)^2 dy_1} = 32/63.$$

- **c.** $f(y_1 | y_2) = 1/y_2, 0 \le y_1 \le y_2 \le 1$
- **d.** $f(y_2 | y_1) = 2(1 y_2)/(1 y_1)^2$, $0 \le y_1 \le y_2 \le 1$.
- **e.** From part **d**, $f(y_2 | 1/2) = 8(1 y_2)$, $1/2 \le y_2 \le 1$. Thus, $P(Y_2 \ge 3/4 | Y_1 = 1/2) = 1/4$.
- **5.28** Referring to Ex. 5.10:
 - **a.** First, find $f_2(y_2) = \int_{2y_2}^{2} 1 dy_1 = 2(1 y_2), 0 \le y_2 \le 1$. Then, $P(Y_2 \ge .5) = .25$.
 - **b.** First find $f(y_1 | y_2) = \frac{1}{2(1-y_2)}$, $2y_2 \le y_1 \le 2$. Thus, $f(y_1 | .5) = 1$, $1 \le y_1 \le 2$ —the conditional distribution is uniform on (1, 2). Therefore, $P(Y_1 \ge 1.5 | Y_2 = .5) = .5$
- **5.29** Referring to Ex. 5.11:
 - **a.** $f_2(y_2) = \int_{y_2-1}^{1-y_2} 1 dy_1 = 2(1-y_2), \ 0 \le y_2 \le 1$. In order to find $f_1(y_1)$, notice that the limits of

integration are different for $0 \le y_1 \le 1$ and $-1 \le y_1 \le 0$. For the first case:

$$f_1(y_1) = \int_0^{1-y_1} 1 dy_2 = 1 - y_1, \text{ for } 0 \le y_1 \le 1. \text{ For the second case, } f_1(y_1) = \int_0^{1+y_1} 1 dy_2 = 1 + y_1, \text{ for } -1 \le y_1 \le 0. \text{ This can be written as } f_1(y_1) = 1 - |y_1|, \text{ for } -1 \le y_1 \le 1.$$

b. The conditional distribution is $f(y_2 | y_1) = \frac{1}{1-|y_1|}$, for $0 \le y_1 \le 1 - |y_1|$. Thus,

$$f(y_2 | 1/4) = 4/3$$
. Then, $P(Y_2 > 1/2 | Y_1 = 1/4) = \int_{1/2}^{3/4} 4/3 dy_2 = 1/3$.

5.30 a.
$$P(Y_1 \ge 1/2, Y_2 \le 1/4) = \int_0^{1/4} \int_{1/2}^{1-y_2} 2dy_1 dy_2 = \frac{3}{16}$$
. And, $P(Y_2 \le 1/4) = \int_0^{1/4} 2(1-y_2) dy_2 = \frac{7}{16}$. Thus, $P(Y_1 \ge 1/2 \mid Y_2 \le 1/4) = \frac{3}{7}$.

b. Note that $f(y_1 | y_2) = \frac{1}{1-y_2}$, $0 \le y_1 \le 1 - y_2$. Thus, $f(y_1 | 1/4) = 4/3$, $0 \le y_1 \le 3/4$.

Thus,
$$P(Y_2 > 1/2 | Y_1 = 1/4) = \int_{1/2}^{3/4} 4/3 dy_2 = 1/3$$
.

5.31 a.
$$f_1(y_1) = \int_{y_1-1}^{1-y_1} 30y_1y_2^2 dy_2 = 20y_1(1-y_1)^2, \ 0 \le y_1 \le 1.$$

b. This marginal density must be constructed in two parts:

$$f_2(y_2) = \begin{cases} \int_0^{1+y_2} 30y_1y_2^2 dy_1 = 15y_2^2(1+y_2) & -1 \le y_2 \le 0\\ \int_{1-y_2}^0 30y_1y_2^2 dy_1 = 5y_2^2(1-y_2) & 0 \le y_2 \le 1 \end{cases}.$$

c.
$$f(y_2 | y_1) = \frac{3}{2}y_2^2(1-y_1)^{-3}$$
, for $y_1 - 1 \le y_2 \le 1 - y_1$.

d.
$$f(y_2 \mid .75) = \frac{3}{2}y_2^2(.25)^{-3}$$
, for $-.25 \le y_2 \le .25$, so $P(Y_2 > 0 \mid Y_1 = .75) = .5$.

5.32 a.
$$f_1(y_1) = \int_{y_1}^{2-y_1} 6y_1^2 y_2 dy_2 = 12y_1^2 (1-y_1), 0 \le y_1 \le 1.$$

b. This marginal density must be constructed in two parts:

$$f_2(y_2) = \begin{cases} \int_0^{y_2} 6y_1^2 y_2 dy_1 = 2y_2^4 & 0 \le y_2 \le 1\\ \int_0^{2-y_2} 6y_1^2 y_2 dy_1 = 2y_2(2-y_2)^3 & 1 \le y_2 \le 2 \end{cases}.$$

c.
$$f(y_2|y_1) = \frac{1}{2}y_2/(1-y_1), y_1 \le y_2 \le 2-y_1$$
.

d. Using

the density found in part **c**, $P(Y_2 < 1.1 | Y_1 = .6) = \frac{1}{2} \int_{.6}^{11} y_2 / .4 dy_2 = .53$

5.33 Refer to Ex. 5.15:

a.
$$f(y_1) = \int_0^{y_1} e^{-y_1} dy_2 = y_1 e^{-y_1}, \ y_1 \ge 0.$$
 $f(y_2) = \int_{y_2}^{\infty} e^{-y_1} dy_1 = e^{-y_2}, \ y_2 \ge 0.$

b.
$$f(y_1 | y_2) = e^{-(y_1 - y_2)}, y_1 \ge y_2$$
.

c.
$$f(y_2 | y_1) = 1/y_1, 0 \le y_2 \le y_1$$
.

d. The density functions are different.

e. The marginal and conditional probabilities can be different.

5.34 a. Given $Y_1 = y_1$, Y_2 has a uniform distribution on the interval $(0, y_1)$.

b. Since $f_1(y_1) = 1$, $0 \le y_1 \le 1$, $f(y_1, y_2) = f(y_2 \mid y_1) f_1(y_1) = 1/y_1$, $0 \le y_2 \le y_1 \le 1$.

c.
$$f_2(y_2) = \int_{y_2}^{1} 1/y_1 dy_1 = -\ln(y_2), 0 \le y_2 \le 1.$$

5.35 With $Y_1 = 2$, the conditional distribution of Y_2 is uniform on the interval (0, 2). Thus, $P(Y_2 < 1 \mid Y_1 = 2) = .5$.

- **5.36 a.** $f_1(y_1) = \int_0^1 (y_1 + y_2) dy_2 = y_1 + \frac{1}{2}, \ 0 \le y_1 \le 1$. Similarly $f_2(y_2) = y_2 + \frac{1}{2}, \ 0 \le y_2 \le 1$.
 - **b.** First, $P(Y_2 \ge \frac{1}{2}) = \int_{1/2}^{1} (y_2 + \frac{1}{2}) = \frac{5}{8}$, and $P(Y_1 \ge \frac{1}{2}, Y_2 \ge \frac{1}{2}) = \int_{1/2}^{1} \int_{1/2}^{1} (y_1 + y_2) dy_1 dy_2 = \frac{3}{8}$. Thus, $P(Y_1 \ge \frac{1}{2} | Y_2 \ge \frac{1}{2}) = \frac{3}{5}$.
 - $\mathbf{c.} \ P(Y_1 > .75 \mid Y_2 = .5) = \frac{\int_{-75}^{1} (y_1 + \frac{1}{2}) dy_1}{\frac{1}{2} + \frac{1}{2}} = .34375.$
- **5.37** Calculate $f_2(y_2) = \int_0^\infty \frac{y_1}{8} e^{-(y_1 + y_2)/2} dy_1 = \frac{1}{2} e^{-y_2/2}$, $y_2 > 0$. Thus, Y_2 has an exponential distribution with $\beta = 2$ and $P(Y_2 > 2) = 1 F(2) = e^{-1}$.
- **5.38** This is the identical setup as in Ex. 5.34.
 - **a.** $f(y_1, y_2) = f(y_2 | y_1) f_1(y_1) = 1/y_1, 0 \le y_2 \le y_1 \le 1.$
 - **b.** Note that $f(y_2 \mid 1/2) = 1/2$, $0 \le y_2 \le 1/2$. Thus, $P(Y_2 < 1/4 \mid Y_1 = 1/2) = 1/2$.
 - **c.** The probability of interest is $P(Y_1 > 1/2 \mid Y_2 = 1/4)$. So, the necessary conditional density is $f(y_1 \mid y_2) = f(y_1, y_2)/f_2(y_2) = \frac{1}{y_1(-\ln y_2)}, \ 0 \le y_2 \le y_1 \le 1$. Thus,

$$P(Y_1 > 1/2 \mid Y_2 = 1/4) = \int_{1/2}^{1} \frac{1}{y_1 \ln 4} dy_1 = 1/2.$$

5.39 The result follows from:

$$P(Y_1 = y_1 \mid W = w) = \frac{P(Y_1 = y_1, W = w)}{P(W = w)} = \frac{P(Y_1 = y_1, Y_1 + Y_2 = w)}{P(W = w)} = \frac{P(Y_1 = y_1, Y_2 = w - y_1)}{P(W = w)}.$$

Since Y_1 and Y_2 are independent, this is

$$P(Y_1 = y_1 | W = w) = \frac{P(Y_1 = y_1)P(Y_2 = w - y_1)}{P(W = w)} = \frac{\frac{\lambda_1^{y_1} e^{-\lambda_1}}{y_1!} \left(\frac{\lambda_2^{w-y_1} e^{-\lambda_2}}{(w-y_1)!}\right)}{\frac{(\lambda_1 + \lambda_2)^{w} e^{-(\lambda_1 + \lambda_2)}}{w!}}$$

$$= \binom{w}{y_1} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{y_1} \left(1 - \frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{w - y_1}.$$

This is the binomial distribution with n = w and $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.

5.40 As the Ex. 5.39 above, the result follows from:

$$P(Y_1 = y_1 \mid W = w) = \frac{P(Y_1 = y_1, W = w)}{P(W = w)} = \frac{P(Y_1 = y_1, Y_1 + Y_2 = w)}{P(W = w)} = \frac{P(Y_1 = y_1, Y_2 = w - y_1)}{P(W = w)}.$$

Since Y_1 and Y_2 are independent, this is (all terms involving p_1 and p_2 drop out)

$$P(Y_1 = y_1 \mid W = w) = \frac{P(Y_1 = y_1)P(Y_2 = w - y_1)}{P(W = w)} = \frac{\binom{n_1}{y_1}\binom{n_2}{w - y_1}}{\binom{n_1 + n_2}{w}}, \qquad 0 \le y_1 \le n_1 \\ 0 \le w - y_1 \le n_2.$$

5.41 Let Y = # of defectives in a random selection of three items. Conditioned on p, we have

$$P(Y = y \mid p) = {3 \choose y} p^{y} (1-p)^{3-y}, y = 0, 1, 2, 3.$$

We are given that the proportion of defectives follows a uniform distribution on (0, 1), so the unconditional probability that Y = 2 can be found by

$$P(Y=2) = \int_{0}^{1} P(Y=2, p) dp = \int_{0}^{1} P(Y=2 \mid p) f(p) dp = \int_{0}^{1} 3p^{2} (1-p)^{3-1} dp = 3\int_{0}^{1} (p^{2}-p^{3}) dp$$
$$= 1/4.$$

5.42 (Similar to Ex. 5.41) Let Y = # of defects per yard. Then,

$$p(y) = \int_{0}^{\infty} P(Y = y, \lambda) d\lambda = \int_{0}^{\infty} P(Y = y \mid \lambda) f(\lambda) d\lambda = \int_{0}^{\infty} \frac{\lambda^{y} e^{-\lambda}}{y!} e^{-\lambda} d\lambda = \left(\frac{1}{2}\right)^{y+1}, y = 0, 1, 2, \dots$$

Note that this is essentially a geometric distribution (see Ex. 3.88).

5.43 Assume $f(y_1 | y_2) = f_1(y_1)$. Then, $f(y_1, y_2) = f(y_1 | y_2) f_2(y_2) = f_1(y_1) f_2(y_2)$ so that Y_1 and Y_2 are independent. Now assume that Y_1 and Y_2 are independent. Then, there exists functions g and h such that $f(y_1, y_2) = g(y_1)h(y_2)$ so that

$$1 = \iint f(y_1, y_2) dy_1 dy_2 = \int g(y_1) dy_1 \times \int h(y_2) dy_2.$$

Then, the marginals for Y_1 and Y_2 can be defined by

$$f_1(y_1) = \int \frac{g(y_1)h(y_2)}{\int g(y_1)dy_1 \times \int h(y_2)dy_2} dy_2 = \frac{g(y_1)}{\int g(y_1)dy_1}, \text{ so } f_2(y_2) = \frac{h(y_2)}{\int h(y_2)dy_2}.$$

Thus, $f(y_1, y_2) = f_1(y_1)f_2(y_2)$. Now it is clear that

$$f(y_1 | y_2) = f(y_1, y_2) / f_2(y_2) = f_1(y_1) f_2(y_2) / f_2(y_2) = f_1(y_1),$$

provided that $f_2(y_2) > 0$ as was to be shown.

- **5.44** The argument follows exactly as Ex. 5.43 with integrals replaced by sums and densities replaced by probability mass functions.
- **5.45** No. Counterexample: $P(Y_1 = 2, Y_2 = 2) = 0 \neq P(Y_1 = 2)P(Y_2 = 2) = (1/9)(1/9)$.
- **5.46** No. Counterexample: $P(Y_1 = 3, Y_2 = 1) = 1/8 \neq P(Y_1 = 3)P(Y_2 = 1) = (1/8)(4/8)$.

- **5.47** Dependent. For example: $P(Y_1 = 1, Y_2 = 2) \neq P(Y_1 = 1)P(Y_2 = 2)$.
- **5.48** Dependent. For example: $P(Y_1 = 0, Y_2 = 0) \neq P(Y_1 = 0)P(Y_2 = 0)$.
- **5.49** Note that $f_1(y_1) = \int_0^{y_1} 3y_1 dy_2 = 3y_1^2$, $0 \le y_1 \le 1$, $f_2(y_2) = \int_{y_1}^1 3y_1 dy_1 = \frac{3}{2}[1 y_2^2]$, $0 \le y_2 \le 1$. Thus, $f(y_1, y_2) \ne f_1(y_1)f_2(y_2)$ so that Y_1 and Y_2 are dependent.
- **5.50 a.** Note that $f_1(y_1) = \int_0^1 1 dy_2 = 1$, $0 \le y_1 \le 1$ and $f_2(y_2) = \int_0^1 1 dy_1 = 1$, $0 \le y_2 \le 1$. Thus, $f(y_1, y_2) = f_1(y_1) f_2(y_2)$ so that Y_1 and Y_2 are independent.
 - **b.** Yes, the conditional probabilities are the same as the marginal probabilities.
- **5.51 a.** Note that $f_1(y_1) = \int_0^\infty e^{-(y_1 + y_2)} dy_2 = e^{-y_1}$, $y_1 > 0$ and $f_2(y_2) = \int_0^\infty e^{-(y_1 + y_2)} dy_1 = e^{-y_2}$, $y_2 > 0$. Thus, $f(y_1, y_2) = f_1(y_1) f_2(y_2)$ so that Y_1 and Y_2 are independent.
 - **b.** Yes, the conditional probabilities are the same as the marginal probabilities.
- Note that $f(y_1, y_2)$ can be factored and the ranges of y_1 and y_2 do not depend on each other so by Theorem 5.5 Y_1 and Y_2 are independent.
- 5.53 The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- 5.54 The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- 5.55 The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- **5.56** The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- 5.57 The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- **5.58** Following Ex. 5.32, it is seen that $f(y_1, y_2) \neq f_1(y_1) f_2(y_2)$ so that Y_1 and Y_2 are dependent.
- **5.59** The ranges of y_1 and y_2 depend on each other so Y_1 and Y_2 cannot be independent.
- **5.60** From Ex. 5.36, $f_1(y_1) = y_1 + \frac{1}{2}$, $0 \le y_1 \le 1$, and $f_2(y_2) = y_2 + \frac{1}{2}$, $0 \le y_2 \le 1$. But, $f(y_1, y_2) \ne f_1(y_1) f_2(y_2)$ so Y_1 and Y_2 are dependent.
- Note that $f(y_1, y_2)$ can be factored and the ranges of y_1 and y_2 do not depend on each other so by Theorem 5.5 Y_1 and Y_2 are independent.

5.62 Let *X*, *Y* denote the number on which person *A*, *B* flips a head on the coin, respectively. Then, *X* and *Y* are geometric random variables and the probability that the stop on the same number toss is:

$$P(X = 1, Y = 1) + P(X = 2, Y = 2) + \dots = P(X = 1)P(Y = 1) + P(X = 2)P(Y = 2) + \dots$$

$$= \sum_{i=1}^{\infty} P(X = i)P(Y = i) = \sum_{i=1}^{\infty} p(1-p)^{i-1} p(1-p)^{i-1} = p^2 \sum_{k=0}^{\infty} [(1-p)^2]^k = \frac{p^2}{1 - (1-p)^2}.$$

- **5.63** $P(Y_1 > Y_2, Y_1 < 2Y_2) = \int_0^\infty \int_{y_1/2}^{y_1} e^{-(y_1 + y_2)} dy_2 dy_1 = \frac{1}{6} \text{ and } P(Y_1 < 2Y_2) = \int_0^\infty \int_{y_1/2}^\infty e^{-(y_1 + y_2)} dy_2 dy_1 = \frac{2}{3}. \text{ So,}$ $P(Y_1 > Y_2 \mid Y_1 < 2Y_2) = 1/4.$
- **5.64** $P(Y_1 > Y_2, Y_1 < 2Y_2) = \int_0^1 \int_{y_1/2}^{y_1} 1 dy_2 dy_1 = \frac{1}{4}, \ P(Y_1 < 2Y_2) = 1 P(Y_1 \ge 2Y_2) = 1 \int_0^1 \int_0^{y_1/2} 1 dy_2 dy_1 = \frac{3}{4}.$ So, $P(Y_1 > Y_2 \mid Y_1 < 2Y_2) = 1/3.$
- 5.65 **a.** The marginal density for Y_1 is $f_1(y_1) = \int_0^\infty [(1 \alpha(1 2e^{-y_1})(1 2e^{-y_2})]e^{-y_1 y_2} dy_2$ $= e^{-y_1} \left[\int_0^\infty e^{-y_2} dy_2 - \alpha(1 - 2e^{-y_1}) \int_0^\infty (e^{-y_2} - 2e^{-2y_2}) dy_2 \right].$ $= e^{-y_1} \left[\int_0^\infty e^{-y_2} dy_2 - \alpha(1 - 2e^{-y_1})(1 - 1) \right] = e^{-y_1}.$
 - **b.** By symmetry, the marginal density for Y_2 is also exponential with $\beta = 1$.
 - **c.** When $\alpha = 0$, then $f(y_1, y_2) = e^{-y_1 y_2} = f_1(y_1) f_2(y_2)$ and so Y_1 and Y_2 are independent. Now, suppose Y_1 and Y_2 are independent. Then, $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 1$. So,

$$E(Y_1Y_2) = \int_0^\infty \int_0^\infty y_1 y_2 [(1 - \alpha(1 - 2e^{-y_1})(1 - 2e^{-y_2})] e^{-y_1 - y_2} dy_1 dy_2$$

$$= \int_0^\infty \int_0^\infty y_1 y_2 e^{-y_1 - y_2} dy_1 dy_2 - \alpha \left[\int_0^\infty y_1 (1 - 2e^{-y_1}) e^{-y_1} dy_1 \right] \times \left[\int_0^\infty y_2 (1 - 2e^{-y_2}) e^{-y_2} dy_2 \right]$$

$$= 1 - \alpha \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{2} \right) = 1 - \alpha/4 . \text{ This equals 1 only if } \alpha = 0.$$

- **5.66** a. Since $F_2(\infty) = 1$, $F(y_1, \infty) = F_1(y_1) \cdot 1 \cdot [1 \alpha \{1 F_1(y_1)\} \{1 1\}] = F_1(y_1)$.
 - **b.** Similarly, it is $F_2(y_2)$ from $F(y_1, y_2)$
 - c. If $\alpha = 0$, $F(y_1, y_2) = F_1(y_1)F_2(y_2)$, so by Definition 5.8 they are independent.
 - **d.** If $\alpha \neq 0$, $F(y_1, y_2) \neq F_1(y_1)F_2(y_2)$, so by Definition 5.8 they are not independent.

5.67
$$P(a < Y_1 \le b, c < Y_2 \le d) = F(b,d) - F(b,c) - F(a,d) + F(a,c)$$

$$= F_1(b)F_2(d) - F_1(b)F_2(c) - F_1(a)F_2(d) + F_1(a)F_2(c)$$

$$= F_1(b)[F_2(d) - F_2(c)] - F_1(a)[F_2(d) - F_2(c)]$$

$$= [F_1(b) - F_1(a)] \times [F_2(d) - F_2(c)]$$

$$= P(a < Y_1 \le b) \times P(c < Y_2 \le d).$$

- With $f(y_1, y_2) = f_1(y_1) f_2(y_2) = 1$, $0 \le y_1 \le 1$, $0 \le y_2 \le 1$, 5.68 $P(Y_2 \le Y_1 \le Y_2 + 1/4) = \int_0^{1/4} \int_0^{y_1} 1 dy_2 dy_1 + \int_0^1 \int_0^{y_1} 1 dy_2 dy_1 = 7/32.$
- 5.69 **a.** $f(y_1, y_2) = f_1(y_1) f_2(y_2) = (1/9) e^{-(y_1 + y_2)/3}, y_1 > 0, y_2 > 0.$ **b.** $P(Y_1 + Y_2 \le 1) = \int_{0}^{1} \int_{0}^{1-y_2} (1/9)e^{-(y_1 + y_2)/3} dy_1 dy_2 = 1 - \frac{4}{3}e^{-1/3} = .0446.$
- Given that $p_1(y_1) = {2 \choose y_1} (.2)^{y_1} (.8)^{2-y_1}$, $y_1 = 0, 1, 2, \text{ and } p_2(y_2) = (.3)^{y_2} (.7)^{1-y_1}$, $y_2 = 0, 1$: 5.70
 - **a.** $p(y_1, y_2) = p_1(y_1)p_2(y_2) = {2 \choose y_1}(.2)^{y_1}(.8)^{2-y_1}(.3)^{y_2}(.7)^{1-y_1}, y_1 = 0, 1, 2 \text{ and } y_2 = 0, 1.$
 - **b.** The probability of interest is $P(Y_1 + Y_2 \le 1) = p(0, 0) + p(1, 0) + p(0, 1) = .864$.
- Assume uniform distributions for the call times over the 1-hour period. Then, 5.71
 - **a.** $P(Y_1 \le 1/2, Y_2 \le 1/2) = P(Y_1 \le 1/2) P(Y_2 \le 1/2) = (1/2)(1/2) = 1/4$.
 - **b.** Note that 5 minutes = 1/12 hour. To find $P(|Y_1 Y_2| \le 1/12)$, we must break the region into three parts in the integration:

$$P(|Y_1 - Y_2| \le 1/12) = \int_0^{1/12} \int_0^{y_1 + 1/12} 1dy_2 dy_1 + \int_{1/12}^{11/12} \int_{y_1 - 1/12}^{y_1 + 1/12} 1dy_2 dy_1 + \int_{11/12}^1 \int_{y_1 - 1/12}^{11/12} 1dy_2 dy_1 = 23/144.$$

- 5.72 **a.** $E(Y_1) = 2(1/3) = 2/3$.
 - **b.** $V(Y_1) = 2(1/3)(2/3) = 4/9$
 - **c.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$.
- 5.73 Use the mean of the hypergeometric: $E(Y_1) = 3(4)/9 = 4/3$.
- 5.74 The marginal distributions for Y_1 and Y_2 are uniform on the interval (0, 1). And it was found in Ex. 5.50 that Y_1 and Y_2 are independent. So:
 - **a.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$.

 - **b.** $E(Y_1Y_2) = E(Y_1)E(Y_2) = (1/2)(1/2) = 1/4.$ **c.** $E(Y_1^2 + Y_2^2) = E(Y_1^2) + E(Y_2^2) = (1/12 + 1/4) + (1/12 + 1/4) = 2/3$

- **d.** $V(Y_1Y_2) = V(Y_1)V(Y_2) = (1/12)(1/12) = 1/144$.
- 5.75 The marginal distributions for Y_1 and Y_2 are exponential with $\beta = 1$. And it was found in Ex. 5.51 that Y_1 and Y_2 are independent. So:
 - **a.** $E(Y_1 + Y_2) = E(Y_1) + E(Y_2) = 2$, $V(Y_1 + Y_2) = V(Y_1) + V(Y_2) = 2$.
 - **b.** $P(Y_1 Y_2 > 3) = P(Y_1 > 3 + Y_2) = \int_0^\infty \int_{3+\nu_2}^\infty e^{-y_1 y_2} dy_1 dy_2 = (1/2)e^{-3} = .0249.$
 - **c.** $P(Y_1 Y_2 < -3) = P(Y_1 > Y_2 3) = \int_{0.3 \pm 0.0}^{\infty} \int_{0.3 \pm 0.0}^{\infty} e^{-y_1 y_2} dy_2 dy_1 = (1/2)e^{-3} = .0249.$
 - **d.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$, $V(Y_1 Y_2) = V(Y_1) + V(Y_2) = 2$.
 - **e.** They are equal.
- 5.76 From Ex. 5.52, we found that Y_1 and Y_2 are independent. So,
 - **a.** $E(Y_1) = \int_{0}^{1} 2y_1^2 dy_1 = 2/3$.
 - **b.** $E(Y_1^2) = \int_0^1 2y_1^3 dy_1 = 2/4$, so $V(Y_1) = 2/4 4/9 = 1/18$.
 - **c.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$.
- 5.77 Following Ex. 5.27, the marginal densities can be used:
 - **a.** $E(Y_1) = \int_0^1 3y_1(1-y_1)^2 dy_1 = 1/4$, $E(Y_2) = \int_0^1 6y_2(1-y_2) dy_2 = 1/2$.
 - **b.** $E(Y_1^2) = \int_1^1 3y_1^2 (1 y_1)^2 dy_1 = 1/10, \ V(Y_1) = 1/10 (1/4)^2 = 3/80,$ $E(Y_2^2) = \int_1^1 6y_2^2 (1 - y_2) dy_2 = 3/10, \ V(Y_2) = 3/10 - (1/2)^2 = 1/20.$
 - **c.** $E(Y_1 3Y_2) = E(Y_1) 3 \cdot E(Y_2) = 1/4 3/2 = -5/4$.
- 5.78 **a.** The marginal distribution for Y_1 is $f_1(y_1) = y_1/2$, $0 \le y_1 \le 2$. $E(Y_1) = 4/3$, $V(Y_1) = 2/9$.
 - **b.** Similarly, $f_2(y_2) = 2(1 y_2)$, $0 \le y_2 \le 1$. So, $E(Y_2) = 1/3$, $V(Y_1) = 1/18$.

 - **c.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 4/3 1/3 = 1$. **d.** $V(Y_1 Y_2) = E[(Y_1 Y_2)^2] [E(Y_1 Y_2)]^2 = E(Y_1^2) 2E(Y_1Y_2) + E(Y_2^2) 1$.

Since $E(Y_1Y_2) = \int_{1}^{1} \int_{2}^{2} y_1 y_2 dy_1 dy_2 = 1/2$, we have that

$$V(Y_1 - Y_2) = [2/9 + (4/3)^2] - 1 + [1/18 + (1/3)^2] - 1 = 1/6.$$

Using Tchebysheff's theorem, two standard deviations about the mean is (.19, 1.81).

Referring to Ex. 5.16, integrating the joint density over the two regions of integration: 5.79

$$E(Y_1Y_2) = \int_{-1}^{0} \int_{0}^{1+y_1} y_1 y_2 dy_2 dy_1 + \int_{0}^{1} \int_{0}^{1-y_1} y_1 y_2 dy_2 dy_1 = 0$$

- 5.80 From Ex. 5.36, $f_1(y_1) = y_1 + \frac{1}{2}$, $0 \le y_1 \le 1$, and $f_2(y_2) = y_2 + \frac{1}{2}$, $0 \le y_2 \le 1$. Thus, $E(Y_1) = 7/12$ and $E(Y_2) = 7/12$. So, $E(30Y_1 + 25Y_2) = 30(7/12) + 25(7/12) = 32.08$.
- 5.81 Since Y_1 and Y_2 are independent, $E(Y_2/Y_1) = E(Y_2)E(1/Y_1)$. Thus, using the marginal densities found in Ex. 5.61,

$$E(Y_2/Y_1) = E(Y_2)E(1/Y_1) = \frac{1}{2} \int_0^\infty y_2 e^{-y_2/2} dy_2 \left[\frac{1}{4} \int_0^\infty e^{-y_1/2} dy_1 \right] = 2(\frac{1}{2}) = 1.$$

5.82 The marginal densities were found in Ex. 5.34. So,

$$E(Y_1 - Y_2) = E(Y_1) - E(Y_2) = 1/2 - \int_0^1 -y_2 \ln(y_2) dy_2 = 1/2 - 1/4 = 1/4.$$

- 5.83 From Ex. 3.88 and 5.42, E(Y) = 2 - 1 = 1.
- 5.84 All answers use results proven for the geometric distribution and independence:
 - **a.** $E(Y_1) = E(Y_2) = 1/p$, $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$.

 - **b.** $E(Y_1^2) = E(Y_2^2) = (1-p)/p^2 + (1/p)^2 = (2-p)/p^2$. $E(Y_1Y_2) = E(Y_1)E(Y_2) = 1/p^2$. **c.** $E[(Y_1 Y_2)^2] = E(Y_1^2) 2E(Y_1Y_2) + E(Y_2^2) = 2(1-p)/p^2$. $V(Y_1 - Y_2) = V(Y_1) + V(Y_2) = 2(1 - p)/p^2$.
 - **d.** Use Tchebysheff's theorem with k = 3.
- 5.85 **a.** $E(Y_1) = E(Y_2) = 1$ (both marginal distributions are exponential with mean 1)
 - **b.** $V(Y_1) = V(Y_2) = 1$
 - **c.** $E(Y_1 Y_2) = E(Y_1) E(Y_2) = 0$.
 - **d.** $E(Y_1Y_2) = 1 \alpha/4$, so $Cov(Y_1, Y_2) = -\alpha/4$.
 - e. $V(Y_1 Y_2) = V(Y_1) + V(Y_2) 2Cov(Y_1, Y_2) = 1 + \alpha/2$. Using Tchebysheff's theorem with k = 2, the interval is $(-2\sqrt{2 + \alpha/2}, -2\sqrt{2 + \alpha/2})$.
- 5.86 Using the hint and Theorem 5.9:
 - **a.** $E(W) = E(Z)E(Y_1^{-1/2}) = 0E(Y_1^{-1/2}) = 0$. Also, $V(W) = E(W^2) [E(W)]^2 = E(W^2)$. Now, $E(W^2) = E(Z^2)E(Y_1^{-1}) = 1 \cdot E(Y_1^{-1}) = E(Y_1^{-1}) = \frac{1}{v_1 - 2}$, $v_1 > 2$ (using Ex. 4.82).

b.
$$E(U) = E(Y_1)E(Y_2^{-1}) = \frac{v_1}{v_2 - 2}, v_2 > 2, V(U) = E(U^2) - [E(U)]^2 = E(Y_1^2)E(Y_2^{-2}) - (\frac{v_1}{v_2 - 2})^2$$

= $v_1(v_1 + 2) \frac{1}{(v_2 - 2)(v_2 - 4)} - (\frac{v_1}{v_2 - 2})^2 = \frac{2v_1(v_1 + v_2 - 2)}{(v_2 - 2)^2(v_2 - 4)}, v_2 > 4.$

- **5.87 a.** $E(Y_1 + Y_2) = E(Y_1) + E(Y_2) = v_1 + v_2$. **b.** By independence, $V(Y_1 + Y_2) = V(Y_1) + V(Y_2) = 2v_1 + 2v_2$.
- **5.88** It is clear that $E(Y) = E(Y_1) + E(Y_2) + ... + E(Y_6)$. Using the result that Yi follows a geometric distribution with success probability (7 i)/6, we have

$$E(Y) = \sum_{i=1}^{6} \frac{6}{7-i} = 1 + 6/5 + 6/4 + 6/3 + 6/2 + 6 = 14.7.$$

- **5.89** Cov $(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = \sum_{y_1} \sum_{y_2} y_1 y_2 p(y_1, y_2) [2(1/3)]^2 = 2/9 4/9 = -2/9$. As the value of Y_1 increases, the value of Y_2 tends to decrease.
- **5.90** From Ex. 5.3 and 5.21, $E(Y_1) = 4/3$ and $E(Y_2) = 1$. Thus, $E(Y_1Y_2) = 1(1)\frac{24}{84} + 2(1)\frac{12}{84} + 1(2)\frac{18}{84} = 1$ So, $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = 1 (4/3)(1) = -1/3$.
- **5.91** From Ex. 5.76, $E(Y_1) = E(Y_2) = 2/3$. $E(Y_1Y_2) = \int_0^1 \int_0^1 4y_1^2 y_2^2 dy_1 dy_2 = 4/9$. So, $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = 4/9 4/9 = 0$ as expected since Y_1 and Y_2 are independent.
- **5.92** From Ex. 5.77, $E(Y_1) = 1/4$ and $E(Y_2) = 1/2$. $E(Y_1Y_2) = \int_{0}^{1} \int_{0}^{y_2} 6y_1 y_2 (1 y_2) dy_1 dy_2 = 3/20$. So, $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = 3/20 1/8 = 1/40$ as expected since Y_1 and Y_2 are dependent.
- **5.93** Note that the marginal distributions for Y_1 and Y_2 are

So, Y_1 and Y_2 not independent since $p(-1, 0) \neq p_1(-1)p_2(0)$. However, $E(Y_1) = 0$ and $E(Y_1Y_2) = (-1)(0)1/3 + (0)(1)(1/3) + (1)(0)(1/3) = 0$, so $Cov(Y_1, Y_2) = 0$.

5.94 a.
$$Cov(U_1, U_2) = E[(Y_1 + Y_2)(Y_1 - Y_2)] - E(Y_1 + Y_2)E(Y_1 - Y_2)$$

 $= E(Y_1^2) - E(Y_2^2) - [E(Y_1)]^2 - [E(Y_2)]^2$
 $= (\sigma_1^2 + \mu_1^2) - (\sigma_2^2 + \mu_2^2) - (\mu_1^2 - \mu_2^2) = \sigma_1^2 - \sigma_2^2$.

- **b.** Since $V(U_1) = V(U_2) = \sigma_1^2 + \sigma_2^2$ (Y_1 and Y_2 are uncorrelated), $\rho = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.
- **c.** If $\sigma_1^2 = \sigma_2^2$, U_1 and U_2 are uncorrelated.
- **5.95 a.** From Ex. 5.55 and 5.79, $E(Y_1Y_2) = 0$ and $E(Y_1) = 0$. So, $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = 0 0E(Y_2) = 0$.
 - **b.** Y_1 and Y_2 are dependent.
 - **c.** Since $Cov(Y_1, Y_2) = 0$, $\rho = 0$.
 - **d.** If $Cov(Y_1, Y_2) = 0$, Y_1 and Y_2 are not necessarily independent.
- **5.96 a.** $Cov(Y_1, Y_2) = E[(Y_1 \mu_1)(Y_2 \mu_2)] = E[(Y_2 \mu_2)(Y_1 \mu_1)] = Cov(Y_2, Y_1).$ **b.** $Cov(Y_1, Y_1) = E[(Y_1 - \mu_1)(Y_1 - \mu_1)] = E[(Y_1 - \mu_1)^2] = V(Y_1).$
- **5.97 a.** From Ex. 5.96, $Cov(Y_1, Y_1) = V(Y_1) = 2$.
 - **b.** If $Cov(Y_1, Y_2) = 7$, $\rho = 7/4 > 1$, impossible.
 - **c.** With $\rho = 1$, Cov $(Y_1, Y_2) = 1(4) = 4$ (a perfect positive linear association).
 - **d.** With $\rho = -1$, $Cov(Y_1, Y_2) = -1(4) = -4$ (a perfect negative linear association).
- **5.98** Since $\rho^2 \le 1$, we have that $-1 \le \rho \le 1$ or $-1 \le \frac{\text{Cov}(Y_1, Y_2)}{\sqrt{V(Y_1)}\sqrt{V(Y_2)}} \le 1$.
- **5.99** Since E(c) = c, $Cov(c, Y) = E[(c c)(Y \mu)] = 0$.
- **5.100** a. $E(Y_1) = E(Z) = 0$, $E(Y_2) = E(Z^2) = 1$.
 - **b.** $E(Y_1Y_2) = E(Z^3) = 0$ (odd moments are 0).
 - **c.** $Cov(Y_1, Y_1) = E(Z^3) E(Z)E(Z^2) = 0.$
 - **d.** $P(Y_2 > 1 \mid Y_1 > 1) = P(Z^2 > 1 \mid Z > 1) = 1 \neq P(Z^2 > 1)$. Thus, Y_1 and Y_2 are dependent.
- **5.101** a. $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2) = 1 \alpha/4 (1)(1) = -\alpha/4$.
 - **b.** This is clear from part a.
 - **c.** We showed previously that Y_1 and Y_2 are independent only if $\alpha = 0$. If $\rho = 0$, if must be true that $\alpha = 0$.
- **5.102** The quantity $3Y_1 + 5Y_2 = \text{dollar}$ amount spend per week. Thus:

$$E(3Y_1 + 5Y_2) = 3(40) + 5(65) = 445.$$

 $E(3Y_1 + 5Y_2) = 9V(Y_1) + 25V(Y_2) = 9(4) + 25(8) = 236.$

- **5.103** $E(3Y_1 + 4Y_2 6Y_3) = 3E(Y_1) + 4E(Y_2) 6E(Y_3) = 3(2) + 4(-1) 6(-4) = -22,$ $V(3Y_1 + 4Y_2 - 6Y_3) = 9V(Y_1) + 16V(Y_2) + 36E(Y_3) + 24Cov(Y_1, Y_2) - 36Cov(Y_1, Y_3) - 48Cov(Y_2, Y_3) = 9(4) + 16(6) + 36(8) + 24(1) - 36(-1) - 48(0) = 480.$
- **5.104** a. Let $X = Y_1 + Y_2$. Then, the probability distribution for X is

$$\begin{array}{c|ccccc} x & 1 & 2 & 3 \\ \hline p(x) & 7/84 & 42/84 & 35/84 \end{array}$$

Thus, E(X) = 7/3 and V(X) = .3889.

b. $E(Y_1 + Y_2) = E(Y_1) + E(Y_2) = 4/3 + 1 = 7/3$. We have that $V(Y_1) = 10/18$, $V(Y_2) = 42/84$, and $Cov(Y_1, Y_1) = -1/3$, so

$$V(Y_1 + Y_2) = V(Y_1) + V(Y_2) + 2Cov(Y_2, Y_3) = 10/18 + 42/84 - 2/3 = 7/18 = .3889.$$

- **5.105** Since Y_1 and Y_2 are independent, $V(Y_1 + Y_2) = V(Y_1) + V(Y_1) = 1/18 + 1/18 = 1/9$.
- **5.106** $V(Y_1 3Y_2) = V(Y_1) + 9V(Y_2) 6Cov(Y_1, Y_2) = 3/80 + 9(1/20) 6(1/40) = 27/80 = .3375.$
- **5.107** Since $E(Y_1) = E(Y_2) = 1/3$, $V(Y_1) = V(Y_2) = 1/18$ and $E(Y_1Y_2) = \int_0^1 \int_0^{1-y_2} 2y_1y_2dy_1dy_2 = 1/12$, we have that $Cov(Y_1, Y_1) = 1/12 1/9 = -1/36$. Therefore,

$$E(Y_1 + Y_2) = 1/3 + 1/3 = 2/3$$
 and $V(Y_1 + Y_2) = 1/18 + 1/18 + 2(-1/36) = 1/18$.

5.108 From Ex. 5.33, Y_1 has a gamma distribution with $\alpha = 2$ and $\beta = 1$, and Y_2 has an exponential distribution with $\beta = 1$. Thus, $E(Y_1 + Y_2) = 2(1) + 1 = 3$. Also, since

$$E(Y_1Y_2) = \int_{0}^{\infty} \int_{0}^{y_1} y_1 y_2 e^{-y_1} dy_2 dy_1 = 3, \text{Cov}(Y_1, Y_1) = 3 - 2(1) = 1,$$

$$V(Y_1 - Y_2) = 2(1)^2 + 1^2 - 2(1) = 1.$$

Since a value of 4 minutes is four three standard deviations above the mean of 1 minute, this is not likely.

5.109 We have $E(Y_1) = E(Y_2) = 7/12$. Intermediate calculations give $V(Y_1) = V(Y_2) = 11/144$.

Thus,
$$E(Y_1Y_2) = \int_0^1 \int_0^1 y_1 y_2 (y_1 + y_2) dy_1 dy_2 = 1/3$$
, $Cov(Y_1, Y_1) = 1/3 - (7/12)^2 = -1/144$.

From Ex. 5.80, $E(30Y_1 + 25Y_2) = 32.08$, so

$$V(30Y_1 + 25Y_2) = 900V(Y_1) + 625V(Y_2) + 2(30)(25) \text{ Cov}(Y_1, Y_1) = 106.08.$$

The standard deviation of $30Y_1 + 25Y_2$ is $\sqrt{106.08} = 10.30$. Using Tchebysheff's theorem with k = 2, the interval is (11.48, 52.68).

5.110 a. $V(1+2Y_1)=4V(Y_1), \ V(3+4Y_2)=16V(Y_2), \ \text{and } Cov(1+2Y_1, 3+4Y_2)=8Cov(Y_1, Y_2).$ So, $\frac{8Cov(Y_1, Y_2)}{\sqrt{4V(Y_1)}\sqrt{16V(Y_2)}}=\rho=.2$.

b.
$$V(1+2Y_1) = 4V(Y_1)$$
, $V(3-4Y_2) = 16V(Y_2)$, and $Cov(1+2Y_1, 3-4Y_2) = -8Cov(Y_1, Y_2)$.
So, $\frac{-8Cov(Y_1, Y_2)}{\sqrt{4V(Y_1)}\sqrt{16V(Y_2)}} = -\rho = -.2$.

c.
$$V(1-2Y_1) = 4V(Y_1)$$
, $V(3-4Y_2) = 16V(Y_2)$, and $Cov(1-2Y_1, 3-4Y_2) = 8Cov(Y_1, Y_2)$.
So, $\frac{8Cov(Y_1, Y_2)}{\sqrt{4V(Y_1)}\sqrt{16V(Y_2)}} = \rho = .2$.

5.111 The net daily gain is given by the random variable G = X - Y. Thus, given the distributions for X and Y in the problem,

$$E(G) = E(X) - E(Y) = 50 - (4)(2) = 48$$

 $V(G) = V(G) + V(G) = 3^2 + 4(2^2) = 25$.

The value \$70 is (70 - 48)/5 = 5.6 standard deviations above the mean, an unlikely value.

5.112 In Ex. 5.61, it was showed that Y_1 and Y_2 are independent. In addition, Y_1 has a gamma distribution with $\alpha = 2$ and $\beta = 2$, and Y_2 has an exponential distribution with $\beta = 2$. So, with $C = 50 + 2Y_1 + 4Y_2$, it is clear that

$$E(C) = 50 + 2E(Y_1) + 4E(Y_2) = 50 + (2)(4) + (4)(2) = 66$$

 $V(C) = 4V(Y_1) + 16V(Y_2) = 4(2)(4) + 16(4) = 96.$

- **5.113 a.** $V(a + bY_1) = b^2 V(Y_1)$, $V(c + dY_2) = d^2 V(Y_2)$, and $Cov(a + bY_1, c + dY_2) = bdCov(Y_1, Y_2)$. So, $\rho_{W_1,W_2} = \frac{bdCov(Y_1,Y_2)}{\sqrt{b^2 V(Y_1)} \sqrt{d^2 V(Y_2)}} = \frac{bd}{|bd|} \rho_{Y_1,Y_2}$. Provided that the constants b and d are nonzero, $\frac{bd}{|bd|}$ is either 1 or -1. Thus, $|\rho_{W_1,W_2}| = |\rho_{Y_1,Y_2}|$.
 - **b.** Yes, the answers agree.
- **5.114** Observe that Y_1 has a gamma distribution with $\alpha = 4$ and $\beta = 1$ and Y_2 has an exponential distribution with $\beta = 2$. Thus, with $U = Y_1 Y_2$,
 - **a.** E(U) = 4(1) 2 = 2
 - **b.** $V(U) = 4(1^2) + 2^2 = 8$
 - c. The value 0 has a z-score of $(0-2)/\sqrt{8} = -.707$, or it is -.707 standard deviations below the mean. This is not extreme so it is likely the profit drops below 0.
- **5.115** Following Ex. 5.88:
 - **a.** Note that for non-negative integers a and b and $i \neq j$,

$$P(Y_i = a, Y_j = b) = P(Y_j = b \mid Y_i = a)P(Y_i = a)$$

But, $P(Y_i = b \mid Y_i = a) = P(Y_i = b)$ since the trials (i.e. die tosses) are independent the experiments that generate Y_i and Y_i represent independent experiments via the memoryless property. So, Y_i and Y_i are independent and thus $Cov(Y_i, Y_i) = 0$.

- **b.** $V(Y) = V(Y_1) + ... + V(Y_6) = 0 + \frac{1/6}{(5/6)^2} + \frac{2/6}{(4/6)^2} + \frac{3/6}{(3/6)^2} + \frac{4/6}{(2/6)^2} + \frac{5/6}{(1/6)^2} = 38.99.$
- c. From Ex. 5.88, E(Y) = 14.7. Using Tchebysheff's theorem with k = 2, the interval is $14.7 \pm 2\sqrt{38.99}$ or (0.27.188)
- **5.116** $V(Y_1 + Y_2) = V(Y_1) + V(Y_2) + 2\text{Cov}(Y_1, Y_2), V(Y_1 Y_2) = V(Y_1) + V(Y_2) 2\text{Cov}(Y_1, Y_2).$ When Y_1 and Y_2 are independent, $Cov(Y_1, Y_2) = 0$ so the quantities are the same.
- **5.117** Refer to Example 5.29 in the text. The situation here is analogous to drawing n balls from an urn containing N balls, r_1 of which are red, r_2 of which are black, and $N-r_1-r_2$ are neither red nor black. Using the argument given there, we can deduce that:

$$E(Y_1) = np_1$$
 $V(Y_1) = np_1(1 - p_1) \left(\frac{N-n}{N-1}\right)$ where $p_1 = r_1/N$
 $E(Y_2) = np_2$ $V(Y_2) = np_2(1 - p_2) \left(\frac{N-n}{N-1}\right)$ where $p_2 = r_2/N$

Now, define new random variables for i = 1, 2, ..., n:

Now, define new random variables for
$$i = 1, 2, ..., n$$
:
$$U_i = \begin{cases} 1 & \text{if alligator } i \text{ is a mature female} \\ 0 & \text{otherwise} \end{cases} V_i = \begin{cases} 1 & \text{if alligator } i \text{ is a mature male} \\ 0 & \text{otherwise} \end{cases}$$

Then, $Y_1 = \sum_{i=1}^n U_i$ and $Y_2 = \sum_{i=1}^n V_i$. Now, we must find $Cov(Y_1, Y_2)$. Note that:

$$E(Y_1Y_2) = E\left(\sum_{i=1}^n U_i, \sum_{i=1}^n V_i\right) = \sum_{i=1}^n E(U_iV_i) + \sum_{i \neq j} E(U_iV_j).$$

Now, since for all i, $E(U_i, V_i) = P(U_i = 1, V_i = 1) = 0$ (an alligator can't be both female and male), we have that $E(U_i, V_i) = 0$ for all i. Now, for $i \neq i$,

$$E(U_i, V_j) = P(U_i = 1, V_i = 1) = P(U_i = 1)P(V_i = 1|U_i = 1) = \frac{r_i}{N} \left(\frac{r_2}{N-1}\right) = \frac{N}{N-1} p_1 p_2$$

Since there are n(n-1) terms in $\sum_{i \neq j} E(U_i V_j)$, we have that $E(Y_1 Y_2) = n(n-1) \frac{N}{N-1} p_1 p_2$.

Thus,
$$Cov(Y_1, Y_2) = n(n-1)\frac{N}{N-1}p_1p_2 - (np_1)(np_2) = -\frac{n(N-n)}{N-1}p_1p_2$$
.

So,
$$E\left[\frac{Y_1}{n} - \frac{Y_2}{n}\right] = \frac{1}{n} (np_1 - np_2) = p_1 - p_2,$$

$$V\left[\frac{Y_1}{n} - \frac{Y_2}{n}\right] = \frac{1}{n^2} \left[V(Y_1) + V(Y_2) - 2\operatorname{Cov}(Y_1, Y_2)\right] = \frac{N-n}{n(N-1)} \left(p_1 + p_2 - (p_1 - p_2)^2\right)$$

- **5.118** Let $Y = X_1 + X_2$, the total sustained load on the footing.
 - **a.** Since X_1 and X_2 have gamma distributions and are independent, we have that E(Y) = 50(2) + 20(2) = 140 $V(Y) = 50(2^2) + 20(2^2) = 280.$

b. Consider Tchebysheff's theorem with k = 4: the corresponding interval is

$$140 + 4\sqrt{280}$$
 or (73.07, 206.93).

So, we can say that the sustained load will exceed 206.93 kips with probability less than 1/16.

5.119 a. Using the multinomial distribution with $p_1 = p_2 = p_3 = 1/3$,

$$P(Y_1 = 3, Y_2 = 1, Y_3 = 2) = \frac{6!}{3!1!2!} (\frac{1}{3})^6 = .0823.$$

- **b.** $E(Y_1) = n/3$, $V(Y_1) = n(1/3)(2/3) = 2n/9$.
- **c.** Cov $(Y_2, Y_3) = -n(1/3)(1/3) = -n/9$.
- **d.** $E(Y_2 Y_3) = n/3 n/3 = 0$, $V(Y_2 Y_3) = V(Y_2) + V(Y_3) 2Cov(Y_2, Y_3) = 2n/3$.
- **5.120** $E(C) = E(Y_1) + 3E(Y_2) = np_1 + 3np_2.$ $V(C) = V(Y_1) + 9V(Y_2) + 6Cov(Y_1, Y_2) = np_1q_1 + 9np_2q_2 6np_1p_2.$
- **5.121** If N is large, the multinomial distribution is appropriate:
 - **a.** $P(Y_1 = 2, Y_2 = 1) = \frac{5!}{2!1!2!} (.3)^2 (.1)^1 (.6)^2 = .0972$.
 - **b.** $E\left[\frac{Y_1}{n} \frac{Y_2}{n}\right] = p_1 p_2 = .3 .1 = .2$ $V\left[\frac{Y_1}{n} - \frac{Y_2}{n}\right] = \frac{1}{n^2} \left[V(Y_1) + V(Y_2) - 2\text{Cov}(Y_1, Y_2)\right] = \frac{p_1 q_1}{n} + \frac{p_2 q_2}{n} + 2\frac{p_1 p_2}{n} = .072.$
- 5.122 Let $Y_1 = \#$ of mice weighing between 80 and 100 grams, and let $Y_2 = \#$ weighing over 100 grams. Thus, with X having a normal distribution with $\mu = 100$ g. and $\sigma = 20$ g.,

$$p_1 = P(80 \le X \le 100) = P(-1 \le Z \le 0) = .3413$$

 $p_2 = P(X > 100) = P(Z > 0) = .5$

a.
$$P(Y_1 = 2, Y_2 = 1) = \frac{4!}{2!!!!!} (.3413)^2 (.5)^1 (.1587)^1 = .1109$$
.

- **b.** $P(Y_2 = 4) = \frac{4!}{0!4!0!} (.5)^4 = .0625$.
- **5.123** Let $Y_1 = \#$ of family home fires, $Y_2 = \#$ of apartment fires, and $Y_3 = \#$ of fires in other types. Thus, (Y_1, Y_2, Y_3) is multinomial with n = 4, $p_1 = .73$, $p_2 = .2$ and $p_3 = .07$. Thus, $P(Y_1 = 2, Y_2 = 1, Y_3 = 1) = 6(.73)^2(.2)(.07) = .08953$.
- **5.124** Define $C = \text{total cost} = 20,000Y_1 + 10,000Y_2 + 2000Y_3$
 - **a.** $E(C) = 20,000E(Y_1) + 10,000E(Y_2) + 2000E(Y_3)$ = 20,000(2.92) + 10,000(.8) + 2000(.28) = 66,960.
 - **b.** $V(C) = (20,000)^2 V(Y_1) + (10,000)^2 V(Y_2) + (2000)^2 V(Y_3) + \text{covariance terms}$ $= (20,000)^2 (4)(.73)(.27) + (10,000)^2 (4)(.8)(.2) + (2000)^2 (4)(.07)(.93)$ + 2[20,000(10,000)(-4)(.73)(.2) + 20,000(2000)(-4)(.73)(.07) +10,000(2000)(-4)(.2)(.07)] = 380,401,600 - 252,192,000 = 128,209,600.

- **5.125** Let $Y_1 = \#$ of planes with no wine cracks, $Y_2 = \#$ of planes with detectable wing cracks, and $Y_3 = \#$ of planes with critical wing cracks. Therefore, (Y_1, Y_2, Y_3) is multinomial with n = 5, $p_1 = .7$, $p_2 = .25$ and $p_3 = .05$.
 - **a.** $P(Y_1 = 2, Y_2 = 2, Y_3 = 1) = 30(.7)^2(.25)^2(.05) = .046.$
 - **b.** The distribution of Y_3 is binomial with n = 5, $p_3 = .05$, so $P(Y_3 \ge 1) = 1 P(Y_3 = 0) = 1 (.95)^5 = .2262$.
- **5.126** Using formulas for means, variances, and covariances for the multinomial:

$$E(Y_1) = 10(.1) = 1$$
 $V(Y_1) = 10(.1)(.9) = .9$
 $E(Y_2) = 10(.05) = .5$ $V(Y_2) = 10(.05)(.95) = .475$
 $Cov(Y_1, Y_2) = -10(.1)(.05) = -.05$

So,

$$E(Y_1 + 3Y_2) = 1 + 3(.5) = 2.5$$

 $V(Y_1 + 3Y_2) = .9 + 9(.475) + 6(-.05) = 4.875.$

- **5.127** *Y* is binomial with n = 10, p = .10 + .05 = .15.
 - **a.** $P(Y=2) = {10 \choose 2} (.15)^2 (.85)^8 = .2759.$
 - **b.** $P(Y \ge 1) = 1 P(Y = 0) = 1 (.85)^{10} = .8031.$
- **5.128** The marginal distribution for Y_1 is found by

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
.

Making the change of variables $u = (y_1 - \mu_1)/\sigma_1$ and $v = (y_2 - \mu_2)/\sigma_2$ yields

$$f_1(y_1) = \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2(1-\rho^2)}(u^2 + v^2 - 2\rho uv)\right] dv.$$

To evaluate this, note that $u^2 + v^2 - 2\rho uv = (v - \rho u)^2 + u^2(1 - \rho^2)$ so that

$$f_1(y_1) = \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}}e^{-u^2/2}\int_{-\infty}^{\infty} \exp\left[-\frac{1}{2(1-\rho^2)}(v-\rho u)^2\right]dv,$$

So, the integral is that of a normal density with mean ρu and variance $1 - \rho^2$. Therefore,

$$f_1(y_1) = \frac{1}{2\pi\sigma_1} e^{-(y_1 - \mu_1)^2/2\sigma_1^2}, -\infty < y_1 < \infty,$$

which is a normal density with mean μ_1 and standard deviation σ_1 . A similar procedure will show that the marginal distribution of Y_2 is normal with mean μ_2 and standard deviation σ_2 .

5.129 The result follows from Ex. 5.128 and defining $f(y_1 | y_2) = f(y_1, y_2) / f_2(y_2)$, which yields a density function of a normal distribution with mean $\mu_1 + \rho(\sigma_1/\sigma_2)(y_2 - \mu_2)$ and variance $\sigma_1^2(1-\rho^2)$.

- **5.130 a.** $Cov(U_1, U_2) = \sum_{i=1}^n \sum_{j=1}^n a_i b_j Cov(Y_i, Y_j) = \sum_{i=1}^n a_i b_j V(Y_i) = \sigma^2 \sum_{i=1}^n a_i b_j$, since the Y_i 's are independent. If $Cov(U_1, U_2) = 0$, it must be true that $\sum_{i=1}^n a_i b_j = 0$ since $\sigma^2 > 0$. But, it is trivial to see if $\sum_{i=1}^n a_i b_j = 0$, $Cov(U_1, U_2) = 0$. So, U_1 and U_2 are orthogonal.
 - **b.** Given in the problem, (U_1, U_2) has a bivariate normal distribution. Note that $E(U_1) = \mu \sum_{i=1}^n a_i$, $E(U_2) = \mu \sum_{i=1}^n b_i$, $E(U_1) = \sigma^2 \sum_{i=1}^n a_i^2$, and $E(U_2) = \sigma^2 \sum_{i=1}^n b_i^2$. If they are orthogonal, $Cov(U_1, U_2) = 0$ and then $\rho_{U_1, U_2} = 0$. So, they are also independent.
- **5.131 a.** The joint distribution of Y_1 and Y_2 is simply the product of the marginals $f_1(y_1)$ and $f_2(y_2)$ since they are independent. It is trivial to show that this product of density has the form of the bivariate normal density with $\rho = 0$.
 - **b.** Following the result of Ex. 5.130, let $a_1 = a_2 = b_1 = 1$ and $b_2 = -1$. Thus, $\sum_{i=1}^{n} a_i b_j = 0$ so U_1 and U_2 are independent.
- **5.132** Following Ex. 5.130 and 5.131, U_1 is normal with mean $\mu_1 + \mu_2$ and variance $2\sigma^2$ and U_2 is normal with mean $\mu_1 \mu_2$ and variance $2\sigma^2$.
- **5.133** From Ex. 5.27, $f(y_1 | y_2) = 1/y_2$, $0 \le y_1 \le y_2$ and $f_2(y_2) = 6y_2(1 y_2)$, $0 \le y_2 \le 1$.
 - **a.** To find $E(Y_1 | Y_2 = y_2)$, note that the conditional distribution of Y_1 given Y_2 is uniform on the interval $(0, y_2)$. So, $E(Y_1 | Y_2 = y_2) = y_2/2$.
 - **b.** To find $E(E(Y_1 | Y_2))$, note that the marginal distribution is beta with $\alpha = 2$ and $\beta = 2$. So, from part a, $E(E(Y_1 | Y_2)) = E(Y_2/2) = 1/4$. This is the same answer as in Ex. 5.77.
- **5.134** The z-score is $(6-1.25)/\sqrt{1.5625} = 3.8$, so the value 6 is 3.8 standard deviations above the mean. This is not likely.
- **5.135** Refer to Ex. 5.41:
 - **a.** Since Y is binomial, E(Y|p) = 3p. Now p has a uniform distribution on (0, 1), thus E(Y) = E[E(Y|p)] = E(3p) = 3(1/2) = 3/2.
 - **b.** Following part a, V(Y|p) = 3p(1-p). Therefore, $V(p) = E[3p(1-p)] + V(3p) = 3E(p-p^2) + 9V(p) = 3E(p) 3[V(p) + (E(p))^2] + 9V(p) = 1.25$
- **5.136 a.** For a given value of λ , Y has a Poisson distribution. Thus, $E(Y \mid \lambda) = \lambda$. Since the marginal distribution of λ is exponential with mean 1, $E(Y) = E[E(Y \mid \lambda)] = E(\lambda) = 1$.

- **b.** From part a, $E(Y \mid \lambda) = \lambda$ and so $V(Y \mid \lambda) = \lambda$. So, $V(Y) = E[V(Y \mid \lambda)] + E[V(Y \mid \lambda)] = 2$ **c.** The value 9 is $(9-1)/\sqrt{2} = 5.657$ standard deviations above the mean (unlikely score).
- **5.137** Refer to Ex. 5.38: $E(Y_2 | Y_1 = y_1) = y_1/2$. For $y_1 = 3/4$, $E(Y_2 | Y_1 = 3/4) = 3/8$.
- **5.138** If Y = # of bacteria per cubic centimeter,
 - **a.** $E(Y) = E(Y) = E[E(Y | \lambda)] = E(\lambda) = \alpha\beta$.
 - **b.** $V(Y) = E[V(Y \mid \lambda)] + V[E(Y \mid \lambda)] = \alpha\beta + \alpha\beta^2 = \alpha\beta(1+\beta)$. Thus, $\sigma = \sqrt{\alpha\beta(1+\beta)}$.
- **5.139 a.** $E(T \mid N = n) = E\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} E(Y_{i}) = n\alpha\beta$.
 - **b.** $E(T) = E[E(T \mid N)] = E(N\alpha\beta) = \lambda\alpha\beta$. Note that this is E(N)E(Y).
- **5.140** Note that $V(Y_1) = E[V(Y_1 \mid Y_2)] + V[E(Y_1 \mid Y_2)]$, so $E[V(Y_1 \mid Y_2)] = V(Y_1) V[E(Y_1 \mid Y_2)]$. Thus, $E[V(Y_1 \mid Y_2)] \le V(Y_1)$.
- **5.141** $E(Y_2) = E(E(Y_2 \mid Y_1)) = E(Y_1/2) = \lambda/2$ $V(Y_2) = E[V(Y_2 \mid Y_1)] + V[E(Y_2 \mid Y_1)] = E[Y_1^2 / 12] + V[Y_1/2] = (2\lambda^2)/12 + (\lambda^2)/2 = 2\lambda^2/3.$
- **5.142 a.** $E(Y) = E[E(Y|p)] = E(np) = nE(p) = \frac{n\alpha}{\alpha + \beta}$.
 - **b.** $V(Y) = E[V(Y | p)] + V[E(Y | p)] = E[np(1-p)] + V(np) = nE(p-p^2) + n^2V(p)$. Now: $nE(p-p^2) = \frac{n\alpha}{\alpha + \beta} \frac{n\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}$ $n^2V(p) = \frac{n^2\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$

So,
$$V(Y) = \frac{n\alpha}{\alpha + \beta} - \frac{n\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} + \frac{n^2\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{n\alpha\beta(\alpha + \beta + n)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$
.

5.143 Consider the random variable y_1Y_2 for the fixed value of Y_1 . It is clear that y_1Y_2 has a normal distribution with mean 0 and variance y_1^2 and the mgf for this random variable is $m(t) = E(e^{ty_1Y_2}) = e^{t^2y_1^2/2}$.

Thus,
$$m_U(t) = E(e^{tU}) = E(e^{tY_1Y_2}) = E[E(e^{tY_1Y_2} | Y_1)] = E(e^{tY_1^2/2}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{(-y_1^2/2)(1-t^2)} dy_1.$$

Note that this integral is essentially that of a normal density with mean 0 and variance $\frac{1}{1-t^2}$, so the necessary constant that makes the integral equal to 0 is the reciprocal of the standard deviation. Thus, $m_U(t) = (1-t^2)^{-1/2}$. Direct calculations give $m_U'(0) = 0$ and

$$m_U''(0) = 1$$
. To compare, note that $E(U) = E(Y_1 Y_2) = E(Y_1)E(Y_2) = 0$ and $V(U) = E(U^2) = E(Y_1^2 Y_2^2) = E(Y_1^2)E(Y_2^2) = (1)(1) = 1$.

5.144
$$E[g(Y_1)h(Y_2)] = \sum_{y_1} \sum_{y_2} g(y_1)h(y_2)p(y_1, y_2) = \sum_{y_1} \sum_{y_2} g(y_1)h(y_2)p_1(y_1)p_2(y_2) = \sum_{y_1} \sum_{y_2} g(y_1)p_1(y_1)\sum_{y_2} h(y_2)p_2(y_2) = E[g(Y_1)] \times E[h(Y_2)].$$

5.145 The probability of interest is $P(Y_1 + Y_2 < 30)$, where Y_1 is uniform on the interval (0, 15) and Y_2 is uniform on the interval (20, 30). Thus, we have

$$P(Y_1 + Y_2 < 30) = \int_{20}^{30} \int_{0}^{30 - y^2} \left(\frac{1}{15}\right) \left(\frac{1}{10}\right) dy_1 dy_2 = 1/3.$$

5.146 Let (Y_1, Y_2) represent the coordinates of the landing point of the bomb. Since the radius is one mile, we have that $0 \le y_1^2 + y_2^2 \le 1$. Now,

P(target is destroyed) = P(bomb destroys everything within 1/2 of landing point) This is given by $P(Y_1^2 + Y_2^2 \le (\frac{1}{2})^2)$. Since (Y_1, Y_2) are uniformly distributed over the unit circle, the probability in question is simply the area of a circle with radius 1/2 divided by the area of the unit circle, or simply 1/4.

5.147 Let Y_1 = arrival time for 1^{st} friend, $0 \le y_1 \le 1$, Y_2 = arrival time for 2^{nd} friend, $0 \le y_2 \le 1$. Thus $f(y_1, y_2) = 1$. If friend 2 arrives 1/6 hour (10 minutes) before or after friend 1, they will meet. We can represent this event as $|Y_1 - Y_2| < 1/3$. To find the probability of this event, we must find:

$$P(|Y_1 - Y_2| < 1/3) = \int_0^{1/6} \int_0^{y_1 + 1/6} 1 dy_2 dy_1 + \int_{1/6}^{5/6} \int_{y_1 - 1/6}^{y_1 + 1/6} 1 dy_2 dy_1 + \int_{5/6}^1 \int_{y_1 - 1/6}^{11} 1 dy_2 dy_1 = 11/36.$$

5.148 a.
$$p(y_1, y_2) = \frac{\binom{4}{y_1}\binom{3}{y_2}\binom{2}{3-y_1-y_2}}{\binom{9}{3}}, y_1 = 0, 1, 2, 3, y_2 = 0, 1, 2, 3, y_1 + y_2 \le 3.$$

b. Y_1 is hypergeometric w/ r = 4, N = 9, n = 3; Y_2 is hypergeometric w/ r = 3, N = 9, n = 3

c.
$$P(Y_1 = 1 \mid Y_2 \ge 1) = [p(1, 1) + p(1, 2)]/[1 - p_2(0)] = 9/16$$

5.149 a.
$$f_1(y_1) = \int_0^{y_1} 3y_1 dy_2 = 3y_1^2$$
, $0 \le y_1 \le 1$, $f_1(y_1) = \int_{y_2}^1 3y_1 dy_1 = \frac{3}{2}(1 - y_2^2)$, $0 \le y_2 \le 1$.

b.
$$P(Y_1 \le 3/4 \mid Y_2 \le 1/2) = 23/44$$
.

$$\mathbf{c} \cdot f(y_1 \mid y_2) = 2y_1/(1-y_2^2), y_2 \le y_1 \le 1.$$

d.
$$P(Y_1 \le 3/4 | Y_2 = 1/2) = 2/3$$
.

- **5.150** a. Note that $f(y_2 | y_1) = f(y_1, y_2)/f(y_1) = 1/y_1$, $0 \le y_2 \le y_1$. This is the same conditional density as seen in Ex. 5.38 and Ex. 5.137. So, $E(Y_2 | Y_1 = y_1) = y_1/2$.
 - **b.** $E(Y_2) = E[E(Y_2 \mid Y_1)] = E(Y_1/2) = \int_0^1 \frac{y_1}{2} 3y_1^2 dy_1 = 3/8.$
 - **c.** $E(Y_2) = \int_{0}^{1} y_2 \frac{3}{2} (1 y_2^2) dy_2 = 3/8.$
- **5.151** a. The joint density is the product of the marginals: $f(y_1, y_2) = \frac{1}{\beta^2} e^{-(y_1 + y_2)/\beta}$, $y_1 \ge \infty$, $y_2 \ge \infty$
 - **b.** $P(Y_1 + Y_2 \le a) = \int_0^a \int_0^{a-y_2} \frac{1}{\beta^2} e^{-(y_1 + y_2)/\beta} dy_1 dy_2 = 1 [1 + a/\beta] e^{-a/\beta}$.
- **5.152** The joint density of (Y_1, Y_2) is $f(y_1, y_2) = 18(y_1 y_1^2)y_2^2$, $0 \le y_1 \le 1$, $0 \le y_2 \le 1$. Thus, $P(Y_1Y_2 \le .5) = P(Y_1 \le .5/Y_2) = 1 P(Y_1 > .5/Y_2) = 1 \int_{.5}^{1} \int_{.5/Y_2}^{1} 18(y_1 y_1^2)y_2^2 dy_1 dy_2$. Using straightforward integration, this is equal to $(5 3\ln 2)/4 = .73014$.
- **5.153** This is similar to Ex. 5.139:
 - a. Let N = # of eggs laid by the insect and Y = # of eggs that hatch. Given N = n, Y has a binomial distribution with n trials and success probability p. Thus, E(Y | N = n) = np. Since N follows as Poisson with parameter λ , $E(Y) = E[E(Y | N)] = E(Np) = \lambda p$.
 - **b.** $V(Y) = E[V(Y \mid N)] + V[E(Y \mid N)] = E[Np(1-p)] + V[Np] = \lambda p$.
- 5.154 The conditional distribution of Y given p is binomial with parameter p, and note that the marginal distribution of p is beta with $\alpha = 3$ and $\beta = 2$.
 - **a.** Note that $f(y) = \int_0^1 f(y, p) = \int_0^1 f(y \mid p) f(p) dp = 12 \binom{n}{y} \int_0^1 p^{y+2} (1-p)^{n-y+1} dp$. This integral can be evaluated by relating it to a beta density w/ $\alpha = y + 3$, $\beta = n + y + 2$. Thus,

$$f(y) = 12 \binom{n}{y} \frac{\Gamma(n-y+2)\Gamma(y+3)}{\Gamma(n+5)}, y = 0, 1, 2, ..., n.$$

- **b.** For n = 2, E(Y | p) = 2p. Thus, E(Y) = E[E(Y|p)] = E(2p) = 2E(p) = 2(3/5) = 6/5.
- **5.155** a. It is easy to show that

$$Cov(W_1, W_2) = Cov(Y_1 + Y_2, Y_1 + Y_3)$$

$$= Cov(Y_1, Y_1) + Cov(Y_1, Y_3) + Cov(Y_2, Y_1) + Cov(Y_2, Y_3)$$

$$= Cov(Y_1, Y_1) = V(Y_1) = 2v_1.$$

- **b.** It follows from part a above (i.e. the variance is positive).
- **5.156 a.** Since E(Z) = E(W) = 0, $Cov(Z, W) = E(ZW) = E(Z^2Y^{-1/2}) = E(Z^2)E(Y^{-1/2}) = E(Y^{-1/2})$. This expectation can be found by using the result Ex. 4.112 with a = -1/2. So, $Cov(Z, W) = E(Y^{-1/2}) = \frac{\Gamma(\frac{v}{2} \frac{1}{2})}{\sqrt{2}\Gamma(\frac{v}{2})}$, provided v > 1.
 - **b.** Similar to part a, $Cov(Y, W) = E(YW) = E(\sqrt{Y} W) = E(\sqrt{Y})E(W) = 0$.
 - **c.** This is clear from parts a and b above.
- **5.157** $p(y) = \int_{0}^{\infty} p(y \mid \lambda) f(\lambda) d\lambda = \int_{0}^{\infty} \frac{\lambda^{y+\alpha-1} e^{-\lambda [(\beta+1)/\beta]}}{\Gamma(y+1)\Gamma(\alpha)\beta^{\alpha}} d\lambda = \frac{\Gamma(y+\alpha) \left(\frac{\beta}{\beta+1}\right)^{y+\alpha}}{\Gamma(y+1)\Gamma(\alpha)\beta^{\alpha}}, y = 0, 1, 2, \dots$ Since it was assumed that α was an integer, this can be written as

$$p(y) = {y + \alpha - 1 \choose y} \left(\frac{\beta}{\beta + 1}\right)^y \left(\frac{1}{\beta + 1}\right)^{\alpha}, y = 0, 1, 2, \dots$$

- **5.158** Note that for each X_i , $E(X_i) = p$ and $V(X_i) = pq$. Then, $E(Y) = \Sigma E(X_i) = np$ and V(Y) = npq. The second result follows from the fact that the X_i are independent so therefore all covariance expressions are 0.
- **5.159** For each W_i , $E(W_i) = 1/p$ and $V(W_i) = q/p^2$. Then, $E(Y) = \Sigma E(X_i) = r/p$ and $V(Y) = rq/p^2$. The second result follows from the fact that the W_i are independent so therefore all covariance expressions are 0.
- **5.160** The marginal probabilities can be written directly:

$$P(X_1 = 1) = P(\text{select ball 1 or 2}) = .5$$
 $P(X_1 = 0) = .5$ $P(X_2 = 1) = P(\text{select ball 1 or 3}) = .5$ $P(X_2 = 0) = .5$ $P(X_3 = 0) = .5$

Now, for $i \neq j$, X_i and X_j are clearly pairwise independent since, for example,

$$P(X_1 = 1, X_2 = 1) = P(\text{select ball } 1) = .25 = P(X_1 = 1)P(X_2 = 1)$$

 $P(X_1 = 0, X_2 = 1) = P(\text{select ball } 3) = .25 = P(X_1 = 0)P(X_2 = 1)$

However, X_1 , X_2 , and X_3 are <u>not</u> mutually independent since

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = P(\text{select ball } 1) = .25 \neq P(X_1 = 1)P(X_2 = 1)P(X_1 = 3).$$

5.161
$$E(\overline{Y} - \overline{X}) = E(\overline{Y}) - E(\overline{X}) = \frac{1}{n} \sum E(Y_i) - \frac{1}{m} \sum E(X_i) = \mu_1 - \mu_2$$
$$V(\overline{Y} - \overline{X}) = V(\overline{Y}) + V(\overline{X}) = \frac{1}{n^2} \sum V(Y_i) + \frac{1}{m^2} \sum V(X_i) = \sigma_1^2 / n + \sigma_2^2 / m$$

- **5.162** Using the result from Ex. 5.65, choose two different values for α with $-1 \le \alpha \le 1$.
- **5.163** a. The distribution functions with the exponential distribution are:

$$F_1(y_1) = 1 - e^{-y_1}, y_1 \ge 0;$$
 $F_2(y_2) = 1 - e^{-y_2}, y_2 \ge 0.$

Then, the joint distribution function is

$$F(y_1, y_2) = [1 - e^{-y_1}][1 - e^{-y_2}][1 - \alpha(e^{-y_1})(e^{-y_2})].$$

Finally, show that $\frac{\partial^2}{\partial y_1 \partial y_2} F(y_1, y_2)$ gives the joint density function seen in Ex. 5.162.

b. The distribution functions with the uniform distribution on (0, 1) are:

$$F_1(y_1) = y_1, 0 \le y_1 \le 1$$
; $F_2(y_2) = y_2, 0 \le y_2 \le 1$.

Then, the joint distribution function is

$$F(y_1, y_2) = y_1 y_2 [1 - \alpha (1 - y_1)(1 - y_2)].$$

c.
$$\frac{\partial^2}{\partial y_1 \partial y_2} F(y_1, y_2) = f(y_1, y_2) = 1 - \alpha [(1 - 2y_1)(1 - 2y_2)], 0 \le y_1 \le 1, 0 \le y_2 \le 1.$$

- **d.** Choose two different values for α with $-1 \le \alpha \le 1$.
- **5.164 a.** If $t_1 = t_2 = t_3 = t$, then $m(t, t, t) = E(e^{t(X_1 + X_2 + X_3)})$. This, by definition, is the mgf for the random variable $X_1 + X_2 + X_3$.
 - **b.** Similarly with $t_1 = t_2 = t$ and $t_3 = 0$, $m(t, t, 0) = E(e^{t(X_1 + X_2)})$.
 - **c.** We prove the continuous case here (the discrete case is similar). Let (X_1, X_2, X_3) be continuous random variables with joint density function $f(x_1, x_2, x_3)$. Then,

$$m(t_1,t_2,t_3) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1 x_1} e^{t_2 x_2} e^{t_3 x_3} f(x_1,x_2,x_3) dx_1 dx_2 dx_3.$$

Then,

$$\frac{\partial^{k_1+k_2+k_3}}{\partial t_1^{k_1}\partial t_2^{k_2}\partial t_3^{k_3}}m(t_1,t_2,t_3)\Big|_{t_1=t_2=t_3=0}=\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}x_1^{k_1}x_2^{k_2}x_3^{k_3}f(x_1,x_2,x_3)dx_1dx_2dx_3\;.$$

This is easily recognized as $E(X_1^{k_1}X_2^{k_2}X_3^{k_3})$.

5.165 a.
$$m(t_1, t_2, t_3) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \frac{n!}{x_1! x_2! x_3!} e^{t_1 x_1 + t_2 x_2 + t_3 x_3} p_1^{x_1} p_2^{x_2} p_3^{x_3}$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \frac{n!}{x_1! x_2! x_3!} (p_1 e^{t_1})^{x_1} (p_2 e^{t_2})^{x_2} (p_3 e^{t_3})^{x_3} = (p_1 e^{t_1} + p_2 e^{t_2} + p_3 e^{t_3})^n. \text{ The final form follows from the multinomial theorem}$$

final form follows from the multinomial theorem

- **b.** The mgf for X_1 can be found by evaluating m(t, 0, 0). Note that $q = p_2 + p_3 = 1 p_1$.
- **c.** Since $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$ and $E(X_1) = np_1$ and $E(X_2) = np_2$ since X_1 and X_2 have marginal binomial distributions. To find $E(X_1X_2)$, note that

$$\frac{\partial^2}{\partial t_1 \partial t_2} m(t_1, t_2, 0) \Big|_{t_1 = t_2 = 0} = n(n-1) p_1 p_2.$$

Thus, $Cov(X_1 X_2) = n(n-1)p_1p_2 - (np_1)(np_2) = -np_1p_2$.

5.166 The joint probability mass function of (Y_1, Y_2, Y_3) is given

$$p(y_{1}, y_{2}, y_{3}) = \frac{\binom{N_{1}}{y_{1}}\binom{N_{2}}{y_{2}}\binom{N_{3}}{y_{3}}}{\binom{N}{n}} = \frac{\binom{Np_{1}}{y_{1}}\binom{Np_{2}}{y_{2}}\binom{Np_{3}}{y_{3}}}{\binom{N}{n}},$$

where $y_1 + y_2 + y_3 = n$. The marginal distribution of Y_1 is hypergeometric with $r = Np_1$, so $E(Y_1) = np_1, V(Y_1) = np_1(1-p_1)\left(\frac{N-n}{N-1}\right)$. Similarly, $E(Y_2) = np_2, V(Y_2) = np_2(1-p_2)\left(\frac{N-n}{N-1}\right)$. It can be shown that (using mathematical expectation and straightforward albeit messy algebra) $E(Y_1Y_2) = n(n-1)p_1p_2 \frac{N}{N-1}$. Using this, it is seen that

$$Cov(Y_1, Y_2) = n(n-1)p_1p_2 \frac{N}{N-1} - (np_1)(np_2) = -np_1p_2(\frac{N-n}{N-1}).$$

(Note the similar expressions in Ex. 5.165.) Finally, it can be found that

$$\rho = -\sqrt{\frac{p_1 p_2}{(1 - p_1)(1 - p_2)}}.$$

a. For this exercise, the quadratic form of interest is

$$At^{2} + Bt + C = E(Y_{1}^{2})t^{2} + [-2E(Y_{1}Y_{2})]t + [E(Y_{2}^{2})]^{2}.$$

Since $E[(tY_1 - Y_2)^2] \ge 0$ (it is the integral of a non–negative quantity), so we must have that $At^2 + Bt + C \ge 0$. In order to satisfy this inequality, the two roots of this quadratic must either be imaginary or equal. In terms of the discriminant, we have that

$$B^2 - 4AC \le 0$$
, or $[-2E(Y_1Y_2)]^2 - 4E(Y_1^2)E(Y_2^2) \le 0$.

Thus, $[E(Y_1Y_2)]^2 \le E(Y_1^2)E(Y_2^2)$.

b. Let $\mu_1 = E(Y_1)$, $\mu_2 = E(Y_2)$, and define $Z_1 = Y_1 - \mu_1$, $Z_2 = Y_2 - \mu_2$. Then,

Instructor's Solutions Manual

$$\rho^{2} = \frac{\left[E(Y_{1} - \mu_{1})(Y_{2} - \mu_{2})\right]^{2}}{\left[E(Y_{1} - \mu_{1})^{2}\right]E\left[(Y_{2} - \mu_{2})^{2}\right]} = \frac{\left[E(Z_{1}Z_{2})\right]^{2}}{E(Z_{1}^{2})E(Z_{2}^{2})} \le 1$$

by the result in part a.

