

GSS-INSA-2022 v0.2

1 Overview

- · graphite strain sensor
- current comsumption 100nA
- · low cost and environnmental impact
- short response time

2 Description

- The GSS is a strain sensor made with ultra thin graphites particles. It is a sheet of paper on which you draw a "U" shape with different types of pencils from 9H to 9B.
- This is used to measure either compression of tension strain. This can be seen as a granular system.
 When you compress the sensor you bring particles closer which reduce the resistance. On the other hand, when you apply a tension, the deformation create gaps between particules which improve the resistance.

3 Schematic

	Pin	Usage		
	Α	+5V (arduino)		
	В	A0 (arduino)		
Table 1: Sensor connections				

Figure 1: Sensor schematic

4 Specification

Туре	Strain sensor with graphite nanoparticles		
Materials	Paper		
	graphite (HB pencil)		
Power voltage	+5V		
Measurand	Voltage		
Sensor type	Passive		
Strain measure	Resistive		
Response time	<200ms		
Temperature of use	20±5°C		

Table 2: Specifications

Electrical characteristics

	unity	Min value	Max value
Sensor resistance	$M\Omega$	1	1000
Tension	V	0	5

Table 3: electrical characteristics

5 Sensor characteristics

Figure 2: Sensors response, compressive tests

Figure 3: Sensors response, tensile tests

The measure were made with the same sensor beggining with tension and then the compressions tests.

6 Signal processing

Figure 4: transimpedance amplifier

Component	Unit	Value	Name
Resistance	$\mathbf{k}\Omega$	100	R1,R3
Resistance	$\mathbf{k}\Omega$	10	R5
Resistance	$\mathbf{k}\Omega$	1	R6
Capacity	nF	100	C1,C2,C3
Capacity	μF	C4	
Digital potentiometer	$\mathbf{k}\Omega$	0,125-50	R2(MCP41050)
Operational amplifier	-	-	U1(LTC1050)

Table 1: Components of the signal processing circuit