

STABILITY TEST

Ployester fiber spunbond unwoven fabric (50 g/m²) was used in this test. Resins E and F were respectively impregnated in the unwoven fabric in an amount of 20 g/m² as solid. Each sample was then heated to dry it at 100°C for 10 minutes to put each resin E, F at the B-stage.

Each resulting test piece was stored for 10 days, 30 days, 60 days and 180 days at room temperature (25°C). After those respective storage periods, respective pairs of test pieces were pressed together at 98.0665 kPa at 200°C. The peeling strength of each test piece pair was then determined.

Peeling test was carried out by the method in US-K 6854-2 (180°C peeling test).

Width of the test piece: 25 mm

Stretching speed: 200 mm/min

The results are as follows:

Storage Time	Resin E	Resin F
10 days	31 N/25mm	29 N/25mm
30 days	30 N/25mm	20 N/25mm
60 days	27 N/25mm	0.1 N/25mm
180 days	26 N/25mm	0 N/25mm

Clearly, resin E of the present invention has excellent stability and maintains its adhesiveness even after storing for 180 days, while resin F is unstable and loses its adhesiveness after a mere 30 days.