

CHEMISTRY Chapter 1

Estructura Atómica Actual

MOTIVATING STRATEGY

ESTRUCTURA ATÓMICA ACTUAL

Átomo

Es un sistema energético, eléctricamente neutro.

Es la mínima expresión de un elemento químico.

Partes del átomo

- Núcleo atómico
- Zona extranuclear (nube electrónica, corteza atómica o zona cortical)

NOTACIÓN DE UN NÚCLIDO

E = Símbolo del elemento

Z = Número atómico

A = Número de masa

$$Z = #p^+$$

$$A = \#p^+ + \#n^0$$

$$A - Z = \#n^0$$

ESPECIE	Z	Α	#p+	#e⁻	#n ⁰
¹⁶ ₈ O	8	16	8	8	16 - 8 = 8
³⁵ Cl	17	35	17	17	35 – 17 = 18

IONES ATÓMICOS

Catión

$$\overset{A}{z} \overset{q^+}{E}$$

$$#e^{-} = Z - q$$

Anión

$$\overset{A}{z} \overset{q^{-}}{E}$$

$$#e^{-} = Z + q$$

ESPECIE	Z	Α	#p+	#e⁻	#n ⁰
${}^{14}_{7}N^{+3}$	7	14	7	7 – 3 = 4	14 - 7 = 7
$^{80}_{35}Br^{-1}$	35	80	35	35 + 1 = 36	80 - 35 = 45

TIPOS DE NÚCLIDO

ISÓTOPOS (HÍLIDOS) Átomos con igual número atómico pero con diferente número de masa.

 $^{12}_{6}C$ $^{13}_{6}C$ $^{14}_{6}C$

TIPOS DE NÚCLIDOS

ISÓBAROS

Átomos con diferente número atómico pero con igual número de masa

 ${}^{14}_{6}C$ ${}^{14}_{7}N$ ${}^{14}_{8}O$

ISÓTONOS

Átomos con igual número de neutrones

 $^{39}_{19}K$ $^{40}_{20}Ca$

ISÓTOPOS DEL HIDRÓGENO

Forma el agua pesada (agua isotópica) D₂O

Neutrón

TRITIO

Forma el agua hiperpesada (agua tritiada) T₂O

(oxidano)

H,0

Relaciona:

a. Núcleo

b) Constituye casi todo el volumen del átomo.

- b. Zona extranuclear
- (a) Concentra la masa del átomo.

c. Protones

d. Electrones

(c) Determina la identidad del átomo.

Un átomo neutro presenta como número de masa (A) 52 y su cantidad de neutrones 28. Determine el número atómico (Z) que posee dicho átomo.

DATOS

RESOLUCIÓN

Reemplazando tenemos:

$$52 = Z + 28$$

$$Z = 24$$

3

Determine el número de atómico (Z) del siguiente átomo, el cual tiene x+1 neutrones:

DATOS

$$Z=x=?$$

$$#n^\circ = x+1$$

⁵E RESOLUCIÓN

Reemplazando tenemos: 35 = x + (x+1)

$$Z = x = 17$$

Un átomo neutro posee 57 neutrones y su número de masa es el doble de su número de protones más 12 unidades. ¿Cuál es el número atómico?.

DATOS

RESOLUCIÓN

$$A = Z + n^0$$

Reemplazando tenemos:

$$2Z+12=Z+57$$

 $Z=57-12$

$$Z = 45$$

Un ion de carga -2 posee 66 electrones y 64 neutrones. ¿Cuál es el valor del número de masa de dicho ion?

DATOS

$${\overset{A}{z}}E_{64}^{2-}$$

RESOLUCIÓN

$$#e^{-} = Z + q$$

$$66 = Z + 2$$

$$Z = 64$$

$$A = Z + n^0$$

$$A = 64 + 64$$

$$A = 128$$

Los protones y neutrones de un átomo están en la relación de 5 a 6. Si el número de masa es 132, halle el número atómico.

DATOS

$$\frac{\#p}{n^{\circ}} = \frac{5}{6}$$

$$A = 132$$

RESOLUCIÓN

$$A = Z + n^0$$

Reemplazando tenemos:

$$Z = \#p = 5(12)$$
 $Z = 60$

$$Z = 60$$

En un átomo con número de masa 18 sus neutrones exceden en 2 a sus protones. ¿Cuántos electrones tienen su anión divalente?

DATOS

$$A = 18$$

$$n^{\circ} = 2 + \# p$$

<u>RESOLUCIÓN</u>

$$A = Z + n^0$$

$$#e^{-} = Z + q$$

$$#e^{-} = 8 + 2$$

8

Los protones están formados por dos quarks up y un quark down, en cambio los neutrones están formados por un quark up y dos quarks down

protón

CHEMISTRY

neutrón

¿Cuántos quark up y down hay en un átomo de cloro? Cl-35 (Z = 17)

RESOLUCIÓN

$$Z = 17$$

$$A = Z + n^0$$

$$35 = 17 + n^0$$

Para los protones

partículas down

partículas up

$$17x(2)=34$$

Para los neutrones

partículas down

$$18x(2) = 36$$

partículas up

$$18x(1)=18$$

Luego el total

partículas down

$$17 + 36 = 53$$

partículas up

$$34 + 18 = 52$$

Thank you