

Sobredispersão em Modelos de Contagem Modelagem Estatística

Paula Eduarda de Lima

Ciência de Dados e Inteligência Artificial

5º Período

1 INTRODUÇÃO 1

1 Introdução

Modelos de regressão para dados de contagem são amplamente utilizados em diversas áreas aplicadas, como economia, saúde, ciências ambientais e sociais. O modelo de regressão de Poisson é, tradicionalmente, o ponto de partida para a classe de dados de contagem, sendo caracterizado pela suposição de que a variável resposta $Y \in \mathbb{N} \cup \{0\}$ segue uma distribuição de Poisson com parâmetro $\lambda > 0$, de modo que: $Y \sim \text{Poisson}(\lambda) \Rightarrow \mathbb{E}[Y] = \text{Var}(Y) = \lambda$.

Esta propriedade de equidispersão — igualdade entre a média e a variância — é central na formulação do modelo de Poisson. No entanto, em aplicações reais é comum observar situações em que a variância dos dados excede significativamente a média amostral, fenômeno conhecido como sobredispersão.

A sobredispersão pode comprometer seriamente a validade inferencial do modelo Poisson, tornando os erros padrão subestimados e inflando a significância estatística dos coeficientes. Isso motiva a investigação cuidadosa da dispersão dos dados antes da adoção de um modelo de Poisson.

Neste trabalho, analisamos o conjunto de dados RecreationDemand, proveniente do pacote AER do R, que registra o número de viagens recreativas feitas por proprietários de barcos ao Lago Somerville, Texas, em 1980. A partir de uma análise exploratória dos dados, ajustamos um modelo de regressão de Poisson, avaliamos a presença de sobredispersão utilizando o teste proposto por Cameron e Trivedi (1990), e comparamos diferentes alternativas de modelos, como a regressão Binomial Negativa e o modelo de Poisson Inflado de Zeros (ZIP).

Nosso objetivo é discutir, de forma fundamentada, os efeitos da sobredispersão em modelos de contagem e propor estratégias adequadas para seu tratamento, analisando métricas de ajuste e inferência estatística em cada cenário.

Objetivo do Estudo

O principal objetivo deste estudo é investigar a adequação do modelo de regressão de Poisson para dados de contagem observados no conjunto RecreationDemand, analisando em particular a presença de sobredispersão — isto é, situações em que a variância excede a média. Para isso, buscamos: (i) realizar uma análise exploratória dos dados, com foco na estrutura da variável resposta e suas covariáveis; (ii) ajustar e interpretar um modelo de regressão de Poisson; (iii) aplicar testes formais para detecção de sobredispersão; e (iv) explorar modelos alternativos, como a regressão Binomial Negativa e o modelo de Poisson Inflado de Zeros, comparando o desempenho entre eles com base em métricas de ajuste. Este estudo visa compreender melhor os limites da Poisson clássica e apresentar soluções estatísticas mais robustas quando suas suposições não são atendidas.

2 Análise exploratória

Descrição do dataset

O conjunto de dados analisado é descrito na Tabela 2

Variável	Tipo	Descrição
trips	double	Número de viagens recreativas de barco realizadas pelo indiví-
		duo.
quality	double	Avaliação subjetiva da qualidade da instalação (de 1 a 5), com
		0 para quem não visitou o lago.
ski	factor	O indivíduo praticou ski aquático no lago? ("yes" ou "no")
income	double	Renda anual da família do entrevistado (em milhares de dóla-
		res).
userfee	factor	O indivíduo pagou uma taxa anual de uso no Lago Somerville?
		("yes" ou "no")
costC	double	Custo ao visitar o Lago Conroe (em dólares).
costS	double	Custo ao visitar o Lago Somerville (em dólares).
costH	double	Custo ao visitar o Lago Houston (em dólares).

Tabela 1: Descrição das variáveis do conjunto RecreationDemand.

Detalles

De acordo com a fonte original (Seller, Stoll e Chavas, 1985, p. 168), a avaliação de qualidade é feita em uma escala de 1 a 5, sendo atribuída nota 0 para os indivíduos que não visitaram o lago. Isso explica a média notavelmente baixa dessa variável, mas também sugere que seu tratamento em algumas publicações mais recentes está longe do ideal. Para manter a consistência com outras fontes, trataremos a variável como numérica, incluindo os valores zero.

Focaremos na variável "trips", analisando sua média, variância e investigando sua relação com as outras variáveis presentes no banco.

Variáveis categóricas

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
ski	0	1	FALSE	2	no: 417, yes: 242
userfee	0	1	FALSE	2	no: 646, yes: 13

Variáveis quantitativas

Variável	n_miss	Comp.	Média	DP	p 0	p25	p50	p75	p100
trips	0	1	2.244	6.292	0.000	0.000	0.00	2.000	88.000
quality	0	1	1.419	1.812	0.000	0.000	0.00	3.000	5.000
income	0	1	3.853	1.852	1.000	3.000	3.00	5.000	9.000
costC	0	1	55.424	46.683	4.340	28.240	41.19	69.675	493.770
costS	0	1	59.928	46.377	4.767	33.312	47.00	72.573	491.547
costH	0	1	55.990	46.133	5.700	28.964	42.38	68.560	491.049

Não há dado faltante nas variáveis categóricas, nem nas quantitativas.

Resumo estatístico

summary(RecreationDemand)

##	trips	quality	ski	income	userfee
##	Min. : 0.000	Min. :0.000	no :417	Min. :1.000	no :646
##	1st Qu.: 0.000	1st Qu.:0.000	yes:242	1st Qu.:3.000	yes: 13
##	Median : 0.000	Median :0.000		Median :3.000	
##	Mean : 2.244	Mean :1.419		Mean :3.853	
##	3rd Qu.: 2.000	3rd Qu.:3.000		3rd Qu.:5.000	

##	Max.	:88.000	Max.	:5.000		Max.	:9.000
##	СО	stC	СО	stS	cos	tH	
##	Min.	: 4.34	Min.	: 4.767	Min.	: 5.70	
##	1st Qu	.: 28.24	1st Qu	.: 33.312	1st Qu.	: 28.96	
##	Median	: 41.19	Median	: 47.000	Median	: 42.38	
##	Mean	: 55.42	Mean	: 59.928	Mean	: 55.99	
##	3rd Qu	.: 69.67	3rd Qu	.: 72.573	3rd Qu.	: 68.56	
##	Max.	:493.77	Max.	:491.547	Max.	:491.05	

A variável de contagem "trips" apresenta mediana 0, o que nos aponta grande quantidade de zeros, além de assimetria, por ter média 2.244. Isso indica que a distribuição é fortemente concentrada em valores baixos, com muitos indivíduos realizando poucas viagens — o que é evidenciado pelo valor máximo de 88.

Análise univariada de "trips

Figura 1: Visualização - Distribuição Número de Viagens

Figura 2: Visualização - Densidade do Número de Viagens

Confirmando o que foi visto no resumo estatístico, os gráficos de distribuição e densidade (Figuras 1 e 2) evidenciam ainda mais que a maioria dos valores da variável *trips* é bastante pequeno ou igual a zero.

Média e variância de "trips"

```
summary_stats <- c(</pre>
  media = mean(RecreationDemand$trips),
  variancia = var(RecreationDemand$trips)
)
summary_stats
  media variancia
```

2.24431 39.59524

A variável trips apresenta média baixa e variância elevada, o que indica:

Distribuição assimétrica à direita (maioria fez 0 ou poucas viagens). Pode haver sobredispersão, o que influencia na escolha do modelo estatístico posteriormente (ex: Poisson vs NegBin).

Análise bivariada de "trips"e as demais

Covariâncias

Figura 3: Tabela de covariância

Na parte superior direita da matriz, onde aparecem os coeficientes de correlação de Pearson, os asteriscos indicam significância estatística do valor da correlação, conforme a convenção comum de p-valor:

Símbolo	p-valor	Interpretação
***	p < 0.001	Correlação muito significativa
**	p < 0.01	Correlação bastante significativa
*	p < 0.05	Correlação significativa
	p < 0.1	Tendência de significância
	$p \ge 0.1$	Não significativo

Na matriz de correlação, observamos que as três variáveis relacionadas a custo — costC, costS e costH — apresentam alta correlação entre si:

• costC \sim costS: 0.977^{***}

• costC \sim costH: 0.986^{***}

• costS \sim costH: 0.965^{***}

Esse padrão é um indicativo claro de **multicolinearidade**, o que também faz sentido do ponto de vista prático: o custo total de uma viagem para um lago é diretamente ligado ao custo de aos demais lagos.

Para evitar problemas de multicolinearidade no modelo, optamos por manter apenas uma dessas variáveis. A escolha será feita com base no nível significância estatística na relação com a variável resposta trips. Entre as três, a variável costS apresenta a correlação mais forte e significativa com trips:

• costS \sim trips: -0,124**

As demais variáveis de custo têm correlações muito menores e estatisticamente menos significativas com a variável resposta.

Boxplots de "trips"por cada variável categorica

Figura 4: Visualização - Número de viagens pela variável "ski" e "userfree"

O número de viagens com barcos de ski tendem a ser um pouco maior, mas a diferença não é tão significativa.

Há maior número de viagens quando há taxa de uso.

Scatterplot de "trips" por cada variável quantitativa

Há tendência de aumento de viagens de barco com a renda, mas com bastante disperssão, o mesmo com a qualidade da instalação.

Em geral, quanto maior o custo, menor o número de viagens (relação negativa), no entanto os dados são bem variados e não aparentam tão grande correlação. Quanto maior o custo, maior a incerteza pela diminuição da quantidade de dados presente no dataset.

Covariáveis escolhidas

Como visto na análise de covariância, escolhemos apenas uma covariável para representar o custo, "costH" e "costC" serão desoncideradas por isso, para evitar multicolinearidade no modelo. Todas as demais serão incluidas, resultando nas covariáveis: income, costS, userfee, ski e quality

3 Métodos

Ajuste do Modelo Poisson

A escolha inicial por um modelo de regressão de Poisson se justifica pelas características da variável resposta trips, que representa contagens não-negativas inteiras. O modelo de Poisson é amplamente utilizado para modelar esse tipo de dado, a supo-sição inicial é de que os dados de contagem observados poderiam ser adequadamente explicados por esse modelo. Além disso, utilizou-se a formulação de um modelo linear generalizado (GLM), com função de ligação logarítmica, que permite relacionar a média condicional λ_i com uma combinação linear dos preditores disponíveis no conjunto de dados RecreationDemand. Esse procedimento fornece uma estrutura flexível para estimar os efeitos das covariáveis sobre a taxa média de viagens realizadas pelos indivíduos da amostra.

$$Y_i \sim \text{Poisson}(\lambda_i), \quad \text{com} \quad \log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \beta_6 x_{i6}$$
 (1)

- Y_i : número de viagens (trips) para o indivíduo i;
- λ_i : média da distribuição de Poisson (esperança de Y_i);
- $\log(\lambda_i)$: função de ligação logarítmica usada no modelo de Poisson;
- $x_{i1}, x_{i2}, \ldots, x_{i6}$: variáveis explicativas (quality, income, costS, userfee , ski e quality.);
- $\beta_0, \beta_1, \ldots, \beta_p$: coeficientes do modelo.

Formulação Matemática

A função de massa de probabilidade da distribuição de Poisson é:

$$\mathbb{P}(Y_i = y_i \mid \mathbf{x}_i) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}, \quad y_i = 0, 1, 2, \dots$$

Com a função de ligação logarítmica, temos:

$$\log(\lambda_i) = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$

A função de verossimilhança para n observações é dada por:

$$\mathcal{L}(\boldsymbol{\beta}) = \prod_{i=1}^{n} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} = \prod_{i=1}^{n} \frac{e^{-e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}} \left(e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}\right)^{y_i}}{y_i!}$$

E a log-verossimilhança correspondente é:

$$\log \mathcal{L}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^{\top} \boldsymbol{\beta} - e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} - \log(y_i!) \right]$$

A estimação dos parâmetros β é realizada pela maximização dessa log-verossimilhança. Para modelar o número de viagens (trips), que é uma variável de contagem, foi utilizado um modelo de regressão de Poisson ajustado via glm() em R

Call:

```
glm(formula = trips ~ income + costS + userfee + ski + quality,
    family = poisson, data = RecreationDemand)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
         0.586097
                 0.091906
                         6.377 1.80e-10 ***
        income
costS
        0.079901 13.786 < 2e-16 ***
userfeeyes
        1.101518
                 0.056463 8.044 8.69e-16 ***
skiyes
        0.454188
                 0.015942 33.924 < 2e-16 ***
         0.540831
quality
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4849.7 on 658 degrees of freedom Residual deviance: 2687.5 on 653 degrees of freedom

AIC: 3452.6

Number of Fisher Scoring iterations: 7

Figura 5: Coeficiente previstos e Intervalo de confiança

- As variáveis explicativas apresenta efeito estatisticamente significativo sobre o número de viagens realizadas, considerando o p-valor e o intervalo de confiança, apesar do coeficiente de *costS*, ser próximo de 0.
- quality, skiyes e userfeeyes estão positivamente associadas ao número de viagens.
- A variável **income** possui coeficiente negativo ($\beta = -0.157829$), indicando que maiores rendas estão associadas a uma menor frequência de viagens.
- O custo ao visitar o Lago Somerville (costS) reduz o número esperado de viagens e seu coeficiente é bem próximo de zero, mas o intervalo de confiança não inclui o zero.
- A redução da deviance (de 4849,7 para 2687.5) e o AIC de 3452,6 indicam um bom ajuste do modelo.

Ajuste de um Modelo de Regressão de Poisson

• Modelo de regressão de Poisson: apropriado para modelar variáveis de contagem com valores inteiros não-negativos.

- Função de ligação logarítmica: padrão no modelo de Poisson, garante que as médias previstas sejam positivas.
- Estimação por máxima verossimilhança: método usado automaticamente pela função glm() para GLMs.

Métricas de Avaliação do Modelo

• Deviance: a null deviance (4849,7) foi reduzida para residual deviance (2687,5), o que indica que o modelo ajustado explica parte substancial da variabilidade dos dados em relação ao modelo nulo. A deviance é dada por:

$$D = 2\sum_{i=1}^{n} \left[y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right]$$

no caso da distribuição Poisson, sendo usada para comparar o modelo ajustado com o modelo saturado.

• AIC (Akaike Information Criterion): mede a qualidade do modelo em relação à sua complexidade. É definido por:

$$AIC = -2\log(L) + 2k$$

onde L é a verossimilhança do modelo e k é o número de parâmetros. O valor de 3452,6 sugere bom equilíbrio entre ajuste e parcimônia. Quanto menor o AIC, melhor o modelo (ao comparar modelos aninhados ou com os mesmos dados).

• Significância dos coeficientes: testada via estatística z, definida por:

$$z = \frac{\hat{\beta}_j}{\text{SE}(\hat{\beta}_j)}$$

e o p-valor é obtido com base na distribuição normal padrão.

• Erro padrão dos coeficientes: fornece uma medida da variabilidade das estimativas dos coeficientes. É calculado a partir da matriz de variância-covariância dos estimadores:

$$SE(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)}$$

onde $\widehat{\text{Var}}(\hat{\beta}_j)$ é a variância estimada do coeficiente $\hat{\beta}_j$, normalmente obtida da diagonal da inversa da matriz de informação de Fisher.

Teste para Sobredispersão

Vamos seguir o procedimento descrito por Cameron e Trivedi (1990) para testar a presença de sobredispersão nos dados do conjunto RecreationDemand. O objetivo é verificar se a variância da variável resposta trips excede o valor esperado sob o modelo de Poisson. Formalmente, testamos a hipótese:

- $H_0: \alpha = 0$ (dispersão adequada, o modelo de Poisson é apropriado)
- $H_1: \alpha \neq 0$ (há sobredispersão, o modelo de Poisson é inadequado)

Passo 1: Calcular os valores ajustados $\hat{\mu}_i$ do modelo de Poisson:

```
mu_hat <- fitted(poisson_model)

y <- RecreationDemand$trips

Passo 2: Calcular a estatística Z_i = \frac{(Y_i - \hat{\mu}_i)^2 - Y_i}{\hat{\mu}_i}:

```{r}

Z <- ((y - mu_hat)^2 - y) / mu_hat

Passo 3: Regressar Z_i sobre \hat{\mu}_i, sem intercepto, e verificar o coeficiente:
```

sobredisp\_test <- lm(Z ~ 0 + mu\_hat)</pre>

summary(sobredisp\_test)

```{r}

Resultado:

Call:

```
lm(formula = Z ~ 0 + mu_hat)
```

Residuals:

```
Min 1Q Median 3Q Max -71.65 -3.23 -0.46 -0.27 1999.93
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

mu_hat 1.6406   0.7664   2.141   0.0327 *

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 84.13 on 658 degrees of freedom

Multiple R-squared: 0.006916, Adjusted R-squared: 0.005406

F-statistic: 4.582 on 1 and 658 DF, p-value: 0.03267

Interpretação:

O p-valor do coeficiente de \mathfrak{mu} _hat foi inferior a 0,05, o que nos leva a rejeitar a hipótese nula H_0 . Isso indica a presença de sobredispersão nos dados, ou seja, a variância da variável resposta é maior do que a média, violando uma das principais suposições do modelo de Poisson.

Conclusão:

Como a hipótese de sobredispersão adequada foi rejeitada, o modelo de Poisson não é apropriado. Dessa forma, recomenda-se o uso da regressão com distribuição Binomial Negativa como alternativa mais robusta e adequada para os dados.

Modelos Alternativos: Binomial Negativo

A distribuição Binomial Negativa é uma extensão da Poisson que permite acomodar sobredispersão, introduzindo um parâmetro de dispersão adicional θ . Esta distribuição é definida por:

$$Y_i \sim \text{NB}(\mu_i, \theta)$$

$$\mathbb{E}[Y_i] = \mu_i, \quad \text{Var}(Y_i) = \mu_i + \frac{\mu_i^2}{\theta}$$

$$\log (\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

Quando $\theta \to \infty$, a variância se aproxima da média, recuperando o modelo de Poisson como caso particular.

Formulação Matemática

A função de massa de probabilidade da distribuição Binomial Negativa, parametrizada pela média μ_i e pelo parâmetro de dispersão θ , é dada por:

$$\mathbb{P}(Y_i = y_i \mid \mathbf{x}_i) = \frac{\Gamma(y_i + \theta)}{\Gamma(\theta) y_i!} \left(\frac{\theta}{\theta + \mu_i}\right)^{\theta} \left(\frac{\mu_i}{\theta + \mu_i}\right)^{y_i}, \quad y_i = 0, 1, 2, \dots$$

Com a função de ligação logarítmica, temos:

$$\log(\mu_i) = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$

A log-verossimilhança correspondente (omitindo termos constantes) é:

$$\log \mathcal{L}(\boldsymbol{\beta}, \theta) = \sum_{i=1}^{n} \left[\log \Gamma(y_i + \theta) - \log \Gamma(\theta) - \log y_i! + \theta \log \left(\frac{\theta}{\theta + \mu_i} \right) + y_i \log \left(\frac{\mu_i}{\theta + \mu_i} \right) \right]$$

A estimação dos parâmetros β e θ é realizada por máxima verossimilhança, normalmente por métodos iterativos como o algoritmo de Fisher scoring.

1. Por que a Binomial Negativa é mais adequada?

- O modelo de Poisson assume $Var(Y) = \mu$, o que no caso analisado é irrealista, como visto na análise da variável "trips".
- A Binomial Negativa adiciona um parâmetro de dispersão θ , permitindo que a variância cresça mais rapidamente que a média.

Garante inferência mais precisa, com erros-padrão corretos e testes mais confiáveis.

• Melhora o ajuste geral do modelo, como indicado pela redução do AIC.

Ajuste do Modelo Binomial Negativo

O modelo é ajustado com a função glm.nb() do pacote MASS, utilizando a função de ligação logarítmica padrão:

$$\log(\mu_i) = \mathbf{x}_i^{\top} \beta$$

Essa ligação:

- Garante que $\mu_i > 0$, compatível com dados de contagem;
- Permite interpretar os coeficientes como efeitos multiplicativos;
- É a escolha padrão para modelos de contagem em glm() e glm.nb().

Exemplo: Um coeficiente de 0,05 para income indica que um aumento de uma unidade em income está associado a um aumento de $e^{0.05} \approx 1.05$ vezes no número esperado de viagens.

Call:

```
glm.nb(formula = trips ~ income + costS + userfee + ski + quality,
    data = RecreationDemand, init.theta = 0.4713992214, link = log)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.836942
                    0.227014 -3.687 0.000227 ***
          -0.066335
                    0.047669 -1.392 0.164051
income
          costS
userfeeyes
           1.522432
                    0.425474 3.578 0.000346 ***
                    0.167553 3.302 0.000959 ***
skiyes
           0.553319
                    0.042212 21.007 < 2e-16 ***
quality
           0.886736
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.4714) family taken to be 1)

Null deviance: 956.34 on 658 degrees of freedom Residual deviance: 453.89 on 653 degrees of freedom

AIC: 1802.7

Number of Fisher Scoring iterations: 1

Theta: 0.4714 Std. Err.: 0.0448

Warning while fitting theta: alternation limit reached

2 x log-likelihood: -1788.7030

Figura 6: Coeficiente previstos e Intervalo de confiança

• As variáveis explicativas apresenta efeito estatisticamente significativo sobre o número de viagens realizadas, considerando o p-valor e o intervalo de confiança, apesar do coeficiente de *costS*, ser próximo de 0. A única exceção foi a variável

"Income" que se mostrou pouco siginificativa de acordo com o p-valor do teste e o intervalo de confiança que inclui o 0.

- quality, skiyes e userfeeyes estão positivamente associadas ao número de viagens, como no Modelo Poisson.
- O custo ao visitar o Lago Somerville (costS) reduz o número esperado de viagens e seu coeficiente é bem próximo de zero, mas o intervalo de confiança não inclui o zero.
- Income (renda) não apresentou significância estatística (p = 0.164051), sugerindo ausência de efeito relevante sobre as viagens.
- A redução da deviance (de 956.34 para 453.89) e o AIC de 1802.7 indicam um bom ajuste do modelo.

Comparação com o modelo de Poisson

```
AIC:
```

```
```{r}
AIC(poisson_model)
AIC(nb_model)
...
[1] 3074.057
[1] 1677.56
```

O modelo com menor AIC é preferível: negativo binomial.

## Teste de razão de verossimilhança:

Podemos comparar os dois modelos usando o teste de razão de verossimilhança:

```
```{r}
lrtest(poisson_model, nb_model)
```

. . .

```
Likelihood ratio test
```

```
Model 1: trips ~ income + costS + userfee + ski + quality

Model 2: trips ~ income + costS + userfee + ski + quality

#Df LogLik Df Chisq Pr(>Chisq)

1 6 -1720.28

2 7 -894.35 1 1651.9 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Como o p-valor do teste foi pequeno, o modelo binomial negativa é significativamente melhor que o de Poisson.

Conclusão

Como o modelo binomial negativo teve menor AIC e o teste de razão de verossimilhança indicar melhoria significativa, então ele deve ser preferido ao modelo de Poisson para os dados RecreationDemand.

Avaliação do Modelo

- Significância dos parâmetros: Análise dos p-valores no summary().
- Critério de Informação de Akaike (AIC): Modelos com menor AIC são preferíveis.
- Parâmetro de dispersão θ : Um valor pequeno de θ indica alta variabilidade extra, reforçando a inadequação do modelo de Poisson.

Excesso de zeros

Na análise exploratória inicial, observamos que uma grande proporção dos barcos no conjunto de dados reportou **zero viagens**. Isso pode indicar **excesso de zeros**, um fenômeno comum em dados de contagem, onde a **frequência de zeros é maior**

do que a esperada pelo modelo de Poisson ou até mesmo pelo modelo de Binomial Negativo.

Comparando a quantidade de zeros observados e esperados

Como a quantidade de zeros estimada foi substancialmente menor do que a observada, temos uma forte indicação de que o modelo de Poisson não está capturando adequadamente o excesso de zeros.

Modelo de Poisson Inflacionado de Zeros (ZIP)

Na presença de **excesso de zeros**, o modelo de Poisson pode ser inadequado. Para lidar com esse fenômeno, podemos utilizar o **modelo de Poisson Inflacionado de Zeros (ZIP)**.

Esse modelo combina dois processos:

• Um modelo **logístico** que estima a probabilidade de ocorrência de zeros estruturais (ou seja, observações que sempre terão valor zero);

• Um modelo **Poisson** para os demais valores (inclusive para zeros que não são estruturais).

Formulação Matemática

No modelo ZIP, a distribuição da variável resposta Y_i é definida como uma mistura de duas componentes:

$$\mathbb{P}(Y_i = y_i) = \begin{cases} \pi_i + (1 - \pi_i)e^{-\lambda_i}, & \text{se } y_i = 0\\ (1 - \pi_i)\frac{\lambda_i^{y_i}e^{-\lambda_i}}{y_i!}, & \text{se } y_i > 0 \end{cases}$$

onde:

• $\pi_i = \mathbb{P}(Y_i = 0 \text{ estrutural})$ é a probabilidade de zero estrutural, modelada por regressão logística:

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{z}_i^{\top} \boldsymbol{\gamma}$$

• λ_i é o parâmetro da distribuição de Poisson para os não-zeros estruturais, com:

$$\log(\lambda_i) = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$

Esse modelo é ajustado por máxima verossimilhança, tratando separadamente o processo de geração de zeros e o processo de contagem, o que permite maior flexibilidade quando há excesso de zeros nos dados.

Ajuste do Modelo ZIP

Utilizaremos a função zeroinfl() do pacote pscl, especificando o modelo de contagem e o modelo logístico separadamente.

Call:

```
zeroinfl(formula = trips ~ income +
costS + userfee + ski + quality | income + ski,
data = RecreationDemand)
```

Pearson residuals:

```
Min
              1Q
                  Median
                               3Q
                                      Max
-0.87822 -0.64327 -0.59521 -0.03182 17.70152
Count model coefficients (poisson with log link):
            Estimate Std. Error z value Pr(>|z|)
                     0.114898 20.674 < 2e-16 ***
(Intercept)
           2.375415
           income
costS
           userfeeyes
            0.792024
                      0.078935 10.034 < 2e-16 ***
skiyes
            0.473575
                      0.058322
                                8.120 4.66e-16 ***
                      0.028036
                                3.771 0.000163 ***
quality
            0.105718
Zero-inflation model coefficients (binomial with logit link):
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.66123
                      0.20305
                              3.256 0.00113 **
income
           -0.01510
                      0.05179 -0.292 0.77061
                      0.18324 -2.665 0.00770 **
skiyes
           -0.48828
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 18
Log-likelihood: -1515 on 9 Df
  Note que a fórmula y x1 + x2 \mid z1 + z2 indica:
  À esquerda do |: covariáveis do modelo de contagem Poisson;
  À direita do |: covariáveis do modelo logístico para o excesso de zeros.
```

O modelo ZIP assume dois processos:

Um processo binário que determina se a observação está na parte "zero-inflada" (ou seja, sempre zero).

Um processo de Poisson que gera contagens (inclusive zeros que não são estruturais).

Figura 7: Coeficiente previstos e Intervalo de confiança

Modelo	df	AIC
poisson_model	7	3452.560
nb_model	8	1802.703
zip_model	9	3048.226

Tabela 2: Comparação do número de parâmetros e AIC entre os modelos ajustados

```
# Log-verossimilhanças
logLik(poisson_model)
logLik(nb_model)
logLik(zip_model)

'log Lik.' -1720.28 (df=6)
'log Lik.' -894.3514 (df=7)
'log Lik.' -1515.113 (df=9)

```{r}
```

# Comparando número de zeros observados e estimados

```{r}

```
observed_zeros <- sum(RecreationDemand$trips == 0)
predicted_zeros_poisson <- sum(dpois(0, lambda = predict(poisson_model,
type = "response")))
predicted_zeros_zip <- sum(predict(zip_model, type = "prob")[,1])

c(
    Observados = observed_zeros,
    Poisson = round(predicted_zeros_poisson),
    ZIP = round(predicted_zeros_zip)
)
...
Observados Poisson ZIP
417 275.2735 416</pre>
```

4 Conclusão e trabalhos futuros

Este trabalho explorou a modelagem estatística de dados de contagem, com foco no problema da sobredispersão e no excesso de zeros no conjunto de dados RecreationDemand. Inicialmente, ajustamos um modelo de regressão de Poisson, que se mostrou inadequado devido à evidente sobredispersão nos dados, confirmada pelo teste de Cameron e Trivedi. A análise revelou que a variância da variável resposta trips era significativamente maior que sua média, violando a suposição fundamental do modelo de Poisson. Como alternativa, utilizamos a regressão Binomial Negativa, que incorpora um parâmetro de dispersão adicional, proporcionando um ajuste mais adequado aos dados e reduzindo significativamente o AIC em comparação ao modelo Poisson. Além disso, investigamos a presença de excesso de zeros, que levou à aplicação do modelo ZIP (Poisson Inflacionado de Zeros). Embora o modelo ZIP tenha capturado melhor a estrutura de zeros observada, o modelo Binomial Negativo apresentou melhor desempenho geral em termos de AIC e log-verossimilhança, sugerindo que a sobredispersão, e não apenas o excesso de zeros, era o principal desafio neste conjunto de dados.

REFERÊNCIAS 25

Para trabalhos futuros, seria interessante explorar outras extensões dos modelos de contagem, como o modelo ZINB (Binomial Negativo Inflacionado de Zeros), que combina a flexibilidade da Binomial Negativa com a capacidade de modelar excesso de zeros. Além disso, a inclusão de efeitos aleatórios poderia ser investigada para capturar possíveis heterogeneidades não observadas nos dados.

Referências

- [1] P. Lima, "Sobredispersao em modelos contagem" GitHub. Disponível em: https://github.com/PAULA-123/StatMod_Sobredispersao_em_modelos_contagem.
- [2] Cameron, A. C., & Trivedi, P. K. (1990). Regression-based tests for overdispersion in the Poisson model. Journal of Econometrics, 46(3), 347-364.
- [3] Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 1-25.
- [4] Science and statistics. Journal of the American Statistical Association, 71(356), 791-799; Box (1976)..