

White
Wine
Quality

Presented by

Wildest On Earth

Agenda

-- Data Analysis & Feature Engineering

-- Modeling & Metric Evaluation

Data Overview

- The data is Vinho Verde* white wine samples from Portugal.
- The goal of this project is to determine wine quality based on the chemical properties
 - Input variable: based on physicochemical tests
 - Output variable: based on sensory data, median of at least 3 evaluations made by wine experts

^{*}Portuguese wine that originated in the historic Minho province in the far north of the country

Features

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- PH
- Sulphates
- Alcohol

```
wine.isnull().sum()
fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
рН
sulphates
alcohol
quality
```


Label Distribution

- Quality is represented by scores ranging from 0 to 10
- 0 is the worst and 10 is the best

Labels and Encoding

- Binning:
 - score under 5 → "Low"
 - score above 6 → "High"
 - score of 5 and 6 → "Medium"

Variable Correlation Matrix

-0.9

fixed acidity -	1	-0.023	0.29	0.089	0.023	-0.049	0.091	0.27	-0.43	-0.017	-0.12	-0.11
volatile acidity -	-0.023	1	-0.15	0.064	0.071	-0.097	0.089	0.027	-0.032	-0.036	0.068	-0.19
citric acid -	0.29	-0.15	1	0.094	0.11	0.094	0.12	0.15	-0.16	0.062	-0.076	-0.0092
residual sugar -	0.089	0.064	0.094	1	0.089	0.3	0.4	0.84	-0.19	-0.027	-0.45	-0.098
chlorides -	0.023	0.071	0.11	0.089	1	0.1	0.2	0.26	-0.09	0.017	-0.36	-0.21
free sulfur dioxide -	-0.049	-0.097	0.094	0.3	0.1	1	0.62	0.29	-0.00062	0.059	-0.25	0.0082
total sulfur dioxide -	0.091	0.089	0.12	0.4	0.2	0.62	1		0.0023	0.13	-0.45	-0.17
density -	0.27	0.027	0.15	0.84	0.26	0.29	0.53	1	-0.094	0.074	-0.78	-0.31
pH -	-0.43	-0.032	-0.16	-0.19	-0.09	-0.00062	0.0023	-0.094	1	0.16	0.12	0.099
												0.054
sulphates -	-0.017	-0.036	0.062	-0.027	0.017	0.059	0.13	0.074	0.16	1	-0.017	0.054
sulphates - alcohol -	-0.017 -0.12	-0.036 0.068	0.062 -0.076	-0.027 -0.45	0.017 -0.36	0.059 -0.25	0.13 -0.45	0.074 -0.78	0.16 0.12	-0.017	-0.017 1	0.054
								111111111111111111111111111111111111111				

Modeling Process

Validation Accuracy

Random Forest performs the best on validation

RF on Testing Accuracy

Quality	Precision	Recall	F1-score	Actual Count
High	0.79	0.61	0.69	209
Low	0.57	0.11	0.19	35
Medium	0.86	0.95	0.90	736
Weighted Average	0.84	0.86	0.83	980
Model Accuracy on Test Data	ĺ.	0	.85	

RF Confusion Matrix

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	128	0	81
	LOW	0	4	31
	MEDIUM	35	3	698

Resample

The data is significantly imbalanced, so we decided to resample the training data to improve accuracy for low and high

LOW 148

MEDIUM 2919

MIGH 851

LOW 1500

MEDIUM 1500

HIGH 1500

Similar Process

Validation Accuracy

Random Forest is still the best.

RF Confusion Matrix

RF acc on test data BEFORE resampling: 84.69%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	128	0	81
	LOW	0	4	31
	MEDIUM	35	3	698

RF acc on test data AFTER resampling: 73.87%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	174	0	35
	LOW	2	11	22
	MEDIUM	151	46	539

RF vs. SVM

RF acc on test data AFTER resampling: 73.87%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	174	0	35
	LOW	2	11	22
	MEDIUM	151	46	539

SVM acc on test data **AFTER** resampling: 78.88%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	106	4	99
	LOW	0	7	28
	MEDIUM	49	27	660

Reference

http://www3.dsi.uminho.pt/pcortez/wine/

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Thank you!

Q&A

SVM Confusion Matrix

SVM acc on test data **BEFORE** resampling: 82.65%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	72	0	137
	LOW	0	2	33
	MEDIUM	0	0	736

SVM acc on test data **AFTER** resampling: 78.88%

	Predicted	HIGH	LOW	MEDIUM
Actual	HIGH	106	4	99
	LOW	0	7	28
	MEDIUM	49	27	660