Importing the library

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')
```

Importing the dataset

```
In [2]:
```

```
df=pd.read_csv(r"C:\Users\91956\Desktop\IRIS.csv")
df
```

Out[2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

EDA

petal length

```
Shape
In [3]:
df.shape
Out[3]:
(150, 5)
Columns and their types
In [4]:
df.columns
Out[4]:
```

```
Index(['sepal length', 'sepal width', 'petal length', 'petal width',
       'species'],
      dtype='object')
In [5]:
df.dtypes
Out[5]:
sepal length
                float64
sepal width
                float64
```

```
petal width
                float64
species
                 object
dtype: object
In [6]:
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                 Non-Null Count Dtype
    Column
                 _____
    sepal length 150 non-null
                                float64
```

float64

```
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

Null value analysis

Duplicate values

```
In [8]:
    df.duplicated().sum()
Out[8]:
3
In [9]:
    df[df.duplicated()]
```

Out[9]:

		sepal_length	sepal_width	petal_length	petal_width	species
	34	4.9	3.1	1.5	0.1	Iris-setosa
	37	4.9	3.1	1.5	0.1	Iris-setosa
1	42	5.8	2.7	5.1	1.9	Iris-virginica

In [10]:

```
df.drop_duplicates(inplace=True)
```

Outlier's detection

```
In [11]:
```

```
sns.boxplot(y='sepal_length',data=df)
plt.show()
```


In [12]:

```
sns.boxplot(y='sepal_width',data=df)
plt.show()
```


In [13]:

```
sns.boxplot(y='petal_length',data=df)
plt.show()
```


In [14]:

```
sns.boxplot(y='petal_width',data=df)
plt.show()
```

2.5 -

Statistical summary

```
In [15]:
df.describe()
```

Out[15]:

	sepal_length	sepal_width	petal_length	petal_width
count	147.000000	147.000000	147.000000	147.000000
mean	5.856463	3.055782	3.780272	1.208844
std	0.829100	0.437009	1.759111	0.757874
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Correlation

```
In [23]:
```

```
sns.heatmap(df.corr(), cmap = "YlGnBu", annot = True)
plt.show()
```


Interpretation

In [16]:

df

Out[16]:

_		sepal_length	sepal_width	petal_length	petal_width	species
Ī	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	-					

4	5.0 sepal_length	3.6 sepal_width	1.4 petal_length	0.2 petal_width	Iris-setosa species
	•••			•••	
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

147 rows × 5 columns

In [18]:

```
# Highest number of species according to petal_width
sns.barplot(x=df['species'], y=df['petal_width'])
plt.xticks(rotation=90)
plt.show()
```



```
In [19]:
```

```
# # Highest number of species according to petal_length
sns.barplot(x=df['species'], y=df['petal_length'])
plt.xticks(rotation=90)
plt.show()
```


In [20]:

```
#Highest number of species according to sepal_width
sns.barplot(x=df['species'], y=df['sepal_width'])
plt.xticks(rotation=90)
plt.show()
```


In [21]:

```
#Highest number of species according to sepal_length
sns.barplot(x=df['species'], y=df['sepal_length'])
plt.xticks(rotation=90)
plt.show()
```


Replacing the values of object column with numbers

```
In [25]:

df['species']=df['species'].replace({'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2})

In [24]:

df.species.value_counts()

Out[24]:

Iris-versicolor 50
Iris-virginica 49
Iris-setosa 48
Name: species, dtype: int64
```

Machine learning

```
In [26]:

x=df.drop('species',axis=1)
y=df['species']
```

Splitting the dataset into training and testing

```
In [16]:
from sklearn.model_selection import train_test_split
```

```
x train, x test, y train, y test=train test split(x, y, test size=0.2, random state=7)
```

Importing the algorithm and the performance measure

In [17]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,accuracy_score,confusion_matrix
```

In [18]:

```
classifier=LogisticRegression()
lr=classifier.fit(x_train,y_train)
y_pred=classifier.predict(x_test)
y_pred_train=classifier.predict(x_train)
```

In [19]:

```
print(classification_report(y_test,y_pred))
print(classification_report(y_train,y_pred_train))
```

precision	recall	f1-score	support
1.00	1.00	1.00	7
0.83	0.83	0.83	12 11
0.88	0.88	0.87	30 30
0.87	0.87	0.87	30
precision	recall	f1-score	support
1.00	1.00 0.97	1.00	43 38
0.97	1.00	0.99	39
0.99	0.99	0.99 0.99	120 120 120
	1.00 0.83 0.82 0.88 0.87 precision 1.00 1.00 0.97	1.00 1.00 0.83 0.83 0.82 0.82 0.88 0.87 0.87 precision recall 1.00 1.00 1.00 0.97 0.97 1.00	1.00 1.00 1.00 0.83 0.83 0.83 0.82 0.82 0.82

In [20]:

```
dt=classifier2.fit(x train, y train)
y pred=classifier2.predict(x test)
y pred train=classifier2.predict(x train)
print(classification report(y test, y pred))
print(classification report(y train, y pred train))
              precision
                           recall f1-score
                                               support
           0
                             1.00
                                        1.00
                                                     7
                   1.00
           1
                   0.91
                             0.83
                                        0.87
                                                    12
           2
                   0.83
                             0.91
                                        0.87
                                                    11
                                        0.90
                                                    30
    accuracy
                                        0.91
                                                    30
   macro avq
                   0.91
                             0.91
                   0.90
                             0.90
                                        0.90
weighted avg
                                                    30
              precision
                           recall f1-score
                                               support
                                        1.00
           0
                   1.00
                             1.00
                                                    43
                                        1.00
           1
                   1.00
                             1.00
                                                    38
           2
                   1.00
                             1.00
                                        1.00
                                                    39
                                        1.00
                                                   120
    accuracy
                                        1.00
                   1.00
                                                   120
   macro avg
                             1.00
weighted avg
                   1.00
                             1.00
                                        1.00
                                                   120
```

In [21]:

	precision	recall	f1-score	support
0 1 2	1.00 0.83 0.82	1.00 0.83 0.82	1.00 0.83 0.82	7 12 11
accuracy macro avg weighted avg	0.88 0.87	0.88	0.87 0.88 0.87	30 30 30

	precision	recall	f1-score	support
0 1 2	1.00 0.95 1.00	1.00 1.00 0.95	1.00 0.97 0.97	43 38 39
accuracy macro avg weighted avg	0.98 0.98	0.98	0.98 0.98 0.98	120 120 120

In [22]:

```
from sklearn.svm import SVC
svc=SVC(random_state=7)
svm=svc.fit(x_train,y_train)
y_pred=svc.predict(x_test)
y_pred_train=svc.predict(x_train)

print(classification_report(y_test,y_pred))
print(classification_report(y_train,y_pred_train))
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	7
1	0.83	0.83	0.83	12
2	0.82	0.82	0.82	11
accuracy			0.87	30
macro avq	0.88	0.88	0.88	30
weighted avg	0.87	0.87	0.87	30
	precision	recall	f1-score	support
0	precision	recall	f1-score 1.00	support
0	1			
	1.00	1.00	1.00	43
1	1.00	1.00	1.00	43
1 2	1.00	1.00	1.00 0.99 0.99	43 38 39

In [23]:

```
from sklearn.ensemble import AdaBoostClassifier
adbc=AdaBoostClassifier(random_state=7)
adbc1=adbc.fit(x_train,y_train)
y_pred=adbc.predict(x_test)
```

y_pred_train=adbc.predict(x_train)
print(classification_report(y_test,y_pred))
print(classification_report(y_train,y_pred_train))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	7
1	0.83	0.83	0.83	12
2	0.82	0.82	0.82	11
accuracy			0.87	30
macro avg	0.88	0.88	0.88	30
weighted avg	0.87	0.87	0.87	30
	precision	recall	f1-score	support
0	precision	recall	f1-score 1.00	support
0	-			
	1.00	1.00	1.00	43
1	1.00	1.00	1.00	43
1 2	1.00	1.00	1.00 0.97 0.97	43 38 39