⑩ 日本国特許庁(JP)

⑩ 特許出願公開

⑫公開特許公報(A) 昭61 - 197732

@Int_Cl.4

識別記号

庁内整理番号

四公開 昭和61年(1986)9月2日

F 02 D 23/00 33/00 F 02 B F 02 D 17/02 6718-3G A-6657-3G 8209-3G

審査請求 未請求 発明の数 1 (全5頁)

49発明の名称

可変気筒式内燃機関

願 昭60-34409 创特

願 昭60(1985) 2月25日 29出

佐 藶 勿発 明 者

豊田市トヨタ町1番地 婧 豊田市トヨタ町1番地

トヨタ自動車株式会社内

明 者 橀 花 勿発 明 者 仲

英 E

朗

豊田市トヨタ町1番地

トヨタ自動車株式会社内 トヨタ自動車株式会社内

トヨタ自動車株式会社 の出 顋 人

大

費田市トヨタ町1番地

の代 理

弁理士 青 木

外4名

1. 発明の名称

可変気筒式内燃機関

2. 特許請求の範囲

1. 常時稼動する第1気筒群と、運転状態に応 じて休止する第2気管群と、これら両気管群に高 圧空気を供給する適給機とを備え、上記第2気筒 群の各気筒の圧縮比は上配第1気筒群の各気筒の 圧縮比よりも低く設定され、上記通給機は、上記 両気筒群の稼動時、上記第2気筒群に対して第1 気筒群よりも高い過給圧で空気を供給することを 特徴とする可変気筒式内燃機関。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、機械式通給機を備えるとともに、道 転状態に応じて一部の気筒群の稼動を休止してい わゆる部分気筒運転を行なう、可変気筒式内燃機 関に関する。

〔徒来の技術〕

スロットル弁によりエンジン負荷を制御するよ う構成された内燃機関においては、スロットル弁 の開度が小さくなるに従って燃料消費率が悪化す る。この燃料消費率を向上させるために、例えば エンジン負荷が低い時、一部の気筒群の運転を休 止させると共に残りの気筒群に高負荷運転を行な わせるようにした可変気筒式内燃機関が知られて いる。さて、このような内燃機関において、全負 荷域でのみ稼動する気筒の圧縮比を、ノッキング の発生を防止すべく常時稼動する気筒の圧縮比よ りも低く定めるとともに、全負荷域でのみ稼動す る気筒に対する吸気系に過給機を設ける構成が提 案されている(特開昭56-110532号公報)。

[発明が解決しようとする問題点]

上記従来装置に対し、さらに出力向上を図るべ く、常時稼動する気筒の吸気系にも過給機を設け ようとすると、ノッキングを生じて異常燃焼を起 こすという問題がある。

(問題点を解決するための手段)

上記問題点を解決するため、本発明に係る可変 気筒式内燃機関は、常時稼動する第1気情群と、 運転状態に応じて休止する第2気情群と、これら 両気情群に高圧空気を供給する通給機とを備え、 上記第2気情群の各気情の圧縮比は上記第1気情 群の各気情の圧縮比よりも低く設定され、上記過 給機は、上記両気情群の稼動時、上記第2気情群 に対して第1気情群よりも高い過給圧で空気を供 給することを特徴としている。

(実施例)

以下図示実施例にり本発明を説明する。

第1因は本発明の第1実施例を示し、気筒1.2、3、4、5、6は、常時稼動する第1気筒群Aと機関出力が低い時休止する第2気筒群Bとに分割される。第1気筒群Aの気筒1、2、3の圧縮比は相対的に大きく、第2気筒群Bの気筒4、5、6の圧縮比は相対的に小さく定められる。第2気筒群Bの各吸気弁の上方にはこれらの吸気弁

の作動を停止させるためのバルブロック機構 7 が 設けられる。吸気通路 2 0 は途中で分岐して第 1 副通路 2 1 と第 2 副通路 2 2 になっており、第 1 副通路 2 1 の先端に形成されたサージタンク 2 3 には気筒 1. 2. 3 にそれぞれ連通する 3 本の技 管が設けられ、また第 2 副通路 2 2 の先端に形成 されたサージタンク 2 4 には気筒 4. 5. 6 にそ れぞれ速過する 3 本の技管が設けられる。

第1 翻週路 2 1 の途中にはルーツボンブから成る第1 週給機 2 5 が設けられ、この第1 週給機 2 5 が設けられ、この第1 週給機 7 6 を有する第1 パイパス 2 6 をまた第2 副週路 2 2 7 により接続される。また第2 副過給機 2 8 が設けられ、第2 週給機 2 8 を有する第2 パイパス 遺路 3 0 により、入口間とを接続される。第1 過給機 2 5 の電磁クラッチ付プーリ 3 6 は無端状のベルト 37 0 電磁クラッチ付プーリ 3 6 は無端状のベルト 37

を介して第1過給機25のアーリ33に連結される。したがって、第1過給機25はクランクアーリ35、ベルト34、およびアーリ33を介して駆動され、第2過給機28は、アーリ33、ベルト、343よびアーリ36を介して駆動される。第1過給機25の過給圧を計測するため、サージタンク23には圧力センサ31が設けられ、同様に、第2過給機28の過給圧を計測するため、サージタンク24にも圧力センサ32が設けられる。

・ 吸気通路 2 0 の人口部分にはエアクリーナ 1 0 が設けられ、このエアクリーナ 1 0 と吸気通路 20 の分岐部分との間には、吸入空気量を計測するエアフローメータ 1 1 と、空気量を調節するためのスロットル弁 1 2 とが配数される。なお、回転数検知器 1 3 は、図示しないデュストリビュータに取付けられる。

マイクロコンピュータを備えた電子制御部 (BCU) 40は、エアフローメータ11、回転 数検知器13、および圧力センサ31、32等か らの入力信号に基いて、パルブロック機構7、第 1 および第 2 過給機 2 5. 2 8 の電磁クラッチ、 第 1 および第 2 ベイパス弁 2 6. 2 9 等を制御する。

第2図はBCU40の制御を示すフローチャートである。ステップ101では吸入空気量Qをエンジン回転数Nで割った値Q/Nが0.3以下か否かを判別する。Q/Nは負責の大きさに対応するものであり、Q/N≤0.3の場合は軽負荷運転状態であるのでステップ102へ移り、部分気筒運転をすべくパルブロック機構7を作用させて第2気筒群Bを休止させる。またステップ103を実行し、それ以前に過給機25。28が作動していた場合にはこれらを停止させる。

ステップ101 においてQ/Nが0.3より大きかった場合、ステップ104 においてQ/Nが0.5以下か否かを判別する。0.3 < Q/N ≤ 0.5 の場合、上述の場合よりも負荷は若干大きく、ステップ105 へ移り、部分気筒運転を行なうためにパルブロック機構7を作用させる。次いでステップ106において第1過給機25を作動させるべく、プー

リ33の電磁クラッチをつなぐ。

s , •

ステップ104 においてQ/Nが0.5 より大きかった場合、ステップ107 へ移り、Q/Nが0.7以下か否かを判別する。0.5 < Q/N ≤ 0.7 の場合、高負荷運転状態であり、ステップ108 を実行して全気筒運転をすべくパルプロック機構7を解除し、次いでステップ109 で通給機25.28を停止させる。

ステップ107 においてQ/N > 0.7の場合、機関はステップ108.109 を実行する場合よりもさらいる自負情運転されており、ステップ110 に解析で全気情運転をすべくバルブロック機構であるに、ステップ111 において第1 おになられるとともに、ステップ111 において第1 であれている。次に別名を作動させる。次に別名を表したよる過給圧P。が、400mHg より大きいか否かを判別する。過給圧P。が、400mHg より大きいか否かを判別する。過給圧P。が、400mHg より大きいか否かを判別する。過給圧P。が、400mHg より大きいかである。過給圧P。が、400mHg より大きいかである。過給圧P。が、400mHg より大きいかである。過給圧P。がこれ以上高くならないようにする。逆に過給圧P。が、

第3図は第2実施例を示す。この第2実施例は 第1実施例と異なり、第1過給機25のブーリ33 と第2過給機28のブーリ36の径の比を変える ことにより、これらの過給機25,28の吐出圧 を変えている。つまり、ブーリ33の径をブーリ 36の径よりも大きく定め、これにより第2過給 機28の回転数を第1過給機25のそれよりも高 めて吐出容量を大きくしている。なお、その他の 構成は第1実施例と同じである。

また、BCU40の行なう制御は、過給機25.28にパイパス通路およびパイパス弁が設けられていないため、第2図のステップ101~111であり、ステップ112~117 は不要である。

第4図は第3実施例を示す。この実施例においては、第2過給機28のハウジングを第1過給機25のハウジングよりも大きく成形し、これにより、第2過給機29の理論吐出量を第1過給機25のそれよりも大きくしてある。なお、第5図(a). (b)に示すように、ハウジングの径をD、幅をLとすると、理論吐出量Qはα・D*・Lで表わされ、

400mH g 以下であればステップ114 を実行し、第1 バイパス弁 2 6 を閉塞して過給圧の上昇を可能ならしめる。ステップ115 では、圧力センサ32の検知した第 2 過給機 2 8 による過給圧 P ェ が 500mH g より大きいか否かを判別する。過給圧 P ェ が 500mH g より大きければステップ116 を実行して第 2 バイパス弁 2 9 を開放し、過給圧 P ェ の上昇を制限する。逆に過給圧 P ェ が 500mH g より小さければステップ117 を実行して第 2 バイパス弁 2 9 を閉塞し、過給圧 P ェ の上昇を可能ならればステップ117 を実行して第 2 バイパス弁 2 9 を閉塞し、過給圧 P ェ の上昇を可能ならし、過給圧 P ェ の上昇を可能なられる。このように、第 2 過給機 2 8 は第 1 過給機 2 5 よりも高い過給圧で空気を供給することが可能である。

以上のように本実施例は、全気筒運転時、圧縮 比の高い第1気筒群Aに対しては相対的に低い過 給圧で空気を供給し、圧縮比の低い第2気筒群B に対しては相対的に高い過給圧で空気を供給する よう構成さている。したがって、全気筒運転時、 ノッキングを発生することなく、良好な燃焼を行 なうことができ、出力を向上させることができる。

ここでαは係数である。

この実施例におけるECU40の制御は、第2 実施例と同様に、第2図のステップ101~111 までである。

第6図は第4実施例を示す。この第4実施例では、過給機25は1個のみであり、この過給機25の吐出側に第1および第2副通路21,22が設けられる。第1および第2副通路21,22の途中には、空気の逆流を防ぐためにそれぞれ逆止弁51.52が設けられる。その他の構成は第1実 集例と同様である。

BCU40の制御は第1実施例と同様である。 すなわち、圧力センサ31の検知した圧力に基い て第1パイパス弁26を開閉させ、圧力センサ32 の検知した圧力に基いて第2パイパス弁29を開 閉させる。しかして、第2副通路22を介して供 給される空気圧の方が第1副通路21を介して供 給される空気圧よりも高くなるようになっている。 したがって、この実施例において行なわれる制御 は、第2図に示したフローチャートと基本的に同

じである。

なお、通給機25.29はルーツポンプに限定されないことは言う迄もない。

(発明の効果)

以上のように本発明によれば、全気管運転時、 ノッキングを生じることなく出力を向上させるこ とができるという効果が得られる。

4. 図面の簡単な説明

第1図は本発明の第1実施例を示す系統図、第 2図は電子制御部の制御を示すフローチャート、 第3図は第2実施例を示す系統図、第4図は第3 実施例を示す系統図、第5図(4)は通給機のハウジングを示す水平断回図、第5図(4)は第5図(4)の - B線に沿う断面図、第6図は第4実施例を示す系統図である。

25,28 一通給機、

A ···第1気筒群、

B - 第2気筒群。

第1図

第 3 図

PAT-NO:

JP361197732A

DOCUMENT-IDENTIFIER: JP 61197732 A

TITLE:

VARIABLE CYLINDER TYPE INTERNAL-COMBUSTION ENGINE

PUBN-DATE:

September 2, 1986

INVENTOR-INFORMATION: NAME SATO, YASUSHI UMEHANA, TOYOICHI ONAKA, HIDEMI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TOYOTA MOTOR CORP

N/A

APPL-NO:

JP60034409

APPL-DATE:

February 25, 1985

INT-CL (IPC): F02D023/00, F02B033/00, F02D017/02

US-CL-CURRENT: 123/562

ABSTRACT:

PURPOSE: To prevent the occurrence of knocking, by a method wherein, during full cylinder operation, air is fed to a first cylinder group, having a high compression ratio, at a low supercharge pressure, and to a second cylinder group, having a low compression ratio, at a high supercharge pressure.

CONSTITUTION: When an electronic control part (ECU) 40 decides that full cylinder operation is needed, a valve lock mechanism 7 is released, and first and second superchargers 25 and 28 are actuated. A supercharge pressure produced by the first supercharger 25 is regulated through control of a first bypass valve 26. Meanwhile, a supercharge pressure by the second supercharger 28 is also regulated to a value higher than that of the first supercharger 25 through control of a second bypass valve 29. Air is fed to a first cylinder group A, having a compression ratio, at a low compression pressure and to a first cylinder group B, having a low compression ratio, at a high supercharge pressure. This prevents the occurrence of knocking during full cylinder

9/2/05, EAST Version: 2.0.1.4

operation.

COPYRIGHT: (C)1986,JPO&Japio