Ch 14

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash*	~100 GB	100 us	~\$1
Hard disk*	~I TB	10 ms	~\$0.10

Processor
Datapath
Memory
Hierarchy
I/O
subsystem

State RAM

- army of W* 6 Cells (W mads, b cells per mad)

- army of W* 6 Cells (W mads, b cells per mad)

- cell is a bistable element to access from 6:5tr-s

- cell is a bistable element to access from 6:5tr-s

- cell is a bistable element to access from 6:5tr-s

- with carefully sized francist-s to

- with carefully sized francist-s to

- wide i precharge bitlines, activate modline, overpose cells

- wide: drive bitlines, activate modline, overpose cells

^{*} non-volatile (retains contents when powered off)

Dynamic RAMS

- IT DRAM cell: trans: str + capacitor
- smaller tran SRAM cell; but destructive reads
and capacitat losy changes - Of AM armys invited circuitry to:

- Of AM armys invited circuitry to:

Ly write and assin after every real (to amm lesing)

Ly write and assin after every real (to amm lesing)

Ly refresh (read + write) crey was periodically - DRAM US SRAM - 2-lox Slower tran SRAM

2-lox Slower tran SRAM

Non-Volatile Storage: Flash

Electrons here diminish strength of field from control gate \Rightarrow no $inversion \Rightarrow NFET \ stays$ off even when word line is high.

Cyferz (CC BY 2.5)

Flash Memory: Use "floating gate" transistors to store charge

- Very dense: Multiple bits/transistor, read and written in blocks
- Slow (especially on writes), 10-100 us
- · Limited number of writes: charging/discharging the floating gate (writes) requires large voltages that damage transistor

Non-Volatile Storage: Hard Disk

Hard Disk: Rotating magnetic platters + read/write head

- Extremely slow (~10ms): Mechanically move head to position, wait for data to pass underneath head
- ~100MB/s for sequential read/writes
- ~100KB/s for random read/writes
- Cheap

A Typical Memory Hierarchy

• Everything is a cache for something else...

	Access time	Capacity	Managed By
On the datapath Registers	l cycle	I KB	Software/Compiler
Level I Cache	2-4 cycles	32 KB	Hardware
Level 2 Cache	10 cycles	256 KB	Hardware
On chip	40 cycles	10 MB	Hardware
Other Main Memory	200 cycles	10 GB	Software/OS
chips ‡ Flash Drive	10-100us	100 GB	Software/OS
Mechanical Hard Disk devices	10ms	I TB	Software/OS

Summary: Cache Tradeoffs

AMAT = HitTime + MissRatio × MissPenalty Larger cache size: Lower miss rate, higher hit time Larger block size: Trade off spatial for temporal locality, higher miss penalty 4 More associativity (ways): Lower miss rate, higher can be in hit time • More intelligent replacement: Lower miss rate, higher cost by replacing Specific cashe lines Write policy: Lower bandwidth, more complexity

 How to navigate all these dimensions? Simulate different cache organizations on real programs

how to manage money writes in the cache