

WHAT IS CLAIMED IS:

1 1. A nucleic acid extraction device, comprising:
2 a body having at least one chamber with at least one
3 inlet channel; and
4 a porous flow-through plug disposed within the chamber,
5 the plug having nucleic acid binding properties.

1 2. The nucleic acid extraction device of claim 1,
2 wherein said chamber has a width in the range of 0.05 to
3 2.0mm.

1 3. The nucleic acid extraction device of claim 2,
2 wherein said chamber has a width in the range of 0.1 to 0.5mm.

1 4. The nucleic acid extraction device of claim 3,
2 wherein said chamber has a depth in the range of 0.05 to 1mm.

1 5. The nucleic acid extraction device of claim 1,
2 wherein said plug is a deformable plug.

1 6. The nucleic acid extraction device of claim 1,
2 wherein the plug comprises glass wool.

1 7. The nucleic acid extraction device of claim 5,
2 wherein the plug comprises glass wool.

1 8. A nucleic acid extraction device, comprising:
2 a body having at least one chamber and at least one
3 inlet channel; and
4 a textured surface disposed within the chamber, the
5 surface having nucleic acid binding properties.

1 9. A nucleic acid extraction device, comprising:
2 a body having at least one chamber and at least one
3 inlet channel; and

4 an affinity surface having particles attached thereto,
5 the particles having nucleic acid binding properties.

1 10. The device of claim 1, wherein the plug is
2 pretreated with an agent for enhancing the nucleic acid
3 binding properties.

1 11. The device of claim 10, wherein said agent is
2 selected from the group consisting of acids, bases, silanes,
3 polysine, tethered antibodies, synthesized nucleic acids, and
4 Poly-T DNA.

1 12. The device of claim 10, wherein the structure is
2 an open cell foam.

3 13. The nucleic acid extraction device of claim 5,
4 further comprising:
5 a flexible diaphragm for compressing said plug thereby
6 removing trapped liquids.

1 14. The nucleic acid extraction device of claim 13,
2 wherein
3 the flexible diaphragm is disposed between a pneumatic
4 port and the structure, the device further comprising a
5 pressure system for displacing the flexible diaphragm to draw
6 a sample through the inlet channel into the chamber.

1 15. The nucleic acid extraction device of claim 1,
2 wherein said structure is an affinity surface in a flow
3 through chamber.

1 16. The nucleic acid extraction device of claim 9,
2 wherein said affinity surface has controlled-pore glass
3 structures attached thereto.

1 17. The nucleic acid extraction device of claim 9,
2 wherein said affinity surface has glass spheres attached
3 thereto.

1 18. The nucleic acid extraction device of claim 9,
2 wherein said affinity surface has cellulose particles attached
3 thereto.

1 19. The nucleic acid extraction device of claim 8,
2 wherein said affinity surface is microfabricated.

1 20. The nucleic acid extraction device of claim 8,
2 wherein said affinity surface is machined.

1 21. The nucleic acid extraction device of claim 8,
2 wherein said affinity surface is injection molded.

1 22. The nucleic acid extraction device of claim 1,
2 further comprising:
3 a piezoelectric crystal adapted to acoustically agitate
4 said sample.

1 23. A method for extracting nucleic acid from a sample
2 comprising:
3 positioning the sample in a miniature chamber having a
4 structure with nucleic-acid binding properties disposed
5 therein;
6 binding nucleic acid from the sample to the structure;
7 and
8 drawing the sample from the miniature chamber.

1 24. The method for extracting nucleic acid from a
2 sample as set forth in claim 22, wherein
3 said structure is a porous fluid plug, and
4 said binding step is accomplished by passing the sample
5 through the structure.

1 25. The method for extracting nucleic acid from a
2 sample as set forth in claim 22, further comprising the step
3 of:

4 pretreating the structure with an agent for enhancing
5 the nucleic acid binding properties.

1 26. The method for extracting nucleic acid from a
2 sample as set forth in claim 22, wherein
3 said agent is selected from the group consisting of
4 acids, bases, silanes, polylysine, tethered antibodies, and
5 Poly-T DNA.

1 27. A biological sample refinement device, comprising:
2 a body having at least one microchamber with at least
3 one inlet channel;
4 a structure disposed within the microchamber, the
5 structure having binding sites thereon; and
6 a fluid distribution system for delivering a biological
7 sample into the microchamber such that at least a portion of
8 the sample contacts the binding sites.

1 28. The device of claim 27 wherein the binding sites
2 are antibodies that are adhesively attached to the structure.

1 29. The device of claim 27 wherein the binding sites
2 are oligonucleotides attached to the structure.

1 30. The device of claim 27 wherein the structure
2 comprises a substantially planar wall with a plurality of
3 beads attached thereto.

1 31. A deformable microchamber device, comprising:
2 a pneumatic portion having an addressable port formed
3 therein,
4 a fluid portion having a reaction chamber formed
5 therein,

6 said pneumatic portion and said fluid portion being
7 bonded together with said addressable port being positioned in
8 mating contact over said reaction chamber, and

9 a deformable member disposed between said pneumatic
10 portion and said fluid portion, said deformable member acting
11 as a flexible chamber wall which seals the reaction chamber.

12 32. A method of forming a molded microcapillary,
13 comprising the sequential steps of:

14 forming a mold part,
15 depositing a first parylene layer on a substrate part,
16 affixing said mold part to said substrate,
17 depositing a second parylene layer on said mold part
18 and said substrate,
19 removing said mold part from said substrate.

1 33. The method of forming a molded microcapillary in
2 claim 32, wherein:

3 said step of depositing a second parylene layer is
4 accomplished by depositing parylene into cavities on said mold
5 part.

1 34. The method of forming a molded microcapillary in
2 claim 32, wherein:

3 said step of removing said mold part from said
4 substrate is accomplished by dissolving a release layer coated
5 on said mold part.

1 35. A hermetically sealed microfluidic system,
2 comprising:

3 a body having at least two reaction chambers connected
4 by a fluidic channel disposed therebetween,
5 a pneumatic port connected to said chamber, said
6 pneumatic port having a gas-liquid separator disposed therein,
7 a pneumatic line, and
8 a deformable diaphragm sealing said pneumatic port from
9 said pneumatic line.

1 36. The hermetically sealed microfluidic system as set
2 forth in claim 35, wherein:
3 said gas-liquid separator is a porous hydrophobic vent.

1 37. The hermetically sealed microfluidic system as set
2 forth in claim 35, wherein:
3 said deformable diaphragm is selected from the group
4 consisting of latex, polymidemide, polypropylene, and mylar.

1 38. The hermetically sealed microfluidic system as set
2 forth in claim 35, wherein:
3 said deformable membrane covers said gas-liquid
4 separator.

1 39. The hermetically sealed microfluidic system as set
2 forth in claim 35, further comprising:
3 a pneumatic manifold connected to said second pneumatic
4 port at each of said at least one reaction chambers.

1 40. The hermetically sealed microfluidic system as set
2 forth in claim 35, further comprising:
3 a pneumatic driving chamber connected to said pneumatic
4 port, said pneumatic driving chamber having a displaceable
5 pneumatic driving chamber vent for inducing pressure changes
6 in said pneumatic port.

1 41. A microfluidic particle suspension valving
2 arrangement, comprising:
3 a flow chamber having a narrow hydrophobic region,
4 a particle emulsion disposed in said narrow region,
5 said particle emulsion being immiscible in water, and
6 generally occluding said narrow hydrophobic region.

1 42. The microfluidic particle suspension valving
2 arrangement of claim 41, wherein
3 the viscosity of said particle emulsion can be varied
4 by a magnetic field.

1 43. The microfluidic article suspension valving
2 arrangement of claim 41, wherein
3 the viscosity of said particle emulsion can be varied
4 by an electric field.

1 44. In a microfluidic fluid system, an enzymatic
2 reaction selected from the group consisting of terminal deoxy-
3 transferase, DNAase, in vitro translation, and ligation.

1 45. A low-volume hybridization chamber, comprising:
2 a base,
3 a reaction chamber disposed in said base, said reaction
4 chamber being bound by a flexible diaphragm, and
5 a probe array disposed in said reaction chamber.

1 46. The low-volume hybridization chamber of claim 45,
2 wherein
3 said reaction chamber has a volume in the range of 0.1
4 to $100\mu\text{l}$.

1 47. The low-volume hybridization chamber of claim 45,
2 wherein
3 said reaction chamber has a volume in the range of 1 to
4 $20\mu\text{l}$.

1 48. The low-volume hybridization chamber of claim 1,
2 further comprising:
3 a pneumatic system for moving said flexible diaphragm.

4 49. A hybridization device, comprising:
5 a base,
6 a fluidic chamber disposed in said base, said fluidic
7 chamber having a hybridization array disposed therein,
8 a porous membrane disposed in said fluidic chamber
9 opposite said array,
10 a pneumatic port disposed in said base, said pneumatic
11 port addressing said porous membrane, and

12 a thermal control device for controlling the
13 temperature in the array.

1 50. A miniature genetic analysis system comprising:
2 a body having at least one reaction chamber disposed therein;
3 an addressable heater adjacent to or within each
4 chamber;
5 a thermal insulation in contact with said heater;
6 a cooler coupled to said thermal insulator and disposed
7 to cool each of the reaction chambers;
8 a temperature sensor positioned adjacent said heater;
9 and
10 a temperature controller.

1 51. The system of claim 50 wherein the insulator
2 comprises a polymeric film having a thickness of about 0.1 mm
3 to about 1.0 mm.

1 52. A method for linking together two spaced-apart
2 fluid plugs disposed in a first capillary tube, wherein said
3 first capillary tube intersects a second capillary tube having
4 a gas-liquid separator extending therefrom, comprising:
5 moving said first fluid plug along said first capillary
6 tube such that a leading edge of said first fluid plug moves
7 into said second capillary tube and reaches said gas-liquid
8 separator with a trailing edge of said first fluid plug
9 remaining in said first capillary tube,
10 forcing gas through said gas-liquid separator thereby
11 expelling fluid from said second capillary tube, and
12 moving a second fluid plug along said first capillary
13 tube towards said leading edge of said first fluid plug tube
14 such that a leading edge of said second fluid plug moves into
15 said second capillary tube with a trailing edge of said second
16 fluid plug remaining in said first capillary tube.

1 53. A device for removing gas bubbles and linking
2 together fluid plugs in a microfluidic system, comprising:

3 an elongated chamber having a wide portion and a narrow
4 portion,
5 a first input port opening into the narrow portion of
6 said elongated chamber, and
7 a gas exhaust port opening into the wide portion of
8 said elongated chamber.

1 54. The device for removing gas bubbles and linking
2 together fluid plugs in a microfluidic system as set out in
3 claim 53, further comprising:

4 a second input port opening into the wide end of said
5 elongated chamber.

1 55. The device for removing gas bubbles and linking
2 together fluid plugs in a microfluidic system as set out in
3 claim 53, wherein:

4 said elongated chamber has a narrowed width portion
5 extending along its longitudinal length.

1 56. A method for removing gas bubbles and linking
2 together fluid plugs in a microfluidic system, comprising:
3 exerting a pressure differential to move a capillary
4 stream consisting of spaced apart fluid plugs with gas bubbles
5 inter-disposed therebetween into a narrow portion of an
6 elongated chamber, and

7 removing said gas bubbles from said elongated chamber
8 through a port connected to a wide portion of said elongated
9 chamber, wherein said wide portion is positioned opposite
10 said narrow portion.

1 57. A method for removing gas bubbles and linking
2 together fluid plugs in a microfluidic system, comprising:
3 exerting a pressure differential to move a capillary
4 stream consisting of spaced apart fluid plugs with gas bubbles
5 inter-disposed therebetween into a wide end of an elongated
6 chamber, and

7 removing said gas bubbles from said elongated chamber
8 through a port connected to a narrow end of said elongated
9 chamber, wherein said wide end is positioned opposite said
10 narrow end.

1 58. A device for manipulating nucleic acids in a
2 sample, comprising:
3 a base defining a reaction chamber,
4 a first chamber extending from said reaction chamber,
5 said first chamber having a first electrode received therein,
6 a second chamber extending from said reaction chamber,
7 said second chamber having a second electrode received
8 therein, and
9 a first barrier disposed between said reaction chamber
10 and said first chamber, and
11 a second barrier disposed between said extraction
12 chamber and said second chamber.

1 59. A microfluidic controlled pH device, comprising:
2 a reaction chamber,
3 a first and second electrode disposed in said reaction
4 chamber,
5 a counter-electrode chamber in fluid connection with
6 said reaction chamber, said counter-electrode chamber and said
7 reaction chamber having a barrier disposed therebetween, and
8 a fourth electrode.

1 60. A microfluidic acoustic treatment device,
2 comprising:
3 a chamber having formed in a polymeric base, said
4 chamber having a lower surface with a plurality of
5 microstructures formed therein and a thin upper wall,
6 an acoustic source coupled to said reaction chamber.

1 61. A device for acoustic manipulation of biological
2 particles, comprising:

3 an array of transducers for producing acoustic standing
4 waves.

1 62. The device for acoustic manipulation of biological
2 particles of claim 61, wherein:

3 said transducers comprise surface-acoustic wave
4 transducers.

1 63. The device for acoustic manipulation of biological
2 particles of claim 61, wherein:

3 said transducers comprise flexural plate wave
4 transducers.

1 64. A method of providing a measured dose of fluid
2 into a common line in a capillary system, comprising:

3 pressurizing a common line to cause a fluid plug to
4 enter a sealable chamber intersecting said common line,

5 holding the fluid plug in said sealable chamber by
6 closing a valve positioned on said sealable chamber proximal
7 the intersection of said sealable chamber and said common
8 line,

9 evacuating said common line, and

10 opening said valve to permit a measured dose of fluid
11 to move from said sealable chamber to said common line.

1 65. A device for linking fluid plugs in a microfluidic
2 system, comprising:

3 a first capillary tube having two valves positioned
4 therealong, and

5 a second capillary tube extending from said first
6 capillary tube and having a gas-liquid separator positioned
7 therealong.