Computer Graphics

CHAPTER - 1 INTRODUCTION

Outline

- What is Computer Graphics?
- Components of Computer Graphics
- Application Areas of Computer Graphics
- Graphical Display Devices
- Graphical Input Devices
- Software Standards Open GL, GKS, PHIGS

What is Computer Graphics?

- Computer graphics generally means creation, storage and manipulation of models and images.
- It is an art of drawing pictures, lines, charts etc. on computer screen by using programming language.
- Computer graphics is the process of creating an object into a computer.
 - Using a computer as a rendering tool for the generation (from models) and manipulation of images is called computer graphics.
- □ It is about how to program a computer to generate photo-realistic images.
 - Technically, it's about the production, manipulation and display of images using computers; and
 - Practically, it's about movies, games, art, training, advertising, communication, design, etc.
- The term computer Graphics describes any use of computers to create or manipulate images.

What is Computer Graphics?

- Computer graphics deals with the generation of pictures, designs, etc. on a computer.
- □ The aim of computer graphics is to produce realistic and/or useful images on a computer.
- □ For some applications the emphasis will be on **realism** (e.g. special effects in films), whereas for others it will simply be on **usefulness** (e.g. **data visualisation**).
- Computer graphics is a use of computer to define, store, manipulate and produce pictorial output.
- □ It is a branch of **computer science** that deals with the **theory and technology** for computerized image synthesis.
- □ It refers to the creation, storage and manipulation of pictures and drawings using a digital computer.
- Generally Computer graphics deals with graphics created using computers and the representation of image data by a computer specifically with help from specialized graphic hardware and software.

5

- Computer graphics deals with all aspects of creating images with a computer
 - Hardware, Software and Applications.

■ Modeling:

Modeling refers to the process of defining objects in terms of primitives, coordinates and characteristics and creating and representing the geometry of objects in the 3D world.

Storing:

■ Storing scenes and images in memory and on disk.

Manipulating:

■ The process of changing the shape, position and characteristics of objects in a scene.

□ Rendering:

The process of applying physically based procedures to generate (photorealistic) images from scenes (using lighting and shading).

■ Viewing:

■ The process of displaying images from various viewpoints on various devices.

Animation:

(movement) describing how objects change in time.

Why study computer graphics?

- "A picture is worth than a thousand words"
- → Communication using **picture** (charts, diagrams, graphs etc) is easy.
- → Data volume (to store large data). A huge database can be presented by pictures.
- → **Time (it saves time).** Since large database can be presented using pictures, time to review these is minimum compared to **reviewing** the whole **database** in **textual forms**.

Why study computer graphics?

- Graphics is cool
 - I like to see what I'm doing and to show people what I'm doing
 - Enable scientists (also engineers, physicians, and general users) to observe their simulation and computation.
 - Enable them to describe, explore, and summarize their datasets (models) and gain insights Enrich the discovery **process and facilitate new inventions.**
 - Enrich the discovery process and facilitate new inventions
- Graphics is interesting
 - Involves *simulation*, AI, *algorithms*, *architecture*...
- Graphics is fun
- □ Almost no area in which **graphical displays cannot** be used

Many of the leading scientists through the ages have been 'visual thinkers'...

- -Leonardo da Vinci
- -Einstein
- -Clerk Maxwell

Why Visualization

- Analyze and communicate information
- Revolutionize the way scientists/engineers/physicians
- conduct research and advance technologies
- About 50% of the brain neurons are associated with vision

Categories Computer Graphics?

> Interactive Graphics

• In interactive **computer graphics** user have some control over the picture i.e. user can make any change in the **produced image**.

> Passive Graphics

- A computer graphics operation that transfers automatically and without operator intervention.
- Non-interactive computer graphics involves one way communication between the computer and the user.

Conceptual Framework for Interactive Graphics

- Graphics library/package is intermediate between application and display hardware (Graphics System)
- Application program maps application objects to views (images) of those objects by calling on graphics library. Application model may contain lots of non-graphical data (e.g., non-geometric object properties)
- User interaction results in modification of image and/or model
- This hardware and software framework is 5 decades old but is still useful

Interactive Graphics system

- Designer of computer graphics system or software engineer puts his design in application model.
- He/she will then writes the program to model the object he is planning to display.
- This application will run on the **computer graphics system and output** will be displayed on the display devices and the required input can be obtained from the **input devices**.

- Presentation Graphics
- Computer Aided Design(CAD)
- Visualization
- Computer Art
- Education and training
- Image processing
- Entertainment
 - Movies Industry
 - Gaming Industry
- Medical field
- Graphical User Interface(GUI)
- Virtual Reality and Augmented Reality

Application Areas of Computer Graphics "Presentation Graphics"

- Used to summarize the financial, mathematical, scientific and economic data.
 - Typical examples are bar charts, line graphs, pie charts etc.

Application Areas of Computer Graphics "Computer Aided Design(CAD)"

- Major use of computer graphics is in design process, particularly for engineering and architectural systems.
 - □ This include design of **buildings**, **automobiles**, **aircraft** etc.

Application Areas of Computer Graphics "Visualization"

- Various techniques can be used to represent the large amount of data obtained from scientific, medical or business analysis.
 - These includes color coding, contour plots, graphs, charts etc.

Application Areas of Computer Graphics "Computer Art"

- Artist uses special purpose hardware and programs that provides facilities for designing object shapes and specifying object motion.
 - Examples pixel paint, super paint etc.

Application Areas of Computer Graphics "Education and training"

- Computer generated models of physical, financial and economic system are often used as educational aids.
 - Various kinds of simulators program can be used to provide the trainings.
 - E.g. automobile **driving** simulator.

Application Areas of Computer Graphics "Image processing"

- Computer graphics is used to create pictures.
- Image processing applies techniques to modify or interpret the existing pictures. It is used to:
 - Improve picture quality
 - Machine perception of visual information

Application Areas of Computer Graphics "Entertainment"

- Computer graphics methods are now commonly used in making motion pictures, music videos, games and televisions shows.
 - Sometime graphics pictures are displayed by themselves and sometime combined with the actors and live scenes.

Application Areas of Computer Graphics "Medical Field"

Computer graphics can also be used to represent the various internal parts and process of the human body.

Application Areas of Computer Graphics Graphical "User Interface(GUI)"

□ It is the interface of the software that **communicates** with the user with help of some input devices.

□ It contains number of windows, menus and icons for fast selection of processing

options (WIMP)

Application Areas of Computer Graphics Graphical "Virtual Reality and Augmented Reality"

- 23
- □ Virtual Reality (VR) allows users to be *immersed* in a computer generated world, and to interact with it as if they were interacting with the **real world**.
- □ Typically, the user will **wear special hardware** such as the **VR-headset**

- □ **Augmented Reality (AR)** combines a **computer-generated virtual** world with the **real world**. In AR, computer-generated images are **overlaid** onto a user's view of the real world.
- AR system used for surgery, in which computer-generated images of hidden features such as **blood vessels and tumours**

are overlaid on the surgeon's view of the patient through a surgical microscope.

Graphics Applications Examples

Entertainment: Cinema

Pixar: Monster's Inc.

Medical Visualizations

Visible Human Project

Graphics Applications ExamplesScientific Visualization

Computer Aided Design

Graphics Applications Examples

Entertainment: Games

Information Visualizations

What Graphics Systems Consists?

- □ Typical **graphical system** consists of various software packages and host computer with support of **fast processor**, **large memory**, **frame buffer** and
 - Display devices/Output devices (Monitors, printers, plotters)
 - Input devices (keyboards, mouse, joysticks)

- Display devices are an output device used for the visual presentation of information for Visual reception.
 - Analog display devices (cathode-ray tubes)
 - Oscilloscope tubes
 - TV CRTs
 - 2. Digital display devices
 - LED (including OLED) displays
 - LCD (liquid crystal) displays
 - VF (vacuum fluorescent) displays
 - Nixie tube displays and PDPs (plasma display panels)
 - Electroluminescent displays (ELDs)
 - 3. Others:
 - Electronic paper, Laser TV etc.

Cathode Ray Tube (CRT)

- Invented by German physicist Karl Ferdinand Braun in 1897.
 - It is an evacuated glass envelope containing an electron gun (a source of electrons) and a fluorescent screen, usually with internal or external means to accelerate and deflect the electrons.
 - When electrons strike the fluorescent screen, light is emitted.
 - The **electron beam** is deflected and modulated in a way which causes it to **display** an **image on the screen**.
 - The image may represent electrical waveforms (oscilloscope), pictures (television, computer monitor), echoes of aircraft detected by radar, etc.

Cathode Ray Tube (CRT)

- □ A cathode ray tube (CRT) contains four basic parts:
 - **Electron Gun** composed of heated metal cathode and control grid.
 - Accelerating Anode
 - **□** Focusing System
 - Deflection system (Vertical and horizontal deflection plates)
 - Phosphor Screen evacuated glass envelope/bottle with a phosphorescent screen that glows visibly when struck by the electron beam.

Cathode Ray Tube (CRT)

- Electron Gun:
 - An electron gun consists of a series of electrodes producing a narrow beam of high-velocity electrons.
 - Electrons are released from the indirectly heated cathode.
 - Intensity of the beam is controlled by variation of the negative potential of the cylindrical control grid surrounding the cathode.
 - □ This electrode is called the **modulator**.
 - The control grid has a hole in the front to allow passage of the electron beam.
 - The negative voltage applied at cylindrical control grid controls the intensity of electron beam by repealing electrons.
 - High (-ve) voltage stops electron passing from the hole of control grid while small (-ve) voltage decreases electron passage.

Cathode Ray Tube (CRT)

□ Electron Gun:

Cathode Ray Tube (CRT)

- Focusing System:
 - □ In a CRT the focusing system acts like a light lens with a focal length such that the center of focus is the screen.
 - Focusing system concentrates electron beam to a small spot.
 - In *electrostatic focusing*, electrons pass through positively charged metal cylinder.

■ In *magnetic focusing*, coils are mounted outside of **CRT** envelope which produces smallest

spot.

Cathode Ray Tube (CRT)

- Deflection System:
 - Deflection System deflects/directs electron beam horizontally and/or vertically to any point on the screen.
 - The *horizontal and vertical deflectors* allow the **electron beam** to be focused on any spot on the **screen**.
 - Can be controlled by electric (deflection plates) or magnetic fields (deflection coils).
 - Magnetic → two pairs of coils
 - Electrostatic → two pairs of deflection plates

Cathode Ray Tube (CRT)

Phosphor Screen:

- The screen which is the front surface of the picture tube is coated with a special organic compound called a phosphor.
- Electrons are accelerated towards this phosphor screen with high positive voltage applied at accelerating anode.
- When the beam hits a phosphor dot, it glows with a brightness proportional to the strength/intensity of the beam and how long it is hit.
- For color systems there are groups of three different phosphors,
 - One to produce red shades, one for green shades, and one for blue shades.
- Electrons hit the **screen phosphor molecules** and cause a ground state to singlet excited state transition.
- Most of the phosphors relax back to the ground state by emitting a photon of light which is called fluorescence.
 - This happens very rapidly so that all of the molecules which fluoresce do so in under a millisecond.

CRT Display Technology

- Vector Display
- Raster Display

Image formed in Frame Buffer

Vector Display Technology

- Often termed random scan displays, stroke-writing, or calligraphic displays.
 - Electron beam is directed to the part of screen where picture is to be drawn and directly draws the picture in any specified order.
 - A pen plotter is an example of such a system.
 - □ Picture definition is stored as **set of line-drawing commands** in memory, are known as **refresh display file** (**refresh buffer/vector file**).
 - The display program (display file) has commands for point, line, and character plotting.
 - The electron gun of a CRT illuminates points and straight lines in any order.
 - To display a Picture, the system cycle through the set of commands in the display file, drawing each component line in turn.

Vector Display Technology

□ Architecture – Random System

Vector Display Technology

 Random Scan Displays are designed to draw all the component lines of a picture 30 to 60 times each second.

Vector Display Technology

- Advantages:
 - Very high resolution, limited only by monitor.
 - Easy animation, just draw at different positions.
 - Requires little memory (just enough to hold the display program).
- Disadvantages:
 - Requires intelligent electron beam, i.e., processor controlled.
 - Limited screen density before have flicker, can't draw a complex image.
 - Limited color capability (very expensive).
 - □ Improved in the 1960's by the **Direct View Storage Tube** (**DVST**) from Tektronix.

Raster Scan Display Technology

- Raster is a series of adjacent parallel 'lines' which together form an image on a display screen.
 - In early analogue television sets each such line is scanned continuously, not broken up into distinct units.
 - In computer or digital displays these lines are composed of independently colored pixels (picture elements)
- Raster Scan is the representation of images as a collection of pixels/dots (a rectangular array of points or dots).
 - Pixel: one dot or picture element of the raster.
 - Scan line: a row of pixels.

- Unlike DVST and random-scan which were line-drawing devices, refresh CRT is a point-plotting device.
 - Example: Home television sets and printers.

- Raster is stored as *matrix of pixels* representing entire **screen area** (i.e. entire screen is a matrix of pixels) and the brightness of each pixel can be **controlled** by the intensity of the **electron beam**.
 - Refresh buffer can be visualized as a set of horizontal raster lines or a row of individual pixels.
 - Entire image is scanned out sequentially by the video controller (one raster line at a time), i.e. the raster lines are scanned from top to bottom and then back to the top.
 - Line cannot be drawn directly from one point to another, and each point is an addressable point in screen and memory.
 - This causes the effect of 'aliasing', 'jaggies' or 'staircase' effect.
 - At least one memory bit for each pixel (called bit-plane) is required.
 - Refresh/Frame buffer is also called Bit-plane.

- Refreshing rate for raster scan display is usually 60 to 80 frames per second.
 - □ i.e. 1/80 or 1/60 seconds is taken
 for electron beam to scan from
 top left corner to bottom right corner.

- Refresh rate: 24 is a minimum to avoid flicker, corresponding to 24Hz.
 - Current raster-scan displays have a refresh rate of at least 60 frames (60 Hz) per second, up to 120 (120 Hz).
- Refresh procedure:
 - □ Horizontal retrace beam returns to left of screen.
 - □ Vertical retrace bean returns to top left corner of screen.
- □ **Interlaced refresh** display first even-numbered lines, then odd-numbered lines permits to see the image in half the time
 - Useful for slow refresh rates (30 Hz shows as 60 Hz).
- Depth of the buffer area is the number of bits per pixel (bit planes), up to 24.

Raster Scan Display Technology

- In Raster Scan Display
 - A display controller stores the screen content and other graphics information in a graphics memory.
 - The content of the graphics memory is read by the video controller at the display's frame rate, converted from digital to analog and transferred to display pixel rows and columns.

Raster Scan vs. Random Scan

Raster Scan System

Random Scan System

Raster Scan vs. Random Scan

Raster Scan System

Random Scan System

- Graphics system make use of different types of input devices for data input. Some of the devices include:
 - Locator Devices
 - Keyboard
 - Scanner
 - Images
 - Laser
 - Cameras (research)

Locator Devices:

- When queried, locator devices return a position and/or orientation.
 - Mouse (2D and 3D)
 - Pointing device to position cursor.
 - Wheel or rollers are used to record the amount and direction of movement.
 - Optical mouse uses optical sensors to detect mouse motion.
 - One, two or three buttons are included.
 - Trackball
 - Joystick (2D and 3D)

Locator Devices:

- When queried, locator devices return a position and/or orientation.
 - Tablet
 - Virtual Reality Trackers
 - Data Gloves

Keyboards:

- Text input: ASCII keys are used to input text string.
 - Provides with features to facilitate entry of screen coordinates, menu selections or graphics functions.
 - Function keys allow user to enter frequently used operations in a single stroke and cursor.
 - Control keys are used for cursor position or picture selection.
 - List boxes, GUI
 - CAD/CAM
 - Modeling

□ Hard coded:

- Vertex locations are inserted into code.
- Some keyboards consist of trackball or joystick.

Scanners:

- Image Scanners Flatbed, etc.
 - The type of data returned is **Bitmap**.
- Laser Scanners Deltasphere
 - Emits a laser and does time of flight.
 - Returns 3D point
- Camera based research
 - Examine camera image(s) and try to figure out vertices from them.

- Many others:
 - □ Light Pens
 - Voice Systems
 - Touch Panels
 - Camera/Vision Based

Computer Graphics – Systems Architecture

- A computer graphics system consists of the subsequent basic components:
 - 1. Application Model

Computer Graphics - Systems Architecture

- Application model: contains data and objects that are to be displayed on a monitor, such as a scene description or an image file of a vector graphic.
- 2. Application Program: creation of graphical content based on an application model.
 - Transfer of graphical content to the graphics system is by means of graphical output commands.
 - Output commands specify, what is to be shown on the display and how it should be rendered.
 - Storage of graphical content.
 - Example: MS Windows®: classes and methods of the GDI (Graphics Device Interface).

Computer Graphics – Systems Architecture

- 3. Graphics system the graphics card including graphics chip and memory:
 - Processing of scene content for display rendering based on application model commands.
 - Transfer of user input commands to the application model.
 - The designer of an application software has to determine
 - which objects and data classes can be generated and
 - which user interactions have to be taken into account.

Computer Graphics – Systems Architecture

Graphics Processing Unit(GPU)

- In the recent years GPUs have evolved into programmable and powerful graphics engines.
- High level parallelism and programmability enable real time computation of complex real world scenes and physical Phenomena.
- Requirements of GPUs are:
 - Huge amounts of data must be processed.
 - Data have to be organized to be processed concurrently.
 - The latency of individual operations is less relevant than the overall throughput.
- GPUs have become GPGPUs (General Purpose GPU).

Computer Graphics - Systems Architecture

Graphics Processing Unit(GPU)

- Example: The GeForce 8800 GTX GPU consists of
 - 8 streaming multiprocessors
 - with 16 stream processors each.
 - The stream processors are also called "unified shaders" and can compute all necessary operations for vertices and pixels.
 - The same operations are performed on multiple data concurrently.
 - Such a computer architecture is called SIMD (Single Instruction, Multiple Data).

- The primary goal of standardized graphics software is **portability**.
 - Without standards, programs designed for one hardware system often cannot be transferred to another system without extensive rewriting of the programs.
- The first graphics software standard adopted by ISO and by ANSI is the General Kernel System (GKS) in 1984.
 - It was designed as a 2D graphics package, later extended to 3D graphics package.
- The second software standard to be developed and approved by the ISO was Programmer's Hierarchical Interactive Graphics System (PHIGS), which is an extension of GKS.
 - PHIGS provided increased capabilities for
 - hierarchical object modeling,
 - color specifications,
 - surface rendering, and
 - picture manipulations
- Subsequently, an extension of PHIGS, called PHIGS+, was developed to provide 3D surface-rendering capabilities not available in PHIGS.

Software Standards – GKS, PHIGS, OpenGL

GL and OpenGL

- Along with the development of GKS and PHIGS, a set of routines called GL (Graphics Library), which very soon became a widely used package in the graphics community, and later became a de-facto graphics standard.
- □ The **GL** routines were designed for *fast*, *real-time rendering*, and soon this package was being extended to other hardware systems.
- As a result, OpenGL was developed as a hardware-independent version of GL in the early 1990s.
 - This graphics package is now maintained and updated by the OpenGL Architecture Review Board, which is a consortium of representatives from many graphics companies and organizations.
 - The **OpenGL** library is specifically designed for efficient processing of 3D applications, but it can also handle 2D scene descriptions as a special case of **three dimensions** where all the z coordinate values are 0.

Thank You!!!