

线性代数

课后习题解答

作者: 仲英学辅

2020年9月1日

仲英书院学业辅导中心

ZHONG YING XUE FU

XI'AN JIAOTONG UNIVERSITY

作品信息

▶ 标题:线性代数-课后习题解答

▶ 作者: 仲英学辅

➤ 校对排版: 电气 86 刘菁锐、能动 B81 梁佳佳

➤ 出品时间: 2020 年 9 月 1 日

▶ 总页数: 142

许可证说明

⑥●● 知识共享 (Creative Commons) BY-NC-ND 4.0 协议

本作品采用 **CC 协议** 进行许可。使用者可以在给出作者署名及资料来源的前提下对本作品进行转载,但不得对本作品进行修改,亦不得基于本作品进行二次创作,不得将本作品运用于商业用途。

线性代数课后习题题答

编者名单:自动化92赵润昕、自动化94杜海涵、自动化94童格、

计算机钱91官汉秦、电气93吴佳睿、金禾91李凌蕴

排版人员: 电气86刘菁锐、能动B81梁佳佳

感谢学业辅导中心各位工作人员与志愿者的努力工作,使本资料可以按时完工。由于编者们的能力与精力限制,以及本资料是仲英学业辅导中心采用LaTeX排版,难免有错误之处。如果同学们在本资料中发现错误,请联系仲英学业辅导中心: XJTUzyxuefu@163.com, 我们将在修订时予以更正。

从第3周开始,**每晚19:30-21:30**,学辅志愿者在东21舍118学辅办公室值班, 当面为学弟学妹们答疑。

同时,我们也有线上答疑平台——学粉群。

19级学粉群: 902493560, 756433480;

20级学粉群: 598243135, 1137961185.

期中考试与期末考试前,我们还会举办考前讲座。学辅还有新生专业交流会,转专业交流会,英语考试讲座等活动,消息会在学粉群和公众号上公布,欢迎同学们参与。

仲英书院学业辅导中心 2020年9月1日

学粉群 6.0 QQ 群号: 598243135

学粉群 6.1 QQ 群号: 1137961185

微信公众号 仲英学业辅导中心及薪火工作室

目录

第一章 行列式
§1.1 行列式的定义与性质
§1.2 行列式的计算
§1.3 Cramer 法则
§1.4 第 1 章习题
第二章 矩阵
§2.1 矩阵及其运算
§2.2 逆矩阵
§2.3 分块矩阵及其运算
§2.4 初等变换与初等矩阵
§2.5 矩阵的秩
§2.6 第 2 章习题
第三章 几何向量及其应用
§3.1 向量及其线性运算
§3.2 数量积 向量积 混合积6
§3.3 平面和空间直线 6
§3.4 第 3 章习题
第四章 n 维向量与线性方程组7
§4.1 消元法
§4.2 向量组的线性相关性
§4.3 向量组的秩
§4.4 线性方程组的解的结构
§4.5 第 4 章习题
第五章 线性空间与欧式空间9
§5.1 线性空间基本概念
§5.2 欧式空间的基本概念
§5.3 第 5 章习题
第六章 特征值与特征向量11
§6.1 矩阵的特征值与特征向量
§6.2 相似矩阵与矩阵的相似对角化········11
§6.3 第 6 章习题

第七章 二次曲面与二次型127	
§7.1 曲面与空间曲线	
§7.2 实二次型135	
§7.3 第 7 章习题	

第一章 行列式

§1.1 行列式的定义与性质

(A)

1.
$$x_1 = -2, x_2 = 4$$

解:由题可知: $D = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = -1 \neq 0$,所以原方程组有唯一的解。因为
$$D_1 = \begin{vmatrix} 6 & 2 \\ 8 & 3 \end{vmatrix} = 18 - 16 = 2, D_2 = \begin{vmatrix} 3 & 6 \\ 5 & 8 \end{vmatrix} = 24 - 30 = -6$$
,所以原方程组的唯一解为: $x_1 = \frac{D_1}{D} = -2, x_2 = \frac{D_2}{D} = 6$.

2. 不会改变。

解:因为 A_{ij} 是代数余子式,即 $A_{ij} = (-1)^{i+j} M_{ij}$,且 M_{ij} 是删去 a_{ij} 所在的第 i 行和第 j 列元素后剩余元素按它们原来的相对次序形成的 (n-1) 阶子式,可见 A_{ij} 与的 D 第 i 行和第 j 列元素的值无关,因此不会改变。

第:
$$M_{34} = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 5 & -8 \\ 1 & 2 & 10 \end{vmatrix} = 66 + 38 = 104$$

$$A_{34} = (-1)^{3+4} M_{34} = -104$$

4. 解:记 D_1 的 (i,j) 元素余子式为 M_{ij} ,记 D_2 的 (i,j) 元素余子式为 M'_{ij} ,将 D_2 按第 4 行展开,有:

$$D_2 = (-1)(-1)^{4+1}M'_{41} + (-1)^{4+2}M'_{42} + (-1)^{4+3}(-1)M'_{43} + (-1)^{4+4}M'_{44}$$

 $= M'_{41} + M'_{42} + M'_{43} + M'_{44}$
而由于 D_1 与 D_2 仅第 4 行元素不同,可知:
 $M_{41} = M'_{41}$, $M_{43} = M'_{43}$, $M_{44} = M'_{44}$, $M_{44} = M'_{44}$

所以 $D_2 = M_{41} + M_{42} + M_{43} + M_{44}$ 。

5.(1)-100; (2) 4abcdef

解:第一问按行列式定义直接展开计算即可。第二问各行分别提出公因子, 各列分别提出公因子,再按定义展开计算。

过程: (1)

原式 =
$$\begin{vmatrix} 2 & 1 & 4 \\ 0 & 5 & 15 \\ 4 & 6 & 10 \end{vmatrix}$$
 = $5\begin{vmatrix} 2 & 1 & 4 \\ 0 & 1 & 3 \\ 0 & 4 & 2 \end{vmatrix}$ = $10\begin{vmatrix} 2 & 1 & 4 \\ 0 & 1 & 3 \\ 0 & 2 & 1 \end{vmatrix}$ = $10 \times 2 \times (1 - 6) = -100$
(2)原式 = $adf\begin{vmatrix} -b & c & e \\ b & -c & e \\ b & c & -e \end{vmatrix}$ = $adf\begin{vmatrix} -b & c & e \\ 0 & 0 & 2e \\ 0 & 2c & 0 \end{vmatrix}$ = $adf(-b)(-4ec)$ =

4abcdef

6.(1)
$$(-1)^{\frac{(n+2)(n-1)}{2}}n!$$
; (2) $x^n + y^n(-1)^{n-1} = x^n + (-1)^{n-1}y^n$ 解:

(1)解析:将最后一列与前一列交换 (n-1) 次,直至原最后一列移至首列。

具体过程:

原式=
$$(-1)^{n-1}$$
 $\begin{vmatrix} 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & n-1 & \vdots & \vdots & \cdots & 0 \\ n & 0 & 0 & 0 & \cdots & 0 \end{vmatrix}$ $= (-1)^{n-1}(-1)^{\frac{n(n-1)}{2}}n! = (-1)^{\frac{(n+2)(n-1)}{2}}n!$

注释: 答案也可以写作 $(-1)^{\frac{(n-2)(n-1)}{2}}n!$,是一个意思。

(2) 具体过程:

原式 =
$$\begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix} = \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\frac{y^2}{x} & 0 & 0 & \cdots & x & 0 \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

$$= \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{y^3}{x^2} & 0 & 0 & \cdots & 0 & 0 \\ -\frac{y^2}{x} & 0 & 0 & \cdots & x & 0 \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

$$= \begin{vmatrix} x + y(-\frac{y}{x})^{n-1} & 0 & 0 & \cdots & 0 & 0 \\ y(-\frac{y}{x})^{n-2} & x & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{y^3}{x^2} & 0 & 0 & \cdots & 0 & 0 \\ -\frac{y^2}{x} & 0 & 0 & \cdots & x & 0 \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix} = \left[x + y(-\frac{y}{x})^{n-1} \right] x^{n-1}$$

$$(B)$$

证明:

设变换前的行列式为, 变换后的行列式为

$$= b^0 b^1 b^2 \cdots b^{n-1} b^{-1} b^{-2} b^{-3} \cdots b^{1-n} D$$

= D

所以,变换后的行列式的值与原来的行列式的值仍然相等。

§1.2 行列式的计算

(A)

1.
$$\Re$$
: (1) $-2(x^3 + y^3)$ (2) $1 - x^2 - y^2 - z^2$ (3) (4)160(5)40(6)

具体过程:(1)原式 =
$$\begin{vmatrix} 2x + 2y & 2x + 2y & 2x + 2y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} = (2x + 2y) \begin{vmatrix} 1 & 1 & 1 \\ y & x + y & x \\ x + y & x & y \end{vmatrix}$$

$$= (2x + 2y) \begin{vmatrix} 1 & 1 & 1 \\ 0 & x & x - y \\ 0 & -y & -x \end{vmatrix} = 2(x + y)[-x^{2} + y(x - y)]$$

$$= 2(x+y)[-x^2 + xy - y^2] = -2(x^3 + y^3)$$

(2) 原式 =
$$\begin{vmatrix} 1 - x^2 - y^2 - z^2 & 0 & 0 & 0 \\ x & 1 & 0 & 0 \\ y & 0 & 1 & 0 \\ z & 0 & 0 & 1 \end{vmatrix} = 1 - x^2 - y^2 - z^2$$

$$(3) \ \mbox{\mathbb{R}} \vec{\Xi} = \left| \begin{array}{cccc} a+b & a & a & a \\ -b & -b & 0 & 0 \\ -b & 0 & c & 0 \\ -b & 0 & 0 & c \end{array} \right| = \left| \begin{array}{ccccc} b+\frac{ac}{b}-\frac{ca}{b} & a & a & a \\ 0 & -b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & -c \end{array} \right| = b^2c^2$$

(4) 原式 =
$$10$$
 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$
 = 10
 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & -3 & -2 & -1 \end{vmatrix}$

$$= 10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{vmatrix} = 160$$

$$= 5 \begin{vmatrix} 1 & -5 & 3 & -3 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & 6 & -7 \\ 0 & 0 & -2 & 3 \end{vmatrix} = -5 \begin{vmatrix} 1 & -5 & 3 & -3 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 2 \end{vmatrix} = -5 \times 2 \times (-2) \times 2 = -5 \times$$

40

2, 证明:

2,证明:
$$(1) 原式 = \begin{vmatrix} a_1 + b_1x & a_1x + b_1 & c_1 \\ a_2 + b_2x & a_2x + b_2 & c_2 \\ a_3 + b_3x & a_3x + b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 - a_1x^2 & a_1x + b_1 & c_1 \\ a_2 - a_2x^2 & a_2x + b_2 & c_2 \\ a_3 - a_3x^3 & a_3x + b_3 & c_3 \end{vmatrix} = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & a_2x + b_2 & c_2 \\ a_3 & a_3x + b_3 & c_3 \end{vmatrix} = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix},$$

正毕。

(2) 构造
$$D = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & b & c & x \\ a^2 & b^2 & c^2 & x^2 \\ a^3 & b^3 & c^3 & x^3 \end{bmatrix}$$
, 按照 D 的第 4 列展开,所求原式即为

 x^2 项系数的相反数。由范德蒙德行列式,有:

$$D = (x - a) (c - a) (b - a) (x - b) (c - b) (x - c)$$
$$= (x - a) (x - b) (x - c) (c - a) (b - a) (c - b)$$

$$= (x^{2} - ax - bx + ab) (x - c) (c - a) (b - a) (c - b)$$

对比相同项的系数,可得原式满足:

原式=-(-a-b-c)(c-a)(b-a)(c-b)=(a+b+c)(c-a)(b-a)(c-b), 证毕。

(3) 后一列依次减去前一列,可以得到:

原式 =
$$\begin{vmatrix} a^2 & 2a+1 & 2a+3 & 2a+5 \\ b^2 & 2b+1 & 2b+3 & 2b+5 \\ c^2 & 2c+1 & 2c+3 & 2c+5 \\ d^2 & 2d+1 & 2d+3 & 2d+5 \end{vmatrix} = \begin{vmatrix} a^2 & 2a+1 & 2 & 4 \\ b^2 & 2b+1 & 2 & 4 \\ c^2 & 2c+1 & 2 & 4 \\ d^2 & 2d+1 & 2 & 4 \end{vmatrix} = 0,$$
 证

毕。

3, (1)-20; (2)-2; (3)
$$abd(d-b)(d-c)(c-b)(c^2-a^2)$$

解: (1) 原式 =
$$\begin{vmatrix} 1 & -2 \\ 3 & 4 \end{vmatrix} \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} = (4+6)(40-42) = 10 \times (-2) = -20$$

$$(2) 原式 = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \end{vmatrix} \begin{vmatrix} 3 & 4 \\ 5 & 6 \end{vmatrix} = 2 \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 0 \end{vmatrix} \begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix} = 2 \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = 2 \times (-1) = -2$$

$$= -abd (d - b) (c - b) (c - d) (c^{2} - a^{2})$$
$$= abd (d - b) (d - c) (c - b) (c^{2} - a^{2})$$

$$4.(1)(n-1)(-1)^{n-1}; (2)\sum_{i=1}^{n}a_{i}b^{b-1}+b^{n}; (3)(-2)(n-2)!; (4)a_{1}a_{2}a_{3}\cdots a_{n}\left(1+\sum_{i=1}^{n}\frac{1}{a_{i}}\right)$$

解:(1)原式=

$$n-1$$
 $n-1$
 $n-1$

$$= (n-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{vmatrix} = (n-1)(-1)^{n-1}$$

(2) 原式

(2) 原式
$$= (a_1 + a_2 + a_3 + \cdots + a_n + b) \begin{vmatrix} 1 & a_2 & a_3 & \cdots & a_n \\ 1 & a_2 + b & a_3 & \cdots & a_n \\ 1 & a_2 & a_3 + b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_2 & a_3 & \cdots & a_n + b \end{vmatrix}$$

$$= (a_1 + a_2 + a_3 + \cdots + a_n + b) \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & b & 0 & \cdots & 0 \\ 1 & 0 & b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & b \end{vmatrix}$$

$$= \left(\sum_{i=1}^{n} a_i + b\right) b^{n-1} = \sum_{i=1}^{n} a_i b^{b-1} + b^n$$

$$(3) \, \text{\mathbb{R}} \, \vec{\Xi} = \left| \begin{array}{ccccc} -1 & 0 & 0 & \cdots & 0 \\ 2 & 2 & 2 & \cdots & 2 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-2 \end{array} \right| = \left| \begin{array}{cccccc} -1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 2 & \cdots & 2 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-2 \end{array} \right| = (-2) (n-2)!$$

$$= \left(1 + a_1 + \frac{a_1}{a_2} + \dots + \frac{a_1}{a_n}\right) (a_2 a_3 \cdots a_n)$$

$$= (a_1 a_2 a_3 \cdots a_n) \left(1 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)$$

$$= a_1 a_2 a_3 \cdots a_n \left(1 + \sum_{i=1}^n \frac{1}{a_i}\right)$$

5.
$$1 - a + a^2 - a^3 + a^4 - a^5$$

解:

由题意得:
$$D_5 = \begin{vmatrix} -a & 0 & 0 & 0 & 1 \\ -1 & 1-a & a & 0 & 0 \\ 0 & -1 & 1-a & a & 0 \\ 0 & 0 & -1 & 1-a & a \\ 0 & 0 & 0 & -1 & 1-a \end{vmatrix}$$

$$= -aD_4 + (-1)^{1+5} \begin{vmatrix} -1 & 1-a & a & 0 \\ 0 & -1 & 1-a & a \\ 0 & 0 & -1 & 1-a \\ 0 & 0 & 0 & -1 \end{vmatrix}$$

$$=1-aD_{\Delta}$$

所以,由此递推规律可以得到递推式: $D_n = 1 - aD_{n-1} \ (n \ge 3)$ 所以有: $D_5 = 1 - aD_4 = 1 - a \ (1 - aD_3) = 1 - a + a^2D_3$ $= 1 - a + a^2(1 - aD_2) = 1 - a + a^2 - a^3D_2$

因为:
$$D_2 = \begin{vmatrix} 1-a & a \\ -1 & 1-a \end{vmatrix} = a^2 - a + 1$$

所以有:
$$D_5 = 1 - a + a^2 - a^3 (a^2 - a + 1) = 1 - a + a^2 - a^3 + a^4 - a^5$$
.

6,
$$\prod_{i=1}^{n} i!$$

解:将行列式的各行两两交换,原来的最后一行交换至新行列式的第一行,原来行列式的倒数第二行交换至新行列式的第二行,以此类推,共交换了: $0+1+2+\cdots n-1=\frac{n(n-1)}{2}$ 次,从而有:

$$D_{n+1} = (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & a-1 & a-2 & \cdots & a-n \\ a^2 & (a-1)^2 & (a-2)^2 & \cdots & (a-n)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a^n & (a-1)^n & (a-2)^n & \cdots & (a-n)^n \end{vmatrix}$$

再将行列式的各列两两交换,原来的最后一列交换至新行列式的第一列,原来行列式的倒数第二列换至新行列式的第二列,以此类推,共交换了: $0+1+2+\cdots n-1=\frac{n(n-1)}{2}$ 次,从而有:

$$D_{n+1} = (-1)^{\frac{n(n-1)}{2}} (-1)^{\frac{n(n-1)}{2}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ a-n & a-n+1 & a-n+2 & \cdots & a \\ (a-n)^2 & (a-n+1)^2 & (a-n+2)^2 & \cdots & a^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (a-n)^n & (a-n+1)^n & (a-n+2)^n & \cdots & a^n \end{pmatrix}$$

$$= \prod_{i=1}^{n} i!$$

7, 证明:

(2) 解题思路:

从第一列开始,每一列都乘 $\frac{1}{x}$,直至最后一列,从而构造三角行列式,具体过程如下:

$$D_{n} = \begin{pmatrix} x & 0 & 0 & \cdots \\ 0 & x & 0 & \cdots \\ 0 & 0 & x & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots \\ a_{n} & a_{n-1} + \frac{a_{n}}{x} & a_{n-2} + \frac{1}{x} \left(a_{n-1} + \frac{a_{n}}{x} \right) & \cdots \end{pmatrix}$$

(3) 解题思路: 假设 $D_n = \cos n\alpha$ 成立,运用数学归纳法解题: 具体过程:

假设
$$D_n = \cos n\alpha$$
 成立

$$\therefore D_2 = \begin{vmatrix} \cos \alpha & 1 \\ 1 & 2\cos \alpha \end{vmatrix} = 2\cos^2 \alpha - 1 = \cos 2\alpha, \quad \text{即 n=2 时原式成立}$$

不妨假设 $D_{n-1} = \cos(n-1)\alpha$ 成立,则:

$$D_n = \begin{vmatrix} \cos \alpha & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & \cos \alpha \end{vmatrix}$$
 (按照最后一行展开)

$$= (-1) \begin{vmatrix} \cos \alpha & 1 & 0 & 0 & \cdots & 1 & \cos \alpha \\ 1 & 2\cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{vmatrix} + D_{n-1} \cdot 2\cos \alpha$$

(按照最后一列展开) = $(-1) D_{n-2} + D_{n-1} \cdot 2 \cos \alpha$

$$= (-1)\cos(n-2)\alpha + 2\cos\alpha\cos(n-1)\alpha$$

$$= 2\cos\alpha\left[\cos\left(n-2\right)\alpha\cos\alpha - \sin\left(n-2\right)\alpha\sin\alpha\right] - \cos\left(n-2\right)\alpha$$

$$= (2\cos^2\alpha - 1)\cos(n-2)\alpha - 2\sin(n-2)\alpha\sin\alpha\cos\alpha$$

$$=\cos 2\alpha\cos\left(n-2\right)\alpha-\sin 2\alpha\sin\left(n-2\right)\alpha$$

 $=\cos n\alpha$

假设成立,原命题正确,证毕。

(B)

1,解:解题思路:后面的列整体都换到前面,一共有列,一列换次,一共 就换次,具体过程为:

$$= (-1)^{mn} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & & \vdots \\ b_{m1} & \cdots & b_{mm} \end{vmatrix}$$

2.(1)
$$(-1)^{n-1}2^{n-2}(n-1)$$
; (2) $\lambda^n - \lambda^{n-1}\sum_{i=1}^n a_i^2$

解: (1) 由題意得:
$$D_n = \begin{vmatrix} 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & 0 & 1 & \cdots & n-3 & n-2 \\ 2 & 1 & 0 & \cdots & n-4 & n-3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ n-1 & n-2 & n-3 & \cdots & 1 & 0 \end{vmatrix}$$
, 则:

从最后一行开始,每一行都减去前一行,之后再将最后一列加到前面各列上,有:

$$D_{n} = \begin{vmatrix} 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & 0 & 1 & \cdots & n-3 & n-2 \\ 2 & 1 & 0 & \cdots & n-4 & n-3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ n-1 & n-2 & n-3 & \cdots & 1 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & -1 & -1 & \cdots & -1 & -1 \\ 1 & 1 & -1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & -1 \\ 1 & 1 & 1 & \cdots & 1 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} n-1 & n & n+1 & \cdots & 2n-3 & n-1 \\ 0 & -2 & -2 & \cdots & -2 & -1 \\ 0 & 0 & -2 & \cdots & -2 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{vmatrix}$$
$$= (n-1)(-2)^{n-2}(-1)$$
$$= (-1)^{n-1}2^{n-2}(n-1)$$

(12 解:解题思路:首行乘 $\left(-\frac{a_i}{a_1}\right)$ 加至后面各行,各列再乘 $\left(\frac{a_i}{a_1}\right)$ 后加至首列,即可化为三角行列式。具体过程为:

原式 =
$$\begin{vmatrix} \lambda - a_1^2 & -a_1 a_2 & -a_1 a_3 & \cdots & -a_1 a_n \\ -\frac{\lambda a_2}{a_1} & \lambda & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -\frac{\lambda a_n}{a_1} & 0 & 0 & \cdots & \lambda \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - a_1^2 - a_2^2 - a_3^2 - \cdots a_n^2 & -a_1 a_2 & -a_1 a_3 & \cdots & -a_1 a_n \\ 0 & \lambda & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}$$

$$= \begin{pmatrix} \lambda - a_1^2 - a_2^2 - a_3^2 - \cdots a_n^2 \end{pmatrix} \lambda^{n-1}$$

$$= \lambda^n - \lambda^{n-1} \sum_{i=1}^n a_i^2$$

§1.3 Cramer 法则

(A)

1.(1)
$$x_1 = 3, x_2 = 1, x_3 = 1$$
; (2) $x_1 = 1, x_2 = x_3 = x_4 = 0$

解: (1)
$$D = \begin{vmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 3 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 0 & -6 & 6 \end{vmatrix} = 6 \begin{vmatrix} 2 & -2 & -1 \\ 3 & 2 & -2 \\ 0 & 0 & 1 \end{vmatrix} =$$

 $60 \neq 0$

所以原方程式有唯一解,有 cramer 法则,

$$x_1 = \frac{\begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \end{vmatrix}}{60} = \frac{6 \begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 0 & -1 & 1 \end{vmatrix}}{60} = \frac{6 \begin{vmatrix} 4 & -2 & -1 \\ 11 & 2 & -2 \\ 0 & 0 & 1 \end{vmatrix}}{60} = 6 \times \frac{(22+8)}{60} = 3$$

同理可得: $x_2 = 1, x_3 = 1$

(2) 由系数行列式
$$D = \begin{vmatrix} 1 & a_1 & a_1^2 & a_1^3 \\ 1 & a_2 & a_2^2 & a_2^3 \\ 1 & a_3 & a_3^2 & a_3^3 \\ 1 & a_4 & a_4^2 & a_4^3 \end{vmatrix} = \prod_{1 \leqslant ij \leqslant 4} (a_j - a_i) \neq 0$$

可知,原方程组有唯一解,从而由 Cramer 法则:

$$x_1 = 1, x_2 = \frac{D_2}{D} = 0, x_3 = 0, x_4 = 0;$$

 $2. \lambda = 1$

解: :原齐次方程有非零解,:系数行列式D=0

$$\therefore D = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 3 & -1 & 1 \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 2 & 0 \\ -2 & \lambda + 1 & 0 \\ 3 & -1 & 1 \end{vmatrix} = (\lambda - 3)(\lambda + 1) + 4$$

$$= \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0$$

$$\therefore \lambda = 1$$

3. 解: 若个方程个未知量组成的线性方程组的解不唯一,则其系数行列式的值为 0.

4. 解:设直线方程为:
$$Ax + By + C = 0$$

因为直线过 M_1, M_2 ,所以有:
$$\begin{cases} Ax + By + C = 0 \\ Ax_1 + By_1 + C = 0 \\ Ax_2 + By_2 + C = 0 \end{cases}$$

视 A, B, C 为未知数,则有:因为直线存在,即原齐次方程组存在非零解,

所以必有系数行列式
$$: D = \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$
,证毕。

5.
$$f(x) = 2x^3 - 5x^2 + 7$$

解: 设 $f(x) = ax^3 + bx^2 + cx + d$,则有:

$$\begin{cases}
-a+b-c+d=0 \\
a+b+c+d=4 \\
8a+4b+2c+d=3 \\
27a+9b+3c+d=16
\end{cases}$$

其系数行列式

$$D = \begin{vmatrix} -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 & -1 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 12 & -6 & 9 \\ 0 & 36 & -24 & 28 \end{vmatrix} = -2 \begin{vmatrix} 1 & 0 & 1 \\ 0 & -6 & -3 \\ 0 & -24 & -8 \end{vmatrix} = -2 \times (48 - 72) = 48$$

从而原方程组有唯一解,由 Cramer 法则,有:

$$a = \frac{\begin{vmatrix} 0 & 1 & -1 & 1 \\ 4 & 1 & 1 & 1 \\ 3 & 4 & 2 & 1 \\ 16 & 9 & 3 & 1 \end{vmatrix}}{\begin{vmatrix} -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \end{vmatrix}} = \frac{\begin{vmatrix} 0 & 1 & -1 & 1 \\ 4 & 0 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 16 & 8 & 4 & 0 \end{vmatrix}}{48} = \frac{-24 \begin{vmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{vmatrix}}{48} = -\frac{-4}{2} = 2$$

同理,可得:
$$b=-5, c=0, d=7$$

$$\therefore f(x) = 2x^3 - 5x^2 + 7$$

(**B**)

解: 由题可得: $\begin{cases} a_0 + a_1x_1 + a_2x_1^2 + a_3x_1^3 = 0 \\ a_0 + a_1x_2 + a_2x_2^2 + a_3x_2^3 = 0 \\ a_0 + a_1x_3 + a_2x_3^2 + a_3x_3^3 = 0 \\ a_0 + a_1x_4 + a_2x_4^2 + a_3x_4^3 = 0 \end{cases}$

不妨视 a_0, a_1, a_2, a_3 为未知数

一种英书院学业辅导中心

所以有:系数行列式
$$D = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix} = \prod_{1 \leq ij \leq 4} (x_j - x_i)$$

若方程有 4 个互不相同的根,则必有 $D \neq 0$,即原齐次方程必有唯一解, 而原齐次方程必有零解,

所以唯一解即为 $a_0 = a_1 = a_2 = a_3 = 0$,与 $a_3 \neq 0$ 相矛盾 所以,原方程不会有4个互不相同的根,原命题成立。

§1.4 第1章习题

1.(1)140; (2)48; (3)1,2,3; (4);(5)

解: (1) 原式 =
$$\begin{vmatrix} 5 & 2 \\ 3 & 4 \end{vmatrix} \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} = (20 - 6)(12 - 2) = 140$$

(2) 原式 =
$$\begin{vmatrix} 3 & 1 & 1 & 1 \\ -2 & 2 & 0 & 0 \\ -2 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 6 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 6 \times 2 \times 2 \times 2 = 48$$
(3) 原方程左边 =
$$\begin{vmatrix} x+1 & -4 & 2 \\ 3 & x-4 & 0 \\ 0 & 3-x & x-3 \end{vmatrix} = \begin{vmatrix} x+1 & -2 & 2 \\ 3 & x-4 & 0 \\ 0 & 0 & x-3 \end{vmatrix}$$

(3) 原方程左边 =
$$\begin{vmatrix} x+1 & -4 & 2 \\ 3 & x-4 & 0 \\ 0 & 3-x & x-3 \end{vmatrix} = \begin{vmatrix} x+1 & -2 & 2 \\ 3 & x-4 & 0 \\ 0 & 0 & x-3 \end{vmatrix}$$

$$= (x-3)[(x+1)(x-4)+6] = (x-3)(x^2-3x-4+6)$$

$$= (x-3)(x-1)(x-2) = 0$$

所以原方程的全部根为 x = 1, x = 2, x = 3.

(4) 将各列都加到第一列上,之后提出公因式 b,有:

$$(A_{11} + A_{21} + \dots + A_{n1}) b = a$$

$$A_{11} + A_{21} + \cdots + A_{n1} = \frac{a}{b}$$

(5) 因为原方程组只有零解,所以必有系数行列式 $D \neq 0$,且有:

$$D = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \mu & 1 \\ 1 & 2\mu & 1 \end{vmatrix} = \begin{vmatrix} \lambda & 1 & 1 \\ 1 - \lambda & \mu - 1 & 0 \\ 1 - \lambda & 2\mu - 1 & 0 \end{vmatrix} = (1 - \lambda) [2\mu - 1 - (\mu - 1)] = (1 - \lambda) \mu \neq 0$$

2.(1)D; (2)A; (3)B

解: (1) 选 D。考察的知识点为 Cramer 法则的内容,较好理解。

- (2) 选 A。由性质: 行列式的任一行各元素分别与另一方对应元素的代数 余子式的乘积之和为 0 可得到答案。
 - (3) 选 B。各列减去第一列即可化简, 具体过程为:

$$f(x) = \begin{vmatrix} x-2 & 1 & 0 & -1 \\ 2x-2 & 1 & 0 & -1 \\ 3x-3 & 1 & x-2 & -2 \\ 4x & -3 & x-7 & -3 \end{vmatrix} = \begin{vmatrix} x-2 & 1 & 0 & 0 \\ 2x-2 & 1 & 0 & 0 \\ 3x-3 & 1 & x-2 & -1 \\ 4x & -3 & x-7 & -6 \end{vmatrix}$$
$$= \begin{vmatrix} x-2 & 1 \\ 2x-2 & 1 \end{vmatrix} \begin{vmatrix} x-2 & -1 \\ x-7 & -6 \end{vmatrix} = -x(5-5x) = 0 : x = 0/x = 1 : B$$

3.-105

解: 由题可知:

$$M_{13} = \begin{vmatrix} 3 & 5 & 2 \\ 5 & 4 & 5 \\ 5 & 6 & 4 \end{vmatrix} = \begin{vmatrix} 3 & 9 & 2 \\ 2 & 5 & 3 \\ 0 & 0 & -1 \end{vmatrix} = 3$$

$$M_{23} = \begin{vmatrix} 1 & 8 & 8 \\ 5 & 4 & 5 \\ 5 & 6 & 4 \end{vmatrix} = \begin{vmatrix} -7 & 0 & 8 \\ 0 & -1 & 5 \\ 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} -7 & 0 & 8 \\ 0 & -1 & 5 \\ 1 & 0 & 14 \end{vmatrix} = 106$$

$$M_{33} = \begin{vmatrix} 1 & 8 & 8 \\ 3 & 5 & 2 \\ 5 & 6 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 8 & 8 \\ 0 & -19 & -22 \\ 0 & -34 & -36 \end{vmatrix} = 684 - 748 = -64$$

4.(1)-18; (2)-142; (3)
$$x^2 + y^2 + z^2 + 1$$
 (4) $6a^5$

解:(1)原式=
$$\begin{vmatrix} 0 & 8 & 16 & -5 \\ 0 & 7 & 15 & 5 \\ -1 & 2 & 5 & -2 \\ 0 & 2 & 4 & 1 \end{vmatrix} = - \begin{vmatrix} 8 & 16 & -5 \\ 7 & 15 & 5 \\ 2 & 4 & 1 \end{vmatrix} = - \begin{vmatrix} 18 & 36 & 0 \\ -3 & -5 & 0 \\ 2 & 4 & 1 \end{vmatrix} =$$

-18

(2) 原式 =
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & -5 & -3 & -7 \\ 0 & -2 & -1 & 8 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -5 & -3 & -7 \\ -2 & -1 & 8 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 0 & -13 & 8 \\ 0 & -5 & 14 \end{vmatrix} =$$

-142

$$= \begin{vmatrix} x^2 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1 \end{vmatrix}$$

$$= x \left(\begin{vmatrix} x & y & z \\ xy & y^2 & yz \\ xz & yz & z^2 + 1 \end{vmatrix} + \begin{vmatrix} x & y & z \\ 0 & 1 & 0 \\ xz & yz & z^2 + 1 \end{vmatrix} \right) + (y^2 + 1)(z^2 + 1) - y^2 z^2$$

$$= x \left[x(z^2 + 1) - xz^2 \right] + y^2 + z^2 + 1$$

$$= x^2 + y^2 + z^2 + 1$$

(4) 由于
$$D_5 = 2aD_4 -$$
$$\begin{vmatrix} a^2 & 1 & 0 & 0 \\ 0 & 2a & 1 & 0 \\ 0 & a^2 & 2a & 1 \\ 0 & 0 & a^2 & 2a \end{vmatrix} = 2aD_4 - a^2 \begin{vmatrix} 2a & 1 & 0 \\ a^2 & 2a & 1 \\ 0 & a^2 & 2a \end{vmatrix}$$

$$=2aD_4-a^2D_3$$

$$\therefore D_n = 2aD_{n-1} - a^2D_{n-2}$$

$$\therefore D_5 = 2aD_4 - a^2D_3 = 2a(2aD_3 - a^2D_2) - a^2D_3$$
$$= 3a^2D_3 - 2a^3D_2 = 4a^3D_2 - 3a^4D_1$$

$$\therefore D_2 = \begin{vmatrix} 2a & 1 \\ a^2 & 2a \end{vmatrix} = 3a^2, D_1 = 2a$$

$$\therefore D_5 = 12a^5 - 6a^5 = 6a^5$$

5.
$$x_1 = \frac{1}{2}, x_2 = x_3 = x_4 = 0$$

解:原方程组的系数行列式记为

解: 原方程组的系数行列式记为
$$D = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 4 \\ 2 & -1 & 1 & -1 \\ 2 & 3 & 4 & 15 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 2 & 4 \\ 2 & 1 & 1 & 1 \\ 2 & -1 & 1 & -1 \\ 2 & 3 & 4 & 15 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 2 & 4 \\ 0 & -1 & -3 & -7 \\ 0 & -3 & -3 & -9 \\ 0 & 1 & 0 & 7 \end{vmatrix}$$

$$= - \begin{vmatrix} -1 & -3 & -7 \\ -3 & -3 & -9 \\ 1 & 0 & 7 \end{vmatrix} = - \begin{vmatrix} -1 & -3 & -7 \\ 0 & 6 & 12 \\ 0 & -3 & 0 \end{vmatrix} = 36$$

所以,由 Cramer 法则:

$$x_1 = \frac{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & -1 & 1 & -1 \\ 1 & 3 & 4 & 15 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & -2 & 0 & -2 \\ 0 & 2 & 3 & 14 \end{vmatrix}} = \frac{\frac{1}{2}}{36} = \frac{1}{2},$$

$$\therefore x_1 = \frac{1}{2}, x_2 = x_3 = x_4 = 0$$

第二章 矩阵

矩阵及其运算 **§2.1**

(A)

$$1. \begin{bmatrix} 22 & 19 & 13 \\ -26 & 7 & 11 \\ 28 & 5 & -11 \end{bmatrix}, \begin{bmatrix} 22 & 19 & 13 \\ -26 & 7 & 11 \\ 28 & 5 & -11 \end{bmatrix},$$

矩阵运算的分配律。前两问直接计 算即可,第三问利用分配律简化计算:

$$AB - AC = A(B - C) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 2 \\ -1 & 2 & -2 \\ -1 & -2 & 2 \end{bmatrix}$$

2. (1) 14; (2)
$$\begin{bmatrix} -2 & 4 \\ -1 & 2 \\ -3 & 6 \end{bmatrix}$$
; (3)
$$\begin{bmatrix} 22 & 15 \\ 22 & 2 \end{bmatrix}$$
; (4) $a_{11}x_1^2 + a_{22}x_2^2 + a_{13}x_1^2 + a_{22}x_2^2 + a_{13}x_1^2 + a_{13$

 $a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$

解析: 本题考查矩阵乘法, 直接利用矩阵乘法运算原则即可求解:

(1)
$$\mathbb{R}\mathfrak{X} = 1+4+9=14$$
;
(2) $\mathbb{R}\mathfrak{X} = \begin{bmatrix} -1 \times 2 & 2 \times 2 \\ -1 \times 1 & 2 \times 1 \\ -1 \times 3 & 2 \times 3 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ -1 & 2 \\ -3 & 6 \end{bmatrix}$;

(3) 原式 =
$$\begin{bmatrix} 1+4-3+20 & 3+8+4 \\ -1-2+25 & -3+4 \end{bmatrix} = \begin{bmatrix} 22 & 15 \\ 22 & 2 \end{bmatrix};$$

(4) 原式 =

$$\left[\begin{array}{cccc} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 & a_{12}x_1 + a_{22}x_2 + a_{23}x_3 & a_{13}x_1 + a_{23}x_2 + a_{33}x_3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]$$

 $= x_1(a_{11}x_1 + a_{12}x_2 + a_{13}x_3) + x_2(a_{12}x_1 + a_{22}x_2 + a_{23}x_3) + x_3(a_{12}x_1 + a_{22}x_2 + a_{23}x_3)$

$$= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

3.
$$\begin{bmatrix} 2 & 1 \\ -10 & 3 \\ 3 & 9 \end{bmatrix}$$
 解析、太顯孝杏

解析: 本题考查线性变换与矩阵。

$$\diamondsuit X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix}, Z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 4 & 0 & 5 \end{bmatrix} Y, Y = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \ \square \ X = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x$$

$$\begin{bmatrix} -3 & 1 \\ 4 & -1 \\ 1 & 1 \end{bmatrix} Z$$
,代入可得

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 4 & 0 & 5 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 4 & -1 \\ 1 & 1 \end{bmatrix} Z = \begin{bmatrix} 2 & 1 \\ -10 & 3 \\ -7 & 9 \end{bmatrix} Z,$$

则所求
$$Z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 到 $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 的线性变换矩阵为 $\begin{bmatrix} 2 & 1 \\ -10 & 3 \\ 3 & 9 \end{bmatrix}$ 。

4. (1) 不等于; (2) 不等于; (3) 不等于

解析:本题考查矩阵乘法运算,需要注意矩阵乘法一般不存在交换律。

(1) 经计算
$$AB = \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix}$$
, $BA = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$, 二者不相等;

(2)
$$(A+B)^2 = (A+B)(A+B) = A^2 + BA + AB + B^2 A^2 + 2AB + B^2$$

(3)
$$(A+B)(A-B) = A^2 + BA - AB - B^2 A^2 - B^2$$

5. (1)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
; (2) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$; (3) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \end{bmatrix}$

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right];$$

$$(4) \ A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

解析:本题考查矩阵乘法定义与应用,注意矩阵乘法与代数乘法的异同,常用到的反例有 $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$, 代入验证即可。

6. (1)
$$AD = \begin{bmatrix} \lambda_1 a_{11} & \cdots & \lambda_j a_{1j} & \cdots & \lambda_n a_{1n} \\ \vdots & & \vdots & & \vdots \\ \lambda_1 a_{n1} & \cdots & \lambda_j a_{nj} & \cdots & \lambda_n a_{nn} \end{bmatrix},$$

$$DA = \begin{bmatrix} \lambda_1 a_{11} & \cdots & \lambda_1 a_{1n} \\ \vdots & & \vdots \\ \lambda_i a_{i1} & \cdots & \lambda_i a_{in} \\ \vdots & & \vdots \\ \lambda_n a_{n1} & \cdots & \lambda_n a_{nn} \end{bmatrix};$$

 $(2)A\varepsilon_j = \begin{bmatrix} a_{1j} & a_{2j} & \cdots & a_{nj} \end{bmatrix}^T, \varepsilon_i^T A = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}, \varepsilon_i^T A \varepsilon_j = a_{ij}$

$$(3) \left[\begin{array}{ccc} 1 & 3 & 2 \\ 1 & 4 & 3 \\ 2 & 1 & 1 \end{array} \right];$$

(4) 若取 $x = \varepsilon_i$,则得 A 与 B 第 i 列相等

解析:本题考查矩阵乘法定义与应用,本题结论可直接在后面章节中使用。

- (1) 根据矩阵乘法定义计算、,规律是的第列等于用乘的第列所得列向量,的第i行等于用乘的第i行所得行向量。
- (2) 根据矩阵乘法定义计算 $A\varepsilon_j$, $\varepsilon_i^T A$, 规律是 $A\varepsilon_j$ 为 的第 列, $\varepsilon_i^T A$ 为 的第 行, $\varepsilon_i^T A\varepsilon_i$ 为 a_{ij} 。
 - (3)由第一问的规律可知,A的第i行即由 λ_i 乘B的第i行得到, $\lambda_1 = 2\lambda_2 = 3\lambda_3 = 7$,

(3) 田第一问的规律可知,A 的第
$$i$$
 行即田 λ_i 聚 B 的第 i 行 由此反解出 B 的每一行,得到矩阵 $B = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 3 \\ 2 & 1 & 1 \end{bmatrix}$ 。

(4) 对任意 n 维列向量均满足,则可利用第二问的结论,取 $x = \varepsilon_i$,得到 A 与 B 的第 j 列相等,又由 j 的任意性,A 与 B 的每一列都相等,则有 A=B。

$$7. \left[\begin{array}{rrrr} 1 & 2 & 0 \\ 1 & -3 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

解析: 本题考查矩阵乘法运算。

由矩阵乘法运算规则, $x+2y=a_{11}x+a_{12}y+a_{13}z$, $x-3y=a_{21}x+a_{22}y+a_{23}z$, $y+z=a_{31}x+a_{32}y+a_{33}z$,

比较左右系数可得到矩阵 A 的每一个元素,
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -3 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
。

8. 解析: 本题考查矩阵乘法运算, 用数学归纳法证明。

(1) 当 n=1 时, 等式成立;

假设 n=k 时等式成立,即
$$\left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right]^k = \left[\begin{array}{cc} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos\theta \end{array} \right]$$
成

立,

则当 n=k+1 时,
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{k+1}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^k \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin k\theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta \cos k\theta - \sin \theta \sin k\theta & -\sin \theta \cos k\theta - \cos \theta \sin k\theta \\ \cos \theta \sin k\theta + \sin \theta \cos k\theta & -\sin \theta \sin k\theta + \cos \theta \cos k\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos(k+1)\theta & -\sin(k+1)\theta \\ \sin(k+1)\theta & \cos(k+1)\theta \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix},$$
即当 n=k+1 时。 筆式成立

因此原命题成立

(2) 当 n=1 时, 等式成立;

假设 n=k 时等式成立,即
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 1 & k & \frac{1}{2}k(k-1) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$$
成立,
则当 n=k+1 时,
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^k \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & k & \frac{1}{2}k(k-1) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k+1 & \frac{1}{2}k(k-1)+k \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & k+1 & \frac{1}{2}k(k+1) \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n & \frac{1}{2}n(n-1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$$
, 即当 n=k+1 时等式

成立, 因此原命题成立。

第二题还可拆解矩阵直接证明: 令
$$B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
,

则 A = I + B, $A^n = (I + B)^n = I + nB + \frac{1}{2}n(n-1)B^2 + \dots + B^n$,

$$\overrightarrow{\text{m}} \ B^2 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$$

当
$$n \geqslant 3$$
时, $B^n = 0$,代入得 $A^n = I + nB + \frac{1}{2}n(n-1)B = \begin{bmatrix} 1 & n & \frac{1}{2}n(n-1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$,

结论成立。

9.
$$A^2 = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$
,其(i,j)元素表示从 P_i 出发经过一次中转达

到 P_i 的航班总数。

解析:根据矩阵乘法定义计算 A^2 ,由 A^2 的具体意义可知 A^2 的 (,) 元素表示从 P_i 出发经过 1 次中转到达 P_j 的航班总数。

- 10. 解析:本题考查对称矩阵、反对称矩阵定义及矩阵转置运算规律。证明思路是对于任意方阵 P,验证 P^T 与 P 的关系,若 $P^T = P$ 则 P 为对称矩阵,若 $P^T = -P$ 则 P 为反对称矩阵。
- (1) A 为对称矩阵 $A^T = A(B^TAB)^T = B^TA^T(B^T)^T = B^TA^TB = B^TABB^TAB$ 为对称矩阵;
- (2) A 为对称矩阵、B 为反对称矩阵 $A^T=A$, $B^T=-B$,则 AB 为反对称矩阵 $-AB=(AB)^T=B^TA^T=-BAAB=BA$;
- (3) \mathbf{A} 、 \mathbf{B} 为同阶对称矩阵 $A^T=A$, $B^T=B$, 则 $(A+B)^T=A^T+B^T=A+B$ 是对称矩阵, $(A-B)^T=A^T-B^T=A-B$ 是对称矩阵, $(kA)^T=kA^T=kA$ 是对称矩阵。同理,当 \mathbf{A} 、 \mathbf{B} 为同阶反对称矩阵时, \mathbf{A} + \mathbf{B} 、 \mathbf{A} - \mathbf{B} 、 \mathbf{k} A 是反对称矩阵。

11. (1) O; (2)
$$3^{n-1}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}$$
; (3) I, $\begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$

解析:本题考查方阵幂运算与矩阵乘法运算律,注意使用矩阵乘法结合律简化运算。

$$(1) A^{2} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{bmatrix} = 2A,$$

$$A^{n} - 2A^{n-1} = A^{n-2}(A^{2} - 2A) = O(n > 2)$$

$$(2) \beta \alpha^{T} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{T} = 3,$$

$$A^{n} = (\alpha^{T}\beta)^{n} = \alpha^{T}\beta\alpha^{T}\beta\cdots\alpha^{T}\beta = \alpha^{T}(\beta\alpha^{T})\cdots(\beta\alpha^{T})\beta = \alpha^{T}(\beta\alpha^{T})^{n-1}\beta$$

$$= 3^{n-1}\alpha^{T}\beta = 3^{n-1}\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{T}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} = 3^{n-1}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix};$$

$$(3) AC = I, CA = I, B^{100} = \begin{bmatrix} 0^{100} & \\ & (-1)^{100} & \\ & & 1^{100} \end{bmatrix} = \begin{bmatrix} 0 & 1 & \\ & 1 & \\ & & 1 \end{bmatrix}$$

$$(ABC)^{100} = ABCABC \cdots ABC = AB(CA)B(CA) \cdots (CA)BC = AB^{100}C$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ 2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ 2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$

12. 解析: 本题考查矩阵乘法定义及单位矩阵运算规律, $I_m A_{m \times n} = A_{m \times n} I_m = A_{m \times n}$, $I^n = I$,

将已知代入计算即证。

 $A^2 = A \left[\frac{1}{2} (B+I) \right]^2 = \frac{1}{2} (B+I) \ B^2 + IB + BI + I^2 = 2(B+I) \ B^2 + 2B + I = 2B + 2I \ B^2 = I$ 证毕。

(B)

1. 解析:本题考查上三角矩阵相关知识。 设 A、B 为同阶上三角矩阵,令 C=AB,

当 i>j 时,
$$a_{ij}=0,b_{ij}=0$$
,
$$c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}=\sum_{k=1}^{i-1} a_{ik}b_{kj}+\sum_{k=i}^n a_{ik}b_{kj}=\sum_{k=1}^{i-1} 0\cdot b_{kj}+\sum_{k=i}^n a_{ik}\cdot 0=0$$
,则 C 为上三角矩阵。

2.解析:本题考查矩阵乘法与矩阵转置定义,充分性考虑 $AA^T=O$ 主对角线元素。

必要性: A = O $A^T = O$ $A^T A = O$

充分性: 令 $B=A^TA$,若 $B=A^TA=O$,则 $b_{ii}=0$,由矩阵乘法运算的准则

 $b_{ii}=a'_{i1}a_{1i}+a'_{i2}a_{2i}+\cdots+a'_{in}a_{ni}$,又 $A^{\rm T}$ 是 A 的转置, $a'_{ji}=a_{ij}$,则 $b_{ii}=a^2_{1i}+a^2_{2i}+\cdots+a^2_{ni}=\sum\limits_{k=1}^n a^2_{ki}=0$,必有 $a_{ki}=0$,由 k 和 i 的任意性,A 中所有元素均为 0,A=O。

§2.2 逆矩阵

(A)

1. (1) 不正确

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 A,B 均可逆, $A + B = O$ 不可逆;

(2)正确;(3)正确;(4)正确

解析: 本题考查可逆矩阵的基本知识。

- (1) 矩阵相加后该矩阵行列式的值未知,因而可以找到两个可逆矩阵相加后得到的矩阵行列式值为 0,例如 $A=\begin{bmatrix}1&0\\0&1\end{bmatrix}$, $B=\begin{bmatrix}-1&0\\0&-1\end{bmatrix}$ 。
- (2) $AB = AC \Rightarrow A(B-C) = O$,又A可逆,则有 $B-C = OA^{-1} = O$,则 B=C。
- (3) 由 AB = O 易得,A、B 至少有一个不可逆。现用反证法证明 A、B 均不可逆。

不妨假设 $\det(A)=0$, $\det(B)$ 0 ,则 B 可逆, $A=OB^{-1}=O$,与 A 是非零矩阵矛盾,则必有 A、B 均不可逆,即 $\det(A)=0$ 且 $\det(B)=0$ 。

(4) 方阵 A 有一行元素全为 0,则 det(A)=0,A 不可逆,A 是奇异矩阵。

$$2.(2)$$
 A、B 均可逆, $A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$, $B^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ 解析,本期表本方体可说会更多供

解析:本题考查方阵可逆充要条件。

(1) $\det(A) = 0$ 故 A 可逆,求各元素的代数余子式 $A_{11} = , A_{12} = , A_{21} = ,$ A_{22} = ,进而 $A^*=\left[egin{array}{cc} d & -b \ -c & a \end{array}
ight]$,所以 $A^{-1}=rac{1}{\det(A)}A^*=rac{1}{\det(A)}\left[egin{array}{cc} d & -b \ -c & a \end{array}
ight]$ 。 (2) det(A)=-2, det(B)=1,则A、B均可逆,按照第一问方法可求得

$$A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}, B^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

3. 解析: 本题考查方阵可逆充要条件。

D 可逆
$$\det(\mathbf{D})$$
= $d_1d_2\cdots d_n$ 0, $D^*=\begin{bmatrix} d_2d_3\cdots d_n \\ & & \\ & & \\ & & \\ & & & \\$

$$D^{-1} = \frac{1}{\det(D)}D^* = \frac{1}{d_1d_3\cdots d_n}\begin{bmatrix} d_2d_3\cdots d_n & & & \\ & d_1d_3\cdots d_n & & \\ & & \ddots & \\ & & d_1d_2\cdots d_{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} d_1^{-1} & & & \\ & d_2^{-1} & & \\ & & \ddots & \\ & & & d_n^{-1} \end{bmatrix} = diag(d_1^{-1}, d_2^{-1}, \cdots, d_n^{-1}) , \text{ if \sharp } .$$

4.
$$-\frac{1}{2}A, -\frac{1}{5}(A+I)$$

解析:本题考查方阵可逆充要条件的推论。根据矩阵乘法将原式分解为 AB=I 的形式,则可得A、B可逆且互为逆矩阵。

- (1) $A^2 2A + 2I = (A 2I)A + 2I = O$, $\mathbb{M}(A 2I)A = -2I$, (A 2I)A = -2I2I) $(-\frac{1}{2}A) = IX_1, ..., X_n$,则 A-2I 可逆,且逆矩阵为 $-\frac{1}{2}A$ 。
- (2) $A^2 2A + 2I = (A 3I)(A + I) + 5I = O$, $\mathbb{M}(A 3I)(A + I) = -5I$, $(A-3I)[-\frac{1}{5}(A+I)] = I$,则 A -3 I 可逆,且逆矩阵为 $-\frac{1}{5}(A+I)$ 。
 - 5.解析:本题考查方阵可逆充要条件的推论。

$$(I-A)(I+A+A^2+\cdots+A^{m-1})=I-A^m=I-O=I$$
,则 $I-A$ 可

逆,且逆矩阵为 $I + A + A^2 + \cdots + A^{m-1}$ 。

6. 解析: 本题考查方阵可逆充要条件的推论。证明 $(I-A)(I-\frac{1}{n-1}A)=I$,将等式左边展开并代入 $A^2=nA$ 即证。

$$A^2 = \left[egin{array}{ccccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{array}
ight] \left[egin{array}{ccccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{array}
ight] = \left[egin{array}{cccc} n & n & \cdots & n \\ n & n & \cdots & n \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{array}
ight] = nA,$$

故

$$(I-A)(I-\frac{1}{n-1}A)=I-\frac{n}{n-1}A+\frac{1}{n-1}A^2=I-\frac{n}{n-1}A+\frac{n}{n-1}A=I$$
则 I-A 可逆,且逆矩阵为 $I-\frac{1}{n-1}A$ 。

7.
$$D = A^{-1}B^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

解析:本题考查矩阵转置运算律、逆矩阵基本性质及逆矩阵计算。根据逆矩阵的基本性质可将等式化为 $D=A^{-1}B^T$ 。 $D=A^{-1}B^T=[(B^{-1})^TC^T+I]-[(C^T)^{-1}A]^{-1}=A^{-1}B^T(B^{-1})^TC^T+A^{-1}B^T-A^{-1}C^T$

$$= A^{-1}(BB^{-1})^TC^T + A^{-1}B^T - A^{-1}C^T = A^{-1}C^T + A^{-1}B^T - A^{-1}C^T = A^{-1}B^T$$

$$A = diag(1, \frac{1}{2}, \frac{1}{3})$$
,由习题 2.2 A3, $A^{-1} = diag(1, 2, 3)$,

$$B = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B^T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \emptyset D = A^{-1}B^T = \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right]$$

8. 解析:本题考查伴随矩阵定义及重要结论,注意分类讨论与反证法的运用。

det(A)=0,则存在 A=0 和 A0 两种情况。

A=0 时,由伴随矩阵的定义, $A^* = O$,则 $det(A^*) = 0$;

A0 时, $AA^*=\det(A)I=O$,假设 $\det(A^*)\neq 0$,则 A^* 可逆, $A=OA^*=O$,与 A0 矛盾,则必有 $\det(A^*)=0$ 。

综上,结论 $det(A^*) = 0$ 得证。

9. 解析:本题考查伴随矩阵运算。

kA 每个元素的代数余子式等于 A 对应元素代数余子式的 k^{n-1} 倍,所以

$$(kA)^* = \begin{bmatrix} k^{n-1}A_{11} & k^{n-1}A_{21} & \cdots & k^{n-1}A_{n1} \\ k^{n-1}A_{12} & k^{n-1}A_{22} & \cdots & k^{n-1}A_{n2} \\ \vdots & \vdots & & \vdots \\ k^{n-1}A_{1n} & k^{n-1}A_{2n} & \cdots & k^{n-1}A_{nn} \end{bmatrix} = k^{n-1} \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix} = k^{n-1}A^*$$

10. (2)
$$A = \begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

解析:本题考查方阵可逆充要条件的推论。将原式左乘 A 并化简得到 $(A-2I)[\frac{1}{8}(B-4I)]=I\frac{1}{n}$,知 A-2I 可逆,继续化简得到 $A=2I+8(B-4I)^{-1}$,从而计算矩阵 A。

(1) 等式两边同时左乘 A,得到 2B = AB - 4A,即 AB - 4A - 2B = O $(A-2I)(B-4I) = 8I(A-2I)[\frac{1}{8}(B-4I)] = I$ 则 A-2I 可逆,且 $(A-2I)^{-1} = \frac{1}{8}(B-4I)$

(2)
$$B-4I=\begin{bmatrix} -3 & -2 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
, $det(B-4I)=-16\neq 0$, 则 B-4I 可逆且

求解得到

$$(B-4I)^{-1} = -\frac{1}{16} \begin{bmatrix} 4 & -4 & 0 \\ 2 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$
,对 $(A-2I)^{-1} = \frac{1}{8}(B-4I)$ 两边同时

取逆。得到

$$A - 2I = 8(B - 4I)^{-1}$$

$$\mathbb{M} A = 2I + 8(B - 4I)^{-1} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 4 & -4 & 0 \\ 2 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

- 11. 解析:本题考查方阵可逆充要条件的推论。
- (1) A 可逆且 AB=BA $A^{-1}AB = A^{-1}BAA^{-1}ABA^{-1} = A^{-1}BAA^{-1}$,整理得到 $BA^{-1} = A^{-1}B$,得证;

(2) B, I — AB 可逆,则有
$$B^{-1}B = I$$
, $(I - AB)(I - AB)^{-1} = I$,则 $(I - AB)B^{-1}B(I - AB)^{-1} = I$,由矩阵乘法的结合律、分配律,
$$[(I - AB)B^{-1}]B(I - AB)^{-1} = I(B^{-1} - A)B(I - AB)^{-1} = I$$
 $(A - B^{-1})(-B)(I - AB)^{-1} = I$,则 $A - B^{-1}$ 可逆。

12. (1)
$$A^2=4I$$
 , $A^{2k}=4^kI$, $A^{2k+1}=4^kA(k=1,2,3,\cdots)$, $A^{-1}=\frac{1}{4}I$, (2) $B=I-\frac{3}{4}A$

解析: 本题考查方阵可逆充要条件的推论, 直接计算即可。

4I;

$$A^{2k}=(A^2)^k=(4I)^k=4^kI^k=4^kI,\ A^{2k+1}=(A^2)^kA=(4I)^kA=4^kI^kA=4^kA$$

其中 k=1,2,3……由
$$A^2=4I$$
, $A \cdot \frac{1}{4}A=I$,则 $A^{-1}=\frac{1}{4}A$ 。

(2)
$$A^2 + AB - A = I \xrightarrow{A^2 = 4I} 4I + AB - A = I \rightarrow AB = A - 3I \rightarrow B = A^{-1}A - 3A^{-1} = I - \frac{3}{4}A$$

13.
$$(-1)^{n-1} \frac{2^{2n-1}}{3}$$

解析:本题考查伴随矩阵推论和逆矩阵基本性质,直接运算即可。

$$\det(-2A^*B^{-1}) = \det(-2A)\det(B^{-1}) = (-2)^n \det(A^*)\det(B^{-1})$$

$$= (-2)^n [\det(A)]^{n-1} [\det(B)]^{-1} = (-2)^n \cdot 2^{n-1} \cdot \frac{1}{3} = (-1)^{n-1} \frac{2^{2n-1}}{3}$$

14. 解析: 本题考查逆矩阵运算, 注意矩阵乘法结合律的运用。

 $A^k = PBP^{-1}PBP^{-1}\cdots PBP^{-1} = PB(P^{-1}P)B(P^{-1}P)\cdots (P^{-1}P)BP^{-1} = PB^kP^{-1}$

$$\mathbb{M} f(A) = \sum_{i=0}^{k} a_i A^i = \sum_{i=0}^{k} a_i P B^i P^{-1} = P(\sum_{i=0}^{k} a_i B^i) P^{-1} = P f(B) P^{-1}.$$

15. -3

解析:本题考查方阵行列式运算律与方阵可逆充要条件,先由 BA=0 得到 $\det(B)\det(A)=0$,用反证法证明 $\det(A)=0$,进而求解。

假设 $\det(A)$ 0,则 A 可逆,则 $BA = O \Rightarrow B = OA^{-1} = O$,与题干矛盾,则必有 $\det(A)$ =0 $\det(A)$ = t+18+8+6t+3-8=7t+21=0,解得 t=-3。

- 16. 解析:本题考查矩阵乘法运算律和方阵可逆充要条件的灵活运用,注意 $\alpha^T \alpha$ 为常数。
- (1) α 为非零列向量, $\alpha\alpha^T$ 的对角线元素 $a_1^2, a_2^2, \cdots a_n^2$ 不全为 0,则 $\alpha\alpha^T$ 不是零矩阵,

$$\begin{split} &= a_1^2 + a_2^2 + \dots + a_n^2 > 0 \\ &A^2 = (I - \alpha \alpha^T)(I - \alpha \alpha^T) = I - 2\alpha \alpha^T + \alpha \alpha^T \alpha \alpha^T = I - (2 - \alpha^T \alpha)\alpha \alpha^T, \\ &\text{此时, } A^2 = A \Leftrightarrow I - (2 - \alpha^T \alpha)\alpha \alpha^T = I - \alpha \alpha^T \Leftrightarrow \alpha^T \alpha = 1 \end{split}$$

(2) 由第一问, $\alpha^T\alpha=1\Leftrightarrow A^2=A$,对于 $A^2=A$,有 $[\det(A)]^2=\det(A)$,解得 $\det(A)=0$ 或 1,若 $\det(A)=1$,则 A 可逆, $A^2A^{-1}=AA^{-1}\Rightarrow A=I$,

此时 $\alpha\alpha^T=I-A=O$,与 $\alpha\alpha^T$ 不是零矩阵矛盾,则必有 $\det(\mathbf{A})$ =0,A 不可逆。

- 17. 解析: 本题考查方阵可逆充要条件的推论, 注意灵活运用 $AA^{-1}=I,BB^{-1}=I$ 。
- (1) A,B,A+B 可逆 $AA^{-1}=I,BB^{-1}=I,(A+B)(A+B)^{-1}=I$ 则 $(A^{-1}+B^{-1})A(A+B)^{-1}B=(I+B^{-1}A)(A+B)^{-1}B=(B^{-1}B+B^{-1}A)(A+B)^{-1}B$

$$=B^{-1}(B+A)(A+B)^{-1}B=B^{-1}B=I$$
, 得证。

(2) $(A^{-1} + B^{-1})B(A+B)^{-1}A = (A^{-1}B+I)(A+B)^{-1}A = (A^{-1}B+A^{-1}A)(A+B)^{-1}A$

$$= A^{-1}(B+A)(A+B)^{-1}A = A^{-1}A = I$$

则 $(A^{-1}+B^{-1})^{-1}=B(A+B)^{-1}A$,由逆矩阵的唯一性知 $A(A+B)^{-1}B=B(A+B)^{-1}A$

(B)

1. 解析:本题考查方阵可逆充要条件的推论,注意 $\beta^TA^{-1}\alpha$ 为常数。

$$\begin{split} (A + \alpha \beta^T) (A^{-1} - \frac{A^{-1} \alpha \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha}) &= I + \alpha \beta^T A^{-1} - \frac{\alpha \beta^T A^{-1} + \alpha \beta^T A^{-1} \alpha \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha} \\ &= I + \alpha \beta^T A^{-1} - \frac{\alpha \beta^T A^{-1} + \alpha (\beta^T A^{-1} \alpha) \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha} = I + \alpha \beta^T A^{-1} - \frac{(1 + \beta^T A^{-1} \alpha) \alpha \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha} \\ &= I + \alpha \beta^T A^{-1} - \alpha \beta^T A^{-1} = I \end{split}$$

2. 解析:本题考查方阵可逆充要条件、伴随矩阵重要结论及推论的运用,直接证明即可,注意 $(A^*)^{-1}$ 两种求解方法的区别。

法 1:
$$A^*A = \det(A)I$$
 $A^*[\frac{1}{\det(A)}A] = I$ $(A^*)^{-1} = \frac{1}{\det(A)}A$ $A^{-1} = \frac{1}{\det(A)}A^*$ $A^* = \det(A)A^{-1}$ $(A^*)^* = \det(A^*)(A^*)^{-1} = [\det(A)]^{n-1}\frac{1}{\det(A)}A = [\det(A)]^{n-2}A$ 法 $2:A^*A = \det(A)I$ $A^* = \det(A)A^{-1}$ $(A^*)^* = \det(A^*)(A^*)^{-1} = [\det(A)]^{n-1}[\det(A)A^{-1}]^{-1}$ $= [\det(A)]^{n-1}\frac{1}{\det(A)}A = [\det(A)]^{n-2}A$

3.

- (1) 1 解析:本题考查方阵可逆的充要条件,注意 $\det(A) > 0$ 和题设等价于 $A^T = A^*$ 。
- (1) $\det(A) = \sum_{j=1}^4 a_{4j} A_{4j} = \sum_{j=1}^4 a_{4j}^2 = a_{41}^2 + a_{42}^2 + a_{43}^2 + 1 > 0$,由题干得 $A^T = A^*$,两端同取行列式 $\det(A^T) = \det(A^*)$,即 $\det(A) = [\det(A)]^3$,又 $\det(A) > 0$,解得 $\det(A) = 1$
 - (2) $\det(A) = 1 \neq 0$,则A可逆, $A^{-1} = \frac{1}{\det(A)}A^* = A^* = A^T$

§2.3 分块矩阵及其运算

(A)

1. 解析: 根据分块矩阵运算规律直接计算即可。

$$AB = \begin{bmatrix} 5 & 19 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 3 & 3 & 4 & -1 & 0 \\ 6 & 9 & 14 & 7 & 6 \\ 5 & 4 & 8 & 2 & 4 \end{bmatrix}, C^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 5 \end{bmatrix}$$

$$B_3 = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 2 & 3 & 2 \\ 3 & -1 & -1 \end{array} \right]$$

得
$$A=\begin{bmatrix}A_1&0\\0&A_2\end{bmatrix}$$
 , $B=\begin{bmatrix}B_1&0\\B_2&B_3\end{bmatrix}$,所以 $AB=\begin{bmatrix}A_1&0\\0&A_2\end{bmatrix}\begin{bmatrix}B_1&0\\B_2&B_3\end{bmatrix}=\begin{bmatrix}A_1B_1&0\\A_2B_2&A_2B_3\end{bmatrix}$

计算得
$$A_1B_1 = \begin{bmatrix} 5 & 19 \\ 1 & 1 \end{bmatrix}$$
, $A_2B_2 = \begin{bmatrix} 3 & 3 \\ 6 & 9 \\ 5 & 4 \end{bmatrix}$, $A_2B_3 = \begin{bmatrix} 4 & -1 & 0 \\ 14 & 7 & 6 \\ 8 & 2 & 4 \end{bmatrix}$

令
$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 , $C_2 = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, 得 $C = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}$, 所以 $C^{-1} = \begin{bmatrix} C_1^{-1} & 0 \\ 0 & C_2^{-1} \end{bmatrix}$

计算得
$$C_1^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}, C_2^{-1} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$$
所以 $C^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 2 & 5 \end{bmatrix}$

2. 解析: 根据分块矩阵运算规律及矩阵可逆充要条件的推论,

证明
$$\begin{bmatrix} O & A \\ B & O \end{bmatrix} \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix} = I \cdot$$

$$\begin{bmatrix} O & A \\ B & O \end{bmatrix} \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix} = \begin{bmatrix} AA^{-1} & 0 \\ 0 & BB^{-1} \end{bmatrix} = \begin{bmatrix} I_m & 0 \\ 0 & I_n \end{bmatrix} = I_{m+n},$$
 则 C 可逆且 $C^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix}$

3. 解析: 利用本节给出的计算公式及方法即可。

设
$$A = \begin{bmatrix} A_1 & & & & & \\ & A_2 & & & & \\ & & \ddots & & \\ & & & A_n \end{bmatrix}, B = \begin{bmatrix} B_1 & & & & \\ & B_2 & & & \\ & & \ddots & & \\ & & & B_n \end{bmatrix}$$

则 $\det(A) = \det(A_1) \det(A_2) \cdots \det(A_n) = \prod_{i=1}^n \det(A_i)$,

$$AB = \begin{bmatrix} A_1B_1 & & & & \\ & A_2B_2 & & & \\ & & \ddots & & \\ & & & A_nB_n \end{bmatrix}, A^k = \begin{bmatrix} A_1^k & & & \\ & A_2^k & & \\ & & \ddots & \\ & & & A_n^k \end{bmatrix},$$

$$A^{-1} = \begin{bmatrix} A_1^{-1} & & & & \\ & A_2^{-1} & & & \\ & & & \ddots & \\ & & & & A_n^{-1} \end{bmatrix}$$

4. (1) 相同; (2) 相同

解析:本题主要考查矩阵乘法的定义,利用定义分析即可。

设 C=AB, A 为 mŒp 的矩阵, B 为 pŒn 的矩阵

(1) $c_{i1} = \sum_{k=1}^p a_{ik} b_{k1}, c_{i3} = \sum_{k=1}^p a_{ik} b_{k3}$,由 B 第一列与第三列相同,得 $b_{k1} = b_{k3}$,则

$$c_{i1} = \sum_{k=1}^{p} a_{ik} b_{k1} = \sum_{k=1}^{p} a_{ik} b_{k3} = c_{i3}$$
,即 AB 的第一列与第三列相同。

(2) $c_{1j} = \sum_{k=1}^p a_{1k}b_{kj}, c_{3j} = \sum_{k=1}^p a_{3k}b_{kj}$,由 A 第一行与第三行相同,得 $a_{1k} = a_{3k}$,则

$$=a_{3k}$$
,则 $c_{1j}=\sum\limits_{k=1}^{p}a_{1k}b_{kj}=\sum\limits_{k=1}^{p}a_{3k}b_{kj}=c_{3j}$,即 AB 的第一行与第三行相同。

$$5. \left[\begin{array}{rrr} 1 & 2 & 5 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{array} \right]$$

解析:本题主要考查分块矩阵的乘法运算。

$$AB = \begin{bmatrix} \alpha_1 + 2\alpha_2 + 3\alpha_3 & 2\alpha_1 - \alpha_2 + \alpha_3 & 5\alpha_1 + \alpha_2 - \alpha_3 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{bmatrix} = A \begin{bmatrix} 1 & 2 & 5 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{bmatrix}$$

则
$$B = \begin{bmatrix} 1 & 2 & 5 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{bmatrix}$$

(B)

解析:根据分块矩阵运算规律,利用本节给出的计算公式及方法即可。注意第三问中利用 $D-CA^{-1}B$ 与 A 同阶,故 $\det(AD-ACA^{-1}B)=\det(A)\det(D-CA^{-1}B)$,以及题设所给的 AC=CA。

(1) 设
$$D_1 = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$$
, $\det(D_1) = \det(\begin{bmatrix} A & C \\ O & B \end{bmatrix}) = \det(A) \det(B)$ 设 $D_2 = \begin{bmatrix} A & O \\ C & B \end{bmatrix}$, $\det(D_2) = \det(\begin{bmatrix} A & O \\ C & B \end{bmatrix}) = \det(A) \det(B)$ 。

(2) $\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}$ 。

(3) 上式两端同时取行列式 $\det(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}) \det(\begin{bmatrix} A & B \\ C & D \end{bmatrix}) = \det(\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix})$

则 $\det(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}) \det(\begin{bmatrix} A & B \\ C & D \end{bmatrix}) = \det(\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix})$, 又 $\det(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}) = \det(I) \det(I) = 1$,所以 $\det(\begin{bmatrix} A & B \\ C & D \end{bmatrix}) = \det(A & B \\ C & D \end{bmatrix}$ $= \det(A) \det(D - CA^{-1}B) = \det(AD - ACA^{-1}B) = \det(AD - CAA^{-1}B) = \det(AD - CB)$

§2.4 初等变换与初等矩阵

(A)

1. 解析: 本题考查对初等变换矩阵乘法表示的理解,注意本题中 $P^{-1} = P$ 的运用。

右乘矩阵 P_1 表示交换第一第四列,右乘矩阵 P_2 表示交换第二第三列,注意到 $P_1^{-1}=P_1,P_2^{-1}=P_2$

等式两端同时取逆,有 $B^{-1}=P_2^{-1}P_1^{-1}A^{-1}=P_2P_1A^{-1}, B^{-1}=B^{-1}=$ $P_1^{-1}P_2^{-1}A^{-1} = P_1P_2A^{-1}$,

则 $B^{-1} = P_2 P_1 A^{-1} = P_1 P_2 A^{-1}$, 证毕。

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ -12 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \xrightarrow{r_{12}(-2)} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 3 & 4 & 5 & 6 \end{bmatrix} \xrightarrow{r_{13}(-3)} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix} = P_2 P_1 A$$
将 P^6 看作 P 左乘五次 P ,即将连续 P 的第一行乘-2 加到第二行五次,

$$P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_{12}(-2)} P^2 \xrightarrow{r_{12}(-2)} P^3 \cdots \xrightarrow{r_{12}(-2)} P^6 = \begin{bmatrix} 1 & 0 & 0 \\ -12 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(1) \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}, (2) \begin{bmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{bmatrix}$$

$$(1) \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 2 & -1 & 3 & 0 & 1 & 0 \\ 4 & 1 & 8 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -4 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 0 & -1 & -6 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & -1 & 0 & 4 & 0 & -1 \\ 0 & 0 & -1 & -6 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & 1 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 6 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & -1 & 0 & 4 & 0 & -1 \\ 0 & 0 & -1 & -6 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -11 & 2 & 2 \\ 0 & 1 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 6 & -1 & -1 \end{bmatrix}$$

求得
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}^{-1} = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 2 & 3 & 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -2 & -6 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & -1 & -5 & -6 & -2 & 1 & 0 & 0 \\ 0 & -1 & -2 & -5 & -1 & 0 & 1 & 0 \\ 0 & -2 & -5 & -10 & -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & -1 & -5 & -6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 5 & 2 & 3 & -2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & -1 & -5 & -6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{3} & \frac{4}{3} & -\frac{1}{3} & -\frac{5}{3} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & -15 & 4 & 20 & -12 \\ 0 & -1 & -5 & -6 & -2 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & -15 & 4 & 20 & -12 \\ 0 & -1 & -5 & 0 & 22 & -5 & -30 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & -1 & -5 & -6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & -15 & 4 & 20 & -12 \\ 0 & -1 & -5 & 0 & 22 & -5 & -30 & 18 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & -15 & 4 & 20 & -12 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 0 & -12 & 4 & 14 & -9 \\ 0 & -1 & 0 & 0 & 17 & -5 & -20 & 13 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 22 & -6 & -26 & 17 \\ 0 & -1 & 0 & 0 & 17 & -5 & -20 & 13 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 22 & -6 & -26 & 17 \\ 0 & -1 & 0 & 0 & 17 & -5 & -20 & 13 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 22 & -6 & -26 & 17 \\ 0 & 0 & 1 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 & -1 & -5 & 3 \end{bmatrix}$$

求得
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{bmatrix}$$

4.
$$x_1 = 7, x_2 = -9, x_3 = 4$$

解析:用逆矩阵求解方程组的解即可。

令
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 7 & 11 \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
,则原方程可改写为

AX=B,

$$[A|B] = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 2 & 1 & 0 \\ 3 & 7 & 11 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -5 & -2 \\ 0 & 1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -5 & -2 \\ 0 & 0 & -\frac{1}{2} & -2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -11 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 4 \end{bmatrix} = [I|A^{-1}B]$$

则
$$X = A^{-1}B = \begin{bmatrix} 7 \\ -9 \\ 4 \end{bmatrix}$$
,即 $x_1 = 7, x_2 = -9, x_3 = 4$ 。

5.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}, A^5 = A$$

解析:本题考查初等变换方法求逆矩阵及逆矩阵性质。第一问可以通过伴随矩阵或初等变换方法求 P^{-1} 从而求得 A,也可以将原等式转置后构造矩阵方程直接求解,第二问直接利用逆矩阵性质及矩阵乘法结合律即可求解。

(1) 法 1: 由已知得 $A = PBP^{-1}$,利用伴随矩阵或初等矩阵变换方法求得 P^{-1} ,从而计算 A。 $PB = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix}$,

$$\det(P) = -1, P^* = \begin{bmatrix} -1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -1 & -1 \end{bmatrix},$$

$$P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{bmatrix}, A = PBP^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 1 & 1 \end{bmatrix} =$$

$$\begin{bmatrix}
1 & 0 & 0 \\
2 & 0 & 0 \\
6 & -1 & -1
\end{bmatrix}$$

法 2:,构造矩阵方程后用初等变换方法求解。对 AP = PB 两边同时取转置,

 $AP^T = (PB)^T \Rightarrow P^TA^T = (PB)^T$,下面用初等变换方法求矩阵方程的解 A^T 。

$$\begin{split} [P^T|(PB)^T] &= \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 4 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 6 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 6 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} = [I|(P^T)^{-1}(PB)^T], \end{split}$$

$$A^{T} = (P^{T})^{-1}(PB)^{T} = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}.$$

$$(2)B^{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = B, \text{II} A^{5} = PBP^{-1}PBP^{-1} \cdots PBP^{-1}$$

$$= PB(P^{-1}P)B \cdots (P^{-1}P)BP^{-1} = PB^{5}P^{-1} = PBP^{-1} = A$$

$$6. \left[\begin{array}{cc} 24 & 13 \\ -34 & -18 \end{array} \right]$$

解析:本题考查逆矩阵的计算,可用初等变换法或伴随矩阵法求解逆矩阵,也可求解矩阵方程 $AX = CB^{-1}$ 。由于方阵为二阶方阵,采用伴随矩阵求解较为简单。

$$\diamondsuit A = \left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array} \right], B = \left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array} \right], C = \left[\begin{array}{cc} -2 & 4 \\ 3 & 1 \end{array} \right],$$

得
$$AXB = C$$
,故 $X = A^{-1}CB^{-1}$, $\det(A)=4-3=1$, $\det(B)=9-10=-1$, $A^* = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} B^* = \begin{bmatrix} 2 & 2 \end{bmatrix}$

$$\left[\begin{array}{cc} -3 & -2 \\ -5 & -3 \end{array}\right],$$

所以
$$A^{-1} = \frac{1}{\det(A)} A^* = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}, B^{-1} = \frac{1}{\det(B)} B^* = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix},$$
 故 $X = A^{-1}CB^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}.$

7.
$$B = \begin{bmatrix} -2 & 3 & 0 \\ 3 & 4 & -3 \\ 0 & -3 & 4 \end{bmatrix}$$

解析: 本题由已知可得 $B = A(A - 3I)^{-1}$,通过初等变换法求 $(A - 3I)^{-1}$ 即可求解。

$$BA = 3B + A \Rightarrow B(A - 3I) = A \Rightarrow B = A(A - 3I)^{-1}, A - 3I = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix},$$

下面用初等变换法求
$$(A-3I)^{-1}$$
。 $[A-3I|I] = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$

故
$$B = A(A - 3I)^{-1} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 0 \\ 3 & 4 & -3 \\ 0 & -3 & 4 \end{bmatrix}$$

$$8. B = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

解析: 本题考查矩阵乘法和逆矩阵性质的灵活运用。注意,A + 2I =

$$\left[\begin{array}{ccc} 3 & -1 & 1 \\ 1 & 3 & 0 \\ 2 & 1 & 3 \end{array}\right],$$

det(A+2I) = 27+16+3 = 25 0,故 A+2I 可逆。

由己知,
$$AB + 4I = A^2 - 2B \Rightarrow (A + 2I)B = A^2 - 4I = (A + 2I)(A - 2I)$$

$$\Rightarrow B = (A+2I)^{-1}(A+2I)(A-2I) = A-2I = \begin{bmatrix} -1 & -1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix},$$

故
$$B = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

9.
$$B = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法和逆矩阵性质的灵活运用。注意 $AA^* = \det(A)I$ 的灵活使用,在求逆矩阵时可用伴随矩阵法或初等变换法。

由己知
$$A*B = A^{-1} + 2B \Rightarrow (A* - 2I)B = A^{-1}$$

 $\Rightarrow B = (A* - 2I)^{-1}A^{-1} = [A(A* - 2I)]^{-1} = [\det(A)I - 2A]^{-1}$,由于 $\det(A)=1+1-1+1=4$,则 $\det(A)I - 2A = 4I - 2A = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix}$,
故 $B = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}^{-1}$ 。 现用伴随矩阵法

故
$$B = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}^{-1}$$
。现用伴随矩阵法

求
$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}^{-1}$$
。

,所以

$$C^{-1} = \frac{1}{\det(C)}C^* = \frac{1}{4} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 2 \\ 2 & 0 & 2 \end{bmatrix}, & B = \frac{1}{2} \cdot \frac{1}{4} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 2 \\ 2 & 0 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

10.
$$X = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法和逆矩阵性质的灵活运用。可将原矩阵方程整理 为

 $X = [(A - B)^{-1}]^2$, 通过初等变换法或伴随矩阵法求 $(A - B)^{-1}$ 即可,也 可将原矩阵方程整理为 $X = [(A - B)^2]^{-1}$, 先计算 $(A - B)^2$ 再通过初等变换 法或伴随矩阵法求 $[(A-B)^2]^{-1}$ 。

法 1:
$$AXA + BXB = AXB + BBXA + I \Rightarrow AX(A - B) - BX(A - B)$$

 $B = I \Rightarrow (AX - BX)(A - B) = I \Rightarrow (A - B)X(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow AXB + BBXA + I \Rightarrow AX(A - B) = I \Rightarrow X = AXB + BBXA + I \Rightarrow X = AXB + I \Rightarrow X =$

$$(A-B)^{-1}(A-B)^{-1} = [(A-B)^{-1}]^2$$
由已知得 $A-B = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$,现

用初等变换法求 $(A-B)^{-1}$ 。

$$[A - B|I] = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] = [I|(A-B)^{-1}]$$

所以
$$(A-B)^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
,则 $X = [(A-B)^{-1}]^2 = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix}
1 & 2 & 5 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}$$

法 2:
$$AXA + BXB = AXB + BBXA + I \Rightarrow AX(A - B) - BX(A - B)$$

 $B = I \Rightarrow (AX - BX)(A - B) = I \Rightarrow (A - B)X(A - B) = I \Rightarrow X = (A - B)^{-1}(A - B)^{-1} = [(A - B)(A - B)]^{-1} = [(A - B)^{2}]^{-1}$ 由己知得 $A - B = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, (A-B)^2 = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, 现用初等变换法求$$

$$[(A-B)^2]^{-1}[(A-B)^2|I] = \begin{bmatrix} 1 & -2 & -1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 2 & 5 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] = \left[I | \left[(A - B)^2 \right]^{-1} \right],$$

故
$$X = [(A - B)^2]^{-1} = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

11. (2)
$$\begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

解析:本题考查伴随矩阵和逆矩阵的应用。

(1)
$$A^*A = \det(A)I \Rightarrow A^*[\frac{1}{\det(A)}A] = I \Rightarrow (A^*)^{-1} = \frac{1}{\det(A)}A$$

(2) 法 1: 利用第一问
$$(A^*)^{-1} = \frac{1}{\det(A)} A \frac{1}{\det(A)} = \det(A^{-1}) = 6 + 1 + 1 - 1 - 2 - 3 = 2$$
, $A = (A^{-1})^{-1}$

现用初等变换法求
$$\mathbf{A}[A^{-1}|I] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{ccccccc} 1 & 1 & 0 & \frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} \end{array} \right] \rightarrow \left[\begin{array}{ccccccccc} 1 & 0 & 0 & \frac{5}{2} & -1 & -\frac{1}{2} \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} \end{array} \right] = [I|A]$$

$$A = \begin{bmatrix} \frac{5}{2} & -1 & -\frac{1}{2} \\ -1 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}, (A^*)^{-1} = \frac{1}{\det(A)}A = 2 \begin{bmatrix} \frac{5}{2} & -1 & -\frac{1}{2} \\ -1 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} =$$

$$\begin{bmatrix}
5 & -2 & -1 \\
-2 & 2 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

法 2:
$$(A^{-1})^*(A^{-1}) = \det(A^{-1})I = \frac{1}{\det(A)}I \Rightarrow (A^{-1})^*(A^{-1})A = \frac{1}{\det(A)}IA$$
 $\Rightarrow (A^{-1})^* = \frac{1}{\det(A)}A$,又由第一问 $(A^*)^{-1} = \frac{1}{\det(A)}A$,则 $(A^*)^{-1} = (A^{-1})^*$,则

只需求
$$A^{-1}$$
 的伴随矩阵,求得 $(A^*)^{-1} = (A^{-1})^* = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

12.
$$(1)P_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]$$

$$(2) \ L = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{array} \right]$$

解析:本题考查初等变换的应用,直接求解即可。注意初等变换的矩阵乘法表示。

$$\left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{array}\right] = U$$

$$\mathbb{M} P_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 &$$

(2) 由于矩阵形式简单故采用伴随矩阵法计算逆矩阵, 求得

$$P_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, P_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \text{ } \vec{x}\vec{A}$$

根据初等变换的意义, 左乘 P_1

即将第一行乘-3加到第二行,若再将第一行乘3加到第二行,矩阵便可还原,由此得到

计算得
$$L = P_1^{-1} P_2^{-1} P_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} =$$

$$\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]$$

$$\mathbb{M} LU = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 6 & 4 & 5 \\ 4 & 1 & 3 \end{bmatrix} = A$$

$$(3) 由附注得 $Ly = b \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} y = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, 用前代法解得$
$$y = \begin{bmatrix} 4 \\ -7 \\ -9 \end{bmatrix},$$$$

$$\begin{bmatrix} -9 \end{bmatrix}$$

$$Ux = y \Leftrightarrow \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} x = \begin{bmatrix} 4 \\ 7 \\ -9 \end{bmatrix},$$
用回代法解得 $x = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$

(B)

$$B = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 0 & 3 & 0 & -1 \end{bmatrix}$$

解析:本题考查矩阵乘法和伴随矩阵、逆矩阵性质的灵活运用。由原矩阵方程可解得

 $B = 6(2I - A^*)^{-1}$, 再用初等变换法求 $(2I - A^*)^{-1}$ 即可,注意求解矩阵 方程中灵活使用

$$(AB)^{-1} = B^{-1}A^{-1}, \det(A^*) = [\det(A)]^{n-1}$$
 等性质。

 $ABA^{-1} = BA^{-1} + 3I \Rightarrow (A - I)BA^{-1} = 3I \Rightarrow B = (A - I)^{-1}3(A^{-1})^{-1} = 3[A^{-1}(A - I)]^{-1}$

$$=3(A^{-1}A-A^{-1})^{-1}=3(I-A^{-1})^{-1}$$

又 $\det(A^*)=[\det(A)]^{4-1}=[\det(A)]^3=8$,则 $\det(A)=2$,所以 $A^{-1}=\frac{1}{\det(A)}A^*=\frac{1}{2}A^*$,

所以
$$B = 3(I - A^{-1})^{-1} = 3(I - \frac{1}{2}A^*)^{-1} = 6(2I - A^*)^{-1}$$
,

$$2I - A^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -6 \end{bmatrix}$$
,现用初等变换法求 $(2I - A^*)^{-1}$,

§2.5 矩阵的秩

(A)

1. (1) r = 4; (2) r = 3; (3) k = 1 时, r = 1; k = 2 时, r = 2; $k \neq 1$ 且 $k \neq 2$ 时, r = 3; (4) a + b = 0 时, r = 1; $a + b \neq 0$ 时, r = 2

解析:本题考查矩阵秩的求法。根据求矩阵秩的一般方法,将矩阵通过初等行变换为阶梯形,则阶梯形矩阵中非零行个数即为所求矩阵的秩。

$$(2) \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & -2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 0 & 0 & 3k \end{bmatrix} \begin{bmatrix} 1 & -2 & 3k \\ 0 & 0 & 0 & 3k \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2k-2 & 3k-3 \\ 0 & 2k-2 & 3-3k^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2(k-1) & 3(k-1) \\ 0 & 2(k-1) & 3(1-k)(1+k) \end{bmatrix}$$
 下面分类讨论。

$$k=1$$
 时,原矩阵可化为 $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,非零行个数为 1,故矩阵的秩为 1

k=1 时,原矩阵可化为
$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,非零行个数为 1,故矩阵的秩为 1;
k-10,即 k1 时,原矩阵可化为 $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 3 \\ 0 & 2 & -3(1+k) \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & -3(k+2) \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
, 非零行个数为 2, 故矩阵的秩为 2;

$$(4) \begin{bmatrix} 1 & 0 & -1 \\ a & 0 & b \\ -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ a & 0 & b \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & a+b \\ 0 & 0 & 0 \end{bmatrix}$$

$$a+b=0$$
 时,原矩阵可化为 $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,非零行个数为 1 故矩阵的秩为 1

a+b≠0时,非零行个数为2,故矩阵的秩为2

综上, a+b=0时, r=1; $a+b\neq 0$ 时, r=2。

2. x = 2

解析: 本题考查矩阵秩的定义。若矩阵 A 的秩为 , 则 A 的 +1 阶子式全 为 0, 所以本题根据三阶子式为 0 求解。

由矩阵秩的定义得 (A) = 2 A 的 3 阶子式全为 0
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \\ 2 & -x & 6 \end{vmatrix} = 0$$

所以

$$0 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \\ 2 & -x & 6 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & -2 \\ 2 & -x - 2 & 4 \end{vmatrix} = 8 - 2(x+2) = 4 - 2x, \text{ } 解得.$$

3. 解析:本题考查矩阵秩的定义及行列式运算。由 $r(A^*)=1$ 可证r(A)=2, $\det(A)=0$,从而解得a、b关系,本题采用反证法证明r(A)=2,直接证法参考习题 4.4 B5。

 $r(A^*)=1$ A^* 的元素不全为 0(若 A^* 的元素全为 0,则 $r(A^*)=0$),又 A^* 的元素时 A 的代数余子式,则 A 的二阶子式不全为 0,则 $r(A) \ge 2$,即 r(A)=2 或 r(A)=3。

若 r(A)=3,则 A 满秩,即 A 可逆, $\det(A)0$,故 $\det(A^*)=[\det(A)]^2\neq 0$,所以 A^* 可逆,即 $r(A^*)=3$,与 $r(A^*)=1$ 矛盾,故必有 r(A)=2,所以 A 的三阶子式全为 0 ,即 $\det(A)=0$,

$$0 = \begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} = \begin{vmatrix} a+2b & b & b \\ a+2b & a & b \\ a+2b & b & a \end{vmatrix} = (a+2b) \begin{vmatrix} 1 & b & b \\ 1 & a & b \\ 1 & b & a \end{vmatrix} = (a+2b) \begin{vmatrix} 1 & b & b \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{vmatrix}$$
$$= (a+2b)(a-b)^2a = b \ \vec{\boxtimes} \ a+2b = 0 \ .$$

若
$$a = b$$
,则 A 可化为 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(a = b \neq 0 \text{ 时})$,此时 $r(A) = 1$,与

r(A) = 2 矛盾:

若
$$a+2b=0$$
,则 A 可化为
$$\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right] (ab \neq 0 \ {
m lt})$$
,此时 $r(A)=2$

符合题意。

综上, $r(A^*) = 1$ 时,必有 $a \neq b$ 且 a + 2b = 0。

$$4.(1) P = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix} 2) P = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix},$$

$$Q = \left[\begin{array}{cccc} 1 & 0 & 18 & 16 \\ 0 & 1 & -7 & -8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

(3)
$$A = GH$$
, 其中 $G = P^{-1} \begin{bmatrix} I_r \\ O \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \\ -2 & -5 \end{bmatrix}$,

$$H = \left[\begin{array}{ccc} I_r & O \end{array} \right] Q^{-1} = \left[\begin{array}{cccc} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \end{array} \right] \circ$$

解析:本题考查矩阵满秩分解及初等变换的矩阵乘法表示。根据习题 2.4 A12 附注可得:初等变换矩阵,初等变换矩阵乘积即为可逆矩阵 P,同理可得可逆矩阵 Q,根据例 2.5.3 可将矩阵 A 满秩分解为 A=GH 形式,计算 P^{-1},Q^{-1} 即可。

$$(1)A = \begin{bmatrix} 0 & 1 & 7 & 8 \\ 1 & 3 & 3 & 8 \\ -2 & -5 & 1 & -8 \end{bmatrix} \xrightarrow{r_{12}} \begin{bmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ -2 & -5 & 1 & -8 \end{bmatrix} \xrightarrow{r_{13}(2)} \begin{bmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 1 & 7 & 8 \end{bmatrix}$$

$$\xrightarrow{r_{23}(-1)} \left[\begin{array}{cccc} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{array} \right] \xrightarrow{r_{21}(-3)} \left[\begin{array}{ccccc} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{array} \right] = B$$

则对应的初等矩阵
$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, P_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cccc}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],$$

所以
$$P = P_4 P_3 P_2 P_1 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} -3 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

$$(2) \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{c_{23}(-7)} \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{c_{13}(18)} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
对应的初等矩阵为 $Q_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -7 & -8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, Q_2 = \begin{bmatrix} 1 & 0 & 18 & 16 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$

则

$$Q = Q_1 Q_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -7 & -8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 18 & 16 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 18 & 16 \\ 0 & 1 & -7 & -8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(3) 由例 2.5.3 知 A 可满秩分解为 A = GH, 下面求 P^{-1}, Q^{-1} ,

用伴随矩阵法求
$$P^{-1}$$
, $\det(P) = \begin{vmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -1 & 2 & 1 \end{vmatrix} = -1$, $P^* = \begin{bmatrix} 0 & -1 & 0 \\ -1 & -3 & 0 \\ 2 & 5 & -1 \end{bmatrix}$

所以
$$P^{-1} = \frac{1}{\det(P)} P^* = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 0 \\ -2 & -5 & 1 \end{bmatrix}$$
。

用初等变换法求:

$$[Q|I] = \begin{bmatrix} 1 & 0 & 18 & 16 & 1 & 0 & 0 & 0 \\ 0 & 1 & -7 & -8 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 18 & 0 & 1 & 0 & 0 & 16 \\ 0 & 1 & -7 & 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

或者根据右乘 Q 的意义, 容易知将右乘 Q 后的矩阵第一列乘-18 加到第三列、乘-16 加到第四列, 第二列乘 7 加到第三列、乘 8 加到第四列, 矩阵又变回

原矩阵, 因此
$$Q^{-1} = \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. 解析: 本题考查矩阵的秩标准形, 利用定理 2.5.1 及推论 2.5.1, 以及矩阵 A 与它的秩标准形是等价的, 通过 A 与 B 有相同的秩标准形即可证明 A 与 B 同秩或 A 与 B 等价。

A 等价于
$$\begin{bmatrix} I_{r(A)} & O \\ O & O \end{bmatrix}$$
, B 等价于 $\begin{bmatrix} I_{r(B)} & O \\ O & O \end{bmatrix}$, A 与 B 等价 $\begin{bmatrix} I_{r(A)} & O \\ O & O \end{bmatrix}$ 与 $\begin{bmatrix} I_{r(B)} & O \\ O & O \end{bmatrix}$ 等价 $r(A) = r(B)$

(B)

1. 解析: 利用满秩矩阵直接证明即可,注意行满秩矩阵与列满秩矩阵的形式。由条件,G、H 分别为列满秩矩阵和行满秩矩阵,由定理 2.5.2 知,存在可逆矩阵,使 $PG = \begin{bmatrix} I_r \\ O \end{bmatrix}_{m \times r}$, $HQ = \begin{bmatrix} I_r & O \end{bmatrix}_{r \times n}$,故得 $PAQ = PGHQ = \begin{bmatrix} I_r \\ O \end{bmatrix} \begin{bmatrix} I_r & O \end{bmatrix} = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ $\Rightarrow r(A) = r$

2.
$$r(A) = n - 1$$

解析:根据矩阵秩的定义通过求解矩阵的 k 阶子式求 nA 的秩,由于 A 与 nA 有相同的秩标准形,故 A 与 nA 同秩。

A 与 nA 有相同的秩标准型 $\Rightarrow r(A) = r(nA)$,

$$nA = nI - \alpha^T \alpha = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}$$

, 而 nA 的 n 阶子式

$$= \begin{vmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{vmatrix} = \begin{vmatrix} n-n & -1 & \cdots & -1 \\ n-n & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ n-n & -1 & \cdots & n-1 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -1 & \cdots & -1 \\ 0 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ 0 & -1 & \cdots & n-1 \end{vmatrix} = 0$$

nA的 n-1 阶子式

$$= \begin{vmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{vmatrix}$$

$$= \begin{vmatrix} n-(n-1) & -1 & \cdots & -1 \\ n-(n-1) & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ n-(n-1) & -1 & \cdots & n-1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ 1 & -1 & \cdots & n-1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & \cdots & -1 \\ 0 & n & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & n \end{vmatrix} = n^{n-2} \neq 0$$

所以 r(nA) = n - 1,则 r(A) = r(nA) = n - 1

§2.6 第 2 章习题

1. (1) 14; (2) -1; (3)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; (4) diag(2,-4,2); (5); (6) (8,8,-6); (7) 2; (8) 3; (9) I; (10) -1; (11) -1

解析:

(1) 本题考查列向量相乘的相关知识,注意对于列向量,等于矩阵对角线

设
$$\alpha = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
,则 $\alpha \alpha^T = \begin{bmatrix} x_1^2 & x_1x_2 & x_1x_3 \\ x_1x_2 & x_2^2 & x_2x_3 \\ x_1x_3 & x_2x_3 & x_3^2 \end{bmatrix}$,所以 $x_1^2 = 1, x_2^2 = 4, x_3^2 = 9$,则 $\alpha^T \alpha = x_1^2 + x_2^2 + x_3^2 = 9$,

(2) 本题考查逆矩阵相关知识, 利用好 AB = I 进行求解。

$$\alpha^T \alpha = \begin{bmatrix} a & 0 & \cdots & 0 & a \end{bmatrix} \begin{bmatrix} a & 0 & \cdots & 0 & a \end{bmatrix}^T = 2a^2$$
,由题意得 $AB = I$,

 $AB = (I - \alpha \alpha^T)(I + \frac{1}{a}\alpha \alpha^T) \sum_{i=1}^{n} (X_i - \bar{X})^2 = I + (\frac{1}{a} - 1)\alpha \alpha^T - \frac{1}{a}\alpha \alpha^T \alpha \alpha^T$ $= I + (\frac{1}{a} - 1)\alpha\alpha^T - \frac{1}{a}\alpha(\alpha^T\alpha)\alpha^T = I + (\frac{1}{a} - 1)\alpha\alpha^T - \frac{1}{a}2a^2\alpha\alpha^T$

 $=I+(\frac{1}{a}-1-2a)\alpha\alpha^{T}=I$, $\lim_{a}\frac{1}{a}-1-2a=0$, $\lim_{a}a=\frac{1}{2}$ $\lim_{a}a=-1$, 由于 a < 0, 故 a = -1 。

(3) 本题考查求逆矩阵的相关知识, 注意用"配方法"分解出(A-I)这个 因式。

$$AB = 2A + B \Rightarrow (A - I)(B - 2I) = 2I \Rightarrow (A - I) \left[\frac{1}{2}(B - 2I) \right] = I$$

$$\Rightarrow (A - I)^{-1} = \frac{1}{2}(B - 2I), \quad X B - 2I = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} X_1, \dots, X_n,$$

(4) 本题考查伴随矩阵和逆矩阵的求解, 注意对角矩阵的逆矩阵求法, 即 $D^{-1} = diag(d_1^{-1}, d_2^{-1}, \cdots, d_n^{-1})$

$$A^*BA = 2BA - 8I \Rightarrow (A^* - 2I)BA = -8I \Rightarrow B = -8(A^* - 2I)^{-1}A^{-1} = -8[A(A^* - 2I)]^{-1} = -8AA^* - 2A)^{-1} = -8(\det(A)I - 2A)^{-1}$$

由题知, $\det(A)=-2\Rightarrow\det(A)I-2A=diag(-4,2,-4)\Rightarrow(\det(A)I-2A)^{-1}=diag(-\frac{1}{4},\frac{1}{2},-\frac{1}{4})\Rightarrow$

$$B = -8(\det(A)I - 2A)^{-1}B = -8(\det(A)I - 2A)^{-1}$$

(5) 本题考查行列式乘法。

 $ABA^*=2BA^*+I\Rightarrow (A-2I)BA^*=I$,两端同时取行列式, $\det\left[(A-2I)BA^*\right]=1\Rightarrow \det(A-2I)\det(B)\det(A^*)=1$,

因为
$$\det(A) = 4 - 3 = 1$$
, $\det(A^*) = [\det(A)]^2 = 9$, $A - 2I = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$,

 $\det(A - 2I) = 1,$

则 $9 \det(B) = 1$, $\det(B) = \frac{1}{9}$ 。

(6) 本题考查对角矩阵幂运算规律的运用, $D^k = diag(d_1^k, d_2^k, \dots, d_n^k)$

$$A^{2} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = diag(-1, -1, 1),$$

 $B^{2020} = P^{-1}APP^{-1}AP \cdots P^{-1}AP = P^{-1}A(PP^{-1})A \cdots (PP^{-1})AP = P^{-1}A(PP^{-1})A \cdots (PP^{-1})AP = P^{-1}A(PP^{-1})AP = P^{$

 $P^{-1}A^{2020}P$

$$= P^{-1} \begin{bmatrix} (-1)^{2020} \\ (-1)^{2020} \\ 1^{2020} \end{bmatrix} P = P^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} P = P^{-1}P =$$

I,

則
$$B^{2020} - 7A^2 = I - 7A^2 = diag(8, 8, 6)$$
 。

- (7) 本题考查可逆矩阵的性质和矩阵的秩的相关定理,先证明 B 是可逆矩阵,由定理 2.4.3,B 可以分解为若干个初等矩阵相乘,再由推论 2.5.1,初等列变换不改变矩阵的秩,得到 $r(A^TB) = r(A^T) = r(A)$ 。
- $\det(B) = 24 + 24 + 24 27 16 32 = -3$,则 B 可逆,B 可以分解为若干个初等矩阵相乘, A^TB 可表示对 A^T 进行若干次初等列变换,初等列变换后得到的矩阵与原矩阵的秩相等,则有 $r(A^TB) = r(A^T) = r(A) = 2$ 。
- (8)本题考查行列式的乘法公式和逆矩阵性质,即 $\det(A+B^{-1}) = \det(A) \det(B+A^{-1}) \det(B^{-1})$ 和 $\det(B^{-1}) = [\det(B)]^{-1}$ 。

$$\begin{split} \det(A+B^{-1}) &= \det[(AB+I)B^{-1}] = \det(AB+I)\det(B^{-1}) = \det[A(B+A^{-1})] \\ \det(B) &= \det(A)\det(B+A^{-1})\det(B^{-1}) = \det(A)\det(B+A^{-1})[\det(B)]^{-1} \\ &= 3\times 2\times \tfrac{1}{2} = 3 \text{ .} \end{split}$$

(9)本题考查逆矩阵的有关知识。利用逆矩阵的唯一性以及整理式子过程中配方法的使用即可求解。

 $B = I + AB \Rightarrow B(I - A) = I \Rightarrow B = (I - A)^{-1}, C = A + CA \Rightarrow C - A - CA = O \Rightarrow (C + I)(I - A) - I = O \Rightarrow (C + I)(I - A) = I \Rightarrow C + I = (I - A)^{-1},$ 则由逆矩阵的唯一性, $B = C + I \Rightarrow B - C = I$ 。

(10)本题考查伴随矩阵和矩阵转置的相关知识,利用 $A_{ij}=-a_{ij}\Leftrightarrow A^*=-A^T$ 讲行求解。

 $A_{ij}=-a_{ij}\Rightarrow A^*=-A^T$,对等式两边同时取行列式, $A_{ij}=-a_{ij}\Rightarrow A^*=-A^T$,

解得 det(A) = 0 或 det(A) = -1,又A可逆,则 det(A) = -1。

(11) 本题与第十题大致相同,注意此题中的条件"A 是非零矩阵"对排除 $\det(A)=0$ 的影响。 $A^*=-A^T$,对等式两边同时取行列式, $\det(A^*)=\det(-A^T)\Rightarrow [\det(A)]^2=-\det(A)$,

解得 $\det(A) = 0$ 或 $\det(A) = -1$ 。

 $A^* = -A^T \Rightarrow A_{ij} = -a_{ij}$,A 是非零矩阵,不妨设 $a_{11} \neq 0$,则按照第一行展开,

日月段开,
$$\det(A) = \sum_{j=1}^{3} a_{1j} A_{1j} = \sum_{j=1}^{3} a_{1j} (-a_{1j}) = -(a_{11}^2 + a_{12}^2 + a_{13}^2) < 0$$
,则 $\det(A) = -1$ 。

2. (1) A; (2) B; (3) C; (4) C; (5) A 解析:

(1) 本题考查矩阵转置、矩阵乘法结合律、矩阵初等变换的相关知识。用 P表示 Q 后代入即可求解。

令
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,则由矩阵列变换的意义, $Q = PB$,则 $Q^TAQ = PB$

$$(PB)^TAPB = B^TP^TAPB = B^T(P^TAP)B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

(2) 本题考查矩阵初等变化相关知识,根据初等变换的矩阵乘法表示验证 洗项即可。

用伴随矩阵法、初等变换法或直接根据初等矩阵的意义,得到 P^{-1} =

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,由初等变换的矩阵乘法表示可知 $C = PAP^{-1}$,选 B。

(3) 本题考查伴随矩阵的定义和逆矩阵的相关知识。

不妨设 $A \times B$ 为三阶可逆矩阵,用初等变换的矩阵乘法表示,其中 $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,计算得 $P^* = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = -P$,所以对两端同时取伴随矩阵

 $B^* = (PA)^* = \det(PA)(PA)^{-1} = [\det(A)A^{-1}][\det(P)P^{-1}] = A^*P^* \Rightarrow A^*P = -B^*$,右乘 P 表示交换矩阵 A^* 的第一列与第二列得到 $-B^*$,当 A、B 为 n 阶可逆矩阵时同样成立,选 C。

此外,本题可用两个二阶矩阵代入题目,较快地判断出答案。

(4) 本题考查逆矩阵、分块矩阵以及矩阵初等变换的相关内容,关键是将 待求式子用 AP 表示。

将
$$P^{-1}AP = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
 两端左乘 P ,得到
$$AP = P \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & \alpha_2 & 2\alpha_3 \end{bmatrix},$$

注意到

$$A(\alpha_1 + 2\alpha_2 + 3\alpha_3) = A \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = AP \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & \alpha_2 & 2\alpha_3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & \alpha_2 & 2\alpha_3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & \alpha_2 & 2\alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & \alpha_2 & \alpha_$$

 $2\alpha_2 + 6\alpha_3$,

选 C。

(5)本题考查伴随矩阵和矩阵转置的相关知识。注意 $A^*=A^T\Leftrightarrow a_{ij}=A_{ij}$,求解得到 $\det(A)=1$ 后直接求解即可。

 $A^* = A^T \Leftrightarrow a_{ij} = A_{ij}$, $A^* = A^T$ 两端同时取行列式得 $\det(A^*) = \det(A^T)$,所以 $[\det(A)]^2 = \det(A)$,解得 $\det(A) = 1$ 或 $\det(A) = 0$ 。按照第一行展开,有 $\det(A) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}^2 + a_{12}^2 + a_{13}^2 = 3a_{11}^2 > 0$,则 $\det(A) = 1$, a_{11} 为正数,且 $3a_{11}^2 = 1$,解得 $a_{11} = \frac{\sqrt{3}}{3}$,选 A。

$$3. X = \begin{bmatrix} 66 & 62 \\ -44 & -41 \\ -23 & -22 \end{bmatrix}$$

矩阵方程的解法,将已知等式化为 (A-2I)X=B 后,用 初等变换法求X即可。

$$AX = 2X + B \Rightarrow (A - 2I)X = B$$
,由题知 $A - 2I = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 7 & -5 \\ 5 & 10 & -6 \end{bmatrix}$,现

用初等变换法求 X,

$$[A-2I|B] = \begin{bmatrix} 1 & 2 & -1 & 1 & 2 \\ 3 & 7 & -5 & 5 & 9 \\ 5 & 10 & -6 & 28 & 32 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 1 & 2 \\ 0 & 1 & -2 & 2 & 3 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & -22 & -20 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 66 & 62 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 66 & 62 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 66 & 62 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & 1 & -23 & -22 \end{bmatrix}$$

$$= [I|(A-2I)^{-1}B], \quad \text{MW } X = (A-2I)^{-1}B = \begin{bmatrix} 66 & 62 \\ -44 & -41 \\ -23 & -22 \end{bmatrix}.$$

4.
$$\varphi(A) = 4 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法、对角矩阵性质的应用。注意 $A = PDP^{-1}$,代 入直接化简即可。

 $AP = PD \Rightarrow A = PDP^{-1}$, 所以 $A^8 = PDP^{-1}PDP^{-1}\cdots PDP^{-1} =$ $PD^{8}P^{-1}$, $5I - 6A + A^{2} = P(5I - 6D + D^{2})P^{-1} = Pdiag(12, 0, 0)P^{-1} =$ $12Pdiag(1,0,0)P^{-1}$,

$$= 12P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5^8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P^{-1} = 12P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P^{-1}, \text{ Finh}$$

$$[P|I] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -3 & -1 & 1 & 0 \\ 0 & -2 & 0 & -1 & 0 & 1 \end{bmatrix}$$

5. 存在; 不是

解析:本题考查方阵行列式的计算以及齐次线性方程组存在非零解的条件。

由推论 1.3.2 及其注释, 齐次线性方程组有非零解的充分必要条件是它的 系数行列式为 0, 所以本题关键是判断 det(A) 是否为 0。

$$= 4 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{vmatrix} 2\alpha_2 & \alpha_2 & \alpha_3 \\ 1 & 1 & 1 \end{bmatrix} + \begin{vmatrix} -\alpha_3 & \alpha_2 & \alpha_3 \\ -\alpha_3 & -\alpha_3 \end{vmatrix}$$
,则齐次线性方

程组 Ax = 0 , A 不是可逆矩阵。

6.
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$$

解析:本题考查伴随矩阵的性质。由 $A = \det(A)(A^*)^{-1}$ 直接计算,可用伴随矩阵法求 $(A^*)^{-1}$ 。

$$AA^* = \det(A)I \Rightarrow A = \det(A)(A^*)^{-1}$$
,因为 $\det(A) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{12} = -7 + 10 - 4 = -1$, $\det(A^*) = [\det(A)]^2 = 1$, $(A^*)^{-1} = \frac{1}{\det(A^*)}(A^*)^* = 0$

$$\begin{bmatrix} -1 & -2 & 1 \\ -3 & -1 & -4 \\ -2 & -2 & -1 \end{bmatrix}$$
, 所以

$$A = \det(A)(A^*)^{-1} = -\begin{bmatrix} -1 & -2 & 1 \\ -3 & -1 & -4 \\ -2 & -2 & -1 \end{bmatrix} = = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$$

7. -16

解析:本题考查伴随矩阵、逆矩阵的性质,结合行列式性质直接计算即可。 $\det\left((2A)^{-1}-5A^*\right)=\det\left(\frac{1}{2}A^{-1}-5\det(A)A^{-1}\right)=\det(\frac{1}{2}A^{-1}-\frac{5}{2}A^{-1})$ $=\det(-2A^{-1})=(-2)^3\det(A^{-1})=(-2)^3\frac{1}{\det(A)}=-16$

 $8.\ \lambda=-1$ 时,r(A)=2, $r(\overline{A})=3$; $\lambda=4$ 时, $r(A)=r(\overline{A})=2$; $\lambda\neq-1$ 且 $\lambda\neq4$ 时, $r(A)=r(\overline{A})=3$ 。

解析:本题考查矩阵秩的求法。用初等变换将矩阵化成阶梯形,则非零行个数为所求矩阵的秩,注意对所占行的讨论。

不数为所求矩阵的秩,狂意对所占行的讨论。
$$\overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & \lambda & 4 \\ -1 & \lambda & 1 & \lambda^2 \\ 1 & -1 & 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \\ 0 & -2 & 2-\lambda & -8 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 & 4 \\ 0 & -2 & 3 & -8 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \ r(A) = 2, \ r(\overline{A}) = 3;$$

$$\lambda = 4 \text{ Bt}, \ \overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 0 & -2 & 3 & -8 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \ r(A) = 2;$$

$$\lambda \neq -1 \text{ Bt}, \ \lambda \neq 4 \text{ Bt}, \ \overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \end{bmatrix}, \ r(A) = 2;$$

 $r(\overline{A})=3\, \circ$

综上, $\lambda=-1$ 时,r(A)=2 , $r(\overline{A})=3$; $\lambda=4$ 时, $r(A)=r(\overline{A})=2$; $\lambda\neq-1$ 且 $\lambda\neq4$ 时, $r(A)=r(\overline{A})=3$

第三章 几何向量及其应用

§3.1 向量及其线性运算

(A)

 $1.\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{b})\frac{1}{n}, \overrightarrow{BC} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})$ 解析: 不妨取平行四边形中心为点 0.,而 $\overrightarrow{AO} = \overrightarrow{OC} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\overrightarrow{a}\overrightarrow{BO} = \overrightarrow{OD} = \frac{1}{2}BD = \frac{1}{2}\overrightarrow{b}, \overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{AO} - \overrightarrow{OB} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{b})$ 同理 $\overrightarrow{BC} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})$

2. 解析: 证明的思路是将三个向量首尾相接,利用中线的条件. 可以给出如下的式子 $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = (\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}) + (\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA}) + (\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}) = \frac{3}{2}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) = \overrightarrow{0}$

从而可以发现三个向量可以构成三角形。

- 3. 解析: 证明向量共线可以从一向量表示入手,或者也可以通过叉乘的方式求解。此题证明三点共线,可以找出两个向量,即 \overrightarrow{AB} 和 \overrightarrow{BD} , 其中. \overrightarrow{AB} = $\overrightarrow{a1}$ $2\overrightarrow{a2}$, \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = $\overrightarrow{a1}$ $2\overrightarrow{a2}$. 所以有 \overrightarrow{AB} = \overrightarrow{BD} 所以三点共线。
- 4. 解析: P 点在第 2 卦限, N 点在第 8 卦限, P 点关于 xoy 平面对称点是 (-1,2,-3), 关于 yoz 平面对称点是 (-1,-2,3), 关于 yoz 平面对称点是 (1,2,3), 关于 x 轴对称点是 (-1,-2,-3), 关于 y 轴对称点是 (1,2,-3), 关于 z 轴对称点是 (1,-2,3), 关于原点对称点是 (1,-2,-3)。
- 5. 解析: 到 0xy 平面的距离即为 z 坐标值 1, 到 y 轴距离为: $\sqrt{x^2+z^2}=\sqrt{5}$ 到原点距离为 $\sqrt{x^2+y^2+z^2}=\sqrt{14}$
- 6. 解析: a=i+2j-2k 不是单位向量,因为 $\|\overrightarrow{a}\|=3\neq 1$,设与 a 同方向的单位向量为 e, $\overrightarrow{e}=\frac{1}{3}\overrightarrow{i}+\frac{2}{3}\overrightarrow{j}-\frac{2}{3}\overrightarrow{k}$

- 7. 解析: 根据主对角线的坐标及长方形的性质,可以得到其余坐标为:(2,3,0), (6,3,0)(2,-1,0), (6,3,4), (6,-1,4), (2,-1,4)。
- 8. 解析: 三个方向角相等且均为锐角,则 $\cos \alpha = \cos \beta = \cos \gamma = \frac{\sqrt{3}}{3}$, 方向余弦如下, $\overrightarrow{a^0} = (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$,根据条件 $\|\overrightarrow{a}\| = 2$,求出 $\overrightarrow{a} = (\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$
- 9. 解析: b 与 z 轴正向的夹角为锐角,则 b 的 z 坐标为正,又因为 b 与 a 平 行,设正数 k, 那么有 b=k(-1,-1,1), 方向余弦 $\overrightarrow{b^0} = (-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$
- 10. 解析: a=(-2,3,x) 与 b=(y,-6.2) 共线,所以存在 k 使得 k(-2,3,x)=(y,-6.2),解得 k=-2,x=-1,y=4.
- 11. 解析: F=F1+F2+F3=(1,2,3)+(-2,3,-4)+(3,-4-1)=(2,1,-2), 方向角: $\alpha = \arccos \frac{2}{3}, \beta = \arccos \frac{1}{3}, \gamma = \arccos(-\frac{2}{3})$
- 12. 解析: 已知 P=(1,2,3),Q=(2,3,4),那么 PQ=(2,3,4)-(1,2,3)=(1,1,1),方向余弦: $\overrightarrow{PQ^0}=(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$
 - 13. 球心坐标: $O = \frac{P+Q}{2} = (1,2,3)$; 半径长度: $||PO|| = \sqrt{14}$ 因此球面方程为: $(x-1)^2 + (y-2)^2 + (z-3)^2 = 14$
- 14 解析: 由于方向角相等,那么令 $P = k(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$,带入平面方程 4x-7y+5z-20=0,解出,所以 P=(10,10,10)。
 - 15. 解析: 判断三个向量是否共面利用三阶行列式是否等于 0

(1)
$$\begin{vmatrix} 4 & 6 & 6 \\ 0 & -9 & -3 \\ 2 & 8 & 3 \end{vmatrix} = 60 \neq 0$$
,不共面;

(2) 行列式 =0, 共面;

16. 解析:
$$\overrightarrow{a} = x\overrightarrow{e_1} + y\overrightarrow{e_2} + z\overrightarrow{e_3}$$
,也可以表示成
$$\begin{bmatrix} 3 & 7 & -2 \\ 2 & 5 & 3 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

$$\begin{bmatrix} -7 \\ 4 \\ 7 \end{bmatrix}$$
,利用 Cramer 法则求出 x=-1,y=0,z=2,所以 $\overrightarrow{a} = -\overrightarrow{e_1} + 2\overrightarrow{e_3}$

- 17. 解析: 根据四点的坐标容易得出球心坐标 $(\frac{a}{2},\frac{b}{2},\frac{c}{2})$,半径 $r=\frac{1}{2}=$ $\sqrt{a^2 + b^2 + c^2}$
- 18. 解析: 点 P 把线段 AB 分成 2:1 的两段,可以根据 AB 之间的距离按照 比例划分找出 P 点, $\overrightarrow{AP} = \frac{2}{3}\overrightarrow{AB} = (0, \frac{2}{3}, -\frac{2}{3})$, 所以 $P = (1, \frac{5}{3}, \frac{1}{3})$

§3.2 数量积 向量积 混合积

(A)

$$(2)3a \times 4b = \begin{vmatrix} i & j & k \\ 3 & 3 & -3 \\ 0 & 12 & 16 \end{vmatrix} = 12(7, -4, 3)$$

$$(3) [5a - b c] = \begin{vmatrix} 5 & 5 & -5 \\ 0 & -3 & -4 \\ 2 & 8 & -1 \end{vmatrix} = 105$$

$$(4) \cos \langle a, b \rangle = \frac{a \bullet b}{\|a\| \|b\|} = -\frac{1}{5\sqrt{3}}; \arccos(-\frac{1}{5\sqrt{3}})$$

$$(3) [5a - b c] = \begin{vmatrix} 5 & 5 & -5 \\ 0 & -3 & -4 \\ 2 & 8 & -1 \end{vmatrix} = 105$$

- (5) 代入公式知答案为 $-\frac{1}{25}(0,3,4)$
- (6) 计算 aŒb 的值再 Œc, 得(-20,13,64)
- 2. 解析: 利用向量共线和两向量的数量积可以计算 $\overrightarrow{a} \bullet \overrightarrow{b} = 9p = -18, p = -2, \overrightarrow{b} = -4\overrightarrow{i} + 2\overrightarrow{j} - 4\overrightarrow{k}$

$$u = 0 - 3p = 10, p = 2, \quad v = 4t + 2j = 4k$$

- 3. 解析; 利用模和向量之间的关系计算 $\left\|\overrightarrow{a} \overrightarrow{b}\right\|^2 = 28$,从而得到两个向 量之间的角度是 $(a,b)=\frac{2\pi}{2}$
 - 4. 解析: 利用模和向量之间的关系计算 $\left\|\overrightarrow{2a} 3\overrightarrow{b}\right\| = 2\sqrt{7}$ $S = \overrightarrow{q} \times \overrightarrow{b} = \sqrt{3}$

5. 解析: 利用 Cramer 法则求解方程组

$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & -3 & 2 \\ 3 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -5 \\ -11 \\ 20 \end{bmatrix}$$
从而 d=[2 3 -2]

- 6. 解析: 见答案
- 7. 解析: 利用向量垂直的表达式

$$(\overrightarrow{a} + 3\overrightarrow{b})(7\overrightarrow{a} - 5\overrightarrow{b}) = 0$$

$$(\overrightarrow{a} - 4\overrightarrow{b})(7\overrightarrow{a} - 2\overrightarrow{b}) = 0$$
得到夹角为 $\frac{\pi}{3}$

- 8. 解析: 注意射影和射影向量之间的区别,a 在 b 上的射影-3,a 在 b 上的射影向量 =(-1 2 -2)
 - 9. 解析: 利用射影向量的概念
- (a•i)i 表示 a 在 x 轴的投影向量,同理另外两个表达式分别表示在 y 轴和 z 轴的投影向量,得证。(另外也可以通过方向余弦的表达式来证明)
- 10. 解析: 利用垂直的向量表达式 $\left[(\overrightarrow{a} \bullet \overrightarrow{c}) \overrightarrow{b} (\overrightarrow{b} \bullet \overrightarrow{c}) \overrightarrow{a} \right] \overrightarrow{c} = 0$, 得证。

11. 解析: 利用三个向量都是单位向量的条件
$$\overrightarrow{a} \bullet \overrightarrow{b} + c \bullet \overrightarrow{b} + \overrightarrow{a} \bullet \overrightarrow{c} = \frac{1}{2} \left[(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) - (\overrightarrow{a})^2 - (\overrightarrow{b})^2 - (\overrightarrow{c})^2 \right] = -\frac{3}{2}$$

- 12. 解析: 利用叉乘求出平行四边形面积, 再返求高。
- 13. 解析: 利用叉乘的结合律 $\overrightarrow{a} \times (\overrightarrow{b} \overrightarrow{c}) = (\overrightarrow{c} \overrightarrow{b}) \times \overrightarrow{d}$, 化简得 a-d 与 b-c 共线。
 - 14. 解析: 见课本课后答案
 - 15. 解析: b+c=aŒb; $a \perp a \times b$; $a \perp b + c$; 故选 A。
 - 16. 解析: 利用数量积和向量积的结合律

17. 解析: 利用叉乘和点乘的分配律和结合律

$$\left[(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{c} + \overrightarrow{b}) \right] \bullet (\overrightarrow{c} + \overrightarrow{a}) = 2 \left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \right] = 4$$

18. 解析: 利用混合积的几何意义

$$V = \frac{1}{6} \left\| \left[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \right] \right\| = 15$$

19. 解析: 利用混合积的定义、定理 3.2.1 (两向量 a 和 b 垂直,a • b=0) 和定理 3.2.2 (两向量 a 和 b 共线,aŒB=0) 来证明定理 3.2.3

(B)

1. 解析: 利用向量叉乘的性质

几何解释: 三个向量围成三角形,任意两个向量的叉乘的几何意义是以这两个向量所在为平行四边形的边的面积乘以一个与该三角形垂直的单位法向量。

2. 解析: 利用加边的方法证明,下面的 abs ()是取绝对值的意思。

$$S = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{2} abs \left(\left| \begin{array}{ccc} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{array} \right| \right) = \frac{1}{2} abs \left| \begin{array}{ccc} 0 & 0 & 1 \\ x_2 - x_1 & y_2 - y_1 & 1 \\ x_3 - x_1 & y_3 - y_1 & 1 \end{array} \right| = 0$$

3. 解析: 利用坐标系证明 (1)

(1) 假设 a=(a b c),b=(d e f),c=(g h i)

左边 $\overrightarrow{a} \times \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a & b & c \\ ei-fh & fg-di & dh-eg \end{vmatrix} = (bdh+cdi-$

 $beg-cfg\ age+cei-adh-cfh\ afg+bfh-adi-bei)$

右边 =(ag+bh+ci)(d e f)-(ad+be+cf)(g h i)=(bdh+cdi-beg-cfg aeg+cei-adh-cfh afg+bfh-adi-bei) 所以成立。

(2) 利用 (1) 证明, 两边点乘 b, 左边的式子可以利用混合积变换,即可得证。

§3.3 平面和空间直线

(A)

- 1. 解析: 求解平面方程一般利用与直线和平面之间的垂直和平行关系, 切入点是求出法向量。
- (1) 与两条直线平行, 两条直线的方向向量分别是 $(0\ 1\ 1)$ 和 $(1\ 2\ 1)$ 。平面的 法线向量和方向向量均垂直, 可以计算平面法线向量 = $(1\ -1\ 1)$, 经过零点, 从而 平面方程 x-y+z=0。
- (2) 两条直线方向向量分别是 $(1\ 0\ -1)$ 和 $(2\ 1\ 1)$, 且经过点 $(1\ 2\ 3)$, 可以计算平面法向量 $=(1\ -3\ 1)$. 从而平面方程 x-3y+z+2=0。
- (3) 平行于原平面,可知平面法向量 =(5 -14 2). 令平面方程 5x-14y+2z+k=0, 根据平面之间的距离 $\frac{|k-36|}{\sqrt{5^2+(-14)^2+2^2}}=3$,所以 k=-9 或 81,从而平面方程 5x-14y+2z+81=0 或者 5x-14y+2z-9=0。
- (4) 经过两点并且和另一平面垂直,那么该平面法向量和另一平面法向量和两点方向向量垂直。两点方向向量为 λ =(9 -2 13), 另一平面法向量 η =(2 -1 4), 所以平面法向量 η' = λ ×=5(1 -2 -1), 从而平面方程 x-2y-z+2=0。
- (5) 经过定点 (1 2 -3),经过 x 轴,可以知道该平面法向量与 η_1 =(1 0 0) 和 η_2 =(1 2 -3) 垂直,所以平面法向量 = $\eta'=\eta_1\times\eta_2=(032)$,从而平面方程 3y+2z=0。
- (6) 先求解直线的方向向量 λ =(4 1 2)×(5 2 3)=(-1 -2 3),另一平面法向量是 η =(2 -1 1),从而该平面法向量 $\eta'=\lambda\times\eta$ =(1 7 5),从而平面方程 x-2+7(y+1)+5(z-5)=0.
- (7) 经过直线和一个点,那么可以在直线上取点求出一方向向量, 不妨取定点 (0-13), 求得直线方向向量 λ_1 =(220), 已知直线方向向量 λ_2 =(232), 所以平面法向量 $\eta = \lambda_1 \times \lambda_2 = 2(2-11)$, 从而平面方程 2(x-2)-2(y-1)+z-3=0
 - (8) a=(2,-4,-3),b=(3,-3,-4);a×b=(7,-1,6); 方程为: 7x-y+6Z-5=0.
- (9). 根据定点及夹角知:方向向量为(1, $\sqrt{26}$,3),所以方程式为: x $\sqrt{26}$ y+3z-3=0.
 - 2. 解析
 - (1) 直线方程 $\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2} = \frac{z-z_1}{z_1-z_2}$

- (2) 先求出直线方向向量 $\lambda = \eta_1 \times \eta_2 = (2-31) \times (4-23) = (-7-28)$, 从而直线方程: $\frac{x-2}{-7} = \frac{y}{-2} = \frac{z+1}{8}$
- (3) 利用两直线垂直相交,满足共面条件和垂直条件,借助另一直线方向向量 λ_1 =(-3 0 -6)-(2 -1 3)=(-5 1 -9),令所求直线方向向量 λ =(x y 2) 列出方程组 $\left[\lambda_1\left(702\right)\lambda\right]=0$,求得 λ =(2 1 -7),从而直线方程: $\frac{x-2}{2}=\frac{y+1}{1}=\frac{z-3}{-7}$
- (4) 所求直线的方向向量和直线方向向量与平面法向量垂直,所以可以求得所求直线方向向量 λ =(4 5 6)×(7 8 9)=-3(1 -2 1). 从而直线方程: $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{1}$
- (5) 记直线 x=y=z 的方向向量 λ_1 =(1 1 1), 记方向向量 λ_2 =(1 2 3), 记 y 轴方向向量 λ_3 =(0 1 0). 所求直线方向向量 λ =(x y z) 列出方程组 $\lambda \times \lambda_1 = 0$ 求得 λ =(1 -4 3). 从而得直线方程.
- (6) 记直线 L1 和点 P1 构成的平面为 W1, 直线 L2 和点 P 构成的平面为 W2。则所求直线方程即为两平面交线 (这么说有前提, 因为题目给出的两条直线恰好异面, 如果两直线共面相交, 容易通过交点和点 P0 计算直线方程, 如果两直线平行, 题目所求毫无意义)。任取 L1 上的点 P1, 求出直线过 P0 和 P1 的方向向量, 和 L1 方向向量叉乘得到 W1 的法向量。同理可以得到 W2 的法向量。两法向量叉乘即得所求直线方向向量,结合过点 P0 可以求出直线方程。
- 3. 解析: 求某点关于某平面的对称点,可以设另一点坐标,依靠两个条件: 第一,中点在平面上: 第二,过两点的直线方程垂直于平面。

设对称点坐标是 P(x,y,z), 可以列出方程组:

$$3x + y - \frac{9}{2}z + 121 = 0$$

 $\frac{x}{6} = \frac{y}{2} = \frac{z}{-9}$
解得 P(-12.-4,18)。

4. 解析: 要找平面上一点使得到其他三个平面外的点距离相等,列出距离方程即可。

假设该点坐标为 P(x,y,2),那么可以列出距离方程,再结合一个平面方程 x-y-2z=0,即可利用克拉姆法则解出方程组。

最后得到
$$p = (\frac{7}{5}, 1, \frac{1}{5})$$

5.

(1)解析: 先解出直线方程的方向向量,如果方向向量和法向量相同,则垂

直;如果方向向量和法向量垂直并且直线上随便取一个点都在平面上,那么直 线在平面内;如果方向向量和法向量垂直并且直线上随便取不在平面上,那么 直线与平面平行。易得此处直线和平面垂直,答案应选 C:

- (2)解析:可以先判断是否共面,依据三维行列式是否等于 0. 易得该题的三维行列式等于 0,从而两直线共面。如果重合或者平行,均不满秩。答案应选 A。
- 6. 解析: 求直线和平面的交点,可以利用平面的对称式方程引入参数分别表示 x,y,z, 然后解出参数. 从而解出交点。

可以得到交点坐标 $P(2\ 3,1)$, 假设 L 的方向向量为 (x,y,2), 那么可以列出方程组

$$(x,y,z)(5,1,4)=0$$
 得 (x,y,z) =(3,1,-4), 从而得直线方程.。 $(x,y,z)(3,-1,2)=0$

7. 解析: 两平面的法向量分别是 $\overrightarrow{\lambda_1}=(2,1,2)$, $\overrightarrow{\lambda_2}=(1,1,0)$ 所以有 $\cos\theta=\frac{\sqrt{2}}{2}$

所以夹角 $\theta = \frac{\pi}{4}$

- 8. 解析: 同第7题
- 9. 解析: 同第 7 题得 $\theta = \arccos \frac{11}{7\sqrt{3}}$,交点为 $\left(\frac{9}{11}, \frac{8}{11}, \frac{-17}{11}\right)$
- 10. 解析; 设所求平面法向量为 $\overrightarrow{\lambda_1}=(x,y,0)$, 已知平面法向量为 $\overrightarrow{\lambda_2}=(2,1,-\sqrt{5})$, 根据角度 $\cos\theta=\frac{1}{2}$, 得 y=3x 或 x+3y=0, 即平面方程。
- 11. 解析: 平面 s 的法向量 $\overrightarrow{\lambda_1}=(1,1,1)$, 假设所求直线方向向量为 $\overrightarrow{\lambda_2}=(1,1,z)$, 根据角度列出方程,得 $z=4\pm 3\sqrt{2}$,即可得直线方程.
- 12. 解析: 由平面平行可以设所求平面方程为6x+3y+2=+a=0,根据该平面和原点之间的距为1。所以r=1,得到;平面方程为6x+3y+2z+7=0或6x+3y+2z-7=0
- 13. 解析: 可以借助向量来说明问题,两平行平面的法向量相同,与另一平面的法向量叉乘得到的新向量相同,也就是交线的方向向量,而且分别在两个平面内,所以交线平行。

- 14. 解析: 直接求出交点坐标 (2,1,0), 由两直线的方向向量叉乘即可得到平面法向量, 所以最后 7x-5y-11z-9=0。
 - 15. 解析: 点到平面的距离公式 $r = \left| \frac{1-4+1+1}{\sqrt{1+4+1}} \right| = \frac{\sqrt{6}}{6}$
 - 16. 解析: 平面之间的距离转化成点到平面的距离。 取 x+y-z+1=0 上-点 (-1, 0, 0) 所以 $r=\frac{5}{2\sqrt{3}}$
 - 17. 解析:
 - (1) 对称式方程见答案
- (2) 点 M 到 L1 的距离: 借助公式,此处取直线上点为 (0,-3.-2). 距离为 $r=\frac{\sqrt{93}}{2}$
- (3) 两直线之间的距离,经过计算三维行列式可以知道两直线是异面直线,借助课本上的异面直线公式可以得到 $r=\frac{20}{100}$

(B)

1. 解析: 见课本课后答案详解

§3.4 第3章习题

- 1. 解析:
- (1) 原式 = $(\overrightarrow{a} \times \overrightarrow{b}) \bullet \overrightarrow{c} + (\overrightarrow{b} \times \overrightarrow{c}) \bullet \overrightarrow{a} = 4$
- (2) 利用向量叉乘的几何意义, 可以计算得到 $s=12\sqrt{2}$
- (3) 利用原点和另一点之间的方向向量与平面法向量叉乘即可得到所求平面的法向量,再根据过原点的信息可以解出该平面方程为 2x+2y-3z=0;
 - (4) 两直线相交, 利用共面的三维行列式可以求解该问题,得到 $\lambda = \frac{5}{4}$;
 - (5) 点到平面的距离利用距离公式可以得到 $r = \sqrt{2}$ 。
 - 2. 解析:
 - (1) 答案应选 B
 - (A) 不确定;

- (B) 可以确定的是三个向量是基向量,空间任意向量均可被表示;
- (C) 也有可能是 a 和 b-c 垂直;
- (D) 也有可能是 a 和 b-c 平行。
- (2) 答案应选 A
- (3) 答案应选 D (判断直线方向向量和平面法向量之间的关系)
- 4) 答案应选 C (首先可以通过直线方向向量排除平行和垂直,接下来只需依三维行列式判断是否共面)
- (5) 答案应选 C (四点共面转化为三直线共面,利用共面直线方向向量之间 叉乘为 0 的依据)
- 3. 解析: 设该平面的法向量 $\overrightarrow{\lambda_1}$ =(x.y,z), 已知平面的法向量 $\overrightarrow{\lambda_2}$ =(7.-1.4), 直线的方向向量 $\overrightarrow{\eta}$ =(1, 1, 2). 其中 $\overrightarrow{\lambda_1} \bullet \overrightarrow{\lambda_2} = 0$ $\overrightarrow{\lambda_1} \bullet \overrightarrow{\eta} = 0$ 所以 $\overrightarrow{\lambda_1}$ =(3,5, -4) 取直线上的一点即可解出平面方程 3x+5y-4z+25=0.
- 4. 解析: 设该直线的方程为 $\frac{x-1}{a} = \frac{y}{b} = \frac{z+2}{c}$, 与平面平行, 所以有 3a-b+2c=0 ; 与直线相交,所以有 $\begin{vmatrix} 0 & 3 & 2 \\ a & b & c \\ 4 & -2 & 1 \end{vmatrix}$ 所以直线方程为 $\frac{x-1}{4} = \frac{y}{-50} = \frac{z+2}{-31}$
- 5. 解析: 点到直线的距离可以利用课本上的公式。直线 L 的方程为 $\frac{x}{1}=\frac{y-4}{-3}=\frac{z-3}{-2}$. 距离 $r=\frac{\sqrt{6}}{2}$
- 6 解析: 设 p0 关于直线的对称点为 P1 (x,y,z)。所以可得中点,且有 (x-2, y+3,z-1) (-2, -1, 2)=0. 所以最终得到直线方程、P1、P2。
 - 7. 解析: 见课本课后答案详解

第四章 n 维向量与线性方程 组

§4.1 消元法

(A)

- 1. 直接应用消元法即可,考查基本的运算能力,掌握这一方法对后面的初等行变换来说至关重要.
 - (1) 直接消元,过程见下

$$\begin{bmatrix} 1 & 1 & 5 & 3 & | & 15 \\ 1 & 2 & 3 & 3 & | & 10 \\ 1 & 3 & 2 & 4 & | & 8 \\ 2 & 5 & 6 & 8 & | & 21 \\ 2 & 5 & 4 & 7 & | & 18 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & 5 & 3 & | & 15 \\ 0 & 1 & -2 & 0 & | & -5 \\ 0 & 2 & -3 & 1 & | & -7 \\ 0 & 3 & -4 & 2 & | & -9 \\ 0 & 3 & -6 & 1 & | & -12 \end{bmatrix} \xrightarrow{r_1 - r_2 \\ r_3 - 2r_2} \xrightarrow{r_3 - 2r_2} \xrightarrow{r_3 - 2r_2} \begin{bmatrix} 1 & 0 & 7 & 3 & | & 20 \\ 0 & 1 & -2 & 0 & | & -5 \\ 0 & 0 & 1 & 1 & | & 3 \\ 0 & 0 & 2 & 2 & | & 6 \\ 0 & 0 & 0 & 1 & | & 3 \end{bmatrix} \xrightarrow{r_4 - 2r_3} \begin{bmatrix} 1 & 0 & 7 & 3 & | & 20 \\ 0 & 1 & -2 & 0 & | & -5 \\ 0 & 0 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{r_1 - r_2 \\ r_2 - 2r_1} \xrightarrow{r_3 - 2r_2} \xrightarrow{r_4 - 3r_2} \xrightarrow{r_4 - 2r_3} \xrightarrow{r_4 - r_5} \begin{bmatrix} 1 & 0 & 7 & 3 & | & 20 \\ 0 & 1 & -2 & 0 & | & -5 \\ 0 & 0 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

有唯一解 $x_1 = 11, x_2 = -5, x_3 = 0, x_4 = 3, x_5 = 0.$

$$(2) 同理,最终化简成
$$\begin{bmatrix} 1 & 0 & 1 & 0 & 3 \\ 0 & 1 & -2 & 0 & -8 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$$$

通解 $x_1 = 3 - x_3, x_2 = -8 + 2x_3, x_4 = 6$ $(x_3$ 为自由未知量).

(3) 同理,最终化简成

仅有零解.

(4) 同理,最终化简成

2. 充分理解"交于一点"的代数意义为原方程组有唯一解即可.

首先证明充分性,将方程组写成矩阵形式

$$det(\bar{A}) = \begin{vmatrix} a & 2b & -3c \\ b & 2c & -3a \\ c & 2a & -3b \end{vmatrix} = 6(a^3 + b^3 + c^3 - 3abc) = 3(a + b + c)[(a - b)^2 + (b - c)^2 + (c - a)^2]$$

$$a + b + c = 0$$

 $\therefore det(\bar{A}) = 0$,方程有唯一解,即三直线方程联立所得方程组有唯一解

:: 三直线交于一点

再证明必要性,

:: 三直线交于一点:: 方程组有唯一解,即 $r(A) = r(\bar{A})$

假设
$$a+b+c \neq 0$$
, 对增广矩阵 \bar{A} 化简得
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & c-b & a-b \\ 0 & a-c & b-c \end{bmatrix}$$
,

$$r(\bar{A}) = 3$$

 $r(A) = 2 r(A) \neq r(\bar{A})$, 方程组无解, 矛盾

$$\therefore a + b + c = 0$$

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}]$$

§4.2 向量组的线性相关性

(A)

1. 分析: 对于 (I): $\alpha_1, \alpha_2, \alpha_3$;(II): $\beta_1, \beta_2, \beta_3$, 如果 (II) 能由 (I) 线性表示,那么方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta_i (j = 1, 2, 3)$ 有解

(1) 由题意知,方程组 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = \alpha_i (i = 1, 2, 3)$ 无解

 $\overrightarrow{\Pi} r(\overline{B}) \neq r(B)$

$$A = 6$$

$$(2) A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 4 \\ 1 & 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

:. (II) 由 (I) 表示成

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -3 & 0 & -9 \\ 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$

2. 设:
$$\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4$$

则有
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - x_4 = 2 \\ x_1 - x_2 + x_3 - x_4 = 1 \\ x_1 - x_2 - x_3 + x_4 = 1 \end{cases}$$

$$\therefore D = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{5}{4} \\ 0 & -2 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 2 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -4 & 1 \end{bmatrix}$$

$$\therefore X = \begin{pmatrix} \frac{5}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & -4 & 1 \end{bmatrix}$$

3. 分析: 重要提示:本章含参类题目为高频考题,掌握此题型非常重要! 涉及变量往往需要先列出矩阵,化简为阶梯形后进行分类讨论,题目一般最后化成方程组是否有解问题,理解清**无解/有解,有解时有唯一解/多解**的各个条件即可

设:
$$\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = -1 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + x_3 = 1 \\ -x_2 + (a - 3)x_3 = b \end{cases}$$
Ett. B
$$\begin{cases} 3 & 2 & 1 & -1 \\ 1 & 1 & 0 \end{cases} \qquad \begin{bmatrix} 1 \\ 0 & -1 \end{bmatrix}$$

 $\mathbb{M} D = \begin{bmatrix} 3 & 2 & 1 & -1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & a - 3 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a - 1 & b + 1 \end{bmatrix}$

(1) 当 $a \neq 1$ 时 β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 唯一线性表示,

$$\beta = \frac{b-a+2}{a-1}\alpha_1 + \frac{a-2b-3}{a-1}\alpha_2 + \frac{b+1}{a-1}\alpha_3$$

- (2) 当 a=1 且 $b\neq -1$ 时 β 不可以由 $\alpha_1,\alpha_2,\alpha_3$ 唯一线性表示
- (3) 当 a = 1 且 b = -1 时

$$\beta = (-1+c)\alpha_1 + (1-2c)\alpha_2 + c\alpha_3$$

其中c为任意常数

为便于读者回忆复习,此处简单列举方程组无解/有解,有解时有唯一解/多解的常用条件.为便于叙述,设n元方程组的系数矩阵为A,增广矩阵为 \bar{A} .

无解: $r(A) \neq r(\bar{A})$ 有解: $r(A) = r(\bar{A})$

有唯一解: $r(A) = r(\bar{A}) \perp r(A) = n$

有多解: $r(A) = r(\bar{A}) \perp r(A) < n$

4.

(1)(2) 不正确

若 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性相关,则存在一组不全为 0 的系数 k_1,k_2,\ldots,k_n ,使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$$

设 α_i 为其中任意一个向量,则

$$k_j \alpha_j = -[k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_{j-1} \alpha_{j-1} + k_{j+1} \alpha_{j+1} + \dots + k_n \alpha_n]$$

若 $k_i \neq 0, \alpha_i$ 可以由其余向量表示

若 $k_i = 0, \alpha_i$ 不可以由其余向量表示

(3) 正确

由 Ax = 0 仅有零解得,

零向量可由 A 的列向量唯一线性表示 $0 = 0\alpha_1 + 0\alpha_2 + \cdots + 0\alpha_n$

故A的列向量线性无关

(4) 正确

$$XX^T = \sum_{i=1}^{n} \alpha_i^2 \ge 0$$

当 $XX^T=0$ 时, $\alpha_i=0$,即X=0

5. 取 $A = (\alpha_1, \alpha_2, \alpha_3)$,则由线性相关的相关性质得 |A| = 0 $\begin{vmatrix} \lambda & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \lambda \end{vmatrix} = (\lambda - 1)(\lambda - \frac{1}{2})^2 = 0 : \lambda = 1$ 或者 $\lambda = \frac{1}{2}$

n 阶矩阵的列(行)向量线性相关,该矩阵行列式为0

6. 分析: 同例 5, 利用列向量线性无关同行列式之间的关系解题充分性,

设 $A = \begin{pmatrix} \alpha_1, & \alpha_2, & \dots, & \alpha_n \end{pmatrix}$,由 $D \neq 0$ 得 $|AA^T| = [|A|]^2 \neq 0$ ∴ $|A| \neq 0$ 得 r(A) = n

 $\therefore \alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关

必要性,由 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性无关得 r(A)=n, $|A|\neq 0$ 即得 $D=|AA^T|\neq 0$

7.

- (1) r(A) = 3 各列向量线性无关
- (2) r(A) = 3 < 2 各列向量线性相关

$$(3) A = \begin{pmatrix} \alpha_1, & \alpha_2, & \alpha_3 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -a & 1 & 1 \\ 1 & -a & 1 \\ 1 & 1 & -a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ -1 - a & 0 & 0 \\ 0 & -a - 1 & 0 \\ 0 & 0 & -a - 1 \end{bmatrix}$$

当 $a \neq -1$ 时,r(A) = 3 各列向量线性无关

当 a=-1 时,r(A)=1<3 各列向量线性相关

- 8. 逆否命题:向量组线性无关的充分必要条件是该向量组中的每个向量都不能由该组中的其余向量线性表示.
- 9. 分析: 从线性相关性和矩阵秩的关系入手, 列向量线性无关则其构成的矩阵应满秩

由
$$\alpha_1, \alpha_2, \dots, \alpha_s$$
 线性无关得 $r(A) = s$, 延长分量, $r(A)$ 不变

$$\therefore B = \begin{bmatrix} \beta_1, & \beta_2, & \dots, & \beta_s \end{bmatrix}, \quad r(B) = s$$

$$:: \beta_1, \beta_2, \ldots, \beta_s$$
 线性无关

逆否命题:若对于 r 维的向量组满足, $\alpha_j = \begin{bmatrix} \alpha_{1j}, & \alpha_{2j}, & \dots, & \alpha_{rj} \end{bmatrix}^T (j = 1, 2, \dots, s)$ 线性相关,则在向量组截短后仍然线性相关

10.

分析:多想想线性表示的原始定义即可,注意对线性无关这一条件的利用 由题可知 $\beta=k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m$ 且 k_1,k_2,\ldots,k_m 不全为 0 又 β 不能由 $\alpha_1,\alpha_2,\ldots,\alpha_{m-1}$ 线性表示

$$\therefore k_m \neq 0$$
得 $\alpha_m = \frac{-(k_1\alpha_1 + k_2\alpha_2 + \dots + k_{m-1}\alpha_{m-1}) + \beta}{k_n}$

 $\therefore \alpha_m$ 能够被 $\alpha_1, \alpha_2, \ldots, \alpha_{m-1}, \beta$ 线性表示

11.

(1) 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,得到 $\alpha_1, \alpha_2, \alpha_3$ 中至少可以有一个能被其他的两个线性表示

由 $\alpha_2, \alpha_3, \alpha_4$ 线性无关,得到 $\alpha_2, \alpha_3, \alpha_4$ 中任何一个都不能被其他的两个 线性表示

 $\therefore \alpha_2, \alpha_3$ 是线性无关的, α_1 可以被 α_2, α_3 线性表示

(2) 不能

- α_1 可以被 α_2, α_3 线性表示,而 α_4 和 α_2, α_3 线性无关
- $\therefore \alpha_1$ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示

编者注: A 可被 B.C.D 线性表示, 意味着 A 可被其他量 (B.C.D) 等效替代, (B.C.D) 完成不了的事情(1), A 也没有能力完成.

12. 分析:证明向量组线性无关,常用的思路是先把向量组构成的 m 阶方 阵写出来,想办法证明方阵的行列式不为0即可

设
$$x_1\beta_1 + x_2\beta_2 + \dots + x_m\alpha_m = 0$$

$$\begin{cases}
x_2 + x_3 + \dots + x_m = 0 \\
x_1 + x_3 + \dots + x_m = 0
\end{cases}$$

$$\vdots$$

$$\begin{cases}
x_1 + x_2 + \dots + x_{m_1} = 0
\end{cases}$$

$$Z D = \begin{vmatrix}
0 & 1 & \dots & 1 \\
1 & 0 & \dots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \dots & 0
\end{vmatrix} = (m-1) \begin{vmatrix}
1 & 1 & \dots & 1 \\
1 & 0 & \dots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \dots & 0
\end{vmatrix}$$

$$= (m-1) \begin{vmatrix}
1 & 1 & \dots & 1 \\
0 & -1 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & -1
\end{vmatrix}$$

$$\therefore \beta_1, \beta_2, \dots, \beta_m$$
线性无关

13. 分析: 充分利用矩阵的秩的关系证明线性相关性 设向量组构成矩阵 $D=\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}$ 先证明必要性,

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则矩阵 D满足 DX = 0 只有零解

 \therefore A 可逆 $\therefore r(A) = 3$, ADX = 0 即 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$ 线性无关

⁽¹⁾指去线性表示另外一个量 E

再证充分性,

$$A\alpha_1, A\alpha_2, A\alpha_3$$
 线性无关,得 $AD=0$ 只有零解, $r(AD)=3$

$$r(AD) \le \min(r(A), r(D)), \quad r(A) \le 3 \perp r(D) \le 3$$

$$\therefore r(A) = r(D) = 3$$

即方阵 A 满秩可逆,矩阵 D 满秩,其列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关

 $r(A \cdot B) \le \min(r(A), r(B))$, 该条性质详见第 3 版教材 P161

- 14. 分析: 证明线性无关常从两个方向考虑,一个是矩阵的秩,一个是代数上的方程组求解
 - (1) 由题意易得 β , α_1 , α_2 , α_3 线性无关

事实上,矩阵 $\left(\beta,\alpha_1+\beta,\alpha_2+\beta,\alpha_3+\beta\right)$ 是由矩阵 $\left(\beta,\alpha_1,\alpha_2,\alpha_3\right)$ 经过初等变换得到的,两矩阵秩相等

- \therefore 向量组 β , $\alpha_1 + \beta$, $\alpha_2 + \beta$, $\alpha_3 + \beta$ 线性无关
- (2) 必要性,

设
$$k_1(\alpha_1 - x\alpha_2) + k_2(\alpha_2 - y\alpha_3) + k_3(\alpha_3 - z\alpha_1) = 0$$

整理得
$$(k_1 - zk_3)\alpha_1 + (k_2 - xk_1)\alpha_2 + (k_3 - yk_2)\alpha_3 = 0$$

- $:: \alpha_1, \alpha_2, \alpha_3$ 线性无关
- $\therefore k_1 = zk_3 = z \cdot yk_2 = x \cdot y \cdot zk_1$

 $\therefore \alpha_1 - x\alpha_2, \alpha_2 - y\alpha_3, \alpha_3 - z\alpha_1$ 线性无关

充分性采用反证法来证明,

假设 xyz = 1

向量组构成的矩阵 $A=\left(\alpha_1-x\alpha_2,\alpha_2-y\alpha_3,\alpha_3-z\alpha_1\right)$ 线性无关

对 A 进行初等变换,得 $\dot{A} = \left(\alpha_1 - xy\alpha_2, \alpha_2 - yz\alpha_3, (1 - xyz)\alpha_3\right)$

- $\therefore xyz = 1$ $\therefore \dot{A}$ 中含有零向量, \dot{A} 列向量必线性相关
- \therefore A 的列向量也线性相关,与已知矛盾, $xyz \neq 1$
- 15. 分析: 证明 B 的列向量组线性无关, 先写出 BX=0, 看能否证出 X 只有零解,可以则得证,不可以则考虑从其秩的角度出发

设 BX = 0,原命题等价于证明 X 只有零解即可

- $\therefore AB = I$,在上述方程的两边同乘 A(左边)
- $\therefore X = 0$,得证

16. 分析: 涉及矩阵可拆分成多矩阵的乘积时, 需要思考的是如何找到矩 阵与矩阵之间内在的关系(方程同解/秩/其他条件),再想想如何利用内在关系 由己知条件推出目标.

设
$$D = [\beta_1, \beta_2, \dots, \beta_s]$$
, $A = [\alpha_1, \alpha_2, \dots, \alpha_r]$
由 $D = AB$ 和 $AX = 0$ 只有零解,得 $DX = ABX = 0$
 $\therefore BX = 0$ 和 $DX = 0$ 同解,即 $r(D) = r(B)$, $D \iff B$
 $\therefore \beta_1, \beta_2, \dots, \beta_s$ 线性无关 $\iff r(D) = s \iff r(B) = s$
当 $r = s$ 时 B 为方阵, B 满秩, $\beta_1, \beta_2, \dots, \beta_s$ 线性无关 $\iff det(B) \neq 0$

(B)

1. 本题关键点在于 $A^k \alpha = 0$, 事实上这一条件可以变换出一系列条件($A^{k+1} \alpha =$ 0等),按常规操作设出目标方程,循环套用已知信息即可.

设
$$a_1\alpha + a_2A\alpha + \dots + a_kA^{k-1}\alpha = 0$$

两边同乘 A^{k-1} 得 $a_1A^{k-1}\alpha + a_2A^k\alpha + \dots + a_kA^{2k-2}\alpha = 0$
又 $A^m\alpha = 0(m = k, k+1, \dots)$,则 $a_1 = 0$
同理可得 $a_1 = a_2 = \dots = a_k = 0$
即证得 $\alpha, A\alpha, \dots, \alpha A^{k-1}$ 线性无关

2. 由
$$\beta$$
 是线性方程组的解可得, $\beta^T \alpha_i = \sum_{j=1}^n a_{ij} x_i = 0$
 $\therefore k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_r \alpha_r + k_0 \beta = 0$
 $\therefore k_1 \beta^T \alpha_1 + k_2 \beta^T \alpha_2 + \dots + k_r \beta^T \alpha_r + k_0 \beta^T \beta = 0$
 $\therefore k_0 \beta^T \beta = 0$

$$\therefore \beta^T \beta = \sum_{i=1}^n b_i^2 \neq 0$$

$$\therefore k_0 = 0$$

$$\forall k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_r \alpha_r = 0, \ \alpha_1, \alpha_2, \dots, \alpha_r$$

$$\forall k_1 = k_2 = \dots = k_r = 0$$

$$\therefore k_1 = k_2 = \dots = k_r = k_0 = 0$$

$$\exists k_1 = k_2 = \dots = k_r = k_0 = 0$$

$$\exists k_1 = k_2 = \dots = k_r = k_0 = 0$$

$$\exists k_1 = k_2 = \dots = k_r = k_0 = 0$$

§4.3 向量组的秩

(A)

1.
$$A = \begin{bmatrix} a & 2 & 1 & 2 \\ 3 & b & 2 & 3 \\ 1 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{\text{化为最简形}} \begin{bmatrix} a-2 & 0 & 1 & 0 \\ 0 & b-5 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 $\therefore a = 2, b = 5$

2.

重要提示:矩阵行变换化最简形的方法必考,贯穿后面几章的内容,一定要熟练掌握!

...一个极大无关组为 $\alpha_1,\alpha_2,\alpha_4$, 秩为 3 且 $\alpha_3=3\alpha_1+\alpha_2,\alpha_5=2\alpha_1+\alpha_2$

... 一个极大无关组为 $\alpha_1,\alpha_2,\alpha_3$, 秩为 3 且 $\alpha_4=\alpha_1+\alpha_3-\alpha_2,\alpha_5=2\alpha_1+\alpha_3-2\alpha_2$

3.
$$A = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4 & \alpha \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 & -2 & 4 \\ 1 & -3 & 2 & -6 & 1 \\ 1 & 5 & -1 & 10 & 6 \\ 3 & 1 & p+2 & p & 10 \end{bmatrix}$$

$$A \xrightarrow{\text{行变换}} \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & \frac{3p-4}{p-2} \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & p-2 & \frac{1-p}{p-2} \end{bmatrix}$$

$$\therefore p \neq 2$$
 时向量组线性无关,此时 $\alpha = 2\alpha_1 + \frac{3p-4}{p-2}\alpha_2 + \alpha_3 + \frac{1-p}{p-2}\alpha_4$ $p = 2$ 时向量组线性相关, $\left[\alpha_1, \alpha_2, \alpha_3, \alpha_4\right] \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

 $\alpha_1, \alpha_2, \alpha_3$ 为一个极大无关组,秩为 3

4.
$$\left[\beta_{1}, \beta_{2}, \dots, \beta_{m}\right] = \left[\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}\right] A = \left[\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}\right] \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

m 为奇数时,|A|=2(累加至首行后提出系数即可),A 为满秩阵故 $\beta_1,\beta_2,\ldots,\beta_m$ 和 $\alpha_1,\alpha_2,\ldots,\alpha_m$ 有相同的秩

5. 分析两个向量组等价一定能够相互表示, 秩一定相同, 反过来则不一定, 但再加一些限定条件时可以成立(详见例 6)

反例:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$$

6. (I) 和(II)秩均为 3,且(I)线性无关 而 4 个 3 维向量一定线性相关,故 β_j 可以用 $\alpha_1, \alpha_2, \alpha_3$ 线性表示 同理可知, α_i 可以用 $\beta_1, \beta_2, \beta_3$ 线性表示 则 (I) 和(II)可以相互表示,(I) 和(II)等价

- 7. 分析向量组满秩和线性无关等价
- (II) 可由 (I) 线性表示

得
$$n = r(\epsilon_1, \epsilon_2, \dots, \epsilon_n) \le r(\alpha_1, \alpha_2, \dots, \alpha_n) \le n$$

得向量组 (I) 是满秩阵,线性无关

8. 必要性,

若方程 Ax = B 有解,则 B 的各个列向量均可以由 A 的列向量线性表示于是 (A,B) 的所有列向量均可以以 A 的列向量线性表示,得 $r(A,B) \le r(A)$

得
$$r(A) \leq r(A, B)$$

充分性, 若 $r(A) \le r(A, B)$, 对于 B 的每一个列向量 b

由 $r(A) \le r(A, b) \le r(A, B) = r(A)$, 则 Ax = b 有解, 即 Ax = B 有解

9.
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(B)

1.
$$\because r(AB) \le r(A), \ r(AB) \le r(B)$$

 $\therefore r(AB) \le n < m$
得 $det(AB) = 0$

2. 充分性:

任取 n 维向量 x ,将其加入向量组,任何 n+1 个 n 维向量一定线性相关,所以存在一组不全为 0 的系数使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n + kx = 0$$

若 k = 0,与线性无关矛盾,所以 $k \neq 0$,即 x 可由该向量组线性表示必要性:

由于 n 维的自然基底 $\left(\epsilon_1,\epsilon_2,\cdots,\epsilon_n\right)$ 也可以由 $\left(\alpha_1,\alpha_2,\cdots,\alpha_n\right)$ 线性表示,

则
$$n \ge r((\alpha_1, \alpha_2, \dots, \alpha_n)) \ge (\epsilon_1, \epsilon_2, \dots, \epsilon_n) = n$$

故 $r((\alpha_1, \alpha_2, \dots, \alpha_n)) = n$ 向量组 $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 线性无关

3.

(1) 必要性:

$$\therefore r(AP) = r(I) = m \le r(A) \le m$$
 ∴ $r(A) = m$
充分性:

$$\therefore r(\mathbf{A}) = m$$
 则 $r(\mathbf{A}, \mathbf{I}) = r(\mathbf{A}) = m$

则 AX = I 有解,即存在 P 使得 AP = I

(2) 必要性:

$$\therefore r(\mathbf{Q}\mathbf{A}) = r(\mathbf{I}) = n \le r(\mathbf{A}) \le n \quad \therefore r(\mathbf{A}) = n$$
 充分性:

$$\therefore r(\mathbf{A}) = n \, \mathbb{M} \, r(\mathbf{A}) = r(\mathbf{A}) = n$$

 $\therefore XA = I$ 有解,即存在 Q 使得 QA = I

§4.4 线性方程组的解的结构

(A)

1. 分析: 基础解系的定义: 一组线性无关的解,用它们可以线性表示方程组所有的解.

设 $A = \begin{bmatrix} \alpha_1, \alpha_2, \cdots, \alpha_t \end{bmatrix}$ 为基础解系, $B = \begin{bmatrix} \beta_1, \beta_2, \cdots, \beta_t \end{bmatrix}$ 为 A 的等价组,而且 B 线性无关.

因为 A,B 等价, 所以 A,B 可以互相线性表示。A 是基础解系,可以线性表示方程组所有的解. B 可以线性表示 A, 从而也可以线性表示方程组所有的解, 又 B 线性无关, 所以 B 也是基础解系.

2.

所以基础解系为: $\xi_1 = (-2, 3, 0, 0, 0)^T$, $\xi_2 = (-4, 0, 3, 3, 0)^T$, $\xi_3 = (-8, 0, 9, 0, 3)^T$ $x = c_1 \xi_1 + c_2 \xi_2 + c_3 \xi_3$

$$(2) A = \begin{pmatrix} 1 & 1 & -2 & 3 \\ 2 & 1 & -6 & 4 \\ 3 & 2 & a & 7 \\ 1 & -1 & -6 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -4 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & a+8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

∴
$$a = -8$$
 H , $\xi_1 = (4, -2, 1, 0)^T$, $\xi_2 = (-1, -2, 0, 1)^T$
 $x = c_1 \xi_1 + c_2 \xi_2$

$$a \neq -8 \text{ ft}, \xi = (-1, -2, 0, 1)^T, x = c\xi$$

$$(3) A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 1 & 1 & -1 \\ 2 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -\frac{4}{3} \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

基础解系为: $\xi = (\frac{4}{3}, -3, \frac{4}{3}, 1)^T, x = c\xi$

$$(4) A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 3 & 6 & -1 & -3 \\ 5 & 10 & 1 & -5 \\ 7 & 14 & 3 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

:. 基础解系为: $\xi_1 = (-2, 1, 0, 0)^T$, $\xi_2 = (1, 0, 0, 1)^T$, $x = c_1 \xi_1 + c_2 \xi_2$

3. 由题意得: 4 - r(A) = 2, 故 r(A) = 2

$$A = \left(\begin{array}{cccc} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 1 & a & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 0 & 0 & a^2 - 2a + 1 & a^2 - 2a + 1 \end{array}\right)$$

当且仅当 a = 1 时, 方程组的基础解系有两个向量

$$A \to \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 故结构解为: $x = c_1(1, -1, 1, 0)^T + c_2(0, -1, 0, 1)^T$

4. 分析: 本题从解反推可能的方程组,考虑把解系转置,即可用原来求解的方法求出原方程

$$A = \begin{bmatrix} \xi_1, \xi_2 \end{bmatrix} = 0$$
转置后得到
$$\begin{bmatrix} \xi_1^T \\ \xi_2^T \end{bmatrix} A^T = 0$$

故 A T 的列向量为线性方程 $\left[\xi_1,\xi_2\right]x=0$ 的解向量

则 A 可取:
$$A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{bmatrix}$$

5.
$$\boldsymbol{\beta}_i \boldsymbol{x} = 0, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2$$
和 $\boldsymbol{\beta}_3$ 为方程的解,又 $[\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3] = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

$$\therefore 3 \ge r(\beta_1, \beta_2, \beta_3) \ge r(\alpha_1, \alpha_2, \alpha_3) = 3$$

$$\therefore r(\beta_1, \beta_2, \beta_3) = 3$$
 $\therefore \beta_1, \beta_2, \beta_3$ 线性无关, $\beta_1, \beta_2, \beta_3$ 是基础解系

$$6. \ Q = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & t - 6 \\ 0 & 0 & 0 \end{bmatrix} \quad \therefore t \neq 6 \ \text{时, } \mathbf{r} \ (Q) = 2 < 3$$
 又 $r(P) + r(Q) \leq 3$ 且 p 不是零阶矩阵
$$\therefore r(P) = 1$$

- 7. 由两个方程组同解得: n r(A) = n r(B) 故 r(A) = r(B)
- 8. 由题意得: Bx = 0 的解都是 ABx = 0 的解,若 x 为 ABx = 0 的解,则 ABx = 0

而 A 的列向量线性无关,则方程 Ay = 0 只有 0 解

故 Bx = 0,即 ABx = 0 的解也是 Bx = 0 的解

因此, ABx = 0 和 Bx = 0 同解, 进而 r(AB) = r(B)

9. 基础解系中解的向量的个数为: n-r(A)=1

由 A
$$\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
 $\therefore \varepsilon = (1, 1, 1, \dots, 1)^T$ 为一个基础解系

 \therefore 通解为 $\mathbf{x} = k(1, 1, 1 \dots 1)^T$

10.
$$(1) A = \begin{bmatrix} 1 & 1 & -3 & -1 & 1 \\ 3 & -1 & -3 & 4 & 4 \\ 1 & 5 & -9 & -8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1.5 & 0.75 & 1.25 \\ 0 & 1 & -1.5 & -1.75 & -0.25 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore x = \left(\frac{5}{4}, -\frac{1}{4}, 0, 0\right)^T + c_1(3, 3, 2, 0)^T + c_2(-3, 7, 0, 4)^T$$

$$(2) A = \begin{bmatrix} 6 & 4 & 5 & 2 & 3 & 1 \\ 3 & 2 & 4 & 1 & 2 & 3 \\ 3 & 2 & -2 & 1 & 0 & -7 \\ 9 & 6 & 1 & 3 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{2}{3} & 0 & \frac{1}{3} & 0 & \frac{19}{3} \\ 0 & 0 & 1 & 0 & 0 & 13 \\ 0 & 0 & 0 & 0 & 1 & -34 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} (\cap X_1, X_2)$$

作为解系)

$$\therefore x = (0,0,13,19,-34)^{T} + c_{1}(1,0,0,-3,0)^{T} + c_{2}(0,1,0,-2,0)^{T}$$

$$(3) A = \begin{bmatrix} 2 & 1 & -1 & 1 & 1 \\ 4 & 2 & -2 & 1 & 2 \\ 2 & 1 & -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore x = \left(\frac{1}{2}, 0, 0, 0\right)^{T} + c_{1} \left(-\frac{1}{2}, 1, 0, 0\right)^{T} + c_{2} \left(\frac{1}{2}, 0, 1, 0\right)^{T}$$

$$(4) A = \begin{bmatrix} 2 & -4 & 3 & -4 & -11 & 28 \\ 1 & -2 & 1 & -2 & -5 & 13 \\ 0 & 0 & -3 & 1 & 6 & -10 \\ 3 & -6 & 10 & -8 & -28 & 61 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & a_1 \\ 0 & 1 & -1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & -1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & a_1 + a_2 + a_3 + a_4 + a_5 \\ 0 & 1 & -1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & -1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & -1 & 0 & a_3 \\ -1 & 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix}$$

此时增广矩阵可化简为: $\begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & a_2 + a_3 + a_4 \\ 0 & 0 & 1 & 0 & -1 & a_3 + a_4 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_2 \end{vmatrix}$

故通解为
$$\begin{cases} x_1 = x_5 + a_1 + a_2 + a_3 + a_4 \\ x_2 = x_5 + a_2 + a_3 + a_4 \\ x_3 = x_5 + a_3 + a_4 \\ x_4 = x_5 + a_4 \end{cases}$$
 $(x_5$ 为自由变量)

$$(1) A = \begin{bmatrix} 1 & 1 & -2 & 3 & 0 \\ 2 & 1 & -6 & 4 & -1 \\ 3 & 2 & a & 7 & -1 \\ 1 & -1 & -6 & -1 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 3 & 0 \\ 0 & -1 & -2 & -2 & -1 \\ 0 & 0 & a+8 & 0 & 0 \\ 0 & 0 & 0 & 0 & b+2 \end{bmatrix}$$

 $b \neq -2$ 时方程组无解

b = -2 且 $a \neq -8$ 时, $x_1 = -1 - x_4, x_2 = 1 - 2x_4, x_3 = 0$ x_4 为自由变量 b = -2, a = -8 时, $x_1 = -1 + 4x_3 - x_4$, $x_2 = 1 - 2x_3 - 2x_4$, x_3 和 x_4 为自 由变量

(2)

$$A = \begin{bmatrix} a & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 2b & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} a-1 & 1-2b & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & b & 0 & 1 \end{bmatrix}$$

$$a \neq 1 \perp b \neq 0 \text{ 时方程组有唯一解,} x_1 = \frac{1-2b}{b(1-a)}x_2 = \frac{1}{b}x_3 = \frac{4b-2a-1}{b(1-a)}$$

$$a = 1 \perp b \neq \frac{1}{2} \text{ 方程组无解}$$

$$a = 1 \perp b = \frac{1}{2} \text{ 时,} x_1 = 2-x_3, x_2 = 2 \quad (x_3 \text{ 为自由变量})$$

$$b = 0 \text{ 时方程组无解}$$

$$13. \ [\alpha_1,\alpha_2,\alpha_3,\beta] = \left[\begin{array}{cccc} a & -2 & -1 & 1 \\ 2 & 1 & 1 & b \\ 10 & 5 & 4 & -1 \end{array} \right] \rightarrow \left[\begin{array}{ccccc} a+4 & 0 & 0 & -3b \\ 2 & 1 & 0 & -1-4b \\ 0 & 0 & -1 & -1-5b \end{array} \right]$$

- (2) $a \neq -4$ 时, β 能由 I 线性表示, β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一表示
- (3) a = -4 且 b = 0 时, β 能由 I 线性表示, $\beta = c\alpha_1 + (-1 2c)\alpha_2 + \alpha_3$

14. 由
$$I$$
 和 II 同解得到 $r(I) = r(II) < 3$

$$\therefore \alpha = \begin{pmatrix} -1, -1, 1 \end{pmatrix}^T$$
 为方程组的一组解,代入 II 中

b = 0, c = 1 时两个方程组有不同

$$\therefore a = 2, b = 1, c = 2$$

15. 由 I 和 II 有公共解可以得到:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_1 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \\ x_1 + 4x_2 + a^2 x_3 = 0 \end{cases}$$
(III)

 \therefore 当 a=1 或者 a=2 时方程组有公共解

其中 a=1 时公共解为: $x=c(-1,0,1)^T$, 当 a=2 时公共解为: $x=(0,1,-1)^T$

16. 由题意得: 方程
$$Ax = 0$$
 的基础解系含有 $4 - r(A) = 1$ 个解向量又 $2\alpha_1 - (\alpha_2 + \alpha_3) = \left(0, 1, 2, 3\right)^T$ 为 $Ax = 0$ 的一个非零解得所求的通解为 $x = \left(1, 2, 3, 4\right)^T + c\left(0, 1, 2, 3\right)^T$

17.

(1) $\text{in } A(\eta_0 + \xi_k) = A\eta_0 + A\xi_k = b, \ \text{in } \eta_0, \eta_0 + \xi_1, \cdots, \eta_0 + \xi_t \ \text{in } \beta Ax = b$ $\text{in } \beta Ax = b$

设有常数
$$c_0, c_1, \dots, c_1$$
 使得 $c_0\eta_0 + c_1(\eta_0 + \xi_1) + \dots + c_t(\eta_0 + \xi_t) = 0$,

$$\mathbb{P}\left(c_0 + c_1 + \dots + c_t\right) \eta_0 + c_1 \xi_1 + \dots + c_1 \xi_1 = 0 + \dots + c_t$$

用 A 左乘两端, 得 $(c_0 + c_1 + \cdots + c_t) b = 0$,

因
$$b \neq 0$$
, 得 $c_0 + c_1 + \cdots + c_t = 0 \cdots 0$

代入 Φ 得 $c_1\xi_1 + \cdots + c_1\xi_1 = 0$, 因 ξ_1, \cdots, ξ_1 线性无关得 $c_1 = \cdots = c_t = 0$, 代入 Φ 式得 $c_0 = 0$,

由定义知 $\eta_0, \eta_0 + \xi_1, \dots, \eta_0 + \xi_t$ 线性无关.

(2) 将 Ax = b 的通解改写

$$x = \eta_0 + \sum_{i=1}^t \lambda_i \xi_i = \eta_0 + \sum_{i=1}^t \left[\lambda_i \left(\eta_0 + \xi_i \right) - \lambda_i \eta_0 \right]$$
$$= \eta_0 + \sum_{i=1}^t \lambda_i \eta_i - \left(\sum_{i=1}^t \lambda_i \right) \eta_0$$
$$= \left(1 - \sum_{i=1}^t \lambda_i \right) \eta_0 + \sum_{i=1}^t \lambda_i \eta_i$$

再令 $1 - \sum_{i=1}^{t} \lambda_i = \lambda_0$,即得证

18. 满足 AB = O 的矩阵 B 的列向量全是齐次线性方程组 Ax = 0 的解向量.

当
$$r = n$$
, 取 $B = O$; 当 $r < n$, 设 ξ_1, \dots, ξ_{n-r} , 是 $Ax = 0$ 的基础解系则可取 $B = \begin{bmatrix} \xi_1 & \cdots & \xi_{n-r} & 0 & \cdots & 0 \end{bmatrix}$, 其中 B 的后 r 列全为零向量.

(B)

1.
$$det(A) = b^{n-1} (b + \sum_{i=1}^{n} a_i)$$
,

当 $b \neq 0$ 且 $b + \sum_{i=1}^{n} a_i \neq 0$ 时, 方程组只有零解.

当
$$b = 0$$
 时, 不妨设 $a_1 \neq 0$ 则通解为
$$x = c_1 \left(-\frac{a_2}{a_1}, 1, 0, \dots, 0 \right)^{\mathrm{T}} + c_2 \left(-\frac{a_3}{a_1}, 0, 1, \dots, 0 \right)^{\mathrm{T}} + \dots + c_{n-1} \left(-\frac{a_n}{a_1}, 0, 0, \dots, 1 \right)^{\mathrm{T}}$$
 当 $b + \sum_{i=1}^n a_i = 0$ 时, 通解为 $x = c(1, 1, \dots, 1)^{\mathrm{T}}$

2.
$$[\beta_1, \beta_2, \dots, \beta_n] = [\alpha_1, \alpha_2, \dots, \alpha_n] B$$

$$B = \begin{bmatrix} t_1 & 0 & 0 & \cdots & t_2 \\ t_2 & t_1 & 0 & \cdots & 0 \\ 0 & t_2 & t_1 & \cdots & 0 \\ \vdots & \vdots & \cdots & t_1 & \vdots \\ 0 & 0 & 0 & t_2 & t_1 \end{bmatrix}$$

当 B 为行满秩时, $\beta_1,\beta_2,\ldots,\beta_n$ 可以作为基础解系

当 m 为奇数时, $t_1 \neq -t_2$; 当 m 为偶数时, $t_1 \neq \pm t_2$

3.

(1) Ax = 0 的解为 $A^{T}Ax = 0$ 的解,在 $A^{T}Ax = 0$ 左乘 x^{T} ,得到 $(Ax)^{T}Ax = 0$ 0

即 $(Ax)^2 = 0$, 故 Ax = 0, 综上所述, Ax = 0 和 $A^TAx = 0$ 同解;

(2) 由 (1) 得 $A^T A x = 0$ 和 A x = 0 同解,则 $r(A^T) = r(A^T A)$,r(A) = $r(A^TA)$

故
$$r(A^T) = r(A)$$
 则 $r(A^TA) = r(AA^T)$ 综上所述: $r(A^T) = r(A^TA) = r(A) = r(AA^T)$

4. r(A) = n - 1 则 Ax = 0 的基础解系中只含有一个解向量 $X = Ak (A_{21}, A_{22}, \dots, A_{2n})^T = 0$ 则 $x = k(A_{21}, A_{22}, \dots, A_{2n})^T$ 为线性方程组的通解

5. 当
$$r(A) = n$$
 时, $det(A) \neq 0$, $det(A^*) \neq 0$ ∴ $r(A^*) = n$ 当 $r(A) = n - 1$ 时, $AA^* = 0$,即 A^* 是 $Ax = 0$ 的解又基础解系中的向量的个数为 $n - r(A) = 1$,即 $r(A^*) = 1$ 当 $r(A) \leq n - 2$ 时, $A^* = 0$, $r(A^*) = 0$

6. 由題意得:
$$x_i^T x_j = 0$$
 $(i = 1, 2..., r; j = r + 1, r + 2, ..., n)$

$$k_1x_1 + k_2x_2 + \dots + k_rx_r + \dots + k_nx_n = 0$$

用 $(k_1x_1 + k_2x_2 + \dots + k_rx_r)^T$ 左乘两端得到
 $(k_1x_1 + k_2x_2 + \dots + k_rx_r)^T$ $(k_1x_1 + k_2x_2 + \dots + k_rx_r) = 0$
即 $k_1x_1 + k_2x_2 + \dots + k_rx_r = 0$
而 x_1, x_2, \dots, x_r 线性无关,则 $k_1 = k_2 = \dots = k_r = 0$
而 $k_{r+1}x_{r+1} + \dots + k_nx_n = 0$ 中 $x_{r+1}, x_{r+2}, \dots, x_n$ 线性无关
则 $k_{r+1} = k_{r+2} = \dots = k_n = 0$
综上所述, $k_1 = k_2 = \dots = k_n = 0$,故 $x_1, x_2, \dots, x_r \dots x_n$ 线性无关

7.

(1)

$$[A, B] = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & I_{n-r} \end{bmatrix} = P^{-1}I_n = P^{-1}$$

故 [A, B] 可逆,[A, B] 的列向量线性无关,其中 B 为 P^{-1} 的 n-1 个列向量

(2)

$$\mathbb{R} A = [x_1, x_2, \dots, x_r] = P^{-1} \begin{bmatrix} I_r \\ O_{(n-r)r} \end{bmatrix} B = P^{-1} \begin{bmatrix} O_{r(n-r)} \\ I_{n-r} \end{bmatrix}$$

则 $[A, B] = P^{-1}$ 为可逆阵,[A, B] 中的 \mathbf{n} 个向量线性无关,

则一定可以从 F^n 找到 n-r 个向量,组成 B 使得 x_1, x_2, \ldots, x_n 线性无关.

§4.5 第4章习题

填空题

- (1) 根据题目可得: $Aa=\lambda a$,即 $(a,2a+3,3a+4)^T=\lambda(a,1,1)^T$,故 a=-1
- (2) 由题目中的 A 行等价于 B, 得到 $\alpha_3 = 2\alpha_1 + \alpha_2, \alpha_4 = \alpha_1 + 3\alpha_2$

(3)
$$[\beta_1, \beta_2, \beta_3] = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \\ -1 & 3 & 6 \\ 0 & 4 & 7 \end{bmatrix}$$

因为
$$B = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 3 & 6 \\ 0 & 4 & 7 \end{bmatrix}$$
 为满秩阵,则 $[\beta_1, \beta_2, \beta_3]$ 和 $[\alpha_1, \alpha_2, \alpha_3]$ 的秩相同,

均为2

(4) 向量 $(1, \lambda, \lambda^2)$ 可以由向量组不唯一线性表示即方程组有不唯一的解:

1

$$\begin{cases} (\lambda+1)x_1 + x_2 + x_3 = 1 \\ x_1 + (\lambda+1)x_2 + x_3 = \lambda \\ x_1 + x_2 + (\lambda+1)x_3 = \lambda^2 \end{cases} A = \begin{bmatrix} \lambda+1 & 1 & 1 \\ 1 & \lambda+1 & 1 \\ 1 & 1 & \lambda+1 \end{bmatrix}$$

 $det(A) = \lambda^2(\lambda + 3) = 0$ 故 $\lambda = 0$ 或者 -3

而 $\lambda = -3$ 时, $r([A, b]) \neq r(A)$ 方程组无解,故 $\lambda = 0$

(5) A 为 n 阶矩阵,有三个不同的解,则 A 为列降秩矩阵

又 $A^* \neq 0$,则 r(A) = n - 1,故 Ax = 0 的基础解系所含的向量的个数为

(6) $B = (2I - A) = \begin{bmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ 3 & 3 & 2 - a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 5 - a \end{bmatrix}$

 $r(B) = 1, \quad \emptyset \ a = 5$

(7) r(A) = 3, Ax = 0 只有一个非零解为 $2\alpha_2 + \alpha_3 - 3\alpha_1 = 3(1,1,1,1)^T$ 故 Ax = b 的通解为 $x = \alpha_1 + k(1,1,1,1)^T$

(8) r(A) = 3. Ax = 0 只有一个非零解

由 $\alpha_4 = -\alpha_1 + 2\alpha_1$ 得 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)(-1, 2, 0, 1)^T = 0$

即 Ax = 0 的解为 $(-1, 2, 0, 1)^T$

 $\beta = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)(1, 2, 3, 4)^T$ 得 $Ax = \beta$ 的一个特解为 $(1, 2, 3, 4)^T$ 故通解为 $x = (1, 2, 3, 4)^T + k(-1, 2, 0, 1)^T$

单项选择题

ABADD CBD

- $(1) r(II) \le r(I) \le s$, 那么若 I 线性相关, II 一定线性相关
- (2) $m=r(AB)\leq r(A)\leq m$,故 r(A)=m,同理 $m=r(AB)\leq r(B)\leq mr(B)=m$
- (3) 由 $A_{m \times n} B_{n \times p} = 0$ 得 $r(A) + r(B) \le n$ 且 A 和 B 均为非零矩阵,则 $r(A) \ge 1, r(B) \ge 1$

则有 $r(A) \le n-1$, A 的列向量线性相关,同理 $r(B) \le n-1$, B 的行向量线性相关

- (4) Ax = 0 有非零解,表示 r(A) < n, Ax = b 有无穷多解或者是无解 Ax = 0 仅有零解,表示 r(A) = n, Ax = b 可能有唯一解或者是无解 Ax = b 有无穷多解,则 Ax = b 仅有零解
- (5) AB 为 $m \times m$ 阶矩阵 $,r(AB) \le r(A) \le n,$ 若 m > n ,则 AB 必不满秩
- (6) A, B, D 中的三个向量线性相关,不能作为基础解系

- (7) 对于 ①,Ax = 0 的解均为 Bx = 0 的解, 表示 Ax = 0 的解空间包含于 Bx = 0 的解空间, $n r(A) \le n r(B)$, 故 $r(B) \le r(A)$; 对于 ③,同解可以推导出秩相同的证明见第 163 页第 7 题
- (8) 三条直线交于一点,表示方程组有唯一的解, α_1 和 α_2 线性无关,三个方程组有两个变量,则 $\alpha_1,\alpha_2,\alpha_3$ 一定线性相关

3.

$$(1) \left[\begin{array}{c|cccc} \alpha_1, \alpha_2, \alpha_3 & \beta_1, \beta_2, \beta_3 \end{array} \right] = \left[\begin{array}{cccccc} 1 & 1 & -1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & a+3 & a+6 & a+4 \end{array} \right] \rightarrow$$

$$a \neq -1 \text{ ff } |\alpha_1, \alpha_2, \alpha_3| = a + 1 \neq 0, r(\alpha_1, \alpha_2, \alpha_3) = r(\beta_1, \beta_2, \beta_3) = 3$$

线性方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta_i$ 均有唯一解

所以 $\beta_1, \beta_2, \beta_3$ 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示

同理 $|\beta_1, \beta_2, \beta_3| = 6 \neq 0$, $\alpha_1, \alpha_2, \alpha_3$ 可以由 $\beta_1, \beta_2, \beta_3$ 线性表示

a=-1 时, $r(\alpha_1,\alpha_2,\alpha_3)\neq r(\beta_1,\beta_2,\beta_3)$, $x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=\beta_i$ 无解,向量 β_i 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示

综上所述, $r(\beta_1,\beta_2,\beta_3)=3$,a=-1 时两个向量组不等价, $a\neq -1$ 时,两个向量组等价

4

$$|\alpha_1, \alpha_2, \alpha_3, \alpha_4| = \begin{vmatrix} a+1 & 2 & 3 & 4 \\ 1 & a+2 & 3 & 4 \\ 1 & 2 & a+3 & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & a+2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix}$$

$$= \begin{vmatrix} a+10 & 2 & 3 & 4 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{vmatrix} = a^{3}(a+10) = 0$$

故 a=0 或者 a=-10 时向量组线性相关

 α_1 是一个极大无关组。 $\alpha_2=2\alpha_1,\alpha_3=3\alpha_1,\alpha_4=4\alpha_1$

$$a = -10 \, \mathbb{M} \left[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \right] = \begin{bmatrix} -9 & 2 & 3 & 4 \\ 1 & -8 & 3 & 4 \\ 1 & 2 & -7 & 4 \\ 1 & 2 & 3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\alpha_1, \alpha_2, \alpha_3$ 是一个极大无关组, $\alpha_4 = -\alpha_2 - \alpha_3 - \alpha_1$

5.

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 1 & 3 & 6 & 1 & 3 \\ 3 & -1 & -a & 15 & 3 \\ 1 & -5 & -10 & 12 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & -4 & -a - 6 & 6 & 0 \\ 0 & -6 & -12 & 9 & b - 1 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{cccccc} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & 0 & 2-a & 2 & 4 \\ 0 & -6 & -12 & 9 & b-1 \end{array} \right]$$

- (1) $a \neq 2$ 时,可以线性表示,且表示式唯一
- (2) a=2 且 $b\neq 1$ 时, β 不能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 表示
- (3) a=2, b=1 时, β 能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 表示,表示不唯一

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & 0 & 2 - a & 2 & 4 \\ 0 & -6 & -12 & 9 & b - 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & -8 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

则 $\beta = -8\alpha_1 + (3 - 2c)\alpha_2 + c\alpha_3 + 2\alpha_4$

6.
$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 5 & 1 & -1 \\ -3 & -8 & a-1 & 1 \\ 3 & 7 & 4 & b-1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & a-2 & 0 \\ 0 & 0 & 0 & b+1 \end{bmatrix}$$

 $a \neq 2$ 且 $b \neq -1$ 时方程只有零解

a=2且 $b \neq -1$ 时方程通解为 $x=c(-13,5,1,0)^{\mathrm{T}}$

$$a \neq 2$$
 且 $b = -1$ 时方程通解为 $x = c(3, -1, 0, 1)^{\mathrm{T}}$
 $a = 2$ 且 $b = -1$ 时方程通解为 $x = c_1(-13, 5, 1, 0)^{\mathrm{T}} + c_2(3, -1, 0, 1)^{\mathrm{T}}$

7.

(1) 设 $\alpha_1, \alpha_2, \alpha_3$ 为方程 Ax = b 的三个解则 $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3$ 为 Ax = 0 的两个解 $4 - r(A) \ge 2$, $\therefore r(A) \le 2$; 又 A 的前两行线性无关,则 $r(A) \ge 2$

故 r(A) = 2, 该方程组的秩为 2

$$(2) A = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 4 & 3 & 5 & -1 & -1 \\ a & 1 & 3 & b & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -4 & 2 \\ 0 & -1 & 1 & -5 & 3 \\ a - 2 & 0 & 0 & b + 3 & 0 \end{bmatrix}$$

$$\therefore a = 2, b = -3, x = c_1(2, -3, 0, 0)^{\mathrm{T}} + c_2(-2, 1, 1, 0)^{\mathrm{T}} + c_3(4, -5, 0, 1)^{\mathrm{T}}$$

8.

- (1) 由 A 的列向量线性相关得 $r(A) \le 2$,又 $A^* \ne O$ 所以 $r(A) \ge 2$,得 r(A) = 2
- (2) Ax = 0 的基础解系有 3 2 = 1 个向量 由 $\beta = \alpha_1 + 2\alpha_2 + 3\alpha_3$,得通解为 $x = (1, 2, 3)^T + k(1, 2, -3)^T$

第五章 线性空间与欧式空间

§5.1 线性空间基本概念

(A)

1.

- (1) 不构成,假设所给集合是平面上不平行于(1,1)的所有向量组成的集合,而(3,2)+(2,3)=(5,5),与(1,1)平行,不存在于该集合中,所以该集合对加法运算不封闭,不构成线性空间。
 - (2) 不构成,显然关于加法和数乘封闭,但不满足向量的分配律。

$$\therefore k \circ \left((a,b)^T \oplus (c,d)^T \right) = k \circ (a+c+1,b+d+1)^T$$

$$= (ka + kc + k, kb + kd + k)^{T}$$

$$k \circ (a,b)^T \oplus k \circ (c,d)^T = (ka,kb)^T \oplus (kc,kd)^T$$

$$= (ka + kc + 1, kb + kd + 1)^T$$

$$\therefore k \circ \left((a,b)^T \oplus (c,d)^T \right) \neq k \circ (a,b)^T \oplus k \circ (c,d)^T$$

(3) 构成,显然满足加法和数乘封闭,下面证明其满足 8 条运算律加法交换律:

$$(a,b)^{T} \oplus (c,d)^{T} = (a+c,b+d+ac)^{T}$$

$$(c,d)^T \oplus (a,b)^T = (a+c,b+d+ac)^T$$

加法结合律:

$$\left(\left(a,b\right)^{T} \oplus \left(c,d\right)^{T}\right) \oplus \left(e,f\right)^{T} = \left(a+c,b+d+ac\right)^{T} \oplus \left(e,f\right)^{T}$$

$$= (a + c + e, b + d + f + ac + ae + ce)^{T}$$

$$(a,b)^T \oplus ((c,d)^T \oplus (e,f)^T) = (a,b)^T \oplus (c+e,d+f+ce)^T$$

$$= (a + c + e, b + d + f + ac + ae + ce)^{T}$$

零元:

$$(a,b)^T \oplus (0,0)^T = (a,b)^T$$

负元:

$$a \oplus 1 = a$$

负元:

$$a \oplus \frac{1}{a} = 1$$

数 1:

$$1\circ a=a^1=a$$

关于数乘的结合律:

$$(kl) \circ a = a^{kl}$$

$$k \circ (l \circ a) = k \circ a^l = a^{kl}$$

关于元素的分配律:

$$k \circ (a \oplus b) = k \circ ab = (ab)^k$$

$$k \circ a \oplus k \circ b = a^k \oplus b^k = (ab)^k$$

关于数乘的分配律:

$$(k+l) \circ a = a^{k+l}$$

$$k \circ a \oplus l \circ a = a^k \oplus a^l = a^{k+l}$$

2.

(1) 设在区间 $(-\infty, +\infty)$ 上, $k_1 \cos x + k_2 \sin x + k_3 x \sin x = 0$ (*) 恒成立,其中 k1,k2,k3 是实常数。取三个特殊点,令 x 分别等于 0, $\frac{\pi}{3}$, $\frac{\pi}{2}$ 时,(*) 式分别满足:

$$k_2 = 0$$

$$\frac{1}{2}k_1 + \frac{\sqrt{3}}{2}k_2 + \frac{\sqrt{3}}{6}k_3 = 0$$
可以整理为:

$$k_2 + \frac{\pi}{2}k_3 = 0$$

$$\begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6} \\ 0 & 1 & \frac{\pi}{2} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

因为上式中,系数行列式不为零,所以该系数行列式对应的齐次方程组只 有零解,

 $k_1 = k_2 = k_3 = 0$,所以该函数组在 $(-\infty, +\infty)$ 上线性无关。

(2) 设在区间 $(-\infty, +\infty)$ 上, $k_1 + k_2 x + k_3 e^x = 0$ (*) 恒成立, 其中 k1,k2,k3 是实常数。取三个特殊点,令 x 分别等于 0, 1, -1, 则 (*) 式分别满足:

$$k_1 + k_3 = 0$$

$$k_1 + k_2 + e \cdot k_3 = 0$$

$$k_1 - k_2 + \frac{1}{e}k_3 = 0$$

上式可整理为:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & e \\ 1 & -1 & \frac{1}{e} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

系数行列式不为零,所以方程只有零解, $k_1 = k_2 = k_3 = 0$,所以该函数组在 $(-\infty, +\infty)$ 上线性无关。

3.

$$\left(1\right)\left(a,2a,3a,\cdot\cdot\cdot,na\right)^{T}+\left(b,2b,3b,\cdot\cdot\cdot,nb\right)^{T}=\left((a+b),2(a+b),3(a+b),\cdot\cdot\cdot,n(a+b)\right)^{T}\in W$$

 $k \cdot (a, 2a, 3a, \dots, na)^T = (ka, 2ka, 3ka, \dots, nka)^T = (ka, 2(ka), 3(ka), \dots, n(ka))^T$ 所以 W 对于加法和数乘运算封闭,W 是 V 的子空间。

该子空间的基为 $(1,2,3,\dots,n)^T$ 。维数为 1。

(2) 易证 W 关于加法和数乘运算封闭,所以 W 构成 V 的线性子空间,且 W 中的任意一个元素可以表示为:

$$k_1 \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] + k_2 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + k_3 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

其中 k1, k2, k3 是常数。

所以
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ 是 \mathbf{W} 的一组基, \mathbf{W} 的维数为 3.

(3) 可以证明 W1、W2、W3、W4 都关于加法和数乘运算封闭,所以它们都是 V 的线性子空间。

表示第i行,第i列元素为1,其余元素为0的矩阵。

其中,W1 的基是 { $E_{ij}|1 \le i \le j \le n$ },维数为 $\frac{n(n+1)}{2}$ 。

W2 的基是 { $E_{ii}|1 \leq i \leq n$ }, 维数为 n。

W3 的基是 { $E_{ii}|1 \leqslant i \leqslant n$ } \cup { $E_{ij} + E_{ji}|1 \leqslant i < j \leqslant n$ },维数为 $\frac{n(n+1)}{2}$ 。

W4 的基是 { $E_{ij} - E_{ji} | 1 \le i < j \le n$ }, 维数为 $\frac{n(n-1)}{2}$ 。

$$(4)k_1 \cdot f_1 + k_2 \cdot f_2 + k_3 \cdot f_3 = 0$$
 因为
$$\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 2 \\ 2 & b+d \end{bmatrix} \notin$$

 W_1 , 所以 W1 对加法运算不封闭, W1 不是 V 的线性子空间。

易证 W2 关于加法和数乘运算封闭, 所以 W2 是 V 的线性子空间。

W2 的基为:
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 和 $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, 维数为 2

(5) W 对加法与数乘运算封闭,所以 W 是 V 的线性子空间。 W 不是有限维子空间。

4. (1)
$$\mathfrak{P}_{k_1} \cdot f_1 + k_2 \cdot f_2 + k_3 \cdot f_3 = 0$$
,

整理得:
$$(k_1 + k_2) x^2 + (k_1 - k_2 + k_3) x + k_3 = 0$$
,

因为是线性无关的,所以:
$$\begin{cases} k_1 + k_2 = 0 \\ k_1 - k_2 + k_3 = 0 \end{cases}$$
,解得 k1=k2=k3=0.
$$k_3 = 0$$

所以 f1、f2、f3 线性无关, $\stackrel{?}{\downarrow}$ $F[x]_2$ 的维数为 3,

所以 f1、f2、f3 是 $F[x]_2$ 的一个基。

(2) 设 f 在此基下的坐标•为 (k_1,k_2,k_3) ,则 $k_1 \cdot f_1 + k_2 \cdot f_2 + k_3 \cdot f_3 = f$,可得方程组:

新力性组:
$$\begin{cases} k_1 + k_2 = a_2 \\ k_1 - k_2 + k_3 = a_1 \\ k_3 = a_0 \end{cases}$$
解得:
$$\begin{cases} k_1 = \frac{a_1 - a_0 + a_2}{2} \\ k_2 = \frac{a_0 + a_2 - a_1}{2} \end{cases}$$
,所以 f 在此基下的坐标为 $\left(\frac{a_1 - a_0 + a_2}{2}, \frac{a_0 + a_2 - a_1}{2}, a_0\right)^T$ 。
$$k_3 = a_0$$

5. 设
$$k_1 \cdot A_1 + k_2 \cdot A_2 + k_3 \cdot A_3 + k_4 \cdot A_4 = 0$$
, 得:
$$\begin{cases} -k_1 + k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$$
解得: k1=k2=k3=k4=0.
$$k_3 = 0$$
$$k_4 = 0$$

所以 A1,A2,A3,A4 线性无关。又因为 $F^{2\times 2}$ 的维数是 4,所以 A1,A2,A3,A4 是 $F^{2\times 2}$ 的一个基。列方程解得,A 在此基下的坐标为:-1,1,-1,3) T 。

6. 因为
$$Ax_1+Ax_2=A(x_1+x_2)\in W \\ k\cdot Ax=A(kx)\in W$$
 所以 W 关于加法和数乘运算封闭, 所以 W 是 F^m 的一个子空间。

由于 W 是由 A 的列向量组生成的 F^m 的子空间,故 W 的基和维数分别是 A 的列向量组的极大无关组和秩。

设 $A=\begin{bmatrix}\alpha_1&\alpha_2&\alpha_3&\alpha_4\end{bmatrix}$ 。因为 $\det(A)=0$,且 A 的 3 阶顺序逐子式不为零,所以 A 的秩为 3。又因为 A 的 $\alpha_1\alpha_2\alpha_3$ 线性无关,所以 A 的极大无关组是 $\alpha_1\alpha_2\alpha_3$,即 W 的基为 $\alpha_1\alpha_2\alpha_3$ 。

7.

(1) (参考例 4.2.8)

因为
$$\begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ k & 3 & k+1 \end{bmatrix}$$
 设 $B = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$, $A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$, $P = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ k & 3 & k+1 \end{bmatrix}$,

det(P)=2, 所以 P 的列向量组线性无关。

令 Bx=0,则 APx=0. 因为 $\alpha_1, \alpha_2, \alpha_3 \frac{1}{n}$ 线性无关,所以 Px=0,又因为 P 的 列向量组线性无关,所以 x=0,Bx=0 只有零解,所以 B 的列向量组 $\beta_1, \beta_2, \beta_3$ 线性无关, $\beta_1, \beta_2, \beta_3$ 也是 R^3 的一个基。

(2) 设在基下的坐标为 $\alpha = (x_1, x_2, x_3)^T$

则:
$$B\alpha = A\alpha$$

$$\therefore B = AP$$

$$P\alpha = \alpha$$

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ k & 3 & k+1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + 2x_3 \\ 2x_2 \\ kx_1 + 3x_2 + (k+1)x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
解得:
$$\begin{cases} x_1 + 2x_3 = 0 \\ kx_1 + kx_3 = 0 \\ x_2 = 0 \end{cases}$$

若 k 不等于 0,则 x1=x2=x3=0, 这与 ξ 是非零向量矛盾,所以 k=0. 解得 $x_1+2x_3=0$, $x_1=2c, x_2=0, x_3=-c$,

$$\xi = c(2\alpha_1 - \alpha_3)$$
, c为任意非零常数。

8.

(1) 令
$$N = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$
, $M = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ 。
由题意得: $\begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} A$, 即 $N = MA$ 。
所以 $A = M^{-1}N$, $A = \begin{bmatrix} -18 & 7 & 5 \\ 5 & -2 & -1 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} 9 & 8 & 12 \\ 24 & 22 & 18 \\ -1 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 4 \end{bmatrix}$
所以过渡矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 4 \end{bmatrix}$ 。

(2) 由坐标变换公式得:
$$y = A^{-1}x = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{1}{2} \\ \frac{1}{4} \end{bmatrix}$$
 所以在基 (||) 下的坐标 y 为 $(0, -\frac{1}{2}, \frac{1}{4})^T$.

9. (参考例题 5.1.19)

$$\begin{split} V_1 + V_2 &= span\{\alpha_1,\alpha_2,\beta_1,\beta_2\} \\ A &= \left[\begin{array}{cccc} \alpha_1 & \alpha_2 & \beta_1 & \beta_2 \end{array}\right] = \left[\begin{array}{cccc} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & -1 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 7 \end{array}\right] \\ \mathbf{A} \, &\Leftrightarrow \quad \mathbf{A} \, \Leftrightarrow \quad \mathbf{A} \, \Leftrightarrow$$

所以 A 的秩为 3, α_1 , α_2 , β_1 是向量组 α_1 , α_2 , β_1 , β_2 的一个极大无关组, 所以 dim(V_1+V_2) = 3, V_1+V_2 的一个基为 α_1 , α_2 , β_1 。 由维数公式 α_1 , α_2 , β_1 , 得:

$$\dim(V_1\cap V_2)=1,$$

曲 P 得:
$$\beta_2 = -\alpha_1 + 4\alpha_2 + 3\beta_1$$

所以
$$-3\beta_1 + \beta_2 = -\alpha_1 + 4\alpha_2$$
,

$$\therefore -3\beta_1 + \beta_2 \in V_1, -\alpha_1 + 4\alpha_2 \in V_2$$

$$\therefore (-5, 2, 3, 4)^T \in V_1 \cap V_2$$

所以 $(-5, 2, 3, 4)^T \neq V_1 \cap V_2$ 的一个基。

10.

$$\therefore \beta_1 = -\alpha_1 + 3\alpha_2$$

$$\beta_2 = \alpha_1 - \alpha_2$$

$$\therefore \beta_1\beta_2 \text{ 可以由 } \alpha_1\alpha_2 \text{ 线性表示}$$

$$\therefore \alpha_1 = \frac{1}{2}\beta_1 + \frac{3}{2}\beta_2$$

$$\alpha_2 = \frac{1}{2}\beta_1 + \frac{1}{2}\beta_2$$

 $\therefore \alpha_1 \alpha_2$ 可以由 $\beta_1 \beta_2$ 线性表示

两个向量组等价,且两个向量组都各自线性无关,所以两个向量组是的同一子空间的两个基。

(B)

1.

$$\therefore \omega^{3k} = 1, \omega^{3k+1} = \omega, \omega^{3k+2} = \frac{1}{2}(-1 - \sqrt{3i})$$

$$\therefore A^{3k} = I, A^{3k+1} = A, A^{3k+2} = A^2$$

所以V中的任意元素都可以由 I,A,A^2 线性表示,并且可以验证它们线性 无关。

V的一个基为 I, A, A^2 , 维数为 3.

2.

(1) 由坐标变换公式:

$$x = Ay = (3, 4, 4)^T$$

(2)
$$y = A^{-1}x = \begin{bmatrix} 0 & -1 & \frac{3}{2} \\ 1 & 1 & -3 \\ -1 & -1 & \frac{5}{2} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{11}{2} \\ -8 \\ \frac{13}{2} \end{bmatrix}, (4, 2, -3)^T$$

应当可逆,所以可以取
$$B=\begin{bmatrix} 4&0&0\\ 2&1&0\\ -3&0&1 \end{bmatrix}$$
,可得: V 的一个新基为: $e_1=4\alpha_1+2\alpha_2-3\alpha_3, e_2=\alpha_2, e_3=\alpha_3$ 。

§5.2 欧式空间的基本概念

(A)

1. (1) 对称性:

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} a_{ij} = \langle B, A \rangle$$

(2) 加性:

$$\langle A + B, C \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij} + b_{ij}) c_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} c_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} c_{ij} = \langle A, C \rangle + \langle B, C \rangle$$

(3) 齐性:

$$\langle kA, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} k a_{ij} b_{ij} = k \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij} = k \langle A, B \rangle$$

(4) 非负性:

$$\langle A, A \rangle = \sum_{i=1}^{n} a^{2}_{ij} \geqslant 0, \langle A, A \rangle = 0 \Leftrightarrow A = 0$$

2.

(1) 对称性:

$$\langle x, y \rangle = (Ax)^T (Ay) = \left[(Ay)^T (Ax) \right]^T = (Ay)^T (Ax) = \langle y, x \rangle$$

(2) 加性:

$$\langle x + z, y \rangle = \left[A(x+z) \right]^T (Ay) = (Ax + Az)^T (Ay) = \left[(Ax)^T + (Az)^T \right] (Ay) = (Ax)^T (Ay) + (Az)^T (Ay) = \langle x, y \rangle + \langle z, y \rangle$$

(3) 齐性:

$$\langle kx, y \rangle = (Akx)^T (Ay) = k(Ax)^T (Ay) = k \langle x, y \rangle$$

(4) 非负性:

$$\langle x,x \rangle = (Ax)^T (Ax) = \left| \overrightarrow{b} \right|^2$$
,当且仅当 $\left| \overrightarrow{b} \right| = 0$ 时,即 x=0 时成立。 综上,其满足内积公理。

- 3. 证明定义 (5.2.1) 中的条件 (1) (4) 即可.
- 4. 不满足,其中 $\langle A, B \rangle$ 不一定满足非负性。 例如 $\langle A, B \rangle$,不满足非负性。

5.
$$\langle x, Ay \rangle = x^T \cdot Ay = (A^T x)^T y = \langle A^T x, y \rangle$$

6.
$$\sqrt{(a_1 + b_1)^2 + \dots + (a_n + b_n)^2} \leqslant \sqrt{a_1^2 + \dots + a_n^2} + \sqrt{b_1^2 + \dots + b_n^2}$$

 $\sqrt{\int_a^b (f(x) + g(x))^2 dx} \leqslant \sqrt{\int_a^b (f(x))^2 dx} + \sqrt{\int_a^b (g(x))^2 dx}$

7.

(1) 证明:

$$\begin{split} \left| \| \overrightarrow{\alpha} \| - \left\| \overrightarrow{\beta} \right\| \right| &\leq \left\| \overrightarrow{\alpha} - \overrightarrow{\beta} \right\| \Leftrightarrow (\left\| \| \overrightarrow{\alpha} \| - \left\| \overrightarrow{\beta} \right\| \right|)^2 \leq \left\langle \overrightarrow{\alpha} - \overrightarrow{\beta}, \overrightarrow{\alpha} - \overrightarrow{\beta} \right\rangle \\ &\Leftrightarrow \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle - 2 \left\| \overrightarrow{\alpha} \right\| \left\| \overrightarrow{\beta} \right\| + \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle \leq \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle - 2 \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle \\ &\Leftrightarrow \left\| \overrightarrow{\alpha} \right\| \left\| \overrightarrow{\beta} \right\| \geq \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \\ &: \left| \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \right| \leq \left\| \overrightarrow{\alpha} \right\| \left\| \overrightarrow{\beta} \right\|, \left| \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \right| \geq \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \\ &: \left\| \overrightarrow{\alpha} \right\| \left\| \overrightarrow{\beta} \right\| \geq \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \end{split}$$

(2) 证明:

$$\begin{split} &\left\|\overrightarrow{\alpha} + \overrightarrow{\beta}\right\|^{2} + \left\|\overrightarrow{\alpha} - \overrightarrow{\beta}\right\|^{2} = \left\langle \overrightarrow{\alpha} + \overrightarrow{\beta}, \overrightarrow{\alpha} + \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\alpha} - \overrightarrow{\beta}, \overrightarrow{\alpha} - \overrightarrow{\beta} \right\rangle \\ &= \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle + 2\left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle - 2\left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle \\ &= 2\left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle + 2\left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle = 2(\left\|\overrightarrow{\alpha}\right\|^{2} + \left\|\overrightarrow{\beta}\right\|^{2}) \end{split}$$

(3) 证明:

$$\begin{aligned} & \left\| \overrightarrow{\alpha} + \overrightarrow{\beta} \right\|^{2} - \left\| \overrightarrow{\alpha} - \overrightarrow{\beta} \right\|^{2} = \left\langle \overrightarrow{\alpha} + \overrightarrow{\beta}, \overrightarrow{\alpha} + \overrightarrow{\beta} \right\rangle - \left\langle \overrightarrow{\alpha} - \overrightarrow{\beta}, \overrightarrow{\alpha} - \overrightarrow{\beta} \right\rangle \\ & = \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle + 2\left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle - \left\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \right\rangle + 2\left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle - \left\langle \overrightarrow{\beta}, \overrightarrow{\beta} \right\rangle \\ & = 4\left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle \end{aligned}$$

 $\therefore \left\langle \overrightarrow{\alpha}, \overrightarrow{\beta} \right\rangle = \frac{1}{4} \left(\left\| \overrightarrow{\alpha} + \overrightarrow{\beta} \right\|^2 + \left\| \overrightarrow{\alpha} - \overrightarrow{\beta} \right\|^2 \right)$

(4) 证明:

$$\left(\overrightarrow{\alpha} + \overrightarrow{\beta}\right) \perp \left(\overrightarrow{\alpha} - \overrightarrow{\beta}\right)$$

$$\Leftrightarrow \left\langle \overrightarrow{\alpha} + \overrightarrow{\beta} \overrightarrow{\alpha} - \overrightarrow{\beta} \right\rangle = 0$$

$$\Leftrightarrow \left\langle \overrightarrow{\alpha} \overrightarrow{\alpha} \right\rangle - \left\langle \overrightarrow{\alpha} \overrightarrow{\beta} \right\rangle + \left\langle \overrightarrow{\beta} \overrightarrow{\alpha} \right\rangle - \left\langle \overrightarrow{\beta} \overrightarrow{\beta} \right\rangle = 0$$

$$\Leftrightarrow \left\langle \overrightarrow{\alpha} \overrightarrow{\alpha} \right\rangle = \left\langle \overrightarrow{\beta} \overrightarrow{\beta} \right\rangle \Leftrightarrow \|\overrightarrow{\alpha}\| = \|\overrightarrow{\beta}\|$$

8. 证明:

设
$$\exists x_1, x_2, \cdots, x_m$$
,使得 $x_1\overrightarrow{\alpha_1} + x_2\overrightarrow{\alpha_2} + \cdots + x_m\overrightarrow{\alpha_m} = \overrightarrow{0}$ 。 $\langle \overrightarrow{\alpha_i}, x_1\overrightarrow{\alpha_1} + x_2\overrightarrow{\alpha_2} + \cdots + x_m\overrightarrow{\alpha_m} \rangle = \langle \overrightarrow{\alpha_i}, \overrightarrow{0} \rangle = 0$
则 $\Leftrightarrow \langle \overrightarrow{\alpha_i}, \overrightarrow{\alpha_1} \rangle x_1 + \langle \overrightarrow{\alpha_i}, \overrightarrow{\alpha_2} \rangle x_2 + \cdots + \langle \overrightarrow{\alpha_i}, \overrightarrow{\alpha_m} \rangle x_m = 0$

$$(i = 1, 2, \cdots, m)$$

$$\Leftrightarrow \overrightarrow{Dx} = \overrightarrow{0}$$

 $\therefore \overrightarrow{\alpha_1} \overrightarrow{\alpha_2} \cdots \overrightarrow{\alpha_m}$ 线性无关 等价于齐次方程 $\overrightarrow{Dx} = \overrightarrow{0}$ 仅有零解 等价于 $D \neq 0$ 。

10. 设
$$\overrightarrow{\alpha} = x\overrightarrow{\alpha_1} + y\overrightarrow{\alpha_2} + z\overrightarrow{\alpha_3}$$
,
$$\begin{cases} \frac{2}{3}x + \frac{2}{3}y + \frac{1}{3}z = -1 \\ -\frac{2}{3}x + \frac{1}{3}y + \frac{2}{3}z = 0 \\ \frac{1}{3}x - \frac{2}{3}y + \frac{2}{3}z = 2 \end{cases}$$
解得: $x = 0, y = -2, z = 1$ 所以该向量的坐标为 $0, -2, 1^T$

11. 齐次方程的系数矩阵 $A = \begin{bmatrix} 3 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix}$

通过初等行变换化为简化行阶梯型矩阵

$$B = \left[\begin{array}{rrr} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & -1 \end{array} \right] ,$$

$$\overrightarrow{\alpha}_1 = (0, 1, 0, 1)^T, \overrightarrow{\alpha}_2 = (1, 1, 2, 0)^T$$

将两个向量正交化:

$$\diamondsuit \overrightarrow{\beta_1} = (1, 1, 2, 0)^T,$$

$$\begin{tabular}{l} \diamondsuit \overrightarrow{\beta_1} &= (1,1,2,0)^T, \\ \end{tabular} \\ \end{tabular}$$

$$\begin{tabular}{l} \diamondsuit \overrightarrow{\beta_2} &= \overrightarrow{\alpha_2} - \frac{\left\langle \overrightarrow{\alpha_2}, \overrightarrow{\beta_1} \right\rangle}{\left\langle \overrightarrow{\beta_1}, \overrightarrow{\beta_1} \right\rangle} \overrightarrow{\beta_1} &= (-\frac{1}{6}, \frac{5}{6}, -\frac{1}{3}, 1)^T, \\ \end{tabular}$$

单位化得:

$$\overrightarrow{e_1} = \frac{1}{\sqrt{6}} (1, 1, 2, 0)^T, \overrightarrow{e_2} = \frac{1}{\sqrt{66}} (-1, 5, -2, 6)^T$$

所以该线性空间的一个标准正交基为 $\overrightarrow{e_1} = \frac{1}{\sqrt{6}}(1,1,2,0)^T$, $\overrightarrow{e_2} = \frac{1}{\sqrt{66}}(-1,5,-2,6)^T$.

12. 因为 A 的秩为 2, 所以 Ax=0 的基础解系里有 2 个向量。 因为 a1 和 a2 线性无关, 所以 a1 和 a2 时 Ax=0 的解空间的一个基。

将其正交化并单位化得:

$$e_1 = \frac{1}{\sqrt{15}}(1, 1, 2, 3)^T, e_2 = \frac{1}{\sqrt{39}}(-2, 1, 5, 3)^T$$

13. 设
$$\overrightarrow{a} = (a_1, a_2, a_3, a_4)^T$$
 与此三向量都正交。

则
$$\begin{cases} a_1 + a_2 + a_3 + a_4 = 0 \\ a_1 - a_2 - a_3 + a_4 = 0 \end{cases}$$
 解得: $\overrightarrow{a} = c(-4, 0, 1, 3)^T$
$$2a_1 + a_2 + a_3 + 3a_4 = 0$$

所以
$$\overrightarrow{e} = \pm \frac{1}{\sqrt{26}}(-4,0,-1,3)$$

14.

$$\beta_1 = 1$$
,

$$\beta_{1} = 1,$$

$$\beta_{2} = x - \frac{\int_{-1}^{1} x dx}{\int_{-1}^{1} dx} = x,$$

$$\beta_{3} = x^{2} - \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle x^{2}, x \rangle}{\langle x, x \rangle} x = x^{2} - \frac{1}{3}$$

$$\therefore e_{1} = \frac{1}{\sqrt{\int_{-1}^{1} dx}} = \frac{\sqrt{2}}{2}$$

$$e_{2} = \frac{x}{\sqrt{\int_{-1}^{1} x^{2} dx}} = \frac{\sqrt{6}}{2} x$$

$$e_{3} = \frac{x^{2} - \frac{1}{3}}{\sqrt{\int_{-1}^{1} (x^{2} - \frac{1}{2})^{2} dx}} = \frac{\sqrt{10}}{4} (3x^{2} - 1)$$

15. 证明:

$$\because \cos^2 \varphi_i = \frac{\langle \overrightarrow{\alpha}, \overrightarrow{\alpha_i} \rangle^2}{\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \rangle \langle \overrightarrow{\alpha_i}, \overrightarrow{\alpha_i} \rangle} = \frac{x_i^2}{\langle \overrightarrow{\alpha}, \overrightarrow{\alpha} \rangle} = \frac{x_i^2}{\sum_{i=1}^n x_i^2}$$

$$\therefore \cos^2 \varphi_1 + \cos^2 \varphi_2 + \dots + \cos^2 \varphi_n = \frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n x_i^2} = 1$$

16. 证明:

$$\therefore AA^T = I$$
$$\therefore \det(AA^T) = 1$$

(1) 因为 A 为正交矩阵 $\Rightarrow \det(A) \cdot \det(A^T) = 1$

$$\therefore \det(A) = \det(A^T)$$

$$\therefore \left[\det(A) \right]^2 = 1$$

(2) 因为 $A^{T}(A^{T})^{T} = A^{T}A = I$

所以 A^T 为正交矩阵

因为
$$A^{-1}(A^{-1})^T = A^{-1}(A^T)^{-1} = (A^T A)^{-1} = I$$

所以 A-1 为正交矩阵

因为
$$A^*(A^*)^T=\det(A)\cdot A^{-1}\cdot (\det(A)\cdot A^{-1})^T=\det(A)\cdot A^{-1}\cdot \frac{1}{\det(A)}\cdot (A^{-1})^T=A^{-1}(A^{-1})^T=I$$

所以 A* 为正交矩阵

因为
$$(AB)(AB)^T = ABB^TA^T = A(BB^T)A^T = AA^T = I$$

所以 AB 为正交矩阵

$$\therefore A^T = A^{-1}$$

$$(3) : A^T = \frac{A^*}{\det(A)}$$

$$\Rightarrow A^* = \det(A) \cdot A^T$$

同时取两边矩阵的 (j,i) 元素, 得:

$$A_{ij} = \det(A) \cdot a_{ij}$$

17. 证明:

$$AA^{T} = (I - 2\overrightarrow{\alpha}\overrightarrow{\alpha^{T}})(I - 2\overrightarrow{\alpha}\overrightarrow{\alpha^{T}})^{T}$$

$$= (I - 2\overrightarrow{\alpha}\overrightarrow{\alpha^{T}})(I - 2\overrightarrow{\alpha}\overrightarrow{\alpha^{T}})^{T}$$

$$= I - 4\overrightarrow{\alpha}\overrightarrow{\alpha^{T}} + 4\overrightarrow{\alpha}\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha^{T}}$$

$$\therefore \overrightarrow{\alpha}\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha^{T}} = \overrightarrow{\alpha}(\overrightarrow{\alpha^{T}}\overrightarrow{\alpha})\overrightarrow{\alpha^{T}}$$

$$\overrightarrow{\alpha^{T}}\overrightarrow{\alpha} \notin \mathbb{R} \not \boxtimes \mathfrak{Z}$$

$$\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha^{T}} = \overrightarrow{\alpha}(\overrightarrow{\alpha^{T}}\overrightarrow{\alpha})\overrightarrow{\alpha^{T}} = \overrightarrow{\alpha}\overrightarrow{\alpha^{T}}$$

$$\therefore \overrightarrow{\alpha}\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha} = 1$$

$$\therefore \overrightarrow{\alpha}\overrightarrow{\alpha^{T}}\overrightarrow{\alpha}\overrightarrow{\alpha}\overrightarrow{\alpha^{T}} = \overrightarrow{\alpha}(\overrightarrow{\alpha^{T}}\overrightarrow{\alpha})\overrightarrow{\alpha^{T}} = \overrightarrow{\alpha}\overrightarrow{\alpha^{T}}$$

$$\therefore AA^T = I - 4\overrightarrow{\alpha}\overrightarrow{\alpha^T} + 4\overrightarrow{\alpha}\overrightarrow{\alpha^T}\overrightarrow{\alpha^T}\overrightarrow{\alpha^T}\overrightarrow{\alpha^T}\overrightarrow{\alpha^T}$$

$$=I-4\overrightarrow{\alpha}\overrightarrow{\alpha^T}+4\overrightarrow{\alpha}\overrightarrow{\alpha^T}=I$$

18. 因为 P 是正交矩阵

$$\begin{split} PP^T &= \begin{bmatrix} A & B \\ O & C \end{bmatrix} \begin{bmatrix} A^T & O \\ B^T & C^T \end{bmatrix} \\ \text{所以} &= \begin{bmatrix} AA^T + BB^T & BC^T \\ CB^T & CC^T \end{bmatrix} = \begin{bmatrix} I_m & O_{m \times n} \\ O_{n \times m} & I_n \end{bmatrix} \\ \therefore CC^T &= I_n, BC^T = O_{m \times n} \end{split}$$

所以C是正交矩阵

在 $BC^T = O_{m \times n}$ 两边乘矩阵 C 得:

$$BC^TC = O$$

因为 C 是正交矩阵,

所以 $C^TC = I$, B=O

因为
$$AA^T + BB^T = I_m, BB^T = O$$

所以 A 为正交矩阵

(B)

1. 解:

$$r(A) = n - 1$$

$$\therefore \det(A) = 0, A^* \neq 0$$

$$AA^* = \det(A)I = O$$

所以 A 至少有一个列向量 $\overrightarrow{\xi} \neq 0$,满足 $\overrightarrow{\alpha_i} \overrightarrow{\xi} = 0 (i = 1, 2, \dots, n)$,向量 $\overrightarrow{\epsilon}$ 即为满足条件的向量

2. 证明:

$$(I-A)(I+A)^{-1}\Big[(I-A)(I+A)^{-1}\Big]^T$$

$$= (I - A)(I + A)^{-1}(I + A)^{T}$$

因为 A 为反对称矩阵

所以
$$A^T = -A$$
,

所以
$$\left[(I+A)^{-1} \right]^T = \left[(I+A)^T \right]^{-1} = (I+A^T)^{-1} = (I-A)^{-1}, (I-A)^T = I-A^T = I+A$$

所以原式 =
$$(I-A)(I+A)^{-1}(I-A)^{-1}(I+A) = I$$
 所以 $(I-A)(I+A)^{-1}$ 是正交矩阵

3. 设 1 = (1,0,0,0,0), 2 = (0,1,0,0,0), 5 = (0,0,0,0,1), 而后将 1, 2, 3 的坐标表示,然后通过正交化和单位化即得到标准正交基。

4. 证明: 因为 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, \cdots , $\overrightarrow{e_n}$ 是标准正交向量组 所以 $\langle \overrightarrow{\alpha} \overrightarrow{e_i} \rangle = x_i$, x_i 为 $\overrightarrow{\alpha}$ 的第 \mathbf{i} 个坐标 所以 $\sum\limits_{i=1}^k \langle \overrightarrow{\alpha} \overrightarrow{e_i} \rangle^2 = x_1^2 + x_2^2 + \cdots + x_k^2 (k \leqslant n)$ 因为 $\|\overrightarrow{\alpha}\|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ 所以 $\sum\limits_{i=1}^k \langle \overrightarrow{\alpha} \overrightarrow{e_i} \rangle^2 \leqslant \|\overrightarrow{\alpha}\|^2$, 当且仅当 \mathbf{k} = \mathbf{n} 时,等号成立。

5. 利用定理 5.2.3 的(2) 及定理 5.2.5.

§5.3 第5章习题

 $x = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$ 是上式的一个解

由系数行列式不为0得,该解是唯一的解。

(2) : $\alpha_1, \alpha_2, \alpha_4$ 线性无关, α_3, α_5 可以由 $\alpha_1, \alpha_2, \alpha_4$ 线性表示

 $\therefore \alpha_1, \alpha_2, \alpha_4$ 是该向量组的极大无关组,A 的秩为 3,该方程的基础解系中 有两个向量。

由己知方程移项,得:

$$\alpha_1 + 2\alpha_2 - \alpha_3 + 0\alpha_4 + 0\alpha_5 = 0$$

$$2\alpha_1 - \alpha_2 + 0\alpha_3 + 3\alpha_4 - \alpha_5 = 0$$

 $\therefore (1,2,-1,0,0)^T, (2,-1,0,3,-1)^T$ 是该方程组的两个解。

因为以上两个向量线性无关, 所以它们是方程组的一个基。

因为以上两个向量正交,故单位化得该向量组的标准正交基:

$$\frac{1}{\sqrt{6}}(1,2,-1,0,0)^T, \frac{1}{\sqrt{15}}(2,-1,0,3,-1)^T$$

(3)
$$\aleph k_1(x^2 - 2x + 3) + k_2(2x^2 + x + a) + k_3(x^2 + 8x + 7) = 0$$

$$\begin{cases}
k_1 + 2k_2 + k_3 = 0 \\
-2k_1 + k_2 + 8k_3 = 0 \\
3k_1 + ak_2 + 7k_3 = 0
\end{cases}$$

因为 f_1, f_2, f_3 线性相关,所以存在不全为 0 的 k1,k2,k3 使得上式成立 故方程组有非零解

系数行列式
$$\begin{vmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ 3 & a & 7 \end{vmatrix} = 0 \Leftrightarrow a = 8$$

(4) 分离出自由变量

$$(a+b,a-b+2c,b,c)^T = a(1,1,0,0)^T + b(1,-1,1,0)^T + c(0,2,0,1)^T$$
 易证 $(1,1,0,0)^T, (1,-1,1,0)^T, (0,2,0,1)^T$ 线性无关 所以 $(1,1,0,0)^T, (1,-1,1,0)^T, (0,2,0,1)^T$ 是线性子空间的基。

(5) 可以直接写出过渡矩阵:

$$\left[\begin{array}{ccc} \alpha_{1} + \alpha_{2} & \alpha_{2} + \alpha_{3} & \alpha_{3} + \alpha_{1} \end{array}\right] = \left[\begin{array}{ccc} \alpha_{1} & \frac{1}{2}\alpha_{2} & \frac{1}{3}\alpha_{3} \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{array}\right]$$

所以过渡矩阵为
$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$$

所以过渡矩阵为
$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$$
。
$$(6) \diamondsuit A = \begin{bmatrix} \overrightarrow{\alpha_1} & \overrightarrow{\alpha_2} & \overrightarrow{\alpha_3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 2 & a \end{bmatrix}$$

因为所形成的向量空间的维数为 2, 所以矩阵 A 的秩为 2, A 中所有三阶 行列式为 0.

所以
$$\begin{vmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 2 & a \end{vmatrix} = a - 6 = 0 \Rightarrow a = 6$$

$$2. A \rightarrow \left[\begin{array}{ccccc} 1 & 0 & 3 & 7 & 0 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

所以列向量组以 $\overrightarrow{\alpha_1}, \overrightarrow{\alpha_2}, \overrightarrow{\alpha_5}$ 为基,维数为3

$$\overrightarrow{\alpha_3} = 3\overrightarrow{\alpha_1} + \overrightarrow{\alpha_2} + 0\overrightarrow{\alpha_5}$$

$$\overrightarrow{\alpha_4} = 7\overrightarrow{\alpha_1} + 3\overrightarrow{\alpha_2} + 0\overrightarrow{\alpha_5}$$

所以 $\overrightarrow{\alpha_3}$ 的坐标为 $(3,1,0)^T$, $\overrightarrow{\alpha_4}$ 的坐标为 $(7,3,0)^T$ 。

3. (1) 由行等价可得 A 和 B 的秩相等,从而可推出 1 和 2 的维数相等。

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
(2) 反例

 $(1,1,0)^T \in W_1, (1,1,0)^T \notin W_2$

$$W_1 \neq W_2$$

- 4. 证明:
- $AB = I_m$

$$\therefore r(AB) = m$$

$$r(A) \leqslant m, r(A) \geqslant r(AB) = m$$

$$\therefore r(A) = m$$

所以A的列向量组中存在m个线性无关的向量,A的列向量组可生成Fm.

5. 常规做法,可参考 5.1(A)第7题

$$\frac{1}{3} \begin{bmatrix} -4 & -10 & -3 \\ 4 & 7 & 3 \\ -1 & -1 & 0 \end{bmatrix}, (8, -5, 3)^T$$

 $6. : \overrightarrow{\alpha_1}, \overrightarrow{\alpha_2}, \overrightarrow{\alpha_3}$ 是一个标准正交基

7. (1)
$$Q = \begin{bmatrix} \overrightarrow{\alpha_1} & \overrightarrow{\alpha_2} & \cdots & \overrightarrow{\alpha_n} \end{bmatrix}$$
利用 $\overrightarrow{a_i^T}\overrightarrow{\alpha_j} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$, 可得 $Q^TQ = I_n$

(2) 证明:
 $A\overrightarrow{x} = \overrightarrow{b} \Leftrightarrow QR\overrightarrow{x} = \overrightarrow{b} \Leftrightarrow Q^TQR\overrightarrow{x} = Q^T\overrightarrow{b} \Leftrightarrow R\overrightarrow{x} = Q^T\overrightarrow{b}$

$$\begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix} \overrightarrow{x} = \frac{1}{5} \begin{bmatrix} 1 & 2 & 2 & 4 \\ -2 & 1 & -4 & 2 \\ -4 & 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \overrightarrow{x} = \begin{bmatrix} -\frac{2}{5} \\ 0 \\ 1 \end{bmatrix}$$

第六章 特征值与特征向量

§6.1 矩阵的特征值与特征向量

(A)

1. : X 是 A^{-1} 的一个特征向量, $A^{-1}X=\lambda X$,两边同时左乘矩阵 A 得 $AA^{-1}X=\lambda AX=X$ 即 $AX=\frac{1}{\lambda}X$ $(\lambda\neq 0)$

故
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix} = \begin{bmatrix} 3+k \\ 2+2k \\ 3+k \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$$

∴ $\frac{3+k}{2+2k} = \frac{1}{k}$ 解得 k=1 或-2,

当 k 等于 1 时,解得 $\lambda = \frac{1}{4}$; 当 k=-2 时,解得 $\lambda = 1$

2. 通过初等行变换
$$\begin{bmatrix} x_1 & x_2 & \xi \end{bmatrix} = \begin{bmatrix} 1 & -2 & 3 \\ -2 & -1 & 4 \\ 2 & 2 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

易知 $\xi = -x_1 - 2x_2$ 又由题意知 $Ax_1 = \lambda_1 x_1 = 2x_1$, $Ax_2 = \lambda_2 x_2 = -x_2$

$$A\xi = A(-x_1 - 2x_2) = -2x_1 + 2x_2 = ((-6, 2, 0^T))$$

3. 略

- 4. 假设 λ 为 A 的特征值,则 $|\lambda I A| = 0$ 故 $|\lambda I A^T| = |\lambda I A| = 0$,
- $\therefore \lambda$ 也是 A^T 的特征值,又 λI A 与 λI A^T 不一定相等,故特征向量不一定相同.
 - 5. 由性质 6.1.2 可知 $\frac{1}{3}\lambda^2 = \frac{4}{3}$ 是 $\frac{1}{3}A^2$ 的特征值,则 $\frac{3}{4}$ 是 $(\frac{1}{3}A^2)^{-1}$ 的特征值
- 6. $\det \lambda I$ A = 0 是 λ 为 A 的特征值的充要条件且 $\det(3I + A) = (-1)^4 \det(-3I A) = 0$

 \therefore 3 为 A 的一个特征值;

又 $AA^T=2I$,两边同时取行列式得 $|A|^2=2^4|I|$ =16 且 $\det(A)<0$,故 | A|=-4,

由性质 6.1.3 可知 $\frac{\det(A)}{\lambda} = \frac{-4}{-3} = \frac{4}{3}$ 为 A^* 的特征值

7. (1): A 的每行元素之和都等于常数 a,

$$\therefore 易知 A \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ a \\ \vdots \\ a \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

故 a 为 A 的一个特征值且 $\xi = (\bar{1}, 1, \dots, 1)^T$ 为对应的一个特征向量

(2) 由 $A\xi = a\xi$ 两边同时左乘 A^{-1} 得 $A^{-1}A\xi = aA^{-1}\xi$,

若 a=0, 则,矛盾,故 a \neq 0 且 $A^{-1}\xi = \frac{1}{2}\xi$,

 $\therefore a \neq 0$ 且 $\therefore a \neq 0$ 得特征值为 $\frac{1}{2}$

- 8. $B = AA^* = |A|I$, 假设 λ 为 B 的特征值, η 为任意的 n 维向量则 $|\lambda I B| = |\lambda I |A|I| = |(\lambda |A|)I| = (\lambda |A|)^n |I| = (\lambda |A|)^n = 0$ 故 $\lambda = |A|$, 又 $B\eta = |A|I\eta = |A|\eta$ 综上所述 |A| 为 B 的特征值,特征向量为任意 n 维向量
- 9. : I A, I + A, 3I A

 $\therefore \det(I - A) = \det(I + A) = \det(3I - A) = 0$

 \therefore 1,-1,3 为 3 阶矩阵 A 的特征值, $|A| = 1 \times (-1) \times 3 = -3$

- $10. : \lambda_1, \lambda_2 \cdots, \lambda_n$ 为 A 得全部特征值
- :. 由性质 6.1.2 可知 $\lambda_1 + a, \lambda_2 + a, \dots, \lambda_n + a$ 为 A + aI 的全部特征值
- 11. : $B = A^2 2A + 3I$ 且 1, 1,0 为 A 得特征值

∴ 由性质 6.1.2 可知 1^2 - $2 \times 1 + 3$, $(-1)^2$ - $2 \times (-1) + 30^2$ - $2 \times 0 + 3$ 即 2,

6,3 为 B 的特征值, $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{3}$ 为 B⁻¹ 的特征值, x_1, x_2, x_3 为对应的特征向量

12. 略

(1)通过初等行变换
$$\begin{bmatrix} x_1 & x_2 & x_3 & \beta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 9 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\beta = 2x_1 - 2x_2 + x_3$$

(3): 1,2,3 为 A 的特征值,

 $: 1.2^{n}.3^{n}$ 为 A^{n} 的特征值

故
$$A^n x_1 = x_1, A^n x_2 = 2^n x_2, A^n x_3 = 3^n x_3$$

 $\therefore A^n \beta = A^n (2x_1 - 2x_2 + x_3) = 2A^n x_1 - 2A^n x_2 + A^n x_3 = 2x_1 - 2^{n+1} x_2 + 2^n x_3$

$$= \begin{bmatrix} 2 - 2^{n+1} + 3^n \\ 2 - 2^{n+2} + 3^{n+1} \\ 2 - 2^{n+3} + 3^{n+2} \end{bmatrix}$$

13. 由 $|\lambda I - A| = 0$ 得 $\lambda_1 = \lambda_2 = 1, \lambda_3 = -1$

又属于互不相同特征值的特征向量线性无关且 A 有 3 个线性无关的特征向量

 $\therefore \lambda_1, \lambda_2$ 对应 2 个线性无关的特征向量, λ_3 对应 1 个特征向量

$$\therefore (I-A)x = 0$$
 有 2 个线性无关的解,即 $r(I-A) = 1$;同理 $r(-I-A) = 2$

$$I - A = \begin{bmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ 0 & 0 & 0 \end{bmatrix} \therefore \frac{-x}{1} = \frac{-y}{-1}$$

$$\therefore x + y = 0$$

$$-I - A = \begin{bmatrix} -1 & 0 & -1 \\ -x & -2 & -y \\ -1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ x & 2 & y \\ 0 & 0 & 0 \end{bmatrix} \therefore r(-I - A) = 2 恒成立$$

综上: x + y = 0

14. (1) :
$$\alpha^T \beta = 0$$
, : $\beta^T \alpha = (\alpha^T \beta)^T = 0$

$$A^2 = \alpha \beta^T \alpha \beta^T = (\beta^T \alpha) \alpha \beta^T = O$$

(2) 假设 λ 为A的特征值,x为对应的特征向量,则

$$Ax = \lambda x$$
, $A^2x = \lambda^2 x$, $A^2x = 0$ $\lambda^2 x = 0$

$$\therefore x \neq 0 : \lambda = 0$$

 $\therefore A$ 仅有特征值 0,又由 Ax = 0 可求特征向量为

$$c_1(-\frac{b_2}{b_1},1,0,\cdots,0)^T+c_2(-\frac{b_3}{b_1},0,1,\cdots,0)^T+\cdots+c_{n-1}(-\frac{b_{n-1}}{b_1},0,0,\cdots,1)^T$$

15. : A 的特征值为 1, -1, 2 :
$$\det(A) = 1 \times (-1) \times 2 = -2$$

记 A 的特征值为 $\lambda_i(i=1,2,3)$ ∵ $B=A^2-A^*+3I,$ ∴ B 的特征值为 λ_i^2 - $\frac{\det(A)}{\lambda_i}$ + 3, 分别为 6, 2, 8

 $\therefore \det(B) = 6 \times 2 \times 8 = 96$

17. 设矩阵 A 的特征值为 λ ,则 $Ax=\lambda x, A^2x=\lambda^2x=Ax=\lambda x, \therefore \lambda^2x=\lambda x, (\lambda^2-\lambda)x=0$

 $\therefore x \neq 0$ $\therefore \lambda^2 - \lambda = 0$ $\therefore \lambda = 0$ 或 $\lambda = 1, A$ 的特征值必为 0 或 1.

18.

(1) $: \alpha$ 为单位列向量, $: \alpha\alpha^T \neq 0$

$$\mathbb{X} \ 1 \leqslant r(\alpha \alpha^T) \leqslant r(\alpha) = 1, \therefore r(\alpha \alpha^T) = 1$$

$$(2) :: A = I - 2\alpha\alpha^T :: I - A = 2\alpha\alpha^T r(I - A) = r(\alpha\alpha^T) = 1$$

 $\therefore (I - A)x = 0$ 有 n-1 个线性无关的解, 1 为的 n-1 重特征值

$$\mathbb{X} A\alpha = (I - 2\alpha\alpha^T)\alpha = (1 - 2\alpha^T\alpha)\alpha = -\alpha$$

- -1 是 A 的单特征值且 α 为对应的特征向量
- (3) 由 (2) 知 $\det(A) = 1^{n-1}(-1) = -1$

19.

- (1) 假设 x 为 λ 对应的特征向量即 $ABx = \lambda x$
- $\therefore \lambda \neq 0 \perp x \neq 0 \therefore Bx \neq 0$

在 $ABx = \lambda x$ 两边同时左乘 B 可得 $BA(Bx) = \lambda Bx$,

- $\therefore Bx$ 为 BA 的特征向量, λ 为对应的特征值
- (2) $:: \lambda = 0$ 是 AB 的一个特征值 :: |AB| = 0
- $\therefore |BA| = |A||B| = |AB| = 0$
- $\therefore \lambda = 0$ 也是 BA 的一个特征值

(B)

1. 假设 λ 为 A 的特征值,则 $Ax = \lambda x$ 对任意的 n 维非零列向量都成立即 ($\lambda I - A$)x = 0 有 n 个线性无关的解

$$\therefore r(\lambda I - A) = 0 \ \lambda I - A = O \ A = \lambda I$$

- :: A 为数量矩阵
- 2. : A 为正交矩阵, $A^T = A^{-1}$, A^T 的特征值与 A^{-1} 的特征值相同

又 $\frac{1}{\lambda}$ 为 A^{-1} 的特征值, A^{T} 的特征值也为 A^{T} 的特征值(6.1A 第四题) $\therefore \frac{1}{\lambda}$ 也为 A 的特征值

3. : A 为正交矩阵 $: A^TA = I, \langle Ax, Ax \rangle = x^TA^TAx = x^Tx$ 又 $Ax = \lambda x, : \langle Ax, Ax \rangle = \langle \lambda x, \lambda x \rangle = \lambda^2 x^Tx$ $: \lambda^2 = 1 \lambda = 1$ 或 1 故正交矩阵的特征值为 1 或-1

假设 A 的特征值全为-1,则 $\det(A) = (-1)^n = -1$,与 $\det(A) = 1$ 矛盾 \therefore A 有特征值 1

4. 假设 $\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k_1}; \alpha_{21}, \alpha_{22}, \dots, \alpha_{2k_2}$ 线性相关 即存在不全为 0 的 $l_1, l_2, \dots, l_{k_1}, s_1, s_2, \dots, s_{k_2}$ 使 $l_1\alpha_{11} + l_2\alpha_{12} + \dots + l_{k_1}\alpha_{1k_1} + s_1\alpha_{21} + s_2\alpha_{22} + \dots + s_{k_2}\alpha_{2k_2} = 0$ 记 $v_1 = l_1\alpha_{11} + l_2\alpha_{12} + \dots + l_{k_1}\alpha_{1k_1}, \ v_2 = s_1\alpha_{21} + s_2\alpha_{22} + \dots + s_{k_2}\alpha_{2k_2},$ 则 $v_1 + v_2 = 0$

若 $v_1 \neq 0, v_2 \neq 0$,则 v_1, v_2 分别为 A 的属于 λ_1, λ_2 的特征向量,由性质 6.1.4 知, v_1, v_2 线性无关,与 $v_1 + v_2 = 0$ 矛盾,故 $v_1 = v_2 = 0$

又 $\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k_1}$ 线性无关, $\alpha_{21}, \alpha_{22}, \dots, \alpha_{2k_2}$ 线性无关

 $l_1=l_2=\cdots=l_{k_1}=0, s_1=s_2=\cdots=s_{k_2}=0$ 与 $l_1,l_2,\cdots,l_{k_1},s_1,s_2,\cdots,s_{k_2}$ 不全为 0 矛盾

假设不成立, $\alpha_{11},\alpha_{12}\cdots,\alpha_{1k_1};\alpha_{21},\alpha_{22},\cdots,\alpha_{2k_2}$ 线性无关

§6.2 相似矩阵与矩阵的相似对角化

(A)

- 1. 略
- 2. 略
- 3. 由题意知 $P^{-1}AP = B$ 且 $Ax = \lambda_0 x$ 故 $P^{-1}A = BP^{-1}$ 等式两边又乘 x 得 $P^{-1}Ax = BP^{-1}x = \lambda_0 P^{-1}x$: $P^{-1}x$ 为矩阵 B 的属于特征值 λ_0 的特征向量
- 4. : A, B 相似,: A, B 特征值相同,故 $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ 为 B 的全部特征值

则 1, 2, 3 为 B^{-1} - I 的全部特征值, $\det(B^{-1} - I) = 1 \times 2 \times 3 = 6$

5. 略

6. (1)
$$A\xi = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2+a \\ 1+b \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \lambda \xi$$

 $\therefore 2 + a = -11 + b = 1 \ \mathbb{P} \ a = -3, b = 0$

代入 a, b 得 $\lambda = -1$

(2) 由 (1) 得
$$A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$

由 $|\lambda I - A| = 0$ 得 $\lambda_1 = \lambda_2 = \lambda_3 = -1$

又 r(-I-A)=2, 故代数重数为 3,几何重数为 1,几何重数不等于代数重数,

所以 A 不相似于对角矩阵

7. $\therefore \lambda = 2$ 是 A 的二重特征值且 A 可对角化, $\therefore r(2I - A) = 1$

又由初等行变换得
$$2I - A = \begin{bmatrix} 1 & 1 & -1 \\ -x & -2 & -y \\ 3 & 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & x - 2 & -x - y \\ 0 & 0 & 0 \end{bmatrix}$$

$$\therefore x - 2 = -x - y = 0 \therefore x = 2, y = -2, A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{bmatrix}$$

由 $|\lambda I - A| = 0$ 得 $\lambda = 2$ 或 6

 $\lambda = 2$ 时基础解系为 $(1, -1, 0)^T$, $(1, 0, 1)^T$; $\lambda = 6$ 时, 基础解系为 $(1, -2, 3)^T$

$$\therefore P = \left[\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 3 \end{array} \right]$$

8. $|\lambda I - A| = (\lambda - 2)(\lambda^2 - 8\lambda + 18 + 3a)$

若 2 为 2 重根则 $\lambda = 2$ 为 λ^2 - 8 λ + 18 + 3a = 0 的解,代入得 a=-2, 从而解得特征值为 2, 2, 6, 又 r(2I - A) = 1, 故 2 的几何重数也为 2, 此时 A 可相似对角化

若 2 不是 2 重根,则 λ^2 - 8λ + 18 + 3a = 0 有两个等根, Δ = 64 - 4(18+3a) =

0 得 a= - $\frac{2}{3}$

从而解得特征值为 2, 4, 4, 又 r(4I - A) = 2, 故 4 的几何重数为 1, A 不可相似对角化

9. 由题意知,A 相似于对角矩阵,即存在可逆矩阵 $P = \left[egin{array}{ccc} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{array} \right]$

10. : A 的特征值各不相同,: A 可相似对角化,记为 $A = PDP^{-1}$

其中
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
, P 可逆

 $B = A^3 - 7A + 5I, :: B = (PDP^{-1})^3 - 7PDP^{-1} + 5PIP^{-1} = P(D^3 - 7D + 5I)P^{-1}$

$$X D^3 - 7D + 5I = -I, : B = -I$$

11. (1): A = B 相似, A = B 迹和行列式相等

∴
$$\begin{cases} |A| = |B| \\ 4 + y = 0 \end{cases}$$
 解得 $x = 0, y = -4$

(2) 由 $|\lambda I - A| = 0$ 可得 $\lambda = 1$ - 10,代入解得特征向量分别为 $(5 - 2 - 2)^T$, $(3 - 20)^T$

$$(2-10)^T, :: Q_1 = \begin{bmatrix} 5 & 3 & 2 \\ -2 & -2 & -1 \\ -2 & 0 & 0 \end{bmatrix} (\sharp \div D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix})$$

(3) : A, B 相似,: A, B 特征值相同,对角化后的矩阵相同,将 B 的三个特征值 1,-1,0 代入解得特征向量分别为 $(5,2,2)^T$, $(3,0,2)^T$, $(2,0,1)^T$

$$\therefore Q_2 = \begin{bmatrix} 5 & 3 & 2 \\ 2 & 0 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$(4) : Q_2^{-1}BQ_2 = D, Q_1^{-1}AQ_1 = D$$

$$Q_2^{-1}BQ_2 = D, Q_1^{-1}AQ_1 = D$$

$$\therefore P = Q_1 Q_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

(5)
$$A^{100} = (Q_1 D Q_1^{-1})^{100} = Q_1 D^{100} Q_1^{-1} = \begin{bmatrix} 6 - 3 & -6 & -4 \\ 7 & 2 & 4 & 2 \\ 8 & 0 & 0 & 1 & 9 \end{bmatrix}$$

$$D^{100} = \begin{bmatrix} 1^{100} & 0 & 0 \\ 0 & (-1)^{100} & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -3 & -6 & -4 \end{bmatrix}$$

$$解得 A^{100} = \begin{bmatrix} -3 & -6 & -4 \\ 2 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

12. 由 $A^m = O$ 可知 $\lambda^m = 0$,解得 $\lambda = 0$,故 0 的代数重数为 n

又 A 是非零矩阵, $\therefore r(0I - A) = r(A) \ge 1$

0的几何重数小于等于 n-1

代数重数不等于几何重数,故 A 不相似于对角矩阵

13.
$$\[\Box A = P^{-1}BP, \] \[D = (A - \lambda_1 I)(A - \lambda_2 I)(A - \lambda_3 I) = P^{-1}(B - \lambda_1 I)(B - \lambda_2 I)(B - \lambda_3 I)P \]$$

$$= P^{-1} \begin{bmatrix} 0 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & & \lambda_2 & \\ & & & 0 \end{bmatrix} P = P^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = Q^{-1} \begin{bmatrix} 0 & 0 &$$

14. 略

15. :: A 的秩为 2,:: 0 为 A 的特征值,记 $\beta = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 为对应的特征向量

$$\mathbb{X} \left[\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \end{array} \right] = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 0 & 1 & -3 \end{array} \right] \rightarrow \left[\begin{array}{ccc} 1 & 0 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{array} \right]$$

 $\therefore \alpha_3 = 5\alpha_1 - 3\alpha_2$, $\therefore \alpha_1, \alpha_2$ 为属于特征值 6 的两个线性无关的特征向量

由性质 6.2.2 知
$$\beta$$
 与 α_1,α_2 正交,则 $\left\{\begin{array}{c} x_1+x_2=0\\ 2x_1+x_2+x_3=0 \end{array}\right.$,解得 $\beta=$

$$\lambda_1 \left[egin{array}{c} 1 \\ 2 \\ 1 \end{array}
ight]$$

∴
$$4 + 2a = 2, 5 + a = 4$$
 $\cite{4}$ $a = -1, \lambda_1 = 2$

故
$$A =$$
 $\begin{vmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{vmatrix}$

由 $|\lambda I - A| = 0$ 得 $\lambda_1 = 2, \lambda_2 = 5, \lambda_3 = -4$

相应的特征向量为 $(1,2,1)^T$, $(1,-1,1)^T$, $(1,0,-1)^T$

单位画后得到
$$Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
 其中 $D = \begin{bmatrix} 2 \\ & -4 \\ & & 5 \end{bmatrix}$

17. $:: B\alpha_1 = (A^5 - 4A^3 + I)\alpha_1 = (\lambda_1^5 - 4\lambda_1^3 + 1)\alpha_1$ $:: \alpha_1$ 是 B 的特征向量

- -2 为对应的特征值; 同理 B 有二重特征值 1 且 B 的特征向量与 A 的特征 向量满足 $x_B=cx_A$
 - $\therefore B$ 也为实对称矩阵,利用例 6.2.6 的方法可得 B 的属于 1 的特征向量为

$$c_2(110)^T + c_3(-101)^T$$
 $(c_2, c_3$ 不全为 0),且 $B = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

18. :: A, B 均为实对称矩阵且具有相同的特征值,:: 必存在正交矩阵 P, Q 使

$$P^{-1}AP = Q^{-1}BQ = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

$$\therefore A = PQ^{-1}BQP^{-1} = (QP^{-1})^{-1}BQP^{-1}$$

$$\therefore A, B$$
 相似

19. :: 实对称矩阵与对角矩阵相似,记对角矩阵为 $P = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ 则 r(A) = r(P),又 r(P) 与非零特征值的个数相等故 A 的非零特征值个数等于 r(A)

例: 非对称矩阵 $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ 秩为 1, 非零特征值个数为 0

20.

 $(1)::\alpha,\beta$ 为非零列向量,:. $A=\alpha\beta^T\neq O$

$$\mathbb{X} r(A) = r(\alpha \beta^T) \leqslant r(\alpha) = 1$$

- $\therefore r(A) = 1$
- (2) : A 的秩为 1, : Ax = 0 有 n-1 个线性无关的解故 0 为 n-1 重特征值
- (3) $A\alpha = \alpha \beta^T \alpha = (\beta^T \alpha)\alpha$
- $\therefore \beta^T \alpha$ 也是 A 的特征值且 α 为对应的一个特征向量
- $(4) :: \beta^T \alpha \neq 0$
- : 0 的几何重数代数重数均为 n-1, $\beta^T \alpha$ 的几何重数代数重数均为 1
- $\therefore A$ 的每个特征值代数重数都等于几何重数,A 可相似对角化

(B)

1. : $A^2=A$, : $\lambda^2=\lambda$ 解得 $\lambda=0$ 或记 0 的几何重数为 a,1 的几何重数为 b (a+b $\leqslant n$)

$$\mathbb{X} : A^2 = A \Rightarrow A(A - I) = O$$

 $\therefore r(A) + r(A - I) \leqslant n$

 $\therefore Ax = 0$ 有 n - r(A) 个线性无关的解 $\therefore 0$ 的几何重数为 n - r(A) 即 $\mathbf{a} = n - r(A)$

同理 (A - I)x = 0 有 n - r(A - I) 个线性无关的解,b=n - r(A - I)

则 $a+b=2n-(r(A)+r(A-I))\geqslant n$ 故 a+b=n

 $\therefore A$ 有 n 个线性无关的特征向量,A 必相似于对角矩阵

2. 见课本后答案

§6.3 第6章习题

- 1. 填空题
- (1) 8
- (2) 1_{\circ} : $A\alpha_1 = 0$, $A\alpha_2 = 2\alpha_1 + \alpha_2$

$$\therefore A\alpha_2 + 2A\alpha_1 = 2\alpha_1 + \alpha_2 \, \mathbb{P} \, A(2\alpha_1 + \alpha_2) = 2\alpha_1 + \alpha_2$$

- : A 的非零特征值为 1
- (3) 2。: $\alpha \beta^T$ 有特征值 3 记 $\alpha \beta^T x = 3x$

等式两边同时左乘 β^T 得 $\beta^T \alpha \beta^T x = 3\beta^T x$

故
$$\beta^T \alpha = \mathbf{k} + 1 = 3$$
 解得 **k=2**

- (4) 5
- (5) 2, -1。两矩阵相似,迹与行列式相等 故 $\begin{cases} 3 = 4 + b \\ 4a 3 = -5b \end{cases}$ 解得 $\begin{cases} a = 2 \\ b = -1 \end{cases}$
- (6) 1。经计算可知特征值为 a,1,2

当 a=1 时, 1 的几何重数小于代数重数,矩阵不可相似对角化,成立

当 a=2 时或 $a \neq 1$ 且 $a \neq 2$ 时,所有特征值几何重数等于代数重数,矩阵可相似对角化,矛盾

综上: a=1

(7) 4。经计算可知 B 的特征值为 1, 1, -1, $\therefore A$, B 相似, $\therefore A$ 的特征值也为 1, 1, -1

又 B 可相似对角化, \therefore A 也可相似对角化,其特征值代数重数等于几何重数

$$\therefore 3 - r(A - 2I) = 0, 3 - r(A - I) = 2$$

故
$$r(A-2I)+r(A-I)=4$$

- (8) $2 \cdot \beta^T \alpha = tr(\alpha \beta^T) = 2$
- (9) 0_{\circ} : $\det(A) = 8$, $\det(A I) = \det(A + 2I) = 0$
- \therefore 1, 2 为 A 的特征值且 A 的特征值之积为 8
- \therefore -4.1,-2 为 A 的全部特征值, 故 A + 4I 的特征值为 0, 5, 2
- $\det(A+4I)=0$
- (10) $-\frac{35}{3}$ $\therefore \det(A+I) = \det(A-2I) = \det(3A-2I) = 0$
- $\therefore -1, 2, \frac{2}{3}$ 为 A 的全部特征值, 故 2A + I 的特征值为-1, 5, $\frac{7}{3}$

$$\therefore \det(2A+I) = -\frac{35}{3}$$

(11) -32

2. 单项选择题

(1) B。依题意知 $A\alpha = \lambda \alpha$. $A = A^T$

等式左边同时左乘 P^T 得 $P^TA\alpha = \lambda P^T\alpha$

故
$$P^TA\alpha = P^TA^T\alpha = P^TA^T(P^T)^{-1}P^T\alpha = P^{-1}AP^TP^T\alpha = \lambda P^T\alpha$$

- $\therefore P^T \alpha$ 为矩阵 $(P^{-1}AP)^T$ 属于特征值 λ 的特征向量
- (2) B。由题意知 $A\alpha_1 = \lambda_1\alpha_1, A\alpha_2 = \lambda_2\alpha_2$

假设 α_1 , $A(\alpha_1+\alpha_2)$ 线性相关,即存在不全为 0 的 k_1 , k_2 使 $k_1\alpha_1+k_2A(\alpha_1+\alpha_2)=0$

则
$$(k_1 + k_2\lambda_1)\alpha_1 + k_2\lambda_2\alpha_2 = 0$$

又
$$:\alpha_1,\alpha_2$$
线性无关, $:k_1+k_2\lambda_1=k_2\lambda_2=0$

若
$$k_2 = 0$$
 ,则 $k_1 = 0$,又 k_1, k_2 不全为 0 , $: k_2 \neq 0, \lambda_2 = 0$

$$\alpha_1$$
, $A(\alpha_1 + \alpha_2)$ 线性相关的充要条件为 $\lambda_2 = 0$

故 α_1 , $A(\alpha_1 + \alpha_2)$ 线性无关的充要条件为 $\lambda_2 \neq 0$

- (3)D。:: $A^2+A=O$, :: $\lambda^2+\lambda=0$ 解得 $\lambda=0$ 或 1 又 r(A)=3,: 0 的代数重数为 1,-1 的代数重数为 3
 - $\therefore A$ 的全部特征值为-1,-1,-1,0,A 相似于对角矩阵 diag(-1,-1,-1,0)
- (4) D。: A 的特征值各不相同,: A 的特征值的代数重数和几何重数均为 1

$$:: \det(A) = 0, :: 0$$
 为的单重特征值, $4 - r(A) = 1$, $r(A) = 3$

(5) C。假设 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,又 :: α_1,α_2 线性无关,:: α_3 可以由 α_1,α_2 线性表示

记为 $\alpha_3 = k_1 \alpha_1 + k_2 \alpha_2$, 等式两边同时左乘 A 得

$$A\alpha_3 = k_1 A\alpha_1 + k_2 A\alpha_2 = -k_1 \alpha_1 + k_2 \alpha_2$$
, $X A\alpha_3 = \alpha_2 + \alpha_3 = k_1 \alpha_1 + (k_2 + 1)\alpha_2$

 $\therefore 2k_1\alpha_1+\alpha_2=0$, 与 α_1,α_2 线性无关矛盾,假设不成立,即 $\alpha_1,\alpha_2,\alpha_3$ 线性无关

$$\therefore P = \left[\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \end{array} \right]$$
可逆

$$\mathbb{X}AP = A\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} -\alpha_1 & \alpha_2 & \alpha_2 + \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\therefore P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

3. $:: \alpha \to A^*$ 对应于 λ 的特征向量, $:: \alpha \to A$ 的特征向量, 记 $A\alpha = \mu\alpha$ (易知 $\lambda = \frac{\square}{2}$)

则
$$A\alpha = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & a \end{bmatrix} \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 3+b \\ 2+2b \\ a+b+1 \end{bmatrix} = \mu \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix}$$
故 $\begin{cases} \frac{2+2b}{3+b} = \frac{b}{1} \\ 3+b=a+b+1 \end{cases}$ 解得 $\begin{cases} a=2 \\ b=1 \text{ or } -2 \end{cases}$ 当 b=1 时,解得 $\mu=4$, $\lambda=1$ 当 b=-2 时,解得 $\mu=1$, $\lambda=4$ 综上: $a=2,b=1,\lambda=1$ 或 $a=2,b=-2,\lambda=4$

4. 略

5.
$$\therefore B = P^{-1}A^*P, \therefore B, A^*$$
 相似,特征值相同记 A 的特征值为 λ ,则 B, A^* 的特征值为 $\frac{\Delta}{\lambda}$ 易求得 A 的特征值为 7,1,1, $|A| = 7$ $\therefore B$ 的特征值为 1,7,7; $B + 2I$ 的特征值为 3,9,9

- 6. 易求得 A 的特征值为 6, 6, -2
- :: A 可相似对角化,:: A 的特征值的代数重数等于几何重数

7.
$$\therefore A$$
 的各行元素之和为 3, $\therefore A\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

$$3$$
 为 A 的特征值, $\begin{bmatrix} 1\\1\\1\end{bmatrix}$ 为对应的特征向量,记为 α_3

又 α_1, α_2 不成比例线性无关,且为 Ax = 0 解

 $\therefore 0$ 为 A 的特征值, α_1,α_2 为对应的特征向量

(1) $\alpha_1,\alpha_2,\alpha_3$ 为 A 的 3 个线性无关的特征向量,将其进行施密特正交化并单位化后得

$$\xi_{1} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \quad \xi_{2} = \begin{bmatrix} \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \quad \xi_{3} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\therefore Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2) \because Q^{-1}AQ = D, \therefore A = QDQ^{-1}$$

$$A - \frac{3}{2}I = QDQ^{-1} - \frac{3}{2}QIQ^{-1} = Q(D - \frac{3}{2}I)Q^{-1}$$

$$A - \frac{3}{2}I = QDQ^{-1} - \frac{3}{2}QIQ^{-1} = Q(D - \frac{3}{2}I)Q^{-1}$$

$$B = D - \frac{3}{2}I = \begin{bmatrix} \frac{3}{2} \\ -\frac{3}{2} \\ -\frac{3}{2} \end{bmatrix}, B^{6} = \begin{bmatrix} \frac{3}{2} 6 \\ -\frac{3}{2} 6 \\ -\frac{3}{2} 6 \end{bmatrix} = \frac{3}{2}^{6}I$$

$$\mathbb{Q} (A - \frac{3}{2}I)^{6} = (QBQ^{-1})^{6} = QB^{6}Q^{-1} = Q(\frac{3}{2})^{6}IQ^{-1} = (\frac{3}{2})^{6}I$$

8. (1) 依題意知
$$AQ = A\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} A\alpha_1 & A\alpha_2 & A\alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 & 2\alpha_2 + \alpha_3 & 2\alpha_2 + 3\alpha_3 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix} = QB$$

$$\therefore B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$
(2) $M = \begin{bmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $M^{-1}BM = diag(114)$

(3) 由 (1) 知
$$B=Q^{-1}AQ$$
, 记 $C=diag(1,1,4)$ 则 $M^{-1}BM=M^{-1}Q^{-1}AQM=(QM)^{-1}AQM=C$ 当 $P=QM=\begin{bmatrix} & -\alpha_1+\alpha_2 & -2\alpha_1+\alpha_3 & \alpha_2+\alpha_3 \end{bmatrix}$ 时, $P^{-1}AP$ 为对角矩阵 C

第七章 二次曲面与二次型

§7.1 曲面与空间曲线

习题 7.1

(A)

1. 解:(1)双曲柱面。标准方程为:

$$\frac{x^2}{4} - \frac{y^2}{\left(\frac{4}{2}\right)} = 1$$

(2) 椭圆柱面。标准方程为:

$$\frac{y^2}{\left(\frac{1}{4}\right)} + z^2 = 1$$

(3) 抛物柱面。标准方程为:

$$y = \frac{1}{2}x^2$$

(4) 椭圆锥面。标准方程为:

$$\frac{(x-1)^2}{\left(\frac{1}{2}\right)} + (y-2)^2 = z^2$$

(5) 椭球。标准方程为:

$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} + \frac{z^2}{9} = 1$$

- (6) 椭球。此曲面是旋转面,由曲线 $\begin{cases} \frac{1}{4}x^2 + \frac{1}{9}y^2 = 1 \\ z = 0 \end{cases}$ 绕轴旋转而成。
- (7) 双叶双曲面。标准方程为:

$$\frac{y^2}{4} + \frac{(z-1)^2}{4} - x^2 = -1$$

(8) 双曲抛物面。标准方程为:

$$y^2 - 4x^2 = z$$

- (9) 单叶双曲面。由曲线 $\left\{ \begin{array}{c} x^2 \frac{1}{4}y^2 = 0 \\ z = 0 \end{array} \right.$ 绕 y 轴旋转而成。
- (10) 双曲抛物面。标准方程为: $\frac{y^2}{\left(\frac{1}{4}\right)} + \frac{z^2}{\left(\frac{1}{4}\right)} x^2 = -1$, 由曲线 $\begin{cases} x^2 4y^2 = 1 \\ z = 0 \end{cases}$ 绕轴旋转而成。
 - 2. 解: 设动点坐标为 (x, y, z), 则其满足:
 - (1) 由题意得,原式满足

$$\begin{cases} (x-1)^2 + (y-2)^2 + (z-1)^2 = 9\\ (x-2)^2 + y^2 + (z-1)^2 = 4 \end{cases}$$

解得轨迹方程为:

$$\begin{cases} x^2 + y^2 + z^2 - 2x - 4y - 2z - 3 = 0 \\ x - 2y - 2 = 0 \end{cases}$$

(2) 由题意得,原式满足:

$$\sqrt{(x-5)^2 + y^2 + z^2} + \sqrt{(x+5)^2 + y^2 + z^2} = 20$$

解得:

$$\frac{x^2}{100} + \frac{y^2}{75} + \frac{z^2}{75} = 1$$

(3) 由题意得,原式满足:

$$x^2 + y^2 = 4x^2$$

解得轨迹方程为:

$$y^2 - 3x^2 = 0$$

3. 解: (1) 由题意得:

$$\left(\frac{x-1}{2}\right)^2 + (y+1)^2 + \left(\frac{1}{2}z\right)^2 = 1$$

即有:

$$\frac{(x-1)^2}{4} + (y+1)^2 + \frac{z^2}{4} = 1$$

(2) 由题意得:

$$\left(\frac{x}{2z}\right)^2 + \left(\frac{y}{2z}\right)^2 = 1$$

即

$$x^2 + y^2 = 4z^2$$

- 4,解:(1)原方程表示螺旋线,圆半径为3,角速率为2,匀速直线运动速度为 2π 。
 - (2) 原方程表示平面 x = 1 上的圆

$$\begin{cases} y^2 + z^2 = 1\\ x = 1 \end{cases}$$

(3) 原方程表示过 (1,0,-1) 且平行于 y 轴的直线。

5.

$$3y^2 - z^2 = 16$$

解:因为母线平行于 x 轴,即方程中没有 x 项所以联立 $\left\{\begin{array}{l}2x^2+y^2+z^2=16\\x^2-y^2+z^2=0\end{array}\right.$ 有: $2\left(y^2-z^2\right)+y^2+z^2=16$,

即柱面方程为:

$$3y^2 - z^2 = 16$$

6,

$$[c(x-a) + az]^2 + c^2y^2 = b^2z^2$$

解: 设锥面一点为 P(x,y,z),有: AP 与准线交于点 $Q(x_0,y_0,z_0)$ 由题意得: $\frac{x-a}{x_0-a} = \frac{y}{y_0} = \frac{z}{z_0}$,由于 $z_0 = c, x_0^2 + y_0^2 = b^2$,所以有:

$$\left[\frac{c\left(x-a\right)}{z}+a\right]^{2}+\left(\frac{cy}{z}\right)^{2}=b^{2}$$

所以,方程为:

$$[c(x-a) + az]^2 + c^2y^2 = b^2z^2$$

7,

$$4x^2 + 4z^2 - 17y^2 + 2y = 1$$

解:由题意得,直线的方程可以记作 $\begin{cases} x-1-y=0\\ x+z-2=0 \end{cases}$,则过该直线的所有平面的方程为:

$$(x-1-y) + \lambda (x+z-2) = 0$$

即:

$$(1+\lambda)x - y + \lambda z = 2\lambda + 1$$

其法向量为:

$$\overrightarrow{m} = (1 + \lambda, -1, \lambda)$$

则直线 l 与 l_0 所在平面 π_1 与 π 垂直,且 π 的法向量记为

$$\overrightarrow{n} = (1, -1, 2)$$

应当有:

$$\overrightarrow{m} \cdot \overrightarrow{n} = 0$$

即:

$$1 + \lambda + 1 + 2\lambda = 0$$

解得:

$$\lambda = -\frac{2}{3}$$

所以

$$\pi_1: \frac{1}{3}x - y - \frac{2}{3}z = -\frac{1}{3}$$

即

$$x - 3y - 2z = -1$$

所以

$$l_0: \begin{cases} x - y + 2z = 1\\ x - 3y - 2z = -1 \end{cases}$$

化简得:

$$l_0: \left\{ \begin{array}{c} x = 2y \\ z = \frac{1}{2} - \frac{1}{2}y \end{array} \right.$$

 l_0 绕 y 旋转后形成的曲面上任取一点 P(x,y,z),则在 $y=y_0$ 处必有 l_0 上一点,且二者距离 y 轴的距离相同。

$$x^{2} + z^{2} = 4y^{2} + \left(\frac{1}{2} - \frac{1}{2}y\right)^{2}$$

得到旋转所成曲面为:

$$4x^2 + 4z^2 - 17y^2 + 2y = 1$$

8,解:旋转面的方程为:

(1)
$$x^{2} + \frac{1}{4} (y^{2} + z^{2}) = 1$$

$$(2)$$

$$x^2 + z^2 = u$$

(3)
$$\frac{1}{4}z^2 - \frac{1}{9}\left(x^2 + y^2\right) = 1$$
 9,
$$\frac{1}{9}x^2 + \frac{1}{16}y^2 + \frac{1}{36}z^2 = 1$$

解: 因为椭球面的对称轴与坐标轴重合,坐标轴即为旋转轴,且过 z=0 的平面上椭圆 $\frac{1}{6}x^2+\frac{1}{16}y^2=1$

所以其方程即为:

$$\frac{1}{9}x^2 + \frac{1}{16}y^2 + cz^2 = 1$$

代入点 $(1,2,\sqrt{23})$, 有:

$$\frac{1}{9} + \frac{1}{4} + 23c = 1$$
$$c = \frac{1}{36}$$

所以方程为:

$$\frac{1}{9}x^2 + \frac{1}{16}y^2 + \frac{1}{36}z^2 = 1$$
$$\frac{y^2}{2} + \frac{z^2}{6} = 2x$$

10,

解: 由题: 设椭圆抛物面的方程为

$$\frac{y^2}{n} + \frac{z^2}{a} = 2x$$

代入点 (1,2,0), $(\frac{1}{3},-1,1)$, 有: (1,2,0), $(\frac{1}{3},-1,1)$ 解得

$$\begin{cases} p = 2 \\ q = 6 \end{cases}$$

所以抛物面的方程为:

$$\frac{y^2}{2} + \frac{z^2}{6} = 2x$$

11, 证明: 联立
$$\left\{ \begin{array}{c} 2x+12y-z+16=0 \\ x^2-4y^2=2z \end{array} \right. , \, ftand ftand$$

解得:

$$x - 2 = 2y + 6/2 - x = 2y + 6$$

所以交线为直线,其方程为:

$$\begin{cases} 2x + 12y - z + 16 = 0 \\ x - 2y - 8 = 0 \end{cases}$$
$$\begin{cases} 2x + 12y - z + 16 = 0 \\ x + 2y + 4 = 0 \end{cases}$$

- 12,解:根据在坐标面上的投影即将坐标面中未出现的字母削去的原则,可以得到:
 - (1) 在 xoy 平面上:

$$\begin{cases} 2x^2 + y^2 - 2y = 0 \\ z = 0 \end{cases}$$

在 yoz 平面上:

$$\begin{cases} z = 2y \\ x = 0 \end{cases}$$

在 xoz 平面上:

$$\begin{cases} 2x^2 + \frac{1}{4}z^2 - z = 0\\ y = 0 \end{cases}$$

(2) 在 xoy 平面上:

$$\begin{cases} x^2 + y^2 = R^2 - \frac{R^4}{4a^2} \\ z = 0 \end{cases}$$

在 yoz 平面上:

$$\begin{cases} z = a - \frac{1}{2a}R^2 \\ x = 0 \end{cases}$$

在 xoz 平面上:

$$\begin{cases} z = a - \frac{1}{2a}R^2 \\ y = 0 \end{cases}$$

(3) 在 xoy 平面上:

$$\begin{cases} 7x^2 + y^2 = ay \\ 8z = 09 \end{cases}$$

在平面 yoz 上:

$$\begin{cases} y = \frac{az^2}{h^2} \\ x = 0 \end{cases}$$

在平面 xoz 上:

$$\begin{cases} x^2 + \frac{a^2 z^4}{h^4} = \frac{a^2 z^2}{h^2} \\ y = 0 \end{cases}$$

13, 证明: 由题意: 设 $\overrightarrow{M_0M}$ 与 $\overrightarrow{a_0}$ 夹角为 θ ,则: (1) 先证明充分性: 若M在S上,设M到对称轴距离为d,则有:

$$\left\| \overrightarrow{M_0 M} \times \overrightarrow{a_0} \right\| = \|M_0 M\| \times \|a_0\| \times \sin \theta = \|M_0 M\| \sin \theta = d = r$$

(2) 再证明必要性: 设M到对称轴距离为d,则有:

$$\left\|\overrightarrow{M_0M}\times\overrightarrow{a_0}\right\| = \|M_0M\|\times\|a_0\|\times\sin\theta = \|M_0M\|\sin\theta = d, \left\|\overrightarrow{M_0M}\times\overrightarrow{a_0}\right\| = r$$
所以

$$d = r$$

:: M 在 S 上

综上所述, 原充要条件成立。

(B)

1,

$$y - 2z = (x - z)^2$$

解: 设柱面上一点 P(x,y,z), 过 P 的母线与准线 Γ 交于 $P_0(x_0,y_0,z_0)$, 有: $PP_0 \parallel (1,2,1)^T$, 从而有:

$$\frac{x - x_0}{1} = \frac{y - y_0}{2} = \frac{z - z_0}{1}$$

, 且满足:

$$z_0 = 0, y_0 = x_0^2$$

代入关系式,得:

$$y - 2z = \left(x - z\right)^2$$

综上所述,柱面方程为:

$$y - 2z = \left(x - z\right)^2$$

2,

$$2x^{2} + 2y^{2} - 4\left(z - \frac{1}{2}\right)^{2} = 1$$

$$\frac{2}{3}\pi$$

解: $\overrightarrow{AB} = (-1, 1, 1)$, AB 直线方程为:

$$\frac{x-1}{-1} = \frac{y}{1} = \frac{z}{1}$$

在 AB 线段上任取一点 P_0 ,在 P_0 同一高度处取一点 P,有 P 与 P_0 距离 z 轴 的长度相同, P_0 在 AB 上,满足

$$\begin{cases} x = 1 - z \\ y = z \end{cases}$$
$$\therefore x^2 + y^2 = (1 - z)^2 + z^2$$

, S 即为:

$$2x^2 + 2y^2 - 4\left(z - \frac{1}{2}\right)^2 = 1$$

z = 0 时 $x^2 + y^2 = \frac{1}{2}$, S 关于 $z = \frac{1}{2}$ 对称所以设

$$x = \rho \cos \theta, y = \rho \sin \theta$$

, 曲面方程化为:

$$2\rho^2 - 4\left(z - \frac{1}{2}\right)^2 = 1$$

空间立体的体积设为V,有:

$$V = 2 \int_{0}^{\frac{1}{2}} \pi(x^{2} + y^{2}) dz$$

$$= \pi \int_{0}^{\frac{1}{2}} \left[4\left(z - \frac{1}{2}\right)^{2} + 1 \right] dz$$

$$= \pi \left[4 \int_{0}^{\frac{1}{2}} \left(z - \frac{1}{2}\right)^{2} dz + \frac{1}{2} \right]$$

$$= \pi \left(\frac{1}{6} + \frac{1}{2} \right)$$

$$= \frac{2}{3} \pi$$

所以,所围成的空间立体的体积为 $\frac{2}{3}\pi$ 。

§7.2 实二次型

习题 7.2

(A)

1.
$$f = x^T A x = [x_1 \dots x_n]$$

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, 所以二次型的矩阵$$

为 A=
$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix}$$

$$f = x^T A x = \begin{bmatrix} x_1 \dots x_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i,j=1}^a a_{ij} x_i x_j$$

 $f = x^T A x$ 是关于 $x_1 \dots x_n$ 的二次型,但 $x^T A x$ 不是 f 的矩阵表示,因为 A 不一定为实对称矩阵. $\frac{1}{2}(A + A^T)$ 是 f 的矩阵

- 3. 若存在正交矩阵 P 使 AP=PB
- 4. 相似且合同

解析:A 的特征值为 $3 \times 0 \times 0$,特征值与 D 相同,所以相似,正惯性指数都为 1, 合同.

$$5.\alpha = \beta = 0$$

解析: 二次型的矩阵为
$$A=\begin{bmatrix} 1 & \alpha & 1 \\ \alpha & 1 & \beta \\ 1 & \beta & 1 \end{bmatrix}$$
 有标准型可知特征值为 1,2, 所

以 |A-I|=0;|A-21|=0 解得 ==0

- 6. 见课本课后答案详解
- 7. 由 f 的矩阵有特征值 0, 得 |A|=0,

故 a=2,

$$6y_1^2 - 3y_2^2$$

8.a=3 b=1

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

9.c = 3,

$$f = 4y_2^2 + 9y_3^2$$

- 10. 见课本课后答案
- 11. 见课本课后答案详解
- 12. 二次型 x(A+B)x 正定
- 13. 见课本课后答案详解
- 14. 当 A 正定时,有 $\varepsilon_i{}^T A \varepsilon_i = a_{ii} > 0$ (i=1,.,n), 其中 ε_i 为 In 的第 i 个列向量
 - 15.(1) 否 (2) 正定 (3) 正定 (4) 正定 解析:(1)

$$\begin{vmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{vmatrix} = 0$$

- , 所以不正定
 - (2)(3)(4) 的前 n 阶主子式均大于零

16.

$$(2)\,|\lambda| < \sqrt{\frac{5}{3}}$$

17-20 见课本课后答案详解

21.
$$1 + a_1 a_2 a_3 \neq 0$$
 \Leftrightarrow

$$\begin{cases} y_1 = x_1 + a_1 x_2 \\ y_2 = x_2 + a_2 x_3 \end{cases}, \quad \text{M} \ f = y_1^2 + y_2^2 + y_3^2 \text{ } \text{£EE}$$

$$y_3 = x_3 + a_3 x_1$$

二次型。

要使得f也是正定二次型,只需要所用的线性变换是可逆变换。

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

, 所以

$$\begin{vmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3 & 0 & 1 \end{vmatrix} = 1 + a_1 a_2 a_3 \neq 0$$

22. (1) 令:

$$x = e_1 = (1, 0, \dots, 0)^T, x^T A x = (1, 0, \dots, 0) \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix} = a_{11} = 0$$

同理,若令 $x=e_i$,则 $a_{ii}=0(i=1,2,\cdots,n)$ 令 $x=e_i+e_j(i\neq j)$,则 $a_{ij}=0$,综上,A=O

- (2) 对 $\forall x \in R^n, x^T(A-B)x = 0$,则 A-B=O,所 A=B。
- 23. (1) A 的所有特征值都小于零:
- (2) T的负惯性指数为 n;
- (3) A 的奇数阶顺序主子式都小于零, 且偶数阶顺序主子式都大于零;
- (4) 存在可逆矩阵 M, 使得 A=T

24.

- (1) $x'^2 + 2y'^2 + 4z'^2 = 1$
- $(2) \ y'^2 + 3z'^2 = x'^2$
- (3) $6y'^2 2z'^2 = 1$
- (4) $x'^2 + y'^2 z'^2 = 1$
- 25. 26.

解析:用正交变换将其化为标准型,再利用公式。

(B)

1. (1)f 的矩阵为 $\frac{1}{\det(A)}A^* = A^{-1}$

(2)

$$(A^{-1})^T A A^{-1} = (A^T)^{-1} = A^{-1}$$

所以 A, A^{-1} 合同,于是 f 与 g 有相同的规范形。

2. 证明:

必要性:

设 B^TAB 正定,则 $\forall x \in R^n, x \neq 0, x^TB^TABx > 0$,即 $(Bx)^TA(Bx) > 0$,由于 A 正定,所以 $Bx \neq 0$,故 $\mathbf{r}(\mathbf{B})=\mathbf{n}$.

充分性:

 $(B^TAB)^T = B^TAB$,所以 B^TAB 是实对称矩阵。设 $\mathbf{r}(\mathbf{B})=\mathbf{n}$,则 $\forall x \in R^n, x \neq 0, Bx \neq 0, x^TB^TABx = (Bx)^TA(Bx) > 0$, B^TAB 对应的是正定二次型,所以 B^TAB 正定。

3. 设 A 正定,则存在正交矩阵 Q,使得, $Q^T A Q = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$,且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 都大于零。

$$A = Q \left[\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array} \right] Q^T = Q \left[\begin{array}{ccc} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{array} \right] Q^T Q \left[\begin{array}{ccc} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{array} \right] Q^T = \mathbf{S}^2$$

其中
$$\mathbf{S} = Q$$
 $\begin{bmatrix} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_n} \end{bmatrix} Q^T$,与 $\begin{bmatrix} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_n} \end{bmatrix}$ 合同,所以 \mathbf{S} 是 正定矩阵。

4. (1) 设 $f(x) = x^T Ax$ 的秩为 r,

则 f 经过可逆线性变换 x=Cy 化成标准形

$$f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_r y_r^2, (d_i \neq 0, i = 1, 2, \dots, r)$$

,当 f 的正惯性指数与秩相等时,显然有 $f(x) = f(Cy) \ge 0$;

当 f 半正定时,若正惯性指数小于 r,则存在某个 $d_i < 0$ 。令 $y = \xi_i$,则 $f(C\xi_i) = d_i < 0$ 与 $f(x) \ge 0$ 矛盾。

- (2)利用(1)的结论。若特征值为非负,命题二次型是半正定与命题正惯性指数等于秩等价。
 - 5. 各阶顺序主子式非负。F 不是半正定的,因为 f(0, 1, 0) = -1 < 0.
 - 6. 该二次型对应的矩阵 A 为 nI ones(n, n), ones(n, n) 是 n 行 n 列元素

全为 1 的矩阵,
$$A = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}$$
。

特征式为:

$$|A - \lambda I| = \begin{vmatrix} n - 1 - \lambda & -1 & \cdots & -1 \\ -1 & n - 1 - \lambda & \cdots & -1 \\ \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & n - 1 - \lambda \end{vmatrix} =$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & n-1-\lambda & -1 & \cdots & -1 \\ 0 & -1 & n-1-\lambda & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -1 & -1 & \cdots & n-1-\lambda \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & n-\lambda & 0 & \cdots & 0 \\ 1 & 0 & n-\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & n-\lambda \end{vmatrix}$$

若 $\lambda = n$,则 $r(A - \lambda I) = 1$, n 为 A 的特征值,重数至少为 n-1。

若 $\lambda = 0$, $|A - \lambda I| = 0$, 0 为 A 的特征值。故 A 有 1 重特征值 0, n-1 重特征值 n, 为半正定矩阵。

7. 设 x_r 为任一 \mathbf{r} 维非零向量(1 \mathbf{r} \mathbf{n}),则 \mathbf{n} 维向量 $x=(x_r^T,0)^T\neq 0$,于是有二次型 $x^TAx=x_r^TA_rx_r$ 正定,其中 A_r 为 \mathbf{A} 的左上角 \mathbf{r} 阶主子矩阵,再利用推论 7.2.2

8. (1)

将 A 分块为 A =
$$\begin{bmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{bmatrix}$$
, 将上式两端左乘 $\begin{bmatrix} I_{n-1} & 0 \\ -\alpha^T A_{n-1}^{-1} & 1 \end{bmatrix}$, 再取行列式。

- (2)利用(1)的结论。
- 9. 令 $D = \{x \in R^n | ||x|| = 1\}$, 则 D 为有界闭集,且 f(x) 在 D 上连续. $\forall x \in D$,由(7.2.15)式得 $x^T A x \ge \lambda_1$,设 1 为 A 的属于 λ_1 的单位特征向量,则 $e_1^T A e_1 = \lambda_1 e_1^T e_1 = \lambda_1$ 故 λ_1 为 f(x) 在 D 上的最小值。同理知 λ_2 为 f(x) 在 D 上的最大值。再利用有界闭集上连续函数的介值定理。

§7.3 第7章习题

1. 填空题

(1)
$$2 f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_1 + x_3)^2 = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
. 二次型对应的实对称矩阵为
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix},$$

易知其秩为2

 $(2) 0_{\circ}$

易知二次型对应的实对称矩阵为
$$\begin{bmatrix} 1-a & 1+a & 0 \\ 1+a & 1-a & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 :: 秩为 2, :: $\frac{1-a}{1+a}$ =

$\frac{1+a}{1-a}$ 解得 a=0

(3) 双曲线

曲线方程对应的实对称矩阵为 A,由定理 7.2.1 可知,总存在正交变换可将二次型化为标准型 $\lambda_1 x^2 + \lambda_2 y^2 = 1$,又由于 $\lambda_1 \lambda_2 < 0$,该曲线为双曲线。又由于正交变换为旋转变换,不改变曲线的形状和大小,原曲线也为双曲线

(4)
$$y_1^2 + y_2^2 + \dots + y_n^2$$

$$\therefore A$$
 为正交矩阵 $\therefore A^T A = I, \langle Ax, Ax \rangle = x^T A^T Ax = x^T x$

$$\mathbb{X} Ax = \lambda x$$
, $Ax = \lambda x$, $Ax = \lambda x$, $Ax = \lambda x$

$$\lambda^2 = 1, \lambda = 1$$
 或-1.

故正交矩阵的特征值为1或-1

又 A 为正定矩阵, $\therefore A$ 为实对称矩阵且其特征值均大于 0, $\therefore A$ 的特征值 全为 1

经正交变换后 $P^TAP = I$,

故
$$x^T A x = (Py)^T A P y = y^T P^T A P y = y^T y = y_1^2 + y_2^2 + \dots + y_n^2$$

二次型正定,其对应的实对称矩阵
$$\begin{bmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$
 的各阶顺序主子式均

- (6) 单叶双曲面
- 二次曲面对应的实对称矩阵为 $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$, 其正惯性指数为 2, 负

惯性指数为1

其为单叶双曲面

(7)
$$-y_1^2 + 2y_2^2 + y_3^2$$
 依题意知 $P^TAP = \begin{bmatrix} 2 & & & \\ & 1 & & \\ & & -1 \end{bmatrix}$

又
$$Q = \begin{bmatrix} e_3 & e_1 & -e_2 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} = PB$$
(其中

$$B = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{array} \right]$$

$$\therefore Q^T A Q = B^T P^T A P B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & & & \\ & 1 & & \\ & & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} -1 & & \\ & 2 & \\ & & 1 \end{bmatrix}$$

:. 所求标准型为 $-y_1^2 + 2y_2^2 + y_3^2$

2. 单项选择题

- (1) B。易知矩阵的特征值为 3, 3, 0, 故两矩阵不相似且两矩阵的正惯性指数均为 2, 负惯性指数均为 0, .. 两矩阵合同且不相似
- (2) A。易知矩阵的特征值为-1,8,0,故两矩阵相似且两矩阵的正负惯性指数相同,:两矩阵合同且相似
- (3) D。易知 A 的特征值为-1,3,故其正负惯性指数均为 1,选项中仅有 D 的正负惯性指数均为 1,选 D

(4) B。依题意知 f 对应的矩阵为
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & a & -2 \\ -2 & -2 & 1 \end{bmatrix}$$
,其标准型为

$$D = \begin{bmatrix} 5 & & \\ & b & \\ & & -1 \end{bmatrix}$$

则 A 与 D 相似, A 与 D 的迹和行列式相等, 故 $\left\{ \begin{array}{l} 2+a=4+b \\ 8-3a=-5b \end{array} \right.$,解得 $\left\{ \begin{array}{l} a=1 \\ b=-1 \end{array} \right.$

(5)B。若 B 相似于对角矩阵 A,则 B 的对应于 2 重特征值 2 的线性无关的特征向量有 2 个,故 r(2I-B)=1, 经验证仅 B 选项符合条件

- 3. (1) f 对应的矩阵为 $\begin{bmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a-1 \end{bmatrix}$, 易求得其特征值为 a,a-2,a+1
- (2) :: f 的规范型为 $y_1^2 + y_2^2$, :: f 的正惯性指数为 2, 秩为 2, 故 A 的特征值 2 个为正,1 个为 0,又 a-2<a<a+1, :: a 2 = 0, a = 2

4. (1) 依题意知
$$A = \begin{bmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{bmatrix}$$
 特征值之和为 1,特征值之积为-12,:

-,∴A的迹为1,行列式为-12

故
$$\begin{cases} a=1\\ -4a-2b^2=-12 \end{cases}$$
, 解得
$$\begin{cases} a=1\\ b=-2 \end{cases}$$

特征值之和为 1,特征值之积为-12, :: A 的处为 1,行约数
$$\begin{cases} a = 1 \\ -4a - 2b^2 = -12 \end{cases}, \quad 解得 \begin{cases} a = 1 \\ b = -2 \end{cases}$$
 (2) $Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 & -2 & 1 \\ \sqrt{5} & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}, 标准型为 2y_1^2 + 2y_2^2 - 3y_3^2$

- 5. 参考 6.2 的 17 题求 A, A 的特征值为 1, 1, 0, 故 A + I 的特征值为 2, 2, 1, 均大于 0, A + I 为正定矩阵
 - 6. 必要性:设 A^TA 正定,则 A^TA 为实对称矩阵且其特征值均大于0,

$$\therefore r(A^T A) = n \leqslant r(A) \leqslant n, \therefore r(A) = n$$

充分性: $(A^TA)^T = A^TA$, A^TA 为实对称矩阵, 设 r(A) = n, 则 $\forall x \neq A$ $0, Ax \neq 0$

故
$$\forall x \neq 0, x^T A^T A x = (Ax)^T A x > 0$$
, ∴ $A^T A$ 正定

7. 设柱面上任意一点为(x,y,z),通过该点的母线与准线的交点为(X,Y,Z),

由母线平行于向量可得
$$\begin{cases} X = x - t \\ Y = y + t \end{cases}$$
 ,又(X,Y,Z)在准线
$$\begin{cases} xy = 4 \\ z = 0 \end{cases}$$
 上,代

入并消 t 得柱面方程为(x-z)(y-

8. 见课后答案解析