

JD79660AA

Data Sheet

All-in-one driver with TCON for Color application

Version 1.0.3 2023/06/20

Table of Contents	
	Page
	i age
1. GENERAL DESCRIPTION	
2. FEATURES	
3. BLOCK DIAGRAM	
4. APPLICATION CIRCUIT	
4.1 External GPIO Control	
5. APPLICATION POWER CIRCUIT	
5.1 Power Generation	
6.1 Pin define	
6.2 I/O Pin Structure	
6.3 Value of wiring resistance to each pin	
7. SPI COMMAND DESCRIPTION	
7.1 "3-Wire" Serial Port Interface	
7.2 "4-Wire" Serial Port Interface	
8. SPI CONTROL REGISTERS:	16
8.1 Register Table	16
8.2 Register Description	18
8.2.1 R00H (PSR): Panel setting Register	18
8.2.2 R01H (PWR): Power setting Register	20
8.2.3 R02H (POF): Power OFF Command	
8.2.4 R04H (PON): Power ON Command	
8.2.5 R06H (BTST): Booster Soft Start Command	
8.2.6 R07H (DSLP): Deep Sleep Command	28
8.2.7 R10H (DTM): Data Start transmission Register	
8.2.9 R12H (DRF): Display Refresh Command	
8.2.10 R17H (AUTO): Auto Sequence	
8.2.11 R30H (PLL): PLL Control Register	
8.2.12 R40H (TSC): Temperature Sensor Command	
8.2.13 R41H (TSE): Temperature Sensor Calibration Register	
8.2.14 R42H (TSW): Temperature Sensor Write Register	
8.2.15 R43H (TSR): Temperature Sensor Read Register	
8.2.16 R50H (CDI): VCOM and DATA interval setting Register	38
8.2.17 R51H (LPD): Lower Power Detection Register	40
8.2.18 R61H (TRES): Resolution setting	41
8.2.19 R65H (GSST): Gate/Source Start Setting Register	
8.2.20 R70H (REV): REVISION register	
8.2.21 R80H (AMV): Auto Measure VCOM register	
8.2.22 R81H (VV): VCOM Value register	
8.2.23 R82H (VDCS): VCOM_DC Setting Register	
8.2.24 R83H (PTL): Partial Window Register	
8.2.26 R91H (APG): Active Program	
8.2.27 R92H (RMTP): Read MTP Data	
8.2.28 RA2 (PGM_CFG): MTP Program Config Register	
8.2.29 RE3H (PWS): Power Saving Register	
8.2.30 RE4H (LVSEL): LVD Voltage Select Register	
Register Restriction	
9. FUNCTION DESCRIPTION	
9.1 Power On/Off and DSLP Sequence	
9.2 MTP LUT Definition	
9.3 Default Setting Format in MTP	
9.4 Data transmission waveform	61
10. ELECTRICAL SPECIFICATIONS	
10.1 Absolute Maximum Rating	
10.2 Digital DC Characteristic	63

	¥ 1.0.0	ODISCOLA
10.3 Analog DC Characteristics		64
• • • • • • • • • • • • • • • • • • •		
		68
12.1 Location		68
12.2 Pad coordinates		69
13. REVISION HISTORY		75

V1.0.3

JD79660AA

All-in-one driver with TCON for Color application

1. GENERAL DESCRIPTION

This driver is an all-in-one driver with timing controller for color application. The outputs have 2-bit output per pixel. The timing controller provides control signals for the source driver and gate drivers.

The DC-DC controller allows to generate the source output voltage VSP_0/VSN_0(+/-15V), VSP_1/VSPL_0/VSPL_1/VSN_1 (+/-3V~+/-15V) and VGP/VGN(+/-20V, +/-17V, +/-15V, +/-10V). The chip also includes an output buffer for the supply of the common electrode (VCOMAC or VCOMDC). The system is configurable through a 3-wire/4-wire(SPI) serial.

2. FEATURES

- System-on-chip (SOC) for color application
- Timing controller support several all resolution (maximum resolution 200x200)
- Support source & gate driver function:
 - 200 Outputs source driver with 2-bit black/white/red/yellow per pixel:
 - Output dynamic range(Voltage step:100mV):
 - Mode 0: 0V & VSP_0(+15V) & VSN_0(-15V) & VSPL_0(+3V~+15V)
 - Mode 1: 0V & VSP_1 (+3V ~ +15V) & VSN_1(-3V ~ -15V) & VSPL_1 (+3V ~ +15V)
 - Mode 0 & 1 can be switched frame by frame (panel scanning frame)
 - Left and Right shift capability
 - 200 Output gate driver:
 - Output dynamic range: VGP and VGN(+/-20V, +/-17V, +/-15V, +/-10V)
 - Up and Down shift capability
- Common electrode level
 - AC-VCOM and DC-VCOM
 - Support sensing function (7-bit digital status)
 - Support LUT
- Charge Pump: On-chip booster and regulator
- Built in Frame memory maximum: 200 x 200 x 2 bit SRAM
- Built in temperature sensor:
 - On-Chip: -25 °C ~ 50 °C ± 2.0 °C / 8-bit status
 - Off-Chip: $-55\sim125^{\circ}C \pm 2.0^{\circ}C / 11$ -bit status ($I^{2}C/LM75$)
- Support LPD, Low Power detection (VDD< 2.2V~2.5V)
- PLL : On-chip RC oscillator
- 3-wire/4-wire (SPI) serial interface for system configuration
- Digital supply voltage: 2.3~3.6V
- 4.0 K-byte MTP for LUT, User command
- Partial update

- Support cascade
- Package-COG

3. BLOCK DIAGRAM

4. APPLICATION CIRCUIT

Reference table of the device:

ice:					
Value	Reference				
1uF	0603, X5R/X7R, voltage rating : 25V				
1uF	0603, X5R/X7R, voltage rating : 50V				
0.1uF	0603, X5R/X7R, voltage rating : 25V				
2.2Ω	0603, +/-1% variation				
	Si1308EDL · Si1304BDL				
NMOS	- Drain-source break volatage≥30V				
INIVIOS	- Gate-source threshold voltage≤1.5V				
	- Drain-source on-state resistance<400mΩ				
	NR4018T470M · CDRH2D18/LDNP-470NC				
<i>47</i> ⊔	- Fixed				
47 UFI	- Maximum DC current~420mA				
	- Maximum DC resistance~650mΩ				
	MBR0530				
Diada	- Reverse DC voltage≥30V				
Diode	- Forward current≥500mA				
	- Forward voltage≦430mV				
	Value 1uF 1uF 0.1uF				

4.1 External GPIO Control

Note:

TSDA: I²C data for external temperature sensor

TSCL: I²C clock for external temperature sensor

(I²C interface need external pull high resistance. Pull low or floating If not used.)

5. APPLICATION POWER CIRCUIT

5.1 Power Generation

6. PIN DESCRIPTION

6.1 Pin define

Pin Name	Pin Type	I/O Structure	Description
		Serial	Communication Interface
CSB	I	Type 5	Serial communication chip select.
SDA	I/O	Type 4	Serial communication data input.
SCL	I	Type 5	Serial communication clock input.
DC	I	Type 5	Serial communication Command/Data input L: Command H: data Connect to VDD if BS=High.
			Control Interface
RST_N	I	Type 2	Global reset pin. Low reset. (normal pull high) When RST_N become low, driver will reset. All register will reset to default value. all driver function will disable. SD output and VCOM will be released to floating.
BUSY_N	0	Type1	This pin indicates the driver status. BUSY_N= "0": Driver is busy, data/VCOM is transforming. BUSY_N= "1": non-busy. Host side can send command/data to driver.
BS	I	Type 5	Input interface setting. Select 3 wire/ 4 wire SPI interface L: 4-wire IF H:3-wire IF
TSCL	I/O	Type 4	I ² C clock for external temperature sensor (I ² C interface need external pull high resistance.) Must pull high or low if not used. (Default low)
TSDA	I/O	Type 4	I ² C data for external temperature sensor (I ² C interface need external pull high resistance.) Must pull high or low if not used.(Default low)
MS	I	Type 5	Master/Slave selection for cascade mode Low: Slave High: Master In single-chip mode, MS should be connect to VDD
			Output Driver
S[199:0]	0	-	Source driver output signals.
G[199:0]	0	-	Gate driver output signals
			Border
VBD[2:1]	0	-	Border output pins. It outputs black WF.
		V	COM GENERATOR
VCOM	0	Type 1	VCOM output. VCOM has follow four voltage state: 1. (-VCM_DC) V 2. (15 +(- VCM_DC)) V or (-15 +(- VCM_DC)) V 3. Floating
			Power Circuit
GDR	0	-	This pin is N-MOS gate control.
RESE	P	-	Current sense input for control loop.
FB VGP	P P	-	Keep open
VGP	<u>Р</u>		Positive gate voltage
VSP	P P	<u>-</u> -	Negative gate voltage. Positive source voltage
VSN	P	<u> </u>	Negative source voltage.
VSPL	P	-	Positive source voltage

Pin Name	Pin Type	I/O Structure	Description
			Power Supply
VDDP	Р	-	DCDC power input
VDD	Р	-	Digital/Analog power.
VSS	Р	-	Digital ground
VSSA	Р		Analog Ground
VDDIO	Р	-	IO voltage supply
VDD_15V	Р	-	1.5V voltage input &output
VMTP	Р	-	MTP program power (10.1V)
			Reserved Pins
T_N18V	I/O	-	Test pin.Leave open or pull gnd.
T_LDON5V	I/O	-	Test pin.Leave open or pull gnd.
T_VCOM	I/O	-	Test pin.Leave open or pull gnd.
T_VSPD_REF	I/O	-	Test pin.Leave open or pull gnd.
T_IBIAS	I/O	-	Test pin.Leave open or pull gnd.
T_VREF	I/O	-	Test pin.Leave open or pull gnd.
T_EN_LSH	I/O	-	Test pin.Leave open or pull gnd.
T_VTSEN	I/O	-	Test pin.Leave open or pull gnd.
T_SAR_REF	I/O	-	Test pin.Leave open or pull gnd.
T_IN[2:0]	I/O	-	Test pin.Leave open or pull gnd.
T_DEBUG[8:0]	I/O	-	Test pin.Leave open or pull gnd.
T_EX_SYSCLK	I/O	-	Test pin.Leave open or pull gnd.
T_EX_REFCLK	I/O	-	Test pin.Leave open or pull gnd.
T_EN_DIG	I/O	-	Test pin.Leave open or pull gnd.
SyncD	I/O	Type 4	Cascade data signal. Leave open or pull gnd if it is not used.
SyncE	I/O	Type 4	Cascade data2 signal. Leave open or pull gnd if it is not used.
SyncC	I/O	Type 4	Cascade clock signal. Leave open or pull gnd if it is not used.
Pckl	l	Type 3	Break panel check input. Leave open or gnd if it is not used.
PckO	0	Type 1	Break panel check output. Leave open or gnd if it is not used.
DUMMY[22:0]	D	-	Dummy pin. Leave open or pull gnd.

Note: I: Input, O: Output, P: Power, D: Dummy, S: Shorted line, M: Mark, PI: Power input, PO: Power output, I/O: Input / Output. PS: Power Setting, C: Capacitor pin.

6.2 I/O Pin Structure

6.3 Value of wiring resistance to each pin

Pin name	Wiring resistance value(Ω)	Pin name	Wiring resistance value(Ω)
VCOM	5ohm	TSDA	100ohm
VGP	5ohm	TSCL	100ohm
VGN	5ohm	BS	100ohm
VSP	5ohm	RESE	5ohm
VSN	5ohm	GDR	5ohm
VSPL	5ohm	SDA	100ohm
VMTP	5ohm	SCL	100ohm
VDD_15V	5ohm	CSB	100ohm
VSSA	5ohm	DC	100ohm
VDDIO	5ohm	RST_N	100ohm
VSS	5ohm	SyncD	100ohm
VDDP	5ohm	SyncE	100ohm
VDD	5ohm	SyncC	100ohm
MS	100ohm	PCKI	100ohm
Test pin	100ohm	PCKO	100ohm
BUSY_N	100ohm		

7. SPI COMMAND DESCRIPTION

JD79660 use the 3-wire/4-wire serial port as communication interface for all the function and command setting.

JD79660 3-wire/4-wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-wire/4-wire bus itself.

Under read mode, 3-wire/4-wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SCL by external controller. Data in the "Hi-Z phase" will be ignored by 3-wire/4-wire engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SDA pin under "Hi-Z phase" and "Data phase".

7.1 "3-Wire" Serial Port Interface

3 pin serial interface characteristics (write mode)

3 pin serial interface characteristics (read mode)

7.2 "4-Wire" Serial Port Interface

4 pin serial interface characteristics(write mode)

4 pin serial interface characteristics(read mode)

8. SPI CONTROL REGISTERS:

8.1 Register Table

Following table list all the SPI control registers and bit name definition for JD79660. Refer to the next section for detail register function description.

A -1-1		Bit											
Address	command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
		W	0	0	0	0	0	0	0	0	0	00H	
R00H	Panel setting (PSR)	W	1	RES[1]	RES[0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0Fh	
		W	1	LUT_EN	-	FOPT	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	09h	
		W	0	0	0	0	0	0	0	0	1	01H	
		W	1	-	-		-	-	VSC_EN	VDS_EN	VDG_EN	07h	
		W	1	-	-	-	-	-	-	VGPN [1]	VGPN [0]	00h	
R01H	Power setting (PWR)	W	1	-	VSPL_0[6]	VSPL_0[5]	VSPL_0[4]	VSPL_0[3]	VSPL_0[2]	VSPL_0[1]	VSPL_0[0]	00h	
		W	1	-	VSP_1[6]	VSP_1 [5]	VSP_1 [4]	VSP_1 [3]	VSP_1 [2]	VSP_1 [1]	VSP_1 [0]	00h	
		W	1	-	VSN_1[6]	VSN_1[5]	VSN_1[4]	VSN_1[3]	VSN_1[2]	VSN_1[1]	VSN_1[0]	00h	
		W	1	-	VSPL_1[6]	VSPL_1[5]	VSPL_1[4]	VSPL_1[3]	VSPL_1[2]	VSPL_1[1]	VSPL_1[0]	00h	
R02H	Power OFF(POF)	W	0	0	0	0	0	0	0	1	0	02H	
KUZH	Power OFF(POF)	W	1	-	-	-	-		-	-	-	00h	
R04H	Power ON (PON)	W	0	0	0	0	0	0	1	0	0	04H	
		W	0	0	0	0	0	0	1	1	0	06H	
		W	1	-	-	-	-	PHB_S	FT[1:0]	PHA_S	FT[1:0]	00h	
		W	1	-	-			PHA_	ON[5:0]			02h	
DOCLI	R06H Booster Soft Start	W	1	-	-			PHA_0	OFF[5:0]			07h	
KUbH	(BTST)	W	1	-	-			PHB_	ON[5:0]			02h	
		W	1	-	-			PHB_0	OFF[5:0]			07h	
		W	1	- (PHC_ON[5:0]							
		W								07h			
R07H	7H Deep Sleep(DSLP)	W	0	0	0	0	0	0	1	1	1	07H	
KU/ II		W	1	1	0	1	0	0	1	0	1	A5h	
R10H	Data Start	W	0	0	0	0	1	0	0	0	0	10H	
KIUII	transmission (DTM)	W	1	#	#	#	#	#	#	#	#	00H	
R11H	Data Stop (DSP)	W	0	0	0	0	1	0	0	0	1	11H	
KIIII	Data Stop (DSF)	R	1	Data_flag	-	-	-	-	-	-	-		
R12H	Display Refresh	W	0	0	0	0	1	0	0	1	0	12H	
1(1211	(DRF)	W	1	-	-	-	-	-	-	-	-	00H	
D4711	Auto sequence	W	0	0	0	0	1	0	1	1	1	17H	
R17H	(AUTO)	W	1	Code[7]	Code[6]	Code[5]	Code[4]	Code[3]	Code[2]	Code[1]	Code[0]	A5h	
		w	0	0	0	1	1	0	0	0	0	30H	
R30H	PLL control (PLL)	W	1	-	-	-	-	Dyna		FR[2:0]	02h	
		W	0	0	1	0	0	0	0	0	0	40H	
R40H	Temperature Sensor	R	1	D10/TS[7]	D9/TS[7]	D8/TS[6]	D7/TS[5]	D6/TS[4]	D5/TS[3]	D4/TS[2]	D3/TS[1]		
	Command (TSC)	R	1	D2/ TS[9]	D1/TS[8]	D0	-	-	-	-	-		
D.4411	Temperature Sensor	W	0	0	1	0	0	0	0	0	1	41H	
R41H	Calibration (TSE)	W	1	TSE	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO0]	00h	
		W	0	0	1	0	0	0	0	1	0	42H	
DAGU	Temperature Sensor	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR[2]	WATTR[1]	WATTR[0]	00h	
R42H	Write (TSW)	W	1	WMSB[7]	WMSB[6]	WMSB[5]	WMSB[4]	WMSB[3]	WMSB[2]	WMSB[1]	WMSB[0]	00h	
	,	W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h	
		W	0	0	1	0	0	0	0	1	1	43H	
R43H	Temperature Sensor	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]		
	Read (TSR)	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]		

V1.0.3

JD79660AA

					-								
R51H	R50H												
Resolution Res		Interval setting (CDI)						DDX				CDI[0]	
	R51H			0	0	1	0	1	0	0	0		51H
Resolution Resolution Resolution Setting(TRES)		Detection (LPD)		1		-	-	-	-	-			
Resolution Setting(TRES)			W	0	0	1	1	0	0	0	0	1	61H
RESTING Setting (TRES)			W	1	-	-	-	-	-	-	HRES(9)	HRES(8)	00h
RESH	R61H		W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	HRES(2)	0	0	00h
Result		J ,	W	1	-	-	-	-	-	-	VRES(9)	VRES(8)	00h
Result Sate Source Start Sate Sate			W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	00h
Refine			W	0	0	1	1	0	0	1	0	1	65H
Ref		0-1-10	W	1	-	-	-	-	-	-	S_start(9)	S_start(8)	00h
Note	R65H		W	1	S_start(7)	S_start(6)	S_start(5)	S_start(4)	S_start(3)	S_start(2)	0	0	00h
REVISION (REV)		Coung(Coor)	W	1	-	-	-	-	-	-	G_start(9)	G_start(8)	00h
REVISION (REV) R			W	1	G_start(7)	G_start(6)	G_start(5)	G_start(4)	G_start(3)	G_start(2)	G_start(1)	G_start(0)	00h
Revision (Revision (Revi			W	0	0	1	1	1	0	0	0	0	70H
R	D.701.1	DE:///0101/ /DE://	R	1	0	0	0	0	1	0	0	0	08h
R80H Auto Measure Vcom (AMV)	R/0H	REVISION (REV)	R	1	0	0	0	0	0	0	1	0	02h
R81H Vcom Value (VV)			R	1	0	0	0	0	0	0	0	1	01h
R81H Vcom Value (VV)		Auto Measure Vcom	W	0	1	0	0	0	0	0	0	0	80 H
R81H Vcom Value (VV) R	R80H		W	1	P[1]	P[0]	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	00h
R82H		Vcom Value (VV)	W	0	1	0	0	0	0	0	0	1	81H
R82H	R81H		R	1	-	VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	
Register(VDCS)		- Vcom DC Setting	W	0	1	0	0	0	0	0	1	0	82H
RB3H Partial Window (PTLW)	R82H		W	1	-	VDCS[6]	VDCS[5]	VDCS[4]	VDCS[3]	VDCS[2]	VDCS[1]	VDCS[0]	00h
RASH Partial Window (PTLW)			W	0	1	0	0	0	0	0	1	1	83H
R83H			W	1	-	-		PTH_ENB	-	-	HRST(9)	HRST(8)	00h
R83H			W	1	HRST(7)	HRST(6)	HRST(5)	HRST(4)	HRST(3)	HRST(2)	0	0	00h
R83H			W	1	-	. [-	-	-	HRED(9)	HRED(8)	00h
R90H Program mode(PGM) W 0 1 0 0 0 0 0 0 0 0	Dooll	Partial Window	W	1	HRED(7)	HRED(6)	HRED(5)	HRED(4)	HRED(3)	HRED(2)	0	0	00h
W	R83H	(PTLW)	W	1			-	-	-	-	VRST(9)	VRST(8)	00h
W			W	1	VRST(7)	VRST(6)	VRST(5)	VRST(4)	VRST(3)	VRST(2)	VRST(1)	VRST(0)	00h
R90H Program mode(PGM) W 0 1 0 0 0 1 0 0 0 0			W	1		-	-	-	-	-	VRST(9)	VRST(8)	00h
R90H Program mode(PGM) W 0			W	1	VRST(7)	VRST(6)	VRST(5)	VRST(4)	VRST(3)	VRST(2)	VRST(1)	VRST(0)	00h
R91H			W	1	-	-	-	-	-	-	-	PMODE	00h
Read MTP data (RMTP)	R90H	Program mode(PGM)	W	0	1	0	0	1	0	0	0	0	90H
R92H Read MTP data (RMTP) R 1 # # # # # # # # # # # # RA2H RA2H Register(PGM_CFG) REGISTER POWER SAVING(PWS) RE3H RE4H RE4H READ REGISTER RE	R91H	Active Program(APG)	W	0	1	0	0	1	0	0	0	1	91H
Register (PGM_CFG)			W	0	1	0	0	1	0	0	1	0	92H
RA2H MTP Program Config Register(PGM_CFG) W 1 PGM_SADDR[15:8] 00h PGM_SADDR[7:0] 00h PGM_DSIZE[15:8] 07h W 1 PGM_DSIZE[7:0] 00h RE3H Power saving(PWS) W 1 1 1 1 1 0 0 0 1 1 1 E3H RE4H RE4H Select(I VSEI) W 1 1 1 1 1 0 0 0 1 0 0 E4H	R92H		R	1	#	#	#	#	#	#	#	#	-
RA2H MTP Program Config Register(PGM_CFG) W 1 PGM_SADDR[15:8] 00h W 1 PGM_SADDR[7:0] 00h W 1 PGM_DSIZE[15:8] 07h W 1 PGM_DSIZE[7:0] 00h RE3H Power saving(PWS) W 0 1 1 1 0 0 0 1 1 E3H RE4H LVD voltage W 0 1 1 1 0 0 1 0 0 E4H Select(I VSEI) W 1 1 1 1 0 0 1 0 0 E4H			W	0	1	0	1	0	0	0	1	0	A2H
RA2H Register(PGM_CFG) W 1 PGM_SADDR[7:0] 00h W 1 PGM_DSIZE[15:8] 0Fh W 1 PGM_DSIZE[7:0] 00h RE3H Power saving(PWS) W 0 1 1 1 1 0 0 0 1 1 1 E3H RE4H RE4H Select(I_VSEI_) W 0 1 1 1 1 0 0 0 1 0 0 E4H RE5H RE5H Register(I_VSEI_) W 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		RA2H MTP Program Config Register(PGM_CFG)	W	1	,	-	-	VMTPSEL	-	-	-	-	00h
RE3H Power saving(PWS) Note	DA2H		W	1				PGM_SAI	DDR[15:8]				00h
RE3H Power saving(PWS)	IVAZII		W	1				PGM_SA	DDR[7:0]				00h
RE3H Power saving(PWS)			W	1				PGM_DS	IZE[15:8]				0Fh
RE3H Power saving(PWS) W 1 VCOM_W [3] VCOM_W [2] VCOM_W [1] VCOM_W [0] VCOM_W [0] SD_W[3] SD_W[2] SD_W[2] SD_W[0] 00h RE4H LVD voltage Select(I VSEI) W 1 1 1 0 0 1 0 0 E4H						ı	1			1	ı	1	00h
RE4H Select(I VSEI) W 1 I I I I I I I I I I I I I I I I I I	RF3H	Power saving(PWS)								0	1	1	E3H
RE4H Select(LVSFL) w 1 LVD_SEL LVD_SEL Only	1,2011	. 3110. 3471119(1 170)						[0]	SD_W[3]	SD_W[2]			
Selectivation W 1	RE4H				1		1	0	0	1			
	IXE-711		W	1	-	-	-	-	-	-			03h

8.2 Register Description

R/W: 0:Write Cycle 1:Read Cycle D/CX:0:Command/1:Data

D7~D0:-:Don't Care

8.2.1R00H (PSR): Panel setting Register

R00H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
PSR	W	0	0	0	0	0	0	0	0	0	00H	
1 st Parameter	W	1	RES[1]	RES[0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0Fh	
2 nd Parameter	W	1	LUT_EN	-	FOPT	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	09h	

Description	The common	nd defines as :	
Description	-THE Comman	iu ueililes as .	
	1 st paramete	or.	
	Bit	Name	Description
	Dit	INAITIC	RST N function
			1: no effect. (default)
	0	RST_N	0: Booster OFF, Register data are set to their default values, and
			Source/Boder/Vcom: floating
			SHD N function
	_	OUD N	0 : Booster OFF, register data are kept, and Source / Border /
	1	SHD_N	Vcom are kept 0V or floating.
			1 : Booster on. (default)
			SHL function
	0	SHL	0: Shift left; First data=Sn→Sn-1 →→S2→Last data=S1.
	2		1: Shift right: First data=S1→S2 →→Sn-1→Last data=Sn.
			(default)
			UD function
	3	UD	0:Scan down; First line=Gn→Gn-1 →→G2→Last line=G1.
			1:Scan up; First line=G1→G2 →→Gn-1→Last line=Gn.
			(default)
		DST MODE	Power switch operation mode
	5		0:Power switching time in the period of frame scanning.(default)
			1:Power switching time in the external period before frame
			scanning.
			Resolution setting
	7.0	DE0[4 0]	00: Display resolution is 200x200(default)
	7-6	RES[1,0]	01: Display resolution is 160x160
			10: Display resolution is 152x152 11: Display resolution is 104x104
			TT. Display resolution is 104x104

2 nd param	eter	
Bit	Name	Description
0	VC_LUTZ	VCOM status function 0 : No effect 1 : After refreshing display, the output of VCOM is set to floating automatically (default)
1	NORG	VCOM status function O: No effect (default) 1: After refreshing display, VCOM is tied to GND before power off
2	TIEG	VGN power off status function O: No effect (default) 1: Power off, VGN will be tied to GND
3	TS_AUTO	Temperature sensing will be activated automatically one time 0: Before enabling booster, Temperature Sensor will be activated automatically one time. 1: When RST_N low to high, Temperature Sensor will be activated automatically one time. (default)
4	VCMZ	VCOM status function O: No effect (default) 1: VCOM is always floating
5	FOPT	FOPT function O: Scan 1 frame after waveform finished(default) 1: No scan after waveform finished and switch the source channel output to Hiz.
7	LUT_EN	LUT selection setting O: Using LUT from MTP(default) 1: Using LUT from register

Priority of VCOM setting: VCMZ > NORG > FOPT > VC_LUTZ

FOPT setting is part of refreshing display.

FOPT: Power off floating.

Notes:

- 1. Non-select gate line keep at VGN for DSP/DRF and AMV
- 2. Dummy source line follow LUTC for DSP/DRF
- 3. When SHD_N become low, DCDC will turn off. Register and SRAM data will keep until VDD turn off.SD output and VCOM will base on previous condition. It may have two condition:0V or floating.
- 4. When RST_N become low, driver will reset. All register will reset to default value. All of the driver's functions will disable. Source/Gate/Border/VCOM will be released to floating

Restriction

8.2.2 R01H (PWR): Power setting Register

R01H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D6 D5 D4 D3 D2 D1 D0						Code
PWR	W	0	0	0	0	0	0	0	0	1	01h
1 st Parameter	W	1	-	-	-	-	-	VSC_EN	VDS_EN	VDG_EN	07h
2 nd Parameter	W	1	-	-	-	-	-	-	VGPN [1]	VGPN [0]	00h
3 rd Parameter	W	1	-			V	/SPL_0 [6:	0]			00h
4 th Parameter	W	1	1			,	VSP_1 [6:0]			00h
5 th Parameter	W	1	-		VSN_1 [6:0]						
6 th Parameter	W	1	-			١	/SPL_1 [6:	0]			00h

NOTE: "-" Don't care, can be set to VDD or GND level

on

-The command defines as :

1st Parameter:

Bit	Name	Description
0	VDG_EN	Gate power selection. 0: External gate power from VGP/VGN pins.
		1 : Internal DCDC function for generate VGP/VGN. (default)
1	VDS_EN	Source power selection. 0 : External source power from VSP/VSN pins. 1 : Internal regulator function for generate VSP/VSN (default)
2		Source LV power selection. 0 : External source power from VSPL pins. 1 : Internal regulator function for generate VSPL (default)

2nd Parameter:

Bit	Name		Description
		VGPN Voltage Level.	
		00: VGP=20 v, VGN=-20v	(default)
1-0	VGPN	01: VGP=17 v, VGN=-17v	
		10: VGP=15 v, VGN=-15v	
		11: VGP=10 v, VGN=-10v	

3rd & 4th & 6th Parameter: Internal VSP_1/VSPL_0/ VSPL_1 power selection

Bit	Name	Description Internal VSP & VSPL power selection.										
		Internal VS	P & \	/SPL power	selection.							
										1		
		bit[6:0		Voltage(V)	bit [6:0		Voltage(V)	bit [6:0		Voltage(
		0000000	00h	3	0101001	29h	7.1	1010010	52h	11.2		
		0000001	01h	3.1	0101010	2Ah	7.2	1010011	53h	11.3		
		0000010	02h	3.2	0101011	2Bh	7.3	1010100	54h	11.4		
		0000011	03h	3.3	0101100	2Ch	7.4	1010101	55h	11.5		
		0000100	04h	3.4	0101101	2Dh	7.5	1010110	56h	11.6		
		0000101	05h	3.5	0101110	2Eh	7.6	1010111	57h	11.7		
		0000110	06h	3.6	0101111	2Fh	7.7	1011000	58h	11.8		
		0000111	07h	3.7	0110000	30h	7.8	1011001	59h	11.9		
		0001000	08h	3.8	0110001	31h	7.9	1011010	5Ah	12		
		0001001	09h	3.9	0110010	32h	8	1011011	5Bh	12.1		
		0001010	0Ah	4	0110011	33h	8.1	1011100	5Ch	12.2		
		0001011	0Bh	4.1	0110100	34h	8.2	1011101	5Dh	12.3		
		0001100	0Ch	4.2	0110101	35h	8.3	1011110	5Eh	12.4		
		0001101	0Dh	4.3	0110110	36h	8.4	1011111	5Fh	12.5		
		0001110	0Eh	4.4	0110111	37h	8.5	1100000	60h	12.6		
		0001111	0Fh	4.5	0111000	38h	8.6	1100001	61h	12.7		
		0010000	10h	4.6	0111001	39h	8.7	1100010	62h	12.8		
		0010001	11h	4.7	0111010	3Ah	8.8	1100011	63h	12.9		
	VSP_1	0010010	12h	4.8	0111011	3Bh	8.9	1100100	64h	13		
	& VSPL_0	0010011	13h	4.9	0111100	3Ch	9	1100101	65h	13.1		
6-0	& &	0010100	14h	5	0111101	3Dh	9.1	1100110	66h	13.2		
	VSPL_1	0010101	15h	5.1	0111110	3Eh	9.2	1100111	67h	13.3		
		0010110	16h	5.2	0111111	3Fh	9.3	1101000	68h	13.4		
		0010111	17h	5.3	1000000	40h	9.4	1101001	69h	13.5		
		0011000	18h	5.4	1000001	41h	9.5	1101010	6Ah	13.6		
		0011001	19h	5.5	1000010	42h	9.6	1101011	6Bh	13.7		
		0011010	1Ah	5.6	1000010	43h	9.7	1101100	6Ch	13.8		
		0011011	1Bh	5.7	1000100	44h	9.8	1101101	6Dh	13.9		
		0011100	1Ch	5.8	1000100	45h	9.9	1101110	6Eh	14		
		0011101	1Dh	5.9	1000101	46h	10	1101111	6Fh	14.1		
		0011101	1Eh	6	1000110	47h	10.1	1110000	70h	14.2		
		0011111	1Fh	6.1	1000111	48h	10.1	1110000	70h	14.2		
		0100000	20h	6.2	1001000	49h	10.2	1110001	7111 72h	14.3		
		0100000		6.3	1001001		10.3	1110010	73h	14.5		
		0100001	2111 22h	6.4	1001010	4AII 4Bh	10.4	1110110	74h	14.5		
		0100010	23h	6.5	1001011	4Ch	10.5	1110100	74H	14.0		
		0100011	24h	6.6		4Dh	10.6	1110101		14.7		
					1001101				76h			
		0100101	25h	6.7	1001110	4Eh	10.8	1110111	77h	14.9		
		0100110	26h	6.8	1001111	4Fh	10.9	1111000	78h	15		
		0100111	27h	6.9	1010000	50h	11	other		15		
		0101000	28h	7	1010001	51h	11.1					

5th Parameter: Internal VSN_1 power selection

Bit	Name	Description								
		Internal VS	N po	wer selection	on.					
				r		_			_	r
		bit[6:0		Voltage(V)	bit [6:0		Voltage(V)	bit [6:0		Voltage(
		0000000	00h	-3	0101001	29h	-7.1	1010010	52h	-11.2
		0000001	01h	-3.1	0101010	2Ah	-7.2	1010011	53h	-11.3
		0000010	02h	-3.2	0101011	2Bh	-7.3	1010100	54h	-11.4
		0000011	03h	-3.3	0101100	2Ch	-7.4	1010101	55h	-11.5
		0000100	04h	-3.4	0101101	2Dh	-7.5	1010110	56h	-11.6
		0000101	05h	-3.5	0101110	2Eh	-7.6	1010111	57h	-11.7
		0000110	06h	-3.6	0101111	2Fh	-7.7	1011000	58h	-11.8
		0000111	07h	-3.7	0110000	30h	-7.8	1011001	59h	-11.9
		0001000	08h	-3.8	0110001	31h	-7.9	1011010	5Ah	-12
		0001001	09h	-3.9	0110010	32h	-8	1011011	5Bh	-12.1
		0001010	0Ah	-4	0110011	33h	-8.1	1011100	5Ch	-12.2
		0001011	0Bh	-4.1	0110100	34h	-8.2	1011101	5Dh	-12.3
		0001011	0Ch	-4.2	0110101	35h	-8.3	1011110	5Eh	-12.4
		0001101	0Dh	-4.3	0110110	36h	-8.4	1011111	5Fh	-12.5
		0001101	0Eh	-4.4	0110111	37h	-8.5	1100000	60h	-12.6
			0Fh	-4.5		38h	-8.6		61h	-12.7
		0001111	_		0111000			1100001		
		0010000	10h	-4.6	0111001	39h	-8.7	1100010	62h	-12.8
		0010001	11h	-4.7	0111010	3Ah	-8.8	1100011	63h	-12.9
		0010010	12h	-4.8	0111011	3Bh	-8.9	1100100	64h	-13
6-0	VSN 1	0010011	13h	-4.9	0111100	3Ch	-9	1100101	65h	-13.1
, 0		0010100	14h	-5	0111101	3Dh	-9.1	1100110	66h	-13.2
		0010101	15h	-5.1	0111110	3Eh	-9.2	1100111	67h	-13.3
		0010110	16h	-5.2	0111111	3Fh	-9.3	1101000	68h	-13.4
		0010111	17h	-5.3	1000000	40h	-9.4	1101001	69h	-13.5
		0011000	18h	-5.4	1000001	41h	-9.5	1101010	6Ah	-13.6
		0011001	19h	-5.5	1000010	42h	-9.6	1101011	6Bh	-13.7
		0011010	1Ah	-5.6	1000011	43h	-9.7	1101100	6Ch	-13.8
		0011011	1Bh	-5.7	1000100	44h	-9.8	1101101	6Dh	-13.9
		0011100	1Ch	-5.8	1000101	45h	-9.9	1101110	6Eh	-14
		0011101	1Dh	-5.9	1000110	46h	-10	1101111	6Fh	-14.1
		0011110	1Eh	-6	1000111	47h	-10.1	1110000	70h	-14.2
		0011111	1Fh	-6.1	1001000	48h	-10.2	1110001	71h	-14.3
		0100000	20h	-6.2	1001001	49h	-10.3	1110010	72h	-14.4
		0100001		-6.3	1001010		-10.4	1110011		-14.5
		0100010	22h	-6.4	1001011	4Bh	-10.5	1110100	74h	-14.6
		0100011	23h	-6.5	1001100	4Ch	-10.6	1110101	75h	-14.7
		0100100	24h	-6.6	1001101	4Dh	-10.7	1110110	76h	-14.8
		0100101	25h	-6.7	1001110	4Eh	-10.8	1110111	77h	-14.9
		0100101	26h	-6.8	1001111	4Fh	-10.9	1111000	78h	-15
		0100110	27h	-6.9	1010000	50h	-10.9	1111000	7 011	-10
		0100111	28h	-0.9	1010000	51h		other		-15
		0101000	2011	-/	1010001	9111	-7.1			

Notes:

- 1. VSP_0/VSN_0 voltage output is ±15 V fixed value.
- 2. When switching Mode0 or Mode1, the voltage output is: Mode0: VSP_0(+15) / VSN_0 (-15) / VSPL_0 (+3~+15) Mode1: VSP_1(+3~+15) / VSN_1(-3~-15) / VSPL_1(+3~+15)

	Mode0	Mode1
VSP	VSP_0(+15)	VSP_1(+3~+15)
VSN	VSN_0(-15)	VSN_1(-3~-15)
VSPL	VSPL_0(+3~+15)	VSPL_1(+3~+15)

3. If gate voltage is set to +/-15v, +/-10v, IC will auto correct source voltage as follows I. VGP- VSP_0 / VSPL_0 / VSP_1 / VSPL_1 >= 2v II. $VGN-VSN_0/VSN_1 >= -2v$ For example:

	symbol	Voltage setting	Real Voltage		
	VGP	+10v	+10v		
	VGN	-10v	-10v		
	VSP_0	+15v	+8v		
	VSN_0	-15v	-8v		
Voltogo	VSP_1	+5v	+5v		
Voltage	VSN_1	-5v	-5v		
	VSPL	+15v	+8v		
	VCOMH	+15v+(-2v)	+8v +(-2v)		
	VCOML	-15v+(-2v)	-8v +(-2v)		
	VCOMDC	-2v	-2v		

4. Voltage setting limit: VSP_0 ≥ VSPL_0 , VSP_1 ≥ VSPL_1

Restriction

8.2.3 R02H (POF): Power OFF Command

R02H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
POF	W	0	0	0	0	0	0	0	1	0	02H	
1 st Parameter	W	0	-	-	-	-	-	-	-	-	00	

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	R02h = 0x00h
	 After power off command, driver will power off base on power off sequence. After power off command, BUSY_N signal will drop from high to low. When finish the power off sequence, BUSY_N singal will rise from low to high. Power off command will turn off charge pump, T-con, source driver, gate driver, VCOM, temperature sensor, but register and SRAM data will keep until VDD off. SD output and VCOM will base on previous condition. It may have two conditions: 0v or floating.
Restriction	This command only active when BUSY_N = "1".

8.2.4R04H (PON): Power ON Command

R04H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PON	W	0	0	0	0	0	0	1	0	0	04H

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	 After power on command, driver will power on base on power on sequence. After power on command, BUSY_N signal will drop from high to low. When finishing the power on sequence (base on PWR command), BUSY_N signal will rise from low to high.
Restriction	This command only active when BUSY_N = "1".

8.2.5 R06H (BTST): Booster Soft Start Command

R06H				Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D5 D4 D3 D2 D1 D0					Code	
BTST	W	0	0	0	0	0 0 0 1 1 0					06H	
1 st Parameter	W	1	-	-	-	-	PHB_S	FT [1:0]	PHA_S	FT [1:0]	00h	
2 nd Parameter	W	1	-	-			PHA_O	N [5:0]			02h	
3 rd Parameter	W	1	ı	-			PHA_O	FF [5:0]			07h	
4 th Parameter	W	1	-	-			PHB_O	N [5:0]			02h	
5 th Parameter	W	1	-	-		PHB_OFF [5:0]						
6 th Parameter	W	1	-	-	PHC_ON [5:0]						02h	
7 th Parameter	W	1	-	-			PHC_OI	FF [5:0]			07h	

-The command define as follows:

1st Parameter:

Bit	Name	Description
1-0	PHA_SFT	Soft start period of phase A: 00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS
3-2	PHB_SFT	Soft start period of phase B: 00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS

Description

	Bit[5:0]	Description	Bit[5:0]	Description	Bit[5:0]	Description	
	000000	strength1	010110	strength23	101100	strength45	
	000001	strength2	010111	strength24	101101	strength46	
	000010	strength3	011000	strength25	101110	strength47	
	000011	strength4	011001	strength26	101111	strength48	
	000100	strength5	011010	strength27	110000	strength49	
	000101	strength6	011011	strength28	110001	strength50	
	000110	strength7	011100	strength29	110010	strength51	
	000111	strength8	011101	strength30	110011	strength52	
	001000	strength9	011110	strength31	110100	strength53	
Driving	001001	strength10	strength10 011111 strength32		110101	strength54	
strength of PHA_ON &	001010	strength11	100000	strength33	110110	strength55	
PHB ON &	001011	strength12	100001	strength34	110111	strength56	
PHC_ON	001100	strength13	100010	strength35	111000	strength57	
	001101	strength14	100011	strength36	111001	strength58	
	001110	strength15	100100	strength37	111010	strength59	
	001111	strength16	100101	strength38	111011	strength60	
	010000	strength17	100110	strength39	111100	strength61	
	010001	strength18	100111	strength40	111101	strength62	
	010010	strength19	101000	strength41	111110	strength63	
	010011	strength20	101001	strength42	111111	strength64	
	010100	strength21	101010	strength43			
	010101	strength22	101011	strength44			

V1.0.3

JD79660AA

Description		Bit[5:0]	Description	Bit[5:0]	Description	Bit[5:0]	Description
		000000	Period1	010110	Period23	101100	Period45
		000001	Period2	010111	Period24	101101	Period46
		000010	Period3	011000	Period25	101110	Period47
		000011	Period4	011001	Period26	101111	Period48
		000100	Period5	011010	Period27	110000	Period49
		000101	Period6	011011	Period28	110001	Period50
		000110	Period7	011100	Period29	110010	Period51
		000111	Period8	011101	Period30	110011	Period52
	Minimum	001000	Period9	011110	Period31	110100	Period53
	OFF time setting of	001001	Period10	011111	Period32	110101	Period54
	PHA_OFF	001010	Period11	100000	Period33	110110	Period55
	&	001011	Period12	100001	Period34	110111	Period56
	PHB_OFF	001100	Period13	100010	Period35	111000	Period57
	& PHC_OFF	001101	Period14	100011	Period36	111001	Period58
		001110	Period15	100100	Period37	111010	Period59
		001111	Period16	100101	Period38	111011	Period60
		010000	Period17	100110	Period39	111100	Period61
		010001	Period18	100111	Period40	111101	Period62
		010010	Period19	101000	Period41	111110	Period63
		010011	Period20	101001	Period42	111111	Period64
		010100	Period21	101010	Period43		
		010101	Period22	101011	Period44		
Restriction			CS				
Restriction							

8.2.6 R07H (DSLP): Deep Sleep Command

R07H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DSLP	W	0	0	0	0	0	0	1	1	1	07H
1 st Parameter	W	1	1	0	1	0	0	1	0	1	A5h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	The command define as follows:
	After this command is transmitted, the chip would enter the deep-sleep mode to save power.
	The deep sleep mode would return to standby by hardware reset.
	The only one parameter is a check code, the command would be excited if check code =
	0xA5.
Restriction	This command only active when BUSY_N = "1".

8.2.7 R10H (DTM): Data Start transmission Register

R10H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
DTM_master	W	0	0	0	0	1	0	0	0	0	10H	
1 st Parameter	W	1	Pixel1		Pixel2		Pixel3		Pix	00h		
:	W	1		:		:		:		:		
:	VV	ı	:			:		:		:		
M th Parameter	W	1	Pixel	I(n-3)	Pixel(n-2)		Pixel(n-1)		Pixe	00h		

	•												
Description	The command	l define as follows:											
			er start to transmit da										
			st send command 12	2H. Then chip will st	art to send								
	data/VCOM for panel.												
	Pixel [1~n][1:0]: 2-bit/pixel												
	Image Data DDX=1(default) DDX=0												
	Pixel[1:0] Gray level select IP output LUT select Gray level select IP output LUT select												
	00b	Gray0	ogray00	Gray3	ogray03								
	01b	Gray1	ogray01	Gray2	ogray02								
	10b	Gray2	ogray02	Gray1	ogray01								
	11b	Gray3	ogray03	Gray0	ogray00								
	Data mapping	example:											
		Pixel[1:0]=01 ->G	ay level select=Gray	1,follow LUT data or	utput from IP output								
	port"ogray01".												
	When DDX=0,	Pixel[1:0]=11 ->Gı	ay level select=Gray	0,follow LUT data or	utput from IP output								
	port"ogray00"												
Restriction													

8.2.8 R11H (DSP): Data Stop Command

R11H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DSP	W	0	0	0	0	1	0	0	0	1	11H
1 st Parameter	R	1	Data_flag	-	-	-	-	-	-	-	-

Description	■ Whil Data	Data_flag information. 1st Parameter:										
	Bit Name Description											
	7	Data_flag	0: Driver didn't receive all the data. 1: Driver has already received all of the one frame data.									
		After "Data Start" (10h) or "Data Stop" (11h) commands and when data_flag=1, BUSY_N signal will become "0" and the refreshing of panel starts.										
Restriction	This comn	nand only actives	s when BUSY_N = "1".									

8.2.9R12H (DRF): Display Refresh Command

R12H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DRF	W	0	0	0	0	1	0	0	1	0	12H
1 st Parameter	W	1	-	-	-	-	-	-	-	-	00h

Description	-The command defines as :
	R12H=0x00 While users send this command, driver will refresh display base on SRAM data and LUT. After display refresh command, BUSY N signal will become "0"
	7 titor dioplay remodification and, Book I_IV eight will become o
Restriction	This command only actives when BUSY_N = "1"

8.2.10 R17H (AUTO): Auto Sequence

R17H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
Auto Sequence	W	0	0	0	0	1	0	1	1	1	17H
1 st Parameter	W	1	Code[7]	Code[6]	Code[5]	Code[4]	Code[3]	Code[2]	Code[1]	Code[0]	A5h

Description	The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP. AUTO (0x17) + Code(0xA5) = (PON→DRF→POF) AUTO (0x17) + Code(0xA7) = (PON→DRF→POF→DSLP)
Restriction	This command only actives when BUSY_N = "1".

8.2.11 R30H (PLL): PLL Control Register

R30H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PLL	W	0	0	0	1	1	0	0	0	0	30H
1 st Parameter	W	1	-	-	-	-	Dyna	FR[2]	FR[1]	FR[0]	02h

Description	-The command defines as:							
	The command controls the PLL clock frequency. The PLL structure must support the following frame rates:	ıg						
	bit3 Dynamic frame rate	•						
	0 Disable(default)							
	1 Enable							
	FR[2:0] Frame rate							
	000 12.5 Hz							
	001 25 Hz							
	010 50 Hz(default)							
	011 65 Hz							
	100 75 Hz							
	101 85 Hz							
	110 100 Hz							
	111 120 Hz							
remark	-Horizental							
	hsync H active							
	de							
	-Vertical							
	vsync V active ————————————————————————————————————							
2	de							
Restriction								

8.2.12 R40H (TSC): Temperature Sensor Command

R40H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
TSC	W	0	0	1	0	0	0	0	0	0	40H	
1 st Parameter	R	1	D10/TS[7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]	-	
2 nd Parameter	R	1	D2/ TS[9]	D1/TS[8]	D0	1	-	-	-	-	-	

	SPI TSC	If R41H(TSE) bit7 set to 1, this command reads external (LM75) temperature sensor valu											
	CSB												
	scl												
	SCE	Г	TSC										
	SDA \ value \												
	BUSY_N	T (90)	T0[7.0]/D[40.0]	T (90) T0[7,0]/D(40.0] T (90)									
	TS[7:0]/D[10:3] 11100111	T (°C)	TS[7:0]/D[10:3]	T (°C)	TS[7:0]/D[10:3] 00011001	T (°C)							
	11101000	-24	00000001	1	00011001	26							
	11101001	-23	0000001	2	00011011	27							
	11101010	-22	00000011	3	00011100	28							
	11101011	-21	00000100	4	00011101	29							
	11101100	-20	00000101	5	00011110	30							
	11101101	-19	00000110	6	00011111	31							
	11101110	-18	00000111	7	00100000	32							
	11101111	-17	00001000	8	00100001	33							
	11110000	-16	00001001	9	00100010	34							
	11110001 11110010	-15 -14	00001010 00001011	10	00100011 00100100	35 36							
	11110010	-14	00001011	12	00100100	37							
	11110100	-12	00001100	13	00100101	38							
	11110101	-11	00001101	14	00100111	39							
	11110110	-10	00001111	15	00101000	40							
	11110111	-9	00010000	16	00101001	41							
	11111000	-8	00010001	17	00101010	42							
	11111001	-7	00010010	18	00101011	43							
	11111010	-6	00010011	19	00101100	44							
	11111011	-5	00010100	20	00101101	45							
	11111100	-4	00010101	21	00101110	46							
	11111101	-3	00010110	22	00101111	47							
	11111110	-2	00010111	23	00110000	48							
	11111111	-1	00011000	24	00110001	49							
	TS[9:8]	T (°C)											
	00	+0											
	01	+0.25											
	10	+0.5											
	11	+0.75											

8.2.13 R41H (TSE): Temperature Sensor Calibration Register

R41H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSE	W	0	0	1	0	0	0	0	0	1	41H
1 st Parameter	W	1	TSE	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description

-The command defines as:

This command indicates the driver IC temperature sensor enable and calibration function.

Reserve one temperature offset TO[3:0] for calibration

- 1. TO[3]: mean '+' or '-' , while 0 is '+' ; 1 is '-'
- 2. TO[2:0]: mean temperature offset value

Bit	Name	Description
3-0	TO[3:0]	Temperature level: 0000: +0°C (default) 0001: +0.5°C 0010: +1°C 0011: +1.5°C 0100: +2°C 0101: +2.5°C 0110: +3°C 0111: +3.5°C 1000: -4°C 1001: -3.5°C 1010: -3°C 1011: -2.5°C 1110: -1°C 1111: -0.5°C
4	TO[4]	0: +0.0°C (default) 1: +0.25°C
7	TSE	Internal temperature sensor enable 0: Internal temperature sensor enable.(default) 1: Internal temperature sensor disable, using external temperature sensor.

Restriction This command only actives after R04H(PON)

8.2.14 R42H (TSW): Temperature Sensor Write Register

R42H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSW	W	0	0	1	0	0	0	0	1	0	42H
1 st Parameter	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR[2]	WATTR[1]	WATTR[0]	00h
2 nd Parameter	W	1	WMSB[7]	WMSB[6]	WMSB[5]	WMSB[4]	WMSB[3]	WMSB[2]	WMSB[1]	WMSB[0]	00h
3 rd Parameter	W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h

Description	-The con	nmand defines	as:
	This con	nmand writes t	he temperature.
	1 st Parai	meter:	
	Bit	Name	Description
	2-0	WATTR[2:0]	Pointer setting
	5-3	WATTR[5:3]	User-defined address bits (A2, A1, A0)
			I2C Write Byte Number
			00: 1 byte (head byte only)
	7-6	WATTR[7:6]	01: 2 bytes (head byte + pointer)
			10: 3 bytes (head byte + pointer + 1 st parameter)
			11: 4 bytes (head byte + pointer + 1 st parameter + 2 nd parameter)
	2 nd Para	meter:	
	Bit	Name	Description
	7-0	WMSB[7:0]	MSByte of write-data to external temperature sensor
	3 nd Para	meter:	
	Bit	Name	Description
	7-0	WLSB[7:0]	LSByte of write-data to external temperature sensor
Restriction	This con	nmand only act	tives after R04H(PON)

8.2.15 R43H (TSR): Temperature Sensor Read Register

R43H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSR	W	0	0	1	0	0	0	0	1	1	43H
1 st Parameter	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]	-
2 nd Parameter	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]	-

8.2.16 R50H (CDI): VCOM and DATA interval setting Register

R50H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
CDI	W	0	0	1	0	1	0	0	0	0	50H		
1 st Parameter	W	1	VBD[2]	VBD[1]	VBD [0]	DDX	CDI[3]	CDI[2]	CDI[1]	CDI[0]	97h		

		DC SCI IO VDD O	
Description		mand defines as	
	This comr	mand can set 2	kinds of parameters, 1.VCOM to data output interval(CDI)
	CDII3:01:	This command	indicates the interval of VCOM and data output. When setting the vertical
			king will be keep (55hsync).
	Bit	Name	Description
			Vcom and data interval
			0000: 17 hsync 0001:16 hsync
			0010:15 hsync
			0011:14 hsync
			0100:13 hsync 0101:12 hsync
		0.5110.01	0110:11 hsync
	3-0	CDI[3:0]	0111:10 hsync(default) 1000:9 hsync
			1001:8 hsync
			1010:7 hsync 1011:6 hsync
			1100:5 hsync
			1101:4 hsync
			1110:3 hsync 1111:2 hsync
	Internal		
	vsync –	Ve	OM need to be ready
			ore source data output
	Internal_		
	hsync		
	Internal		
	de	VCOM output	
	VCOM-	location (fixed)	Frame N VCOM Frame N+1 VCOM
	VCOM		France IV VCOM
	Source data Output	_	Frame N data
	Surpur		
			DI setting
		C.	55 hsync-CDI setting (fixed)

VBD[2:0]: Border data selection. (from LUT output by IP port border_w[1:0])

This register will make boarder pin output being mapped to a certain gray scale.

Bit 4	Bit7-5	Description	IP setting for Border LUT		
DDX	VBD[2:0]	Gray level	select		
	000	Floating	N/A		
	001	Gray3	border_buf=011		
0	010	Gray2	border_buf=010		
	011	Gray1	border_buf=001		
	100	Gray0	border_buf=000		
	000	Gray0	border_buf=000		
	001	Gray1	border_buf=001		
1 (default)	010	Gray2	border_buf=010		
	011	Gray3	border_buf=011		
	100	Floating	N/A		

Border output voltage level: The level selection is based on mapping LUT data.

Ex: Gray 1 waveform is mapping to 15V, without VCOM offset, the real output on Boarder pin shall be 15V.

Boarder output will follow FOPT definition being defined in R00h.

Restriction

8.2.17 R51H (LPD): Lower Power Detection Register

R51H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
LPD	W	0	0	1	0	1	0	0	0	1	51H		
1 st Parameter	R	1	-	-	-	-	-	-	-	LPD			

Description	-The command defines as: This command indicates the input power condition. Host can read this data to understand the battery's condition. When LPD="1", system input power is normal. When LPD="0", system input power is lower (VDD<2.5v, which could be select in RE4H (LVSEL)). 1st Parameter:
	Bit 0 LPD
	0 Low power input.
	1 Normal status.
	CMD LPD command LPD parameter
	CSB
	scl
	SDA value
	BUSY_N
Restriction	This command only actives when BUSY N = "1".

8.2.18 R61H (TRES): Resolution setting

R61H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
TRES	W	0	0	1	1	0	0	0	0	1	61H		
1 st Parameter	W	1	-	-	-	-	-	-	HRES(9)	HRES(8)	00h		
2 nd Parameter	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	HRES(2)	0	0	00h		
3 th Parameter	W	1	-	-	-	-	-	-	VRES(9)	VRES(8)	00h		
4 th Parameter	W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	00h		

Description	-The command define as follows: When using register: Horizontal display resolution(source) = HRES Vertical display resolution(gate) = VRES Note: No matter HRES[9:8],HRES[1:0],VRES[9:8] value being filled, it's always be 00b. Channel disable calculation: GD: First G active = G0; LAST active GD= first active +VRES[9:0] -1 SD: First active channel: =S0; LAST active SD= first active +HRES[9:2]*4-1 EX:200X200 GD: First G active = G0 LAST active GD= 0+200-1= 199; (G199) SD: First active channel: =S0 LAST active SD=0+50*4-1=199; (S199)
Restriction	Horizontal resolution should be 4-multiple.

8.2.19 R65H (GSST): Gate/Source Start Setting Register

R65H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
GSST	W	0	0	1	1	0	0	1	0	1	65H		
1 st Parameter	W	1	-	-	-	-	-	-	S_start[9]	S_start[8]	00h		
2 nd Parameter	W	1	S_start[7]	S_start[6]	S_start[5]	S_start[4]	S_start[3]	S_start[2]	0	0	00h		
3 rd Parameter	W	1	-	-	-	-	-	-	G_start[9]	G_start[8]	00h		
4 th Parameter	W	1	G_start[7]	G_start[6]	G_start[6]	G_start[4]	G_start[3]	G_start[2]	G_start[1]	G_start[0]	00h		

	-The command define as follows:
	Note:
	No matter S_start[9], S_start [1:0],G_start[9] value being filled, it's always be 00b.
Description	1.S_Start [8:0] describe which source output line is the first date line 2.G_Start[8:0] describe which gate line is the first scan line
Restriction	S_Start should be the multiple of 4

8.2.20 R70H (REV): REVISION register

R70H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
REV	W	0	0	1	1	1	0	0	0	0	70H		
1 st Parameter	R	1	0	0	0	0	1	0	0	0	08h		
2 nd Parameter	R	1	0	0	0	0	0	0	1	0	02h		
3 rd Parameter	R	1	0	0	0	0	0	0	0	1	01h		

Description		nd defines as: d Parameter:		
	Bit		Description	
	7-0	CHIP_REV		
Restriction				

8.2.21 R80H (AMV): Auto Measure VCOM register

R80H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
AMV	W	0	1	0	0	0	0	0	0	0	80H
1 st Parameter	W	1	P[1]	P[0]	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	- 1 1
Describition	- 1

The command defines as:

This command indicates the IC status. Host can read this data to understand the IC status.

1st Parameter:

Bit	Name	Description
0	AMVE	AMVE: Auto Measure Vcom Setting O: Auto measure VCOM disable (default) 1: Auto measure VCOM enable
1	AMV	AMV: Analog signal O:Get Vcom value from R81h(default) 1:Get Vcom value in analog signal
2	AMVS	AMVS: setting for Source output of AMV 0: Source output 0V during Auto Measure VCOM period. (default) 1: Source output VSPL_0 during Auto Measure VCOM period.
3	XON	XON: setting for all Gate ON of AMV 0: Gate normally scan during Auto Measure VCOM period. (default) 1: All Gate ON during Auto Measure VCOM period.
5-4	AMVT[1:0]	The sensing time of VCOM detection O0: 5s (default) O1: 10s 10: 15s 11: 20s
7-6	P[1:0]	The sensing points of sampling time 00: 2 (default) 01: 4 10: 8 11: 16 Sampling time = the last quarter of sensing time (T) VCOM = average of N points. N=2,4,8,16

Restriction This command only actives when BUSY_N = "1".

8.2.22 R81H (VV): VCOM Value register

R81H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
VV	W	0	1	0	0	0	0	0	0	1	81H
1 st Parameter	R	1	-	VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	

Description		mmand defines a																																
	This con	nmand could get	t the VC	MC	value																													
	1 st Parar	meter:																																
	Bit	Name					Des	scription																										
			VCOM va																															
			VV [6:	0]	Voltage(V)	VV [6:	0]	Voltage(V)			Voltage(V)																							
			0000000	00h	0	0011100		-1.4	0111000	38h	-2.8																							
			0000001		-0.05	0011101		-1.45	0111001	39h	-2.85																							
					0000010	02h	-0.1	0011110		-1.5	0111010	3Ah	-2.9																					
			0000011	03h	-0.15	0011111	1Fh	-1.55	0111011	3Bh	-2.95																							
			0000100	04h	-0.2	0100000	20h	-1.6	0111100	3Ch	-3																							
			0000101	05h	-0.25	0100001	21h	-1.65	0111101	3Dh	-3.05																							
			0000110	06h	-0.3	0100010	22h	-1.7	0111110	3Eh	-3.1																							
			0000111	07h	-0.35	0100011	23h	-1.75	0111111	3Fh	-3.15																							
			0001000	08h	-0.4	0100100	24h	-1.8	1000000	40h	-3.2																							
			0001001	09h	-0.45	0100101	25h	-1.85	1000001	41h	-3.25																							
			0001010	0Ah	-0.5	0100110	26h	-1.9	1000010	42h	-3.3																							
			0001011	0Bh	-0.55	0100111	27h	-1.95	1000011	43h	-3.35																							
					\ n #0 01	\/\/[C:0]	\	\/\/[6:0]	\/\/[C:0]	\/\/[C.O]	\	\	0001100	0Ch	-0.6	0101000	28h	-2	1000100	44h	-3.4													
	6-0	VV[6:0]	0001101	0Dh	-0.65	0101001	29h	-2.05	1000101	45h	-3.45																							
								0001110	0Eh	-0.7	0101010	2Ah	-2.1	1000110	46h	-3.5																		
						0001111	0Fh	-0.75	0101011	2Bh	-2.15	1000111	47h	-3.55																				
			0010000	10h	-0.8	0101100	2Ch	-2.2	1001000	48h	-3.6																							
			0010001	11h	-0.85	0101101	2Dh	-2.25	1001001	49h	-3.65																							
			0010010	12h	-0.9	0101110	2Eh	-2.3	1001010	4Ah	-3.7																							
			0010011	13h	-0.95	0101111	2Fh	-2.35	1001011	4Bh	-3.75																							
																	0010100	14h	-1	0110000	30h	-2.4	1001100	4Ch	-3.8									
							0010101	15h	-1.05	0110001	31h	-2.45	1001101	4Dh	-3.85																			
																									0010110	16h	-1.1	0110010	32h	-2.5	1001110	4Eh	-3.9	
																									0010111	17h	-1.15	0110011	33h	-2.55	1001111	4Fh	-3.95	
			0011000	18h	-1.2	0110100	34h	-2.6	1010000	50h	-4																							
			0011001	19h	-1.25	0110101	35h	-2.65	other		-4																							
			0011010	1Ah	-1.3	0110110	36h	-2.7																										
			0011011	1Bh	-1.35	0110111	37h	-2.75																										
Restriction		1																																

8.2.23 R82H (VDCS): VCOM_DC Setting Register

	R82H						Bit					
ĺ	Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
ĺ	VDCS	W	0	1	0	0	0	0	0	1	0	82H
	1 st Parameter	W	1	-	VDCS[6]	VDCS[5]	VDCS [4]	VDCS [3]	VDCS [2]	VDCS [1]	VDCS [0]	00h

This cor	nmand set the \	VCOM DC va	lue. Drive	er will ba	ase (on this va	lue for \	VCN	I_DC.											
Bit	Name				Des	cription														
	7 (0.11)	VCOM value				op			7/15											
		VDCS [6:0]	Voltage(V)	VDCS [6:0]	Voltage(V)	VDCS [6:0]	Voltage(V)											
		0000000 00h	0(default)	0011100	1Ch	-1.4	0111000	38h	-2.8											
		0000001 01h	-0.05	0011101	1Dh	-1.45	0111001	39h	-2.85											
		0000010 02h	-0.1	0011110	1Eh	-1.5	0111010	3Ah	-2.9											
		0000011 03h	-0.15	0011111	1Fh	-1.55	0111011	3Bh	-2.95											
		0000100 04h	-0.2	0100000	20h	-1.6	0111100	3Ch	-3											
		0000101 05h	-0.25	0100001	21h	-1.65	0111101	3Dh	-3.05											
		0000110 06h	-0.3	0100010	22h	-1.7	0111110	3Eh	-3.1											
		0000111 07h	-0.35	0100011	23h	-1.75	0111111	3Fh	-3.15											
		0001000 08h	-0.4	0100100	24h	-1.8	1000000	40h	-3.2											
		0001001 09h	-0.45	0100101	25h	-1.85	1000001	41h	-3.25											
		0001010 0Ah	-0.5	0100110	26h	-1.9	1000010	42h	-3.3											
		0001011 0Bh	-0.55	0100111	27h	-1.95	1000011	43h	-3.35											
	\/D00[0.0]	0001100 0Ch	-0.6	0101000	28h	-2	1000100	44h	-3.4											
6-0	VDCS[6:0]	0001101 0Dh	-0.65	0101001	29h	-2.05	1000101	45h	-3.45											
													0001110 0Eh	-0.7	0101010	2Ah	-2.1	1000110	46h	-3.5
		0001111 0Fh	-0.75	0101011	2Bh	-2.15	1000111	47h	-3.55											
		0010000 10h	-0.8	0101100	2Ch	-2.2	1001000	48h	-3.6											
		0010001 11h	-0.85	0101101	2Dh	-2.25	1001001	49h	-3.65											
		0010010 12h	-0.9	0101110	2Eh	-2.3	1001010	4Ah	-3.7											
		0010011 13h	-0.95	0101111	2Fh	-2.35	1001011	4Bh	-3.75											
		0010100 14h	-1	0110000	30h	-2.4	1001100	4Ch	-3.8											
		0010101 15h	-1.05	0110001	31h	-2.45	1001101	4Dh	-3.85											
		0010110 16h	-1.1	0110010	32h	-2.5	1001110	4Eh	-3.9											
		0010111 17h	-1.15	0110011	33h	-2.55	1001111	4Fh	-3.95											
		0011000 18h	-1.2	0110100		-2.6	1010000	50h	-4											
		0011001 19h	-1.25	0110101	35h	-2.65	other		-4											
		0011010 1Ah	-1.3	0110110	36h	-2.7														
		0011011 1Bh	-1.35	0110111	37h	-2.75														

8.2.24 R83H (PTL): Partial Window Register

R83H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PTL	W	0	1	0	0	0	0	0	1	1	83H
1 st Parameter	W	1	-	-	-	PTH_ENB	-	-	HRST[9]	HRST[8]	00h
2 nd Parameter	W	1	HRST[7]	HRST[6]	HRST[5]	HRST[4]	HRST[3]	HRST[2]	-	-	00h
3 rd Parameter	W	1	-	-	-	-	-	-	HRED[9]	HRED[8]	00h
4 th Parameter	W	1	HRED[7]	HRED[6]	HRED[5]	HRED[4]	HRED[3]	HRED[2]	-	-	00h
5 th Parameter	W	1	-	-	-	-	-	-	VRST[9]	VRST[8]	00h
6 th Parameter	W	1	VRST[7]	VRST[6]	VRST[5]	VRST[4]	VRST[3]	VRST[2]	VRST[1]	VRST[0]	00h
7 th Parameter	W	1	-	-	-	-	-	-	VRED[9]	VRED[8]	00h
8 th Parameter	W	1	VRED[7]	VRED[6]	VRED[5]	VRED[4]	VRED[3]	VRED[2]	VRED[1]	VRED[0]	00h
9 th Parameter	W	1	-	-	-	-	-	-	N -K	PMODE	00h

Description	-This command sets	s partial window.
	Name	Description
	HRST[9:2]	Horizontal start address
	HRED[9:2]	Horizontal end address. HRED must be greater than HRST.
	VRST[9:0]	Vertical start address.
	VRED[9:0]	Vertical end address. VRED must be greater than VRST.
	PMODE	0: disable partial mode(default) 1: enable partial mode
	PTH_ENB	0:Source output enable follow HRST and HRED 1:Source output disable
	Note:	
)],HRST[9:8],HRED[9:8],VRST[9:8],VRED[9:8] value being filled, it's
	always be 00b.	
	No matter HRED[1:0	0] value being filled, it's always be 11b.
	Gates scan both in	side and outside of the partial window.
Restriction		

8.2.25 R90H (PGM): Program Mode

R90H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PGM	W	0	1	0	0	1	0	0	0	0	90H

NOTE: "-" Don't care.	can he set to	VDD	CND lovel
NOTE: - Dont care.	can be ser to	vuu or	GND level

Description	-The command define as follows: After this command is issued, the chip would enter the program mode. The mode would return to standby by hardware reset.	
Restriction		

8.2.26 R91H (APG): Active Program

R91H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
APG	W	0	1	0	0	1	0	0	0	1	91H		

Description	-The command define as follows:
	After this command is transmitted, the programming state machine would be activated.
Restriction	The BUSY flag would change state from 0 to 1 while the programming is completed.

8.2.27 R92H (RMTP): Read MTP Data

R92H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
RMTP	W	0	1	0 0 1 0 0 1 0							
1 st Parameter	R	1				Dun	nmy				-
2 nd Parameter	R	1			The dat	a of addres	s 0x000 in t	he MTP			-
3 rd Parameter	R	1		The data of address 0x001 in the MTP							
4 th Parameter	R	1				:	•				-
5 th Parameter	R	1			The da	ta of addres	ss (n-1) in th	ne MTP	\		-
6 th ~(m-1) th Parameter	R	1									-
m th Parameter	R	1			The da	ata of addre	ess (n) in the	e MTP			-

8.2.28 RA2 (PGM_CFG): MTP Program Config Register

RA2H		Bit										
Inst/Para	R/W	D/CX	D7	D6 D5 D4 D3 D2 D1 D0 (
PGM_CFG	W	0	1	0 1 0 0 0 1 0							A2H	
1 st Parameter	W	1	-	VMTPSEL								
2 nd Parameter	W	1				PGM_SAI	DDR[15:8]				00h	
3 rd Parameter	W	1				PGM_SA	DDR[7:0]				00h	
4 th Parameter	W	1		PGM_DSIZE[15:8]								
5 th Parameter	W	1				PGM_DS	SIZE[7:0]		\		00h	

	This comma	nd is used for sett	ing configuration of MTP							
	1 st Paramete	r:								
	Bit	Name	Description							
	4	VMTPSEL	0:External VMTP (default) 1:Internal VMTP							
Description	2 nd & 3 rd Parameters: Program and Read MTP start address PGM_SADDR[15:0] 4 th & 5 th Parameters: Program data size PGM_DSIZE[15:0]									
		am Area0 (0x00~0 [[15:0] will be set (0x017F), PGM_SADDR[15:0] will be set 0x0000, 0x0180.							
Restriction										

8.2.29 RE3H (PWS): Power Saving Register

RE3H		Bit												
Inst/Para	R/W	R/W D/CX D7 D6 D5 D4 D3 D2 D1 D0 0												
PWS	W	0	1	1	1	0	0	0	1	1	E3H			
1 st Parameter	W	1		VCOM_	_W[3:0]			00h						

V1.0.3

8.2.30 RE4H (LVSEL): LVD Voltage Select Register

Ī	RE4H		Bit												
	Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code			
	LVSEL	W	0	1	1	1	0	0	1	0	0	E4H			
	1 st Parameter	W	1	=	-	-	-	=	-	LVD_S	EL[1:0]	03h			

NOTE: "-" Don't care, can be set to VDD or GND level

Description	LVD_SEL[1:0]: Low Power V	oltage Selection	
	LVD_SEL[1:0]	LVD value	
	00	< 2.2 V	
	01	< 2.3 V	4. 5/ 4. 5/
	10	< 2.4 V	
	11	< 2.5 V (default)	
Restriction			

Register Restriction

Following table will indicate the register restriction:

Following table will indicate tr		
Register	Refresh Restriction	BUSY_N flag
R00H(PSR)	X	No action
R01H(PWR)	X	No action
R02H(POF)	X	Flag
R04H(PON)	X	Flag
R06H(BTST)	X	No action
R07H(DSLP)	X	Flag
R10H(DTM1)	X	No action
R11H(DSP)	Valid only read	Flag
R12H(DRF)	X	Flag
R17H(AUTO)	Valid in standby	Flag
R30H(PLL)	X	No action
R40H(TSC)	Valid only read	Flag
R41H(TSE)	X	No action
R42H(TSW)	X	Flag
R43H(TSR)	Valid only read	Flag
R50H(CDI)	X	No action
R51H(LPD)	Valid only read	Flag
R61H(TRES)	X	No action
R65H(GSST)	X	No action
R70H(REV)	Valid only read	No action
R80H(AMV)	X	Flag
R81H(VV)	Valid	No action
R82H(VDCS)	X	No action
R83H(PTL)	X	No action
R90H(PGM)	X	No action
R91H(APG)	X	Flag
R92H(RMTP)	X	Flag
RA2H(PGM_CFG)	X	No action
RE3H(PWS)	X	No action
RE4H(LVSEL)	X	No action

9. FUNCTION DESCRIPTION

9.1 Power On/Off and DSLP Sequence

In order to prevent IC fail in power on resetting, the power sequence must be followed as below.

Power on Sequence

Figure 1: Power on sequence

Power off Sequence

Figure 2: Power off sequence

Figure 4: DSLP sequence

9.2 MTP LUT Definition

The MTP size would be 4096 Bytes.

MTP	MTP bank 0 (4K bytes)								
Address(Hex)	Content								
0x000~0xEFF	LUT Compress data								
0xF00~0xF58	Reserved								
0xF59~0xF84	Default setting								
0xF85~0xFFF	JD setting								

9.3 Default Setting Format in MTP

	Addr. (Dec)	Addr. (Hex)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value (Hex)	
							erved bytes				FF	
	3929	F59				Enable MTP	Setting (0xA5)				A5	
_	3930	F5A				Rese	erved				-	
	3931	F5B				Rese	erved				-	
R00H	3932	F5C	RES	[1:0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0F	
110011	3933	F5D	LUT_EN	-	FOPT	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	09	
	3934	F5E	-	-	-	-	-	VSC_EN	VDS_EN	VDG_EN	07	
	3935	F5F	-	-	-		-	-	VGF	P[1:0]	00	
R01H	3936	F60	-				VSPL_0[6:0]				00	
KUIII	3937	F61	-				VSP_1[6:0]				00	
	3938	F62	-				VSN_1[6:0]				00	
	3939	F63	-				VSPL_1[6:0]				00	
	3940	F64				Res	erved			,	00	
	3941	F65				Res	erved				00	
-	3942	F66				Res	erved				54	
	3943	F67				Res	erved				44	
	3944	F68	-	-	-	-	PHB_S	SFT[1:0]	PHA_S	FT[1:0]	00	
	3945	F69	-	-			PHA_0	ON[5:0]			06	
	3946	F6A	-	-			PHA_C	DFF[5:0]			02	
R06H	3947	F6B	-	-			PHB_0	ON[5:0]			07	
	3948	F6C	-	-	- PHB_OFF[5:0]							
	3949	F6D	-	-			PHC_0	ON[5:0]			07	
	3950	F6E	-	-			PHC_C	DFF[5:0]			02	
-	3951	F6F			•	Res	erved			00		
R30H	3952	F70	-	-	-	1.	Dyna		FR[2:0]		02	
R50h	3953	F71		VBD[2:0]		DDX		CDI	[3:0]		97	
	3954	F72				Res	erved				02	
-	3955	F73				Res	erved				02	
	3956	F74	-	-		-	-	-	HRES[9]	HRES[8]	00	
	3957	F75			HRE	S[7:2]	l		0	0	00	
R61H	3958	F76	-		-	-	-	-	VRES[9]	VRES[8]	00	
	3959	F77				VRE	S[7:0]				00	
	3960	F78		-	-	-	-	-	S_start(9)	S_start(8)	00	
Da	3961	F79	S_start(7)	S_start(6)	S_start(5)	S_start(4)	S_start(3)	S_start(2)	0	0	00	
R65H	3962	F7A	-	- '	- ()	- (/	- ` `	-	G_start(9)	G_start(8)	00	
	3963	F7B	G_start(7)	G_start(6)	G_start(5)	G_start(4)	G_start(3)	G_start(2)	G_start(1)	G_start(0)	00	
R82H	3964	F7C		VDCS[6]	VDCS[5]	VDCS[4]	VDCS[3]	VDCS[2]	VDCS[1]	VDCS[0]	00	
-	3965	F7D					erved				00	
R41H	3966	F7E	-	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO[0]	00	
	3967	F7F		1	1		erved				00	
RE3H	3968	F80		VCOM	_W[3:0]			SD_V	V[3:0]		00	
RE4H	3969	F81	-	-		-	-	-		EL[1:0]	03	
	3970	F82		1	1	Res	erved	1		<u> </u>	03	
-	3971	F83					erved				1C	
	3972	F84					erved				00	
	3973-4095	F85-FFF					etting				FF	

9.4 Data transmission waveform

Example1: The driver will scan 1 frame to GND after waveform finished.(FOPT=0)

Figure 1: Data transmission example1 waveform

Figure 2: Display refresh example2 waveform

10. ELECTRICAL SPECIFICATIONS

10.1 Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit
Logic supply voltage	VDD, AVDD, VDD1, VPP	-0.3	+6.0	V
Digital input voltage	VI	-0.3	VDDIO+0.3	V
Supply range	VGP-VGN	VGN-0.3	VGP+0.3	V
Analog supply	VSP_0	+15	+15	V
Analog supply	VSN_0	-15	-15	V
Analog supply	VSPL_0	+3	+15	V
Analog supply	VSP_1	+3	+15	V
Analog supply	VSN_1	-3	-15	V
Analog supply	VSPL_1	+3	+15	V
Supply voltage	VGP	+10	+20	V
Supply voltage	VGN	-20	-10	V
Storage temperature	T _{STG}	-55	125	$^{\circ}\!\mathbb{C}$

Note:

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied.

Exposing device to the absolute maximum ratings in a long period of time may degrade the device and affect its reliability.

10.2 Digital DC Characteristic

DC electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
IO Supply Voltage	VDDIO	2.3	3.3	3.6	V	
Digital/Analog supply voltage	VDD	2.3	3.3	3.6	V	
DCDC power input voltage	AVDD	2.3	3.3	3.6	V	
1.5V output voltage	VDD_15	1.35	1.5	1.65		
1.5V input voltage	VDD_15	1.35	1.5	1.65		
MTP program power	VMTP	9.8	10.1	10.2		
Digital ground	VSS		0			
DCDC ground	VSSP		0			
Low Level Input Voltage	Vil	GND	-	0.3Xvdd	V	Digital input pins
High Level Input Voltage	Vih	0.7Xvio	-	VIO	V	Digital input pins
High Level Output Voltage	Voh	VIO-0.4	-	-	V	Digital output pins; IOH = 400Ma
High Level Output Voltage	Vohd	VDD1-0.4	-	-	V	Digital output pins; IOH = 400Ma DRVD, DRVU
Low Level Output Voltage	Vol	GND	-	GND+0.4	V	Digital output pins; IOL = -400Ma
Input Leakage Current	lin	-1.0	-	+1.0	Ua	Digital input pins, except pull-up, pull-down pin
Pull-up/down impedance	Rin	-	200K		ohm	
Digital Stand-by Current (power off mode)	IstVDD*	-	0	1	Ua	All stopped
Digital Operating Current	IVDD*	-	0.5	2.0	Ma	
IO Stand-by Current (power off mode)	IstVDDIO*	-	0.4	1.0	Ua	All stopped
IO Operating Current	IVDDIO*	-		0.2	Ма	No load
Operating Current	IVDD1*	-	-	TBD	Ма	
Operating temperature	T op	-30	-	85	$^{\circ}\mathbb{C}$	

NOTE: typ. And max. values to be confirmed by design

10.3 Analog DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Positive Source voltage	VSP	-	15	-	V	For source driver/VCOM
Positive Source voltage dev	Dvsp	-100	0	+100	Mv	
Negative Source voltage	VSn	-	-15	-	V	For source driver/VCOM
Negative Source voltage dev	Dvsn	-100	-	+100	Mv	
Positive Source voltage	VSPL 0	3		15		
Positive Source voltage dev.	Dvspl_0	-100	_	+100	Μv	
Positive Source voltage	VSP_1	3		15		
Positive Source voltage dev.	Dvsp_1	-100	-	+100	Μv	A (0)
Positive Source voltage	VSPL_1	3		15		
Positive Source voltage dev.	Dvspl_1	-100	-	+100	Μv	
VCOM voltage dev.	Dvcom	-200	-	+200	Μv	
Positive gate voltage dev	Dvgp	-500	-	+500	My	
Dynamic Range of Output	Vdr	0.1	-	VSP-0.1	V	
Voltage Range of VGP – VGN	VGP-VGN	-	-	41	V	
Negative Gate voltage	VGN	-10	-	-20	V	For gate driver
Positive Gate voltage	VGP	10		20	V	For gate driver
Positive HV Stand-by Current (power off mode)	IstVGP*	-	0	0.2	Ua	Include VSP power With load
Positive HV Operating Current	IVGP*	-	0.7	1.1	Ма	Include VSP power With load all SD=L VCOM external resistor divider not included
Positive HV Operating Current	IVGP*	-	0.8	1.2	Ма	Include VSP power With load all SD=H VCOM external resistor divider not Included
Negative HV Stand-by Current (power off mode)	IstVGN*		0	0.2	Ма	Include VSP power With load
Negative HV Operating Current	IVGN*	-	0.8	1.2	Ма	Include VSN power With load all SD=L
Negative HV Operating Current	IVGN*	-	0.9-	1.3	Ма	Include VSN power With load all SD=H
VINT1 Stand-by Current (power off mode)	IstVINT1*	-	0	0.01	Ма	
VINT1 Operating Current	IVINT1*	-	-	0.3	Ма	
Voltage	IVINT1*	-	-	0.3	Ма	

10.4 AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
SERIAL COMMUNICATION						
	Tcss	60			ns	Chip select setup time
CSB	Тсѕн	65			ns	Chip select hold time
COD	Tscc	20			ns	Chip select CSB setup time
	Тснw	40			ns	Chip select setup time
	Tscycw	100			ns	Serial clock cycle (Write)
SCL	Tshw	35			ns	SCL "H" pulse width (Write)
	Tslw	35			ns	SCL "L" pulse width (Write)
SCL	Tscycr	250			ns	Serial clock cycle (Read)
	Tshr	60			ns	SCL "H" pulse width (Read)
	T _{SLR}	60			ns	SCL "L" pulse width (Read)
	Tsds	30			ns	Data setup time
SDA	Тsdн	30			ns	Data hold time
(DIN)	Tacc			50	ns	Access time
(DOUT)	Тон	15			ns	Output disable time
D/C	Tocs	20			ns	DC setup time
D/C	Тосн	20			ns	DC hold time

3 pin serial interface characteristics (write mode)

3 pin serial interface characteristics (read mode)

4 pin serial interface characteristics(write mode)

4 pin serial interface characteristics(read mode)

Figure 9: SPI interface timing

11. CHIP OUTLINE DIMENSIONS

11.1 Circuit/Bump View

Die Size: 9460um*720um

Die Size :9520um*780um (Including Scribe Line 60um)

Die Thickness:230 µm ± 20µm

Die TTV:(DMAX – DMIN) within die ≤ 2μm

Bump Height:9 µm ± 2µm

(HMAX - HMIN) within die $\leq 2\mu m$

Hardness: 75 Hv ±25Hv
Coordinate origin:Chip center

11.2 Bump information

Bump type	Pitch	Space_A	Space_B	Space_C	W	Н	area(um2)	Q'ty	Total are	a(um2)
Input PAD	46	18	-	-	28	70	1960	205	401800	
Source PAD	26	14	19	1	12	87.5	1050	218	228900	908800
Gate PAD	27	12	-	-	15	90	1350	206	278100	

12. ALIGNMENT MARK INFORMATION

12.1 Location

Shapes and Points:

Point Coordinates:

	Upper-L	eft Mark	Upper-Right Mark		
Point	Χ	Υ	X	Υ	
Center	-4664	276	4664	276	
1	-4674	306	4654	306	
2	-4654	306	4674	306	
3	-4654	286	4674	286	
4	-4634	286	4694	286	
5	-4634	266	4694	266	
6	-4654	266	4674	266	
7	-4654	246	4674	246	
8	-4674	246	4654	246	
9	-4674	266	4654	266	
10	-4694	266	4634	266	
11	-4694	286	4634	286	
12	-4674	286	4654	286	
13	-4694	306	4684	306	
14	-4684	306	4694	306	
15	-4684	296	4694	296	
16	-4694	296	4684	296	

12.2 Pad coordinates

1 T_N18V -4692 -311.5 28 70 2 T_LDONSV -4660 -311.5 28 70 3 VCOM -4600 -311.5 28 70 4 VCOM -4458 -311.5 28 70 5 VCOM -44508 -311.5 28 70 6 VCOM -4476 -311.5 28 70 7 VCOM -44370 -311.5 28 70 9 VCOM -4324 -311.5 28 70 9 VCOM -4324 -311.5 28 70 10 VCOM -4324 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 12 VGN -4094 -311.5 28 70 13 VGN -4094 -311.5 28	No.	Name	X-axis	Y-axis	W	Н
2 T_LDON5V -4646 -311.5 28 70 3 VCOM -4600 -311.5 28 70 4 VCOM -4554 -311.5 28 70 5 VCOM -4462 -311.5 28 70 6 VCOM -4462 -311.5 28 70 7 VCOM -4416 -311.5 28 70 9 VCOM -4324 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4140 -311.5 28 70 13 VGN -4094 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -3956 -311.5 28 <	1	T_N18V	-4692	-311.5	28	70
3	2	T LDON5V	-4646		28	70
4 VCOM -4554 -311.5 28 70 5 VCOM -4468 -311.5 28 70 6 VCOM -4462 -311.5 28 70 7 VCOM -4416 -311.5 28 70 8 VCOM -4370 -311.5 28 70 9 VCOM -4324 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 13 VGN -4048 -311.5 28 70 14 VGN -4048 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70						
5 VCOM -4508 -311.5 28 70 6 VCOM -4462 -311.5 28 70 7 VCOM -4416 -311.5 28 70 8 VCOM -4370 -311.5 28 70 9 VCOM -4242 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4140 -311.5 28 70 13 VGN -4048 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -3956 -311.5 28 70 17 VGN -3966 -311.5 28 70 18 VGN -3311.5 28 70 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
6 VCOM -4462 -311.5 28 70 7 VCOM -4416 -311.5 28 70 8 VCOM -4370 -311.5 28 70 9 VCOM -4324 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 13 VGN -4140 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -3956 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 20 VGN -3884 -311.5 28 70						
7 VCOM -4416 -311.5 28 70 8 VCOM -4370 -311.5 28 70 9 VCOM -4278 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4146 -311.5 28 70 13 VGN -44140 -311.5 28 70 15 VGN -4094 -311.5 28 70 16 VGN -4094 -311.5 28 70 16 VGN -3956 -311.5 28 70 18 VGN -3964 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3772 -311.5 28 70 21 VGN -3680 -311.5 28 7						
8 VCOM -4370 -311.5 28 70 9 VCOM -4324 -311.5 28 70 10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 13 VGN -4140 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3772 -311.5 28 70 21 VGN -3680 -311.5 28 70						
9						
10 VCOM -4278 -311.5 28 70 11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 13 VGN -4140 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 16 VGN -3956 -311.5 28 70 17 VGN -3864 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3772 -311.5 28 70 21 VGN -3680 -311.5 28 70 22 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70	_				_	
11 VSSA -4232 -311.5 28 70 12 VGN -4186 -311.5 28 70 13 VGN -4146 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 16 VGN -3956 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3864 -311.5 28 70 20 VGN -3848 -311.5 28 70 21 VGN -3772 -311.5 28 70 22 VGN -3680 -311.5 28 70 23 VGN -3634 -311.5 28 70 24 VGN -3634 -311.5 28 70<						
12 VGN -4186 -311.5 28 70 13 VGN -4140 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3684 -311.5 28 70 24 VGN -3588 -311.5 28 70 25 VGN -3496 -311.5 28 70 </td <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	_					
13 VGN -4140 -311.5 28 70 14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -39910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 20 VGN -3726 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3680 -311.5 28 70 24 VGN -3684 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70<						
14 VGN -4094 -311.5 28 70 15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3680 -311.5 28 70 23 VGN -3684 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15 VGN -4048 -311.5 28 70 16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -38818 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3684 -311.5 28 70 24 VGN -3588 -311.5 28 70 25 VGN -3496 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70<						
16 VGN -4002 -311.5 28 70 17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 25 VGN -3496 -311.5 28 70 26 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 30 VSN -3358 -311.5 28 70<						
17 VGN -3956 -311.5 28 70 18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3726 -311.5 28 70 22 VGN -3680 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSA -3450 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
18 VGN -3910 -311.5 28 70 19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3772 -311.5 28 70 22 VGN -3680 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 28 VSSA -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 31 VSN -3220 -311.5 28 70		_				
19 VGN -3864 -311.5 28 70 20 VGN -3818 -311.5 28 70 21 VGN -3772 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3684 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 31 VSN -3266 -311.5 28 70<						
20 VGN -3818 -311.5 28 70 21 VGN -3772 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3542 -311.5 28 70 26 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 31 VSN -3266 -311.5 28 70 33 VSN -3128 -311.5 28 70<	_					
21 VGN -3772 -311.5 28 70 22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3542 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 34 VSN -3174 -311.5 28 70<						
22 VGN -3726 -311.5 28 70 23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3128 -311.5 28 70 34 VSN -3128 -311.5 28 70<						
23 VGN -3680 -311.5 28 70 24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3496 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 30 VSN -3312 -311.5 28 70 31 VSN -3266 -311.5 28 70 32 VSN -3266 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3082 -311.5 28 70 36 VSN -3036 -311.5 28 70<						
24 VGN -3634 -311.5 28 70 25 VGN -3588 -311.5 28 70 26 VGN -3542 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3082 -311.5 28 70 36 VSN -3036 -311.5 28 70 37 VSN -3036 -311.5 28 70<						
25 VGN -3588 -311.5 28 70 26 VGN -3542 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3082 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2940 -311.5 28 70<						
26 VGN -3542 -311.5 28 70 27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3082 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70						
27 VGN -3496 -311.5 28 70 28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70		_				
28 VSSA -3450 -311.5 28 70 29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70						
29 VSN -3404 -311.5 28 70 30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2896 -311.5 28 70 42 VGP -2806 -311.5 28 70<						
30 VSN -3358 -311.5 28 70 31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70<						
31 VSN -3312 -311.5 28 70 32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 45 VGP -2668 -311.5 28 70<		_			_	
32 VSN -3266 -311.5 28 70 33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2622 -311.5 28 70<						
33 VSN -3220 -311.5 28 70 34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2608 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70<					_	
34 VSN -3174 -311.5 28 70 35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2672 -311.5 28 70 47 VGP -2530 -311.5 28 70<						
35 VSN -3128 -311.5 28 70 36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2530 -311.5 28 70 48 VGP -2484 -311.5 28 70<						
36 VSN -3082 -311.5 28 70 37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 50 VGP -2484 -311.5 28 70<						_
37 VSN -3036 -311.5 28 70 38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70<						
38 VSN -2990 -311.5 28 70 39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70<						
39 VSSA -2944 -311.5 28 70 40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70						
40 VGP -2898 -311.5 28 70 41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2434 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2200 -311.5 28 70<						
41 VGP -2852 -311.5 28 70 42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2200 -311.5 28 70 54 VSP -2254 -311.5 28 70<						
42 VGP -2806 -311.5 28 70 43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70<						
43 VGP -2760 -311.5 28 70 44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2488 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70<						
44 VGP -2714 -311.5 28 70 45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70<						
45 VGP -2668 -311.5 28 70 46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
46 VGP -2622 -311.5 28 70 47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
47 VGP -2576 -311.5 28 70 48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
48 VGP -2530 -311.5 28 70 49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70	_	_				1
49 VGP -2484 -311.5 28 70 50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
50 VGP -2438 -311.5 28 70 51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
51 VGP -2392 -311.5 28 70 52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70					_	
52 VSSA -2346 -311.5 28 70 53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
53 VSP -2300 -311.5 28 70 54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70	_					
54 VSP -2254 -311.5 28 70 55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
55 VSP -2208 -311.5 28 70 56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
56 VSP -2162 -311.5 28 70 57 VSP -2116 -311.5 28 70						
57 VSP -2116 -311.5 28 70	55		-2208	-311.5	28	70
						70
58 VSP -2070 -311.5 28 70						
	58	VSP	-2070	-311.5	28	70

No.	Name	X-axis	Y-axis	W	Н
59	VSP	-2024	-311.5	28	70
60	VSP	-1978	-311.5	28	70
61	VSP	-1932	-311.5	28	70
62	VSP	-1886	-311.5	28	70
63	VSSA	-1840	-311.5	28	70
64	VMTP	-1794	-311.5	28	70
65	VMTP	-1748	-311.5	28	70
66	VMTP	-1702	-311.5	28	70
67	VMTP	-1656	-311.5	28	70
68	VMTP	-1610	-311.5	28	70
69	VMTP	-1564	-311.5	28	70
70	VDD 15V	-1518	-311.5	28	70
71	VDD_15V	-1472	-311.5	28	70
72	VDD_15V	-1426	-311.5	28	70
73	VDD_15V	-1380	-311.5	28	70
74	VDD_15V	-1334	-311.5	28	70
75	VDD_15V	-1288	-311.5	28	70
	VDD_13V VDD_15V	-1242	-311.5	28	
76		-1196	-311.5		70
77				28	70
78	VSSA	-1150	-311.5	28	70
79	VSSA	-1104	-311.5	28	70
80	VSSA	-1058	-311.5	28	70
81	VSSA	-1012	-311.5	28	70
82	VSSA	-966	-311.5	28	70
83	VSSA	-920	-311.5	28	70
84	VSSA	-874	-311.5	28	70
85	VSSA	-828	-311.5	28	70
86	VSSA	-782	-311.5	28	70
87	VSSA	-736	-311.5	28	70
88	VSSA	-690	-311.5	28	70
89	VSSA	-644	-311.5	28	70
90	VSS	-598	-311.5	28	70
91	VSS	-552	-311.5	28	70
92	VSS	-506	-311.5	28	70
93	VSS	-460	-311.5	28	70
94	VSS	-414	-311.5	28	70
95	VSS	-368	-311.5	28	70
96	VSS	-322	-311.5	28	70
97	VSS	-276	-311.5	28	70
98	VSS	-230	-311.5	28	70
99	VSS	-184	-311.5	28	70
100	VSS	-138	-311.5	28	70
101	VSS	-92	-311.5	28	70
102	VDD	-46	-311.5	28	70
103	VDD	0	-311.5	28	70
104	VDD	46	-311.5	28	70
105	VDD	92	-311.5	28	70
106	VDD	138	-311.5	28	70
107	VDD	184	-311.5	28	70
108	VDD	230	-311.5	28	70
109	VDD	276	-311.5	28	70
110	VDD	322	-311.5	28	70
111	VDD	368	-311.5	28	70
112	VDDP	414	-311.5	28	70
113	VDDP	460	-311.5	28	70
114	VDDP	506	-311.5	28	70
115	VDDP	552	-311.5	28	70
116	VDDP	598	-311.5	28	70

No.	Name	X-axis	Y-axis	W	Н
117	VDDP	644	-311.5	28	70
118	VDDP	690	-311.5	28	70
119	SYNCD	736	-311.5	28	70
120	SYNCE	782	-311.5	28	70
121	VDDIO	828	-311.5	28	70
122	VDDIO	874	-311.5	28	70
123	VDDIO	920	-311.5	28	70
124	VDDIO	966	-311.5	28	70
125	T VTSEN	1012	-311.5	28	70
126	T SAR REF	1058	-311.5	28	70
127	T_VSPD_REF	1104	-311.5	28	70
128	T_VREF	1150	-311.5	28	70
129	T_VCOM	1196	-311.5	28	70
130	T_ IBIAS	1242	-311.5	28	70
131	SDA	1288	-311.5	28	70
132	SCL	1334	-311.5	28	70
133	VSS	1380	-311.5	28	70
134	CSB	1426	-311.5	28	70
135	VDDIO	1472	-311.5	28	70
136	T_EN_DIG	1518	-311.5	28	70
137	VSS	1564	-311.5	28	70
138	DC	1610	-311.5	28	70
139	VDDIO	1656	-311.5	28	70
140	T_EX_REFCLK	1702	-311.5	28	70
141	VSS	1748	-311.5	28	70
142	RST_N	1794	-311.5	28	70
143	BUSY_N	1840	-311.5	28	70
144	SYNCC	1886	-311.5	28	70
145	VDDIO	1932	-311.5	28	70
146	T_EX_SYSCLK	1978	-311.5	28	70
147	VSS	2024	-311.5	28	70
148	T_DEBUG[8]	2070	-311.5	28	70
149	VDDIO	2116	-311.5	28	70
150	BS	2162	-311.5	28	70
151	VSS	2208	-311.5	28	70
152	T_DEBUG[7]	2254	-311.5	28	70
153	VDDIO	2300	-311.5	28	70
154	PCKO	2346	-311.5	28	70
155	VSS	2392	-311.5	28	70
156	MS	2438	-311.5	28	70
157	VDDIO	2484	-311.5	28	70
158	TSDA TSDA	2530 2576	-311.5 -311.5	28 28	70
159 160	TSDA	2622	-311.5 -311.5	28	70 70
161	.00=		-311.5		
162	TSCL PCKI	2668 2714	-311.5	28 28	70 70
163	T DEBUG[6]	2760	-311.5	28	70
164	T_DEBUG[6]	2806	-311.5	28	70
165	T_DEBUG[4]	2852	-311.5	28	70
166	VSPL VSPL	2898	-311.5	28	70
167	VSPL	2944	-311.5	28	70
168	VSPL	2990	-311.5	28	70
169	VSPL	3036	-311.5	28	70
170	VSPL	3082	-311.5	28	70
171	VSPL	3128	-311.5	28	70
172	VSPL	3174	-311.5	28	70
173	VSPL	3220	-311.5	28	70
174	T DEBUG[3]	3266	-311.5	28	70
175	T_DEBUG[2]	3312	-311.5	28	70
176	T_DEBUG[1]	3358	-311.5	28	70
<u> </u>					

177	No.	Name	X-axis	Y-axis	W	Н
178 T_IN[0] 3450 -311.5 28 70 179 T_IN[1] 3496 -311.5 28 70 180 VSSA 3542 -311.5 28 70 181 FB 3588 -311.5 28 70 182 FB 3634 -311.5 28 70 183 VSSA 3680 -311.5 28 70 184 RESE 3726 -311.5 28 70 185 RESE 3772 -311.5 28 70 186 VSSA 3818 -311.5 28 70 187 GDR 3964 -311.5 28 70 188 GDR 3910 -311.5 28 70 189 GDR 3964 -311.5 28 70 191 GDR 4044 -311.5 28 70 192 GDR 4094 -311.5 28	177	T DEBUGIO	3404	-311.5	28	70
T_IN[1] 3496 -311.5 28 70		,				
180						
Tell FB						
182						
183 VSSA 3680 -311.5 28 70 184 RESE 3726 -311.5 28 70 185 RESE 3772 -311.5 28 70 186 VSSA 3818 -311.5 28 70 187 GDR 3864 -311.5 28 70 189 GDR 3956 -311.5 28 70 190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4146 -311.5 28 70 193 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 195 VSSA 4232 -311.5 28 70 197 VCOM 4278 -311.5 28 <						
184 RESE 3726 -311.5 28 70 185 RESE 3772 -311.5 28 70 186 VSSA 3818 -311.5 28 70 187 GDR 3864 -311.5 28 70 189 GDR 3956 -311.5 28 70 190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4140 -311.5 28 70 193 GDR 4140 -311.5 28 70 194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 195 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
185 RESE 3772 -311.5 28 70 186 VSSA 3818 -311.5 28 70 187 GDR 3864 -311.5 28 70 189 GDR 3956 -311.5 28 70 190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4140 -311.5 28 70 193 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 195 VSOM 4278 -311.5 28 70 197 VCOM 4416 -311.5 28 70 199 VCOM 4462 -311.5 28 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
186 VSSA 3818 -311.5 28 70 187 GDR 3864 -311.5 28 70 188 GDR 3910 -311.5 28 70 190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 192 GDR 4048 -311.5 28 70 193 GDR 4140 -311.5 28 70 194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4370 -311.5 28 70 199 VCOM 4462 -311.5 28 70 200 VCOM 44554 -311.5 28 <						
187 GDR 3864 -311.5 28 70 188 GDR 3910 -311.5 28 70 189 GDR 3956 -311.5 28 70 191 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4140 -311.5 28 70 194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4370 -311.5 28 70 199 VCOM 4462 -311.5 28 70 199 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
188						
189 GDR 3956 -311.5 28 70 190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4140 -311.5 28 70 194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 70 198 VCOM 4370 -311.5 28 70 199 VCOM 4416 -311.5 28 70 199 VCOM 4462 -311.5 28 70 200 VCOM 4454 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4600 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[3] 4374.5 295 15 90 208 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4113.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[24] 3342.5 295 15 90 224 G[24] 3342.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3888.5 295 15 90 229 G[34] 3807.5 295 15 90 231 G[38] 3753.5 295 15 90 233 G[346] 3645.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90 236 C[46] 3645.5		_				
190 GDR 4002 -311.5 28 70 191 GDR 4048 -311.5 28 70 192 GDR 4094 -311.5 28 70 193 GDR 4140 -311.5 28 70 194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 70 198 VCOM 4346 -311.5 28 70 199 VCOM 4416 -311.5 28 70 199 VCOM 4462 -311.5 28 70 200 VCOM 4508 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4600 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[6] 4293.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 227 G[10] 4131.5 295 15 90 229 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 233 G[36] 3780.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90 236 G[46] 3645.5 295 15 90 237 G[46] 3645.5						
191 GDR						
192 GDR						
193 GDR						
194 GDR 4186 -311.5 28 70 195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 70 198 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4458 -311.5 28 70 201 VCOM 4554 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[4] 4347.5 295 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
195 VSSA 4232 -311.5 28 70 196 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 70 198 VCOM 4416 -311.5 28 70 199 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4660 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 205 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295						
196 VCOM 4278 -311.5 28 70 197 VCOM 4324 -311.5 28 70 198 VCOM 4370 -311.5 28 70 199 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4504 -311.5 28 70 203 VCOM 4600 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295	_					
197 VCOM 4324 -311.5 28 70 198 VCOM 4370 -311.5 28 70 199 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4504 -311.5 28 70 202 VCOM 4504 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 210 DUMMY[4] 4347.5 295					P	
198 VCOM 4370 -311.5 28 70 199 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[6] 4293.5 295 15 90 211 G[0] 4266.5 295						
199 VCOM 4416 -311.5 28 70 200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[6] 4293.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 213 G[2] 4239.5 295 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
200 VCOM 4462 -311.5 28 70 201 VCOM 4508 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[6] 4293.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295						
201 VCOM 4508 -311.5 28 70 202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295		A				
202 VCOM 4554 -311.5 28 70 203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295						
203 VCOM 4600 -311.5 28 70 204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[6] 4293.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295						
204 T_IN[2] 4646 -311.5 28 70 205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295						
205 DUMMY[0] 4692 -311.5 28 70 206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295						
206 DUMMY[1] 4428.5 295 15 90 207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 407.5 295 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
207 DUMMY[2] 4401.5 295 15 90 208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 1						
208 DUMMY[3] 4374.5 295 15 90 209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
209 DUMMY[4] 4347.5 295 15 90 210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15						
210 DUMMY[5] 4320.5 295 15 90 211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 218 G[12] 4077.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15						
211 DUMMY[6] 4293.5 295 15 90 212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15						
212 G[0] 4266.5 295 15 90 213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15	211			295	15	90
213 G[2] 4239.5 295 15 90 214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 225 G[26] 3915.5 295 15		G[0]	4266.5		15	90
214 G[4] 4212.5 295 15 90 215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15	213			295	15	90
215 G[6] 4185.5 295 15 90 216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15	214	G[4]				90
216 G[8] 4158.5 295 15 90 217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15	215		4185.5	295	15	90
217 G[10] 4131.5 295 15 90 218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15	216		4158.5		15	90
218 G[12] 4104.5 295 15 90 219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 228 G[32] 3834.5 295 15 90 230 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15				295		
219 G[14] 4077.5 295 15 90 220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15						90
220 G[16] 4050.5 295 15 90 221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15	219	G[14]	4077.5	295	15	90
221 G[18] 4023.5 295 15 90 222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15			4050.5			
222 G[20] 3996.5 295 15 90 223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15	221					90
223 G[22] 3969.5 295 15 90 224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	222			295		
224 G[24] 3942.5 295 15 90 225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	223				15	90
225 G[26] 3915.5 295 15 90 226 G[28] 3888.5 295 15 90 227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	224		3942.5	295	15	90
227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	225			295		90
227 G[30] 3861.5 295 15 90 228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	226	G[28]	3888.5	295	15	90
228 G[32] 3834.5 295 15 90 229 G[34] 3807.5 295 15 90 230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	227	G[30]		295		90
230 G[36] 3780.5 295 15 90 231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90			3834.5	295	15	90
231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	229	G[34]	3807.5	295	15	90
231 G[38] 3753.5 295 15 90 232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90		G[36]	3780.5	295	15	90
232 G[40] 3726.5 295 15 90 233 G[42] 3699.5 295 15 90 234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	231		3753.5	295	15	90
234 G[44] 3672.5 295 15 90 235 G[46] 3645.5 295 15 90	232		3726.5	295	15	90
235 G[46] 3645.5 295 15 90	233	G[42]	3699.5		15	90
235 G[46] 3645.5 295 15 90	234	G[44]	3672.5		15	90
	235	G[46]	3645.5		15	90
<u>, -, -, </u> -00	236	G[48]	3618.5	295	15	90

No.	Name	X-axis	Y-axis	w	н
237	G[50]	3591.5	295	15	90
238	G[52]	3564.5	295	15	90
239	G[54]	3537.5	295	15	90
240	G[56]	3510.5	295	15	90
241	G[58]	3483.5	295	15	90
242	G[60]	3456.5	295	15	90
243	G[62]	3429.5	295	15	90
244	G[64]	3402.5	295	15	90
245	G[66]	3375.5	295	15	90
246	G[68]	3348.5	295	15	90
247	G[70]	3321.5	295	15	90
248	G[72]	3294.5	295	15	90
249	G[74]	3267.5	295	15	90
250	G[76]	3240.5	295	15	90
251	G[78]	3213.5	295	15	90
252	G[80]	3186.5	295	15	90
253	G[82]	3159.5	295	15	90
254	G[84]	3132.5	295	15	90
255	G[86]	3105.5	295	15	90
256	G[88]	3078.5	295	15	90
257	G[90]	3051.5	295	15	90
258	G[92]	3024.5	295	15	90
259	G[94]	2997.5	295	15	90
260	G[96]	2970.5	295	15	90
261	G[98]	2943.5	295	15	90
262	G[100]	2916.5	295	15	90
263	G[102]	2889.5	295	15	90
264	G[104]	2862.5	295	15	90
265	G[106]	2835.5	295	15	90
266 267	G[108] G[110]	2808.5 2781.5	295 295	15 15	90 90
268	G[110] G[112]	2754.5	295	15	90
269	G[114]	2727.5	295	15	90
270	G[116]	2700.5	295	15	90
271	G[118]	2673.5	295	15	90
272	G[120]	2646.5	295	15	90
273	G[122]	2619.5	295	15	90
274	G[124]	2592.5	295	15	90
275	G[126]	2565.5	295	15	90
276	G[128]	2538.5	295	15	90
277	G[130]	2511.5	295	15	90
278	G[132]	2484.5	295	15	90
279	G[134]	2457.5	295	15	90
280	G[136]	2430.5	295	15	90
281	G[138]	2403.5	295	15	90
282	G[140]	2376.5	295	15	90
283	G[142]	2349.5	295	15	90
284	G[144]	2322.5	295	15	90
285	G[146]	2295.5	295	15	90
286	G[148]	2268.5	295	15	90
287	G[150]	2241.5	295	15	90
288	G[152]	2214.5	295	15	90
289	G[154]	2187.5	295	15	90
290	G[156]	2160.5	295	15	90
291	G[158]	2133.5	295	15	90
292	G[160]	2106.5	295	15	90
293	G[162]	2079.5	295	15	90
294	G[164]	2052.5	295	15	90
295	G[166]	2025.5	295	15 15	90
296	G[168]	1998.5	295	15	90

No.	Name	X-axis	Y-axis	W	Н
297	G[170]	1971.5	295	15	90
298	G[170] G[172]	1944.5	295	15	90
299	G[174]	1917.5	295	15	90
300	G[176]	1890.5	295	15	90
301	G[178]	1863.5	295	15	90
302	G[180]	1836.5	295	15	90
303	G[182]	1809.5	295	15	90
304	G[184]	1782.5	295	15	90
305	G[186]	1755.5	295	15	90
306	G[188]	1728.5	295	15	90
307	G[190]	1701.5	295	15	90
308	G[192]	1674.5	295	15	90
309	G[194]	1647.5	295	15	90
310	G[196]	1620.5	295	15	90
311	G[198]	1593.5	295	15	90
312	DUMMY[7]	1566.5	295	15	90
313	DUMMY[8]	1539.5	295	15	90
314	DUMMY[9]	1512.5	295	15	90
315	DUMMY[10]	1332.5	290.25	12	87.5
316	DUMMY[11]	1319.5	183.75	12	87.5
317	VBD[1]	1306.5	290.25	12	87.5
318	S[0]	1293.5	183.75	12	87.5
319	S[1]	1280.5	290.25	12	87.5
320	S[2]	1267.5	183.75	12	87.5
321	S[3]	1254.5	290.25	12	87.5
322	S[4]	1241.5	183.75	12	87.5
323	S[5]	1228.5	290.25	12	87.5
324	S[6]	1215.5	183.75	12	87.5
325	S[7]	1202.5	290.25	12	87.5
326	S[8]	1189.5	183.75	12	87.5
327	S[9]	1176.5	290.25	12	87.5
328	S[10]	1163.5	183.75	12	87.5
329	S[11]	1150.5	290.25	12	87.5
330	S[12]	1137.5	183.75	12	87.5
331	S[13]	1124.5 1111.5	290.25	12	87.5
332 333	S[14] S[15]	1098.5	183.75 290.25	12 12	87.5
					87.5
334 335	S[16]	1085.5 1072.5	183.75 290.25	12 12	87.5 87.5
	S[17]	1072.5		12	
336 337	S[18] S[19]	1039.5	183.75 290.25	12	87.5 87.5
338	S[20]	1033.5	183.75	12	87.5
339	S[20]	1020.5	290.25	12	87.5
340	S[22]	1020.5	183.75	12	87.5
341	S[23]	994.5	290.25	12	87.5
342	S[24]	981.5	183.75	12	87.5
343	S[25]	968.5	290.25	12	87.5
344	S[26]	955.5	183.75	12	87.5
345	S[27]	942.5	290.25	12	87.5
346	S[28]	929.5	183.75	12	87.5
347	S[29]	916.5	290.25	12	87.5
348	S[30]	903.5	183.75	12	87.5
349	S[31]	890.5	290.25	12	87.5
350	S[32]	877.5	183.75	12	87.5
351	S[33]	864.5	290.25	12	87.5
352	S[34]	851.5	183.75	12	87.5
353	S[35]	838.5	290.25	12	87.5
354	S[36]	825.5	183.75	12	87.5
355	S[37]	812.5	290.25	12	87.5
356	S[38]	799.5	183.75	12	87.5

No.	Name	X-axis	Y-axis	W	Н
357	S[39]	786.5	290.25	12	87.5
358	S[40]	773.5	183.75	12	87.5
359	S[41]	760.5	290.25	12	87.5
360	S[42]	747.5	183.75	12	87.5
361	S[43]	734.5	290.25	12	87.5
362	S[44]	721.5	183.75	12	87.5
363	S[45]	708.5	290.25	12	87.5
364	S[46]	695.5	183.75	12	87.5
365	S[47]	682.5	290.25	12	87.5
366	S[48]	669.5	183.75	12	87.5
367	S[49]	656.5	290.25	12	87.5
368	S[50]	643.5	183.75	12	87.5
369	S[51]	630.5	290.25	12	87.5
370	S[52]	617.5	183.75	12	87.5
371	S[53]	604.5	290.25	12	87.5
372	S[54]	591.5	183.75	12	87.5
373	S[55]	578.5	290.25	12	87.5
374	S[56]	565.5	183.75	12	87.5
375	S[57]	552.5	290.25	12	87.5
376	S[58]	539.5	183.75	12	87.5
377	S[59]	526.5	290.25	12	87.5
378	S[60]	513.5	183.75	12	87.5
379	S[61]	500.5	290.25	12	87.5
380	S[62]	487.5	183.75	12	87.5
381	S[63]	474.5	290.25	12	87.5
382	S[64]	461.5	183.75	12	87.5
383	S[65]	448.5	290.25	12	87.5
384	S[66]	435.5	183.75	12	87.5
385	S[67]	422.5	290.25	12	87.5
386	S[68]	409.5	183.75	12	87.5
387	S[69]	396.5	290.25	12	87.5
388	S[70]	383.5	183.75	12	87.5
389	S[71]	370.5	290.25	12	87.5
390	S[72]	357.5	183.75	12	87.5
391	S[73]	344.5	290.25	12	87.5
392	S[74]	331.5	183.75	12	87.5
393	S[75]	318.5	290.25	12	87.5
394	S[76]	305.5	183.75	12	87.5
395	S[77]	292.5	290.25	12	87.5
396	S[78]	279.5	183.75	12	87.5
397	S[79]	266.5	290.25	12	87.5
398	S[80]	253.5	183.75	12	87.5
399	S[81]	240.5	290.25	12	87.5
400	S[82]	227.5	183.75	12	87.5
401	S[83]	214.5	290.25	12	87.5
402	S[84]	201.5	183.75	12	87.5
403	S[85]	188.5	290.25	12	87.5
404	S[86]	175.5	183.75	12	87.5
405	S[87]	162.5	290.25	12	87.5
406	S[88]	149.5	183.75	12	87.5
407	S[89]	136.5	290.25	12	87.5
408	S[90]	123.5	183.75	12	87.5
409	S[91]	110.5	290.25	12	87.5
410	S[92]	97.5	183.75	12	87.5
	S[93]	84.5	290.25	12 12	87.5
412	S[94]	71.5 58.5	183.75 290.25	12	87.5 87.5
413	S[95]	58.5 45.5		12	
414	S[96]	45.5 32.5	183.75 290.25	12	87.5 87.5
415	S[97]			12	87.5 87.5
410	S[98]	19.5	183.75	12	01.0

No.	Name	X-axis	Y-axis	W	Н
417	S[99]	6.5	290.25	12	87.5
418	S[100]	-6.5	183.75	12	87.5
419	S[101]	-19.5	290.25	12	87.5
420	S[102]	-32.5	183.75	12	87.5
421	S[103]	-45.5	290.25	12	87.5
422	S[104]	-58.5	183.75	12	87.5
423	S[105]	-71.5	290.25	12	87.5
424	S[106]	-84.5	183.75	12	87.5
425	S[107]	-97.5	290.25	12	87.5
426	S[108]	-110.5	183.75	12	87.5
427	S[109]	-123.5	290.25	_ 12	87.5
428	S[110]	-136.5	183.75	12	87.5
429	S[111]	-149.5	290.25	12	87.5
430	S[112]	-162.5	183.75	12	87.5
431	S[113]	-175.5	290.25	12	87.5
432	S[114]	-188.5	183.75	12	87.5
433	S[115]	-201.5	290.25	12	87.5
434	S[116]	-214.5	183.75	12	87.5
435	S[117]	-227.5	290.25	12	87.5
436	S[118]	-240.5	183.75	12	87.5
437	S[119]	-253.5	290.25	12	87.5
438	S[120]	-266.5	183.75	12	87.5
439	S[121]	-279.5	290.25	12	87.5
440	S[122]	-292.5	183.75	12	87.5
441	S[123]	-305.5	290.25	12	87.5
442	S[124]	-318.5	183.75	12	87.5
443	S[125]	-331.5	290.25	12	87.5
444	S[126]	-344.5	183.75	12	87.5
445	S[127]	-357.5	290.25	12	87.5
446	S[128]	-370.5	183.75	12	87.5
447	S[129]	-383.5	290.25	12	87.5
448	S[130] S[131]	-396.5	183.75 290.25	12 12	87.5
449	S[131] S[132]	-409.5 -422.5	183.75	12	87.5 87.5
450	S[132] S[133]	-422.5 -435.5	290.25	12	87.5
452	S[134]	-433.5	183.75	12	87.5
453	S[135]	-461.5	290.25	12	87.5
454	S[136]	-474.5	183.75	12	87.5
455	S[137]	-487.5	290.25	12	87.5
456	S[138]	-500.5	183.75	12	87.5
457	S[139]	-513.5	290.25	12	87.5
458	S[140]	-526.5	183.75	12	87.5
459	S[141]	-539.5	290.25	12	87.5
460	S[142]	-552.5	183.75	12	87.5
461	S[143]	-565.5	290.25	12	87.5
462	S[144]	-578.5	183.75	12	87.5
463	S[145]	-591.5	290.25	12	87.5
464	S[146]	-604.5	183.75	12	87.5
465	S[147]	-617.5	290.25	12	87.5
466	S[148]	-630.5	183.75	12	87.5
467	S[149]	-643.5	290.25	12	87.5
468	S[150]	-656.5	183.75	12	87.5
469	S[151]	-669.5	290.25	12	87.5
470	S[152]	-682.5	183.75	12	87.5
471	S[153]	-695.5	290.25	12	87.5
472	S[154]	-708.5	183.75	12	87.5
473	S[155]	-721.5	290.25	12	87.5
474	S[156]	-734.5	183.75	12	87.5
475	S[157]	-747.5	290.25	12	87.5
476	S[158]	-760.5	183.75	12	87.5

No.	Name	X-axis	Y-axis	W	Н
477	S[159]	-773.5	290.25	12	87.5
478	S[160]	-786.5	183.75	12	87.5
479	S[161]	-799.5	290.25	12	87.5
480	S[162]	-812.5	183.75	12	87.5
481	S[163]	-825.5	290.25	12	87.5
482	S[164]	-838.5	183.75	12	87.5
483	S[165]	-851.5	290.25	12	87.5
484	S[166]	-864.5	183.75	12	87.5
485	S[167]	-877.5	290.25	12	87.5
486	S[168]	-890.5	183.75	12	87.5
487	S[169]	-903.5	290.25	12	87.5
488	S[170]	-916.5	183.75	12	87.5
489	S[171]	-929.5	290.25	12	87.5
490	S[172]	-942.5	183.75	12	87.5
491	S[173]	-955.5	290.25	12	87.5
492	S[174]	-968.5	183.75	12	87.5
493	S[175]	-981.5	290.25	12	87.5
494	S[176]	-994.5	183.75	12	87.5
495	S[177]	-1007.5	290.25	12	87.5
496	S[178]	-1020.5	183.75	12	87.5
497	S[179]	-1033.5	290.25	12	87.5
498	S[180]	-1046.5	183.75	12	87.5
499	S[181]	-1059.5	290.25	12	87.5
500	S[182]	-1072.5	183.75	12	87.5
501	S[183]	-1085.5	290.25	12	87.5
502	S[184]	-1098.5	183.75	12	87.5
503	S[185]	-1111.5	290.25	12	87.5
504	S[186]	-1124.5	183.75	12	87.5
505	S[187]	-1137.5	290.25	12	87.5
506	S[188]	-1150.5	183.75	12	87.5
507	S[189]	-1163.5	290.25	12	87.5
508	S[190]	-1176.5	183.75	12	87.5
509	S[191]	-1189.5	290.25	12	87.5
510	S[192]	-1202.5	183.75	12	87.5
511	S[193]	-1215.5	290.25	12	87.5
512	S[194]	-1228.5	183.75	12	87.5
513	S[195]	-1241.5	290.25	12	87.5
514	S[196]	-1254.5	183.75	12	87.5
515	S[197]	-1267.5	290.25	12	87.5
516	S[198]	-1280.5	183.75	12	87.5
517 518	S[199]	-1293.5	290.25	12	87.5
519	VBD[2] DUMMY[12]	-1306.5 -1319.5	183.75 290.25	12	87.5 87.5
520	DUMMY[13]	-1319.5	183.75	12	87.5
521				15	90
522	DUMMY[14] DUMMY[15]	-1512.5 1530.5	295 295	15	90
523	DUMMY[16]	-1539.5 -1566.5	295	15	90
524	G[199]	-1500.5	295	15	90
525	G[199] G[197]	-1620.5	295	15	90
526	G[197]	-1647.5	295	15	90
527	G[193]	-1674.5	295	15	90
528	G[193]	-1701.5	295	15	90
529	G[189]	-1701.5	295	15	90
530	G[187]	-1755.5	295	15	90
531	G[185]	-1782.5	295	15	90
532	G[183]	-1809.5	295	15	90
533	G[181]	-1836.5	295	15	90
534	G[179]	-1863.5	295	15	90
535	G[177]	-1890.5	295	15	90
536	G[175]	-1917.5	295	15	90

537 G[173] -1944.5 295 15 90 538 G[171] -1971.5 295 15 90 539 G[169] -1998.5 295 15 90 540 G[165] -2025.5 295 15 90 541 G[163] -2079.5 295 15 90 542 G[163] -2079.5 295 15 90 542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295	No.	Name	X-axis	Y-axis	W	Н
539 G[169] -1998.5 295 15 90 540 G[167] -2025.5 295 15 90 541 G[165] -2052.5 295 15 90 542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[143] -232.5 295 15 90 552 G[141] -2376.5 295<	537	G[173]	-1944.5	295	15	90
540 G[167] -2025.5 295 15 90 541 G[165] -2052.5 295 15 90 542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[153] -2214.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[141] -2376.5 295 15 90 553 G[141] -2376.5 295	538	G[171]	-1971.5	295	15	90
541 G[165] -2052.5 295 15 90 542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295	539	G[169]	-1998.5	295	15	90
542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[153] -2214.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 550 G[143] -2322.5 295 15 90 551 G[143] -2349.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295	540	G[167]	-2025.5	295	15	90
542 G[163] -2079.5 295 15 90 543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[153] -2214.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 550 G[143] -2322.5 295 15 90 551 G[143] -2349.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295	541	G[165]	-2052.5	295	15	90
543 G[161] -2106.5 295 15 90 544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[133] -2484.5 295	542	G[163]	-2079.5			90
544 G[159] -2133.5 295 15 90 545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[131] -2457.5 295 15 90 557 G[133] -2484.5 295	543					
545 G[157] -2160.5 295 15 90 546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[131] -2457.5 295 15 90 557 G[133] -2484.5 295	544			295	15	90
546 G[155] -2187.5 295 15 90 547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 555 G[135] -2457.5 295 15 90 556 G[131] -2511.5 295 15 90 557 G[133] -2484.5 295 15 90 559 G[129] -2538.5 295				295		90
547 G[153] -2214.5 295 15 90 548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 555 G[137] -2430.5 295 15 90 555 G[137] -2430.5 295 15 90 555 G[137] -2457.5 295 15 90 556 G[131] -2511.5 295 15 90 557 G[131] -2538.5 295				295		
548 G[151] -2241.5 295 15 90 549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[123] -2619.5 295						
549 G[149] -2268.5 295 15 90 550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295					_	
550 G[147] -2295.5 295 15 90 551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[117] -270.5 295<						
551 G[145] -2322.5 295 15 90 552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295						
552 G[143] -2349.5 295 15 90 553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295						
553 G[141] -2376.5 295 15 90 554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[113] -2754.5 295						
554 G[139] -2403.5 295 15 90 555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295						
555 G[137] -2430.5 295 15 90 556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[13] -2784.5 295 15 90 569 G[109] -2808.5 295<						
556 G[135] -2457.5 295 15 90 557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 570 G[107] -2835.5 295						
557 G[133] -2484.5 295 15 90 558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295						
558 G[131] -2511.5 295 15 90 559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 572 G[103] -2862.5 295						
559 G[129] -2538.5 295 15 90 560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295						
560 G[127] -2565.5 295 15 90 561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 574 G[99] -2943.5 295<				-		
561 G[125] -2592.5 295 15 90 562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
562 G[123] -2619.5 295 15 90 563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
563 G[121] -2646.5 295 15 90 564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
564 G[119] -2673.5 295 15 90 565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 578 G[91] -3051.5 295 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
565 G[117] -2700.5 295 15 90 566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295						
566 G[115] -2727.5 295 15 90 567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295						
567 G[113] -2754.5 295 15 90 568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
568 G[111] -2781.5 295 15 90 569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
569 G[109] -2808.5 295 15 90 570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90		_				
570 G[107] -2835.5 295 15 90 571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
571 G[105] -2862.5 295 15 90 572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
572 G[103] -2889.5 295 15 90 573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90	_					
573 G[101] -2916.5 295 15 90 574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
574 G[99] -2943.5 295 15 90 575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
575 G[97] -2970.5 295 15 90 576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
576 G[95] -2997.5 295 15 90 577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
577 G[93] -3024.5 295 15 90 578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
578 G[91] -3051.5 295 15 90 579 G[89] -3078.5 295 15 90						
579 G[89] -3078.5 295 15 90						
580 G[87] -3105.5 295 15 90						
581 G[85] -3132.5 295 15 90						
582 G[83] -3159.5 295 15 90						
						90
584 G[79] -3213.5 295 15 90						
						90
586 G[75] -3267.5 295 15 90						
587 G[73] -3294.5 295 15 90						
588 G[71] -3321.5 295 15 90						
589 G[69] -3348.5 295 15 90						
590 G[67] -3375.5 295 15 90		G[67]	-3375.5			90
 						90
592 G[63] -3429.5 295 15 90						
593 G[61] -3456.5 295 15 90	593	G[61]		295	15	90
594 G[59] -3483.5 295 15 90	594		-3483.5	295		90
					15	90
596 G[55] -3537.5 295 15 90	596	G[55]	-3537.5	295	15	90

No.	Name	X-axis	Y-axis	W	Н
597	G[53]	-3564.5	295	15	90
598	G[51]	-3591.5	295	15	90
599	G[49]	-3618.5	295	15	90
600	G[47]	-3645.5	295	15	90
601	G[45]	-3672.5	295	15	90
602	G[43]	-3699.5	295	15	90
603	G[41]	-3726.5	295	15	90
604	G[39]	-3753.5	295	15	90
605	G[37]	-3780.5	295	15	90
606	G[35]	-3807.5	295	15	90
607	G[33]	-3834.5	295	15	90
608	G[31]	-3861.5	295	15	90
609	G[29]	-3888.5	295	15	90
610	G[27]	-3915.5	295	15	90
611	G[25]	-3942.5	295	15	90
612	G[23]	-3969.5	295	15	90
613	G[21]	-3996.5	295	15	90
614	G[19]	-4023.5	295	15	90
615	G[17]	-4050.5	295	15	90
616	G[15]	-4077.5	295	15	90
617	G[13]	-4104.5	295	15	90
618	G[11]	-4131.5	295	15	90
619	G[9]	-4158.5	295	15	90
620	G[7]	-4185.5	295	15	90
621	G[5]	-4212.5	295	15	90
622	G[3]	-4239.5	295	15	90
623	G[1]	-4266.5	295	15	90
624	DUMMY[17]	-4293.5	295	15	90
625	DUMMY[18]	-4320.5	295	15	90
626	DUMMY[19]	-4347.5	295	15	90
627	DUMMY[20]	-4374.5	295	15	90
628	DUMMY[21]	-4401.5	295	15	90
629	DUMMY[22]	-4428.5	295	15	90

13. REVISION HISTORY

Revision	Content	Page	Date
1.0.1	JD79660 datasheet 1 st version	-	2023/06/06
1.0.2	Updated Bump Information		2023/06/14
1.0.3	Updated Chip Outline		2023/06/20

