Chapter 4(part – 2) Registers, Counters & the Memory Units

Registers

FIGURE 7-1 4-bit register

Register with Parallel Load

4-bit register with parallel load

Register with Parallel Load

Register with parallel load using D flip-flops

Shift Register

TABLE 7-1 Serial-Transfer Example

Timing Pulse		hift Re	gister	A	S	nift Reg	gister l	3	Serial Output of B
Initial value	CT,	0.	_1	1	0	0,	1,	0	0
After T_1	71	14	70	71	$\searrow 1$	\nearrow 0	70	1	1
After T ₂	1	1	1	0	1	1	0	0	0
After T_3	0	1	1	1	0	1	1	0	0
After T ₄	1	0	1	1	1	0	1	1	1

4-Bit Bidirectional Shift Register with Parallel Load

4-Bit Binary Ripple Counter

4-Bit Binary Ripple Counter

TABLE 7-4
Count Sequence for a Binary Ripple Counter

C	ount S	equenc	:e		
A4	A_3	Az		Cor	nditions for Complementing Flip-Flops
0	0	0	0	Complement A ₁	
0	0	0	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2
0	0	1	0	Complement A ₁	
0	0	1	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2 ;
	\mathcal{C}	\ <u>\</u>	\checkmark	•	A_2 will go from 1 to 0 and complement A_3
0	i	ŏ	Ò	Complement A ₁	
0	1	0	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2
0	1	1	0	Complement A ₁	
0	1	1	1	Complement A ₁	A_1 will go from 1 to 0 and complement A_2 ;
			-	•	A_2 will go from 1 to 0 and complement A_3 ;
	\ C	\(C	\checkmark		A ₃ will go from 1 to 0 and complement A ₄
ì	ď	ő	ò	and so on	

BCD Ripple Counter

FIGURE 7-14 BCD ripple counter

4 Bit Synchronous Binary Counter

4 Bit Binary Up Down Counter

Johnson Counter

(a) Four-stage switch-tail ring counter

Sequence	Flip	p-flor	out	outs	AND gate required for output
number	Ā	В	C	E	
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	ı	1	1	A'B
7	0	0	1	1	B'C
8	0	0	0	1	C'E

(b) Count sequence and required decoding.

FIGURE 7-23

Construction of a Johnson counter

Memory Cell (Binary Cell)

(a) Logic diagram

(b) Block diagram

FIGURE 7-26 Memory cell

Logical Construction of RAM (4 X 3)

FIGURE 7-27 Logical construction of a 4 × 3 RAM

1K X 8 RAM

FIGURE 7-28

Block diagram of a $1K \times 8$ RAM chip.

4K X 8 RAM

1K X 16 RAM

FIGURE 7-30 Block diagram of a 1K > 16 RAM.