

CITY OF PORT HUENEME CONSUMER CONFIDENCE REPORT 2018

The City of Port Hueneme (City) is committed to providing complete and accurate information regarding the safety of the wateryoudrink.The State Water Resources Control Board (SWRCB) requires the City to send an annual Consumer Confidence Report (CCR) to all customers regarding the water quality they received during the previous calendar year. The City tests its water as required by SWRCB regulations and reports these results each month. Additionally, Tri-annual inspections of the operational policies and procedures at the City are conducted. All of this is done to ensure the safety of your drinking water.

This CCR summarizes the 2018 water quality test results performed by the City, United Water Conservation District (United), Port Hueneme Water Agency (PHWA), and Calleguas Municipal Water District (Calleguas). It also includes details about where your water comes from, what it contains, and how it compares to State standards. Water constituents are listed under the appropriate water quality standard and include the maximum contaminant level, federal maximum contaminant level goal or the California public health goal, and the range of results. Water testing is routinely performed for bacteria and protozoan, disinfectant residual, minerals, radioactivity, inorganic and organic chemicals, and other water quality parameters

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo o hable con alguien que lo entienda bien.

Where Does My Water Come From?

The City receives its water from the PHWA treatment plant. The PHWA provides treatment to groundwater that comes from United. United's water comes from groundwater located in the El Rio area of Ventura County. This water is pumped from shallow wells drilled into the Oxnard and Fox Canyon aquifers. These two aquifers, which are naturally high in minerals, are fed by the Santa Clara River drainage basin. The drainage basin receives water from various sources such as rivers, streams, wastewater treatment plants, and agricultural runoff.

United completed a Source Water Assessment for the drinking water wells in October 2001. This assessment provides a survey of potential sources of contamination of the ground water that supplies the wells. Activities that constitute the highest risk to the water are: Petroleum storage tanks and fueling operations, septic systems, and animal feed lots that are no longer in use. The Surface Water Sanitary Survey was last updated in January of 2016. A copy of the Source Water Assessment are available from United at 805-525-4431.

Callegaus receives water from Metropolitan Water District of Southern California (MWD). MWD completed a Source Water Assessment for both the State Water Project and Colorado River supply. Activities that constitute the highest risk to the water are: Urban and storm water runoff, increasing urbanization in the watershed, and wastewater. The State Water survey was updated in 2011 and the Colorado River supply in 2015. A copy of the Source Water Assessments are available from MWD at 213-217-6850.

PHWA's water treatment plant uses two different types of stateof-the-art membrane filtration technologies to treat United's water. These desalination techniques are known as reverse osmosis (RO) and nano-filtration (NF). Three of these units operate side-by-side and each one produces between 1 and 1.5 million gallons of drinking water every day. The treatment process softens the water received from United by lowering the mineral content and minimizes the corrosiveness of the water through the addition of sodium hydroxide. In addition the water is disinfected using chloramines instead of chlorine. Chloramines have better taste, fewer odors, and reduces the formation of trihalomethane in the water, which is a known carcinogen.

Fish Owners - you should chemically remove the chloramines in the PHWA water when preparing your fish tank water. Failure to remove the chloramines could result in risk to the aquatic life in the tank.

State water imported by the MWD is also used at the PHWA treatment plant. MWD water comes from the Sierra Nevada Mountains in Northern California and is conveyed through the State Water Project's network of reservoirs, aqueducts, and pump stations. The State water is filtered and disinfected by MWD surface water treatment plants and brought into Ventura County by Calleguas. Calleguas brings the State water to the PHWA treatment plant where it is blended with the treated United water and then delivered to you. The blended water contains about 2.5 parts per million chloramines.

Does my Water Meet EPA and State Standards? Is my Tap Water Safe to Drink?

Yes. Your water meets all USEPA (United States Environmental Protection Agency) and SWRCB water quality standards. The City did not have any violations of any treatment, monitoring, or reporting requirements during 2018. None of the constituents in the drinking water exceeded the maximum contaminant levels or action levels set by the SWRCB or USEPA. The tables in this report list all of the drinking water constituents that were detected during the most recent sampling period as required by the SWRCB.

Is Tap Water as Safe as Bottled Water?

The Food and Drug Administration (FDA), not the USEPA, regulates bottled water companies. The marketing of the bottled water companies has led consumers to believe that bottled water has higher quality standards than tap water. The FDA does not require bottled water companies to test for the same constituents (such as giardia and asbestos) that the

USEPA requires for tap water. Also, the FDA does not have a prohibition on total coliform bacteria. Total coliform bacteria are prohibited in tap water. The FDA does not regulate bottled water companies that bottle and package water within the individual states. It is the responsibility of each state to regulate its bottled water companies. This accounts for 60-70% of all bottled water companies. Fortunately, California is one of the more progressive states, but as with most of the states, there is a lack of manpower, compared to that provided by USEPA for tap water, for the enforcement of bottled water regulations.

If you do drink bottled water, do the research and educate yourself on the quality of your bottled water. Many people are misled to think that their tap water is not high quality but, in actuality, it is bottled water, which is usually subject to less rigorous testing and purity standards.

Why are Contaminants in my Water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). In order to ensure that tap water is safe to drink, the USEPA and SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and some infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/ Centers for Disease Control guidelines on appropriate means

to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, wastewater plants and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before it is treated include the following:

- Microbial Contaminants Viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic Contaminants Salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides & Herbicides May come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic Chemicals Including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can, also come from gas stations, urban storm water runoff, agricultural application, and septic systems.
- **Radioactive Contaminants** Can be naturally-occurring or be the result of oil and gas production and mining activities.

Radon

Radon is a radioactive gas that you cannot see, taste or smell. It is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water can produce a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, you may test the air in your home. There are simple ways to fix a radon problem that are not too costly. For additional information, call the EPA's Radon Hotline (800-SOS-RADON).

How Can I Get More Information?

For additional information or questions regarding this report, please contact Evelia Hernandez, City of Port Hueneme Water Division at (805) 986-6563.

The public is always welcome to attend the City Council meetings, which are held the 1st and 3rd Mondays of each month at 6:30 p.m. at the City of Port Hueneme Civic Center located at 250 N. Ventura Road, Port Hueneme, CA. In addition, the public is welcome to attend the PHWA Board meetings. These are monthly meeting held on the 3rd Monday at 4:00 p.m. at the City of Port Hueneme Civic Center.

2018 Consumer Confidence Report PHG State Purchased Purchased MCL (MCLG) State CMWD BWRDF COPH UWCD Range (Calleguas) Parameter [MRDL] [MRDLG] Average (United) (Blended) Major Sources in Drinking Water 100% 100% Percent of Supply 83% PRIMARY STANDARDS--Mandatory Health-Related Standards CLARITY (a) Highest Single Value TT = % of samples <0.3 NTU 0.06 0.53 0.2 Combined Filter Effluent Turbidity NTU 100% 50% 100% 100% MICROBIOLOGICAL Range ND 0.0% ND ND Total Coliform Bacteria 2 or 5.0% (0) (b) Naturally present in the environment Average 0.0% 0.0% 0.0% 0.0% ND Range ND 0 0 Fecal Coliform and E. coli Human & animal fecal waste (b) (b) (0) ND ND Average 0 0 INORGANIC CHEMICALS (Lead & Copper is analyzed every three years, our last sampling event was 2017) Range ND - 75 0 NA NA Erosion of natural deposits; 1000 600 50 Aluminum ppb Average ND 0 NA NA esidue from some water treatment process 4 - 6 NA Range ND - 4.0 NA Erosion of natural deposits: runoff from 10 0.004 ND 5.0 NA NA orchards; electronics production wastes Arsenic ppb Average Treatment-related Range 0.6 0.47 - 0.99 NΑ 0.6 - 1.0 Fluoride (c) 2.0 0.1 Highest RA NΑ Water additive that promotes strong teeth ppm 0.7 0.6 0.79 Range ND - 0.5 5.3 5.3 6.6 - 8.7 NA Runoff & leaching from fertilizer use & 10 10 0.4 Nitrate (as N) ppm Average 0.5 7.8 NΑ sewage; erosion of natural deposits Range ND 21 - 28NA NA Discharge from refineries, mines and 50 30 Selenium ppb Average ND 24.5 NA NA chemical manufacturers, runoff RADIOLOGICALS [analyzed every three years, for four consecutive quarters (MWD sampled 2017, CMWD sampled 2017 and UWCD 2017) ND - 3.0 7.46 - 14.9 NA Range NA Erosion of Gross Alpha Particle Activity pCi/L 15 (0)3.0 Average ND 10.46 NA NΑ natural deposits Range ND - 1.0 2.32 - 5.68NA NA Erosion of Uranium pCi/L 20 0.43 1.0 ND NA NA natural deposits Average 3.6 Range ND 0 - 508 NA NΑ pCi/L NS 100.0 ND NA NΑ Average 283 DISINFECTION BY-PRODUCTS AND DISINFECTANT RESIDUALS Range 1.4 - 3.0Drinking water disinfectant added for 2.38 2 - 8 Total Chlorine Residual (*) [4.0] [4] ppm Highest RAA reatment By-product of drinking water Range Haloacetic Acids (f) (*) 60 1.0 3.9 daa Highest RAA disinfection 18 - 27 By-product of drinking water Range Total Trihalomethanes (f) (*) ppb 80 1.0 Highest RAA 22.4 chlorination **SECONDARY STANDARDS--Aesthetic Standards** Range ND 0 - 20ND NA NL = 500 Manganese ppb 50 20 Average ND 0.37 ND NA eaching from natural deposits Range 1 - 4 NA 0 Odor Threshold TON 3 Average NA Naturally occurring organic materials Range 428 - 444 611 NΑ Substances that form ions when in water; seawater influence Specific Conductance μS/cm 1,600 1508.3 611 NΑ Average Range 43.0 - 46.0 473 - 538 129 NΑ Runoff/leaching from natural deposits; Sulfate 500 0.5 44.0 512.17 NΑ industrial wastes ppm Average 129 Range 236 - 254 1090 - 1150 390 NA <u>1,</u>000 Total Dissolved Solids 390 Runoff/leaching from natural deposits ppm Average 243 11197 NA Range ND 0.08 - 0.14 0.2 NA Turbidity (monthly) NTU ND 0.11 0.2 NA Soil runoff Average ADDITIONAL PARAMETERS (Unregulated) Range 0.1 0.6 0.5 NA Boron ppm NL=1 0.1 0.1 0.6 0.5 Average NA 149 - 175 45 NA Range 19 - 2 Calcium ppm NS Average 20 162 45 NA 29 Range NΑ NΑ NΑ NL=800 20 Chlorate ppb Average 29 NA NA NA Range ND 0 - 5 NA NA Chromium (Total) NONE 10 daa 50 ND NA NA Average 2.5 12.2-12.6 Range 12.0 NΑ Corrosivity (a) NS Average 12.0 12.4 12.2 NA 602 - 684 Range 84 - 94 182 182 Hardness (Total Hardness) ppm NS Average 89 643 182 182 Range 49-55 35 2 - 40 10.6 10.6 Hardness (Grains per Gallon) Grains NS 37.6 10.6 Average 5.2 10.6 Range 9.5 - 9.956 - 60 NA NS 9.7 Magnesium ppm 58 NA Average Range 8.4 - 8.5 7.2 - 7.9 8.1 NΑ pН Units NS Average 8.5 8.1 NΑ Range 2.4 - 2. 4 - 5 NΑ 2.4 45 - 46 Potassium ppm NS Average 4.5 3 NA 96 - 101 56 Range NA NS Sodium 98.5 56 ppm Average 46 NA Range 2.0 - 2.6 0 - 1 NA NA Total Organic Carbon ppm TT 0.3 Average 2.6 0.65 NA NΑ Fourteen samples for lead were collected from selected faucets and drinking fountains in five schools in 2018, all samples were non-detect for lead. Tap water samples were collected for lead and copper analyses from sample sites throughout the community. Tap sampling is not required for CMWD, UWCD and BWRDF Substance PHG Sites Above Violation Typical Source Year Amount (Unit of measure) Sampled (MCLG) Detected ΑL AL / Total sites 90th%tile) Internal corrosion of household plumbing systems: erosion of natural deposits 0.25 2/32 2017 13 0.3 Nο Copper (ppm) eaching from wood preservatives Internal corrosion of household water plumbing systems: discharges from industrial 2017 15 0.2 ND 0/32 No Lead (ppb) manufactures: erosion of natural deposits

CITY OF PORT HUENEME

POSTAL CUSTOMER

PRSRT STD U.S. POSTAGE **PAID** Permit No. 634 Oxnard, CA

ECRWSS

WATER QUALITY REPORT 2018

Abbreviations & Notes

AI = Aggressiveness Index

AL= Federal Regulatory Action Level

DLR = Detection Limits for Purposes of Reporting

MFL = Million Fibers per Liter

µS/cm = MicroSiemen per Centimeter

MPN = Most Probable Number

NA = Not Analyzed

ND = None Detected

NL = Notification Level

* = Samples Taken from the Distribution System

NS = No Standard

NTU = Nephelometric Turbidity Units

pCi/L = PicoCuries per Liter

ppm = Parts per Million, or Milligrams per Liter (mg/L)

ppb = Parts per Billion, or Micrograms per Liter (µg/L)

ppt = Parts per Trillion, or Nanograms per Liter (ng/L)

ppg = Parts per Quadrillion, or Picograms per Liter (pg/L)

RAA = Running Annual Average

TON = Threshold Odor Number CMWD (Calleguas) Calleguas Munic

Calleguas Municipal Water District

Surface Water Source

UWCD (United) United Water Conservation District

BWRDF (Blended) Brackish Water Reclamation Demonstration

Facility (BWRDF) Samples taken after

Calleguas and United sources were blended.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (RAL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

- (a) The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1.0 NTU at any time.
- (b) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive (or 2 samples if a system collects less than 40 samples per month). Calleguas collects less than 40, Metropolitan collects greater than 40. Fecal coliform/E. coli MCLs: The occurrence of 2 consecutive total coliform positive samples, one of which containing fecal coliform/E. coli, constitutes an acute MCL violation. These MCLs were not violated in 2018.
- (c) The Metropolitan Water District treats their water by adding fluoride to the naturally occurring level in order to help prevent dental cavities in consumers. The fluoride levels in the treated water are maintained within a range of 0.47 0.99 ppm, as required by Department regulations.
- (d) State MCL is 45 mg/L as Nitrate, which equals 10.0 mg/L as Nitrogen.
- (e) The gross beta particle activity MCL is 4 milirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.
- (f) Compliance for treatment plants that use ozone is based on a running annual average of monthly samples. UWCD water is not subject to these requirements.
- (g) Compliance is based on a running annual average of quarterly distribution system samples.
- (h) Al measures the aggressiveness of water transported through pipes. Water with Al <10.0 is highly aggressive and would be very corrosive to almost all materials found in a typical water system. Al >12.0 indicates non-aggressive water. Al between 10.0 and 11.9 indicates moderately aggressive water

The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

For Lead and/or Copper

32 sites were sampled in 2017 as a first drawn sample for lead and copper. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Port Hueneme is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.