Storing Data and Files

Thierry Sans

Storing Data in a Database

Modern Web Platform

Client Side

Server Side

Why using a database

- Persistency
- Concurrency (avoid race conditions)
- Query
- Scalability

SQL vs NoSQL databases

Relational database (SQL database)

Data structure	tables and tuples
Query language	SQL
Inconvenient	not-optimized for big data analysis
Advantage	complex queries
Technology	PostgreSQL, MySQL, MariaDB, SQLite, MSSQL

NoSQL database

Data structure	key/value pairs
Query language	API style
Inconvenient	not adequate for complex queries
Advantage	optimized for big data analysis
Technology	MongoDB, Redis, CouchDB, NeDB

ORM - Object Relational Mapping

→ Mapping between (OOP) objects and the database structure

Examples

- Sequelize for PostgreSQL, MySQL, MariaDB, SQLite
- Mongoose for MongoDB

Do/Don't

- Do retrieve selected elements only rather than retrieving an entire collection and filtering afterwards
- Do define primary keys
 rather than relying on auto-generated ones
- Do split data into different collections rather than storing list attributes
- Do create join collections whenever appropriate (only for NoSQL database without performant join feature)

Retrieving collections with paginated results

→ Only retrieve what you need from a potentially large collection

Examples

```
GET /messages[?page=0]
GET /messages?page=1
GET /messages[?max=100]
GET /messages?max=20
```

Handling files

Browser restrictions

- It is impossible to write a piece of code that reads an arbitrary file in (client-side) Javascript
- Only files selected by users through file input forms can be processed

Sending a file from the terminal

```
$ curl -X POST
-H "Content-Type: multipart/form-data"
-F "picture=@localpath/to/img.png"
-F "username=bart"
http://...
```

Sending a file from the browser

Form action (with page refresh)

```
<form action="/url"
    method="POST"
    enctype="multipart/form-data">
```

Fetch request (without page refresh)

```
const file = document.get ...
const data = new FormData();
data("picture", file);
fetch( "/api/users/", {
   method: "POST",
   body: data
})
```

What is received on the server

File metadata

- filename
- mimetype (file type)
- size
- and others

File content

Compressed binary or string

MIME types

MIME (Multipurpose Internet Mail Extensions) is also known as the **content type**

→ Define the format of a document exchanged on internet (IETF standard) http://www.iana.org/assignments/media-types/index.html

Examples of MIME types

- text/html
- text/css
- text/javascript
- image/jpeg image/gif image/svg image/png (and so on)
- application/pdf
- application/json

Example of how images are retrieved


```
GET hello/bart/
    <img src=images/bart.jpg/>
              MIME: text/html
GET images/bart.jpg
```

MIME: image/jpg

Do/Don't with files

- Do not send a base64 encoded file content with JSON, use multipart/form-data instead (compression)
- · Do not store uploaded files with the static content
- Do not serve uploaded files statically (security)
- Do store the mimetype and set the HTTP response header mimetype when files are sent back