ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

# Работа 3.3.5. Эффект Холла в металлах

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

# Содержание

| 1 | Ані |                                                 | 3  |
|---|-----|-------------------------------------------------|----|
| 2 | Teo | ретические сведения                             | 3  |
| 3 | Экс | спериментальная установка                       | 6  |
| 4 | Me  | годика измерений                                | 7  |
| 5 | Изм | мерения и обработка их результатов              | 8  |
|   | 5.1 | Калибровочная кривая электромагнита             | 8  |
|   | 5.2 | Находжение постоянной Холла для медного образца | 8  |
|   | 5.3 | Определение концентрация носителей              | 8  |
|   | 5.4 | Определение удельной проводимости               | 9  |
| 6 | Вы  | вод                                             | 9  |
| 7 | Прі | иложения                                        | 10 |
|   | 7.1 | Таблицы                                         | 10 |
|   | 7.2 | Графики                                         | 12 |

#### 1 Аннотация

В работе изучаются особенности проводимости металлов в геометрии мостика Холла. Ток пропускается по плоской прямоугольной металлической пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и вычисляется концентрация основных носителей заряда.

## 2 Теоретические сведения

На заряд в электромагнитном поле действует сила Лоренца:

$$\vec{F} = q\vec{E} + q[\vec{v}, \vec{B}] \tag{1}$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с  $\vec{E}$ . Отклонившиеся носители скапливаются на поверхности проводника так, что образуют электрическое поле, компенсирующее внешнее магнитное поле. Возникновение поперечного току электрического поля в образце, помещённом в магнитном поле, называют эффектом Холла.

Закон Ома в дифференциальной форме:

$$ec{\mathbf{j}} = \widehat{\mathbf{\sigma}} ec{\mathsf{E}}, \ \mathrm{где} \ \widehat{\mathbf{\sigma}} = egin{pmatrix} \sigma_{\mathrm{xx}} & \sigma_{\mathrm{xy}} & \sigma_{\mathrm{xz}} \\ \sigma_{\mathrm{yx}} & \sigma_{\mathrm{yy}} & \sigma_{\mathrm{yz}} \\ \sigma_{\mathrm{xz}} & \sigma_{\mathrm{zy}} & \sigma_{\mathrm{zz}} \end{pmatrix}$$
 - тензор проводимости

Пусть система содержит носители заряда только одного типа. Индукцию магнитного поля  $\vec{B}$  направим вдоль оси Oz. Так как ток постоянный, то заряды движутся в среднем с постоянной скоростью  $\Longrightarrow$  сила  $\Lambda$ оренца уравновешена "трением" со стороны среды:

$$q(\vec{E} + [\vec{v}, \vec{B}]) - \frac{q\vec{v}}{\mu} = 0$$
 
$$\vec{E} = \frac{\vec{v}}{\mu} - [\vec{v}, \vec{B}]$$

Связь плотности тока со средней скоростью носителей заряда:

$$\vec{j} = qn\vec{v} \implies \vec{v} = \frac{\vec{j}}{qn}$$

Следовательно:

$$\vec{E} = \frac{\vec{j}}{qn\mu} - \frac{1}{qn}[\vec{j}, \vec{B}]$$

Введём обозначение:  $\sigma_0 = q \eta \mu$  - удельная проводимость среды в отсутствии магнитного поля. С учётом этого обозначения формула примет окончательный вид:

$$\vec{E} = \frac{\vec{j}}{\sigma_0} - \frac{1}{qn} [\vec{j}, \vec{B}]$$
 (2)

Последнее равенство можно записать в проекциях на координатные оси:

$$E_{x} = \frac{j_{x}}{\sigma_{0}} - \frac{j_{y}B}{\eta q}; \ E_{y} = \frac{j_{y}}{\sigma_{0}} + \frac{j_{x}B}{\eta q}; \ E_{z} = \frac{j_{z}}{\sigma_{0}}$$

Соответственно, соотношение (2) может быть записано в матричном виде:

$$\vec{E} = \begin{pmatrix} 1 & -\mu B & 0 \\ \mu B & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{\vec{j}}{\sigma_0}$$
 (3)

Матрицу тензора проводимости находим как обратную к матрице в уравнении (3):

$$\widehat{\sigma} = \frac{\sigma_0}{1 + (\mu B)^2} \begin{pmatrix} 1 & \mu B & 0 \\ -\mu B & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (4)

Безразмерный коэффициент µВ называется параметром замагниченности.

Для исследования зависимости проводимости среды от магнитного поля используется мостик Холла (см. рис 2) В данной схеме ток вынуждают течь по оси Ох вдоль плоской пластинки (ширина пластинки а, толщина h, длина l).



Рисунок 2. Мостик Холла

В проводимом опыте мостик имел следующие параметры:

 $\mathbf{Meдь}$ :  $h = 0.05 \text{ мм}, \, l_{34} = 6 \text{ мм } l = 8 \text{ мм}$ 

Цинк: h = 0.12 мм,  $l_{34} = 3.5$  мм, l = 10.5 мм

Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, «прибивает» носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно  $U_{\perp} = E_y \, \alpha$ , где:

 $E_y = \frac{j_x B}{nq}$ 

Плотность тока, текущего через образец, равна  $j_x = I/\alpha h$ , где I — полный ток. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{nqh}I = R_{H}I\frac{B}{h}$$
 (5)

Константу  $R_H=1/nq$  называют *постоянной Холла*. Знак постоянной Холла определяется знаком заряда носителей. Продольная напряжённость электрического поля равна

$$E_x=j_x/\sigma_0$$

и падение напряжения  $U_{||} = \mathsf{E}_x \iota$  вдоль пластинки определяется омическим

сопротивлением образца  $R_0 = l/(\sigma_0 \alpha h)$ :

$$U_{||} = IR_0$$

Интересно отметить, что несмотря на то, что тензор проводимости (3.26) явно зависит от В, продольное сопротивление образца в данной геометрии от магнитного поля не зависит.

## 3 Экспериментальная установка



Рис. 1. Схема установки для исследования эффекта Холла в металлах

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 1. В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Разъём  $K_1$  позволяет менять направление тока в обмотках электромагнита. Ток питания электромагнита измеряется амперметром  $A_1$ . Градуировка

электромагнита (связь тока с индукцией поля) проводится при помощи миллитесламетра на основе датчика Холла. Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (рис. 16). Ток через образец регулируется реостатом  $R_2$  и измеряется амперметром  $A_2$ .

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов  $U_{\perp}$ , которая измеряется с помощью микровольтметра, если переключатель  $K_3$  подключён к точке 2 образца. При подключении  $K_3$  к точке 3 микровольтметр измеряет омическое падение напряжения  $U_{34}$ , вызванное током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута. Ключ  $K_2$  позволяет менять полярность напряжения, поступающего на вход микровольтметра.

## 4 Методика измерений

Контакты 2 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки. Исключить этот эффект можно, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{\perp} = U_{24} - U_0$$

По знаку  $U_{\perp}$  можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение  $U_{34}$  между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать удельное сопротивление  $\rho_0$  и проводимость  $\sigma_0$  материала образца по формуле

$$\rho_0 = \frac{U_{34}ah}{Il}, \qquad (6)$$

где l — расстояние между контактами 3 и 4.

## 5 Измерения и обработка их результатов

#### 5.1 Калибровочная кривая электромагнита

Сначала была проведена калибровка электромагнита. Её результаты приведены в Таблице 1.

#### 5.2 Находжение постоянной Холла для медного образца

Была измерена зависимость напряжения  $U_{24}$  между контактами 2 и 4 от тока через электромагнит при различных токах через образец. Всего было проведено 5 серий измерений, результаты которых представлены в Таблице 2. По данным этой таблицы и с помощью найденной калибровочной кривой построена зависимость ЭДС Холла от индукции магнитного поля между полюсами электромагнита при каждом из значений тока через образец. Графики 1-5 иллюстрируют эту зависимость.

Угловые коэффициенты аппроксимирующих прямых сведены в Таблицу 3. По данным этой таблицы построен график зависимости угловых коэффициентов от тока через образец: График 6. По этому графику возможно найти постоянную Холла:

$$R_H = hk_2$$

где  $k_2$  - угловой коэффициент прямой на графике 6. Имеем:

$$R_{H} = 1.41 \cdot 10^{-6} \frac{B}{T_{\Lambda} \cdot A} \cdot 5 \cdot 10^{-5} M = 7.05 \cdot 10^{-11} \frac{M^{3}}{K_{\Lambda}}$$

#### 5.3 Определение концентрация носителей

Так как в металлах свободными носителями заряда являются электроны, то их концентрацию можно найти по формуле

$$n = \frac{1}{eR_H}$$

Для меди получаем:

$$n_{Cu} = \frac{1}{1.6 \cdot 10^{-19} \text{ Ka} \cdot 7.05 \cdot 10^{-11} \frac{\text{M}^3}{\text{Ka}}} = 8.9 \cdot 10^{28} \text{M}^3$$

#### 5.4 Определение удельной проводимости

Выло проведено по одному измерению напряжения между контактами 3 и 4 и тока через образец в отсутствии магнитного поля для меди и цинка. Результаты представлены в Таблице 4.

Согласно (6)

## 6 Вывод

## 7 Приложения

#### 7.1 Таблицы

Таблица 1. Калибровка электромагнита

| I, A | В, мТл |
|------|--------|
| 0    | 16.37  |
| 0.16 | 169.5  |
| 0.32 | 332    |
| 0.48 | 492    |
| 0.64 | 655    |
| 0.80 | 774    |
| 0.96 | 857    |
| 1.12 | 920    |
| 1.28 | 971    |

Таблица 2. Измерения ЭДС Холла

| I =                      | 0.2 A                 | I = 0.4 A                |                       | I = 0.6 A               |                       |
|--------------------------|-----------------------|--------------------------|-----------------------|-------------------------|-----------------------|
| $U_0 = 0.08 \text{ мкB}$ |                       | $U_0 = 0.12 \text{ мкВ}$ |                       | $U_0 = 0.2 \text{ мкВ}$ |                       |
| I <sub>M</sub> , A       | U <sub>24</sub> , мкВ | I <sub>M</sub> , A       | U <sub>24</sub> , мкВ | I <sub>M</sub> , A      | U <sub>24</sub> , мкВ |
| 0.16                     | 0.16                  | 0.16                     | 0.24                  | 0.16                    | 0.28                  |
| 0.32                     | 0.2                   | 0.32                     | 0.32                  | 0.32                    | 0.44                  |
| 0.48                     | 0.24                  | 0.48                     | 0.4                   | 0.48                    | 0.56                  |
| 0.64                     | 0.28                  | 0.64                     | 0.52                  | 0.64                    | 0.72                  |
| 0.8                      | 0.32                  | 0.8                      | 0.6                   | 0.8                     | 0.8                   |
| 0.96                     | 0.356                 | 0.96                     | 0.64                  | 0.96                    | 0.88                  |
| 1.12                     | 0.364                 | 1.12                     | 0.64                  | 1.12                    | 0.96                  |
| 1.26                     | 0.38                  | 1.23                     | 0.66                  | 1.23                    | 0.96                  |

| I =                | = 0.8 A               | I = 1 A                  |                       |
|--------------------|-----------------------|--------------------------|-----------------------|
| U <sub>0</sub> =   | 0.2 мкВ               | $U_0 = 0.28 \text{ мкB}$ |                       |
| I <sub>M</sub> , A | U <sub>24</sub> , мкВ | I <sub>M</sub> , A       | U <sub>24</sub> , мкВ |
| 0.16               | 0.36                  | 0.16                     | 0.48                  |
| 0.32               | 0.56                  | 0.32                     | 0.72                  |
| 0.48               | 0.76                  | 0.48                     | 0.96                  |
| 0.64               | 0.96                  | 0.64                     | 1.16                  |
| 0.8                | 1.08                  | 0.8                      | 1.36                  |
| 0.96               | 1.16                  | 0.96                     | 1.44                  |
| 1.12               | 1.24                  | 1.12                     | 1.52                  |
| 1.22               | 1.28                  | 1.22                     | 1.6                   |

Таблица 3. Угловые коэффициенты аппроксимирующих прямых

| I, A | k, $10^{-6} \frac{B}{T_{\Lambda}}$ |
|------|------------------------------------|
| 0.2  | 0.279                              |
| 0.4  | 0.556                              |
| 0.6  | 0.863                              |
| 0.8  | 1.152                              |
| 1.0  | 1.386                              |

Таблица 4. Определение удельной проводимости

|        | Медь | Цинк |
|--------|------|------|
| I, A   | 1    | 1    |
| U, мкВ | 320  | 380  |

## 7.2 Графики

#### График 1. I=0.2~A



График 2. I=0.4~A



График 3. I=0.6~A



 $\Gamma$ рафик 4. I=0.8~A



 $\Gamma$ рафик 5. I=1 A



График 6. k(I)

