Advanced Analysis of Algorithm

Department of Computer Science Swat College of Science & Technology

CS Course : Advanced Analysis of Algorithm Course Instructor : Muzammil Khan

Extra Source

□ http://homepages.ius.edu/RWISMAN/C455/html/notes/Chapter3/ Asymptotic.htm

Advanced Analysis of Algorithms

Order of Growth

- ☐ We require some simplifying assumptions
 - To ease our analysis
- ☐ We do this by ignoring the actual cost of each statement, and even the abstract costs
- ☐ Another simplifying assumption is that
 - It is only the rate of growth or order of growth of a function that interests us

Advanced Analysis of Algorithms

Class Task

- ☐ Group Task
 - Make group of 2 students
- Design an algorithm
 - That find
 - Maximum value &
 - ☐ Minimum value
 - In the array of size nAlso find the time complexity
 - ☐ Best, Worst and Average case running time

Advanced Analysis of Algorithms

Chapter 4

Asymptotic Analysis

Growth Functions – Algorithm Functions

- ☐ The behavior of algorithms are often describe by Standard Mathematical Functions
 - For different range of problems with
 - Different input size
 - Mostly referred as Growth Functions
- ☐ Growth Function classified as
 - Polynomial
 - □ Functions of positive powers of an integer
 - $\bullet \quad \text{i.e.} \ f(n) = n^c$
 - Where c is positive constant

□ Examples are: n^{0.5}, n, n², n⁵ etc...
Advanced Analysis of Algorithms

Growth Functions (Cont...)

- Polylograrithmic
 - ☐ Functions are powers of logarithmic functions
 - i.e. $f(x) = (\log x)^c$
 - \square Examples are: $f(x) = (\log x)^{0.5}$, $\log x$, $(\log x)^2$, $(\log x)^5$ etc...
- Exponential
 - ☐ Functions are powers of a constant
 - $i.e. f(x) = C^{kn}$
 - Where k and c are constant

Advanced Analysis of Algorithms

Growth Functions (Cont...)

- ☐ Algorithms are classified as Polynomial, Logarithmic and Exponential based on
 - Running time expressed in terms of growth function
- Examples
 - An algorithm with running time T(n) = 2ⁿ
 - ☐ Is said to be Exponential Algorithm
 - An algorithm with running time $T(n) = n^2$ ☐ Is said to be Polynomial Algorithm

Advanced Analysis of Algorithms

Standard Growth Functions

☐ Standard Growth Functions use in Analysis of Algorithm are

n	lg n	n	nlg n	n^2	n^3	2"	\sqrt{n}
2	1	2	2	4	8	4	1.4
4	2	4	8	16	64	16	2
8	3	8	24	64	512	256	2.8
16	4	16	64	256	4,096	65,536	4
32	5	32	160	1,024	32,768	4,294,967,296	5.7
64	6	64	384	4,096	262,144	1.8 x 10 ¹⁹	8
128	7	128	896	16,384	2,097,152	3.4 x 10 ³⁸	11
256	8	126	2,048	65,536	16,777,216	1.15 x 10 77	16
512	9	512	4,608	262,144	134,217,728	1.34 x 10 ¹⁵⁴	23

Advanced Analysis of Algorithms

Growth Functions - Initially

Growth Functions - Asymptotically

☐ Or Next Slide

Advanced Analysis of Algorithms

Complexity Classes or Growth Functions

Growth Functions - Ranking

Algorithm	Class	Performance
log n	Logarithm	Very good
n	Polynomial Linear	Good
n log n	n-logarithm	Fair
n^2	Polynomial Quadratic	Acceptable
n^3	Polynomial Cubic	Poor
2 ⁿ	Exponential	Bad

Advanced Analysis of Algorithms

Comparison of Algorithms

□ 1000 means, 1000 instruction in 1 second and so on Processing speed: 1 millisecond

Maximum Problem Size						
Algorithm	Time Complexity	1 Second	1 Minute	1 Hour		
A1	n	1000	6 x 10 ⁴	3.6 x 10 ⁶		
A2	n lg n	140	4893	2.0 x 10 ⁵		
A3	n ²	31	244	1897		
A4	n ³	10	19	153		
A5	2 ⁿ	9	15	21		

Advanced Analysis of Algorithms

Asymptotic Analysis

- ☐ When we consider rate of growth
 - We need to consider only
 - ☐ The Leading Term of a formula
 - Since lower order terms are insignificant in comparison
- Consider
 - An Algorithm1 with running time c_1n^2 and
 - Another Algorithm2 with running time c_2nlgn
 - Even if c_2 is larger than c_1
 - \square Once n is large, Algorithm1 is beaten by Algorithm2

Advanced Analysis of Algorithms

Asymptotic Analysis (Cont...)

- We may try to determine the exact running time of an algorithm
 - But the extra precision is not worth the effort
- □ For large inputs
 - The multiplicative constants and lower order terms are dominated by effects of input size
- ☐ The input sizes are large enough to make only the order of growth of the running time relevant
 - We are studying asymptotic efficiency of algorithms
- We are concerned with
 - How running time of an algorithm increases with the size of the input

Advanced Analysis of Algorithms

θ-Notation (Average Case Running Time)

- Average case Running Time
 - Is the expected behavior
 - ☐ When the input is randomly drawn from a given distribution
 - Is an estimate of the running time for an "average" input
 - Computation of running time entails(involves) knowing all possible input sequences
 - The probability distribution of occurrence of these sequences
 - Often it is assumed that all inputs of a given size are equally likely
 - Represented by
 - θ-Notation (read as Theta)

Advanced Analysis of Algorithms

θ-Notation (Cont...)

- \square If f(n) is a growth function for an algorithm
 - \blacksquare And g(n) is a function such that
 - For all positive real constants C₁, C₂ and for all n ≥ n₀
 - $\blacksquare \quad \text{Then} \quad 0 < C_2 g(n) \le f(n) \le C_1 g(n)$
 - \square $C_2g(n)$ is Lower bound and $C_1g(n)$ is Upper bound of f(n)
 - Then we say
 - $\Box f(n) = \theta (g(n))$
 - Read as f(n) in Theta of g(n)
- \square The behavior of f(n) and g(n) is shown
 - Follows that
 - \square For $n < n_0$, f(n) is either above or below then g(n)

θ-Notation (Cont...)

- □ But for $n \ge n_0$, f(n) falls consistently between $C_1g(n)$ and $C_2g(n)$
- \square g(n) is said to be asymptotic tight bound for f(n)

Advanced Analysis of Algorithms

$\theta\text{-Notation} \,\, (\text{Cont...})$

- \square There may be many functions for which g(n) is asymptotically tight bound
 - All such functions are said to be belonging to the group identified by g(n)
 - Symbolically we can denote the relationship as
 - \Box $f(n) \in \theta(g(n))$

Advanced Analysis of Algorithms

θ-Notation Example

\Box 5n² - 19n $\in \theta$ (n²)

Therefore, $5n^2 - 19n \in \theta(n^2)$.

Considering the upper bound, $5n^2-19n \le 5n^2 \ \ for \ n \ge 0$ $5n^2-19n \le r_n^3 \ \ for \ n \ge n_p \ \ where \ c_1=5 \ \ and \ n_1=0$ Next, considering lower bound, $n \ge n/2 \ \ for \ n \ge 1 \qquad (\text{Obvious } 1)$ $n-19/5 \ge 5n \ \ /(2x \ 19) \ \ for \ n \ge 4 \ \ (\text{Divide right side by } 19/5=3.8)$ $for \ n \ge 4 \qquad (\text{Multiply both sides with } 5n \)$ $5n^2-19n \ge 25n^2 \ \ /3s \ \ for \ n \ge 4 \qquad (\text{Multiply both sides with } 5n \)$ $5n^2-19n \ge c_2 \ \ n^2 \ \ for \ \ n \ge 4 \qquad \text{Multiply both } 19/5=3.8$ It follows, $0 < c_2n^2 \le 5n^2 - 19n \le c_7n^2 \ \ for \ \ n \ge n_0 \ \ where \ n_0=4, \ c_1=5 \ \ and \ c_2=25/38.$

Advanced Analysis of Algorithms

θ-Notation Example (Cont...)

The upper and lower bounds of $5n^2-19n$ are shown in the graph

Advanced Analysis of Algorithms

O-Notation (Worst Case Running Time)

■ Worst case Running Time

- The behavior of the algorithm with respect to the worst possible case of the input instance
- Asymptotically tight upper bound for f(n)
 - ☐ Cannot do worse
 - ☐ Can do better
 - \square n is the problem size
- It gives us a guarantee that the algorithm will never take any longer
- Represented by
 - O-Notation (read as big O)

Advanced Analysis of Algorithms

O-Notation (Cont...)

\square If f(n) is a growth function of an algorithm

- And g(n) is a function such that
 - □ For some positive real constants C and for all $n \ge n_0$
- Then
- Then we say
- Read as f(n) in Big-Oh of g(n)
- \square The behavior of f(n) and g(n) is shown
 - Follows that
 - \square For $n < n_0$, f(n) is either above or below then g(n)

O-Notation (Cont...)

- □ But for all $n \ge n_0$, f(n) falls consistently below Cg(n)
- ☐ The function *g*(*n*) is said to be asymptotic Upper bound for *f*(*n*)

Advanced Analysis of Algorithm

O-Notation (Cont...)

- \square There may be many functions for which g(n) is asymptotically Upper bound
 - All such functions are said to be belonging to the group identified by g(n)
 - \blacksquare Symbolically we can denote the relationship as
 - \square $f(n) \in O(g(n))$

Advanced Analysis of Algorithms

O-Notation Example 2n² € O(n³)

$$\begin{split} &f(n) \leq cg(n) \text{ Definition of } O(g(n)) \\ &2n^2 \leq cn^3 \text{ Substitute} \\ &2n^2/n^3 \leq cn^3/n^3 \text{ Divide by } n^3 \end{split}$$

Determine c

 $2/n \le c$ if $n \rightarrow$ infinity then $2/n \rightarrow 0$ 2/n maximum when n=1

 $0 \le 2/1 \le c = 2$ Satisfied by c=2

Determine \mathbf{n}_0

 $0 \le 2/n_0 \le 2$

 $0 \leq 2/2 \leq n_0$

 $0 \leq 1 \leq n_0 \! = \! 1$ Satisfied by $n_0 \! \! = \! 1$

 $0 \leq 2n^2 \leq 2n^3 \,\,\, \forall \,\, n \geq n_0 = I_{Advanced \, Analysis \, of \, Algorithms}$

O-Notation Example (Cont...)

Advanced Analysis of Algorithms

O-Notation Example (Cont...)

 \square 3n² + 10n \in O(n²)

The graph depicts the two solutions. Observe that both $13n^2$ and $4n^2$ eventually grow faster than $3n^2+10$

Advanced Analysis of Algorithms

O-Notation Example (Cont...)

- $\hfill \square$ Show that $2n^2+n$ is in $O(n^2)$ by finding c and n_0
- \square Show that $1000n^2 + 50n$ is in $O(n^2)$ by finding c and n_0
- \square Show that n is in O(n lg n) by finding c and n_0
- ☐ Show that lg n is in O(n) by finding c and n₀
- Show that
 - $5n^3 + 10n \neq O(n^2)$
- ☐ Solve as many example you can

Ω -Notation (Best Case Running Time)

■ Best case Running Time

- The behavior of the algorithm with respect to the best possible case of the input instance
- Asymptotically tight Lower bound for f(n)
 - ☐ Cannot do better
 - ☐ Can do worse
 - \square n is the problem size
- It gives us a guarantee that the minimum time the algorithm will take
- Represented by
 - \square Ω -Notation (read as big Omega)

Advanced Analysis of Algorithms

Ω -Notation (Cont...)

\square If f(n) is a growth function of an algorithm

- \blacksquare And g(n) is a function such that
- □ For some positive real constants C and for all $n \ge n_0$
- Then
 - \square $0 < Cg(n) \le f(n)$
- Then we say
 - - Read as f(n) in Big-Omega of g(n)
- \square The behavior of f(n) and g(n) is shown
 - Follows that
 - \square For $n < n_0$, f(n) is either above or below then g(n)

Advanced Analysis of Algorithms

Ω -Notation (Cont...)

- \square But for all $n \ge n_0$, f(n) falls consistently above Cg(n)
- □ The function g(n) is said to be asymptotic Lower bound for f(n)

Advanced Analysis of Algorithms

Ω –Notation Example $3n^2 + n = \Omega(n^2)$

 $\label{eq:continuous} \quad \ \ \, \blacksquare \quad \ \ \, \text{If $cg(n) \leq f(n)$, $c \geq 0$ and $\forall $n \geq n_0$, then $f(n) \in \Omega(g(n))$}$

 $0 \leq c \mathsf{g}(\mathsf{n}) \leq \mathsf{h}(\mathsf{n})$

 $0 \leq cn^2 \leq 3n^2 + n$

 $0/n^2 \le cn^2/n^2 \le 3n^2/n^2 + n/n^2$

 $0 \le c \le 3 \, + \, 1/n \qquad \, 3{+}1/n = 3$

 $0 \le c \le 3 \qquad \qquad \mathbf{c} = \mathbf{3}$

 $0 \le 3 \le 3 + 1/n_0$

 $-3 \le 3\text{-}3 \le 3\text{-}3 \,+\, 1/n_0$

 $-3 \le 0 \le 1/n_0$ $\mathbf{n_0} = \mathbf{1}$ satisfies

Advanced Analysis of Algorithms

Ω –Notation Example 1

\square $n^2 - 10n \in \Omega(n^2)$

 $\begin{array}{ll} n & \geq n/2 \quad for \ n \geq l \qquad (\text{Obvious !}) \\ n\text{-}10 & \geq n/(2 \times 10) \quad for \ n \geq l0 \quad (\text{Divide right side by 10}) \\ & = n/20 \\ n^2 - l0n \geq n^2/20 \quad for \ n \geq l0 \quad (\text{Multiply both sides with } n \text{ to maintain inequality }) \\ n^2 - l0n \geq c, \ n^2 \quad for \ n \geq n_0 \quad \text{where } c = l/20 \text{ and } n_0 = l0 \end{array}$

Therefore, $n^2 - 10n \in \Omega(n^2)$.

Observe that for $n \ge 10$, the function $n^2/20$ falls below the function n^2-10n

Advanced Analysis of Algorithms

Ω –Notation Example 1 $_{(Cont...)}$

\square $n^2 - 10n \in \Omega$ (n^2)

The behavior of functions n^2 -10n and n^2 /20 is shown in the graph.

Ω –Notation Example 2

\square $3n^2 - 25n \in \Omega(n^2)$

 $\begin{array}{lll} n & \geq n/2 & for \ n \geq 1 & \text{(Obvious !)} \\ n-25/3 & \geq 3 \ n \ / (2 \times 25) & for \ n \geq 9 \text{ (Divide right side by } 25/3 \approx 8.3) \\ & = 3 \ n/50 & for \ n \geq 9 \\ 3n^2 - 25n \geq 9n^2/50 & for \ n \geq 9 & \text{(Multiply both sides with } 3n \text{ to maintain inequality }) \\ 3n^2 - 25 n \geq c \ n^2 & for \ n \geq n_0 & \text{where } c = 9/50 \text{ and } n_0 = 9 \end{array}$

Therefore, $3n^2 - 25n \in \Omega(n^2)$.

Observe that for $n\ge 9$, the function $9n^2/50$ falls below the function $3n^2-25n$

Advanced Analysis of Algorithms

Ω –Notation Example 2 (Cont...)

\square $3n^2-25n \in \Omega(n^2)$

The behavior of functions $3n^2-25n$ and $9n^2/50$ is shown in the graph.

Advanced Analysis of Algorithms

o - Notation, Small Oh

- \square If f(n) is a growth function for an algorithm and g(n) is some function such that
 - $0 \le f(n) \le C.g(n)$
 - □ For all C > 0 and all $n \ge n_0$
 - Then we say
 - \Box f(n) = o(g(n))
 - Read as f(n) in Small-Oh of g(n)
 - Symbolically
 - \Box $f(n) \in o(g(n))$

Advanced Analysis of Algorithms

o - Notation Example

\square n \in o (n²)

Consider, $n \le c.n^2$ where c is *any* real constant $1 \le c.n$ (Dividing both side with n)

Or, $n \ge 1/c$

It follows that for all c > 0, we can find n_0 such that for all $n \ge n_0$, the above inequali holds true. For example, the *some selections of c and corresponding* n_0 are c = 0.5 then $n_0 = 3$; c = 0.3, then $n_0 = 5$; c = 0.1 then $n_0 = 10$; c = 0.05, then $n_0 = 20$

It follows that for all c we can find ${\bf n}\!\ge\!{\bf n}_0$ such that $n\!\le\!c.$ n^2 Therefore, $n\in o(n^2)$

Advanced Analysis of Algorithm

o - Notation Example (Cont...)

\square n \in o (n²)

These possibilities are depicted in the graph.

Advanced Analysis of Algorithms

ω - Notation, Small Omega

- \square If f(n) is a growth function for an algorithm and g(n) is some function such that
 - $f(n) \ge C.g(n) \quad or \quad C.g(n) \le f(n)$
 - ☐ For all C > 0 and all $n \ge n_0$
 - Then we say
 - $\square \ f(n) = \omega \left(g(n) \right)$
 - Read as f(n) in Small-Omega of g(n)
 - Symbolically
 - \Box $f(n) \in \omega(g(n))$

Using Limit O - Notation

If f(n) and g(n) are growth functions such that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \quad \text{where } 0 \le c < \infty$$

then $f(n) \in O(g(n))$.

Example(1): $3n^2 + 5n + 20 \in O(n^2)$

$$\lim_{n \to \infty} \frac{3n^2 + 5n + 20}{n^2} = 3 + 5/n + 20/n^2 = 3$$

Therefore, $3n^2 + 5n + 20 \in O(n^2)$

Advanced Analysis of Algorithms

Using Limit o - Notation

☐ If f(n) and g(n) are growth functions such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0,$$

then $f(n) \in o(g(n))$.

Example(1): $3n^2 + 5n \in o(n^3)$

$$\lim_{n \to \infty} \frac{3n^2 + 5n}{n^3} = 3/n + 5/n = 0$$

Therefore, $3n^2 + 5n \in o(n^3)$

Advanced Analysis of Algorithms

Asymptotic Notation Constants

- ☐ If C is a constant then by convention
 - O(c) € O(1)
 - θ(c) € θ(1)
 - **■** Ω(c) € Ω(1)
 - The convention implies that
 - ☐ The running time of an algorithm which does not depends on input size can be expressed in any of the above ways
 - And
 - $\ \ {\color{red}\square} \ \ O(c.f(n)) \ \in \ O(f(n))$

 - \square $\Omega(c.f(n)) \in \Omega(f(n))$
 - The relation ship implies that the multiplier constant can be ignore

Advanced Analysis of Algoriths

Θ - O - Ω Relation

■ If $f(n) \in \theta(g(n))$ then

 $f(n) \in \Omega(g(n)), \quad f(n) \in O(g(n))$

ullet Conversely if $f(n)\in \Omega(g(n))$ and $f(n)\in O(g(n))$ then then $f(n)\in \theta(g(n))$

Example: Since, $n(n-1)/2 \in \theta(n^2)$, therefore $n(n-1)/2 \in \Omega(n^2)$ $n(n-1)/2 \in O(n^2)$

Advanced Analysis of Algorithms

o - O Relation

 \square • If $f(n) \in o(g(n))$ then

 $f(n) \in O(g(n))$

· Converse is not true

That is, if $f(n) \in O(g(n))$, then $f(n) \not\in o(g(n))$

Example(1): Since, $2^n \in o(n!)$, therefore

 $2^n \in O(n!)$

Example (2): $n^2 + n \in O(n^2)$, but $n^2 + n \not\in o(n^2)$

Advanced Analysis of Algorithms

ω - Ω Relation

 \square • If $f(n) \in \omega(g(n))$ then

 $f(n) \in \Omega(g(n))$

• Converse is not true

That is, if $f(n) \in \omega(g(n))$, then $f(n) \not\subset \Omega(g(n))$

☐ Order Theorem

If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then

 $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$

End	
☐ End of the Chapter	
☐ You may have quiz next week	