TFM Control Autogeneración Sistema para el procesamiento y análisis de información de sistemas de autogeneración energética

Trabajo fin de master - 8º Master de arquitectura Big Data

Requisitos

Se guiere disponer un sistema con el que poder: Recibir información de diferentes sistemas para autogeneración energética. El análisis de la información posee un componente en tiempo real y otro en modo batch. Los elementos tenidos en cuenta en el presente TFM son placas solares, sensores de luz y anemómetros. Ejecutar consultas de la potencia en W generada por placas solares. Esta información se generará por tramos de 1 hora. La información obtenida en tiempo real se agrupará de esta forma para obtener puntos de control que tengan un sentido práctico y sirva de comparación entre tramos y fechas. Ejecutar consultas sobre la información aportada por los sensores de luz. Estos sensores no proporcionan, a priori, información directa sobre la cantidad de energía que se podría producir, necesitan de un cálculo previo que da una aproximación a dicho fin. Estos sensores pueden dar información sobre el ángulo óptimo y dirección de las posibles placas a colocar en su lugar para el mejor aprovechamiento de las mismas. Eiecutar consultas sobre la información aportada por los sensores de luz. Estos sensores no proporcionan, a priori, información directa sobre la cantidad de energía que se podría producir, necesitan de un cálculo previo que da una aproximación a dicho fin. Estos sensores pueden dar información sobre el ángulo óptimo y dirección de las posibles placas a colocar en su lugar para el mejor aprovechamiento de las mismas. Consultar la información sobre el rendimiento del sistema en la entrada de la información de los diferentes topic's. Toda la información que se consulte referente a los tres tipos de fuentes irá enriquecida con datos de ubicación, modelo de fuente, propietario del equipo, fecha de fabricación del equipo, fecha de instalación del mismo, etc.

Arquitectura

	Para el almacenamiento y procesamiento de los datos enviados por las diferentes fuentes en tiempo real
Mo	ongoDB.
	Para el almacenamiento y procesamiento del histórico: Druid.
	Para almacenamiento información elementos e instalaciones: Couchbase.
	Motor de procesamiento en near real time: Apache Flink
	Motor de procesamiento batch: Apache Flink
	Para la visualización: Apache Superset.

Kafka - procesos

- ☐ StreamingSensorWind.py: tiene como objetivo procesar los mensajes enviados, en formato JSON por los anemómetros. La información enviada a través del topic, se enriquece y se almacena en MongoDB.
- ☐ StreamingSensorLight.py: tiene como objetivo procesar los mensajes enviados, en formato JSON por los sensores de luz. La información enviada a través del topic, se enriquece y se almacena en MongoDB.
- ☐ StreamingPanel.py: tiene como objetivo procesar los mensajes enviados, en formato JSON por las placas solares. La información enviada a través del topic, se enriquece y se almacena en MongoDB.

Procesos near Real Time Flink

- ☐ RichSensorWind.py: tiene como objeto enriquecer desde Couchbase con los datos de ubicación y timestamp del evento la información recibida desde el topic. Este proceso es casi en real time, tomaremos ventanas de 1 segundo.
- ☐ WriteSensorWind.py: tiene como objeto el almacenar en Druid la información ya enriquecida desde el proceso anterior.

Procesos Batch Flink

☐ RichSensorLight.py: tiene como objeto enriquecer desde Couchbase con los datos de ubicación y timestamp del evento la información recibida desde el topic. Este proceso es batch, tomaremos ventanas de 1 hora. La información estará en disco.
☐ WriteSensorLight.py: tiene como objeto el almacenar en Druid la información ya enriquecida desde el proceso anterior.
RichPanel.py: tiene como objeto enriquecer desde Couchbase con los datos de ubicación y timestamp del evento la información recibida desde el topic. Este proceso es batch, tomaremos ventanas de 1 hora. La información estará en disco.
WritePanel.py: tiene como objeto el almacenar en Druid la información ya enriquecida desde el proceso anterior.

Procesos Alta Couchbase

- AddNewInstall.py: tiene como objeto añadir información a las tablas de Couchbase sobre nuevos elementos instalados con la información necesaria para los procesos en near real time o batch.
- AddNewElement.py: tiene como objeto añadir información a las tablas de Couchbase sobre nuevos tipos de sensores, placas o anemómetros.

Kafka - procesos

Proceso	Periodicidad
StreamingSensorWind.py	Real Time
StreamingSensorLight.py	Real Time
StreamingPanel.py	Real Time

Procesos near Real Time Flink

Proceso	Periodicidad
RichSensorWind.py	Real Time
WriteSensorWind.py	Real Time

Procesos Batch Flink

Proceso	Periodicidad
RichSensorLight.py	Batch
WriteSensorLight.py	Batch
RichPanel.py	Batch
WritePanel.py	Batch

Procesos Alta Couchbase

Proceso	Periodicidad
AddNewInstall.py	Real Time
AddNewElement.py	Real Time

Modelo de datos -Batch (DRUID) 1/2

panel_report				
campo	descripción			
client_id	código cliente			
panel_id	identificación placa			
address	dirección cliente			
postal code	código postal			
name	nombre del cliente			
apell_1	apellido del cliente			
apell_2	apellido del cliente			
power_gen	energía generada última hora			
timestamp	timestamp de generación dato			
	delta de generación de la			
diff last hour	ultima hora a			
ulli_last_lloul	la que está tratando en ese			
	momento			
diff_last_day	delta de generación de la			
ulli_last_day	misma hora del día anterior			
diff last month	delta de generación de la			
um_last_month	misma hora del mes anterior			
diff last quar	delta de generación de la			
um_last_quar	misma hora un trimestre antes			
diff last six	delta de generación de la			
ulli_last_six	misma hora un semestre antes			
diff_last_year	delta de generación de la			
ulli_last_yeal	misma hora de un año antes			
acum_day	acumulado del día			
acum_month	acumulado del mes			
acum_quarter	acumulado del trimestre			
acum_semestre	acumulado del semestre			
acum_year	acumulado del año			

Modelo de datos - Batch (DRUID) 2/2

	panel_alarm	sensor_alarm		
campo	descripción	campo	descripción	
client_id	código cliente	client_id	código cliente	
panel_id	identificación placa	light_id	identificación placa	
address	dirección cliente	address	dirección cliente	
postal code	código postal	postal code	código postal	
name	nombre del cliente	name	nombre del cliente	
apell_1	apellido del cliente	apell_1	apellido del cliente	
apell_2	apellido del cliente	apell_2	apellido del cliente	
power_low	diferencia de generación	power_low	diferencia de generación	
text_alarm	texto asociado a la alarma	text_alarm	texto asociado a la alarma	
timestamp		timestamp		

Modelo de datos - Real Time (DRUID) 1/1

wind_alarm		
campo	descripción	
client_id	código cliente	
wind_id	identificación placa	
address	dirección cliente	
postal code	código postal	
name	nombre del cliente	
apell_1	apellido del cliente	
apell_2	apellido del cliente	
wind_speed	velocidad del viento	
text_alarm	texto asociado a la alarma	
timestamp		

Modelo de datos - Real Time (MongoDB) 1/1

	topic	topic_alarm		
campo descripción		campo	descripción	
topic_id	nombre del topic de kafka	topic_id	nombre del topic de kafka	
timestamp	timestamp	timestamp	timestamp	
msg_value	datos del mensaje del topic	msg_value	datos del mensaje del topic	
		text_alarm	texto asociado a la alarma	

Modelo de datos - Enriquecimiento (Couchbase) 1/2

client		panel		sensor_light		sensor_wind	
campo	descripción	campo	descripción	campo	descripción	campo	descripción
client_id	código cliente	panel_id	id del panel	light_id	id sensor	wind_id	id anemómetro
address	dirección cliente	model	modelo panel	model	modelo panel	model	modelo panel
postal code	código postal	manufacture_date	fecha fabricación	manufacture_date	fecha fabricación	manufacture_date	fecha fabricación
client_signature	identificación cliente	install_date	fecha instalación	install_date	fecha instalación	install_date	fecha instalación
open_date	fecha alta	power_cap	potencia del panel	power_cap	potencia del panel	variable_data	información adicional
end_date	fecha baja	panel_price	precio de compra	variable_data	información adicional	sensor_price	precio de compra
client_type	tipo de cliente	panel_sold	precio de venta	sensor_price	precio de compra	live_cicle	ciclo de vida útil
name	nombre del cliente	live_cicle	ciclo de vida útil	live_cicle	ciclo de vida útil	end_date	fecha de baja
apell_1	apellido del cliente	variable_data	información adicional	end_date	fecha de baja		
apell_2	apellido del cliente	end_date	fecha de baja				

Modelo de datos - Enriquecimiento (Couchbase) 2/2

clients_rel			
campo	descripción		
client_id	id cliente		
panel_id	id panel		
light_id	id sensor		
wind_id	id anemómetro		
variable_data	información adicional		
init_panel_date	fecha de alta relación cliente-panel		
end_panel_date	fecha de baja relación cliente-panel		
init_sensor_date	fecha de alta relación cliente-sensor		
end_sensor_date	fecha de baja relación cliente-sensor		
init_wind_date	fecha de alta relación cliente-wind		
end_wind_date	fecha de baja relación cliente-wind		

Superset

Superset

Superset

Problemas / Soluciones

- ☐ Para paliar el tráfico de red entre Kafka y MongoDB ubicaremos en el mismo nodo ambos elementos.
- ☐ Para paliar el tráfico de red entre Druid y Superset ubicaremos en el mismo nodo ambos elementos.

DEMO