

Lecture 3: Similarity

Knowledge Technologies

Comparing things Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Sarah Erfani and Karin Verspoor and Jeremy Nicholson, CIS

Semester 2, 2017

Compare and Contrast

Lecture 3: Similarity

Knowledge

Comparing things

Sets of descriptors

Comparing Documents

Compare and Contrast

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing things

Features, Vectors

Comparing Documents

Venn Diagram

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing things
Sets of descriptors
Features, Vectors

Comparing

Similarity as Set intersection

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Document

Distance Measure Many similarity assessments can be framed as set intersection.

Amazon: Book purchases

Netflix: Movies that you have watched

Refinements

- Rating sets (stars)
 - thresholding using ratings
 - different subsets for different ratings
- Categories of items
 - generalisation
 - book or movie genres

Measuring Similarity

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing things Sets of descriptors Features, Vectors

Comparing Document

Distance Measure We have discussed similarity at an intuitive level.

How do we measure similarity quantitatively?

Jaccard Similarity

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing things
Sets of descriptors
Features, Vectors

Comparing Documents

Dice Similarity

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing things
Sets of descriptors
Features, Vectors

Comparing

What is a model?

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance Measure A model is our attempt to understand and represent the nature of reality through a particular lens, be it architectural, biological, or mathematical.

An model is an **abstraction** of the entity that we are trying to model, c.f. fruit above.

Feature vectors

Lecture 3: Similarity

Knowledge Technologies

Comparing things Sets of descriptors Features, Vectors

Comparing Documents

Distance

A *feature vector* is an n-dimensional vector of *features* that represent some object.

A feature or attribute is any distinct aspect, quality, or characteristic of that object

- Features may be symbolic/categorical/discrete (e.g. colour, gender)
- Features may be ordinal (e.g. cool < mild < hot [temperature])
- Features may be numeric/continuous (e.g., height, age)

A vector locates an object (document, person, \dots) as a point in n-space. The angle of the vector in that space is determined by the relative weight of each term.

Feature vectors and vector space

Lecture 3: Similarity

Knowledge Technologies

Comparing thing:

Features, Vectors

Comparing

Credit as a function of age and income

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance

age	income	credi
33	8	low
58	42	low
49	79	low
49	17	low
58	26	high
44	71	high

Comparing Documents

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance Measure: How should we compare documents to assess their similarity?

- String-level similarity (e.g., edit distance)
- Sets of common substrings (sentences, phrases, words, n-grams)
- "bag of words"

How similar are these sentences?

- 1 Mary is quicker than John.
- John is quicker than Mary.
- Mary is slower than John.
- Jane is quicker than Mary.

Word Vectors

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

- Mary is quicker than John.
- John is quicker than Mary.
- Mary is slower than John.
- Jane is quicker than Mary.

Sentence	"Mary"	"John"	"Jane"	"quicker"	"slower"
1	1	1	0	1	0
2	1	1	0	1	0
3	1	1	0	0	1
4	1	0	1	1	0

Vector space model for documents

Lecture 3: Similarity

Knowledge Technologies

Sets of descriptors
Features, Vectors

Comparing Documents

Distance Measure: One of the earliest models proposed for retrieval of documents (information retrieval, in 1962) was the vector-space model.

Suppose there are n distinct indexed terms in the collection. Then each document d can be thought of as a vector

$$\langle w_{d,1}, w_{d,2}, \ldots, w_{d,t}, \ldots, w_{d,n} \rangle$$

where $w_{d,t}$ is a weight describing the importance of term t in d.

(Most $w_{d,t}$ values will be zero, because most documents only contain a tiny proportion of a collection's terms.)

Intuitively, if some other document d' has a vector

$$\langle w_{d',1}, w_{d',2}, \ldots, w_{d',t}, \ldots, w_{d',n} \rangle$$

where the weights are close to those of d – in particular, if the non-zero w values are for much the same set of terms – then d and d' are likely to be similar in topic.

Similarity vs Distance

Lecture 3: Similarity

Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures We have discussed similarity at an intuitive and quantitative level.

$$sim_J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{3}{8}$$

 $sim_D(A, B) = \frac{2|A \cap B|}{|A| + |B|} = \frac{2 * 3}{5 + 6} = \frac{6}{11}$

What is the relationship between similarity and distance?

Distance measures

Lecture 3: Similarity

Knowledge Technologies

Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures A distance measure on a space is a function that takes two points in a space as arguments.

No negative distances.

$$d(x, y) \geq 0$$

Distances are positive, except for the distance from a point to itself.

$$d(x, y) = 0$$
 if and only if $x = y$

3 Distance is symmetric.

$$d(x,y) = d(y,x)$$

The triangle inequality typically holds. (Distance measures the length of the shortest path between two points.)

$$d(x,y) \leq d(x,z) + d(z,y)$$

Euclidean Distance

Lecture 3: Similarity

Knowledge Technologies

Sets of descriptors
Features, Vectors

Comparing Documents

Distance Measures Given two items A and B, and their corresponding feature vectors \vec{a} and \vec{b} , respectively, we can calculate their similarity via their distance d in euclidean space:

In n-dimensional space:

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

Cosine Distance

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing thing: Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures Given two items A and B, and their corresponding feature vectors \vec{a} and \vec{b} , respectively, we can calculate their similarity via their vector cosine (the cosine of the angle θ between the two vectors):

$$sim(A,B) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sum_{i} a_{i}b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

"Long" documents & Euclidean distance

Lecture 3: Similarity

Knowledge Technologies

Comparing things
Sets of descriptors
Features, Vectors

Comparing Documents

Point	tea	me	two
doc1	2	0	2
doc2	2	1	0
doc3	0	2	0
doc4	5	0	7

- Doc4, like Doc1, is all about "tea" and "two".
- But because it is longer, it is in a space by itself.

Manhattan Distance

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures ["City block" distance or "Taxicab geometry" or "L1 distance"]

Given two items A and B, and their corresponding feature vectors \vec{a} and \vec{b} , respectively, we can calculate their similarity via their distance d based on the absolute differences of their cartesian coordinates:

In n-dimensional space:

$$d(A,B) = \sum_{i=1}^{n} |a_i - b_i|$$

Probabilistic measures

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing thing Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures Relative entropy:

$$D(x \mid\mid y) = \sum_{i} x_{i} (\log_{2} x_{i} - \log_{2} y_{i})$$

or alternatively skew divergence:

$$s_{\alpha}(x,y) = D(x \mid\mid \alpha y + (1-\alpha)x)$$

or Jensen-Shannon divergence:

$$JSD(x || y) = \frac{1}{2}D(x || m) + \frac{1}{2}D(y || m)$$

where $m = \frac{1}{2}(x + y)$

NB: Probability will be reviewed next lecture!

Summary

Lecture 3: Similarity

COMP90049 Knowledge Technologies

Comparing thing: Sets of descriptors Features, Vectors

Comparing Documents

Distance Measures

How can we represent a set of objects?

What are some methods for measuring similarity between objects?

Reading

On distance measures:
 Chapter 3, especially Section 3.5

Mining of Massive Datasets

http://infolab.stanford.edu/~ullman/mmds.html

On document representation:

Chapter 6

Information Retrieval, Manning et al.

http://nlp.stanford.edu/IR-book/html/htmledition/scoring-term-weighting-and-the-vector-space-model-1.html