A REPORT ON AN INDUSTRIAL ATTACHMENT WITH GRIT SYSTEMS ENGINEERING, VICTORIA ISLAND, LAGOS

Obafemi Awolowo University, Ile-Ife, Osun State.

Yusuf Taiwo Hassan

02 02 1998

Abstract

Abstract goes here

Dedication

To mum and dad

Declaration

I declare that..

Acknowledgements

I want to thank...

Contents

1	Introduction		
	1.1	SWEP	7
	1.2	Objective of SIWES	8
	1.3	GRIT Systems	8
2	LIT	ERATURE REVIEW.	10
	2.1	Embedded Systems Design	10
	2.2	Printed Circuit Board	10
	2.3	Electrical Components	11
3	Chapter Three Title		16
4	Chapter Four Title		17
5	Conclusion		18
Α	Apr	pendix Title	19

Introduction

This report is a short description of my six month internship carried out as a compulsory component of the BSc. Electronic and Electrical Engineering. The internship was carried out at Grit Systems Engineering, Victoria Island, Lagos. This internship report contains my activities that have contributed to achieving a successful program. In this chapter, a description of Students Work Experience Program (SWEP) and the Company is given. The second chapter contains the theoretical background of the activities carried out during the course of the training, followed by the third chapter which discusses the activities. The technical experience and skills acquired during the internship are described in the fourth chapter. Finally I give a conclusion on the internship experience.

1.1 Student Work Experience Scheme. SWEP

The SWEP is a program of Student Industrial Work Experience Scheme (SIWES) designed for students in their third and fourth year from the faculty of Technology and Environmental Design and Management. The program aims at inculcating practical, scientific, social, and entrepreneurship skills needed to face the challenges of modern day graduate while also contributing to the overall development of undergraduates in these faculties. SIWES is highly recognized by the Nigerian University Commission (NUC), National Board for Technical Education (NBTE) and National Commission for Colleges of Education (NCCE), which makes her join forces with

Industrial Training Fund (ITF) in making this program attainable.

1.2 Objective of SIWES

The goals that the SIWES seek to accomplish are as follows

- Bridge the gap between the theoretical work/knowledge acquired in the classroom and real practical experience offered in the industries. This enables the students to appreciate/value in so many ways, the theories learnt in class.
- To enlist and strengthens employers involvement in the entire educational process of preparing graduate for employment in the industry.
- To provide students with an opportunity to apply their theoretical knowledge in real work situation, thereby bridging the gap between university work and actual practice.
- To prepare the student for the challenges in the industries and prepare them psychologically for work after school.

1.3 GRIT Systems

GRIT Systems, formally DawnFuel Limited, was founded by Mr. Ifedayo Oladapo in 2011 after he identified the challenge of under electrification in Nigeria. He demonstrated that solar power costs less than running a generator does, demonstrated it and used it as economic reality and use it as the foundation for the case he made for DawnFuel. As well as in the company's marketing campaign. The company after a while settled for installation and maintenance of imported solar products, with its custom built components, as the market did not appreciate locally built inverters.

GRIT Systems got into consultancy and monitoring of energy utilization with its new line of products. These products include The GRIT Energy and Power Monitor (GEPM) and G1 (A utility metering device). The company started with just

2 members (including the founder) and grew into a multi-departmental company with more than 15 workers. The devices were tailored to the unique requirements of under electrified communities and requires a first-hand installation by a trained Grit System's personnel. Once installed, users can remotely view graphs, receive notifications and generate simple language reports about an arbitrarily complex power supply mix.

Some of the functions of the Grit meter are:

- Reduced energy cost Ensuring generator only runs when it is really needed.
- Multisource energy optimization Increase in the time spent on cost effective sources like inverter while reducing the time spent on expensive sources like your generator.
- Cost-Benefit Balance Using data from the metering devices to run energy balance simulations to help determine if and how alternative power sources would save the user money.

LITERATURE REVIEW.

2.1 Embedded Systems Design

An embedded system is a microprocessor-based system that is built to control a function or range of functions and is not designed to be programmed by the end user in the same way that a PC is. A user can make choices concerning functionality but cannot change the functionality of the system by adding/replacing software. With a PC, this is exactly what a user can do: one minute the PC is a word processor and the next it's a games machine simply by changing the software. An embedded system is designed to perform one particular task albeit with choices and different options.

The last point is important because it differentiates itself from the world of the PC where the end user does reprogram it whenever a different software package is bought and run. However, PCs have provided an easily accessible source of hardware and software for embedded systems and it should be no surprise that they form the basis of many embedded systems.

2.2 Printed Circuit Board

Printed Circuit Boards (PCBs) are thin, rigid, and usually rectangular, with components attached to one or both surfaces. The top and bottom are generally coloured in dark blue or green. Lines running between the components have a slightly dif-

ferent colour. In addition to the top and bottom sides, modern circuit boards have internal planes called layers. Internal layers don't have components but may contain metal lines that carry electricity to and from the components on the top and bottom. For example, the circuit board in the iPhone 4 handset has 10 layers. Layers are critically important in PCB design, so circuit boards are commonly divided into three categories: single-sided, double-sided, or multilayer.

At the very least, a circuit board serves two purposes:

- 1. Provides mechanical support for a set of components
- 2. Provides electrical connections between the components

A picture of an populated and unpopulated Printed Circuit Board are shown in Figures 2.1 and 2.2 respectively.

2.3 Electrical Components

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

Components can be classified as passive, active, or electromechanic. The definitions of each class of electrical components are as follows

Figure 2.1: A Populated Printed Circuit Board.

Figure 2.2: An Unpopulated Printed Circuit Board.

- 1. **Active**: These class of electrical components rely on a source of energy to function and usually can inject power into a circuit. Active components include amplifying components such as transistors, triode vacuum tubes (valves), and tunnel diodes.
- 2. Passive: These class of electrical components can't introduce net energy into the circuit. They also can't rely on a source of power, except for what is available from the circuit they are connected to. As a consequence they can't amplify (increase the power of a signal), although they may increase a voltage or current (such as is done by a transformer or resonant circuit). Passive components include two-terminal components such as resistors, capacitors, inductors, and transformers.
- 3. **Electromechanic**: can carry out electrical operations by using moving parts or by using electrical connections

A lead is an electrical connection consisting of a length of wire or a metal pad that is designed to connect two locations electrically. Electrical Components are available in three popular forms or technology. This form differ from one another by the form of their leads and method of mounting the Components. They include:

- 1. Through Hole Technology: This refers to the mounting scheme used for electronic components that involves the use of leads on the components that are inserted into holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side either by manual assembly (hand placement) or by the use of automated insertion mount machines. It is the oldest form of electrical components and is fast becoming obsolete with improving technology.
- 2. Surface-mount technology (SMT): is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs). An electronic device so made is called a surface-mount device (SMD). In industry, it has largely replaced the throughhole technology construction method of fitting components with wire leads into

Figure 2.3: A collection of SMD Components.

Figure 2.4: A board containing THT and SMD Components.

holes in the circuit board. Both technologies can be used on the same board, with the through-hole technology used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors. An SMT component is usually smaller than its through-hole counterpart because it has either smaller leads or no leads at all. It may have short pins or leads of various styles, flat contacts, a matrix of solder balls (BGAs), or terminations on the body of the component.

Chapter Three Title

Chapter Four Title

Conclusion

Appendix A

Appendix Title