$\S11.1$: Sequences $\S11.2$ Summing an Infinite Series $\S11.3$ Series with Positive Terms

NAME:

November 14, 2017

ONE-PAGE REVIEW

- (1) If f is continuous and $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} f(a_n) = f(L)$.
- (2) A sequences is called:
 - (a) **bounded** if there exists M such that $|a_n| \leq M$ for all n.
 - (b) **monotone** if either $a_n < a_{n+1}$ or $a_n > a_{n+1}$ for all n.

If a sequence is both bounded and monotone, then it converges.

- (3) The divergence test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (4) A series that looks like $a_n = cr^n$ is called **geometric.**
 - (a) If $|\mathbf{r}| \geq 1$, then it diverges.

(b) If
$$|r| < 1$$
, then $\sum_{n=K}^{\infty} cr^n = \frac{cr^K}{1-r}$

- (5) **The integral test:** Assume that $a_n = f(n)$ for $n \ge M$.
 - (a) If $\int_{M}^{\infty} f(x) dx$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
 - (b) If $\int_{M}^{\infty} f(x) dx$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.
- (6) The comparison test:
 - (a) If $a_n \le b_n$, and $\sum_{n=0}^{\infty} b_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
 - (b) If $\sum_{n=0}^{\infty} b_n$ diverges, then $\sum_{n=0}^{\infty} b_n$ diverges.
- (7) **Limit comparison test:** If $\lim_{n\to\infty}\frac{a_n}{b_n}$ exists and is not zero, then $\sum_{n=0}^{\infty}b_n$ converges if and only if $\sum_{n=0}^{\infty}a_n$ converges.

PROBLEMS

(1) True or false?

(a)
$$\sum_{n=1}^{\infty}\alpha_n=\sum_{k=1}^{\infty}\alpha_k$$

(b)
$$\sum_{n=4}^{6} a_n = \sum_{i=1}^{4} a_{i+3}$$

(c)
$$\sum_{n=2}^{\infty} a_{n+3} = \sum_{n=5}^{\infty} a_n$$

(d) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^\infty a_n$ converges.

(e) If
$$\lim_{n\to\infty} \alpha_n = \infty$$
, then $\sum_{n=1}^\infty \alpha_n$ diverges.

(f) If
$$\sum_{n=1}^{\infty} \alpha_n$$
 diverges, then $\lim_{n \to \infty} \alpha_n = \infty.$

(2) Determine the limit of the sequence or show that the sequence diverges.

(a)
$$a_n = \frac{e^n}{2^n}$$

(b)
$$b_n = \frac{3n+1}{2n+4}$$

(c)
$$c_n = \frac{\sqrt{n}}{\sqrt{n}+4}$$

(3) Show that the sequence given by $a_n = \frac{3n^2}{n^2+2}$ is strictly increasing, and find an upper bound.

2

(4) Determine the limit of the series or show that the series diverges.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$$

(b)
$$\sum_{n=0}^{\infty} e^n$$

$$(c) \sum_{n=1}^{\infty} \frac{1}{n}.$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

(e)
$$\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1}$$
 (Limit Comparison Test)

(f)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2^n}$$
 (Comparison Test)

(g)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 (Integral Test)