MATHEMATICS

CHAPTER: 2

RELATIONS AND FUNCTIONS

One mark questions

1. Define ordered pair.

If P and Q are two sets then pair of elements of P and Q written in small brackets and grouped together in a particular order is defined as an ordered pair.

2. Find x, if
$$(x + 1, 3) \equiv (2, 3)$$

$$(x+1, 3) \equiv (2, 3) => x + 1 = 2$$

 $\therefore x = 1$

3. Define Cartesian product of two sets.

Given two non-empty sets P and Q, the cartesian product PxQ is the set of all ordered pair of elements from P and Q.

i.e.PxQ =
$$\{(p, q): p \in P, q \in Q\}$$

4. If $A = \{a, b\}$ and $B = \{1\}$, find $A \times B$.

$$A X B = \{ (a, 1), (b, 1) \}$$

5. If n(A) = p and n(B) = q, then find $n(A \times B)$.

Given
$$n(A) = p$$
 and $n(B) = q$
 $\therefore n(Ax B) = pq$

6. If $A = \{1, 2, 3\}$ and B is an empty set, then find A x B.

$$A \times B = \{ \}$$

7. Define on ordered triplet.

If P, Q and R are any three sets then the elements of P, Q and R written in small brackets and grouped together in a particular order is defined as an ordered triplet.

8. If n(A) = 3 and $A \times A$ contains (a, b) and (b, c), write A.

$$A = \{a, b, c\}$$

9. Define a relation R from the set A to the set B.

A relation R from a non-empty set A to a non - empty set B is a subset of the cartesian product A xB.

10. If $R = \{(2, 1), (3, 1), (4, 2)\}$. Write the domain of the relation R.

Domain of $R = \{2, 3, 4\}$

11. If $R = \{(2,4), (3,6)\}$. Write the image of the relation R.

Image of $R = \{4, 6\}$

12. If n(A) = 3 and n(B) = 4 then find the total number of relationsfrom A to B.

n(A xB) = 12

13. If $n(A \times B) = 4$ and n(A) = 2 find n(B).

Given n(AxB) = 4 and n(A) = 2

$$\therefore$$
 n(B) = 2

14. If n(AxA) = 64 find n(A).

Given $n(AxA) = 64 = 4^4$

$$\therefore$$
 n(A) = 4

15. If $A=\{1, 2, 3\}$, $B=\{4, 5, 6\}$ and $f=\{(1, 4), (2, 2), (3, 5)\}$ is f a relation A to B.

Since $(2, 2) \in AxB$, f is not a relation.

16. If A={a, b, c} and B={0, 1} find the number of relations from A to B.

Given n(A) = 3, n(B) = 2.

$$\therefore$$
 n(AxB) = 6

17. State whether $R = \{(1, 2), (1, 3), (2, 4)\}$ is a relation or not on $A = \{1, 2, 3\}$

Since $4 \notin A$, $(2, 4) \notin R$ $\therefore R$ is not a relation

18. Write the smallest relation on N.

The smallest relation is \emptyset (empty relation)

19. Write the greatest relation on {1, 2}

Greatest relation = $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$

20. Define a function.

A relation is said to be a function if every member of domain is related to unique element of co-domain.

21. Define a real valued function.

A function $f: X \to Y$ is said to be valued function if Y is a subset of a set of reals.

22. If $f: R \rightarrow R$ is defined by $f(x) = x^2 + 2x - 3$, find the image of 1 under f.

$$f(1) = 1^2 + 2 - 3 = 0$$

23. Define range of a function.

The set of all images of elements of domain of a function is said to be range of the function.

24. If $f:A \rightarrow A$ defined by $\{(1, a), (2, 2), (3, 3)\}$ is identity function, find a.

As f is identity function : a = 1.

25. Find the domain of f(x) = x+2.

Domain is set of all reals.

26. Find the domain of $f(x) = \frac{1}{x-1}$

Domain is the set of all reals except 1.

Two marks questions:

1. If (3x + y, 5) = (4, x+1) find x and y.

$$3x + y = 4 - - (1)$$
 $x + 1 = 5 - - (2)$
 $x = 4$

Put
$$x=4$$
 in (1), $y = -8$

2. If $A = \{2, 3, 4\}$, $B = \{-1, 2, 5\}$ and $C = \{3, 5\}$ find Ax(B - C).

$$B - C = \{-1, 2\}$$

$$AxB-C = \{(2,-1), (2,2), (3,-1), (3,2), (4,-1), (4,2)\}$$

3. If $AxB=\{(1, a), (2, b), (1, b), (2, a), (3, a), (3, b)\}$. Write A and B.

$$A=\{1, 2, 3\}$$
 $B=\{a, b\}$

4. If $A=\{x:x=3n^2+1, n=0, 1, 2\}$ and $B=\{-1, 0, 1\}$ find BxA.

$$A=\{1, 4, 13\}$$

$$B=\{-1, 0, 1\}$$

$$BxA=\{(-1, 1), (-1, 4), (-1, 13), (0,1), (0,4), (0, 13), (1, 1), (1, 4), (1, 13)\}$$

5. Let $X=\{a, b, c\}$, $Y=\{b, c, d\}$ and $Z=\{b, d, e\}$ find $(X \cap Y) \times Z$.

$$X \cap Y = \{b, c\}$$

$$Z=\{b, d, e\}$$

$$(X \cap Y) \times Z = \{(b, b), (b, d), (b, e), (c, b), (c, d), (c, e)\}$$

6. If $A=\{x, y\}, B=\{a, z\}$ show that AxB and BxA are disjoint sets.

$$AxB=\{(x, a), (x, z), (y, a), (y, z)\}$$

$$BxA=\{(a, x), (a, y), (z, x), (z, y)\}$$

$$\therefore (AxB) \cap (BxA) = 4 \qquad \therefore AxB \text{ and } BxA \text{ are disjoint sets.}$$

7. If n(AxA)=9 and if (-2, 1) and (2, 1) are two elements of AxA, find A.

$$(AxA) = 9 \therefore n(A) = 3$$

 $\therefore A = \{-2, 2, 1\}$

8. Write the domain and range of the relation $R=\{(2x, 3x-1): x \in (1, 2, 3)\}$

R=
$$\{(2, 2), (4, 5), (6, 8)\}$$

Domain = $\{2, 4, 6\}$
Range = $\{2, 5, 8\}$

9. Let $A=\{1, 2, 3, 4, 5\}$. Let R be a relation on A defined by $R=\{(a-1,a+1): a, b \in A\}$. Find the range of R.

$$R=\{(1, 3), (2, 4), (3, 5)\}$$

Range = $\{3, 4, 5\}$

10. Let $A=\{4, 5, 6, 7, 8, 9\}$. Let R be a relation on Adefined by $R=\{(x, x+2): x \in A\}$. find the domain of R.

$$R=\{(4, 6), (5, 7), (6, 8), (7, 9)\}$$

Domain = $\{4, 5, 6, 7\}$

11. Write the domain and range of the relation $R = \{(2x-1, 3-x) | x \le 3, x \in N\}$

$$R=\{(1, 2), (3, 1)\}\$$

Domain = $\{1, 3\}$
Range= $\{2, 1\}$

12. If $AxB = \{(1, a) (2, a) (3, a) (1, b) (2, b) (3, b)\}$, then write the sets A and B.

$$A=\{1, 2, 3\}$$

 $B=\{a, b\}$

13. State whether the relation $R=\{(1, 2), (2, 3), (1, 3)\}$ is a function or not on $A=\{1, 2, 3\}$. Give reason.

R is not a function because the element has two images.

14. Let $f:R \to R$ be defined as $f(x) = \begin{cases} 3-2x \ , & x \le 1 \\ 5-3x, & x \ge 1 \end{cases}$. verify whether f is a function or not.

 $f = \{(1, 1), (1, 2), (2, -1), (3, -4), \dots\}$ f is not a function. since element has two Images

15. If f is a real valued function defined by $f(x) = \frac{x+1}{x-1}$, show that f(f(x)) = x.

$$f(x) = \frac{x+1}{x-1}$$

$$f(f(x)) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1} = \frac{x+1+x-1}{x+1-x+1} = \frac{2x}{2} = x$$

16. If f: A \rightarrow R is defined by f(x) = $2x^2$ -3 and if A={0, 1, 2} find the range of f.

$$f=\{(0, -3), (1, -1), (2, 5)\}$$

Range of $f=\{-3, -1, 5\}$

Tunige of 1 (2, 1,2)

17. If
$$f(x) = x^2$$
, evaluate $\frac{f(x+2) - f(2)}{2}$
$$\frac{f(x+2) - f(2)}{2} = \frac{x^2 + 2x + 4 - 4}{2} = \frac{x(x+2)}{2}$$

18. Draw the graph of identity function.

19. Draw the graph of the constant function y=2.

20. Draw the graph of the modulus function f(x) = |x|

21. Draw the graph of
$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

22. If [.] indicates greatest integer function, evaluate $f(x) = [x^2 + 1] + [x-1]$, when x = -2.

When
$$x = -2$$

 $[x^2 + 1] = [5] = 5$
 $[x-1] = [-3] = -3$
 $\therefore f(x) = 5-3 = 2$

23. If $f(x) = x^2 - 1$ and g(x) = 2x + 3, find (f+g)(x) and (f-g)(x)

$$(f+g)(x) = f(x) + g(x)$$

$$= x^{2} - 1 + 2x + 3$$

$$= x^{2} + 2x + 2$$

$$(f-g)(x) = f(x) - g(x)$$

$$= x^{2} - 1 - (2x + 3)$$

$$= x^{2} - 1 - 2x - 3$$

$$= x^{2} - 2x - 4$$

24. If $f(x) = x^2 + 2$ and g(x) = x, find (fg) (x) and (f/g) (x). (fg)(x) = f(x) g(x)

=
$$(x^2 + 2)(x)$$

= $x^3 + 2$

$$\left(\frac{f}{g}\right) x = \frac{f(x)}{g(x)} = \frac{x^2 + 2}{x}$$

25. If f(x) = 2-5x and g(x) = x+1, find (f+g)(x) and (f-g)(x).

$$(f+g)(x) = f(x) + g(x)$$

= 2 -5x +x+1
= 3 - 4x
 $(f-g)(x) = f(x) - g(x)$

$$= 2 - 5x - (x+1)$$
$$= 2 - 5x - x - 1$$

$$= 1 - 6x$$

26. If
$$f(x) = \sqrt{x^2 - 3}$$
 prove that $f(-x) = f(x)$.

$$f(-x) = \sqrt{(-x)^2 - 3} = \sqrt{x^2 - 3} = f(x)$$

27. Find the domain of the function $f(x) = \sqrt{3-x}$

$$3 - x \ge 0 \Longrightarrow 3 \ge x \text{ or } x \le 3$$

$$\therefore domain = \{ x: x \in \mathbb{R}, x \le 3 \}$$

28. Find the range of $f(x) = \frac{1}{x-3}$, $x \ge 3$

Let
$$y = \frac{1}{x-3}$$
. Then $\frac{1}{y} = x - 3$

$$\therefore x = \frac{1}{y} + 3$$

This is defined $\forall y \in R, y \neq 0$

$$\therefore \text{ range} = \{ y: y \in \mathbb{R}, y \neq 0 \}$$

29. If f(x) = |x - 3| + |4 - 2x|, find f(4).

$$f(4) = |4 - 3| + |4 - 2(4)|$$

$$= 1 + |-4|$$

$$= 1 + 4$$

30. If $f(x) = \frac{1}{\sqrt{|x|-x}}$, find f(2) and f(-2).

$$f(2) = \frac{1}{\sqrt{|2|-2}} = \frac{1}{\sqrt{2-2}} = \frac{1}{\sqrt{0}}$$
. This is not defined

$$f(-2) = \frac{1}{\sqrt{|-2|-(-2)}} = \frac{1}{\sqrt{2-(-2)}} = \frac{1}{\sqrt{2+2}} = \frac{1}{\sqrt{4}} = \frac{1}{2}$$

Three marks questions:

1. If $A=\{a,b,c\}$, $B=\{b,c,d\}$ and $C=\{a,c,e\}$, verify that $Ax(B\cap C)=(A \times B)\cap (A \times C)$ $B\cap C=\{c\}$

A x (B
$$\cap$$
 C) = { a, b, c} x{c}
= {(a, c), (b, c), (c, c)}(1)

 $A \times B = \{(a, b), (a, c), (a, d), (b, c), (b, d), (c, b), (b, b), (c, c), (c, d)\}$

$$A \times C = \{(a, a), (a, c), (a, e), (b, a), (b, c), (b, e), (c, a), (c, c), (c, e)\}$$

$$\therefore$$
 (A x B) \cap (A x C) = {(a, c), (b, c), (c, c)}.....(2)

From equations (1) and (2) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

2. If $A = \{-1, 0, 1\}$, $B = \{2, 3\}$ and $C = \{-2, 3\}$, verify that $Ax(B-C) = (A \times B) - (A \times C)$

$$B - C = \{2\}$$
 $A = \{-1, 0, 1\}$

A x B =
$$\{(-1, 2), (-1, 3), (0, 2), (0, 3), (1, 2), (1, 3)\}$$

$$A \times C = \{ (-1, -2), (-1, 3), (0, -2), (0, 3), (1, -2), (1, 3) \}$$

$$(A \times B) - (A \times C) = \{ (-1, 2), (0, 2), (1, 2) \}.....(2)$$

From equations (1) and (2)

$$A x (B - C) = (A x B) - (A x C)$$

3. If $P = \{2, 3\}$, $Q = \{3, 4\}$ and $R = \{2, 4\}$, verify that $P \times (Q \cup R) = (P \times Q) \cup (P \times R)$

$$Q \cup R = \{2, 3, 4\}$$

$$P = \{2, 3\}$$

$$P \times (Q \cup R) = \{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}....(1)$$

$$P \times Q = \{(2, 3), (2, 4), (3, 3), (3, 4)\}$$

$$P \times R = \{(2, 2), (2, 4), (3, 2), (3, 4)\}$$

$$\therefore (P \times Q) \cup (P \times R) = \{(2, 3), (2, 4), (3, 3), (3, 4), (2, 2), (3, 2)\}....(2)$$

From (1) and (2) $P \times (Q \cup R) = (P \times Q) \cup (P \times R)$

4. If $A = \{x: x = \frac{n+1}{2}, n=0, \pm 1\}$ and $B = \{-1, 2\}$, find A x B and B x A.

$$A = \{ \frac{1}{2}, 1, 0 \}$$
 Given $B = \{ (-1, 2) \}$

$$\therefore A \times B = \{(1/2, -1), (1/2, 2), (1, -1), (1, 2), (0, -1), (0, 2)\}$$

B x A = {
$$(-1, \frac{1}{2})$$
, $(-1, 1)$, $(-1, 0)$, $(2, \frac{1}{2})$, $(2, 1)$, $(2, 0)$ }

5. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 4, \dots, 36\}$. If R is a relation from B to A defined by $R = \{(x, y): x = y^2\}$ write R, domain of R and range of R.

$$R = \{(1, 1), (2, 4)\}$$

Domain of
$$R = \{1, 2\}$$

Range of
$$R = \{1, 4\}$$

6. Determine the domain and range of the relation R defined by R= $\{(x, x^2 - 1)/ x \in N \text{ and } x \le 10\}$.

$$R = \{(2, 3), (3, 8)\}$$

Domain of $R = \{2, 3\}$
Range of $R = \{3, 8\}$

7. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Let R be a relation defined on A by $R = \{(x, y) : y = 2x\}$. Write R in the Roster form. Also write the domain and range of R.

$$R = \{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)\}$$

Domain of R = \{ 1, 2, 3, 4, 5\}
Range of R = \{2, 4, 6, 8, 10\}

8. Let $A=\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. If $R=\{(x, y): x+2y=12\}$ is a relation on A. Find the domain and range of R.

$$R = \{(10, 1), (8, 2), (6, 3), (4, 4), (2, 5)\}$$

Domain of R = \{10, 8, 6, 4,2\}
Range of R = \{1, 2, 3, 4, 5\}

9. Let R be a relation defined on $A = \{1, 2, 3, 4, 5\}$ by xRy iff x-y is a natural number. Find the domain and range.

$$R = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)\}$$
 Domain of R = $\{2, 3, 4, 5\}$
Range of R = $\{1, 2, 3, 4\}$

10. If R is a relation defined on A = $\{1, 2, 3, 4\}$ by xRy iff $x \le y$ find the domain and range of R.

```
R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}
Domain of R = \{1, 2, 3\}
Range of R = \{1, 2, 3, 4\}
```

11. Let $f = \{(1, 5), (-1, 1), (0, 3)\}$ be a function from $A = \{0, 1, -1\}$ to Z, defined by y = ax + b. Find a and b.

$$y = ax + b$$

If $x = 0$ $y = b => b = 3$
If $x = 1$ $y = a + b => a + b = 5$
 $\therefore a = 5 - b$ $\therefore a = 2$
If $x = -1$ $y = -a + b => -a + b = 1$
 $\therefore b = 1 + a$ $\therefore b = 1 + 2 = 3$

12. If
$$f(x) = \begin{cases} 3x + 1, & 0 \le x \le 2 \\ 1 + 9x, & 2 < x < 3 \\ 30 + 2x, & x \ge 3 \end{cases}$$
 Find $f(1)$, $f(5/2)$ and $f(4)$

When $x = 1$, $f(x) = 3x + 1$

$$f(1) = 4$$

When $x = \frac{5}{2}$, $f(x) = 1 + 9x$

$$f(\frac{5}{2}) = 1 + 9(\frac{5}{2}) = 1 + \frac{45}{2} = \frac{47}{2}$$

- 13. Draw the graph of the greatest integer function $f: R \rightarrow R$, f(x) = [x].
- 14. If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x}$ be two functions defined over the set of position real numbers, find (f g) (3), $\left(\frac{f}{g}\right)$ (2), (f-g) (1).

(f g) (3) = f (3) . g (3)
=
$$\sqrt{3} \cdot \frac{1}{3} = \frac{1}{\sqrt{3}}$$

 $\left(\frac{f}{g}\right)$ (2) = $\frac{f(2)}{g(2)} = \frac{\sqrt{2}}{\frac{1}{2}} = 2\sqrt{2}$
(f - g) (1) = f (1) - g (1) = 1 - $\frac{1}{1}$ = 0

When x = 4, f(x) = 30 + 2x

f(1) = 30 + 8 = 38

15. Find the domain and range of $f(x) = \frac{x-1}{x+1}$

$$f(x)$$
 is not defined for $x = -1$

$$\therefore Domain = \{x / x \in R \text{ and } x \neq -1\}$$

Given
$$y = \frac{x-1}{x+1}$$

$$\Rightarrow y(x+1) = x-1$$

$$\therefore xy + y = x - 1$$

$$\therefore xy - x = -y - 1$$

$$x(y-1) = -(y+1)$$

$$\therefore x = \frac{y+1}{1-y} \quad \therefore y \neq 1$$

$$\therefore Range = \{ y / y \in R \text{ and } y \neq 1 \}$$

16. Find the domain and range of $f(x) = \sqrt{2x-1}$

f (x) cannot be defined for $x < \frac{1}{2}$

$$\therefore Domains = \{x / x \in R \text{ and } x \ge 1/2\}$$

Given
$$y = \sqrt{2x - 1}$$

$$y^2 = 2x - 1$$

$$x = \frac{y^2 + 1}{2}$$
 exist for all values of y

$$\therefore \text{Range} = \{ y / y \in R \}$$

17. Find the domain and range of $f(x) = \frac{x}{x-2}$

F(x) is not defined when x = -2

$$\therefore Domain = \{x / x \in \mathbb{R}, \text{ and } x \neq -2\}$$

Given
$$f(x) = \frac{x}{x-2}$$

$$y = \frac{x}{x-2} = yx + 2y = x$$

$$\therefore x (1 - y) = 2y$$

$$x = \frac{2y}{1 - y} \qquad \therefore y \neq -1$$

$$\therefore Range = \{ y / y \in R \text{ and } y \neq -1 \}$$

18. Find the domain and range of $f(x) = \sqrt{4 - x^2}$

f(x) is not defined for x > 4

$$\therefore Domain = \{x / x \in \mathbb{R}, \text{ and } x \le 4\}$$

Given,
$$y = \sqrt{4 - x^2}$$

$$y^2 = 4 - x^2$$

$$x^2 = 4 - y^2$$

Range =
$$\{y / y \in R \}$$

19. Find the domain and range of $f(x) = \frac{x^2 - 2}{x^2 + 2}$

Here f(x) is defined for all values of $x \in R$

$$\therefore$$
 Domain = R

Given,
$$y = \frac{x^2 - 2}{x^2 + 2}$$

 $y(x^2 + 2) = x^2 - 2$

$$y(x^2 + 2) = x^2 -$$

$$x^{2}y + 2y = x^{2} - 2$$

 $x^{2}(1 - y) = 2y + 2$

$$x^2 (1 - y) = 2y + 2$$

$$x^2 = \frac{2(y+1)}{(1-y)}$$

$$x = \pm \sqrt{\frac{2(y+1)}{(1-y)}}, y \neq 1 \text{ and } y < 1$$

Range = $\{y/y \in R, \text{ and } y < 1\}$

20. If f(x) = [x] + [2x] + [x-3], where [.] indicates greatest integer function, find f (1.6)

$$f(x) = [x] + [2x] + [x - 3]$$

$$f(1.6) = [1.6] + [3.2] + [-1.4]$$

= 1 + 3 - 2 = 2

21. If f(x) = |x + 2| + |2x - 1|, -1 < x < 0, simplify f(x). Also find $f(-\frac{1}{2})$.

$$f(x) = |x + 2| + |2x - 1|, -1 < x < 0$$

$$f(x) = x + 2 - 2x + 1$$

$$f(x) = 3 - x, -1 < x < 0$$

$$\therefore$$
 f (-1/2) = 3 + $\frac{1}{2}$ = $\frac{7}{2}$
