STA 35C: Statistical Data Science III

Lecture 15: Linear Model Selection - Subset Selection

Dogyoon Song

Spring 2025, UC Davis

Today's topics

- Recall: Resampling methods
 - Cross-validation: estimate test performance using training data
 - The bootstrap: quantify uncertainty by resampling from the given dataset
- Model Selection (Today & Wed): Identify relevant predictors among many
 - Why?
 - Improve prediction accuracy (avoid overfitting)
 - Improve model interpretability
 - How?
 - Subset selection (today)
 - Regularization (next lecture on Wed)
 - Dimension reduction (not covered in STA 35C; possibly in STA 142A)

Brief recap: Resampling methods

Given a single dataset & a single model, we often want to assess model performance

- **Test performance** (e.g., test MSE)
 - We care about performance on new (test) data, but only have a training dataset
 - **Key idea:** Hold out part of the data for validation
 - Cross-validation: Repeat data splits multiple times & aggregate results for a more reliable test performance estimate
- Uncertainty quantification (e.g., standard error)
 - We want to gauge variability in parameter estimates
 - If we could draw fresh samples from nature, we'd see how estimates vary
 - **The bootstrap:** Since we cannot acquire new data, we resample from our existing dataset (treating it as an empirical distribution)

(Linear) Model selection

Recall multiple linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

• In reality, we might have many predictors, unsure which are truly helpful

• Example: Credit dataset

• Response: balance

 Predictors: income, limit, rating, cards, age, education, own, student, married, region

• **Goal:** Choose a subset of *relevant* predictors

Why model selection?

Two main reasons:

- Prediction accuracy
 - Overfitting can occur if we use too many predictors
 - If p > n, we might not even get a unique least squares solution (variance $\to \infty$)
 - Reducing predictors can lower variance and improve generalization

Model interpretability

- Many of the available predictors might not be truly associated with the response
- Including unnecessary predictors can mislead interpretation
- Simpler models are easier to interpret and explain

How to do model selection?

Three key approaches for linear model selection:

- Subset selection
 - Identify a relevant subset of predictors, then fit via least squares
- **Regularization** (to be discussed on Wed)
 - Add a penalty term to least squares formulation that favors "simpler" models
- Dimension reduction (not covered in STA 35C)
 - Project the p predictors into a smaller set of $p' \ll p$ linear combinations

Today's focus: Subset selection

- Best subset selection
- How to choose the optimal model
- Stepwise selection (greedy approximation)

Best subset selection

Idea: Try all subsets of predictors, and pick the one that performs the best

- With p predictors, there are 2^p possible subsets
- Compare models of different sizes carefully (recall R^2 vs. $R^2_{\rm adj}$)

Procedure¹:

- Let \mathcal{M}_0 be the null model (no predictors, just intercept)
- For k = 1, ..., p:
 - Fit all $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ models with exactly k predictors
 - ullet Pick the best (lowest RSS or highest R^2) among them, call it \mathcal{M}_k
- Finally, select the best among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using a test-performance proxy
 - \bullet e.g., adjusted R^2 or cross-validation (more on this later)

¹See [JWHT21, Chapter 6.5.1] for example codes

Best subset selection: Example (n = 3, p = 2)

Example

Dataset: 3 points with 2 predictors (X_1, X_2) and a response Y:

$$(X_1, X_2, Y) = (1, 2, 3),$$

 $(X_1, X_2, Y) = (2, 1, 4),$
 $(X_1, X_2, Y) = (3, 3, 5).$

Candidate subsets:

- \mathcal{M}_0 : Null model (intercept only).
- $\mathcal{M}_1^{(X_1)}$: Use X_1 only.
- $\mathcal{M}_1^{(X_2)}$: Use X_2 only.
- \mathcal{M}_2 : Use (X_1, X_2) .

Best subset selection: Example (Step 1)

Example

Step 1: Fit each model and compute R^2 .

- 1) \mathcal{M}_0 : intercept only
 - $\hat{\beta}_0 = \bar{Y} = \frac{3+4+5}{3} = 4.$
 - $RSS_0 = \sum (Y_i 4)^2 = 1 + 0 + 1 = 2.$
 - TSS = 2, and thus, $R_0^2 = 1 \frac{2}{2} = 0$.
- 2) $\mathcal{M}_1^{(X_1)}$: one predictor X_1
 - $(x_i, y_i) = \{(1,3), (2,4), (3,5)\}; \bar{x} = 2, \bar{y} = 4.$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^3 (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^3 (x_i - \bar{x})^2} = \frac{(-1) \cdot (-1) + 0 \cdot 0 + 1 \cdot 1}{(-1)^2 + (0)^2 + (1)^2} = \frac{2}{2} = 1, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 4 - 1 \cdot 2 = 2.$$

- Thus $\hat{Y} = 2 + 1X_1 \implies$ fitted values (3, 4, 5).
- $RSS_1 = 0 \implies R_1^2 = 1$.

Best subset selection: Example (Step 1, cont'd)

Example

...(continued from the previous slide)...

3) $\mathcal{M}_1^{(X_2)}$: one predictor X_2

• $(x_2, y) = \{(2,3), (1,4), (3,5)\}, \ \bar{x_2} = 2, \ \bar{y} = 4.$

$$\hat{\beta}_1 = \frac{0+0+1\cdot 1}{0+(-1)^2+1^2} = \frac{1}{2} = 0.5, \quad \hat{\beta}_0 = 4-0.5\cdot 2 = 3.$$

• $\hat{Y} = 3 + 0.5X_2 \implies \hat{Y} = \{4, 3.5, 4.5\}.$

$$RSS_2 = (3-4)^2 + (4-3.5)^2 + (5-4.5)^2 = 1 + 0.25 + 0.25 = 1.5, \quad R_2^2 = 1 - \frac{1.5}{2} = 0.25.$$

4) \mathcal{M}_2 : two predictors (X_1, X_2)

- With 3 points, a model with 2 predictors can fit perfectly if consistent.
- We get $RSS_{1,2} = 0$, and thus, $R_{1,2}^2 = 1$.

Best subset selection: Example (Step 2)

Example

Step 2: Compare the four candidate models.

Choose the best by adjusted R^2 or a simpler-subset preference.

Recall
$$R_{\mathrm{adj}}^2=1-\frac{\mathrm{RSS}/(n-k-1)}{\mathrm{TSS}/(n-1)}$$
:
$$R_{\mathrm{adj}}^2(\mathcal{M}_0)=0,$$

$$R_{\mathrm{adj}}^2(\mathcal{M}_1^{(X_1)})=1,$$

$$R_{\mathrm{adj}}^2(\mathcal{M}_1^{(X_2)})=-0.5,$$
 \mathcal{M}_2 : undefined due to $n-p-1=0$.

Therefore, we choose $\mathcal{M}_1^{(X_1)}$.

Best subset selection: Visualization

Figure: In the Credit dataset, RSS and R^2 are displayed for each subset of the ten predictors. The red frontier indicates the best model at each subset size. The x-axis goes from 1 to 11 because one categorical predictor (three levels) is split into two dummy variables [JWHT21, Figure 6.1].

- Pick the model with the lowest test MSE or best adjusted R^2
- If the improvement is marginal (e.g., within 1 SE of the best), pick a simpler subset

Evaluating models & criteria

Goal: Out of $\{\mathcal{M}_0, \dots, \mathcal{M}_p\}$, choose the model with the best *test* performance

• Training performance (e.g., RSS or R^2) alone can be misleading

Common criteria:

- Adjusted R²:
 - $R_{\text{adj}}^2 = 1 \frac{\text{RSS}/(n-p-1)}{\text{TSS}/(n-1)}$
 - Increases only if adding predictors significantly decreases RSS
- Cross-validation:
 - An empirical approach splitting/re-splitting data to estimate test error
- *C_p*, **AIC**, **BIC** (beyond the scope of this course):
 - Analytical formulas penalizing model size (p) under certain theoretical assumptions

Visualization of selection criteria

Figure: For the Credit dataset, adjusted R^2 , validation error (single split), and cross-validation error are displayed for the best model containing k predictors, for k ranging from 1 to 11. The overall best model, based on each of these quantities, is shown as a blue cross [JWHT21, Figures 6.2 & 6.3, excerpted].

These methods often choose similar models

Best subset selection: Summary & limitations

Key idea: Exhaustively explore 2^p subsets; pick the best by a test-performance criterion

- Useful when p is small
- $\{\mathcal{M}_k\}$ denotes the best k-predictor model; we choose among $\{\mathcal{M}_0,\ldots,\mathcal{M}_p\}$ using a test-performance measure
- Common performance metrics: adjusted R^2 , C_p , AIC, BIC, cross-validation
- Straightforward, systematic approach for accuracy & interpretability

Limitation: 2^p grows rapidly (with p), often infeasible for large p

• e.g., $p = 10 \to 2^p \approx 10^3$; $p = 50 \to 2^p \approx 10^{15}$ (infeasible)

Forward stepwise selection

Idea: A greedy² approximation to best subset selection, adding one predictor at a time

Procedure³:

- \mathcal{M}_0 : null model with intercept only
- For k = 0, ..., p 1:
 - ullet Consider all (p-k) models that add exactly 1 unused predictors to \mathcal{M}_k
 - ullet Pick the best updated model, and call it \mathcal{M}_{k+1}
- ullet Finally, compare $\{\mathcal{M}_0,\ldots,\mathcal{M}_p\}$ using adjusted R^2 or other test-based metrics

²At each step, pick the best addition via a *local* search

³See [JWHT21, Chapter 6.5.1] for example codes

Forward stepwise selection: Example (Overview)

Example

Dataset: 4 points with 3 predictors (X_1, X_2, X_3) and response Y:

$$(X_1, X_2, X_3, Y) = (1, 2, 2, 2.5),$$

 $(X_1, X_2, X_3, Y) = (2, 1, 1, 3.5),$
 $(X_1, X_2, X_3, Y) = (3, 3, 2, 6),$
 $(X_1, X_2, X_3, Y) = (4, 1, 3, 6.5).$

- Step 0: \mathcal{M}_0 fits $Y = \beta_0$; compute $RSS_0 \approx 11.19$.
- Step 1: Fit $\mathcal{M}_1^{(X_1)}, \mathcal{M}_1^{(X_2)}, \mathcal{M}_1^{(X_3)}$. Pick best single predictor (with largest R^2).
- Step 2: Add a second predictor from the remaining, forming \mathcal{M}_2 . Check R^2, R_{adj}^2 .
- Step 3: Possibly add the last predictor (\mathcal{M}_3 with all three predictors).
- Final selection: Compare $\mathcal{M}_0, \dots, \mathcal{M}_3$ and choose the subset subset with best test performance.

Forward stepwise selection: Example (Step 0)

Example

Step 0: Null model. \mathcal{M}_0 : $Y = \beta_0$.

- $\hat{\beta}_0 = \bar{Y} = \frac{2.5 + 3.5 + 6 + 6.5}{4} = 4.625.$
- RSS₀ = $\sum (Y_i 4.625)^2 = (2.5 4.625)^2 + (3.5 4.625)^2 + (6 4.625)^2 + (6.5 4.625)^2$ = $(-2.125)^2 + (-1.125)^2 + (1.375)^2 + (1.875)^2$ $\approx 4.51 + 1.27 + 1.89 + 3.52$ = 11.19.
- TSS = 11.19, $R_0^2 = 1 \frac{11.19}{11.19} = 0$.

Step 1: Fit and compare each single-predictor model X_1 , X_2 , X_3 .

- We now fit $\mathcal{M}_1^{(X_1)}$, $\mathcal{M}_1^{(X_2)}$, and $\mathcal{M}_1^{(X_3)}$.
- Then compute RSS and R^2 for each; See the next slide for sample calculation for $\mathcal{M}_1^{(X_1)}$.

Conclusion of Step 1: Whichever single predictor yields the highest R^2 (or lowest RSS) is \mathcal{M}_1 .

Forward stepwise selection: Example (Step 1, further details)

Example

Illustration for X_1 :

- $X_1 = \{1, 2, 3, 4\}, Y = \{2.5, 3.5, 6, 6.5\}.$
- Slope $\hat{\beta}_1$, $\hat{\beta}_0$ are obtained by least squares:

$$\hat{eta}_1 = rac{\sum (x_{1i} - ar{x}_1)(y_i - ar{y})}{\sum (x_{1i} - ar{x}_1)^2} \quad ext{and} \quad \hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$

where $\bar{x_1} = 2.5$ and $\bar{y} = 4.625$. Eventually, we find

$$\hat{\beta}_1 \approx 1.2$$
, $\hat{\beta}_0 \approx 3.025$ (approx).

• Then $RSS_1 \approx 2.55$, $R_1^2 = 1 - \frac{2.55}{11.19} \approx 0.77$.

Similarly for X_2, X_3 : RSS₂ ≈ 4.12 , $R_2^2 \approx 1 - \frac{4.12}{11.19} = 0.63$, and RSS₃ ≈ 3.20 , $R_3^2 \approx 1 - \frac{3.20}{11.19} = 0.71$.

Pick the best single predictor = X_1 , whic yields highest R^2 or lowest RSS.

Forward stepwise selection: Example (Step 2)

Example

Step 2: Add a second predictor to \mathcal{M}_1

Now k = 1. Our model has X_1 , so the unused are X_2 and X_3 :

$$\mathcal{M}_{2}^{(X_{1},X_{2})}, \quad \mathcal{M}_{2}^{(X_{1},X_{3})}.$$

We fit each, compute RSS& R^2 . For instance:

(1) $\mathcal{M}_{2}^{(X_{1},X_{2})}: Y = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2}$. After fitting this model:

$$RSS_{1,2} \approx 1.80$$
, $R_{1,2}^2 = 1 - \frac{1.80}{11.19} \approx 0.84$.

(2) $\mathcal{M}_2^{(X_1,X_3)}$: Similarly, we get $\mathrm{RSS}_{1,3}\approx 1.40,\quad R_{1,3}^2=1-\frac{1.40}{11.19}\approx 0.875.$

Hence $\mathcal{M}_2 = \mathcal{M}_2^{(X_1, X_3)}$ (larger \mathbb{R}^2).

Forward stepwise selection: Example (Step 3 & Selection)

Example

Step 3: Add the remaining predictor to \mathcal{M}_2

Now k = 2. Our model includes X_1 and X_3 . The remaining predictor is X_2 . So we consider:

$$\mathcal{M}_3: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3.$$

- Fit the full model with 3 predictors, compute $RSS_{1,2,3}$, $R_{1,2,3}^2$
- Suppose $RSS_{1,2,3} \approx 1.25$, $R_{1,2,3}^2 = 1 \frac{1.25}{11.19} \approx 0.89$.

Finally, we might pick \mathcal{M}_1 or do cross-validation among the four models:

$$\begin{split} \mathcal{M}_0: & R^2 = 0, & R_{\rm adj}^2 = 0, \\ \mathcal{M}_1 = \{X_1\}: & R^2 \approx 0.77, & R_{\rm adj}^2 \approx 0.66, \\ \mathcal{M}_2 = \{X_1, X_3\}: & R^2 \approx 0.875, & R_{\rm adj}^2 \approx 0.63, \\ \mathcal{M}_3 = \{X_1, X_2, X_3\}: & R^2 \approx 0.89, & R_{\rm adj}^2 & \text{undefined (} n-p-1=0 \text{)}. \end{split}$$

Example: Stepwise selection may yield a different subset

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

Figure: The first four chosen models for best subset selection and forward stepwise selection on the Credit dataset. The first three models are identical, but the fourth differs [JWHT21, Table 6.1].

• Stepwise typically performs well and is computationally much cheaper:

$$1 + \sum_{k=0}^{p-1} (p-k) = 1 + \frac{p(p+1)}{2} \ll 2^p$$

However, it may pick a different subset if the greedy path diverges

Backward stepwise selection

There is an alternative stepwise method reverses the order of search

Backward stepwise selection:

- Start with the full model; remove one predictor at a time
- Usually require n > p so the full model can be fit initially

Comparison with forward stepwise:

- Both are greedy algorithms using local decisions
- ullet Both drastically reduce the search space vs. best subset when p is large
- They can yield different subsets if they take different paths

Wrap-up & Takeaways

Model selection (Subset selection): Identify a subset of relevant predictors

- Purposes:
 - Improve prediction accuracy and avoid overfitting
 - Enhance model interpretability
- Methods:
 - Best subset selection:
 - Exhaustively checks all 2^p subsets (optimal but expensive)
 - Feasible only for small p (e.g., $p \lesssim 20$)
 - Stepwise selection (forward or backward):
 - Much fewer model fits needed: $1 + \frac{p(p+1)}{2}$ vs. 2^p
 - Often performs well in practice, but may miss the globally optimal subset
 - Overall:
 - Stepwise methods generally give good models but are not guaranteed to be optimal
 - For moderate or large $p \ (\gtrsim 50)$, stepwise is typically the only feasible approach

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.