

Test report No. Page Issued date FCC ID : 12407798S-A-R2 : 1 of 47 : April 1, 2019 : YUQ-W510MV

RADIO TEST REPORT

Test Report No.: 12407798S-A-R2

Applicant : CITIZEN WATCH CO., LTD.

Type of Equipment : Module for Wrist WATCH

Model No. : W510MV

FCC ID : YUQ-W510MV

Test regulation : FCC Part 15 Subpart C: 2018

Test Result : Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. This test report covers Radio technical requirements.

Date of test:

It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

November 5 to 16, 2018

- 7. The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. This report is a revised version of 12407798S-A-R1. 12407798S-A-R1 is replaced with this report.

Representative test
engineer:

Makoto Hosaka
Engineer
Consumer Technology Division

Approved by:

Akio Hayashi
Leader
Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

 Test report No.
 : 12407798S-A-R2

 Page
 : 2 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

REVISION HISTORY

Original Test Report No.: 12407798S-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12407798S-A	November 21, 2018	-	-
1	12407798S-A-R1	December 25, 2018	25, 30	Add sentences
2	12407798S-A-R2	April 1, 2019	9	Correction of Shield on USB Cable Unshielded -> Shielded
			13	Correction of RBW and VBW at 6dB Bandwidth RBW: 22 kHz -> 100 kHz VBW: 62 kHz -> 300 kHz
			5	Correction of Antenna requirement The antenna is not removable from the EUT> It is impossible for end

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.
Page
Issued date
FCC ID

: 12407798S-A-R2 : 3 of 47 : April 1, 2019 : YUQ-W510MV

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Conducted Emission 14 Maximum Peak Output Power 21 Power Density 41 **APPENDIX 2: APPENDIX 3:**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 4 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

SECTION 1: Customer information

Company Name : CITIZEN WATCH CO., LTD.

Address : 6-1-12, TANASHI-CHO, NISHI-TOKYO-SHI, TOKYO 188-8511,

JAPAN

Telephone Number : +81-42-468-4769 Facsimile Number : +81-42-468-4730 Contact Person : Masayuki Araki

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Module for Wrist WATCH

Model No. : W510MV

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 2.8 V

Receipt Date of Sample : November 2, 2018

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: W510MV (referred to as the EUT in this report) is a Module for Wrist WATCH.

Radio Specification

Equipment Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Type of Modulation : GFSK

Antenna Type : Monopole Antenna

Antenna Gain : -12.56 dBi Clock frequency (Maximum) : 32 MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12407798S-A-R2

 Page
 : 5 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	4.6 dB	Camanliad		
	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	24.00010 MHz, N, AV Tx BLE 2M PHY 2480 MHz	Complied	-	
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05	FCC: Section 15.247(a)(2)		Complied	Conducted	
	IC: -	IC: RSS-247 5.2(a)				
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05	FCC: Section 15.247(b)(3)	See data.	Complied	Conducted	
.	IC: RSS-Gen 6.12	IC: RSS-247 5.4(d)				
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05	FCC: Section 15.247(e)		Complied	Conducted	
	IC: -	IC: RSS-247 5.2(b)				
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05	FCC: Section15.247(d)	3.7 dB		Conducted (below 30 MHz)/	
	IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	7206.00 MHz, AV, Vert. Tx BLE 2M PHY 2402 MHz	Complied#	Radiated (above 30 MHz) *1)	

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to RF IC regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the module and Antenna are mechanically fixed by being installed in the end product. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 12407798S-A-R2
Page : 6 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	RSS-Gen 6.7	IC: -	N/A	Complied	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Shonan EMC Lab.

Item	Frequency range	Uncertainty (+/-)				
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4 SAC / SR	No. 5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.9 dB	2.8 dB	2.9 dB	2.9 dB	2.9 dB
Radiated emission	9 kHz-30 MHz	3.0 dB	3.0 dB	3.1 dB	-	-
(Measurement distance: 3 m)	30 MHz-200 MHz	4.6 dB	4.6 dB	4.7 dB	-	-
	200 MHz-1 GHz	6.0 dB	6.0 dB	6.1 dB	-	-
	1 GHz-6 GHz	4.8 dB	4.8 dB	4.8 dB	-	-
	6 GHz-18 GHz	5.4 dB	5.4 dB	5.4 dB	-	-
Radiated emission	1 GHz-18 GHz	5.7 dB	5.7 dB	5.7 dB	-	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.9 dB	5.9 dB	5.9 dB	-	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	0.48 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	0.66 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.47 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	0.64 dB
Power Measurement above 1 GHz (Average Detector)_SPM-13	0.90 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-13	1.04 dB
Spurious emission (Conducted) below 1GHz	1.8 dB
Spurious emission (Conducted) 1 GHz-3 GHz	1.7 dB
Spurious emission (Conducted) 3 GHz-18 GHz	2.5 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.5 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.7 dB
Bandwidth Measurement	1.01 %
Duty cycle and Time Measurement	0.012 %

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12407798S-A-R2

 Page
 : 7 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

JAB Accreditation No. RTL02610

FCC Test Firm Registration Number: 839876

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 8 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Mode	Remarks*
Bluetooth Low Energy (BT LE)	PRBS9

*Power of the EUT was set by the software as follows;

Power settings: Fixed

Software: 1M PHY: nRF52810 v2.6.6

2M PHY: Serial Debug2 R2.03.3

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission	BT LE Tx	2402 MHz
	1M PHY	2440 MHz
	2M PHY	2480 MHz
Spurious Emission	BT LE Tx	2402 MHz
	1M PHY	2440 MHz
	2M PHY	2480 MHz
6dB Bandwidth	BT LE Tx	2402 MHz
Maximum Peak Output Power	1M PHY	2440 MHz
Power Density	2M PHY	2480 MHz
99% Occupied Bandwidth		

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12407798S-A-R2

 Page
 : 9 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

4.2 Configuration and peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Module for Wrist WATCH	W510MV	FCC001 1*) FCC002 2*)	Citizen Watch	EUT
В	Jig Board	-	-	Citizen Watch	-
С	Note personal computer	Satellite Pro A50-A Series	ZE127518H	TOSHIBA	-
D	DC power supply	PAN35-10A	DE001677	KIKUSUI	-
Е	AC Adaptor	PA3917U-1ACA	201140918507284	TOSHIBA	-

^{*1)} Used for Antenna Terminal conducted test

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.1 + 0.7	Unshielded	Unshielded	-
2	DC	1.5	Unshielded	Unshielded	-
3	USB Cable	1.0	Shielded	Shielded	*3)
4	AC	2.0	Unshielded	Unshielded	-
5	DC	1.7	Unshielded	Unshielded	-
6	AC	0.8	Unshielded	Unshielded	-

^{*3)} Used for data communication between Jig Board and Note personal computer.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Used for Radiated Emission test

Test report No. : 12407798S-A-R2
Page : 10 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

Conducted emission

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Shielded Room. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 11 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz	(10).	20 dBc
Instrument used	Test Receiver	Spectrum Analy	/zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.2	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (Linear	
			voltage)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 12 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated emission

Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 13 GHz

- r : Radius of an outer periphery of EUT
- × : Center of turn table

13 GHz - 26.5 GHz

Distance Factor: $20 \times \log (3.99 \text{ m}^*/3.0 \text{ m}) = 2.48 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.99 m

Test Volume: 2 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

r = 0.01 m

Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.54 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 13 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6 dB Bandwidth						*3)
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

: 12407798S-A-R2 Test report No. Page : 14 of 47 : April 1, 2019 **Issued date** : YUQ-W510MV FCC ID

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date: 2018/11/16

Mode : Tx_BLE_1M_2480 MHz : AC 120V / 60 Hz : 25 deg.C. / 44 %RH Power Temp./Humi.

Remarks

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV

Engineer : Makoto Hosaka

		Rea	ding	05	Res	ults	Lin	nit	Mar	gin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
\square	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	18.28	-7.82	12.33	30.61	4.51	66.00	56.00	35.3	51.4	N	
2	0.19105	17.73	-8.82	12.33	30.06	3.51	63.99	53.99	33.9	50.4	N	
3	3.12313	19.04	13.70	12.37	31.41	26.07	56.00	46.00	24.5	19.9	N	
4	8.76012	22.44	21.76	12.54	34.98	34.30	60.00	50.00	25.0	15.7	N	
5	15.03956	17.15	15.94	12.65	29.80	28.59	60.00	50.00	30.2	21.4	N	
6	24.00260	37.52	31.85	12.88	50.40	44.73	60.00	50.00	9.6	5.2	N	
7	26.23873	27.12	24.03	12.91	40.03	36.94	60.00	50.00	19.9	13.0	N	
8	0.15000	18.45	-7.82	12.33	30.78	4.51	66.00	56.00	35.2	51.4	L1	
9	0.19095	17.93	-8.86	12.33	30.26	3.47	64.00	54.00	33.7	50.5	L1	
10	3.12174	19.21	13.85	12.37	31.58	26.22	56.00	46.00	24.4	19.7	L1	
11	8.76005	24.55	23.83	12.54	37.09	36.37	60.00	50.00	22.9	13.6	L1	
12	15.13082	21.18	20.06	12.65	33.83	32.71	60.00	50.00	26.1	17.2	L1	
13	24.00122	30.41	24.12	12.88	43.29	37.00	60.00	50.00	16.7	13.0	L1	
14	27.33858	18.65	15.56	12.91	31.56	28.47	60.00	50.00	28.4	21.5	L1	
						i						
							1					
							1					
\Box												

 ${\tt Calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN + Cable + ATT) \ [dB] \ LISN (AMN) : SLS - 05 \\$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 15 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.1 Semi Anechoic Chamber

Date November 16, 2018
Temperature / Humidity Engineer Makoto Hosaka
Mode Tx BT LE 1M PHY

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 16 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room Date: 2018/11/16

Mode : Tx_BLE_2M_2480 MHz

Power : AC 120V / 60 Hz Temp./Humi. : 25 deg.C. / 44 %RH

Remarks : -

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV

Engineer : Makoto Hosaka

			r 1			1						i
No.	Freq.	<qp></qp>	ding <av></av>	C.Fac	<qp></qp>	ults <av></av>	<0P> Lin	AV>	<qp></qp>	rgin <av></av>	Phase	Comment
NO.	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	Filase	Comment
1	0.15000	18.38	-7.64	12.33	30.71	4.69	66.00	56.00	35.2	51.3	N	
2	0.18900	17.97	-8.66	12.33	30.30	3.67	64.08	54.08	33.7	50.4	N	
3	3.12409	18.75	13.61	12.37	31.12	25.98	56.00	46.00	24.8	20.0	N	
4	7.68000	22.37	21.52	12.50	34.87	34.02	60.00	50.00	25.1	15.9	N	
5	15.03967	17.11	15.89	12.65	29.76	28.54	60.00	50.00	30.2	21.4	N	
6	24.00010	38.53	32.49	12.88	51.41	45.37	60.00	50.00	8.5	4.6	N	
7	26.19938	27.22	24.07	12.91	40.13	36,98	60.00	50.00	19.8	13.0	N	
8	0.15000	18.52	-7.65	12.33	30.85	4.68	66.00	56.00	35.1	51.3	L1	
9	0.18923	18.04	-8.59	12.33	30.37	3.74	64.07	54.07	33.7	50.3	L1	
10	3.12349	19.25	14.05	12.37	31.62	26.42	56.00	46.00	24.3	19.5	L1	
11	7.63992	22.75	21.85	12.50	35.25	34.35	60.00	50.00	24.7	15.6	L1	
12	15.59963	20.72	19.61	12.67	33.39	32.28	60.00	50.00	26.6	17.7	L1	
13	24.00150	30.53	24.24	12.88	43.41	37.12	60.00	50.00	16.5	12.8	L1	
14	27.35896	20.27	17.04	12.91	33.18	29.95	60.00	50.00	26.8	20.0	L1	

 $\begin{tabular}{ll} Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN+Cable+ATT) [dB] \\ LISN (AMN) : SLS-05 \end{tabular}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 17 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.1 Semi Anechoic Chamber

Date November 16, 2018
Temperature / Humidity 25 deg. C / 44 % RH
Engineer Makoto Hosaka
Mode Tx BT LE 2MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12407798S-A-R2

 Page
 : 18 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa
Mode Tx BT LE

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
1M PHY	2402	1047.1	0.727	> 0.5000
	2440	1047.6	0.718	> 0.5000
	2480	1050.9	0.719	> 0.5000
2M PHY	2402	2056.3	1.161	> 0.5000
	2440	2061.1	1.166	> 0.5000
	2480	2066.1	1.183	> 0.5000

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 19 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

99%Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 20 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

6dB Bandwidth

LgAv

Center 2.480 000 GHz

Transmit Freq Error x dB Bandwidth

Occupied Bandwidth

2.0322 MHz

-13.658 kHz

#Res BW 100 kHz

Span 10 MHz

-6.00 dB

Sweep 1.04 ms (1201 pts)

Occ BN % Pwr 99.00 %

x dB

#VBW 300 kHz

Span 10 MHz

99.00 %

-6.00 dB

Sweep 1.04 ms (1201 pts)

x dB

Occ BW % Pwr

LgAv

M1 S2 Center 2.480 000 GHz #Res BW 100 kHz

Transmit Freq Error x dB Bandwidth

Occupied Bandwidth

1.0772 MHz

-20.269 kHz 718.839 kHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

#VBW 300 kHz

Test report No. : 12407798S-A-R2 : 21 of 47 Page : April 1, 2019 **Issued date** FCC ID : YUQ-W510MV

Maximum Peak Output Power

12407798S-A-R2 Report No.

Test place Shonan EMC Lab. No.5 Shielded Room

November 9, 2018 Date Temperature / Humidity 26 deg. C / 42 % RH Engineer Yosuke Ishikawa Tx BT LE Mode

1M PHY	<i>I</i>				Con	ducted Po	ower			6	e.i.r.p. for	· RSS-24	7	
Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin	Antenna	Re	sult	Li	mit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-9.52	1.22	9.68	1.38	1.37	30.00	1000	28.62	-12.56	-11.18	0.08	36.02	4000	47.20
2440	-9.41	1.22	9.67	1.48	1.41	30.00	1000	28.52	-12.56	-11.08	0.08	36.02	4000	47.10
2480	-9.40	1.23	9.67	1.50	1.41	30.00	1000	28.50	-12.56	-11.06	0.08	36.02	4000	47.08

2M PHY	7				Con	ducted Po	ower			6	.i.r.p. for	r RSS-247	7	
Freq.	Reading	Cable	Atten.	Res	sult	Li	mit	Margin	Antenna	Res	sult	Liı	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-9.46	1.22	9.68	1.44	1.39	30.00	1000	28.56	-12.56	-11.12	0.08	36.02	4000	47.14
2440	-9.45	1.22	9.67	1.44	1.39	30.00	1000	28.56	-12.56	-11.12	0.08	36.02	4000	47.14
2480	-9.39	1.23	9.67	1.51	1.42	30.00	1000	28.49	-12.56	-11.05	0.08	36.02	4000	47.07

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 22 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Average Output Power (Reference data for RF Exposure / SAR testing)

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa
Mode Tx BT LE

1M PHY

Ī	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
			Loss	Loss	(Time average)		factor	(Burst power avera	
ı	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
I	2402	-11.84	1.22	9.68	-0.94	0.81	1.96	1.02	1.26
ĺ	2440	-11.77	1.22	9.67	-0.88	0.82	1.96	1.08	1.28
ſ	2480	-11.73	1.23	9.67	-0.83	0.83	1.96	1.13	1.30

2M PHY

_									
	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
	2402	-12.18	1.22	9.68	-1.28	0.74	2.37	1.09	1.28
	2440	-12.15	1.22	9.67	-1.26	0.75	2.37	1.11	1.29
	2480	-12.12	1.23	9.67	-1.22	0.76	2.37	1.15	1.30

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Result (Burst power average) = Time average + Duty factor

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 23 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Burst rate confirmation

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa
Mode Tx BT LE

BLE 1M PHY

BLE 2M PHY

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 24 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.3

 Date
 November 6, 2018
 November 5, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 54 % RH
 23 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka
 Yosuke Ishikawa

 (30 MHz - 1 GHz)
 (1 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx BT LE 1M PHY 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	159.925	QP	22.08	15.05	7.87	32.11	0.00	12.89	43.50	30.6	100	2	
Hori.	240.000	QP	28.02	11.65	8.31	32.03	0.00	15.95	46.00	30.0	210	18	
Hori.	299.500	QP	22.08	13.70	8.71	32.01	0.00	12.48	46.00	33.5	100	1	
Hori.	431.012	QP	21.82	16.35	9.37	31.97	0.00	15.57	46.00	30.4	100	358	
Hori.	850.089	QP	21.45	21.60	10.94	31.39	0.00	22.60	46.00	23.4	100	1	
Hori.	2390.000	PK	43.81	27.86	14.13	36.58	2.48	51.70	73.90	22.2	168	85	
Hori.	4804.000	PK	47.98	31.43	6.51	36.88	2.48	51.52	73.90	22.3	168	144	
Hori.	7206.000	PK	43.26	36.79	8.23	37.26	2.48	53.50	73.90	20.4	150	0	
Vert.	151.223	QP	22.18	14.83	7.80	32.12	0.00	12.69	43.50	30.8	100	1	
Vert.	240.004	QP	27.78	11.65	8.31	32.03	0.00	15.71	46.00	30.2	141	348	
Vert.	350.496	QP	21.82	15.12	9.03	31.95	0.00	14.02	46.00	31.9	100	1	
Vert.	582.032	QP	21.51	18.69	9.94	31.97	0.00	18.17	46.00	27.8	100	1	
Vert.	2390.000	PK	44.04	27.86	14.13	36.58	2.48	51.93	73.90	21.9	223	0	
Vert.	4804.000	PK	47.40	31.43	6.51	36.88	2.48	50.94	73.90	22.9	150	138	
Vert.	7206.000	PK	43.52	36.79	8.23	37.26	2.48	53.76	73.90	20.1	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m/3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	33.45	27.86	14.13	36.58	3.92	2.48	45.26	53.90	8.6	*1)
Hori.	4804.000	AV	35.93	31.43	6.51	36.88	3.92	2.48	43.39	53.90	10.5	
Hori.	7206.000	AV	35.62	36.79	8.23	37.26	3.92	2.48	49.78	53.90	4.1	
Vert.	2390.000	AV	32.65	27.86	14.13	36.58	3.92	2.48	44.46	53.90	9.4	*1)
Vert.	4804.000	AV	34.45	31.43	6.51	36.88	3.92	2.48	41.91	53.90	12.0	
Vert.	7206.000	AV	34.47	36.79	8.23	37.26	3.92	2.48	48.63	53.90	5.3	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB

13 GHz - 40 GHz : $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	71.52	27.86	14.14	36.57	2.48	79.43	-	-	Carrier
Hori.	2400.000	PK	36.14	27.86	14.14	36.58	2.48	44.04	59.43	15.4	
Hori.	9608.000	PK	36.88	38.51	9.21	38.47	2.48	48.61	59.43	10.8	
Vert.	2402.000	PK	71.57	27.86	14.14	36.57	2.48	79.48	-	-	Carrier
Vert.	2400.000	PK	39.16	27.86	14.14	36.58	2.48	47.06	59.48	12.4	
Vert.	9608.000	PK	37.45	38.51	9.21	38.47	2.48	49.18	59.48	10.3	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor: 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.48 dB 13 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 25 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12407798S-A-R2
Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

Date November 5, 2018
Temperature / Humidity 24 deg. C / 54 % RH
Engineer Makoto Hosaka
(1 GHz - 13 GHz)

Mode Tx BT LE 1M PHY 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The spurious emission on the band between 2310 MHz to 2365 MHz were not observed.

Test report No. : 12407798S-A-R2
Page : 26 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.3

 Date
 November 6, 2018
 November 5, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 54 % RH
 23 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka
 Yosuke Ishikawa

 (30 MHz - 1 GHz)
 (1 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx BT LE 1M PHY 2440 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	160.009	QP	22.48	15.05	7.87	32.11	0.00	13.29	43.50	30.2	100	1	
Hori.	240.000	QP	27.31	11.65	8.31	32.03	0.00	15.24	46.00	30.7	219	31	
Hori.	300.794	QP	21.86	13.72	8.72	32.01	0.00	12.29	46.00	33.7	100	1	
Hori.	431.711	QP	21.73	16.36	9.38	31.97	0.00	15.50	46.00	30.5	100	2	
Hori.	850.697	QP	21.18	21.62	10.94	31.38	0.00	22.36	46.00	23.6	100	1	
Hori.	4880.000	PK	44.88	31.37	6.56	36.90	2.48	48.39	73.90	25.5	144	124	
Hori.	7320.000	PK	42.68	37.00	8.31	37.44	2.48	53.03	73.90	20.8	150	0	
Vert.	151.274	QP	21.11	14.83	7.81	32.12	0.00	11.63	43.50	31.8	100	2	
Vert.	240.000	QP	27.97	11.65	8.31	32.03	0.00	15.90	46.00	30.1	140	350	
Vert.	349.500	QP	21.81	15.10	9.03	31.95	0.00	13.99	46.00	32.0	100	1	
Vert.	582.018	QP	21.39	18.69	9.94	31.97	0.00	18.05	46.00	27.9	100	2	
Vert.	4880.000	PK	44.77	31.37	6.56	36.90	2.48	48.28	73.90	25.6	254	337	
Vert.	7320.000	PK	42.39	37.00	8.31	37.44	2.48	52.74	73.90	21.1	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m/3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4880.000	AV	34.30	31.37	6.56	36.90	3.92	2.48	41.73	53.90	12.2	
Hori.	7320.000	AV	34.37	37.00	8.31	37.44	3.92	2.48	48.64	53.90	5.3	
Vert.	4880.000	AV	36.56	31.37	6.56	36.90	3.92	2.48	43.99	53.90	9.9	
Vert.	7320.000	AV	34.88	37.00	8.31	37.44	3.92	2.48	49.15	53.90	4.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : $20log\,(3.99\,m\,/\,3.0\,m) = 2.48\,dB$ 13 GHz - 40 GHz : $20log\,(1.0\,m\,/\,3.0\,m) = -9.54\,dB$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2440.000	PK	72.52	27.81	14.17	36.55	2.48	80.43	-	-	Carrier
Hori.	9760.000	PK	34.90	38.92	9.21	38.65	2.48	46.86	60.43	13.6	
Vert.	2440.000	PK	72.37	27.81	14.17	36.55	2.48	80.28	-	-	Carrier
Vert.	9760.000	PK	34.50	38.92	9.21	38.65	2.48	46.46	60.28	13.8	

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m/3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m/3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 27 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No.3

 Date
 November 6, 2018
 November 5, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 54 % RH
 23 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka
 Yosuke Ishikawa

 (30 MHz - 1 GHz)
 (1 GHz - 13 GHz)
 (13 GHz - 26.5 GHz)

Mode Tx BT LE 1M PHY 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

D 1 3	г			A . F		ο.	D' i	D I	r · · ·	. · ·	TT 1 1	4 1	Dl-
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	160.001	QP	22.27	15.05	7.87	32.11	0.00	13.08	43.50	30.4	100	1	
Hori.	240.000	QP	27.35	11.65	8.31	32.03	0.00	15.28	46.00	30.7	210	26	
Hori.	299.709	QP	22.01	13.70	8.71	32.01	0.00	12.41	46.00	33.5	100	358	
Hori.	431.499	QP	21.91	16.36	9.38	31.97	0.00	15.68	46.00	30.3	100	2	
Hori.	849.992	QP	21.39	21.60	10.94	31.39	0.00	22.54	46.00	23.4	100	1	
Hori.	2483.500	PK	44.35	27.65	14.22	36.52	2.48	52.18	73.90	21.7	345	188	
Hori.	4960.000	PK	45.68	31.54	6.61	36.93	2.48	49.38	73.90	24.5	178	158	
Hori.	7440.000	PK	43.47	37.10	8.38	37.63	2.48	53.80	73.90	20.1	150	0	
Vert.	150.993	QP	22.36	14.82	7.80	32.12	0.00	12.86	43.50	30.6	100	1	
Vert.	240.000	QP	27.83	11.65	8.31	32.03	0.00	15.76	46.00	30.2	136	350	
Vert.	350.600	QP	21.96	15.12	9.03	31.95	0.00	14.16	46.00	31.8	100	358	
Vert.	582.034	QP	21.45	18.69	9.94	31.97	0.00	18.11	46.00	27.8	100	1	
Vert.	2483.500	PK	44.41	27.65	14.22	36.52	2.48	52.24	73.90	21.6	168	297	
Vert.	4960.000	PK	46.04	31.54	6.61	36.93	2.48	49.74	73.90	24.1	127	359	
Vert.	7440.000	PK	43.35	37.10	8.38	37.63	2.48	53.68	73.90	20.2	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	34.70	27.65	14.22	36.52	3.92	2.48	46.45	53.90	7.4	*1)
Hori.	4960.000	AV	34.88	31.54	6.61	36.93	3.92	2.48	42.50	53.90	11.4	
Hori.	7440.000	AV	33.95	37.10	8.38	37.63	3.92	2.48	48.20	53.90	5.7	
Vert.	2483.500	AV	35.03	27.65	14.22	36.52	3.92	2.48	46.78	53.90	7.1	*1)
Vert.	4960.000	AV	36.67	31.54	6.61	36.93	3.92	2.48	44.29	53.90	9.6	
Vert.	7440.000	AV	33.72	37.10	8.38	37.63	3.92	2.48	47.97	53.90	5.9	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2480.000	PK	71.31	27.67	14.22	36.52	2.48	79.16	-	-	Carrier
Hori.	9920.000	PK	33.96	38.97	9.22	38.84	2.48	45.79	59.16	13.4	
Vert.	2480.000	PK	71.91	27.67	14.22	36.52	2.48	79.76	-	-	Carrier
Vert.	9920.000	PK	34.45	38.97	9.22	38.84	2.48	46.28	59.76	13.5	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 12407798S-A-R2 Test report No. : 28 of 47 Page : April 1, 2019 **Issued date** FCC ID : YUQ-W510MV

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12407798S-A-R2 Test place Shonan EMC Lab. No.3

Semi Anechoic Chamber

November 5, 2018 Temperature / Humidity 24 deg. C / 54 % RH Engineer Makoto Hosaka (1 GHz - 13 GHz)

Tx BT LE 1M PHY 2480 MHz Mode

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 29 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

 Date
 November 6, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka

 (30 MHz - 1 GHz)
 (1 GHz - 26.5 GHz)

Mode Tx BT LE 2M PHY 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	160.005	QP	22.33	15.05	7.87	32.11	0.00	13.14	43.50	30.3	100	2	
Hori.	240.000	QP	27.96	11.65	8.31	32.03	0.00	15.89	46.00	30.1	210	25	
Hori.	299.700	QP	22.01	13.70	8.71	32.01	0.00	12.41	46.00	33.5	100	2	
Hori.	431.005	QP	21.88	16.35	9.37	31.97	0.00	15.63	46.00	30.3	100	1	
Hori.	850.098	QP	21.37	21.60	10.94	31.39	0.00	22.52	46.00	23.4	100	1	
Hori.	2390.000	PK	43.81	27.86	14.13	36.58	2.48	51.70	73.90	22.2	157	33	
Hori.	4804.000	PK	45.52	31.43	6.51	36.88	2.48	49.06	73.90	24.8	222	166	
Hori.	7206.000	PK	44.58	36.79	8.23	37.26	2.48	54.82	73.90	19.0	150	0	
Vert.	151.213	QP	22.15	14.83	7.80	32.12	0.00	12.66	43.50	30.8	100	3	
Vert.	240.000	QP	28.32	11.65	8.31	32.03	0.00	16.25	46.00	29.7	141	353	
Vert.	350.122	QP	21.77	15.11	9.03	31.95	0.00	13.96	46.00	32.0	100	358	
Vert.	582.020	QP	21.49	18.69	9.94	31.97	0.00	18.15	46.00	27.8	100	1	
Vert.	2390.000	PK	46.04	27.86	14.13	36.58	2.48	53.93	73.90	19.9	210	273	
Vert.	4804.000	PK	45.44	31.43	6.51	36.88	2.48	48.98	73.90	24.9	384	36	
Vert.	7206.000	PK	44.69	36.79	8.23	37.26	2.48	54.93	73.90	18.9	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	34.82	27.86	14.13	36.58	4.74	2.48	47.45	53.90	6.4	*1)
Hori.	4804.000	AV	35.82	31.43	6.51	36.88	4.74	2.48	44.10	53.90	9.8	
Hori.	7206.000	AV	35.18	36.79	8.23	37.26	4.74	2.48	50.16	53.90	3.7	
Vert.	2390.000	AV	34.92	27.86	14.13	36.58	4.74	2.48	47.55	53.90	6.4	*1)
Vert.	4804.000	AV	35.34	31.43	6.51	36.88	4.74	2.48	43.62	53.90	10.3	
Vert.	7206.000	AV	35.26	36.79	8.23	37.26	4.74	2.48	50.24	53.90	3.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 13 GHz: 20log (3.99 m / 3.0 m) = 2.48 dB 13 GHz - 40 GHz: 20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

20 upc D	ata Sileet	(KDW 100	KIIZ, YDW	JUU KIIZ)							
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	73.21	27.86	14.14	36.57	2.48	81.12	-	-	Carrier
Hori.	2400.000	PK	42.81	27.86	14.14	36.58	2.48	50.71	61.12	10.4	
Hori.	9608.000	PK	35.07	38.51	9.21	38.47	2.48	46.80	61.12	14.3	
Vert.	2402.000	PK	70.92	27.86	14.14	36.57	2.48	78.83	-	-	Carrier
Vert.	2400.000	PK	40.02	27.86	14.14	36.58	2.48	47.92	58.83	10.9	
Vert.	9608.000	PK	36.65	38.51	9.21	38.47	2.48	48.38	58.83	10.5	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 30 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

Date November 6, 2018
Temperature / Humidity 24 deg. C / 61 % RH
Engineer Makoto Hosaka
(1 GHz –13 GHz)

Mode Tx BT LE 2M PHY 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The spurious emission on the band between 2310 MHz to 2365 MHz were not observed.

Test report No. : 12407798S-A-R2
Page : 31 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

 Date
 November 6, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka

 (30 MHz - 1 GHz)
 (1 GHz - 26.5 GHz)

Mode Tx BT LE 2M PHY 2440 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	160.003	QP	22.32	15.05	7.87	32.11	0.00	13.13	43.50	30.3	100	2	
Hori.	240.000	QP	28.70	11.65	8.31	32.03	0.00	16.63	46.00	29.3	221	352	
Hori.	300.102	QP	22.11	13.71	8.71	32.01	0.00	12.52	46.00	33.4	100	2	
Hori.	431.011	QP	21.91	16.35	9.37	31.97	0.00	15.66	46.00	30.3	100	0	
Hori.	850.090	QP	21.31	21.60	10.94	31.39	0.00	22.46	46.00	23.5	100	2	
Hori.	4880.000	PK	45.69	31.37	6.56	36.90	2.48	49.20	73.90	24.7	115	159	
Hori.	7320.000	PK	44.90	37.00	8.31	37.44	2.48	55.25	73.90	18.7	150	0	
Vert.	151.228	QP	22.52	14.83	7.80	32.12	0.00	13.03	43.50	30.4	100	2	
Vert.	240.000	QP	28.27	11.65	8.31	32.03	0.00	16.20	46.00	29.8	134	352	
Vert.	350.011	QP	21.88	15.11	9.03	31.95	0.00	14.07	46.00	31.9	100	1	
Vert.	582.024	QP	21.71	18.69	9.94	31.97	0.00	18.37	46.00	27.6	100	1	
Vert.	4880.000	PK	44.91	31.37	6.56	36.90	2.48	48.42	73.90	25.5	102	29	
Vert.	7320.000	PK	44.79	37.00	8.31	37.44	2.48	55.14	73.90	18.8	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
						Factor	Factor				
[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
4880.000	AV	34.89	31.37	6.56	36.90	4.74	2.48	43.14	53.90	10.8	
7320.000	AV	34.52	37.00	8.31	37.44	4.74	2.48	49.61	53.90	4.3	
4880.000	AV	35.10	31.37	6.56	36.90	4.74	2.48	43.35	53.90	10.6	
7320.000	AV	34.45	37.00	8.31	37.44	4.74	2.48	49.54	53.90	4.4	
	Frequency [MHz] 4880.000 7320.000 4880.000	Frequency Detector	Frequency Detector Reading [MHz] [dBuV] 4880.000 AV 34.89 7320.000 AV 34.52 4880.000 AV 35.10	Frequency Detector Reading Ant.Fac. [MHz] [dBuV] [dB/m] 4880.000 AV 34.89 31.37 7320.000 AV 34.52 37.00 4880.000 AV 35.10 31.37	Frequency Detector Reading Ant.Fac. Loss [MHz] [dBuV] [dB/m] [dB] 4880.000 AV 34.89 31.37 6.56 7320.000 AV 34.52 37.00 8.31 4880.000 AV 35.10 31.37 6.56	Frequency Detector Reading Ant.Fac. Loss Gain [MHz] [dBuV] [dB/m] [dB] [dB] 4880.000 AV 34.89 31.37 6.56 36.90 7320.000 AV 34.52 37.00 8.31 37.44 4880.000 AV 35.10 31.37 6.56 36.90	Frequency Detector Reading [dBuV] Ant.Fac. Loss Gain [dB] Duty Factor [dB] [MHz] [dBuV] [dB/m] [dB] [dB] [dB] 4880.000 AV 34.89 31.37 6.56 36.90 4.74 7320.000 AV 34.52 37.00 8.31 37.44 4.74 4880.000 AV 35.10 31.37 6.56 36.90 4.74	Frequency Detector Reading [dBwV] Ant.Fac. Loss [dB] Gain [dB] Duty Factor [dB] Distance Factor [dB] 4880.000 AV 34.89 31.37 6.56 36.90 4.74 2.48 7320.000 AV 34.52 37.00 8.31 37.44 4.74 2.48 4880.000 AV 35.10 31.37 6.56 36.90 4.74 2.48	Frequency Detector Reading [dBwV] Ant.Fac. Loss [dB] Gain [dB] Duty Factor [factor [dB] Distance Factor [dBwVm] Result [dBwVm] 4880.000 AV 34.89 31.37 6.56 36.90 4.74 2.48 43.14 7320.000 AV 34.52 37.00 8.31 37.44 4.74 2.48 49.61 4880.000 AV 35.10 31.37 6.56 36.90 4.74 2.48 43.35	Frequency Detector Reading [dBwV] Ant.Fac. Loss Gain Factor [dB] Duty Factor [dB] Distance Factor [dB] Result [dBuV/m] Limit 4880.000 AV 34.89 31.37 6.56 36.90 4.74 2.48 43.14 53.90 7320.000 AV 34.52 37.00 8.31 37.44 4.74 2.48 49.61 53.90 4880.000 AV 35.10 31.37 6.56 36.90 4.74 2.48 43.35 53.90	MHz [dBuV] [dB m] [dB] [dB] [dB m] [dB m]

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2440.000	PK	74.88	27.81	14.17	36.55	2.48	82.79	-	-	Carrier
Hori.	9760.000	PK	34.49	38.92	9.21	38.65	2.48	46.45	60.31	16.3	
Vert.	2440.000	PK	69.52	27.81	14.17	36.55	2.48	77.43	-	-	Carrier
Vert.	9760.000	PK	34.92	38.92	9.21	38.65	2.48	46.88	54.95	10.6	

Distance factor : 1 GHz - 13 GHz : $20log(3.99\ m\,/\,3.0\ m) = 2.48\ dB$ 13 GHz - 40 GHz : $20log(1.0\ m\,/\,3.0\ m) = -9.54\ dB$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 32 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

 Date
 November 6, 2018
 November 6, 2018

 Temperature / Humidity
 23 deg. C / 61 % RH
 24 deg. C / 61 % RH

 Engineer
 Yosuke Ishikawa
 Makoto Hosaka

 (30 MHz - 1 GHz)
 (1 GHz - 26.5 GHz)

Mode Tx BT LE 2M PHY 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	160.010	QP	22.21	15.05	7.87	32.11	0.00	13.02	43.50	30.4	100	2	
Hori.	240.000	QP	28.11	11.65	8.31	32.03	0.00	16.04	46.00	29.9	211	26	
Hori.	299.981	QP	22.01	13.71	8.71	32.01	0.00	12.42	46.00	33.5	100	1	
Hori.	431.021	QP	21.83	16.35	9.37	31.97	0.00	15.58	46.00	30.4	100	1	
Hori.	850.088	QP	21.27	21.60	10.94	31.39	0.00	22.42	46.00	23.5	100	2	
Hori.	2483.500	PK	45.50	27.65	14.22	36.52	2.48	53.33	73.90	20.6	152	335	
Hori.	4960.000	PK	44.59	31.54	6.61	36.93	2.48	48.29	73.90	25.6	223	164	
Hori.	7440.000	PK	42.45	37.10	8.38	37.63	2.48	52.78	73.90	21.1	150	0	
Vert.	151.219	QP	22.31	14.83	7.80	32.12	0.00	12.82	43.50	30.6	100	2	
Vert.	240.001	QP	28.53	11.65	8.31	32.03	0.00	16.46	46.00	29.5	137	334	
Vert.	350.114	QP	21.83	15.11	9.03	31.95	0.00	14.02	46.00	31.9	100	359	
Vert.	582.020	QP	21.72	18.69	9.94	31.97	0.00	18.38	46.00	27.6	100	1	
Vert.	2483.500	PK	44.65	27.65	14.22	36.52	2.48	52.48	73.90	21.4	295	103	
Vert.	4960.000	PK	45.27	31.54	6.61	36.93	2.48	48.97	73.90	24.9	240	1	
Vert.	7440.000	PK	44.02	37.10	8.38	37.63	2.48	54.35	73.90	19.6	150	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : 20log(1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	34.02	27.65	14.22	36.52	4.74	2.48	46.59	53.90	7.3	*1)
Hori.	4960.000	AV	34.83	31.54	6.61	36.93	4.74	2.48	43.27	53.90	10.6	
Hori.	7440.000	AV	33.83	37.10	8.38	37.63	4.74	2.48	48.90	53.90	5.0	
Vert.	2483.500	AV	34.02	27.65	14.22	36.52	4.74	2.48	46.59	53.90	7.3	*1)
Vert.	4960.000	AV	35.24	31.54	6.61	36.93	4.74	2.48	43.68	53.90	10.2	
Vert.	7440.000	AV	33.05	37.10	8.38	37.63	4.74	2.48	48.12	53.90	5.8	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log(3.99 m / 3.0 m) = 2.48 dB

 $13~GHz - 40~GHz:~20log\,(1.0~m\,/\,3.0~m) =~-9.54~dB$ Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2480.000	PK	75.08	27.67	14.22	36.52	2.48	82.93	-	-	Carrier
Hori.	9920.000	PK	34.49	38.97	9.22	38.84	2.48	46.32	62.93	16.6	
Vert.	2480.000	PK	71.32	27.67	14.22	36.52	2.48	79.17	-	-	Carrier
Vert.	9920.000	PK	35.23	38.97	9.22	38.84	2.48	47.06	59.17	12.1	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 13 GHz : 20log (3.99 m / 3.0 m) = 2.48 dB13 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.54 dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 33 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

Date November 6, 2018
Temperature / Humidity 24 deg. C / 61 % RH
Engineer Makoto Hosaka
(1 GHz -13 GHz)

Mode Tx BT LE 2M PHY 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 34 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12407798S-A-R2 Test place Shonan EMC Lab.

Semi Anechoic Chamber No. 3

Mode Tx BT LE 2M PHY 2480 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 35 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 1M PHY 2402 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
l	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	10.06	-91.3	0.01	9.5	2.0	1	-79.7	300	6.0	-18.5	47.5	66.0	
I	797.00	-80.3	0.02	9.5	2.0	1	-68.7	30	6.0	12.5	29.5	17.0	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12407798S-A-R2
Page : 36 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 1M PHY 2440 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
l	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	9.00	-91.3	0.01	9.5	2.0	1	-79.7	300	6.0	-18.5	48.5	67.0	
I	150.00	-79.5	0.01	9.5	2.0	1	-68.0	300	6.0	-6.7	24.0	30.7	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12407798S-A-R2
Page : 37 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 1M PHY 2480 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	11.70	-92.4	0.01	9.5	2.0	1	-80.8	300	6.0	-19.6	46.2	65.8	
	175.00	-79.3	0.01	9.5	2.0	1	-67.8	300	6.0	-6.5	22.7	29.2	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12407798S-A-R2
Page : 38 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 2M PHY 2402 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
I	9.00	-92.1	0.01	9.5	2.0	1	-80.5	300	6.0	-19.3	48.5	67.8	
I	349.00	-80.4	0.01	9.5	2.0	1	-68.9	300	6.0	-7.6	16.7	24.3	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12407798S-A-R2
Page : 39 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 2M PHY 2440 MHz

I	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
l	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
I	10.06	-90.1	0.01	9.5	2.0	1	-78.5	300	6.0	-17.3	47.5	64.8	
ĺ	1419.00	-80.8	0.02	9.5	2.0	1	-69.2	30	6.0	12.0	24.5	12.5	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \;log\left(Distance\left[m\right]\right) + Ground\;bounce\left[dB\right] + 104.8 \;\left[dBuV/m\right]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 12407798S-A-R2
Page : 40 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Conducted Spurious Emission

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa

Mode Tx BT LE 2M PHY 2480 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
I	12.88	-90.3	0.01	9.5	2.0	1	-78.7	300	6.0	-17.4	45.4	62.8	
I	250.00	-80.8	0.01	9.5	2.0	1	-69.3	300	6.0	-8.0	19.6	27.6	

 $E\left[dBuV/m\right] = EIRP\left[dBm\right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 12407798S-A-R2

 Page
 : 41 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

Power Density

Report No. 12407798S-A-R2

Test place Shonan EMC Lab. No.5 Shielded Room

Date November 9, 2018
Temperature / Humidity 26 deg. C / 42 % RH
Engineer Yosuke Ishikawa
Mode Tx BT LE

1M PHY

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-24.97	1.22	9.68	-14.07	8.00	22.07
2440.00	-24.91	1.22	9.67	-14.02	8.00	22.02
2480.00	-24.73	1.23	9.67	-13.83	8.00	21.83

2M PHY

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-27.22	1.22	9.68	-16.32	8.00	24.32
2440.00	-27.22	1.22	9.67	-16.33	8.00	24.33
2480.00	-27.23	1.23	9.67	-16.33	8.00	24.33

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 12407798S-A-R2
Page : 42 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Power Density

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 12407798S-A-R2

 Page
 : 43 of 47

 Issued date
 : April 1, 2019

 FCC ID
 : YUQ-W510MV

APPENDIX 2: Test instruments

Test Instruments

Local ID	Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Calibration Interval (Month)
KTS-07	AT	145111	Digital Tester	SANWA	PC500	7019232	2018/10/17	2019/10/31	12
SAT10-09	AT	145132	Attenuator	Weinschel Corp.	54A-10	W5692	2017/11/22	2018/11/30	12
KSA-08	AT	145089	Spectrum Analyzer	AGILENT	E4446A	MY461805 25	2018/10/7	2019/10/31	12
KTS-07	AT	145111	Digital Tester	SANWA	PC500	7019232	2018/10/17	2019/10/31	12
SAT10-09	AT	145132	Attenuator	Weinschel Corp.	54A-10	W5692	2017/11/22	2018/11/30	12
SCC-G12	AT	145040	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	2018/3/19	2019/3/31	12
SOS-09	AT	146318	Humidity Indicator	A&D	AD-5681	4061484	2017/12/21	2018/12/31	12
SPM-07	AT	146247	Power Meter	AGILENT	8990B	MY510027 2	2018/7/13	2019/7/31	12
SPSS-04	AT	146310	Power sensor	AGILENT	N1923A	MY532600 9	2018/7/13	2019/7/31	12
SAT3-10	CE	144960	Attenuator	JFW	50HF-003N	-	2018/8/23	2019/8/31	12
SCC-C9	CE	145035	Coaxial Cable	Suhner	RG223U	-	2018/4/9	2019/4/30	12
SCC-C9/C1 0/SRSE-03	CE	145036	Coaxial Cable&RF Selector	Suhner/Suhner/ TOYO	RG223U/141 PE/NS4906	-/0901-271(RF Selector)	2018/4/9	2019/4/30	12
SLS-02	CE	145539	LISN	Rohde & Schwarz	ENV216	100512	2018/2/26	2019/2/28	12
SLS-05	CE	145542	LISN	Rohde & Schwarz	ENV216	100516	2018/2/26	2019/2/28	12
SOS-06	CE	146294	Humidity Indicator	A&D	AD-5681	4062118	2017/12/21	2018/12/31	12
STM-05	CE	145762	Terminator	TME	CT-01 BP	-	2017/12/14	2018/12/31	12
COTS-SEM I-1	CE,RE	144865	EMI Software	TSJ	TEPTO-DV(RE,CE,RFI,M F)	-	-	-	-
KJM-02	CE,RE	146432	Measure	TAJIMA	GL19-55	-	-	-	-
STR-02	CE,RE	145791	Test Receiver	Rohde & Schwarz	ESCI	100575	2018/10/19	2019/10/31	12
STS-03	CE,RE	146210	Digital Hitester	нюкі	3805-50	80997823	2018/10/16	2019/10/31	12
SAEC-03(N SA)	RE	145565	Semi-Anechoi c Chamber	TDK	SAEC-03(NS A)	3	2018/6/2	2019/6/30	12
SAEC-03(S VSWR)	RE	145566	Semi-Anechoi c Chamber	TDK	SAEC-03(SV SWR)	3	2018/7/17	2019/7/31	12
SAF-03	RE	145126	Pre Amplifier	SONOMA	310N	290213	2018/2/16	2019/2/28	12
SAF-05	RE	145128	Pre Amplifier	Toyo Corporation	TPA0118-36	1440490	2018/2/15	2019/2/28	12
SAF-06	RE	145005	Pre Amplifier	Toyo Corporation	TPA0118-36	1440491	2018/9/14	2019/9/30	12
SAF-09	RE	145008	Pre Amplifier	Toyo Corporation	HAP18-26W	18	2018/9/21	2019/9/30	12
SAT10-05	RE	145136	Attenuator(ab ove1GHz)	AGILENT	8493C-010	74864	2017/11/22	2018/11/30	12
SAT6-13	RE	167094	Attenuator	JFW	50HF-006N		2018/2/9	2019/2/28	12
SBA-03	RE	145023	Biconical Antenna	Schwarzbeck	BBA9106	91032666	2018/6/17	2019/6/30	12
SCC-C1/C2 /C3/C4/C5/ C10/SRSE- 03	RE	145171	Coaxial Cable&RF Selector	Fujikura/Fujikur a/Suhner/Suhner /Suhner/Suhner/ TOYO	8D2W/12DSF A/141PE/141 PE/141PE/14 1P	-/0901-271(RF Selector)	2018/4/9	2019/4/30	12

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 12407798S-A-R2
Page : 44 of 47
Issued date : April 1, 2019
FCC ID : YUQ-W510MV

Test Instruments

Local ID	Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Calibration Interval (Month)
SCC-G06	RE	145173	Coaxial Cable	Junkosha	J12J102207-0 0	MAY-23-1 6-091	2018/6/1	2019/6/30	12
SCC-G23	RE	145168	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	2018/5/11	2019/5/31	12
SCC-G33	RE	145184	Coaxial Cable	Junkosha	MWX241-01 000KMSKMS	-	2018/4/20	2019/4/30	12
SCC-G41	RE	151617	Coaxial Cable	Junkosha	MWX221-01 000NFSNMS/ B	1612S006	2018/1/29	2019/1/31	12
SCC-G45	RE	168301	Coaxial Cable	HUBER+SUNE R	SUCOFLEX 102 E	800137/2E A	2018/3/28	2019/3/31	12
SFL-18	RE	145305	Highpass Filter	MICRO-TRONI CS	HPM50111	119	2018/4/20	2019/4/30	12
SHA-03	RE	145501	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	2018/7/23	2019/7/31	12
SHA-05	RE	145513	Horn Antenna	ETS LINDGREN	Sep-60	LM4210	2018/7/23	2019/7/31	12
SLA-07	RE	145529	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	196	2018/6/17	2019/6/30	12
SOS-05	RE	146293	Humidity Indicator	A&D	AD-5681	4062518	2018/10/25	2019/10/31	12
SSA-02	RE	145800	Spectrum Analyzer	AGILENT	E4448A	MY482501 06	2018/3/5	2019/3/31	12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN