ΜΕΜ-Θ602: Μαθηματική Χρηματοοικονομία

Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (https://kesmarag.gitlab.io)

11η διάλεξη - 28.11.2022

Μια πεπερασμένη χρηματοοικονομική αγορά (A finite financial market)

Παραδεκτή στρατηγική (admissible strategy)

1. Αυτοχρηματοδοτούμενη

2. $V_t > 0, \forall t \in \mathbb{T}$

Εφικτό (attainable) χρηματοοικονομικό παράγωγο

Ένα χρηματοοικονομικό παράγωγο με ανταμοιβή C_T (πχ European Call Option) ονομάζεται εφικτό (attainable) εάν υπάρχει παραδεκτή στρατηγική που αναπαράγει το C_T , δηλαδή $V_T=C_T$.

Ευκαιρία επιτηδειότητας (arbitrage opportunity)

- 1. Παραδεκτή στρατηγική
- 2. $V_0 = 0$
- 3. $\mathbb{E}[V_T] > 0$ $\mathbb{P}[V_T > 0] > 0$

$$(1+r)^{-\tau} \xrightarrow{\tau} 1$$

Έχοντας τη στοχαστική διαδικασία S_t επιθυμούμε να εκφράζουμε την τιμή σε κάθε χρονική στιγμή ως προς τη σημερινή αξία του χρήματος.

$$S_t^* = egin{cases} rac{1}{(1+r)^t} S_t, & ext{(διακριτός χρόνος)} \ e^{-rt} S_t, & ext{(συνεχής χρόνος)} \end{cases}$$

$$V_{+}^{t} = <_{t} S_{+}^{t} + P^{t} B_{+}^{t}$$

Αλλαγή μέτρου πιθανότητας

Αλλαγή μέτρου πιθανότητας

Ισοδύναμα μέτρα πιθανότητας

Θα λέμε ότι τα μέτρα $\mathbb{P},\ \mathbb{Q}$ είναι ισοδύναμα και θα γράφουμε $\mathbb{P}\sim\mathbb{Q}$ αν ισχύει

$$\mathbb{P}(A)=0 \text{ ann } \mathbb{Q}(A)=0$$

Αλλαγή μέτρου πιθανότητας

θεωρούμε τυχαία μεταβλητή X στο Ω του παραδείγματος. Μπορούμε να εκφράσουμε την αναμενόμενη τιμή της τυχαίας μεταβλητής για τα μέτρα πιθανότητας $\mathbb{P},\ \mathbb{Q}.$

lacktriangle Θα συμβολίζουμε τις αντίστοιχες αναμενόμενες τιμές με $\mathbb{E}_{\mathbb{P}}(X)$ και $\mathbb{E}_{\mathbb{O}}(X)$, αντίστοιχα.

Για $\mathbb{P} \sim \mathbb{Q}$ έχουμε

$$\begin{array}{lll}
\text{Office } \Lambda(\omega) = \frac{\mathbb{Q}(\omega)}{\mathbb{P}(\omega)} > 0. & \text{Improve that } P = P_1 \\
\text{Office } \Lambda(\omega) = \frac{\mathbb{Q}(\omega)}{\mathbb{P}(\omega)} > 0. & \text{Improve that } P = P_1 \\
\text{X: } \Omega \to \mathbb{R} \qquad X = \begin{cases} x_1, & \text{Improve that } P = P_1 \\ x_2, & \text{Improve that } P = P_2 \end{cases}$$

$$\begin{array}{lll}
\mathbb{E}_{\mathbb{Q}}[X] = x_1 q_1 + x_2 q_2 = x_1 \cdot \frac{q_1}{P_1} P_1 + x_2 \frac{q_2}{P_2} P_2 = \\
\mathbb{E}_{\mathbb{Q}}[X] = x_1 p_1 + x_2 p_2 = x_1 \cdot \frac{q_1}{P_1} P_1 + x_2 p_2
\end{array}$$

$$\begin{array}{lll}
\mathbb{E}_{\mathbb{Q}}[X] = x_1 p_1 + x_2 p_2 = x_1 \cdot \frac{q_1}{P_2} p_1 + x_2 p_2$$

$$\mathbb{E}_{\mathbb{Q}}[X] = x_1 p_2$$

$$\mathbb{E}_{\mathbb{Q}}[X] = x_1 p_2$$

$$\mathbb{E}_{\mathbb{Q$$

$$\mathcal{L}$$
 (R, \mathcal{B} (R), P), \mathcal{L} ~ \mathcal{N} (ο, ι) $(\Omega = \mathbb{R}, \mathcal{F} = \mathcal{B}(\mathbb{R}), \mathbb{Q}), \quad X \sim \mathcal{N}(\mu, 1),$ για κάποιο $\mu \neq 0$

$$\mathbb{Q}(A) = \int_{A} f_{\mu}(x) dx = \int_{A} d\mathbb{Q}$$

$$\begin{aligned} & \text{Teq}(\mathbf{x}) \neq \text{Tep}(\mathbf{x}), & \text{Teq}(\mathbf{x}) = \text{Tep}(\mathbf{x}) dx \\ & \text{Teq}(\mathbf{x}) = \text{Teq}(\mathbf{x}) dx \\ & \text{Te$$

Τιμές με έκπτωση (discounted prices)

Θεώρημα

Υποθέτουμε μέτρο πιθανότητας τέτοιο ώστε S_t^* είναι $\mathbb Q$ -martingale. Τότε για κάθε παραδεκτή στρατηγική έχουμε ότι V_t^* είναι επίσης $\mathbb Q$ -martingale.

- Σχεδόν έχουμε μια συνθήκη που να μας εξασφαλίζει μη επιτηδειότητα (no arbitrage).
 Μηδενική αξία αρχικά δίνει μηδενική αξία στο μέλλον.
- ▶ Το μέτρο πιθανότητας $\mathbb Q$ εν γένει δεν ταυτίζεται με το πραγματικό μέτρο που περιγράφει το μοντέλο εξέλιξης τιμών.

Τιμές με έκπτωση (discounted prices)

$$\mathbb{E}_{\mathbb{Q}}\left[S_{t+1}^{*}|\mathcal{F}_{t}\right] = S_{t}^{*} \Rightarrow \mathbb{E}_{\mathbb{Q}}\left[V_{t+1}^{*}/\mathcal{F}_{t}\right] = V_{t}^{*}$$

$$V_{t} = \alpha_{t} S_{t} + b_{t} B_{t} \Rightarrow \frac{1}{(1+r)^{t}} V_{t} = \alpha_{t} \frac{1}{(1+r)^{t}} S_{t} + b_{t} \frac{(1+r)^{t}}{(1+r)^{T}} \frac{1}{(1+r)^{T}}$$

$$V_{t}^{*} = \alpha_{t} S_{t}^{*} + b_{t} C(1+r)^{T} \Rightarrow V_{t}^{*} = \alpha_{t} S_{t}^{*} \Rightarrow 0$$

VE = 0 = 5 + b ((1+r) = 1 > 1 = 0 = 1 = 0 = 1 + 1 S + 1 + b + 1 (1+r) - T

V* = |FQ[V*, |fx]. low 3 + Tw V* = 0 =) F[V*, |fx]=0

= $\chi_{t+1} S_{t}^{*} + b_{t+1} (1+r)^{-T} \neq \alpha_{t} S_{t}^{*} + b_{t} (1+r)^{-T} = V_{t}^{*}$

Θεώρημα (Πρώτο θεμελιώδες θεώρημα τιμολόγησης παραγώγων)

Σε μια χρηματοοικονομική αγορά δεν υπάρχουν ευκαιρίες επιτηδειότητας (arbitrage opportunities) ανν υπάρχει ισοδύναμο μέτρο martingale για την S_t^* .

$$V_0 = V_b^* = \mathbb{E} \left[V_1^* | F_t \right]$$
 Eas $V_0 = 0 \Rightarrow V_{T=0}$
East $\left(\mathbb{Q} \times \mathbb{P} \right)$, \mathbb{Q} - Mossingale S_t^*
Sev unapxed $t = T_1 \times \mathbb{P} \left[V_t^* > \overline{S} \right] > 0$
 $\mathbb{Q} \left[V_t^* > \overline{S} \right] = 0$

9/13

Πληρότητα

Πλήρης χρηματοοικονομική αγορά (Complete financial market)

Μια χρηματοοικονομική αγορά θα καλείται πλήρης εάν κάθε χρηματοοικονομικό παράγωγο είναι εφικτό (attainable).

Θεώρημα

Μια χρηματοοικονομική αγορά είναι πλήρης ανν υπάρχει μοναδικό μέτρο martingale $\mathbb Q$.

$$\mathbb{T}=\{0,1\},\; S_0=1,\; S_1=\begin{cases} u>1, & \text{με πιθανότητα } p,\\ d<1, & \text{με πιθανότητα } 1-p \end{cases},\; \text{επιτόκιο } r$$

$$\mathbb{E}_{Q}[S_{1}^{+}|F_{0}] = \mathbb{E}_{Q}[S_{1}^{+}|S_{0}=1] = S_{0}^{*} = S_{0}=1$$

$$\frac{1}{1+r} uq_{1} + \frac{1}{1+r} dq_{2} = 1 \Rightarrow uq_{1} + dq_{2}=1+r$$

$$q_{1} + q_{2} = 1$$

$$q_{1} + q_{2} = 1$$

$$uq_{1} + \frac{1}{1+r} dq_{2} = 1 \Rightarrow uq_{1} + dq_{2} = 1+r$$

$$q_{1} + q_{2} = 1$$

$$\mathbb{T}=\{0,1\},\; S_0=1,\; S_1=\begin{cases} u>1, & \text{ με πιθανότητα } p_1,\\ 1, & \text{ με πιθανότητα } p_2,\; \text{, επιτόκιο } r\\ d<1, & \text{ με πιθανότητα } p_3 \end{cases}$$

$$u_{1} + q_{2} + dq_{3} = 1 + r$$

$$q_{1} + q_{2} + q_{3} = 1$$

$$\begin{bmatrix} 1 & 1 & 1 \\ u & 1 & d \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \end{bmatrix} = \begin{bmatrix} 1 + r \\ 1 \end{bmatrix}$$

$$q_{3} \in \lambda \in 0 \in P^{n}$$

Τιμολόγιση σε συνθήκες μη επιτηδειότητας - εισαγωγή

$$ightharpoonup V_T = C_T$$

$$m V_T=C_T$$
 $m H$ τιμή του παραγώγου στο χρόνο t δίνεται ως $m C_0=V_0=\mathbb{E}_{\mathbb{Q}}\Big[V_T^*|\mathcal{F}_0\Big]$

Ο ισοδύναμο μέτρο martingale.