Dénombrement et probabilités - TD

Exercice 1 : Les coefficients binomiaux et leur somme : démonstration

- 1. Le nombre de parties d'un ensemble de n éléments est \dots .
- 2. Le nombre de **parties possédant** k éléments d'un ensemble de néléments (= **combinaisons de** k **éléments** pris parmi n) est le coefficient

binomial:
$$\binom{n}{k} = \frac{\ldots!}{(\ldots - \ldots)! \ldots!}$$

3. En particulier, pour $k \in \{0; 1; 2; n\}$, on a les valeurs remarquables suivantes:

$\binom{n}{0} = \dots \mid \binom{n}{1} = \dots \mid$	$\binom{n}{2} = \frac{\dots(\dots - 1}{2}$	$\frac{1}{n}\binom{n}{n}=\ldots$
---	--	----------------------------------

4. Compléter le tableau des possibilités ci-contre. On en déduit que :

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n} = \dots$$

5. Ainsi, la somme des coefficients binomiaux sur la ligne n=7 sur le triangle de Pascal vaut $2^{\dots}=\dots$ Compléter la ligne n=7 sur le triangle de Pascal ci-contre (on pourra se servir de la formule de symétrie $\binom{n}{k} = \binom{n}{n-k}$

	un ensemble de nal n a :	possibilités :
soit 0 él	éments (Ø)	$\binom{n}{0}$
soit 1 éléme	ents (singleton)	(n)
soit 2 éléi	ments (paire)	()
soit k	éléments	$\binom{n}{k}$
soit n	éléments	$\binom{n}{n}$
T	otal :	2

Triangle de Pascal (partiel)									
$k \rightarrow n \downarrow$	0	1	2	3	4	5	6	7	8
1	1	1							
2	1	2	1						
:									
7									
8									

📏 Exercice 2 : Le loto de la française des jeux : utiliser les combinaisons pour calculer des probabilités

Quitte à remplir une grille, autant espérer gagner quelque chose. Le loto de la française des jeux consiste à cocher sur une grille 5 nombres entiers entre 1 et 49 (compris) ainsi qu'un «numéro chance» qui est un entier entre 1 et 10 compris, comme dans la grille ci-contre. Les joueurs remplissent une grille (exemple ci-contre); Lors du tirage, 5 boules numérotées de 1 à 49 (compris) sont prélevées, au hasard, sans remise, dans une urne, suivies d'un tirage au hasard du numéro chance. Les gains tiennent compte du prix de la grille (moyenne [2008;2016]).

- 1. L'ordre des boules au tirage a-t-il une importance ?
- 2. Comptons le nombre de grilles réalisables : on doit choisir:
 - o une combinaison de ... numéros parmi ... ;
 - o un numéro chance parmi

Ainsi, le nombre de	grilles possibles est :
$\binom{\cdots}{\cdots}\binom{\cdots}{1}$	=

3.	n° gagnants	5 + c	5	4+c	4	3+c	3	2+c	2	1+c ou 0+c	1 ou 0
	Gain G (€)	5 701 258	102 632	1 086	1 084	10	8	5	3	0	-2
	Probabilité	10,000,040	1 2 110 700	11	11				473	252 109	
'		19 068 840	2 118 /60	953 442	105 938				7 567	2 724 120	

Le tableau ci-dessus donne la loi de la variable aléatoire gain G; dans la première ligne, «+c» indique l'obtention du numéro chance au tirage en plus du nombre de numéros gagnants.

Calculer et compléter $\mathrm{P}(G=10)$; pour cela, on doit cocher:

- 3 numéros parmi les 5 numéros gagnants ;
- 2 numéros parmi les ... numéros perdants ;
- 1 nombre chance parmi un (gagnant).

Ainsi (en divisant par le nombre de grilles

$$P(G = 10) = \frac{\left(\dots \right) \left(\dots \right) \left(\dots \right)}{19068840} = \frac{\dots}{\dots}$$

- 4. Calculer la probabilité $\mathrm{P}(G=8)$ (le seul changement par rapport à la question précédente est de choisir le numéro chance parmi les 9 perdants).
- 5. Calculer les probabilités P(G=5), P(G=-2) et montrer que $P(G>0)\approx 7.5\%$.
- 6. M. Tolo joue 10 fois dans l'année (les tirages du loto sont évidemment indépendants). Il certifie qu'il obtient au moins un gain strictement positif un an sur deux. Est-ce crédible ? On notera Y_{10} la variable aléatoire comptant le nombre de gains strictement positifs durant 10 tirages.
- 7. On donne $\mathbb{E}(G) pprox -0.9304 \epsilon$. Combien de fois, en moyenne, sur 10 tirages, M. Tolo obtient-il un gain positif? Quel gain moyen peut-il espérer sur 10 tirages?

Nexercice 3 : Jeu de la vie de Conway : probabilités conditionnelles, variables aléatoires, inégalités

Le «jeu de la vie» se joue sur une grille plane carrée (quadrillage) : chaque case à 8 cases voisines. Chaque case du quadrillage est assimilé à une cellule qui a deux états : vivante (case \square) ou morte (case vide). On note X une variable aléatoire, indiquant pour une cellule fixée son évolution selon les règles du jeu qui suivent :

- Une cellule morte possédant exactement trois cellules voisines vivantes devient vivante (elle naît : X=1);
- Une cellule vivante possédant deux ou trois cellules voisines vivantes le reste (X=0), sinon elle meurt (X=-1).
- 1. Donner la valeur de X pour la cellule occupant la case centrale, obtenue en suivant les règles données, pour les configurations suivantes :

Cominguia	tions survantes.	
	La cellule centrale va	La cellule centrale va
	$X = \dots$	$X = \dots$

- 2. Au début du jeu, chaque cellule a une probabilité de 0,5 d'être vivante ou non, indépendemment des autres. Montrer que la loi de X est : En déduire que $\mu=\mathbb{E}(X)=\frac{-29}{128}$ et $v=\mathrm{Var}(X)=\frac{6\,455}{16\,384}\approx0,394$. Prob. $\frac{43}{128}$ $\frac{71}{128}$ $\frac{14}{128}$
- 3. On fixe un échantillon $X_1;\ldots;X_n$ de cellules, suffisamment éloignées pour les considérer comme indépendantes. On note M_n la moyenne de cet échantillon. Quelle doit être la taille de cet échantillon pour que la probabilité que M_n s'écarte de μ d'au moins 1 soit inférieure à 10% ?
- 4. En se basant uniquement sur l'espérance, que penser de l'évolution de la population de cellules ? Pourquoi n'observe-t-on pas cela en général ?

Nexercice 4 : Poker : Combinaisons, probabilités conditionnelles

Le poker est un jeu dans lequel chaque joueur reçoit une «main», c'est à dire une combinaison de 5 cartes. Dans cette exercice, on utilisera un jeu de 32 cartes représenté par le produit cartésien $H \times C$, avec

 $H = \{7; 8; 9; 10; V_{\text{valet}}; D_{\text{dame}}; R_{\text{roi}}; 1_{\text{as}}\}$ (de la plus faible à la plus forte) et $C = \{\spadesuit; \clubsuit; \heartsuit; \bullet\}$ (pas d'ordre sur les couleurs). Pour gagner la mise, il faut posséder la figure (combinaison particulière) la plus forte ; ces figures sont indiquées, de la plus forte à la plus faible, dans le tableau suivant :

figures	possibilités	probabilité (%)
quinte flush : 5 cartes de hauteurs consécutives de même couleur		
carré : 4 cartes de même hauteur		
full: 3 cartes de même hauteur et 2 cartes d'une (autre) même hauteur		
couleur : 5 cartes de même couleur mais de hauteurs non consécutives		
quinte : 5 cartes de hauteurs consécutives (2 couleurs au moins présentes)		
brelan : 3 cartes de même hauteur		
double paire : 2 cartes de même hauteur et 2 cartes d'une (autre) même hauteur		
paire : 2 cartes de même hauteur		
aucune figure : 5 cartes de hauteurs distinctes non consécutives		

- 1. Combien y a-t-il de «mains» possibles?
- 2. Compléter le tableau (au moins pour la quinte flush, le carré, le full et le brelan). On considère que chaque main est équiprobable ; on arrondira les probabilités, exprimées en pourcentage, au centième de %.
- 3. En regardant ses cartes pendant la distribution, Mme Asinoc observe que les 3 cartes qu'elle a reçues sont de même hauteur. Sachant qu'elle a ainsi au moins un brelan, quelle est la probabilité qu'elle ait, en fin de distribution, ou full ? Un carré ? Un brelan seulement ?

Attention : les événements «obtenir un full» et «obtenir un brelan», par exemple, sont

📏 Exercice 5 : ★ Utilisations du binôme de Newton

Pour $n\geqslant 2$ (même si la formule obtenue est vraie pour tout entier naturel), on pose $B_n=(x+y)^n=(x+y)(x+y)\cdots(x+y)$ (n facteurs). Développer cette expression revient à choisir, pour tout entier k compris entre 0 et n,k fois le nombre x et de fait n-k fois le nombre y parmi les n facteurs (x+y). On obtiendra donc une somme de monômes x^ky^{n-k} ,

$$B_n=(x+y)^n=\sum_{k=0}^n inom{n}{k} x^k y^{n-k}$$

- chacun de ses monômes au nombre de $\binom{n}{k}$
 - 1. En déduire le développement de $B_3=(x+y)^3$ et $B_4=(x+y)^4.$
 - 2. En posant x = y = 1, que retrouve-t-on?
 - 3. En posant $x=p\in[0;1]$ et y=1-p, quel résultat concernant la loi binomiale retrouve-t-on ?
 - 4. En posant x = -y = 1, que peut-on apprendre sur le nombre de parties de cardinal pair et le nombre de parties de cardinal impair d'un ensemble de cardinal n?
 - 5. Soient u et v deux fonctions dérivables successivement un nombre infini de fois (on dit de classe C^{∞}). On note $u^{(n)}=u''\cdots'$ la dérivée n-ième de u (par convention $u^{(0)}=u$, on dérive 0 fois). Calculer (uv)'', puis $(uv)^{(3)}$. Que peut-on conjecturer? Essayer de trouver une démonstration par récurrence.