Events us Variables - Assign outcomes of experiments to variables - But why? - Example: 6-side dice rolled type $N \in \mathbb{N}$, $1 \leq N \leq 6$ --- Constant --- Variable constant Variable

Const Variable

Lever Assigned Can always changes

Changes

Changes

Changes

Changes Programming . Never changes changes afterwards Random variables (RVs) - A RV can take on a value from any set. Each value has a probability associated with it. N 1 2 3 4 5 6 P(N=n) 1/6 1/6 1/6 1/6 1/6 1/6 - Other examples:
- Pick any person and measure their height
- Pick any character and convert it to ASCII.

histogram - Similar to the we saw earlier ...

N is a 'discrete random variable".

(side note: Another example)

Measure ages of 100 people.

n 20 30 40

This is a probability frequen

Frequency Table

Weight		Frequency
10 20 30 40 50	1)	5/100 = 0.8 20 = 0.2 40 — 30 — 5 —
	C 11	reg vourist vious)

			't(' '		31	
This	is	a	probability	frequency	distribution".	(PFD)

	1	90 -							
C		- 68							
		70 -							
Cumulative freq		60 -							
freq		50 -							
		40							
		30 -							
	i	20 -							
	0.1	10 +							
						_			
			lD	20	30	ч	0 5	D	n

_ Weight	Frequency		
2 20	5 —		
30	25 —		
40	65 —		
50	95 —		

This is "cumulative freq distribution" (CFD)

Back to distributions:

$$P(N \leq 10)$$

$$P(N = n)$$

$$V_{20}$$

$$V_{20$$

How about 2 random variables? "Bag i has i blue balls and 2 green balls". Say i = 6

Random variables: B = bag picked. C = color of ball picked T = blue Z = gleenP(B=b,C=c) C=1P(S2)=1 P(B=1)C=1) C= 2 P(8-p) (B-b) B $\frac{1}{6} \cdot \frac{2}{3} = \frac{2}{18}$ B= 1 16- $\frac{1}{2} \cdot \frac{2}{4} = \frac{2}{24}$ 1/6 · 2/4 = 2/24 B= 2 1/6 - $\frac{1}{6} \cdot \frac{2}{5} = \frac{2}{30}$ $\frac{1}{6} \cdot \frac{3}{5} = \frac{3}{30}$ B= 3 1/6 · 4/6 = 4/36/ 1/6 -1/6.2/6 = 2/36 B= 4 -1/6.2/7 = 2/42 1/6 — 1/6 · 5/7 = 5/42/ B = 5 -1/6.2/8=2/48 1/6 . 6/8 = 6/48 / 1/6 B = 6 — P(C=c) 0.405 0.594

$$P(B=1) = \sum_{i}^{2} P(B=1, C=i)$$

(Same rule of summation Of mutually exclusive events)

"Sum over all possible values of C."

 $\frac{But}{}$ we already knew the $\frac{1}{6}$ for P(B=1)!! why we do we need to do this summation?

C			
B	C = 1	C = 2	P(B=b)
B= 1	1/18	<u> </u>	1/6
B= 2	2/24	2/24	
B= 3	3/ ₃₀	2/30	
B = 4	4/36	2/36	
13 = 5	5/42	2/42	
B = 6	6/48	2/48	
		•	-

When we collect data from real world:

- Sensor (signal + noise)

We have important RVs and noise mixed together!

We are only able to measure joint probabilities. But we are interested in marginals of one RV.