- HAI403I: Algorithme 3, le retour -

Cours 3 Structures de données arborescentes : arbres binaires de recherche et tas

> L2 Informatique Université de Montpellier

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
 - 2.2 Insertion et suppression dans un ABR
- 2.3 Equilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Exemple et vocabulaire

Définition récursive

Un arbre binaire est défini récursivement :

- l'arbre vide ∅ est un arbre binaire;
- ▶ un arbre non vide est constitué d'une racine, d'un sous-arbre gauche G et d'un sous-arbre droit D qui sont eux-mêmes deux arbres binaires.

Définition récursive

Un arbre binaire est défini récursivement :

- l'arbre vide ∅ est un arbre binaire;
- ▶ un arbre non vide est constitué d'une racine, d'un sous-arbre gauche G et d'un sous-arbre droit D qui sont eux-mêmes deux arbres binaires.

Représentation informatique

- Un nœud x est soit
 - ▶ le nœud vide, noté ∅
 - défini par une valeur val(x) et trois liens vers d'autres nœuds : $p\`{ere}(x)$, filsG(x), filsD(x) tels que
 - ▶ Si fils $G(x) \neq \emptyset$, père(filsG(x)) = x
 - ▶ Si filsD(x) $\neq \emptyset$, père(filsD(x)) = x
- Un arbre binaire A est donné par une racine rac(A) qui est un nœud tel que $pere(rac(A)) = \emptyset$.

Exemple

sous-arbre gauche

sous-arbre droit

Utilité des arbres binaires

- Arbres binaires de recherche
- ► Tas
- Analyse syntaxique
- Bases de données
- ► Partition binaire de l'espace
- ► Tables de routage
- **...**

Caractéristiques

Définition

- ▶ Un nœud x est une feuille si fils $G(x) = \emptyset$ et fils $D(x) = \emptyset$
- ► La hauteur h(x) d'un nœud x dans l'arbre A est définie récursivement par
 - Si x = rac(A), h(x) = 0 $(\Leftrightarrow pere(x) = \emptyset)$
 - Sinon, h(x) = 1 + h(pere(x))
- ▶ La hauteur d'un arbre A est $h(A) = max\{h(x) : x \in A\}$
- ▶ Le kème niveau de A est $N_k = \{x : h(x) = k\}$
- ► Le sous-arbre gauche (resp. droit) de A est l'arbre dont la racine est le fils gauche (resp. droit) de la racine de A

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Lemme

$$h(A) + 1 \le n(A) \le 2^{h(A)+1} - 1$$
 où $n(A) = nombre$ de nœuds de A

Preuve
$$n(A) = \sum_{i=0}^{h(A)} |N_i| \text{ et } 1 \le |N_i| \le 2^i$$

 $\Rightarrow h(A) + 1 \le n(A) \le \sum_{i=0}^{h(A)} 2^i = 2^{h(A)+1} - 1$

Résultats structurels

Lemme

$$|N_k| = \#\{x : h(x) = k\} \le 2^k$$

Preuve par récurrence sur k

- $k = 0 : \{x : h(x) = 0\} = \{rac(A)\}$
- ► Chaque nœud de N_{k-1} a au plus 2 fils : Donc $|N_k| \le 2|N_{k-1}| \le 2 \cdot 2^{k-1} = 2^k$

Lemme

$$h(A) + 1 \le n(A) \le 2^{h(A)+1} - 1$$
 où $n(A) = nombre$ de nœuds de A

Preuve
$$n(A) = \sum_{i=0}^{h(A)} |N_i| \text{ et } 1 \le |N_i| \le 2^i$$

 $\Rightarrow h(A) + 1 \le n(A) \le \sum_{i=0}^{h(A)} 2^i = 2^{h(A)+1} - 1$

Corollaire

$$\lfloor \log(n(A)) \rfloor \le h(A) < n(A)$$

Algorithme:

ParcoursInfixe(x)

si $x \neq \emptyset$ alors

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

Algorithme : PARCOURSINFIXE(x) si $x \neq \emptyset$ alors PARCOURSINFIXE(filsG(x)) Afficher val(x) PARCOURSINFIXE(filsD(x))

Affichage: 273056819

Algorithme:

ParcoursInfixe(x)

si $x \neq \emptyset$ alors

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

- Affichage: 273056819
- ightharpoonup Complexité en O(n(A))

Preuve \mathcal{P}_n : l'algo. effectue 5n appels de fonctions

- ightharpoonup n = 0: pas trop dur...
- Supp. \mathcal{P}_k pour tout k < n(A) et soit n_G et n_D le nb de nœuds dans les sous-arbres gauche et droit. Dans les deux appels récursifs, $5n_G$ et $5n_D$ appels de fonctions, donc au total $5n_G + 5n_D + 5$ appels. Or $n(A) = n_G + n_D + 1$, d'où le résultat.

Algorithme:

ParcoursInfixe(x)

si $x \neq \emptyset$ alors

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

- Affichage: 273056819
- ightharpoonup Complexité en O(n(A))
- ► Appel de la fonction : PARCOURSINFIXE(rac(A))
- ► Variantes : PARCOURSPREFIXE et PARCOURSSUFFIXE

Algorithme générique sur les arbres binaires

Appel de ALGO(rac(A)) avec

```
Algorithme : ALGO(x)

res \leftarrow valeur pour l'arbre vide

si x \neq \emptyset alors

| res_G \leftarrow ALGO(filsG(x))

| res_D \leftarrow ALGO(filsD(x))

| res \leftarrow f(res, res_G, res_D, x)

retourner res
```

Algorithme générique sur les arbres binaires

Appel de ALGO(rac(A)) avec

```
Algorithme : ALGO(x)

res \leftarrow valeur pour l'arbre vide

si x \neq \emptyset alors

| res_G \leftarrow ALGO(filsG(x)) |

| res_D \leftarrow ALGO(filsD(x)) |

| res \leftarrow f(res, res_G, res_D, x) |

retourner res
```

Lemme

L'algorithme générique sur les arbres binaires a une complexité O(n(A)) si le calcul de f a une complexité en temps en O(1).

```
Algorithme : MINIMUM(x)
m \leftarrow +\infty
\text{si } x \neq \emptyset \text{ alors}
\begin{array}{c} m_G \leftarrow \text{MINIMUM}(\text{filsG}(x)) \\ m_D \leftarrow \text{MINIMUM}(\text{filsD}(x)) \\ m \leftarrow \min(m_G, m_D, \text{val}(x)) \\ \text{retourner } m \end{array}
```



```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

$$\mathsf{Min}(A_5) = \mathsf{min}(5, \mathsf{Min}(A_3), \mathsf{Min}(A_6))$$


```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
\begin{aligned} \mathsf{MIN}(A_5) &= \mathsf{min}(5, \mathsf{MIN}(A_3), \mathsf{MIN}(A_6)) \\ \mathsf{MIN}(A_3) &= \mathsf{min}(3, \mathsf{MIN}(A_7), \mathsf{MIN}(A_0)) \end{aligned}
```



```
\begin{aligned} &\operatorname{Min}(A_5) = \min(5, \operatorname{Min}(A_3), \operatorname{Min}(A_6)) \\ &\operatorname{Min}(A_3) = \min(3, \operatorname{Min}(A_7), \operatorname{Min}(A_0)) \\ &\operatorname{Min}(A_7) = \min(7, \operatorname{Min}(A_2), \operatorname{Min}(\emptyset)) \end{aligned}
```



```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
\begin{aligned} &\operatorname{Min}(A_5) = \min(5, \operatorname{Min}(A_3), \operatorname{Min}(A_6)) \\ &\operatorname{Min}(A_3) = \min(3, \operatorname{Min}(A_7), \operatorname{Min}(A_0)) \\ &\operatorname{Min}(A_7) = \min(7, \operatorname{Min}(A_2), \operatorname{Min}(\emptyset)) \\ &\operatorname{Min}(A_2) = \min(2, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) \end{aligned}
```



```
Algorithme : \mathsf{MINIMUM}(x)
m \leftarrow +\infty
\mathsf{si} \ x \neq \emptyset \ \mathsf{alors}
m_G \leftarrow \mathsf{MINIMUM}(\mathsf{filsG}(x))
m_D \leftarrow \mathsf{MINIMUM}(\mathsf{filsD}(x))
m \leftarrow \mathsf{min}(m_G, m_D, \mathsf{val}(x))
retourner m
```

```
\begin{aligned} &\operatorname{Min}(A_5) = \min(5, \operatorname{Min}(A_3), \operatorname{Min}(A_6)) \\ &\operatorname{Min}(A_3) = \min(3, \operatorname{Min}(A_7), \operatorname{Min}(A_0)) \\ &\operatorname{Min}(A_7) = \min(7, \operatorname{Min}(A_2), \operatorname{Min}(\emptyset)) \\ &\operatorname{Min}(A_2) = \min(2, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) = 2 \end{aligned}
```



```
\begin{aligned} & \mathsf{MIN}(A_5) = \min(5, \mathsf{MIN}(A_3), \mathsf{MIN}(A_6)) \\ & \mathsf{MIN}(A_3) = \min(3, \mathsf{MIN}(A_7), \mathsf{MIN}(A_0)) \\ & \mathsf{MIN}(A_7) = \min(7, \mathsf{MIN}(A_2), \mathsf{MIN}(\emptyset)) = 2 \\ & \mathsf{MIN}(A_2) = \min(2, \mathsf{MIN}(\emptyset), \mathsf{MIN}(\emptyset)) = 2 \end{aligned}
```



```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
\begin{split} &\operatorname{Min}(A_5) = \min(5, \operatorname{Min}(A_3), \operatorname{Min}(A_6)) \\ &\operatorname{Min}(A_3) = \min(3, \operatorname{Min}(A_7), \operatorname{Min}(A_0)) \\ &\operatorname{Min}(A_7) = \min(7, \operatorname{Min}(A_2), \operatorname{Min}(\emptyset)) = 2 \\ &\operatorname{Min}(A_2) = \min(2, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) = 2 \\ &\operatorname{Min}(A_0) = \min(0, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) = 0 \end{split}
```



```
Algorithme : \mathsf{MINIMUM}(x)
m \leftarrow +\infty
\mathsf{si} \ x \neq \emptyset \ \mathsf{alors}
m_G \leftarrow \mathsf{MINIMUM}(\mathsf{filsG}(x))
m_D \leftarrow \mathsf{MINIMUM}(\mathsf{filsD}(x))
m \leftarrow \mathsf{min}(m_G, m_D, \mathsf{val}(x))
retourner m
```

```
\begin{aligned} &\operatorname{Min}(A_5) = \min(5, \operatorname{Min}(A_3), \operatorname{Min}(A_6)) \\ &\operatorname{Min}(A_3) = \min(3, \operatorname{Min}(A_7), \operatorname{Min}(A_0)) = 0 \\ &\operatorname{Min}(A_7) = \min(7, \operatorname{Min}(A_2), \operatorname{Min}(\emptyset)) = 2 \\ &\operatorname{Min}(A_2) = \min(2, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) = 2 \\ &\operatorname{Min}(A_0) = \min(0, \operatorname{Min}(\emptyset), \operatorname{Min}(\emptyset)) = 0 \end{aligned}
```



```
Algorithme: MINIMUM(x)

m \leftarrow +\infty

\text{si } x \neq \emptyset \text{ alors}

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
\begin{aligned} & \text{Min}(A_5) = \min(5, \text{Min}(A_3), \text{Min}(A_6)) \\ & \text{Min}(A_3) = \min(3, \text{Min}(A_7), \text{Min}(A_0)) = 0 \end{aligned} \\ & \text{Min}(A_7) = \min(7, \text{Min}(A_2), \text{Min}(\emptyset)) = 2 \\ & \text{Min}(A_2) = \min(2, \text{Min}(\emptyset), \text{Min}(\emptyset)) = 2 \\ & \text{Min}(A_0) = \min(0, \text{Min}(\emptyset), \text{Min}(\emptyset)) = 0 \\ & \text{Min}(A_6) = \dots = 1 \end{aligned}
```



```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM(filsG}(x))

m_D \leftarrow \text{MINIMUM(filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
\begin{aligned} & \text{Min}(A_5) = \min(5, \text{Min}(A_3), \text{Min}(A_6)) = 0 \\ & \text{Min}(A_3) = \min(3, \text{Min}(A_7), \text{Min}(A_0)) = 0 \end{aligned} \underbrace{2} \\ & \text{Min}(A_7) = \min(7, \text{Min}(A_2), \text{Min}(\emptyset)) = 2 \\ & \text{Min}(A_2) = \min(2, \text{Min}(\emptyset), \text{Min}(\emptyset)) = 2 \\ & \text{Min}(A_0) = \min(0, \text{Min}(\emptyset), \text{Min}(\emptyset)) = 0 \\ & \text{Min}(A_6) = \dots = 1 \end{aligned}
```



```
Algorithme : MINIMUM(x)

m \leftarrow +\infty

si x \neq \emptyset alors

m_G \leftarrow \text{MINIMUM}(\text{filsG}(x))

m_D \leftarrow \text{MINIMUM}(\text{filsD}(x))

m \leftarrow \min(m_G, m_D, \text{val}(x))

retourner m
```

```
Algorithme : NBNŒUDS(x)

n \leftarrow 0

si x \neq \emptyset alors

n_G \leftarrow \text{NBNŒUDS}(\text{filsG}(x))

n_D \leftarrow \text{NBNŒUDS}(\text{filsD}(x))

n \leftarrow n_G + n_D + 1

retourner n
```


1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Stocker un ensemble ordonné de n valeurs avec les opérations :

- ► INSÉRER et SUPPRIMER
- ► MINIMUM et MAXIMUM
- ► Rechercher
- Successeur et Prédécesseur

→ toutes ces opérations en « bonne » complexité

Stocker un ensemble ordonné de *n* valeurs avec les opérations :

- ► INSÉRER et SUPPRIMER
- ► MINIMUM et MAXIMUM
- Rechercher
- ► Successeur et Prédécesseur

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

→ toutes ces opérations en « bonne » complexité

Stocker un ensemble ordonné de n valeurs avec les opérations :

- Insérer et Supprimer
- MINIMUM et MAXIMUM
- Rechercher
- Successeur et Prédécesseur

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

→ toutes ces opérations en « bonne » complexité

Utilisation

- Stockage de données dynamiques
- Base de données (valeurs = identifiant)
- Linux : ordonnancement, mémoire virtuelle, ...

Stocker un ensemble ordonné de *n* valeurs avec les opérations :

- ► INSÉRER et SUPPRIMER
- MINIMUM et MAXIMUM
- Rechercher
- Successeur et Prédécesseur

Liste chaînée triée : O(1) pour max/min et succ/pred, O(n) pour le reste

→ toutes ces opérations en « bonne » complexité

Utilisation

- Stockage de données dynamiques
- Base de données (valeurs = identifiant)
- Linux : ordonnancement, mémoire virtuelle, ...

Les arbres binaires de recherche sont une structure de donnée remplissant ces objectifs, mais pas la seule!

Définition

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Définition

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Un arbre binaire de recherche (ABR) est un arbre binaire tel que pour tout nœud x,

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in \operatorname{saD}(x), \operatorname{val}(x) \leq \operatorname{val}(z)$

Définition

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Un arbre binaire de recherche (ABR) est un arbre binaire tel que pour tout nœud x,

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

Définition

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Un arbre binaire de recherche (ABR) est un arbre binaire tel que pour tout nœud x,

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in \operatorname{saD}(x), \operatorname{val}(x) \leq \operatorname{val}(z)$

Définition

Si A est un arbre binaire et $x \in A$, on note

- SaG(x) le sous-arbre gauche de x : le s-a de A enraciné en filsG(x)
- SaD(x) le sous-arbre droit de x : le s-a de A enraciné en filsD(x)

Un arbre binaire de recherche (ABR) est un arbre binaire tel que pour tout nœud x,

- $\forall y \in \operatorname{saG}(x), \operatorname{val}(y) \leq \operatorname{val}(x)$
- $\forall z \in saD(x), val(x) \leq val(z)$

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Parcours infixe d'un ABR

Algorithme:

ParcoursInfixe(x)

si $x \neq \emptyset$ alors

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

Parcours infixe d'un ABR

Algorithme:

ParcoursInfixe(x)

si $x \neq \emptyset$ alors

ParcoursInfixe(filsG(x))

Afficher val(x)

ParcoursInfixe(filsD(x))

Lemme

Le parcours infixe d'un arbre binaire A affiche les valeurs de A triées si et seulement si A est un ABR.

Preuve par induction : affichage en ordre \nearrow ssi val $(y) \le \text{val}(\text{rac}(A)) \le \text{val}(z)$ pour $y \in \text{saG}(A)$, $z \in \text{saD}(A)$ ssi A est un ABR

```
Algorithme: RECHERCHER(x, k)

si x = \emptyset alors retourner \emptyset

si val(x) = k alors retourner x

si val(x) > k alors

retourner

RECHERCHER(filsG(x), k)

retourner RECHERCHER(filsD(x), k)
```


Algorithme : RECHERCHER(x, k) tant que $x \neq \emptyset$ et val(x) $\neq k$ faire si k < val(x) alors $x \leftarrow \text{filsG}(x)$ sinon $x \leftarrow \text{filsD}(x)$

retourner x

Algorithme : RECHERCHER(x, k) tant que $x \neq \emptyset$ et val(x) $\neq k$ faire si k < val(x) alors $x \leftarrow \text{filsG}(x)$ sinon $x \leftarrow \text{filsD}(x)$

retourner x


```
Algorithme : RECHERCHER(x, k)
tant que x \neq \emptyset et val(x) \neq k faire

| si k < \text{val}(x) alors
| x \leftarrow \text{filsG}(x)
sinon
| x \leftarrow \text{filsD}(x)
```


Lemme

retourner x

RECHERCHER(rac(A)) a une complexité O(h(A)).

Preuve

- ightharpoonup À chaque passage dans la boucle, la hauteur de x augmente de 1 : au plus $\leq h(A)$ passages
- ► Chaque passage coûte *O*(1)

Algorithme : MINIMUM(x) tant que fils $G(x) \neq \emptyset$ faire $x \leftarrow filsG(x)$

retourner x

Algorithme : SUCCESSEUR(x)

si filsD(x) $\neq \emptyset$ alors

retourner MINIMUM(filsD(x)) $y \leftarrow \text{père}(x)$ tant que $y \neq \emptyset$ et x = filsD(y) faire $x \leftarrow y$ $y \leftarrow \text{père}(x)$ retourner y

retourner y

Successeur(2) = 3 Successeur(6) = 7 Successeur(9) = \emptyset

Lemme

MINIMUM et SUCCESSEUR ont une complexité O(h(A))

Validité de successeur

Lemme

SUCCESSEUR renvoie un sommet de plus petite valeur parmi ceux dont la valeur est $\geq val(x)$.

Validité de successeur

Lemme

Successeur renvoie un sommet de plus petite valeur parmi ceux dont la valeur est $\geq val(x)$.

Preuve Supp. les valeurs 2-à-2 distinctes. Soit p calculé par l'algo.

- ▶ pour tout $y \in saD(x)$, val(x) < val(y) < val(p)
- **•** pour tout ancêtre $z \neq p$ de x, deux possibilités :
 - $ightharpoonup x \in \operatorname{saD}(z) \leadsto \operatorname{val}(z) < \operatorname{val}(x) \text{ et } \forall y \in \operatorname{saG}(z), \operatorname{val}(y) < \operatorname{val}(x)$
 - $ightharpoonup p \in \operatorname{saG}(z) \rightsquigarrow \operatorname{val}(z) > \operatorname{val}(p) \text{ et } \forall y \in \operatorname{saD}(z), \operatorname{val}(y) > \operatorname{val}(p)$

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
          x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```



```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
          x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```



```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
           x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```



```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
          x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```



```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
           x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```



```
Algorithme : INSÉRER(A, z)
x \leftarrow \operatorname{rac}(A)
p \leftarrow \emptyset
tant que x \neq \emptyset faire
      p \leftarrow x
     si val(z) < val(x) alors
           x \leftarrow \mathsf{filsG}(x)
     sinon x \leftarrow \text{filsD}(x)
pere(z) \leftarrow p
si p = \emptyset alors rac(A) \leftarrow z
sinon
     si val(z) < val(p) alors
       filsG(p) \leftarrow z
     sinon filsD(p) \leftarrow z
```


Un petit algorithme de remplacement :
 On remplace le sous-arbre enraciné en x par celui enraciné en z dans l'arborescence A :

```
Algorithme : REMPLACE(A, x, z)
p \leftarrow pere(x)
pere(x) \leftarrow \emptyset
si p = \emptyset alors
 rac(A) \leftarrow z
sinon
     si x = filsG(p) alors
         filsG(p) \leftarrow z
     sinon
          filsD(p) \leftarrow z
si z \neq \emptyset alors père(z) \leftarrow p;
```

```
Algorithme : SUPPRIMER(A, z)
si filsG(z) = \emptyset alors
   Remplace(A, z, filsD(z))
sinon si filsD(z) = \emptyset alors
    REMPLACE(A, z, filsG(z))
sinon
   y = Successeur(z)
    REMPLACE(A, y, filsD(y))
    Remplacer dans A, le nœud z
     par le nœud y
```



```
Algorithme : SUPPRIMER(A, z)
si filsG(z) = \emptyset alors
   Remplace(A, z, filsD(z))
sinon si filsD(z) = \emptyset alors
    REMPLACE(A, z, filsG(z))
sinon
   y = Successeur(z)
    REMPLACE(A, y, filsD(y))
    Remplacer dans A, le nœud z
     par le nœud y
```



```
Algorithme : SUPPRIMER(A, z)
si filsG(z) = \emptyset alors
    REMPLACE(A, z, filsD(z))
sinon si filsD(z) = \emptyset alors
    REMPLACE(A, z, filsG(z))
sinon
   y = Successeur(z)
    REMPLACE(A, y, filsD(y))
    Remplacer dans A, le nœud z
     par le nœud y
```



```
Algorithme : SUPPRIMER(A, z)
si filsG(z) = \emptyset alors
   Remplace(A, z, filsD(z))
sinon si filsD(z) = \emptyset alors
    REMPLACE(A, z, filsG(z))
sinon
   y = Successeur(z)
    REMPLACE(A, y, filsD(y))
    Remplacer dans A, le nœud z
     par le nœud y
```


Validité et complexités

Lemme

Si A est un ABR, il reste un ABR après SUPPRIMER(A, z).

Preuve Le nœud z est remplacé par son successeur y:

- ▶ Pour tout $x \in \operatorname{saG}(y)$, $\operatorname{val}(x) \leq \operatorname{val}(z) \leq \operatorname{val}(y)$
- ▶ Pour tout $x \in \text{saD}(y)$, $\text{val}(x) \ge \text{val}(y)$ car $y = \min(\text{saD}(z))$

Le reste de l'arbre est inchangé.

Validité et complexités

Lemme

Si A est un ABR, il reste un ABR après SUPPRIMER(A, z).

Preuve Le nœud z est remplacé par son successeur y:

- Pour tout $x \in \operatorname{saG}(y)$, $\operatorname{val}(x) \leq \operatorname{val}(z) \leq \operatorname{val}(y)$
- ▶ Pour tout $x \in \operatorname{saD}(y)$, $\operatorname{val}(x) \ge \operatorname{val}(y)$ car $y = \min(\operatorname{saD}(z))$

Le reste de l'arbre est inchangé.

Lemme

Insérer et Supprimer ont une complexité O(h(A)).

Preuve On parcourt *une branche de l'arbre* pour trouver soit l'endroit où insérer (INSÉRER) soit le successeur (SUPPRIMER) : complexité O(h(A)). Le reste est un nombre constant de modifications de pointeurs.

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABF
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Motivation

Rappel des complexités

- ▶ INSÉRER et SUPPRIMER : O(h(A))
- ► MINIMUM et MAXIMUM¹ : O(h(A))
- ightharpoonup Rechercher : O(h(A))
- ▶ Successeur et Prédecesseur¹ : O(h(A))

¹ Exercice!

Motivation

Rappel des complexités

- ► INSÉRER et SUPPRIMER : O(h(A))
- ► MINIMUM et $Maximum^1 : O(h(A))$
- ightharpoonup Rechercher : O(h(A))
- ▶ Successeur et Prédecesseur¹ : O(h(A))
- ¹ Exercice!

Un ABR est une structure de donnée efficace s'il est équilibré, c'est-à-dire si $h(A) = O(\log(n(A)))$.

Outil de base : les rotations

Outil de base : les rotations

Lemme

Si A est un ABR, il reste un ABR après rotation.

Preuve Les rotations ne modifient que leur sous-arbre.

- ▶ Pour tout $z \in A_1$, $val(z) \le val(x) \le val(y)$
- ▶ Pour tout $z \in A_2$, $val(x) \le val(z) \le val(y)$
- Pour tout $z \in A_3$, $val(x) \le val(y) \le val(z)$

Outil de base : les rotations

Lemme

Si A est un ABR, il reste un ABR après rotation.

Utilisation

- Augmentation de la hauteur d'un côté, diminution de l'autre
- ightharpoonup Opération en temps O(1) : quelques pointeurs à changer

Comment équilibrer?

- ► Techniques d'équilibrage lors de INSÉRER/SUPPRIMER
 - ▶ arbres rouge-noir, AVL, B, déployés, ...
 - ► Tarbres (ou arbres-tas) : simulent l'insertion en ordre aléatoire

Comment équilibrer?

- ► Techniques d'équilibrage lors de INSÉRER/SUPPRIMER
 - ▶ arbres rouge-noir, AVL, B, déployés, ...
 - ► Tarbres (ou arbres-tas) : simulent l'insertion en ordre aléatoire
- ► Au delà du contenu de ce cours...

Conclusion sur les ABR

- Structure de données pour ensembles ordonnés
- ► Insérer/Supprimer, Rechercher, ... : O(h(A))
- $|\log(n(A))| \le h(A) < n(A)$
 - ▶ Efficace que si $h(A) = O(\log(n(A)))$
 - Vrai si insertion en ordre aléatoire
 - Techniques d'équilibrage basées sur les rotations

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Utilisations principales des tas

- ▶ Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - ► AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - ► RETIRERMAX : retire l'élément de priorité maximale
 - ► AUGMENTERPRIORITÉ : augmente la priorité d'un élément
 - DIMINUERPRIORITÉ : diminue la priorité d'un élément

Utilisations principales des tas

- ▶ Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - ► RETIRERMAX : retire l'élément de priorité maximale
 - ► AUGMENTERPRIORITÉ : augmente la priorité d'un élément
 - DIMINUERPRIORITÉ : diminue la priorité d'un élément
- Utilisation de files de priorité
 - ► Trouver le chemin le plus court entre deux points
 - dans un graphe (Dijkstra)

→ Chap.6

- ► sur une carte (A*, ...)
- Répartition de charge entre serveurs, ordonnancement de processus...

Utilisations principales des tas

- ▶ Algorithme du « tri par tas »
- ► Files de priorité : stockage d'un ensemble d'éléments ayant chacun une priorité, avec les opérations
 - AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - ► RETIRERMAX : retire l'élément de priorité maximale
 - ► AUGMENTERPRIORITÉ : augmente la priorité d'un élément
 - DIMINUERPRIORITÉ : diminue la priorité d'un élément
- Utilisation de files de priorité
 - Trouver le chemin le plus court entre deux points
 - dans un graphe (Dijkstra)

→ Chap.6

- sur une carte (A*, ...)
- Répartition de charge entre serveurs, ordonnancement de processus...

Le tas est une structure de donnée permettant d'implanter les files de priorités, mais les autres sont en général des extensions.

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR

- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Définition

Un arbre binaire est quasi-complet si

- ightharpoonup pour tout k < h(A), $|N_k| = 2^k$
- ▶ les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

Un arbre binaire est quasi-complet si

- ightharpoonup pour tout k < h(A), $|N_k| = 2^k$
- ▶ les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

Un arbre binaire est quasi-complet si

- ightharpoonup pour tout k < h(A), $|N_k| = 2^k$
- ▶ les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Définition

Un arbre binaire est quasi-complet si

- \blacktriangleright pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Lemme

Si A est un arbre quasi-complet, $2^{h(A)} < n(A) < 2^{h(A)+1} - 1$.

Preuve La borne supérieure est vraie pour tout A.

$$N_0$$
, ..., $N_{h(A)-1}$ complets et $|N_{h(A)}| \geq 1$

$$\rightsquigarrow n(A) = \sum_{i=0}^{h(A)} |N_i| \ge 1 + \sum_{i=0}^{h(A)-1} 2^i = (2^{h(A)} - 1) + 1$$

(Le + petit arbre quasi-complet est un arbre complet de hauteur h(A) - 1, donc de taille $2^{h(A)}-1$, avec 1 élément au niveau h(A))

Définition

Un arbre binaire est quasi-complet si

- \blacktriangleright pour tout $k < h(A), |N_k| = 2^k$
- les nœuds de $N_{h(A)}$ sont « le plus à gauche possible »

Lemme

Si A est un arbre quasi-complet, $2^{h(A)} \le n(A) \le 2^{h(A)+1} - 1$.

Corollaire

Si A est un arbre quasi-complet, alors $h(A) = \lfloor \log n(A) \rfloor$.

Preuve On a
$$2^{h(A)} \le n(A) < 2^{h(A)+1}$$
 et donc $h(A) \le \log n(A) < h(A) + 1$.

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son numéro, défini par

- ightharpoonup num(rac(A)) = 0
- si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son numéro, défini par

- ightharpoonup num(rac(A)) = 0
- si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation des arbres quasi-complets

Définition

Pour tout nœud x d'un arbre, soit num(x) son numéro, défini par

- num(rac(A)) = 0
- si fils $G(x) \neq \emptyset$, num(filsG(x)) = 2 num(x) + 1
- si filsD(x) $\neq \emptyset$, num(filsD(x)) = 2 num(x) + 2

Numérotation de haut en bas et de gauche à droite (parcours en largeur)

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Preuve

- 1. Si $x \in N_k$, $2^k 1 \le \text{num}(x) \le 2^{k+1} 2$
 - ▶ k = 0...
 - ▶ si $x \in N_k$, père $(x) \in N_{k-1}$ $\Rightarrow 2^{k-1} - 1 \le \text{num}(\text{père}(x)) \le 2^k - 2$ $\Rightarrow 2 \cdot (2^{k-1} - 1) + 1 \le \text{num}(x) \le 2 \cdot (2^k - 2) + 2$ $\Rightarrow 2^k - 1 \le \text{num}(x) \le 2^{k+1} - 2$

Propriétés de la numérotation

Lemme

Un arbre binaire est quasi-complet si et seulement si ses nœuds sont numérotés de 0 à n(A)-1.

Preuve

1. Si
$$x \in N_k$$
, $2^k - 1 \le \text{num}(x) \le 2^{k+1} - 2$

▶
$$k = 0...$$

▶ si
$$x \in N_k$$
, père $(x) \in N_{k-1}$
 $\Rightarrow 2^{k-1} - 1 \le \text{num}(\text{père}(x)) \le 2^k - 2$
 $\Rightarrow 2 \cdot (2^{k-1} - 1) + 1 \le \text{num}(x) \le 2 \cdot (2^k - 2) + 2$
 $\Rightarrow 2^k - 1 \le \text{num}(x) \le 2^{k+1} - 2$

- 2. Si x est le voisin de gauche de y, num(y) = num(x) + 1
 - ► Si $\operatorname{num}(x) = 2p + 1$, $y = \operatorname{filsD}(\operatorname{père}(x))$ donc $\operatorname{num}(y) = 2p + 2$
 - Si num(x) = 2p + 2, x = filsD(filsG(z)) et y = filsG(filsD(z)) \rightarrow num(x) = $2 \cdot (2q + 1) + 2 = 4q + 4$
 - \rightarrow num(y) = 2 · (2q + 2) + 1 = 4q + 5.

Représentation informatique des arbres quasi-complets

Corollaire

On peut représenter un arbre quasi-complet par un tableau de taille n(A) contenant val(x) en case num(x).

Représentation informatique des arbres quasi-complets

Corollaire

On peut représenter un arbre quasi-complet par un tableau de taille n(A) contenant val(x) en case num(x).

On identifie un arbre quasi-complet et le tableau A qui le représente, et un nœud x et son numéro num(x).

- ightharpoonup rac(A)=0
- filsG(i) = 2i + 1 et filsD(i) = 2i + 2
- ightharpoonup père $(i) = \lfloor (i-1)/2 \rfloor$
- ightharpoonup val(i) = A[i]
- $h(i) = \lfloor \log(i+1) \rfloor$

Définition des tas

- Un arbre binaire A a la propriété de tas max si pour tout x ≠ rac(A), val(père(x)) ≥ val(x)
- Un arbre binaire A a la propriété de tas min si pour tout x ≠ rac(A), val(père(x)) ≤ val(x)

Définition des tas

Définition

- Un arbre binaire A a la propriété de tas max si pour tout x ≠ rac(A), val(père(x)) ≥ val(x)
- Un arbre binaire A a la propriété de tas min si pour tout x ≠ rac(A), val(père(x)) ≤ val(x)

[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Un tas max (resp. min) est un arbre quasi-complet ayant la propriété de tas max (resp. min)

Un tableau T est un tas max si pour tout $i \geq 1$, $T[\lfloor \frac{i-1}{2} \rfloor] \geq T[i]$

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Algorithme : INSÉRER(T, x) $i \leftarrow n(T)$ Agrandir T d'une case $T[i] \leftarrow x$ REMONTER(T, i)

 $\mathsf{Algorithme}: \mathsf{INS\acute{E}RER}(T,x)$

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T[i] \leftarrow x$

 $\mathsf{Remonter}(T,i)$

Algorithme : INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T[i] \leftarrow x$

Remonter(T, i)

Algorithme : INSÉRER(T, x)

 $i \leftarrow n(T)$

Agrandir T d'une case

 $T[i] \leftarrow x$

Remonter(T, i)

Algorithme : INSÉRER(T,x) $i \leftarrow n(T)$ Agrandir T d'une case $T[i] \leftarrow x$ REMONTER(T,i)

Algorithme : REMONTER(T, i) tant que i > 0 et $T[p\`{e}re(i)] < T[i]$ faire $\acute{E}changer T[i]$ et $T[p\`{e}re(i)]$ $i \leftarrow p\`{e}re(i)$

Complexité et validité de l'insertion

Lemme

REMONTER(T, i) a une complexité $O(\log(n(T)))$.

Preuve \mathcal{P}_i : le nombre de passage dans la boucle est $\leq h(i)$

- ightharpoonup si i=0, ok
- ▶ sinon : après le premier passage, i est remplacé par père(i). Le nombre de passages suivants est $\leq h(\text{père}(i))$ par hypothèse de récurrence, donc le nombre total est $\leq h(\text{père}(i)) + 1 = h(i)$.
- \sim Complexité $O(h(T)) = O(\log(n(T)))$

Complexité et validité de l'insertion

```
Algorithme : REMONTER(T, i)
tant que i > 0 et T[p\`{e}re(i)] < T[i]
faire

Échanger T[i] et T[p\`{e}re(i)]
i \leftarrow p\`{e}re(i)
```

Lemme

Si i = n(T) - 1 et que T privé de i est un tas, alors T est un tas après REMONTER(T, i).

Preuve (idée) T_i : sous-arbre enraciné en i

- ▶ utilisation de l'invariant : T_i est un tas
- ▶ soit p = père(i) et f l'autre fils de p s'il existe; alors $T[i] > T[p] \ge T[f] \rightsquigarrow \text{invariant conservé}$

Suppression dans un tas max

```
\begin{aligned} & \text{Algorithme}: \text{SUPPRIMER}(T,i) \\ & x \leftarrow T[i] \\ & T[i] \leftarrow T[n(T)-1] \\ & \text{Réduire } T \text{ d'une case} \\ & \text{si } (\text{père}(i) \neq \emptyset \text{ } et \text{ } T[\text{père}(i)] < T[i]) \\ & \text{alors REMONTER}(T,i) \\ & \text{sinon ENTASSER}(T,i) \\ & \text{retourner } x \end{aligned}
```


[9, 7, 8, 6, 4, 0, 2, 3, 5, 1]

Suppression dans un tas max

```
\begin{aligned} & \text{Algorithme}: \text{SUPPRIMER}(T,i) \\ & x \leftarrow T[i] \\ & T[i] \leftarrow T[n(T)-1] \\ & \text{Réduire } T \text{ d'une case} \\ & \text{si } (\text{père}(i) \neq \emptyset \text{ } et \text{ } T[\text{père}(i)] < T[i]) \\ & \text{alors } \text{REMONTER}(T,i) \\ & \text{sinon } \text{ENTASSER}(T,i) \\ & \text{retourner } x \end{aligned}
```


[1,7,8,6,4,0,2,3,5]

Suppression dans un tas max

```
\begin{aligned} & \mathsf{Algorithme} : \mathsf{SUPPRIMER}(T,i) \\ & \times \leftarrow T[i] \\ & T[i] \leftarrow T[n(T)-1] \\ & \mathsf{R\'eduire} \ T \ \mathsf{d'une} \ \mathsf{case} \\ & \mathsf{si} \ (\mathsf{p\`ere}(i) \neq \emptyset \ et \ T[\mathsf{p\`ere}(i)] < T[i]) \\ & \mathsf{alors} \ \mathsf{REMONTER}(T,i) \\ & \mathsf{sinon} \ \mathsf{ENTASSER}(T,i) \\ & \mathsf{retourner} \ x \end{aligned}
```

ENTASSER(T, m)

Algorithme : $\mathsf{ENTASSER}(T,i)$ $(m,g,d) \leftarrow (i,\mathsf{filsG}(i),\mathsf{filsD}(i))$ $\mathsf{si}\ g < n(T)\ \mathsf{et}\ T[g] > T[m]\ \mathsf{alors}\ m \leftarrow g$ $\mathsf{si}\ d < n(T)\ \mathsf{et}\ T[d] > T[m]\ \mathsf{alors}\ m \leftarrow d$ $\mathsf{si}\ m \neq i\ \mathsf{alors}$ $|\ \mathsf{Échanger}\ T[i]\ \mathsf{et}\ T[m]$

Suppression dans un tas max

```
\begin{aligned} & \text{Algorithme}: \text{SUPPRIMER}(T,i) \\ & x \leftarrow T[i] \\ & T[i] \leftarrow T[n(T)-1] \\ & \text{Réduire } T \text{ d'une case} \\ & \text{si } (\text{père}(i) \neq \emptyset \text{ } et \text{ } T[\text{père}(i)] < T[i]) \\ & \text{alors } \text{REMONTER}(T,i) \\ & \text{sinon } \text{ENTASSER}(T,i) \\ & \text{retourner } x \end{aligned}
```


Algorithme: $\mathsf{ENTASSER}(T,i)$ $(m,g,d) \leftarrow (i,\mathsf{filsG}(i),\mathsf{filsD}(i))$ $\mathsf{si}\ g < n(T)\ \mathsf{et}\ T[g] > T[m]\ \mathsf{alors}\ m \leftarrow g$ $\mathsf{si}\ d < n(T)\ \mathsf{et}\ T[d] > T[m]\ \mathsf{alors}\ m \leftarrow d$ $\mathsf{si}\ m \neq i\ \mathsf{alors}$ $\begin{vmatrix} \mathsf{Echanger}\ T[i]\ \mathsf{et}\ T[m] \\ \mathsf{ENTASSER}(T,m) \end{vmatrix}$

Complexité et validité de la suppression

```
Algorithme: Entasser(T, i)
(m, g, d) \leftarrow (i, \operatorname{filsG}(i), \operatorname{filsD}(i))
si g < n(T) et T[g] > T[m] alors m \leftarrow g
si d < n(T) et T[d] > T[m] alors m \leftarrow d
si m \neq i alors
\begin{array}{c} \text{Échanger } T[i] \text{ et } T[m] \\ \text{Entasser}(T, m) \end{array}
```

Lemme

Entasser(T, i) a une complexité $O(\log(n(T)))$

Preuve \mathcal{P}_i : le nombre d'appels récursifs est $\leq h(T) - h(i)$ Récurrence descendante sur h(i):

- ► Si h(i) = h(T), aucun appel récursif donc ok
- ▶ Sinon ≤ 1 appel récursif sur un fils de hauteur $h(i)+1 \rightsquigarrow$ nombre total d'appels récursif $\leq 1+[h(T)-(h(i)+1)]$ par hypothèse de récurrence
- \sim Complexité $O(h(T)) = O(\log(n(T)))$

Complexité et validité de la suppression

```
Algorithme: Entasser(T, i)
(m, g, d) \leftarrow (i, \operatorname{filsG}(i), \operatorname{filsD}(i))
si g < n(T) et T[g] > T[m] alors m \leftarrow g
si d < n(T) et T[d] > T[m] alors m \leftarrow d
si m \neq i alors
\begin{array}{c} \text{Échanger } T[i] \text{ et } T[m] \\ \text{Entasser}(T, m) \end{array}
```

Lemme

Si les sous-arbres gauche et droit de i sont des tas, l'arbre enraciné en i est un tas après Entasser(T,i)

Preuve par récurrence sur h(T) - h(i) (cas de base facile...)

- ightharpoonup par hypothèse, T_m est un tas après l'appel récursif
- l'autre sous-arbre de *i* est un tas car non modifié
- ▶ $T[i] \ge T[g]$ et $T[i] \ge T[d]$ grâce à l'échange

1. Arbres binaires

- 2. Arbres binaires de recherche
- 2.1 Algorithmes de recherche dans un ABR
- 2.2 Insertion et suppression dans un ABR
- 2.3 Équilibrage des ABR
- 3. Tas
- 3.1 Arbres quasi-complets et tas
- 3.2 Algorithmes sur les tas
- 3.3 Applications

Algorithme : $\mathsf{TRITAS}(T)$ $S \leftarrow \mathsf{tableau}$ vide de taille n(T)pour $i = \lfloor n(T)/2 \rfloor - 1$ à 0faire $\lfloor \mathsf{ENTASSER}(T,i)$ pour i = n(T) - 1 à 0 faire $\lfloor S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)$ retourner S

Algorithme : $\mathsf{TRITAS}(T)$ $S \leftarrow \mathsf{tableau}$ vide de taille n(T)pour $i = \lfloor n(T)/2 \rfloor - 1$ à 0faire $\lfloor \mathsf{ENTASSER}(T,i)$ pour i = n(T) - 1 à 0 faire $\lfloor \mathsf{S}[i] \leftarrow \mathsf{SUPPRIMER}(T,0)$ retourner S

Algorithme : $\mathsf{TRITAS}(T)$ $S \leftarrow \mathsf{tableau}$ vide de taille n(T)pour $i = \lfloor n(T)/2 \rfloor - 1$ à 0faire $\lfloor \mathsf{ENTASSER}(T,i)$ pour i = n(T) - 1 à 0 faire $\lfloor S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)$ retourner S

Algorithme : $\mathsf{TRITAS}(T)$ $S \leftarrow \mathsf{tableau}$ vide de taille n(T)pour $i = \lfloor n(T)/2 \rfloor - 1$ à 0faire $\lfloor \mathsf{ENTASSER}(T,i)$ pour i = n(T) - 1 à 0 faire $\lfloor \mathsf{S}[i] \leftarrow \mathsf{SUPPRIMER}(T,0)$ retourner S

Algorithme : $\mathsf{TRITAS}(T)$ $S \leftarrow \mathsf{tableau}$ vide de taille n(T)pour $i = \lfloor n(T)/2 \rfloor - 1$ à 0 faire $\lfloor \mathsf{ENTASSER}(T,i)$ pour i = n(T) - 1 à 0 faire $\lfloor S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)$ retourner S


```
Algorithme : TRITAS(T)
S \leftarrow tableau vide de taille
 n(T)
pour i = |n(T)/2| - 1 \ge 0
 faire
    Entasser(T, i)
pour i = n(T) - 1 \ \hat{a} \ 0 faire
   S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)
retourner S
```



```
Algorithme : TRITAS(T)
S \leftarrow tableau vide de taille
 n(T)
pour i = |n(T)/2| - 1 \ge 0
 faire
    Entasser(T, i)
pour i = n(T) - 1 \ \hat{a} \ 0 faire
   S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)
retourner S
```



```
Algorithme : \mathsf{TRITAS}(T)
S \leftarrow \mathsf{tableau} vide de taille n(T)
pour i = \lfloor n(T)/2 \rfloor - 1 à 0
faire
\lfloor \mathsf{ENTASSER}(T,i)
pour i = n(T) - 1 à 0 faire
\lfloor S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)
retourner S
```

```
Algorithme : TRITAS(T)
S \leftarrow tableau vide de taille
 n(T)
pour i = |n(T)/2| - 1 \ \hat{a} \ 0
 faire
    Entasser(T, i)
pour i = n(T) - 1 \ a \ 0 faire
   S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)
retourner S
```


Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

```
Algorithme : TRITAS(T)
S \leftarrow \text{tableau vide de taille}
 n(T)
pour i = |n(T)/2| - 1 \ \hat{a} \ 0
 faire
    Entasser(T, i)
pour i = n(T) - 1 \ \hat{a} \ 0 faire
   S[i] \leftarrow \text{SUPPRIMER}(T, 0)
retourner S
```


Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

Preuve

- ▶ O(n) appels à ENTASSER et SUPPRIMER $\rightsquigarrow O(n \log n)$
- ► Correction : si $i \ge \lfloor n(T)/2 \rfloor$, i est une feuille

```
Algorithme : TRITAS(T)
S \leftarrow tableau vide de taille
 n(T)
pour i = |n(T)/2| - 1 \ \hat{a} \ 0
 faire
    Entasser(T, i)
pour i = n(T) - 1 \ \hat{a} \ 0 faire
    S[i] \leftarrow \mathsf{SUPPRIMER}(T,0)
retourner S
```


Lemme

Si T est un tableau quelconque, TRITAS renvoie le tableau T trié. Sa complexité est $O(n \log n)$.

Remarque

Possibilité de tri en place car on remplit S par la fin \rightsquigarrow TD

Borne inférieure pour le tri

Théorème

Un algorithme de tri ne faisant que des comparaisons a une complexité $\Omega(n \log n)$

Borne inférieure pour le tri

Théorème

Un algorithme de tri ne faisant que des comparaisons a une complexité $\Omega(n \log n)$

Preuve au tableau, basée sur l'arbre de décision :

- Nœuds : comparaisons entre deux entrées du tableau
- Feuilles : toutes les permutations de *n* éléments

 \rightsquigarrow arbre à n! feuilles, donc de hauteur $\geq \lfloor \log(n!) \rfloor = \Omega(n \log n)$

Files de priorité

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Files de priorité

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Tas max de couples (x, p_x) qui vérifie la propriété de tas pour les priorités

Files de priorité

Stockage d'un ensemble d'éléments x ayant chacun une priorité p_x

Tas max de couples (x, p_x) qui vérifie la propriété de tas pour les priorités

- AJOUTER : ajoute un nouvel élément (avec sa priorité)
 - Algorithme INSÉRER
- ► RETIRERMAX : retire l'élément de priorité maximale
 - ▶ Algorithme SUPPRIMER (en i = 0)
- ► AUGMENTERPRIORITÉ : augmente la priorité d'un élément
 - Algorithme : changer p_x en p'_x puis REMONTER
- DIMINUERPRIORITÉ : diminue la priorité d'un élément
 - Algorithme : changer p_x en p_x' puis ENTASSER

→ opérations en complexité O(log n)

Conclusion sur les tas

- Structure de données pour conserver un ordre de priorité
- ► Arbre binaire quasi-complet :
 - représentation en tableau
 - ▶ arbre équilibré \rightsquigarrow hauteur $O(\log n)$
- ► INSÉRER et SUPPRIMER : $O(\log n)$
- Utilisations :
 - ► Tri par tas : O(n log n)
 - Files de priorités

Conclusion

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - ...

Search..

Home

Stack Overflow

Tags

Users

Jobs

Learn More

What are the applications of binary trees?

Applications of binary trees

 Binary Search Tree - Used in many search applications where data is constantly entering/leaving, such as the map and set objects in many languages' libraries.

 <u>Binary Space Partition</u> - Used in almost every 3D video game to determine what objects need to be rendered.

- <u>Hash Trees</u> used in p2p programs and specialized image-signatures in which a hash needs to be verified, but the whole file is not available.
- Heaps Used in implementing efficient priority-queues, which in turn are used for scheduling
 processes in many operating systems, Quality-of-Service in routers, and A* (path-finding algorithm
 used in AI applications, including robotics and video games). Also used in heap-sort.
- Huffman Coding Tree (Chip Uni) used in compression algorithms, such as those used by the .jpeg and .mp3 file-formats.
- GGM Trees Used in cryptographic applications to generate a tree of pseudo-random numbers.
- <u>Syntax Tree</u> Constructed by compilers and (implicitly) calculators to parse expressions.
- Treap Randomized data structure used in wireless networking and memory allocation.
- <u>T-tree</u> Though most databases use some form of B-tree to store data on the drive, databases which keep all (most) their data in memory often use T-trees to do so.

modifié depuis https://stackoverflow.com/a/2200588

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **.**..
- Raisonnement informatique
 - ► Arbre de récursion (analyse des algorithmes récursifs)
 - ► Arbre de décision (borne inférieure sur le tri)
 - **.**..

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **.**..
- Raisonnement informatique
 - Arbre de récursion (analyse des algorithmes récursifs)
 - ► Arbre de décision (borne inférieure sur le tri)
 - **.**..
- Pourquoi binaires?
 - ► Arbres ternaires, ..., *d*-aires
 - Arbres avec nombre quelconque (non constant) de fils

- Représentation structurée de l'information
 - arbres binaires de recherche
 - tas
 - **.**..
- Raisonnement informatique
 - Arbre de récursion (analyse des algorithmes récursifs)
 - Arbre de décision (borne inférieure sur le tri)
 - **.**..
- Pourquoi binaires?
 - ► Arbres ternaires, ..., *d*-aires
 - Arbres avec nombre quelconque (non constant) de fils

Les arbres sont un des objets centraux de l'informatique!