B. Very Interesting Game

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

In a very ancient country the following game was popular. Two people play the game. Initially first player writes a string s_1 , consisting of exactly nine digits and representing a number that does not exceed a. After that second player looks at s_1 and writes a string s_2 , consisting of exactly nine digits and representing a number that does not exceed b. Here a and b are some given constants, s_1 and s_2 are chosen by the players. The strings are allowed to contain leading zeroes.

If a number obtained by the concatenation (joining together) of strings s_1 and s_2 is divisible by mod, then the second player wins. Otherwise the first player wins. You are given numbers a, b, mod. Your task is to determine who wins if both players play in the optimal manner. If the first player wins, you are also required to find the lexicographically minimum winning move.

Input

The first line contains three integers a, b, mod ($0 \le a$, $b \le 10^9$, $1 \le mod \le 10^7$).

Output

If the first player wins, print "1" and the lexicographically minimum string s_1 he has to write to win. If the second player wins, print the single number "2".

Examples

input	
1 10 7	
output	
2	

input

4 0 9

output

1 00000001

Note

The lexical comparison of strings is performed by the < operator in modern programming languages. String x is lexicographically less than string y if exists such i ($1 \le i \le 9$), that $x_i < y_i$, and for any j ($1 \le j < i$) $x_j = y_j$. These strings always have length 9.