An assistive handwashing system with emotional intelligence

Luyuan Lin

University of Waterloo

Supervisor: Jesse Hoey

July 22, 2014

Agenda

- Problem Statement
 - Motivation
 - Objectives
- 2 Basic Concepts
 - Affect Control Theory (ACT)
 - Partially Observable Markov Decision Process (POMDP)
 - The BayesACT Framework
- Solution: System Design and Implementation
 - Components
 - Coordination between components
- 4 Experimental Results
- Discussion
 - Contribution
 - Future Work

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

Using Emotional Intelligence in Assitive Systems

recognization of affective states

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

- recognization of affective states
- generation of affective signals

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

- recognization of affective states
- generation of affective signals
- study of human emotions

The COACH system

- is an assistive system helping with an elder's daily activities
- monitors a user washing his/her hands
- detects when the user has lost track of what he/she is doing
- displays a prerecorded assistive prompt when needed
- works well for some persons, but not as well for others

- recognization of affective states
- generation of affective signals
- study of human emotions
- computationally modelling affective HCIs

To augment the COACH system with an emotional reasoning engine based on BayesACT so that the augmented system:

• is designed in a portable and extensible way

- is designed in a portable and extensible way
- runs in real-time from the perspective of the user group

- is designed in a portable and extensible way
- runs in real-time from the perspective of the user group
- provides at least a level of functional assistance of as high quality as the COACH

- is designed in a portable and extensible way
- runs in real-time from the perspective of the user group
- provides at least a level of functional assistance of as high quality as the COACH
- is able to tune the prompts in some way according to the emotional state of a user

To augment the COACH system with an emotional reasoning engine based on BayesACT so that the augmented system:

- is designed in a portable and extensible way
- runs in real-time from the perspective of the user group
- provides at least a level of functional assistance of as high quality as the COACH
- is able to tune the prompts in some way according to the emotional state of a user

Note: The last objective is ill-defined, as the question of how exactly tuning prompts to users will be most effective is not clear at this point.

Affect Control Theory (ACT)

represents emotions as vectors that represent evaluation (E), potency
 (P), and activity (A) respectively

Affect Control Theory (ACT)

- represents emotions as vectors that represent evaluation (E), potency (P), and activity (A) respectively
- describes social events by an Actor-Behaviour-Object (ABO) grammar

Affect Control Theory (ACT)

- represents emotions as vectors that represent evaluation (E), potency (P), and activity (A) respectively
- describes social events by an Actor-Behaviour-Object (ABO) grammar
- "fundamentals" of identities and behaviours; shared between people within a same culture

Affect Control Theory (ACT)

- represents emotions as vectors that represent evaluation (E), potency (P), and activity (A) respectively
- describes social events by an Actor-Behaviour-Object (ABO) grammar
- "fundamentals" of identities and behaviours; shared between people within a same culture
- "transient impressions": emotional feelings of people evoked by a specific event

Affect Control Theory (ACT)

- represents emotions as vectors that represent evaluation (E), potency (P), and activity (A) respectively
- describes social events by an Actor-Behaviour-Object (ABO) grammar
- "fundamentals" of identities and behaviours; shared between people within a same culture
- "transient impressions": emotional feelings of people evoked by a specific event

The ACT Principal

Actors work to experience transient impressions that are consistent with their fundamental sentiments.

Partially Observable Markov Decision Process (POMDP)

 A timeslice of a POMDP process (solid lines)

- A timeslice of a POMDP process (solid lines)
- Variables: $\{X, A, \Omega_X\}$

- A timeslice of a POMDP process (solid lines)
- ullet Variables: $\{X, A, \Omega_X\}$
- $Pr: X \to \Delta(\Omega_X)$, $Pr: X \times A \to \Delta(X)$

- A timeslice of a POMDP process (solid lines)
- ullet Variables: $\{X, A, \Omega_X\}$
- $Pr: X \to \Delta(\Omega_X)$, $Pr: X \times A \to \Delta(X)$
- Reward Function: R(A, X')

- A timeslice of a POMDP process (solid lines)
- ullet Variables: $\{X, A, \Omega_X\}$
- $Pr: X \to \Delta(\Omega_X)$, $Pr: X \times A \to \Delta(X)$
- Reward Function: R(A, X')
- Augmented with affective states (dotted lines)

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

• States $S = \{F, T, X\}$, where $F = \{F_{ij}\}, T = \{T_{ij}\}, i \in \{a, b, c\}, j \in \{e, p, a\}$

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- States $S = \{F, T, X\}$, where $F = \{F_{ij}\}, T = \{T_{ij}\}, i \in \{a, b, c\}, j \in \{e, p, a\}$
- Observations $\Omega = \{\Omega_X, \Omega_b\}$

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- States $S = \{F, T, X\}$, where $F = \{F_{ij}\}, T = \{T_{ij}\}, i \in \{a, b, c\}, j \in \{e, p, a\}$
- Observations $\Omega = \{\Omega_X, \Omega_b\}$
- Actions $\{A, B_a\}$

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- States $S = \{F, T, X\}$, where $F = \{F_{ij}\}, T = \{T_{ij}\}, i \in \{a, b, c\}, j \in \{e, p, a\}$
- Observations $\Omega = \{\Omega_X, \Omega_b\}$
- Actions $\{A, B_a\}$
- By updating F, the probability distribution of the client's identity F_c is learned

- A Bayesian version of the ACT theory
- Combines the ACT with POMDP model so that can learn an interactant's identity

- States $S = \{F, T, X\}$, where $F = \{F_{ij}\}, T = \{T_{ij}\}, i \in \{a, b, c\}, j \in \{e, p, a\}$
- Observations $\Omega = \{\Omega_X, \Omega_b\}$
- Actions $\{A, B_a\}$
- By updating F, the probability distribution of the client's identity F_c is learned
- Calculate $\{A, B_a\}$ basing on $\{F, T, X\}$

Model formulation

Model formulation

• The deflection $\phi(F, T)$ between F and T:

$$\phi(f,t) \propto e^{-(f'-t')\Sigma^{-1}(f-t)} \tag{1}$$

Model formulation

• The deflection $\phi(F, T)$ between F and T:

$$\phi(f,t) \propto e^{-(f'-t')\Sigma^{-1}(f-t)} \tag{1}$$

• The probability of a post-action fundamental sentiment f':

$$Pr(f'|f,t,x,b_a,\phi) \propto e^{-\phi(f',t')-\xi(f',f,b_a,x)}$$
 (2)

where t' can be computed from $\{f', t, x\}$ by empirically derived prediction equations of ACT.

Model formulation

• The deflection $\phi(F, T)$ between F and T:

$$\phi(f,t) \propto e^{-(f'-t')\Sigma^{-1}(f-t)} \tag{1}$$

• The probability of a post-action fundamental sentiment f':

$$Pr(f'|f,t,x,b_a,\phi) \propto e^{-\phi(f',t')-\xi(f',f,b_a,x)}$$
 (2)

where t' can be computed from $\{f', t, x\}$ by empirically derived prediction equations of ACT.

• Pr(x'|x, f', t', a): how the application progresses

Model formulation

• The deflection $\phi(F, T)$ between F and T:

$$\phi(f,t) \propto e^{-(f'-t')\Sigma^{-1}(f-t)} \tag{1}$$

• The probability of a post-action fundamental sentiment f':

$$Pr(f'|f,t,x,b_a,\phi) \propto e^{-\phi(f',t')-\xi(f',f,b_a,x)}$$
 (2)

where t' can be computed from $\{f', t, x\}$ by empirically derived prediction equations of ACT.

- Pr(x'|x, f', t', a): how the application progresses
- $Pr(\omega_b|f)$ and $Pr(\omega_x|x)$: observation functions for the client behaviour sentiment and system state

Solution - Overview

Goal

Design an extensible system that assists people with dementia during a hand-washing process by assessing their states and provide instructions accordingly.

Solution - Overview

Goal

Design an extensible system that assists people with dementia during a hand-washing process by assessing their states and provide instructions accordingly.

Design the Planstep and Emotion Updaters basing on the BayesAct code

A planstep update diagram

A planstep update diagram

Eight plansteps: (0) "off/dirty/dry", (1) "on/dirty/dry", (2) "off/soapy/dry", (3) "on/soapy/dry", (4) "on/clean/wet", (5) "off/clean/wet", (6) "on/clean/dry", (7) "off/clean/dry"

A planstep update diagram

- Eight plansteps: (0) "off/dirty/dry", (1) "on/dirty/dry", (2) "off/soapy/dry", (3) "on/soapy/dry", (4) "on/clean/wet", (5) "off/clean/wet", (6) "on/clean/dry", (7) "off/clean/dry"
- Five behaviours: A1 to A5 are "turn on water", "put on soap", "rinse hands", "turn off water", and "use towel", respectively.

Use the BayesACT framework in the handwashing scenario

• Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- ullet Ω_X gives evidence to the system about X

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_X gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_X gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.
- Compute X'_{ps} based on observation Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_X gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.
- Compute X'_{ps} based on observation Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$
- A denotes the propositional content of a system message; B_a denotes how the message should be expressed

Use the BayesACT framework in the handwashing scenario

• Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_X, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- ullet Ω_X gives evidence to the system about X

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_x gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_X gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.
- Compute X'_{ps} based on observation Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$

- Recall: BayesACT includes states $S = \{X, F, T\}$, observations $\Omega = \{\Omega_x, \Omega_b\}$, and agent actions $\{A, B_a\}$
- In our hand-washing system, $X = \{X_{turn}, X_{ps}, X_{aw}, X_{bahav}\}$
- Ω_X gives evidence to the system about X
- Ω_b gives evidence to the system about f_b . The observation function $Pr(\Omega_b|f_b)$ allows one to specify the "confidence" or "reliability" of the different components of Ω_b by γ , which is the variance of a normal (Gaussian) distribution.
- Compute X'_{ps} based on observation Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$
- A denotes the propositional content of a system message; B_a denotes how the message should be expressed

- Essentially an "Affect Recognition" problem
- Learns/ Calculates affective interpretations from user behaviours

- Essentially an "Affect Recognition" problem
- Learns/ Calculates affective interpretations from user behaviours
- Feature Selection
 - analysis on facial expressions and speeches
 - application scenario and user-group constraints

- Essentially an "Affect Recognition" problem
- Learns/ Calculates affective interpretations from user behaviours
- Feature Selection
 - analysis on facial expressions and speeches
 - application scenario and user-group constraints
- Calculate P, A using piecewise linear interpolation method
 - The average distance between the user's two hands in a set of n
 neighbouring frames is scaled to P
 - The average distance the user's hands move between n neighbouring frames is scaled to A

- Essentially an "Affect Recognition" problem
- Learns/ Calculates affective interpretations from user behaviours
- Feature Selection
 - analysis on facial expressions and speeches
 - application scenario and user-group constraints
- Calculate P, A using piecewise linear interpolation method
 - The average distance between the user's two hands in a set of n neighbouring frames is scaled to P
 - The average distance the user's hands move between n neighbouring frames is scaled to A
- Temporally smoothing in the Buffer

$$X = \sum_{k=1}^{j} \left(\frac{alpha}{alpha + 1}\right)^{j-k} * \frac{1}{alpha + 1} * X[k]$$
 (3)

where alpha > 0. X = P or X = A.

Solution - the Observer

- Step 1: Get the locations of the user's hands
 - utilize Czarnuch and Mihailidis's body tracker [?]
 - the tracker obtains body parts locations from the depth information of images taken from an overhead perspective
 - the tracker was trained using partially labeled, unbalanced data, and is configurable and re-trainable

Solution - the Observer

- Step 1: Get the locations of the user's hands
 - utilize Czarnuch and Mihailidis's body tracker [?]
 - the tracker obtains body parts locations from the depth information of images taken from an overhead perspective
 - the tracker was trained using partially labeled, unbalanced data, and is configurable and re-trainable

Solution - the Observer cont.

- Step 1: Get the locations of the user's hands
 - utilize Czarnuch and Mihailidis's body tracker [?]
 - the tracker obtains body parts locations from the depth information of images taken from an overhead perspective
 - the tracker was trained using partially labeled, unbalanced data, and is configurable and re-trainable
- Step 2: Map locations to user behaviours
 - · compare hands locations with object positions
 - objects: the left-tap, the right-tap, the soap, the water-flow, the towel
 - observation noise handled by the observation function in the Reasoning Engine

Solution - the Observer cont.

- Step 1: Get the locations of the user's hands
 - utilize Czarnuch and Mihailidis's body tracker [?]
 - the tracker obtains body parts locations from the depth information of images taken from an overhead perspective
 - the tracker was trained using partially labeled, unbalanced data, and is configurable and re-trainable
- Step 2: Map locations to user behaviours
 - · compare hands locations with object positions
 - objects: the left-tap, the right-tap, the soap, the water-flow, the towel
 - observation noise handled by the observation function in the Reasoning Engine
- Serves as an Observer server
 - with the help of the Buffer

Solution - the Output Part

- The prompt dataset: the audio-visual prompts generated and evaluated in Malhotra's study [?]
 - created 30 video clips using the USC Virtual Human Toolkit
 - EPA values of videos evaluated by human raters
 - the participants' answers are consistent with each other

Solution - the Output Part

- The prompt dataset: the audio-visual prompts generated and evaluated in Malhotra's study [?]
 - created 30 video clips using the USC Virtual Human Toolkit
 - EPA values of videos evaluated by human raters
 - the participants' answers are consistent with each other

- A proper prompt is selected as the final prompt if it:
 - has the same propositional labels as the desired prompt
 - has the closest emotional (EPA) values as the desired prompt

Solution - Coordination between components

The system is designed with independent components.

- How to coordinate between the components?
 - timings of sending request and response messages?

Solution - The Buffer

• Between the Observer, the EPA-Calc, and the Reasoning Engine

Solution - The Buffer

- Between the Observer, the EPA-Calc, and the Reasoning Engine
- Controls timings of sending messages

Solution - The Buffer

- Between the Observer, the EPA-Calc, and the Reasoning Engine
- Controls timings of sending messages

Smoothes EPA values calucated by the Calculator

Experiments - Parameter values used in laboratory experiments

Param.	Value	Defined in which component
n	10	EPA-Calc
distance	$\{-\infty, 0, 8, 40, 128, 160, +\infty\}$	EPA-Calc
potency	$\{-4.3, -4.3, 0, 1, 2, 4.3, 4.3\}$	EPA-Calc
difference	$\{-\infty, 0, 3.5, 17.5, 35, 70, +\infty\}$	EPA-Calc
activity	$\{-4.3, -4.3, -2, -1, 0, 4.3, 4.3\}$	EPA-Calc
alpha	0	Buffer
timeout	300	Buffer
timeup	1	Buffer
β_a^0	0.001	Updater
β_c^0	2.0	Updater
γ	(100000, 1.0, 0.5)	Updater
Ν	2000	Updater
f_a^0	[1.5, 0.51, 0.45]	Updater
f_c^0	Different in each test	Updater

Experiments - Latency of the system

Experiments conducted on the system show that an average latency of

- 46.79ms is caused by the Observer component of the system
- 0.009ms caused by the Buffer
- 1.65s caused by the Updater

The overall average latency of the system is around 1.70s: the system runs in real-time from the perspective of its user group

Experiments - Two laboratory tests

Two laboratory tests

- link to test #1
- link to test #2

Another 15 tests were also run. Results are in the Appendix.

Experiments - Conclusion

- Functionality performance
 - sometimes false positively recognizes an user behaviour
 - is able to produce propositionally useful system prompts in general

Experiments - Conclusion

- Functionality performance
 - sometimes false positively recognizes an user behaviour
 - is able to produce propositionally useful system prompts in general
- Emotionality performance

No.	mean of be-	init of f_c	mean of f_c	mean of prompt
	hav.			
#1	[0, 1.32, -1.3]	[1.61, 0.84, -0.87]	[2.8, 1.03, -0.73]	[1.62, 0.32, 0.75]
#2	[0, 0.77, -1.74]	[-0.64, -0.43, -1.81]	[1.13, -0.43, -1.47]	[1.53, 0.66, 0.08]

Experiments - Conclusion

- Functionality performance
 - sometimes false positively recognizes an user behaviour
 - is able to produce propositionally useful system prompts in general
- Emotionality performance

No.	mean of be-	init of f_c	mean of f_c	mean of prompt
	hav.			
#1	[0, 1.32, -1.3]	[1.61, 0.84, -0.87]	[2.8, 1.03, -0.73]	[1.62, 0.32, 0.75]
#2	[0, 0.77, -1.74]	[-0.64, -0.43, -1.81]	[1.13, -0.43, -1.47]	[1.53, 0.66, 0.08]

Generally, for tests the actor acted more powerfully and more actively:

- larger P and larger A values were computed for user behaviours
- larger P and larger A values were achieved for f_c 's
- smaller P and larger A values were produced for prompts, among which the differences between A values are more obvious

Discussion - Contribution

Recall - Objective of this thesis

- is designed in a portable and extensible way
- runs in real-time from the perspective of the user group
- provides at least a level of functional assistance of as high quality as the COACH
- is able to tune the prompts in some way according to the emotional state of a user

Contribution

Contribution

Reviewed previous work in all the four aspects of emotional intelligence

Contribution

- Reviewed previous work in all the four aspects of emotional intelligence
- Designed and implemented a prototypical hand-washing system that
 - is extensible and portable
 - runs in real-time from the perspective of the user group
 - provides a level of functional assistance
 - produces system prompts that have encoded to some extent the emotional state of the user

Contribution

- Reviewed previous work in all the four aspects of emotional intelligence
- Designed and implemented a prototypical hand-washing system that
 - is extensible and portable
 - runs in real-time from the perspective of the user group
 - provides a level of functional assistance
 - produces system prompts that have encoded to some extent the emotional state of the user
- Tests also indicated that user behaviours with higher P and higher A values may lead to f_c 's with higher P and higher A values and system prompts with lower P and higher A values

Discussion - Future Work

Future Work

- Improve the EPA-Calculator
- Improve the prompt generation process
- Improve the Planstep- and Emotion- Updater
- Conduct clinical trials for the system

Acknowledgement

This work is based on previous works of:

- 1 The bayesact paper
- 2 The tracker paper.
- 3 The survey paper.

I'd like to take this opportunity to thank:

- Jesse Hoey
- James Tung and Peter van Beek
- Xiao Yang, Chengbo Li and Enxun Wei
- My family and friends

The end

Thank you!

- Questions?
- Comments?

Update X'_{ps} based on Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$

- SampleXVar() and evalSampleXVar()
- Pseudocode of SampleXVar() (on next page)
- $Pr: X_{behav} \rightarrow \Delta(\Omega_X)$ used in evalSampleXVar()

Update X'_{ps} based on Ω_x and $\{X_{ps}, X_{behav}, X_{aw}, F, T\}$ cont.

```
1: if Deflection(F, T) is high then
                                                 19:
                                                               aw = low and not moving forward
       threshold = high
                                                  20:
                                                            else
 3. else
                                                 21.
                                                               aw stays high and moving forward
                                                  22:
 4:
       threshold = low
                                                            end if
 5: end if
                                                 23:
                                                         end if
6: if aw high then
                                                 24 else
                                                  25:
 7:
       if prompted then
                                                         if prompted then
8.
          if random_prob() < threshold then
                                                 26.
                                                            if random_prob() > threshold and
9:
             aw = low and not moving forward
                                                            prompt correct then
10:
          else if prompt wrong then
                                                 27:
                                                               move on and aw high
11.
             aw = low and not moving forward
                                                  28:
                                                            else
12:
          else if likely then
                                                  29:
                                                               unlikely: aw high and not moving
13.
             moving forward
                                                               forward
14.
          else if random_prob() < threshold
                                                            end if
                                                 30:
                                                 31:
          then
                                                         else
15.
             aw = low and not moving forward
                                                  32:
                                                            unlikely: aw high and moving forward
16:
                                                 33:
          end if
                                                         end if
                                                 34: end if
17:
       else
```

if random_prob() < threshold then

18: