UNIVERSITY OF CALIFORNIA, RIVERSIDE

Department of Electrical Engineering

WINTER 2025

EE110B-SIGNALS AND SYSTEMS HOMEWORK 1 SOLUTIONS

Problem 1: Determine whether or not each of the following signals is periodic. If the signal is periodic, specify its fundamental period.

- a) $x[n] = \cos(0.9\pi n)$
- **b)** $x[n] = \cos(\pi^2 n)$
- **c)** $x[n] = e^{j\pi 0.16n}$
- $\mathbf{d)} \ x[n] = e^{j\pi\sqrt{2}n}$

Solution: We know that x[n] is periodic if and only if there exists an N such that

$$x[n+N] = x[n] .$$

But we also know that it suffices to check if $\frac{\omega}{\pi}$ is a rational number for any sine wave. That means only the signals in (a) and (c) are periodic. Still, to double check and gain experience, let us go through each case:

a)
$$x[n+N] = x[n]$$
 translates to

$$\cos(0.9\pi(n+N)) = \cos(0.9\pi n)$$

which is the same as

$$\cos(0.9\pi n + 0.9\pi N) = \cos(0.9\pi n) .$$

But this is satisfied if and only if $0.9\pi N = k2\pi$ for some integer k, or equivalently, if and only if

$$\frac{k}{N} = \frac{9}{20} \ .$$

Choosing k=9 and N=20 satisfies the last equality. Thus, N=20 is a period. In fact, it is the fundamental period, because there cannot be a smaller N accompanied by an integer k such that $\frac{k}{N}=\frac{9}{20}$.

b) We need to find an N such that

$$\cos(\pi^2(n+N)) = \cos(\pi^2 n)$$

which is the same as $\pi^2 N = k2\pi$ for some integer k. But that means

$$\frac{k}{N} = \frac{\pi}{2} \ .$$

Since there can be no such (k, N) pair, x[n] is not periodic.

c) For x[n] to be periodic, we need

$$e^{j\pi 0.16[n+N]} = e^{j\pi 0.16n}$$

which simplifies to

$$e^{j\pi 0.16N} = 1$$
.

In other words, there must exist k such that $\pi 0.16N = k2\pi$, or

$$\frac{k}{N} = \frac{8}{100} \ .$$

That means N=100 is a period. But it is not the fundamental period, because $\frac{8}{100}=\frac{2}{25}$ and N=25 is the smallest period.

d) For this x[n],

$$e^{j\pi\sqrt{2}[n+N]} = e^{j\pi\sqrt{2}n}$$

or equivalently

$$e^{j\pi\sqrt{2}N} = 1 \ .$$

That, in turn, is possible if and only if $\pi\sqrt{2}N=k2\pi$ which is the same as

$$\frac{k}{N} = \frac{\sqrt{2}}{2} \ .$$

Since that is impossible, x[n] is not periodic.

Problem 2: Consider the system given by

$$y[n] = x[n] - 0.005n x[n-2]$$
.

Determine whether this system is linear, time-invariant, causal, and stable.

Solution:

Linearity: If $y_1[n]$ and $y_2[n]$ are the outputs to inputs $x_1[n]$ and $x_2[n]$, respectively, i.e.,

$$y_1[n] = x_1[n] - 0.005n x_1[n-2]$$

 $y_2[n] = x_2[n] - 0.005n x_2[n-2]$,

then we need to check whether $ax_1[n] + bx_2[n]$ yields $ay_1[n] + by_2[n]$ for any a and b. Indeed, the output to $ax_1[n] + bx_2[n]$ is

$$y'[n] = ax_1[n] + bx_2[n] - 0.005n(ax_1[n-2] + bx_2[n-2])$$

= $ax_1[n] - 0.005n ax_1[n-2] + bx_2[n] - 0.005n bx_2[n-2]$
= $ay_1[n] + by_2[n]$.

So the system is linear.

<u>Time invariance</u>: For time invariance, if x[n] yields y[n], then $x[n-n_0]$ should yield $y[n-n_0]$. However, the output to $x[n-n_0]$ is given by

$$y'[n] = x[n - n_0] - 0.005n x[n - n_0 - 2]$$

$$= x[n - n_0] - 0.005(n - n_0 + n_0) x[n - n_0 - 2]$$

$$= x[n - n_0] - 0.005(n - n_0) x[n - n_0 - 2] - 0.005n_0x[n - n_0 - 2]$$

$$= y[n - n_0] - 0.005n_0x[n - n_0 - 2].$$

So, the system is time-varying.

<u>Causality:</u> Does y[n] depend only on $x[n], x[n-1], x[n-2], \ldots$ but not on $x[n+1], x[n+2], \ldots$? Yes, and more specifically, it only depends on x[n] and x[n-2]. So the system is causal.

Stability: The system is not stable, because a bounded input as simple as x[n] = 1 creates an output which is given by

$$y[n] = 1 - 0.005n$$

which goes to $-\infty$ when n goes to ∞ .

Problem 3: Let $x[n] = 2^{-n}u[n]$. Carefully sketch the following y[n]:

- **a)** y[n] = x[n]u[3-n]
- **b)** $y[n] = x[n]^2$
- c) $y[n] = x[n^2]$

Solution:

Problem 4: Determine whether the following transformations are invertible. If it is, express x[n] in terms of y[n].

- a) y[n]. a) y[n] = nx[n]b) $y[n] = \begin{cases} x[n-1] & n \ge 1 \\ 0 & n = 0 \\ x[n] & n \le -1 \end{cases}$ c) $y[n] = \begin{cases} x[n/2] & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$

d) y[n] = x[n]x[n-1].

Solution:

- a) Not invertible, because $x[n] = \delta[n]$ and $x[n] = 2\delta[n]$ yield the same output, which is y[n] = 0.
- **b)** Invertible because

$$x[n] = \begin{cases} y[n+1] & n \ge 0 \\ y[n] & n \le -1 \end{cases}$$

- c) Invertible, because x[n] = y[2n].
- d) Not invertible, because $x[n] = \delta[n]$ and $x[n] = 2\delta[n]$ yield the same output, which is y[n] = 0.