9 Konvergenzsätze für Martingale

Im Folgenden sei (Ω, \mathcal{A}, P) ein W'Raum, $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ eine Filtration und $\mathfrak{F}_{\infty} := \sigma(\cup_{n\in\mathbb{N}}\mathfrak{F}_n)$.

Definition 9.1 Sei X_1, \ldots, X_n eine Folge von ZV und $-\infty < a < b < \infty$. $U_n[a,b]$ sei die **Anzahl der aufsteigenden Überschreitungen** des Intervalls [a,b] durch X_1, \ldots, X_n also

$$U_n[a,b] = \max\{k \leq \lfloor \frac{n}{2} \rfloor \mid \exists \text{ Indizes } 1 \leq i_1 < \dots < i_{2k} \leq n \text{ mit } X_{i_{2j-1}} \leq a, b \leq X_{i_{2j}} \text{ für } j = 1,\dots,k\}$$

Bemerkung 9.1 Wegen

$$\{U_n[a,b] \geq k\} = \bigcup_{1 \leq i_1 < \dots < i_{2k} \leq n} \bigcap_{j=1}^k \{X_{i_{2j-1}} \leq a\} \cap \{X_{i_{2j}} \geq b\} \in \mathfrak{F}_n$$

ist $U_n[a,b]$ eine ZV.

Lemma 9.1 Sei $(X_n)_{n\in\mathbb{N}}$ ein Supermartingal. Dann gilt:

$$EU_n[a,b] \le \frac{1}{b-a}E(X_n-a)^-$$

Beweis

Sei $p := \lfloor \frac{n}{2} \rfloor + 1$, $\tau_0 \equiv 1$ und für $k = 1, \ldots, p$: $\tau_{2k-1} := \min\{j \geq \tau_{2k-2} \mid X_j \leq a\} \land n$ $\tau_{2k} := \min\{j \geq \tau_{2k-1} \mid X_j \geq b\} \land n$ Die (τ_k) sind Stoppzeiten mit $1 \leq \tau_1 \leq \tau_2 \leq \cdots \leq \tau_{2p} = n$ und falls $\tau_{2k-1} < n$, ist $\tau_{2k-1} < \tau_{2k}$. Sei $k_0 := U_n[a, b]$, d.h. $X_{\tau_{2k}} - X_{\tau_{2k-1}} \geq b - a$ für $k = 1, \ldots, k_0$ $X_{\tau_{2k_0+2}} - X_{\tau_{2k_0+1}} \neq 0 \implies X_{\tau_{2k_0+1}} \leq a$, $X_{\tau_{2k_0+2}} = X_n$ $\implies X_{\tau_{2k_0+2}} - X_{\tau_{2k_0+1}} \geq X_n - a \geq \min\{X_n - a, 0\} = -(X_n - a)^{-1}$ $\implies \sum_{k=1}^{p} (X_{\tau_{2k}} - X_{\tau_{2k-1}}) \geq (b - a) \cdot U_n[a, b] - (X_n - a)^{-1}$ Wir zeigen jetzt: $E(X_{\tau_{2k}} - X_{\tau_{2k-1}}) \leq 0$. Sei $c_j := \mathbf{1}_{\{\tau_{2k-1} < j \leq \tau_{2k}\}}$. $(c_j)_{j \geq 2}$ ist vorhersehbar. $\{c_j = 1\} = \{\tau_{2k-1} \leq j - 1\} \cap \{\tau_{2k} \leq j - 1\}^C \in \mathfrak{F}_{j-1}$ Sei $Y_n = X_1 + \sum_{j=2}^n c_j(X_j - X_{j-1}), n \in \mathbb{N}$; $Y_1 := X_1$. $\xrightarrow{\text{Satz 8.4}}$ (Y_n) ist ein Supermartingal.

$$\implies EY_n = E[X_1 + \sum_{j=1}^n c_j(X_j - X_{j-1})]$$

$$= EX_1 + \underbrace{E[X_{\tau_{2k}} - X_{\tau_{2k-1}}]}_{\leq 0}$$

$$\leq EY_1 = EX_1$$

 \implies Beh.

Satz 9.1 (Vorwärtskonvergenzsatz von Doob)

Sei $(X_n)_{n\in\mathbb{N}}$ ein $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ -Supermartingal mit der Eigenschaft $\sup_{n\in\mathbb{N}}\{E|X_n|\}<\infty$. Dann existiert eine $\mathfrak{F}_{\infty}^{-1}$ -messbare Zufallsvariable X_{∞} mit $E|X_{\infty}|<\infty$ und $\lim_{n\to\infty}X_n=X_{\infty}$ P-f.s.

Beweis

Sei
$$N := \{\omega \in \Omega \mid \liminf_{n \to \infty} \{X_n(\omega)\} < \limsup_{n \to \infty} \{X_n(\omega)\} \}$$
 und $U_{\infty}[a,b] := \lim_{n \to \infty} \{U_n[a,b]\}$ (existiert, da $U_n[a,b]$ wachsend) $\Rightarrow N = \bigcup_{a,b \in \mathbb{Q}, a < b} \{\omega \in \Omega \mid U_{\infty}[a,b](\omega) = \infty\}$ $\xrightarrow{\text{Lemma } 9.1} (b-a)EU_n[a,b] \leq E(X_n-a)^- \leq |a|+E|X_n| \quad \forall n \in \mathbb{N}$ Mit der Voraussetzung und monotoner Konvergenz: $EU_{\infty}[a,b] < \infty$. $\Rightarrow P(U_{\infty}[a,b] = \infty) = 0 \quad \Rightarrow P(N) = 0$, da N abzählbare Vereinigung von P -Nullmengen. Außerdem: $N \in \mathfrak{F}_{\infty}$. Sei $\tilde{X}_{\infty}(\omega) := \begin{cases} \lim_{n \to \infty} \{X_n(\omega)\} & \omega \in N^C \text{ (evtl. } \tilde{X}_{\infty}(\omega) = \infty) \\ 0 & \omega \in N \end{cases}$ $\Rightarrow E \left| \tilde{X}_{\infty} \right| \qquad = \qquad E \left[\liminf_{n \to \infty} \{|X_n|\} \right]$ Lem. von Fatou $\leq \sup_{n \to \infty} \{E|X_n|\}$ $\leq \sup_{n \to \infty} \{E|X_n|\}$

Sei
$$\tilde{N} := \{ \omega \in \Omega \mid \tilde{X}_{\infty} \in \{-\infty, \infty\} \} \implies P(\tilde{n}) = 0$$
 $folgtX_{\infty} := \tilde{X}_{\infty} \cdot \mathbf{1}_{\tilde{N}^{C}}$ erfüllt die Bedingung.

Bemerkung

- (i) $(X_n)_{n\in\mathbb{N}}$ mit der Eigenschaft $\sup_{n\in\mathbb{N}}\{E|X_n|\}<\infty$ heißt L^1 -beschränkt.
- (ii) Bei Supermartingalen folgt die L^1 -Beschränktheit aus $\sup_{n\in\mathbb{N}}\{EX_n^-\}<\infty$, also z.B. falls $X_n\geq 0$.

 $^{^{1}\}mathfrak{F}_{\infty}=\sigma(\cup_{n\in\mathbb{N}}\mathfrak{F}_{n})$

Beispiel 9.1 (Verzweigungsprozesse)

Es sei $\{Y_{nk} \mid n, k \in \mathbb{N}\}$ eine Familie von unabhängigen und identisch verteilten \mathbb{N}_0 wertigen Zufallsvariablen.

$$P_i := P(Y_{nk} = j) \quad \forall j \in \mathbb{N}_0$$

Sei (Z_n) definiert durch

$$Z_1 := 1, \ Z_{n+1} := \sum_{k=1}^{Z_n} Y_{nk} \quad \forall n \in \mathbb{N}_0 \text{ und } \mu := \sum_{k=1}^{\infty} k p_k < \infty$$
$$\mathfrak{F}_n = \sigma(\{Y_{mk} \mid k \in \mathbb{N}, \ m \le n-1\})$$

Es gilt:

$$E[Z_{n+1} | \mathfrak{F}_n] = E\left[\sum_{k=1}^{Z_n} Y_{nk} | \mathfrak{F}_n\right]$$

$$= E\left[\sum_{l=0}^{\infty} \left(\sum_{k=1}^{l} Y_{nk}\right) \cdot \mathbf{1}_{\{Z_n=l\}} | \mathfrak{F}_n\right]$$

$$= \sum_{l=0}^{\infty} E\left[\sum_{k=1}^{l} Y_{nk} | \mathfrak{F}_n\right] \cdot \mathbf{1}_{\{Z_n=l\}}$$

$$= \sum_{l=0}^{\infty} l \cdot \mu \cdot \mathbf{1}_{\{Z_n=l\}} = \mu \cdot Z_n$$

Sei $X_n:=\frac{Z_n}{\mu^n} \Longrightarrow (X_k)_{k\in\mathbb{N}}$ ist ein $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ -Martingal. Insbesondere gilt:

$$EZ_n = \mu^n \cdot EX_n = \mu^n EX_1 = \mu^{n-1} EZ_1 = \mu^{n-1}$$
 (*)

 $(X_n)_{n\in\mathbb{N}}$ ist L^1 -beschränkt, da $E|X_n|=EX_n=\frac{1}{\mu} \quad \forall n\in\mathbb{N}.$

 $\xrightarrow{\text{Satz 9.1}} \exists X_{\infty} \text{ mit } X_n \to X_{\infty} P - \text{f.s.} .$

 $\frac{\text{Falls } \mu < 1:}{\text{Falls } \mu = 1:} \stackrel{\binom{*}{*}}{\Longrightarrow} P(Z_n \ge \epsilon) \to 0 \ (n \to \infty) \implies X_\infty \equiv 0$ $\frac{\text{Falls } \mu = 1:}{X_n \text{ ganzzahlig}} \implies \text{Folge irgendwann konstant. Wenn } P_1 \ne 1$

Falls $\mu > 1$: X_{∞} ist nicht degeneriert. $P(X_{\infty} = 0)$ ist Lösung von g(z) = z, wobei g $\overline{\text{erzeugende}}$ Funktion von Y ist.

Stichwortverzeichnis

L^1 -beschränkt, 86	Erlang-Verteilung, 34		
L^p -Ungleichung, 72	Erwartungswert		
μ-Dichte, 19	bedingt, 61, 66		
μ-Diente, 15 μ-Integral, 7, 10, 11	Version des bedingten, 62		
μ-Integral, 7, 10, 11 μ-Nullmenge, 18	Erwartungswert (Zufallsvektor), 57		
μ-ivunnenge, 18 μ-fast überall, 18	Elwartungswert (Zuransvektor), 57		
μ -iast uberan, 18 μ -integrierbar	Faktorisierungssatz, 65		
p-integrier bar p -fach, 22	Faltung, 34		
- '	fast überall, 18		
μ-stetig, 19	Filtration, 71		
σ -Algebra	1 1101001011, 1 1		
der τ-Vergangenheit, 74	Gamma-Verteilung, 34		
Produkt-, 25	gemeinsame Verteilung, 31		
d-dimensionale Normalverteilung, 58	gestoppter Prozess, 75		
p -fach μ -integrierbar, 22	Gumbelverteilung, 55		
abzählendes Maß, 6	0,		
adaptiert, 71	Höldersche Ungleichung, 22		
algebraische Induktion, 18	I I II I I 01		
	Jensensche Ungleichung, 21		
bedingte Dichte, 67	Kern, 66		
bedingter Erwartungswert, 61, 62, 66	Konvergenz		
beschränkt	in Verteilung, 45		
L^1 -, 86	schwache, 45		
L^{p} -, 73	konvex, 21		
Bildmaß, 16	Konvex, 21 Koppelung, 66		
Borel-Cantelli Lemma, 37			
	Kovarianzmatrix, 57		
charakteristische Funktion, 41	Lebesgue-Maß, 6		
charakteristische Funktion (Zufallsvek-	Lebesgue-Stieltjes-Maß, 6		
tor), 57	Lemma		
Continuous Mapping Theorem, 46	Borel-Cantelli, 37		
Darstellungssatz von Skorohod, 45	von Fatou, 15		
Dirac-Maß, 5	Lindeberg-Bedingung, 49		
Dirac-Mass, o	2		
Eindeutigkeitssatz für Maße, 6	Maß		
Einpunktmaß, 5	Produkt-, 27		
Eintrittszeit, 74	Martingal, 71		
Elementar funktion, 7	Sub-, 71		

90 Stichwortverzeichnis

Super-, 71 Maß, 5	straff, 47 Submartingal, 71 Submartingal-Ungleichung, 72 Supermartingal, 71 Theorem Optional Stopping-, 77 Transformationssatz, 17 Übergangskern, 66 unabhängig stochastisch, 31 Ungleichung L^p -, 72 Höldersche, 22 Jensensche, 21 Minkowskische, 22 Submartingal-, 72
Produkt-\(\sigma\)-Algebra, 25 Produktma\(\beta\), 27 Projektion, 25 Prozess gestoppter, 75 quasi-integrierbar, 11 Randdichte, 34 Satz Faktorisierungs-, 65 Integration bezüglich des Bildma-\(\beta\)es, 17 Transformations-, 17, 33 Transformationssatz, 32 von der majorisierten Konvergenz, 15 von Doob, 72 von Helly, 47 von Lebesgue, 15 von Radon-Nikodym, 20 schwache Konvergenz, 45 Snell-Einhüllende, 80 Stetigkeitssatz für charakteristische Funktionen, 48 stochastisch unabhängig, 31 stochastischer Prozess, 71 Stoppzeit, 74	Verteilung Erlang-, 34 Gamma-, 34 gemeinsame, 31 Gumbel, 55 Verteilungskonvergenz, 57 Wahrscheinlichkeitsmaß straffes, 47 Zentraler Grenzwertsatz von Lindeberg- Lévy, 49 Zufallsgröße, 7 Zufallsvariable, 7 Zylindermengen, 25