Segurança para a Internet das Coisas: Uma Solução para Comunicação Criptografada entre Dispositivos

Erik Henrique de Oliveira Zambeli - RA: 1749927

¹Universidade Tecnológica Federal do Paraná (UTFPR) Campus Cornélio Procópio – PR – Brazil

Abstract. resumo..

Resumo. resumo...

1. Introdução

2. Referencial Teórico

Criptografia é uma palavra grega formada pela junção dos termos Kryptos e Grapho (grafia, escrita). Ela utiliza uma sequência de passos que servem para transformar um texto claro em texto codificado que aparenta ser um texto gerado aleatoriamente sem possuir sentido algum. A ação de transformar dados para uma forma ilegível é denominada cifra ou cifragem, e busca garantir a privacidade. O processo inverso da cifragem é chamado de decifragem. Quando utilizamos o processo de cifragem e decifragem, necessitamos de informações confidenciais, chamadas chaves [STALLINGS 2014]. Existem dois tipos de chaves:

Chave Simétrica: É também conhecida como criptografia de chave privada. O emissor usa uma chave para cifrar a mensagem, e o receptor utiliza a mesma chave para decifrá-la.

Chave Assimétrica: Conhecida como criptografia de chave pública. Este tipo de criptografia, usamos duas chaves distintas, de modo a obtermos comunicação segura através de canais de comunicação inseguros. Trata-se de uma técnica de criptografia assimétrica pelo fato de usar um par de chaves distintos.

2.1. Algoritmos criptográficos

Os algoritmos criptográficos podem ser implementados em hardware (para performance) ou software (para flexibilidade), mais a maior parte do tratamento esta relacionado aos algoritmos e protocolos, que são independentes da implementação real [TANENBAUM 2003]. Podemos dizer que um algoritmo de criptografia é um procedimento matemático que contém uma entrada (dados a serem cifrados), efetua um processamento matemático com base em uma chave, e gera uma saída.

2.1.1. Criptografia Simétrica

A criptografia simétrica é conhecida por criptografia de chave secreta. Este modelo usa uma única chave que é partilhada entre o emissor e o receptor figura, 1. Desta forma, a chave que é usada para cifrar é a mesma que é usada para decifrar. Quando uma pessoa quer se comunicar de forma segura com outra pessoa, as maquinas já devem conhecer

a chave secreta ou a chave utilizada para cifrar a mensagem deve ser enviada pela rede. Este processo é chamado de "distribuição de chaves". Algoritmos que usam criptografia simétrica tendem a ser mais rápidos, no entanto não são tão seguros, uma vez que a chave usada para cifrar a informação é partilhada entre as várias máquinas da rede. A maior dificuldade do método é a distribuição segura das chaves[BURNETT 2002].

Figure 1. Funcionamento Criptografia Simétrica

2.1.2. Algoritmos de Criptografia Simétrica

Os algoritmos DES, 3DES e AES são alguns dos que utilizam a criptografia simétrica. Podemos analisar outros algoritmos de chave privada ou criptografia simétrica de forma resumida na Tabela 1:

Table 1. Principais algoritmos de chave privada ou criptografia simétrica

Bits	Descrição
	O Advanced Encryption Standard (AES) é uma cifra de bloco,
	anunciado pelo National Institute of Standards and Technology (NIST)
	em 2003, fruto de concurso para escolha de um novo algoritmo
	de chave simétrica para proteger informações do governo federal,
	sendo adotado como padrão pelo governo dos Estados Unidos, é
128	um dos algoritmos mais populares, desde 2006, usado para
	criptografia de chave simétrica, sendo considerado como o
	padrão substituto do DES. O AES tem um tamanho de bloco fixo em
	128 bits e uma chave com tamanho de 128, 192 ou 256 bits, ele é
	rápido tanto em software quanto em hardware, é relativamente fácil
	de executar e requer pouca memória.
	O Data Encryption Standard (DES) foi o algoritmo simétrico mais
	disseminado no mundo, até a padronização do AES. Foi criado
	pela IBM em 1977 e, apesar de permitir cerca de 72 quadrilhões
56	de combinações, seu tamanho de chave (56 bits) é considerado pequeno,
	tendo sido quebrado por "força bruta" em 1997 em um desafio lançado na
	Internet. O NIST que lançou o desafio mencionado, recertificou o DES
	pela última vez em 1993, passando então a recomendar o 3DES.
1	28

3DES	112 ou 168	O 3DES é uma simples variação do DES, utilizando o em três ciframentos suscessivos, podendo empregar uma versão com duas ou com três chaves diferentes. É seguro, porém muito lento para ser um algoritmo padrão.
IDEA	128	O International Data Encryption Algorithm (IDEA) foi criado em 1991 por James Massey e Xuejia Lai e possui patente da suíça ASCOM Systec. O algoritmo é estruturado seguindo as mesmas linhas gerais do DES. Mas na maioria dos microprocessadores, uma implementação por software do IDEA é mais rápida do que uma implementação por software do DES. O IDEA é utilizado principalmente no mercado financeiro e no PGP, o programa para criptografia de e-mail pessoal mais disseminado no mundo.

Fonte:[STALLINGS 2014]

2.1.3. Criptografia Assimétrica

A criptografia assimétrica,conhecida por criptografia de chaves públicas, faz p uso de pares de chaves para criptografar ou descriptografar. As duas chaves são relacionadas através de um processo matemático, usando funções unidirecionais para a codificação da informação. A chave pública que, como o nome já diz, qualquer um pode conhecer e ter acesso, é usada para cifrar, enquanto a chave privada, é usada para decifrar. Uma mensagem cifrada com uma chave pública somente poderá ser decifrada com o uso da chave privada com a qual está relacionada. O método traz segurança, pois não é necessário compartilhar a chave privada. Em contrapartida, o tempo de processamento de mensagens com criptografia assimétrica é muito maior do que com criptografia simétrica [BURNETT 2002]. Na Figura 2 é demonstrado o processo.

Figure 2. Funcionamento Criptografia assimétrica

2.1.4. Algoritmos de Criptografia Assimétrica

A grande dificuldade deste sistema é a complexidade no desenvolvimento dos algoritmos que devem reconhecer a dupla de chaves existentes e relacionar as mesmas no momento certo, o que reverte num grande poder de processamento computacional para este trabalho [STALLINGS 2014]. A analise dos principais algoritmos de chave pública ou criptografia assimétrica de forma resumida na Tabela 2.

Table 2. Principais algoritmos de chaves públicas ou criptografia assimétrica

Algoritmo	Descrição O RSA é um algoritmo assimétrico que possui este nome devido a seus inventores: Ron Rivest, Adi Shamir e Len Adleman, que o criaram em 1977 no MIT. Atualmente, é o algoritmo de chave pública mais amplamente utilizado, além de ser uma das mais poderosas formas de criptografia de chave pública conhecidas até o momento. O RSA utiliza números primos. A premissa por trás do RSA consiste na facilidade de multiplicar dois números primos para obter um terceiro número, mas muito difícil de recuperar os dois primos a partir daquele terceiro número. Isto é conhecido como fatoração. Por exemplo, os fatores primos de 3.337 são 47 e 71. Gerar a chave pública envolve multiplicar dois primos grandes; qualquer um pode fazer isto. Derivar a chave privada a partir da chave pública envolve fatorar um grande número. Se o número for grande o suficiente e bem escolhido, então ninguém pode fazer isto em uma quantidade de tempo razoável. Assim, a segurança do RSA baseia se na dificuldade de fatoração de números grandes. Deste modo, a fatoração representa um limite superior do tempo necessário para quebrar o algoritmo. Uma chave RSA de 512 bits foi quebrada em 1999 pelo Instituto
	Nacional de Pesquisa da Holanda, com o apoio de cientistas de mais 6 países. Levou cerca de 7 meses e foram utilizadas 300 estações de trabalho para a quebra. No Brasil, o RSA é utilizado pela ICP-Brasil, no seu sistema de emissão de certificados digitais, e a partir do dia 1º de janeiro de 2012, as chaves utilizadas pelas autoridades certificadoras do país, passam a serem emitidas com o comprimento de 4.096bits, em vez dos 2.048bits
ElGamal	atuais. O El Gamal é outro algoritmo de chave pública utilizado para gerenciamento de chaves. Sua matemática difere da utilizada no RSA, mas também é um sistema comutativo. O algoritmo envolve a manipulação matemática de grandes quantidades numéricas. Sua segurança advém de algo denominado problema do logaritmo discreto. Assim, o ElGamal obtém sua segurança da dificuldade de calcular logaritmos discretos em um corpo finito, o que lembra bastante o problema da fatoração.
Diffie - Hellman	Também baseado no problema do logaritmo discreto, e o criptosistema de chave pública mais antigo ainda em uso. O conceito de chave pública, aliás foi introduzido pelos autores deste criptosistema em 1976. Contudo, ele não permite nem ciframento nem assinatura digital. O sistema foi projetado para permitir a dois indivíduos entrarem em um acordo ao compartilharem um segredo tal como uma chave, muito embora eles somente troquem mensagens em público.

Fonte: [STALLINGS 2014]

3. Aplicação

the author names references in brackets, e.g. [?], and [Smith and Jones 1999].

Referências

- BURNETT, S.; PAINE, S. (2002). *Redes de ComputadoreCriptografia e Segurança–O guia oficial RSA*. Rio de Janeiro: Campus, 1ª edição edition.
- Smith, A. and Jones, B. (1999). On the complexity of computing. In Smith-Jones, A. B., editor, *Advances in Computer Science*, pages 555–566. Publishing Press.
- STALLINGS, W. (2014). *Criptografia e Segurança de Redes*. São Paulo: Pearson Education, 2014., 6ª edição edition.
- TANENBAUM, A. S. (2003). Redes de Computadores. Campus, 4ª edição edition.