

Présentation finale Projet Ruche

Station météorologique

Sommaire

I. Présentation du projet

II. Avancement du projet

III. Hardware

- A. Fonctionnement des capteurs
- B. Dimensionnement et câblage
- C. Tests du fonctionnement des codes
- D. Résolution des problèmes
- E. PCB

IV. Développement logiciel

- A. Capteur de pression / altitude / humidité / température
- B. Capteur de luminosité
- C. Pluviomètre
- D. Anémomètre
- E. Girouette
- F. Module LoRa
- G. Gestion du mode sommeil
- H. Code complet

I) Présentation

Objectifs du module Météo :

Relever la température, l'humidité, l'altitude, la pluviométrie, la direction et la vitesse du vent ;

Réceptionner les données transmises par les autres modules ;

Transmettre la totalité des données à la base de données. Passerelle LORA Déia fait Station Météo LORA RUCHE BALANCE LORA

Déjà fait

Tâches M	lois	9	10	11	12	1	2	3	4	5		
												Actuel
Câblage des différents éléments / FTDI												Prévisionnel
Capteur de												
pression/altitude/humidité/température												
Capteur de luminosité												
	-											
Pluviomètre												
	-											
Girouette												
	-											
Anémomètre												
Mad In LaBa	-											
Module LoRa												
Coation du made commeil	-											
Gestion du mode sommeil									_			
DOD	-											
PCB												4

A) Fonctionnement des capteurs

<u>Mesures:</u>

- Altitude Humidité (%)
- Température (-40 à 85°C)

Alimentation:

- min 1.7v
- max 3.6v

<u>I²C interface :</u>

- SCK: serial clock (SCL)
- SDI: data (SDA)
- SDO: Slave address LSB

ADC: 16 bit

A) Fonctionnement des capteurs

Capteur TSL

ADC: 16 bit

Mesure:

- Luminosité (0,1 à 40 000 lux)

Alimentation:

- min 2.7v
- max 3.6v

I²C interface:

- SCL: serial clock
- SDA: data

A) Fonctionnement des capteurs

Girouette

Anémomètre

Pluviomètre

Mesures:

- Orientation du vent
- Vitesse du vent
- Précipitation

A) Fonctionnement des capteurs

<u>Girouette</u>

$$VRgirouette = \frac{Rgirouette}{Rgirouette + Rref} * Vcc$$

A) Fonctionnement des capteurs - Girouette

Calculs des seuils de tension :

Direction	Résistance	Voltage (V=3,3	Voltage (V=5
(Degrees)	(Ohms)	R=3,3k)	R=10k)
0	33000	3,00	3,84
22,5	6570	2,20	1,98
45	8200	2,35	2,25
67,5	891	0,70	0,41
90	1000	0,77	0,45
112,5	688	0,57	0,32
135	2200	1,32	0,90
157,5	1410	0,99	0,62
180	3900	1,79	1,40
202,5	3140	1,61	1,19
225	16000	2,74	3,08
247,5	14120	2,67	2,93
270	120000	3,21	4,62
292,5	42120	3,06	4,04
315	64900	3,14	4,33
337,5	21880	2,87	3,43

A) Fonctionnement des capteurs - Girouette

Delta pour R = 2,2k	Delta pour R = 3,3k	Delta pour R = 7k	Delta pour R = 10k
0,05	0,07	0,14	0,19
0,06	0,08	0,15	0,19
0,04	0,06	0,11	0,13
0,10	0,13	0,22	0,27
0,10	0,13	0,20	0,23
0,05	0,06	0,09	0,10
0,25	0,32	0,43	0,45
0,13	0,16	0,18	0,18
0,36	0,41	0,42	0,38
0,17	0,18	0,16	0,14
0,29	0,29	0,23	0,19
0,36	0,33	0,24	0,19
0,26	0,22	0,14	0,11
0,08	0,07	0,04	0,03
0,17	0,13	0,08	0,06

Critère:

Nous cherchons la valeur de la résistance qui permet d'avoir les plus grands Delta.

- → Gain de précision
- → Suppression du bruit

B) Dimensionnement et câblage

C) Tests du fonctionnement des codes

Pácupáration dos

Capteur BME	valeurs, comparaison avec météo france
Capteur TSL ———————————————————————————————————	Récupération des valeurs en Candela

Conclusion

Aucun problème rencontré lors des tests de fonctionnement

C) Tests du fonctionnement des codes

Girouette	Récupération de la tension en V sur une entrée analogique
Pluviomètre ————————————————————————————————————	Récupération de la quantité d'eau en m³/L sur une entrée digital
Anémomètre	Récupération de la vitesse du vent en km/h sur une entrée digital
Conclusion	

Conclusion

Nous avons rencontré des problèmes avec les interruptions

D) Résolution des problèmes

Rajout d'une capacité de 220pF pour éviter les rebonds

Vérification à l'oscilloscope que les interruptions sont propres

OK ça a fonctionné la capacité a bien été dimensionné mais il n'est pas suffisant pour gérer entièrement notre problème d'interruption

Test du code avec un GBF

OK ça a fonctionné

Nous pensons que l'oscilloscope n'est pas assez performant pour voir les rebonds **Conclusion**

L'anti-rebond à finalement été géré par le code en ajoutant une condition minimum de temps entre deux interruptions

E) PCB

- 1. Récupération du PCB existant
- 2. Suppression des composants inutiles
- 3. Ajout des librairies pour les composants existants
- 4. Séparation des différents éléments présents sur la carte en groupe (acquisition, traitement, communication, action)

E) PCB

Schématique:

- Tests unitaire de chaque composant sur breadboard avant implémentation
- Schématique sur CAO EAGLE
- Choix des PINs du micro en fonction des capteurs et des besoins associés :
 - Numéro de broche
 - Nom du composant
 - Besoin

E) PCB

<u>Placement des composants :</u>

- Utilisation d'un design existant
 - Antenne intégrée
 - Gain de temps sur la modélisation de l'antenne de communication LoRa
- Problème :
 - Carte existante trop petite
 - ➤ Ajout d'un module LoRa supplémentaire → prend de la place sur la carte
- Agrandissement de la carte : + 3 cm en longueur et en largeur

E) PCB

- Placement précis des composants :
 - > Respect des connexions entre les composants présents sur le schématique
 - Placement des composants passifs du plus proche de leur module
 - > Réduction de la distance entre les modules de communications
 - → Éviter des perturbations sur les signaux

E) PCB

E) *PCB*

Routage de la carte

- * Règles à respecter :
 - Taille des pistes d'alimentation en 1.2 mm
 - Taille des pistes de communication en 1 mm
 - Espace entre les pistes de 1.2 mm
 - Interdiction de passer sous un composant CMS avec une piste
 - > Faire de vias avec assez de cuivre
 - Ajuster la taille du perçage avec la taille du via
 - Étendre le plan de masse au maximum

E) PCB

<u>Fabrication de la carte et pose des composants :</u>

- ❖ Fabrication interne Polytech → gain de temps
- Une fois la carte fabriquée :
 - > Test de continuité
 - \triangleright Suppression du plan de masse sous les composants CMS \rightarrow éviter les courts-circuits
 - Désoxydation de la carte
 - ➤ Soudage de tous les composants → non terminé par manque de temps

A) Capteur de pression / altitude / humidité / température

Code capteur BME

B) Capteur luminosité

Code capteur TSL

C) Pluviomètre

Calcule de la quantité d'eau en m³/L :

Quantité = 0.2794 * nbBasculements

F) Anémomètre

Calcule de la vitesse en km/h:

interruptSec = nbInterrupt / Periode Vitesse = interruptSec*2.4

1 interruption / $s \rightarrow vitesse de$ 2,4 km/h

E) Girouette

Simulation d'une résistance variable :

=> récupération de la tension aux bornes d'un potentiomètre

- avec un oscilloscope
- avec la fonction analogRead()

On observe un comportement non linéaire des broches ESP32 ADC.

E) Girouette

Alternative : avec L'ADC configuré => configuration de la précision et l'atténuation souhaitée

Piste envisagée : modifier les seuils de tensions => redéfinir Rref de sorte à travailler qu'avec la plage de valeurs linéaire.

E) Girouette

F) Module LoRa

Fonctionnement <u>de la Gateway</u>

F) Module LoRa

Envoie d'un message

F) Module LoRa

Réception d'un message

G) Gestion du mode sommeil

H) Code complet

Conclusion

- ☐ Réalisation du PCB
- ☐ Fabrication de la carte
- Code de la girouette non abouti
- ☐ Réalisation du code avec intégration des autres capteurs, du module LoRa

Merci de votre attention. Avez-vous des questions?