Exponentially Improved Dimension Reduction in \mathcal{L}_1

Yi Li, David Woodruff, Taisuke Yasuda

Avoiding the Curse of Dimensionality

- Dimension Reduction: techniques which reduce the dimensionality of datasets while (approximately) preserving properties of interest
 - Input: data in n-dimensions, where n is very large
 - Goal: want data to be in a much smaller r dimensions, for $r \ll n$
 - Want $f: \mathbb{R}^n \to \mathbb{R}^r$ such that f(x) approximates x
- Motivation: Curse of Dimensionality
 - High dimensional spaces are often exponentially harder to work with

Sketching

- Sketching: linear oblivious dimension reduction
 - Linear: $f: \mathbb{R}^n \to \mathbb{R}^r$ is f(x) = Sx for a $r \times n$ matrix S
 - Oblivious: S is independent of the dataset

Sketching

$$(1 - \varepsilon) \|x\| \le \|Sx\| \le (1 + \varepsilon) \|x\|$$

Sketching

$$||Sx|| = (1 \pm \varepsilon)||x||$$

with probability at least 99%

Sketching

- Why restrict ourselves to linear oblivious dimension reduction?
- Useful for:
 - Estimating pairwise distances

$$||x - y|| \approx ||S(x - y)|| = ||Sx - Sy||$$

- Streaming environments: dynamic updates to x
 - Sketches are easy to update: $S(x + \Delta) = Sx + S\Delta$
- Distributed environments: x and y belong to different servers
 - Sketches are easy to aggregate: S(x + y) = Sx + Sy

Prior Work

- Johnson-Lindenstrauss (1984): dimension reduction for ℓ_2
 - Let S be an $r \times n$ matrix of i.i.d. Gaussian variables
 - Let $x \in \mathbb{R}^n$ $r = \Theta(\varepsilon^{-2}) \qquad ||Sx||_2 = (1 \pm \varepsilon)||x||_2$
 - Let $X \subseteq \mathbb{R}^n$ be a set of m vectors

$$r = \Theta(\varepsilon^{-2}\log m) \qquad ||Sx||_2 = (1 \pm \varepsilon)||x||_2 \text{ for all } x \in X$$

• Let A be a $n \times d$ matrix $r = \Theta(\varepsilon^{-2}d)$ $||Sx||_2 = (1 \pm \varepsilon)||x||_2$ for all $x \in \operatorname{span}(A)$

"Subspace Embedding"

Prior Work

	ℓ_2 Johnson-Lindenstrauss (1984)
One Vector	$arepsilon^{-2}$
m Vectors	$\varepsilon^{-2}\log m$
d-dimensional Subspace	$\varepsilon^{-2}d$

Applications

- Streaming algorithms
- Linear regression
- Low rank approximation
- Clustering
- Nearest neighbors

What about for \mathcal{C}_1 ?

$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

- a.k.a. Manhattan distance
- More robust than ℓ_2 : more insensitive to outliers
 - E.g. least squares linear regression → least absolute deviations linear regression
 - (Kind of like mean → median)
- "The Manhattan distance is consistently more preferable than the Euclidean distance metric for high-dimensional data mining applications" [AHK01]

What about for ℓ_1 ?

- Johnson-Lindenstrauss (1984):
 - S is a matrix of i.i.d. Gaussian variables $\rightarrow \mathscr{E}_2$ dimension reduction
- Indyk (2006):
 - S is a matrix of i.i.d. Cauchy variables $\rightarrow \mathscr{E}_1$ dimension reduction
 - ... but with very low success probability
- Wang-Woodruff (2019):
 - S is a matrix of i.i.d. Cauchy variables $\rightarrow \mathscr{E}_1$ dimension reduction
 - ... but with doubly exponential bounds for *r*

Prior Work

	ℓ_2 Johnson-Lindenstrauss (1984)	ℓ ₁ Upper Bounds Wang-Woodruff (2019)	 ℓ₁ Lower Bounds Wang-Woodruff (2019)
One Vector	ε^{-2}	$2^{2^{\varepsilon^{-2}}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{2^{\varepsilon^{-2}\log m}}$	$2\sqrt{m}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{2^{\varepsilon^{-2}d}}$	$2\sqrt{d}$

Our Results

	ℓ_2 Johnson-Lindenstrauss (1984)	ℓ ₁ Upper Bounds Li-Woodruff-Y (2021)	 €₁ Lower Bounds Wang-Woodruff (2019)
One Vector	ε^{-2}	$2^{\varepsilon^{-2}}$ $2^{\varepsilon^{-1}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{2e^{-2}\log m} 2^{\varepsilon^{-1}m}$	$2\sqrt{m}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{\varepsilon^{-2d}}$ $2^{\varepsilon^{-1}d}$	$2\sqrt{d}$

Our Results

• Lowered dependence on d, ε^{-1} from doubly exponential to singly exponential

- Dependence on d is tight up to polynomial factors in the exponent
- \mathscr{C}_1 behaves very differently from \mathscr{C}_2
 - ℓ_1 doesn't care whether we embed d vectors or their entire span
 - For ℓ_2 , there is an exponential difference

	ℓ_2	\mathscr{C}_1 UB	\mathcal{C}_1 LB
One Vector	ε^{-2}	$2^{\varepsilon^{-1}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{\varepsilon^{-1}m}$	$2^{\sqrt{m}}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{\varepsilon^{-1}d}$	$2^{\sqrt{d}}$

Li-Woodruff-Y (2021)

The Plan

- High level ideas used for our results
 - Embedding one vector
 - Embedding a subspace
- Proof of embedding one vector in detail

	ℓ_2	\mathscr{C}_1 UB	ℓ_1 LB
One Vector	$arepsilon^{-2}$	$2^{arepsilon^{-1}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{\varepsilon^{-1}m}$	$2^{\sqrt{m}}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{\varepsilon^{-1}d}$	$2^{\sqrt{d}}$

Li-Woodruff-Y (2021)

Ideas for Embedding One Vector

- Our starting point: M-sketch (Clarkson-Woodruff, 2015)
 - Classic techniques from the streaming literature: sampling and hashing
 - Achieves O(1) distortion
- A new spin on this technique: randomized sampling rates
 - Achieves $(1+\varepsilon)$ distortion with singly exponential dependence on ε^{-1}

Ideas for Embedding a Subspace

- Classic techniques for ℓ_2 rely on a net argument
 - Net: discretization of the unit sphere with $(1/\varepsilon)^d$ vectors
 - Apply the one vector embedding to every vector in the net
 - Still doubly exponential!
- Our idea: use € leverage scores (Clarkson Drineas Magdon-Ismail Mahoney Meng Woodruff, 2013)

$$\lambda(A) \text{ approximates the coordinates}$$
 of
$$\frac{Av}{\|Av\|_1} \text{ for every } v \in \mathbb{R}^d \text{ up to a}$$

$$\lambda(A) = \lambda(A) + \lambda$$

• Apply one vector embedding to \mathcal{C}_1 leverage score vector with $(1 + \varepsilon/d)$ distortion

The Plan

- High level ideas used for our results
 - Embedding one vector
 - Embedding a subspace
- Proof of embedding one vector in detail
 - M-sketch (Clarkson Woodruff, 2015): O(1) distortion
 - Randomized sampling rates: $(1 + \varepsilon)$ distortion

	ℓ_2	\mathscr{C}_1 UB	\mathscr{C}_1 LB
One Vector	ε^{-2}	$2^{\varepsilon^{-1}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{\varepsilon^{-1}m}$	$2^{\sqrt{m}}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{\varepsilon^{-1}d}$	$2^{\sqrt{d}}$

Li-Woodruff-Y (2021)

M-sketch: O(1) distortion

Simplifying the Inputs

• Without loss of generality, the entries of $x \in \mathbb{R}^n$ have random signs

Simplifying the Inputs

• Without loss of generality, the entries of $x \in \mathbb{R}^n$ have random signs

Simplifying the Inputs

- Assume $x \in \mathbb{R}^n$ is an m-sparse vector of random signs
- Basically also without loss of generality

Case m = 1: The Ultimate Easy Case

Just add the entries of x!

Case $m = \log n$

- Want to reduce to the m = 1 case
- Idea: hashing

Case $m = \log n$: Hashing

log n buckets

Case $m = \log n$: Hashing

Case $m = \log n$: Hashing

Case $m = \log n$: Hashing

Case $m = \log^2 n$

- With only $O(\log n)$ hash buckets, the buckets will be crowded...
- We could have more buckets, but we can't just keep doing that...
- Idea: sampling

Case $m = \log^2 n$: Sampling

- Sample each coordinate with probability $p = (\log n)^{-1}$, then scale by p^{-1}
- Expected ℓ_1 norm is the same
- Only $p \cdot \log^2 n = \log n$ entries!

Case $m = \log^2 n$: Sampling

But what about the $m = \log n$ case?

Case $m = \log^2 n$: Sampling

In general...

General Case

- If $m=(\log n)^i$, then sample with probability $p_i=(\log n)^{-i+1}$ and hash into $O(\log n)$ buckets
- Stack all of these levels on top of each other

General Case

Hash into $\log n$ buckets

•

 $O(\log n)$ blocks

Sample w.p. $p_i = (\log n)^{-i}$, rescale by $1/p_i$, and hash into $\log n$ buckets

•

Sample w.p. p = 1/n, rescale by n, and hash into $\log n$ buckets

Easy Analysis: $O(\log n)$ Distortion

At most $||x||_1$ in expectation $O(\log n)$ At most $||x||_1$ in expectation blocks At most $||x||_1$ in expectation

At most $O(\log n) ||x||_1$ in expectation all together

But do all $O(\log n)$ blocks contribute $||x||_1$?

Optimized Analysis: Crowded Hash Buckets

When the sampling rate is very high...

random signs cancel each other out!

Optimized Analysis: Low Sampling Rates

When the sampling rate is very low, no nonzero elements of *x* are sampled!

Optimized Analysis: O(1) Distortion

Only one block whose sampling rate is "just right" will contribute an expected mass of $||x||_1$

 $\Longrightarrow O(1)$ distortion

Randomized Sampling Rates: $(1 + \varepsilon)$ distortion

The Problem with M-sketch

• What do we need to do to get $(1 + \varepsilon)$ distortion rather than O(1)?

Optimized Analysis: O(1) Distortion

Only one block whose sampling rate is "just right" will contribute an expected mass of $||x||_1$

 $\Longrightarrow O(1)$ distortion

The Problem with M-sketch

- What do we need to do to get $(1 + \varepsilon)$ distortion rather than O(1)?
 - Need to replace expected $\|x\|_1$ contribution with $(1\pm\varepsilon)\|x\|_1$ with high probability
 - If the expected number of entries sampled is $pm \ge \varepsilon^{-2}$, then this is true by Chernoff bounds
 - For any fixed sampling rate p, a $\frac{1}{p}$ -sparse vector is hard!
 - How to avoid this worst case? Randomize p!

Simplified Setting

• x is an m-sparse vector with 1s on its support

. We sample coordinates of x with probability $p_i = \frac{1}{B^i}$, and rescale by $\frac{1}{p_i}$

$$\frac{1}{p_i}$$
 .

- With probability at least 99%, want to either:
 - Sample no entries, OR
 - Sample at least ε^{-2} entries

Simplified Analysis

• Casework on $p_i m$:

No entries sampled w.p. 99% by a union bound

Sampled mass concentrates around the expectation up to $(1 \pm \varepsilon)$ factor w.p. 99% by Chernoff bounds

Simplified Analysis

• Casework on $p_i m$:

No entries sampled w.p. 99% by a union bound

Sampled mass concentrates around the expectation up to $(1 \pm \varepsilon)$ factor w.p. 99% by Chernoff bounds

Simplified Analysis

• Casework on $p_i m$:

Finishing Up

- Let $B = \exp(\tilde{O}(\varepsilon^{-1}))$
- Let $U \sim [0,1]$ and $\tilde{B} = B^U$
- . We now sample at rates $p_i = \frac{\tilde{B}}{R^i}$
- To accommodate for this, we need to change the number of hash buckets to exponential in ε^{-1} as well
- This works!

Conclusion

- Exponentially improved d, ε^{-1} bounds for dimension reduction in ℓ_1
- Dependence on d is tight up to polynomial factors in the exponent
- New techniques:
 - Randomized sampling rates: classic streaming techniques with a twist

	ℓ_2	\mathscr{C}_1 UB	\mathscr{C}_1 LB
One Vector	ε^{-2}	$2^{arepsilon^{-1}}$	
m Vectors	$\varepsilon^{-2}\log m$	$2^{\varepsilon^{-1}m}$	$2\sqrt{m}$
d-dimensional Subspace	$\varepsilon^{-2}d$	$2^{\varepsilon^{-1}d}$	$2^{\sqrt{d}}$

Li-Woodruff-Y (2021)