Diffusion Equation

Vegard Falmår and Sigurd Sørlie Rustad

University of Oslo Norway December 4, 2020

CONTENTS

1. Introduction	1
II. Theory The diffusion equation Discretization Explicit and implicit schemes Explicit forward Euler Implicit Backward Euler Implicit Crank-Nicolson	1 1 1 1 1 1
III. Methods	1
IV. Results	1
V. Discussion	1
VI. Conclusion	1
VII. Appendix	2
References	2

I. INTRODUCTION

For our studies we have used c++ for heavy computation, python for visualization and automation. All the code along with instructions on how to run it, can be cloned from our GitHub repository¹.

II. THEORY

The diffusion equation

The full diffusion equation reads

$$\frac{\partial u(\mathbf{r},t)}{\partial t} = \nabla \cdot [D(u,\mathbf{r})\nabla u(\mathbf{r},t)],$$

with **r** is a positional vector. If $D(u, \mathbf{r}) = 1$ the equation simplifies to

$$\frac{\partial u}{\partial t} = \nabla^2 u(\mathbf{r}, t),$$

or

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) u(x, y, z, t) = \frac{\partial u(x, y, z, t)}{\partial t} \quad (1)$$

in cartesian coordinates. In this report we are mainly going to work with the diffusion equation in one and two dimensions, i.e.

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial u(x,t)}{\partial t} \ \wedge \ \frac{\partial^2 u(x,t)}{\partial x^2} + \frac{\partial^2 u(x,t)}{\partial y^2} = \frac{\partial u(x,t)}{\partial t}.$$

Discretization

Equation (1) in one dimension reads

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial u(x,t)}{\partial t} \text{ or } u_{xx} = u_t.$$
 (2)

With $x \in [0, L]$ and boundary conditions

$$u(0,t) = a(t), t \ge 0 \land u(L,t) = b(t), t \ge 0,$$
 (3)

we can approximate the solution by discretization. First introducing Δx and Δt as small steps in x-direction and time. Then we can define the value domain of t and x,

$$t_i = j\Delta t, \quad j \in \mathbb{N}_0 \quad \land \quad x_i = i\Delta x, \quad \{i \in \mathbb{N}_0 | i \le n+1\}.$$

Where n is the number of points we evaluate u(x,t) at, minus one.

Explicit and implicit schemes

Something on this here maybe?

Explicit forward Euler

The algorithm for explicit forward Euler in one dimension (from [1] chapter 10.2.1) reads

$$u(x_i, t_j + \Delta t) = \alpha u(x_i - \Delta x, t_j) + (1 - 2\alpha)u(x_i, t_j) + \alpha u(x_i + \Delta x, t_j)$$

where

$$\alpha = \frac{\Delta t}{\Delta x^2},$$

and the discretization is explained in the appropriate section

Implicit Backward Euler

$$u_{xx} = \frac{u(x_i + \Delta x, t_j)2u(x_i, t_j + u(x_i - \Delta x, t_j))}{\Delta x^2}$$
 (4)

Implicit Crank-Nicolson

$$\begin{split} u_{xx} \approx & \frac{1}{2} \left(\frac{u(x_i + \Delta x, t_j) - 2u(x_i, t_j) + u(x_i - \Delta x, t_j)}{\Delta x^2} + \right. \\ & \left. \frac{u(x_i + \Delta x, t_j + \Delta t) - 2u(x_i, t_j + \Delta t)}{\Delta x^2} + \right. \\ & \left. \frac{u(x_i - \Delta x, t_j + \Delta t)}{\Delta x^2} \right) \end{split}$$

III. METHODS

Method

IV. RESULTS

Results

V. DISCUSSION

Discussion

¹ github.com/sigurdru/FYS3150/tree/master/Project5

VI. CONCLUSION

VII. APPENDIX

onciusion	Appendix	(

 $^{[1] \}begin{tabular}{ll} Morten & Hjorth-Jensen, & Computational & Physics, & Lecture & Notes & Fall & 2015, & August & 2015, \\ & https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf. & 2015, & 2015, \\ & https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf. & 2015, \\ & https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf. & 2015, \\ & https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf. & 2015, \\ & https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures2015.pdf. & 2015, \\ & https://github.com/CompPhysics/blob/master/doc/Lectures2015.pdf. & 2015, \\ & https://github.com/Comp$