- 1. **Analysis 1:** The dynamicist rotates about  $\hat{a}_v$  and keeps the pole horizontal so  $\hat{a}_r = \hat{b}_x$ . The wheel rotates with angular velocity  $\omega_{_{\mathcal{C}}} \hat{b}_{_{x}}$  in B, where  $\omega_{_{\mathcal{C}}}$  is positive (clockwise from the dynamicist's perspective).
- a. Guess: Which way should you turn to make the wheel feel lighter? **RIGHT**
- Demo: Try it. Which way felt lighter? RIGHT or (LEFT)
- <sup>†</sup>Using conservation of angular momentum, prove analytically (by hand) that  $\dot{\omega}_{c}=0$  ( $\dot{\omega}_{c}$  is constant).
- d. **Solve:** Calculate  $T_B$  for  $\omega_A = 0$  (dynamicist is stationary),  $\omega_A = \pi \frac{rad}{s}$  (dynamicist turning left) and  $\omega_A = -\pi \frac{rad}{s}$  (turning right). Solve for the following ratios.

Result: (In terms of 
$$I_C$$
,  $\omega_A$ ,  $\omega_C$ ,  $m^C$ ,  $g$ , and  $L$ ) and also provide a numerical value.

$$\frac{T_{B,left}}{T_{B,stationary}} = \frac{m^c g L - \omega_A \omega_C T_C}{m^c g L} = -0.51$$

$$\frac{T_{B,right}}{T_{B,stationary}} = \frac{m^c g L - \omega_A \omega_C T_C}{m^c g L} = 2.51$$

$$\frac{1}{\sqrt{\frac{1}{2}}} = 0 = \frac{1}{\sqrt{\frac{1}{2}}} \cdot \frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}$$

$$\frac{1}{\sqrt{\frac{1}{2}}} \cdot \frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}$$

$$b_{x} \circ \left( \frac{d + dt}{dt} = \frac{1}{1} \circ (x + \omega \times (1 - \omega)) \right)$$

$$\frac{2}{2} (a_{x} \cdot b_{x}) = I_{c}(a_{x} \cdot b_{x}) + J_{c}(a_{x} \cdot b_$$

 $\begin{array}{lll}
N \to C \\
W \times \left(\overrightarrow{T}^{C_{cm}}, N \to C\right) &= N \to C \\
&= N \to C \\
&= W \times \left(T_{C} - J_{C}\right) \left(N \to C \cdot \hat{b}_{X}\right) \hat{b}_{X} \longrightarrow \text{offer cross product}, \\
&= N \to C \\
&=$ 

 $\int_{X^{0}} \left( \frac{N}{\Delta t} \frac{N^{-1}}{\Delta t} \right)^{1/2} dt = \frac{1}{2} \left( \frac{N^{-1}}{\Delta t} + \frac{N^{-1}}{\Delta t} \right)^{1/2} dt$ 

$$O = \int_{X} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{$$

That of products,

so we only cone
about by component

of Noc

$$N \stackrel{\rightarrow}{\rightarrow} \stackrel{\wedge}{\rightarrow} = \omega_{A} \hat{a}_{y}$$

$$N \stackrel{\rightarrow}{\rightarrow} \stackrel{\wedge}{\rightarrow} = \omega_{A} \hat{a}_{y} + \hat{b}_{B} \hat{a}_{z} + \omega_{c} \hat{b}_{x}$$

$$A \stackrel{\rightarrow}{\rightarrow} \stackrel{\circ}{\rightarrow} = \hat{b}_{y} \hat{a}_{z}$$

$$B \stackrel{\rightarrow}{\rightarrow} \stackrel{\circ}{\rightarrow} = \omega_{c} \hat{b}_{x}$$

$$A \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} = \omega_{c} \hat{b}_{x}$$

$$A \stackrel{\rightarrow}$$

$$0 = \hat{b}_{\chi} \cdot \vec{\Xi}^{C} (c_{m} \cdot \tilde{N} \vec{\alpha}^{C}) = I_{c}^{N} \vec{\alpha}^{C} \cdot \hat{b}_{\chi}$$

$$\omega_{c} = \omega_{A} \sin g_{B} - \omega_{A} g_{B} \cos g_{B}$$

## However: (Given)

· 
$$\omega_A = \text{constant} = > \omega_A = 0$$



1. Done in MG Byro...1. +x+

2. Analysis 2: The dynamicist does not rotate about  $\hat{a}_{y}$ , but rotates the pole at a constant specified rate  $\dot{\mathbf{q}}_{\mathrm{B}} = \frac{\pi \, rad}{4 \, s}$  about  $\overset{\circ}{a}_{z}$ .



a. Guess: As you rotate the pole to lift the wheel, what direction does the wheel want to move?

b. Demo: Try it. Which direction does the wheel want to move?

c. Solve: Simulate 2 seconds of motion. Plot  $T_{\text{Bz}}$  and  $T_{\text{By}}$  vs time. Is T<sub>Bz</sub> constant? Yes/No. Is T<sub>By</sub> constant? (es/No.



See MGr code: Myro... 2.+x+