Proyecto Final: Detección de Estrés

NATURAL LANGUAGE PROCESSING
7CM2

Ortega Prado Mauricio Palmerin Garcia Diego Pérez Gómez Andres

Contenido

Introducción y Objetivos	03	Modelos LLM	07
Corpus y Datos	04	Comparación de Resultados	08
Datos y Preprocesamiento	05	Conclusiones	09
Modelos Tradicionales	06	Trabajo a Futuro	11

Introducción

- El estrés universitario es una problemática creciente.
- Puede afectar el rendimiento y la salud mental.
- La detección temprana permite intervenir a tiempo.

Objetivo

- Estimar la presencia de estrés en estudiantes a partir de textos breves.
- Datos de respuestas abiertas escritas por estudiantes.
- Clasificación automática de textos en "estrés / no estrés".
- Técnicas de PLN y modelos de lenguaje (tradicionales y LLMs).

Corpus y Datos

Características del Corpus

Se utilizó un corpus propio compuesto por transcripciones de respuestas abiertas generadas por estudiantes universitarios.

- Respuestas **abiertas** sobre su **experiencia emocional.**
- Tamaño del corpus de 608 textos individuales.

Estrés: 275 (45.2%)
No estrés: 333 (54.8%)

Dataset y Preprocesamiento

Limpieza de los Datos

- Conversión a minúsculas (spaCy)
- Eliminación de stopwords
- Lematización

Estructura del Dataset

ID	Pregunta	Transcripción	Etiqueta
ID01	Pregunta 1	"Me cuesta concentrarme cuando tengo demasiadas tareas."	✓ si ~
ID02	Pregunta 2	"Últimamente me siento agotado y frustrado todo el tiempo."	✓ si ~
ID03	Pregunta 3	"Hacer ejercicio y salir con amigos me ayuda a relajarme."	○ no ~

Modelos Tradicionales y Vectorización

Modelos Tradicionales

Naive Bayes
Support Vector Machine (SVM)
Regresión Logística

Vectorización del texto

TF-IDF
Frecuencia (CountVectorizer)
Binaria

N-Gramas

Unigramas (1,1)

Bigramas (2,2)

Trigramas (3,3)

Uni+Bi (1,2)

Uni+Tri (1,3)

Modelos LLM (Large Language Model)

BETO

Modelo basado en BERT, entrenado en españols

Se ajustó con Trainer de Hugging Face Tokenización contextual

Accuracy: 83.6% F1 macro: 83.4%

Roberta + Lora

Modelo robusto
preentrenado en español
(roberta-base-bne)

Menor costo computacional y tiempo

Accuracy: 86.1% F1 macro: 86.0%

Comparación de resultados

Modelo	Vectorizador	N-gramas	Accuracy	F1_macro
SVM	Frecuencia	Unigrama	0.8525	0.8484
Regresión Logística	Frecuencia	Unigrama	0.8443	0.8412
ВЕТО	Tokenización BERT	_	0.8361	0.8345
RoBERTa + LoRA	Tokenización Roberta	_	0.8607	0.8602

Conclusiones

- Se logró detectar estrés en textos escritos por estudiantes con una precisión considerable, incluso con un corpus reducido.
- Los modelos tradicionales ofrecieron un rendimiento razonable, pero presentaron limitaciones para captar matices emocionales.
- El mejor desempeño lo obtuvo RoBERTa con LoRA, alcanzando un F1 macro de 0.86, superando a modelos clásicos y a BETO.
- Las técnicas de adaptación eficiente como LoRA demostraron ser útiles para trabajar con LLMs sin necesidad de grandes recursos.

Conclusiones y elección de modelos

Criterio	Modelo tradicional	LLM	
Datos disponibles	Pocos	Medianos o grandes	
Recursos computacionales	Limitados (sin GPU)	GPU recomendado	
Tiempo de entrenamiento	Rápido	Lento	
Profundidad semántica	Limitada	Alta	

Trabajo a Futuro

- Ampliar el dataset: Más muestras mejorarían la generalización del modelo.
- **Etiquetado más detallado:** Clasificación por niveles de estrés (leve, moderado, severo) o tipo (académico, emocional, entre otros).
- Análisis de emociones complementarias: Detectar ansiedad, frustración, tristeza, etc.
- Explorar nuevos modelos: LLMs más recientes o ajustados al dominio emocional.
- Implementación práctica: Desarrollar una app o plataforma para monitoreo emocional en estudiantes.

Gracias por su Atención