Seth Howells Concepts of Statistics II Week# 7 Project – Multivariate Analysis of Variance 08/23/20

TABLE OF CONTENTS

Overview	2
Table 7.5	3
Table 7.6	4
Table 7.7	5

OVERVIEW

Multivariate analysis of variance (MANOVA) was performed on 4 variables on the HBAT.xls file with x_5 (Distribution Systems) as the nonmetric independent variable, and all other variables listed below as the dependent variables. Distribution Systems is comprised of two different types: Indirect through Broker and Direct to Customer. The tables provide visual understanding of the multivariate relationships.

<u>ID</u>	<u>Variable</u>	<u>Measurement</u>	<u>Description</u>	<u>Type</u>
x_5	Distribution Systems	nonmetric	Classification	Independent
<i>x</i> ₁₉	Satisfaction	metric	Relationship	Dependent
x_{20}	Likelihood of Recommendation	metric	Relationship	Dependent
x_{21}	Likelihood of Future Purchase	metric	Relationship	Dependent

MANOVA

metric nonmetric

$$Y_1 + Y_2 + \dots + Y_N = X_1 + X_2 + \dots + X_N$$

TABLE 7.5

Part of stage 2 is to research the design of multivariate analysis of variance. Three groups of metric dependent variables were selected for analysis: X_{19} customer satisfaction, X_{20} likelihood of recommendation, and X_{21} likelihood of future purchase. The metric dependent variables are measured with X_5 distribution system, which is a nonmetric independent variable. These variates are particularly keen for marketing and purchasing professionals since marketing is responsible for finding ways to increase customer's buying frequencies and identify whether or not new revenue can be generated from recommendations, all while maintaining a high satisfaction level.

Purchasing, on the other hand, would likely use the analysis to determine the if the current contract negotiations with their vendors is suitable. That is, high satisfaction that leads to more sales will require more raw material, and consequently a better leverage with economies of scale with its suppliers (the more you buy, the cheaper the per unit cost); while low satisfaction can indicate lower future sales and thus potential breach of contacts with suppliers if a minimum quantity must be met.

The descriptive statistics give a general insight into how the metric dependent variables are grouped with the nonmetric independent variable, distribution systems.

TAB E 5	Descriptive Statistics of Purchase Outcome Measures (X_{19} , X_{20} , and X_{21})
	for Groups of X ₅ (Distribution System)

	X ₅ Distribution System	Mean	Std. Deviation	N
X ₁₉ Satisfaction	Indirect through broker	6.325	1.033	108
	Direct to customer	7.688	1.049	92
	Total	6.952	1.241	200
X ₂₀ Likely to Recommend	Indirect through broker	6.488	.986	108
	Direct to customer	7.498	.930	92
	Total	6.953	1.083	200
X ₂₁ Likely to Purchase	Indirect through broker	7.336	.880	108
	Direct to customer	8.051	.745	92
	Total	7.665	.893	200

TABLE 7.6

Box's M test is a parametric test that assesses if two or more covariance matrices are homogeneous. Bartlett's Test, on the other hand, tests for homogeneity of variances for normally distributed samples, which is especially important given MANOVA's normality assumptions.

Box's M: high p-value (.607) indicates that the three variables are nonsignificant and suggests rejecting the null hypothesis (no difference among groups).

TABLE 6 Multiv ri te a Homo cedasti		Measures	for Testin	9					
Multivariate Test of Homoscedasticity									
Box's Test of Equality of C	Covariance Ma	trices							
Boxs M	xs M 4.597								
F	.753								
df1	6								
df2 2	265275.824								
Sig.	.607								
Univariate Tests of Homo	scedasticity								
Levene's Test of Equality	of Error Varia	nces							
Dependent Variable	F	df1	df2	Sig.					
X ₁₉ Satisfaction	.001	1	198	.978					
X ₂₀ Likely to Recommend	.643	1	198	.424					
X ₂₁ Likely to Purchase	2.832	1	198	.094					
Test for Correlation Amo	ng the Depen	dent Varia	bles						
Bartlett's Test of Sphericit	ty								
Likelihood Ratio	.000								
Approx. Chi-Square	260.055								
df	5								
Sig.	.000								

TABLE 7.7

The next stage in multivariate analysis of variance is to estimate the MANOVA mode and assess overall fit. Table 7.7 assesses the variables' significance collectively and individually. The four tests performed were Pillai's Criterion, Wilks' Lambda, Hotelling's T^2 , and Roy's greatest characteristic root. All four tests show a highly significant difference between the two types of distribution system (variate: x_5) with all significance levels being less than 0.05. In return, table 7.7 confirms the group differences seen in TABLE 7.5 and TABLE 7.6.

The power (right-hand column) indicates that that the sample size and effect size were sufficient to ensure that the significance levels would be detected given the sampling error.

TABLE 7 Multivariate and Univariate Tests for Group Differences in Purchase Outcome Measures (X_{19} , X_{20} , and X_{21}) Across Groups of X_5 (Distribution System)

Multivariate Tests

Statistical Test	Value	F	Hypothesis <i>df</i>	Error df	Sig.	η²	Observed Power ^a
Pillai's Criterion	.307	28.923	3	196	.000	.307	1.00
Wilks' Lambda	.693	28.923	3	196	.000	.307	1.00
Hotelling's T ²	.443	28.923	3	196	.000	.307	1 00
Roy's greatest characteristic root	.443	28.923	3	196	.000	.307	1.00

^aComputed using alpha = .05

Univariate Tests (Between-Subjects Effects)

Dependent Variable	Sum of Squares	df	Mean Square	F	Sig.	η²	Observed Power ^a
X ₁₉ Satisfaction	92.300 ^b	1	92.300	85.304	.000	.301	1.00
X ₂₀ Likely to Recommend	50.665 ^c	1	50.665	54 910	.000	.217	1.00
X ₂₁ Likely to Purchase	25.396 ^d	1	25.396	37.700	.000	.160	1.00

^aComputed using alpha = .05

 $^{^{}b}R^{2} = .301$ (Adjusted $R^{2} = .298$)

 $^{^{}c}R^{2} = .217$ (Adjusted $R^{2} = .213$)

 $^{^{}d}R^{2} = .160$ (Adjusted $R^{2} = .156$)