Lecture 10

Author

Tom Jeong

February 12, 2025

Contents

1 Galois Extension

 $\mathbf{2}$

1 Galois Extension

Theorem 1.1. $[L:K] < \infty$ Let G = Aut(L,K) then $|G| \le [L:K]$ and the following are equivalent:

- 1. |G| = [L:K]
- 2. There exists a polynomial $f(x) \in K[x]$ such that L is a splitting field of f(x) and f(x) has distinct roots in L
- 3. $K = \{x : \sigma(x) = x \forall \sigma \in G\}$

If any 1,2,3 hold then L/K is called a Galois Extension G = Aut(L,K) is called the Galois Group of L/K

 $f(x) = q_1^{\alpha}(x) \cdots q_m^{\alpha}(x)$ where q_i are irreducible and distinct in K[x] and $\alpha \geq 1$

 $\bar{f}(x) = q_1(x) \cdots q_m(x)$ where q_i are distinct in L[x]

It may happen that q_i even if it's irreducible, q_1 has multiple roots in L

A polynomial if $f \in K[x]$ is called <u>separable</u> if f has distinct roots in its splitting field. example:

 $x^2 + 1$ doesn't have any roots in \mathbb{Q} .. where does the roots leave? the smallest field that contains the roots of $x^2 + 1$ is $\mathbb{Q}(i)$; inside this field we will have the roots of $x^2 + 1$

A field K is called <u>perfect</u> if all irreducible polynomials in K[x] are separable. \mathbb{Q} —perfect field

Lemma 1.2.

L is not the union of finitely many proper subfields $M, K \subseteq M \subseteq L$

Proof.

K-infinite L-finite dimensional K-vector space dim(L) = [L:K], dim(M) < dim(L) a finite dimensional vector space is not a union of finitely many proper subspaces.

K- finite field and L-finite field.

$$|L| = p^k$$

any subfield M of L has $char(p) \to |M| = p^k$.. k < n

For every k there is at most 1 subfield of L of this size. Since any subfield of L of size p^k is the splitting field of $x^{p^k} - x$ over \mathbb{Z}_p

$$1 + p + p^2 + \dots + p^{k-1} < p^n \text{ since } 1 + p + \dots + p^{n-1} = \frac{p^n - 1}{p - 1} < p^n$$

Corollary 1.3.

There exists $z \in L$ such that the $stab(z) = \{ \sigma \in G : \sigma(z) = z \} = \{ e_G \}$ $\Rightarrow |\{\sigma(z): \sigma \in G\}| = |G|$

|G| = n and we have that $G = {\sigma_1, \sigma_2, \cdots, \sigma_n}$

Orbit of $z \sigma_1(z), \sigma_2(z), \cdots, \sigma_n(z)$

We know that these are distinct elements of L

 $K \subsetneqq K(z) \subset L$ z has minimal polyonomial f_z

$$[L:K] \ge [K(z):K] = deg(f_z) \ge n = |G|$$

Proof.

For $\sigma \in G$, $M_{\sigma} = \{x \in L : \sigma(x) = x\}$

 M_{σ} is a field, $K \subseteq M$

 $a, b \in M_{\sigma}, \ \sigma(a+b) = \sigma(a) + \sigma(b) = a+b$

 $\sigma(ab) = \sigma(a)\sigma(b) = ab$

 $\sigma(-a) = -\sigma(a)$

For every $\sigma \in G$ we are prohibiting a subfield M_{σ} since L is not the union of finitely many propert subfields

such z exists. There exists $z \in L \setminus \bigcup_{\sigma \in G \mid \sigma \neq e} M_{\sigma}$

Proof.

1. $(1) \Rightarrow (2)$

by the corollary we estabilished

$$[L:K] \ge [K(z):K] = deg(f_z) \ge n = |G|$$

 $deg(f_z) = n \to \sigma_1, \dots \sigma_n$ are all of the roots of $f_z \to f_z$ has distinct roots in L

 $K(z) = L \to L$ is the splitting field of f_z since f_z splits over L

and $K(z) = L \rightarrow f_z$ does not split over any subfield.