M378K Introduction to Mathematical Statistics Homework assignment #8

Please, provide your **final answer only** to the following problems.

Problem 8.1. (5 points) Which of the following estimators is **not** unbiased for μ if Y_1, \ldots, Y_n is a random sample from the normal distribution $N(\mu, \sigma)$:

- (a) Y_n
- (b) $\frac{1}{2}(Y_1+Y_2)$
- (c) $Y_1 Y_2 + Y_3$
- (d) \bar{Y}
- (e) All of the above are unbiased.

Problem 8.2. (5 points) Let Y_1, \ldots, Y_n be a random sample of size $n \geq 2$, from $N(\mu, \sigma)$ and let the estimators $\hat{\mu}_1, \hat{\mu}_2$ and $\hat{\mu}_3$, for μ , be given by

$$\hat{\mu}_1 = Y_1, \hat{\mu}_2 = \frac{1}{2}(Y_1 + Y_2) \ ext{and} \ \hat{\mu}_3 = \bar{Y}.$$

Then, no matter what μ and σ are, we always have

- (a) $MSE(\hat{\mu}_1) \leq MSE(\hat{\mu}_2) \leq MSE(\hat{\mu}_3)$
- (b) $MSE(\hat{\mu}_3) \leq MSE(\hat{\mu}_2) \leq MSE(\hat{\mu}_1)$
- (c) $MSE(\hat{\mu}_3) \leq MSE(\hat{\mu}_1) \leq MSE(\hat{\mu}_2)$
- (d) $MSE(\hat{\mu}_1) \leq MSE(\hat{\mu}_3) \leq MSE(\hat{\mu}_2)$
- (e) None of the above.

Please, provide your **complete solutions** to the following problems. Final answers only, even if correct will earn zero points for those problems.

Problem 8.3. (30 points) Let (Y_1, Y_2) be a random sample (of size n = 2) from the uniform distribution $U(0, \theta)$, with $\theta > 0$ unknown.

1. (2+3+10=15 points) Find constants c_1, c_2 and c_3 such that the following estimators

$$\hat{\theta}_1 = c_1 Y_1, \ \hat{\theta} = c_2 Y_2 \ \text{and} \ \hat{\theta}_3 = c_3 \max(Y_1, Y_2),$$

are unbiased. (Hint: For $\hat{\theta}_3$, integrate the function $\max(y_1,y_2)$ multiplied by the joint density of Y_1,Y_2 . Split the integral over $[0,\theta]\times[0,\theta]$ into two parts - one where $y_1\geq y_2$ and the other where $y_1< y_2$ and note that $\max(y_1,y_2)=y_11_{\{y_1\geq y_2\}}+y_21_{\{y_1< y_2\}}$.)

- 2. (2+3+10=15 points) With values c_1, c_2 and c_3 as above, compute mean-squared errors $MSE(\hat{\theta}_1)$, $MSE(\hat{\theta}_2)$ and $MSE(\hat{\theta}_3)$ of $\hat{\theta}_1, \hat{\theta}_2$ and $\hat{\theta}_3$.
- 3. (10 points) Sketch the graphs of $MSE(\hat{\theta}_1)$, $MSE(\hat{\theta}_2)$ and $MSE(\hat{\theta}_3)$ as functions of θ . Is one of the three clearly better (in the mean-square sense) than the others?