Mobile Robotics, Planning under uncertainty

Mobile Robotics, Planning under uncertainty

Material based on the book Material based on the book Autonomous Mobile Robot 2nd Ed. (Siegwart, Nourbakhsh, Scaramuzza) [AMR], Chapter 14, and Planning Algorithms [Steve LaValle], partly

Summary

- Introduction to planning under uncertainty
- Markov Decision Processes
- Partially Observable MDPs
- Partial Observable Monte Carlo Planning

Planning Under Uncertainty: Introduction

- Path planning
 - explicit actions and goals
 - known state, deterministic actions
 - solution is a sequence of movements
- Planning under uncertainty
 - utilities
 - non-deterministic actions (MDPs)
 - unknown state (POMDPs)
 - solution is a policy

Planning under uncertainty, non-deterministic actions

Planning under uncertainty, partially observable state

- MDPs: a general class of non-deterministic search problem
- Four components: $\langle S, A, R, Pr \rangle$
- S a (finite) set of states (|S| = n)
- A a (finite) set of actions (|A| = m)
- Transition function $p(s'|s,a) = Pr\{S_{t+1} = s'|S_t = s, A_t = a\}$
- Real valued reward function $r(s, a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$

Example problem: exploring a maze

Mobile Robotics, Planning under uncertainty

States $s \in S$, actions $a \in A$ $\underline{\text{Model}}\ T(s, a, s') \equiv P(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ $\underline{\text{Reward function}}\ R(s) \text{ (or } R(s, a), R(s, a, s'))$ $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

Risk and reward

Markov Dynamics (history independence)

$$Pr\{R_{t+1}, S_{t+1} | S_0, A_0, R_1, \dots, S_{t-1}, A_{t-1}, R_t, S_t, A_t\}$$

Markov property:
 $Pr\{R_{t+1}, S_{t+1} | S_t, A_t\}$

Stationary (not dependent on time)

$$Pr\{R_{t+1}, S_{t+1}|S_t, A_t\} = Pr\{R_{t'+1}, S_{t'+1}|S_{t'}, A_{t'}\} \forall t, t'$$

 Full observability: we can not predict exactly which state we will reach but we know where we are

- ♦ Types of policy
 - Non-stationary policy
 - $\pi: S \times T \rightarrow A$
 - \blacksquare $\pi(s,t)$ action at state s with t states to go.
 - Stationary policy
 - π : S → A
 - \blacksquare $\pi(s)$ action for state s (regardless of time)
 - Stochastic policy
 - \blacksquare $\pi(a|s)$ probability of choosing action a in state s
- ♦ Goal: find policy that leads to the highest expected accumulated reward

- \diamondsuit cumulative reward $R_T = \mathbb{E}\left[\sum_{\tau=1}^T \gamma^{\tau} r_{t+\tau}\right]$
 - T = 1 greedy,
 - sub-optimal but simple and sometimes effective
 - $1 < T < \infty$, finite horizon
 - usually $\gamma = 1$, leads to non-stationary policies.
 - $T = \infty$ infinite-horizon
 - $\ \ \, \ \ \,$ with $\gamma<1$ leads to finite accumulated expected reward
 - $R_{\infty} \leq r_{max} + \gamma r_{max} + \gamma^2 r_{max} + \cdots = \frac{r_{max}}{1-\gamma}$
 - stationary policy

- State is typically robot pose $x = \{x, y, \theta\}$
- Actions is control commands u (e.g., $u = (v, \omega)$ for a differential drive robot)
- Transition function is the motion model p(x'|x, u)
- Value function depends on specific application usually represented with r(x, u)
 - for a standard motion planning task reward could be:
 - high reward at the goal
 - small negative penalty for every movement
 - high penalty for collisions

 \Diamond Value of a state x when following policy π : expected accumulated (discounted) reward when starting at x and following π everafter

$$V_{\pi}(x) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | x_t = x\right]$$

 \diamondsuit Q-value (action value or quality function): value of taking action a in state s following policy π

$$Q_{\pi}(x,u) = \gamma \left[r(x,u) + \int p(x'|u,x) v_{\pi}(x') dx' \right]$$

• Note:
$$V_{\pi}(x) = Q_{\pi}(x, \pi(x))$$

Example of value function for $T=\infty$ assuming goal state is absorbing, source [PR]

 \Diamond value of the start state must equal the immediate reward of executing action u in state x, plus the (discounted) reward expected along the way.

$$V_{\pi}(x) = \gamma \left[r(x, \pi(x)) + \int p(x'|\pi(x), x) V_{\pi}(x') dx' \right]$$

 \diamondsuit can be considered as a self-consistency condition

- $\Diamond \pi_*(x)$ is an optimal policy iff $V_{\pi_*}(x) \geq V_{\pi}(x) \forall x, \pi$
- \diamondsuit $V_*(x) = \max_{\pi} V_{\pi}(x)$ expected utility starting in x and acting optimally everafter
 - \diamondsuit optimal action-value function $Q_*(x,u) = \max_{\pi} Q_{\pi}(x,u)$
 - \diamondsuit $V_*(x)$ must comply with the self-consistency condition dictated by the Bellman equation
- \diamondsuit $V_*(x)$ is the optimal value hence the consistency condition can be written in a special form
- \diamondsuit The value of a state under an optimal policy must equal the expected return for the best action from that state

$$V_*(x) = \max_u Q_*(x,u) = \gamma \max_u \left[r(x,u) + \int p(x'|u,x)V_*(x')dx' \right]$$

Solution approaches to MDPs

- ♦ most prominent solution approaches are
 - Value iteration, build a value function and the find optimal policy
 - Policy iteration, build directly the optimal policy
- ♦ Discussions made so far are valid for MDPs defined in **continuous** spaces
- ♦ Most solution methods discretize the state space and action space
- ♦ Can develop similar approaches based on sampling

- \diamondsuit Turn the Bellman optimality equation into an "update rule", combining policy evaluation (computing the value v_{π} of a given policy) and policy improvement (making π greedy with respect to v_{π}).
- ♦ Bellman backup:

$$\hat{V}(x) = \gamma \max_{u} \left[r(x, u) + \int p(x'|u, x) \hat{V}(x') dx' \right]$$

- Back up the value of every state to produce new value function estimates
- ♦ Discrete Bellman backup:

$$\hat{V}(x_i) = \gamma \max_{u} \left[r(x_i, u) + \sum_{j=1}^{N} p(x_j|u, x_i) \hat{V}(x_j) \right]$$

Discrete Value iteration Algorithm

```
Algorithm 1: Discrete Value Iteration
Data: \{X, U, p(x'|u, x), r(x, u)\}
Result: \hat{V}
for i = 1 to N do
     \hat{V}(x_i) = r_{min};
end
while not converged do
     for i = 1 to N do
           \hat{V}(x_i) = \gamma \max_{u} \left[ r(x_i, u) + \sum_{j=1}^{N} p(x_j | u, x_i) \hat{V}(x_j) \right];
     end
end
return \hat{V} :
```

Discrete Value iteration, computing the policy

Mobile Robotics, Planning under uncertainty

Algorithm 2: Policy computation for state *x*

Data: $\{x, \hat{V}\}$ Result: $\pi(x)$

return arg max_u $\left[r(x_i, u) + \sum_{j=1}^{N} p(x_j | u, x_i) \hat{V}(x_j) \right];$

Pros guaranteed to converge to optimal policy, convergence rate is linear Cons quadratic in number of states and linear in number of actions

Algorithm:

 $\pi \leftarrow$ an arbitrary initial policy repeat until no change in π compute utilities given π (policy evaluation) update π as if utilities were correct (policy improvement)

 \Diamond policy evaluation compute utilities given a fixed π :

$$\hat{V}(x_i) = \gamma \left[r(x_i, u) + \sum_{j=1}^{N} p(x_j | \pi(x_i), x_i) \hat{V}(x_j) \right]$$

- \Diamond policy improvement given the value of all state $(\hat{V}(x_i))$:
 - greedily change the first action taken when in a state based on current value of states
 - if the value of the state can be improved, the new action is adopted by the policy; thus, the performance of the policy is strictly improved.

Planning for mobile robots using MDPs, value iteration

Mobile Robotics, Planning under uncertainty

(a)

 \Diamond Transition model is $p(x_{t+1}|x_t, u_t)$, state is $\hat{x}_t = \mathbb{E}\left[p(x_t|z_{1:t}, u_{1:t})\right]$

(b)

Value function and path for robot motion planning, brighter areas have higher values, source [PR]

Partially Observability

- ♦ In most realistic situation the state is **not** completely observable
 - robot does not know where it is and need to find this out
- \diamondsuit If we do not know the state it makes no sense to talk about policy $\pi(x)$
- \Diamond Typical solution: $\hat{x}_t = \mathbb{E}\left[p(x_t|z_{1:t},u_{1:t})\right]$ work but ignores uncertainty on state estimation

Example of coastal navigation, courtesy of Nicholas Roy, source [PR]

MDPs vs. POMDPs

Mobile Robotics, Planning under uncertainty

$$V_{T}(x) = \gamma \max_{u} \left[r(x, u) + \int p(x'|u, x) V_{T-1}(x') dx' \right]$$

where, $V_1(x) = \gamma \max_u r(x, u)$

- \Diamond In POMDPs the robot must maintain a belief on the state: $Bel(x_t)$
 - $Bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$, we will indicate $Bel(x_t)$ with b
 - need an observation model $p(z_t|x_t)$
- ♦ POMDPs

$$V_{\mathcal{T}}(b) = \gamma \max_{u} \left[r(b, u) + \int p(b'|u, b) V_{\mathcal{T}-1}(b') db' \right]$$

$$\pi_{\mathcal{T}}(b) = \arg\max_{u} \left[r(b, u) + \int p(b'|u, b) V_{\mathcal{T}-1}(b') db' \right]$$

where $V_1(b) = \gamma \max_u \mathbb{E}[r(x, u)]$

POMDP example

Example of a two state POMDP, source [PR]

Solving POMDPs, challenges

- ♦ Canonical solution method: Continuous state "belief MDP"
 - Run value iteration on a state space of probability distributions
 - find value and optimal action for every possible probability distribution
 - will optimally address the trade-off between information gathering actions versus actions that affect the state of the world
- ♦ However, value iteration can not be carried out directly because we have an uncountable number of belief states
- \diamondsuit For finite worlds with finite state, action, and measurement spaces and finite horizons, we can effectively represent the value functions by piecewise linear functions.
 - Use linear functions (α -vectors) to represent the value function
 - alpha-vectors are built by incorporating measurement and actions into the beliefs
 - challenge: number of vectors grows significantly and is difficult to control

POMDP example

POMDP for intrusion detection, problem

Mobile Robotics, Planning under uncertainty

Intrusion detection policy based on POMDPs. Robot is well localized, intruder position is unknown, courtesy of Joelle Pineau, source [PR]

POMDP for intrusion detection, example of solution

Successful search policy, tracking of intruder realized with PF and then projected on histogram representation. Courtesy of Joelle Pineau, source [PR]

POMCP an approximate methods for POMDPs

- ♦ Powerful approximate approach to solve large scale POMDPs
- ♦ Key insights:
 - Particle Filter to represent the belief
 - Monte Carlo Tree Search for action selection
 - Black box simulator $(s_{t+1}, o_{t+1}, r_{t+1}) \sim \mathcal{G}(s_t, a_t)$ to represent the POMDP dynamics
 - POMDP model does not need to be fully specified in closed form
 - Policy is never explicitly represented

MCTS, introduction

- \diamondsuit incremental, asymmetric tree-search algorithm
- $\diamondsuit\,$ aim to expand nodes in promising areas of the search space
 - not complete, not optimal
 - scale extremely well
 - Usually works very well in practice
 - at the heart of several successful applications (particularly for games)

- ♦ Selection (or traversal)
 - Select next node to expand trading-off exploration and exploitation
 - Standard criteria: Upper Confidence Bound $UCB1(S_i) = \overline{V}_i + C \cdot \sqrt{\frac{lnN}{n_i}}$, where N is number of visit of S_i parent state and n_i is number of visit of state S_i
- ♦ Expansion
 - Add further nodes to the tree
- ♦ Simulation (or rollout)
 - move down the tree using random action selection until we reach a terminal node
- ♦ Backpropagation
 - propagate value of terminal node up the tree branch

MCTS, algorithm for Selection and Expansion

```
Algorithm 3: Selection and Expansion phase
Current = S_0;
while Current is not leaf do
    Current = child that maximizes UCB1
end
if n_i of current is 0 then
    Rollout(Current):
else
    for each available action from Current add a new node to the tree:
    Current = first new children:
    Rollout(Current):
end
```

MCTS, rollout process

Mobile Robotics, Planning under uncertainty

```
Algorithm 4: Rollout(S_i)
Data: S_i
Result: the value of a terminal node
while true do
    if S_i is terminal then
         return Value(S_i);
    end
    A_i = random(available actions(S_i));
    S_i = simulate(A_i, S_i);
end
```

Worked example

MCTS discussion

- \diamondsuit can be seen as a version of best-first search that focuses on promising part of the search space
- ♦ sample state transition, does not suffer from curse of dimensionality
- \diamondsuit requires a black-box simulator rather than a full specification of the dynamics
- ♦ if exploration is controlled appropriately (e.g., UCB) it is guaranteed to converge to optimal policy
- ♦ anytime, computationally efficient and highly parallelizable

Partially Observable Monte Carlo Planning

- ♦ POMCP, use MCTS to break curse of dimensionality and curse of history
- ♦ POMCP builds, online a search tree of histories
- ♦ Nodes estimate values of a history using Monte-Carlo simulation
- ♦ For each simulation:
 - start state sampled from current belief state
 - state transitions and observations are sampled from a black-box simulator
- ♦ If belief state is correct **POMCP** converges to optimal policy for any finite horizon POMDP
- \diamondsuit belief state approximated by set of sample states corresponding to the actual history
- ♦ The same set of Monte-Carlo simulations are used both to perform tree-search and to update the belief state

POMCP, illustration

Mobile Robotics, Planning under uncertainty

Illustration of POMCP in an environment with 2 actions, 2 observations and 50 states. Courtesy of Silver and Vennes

- \Diamond History $h = \{a_1, o_1, a_2, o_2, \dots\}$
- \Diamond Node tree $T(h) = \langle N(h), V(h), B(h) \rangle$
 - $lackbox{N}(h)$ number of time history h was visited
 - $lackbox{V}(h)$ average return of all simulations starting from h
 - B(h) particles that represent $\mathcal{B}(s,h) = p(s|h)$, belief state of s given history h
- ♦ selection proceeds by using

$$V^{\oplus}(ha) = V(ha) + c\sqrt{\frac{InN(h)}{N(ha)}}$$

♦ rollout is performed using random action selection

POMCP, belief update

- ♦ belief state is represented using and unweighted particle filter
 - unweighted PF is easier to implement and update with a black box simulator
- \diamondsuit belief for history h_t uses K particles $B_t = B_t^i$, $\hat{\mathcal{B}}(s, h_t) = \frac{1}{K} \sum_{i=1}^K \delta_{sB_t^i}$
- \diamondsuit particles are updated when a **real** action a_t is executed and a **real** observation o_t is obtained
 - lacksquare a state s is sampled from $\hat{\mathcal{B}}(s,h_t)$ selecting a random particle from \mathcal{B}_t
 - the particles is passed to the black-box simulator to get a nes state s' and an observation o' $(s', o', r) \sim \mathcal{G}(s, a_t)$
 - lacksquare if sampled observation o' matches the real observation $o=o_t$ then a new particle s' is added to B_{t+1}
 - the process is repeated until K particles are added
 - \blacksquare $\lim_{k\to\infty} \hat{\mathcal{B}}(s,h_t) = \mathcal{B}(s,h_t)$ but particle deprivation can happen for large t

POMCP example

- ♦ Velocity regulation for mobile robots, difficulty of segment is partially observable
- ♦ Improve POMCP performance by providing prior-knowledge
 - similarity between segments

POMCP in action

Further Readings

- ♦ Browne et al., A Survey of Monte Carlo Tree Search Methods, IEEE Trans. on Computational Intelligence and AI in Games, 2021
- ♦ Silver and Vennes, Monte-Carlo Planning in Large POMDPs, NeurIPS, 2010
- ♦ Pineau, et al., Anytime point-based approximations for large POMDPs. Journal of Artificial Intelligence Research, 2006
- \diamondsuit Auer et al., Finite-time analysis of the multi-armed bandit problem. Machine Learning, 2002