Selección de cripto activos para una cartera de inversión

2da presentación

Nicola Mori Ezequiel Kinigsberg

Mentora - María de los Ángeles Martínez

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones

Un poco de contexto y objetivo

- La pandemia del COVID trajo aparejado un ascenso en la popularidad de los cripto activos y un cuestionamiento a las monedas tradicionales
- El aumento de la demanda impulsó los precios de los cripto activos, que tocaron valores récord a mediados de mayo y se mantienen muy por encima de los valores pre pandemia.
- Es un mercado muy volátil y la diversificación es clave para reducir el riesgo y definir perfiles de inversión.
- Nos propusimos investigar cómo elaborar una cartera de monedas para reducir el riesgo y maximizar los rendimientos, con rebalanceos semanales o mensuales.

Exploración

Dataset utilizado

- 16 criptoactivos.
- Se cuenta con las variables open, high, low, close y volumen por hora.
- El período analizado va desde el 2018-01-01 12am hasta el 2021-05-16 15pm.
- No todos los activos están presentes desde el inicio.
- Hay pocos datos faltantes (menos del 0,4% de los datos): Se les aplicó backwards fill.

YMD 2018-01 2018-02 2018-06 2018-07 2018-07 2018-10 2018-10 2018-10 2018-11 2019-03 2019-05 2019-06 2019-06 2019-11 2020-02 2020-03 2020-04 2020-06 2020-11 2020-12 2021-02 2021-03 2021-04 ETHUSDT_NaN 1 32 11 7 3 7 6 10 1 8 4 6 1 2 3 1 5 2 1 5

Bitcoin como lider

AAVEUSDT -	. 1	0.9	0.76	0.76	0.9	0.94	0.84	0.92	0.7	0.54	0.88	0.92	0.87	0.86	0.74	0.76
ADAUSDT -	0.9	1	0.89	0.93	0.92	0.93	0.96	0.97	0.86	0.7	0.94	0.93	0.94	0.91	0.89	0.91
BCHUSDT -	0.76	0.89	1	0.92	0.82	0.91	0.95	0.81	0.94	0.88	0.96	0.92	0.95	0.96	0.95	0.95
BNBUSDT -	0.76	0.93	0.92	1		0.91	0.95	0.87	0.91	0.78	0.92	0.89	0.91	0.93	0.97	0.96
BTCUSDT -	0.9	0.92	0.82	0.83	1	0.85	0.9	0.96	0.71	0.51	0.91	0.92	0.95	0.83	0.79	0.88
COMPUSDT -	0.94	0.93	0.91	0.91		1	0.93	0.91	0.85	0.75	0.95	0.93	0.91	0.97	0.9	0.9
DASHUSDT -		0.96	0.95	0.95	0.9	0.93	1	0.93	0.91	0.77	0.95	0.94	0.96	0.93	0.94	0.95
DOTUSDT -	0.92	0.97	0.81	0.87	0.96	0.91	0.93	1	0.76	0.57	0.9	0.94	0.91		0.81	0.85
EOSUSDT -	0.7	0.86	0.94	0.91	0.71		0.91	0.76	1	0.9	0.89				0.92	
ETCUSDT -	0.54	0.7	0.88	0.78	0.51	0.75	0.77	0.57	0.9	1	0.79	0.7	0.73		0.83	
ETHUSDT -	0.88	0.94	0.96	0.92	0.91	0.95	0.95	0.9	0.89	0.79	1	0.96	0.98	0.97	0.93	0.96
LINKUSDT -	0.92	0.93	0.92	0.89	0.92	0.93	0.94	0.94		0.7	0.96	1	0.96	0.95	0.91	0.94
LTCUSDT -		0.94	0.95	0.91	0.95	0.91	0.96	0.91		0.73	0.98	0.96	1	0.93	0.91	0.95
MKRUSDT -		0.91	0.96	0.93	0.83	0.97	0.93			0.82	0.97	0.95	0.93	1	0.95	0.95
NEOUSDT -	0.74	0.89	0.95	0.97	0.79	0.9	0.94		0.92		0.93	0.91	0.91	0.95	1	0.96
XMRUSDT -	0.76	0.91	0.95	0.96	0.88	0.9	0.95			0.77	0.96	0.94	0.95	0.95	0.96	1
	AAVEUSDT -	ADAUSDT -	BCHUSDT -	BNBUSDT -	BTCUSDT -	COMPUSDT -	DASHUSDT -	- TOSUTO	EOSUSDT -	ETCUSDT -	ETHUSDT -	LINKUSDT -	LTCUSDT -	MKRUSDT -	NEOUSDT -	XMRUSDT -

- Existe en general una alta correlación de precios entre los distintos cripto activos
- En la mayoría de los casos las monedas copian la tendencia del Bitcoin, la moneda con mayor capitalización y popularidad
- Esto representa una dificultad cuando hablamos de diversificar

Bitcoin como lider

Indicadores financieros y features

A partir de los datos de precio y volumen se elaboraron una serie de indicadores financieros y features:

- Media móvil: mide el precio promedio en una ventana determinada de tiempo.
- Media móvil exponencial (EMA): mide el precio promedio en una ventana determinada de tiempo, dándole más peso a los datos de precios más actuales.
- Índice direccional promedio (ADX): mide la fuerza de una tendencia, pero no su dirección real.
- Índice de fuerza relativa (RSI): mide la fuerza y dirección de la tendencia del mercado con valores entre 0 y 100.
- Cambio porcentual: cambio del precio de cierre respecto a la hora anterior. Se usó como punto de comparación del rendimiento de los distintos activos.

Indicadores financieros y features

Modelado

Primer aproximación al modelado del problema

- Se modeló al problema como una regresión, tratando de predecir el cambio porcentual del precio de cierre de cada cripto activo, a la hora siguiente.
- Se creó un baseline, una regresión lineal y un árbol de decisión.
- Se utilizó CV para la búsqueda de hiperparámetros.
- Se calculó el error cuadrático medio, el error absoluto mediano y error absoluto medio, para los conjuntos de train y test.

Correlación entre features y target

 Se puede observar una muy baja correlación entre la variable objetivo y el resto de los features por lo que intuimos que una aproximación lineal no arrojará buenos resultados.

Train-Test

- Dado que se está trabajando con series de tiempo, es necesario tener especial cuidado al generar los conjuntos de train y test, ya que se debe mantener la coherencia temporal.
- Existen distintas estrategias para el armado donde se tenga a su vez algún tipo de validación.
 - Partición estandar: Se define una partición de train que abarca t_k:t_n y otra de test que comienza en t_{n+1}.
 - Walk forward validation: Se entrena con $t_k:t_n$ particiones y se evalúa con una sola instancia t_{n+1} . Luego el conjunto de train se agranda para incluir t_{n+1} y test pasa a ser t_{n+2} , etc.
 - Símil K-Fold (TimeSeriesSplit): El conjunto de train son las primeras K particiones y el conjunto de test la partición K+1.
 Con cada nuevo entrenamiento el conjunto de train incrementa su tamaño en K y el conjunto de test se mantiene de tamaño fijo.

Baseline

 Consiste en un modelo naive (algoritmo persistente) en donde se utiliza el valor en el intervalo previo t-1 para predecir el output en el intervalo t.

Resultados: Bitcoin

	baseline	linreg	tree	
train_mean_squared_error	0.000155	0.000074	0.000072	
train_median_absolute_error	0.007506	0.004911	0.004888	
train_mean_absolute_error	0.004488	0.002727	0.002740	
test_mean_squared_error	0.000214	0.000116	0.000122	
test_median_absolute_error	0.011250	0.008002	0.007988	
test_mean_absolute_error	0.008553	0.006574	0.006564	

Segunda aproximación al modelado del problema (WIP)

- Construcción de algoritmo para la compra-venta de una selección de activos cada cierto tiempo T → cartera de inversión.
- Se cambió el enfoque a un problema de clasificación donde se intentará predecir el retorno.
 - Se define un retorno R (5%), una ventana T (7 días) y un target binario (1|0).
 - Si el retorno en la ventana T es ≥ R, se mantiene el activo.
 - Si el retorno en la ventana T es ≤ -R, se vende el activo.
 - Si el retorno en la ventana T se encuentra entre ±R, se mantiene el activo.
- Decision tree, Random Forest y XGboost.
- Periodo >= 2020-01-01

Segunda aproximación al modelado del problema (WIP)

- Este proceso se itera, moviendo la ventana T para entrenar y evaluar/predecir cada cripto-activo e ir recomponiendo la cartera semana a semana en función de las predicciones.
- Dado que la predicción se puede realizar a nivel hora (mínima unidad con la que contamos información) o a nivel día, establecemos la clasificación definitiva para el periodo deseado (1 semana) por voto mayoritario de las clases predecidas.
- Finalmente una vez recorrido todo el espacio temporal con los rebalanceos correspondientes, utilizaremos distintas métricas de performance para evaluar y comparar los rendimientos de los porfolios.

		Dici	embre		Enero						
	Semana1	Semana2	Semana3	Semana4	Semana1	Semana2	Semana3	Semana4			
Iteración1	Train	Train	Train	Train	test/predict: idxmax clase mayoritaria						
Iteración2		Train	Train	Train	Train	test/predict: idxmax clase mayoritaria					
Iteración3			Train	Train	Train	Train	test/predict: idxmax clase mayoritaria				
Iteración4				Train	Train	Train	Train	test/predict: idxmax clase mayoritaria			

Conclusiones

Dificultades

- La gran volatilidad de muchos de los cripto-activos, puede dificultar encontrar patrones subyacentes.
- Hay bastante correlación entre las distintas monedas (siguiente al bitcoin), lo cual puede presentar un desafío a la hora de buscar diversificar las opciones de inversión.
- Existen muchos indicadores de análisis técnico posibles a la hora de generar nuevos features para entrenar el modelo y no está claro en este momento cuáles deberíamos usar o si algunos presentan ventajas en este caso respecto a otros.
- Es difícil determinar cuál es la ventana temporal adecuada para el conjunto de entrenamiento.

Trabajo a futuro

- Contamos con información a nivel hora, pero se podría realizar un remuestreo para obtener información diaria.
- Se puede considerar rebalancear la cartera en otro intervalo de tiempo diferente a una semana (15 días, 30 días, etc.).
- Considerar las comisiones de las transacciones a la hora de decidir si rebalancear la cartera.
- Se podría probar utilizar librerías específicas de machine learning para series de tiempo multivariadas (sktime por ejemplo).

Gracias!

Nicola Mori Ezequiel Kinigsberg