

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2003-0012324
Application Number

출 원 년 월 일 : 2003년 02월 27일
Date of Application FEB 27, 2003

출 원 인 : 삼성전자주식회사
Applicant(s) SAMSUNG ELECTRONICS CO., LTD.

2003 년 04 월 17 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0023
【제출일자】	2003.02.27
【국제특허분류】	H01L
【발명의 명칭】	실록산 화합물을 이용한 실리콘 산화막 형성 방법
【발명의 영문명칭】	Method for forming silicon dioxide layer using siloxane compound
【출원인】	
【명칭】	삼성전자 주식회사
【출원인코드】	1-1998-104271-3
【대리인】	
【성명】	이영필
【대리인코드】	9-1998-000334-6
【포괄위임등록번호】	2003-003435-0
【대리인】	
【성명】	정상빈
【대리인코드】	9-1998-000541-1
【포괄위임등록번호】	2003-003437-4
【발명자】	
【성명의 국문표기】	박재언
【성명의 영문표기】	PARK, Jae Eun
【주민등록번호】	740201-1912024
【우편번호】	449-901
【주소】	경기도 용인시 기흥읍 고매리 동성아파트 102-103
【국적】	KR
【발명자】	
【성명의 국문표기】	추강수
【성명의 영문표기】	CHU, Kang Soo
【주민등록번호】	670530-1691011
【우편번호】	442-470

1020030012324

출력 일자: 2003/4/18

【주소】	경기도 수원시 팔달구 영통동 신나무실 쌍용아파트 544-1805		
【국적】	KR		
【발명자】			
【성명의 국문표기】	이주원		
【성명의 영문표기】	LEE, Joo Won		
【주민등록번호】	681020-1110417		
【우편번호】	442-470		
【주소】	경기도 수원시 팔달구 영통동 황골마을벽산아파트 222-40		
【국적】	KR		
【발명자】			
【성명의 국문표기】	양종호		
【성명의 영문표기】	YANG, Jong Ho		
【주민등록번호】	740305-1018711		
【우편번호】	135-110		
【주소】	서울특별시 강남구 압구정동 528 한양아파트 72-1012		
【국적】	KR		
【취지】	특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 디 리인 이영 필 (인) 대리인 정상빈 (인)		
【수수료】			
【기본출원료】	20	면	29,000 원
【가산출원료】	11	면	11,000 원
【우선권주장료】	0	건	0 원
【심사청구료】	0	항	0 원
【합계】	40,000 원		
【첨부서류】	1. 요약서·명세서(도면)_1통		

1020030012324

출력 일자: 2003/4/18

【요약서】

【요약】

ALD 방법에 의하여 실리콘 산화막을 형성하는 데 있어서 할로겐 원소 또는 -NCO기로 치환된 실록산 화합물을 Si 소스로 사용한다. 본 발명에 따른 실리콘 산화막 형성 방법에서는 치환된 실록산 화합물로 이루어지는 제1 반응물을 기판상에 공급하여 상기 제1 반응물의 화학흡착을 형성한다. 또한, O 및 H를 함유하는 제2 반응물을 상기 화학흡착층 위에 공급하여 상기 화학흡착층과 상기 제2 반응물을 화학 반응시킨다.

【대표도】

도 1

【색인어】

실록산 화합물, ALD, 헥사클로로디실록산, 실리콘 산화막

【명세서】**【발명의 명칭】**

실록산 화합물을 이용한 실리콘 산화막 형성 방법 {Method for forming silicon dioxide layer using siloxane compound}

【도면의 간단한 설명】

도 1은 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법을 설명하기 위한 플로차트이다.

도 2는 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서 ALD 공정의 각종착 사이클마다 적용되는 공정 가스들의 공급 상태를 나타내는 가스 펠싱 다이어그램이다.

도 3은 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서 ALD 공정의 1 증착 사이클에 적용되는 각 공정 단계에 따른 압력 변화를 나타낸 그래프이다.

도 4는 본 발명의 다른 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서 ALD 공정의 1 증착 사이클에 적용되는 각 공정 단계에 따른 압력 변화를 나타낸 그래프이다.

도 5는 본 발명의 또 다른 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서 ALD 공정의 1 증착 사이클에 적용되는 각 공정 단계에 따른 압력 변화를 나타낸 그래프이다.

도 6은 본 발명의 또 다른 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서 ALD 공정의 1 증착 사이클에 적용되는 각 공정 단계에 따른 압력 변화를 나타낸 그래프이다.

도 7은 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법에서의 반응 과정을 설명하기 위한 도면이다.

도 8은 본 발명에 따른 방법에 의하여 형성된 실리콘 산화막의 FTIR (Fourier Transfer Infrared Spectrometer) 스펙트럼을 종래 기술에 따른 방법에 의하여 형성된 실리콘 산화막의 경우와 비교하여 나타낸 것이다.

도 9는 본 발명에 따른 방법에 의하여 다양한 공정 온도하에서 얻어진 실리콘 산화막 증착 속도를 종래 기술에 따른 방법에 의한 실리콘 산화막 증착 속도와 비교하여 평가한 그래프이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<10> 본 발명은 기판상에 박막을 형성하는 방법에 관한 것으로, 특히 ALD (atomic layer deposition) 방법을 이용하여 기판상에 실리콘 산화막을 형성하는 방법에 관한 것이다.

<11> 마이크로일렉트로닉스 (microelectronics) 소자의 사이즈가 감소함에 따라 반도체 소자를 구성하는 전계 효과 트랜지스터의 게이트 산화막, 유전막 등에 적용되는 실리콘 산화막의 특성이 매우 중요시되고 있다.

<12> 통상적인 반도체 소자 제조 공정에 있어서, 실리콘 산화막은 열 CVD (thermal chemical vapor depositon), LPCVD (low pressure CVD), PECVD (plasma-enhanced CVD) 등과 같은 방법에 의하여 형성되는 경우가 대부분이다. 그 중, 열 CVD 방법은 우수한 스텝 커버리지를 제공하지만 고온 공정이라는 단점이 있다. PECVD 방법은 저온에서 높은 증착 속도를 제공하지만 스텝 커버리지가 불량한 단점이 있다. 이들 방법은 반도체 소자 구조 내에서 각각의 장점을 살리기에 적합한 실리콘 산화막 형성 공정에 한정적으로 적용되어 왔다. 그러나, 반도체 소자가 고집적화됨에 따라 CVD 공정시의 높은 공정 온도로 인하여 야기되는 쪽 채널 효과 (short channel effect)가 큰 문제점으로 대두되어 실리콘 산화막 공정의 저온화가 요구되고 있다. 또한, 반도체 소자를 구성하는 요소들간의 단차가 커짐에 따라 야기되는 스텝 커버리지 및 패턴 로딩 효과 (pattern loading effect)에 의하여 점점 더 큰 문제점들이 대두되고 있다. 따라서, 이들 문제점들을 개선 할 수 있는 실리콘 산화막 형성 공정이 요구된다.

<13> 상기와 같은 문제점들을 개선하기 위하여 ALD 방법을 이용하여 실리콘 산화막을 형성하는 방법들이 제안되었다. 그 중 대표적인 예로서, SiCl_4 및 H_2O 를 사용하여 ALD 방법에 의하여 실리콘 산화막을 형성하는 방법이 미합중국 특허 제6,090,442호에 개시되어 있다. 그러나, 상기 특허에서의 방법에 따르면, ALD 공정의 1 증착 사이클을 거친 후 얻어진 SiO_2 단일층(monolayer)에서의 패킹 밀도(packing density)가 낮고, 증착 속도가 매우 느려서 반도체 소자 제조 공정에서 요구되는 스루풋(throughput) 요건을 만족시키지 못한다. 또한, SiCl_4 는 1개의 Si당 4개의 Si-Cl 결합을 가지는 구조로서 저온 증착 공정을 행하는 경우에는 Si-Cl 결합들이 H_2O 와 반응하여 O-H 결합을 형성시켜 실리콘 산

화막 내에 O-H 결합이 다량 잔류하게 되고, 이로 인하여 다공성 막질의 실리콘 산화막으로 되기 쉽다.

【발명이 이루고자 하는 기술적 과제】

<14> 본 발명의 목적은 상기와 같은 종래 기술에서의 문제점을 해결하고자 하는 것으로, 실리콘 산화막 내에 잔류하는 불순물 함량을 최소화하여 우수한 막 특성을 제공하는 동시에 증착 속도를 높임으로써 스루풋을 향상시킬 수 있는 실리콘 산화막 형성 방법을 제공하는 것이다.

【발명의 구성 및 작용】

<15> 상기 목적을 달성하기 위하여, 본 발명의 제1 양태에 따른 실리콘 산화막 형성 방법에서는 할로겐 원소 또는 -NCO기로 치환된 실록산 화합물로 이루어지는 제1 반응물을 기판상에 공급하여 상기 제1 반응물의 화학흡착층 (chemisorbed layer)을 형성한다. 또한, O 및 H를 함유하는 제2 반응물을 상기 화학흡착층 위에 공급하여 상기 화학흡착층과 상기 제2 반응물을 화학 반응시킨다.

<16> 상기 제1 반응물은 $Si_{n}O_{n-1}X_{2n+2}$ (식중, n은 2 ~ 5의 정수이고, X는 F, Cl, Br, I, 또는 NCO)로 표시되는 어느 하나의 물질로 이루어질 수 있다. 바람직하게는, 상기 제1 반응물은 할로겐 원소 또는 -NCO로 치환된 디실록산으로 이루어진다. 특히 바람직하게는, 상기 제1 반응물은 Si_2OCl_6 , Si_2OBr_6 또는 $Si_2O(NCO)_6$ 로 이루어진다. 상기 제2 반응물은 H_2O 또는 H_2O_2 로 이루어질 수 있다.

<17> 본 발명의 제1 양태에 따른 실리콘 산화막 형성 방법에서는 상기 화학흡착층이 형성된 후 상기 제1 반응물의 반응 부산물을 제거하는 단계와, 상기 화학흡착층과 상기

제2 반응물을 화학반응시킨 후 상기 제2 반응물의 반응 부산물을 제거하는 단계를 더 포함한다. 상기 반응 부산물을 제거하기 위하여 불활성 가스를 사용하여 퍼지하는 방법, 상기 제1 반응물 및 제2 반응물 공급시의 압력보다 낮은 압력하에서 배기시키는 방법, 또는 상기 퍼지 및 배기를 모두 적용하는 방법을 선택적으로 이용할 수 있다.

<18> 본 발명의 제1 양태에 따른 실리콘 산화막 형성 방법에서는 원하는 두께의 SiO_2 막이 형성된 후 상기 SiO_2 막을 어닐링하는 단계를 더 포함할 수 있다. 상기 어닐링은 열처리, 플라즈마 처리, 또는 오존 처리 방법에 의하여 행해진다.

<19> 또한, 상기 목적을 달성하기 위하여 본 발명의 제2 양태에 따른 실리콘 산화막 형성 방법에서는 챔버 내에 기판을 로딩한다. $\text{Si}_{n}0_{n-1}X_{2n+2}$ (식중, n은 2 ~ 5의 정수이고, X는 F, Cl, Br, I, 또는 NCO)로 표시되는 실록산 화합물로 이루어지는 제1 반응물을 아민 촉매와 함께 상기 기판상에 공급하여 상기 제1 반응물의 화학흡착층을 형성한다. 상기 챔버 내에서 상기 제1 반응물의 반응 부산물을 제거한다. O 및 H를 함유하는 제2 반응물을 아민 촉매와 함께 상기 화학흡착층 위에 공급하여 상기 기판상에 SiO_2 막을 형성한다. 상기 SiO_2 막상의 반응 부산물을 제거한다.

<20> 본 발명에 의하면, ALD 방법에 의하여 실리콘 산화막을 형성하는 데 있어서 Si 소스로서 Si 원자를 2개 이상 함유하는 치환된 실록산 화합물을 이용한다. 본 발명에 따른 방법에 의하여 얻어진 실리콘 산화막은 실록산 화합물 내에 존재하는 Si-O-Si의 강한 결합력에 의하여 우수한 막 특성을 제공하며, 막 내에서의 불순물 잔류량을 최소화할 수 있다. 또한, ALD 공정의 1 증착 사이클마다 2개의 SiO_2 단일층이 얻어지므로 증착 속도가 증가되어 스루풋을 향상시킬 수 있다.

<21> 다음에, 본 발명의 바람직한 실시예에 대하여 첨부 도면을 참조하여 상세히 설명한다.

<22> 도 1은 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법을 설명하기 위한 플로차트이다.

<23> 도 1을 참조하면, 본 발명에 따른 실리콘 산화막 형성 방법에서는 먼저 반도체 소자를 형성할 기판을 박막 형성 장치의 챔버 내에 로딩한다 (단계 10). 그 후, 상기 챔버 내에 설치된 히터를 이용하여 상기 기판의 온도가 실리콘 산화막 형성에 적합한 공정 온도, 즉 약 25 ~ 500°C의 온도로 되도록 예열한다 (단계 20). 이 때, 상기 기판의 예열은 상기 챔버로부터의 배기와 동시에 이루어지며, 상기 예열 단계는 예를 들면 약 60초 동안 행해진다.

<24> 상기 기판이 원하는 공정 온도까지 승온되면, ALD 방법에 의하여 상기 기판상에 실리콘 산화막을 형성한다 (단계 30).

<25> 이를 위하여, 먼저 상기 기판상에 할로겐 원소 또는 -NCO로 치환된 실록산 화합물로 이루어지는 제1 반응물과 제1 염기 촉매를 함께 공급하여 상기 기판상에 상기 제1 반응물의 화학흡착층(chemisorbed layer)을 형성한다 (단계 32).

<26> 상기 제1 반응물로 사용하기 적합한 물질은 $Si_{n}O_{n-1}X_{2n+2}$ (식중, n은 2 ~ 5의 정수이고, X는 F, Cl, Br, I, 또는 NCO)로 표시될 수 있다. 예를 들면, 상기 제1 반응물로서 Si_2OCl_6 , $Si_3O_2Cl_8$, $Si_4O_3Cl_{10}$, Si_2OBr_6 , $Si_3O_2Br_8$, $Si_4O_3Br_{10}$, $Si_2O(NCO)_6$ 또는 $Si_3O_2(NCO)_8$ 을 사용할 수 있다.

<27> 바람직하게는, 상기 제1 반응물은 할로겐 원소 또는 -NCO로 치환된 디실록산으로 이루어진다. 특히 바람직하게는, 상기 제1 반응물은 Si_2OCl_6 , Si_2OBr_6 또는 $\text{Si}_2\text{O}(\text{NCO})_6$ 로 이루어진다.

<28> 상기 제1 염기 촉매로는 아민을 사용한다. 바람직하게는, 상기 제1 염기 촉매로서 피리딘 (pyridine: $\text{C}_2\text{H}_5\text{N}$) 또는 트리메틸아민 (trimethylamine: $\text{C}_3\text{H}_9\text{N}$)을 사용한다.

<29> 상기 제1 반응물의 공급시 상기 챔버 내의 공정 온도를 $25 \sim 500^\circ\text{C}$, 바람직하게는 $50 \sim 150^\circ\text{C}$ 로 유지시킨다. 또한, 상기 제1 반응물의 공급시 상기 챔버 내의 공정 압력을 $0.1 \sim 100\text{torr}$, 바람직하게는 $0.5 \sim 5\text{torr}$ 로 유지시킨다. 상기 제1 반응물의 공급 시 상기 챔버 내에는 불활성 가스, 예를 들면 아르곤(Ar)이 함께 공급될 수 있다.

<30> 상기 제1 반응물 및 제1 염기 촉매의 공급에 의하여 상기 기판상에서는 상기 기판상의 -OH 반응 사이트의 H와 제1 반응물을 구성하는 치환기, 즉 할로겐 원자 또는 -NCO가 반응하면서 산(acid)이 생성되고, 이와 같이 생성된 산은 상기 제1 염기 촉매와 중화 반응을 거쳐 염을 생성하게 된다. 이와 동시에, 상기 제1 반응물은 Si-O-Si 결합을 유지한 상태에서 Si-O-Si 결합중 하나의 Si가 상기 기판상의 -OH 반응 사이트의 O와 반응을 하여 상기 기판상에 상기 제1 반응물의 화학흡착층이 형성된다.

<31> 상기와 같이 기판상에 제1 반응물의 화학흡착층이 형성되면, 제1 반응물의 반응 부산물, 예를 들면 산과 염기의 중화 반응에 의하여 형성된 염, 상기 제1 반응물의 물리흡착층(physisorbed layer) 등을 제거한다 (단계 34).

<32> 이를 위하여, 아르곤(Ar)과 같은 불활성 가스를 사용하는 퍼지 공정 또는 상기 제1 반응물의 공급시의 압력보다 낮은 압력에서의 배기 공정을 행한다. 또는, 상기 반응 부

산물을 제거하기 위하여, 상기 퍼지 공정 및 배기 공정을 조합한 일련의 공정을 행할 수 있다. 예를 들면, 먼저 불활성 가스를 사용한 퍼지 공정을 행한 후, 배기 공정을 행할 수도 있고, 반대로 배기 공정을 행한 후 퍼지 공정을 행하는 것도 가능하다.

<33> 계속하여, 상기 제1 반응물의 화학흡착층 위에 O 및 H를 함유하는 제2 반응물과 제2 염기 촉매를 함께 공급하여, 상기 제1 반응물의 화학흡착층과 상기 제2 반응물을 화학반응시킨다 (단계 36).

<34> 상기 제2 반응물로는 예를 들면 H_2O 또는 H_2O_2 를 사용할 수 있다. 또한, 상기 제2 염기 촉매로는 상기 제1 염기 촉매와 동일한 물질을 사용할 수 있다.

<35> 상기 제2 반응물의 공급시 상기 챔버 내의 온도 및 압력 조건은 상기 제1 반응물 공급시의 조건과 동일하게 설정한다.

<36> 상기 제2 반응물 및 제2 염기 촉매의 공급에 의하여 상기 기판상에서는 상기 제2 반응물의 H와 할로겐 원소 또는 -NCO가 반응하여 산이 형성되고, 상기 제2 반응물의 O와 상기 제1 반응물 화학흡착층의 Si가 반응한다. 상기와 같이 형성된 산은 염기와의 중화반응을 거쳐 염을 생성한다. 그 결과, 상기 기판상에는 상기 제1 반응물 내에서의 Si-O-Si 결합 수에 따라 복수개의 SiO_2 단일층이 형성된다. 예를 들면, 상기 제1 반응물로서 치환된 디실록산 화합물을 사용한 경우에는 상기 기판상에 2개의 SiO_2 단일층이 형성된다.

<37> 그 후, 상기 제2 반응물의 반응 부산물을 제거한다 (단계 38).

<38> 이를 위하여, 단계 34에서와 마찬가지로, 퍼지 공정, 배기 공정, 또는 퍼지 공정 및 배기 공정을 조합한 일련의 공정을 행할 수 있다.

<39> 상기 기판상에 원하는 두께를 가지는 실리콘 산화막이 형성될 때까지 단계 32 내지 단계 38을 복수 회 반복한다. 상기 기판상에 실리콘 산화막이 원하는 두께로 형성되면, 상기 챔버 내에 잔류하는 증착 부산물들을 제거하기 위하여 상기 챔버로부터의 배기 공정을 소정 시간, 예를 들면 약 90초 동안 행한다 (단계 40). 이 때, 상기 챔버 내부로는 가스를 공급하지 않는다. 그 후, 상기 챔버로부터 상기 기판을 언로딩한다 (단계 50).

<40> 상기 실리콘 산화막의 세정액에 대한 내성을 향상시키기 위하여, 상기 실리콘 산화막을 어닐링한다 (단계 60). 상기 어닐링은 실온 ~ 900°C의 온도 및 760torr 이하의 압력, 바람직하게는 10^{-9} ~ 760torr의 압력 하에서 5분 이하의 시간 동안 행해진다. 상기 어닐링은 열 처리, 플라즈마 처리, 오존(O_3) 처리 등을 이용한 다양한 방법으로 행해질 수 있다. 열 처리에 의하여 어닐링하는 경우에는 500 ~ 900°C의 온도에서 N_2 , O_2 , H_2 , Ar, N_2 와 O_2 의 조합, 또는 NH_3 가스 분위기로 열 처리할 수 있다. 바람직하게는, 상기 열 처리에 의한 어닐링은 500 ~ 900°C의 온도 및 10^{-9} ~ 760torr의 압력 하에서 N_2 분위기로 약 5분 이하의 시간 동안 행해진다. 플라즈마 처리에 의하여 어닐링하는 경우에는 200 ~ 700°C의 온도에서 O_2 또는 H_2 가스의 플라즈마를 사용한다. 오존 처리에 의한 어닐링은 실온 ~ 700°C의 온도로 행할 수 있다. 상기 어닐링을 위한 열 처리, 플라즈마 처리, 또는 오존 처리 공정은 각각 도 1의 단계 30에서 설명하는 실리콘 산화막 형성을 위한 ALD 공정과 인-시츄(in-situ)로 진행될 수 있다. 이 경우, 상기 어닐링 방법으로서 플라즈마 처리 또는 오존 처리가 특히 바람직하다.

<41> 상기 설명한 바와 같이, 본 발명에 따른 실리콘 산화막 형성 방법에서는 치환된 실록산 화합물을 Si 소스로 사용한다. 따라서, ALD 공정의 1 증착 사이클 동안 기판 표면

위에는 실록산 화합물 내에 존재하는 Si-O-Si 결합 수에 따라 복수개의 SiO_2 단일층이 형성되어 증착 속도가 증가될 수 있다.

<42> 도 2는 본 발명의 바람직한 실시예에 따른 실리콘 산화막 형성 방법에 있어서 ALD 공정의 각 증착 사이클마다 적용되는 공정 가스들의 공급 상태를 나타내는 가스 펄싱 다이어그램을 도시한 것이다.

<43> 도 2를 참조하면, 제1 반응물 공급 단계에서는 치환된 실록산 화합물로 이루어지는 제1 반응물과 촉매, 예를 들면 아민이 각각의 공급 라인을 통하여 챔버 내에 유입된다. 이 때, 제2 반응물 공급 라인의 퍼지를 위하여 상기 제2 반응물 공급 라인을 통하여 불활성 가스, 예를 들면 아르곤이 상기 챔버 내에 같이 공급된다.

<44> 또한, 제1 반응물 공급 후의 퍼지 단계에서는 상기 제1 반응물 공급 라인, 제2 반응물 공급 라인, 및 촉매 공급 라인에서 각각 퍼지용 불활성 가스가 상기 챔버 내에 공급된다.

<45> 제2 반응물 공급 단계에서는 O 및 H를 함유하는 제2 반응물과 염기 촉매가 각각의 공급 라인을 통하여 공급된다. 이 때, 상기 제1 반응물 공급 라인의 퍼지를 위하여 상기 제1 반응물 공급 라인을 통하여 불활성 가스, 예를 들면 아르곤이 상기 챔버 내에 같이 유입된다.

<46> 그리고, 상기 제2 반응물 공급 후의 퍼지 단계에서는 제1 반응물 공급 후의 퍼지 단계에서와 마찬가지로 상기 제1 반응물 공급 라인, 제2 반응물 공급 라인, 및 촉매 공급 라인에서 각각 퍼지용 불활성 가스가 상기 챔버 내에 공급된다.

<47> 도 3 내지 도 6은 본 발명의 바람직한 실시예들에 따른 실리콘 산화막 형성 방법에 있어서, ALD 공정의 1 증착 사이클에 적용되는 각 공정 단계에 따른 압력 변화를 예시한 그래프들이다. 도 3 내지 도 6에 예시된 실시예들은 각각 제1 반응물로서 헥사클로로디실록산(hexachlorodisiloxane: Si_2OCl_6)을 사용하고, 제2 반응물로서 H_2O 를 사용하고, 퍼지 가스로서 Ar을 사용한 경우에 대하여 도시한 것으로서, 각각 공정 온도가 105°C인 경우에 보다 적합하게 적용될 수 있다. 또한, 도 3 내지 도 6에 예시된 실시예들에서는 도 1의 단계 34 및 단계 38에서의 반응 부산물 제거 단계에서 적용될 수 있는 다양한 방법들을 제시하고 있다. 즉, 반응 부산물 제거를 위하여, 도 3의 예에서는 불활성 가스, 예를 들면 Ar을 사용하여 퍼지를 행하는 경우, 도 4의 예에서는 제1 반응물 및 제2 반응물 공급시의 압력보다 낮은 압력에서 배기시키는 경우, 도 5의 예에서는 Ar 퍼지 후 배기를 행하는 경우, 그리고 도 6의 예에서는 배기 후 Ar 퍼지를 행하는 경우를 각각 보여주고 있다.

<48> 도 7은 본 발명에 따른 실리콘 산화막 형성 방법에서 제1 반응물로서 헥사클로로디실록산(Si_2OCl_6)을 사용하고 상기 제2 반응물로서 H_2O 를 사용한 경우, ALD 공정의 1 증착 사이클 동안의 SiO_2 막 형성을 위한 반응 과정을 개략적으로 도시한 도면이다.

<49> 도 7을 참조하면, 기판 표면에 -OH 반응 사이트가 존재하는 상태 [I]에서 도 1의 단계 32에서 설명한 방법으로 상기 기판상에 헥사클로로디실록산 및 피리딘을 공급하면, 기판상의 -OH 중 H는 Cl과 반응하여 HCl을 형성하고, O는 헥사디클로로디실록산의 Si과 결합하여 상기 기판 표면에는 [II]에서와 같이 헥사클로로디실록산의 화학흡착층(102)이 형성된다. 여기서, HCl은 피리딘과의 중화 반응을 거쳐 염을 생성한다.

<50> 상기 화학흡착층(102)이 형성된 결과물에 대하여 반응 부산물을 제거하기 위한 퍼지 공정을 거친 후, 도 1의 단계 36에서 설명한 방법으로 상기 기판상에 H_2O 및 피리딘을 공급하면, H_2O 의 H와 상기 화학흡착층(102)의 Cl이 반응하여 HCl 이 형성되고, H_2O 의 O와 상기 화학흡착층(102)에서의 Si가 결합하여 상기 기판 표면에는 [III]에서와 같이 2개의 SiO_2 단일층(104)이 형성된다. 여기서, HCl 은 피리딘과의 중화 반응을 거쳐 염을 생성한다. 이들 염은 퍼지 단계를 거치면서 제거된다.

<51> 도 7에서 제1 반응물로서 헥사클로로디실록산을 사용하는 경우에 대하여 설명한 바와 같이, 본 발명에 따른 방법에서는 실리콘 산화막 형성을 위한 ALD 공정에서 Si 소스로서 치환된 실록산 화합물을 사용한다. 실록산 화합물 내에는 Si와 O와의 강한 결합력을 가지는 Si-O-Si 결합이 존재하므로, 결과적으로 얻어지는 실리콘 산화막은 우수한 특성을 제공할 수 있다. 또한, Si 소스로서 헥사클로로디실록산을 사용하는 경우를 예로 들면 ALD 공정의 1 증착 사이클마다 2개의 SiO_2 단일층이 얻어지므로 증착 속도를 증가시킬 수 있다. 또한, 헥사클로로디실록산 1 분자 내에는 1개의 Si 당 3개의 Si-Cl 결합을 가진다. 따라서, $SiCl_4$ 를 Si 소스로 사용하는 종래 기술의 경우에 비하여 O-H 결합이 형성될 염려가 있는 Si-Cl 결합이 적으므로 실리콘 산화막 내에서의 O-H 결합 잔류량을 대폭 낮출 수 있다.

<52> 상기 설명한 바와 같은 본 발명의 실시예들에 따라 형성된 실리콘 산화막은 고집적 반도체 소자의 제조 공정에서 다양하게 적용될 수 있다. 예를 들면, 실리콘 산화막은 반도체 기판상에 형성된 게이트 전극의 측벽 스페이서를 구성할 수 있다. 또한, 실리콘 산화막은 반도체 기판상에서 게이트 절연막을 구성할 수도 있다. 다른 예로서, 실리콘 산화막은 실리사이드화 블로킹막(blocking layer)을 구성할 수도 있다. 또한, 실리콘 산화

막은 반도체 기판상에 형성된 비트 라인의 측벽 스페이서를 구성할 수도 있다. 또 다른 예로서, 실리콘 산화막은 반도체 기판상에 형성되는 층간절연막, 또는 반도체 기판상의 소정막을 보호하기 위한 식각 방지막을 구성할 수 있다. 상기 실리콘 산화막이 식각 방지막으로 사용되는 경우, 상기 실리콘 산화막 단독으로 사용될 수도 있고, 실리콘 질화막과의 복합막으로 사용될 수도 있다. 보다 상세히 설명하면, 반도체 기판상에 형성된 소정의 막이 건식 식각 공정시 손상되는 것을 방지하기 위하여 건식 식각 공정시 식각 방지막으로서 주로 실리콘 질화막을 사용한다. 이 때, 상기 실리콘 질화막의 오버 에칭에 의하여 그 하부에 있는 소정의 막의 표면이 파여서 발생되는 리세스(recess) 현상을 방지하기 위하여 상기 소정의 막과 실리콘 질화막 사이에 본 발명에 따른 방법에 의하여 형성된 실리콘 산화막을 개재시킬 수 있다.

<53> 본 발명에 따른 방법에 의하여 형성된 실리콘 산화막은 고집적 반도체 소자 제조에 필요한 다양한 공정 단계에서 다양하게 적용될 수 있으며, 예시한 경우에 한정되는 것은 아니다.

<54> 평가예 1

<55> 본 발명에 따른 방법에 의하여 형성된 실리콘 산화막의 특성을 확인하기 위하여 제1 반응물로서 헥사클로로디실록산(HCDSO)을 사용하고, 제2 반응물로서 H_2O 를 사용하고, 염기 촉매로서 피리딘을 사용하여, 표 1의 공정 조건에 따라 기판상에 실리콘 산화막을 형성하였다.

<56>

【표 1】

공정온도	HCDSO 유속	H ₂ O 유속	피리딘 유속	퍼지용 Ar 유속	HCDSO 공급시간	H ₂ O 공급시간	퍼지시간
105°C	250sccm	700sccm	80sccm	400sccm	2초	3.5초	2초

<57> 대조용으로서, Si 소스로서 헥사클로로디실란(Si₂Cl₆: HCD)을 사용한 것을 제외하고 표 1에서와 동일한 공정 조건에 의하여 실리콘 산화막을 형성하였다.

<58> 상기와 같은 조건에 따라 HCDSO로부터 얻어진 실리콘 산화막과 HCD로부터 얻어진 실리콘 산화막에 대하여 각각 굴절율(reflective index)를 측정한 결과, HCD로부터 얻어진 실리콘 산화막은 1.5 ~ 1.51로 측정된 반면, 본 발명에 따라 HCDSO로부터 얻어진 실리콘 산화막은 1.44 ~ 1.46으로 측정되어, 화학양론적인 SiO₂막과 동등한 수준을 나타내었다.

평가예 2

<60> 도 8은 공정 온도를 75°C로 한 것을 제외하고 표 1에서와 동일한 공정 조건으로 HCDSO로부터 얻어진 실리콘 산화막과 HCD로부터 얻어진 실리콘 산화막을 각각 형성한 후, 이들 각각의 실리콘 산화막에 대하여 얻어진 FTIR (Fourier Transfer Infrared Spectrometer) 스펙트럼이다. 도 8에는 종래 기술에 따라 테트라클로로실란(SiCl₄: TCS)으로부터 얻어진 실리콘 산화막에 대한 FTIR 스펙트럼이 함께 나타나 있다.

<61> 도 8에서 확인할 수 있는 바와 같이, HCDSO로부터 얻어진 실리콘 산화막에서는 HCD로부터 얻어진 실리콘 산화막에 비하여 Si-OH 피크 및 Si-H 피크가 거의 나타나지 않으

며, 이로부터 HCDSO로부터 얻어진 실리콘 산화막에서는 -OH 및 -H 함량이 매우 낮은 것을 알 수 있다.

<62> 평가예 3

<63> 도 9는 본 발명의 방법에 따라 Si 소스로서 HCDSO를 사용하여 ALD 방법에 의하여 실리콘 산화막을 형성한 경우(▲), 종래 기술의 일 예에 따라 Si 소스로서 TCS를 사용하여 ALD 방법에 의하여 실리콘 산화막을 형성한 경우(■), 및 종래 기술의 다른 예에 따라 Si 소스로서 HCD를 사용하여 실리콘 산화막을 형성한 경우(●), 각각의 실리콘 산화막 증착 속도를 다양한 공정 온도에서 비교한 결과들을 나타낸 그래프이다.

<64> 도 9에서, 본 발명의 방법에 따라 HCDSO를 Si 소스로 사용한 경우(▲)에는 적용된 모든 공정 온도에서 TCS 또는 HCD를 사용한 경우에 비하여 증착 속도가 현저히 향상된 것을 확인할 수 있다. 이는, 본 발명에 따른 방법에서 Si 소스로서 실록산 화합물인 HCDSO를 사용함으로써 ALD 공정의 1 증착 사이클마다 2개의 SiO_2 단일층이 형성되어 증착 속도가 향상된 것으로 해석할 수 있다.

【발명의 효과】

<65> 본 발명에 따른 실리콘 산화막 형성 방법에서는 ALD 방법에 의하여 SiO_2 막을 형성하는 데 있어서 Si 소스로서 Si 원자를 2개 이상 함유하는 치환된 실록산 화합물을 이용한다. 본 발명에 따른 방법에 의하여 얻어진 실리콘 산화막은 실록산 화합물 내에 존재하는 Si-O-Si의 강한 결합력에 의하여 우수한 막 특성을 제공하며, 막 내에서의 불순물 잔류량을 최소화할 수 있다. 또한, ALD 공정의 1 증착 사이클마다 2개의 SiO_2 단일층이

얻어지므로 증착 속도가 증가되고, 그 결과 공정 시간이 대폭 줄어들어 스루풋을 향상시킬 수 있다.

<66> 이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형이 가능하다.

【특허청구범위】**【청구항 1】**

(a) 할로겐 원소 또는 -NCO기로 치환된 실록산 화합물로 이루어지는 제1 반응물을 기판상에 공급하여 상기 제1 반응물의 화학흡착층 (chemisorbed layer)을 형성하는 단계 와,

(b) O 및 H를 함유하는 제2 반응물을 상기 화학흡착층 위에 공급하여 상기 화학흡착층과 상기 제2 반응물을 화학 반응시키는 단계를 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 2】

제1항에 있어서,

상기 제1 반응물은 $\text{Si}_n\text{O}_{n-1}\text{X}_{2n+2}$ (식중, n은 2 ~ 5의 정수이고, X는 F, Cl, Br, I, 또는 NCO)로 표시되는 어느 하나의 물질로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 3】

제1항에 있어서,

상기 제1 반응물은 할로겐 원소 또는 -NCO로 치환된 디실록산으로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 4】

제3항에 있어서,

상기 제1 반응물은 Si_2OCl_6 , Si_2OBr_6 또는 $\text{Si}_2\text{O}(\text{NCO})_6$ 로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 5】

제1항에 있어서,

상기 제2 반응물은 H_2O 또는 H_2O_2 로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 6】

제1항에 있어서,

상기 단계 (a)에서, 상기 제1 반응물은 제1 염기 촉매와 함께 상기 기판상에 공급되는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 7】

제1항에 있어서,

상기 단계 (b)에서, 상기 제2 반응물은 제2 염기 촉매와 함께 상기 기판상에 공급되는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 8】

제1항에 있어서,

상기 단계 (a) 및 단계 (b)는 각각 $25 \sim 500^\circ\text{C}$ 의 온도하에서 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 9】

제1항에 있어서,

상기 단계 (a) 및 단계 (b)는 각각 0.1 ~ 100torr의 압력하에서 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 10】

제1항에 있어서,

상기 단계 (a) 및 단계 (b)에서 각각 상기 제1 반응물 및 제2 반응물이 공급되는 동안 상기 기판상에 불활성 가스가 함께 공급되는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 11】

제1항에 있어서,

상기 화학흡착층이 형성된 후 상기 제1 반응물의 반응 부산물을 제거하는 단계와, 상기 화학흡착층과 상기 제2 반응물을 화학반응시킨 후 상기 제2 반응물의 반응 부산물을 제거하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 12】

제11항에 있어서,

상기 반응 부산물 제거 단계는 불활성 가스를 사용하는 퍼지를 행하거나, 상기 제1 반응물 및 제2 반응물 공급시의 압력보다 낮은 압력하에서의 배기를 행하거나, 상기 퍼지 후 상기 배기를 행하거나, 상기 배기 후 상기 퍼지를 행하는 방식으로 진행하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 13】

제1항에 있어서,

상기 제1 반응물을 상기 기판상에 공급하기 전에 상기 기판을 25 ~ 500°C의 온도로 예열하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 14】

제1항 또는 제11항에 있어서,

상기 단계 (a) 및 단계 (b)를 복수 회 반복하여 소정 두께의 SiO₂막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 15】

제14항에 있어서,

상기 SiO₂막을 어닐링하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 16】

제15항에 있어서,

상기 어닐링은 열 처리, 플라즈마 처리, 또는 오존 처리 방법에 의하여 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 17】

제15항에 있어서,

상기 어닐링을 위하여 N₂, O₂, H₂, Ar, N₂와 O₂의 조합, 또는 NH₃ 가스 분위기에서 500 ~ 900°C의 온도로 열 처리하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 18】

제15항에 있어서,

상기 어닐링을 위하여 200 ~ 700°C의 온도에서 O₂ 또는 H₂ 가스를 이용하여 플라즈마 처리하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 19】

제15항에 있어서,

상기 어닐링을 위하여 실온 ~ 700°C의 온도에서 오존 처리하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 20】

(a) 챔버 내에 기판을 로딩하는 단계와,

(b) Si_nO_{n-1}X_{2n+2} (식중, n은 2 ~ 5의 정수이고, X는 F, Cl, Br, I, 또는 NCO)로 표시되는 실록산 화합물로 이루어지는 제1 반응물을 아민 촉매와 함께 상기 기판상에 공급하여 상기 제1 반응물의 화학흡착층을 형성하는 단계와,

(c) 상기 챔버 내에서 상기 제1 반응물의 반응 부산물을 제거하는 단계와,

(d) O 및 H를 함유하는 제2 반응물을 아민 촉매와 함께 상기 화학흡착층 위에 공급하여 상기 기판상에 SiO₂막을 형성하는 단계와,

(e) 상기 SiO₂막상의 반응 부산물을 제거하는 단계를 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 21】

제20항에 있어서,

상기 단계 (a) 내지 단계 (e)를 복수 회 반복하여 소정 두께의 실리콘 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 22】

제20항에 있어서,

상기 단계 (a) 후 단계 (b) 전에 상기 기판을 25 ~ 500°C의 온도로 예열하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 23】

제20항에 있어서,

상기 제1 반응물은 Si_2OCl_6 , Si_2OBr_6 또는 $\text{Si}_2\text{O}(\text{NCO})_6$ 로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 24】

제20항에 있어서,

상기 제2 반응물은 H_2O 또는 H_2O_2 로 이루어지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 25】

제20항에 있어서,

상기 단계 (b) 및 단계 (d)는 각각 25 ~ 500°C의 온도하에서 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 26】

제20항에 있어서,

상기 단계 (b) 및 단계 (d)는 각각 0.1 ~ 100torr의 압력하에서 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 27】

제20항에 있어서,

상기 단계 (b) 및 단계 (d)에서 각각 상기 제1 반응물 및 제2 반응물이 공급되는 동안 상기 기판상에 불활성 가스가 함께 공급되는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 28】

제20항에 있어서,

상기 단계 (c) 및 단계 (e)는 각각 불활성 가스를 사용하는 퍼지를 행하거나, 상기 제1 반응물 및 제2 반응물 공급시의 압력보다 낮은 압력하에서의 배기를 행하거나, 상기 퍼지 후 상기 배기를 행하거나, 상기 배기 후 상기 퍼지를 행하는 방식으로 진행하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 29】

제20항에 있어서,

(f) 상기 SiO₂막을 어닐링하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【청구항 30】

제29항에 있어서,

1020030012324

출력 일자: 2003/4/18

상기 어닐링은 열 처리, 플라즈마 처리, 또는 오존 처리 방법에 의하여 행해지는 것을 특징으로 하는 실리콘 산화막 형성 방법.

【도면】

【도 1】

【도 2】

【도 3】

1020030012324

출력 일자: 2003/4/18

【도 4】

【도 5】

【도 6】

【도 7】

【도 8】

【도 9】

