Grid Walking

Problem Statement

You are situated in an N dimensional grid at position (x_1, x_2, \ldots, x_N) . The dimensions of the grid are $(D_1, D_2, \ldots D_N)$. In one step, you can walk one step ahead or behind in any one of the N dimensions. (So there are always $2 \times N$ possible different moves). In how many ways can you take M steps such that you do not leave the grid at any point? You leave the grid if at any point x_i , either $x_i \leq 0$ or $x_i > D_i$.

Input Format

The first line contains the number of test cases T. T test cases follow. For each test case, the first line contains N and M, the second line contains x_1, x_2, \ldots, x_N and the 3rd line contains D_1, D_2, \ldots, D_N .

Output Format

Output T lines, one corresponding to each test case. Since the answer can be really huge, output it modulo 100000007.

Constraints

- $1 \le T \le 10$
- 1 < N < 10
- $1 \le M \le 300$
- $1 \le D_i \le 100$
- $1 \leq x_i \leq D_i$

Sample Input

```
10
1 287
44
78
1 2 3 6
25
87
1 122
41
63
1 260
64
1 127
3
73
1 69
68
1 2 3 1
14
63
1 236
13
30
1 259
38
70
1 257
11
12
```

Sample Output