Matematická analýza II

Stručné výpisky z materiálů prof. Pultra

Zimní semestr2020/2021

Viktor Soukup, Lukáš Salak, Tomáš Sláma

Revize : Mgr. Karel Král,

Verze 3.0

18.února2021

Obsah

1	Met	trické prostory
	1.1	Definice metrického prostoru
	1.2	Triviality
	1.3	Věty o metrických prostorech
	1.4	Okolí, množiny, uzávěry
	1.5	Vzory a obrazy
	1.6	Ekvivalence metrik
	1.7	Součiny
	1.8	Věta o spojitých zobrazeních
2	Par	ciální derivace
	2.1	Definice a značení
	2.2	Totální diferenciál
		2.2.1 Definice totálního diferenciálu
		2.2.2 Věty o totálním diferenciálu
	2.3	Pravidla pro počítání parciálních derivací
		2.3.1 Složené funkce
		2.3.2 Násobení
		2.3.3 Dělení
	2.4	Lagrangeovy věty
	2.5	Záměnnost pořadí při parciálních derivacích
	2.6	Věta o konvergentní podposloupnosti
3		npaktní prostory 13
	3.1	Vlastnosti kompaktních prostorů
	3.2	Omezené metrické prostory
	3.3	Euklidovské metrické prostory
	3.4	Spojitá zobrazení
	3.5	Cauchyovské posloupnosti
	3.6	Úplné metrické prostory
4	Imr	olicitní funkce
4	4.1	Ilustrační příklady
		Věty o implicitní funkci
	4.2	Very O implicitin function
5	Ext	rémy 17
	5.1	Regulární zobrazení
6	Obj	jemy a obsahy
	6.1	
7	Stej	jnoměrná spojitost 20
8	Ops	akování Riemannova integrálu v jedné proměnné 20
J	8.1	Existence Riemannova integralu
	8.2	Integrální věta o střední hodnotě
	8.3	Základní věta analýzy
	\circ . \circ	Zamanii 1000 wilaiyzy

9	Rie	mannův integrál ve více proměnných	
	9.1	Definice	23
	9.2	Existence	
	9.3	Riemannův integrál pro spojité funkce	
	9.4	Fubiniova věta	
	9.5	Lebesgueův integrál	
	9.6	Tietzeova věta	

1 Metrické prostory

1.1 Definice metrického prostoru

Definice (Metrický prostor): Nechť X je množina, $d: X \times X \to \mathbb{R}$ funkce t. ž. platí:

- $\forall x, y \in X : d(x, y) \ge 0$, $d(x, y) = 0 \iff x = y$
- $\forall x, y \in X : d(x, y) = d(y, x)$
- $\forall x, y \in X : d(x, z) \leq d(x, y) + d(y, z)$ (trojúhelníková nerovnost)

pak (X, d) je metrický prostor.

Příklad: Zde je několik metrických prostorů:

$$(\mathbb{R}, |x-y|),$$

$$(\mathbb{C}, |x-y|),$$

(G,d),G je orientovaný souvislý graf, d je délka nejdelší cesty

Pozor: trojúhelníková nerovnost v $(\mathbb{C}, |x-y|)$ není tak triviální jako v \mathbb{R} .

Definice (Euklidovský prostor \mathbb{E}_n): Definujeme jako metrický prostor (\mathbb{R}^n, d) , kde d:

$$d((x_1, ..., x_n), (y_1, ..., y_n)) = \sqrt{\sum_i (x_i - y_i)^2}$$

Pro nás zvlášť důležitý, známý v podobě vektorového prostoru \mathbb{R}^n se skalárním součinem $\langle \mathbf{u}|v\rangle$ a normou $\|\mathbf{u}\| = \sqrt{\mathbf{u}\mathbf{u}}$ a vzdáleností $d(\mathbf{u},v) = ||\mathbf{u} - v||$

Definice (Diskrétní prostor): Definujeme jako (X,d), kde d(x,y)=1 pro $x\neq y$

Definice (Podprostor): Buď (X, d) metrický prostor. Pak (Y, d') je podprostor, kde $Y \subseteq X$ a $\forall x, y \in Y : d'(x, y) = d(x, y)$.

Definice (Spojité zobrazení): $f:(X,d) \to (Y,d')$ je spojité zobrazení, pokud

$$\forall x,y \in X, \forall \varepsilon > 0 \exists \delta > 0: d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \varepsilon$$

1.2 Triviality

Definice (Identické zobrazení): f(x) = x je spojité zobrazení

$$(X,d) \rightarrow (X,d)$$

Definice (Vložení podprostorů): je spojité zobrazení

$$f_1: (X_1, d_1) \times (X_2, d_2) \to (X_1, d_1)$$

$$\forall x \in X_1 \forall y \in X_2: f_1(x, y) = x$$

$$f_2: (X_1, d_1) \times (X_2, d_2) \to (X_2, d_2)$$

$$\forall x \in X_1 \forall y \in X_2: f_2(x, y) = y$$
obecně pro $j = 1, ..., n$ máme
$$f_j: \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$$

$$f_i(x_1, x_2, ..., x_n) = x_i$$

Definice (Konvergence): Posloupnost $(x_n)_n$ v metrickém prostoru (X,d) konverguje k $x \in X$, pokud

$$\forall \varepsilon > 0 \ \exists n_0 : \forall n \ge n_0 : d(x_n, x) < \varepsilon$$

1.3 Věty o metrických prostorech

Věta (Složení spojitých zobrazení je spojité): Pokud jsou $f:(X_1,d_1)\to (X_2,d_2)$ a $g:(X_2,d_2)\to (X_3,d_3)$ spojité, pak i

$$g \circ f : (X_1, d_1) \to (X_3, d_3)$$

je spojité.

Věta (Věta o konvergenci): Zobrazení $f:(X_1,d_1) \to (X_2,d_2)$ je spojité právě když pro každou konvergentní $(x_n)_n$ v (X_1,d_1) posloupnost $(f(x_n))_n$ konverguje v (X_2,d_2) a platí $\lim_n f(x_n) = f(\lim_n x_n)$.

Důkaz:

- \Rightarrow Buď f spojitá a nechť $\lim_n x_n = x$. Pro $\varepsilon > 0$ volme ze spojitosti $\delta > 0$ tak, aby $d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \varepsilon$. Podle definice konvergence posloupnosti existuje n_0 takové, že pro $n \ge n_0$ je $d_1(x_n,x) < \delta$. Tedy je-li $n \ge n_0$ máme $d_2(f(x_n),f(x)) < \varepsilon$ a potom $\lim_n f(x_n) = f(\lim_n x_n)$.
- $\neg \Rightarrow \neg$ Nechť fnení spojitá. Potom existují $x \in X_1$ a $\varepsilon_0 > 0$ takové, že pro každé $\delta > 0$ existuje x_δ takové, že

$$d_1(x, x_{\delta}) < \delta$$
 ale $d_2(f(x), f(x_{\delta}) \ge \varepsilon_0$

Položme $x_n = x_{1/n}$. Potom $\lim_n x_n = x$ ale $(f(x_n))_n$ nemůže konvergovat k f(x).

1.4 Okolí, množiny, uzávěry

Definice (Okolí): Nechť (X,d) je metrický prostor, $x \in X$, pak

$$\Omega(x,\varepsilon) = \{ y \mid d(x,y) < \varepsilon \}$$

Formulaci $\Omega(x,\varepsilon)$ se říká otevřená koule s poloměrem ε okolo x.

Příklad (Použití okolí): "U je okolí x" $\equiv \exists \varepsilon > 0, \Omega(x, \varepsilon) \subseteq U$

Definice (Otevřená množina): $U \subseteq (X, d)$ je otevřená, pokud je okolím každého svého bodu.

Definice (Uzavřená množina): $V \subseteq (X, d)$ je uzavřená, pokud $\forall (x_n)_n \subseteq V$ je konvergentní v X a $\lim_n x_n \in V$.

Definice (Vzdálenost od množiny): Nechť (X, d) je metrický prostor, $A \subseteq X, x \in X$, pak vzdálenost bodu x od množiny A je

$$d(x, A) = \inf\{d(x, a) \mid a \in A\}$$

Definice (Uzávěr): $\overline{A}: \{x \mid d(x, A) = 0\}$

1.5 Vzory a obrazy

Pro zbytek sekce nechť $f: X \to Y, A \subseteq X, B \subseteq Y$.

Definice (Obraz): Obraz podmnožiny $A \subseteq X$ v Y:

$$f[A] = \{ f(x) \mid x \in A \}$$

Definice (Vzor): Vzor podmnožiny $B \subseteq Y$ v X:

$$f^{-1}[B] = \{x \mid x \in X : f(x) \in B\}$$
$$X \underset{f^{-1}[-]}{\overset{f[-]}{\rightleftharpoons}} Y$$

Pozor, f^{-1} má dva významy:

- inverze $f^{-1}: Y \to X$, nemusí existovat
- část v symbolu $f^{-1}[-]$, má smysl vždy

Tvrzení (Vztahy vzorů a obrazů):

$$f[A] \subseteq B \equiv A \subseteq f^{-1}[B],$$

 $f[f^{-1}[B]] \subseteq B$
 $f^{-1}[f[A]] \supseteq A$

Věta (Vlastnosti zobrazení mezi metrickými prostory): Buďte (X_1, d_1) a (X_2, d_2) metrické prostory a buď zobrazení $f: X_1 \to X_2$. Následující tvrzení jsou potom ekvivalentní:

- 1. f je spojité.
- 2. $\forall x \in X_1 \ a \ \forall \ okoli \ V \ bodu \ f(x) \ existuje \ okoli \ U \ bodu \ x \ takové, že \ f[U] \subseteq V$.
- 3. \forall otevřenou U v X_2 je vzor $f^{-1}[U]$ otevřený v X_1 .
- 4. $\forall uzav \check{r}enou \ A \ v \ X_2 \ je \ vzor \ f^{-1}[A] \ uzav \check{r}en \acute{y} \ v \ X_1.$
- 5. $\forall A \subseteq X_1 \ je \ f[\overline{A}] \subseteq \overline{f[A]}$

1.6 Ekvivalence metrik

Definice (Topologická vlastnost/definice): Vlastnost/definice je topologická, je-li zachována homeomorfismy. Jsou to (mimo jiné):

- 1. konvergence
- 2. otevřenost, uzavřenost
- 3. uzávěr
- 4. okolí
- 5. spojitost (ale ne stejnoměrná spojitost!)

Definice (Ekvivalentní metriky): Metriky d_1, d_2 na téže množině jsou ekvivalentní, pokud

$$id_X: (X, d_1) \to (X, d_2)$$

je homeomorfismus. Získáme tím prostor, ve kterém jsou všechny topologické záležitosti (spojitost, uzavřenost, . . .) zachovány.

Definice (Silně ekvivalentní metriky): Metriky d_1 a d_2 na téže množině jsou silně ekvivalentní, pokud

$$\exists \alpha, \beta > 0 : \alpha d_1(x, y) \leq d_2(x, y) \leq \beta d_1(x, y)$$

1.7 Součiny

Definice (Součin): Pro $(X_1,d_i), i=1,...,n$ definujeme na kartézském součinu $\prod_{i=1}^n X_i$ metriku

$$d((x_1,...,x_n),(y_1,...,y_n)) = \max_i d_i(x_i,y_i)$$

Získaný

$$\prod_{i=1}^{n} (X_i, d_i)$$

se nazývá součin prostorů (X_i, d_i) . Píše se též

$$(X_1, d_1) \times \cdots \times (X_n, d_n).$$

1.8 Věta o spojitých zobrazeních

Věta (O spojitých zobrazeních):

- 1. Projekce $p_j = ((x_i)_i \mapsto x_j) : \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$ jsou spojitá zobrazení.
- 2. Buďte $f_j: (Y, d') \to (X_j, d_j)$ libovolná spojitá zobrazení. Potom jednoznačně určené zobrazení $f: (Y, d') \to \prod_{i=1}^n (X_i, d_i)$ splňující $p_j \circ f = f_j$, totiž zobrazení definované předpisem $f(y) = (f_1(y), ..., f_n(y))$, je spojité.

Intuice: Jak to vypadá:

Tedy pokud víme, že $(x_1, x_2, x_3) \in \prod (x_i, d_i)$, Pak

$$f(y) = (f_1(y), f_2(y), f_3(y))$$

$$(p_1 \circ f)(y) = p_1(f(y)) = p_1(f_1(y), f_2(y), f_3(y)) = f_1(y)$$

$$(p_2 \circ f)(y) = \dots = f_2(y)$$

$$(p_3 \circ f)(y) = \dots = f_3(y)$$

Existuje přesně jedno f takové, že

$$p_i \circ f = f_i$$

a je spojité.

2 Parciální derivace

Definice (Reálná funkce o n proměnných):

$$f: D \to \mathbb{R}, D \subseteq \mathbb{E}_n$$

Podobně jako ve funkcích jedné proměnné se nemůžeme omezit na případy, kdy definiční obor je celý prostor \mathbb{E}_n . V případě funkcí jedné proměnné byly definiční obory obvykle intervaly nebo jednoduchá sjednocení intervalů. Tady budou definiční obory D složitější, často (ale ne vždy) otevřené množiny v \mathbb{E}_n .

O D se často mluví jako o oblasti na níž je funkce definovaná. To není termín (ve specifických kontextech slovo "oblast" termín je, tady ne).

2.1 Definice a značení

Definice (Parciální derivace): Pro $f(x_1,...,x_n)$ vezmeme

$$\phi_k(t) = f(x_1, ..., x_{k-1}, t, x_{k+1}, ... x_n)$$
 x_j pro $j \neq k$ fixované

Parciální derivace funkce f podle x_k (v bodě $(x_1,...,x_n)$) je (obvyklá) derivace funkce ϕ_k ,

$$\lim_{h\to 0} \frac{f(x_1,...,x_{k-1},x_k+h,x_{k+1},...x_n)-f(x_1,..)}{h}.$$

Označení

$$\frac{\partial f(x_1,...,x_n)}{\partial x_k}$$
 nebo $\frac{\partial f}{\partial x_k}(x_1,...,x_n)$,

Pro f(x,y) píšeme

$$\frac{\partial f(x,y)}{\partial x}$$
 a $\frac{\partial f(x,y)}{\partial y}$, atd.

Když $\frac{\partial f(x_1,...,x_n)}{\partial x_k}$ existuje pro všechna $(x_1,...,x_n)$ v nějaké oblasti D máme funkci

$$\frac{\partial f}{\partial x_k}: D \to \mathbb{R}.$$

Když budeme mluvit o parciální derivaci bude vždy zřejmé máme-li na mysli funkci, nebo jen číslo (hodnotu té limity nahoře).

2.2 Totální diferenciál

Nespojitá funkce f může mít po souřadnicích všechny parciální derivace v každém bodě, to však ale neimplikuje spojitost. Existence parciálních derivací neimplikuje spojitost! Budeme potřebovat něco silnejšího. Připomeňte si tvrzení ekvivalentní se standardní derivací:

Tvrzení (Derivace): Existuje μ konvergující k 0 při $h \to 0$ a A takové, že

$$f(x+h) - f(x) = Ah + |h| \cdot \mu(h)$$

Intuice: f(x+h) - f(x) = Ah vyjadřuje tečnu ke grafu funkce v bodě (x, f(x)) a $|h| \cdot \mu(h)$ je jakási malá chyba. Mysleme podobně o funkci f(x, y) a uvažujme plochu:

$$S = \{(t, u, f(t, u)) : (t, u) \in D\} \subseteq \mathbb{R}^3.$$

Dvě parciální derivace vyjadřují směry dvou tečných přímek k S v bodě (x, y, f(x, y)), ale ne tečnou rovinu, která teprve bude uspokojivé rozšíření faktu nahoře.

2.2.1 Definice totálního diferenciálu

Pro $\mathbf{x} \in \mathbb{E}_n$ (místo absolutní hodnoty) definujeme $||\mathbf{x}|| = \max_i |x_i|$. h bude n-tice blízká nule.

Definice (Totální diferenciál): Funkce f má totální diferenciál v bodě \mathbf{a} , existuje-li funkce μ spojitá v okolí U bodu $\mathbf{o} \in \mathbb{R}^n$ taková, že $\mu(\mathbf{o}) = 0$ a čísla $A_1, ..., A_n$ pro která

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} A_k h_k + ||\mathbf{h}|| \mu(\mathbf{h}).$$

S použitím skalárního součinu jde též zapsat jako

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \mathbf{A}\mathbf{h} + ||\mathbf{h}||\mu(\mathbf{h})$$

2.2.2 Věty o totálním diferenciálu

Tvrzení (Spojitost, parciální derivace a totální diferenciál): Nechť má funkce f totální diferenciál v bodě a. Potom platí:

- 1. f je spojitá v a,
- 2. f má všechny parciální derivace v a, a to s hodnotami

$$\frac{\partial f(\mathbf{a})}{\partial x_k} = A_k.$$

Důkaz:

1. Máme (dosazením do rovnice TD)

$$|f(\mathbf{x}) - f(\mathbf{y})| \le |\mathbf{A}(\mathbf{x} - \mathbf{y})| + |\mu(\mathbf{x} - \mathbf{y})| \cdot ||\mathbf{x} - \mathbf{y}||$$

a limita na pravé straně pro $\mathbf{y} \to \mathbf{x}$ je 0.

2. Máme (dosazením do rovnice TD)

$$\frac{1}{h}(f(...,x_{k-1},x_k+h,x_{k+1},...)-f(x_1,...))=A_k+\mu((...,0,h,0,...))\frac{||(0,...,h,...,0)||}{h},$$

a limita na pravé straně je zřejmě A_k .

Teď již spojitost dostaneme. Vidíme, že v případě funkcí jedné proměnné není rozdíl mezi existencí derivace v bodě **a** a vlastností mít totální diferenciál v tomto bodě. V případě více proměnných je však tento rozdíl zcela zásadní. Může být trochu překvapující, že zatímco existence parciálních derivací mnoho neznamená, existence spojitých parciálních derivací je něco úplně jiného.

Věta (Spojité parciální derivace a totální diferenciál): Nechť má f spojité parciální derivace v okolí bodu a. Potom má v a totální diferenciál.

Důkaz: Buď

$$\mathbf{h}^{(0)} = \mathbf{h}, \mathbf{h}^{(1)} = (0, h_2, ..., h_n), \mathbf{h}^{(2)} = (0, 0, h_3, ..., h_n)$$
 atp.

 $(\text{takže } \mathbf{h}^{(n)} = \mathbf{0})$. Potom máme

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} (f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)})) = M.$$

Podle Lagrangeovy věty 2.4 existují $0 \le \Theta_k \le 1$ takové, že

$$f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)}) = \frac{\partial f(a_1, ..., a_{k-1}, a_k + \Theta_k h_k, a_{k+1}, ..., a_n)}{\partial x_k} h_k$$

a můžeme pokračovat

$$\begin{split} M &= \sum \frac{\partial f(a_1, \dots a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} h_k + \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} h_k + ||\mathbf{h}|| \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}. \end{split}$$

Položíme

$$\mu(\mathbf{h}) = \begin{cases} \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}.\\ 0 \text{ pokud } \mathbf{h} = \mathbf{o} \end{cases}$$

Jelikož $\left| \frac{h_k}{||\mathbf{h}||} \right| \le 1$ a jelikož jsou funkce $\frac{\partial f}{\partial x_k}$ spojité, $\lim_{\mathbf{h} \to \mathbf{0}} \mu(\mathbf{h}) = 0$.

Důsledek: Můžeme tedy schematicky psát spojité $PD \implies TD \implies PD$.

2.3 Pravidla pro počítání parciálních derivací

Aritmetická pravidla jsou stejná jako pro obyčejné derivace (tady totiž obyčejnými derivacemi jsou). Trochu jinak tomu je u pravidla pro skládání. Pro derivace jedné proměnné se dokazuje z formule

$$f(a+h) - f(a) = Ah + |h|\mu(h)$$

tedy z diferenciálu (který je pro ně totéž jako existence derivace). Pravidlo pro skládání v nejjednodušší podobě následuje.

2.3.1 Složené funkce

Věta (Derivace složených funkcí více proměnných): Nechť má f(x) totální diferenciál v bodě **a**. Nechť mají $g_k(t)$ derivace v bodě b a nechť je $g_k(b) = a_k$ pro k = 1, ...n. Položme

$$F(t) = f(\mathbf{g}(t)) = f(g_1(t), ..., g_n(t)).$$

Potom má F derivaci v b, totiž

$$F'(b) = \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} \cdot g'_k(b).$$

Důkaz:

$$\begin{split} \frac{1}{h}(F(b+h) - F(b)) &= \frac{1}{h}(f(\mathbf{g}(b+h)) - f(\mathbf{g}(b)) = \\ &= \frac{1}{h}(f(\mathbf{g}(b) + (\mathbf{g}(b+h) - \mathbf{g}(b))) - f(\mathbf{g}(b)) = \\ &= \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h} + \mu(\mathbf{g}(b+h) - \mathbf{g}(b)) \max_k \frac{|g_k(b+h) - g_k(b)|}{h}. \end{split}$$

Máme $\lim_{h\to 0} \mu(\mathbf{g}(b+h)-\mathbf{g}(b))=0$ jelikož jsou funkce g_k spojité v b. Jelikož funkce g_k mají derivace, jsou $\max_k \frac{|g_k(b+h)-g_k(b)|}{h}$ omezené v dostatečně malém okolí nuly. Limita poslední sčítance je tedy nula a máme

$$F'(b) = \lim_{h \to 0} \frac{1}{h} (F(b+h) - F(b))$$

$$= \lim_{h \to 0} \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h}$$

$$= \sum_{k=1}^{n} A_k \lim_{h \to 0} \frac{g_k(b+h) - g_k(b)}{h}$$

$$= \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} g'_k(b)$$

Kde v poslední rovnosti využíváme tvrzení 2.2.2, díky kterému $A_k = \frac{\partial f(\mathbf{a})}{\partial x_k}$.

Intuice: Tečná nadrovina vyjádřená diferenciálem vnější funkce f nemá žádný důvod preferovat hlavní osy, v nichž se dějí derivace vnitřních funkcí. Proto by tady jen parciální derivace nestačily.

Věta (Řetízkové Pravidlo): Nechť má f(x) totální diferenciál v bodě **a**. Nechť mají funkce $g_k(t_1,...,t_r)$ parciální derivace v $\mathbf{b} = (b_1,...,b_r)$ a nechť je $g_k(\mathbf{b}) = a_k$ pro k = 1,...,n. Potom má funkce

$$(f \circ g)(t_1, ..., t_r) = f(g(t)) = f(g_1(t), ..., g_n(t))$$

všechny parciální derivace v b, a platí

$$\frac{\partial (f \circ g)(b)}{\partial t_j} = \sum_{k=1}^n \frac{\partial f(a)}{\partial x_k} \cdot \frac{\partial g_k(b)}{\partial t_j}.$$

Důkaz: Skládali jsme

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{R}$$

Skládejme místo f m-tici funkcí $\mathbf{f} = (f_1, ..., f_m)$, tedy $\mathbf{f} : \mathbb{E}_n \to \mathbb{E}_m$

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{E}_m$$

Pravidlo z předchozí věty dá tedy

$$\frac{\partial (f_i \circ \mathbf{g})(b)}{\partial t_j} = \sum_{k=1}^n \frac{\partial f_i(\mathbf{a})}{\partial x_k} \cdot \frac{\partial g_k(\mathbf{b})}{\partial t_j}.$$

Poznámka: Zavedeme-li matice $D\mathbf{f} = \left(\frac{\partial f_i(\mathbf{a})}{\partial x_k}\right)_{ik}$ je $D(\mathbf{f} \circ \mathbf{g}) = D\mathbf{f} \cdot D\mathbf{g}$ (napravo násobení matic), a tak to má být. $D\mathbf{h}$ je matice lineární aproximace funkce \mathbf{h} : lineární aproximace se skládají spolu s aproximovanými funkcemi.

2.3.2 Násobení

$$f(u,v) = u \cdot v$$

Potom $\frac{\partial f}{\partial u}=v$ a $\frac{\partial f}{\partial v}=u$ a pro $u=\psi(x)$ a $v=\phi(x)$ platí:

$$(\phi(x)\psi(y))' = \frac{\partial f}{\partial u}\phi'(x) + \frac{\partial f}{\partial v}\psi'(x) = \phi(x)\psi'(x) + \phi'(x)\psi(x)$$

2.3.3 Dělení

$$f(u,v) = \frac{u}{v}$$

Potom $\frac{\partial f}{\partial u} = \frac{1}{v}$ a $\frac{\partial f}{\partial v} = -\frac{u}{v^2}$ a pro $u = \psi(x)$ a $v = \phi(x)$ platí:

$$\left(\frac{\phi(x)}{\psi(x)}\right)' = \frac{\partial f}{\partial u}\phi'(x) - \frac{\partial f}{\partial v}\psi'(x) = \frac{1}{\psi(x)}\phi'(x) + \frac{1}{\psi(x)^2}\psi'(x) = \frac{\psi(x)\phi'(x) - \phi(x)\psi'(x)}{\psi(x)^2}$$

2.4 Lagrangeovy věty

Věta (Lagrangeova věta v jedné proměnné): Nechť f je spojitá funkce na intervalu [a,b] a má na (a,b) derivaci. Pak existuje bod $c \in (a,b)$ t. ž. tečna v bodě c je rovná přímce procházející (a,f(a)) a (b,f(b)):

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 nebo ekvivalentně $f(b) - f(a) = f'(c)(b - a)$

Definice (Konvexní podmnožina): Podmnožina $U \subseteq E_n$ je konvexní, pokud

$$\forall \mathbf{x}, \mathbf{y} \in U \implies \forall t, 0 \le t \le 1, (1-t)\mathbf{x} + t\mathbf{y} = \mathbf{x} + t(\mathbf{y} - \mathbf{x}) \in U$$

Příklad konvexní a nekonvexní podmnožiny E_n

Věta (Lagrangeova věta ve více proměnných): Nechť má f spojité parciální derivace v konvexní otevřené množině $U \subseteq \mathbb{E}_n$. Potom pro libovolné dva body $x, y \in U \ \exists 0 \leq \theta \leq 1 \ takové, že$:

$$f(\mathbf{y}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta(\mathbf{y} - \mathbf{x}))}{\partial x_j} (y_j - x_j)$$

Důkaz: Položme $F(t) = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ a \mathbf{g} t. ž. $g_j(t) = x_j + t(y_j - x_j)$. Potom máme $F(t) = f \circ \mathbf{g} = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ a

$$F'(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} g'_j(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} (y_j - x_j)$$

Podle Lagrangeovy věty $\exists \theta : 0 \le \theta \le 1$ a díky tomu, že $f(\mathbf{x}) = F(0)$ a $f(\mathbf{y}) = F(1)$ dostáváme:

$$f(\mathbf{y}) - f(\mathbf{x}) = F(1) - F(0) = F'(\theta)(1 - 0) = F'(\theta)$$

Poznámka: Často se užívá v tomto tvaru (porovnej s formulí pro totální diferenciál):

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta \mathbf{h})}{\partial x_j} h_j$$

2.5 Záměnnost pořadí při parciálních derivacích

Tvrzení (O záměnnosti): Mějme funkci f(x,y) takovou, že existují parciální derivace $\frac{\partial^2 f}{\partial x \partial y}$ a $\frac{\partial^2 f}{\partial y \partial x}$, které jsou spojité v nějakém okolí bodu (x,y). Potom:

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$$

Důkaz: Pokusíme se spočíst obě derivace v jednom kroku, tedy počítejme limitu $\lim_{h\to 0} F(h)$ funkce

$$F(h) = \frac{f(x+h, y+h) - f(x, y+h) - f(x+h, y) + f(x, y)}{h^2}$$

Položíme-li

$$\varphi_h(y) = f(x+h,y) - f(x,y)$$
 a $\psi_h(x) = f(x,y+h) - f(x,y),$

dostaneme pro F(h) dva výrazy:

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y))$$

$$F(h) = \frac{1}{h^2} (\psi_h(x+h) - \psi_h(x)).$$

První: Funkce φ_h má derivaci (podle y, jinou proměnnou nemá)

$$\varphi'_h(y) = \frac{\partial f(x+h,y)}{\partial y} - \frac{\partial f(x,y)}{\partial y}$$

a tedy podle Lagrangeovy věty 2.4 (druhý tvar, rozdíl je y+h-y=h):

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y)) = \frac{1}{h} \varphi'_h(y+\theta_1 h)$$
$$= \frac{\partial f(x+h, y+\theta_1 h)}{\partial y} - \frac{\partial f(x, y+\theta_1 h)}{\partial y}.$$

Potom znovu podle Lagrangeovy věty

$$F(h) = \frac{\partial}{\partial x} \left(\frac{\partial f(x + \theta_2 h, y + \theta_1 h)}{\partial y} \right)$$

pro nějaká θ_1,θ_2 mezi 0 a 1. Druhá, $\frac{1}{h^2}(\varphi_h(x+h)-\varphi_h(x)))$ dá podobně

$$F(h) = \frac{\partial}{\partial y} \left(\frac{\partial f(x + \theta_4 h, y + \theta_3 h)}{\partial x} \right)$$

Obě $\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})$ a $\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})$ jsou spojité (x,y), a $\lim_{h\to 0} F(h)$ můžeme počítat z kteréhokoli výrazu (první nebo druhá):

$$\lim_{h \to 0} F(h) = \frac{\partial^2 f(x, y)}{\partial x \partial y} = \frac{\partial^2 f(x, y)}{\partial y \partial x}.$$

Důsledek: Nechť má funkce f v proměnných spojité parciální derivace do řádu k. Potom hodnoty těchto derivací záleží pouze na tom, kolikrát bylo derivováno v každé z proměnných $x_1, ..., x_n$. Tedy za daných předpokladů můžeme obecné parciální derivace řádu $r \leq k$ psát

$$\frac{\partial^r f}{\partial x_1^{r_1} \partial x_2^{r_2} ... \partial x_n^{r_n}} \text{ kde } r_1 + r_2 + \dots + r_n = r$$

 $(r_i = 0 \text{ indukuje absenci symbolu } \partial x_i)$

2.6 Věta o konvergentní podposloupnosti

Věta (Z každé posloupnosti na kompaktním intervalu lze vybrat konvergentní podposloupnost): Mějme $a, b \in \mathbb{R}$ taková, že $\forall n : a \leq x_n \leq b$. Potom existuje podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$ která konverguje $v \mathbb{R}$ a platí $a \leq \lim_n x_{k_n} \leq b$

Důkaz: Vezměme

$$M = \{x : x \in \mathbb{R}, x \le x_n \text{ pro nekonečně mnoho n}\}$$

M je neprázdná a omezená protože $a \in M$ a b je horní mez M. Musí tedy existovat s = sup(M) a platí $a \le s \le b$. Dále, pro každé n je množina

$$K(n) = \{k : s - \frac{1}{n} < x_k < s + \frac{1}{n}\}$$

nekonečná: skutečně, máme $x>s-\varepsilon$ takové, že $x_n>x$ pro nekonečně mnoho n, zatím co podle definice množiny M je jen konečně mnoho n takových, že $x_n\geq s+\varepsilon$. Zvolme k_1 tak, aby

$$s - 1 < x_{k_1} < s + 1$$
.

Mějme zvolena $k_1 < k_2 < \cdots < k_n$ taková, že j = 1, ..., n

$$s - \frac{1}{j} < x_{k_j} < s + \frac{1}{j}.$$

Jelikož K(n+1) je nekonečná, můžeme zvolit $k_{n+1} > k_n$ tak, aby

$$s - \frac{1}{n+1} < x_{k_{n+1}} < s + \frac{1}{n+1}.$$

Takto zvolená podposloupnost $(x_{k_n})_n$ naší $(x_n)_n$ zřejmě konverguje k s.

3 Kompaktní prostory

Definice (Kompaktní metrický prostor): Metrický prostor (X, d) je kompaktní, pokud každá posloupnost v něm obsahuje konvergentní podposloupnost.

3.1 Vlastnosti kompaktních prostorů

Tvrzení (Podprostor kompaktního prostoru): *Podprostor kompaktního prostoru je kompaktní právě když je uzavřený.*

Důkaz:

- \Leftarrow Buď Y uzavřený podprostor kompaktního X a buď $(y_n)_n$ posloupnost v Y. Jako posloupnost v X má konvergentní podposloupnost s limitou a z uzavřenosti je konvergentní podposloupností a tato limita je v Y.
- $\neg \Leftarrow \neg$ Nechť Y není uzavřený. Potom existuje posloupnost $(y_n)_n$ v Y konvergentní v X taková, že $y = \lim_n y_n \notin Y$. Potom $(y_n)_n$ nemůže mít podposloupnost konvergentní v Y protože každá její podposloupnost konverguje k y.

Tvrzení (Uzavřenost kompaktního podprostoru): Bud'(X,d) libovolný metrický prostor a bud' podprostor $Y \subseteq X$ kompaktní. Potom Y je uzavřený v(X,d).

Důkaz: Nechť $(y_n)_n$ posloupnost v Y konverguje v X k limitě y. Potom každá podposloupnost $(y_n)_n$ konverguje k y a tedy je $y \in Y$.

Věta (Součin kompaktních prostorů): Součin konečně mnoha kompaktních prostorů je kompaktní.

Důkaz: Stačí dokázat pro součin dvou prostorů (součin prostorů je komutativní). Buďte $(X, d_1), (X, d_2)$ kompaktní a buď $((x_n, y_n))_n$ posloupnost v $X \times Y$. Zvolme konvergentní podposloupnost $(x_k)_n$ posloupnosti $(x_k)_n$ a konvergentní podposloupnost $(y_{k_k})_n$ posloupnosti $(y_{k_k})_n$. Potom je

$$((x_{k_{l_n}}, y_{k_{l_n}}))_n$$

konvergentní podposloupnost posloupnosti $((x_n, y_n))_n$.

3.2 Omezené metrické prostory

Definice (Omezený metrický prostor): Metrický prostor (X, d) je omezený, jestliže pro nějaké K platí

$$\forall x, y \in X : d(x, y) < K.$$

Tvrzení (Omezenost kompaktního prostoru): Každý kompaktní prostor je omezený.

Důkaz: Zvolme x_1 libovolně a x_n tak, aby $d(x_1, x_n) > n$. Posloupnost $(x_n)_n$ nemá konvergentní podposloupnost; kdyby x byla limita takové podposloupnosti, bylo by pro dost velké n nekonečně mnoho členů této podposloupnosti blíže k x_1 než $d(x_1, x_n) + 1$, což je spor.

3.3 Euklidovské metrické prostory

Poznámka: Kompaktní interval v \mathbb{E}_n : součin intervalů $\langle a_i, b_i \rangle$.

Věta (Kompaktnost podprostoru \mathbb{E}): Podprostor euklidovského prostoru \mathbb{E}_n je kompaktní právě když je uzavřený a omezený.

Důkaz:

- \Rightarrow : Že je uzavřený a omezený už víme (3.1, 3.2).
- \Leftarrow : Buď nyní $Y\subseteq \mathbb{E}_n$ omezený a uzavřený. Jelikož je omezený, tak pro dostatečně velký kompaktní interval platí

$$Y \subset J^n \subset \mathbb{E}_n$$
.

 J^n je kompaktní jako součin intervalů $\langle a_i, b_i \rangle$, a jelikož je Y uzavřený v \mathbb{E}_n je též uzavřený v J^n a tedy kompaktní.

3.4 Spojitá zobrazení

Tvrzení (Obraz spojitého zobrazení na kompaktním prostoru): $Bud'f:(X,d)\to (Y,d')$ spojité zobrazení a bud' $A\subseteq X$ kompaktní. Potom je f[A] kompaktní.

Důkaz: Buď $(y_n)_n$ posloupnost v f[A]. Zvolme $x_n \in A$ tak, aby $y_n = f(x_n)$. Buď $(x_{k_n})_n$ konvergentní podposloupnost Potom je $(y_{k_n})_n = (f(x_{k_n}))_n$ konvergentní podposloupnost $(x_n)_n$.

Tvrzení (Extrémy spojité funkce na kompaktním prostoru): Bud'(X,d) kompaktní. Potom každá spojitá funkce $f:(X,d)\to\mathbb{R}$ nabývá maxima i minima (t.j. nejsou nekonečné).

Důkaz: Buď $Y = f[X] \subseteq \mathbb{R}$ kompaktní. Je to tedy omezená množina a musí mít supremum $M \in \mathbb{R}$ a infimum $m \in \mathbb{R}$. Zřejmě máme d(m,Y) = d(M,Y) = 0 a jelikož Y je uzavřená, $m,M \in Y$. Víme, že spojitá f je charakterizována tím, že všechny vzory uzavřených množin jsou uzavřené. Nyní vidíme, že je-li definiční obor kompaktní, platí též, že obrazy uzavřených podmnožin jsou uzavřené.

Věta (Vzájemně jednoznačné spojité zobrazení): Je-li (X,d) kompaktní a je-li $f:(X,d) \to (Y,d')$ vzájemně jednoznačné spojité zobrazení, pak je f homeomorfismus.¹

Důkaz: Buď B uzavřená v Z. Potom je $A = g^{-1}[B]$ uzavřená \Longrightarrow kompaktnost v $X \Longrightarrow f[A]$ je kompaktní \Longrightarrow uzavřená v Y. Jelikož je f zobrazení na, máme $f[f^{-1}[C]] = C \ \forall C$. Proto je

$$h^{-1}[B] = f[f^{-1}[h^{-1}[B]]] = f[(h \circ f)^{-1}[B]] = f[g^{-1}[B]] = f[A]$$

uzavřená.

3.5 Cauchyovské posloupnosti

Definice (Cauchyovská posloupnost): Posloupnost $(x_n)_n$ v (X,d) je Cauchyovská, jestliže

$$\forall \varepsilon > 0 \exists n_0 : m, n \geq n_0 \implies d(x_m, x_n) < \varepsilon$$

Intuice: Intuitivně se jedná o posloupnost, jejíž prvky se k sobě dostávají libovolně blízko (tj. pro každou vzdálenost ε je jen konečně mnoho prvků od sebe dál než ε).

Tvrzení (Konvergence Cauchyovské posloupnosti): Nechť má Cauchyovská posloupnost konvergentní podposloupnost. Potom posloupnost konverguje k limitě podposloupnosti.

Důkaz: Nechť je $(x_n)_n$ Cauchyovská posloupnost, $(x_{k_n})_n$ její podposloupnost a nechť $\lim_n (x_{k_n}) = x$. Buď $d(x_m, x_n) < \varepsilon$ pro $\forall m, n \ge n_1$ a $d(x_{k_n}, x) \le \varepsilon$ pro $\forall n \ge n_2$. Položíme-li $n_0 = \max(n_1, n_2)$, máme pro $\forall n \ge n_0$ (protože $k_n \ge n$)

$$d(x_n, x) \le d(x_n, x_{k_n}) + d(x_{k_n}, x) < 2\varepsilon.$$

V první nerovnosti využíváme trojúhelníkovou nerovnost metriky.

Tvrzení (Cauchyovská posloupnost součinu): Posloupnost $(x_1^1,...,x_n^1), (x_1^2,...,x_n^2),..., (x_1^k,...,x_n^k),...$ je Cauchyovská v $\prod_{i=1}^n (X_i,d_i)$ právě když každá z posloupností $(x_i^k)_k$ je Cauchyovská v (X_i,d_i) .

Důkaz:

- \Rightarrow : Plyne bezprostředně z toho, že $d_i(u_i, v_i) \leq d((u_i)_i, (v_i)_i)$.
- \Leftarrow : Nechť je každá $(x_i^k)_k$ Cauchyovská. Pro $\varepsilon > 0$ a i zvolme k_i tak, aby pro $k, l \ge k_i$ bylo $d_i(x_i^k, x_i^l) < \varepsilon$. Potom pro $k, l \ge \max_i k_i$ máme

$$d((x_1^k,...,x_n^k),(x_1^l,...,x_n^l))<\varepsilon.$$

Věta (Součin úplných prostorů): Součin úplných prostorů je úplný. Speciálně, \mathbb{E}_n je úplný.

Důsledek: Podprostor Y euklidovského prostoru \mathbb{E}_n je úplný, právě když je uzavřený.

3.6 Úplné metrické prostory

Definice: Metrický prostor (X, d) je úplný, pokud v něm každá Cauchyovská posloupnost konverguje.

Příklad: \mathbb{R} úplný je, ale např. \mathbb{Q} úplný není – uvážíme-li posloupnost zlomků, které se v \mathbb{R} přibližují k $\sqrt{2}$, tak taková posloupnost v \mathbb{Q} nemá limitu.

¹Obecněji: Nechť $f:(X,d)\to (Y,d')$ je spojité a na. Mějme potom $g:(X,d)\to (Z,d'')$ spojité a $h:(Y,d')\to (Z,d'')$ takové, že $h\circ f=g$. Potom je h spojité.

Tvrzení (Úplnost podprostoru): Podprostor úplného prostoru je úplný, právě když je uzavřený.

Důkaz:

- \Leftarrow Buď $Y \subseteq (X,d)$ uzavřený. Buď $(y_n)_n$ Cauchyovská v Y. Potom je Cauchyovská a tedy konvergentní v X a kvůli uzavřenosti je limita v Y.
- $\neg \Leftarrow \neg$ Nechť Y není uzavřený. Potom existuje posloupnost $(y_n)_n$ v Y konvergentní v X taková, že $\lim_n y_n \notin Y$. Potom je $(y_n)_n$ Cauchyovská v X a jelikož je vzálenost stejná, též v Y. Ale v Y nekonverguje.

Tvrzení (Úplnost kompaktního prostoru): Každý kompaktní prostor je úplný.

 \mathbf{D} ůkaz: Cauchyovská posloupnost má podle kompaktnosti konvergentní podposloupnost a tedy konverguje.

4 Implicitní funkce

4.1 Ilustrační příklady

Příklad (Obecný): Mějme spojité reálné funkce $F_i(x_1,...,x_m,y_1,...,y_n)$ pro každé $i \in \{1,...,n\}$ v n+m proměnných. Určuje systém rovnic

$$F_1(x_1, ..., x_m, y_1, ..., y_n) = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_n(x_1, ..., x_m, y_1, ..., y_n) = 0$$

v nějakém smyslu funkce

$$f_i \equiv y_i(x_1, ..., x_m)$$

pro $i \in \{1, ..., n\}$? Pokud ano, jak a kde je určuje a jaké mají funkce vlastnosti?

Příklad
$$(F(x,y)=x^2+y^2-1)$$
: Mějme $F(x,y)=x^2+y^2-1$, neboli rovnici

$$x^2 + y^2 = 1$$

Několik pozorování:

- Pro některá x_0 jako například $x_0 < -1$ řešení neexistuje, o funkci y(x) nemluvě.
- Přestože řešení v nějakém okolí x_0 existuje, nemůžeme v nějakých situacích hovořit o funkci. Potřebujeme kolem řešení (x_0, y_0) vymezit okolí jak x_0 , tak y_0 .
- Máme také případy, jako ten, kdy $x_0 = 1$, kde je v okolí mnoho řešení, ale žádný(ani jednostranný) interval, kde by y bylo jednoznačné.

V případě F(x,y) už zádná další situace nenastane.

Intuice: 3b1b má na svém YouTubu o úvodu do implicitních funkcí hezké video [odkaz].

4.2 Věty o implicitní funkci

Věta: Buď F(x,y) reálná funkce definovaná v nějakém okolí bodu (x_0,y_0) . Nechť má F spojité parciální derivace do řádu $k \ge 1$ a nechť platí:

$$F(x_0, y_0) = 0$$

$$\left| \frac{\partial F(x_0, y_0)}{\partial y} \right| \neq 0$$

Potom $\exists \delta > 0$ a $\Delta > 0$ takové, že $\forall x \in (x_0 - \delta, x_0 + \delta) \exists ! y \in (y_0 - \Delta, y_0 + \Delta) : F(x, y) = 0$. Dále, označíme-li toto jediné y jako y = f(x), potom získaná $f : (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$ má spojité derivace do řádu k.

Definice (Jacobiho determinant): Pro konečnou posloupnost funkcí

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = (F_1(\mathbf{x}, y_1, ..., y_m), ..., F_m(\mathbf{x}, y_1, ..., y_m))$$

a pro $\mathbf{y} = (y_1, ..., y_m)$ se definuje Jacobiho determinant (Jakobián) jako

$$\frac{D(\mathbf{F})}{D(\mathbf{y})} = \det\left(\frac{\partial F_i}{\partial y_j}\right)_{i,j \in \{1,\dots,m\}}$$

Intuice: Stejně jako determinant v lineární algebře určuje, jak daná matice transformuje prostor (natahuje vektory v daných směrech), tak Jacobiho matice určuje, jak vektorová funkce $\mathbf{f} = (f_1, \dots, f_n)$ při transformaci oblasti $U \subseteq \mathbf{E}_n$ na $\mathbf{f}[U]$ natahuje nebo stlačuje objemy malých kousků oblasti U okolo \mathbf{x} v poměru (absolutní hodnoty) Jakobiánu.

Poznámka: 3b1b má o Jakobiánu na KhanAcademy super video [odkaz].

Věta: Buďte $F_i(\mathbf{x}, y_1, ..., y_m)$ pro $i \in 1, ..., m$ funkce n + m proměnných se spojitými parciálními derivacemi do řádu $k \geq 1$. Buď

$$\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{o}$$

$$\frac{D(\mathbf{F})}{D(\mathbf{v})}(\mathbf{x}^0, \mathbf{y}^0) \neq 0$$

Potom existují $\delta > 0$ a $\Delta > 0$ takové, že pro každé

$$\mathbf{x} \in (x_1^0 - \delta, x_1^0 + \delta) \times \dots \times (x_n^0 - \delta, x_n^0 + \delta)$$

existuje právě jedno

$$\mathbf{y} \in (y_1^0 - \Delta, y_1^0 + \Delta) \times \cdots \times (y_m^0 - \Delta, y_m^0 + \Delta)$$

takové, že

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$$

5 Extrémy

Věta (O hledání extrému funkcí): Buďte $f, g_1, ..., g_k$ reálné funkce definované na otevřené množině $D \subseteq \mathbb{E}_n$. Nechť mají spojité parciální derivace. Nechť je hodnost matice

$$M = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \dots & \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

maximálni, $tedy k \le n$, v každém bodě oboru D.

Jestliže funkce f nabývá v bodě $\mathbf{a} = (a_1, ..., a_n)$ lokálního extrému podmíněného vazbami

$$g_i(x_1,...,x_n) = 0 \forall i \in \{1,...,k\}$$

pak existují čísla $\lambda_1,...,\lambda_k$ taková, že $\forall i \in 1,...,n$ platí

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^k \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0$$

Důkaz: Matice M má hodnost k právě když aspoň jedna její $k \times k$ podmatice M je regulární (a tedy má nenulový determinant). Dejme tomu,

$$0 \neq \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_k} \end{vmatrix}$$

Potom podle věty o implicitních funkcích máme okolí bodu **a** funkce $\phi_i(x_{k+1},...,x_n)$ se spojitými parciálními derivacemi takové, že (pišme $\tilde{\mathbf{x}}$ pro $(x_{k+1},...,x_n)$)

$$g_i(\phi_1(\tilde{\mathbf{x}}), ..., \phi_k(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}) = 0 \text{ pro } i = 1, ..., k.$$

tedy lokální maximum nebo minimum funkce $f(\mathbf{x})$ v **a** podmíněné danými vazbami dává lokální maximum či minimum (nepodmíněné) funkce

$$F(\tilde{\mathbf{x}}) = f(\phi_1(\tilde{\mathbf{x}}), ..., \phi_k(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}),$$

 $v \tilde{\mathbf{a}}$, a tedy je

$$\frac{\partial F(\tilde{\mathbf{a}})}{\partial x_i} = 0 \text{ pro } i = k+1, ..., n,$$

to jest, podle řetízkového pravidla

$$\sum_{r=1}^{k} \frac{\partial f(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial f(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Derivováním konstantní $g_i(\phi_1(\tilde{\mathbf{x}},...,\phi_k(\tilde{\mathbf{x}}),\tilde{\mathbf{x}})=0$ dostaneme pro j=1,...,k

$$\sum_{r=1}^{k} \frac{\partial g_j(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial g_j(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Dále použijeme znovu vlastnost toho, že determinant je nenulový. Vzhledem k hodnosti matice má systém lineárních rovnic

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0, i = 1, ..., k$$

jediné řešení $\lambda_1, ..., \lambda_k$. To jsou rovnosti z tvrzení, ale jen pro $i \leq k$. Musíme ještě dokázat, že to platí i pro i > k.

$$\begin{split} \frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} &= \\ &= -\sum_{r=1}^k \frac{\partial f(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} - \sum_{j=1}^k \lambda_j \cdot \sum_{r=1}^k \frac{\partial g_j(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} &= \\ &= -\sum_{r=1}^n \left(\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} \right) \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} &= \\ &= -\sum_{r=1}^n 0 \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} &= 0. \end{split}$$

5.1 Regulární zobrazení

Definice (Regulární zobrazení): Buď $U \subseteq \mathbb{E}_n$ otevřená a nechť mají f_i pro $i \in 1, ..., n$ spojité parciální derivace. Výsledné zobrazení

$$\mathbf{f} = (f_1, ..., f_n) : U \to \mathbb{E}_n$$

je regulární, jestliže

$$\forall \mathbf{x} \in U : \frac{D(\mathbf{f})}{D(\mathbf{x})}(\mathbf{x}) \neq 0$$

Intuice: Regularita je zobecnění pojmu prostého zobrazení pro vícerozměrná zobrazení.

Tvrzení (Obraz regulární funkce): Je-li $\mathbf{f}: U \to \mathbb{E}_n$ regulární, je obraz $\mathbf{f}[V]$ každé otevřené podmnožiny $V \subseteq U$ otevřený.

Důkaz: Vezměme $f(\mathbf{x}^0) = \mathbf{y}^0$. Definujeme $\mathbf{F}: V \times \mathbb{E}_n \to \mathbb{E}_n$ předpisem

$$F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i$$
.

Potom je $\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{0}$ a $\frac{D(\mathbf{F})}{D(\mathbf{x})} \neq 0$, a tedy můžeme použít větu o IF a dostaneme $\delta > 0$ a $\Delta > 0$: $\forall \mathbf{y}$: $||\mathbf{y} - \mathbf{y}^0|| < \delta \ \exists \mathbf{x} : ||\mathbf{x} - \mathbf{x}^0|| < \Delta \ \text{a} \ F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i = 0$. To znamená, že máme $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ (pozor, y_i jsou zde proměnné, x_j hledané funkce a

$$\Omega(\mathbf{y}^0, \delta) = {\mathbf{y} : ||\mathbf{y} - \mathbf{y}^0|| < \delta} \subseteq \mathbf{f}[V].$$

Tvrzení (Inverz regulárního zobrazení): Buď $\mathbf{f}: U \to \mathbb{E}_n$ regulární zobrazení. Potom $\forall \mathbf{x}^0 \in U \exists$ otevřené okolí V takové, že restrikce $\mathbf{f}|V$ je bijekce. Navíc, zobrazení $\mathbf{g}: f[V] \to \mathbb{E}_n$ inverzní k $\mathbf{f}|V$ je regulární.

Důkaz: Znovu použijeme zobrazení $\mathbf{F} = (F_1, ..., F_n)$, kde $F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i$. Pro dost malé $\Delta > 0$ máme právě jedno $\mathbf{x} = \mathbf{g}(\mathbf{y})$ takové, že $\mathbf{F}(\mathbf{g}(\mathbf{y}), \mathbf{y}) = 0$ a $||\mathbf{x} - \mathbf{x}^0|| < \Delta$. Toto \mathbf{g} má navíc spojité parciální derivace. Máme

$$D(id) = D(\mathbf{f} \circ \mathbf{g}) = D(\mathbf{f}) \cdot D(\mathbf{g}).$$

Podle řetízkového pravidla (a věty o násobení determinantů) je

$$\frac{D(\mathbf{f})}{D(\mathbf{x})} \cdot \frac{D(\mathbf{g})}{D(\mathbf{y})} = \det D(\mathbf{f}) \cdot \det D(\mathbf{g}) = 1$$

a tedy je pro každé $\mathbf{y} \in \mathbf{f}[V]$: $\frac{D(\mathbf{g})}{D(\mathbf{y})}(\mathbf{y}) \neq 0$.

Důsledek: Prosté regulární zobrazení $\mathbf{f}: U \to \mathbb{E}_n$ má regulární inverzi $\mathbf{g}: \mathbf{f}[U] \to \mathbb{E}_n$

6 Objemy a obsahy

Pro zbytek sekce $A \subseteq \mathbb{E}_m$ (speciálně \mathbb{E}_2)

6.1 Vlastnosti

- $A \subseteq B \implies \mathbf{vol}(A) \le \mathbf{vol}(B)$
- A, B disjunktní \Longrightarrow $\mathbf{vol}(A \cup B) = \mathbf{vol}(A) + \mathbf{vol}(B)$
- vol je zachován isometrií (zobrazením zachovávajíci vzdálenosti)

- V \mathbb{E}_2 : **vol** $(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- V \mathbb{E}_n : vol $(\prod_i \langle a_i, b_i \rangle = (b_1 a_1) \cdot \cdot \cdot \cdot \cdot (b_n a_n)$
- $\operatorname{vol}(A \cup B) = \operatorname{vol}(A) + \operatorname{vol}(B) \operatorname{vol}(A \cap B)$.
 - pokud jsou všechny definované
 - **vol** $(A_1 \cup A_2 \cup A_3 ... \cup A_n) \implies$ princip inkluze a exkluze

7 Stejnoměrná spojitost

Definice (Stejnoměrná spojitost): Řekneme, že $f:(X,d)\to (Y,d')$ je stejnoměrně spojité, je-li

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x, y : d(x, y) < \delta \implies d'(f(x), f(y)) < \varepsilon$$

Příklad: $f = (x \mapsto x^2) : \mathbb{R} \to \mathbb{R}$ je spojitá, ale ne stejnoměrně spojitá. Máme $|f(x) - f(y)| = |x + y| \cdot |x - y|$; tedy abychom dostali $|f(x) - f(y)| < \varepsilon$ v blízkosti x = 100 potřebujeme δ stokrát menší než v blízkosti x = 1.

Věta (Spojitost zobrazení na kompaktním prostoru): Je-li (X,d) kompaktní, je každé spojité $f:(X,d) \to (Y,d')$ stejnoměrně spojité. Zejména to platí pro spojité reálné funkce na kompaktních intervalech.

Důkaz: Nechť $f:(X,d)\to (Y,d')$ není stejnoměrně spojité. Potom $\exists \varepsilon>0: \forall n\ \exists x_n,y_n:$

$$d(x_n, y_n) < \frac{1}{n}$$

ale

$$d'(f(x_n), f(y_n)) \ge \varepsilon.$$

Zvolme konvergentní podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$. Označme $a = \lim_n x_{k_n}$. Potom podle $d(x_n, y_n) < \frac{1}{n}$ je též $a = \lim_n y_{k_n}$. Podle $d'(f(x_n), f(y_n)) \ge \varepsilon$ nemůže být $f(a) = \lim_n f(x_{k_n})$ a zároveň $f(a) = \lim_n f(y_{k_n})$, a tedy f není ani spojité.

8 Opakování Riemannova integrálu v jedné proměnné

Definice (Rozdělení) intervalu $\langle a, b \rangle$ je posloupnost

$$P: a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

Definice (Zjemnění) rozkladu P je rozklad P^\prime takový, že

$$P': a = t'_0 < t'_1 < \dots < t'_{m-1} < t'_m = b$$

kde
$$\{t_i : j = 1, ..., n - 1\} \subseteq \{t'_i : j = 1, ..., m - 1\}.$$

Definice (Jemnost) rozkladu P je

$$\mu(P) = \max_{j} (t_j - t_{j-1}).$$

Definice (Horní/dolní součty): Pro omezenou $f: J = \langle a, b \rangle \to \mathbb{R}$ a P definujeme dolní a horní součty

$$s(f, P) = \sum_{j=1}^{n} m_j (t_j - t_{j-1}) \text{ resp.}$$

$$S(f, P) = \sum_{j=1}^{n} M_j(t_j - t_{j-1})$$

kde

$$m_j = \inf\{f(x) : t_{j-1} \le x \le t_j\}, M_j = \sup\{f(x) : t_{j-1} \le x \le t_j\}.$$

Tvrzení (Vlastnosti součtů):

• Pokud P' zjemňuje P dostáváme

$$s(f, P) \le s(f, P')$$
 a $S(f, P) \ge S(f, P')$

• Pro každá dvě P₁, P₂ je

$$s(f, P_1) \le S(f, P_2).$$

Definice ((Horní/dolní) Riemannův integrál) f přes $\langle a,b \rangle$ jsou výrazy:

$$\underline{\int}_a^b f(x) dx = \sup \{ s(f, P) : P \text{ rozdělení} \} \qquad \text{a} \qquad \overline{\int}_a^b f(x) dx = \inf \{ S(f, P) : P \text{ rozdělení} \}$$

Jsou-li si rovny, mluvíme o Riemannově integrálu funkce f přes $\langle a, b \rangle$:

$$\int_{a}^{b} f(x)dx$$

8.1 Existence Riemannova integrálu

Věta (Kritérium existence Riemannova integrálu): Riemannův integrál $\int_a^b f(x)dx$ existuje právě když $\forall \varepsilon > 0 \; \exists \; rozdělení \; P \; takové, \; že$

$$S(f, P) - s(f, P) < \varepsilon$$
.

Důkaz:

 \Rightarrow : Nechť $\int_a^b f(x)dx$ existuje a nechť $\varepsilon > 0$. Potom existují rozdělení P_1 a P_2 takové, že

$$S(f, P_1) < \int_a^b f(x)dx + \frac{\varepsilon}{2}$$
 a $s(f, P_2) > \int_a^b f(x)dx - \frac{\varepsilon}{2}$

Potom platí pro společné zjemnění P těch dvou P_1, P_2

$$S(f,P) - s(f,P) < \int_a^b f(x)dx + \frac{\varepsilon}{2} - \int_a^b f(x)dx + \frac{\varepsilon}{2} = \varepsilon.$$

 \Leftarrow : Nechť druhé tvrzení platí. Zvolme $\varepsilon>0: S(f,P)-s(f,P)<\varepsilon.$ Potom je

$$\overline{\int}_{a}^{b} f(x)dx \le S(f, P) < s(f, P) + \varepsilon \le \underline{\int}_{a}^{b} f(x)dx + \varepsilon,$$

a jelikož ε bylo libovolně malé, vidíme, že $\overline{\int}_a^b f(x) dx = \underline{\int}_a^b f(x) dx$.

Věta (Existence Riemannova integrálu pro spojité funkce v \mathbb{R}): Pro každou spojitou $f:\langle a,b\rangle\to\mathbb{R}$ Riemannův integrál $\int_a^b f$ existuje.

21

Důkaz: Pro $\varepsilon > 0$ zvolme $\delta > 0$ tak, aby

$$\forall x, y : |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b - a}.$$

Je-li $\mu(P) < \delta$ máme $t_j - t_{j-1} < \delta$ pro všechna j, a tedy

$$M_j - m_j = \sup\{f(x) : t_{j-1} \le x \le t_j\} - \inf\{f(x) : t_{j-1} \le x \le t_j\} \le \sup\{|f(x) - f(y)| : t_{j-1} \le x, y \le t_j\} \le \frac{\varepsilon}{b-a}$$

takže

$$S(f,P) - s(f,P) = \sum (M_j - m_j)(t_j - t_{j-1}) \le \frac{\varepsilon}{b-a} \sum (t_j - t_j - 1) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

8.2 Integrální věta o střední hodnotě

Věta (Integrální věta o střední hodnotě): $Bud'f: \langle a,b\rangle \to \mathbb{R}$ spojitá. Potom existuje $c \in \langle a,b\rangle$ t. ž.

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Důkaz: Položme $m = \min\{f(x) \mid a \le x \le b\}$ a $M = \max\{f(x) \mid a \le x \le b\}$ Zřejmě

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Existuje tedy K takové, že $m \leq K \leq M$ a $\int_a^b f(x) \, dx = K(b-a)$. Jelikož f je spojitá, existuje $c \in \langle a, b \rangle$ takové, že K = f(c).

8.3 Základní věta analýzy

Věta (Základní věta analýzy): Buď $f: \langle a, b \rangle \to \mathbb{R}$ spojitá. Pro $x \in \langle a, b \rangle$ definujeme

$$F(x) = \int_{a}^{x} f(t) dt$$

Potom je F'(x) = f(x)

Důkaz: Pro $h \neq 0$ máme

$$\frac{1}{h}(F(x+h) - f(x)) = \frac{1}{h}\left(\int_{a}^{x+h} f - \int_{a}^{x} f\right) = \frac{1}{h}\int_{x}^{x+h} f = \frac{1}{h}f(x+\theta h)h = f(x+\theta h)$$

V druhé úpravě používáme úvahu $\int_a^b f + \int_b^c f = \int_a^c f$ a ve třetí integrální větu o střední hodnotě.

Důsledek:

1. Spojitá funkce $f:\langle a,b\rangle\to\mathbb{R}$ má na intervalu (a,b) primitivní funkci spojitou na $\langle a,b\rangle$. Pro kteroukoli primitivní funkci G funkce f na (a,b) spojitou na $\langle a,b\rangle$ platí

$$\int_{a}^{b} f(t)dt = G(b) - G(a).$$

2. Integrální věta o střední hodnotě:

$$F(b) - F(a) = \int_{a}^{b} f = f(c)(b - a) = F'(c)(b - a)$$

9 Riemannův integrál ve více proměnných

9.1 Definice

Definice (*n*-rozměrný kompaktní interval) (v \mathbb{E}_n) je

$$J = \langle a_1, b_1 \rangle \times \cdots \times \langle a_n, b_n \rangle$$

Definice (Rozdělení intervalu) J je posloupnost rozdělení $P = (P^1, ..., P^n)$:

$$P^j : a_j = t_{j,0} < t_{j,1} < \dots < t_{j,n_j-1} < t_{j,n_j} = b_j$$

Definice (Cihly): Intervalům

$$\langle t_{1,i_1}, t_{1,i_1+1} \rangle \times \cdots \times \langle t_{n,i_n}, t_{n,i_n+1} \rangle$$

říkáme cihly rozdělení P a

$$\mathcal{B}(P)$$

je množina všech cihel rozdělení P. Je to skoro disjunktní rozdělení intervalu J. Různé cihly z $\mathcal{B}(P)$ se totiž setkávají jen v podmnožinách okrajů, tedy v množinách objemu 0, díky čemuž platí:

$$\mathbf{vol}(J) = \sum {\{\mathbf{vol}(B) : B \in \mathcal{B}(J)\}}.$$

Definice (Průměr (diametr)) intervalu $J = \langle r_1, s_1 \rangle \times \cdots \times \langle r_n, s_n \rangle$ je

$$\mathbf{diam}(J) = \max_{i} (s_i - r_i)$$

Definice (Jemnost) rozdělení P je

$$\mu(P) = \max\{\operatorname{\mathbf{diam}}(B) : B \in \mathcal{B}(P)\}\$$

Definice (Zjemnění): Rozdělení $Q=(Q^1,...Q^n)$ zjemňuje rozdělení $P=(P^1,...,P^n)$ jestliže každé Q^j zjemňuje P^j . Vytváří/indukuje tak rozdělení $Q_B \ \forall B \in \mathcal{B}(P)$ a jistě platí

$$\mathcal{B}(Q) = \bigcup \{ \mathcal{B}(Q_B) : B \in \mathcal{B}(P) \}.$$

Pozorování: Každá dvě rozdělení P,Q n-rozměrného kompaktního intervalu J mají společné zjemnění.

Definice ("Supremum/infimum" na kompaktním intervalu): Je dána omezená $f:J\to\mathbb{R}$ na n-rozměrném kompaktním intervalu J a $B\subseteq J$ je n-rozměrný kompaktní podinterval intervalu J. Položme

$$m(f, B) = \inf\{f(\mathbf{x}) : \mathbf{x} \in B\}$$
 a $M(f, B) = \sup\{f(\mathbf{x}) : \mathbf{x} \in B\}.$

Pozorování: $m(f, B) \leq M(f, B)$ a je-li $C \subseteq B$, pak

$$m(f,C) \ge m(f,B)$$
 a $M(f,C) \le M(f,B)$.

Definice (Horní/dolní součty): Pro rozdělení P intervalu J a omezenou funkci $f: J \to \mathbb{R}$ definujeme

$$s_J(f, P) = \sum \{m(f, B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\},$$

$$S_J(f,P) = \sum \{M(f,B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\}.$$

Pozorování (obecné): $f: X \to \mathbb{R}$ je omezená, $X = \bigcup X_i$ a $X_i = \bigcup X_{ij}$ jsou konečná skoro disjunktní sjednocení. Nechť dále (a analogicky pro m infima):

$$M_i = \sup\{f(x) : x \in X_i\},\$$

$$M_{ij} = \sup\{f(x) : x \in X_{ij}\}\$$

Triviálně $M_{ij} \leq M_i$ (M_i je horní mez množiny $\{f(x) : x \in X_{ij}\}$), tedy:

$$\sum M_i \mathbf{vol}(X_i) = \sum_i M_i \sum_j \mathbf{vol}(X_{ij})$$

$$= \sum_{ij} M_i \mathbf{vol}(X_{ij})$$

$$\geq \sum_{ij} M_{ij} \mathbf{vol}(X_{ij})$$

Tvrzení: Nechť Q zjemňuje P. Potom

$$s(f,Q) \ge s(f,P)$$
 a $S(f,Q) \le S(f,P)$

Důkaz: Použijeme předchozí pozorování pro $\{X_i \mid i\} = \mathcal{B}(P), \{X_{ij} \mid j\} = \mathcal{B}(Q_B)$ a samozřejmě i pro $\{X_{ij} \mid ij\} = \mathcal{B}(Q).$

Tvrzení: Pro libovolná dvě rozdělení P,Q intervalu J máme $s(f,P) \leq S(f,Q)$.

Důkaz: Jelikož je triviálně $s(f, P) \leq S(f, P)$, použitím společného zjemnění R rozdělení P, Q dostaneme

$$s(f, P) \le s(f, R) \le S(f, R) \le S(f, Q).$$

Definice ((Horní/dolní) Riemannův integrál): Množiny $\{s(f, P) \mid P \text{ rozdělení}\}$ a $\{S(f, P) \mid P \text{ rozdělení}\}$ jsou shora/zdola omezené (předchozí tvrzení) a můžeme definovat dolní/horní Riemannův integrál funkce f přes J jako

Jsou-li si rovny, máme Riemannův integrál funkce f přes J, značíme².

$$\int_{J} f(\mathbf{x}) d\mathbf{x} \quad \text{nebo prostě} \quad \int_{J} f$$

9.2 Existence

Věta (Kritérium existence Riemannova integrálu): Riemannův integrál $\int_J f(\mathbf{x}) d\mathbf{x}$ existuje právě když $\forall \varepsilon > 0$ existuje rozdělení P takové, že

$$S_J(f,P) - s_J(f,P) < \varepsilon$$

Důkaz: Nerovnost dává

$$S_J(f,P) < \varepsilon + s_J(f,P)$$

z toho dostaneme

$$\overline{\int} \leq S_J(f, P) \leq \varepsilon + s_J(f, P) \leq \varepsilon + \underline{\int} \leq \varepsilon + \overline{\int}$$

pro libovolně malé ε .

 $^{^2}$ Někdy se také značí jako $\int_I f(x_1,...,x_n) dx_1,...x_n$ nebo $\int_I f(x_1,...,x_n) dx_1 dx_2 \cdot \cdot \cdot \cdot dx_n$

9.3 Riemannův integrál pro spojité funkce

Věta (Riemannův integrál pro spojité funkce): Každá spojitá funkce $f: J \to \mathbb{R}$ na n-rozměrném kompaktním intervalu má Riemannův integrál $\int_I f$.

Důkaz: V \mathbb{E}_n budeme používat metriku σ definovanou předpisem

$$\sigma(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$

Jelikož je f stejnoměrně spojitá, můžeme pro $\varepsilon > 0$ zvolit $\delta > 0$ takové, že

$$\sigma(\mathbf{x}, \mathbf{y}) < \delta \quad \Rightarrow \quad |f(\mathbf{x}) - f(\mathbf{y})| < \frac{\varepsilon}{\operatorname{vol}(J)}$$

Připomeňme si jemnost $\mu(P)$. Je-li $\mu(P) < \delta$, pak je diam $(B) < \delta$ pro všechny $B \in \mathcal{B}(P)$ a tedy

$$M(f,B) - m(f,B) = \sup\{f(\mathbf{x}) \mid \mathbf{x} \in B\} - \inf\{f(\mathbf{x}) \mid \mathbf{x} \in B\} \le$$

$$\leq \sup\{|f(\mathbf{x}) - f(\mathbf{y})| : \mathbf{x}, \mathbf{y} \in B\} = \frac{\varepsilon}{\operatorname{vol}(J)}$$

takže

$$S(f,P) - s(f,P) = \sum \{ (M(f,B) - m(f,B)) \cdot \text{vol}(B) \mid B \in \mathcal{B}(P) \} \le \frac{\varepsilon}{\text{vol}(J)} \sum \{ \text{vol}(B) \mid B \in \mathcal{B}(P) \} = \frac{\varepsilon}{\text{vol}(J)} \text{vol}(J) = \varepsilon$$

9.4 Fubiniova věta

Věta (Fubiniova věta): Vezměme součin $J=J'\times J''\subseteq\mathbb{E}_{m+n}$ intervalů $J'\subseteq\mathbb{E}_m,\ J''\subseteq\mathbb{E}_n.$ Nechť existuje

$$\int_{J} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \mathbf{y}$$

a nechť pro každé $\mathbf{x} \in J'$, resp. $\mathbf{y} \in J''$, existuje

$$\int_{J'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \qquad a \qquad \int_{J''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

Potom je

$$\int_{I} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \mathbf{y} = \int_{I'} \left(\int_{I''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) d\mathbf{x} = \int_{I''} \left(\int_{I'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \right) d\mathbf{y}$$

Příklad: Ve dvou proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x, y) \, dy \right) \, dx$$

Ve třech proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}$$

Obecně

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\dots \left(\int_{a_{n}}^{b_{n}} f(x_{1}, x_{2}, \dots, x_{n}) dx_{n} \right) \dots \right) dx_{2} \right) dx_{1}$$

Důkaz: Položme

$$F(\mathbf{x}) = \int_{J''} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$$

Dokážeme, že $\int_{\mathcal{P}} F$ existuje a že

$$\int_{I} f = \int_{I'} F$$

Zvolme rozdělení P intervalu J tak, aby

$$\int f - \varepsilon \le s(f, P) \le S(f, P) \le \int f + \varepsilon$$

Toto rozdělení je tvořeno rozděleními P' intervalu J' a P'' intervalu J''. Máme

$$\mathcal{B}(P) = \{ B' \times B'' \mid B' \in \mathcal{B}(P'), B'' \in \mathcal{B}(P'') \}$$

a každá cihla Pse objeví jako právě jedno $B'\times B''.$ Potom je

$$F(\mathbf{x}) \leq \sum_{B'' \in \mathcal{B}(P'')} \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \text{vol}(B'')$$

a tedy

$$S(F, P') \leq \sum_{B' \in \mathcal{B}(P')} \max_{\mathbf{x} \in B'} \left(\sum_{B'' \in \mathcal{B}} (P'') \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \right) \cdot \operatorname{vol}(B') \leq$$

$$\leq \sum_{B' \in \mathcal{B}(P')} \sum_{B'' \in \mathcal{B}(P'')} \max_{(\mathbf{x}, \mathbf{y}) \in B' \times B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \cdot \operatorname{vol}(B') \leq$$

$$\leq \sum_{B' \times B'' \in \mathcal{B}(P)} \max_{\mathbf{z} \in B' \times B''} f(\mathbf{z}) \cdot \operatorname{vol}(B' \times B'') =$$

$$= S(f, P)$$

a podobně

$$s(f, P) \le s(F, P')$$

Máme tedy

$$\int_{J} f - \varepsilon \le s(F, P') \le \int_{J'} F \le S(F, P) \le \int_{J} f + \varepsilon$$

a $\int_{J'} F$ je roven $\int_{J} f$.

9.5 Lebesgueův integrál

Riemannův integrál je intuitivně velmi uspokojivý a počítá to, co chceme, pokud tedy funguje. Jeho užití má ale několik problémů:

- Nemusí existovat i pro některé přirozeně definované funkce, nebo přinejmenším není snadno vidět, zda existuje.
- Nemůžeme provádět užitečné operace (limity, derivování) dost univerzálně.

Definice (Lebesgueův integrál) je rozšíření Riemannova integrálu, kde můžeme dělat prakticky cokoliv, za snadno zapamatelných podmínek:

1. Je-li J interval a Riemannův integrál $\int_{J} f$ existuje, shoduje se s Lebesgueovým.

2. Pokud $\int_{D_n} f$ f existuje pro n=1,2,..., existuje i

$$\int_{\bigcup D_n} f$$

- 3. Pokud $\int_D f_n$ existuje a posloupnost $(f_n)_n$ je monotónní, platí $\int_D \lim_n f_n = \lim_n \int_D f_n$
- 4. Pokud $\int_D f_n$ existuje a $|f_n| \leq g$ pro nějaké g pro které existuje $\int_D g$, platí $\int_D \lim_n f_n = \lim_n \int_D f_n$
- 5. (Důsledek 4.) Je-liDomezená, $|f_n(x)| \leq C$ a $\int_D f_n$ existují, platí $\int_D \lim_n f_n = \lim_n \int_D f_n$
- 6. Buď U okolí bodu t_0 a g takové, že existují $\int_D g$ a $\int_D f(t,x)\,dx$ a $\forall t\in U\backslash\{t_0\}: |f(t,x)|\leq g(x),$ potom

$$\int_{D} f(t_0, x) dx = \lim_{t \to t_0} \int_{D} f(t, x) dx$$

7. Jestliže pro integrovatelnou g platí

$$\left|\frac{\partial f(t,x)}{\partial t}\right| \leq g(x)$$

a v nějakém okolí Ubodu t_0 všechno dává smysl(?), potom platí

$$\int_{D} \frac{\partial f(t_0, -)}{\partial t} = \frac{d}{dt} \int_{D} f(t_0, -)$$

9.6 Tietzeova věta

Věta (Tietzeova věta): Buď Y uzavřený podprostor metrického prostoru X. Potom můžeme každou spojitou reálnou funkci f na Y takovou, že $\forall x \in Y : a \leq f(x) \leq b$ rozšířit na stejně omezenou spojitou funkci g na X.