AN ARTICLE RECOMMENDATION SYSTEM BASED ON COLLABORATIVE TOPIC MODELING

Dang Fan, Wang Shuhao, Ding Peng

June 4, 2012

Overview

- Modeling
- Implementation
- Characteristics and performance

²/₁₂

Recommendations tasks

Collaborative Filtering

- User $i: u_i \in \mathbb{R}^K$
- Item $j: v_j \in \mathbb{R}^K$
- $\hat{r}_{ij} = u_i^T v_j$

Recommendations tasks

Collaborative Filtering

- User $i: u_i \in \mathbb{R}^K$
- Item $j: v_i \in \mathbb{R}^K$
- $\hat{r}_{ij} = u_i^T v_j$

Probabilistic Matrix Factorization

- $u_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K)$
- $v_j \sim \mathcal{N}(0, \lambda_v^{-1} I_K)$
- $r_{ij} \sim \mathcal{N}(u_i^T v_j, c_{ij}^{-1})$

Recommendations tasks

Collaborative Filtering

- User $i: u_i \in \mathbb{R}^K$
- Item $j: v_i \in \mathbb{R}^K$
- $\hat{r}_{ij} = u_i^T v_j$

Probabilistic Matrix Factorization

- $u_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K)$
- $v_j \sim \mathcal{N}(0, \lambda_v^{-1} I_K)$
- $r_{ij} \sim \mathcal{N}(u_i^T v_j, c_{ij}^{-1})$

Probabilistic Topic Models

Latent Dirichlet Allocation

- K topics $\beta = \beta_{1:K}$
- For each article w_i
 - Topic distribution $heta_j \sim$ Dirichlet(lpha)
 - **2.** For each word n
 - Topic $z_{jn} \sim \mathsf{Multinomial}(heta_j)$
 - Word $w_{jn} \sim$ Multinomial $(\beta_{z_{jn}})$

A hybrid approach

Collaborative Topic Regression

- 1. For each user i, $u_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K)$
- 2. For each item j,
 - a) Topic distribution $\theta_j \sim \mathsf{Dirichlet}(\alpha)$
 - b) Item latent offset $\epsilon_j \sim \mathcal{N}(0, \lambda_v^{-1} I_K)$

$$v_j = \epsilon_j + \theta_j$$

- c) For each word w_{jn} ,
 - i. Topic $z_{jn} \sim \text{Multinomial}(\theta_j)$
 - ii. Word $w_{jn} \sim \text{Multinomial}(\beta_{z_{jn}})$
- 3. For each user-item pair (i, j), $r_{ij} \sim \mathcal{N}(u_i^T v_j, c_{ij}^{-1})$

Implementation

The framework

Implementation

Implementation of LDA

Expectation-Maximization Algorithm

- E Step: Calculate the expected value of the log likelihood function
- M Step: Find the parameter that maximizes this quantity

An open-source Java project lda-j can be found on the Internet.

Implementation

Implementation of CTR

EM-style algorithm

$$\mathcal{L} = -\frac{\lambda_u}{2} \Sigma_i u_i^T u_i - \frac{\lambda_v}{2} \Sigma_j (v_j - \theta_j)^T (v_j - \theta_j)$$
$$+ \Sigma_j \Sigma_n \log(\Sigma_k \theta_{jk} \beta_{k, w_{jn}}) - \Sigma_{i, j} \frac{c_{ij}}{2} (r_{ij} - u_i^T v_j)^2$$

Characteristics

- A hybrid approach
- Good performance

K(Topics)	Accuracy(of 5)	AP@5	Running Time
25	2.9831	0.7435	40min
50	3.4597	0.8296	54min
75	3.6293	0.8545	I.8h
100	3.7348	0.8717	3.5h
125	3.7709	0.8794	4.3h
150	3.8080	0.8812	7.0h
175	3.8258	0.8873	9.8h
200	3.8427	0.8881	13.2h

Accuracy

AP@5

Running Time

Thanks