Procedure: Creep Test at SNL

Version Date:

August 7, 2015

Failed

			-
Form	Completed	Bv.	TOL
LOIL	COMMENCE		

1 Test Description

Parameters	Value
Test Name	UNM-WP-HY-175-OS
Salt Provenance (Circle One)	Avery Island WIPP
Test Type (Circle One)	Hydrostatic Shear
Salt Can Label	3
Water Added to Salt (Circle One)	yes (no
Target/Actual Added Water Content	$w = \frac{m_{water-added}}{m_{salt}} =$
Temperature: [°C / °F]	175°C
Pressure [MPa / psi]	14 22, 30, 38 (MPM)
Jacketing Components (Circle All)	Outer Lead Outer Viton - Inner Lead - Inner Copper
Tested In (Circle One)	Frame 2 Frame 3
Test Target (permeability / fractional density / etc)	

Table 1: Description of Test

Pre-Test Measurements

Height of components: 2.1

Components	Count	Component Label	Recorded Height [mm]
	1	29	37.05
Platens	2	C2	37.10
	1	CP2	3 8.35
Chamfer Discs	2	CP3	12.73
	1	NA	1.07
Mesh Discs	2	NA	1.05
Cumulative Height of Components		97.35	mm

Table 2: Itemized List of Components for Height Measurements (No Salt).

Jacket Dimensions

2.2.1 Height of Outer Jacket

This value will vary depending on which platens (steel or aluminium) and chamfer pieces are used, in general:

- Outer Jacket: 10.125 inches (257.17 mm) to 10.5 inches (266.7 mm);
- INNER SHELL: 12.0 INCHES (304.8 MM) -> THIS IS FOR BOTH A1 AND A2;
- Specimen Clearance: 1.875 inches (47.62 mm) to 1.5 inches (38.1 mm);

NOTE: the maximum height inside Frame 2 and 3 is 12 inches (304.8 mm)

If the upper internal port of the shell is plugged, the available height is decreased to 11.75 inches (298.45 mm)

Jacket Description	Height	No. of Jackets Used
Outer Lead Jacket (mm)	220	(
Outer Viton Jacket (mm)	-	
Inner Lead Jacket (mm)		
Inner Copper Jacket (mm)	134	2_
Height of Total Sample (mm)		

Table 3: Height of Jacketing Components (if jacket not used, write "NA")

Checklist of Jacketing Materials:

Components	Count	Verification Checkmark (and Component Label is Applicable)
Platens	2	C9, CZ
Platen O-rings	4	V
Platen Screws (0.25 inch 20 rnd)	2	~
Screw-In Nipples	2	
Nipple O-rings	4	V
Nipple Adapter (HIP HF4 connection)	2	
Nipple Plugs (HIP HF4 plugs)	Z	
Chamfer Discs	2	CPZ CP3
Mesh Discs	2	
Inner Copper Jacket (indicate No. used)	2	Thickness of 1 Sheet of Copper (mm):
Inner Lead Jacket		Jacket Thickness (mm):
Outer Lead Jacket)	Jacket Thickness (mm):
External Hose Clamps	4	

Table 4: Itemized List of Components for Mass and Volume Measurements (No Salt).

2.2.3 Volume and Mass of Components (No Salt)

Measured Value	Values	Units	Comments
Prior to Dunk: Water Level Reading on Burette	51.4	mL (burette)	
After Dunk: Water Level Reading on Burette	42.5	mL (burette)	
Volume of Components (No Salt)	1009.03	mL	
Mass of Components (No Salt)	3.8441	kg	4.1566
Approximate Outside Diameter of Sample		mm	
Dunk Tank Volume Factor:	114.4978 mL/Buret	te Unit	

Table 5: Measurements of All Components (No Salt)

Measured Mass of Salt 2.3

2.3.1 Date:

Parameters	Value		
Salt Can Label	30	1.00	
Before Making Sample: Mass of Salt and Can (with lid)	1.9455	kg	
After Sample is Made: Remaining Mass of Salt and Can (with lid)	0.4262	kg	
Bulk Mass of Salt Used for Sample	1.5193	kg	
Cumulative Mass of Components and Salt	5.6004	kg 🚄	

Table 6: Mass of Salt Before Preconsolidation

4 Hose Chap Jails = 75.639

Pre-consolidation Measurements

3.0.2 Date:

11/10

3.0.3 Data Sample Rate:

Volume Displayed on GUI Volume [mL] Pressure [psi] Time [hh:mm] Initial Reading: prior to consolidation Reading: When at pre-consolidation pressure Final Reading: after pre consolidation

Table 7: Pre-consolidation Details

Values	Units
5-6008	kg
62.4	mL (burette)
45-1	mL (burette)
17.3 1980.31	mL
5-6012	kg
215.34	mm
103.42	mm
971.78	mL
	5-6008 62.4 45.1 17.3 1980,21 5-6012 215.34 103.42

Table 8: Measurements Made After Preconsolidation of Specimen.

Pre Consolidatel

Height un

(-28.40 mm Hoch)

244.10 215.7

242.99 214.59

243.36 214.96

244.49 216.09

Auz 215.34 mg

Dinte mas

103.63

Av 103.42

104.86 103.06 104.51 104.47

Bot 105-75 106.72 106.14 104.66

Parameter	Values	Units
Salt Only - Volume: $V_{sample}^{salt} = V_{sample}^{bulk} * (1 - w)$		mL
Salt Only - Mass: $m_{sample}^{salt} = m_{sample}^{bulk} * (1 - w)$		kg
Salt Only - Denisty: $\rho_{sample}^{salt} = m_{sample}^{salt} / V_{sample}^{salt}$		kg/m^3
Salt Only - Fractional Density: $\overline{\rho} = \rho_{sample}^{salt}/2160$		

Table 9: Post-Consolidation Density Calculations

4 Application of Heat to Obtain Test Temperature

4.0.4 Data Sample Rate: 1,000

Event	Date	i Time	Confining Pressure [psi]	Expelled Silicone Oil Volume (mL)
Start Temperature Increase	11/13/0	11:40	18	0
End Temperature Increase	11/14	8:30	8:3	7

Table 10: Dates of Details of Temperature Increase

5 Creep Test

5.0.5 Date (Start Test):

5.0.6 Data Sample Rate:

Event	Value	Comment
ISCO Pump Volume (Pre Pressure Increase)		
ISCO Pump Pressure (Pre Pressure Increase)		
Begin Pressure Increase	Time:	
End Pressure Increase	Time:	
ISCO Pump Volume (Post to Pressure Increase)		
ISCO Pump Pressure (Post Pressure Increase)		
ISCO Pump Flow Rate (Post Pressure Increase)		

Table 11: Details of Test Initiation

End of Duta