Physikalische Größen und Einheiten

Internationales Einheiten System auch SI (\underline{S} ystème \underline{I} nternational d'unités) genannt.

SI definiert <u>Basiseinheiten</u> für physikalische Grundgrößen und <u>abgeleitete Einheiten</u> (Potenzprodukte der Basiseinheiten).

Basiseinheiten:

Basisgröße	Formelzeichen	Einheit	Einheitenname	
Länge	l, s, r	m	Meter	
Zeit	t	S	Sekunde	
Masse	m	kg	Kilogramm	
Temperatur	T	K, °C	Kelvin, °Celsius	
Elektr. Stromstärke	I	A	Ampere	
Stoffmenge	n	mol	Mol	

Abgeleitete Einheiten:

Größe	Formelzeichen	Einheit	Einheitenname	Formel
Fläche	A, Q	m^2		
Volumen	V	m^3		
Dichte	ρ	$\frac{kg}{m^3}$		$ \rho = \frac{m}{V} $
Geschwindigkeit	t v	$\frac{m}{s}$		$\mathbf{v} = \frac{s}{t}$
Beschleunigung	a	$\frac{m}{s^2}$		$a = \frac{v}{t}$
Erdbeschleunigu	$\mathbf{g} = 9$			
Kraft	F	$N = \frac{kg \cdot m}{s^2}$	Newton	$F={}_{m\cdota}$
Schwerkraft	G, F	N	Newton	$G = m \cdot g$
Druck	P	$Pa = \frac{N}{m^2} = \frac{kg}{m \cdot s^2}$	Pascal	$P = \frac{F}{A}$
Arbeit	W	$J = \frac{kg \cdot m^2}{s^2}$	Joule	$W = F \cdot s$
Energie	E		Joule	
Wärme	Q	$J = \frac{kg \cdot m^2}{s^2}$	Joule	

Leistung	P	$W = \frac{J}{s} = \frac{kg \cdot m^2}{s^3}$	Watt	$P = \frac{W}{t}$
Spannung	U	V	Volt	
Elektr. Widerstand	R	$(ohm) = \frac{V}{A}$	Ohm	$R = \frac{U}{I}$
Ladung	Q	$C = A \cdot s$	Coulomb	$Q = I \cdot t$
Kapazität	C	$F = \frac{C}{V}$	Farad	$C = \frac{Q}{U}$
Winkel	$\alpha, \beta, \gamma,$	rad	Radiant	
Frequenz	f, v	$Hz = \frac{1}{s}$	Hertz	$f = \frac{1}{T(Periodendamer)}$
Kreisfrequenz	ω	$rad \cdot \frac{1}{s}$		$\omega = 2\pi \cdot f$

Bogenmaß eines Winkels

Das Bogenmaß eines Winkels α ist definiert als das Verhältnis der Länge des Kreisbogens b zum Radius r.

$$\alpha = \frac{b}{r}$$

Für den Einheitskreis (r = 1) ist das Bogenmaß gleich der Länge des Kreisbogens b.

Das Bogenmaß ist also eine dimensionslose Zahl mit dem Einheitenzeichen "rad" (Radiant). Ist die Bogenlänge gleich dem Radius (b = r), so ist der Winkel 1 rad. Das Verhältnis Kreisumfang zu Radius ist 2π . Der Vollwinkel (360°) beträgt daher im Bogenmaß 2π rad.

$$180^{\circ}$$
 sind π rad

90° sind
$$\frac{\pi}{2}$$
 rad

1° ist
$$\frac{\pi}{180}$$
 rad

