Stephan & Brady Balcony

1850 Hoffman St Madison, WI 53704

Structural Calculations

Balcony Members & Connections

Prepared For

OpeningDesign Madison, WI

Ntrive Engineering 280 Shuman Blvd Ste 270

Naperville, IL 60563

Stephan & Brady Balcony

1850 Hoffman St Madison, WI 53704

Structural Calculations

Balcony Members & Connections

Table of Contents

Design Criteria 101
Member Analysis 201-205
Connection Analysis 301-324

Appendix A: Technical Information

Stephan & Brady Balcony Madison, WI
Design Criteria

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB_S & B BALCONY	NO. 20150103
SHEET NO. 101	OF
CALCULATED BY KZZ	DATE 6/9/15
CHECKED BY	_ DATE
DESCRIPTION GENERAL REQU	IREMENT

PURPOSE:

DESIGN BALCONY FRAMING AND ITS ATTACHMENT TO EXISTING BUILDING

MATERIALS:

STRUCTURAL STEEL:

WIDE FLANGES - ASTM A992

PLATES - ASTM A36 (Fy=36 ksi)

RECTANGULAR TUBES - ASTM A500C (Fy=50 ksi)

CODES. SPECS, REFERENCES, ETC.:

BUILDING CODE - 2011 WISCONSIN BUILDING CODE (REFERENCES 2009 IBC)

STEEL DESIGN - AISC 13TH EDITION ASD

STRUCTURAL LOADS:

DEAD LOAD: 20 PSF

LIVE LOAD: BALCONY - 80 PSF

WIND LOAD: PER ASCE 7-05 (UPLIFT ONLY)

 $q_z \!\!=\!\! 0.00256 K_z K_{zt} K_d V^2 I \!\!=\!\! 0.00256^* 0.85^* 1.0^* 0.85^* 90^{2*} 1.0 \!\!=\!\! 14.98 \; PSF$

Kz=0.85 (TABLE 6-3)

Kzt=1.0 (SECTION 6.5.7.2)

Kd=0.85 (TABLE 6-4)

V=90 MPH (FIGURE 6-1)

I=1.0 (TABLE 6-1)

p=q_z(GCp±GCpi)=14.98 PSF*(-1.3±0)=-19.47 PSF

GCp=-1.3 (FIGURE 6-14A)

stephan & Brady Balcony Madison, WI
Member Analysis

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB_S & B BALCONY	NO. 20150103
SHEET NO. 201	OF
CALCULATED BY KZZ	DATE 6/8/15
CHECKED BY	DATE
DESCRIPTION BALCONY BEAM	ANALYSIS

CHECK BENDING STRENGTH OF WIDE FLANGE BEAM:

Wd=20 PSF*11'/2=110 PLF WI=80 PSF*11'/2=440 PLF Wt=110 PLF+440 PLF=550 PLF Mact=Wt*L²/8=550 PLF* (21'-2")²/8=30.8 FT*K Mall=117 FT*K > 30.8 FT*K, **OK** (AISC TABLE 3-6)

CHECK DEFLECTION OF WIDE FLANGE BEAM:

 $\Delta = (5*Wt*L^4)/(384*E*I) = (5*550 \ PLF*(21'-2")^4*1728)/(384*29E6*209 \ IN^4) = 0.409"$ $\Delta all = L/240 = 21'-2"/240 = 1.058" > 0.409", \ \textbf{OK}$ **PROVIDE W10x39**

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB S & B BALCONY	_{NO.} _20150103
SHEET NO	OF
CALCULATED BY ACV	DATE 6/10/15
CHECKED BY	DATE
DESCRIPTION BALCONY JOIS	

JOIST SPACING CHECK:

2X8 HF SELECT STRUCTURAL

MATERIAL PROPERTIES (NDS SUPPLEMENT 2005)

Fb = 1400 PSI

Fv = 150 PSI

E = 1600 KSI

Emin = 580 KSI

 $A = 10.88 IN^2$

d = 7.25 IN

B = 1.5 IN

 $Sx = 13.14 IN^3$

 $I = 47.63 \text{ IN}^4$

SPACING = 12 IN O.C.

LENGTH = 10.5 FT = 126 IN

WD = 20 PSF*1 FT = 20 PLF

WL = 80 PSF*1 FT = 80 PLF

SHEAR, MOMENT, AND DEFLECTION

Vmax = (20+80) PLF*10.5 FT/2 = 525.0 LB

 $Mmax = (20+80) PLF*(10.5 FT)^2/8 = 1378.13 FT-LB$

 $\Delta_D = [5*20 \text{ PLF}*126 \text{ IN}^4]/[384*1600 \text{ KSI}*47.63 \text{ IN}^4] = 0.072"$

 $\Delta_L = [5*80 \text{ PLF}*126 \text{ IN}^4]/[384*1600 \text{ KSI}*47.63 \text{ IN}^4] = 0.287"$

 $\Delta_T = 2*0.072" + 0.287" = 0.431" (K=2, NDS 2005)$

 $\Delta all = 126"/240 = 0.525" > 0.431"$ **OK**

CAPACITY CHECK

CD = Ct = Cfu = Ci = CL = 1

CM = 0.85

CF = 1.2

Cr = 1.15

F'b = 1400 PSI*0.85*1.2*1.15 = 1642 PSI

M'n = 1642 PSI*13.14 IN³/12 IN/FT = 1798 FT-LB > 1378.13 FT-LB**OK**

SHEAR CHECK

CD = Ct = CF = Ci = 1

CM = 0.97

F'v = 150 PSI*0.97 = 145.5 PSI

DEMAND = 1.5*525 LB/10.88 IN² = 72.4 PSI < 145.5 PSI **OK**

USE (1) 2X8 HF SELECT STRUCTURAL @ 12" OC OR

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB S & B BALCONY	_{NO.} _20150103
SHEET NO. 203	OF
CALCULATED BY ACV	DATE 6/10/15
CHECKED BY	DATE
DESCRIPTION BALCONY JOIS	

JOIST SPACING CHECK:

2X8 HF NO. 2

MATERIAL PROPERTIES (NDS SUPPLEMENT 2005)

Fb = 850 PSI

Fv = 150 PSI

E = 1300 KSI

Emin = 470 KSI

 $A = 10.88 IN^2$

d = 7.25 IN

B = 1.5 IN

 $Sx = 13.14 IN^3$

I = 47.63 IN⁴

SPACING = 12 IN O.C.

LENGTH = 10.5 FT = 126 IN

WD = 20 PSF*1 FT = 20 PLF

WL = 80 PSF*1 FT = 80 PLF

SHEAR, MOMENT, AND DEFLECTION

Vmax = (20+80) PLF*10.5 FT/2 = 525.0 LB

 $Mmax = (20+80) PLF*(10.5 FT)^2/8 = 1378.13 FT-LB$

 $\Delta_{\rm D} = [5*20 \text{ PLF}*126 \text{ IN}^4]/[384*1300 \text{ KSI}*47.63 \text{ IN}^4] = 0.088"$

 $\Delta_{I} = [5*80 \text{ PLF}*126 \text{ IN}^{4}]/[384*1300 \text{ KSI}*47.63 \text{ IN}^{4}] = 0.353"$

 $\Delta_{T} = (2*0.088" + 0.353")/2 = 0.265" (K=2, NDS 2005)$

 Δ all = 126"/240 = 0.525" > 0.265" **OK**

CAPACITY CHECK

CD = CM = Ct = Cfu = Ci = CL = 1

CF=1.2

Cr = 1.15

F'b = 850 PSI*1.2*1.15 = 1173 PSI

 $M'n = 2*1173 \text{ PSI}*13.14 \text{ IN}^3/12 \text{ IN/FT} = 2569 \text{ FT-LB} > 1378.13 \text{ FT-LB} \text{ OK}$

SHEAR CHECK

CD = Ct = Ci = 1

CM = 0.97

F'v = 150 PSI*0.97 = 145.5 PSI

DEMAND = 1.5*525 LB/2*10.88 IN² = 36.2 PSI < 145.5 PSI **OK**

USE (2) 2X8 HF NO.2 OR BETTER @ 12" OC

Ntrive Engineering 280 Shuman Blvd Ste 270 Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103
SHEET NO	OF
CALCULATED BY KZZ	DATE 6/9/15
CHECKED BY	DATE
DESCRIPTION HANGER ANALYS	

CHECK AXIAL CAPACITY OF HANGER MEMBERS:

Tmax=6.813 K

Pmax=0.784 K

Tall=min(FyAg/ Ω , FuAe/ Ω)=min(46 KSI*1.57 IN²/1.67, 62 KSI*1.57 IN²/2.00)

Tall=min(43.25 K, 48.67 K)=43.25 K > 6.813 K, **OK**

kL/r=1.0*(14'-6")/0.762"=228.3

4.71*SQRT(E/Fy)=4.71*SQRT(29E6/46E3)=118.3 < kL/r, Fcr=0.877Fe

 $Fe=\pi^2E/(kL/r)^2=\pi^2*29E6/(228.3)^2=5491$ PSI

Fcr=0.877Fe=0.877*5.491 KSI=4.816 KSI

Pall=FcrAg/ Ω =4.816 KSI*1.57 IN²/1.67=4.528 K > 0.784 K, **OK**

PROVIDE HSS2.375x0.25

CHECK CAPACITY OF WIDE FLANGE BEAM:

Pact=8.181 K

Pall=248 K > 8.181 K, **OK** (AISC TABLE 4-1)

Mact=6.448 FT*K

Mall=107 FT*K > 6.448 FT*K, **OK** (AISC TABLE 3-10)

INT=(Pact/Pall)+(Mact/Mall)=(8.181/248)+(6.448/107)=0.09 < 1.0, OK

PROVIDE W10x39

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103
SHEET NO. 205	OF
CALCULATED BY KZZ	DATE 6/9/15
CHECKED BY	DATE
DESCRIPTION EXISTING CONC	

Stephan & Brady	Balcony
Madison, W	VI
Connection A	nalysis

Ntrive Engineering 280 Shuman Blvd Ste 270 Naperville, IL 60563

JOB_S & B BALCONY	NO. 20150103
SHEET NO. 301	OF
CALCULATED BY KZZ	DATE 6/8/15
CHECKED BY	 _DATE
DESCRIPTION HANGER CONN A	ANALYSIS

CHECK CONNECTION OF HANGER TO PLATE:

Tmax=6.813 K

 $Rn/\Omega=0.928*D*I=0.928*4*3"*4=44.544 K > 6.813 K,$ **OK**

PROVIDE 1/4" FILLET WELD 3" LONG (4) SIDES

CHECK CONNECTION OF PLATE TO BEAM:

Tact=4.714 K

Vact=4.919 K

Mact=Vact*e=4.919*3"=14.757 IN*K

Aw=d*2=6"*2=12" (USE d=6" CONSERVATIVELY)

 $Sw=d^2/3=6^2/3=12 IN^2$

fw=SQRT[(Vact/Aw)²+(Tact/Aw+Mact/Sw)²]

fw=SQRT[(4.919/12)²+(4.714/12+14.757/12)²]=1.674 K/IN

Fw=0.928*D=0.928*3=2.784 K/IN > 1.674 K/IN, OK

PROVIDE CONTINUOUS 3/16" FILLET WELD EACH SIDE

Ntrive Engineering 280 Shuman Blvd Ste 270 Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103	
SHEET NO	OF	
CALCULATED BY KZZ	DATE 6/8/15	
CHECKED BY	DATE	
DESCRIPTION HANGER CONN ANALYSIS		

CHECK CONNECTION OF PLATE TO EXISTING CONCRETE COLUMN:

 Tu_{top} =7.453 K

Vu_{top}=7.139 K

Tu_{bot}=4.917 K

 $Vu_{bot} = 4.682 \text{ K}$

PROVIDE (8) 3/4"Ø 316 SS HAS RODS W/ HILTI HIT-HY 200+ EPOXY W/ EMBED=8". SEE FOLLOWING HILTI PROFIS OUTPUT FOR ANALYSIS

Company: Ntrive Page: 20150103 Specifier: KZZ Project: . Address: Sub-Project I Pos. No.: 6/8/2015

Phone I Fax: E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 + HAS-R 316 3/4 $h_{ef.act} = 8.000$ in. $(h_{ef,limit} = - in.)$ Effective embedment depth:

ASTM F 593 Material: **Evaluation Service Report:** ESR-3187

Issued I Valid: 1/1/2015 | 3/1/2016

Proof: Design method ACI 318-08 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.500 in.

Anchor plate: l_x x l_y x t = 28.000 in. x 8.500 in. x 0.500 in.; (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, , fc' = 3500 psi; h = 12.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us 304 Profis Anchor 2.5.3

Company: Ntrive
Specifier: KZZ
Address:
Phone I Fax:

Page: Project: Sub-Project I Pos. No.:

2 20150103

6/8/2015

2 Load case/Resulting anchor forces

Load case: Design loads

E-Mail:

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

,	, , , , , , , , , , , , , , , , , , ,	,		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1927	1478	1478	0
2	1673	1478	1478	0
3	1419	1478	1478	0
4	1166	1478	1478	0
5	1927	1478	1478	0
6	1673	1478	1478	0
7	1419	1478	1478	0
8	1166	1478	1478	0

max. concrete compressive strain: - [%] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(-1.640/0.000): 12370 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity _o N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	1927	18479	11	OK
Bond Strength**	12370	17184	72	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	12370	15452	81	OK

^{*} anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR} \ {\rm value} & {\rm refer} \ {\rm to} \ {\rm ICC\text{-}ES} \ {\rm ESR\text{-}}3187 \\ {\rm \phi} \ {\rm N_{steel}} & {\rm N_{ua}} & {\rm ACI} \ {\rm 318\text{-}}08 \ {\rm Eq.} \ ({\rm D\text{-}}1) \end{array}$

Variables

n	A _{se,N} [in. ²]	f _{uta} [psi]	
1	0.33	85000	

Calculations

N_{sa} [lb] 28430

N _{sa} [lb]	\$\phi_{\text{steel}}\$	$_{\varphi}$ N _{sa} [lb]	N _{ua} [lb]
28430	0.650	18479	1927

www.hilti.us 305 Profis Anchor 2.5.3

Company: Ntrive
Specifier: KZZ
Address:
Phone I Fax: |
E-Mail:

Page: Project: Sub-Project I Pos. No.: Date:

.1

3 20150103

6/8/2015

3.2 Bond Strength

$N_{ag} = \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-11 Eq. (D-19)
ϕ N_{ag} N_{ua}	ACI 318-11 Table D.4.1.
A _{Na} = see ACI 318-11, Part D.5.5.1, Fig. RD.5.5.1(b)	
$A_{Na0} = (2 c_{Na})^2$	ACI 318-11 Eq. (D-20)
$c_{Na} = 10 d_a \frac{\tau_{uncr}}{1100}$	ACI 318-11 Eq. (D-21)
$\psi_{\text{ec,Na}} = \left(\frac{1}{1 + \frac{\dot{c_N}}{c_{Na}}}\right) 1.0$	ACI 318-11 Eq. (D-23)
$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) 1.0$	ACI 318-11 Eq. (D-25)
$\psi_{\text{cp,Na}} = \text{MAX}\left(\frac{C_{\text{a,min}}}{C_{\text{ac}}}, \frac{C_{\text{Na}}}{C_{\text{ac}}}\right)$ 1.0	ACI 318-11 Eq. (D-27)
$N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \kappa_{bond} \cdot \pi \cdot d_a \cdot h_{ef}$	ACI 318-11 Eq. (D-22)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	τ _{k,c} [psi]
1727	0.750	8.000	6.000	977
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	Kbond	λ_a
1.640	0.000	19.129	1.00	1.000

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψed,Na
9.355	661.69	350.10	0.892
Ψec1,Na	Ψec2,Na	₩cp,Na	N _{ba} [lb]
0.851	1 000	1,000	18422

N _{ag} [lb]	фьопd	$_{\phi}$ N $_{ag}$ [lb]	N _{ua} [lb]
26438	0.650	17184	12370

Company: Ntrive Specifier: KZZ Address: Phone I Fax: E-Mail:

Page: Project: Sub-Project I Pos. No.:

Date:

20150103

6/8/2015

3.3 Concrete Breakout Strength

$$\begin{array}{lll} N_{cbg} &= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \, \psi_{ed,N} \, \psi_{c,N} \, \psi_{cp,N} \, N_b & \text{ACI 318-08 Eq. (D-5)} \\ \phi \, N_{cbg} & N_{ua} & \text{ACI 318-08 Eq. (D-1)} \\ A_{Nc} & \text{see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)} & \text{ACI 318-08 Eq. (D-6)} \\ A_{Nc0} &= 9 \, h_{ef}^2 & \text{ACI 318-08 Eq. (D-6)} \\ \psi_{ec,N} &= \left(\frac{1}{1 + \frac{2 \, \dot{e_N}}{3 \, h_{ef}}}\right) & 1.0 & \text{ACI 318-08 Eq. (D-9)} \end{array}$$

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 \text{h}_{\text{c}}} \right)$$
 1.0 ACI 318-08 Eq. (D-11)

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h_{\text{ef}}} \right) \quad 1.0$$
 ACI 318-08 Eq. (D-11)
$$\psi_{\text{Cp,N}} = \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{cac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}} \right) \quad 1.0$$
 ACI 318-08 Eq. (D-13)
$$N_{\text{b}} = k_{\text{c}} \lambda \quad \overline{f_{\text{c}}} \quad h_{\text{ef}}^{1.5}$$
 ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψc,N
5.333	1.640	0.000	6.000	1.000
c _{ac} [in.]	k _c	λ	f _c [psi]	
19.129	17	1	3500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψec1,N	Ψec2,N	Ψed,N	Ψcp,N	N _b [lb]
640.00	256.00	0.830	1.000	0.925	1.000	12387

N _{cbg} [lb]	фсолстее	φ N _{cbg} [lb]	N _{ua} [lb]
23773	0.650	15452	12370

Company: Ntrive Page: Specifier: KZZ Project: Address:

Sub-Project I Pos. No.:

20150103

Date:

6/8/2015

4 Shear load

Phone I Fax:

E-Mail:

Steel Strength*	Load V _{ua} [lb]	Capacity _φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status OK
· ·	_		N/A	_
Steel failure (with lever arm)*	N/A	N/A		N/A
Pryout Strength (Concrete Breakout Strength controls)**	11821	40104	30	OK
Concrete edge failure in direction y+**	11821	25477	47	OK

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$$\begin{array}{ll} V_{sa} &= (\text{n } 0.6 \text{ A}_{\text{se},\text{V}} \text{ f}_{\text{uta}}) & \text{refer to ICC-ES ESR-3187} \\ \phi \ V_{steel} & V_{ua} & \text{ACI } 318\text{-}08 \text{ Eq. (D-2)} \end{array}$$

Variables

n	A _{se,V} [in. ²]	f _{uta} [psi]	(n 0.6 A _{se,V} f _{uta}) [lb]
1	0.33	85000	17060

Calculations

Results

V _{sa} [lb]	фsteel	$_{\varphi}$ V _{sa} [lb]	V _{ua} [lb]
17060	0.600	10236	1478

4.2 Pryout Strength (Concrete Breakout Strength controls)

3-08 Eq. (D-31)
3-08 Eq. (D-2)

$$A_{Nc}$$
 see ACI 316-06, Falt B.S.2.1, Fig. NB.S.2.1(b)
 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-08 Eq. (D-6)

$$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right)$$
 1.0 ACI 318-08 Eq. (D-9)

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) \quad 1.0$$

$$\psi_{\text{cp,N}} = \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{1.5 h_{\text{ef}}}{c_{\text{ac}}} \right) \quad 1.0$$

$$N_{\text{b}} = k_{\text{c}} \lambda \quad f_{\text{c}} \quad h_{\text{ef}}^{1.5}$$

$$ACI 318-08 \text{ Eq. (D-13)}$$

$$ACI 318-08 \text{ Eq. (D-7)}$$

$$\psi_{\text{cp,N}} = \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{1.5 h_{\text{ef}}}{c_{\text{ac}}} \right)$$
 1.0 ACI 318-08 Eq. (D-13)
 $N_{\text{b}} = k_{\text{c}} \lambda f_{\text{c}}^{\text{f}} h_{\text{ef}}^{1.5}$ ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	5.333	0.000	0.000	6.000
Ψς,Ν	c _{ac} [in.]	k _c	λ	f _c [psi]
1.000	19.129	17	1	3500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψec1,N	Ψec2,N	Ψed,N	$\psi_{\sf cp,N}$	N _b [lb]
640.00	256.00	1.000	1.000	0.925	1.000	12387

V _{cpg} [lb]	фсолстее	$_{\phi}$ V _{cpg} [lb]	V _{ua} [lb]
57292	0.700	40104	11821

308 **Profis Anchor 2.5.3** www.hilti.us Company: **Ntrive** Page: Specifier: KZZ Project: 20150103 Address: Sub-Project I Pos. No.: Phone I Fax: Date: 6/8/2015 E-Mail:

4.3 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_b$	ACI 318-08 Eq. (D-22)
$_{\varphi}$ V $_{cbg}$ V $_{ua}$ A $_{Vc}$ see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	ACI 318-08 Eq. (D-2)
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) 1.0$	ACI 318-08 Eq. (D-28)
$\psi_{h,V} = \frac{1.5c_{a1}}{h_a} 1.0$	ACI 318-08 Eq. (D-29)
$V_b = \left(7 \left(\frac{l_e}{d_a}\right)^{0.2} \overline{d_a}\right) \lambda \overline{f_c} c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψc,∨	h _a [in.]	
6.000	8.000	0.000	1.000	12.000	
l _e [in.]	λ	d _a [in.]	f _c [psi]	Ψparallel,V	
6.000	1.000	0.750	3500	2.000	
Calculations					
A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψec,V	Ψed,V	$\psi_{h,V}$	V _b [lb]
369.00	162.00	1.000	1.000	1.000	7989
Results					

φ V_{cbq} [lb]

25477

V_{cbg} [lb] φ_{concrete} 36396 0.700

5 Combined tension and shear loads	

β_{N}	βv	ζ	Utilization β _{N,V} [%]	Status	
0.801	0.464	5/3	97	OK	
$\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$					
bus busbs.					

V_{ua} [lb]

11821

6 Warnings

- Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company: Ntrive Page: Specifier: KZZ Project: 20150103 Address: Sub-Project I Pos. No.: Phone I Fax: Date: 6/8/2015

7 Installation data

E-Mail:

Anchor plate, steel: -

Profile: no profile; 0.000 x 0.000 x 0.000 in. Hole diameter in the fixture: $d_f = 0.813$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

Cleaning: Premium cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HAS-R 316 3/4 Installation torque: 1200.002 in.lb Hole diameter in the base material: 0.875 in. Hole depth in the base material: 8.000 in. Minimum thickness of the base material: 9.750 in.

Coordinates Anchor in.

Anchor	X	У	C _{-x}	C+x	C _{-y}	C _{+y}	Anchor	X	У	C _{-x}	C+x	C _{-y}	C _{+y}
1	-12.000	2.000	8.000	-	10.000	6.000	5	-12.000	-2.000	8.000	-	6.000	10.000
2	-4.000	2.000	16.000	-	10.000	6.000	6	-4.000	-2.000	16.000	-	6.000	10.000
3	4.000	2.000	24.000	-	10.000	6.000	7	4.000	-2.000	24.000	-	6.000	10.000
4	12.000	2.000	32.000	-	10.000	6.000	8	12.000	-2.000	32.000	-	6.000	10.000

www.hilti.us 310 Profis Anchor 2.5.3

 Company:
 Ntrive
 Page:
 8

 Specifier:
 KZZ
 Project:
 20150103

 Address:
 Sub-Project I Pos. No.:

Phone I Fax: | Date: 6/8/2015

E-Mail:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Ntrive Engineering 280 Shuman Blvd Ste 270 Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103				
SHEET NO. 311	OF				
CALCULATED BY KZZ	DATE 6/8/15				
CHECKED BY					
DESCRIPTION BEAM CONN ANALYSIS					

CHECK CONNECTION OF PLATE TO EXISTING CONCRETE COLUMN:

PROVIDE (4) 3/4"Ø 316 SS HAS RODS W/ HILTI HIT-HY 200+ EPOXY W/ EMBED=8". SEE FOLLOWING HILTI PROFIS OUTPUT FOR ANALYSIS

Company: Ntrive Page: 20150103 Specifier: KZZ Project: Address: Sub-Project I Pos. No.: 6/8/2015

Phone I Fax: E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 + HAS-R 316 3/4 $h_{ef.act} = 8.000$ in. $(h_{ef,limit} = - in.)$ Effective embedment depth:

ASTM F 593 Material: **Evaluation Service Report:** ESR-3187

Issued I Valid: 1/1/2015 | 3/1/2016

Proof: Design method ACI 318-08 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.500 in.

l_x x l_y x t = 12.000 in. x 10.000 in. x 0.500 in.; (Recommended plate thickness: not calculated) Anchor plate:

Profile: Rectangular plates and bars (AISC); (L x W x T) = 6.750 in. x 0.750 in. x 0.000 in. Base material: cracked concrete, , fc' = 3500 psi; h = 12.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us 313 Profis Anchor 2.5.3

Company: Ntrive
Specifier: KZZ
Address:
Phone I Fax: |
E-Mail:

Page: Project: Sub-Project I Pos. No.: Date: 2 20150103

6/8/2015

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

,		,						
Anchor	Tension force	Shear force	Shear force x	Shear force y				
1	0	2375	2375	0				
2	0	2375	2375	0				
3	0	2375	2375	0				
4	0	2375	2375	0				
max. concrete co	mpressive strain:		0.02 [‰]					
max. concrete co	mpressive stress:		105 [psi]					
resulting tension force in $(x/y)=(0.000/0.000)$: 0 [lb] resulting compression force in $(x/y)=(0.000/0.000)$: 12600 [lb]								

3 Tension load

	Load N _{ua} [lb]	Capacity _∳ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Bond Strength**	N/A	N/A	N/A	N/A
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	N/A	N/A	N/A	N/A

^{*} anchor having the highest loading **anchor group (anchors in tension)

www.hilti.us 314 Profis Anchor 2.5.3

Company: Ntrive
Specifier: KZZ
Address:
Phone I Fax: |
E-Mail:

Page: Project: Sub-Project I Pos. No.: 3 20150103

6/8/2015

Date:

4 Shear load

	Load V _{ua} [lb]	Capacity _o V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	2375	10236	24	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	9500	24072	40	OK
Concrete edge failure in direction y-**	9500	16156	59	OK

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$$\begin{array}{ll} V_{sa} &= (\text{n 0.6 A}_{se,\text{V}} \, f_{\text{uta}}) & \text{refer to ICC-ES ESR-3187} \\ \varphi \, V_{steel} & V_{ua} & \text{ACI 318-08 Eq. (D-2)} \end{array}$$

Variables

n	A _{se,V} [in. ²]	f _{uta} [psi]	(n 0.6 A _{se,V} f _{uta}) [lb]
1	0.33	85000	17060

Calculations

Results

V _{sa} [lb]	фsteel	$_{\varphi}$ V _{sa} [lb]	V _{ua} [lb]
17060	0.600	10236	2375

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-08 Eq. (D-31)
$_{\varphi}$ V _{cpg} V _{ua} A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	ACI 318-08 Eq. (D-2)
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 \dot{e_N}}{3 h_{\text{ef}}}}\right) 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) - 1.0$	ACI 318-08 Eq. (D-11)
$(c_{a,min})$ 1.5h _{ef}	101010 00 F = (D 10)

$$N_b = k_c \lambda f_c h_{ef}^{1.5}$$

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	8.000	0.000	0.000	6.000
Ψς,Ν	c _{ac} [in.]	k _c	λ	f _c [psi]
1.000	19.129	17	1	3500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψec1,N	Ψec2,N	Ψed,N	Ψcp,N	N _b [lb]
512.00	576.00	1.000	1.000	0.850	1.000	22757

V _{cpg} [lb]	\$\phi_{concrete}\$	$_{\phi}$ V _{cpg} [lb]	V _{ua} [lb]
34389	0.700	24072	9500

6/8/2015

www.hilti.us		315	Profis Anchor 2.5.3
Company:	Ntrive	Page:	4
Specifier:	KZZ	Project:	20150103
Address:		Sub-Project I Pos. No.	

Date:

Phone I Fax: E-Mail:

4.3 Concrete edge failure in direction y-

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψc,V	h _a [in.]	
6.000	16.000	0.000	1.000	12.000	
I _e [in.]	λ	d _a [in.]	f _c [psi]	Ψparallel.V	
6.000	1.000	0.750	3500	2.000	
Calculations					
A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψec,V	Ψed,V	Ψh,V	V _b [lb]
234.00	162.00	1.000	1.000	1.000	7989
Results					

φ V_{cbg} [lb]

5 Warnings

V_{cbq} [lb]

23080

• Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility!

V_{ua} [lb]

- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- The ACI 318-08 version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company: Ntrive Page: 20150103 Specifier: KZZ Project: Address: Sub-Project I Pos. No.: Phone I Fax: Date: 6/8/2015

E-Mail:

6 Installation data

Anchor plate, steel: - Profile: Rectangular plates and bars (AISC); 6.750 x 0.750 x 0.000 in.

Hole diameter in the fixture: $d_f = 0.813$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

Cleaning: Premium cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HAS-R 316 3/4 Installation torque: 1200.002 in.lb Hole diameter in the base material: 0.875 in.

Hole depth in the base material: 8.000 in. Minimum thickness of the base material: 9.750 in.

Coordinates Anchor in.

Anchor	X	У	C-x	C+x	C₋ _y	C _{+y}
1	-4.000	2.000	16.000	-	10.000	6.000
2	4.000	2.000	24.000	-	10.000	6.000
3	-4.000	-2.000	16.000	-	6.000	10.000
4	4.000	-2.000	24.000	-	6.000	10.000

Company: **Ntrive** Page: Specifier: KZZ Project: Address:

Sub-Project I Pos. No.:

20150103

Phone I Fax: 6/8/2015 F-Mail·

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- · You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

280 Shuman Blvd Ste 270

Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103		
SHEET NO. 318	OF		
CALCULATED BY KZZ	DATE 6/9/15		
CHECKED BY	_ DATE		
DESCRIPTION JOIST CONN ANALYSIS			

CHECK CONNECTION OF JOIST TO LEDGER BEAM:

Vact=100 PSF*12"*(10'-6")/2=525 LB Vall_{LUS26}=1100 LB > 525 LB, **OK** Vall_{U26-2}=975 LB > 525 LB, **OK**

PROVIDE SIMPSON LUS26 OR SIMPSON U26-2

CHECK CONNECTION OF LEDGER BEAM TO CONCRETE:

Vu=1.6*2'*525 PLF=1680 LB

PROVIDE 1/2"Ø HILTI KWIK-HUS EZ @ 24" OC W/ EMBED=3". SEE FOLLOWING HILTI PROFIS OUTPUT FOR ANALYSIS

Company: Ntrive Page: 20150103 Specifier: KZZ Project: . Address: Sub-Project I Pos. No.: Date: 6/9/2015

Phone I Fax: E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 1/2 (3) Effective embedment depth: $h_{ef} = 2.160 \text{ in., } h_{nom} = 3.000 \text{ in.}$

Material: Carbon Steel **Evaluation Service Report:** ESR-3027

Issued I Valid: 6/1/2014 | 12/1/2015

Proof: Design method ACI 318 / AC193

Stand-off installation: - (Recommended plate thickness: not calculated)

Profile:

Base material: cracked concrete, 2500, $f_c' = 2500 \text{ psi}$; h = 12.000 in.

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) no

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us 320 Profis Anchor 2.5.3

Company: Ntrive Page: Specifier: KZZ Project: Address: Sub-Proj

Sub-Project I Pos. No.:

20150103

Phone I Fax: | E-Mail: Date:

6/9/2015

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y 1680 1680 0 1 max. concrete compressive strain: - [‰] - [psi] max. concrete compressive stress: resulting tension force in (x/y)=(0.000/0.000): 0 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity _∲ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status	
Steel Strength*	N/A	N/A	N/A	N/A	_
Pullout Strength*	N/A	N/A	N/A	N/A	
Concrete Breakout Strength**	N/A	N/A	N/A	N/A	

^{*} anchor having the highest loading **anchor group (anchors in tension)

Company: Ntrive Specifier: KZZ

Project: Sub-Project I Pos. No.:

Page:

20150103

Address: Phone I Fax: E-Mail:

6/9/2015

4 Shear load

	Load V _{ua} [lb]	Capacity _o V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	1680	5547	31	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	1680	1889	89	OK
Concrete edge failure in direction x+**	1680	1857	91	OK

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa} = ESR value refer to ICC-ES ESR-3027 ACI 318-08 Eq. (D-2) ϕ V_{steel} V_{ua}

Variables

n	A _{se,V} [in. ²]	f _{uta} [psi]
1	0.16	112540

Calculations

Results

V _{sa} [lb]	 \$\psi\$steel	$_{\phi}$ V _{sa} [lb]	V _{ua} [lb]
9245	0.600	5547	1680

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-08 Eq. (D-30)
$_{\varphi}$ V $_{\text{cp}}$ V $_{\text{ua}}$ A $_{\text{Nc}}$ see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(ACI 318-08 Eq. (D-2)
	(b)
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-08 Eq. (D-6)
$ \psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) 1.0 $	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) 1.0$ $N_b = k_c \lambda f'_c h_{ef}^{1.5}$	ACI 318-08 Eq. (D-13)
$N_b = k_c \lambda \overline{f'_c} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
1	2.160	0.000	0.000	4.000
	o fin l	le.	•	f [noi]
Ψc,N	c _{ac} [in.]	κ _c	λ	f _c [psi]
1.000	3.750	17	1	2500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψec1,N	Ψec2,N	Ψed,N	Ψcp,N	N _b [lb]
41.99	41.99	1.000	1.000	1.000	1.000	2698

V _{cp} [lb]	фсолстее	$_{\varphi}$ V _{cp} [lb]	V _{ua} [lb]
2698	0.700	1889	1680

www.hilti.us		322	Profis Anchor 2.5.3	
Company:	Ntrive	Page:	4	
Specifier:	KZZ	Project:	20150103	
Address:		Sub-Project I Pos. No.:		
Phone I Fax:	1	Date:	6/9/2015	
E-Mail:	·			

4.3 Concrete edge failure in direction x+

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-21)
φ V _{cb} V _{ua}	ACI 318-08 Eq. (D-2)
A _{Vc} see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_{\text{v}}}{3c_{\text{a1}}}}\right) 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) 1.0$	ACI 318-08 Eq. (D-28)
$\psi_{h,V} = \frac{1.5c_{a1}}{h_a} 1.0$	ACI 318-08 Eq. (D-29)
$V_b = \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \overline{d_a}\right) \lambda \overline{f_c} c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\psi_{c,V}$	h _a [in.]	
4.000	6.000	0.000	1.000	12.000	
l _e [in.]	λ	d _a [in.]	f _c [psi]	Ψparallel,V	
2.160	1.000	0.500	2500	1.000	
Calculations					
A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψec,V	Ψed,V	Ψh,V	V _b [lb]
72.00	72.00	1.000	1.000	1.000	2653
Results					

φ V_{cb} [lb]

5 Warnings

V_{cb} [lb]

2653

• Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility!

V_{ua} [lb]

- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

Company: **Ntrive** Page:

Specifier: KZZ Project: 20150103 Address: Sub-Project I Pos. No.:

Phone I Fax: 6/9/2015 F-Mail·

6 Installation data

Anchor plate, steel: -Anchor type and diameter: KWIK HUS-EZ (KH-EZ) 1/2 (3)

Profile: -Installation torque: 540.001 in.lb

Hole diameter in the fixture: -Hole diameter in the base material: 0.500 in. Hole depth in the base material: 3.375 in. Plate thickness (input): -Recommended plate thickness: -Minimum thickness of the base material: 4.750 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Coordinates Anchor in.

Anchor	X	У	C-x	C+x	C₋ _y	C _{+y}	
1	0.000	0.000	4.000	4.000	6.000	6.000	

7 Remarks: Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- · You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Ntrive Engineering 280 Shuman Blvd Ste 270 Naperville, IL 60563

JOB S & B BALCONY	NO. 20150103
SHEET NO	OF
CALCULATED BY KZZ	DATE <u>6/9/15</u>
CHECKED BY	_ DATE
DESCRIPTION JOIST CONN ANA	ALYSIS

CHECK CONNECTION OF JOIST TO LEDGER BEAM:

Vact=100 PSF*12"*(10'-6")/2=525 LB Vall_{LB28}=1270 LB > 525 LB, **OK** Vall_{WNP28-2}=3255 LB > 525 LB, **OK**

PROVIDE SIMPSON LB28 OR SIMPSON WNP28-2

Stephan & Brady Balcony Madison, WI Appenix A: **Technical Information**

LUS/HUS/HHUS/HGUS Double Shear Joist Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

See Hanger tables on pages 77-82. See Hanger Options on pages 233-243 for hanger modifications, which may result in reduced loads.

All hangers in this series have double shear nailing. This innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation, and the use of standard nails for all connections. (Do not bend or remove tabs.)

MATERIAL: See tables, pages 77-82.

FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pages 13-15.

INSTALLATION • Use all specified fasteners. See General Notes.

- Nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.
- 16d sinkers (0.148" dia. x 31/4" long) may be used where 10d commons are specified with no reduction in load. Where 16d commons are specified, 10d commons or 16d sinkers (0.148" dia. x 31/4" long) may be used at 0.85 of the table load.
- With 3x carrying members, use 16dx21/2" nails into the header and 16d commons into the joist with no load reduction.
- With 2x carrying members, use 10dx11/2" nails into the header and 10d commons into the joist, reduce the load to 0.64 of the table value.
- · Use stainless-steel (SS) nails with stainless-steel (SS) hangers.

OPTIONS: • LUS hangers cannot be modified.

· HUS hangers available with the header flanges turned in for 2-2x (31/8") and 4x only, with no load reduction. See the HUSC Concealed Flange illustration.

Double-Shear Nailing Side View Do not bend tab

W HUSC

Concealed Flanges

(not available for HHUS.

HGUS and HUS2x)

HUS210 (HUS26, HUS28, **HUS412** and HHUS similar) LUS28

HGUS3.25/12

 $1^{\prime\prime}$ for 2x's $11_{\!\!^{\prime\prime}6^{\prime\prime}}$ for 3x's and 4x's

Typical LUS28 Installation use 0.148x3" (10d common) or 0.148x31/4" (16d sinker) náil

FACE MOUNT HANGERS – SOLID SAWN LUMBER (DF/SP)

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive® SD Connector screw. See page 27 for more information.

	Joist			Dime	nsions	(in.)	Min/	Faste	eners	DI	SP Allov	vable Loa	ds	Installed	Code	
	Size			W	Н	В	Max	Header	Joist	Uplift Floor (160) (100)		Snow (115)	Roof (125)	Cost Index (ICI)	Ref.	
								SAWN	I LUMBER SIZES							
		LU24	20	1%16	31/8	11/2	_	4-16d	2-10dx1½	265	555	635	685	Lowest	17, <mark>127</mark> , F6, L5, L17	
	2X4	LUS24	18	1%16	31/8	13/4	_	4-10d	2-10d	490	670	765	825	+3%	17, 127, F0, L3, L17	
	2/4	U24	16	1%16	31/8	11/2	_	4-16d	2-10dx1½	265	575	655	705	+67%	I7, F6, L17	
		HU26	14	1%16	31/16	21/4	_	4-16d	2-10dx1½	335	595	670	720	+295%		
	DDI	LUS24-2	18	31/8	31/8	2	_	4-16d	2-16d	440	800	910	985	Lowest	17, 127, F6, L5, L17	
	DBL 2X4	U24-2	16	31/8	3	2	_	4-16d	2-10d	370	575	655	705	+33%	17, F6, L17	
	2/17	HU24-2/HUC24-2	14	31/8	31/16	21/2	_	4-16d	2-10d	380	380	595	720	+240%	17,10, 117	
		LUS26	18	1%16	43/4	13/4	_	4-10d	4-10d	1165	865	990	1070	Lowest	17, <mark>127</mark> , F6, <mark>L5</mark> , L17	
		LU26	20	1%16	43/4	11/2	_	6-16d	4-10dx1½	565	835	950	1030	+6%	17, 127, 10, LJ, L17	
	2x6	U26	16	1%16	43/4	2	_	6-16d	4-10dx1½	585	865	980	1055	+43%		
	200	LUC26Z	18	1%16	43/4	13/4	_	6-16d	4-10dx1½	730	845	965	1040	+160%	17, F6, L17	
		HU26	14	1%16	31/16	21/4	_	4-16d	2-10dx1½	335	335	595	720	+179%		
		HUS26	16	15/8	5%	3	_	14-16d	6-16d	1550	2720	3095	3335	+276%	17, <mark>127</mark> , F6, <mark>L5</mark> , L17	
		LUS26-2	18	31/8	47/8	2	_	4-16d	4-16d	1165	1030	1180	1280	Lowest	17, 127, 10, LJ, L17	
	DDI (U26-2	16	31//8	5	2	_	8-16d	4-10d	740	1150	1305	1410	+65%	17, F6, L17	
	DBL 2X6	HUS26-2/HUSC26-2	14	31//8	53/16	2	_	4-16d	4-16d	1235	1065	1210	1305	+172%		
	2X6	HU26-2/HUC26-2	14	31/8	5%	21/2	Min	8-16d	4-10d	760	1190	1345	1445	+233%	17, 127, F6, L5, L17	
		11020-2/110620-2	14	31/8	5%	21/2	Max	12-16d	6-10d	1135	1785	2015	2165	+254%	17, F6, L17	

FACE MOUNT HANGERS – SOLID SAWN LUMBER (DF/SP)

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive® SD Connector screw. See page 27 for more information.

Joist			Dime	Dimensions		Min/	Faste	eners		F/SP Allov			Installed	Code	
Size	Model No.	Ga	w	Н	В	Max	Header	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	Cost Index (ICI)	Ref.	
							SAWI	LUMBER SIZES							
	LUS26-3	18	45/8	41//8	2		4-16d	4-16d	1165	1030	1180	1280	*		
TPL	U26-3	16	45/8	41/4	2		8-16d	4-10d	740	1150	1305	1410	*	160	
2x6	HU26-3/HUC26-3		411/16	5½	21/2	Min	8-16d	4-10d	760	1190	1345	1445	*	100	
		_	411/16	5½	21/2	Max	12-16d	6-10d	1135	1785	2015	2165	*		
	LUS26		1%16	43/4	13/4	_	4-10d	4-10d	1165	865	990	1070	Lowest		
	LU26		1%16	43/4	11/2	_	6-16d	4-10dx1½	565	835	950	1030	+6%	17, <mark>127</mark> , F6, <mark>L5</mark> , L1	
	LUS28	18		65/8	13/4	_	6-10d	4-10d	1165	1100	1255	1360	+23%	,,,,,	
00	LU28	20		65%	1½	_	8-16d	6-10dx1½	850	1110	1270	1335	+39%		
2x8	U26	16		43/4	2		6-16d	4-10dx1½	585	865	980	1055	+43%	17 FC 147	
	LUC26Z	18	1%16	43/4	1 ³ / ₄	_	6-16d	4-10dx1½	730	845 895	965 1005	1040 1085	+160%	17, F6, L17	
	HU28 HUS26	14 16	1% ₁₆	51/ ₄ 53/ ₈	3	_	6-16d 14-16d	4-10dx1½ 6-16d	610 1550	2720	3095	3335	+251% +276%		
	HUS28	16	15/8	7	3	=	22-16d	8-16d	2000	3965	4120	4220	+409%		
	LUS26-2	18	31/8	47/8	2		4-16d	4-16d	1165	1030	1180	1280	Lowest	17, <mark>127</mark> , F6, <mark>L5</mark> , L1	
	LUS28-2	18	31/8	7	2		6-16d	4-16d 4-16d	1165	1315	1500	1625	+8%		
DBL	U26-2	16	31/8	5	2	H	8-16d	4-10d 4-10d	740	1150	1305	1410	+65%		
2x8	HUS28-2/HUSC28-2	14	31/8	73/16	2		6-16d	6-16d	1550	1595	1815	1960	+188%		
LAO		14	31/8	7	21/2	Min	10-16d	4-10d	760	1490	1680	1805	+397%	I7, F6, L17	
	HU28-2/HUC28-2	14	31/8	7	21/2	Min	14-16d	6-10d	1135	2085	2350	2530	+418%		
	LUS28-3	18	45/8	61/4	2	_	6-16d	4-16d	1165	1315	1500	1625	*		
TPL	U26-3	16	45/8	41/4	2	_	8-16d	4-10d	740	1150	1305	1410	*		
2X8			411/16	5½	21/2	Min	8-16d	4-10d	760	1190	1345	1445	*	400	
	HU26-3/HUC26-3			51/2	21/2	Max	12-16d	6-10d	1135	1785	2015	2165	*	160	
QUAD		14	14	61/8	65/8	Min	10-16d	4-16d	900	1490	1680	1805	*		
2X8	HU28-4/HUC28-4	14	14	61/8	65/8	Max	14-16d	6-16d	1345	2085	2350	2530	*		
	LUS28	18	1%16	65/8	13/4	_	6-10d	4-10d	1165	1100	1255	1360	Lowest		
	LU28	20	1%16	6%	11/2	_	8-16d	6-10dx1½	850	1110	1270	1335	+13%	17, <mark>127</mark> , F6, <mark>L5</mark> , L1	
	LUS210	18		713/16	13/4	_	8-10d	4-10d	1165	1340	1525	1650	+15%		
0.40	LU210	20	1%16	713/16	11/2	_	10-16d	6-10dx1½	850	1390	1585	1715	+28%		
2x10	U210	16	1%16	713/16	2	_	10-16d	6-10dx1½	1110	1440	1635	1685	+76%		
	LUC210Z	18	1%16	73/4	13/4	_	10-16d	6-10dx1½	1100	1410	1605	1735	+180%	17, F6, L17	
	HU210	14	1%16	71/8	21/4	_	8-16d	4-10dx1½	610	1190	1345	1445	+225%		
	HUS210	16	15/8	9	3	_	30-16d	10-16d	3000	4255	4445	4575	+450%		
	LUS28-2	18	31/8	7	2	_	6-16d	4-16d	1165	1315	1500	1625	Lowest	17, <mark>127</mark> , F6, <mark>L5</mark> , L1	
	LUS210-2	18	31/8	9	2	_	8-16d	6-16d	1745	1830	2090	2265	+34%		
	U210-2	16	31/8	81/2	2	_	14-16d	6-10d	1110	2015	2285	2465	+88%	I7, F6, L17	
DBL	HUS210-2/HUSC210-2	14	31/8	93/16	2	_	8-16d	8-16d	3295	2125	2420	2615	+217%	I7, F23, L17	
2X10	HU210-2/HUC210-2	14	31/8	813/16	21/2	Min	14-16d	6-10d	1135	2085	2350	2530	+441%	17, F6, L17	
		14	31/8	813/16	21/2	Max	18-16d	10-10d	1895	2680	3020	3250	+467%		
	HUCQ210-2-SDS	14	2%16	9	3	_	12-1/4"x21/2" SDS		2510	4680	4955	4955	*	F23	
	HHUS210-2	14	35/16	95/32	3		30-16d	10-16d	4000	5635	6380	6880	*	F23	
	LUS28-3	18	45/8	61/4	2	_	6-16d	4-16d	1165	1315	1500	1625	*	160	
	LUS210-3	18	45/8	83/16	2	_	8-16d	6-16d	1745	1830	2090	2265	*		
TDI	U210-3	16		73/4	2	D //:	14-16d	6-10d	1110	2015	2285	2465	*	17 FC 147	
TPL 2X10	HU210-3/HUC210-3		411/16		21/2	Min	14-16d	6-10d	1135	2085	2350	2530	*	17, F6, L17	
2/10		_	411/16	8%16	2½	Max	18-16d	10-10d	1895	2680	3020	3250	*		
	HHUS210-3 HGUS210-3		4 ¹¹ / ₁₆ 4 ¹⁵ / ₁₆	8% 9%	3 4	_	30-16d 46-16d	10-16d 16-16d	4000 4095	5635 9100	6380 9100	6880 9100	*	17. F23	
	HUCQ210-3-SDS	14	4 716	9 78	3	_	8-1/4"x21/2" SDS	4-1/4"x21/2" SDS	2510	4680	4955	4955	*	F23	
	11000210-3-303	14	61/8	83/8	21/2	Min	14-16d	6-16d	1345	2085	2350	2530	*	123	
QUAD	HU210-4/HUC210-4	14	61/8	83/8	21/2	Max	18-16d	8-16d	1795	2680	3020	3250	*	160	
2x10	HHUS210-4	14	61/8	87/8	3		30-16d	10-16d	4000	5635	6380	6880	*		
LXIO	HGUS210-4	12	6%16	91/8	4	_	46-16d	16-16d	4095	9100	9100	9100	*	F23, 160	
	LUS210		1%16	713/16	13/4	_	8-10d	4-10d	1165	1340	1525	1650	Lowest		
	LU210		1%16	713/16	11/2	_	10-16d	6-10dx1½	850	1390	1585	1715	+11%	17, <mark>127</mark> , F6, L5, L1	
	U210		1%16	713/16	2	_	10-16d	6-10dx1½	1110	1440	1635	1685	+53%	17, F6, L17	
2x12	LUC210Z	_	1%16	73/4	13/4	_	10-16d	6-10dx1½	1100	1410	1605	1735	+180%	17, 127, F6, L5, L1	
	HU212		1%16	9	21/4	<u> </u>	10-16d	6-10dx1½	1135	1490	1680	1805	+347%		
	HUS210	16	15/8	9	3	<u> </u>	30-16d	10-16d	3000	4255	4445	4575	+378%	I7, F6, L17	
	LUS210-2	18	31/8	9	2	_	8-16d	6-16d	1745	1830	2090	2265	Lowest	17, <mark>127</mark> , F6, L5, L	
	U210-2	16	31/8	81/2	2	_	14-16d	6-10d	1110	2015	2285	2465	+40%	, , , , , -	
	LUS214-2	18	31/8	1015/16	2	<u> </u>	10-16d	6-16d	1745	2110	2410	2610	+56%		
DBL	HUS210-2	14	31/8	93/16	2	_	8-16d	8-16d	3295	2125	2420	2615	*	17 50 147	
2x12		14	31/8	103/4	2	_	10-16d	10-16d	3635	2660	3025	3265	*	I7, F6, L17	
		14	31/8	10%16	21/2	Min	16-16d	6-10d	1135	2380	2685	2890	*		
	1111040 0/11110040 0													1	
	HU212-2/HUC212-2	14	31/8	10%16	21/2	Max	2 2-16d	10-10d	1895	3275	3695	3970	+411%		

TOP FLANGE HANGERS JB/JBA/LB/LBAZ/BA/B/HHB Joist, Beam and Purlin Hangers

Solid Sawn Joist Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The new, next-generation LBAZ and JBA hangers provide higher loads for 2x10, 2x12 and 2x14 members in 14 gauge and 18 gauge steel, respectively. The new nail locations on the JBA enable effective use

The B and BA hangers are cost effective hangers featuring min/max joist nailing option. Min Nailing featuring Positive Angle Nailing targets moderate load conditions whereas the Max Nailing generates capacities for higher loads. The unique two level embossment provides added stiffness to the top flange.

See tables on pages 87-91. See Hanger Options on pages

for hanger modifications, which may result in reduced loads.

MATERIAL: See tables, pages 87-91.

FINISH: BA, JB, JBA, LB, LBAZ and B—Galvanized; HHB-all saddle hangers and all welded sloped and special hangers—Simpson Strong-Tie® gray paint. BA, LB, B and HHB may be ordered hot-dip galvanized, specify HDG.

INSTALLATION: • Use specified fasteners. See General Notes and nailer table notes.

- · LBAZ, BA, B and HHB may also be welded to steel headers with weld size to match material thickness (approximate thickness shown). The minimum required weld to the top flanges is $\frac{1}{8}$ " x 2" ($\frac{1}{8}$ " x $\frac{17}{16}$ for LBAZ) fillet weld to each side of each top flange tab for 14 and 12 gauge and 3/16" x 2" fillet weld to each side of each top flange tab for 7 gauge. Distribute the weld equally on both top flanges. Welding cancels the top and face nailing requirements. Consult the code for special considerations when welding galvanized steel. The area should be well-ventilated (see page 17 for welding information). Weld on applications produce the maximum allowable down load listed. For uplift loads refer to technical bulletin T-WELDUPLFT.
- · Ledgers must be evaluated for each application separately. Check TF dimension, nail length and nail location on ledger.
- · Refer to technical bulletin T-SLOPEJST for information regarding load reductions on selected hangers which can be used without modification to support joists which have shallow slopes (≤¾:12).

OPTIONS: B and HHB

- Other widths are available; specify W dimension (the minimum W dimension is 1%16" for B and 31/4" for HHB).
- See Hanger Options, pages 233-243. BA, JB, JBA, LB and LBAZ hangers cannot be modified. Use LBV as an alternative for the JBA/LBAZ

CODES: See page 12 for Code Reference Key Chart.

Nailer Table⁵

	Model		Тор	Joist		Allowable Loads		
	No.	Nailer	Flange Nailing	Nailing	Uplift ¹ (160)	DF/SP	SPF/HF	
	JB210A JB212A	2x	6-10dx1½	2-10dx1½	315	1265	965	
會會	JB212A JB214A	3x	6-16dx2½	2-10dx1½	315	1290	_	
	LB26	2x	4-10dx1½	2-10dx1½	_	850	_	
	LB28	2x	4-10dx1½	2-10dx1½	_	915	_	
	LB210AZ LB212AZ	2x	6-10dx1½	2-10dx1½	375	1265	1065	
画画	LB212AZ LB214AZ	3x	6-16dx2½	2-10dx1½	375	1290	_	
	LB216	2x	4-10dx1½	2-10dx1½	_	1150	_	
		2x	10-10dx1½	2-10dx1½	265³	2220	1755	
	BA	2-2x	14-10d	2-10dx1½	265³	2695	2235	
	DA	3x	14-16dx2½	2-10dx1½	265³	3230	_	
		4x	14-16d	2-10dx1½	265³	3230	_	
		2-2x	14-10d	6-10dx1½	7104	3615	2770	
	В	3x	14-16dx2½	6-10dx1½	830 ⁴	3725	_	
		4x	14-16d	6-10dx1½	830 ⁴	3800	_	

- 1. Uplift values are for DF/SP nailers only. Refer to technical bulletin T-NAILERUPLFT for SPF values.
- 2. For joist members 2½" or wider, 16dx2½" joist nails should be installed for additional uplift loads on the 3x and 4x nailer applications of 970 lbs. and 1010 lbs. respectively.
- 3. If joist nailing is increased to (8)-10dx1½, higher uplift loads are allowed. See technical bulletin T-NAILERUPLFT.
- 4. If joist nailing is increased to (6)-16dx21/2, higher uplift loads are allowed for joist members at least ½" wide. See technical bulletin T-NAILERUPLFT.
- 5. Attachment of nailer to supporting member is by the Designer.

TOP FLANGE HANGERS W/WPU/WNP/WM/WMU/HW/HWU/GLT/HGLT

The W, WPU, HWU and HW series purlin hangers offer the greatest design flexibility and versatility. WMs are designed for use on standard 8" grouted masonry block wall construction.

MATERIAL: See tables on pages 87-91

FINISH: Simpson Strong-Tie® gray paint; hot-dip galvanized available: specify HDG, contact Simpson Strong-Tie.

INSTALLATION: • Use all specified fasteners.

- H dimensions are sized to account for normal joist shrinkage. W dimensions are for dressed timber widths.
- Hangers may be welded to steel headers with weld size to match material thickness (approximate thickness shown) %" for W, %s" for WNP/WPU and ¼" for HW/HWU, by 1½" fillet welds located at each end of the top flange (see page 17 for welding information). Weld-on applications produce maximum allowable load listed. For uplift loads refer to technical bulletin T-WELDUPLFT (HWU and WPU hangers only)
- · GLT/HGLT may be welded to steel headers, see page 104 for requirements.
- Hangers can support multi-ply carried members; the individual members must be secured together to work as a single unit before installation into the hanger.
- WM—two 16d duplex nails must be installed into the top flange and embedded into the grouted wall. Verify that the grouted wall can take the required fasteners specified in the table.
- Embed WM into block with a minimum of one course above and one course below the top flange with one #5 vertical rebar minimum 24" long in each cell. Minimum grout strength is 2000 psi.

OPTIONS: • Refer to technical bulletin T-SLOPEJST for information regarding load reductions on selected hangers which can be used without modification to support joists which have shallow slopes ($\leq \frac{3}{4}$:12).

- · See Hanger Options, pages 233-243 for hanger modifications and associated load reductions.
- Some model configurations may differ from those shown. Contact Simpson Strong-Tie for details.

CODES: See page 12 for Code Reference Key Chart.

		Top	Uplift ¹	Allowa	ble Dowr	1 Loads
Model	Nailer	Flange Nailing	(160)	DF/SP	SPF/HF	LSL
	2x	2-10dx1½	_	1600	1600	
W	2-2x	2-10d	_	1665	1665	_
VV	3x	2-16dx2½	_	1765		_
	4x	2-10d		2200		_
WP	2x	2-10dx1½	_	2525	2500	3375
and	2-2x	2-10d	_	3255	3255	
WNP	3x	2-16dx2½	_	3000	2510	3375
VVIVI	4x	2-10d		3255	3255	_
	2-2x	7-10d	700	3255	_	_
WPU	3x	7-16dx2½	970	3000	_	_
	4x	7-16d	1095	3255	_	_
	2-2x	4-10d	_	4860	_	_
HW	3x	4-16dx2½	_	4845	_	_
	4x	4-16d	_	5285	_	_
	2-2x	8-16dx2½	710	5430	_	
HWU	3x	8-16dx2½	970	5430		
	4x	8-16d	1160	5430	_	_

NAILER TABLE

The table indicates the maximum allowable loads for W, WNP and HW hangers used on wood nailers. Nailers are wood members attached to the top of a steel I-beam, concrete or masonry wall.

- 1. Uplift value for the HWU hanger is for depths ≤18" and are for DF/SP values only. Refer to uplift values in table below for taller depths.
- 2. Attachment of nailer to supporting member is the responsibility of the Designer.

Typical WM Mid-Wall Installation See pages 173-174 for models and information.

(fasteners included) See pages 104-105 for GLT and HGLT information.

W SERIES WITH VARIOUS HEADER APPLICATIONS

	J	oist	F	asteners				Allowa	ble Lo	ads Hea	der Ty	pe		Codo	
Model	Width	Depth	Тор	Face	Joist	Uplift (160)	LVL	PSL	LSL	DF/SP	SPF/ HF	I-Joist	Masonry	Code Ref.	
	1½ to 4	3½ to 30	2-10dx1½	_	2-10dx1½	_	1635	1740	_	1600	1415	_	_	170	
W	1½ to 4	3½ to 30	2-10d	_	2-10dx1½	_	2150	2020	_	2200	1435	_	_	I10, F9, L14	
	1½ to 4	3½ to 30	2-16d	_	2-10dx1½	_	2335	1950	2335	1765	1435	_	_	110, F9, L14	
	1½ to 7½	3½ to 30	2-16d DPLX	_	2-10dx1½	_		MID-W	/ALL II	NSTALL	ATION	4	4175	L16	
WM	1½ to 7½	3½ to 30	2-1/4x13/4 Titens	_	2-10dx1½	_	ī	OP OF	WALL	INSTAI	LATI0	N	3380	L11	
WMU	1½ to 7½	9 to 28	2-16d DPLX	4-1/4x13/4 Titens	6-10dx1½	625		MID-W	WALL INSTALLATION4				4175		
WIVIU	1½ to 7½	9 to 28	2-1/4x13/4 Titens	4-1/4x13/4 Titens	6-10dx1½	545	TOP OF WALL INSTALLATION					3380	170		
M/D/	1½ to 7½	3½ to 30	2-10dx1½	_	2-10dx1½	_	2865	3250	_	2500	2000	2030	_		
WP/ WNP	1½ to 7½	3½ to 30	2-10d	_	2-10dx1½	_	2525	3250	3650	3255	2525	_	_	140 140	
******	1½ to 7½	3½ to 30	2-16d	_	2-10dx1½	_	3635	3320	3650	3255	2600	_	_	I10, I19, F9, F18,	
WPU/	1½ to 5½	71/4 to 18	3-16d	4-16d	6-10dx1½	1095	4700	4880	3650	4165	4165	_	_	L11, L14	
WNPU	1½ to 5½	18½ to 28	3-16d	4-16d	6-10dx1½	390	4700	4880	3650	4165	4165	_	_	L11, L14	
HW	1½ to 7½	3½ to 32	4-10d	_	2-10dx1½		3100	4000	_	5285	3100	_	_		
1100	1½ to 7½	3½ to 32	4-16d	_	2-10dx1½	_	5100	4000	4500	5285	3665	_			
	1½ to 3½	9 to 18	4-16d	4-16d	6-10dx1½	1160	6335	5500	5535	6335	5415	_		140 140	
	1½ to 3½	18½ to 28	4-16d	4-16d	6-10dx1½	965	6335	5500	5535	6335	5415	_		I10, I19, F9, F18, L11, L14	
HWU	1½ to 3½	28½ to 32	4-16d	4-16d	8-10dx1½	985	6335	5500	5535	6335	5415	_	_		
11000	4½ to 7	9 to 18	4-16d	4-16d	6-10dx1½	1160	6000	5500	5535	6000	5415	_	_		
	4½ to 7	18½ to 28	4-16d	4-16d	6-10dx1½	965	6000	5500	5535	6000	5415	_	_		
	4½ to 7	28½ to 32	4-16d	4-16d	8-10dx1½	985	6000	5500	5535	6000	5415	_	_		

Installation on Wood Nailer

- 1. Code values are based on DF/SP header species.
- 2. WMU, WPU and HWU uplift loads have been increased for wind or earthquake loading with no further increase allowed. Reduce where other loads govern.
- 3. For hanger heights exceeding the joist height, the allowable load is 0.50 of the table load.
- 4. Mid-wall Installation requires minimum of one grouted course above and below the hanger.
- 5. **NAILS:** 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See pages 22-23 for other nail sizes and information.

Solid Sawn Joist Hangers

TOP FLANGE HANGERS – SOLID SAWN LUMBER (DF/SP)

DON'T FEEL LIKE SIFTING THROUGH THIS TABLE? Visit www.strongtie.com/ software to learn more about our new Joist Hanger Selector software.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Joist or				Dimen	sions		Fast	eners	I	DF/SP Allov	vable Load	S	Installed	
Purlin Size	Model No.	Ga	W	Н	В	TF	Header	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	Cost Index (ICI)	Code Ref.
							SAWI	I LUMBER SIZ	. ,	,	, ,	,		
2x4	HU24TF	12	1%16	37/16	21/4	2½	6-16d	2-10dx1½	295	2090	2100	2100	Lowest	
DBL 2x4	HU24-2TF	12	31//8	37/16	2½	2½	8-16d	2-10d	375	2600	2600	2600	Lowest	
	JB26	18	1%16	5%	1½	15/16	4-10d	2 PRONG	_	1040	1040	1040	Lowest	
	LB26	14	1%16	5%	1½	11/2	4-16d	2-10dx1½	290	1380	1380	1380	+117%	
2x6	HU26TF	12	1%16	5%	21/4	2½	10-16d	4-10dx1½	590	2275	2330	2335	+568%	
	W26	12	1%16	5%	2½	2½	2-10d	2-10dx1½	_	2200	2200	2200	+890%	
	HUS26-2TF	14	31//8	5%	2	13/4	6-16d	4-16d	1235	2820	3000	3000	Lowest	
DBL 2x6	WNP26-2	12	31/8	5%	2½	23/16	2-10d	2-10d	_	3255	3255	3255	+33%	140 50 144
2.00	HU26-2TF	12	31//8	5%	2½	2½	10-16d	4-10d	750	3725	3900	3900	+87%	I10, F9, L11
	JB28	18	1%16	71/4	1½	15/16	4-10d	2 PRONG	_	1050	1050	1050	Lowest	
	LB28	14	1%16	71/4	1½	1½	4-16d	2-10dx1½	290	1270	1270	1270	+98%	
2x8	HU28TF	12	1%16	71/8	21/4	2½	10-16d	4-10dx1½	590	2335	2335	2335	+563%	
	W28	12	1%16	71/8	2½	2½	2-10d	2-10dx1½	_	2200	2200	2200	+570%	
	HUS28-2TF	14	31//8	71/4	2	11//8	8-16d	6-16d	1550	3455	3720	3895	Lowest	
DBL	WNP28-2	12	31/8	71/8	2½	23/16	2-10d	2-10d	_	3255	3255	3255	+16%	
2x8	HU28-2TF	12	31/8	71/8	2½	21/2	12-16d	4-10d	750	3900	3900	3900	+75%	
	JB210A	18	1%6	93/16	2	17/16	6-16d	2-10dx1½	315	1685	1685	1685	_	160
	LB210AZ	14	19/16	93/16	2	17/16	6-16d	2-10dx1½	380	1865	1865	1865	_	170
2x10	HU210TF	12	1%	91/8	21/4	2½	12-16d	4-10dx1½	590	2335	2335	2335	+359%	l10, F9, L11
	W210	12	1%6	91/8	21/2	21/2	2-10d	2-10dx1½	_	2200	2200	2200	+360%	
	HUS210-2TF	14	31/8	91/4	2	11/2	10-16d	8-16d	2590	3585	3925	4155	Lowest	
DBL	WNP210-2	12	31/8	91/8	2½	23/16	2-10d	2-10d	_	3255	3255	3255	+9%	
2x10	HU210-2TF	12	31/8	91/8	21/2	21/2	14-16d	6-10d	1125	4170	4170	4170	+67%	
TPL 2x10	HU210-3TF	12	411/16	91/8	21/2	21/2	14-16d	6-16d	1325	4150	4150	4150	Lowest	
TT E EXTO	JB212A	18	1%6	111/8	2	17/16	6-16d	2-10dx1½	315	1685	1685	1685		160
	LB212AZ	14	19/16	111/8	2	17/16	6-16d	2-10dx1½	380	1865	1865	1865	_	170
2x12	W212	12	1%	1178	2½	2½	2-10d	2-10dx1½	_	2200	2200	2200	+317%	170
	HU212TF	12	1%	11	21/4	2½	14-16d	6-10dx1½	885	2335	2335	2335	+339%	I10, F9, L11
	HUS212-2TF	14	31/8	111//8	2	21/4	10-16d	8-16d	2000	4435	4535	4605	Lowest	I10, F9
DBL	WNP212-2	12	31/8	1178	2½	23/16	2-10d	2-10d	2000	3255	3255	3255	+12%	110,13
2x12	HU212-2TF	12	31/8	11	21/2	21/2	16-16d	6-10d	1125	4325	4660	4880	+48%	I10, F9, L11
TPL 2x12	HU212-3TF	12	411/16	11	21/2	21/2	16-16d	6-16d	1325	4550	4885	5105	Lowest	110, 13, L11
11 L ZX1Z	JB214A	18	19/16	131//8	2	17/16	6-16d	2-10dx1½	315	1685	1685	1685	LOWEST	160
													_	
2x14	W214	14	1%6	131/8	21/2	17/16	6-16d	2-10dx1½	380	1865 2200	1865 2200	1865 2200	1890/	170
		12	1%16	13		21/2	2-10d	2-10dx1½	995				+188%	
	HU214TF	12	1% ₁₆	13	21/4	21/2	16-16d	6-10dx1½	885 2500	2660	2745	2800	+189%	
DBL	HUS214-2TF	14	31/8	131/8	21/4	21/4	12-16d	8-16d	2590	4435	4535	4605	Lowest	
2x14	WNP214-2	12	31/8	13	2½	23/16	2-10d	2-10d	1500	3255	3255	3255	+2%	I10, F9, L11
TDL 0v44	HU214-2TF	12	31/8	13	2½	2½	18-16d	8-10d	1500	4335	4335	4335	+33%	
TPL 2x14	HU214-3TF	12	411/16	13	2½	2½	18-16d	8-16d	1765	4835	5050	5050	Lowest	
0.40	LB216	14	1%16	151/8	2	1½	4-16d	2-10dx1½	290	1425	1425	1425	Lowest	
2x16	W216	12	1%6	15	2½	2½	2-10d	2-10dx1½		2200	2200	2200	+122%	
	HU216TF	12	1%16	15	21/4	2½	18-16d	8-10dx1½	1180	2845	2955	3030	+199%	
DBL 2v16	WNP216-2	12	31/8	15	2½	23/16	2-10d	2-10d		3255	3255	3255	Lowest	
2x16	HU216-2TF	12	31//8	15	2½	2½	20-16d	8-10d	1500	4335	4335	4335	+34%	

1. N54A fasteners are supplied with hangers.

CODES: See page 12 for Code Reference Key Chart.

^{2. 16}d sinkers may be used where 10d commons are called out with no load reduction.

3. Uplift loads are based on DF/SP lumber and have been increased for wind or earthquake loading with no further increase allowed.

For normal loading applications such as cantilever construction refer to Simpson Strong-Tie® Connector Selector™ software or conservatively divide the uplift load by 1.6. For SPF use 0.86 x DF/SP uplift load.

^{4.} NAILS: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10d \times 10^{-1}$ long. See pages 22-23 for other nail sizes and information.

^{*}Installed Cost Index not available on these models.

