MOSFET Characterization at Cryo

Giovanni Michel

Northwestern

How to deduce the Subthreshold-Swing vs. Temperature

- The first plot shows the *I-V* plot for a P-type device.
- The second plot shows the $log(I_D)$ vs. V_{GS} .
- Subthreshold-Swing equation:

$$SS = \left(\frac{d[\log_{10}(I_D)]}{d(V_{GS})}\right)^{-1} * 1000$$

Measured Subthreshold-slope at cryogenic temperatures

- Study of 3 different MOSFET devices 2 N-channel and 1 N-channel.
- See appendix A for SS and I-V preliminary data.
- Subthreshold-slope, SS vs. T in the blue lines.

$$SS = n \ln(10) \frac{kT}{q}$$

SS vs. T, scaling factor is on the left side of the plot in the red lines.

$$n = 1 + \frac{C_d}{C_i}$$

Solving for ϕ_F using depletion width model of MOSFET

 W_M , the depletion width under the channel is defined in terms of ϕ_F , the Fermi potential as

$$W_{M} = \left(\frac{\epsilon_{0}\epsilon_{s}}{qN_{a,d}}2|\phi_{F}|\right)^{\frac{1}{2}}$$

 C_d , the depletion capacitance is expressed in terms of the depletion width as

$$C_d = \frac{\epsilon_0 \epsilon_s}{W_M}$$

From n, the scaling factor I can deduce the depletion capacitance. Then I plug the new equation for the depletion capacitance. The goal was to isolate ϕ_F since this is needed to get the depletion width.

$$\phi_F = \frac{qN_{a,d}W_M^2}{2\epsilon_0\epsilon_s} = \frac{q\epsilon_s\epsilon_0N_{a,d}}{2C_d^2}$$
$$\frac{\phi_FC_i^2}{N_{a,d}} = \frac{q\epsilon_s\epsilon_0}{2(n-1)^2}$$

Plot for $V_t(T)$

From the data collected our measurements show that as T, the temperature decreases, V_t the voltage threshold increases.

Plots for $g_m(T)$

Note for P-MOS, $-V_{GS} = V_{GS}$, we multiplied by -1 when plotting

Appendix A.1

 I-V Measurements for n-type device and Subthreshold-Swing.

$$SS = 143.07 \frac{mV}{dec}$$
, T=300K
 $114.45 \frac{mV}{dec}$, 200K
 $114.45 \frac{mV}{dec}$, 100K
 $128.76 \frac{mV}{dec}$, 50K

Appendix A.2

I-V Measurements for p-type device and Subthreshold-Swing.

$$SS = 157.37 \frac{mV}{dec}, T=300K$$

$$100.14 \frac{mV}{dec}, 200K$$

$$85.84 \frac{mV}{dec}, 100K$$

$$100.14 \frac{mV}{dec}, 50K$$

$$71.53 \frac{mV}{dec}, 4K$$

Appendix A.3

I-V Measurements for n-type device and Subthreshold-Swing.

$$SS = 185.98 \frac{mV}{dec}$$
, T=300K
 $143.06 \frac{mV}{dec}$, 200K
 $114.45 \frac{mV}{dec}$, 100K
 $85.84 \frac{mV}{dec}$, 50K
 $85.84 \frac{mV}{dec}$, 4K

