Point Set Topology

Lecture 2

Haoming Wang

21 March 2020

This is the Lecture note for the Point Set Topology.

Topology Space

Definition 1 (Topology Space). A topology space $X = (\underline{X}, \mathscr{T}_X)$ consists of a set \underline{X} , called the underlying space of X and a family \mathscr{T}_X of subset of \underline{X} (i.e. $\mathscr{T}_X \subseteq \mathcal{P}(X)$) s.t.

- 1. \underline{X} , $\emptyset \in \mathscr{T}_X$;
- 2. $U_{\alpha} \in \mathscr{T}_X(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathscr{T}_X;$
- 3. $U, U' \in \mathscr{T}_X \Rightarrow U \cap U' \in \mathscr{T}_X$.

 \mathscr{T}_X is called a topology on \underline{X} , the element in \mathscr{T}_X is called the open set on \underline{X} w.r.t. \mathscr{T}_X .

Exercise 1. Let X be a topology space, $U \subseteq X$, show that U is open \Leftrightarrow for any $u \in U$, $\exists O_u \subseteq U$, s.t. $u \in O_u \subseteq_{open} X$.

Proof. \Rightarrow : define $O_u := U$ for $\forall u \in U$; \Leftarrow : since $O_u \subseteq U$, $\cup_{u \in U} O_u \subseteq U$; on the other hand, for any $v \in U$, $v \in O_v \subseteq \cup_{u \in U} O_u \Rightarrow U \subseteq \cup_{u \in U} O_u$. Thus $U = \cup_{u \in U} O_u \subseteq_{open} X$.

Definition 2 (Continuous). Let X and Y are top. spaces and $\underline{X} \xrightarrow{f} \underline{Y}$ is a map. We say f is conti. at a point $x_0 \in X$ (from X to Y), if for $\forall f(x_0) \in V \in \mathscr{T}_Y, \exists x \in U \in \mathscr{T}_X$, s.t. $f(U) \subseteq V$.

We say f is continuous (from X to Y) if it is continuous at every point of \underline{X} .

Definition 3 (Compact). X is a top. sp. $K \subseteq \underline{X}$. We say K is compact in X if $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), K \subseteq \cup_{\alpha \in A} U_{\alpha} \Rightarrow \exists$ finite set $S \subseteq A$, s.t. $K \subseteq \cup_{\alpha \in S} U_{\alpha}$, and denote by $K \subseteq_{cpt.} X$. We say X is a compact space if \underline{X} is compact in X.

Definition 4 (Neighborhood). Let X be a top. sp. and $x \in X$. A subset N of X is called a neighborhood of x if $\exists U \subseteq N$, s.t. $x \in U \subseteq_{open} X$.

Exercise 2. $X \xrightarrow{f} Y$ is a map between top. sp., $x_0 \in X$, show that f is conti. at $x_0 \Leftrightarrow \forall$ nbd. V of $f(x_0)$, \exists nbd. U of x_0 , s.t. $f(U) \subseteq V \Leftrightarrow \forall$ nbd. V of $f(x_0)$, $f^{-1}(V)$ is a nbd. of x_0 .

CONTENT:

- 1. Topology Space
- 2. Closure

Note 1. Conventionally, we usually use X to indicate the set \underline{X} and omit the subscript X in \mathscr{T}_X by saying "a topology space (X, \mathscr{T}) ".

Note 2. We will denote $U \in \mathscr{T}_X$ as $U \subseteq_{open} X$, and denote $X \setminus A \subseteq_{open} X$ as $A \subseteq_{close} X$.

```
Proof. 1. \Rightarrow: Suppose V \subseteq Y is a nbd. of f(x_0), then \exists V_0 \subseteq V, s.t. f(x_0) \in V_0 \subseteq_{open} Y \Rightarrow \exists U_0 \subseteq_{open} X, s.t. x \in U_0 and f(U_0) \subseteq V_0, since f is conti. at x_0. Thus U_0 is the nbd. that we desire.
```

 \Leftarrow : For any open set $V_0 \subseteq_{open} Y$ and $f(x_0) \in V_0$, V_0 is a nbd. of $f(x_0)$. Thus \exists a nbd. U of x_0 such that $\exists U_0 \subseteq U, x_0 \in U_0 \subseteq_{open} X$. And $f(U_0) \subseteq f(U) \subseteq V_0$. Thus f is conti.

2. \Rightarrow : For any nbd. V of $f(x_0)$, \exists nbd. U of x_0 and $\exists U_0 \subseteq U$, s.t. $x_0 \in U_0 \subseteq_{open} X$ and $f(U) \subseteq V$. Thus $x_0 \in U_0 \subseteq U \subseteq f^{-1}(V)$, that is $U \in f^{-1}(V)$ and $x_0 \in U_0 \subseteq_{open} X$, thus $f^{-1}(V)$ is a nbd. of x_0 . \Leftarrow : Trivial.

Definition 5 (Separation Axioms). Let *X* be a top. space:

(T_0 or Kolmogorov Space) For any distinct $x, y \in X, \exists U \subseteq_{open} X$, s.t. $x \in U \not\ni y$ or $y \in U \not\ni x$.

(T_1 or Fréchet Space) For any distinct $x, y \in X$, $\exists U, V \subseteq_{open} X$, $x \in U \not\ni y$ and $y \in V \not\ni x$.

(T_2 or Hausdorff Space) For any distinct $x, y \in X$, $\exists U, V \subseteq_{open} X$, s.t. $x \in U, y \in V$ and $U \cap V = \emptyset$.

(T_3 or Regular Space) If X is a T_1 space, and $\forall x \in X, C \subseteq_{close} X, x \notin C \Rightarrow \exists U, V \subseteq_{open} X$, s.t. $x \in U, C \in V$ and $U \cap V = \emptyset$.

(T_4 or Normal Space) If X is a T_1 space, and $\forall C_1, C_2 \subseteq_{close} X, C_1 \cap C_2 = \emptyset \Rightarrow \exists U, V \subseteq_{open} X$, s.t. $C_1 \subseteq U, C_2 \subseteq V$ and $U \cap V = \emptyset$.

Exercise 3. Show that *X* is a T_1 space $\Leftrightarrow \forall x \in X, \{x\} \subseteq_{close} X$.

Proof. \Rightarrow : Given $x \in X$, for any $y \in X \setminus \{x\}$, there exists $U_y \subseteq_{open} X$, s.t. $y \in U_y \not\ni x$. Thus $\cup_{y \in X \setminus \{x\}} U_y \subseteq_{open} X$. If $z \in \cup_{y \in X \setminus \{x\}} U_y$, $\exists y' \in X$, s.t. $z \in U_{y'} \subseteq_{open} X$ and $x \notin U_{y'} \Rightarrow z \neq x \Rightarrow z \in X \setminus \{x\}$. For any $z \in X \setminus \{x\} \Rightarrow \exists U_z \subseteq_{open} X$, s.t. $z \in U_z \not\ni x \Rightarrow z \in \cup_{y \in X \setminus \{x\}} U_y$. Thus $X \setminus \{x\} = \cup_{y \in X \setminus \{x\}} U_y \subseteq_{open} X \Rightarrow \{x\} \subseteq_{close} X$. \Leftarrow : For any distinct $x, y \in X$, $x \in X \setminus \{y\} \subseteq_{open} X$ and $y \in X$.

 \Leftarrow : For any distinct $x,y \in X$, $x \in X \setminus \{y\} \subseteq_{open} X$ and $y \in X \setminus \{x\} \subseteq_{open} X$ where $x \notin X \setminus \{x\}$ and $y \notin X \setminus \{y\}$.

Closure

Definition 6. *X* is a top. sp., $p \in X$, $A \subseteq X$:

- 1. p is an interior point of A in X, if \exists nbd. U of p, s.t. $U \subseteq A$;
- 2. p is an exterior point of A in X, if \exists nbd. U of p, s.t. $U \subseteq X \setminus A$, i.e. $U \cap A = \emptyset$;
- 3. p is a boundary point of A in X, if \forall nbd. U of p, s.t. $U \cap A \neq \emptyset \neq U \cap (X \setminus A)$;
- 4. p is an isolated point of A in X, if \exists nbd. U of p, s.t. $U \cap A = \{p\}$;
- 5. p is a limit point of A in X, if \forall nbd. U of $p, U \cap (A \setminus \{p\}) \neq \emptyset$.

Correspondingly, define

1. $int_X A = A^o := \{all \text{ interior point of } A \text{ in } X\},$

- 2. $ext_X A = A^e := \{all \text{ exterior point of } A \text{ in } X\},$
- 3. $bd_X A = \partial A := \{\text{all boundary point of } A \text{ in } X\}$ It is direct to see
- 1. $A^o = (X \backslash A)^e$, $A^e = (X \backslash A)^o$ and $\partial A = \partial (X \backslash A)$;
- 2. $A^o = \bigcup \{U | U \subseteq A, U \subseteq_{open} X\}$ is the largest open set of X contained in A.
- 3. $cls_X A = \overline{A} := \bigcap \{C | A \subseteq C \subseteq_{close} X\}$ is the smallest closed set of X containing A;
- 4. $\overline{A} = A^o \cup \partial A = X \backslash A^e$;
- 5. $A \subseteq_{open} X \Leftrightarrow A^o = A$;
- 6. $A \subseteq_{close} X \Leftrightarrow \overline{A} = A$.

The proies of these statements has been given in *Introduction of Topology, Lecture* 12,13.

Exercise 4. Show that $\partial A \setminus A \subseteq L_A$, where $L_A := \{ \text{limit points of } A \text{ in } X \}$.

Proof.
$$x \in \partial A \setminus A \Rightarrow x \in \partial A$$
 and $x \notin A \Rightarrow$ for any nbd. U of x , $U \cap A = U \cap (A \setminus \{x\}) = U \cap A \setminus \{x\} \neq \emptyset \Rightarrow x \in L_A$.

Note 3. In general, $\partial A \not\subseteq L_A$. For example, if x is an isolate point of A, then it is a boundary point of A, but not be the limit point of A.

Exercise 5. Show that $\overline{A} = A \cup L_A$.

Proof 1. 1. $\overline{A} \subseteq A \cup L_A$: If $x \in A \Rightarrow x \in A \cup L_A$; If $x \in \overline{A} \setminus A$: since $x \in \overline{A} = A^o \cup \partial A = X \setminus A^e$, any nbd. U of x has $U \not\subseteq X \setminus A \Rightarrow U \cap A \neq \emptyset$. Since $x \notin A$, $U \cap A = U \cap (A \setminus \{x\}) \neq \emptyset \Rightarrow x \in L_A$.

2. $A \cup L_A \subseteq \overline{A}$: If $x \in A \Rightarrow x \in \overline{A}$; If $x \in L_A \Rightarrow$ any nbd. U of x has $U \cap A \neq \emptyset \Rightarrow x \notin A^e \Rightarrow x \in X \setminus A^e = \overline{A}$.

Proof 2. 1. $\overline{A} = A^o \cup \partial A = A^o \cup (\partial A \cap A) \cup (\partial A \setminus A)$. If $x \in A^o \cup (\partial A \cap A) \Rightarrow x \in A$; if $x \in \partial A \setminus A \Rightarrow x \in L_A$. Thus $\overline{A} \subseteq A \cup L_A$.

2. If $x \in X \setminus \overline{A} = (X \setminus A)^o$, then \exists a nbd. U of x, s.t. $U \subseteq X \setminus A \Rightarrow U \cap A = \emptyset \Rightarrow x$ is not a limit point of A in $X \Rightarrow x \in X \setminus L_A \Rightarrow X \setminus \overline{A} \subseteq X \setminus L_A \Rightarrow L_A \subseteq \overline{A} \Rightarrow A \cup L_A \subseteq A \cup \overline{A} = \overline{A}$.

Note 4. Useful routines: 1. $A \subseteq B \Leftrightarrow X \backslash A \supseteq X \backslash B$ 2. $x \notin \overline{A} \Leftrightarrow \exists$ nbd. U of x, s.t. $U \cap A = A$

Exercise 6. *X* is a top. sp., $A_i \subseteq X(i \in I)$, show that

$$\cup_{i\in I}\overline{A_i}\subseteq\overline{\cup_{i\in I}A_i}$$

and

$$\overline{\cap_{i\in I}A_i}\subseteq\cap_{i\in I}\overline{A_i}.$$

Proof. 1. For any $i \in I$, $A_i \subseteq \cup_{i \in I} A_i \Rightarrow \overline{A_i} \subseteq \overline{\cup_{i \in I} A_i} \Rightarrow \cup_{i \in I} \overline{A_i} \subseteq \overline{\cup_{i \in I} A_i}$.

2. For any
$$i \in I$$
, $A_i \subseteq \overline{A_i} \subseteq_{close} X \Rightarrow \cap_{i \in I} A_i \subseteq \cap_{i \in I} \overline{A_i} \subseteq_{close} X \Rightarrow \bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} \overline{A_i} = \bigcap_{i \in I} \overline{A_i}$.

Note 5. If I is finite, then $\bigcup_{i \in I} \overline{A_i} = \bigcup_{i \in I} \overline{A_i}$.

Since $A_i \subseteq \overline{A_i} \Rightarrow \bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} \overline{A_i} \Rightarrow \bigcup_{i \in I} \overline{A_i} \Rightarrow \bigcup_{i \in I} \overline{A_i} \Rightarrow \bigcup_{i \in I} \overline{A_i}$ is closed, thus $\overline{\bigcup_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$.

Note that the '=' doer not necessary hold. For example, let $A_r =$ (1/r, 1-1/r), r > 2, then $\bigcup_{r>2} A_r = \bigcup_{r>2} \overline{A_r} = (0,1) \subseteq \overline{\bigcup_{r>2} A_r} =$ [0, 1].

Let $B_1 = (0, 1/2), B_2 = (1/2, 1)$, then $\overline{B_1 \cap B_2} = B_1 \cap B_2 = \emptyset$, but $\overline{B_1} \cap \overline{B_2} = [0, 1/2] \cap [1/2, 1] = 1/2.$

Definition 7 (Locally Finite). A family S of some subsets of a top. space *X* is locally finite if $\forall p \in X, \exists$ nbd. *U* of *p* s.t. $\{S \in S | U \cap S \neq A\}$ \emptyset } is a finite set.

Exercise 7. If S is locally finite family, show that

$$\overline{\cup_{S\in\mathcal{S}}S}=\cup_{S\in\mathcal{S}}\overline{S}.$$

Proof 1. We claim $\overline{\bigcup_{S \in \mathcal{S}} S} \subseteq \bigcup_{S \in \mathcal{S}} \overline{S}$, i.e. $\bigcap_{S \in \mathcal{S}} (X \setminus \overline{S}) = X \setminus \bigcup_{S \in \mathcal{S}} \overline{S} \subseteq X \setminus \overline{S}$ $X \setminus \overline{\bigcup_{S \in S} S}$. Note that $x \in X \setminus \overline{\bigcup_{S \in S} S} \Leftrightarrow \exists$ a nbd. W of x, s.t. $W \cap S = \emptyset$ for $\forall S \in \mathcal{S}$. That is, we want to find a nbd of x such that has no intersection with any S in S, the locally finiteness of S tells us there exists a nbd. U of x that intersects with only finite sets $S_1, \dots, S_k \in$ S. Thus all we need to do is eliminate these intersected part from U.

 $x \in \bigcap_{S \in \mathcal{S}} (X \setminus \overline{S}) \Rightarrow x \in X \setminus \overline{S}$ for any $S \in \mathcal{S}$. Thus for any $S \in \mathcal{S}$, \exists a nbd V of x, s.t. $V \cap S = \emptyset$. And \exists a nbd U of x, s.t. U only intersects with finite set $S_1, \dots, S_k \in \mathcal{S}$. Note that $W := U \cap V_1 \cap \dots \cap V_k$ is still a nbd. of x, since the finite union of open set is open. And $W \cap S = \emptyset$ for any $S \in \mathcal{S}$, thus for \exists a nbd. W of x, s.t. $W \cap \bigcup_{S \in \mathcal{S}} S = \emptyset \Rightarrow x \in$ $X \setminus \overline{\cup_{S \in S} S} \Rightarrow \overline{\cup_{S \in S} S} \subseteq \cup_{S \in S} \overline{S}.$

Proof 2. Pick $x \notin \bigcup_{S \in S} \overline{S}$. Due to local finiteness, there is an (open) neighborhood *U* of *x*, such that *U* intersects only finitely many of S: let's say S_1, S_2, \ldots, S_n . Now create a new neighborhood U' = $U \setminus (\overline{S_1} \cup \overline{S_2} \cup \cdots \cup \overline{S_n})$, which is an open set containing x, and U' $\overline{X \setminus U'} \xrightarrow{X \setminus U' \subseteq_{close} X} X \setminus U'$. Thus U' also does not intersect any of \overline{S} .

Thus, for any $x \in X \setminus \bigcup_{S \in S} \overline{S}_{t} \exists$ an open nbd. U' of x, such that $U' \cap \bigcup_{S \in S} \overline{S} = \emptyset$. Thus $X \setminus \bigcup_{S \in S} \overline{S}$ is open, i.e. $\bigcup_{S \in S} \overline{S}$ is closed. Thus $\bigcup_{S \in \mathcal{S}} S \subseteq \bigcup_{S \in \mathcal{S}} \overline{S} \Rightarrow \overline{\bigcup_{S \in \mathcal{S}} S} \subseteq \overline{\bigcup_{S \in \mathcal{S}} \overline{S}} = \bigcup_{S \in \mathcal{S}} \overline{S}.$

If S is locally finite, given a $x \in X$, then \exists a nbd. U of x, s.t. Uintersects only finite, such as k, Ss in S. Clearly k has a minimal number, such as 3. Note that it does not imply x is covered by 3 Ss in \mathcal{S} .

Exercise 8. Let $X \xrightarrow[conti.]{f} Y, A \subseteq X, B \subseteq Y$, show that: 1. $f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}; f(\overline{A}) \subseteq \overline{f(A)}$

1.
$$f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}; f(\overline{A}) \subseteq \overline{f(A)}$$

$$\text{2. } f^{-1}(B^o)\subseteq f^{-1}(B)^o; f(A^o)\supseteq f(A)^o.$$

3.
$$f^{-1}(B^e) \subseteq f^{-1}(B)^e$$
; if f is a surjection, $f(A^e) \supseteq f(A)^e$.

Note 6. There is no similar feature for the intersection, for example, $S_1 = (0,1)$ and $S_2 = (1, 2)$.

4. $f^{-1}(\partial B) \supseteq \partial f^{-1}(B)$; $f(\partial A) \subseteq \partial f(A)$.

Proof. 1.
$$B \subseteq \overline{B} \Rightarrow f^{-1}(B) \subseteq f^{-1}(\overline{B}) \subseteq_{close} X \Rightarrow \overline{f^{-1}(B)} \subseteq \overline{f^{-1}(\overline{B})} = f^{-1}(\overline{B});$$

$$f(A) \subseteq \overline{f(A)} \Rightarrow A \subseteq f^{-1}(\overline{f(A)}) \subseteq_{close} X \Rightarrow \overline{A} \subseteq \overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)}) \Rightarrow f(\overline{A}) \subseteq \overline{f(A)}.$$

2.
$$B^o \subseteq B \Rightarrow X_{open} \supseteq f^{-1}(B^o) \subseteq f^{-1}(B) \Rightarrow f^{-1}(B^o) = f^{-1}(B^o)^o \subseteq f^{-1}(B)^o;$$

$$f(A)^o \subseteq f(A) \Rightarrow f^{-1}(f(A)^o) \subseteq A \Rightarrow f^{-1}(f(A)^o) = f^{-1}(f(A)^o)^o \subseteq A^o \Rightarrow f(A)^o \subseteq f(A^o).$$

3. Since $B^e = (Y \setminus B)^e$,

$$f^{-1}(B^e) = f^{-1}((Y \backslash B)^o)$$

$$\subseteq f^{-1}(Y \backslash B)^o$$

$$= [f^{-1}(Y) \backslash f^{-1}(B)]^o$$

$$= [X \backslash f^{-1}(B)]^o$$

$$= f^{-1}(B)^e.$$

and

$$f(A^{e}) = f((X \setminus A)^{o})$$

$$\supseteq f(X \setminus A)^{o}$$

$$\supseteq [f(X) \setminus f(A)]^{o}$$

$$\xrightarrow{f \text{ is surj.}} [Y \setminus f(A)]^{o}$$

$$= f(A)^{e}.$$

4. Since $\overline{B} = B^o \cup \partial B$,

$$\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})
\Rightarrow f^{-1}(B)^o \cup \partial f^{-1}(B) \subseteq f^{-1}(B^o \cup \partial B)
\Rightarrow f^{-1}(B)^o \cup \partial f^{-1}(B) \subseteq f^{-1}(B^o) \cup f^{-1}(\partial B).$$

since $f^{-1}(B)^{o} \supseteq f^{-1}(B^{o}), \partial f^{-1}(B) \subseteq f^{-1}(\partial B).$

and

$$f(\overline{A}) \subseteq \overline{f(A)}$$

$$\Rightarrow f(\partial A) \cup f(A^{o}) = f(\partial A \cup A^{o})$$

$$\subseteq \partial f(A) \cup f(A)^{o}$$

since $f(A^o) \supseteq f(A)^o$, $f(\partial A) \subseteq \partial f(A)$.

Note 7. Recall that:

- 1. $X \xrightarrow{f} Y$ is conti. \Leftrightarrow for any $B \subseteq_{open} Y(\subseteq_{close} Y)$, $f^{-1}(B) \subseteq_{open} X(\subseteq_{close} X)$.
- 2. $A^o \subseteq A \subseteq \overline{A}$.
- 3. $A \subseteq_{close} X \Rightarrow \overline{A} = A; A \subseteq_{open} X \Rightarrow A^o = A.$

Note 8. $A \subseteq B$, $A \cup C \supseteq B \cup D \Rightarrow C \supseteq D$.

 $\begin{array}{ll} \textit{Proof.} & A \cup C \supseteq B \cup D \supseteq A \cup D \Rightarrow \\ A^c \cup A \cup C \supseteq A^c \cup A \cup D \Rightarrow X \cup C \supseteq \\ X \cup D \Rightarrow C \supseteq D. \end{array}$