Heaven's light is our guide"

Rajshahi University of Engineering & Technology Department of Computer Science & Engineering

Network Security

Course No.: 305

Chapter 11: Modeling Computation

Prepared By: Julia Rahman

- ✓ The *grammar* of English tells us whether a combination of words is a valid sentence.
- ✓ $Syntax \rightarrow$ form of the sentence, or grammar
- ✓ *Semantics* \rightarrow meaning.
- ✓ Mathematics is not a valid sentence because it does not follow the rules of English grammar.
- ✓ The syntax of a natural language → spoken language, such as English, French, German, or Spanish, is extremely complicated.
- ✓ *Formal language*, which, unlike a natural language, is specified by a well-defined set of rules of syntax.
- ✓ The use of grammars helps when we consider the two classes of problems that arise most frequently in applications to programming languages:
 - (1) How can we determine whether a combination of words is a valid sentence in a formal language?
 - (2) How can we generate the valid sentences of a formal language?

- **Rules of a grammar that generates a valid English sentence:**
 - 1 . a *sentence* is made up of a *noun phrase* followed by a *verb phrase*;
 - 2. a *noun phrase* is made up of an *article* followed by an *adjective* followed by a *noun*, or
 - 3. a *noun phrase* is made up of an *article* followed by a *noun*;
 - 4. a *verb phrase* is made up of a *verb* followed by *an adverb*, or
 - 5. a *verb phrase* is made up of a *verb*;
 - 6. an article is a, an or the;
 - Sentence
 - →<u>noun phrase</u> verb phrase
 - → <u>article adjective noun</u> verb phrase
 - → *article* adjective noun <u>verb adverb</u>
 - → *the adjective* noun verb adverb
 - → the *large* <u>noun</u> verb adverb
 - \rightarrow the large *rabbit* <u>verb</u> adverb
 - → the large rabbit *hops adverb*
 - → the large rabbit hops *quickly*

DEFINITION 1:

- ✓ A *vocabulary* (or alphabet) V is a finite, nonempty set of elements called symbols.
- ✓ A word (or sentence) over V is a string of finite length of elements of V.
- \checkmark The *empty string* or null string, denoted by λ, is the string containing no symbols.
- \checkmark The set of all words over V is denoted by V*.
- ✓ A *language* over V is a subset of V^* .
- \checkmark { λ } is the set containing exactly one string, namely, the empty string ϕ .
- \triangleright A grammar has a *vocabulary V*, which is a set of symbols used to derive members of the language.
- Some of the elements of the vocabulary cannot be replaced by other symbols. These are called *terminals* denoted by T.
- The members of the vocabulary, which can be replaced by other symbols, are called *nonterminals* denoted by N.
- ➤ The set of terminals is {a, the, rabbit, mathematician, hops, eats, quickly, wildly}.
- The set of nonterminals is {sentence, noun phrase, verb phrase, adjective, article, noun, verb, adverb}.

There is a special member of the vocabulary called the *start symbol*, denoted by S, which is the element of the vocabulary that we always begin with.

DEFINITION 2:

A *phrase-structure grammar* G = (V, T, S, P) consists of a vocabulary V, a subset T of V consisting of terminal elements, a start symbol S from V, and a finite set of productions P. The set V - T is denoted by N. Elements of N are called nonterminal symbols. Every production in P must contain at least one nonterminal on its left side.

EXAMPLE 1: Let G = (V, T, S, P), where $V = \{a, b, A, B, S\}$, $T = \{a, b\}$, S is the start symbol, and $P = \{S \rightarrow ABa, A \rightarrow BB, B \rightarrow ab, AB \rightarrow b\}$. G is an example of a phrase-structure grammar.

DEFINITION 3:

Let G = (V, T, S, P) be a phrase-structure grammar. Let $W_0 = lz_0 r$ and $W_1 = lz_1 r$ be strings over V. If $z_0 \to z_1$ is a production of G, we say that W_1 is directly derivable from W_0 and we write $W_0 => W_1$. If W_0, W_1, \ldots, W_n are strings over V such that $W_0 => W_1$, $W_1 => W_2$, ..., $W_{n-1} => W_n$, then we say that W_n is derivable from W_0 , and we write $W_0 => W_n$. The sequence of steps used to obtain W_n from W_0 is called a derivation.

EXAMPLE 2: The string Aaba is directly derivable from ABa in the grammar in Example 1 because $B \to ab$ is a production in the grammar. The string abababa is derivable from ABa because ABa => Aaba => BBaba => Bababa => abababa, using the productions $B \to ab$, $A \to BB$, $B \to ab$, and $B \to ab$ in succession.

DEFINITION 4:

Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words,

$$L(G) = \{ w \in T^* \mid S \to w \}.$$

EXAMPLE 3: Let G be the grammar with vocabulary $V = \{S, A, a, b\}$, set of terminals $T = \{a, b\}$, starting symbol S, and productions $P = \{S \rightarrow a A, S \rightarrow b, A \rightarrow aa\}$. What is L(G), the language of this grammar?

Solution: From the start state S we can derive aA using the production $S \to aA$. We can also use the production $S \to b$ to derive b. From aA the production $A \to aa$ can be used to derive aaa . No additional words can be derived. Hence, $L(G) = \{b, aaa\}$.

Types of Phrase-Structure Grammars

1) Type 0 grammar:

- ✓ Has no restrictions on its productions.
- ✓ Most general type
- ✓ It is obtained by making simple restriction that y can not be the empty string rewrite form $xyz \rightarrow xwz$

2) Type 1 grammar:

- ✓ Can have productions of the form $W_1 oup W_2$, where $W_1 = IAr$ and $W_1 = Iwr$, where A is a nonterminal symbol, I and r are strings of zero or more terminal or nonterminal symbols, and W is a nonempty string of terminal or nonterminal symbols.
- ✓ It can also have the production $S \rightarrow \lambda$ as long as S does not appear on the right-hand side of any other production.
- ✓ Called *context-sensitive* because W_1 can be replaced by W_2 only when it is surrounded by the strings I and r.
- ✓ Rewrite rules for context-sensitive grammars have the following form:

$A X B \rightarrow A Y B$

which means that X must be a single nonterminal symbol and Y a nonempty string.

Julia Rahman, Dept. CSE, RUET

08

2) Type 2 grammar:

- ✓ Can have productions only of the form $W_1 \to W_2$, where W_1 is a single symbol that is not a terminal symbol.
- ✓ Called *context-free grammars* because a nonterminal symbol that is the left side of a production can be replaced in a string whenever it occurs, no matter what else is in the string.
- ✓ General form is $\langle \text{symbol} \rangle \rightarrow \langle \text{symbol } 1 \rangle$ $\langle \text{symbol } k \rangle$ where $k \geq 1$ and where the left hand side is a single nonterminal symbol $A \rightarrow X Y Z$ where A is a single nonterminal.

3) Type 3 grammar:

- Can have productions only of the form $W_1 \to W_2$ with $W_1 = A$ and either $W_2 = aB$ or $W_1 = a$, where A and B are nonterminal symbols and a is a terminal symbol, or with $W_1 = S$ and $W_2 = A$.
- ✓ Called regular grammars.
- ✓ A language generated by a regular grammar is called regular.

- A production of the form $W_1 \to W_2$ is called *noncontracting* if the length of W_1 is less than or equal to the length of W_2 .
- According to characterization of context-senstive languages, every production in type 1 grammar, other than the production $S \rightarrow A$, if it is present, is noncontracting.
- ❖ The lengths of strings in a derivation in a context-free language are nondecreasing unless the production $S \rightarrow A$ is used. This means that the only way for the empty string to belong to the language generated by a context-sensitive grammar is for the production $S \rightarrow A$ to be part of the grammar.
- ❖ The other way that context-sensitive grammars are defined is by specifying that all productions are noncontracting. A grammar with this property is called noncontracting or monotonic.

Derivation Trees:

- ✓ A derivation in the language generated by a context-free grammar can be represented graphically using an ordered rooted tree, called a *derivation or parse tree*.
- ✓ The root of this tree represents the starting symbol.
- ✓ The internal vertices of the tree represent the nontenninal symbols that arise in the derivation.
- ✓ The leaves of the tree represent the tenninal symbols that arise.

EXAMPLE 11: Construct a derivation tree for the derivation of the hungry rabbit eats quickly, given in the introduction of this section.

Solution: The derivation tree is shown in Figure 1.

