

CLAIMS

What is claimed is:

1 1. A computer-implemented method for optimizing allocation of computer resources,
2 comprising:

3 establishing a server model including one or more server nodes, wherein each
4 server node has an associated set of capacity attributes;

5 establishing a service model including one or more service nodes, wherein each
6 service node has an associated set of demand attributes;

7 selecting one of a plurality of user-selectable optimization methods; and

8 generating an optimized mapping of the server nodes in the server model to the
9 service nodes in the service model using the selected optimization method and demand
10 and capacity attributes.

1 2. The method of claim 1, further comprising normalizing the capacity attributes of
2 server nodes and demand attributes of service nodes.

1 3. The method of claim 2, further comprising:

2 selecting one of a plurality of user-selectable objective functions, wherein each of
3 the objective functions evaluates a solution as a function of the demand and capacity
4 attributes; and

5 generating an optimized mapping of the server nodes to the service nodes using the
6 selected one of the objective functions and selected one of the optimization methods.

1 4. The method of claim 3, wherein the plurality of optimization methods include a
2 genetic process and a complete search process.

1 5. The method of claim 3, further comprising:

2 establishing one or more service-node relationships between selected pairs of the
3 service nodes, wherein each service-node relationship has an associated transport demand
4 attribute specifying a quantity of communication resources required for communication
5 between the associated pair of service nodes;

6 establishing one or more server-node relationships between selected pairs of the
7 server nodes, wherein each server-node relationship has an associated transport capacity
8 attribute specifying a quantity of communication resources available for communication
9 between the associated pair of server nodes; and
10 generating the optimized mapping as a function of the service-node relationships
11 and server-node relationships.

1 6. The method of claim 4, wherein the plurality of objective functions includes a first
2 function for quantifying a balance processing load between nodes and a second function
3 quantifies a transport demand between the nodes.

1 7. The method of claim 4, further comprising:
2 establishing a plurality of server models, each server model including one or more
3 server nodes, wherein each server node has an associated set of capacity attributes;
4 designating a layered relationship between the server models, wherein for a first
5 server-model layer immediately above a second server-model layer, the second server-
6 model layer includes respective models that represent the nodes in the first server-model
7 layer;
8 establishing a plurality of service models, each service model including one or
9 more service nodes, wherein each service node has an associated set of demand attributes;
10 and
11 designating a layered relationship between the service models, wherein for a first
12 service-model layer immediately above a second service-model layer, the second service-
13 model layer includes respective models that represent the nodes in the first server-model
14 layer;
15 normalizing the capacity attributes of server nodes and demand attributes of
16 service nodes of the server models and the service models, respectively; and
17 generating an optimized mapping of the server nodes in a user-selected one of the
18 server models to service nodes in a user-selected one of the service models using the
19 selected optimization method.

1 8. The method of claim 7, further comprising:
2 establishing one or more service-node relationships between selected pairs of the
3 service nodes, wherein each service-node relationship has an associated transport demand
4 attribute specifying a quantity of communication resources required for communication
5 between the associated pair of service nodes;

6 establishing one or more server-node relationships between selected pairs of the
7 server nodes, wherein each server-node relationship has an associated transport capacity
8 attribute specifying a quantity of communication resources available for communication
9 between the associated pair of server nodes; and

10 generating the optimized mapping as a function of the service-node relationships
11 and server-node relationships.

1 9. The method of claim 7, wherein each service node has an associated set of capacity
2 attributes and further comprising generating an optimized mapping of service nodes in a
3 first user-selected service model to service nodes in a second user-selected service model
4 as a function of the demand attributes of the first service model and capacity attributes of
5 the second service model.

1 10. The method of claim 7, wherein each server node has an associated set of demand
2 attributes and further comprising generating an optimized mapping of server nodes in a
3 first user-selected server model to server nodes in a second user-selected server model as a
4 function of the demand attributes of the first server model and capacity attributes of the
5 second server model.

1 11. The method of claim 1, further comprising:
2 selecting one of a plurality of user-selectable objective functions, wherein each of
3 the objective functions evaluates a solution as a function of the demand and capacity
4 attributes; and
5 generating an optimized mapping of the server nodes to the service nodes using the
6 selected one of the objective functions and selected one of the optimization methods.

1 12. The method of claim 1, wherein the plurality of optimization methods includes a
2 genetic process and a complete search process.

1 13. The method of claim 1, further comprising:
2 establishing a plurality of server models, each server model including one or more
3 server nodes, wherein each server node has an associated set of capacity attributes;
4 designating a layered relationship between the server models, wherein for a first
5 server-model layer immediately above a second server-model layer, the second server-
6 model layer includes respective models that represent the nodes in the first server-model
7 layer;
8 establishing a plurality of service models, each service model including one or
9 more service nodes, wherein each service node has an associated set of demand attributes;
10 and
11 designating a layered relationship between the service models, wherein for a first
12 service-model layer immediately above a second service-model layer, the second service-
13 model layer includes respective models that represent the nodes in the first server-model
14 layer;
15 normalizing the capacity attributes of server nodes and demand attributes of
16 service nodes of the server models and the service models, respectively; and
17 generating an optimized mapping of the server nodes in a user-selected one of the
18 server models to service nodes in a user-selected one of the service models using the
19 selected optimization method.

1 14. An apparatus for optimizing allocation of computer resources, comprising:
2 means for establishing a server model including one or more server nodes, wherein
3 each server node has an associated set of capacity attributes;
4 means for establishing a service model including one or more service nodes,
5 wherein each service node has an associated set of demand attributes;
6 means for selecting one of a plurality of user-selectable optimization methods; and
7 means for generating an optimized mapping of the server nodes in the server model
8 to the service nodes in the service model using the selected optimization method and
9 demand and capacity attributes.

1 15. A system for identifying optimal allocations of computing resources in a data
2 processing arrangement having a plurality of computing machines that host a plurality of
3 application processes, comprising:

4 a model repository including a plurality of server models and a plurality of service
5 models, each server model including one or more server nodes and each server node
6 having an associated set of normalized capacity attributes, each service model including
7 one or more service nodes and each service node having an associated set of normalized
8 demand attributes, wherein the server models are defined in a layered relationship and for
9 a first server-model layer immediately above a second server-model layer, the second
10 server-model layer includes respective models that represent the nodes in the first server-
11 model layer, and the service models are defined in a layered relationship and for a first
12 service-model layer immediately above a second service-model layer, the second service-
13 model layer includes respective models that represent the nodes in the first service-model
14 layer; and

15 an optimization engine coupled to the model repository, the optimization engine .
16 including a plurality of user-selectable objective functions and a plurality of user-
17 selectable optimization methods, wherein each of the objective functions evaluates a
18 mapping as a function of the demand and capacity attributes, and each of the optimization
19 methods generates mappings of service nodes in a user-selected service model to server
20 nodes in a user-selected server model and selects an optimal one of the mappings.

1 16. The system of claim 15, further comprising:

2 wherein the model repository further includes one or more service-node
3 relationships between selected pairs of the service nodes, each service-node relationship
4 having an associated transport demand attribute that specifies a quantity of communication
5 resources required for communication between the associated pair of service nodes;

6 wherein the model repository further includes one or more server-node
7 relationships between selected pairs of the server nodes, each server-node relationship
8 having an associated transport capacity attribute that specifies a quantity of
9 communication resources available for communication between the associated pair of
10 server nodes; and

11 the optimization engine is further configured to generate the optimized mapping as
12 a function of the service-node relationships and server-node relationships.

1 17. The system of claim 15, wherein each service node has an associated set of
2 capacity attributes and the optimization engine is further configured to generate an
3 optimized mapping of service nodes in a first user-selected service model to service nodes
4 in a second user-selected service model as a function of the demand attributes of the first
5 service model and capacity attributes of the second service model.

1 18. The system of claim 15, wherein each server node has an associated set of demand
2 attributes and the optimization engine is further configured to generate an optimized
3 mapping of server nodes in a first user-selected server model to server nodes in a second
4 user-selected server model as a function of the demand attributes of the first server model
5 and capacity attributes of the second server model.