

NNTI project presentation

Presented by:

Fahim Ahmed Shakil Roba ElQadi

17.3.2025

Saarbrücken, Germany

Table of contents

- Fine-tuning Pre-trained LM for a New Task (Task 1)
- Data Selection Using Second-Order Stochastic Optimization (Task
 2)
- Comparing Fine-tuning and Data Selection Methods (Task 3)

• Overview: aim to fine-tune a pretrained chemical language model (MoLFormer) on regression task to predict the Lipophilic value for chemical structures.

• Dataset: the MoleculeNet Lipophilicity dataset, contains SMILES strings and corresponding lipophilicity values.

• Overview: This task aims to fine-tune a pretrained chemical language model MoLFormer) on regression task.

- Dataset: the MoleculeNet Lipophilicity dataset, contains SMILES strings and corresponding lipophilicity values.
- Data was split into three sets:
 - Training samples: 3024
 - Validation samples: 336
 - Test samples: 840

• Overview: This task aims to fine-tune a pretrained chemical language model MoLFormer) on regression task.

- Dataset: the MoleculeNet Lipophilicity dataset, contains SMILES strings and corresponding lipophilicity values.
- Data was split into three sets:
 - Training samples: 3024
 - Validation samples: 336
 - Test samples: 840

- Maximum token length: 128 character
 - Decision based on dataset analysis.
 - We took 1000 string as a random sample.
 - Longest string was 127 char long.
- Evaluation Metric: Root Mean squared error(RMSE)

Task 1: Method

- Baseline Regression Fine-Tuning.
 - Load the pretrained model
 - Added regression head
 - Train the updated model on the training data

- Unsupervised finetuning using masked language modeling
 - Using combined training and validation datasets
- Regression Fine-Tuning.
 - Load the unsupervised fine-tuned model
 - Attach the regression head
 - Train the updated model on the training data

Task 1: Training Parameters

- Epochs= 20
- Learning rate = 1e-7
- Batch size= 16

Task 1: Result

• Performance on the held-out test set.

Model	Test RMSE
Baseline Regression Model	1.1352
Finetuned Regression Model	1.1009

Task 1: Training

Task 2 - Overview

- Objective: Identify influential points from a secondary dataset
- Technique: Influence Function¹
- **Dataset**: Secondary Lipophilicity dataset with 300 sample and similar structure as the dataset used for task-1

Task 2 – Influence Function

- Measure how much each training sample contributes to the prediction for a test sample
- Estimates the effect of removing or upweighting a sample efficiently without retraining the model multiple times.
- Selects the most influential samples using a heuristic (e.g., top-K).

Task 2 – Experimental Setup

- Initially computed influence for individual test samples (up to 12 points).
- To save time, used the loss gradient over the full test set instead of per-sample gradients.

Task 2 – Experimental Setup & Results

Data Selection	Test RMSE
Train + Secondary	1.0780
Train + Secondary (all positive)	1.1178
Train + Secondary (top 100 positive)	0.9426

Task 2 – Discussions

- Selecting highly influential samples improves fine-tuning.
- Not all positively influential samples improve performance.
- Using the loss gradient from the full test set works similarly to computing the loss gradient for each test sample separately.

Task 3: Overview

Objective: trying out different data selection methods and fine-tuning techniques and compare them

Data selection methods: Influence Function, TS-Dshapley²

Fine-tuning techniques: Parameter efficient fine-tuning strategies

²Schoch et al., 2023

Task 3: TS-DShapley

- **Reduces computational cost** of Shapley-based data valuation by avoiding full retraining.
- Uses a **simpler proxy model** trained on representations from the target language model to approximate data values.
- Monte Carlo sampling is applied on small subsets instead of the full dataset, reducing complexity.
- Computes **marginal contributions** by iteratively removing data points from sampled subsets and aggregating their effects.

Task 3: TS-DShapley

- Parallel computation is possible since each Monte Carlo sampling chain is independent.
- Identifies the most useful samples by iteratively removing lowcontribution points until an optimal subset is found for finetuning.

Task 3: Experimental Setup

Task 3: Comparison of Selected Sample by Data selection Methods

- Selected number of samples from the secondary dataset
 - TS-Dshapley = 159
 - Influence Function = 161 (all positive)
 - Influence Function = 100 (top-100)

Task 3: Fine-tuning strategies

- Full Finetuning
- BitFit³
- LoRA⁴
- IA3⁵

 ³Ben-Zaken et al., 2022
 ⁴Hu et al., 2021
 ⁵Liu et al., 2022

Fine-tuning strategies: Full Finetuning

- For baseline comparison.
- All model's parameters were updated

Fine-tuning strategies: BitFit

- Parameter-efficient approach for model adaptation.
- Updates only the model's bias parameters and task-specific layers

Fine-tuning strategies: LoRA

- Freeze the original model weights.
- Introduce small trainable low-rank matrices within the self-attention layers to approximate the weight changes of a layer.

Fine-tuning strategies: IA3

- Freeze all model weights.
- Introduce trainable scaling vectors that modify intermediate activations.
- Rescale keys, values, and feedforward activations in attention layers.

Hyperparameters and Finetuning

- LoRA Rank: 4
- LoRA Alpha: 8
- LoRA Dropout: 0.1
- Learning Rate: 1 × 10−7
- Batch size: 16
- Epochs: 50
- Early Stopping: Patience of 5 epochs with a minimum delta of 0.001

Task 3: Results Loss

Data Selection Strategy	Full Fine-Tuning	BitFit	LoRA	IA3
No Selection	1.0780	2.4351	1.0972	1.1514
Influence Method	0.9426	2.6366	1.1175	1.1469
TS-DShapley	1.2223	2.3313	1.471	1.1494

Task 3: Results: Training Computation time

 Computation time calculated using TS-Dshapley selection strategy.

