Fuzzy Systems Membership Functions

Dr. Petr Musilek

Department of Electrical and Computer Engineering University of Alberta

Fall 2019

Membership Functions

Membership functions are used to represent (capture) notions expressed in problem description:

- elements with complete membership
- elements excluded from fuzzy set
- the form of transition between complete membership and complete exclusion

Triangular membership functions

Triangular fuzzy sets:

- modal value m
- lower and upper bounds a and b

Trapezoidal membership functions

Trapezoidal fuzzy sets:

- modal values m and n
- lower and upper bounds a and b

Other types of membership functions

Gaussian m.f.
$$A(x) = e^{\left(-\frac{(x-m)^2}{\sigma}^2\right)}$$

Exponential m.f. $A(x) = \frac{k(x-m)^2}{1+k(x-m)^2}$
Sigmoidal m.f. $A(x) = \frac{1}{1+e^{x-m}}$

Examples of fuzzy sets

Fuzzy sets represent concepts in real wolrd:

- Size
- Age
- Complexity
- Error
- Reliability
- Power consumption
- Microprocessor speed

Characteristics of Fuzzy Sets

```
Normality A(x): \sup_X A(x) = 1 (otherwise "subnormal")
Height \operatorname{hgt}(A) = \sup_X A(x)
Support \operatorname{Supp}(A) = \{x \in X | A(x) > 0\}
Core \operatorname{Core}(A) = \{x \in X | A(x) = 1\}
Cardinality \operatorname{Card}(A) = \sum_{x \in X} A(x) (or \int for continuous f.s.)
```

Hierarchy of fuzzy sets

Fuzzy sets representing the same concept but with different resolution lead to different levels of information granularity

Higher granularity: need more constructs (f.s.) to describe the universe of discourse

Unary operations on fuzzy sets

Operations with single argument – a fuzzy set. They serve for manipulation of fuzzy sets to change their meaning or strength of the concept they represent (i.e. change membership function)

<u>Normalization</u> – converting subnormal fuzzy set into its normal counterpart

$$Norm(A) = \frac{A(x)}{hgt(A)}$$

Unary operations on fuzzy sets

<u>Concentration</u> – concentrating the membership function around points with higher membership values

$$Con(A) = A^2(x)$$

<u>Dilatation</u> – effect opposite to concentration

$$Dil(A) = A^{1/2}(x)$$

Of course, concentration and dilatation can be generally expressed in form

$$A^p(x)$$

with concentration corresponding to values p > 1 and dilatation to values p < 1.

Equality and Inclusion Relations

Two fuzzy sets A and B can be related with the following two relations

Equality:

$$A = B \text{ iff } \forall x : A(x) = B(x)$$

Inclusion:

$$A \subset B \text{ iff } \forall x : A(x) \leq B(x)$$

The Representation Theorem

Definition

 α - cut of fuzzy set A is a set, A_{α} defined as

$$A_{\alpha} = \{x | A(x) \ge \alpha\}; \text{ if } \alpha < \beta \text{ then } A_{\alpha} \supseteq A_{\beta}$$

Theorem

Any fuzzy set can be represented as a family of sets

Membership Function Determination

How to determine shape/functional description of membership from empirical data?

- Horizontal approach
- Vertical approach
- Pairwise comparison
- Clustering (grouping) method

Horizontal approach

Gather information about membership values at selected elements of the universe of discourse (space) X - polling mechanism (likelihood measure):

Can value x_i be accepted as compatible with given concept (fuzzy set A)?

Vertical approach

Identify α -cuts and "reconstruct" a fuzzy set using these sets:

What interval corresponds fully/partially/not at all to given concept?

Horizontal and Vertical Approaches

- Pro: easy to use
- Con: "local" character of experiments (isolated experiments dealing with single elements of the universe of discourse)

Pairwise Comparison Method

Rationale:

- assume that membership values $A_{x1}, A_{x2}, \dots, A_{xn}$ are given
- arrange them as a reciprocal matrix A
 - reciprocity $a_{ij} = 1/a_{ji}$
 - transitivity a_{ik} = a_{ij}a_{jk}
- multiply A by the vector of membership values a

$$\mathbf{A}\mathbf{a} = n\mathbf{a}$$
$$(\mathbf{A} - n\mathbf{I})\mathbf{a} = 0$$

where I is a unit matrix, and a and n are eigenvector and eigenvalue of the matrix A, respectively.

Pairwise Comparison Method

Realization:

- compare objects pair—wise in the context of **A** (e.g. ratio scale 1, 2, ..., 7) and construct the matrix based on these ratios
- assess consistency of the matrix (and, in turn, consistency of the gathered data) by looking at the value of n (should be comparable to the dimension of the matrix)
- normalize the eigenvector a to get an estimate of the membership function