MATH 3142 Notes — Spring 2016

Daniel Gruszczynski UNC Charlotte

Updated: January 19, 2016

This document is a template for you to take notes in my MATH 3142 course. For your note check grade, you are required to complete all proofs/solutions for the problems specified. This template will be updated periodically throughout the course; you are responsible for updating your copy as the template is updated. See the syllabus for more details.

You should maintain your notes on Overleaf.com and provide me with a link so I can check on them. I'll give you notice before notes are "due"; when they are due I will download a copy myself from Overleaf.

This is not a replacement for the textbook for this course, *Advanced Calculus* by Patrick M. Fitzpatrick. Many proofs are outlined in that text, as well as all the relevant definitions and other results not included in these notes.

A proof is valid if and only if it uses concepts proven previously in the book. For example, you cannot prove a lemma in Chapter 6 using a theorem from Chapter 10, but using a proposition from Chapter 4 is allowed.

I hope you enjoy working through these results. Please email me with any questions.

— Dr. Steven Clontz (sclontz5@uncc.edu)

Chapter 6

Integration: Two Fundamental Theorems

6.1 Darboux Sums: Upper and Lower Integrals

Definition. Let n be a natural number. We define $[n] = \{1, 2, ..., n\}$. If i is an index, we write "for $i \in [n]$ " in place of the usual "for $1 \le i \le n$."

Lemma (6.1). Suppose that the function $f:[a,b]\to\mathbb{R}$ is bounded and the numbers m,M have the property that

$$m \le f(x) \le M$$

for all x in [a, b]. Then, if P is a partition of the domain [a, b],

$$m(b-a) \le L(f,P)$$
 and $U(f,P) \le M(b-a)$.

Proof. Let $P = \{x_0, x_1, ..., x_n\}$ be a partition on [a, b]. By assumption, m is a lower bound of f([a, b]). Restricting f to $[x_{i-1}, x_i]$, we have $m \le m_i$ for all $i \in [n]$ since m_i is the infimum of $f([x_{i-1}, x_i])$. Then, by definition,

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

$$\geq \sum_{i=1}^{n} m(x_i - x_{i-1})$$

$$= m \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= m(b - a).$$

Similarly, M is an upper bound of f([a,b]) and so, when restricting f to $[x_{i-1},x_i]$, we have $M \ge M_i$ since M_i is the supremum of $f([x_{i-1},x_i])$ (for all $i \in [n]$). Hence, we have

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} M(x_i - x_{i-1})$$

$$= M \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= M(b - a).$$

Therefore,
$$m(b-a) \leq L(f,P)$$
 and $U(f,P) \leq M(b-a)$.

Lemma (6.2, The Refinement Lemma). Suppose that the function $f : [a, b] \to \mathbb{R}$ is bounded and that P is a partition of its domain [a, b]. If P^* is a refinement of P, then

$$L(f, P) \le L(f, P^*)$$
 and $U(f, P^*) \le U(f, P)$.

Proof. Let $P = \{x_0, x_1, ..., x_n\}$ be a partition on [a, b], and let P^* be its refinement. For $i \in [n]$, define P_i to be the partition on $[x_{i-1}, x_i]$ by the points of P^* inside this interval. Since $m_i \leq f(x)$ for $x \in [x_{i-1}, x_i]$, applying the previous lemma to the restriction of f on $[x_{i-1}, x_i]$, we have $m_i(x_i - x_{i-1}) \leq L(f, P_i)$. It follows that

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} L(f, P_i)$$

$$= L(f, P^*).$$

Likewise, the previous lemma gives us $M_i(x_i - x_{i-1}) \ge U(f, P_i)$. Hence,

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

$$\geq \sum_{i=1}^{n} U(f, P_i)$$

$$= U(f, P^*).$$

Lemma (6.3). Suppose that the function $f:[a,b]\to\mathbb{R}$ is bounded and that P_1,P_2 are partitions of its domain. Then $L(f,P_1)\leq U(f,P_2)$.

Proof. Let $P = P_1 \cup P_2$ be the common refinement of partitions P_1 and P_2 . By the Refinement Lemma, $L(f, P_1) \leq L(f, P)$ and $U(f, P) \leq U(f, P_2)$. Then, since $L(f, P) \leq U(f, P)$, the transitivity of \leq implies that $L(f, P_1) \leq U(f, P_2)$.

Lemma (6.4). For a bounded function $f:[a,b] \to \mathbb{R}$,

$$\underline{\int_a^b} f \le \overline{\int_a^b} f.$$

Proof. Let P be any partition on [a,b]. By the previous lemma, $U(f,P) \ge L(f,P')$ for all partitions P' on [a,b]. It follows that

$$\underline{\int_{a}^{b}} f \le U(f, P).$$

Since P was arbitrary, the above shows that $\int_a^b f$ is a lower bound for all such U(f, P). Therefore,

$$\underline{\int_a^b} f \leq \overline{\int_a^b} f.$$

Exercise (2). For an interval [a, b] and a positive number δ , show that there is a partition $P = \{x_i : 0 \le i \le n\}$ of [a, b] such that each partition interval $[x_i, x_{i+1}]$ of P has length less than δ .

Solution. Let [a,b] be an interval (b>a) and $\delta>0$. By the Archimedean property, there exists a natural number n such that $\frac{\delta}{b-a}>\frac{1}{n}$. It follows that we can form partition intervals of equal length $\frac{b-a}{n}$:

$$\delta > \frac{b-a}{n}$$

$$= \frac{1}{n} \sum_{i=0}^{n-1} (x_{i+1} - x_i)$$

$$= \frac{1}{n} [n(x_{i+1} - x_i)]$$

$$= x_{i+1} - x_i$$

Exercise (3). Suppose that the bounded function $f:[a,b] \to \mathbb{R}$ has the property that for each rational number x in the interval [a,b], f(x)=0. Prove that

$$\int_{a}^{b} f \le 0 \le \overline{\int_{a}^{b}} f.$$

Solution. Let $P = \{x_0, x_1, ..., x_n\}$ be an arbitrary partition on [a, b]. Since \mathbb{Q} is dense in \mathbb{R} , $m_i \leq 0$ and $M_i \geq 0$ for all $i \in [n]$. This implies $L(f, P) \leq 0$ and $U(f, P) \geq 0$. Consequently,

$$\underline{\int_a^b} f \le 0 \le \overline{\int_a^b} f.$$

Exercise (6). Suppose that $f:[a,b]\to\mathbb{R}$ is a bounded function for which there is a partition P of [a,b] with L(f,P)=U(f,P). Prove that $f:[a,b]\to\mathbb{R}$ is constant.

Solution. Let P be the partition where L(f, P) = U(f, P). Then

$$0 = U(f, P) - L(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) - \sum_{i=1}^{n} m_i(x_i - x_{i-1}) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}).$$

Since $x_i > x_{i-1}$, $(x_i - x_{i-1}) > 0$. Similarly, $(M_i - m_i) \ge 0$. This implies that the term $(M_i - m_i)(x_i - x_{i-1})$ is nonnegative, but since the entire sum is zero, we must have $M_i = m_i$ for all $i \in [n]$. It follows that f takes the same value within each partition interval, and since $[x_{i-1}, x_i] \cap [x_i, x_{i+1}] = \{x_i\}$, f takes the same value for all of [a, b]. Therefore, f is constant.

6.2 The Archimedes-Riemann Theorem

Lemma (6.7). For a bounded function $f:[a,b]\to\mathbb{R}$ and a partition P of [a,b],

$$L(f,P) \le \underline{\int_a^b} f \le \overline{\int_a^b} f \le U(f,P).$$

Proof. By definition, $\overline{\int_a^b} f \leq U(f,P)$ and $L(f,P) \leq \underline{\int_a^b} f$. Then, by Lemma 6.4 we have $\int_a^b f \leq \overline{\int_a^b} f$. The result follows.

Theorem (6.8, The Archimedes-Riemann Theorem). Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Then f is integrable on [a,b] if and only if there is a sequence $\{P_n\}$ of partitions of the interval [a,b] such that

$$\lim_{n\to\infty} [U(f, P_n) - L(f, P_n)] = 0.$$

Moreover, for any such sequence of partitions,

$$\lim_{n \to \infty} L(f, P_n) = \int_a^b f = \lim_{n \to \infty} U(f, P_n).$$

Proof.

Example (6.9). Show that a monotonically increasing function $f:[a,b]\to\mathbb{R}$ is integrable.

Solution. Let P_n be the regular partition on [a, b]. Since f is monotonically increasing, on a partition interval $[x_{i-1}, x_i]$, $M_i = f(x_i)$ and $m_i = f(x_{i-1})$. Then

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = \lim_{n \to \infty} \left[\sum_{i=1}^n M_i(x_i - x_{i-1}) - \sum_{i=1}^n m_i(x_i - x_{i-1}) \right]$$

$$= \lim_{n \to \infty} \left[\sum_{i=1}^n (M_i - m_i)(x_i - x_{i-1}) \right]$$

$$= \lim_{n \to \infty} \left[\sum_{i=1}^n (f(x_i) - f(x_{i-1})) \frac{b - a}{n} \right]$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \left[\sum_{i=1}^n (f(x_i) - f(x_{i-1})) \right]$$

$$= \lim_{n \to \infty} \frac{b - a}{n} (f(b) - f(a))$$

$$= 0$$

Therefore, by Theorem 6.8, f is integrable on [a, b].

Example (6.11). Show that $\int_0^1 x^2 dx = \frac{1}{3}$.

Solution. Since $f(x) = x^2$ is monotonically increasing on [0,1], f is integrable by the above example. Let $P_n = \{x_0, x_1, ..., x_n\}$ be the regular partition on [0,1]. Then $x_i = \frac{i}{n}$ and using

the fact that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, we get

$$\int_{0}^{1} x^{2}, dx = \lim_{n \to \infty} U(f, P_{n})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} M_{i}(x_{i} - x_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i})(x_{i} - x_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \frac{i^{2}}{n^{2}}$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \left[\frac{n(n+1)(2n+1)}{6} \right]$$

$$= \lim_{n \to \infty} \frac{2n^{2} + 3n + 1}{6n^{2}}$$

$$= \frac{1}{3}.$$

Exercise (4). Prove that for a natural number n,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Then use this fact and the Archimedes-Riemann Theorem to show that $\int_a^b x \, dx = (b^2 - a^2)/2$.

Solution. First, we prove the summation holds by induction on n. If n = 1, $\sum_{i=1}^{1} i = 1 = \frac{1(2)}{2}$. Assume this identity holds for all natural numbers $k \leq n$ and now consider n + 1. Then

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n^2 + 3n + 2}{2}$$

$$= \frac{(n+1)((n+1) + 1)}{2}$$

and hence the induction is complete.

We note that f(x) = x is monotonically increasing on \mathbb{R} and consequently integrable. Thus, for a regular partition P_n on [a, b], we have

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} U(f, P)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} M_{i}(x_{i} - x_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} x_{i} \frac{b - a}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(a + i \frac{b - a}{n} \right) \frac{b - a}{n}$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \left[\sum_{i=1}^{n} a + \frac{b - a}{n} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \left[na + \frac{b - a}{n} \cdot \frac{n(n+1)}{2} \right]$$

$$= \lim_{n \to \infty} [(ab - a^{2}) + \frac{(b - a)^{2}(n+1)}{2n}]$$

$$= ab - a^{2} + \frac{(b - a)^{2}}{2}$$

$$= \frac{2ab - 2a^{2} + b^{2} - 2ab + a^{2}}{2}$$

$$= \frac{b^{2} - a^{2}}{2}.$$

Exercise (6b). Use the Archimedes-Riemann Theorem to show that for $0 \le a < b$,

$$\int_{a}^{b} x^{2} \, dx = \frac{b^{3} - a^{3}}{3}.$$

Solution. \Box

Exercise (9). Suppose that the functions $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ are integrable. Show that there is a sequence $\{P_n\}$ of partitions of [a,b] that is an Archimediean sequence of partitions for f on [a,b] and also an Archimedean sequence of partitions for g on [a,b].

Solution. \Box

6.3 Additivity, Monotonicity, and Linearity

Theorem (6.12, Additivity over Intervals). Let $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and let $c \in (a, b)$. Then f is integrable on [a, c] and [c, b], and furthermore

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof.

Theorem (6.13, Monotonicity of the Integral). Suppose $f, g : [a, b] \to \mathbb{R}$ are integrable and that $f(x) \leq g(x)$ for all $x \in [a, b]$. Then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

Proof.

Lemma (6.14). Let $f, g : [a, b] \to \mathbb{R}$ be bounded and let P partition [a, b]. Then

$$L(f, P) + L(g, P) \le L(f + g, P)$$
 and $U(f + g, P) \le U(f, P) + U(g, P)$.

Moreover, for any number α ,

$$U(\alpha f, P) = \alpha U(f, P)$$
 and $L(\alpha f, P) = \alpha L(f, P)$ if $\alpha \ge 0$

$$U(\alpha f, P) = \alpha L(f, P)$$
 and $L(\alpha f, P) = \alpha U(f, P)$ if $\alpha < 0$.

Proof.

Theorem (6.15, Linearity of the Integral). Let $f, g : [a, b] \to \mathbb{R}$ be integrable. Then for any two numbers α, β , the function $\alpha f + \beta g : [a, b] \to \mathbb{R}$ is integrable and

$$\int_{a}^{b} [\alpha f + \beta g] = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

Proof.

Exercise (1). Suppose that the functions f, g, f^2, g^2, fg are integrable on [a, b]. Prove that $(f - g)^2$ is also integrable on [a, b] and that $\int_a^b (f - g)^2 \ge 0$. Use this to prove that

$$\int_a^b fg \le \frac{1}{2} \left[\int_a^b f^2 + \int_a^b g^2 \right].$$

 \Box

Exercise (4). Suppose that S is a nonempty bounded set of numbers and that α is a number. Define αS to be the set $\{\alpha x : x \in S\}$. Prove that

$$\sup \alpha S = \alpha \sup S$$
 and $\inf \alpha S = \alpha \inf S$ if $\alpha \ge 0$

while

$$\sup \alpha S = \alpha \inf S$$
 and $\sup \alpha S = \alpha \inf S$ if $\alpha < 0$.

 \Box

Exercise (6). Suppose that $f : [a, b] \to \mathbb{R}$ is bounded and let a < c < b. Prove that if f is integrable on both [a, c], [c, b], then it is integrable on [a, b].

 \Box

6.4 Continuity and Integrability

Lemma (6.17). Let the function $f : [a, b] \to \mathbb{R}$ be continuous let P partition its domain. Then there is a partition interval of P that contains two points u, v for which the following estimate holds:

$$0 \le U(f, P) - L(f, P) \le [f(v) - f(u)][b - a].$$

Proof.

Theorem (6.18). A continuous function on a closed bounded interval is integrable.

Proof.

Theorem (6.19). Supose $f : [a, b] \to \mathbb{R}$ is bounded on [a, b] and continuous on (a, b). Then f is integrable on [a, b] and the value of $\int_a^b f$ does not depend on the values of f at the endpoints of [a, b].

Proof.

Exercise (1). Determine whether each of the following statements is true or false, and justify your answer.

- (a) If $f:[a,b]\to\mathbb{R}$ is integrable and $\int_a^b f=0$, then f(x)=0 for all $x\in[a,b]$.
- (b) If $f:[a,b]\to\mathbb{R}$ is integrable, then f is continuous.
- (c) If $f:[a,b]\to\mathbb{R}$ is integrable and $f(x)\geq 0$ for all $x\in[a,b]$, then $\int_a^b f\geq 0$.
- (d) A continuous function $f:(a,b)\to\mathbb{R}$ defined on an open interval (a,b) is bounded.
- (e) A continuous function $f:[a,b]\to\mathbb{R}$ defined on a closed interval [a,b] is bounded.

Solution. (a)

- (b)
- (c)
- (d)
- (e)

Exercise (5). Suppose that the continuous function $f:[a,b]\to\mathbb{R}$ has the property

$$\int_{c}^{d} f \le 0 \text{ whenever } a \le c < d \le b.$$

Prove that $f(x) \leq 0$ for all $x \in [a, b]$. Is this true if we only require integrability of the function?

 \Box Solution.

Exercise (6). Suppose that $f:[0,1] \to \mathbb{R}$ is continuous and that $f(x) \ge 0$ for all $x \in [0,1]$. Prove that $\int_0^1 f > 0$ if and only if there is a point $x_0 \in [0,1]$ at which $f(x_0) > 0$.

Solution. \Box

6.5 The First Fundamental Theorem: Integrating Derivatives

Lemma (6.21). Suppose $f : [a, b] \to \mathbb{R}$ is integrable and that the number A has the property that for every P partitioning [a, b],

$$L(f, P) \le A \le U(f, P).$$

Then

$$\int_{a}^{b} f = A.$$

Proof.

Theorem (6.22, The First Fundamental Theorem: Integrating Derivatives). Let $F : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Moreover, suppose that its derivative $F' : (a, b) \to \mathbb{R}$ is both continuous and bounded. Then

$$\int_a^b F'(x) \ dx = F(b) - F(a).$$

Proof.

Exercise (1). Let m, b be positive numbers. Find the value of $\int_0^1 mx + b \, dx$ in the following three ways:

- (a) Using elementary geometry, interpreting the integral as an area.
- (b) Using upper and lower Darboux sums based on regular partitions of the interval [0,1] and using the Archimedes-Riemann Theorem.
- (c) Using the First Fundamental Theorem (Integrating Derivatives).

 \Box

Exercise (5). The monotonicity property of the integral implies that if the functions $g, h : [0, \infty) \to \mathbb{R}$ are continuous and $g(x) \le h(x)$ for all $x \ge 0$, then

$$\int_0^x g \le \int_0^x h \quad \text{for all } x \ge 0.$$

Use this and the First Fundamental Theorem to show that each of the following inequalities implies the next:

$$\cos x \le 1$$
 if $x \ge 0$.

$$\sin x \le x$$
 if $x \ge 0$.

$$1 - \cos x \le \frac{x^2}{2} \quad \text{if } x \ge 0.$$

$$x - \sin x \le \frac{x^3}{6} \quad \text{if } x \ge 0.$$

$$x - \frac{x^3}{6} \le \sin x \le x \quad \text{if } x \ge 0.$$

6.6 The Second Fundamental Theorem: Differentiating Integrals

Theorem (6.26, The Mean Value Theorem for Integrals). Suppose that $f:[a,b] \to \mathbb{R}$ is continuous. Then there is a point x_0 in the interval [a,b] at which

$$\frac{1}{b-a} \int_a^b f = f(x_0).$$

Proof.

Proposition (6.27). Suppose that the function $f:[a,b]\to\mathbb{R}$ is integrable. Define

$$F(x) = \int_{a}^{x} f$$
 for all $x \in [a, b]$.

Then the function $F:[a,b]\to\mathbb{R}$ is continuous.

Proof.

Theorem (6.29, The Second Fundamental Theorem: Differentiating Integrals). Suppose that $f:[a,b]\to\mathbb{R}$ is continuous. Then

$$\frac{d}{dx} \left[\int_{a}^{x} \right] = f(x) \text{ for all } x \in (a, b).$$

Proof.

Exercise (2b). Suppose $f:[0,2]\to\mathbb{R}$ is defined by

$$f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le 1 \\ x & \text{if } 1 < x \le 2 \end{cases}.$$

Define

$$F(x) = \int_{a}^{x} f(t) dt \text{ for all } x \in [a, b]$$

and find a formula for F(x) which does not involve integrals.

 \Box

Exercise (5). Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous. Define

$$G(x) = \int_0^x (x - t)f(t) dt \text{ for all } x.$$

Prove that G''(x) = f(x) for all x.

Solution. \Box

Exercise (12). Suppose that $f, g : [a, b] \to \mathbb{R}$ are continuous and that α, β are real numbers. Define

$$H(x) = \int_{a}^{x} [\alpha f + \beta g] - \alpha \int_{a}^{x} [f] - \beta \int_{a}^{x} [g] \text{ for all } x \in [a, b].$$

Prove that H(a) = 0 and H'(x) = 0 for all $x \in (a, b)$. Use this fact and the Identity Criterion to give an alternate proof of Theorem 6.15 for continuous functions.

Solution. \Box

Chapter 10

The Euclidean Space \mathbb{R}^n