

Ch—07 Alternating Current Daily Practice Problem 08

- **Q1.** A $1.0~\mu F$ capacitor is charged by a 40.0~V power supply. The fully charged capacitor is then discharged through a 10.0~mH inductor. Find the maximum current in the resulting oscillations.
- **Q2.** A $10 \,\mu F$ capacitor is charged to a potential of $25 \, V$. The battery is then disconnected and pure $100 \, mH$ coil is connected across the capacitor so that LC-oscillations are set up. Calculate the maximum current in the coil.
- **Q3.** A 1.5 mH inductor in an LC-circuit stores a maximum energy of 30 μJ . What is the maximum current in the circuit?

- **Q4.** In an oscillatory circuit, the self-inductance of the coil used is $10 \, mH$. If the oscillatory frequency of the circuit is $1.0 \, MHz$, find the capacitance of the capacitor connected in the circuit.
- **Q5.** A wave of wavelength 300 m can be radiated through a transmitter. A capacitor of capacitance $2.4 \, \mu F$ is available. What is the inductance of the coil required for the oscillatory circuit?

ANSWERS

1. 40.0 *mA*

2. 0.25 *A*

3. 0.2 *A*

4. 2.53 μF

5. $1.056 \times 10^{-8} H$