UNCLASSIFIED

AD 262 181

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

XEROX

DOC. NO. NARF-61-29T MR-N-284

U. S. AIR FORCE

Nuclear Aerospace Research Facility
Operated By

GENERAL DYNAMICS/FORT WORTH

A Division of General Dynamics Corporation

FORT WORTH

DOC. NO. NARF-61-29T

A Division of General Dynamics Corporation

15 AUGUST 1961

FORT WORTH

MONTE CARLO AIR-SCATTERING DATA FOR MONOENERGETIC FAST NEUTRONS FROM POINT ISOTROPIC SOURCES

C. A. DIFFEY

SECTION I, TASK I, ITEM 5 OF FZM 2004 A

> CONTRACT AF 33(600) 38946

ISSUED BY THE ENGINEERING DEPARTMENT

ABSTRACT

The Monte Carlo fast-neutron air-scattering data presented in FZK-9-147, Volumes I and II, have been integrated to obtain the angular distributions and energy spectra for a point isotropic source emitting one neutron per second at a given energy E₀. These calculations were performed for source-detector separations of 10, 35, 64, and 100 feet and for initial neutron energies of 0.33, 1.1, 2.7, 4.0, 6.0, 8.0, 10.9, and 14.0 Mev.

TABLE OF CONTENTS

		Page
	ABSTRACT	3
	LIST OF FIGURES	7
	LIST OF TABLES	9
I.	INTRODUCTION	11
II.	NEUTRON SCATTERING GEOMETRY	13
III.	THE MONTE CARLO DATA	15
IV.	INTEGRATION OF THE MONTE CARLO DATA	21
V.	RESULTS	25
	APPENDIX - R55 FORTRAN STATEMENTS	71
	REFERENCES	77
	DISTRIBUTION	79

LIST OF FIGURES

		Page
1.	Scattering Geometry	14
	Energy Spectra of Total Scattered Neutron Flux:	
2.	Initial Energy 0.33 Mev	44
3.	Initial Energy 1.1 Mev	45
4•	Initial Energy 2.7 Mev	46
5•	Initial Energy 4.0 Mev	47
6.	Initial Energy 6.0 Mev	48
7•	Initial Energy 8.0 Mev	49
8.	Initial Energy 10.9 Mev	50
9•	Initial Energy 14.0 Mev	51
	Total Scattered Neutron Flux vs Detector Angle:	
10.	Initial Energy 0.33 Mev	52
11.	Initial Energy 1.1 Mev	53
12.	Initial Energy 2.7 Mev	54
13.	Initial Energy 4.0 Mev	55
14.	Initial Energy 6.0 Mev	56
15.	Initial Energy 8.0 Mev	5 7
16.	Initial Energy 10.9 Mev	58
ז 7	Initial Engage 14 0 May	50

LIST OF FIGURES (Cont'd)

		Page
	Total Scattered Neutron Dose Rate vs Detector Angle:	
18.	Initial Energy 0.33 Mev	60
19.	Initial Energy 1.1 Mev	61
20.	Initial Energy 2.7 Mev	62
21•	Initial Energy 4.0 Mev	63
22.	Initial Energy 6.0 Mev	64
23.	Initial Energy 8.0 Mev	65
24.	Initial Energy 10.9 Mev	66
25.	Initial Energy 14.0 Mev	67
26.	Total Scattered Neutron Flux vs Initial Energy	68
27.	Total Scattered Neutron Dose Rate vs Initial	69

NOTE

The following pages were intentionally left blank: 2, 4, 6, 10, 20, 24, 70, 72, and 78.

LIST OF TABLES

		Page
I.	Lower Bounds of the Energy Groups Used to Define the Scattered Neutron Flux for Each Source Energy	· 27
	Total Scattered Neutron Flux:	
II.	Separation Distance - 10 Feet	28
III.	Separation Distance - 35 Feet	29
.VI	Separation Distance - 64 Feet	30
• V	Separation Distance - 100 Feet	31
	Total Scattered Neutron Flux Per Mev:	
VI.	Separation Distance - 10 Feet	32
vII.	Separation Distance - 35 Feet	33
VIII.	Separation Distance - 64 Feet	34
IX.	Separation Distance - 100 Feet	35
	Angular Distribution of Total Scattered . Neutron Flux:	
x.	Separation Distance - 10 Feet	36
XI.	Separation Distance - 35 Feet	37
xII.	Separation Distance - 64 Feet	38
XIII.	Separation Distance - 100 Feet	39
	Angular Distribution of Total Scattered Neutron Dose Rate:	
XIV.	Separation Distance - 10 Feet	40
.VX	Separation Distance - 35 Feet	41
LVX.	Separation Distance - 64 Feet .	42
XVII.	Separation Distance - 100 Feet	43

I. INTRODUCTION

Air scattering is the principal process by which neutrons leaving a source in air are transported to other positions some distance away. In order to make comprehensive shield-design studies, one must know the energy and angular distributions of the scattered neutron flux at the positions of interest. It is possible to design and apply Monte Carlo procedures which solve this problem directly for specific cases; however, it is often more practical to use the Monte Carlo procedures to generate data in a suitable parametric form so as to be able to apply the results without having to run a new problem for each new source term.

This report presents parametric air-scattering data for isotropic sources of monoenergetic fast neutrons. For source energies of 0.33, 1.1, 2.7, 4.0, 6.0, 8.0, 10.9, and 14.0 MeV, the angular distributions of the scattered flux and dose rate and the energy spectra of the scattered flux are given for source-receiver separation distances of 10, 35, 64, and 100 feet.

The data presented here were computed from the results of Wells! Monte Carlo parameter study of neutron scattering for directional point sources in an infinite, homogeneous medium of air (Refs. 1 and 2). A straight-forward integration

procedure was formulated and programmed in Fortran for the IBM-704 in order to carry out the calculations. The procedure was designed to utilize directly the punched card output of Wells! Monte Carlo calculations.

Section II of this report deals with the geometry of the neutron-scattering problem while Section III describes the Monte Carlo data used in these calculations. The integration scheme and Fortran procedure are discussed in Section IV and the results are presented in Section V in the form of tables and graphs giving the angular distributions of the scattered flux and dose rate and the energy spectra of the scattered flux.

II. NEUTRON SCATTERING GEOMETRY

The geometry (Fig. 1) consists of a neutron source S located in an infinite, homogeneous medium of air. A detector D of unit cross section is located a distance a from the source S. The neutron current leaving the source is described by a polar angle K and an azimuthal angle %. The polar angle is measured with respect to the sourcedetector axis while the azimuthal angle is the angle between the positive y axis and the projection of the neutron direction on the y,z plane. The azimuthal angle is measured in a clockwise direction.

The detector angle β is the polar angle between the direction of the incoming neutron flux and the source-detector axis. The azimuthal angle β' at the detector is defined in the same manner as β . The neutron current of energy E_0 moving in the direction (K,β) at a point Q on the surface of a unit sphere about S is defined as $S(K,\beta,E_0)$. The number of neutrons passing through a surface element dA at Q per unit time is given by $S(K,\beta,E_0)dA$.

FIGURE 1. SCATTERING GEOMETRY

III. THE MONTE CARLO DATA

Since the generation of the Monte Carlo data used in these calculations has been thoroughly described by Wells in Reference 1, only a brief review is needed here.

The effects of elastic scattering, inelastic scattering and absorption were taken into account in the Monte Carlo eir-scattering calculations. The neutron cross sections for nitrogen and oxygen used in these calculations were taken from data giving by Lustig, Goldstein, and Kalos (Refs. 3 and 4). The neutron cross sections for air were computed on the basis of a mixture of 78% nitrogen and 22% oxygen and a density of 5.37 x 10¹⁹ atoms/cc or 0.1293 x 10⁻² gm/cc. The flux-to-dose conversion factors F(E) used in computing the tissue dose rates were those calculated by Rurst and Ritchie (Ref. 5).

The calculated results presented in Reference 2 represent the angular distributions of the neutron flux, the angular distributions of the tissue dose rate, and the energy distribution of the neutron flux at the detector D for a point monodirectional source S emitting one neutron per second of energy E_0 in the given direction (K,\emptyset) . The calculations were performed for four separation distances of 10, 35, 64, and 100 feet, eight initial neutron energies of 0.33, 1.1, 2.7, 4.0, 6.0, 8.0, 10.9 and 14.0 MeV, and

eight source angles, K, of 5, 15, 30, 60, 90, 120, 150, and 180 degrees. This represents a total of 64 different source descriptions and four source-detector separations which may be combined to describe any arbitrary source distribution.

The scattered flux reaching the detector is sorted into eighteen equal angle intervals, β_i , and ten arbitrary energy intervals, E_i . $N(K, \emptyset, E_o, a, \beta_i, E_i)$ is defined as the fraction of neutrons with initial energy Eo and direction (K,\emptyset) passing through the incremental area dA per unit time which reach the detector at a distance a in the detector angle increment β_i with energy in the energy group E_i . $D(K,\emptyset,E_0,a,\beta_i)$ is defined as the neutron dose rate due to neutrons with initial energy E_o and direction (K,\emptyset) which arrive at the detector D a distance a from the source in the detector angle increment β_i . Since there is symmetry about the source-detector axis and both source and detector are located in the infinite homogeneous medium, angular distributions at the detector are independent of both source and detector azimuthal angle. Therefore, the data are not sorted with respect to this angle, and the variable \emptyset is dropped from the expressions.

The following quantities are tabulated in Reference 2: $N(K,E_0,a,\beta_1,E_j)$, $N(K,E_0,a,E_j)$, $N(K,E_0,a,\beta_1)$, $D(F_0,a,\beta_1)$, $N(K,E_0,a)$, and $D(K,E_0,a)$. $N(K,E_0,a,\beta_1,E_j)$ is tabulated in the form of an 18 x 10 matrix for each of the four values

of a, eight values of E_0 , and eight values of K_0 . In addition to the 18 x 10 matrices, the energy distribution of the airscattered flux is given by

$$N(K,E_0,a,E_j) = \sum_{i=1}^{18} N(K,E_0,a,\beta_i,E_j);$$
 (1a)

the angular distributions of the air-scattered flux is given by

$$N(K,E_0,a,\beta_1) = \sum_{j=1}^{10} N(K,E_0,a,\beta_1,E_j)$$
 (2a)

The dose rate $D(K,E_0,a,\beta_1)$ is calculated and stored as a function of K,E_0,a and β_1 . It is printed as a function of angle β for each combination of K,E_0 , and a.

The total scattered flux and dose rate are given, respectively, by

$$N(K,E_{o},a) = \sum_{i=1}^{18} \sum_{j=1}^{10} N(K,E_{o},a,\beta_{i},E_{j}),$$
 (4a)

and

$$D(K,E_0,a) = \sum_{i=1}^{18} D(K,E_0,a,\beta_i) . \qquad (5a)$$

The units of the scattered fluxes are neutrons/cm²-sec per source neutron/sec and those of the scattered dose rates are rem/hr per source neutron/sec.

The total scattered flux from a source $S(K,E_0)$ reaching the detector D at a distance a is

$$N(E_o,a) = \int_0^{\pi} \int_0^{2\pi} S(K,E_o)N(K,E_o,a) \sin K dK dA$$
 (6a)

$$= 2\pi \int_{0}^{\pi} S(K,E_{o})N(K,E_{o},a) \sin K dK.$$
 (6b)

Similarly, the total scattered dose rate is

$$D(E_0,a) = \int_0^{\pi} \int_0^{2\pi} S(K,E_0)D(K,E_0,a) \sin K dK d\emptyset$$
 (7a)

$$= 2\pi \int_{0}^{\pi} S(K,E_{o})D(K,E_{o},a) \sin K dK.$$
 (7b)

Similarly, the angular distributions of flux and dose rate are given, respectively, by

$$N(E_0,a,\beta) = \int_0^{\pi} \int_0^{2\pi} S(K,E_0)N(K,E_0,a,\beta) \sin K dK d\emptyset$$
 (8a)

$$= 2\pi \int_{0}^{\pi} S(K,E_{o})N(K,E_{o},a,\beta) \sin k \, dk, \qquad (8b)$$

and

$$D(E_0,a,\beta) = \int_0^{\pi} \int_0^{2\pi} S(K,E_0)D(K,E_0,a,\beta) \sin K dK d\beta$$
 (9a)

$$= 2\pi \int_{0}^{\pi} S(K,E_{o})D(K,E_{o},a,\beta) \text{ sink dK.}$$
 (9b)

The energy distribution of the scattered flux is given by

$$N(a,E_0E) = \int_0^{\pi} \int_0^{2\pi} S(K,E_0)N(K,E_0,a,E) sink dk d\emptyset$$
 (10a)

$$= 2\pi \int_{0}^{\pi} S(K,E_{0})N(K,E_{0},a,E) \sin k dk.$$
 (10b)

An analysis of the Monte Carlo data showed that the standard deviation of the total scattered flux $N(K,E_0,a)$ was less than 0.1 $N(K,E_0,a)$ in 60.2% of the problems, less than 0.15 $N(K,E_0,a)$ in 91.4% of the problems, and in only 2.73% of the problems did the standard deviation exceed 0.2 $N(K,E_0,a)$.

IV. INTEGRATION OF THE MONTE CARLO DATA

Since the quantities $N(K,E_0,a,\beta)$, $D(K,E_0,a,\beta)$, and $N(K,E_0,a,E)$ are not given in terms of analytic functions, it is necessary to devise some integration scheme that will produce accurate results. For the purpose of numerical integrations, Equations 6b, 7b, 8b, 9b, and 10b become, in turn

$$N(E_o,a) = 2\pi \sum_{n=1}^{8} s(K_n,E_o)N(K_n,E_o,a) sinK_n (\Delta K_n), \qquad (6c)$$

$$D(E_o,a) = 2\pi \sum_{n=1}^{8} S(K_n,E_o)D(K_n,E_o,a) \sin K_n (\Delta K_n), \qquad (7c)$$

$$W(E_o,a,\beta_i) = 2\pi \sum_{n=1}^{8} S(K_n,E_o)N(K_n,E_o,a,\beta_i) sinK_n (\Delta K_n), (8e)$$

$$D(E_0,a,\beta_1) = 2\pi \sum_{n=1}^{8} S(K_n,E_0)D(K_n,E_0,a,\beta_1) \operatorname{sink}_n (\Delta K_n), \quad (9c)$$

$$N(E_0,a,E_j) = 2\pi \sum_{n=1}^{8} S(K_n,E_0)N(K_n,E_0,a,E_j) sinK_n (\Delta K_n),$$
 (10c)

where i=1, 2, ..., 18 and j=1, 2, ..., 10.

The calculations presented here were performed for a point isotropic source emitting I neutron/sec with energy E_0 . Therefore,

$$S(K,E_0) = constant = \frac{1}{4\pi}$$
 (11)

The values of N and D were taken from the tables in Reference 2.

The summations in Equations 6c and 7c were performed using a machine code designed primarily for matrix calculations but adaptable for these calculations.

An IBM Fortran procedure was written to provide for the integration of Equations 8c, 9c, and 10c with a nonisotropic source term depending only on the polar angle K. The isotropic case presented here is a special case of this more general source term. A copy of the Fortran program is shown in the Appendix. Certain subroutines, such as SETUP, END 9, LIB 1, LIB, and END(2,1), are special General Dynamics/Fort Worth subroutines. However, the basic program should remain the same anywhere.

The values of (ΔK_n) used in the numerical integration were chosen after considering which histogram would best represent the smooth curve for integration purposes. The histogram-fit tends to overestimate in the first 20 degrees and underestimate in the last 20 degrees.

The validity of the integration scheme was checked by comparing the results of numerical integration with those obtained using a planimeter on smooth curves drawn through the eight points. In the seven cases chosen at random for comparison, the numerical integration overestimated the result by less than 2.5%. In all cases, the numerical integration overestimated the gration overestimated the result.

V. RESULTS

Equations 6c, 7c, 8c, 9c, and 10c have been numerically integrated for a point isotropic source. The results are presented in this section in both tabulated and graphical form.

The scattered neutron flux, $N(E_0,a,E_j)$, Tables II through V, and the neutron flux per Mev, $N(E_0,a,E_j)/\Delta E_j$, Tables VI through IX, have been tabulated as functions of E_0 , the initial energy, and $(E_n)_j$. The subscript m indicates that $(E_m)_j$ is the lower limit of the j^{th} energy interval. $(E_m)_j$ for each E_0 is shown in Table I. The minimum energy cutoff for each source energy is given in Table I by $(E_m)_j$ for each source energy. ΔE_j is the width of the j^{th} energy group. The scattered neutron flux, $N(E_0,a,E_j)$, is reported in units of

neutrons/cm²-sec

and the neutron flux per Mev, $N(E_0,a,E_j)/\Delta E_j$ in units of

neutrons/cm²-sec/Hev source neutron/sec

The angular distributions of the scattered neutron flux and dose rate in a 10° interval of β , $N(E_{\circ},a,\beta_{1})$ and $D(E_{\circ},a,\beta_{1})$, are tabulated as functions of E_{\circ} and β_{1} in Tables X through XIII and XIV through XVII, respectively,

where β_i is the upper limit of the ith angular interval. The units here are

neutrons/cm²-sec in 10° interval

and

The quantities $N(E_0,a,E_j)/\Delta E_j$, $N(E_0,a,\beta_i)$, $D(E_0,a,\beta_i)$, $N(E_0,a)$, and $D(E_0,a)$ are shown in Figures 2-9, 10-17, 18-25, 26 and 27, respectively.

The angular distributions are plotted as function of β_i , the midpoint of the angular interval β_{i-1} to β_i .

In Figures 2 through 9, the energy spectrum is plotted against the midpoint of the energy group E_4 .

The total scattered flux and dose rate, $N(E_0,a)$ and $D(E_0,a)$, respectively, are shown in Figures 26 and 27 as functions of E_0 for each of the four separation distances considered.

The scattered dose rates for source energies of 1.1 Mev or greater result from neutrons with energies greater than the minimum energy used for each source energy, but the scattered dose rates for the 0.33 Mev source are those resulting from neutrons with energies greater than 0.22 Mev.

Table 1. Lower bounds of the energy groups used to define the Scattered neutron file for Each Source energi

 $(E_{a})_{j}$ (Mev)

Frence								
Group				Source Energy (Mev.)	(Mev)			
Pidex	0.33	1.1	2.7	0.4	6.0	8.0	10.9	24.0
-	0.070	8.0	0.60	0.33	0.33	0.33	0.33	0.33
101	960.0	6.59	8.0	0.50	0.75	1.75	1.75	1. 75
M	0.122	0. 38	1.10	8.9	1.30	2.50	2.50	2.20
)- 4	0.148	£4.0	1.30	3.20	2.25	8.00	3.75	3.50
in	0.174	0.56	2.50	3.6	2.75	۳. د	4.75	4.50
•	0.200	0.65	1.70	2.00	3.50	20	5.50	20.
!-	0.226	12.0	3.80	2.10	90°±	5.50	6.75	6.75
. 00	0.252	0.83	2.10	8.8	4.50	00.9	8.00	8.00
0	0.278	9.35	8 .30	3.20	2.8	6.50	00.6	0.0
2	0.304	1.01	3.4	3.8	5.50	7.25	0.0	o : श

TABLE II . TOTAL SCATTERED NEUTRON FLUX Separation Distance - 10 Feet

[[neutrons/an2-see]/(source neutron/sec]]

0.33 1.1 2.7 4.0 6.0 0.1122-12 0. 0.5394-12 0.1167-13 0.1128-09 0.3 0.2790-10 0.4869+10 0.2064-10 0.3279-12 0.1870-09 0.3700-09 0.1870-09 0.7102-10 0.1869-08 0.3 0.2917-09 0.2407-09 0.1914-09 0.3504-10 0.1764-09 0.164-09 0.1764-09 0.164-09 0.2141-09 0.0 0.2775-08 0.2744-09 0.2014-09 0.2606-09 0.4960-09 0.496	Energy Group				Source Energy (Mev)	rgy (Mev)			
2 0. 4869+10 0.2064+10 0.5279+12 0.1167+13 0.1128-08 0.20 0.2066+10 0.2064+10 0.5279+12 0.1870-08 0.20 0.2064+10 0.2279+12 0.1870-08 0.1870-09 0.1914+09 0.3704-10 0.1409+09 0.1873+09 0.2744+09 0.2914+09 0.3504-10 0.2141+09 0.2744+09 0.2	Index	0.33	1.1			0*9		10°9	14.0
0.4669+10 0.2064-10 0.5279-12 0.1870-08 0.2 0.6409-10 0.1182-09 0.7102-10 0.1469-08 0.1 0.2407-09 0.1914-09 0.3504-10 0.1764-09 0.1 0.2407-09 0.2914-09 0.3504-10 0.2141-09 0.1 0.2744-08 0.2014-08 0.8408-10 0.2141-09 0.2 0.5270-07 0.870-08 0.2911-08 0.3923-09 0.3927-09 0.1 0.5270-07 0.4815-07 0.2503-07 0.1421-07 0.4920-07 0.4	-	0.1122-12	•	0.5394-12	0.1167-13	0.1128-09	0.2512-08	0.4350-08	0-8118-03
0.2407-09 0.1182-09 0.7102-10 0.1469-08 0.182-09 0.2407-10 0.1469-08 0.182-09 0.2407-09 0.182-09 0.3504-10 0.1764-09 0.182-09 0.3504-10 0.1764-09 0.1873-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2744-09 0.2747-09 0.2747-07 0.8707-09 0.2923-09 0.3923-09 0.3927-07 0.4270-07	લ	0.2790-10	0.4869+10	0.2064-10	0.5279-12	6.1870-08	0,2370-08	0.2482-09	0.3264-03
0.2467-09	m	0.2977-09	0.6109-10	0.1182-09	0.7102-90	0.1409-08	0.1955-09	0.2358-08	0.1626-08
8 0.7574-09 0.6295-09. 0.8408-10 0.2141-09 0.6.4 8 0.2744-09 0.2014-09 0.6066-09 0.4960-09 0.4 7 0.5649-08 0.8703-08 0.2911-08 0.3923-09 0.4 7 0.5276-07 0.4313-07 0.2503-07 0.1420-07 0.4 8 0.5276-07 0.4313-07 0.4314-07 0.4450-07 0.4 8 0.4457-07 0.8017-08 0.4313-03 0.4450-07 0.4450-09 0.4040-09	*	0.7100-09	0.2407-09	0.1914-09	6.3304-10.	0,1764-09	0.1092-08.	0.4100-08	9.1231-02
\$ 0.2744-08	Ю	0.3961-08	\$0-8484 O	0.6295-09.	0.8408-10	0.2141-09	0.6667-09	. 9.2416-08	0.5218-02
7 0.5649-08 0.8703-08 0.2911-08 0.3923-09 0.3 7 0.5270-07 0.1313-07 0.2503-07 0.1420-07 0.6 7 0.1407-07 0.8017-03 0.1431-07 0.6063-08 0.4	O	0.2775-08	0.2744-08	6.2014-08	0.6066-09	0.4960-09	0.4670-09.	0.3055-08.	80-6962-08
0.1313-07 0.2503-07 0.1429-07 0.8017-08 0.40	r~	0.1578-07	0.5649-08	0.8703-08	0.2911-08	0.3923-09	6.3684-09	0.5132-10	0.3698-08
0.8017-08 0.1431-07 0.6063-08 0.4	СО	0.2731-07	0.5370-07	0.1313-07	0.2503-07	0.1420-07	0.6227-08	0.4220-08	0.2806-08
TO PROTOCOL OF PROTOCOL OF BUCKERSO C	פי	0.2144-67	6-1407-07	0.8017-08	0.1431-07	0.6063-08	0.4763-08	0.2298-08	0.5662-08
0.0420-00 0.1342-01 0.1243-01 0.1	0	0.2060-07	0.1475-07	0.8423-68	0.1322-07	0.1249-07	0.1104-07	0.8306-08	0,1423-07

0.1122-12 - 1.122x10-13

TABLE III. TOTAL SCATTERED NEUTRON FLUX Separation Distance - 35 Feet

[(neutrons/cm2-sec)/(source neutron/sec)]

Energy				Source Energy (Mev)	ergy (Mev)			
Index	0.33	1.1	2.7	4.0	0.9	8.0	10,9	14.0
-	0.7994-13	0.	0.1401-11	0.7245-14	0.5-10-09	0.1047-08	0-1638-08	0.4155-69
(4	0.2408-10	0.7550-12	6.2016-10	0.4964-0	0.6236-09	0.000000000	0.9950-10	0.8967-09
6 7	0.1916-09	0.3998-10	0.12.7-09	0.5142-10	0.1873-09	0.6682-09	6.7220-09	3.3803-09
•	0.4971-09	0.2309-09	0.1843-09	0.1496-10	0.9931-10	\$ 2965-09	0.8041-00	0-1023-09
V)	n. 12€"-08	00-0000-0	0.3 327-69	0.8966-10	0.1712-09	0.3782-09	0.6678-09	0.2930-09
O	0.2157-08	0.1620-08	0.5765-09	0.5021-09	0.2181-09	0.1877-09	0.4121-09	0.1457-08
[*~	0.3934-08	0.2279-08	0.2448-08	0.1370-08	0.4158-09	0.1005-09	60-688-0	0.9020-03
00	0.6643-08	0.1272-07	8,3433-08	0.6336-08	0.3388-08	0.1595-08	0.9789-09	0.6838-09
(A)	0.4941-08	0.3213-08	0.2513-08	0.4132-08	0.1582-08	5-1165-08	0.8091-09	0.1459-08
0	0.0440-00	0.3962-08	0.2078-08	0.3972-08	6. U488 - 08	0,3118-00	6.2571-08	0.4062*08

 $6.7994-13 = 7.994 \times 10^{-14}$

TABLE IV . TOTAL SCATTERED NEUTRON FLUX Separation Distance - 64 Feet

[(neutrons/cm2-sec)/(source-neutron/sec)]

0.33 1.1 6.6086-13 0.7801-12 0.1588-09 0.3263-10 0.4821-09 0.3263-10 0.7371-09 0.229-09 0.7371-09 0.5434-09 0.7176-08 0.1176-08	Energy Group				Source Er	Source Energy (Mev)			
6.6086-14 0.7801-12 0.2206-10 0.7801-12 0.4588-09 0.3263-10 0.7271-09 0.3263-10 0.7371-09 0.7371	Index	0.33	1,1	2.7	0*†	0*9	0*8	6 ° 01	ο*ητ
0.2306-10 0.7801-12 0.4508-10 0.4508-10 0.3263-10 0.4508-10 0.3263-10 0.7371-12 0.7371-12 0.5408-10 0.5408-10 0.5408-10 0.7408	-	€.6086-13	0.	0.1209-11	0.1068-14	0.3648-09	0,6106-05	0.8175-09	90-4872.0 ·
0.4588-09 0.3263-10 0.4824-09 0.5229-09 0.7374-69 0.5434-09 0.1468-09 0.1476-08 0.2476-09 0.1476-08	r e	0.2306-10	0.7801-12	0.2046-10	0.5026-12	0.5169-09	0.4549-09	0.6783-10	0.4817-09
0.4821-09 0,4229-09 0.7371-09 0.7371-09 0.744-09 0.7476-08 0.1476-08 0.3476-08 0.3476-08 0.3476-08	M	0.1588-09	0.3263-10	0.3247-09	0.3786-10	0.1108-09	0.3527-09	C. 4518-09	6.2851-09
0.7371-09 0.6434-09 0.14488-09 0.1448-09 0.1448-09 0.1448-09 0.448-00 0.448	•	0.4821-09	0,2229-09	0.1417-09	0.1988-10	0.9799-10	0.2062-09	0.4905-09	0.7119-10
0.2436-08 0.1436-08 0.2436-08 0.4686-08 0.4686-08 0.4686-08	לט	0.7371-09	0.5434-09	0.2486-09	C. 1052-09	0.1588-09	0.2452-09	0.3351-05	0-1776-09
0.2476-08 0.468408 0 4400-00 0 6484-08	9	0.1168-08	0.1176-08	0.4671-09	0.3451-09	0.1897-09	6.2141-09	0.2462-09	6.6094-09
00 140 0 00 00 00 00 00 00 00 00 00 00 00 00	<u>;-</u> -	0.2176-08	0.1685-08	0.1179-08	0.1051-08	0.3678-09	0.1174-09	0.9096-10	6.6088-09
	00	0.3300-08	0.5393+68	0.1683-08	0.3358-08	0.1700-08	0.8824-00	0.4840-09	0-3930-09
9 0.1323-08 0.1696-08 0.1323-08	o,	0.2528-08	0.1696-08	0.1323-08	0.2046-08	0,1054-08	0.7237-09	0.4625-09	0.7167-09
-	<u>G</u>	0.2497-08	0.1919-08	0.1162-08	0.1929-08	0.1599-08	0.1570-08	6.1312-68	6.1845-08

0.6086-13 - 6.086x10-14

TABLE V. TOTAL SCATTERED NEUTRON FLUX Separation Distance - 100 Feet

[(neutrons/cm2-sec)/(source heutron/sec)]

Energy				Source Energy (Mev)	ergy (Mev)		•	
Index	0.33	2.2	2.2	4.0	6.0	8.0	10.9	14.0
-	0.4276-13	0,	0.1111-11	0.1403-14	0-1795-09	0.4964-09	0.0436-09	0,1048-00
N	0.2850-10	0.4220-12	0.2009-10	0.2177-11	0.2871-09	0.3141-09	0,5919-10	0.3015-09
r -7	0.1530-09	0.4332-10	0.8127-10	0.1287-10	0.6905-10	0.2214-09	0.4010-09	0,1333-09
**	0.3948-09	C. 2484-09	0.1386-09	0.2256-10	0.1065-09	6,1082-09	0.22*1-09	0.6058-10
มว	0.7213-09	0.4144-09	0.2417-69	0.8228-10	0.1350-09	21-500000	0.2154-09	U. 1042-09
49	0.6783-69	0.8503-09	0.3731-09	0,3470-09	0.1602-09	3.1170-05	0.1281-09	0,4071-09
<u></u>	0.1348-08	0.9637-89	0.7032-09	0.6224-09	0.2857-09	0.7882-10	0.8552-10	0.4862-09
00	0.1754-08	0.2784-08	0,9533-09	0.1371-08	0.0478-09	0.4864-09	0.2474-09	0.2194-09
Ø.	0.1337-08	0.1175-08	0.7217-09	0.1149-08	0.6040-09	0.4584-09	0.5146-09	0.4098-09
<u>0</u>	80-8\$P+0	0.1965-08	0.6462-69	0.1170-03	00-2000 0	0.01777000	W014555	6.1217-08

0.4276-13 = 4.276x10-14

TABLE VI. TOTAL SCATTERED NEWTHON FLUX PER MEV Separation Distance - 10 Feet

 $[\![\mathrm{neutron}/\mathrm{cm}^2\mathrm{-sec\text{-Mev}})\big/(\mathrm{source\ neutron/sec})\!]$

Group			5	Some Free By West	·			
Index	0.33	1.1	2.7	0.4	6.0	8.0	6.01	ነት.0
-	0.4315-11	0.0000.0	0.1798-11	0.6865-13	0.2686-08	0.1769-08	80-8908-0	0.5717-09
l Q	0.1073-08	0.8372-11	0.1032-09	0.1760-11	0.2493-08	0.3160-08	0-3309-09	0.4352-08
•	0.1145-07	0.6788-09	0.5910-09	0-1776-09	0.1879-08	0.3910-08	0.1886-08	0.1626-08
1-4	0.2731-07	0.2674-08	0.9570-09	0.8760-10	0.3526-09	0.2184-08	0.14099-08	0.1231-09
·	0-1500-06	0.8859-08	0.3148-08	0.2102-09	0.2855-09	60-1999.0	0.321-08	0.5218-09
· v	0,1066-06	0.3048-07	0.1007-07	0.1517-08	0.9920-09	60-6991.0	0.2444-08	0.3175-08
	90-6909-0	0.6277-07	0.4352-07	0.7278-08	0.7846-09	0-7368-09	09014.0	0.2958-08
•00	0.1050-05	0.5967-06	0.6565-07	0.6258-07	0.2840-07	0.1245-07	0.1220-08	0.1403-08
•	0.8016-06	0.1563-06	0.4009-07	0.3578-07	0.1213-07	0.6351-08	0.2298-08	0.2831-08
, ä	0.7923-06	0.1639-06	0.4212-07	0.3305-07	0.2498-07	20-1241-0	90-6226-0	0.7115-08

TABLE VII. TOTAL SCATTERED NEUTRON FLUX PER MEV Separation Distance - 35 Feet

<u>ે</u> છું
9
न
8
달
ne
ē.
ŭ
õ
٣
*
Mev)/
:-Mev)/
sec-Mev)/
-sec-Mev)/
#2-sec-Mev)/
/cm2-sec-Mev)/
on/cm²-sec-Mev)/
tron/cm ² -sec-Mev)/
eutron/cm ² -sec-Mev)/
(neutron/cm²-sec-Mev)/

Energy			ď	Source Energy (Mev)	lev)			
Index	6.33	1.1	2.7	4.0	6.0	8.0	10.9	14.0
.4	0.3075-12	00-0000-0	0.4670-11	0.4261-14	0.1288-08	0.7373-09	0.1153-08	0.2925-09
~	0.9265-09	0.8388-11	0.1008-09	0.1656-11	0.8314-09	0.1274-08	0.1327-09	0.1196-08
m	0.7369-08	0-54th	0.6235-09	0.1286-09	0.2500-09	0.1336-08	0.5776-09	0.3803-09
4	0.1912-07	0.2566-08	0.9215-09	0.3740-10	0.1990-09	0.5920-09	0.8941-09	0.1023-09
5	0.4796-07	0.8209-08	0.1914-08	0.2241-09	0.2283-09	0.3182-09	0.8904-09	0.2930-09
. 🕠	0.8296-07	0.1800-07	0.2853-08	0.1255-08	0.4362-09	0.1877-09	0.3345-09	0.1166-08
-	0.1513-06	0.2532-07	0.1224-07	0.3425-08	0.8316-09	0.2010-09	0.1350-09	0.7216-09
•	0.25\$5-06	0.1413-06	0.1717-07	0.1584-07	0.6776-08	0.3190-08	0.9789-09	0-3419-09
0	90-0061-0	0.3570-07	0.1257-07	0.1033-07	0.3164-08	0.1553-08	0.8690-09	0.7295-09
91	90-9602.0	10-1405-07	0.1039-07	0.9930-08	0.6970-08	0.4157-08	0.2856-08	0.2031-08

6.3075-12 = 3.075×10-13

TABLE VIII. TOTAL SCATTERED NEUTRON FLUX PER MEV Separation Distance - 64 Feet

[(neutron/cm²-sec-Mev)/ (source neutron/sec)]

Group Index J c.2341-11 1.1 2.7 \$\psice\$ 0 6.0 \$\text{6.0}\$ 10.9 \$\text{14.0}\$ Lindex J 0.33 1.1 2.7 \$\psice\$ 0 6.0 \$\text{6.0}\$ \$\text{14.0}\$ \$\text{14.0}\$ 2 0.2341-11 0.0000-00 0.4030-11 0.6282-14 0.8686-09 0.4300-09 0.4300-09 0.1960-09 2 0.8869-09 0.8667-11 0.1023-09 0.1675-11 0.6892-09 0.4300-09 0.4972-10 0.1960-09 3 0.6104-08 0.3626-09 0.1675-11 0.6692-09 0.4177-09 0.1960-09 0.7177-09 0.1960-09 4 0.1854-07 0.2247-08 0.1624-09 0.1473-09 0.124-09 0.1240-09 0.1476-09 0.1468-09 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th>							•		
0.33 1.1 2.7 4.0 6.0 8.0 10.9 0.2341-11 0.0000-00 0.4030-11 0.6282-14 0.8686-09 0.4300-09 0.5757-09 0.8669-09 0.8667-11 0.1023-09 0.1675-11 0.6692-09 0.4300-09 0.5757-09 0.0464-09 0.3626-09 0.1624-08 0.9465-10 0.1473-09 0.4265-09 0.3854-09 0.1854-07 0.2477-08 0.7032-09 0.0465-09 0.1473-09 0.1245-09 0.4468-09 0.2835-07 0.6037-08 0.2243-03 0.2262-09 0.2452-09 0.1468-09 0.4415-07 0.1307-07 0.2628-08 0.2117-09 0.1310-09 0.1771-10 0.1269-06 0.5992-07 0.8415-08 0.8395-08 0.3400-08 0.1771-08 0.4625-09 0.9604-07 0.610-08 0.5115-08 0.1108-08 0.2093-08 0.1458-09 0.9604-07 0.6212-07 0.9610-08 0.1108-08 0.1108-08 0.1458-09	Energy Group			8	urce Energy (M	ev)			
1 0.0000-00 0.4030-11 0.6282-14 0.8686-09 0.4300-09 0.5757-09 9 0.8667-11 0.1023-09 0.1675-11 0.6892-09 0.6055-09 0.9042-10 1 0.3626-09 0.1624-08 0.9465-10 0.1473-09 0.7052-09 0.3854-09 1 0.2477-08 0.7085-09 0.4970-10 0.1960-09 0.4124-09 0.4655-09 1 0.2477-08 0.1243-08 0.4970-10 0.1960-09 0.4124-09 0.1468-09 1 0.6037-08 0.1243-08 0.2628-09 0.2177-09 0.1476-09 0.1476-09 1 0.10307-07 0.2628-08 0.2177-09 0.2145-09 0.1476-09 2 0.1833-07 0.5895-08 0.2628-08 0.3754-09 0.2348-09 0.1970-09 3 0.1883-07 0.8415-08 0.2628-08 0.3400-08 0.1771-08 0.4840-09 4 0.2132-07 0.6610-08 0.5115-08 0.1108-08 0.29649-09 0.4625-09	Index	0.33	1.1	2.7	4.0	6.0	8.0	10.9	14.0
0.3626-09 0.1224-08 0.9465-10 0.1473-09 0.7052-09 0.3854-09 1 0.2477-08 0.7085-09 0.4970-10 0.1960-09 0.1424-09 0.1468-09 7 0.5037-08 0.2183-09 0.2628-09 0.2117-09 0.2452-09 0.1468-09 7 0.1377-07 0.2386-08 0.27370-09 0.1370-09 0.1370-09 8 0.1383-07 0.5895-08 0.2688-08 0.1370-09 0.1371-08 0.1377-10 6 0.5992-07 0.8415-08 0.5315-08 0.1108-08 0.1777-08 0.460-09 7 0.2132-07 0.5810-08 0.115-08 0.1108-08 0.2093-08 0.1458-09	HN	0.2341-11	0.0000-00	0.1023-09	0.6282-14	0.8686-09	0.4300-09	0.5757-09	0.1960-09 0.6423-09
7 0.6037-08 0.1243-08 0.2628-09 0.2117-09 0.2452-09 0.4468-09 7 0.1307-07 0.2336-08 0.8628-08 0.3790-09 0.2141-09 0.1970-09 7 0.1883-07 0.5895-08 0.2628-08 0.3400-08 0.2141-09 0.1970-09 6 0.5992-07 0.8415-08 0.8395-08 0.3400-08 0.1771-08 0.4840-09 7 0.2132-07 0.5810-08 0.4823-08 0.3198-08 0.2093-08 0.1458-08	v)‡	0.5104-08	0.3626-09	0.1624-08	0.9465-10	0.1473-09 0.1960-09	0.7052-09	0.3854-09	0.2851-09
7 0.1883-07 0.5895-08 0.2628-08 0.7354-09 0.2348-09 0.7277-10 0.5992-07 0.8415-08 0.8395-08 0.3400-08 0.1771-08 0.4840-09 0.5115-08 0.1108-08 0.2093-08 0.4625-09 0.4623-08 0.3198-08 0.2093-08 0.1458-08	n /0	0.2835-07	0.6037-08	0.2336-08	0.2628-09 0.8628-08	0.2117-09	0.2452-09	0.1970-09	0.1776-09
7 0.1884-07 0.6610-08 0.5115-08 0.1108-08 0.9649-09 0.4625-09 7 0.2132-07 0.5810-08 0.4823-08 0.3198-08 0.2093-08 0.1458-08	r-0	0.8369-07	0.1883-07	0.5895-08	0.2628-08	0.7354-09	0.2348-09	0.7277-10	0.4870-09
	မဒ္ဓ	0.9723-07 0.9604-07	0.1884-07 0.2132-07	0.610-08	0.5115-08	0.3198-08	0.2093-08	0.4625-09	0.3583-09 0.9225-09

0.2341-11 - 2.341x10-12

TABLE IX. TOTAL SCATTERED NEUTRON FLUX PER MEV Separation Distance - 100 Feet

[co]
neutron
/(source
2-sec-Mev
neutron/cm

Source Energy (Mev) 2.7									
0.33 1.1 2.7 4.0 6.0 0.1644-11 0.0000-00 0.3703-11 0.6488-14 0.4244-09 0.1096-08 0.4689-11 0.1005-09 0.7257-11 0.3828-09 0.5885-08 0.4813-09 0.4063-09 0.7257-11 0.3828-09 0.5885-08 0.4813-09 0.4063-09 0.5640-10 0.2230-09 0.51517-07 0.4604-08 0.1209-08 0.2057-09 0.1800-09 0.2609-07 0.9447-08 0.1866-08 0.8675-09 0.3204-09 0.5181-07 0.3093-07 0.3516-08 0.4678-08 0.1208-08 0.5774-09 0.3093-07 0.4767-08 0.4678-08 0.1208-08	Energy Group				Source Energy	(Mev)		;	
0.0000-00 0.3703-11 0.6488-14 0.4244-09 0.4689-11 0.1005-09 0.7257-11 0.3828-09 0.4639-10 0.4063-09 0.7257-11 0.3828-09 0.4613-09 0.4063-09 0.5640-10 0.22130-09 0.4604-08 0.1209-08 0.2057-09 0.1200-09 0.1866-08 0.2057-09 0.3204-09 0.3516-08 0.2056-08 0.1806-09 0.3516-08 0.4678-08 0.1805-08 0.1805-08 0.1208-08 0.1208-08 0.1208-08	Index	0.33	1.1	2.7	4.0	6.0	.8.0	10.9	14.0
0.4689-11 0.1005-09 0.7257-11 0.3828-09 0.4813-09 0.4063-09 0.3218-10 0.9205-10 0.2760-08 0.6930-09 0.5640-10 0.2130-09 0.4604-08 0.1209-08 0.2057-09 0.1800-09 0.9447-08 0.1866-08 0.2057-09 0.3204-09 0.3071-07 0.3516-08 0.2056-08 0.5774-09 0.1905-08 0.1208-08 0.1208-08 0.1208-08	4	0.1644-11	0.0000.0	0.3703-11	0.6488-14	0.4244-09	0.3495-09	0.3842-09	60-6621.0
0.4813-09 0.4063-09 0.3218-10 0.9205-10 0.2760-08 0.6930-09 0.5640-10 0.2130-09 0.4604-08 0.1209-08 0.2057-09 0.1800-09 0.1866-08 0.2516-09 0.3204-09 0.3204-09 0.3516-08 0.2516-08 0.2556-08 0.57774-09 0.3033-07 0.4767-08 0.4678-08 0.1208-08 0.1208-08 0.1208-08	cv	0.1096-08	0.4689-11	0.1005-09	0.7257-11	0.3828-09	0.4188-09	0.7892-10	0.4020-09
0.2760-08 0.6930-09 0.5640-10 0.2130-09 0.4604-08 0.1209-08 0.2057-09 0.1800-09 0.1866-08 0.2675-09 0.3204-09 0.3204-09 0.3516-08 0.3516-08 0.4678-08 0.4578-09 0.1208-08 0.1208-08 0.1208-08	m	0.5885-08	0.4813-09	0.4063-09	0.3218-10	0.9205-10	0.4428-09	0.3208-09	0.1335-09
0.4604-08 0.1209-08 0.2057-09 0.1800-09 0.1866-08 0.8675-09 0.3204-09 0.3204-09 0.1071-07 0.3516-08 0.2056-08 0.5774-09 0.1805-08 0.4678-08 0.1805-08 0.1206-08 0.1206-08	-‡	0.1517-07	0.2760-08	60-0669.0	0.5640-10	0.2130-09	0.2164-09	0.2241-09	0.6058-10
0.9447-08 0.1866-08 0.8675-09 0.3204-09 0.1071-07 0.3516-08 0.2056-08 0.5774-09 0.3093-07 0.4767-08 0.4678-08 0.1895-08 0.1206-07 0.2603-08 0.1208-08	₩.	0.2774-07	0.4604-08	0.1209-08	0.2057-09	0.1800-09	0.8987-10	0.2872-09	%-ट 4 टा 0
0.1071-07 0.3516-08 0.2056-08 0.5774-09 0.3093-07 0.4767-08 0.4678-08 0.1895-08 0.1306-07 0.2699-08 0.2873-08 0.1208-08	•	0.2609-07	0.9447-08	0.1866-08	0.8675-09	0.3204-09	0.1180-09	0.1025-09	0.3417-09
0.3 093-07 0.4 767-08 0.4 678-08 0.1895-08 0.1208-08 0.1208-08 0.1208-08		0.5181-07	0.1071-07	0.3516-08	0.2056-08	0.57774-09	0.1576-09	0.4418-10	0.3202-09
0.1306-07 0.3609-08 0.2873-08 0.1208-08	R O	0-94/29.0	0.3093-07	90-1924-08	0.4678-08	0.1895-08	0.9728-09	0.2474-09	0.1097-09
	o,	0.5142-07	0.1306-07	80-6095.0	0.2873-08	0.1208-08	0.6004-09	0.3146-09	0.2049-09
0.3201-08 0.2923-08 0.199-08	20	0.5165-07	0.1294-07	0.3201-08	0.2923-08	80-664 : 0	0.1264-08	6. 8638-09	0.6085-09

0.1644-12 = 1.644x10-12

TABLE X . ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON FLUX Separation Distance - 10 Feet

[neutrons/cm²-sec)/(source neutron/sec)]

0.204-08 0.4178-64 0.1521-62 0.3716-09 0.3282-09 0.1830-09 0.1938-09 0.2383-0	- 10 4 N 3 F - 3 C - 4 C 7 T B 5 C	0.33 0.33 0.1122 0.1124 0.1124 0.10144 0.1	2.000 0.000	2	0	6.0 0.0104-008 0.4474-008 0.7247-008 0.7271-008 0.7271-008 0.7271-008 0.7272-008 0.7272-008 0.7480-008 0.7480-008	6.0 0.0060-08 0.260-08 0.263-08 0.1824-08 0.1423-08 0.185-08 0.1015-08 0.3857-09 0.3857-09 0.3857-09	10.9 10.9 10.45.0	14.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1
0.1046-08 0.2547-69 0.5276-09 0.2790-09 0.1630-09 0.1938-09 0.2383	<u></u>	1375-08	1004		φ. (0)	0.3716-09		0.2771	50 50 50 50 50 50 50 50 50 50 50 50 50 5
		.6936-09		0.2547-09	0.5276-09	2150-0	1630		17) : 100 : 101 : 101 :

0.1122-07 = 1.122x10-8

TABLE XI . ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON FLUX Separation Distance - 35 Feet

 $[\![\mathtt{neutrons/cm^2-sec}) / (\mathtt{source\ neutron/sec})]\!]$

					Source Energy (Mev)	(Mev)			
		0.33	1.1	2.7	0.4	0*9	8.0	10.9	14.0
	10	0.2985-08	0.1676-08	0,1389-78	5,7127-08	0,1773-08	0,1717-00	0.1635-08	0.2094-08
1	0	0.2951-03	0.1360-08	0.1398-00	10-00-11.C	4. 1916-0x	1244-08	N. 1454-08	0,1625-03
εv	i ini	00120010	0.2277-08	00-6041.0	00 (0 1 mm) 10 (10 mm)	C. 16: 4-03	0.11811-08	0,1017-68	0.1104-08
JE	· ·	0.0105000000000000000000000000000000000	0.366-09	0.1069-08	7.1386-68	0.1102-08	0.7325-09	0.7318-09	0.7657-09
21		0-000M0	0.1044-00	0.1029-03	0.1330-08	0.8100-00	0.4196-09	0.7732-09	6,7480-69
uI		語の「12日ので、 の	0.1989-08	COLUMNIA CO	30-61113	0.000 to 100 to	0.4078-00	30-4878.0	0.6119-09
(0	0.1673-00	0.1590-08	0,4571-00	W-1-40-1-1-0	69-7971. 10	60-0225-09	0, <654-09	C. 0164-09
	- - -	11 12 12	-	では「日のかか。 の	\$11-0715 TH	0.4578-00	0,4717469	0.4767-69	0.000000000
9 9	-	-	0.1000c.0	0,700,000	0.4604-00	0.0400000	0,3683-09	0,0716-09	0.4188-09
31 31		27-72-13	0.1468-58	0,717.00°C	40-080F	0.4786-09	のコーサルスの・コ	10. A75.C-0.9	0.4 4 3 5 1 - 1 5 6 4 4 0
iA 391	-	6.11.66-1	0.1265-08	0.40004.0	27-12-12	0.4450-09	11.4356-D9	0.3484-09	0.0100000 vo
<u>.</u>	1.0	0-16010.	20-326-02	0,3560-19	00-10+04.	0.2619-69	G, : n 16-69	いってすらい。	WAS TO SEE THE
02		U-+-5-	0.038-00	0.2833-0.9	20 TEN TO 10 TEN	0.2774-09	0.71.68-E8	0.2100-00	0.2044-03
01			0.0110-09	0.2100-60	30-27+6.0	0.2567-09	63-7636-0	かのしのすがい つ	9.7 at 107 10
9 4			\$0.00100.U	0.2007-19	() 第一() () () ()	0.1769-09	0.0071-0.0	第二十つです。・3	100千里河北丰
əç		*	20-025t-5	0.1181110	10 Table 20	St-2 431 10	ST-101111		以上的数 3
<u>.</u>	() [-	0.1733-51	0.3816-05	0.8754-17	1.151.2-1.	60-210, 0	11, 1342-11	.f. 40.04-16	0.5675-16
	0 %	日 20mm で	0.0103-10	0,3710-10	190 - 190 -	0.5411-10	0,5452-16.	U. 1988-18	9,1351-15
	,							· .	

0.2985-08 = 2.985x10-9

TABLE XII, ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON FLUX Separation Distance - 64 Feet

 $\left[\left(\text{neutrons/om}^2\text{-sec}\right)\left/\left(\text{source neutron/sec}\right)\right]$

10						Source E	Source Energy (Mev)			
10 0.1445-08 0.1291-08 0.7224-09 0.9522-09 0.9424-09 0.8753-09 0.7258-09 0.9245-09 0.7258-09 0.7258-09 0.9266-09 0.8263-09 0.7588-09 0.7			0.33	1,1	2.7	0.4	0*9	0*8	10.9	14.0
20 0.1471-08 0.1258-03 0.7040-09 0.9266-09 0.6558-09 0.7580-09 0.7580-09 0.7580-09 0.7580-09 0.7580-09 0.5579-09 0.5579-09 0.7570-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.4663-09 0.2924-09 0.2924-09 0.5389-09 0.5389-09 0.5389-09 0.2599-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2589-09 0.2		٦	0.1445-08	0.1291-08	0.7224-09	0.9822-09	0.9024-09		0.9245-09	20-8291°0
36 0.1354-08 0.4205-08 0.6535-09 0.8988-09 6.6084-09 0.5679-09 0.5170-09 40 0.1227-08 0.1053-08 0.7814-09 0.7660-09 0.4580-09 0.4657-09 0.4563-09 0.4173-09 50 0.1197-08 0.1483-08 0.5389-09 0.6667-09 0.4563-09 0.2795-09 0.2583-09 0.2583-09 0.2583-09 0.2583-09 0.2583-09 0.2795-09 0.2583-09 0.2583-09 0.2795-09 0.2583-09 0.2795-09 0.2583-09 0.2583-09 0.2583-09 0.2583-09 0.2583-09 0.2585-09 0.2581-09 0.2585-09 0.2585-09 0.2585-09 0.2585-09 0.2585-09 0.2585-09 0.2585-0		2.0	_	0.1258-08	0.7040-09	0.9266-03	0.8263-09	0.7588-09	©. 7338-09	0.8059+09
40 0.1227-08 0.7814-09 0.7660-09 0.4580-09 0.4563-09 0.4173-09 50 0.1483-08 0.5889-09 0.6657-09 0.4799-09 0.2683-09 0.2782-09 60 0.9442-09 0.58502-09 0.4568-09 0.4657-09 0.4905-09 0.2795-09 60 0.9442-09 0.4568-09 0.4568-09 0.45675-09 0.4365-09 0.2795-09 60 0.7580-09 0.4568-09 0.4587-09 0.3365-09 0.2565-09 0.2795-09 90 0.7578-09 0.7578-09 0.3566-09 0.4587-09 0.2565-09 0.2565-09 90 0.7578-09 0.3586-09 0.4587-09 0.3586-09 0.2565-09 0.2595-09 90 0.5788-09 0.3586-09 0.3586-09 0.2586-09 0.2596-09 10 0.5000-09 0.3586-09 0.3586-09 0.2586-09 0.2596-09 10 0.5000-09 0.3586-09 0.3586-09 0.2586-09 0.2596-09 10 0.5000-09 0.3586-09 0.3586-09	Ţ	(C)		1205-08	0.6535-09	0.8388-09	6.6084-09	0.5679-09	0.5170-09	0.6273-09
SC 0.1197-08 0.1483-08 0.5389-09 0.6667-09 0.4799-09 0.3683-09 0.2924-09 CC 0.9442-09 0.4857-09 0.6445-09 0.4905-09 0.2956-09 0.2795-09 CC 0.9442-09 0.4568-09 0.6457-09 0.6457-09 0.2566-09 0.2595-09 CC 0.7880-09 0.7250-09 0.3556-09 0.3556-09 0.25756-09 0.25756-09 DC 0.7880-09 0.7250-09 0.3576-09 0.3576-09 0.2576-09 0.2576-09 DC 0.7880-09 0.7260-09 0.3576-09 0.3576-09 0.2576-09 0.2576-09 DC 0.7890-09 0.3786-09 0.3786-09 0.3786-09 0.2576-09 0.2576-09 DC 0.3027-09 0.3786-09 0.3786-09 0.3786-09 0.3786-09 DC 0.3224-09 0.3105-09 0.3175-09 0.3175-09 0.3136-09 DC 0.3224-09 0.3256-09 0.3786-09 0.3786-09 0.3786-09 DC 0.3224-09 0.3786-09	A	4		1053-08	0.7814-09	0.7660-09	0.4580-09	0.4663-09	0.4173-09	0.4947-09
6.0 0.9442-09 0.4557-09 0.6445-09 0.4905-09 0.27996-09 0.27796-09 0.27796-09 0.27796-09 0.27796-09 0.27796-09 0.27796-09 0.27796-09 0.27796-09 0.27796-10 0.27796-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11 0.27760-11	te:	30		1483-08	0.5389-09	0.6667-09	0.4799-09	0.3683-09	0.2924-09	0.3868-09
70 0.8803-09 0.7493-09 0.4568-09 0.4568-09 0.3432-09 0.4103-09 0.2697-09 0.3556-09 0.3556-09 0.3555-09 0.2565-99 0.1325-09 0.1355-99 0.1325-09 0.1325-09 0.1325-09 0.1256-99 0.1256-99 0.1256-99 0.1065-10 0.1526-99 0.1565-10 0.1565-10 0.1565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-10 0.2565-11 0.2565-11 0.2565-11 0.1631-10 0.2565-11 0.2	a u	9		8502-09	0.4657-09	0.6445-09	0.4905-09	0.3996-09	0.2795-09	0.3307-09
Et 0.7880-09 0.3556-09 0.5836-09 0.3556-09 0.2316-09 0.2316-09 0.2356-09 0.2356-09 0.2356-09 0.2356-09 0.2356-09 0.2356-09 0.2201-09 0.2556-09 0.2565-09 0.2365-09 0.2365-09 0.2365-09 0.2365-09 0.2365-09 0.2501-09 0.2501-09 0.2546-09 0.2565-09 0.1967-09 0.2501-09 0.250	I	ت ~		\$493-03	0.4568-09	60-6775-09	0.3432-09	0.4103-09	0.2697-09	0.3153-09
90 0.7578-09 0.3211-09 0.45472-09 0.3130-09 0.2201-09 0.2201-09 0.3246-09 0.4547-09 0.2456-09 0.1967-09 0.1941-09 0.2941-09 0.2941-09 0.2941-09 0.2941-09 0.2941-09 0.2691-09 0.1941-09 0.2011-09 0.2941-09 0.2011-09 0.20	() (L	(1)		0,7260-09	0.3556-09	0.5836-09	0.3365-09	0.2565-09	6.2316-09	0.2662-09
10.0 0.8749-09 0.3246-09 0.4547-09 0.2456-09 0.1967-09 0.1967-09 0.1967-09 0.1967-09 0.1967-09 0.1967-09 0.2941-09 0.2691-09 0.2	79	9		0.7211-09	0.3576-09	0.4172-09	0.3130-09	0.2382-09	6.2201-09	0.2362-09
50 110 0.4348-09 0.2234-09 0.3945-09 0.2534-09 0.2691-09 </th <th>กร</th> <th>0</th> <th></th> <th>0.7095-09</th> <th>0.3246-09</th> <th>60*2484.0</th> <th>0.2426-09</th> <th>0.1967-09</th> <th>0.1941-09</th> <th>0.2209-09</th>	กร	0		0.7095-09	0.3246-09	60*2484.0	0.2426-09	0.1967-09	0.1941-09	0.2209-09
4.2 g 0.3927-09 0.5000-09 0.4668-09 0.3110-09 0.2117-09 0.136-09 0.136-09 0.1375-09 0.1462-09 0.1792-09 0.2457-09 0.1355-09 0.1329-09 0.1229-09 0.1229-09 0.1229-09 0.1229-09 0.1229-09 0.1239-09 0.1229-09 0.1216-09 0.12	izi iur			0.5938-09	0.2234-09	00-2942-09	0.3394-09	0.2641-09	0.2691-09	0,2036•09
130 0.4509-09 0.4402-09 0.4457-09 0.1355-09 0.134-09 0.22934-09 0.3820-09 0.1275-09 0.2467-05 0.2125-09 0.1222-09 0.1275-09 0.12	V V	<u></u>		60-000200	60-8991.0	0.3110-09	0.2117-09	0.1276-09	0.:103-09	0.1441-09
14 0 0.2934-09 0.3820-09 0.1275-09 0.2467-05 0.2125-09 0.1322-09 0.28259-10 0.1500 0.1500 0.25774-09 0.2095-09 0.1218-09 0.2373-09 0.108-09 0.258-09 0.7046-10 0.7046-10 0.7046-10 0.1272-09 0.6981-10 0.17457-09 0.1403-09 0.2718-09 0.9904-10 0.6227-10 0.3386-10 0.2386-10 0.2081-10 0.2091-10 0.2962-10 0.2962-10 0.2091-10 0.2940-11 0.1831-10 0.2962-11 0.2091-11 0.29400-11 0.1831-10 0.7067-11 0.	3((A)		0.4402-09	Τ,	0.4457-09	6.1355-09	0.1134-09	0.1249-09	0.1029-09
i 50 0.2774-09 0.2095-09 0.1218-09 0.2373-09 0.1108-09 0.22570-10 0.7245-09 0.7257-09 0.7258-09 0.8080-10 0.1837-09 0.6981-10 0.9064-10 0.6227-10 0.1272-09 0.2386-10 0.2708-10 0.9061-11 0.9061-11 0.9061-11 0.2091-10 0.9400-11 0.1831-10 0.7067-11 0.9067-11 0.9060-11	-	4		0.3820-09		0.2467-05	0.2125-09	0, 1329-09	0,8259-10	0,1328-09
96.0 0.1457-09 0.2258-09 0.8080-10 0.1199-09 0.1332-10 0.1272-09 0.6981-10 0.178 0.8827-10 0.3386-10 0.2708-10 0.1403-09 0.2718-09 0.9904-10 0.6227-10 0.3386-10 0.2708-10 0.1402 0.2708-10 0.2962-10 0.2962-10 0.9061-11 0.2091-10 0.9400-11 0.1831-10 0.7067-11 0.	00	10		0.3095-09		0.2373-09	0.1108-09	0.8370-10	0.3840-16	0,7653•10
176 0.8827-10 0.1403-09 0.2718-09 0.9904-10 0.6227-10 0.3386-10 6.2708-10 0.2708-10 0.2091-10 0.9400-11 0.1831-10 0.7067-11 0.	30	6.0		0.2258-09		0.1199-05	0.7332-10	0.1272-09	6981-1	0,4807•10
0.2796 - 10 $0.2962 - 10$ $0.9061 - 11$ $0.2091 - 10$ $0.9400 - 11$ $0.1831 - 10$ $0.7067 - 11$ $0.$	D		_	0.1403-09	0.2718-09	0.9904-10	0.6227-10	0,3386-10	2708-1	0.2823-10
	_			0.2962-10	0.9061-11	0.2091-10	0.9400-11	0.1831-10	9.7067-11	0.9389-11

0.1445-08 = 1.445x10-9

TABLE XIII. ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON FLUX Separation Distance - 100 Feet

 $\boxed{ \left[(\text{neutrons/cm}^2\text{-sec}) \text{% source neutron/sec} \right] }$

\		<u>.</u>		•	Source En	Source Energy (Mev)			
		0,33	1,1	2.7	0.4	0.9	8.0	10,9	14.0
	-	0.8601-08	\$076888 TO	0.4817-09	0.186738-0	6.5846-03	10-00 pt. 1	0.1163-03	7298
		なた「仏母いた。…		0.4401-09	0.3687-02	3-4004.	C. 451.51.72	3 183-69	0.5366-29
Ţ	10		0.000000000000000000000000000000000000	0.3929-00	0.01000000000	17.1015时。	0 T-100 (14 * U	60-9287	[[
- 3V	. =			0.301010	0.5679-09	. 4828-c	C, 1742-10	6046947.	0.3231-09
19) [· (4)	201	0.3279-09	0.4656-09		0.2138-05	. 60-2657**	0.2969-09
4 t	0	٠	0.5719-09	0.2200-03	U-4267-UV	U.2382-UV	1.1年の第二十	60-886	0.1892 - 09
īĮ.			0.000000000	0.2303-69	0.3089-09	0.2321-09	S7-32 (2 %)	3.1502-09	0.2140-09
T (C.	のは一切がいて、	5,6461-09	0.2714-09	0.3104-09	n.1672-09	のの一般は行わって	60-2321.	0,1644-09
81 88	0	0	0.9617-09	0.1821-09	C.3280-09	0.1889-09	52-31413	60-6281**	0.1456~09
9 0. [n:		001007	0.3602-09	0.1781-09	0.2713-09	0.2723-09	0.1464-119	0.1152-09	0.1556-09
13 3u	0	17		0.1604-09	0.2530-09	0.1558-09	0:4848-10	5.1116-09	0.1325-09
A St		Π.		0.1174-09	0.2039-09	$\tilde{\mathbb{S}}$	0,1166-65	(6) (4) 1~-	0.7965-10
) J	0	0.1427-09		1680	1733-0	0.1267-09	0.1285-10	0.4519-10	0,6276-10
)	(1) (1)	5,1370-09	0.2123-09	0.7924-10	1819-0	5017-1	0.7065-10	0.50tcs-10	0.6496-10
o e	0			0.1072-09	0.1391-09	0.6165-10	0.1030-09	a)	0.4268-10
14:	<u></u>	<u> </u>		0.7867-10	8375-1	4968-1	C. 4762 15	01-1044	3769-1
De	0			0.2268-10	6.5032-10	0.2927-10	0.7042-10	1	0.2034-10
) D	16.5696-11	0.1351-10		0.8472-1	4008-1	0.5584-11	U.5059-11	0.4775-11
•	_		5						

 $0.8001-09 = 8.001 \times 10^{-10}$

TABLE XIV. ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON DOSE RATE Separation Distance - 10 Feet

[(rem/hr)/(source-neutron/sec)]

					Source Energy (Mev)	ergy (Mev)			
	ı	0,33	1.1	2.7	0*#	0*9	0*8	6*01	0*ητ
	-	0.5081-12	.8819-1	6244-1	0.1066-11	0.1107-11	0.4208-11	1037-1	0.1895-11
ī	Q	4753-1	0.9263~12	0.5761-12	0.1107-11	9700-1	0.1009-11	0.1158-11	0,1397-1.1
T	2.0	0.4011-12	.7667-1	6691-1	8460-1		•	16.30-1	6,9061-12
٦	0	0,4031-12	.5843-1	5221-1	7422-1	6423-1		0.6126-12	0,7987-12
9 4	o ທ	0.3057-12	0.5947-12		7978-1	.5852-1	5229-1	4304-1	0.6745+12
u	00	0.2623-12	0.5226-12	4769-1	0.6847-12	0.3725-12	0.3071-12	0.4812-12	0.5572-12
I	70	.2681-1	0.4548-12	0.2768-12	5105-1	4167-1	2772-1	3115-1	
3) FL	00	0.2301-12	0.5128-12	0.2261-12	0.5662-12	0.3934-12	0.2882-12	2323-1	0.3458-12
i j	00	0.2433-12	.3680-1	.3172-1	4471-1	4022-1	0.2329-12	0.4491-12	6.2407-12
n 3	100	0.1693-12	.3945-1	0.2182-12	0.4727-12	0.2447-12	1987-1	1-8298	0.4236-12
ge u _l	110	0.1632-12	.4076-1	.2212-1	3632-1	0.1866-12	3241-1		0.1763-12
p	120	0.1296-12	0.3516-12	0.1386-12	0.4480-12	994-1	0.1513-12	22:1-1	0.2022-12
) .to	0 ⊵ [0.7431-13	1983-1	.1317-1	0.2082-12	0.7225-13	1312-1	1202-1	0.1130-12
	140		.2615-1	0.7394-13	2638-1	281-1	0.1009-12	0.9248-13	0.1325-12
9;	130	0.6438-13	0.1999-12	0.1038-12	0.2137-12	0.1012-12	1022-1	1101-1	0.1396-12
10	160	0.4147-13	0.1734-12	0.5185-13	0.2494-12	.6592-1	.6272-1	0.5757-13	0.7834-13
α	<u>.</u> .	0.3001-13	.9408-1	0.3304-13	0.8504-13	0.3755-13	0.3052-13	0.4160-13	0.5405-13
	180	0.8234-14	0.3679-13	0.1064-13	0.2444-13	0.1219-13	0.9518-14	0.1426-13	0.1435-13

 $0.5081-12 = 5.081 \times 10^{-13}$

TABLE XV ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTHON DOSE RATE Separation Distance - 35 Feet

[(rem/hr)/(source-neutron/sec)]

					Source Energy (Mev	rgy (Mev)			
=. 00^		0.33	1,1	2.7	0*#	0*9	8.0	10.9	14.0
	10	0.1321-12	0.2368-12	0.1742-12	0.3433-12			0.3611-12	0.5010-12
τ		ó	-	.1690-1	0.2909-12	0.2732-12	0.2448-12	0.3111-12	0.3865-12
.8.		0.1183-12	1958-1	1528 - 1	0.2536-12	0.1960-12	0.23/8-12	2171-1	***
LA —	_		0.1978-12	1306-1	0.2200-12	0.1985-12	0.1434-12	6. 1547 12	1.1771-12
9:		0.8775-1	1603-1	1283-1	2134-1	0.1411-12	0.1581-12	.623+1	0.1723-*2
ų.	09		0.1295-12	0.1162-12	0,1791-12	_		0,1085-12	F. #4044*2
I 	_	-	1266-1	3287-1	0.11.9-12	7	. 8011-	PI 6890	0.2043~12
9) TL	-		0.1166-12	0.:15 -1.	0.1540-12	0.8634 13	5 • 00 1 1 0 ° 0 ° 0	0.8394-13	0.1135-12
39: 17:	_	į, i		0.8685-13	0.1378-1	0.7464-13	0.7027-13	0.7580-13	0.954113
En	_			0.27 -1	1706-1	0.7381-13	0.7131-13		0.1039-12
ge u	_		0.1978-12	0.5286-13	0.1119-12	0.7852-13	0.6469-13	0.6822-13	0.6996*13
g	<u></u>			4260-1	8975-1	0.4535-13	.4682-1	•4428-•	0.653;+13
) 10	(*) 	0.1657-13	0.7101-13	3418-1	7879-1	4846-1	4258-1	4415-1	0.5542-13
3 6	'd⊤	0.2390-13		2626-1	3989-1		0.3876-13	-	0.0044410
999	150	0.1720-13	0.5562-13	0.2425-13	0.5461-13	0.2757-13	3791-13	2729-1	0.2734*13
	9	0.1028-13	0.3848-13	0.1726-13	4381-1	.2728-1	0.2055-13	0.1460-13	0.2129-13
۵	<i>-</i> -	0.7314-14	0.3156-13	1096-1	0.2364-13	0.1722-13	0.1180-13	0.9576-14	0.1283*13
,	180	0.1963-14	0.5607-14	0.3570-14	5086-1	0.4169-14	0.4597-14	0.3847-14	0,3130w14

0.1321-12 - 1.321x10-13

TABLE XVI. ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON DOSE RATE Separation Distance - 64 Feet

[(rem/hr)/(source-neutron/sec)]

					Source En	Source Energy (Mev)			
		0.33	1,1	2.7	0*17	0*9	0*8	10.9	14.0
	10	0.6339-13	1139-1	.9070-1	1530-1	.1629-1	1740-1	2025-1	0.2480-12
•	50	6190-1	1083-1	0.8733-13	0.1492-12	0.1475-12	•	0.1875-12	0.1900-12
8]	00	5506-1	0.1018-12	0.8001-13	1431-1	. 1076-1	0.1052-12	1100-1	0.1408-12
ΛJ	40	0.4814-13	5657-1	.9623-1	0.1220-12	0.3015-13	_	0.8603-13	0,1133-42
9:	υ 0	4551-1	1192-1	0.6508 • 13	1056-1	0.8080-13	7030-1	1-4000	0.8588-13
u	00	3612-1	0.6865-13	0.5571*13	. 1023-1	1-6255	0.3481-13	0.5586-13	0.7199-13
I	2	3144-1	0.5943-13	.5426-1	.1056-1	5849•1	7235-1	5247-1	7045-1
) IL	00		5760-1	0.4274-13	0.9138-13	0.5095•13	0.4725-13	4500-1	0.5764-13
78	000	0.2435-13	0.5700-13	4200-i	0.6572-13	1-2939	0.4288-13	0.4284-13	0.5196-13
n S	100	•	1-9250	3882+1	.7146-1	41 62-1	3686-1	3792-1	0.4689-13
2 u	110	0.1333-19	0.4630-13	0.2631-13	0.6196-13	0.5016-13	0.37.1.0	3853-1	*-628t
p	081	÷	0.3893-13	6.1987-13	• 4844-	100 100 00 00 00 00 00 00 00 00 00 00 00	0.2194-13	0.2122-13	0.3022-13
) IC		↓ •4000.	C. 3461-13	0.2110-13	0.7027-13		0.2027-13	7313-1	0.2179-13
3:	041	.1062-1	3010-1	1629-1	C.3389-13	0.3678-13	f. 2371-13	0.1672-13	⊕. 28882.€
•	150	**的图纸件*	0.2470-13	0.1468-10	S 1-20000 0	0.1809-13	5. 15 a. 1. 1. c.	*一分下的	0,1625-13
1 •	160	0.5139-14	0.1901-19	1-1216	S. (396-13	0.1282-13	0.2369-13	0.1348-13	0.1045-13
D	0 -10	11年十十日。	C. 1184-12	0.2856-13	C. 1496-13	0.1046-13	0.6411-14	0.4907-14	0,6132*14
	130	0.0000000	0.7549-14	0.140-14	0.7347-14	4. 626.0	0.7362 14	0. 1374-14	0.0003-14
							¥		

 $0*6339-13 = 6.339 \times 10^{-14}$

TABLE XVII. ANGULAR DISTRIBUTION OF TOTAL SCATTERED NEUTRON DOSE RATE Separation Distance - 100 Feet

 $\big[(\texttt{rem/hr}) \big/ (\texttt{source-neutron/sec}) \big]$

	14.0	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	6*07	0.6934-12 0.6934-13 0.6934-13 0.53505-13 0.316-13 0.2131-13 0.2131-13 0.2131-13 0.2131-13 0.2131-13 0.316-
	0*8	0.1065-12 0.8671-12 0.7770-13 0.8598-13 0.8298-13 0.22641-13 0.2366-13 0.1734-13 0.1734-13 0.1734-13 0.1734-13 0.1899-13 0.2381-13
rgy (Mev)	0*9	0.890,000,000,000,000,000,000,000,000,000,
Source Energy (Mev	O*tr	0.000000000000000000000000000000000000
	2.7	0.050 0.
	1,1	0.6425 0.6425 0.62775 0.4526 0.4526 0.4526 0.4526 0.4526 0.2995 0.2995 0.1279 0.127
	0,33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
		(degrees)
		Detector Angular Interval

C.3489-13 = 3.489x10-14

FIGURE 2. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 0.33 Mev

FIGURE 3. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 1.1 Mev

FIGURE 4. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 2.7 Mev

FIGURE 5. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 4.0 MeV

FIGURE 6. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy $6.0~{\rm Mev}$

FIGURE 7. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 8.0 Mev

FIGURE 8. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 10.9 Mev

FIGURE 9. ENERGY SPECTRA OF TOTAL SCATTERED NEUTRON FLUX Initial Energy 14.0 MeV

FIGURE 10. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 0.33 Mev

FIGURE 11. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 1.1 Mev

FIGURE 12. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 2.7 Mev

FIGURE 13. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 4.0 Mev

FIGURE 14. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 6.0 Mev

FIGURE 15. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 8.0 MeV

FIGURE 16. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR ANGLE Initial Energy 10.9 Mev

FIGURE 17. TOTAL SCATTERED NEUTRON FLUX VS. DETECTOR A: Initial Energy 14.0 MeV

FIGURE 18. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 0.33 Mev

FIGURE 19. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 1.1 Mev

FIGURE 20. TOTAL SCATTERED NEUTRON DOSE RATE VS. D MECT'S TLE Initial Energy 2.7 MeV

FIGURE 21. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 4.0 Mev

FIGURE 22. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 6.0 MeV

FIGURE 23. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 8.0 MeV

FIGURE 24. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 10.9 Mev

FIGURE 25. TOTAL SCATTERED NEUTRON DOSE RATE VS. DETECTOR ANGLE Initial Energy 14.0 Mev

FIGURE 26. TOTAL SCATTERED NEUTRON FLUX VS. INITIAL ENERGY

FIGURE 27. TOTAL SCATTERED NEUTRON DOSE RATE VS. INITIAL ENERGY

APPENDIX

R-55 FORTRAN STATEMENTS

APPENDIX

'55 FORTRAN STATEMENTS

7171 EZE	EZEC1 EZED2 EZED3 EOF - EZED5 EZEB1AEZEB3 EZEB4 EZEB1AEZEB5	0004 R55
C	IBM 704 PROCEDURE R55	0002 R55
С	INTEGRATION OF MONTE CARLO UNLOULATIONS OF FAST NEUTRON SCATTERING	50003 R55
C	IN AIR FOR NON-ISOTROPIC SOURCES	ぴ004 R55
C		0005 R55
	DIMENSION Z(8), DZ(8), FLUXA (576,8). DOSEA (576,8),	0.006, R55
1	FLUXE (320,8), S(8,8), SRZ(8), A(8), SS(576,8) , FD(576), SOS (18,4,8), FAD (576,8) , FLIB(5), RZ(8) COMMON Z , OZ , FLUXA , DOSEA , FLUXE , S , SRZ , A , SS , FD , SOS , FAD , FLIB , RZ CALL LIB1 (M) GO TO (11,50) , M CALL LIB (3HR55,ED)	0007 R55
7	55(576,8) , FD(576), SOS (18,4,8),	0008 R55
٥	FHU (5/6,8) , FLIB(5) , R2(8)	0009 :R55
	COMMUN 2, 02, FLOXH, DOSEH, FLOXE, S, SRZ,	0010 R55
40	H, SS, FD, SUS, FRD, FL18, RZ	0011 R55
14	CALL (18) (M)	0012 R55
+ +	GO TO (11,502 ; W CALL LIB (3HR55,ED)	0014 R55
1 (READ 500, FLIP	00151R55
	IF (FLIP) 14, 14, 13	00151R55
1.3	BACKSPACE 9	00153R55
	GO TO 50	0016 R55
14	FLIP = MODF (ED , 10.0)	
	GO TO (11,50) , M CALL LIB (3HR55,ED) READ 500, FLIP IF (FLIP) 14, 14, 15 BACKSPACE 9 GO TO 50 FLIP = MODF (ED , %0.0) LIBT = FLIP	0018 R55
	40 to (19:70:70:30:30) • FIRE	.0.019, R55
	, commit demine is	0020 R55
15	READ 40, (Z(J), J=1,8)	0021 R55
	XID1 = ED	.0.0 2.2. JR 5.5
	GO TO 11	0023 R55
20	READ 40, (DZ(J), J±1,8)	0024 R55
	GO TO 11 READ 40, (DZ(J), J±1,8) XID2 = ED	0025R55
25	GD TO 11 READ 40, (CFLUXA CI,J), J=1.8> I=1.576 \$ XID3 = ED	0026 R55
20	VID2 - ED	0027 K55
	GO 70 11	0020 KQD
30	GO 70 11 READ 40, (CDOSEA (I,J). J=1.8) I=1.576) XIO4 = ED GO TO 11	0027 KJJ 0030 PSS
	XID4 = ED	0031 R55
	GO TO 11 READ 40, (CFLUXE (I,J), J=1,8) I=1,320) XIOS = ED GO TO 11	0032 R55
35	READ 40, ((FLUXE (I,J), J=1,8) I=1,320)	0033 R55
	XID5 = ED	.00,34, R55.
		0035 R55
50	CALL SETUP (3HR55,XID)	0036 R5 5
	READ 500, CFLIB(N), M=1,50	0037_R55
500	FORMAT (SF7.0)	0038 R55
	FORMAT (5F7.0) IF (XID1 - FLIB(1))	0039 R55
01 50	TP (VID2 = PLIB(4))	0049 K55
0Z	IN CAINA T ENDOANS: 56 EA EE	0040 PEE
00 54	IF (VIDS = ELID(5))	0042 K35
97 55	IF (XID3 - FLIB(3)) 55, 53, 55 IF (XID4 - FLIB(4)) 55, 54, 55 IF (XID5 - FLIB(5)) 55, 58, 55 PRINT 56	0044 R55
	FORMAT (54H LIBRARY DECKS CALLED FOR IN PROBLEM ARE NOT AVAILABLE:	
	CALL END9	0046 R55
58	READ 59, CHOP1 , NOP2 , NOP3 >	0047 R55
	FORMOT (717)	0048 R55
	IF (NOP1 + NOP2 + NOP3) 1000, 1000, 60	
60	REAU 40, (CS(I,J), J=1,8),I=1,8)	0050 R55
	DO 70 J=1,8	0051_R55
	RZ(J) = 0.01745329 * Z(J)	0052 R55
	SRZCJD= SINF (RZCJ)	0053 R55
	A(J) = SRZ(J) * DZ(J)	0054 R55
70	CONTINUE	.0055_RS5

FORTRAN STATEMENTS (cont'd.)

	IF C NOP1 + NOP2 > 1000, 1100, 1200	.0056 R55.
1000	PRINT 1001 FORMAT C37H ERROR ON SECOND CARD OF PROBLEM DECK? CALL END9	0057 R55
1001	FORMAT (37H ERROR ON SECOND CARD OF PROBLEM DECK)	0058 R55
	CULT ENDS	0059 .R55
1100	NM = 320 GO TO 2000 NM = 576'	0060 R55
	G0 TO 2000 .	0061 R55
	NM = 576'	.D0.62R55
C		0063 R55 0064 R55
C	CONSTRUCT A LARGER MATRIX FROM SCI, JO	0064 R55
2000	CONSTRUCT A LARGER MATRIX FROM S(I, J) DO 2022 I=1,NM DO 2022 J=1,8	.0065, R55
	D0 2022 J=1,8	0066 R55
	IF (I-8) 2010, 2010, 2012 SSCI,J) = SCI,J) GO TO 2022	0067 R55
2010	55(1,1) = 5(1,1)	_UUG8_K55
	SS(I,J) = SS (I-8, J)	00701R55
	CONTINUE	.00102895
60	FORMAT (8E10.4)	00703R55
2027	IF (SENSE SWITCH 2) 2023, 2024 PRINT 65, CC SSCI, JD, J=1,8 D, I=1, NM)	00711855
2023	DO 2027 I=1,NM	0071205
2024	00 2027 1=1,0M	0.0713R55
	DO 2027 J=1,8 SSCI,J) = 6.2831853 * SSCI,J)	00721955
2027	CONTINUE	00722855
2021	CONTINUE IF CSENSE SWITCH 2 0 2028, 2029 PRINT 65, CCSS(I,J), J=1,8 0, I=1, NM 2.	00727855
2028	PRINT 65. (CSS(1.1). 1=1.8). I=1. NM)	00724855
	IF (NOP1) 1000, 2150, 2030	0073 R55
c	COMPUTE ANGULAR DISTRIBUTION OF FLUX.	0074 R55
č	COMPUTE ANGULAR DISTRIBUTION OF FLUX.	0075 R55
2030	DO 2035 I= 1,576	0076 R55
	DO 2035 I= 1,576 DO 2035 J= 1,8 FAD (I,J) = SS(I,J) * FLUXA (I,J)	0077 R55
	FAD (I,J) = \$5(I,J) * FLUXA (I,J)	0078 R55
•	FAD (I,J) = FAD(I,J) * Á(J)	.0079 R55
2035	CONTINUE	0080 R55
C	FAD (I,J) = FAD(I,J) * A(J) CONTINUE SUMMATION	0081 R55
	DO 2040 I=1,576	0082 R55
		0083 R55
	D0 2040 J=1.8	0084 R55
	DO 2040 J=1,8 FDCID = FDCID + FAD (I,J) CONTINUE DO 2050 I=1,18 DO 2050 J=1,4	9085 R55
2040	CONTINUE	0086 R55
	D0 2050 I=1,18	0087 R55
	DO 2050 J=1,4	0088 R55
	DO 2050 K=1,8	0089 R55
	D0 2050 J=1,4 D0 2050 K=1,8 L = K + 8* (J-1) + 32 * (I-1)	0090 R55
	SOS (1, J, K) = FD(L)	.0091 R55
	CONTINUE	0092 R55
C	PRINT OUT RESULTS HS 4 18X8 MHTRICES.	UU93 R55
2000	PRINT 2060 FORMAT (29H1ANGULAR DISTRIBUTION OF FLUX)	0095 R55
2000	PRINT 2070 . (0097 R55
	PRINT 2070 , J	
2070	FORMAT (22HOSEPARATION DISTANCE A, I1)	0098 R55 0099 R55
ဒင်္ကေ	PRINT 2080 FORMAT (100H0 K E01 E02 E03 E04	
,	1 808 806 807 809 5	0100 R55
	1 E05 E06 E07 E08) _D0 2100 I=1:18	0101 R55 0102 R55
	BBINT ACCOUNT AT ACCOUNTS IN MAN DO NO	0103 R55
2090	FORMAT (1H - 12, 8E12.4)	0104 R55
	CONTINUE	0105 R55
-, 50	TO THE TOTAL CONTRACTOR OF THE PROPERTY OF THE	

FORTRAN STATEMENTS (cont'd.)

```
2150 IF (NOP 2 ) 1000, 3000, 2200
                                                           0106 R55
                                                           0107 RS5
     COMPUTE ANGULAR DISTRIBUTION OF DOSE RATE.
                                                 0108 R55
0109 R55
0110 R55
C
                                                           0108 R55
2200 D0 2210 ...I...=, 1...576
    DO 2210
            J = 1,8
    FAD (I,J) = SS(I,J) * BOSEA (I,J)
FAD (I,J) = FAD(I,J) * A(J)
                                                           0111 R55
                                            . ... .... . 0112 R55
                                                        0113 R55
0114 R55
2210 CONTINUE
    SUMMATION
                                                   ..... . 01,15 R55
     DO 2220 I=1,576
                                                         0116 R55
     FD(I) = 0.0
                                                           0117 R55
     DO 2220 J=1,8
                                                     0119 R55
     FB(I) = FB(I) + FAB (I,J)
 2220 CONTINUE
     DO 2230
DO 2230
                                                           0120 R55
             I=1,18
                                                         0121 R55
0122 R55
            J=1,4
     00 2230 K=1,8
     L = K + 8 * (J-1) + 32 * (I-1)
SOS(I,J,K) = FD(L)
                                                           0123 R55
                                                 0125 R55
0126 R55
0127 R55
0128 R55
0129 R55
2230 CONTINUE
     PRINT OUT ANGULAR DISTRIBUTION OF DOSE RATE
     DO 2250 J=1,4
     PRINT 2240
 2240 FORMAT (38H1ANGULAR DISTRIBUTION OF THE DOSE RATE)
                                                  PRINT 2070, J
     PRINT 2080
                                                          0131 R55
     DO 2250 I#1,18
                                                            0132 R55
                                                         0133, R55
    PRINT 2090 , (CI , CS0S, CI, J, K) , K=1,80 )
 2250 CONTINUE
                                                            0134 R55
    IF (NOP 3 ) 1000, 50, 3000
                                                            0135 R55
                                            COMPUTÉ ENERGY SPECTRUM OF FLUX
 3000 D0 3035 I=1,320
D0 3035 J=1,8
    0138 R55
0139 R55
SS(I,J) = SS(I,J) * FLUXE (I,J)
SS(I,J) = SS(I,J) * Q(J)
CONTINUE
                                                  3035 CONTINUE
              DO 3040 I=1.320
FD(I) = 0.0
DO 3040 J=1.8
 SUMMATION
                                                          0143 R55
0144 R55
                                                        0145 R55
                                                          0146 R55
     FD(I) = FD(I) + SS (I,J)
                                                           0147 R55
 3040 CONTINUE
                   ____0154 R55
 3050 CONTINUE
 PRINT OUT ENERGY SPECTRUM OF FLUX 0155 R55
00 3070 J=1,4 0156 R55
PRINT 3060 0157 R55
3060 FORMAT C29H1TOTAL FLUX IN ENERGY GROUP K) 0158 R55
     PRINT OUT ENERGY SPECTRUM OF FLUX
                                                           0159 R55
     PRINT 2070 . J
                     0160 R55
                                                    0161 R55
.0162 R55
     PRINT 2080
     DO 3070 I=1.10
     PRINT 2090 , ( 1, (S0S(I, J, K), K=1, 85)) ______ 0163 R55
```

FORTRAN STATEMENTS (cont'd.)

0164 R55 0165 R55 0166 R55

070	CÖNTINUE			
000	GO TO 50			
	END(2,1)			

REFERENCES *

- Wells, M. B., Monte Carlo Calculations of Fast-Neutron Scattering in Air. Convair-Fort Worth Report FZK-9-147, Volume I (NARF-60-8T, 13 May 1960). U
- Wells, M. B., Monte Carlo Calculations of Fast-Neutron Scattering in Air. Convair-Fort Worth Report FZK-9-147, Volume II (NARF-60-8T, 19 August 1960). U
- 3. Lustig, H., Goldstein, H., and Kalos, M. H., The Neutron Cross Sections of Nitrogen. Nuclear Development Corporation of America Report NDA 86-1 (June 1957). U
- Lustig, H., Goldstein, H., and Kalos, M. H., An Interim
 Report on the Neutron Cross Sections of Oxygen. Nuclear
 Development Corporation of America Report NDA-986-2
 (January 1958). U
- 5. Hurst, G. S., and Ritchie, R. H., A Count-Rate Method of Measuring Fast-Neutron Tissue Dose. Oak Ridge National Laboratory Report ORNL-930 (1951).

^{*} All GD/FW reports published prior to July 1961 are referenced as Convair-Fort Worth reports.

DISTRIBUTION

MR-N-284

15 August 1961

Addressee	No. Copies
Commander WADD	
WWRNG	2
WWRNCS	2
WWRMPE	2
WWRNE	
WWRNEM-1	2
WWRPSV	2 2 2 2
WWRCP	2
WWRDMP-2	1
WWROO	1
WWFEN	1.
ARSCE	2
WWRNR	1
WWAD (ANP)	3 ·
ABMA	1
General Dynamics/SD	1
General Dynamics/ASTRO	1
TIS	2 0
Lockheed	3
Boeing AFPR	1
Boeing, Wichita	1
Douglas	1
Douglas, Dept. A26	1
North American	1
GE	. 1
Pratt & Whitney	1
ORNL	1
NDA .	1
Bureau of Aeron	1.
Curtiss Wright	1
Naval Ord Lab	1
Bell Tele Lab	1
Battelle	1
Air Univ. Lib.	1
Inland Test Lab	1
Norair	1
Republic Avia.	1
Chance-Vought	1
AFSWC (Tech Info)	1
ASROO-5	2
AFSC-NPPO	1
ANPO	1
LMBS	1
ASTIA	10
J. W. Keller, NASA, Alabama	1
Dr. O'Neill, NASA, Washington	1

DISTRIBUTION (Contd)

15 August 1961

Addressee	No. Copies
TRG	1
Sandia	1
Bureau of Ships	1
DOFL (ORDTL 012)	1

MR-N-284