Übungen zur Vorlesung Differentialgeometrie I

Blatt 1

Aufgabe 1. (4 Punkte)

Sei $X \subset \mathbb{R}^n$ eine Menge, so dass zu je zwei Punkten $p,q \in X$ eine stückweise C^1 -Kurve $\gamma: [0,1] \to X$ mit $\gamma(0) = p$ und $\gamma(1) = q$ existiert. Für $p,q \in X$ bezeichnen wir die Menge dieser Verbindungskurven mit $\Gamma(p,q)$. Definiere

$$d: X \times X \to \mathbb{R}$$

durch

$$d(p,q) := \inf_{\gamma \in \Gamma(p,q)} L(\gamma),$$

wobei

$$L(\gamma) := \int_0^1 \|\gamma'(t)\| \, dt$$

die Länge von γ bezeichnet. dheißt geodätischer Abstand.

Zeige:

- (i) (X, d) ist ein metrischer Raum.
- (ii) Es gibt $X \subset \mathbb{R}^n$ und $p, q \in X$, so dass das Infimum nicht angenommen wird.

Aufgabe 2. (4 Punkte)

(i) Sei $X=\mathbb{R}^2$ und d wie in Aufgabe 1 der geodätische Abstand. Zeige, dass d mit dem euklidischen Abstand übereinstimmt.

Hinweis: Zeige, dass sich jede Verbindungskurve von p nach $q \neq p$ längenvermindernd oder längenerhaltend zunächst zu einer Verbindungskurve auf der Geraden durch p und q und dann auf dem Geradensegment zwischen p und q deformieren lässt.

(ii) Seien $x, y \in \mathbb{S}^2$ und definiere

$$d(x,y):=\inf\left\{L(\alpha):\alpha:[0,1]\to\mathbb{S}^2,\,\alpha\text{ stückweise }C^1,\,\alpha(0)=x,\,\alpha(1)=y\right\}\,.$$

Nehme an die Erdoberfläche sei eine Kugel mit Radius $r=6,371000785\cdot 10^6$ m. Bestimme den Abstand vom Konstanzer Münster (47°39′48″ nördlicher Breite, 9°10′34″ östlicher Länge) zum Nordpol. (Punkte gibt es wie üblich nur für bewiesene Tatsachen.)

Abgabe: Bis Freitag, 27.10.2017, 10.00 Uhr, in die Mappe vor Büro F 402.