

Introduction

- Machine translation, Machine text generation, etc.: Seq2Seq
- Previously used RNN, LSTM, ···

New approach: "Attention"

Overview

Figure 1: The Transformer - model architecture.

Encoder

Self-attention

Multi-headed Self-attention

Positional Encoding

Injecting information about the positions of tokens

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Overall structure of an Encoder

- Residual connections
- Layer normalization

Decoder

Encoder-Decoder Attention:

Same as Self-attention, but K and V vectors are from the encoder outputs

"Masked" Attention:

Since decoders should only consider earlier positions in the sequence, future positions are "masked" by setting them to $-\infty$ before the softmax step

Linear and Softmax layers

Training the model

Trained Model Outputs

ex. Cross-entropy loss

- General model for many NLP tasks
- Only uses Decoder part of the Transformer architecture

References

- Attention Is All You Need (paper): https://arxiv.org/abs/1706.03762
- The Illustrated Transformer (blog post): https://jalammar.github.io/illustrated-transformer/
- Improving Language Understanding by Generative Pre-Training (paper): https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf