The Relational Model

csc343, winter 2011
Diane Horton
University of Toronto

ı

Recap

- There are different data models, including network, hierarchical, and relational.
- The relational model is based on concept of a relation or table.

Name	Home Field	Coach
Rangers	Runnymede CI	Tarvo Sinervo
Ducks	Humber Public	Maeve Mahar
Choppers	High Park	Tom Cole

Home	Away		Away
Team	Team	Goals	Goals
Rangers	Ducks	3	0
Ducks	Choppers	I	I
Rangers	Choppers	4	2
Choppers	Ducks	0	5

Relations in Math

- Example of a relation: {<leafs, habs, 3, 0>, <sanjose, leafs, 1, 4>,<nj, habs, 1, 1>}
- Suppose D₁, D₂, ... D_n are domains sets of values.
- The Cartesian product $D_1 \times D_2 \times ... \times D_n$ is: the set of all tuples $\{d_1, d_2, ..., d_n\}$ such that $d_1 \subset D_1, d_2 \subset D_2, ..., d_n \subset D_n$.
- A (mathematical) relation on $D_1, D_2, ... D_n$ is a subset of the Cartesian product.

- We call the elements of the relation tuples.
- "Tuple" just means ordered list.
- It can be pronounced 2 ways: "oo" or "uh".
- Comes from: single, double, triple, quadruple, quintuple, sextuple, ...

Non-positional structure

- Relations in math are positional.
- E.g., in a relation for "parent-of",<Tom, William> is not same as <William, Tom>
- In relational DBs, we name the attributes (columns) so position doesn't matter.
- But positional notation is still an option in the relational model, and in fact is supported by DBMSs.
- Eg, in SQL, you can refer to a field by position number rather than attribute name.

Some terminology

- relation schema:
 Teams(Name, HomeField, Coach)
- attribute/field/column.
- optionally, domain (of each attribute):
 like type in a programming language
- key: attributes for which no two rows can have the same values
- tuple/record/row
- relation/table

Name	Home Field	Coach
Rangers	Runnymede CI	Tarvo Sinervo
Ducks	Humber Public	Maeve Mahar
Choppers	High Park	Tom Cole

- A relation is a set of tuples, which means:
 - there can be no duplicate tuples (but in practise, commercial DBMSs allow duplicate rows)
 - order of the tuples doesn't matter

•	arity/degree: number	of
	fields/columns	

•	cardinality: number	of	tup	les
•	car dinancy. Humber	O1	tup	

- database schema: a set of relation schemas
- database instance

Home

Team

Rangers

Ducks

Rangers

Choppers

Away

Team

Ducks

Choppers

Choppers

Ducks

Home Away

Goals Goals

ı

4

0

I

2

5

Roadmap

We will learn how to

- Define a database's structure
- Put data into it
- Query the data

In general we will learn things first: in the relational model then: in SQL

Why not go straight to SQL?

- The relational model and algebra are the foundation for SQL.
- Other important concepts, like query optimization, are defined in terms of RA.
- (Because RA is much more simple and elegant than SQL.)

The Relational Model

csc343, winter 2011
Diane Horton
University of Toronto

ı

Recap

- There are different data models, including network, hierarchical, and relational.
- The relational model is based on concept of a relation or table.

Name	Home Field	Coach
Rangers	Runnymede CI	Tarvo Sinervo
Ducks	Humber Public	Maeve Mahar
Choppers	High Park	Tom Cole

Home	Away		Away
Team	Team	Goals	Goals
Rangers	Ducks	3	0
Ducks	Choppers	I	I
Rangers	Choppers	4	2
Choppers	Ducks	0	5

Relations in Math

- Example of a relation: {<leafs, habs, 3, 0>, <sanjose, leafs, 1, 4>,<nj, habs, 1, 1>}
- Suppose D₁, D₂, ... D_n are domains sets of values.
- The Cartesian product $D_1 \times D_2 \times ... \times D_n$ is: the set of all tuples $\{d_1, d_2, ..., d_n\}$ such that $d_1 \subset D_1, d_2 \subset D_2, ..., d_n \subset D_n$.
- A (mathematical) relation on $D_1, D_2, ... D_n$ is a subset of the Cartesian product.

- We call the elements of the relation tuples.
- "Tuple" just means ordered list.
- It can be pronounced 2 ways: "oo" or "uh".
- Comes from: single, double, triple, quadruple, quintuple, sextuple, ...

Non-positional structure

- Relations in math are positional.
- E.g., in a relation for "parent-of",<Tom, William> is not same as <William, Tom>
- In relational DBs, we name the attributes (columns) so position doesn't matter.
- But positional notation is still an option in the relational model, and in fact is supported by DBMSs.
- Eg, in SQL, you can refer to a field by position number rather than attribute name.

Some terminology

- relation schema:
 Teams(Name, HomeField, Coach)
- attribute/field/column.
- optionally, domain (of each attribute):
 like type in a programming language
- key: attributes for which no two rows can have the same values
- tuple/record/row
- relation/table

Name	Home Field	Coach
Rangers	Runnymede CI	Tarvo Sinervo
Ducks	Humber Public	Maeve Mahar
Choppers	High Park	Tom Cole

- A relation is a set of tuples, which means:
 - there can be no duplicate tuples (but in practise, commercial DBMSs allow duplicate rows)
 - order of the tuples doesn't matter

•	arity/degree: number	of
	fields/columns	

•	cardinality: number	of	tup	les
•	car dinancy. Humber	O1	tup	

- database schema: a set of relation schemas
- database instance

Home

Team

Rangers

Ducks

Rangers

Choppers

Away

Team

Ducks

Choppers

Choppers

Ducks

Home Away

Goals Goals

ı

4

0

I

2

5

Roadmap

We will learn how to

- Define a database's structure
- Put data into it
- Query the data

In general we will learn things first: in the relational model then: in SQL

Why not go straight to SQL?

- The relational model and algebra are the foundation for SQL.
- Other important concepts, like query optimization, are defined in terms of RA.
- (Because RA is much more simple and elegant than SQL.)