Name	
------	--

Honors Physics 1.5 - Resolving Vectors

I. Scalars	s vs. Vectors	
• Sca	alar: A quantity that has only	(a numerical value).
	Examples: speed, distance,	
Vec	ctor: A quantity that has both magnitude and _	
	o Examples: velocity,	, force.
Vec	ctors are represented graphically by	. The length represents
ma	gnitude, and the point indicates direction.	
II. Essen	tial Math: Right Triangle Trigonomet	ry
• To	work with vectors, we use the trigonometry of _	triangles.
• SO	H CAH TOA	
	o SOH: Sin(θ) =//	
	CAH: Cos(θ) =//	
	TOA: Tan(θ) =//	
• Usi	ing Your Calculator	
	o IMPORTANT: Make sure your calculator is	s in mode.
	o To find a side length, use the sin, cos, or	
	To find an angle, use the	
	COS ⁻¹).	ang randana (eng., enam,
III. Resol	lving Vectors into Components	
• Any	y vector can be "resolved" into two perpendicul	lar, usually
	ng the x and y axes.	
• The	ese components, when added together, are	to the original
vec	etor.	
We	create a right triangle with the vector as the _	
• Cal	culating Components	
	 The x-component (adjacent side) is found 	d using: $v_x = v^*$
	$cos(\theta)$	ducing ·v = v*
	• The y-component (opposite side) is found $sin(\theta)$	u uoπig ν _γ = ν

Worked Examples (Fill-in)

Ex 1 — A car travels at 25 m/s at an angle of 60° north of east. Find the components.

1.	Identi	fy Magnitude and A	Angle:	
	0	Magnitude (v) =	m/s	
	0	Angle (θ) =	o	
2.	Calcu	late x-component ((East):	
	0	$v_x = v * cos(\theta) = $	m/s * cos(°)
	0	v _x =	m/s	
3.	Calcu	late y-component ((North):	
	0	$v_Y = v * sin(\theta) = $	m/s * sin(°)
	0	_{Vv} =	m/s	

Ex 2 — A hiker walks 12.0 km on a path 20° south of west. Find the components.

Determine the angle from the positive x-axis.

 West is 180°. 20° south of west is 180° + _____° = ____°.

 Calculate x-component (West):

 x = d * cos(θ) = 12.0 km * cos(_____°)
 x = _____ km (The negative sign means West)

 Calculate y-component (South):

 y = d * sin(θ) = 12.0 km * sin(_____°)
 y = _____ km (The negative sign means South)