AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A liquid laundry detergent composition comprising

- (a) at least one detergent ingredient selected from the group consisting of anionic surfactants, zwitterionic surfactants, amphoteric surfactants, and mixtures thereof;
- (b) a coacervate phase forming cationic polymer selected from cationic guar gums in an amount of from 0.05 to 0.2% by weight of the composition;
- (c) one or more fabric care ingredients selected from the group consisting of
 - (c1) one or more cationic silicone polymers comprising one or more polysiloxane units and one or more nitrogen moieties, wherein the cationic silicone polymer has a formula selected from;

wherein:

 R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;

 R^2 is independently selected from the group consisting of divalent organic moieties;

X is independently selected from the group consisting of ring-opened epoxides;

R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

wherein M¹ is a divalent hydrocarbon residue; M² is independently selected from the group consisting of H, C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl and mixtures thereof;

Z is independently selected from the group consisting of;

wherein:

W is independently selected from the group consisting of divalent organic moieties comprising at least one quaternized nitrogen atom;

n is the number of positive charges associated with the cationic silicone polymer, which is greater than or equal to about 1; and A is a counterion

- (c2) one or more amino silicone polymers;
- (c3) one or more nitrogen-free silicone polymers, wherein the nitrogen-free silicone polymers, when present, have a viscosity of 100,000 to 480,000 centistokes at 20 °C; and (c4) mixtures thereof; and
- (d) a liquid carrier.
- 2. (Currently Amended) A liquid laundry detergent composition according to claim 1 comprising
- (a) at least one detergent ingredient selected from the group consisting of anionic surfactants, zwitterionic surfactants, amphoteric surfactants, and mixtures thereof;
- (b) a coacervate phase forming cationic polymer; and
- (c) one or more cationic silicone polymers comprising one or more polysiloxane units and one or more nitrogen moieties;
- (d) one or more fabric care ingredients selected from the group consisting of
 - (d1) one or more amino silicone polymers;
 - (d2) one or more nitrogen-free silicone polymers; and
 - (d3) mixtures thereof;
- (e) a liquid carrier.
- 3. (Original) A liquid laundry detergent composition according to claim 1 further comprising at least one compound selected from the group consisting of
- (a) builders;
- (b) enzymes;
- (c) suds suppressor systems; and
- (d) mixtures thereof.
- 4. (Original) A liquid laundry detergent composition according to claim 2 further comprising at least one compound selected from the group consisting of
- (a) builders;
- (b) enzymes;

(c) suds suppressor systems; and

(d) mixtures thereof.

5-9. (Cancelled).

10. (Currently Amended) A fabric treatment liquid laundry detergent composition according to claim 6-1 wherein the cationic silicone polymer is composed of alternating units of:
(i) a polysiloxane of the following formula:

$$\left[X + \left(OC_aH_{2a}\right)_b R^2 + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^3 \\ d \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^3 \\ d \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) + \left(\begin{array}{c} R^1 \\ \vdots \\ R^1 \\ c \end{array} \right) +$$

(ii) a cationic divalent organic moiety selected from the group consisting of:

$$(a) = \begin{bmatrix} R^4 & R^6 \\ I \oplus \\ N^{-} & Z^{1-} & P^{-} \\ R^5 & R^7 \end{bmatrix} = 2mA$$

$$(b) = \begin{bmatrix} R^4 & R^6 & R^8 & R^{10} \\ I \oplus \\ N^{-} & Z^{1-} & P^{-} & P^{-} & P^{-} \\ I \oplus \\ R^5 & R^7 & R^9 & R^{11} \end{bmatrix}^{m} = 4mA$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom; and mixtures thereof;

wherein R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;

R² is independently selected from the group consisting of divalent organic moieties;

X is independently selected from the group consisting of ring-opened epoxides;

 ${\bf R}^3$ is independently selected from polyether groups having the formula:

$$--M^1(C_aH_{2a}O)_b--M^2$$

wherein M¹ is a divalent hydrocarbon residue; M² is independently selected from the group consisting of H, C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹ are the same or different, and are selected from the group consisting of C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R⁴ and R⁶, or R⁵ and R⁷, or R⁸ and R¹⁰, or R⁹ and R¹¹ are components of a bridging alkylene group; Z¹ and Z² are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100;
- m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and
- wherein, expressed as fractions on the total moles of the organosilicone--free moieties, the cationic divalent organic moiety (ii) is present at of from about 0.05 to about 1.0 mole fraction.
- 11. (Currently Amended) A fabric treatment liquid laundry detergent composition according to claim 10 wherein the cationic silicone further comprises a polyalkyleneoxide amine of formula:

$$[--Y--O(--C_aH_{2a}O)_b--Y--]$$

- wherein Y is a divalent organic group comprising a secondary or tertiary amine; a is from about 2 to about 4; b is from 0 to about 100; and the polyalkyleneoxide amine is present of from 0.0 to about 0.95 mole fraction.
- 12. (Currently Amended) A fabric treatment composition according to claim 10 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

 R^{12} , R^{13} , and R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl polyalkyleneoxide (poly)alkoxy alkyl, and mixtures thereof;

R¹⁵ is --O-- or NR¹⁹;

R¹⁶ is a divalent hydrocarbon residue;

 R^{17} , R^{18} , and R^{19} are the same or different, and are selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl and mixtures thereof; and

- e is from about 1 to about 6; and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.
- 13. (Currently Amended) A fabric treatment liquid laundry detergent composition according to claim 11 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;wherein:

 R^{12} , R^{13} , and R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl polyalkyleneoxide (poly)alkoxy alkyl, and mixtures thereof;

R¹⁵ is -O- or NR¹⁹;

R¹⁶ is a divalent hydrocarbon residue;

R¹⁷, R¹⁸, and R¹⁹ are the same or different, and are selected from the group consisting of H, C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl and mixtures thereof; and

e is from about 1 to about 6; and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.

- 14. (Cancelled).
- 15. (Currently Amended) A fabric treatment <u>liquid laundry detergent</u> composition according to claim 14 wherein W is selected from the group consisting of:

$$(a) = \begin{bmatrix} R^4 & R^6 \\ I \oplus Z^1 & N \oplus Z^1 & N \oplus Z^1 & N & N \end{bmatrix}^{m} 2mA$$

$$(b) = \begin{bmatrix} R^4 & R^6 & R^8 & R^{10} \\ N \oplus Z^1 & N \oplus Z^2 & N \oplus Z^3 & N \oplus Z^3 & N \oplus Z^3 & N \oplus Z^3 & N \oplus Z^4 & N$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom; and mixtures thereof;

 R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , and R^{11} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R^4 and R^6 , or R^5 and R^7 , or R^8 and R^{10} , or R^9 and R^{11} are components of a bridging alkylene group;

m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and

 Z^1 and Z^2 are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms.

16. (Currently Amended) A liquid laundry detergent composition according claim 1 wherein the nitrogen-free silicone polymer is selected from the group consisting of nonionic nitrogen-free silicone polymers having a formulae selected from (I) to (III):

$$R^{1} \xrightarrow{\left(-\stackrel{\circ}{S}i-O\right)_{W}} (I)$$

$$R^{2}-(R^{1})_{2}SiO-[(R^{1})_{2}SiO]_{a}-[(R^{1})_{2}SiO]_{b}-Si(R^{1})_{2}-R^{2} (II)$$

$$R^{1}-\stackrel{\circ}{S}i-O+\stackrel{\circ}{S}i-O+\stackrel{\circ}{S}i-R^{1}$$

$$\stackrel{\circ}{R^{1}} \stackrel{\circ}{R^{1}} (III)$$

and mixtures thereof, wherein each R¹ is independently selected from the group consisting of linear, branched or cyclic alkyl groups having from about 1 to about 20 carbon atoms; linear, branched or cyclic alkenyl groups having from about 2 to about 20 carbon atoms; aryl groups having from about 6 to about 20 carbon atoms; alkylaryl groups having from about 7 to about 20 carbon atoms; arylalkyl and arylalkenyl groups having from about 7 to about 20 carbon atoms and mixtures thereof; each R² is independently selected from the group consisting of linear, branched or cyclic alkyl groups having from about 1 to about 20 carbon atoms; linear, branched or cyclic alkenyl groups having from about 2 to about 20 carbon atoms; aryl groups having from about 6 to about 20 carbon atoms; alkylaryl groups having from about 7 to about 20 carbon atoms; arylalkyl; arylalkenyl groups having from about 7 to about 20 carbon atoms and from a poly(ethyleneoxide/propyleneoxide) copolymer group having the general formula (IV):

--(CH₂)_nO(C₂H₄O)_c(C₃H₆O)_dR³

(IV)

wherein at least one R² is a poly(ethyleneoxy/propyleneoxy) copolymer group, and each R³ is independently selected from the group consisting of hydrogen, alkyl groups having from about 1 to about 4 carbon atoms, acetyl groups, and mixtures thereof, wherein the index

w has the value as such that the viscosity of the nitrogen-free silicone polymer of formulae (I) and (III) is between about $2 \cdot 10^{-6} \, \text{m}^2/\text{s}$ (about $2 \cdot 100,000$ centistokes at 20 °C[[)]] and about $50 \cdot \text{m}^2/\text{s}$ (about 50,000,000480,000 centistokes at 20 °C[[)]]; wherein a is from about 1 to about 50; b is from about 1 to about 50; n is about 1 to about 50; total c (for all polyalkyleneoxy side groups) has a value of from about 1 to about 100; total d is from 0 to about 14; total c+d has a value of from about 5 to about 150.

- 17. (Original) A liquid laundry detergent composition according to claim 1 further comprising one or more laundry adjunct materials selected from the group consisting of stabilizers; coupling agents; fabric substantive perfumes; fabric softeners; chelating agents; effervescent systems; cationic surfactants; nonionic surfactants; and mixtures thereof.
 - 18. (Cancelled).
- 19. (Currently Amended) A liquid laundry detergent composition according to claim 481, wherein the coacervate phase forming cationic polymer is selected from the group consisting of cationic guar hydroxypropyltriammonium salts, and derivatives thereof.

20-26. (Cancelled)