

Jak porównać dwa algorytmy?

- Możemy mierzyć czas wykonania
- Możemy mierzyć dla różnych danych wejściowych
- Co, jeśli działają inaczej na różnych maszynach?
- Rozpatrzmy proste operacje, które wywołują się "natychmiast"
- Policzmy, ile takich operacji wykona każdy algorytm dla różnych danych
- To samo dla wielkości zajętej pamięci

Jakie mamy złożoności?

- → stała Θ(1) czas niezależny od n
- → logarytmiczna Θ(logn) każdy krok pomniejsza n kilkukrotnie
- → liniowa Θ(n) wykonujemy tyle operacji, ile mamy elementów
- !!! liniowo-logarytmiczna Θ(nlogn) wykonujemy tyle operacji ile mamy elementów, powtarzając to dla pomniejszanych kilkukrotnie z każdym krokiem n
- → kwadratowa Θ(n²) pętla w pętli, obie n-krotnie
- → wielomianowa Θ(n🏿) kilka zagnieżdżonych pętli, mnożenie macierzy...
- wykładnicza Θ(cⁿ) z każdym krokiem wykonujemy c razy więcej operacji
- ϶ silniowa Θ(n!) sprawdzamy każdą możliwą kolejność n elementów

Rozmiar danych:	10	20	50	100	200	1000
log n	3,32 ns	4,23 ns	5,64 ns	6,64 ns	7,64 ns	9,97 ns
n	10 ns	20 ns	50 ns	100 ns	200 ns	1 µs
n log n	33,21 ns	86,44 ns	282,2 ns	664,4 ns	1,53 µs	9,97 µs
n ²	100 ns	400 ns	2,5 µs	10 µs	40 μs	1 ms
2 ⁿ	1 µs	1,05 ms	13 dni	4·10 ¹³ lat	5,1·10 ⁴³ lat	3,4-10 ²⁸⁴ lat

Jak się czujecie z tym tematem?

