Лабораторная работа 3.4.2. Закон Кюри-Вейсса

Балдин Виктор

19 ноября 2024 г.

Краткая теория

В данной лабораторной работе предлагается проверить закон Кюри-Вейсса: при температуре выше температуры Кюри:

$$\chi \sim \frac{1}{T - \theta_P}$$

 θ_P - парамагнитная точка Кюри.

Исследуемый материал будет помещен в катушку индуктивности, из-за чего её индуктивность будет меняться с температурой:

$$L - L_0 \sim \mu - 1 = \chi$$

Изменение индуктивности будем наблюдать с помощью изменения периода колебаний: $\tau = 2\pi\sqrt{LC}$, поэтому

$$L - L_0 \sim \tau^2 - \tau_0^2 \rightarrow \chi \sim \tau^2 - \tau_0^2 \rightarrow \frac{1}{\tau^2 - \tau_0^2} \sim T - \theta_P$$

Здесь L_0 и τ_0 - индуктивность и период колебаний без образца в катушке соответственно.

Экспериментальная установка

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой

контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Измерения проводятся в интервале температур от 14°C до 40°C. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. Эта разность температур фиксируется термопарой, чувствительность которой $K = 24 \frac{\text{град}}{\text{мB}}$. ЭДС термопары измеряется цифровым вольтметром.

Результаты измерений и их обработка

Полученные значения τ при разных температурах записаны в таблице. Показания цифрового вольтметра изменялись достаточно сильно, поэтому примем их погрешность $\sigma_U = 0,002 \text{ мB}$, что в измерении температуры даст погрешность $0,05^{\circ}C$. Вместе с погрешностью измерения температуры в термостате $0,05^{\circ}$ получаем погрешность $0,07^{\circ}C$ в измерении температуры образца.

Период колебаний без образца внутри катушки: $\tau_0 = 9.05 \pm 0.01$ мкс.

ΔU , мВ	τ , MKC	t, °C
-0.012	10.81	14.0
-0.0146	10.73	16.0
-0.0054	10.51	18.1
0.0100	10.28	20.1
-0.0076	9.89	22.1
-0.0120	9.61	24.0
-0.0140	9.45	26.0
-0.0150	9.36	28.0
-0.0160	9.31	30.0
-0.0146	9.27	32.0
-0.0130	9.25	34.0
-0.0159	9.23	36.0
-0.0156	9.21	38.0
-0.0160	9.19	40.0

Таблица 1: Значения периода колебаний в зависимости от температуры образца

По этим данным строит график $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Аппроксимируем прямой часть графика, начиная с пятого значения. Тогда она пересечет ось абсцисс в точке $\theta_P=(18\pm2)$ °C. Точку Кюри по графику определить достаточно сложно, если аппроксимировать первые несколько значений прямой, то точка Кюри будет $\theta=(2\pm2)$ °C.

Рис. 1: Зависимость $\frac{1}{\tau^2 - \tau_0^2} = f(T)$

Выводы

В данной лабораторной работе мы проверили выполнимость закона Кюри-Вейсса, получив график зависимости $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Зависимость совпадает с теоретической по характеру, но значения точки Кюри и парамагнитной температуры Кюри достаточно сильно отличаются от теоретических: $\theta_{th}=20,2^{\circ}C,~~\theta_{P_{th}}>\theta_{th}$. Различия связаны, прежде всего, с способом получения данных: график построен в координатах $\frac{1}{\tau^2-\tau_0^2}=f(T),$ а $\frac{1}{\tau^2-\tau_0^2}\sim\frac{1}{\chi},$ то есть строго равенства нет, есть только пропорциональность, а парамагнитная температура Кюри определяется из графика $\frac{1}{\chi}(T)$. Температура Кюри определялась экстраполяцией прямой на нелинейной зависимости, для которой мало точек, поэтому значения неточные.