Business Report Analysis

Text Mining Lab

Chu-l Chao, Xiaoqi Ma

Table of Contents

- 1. Introduction
- 2. Problem Definition
- 3. Our Approaches
 - a. TF-IDF
 - b. LSI
 - c. LDA
- 4. Results
- 5. Summary

Introduction

Business reports tell us....

- Current situations
- Concerns and risks of an ongoing policy or program
- Competitors...
- => Might be long and take lots of time to read
- => How to extract useful information from them?

Problem Definition

Retrieve the following information from the given business reports

- Keywords, for document retrieval using words search
- Topics, for categorizing and retrieving documents

Approach for Keywords Mining: tf-idf

Goal: score the importance of a word in a report

=> regarded as **keywords** of a report

Idea: consider

- how often does a word appear in a report => "term frequency tf"
- 2. how rare is a word across all reports => "inverse document frequency idf"
 - => importance score = tf * idf

Keywords from tf-idf

	PUMA-2015	PUMA-2016	
0	direktor	verwaltungsrat	
1	verwaltungsrat	direktor	
2	geschäftsführen	verwaltungsrats	/
3	schuh	schuh	
4	verwaltungsrats	rohertragsmarge	

Adidas-2015	Adidas-2016
reebokccm	schuh
rockport	konsument
schuh	rockport
marketinginvest	athlet
konsument	performancebonu

Administration

Product, Customer

Keywords from tf-idf

	Daimler-2015	Daimler-2016	BMW-2015	BMW-2016
0	fahrzeug	fahrzeug	automobile	automobile
1	daimler	eklasse	vorzugsaktien	vorzugsaktien
2	sprinter	athlon	fahrzeug	fahrzeug
3	daimlerkonzerns	vans	finanzdienstlei	motorrad
4	toll	mercedesbenz	werken	finanzdienstlei

Product

Finance

We can also use tf-idf for searching relevant documents

HOWEVER, if some related words, except the search

word itself, appear in a report....

query="vehicle"

Latent Semantic Indexing (LSI)

Goal: find truly relevant reports regarding to the query

Idea: Use SVD to reduce the dimension of tf-idf matrix

=> can be imagined as a compression of words with similar meaning

```
LSI \\ \{\ensuremath{<} \text{vehicle}>, \ensuremath{<} \text{dog}>\} ----> \{\ensuremath{<} 0.6\ ^*\ \text{vehicle} + 0.4\ ^*\ \text{automobile}>, \ensuremath{<} \text{dog}>\} \\ \ensuremath{>} \text{dog}>
```

The Power of LSI

```
q = 'vehicle'
getRelatedDocuments(q, u, s, v, word2index, index2document)
```

	relevance score	tf-idf value
BMW-2016-Q3	0.752678	0
BMW-2015-Q3	0.715746	0.00245885
BMW-2016-Q1	0.681478	0
BMW-2016-Q2	0.592523	0
Draeger-2013-Q3	0.225724	0
Draeger-2014-Q3	0.210355	0
Deutsche_Post-2013-Q1	0.153236	0
Deutsche_Post-2011-Q3	0.145989	0

relevance score

q = 'wo kann ich ein schuh order eine socke kaufen '
getRelatedDocuments(q, u, s, v, word2index, index2document)

keywords "wo" not found keywords "kann" not found keywords "ich" not found keywords "ein" not found keywords "order" not found keywords "eine" not found

0.936709
0.932854
0.371554
0.300578
-0.00329964
-0.0115815
-0.0124566
-0.0131769
-0.0231023
-0.0248835
-0.0297912
-0.0331917

Approach for Topic Modeling: LDA

Idea: view a report as a mixture of various topics

Goal: Discover the hidden topics from all reports in an unsupervised way

=> no labelling needed

Somehow, it means output topics might be *not interpretable* to human

Also, how to decide the number of topics is a problem...

LDA Experiment

Training Set: 123 bank quarterly reports

Steps of our approach:

- 1. Run LDA from 5 to 19 topics and get 15 models
- 2. Evaluate the LDA models by computing coherence score and store the best one
- 3. Repeat step 1 and 2 for several times

Coherence Score

Goal: evaluate the LDA model

"How well are output topics understandable to human?"

Idea: if words always show up together

=> they likely belong to the same topic

2 measures in topic coherence: UMass and C_V (consider words ordering or not)

Experiment Result

Summary

- 1. Tf-idf helps us to find keywords of a report
- 2. LSI groups words with similar meaning => relevant document retrieval
- 3. LDA is easy to train, but hard to evaluate


```
while (best_UM_round != best_CV_round):
  for i = 1 to 3:
    model_list = get_ldamodel_list(start=5, limit=20, step=1)
    UM_coherence_values = compute_UM_coherence_values(model_list)
    CV_coherence_values = compute_CV_coherence_values(model_list)
    max_UM_value = np.max(UM_coherence_values)
    if max_UM_value > best_UM_result:
      best_UM_result = max_UM_value
      best_UM_model_list = model_list.copy()
      best_UM_round = i
    max_CV_value = max(CV_coherence_values)
    if max_CV_value > best_CV_result:
      best_CV_result = max_CV_value
      best_CV_model_list = model_list.copy()
      best_CV_round = i
```