Binary Trees

Trees
Binary Trees
Binary Tree Nodes
Recursive tree algorithms

UNIX File System Hierarchy (sample)

Trees

A tree is a connected undirected simple graph with no cycles

trees:

not trees:

Rooted Trees

Usually, when we think of trees, we assume there is a root.

A rooted tree is a tree in which one of the vertices is designated the root, and all edges are then directed away from that root.

Describing vertices in rooted trees

If there is a directed edge from x to y, then x is the parent of y, and y is a child of x.

If two vertices *y* and *w* have the same parent, then they are siblings of each other.

A vertex with no children is a leaf. A vertex with children is an internal vertex.

The ancestors of a vertex v are all the vertices in the path from v to the root (except for v itself).

The descendants of a vertex *v* are all the vertices that have *v* as an ancestor.

Binary Trees

A binary tree is a rooted tree in which:

- every node has at most 2 children
- the children of a node are identified as left child and right child

The depth of a tree is the length of the longest path from the root node to a leaf node →

depth == 3

BinaryTreeNode

BinaryTreeNode

element leftchild rightchild

Computing the height of a node

The height of a node is the length of its longest (directed) path to a leaf.

Recursive definition:

height(node) = 0 if node is a leaf height(node) = 1 + max(height(left), height(right))

Preorder traversal

to visit a node: read the element first, then visit the children in left-to-right order

'preorder' because we do the parent's element before the children

```
def preorder_print(node):
    if node:
        print(node.element)
        preorder_print(node.leftchild)
        preorder_print(node.rightchild)
```



```
def preorder_str(node):
    if node:
        vutstr = str(node.element)
        outstr = outstr + preorder_str(node.leftchild)
        outstr = outstr + preorder_str(node.rightchild)
        return outstr
    else:
        return ''
```

Inorder traversal

to visit a node:
visit the leftchild, then the parent's element,
then the right child

$$((4 + 2) * (5 - 3))$$

```
def inorder_str(node):
    if node:
        if node.leftchild or node.rightchild:
            outstr = '(' + inorder_str(node.leftchild)
            outstr += node.element
            outstr += inorder_str(node.rightchild) + ')'
            return outstr
        else:
            return str(node.element)
    else:
        return ''
```

Post-order traversal

Exercise: what would 'post-order' traversal mean?

Write Python code to produce a post-order traversal print of the tree on the right.

Evaluating Expression Trees

evaluate node:

if node element is a number, return it else

evaluate left child evaluate right child determine the operator in the node apply leftvalue operator rightvalue

Exercise: implement this in Python

Exercise

How would you implement the preorder traversal without using explicit recursion?

Next Lecture

Binary Search Trees