1 Information de Fisher

1.1 vraisemblance

Définition: Soit une loi dépendant d'un paramètre $\theta \in \Theta \subset \mathbb{R}$, et $X_1, X_2, ..., X_n$, n variables aléatoires indépendantes et suivant cette loi.

On note alors $f_X(x) = f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$ la densité de la loi conjointe de ces variables.

$$(\mathbb{R}^n, \Theta) \rightarrow \mathbb{R}_+$$

 $(x, \theta) \mapsto L(x, \theta) = f_X(x)$

Soit $x = (x_1, x_2, ..., x_n)$ une réalisation (i.e. : $\forall i \in \{1, ...n\}, X_i(\omega) = x_i$). On appelle **vraisemblance** et on note $L(x, \theta)$, la fonction :

$$\theta \mapsto L(x,\theta)$$

1.2 Information de Fisher

Définition: On appelle information de Fisher et note $I(\theta)$, lorsque qu'il existe, le nombre :

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^2\right] = \int_{\mathbb{R}^n} \left(\frac{\partial \ln L}{\partial \theta}(x,\theta)\right)^2 L(x,\theta) dx \tag{1}$$

Prop: Si pour tout $x \in \mathbb{R}^n$ la vraisemblance est de classe C^2 sur l'ensemble de définition de θ , et si $\exists (h_i)_{i \in \{1,2\}}$ deux fonctions intégrables sur \mathbb{R}^n à valeurs dans $\overline{\mathbb{R}_+}$ telles que $\forall \theta \in \Theta, \; \left| \frac{\partial^i L(x,\theta)}{\partial \theta^i} \right| \leq h_i(x)$ et $\int_{\mathbb{R}^n} h_i(x) dx < \infty$, alors

$$I(\theta) = -\mathbb{E}\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right) = \int_{\mathbb{R}^n} \left(\frac{\partial^2 \ln L}{\partial \theta^2}(x, \theta)\right) L(x, \theta) dx \tag{2}$$

Démonstration :

On a:

$$\frac{\partial \ln L}{\partial \theta} = \frac{\partial L}{\partial \theta} \frac{1}{L} \tag{3}$$

et

$$L\frac{\partial \ln L}{\partial \theta} = \frac{\partial L}{\partial \theta} \tag{4}$$

Le théorème de dérivation sous le signe \int d'une intégrale dépendant d'un paramètre, permet d'écrire ici :

$$\int_{\mathbb{R}^n} \frac{\partial L}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L dx$$

Or la fonction $x\mapsto L(x,\theta)$ est une densité de probabilité en x, donc $\int_{\mathbb{R}^n}L(x,\theta)dx=1$, d'où

$$\int_{\mathbb{R}^n} \frac{\partial L}{\partial \theta} dx = 0$$

$$\implies \int_{\mathbb{R}^n} \left(\frac{\partial \ln L}{\partial \theta} \right) L dx = 0 \tag{5}$$

En dérivant sous le signe \int l'égalité 5, on a :

$$\frac{\partial}{\partial \theta} \left[\int_{\mathbb{R}^n} \left(\frac{\partial \ln L}{\partial \theta} \right) L dx \right] = \int_{\mathbb{R}^n} \left(\frac{\partial L}{\partial \theta} \frac{\partial \ln L}{\partial \theta} + L \frac{\partial^2 \ln L}{\partial \theta^2} \right) dx = 0 \tag{6}$$

En utilisant l'égalité 3, on en déduit :

$$-\mathbb{E}\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right) = \mathbb{E}\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^2\right]$$