

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”

Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”

Jawaharlal Nehru

“Step Out From the Old to the New”

IS 10678 (1983): Data sheet for design and selection of vacuum producer [MED 7: Material Handling Systems and Equipment]

“ज्ञान से एक नये भारत का निर्माण”

Satyanaaran Gangaram Pitroda

“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”

Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

BLANK PAGE

PROTECTED BY COPYRIGHT

Indian Standard

DATA SHEET FOR DESIGN/SELECTION OF VACUUM PRODUCER

1. Scope — Lays down the data required for design/selection of vacuum producers.

2. Data Sheet

2.1 General

- a) Service _____
- b) Type of vacuum producer _____ Steam/Hydraulic
- c) Designation _____ Steam ejector/Hydrovactor
- d) Location _____

2.2 Steam Ejector

2.2.1 Operating conditions

- a) Motive fluid pressure _____ kPa
- b) Motive fluid temperature _____ °C
- c) Entrained fluid _____
- d) Entrained fluid composition _____
- e) Suction pressure _____ kPa
- f) Entrained fluid density _____ kg/m³
- g) Ejector load _____ kg/h
- h) Entrained fluid molecular mass/specific heat ratio _____
- j) Discharge pressure _____ kPa
- k) Discharge velocity _____ m/s
- m) Number of stages _____
- n) Number of ejectors per stage _____
- p) Inter-stage condenser _____ Barometric/Surface
- q) Inter-stage condenser cooling water/condensate pressure _____ kPa
- r) Inter-stage condenser cooling water/condensate temperature _____ °C
- s) Quantity of motive fluid required _____ kg/h
- t) Quantity of cooling water/condensate required _____ kg/h
- u) Maximum sound level _____ dB(A)

2.2.2 Design conditions

Sl No.	Parameter	Units	First Stage	Second Stage	Third Stage	Fourth Stage	Fifth Stage
a)	<i>Ejector Load</i>	kg/h					
b)	i) Motive fluid consumption	kg/h					
	ii) Motive fluid pressure	kPa					
	iii) Motive fluid temperature	°C					
c)	<i>Motive Fluid Inlet Pipe and Flange Details</i>						
	i) Inlet size	mm					
	ii) Press class and facing of flange	—					
d)	<i>Suction Side</i>						
	i) Pressure of fluid	kPa					
	ii) Temperature of fluid	°C					
	iii) Size	mm					
	iv) Pressure class and facing of flange	—					
e)	<i>Discharge Side</i>						
	i) Pressure of mixture	kPa					
	ii) Temperature of mixture	°C					
	iii) Size	mm					
	iv) Pressure class and facing of flange	—					
f)	Cooling water/condensate consumption	kg/h					
g)	Cooling water/condensate temperature	°C					
h)	Barometric Condenser: Number of contact stages	—					
j)	Surface condenser: Outside tube area	m ²					

2.2.3 Materials of construction

Sl No.	Equipment	Material	Hardness
a)	<p><i>Steam Ejector</i></p> <ul style="list-style-type: none"> i) Motive fluid chest ii) Motive fluid nozzles iii) Suction chamber iv) Diffuser v) Nozzle plate vi) Inter-stage valve 		
b)	<p><i>Barometric Condenser</i></p> <ul style="list-style-type: none"> i) Shell ii) Baffles iii) Nozzles 		
c)	<p><i>Water Removal Pump</i></p> <ul style="list-style-type: none"> i) Casing ii) Impeller iii) Wearing ring iv) Shaft 		
d)	<p><i>Surface Condenser</i></p> <ul style="list-style-type: none"> i) Shell ii) Tube sheet iii) Tubes iv) Baffles v) Water boxes and water cover 		

2.3 Hydrovactor

2.3.1 Operating conditions

- a) Capacity _____ t/h
- b) Air flow rate at rated vacuum _____ m³/h
- c) Number of nozzles in hydrovactor _____
- d) Diameter of each nozzle _____ mm
- e) Velocity of air/entrained mixture at hydrovactor throat _____ m/s

2.3.2 Design conditions

- a) Capacity of hydrovactor _____ t/h
- b) Design vacuum at rated capacity _____
- c) Quantity of water required _____ m³/h
- d) Pressure of water required at hydrovactor _____ kPa
- e) Expected minimum service life
- i) Throat _____
 - ii) Nozzles _____

2.3.3 Materials of construction

SI No.	Equipment	Material	Hardness
a)	Inlet liner		
b)	Nozzle tips		
c)	Throat section		
d)	Tail piece		

2.4 Data Common to Steam Ejector/Hydrovactor**2.4.1 Test results**

- a) Hydrostatic test pressure _____ kPa
- b) Pneumatic test pressure _____ kPa
- c) Inspection by purchaser _____

2.4.2 Manufacturer**2.4.3 Approximate masses**

- a) Steam ejector/Hydrovactor _____ kg
- b) Condensers _____ k

2.4.4 Documents to be furnished

- a) Characteristic curve of vacuum producer _____
- b) Dimensional drawing of vacuum producer with material of construction and hardness of various parts _____

EXPLANATORY NOTE

This Indian Standard lays down the data required for the selection/design of ejectors. This data sheet may be used by manufacturer and purchaser alike for giving details of the equipment manufactured by manufacturer or required by purchaser to the purchaser/manufacturer.