Лабораторная работа № 4.2.3

Интерферометр Релея

Карманов Алексей 752 группа **Цель работы:** Ознакомление с устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

В работе используются: Технический интерферометр ИТР-1, светофильтр, баллон с углекислым газом, сильфон, манометр, краны.

1 Описание установки

Схема прибора представлена на рисунке 1 в вертикальной и горизонтальной проекциях. Лампа накаливания Π с помощью конденсора K ярко освещает узкую входную щель S, расположенную в фокусе объектива O_1 . Коллиматор, состоящий из щели S и объектива O_1 , посылает параллельный пучок на диафрагму D с двумя вертикальными щелями. Свет, дифрагируя на двойной щели проходит кювету L, состоящую из двух одинаковых стеклянных камер, в которые вводятся исследуемые газы. Кювета занимает только верхнюю часть пространства между объективами. За кюветой расположены две стеклянных пластинки J и пластинка Π .

Дифракционная картина, образующая в фокальной плоскости F объектива O_2 , рассматривается через окуляр O.

Рис. 1: Схема установки: а) вид сверху, б) вид сбоку

2 ЗАВИСИМОСТЬ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ГАЗА ОТ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ

При заполнение камер газами с одинаковым показателем преломления n системы полос совпадают. Разность хода $\Delta = \Delta n \cdot l$, возникает при прохождении света через камеры с разными газами и ведет к смещению полос. Смещение на одну полосу соответствует дополнительной разности хода $\Delta = \lambda$. Просчитав число полос между центрами можно рассчитать:

$$\delta n = \frac{\Delta}{l} = m \frac{\lambda}{l} \tag{1}$$

2 Зависимость показателя преломления газа от давления и температуры

Известно простое соотношение между показателем преломления газа и его плотностью:

$$n = \sqrt{\varepsilon} = \sqrt{1 + 4\pi N\alpha} \simeq 1 + 2\pi N\alpha \tag{2}$$

Принимая во внимание p = NkT, получаем:

$$n - 1 = 2\pi\alpha \frac{P}{kT} \tag{3}$$

Отсюда следует, что при постоянной температуре изменение показателя преломления δn пропорционально изменению давления ΔP .

$$\delta n = \frac{2\pi\alpha}{kT}\Delta P\tag{4}$$

Длина кюветы $l=10\,\mathrm{cm}$, атмосферное давление $P=101.2\cdot 10^3\,\mathrm{\Pi a}$, температура $T=21^{\circ}C$. Прокалибруем установку в единицах λ . Для этого построим график смещения от номера полосы:

Таблица 1: Калибровка компенсатора

m	0	1	2	3	4	5	6	7	8	9	10
d, mm	3,05	3,40	3,75	4,10	4,43	4,70	5,05	5,38	5,70	6,05	6,35

Рис. 2: Зависимость смещения от номера полосы интерференционной картины

Будем использовать калибровочный график для расчета δn . Таким образом построим график в координатах $\Delta n \, (\Delta P)$.

Таблица 2: Измерение раззницы показателей преломелния

ΔP	-1000	-800	-600	-400	-200	0	200	400	600	800	1000
Z, MM	$4,\!55$	4,35	4,05	3,7	3,4	3,05	2,75	2,45	2,25	1,92	1,4

Отсюда получаем показатель преломления воздуха. пересчитанный к нормальным условиям $n_0=1.0003\pm0.00005$, что сходится с табличным результатом в пределах погрешности $(n_{0_t}=1.0002929)$

Рис. 3: Измерение разницы показателей преломления для воздуха под разным давлением

3 Расчет показателя преломления углекислоты

Теперь заполним кювету углекислым газом, и пронаблюдаем зависимость смещения компенсатора от времени:

Таблица 3: Установление равновесия

t, мин	0	1	2	3	4	5	6	7	8	9	10
Z, MM	10,1	8,95	8,1	7,5	6,95	6,5	6,15	$5,\!55$	$5,\!25$	5,02	4,85

Рис. 4: Зависимость смещения компенсатора от времени

Таблица 4: Расчет показателя преломления

	d	Δn	n
1	10.55	0.000157	1.000457
2	10.46	0.000155	1.000455
3	10.48	0.000155	1.000455
4	10.46	0.000155	1.000455
5	10.53	0.000156	1.000456

Итого $n=1.00045\pm0.00002$. Табличный показатель преломления для CO_2 $n_0=1.00045$, что также сходится с нашими измерениями.

4 Вывод

Интерферометр Релея позволяет измерять разность показателей преломления в двух кюветах с высокой точностью. Для таких измерений нужно поддерживать давление в кюветах и концентрацию газа постоянной, в противном случае точность и простота измерений значительно ухудшаются.