Cryptography: Homework 4

(Deadline: 11:59am, 2019/10/23)

1. (30 points) Let $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ be a polynomial-time computable function, where l(n) > n for all $n \ge 1$. Consider the following experiment $\mathsf{PRG}_{\mathcal{A},G}(n)$:

Show that if G is a PRG, then for any PPT algorithm \mathcal{A} , there is a negligible function negl such that $|\Pr[\mathsf{PRG}_{\mathcal{A},G}(n)=1]-\frac{1}{2}| \leq \mathsf{negl}(n)$.

2. (20 points) Let X_n be a random variable that takes values in $\{0,1\}^n$ for every integer $n \geq 1$. Let $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ be a PRG. Show that if $\{X_n\} \equiv_{\text{c.i.}} \{U_n\}$, then $\{G(X_n)\} \equiv_{\text{c.i.}} \{U_{l(n)}\}$. (hint: show that $\{G(X_n)\} \equiv_{\text{c.i.}} \{G(U_n)\}$)