$$G = (V, E)$$
 E $\subseteq V \times V$ E é una relatione su V .

- Immagimamo la fituatione:

(i,j)
$$\in$$
 E

(j,e) \in E \longrightarrow Se mi travo in questa situatione la relatione non vispetta la proprietà transitiva.

Ma (ℓ ,i) \notin E |

- Nel nostro problema:

Dato un grafo
$$G = (V_i E)$$
. \longrightarrow Determinare $G^* = (V_i E^*)$ (chiusura transitiva di G).

 $E^* \in I$ pui piccolo Sottoinsieme di V_XV

- conteneute E ($E \subseteq E^*$)

- $E^* \in U_i G$ and $E \in E^*$

esemplo:

Al GRAFO ORIGINALE
$$G_i$$
 can E at Aggingo n arch \times render transitivo. Perché metto anche i cappi?
$$E^* = \left| (i,j) \in V \times V \right| \ \exists \ un \ commino \ minimo \ da \ i \ a \ J^2$$

$$Def \ G = (V,E)$$
La chiusara transitiva di G \widetilde{e}

$$G^* = (V,E^*) \ dove$$

$$E^* = \left\{ (i,j) \in V \times V \mid \exists \ un \ commino \ da \ i \ a \ J^2 \geqslant E.$$

NO É una variante di FloyD-WAESHAU (Siamo ancora in un problema di decisione).

SOURTONE
$$G = (V, E)$$

Sourtone $G = (V, E)$ coe calcolare $E = (V, E)$

S = (S_{ij}) i $\in \{1...n\}$ $\cap \{1...n\}$

Che $\in \{1...n\}$ and $\{1...n\}$ is $\{1...n\}$

The second in $\{1...n\}$ in

$$E^* = \{(i,j) \in V \times V \mid S_{ij} = true \}$$

ISTANZA
$$\forall (i,j) \in \forall x \forall stabilize se esiste in G un commino minimo tra i a J, con vertici intermedi $\in \{0..., k\}$.

ISTANZA $\forall (i,j) \in \forall x \forall sij = s$$$

SowtionE (guarda pdf prof.)

CAJO BASE

$$\forall (i,j) \in V \times V \qquad \begin{cases} (c) \\ ij \\ = \begin{cases} true \\ true \end{cases} \qquad \begin{cases} ke \ i=j \\ ke \ i\neq j \\ ke \end{cases} \wedge (i,j) \in E \qquad (ARCO \ PISETIO) \end{cases}$$

$$false \qquad \qquad \begin{cases} ke \ i=j \\ ke \ i\neq j \\ ke \end{cases} \wedge (i,j) \notin E \qquad (ARCO \ PISETIO) \end{cases}$$

CASO PASSO K> 0

1)
$$k \notin \mathbb{I}$$
 homomorphy, allora:
 $J_{iT}^{(k)} = S_{iT}^{(k-1)}$

4)
$$k \notin i$$
 mump J , allora:

$$J_{iJ}^{(k)} = S_{iJ}^{(k-1)}$$

$$J_{iJ}^{(k)} = S_{ik}^{(k-1)} \wedge S_{iJ}^{(k-1)}$$

PER ENTRARE IN 1 0 2: MI MANCA SAPERE SE KE OPPURE KE CAMMINO MINIMO. POSSO SAPERLO A PRIORI. USO "SIBILLA CUMANA". NON

$$\forall (i,j) \in V^2$$
 $\int_{ij}^{(k)} \int_{ij}^{(k)} (ij) dk = \int_{ij}^{(k)} \int_{ik}^{(k)} \int_{$

Calcolo: 5°, 51, 52.... 5(h) ed ottengo tutti i Cammini.

Algo bottom-up:

For
$$(i = 1 to n)$$

| For $(j = 1 to n)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

| $i \neq (i = j) \lor (i \neq j \land (i,j) \in E)$

For
$$(k=1)$$
 to n)

For $(j=1)$ to n)

$$\{(k) = (k-1) \setminus (k-$$

return Say.

manca qualcesa -> appenti Dennunzio. ND

* FLOY D - WHARS HAW CON VERTICE COLORATI.

 $\forall (i,j) \in \forall x V \rightarrow calcolore$ il pero di un cammino minimo tenta 2 Vertici contecutivi dello stesso colori.

Rifacciamo Floyd - Worshall modificato.

Sottoproblema F-W:

KE fo... n & \$(1,7) Calcolare peso chi un Cammino minimo, deve non ci sono mai V. consecutivi dello stesso colore e

CON VERTICI INTERMEDI E. 1... K 4.

Hemovizziamo in $D = \left(d_{j_T}^{(k)} \right)$

Case base
$$v = 0$$

$$\forall (i,j) \in V^{2}, \quad d_{i,j}^{(c)} = \begin{cases}
0 & \text{se } i = j & (i \text{ solo } v) & i = j \\
Vi & \text{se } i \neq j & \wedge & (i,j) \in E & \wedge & \text{col}(i) \neq \text{col}(j) & i \longrightarrow j \\
e & \text{se } (i \neq j) & \wedge & (i,j) \in E & \wedge & \text{col}(i) = \text{col}(j) & i \longrightarrow j
\end{cases}$$

$$e \quad (i,j) \notin E \quad (i,j)$$

Passo ricornuo kto (Supponendo già risolti i ph. più piccoli)

a caso ke i mus k mus J

KE O LE TUSO LA SIBILLA CUMANA" / PICOPRENTA

 $\frac{d_{ij}^{(k)}}{d_{ij}^{(k)}} = \min_{k \in \mathbb{N}} \left\{ \frac{(k-\lambda)}{d_{ik}^{(k)}} + d_{ij}^{(k-\lambda)} \right\} = i \quad \text{Coleri Fabeutrano} \quad \text{solo nel} \quad \text{and} \quad \text{and} \quad \text{colering}$ base. 11 Yesto é aguale a FLOYP-WHARMAU.