无锡学院 试卷

_<u>2023</u> _ _ <u>2024</u> 学年 第<u>2</u> 学期

高等数学 I (2) 课程试卷

试卷类型 <u>B</u> (注明 A、B 卷)	考试类型	(注明开、	闭卷)
--------------------------	-------------	-------	-----

注意: 1、本课程为<u>必修</u> (注明必修或选修), 学时为<u>96</u>, 学分为 <u>6</u>

2、本试卷共<u>6</u>页;考试时间<u>120</u>分钟; 出卷时间: <u>2024</u>年<u>6</u>月

3、姓名、学号等必须写在指定地方; 考试时间: 2024 年 7月

4、本考卷适用专业年级: 理工科各专业

题 号	_	11	=	四	五.	六	七	总分
得 分								
阅卷人								

(以上内容为教师填写)

专业	年级	班级
学号	姓名	教 师

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许, 否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

阅卷人	得分

── ── 一、填空题(每小题 3 分,共 15 分)

- 1. 设二元函数 $f(x+y,x-y) = x^2 y^2$,则 f(x,y) =______
- 2. 设平面有界闭区域 $D: x^2 + y^2 \le 1$,则二重积分 $\iint_D xy^{2024} d\sigma =$ _______.
- 3. 设 $z = \arctan(xy)$,则 $\frac{\partial z}{\partial x} =$ ______.
- 4. yoz 面上的曲线 $2y^2 + z = 1$ 绕 z 轴旋转一周所形成的曲面方程为______
- 5. 设 Σ 为球面 $x^2 + y^2 + z^2 = 4$, 曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) dS =$ _______.

阅卷人	得分

─ 二、选择题(每小题 3 分, 共 15 分)

1. 设 $z = e^{xy}$,则 dz = ().

- A. $e^{xy} dx$ B. $(xdy + ydx)e^{xy}$ C. xdy ydx D. $(x + y)e^{xy}$

2.设 $I = \int_0^2 dx \int_x^{2x} f(x, y) dy$,交换积分次序后, I = ().

A.
$$\int_{x}^{2x} dy \int_{0}^{2} f(x, y) dx$$

A.
$$\int_{x}^{2x} dy \int_{0}^{2} f(x, y) dx$$
 B. $\int_{0}^{2} dy \int_{y}^{y/2} f(x, y) dx + \int_{2}^{4} dy \int_{y/2}^{2} f(x, y) dx$

C.
$$\int_0^4 dy \int_y^{y/2} f(x, y) dx$$

C.
$$\int_{0}^{4} dy \int_{y}^{y/2} f(x, y) dx$$
 D. $\int_{0}^{2} dy \int_{y/2}^{y} f(x, y) dx + \int_{2}^{4} dy \int_{y/2}^{2} f(x, y) dx$

3.曲面 $z = 4 - x^2 - y^2$ 与平面 z = 0 所围成的立体体积为(

- B. 8π C. $\frac{16}{3}\pi$ D. $\frac{32}{3}\pi$

4.下列级数发散的是().

- A. $\sum_{n=1}^{\infty} \frac{1}{n} \ln(1 + \frac{1}{n})$ B. $\sum_{n=1}^{\infty} \frac{n}{2^n}$ C. $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{\sqrt{n}})$ D. $\sin \frac{1}{n^2}$

5.设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 1, & 0 < x < \pi \end{cases}$

则 f(x) 的傅里叶级数在 $x = \pi$ 收敛于 (

- A. f(x) B. 0

- C. 1 D. $\frac{1}{2}$

核分人	得分

三、计算下列各题(每小题 6 分, 共 36 分)

阅卷人	得分

阅卷人	得分

2. 求过直线 $\frac{x-2}{5} = \frac{y+1}{2} = \frac{z-2}{4}$ 且与平面 x+4y-3z+7=0 垂直的平面方程.

3. 求曲线 $\begin{cases} y = 1 - 2x \\ z = 1 - \frac{1}{2}x^2 \end{cases}$ 在点 $(1, -1, \frac{1}{2})$ 处的切线和法平面方程.

阅卷人	得分

4. 求方程组 $\begin{cases} u^3 + xv - y = 0, \\ v^3 + yu - x = 0 \end{cases}$ 所确定的函数的偏导数 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$.

阅卷人	得分

5. 求函数 $f(x,y) = 9xy - x^3 - y^3$ 的极值.

阅卷人	得分

6. 计算二重积分 $\iint_D (x^2 + y^2) dx dy$, 其中 D 是由直线 y = x , y = x + 2 和 y = 2 , y = 6 所围成的闭区域.

阅卷人	得分

四、解答题(8分)判断下列级数是否收敛,若收敛,是绝对收敛还是条件收敛:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{5}}{2^n}$$
; (2) $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{\alpha}{\sqrt{n}}\right)$ ($\alpha > 0$ 为常数).

阅卷人	得分

五、解答题(8分)计算曲线积分

$$I = \int_{L} \left(e^{x} \sin y - 2y \right) dx + \left(e^{x} \cos y - 3 \right) dy , 其中 L 为从$$

$$A(2,0)$$
到 $O(0,0)$ 的上半圆周 $y = \sqrt{2x-x^2}$.

阅卷人	得分

六、解答题(8分)计算曲面积分

$$I = \iint_{\Sigma} xz dy dz + 2yz dz dx - z^2 dx dy$$
, 其中 Σ 为曲面

$$z = \sqrt{x^2 + y^2}$$
 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体 Ω 的表面的外侧.

阅卷人	得分

七、解答题 (10 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛域及和函数.