TRƯỜNG ĐHSP HÀ NÔI TRƯỜNG THPT CHUYÊN

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2019 LẦN 4 **MÔN: TOÁN**

Thời gian làm bài: 90 phút.

Mã đề thi 541

Câu 1. Nếu a, b lần lượt là phần thực và phần ảo của số phức z = 1 - i thì

A. ab = 0

B.
$$ab = -i$$

C.
$$ab = -1$$

D.
$$ab = 1$$

Câu 2. Hàm số nào trong các hàm số sau đây có đồ thị như hình bên?

A.
$$y = x^2 + x$$

B.
$$y = x^4 + x$$

C.
$$y = x^4 + x^2$$

D.
$$y = x^3 + x^2$$

Câu 3. Cho các số thực a, b (a<b). Nếu hàm số y=f(x) có đạo hàm là hàm liên tục trên \mathbb{R} thì

A.
$$\int_{a}^{b} f(x) dx = f'(b) - f'(a)$$

B.
$$\int_{a}^{b} f'(x) dx = f(a) - f(b)$$

C.
$$\int_{a}^{b} f(x)dx = f'(a) - f'(b)$$

D.
$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

Câu 4. Cho hàm số y = f(x) có đạo hàm trên $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ và có

bảng biến thiên như hình bên. Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số đã cho lần lượt là

A.
$$x = \frac{-1}{2}, y = \frac{-1}{2}$$

B.
$$x = \frac{1}{2}, y = \frac{-1}{2}$$

C.
$$x = \frac{-1}{2}, y = \frac{1}{2}$$

D.
$$x = \frac{1}{2}, y = \frac{1}{2}$$

Câu 5. Nếu một khối trụ có đường kính đường tròn đáy bằng a và chiều cao bằng 2a thì có thể tích bằng

 $\mathbf{A.} \ 2a^3$

C.
$$\frac{1}{2}a^3$$

D.
$$\frac{1}{2}\pi a^3$$

Câu 6. Hàm số nào trong các hàm số sau đây có bảng biến thiên phù hợp với hình bên?

A. $y = \log_2 x$ **B.** $\left(\frac{1}{2}\right)^x$ **C.** $y = \log_{\frac{1}{2}} x$ **D.** $y = 2^x$

Câu 7. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Hàm số y = f(x) đồng biến trên khoảng

A. $(-1; +\infty)$ **B.** $(0; +\infty)$

C. (0;1) **D.** (-3;-2)

Câu 8. Cho hàm số y=f(x) liên tục trên \mathbb{R} có một nguyên hàm là hàm số y=F(x). Khẳng định nào sau đây là đúng?

 $\mathbf{A.} \int f(x^2) dx = F(x^2) + C$

B. $\int 2xf(x^2)dx = F(x^2) + C$

C.
$$\int x f(x^2) dx = F(x^2) + C$$

D.
$$\int x f(x^2) dx = 2x F(x^2) + C$$

Câu 9. Số 9 có bao nhiêu căn bậc hai?

A. 0

B. 1

C. 2

D. 3

Câu 10. Cho hình lăng trụ đứng ABCD.A'B'C'D' có AA'=3a, AC=4a, BD=5a, ABCD là hình thoi. Thể tích của khối lăng trụ ABCD.A'B'C'D' bằng

A.
$$60a^3$$

B. $20a^{3}$

C. $30a^{3}$

D. $27a^{3}$

Câu 11. Trong không gian tọa độ Oxyz, cho tam giác ABC có ba đỉnh $A(a; \theta; \theta)$, $B(\theta; b; \theta)$, $C(\theta; \theta; c)$. Tọa độ trọng tâm của tam giác ABC là

B. (-a; -b; -c) $C. \left(\frac{a}{3}; \frac{b}{3}; \frac{c}{3}\right)$ $D. \left(\frac{-a}{3}; \frac{-b}{3}; \frac{-c}{3}\right)$

Câu 12. Trong không gian tọa độ Oxyz, nếu u là vécto chỉ phương của trục Oy thì

A. \vec{u} cùng hướng với véc to $\vec{j}(0;1;0)$

B. \vec{u} cùng phương với véc to $\vec{j}(0;1;0)$

C. \vec{u} cùng phương với véc to $\vec{i}(1;0;0)$

D. \vec{u} cùng phương với véc tơ \vec{k} (0,0,1)

Câu 13. Trong không gian tọa độ Oxyz, nếu mặt phẳng (P): ax + by + cz + d = 0 chứa trục Oz thì

A.
$$c^2 + d^2 = 0$$

B.
$$a^2 + b^2 = 0$$

C.
$$a^2 + c^2 = 0$$

D.
$$b^2 + c^2 = 0$$

Câu 14. Tổ 1 của lớp 10A có 10 học sinh gồm 6 nam và 4 nữ. Cần chọn ra 2 bạn trong tổ 1 để phân công trực nhật. Xác suất để chọn được 1 bạn nam và 1 bạn nữ là

A.
$$\frac{4}{15}$$

B.
$$\frac{6}{25}$$

C.
$$\frac{1}{9}$$

D.
$$\frac{8}{15}$$

Câu 15. Nếu ba số thực a, b, c theo thứ tự lập thành một cấp số cộng thì

A.
$$a + b = 2c$$

B.
$$b + c = 2a$$

C.
$$ac = b^2$$

D.
$$a + c = 2b$$

Câu 16. Cho hàm số y=f(x) có đạo hàm trên \mathbb{R} và có bảng biến thiên như hình bên

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi

A.
$$m \in (-1, 2)$$

B.
$$m \in (-1,1)$$

C.
$$m \in (1, 2)$$

D.
$$m \in [1; 2)$$

Câu 17. Cho hàm số $y = (0,5)^{x^2-8x}$. Hàm số đã cho nghịch biến trên khoảng

A.
$$(0;4)$$

D.
$$(-\infty;0)$$

Câu 18. Nếu M là điểm biểu diễn số phức $z = a + bi(a, b \in \mathbb{R})$ trong mặt phẳng tọa độ Oxy thì khoảng cách từ M đến gốc tọa độ bằng

A.
$$\sqrt{a^2 + b^2}$$

B.
$$a^2 + b^2$$

C.
$$|a| + |b|$$

D.
$$\sqrt{|a|+|b|}$$

Câu 19. Khẳng định nào sau đây là đúng?

A.
$$\int 2^{-x} dx = 2^{-x} \ln 2 + C$$

A.
$$\int 2^{-x} dx = 2^{-x} \ln 2 + C$$
 B. $\int 2^{-x} dx = -2^{-x} \ln 2 + C$

C.
$$\int 2^{-x} dx = \frac{2^{-x}}{\ln 2} + C$$

C.
$$\int 2^{-x} dx = \frac{2^{-x}}{\ln 2} + C$$
 D. $\int 2^{-x} dx = -\frac{2^{-x}}{\ln 2} + C$

Câu 20. Tập nghiệm của bất phương trình $\log_{0.5} x > 2$ là

$$\mathbf{A.}\left(0;\frac{1}{4}\right)$$

B.
$$\left(-\infty; \frac{1}{4}\right)$$

B.
$$\left(-\infty; \frac{1}{4}\right)$$
 C. $\left(\frac{1}{4}; +\infty\right)$

D.
$$(2^{0,5}; +\infty)$$

Câu 21. Xét các khẳng định i) Nếu hàm số y=		đạo h	nàm dương	với	mọi	X	thuộc	tập	số	D	thì
$f(x_1) < f(x_2) \forall x_1, x_2 \in D,$	$\mathbf{x}_1 < \mathbf{x}_2$										
ii) Nếu hàm số $y = f(x)$ có	đạo hàm âm	với mọi	x thuộc tập s	ố D thì	$f(x_1)$	> f ($(\mathbf{x}_2) \ \forall \mathbf{x}_2$	$\mathbf{x}_1, \mathbf{x}_2$	∈D,	x ₁ <	\mathbf{X}_2
iii) Nếu hàm số $y = f(x)$ cơ	ó đạo hàm dư	ong với 1	mọi x thuộc	$\mathbb R$ thì f	$f(x_1) <$	f(x)	$(x_2) \forall x_1$	$,x_{2}\in$	\mathbb{R}, \mathbf{x}	1 < x	2
iv) Nếu hàm số $y = f(x)$ cơ	ó đạo hàm âm	với mọi	x thuộc \mathbb{R}	$hi f(x_1)$	$_{1}) > f($	\mathbf{x}_{2}	$\forall x_1, x_2$	$\in \mathbb{R}$,	$\mathbf{x}_1 < 1$	\mathbf{x}_2	
iv) Nếu hàm số $y = f(x)$ có đạo hàm âm với mọi x thuộc \mathbb{R} thì $f(x_1) > f(x_2) \ \forall x_1, x_2 \in \mathbb{R}, x_1 < x_2$ Số khẳng định đúng là											
A. 1 B. 2		C.	3]	D. 4						
Câu 22. Xét các khẳng địn											
i) Nếu hàm số $y = f(x)$ x	ác định trên [–1;1] thì	tồn tại α∈[–1;1]th	oa mãi	1 f ($(x) \ge f(a)$	x∀(x	\in [-1	l;1]	
ii) Nếu hàm số $y = f(x)$ x	các định trên	[-1;1] th	ì tồn tại β∈[[-1;1] th	nỏa mã	n f ($(x) \le f($	β)∀x	$\in [-1]$	l;1]	
iii) Nếu hàm số $y = f(x)$	xác định trê	n [-1;1]	thỏa mãn f	(-1)f((1) < 0	thì t	cồn tại	γ∈[-	1; 1] tl	ıða r	nãn
$f(\gamma) = 0.$											
Số khẳng định đúng là											
A. 3 B. 2		С.]	D. 0						
Câu 23. Tập hợp các số th				(1)			D (1	`			
A. $(0;+\infty)$	B. $(0;1) \cup (1$,		. ,	4		D. (1;+	,	12	1. 3	. ~ á
Câu 24. Cho hàm số y	2			1 1/2	va co	ΠΟί	nguye	n nai	II Ia	паш	l SO
$y = \frac{1}{2}x^2 - x + 1$. Giá trị của biểu thức $\int_{1}^{2} f(x^2) dx$ bằng											
A. $-\frac{4}{}$	B. $\frac{4}{}$		($\frac{2}{2}$				D	<u>2</u>		
A. $-\frac{4}{3}$	B. $\frac{4}{3}$		($-\frac{2}{3}$				D	$\frac{2}{3}$		
A. $-\frac{4}{3}$ Câu 25. Nếu $z = a + bi(a, a)$	3	phức ng		,	<i>bi</i> ─ thì			D	$\frac{2}{3}$		
Câu 25. Nếu $z = a + bi(a, a)$	3		hịch đảo $z^{\scriptscriptstyle -1}$	$=\frac{a-b}{4}$]	D. $a^2 +$		3		
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ	$b \in \mathbb{R}$) có số $\mathbf{B}. \ a^2 + b^2 = \mathbf{ABC.A'B'C}$	4	hịch đảo z^{-1} $\mathbf{C.} \ a^2 + b$	$=\frac{a-b}{4}$ $b^2 = 8$				$b^2 = 1$.6	ã chơ	o và
Câu 25. Nếu $z = a + bi(a, a^2 + b^2 = 2)$	$b \in \mathbb{R}$) có số $\mathbf{B}. \ a^2 + b^2 = \mathbf{ABC.A'B'C}$	4	hịch đảo z^{-1} $\mathbf{C.} \ a^2 + b$	$=\frac{a-b}{4}$ $b^2 = 8$				$b^2 = 1$.6	ã chơ	o và
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số	$b \in \mathbb{R}$) có số $\mathbf{B.} \ a^2 + b^2 = \mathbf{ABC.A'B'C}$ $\hat{\mathbf{b}} \ \frac{\mathbf{V'}}{\mathbf{V}} \mathbf{b} \mathbf{a} \mathbf{n} \mathbf{g}$	4 ". Gọi '	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần	$=\frac{a-b}{4}$ $b^2 = 8$		h củ	ıa khối	$b^2 = 1$.6	ã chơ) và
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$	$b \in \mathbb{R}$) có số $\mathbf{B}. \ a^2 + b^2 = \mathbf{ABC.A'B'C'}$ bằng $\mathbf{B}. \ \frac{\mathbf{V'}}{\mathbf{V}}$ bằng $\mathbf{B}. \ \frac{1}{4}$	4 ". Gọi '	hịch đảo z^{-1} $\mathbf{C.} \ a^2 + b$ $\mathbf{V} \ \text{và V'} \ \mathbf{lan}$ $\mathbf{C.} \ \frac{1}{2}$	$= \frac{a - b}{4}$ $b^2 = 8$ lurot là	thể tíc	h củ	na khối D. $\frac{1}{6}$	$b^2 = 1$ lăng t	6 trụ đã		
Câu 25. Nếu $z = a + bi(a, A)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số $A \cdot \frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện	$b \in \mathbb{R}$) có số B. $a^2 + b^2 = 0$ ABC.A'B'C ố $\frac{V'}{V}$ bằng B. $\frac{1}{4}$ cu S.ABCD co	4 ". Gọi '	hịch đảo z^{-1} $\mathbf{C.} \ a^2 + b$ $\mathbf{V} \ \text{và V'} \ \mathbf{lan}$ $\mathbf{C.} \ \frac{1}{2}$	$= \frac{a - b}{4}$ $b^2 = 8$ lurot là	thể tíc	h củ	na khối D. $\frac{1}{6}$	$b^2 = 1$ lăng t	6 trụ đã		
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$ Câu 27. Cho hình chóp đề	$b \in \mathbb{R}$) có số B. $a^2 + b^2 = 0$ ABC.A'B'C ố $\frac{V'}{V}$ bằng B. $\frac{1}{4}$ cu S.ABCD co	4 ". Gọi '	hịch đảo z^{-1} $\mathbf{C.} \ a^2 + b$ $\mathbf{V} \ \text{và V'} \ \mathbf{lan}$ $\mathbf{C.} \ \frac{1}{2}$	$= \frac{a - b}{4}$ $b^2 = 8$ luot là ang canh	thể tíc	h củ	na khối D. $\frac{1}{6}$	$b^2 = 1$ lăng t	6 trụ đã		
Câu 25. Nếu $z = a + bi(a, A)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số $A \cdot \frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện	$b \in \mathbb{R}$) có số B. $a^2 + b^2 = 0$ ABC.A'B'C ố $\frac{V'}{V}$ bằng B. $\frac{1}{4}$ ou S.ABCD co SABC bằng B. a	4 ". Gọi ' ố ABCD	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần C. $\frac{1}{2}$ O là hình vuôn C. $a\sqrt{2}$	$= \frac{a - b}{4}$ $b^2 = 8$ luot là and can la ca	thể tíc n 2a, ta	h củ am g	 D. 1/6 iác SAG D. 2a 	$b^2 = 1$ lăng t	.6 trụ đá ng. F	Bán k	xính
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện A. $\frac{a}{\sqrt{2}}$	$b \in \mathbb{R}$) có số $\mathbf{B.} \ a^2 + b^2 = \mathbf{ABC.A'B'C}$ $\mathbf{ABC.A'B'C}$ $\mathbf{b} \ \mathbf{V'}$ bằng $\mathbf{B.} \ \frac{1}{4}$ su S.ABCD co SABC bằng $\mathbf{B.} \ \mathbf{a}$ tọa độ $Oxyz$,	4 ". Gọi ' ố ABCD mặt cầu	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần C. $\frac{1}{2}$ là hình vuôn C. $a\sqrt{2}$ tâm $I(a;b;c)$	$= \frac{a - b}{4}$ $b^2 = 8$ luot là ng canh tiếp x	thể tíc n 2a, ta úc với	h củ m g trục	na khối D. 1/6 iác SAO D. 2a Oy có 1	$b^2 = 1$ lăng † C vuô	6 trụ đá ng. F	Bán k	xính
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện A. $\frac{a}{\sqrt{2}}$ Câu 28. Trong không gian	$b \in \mathbb{R}$) có số $\mathbf{B.} \ a^2 + b^2 = \mathbf{ABC.A'B'C}$ $\mathbf{ABC.A'B'C}$ $\mathbf{b} \cdot \mathbf{V'}$ bằng $\mathbf{B.} \ \frac{1}{4}$ su S.ABCD co SABC bằng $\mathbf{B.} \ a$ tọa độ $Oxyz$, $(\mathbf{z-c})^2 = \mathbf{a}^2 + \mathbf{b}^2 = \mathbf{a}^2 + \mathbf{b}^2$	4 ". Gọi ' 6 ABCD mặt cầu - c²	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần C. $\frac{1}{2}$ là hình vuôn C. $a\sqrt{2}$ tâm $I(a;b;c)$ B. $(x + b)$	$= \frac{a - b}{4}$ $b^2 = 8$ luot là $\log \cosh b$ tiếp x $a)^2 + ($	thể tíc thể tíc $a = 2a$, ta thể $a = 2a$, ta thể $a = 2a$, ta thể $a = 2a$, the $a = 2a$ the $a = 2a$ thể	h củ trục +(z	na khối D. $\frac{1}{6}$ iác SAC D. 2a Oy có y $z + c$	$b^2 = 1$ lăng t C vuô phươn $a^2 + a^2 + a^2$	6 trụ đá ng. F	Bán k	xính
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện A. $\frac{a}{\sqrt{2}}$ Câu 28. Trong không gian A. $(x-a)^2 + (y-b)^2 + (x-a)^2 + (y-b)^2 $	$b \in \mathbb{R}$) có số $\mathbf{B.} \ a^2 + b^2 = 1$ $\mathbf{ABC.A'B'C}$ $\mathbf{b} \ \mathbf{V'}$ bằng $\mathbf{B.} \ \frac{1}{4}$ cu S.ABCD co SABC bằng $\mathbf{B.} \ a$ tọa độ $Oxyz$, $(z-c)^2 = a^2 + 1$ $(z+c)^2 = b^2$	4 ". Gọi ' ố ABCD mặt cầu - c ²	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần C. $\frac{1}{2}$ là hình vuôn C. $a\sqrt{2}$ tâm $I(a;b;c)$ B. $(x + b)$	$= \frac{a - b}{4}$ $b^2 = 8$ luot là $\log \cosh b$ tiếp xi $a)^2 + (a)^2 + (b)^2 + (b)$	thể tíc tha 2a, ta túc với y+b) ² y-b) ²	true $+(z^2+(z^2+(z^2+(z^2+(z^2+(z^2+(z^2+(z^2$	na khối D. $\frac{1}{6}$ iác SAC D. 2a $Oy \text{ có } y$ $z + c)^2 = z - c)^2 = z - c$	$b^2 = 1$ lăng t C vuô phươr $= a^2 + 1$ $= b^2$	ong. F	3án k nh là	rính 1
Câu 25. Nếu $z = a + bi(a, a)$ A. $a^2 + b^2 = 2$ Câu 26. Cho khối lăng trụ khối tứ diện ABB'C'. Tỉ số A. $\frac{1}{3}$ Câu 27. Cho hình chóp đề mặt cầu ngoại tiếp tứ diện A. $\frac{a}{\sqrt{2}}$ Câu 28. Trong không gian A. $(x-a)^2 + (y-b)^2 + (y$	$b \in \mathbb{R}$) có số $\mathbf{B.} \ a^2 + b^2 = 1$ $\mathbf{ABC.A'B'C}$ $\mathbf{b} \ \mathbf{V'}$ bằng $\mathbf{B.} \ \frac{1}{4}$ ru S.ABCD co SABC bằng $\mathbf{B.} \ a$ tọa độ $Oxyz$, $(z-c)^2 = a^2 + 1$ tọa độ $Oxyz$, tổng quát là	4 ". Gọi ' 6 ABCD mặt cầu - c² cho hai	hịch đảo z^{-1} C. $a^2 + b$ V và V' lần C. $\frac{1}{2}$ là hình vuôn C. $a\sqrt{2}$ tâm I(a;b;c B. (x+ D. (x- điểm A(1;2;	$= \frac{a - b}{4}$ $b^2 = 8$ luot là $a = \frac{b^2}{4}$ $b^2 = 8$ luot là $a = \frac{b^2}{4}$ $a^2 + (a^2 + (a^2)^2 + (a^2)^2$	thể tíc thể tíc thể tíc thể tíc thể tíc $(a + b)^2$ $(a + b)^2$	trục +(z +(z Mặt]	na khối D. $\frac{1}{6}$ iác SAC D. 2a Oy có j $z+c$) ² = $z-c$) ² = phẳng tr	$b^2 = 1$ lăng t C vuô phươn $= a^2 + $ $= b^2$ rung t	.6 trụ đá mg. F ng trì c ²	3án k nh là	xính 1

Câu 31. Cho hàm số y=f(x) liên tục trên \mathbb{R} và có đồ thị như hình bên.

Số nghiêm phân biết của phương trình f(f(x)) = -2 là

A. 3

B. 4

C. 7

D. 9

Câu 32. Cho tam giác ABC có BC=a, CA=b, AB=c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì

A. $\ln \sin A \cdot \ln \sin C = (\ln \sin B)^2$

B. $\ln \sin A \cdot \ln \sin C = 2 \ln \sin B$

C. $\ln \sin A + \ln \sin C = 2 \ln \sin B$

D. $\ln \sin A + \ln \sin C = \ln (2 \sin B)$

Câu 33. Có bao nhiều số nguyên x nghiệm đúng bất phương trình $\frac{1}{\log_x 2} + \frac{1}{\log_{x^2} 2} < 5$?

- **A**. 0
- **B**. 1

- **C**. 2
- **D**. 3

Câu 34. Xét các khẳng định sau

- i) Nếu hàm số y=f(x) có đạo hàm cấp hai trên \mathbb{R} và đạt cực tiểu tại $\mathbf{x}=\mathbf{x}_0$ thì $\begin{cases} f'(\mathbf{x}_0)=0 \\ f''(\mathbf{x}_0)>0 \end{cases}$
- ii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên \mathbb{R} và đạt cực đại tại $x=x_0$ thì $\begin{cases} f'(x_0)=0 \\ f''(x_0)<0 \end{cases}$
- iii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên $\mathbb R$ và $f''(x_0)=0$ thì hàm số không đạt cực trị tại $x=x_0$ Số khẳng định đúng trong các khẳng định trên là
- **A** (

R 1

 C_2

D 3

 ${f C\hat{a}u}$ 35. Một chất điểm chuyển động trên trục Ox với tốc độ thay đổi theo thời gian v=f(t) (m/s).

Quãng đường chất điểm đó chuyển động trên trục Ox từ thời điểm t_1 đến thời điểm t_2 là $s = \int\limits_{t_1}^{t_2} f(t) dt$.

Biết rằng v(t) = 30 - 5t (m/s), quãng đường chất điểm đó đi được từ thời điểm $t_1 = 1s$ đến thời điểm $t_2 = 2s$ bằng bao nhiều mét?

- **A.** 32,5m.
- **B.** 22,5m.

C. 42.5m.

D. 52,5m.

Câu 36. Cho các hàm số y=f(x) và y=g(x) liên tục trên \mathbb{R} thỏa mãn f(x) > g(x) > 0 với mọi số thực x. Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức

A.
$$V = \frac{1}{3}\pi \int_{a}^{b} |(f(x))^{2} - (g(x))^{2}| dx.$$

B.
$$V = \pi \int_{a}^{b} |(f(x))^{2} - (g(x))^{2}| dx$$
.

C.
$$V = \int_{a}^{b} |(f(x))^{2} - (g(x))^{2}| dx$$
.

D.
$$V = \frac{1}{3} \int_{a}^{b} |(f(x))^{2} - (g(x))^{2}| dx$$
.

Câu 37.Xét các khẳng định sau

i)
$$|z_1 - z_2|^2 = (z_1 - z_2)^2 \ \forall z_1, z_2 \in \mathbb{C}$$

ii)
$$\left|z_{1}-z_{2}\right|^{2}=\left(z_{1}-z_{2}\right)\overline{\left(z_{1}-z_{2}\right)}\ \forall z_{1},z_{2}\in\mathbb{C}$$

iii)
$$|z_1|^2 + |z_2|^2 = 2\left|\frac{z_1 + z_2}{2}\right|^2 + \frac{1}{2}|z_1 - z_2|^2 \ \forall z_1, z_2 \in \mathbb{C}$$

Số khẳng định đúng là A. 0

C. 2

Câu 38. Cho hình thang cân ABCD, AB//CD, AB=6cm, CD=2cm, AD = BC = $\sqrt{13}$ cm. Quay hình thang ABCD xung quanh đường thẳng AB ta được một khối tròn xoay có thể tích là

A.
$$18\pi (cm^3)$$

B.
$$30\pi (cm^3)$$

C.
$$24\pi (cm^3)$$

D.
$$12\pi (cm^3)$$

Câu 39. Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (76) là tập hợp các điểm M trong không gian thỏa mãn $\overrightarrow{MA}.\overrightarrow{MB} = 0$. Khẳng định nào sau đây là đúng?

A. (36) là một đường tròn có bán kính bằng 4

B. (76) là một mặt cầu có bán kính bằng 4

C. (76) là một đường tròn có bán kính bằng 2

D. (76) là một mặt cầu có bán kính bằng 2

Câu 40. Cho khối chóp S.ABC có (SAB) \perp (ABC), (SAC) \perp (ABC), SA = a, AB = AC = 2a,

 $BC = 2a\sqrt{2}$. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng SM và AC bằng

A.
$$\frac{a}{2}$$

B.
$$\frac{a}{\sqrt{2}}$$

D.
$$a\sqrt{2}$$

Câu 41. Trong không gian tọa độ *Oxyz*, mặt phẳng (P) tiếp xúc với mặt cầu tâm *O* bán kính 1, cắt 3 trục tọa độ tại *A*, *B*, *C*. Giá trị nhỏ nhất của thể tích tứ diện *OABC* bằng

A.
$$\sqrt{3}$$

C.
$$3\sqrt{3}$$

D.
$$\frac{\sqrt{3}}{2}$$

Câu 42. Có bao nhiều số nguyên m để hàm số $y = (x+m)^3 - 6(x+m)^2 + m^3 - 6m^2$ nghịch biến trên khoảng (-2;2)

A. 0

C. 2

D. 3

Câu 43. Trong không gian tọa độ Oxyz, cho 2 điểm A, B thay đổi trên mặt cầu $x^2 + y^2 + (z - 1)^2 = 25$ thỏa mãn AB = 6. Giá tri lớn nhất của biểu thức $OA^2 - OB^2$ là

A 13

Câu 44. Cuối năm học trường Chuyên Sư phạm tổ chức 3 tiết mục văn nghệ chia tay khối 12 ra trường. Tất cả các học sinh lớp 12A đều tham gia nhưng mỗi người chỉ được đăng kí không quá 2 tiết mục. Biết lớp 12A có 44 học sinh, hỏi có bao nhiều cách để lớp lựa chọn?

A. 2^{44}

B.
$$2^{44} + 3^{44}$$

$$\mathbf{C.}\ 3^{44}$$

Câu 45. Hàm số $y = x^4 + ax^3 + bx^2 + 1$ đạt giá trị nhỏ nhất tại x = 0. Giá trị nhỏ nhất của biểu thức S = a + b là

A. 2

B. 0

$$C. - 2$$

D.
$$-1$$

Câu 46. Nếu hàm số y = f(x) thỏa mãn $f'(x) = (x-1)^3 (2^x - 2) \log_2 x \ \forall x > 0$ thì

A. Trên khoảng $(0; +\infty)$ hàm số y = f(x) không có điểm cực trị nào

B. Trên khoảng $(0;+\infty)$ hàm số y = f(x) có điểm cực tiểu là x=1

C. Trên khoảng $(0; +\infty)$ hàm số y = f(x) có điểm cực đại là x = 1

D. Trên khoảng $(0; +\infty)$ hàm số y = f(x) có nhiều hơn 1 điểm cực trị

Câu 47. Trong mặt phẳng tọa độ Oxy, gọi (76) là tập hợp các điểm biểu diễn hình học của số phức z thỏa mãn $\begin{cases} |z+\overline{z}| \geq 12 \\ |z-4-3i| \leq 2\sqrt{2} \end{cases}$. Diện tích của hình phẳng (76) là

B.
$$8\pi - 8$$

C.
$$2\pi - 4$$

D.
$$8\pi - 4$$

Câu 48. Trong không gian tọa độ Oxyz, cho 2 điểm A(1;0;0), B(5;6;0). M là điểm thay đổi trên mặt cầu $(S): x^2 + y^2 + z^2 = 1$. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn $3MA^2 + MB^2 = 48$ có bao nhiều phần tử?

Câu 49. Cho hàm số y = f(x) thỏa mãn f(-2) = -2, f(2) = 2 và có bảng biến thiên như hình bên

Có bao nhiều số tự nhiên m thỏa mãn phương trình $f(-f(x)) \ge m$ có nghiệm thuộc đoạn [-1;1]?

A. 1

Câu 50. Cho hàm số y = f(x) liên tục trên \mathbb{R} . Tập hợp các số thực m thỏa mãn $\int_0^m f(x) dx = \int_0^m f(m-x) dx \text{ là}$

A.
$$(0;+\infty)$$

B.
$$(-\infty;0)$$

C.
$$\mathbb{R} \setminus \{0\}$$

$$\mathbf{D}.\mathbb{R}$$

..... HÉT

ĐÁP ÁN THI THỬ MÔN TOÁN LẦN 4 NĂM 2019 TRƯỜNG THPT CHUYÊN ĐẠI HỌC SƯ PHẠM HÀ NỘI

made	cautron	dapan									
541	1	С	542	1	D	543	1	D	544	1	В
541	2	С	542	2	D	543	2	В	544	2	С
541	3	D	542	3	В	543	3	С	544	3	С
541	4	В	542	4	С	543	4	С	544	4	D
541	5	D	542	5	С	543	5	С	544	5	С
541	6	В	542	6	С	543	6	A	544	6	D
541	7	D	542	7	D	543	7	В	544	7	В
541	8	В	542	8	В	543	8	D	544	8	D
541	9	С	542	9	С	543	9	D	544	9	D
541	10	С	542	10	С	543	10	С	544	10	В
541	11	С	542	11	D	543	11	D	544	11	С
541	12	В	542	12	В	543	12	С	544	12	D
541	13	A	542	13	В	543	13	В	544	13	В
541	14	D	542	14	D	543	14	В	544	14	С
541	15	D	542	15	A	543	15	D	544	15	A
541	16	С	542	16	С	543	16	D	544	16	С
541	17	С	542	17	A	543	17	A	544	17	С
541	18	A	542	18	A	543	18	С	544	18	D
541	19	D	542	19	D	543	19	С	544	19	A
541	20	A	542	20	A	543	20	A	544	20	A
541	21	В	542	21	D	543	21	В	544	21	D
541	22	D	542	22	В	543	22	D	544	22	В
541	23	В	542	23	В	543	23	В	544	23	В
541	24	В	542	24	В	543	24	В	544	24	В
541	25	В	542	25	A	543	25	В	544	25	В
541	26	A	542	26	В	543	26	A	544	26	С
541	27	С	542	27	В	543	27	С	544	27	A
541	28	A	542	28	С	543	28	С	544	28	A
541	29	В	542	29	С	543	29	A	544	29	С
541	30	С	542	30	С	543		В	544	30	В
541	31	В	542	31	С	543	31	С	544	31	С
541	32	С	542	32	В	543	32	В	544	32	С
541	33	С	542	33	D	543	33	В	544	33	В
541	34	A	542	34	В	543	34	В	544	34	В
541	35	В	542	35	В	543	35	С	544	35	A
541	36	В	542	36	A	543	36	В	544	36	С
541	37	С	542	37	В	543	37	A	544	37	В
541	38	В	542	38	С	543	38	В	544	38	D
541	39	D	542	39	В	543	39	D	544	39	В
541	40	В	542	40	С	543	40	С	544	40	В
541	41	D	542	41	В	543	41	A	544	41	В
541	42	В	542	42	В	543	42	В	544	42	D
541	43	A	542	43	D	543	43	D	544	43	D
541	44	D	542	44	A	543	44	D	544	44	A
541	45	D	542	45	D	543	45	В	544	45	В
541	46	В	542	46	С	543	46	D	544	46	D
541	47	С	542	47	В	543	47	В	544	47	В
541	48	В	542	48	С	543	48	С	544	48	С
541	49	С	542	49	D	543	49	D	544	49	С
541	50	D	542	50	D	543	50	С	544	50	D

LỜI GIẢI CHI TIẾT ĐỀ THI THỬ THPTQG 2019 TRƯỜNG CHUYÊN SỬ PHẠM HÀ NỘI LẦN 4 **MÔN: TOÁN**

BẢNG ĐÁP ÁN

1.C	2.C	3.D	4.B	5.D	6.B	7.D	8.B	9.C	10.C
11.C	12.B	13.A	14.D	15.D	16.C	17.C	18.A	19.D	20.A
21.B	22.D	23.B	24.B	25.B	26.A	27.C	28.A	29.B	30.C
31.B	32.C	33.C	34.A	35.B	36.B	37.C	38.B	39.D	40.B
41.D	42.B	43.A	44.D	45.D	46.B	47.C	48.B	49.C	50.D

LÒI GIẢI CHI TIẾT

[2D4-1.2-1] Nếu a, b lần lượt là phần thực và phần ảo của số phức z=1-i thì

A.
$$ab = 0$$
.

B.
$$ab = -i$$
.

C.
$$ab = -1$$
.

D. ab = 1.

Lời giải

Tác giả: Minh Tuấn; Fb: Minh Tuấn Hoàng Thị

Ta có a, b lần lượt là phần thực và phần ảo của số phức z=1-i, suy ra a=1, b=-1. Vậy ab = -1.

Câu 2. [2D1-5.2-1] Hàm số nào trong các hàm số sau đây có đồ thị như hình bên?

A.
$$y = x^2 + x$$
.

B.
$$y = x^4 + x$$
.

C.
$$y = x^4 + x^2$$

D.
$$y = x^3 + x^2$$
.

Lời giải

Tác giả: Minh Tuấn; Fb: Minh Tuấn Hoàng Thị

- +) Hàm số $y = x^3 + x^2$ là hàm số bậc ba không có đồ thị dạng như hình vẽ nên loại **D**.
- +) Dựa vào hình vẽ ta thấy đồ thị hàm số đi qua điểm (-1;2).

Đồ thị của các hàm số $y = x^2 + x$, $y = x^4 + x$ không đi qua điểm (-1;2) nên loại **A** và **B**.

Đồ thị hàm số $y = x^4 + x^2$ đi qua điểm (-1,2) nên nhận **C**.

[2D3-3.1-1] Cho các số thực $a, b \ (a < b)$. Nếu hàm số y = f(x) có đạo hàm là hàm số liên Câu 3. tục trên ℝ thì

$$\mathbf{A.} \int_{a}^{b} f(x) dx = f'(b) - f'(a).$$

B.
$$\int_{a}^{b} f'(x) dx = f(a) - f(b)$$
.

A.
$$\int_{a}^{b} f(x) dx = f'(b) - f'(a)$$
.
C. $\int_{a}^{b} f(x) dx = f'(a) - f'(b)$.

B.
$$\int_{a}^{b} f'(x) dx = f(a) - f(b).$$
D.
$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

Lời giải

Chon D

Ta có $\int_{a}^{b} f'(x) dx = f(x)|_{a}^{b} = f(b) - f(a).$

[2D1-4.3-1] Cho hàm số y = f(x) có đạo hàm trên $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ và có bảng biến thiên như hình Câu 4. bên.

Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số đã cho lần lượt là

A.
$$x = -\frac{1}{2}, y = -\frac{1}{2}$$
. **B.** $x = \frac{1}{2}, y = -\frac{1}{2}$. **C.** $x = -\frac{1}{2}, y = \frac{1}{2}$. **D.** $x = \frac{1}{2}; y = \frac{1}{2}$.

B.
$$x = \frac{1}{2}, y = -\frac{1}{2}$$

C.
$$x = -\frac{1}{2}$$
, $y = \frac{1}{2}$.

D.
$$x = \frac{1}{2}$$
; $y = \frac{1}{2}$

Lời giải

Tác giả: Phạm Thị Thuần ; Fb: Phạm Thuần

Chon B

Từ bảng biến thiên ta có:

- +) $\lim_{x \to \frac{1}{2}^+} y = +\infty$, suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng $x = \frac{1}{2}$.
- +) $\lim_{x \to +\infty} y = -\frac{1}{2}$, suy ra đồ thị hàm số có tiệm cận ngang là đường thẳng $y = -\frac{1}{2}$.

Vậy đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số đã cho lần lượt là $x = \frac{1}{2}, y = -\frac{1}{2}$

Chú ý: Có thể suy ra đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số đã cho lần lượt là $x = \frac{1}{2}$, $y = -\frac{1}{2}$ từ các giới hạn $\lim_{x \to 1^{-}} y = -\infty$ và $\lim_{x \to -\infty} y = -\frac{1}{2}$.

Câu 5. [2H2-2.3-1] Nếu khối trụ có đường kính đường tròn đáy bằng a và chiều cao bằng 2a thì có thể tích bằng

A.
$$2a^3$$
.

B. $2\pi a^3$.

C. $\frac{1}{2}a^3$.

Lời giải

Tác giả: Phạm Thị Thuần ; Fb: Phạm Thuần

Chon D

Khối trụ có bán kính đáy là $r = \frac{a}{2}$ và chiều cao h = 2a.

Thể tích khối trụ đã cho là $V = \pi r^2 h = \frac{1}{2} \pi a^3$.

[2D2-4.7-1] Hàm số nào trong các hàm số sau đây có bảng biến thiên phù hợp với hình bên?

Lời giải

Tác giả: Phạm Thị Thuần; Fb: Phạm Thuần

Chọn B

Hàm số có bảng biến thiên đề cho có tập xác định $D = \mathbb{R}$ và nghịch biến trên \mathbb{R} .

- +) Hàm số $y = \log_2 x$ và hàm số $y = \log_{\frac{1}{2}} x$ có tập xác định là $(0; +\infty) \Rightarrow$ Loại **A** và **C**.
- +) Hàm số $y = 2^x$ đồng biến trên \mathbb{R} (cơ số lớn hơn 1) \Rightarrow Loại **D**.
- +) Hàm số $y = \left(\frac{1}{2}\right)^x$ nghịch biến trên \mathbb{R} (cơ số nhỏ hơn 1) \Longrightarrow Chọn **B**.
- **Câu 7.** [2D1-1.3-1] Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới. Hàm số y = f(x) đồng biến trên khoảng

- **A.** $(-1;+\infty)$.
- **B.** $(0;+\infty)$.
- **C.** (0;1).
- $\mathbf{D}.(-3;-2)$.

Lời giải

Tác giả: Vũ Thị Thúy; Fb: Vũ Thị Thúy

Chọn D

Từ bảng biến thiên ta thấy hàm số y = f(x) đồng biến trên các khoảng $(-\infty;0)$ và $(1;+\infty)$.

Ta có (-3;-2) \subset $(-\infty;0)$ nên hàm số đồng biến trên khoảng (-3;-2).

- **Câu 8.** [2D3-1.2-1] Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số y = F(x). Khẳng định nào sau đây là đúng?
 - $\mathbf{A.} \int f(x^2) dx = F(x^2) + C.$

 $\mathbf{B.} \int 2x. f\left(x^2\right) dx = F\left(x^2\right) + C.$

C. $\int x \cdot f(x^2) dx = F(x^2) + C.$

D. $\int x \cdot f(x^2) dx = 2xF(x^2) + C$.

Lời giải

Tác giả: Vũ Thị Thúy; Fb: Vũ Thị Thúy

Chọn B

Ta có $(F(x^2)+C)' = 2x.F'(x^2) = 2x.f(x^2)$. Do đó chọn **B.**

A. 0.

B. 1.

C. 2

D. 3.

Lời giải

Tác giả: Vũ Thị Thúy ; Fb: Vũ Thị Thúy

Chọn C

Căn bậc hai của một số thực a không âm là số thực b sao cho $b^2 = a$.

Do đó số 9 có hai căn bậc hai là 3 và −3.

Câu 10. [2H1-3.1-1] Cho hình lăng trụ đứng ABCD.A'B'C'D' có AA' = 3a, AC = 4a, BD = 5a, ABCD là hình thoi. Thể tích của khối lăng trụ ABCD.A'B'C'D' bằng

A. $60a^3$.

B. $20a^3$.

C. $30a^3$.

D. $27a^3$.

Lời giải

Tác giả: Đặng Mai Hương; Fb: maihuongpla

Chon C

$$S_{ABCD} = \frac{1}{2}AC.BD = \frac{1}{2}.4a.5a = 10a^2$$
.

$$V_{ABCD,A'B'CD'} = AA'.S_{ABCD} = 3a.10a^2 = 30a^3.$$

Câu 11. [2H3-1.1-1] Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(a;0;0), B(0;b;0), C(0;0;c). Tọa độ trọng tâm của tam giác ABC là

A.
$$(a;b;c)$$
.

B.
$$(-a; -b; -c)$$
.

$$\underline{\mathbf{C.}}\left(\frac{a}{3};\frac{b}{3};\frac{c}{3}\right).$$

$$\mathbf{D.}\left(\frac{-a}{3};\frac{-b}{3};\frac{-c}{3}\right).$$

Lời giải

Tác giả: Đặng Mai Hương; Fb: maihuongpla

Chon C

Gọi $G(x_G; y_G; z_G)$ là trọng tâm tam giác ABC.

Ta có:
$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} = \frac{a}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} = \frac{b}{3} \implies G\left(\frac{a}{3}; \frac{b}{3}; \frac{c}{3}\right). \\ z_G = \frac{z_A + z_B + z_C}{3} = \frac{c}{3} \end{cases}$$

- **A.** \vec{u} cùng hướng với vécto $\vec{j} = (0,1,0)$.
- **B.** u cùng phương với vécto j = (0,1,0).
- C. u cùng hướng với vécto $\vec{i} = (1,0,0)$.
- **D.** u cùng phương với vécto $\vec{i} = (1,0,0)$.

Lời giải

Tác giả: Đặng Mai Hương; Fb: maihuongpla

Chon B

Trục Oy có một vécto chỉ phương là $\vec{j} = (0;1;0)$.

Mà \vec{u} cũng là vécto chỉ phương của truc $O_{\vec{v}}$ nên \vec{u} cùng phương với vécto \vec{i} .

Câu 13. [2H3-3.1-1] Trong không gian tọa độ Oxyz, nếu mặt phẳng (P): ax + by + cz + d = 0 chứa trục

A.
$$c^2 + d^2 = 0$$
.

B.
$$a^2 + b^2 = 0$$
. **C.** $a^2 + c^2 = 0$. **D.** $b^2 + c^2 = 0$.

C.
$$a^2 + c^2 = 0$$

D.
$$b^2 + c^2 = 0$$
.

Lời giải

Tác giả: Phùng Hoàng Cúc; Fb: Phùng Hoàng Cúc.

Chon A

Cách 1:

Ta có (P) có một vécto pháp tuyến là $\vec{n} = (a;b;c)$.

Oz có một vécto chỉ phương là k = (0,0,1).

$$(P) \text{ chứa trục } Oz \iff \begin{cases} O \in (p) \\ \vec{n} \perp \vec{k} \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ c = 0 \end{cases}.$$

Vậy
$$c^2 + d^2 = 0$$
.

Cách 2:

(P) chứa trục O_Z khi và chỉ khi (P) đi qua hai điểm O(0;0;0) và A(0;0;1)

$$\Leftrightarrow \begin{cases} 0a + 0b + 0c + d = 0 \\ 0a + 0b + 1c + d = 0 \end{cases} \Leftrightarrow \begin{cases} c = 0 \\ d = 0 \end{cases}.$$

Vậy
$$c^2 + d^2 = 0$$
.

[1D2-4.3-2] Tổ 1 của lớp 10A có 10 học sinh gồm 6 nam và 4 nữ. Cần chọn ra 2 bạn trong tổ 1 để phân công trực nhật. Xác suất để chọn được 1 bạn nam và 1 bạn nữ là

A.
$$\frac{4}{15}$$

B.
$$\frac{6}{25}$$
.

$$\frac{1}{9}$$
.

$$\frac{\mathbf{D.}}{15}$$
.

Lời giải

Tác giả: Phùng Hoàng Cúc; Fb: Phùng Hoàng Cúc.

Chon D

Số phần tử của không gian mẫu $n(\Omega) = C_{10}^2$.

Gọi biến cố A: "Chọn được 1 bạn nam và 1 bạn nữ để phân công trực nhật."

Ta có $n(A) = C_6^1 \cdot C_4^1 = 24$.

Vậy
$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{24}{45} = \frac{8}{15}$$
.

Câu 15. [1D3-3.5-1] Nếu ba số thực a, b, c theo thứ tự lập thành một cấp số cộng thì

A.
$$a+b=2c$$
.

B.
$$b+c=2a$$
.

C.
$$ac = b^2$$
.

D.
$$a+c=2b$$
.

Lời giải

Tác giả: Phùng Hoàng Cúc; Fb: Phùng Hoàng Cúc.

Chọn D

Gọi d là công sai của cấp số cộng. Ta có $d = b - a = c - b \Rightarrow a + c = 2b$.

Câu 16. [2D1-6.2-1] Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng biến thiên như hình bên

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi

A.
$$m \in (-1,2)$$

B.
$$m \in (-1,1)$$

$$\underline{\mathbf{C}}$$
. $m \in (1,2)$

D.
$$m \in [1;2)$$

Lời giải

Tác giả: Ngọc Thanh ; Fb: Ngọc Thanh

Chon C

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi đồ thị hàm số y = f(x) và đường thẳng y = m cắt nhau tại hai điểm phân biệt $\Leftrightarrow 1 < m < 2$.

Câu 17. [2D2-4.5-2] Cho hàm số $y = (0,5)^{x^2-8x}$. Hàm số đã cho nghịch biến trên khoảng

D.
$$(-\infty;0)$$
.

Lời giải

Tác giả: Ngọc Thanh ; Fb: Ngọc Thanh

Chọn C

Xét hàm số $y = (0,5)^{x^2-8x}$ (1)

Tập xác định: $D = \mathbb{R}$.

$$y' = (2x-8).(0,5)^{x^2-8x}.\ln(0,5)$$
.

$$y' = 0 \Leftrightarrow x = 4$$
.

Bảng xét dấu đạo hàm:

Dựa vào bảng trên ta thấy hàm số (1) nghịch biến trên khoảng $(4; +\infty)$.

Mà $(9;10) \subset (4;+\infty)$, suy ra hàm số (1) nghịch biến trên khoảng (9;10).

[2D4-3.1-1] Nếu M là điểm biểu diễn số phức z = a + bi $(a, b \in \mathbb{R})$ trong mặt phẳng tọa độ **Câu 18.** Oxy thì khoảng cách từ M đến gốc tọa độ bằng

$$\mathbf{A.} \sqrt{a^2 + b^2}$$

B.
$$a^2 + b^2$$
.

C.
$$|a| + |b|$$
.

D.
$$|a| + |b|$$
.

Lời giải

Tác giả: Ngọc Thanh; Fb: Ngọc Thanh

Chọn A

Vì M là điểm biểu diễn số phức $z = a + bi(a; b \in \mathbb{R})$ nên M(a; b).

Do đó khoảng cách từ M đến gốc tọa độ là $OM = \sqrt{a^2 + b^2}$.

Câu 19. [2D3-1.3-1] Khẳng định nào sau đây là đúng?

A.
$$\int 2^{-x} dx = 2^{-x} \ln 2 + C.$$

B.
$$\int 2^{-x} dx = -2^{-x} \ln 2 + C.$$

C.
$$\int 2^{-x} dx = \frac{2^{-x}}{\ln 2} + C$$
.

$$\mathbf{D.} \int 2^{-x} dx = -\frac{2^{-x}}{\ln 2} + C.$$

Lời giải

Tác giả: Nguyễn Tình; Fb: Gia Sư Toàn Tâm

Chon D

Ta có
$$\int 2^{-x} dx = -\int 2^{-x} d(-x) = -\frac{2^{-x}}{\ln 2} + C$$
.

Câu 20. [2D2-6.1-1] Tập nghiệm của bất phương trình $\log_{0.5} x > 2$ là

$$\underline{\mathbf{A}}.$$
 $\left(0;\frac{1}{4}\right).$

B.
$$\left(-\infty;\frac{1}{4}\right)$$

B.
$$\left(-\infty; \frac{1}{4}\right)$$
. **C.** $\left(\frac{1}{4}; +\infty\right)$.

D.
$$(2^{0,5}; +\infty)$$
.

Lời giải

Tác giả: Nguyễn Tình; Fb: Gia Sư Toàn Tâm

Chọn A

Ta có:
$$\log_{0.5} x > 2 \Leftrightarrow \begin{cases} x > 0 \\ x < (0.5)^2 \end{cases} \Leftrightarrow 0 < x < \frac{1}{4}$$
.

Vậy tập nghiệm của bất phương trình đã cho là $\left(0; \frac{1}{4}\right)$.

[2D1-1.1-2] Xét các khẳng định sau **Câu 21.**

i) Nếu hàm số y = f(x) có đạo hàm dương với mọi x thuộc tập số D thì $f(x_1) < f(x_2)$

$$\forall x_1, x_2 \in D, x_1 < x_2.$$

ii) Nếu hàm số y = f(x) có đạo hàm âm với mọi x thuộc tập số D thì $f(x_1) > f(x_2)$

$$\forall x_1, x_2 \in D, x_1 < x_2.$$

iii) Nếu hàm số y = f(x) có đạo hàm dương với mọi x thuộc \mathbb{R} thì $f(x_1) < f(x_2)$

$$\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2.$$

iv) Nếu hàm số y=f(x) có đạo hàm âm với mọi x thuộc $\mathbb R$ thì $f\left(x_1\right)>f\left(x_2\right)$ $\forall\,x_1,\,x_2\in\mathbb R$, $x_1< x_2$.

Số khẳng định đúng là

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải

Tác giả: Minh Anh Phuc; Fb: Minh Anh Phuc

Chon B

+) Xét hàm số $y = f(x) = -\frac{1}{x}$. Tập xác định: $D = (-\infty; 0) \cup (0; +\infty)$.

Có
$$f'(x) = \frac{1}{x^2} > 0 \ \forall x \in D.$$

Chọn
$$x_1 = -1$$
, $x_2 = 1$ thuộc D . Ta có $f(x_1) = 1$, $f(x_2) = -1$.

Nhận thấy $x_1 < x_2$ nhưng $f(x_1) > f(x_2)$. Suy ra khẳng định i) sai.

+) Xét hàm số
$$y = f(x) = \frac{1}{x}$$
. Tập xác định: $D = (-\infty; 0) \cup (0; +\infty)$.

Có
$$f'(x) = -\frac{1}{x^2} < 0 \ \forall x \in D.$$

Chọn
$$x_1 = -1$$
, $x_2 = 1$ thuộc D . Ta có $f(x_1) = -1$, $f(x_2) = 1$.

Nhận thấy $x_1 < x_2$ nhưng $f(x_1) < f(x_2)$. Suy ra khẳng định ii) sai.

- +) Nếu hàm số y = f(x) có đạo hàm dương với mọi x thuộc \mathbb{R} thì hàm số y = f(x) đồng biến trên \mathbb{R} . Suy ra khẳng định iii) đúng.
- +) Nếu hàm số y=f(x) có đạo hàm âm với mọi x thuộc $\mathbb R$ thì hàm số $y=f\left(x\right)$ nghịch biến trên $\mathbb R$. Suy ra khẳng định iv) đúng.

Vậy có 2 khẳng định đúng.

Câu 22. [2D1-3.0-2] Xét các khẳng định sau

- i) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại $\alpha \in [-1;1]$ thỏa mãn $f(x) \ge f(\alpha)$ $\forall x \in [-1;1]$.
- ii) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại $\beta \in [-1;1]$ thỏa mãn $f(x) \le f(\beta)$ $\forall x \in [-1;1]$.
- iii) Nếu hàm số y = f(x) xác định trên [-1;1] thỏa mãn f(-1).f(1) < 0 thì tồn tại $\gamma \in [-1;1]$ thỏa mãn $f(\gamma) = 0$.

Số khẳng định đúng là

A. 3.

B. 2.

C. 1.

D. 0.

Lời giải

Tác giả: Minh Anh Phuc; Fb: Minh Anh Phuc

Chon D

Hàm số y = f(x) xác định trên [-1;1] và có đồ thị như hình vẽ

- +) Dựa vào hình vẽ ta thấy hàm số y = f(x) không có giá trị lớn nhất, giá trị nhỏ nhất trên $\begin{bmatrix} -1;1 \end{bmatrix}$ nên các khẳng định i) và ii) sai.
- +) f(-1) = -1, f(1) = 1. Ta thấy: $f(-1) \cdot f(1) < 0$ nhưng không tồn tại $\gamma \in [-1;1]$ để $f(\gamma) = 0$ nên khẳng định iii) sai.

Vậy không có khẳng định nào đúng.

Câu 23. [2D2-6.2-1] Tập hợp các số thực x thỏa mãn $\log_x 3.\log_3 x = 1$ là

A.
$$(0;+\infty)$$
.

$$\underline{\mathbf{B}_{\bullet}}(0;1) \cup (1;+\infty).$$

C.
$$\mathbb{R}\setminus\{1\}$$
.

D.
$$(1;+\infty)$$
.

Lời giải

Tác giả: Trần Thị Thúy; Fb: Thúy Minh

Chọn B

Điều kiện:
$$\begin{cases} x > 0 \\ x \neq 1 \end{cases} (*).$$

Ta có $\log_x 3.\log_3 x = 1 \Leftrightarrow \log_x x = 1$ (luôn đúng $\forall x$ thỏa mãn (*)).

Vậy tập hợp các số thực x thỏa mãn đề là $(0;1) \cup (1;+\infty)$.

Câu 24. [2D3-3.2-2] Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có một nguyên hàm là hàm

số $y = \frac{1}{2}x^2 - x + 1$. Giá trị của biểu thức $\int_{1}^{2} f(x^2) dx$ bằng

A.
$$-\frac{4}{3}$$
.

$$\frac{\mathbf{B}}{3}$$
.

$$\frac{\mathbf{C}}{3}$$
.

D.
$$\frac{2}{3}$$
.

Lời giải

Tác giả: Trần Thị Thúy; Fb: Thúy Minh

Chon B

Vì hàm số $y = \frac{1}{2}x^2 - x + 1$ là một nguyên hàm của hàm số y = f(x) nên

$$f(x) = \left(\frac{1}{2}x^2 - x + 1\right)' = x - 1, \ \forall x \in \mathbb{R} . \text{Suy ra } f(x^2) = x^2 - 1.$$

Do đó
$$\int_{1}^{2} f(x^{2}) dx = \int_{1}^{2} (x^{2} - 1) dx = \left(\frac{x^{3}}{3} - x\right)\Big|_{1}^{2} = \frac{4}{3}.$$

Câu 25. [2D4-1.1-2] Nếu z = a + bi $(a, b \in \mathbb{R})$ có số phức nghịch đảo $z^{-1} = \frac{a - bi}{4}$ thì

A.
$$a^2 + b^2 = 2$$
.

B.
$$a^2 + b^2 = 4$$
.

C.
$$a^2 + b^2 = 8$$
.

C.
$$a^2 + b^2 = 8$$
. **D.** $a^2 + b^2 = 16$.

Lời giải

Tác giả: Lê Bá Phi ; Fb:Lee Bas Phi

Chọn B

Ta có:
$$z^{-1} = \frac{a-bi}{4} \Leftrightarrow \frac{1}{z} = \frac{a-bi}{4} \Leftrightarrow \frac{1}{a+bi} = \frac{a-bi}{4} \Leftrightarrow (a+bi)(a-bi) = 4 \Leftrightarrow a^2+b^2 = 4$$
.

[2H1-3.9-2] Cho khối lăng trụ ABC.A'B'C'. Gọi V và V' lần lượt là thể tích của khối lăng trụ Câu 26. đã cho và khối tứ diện ABB'C'. Tỉ số $\frac{V'}{V}$ bằng

$$\frac{1}{3}$$
.

B.
$$\frac{1}{4}$$
.

$$C. \frac{1}{2}$$
.

D.
$$\frac{1}{6}$$
.

Lời giải

Tác giả: Lê Bá Phi ; Fb:Lee Bas Phi

Chon A

Ta có:

$$V_{{\scriptscriptstyle A.BB'C'}} = V_{{\scriptscriptstyle ABC.A'B'C'}} - V_{{\scriptscriptstyle A.A'B'C'}} - V_{{\scriptscriptstyle C'.ABC}} \, .$$

Mà
$$V_{A.A'B'C'} = V_{C'.ABC} = \frac{1}{3} \cdot V_{ABC.A'B'C'}$$
. Nên $V_{A.BB'C'} = \frac{1}{3} \cdot V_{ABC.A'B'C'}$.

Vậy
$$\frac{V'}{V} = \frac{1}{3}$$
.

[2H2-3.1-1] Cho hình chóp đều S.ABCD có ABCD là hình vuông cạnh 2a, tam giác SACvuông. Bán kính mặt cầu ngoại tiếp tứ diện SABC bằng

A. $\frac{a}{\sqrt{2}}$.

B. *a* .

 $\frac{\mathbf{C}_{\bullet}}{a}\sqrt{2}$.

D. 2a.

Lời giải

Tác giả: LêHoa; Fb:LêHoa

Chon C

- +) Gọi O là tâm hình vuông ABCD. Do S.ABCD là hình chóp đều nên ta có $SO \perp (ABCD)$.
- +) Hình vuông ABCD có cạnh $2a \Rightarrow AC = 2\sqrt{2}a \Rightarrow OA = OB = OC = \frac{AC}{2} = a\sqrt{2}$ (1).
- +) Tam giác SAC vuông tại S, có SO là đường trung tuyến \Rightarrow SO = $\frac{AC}{2}$ = $a\sqrt{2}$ (2).

Từ (1) và (2) ta có O là tâm mặt cầu ngoại tiếp tứ diện SABC.

Khi đó bán kính mặt cầu là $R = a\sqrt{2}$.

Câu 28. [2H3-2.11-1] Trong không gian Oxyz, mặt cầu tâm I(a;b;c) tiếp xúc với trục Oy có phương trình là

A.
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = a^2 + c^2$$
. **B.** $(x+a)^2 + (y+b)^2 + (z+c)^2 = a^2 + c^2$.

C.
$$(x+a)^2 + (y+b)^2 + (z+c)^2 = b^2$$
.
D. $(x-a)^2 + (y-b)^2 + (z-c)^2 = b^2$.

D.
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = b^2$$

Lời giải

Tác giả:Lê Hoa; Fb:LeHoa

Chọn A

- +) Gọi (S) là mặt cầu tâm I(a;b;c), bán kính R cần lập.
- +) Gọi I' là hình chiếu vuông góc của I lên trục $Oy \Rightarrow I' \big(\, 0; b; 0 \, \big)$.

Khi đó $d(I,Oy) = II' = \sqrt{a^2 + c^2}$.

+) Mặt cầu (S) tiếp xúc trục $Oy \Leftrightarrow R = d(I,Oy) \Leftrightarrow R = \sqrt{a^2 + c^2}$.

Vậy phương trình mặt cầu (S): $(x-a)^2 + (y-b)^2 + (z-c)^2 = a^2 + c^2$.

[2H3-3.2-2] Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;3); B(3;0;1). Mặt phẳng trung trực của đoạn thẳng AB có phương trình tổng quát là

A.
$$x-y-z+4=0$$
.

B.
$$x-y-z+1=0$$
.

C.
$$x-y-z-2=0$$
. **D.** $x+y-z-1=0$.

D.
$$x + y - z - 1 = 0$$
.

Lời giải

Tác giả: Nguyễn Huyền; Fb:Huyen Nguyen

Chon B

Gọi I là trung điểm đoạn thẳng $AB \Rightarrow I(2;1;2)$.

Ta có $\overrightarrow{AB} = (2; -2; -2) \Rightarrow \overrightarrow{AB}$ cùng phương với $\overrightarrow{n} = (1; -1; -1)$.

 (α) là mặt phẳng trung trực của đoạn thẳng $AB \Rightarrow (\alpha)$ đi qua I(2;1;2) và nhận \vec{n} làm vecto pháp tuyến. Vậy phương trình mặt phẳng (α) là: x-y-z+1=0.

[2D1-4.6-2] Tổng số đường tiêm cân đứng và đường tiêm cân ngang của đồ thi hàm số **Câu 30.** $y = \frac{\sin x^2}{x^3}$ là

A. 0.

B. 1.

- **D.** 3.

Lời giải

Tác giả: Nguyễn Huyền; Fb:Huyen Nguyen

Chon C

Xét hàm số $y = \frac{\sin x^2}{x^3}$.

+ Tập xác định $D = \mathbb{R} \setminus \{0\}$.

+ Ta có
$$\lim_{x\to 0^+} \frac{\sin x^2}{x^3} = \lim_{x\to 0^+} \left(\frac{\sin x^2}{x^2} \cdot \frac{1}{x} \right) = +\infty$$
.

Suy ra x = 0 là đường tiệm cận đứng của đồ thị hàm số.

+ Lại có
$$\left| \frac{\sin(x^2)}{x^3} \right| \le \frac{1}{|x|^3}, \forall x \ne 0.$$

Mà $\lim_{x \to +\infty} \frac{1}{|x|^3} = 0$ nên $\lim_{x \to +\infty} \frac{\sin(x^2)}{x^3} = 0$. Tương tự ta cũng có $\lim_{x \to -\infty} \frac{\sin(x^2)}{x^3} = 0$.

Suy ra y = 0 là đường tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận.

Câu 31. [2D1-6.2-3] Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình bên.

Số nghiệm của phương trình f(f(x)) = -2 là

A. 3.

B. 5.

C. 7.

D. 9.

Lời giải

Tác giả: Võ Tự Lực; Fb:Võ Tự Lực

Chon B

Dựa vào đồ thị ta có $f(f(x)) = -2 \Leftrightarrow \begin{bmatrix} f(x) = 2 \\ f(x) = -1 \end{bmatrix}$

+)
$$f(x) = 2 \Leftrightarrow \begin{bmatrix} x = x_1 = -2 \\ x = x_2 = 1 \end{bmatrix}$$
.

+)
$$f(x) = -1 \Leftrightarrow$$

$$\begin{bmatrix} x = x_3 \in (-2; -1) \\ x = x_4 \in (-1; 0) \\ x = x_5 \in (1; 2) \end{bmatrix}$$

Vậy phương trình đã cho có 5 nghiệm phân biệt.

Câu 32. [2D2-3.0-3] Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a,b,c theo thứ tự lập thành một cấp số nhân thì

A. $\ln \sin A \cdot \ln \sin C = (\ln \sin B)^2$.

B. $\ln \sin A \cdot \ln \sin C = 2 \ln \sin B$.

 $\underline{\mathbf{C.}} \ln \sin A + \ln \sin C = 2 \ln \sin B.$

D. $\ln \sin A + \ln \sin C = \ln (2 \sin B)$.

Lời giải

Tác giả: Võ Tự Lực ; Fb: Võ Tự Lực

Chọn C

- +) Áp dụng định lí sin trong tam giác ABC ta có $\begin{cases} a = 2R \sin A \\ b = 2R \sin B \\ c = 2R \sin C \end{cases}$
- +) Vì A, B, C là các góc trong tam giác nên $\begin{cases} \sin A > 0 \\ \sin B > 0 \\ \sin C > 0 \end{cases}$
- +) a,b,c theo thứ tự lập thành cấp số nhân $\Leftrightarrow a.c = b^2 \Leftrightarrow (2R\sin A).(2R\sin C) = (2R\sin B)^2$ $\Leftrightarrow \sin A.\sin C = (\sin B)^2 \Leftrightarrow \ln(\sin A.\sin C) = \ln(\sin B)^2 \Leftrightarrow \ln\sin A + \ln\sin C = 2\ln\sin B$.
- **Câu 33.** [2D2-6.2-2] Có bao nhiều số nguyên x nghiệm đúng bất phương trình $\frac{1}{\log_x 2} + \frac{1}{\log_{x^2} 2} < 5$?

A. 0.

B. 1.

<u>C.</u> 2.

D. 3.

Lời giải

Tác giả: Trương Hồng Hà ; Fb: Trương Hồng Hà

Chọn C

Xét bất phương trình $\frac{1}{\log_x 2} + \frac{1}{\log_{x^2} 2} < 5$ (1).

Điều kiện $\begin{cases} x > 0 \\ x \neq 1 \end{cases} (*).$

Với điều kiện (*) bất phương trình (1) $\Leftrightarrow \log_2 x + \log_2 x^2 < 5 \Leftrightarrow \log_2 x + 2\log_2 x < 5$

$$\Leftrightarrow \log_2 x < \frac{5}{3} \Leftrightarrow 0 < x < 2^{\frac{5}{3}} \text{ hay } 0 < x < \sqrt[3]{32}.$$

Kết hợp với điều kiện (*) và $x \in \mathbb{Z}$, ta được $x \in \{2,3\}$.

Vậy có 2 số nguyên x nghiệm đúng bất phương trình đã cho.

Câu 34. [2D1-2.1-2] Xét các khẳng định sau

- i) Nếu hàm số y = f(x) có đạo hàm cấp hai trên \mathbb{R} và đạt cực tiểu tại $x = x_0$ thì $\begin{cases} f'(x_0) = 0 \\ f''(x_0) > 0 \end{cases}$.
- ii) Nếu hàm số y = f(x) có đạo hàm cấp hai trên \mathbb{R} và đạt cực đại tại $x = x_0$ thì $\begin{cases} f'(x_0) = 0 \\ f''(x_0) < 0 \end{cases}$.
- iii) Nếu hàm số y = f(x) có đạo hàm cấp hai trên \mathbb{R} và $f''(x_0) = 0$ thì hàm số không đạt cực trị tại $x = x_0$.

Số khẳng định đúng trong các khẳng định trên là

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải

Tác giả: Trương Hồng Hà; Fb: Trương Hồng Hà

Chọn A

+) Xét hàm số $y = f(x) = x^4$ có TXĐ: \mathbb{R} ; $f'(x) = 4x^3$; $f''(x) = 12x^2$.

Ta có $f'(x) = 0 \Leftrightarrow x = 0$ và $\begin{cases} f'(x) < 0 \text{ khi } x < 0 \\ f'(x) > 0 \text{ khi } x > 0 \end{cases}$ nên hàm số $y = x^4$ đạt cực tiểu tại x = 0

nhưng f''(0) = 0. Suy ra khẳng định i) và iii) là hai khẳng định sai.

+) Tương tự, xét hàm số $y = f(x) = -x^4$ có TXĐ: \mathbb{R} ; $f'(x) = -4x^3$, $f''(x) = -12x^2$.

Hàm số $y = f(x) = -x^4$ đạt cực đại tại x = 0 nhưng f''(0) = 0 nên khẳng định ii) là khẳng định sai.

Vậy không có khẳng định đúng trong các khẳng định trên.

Câu 35. [2D3-5.14-2] Một chất điểm chuyển động trên trục Ox với tốc độ thay đổi theo thời gian v = f(t)(m/s). Quãng đường chất điểm đó chuyển động trên trục Ox từ thời điểm t_1 đến thời

điểm t_2 là $s = \int_{t_1}^{t_2} f(t) dt$. Biết rằng v(t) = 30 - 5t(m/s), quãng đường chất điểm đó đi được từ

thời điểm $t_1 = 1s$ đến thời điểm $t_2 = 2s$ bằng bao nhiều mét?

A. 32,5m.

8.22,5 m.

 \mathbf{C} . 42,5 m.

D. 52,5m.

Lời giải

Tác giả: Nguyễn Thị Ngọc Lan ; Fb: Ngoclan nguyen

Chọn B

Quãng đường chất điểm đó đi được từ thời điểm $t_1 = 1s$ đến thời điểm $t_2 = 2s$ bằng

$$s = \int_{1}^{2} (30 - 5t) dt = \left(30t - \frac{5}{2}t^{2}\right)\Big|_{1}^{2} = 22,5 m.$$

Câu 36. [2D3-5.10-2] Cho các hàm số y = f(x) và y = g(x) liên tục trên $\mathbb R$ thỏa mãn f(x) > g(x) > 0 với $\forall x \in \mathbb R$. Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức

A.
$$V = \frac{1}{3}\pi \int_{a}^{b} |(f(x))^{2} - (g(x))^{2}| dx$$
.

$$\mathbf{\underline{B.}}V = \pi \int_{a}^{b} \left| \left(f(x) \right)^{2} - \left(g(x) \right)^{2} \right| \mathrm{d}x.$$

C.
$$V = \int_{a}^{b} \left| \left(f(x) \right)^{2} - \left(g(x) \right)^{2} \right| dx$$
.

D.
$$V = \frac{1}{3} \int_{a}^{b} \left| (f(x))^{2} - (g(x))^{2} \right| dx$$
.

Lời giải

Tác giả: Nguyễn Thị Ngọc Lan; Fb: Ngoclan nguyen

Chọn B

Gọi V_1 là thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = a, x = b, (a < b) quay quanh trục Ox.

Ta có
$$V_1 = \pi \int_a^b (f(x))^2 dx$$
.

Gọi V_2 là thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số y = g(x), trục hoành và các đường thẳng x = a, x = b, (a < b) quay quanh trục Ox.

Ta có
$$V_2 = \pi \int_a^b (g(x))^2 dx$$
.

Do
$$f(x) > g(x) > 0$$
 với $\forall x \in [a;b]$ nên $V_1 > V_2$.

Thể tích khối tròn xoay cần tính bằng

$$V = V_1 - V_2 = \pi \int_a^b \left((f(x))^2 - (g(x))^2 \right) dx = \pi \int_a^b \left| (f(x))^2 - (g(x))^2 \right| dx.$$

Câu 37. [2D4-1.6-3] Xét các khẳng định sau:

i)
$$|z_1 - z_2|^2 = (z_1 - z_2)^2 \ \forall z_1, z_2 \in \mathbb{C}$$
.

ii)
$$|z_1 - z_2|^2 = (z_1 - z_2) \cdot \overline{(z_1 - z_2)} \ \forall z_1, z_2 \in \mathbb{C}$$
.

iii)
$$|z_1|^2 + |z_2|^2 = 2 \left| \frac{z_1 + z_2}{2} \right|^2 + \frac{1}{2} |z_1 - z_2|^2 \ \forall z_1, z_2 \in \mathbb{C}.$$

Số khẳng định đúng là:

A. 0.

B. 1.

<u>C.</u> 2.

D. 3.

Lời giải

Tác giả: Vũ Thị Thanh Huyền; Fb: Vu Thi Thanh Huyen

Chọn C

i)
$$|z_1 - z_2|^2 = (z_1 - z_2)^2 \ \forall z_1, z_2 \in \mathbb{C}$$
.

Cho $z_1 = i$; $z_2 = 0$, ta có: $|z_1 - z_2|^2 = 1 \neq (z_1 - z_2)^2 = -1$. Suy ra mệnh đề i) sai.

ii)
$$|z_1 - z_2|^2 = (z_1 - z_2).\overline{(z_1 - z_2)} \ \forall z_1, z_2 \in \mathbb{C}$$
.

Giả sử
$$z_1 - z_2 = x + yi (x, y \in \mathbb{R})$$
.

+)
$$|z_1 - z_2|^2 = x^2 + y^2$$
.

+)
$$(z_1-z_2).\overline{(z_1-z_2)} = (x+yi).(x-yi) = x^2+y^2$$
.

$$\Rightarrow |z_1 - z_2|^2 = (z_1 - z_2).\overline{(z_1 - z_2)} \ \forall z_1, z_2 \in \mathbb{C}$$
. Suy ra mệnh đề ii) đúng.

iii)
$$|z_1|^2 + |z_2|^2 = 2 \left| \frac{z_1 + z_2}{2} \right|^2 + \frac{1}{2} |z_1 - z_2|^2 \ \forall z_1, z_2 \in \mathbb{C}$$
.

Giả sử
$$z_1 = x + yi, z_2 = a + bi(x, y, a, b \in \mathbb{R})$$

$$\Rightarrow z_1 + z_2 = x + a + (y + b)i, z_1 - z_2 = x - a + (y - b)i.$$

Ta có:

$$2\left|\frac{z_1+z_2}{2}\right|^2 + \frac{1}{2}|z_1-z_2|^2 = \frac{1}{2}|z_1+z_2|^2 + \frac{1}{2}|z_1-z_2|^2 = \frac{1}{2}\left[\left(x+a\right)^2 + \left(y+b\right)^2 + \left(x-a\right)^2 + \left(y-b\right)^2\right]$$
$$= \left(x^2+y^2\right) + \left(a^2+b^2\right) = \left|z_1\right|^2 + \left|z_2\right|^2.$$

Suy ra mệnh đề iii) đúng.

Vậy có 2 khẳng định đúng.

Câu 38. [2H2-1.3-3] Cho hình thang cân ABCD, AB/CD, AB = 6cm, CD = 2cm,

 $AD = BC = \sqrt{13} \ cm$. Quay hình thang ABCD xung quanh đường thẳng AB ta được một khối tròn xoay có thể tích là

A. $18\pi (cm^3)$.

 B_{\cdot} 30 π (cm³).

C. $24\pi (cm^3)$.

D. $12\pi (cm^3)$.

Lời giải

Tác giả: Vũ Thị Thanh Huyền; Fb: Vu Thi Thanh Huyen

Chọn B

Kẻ $DH \perp AB$, $CK \perp AB$ với $H, K \in AB$. Suy ra HK = 2 cm.

Do ABCD là hình thang cân, AB = 6 cm, CD = 2 cm nên AH = BK = 2 cm.

Do Δ*ADH*, Δ*BCK* vuông nên $DH = CK = \sqrt{13-4} = 3cm$.

Đoạn DH quay xung quanh AB tạo thành hình tròn (C_1) tâm H, bán kính $R_1 = HD = 3 cm$.

Đoạn CK quay xung quanh AB tạo thành hình tròn (C_2) tâm K, bán kính $R_2 = CK = 3cm$.

Gọi (V_1) là thể tích khối nón đỉnh A, đáy là hình tròn (C_1) .

Gọi (V_2) là thể tích khối nón đỉnh B, đáy là hình tròn (C_2) .

Gọi (V_3) là thể tích khối trụ chiều cao HK và hai đáy là hai hình tròn (C_1) , (C_2) .

Ta có:
$$V_1 = V_2 = \frac{1}{3}\pi.DH^2.AH = \frac{1}{3}\pi.3^2.2 = 6\pi(cm^3).$$

$$V_3 = \pi . DH^2 . HK = \pi . 3^2 . 2 = 18\pi (cm^3).$$

Khi hình thang ABCD quay xung quanh đường thẳng AB ta được một khối tròn xoay có thể tích là: $V = V_1 + V_2 + V_3 = 6\pi + 6\pi + 12\pi = 30\pi (cm^3)$.

- **Câu 39.** [2H3-1.1-2] Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn $\overrightarrow{MA}.\overrightarrow{MB} = 0$. Khẳng định nào sau đây là đúng?
 - **A.** (H) là một đường tròn có bán kính bằng 4.
 - **B.** (H) là một mặt cầu có bán kính bằng 4.
 - C. (H) là một đường tròn có bán kính bằng 2.
 - $\mathbf{\underline{D.}}\left(H
 ight)$ là một mặt cầu có bán kính bằng 2 .

Lời giải

Tác giả: Vũ Việt Tiến; Fb: Vũ Việt Tiến

Chọn D

+ Gọi I là trung điểm $AB \Rightarrow I(3;0;0)$.

Ta có: $\overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow (\overrightarrow{MI} + \overrightarrow{IA}).(\overrightarrow{MI} + \overrightarrow{IB}) = 0 \Leftrightarrow (\overrightarrow{MI} + \overrightarrow{IA}).(\overrightarrow{MI} - \overrightarrow{IA}) = 0$

$$\Leftrightarrow MI^2 - IA^2 = 0 \Leftrightarrow MI^2 = IA^2 \Leftrightarrow MI = \frac{1}{2}AB = \frac{1}{2}.|5-1| = 2.$$

Suy ra tập hợp điểm M trong không gian là mặt cầu tâm I, bán kính bằng 2.

Vậy (H) là một mặt cầu có bán kính bằng 2.

Câu 40. [1H3-5.7-3] Cho khối chóp S.ABC có $(SAB) \perp (ABC)$, $(SAC) \perp (ABC)$, SA = a, AB = AC = 2a, $BC = 2a\sqrt{2}$. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng SM và AC bằng

A.
$$\frac{a}{2}$$
.

$$\mathbf{B.} \frac{a}{\sqrt{2}}.$$

C. a.

D. $a\sqrt{2}$.

Lời giải

Tác giả: Vũ Việt Tiến; Fb: Vũ Việt Tiến

Chọn B

+) Ta có
$$\begin{cases} (SAB) \perp (ABC) \\ (SAC) \perp (ABC) \Rightarrow SA \perp (ABC). \\ (SAB) \cap (SAC) = SA \end{cases}$$

- +) $AB^2 + AC^2 = 8a^2 = BC^2 \Rightarrow \triangle ABC$ vuông cân tại A.
- +) Gọi N là trung điểm AB.
- +) $AC \parallel MN \Rightarrow AC \parallel (SMN) \Rightarrow d(AC, SM) = d(AC, (SMN)) = d(A, (SMN))$.

$$+ \begin{cases} AN \perp MN \\ SA \perp MN \end{cases} \Rightarrow (SAN) \perp MN \Rightarrow (SAN) \perp (SMN); (SAN) \cap (SMN) = SN.$$

+) Trong (SAN), kẻ $AH \perp SN, H \in SN$. Ta có $AH \perp (SMN) \Rightarrow d(A, (SMN)) = AH$.

+) Vì
$$SA = AN = a \implies \Delta SAN$$
 vuông cân tại A . Do đó $AH = \frac{1}{2}SN = \frac{1}{2}SA.\sqrt{2} = \frac{a}{\sqrt{2}}$.

Vậy
$$d(AC, SM) = \frac{a}{\sqrt{2}}$$
.

Câu 41. [2H3-3.13-3] Trong không gian tọa độ Oxyz, mặt phẳng (P) tiếp xúc với mặt cầu tâm O, bán kính bằng 1, cắt 3 trục tọa độ lần lượt tại A, B, C. Giá trị nhỏ nhất của thể tích khối tứ diện OABC bằng

A. $\sqrt{3}$.

B. 1.

C. $3\sqrt{3}$.

D. $\frac{\sqrt{3}}{2}$

Lời giải

Tác giả: Hoàng Văn Phiên; Fb: Phiên Văn Hoàng

Chọn D

Giả sử (P) cắt 3 trục tọa độ Ox, Oy, Oz lần lượt tại A(a;0;0), B(0;b;0), C(0;0;c), $(abc \neq 0)$.

Mặt phẳng (P) có phương trình $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Mặt phẳng (P) tiếp xúc mặt cầu tâm O, bán kính bằng 1

$$\Leftrightarrow d\left(O,\left(P\right)\right) = 1 \Leftrightarrow \frac{1}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2 + \left(\frac{1}{c}\right)^2}} = 1 \Leftrightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1.$$

Với $\forall a \neq 0, b \neq 0, c \neq 0$ ta có:

$$\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \ge 3.\sqrt[3]{\frac{1}{\left(abc\right)^{2}}} \Leftrightarrow 1 \ge 3.\sqrt[3]{\frac{1}{\left(abc\right)^{2}}} \Leftrightarrow \left(abc\right)^{2} \ge 27 \Leftrightarrow \left|abc\right| \ge 3\sqrt{3}$$

$$\Rightarrow V_{OABC} = \frac{|abc|}{6} \ge \frac{\sqrt{3}}{2}$$
. Dấu "=" xảy ra khi và chỉ khi $a, b, c \in \{\sqrt{3}; -\sqrt{3}\}$.

Vậy giá trị nhỏ nhất của thể tích khối tứ diện OABC bằng $\frac{\sqrt{3}}{2}$.

Câu 42. [2D1-1.5-3] Có bao nhiều số nguyên m để hàm số $y = (x+m)^3 - 6(x+m)^2 + m^3 - 6m^2$ nghịch biến trên khoảng (-2; 2)?

A. 0.

<mark>B.</mark> 1.

C. 2.

D. 3.

Lời giải

Tác giả: Hoàng Văn Phiên; Fb: Phiên Văn Hoàng

Chọn B

Xét hàm số $y = (x+m)^3 - 6(x+m)^2 + m^3 - 6m^2$ (1).

Ta có $y' = 3(x+m)^2 - 12(x+m) = 3(x+m)(x+m-4)$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = -m \\ x = 4 - m \end{bmatrix}$$
.

Ta có bảng xét dấu:

x	-∞		-m		4 – m		+∞
<i>y</i> '		+	0	-	0	+	

Dựa vào bảng xét dấu ta có hàm số (1) nghịch biến trên khoảng (-m;4-m).

Do đó hàm số (1) nghịch biến trên khoảng (-2;2)

$$\Leftrightarrow \left(-2;2\right) \subset \left(-m;4-m\right) \Leftrightarrow \begin{cases} -m \leq -2 \\ 2 \leq 4-m \end{cases} \Leftrightarrow \begin{cases} m \geq 2 \\ m \leq 2 \end{cases} \Leftrightarrow m=2.$$

Vậy có 1 giá trị nguyên của *m* thỏa mãn.

Câu 43. [2H3-2.0-3] Trong không gian tọa độ Oxyz, cho 2 điểm A, B thay đổi trên mặt cầu $x^2 + y^2 + (z-1)^2 = 25$ thỏa mãn AB = 6. Giá trị lớn nhất của biểu thức $OA^2 - OB^2$ là **A.** 12. **B.** 6. **C.** 10. **D.** 24.

Lời giải

Tác giả: Lưu Thị Thủy; Fb: thuy.luu.33886

Chọn A

Cách 1:

Mặt cầu (S): $x^2 + y^2 + (z-1)^2 = 25$ có tâm I(0;0;1), bán kính R = 5.

Gọi H, K lần lượt là hình chiếu của I, O trên $AB \Rightarrow H$ là trung điểm của AB.

Nếu $OA \le OB$ thì $OA^2 - OB^2 \le 0$.

Nếu $OA > OB \Rightarrow BHO < 90^{\circ}$.

Ta có
$$OA^2 - OB^2 = (\overrightarrow{OA} - \overrightarrow{OB}) \cdot (\overrightarrow{OA} + \overrightarrow{OB}) = \overrightarrow{BA} \cdot 2\overrightarrow{OH} = 2\overrightarrow{BH} \cdot 2\overrightarrow{OH} = 4\overrightarrow{HB} \cdot \overrightarrow{HO}$$

= $4HB.HO.\cos BHO = 4HB.HK (BHO < 90^{\circ} \Rightarrow K \text{ thuộc tia } HB)$

 \leq 4*HB.IO* = 12, (*HK* là hình chiếu của *IO* trên *AB*).

Dấu "=" xảy ra khi vécto \overrightarrow{AB} cùng hướng với vécto \overrightarrow{IO} .

Vậy giá trị lớn nhất của biểu thức $OA^2 - OB^2$ là 12.

Cách 2: Trang Nguyễn Thị Thu

Mặt cầu (S): $x^2 + y^2 + (z-1)^2 = 25$ có tâm I(0;0;1), bán kính R = 5.

Ta có:
$$OA^2 - OB^2 = (\overrightarrow{OI} + \overrightarrow{IA})^2 - (\overrightarrow{OI} + \overrightarrow{IB})^2 = 2\overrightarrow{OI}(\overrightarrow{IA} - \overrightarrow{IB})$$
, (vì $IA = IB = R$)
$$= 2\overrightarrow{OI}.\overrightarrow{BA} = 2.OI.BA.\cos(\overrightarrow{OI}, \overrightarrow{BA}) \le 2OI.BA = 12.$$

Dấu "=" xảy ra khi hai véc tơ \overrightarrow{OI} , \overrightarrow{BA} cùng hướng.

Vậy giá trị lớn nhất của biểu thức $OA^2 - OB^2$ là 12.

Câu 44. [1D2-2.6-3] Cuối năm học trường Chuyên Sư phạm tổ chức 3 tiết mục văn nghệ chia tay khối 12 ra trường. Tất cả các học sinh lớp 12A đều tham gia nhưng mỗi người chỉ được đăng kí không quá 2 tiết mục. Biết lớp 12A có 44 học sinh, hỏi có bao nhiều cách để lớp lựa chọn?

A. 2^{44} .

B. $2^{44} + 3^{44}$.

 $C_{\bullet} 3^{44}$.

 $\frac{\mathbf{D.}}{6^{44}}$.

Lời giải

Tác giả: Lưu Thị Thủy; Fb: thuy.luu.33886

Chọn D

Vì mỗi học sinh lớp 12A được đăng kí 1 hoặc 2 tiết mục trong số 3 tiết mục văn nghệ nên số cách lựa chọn tiết mục văn nghệ của mỗi học sinh là: $C_3^1 + C_3^2 = 6$.

Lớp 12A có 44 học sinh đều tham gia văn nghệ nên số cách để lớp lựa chọn là: 6^{44} .

Câu 45. [2D1-3.3-3] Hàm số $y = x^4 + ax^3 + bx^2 + 1$ đạt giá trị nhỏ nhất tại x = 0. Giá trị nhỏ nhất của biểu thức S = a + b là

A. 2.

B. 0.

C. −2.

D. −1.

Lời giải

Tác giả: Ngô Quốc Tuấn; Fb: Quốc Tuấn

Chọn D

Ta có $f(x) \ge f(0), \forall x \in \mathbb{R} \iff x^4 + ax^3 + bx^2 \ge 0, \forall x \in \mathbb{R}$.

$$\Leftrightarrow x^2(x^2+ax+b) \ge 0, \forall x \in \mathbb{R} \Leftrightarrow x^2+ax+b \ge 0, \forall x \in \mathbb{R}.$$

$$\Leftrightarrow \Delta \le 0 \Leftrightarrow a^2 - 4b \le 0 \Leftrightarrow b \ge \frac{a^2}{4}$$
.

Khi đó:
$$S = a + b \ge a + \frac{a^2}{4} = \left(1 + \frac{a}{2}\right)^2 - 1 \ge -1, \forall a$$
.

Dấu "=" xảy ra khi và chỉ khi
$$\begin{cases} b = \frac{a^2}{4} \\ 1 + \frac{a}{2} = 0 \end{cases} \Leftrightarrow \begin{cases} b = 1 \\ a = -2 \end{cases}.$$

Vậy min S = -1, khi a = -2, b = 1.

- **Câu 46.** [2D2-7.1-2] Nếu hàm số y = f(x) thỏa mãn $f'(x) = (x-1)^3 (2^x 2) \log_2 x$, $\forall x > 0$ thì
 - **A.** Trên khoảng $(0; +\infty)$ hàm số y = f(x) không có điểm cực trị nào.
 - **B.** Trên khoảng $(0; +\infty)$ hàm số y = f(x) có điểm cực tiểu là x = 1.
 - C. Trên khoảng $(0; +\infty)$ hàm số y = f(x) có điểm cực đại là x = 1.
 - **D.** Trên khoảng $(0; +\infty)$ hàm số y = f(x) có nhiều hơn một điểm cực trị.

Lời giải

Tác giả: Ngô Quốc Tuấn; Fb: Quốc Tuấn

Chọn B

Trên khoảng $(0;+\infty)$, ta có: $f'(x) = 0 \Leftrightarrow (x-1)^3 (2^x - 2) \log_2 x = 0$

$$\Leftrightarrow \begin{cases} (x-1)^3 = 0 \\ 2^x - 2 = 0 \iff x = 1 \text{ (nghiệm bội 5).} \\ \log_2 x = 0 \end{cases}$$

Bảng biến thiên:

Từ bảng biến thiên, suy ra trên khoảng $(0;+\infty)$ hàm số y = f(x) có điểm cực tiểu là x = 1.

Câu 47. [2D4-3.4-3] Trong mặt phẳng tọa độ Oxy, gọi (H) là tập hợp các điểm biểu diễn hình học của

số phức
$$z$$
 thỏa mãn
$$\begin{cases} \left|z+\overline{z}\right| \geq 12 \\ \left|z-4-3i\right| \leq 2\sqrt{2} \end{cases}$$
. Diện tích của hình phẳng $\left(H\right)$ là

A. $4\pi - 4$.

B. $8\pi - 8$.

 $C. 2\pi - 4$.

D. $8\pi - 4$.

Lời giải

Tác giả: Đàm Văn Thượng; Fb: Thượng Đàm

Chọn C

Cách 1:

Trong mặt phẳng tọa độ Oxy, điểm biểu diễn số phức z = x + yi là điểm M(x; y).

Ta có
$$\begin{cases} |z + \overline{z}| \ge 12 \\ |z - 4 - 3i| \le 2\sqrt{2} \end{cases} \Leftrightarrow \begin{cases} |2x| \ge 12 \\ (x - 4)^2 + (y - 3)^2 \le 8 \end{cases} \Leftrightarrow \begin{cases} x \ge 6 \\ x \le -6 \\ (x - 4)^2 + (y - 3)^2 \le 8 \end{cases}.$$

Hình phẳng (H) là hình tô đậm trên hình vẽ.

Ta có
$$IA = IB = 2\sqrt{2}$$
, $ID = 2$ và $AB = 2AD = 2\sqrt{IA^2 - ID^2} = 4$, suy ra $AIB = \frac{\pi}{2}$.

Gọi S_1 là diện tích hình quạt AIB. Ta có $S_1 = \frac{1}{4}\pi R^2 = 2\pi$.

Diện tích tam giác AIB là $S_2 = \frac{1}{2}IA.IB = 4$.

Vậy diện tích hình phẳng (H) là $S_{(H)} = S_1 - S_2 = 2\pi - 4$.

Cách 2:

Hình phẳng (H) được biểu thị là phần tô màu trên hình vẽ (kể cả bờ), là hình giới hạn bởi đường tròn (C) có tâm I(4;3), bán kính $R=2\sqrt{2}$ và đường thẳng x=6.

Ta có
$$(x-4)^2 + (y-3)^2 = 8 \Leftrightarrow (y-3)^2 = 8 - (x-4)^2 \Leftrightarrow y = 3 \pm \sqrt{8 - (x-4)^2}$$
.

(C) cắt đường thẳng y = 3 tại 2 điểm có tọa độ $(4 \pm 2\sqrt{2}; 3)$

Gọi S_0 là diện tích của hình phẳng giới hạn bởi các đường $y = 3 + \sqrt{8 - \left(x - 4\right)^2}$, y = 3, x = 6, $x = 4 + 2\sqrt{2}$.

Ta có
$$S_{(H)} = 2.S_0 = 2. \int_{6}^{4+2\sqrt{2}} \left(\sqrt{8 - (x-4)^2} \right) dx \approx 2,2831$$
. Vậy ta chọn C .

Câu 48. [2H3-1.1-3] Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;6;0) và M là điểm thay đổi trên mặt cầu (S): $x^2 + y^2 + z^2 = 1$. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn $3MA^2 + MB^2 = 48$ có bao nhiều phần tử?

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải

Tác giả: Đàm Văn Thượng; Fb: Thượng Đàm

Chọn B

Cách 1:

- +) Mặt cầu (S): $x^2 + y^2 + z^2 = 1$ có tâm O(0;0;0), bán kính R = 1.
- +) Ta tìm điểm I(x; y; z) thỏa mãn $3\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.
- +) Có $\vec{IA} = (1-x; -y; -z), \vec{IB} = (5-x; 6-y; -z).$

+)
$$3\vec{IA} + \vec{IB} = \vec{0} \iff \begin{cases} 3(1-x) + 5 - x = 0\\ 3(-y) + 6 - y = 0\\ 3(-z) - z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -4x + 8 = 0 \\ -4y + 6 = 0 \Leftrightarrow \end{cases} \begin{cases} x = 2 \\ y = \frac{3}{2} \Leftrightarrow I\left(2; \frac{3}{2}; 0\right). \text{ Suy ra } IA = \frac{\sqrt{13}}{2}, IB = \frac{3\sqrt{13}}{2}. \\ z = 0 \end{cases}$$

+) Do đó
$$3MA^2 + MB^2 = 48 \Leftrightarrow 3\overrightarrow{MA}^2 + \overrightarrow{MB}^2 = 48 \Leftrightarrow 3\left(\overrightarrow{MI} + \overrightarrow{IA}\right)^2 + \left(\overrightarrow{MI} + \overrightarrow{IB}\right)^2 = 48$$

$$\Leftrightarrow 4MI^2 + 3IA^2 + IB^2 + 2\overrightarrow{MI}\left(3\overrightarrow{IA} + \overrightarrow{IB}\right) = 48 \Leftrightarrow 4MI^2 + 3IA^2 + IB^2 = 48 \Leftrightarrow MI = \frac{3}{2}.$$

Ta thấy $OI = \frac{5}{2}$ nên điểm I nằm ngoài mặt cầu (S). Ta có OI = R + MI = OM + MI, suy ra có một điểm M thuộc đoạn OI thỏa mãn đề bài (điểm M là giao điểm của đoạn thẳng OI và mặt cầu (S)).

Cách 2: Nguyen Trang

Gọi $M(x_0; y_0; z_0)$ thuộc mặt cầu (S) và thỏa mãn $3MA^2 + MB^2 = 48$.

Ta có:
$$3MA^2 + MB^2 = 48 \Leftrightarrow 3\left[\left(x_0 - 1\right)^2 + y_0^2 + z_0^2\right] + \left[\left(x_0 - 5\right)^2 + \left(y_0 - 6\right)^2 + z_0^2\right] = 48$$

$$\Leftrightarrow 4x_0^2 + 4y_0^2 + 4z_0^2 - 16x_0 - 12y_0 + 16 = 0 \Leftrightarrow x_0^2 + y_0^2 + z_0^2 - 4x_0 - 3y_0 + 4 = 0.$$

Suy ra
$$M$$
 thuộc mặt cầu (S') tâm $I'\left(2;\frac{3}{2};0\right)$, bán kính $R'=\frac{3}{2}$.

Mặt khác M thuộc mặt cầu (S) tâm O(0,0,0), bán kính R=1.

Ta thấy: $OI' = \frac{5}{2} = R + R' \implies \text{mặt cầu } (S) \text{ và } (S') \text{ tiếp xúc ngoài nhau tại } M$

 \Rightarrow Có duy nhất một điểm M thỏa mãn đề bài.

Câu 49. [2D1-1.11-3] Cho hàm số y = f(x) thỏa mãn f(-2) = -2, f(2) = 2 và có bảng biến thiên như hình bên

\boldsymbol{x}	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)			- ² -		→ -2 /		+∞

Có bao nhiều số tự nhiên m thỏa mãn bất phương trình $f(-f(x)) \ge m$ có nghiệm thuộc đoạn [-1;1]?

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải

Tác giả: Nguyễn Thị Huyền Trang; Fb: Nguyen Trang

Chon C

Xét bất phương trình $f(-f(x)) \ge m$ (1).

Đặt t = -f(x), với $x \in [-1;1]$ thì $t \in [-2;2]$.

Bất phương trình (1) trở thành $f(t) \ge m$ (2).

(1) có nghiệm x thuộc đoạn [-1;1] khi và chỉ khi (2) có nghiệm t thuộc đoạn [-2;2].

Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy (2) có nghiệm $t \in [-2;2]$ khi và chỉ khi $m \le 2$.

Mà $m \in \mathbb{N}$ suy ra $m \in \{0;1;2\}$.

Vậy có 3 số tự nhiên m thỏa mãn đề bài.

Câu 50. [2D3-4.1-2] Cho hàm số y = f(x) liên tục trên \mathbb{R} . Tập hợp các số thực m thỏa mãn

$$\int_{0}^{m} f(x) dx = \int_{0}^{m} f(m-x) dx \text{ là}$$

A. $(0;+\infty)$.

B. $(-\infty;0)$.

C. $\mathbb{R} \setminus \{0\}$.

D. ℝ

Lời giải

Tác giả: Nguyễn Thị Huyền Trang; Fb: Nguyen Trang

Chọn D

Xét
$$I = \int_{0}^{m} f(m-x) dx$$
.

Đặt $t = m - x \implies dt = -dx$. Đổi cận: $x = 0 \implies t = m$; $x = m \implies t = 0$.

Suy ra:
$$I = -\int_{m}^{0} f(t) dt = \int_{0}^{m} f(t) dt$$
.

Vì tích phân không phụ thuộc biến số nên $I = \int_{0}^{m} f(x) dx$.

Vậy
$$\int_{0}^{m} f(x) dx = \int_{0}^{m} f(m-x) dx, \forall m \in \mathbb{R}$$
.

----- STRONG TEAM TOAN VD VDC -----