

1 My Seminar

2 Introduction

3 Frontier & Our Work

Introduction

• Hanbury Brown and Twiss (HBT) Effect

$$egin{aligned} I_i &= \kappa \Big\langle \Big\lceil |E_k|^2 + |E_{k'}|^2 + E_k E_{k'} e^{i(k-k')\cdot r_i} + c.\,c.\,\Big
brace \Big
brace \ &\langle I_1 I_2
angle = \kappa^2 \Big\{ \langle (|E_k|^2 + |E_{k'}|^2)^2 + 2 \langle |E_k|^2
angle \langle |E_{k'}|^2
angle \cos[(k-k')\cdot (r-r')] \Big\} \end{aligned}$$

Correlation Measurement

$$\langle E_k
angle = \langle E_{k'}
angle = 0$$

$$g^{(2)} = rac{\langle I_k I_{k'}
angle}{\langle I_k
angle\langle I_{k'}
angle} = rac{\langle E_k^* E_{k'}^* E_k E_{k'}
angle}{\langle E_k^* E_k
angle\langle E_{k'}^* E_{k'}
angle}$$

Introduction

Correlated Imaging / Ghost Imaging / Single Pixel Imaging

T. B. Pittman, Y. H. Shih, et al, Phys. Rev. A. 52.R3429 (1995)

Y. H. Shih, et al, Phys. Rev. Lett. 94(6), 063601 (2005)

Introduction

Lensless Ghost Imaging (LGI)

Ghost Imaging with pseudothermal light

L. Basano and P. Ottonello, Appl. Phys. Lett. 89, 091109 (2006)

Y. H. Shih, et al, Phys. Rev. Lett. 94(6), 063601 (2005)

Remarks

- Entangled pair signals is relatively fragile and has a weak signal, which has higher requirements for the experimental environment. -- a quantum interpretation, too expensive!!
- An alternative solution: Pseudothermal Light Source, which contributes to a classical effect. Shapiro and et al proved the equivalence between quantum and semi-classical treatment.

Jeffrey H. Shapiro, Phys. Rev. A 78, 061802 (2008)

B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 77, 043809 (2008)

- There have been many studies on the further development of both methods in recent years.
- Compared with multi-pixels array, single pixel imaging is is cheaper in the visible light band, and the lensless imaging principle can be applied to non-visible light bands such as THz.

CGI and **CS**

Computational Ghost Imaging (CGI)

Jeffrey H. Shapiro, Phys. Rev. A 78, 061802 (2008)

$$B_r = \int dx dy I_r(x, y) T(x, y)$$

$$T_{GI}(x, y) = \frac{1}{M} \sum_{r=1}^{M} (B_r - \langle B \rangle) I_r(x, y)$$

 $T_{\text{CS}} = T'$ which minimizes: $\|\Psi\{T'(x,y)\}\|_{L_1}$,

Compressive Sense

subject to $\int dx dy I_r(x,y) T'(x,y) = B_r \forall_{r=1..M}$ Y. Silberberg, et al, Appl. Phys. Lett. 95, 131110 (2009)

Section 3: Frontier & Our Work

Deep Learning Implement on GI

1 convolutional

(128 x 128)

Guohai Situ, et al, Sci. Rep. 7: 17865 (2017)

Matthew P. Edgar, et al, Sci. Rep. 8: 2369 (2018)

Heng Wu, et al, Opt. Express 28, 3846-3853 (2020)

Our Work1: SP-ILC

A/DC

Lens 1

DMD

Lens 2

Ground Truth

PBS

Our Prediction

The current network has been optimizing, to fit lower sample rate and achieve real multitask of ILC.

3D Imaging on GI

B. Sun, et al, Science. 1234454 (2013)

Ming-Jie Sun, et al, Nat Commun 7, 12010 (2016) 13

Our work2: ToF 3D Imaging on-chip Implement+

- Time of Flight based
- Principle recurrence
- Difficulties Remain:

Minimum Resolution Restriction
Continuous Object Detection
Reflectivity Distribution
Denoising in Physics

• • • • •

Movement Tracking on GI

number of measurements

S. Sun, et al, Opt. Express 27, 27851-27861 (2019)

H. Hu, et al, Opt. Express 28, 37284-37293 (2020)

Our Work3: Longitudinal Movement Track

- Transverse movement can be observed by differential method. (Temporal & Spatial)
- Doppler Effect Based
- Difficulties Remain:

Multi-Object Movement

Diffuse Glitch Signal

Time Coherence Wall

Weak Signal Detection

Motion Produce

• • • • •

