Lectures notes "Signal theory: Part 1"

Ivan Markovsky Department ELEC, VUB

1 Introduction

General information about the course

• Lecturers:

- Leo Van Biesen (part 2, weeks 5, 6, 7)
- Ivan Markovsky (part 1, weeks 2, 3, 4)

• Homework for part 1:

- on Tuesday due Friday, the same week
- on Friday due Tuesday, the week after

• MATLAB:

- homework involve reading assignment, exercise problems, and numerical experiments with MATLAB
- if you are not familiar with MATLAB, follow the optional course given by Peter Zoltan

• Evaluation:

- 25% homework
- 75% open-book exam on problems similar to the exercises

Part 1 topics

- 1. Signals and systems (mostly review from a new perspective)
 - expansion of a signal in a basis; orthonormal basis
 - linear time-invariant systems; behavioral approach
 - representations of LTI systems
 - convolution
 - differential/difference equation
 - transfer function
 - state-space representation
 - the realization problem

2. Random signals

- covariance function and spectrum
- Wiener-Khintchine theorem
- stochastic systems
- · stochastic realization

3. Least-squares estimation

- underdetermined and overdetermined systems of linear equations
- · least-norm solution and least-squares approximation
- recursive least-squares approximation
- · Kalman filtering

4. Subspace methods

- deterministic subspace algorithms
- stochastic subspace algorithms

5. Compressive sensing

- ℓ_0 vs ℓ_1 -norm minimization
- LASSO

Teaching materials for Part 1

- in pointcarre: notes, homework, lecture slides
- library references

Demo noise filtering

Demo singular spectrum analysis

2 Signals and systems

Classification of signals

- examples of "physical" signals
 - sound (speech, music, noise, ...)
 - image (black/white, gray scale integer 0–255, color)
 - video (sequence of images)
 - daily exchange rates of one currency into another
- abstract representation as a function
 - notation $f: \mathscr{X} \to \mathscr{Y}$ (function from \mathscr{X} to \mathscr{Y})
 - * \mathscr{X} domain (where the function argument, say x, takes its values)
 - * \mathscr{Y} image (where the function values belong)
 - y = f(x) value of the function at the point $x \in \mathcal{X}$
 - note that the function f is not defined for values of x outside the domain, i.e., for $x \notin \mathcal{X}$
- scalar (single-channel) vs vector (multi-channel)
- · real-valued vs complex-valued
- continuous/analog (the domain is \mathbb{R}) vs discrete/sampled (the domain is \mathbb{Z})
- periodic vs non-periodic
- one-dimensional (e.g., sound) vs multi-dimensional (e.g., image and video)

Basic signals and operations with them

- · Basic signals
 - Dirak (continuous-time) and Kroneker (discrete-time) delta

$$\delta(t) = \begin{cases} 1, & t = 0 \\ 0, & \text{otherwise} \end{cases}$$

- unit step

$$s(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- constant (or DC) signal: a, where $a \in \mathbb{R}$
- rectangular pulse:

$$p_{t_1,t_2}(t) = \begin{cases} 1, & t_1 \le t \le t_2 \\ 0, & \text{otherwise} \end{cases}$$

(Represent the pulse p_{t_1,t_2} by a linear combination of shifted steps s.)

- sinusoidal signal: $a\cos(\omega t + \phi)$
- complex exponentials

$$e^{(\alpha+\beta t)+\mathbf{i}(\omega t+\phi)} = e^{\alpha}e^{\beta t} \left(\cos(\omega t+\phi)+\mathbf{i}\sin(\omega t+\phi)\right)$$

$$A := e^{\alpha} \qquad \text{amplitude}$$

$$\beta \qquad \text{damping coefficient}$$

$$\omega \qquad \text{frequency}$$

$$\phi \qquad \text{initial phase}$$

$$\omega t+\phi \qquad \text{instantaneous phase}$$

(link to a response of a second order system)

- Signal transformations
 - addition x + y
 - multiplication (modulation) xy
 - amplitude scaling ax, $a \in \mathbb{R}$
 - * |a| > 1 gain factor (ideal linear amplifier)
 - * |a| < 1 attenuation factor
 - time scaling x(at), $a \in \mathbb{R}$

(Exercise: sketch by hand and plot with MATLAB)

- shift in time

$$x(t+\tau) =: (\sigma^{\tau}x)(t), \quad \tau \in \mathbb{R}$$

- sampling (discretization in time, analog to digital conversion)
 - * uniform sampling

sample_{$$t_c$$}: $x_c \mapsto x_d$, $x_d(t) = x_c(t_s t)$, $t \in \mathbb{Z}$

- · t_s sampling time
- * loss of information (aliasing)
- * Nyquist-Shannon sampling theorem (for band limited signals, critical frequency)

* reconstruction of the continuous-time signal from the discrete-time samples via sinc interpolation is a convolution of of x_d with sinc function

$$f_{\rm c}(t) = \left(\sum_{\tau=-\infty}^{\infty} f_{\rm d}(\tau) \delta(t-\tau t_{\rm s})\right) \star {
m sinc}(t)$$

- * non-uniform sampling (sparsity, compressive sampling)
- interpolation $x_d \mapsto x_c$
 - * digital to analog conversion
 - * zero order hold
 - * linear interpolation
 - * polynomial interpolation
 - * sinc interpolation (for band limited signals)
- extrapolation: predict the signal in the future
- quantization (discretization in value) quant_{Δ}: $x_c \mapsto x_q$, $x_q(t) = \left\lceil \frac{x_c(t)}{\Delta} \right\rceil \Delta$
 - * Δ quantization level
 - * loss of information
 - * "quantization noise"
- Signal expansion in a basis
 - spaces and subspaces
 - basis of a subspace
- Transform techniques
 - integral/sum of Dirak/Kroneker deltas

$$x(t) = \dots + x(-1)\delta(t+1) + x(0)\delta(t) + x(1)\delta(t-1) + \dots = \sum_{\tau = -\infty}^{\infty} x(\tau)\delta(t-\tau)$$
 (\delta-train)

No computation required!

- (discrete) Fourier transform

$$x(t) = \frac{1}{T} \sum_{k=0}^{T-1} X(k) e^{i\frac{2\pi k}{T}t}$$
 (DFT)

Computation is required.

- Measuring the size of a signal (x with domain $[0, \infty)$)
 - total energy: $\int_0^\infty x^2(\tau) d\tau$
 - peak value: $\max_{t>0} |x(t)|$
 - root-mean-square (RMS) value

$$\sqrt{\lim_{t\to\infty}\frac{1}{t}\int\limits_0^t x^2(\tau)\,d\tau}$$

Classification of systems

- examples of "physical" systems
 - electrical circuits
 - chemical processes
 - stock markets
 - the solar system
 - behavioral approach
 - * manifest variables w
 - * the universal set \mathscr{U}
 - * behavior: the set of (allowed) signals \mathcal{B} ; the system is a prohibition rule
 - * example: the solar system, the prohibition rule are Kepler's laws
 (gravitational law + Newton's laws ← Kepler's laws ← observations)
 - a "signal processor" view of a system: map from an input signal to an output signal (an operator)
 - * notation: y = S(u)

$$u$$
 — input y — output S — system

- * block diagram
 - · building complicated systems with interconnections (summation and multiplication)
- * examples
 - · scaling system: y(t) = au(t), a is called the gain
 - · amplifier if |a| > 1
 - · attenuator if |a| < 1
 - · inverter if a < 0
 - · differentiator: y(t) = u'(t)
 - · integrator: $y(t) = \int_0^t u(\tau) d\tau$
 - time delay: y(t) = u(t T)
 - · convolution system: $y(t) = \int u(t-\tau)h(\tau)d\tau$, h is a given function
- static (memory-less) vs dynamic (with memory)
- · causal vs non-causal
- · linear vs nonlinear
 - classical definition of a linear system:
 - 1. homogeneity: S(au) = aS(u) (scaling before or after is the same, illustrate in block diagram)
 - 2. superposition: $S(u_1 + u_2) = S(u_1) + S(u_2)$ (summing before or after is the same, illustrate)
- time-invariant vs time-varying
- inputs and outputs (filters)
- response of a system

$$y = S(u) = S\left(\sum_{\tau = -\infty}^{\infty} x(\tau)\delta(t - \tau)\right) = \sum_{\tau = -\infty}^{\infty} x(\tau)S(\delta(t - \tau)) = \sum_{\tau = -\infty}^{\infty} x(\tau)h(t - \tau)$$

Homework HW

Optional reading assignments

- notes Leo part 1, sections 1.1-4
- section 1.1 (classification of signals), 1.2 (classification of systems), and chapter 2 (representation of signals and systems) from A. Oppenheim and A. Willsky, *Signals and Systems*, Prentice Hall, 1996

Problems

· System classification

- Give specific examples of:
 - * linear static system
 - * nonlinear static system
 - * linear time-invariant dynamical systems
 - · finite impulse response (FIR)
 - · infinite impulse response (IIR)
 - · scalar
 - · multivariable
 - * linear time-varying dynamical systems
 - * nonlinear time-invariant dynamical systems
 - * nonlinear time-varying dynamical systems

Response of an LTI system

- 1. Find analytically the response of 1st and 2nd order continuous-time linear time-invariant autonomous systems.
- 2. Write a function that computes the response.
- 3. Test the function on a numerical example and compare the result with the one obtained via the function lsim from Control Toolbox of Matlab.
- 4. Generalize 1–3 for a general *n*th order linear time-invariant autonomous systems.

3 Representations of LTI systems

Review of matrix algebra

Representation of static systems

- function vs relation
- image representation
- kernel representation
- input/output representation