EXERCICES — CHAPITRE 3

Exercice 1 (*) – Déterminer, dans chacun des cas,

- 1. l'image de -2, 0 et 3 par la fonction f définie sur \mathbb{R} par $f(x) = 3x^2 + 5x + 1$,
- 2. l'image de -3, 0 et 1 par la fonction g définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par $g(x) = \frac{4x+1}{2x-3}$,
- 3. l'image de -1, 0 et 3 par la fonction h définie sur \mathbb{R} par h(x) = (2x 5)(3x + 1).

Exercice 2 $(\star\star)$ – Déterminer, dans chacun des cas, et s'ils existent,

- 1. les antécédents de 2, -1 et 0 par la fonction f définie sur \mathbb{R} par f(x) = -2x,
- 2. les antécédents de 2, -1 et 0 par la fonction g définie sur \mathbb{R} par g(x) = 5x + 1,
- 3. les antécédents de 2 et 0 par la fonction h définie sur \mathbb{R} par $h(x) = 2x^2 + 1$,
- 4. les antécédents de 2, -1 et 0 par la fonction j définie sur $\mathbb{R} \setminus \left\{ \frac{2}{3} \right\}$ par $j(x) = \frac{2x+1}{3x-2}$,
- 5. les antécédents de 5 et 1 par la fonction k définie sur \mathbb{R} par $k(x) = x^2 + 5x + 5$.

Exercice 3 (\star) – Sur la figure ci-dessous, on donne la courbe représentative \mathcal{C}_f d'une fonction f. Déterminer graphiquement (aucune justification n'est demandée),

- 1. l'image de 3 par f,
- 2. f(8) et f(0),
- 3. l'ordonnée du point de C_f ayant pour abscisse 5.
- 4. les éventuels antécédents de -7 par f,
- 5. les solutions de l'équation f(x) = 0,
- 6. le tableau de signe de f,
- 7. le tableau de variation de f,
- 8. le maximum de *f* et pour quelle valeur il est atteint,
- 9. les solutions de l'inéquation f(x) > 5.

Exercice 4 (\star) – Étudier la parité de la fonction f dans chacun des cas suivants.

- 1. f définie sur \mathbb{R} par f(x) = 3x
- 2. f définie sur \mathbb{R} par $f(x) = x^2 + x$
- 3. f définie sur \mathbb{R} par $f(x) = x^3 2x$
- 4. f définie sur \mathbb{R} par $f(x) = \sqrt{2x^2 + 3}$
- 5. $f \text{ déf. sur } \mathbb{R} \setminus \{-2, 2\} \text{ par } f(x) = \frac{3}{x^2 4}$
- 6. f définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{1}{2-x}$
- 7. f définie sur \mathbb{R}^* par $f(x) = 1 \frac{1}{x^2}$

Exercice 5 (**) – Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$.

- 1. Étudier la parité de f.
- 2. On admet que f est décroissante sur $[0, +\infty[$. En déduire, grâce à la question précédente, le sens de variation de f sur $]-\infty,0]$. Dresser alors le tableau de variation de f sur \mathbb{R} .
- 3. En déduire que pour tout réel x, $0 \le f(x) \le 1$.

Exercice 6 (\star) – Tracer une courbe susceptible de représenter graphiquement la fonction f, dont le tableau de variation est donné ci-dessous.

Exercice 7 $(\star\star)$ – Soit f une fonction définie sur \mathbb{R}_+ , dont le tableau de variation est donné ci-dessous. Les affirmations suivantes sont-elles vraies ou fausses?

- 1. f est croissante sur [-1,3]
- 2. f est décroissante sur $[2, +\infty[$
- 3. $f(2) \leq f(3)$
- 4. $f(1) \ge f(2)$

- 5. $\forall x \in [0,2], f(x) \leq 1$
- 6. $\forall x \in \mathbb{R}_+, \quad f(x) \leq 3$
- 7. $\exists x \in \mathbb{R}_+, \quad f(x) < 0$
- 8. $\exists x \in \mathbb{R}_+, \quad f(x) = 4$

Exercice 8 $(\star\star)$ – Soit f une fonction définie sur \mathbb{R} . Pour chacune des implications suivantes, dire si celle-ci est vraie ou fausse. Justifier la réponse.

- 1. Si f est croissante sur [0,2], alors f est croissante sur [0,1].
- 2. Si f(0) < f(1), alors f est croissante sur [0, 1].
- 3. Si f a un maximum en 1 sur [0,1], alors f est croissante sur [0,1].
- 4. Si f n'est pas croissante sur [0, 1], alors f est décroissante sur [0, 1].

Exercice 9 (**) – Soit f la fonction définie sur [-1,1] par $f(x) = \frac{1}{3+2x^3}$. Montrer que

$$\forall x \in [-1,1], \quad 0 \leqslant f(x) \leqslant 1.$$

Exercice 10 $(\star\star)$ – Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \frac{2x^2}{1+x^2}.$$

Montrer que la fonction f est majorée par 2. En déduire que f est bornée.

Exercice 11 $(\star\star)$ –

- 1. Donner le domaine de définition ainsi que l'expression des fonctions $f \circ g$, $g \circ f$, $f \circ f$ et $g \circ g$ pour les fonctions f et g définies ci-dessous.

 - (a) $f(x) = 2x^2 x$ et g(x) = 3x + 2, (c) $f(x) = \sqrt{2x + 3}$ et $g(x) = x^2 + 2$.
 - (b) $f(x) = 1 x^3$ et $g(x) = \frac{1}{x}$,
- 2. Donner le domaine de définition des fonctions h suivantes et les mettre sous la forme d'une composée $f \circ g$, où les fonctions f et g sont à définir.
 - (a) $h(x) = \frac{x^2}{x^2 + 4}$,

(b) $h(x) = \sqrt{x^2 + 1}$.

Exercice 12 ($\star \star \star$) – Déterminer le domaine de définition des fonctions suivantes.

1. $a(x) = x^4 - 5x^2 + 2x + 1$

2. $b(x) = x + \sqrt{x}$

- 6. $f(x) = \sqrt{3x-2}$

- 2. $b(x) = x + \sqrt{x}$ 3. $c(x) = \frac{16x^2 2x + 8}{x^2 + 5x + 6}$ 4. $d(x) = \sqrt{x^2 + 3x 10}$ 5. $e(x) = \frac{x + 6}{x^2 + 5x + 1}$ 7. $g(x) = \frac{8x^2 5x + 3}{x^2 5x + 6}$ 8. $h(x) = \sqrt{x^2 3x 18}$ 9. $j(x) = \frac{1}{x} + \sqrt{x}$ 11. $l(x) = \frac{x^2 + 5x 7}{\sqrt{2x^2 + 3x 2}}$

 $+\sqrt{2x^2-3x-9}$

10. $k(x) = \sqrt{x+7}$

Exercice 13 ($\star\star$) – Montrer que la fonction f définie sur \mathbb{R} par f(x) = -3x + 4 est une bijection de \mathbb{R} dans \mathbb{R} .

Exercice 14 (\star) – Conjecturer, d'après les graphes, si les fonctions suivantes sont bijectives. On précisera bien les ensembles de départ et d'arrivée.

Exercice 15 $(\star\star)$ – Soit f la fonction f: $\begin{bmatrix} 1, +\infty \\ x \end{bmatrix} \rightarrow \begin{bmatrix} 0, +\infty \\ x^2 - 1 \end{bmatrix}$. f est-elle bijective?