Algebra from the context of the course MTH 418H: Honors Algebra

Kaedon Cleland-Host

September 22, 2021

Contents

1	Groups	2
	1.1 Inverses	2
	1.2 Symmetric Groups and Subgroups	3
	1.3 Cyclic Subgroups and Order	4
2	Homomorphisms	5
	2.2 Relations and Partitions	5

Chapter 1

Groups

Definition 1.0.1. A law of composition is a map $S^2 \to S$.

Remark. We will use the notation ab for the elements of S obtained as $a, b \to ab$. This element is the product of a and b.

Definition 1.0.2. A group is a set G together with a law of composition that has the following three properties:

- 1. **Identity** There exists an element $1 \in G$ such that 1a = a1 = A for all $a \in G$.
- 2. Associativity (ab)c = a(bc) for all $a, b, c \in G$.
- 3. Inverse For any $a \in G$, there exists $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = 1$.

Definition 1.0.3. An **abelian group** is a group with a commutative law of composition. That is for any $a, b \in G$, ab = ba.

1.1 Inverses

Definition 1.1.1. A **left inverse** of $a \in S$ is an element $l \in S$ such that la = 1.

Definition 1.1.2. A right inverse of $a \in S$ is an element $r \in S$ such that ar = 1.

Proposition 1.1.1. If $a \in S$ has a left and right inverse $l, r \in S$ then l = r and are unique.

Proof. Immediately, $la=1,\ lar=r,\ l=r.$ Now, Let $a_1^{-1}, r_2^{-1} \in S$ both be inverse of $a \in S$ We have $a_1^{-1}a=1,\ a_1^{-1}aa_2^{-1}=a_2^{-1},\ a_1^{-1}=a_2^{-1}.$ □

Proposition 1.1.2. Inverses multiply in reverse order: $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

$$(ab)b^{-1}a^{-1} = a(bb^{-1})a^{-1} = aa^{-1} = 1$$

 $b^{-1}a^{-1}(ab) = b^{-1}(a^{-1}a)b = b^{-1}b = 1$

Proposition 1.1.3. Cancellation Law For $a, b, c \in G$ if ab = ac then b = c.

Proof.

$$ab = ac$$

$$a^{-1}ab = a^{-1}ac$$

$$b = c$$

Remark. Law of cancellation may not hold for non-invertible elements.

Proposition 1.1.4. Let S be a set with an associative law of composition and an identity. The subset of elements of S that are invertible forms a group.

Proof. Let G denote the subset consisting of the invertible elements in S.

2

- 1. Closure: Let $a,b \in G$. By definition, they must have inverses $a^{-1},b^{-1} \in G$. Note that, $ab,b^{-1}a^{-1} \in S$. Now since $abb^{-1}a^{-1} = b^{-1}a^{-1}ab = 1$, ab is invertible and hence $ab \in G$.
- 2. Identity: Since $1 \in S$ and 11 = 11 = 1 it is invertible so therefore $1 \in G$.
- 3. Inverse: Immediately by definition every elements in G is invertible.

Therefore G is a group.

1.2 Symmetric Groups and Subgroups

Definition 1.2.1. A **Symmetric Group** denoted S_n is the set of unique bijections on the set $\{1, \ldots, n\}$. With function composition as the law of composition.

Remark. This is equivalent to the set of all permutations.

To denote the elements of a symmetric group we use a parentheses with element of the set $\{1, ..., n\}$ in the parentheses. Where the first elements maps the next one and the last element maps to the first one. Any elements not included map to themselves.

Example. Consider the elements $1, x, y \in S_n$ where 1 = (), y = (1, 2), and x = (1, 2, 3). Immediately we have

$$y^2 = 1$$

$$x^3 = 1$$

Through the cancellation law we find that the following elements are distinct and since $|S_n| = n!$ we have

$$S_3 = \{1, x, x^2, y, yx, yx^2\}$$

Definition 1.2.2. A group H is a **Subgroup** of G if H is subset of G, H has the same law of composition as G, and H is also a group. In other words H a group if it is a subset of G with the following properties:

- 1. Closure $a, b \in H$ then $ab \in H$.
- 2. Identity $1 \in H$.
- 3. Inverse For all $a \in H$, $a^{-1} \in H$.

Definition 1.2.3. A subgroup S of G is a **proper subgroup** if $S \neq G$ and $S \neq \{I\}$.

Theorem 1.2.1. If S is a subgroup of \mathbb{Z}^+ , then either

- $S = \{0\}$
- $S = \mathbb{Z}a$, where a is the smallest elements of S.

Proof. Let S be any subgroup of \mathbb{Z}^+ If $S=\{0\}$, the statement holds. Otherwise $S\neq\{0\}$. There exists a nonzero integer $n\in S$. If $n\in S$ then $-n\in S$ so S contains a positive integer. Let a be the smallest positive integer in S. Let (j)a denote adding a to itself j times. Since $a\in S$, we have $(2)a\in S$. Now for any $k\in \mathbb{N}$ we see that $(k+1)a=ka+a\in S$. So, by induction $ka\in S$ for all $k\in \mathbb{N}$. Now it follows that $-ka\in S$ and clearly $0\in S$. Therefore, $\mathbb{Z}a\subset S$. For any $n\in S$ use division to write n=qa+r for some integers r,q with $0\le r< a$. We know $n\in S$ and $qa\in S$. Hence $r=n-qa\in S$. Now since a is the smallest integer, we have r=0. Hence, $n=qa\in \mathbb{Z}a$ and $S\subset \mathbb{Z}a$. Therefore, $\mathbb{Z}a=S$.

Definition 1.2.4. For two integers $a, b \in \mathbb{Z}$ we sat that a divides b if $\frac{a}{b} \in \mathbb{Z}$ denoted a|b.

Definition 1.2.5. The greatest common divisor of two integers $a, b \in \mathbb{Z}$ is the integer $d \in \mathbb{Z}$ such that

$$\mathbb{Z}d = \mathbb{Z}a + \mathbb{Z}b = \{n \in \mathbb{Z} | n = ra + sb \forall r, s \in \mathbb{Z}\}\$$

Proposition 1.2.1. Properties of the greatest common divisor Let $a, b \in \mathbb{Z}$, not both zero, and let d be the greatest common divisor. Then

- 1. There are integers $r, s \in \mathbb{Z}$ such that d = ra + sb.
- 2. d|a and d|b.
- 3. If $e \in \mathbb{Z}$ such that e|a and e|a then e|d.

Proof. 1. Immediately follows because $d \in \mathbb{Z}d$

- 2. Similarly, since $a, b \in \mathbb{Z}d$ we have d|a and d|b.
- 3. Lastly, if e|a and e|b then $e|(ra+sb) \Rightarrow e|d$.

Definition 1.2.6. Two integers $a, b \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1.

Corollary 1.2.1.1. A pair $a, b \in \mathbb{Z}$ is relatively prime if an only if there are integers $r, s \in \mathbb{Z}$ such that ra + sb = 1.

Corollary 1.2.1.2. Let p be a prime integer. If p divides a product ab if integers, then at least one of p|a or p|b holds.

Definition 1.2.7. The least common multiple of two integers $a, b \in \mathbb{Z}$ is the integer $m \in \mathbb{Z}$ such that

$$\mathbb{Z}m = \mathbb{Z}a \cap \mathbb{Z}b$$

Proposition 1.2.2. Properties of least common multiple Let a, b be non-zero integers and let m be there least common multiple. Then

- 1. a|m and b|m.
- 2. If $n \in \mathbb{Z}$ such that b|n and a|n, then m|n.

Proof. Both statements follow from the definition.

Corollary 1.2.1.3. For $d = \gcd(a, b)$ and m = lcma,b then ab = dm.

1.3 Cyclic Subgroups and Order

Definition 1.3.1. Let G be a group and $x \in G$. The cyclic subgroup generated by x denoted $\langle x \rangle$ is

$$\langle x \rangle = \{\dots, x^{-2}, x^{-1}, 1, x^1, x^2, \dots\}$$

Remark. For any subgroup S that contains x we have $S \subset \langle x \rangle$.

Proposition 1.3.1. Let $\langle x \rangle \subset G$ and consider the set $S = \{k \in \mathbb{Z} | x^k = 1\}$

- 1. The set S is a subgroup of \mathbb{Z}^+
- 2. $x^r = x^s \ (r \ge s)$ if and only if $x^{r-s} = 1$.
- 3. If $S \neq \{0\}$, then $S = \mathbb{Z}n$ for some positive $n \in \mathbb{Z}$ and $\langle x \rangle = \{1, x^1, x^2, \dots, x^{n-1}\}$

Definition 1.3.2. Order of an element $x \in G$ is the smallest positive integer n such that $x^n = 1$.

Remark. The order of an elements is equal to the cardinality of the cyclic subgroup generated by that element.

Definition 1.3.3. The cyclic subgroup of order n is the cyclic subgroup generated by an element of order n.

Proposition 1.3.2. Properties of finite order subgroups Let x be an element of finite order n in a group and let $k \in \mathbb{Z}$. Let k = nq + r, where $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then

- 1. $x^k = x^r$
- 2. $x^k = 1$ if an only if r = 0.
- 3. Let $d = \gcd(k, n)$. The order of x^k is n/d.

Chapter 2

Homomorphisms

Definition 2.0.1. A homomorphism $\varphi: G \to G'$ is a map from a group G to a group G' such that for any $a, b \in G$ we have

$$\varphi(ab) = \varphi(a)\varphi(b)$$

Proposition 2.0.1. Let $\varphi: G \to G'$ be a homomorphism

- 1. $\varphi(1) = 1$
- 2. $\varphi(a^{-1}) = \varphi(a)^{-1}$ for any $a \in G$

Definition 2.0.2. A homomorphism $\varphi: G \to G$; is **injective** if $\varphi(x) = \varphi(u) \Rightarrow x = y$

Definition 2.0.3. A homomorphism $\varphi: G \to G'$ is **surjective** if for every $b \in G'$, there exists $a \in G$ such that $\varphi(a) = b$.

Definition 2.0.4. A homomorphism is **bijective** if it is both injective and surjective

Definition 2.0.5. Let $\varphi: G \to G'$ be a homomorphism

1. The **kernal** of φ denoted $\ker(\varphi)$ is the set

$$\ker(\varphi) = \{ a \in G | \varphi(a) = 1 \}$$

2. The **image** of φ denoted im(φ) is the set

$$\operatorname{im}(\varphi) = \{ b \in G' | \exists a \in G, \varphi(a) = b \}$$

Corollary 2.0.0.1. A homomorphism $\varphi: G \to G'$ is injective if $\ker(\varphi) = \{1\}$

Corollary 2.0.0.2. A homomorphism $\varphi: G \to G'$ is surjective if $\operatorname{im}(\varphi) = G'$

Definition 2.0.6. A subgroup N of a group G is **normal** if for every $a \in N$ and $g \in G$, $gag^{-1} \in N$.

Definition 2.0.7. The **conjugate** of $a \in G$ by $g \in G$ is gag^{-1} .

Proposition 2.0.2. For any homomorphism $\varphi: G \to G'$ the $\ker(\varphi)$ is a normal subgroup of G.

Definition 2.0.8. The **center** of a group G is the subgroup

$$Z = \{x \in G | zg = gz \text{for all } g \in G\}$$

Definition 2.0.9. An automorphism is an isomorphism $\varphi: G \to G$.

Lemma 2.1. G is abelian \Leftrightarrow conjugation map is the identity

2.2 Relations and Partitions

Definition 2.2.1. A **Relation** of a set X is a subset of X^2 . Conventionally written xRy rather than $(x,y) \in R$

2.2.2. Properties of Relation

1. Reflexive if xRx for all $x \in X$

- 2. Transitive if xRy and $yRz \Rightarrow xRz$
- 3. Symmetric if $xRy \Leftrightarrow yRx$

Definition 2.2.3. An **Equivalence Relation** is a relation that is Reflexive, Transitive, and Symmetric

Definition 2.2.4. A partition S of a set X is a set of subsets of X such that

- 1. S covers X, that is $X \subseteq \bigcup S$
- 2. S is **pairwise disjoint**, that is $\bigcap S = \emptyset$

Proposition 2.2.1. An equivalence relation on a set S determines a partition