GAs to Solve the TSP

Jacob House // Nabil Miri Omar Mohamed // Hassan El-Khatib

Computer Science 3201 Fall 2018

Outline

- ► The Team
- ▶ Our Approach
 - ► Population Size
 - ► Mating Pool Size
- ► Fitness Scoring
 - ightharpoonup Euclidean Distance in \mathbb{R}^2
 - ► Individual Fitness
- ► Crossover
 - ▶ The Inver-Over Crossover Operator
- Mutation
 - ▶ The Scramble Mutation Operator
- ▶ Demonstration
- ► Performance

Any Questions?

The Team

Omar Mohamed Project management

Programmer

Nabil Miri Algorithm implementation

Debugging

Jacob House Technical management

Code quality control

Hassan El-Khatib Programmer

Population Size

For a route with *n* cities, we have

$$R := n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1 = n!$$

possible routes that cover all cities

- As n grows, so does R
- Population size P should also grow with n
- We define P := 2n and choose P (not necessarily distinct) permutations of the set $\{0, 1, ..., n-1\}$ as the population

//// / /// // // //

Population Size

For a route with *n* cities, we have

$$R := n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1 = n!$$

possible routes that cover all cities

- As n grows, so does R
- Population size P should also grow with n
- We define P := 2n and choose P (not necessarily distinct) permutations of the set $\{0, 1, ..., n-1\}$ as the population

//// / /// // // //

Population Size

For a route with *n* cities, we have

$$R := n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1 = n!$$

possible routes that cover all cities

- As n grows, so does R
- Population size P should also grow with n
- We define P := 2n and choose P (not necessarily distinct) permutations of the set $\{0, 1, ..., n-1\}$ as the population

For a route with *n* cities, we have

$$R := n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1 = n!$$

possible routes that cover all cities

- As n grows, so does R
- Population size P should also grow with n
- ▶ We define P := 2n and choose P (not necessarily distinct) permutations of the set $\{0, 1, ..., n-1\}$ as the population

Our Approach

- Due to the large number of permutations of cities $c_1, c_2, c_3, \dots c_n$, many of our candidate solutions are likely very low in fitness (i.e., their total distance is very high)
- Define the mating pool size M to be

$$M := \left\lfloor \frac{1}{2} \cdot P \right\rfloor$$

Our Approach

Due to the large number of permutations of cities $c_1, c_2, c_3, \dots c_n$, many of our candidate solutions are likely very low in fitness (i.e., their total distance is very high)

 \triangleright Define the mating pool size M to be

$$M := \left| \frac{1}{2} \cdot P \right|$$

Fitness Scoring

Euclidean Distance in \mathbb{R}^2

 Euclidean distance is computed using the formula

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
. $A_{(-1,-1.5)}$

ightharpoonup Line \overrightarrow{AB} measures

$$\|\overrightarrow{AB}\| = \sqrt{(2+1)^2 + (2.5+1.5)^2}$$
$$= \sqrt{9+16}$$
$$= 5$$

Fitness Scoring

Euclidean Distance in \mathbb{R}^2

 Euclidean distance is computed using the formula

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
. $A_{(-1,-1.5)}$

ightharpoonup Line \overrightarrow{AB} measures

$$\|\overrightarrow{AB}\| = \sqrt{(2+1)^2 + (2.5+1.5)^2}$$

= $\sqrt{9+16}$
= 5

Fitness Scoring Individual Fitness

▶ Let I_m with $0 \le m < P$ be a candidate solution of the form

$$I_m = \left(C_{c_m(\bar{1})}, C_{c_m(\bar{2})}, C_{c_m(\bar{3})}, \dots, C_{c_m(\bar{n})} \right),$$

where $c_m \colon \mathbb{Z}_n \to \{0, 1, 2, \dots, n-1\}$ is a bijection between congruence classes of indices of the *n*-tuple I_m and the indices of cities.

▶ For example, if n = 7 and c_1 is defined by

$$c_1 \colon \overline{0} \mapsto 4$$
 $c_1 \colon \overline{1} \mapsto 6$ $c_1 \colon \overline{2} \mapsto 2$ $c_1 \colon 3 \mapsto 1$
 $c_1 \colon \overline{4} \mapsto 3$ $c_1 \colon \overline{5} \mapsto 5$ $c_1 \colon \overline{6} \mapsto 0$

then l_1 looks like

$$I_1 = (C_4, C_6, C_2, C_1, C_3, C_5, C_0)$$
.

Fitness Scoring Individual Fitness

▶ Let I_m with $0 \le m < P$ be a candidate solution of the form

$$I_m = \left(C_{c_m(\bar{1})}, C_{c_m(\bar{2})}, C_{c_m(\bar{3})}, \dots, C_{c_m(\bar{n})}\right),$$

where $c_m \colon \mathbb{Z}_n \to \{0, 1, 2, \dots, n-1\}$ is a bijection between congruence classes of indices of the *n*-tuple I_m and the indices of cities.

▶ For example, if n = 7 and c_1 is defined by

$$c_1 \colon \overline{0} \mapsto 4$$
 $c_1 \colon \overline{1} \mapsto 6$ $c_1 \colon \overline{2} \mapsto 2$ $c_1 \colon 3 \mapsto 1$
 $c_1 \colon \overline{4} \mapsto 3$ $c_1 \colon \overline{5} \mapsto 5$ $c_1 \colon \overline{6} \mapsto 0$

then I_1 looks like

$$I_1 = (C_4, C_6, C_2, C_1, C_3, C_5, C_0)$$
.

▶ Then define I_m 's overall fitness score $F(I_m)$, to be the summation

$$F(I_m) := \sum_{i=0}^{n-1} \left\| \overline{C_{c_m(\bar{j})} C_{c_m(\bar{j}+1)}} \right\|,$$

where $\left\| \overrightarrow{C_{c_m(\check{j})}} \overrightarrow{C_{c_m(\check{j}+1)}} \right\|$ is the Euclidean distance between city $C_{c_m(\check{j})}$ and the following city on route m, $C_{c_m(\check{j}+1)}$.

► Hence, the fittest individuals have the *lowest* score.

▶ Then define I_m 's overall fitness score $F(I_m)$, to be the summation

$$F(I_m) := \sum_{i=0}^{n-1} \left\| \overrightarrow{C_{c_m(\tilde{j})}} C_{c_m(\overline{j+1})} \right\|,$$

where $\left\| \overrightarrow{C_{c_m(\bar{j})}} C_{c_m(\bar{j}+1)} \right\|$ is the Euclidean distance between city $C_{c_m(\bar{j})}$ and the following city on route m, $C_{c_m(\bar{j}+1)}$.

▶ Hence, the fittest individuals have the lowest score.

For our advanced technique, we have chosen to implement the *inver-over* crossover operator which functions according to the following algorithm.

- 1. Pick an individual parent₁ and copy it to child
- Then pick two loci from parent₁ that depend on another individual parent₂ from the population
- Invert everything between these loci in child
- Repeat this process with the resulting offspring and another individual parent; until a stopping condition is reached

For our advanced technique, we have chosen to implement the *inver-over* crossover operator which functions according to the following algorithm.

- 1. Pick an individual parent₁ and copy it to child
- 2. Then pick two loci from $parent_1$ that depend on another individual $parent_2$ from the population
- 3. Invert everything between these loci in child
- Repeat this process with the resulting offspring and another individual parent; until a stopping condition is reached

For our advanced technique, we have chosen to implement the *inver-over* crossover operator which functions according to the following algorithm.

- 1. Pick an individual parent₁ and copy it to child
- 2. Then pick two loci from $parent_1$ that depend on another individual $parent_2$ from the population
- 3. Invert everything between these loci in child
- Repeat this process with the resulting offspring and another individual parent; until a stopping condition is reached

For our advanced technique, we have chosen to implement the *inver-over* crossover operator which functions according to the following algorithm.

- 1. Pick an individual parent₁ and copy it to child
- 2. Then pick two loci from $parent_1$ that depend on another individual $parent_2$ from the population
- 3. Invert everything between these loci in child
- 4. Repeat this process with the resulting offspring and another individual *parent*_i until a stopping condition is reached

For our advanced technique, we have chosen to implement the *inver-over* crossover operator which functions according to the following algorithm.

- 1. Pick an individual $parent_1$ and copy it to child
- 2. Then pick two loci from $parent_1$ that depend on another individual $parent_2$ from the population
- 3. Invert everything between these loci in child
- 4. Repeat this process with the resulting offspring and another individual *parent*_i until a stopping condition is reached

The scramble mutation operator, given an individual represented as a sequence of integers, typically performs the following.

- 1. Picks two loci to form a segment
- Randomly shuffles all information within the selected segments

//// / /// // // //

3. Returns the mutated individual

However, we have slightly modified this operator...

The scramble mutation operator, given an individual represented as a sequence of integers, typically performs the following.

- 1. Picks two loci to form a segment
- Randomly shuffles all information within the selected segments

//// / /// // // //

3. Returns the mutated individual

However, we have slightly modified this operator...

The scramble mutation operator, given an individual represented as a sequence of integers, typically performs the following.

- 1. Picks two loci to form a segment
- Randomly shuffles all information within the selected segments

//// / /// // // //

3. Returns the mutated individual

However, we have slightly modified this operator...

We have added another condition to the operator...

Define a mutation factor $m \in (0,1)$. Then the distance between the two chosen loci (i.e., the size of the mutation) can be no less than m multiplied by the length of the individual n.

In other words, we have enforced that the product $m \cdot n$ is the infimum of the possible severities of the mutation.

Mutation

The Scramble Mutation Operator

We have added another condition to the operator:

Define a mutation factor $m \in (0,1)$. Then the distance between the two chosen loci (i.e., the size of the mutation) can be no less than m multiplied by the length of the individual n.

In other words, we have enforced that the product $m \cdot n$ is the infimum of the possible severities of the mutation.

We have added another condition to the operator:

Define a mutation factor $m \in (0,1)$. Then the distance between the two chosen loci (i.e., the size of the mutation) can be no less than m multiplied by the length of the individual n.

In other words, we have enforced that the product $m \cdot n$ is the infimum of the possible *severities* of the mutation.

Demonstration

Performance

content...

Any Questions?

