

Combinatorics and Algorithms Design

C & A

Yuchun Ma(马昱春) Ying Zhao (赵颖)

Information

Prof. Yuchun Ma

Email: myc@mail.tsinghua.edu.cn

Office: East main building 8-424

• TA:

Zijian Lv

(Email: <u>lvzj19@mails.tsinghua.edu.cn</u>)

Kai Su

(Email: suk19@mails.tsinghua.edu.cn)

Introduce yourself!

WeChat group

该二维码7天内(9月20日前)有效,重新进入将更新

Your ID to be Student ID+Name(English/Chinese)

Introduce the course!

C & A

extbook:

[1] Richard Brualdi, *Introductory Combinatorics*, fifth edition https://item.jd.com/10059101.html

Office Hour?

1								
1	九	14	15	16	17	18	19	20
2		21	22	23	24	25	26	27
		28	29	30				
3					1	2	3	4
4	j i	5	6	7	8	9	10	- 11
5	+	12	2 13		15	16	17	18
6		19	20	21	22	23	24	25
_	j	26	27	28	29	30	31	
7								- 1
8		2	3	4	5	6	7	- 8
9		9	10	11	12	13	14	15
10	16		17	18	19	20	21	22
11		23	24	25	26	27	28	29
		30						
12			l	2	3	4	- 5	- 6
13		7	8	9	10	11	12	13
14	+=	14	15	16	17	18	19	20
15		21		23	24	25	26	27
		28	29	30	31			
16						1	2	3
17	i	4	5	6	7	8	9	10

- 9.14 Introduction
- 9.17 Permutation and Combination
- 9.21 Permutation and Combination
- 9.24 Generating permutations
- 9.28 IEP
- 10.5 pigeon-hole
- 10.8 Summary and Practice
- 10.10 Generating Function
- 10.12 Generating Function
- 10.15 Magic sequences
- 10.19 Summary and Practice
- 10.22 Linear Programming
- 10.26 Linear programming
- 10.29 Summary
- Week 8 Final Exam

Course Materials

attp://learn.tsinghua.edu.cn/

学堂公告 Notice

网络学堂2018版使用说明

各位老师、同学:

为了方便大家使用网络学堂2018版,我们制作了

2019-07-12

查看详情

关于2018版网络学堂用户使用培训的通知

各位老师、同学:

根据学校教学活动安排,从2018-2019学年度...

2019-01-15

查看详情

关于2001版、2015版、2018版网络学堂系统...

各位老师、同学:

根据学校教学活动安排,从2018-2019学年度春季学

2019-01-10

查看详情

A + 1 / 1 -- 1 TT

2020-09-13

O 7

Combinatorics and Algorithms Design (70240384-0)

Time and Location: Section 3 of Mon (Week all), 四教4303; Section 6 of Thur (Week all), 四教-

√) Notices
...

Zhumu Meeting ID

Works

Title Uncommitted / Submitted Deadline (GMT+8)

You hadn't assign any coursework. Click here to assign coursework

Homework

Announced on learning.tsinghua.edu.cn

- Word file with questions provided.
- Online Submission: pdf file only.
- Detailed explanation is needed.
- Handwritten or typed. (Recommend you to print the HW sheet out and handwrite all the answers and then scan your answer sheet to pdf file.)
- Due time: Monday 9:00am
- Late submission is not accepted. The maximal extension would be on Thursday 10am by email, but each people is allowed only once. Otherwise, 0 point.

Supporting materials

Courses ▼ Programs ▼ Schools & Partners

About ▼

Search:

Home > All Subjects > Math > Combinatorial Mathematics 组合数学

Combinatorial Mathematics 组合 数学

Discover how to apply counting principles and combinatorics to solve problems in computer science, financial analysis, and your daily life.

https://www.edx.org/course/combinatorial-mathematics-zu-heshu-xue-tsinghuax-60240013x-2

Are you a MOOCer?

- A I never heard MOOC before.
- B I heard MOOC before, but never learn a course.
- I have taken 1-3 MOOC courses.
- I have taken several MOOC courses and finished some of them.

What is Combinatorics

What are those videos?

- Around 80% course knowledges could be found in the videos.
 - Pre-class video: learn by your self
 - Online-quiz
 - In-class Quiz
 - Post-class video: Help you to understand the lecturing, self-learning
 - Supporting video: Related with your homeworks/projects

Learning process in this course Pre-class

- RainClassroom
 - Short videos and Online quizzes (5 points)
- In-class
 - Quizzes (2 points)
 - Lecturing
 - Interactive quizzes
- After-class
 - Links of Supporting videos
 - Playback or video links
 - Homework (10 points)
 - Programming tasks 4 tasks from 5 (8 points)

Final Exam 25 points

Substitute 2 points
Extra open projects
Contribution

Evaluation

Grades: 50 points.

- Homework : 10 points; paper work;
- Online-quiz: 5 points
- In-class quiz or Substitute: 2 points
- •Online Programming tasks: 8 points
- •Final Exam : 25 points
 - If you are going to be absent on the day of an examination, you must provide a University-approved excuse for your absence before the day of the examination.

Open Projects

Besides OJ tasks, you may implement your own projects about combinatorics.

- Any topics related to combonarotics are welcome.
- Novelty and Interesting
- Write a report or paper about your projects.
- Submit the package on learn. Tsinghua.edu.cn
 - Code C/C++/Python
 - Readme file
 - Report/paper

Rules in forum/weChat group

- No answers, only ideas!
- Anything related with combinatorics
- Any comments
- Any suggestions

Policies

Policy on Cheating: If you copy a classmate's assignment or permit a classmate to copy your assignment, you are cheating. If you have received help with an assignment problem, we expect that you will write out a solution in your own words. If you are cheating, your mark will be 0.

Policy on Lectures and Assignments: Students are expected to attend all lectures and to submit all assignments for grading.

Survey

Chapter 1 What is Combinatorics

Combinatorics is a branch of pure **mathematics** concerning the study of **discrete** (and usually finite) objects. It is related to many other areas of mathematics, such as algebra, probability theory, ergodic theory and geometry, as well as to applied subjects in **computer science** and statistical physics.

http://en.wikipedia.org/wiki/Combinatorics

Combinatorics is concerned with the Existence, Enumeration, Analysis, and Optimization of discrete structure.

Discrete Structure

- Discrete Structure
 - Fundamentally discrete rather than continuous
 - Discrete objects can often be enumerated by integers
 - Dealing with countable sets

123

Red Green Blue

Arrangement of Discrete Structure

Given three integers $\{1,2,3\}$, how to arrange them in a sequence in which each integer appear once and only once?

1 3 2

2 1 3 2 3 1

3 1 2

- Arrangement
 - A set of objects are arranged such that certain requirements are satisfied. Existence
 - Is the arrangement always possible?
 - A specified arrangement is possible and there are several ways of achieving it.
 - Count their number

Enumeration

- Classify them into types
- Investigate the properties and structures.
 - Whether the structure has implications for the classification problem Analysis
 - Whether it has potential applications?
- More than one arrangement is possible.
 - Find a best or optimal arrangement.

Optimization

Arrangement of Discrete Structure

Combinatorics is concerned with the

Existence, Enumeration, Analysis, and Optimization

of discrete structure.

- Arrangement
 - A set of objects are arranged such that certain requirements are satisfied.

 Existence
 - Is the arrangement always possible?
 - A specified arrangement is possible and there are several ways of achieving it.
 - Count their number

Enumeration

- Classify them into types
- Investigate the properties and structures.
 - Whether the structure has implications for the classification problem

 Analysis
 - Whether it has potential applications?
- More than one arrangement is possible.
 - Find a best or optimal arrangement.

Optimization

History of Combinatorics

- Combinatorics is an old but also young branch of mathematics
 - As old as 4200 years
 - Legend of Lo Shu(洛书) "scroll of the river Lo":

The great king Yu (2205BC -2105BC)

Magic Square

4 9 2

3 5 7

8 1 6

magic square: a square array of numbers in which the sum of all rows, all columns and both diagonals is the same.

- a magic square of order n is an arrangement of n² numbers, usually distinct integers, in a square, such that the n numbers in all rows, all columns, and both diagonals sum to the same constant.
- A normal magic square contains the integers from 1 to n².
- The constant sum in every row, column and diagonal is called the magic constant or magic sum, M.

$$Sum = 1 + 2 + 3... + n^2 = \frac{n^2(n^2 + 1)}{2}$$
 $n*M = Sum$ $M = \frac{n(n^2 + 1)}{2}$

If I want to put 2,4,6....2*42 into a 4*4 grids to construct a magic square, how much is the magic sum?

- A 15
- В 34
- 68
- D 272

Existence?

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Do you think the magic square in 2*2 grids exists?

- A Yes!
- B No!

Existence

Mormal magic squares exist for all orders n

- \geq 1 except n = 2,
 - -n = 1 is trivial, consisting of a single cell containing the number 1.

- n=2 magic sum:
$$M = \frac{n(n^2+1)}{2} = \frac{2(2^2+1)}{2} = 5$$

•
$$\{1,2,3,4\}$$
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ a,b,c,d are different integers from $\{1,2,3,4\}$

$$a + b = 5$$

$$c + d = 5$$

$$a + d = 5$$

$$c + b = 5$$

$$b - d = 0$$
; $b=d$. **CONFLICT**

Magic square of order 2 does not exist!

HOW TO CONSTRUCT A MAGIC SQUARE?

Construction

Given {1,2,3...9}, how to construct a magic square?

- A method for constructing magic squares of odd order was published by the French diplomat de la Loubère in his book. (Du Royaume de Siam, 1693),
 - Starting from the central column of the first row with the number 1,
 - the fundamental movement for filling the squares is diagonally up and right, one step at a time.
 - If a filled square is encountered, one moves vertically down one square instead, then continuing as before.
 - When a move would leave the square, it is wrapped around to the last row or first column, respectively.

8
1
6
3
5
7
4
9
2

石[接易] 术⁽¹⁾ 日;以十六子依次第作四行排列。先以外四角对换; - 换+六。四集+三、复以内四角对换。六卷+一-七换 十. 模直上下斜讹⁽¹⁾、皆三十四数。对换止可施之于小。又总术。⁽¹⁾

13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4

求积数 术(12)曰:并上下数,上一下十六,共十七,以高数十

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

So it can be seen that the secrets behind the ordering in magic squares

Archimedes

Archimedes (Greek 287 BC – 212 BC)

- The greatest mathematician of antiquity and one of the greatest of all time;
- Founder of the modern science
- The Golden Crown
 - Assess the purity of an irregular golden votive crown.
 - Balance the crown against pure gold in air, and then submerge the scale with crown and gold in water to see if they still balance.
- Law of lever

Give me a place to stand on, and I will move the Earth.

Archimedes's scrolls

- **Archimedes Palimpsest ['pælim(p)sest]**
 - Copy of Archimedes work
 - Made in the 10th century
 - Original Archimedes codex was unbound, scraped and washed, along with at least six other parchment manuscripts
 - Stomachion (Tiling) a 14-piece dissection puzzle forming a square
 - Archimedes discussed the *number of* ways to put the pieces back in their box.
 - 17,152 if allow them to be turned over;
 - 64 if not allow them to be turned over

palimpsest, the original Archimedes text is

Jia Xian Triangle

划ia Xian (贾宪) (approximately 1010-1070 AD)

 Jia Xian Triangle / Pascal Triangle around the first half of 11th century, about 500 years before Pascal

Each number in the triangle is the sum of the two directly above it.

Combinatorics

Leibniz invented the name of Combinatorics in his essay *Dissertatic de arte combinatoria* (1666)

- Applications
 - Physical science (with the application of traditional mathematics)
 - Social science
 - Biological sciences
 - Information theory
 - etc.

75ING. 12154.

2013年中国网球公开赛男单签表 第一轮 第二轮 1/4决赛 半决赛 決赛 冠军 (1)德约科维奇(塞尔维亚) 罗索尔(捷克)

32 A BELLE Players

555				分	でまり] _							
	2013年中					-	_	第一轮	第二轮	第三轮	1/4决 赛	半决	凄	
	第一轮	第二轮	第三轮	1/4决赛	半决赛	央赛	-			313—14	轮			
	(5)埃拉尼(意大利)								(1)小威廉姆斯(美国)					
	菲利普肯斯(比利时)						-		维斯妮娜(俄罗斯)					
	资格赛球员								斯齐亚沃尼(意大利) 科内特(法国)					
	资格赛球员						-		基里连科(俄罗斯)					
	勒普琴科(美国)								郑洁(中国)					
	沃特森(英国)						-		Ⅵ-拉德万斯卡(破兰)					
	首轮轮空	(5) X) 47 4+ 3 + 5					1		(16)畸勸普(罗马尼					
	(9)科维托娃(捷克)	(9)科 赶娃(克)			M				(1 斯克罗美) 文化是主义。加拿大 资格赛球员	PIS				
	(13)利斯基(德国)								(1 斯克文 美) 义					
	资格赛球员				T				次数字形 (加字/)					
	首轮轮空							1	莱巴里科娃 (斯洛伐					
	大威廉姆斯(美国)	大威廉姆斯(美国)					-		克)					
	雅瓦诺夫斯基(塞尔维亚)								贝克(德国)					
	科斯蒂亚(罗马尼亚)						-		尼库莱斯库 (罗马尼					
	汉图楚娃(斯洛伐克)					H				(6)沃兹尼亚奇				
	(4)李娜(中国)						-		(6)沃兹尼亚奇(丹麦)	(丹麦)				
	(8)扬科维奇(塞尔维/)			((3)4-拉德古斯卡(3					1
	帕芙柳琴科娃(俄罗	LOW			ar			hh		<u>les</u>				
	资格赛球员 👢 👤				9. <u>I</u> .		V		び格 凯斯(美国)					
	资格赛球员					_	V		凯斯(美国)					
	巴瑟尔(德国)								齐布尔科娃 (斯洛伐					
	资格赛球员					H	-		克) 资格赛球员					
	梅拉德诺维奇(法国)								普依格(皮多黎各)					
	(12)纳瓦罗(西班牙)					H	-		佩内塔(意大利)					
	(15)斯托瑟(澳大利亚)					H			(14)伊万诺维奇 (塞尔					
	萨法洛娃(捷克)								维亚)					
	卡内皮(爱沙尼亚)								(10)文奇(意大利)					
	格尔格斯(德国)								斯维托里娜(乌克兰) 张帅(中国)					
	謝淑薇(中华台北)								彭帅(中国)					
	库兹涅佐娃(俄罗斯)								扎科帕洛娃(捷克)					
	<u> </u>								TOTAL PROPERTY OF					

Model Transform

A large tournament has 100 entrants in total. If it is a single elimination tournament, how many matches have to be played out before the champion can be decided?

- A: There is a one to one correspondence between the number of matches and the number of player eliminated.
- Totally, 99 matches.

What are you expected to do?

- Get familiar with learn. Tsinghua.edu.cn
 - After-class materials
 - Slides
 - Playback or Video links posted on web
 - HW (Due on Sep.21)

Before next class(Thursday)

Quiz

- Get familiar with RainClassroom
 - Pre-class Slides with videos
 - 4 basic counting principles
 - Online quizzes

●●○○○ 中国电信 令

·How many ar

Summary

Combinatorics is concerned with the

Existence, Enumeration, Analysis, and Optimization of discrete structure.

Learn, Practice and Use Math! Keep up with course paces

