SVILUPPO, ANALISI E IMPLEMENTAZIONE DI UN ALGORITMO OTTIMIZZATO PER LE RETI DI CONVOLUZIONE

Realizzato da: Al Sadi Amir Saccone Nicolò

SISTEMI DIGITALI M AA 2019/2020

CNN: CONVOLUTIONAL NEURAL NETWORK

- Con CNN si intende una categoria di reti neurali largamente utilizzata in ambito di applicazioni di visione artificiale in grado di elaborare segnali di diverso tipo come immagini o suoni.
- Una rete di convoluzione neurale è solitamente composta da qualche migliaia di livelli detti layer di convoluzione aventi ognuno specifiche caratteristiche e finalità.

LAYER DI CONVOLUZIONE

- Un layer di convoluzione è uno dei tanti elementi che compongono una CNN. Comunemente esso ha come ingressi:
 - Un' immagine sottoforma di matrice di pixel.
 - Una matrice di convoluzione detta kernel, i cui valori determinano l'effetto in uscita.
- L'operazione , chiamata convoluzione, determina una nuova immagine in uscita di dimensione pari all' ingresso.

ALGORITMO DI MAPPING SU INTERI

CASO DI STUDIO

- Immagini in input di dimensione 640x480 (formato compatibile con VGA) con pixel a 8-bit grayscale.
- Kernel di convoluzione di dimensione 3x3 e 7x7 e separabili , per poter analizzare i risultati dell'algoritmo in entrambi le versioni: separabile e standard.
- Valori dei kernel rappresentati da float a 32 bit, ridotti tramite l'algoritmo stocastico.
- Report delle risorse utilizzate da un layer tramite il tool Vivado HLS e analisi della qualità delle immagini in uscita allo stesso tramite gli indici MSE,RMSE e SSIM.

ANALISI RISORSE UTILIZZATE CON KERNEL 3X3

- Utilizzo di un kernel gaussiano separabile.
- Grosso guadagno di memoria rispetto alla convoluzione senza algoritmo stocastico.
- Trend in calo non soddisfacente del consumo di memoria al variare del numero di bit allocati per i dati.

Motivi:

- Vivado HLS.
- Cast interni al codice.
- Matrice di appoggio per la convoluzione.
- Valori assegnati a IL e FL.

LEG	ENDA	
	CONVOLUZIONE TRADIZIONALE	CASO KERNEL
	CONVOLUZIONE CON KERNEL SEPARABILE	3x3
	RIGA SENZA OTTIMIZZAZIONE (CONV. con FLOAT)	

RISORSE UTILIZZATE N° BIT	LATENCY (Clock cycles)	LATENCY (Clock cycles)	CLOCK ESTIMATED (ns)	CLOCK ESTIMATED (ns)	BRAM (18k)	BRAM (18k)	FF(106400 DISPONIBILI)	FF(106400 DISPONIBILI)	LUT(53200 DISPONIBILI)	LUT(53200 DISPONIBILI)
10	308371	308372	8.585	8.585	2	2	3209	3255	6560	6446
12	308371	308372	8.609	8.585	2	2	3209	3262	6562	6458
14	308371	308372	8.638	8.585	2	2	3109	3280	6564	6494
16	308371	308372	8.638	8.585	2	2	3198	3298	6564	6511
24	308372	308372	8.585	8.585	2	2	3225	3507	6568	6559
32	308371	308371	8.585	8.585	2	2	3208	3059	6677	6407
32	308435	308412	8.666	8.666	2	2	11167	7564	18756	13453

ANALISI RISORSE UTILIZZATE CON KERNEL 7X7

- Utilizzo di un kernel gaussiano separabile.
- I risultati riconfermano le supposizioni nel caso 3x3 nel confronto fra l'algoritmo classico e stocastico.
- Trend leggermente più marcato rispetto al caso 3x3.
- A un maggior numero di moltiplicazioni corrisponde un consumo più elevato di memoria.

LEG	SENDA								
		IONE TRADIZ	IONALE ERNEL SEPAR	ABILE	C	ASO KI			
			ZIONE (CONV.			, 12	,		
	RISORSE	LATENCY	LATENCY						

N° BIT	LATENCY (Clock cycles)	LATENCY (Clock cycles)	CLOCK ESTIMATED (ns)	CLOCK ESTIMATED (ns)	BRAM (18k)	BRAM (18k)	FF(106400 DISPONIBILI)	FF(106400 DISPONIBILI)	LUT(53200 DISPONIBILI)	LUT(53200 DISPONIBILI)
10	310620	310621	8.655	8.585	6	6	3688	3255	7254	6560
12	310620	310620	8.655	8.609	6	6	3690	3262	7256	6562
14	310620	310620	8.655	8.638	6	6	3692	3280	7258	6564
16	310620	310620	8.698	8.638	6	6	3684	3298	7243	6564
24	310620	310621	8.698	8.585	6	6	3684	3507	7243	6568
32	308371	310619	8.585	8.742	6	6	3746	3203	8073	6695
32	311252	310768	8.666	8.666	6	6	68349	19088	119461	33202

ANALISI QUALITATIVA DELLE IMMAGINI

- Confronto puntuale dei valori dei pixel dell'immagine in uscita dalla convoluzione a piena precisione realizzata con il tool Vivado HLS con quelli dell'immagine convoluta tramite Open CV.
- Colorazione in grigio dei pixel che hanno differenza in valore assoluto di massimo 2 unità ed in nero gli altri.
- In entrambi i casi 3x3(sinistra) e 7x7(destra) i risultati presentano delle disparità sui bordi.

ANALISI QUALITATIVA CON KERNEL 3X3

- Utilizzo di IL e FL differenti fra caso tradizionale e separabile a causa delle diverse approssimazioni conseguenti ai due metodi, per ottenere i migliori risultati in uscita.
- Somiglianza e distanza assoluta delle immagini soddisfacenti dai 32 ai 14 bit.
- Differenza di qualità maggiormente delineata a partire da 12 bit di approssimazione, a favore dell'algoritmo che non sfrutta la separabilità del kernel.

LEGENDA

CASO KERNEL

3x3

CONVOLUZIONE TRADIZIONALE

CONVOLUZIONE CON KERNEL SEPARABILE

	JALITÀ IMAGINE FL	MSE	RMSE	SSIM		ALITÀ MAGINE FL	MSE	RMSE	SSIM
16	16	2.79	1.67	1.00	28	4	10.11	3.18	1.00
14	10	2.79	1.67	1.00	20	4	10.11	3.18	1.00
10	6	2.79	1.67	1.00	12	4	10.11	3.18	1.00
10	4	2.79	1.67	1.00	10	4	10.11	3.18	1.00
10	2	958.99	30.97	0.92	8	4	1356.57	36.83	0.89
8	2	1714.08	41.40	0.86	6	4	12793.68	113.11	0.27

ANALISI QUALITATIVA CON KERNEL 3X3

Classico Separabile

ANALISI QUALITATIVA CON KERNEL 7X7

- Riconfermate le osservazioni del caso 3x3.
- A un aumento dei prodotti corrisponde un peggioramento della qualità dell'immagine.
- L'effetto di peggioramento si riflette maggiormente nell'algoritmo separabile.

LEGENDA CASO KERNEL CONVOLUZIONE TRADIZIONALE CONVOLUZIONE CON KERNEL SEPARABILE

	ALITÀ MAGINE FL	MSE	RMSE	SSIM		JALITÀ IMAGINE FL	MSE	RMSE	SSIM
16	16	5.29	2.3	1.00	22	10	5.11	2.26	1.00
10	14	5.29	2.3	1.00	14	10	5.11	2.26	1.00
10	6	2114.68	45.99	0.94	8	8	1328.66	36.45	0.90
10	4	3043.70	55.17	0.89	8	6	1343.64	36.66	0.88
10	2	3731.88	61.09	0.72	8	4	1418.83	37.67	0.88
8	2	1418.83	37.67	0.85	6	4	3227.36	56.81	0.41

ANALISI QUALITATIVA CON KERNEL 7X7

Classico

Separabile

IMPLEMENTAZIONE SU FPGA

- Si è effettuato un deploy dell'algoritmo su una Zynq-7000 ZedBoard per verificare il funzionamento dello stesso in un caso reale e valutarne la qualità complessiva ottenuta rispetto al caso non ottimizzato.
- L'esperimento è stato effettuato tramite l'utilizzo del tool Vivado sulla base di un progetto preesistente(https://github.com/smatt-github/SmartCamera) che realizza diverse funzionalità fra le quali lo stream su VGA delle immagini filtrate acquisite dalla telecamera OV7670.
- Riadattamento del modulo "Filter Convolution".
- I risultati visivi riconfermano le supposizioni fatte utilizzando il tool OpenCV su un PC.

CONCLUSIONI

- L'utilizzo dell'algoritmo proposto consente un grosso risparmio di risorse allocate rispetto ai suoi equivalenti a massima precisione.
- La validità dell'algoritmo si estende soprattutto in ottica di training, in quanto a un grosso guadagno di memoria è associata una ottima qualità dell'immagine.
- I possibili sviluppi futuri sono:
 - Ampliamento dei test e aggiustamenti del codice HLS.
 - Utilizzo di diversi filtri e confronto fra di essi, per stabilire l'influenza di un determinato filtro sulla rete.
 - Realizzazione di un design implementativo progettato utilizzando le specifiche indicate nel progetto iniziale.