Math 74 Midterm Exam

May 22, 2003

Key Theorem: Given a path connected, simply connect topological space X and a properly discontinuous subgroup G of Homeo(X) (the homeomorphisms of X), then $\pi_1(X/G)$ is isomorphic to G.

- 1. For $n \ge 1$, let $S^{n-1} = \{x \in R^n \mid |x| = 1\}$, $B^n = \{x \in R^n \mid |x| \le 1\}$, let $a: S^n \to S^n$ be the antipodal map defined by a(x) = -x, and let C^n be the *Cross Space* viewed as the identification space formed by identifying the antipodal points of the boundary of B^n , namely the antipodal points of S^{n-1} .
 - (a) Prove that the antipodal mapping generates a properly discontinuous subgroup, G_n , of $Homeo(S^n)$.
 - (b) Prove that S^n/G_n is homeomorphic to C^n (Please do this **carefully** using the ideas and results from section 22 of Munkres).
 - (c) Assuming $\pi_1(S^n) = id$ for $n \geq 2$, use the Key Theorem stated above to compute $\pi_1(C^n)$ for $n \geq 2$.
- 2. Let A be the the *loopy topologist's sine curve*. Namely the subspace of R^2 determined by the points $\left(t, sin\left(\frac{1}{t}\right)\right)$ for $t \in \left(0, \frac{1}{2\pi}\right]$ together with the three lines indicated in figure 1.
 - (a) Prove A is simply connected.
 - (b) Construct a connected space B such that Homeo(B) contains a properly discontinuous subgroup, G, such that G is isomorphic to the integers and such that A is homeomorphic to B/G. (Hint: think about how the real line covers the circle).
 - (c) Explain why *B*'s existence does not contradict exercise 8 from section 54 of Munkres.

Figure 1: The loopy topologist's sine curve

Figure 2: The Hawaiian earrings

Figure 3: An ∞-fold cover of the Hawaiian earrings

- (d) Prove $\pi_1(B/G)$ is not isomorphic to G. Explain why this does not contradict the Key Theorem.
- 3. Let Z denote the Hawaiian earrings from figure 2; namely, let C_n be the circle of radius $\frac{1}{n}$ centered at $(\frac{1}{n},0)$ in R^2 , and then let $Z=\bigcup_{i=1}^{\infty}C_n$ viewed as a subspace of R^2 .
 - (a) Prove Z is compact, path connected and locally path connected.
 - (b) For every open neighborhood U of (0,0) in Z, prove that $\pi_1(U,(0,0)) \neq id$.
 - (c) Demonstrate that there is a covering map $r: Y \to Z$ where Y is the space described in figure 3.
 - (d) Construct a space X and a covering map $q: X \to Y$ such hat $p = r \cdot q: X \to Z$ is **not** a covering map. (Hint: You may restrict your search to q which satisfy $|q^{-1}(y)| = 2$ for every $y \in Y$.)
 - (e) Explain why part ?? does not contradict exercise 4 from section 53 in Munkres.