Rats Abrolhos

Tati Micheletti / Instituto Brasileiro para Medicina da Conserva??o 28 September 2019

Abrolhos 2019

Santa Bárbara 1

Home range results (sigma estimate, lcl = lowe95%CI; ucl = upper95%CI):

	link	estimate	SE.estimate	lcl	ucl
g0 sigma	logit log	$0.0112863 \\ 16.7599641$	$0.0166229 \\ 15.2539372$	0.0000=00	$0.1746331 \\ 76.8221192$

Density results (D estimate, lcl = lowe95%CI; ucl = upper95%CI):

	estimate	SE.estimate	lcl	ucl	CVn	CVa	CVD
esa	0.184755	NA	NA	NA	NA	NA	NA
D	64.950873	69.25013	11.77253	358.3442	0.2886751	1.026369	1.066192

Santa Bárbara 2

Home range results (sigma estimate, lcl = lowe95%CI; ucl = upper95%CI):

	link	estimate	SE.estimate	lcl	ucl
g0	logit	0.0112863	0.0166231	0.0006155	0.1746375
sigma	\log	16.7599148	15.2538908	3.6564417	76.8218849

Density results (D estimate, lcl = lowe95%CI; ucl = upper95%CI):

	estimate	SE.estimate	lcl	ucl	CVn	CVa	CVD
esa	0.1847545	NA	NA	NA	NA	NA	NA
D	64.9510458	69.25024	11.77257	358.3447	0.2886751	1.026368	1.066191

RESULTS

For Santa Barbara 1, we have **65** rats/ha (CI95%: 12-358), with home range of **16.75m** (CI95%: 3.66-76.82).

For Santa Barbara 2, we have $\mathbf{2.17}$ rats/ha (CI95%: 0.34-14), with home range of $\mathbf{40m}$ (CI95%: 11.12-143.93).

Obs.: In my opinion, the deviation is really too big. We need to collect more data (ie. trapping for longer time and probably with a bigger grid...) \sim TM