18.100A Midterm

Octavio Vega

March 20, 2023

Problem 1

(a)

Proof. Let $x \in f^{-1}(C \cap D)$. Then

$$\implies f(x) \in C \cap D \tag{1}$$

$$\implies f(x) \in C \text{ and } f(x) \in D$$
 (2)

$$\implies x \in f^{-1}(C) \text{ and } x \in f^{-1}(D)$$
 (3)

$$\implies x \in f^{-1}(C) \cap f^{-1}(D). \tag{4}$$

Thus,

$$f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D).$$
 (5)

Now let $x \in f^{-1}(C) \cap f^{-1}(D)$. Then

$$\implies f(x) \in C \text{ and } f(x) \in D$$
 (6)

$$\implies f(x) \in C \cap D$$
 (7)

$$\implies x \in f^{-1}(C \cap D).$$
 (8)

Thus,

$$f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D).$$
 (9)

Therefore by equations (5) and (9), $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

(b)

Claim: If $E \subset \mathbb{R}$ is countable, then the complement $\mathbb{R} \backslash E$ is always uncountable.

Proof. (By contradiction). Suppose E^c is countable. Then $E \cup E^c$ is countable as well, since it is the union of two countable sets. But $E \cup E^c = \mathbb{R}$, which is uncountable. ($\Rightarrow \Leftarrow$).