Popa & Weaver Spring 2019

CS 161 Computer Security

Midterm 1

PRINT your name:	Lias	Ran	
	(last)	(first)	
be reported to the Center	for Student Conduct of	udent Conduct and acknowledge t and may further result in partial o es cheating personally and, like the	or complete loss of credit. I am
Sign your name:	Lias	Ran	
PRINT your SID:	303456	14227	
Name of the person sitting to your left:		Name of the person sitting to your right:	Yuen Jing Wen
		ten sheet of paper of notes. You ther electronic devices are not p	
Bubble every item comp to unselect an option, en		heckmarks, Xs, writing answers d clearly.	on the side, etc If you want
For questions with circu	ılar bubbles, you may	select only one choice.	
O Unselected opt	tion (completely unfil	led)	
Only one selec	ted option (completel	ly filled)	
For questions with squa	ire checkboxes, you n	nay select any number of choices	s (including none or all).
You can select			
multiple square	es (completely filled).		
		ome up to the front of the exam arifying assumptions to the centr	
You have 110 minutes. T difficulty, so avoid spen		of varying credit (96 points total). one question.	The questions are of varying
D	o not turn this page	until your instructor tells you to	do so.

Problem	1 Potpourri Question					(16 points)
(a) T	TRUE or FALSE: Unlike CTR m	ode, CBC offers i	nțe	rity against flip	ping bits of the	ciphertext.
	O TRUE		0	FALSE		
	TRUE or FALSE: ASLR helps pro of a buffer with respect to the ov					ive position
(O TRUE		0	FALSE		
	TRUE or FALSE: ASLR helps pro which function stack frames are			attacks by rando	omizing the rela	ive order in
	O TRUE			FALSE		
(d) 7	True or False: It is possible to	use the ret2es	p at	tack from Projec	ct 1 when W^X	s enabled.
	O TRUE		0	FALSE		
(e) 7	ΓRUE or FALSE: Sandboxing dif	ferent parts of an	app	lication can help	reduce the size	of the TCB.
	TRUE		0	False		
(f) 1	FRUE or FALSE: Symmetric key	encryption is fa	ster	than asymmetr	ic key encryptio	n.
(True		0	FALSE		
	Let m be a message, let E_k be an unction. Let k be a randomly ge				MAC_k be any s	ecure MAC
Т	RUE or FALSE: If an eavesdrop	pper sees $C \parallel MA$	$C_k(0)$	C), the message	m is still confide	ntial.
(True		0	FALSE		
U W	Mallory is a man-in-the-middle a vithout her interference. Which o an neither read nor tamper v	of the following p	rope	erties alone is en		
	O Confidentiality	O Authenticity	y	0	Polytime Hard	ness
	O Integrity	O Availability		•	None of the ab	ove
Ŷ (g M ht gtx					

Problem 2 Greetings from Mallory

(9 points)

The following program has two security-critical vulnerabilities. Appendix: See the Appendix for a list of C functions.

```
1 void get_name(char *prompt, char *greeting) {
    printf(prompt);
    int fd = 0; // stdin
3
    char *buf = greeting + strlen(greeting); // remaining buffer
    size_t count = sizeof(greeting) - strlen(greeting); // size left read(fd, buf, count);
7 }
8
9
  int main() {
    char prompt[] = "Please enter your name:\n";
10
    char greeting[64] = "Welcome back, ";
11
12
    get_name(prompt, greeting);
13
    printf(greeting);
14 }
```

Identify the two security critical vulnerabilities in the code. For each vulnerability, provide the line number and a short explanation. (GRADING NOTE: You will receive six points if you find one vulnerability, and nine points if you find both vulnerabilities.)

(a) Vulnerability 1:

♦ Line number: ____

♦ Explanation: (20 words max)

integer underflow. This lorge integer will muce buffer overflow in like a

(b) Vulnerability 2:

♦ Explanation: (20 words max)

Format string vilvarability, attacker can put lots of "%d" to get sensitive mossage

Proble	m 3	Prince of Security		(8 points)
(a)	old	her than using a password manager, you dec l-tax-returns/old-things/not-secret/j kers won't be able to find them. Which secur	pass	swords, reasoning that it is secure because
	0	Least privilege	0	Consider human factors
	0	Shannon's maxim	0	Know your threat model
(b)	this	night, you cannot enter Etcheverry without spe by going to the second floor of Soda, and then r on the second floor. Which security princip	usii	ng your cardkey to open the Etcheverry-Soda
â		Ensure complete mediation .	0	Consider human factors
	0	Shannon's maxim	0	Least privilege
(c)	som the	enjoy CS 161 and decide to become the heat te access the printing room and some access a keys which access the printing room to the T ich security principle did you consider?	clos	et full of exam questions. You give away only
	0	Ensure complete mediation	0	Division of trust
	0	Design in security from the start	0	Least privilege
(d)	wor	ertain government agencies, employees are re k. Some employees find these phones too dif nes instead. Which security principles does t	ficu	lt to use, so they do work on their personal
	0	Ensure complete mediation	0	Division of trust
	0	Least privilege	0	Consider human factors

	201	
[21/2]	= Co DM	
	= M	

C1 = E = (C0 = M1) = G .00141

Problem 4 AES-CBC-STAR

(13 points)

Let E_k and D_k be the AES block cipher in encryption and decryption mode, respectively.

(a) We invent a new encryption scheme called AES-CBC-STAR. A message M is broken up into plaintext blocks M_1, \ldots, M_n each of which is 128 bits. Our encryption procedure is:

D ZH @ ZV

 $C_0 = IV$ (generated randomly),

 $C_i = E_k(C_{i-1} \oplus M_i) \oplus C_{i-1}$.

where Φ is bit-wise XOR.

1-L :-1 X

 \diamond Write the equation to decrypt M_i in terms of the ciphertext blocks and the key k.

Mi= Dr (Ci ⊕ Ci-1) ⊕ Ci-1

(b) Mark each of the properties below that AES-CBC-STAR satisfies. Assume that the plaintexts are 100 blocks long, and that $10 \le i \le 20$.

, 11.

☐ Encryption is parallelizable.

- If C_i is lost, then C_{i-1} can still be decrypted.
- Decryption is parallelizable.
- If C_i is lost, then C_{i+2} can still be decrypted. $C_i \oplus \bigcup_{i=1}^{n} V_i$
- \square If C_i is lost, then C_{i+1} can still be decrypted.
- If C_i is lost, then C_{i-2} can still be decrypted.
- ☐ If we flip the least significant bit of C_i, this always flips the least significant bit in P_i of the decrypted plaintext.
- If we flip the least significant bit of C_i , this always flips the least significant bit in P_{i+1} of the decrypted plaintext.
- If we flip a bit of M_i and re-encrypt using the same IV, the encryption is the same except the corresponding bit of C_i is flipped.
- ☐ It is not necessary to pad plaintext to the blocksize of AES when encrypting with AES-CBC-STAR.
- (c) Now we consider a modified version of AES-CBC-STAR, which we will call AES-CBC-STAR-STAR. Instead of generating the IV randomly, the challenger uses a list of random numbers which are public and known to the adversary. Let IV_i be the IV which will be used to encrypt the *i*th message from the adversary.
 - ♦ Argue that the adversary can win the IND-CPA game.

First, the adversary can let the challenger encrypt $2H \oplus \mathbb{N}$, let the cipher text be C_1 then, the adversary send $M_1 = 0$, $M_2 = 1$ to the challenger. Let the cipher text be C_2 . If $C_1 \oplus 2U_1 = G \oplus 2U_2$, the challenger encrypt M_1 . Otherwise it's M_2 . Hence, adversary will win low. Page 5 of 13

Midterm 1

Problem 5 Extreme conditioning

(9 points)

Consider the following code:

```
int my_strcmp(char *s1, char *s2) {
2
       size t i = 0;
3
       while (s1[i]) {
4
           /** part b **/
           if (s1[i] != s2[i]) {
               break;
7
8
           i ++:
9
10
       char uc1 = *s1, uc2 = *s2;
11
       if (uc1 < uc2) return -1;
12
       return uc1 > uc2;
13 }
```

- (a) Consider the preconditions necessary to ensure memory safety. What is required about null termination and length of the strings?
 - Write at most two preconditions, of at most ten words each.

Osi, siz should be valid strings terminated by null

equal to the maximum value can be stored by Size-t.

- (b) State one invariant at line 4 about s1 that is about memory safety. Do not include an invariant which is already a precondition.
 - Write this invariant.

O < 1 < min (length of SI, length of Sz)

Problem 6 Please, Just Use HMAC

(8 points)

Alice and Bob are partners struggling through their CS 161 project, and need to share code with one another, but their only option is to pass messages through an insecure server in Soda. They are afraid another student, Mallory, might read or tamper with the messages.

They have already established public-keys (P_A and P_B), secret keys (S_A and S_B) and two shared symmetric keys (k and k'). Using these, the SHA3 cryptographic hash function (SHA3), and an IND-CPA secure symmetric-key encryption (Enc_k), Alice proposes a set of ways to send her messages (k) to Bob. Note that k0 denotes the concatenation operation.

	following proposals provide co resence of only passive adversario	nfidentiality and allow Bob to retrieve the es. (Select all that apply.)
□ M SHA3(M)		$\operatorname{Enc}_k(M)$
□ SHA3(M k')		$M \parallel SH \times 3(M \parallel S_A)$
	P_B)	$\operatorname{Enc}_k(M)$ SHA3(M k')
(b) Mark which of her	following proposals provide integ	rity. (Select all that apply.)
□ M SH(A3(M)		Ency(M)
\square SHA3(M k')		$M \parallel SHA3(M \parallel S_A)$
	P_B)	$\operatorname{Enc}_k(M) \parallel \operatorname{SIIA3}(M \parallel k')$
\wedge		

Problem 7 ElGamal and friends

(15 points)

Bob wants his pipes fixed and invites independent plumbers to send him bids for their services (i.e., the fees they charge). Alice is a plumber and wants to submit a bid to Bob. Alice and Bob want to preserve the confidentiality of Alice's bid, but the communication channel between them is insecure. Therefore, they decide to use the ElGamal public key encryption scheme in order to communicate privately.

Instead of using the traditional version of the ElGamal scheme, Alice and Bob use the following variant. As usual, Bob's private key is x and his public key is PK = (p, g, h), where $h = g^x \mod p$. However, to send a message M to Bob, Alice encrypts M as $Enc_{PK}(M) = (s, t)$, where $s = g^r \mod p$ and $t = g^M \times h^r \mod p$, for a randomly chosen r.

- (a) Consider two distinct messages m_1 and m_2 . Let $Enc_{PK}(m_1) = (s_1, t_1)$ and $Enc_{PK}(m_2) = (s_2, t_2)$. For

 - O $(s_1 + s_2 \mod p, t_1 + t_2 \mod p)$ is a possible value for $\operatorname{Enc}_{PK}(m_1 + m_2)$. $S_1 = g^{k_1} + h = g^{k_2} + h^{k_3}$ (s₁ × s₂ mod p, $t_1 \times t_2$ mod p) is a possible value for $\operatorname{Enc}_{PK}(m_1 + m_2)$. $\int_{\Sigma} = g^{k_2} + \int_{\Sigma} g^{k_2} = g^{k_2} + \int_{\Sigma} g^{k_2}$
 - O $(s_1 \times s_2 \mod p, t_1 \times t_2 \mod p)$ is a possible value for $\operatorname{Enc}_{PK}(m_1 \times m_2)$.
 - O $(s_1 + s_2 \mod p, t_1 + t_2 \mod p)$ is a possible value for $Enc_{PK}(m_1 \times m_2)$.
 - O None of these
- (b) In order to decrypt a ciphertext (s, t), Bob starts by calculating $q = ts^{-x} \mod p$. Assume that the message M is between 0 and 1000. How can Bob recover M from q?

$$g = \pm s^{-x} = g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot h' \cdot (gt)^{-x} = g^{M} \cdot g^{x} \cdot g^{-tx}$$

$$= g^{M} \cdot g^{x} \cdot g^{$$

(c) Explain why Bob cannot efficiently recover M from q if M is randomly chosen such that $0 \le M < p$.

Bocasse M can be quite (arge which will make brute force algorithm Computationally unacceptable

(d) Suppose Alice sends Bob a bid $M_0 = 500$, encrypted under Bob's public key. We let $C_0 = (s, t)$ be the ciphertext here.

Mallory is an active man-in-the-middle attacker who knows Alice's bid is $M_0 = 500$. Mallory wants to replace Alice's bid with $M_1 = 999$. To do that, Mallory intercepts C_0 and replaces it with another ciphertext C_1 . Mallory wishes that when Bob decrypts C_1 , Bob sees $M_1 = 999$.

Describe how Mallory creates C_1 in each of the following situations:

- 1. Mallory didn't obtain C_0 , but knows Bob's public key PK = (p, g, h).
 - Question: How should Mallory create C_1 ?

 Let $C_1 = (s', +) = (g \mod p, g \land h \mod p)$ If can be chosen by Mallory randomly.
- 2. Mallory knows Alice's ciphertext C_0 , but only knows p and g in Bob's public key PK = (p, g, h). (That is to say, Mallory does not know h.)
 - \diamond Question: How should Mallory create C_1 ?

$$\left(\text{dt }C_{1}=\left(\text{s'},\text{t'}\right)=\left(\text{s'},\text{t.g}^{\left(m_{1}-m_{0}\right)}\right)$$

Problem 8 Canaries Schmanaries

(18 points)

The following code runs on a 32-bit x86 system. Stack canaries are enabled, but other memory safety defenses are disabled. As in Project 1, all four bytes of the canary are completely random.

The compiler does not rearrange stack variables. Note the volatile keyword on line 1: this means the arguments s1 and s2 are loaded from memory whenever referenced by doit instead of being stored in registers. Appendix: See the Appendix for a list of C functions.

```
void doit (char* volatile s1, char* volatile s2) {
2
      char buffer [16];
3
       strcpy(buffer, s1);
       strcpy(s1, s2);
       printf("%s\n%s\n%s\n", buffer, s1, s2);
5
6
7
  int main() {
9
      char s1 [64]; char s2 [64];
10
       fgets(s1, sizeof s1, stdin);
       fgets(s2, sizeof s2, stdin);
11
12
       doit(s1, s2);
13
```

(a) Which line contains a memory safety vulnerability? What is the name of the vulnerability present on that line?

line 3. biffer overflow.

789abedef

(b) Complete the diagram of the stack, right before line 3. Assume normal (non-malicious) program execution. You do not need to write the values on the stack, only the names. There are no extraneous boxes. As in discussion, the bottom of the page represents the lower addresses.

daby Edazo

compiler padding = 0x00000000
main's canary
charSl [64]
char <u>\$2</u> [64]
75
12
peturn instructor pointer
canad frame printer
- Jod C wrong
char buffer[16]

(- daby da74 da36 da36 dasC dasQ dasy (c) Now we will exploit the program. There is already shellcode at the address Oxbfffdead. Using gdb, you discovered that the address of main's canary is Oxbfffdab4. Due to a bug in the compiler, you discover that although stack canaries are present, they are not checked!

Complete the Python script below in order to successfully exploit the program. Note: The Python syntax 'A' * n indicates that the character 'A' will be repeated n times. The syntax \xRS indicates a byte with hex value 0xRS.

print s1 print s2

boff baso

dabk

(d) Unfortunately, the bug in the previous part was fixed, and now your exploit must successfully bypass the stack canary. As in part (c), there is already shellcode at the address Oxbfffdead and the address of main's canary is Oxbfffdab4. Complete the Python script below in order to successfully exploit the program.

HINT: You should do the following. Start by using your exploit from the part above. Overwrite the arguments s1 and s2 of doit to ensure that the second strcpy will "fix" the canary. Note that the main's function frame has the same canary as the canary that should appear in doit's function frame. The use of the volatile keyword ensures that s1 and s2 are passed using their values from the stack. Since your solution should overwrite the pointer s2, it does not matter what it originally points to.

s2 = 'not needed, see the hint'

print s1 print s2

Selected C Manual Pages

char *fgets(char *s, int size, FILE *stream);
fgets() roads in at most one less than _size_ characters from
stream and stores them into the buffer pointed to by _s_. Reading
stops after an EOF or a newline. If a newline is read, it is stored
into the buffer. A terminating null byte ('\0') is stored after the
last character in the buffer.

int printf(const char *format, ...);
printf() produces output according to the format string _format_.

ssize_t read(int fd, void *buf, size_t count);
read() attempts to read up to _count_ bytes from file descriptor _fd_
into the buffer starting at _buf_.

char *strcpy(char *dest, const char *src);
The strcpy() function copies the string pointed to by _src_,
including the terminating null byte ('\0'), to the buffer pointed to
by _dest_.

size_t strlen(const char *s);
The strlen() function calculates the length of the string _s_,
excluding the terminating null byte ('\0').

Foot-Shooting Prevention Agreement

I, fantias, promise that once

I see how simple AES really is, I will not implement it in production code even though it would be really fun.

This agreement shall be in effect until the undersigned creates a meaningful interpretive dance that compares and contrasts cache-based, timing, and other side channel attacks and their countermeasures.

