Formeln S20 S29

Hier sind die extrahierten Formeln aus dem angegebenen Kontext, einschließlich ihrer Titel und Erklärungen, wenn verfügbar:

Parametrisierte Kurven

- **Geschwindigkeitsvektor:** $v(\tau) := \dot{s}(\tau)$
- **Bahngeschwindigkeit:** $v(\tau) := |v(\tau)|$
- **Bahnvektor für $v(\tau) \neq 0$:** $\hat{e}(\tau) := \hat{v}(\tau)$
- **Beschleunigungsvektor:** $a(\tau) := \dot{v}(\tau)$
- **Bahnbeschleunigung:** $a_B(\tau) := \langle a(\tau), \hat{e}(\tau) \rangle$
- **Bahn:** $B = s([\tau_0, \tau_E])$
- **Masseinheiten für Geschwindigkeit und Beschleunigung:**
- $[v] = \frac{[s]}{[\tau]} (2.37)$
- $[a] = [a_B] = \frac{[s]}{[\tau]^2} (2.38)$

Beispiele für parametrisierte Kurven

• **Halbkreis:**

$$s(\tau) = \begin{pmatrix} 3 \cdot \cos(\tau) \\ 3 \cdot \sin(\tau) \end{pmatrix}, \quad \tau \in [0, \pi] \quad (2.39)$$

• **Gerade Strecke:**

$$s(\tau) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} \cdot \tau, \quad \tau \in [0, 4] \quad (2.42)$$

Standard-Parametrisierungen

- **Geraden und Strecken in \mathbb{R}^n :**
- $s(\tau) = s_0 + v \cdot \tau \ (2.43)$
- $s(\tau) = s_0 + v \cdot (\tau \tau_0)$ (2.44)
- $s(\tau) = s_0 + (s_E s_0) \cdot \tau$ für $\tau \in [0, 1]$ (2.45)
- **Kreis in \mathbb{R}^2 :**
- $s(\tau) = M + \begin{pmatrix} r \cdot \cos(\tau) \\ r \cdot \sin(\tau) \end{pmatrix}$ für $\tau \in [0, 2\pi]$ (2.46)
- $s(\tau) = M + \begin{pmatrix} r \cdot \cos(\omega \cdot \tau) \\ r \cdot \sin(\omega \cdot \tau) \end{pmatrix}$ für $\tau \in [0, T]$ mit $\omega = \frac{2\pi}{T}$ (2.47)
- **Graph einer Funktion $f: [x_0, x_E] \to \mathbb{R}$:**

$$s(\tau) = \begin{pmatrix} \tau \\ f(\tau) \end{pmatrix}$$
 für $\tau \in [x_0, x_E]$ (2.48)

Bogenlänge

• **Definition der Bogenlänge einer parametrisierten Kurve:**

$$\Delta s = \int_{\tau_0}^{\tau_E} v(\tau) \, d\tau \quad (2.49)$$

• **Masseinheit der Bogenlänge:**

$$= [s]$$
 (2.50)

• **Bogenlänge bei Parametrisierung durch Weglänge $\tau = s$:**

$$\Delta s = \int_{s_0}^{s_E} 1 \, ds = s_E - s_0 \quad (2.52)$$

$$v(s) = 1$$
 (2.51)

$$\Delta s = \int_{s_0}^{s_E} 1 \, ds = s_E - s_0 \quad (2.52)$$

Linienintegrale

• **Definition des Linienintegrals eines Vektorfeldes w entlang einer Kurve $s(\tau)$:**

$$I = \int_{\tau_0}^{\tau_E} \langle w, v \rangle \, d\tau \quad (2.53)$$

• **Masseinheit des Linienintegrals:**

$$= [w] \cdot [s] \quad (2.54)$$

• **Linienintegral bei konstantem Anteil entlang der Bahn:**

$$I = C \int_{s_0}^{s_E} 1 \, ds = C \cdot (s_E - s_0) = C \cdot \Delta s \quad (2.63)$$

$$I = C \cdot \Delta s$$
 (2.62)

$$I = C \int_{s_0}^{s_E} 1 \, ds = C \cdot (s_E - s_0) = C \cdot \Delta s \quad (2.63)$$