Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D. Sommersemester 2013 03. 06. 2013

Gruppenübung

Aufgabe G1 (Aussagenlogische Formeln)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \to (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	
0	0	1
0	1	1
1	0	1
1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Lösung:

(a) Wahrheitstafel:

p	q	r	$\mid \neg p \wedge \neg q \mid$	$p \vee (\neg q \wedge r)$	φ
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

Die Formel ist also erfüllbar, aber nicht allgemeingültig.

- (b) Das ist offensichtlich Negation der Konjunktion, also $\varphi := \neg(p \land q)$.
- (c) Eine mögliche Lösung ist $\varphi := (\neg p \land \neg q) \lor (\neg p \land \neg r) \lor (\neg q \land \neg r)$.
- (d) Eine mögliche Lösung ist

$$\varphi := (p \land q \land r \land \neg s) \lor (p \land q \land \neg r \land s) \lor (p \land \neg q \land r \land s) \lor (\neg p \land q \land r \land s) \lor (\neg p \land \neg q \land \neg r \land s) \lor (\neg p \land \neg q \land r \land \neg s) \lor (\neg p \land q \land \neg r \land \neg s) \lor (p \land \neg q \land \neg r \land \neg s).$$

Aufgabe G2 (Modellbeziehung)

Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
- (b) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
- (c) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
- (d) $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.

Lösung:

- (a) Richtig.
 - (\Rightarrow): Ist \Im eine Interpretation, dann gilt entweder $\varphi^{\Im}=0$ oder $\varphi^{\Im}=1$. In dem ersten Fall, gilt $(\varphi \to \psi)^{\Im}=1$, also $\Im \models \varphi \to \psi$. In dem zweiten Fall, gilt auch $\psi^{\Im}=1$, da $\varphi \models \psi$ bedeutet, dass jede Interpretation die φ wahr macht auch ψ wahr macht. Also auch in diesem Fall $(\varphi \to \psi)^{\Im}=1$. (\Leftarrow): Angenommen \Im ist eine Interpretation mit $\Im \models \varphi$, also mit $\varphi^{\Im}=1$. Da auch $\Im \models \varphi \to \psi$, muss auch gelten $\psi^{\Im}=1$, also $\Im \models \psi$. Damit ist $\varphi \models \psi$ gezeigt.
- (b) Richtig. $\varphi \models \psi$ heißt, dass jede Interpretation, die φ wahr macht, auch ψ wahr macht. Machen alle Interpretationen φ wahr, dann gilt das also auch für ψ ; gibt es eine Interpretation die φ wahr macht, dann ist dieselbe Interpretation ein Modell von ψ .
- (c) Falsch (in beiden Fällen). $0 \models 1$, aber es gibt keine Modelle für 0, und alle Modelle machen 1 wahr.
- (d) Falsch. Ein Gegenbeispiel: $\varphi=p, \psi=\neg p, \vartheta=0$. Ein weiteres Gegenbeispiel ist $\varphi=p, \psi=q$ und $\vartheta=p \wedge q$.

Aufgabe G3 (Modellbeziehung)

Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.

- (a) $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- (b) $\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$
- (c) $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
- (d) $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

Lösung:

(a) Richtig, da für jede Interpretation 3 gilt:

$$\mathfrak{I} \models \neg(\varphi \lor \psi) \iff \neg(\varphi \lor \psi)^{\mathfrak{I}} = 1$$

$$\iff (\varphi \lor \psi)^{\mathfrak{I}} = 0$$

$$\iff \varphi^{\mathfrak{I}} = 0 \quad \text{und} \quad \psi^{\mathfrak{I}} = 0$$

$$\iff (\neg \varphi)^{\mathfrak{I}} = 1 \quad \text{und} \quad (\neg \psi)^{\mathfrak{I}} = 1$$

$$\iff (\neg \varphi \land \neg \psi)^{\mathfrak{I}} = 1$$

$$\iff \mathfrak{I} \models \neg \varphi \land \neg \psi.$$

- (b) Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg(\varphi \lor \psi))^{\Im} = 0$ und $(\neg \varphi \lor \neg \psi)^{\Im} = 1$.
- (c) Falsch. Ist $\varphi = p$, $\psi = q$ und \Im eine Interpretation mit $\Im(p) = 1$ und $\Im(q) = 0$, dann gilt $(\neg \psi)^{\Im} = 1$, $(\psi \to \varphi)^{\Im} = 1$ und $(\neg \varphi)^{\Im} = 0$.
- (d) Richtig. Angenommen \Im ist eine Interpretation mit $\Im \models \{\neg \varphi, \psi \to \varphi\}$, also $(\neg \varphi)^{\Im} = 1$ und $(\psi \to \varphi)^{\Im} = 1$. Es folgt $\varphi^{\Im} = 0$. Da $(\neg \psi \lor \varphi)^{\Im} = 1$ gdw. $(\neg \psi)^{\Im} = 1$ oder $\varphi^{\Im} = 1$, folgt $(\neg \psi)^{\Im} = 1$, wie gewünscht.

Hausübung

Aufgabe H1 (Exklusiv-Oder)

(4 Punkte)

Definiere \oplus (Exklusiv-Oder, XOR, Parity) durch $p \oplus q := (p \lor q) \land \neg (p \land q)$. Zeigen Sie, dass XOR auch auf diese weiteren Weisen angegeben werden kann: $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ und $p \oplus q \equiv \neg (p \leftrightarrow q)$.

Lösung: Es genügt zu zeigen, dass die Wahrheitstafeln für die drei Formeln gleich sind, wie es unten steht.

p	$q \mid$	$p \lor q$	$\neg (p \land q)$	$p \oplus q$	$p \land \neg q$	$\neg p \land q$	$(p \land \neg q) \lor (\neg p \land q)$	$p \longleftrightarrow q$	$\neg(p \longleftrightarrow q)$
0	0	0	1	0	0	0	0	1	0
0	1	1	1 1	1	0	1	1	0	1
1	0	1	1	1	1	0	1	0	1
1	1	1	0	0	0	0	0	1	0

Jede Äquivalenz: 2 P.

Aufgabe H2 (Wahrheitstafeln)

(4 Punkte)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := \neg (p \to q) \oplus q$$

Ist die Formel erfüllbar? Ist sie allgemeingültig? Geben Sie auch eine zu φ äquivalente Formel mit nur einem (schon bekannten) Junktor an.

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Lösung:

(a) 0,5 P. Wahrheitstafel:

p	q	$\neg (p \rightarrow q)$	$\neg(p \to q) \oplus q$
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	1

0,5 P. Denn die Wahrheitstafel unter arphi enthält 1, ist arphi erfüllbar.

0,5 P. Denn die Wahrheitstafel unter φ nicht nur 1 enthält, ist φ nicht allgemeingültig.

0,5 P. Aus der Wahrheitstafel können wir leicht $\varphi \equiv p \lor q$ ablesen.

(b) 2 P. Eine mögliche Formel (durch scharfes Hinsehen): $(\neg p \land q) \lor (p \land (q \leftrightarrow r))$. Man kann das aber auch algorithmisch berechnen: DNF ist $(\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land r)$ und KNF ist $(p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$.

 $\{p_1,\ldots,p_n\}.$ **Lösung:** Die induktive Definition 1.1 im Skript lässt sich in die folgende Grammatik übertragen: $S \rightarrow 0 \mid 1 \mid p_1 \mid \dots \mid p_n \mid \neg S \mid (S \land S) \mid (S \lor S)$ Minitest Aufgabe M1 (Syntax) Sei φ eine syntaktisch korrekte aussagenlogische Formel. Welche der folgenden Aussagen stellen syntaktisch korrekte aussagenlogische Formeln dar? $\Box 1 \land (\neg 0 \lor \neg \neg \varphi)$ □ 01 $\Box \neg 1$ \Box 1 $\boxtimes 1 \land (\neg 0 \lor \neg \neg \varphi)$ (Siehe FGdI II Skript, Definition 1.1.) Lösung: $\boxtimes 1$ □ 01 $\boxtimes \neg 1$ **Aufgabe M2** (Natürliche vs. formale Sprache) Seien A und B aussagenlogische Formeln. Kennzeichen Sie die Bedeutung der folgenden Formeln. $A \rightarrow B$ \Box A ist hinreichend für B \Box *A* ist notwendig für *B* $B \rightarrow A$ \Box A ist hinreichend für B \Box *A* ist notwendig für *B* $\neg A \rightarrow \neg B$ \Box A ist hinreichend für B \Box A ist notwendig für B $\neg B \rightarrow \neg A$ \Box A ist hinreichend für B \Box *A* ist notwendig für *B* Lösung: $A \rightarrow B$ \boxtimes A ist hinreichend für B \Box A ist notwendig für B $B \rightarrow A$ \Box A ist hinreichend für B \boxtimes A ist notwendig für B $\neg A \rightarrow \neg B$ \Box A ist hinreichend für B *A* ist notwendig für *B* \boxtimes A ist hinreichend für B $\neg B \rightarrow \neg A$ \Box A ist notwendig für B **Aufgabe M3** (Modellbeziehung) Wahr oder falsch? (a) Seien *A* und *B* logische Formeln. Für alle Modelle \Im gilt $\Im \models (A \rightarrow B) \iff \Im \models (\neg B \rightarrow \neg A)$. □ falsch (b) Sei \Im eine Interpretation mit $\Im(p) = \Im(q) = 0$. Es gilt $\Im \models ((\neg p \land q) \lor (p \land \neg q) \lor (p \land q))$. □ falsch □ wahr Lösung: (a) Seien *A* und *B* logische Formeln. Für alle Modelle \Im gilt $\Im \models (A \rightarrow B) \iff \Im \models (\neg B \rightarrow \neg A)$. \Box falsch Begründung: Kontraposition. (Siehe Aufgabe M2.) (b) Sei \Im eine Interpretation mit $\Im(p) = \Im(q) = 0$. Es gilt $\Im \models ((\neg p \land q) \lor (p \land \neg q) \lor (p \land q))$. □ wahr \boxtimes falsch Begründung: Die Aussage lässt sich umschreiben zu $\mathfrak{I}\models (p\vee q)$. Dann gilt $(p\vee q)^{\mathfrak{I}}=$ $\max(\Im(p),\Im(q))=0$ nach FGdI II Skript, Definition 1.3. Entsprechend lässt sich auch $((\neg p \land q) \lor \neg q)$ $(p \land \neg q) \lor (p \land q)^{\Im} = 0$ nachweisen.

Geben Sie für festes $n \in \mathbb{N}$ eine kontextfreie Grammatik für AL_n an, über $\Sigma = \{0, 1, (,), \neg, \wedge, \vee\} \cup$

Aufgabe H3 (Grammatik für Aussagenlogiksyntax)

(2 Punkte)