Digital Electronic Circuits Section 1 (EE, IE)

Lecture 23

Register

- A register is a group of flip-flops that can be used to store a binary number.
- There must be one flip-flop for each bit in the binary number. (To store an 8-bit binary number there must be 8 flip-flops.)

Key Operations

- Storing data (writing) in the register
- Retrieving data (reading) from the register.

Considerations

- Availability of input output pins
- Time to write / read data
- Non-destructive / Destructive reading

Shift Register

PIPO and SIPO:

Non-destructive reading

PISO and SISO:

Destructive reading Externation non-dest

External feedback for non-destructive reading

PIPO (IC 74174)

Note: IC 74175 contains 4 D Flip-Flops but both Q and Q' outputs in 16 pin package.

SISO (IC 7491)

INP AT	UTS t _n	OUTPUTS AT t _{n+8}				
Α	В	QН	ãн			
Н	Н	Н	L			
L	Х	L	н			
Х	L	L	Н			

Trade-off with time

Serial in: Writing

Serial out: Reading

Serial out: Reading

Non-destructive Reading: 4 clock cycles

Data is rewritten while reading through external feedback.

Serial In Parallel Out

Also, serial out from Q_H

Serial In and Asynchronous Reset

INPUTS				OUTPUTS			
CLEAR	CLOCK	Α	В	Q_A	α_{B}	Q _H	
L	Х	Х	Х	L	L	L	
Н	L	х	X	Q _{A0}	Q_{B0}	σ_{H0}	
н	1	н	Н	Н	Q_{An}	α_{Gn}	
н	↑	L	X	L	\mathbf{Q}_{An}	q_{Gn}	
Н	1	X	L	L	Q _{An}	Q_{Gn}	

Q_{Xn}: Level of Q_X before last clock trigger

Parallel In Serial Out

It also has serial in

Pin 15 = 1: Shift

= 0: Load

$$S_H = Shift.Q_G + Shift'.H$$
 ••• $S_B = Shift.Q_A + Shift'.B$ $S_A = Shift.Serial_{in} + Shift'.A$

$$S_A = Shift.Serial_{in} + Shift'.A$$

Universal Shift Register

- A universal shift register can perform all four operations:
 PIPO, SISO, SIPO, PISO
- The shift is bidirectional.
 - Left shift: $Q_A \leftarrow Q_B \leftarrow Q_C \leftarrow Q_D \leftarrow$ Data in
 - Right shift: Data in \rightarrow $Q_A \rightarrow Q_B \rightarrow Q_C \rightarrow Q_D$

	INPUTS						OUTPUTS						
CLEAR	MODE CLOCK		SERIAL		PARALLEL			0.4	05	00	On		
CLEAR	S1	S0	CLOCK	LEFT	RIGHT	Α	В	С	D	QA	QB	QС	Q_{D}
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L
Н	X	Χ	L L	Х	X	X	Х	Х	X	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
Н	Н	Н	↑	Х	X	а	b	С	d	a	b	С	d
Н	L	Н	↑	Χ	Н	X	Х	Χ	X	Н	Q_{An}	Q_{Bn}	Q_{Cn}
Н	L	Н	↑	Х	L	X	Х	Χ	X			Q_{Bn}	
Н	Н	L	↑	Н	Χ	X	Χ	Χ	X	Q_{Bn}			Н
Н	Н	L	↑	L	X	X	Х	Х	X	Q_{Bn}			L
Н	L	L	X	Х	Х	Х	Χ	Χ	X	Q_{A0}			Q_{D0}

IC 74194 is a 4-bit universal shift register

IC 74194

S ₁	S ₀	Operation
0	0	No change
0	1	Right shift
1	0	Left shift
1	1	Parallel load

IC 7495A

No built-in left shift!

M = 1: Parallel load

M = 0: Right shift

IC 7495A

Left shift through parallel load when Mode Control = 1

Serial Data Transmission

Parallel data inputs MSB Serial data input 8 bits 8 bits Serial data output Parallel data outputs Appropriate protocol between transmitter and receiver on start of data and its stop.

- One wire instead of eight wires
- Reduction in number of wires in transmission line reduces cost
- Trade-off is with time taken for transmission

Introducing Time Delay

- Charging time = $0.693(R_A + R_B)C$
- Discharging time = $0.693R_BC$
- Time period, $T = 0.693(R_A + 2R_B)C$

INP	UTS t _n	OUTPUTS AT t _{n+8}				
Α	A B		αH			
Н	Н	Н	L			
L	X	L	н			
Х	L	L	Н			

$$Q_H$$
 Delay = 8 x T

T = Time period of clock

Output after *n*-bit is delayed by *nT* time.

If $T = 1 \mu s$, then delay here is 8 μs .

Sequence Generator

• Sequence generator is useful in generating a pattern repetitively.

With serial data out fed back directly as serial data in, *n*-bit shift register can generate up to *n*-bit long pattern.

Sequence Detector

- Sequence detector identifies a specific pattern from incoming bit string.
- Sequence to be detected can be hard-wired to V_{CC} and GND in the circuit.
- The register gives a convenient option to change the pattern to be detected.

Ring Counter

Serial data out = 1 once in every n clock cycle for a n-bit shift register connected as shown.

Johnson Counter

Clock	Serial in $=T'$	Q	R	S	T	Y = Q'T'
0	1	0	0	0	0	1
1	1	1	0	0	0	0
2	1	1	1	0	0	0
3	1	1	1	1	0	0
4	0	1	1	1	1	0
5	0	0	1	1	1	0
6	0	0	0	1	1	0
7	0	0	0	0	1	0
8	1	0	0	0	0	1
9	1	1	0	0	0	0 repeats

- Also called Switched-Tail or Twisted-Tail Counter.
- With *n*-bit register a count of2n can be obtained.
- Different initialization possible.
- 2-input gate to decode.

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Texas Instrument's Digital Logic Pocket Data Book (2007)