程其襄等编《实变函数与泛函分析基础》(第三版)第一章课后 习题详解

原创 阿得 阿得学数学 2019-04-02 08:10

第1-3题考查集合的运算. 需要的知识点有:

定义

•
$$A \cup B = \{x : x \in A \not \leq x \in B\}$$

•
$$A \cap B = \{x : x \in A \perp \mathbb{L} \ x \in B\}$$

$$\bullet \quad A-B=\{x:x\in A\ \mathbb{L}\ x\not\in B\}$$

$$\bigcup_{\alpha \in \Lambda} A_{\alpha} = \{ x : \exists \alpha \in \Lambda \text{ s.t. } x \in A_{\alpha} \}$$

$$\alpha \in \Lambda$$

$$\bigcap A_{\alpha} = \{x : \forall \alpha \in \Lambda, x \in A_{\alpha}\}\$$

运算性质

交换律:

$$A \cup B = B \cup A, \ A \cap B = B \cap A.$$

• 结合律:

$$(A \cup B) \cup C = A \cup (B \cup C),$$

$$(A \cap B) \cap C = A \cap (B \cap C).$$

• 分配律:

$$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right) \cap B = \bigcup_{\alpha \in \Lambda} (A_{\alpha} \cap B)$$

德摩根公式:

$$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in \Lambda} A_{\alpha}^{c},$$
$$\left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in \Lambda} A_{\alpha}^{c}.$$

1. 沚明:

(1)
$$(A - B) - C = A - (B \cup C);$$

(2)
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

证明.

[方法一] 利用定义.

$$x \in (A - B) - C$$
 $\iff x \in (A - B) \perp x \notin C$
 $\iff x \in A \perp x \notin B \perp x \notin C$
 $\iff x \in A \perp x \notin B \perp x \notin C$
 $\iff x \in A \perp x \notin B \cup C$
 $\iff x \in A - (B \cup C),$
所以 $(A - B) - C = A - (B \cup C);$

$$(2)$$
 因为 $x \in (A \cup B) - C$ $\iff x \in (A \cup B)$ 且 $x \notin C$

[方法二] 利用集合运算的性质.

(1)
$$(A-B)-C = (A \cap B^c) \cap C^c = A \cap (B^c \cap C^c) =$$

 $A \cap (B \cup C)^c = A - (B \cup C);$

$$(2) (A \cup B) - C = (A \cup B) \cap C^c = (A \cap C^c) \cup (B \cap C^c) = (A - C) \cup (B - C).$$

2. 证明:

(1)
$$\bigcup_{\alpha \in I} A_{\alpha} - B = \bigcup_{\alpha \in I} (A_{\alpha} - B);$$

$$(2) \cap A = R - \cap (A = R)$$

$$(2) \prod_{\alpha \in I} A_{\alpha} - D - \prod_{\alpha \in I} (A_{\alpha} - D).$$

证明.

[方法一] 利用定义.

(1) 因为

$$x \in \bigcup_{\alpha \in I} A_{\alpha} - B$$

$$\iff x \in \bigcup_{\alpha \in I} A_{\alpha} \coprod x \notin B$$

$$\iff \exists \alpha_0 \in I \ s.t. \ x \in A_{\alpha_0} \coprod x \notin B$$

$$\iff \exists \alpha_0 \in I \ s.t. \ x \in A_{\alpha_0} - B$$

$$\iff x \in \bigcup_{\alpha \in I} (A_{\alpha} - B),$$
所以 $\bigcup_{\alpha \in I} A_{\alpha} - B = \bigcup_{\alpha \in I} (A_{\alpha} - B);$

(2) 因为

$$x \in \bigcap_{\alpha \in I} A_{\alpha} - B$$

$$\iff x \in \bigcap_{\alpha \in I} A_{\alpha} \coprod x \notin B$$

$$\iff \forall \alpha \in I, x \in A_{\alpha} \coprod x \notin B$$

$$\iff \forall \alpha \in I, x \in A_{\alpha} - B$$

$$\iff x \in \bigcap_{\alpha \in I} (A_{\alpha} - B),$$
所以 $\bigcap_{\alpha \in I} A_{\alpha} - B = \bigcap_{\alpha \in I} (A_{\alpha} - B).$

[方法二] 利用集合运算的性质.

(1)
$$\bigcup_{\alpha \in I} A_{\alpha} - B = \left(\bigcup_{\alpha \in I} A_{\alpha}\right) \cap B^{c} = \bigcup_{\alpha \in I} (A_{\alpha} \cap B^{c}) = \bigcup_{\alpha \in I} (A_{\alpha} - B);$$

(2)
$$\bigcap_{\alpha \in I} A_{\alpha} - B = \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \cap B^{c} = \bigcap_{\alpha \in I} (A_{\alpha} \cap B^{c}) = \bigcap_{\alpha \in I} (A_{\alpha} - B).$$

3. 设 $\{A_n\}$ 是一列集合, 作

$$B_1 = A_1, \quad B_n = A_n - \left(\bigcup_{v=1}^{n-1} A_v\right), n > 1.$$

证明 $\{B_n\}$ 是一列互不相交的集,而且

$$\bigcup_{v=1}^{n} A_v = \bigcup_{v=1}^{n} B_v, \quad 1 \le n \le \infty.$$

证明.

第一步,证明 $\{B_n\}$ 互不相交.

不妨设 i < j. 因为

$$B_i \subset A_i$$

$$B_{j} = A_{j} - \left(\bigcup_{v=1}^{j-1} A_{v}\right)$$

$$= A_{j} \cap \left(\bigcup_{v=1}^{j-1} A_{v}\right)^{c} = A_{j} \cap \left(\bigcap_{v=1}^{j-1} A_{v}^{c}\right)$$

$$= A_{j} \cap A_{i}^{c} \cap \left(\bigcap_{v=1}^{j-1} A_{v}^{c}\right),$$

所以

$$B_i \cap B_j \subset A_i \cap B_j = A_i \cap A_j \cap A_i^c \cap \left(\bigcap_{\substack{v=1\\v \neq i}}^{j-1} A_v^c\right) = \emptyset.$$

第二步, 证明
$$\bigcup_{v=1}^{n} A_v = \bigcup_{v=1}^{n} B_v$$
, $1 \le n \le \infty$.

一方面,因为 $B_v \subset A_v$ 对 $v = 1, 2, \cdots$ 都成立,所以 $\bigcup_{v=1}^n B_v \subset \bigcup_{v=1}^n A_v$ 显然成立.

另一方面, 设 $x \in \bigcup_{v=1}^{n} A_v$, 至少存在一个 $1 \le v \le n$ 使得 $x \in A_v$. 设 v_0 是满足该条件的最小的下标, 即 $x \in A_{v_0}$ 且 $x \notin A_v$, $v = 1, 2, \dots, v_0 - 1$. 因此

$$x \in A_{v_0} - \left(\bigcup_{v=1}^{v_0-1} A_v\right) = B_{v_0} \subset \bigcup_{v=1}^n B_v.$$
事实上,我们已经证明了 $\bigcup_{v=1}^n A_v \subset \bigcup_{v=1}^n B_v.$

综上可得,
$$\bigcup_{v=1}^n A_v = \bigcup_{v=1}^n B_v$$
, $1 \le n \le \infty$.

第4-5题考查集合列的上极限和下极限的概念.

上极限:

$$\overline{\lim}_{n\to\infty} A_n = \{x :$$
 存在无穷多个 $A_n,$ 使 $x \in A_n\}$

下极限:

$$\lim_{n \to \infty} A_n = \{x : \exists n 充分大以后都有 $x \in A_n\}$$$

4. $\mathfrak{P}_{2n-1} = \left(0, \frac{1}{n}\right), A_{2n} = (0, n), n = 1, 2, \cdots,$ 求出集列 $\{A_n\}$ 的上限集和下限集.

解.

对于 $(0, +\infty)$ 中的每个点 x, 都存在自然数 N(x), 使得当 n > N(x) 时,

$$\frac{1}{n} < x < n,$$

即当 n > N(x) 时, $x \in A_{2n}$ 但 $x \notin A_{2n-1}$. 换句话 说, 对于 $(0,+\infty)$ 中的每个点 x, 具有充分大的偶 数指标的集都含有 x, 即 $\{A_n\}$ 中有无穷多个集合 含有x. 而充分大的奇数指标的集都不含有x, 即 $\{A_n\}$ 中不含 x 的集不会是有限个. 又 $(-\infty,0]$ 中 的点不属于任何的 A_n , 因此

$$\overline{\lim}_{n\to\infty} A_n = (0, +\infty), \qquad \underline{\lim}_{n\to\infty} A_n = \emptyset.$$

5. 证明:
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$
.

证明. 因为

$$x \in \lim_{n \to \infty} A_n \iff$$
 当 n 充分大以后都有 $x \in A_n$
$$\iff \exists n \in \mathbb{N}, \text{ 当 } m \geq n \text{ 时有 } x \in A_m$$

$$\iff x \in \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m,$$

所以,
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$
.

证明两个集合相等的常用方法是证明这两个集合相互包含.即

$$A = B \iff A \subset B, B \subset A$$
.

证明三个或三个以上集合相等,可证明循环包含关系.即

$$A = B = C \iff A \subset B \subset C \subset A.$$

6. 设 f(x), g(x) 是定义在 E 上的函数, 证明:

$$(1) \quad \{m: f(m) > g(m)\} = \bigcup_{n=1}^{\infty} \left\{m: f(m) > g(m) \mid 1\right\}.$$

(1)
$$\{x: J(x) > g(x)\} = \bigcup_{n=1}^{\infty} \{x: J(x) > g(x) + \frac{1}{n}\};$$

(2)
$$\{x: f(x) > g(x)\} = \bigcup_{n=1}^{\infty} \left\{ x: f(x) \ge g(x) + \frac{1}{n} \right\}.$$

证明. 记

$$A = \{x : f(x) > g(x)\},\$$

$$A_n = \left\{x : f(x) > g(x) + \frac{1}{n}\right\}, n = 1, 2, \dots,\$$

$$B_n = \left\{x : f(x) \ge g(x) + \frac{1}{n}\right\}, n = 1, 2, \dots.$$

两个小题合起来就是要证明

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n = A.$$

我们只需要证明

$$\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} B_n \subset A \subset \bigcup_{n=1}^{\infty} A_n.$$

(a) 对任意的自然数 n, 若 $x \in A_n$, 即 x 满足 $f(x) > g(x) + \frac{1}{n}$, 则必有 $f(x) \geq g(x) + \frac{1}{n}$, 即 $x \in B_n$. 也就是说, 对任意的自然数 $x \in B_n$. 因此 $\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} B_n$.

- (b) 对任意的自然数 n, 若 $x \in E$ 满足 $f(x) \ge g(x) + \frac{1}{n}$, 则必有 f(x) > g(x), 即 $B_n \subset A$. 因此 $\bigcup_{n=1}^{\infty} B_n \subset A$.
- (c) 若 $x \in A$, 即 x 满足 f(x) > g(x), 则 f(x) g(x) > 0. 又 $\frac{1}{n} \to 0 (n \to \infty)$, 由极限的定义, 对于 $\varepsilon = f(x) g(x) > 0$, 一定存在自然数 N, 当 n > N 时, $\frac{1}{n} < \varepsilon$. 即当 n > N 时, $f(x) > g(x) + \frac{1}{n}$, 也就是 $x \in A_n$. 因此 $A \subset \bigcup_{n=1}^{\infty} A_n$.

综上, 结论得证.

证明两个集合的包含关系,也可以通过证明余集的反包含关系得到.即

7. 设 f(x), g(x) 是定义在 E 上的函数, 证明: 对任意 $\varepsilon > 0$,

$$\{x : |f(x) + g(x)| > 2\varepsilon\} \subset$$
$$\{x : |f(x)| > \varepsilon\} \cup \{x : |g(x)| > \varepsilon\}.$$

证明. 记

$$A = \{x : |f(x) + g(x)| > 2\varepsilon\},\$$

 $B = \{x : |f(x)| > \varepsilon\},\$
 $C = \{x : |g(x)| > \varepsilon\}.$

若 $x \in B^c \cap C^c$, 即 x 满足

$$|f(x)| \le \varepsilon$$
 B $|g(x)| \le \varepsilon$.

则

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le \varepsilon + \varepsilon = 2\varepsilon,$$

即 $x \in A^c$. 事实上, 我们证明了 $B^c \cap C^c \subset A^c$, 因此有

$$A \subset (B^c \cap C^c)^c = B \cup C.$$

第8题考查单调增集合列的性质: 如果 $\{A_n\}$ 单调增加, 则

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

8. 证明: 若 $\{f_n(x)\}$ 是定义在 E 上的一列函数,且对任意 $x \in E, f_n(x) \leq f_{n+1}(x), n = 1, 2, \cdots, 则$ 对任意 $c \in \mathbb{R}, A_n = \{x : f_n(x) > c\}$ 是单调增集合列,且 $\lim_{n \to \infty} A_n = \{x : \lim_{n \to \infty} f_n(x) > c\}$.

证明.

 $\forall n \in \mathbb{N},$ 若 $x \in A_n$, 即 x 满足 $f_n(x) > c$, 有

$$f_{n+1}(x) \ge f(x) > c,$$

即 $x \in A_{n+1}$. 因此 $A_n \subset A_{n+1}$, 即 $\{A_n\}$ 是单调增集合列.

由单调集列的性质可得 $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n$. 因为

$$x \in \lim_{n \to \infty} A_n$$

$$\iff x \in \bigcup_{n=1}^{\infty} A_n$$

$$\iff \exists n \in \mathbb{N} \text{ s.t. } x \in A$$

$$\longleftrightarrow \exists n_0 \subset n \ s.\iota. \ x \subset A_{n_0}$$

$$\stackrel{\{A_n\}}{\rightleftharpoons}$$
 单调增 $\exists n_0 \in \mathbb{N} \ s.t. \ \forall n \geq n_0 \ \mathbf{f} \ x \in A_n$
 $\iff \exists n_0 \in \mathbb{N} \ s.t. \ \forall n \geq n_0 \ \mathbf{f} \ f_n(x) > c$
 $\iff \lim_{n \to \infty} f_n(x) > c$
 $\iff x \in \{x : \lim_{n \to \infty} f_n(x) > c\},$

所以
$$\lim_{n\to\infty} A_n = \{x : \lim_{n\to\infty} f_n(x) > c\}.$$

第9题主要考查 $\varepsilon - \delta(N)$ 语言和集合语言的相互转化.

9. 证明: 若 $\{f_n(x)\}$ 是定义在 \mathbb{R} 上的一列函数, 令

证明. 因为

$$x \in E$$

$$\iff \lim_{n\to\infty} f_n(x) = +\infty$$

$$\iff \forall k \in \mathbb{N}, \exists N \in \mathbb{N}, \textbf{\textit{if}} \ n \geq N \ \textbf{\textit{if}}, f_n(x) > k$$

$$\iff x \in \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : f_n(x) > k\},$$

所以
$$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : f_n(x) > k\}.$$

第10-11题证明两个集合对等,本质上就是建立两个集合之间的一一对应.

10. 作出一个 (-1,1) 和 $(-\infty, +\infty)$ 的一一对应, 并写出该对应的解析表达式.

解.

$$\varphi(x) = \tan\left(\frac{\pi}{2}x\right), \quad x \in (-1,1).$$

11. 证明: 将球面去掉一点以后, 余下的点所成的集合和整个平面上的点所成的集合是对等的.

证明.

设球面为 S. 如图所示, 让球面的南极与 xOy 平面的坐标原点相切, 球面北极点记为 N. 对球面上任意异于北极点的点 P, 过北极点 N 及点 P 作一条直线, 与平面相交于唯一的一点 Q. 不难发现, 除了北极点外, 球面上每一点都与平面上的一点对应; 反过来, 对平面上任意一点 Q, 连接球面北极点 N 和点 Q 必与球面相交于异于 N 的一点 P, 即平面上每一点都与球面上异于北极的一点对应. 实际上我们找到了 $S-\{N\}$ 与 xOy 平面之间的一一映射.

具体来说, 设球面方程为 $x^2+y^2+(z-1)^2=1$, 北极点 N 的坐标为 (0,0,2). 球面上一点 P 的坐标为 (x,y,z), 与之对应的点 Q 的坐标为 (x',y',0). 因为 N(0,0,2), P(x,y,z), Q(x',y',0) 三点共线, 所以

$$\frac{x'-0}{x-0} = \frac{y'-0}{y-0} = \frac{0-2}{z-2}.$$

从而

$$x' = \frac{-2}{3}x, \qquad y' = \frac{-2}{3}y.$$

这就是从 $S - \{N\}$ 到 xOy 面的一一映射. 因此, $S - \{N\}$ 与 xOy 平面是对等的.

第12-14题都是证明一个集合是可数集.证明一个集合A是可数集有下面几种方法:

- 证明A与一个可数集(比如自然数集、整数集、有理数集)对等;
- 已知B是一可数集.证明A与B的一个子集对等, B与A的一个子集对等, 用康托尔-伯恩斯坦定理得A也是一个可数集;
- 把A表示成可数个可数集的并集或有限个可数集的直积.

12. 证明: 所有系数为有理数的多项式组成一可数集.

证明.

设系数为有理数的 n 次多项式为

$$P_n = \left\{ a_n x^n + \dots + a_1 x + a_0 \middle| \begin{array}{l} a_n \in \mathbb{Q}_0, \\ a_i \in \mathbb{Q}, \\ i = n - 1, \dots, 0. \end{array} \right\}.$$

显然 $P_n \sim \mathbb{Q}_0 \times \underbrace{\mathbb{Q} \times \cdots \times \mathbb{Q}}_{n \uparrow}$, 其中 $\mathbb{Q}_0 = \mathbb{Q} - \{0\}$ 和 \mathbb{Q} 都是可数集. 因此 P_n 是一个可数集. 从而有理系数多项式组成的全体 $P = \bigcup_{n=0}^{\infty} P_n$ 是一个可数集.

13. 设 A 是平面上以有理点(即坐标都是有理数)为中心, 有理数为半径的圆的全体, 则 A 是可数集.

证明.

平面上的一个圆是由它的圆心坐标 (x,y) 及半径 r 唯一确定的. 因此

 $A \sim \{(x, y, r) : x, y \in \mathbb{Q}, r \in \mathbb{Q}^+\} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+,$ 其中 \mathbb{Q}^+ 表示非负有理数集, 它和 \mathbb{Q} 都是可数集, 从而 A 也是可数集.

14. 证明: 增函数的不连续点最多只有可数多个.

证明.

设 f(x) 是增函数, 则 x_0 是 f(x) 的不连续点的充分必要条件是 $f(x_0+0)-f(x_0-0)>0$, 即

$$(f(x_0-0), f(x_0+0))$$

是一个开区间. 把 f(x) 的全体间断点构成的集合记为 A. 对任意的 $x \in A$, 由于 $\mathbb Q$ 在直线上稠密, 任取 $r \in \big(f(x-0), f(x+0)\big) \cap \mathbb Q$, 定义 $\varphi(x) = r$. 若 x_1 和 x_2 是 f(x) 的不同间断点, 则 $\big(f(x_1-0), f(x_1+0)\big) \cap \big(f(x_2-0), f(x_2+0)\big) = \emptyset$. 因此 φ 是从 A 到 $\mathbb Q$ 内的单射, 于是 $A \sim \varphi(A) \subset \mathbb Q$, 所以 $\overline{A} \leq \overline{\mathbb Q} = \aleph_0$, 即 A 是可数集或有限集. 于是 f(x) 的不连续点最多只有可数多个.