Computer Vision A Modern Approach

David A. Forsyth

University of California at Berkeley

Jean Ponce

University of Illinois at Urbana-Champaign

Library of Congress Cataloging-in-Publication Data

CIP data on file.

Vice President and Editorial Director, ECS: Marcia J. Horton

Publisher: Alan Apt

Associate Editor: *Toni D. Holm* Editorial Assistant: *Patrick Lindner*

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi

Executive Managing Editor: Vince O'Brien
Assistant Managing Editor: Camille Trentacoste

Production Editor: Leslie Galen

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson Art Director: Wanda Espana Art Editor: Greg Dulles

Manufacturing Manager: *Trudy Pisciotti* Manufacturing Buyer: *Lynda Castillo* Marketing Manager: *Pamela Shaffer* Marketing Assistant: *Barrie Reinhold*

About the cover: Image courtesy of Gamma/Superstock

© 2003 by Pearson Education, Inc. Pearson Education, Inc.

Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-085198-1

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacíon de Mexico, S.A. de C.V.

Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Upper Saddle River, New Jersey

To my family—DAF

To Camille and Oscar—JP

	1.1	Pinhole Cameras 4	
		1.1.1 Perspective Projection, 4	
		1.1.2 Affine Projection, 6	
	1.2	Cameras with Lenses 7	
		1.2.1 Paraxial Geometric Optics, 8	
		1.2.2 Thin Lenses, 9	
		1.2.3 Real Lenses, 11	
	1.3	The Human Eye 13	
	1.4	Sensing 15	
		1.4.1 CCD Cameras, 16	
		1.4.2 Sensor Models, 17	
	1.5	Notes 18	
		Problems 19	
2	GEO	METRIC CAMERA MODELS	20
	2.1	Elements of Analytical Euclidean Geometry 20	
		2.1.1 Coordinate Systems and Homogeneous Coordinates, 20	
		2.1.2 Coordinate System Changes and Rigid Transformations, 23	
	2.2	Camera Parameters and the Perspective Projection 28	
		2.2.1 Intrinsic Parameters, 29	
		,	

Part I Image Formation and Image Models

1 CAMERAS

1

3

vi Contents

		2.2.2 Extrinsic Parameters, 30 2.2.2 A Characterization of Parametriza Projection Metrices, 21	
	2.2	2.2.3 A Characterization of Perspective Projection Matrices, 31	
	2.3	Affine Cameras and Affine Projection Equations 32	
		2.3.1 Affine Cameras, 32	
		2.3.2 Affine Projection Equations, 33	
	2.4	2.3.3 A Characterization of Affine Projection Matrices, 34	
	2.4	Notes 35	
		Problems 35	
3	GEO	METRIC CAMERA CALIBRATION	38
	3.1	Least-Squares Parameter Estimation 39	
	0.1	3.1.1 Linear Least-Squares Methods, 39	
		3.1.2 Nonlinear Least-Squares Methods, 42	
	3.2	A Linear Approach to Camera Calibration 45	
		3.2.1 Estimation of the Projection Matrix, 45	
		3.2.2 Estimation of the Intrinsic and Extrinsic Parameters, 45	
		3.2.3 Degenerate Point Configurations, 46	
	3.3	Taking Radial Distortion into Account 47	
		3.3.1 Estimation of the Projection Matrix, 48	
		3.3.2 Estimation of the Intrinsic and Extrinsic Parameters, 48	
		3.3.3 Degenerate Point Configurations, 49	
	3.4	Analytical Photogrammetry 50	
	3.5	An Application: Mobile Robot Localization 51	
	3.6	Notes 53	
		Problems 53	
4	RΔD	IOMETRY—MEASURING LIGHT	55
•			00
	4.1	Light in Space 55	
		4.1.1 Foreshortening, 55	
		4.1.2 Solid Angle, 56	
	4.0	4.1.3 Radiance, 58	
	4.2	Light at Surfaces 60	
		4.2.1 Simplifying Assumptions, 60	
		4.2.2 The Bidirectional Reflectance Distribution Function, 60	
	1.2	4.2.3 Example: The Radiometry of Thin Lenses, 62	
	4.3	Important Special Cases 63	
		4.3.1 Radiosity, 634.3.2 Directional Hemispheric Reflectance, 64	
		4.3.3 Lambertian Surfaces and Albedo, 654.3.4 Specular Surfaces, 65	
		4.3.5 The Lambertian + Specular Model, 66	
	4.4	Notes 67	
	4.4	Problems 68	
		1 Toblems 00	
5	SOU	RCES, SHADOWS, AND SHADING	70
	5.1	Qualitative Radiometry 70	
	5.2	Sources and Their Effects 71	
		5.2.1 Radiometric Properties of Light Sources, 71	
		5.2.2 Point Sources 72	

Contents vii

		5.2.3 Line Sources, 75	
	. .	5.2.4 Area Sources, 75	
	5.3	Local Shading Models 77	
		5.3.1 Local Shading Models for Point Sources, 77	
		5.3.2 Area Sources and Their Shadows, 79	
	5.4	5.3.3 Ambient Illumination, 79	
	3.4	Application: Photometric Stereo 80 5.4.1 Normal and Albedo from Many Views, 82	
		5.4.1 Normal and Albedo from Many Views, 82 5.4.2 Shape from Normals, 84	
	5.5	Interreflections: Global Shading Models 86	
	0.0	5.5.1 An Interreflection Model, 87	
		5.5.2 Solving for Radiosity, 89	
		5.5.3 The Qualitative Effects of Interreflections, 90	
	5.6	Notes 91	
		Problems 95	
6	COL	OR	97
	6.1	The Physics of Color 97	
	0.1	6.1.1 Radiometry for Colored Lights: Spectral Quantities, 97	
		6.1.2 The Color of Sources, 98	
		6.1.3 The Color of Surfaces, 100	
	6.2	Human Color Perception 102	
		6.2.1 Color Matching, 102	
		6.2.2 Color Receptors, 104	
	6.3	Representing Color 105	
		6.3.1 Linear Color Spaces, 105	
		6.3.2 Non-linear Color Spaces, 110	
		6.3.3 Spatial and Temporal Effects, 113	
	6.4	A Model for Image Color 114	
		6.4.1 Cameras, 114	
		6.4.2 A Model for Image Color, 115	
	6.5	6.4.3 Application: Finding Specularities, 118 Surface Color from Image Color 119	
	0.5	6.5.1 Surface Color Perception in People, 120	
		6.5.2 Inferring Lightness, 122	
		6.5.3 Surface Color from Finite-Dimensional Linear Models, 126	
	6.6	Notes 128	
		Problems 130	
Part II Early Vision:	Just (One Image	133
7	LINE	EAR FILTERS	135
	7.1	Linear Filters and Convolution 135	
	/ • 1	7.1.1 Convolution, 136	
	7.2	Shift Invariant Linear Systems 140	
		7.2.1 Discrete Convolution, 141	
		7.2.2 Continuous Convolution, 142	
		7.2.3 Edge Effects in Discrete Convolutions, 145	

viii Contents

	7.3	Spatial Frequency and Fourier Transforms 145 7.3.1 Fourier Transforms, 146	
	7.4	Sampling and Aliasing 148 7.4.1 Sampling, 150	
		7.4.2 Aliasing, 1527.4.3 Smoothing and Resampling, 153	
	7.5	Filters as Templates 157	
		7.5.1 Convolution as a Dot Product, 157	
	7.6	7.5.2 Changing Basis, 158 Technique: Normalized Correlation and Finding Patterns 158	
	7.0	7.6.1 Controlling the Television by Finding Hands	
		by Normalized Correlation, 158	
	7.7	Technique: Scale and Image Pyramids 159	
		7.7.1 The Gaussian Pyramid, 1597.7.2 Applications of Scaled Representations, 161	
	7.8	Notes 162	
		Problems 164	
8	EDG	E DETECTION	165
	8.1	Noise 165	
		8.1.1 Additive Stationary Gaussian Noise, 166	
	0.2	8.1.2 Why Finite Differences Respond to Noise, 168	
	8.2	Estimating Derivatives 169 8.2.1 Derivative of Gaussian Filters, 169	
		8.2.2 Why Smoothing Helps, 170	
		8.2.3 Choosing a Smoothing Filter, 171	
	0.2	8.2.4 Why Smooth with a Gaussian? 172 Detecting Edges 175	
	8.3	Detecting Edges 175 8.3.1 Using the Laplacian to Detect Edges, 175	
		8.3.2 Gradient-Based Edge Detectors, 176	
		8.3.3 Technique: Orientation Representations and Corners, 181	
	8.4	Notes 185	
		Problems 187	
9	TEX	TURE	189
	9.1	Representing Texture 190	
		9.1.1 Extracting Image Structure with Filter Banks, 1919.1.2 Representing Texture Using the Statistics of Filter Outputs, 193	
	9.2	Analysis (and Synthesis) Using Oriented Pyramids 196	
		9.2.1 The Laplacian Pyramid, 197	
		9.2.2 Filters in the Spatial Frequency Domain, 199	
	0.2	9.2.3 Oriented Pyramids, 202	
	9.3	Application: Synthesizing Textures for Rendering 202 9.3.1 Homogeneity, 205	
		9.3.2 Synthesis by Sampling Local Models, 205	
	9.4	Shape from Texture 207	
	0.7	9.4.1 Shape from Texture for Planes, 208	
	9.5	Notes 210 Problems 211	
		riouenis 211	

Part III	Early Vision:	: Multiple Images	213
	10	THE GEOMETRY OF MULTIPLE VIEWS	215
		10.1 Two Views 216 10.1.1 Epipolar Geometry, 216 10.1.2 The Calibrated Case, 217 10.1.3 Small Motions, 218 10.1.4 The Uncalibrated Case, 218 10.1.5 Weak Calibration, 219 10.2 Three Views 222 10.2.1 Trifocal Geometry, 223 10.2.2 The Calibrated Case, 223 10.2.3 The Uncalibrated Case, 226 10.2.4 Estimation of the Trifocal Tensor, 226	
		10.3 More Views 227	
		10.4 Notes 230 Problems 232	
	11	STEREOPSIS	234
		11.1 Reconstruction 235 11.1.1 Image Rectification, 236	
		11.2 Human Stereopsis 237	
		11.3 Binocular Fusion 240 11.3.1 Correlation, 240 11.3.2 Multi-Scale Edge Matching, 242	
		11.3.3 Dynamic Programming, 243	
		11.4 Using More Cameras 246 11.4.1 Three Cameras, 246 11.4.2 Multiple Cameras, 247	
		11.5 Notes 247	
		Problems 250	
	12	AFFINE STRUCTURE FROM MOTION	251
		12.1 Elements of Affine Geometry 253 12.1.1 Affine Spaces and Barycentric Combinations, 253 12.1.2 Affine Subspaces and Affine Coordinates, 254 12.1.3 Affine Transformations and Affine Projection Models, 257 12.1.4 Affine Shape, 258	
		12.2 Affine Structure and Motion from Two Images 258 12.2.1 Geometric Scene Reconstruction, 259 12.2.2 Algebraic Motion Estimation, 260	
		12.3 Affine Structure and Motion from Multiple Images 263 12.3.1 The Affine Structure of Affine Image Sequences, 263 12.3.2 A Factorization Approach to Affine Structure from Motion, 263	
		12.4 From Affine to Euclidean Images 266 12.4.1 Euclidean Constraints and Calibrated Affine Cameras, 266 12.4.2 Computing Euclidean Upgrades from Multiple Views, 267	
		12.5 Affine Motion Segmentation 269 12.5.1 The Reduced Row-Echelon Form of the Data Matrix, 269	

x Contents

		12.6	12.5.2 The Shape Interaction Matrix, 270 Notes 272 Problems 272	
	13	PRO	JECTIVE STRUCTURE FROM MOTION	274
		13.1	Elements of Projective Geometry 275 13.1.1 Projective Spaces, 275 13.1.2 Projective Subspaces and Projective Coordinates, 276 13.1.3 Affine and Projective Spaces, 278 13.1.4 Hyperplanes and Duality, 279 13.1.5 Cross-Ratios and Projective Coordinates, 280 13.1.6 Projective Transformations, 282 13.1.7 Projective Shape, 284	
		13.2		
		13.3		
		13.4	Projective Structure and Motion from Multiple Images 289 13.4.1 A Factorization Approach to Projective Structure from Motion, 289 13.4.2 Bundle Adjustment, 292	
		13.5 13.6	From Projective to Euclidean Images 292 Notes 294 Problems 296	
Part IV Mid	-Level Vi	sion		299
	14	SEG	MENTATION BY CLUSTERING	301
		14.1	What Is Segmentation? 301 14.1.1 Model Problems, 303 14.1.2 Segmentation as Clustering, 304	
		14.2 14.3	Human Vision: Grouping and Gestalt 304 Applications: Shot Boundary Detection and Background Subtraction 309 14.3.1 Background Subtraction, 309 14.3.2 Shot Boundary Detection, 310	
		14.4	Image Segmentation by Clustering Pixels 313 14.4.1 Segmentation Using Simple Clustering Methods, 313 14.4.2 Clustering and Segmentation by K-means, 315	
		14.5	Segmentation by Graph-Theoretic Clustering 317 14.5.1 Terminology for Graphs, 317 14.5.2 The Overall Approach, 318 14.5.3 Affinity Measures, 319 14.5.4 Eigenvectors and Segmentation, 321 14.5.5 Normalized Cuts, 323 Notes 326	
			Droblems 327	

15	SEG	MENTATION BY FITTING A MODEL	329						
	15.1	The Hough Transform 329							
		15.1.1 Fitting Lines with the Hough Transform, 330							
		15.1.2 Practical Problems with the Hough Transform, 330							
	15.2	Fitting Lines 333							
		15.2.1 Line Fitting with Least Squares, 333							
		15.2.2 Which Point Is on Which Line? 335							
	15.3	Fitting Curves 337							
		15.3.1 Implicit Curves, 337							
	15 4	15.3.2 Parametric Curves, 340							
		Fitting as a Probabilistic Inference Problem 341							
	13.3	Robustness 342 15.5.1 M-estimators, 343							
		15.5.2 RANSAC, 346							
	15.6	Example: Using RANSAC to Fit Fundamental Matrices 348							
	13.0	15.6.1 An Expression for Fitting Error, 348							
		15.6.2 Correspondence as Noise, 348							
		15.6.3 Applying RANSAC, 348							
		15.6.4 Finding the Distance, 349							
		15.6.5 Fitting a Fundamental Matrix to Known Correspondences, 351							
	15.7	Notes 351							
		Problems 352							
16	SEGMENTATION AND FITTING USING PROBABILISTIC METHODS 354								
	16.1	Missing Data Problems, Fitting, and Segmentation 354							
		16.1.1 Missing Data Problems, 355							
		16.1.2 The EM Algorithm, 357							
		16.1.3 The EM Algorithm in the General Case, 359							
	16.2	The EM Algorithm in Practice 359							
		16.2.1 Example: Image Segmentation, Revisited, 359							
		16.2.2 Example: Line Fitting with EM, 362							
		16.2.3 Example: Motion Segmentation and EM, 363							
		16.2.4 Example: Using EM to Identify Outliers, 365							
		16.2.5 Example: Background Subtraction Using EM, 367							
		16.2.6 Example: EM and the Fundamental Matrix, 368							
	16.3	16.2.7 Difficulties with the EM Algorithm, 368 Model Selection: Which Model Is the Best Fit? 369							
	10.5	16.3.1 Basic Ideas, 369							
		16.3.2 AIC—An Information Criterion, 369							
		16.3.3 Bayesian Methods and Schwartz' BIC, 370							
		16.3.4 Description Length, 370							
		16.3.5 Other Methods for Estimating Deviance, 370							
	16.4	Notes 371							
		Problems 372							
17	TRA	CKING WITH LINEAR DYNAMIC MODELS	373						
	17.1	Tracking as an Abstract Inference Problem 374							

17.1.1 Independence Assumptions, 374

xii Contents

	17.3 17.4 17.5	17.1.2 Tracking as Inference, 375 17.1.3 Overview, 376 Linear Dynamic Models 376 17.2.1 Drifting Points, 377 17.2.2 Constant Velocity, 377 17.2.3 Constant Acceleration, 377 17.2.4 Periodic Motion, 379 17.2.5 Higher Order Models, 379 Kalman Filtering 380 17.3.1 The Kalman Filter for a 1D State Vector, 380 17.3.2 The Kalman Update Equations for a General State Vector, 383 17.3.3 Forward–Backward Smoothing, 383 Data Association 388 17.4.1 Choosing the Nearest—Global Nearest Neighbours, 389 17.4.2 Gating and Probabilistic Data Association, 390 Applications and Examples 393 17.5.1 Vehicle Tracking, 393 Notes 397 Problems 397	
Part V High-Level Vi	ision: (Geometric Methods	399
18	MOD	EL-BASED VISION	401
	18.2 18.3 18.4 18.5 18.6	Initial Assumptions 401 18.1.1 Obtaining Hypotheses, 402 Obtaining Hypotheses by Pose Consistency 403 18.2.1 Pose Consistency for Perspective Cameras, 403 18.2.2 Affine and Projective Camera Models, 404 18.2.3 Linear Combinations of Models, 406 Obtaining Hypotheses by Pose Clustering 407 Obtaining Hypotheses Using Invariants 410 18.4.1 Invariants for Plane Figures, 410 18.4.2 Geometric Hashing, 413 18.4.3 Invariants and Indexing, 413 Verification 416 18.5.1 Edge Proximity, 416 18.5.2 Similarity in Texture, Pattern, and Intensity, 418 Application: Registration in Medical Imaging Systems 418 18.6.1 Imaging Modes, 419 18.6.2 Applications of Registration, 420 18.6.3 Geometric Hashing Techniques in Medical Imaging, 421 Curved Surfaces and Alignment 422 Notes 423 Problems 425	
19		OTH SURFACES AND THEIR OUTLINES	427
	19.1	Elements of Differential Geometry 429 19.1.1 Curves, 429 19.1.2 Surfaces, 434	

	19.2	Contour Geometry 438 19.2.1 The Occluding Contour and the Image Contour, 439 19.2.2 The Cusps and Inflections of the Image Contour, 439 19.2.3 Koenderink's Theorem, 441 Notes 442 Problems 443	
20	ASP	ECT GRAPHS	444
	20.1	Visual Events: More Differential Geometry 447 20.1.1 The Geometry of the Gauss Map, 448 20.1.2 Asymptotic Curves, 449 20.1.3 The Asymptotic Spherical Map, 450 20.1.4 Local Visual Events, 451 20.1.5 The Bitangent Ray Manifold, 453 20.1.6 Multilocal Visual Events, 455	
	20.2		
	20.3 20.4	Aspect Graphs and Object Localization 460 Notes 464 Problems 465	
21	RAN	GE DATA	467
		Active Range Sensors 467 Range Data Segmentation 469 21.2.1 Elements of Analytical Differential Geometry, 469 21.2.2 Finding Step and Roof Edges in Range Images, 471 21.2.3 Segmenting Range Images into Planar Regions, 476	
	21.3	Range Image Registration and Model Acquisition 477 21.3.1 Quaternions, 478 21.3.2 Registering Range Images Using the Iterative Closest-Point Method, 479	
	21.4	 21.3.3 Fusing Multiple Range Images, 481 Object Recognition 483 21.4.1 Matching Piecewise-Planar Surfaces Using Interpretation Trees, 483 21.4.2 Matching Free-Form Surfaces Using Spin Images, 486 	
	21.5	Notes 490 Problems 491	
Part VI High-Level \	/ision:	Probabilistic and Inferential Methods	493
22		DING TEMPLATES USING CLASSIFIERS	495
	22.1	Classifiers 496 22.1.1 Using Loss to Determine Decisions, 496 22.1.2 Overview: Methods for Building Classifiers, 497	

xiv Contents

		22.1.3 Example: A Plug-in Classifier for Normal Class-conditional Densities, 499
		22.1.4 Example: A Nonparametric Classifier Using Nearest Neighbors, 500
		22.1.5 Estimating and Improving Performance, 501
	22.2	Building Classifiers from Class Histograms 502
		22.2.1 Finding Skin Pixels Using a Classifier, 503
		22.2.2 Face Finding Assuming Independent Template Responses, 504
	22.3	Feature Selection 505
	22.3	22.3.1 Principal Component Analysis, 507
		22.3.2 Identifying Individuals with Principal Components Analysis, 508
		22.3.3 Canonical Variates, 512
	22.4	Neural Networks 516
		22.4.1 Key Ideas, 516
		22.4.2 Minimizing the Error, 518
		22.4.3 When to Stop Training, 520
		22.4.4 Finding Faces Using Neural Networks, 520
		22.4.5 Convolutional Neural Nets, 522
	22.5	The Support Vector Machine 523
		22.5.1 Support Vector Machines for Linearly Separable Datasets, 524
		22.5.2 Finding Pedestrians Using Support Vector Machines, 527
	22.6	Notes 528
		Problems 531
	22.7	11 1 0
	22.8	•
		Separable 534
	22.9	Appendix III: Using Support Vector Machines with Non-Linear Kernels 535
23	REC	OGNITION BY RELATIONS BETWEEN TEMPLATES 537
	23.1	
		23.1.1 Describing Image Patches, 538
		23.1.2 Voting and a Simple Generative Model, 539
		23.1.3 Probabilistic Models for Voting, 539
		23.1.4 Voting on Relations, 541
	22.2	23.1.5 Voting and 3D Objects, 542
	23.2	Relational Reasoning Using Probabilistic Models and Search 542
		23.2.1 Correspondence and Search, 543
	22.2	23.2.2 Example: Finding Faces, 545 Using Classifiers to Prune Search 546
	23.3	23.3.1 Identifying Acceptable Assemblies Using Projected Classifiers, 547
		23.3.2 Example: Finding People and Horses Using Spatial Relations, 548
	23.4	Technique: Hidden Markov Models 550
	23.4	23.4.1 Formal Matters, 550
		23.4.2 Computing with Hidden Markov Models, 552
		23.4.3 Varieties of HMMs, 557
	23.5	Application: Hidden Markov Models and Sign Language Understanding 559
	20.0	23.5.1 Language Models: Sentences from Words, 560
	22.6	
	23.6	Application: Finding People with Hidden Markov Models 563

24	GEOMETRIC TEMPLATES FROM SPATIAL RELATIONS			
		24.2 Pr 24.2 Pr 24.2 24 24 24 24 24.3 Ar	mple Relations between Object and Image 568 4.1.1 Relations for Curved Surfaces, 569 4.1.2 Class-Based Grouping, 575 imitives, Templates, and Geometric Inference 576 4.2.1 Generalized Cylinders as Volumetric Primitives, 576 4.2.2 Ribbons, 579 4.2.3 What Can One Represent with Ribbons? 584 4.2.4 Linking 3D and 2D for Cylinders of Known Length, 586 4.2.5 Linking 3D and Image Data Using Explicit Geometric Reasoning, 58 fterword: Object Recognition 591 4.3.1 The Facts on the Ground, 592	38
			1.3.2 Current Approaches to Object Recognition, 593 1.3.3 Limitations, 594	
		24.4 No	otes 594 oblems 595	
Part VII	Application	s		597
	25	APPLIC	ATION: FINDING IN DIGITAL LIBRARIES	599
		25.2 St. 25.2 St. 25.3 Ro. 25.3 Ro. 25.2 St. 25.2 St. 25.3 Ro. 25.3 Ro. 25.3 St. 25.3 Ro. 25.	ackground: Organizing Collections of Information 601 5.1.1 How Well Does the System Work? 601 5.1.2 What Do Users Want? 602 5.1.3 Searching for Pictures, 602 5.1.4 Structuring and Browsing, 604 5.2.1 Histograms and Correlograms, 605 5.2.2 Textures and Textures of Textures, 606 6.5.2.1 Segmentations of the Picture 609 5.3.1 Segmentation, 610 5.3.2 Template Matching, 612 5.3.3 Shape and Correspondence, 613 5.3.4 Clustering and Organizing Collections, 614 dec 617 otes 618	
	26	APPLIC	ATION: IMAGE-BASED RENDERING	620
		26.2 Tr 26.2 Tr 26.3 Tl 26.4 No	onstructing 3D Models from Image Sequences 620 5.1.1 Scene Modeling from Registered Images, 621 5.1.2 Scene Modeling from Unregistered Images, 627 ransfer-Based Approaches to Image-Based Rendering 629 5.2.1 Affine View Synthesis, 630 6.2.2 Euclidean View Synthesis, 632 ne Light Field 635 otes 639 oblems 639	
	BIB	BLIOGRA	PHY	643
	IND)EX		673

Preface

Computer vision as a field is an intellectual frontier. Like any frontier, it is exciting and disorganised; there is often no reliable authority to appeal to—many useful ideas have no theoretical grounding, and some theories are useless in practice; developed areas are widely scattered, and often one looks completely inaccessible from the other. Nevertheless, we have attempted in this book to present a fairly orderly picture of the field.

We see computer vision—or just "vision"; apologies to those who study human or animal vision—as an enterprise that uses statistical methods to disentangle data using models constructed with the aid of geometry, physics and learning theory. Thus, in our view, vision relies on a solid understanding of cameras and of the physical process of image formation (part I of this book) to obtain simple inferences from individual pixel values (part II), combine the information available in multiple images into a coherent whole (part III), impose some order on groups of pixels to separate them from each other or infer shape information (part IV), and recognize objects using geometric information (part V) or probabilistic techniques (part VI). Computer vision has a wide variety of applications, old (e.g., mobile robot navigation, industrial inspection, and military intelligence) and new (e.g., human computer interaction, image retrieval in digital libraries, medical image analysis, and the realistic rendering of synthetic scenes in computer graphics). We discuss some of these applications in part VII.

WHY STUDY VISION?

Computer vision's great trick is extracting descriptions of the world from pictures or sequences of pictures. This is unequivocally useful. Taking pictures is usually non-destructive and some-

xviii Preface

times discreet. It is also easy and (now) cheap. The descriptions that users seek can differ widely between applications. For example, a technique known as structure from motion makes it possible to extract a representation of what is depicted and how the camera moved from a series of pictures. People in the entertainment industry use these techniques to build three-dimensional (3D) computer models of buildings, typically keeping the structure and throwing away the motion. These models are used where real buildings cannot be; they are set fire to, blown up, etc. Good, simple, accurate and convincing models can be built from quite small sets of photographs. People who wish to control mobile robots usually keep the motion and throw away the structure. This is because they generally know something about the area where the robot is working, but don't usually know the precise robot location in that area. They can determine it from information about how a camera bolted to the robot is moving.

There are a number of other, important applications of computer vision. One is in medical imaging: One builds software systems that can enhance imagery, or identify important phenomena or events, or visualize information obtained by imaging. Another is in inspection: One takes pictures of objects to determine whether they are within specification. A third is in interpreting satellite images, both for military purposes—a program might be required to determine what militarily interesting phenomena have occurred in a given region recently; or what damage was caused by a bombing—and for civilian purposes—what will this year's maize crop be? How much rainforest is left? A fourth is in organizing and structuring collections of pictures. We know how to search and browse text libraries (though this is a subject that still has difficult open questions) but don't really know what to do with image or video libraries.

Computer vision is at an extraordinary point in its development. The subject itself has been around since the 1960s, but it is only recently that it has been possible to build useful computer systems using ideas from computer vision. This flourishing has been driven by several trends: Computers and imaging systems have become very cheap. Not all that long ago, it took tens of thousands of dollars to get good digital color images; now it takes a few hundred, at most. Not all that long ago, a color printer was something one found in few, if any, research labs; now they are in many homes. This means it is easier to do research. It also means that there are many people with problems to which the methods of computer vision apply. For example, people would like to organize their collection of photographs, make 3D models of the world around them, and manage and edit collections of videos. Our understanding of the basic geometry and physics underlying vision and, what is more important, what to do about it, has improved significantly. We are beginning to be able to solve problems that lots of people care about, but none of the hard problems have been solved and there are plenty of easy ones that have not been solved either (to keep one intellectually fit while trying to solve hard problems). It is a great time to be studying this subject.

What Is in This Book?

This book covers what we feel a computer vision professional ought to know. However, it is addressed to a wider audience. We hope that those engaged in computational geometry, computer graphics, image processing, imaging in general, and robotics will find it an informative reference. We have tried to make the book accessible to senior undergraduates or graduate students with a passing interest in vision. Each chapter covers a different part of the subject, and, as a glance at Table 1 will confirm, chapters are relatively independent. This means that one can dip into the book as well as read it from cover to cover. Generally, we have tried to make chapters run from easy material at the start to more arcane matters at the end. Each chapter has brief notes at the end, containing historical material and assorted opinions. We have tried to produce a book that describes ideas that are useful, or likely to be so in the future. We have put emphasis on understanding the basic geometry and physics of imaging, but have tried to link this with actual

Preface xix

applications. In general, the book reflects the enormous recent influence of geometry and various forms of applied statistics on computer vision.

A reader who goes from cover to cover will hopefully be well informed, if exhausted; there is too much in this book to cover in a one-semester class. Of course, prospective (or active) computer vision professionals should read every word, do all the exercises, and report any bugs found for the second edition (of which it is probably a good idea to plan buying a copy!). While the study of computer vision does not require deep mathematics, it does require facility with a lot of different mathematical ideas. We have tried to make the book self contained, in the sense that readers with the level of mathematical sophistication of an engineering senior should be comfortable with the material of the book, and should not need to refer to other texts. We have also tried to keep the mathematics to the necessary minimum—after all, this book is about computer vision, not applied mathematics—and have chosen to insert what mathematics we have kept in the main chapter bodies instead of a separate appendix.

Generally, we have tried to reduce the interdependence between chapters, so that readers interested in particular topics can avoid wading through the whole book. It is not possible to make each chapter entirely self contained, and Table 1 indicates the dependencies between chapters.

TABLE 1 Dependencies between chapters: It will be difficult to read a chapter if you don't have a good grasp of the material in the chapters it "requires." If you have not read the chapters labeled "helpful," you may need to look one or two things up.

Part	Chapter	Requires	Helpful
I	1: Cameras		
	2: Geometric camera models	1	
	3: Geometric camera calibration	2	
	4: Radiometry—measuring light		
	5: Sources, shadows and shading		4, 1
	6: Color		5
II	7: Linear filters		
	8: Edge detection	7	
	9: Texture	7	8
III	10: The geometry of multiple views	3	
	11: Stereopsis	10	
	12: Affine structure from motion	10	
	13: Projective structure from motion	12	
IV	14: Segmentation by clustering		9, 6, 5
	15: Segmentation by fitting a model		14
	16: Segmentation and fitting using probabilistic methods		15,10
	17: Tracking with linear dynamic models		
V	18: Model-based vision	3	
	19: Smooth surfaces and their outlines	2	
	20: Aspect graphs	19	
	21: Range data		20, 19, 3
VI	22: Finding templates using classifiers		9, 8, 7, 6, 5
	23: Recognition by relations between templates		9, 8, 7, 6, 5
	24: Geometric templates from spatial relations	2, 1	16, 15, 14
VII	25: Application: Finding in digital libraries		16, 15, 14, 6
	26: Application: Image-based rendering	10	13, 12, 11, 6, 5, 3, 2, 1

xx Preface

What Is Not in This Book

The computer vision literature is vast, and it was not easy to produce a book about computer vision that can be lifted by ordinary mortals. To do so, we had to cut material, ignore topics, and so on. We cut two entire chapters close to the last moment: One is an introduction to probability and inference, the other an account of methods for tracking objects with non-linear dynamics. These chapters appear on the book's web page http://www.cs.berkeley.edu/~daf/book.html.

We left out some topics because of personal taste, or because we became exhausted and stopped writing about a particular area, or because we learned about them too late to put them in, or because we had to shorten some chapter, or any of hundreds of other reasons. We have tended to omit detailed discussions of material that is mainly of historical interest, and offer instead some historical remarks at the end of each chapter. Neither of us claims to be a fluent intellectual archaeologist, meaning that ideas may have deeper histories than we have indicated. We just didn't get around to writing up deformable templates and mosaics, two topics of considerable practical importance; we will try to put them into the second edition.

ACKNOWLEDGMENTS

In preparing this book, we have accumulated a significant set of debts. A number of anonymous reviewers have read several drafts of the book and have made extremely helpful contributions. We are grateful to them for their time and efforts. Our editor, Alan Apt, organized these reviews with the help of Jake Warde. We thank them both. Leslie Galen, Joe Albrecht, and Dianne Parish, of Integre Technical Publishing, helped us over numerous issues with proofreading and illustrations. Some images used herein were obtained from IMSI's Master Photos Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA. In preparing the bibliography, we have made extensive use of Keith Price's excellent computer vision bibliography, which can be found at http://iris.usc.edu/Vision-Notes/bibliography/contents.html.

Both the overall coverage of topics and several chapters were reviewed by various colleagues, who made valuable and detailed suggestions for their revision. We thank Kobus Barnard, Margaret Fleck, David Kriegman, Jitendra Malik and Andrew Zisserman. A number of our students contributed suggestions, ideas for figures, proofreading comments, and other valuable material. We thank Okan Arikan, Sébastien Blind, Martha Cepeda, Stephen Chenney, Frank Cho, Yakup Genc, John Haddon, Sergey Ioffe, Svetlana Lazebnik, Cathy Lee, Sung-il Pae, David Parks, Fred Rothganger, Attawith Sudsang, and the students in several offerings of our vision classes at U.C. Berkeley and UIUC. We have been very lucky to have colleagues at various universities use (often rough) drafts of our book in their vision classes. Institutions whose students suffered through these drafts include, besides ours, Carnegie-Mellon University, Stanford University, the University of Wisconsin at Madison, the University of California at Santa Barbara and the University of Southern California; there may be others we are not aware of. We are grateful for all the helpful comments from adopters, in particular Chris Bregler, Chuck Dyer, Martial Hebert, David Kriegman, B.S. Manjunath, and Ram Nevatia, who sent us many detailed and helpful comments and corrections. The book has also benefitted from comments and corrections from Aydin Alaylioglu, Sriniyas Akella, Marie Banich, Serge Belongie, Ajit M. Chaudhari, Navneet Dalal, Richard Hartley, Glen Healey, Mike Heath, Hayley Iben, Stéphanie Jonquières, Tony Lewis, Benson Limketkai, Simon Maskell, Brian Milch, Tamara Miller, Cordelia Schmid, Brigitte and Gerry Serlin, Ilan Shimshoni, Eric de Sturler, Camillo J. Taylor, Jeff Thompson, Claire Vallat, Daniel S. Wilkerson, Jinghan Yu, Hao Zhang, and Zhengyou Zhang. If you find an apparent typographic error, please email DAF (daf@cs.berkeley.edu) with the details, using the phrase "book typo" in your email; we will try to credit the first finder of each typo in the second edition.

Preface xxi

We also thank P. Besl, B. Boufama, J. Costeira, P. Debevec, O. Faugeras, Y. Genc, M. Hebert, D. Huber, K. Ikeuchi, A.E. Johnson, T. Kanade, K. Kutulakos, M. Levoy, S. Mahamud, R. Mohr, H. Moravec, H. Murase, Y. Ohta, M. Okutami, M. Pollefeys, H. Saito, C. Schmid, S. Sullivan, C. Tomasi, and M. Turk for providing the originals of some of the figures shown in this book.

DAF acknowledges a wide range of intellectual debts, starting at kindergarten. Important figures in the very long list of his creditors include Gerald Alanthwaite, Mike Brady, Tom Fair, Margaret Fleck, Jitendra Malik, Joe Mundy, Mike Rodd, Charlie Rothwell and Andrew Zisserman. JP cannot even remember kindergarten, but acknowledges his debts to Olivier Faugeras, Mike Brady, and Tom Binford. He also wishes to thank Sharon Collins for her help. Without her, this book, like most of his work, probably would have never been finished. Both authors would also like to acknowledge the profound influence of Jan Koenderink's writings on their work at large and on this book in particular.

SAMPLE SYLLABI

The whole book can be covered in two (rather intense) semesters, by starting at the first page and plunging on. Ideally, one would cover one application chapter—probably the chapter on image-based rendering—in the first semester, and the other one in the second. Few departments will experience heavy demand for so detailed a sequence of courses. We have tried to structure this book so that instructors can choose areas according to taste. Sample syllabi for busy 15-week semesters appear in Tables 2 to 6, structured according to needs that can reasonably be expected. We would encourage (and expect!) instructors to rearrange these according to taste.

Table 2 contains a suggested syllabus for a one-semester introductory class in computer vision for seniors or first-year graduate students in computer science, electrical engineering, or other engineering or science disciplines. The students receive a broad presentation of the field, including application areas such as digital libraries and image-based rendering. Although the

TABLE 2 A one-semester introductory class in computer vision for seniors or first-year graduate students in computer science, electrical engineering, or other engineering or science disciplines.

Week	Chapter	Sections	Key topics
1	1, 4	1.1, 4 (summary only)	pinhole cameras, radiometric terminology
2	5	5.1–5.5	local shading models; point, line and area sources; photometric stereo
3	6	all	color
4	7, 8	7.1-7.5, 8.1-8.3	linear filters; smoothing to suppress noise; edge detection
5	9	all	texture: as statistics of filter outputs; synthesis; shape from
6	10, 11	10.1, 11	basic multi-view geometry; stereo
7	14	all	segmentation as clustering
8	15	15.1–15.4	fitting lines, curves; fitting as maximum likelihood; robustness
9	16	16.1,16.2	hidden variables and EM
10	17	all	tracking with a Kalman filter; data association
11	2, 3	2.1, 2.2, all of 3	camera calibration
12	18	all	model-based vision using correspondence and camera calibration
13	22	all	template matching using classifiers
14	23	all	matching on relations
15	25, 26	all	finding images in digital libraries; image based rendering

xxii Preface

TABLE 3 A syllabus for students of computer graphics who want to know the elements of vision that are relevant to their topic.

Week	Chapter	Sections	Key topics
1	1, 4	1.1, 4 (summary only)	pinhole cameras, radiometric terminology
2	5	5.1–5.5	local shading models; point, line and area sources; photometric stereo
3	6.1-6.4	all	color
4	7, 8	7.1–7.5, 8.1–8.3	linear filters; smoothing to suppress noise; edge detection
5	9	9.1-9.3	texture: as statistics of filter outputs; synthesis
6	2, 3	2.1, 2.2, all of 3	camera calibration
7	10, 11	10.1, 11	basic multi-view geometry; stereo
8	12	all	affine structure from motion
9	13	all	projective structure from motion
10	26	all	image-based rendering
11	15	all	fitting; robustness; RANSAC
12	16	all	hidden variables and EM
13	19	all	surfaces and outlines
14	21	all	range data
15	17	all	tracking, the Kalman filter and data association

TABLE 4 A syllabus for students who are primarily interested in the applications of computer vision.

Week	Chapter	Sections	Key topics
1	1, 4	1.1, 4 (summary only)	pinhole cameras, radiometric terminology
2	5, 6	5.1,5.3, 5.4, 5.5, 6.1–6.4	local shading models; point, line and area sources; photometric stereo; color—physics, human perception, color spaces
3	2, 3	all	camera models and their calibration
4	7, 9	all of 7; 9.1–9.3	linear filters; texture as statistics of filter outputs; texture synthesis
5	10, 11	all	multiview geometry, stereo as an example
6	12,13	all	affine structure from motion; projective structure from motion
7	13, 26	all	projective structure from motion; image-based rendering
8	14	all	segmentation as clustering, particular emphasis on shot boundary detection and background subtraction
9	15	all	fitting lines, curves; robustness; RANSAC
10	16	all	hidden variables and EM
11	25	all	finding images in digital libraries
12	17	all	tracking, the Kalman filter and data association
13	18	all	model-based vision
14	22	all	finding templates using classifiers
15	20	all	range data

Preface xxiii

hardest theoretical material is omitted, there is a thorough treatment of the basic geometry and physics of image formation. We assume that students will have a wide range of backgrounds, and can be assigned background readings in probability (we suggest the chapter on the book's web page) around week 2 or 3. We have put off the application chapters to the end, but many may prefer to do chapter 20 around week 10 and chapter 21 around week 6.

Table 3 contains a syllabus for students of computer graphics who want to know the elements of vision that are relevant to their topic. We have emphasized methods that make it possible to recover object models from image information; understanding these topics needs a working knowledge of cameras and filters. Tracking is becoming useful in the graphics world, where it is particularly important for motion capture. We assume that students will have a wide range of backgrounds, and have some exposure to probability.

Table 4 shows a syllabus for students who are primarily interested in the applications of computer vision. We cover material of most immediate practical interest. We assume that students will have a wide range of backgrounds, and can be assigned background reading on probability around week 2 or 3.

Table 5 is a suggested syllabus for students of cognitive science or artificial intelligence who want a basic outline of the important notions of computer vision. This syllabus is less aggressively paced, and assumes less mathematical experience. Students will need to read some material on probability (e.g., the chapter on the book's web page) around week 2 or 3.

Table 6 shows a sample syllabus for students who have a strong interest in applied mathematics, electrical engineering or physics. This syllabus makes for a very busy semester; we move fast, assuming that students can cope with a lot of mathematical material. We assume that students will have a wide range of backgrounds, and can be assigned some reading on probability around week 2 or 3. As a break in a pretty abstract and demanding syllabus, we have inserted a brief review of digital libraries; the chapter on image-based rendering or that on range data could be used instead.

TABLE 5 For students of cognitive science or artificial intelligence who want a basic outline of the important notions of computer vision.

Week	Chapter	Sections	Key topics
1	1, 4	1, 4 (summary only)	pinhole cameras; lenses; cameras and the eye; radiometric terminology
2	5	all	local shading models; point, line and area sources; photometric stereo; interreflections; lightness computations
3	6	all	color: physics, human perception, spaces; image models; color constancy
4	7	7.1–7.5, 7.7	linear filters; sampling; scale
5	8	all	edge detection
6	9	all	texture; representation, synthesis, shape from
7	10.1,10.2	all	basic multiple view geometry
8	11	all	stereopsis
9	14	all	segmentation by clustering
10	15	all	fitting lines, curves; robustness; RANSAC
11	16	all	hidden variables and EM
12	18	all	model-based vision
13	22	all	finding templates using classifiers
14	23	all	recognition by relations between templates
15	24	all	geometric templates from spatial relations

xxiv Preface

TABLE 6 A syllabus for students who have a strong interest in applied mathematics, electrical engineering or physics.

Week	Chapter	Sections	Key topics
1	1, 4	all	cameras, radiometry
2	5	all	shading models; point, line and area sources; photometric stereo; interreflections and shading primitives
3	6	all	color:—physics, human perception, spaces, color constancy
4	2, 3	all	camera parameters and calibration
5	7, 8	all	linear filters and edge detection
6	8, 9	all	finish edge detection; texture: representation, synthesis, shape from
7	10, 11	all	multiple view geometry, stereopsis as an example
8	12, 13	all	structure from motion
9	14, 15	all	segmentation as clustering; fitting lines, curves; robustness; RANSAC
10	15, 16	all	finish fitting; hidden variables and EM
11	17, 25	all	tracking: Kalman filters, data association; finding images in digital libraries
12	18	all	model-based vision
13	19	all	surfaces and their outlines
14	20	all	aspect graphs
15	22	all	template matching

NOTATION

We use the following notation throughout the book: points, lines, and planes are denoted by Roman or Greek letters in italic font (e.g., P, Δ , or Π). Vectors are usually denoted by Roman or Greek bold-italic letters (e.g., v, P, or ξ), but the vector joining two points P and Q is often denoted by \overrightarrow{PQ} . Lower-case letters are normally used to denote geometric figures in the image plane (e.g., p, p, δ), and upper-case letters are used for scene objects (e.g., P, Π). Matrices are denoted by Roman letters in calligraphic font (e.g., \mathcal{U}).

The familiar three-dimensional Euclidean space is denoted by \mathbb{E}^3 , and the vector space formed by n-tuples of real numbers with the usual laws of addition and multiplication by a scalar is denoted by \mathbb{R}^n , with $\mathbf{0}$ being used to denote the zero vector. Likewise, the vector space formed by $m \times n$ matrices with real entries is denoted by $\mathbb{R}^{m \times n}$. When m = n, Id is used to denote the identity matrix—that is, the $n \times n$ matrix whose diagonal entries are equal to 1 and nondiagonal entries are equal to 0. The transpose of the $m \times n$ matrix \mathcal{U} with coefficients u_{ij} is the $n \times m$ matrix denoted by \mathcal{U}^T with coefficients u_{ji} . Elements of \mathbb{R}^n are often identified with column vectors or $n \times 1$ matrices, e.g., $\mathbf{a} = (a_1, a_2, a_3)^T$ is the transpose of a 1×3 matrix (or *row vector*), i.e., an 3×1 matrix (or *column vector*), or equivalently an element of \mathbb{R}^3 .

The *dot product* (or *inner product*) of two vectors $\mathbf{a} = (a_1, \dots, a_n)^T$ and $\mathbf{b} = (b_1, \dots, b_n)^T$ in \mathbb{R}^n is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n$$

and it can also be written as a matrix product, i.e., $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$. We denote by $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$ the square of the Euclidean norm of the vector \mathbf{a} and denote by \mathbf{d} the distance function induced

Preface xxv

by the Euclidean norm in \mathbb{E}^n , i.e., $d(P,Q) = |\overrightarrow{PQ}|$. Given a matrix \mathcal{U} in $\mathbb{R}^{m \times n}$, we generally use |U| to denote its *Frobenius norm*, i.e., the square root of the sum of its squared entries.

When the vector a has unit norm, the dot product $a \cdot b$ is equal to the (signed) length of the projection of b onto a. More generally,

$$a \cdot b = |a| |b| \cos \theta$$
,

where θ is the angle between the two vectors, which shows that a necessary and sufficient condition for two vectors to be orthogonal is that their dot product be zero.

The cross product (or outer product) of two vectors $\mathbf{a} = (a_1, a_2, a_3)^T$ and $\mathbf{b} = (b_1, b_2, b_3)^T$ in \mathbb{R}^3 is the vector

$$\mathbf{a} \times \mathbf{b} \stackrel{\text{def}}{=} \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

Note that $\mathbf{a} \times \mathbf{b} = [\mathbf{a}_{\times}]\mathbf{b}$, where

$$[\mathbf{a}_{\times}] \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}.$$

The cross product of two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 is orthogonal to these two vectors, and a necessary and sufficient condition for \mathbf{a} and \mathbf{b} to have the same direction is that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$. If θ denotes as before the angle between the vectors \mathbf{a} and \mathbf{b} , it can be shown that

$$|\boldsymbol{a} \times \boldsymbol{b}| = |\boldsymbol{a}| |\boldsymbol{b}| |\sin \theta|.$$

PROGRAMMING ASSIGNMENTS AND RESOURCES

The programming assignments given throughout the book sometimes require routines for numerical linear algebra, singular value decomposition, and linear and nonlinear least squares. An extensive set of such routines is available in MATLAB as well as in public-domain libraries such as LINPACK, LAPACK, and MINPACK, which can be downloaded from the Netlib repository (http://www.netlib.org/). We offer some pointers to other software on the book's web page http://www.cs.berkeley.edu/~daf/book.html. Datasets—or pointers to datasets—for the programming assignment are also available there.