DDPG Algorithm

1: **Initialize** critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ 2: Initialize target networks Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

3: **Initialize** replay buffer R4: **for** episode = 1 to M **do**

Initialize a random process N for action exploration 5: **Receive** initial observation state s_1 6:

for t = 1 to T do

7: **Select** action $a_t = \mu(s_t|\theta^{\mu}) + N_t$ according to the current policy and exploration noise 8: 9:

Execute action a_t and observe reward r_t and new state s_{t+1} **Store** transition (s_t, a_t, r_t, s_{t+1}) in R

10: **Sample** a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R 11: Calculate target Q-value: $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ 12: 13:

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ **Update** the actor policy using the sampled policy gradient:

 $\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) \bigg|_{s=s_{i}, a=u(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) \bigg|_{s=s_{i}}$

Update the target networks:

17: end for

14:

15:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

$$\theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

$$au) heta^{\mu'}$$