Однородные уравнения

Теория

Функция двух переменных f(x,y) называется однородной степени m (еще говорят, с показателем однородности m), если для всех t (или хотя бы для t>0) справедливо соотношение

$$f(tx, ty) = t^m f(x, y). \tag{3.1}$$

Так, функции f(x,y) = x + 2y, $g(x,y) = x^3y - 7y^4 + 2x^2y^2$, $h(x,y) = x^3 + y^3$ являются однородными функциями степеней 1, 4 и 3/2, соответственно. Функция $\varphi(x,y) = x^2y^3 - y^6$ не является однородной. Дифференциальное уравнение

$$M(x,y) dx + N(x,y) dy = 0$$
(3.2)

называется однородным, если M(x,y) и N(x,y) — однородные функции одной и той же степени m. Можно показать, что однородное уравнение может также быть записано в виде

$$y' = f\left(\frac{y}{x}\right). \tag{3.3}$$

Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции у по формуле

$$y(x) = x \cdot t(x). \tag{3.4}$$

Тогда производная y^{\prime} и дифференциал dy заменяются по формулам

$$y' = t'x + t,$$
 $dy = t dx + x dt.$

После решения полученного уравнения нужно сделать обратную подстановку

$$t = \frac{y}{x}$$
.

Уравнение вида

$$y' = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$$

приводится к однородному уравнению заменой $u=x-x_0$, $v=y-y_0$, где (x_0,y_0) — точка пересечения прямых ax+by+c=0 и $a_1x+b_1y+c_1=0$. Если же эти прямые не пересекаются, то $a_1x+b_1y=k(ax+by)$ для некоторого $k\in R$ и уравнение имеет вид $y'=f_1(ax+by)$.

Уравнение называется обобщенно-однородным, если его можно привести к однородному заменой $y=z^m$, где m — некоторое действительное число.

Пример 1

Решим уравнение

$$y' = \frac{2xy}{x^2 + y^2}, \quad y(0) = -1.$$
 (3.5)

Решение:

Уравнение имеет вид (3.3). Делаем замену y=tx. Тогда уравнение (3.5) запишется в виде $t'x+t=\frac{2t}{1+t^2}$, откуда $x\frac{dt}{dx}=\frac{t-t^3}{1+t^2}$. Разделив переменные, получим

$$\frac{(1+t^2)dt}{t(1-t^2)} = \frac{dx}{x}.$$

Преобразовывая дробь в левой части последнего уравнения, запишем

$$\left(\frac{1}{t} + \frac{2t}{1 - t^2}\right)dt = \frac{dx}{x}.$$

Тогда

$$\int \left(\frac{1}{t} + \frac{2t}{1 - t^2}\right) dt = \int \frac{dx}{x} \quad \text{или} \quad \ln|t| - \ln|1 - t^2| = \ln|x| + C.$$

Взяв постоянную C в виде ln |C|, получим

$$\frac{t}{1-t^2} = Cx.$$

Подставив t = y/x, получим окончательно

$$\frac{xy}{x^2 - y^2} = Cx$$
 или $Cy = (x^2 - y^2).$

Кроме того, в процессе решения мы делили на x, t и $1-t^2$. Нетрудно видеть, что x=0 не является решением исходного уравнения, а t=0 и $t=\pm 1$ являются решениями уравнения $t'x+t=\frac{2t}{1+t^2}$. Следовательно, исходное уравнение (3.5) имеет еще решения y=0 и $y=\pm x$. Заметим, что решения $y=\pm x$ входят в серию решений $y=\pm x$ 0 (они получаются при $y=\pm x$ 1) (они получаются при $y=\pm x$ 2), а решение $y=\pm x$ 3 входят в этой серии (но получается при $y=\pm x$ 4) из первой формы записи общего решения). Подставив $y=\pm x$ 4, получим решение задачи Коши: $y=\pm x^2-y^2$ 5.

Пример 2

Пусть дано уравнение

$$(x + y - 2) dx + (x - y + 4) dy = 0.$$

Решение:

Решая систему

$$\begin{cases} x + y - 2 = 0, \\ x - y + 4 = 0, \end{cases}$$

находим $x_0 = -1$, $y_0 = 3$. Сделаем замену u = x + 1, v = y - 3; тогда x = u - 1, y = v + 3, dy/dx = dv/du. Уравнение принимает вид

$$(u+v) du + (u-v) dv = 0.$$

Решив его с помощью подстановки v = tu, получим

$$u^2 + 2uv - v^2 = C.$$

Возвращаясь к исходным переменным (x, y), найдем

$$x^2 + 2xy - y^2 - 4x + 8y = C.$$