Name _____

COMPLEX VARIABLES QUALIFYING EXAM Spring 1999 (Burckel and Nagy)

 $\mathbb{N}:=$ natural numbers (positive integers), $\mathbb{R}:=$ reals, $\mathbb{C}:=$ complexes, $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$, $\mathbb{U}:=\{z\in\mathbb{C}:Im\,z>0\}$.

Do any 8 of the 10 problems.

1. Compute $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

Hint: Integrate $f(z) := \frac{\pi \cot \pi z}{z^4}$ over bigger and bigger circles.

- **2.** Suppose $f: \mathbb{D} \to \mathbb{C}$ is analytic, f(0) = 1, and $|f(z)| < \frac{1}{|z|}$ for all $z \in \mathbb{D}$, $z \neq 0$. Prove that f is identically equal to 1.

 Hint: Schwarz.
- **3.** Show that the function $u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, defined as $u(x,y) := \ln\left(\sqrt{x^2 + y^2}\right)$ is harmonic, but has no harmonic conjugate.
- **4.** Let f be an entire function. Define $u: \mathbb{R}^2 \to \mathbb{R}$ by $u(x,y) = Re \ f(x+iy)$. Prove that if u is a polynomial function (in two variables), then f is a polynomial.
- **5.** Compute: $\int_0^{2\pi} e^{-i\theta} e^{e^{i\theta}} d\theta.$

6. Prove the following strong form of Morera's theorem: If f is continuous in \mathbb{D} and $\int_{\partial R} f = 0$ for every rectangle R lying in \mathbb{D} and having sides parallel to the coordinate axes, then f is holomorphic.

Hint: Via an integral, construct an F satisfying $D_1F = -iD_2F = f$.

- 7. f is continuous on $\overline{\mathbb{D}}$, holomorphic in $\mathbb{D} \setminus \mathbb{R}$. Show that f is holomorphic in \mathbb{D} .

 Hint: Use preceding exercise (whether or not you did it).
- **8.** f is holomorphic in $\mathbb{D}\setminus\{0\}$ with a pole at 0. Show that the range of f contains the complement of a compact disk.

Hint: Show that 1/f is holomorphic near 0 and apply the Open Mapping Theorem.

- **9.** Show that if f is holomorphic in a deleted neighborhood of a, then f' cannot have a simple pole at a.
- 10. Use Liouville's Theorem to show that the range of every non-constant entire function is dense in \mathbb{C} . What is the strongest conclusion about the size of the image set that is valid?