분포수렴

- X_n 을 X의 확률변수라 하고, $F_{\chi n}$ 과 F_{χ} 을 각각의 cdf라고 할 때
- 1. $\lim_{n\to\infty} F_{xn}(x) = F_x(X)$ 면 X_n 은 X에 분포수렴 한다고 말한다.

- 중요한 성질들
- 1. X_n 이 X로 확률수렴하면 X_n 은 X_n 로 분포수렴한다.
- 1) x가 $F_x(X)$ 의 연속인 범위라고 하면
- (1) $F_{xn}(X) = P[X_n \le x] = P[\{X_n \le x\} \cap \{X_n X\} < \epsilon] + P[\{X_n \le x\} \cap \{X_n X\} \ge \epsilon]$ = $P[X_n \le x + \epsilon] + P[|X_n - X| \ge \epsilon]$
- (2) 부등식과, $X_n \stackrel{p}{\rightarrow} X$ 에 의하여
- $P[X_n \le x + \epsilon] \rightarrow P[X \le x + \epsilon]$
- $P[|X_n X| \ge \epsilon] \rightarrow P[|X X| \ge \epsilon] = 0$
- (3) 따라서 상한 $\overline{\lim}_{n\to\infty} F_{xn}(x) \le F_x[\mathbf{x}+\epsilon]$

- 중요한 성질들
- (3) 그 반대방향의 여집합에 대해서도 동일한 방식으로 구하면
- $P[X_n > x] = P[\{X_n \ge -x\} \cap \{X_n X\} < \epsilon] + P[\{X_n \ge -x\} \cap \{X_n X\} \ge \epsilon]$ = $P[X_n \ge x - \epsilon] + P[|X_n - X| \ge \epsilon]$
- 따라서 하한 $\lim_{n\to\infty} F_{xn}(x) \ge F_x[x-\epsilon]$
- 2) 위 결과물들을 다시 정리하면
- (1) $F_{x}[x \epsilon] \le \lim_{n \to \infty} F_{xn}(x) \le \overline{\lim}_{n \to \infty} F_{xn}(x) \le F_{x}[x + \epsilon]$
- (2) $\epsilon \to 0$ 이면, 샌드위치 정리에 따라 $\lim_{n \to \infty} F_{xn}(x) = F_x[x]$ 이다.

- 중요한 성질들
- 2. $X_n \xrightarrow{D} b$ 이면 $X_n \xrightarrow{p} b$ 이다.(단, b는 어떤 상수)
- 1) $\lim_{n\to\infty} [|X_n \mathbf{b}| \le \epsilon] = \lim_{n\to\infty} F_{xn}[\mathbf{b} + \epsilon] \lim_{n\to\infty} F_{xn}[(\mathbf{b} \epsilon) 0] = 1 0 = 1$
- 2) 따라서 $X_n \stackrel{p}{\to} b$ 이다.
- 3. $X_n \stackrel{D}{\to} X$ 이고 $Y_n \stackrel{p}{\to} 0$ 라면 $X_n + Y_n$ 은 X로 확률수렴한다.
- 4. $X_n \xrightarrow{D} X$ 이고 g가 X의 범위에서 연속인 함수라고 하자. $g(X_n) \xrightarrow{D} g(X)$ 이다.

정으

- 중요한 성질들
- 5. (슬러츠키 정리) X_n , X, A_n , B_n 이 확률변수이며, a와 b가 상수라고 하자.
- 1) $X_n \xrightarrow{D} X$ 에 대하여 $A_n \xrightarrow{p} a$, $B_n \xrightarrow{p} b$ 이면

$$A_n + B_n X_n \rightarrow a + b X$$

정으

- 중요한 성질들
- 5. (슬러츠키 정리) X_n , X, A_n , B_n 이 확률변수이며, a와 b가 상수라고 하자.
- 1) $X_n \xrightarrow{D} X$ 에 대하여 $A_n \xrightarrow{p} a$, $B_n \xrightarrow{p} b$ 이면

$$A_n + B_n X_n \rightarrow a + b X$$

정으

- 확률 유계
- 1. CDF F_x 를 갖는 X가 존재할 때, $\epsilon > 0$ 가 주어졌을 경우
- 1) $x \le \eta_1$ 에 대해 $F_x(x) \le \frac{\epsilon}{2'}$ $x \ge \eta_2$ 에 대해 $F_x(x) > 1 \frac{\epsilon}{2}$ 를 만족하는 $[\eta_1, \eta_2]$ 를 구할 수 있다.
- 2) $\eta = \max[|\eta_1|, |\eta_2|]$ 라고 하자. 그러면
- (1) $P(|X| \le \eta) = F_{\chi}(\eta) F_{\chi}(-\eta 0) \ge 1 \frac{\epsilon}{2} \frac{\epsilon}{2} = 1 \epsilon$
- 2. 위를 일반화 하면
- 1) $n \ge N_{\epsilon} \Rightarrow P(|X_n| \le B_{\epsilon}) \ge 1 \epsilon$ 인 상수 B_{ϵ} 와 N_{ϵ} 이 존재하면 확률변수의 열 $\{X_n\}$ 은 확률유계이다.
- 3. 2. $\{X_n\}$ 이 확률변수열이고, X가 확률변수라고 하자. $X_n \to X$ 이면 $\{X_n\}$ 은 확률 유계이다.

 η_1 와 η_2 가 한없이 끝에 도달하기 직전 멈췄을 때, 확률은 1- ϵ 가 된다.

- 점근 분포를 구하는 방법
- 1. ∆ 방법
- 1) $\{Y_n\}$ 을 확률유계인 확률변수라고 정의하고, O(x)는 $x \to 0$ 일 때, $\frac{a}{x} \to 0$ 일때 한해 a = o(x)인 함수이다.
- (1) 또는 $o_p(x_n)$ 은 $n \to \infty$ 일때 $\frac{Y_n}{X_n} \to 0$ 일때 한해 $Y_n = o_p(x_n)$ 으로 정의한다.
- (2) 또한 $O_p(x_n)$ 은 $n \to \infty$ 일 때 $\frac{Y_n}{X_n}$ 이 확률 유계일 때 한해 $Y_n = O_p(x_n)$

- 점근 분포를 구하는 방법
- 1. ∆ 방법
- 2) $\{Y_n\}$ 을 확률유계인 확률변수열 이라고 할 때, $X_n = o_p(Y_n)$ 이면 $n \to \infty$ 일때 $X_n \overset{p}{\to} 0$ 이다.
- $(1) \epsilon > 0$ 가 주어졌을 경우 $\{Y_n\}$ 은 확률 유계이므로
- $n \ge N_{\epsilon} \Rightarrow P(|Y_n| \le B_{\epsilon}) \ge 1 \epsilon$ 인 상수 N_{ϵ} 와 B_{ϵ} 가 존재한다.
- (2) $X_n = o_p(Y_n)$ 이므로 $n \to \infty$ 일 때 $\frac{Y_n}{X_n} \to 0$
- (3) 따라서
- $P[|X_n| > \epsilon] = P[|X_n| \ge \epsilon, |Y_n| \le B_{\epsilon}] + P[|X_n| \ge \epsilon, |Y_n| > B_{\epsilon}]$

$$= P\left[\frac{X_n}{|Y_n|} \ge \frac{\epsilon}{B_{\epsilon}}\right] + P[|Y_n| \ge B_{\epsilon}]$$

- $n \to \infty$ 이면 $P\left[\frac{X_n}{|Y_n|} \ge \frac{\epsilon}{B_{\epsilon}}\right] + P[|Y_n| \ge B_{\epsilon}] \to 0$ 이므로 $P[|X_n| > \epsilon] \to 0$ 이다.

- 점근 분포를 구하는 방법
- 1. ∆ 방법
- 3) $\{X_n\}$ 을 $\sqrt{n}(X_n \theta) \stackrel{D}{\to} N(0, \sigma^2)$ 인 확률변수의 열이라고 하자. g(x)가 θ 에서 미분 가능하다면 $\sqrt{n}(g(X_n) g(\theta)) \stackrel{D}{\to} N(0, \sigma^2(g'(\theta)^2))$ 이다.
- (1) $g(X_n) = g(\theta) + g'(\theta)(X_n \theta) + o_p(|X_n \theta|)$ 로 나타낼 때
- (2) 위 식을 고치면 $\sqrt{n}(g(X_n) g(\theta)) = g'(\theta)\sqrt{n}(X_n \theta) + o_p(\sqrt{n}|X_n \theta|)$
- 이 때, $\sqrt{n}(X_n \theta) \xrightarrow{D} N(0, \sigma^2)$ 이므로 $o_p(\sqrt{n}|X_n \theta|) \to 0$ 이다.
- $-\sqrt{n}(g(X_n)-g(\theta))=g'(\theta)\sqrt{n}(X_n-\theta)\to g'(\theta)N(0,\sigma^2)=N(0,(g'(\theta)^2)\sigma^2)\text{ or }$

- 점근 분포를 구하는 방법
- 2. 적률생성함수 기법
- 1) $\{X_n\}$ 을 모든 n에 대하여 $\mathrm{mgf}\ M_{xn}(t)$ 를 갖는 확률변수열이라고 할때, X는 $\mathrm{mgf}\ M_{x}(t)$ 를 갖는 확률변수이다.
- 2) 이 때, $\lim_{n\to\infty}M_{xn}(t)=M_x(t)$ 이면 $X_n\stackrel{D}{\to}X$ 이다.

예제

- 적률생성함수 기법
- 1. $Y_n \sim b(n,p)$ 라고 할 때, 모든 n에 대하여 $\mu = np로 같다. 즉, <math>p = \frac{\mu}{n}$ 이다.
- 2. $\operatorname{mgf} M_{\mathcal{Y}}(t) = [(1-P) + pe^t]^n = [1 p(e^t 1)]^n \text{ odd } \left[1 \frac{\mu(e^t 1)}{n}\right]^n$
- (1) 이 때, $\lim_{n \to \infty} \left[1 + \frac{b}{n} + \frac{\psi(n)}{n} \right]^{cn}$ 에서 $\lim_{n \to \infty} \frac{\psi(n)}{n} = 0$ 이면 $\lim_{n \to \infty} \left[1 + \frac{b}{n} \right]^{cn} = e^{bc}$ 인 정리를 이용
- $(2) \lim_{n \to \infty} \left[1 \frac{\mu(e^t 1)}{n} \right]^n$ 에서 $b = \mu(e^t 1)$ 이므로, $\lim_{n \to \infty} \left[1 \frac{\mu(e^t 1)}{n} \right]^n = e^{\mu(e^t 1)}$
- (3) 이는 푸아송 분포의 mgf와 같다.