Aproksymacja średniokwadratowa wielomianami algebraicznymi

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 1 maja 2022

1 Opis problemu

Główną ideą zadania jest zbadanie zachowania funkcji przybliżonej za pomocą aproksymacji średniokwadratowej wielomianami algebraicznymi.

Badana funkcja:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

Gdzie $k = \frac{1}{2}$, m = 4 oraz $x \in [-6, 6]$.

2 Opracowanie

2.1 Wykresy

Funkcje oraz ich wykresy zostały stworzone przez załączony program w języku Python napisany na podstawie informacji z wykładu, układ równań rozwiązany za pomocą funkcji z biblioteki *numpy: linalg.solve.* Pierwszym krokiem będzie zbadanie zachowania wykresów funkcji aproksymujących. Zakres liczby punktów to 3-50 z wykorzystaniem różnych stopni wielomianów algebraicznych przy zachowaniu zasady, że stopień wielomianu musi być mniejszy lub równy liczbie punktów. Punkty rozłożone są równomiernie na przedziale (z pewnymi wyjątkami wyszczególnionymi w tekście).

Rysunek 1: Aproksymacja średniokwadratowa wielomianami algebraicznymi 2 stopnia

Rysunek 2: Aproksymacja średniokwadratowa wielomianami algebraicznymi 2 stopnia

Dla niewielkich stopni wielomianu funkcja aproksymująca nie jest w stanie odtworzyć charakterystycznych "zębów" funkcji aproksymowanej, jest bardzo

wygładzona, niezależnie od liczby punktów. Jedynie zaobserwować można przesuwanie się "paraboli" względem osi y.

Rysunek 3: Aproksymacja średniokwadratowa wielomianami algebraicznymi 6 stopnia

Przy zwiększeniu stopnia wielomianu do szóstego, wykres funkcji zaczyna odbiegać od kształtu paraboli dla niewielkich liczb punktów (np. na powyższym wykresie), jednak ostatecznie, dla dużych wartości, nadal jest mocno wygładzony i nie odwzorowuje zbyt dokładnie funkcji f, co nie jest zaskakujące, ponieważ stopień wielomianów nadal jest niski.

Rysunek 4: Aproksymacja średniokwadratowa wielomianami algebraicznymi 6 stopnia

Podobnie dla wielomianów dwunastego stopnia, dla niskich liczb węzłów (12-20) odrobinę bardziej przypominają funkcję f niż wielomiany niższego stopnia, a wraz ze zwiększaniem liczby węzłów, wygładzają się, ponieważ stopień wielomianu jest zbyt niski, żeby odwzorować funkcję f dokładniej.

Rysunek 5: Aproksymacja średniokwadratowa wielomianami algebraicznymi 12 stopnia

Rysunek 6: Aproksymacja średniokwadratowa wielomianami algebraicznymi 12 stopnia

Dla wielomianów wyższych stopni pojawia się efekt Rungego: znaczne pogorszenie dokładności na krańcach przedziału. Wielomiany dwudziestego stopnia dla niewielkich liczb węzłów obrazują ten efekt, który zmniejsza się jednak wraz ze zwiększaniem liczby węzłów.

Rysunek 7: Aproksymacja średniokwadratowa wielomianami algebraicznymi 20 stopnia

Rysunek 8: Aproksymacja średniokwadratowa wielomianami algebraicznymi 20 stopnia

Rysunek 9: Aproksymacja średniokwadratowa wielomianami algebraicznymi 20 stopnia

Dla 50 węzłów efekt Rungego jest znacząco mniejszy, niż dla 20. Przy zastosowaniu wielomianów dużych stopni przetestowane zostało rozłożenie punktów według węzłów Czebyszewa, które niweluje efekt Rungego.

Rysunek 10: Aproksymacja średniokwadratowa wielomianami algebraicznymi 30 stopnia (węzły Czebyszewa)

Rysunek 11: Aproksymacja średniokwadratowa wielomianami algebraicznymi 30 stopnia (węzły Czebyszewa)

2.2 Dokładności

Pozostaje obliczenie dokładności oraz skonfrontowanie wyników z wnioskami uzyskanymi na podstawie analizy wykresów. Miarami dokładności będą:

- $\bullet\,$ średnia kwadratów odległości wartości wielomianu oraz funkcji fdla 1000 równo oddalonych punktów,
- $\bullet\,$ maksymalna odległość wartości wielomianu oraz funkcji fdla 1000 równo oddalonych punktów.

Pierwszym krokiem będzie zbadanie dokładności dla wielomianów szóstego stopnia przy równomiernie oddalonych punktach.

Liczba	Dokładność		
węzłów	Kwad.	Maks.	
	odl.	odległości.	
6	12.502	7.072	
7	23.976	8.000	
8	19.186	9.525	
9	12.197	8.686	
10	9.518	6.983	
11	17.043	8.617	
12	15.975	7.993	
13	23.976	8.000	
14	15.977	7.993	
15	16.462	8.356	
16	8.737	5.722	
17	8.598	5.766	
31	8.024	4.550	
32	8.020	4.538	
33	8.017	4.528	
48	7.990	4.449	
49	7.989	4.446	
50	7.988	4.443	

Tabela 1: Dokładności dla wielomianów 6 stopnia

Można zauważyć, że dokładność wzrasta do ok. 16-17 węzłów, potem prawie nie zmienia się aż do liczby 50 węzłów. Podobne zjawisko zachodzi dla innych niewielkich stopni wielomianu.

Liczba	Równomiernie		Czebyszew	
węzłów	Kwad.	Maks.	Kwad.	Maks.
	odl.	odległości.	odl.	odległości.
20	611596.723	3815.813	13.858	8.803
21	1510647.449	6367.051	13.127	8.650
22	55810386.682	40726.485	12.885	8.591
23	47.900	30.183	12.882	7.916
24	139832.401	1974.067	12.666	8.452
25	43198.463	1114.206	11.259	7.269
26	11522.581	584.943	11.080	8.817
27	2464.544	272.222	11.279	8.550
28	253.958	86.182	8.587	6.906
29	7.132	4.376	7.793	5.938
30	40.069	35.250	6.709	4.415
31	81.173	52.016	6.796	4.728
32	86.048	54.104	6.691	4.488
33	76.640	51.271	6.716	4.563
34	58.043	44.426	6.708	4.543
35	48.258	40.406	6.710	4.547
36	39.049	36.109	6.710	4.549
37	30.772	31.568	6.710	4.547
38	25.393	28.174	6.710	4.547
39	20.916	24.897	6.710	4.547
40	17.581	22.084	6.710	4.547
41	15.367	19.965	6.710	4.546
42	13.321	17.730	6.710	4.547
43	11.989	16.107	6.709	4.545
44	10.808	14.480	6.709	4.544
45	9.949	13.128	6.710	4.546

Tabela 2: Dokładności dla wielomianów 20 stopnia

Z tabel wynika, że wzrost stopnia wielomianu bardzo nieznacznie wpływa na dokładność funkcji aproksymującej, natomiast skutkuje dodatkowymi błędami związanymi z efektem Rungego, które można jednak zniwelować używając innego rozmieszczenia punktów.

3 Wnioski

Aproksymacja średniokwadratowa wielomianami algebraicznymi jest skutecznym sposobem na przybliżanie funkcji, jeżeli nie musi być spełniony warunek, że funkcja przybliżające przechodzi przez dane punkty lub jeżeli punkty podane są z błędami (wówczas interpolacja nie ma sensu). Do aproksymacji można używać wielomianów różnego stopnia, gdzie większe stopnie skutkują nieznaczną poprawą dokładności, natomiast mniejsze tworzą bardziej gładką funkcję wynikową. Używanie wielomianów wysokich stopni również może skutować powstawaniem efektu Rungego.