Sürekli Zamanlı Fourier Dönüşümü

Ref: Oppenheim and Willsky, "Signals and Systems"

Sürekli Zamanlı Fourier Dönüşümü

a)Aperiyodik işaret, b) periyodik işaret

Periyodik işareti Fourier Serisine açarsak, Fourier serisi gösterilimi ve Fourier serisi katsayılarının aşağıdaki gibi yazılabileceğini önceki derslerimizde görmüştük.

$$-T/2 \le t \le T/2$$
, we have
$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t},$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_0 t} dt,$$

$$\omega_0 = 2\pi/T.$$

Temel periyod için, her iki işaret birbirine eşit olduğundan

$$\tilde{x}(t) = x(t) \text{ for } |t| < T/2$$

Fourier serisi katsayısı

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_{-\infty}^{+\infty} x(t) e^{-jk\omega_0 t} dt.$$

yazılabilir

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt,$$

Tanımını yapalım. Bu

durumda

$$a_k = \frac{1}{T}X(jk\omega_0)$$
. yazılabilir. Periyodik işaret Fourier serisi gösterilimi ile.

$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} X(jk\omega_0) e^{jk\omega_0 t}$$
, şeklinde ifade edilebilir

$$2\pi/T = \omega_0$$
, olduğunda

n

$$\tilde{x}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0.$$

$$\omega_0 \to 0$$
 as $T \to \infty$, içi n

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt.$$

Sonlu sayıda maksimum ve minimum noktası içermeli

Sonlu sayıda süreksizlik olmalı ve süreksizliklerde sonlu değer almalı

$$\int_{-\infty}^{+\infty} |x(t)| dt < \infty.$$

$$x(t) = e^{-at}u(t)$$
 $a > 0$. şeklinde verilen işaret için Fourier

döniisiimii

$$X(j\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt = -\frac{1}{a+j\omega} e^{-(a+j\omega)t} \bigg|_0^\infty.$$

$$X(j\omega) = \frac{1}{a+j\omega}, \quad a > 0.$$

Genlik ve faz

$$|X(j\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}, \quad \not \propto X(j\omega) = -\tan^{-1}\left(\frac{\omega}{a}\right).$$

a) Genlik, b) faz cevabı

$$x(t) = e^{-a|t|}$$
, $a > 0$. şeklinde verilen işaretin Fourier dönüşümü

$$X(j\omega) = \int_{-\infty}^{+\infty} e^{-a|t|} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$
$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$
$$= \frac{2a}{a^2 + \omega^2}.$$

İşaret ve fourier dönüşümü

 $x(t) = \delta(t)$, şeklinde verilen işaretin Fourier dönüşümü

$$X(j\omega) = \int_{-\infty}^{+\infty} \delta(t)e^{-j\omega t} dt = 1.$$

<u>Örnek :</u>

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases},$$

şeklinde verilen işaretin Fourier dönüşümü

$$X(j\omega) = \int_{-T_1}^{T_1} e^{-j\omega t} dt = 2 \frac{\sin \omega T_1}{\omega}$$

a) İşaret, b) Fourier dönüşümü

$$X(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

şeklinde verilen Fourier dönüşümüne karşı gelen zaman domeni işareti bulunuz.

$$x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega = \frac{\sin Wt}{\pi t},$$

Sinc
$$\operatorname{sinc}(\theta) = \frac{\sin \pi \theta}{\pi \theta}$$
. şeklinde tanımlanır.

$$\frac{2\sin\omega T_1}{\omega} = 2T_1\operatorname{sinc}\left(\frac{\omega T_1}{\pi}\right)$$
$$\frac{\sin Wt}{\pi t} = \frac{W}{\pi}\operatorname{sinc}\left(\frac{Wt}{\pi}\right).$$

W değerine bağlı olarak elde edilen Fourier dönüşüm çiftleri

Fourier Dönüşümünün Özellikleri:

Fourier dönüşüm çifti

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt.$$

Lineerlik (Doğrusallık):

$$x(t) \overset{\mathfrak{F}}{\longleftrightarrow} X(j\omega)$$

$$y(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} Y(j\omega),$$

$$ax(t)+by(t) \overset{\mathfrak{F}}{\longleftrightarrow} aX(j\omega)+bY(j\omega).$$

Zamanda Öteleme:

$$x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j\omega),$$

$$x(t-t_0) \stackrel{\mathfrak{F}}{\longleftrightarrow} e^{-j\omega t_0}X(j\omega).$$

İspat:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$$

$$t yerin t - t_0 koyara$$

$$x(t - t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega(t - t_0)} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(e^{-j\omega t_0} X(j\omega) \right) e^{j\omega t} d\omega.$$

$$\mathfrak{F}\{x(t-t_0)\}=e^{-j\omega t_0}X(j\omega).$$

Zamanda öteleme özelliği genlik spektrumunu

$$\mathfrak{F}\{x(t)\} = X(j\omega) = |X(j\omega)|e^{j \ll X(j\omega)},$$

$$\mathfrak{F}\{x(t-t_0)\} = e^{-j\omega t_0}X(j\omega) = |X(j\omega)|e^{j(AX(j\omega)-\omega t_0)}.$$

$$x(t) = \frac{1}{2}x_1(t-2.5) + x_2(t-2.5),$$

(c)

şeklinde verilen işaretin Fourier dönüşümünü bulunuz.

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases}, \qquad içi$$

$$X(j\omega) = \int_{-T_1}^{T_1} e^{-j\omega t} dt = 2 \frac{\sin \omega T_1}{\omega},$$

şeklinde

hesaplanmıştı.

$$X_1(j\omega) = \frac{2\sin(\omega/2)}{\omega}$$
 and $X_2(j\omega) = \frac{2\sin(3\omega/2)}{\omega}$.

şeklinde doğrudan

yazılarak,

$$X(j\omega) = e^{-j5\omega/2} \left\{ \frac{\sin(\omega/2) + 2\sin(3\omega/2)}{\omega} \right\}$$

Eşlenik:

$$x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j\omega),$$

$$x^*(t) \overset{\mathfrak{T}}{\longleftrightarrow} X^*(-j\omega).$$

<u>İspat :</u>

$$X^*(j\omega) = \left[\int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt \right]^*$$
$$= \int_{-\infty}^{+\infty} x^*(t)e^{j\omega t} dt.$$

 ω by $-\omega$

$$X^*(-j\omega) = \int_{-\infty}^{+\infty} x^*(t)e^{-j\omega t} dt.$$

Reel x(t

için,

$$X^*(-j\omega) = \int_{-\infty}^{+\infty} x(t)e^{j\omega t} dt = X(j\omega),$$

<u>Örnek :</u>

$$x(t) = e^{-at}u(t),$$

$$X(j\omega) = \frac{1}{a+j\omega}$$

$$X(-j\omega) = \frac{1}{a-j\omega} = X^*(j\omega).$$

Türev ve integral Alma:

$$\frac{dx(t)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} j\omega X(j\omega) e^{j\omega t} d\omega.$$

$$\frac{dx(t)}{dt} \stackrel{\mathfrak{F}}{\longleftrightarrow} j\omega X(j\omega).$$

$$\int_{-\infty}^{t} x(\tau)d\tau \stackrel{\mathfrak{F}}{\longleftrightarrow} \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega).$$

$$x(t) = u(t)$$
, işaretinin Fourier dönüşümünü hulalım
$$g(t) = \delta(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} G(j\omega) = 1.$$

$$x(t) = \int_{-\infty}^{t} g(\tau)d\tau$$

$$X(j\omega) = \frac{G(j\omega)}{j\omega} + \pi G(0)\delta(\omega),$$

$$G(j\omega) = 1$$

$$X(j\omega) = \frac{1}{j\omega} + \pi\delta(\omega).$$

$$\delta(t) = \frac{du(t)}{dt} \stackrel{\mathfrak{F}}{\longleftrightarrow} j\omega \left[\frac{1}{j\omega} + \pi \delta(\omega) \right] = 1$$

<u>Örnek :</u>

$$g(t) = \frac{d}{dt}x(t).$$

$$g(t) = \frac{dx(t)}{dt} = \frac{1}{-1} \frac{1}{1} t + \frac{-1}{1} \frac{1}{t} t$$
(b)

$$G(j\omega) = \left(\frac{2\sin\omega}{\omega}\right) - e^{j\omega} - e^{-j\omega}$$

$$G(0) = 0.$$

$$X(j\omega) = \frac{G(j\omega)}{j\omega} + \pi G(0)\delta(\omega)$$
 integrasyon özelliği kullanılarak,

$$X(j\omega) = \frac{2\sin\omega}{j\omega^2} - \frac{2\cos\omega}{j\omega}$$

Zaman ve frekans Ölçekleme:

$$x(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} X(j\omega),$$

$$x(at) \overset{\mathfrak{I}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{j\omega}{a}\right),$$

İspat:

$$\mathfrak{F}\{x(at)\} = \int_{-\infty}^{+\infty} x(at)e^{-j\omega t}dt.$$

$$\mathcal{T} = at \frac{1}{a} \int_{-\infty}^{+\infty} x(\tau) e^{-j(\omega/a)\tau} d\tau, \quad a > 0$$

$$\mathcal{F}\{x(at)\} = \begin{cases} -\frac{1}{a} \int_{-\infty}^{+\infty} x(\tau) e^{-j(\omega/a)\tau} d\tau, & a < 0 \end{cases}$$

Dualite:

$$x_1(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \stackrel{5}{\longleftrightarrow} X_1(j\omega) = \frac{2\sin\omega T_1}{\omega}, \quad \text{dönüşüm çifti}$$

$$x_2(t) \doteq \frac{\sin Wt}{\pi t} \stackrel{\mathfrak{F}}{\longleftrightarrow} X_2(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$
İlşkisi görülmüştü.

$$g(t) = \frac{2}{1+t^2}$$
. şeklinde verilen işaretin Fourier dönüşümünü dualite özelliğinden yararlanarak hesaplayalım.

$$X(j\omega) = \frac{2}{1+\omega^2}$$
. işaretini düşünelim

$$x(t) = e^{-|t|} \stackrel{\tilde{\delta}}{\longleftrightarrow} X(j\omega) = \frac{2}{1+\omega^2}.$$

$$e^{-|t|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{2}{1+\omega^2}\right) e^{j\omega t} d\omega.$$

Multiplying this equation by 2π and replacing t by -t, we obtain

$$2\pi e^{-|t|} = \int_{-\infty}^{\infty} \left(\frac{2}{1+\omega^2}\right) e^{-j\omega t} d\omega.$$

$$2\pi e^{-|\omega|} = \int_{-\infty}^{\infty} \left(\frac{2}{1+t^2}\right) e^{-j\omega t} dt.$$

$$\mathfrak{F}\left\{\frac{2}{1+t^2}\right\} = 2\pi e^{-|\omega|}$$

Parseval Bağıntısı:

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega.$$

İspat:

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t) x^*(t) dt$$

$$= \int_{-\infty}^{+\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(j\omega) e^{-j\omega t} d\omega \right] dt.$$

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(j\omega) \left[\int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \right] d\omega.$$

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega.$$

Konvolüsyon Özelliği:

$$y(t) = h(t) * x(t) \overset{\mathfrak{T}}{\longleftrightarrow} Y(j\omega) = H(j\omega)X(j\omega).$$

İspat:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$$

$$Y(j\omega) = \int_{-\infty}^{+\infty} x(\tau) \left[\int_{-\infty}^{+\infty} h(t-\tau) e^{-j\omega t} dt \right] d\tau.$$

$$Y(j\omega) = \Im\{y(t)\} = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \right] e^{-j\omega t}dt.$$

$$Y(j\omega) = \int_{-\infty}^{+\infty} x(\tau)e^{-j\omega\tau}H(j\omega)d\tau = H(j\omega)\int_{-\infty}^{+\infty} x(\tau)e^{-j\omega\tau}d\tau.$$

$$Y(j\omega) = H(j\omega)X(j\omega).$$

Şekildeki 3 sistem de esdeğerdir.

$$\int_{-\infty}^{+\infty} |h(t)| dt < \infty.$$
 koşulunun sağlanması durumunda (Kararlı sistem) sistemin frekans cevabı
$$H(j\omega) \quad \text{tanımlıdır}$$

$$h(t) = \delta(t - t_0).$$

şeklinde impuls cevabı verilen sistemin frekans $H(j\omega)=e^{-j\omega t_0}$. olarak bulunur. Sistemin

$$Y(j\omega) = H(j\omega)X(j\omega)$$

= $e^{-j\omega t_0}X(j\omega)$.

$$y(t) = x(t - t_0).$$

Örnek:

$$y(t) = \frac{dx(t)}{dt}$$
. işareti için türev özelliği kullanılarak
Fourier dönüşümü

$$Y(j\omega) = j\omega X(j\omega).$$

$$H(j\omega) = j\omega.$$

türev alıcı sistemin frekans cevabı bulunmuş olur.

Örnek:

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau.$$

şeklinde verilen sistemin impuls cevabının birim basamak işareti u(t) olduğu görülebilir. Bu durumda integral alıcı sistemin frekans cevabı

$$H(j\omega) = \frac{1}{j\omega} + \pi\delta(\omega).$$

Örnekte verilen işaretin Fourier dönüşümü olarak bulunur.

$$Y(j\omega) = H(j\omega)X(j\omega)$$

$$= \frac{1}{j\omega}X(j\omega) + \pi X(j\omega)\delta(\omega)$$

$$= \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega),$$

$$h(t) = e^{-at}u(t), \quad a > 0,$$

içi

$$x(t) = e^{-bt}u(t), \quad b > 0, \qquad n$$

$$y(t) = x(t) * h(t)$$
 şeklinde tanımlanan çıkış işaretini
$$X(j\omega) = \frac{1}{b+j\omega}$$

$$H(j\omega) = \frac{1}{a+j\omega}.$$

$$Y(j\omega) = \frac{1}{(a+j\omega)(b+j\omega)}$$

$$Y(j\omega) = \frac{A}{a+j\omega} + \frac{B}{b+j\omega},$$

$$Y(j\omega) = \frac{1}{b-a} \left[\frac{1}{a+j\omega} - \frac{1}{b+j\omega} \right]$$

Ters Fourier dönüşümü alınarak

$$y(t) = \frac{1}{b-a} [e^{-at}u(t) - e^{-bt}u(t)].$$

<u>Carpım Özelliği:</u>

$$r(t) = s(t)p(t) \longleftrightarrow R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S(j\theta)P(j(\omega-\theta))d\theta$$

Örnek:

$$p(t) = \cos \omega_0 t$$
.

$$P(j\omega) = \pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0),$$

$$R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S(j\theta) P(j(\omega - \theta)) d\theta$$
$$= \frac{1}{2} S(j(\omega - \omega_0)) + \frac{1}{2} S(j(\omega + \omega_0)),$$

$$x(t) = \frac{\sin(t)\sin(t/2)}{\pi t^2}.$$

$$x(t) = \pi \left(\frac{\sin(t)}{\pi t}\right) \left(\frac{\sin(t/2)}{\pi t}\right).$$

$$X(j\omega) = \frac{1}{2} \mathfrak{F} \left\{ \frac{\sin(t)}{\pi t} \right\} * \mathfrak{F} \left\{ \frac{\sin(t/2)}{\pi t} \right\}.$$

Property	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im e\{X(j\omega)\} = -\Im e\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
for Real Signals		$ X(j\omega) = X(-j\omega) $ $\angle X(j\omega) = -\angle X(-j\omega)$
Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and of
	$x_e(t) = \mathcal{E}v\{x(t)\} [x(t) \text{ real}]$	$\Re\{X(j\omega)\}$
Even-Odd Decompo- sition for Real Sig- nals	$x_o(t) = \mathbb{O}d\{x(t)\}$ [x(t) real]	$j \mathcal{G}m\{X(j\omega)\}$

Parseval's Relation for Aperiodic Signals
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

		Fourier series coefficients
Signal	Fourier transform	(if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
e juot	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{\tau}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t)$ $\begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{e^{\alpha-1}}{(\alpha-1)!}e^{-\alpha t}u(t),$ $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^n}$	_

Periyodik işaretlerin Fourier dönüşümü;

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$
. şeklinde Fourier serisine açılan periyodik bir işaret için Fourier dönüşümü alınarak

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$
, şeklinde tanımlanabilir.

Örnek:

 $T = 4T_1$ için

şeklinde verilen periyodik işaret $x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$ ve Fourier serisi $a_k = \frac{2\sin(k\omega_0T_1)}{k\omega_0T}$, için, şeklinde

$$a_k = rac{\sin k \omega_0 T_1}{\pi k}$$
, İşaretin Fourier dönüşümü

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0),$$

yazılabilir

$$x(t)=\sin\omega_0 t$$
. işareti için Fourier serisi $a_1=rac{1}{2j}$, $a_{-1}=-rac{1}{2j}$,

$$x(t) = \cos \omega_0 t$$
, işareti için Fourier serisi katsayıları

$$a_1=a_{-1}=\frac{1}{2},$$

 $a_k = 0, \qquad k \neq 1 \quad \text{or} \quad -1.$

$$a_k = 0$$
, $k \neq 1$ or -1 .

bulunmuştu.

Karşı gelen Fourier

(a)
$$x(t) = \sin \omega_0 t$$
; (b) $x(t) = \cos \omega_0 t$.

$$x(t) = \sum_{k=-\infty}^{+\infty} \delta(t-kT)$$
, işareti için Fourier serisi $a_k = \frac{1}{T} \int_{-T/2}^{+T/2} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T}$. katsayıları

şeklinde elde İşaretin Fourie $X(j\omega)=\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$. bulunur. edilmişti.

a) İmpuls(dürtü katarı b) Fourier dönüşümü

LZD sistemlerin frekans domeninde modellenmesi

Fourier dönüşümünün konvolusyon özelliği

$$Y(j\omega) = H(j\omega)X(j\omega),$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)},$$

şeklinde sistem çıkışının bulunabildiği gösterilmişti. Benzer şekilde fark denklemiyle modellenen sistemler

. .

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}.$$

2 tarafında Fourier dönüşümü

$$\mathfrak{F}\left\{\sum_{k=0}^{N}a_k\frac{d^ky(t)}{dt^k}\right\} = \mathfrak{F}\left\{\sum_{k=0}^{M}b_k\frac{d^kx(t)}{dt^k}\right\}.$$

Lineerlik özelliğinden

vararlanaralz

$$\sum_{k=0}^{N} a_k \mathfrak{F} \left\{ \frac{d^k y(t)}{dt^k} \right\} = \sum_{k=0}^{M} b_k \mathfrak{F} \left\{ \frac{d^k x(t)}{dt^k} \right\},$$

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega),$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}.$$

bulunur.

$$\frac{dy(t)}{dt} + ay(t) = x(t), \qquad \text{şeklinde giriş-çıkış ilşkisi tanımlanan sistem için frekans cevabı} \qquad H(j\omega) = \frac{1}{j\omega + a}.$$

ve impuls $h(t) = e^{-at}u(t)$. olarak cevabı bulunur.

Örnek:

Fark
$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t).$$
 şeklinde verilen LZD sistem için frekans denklemi

$$H(j\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3}$$
 bulunur. Sistemin impuls cevabı ters Fourier dönüşümü alınarak elde

Frekans cevabini çarpanlarına $H(j\omega)=\frac{j\omega+2}{(j\omega+1)(j\omega+3)}.$ ayırarak

Kısmı kesirlere ayırma (rezidü yöntemi $G(v) = \frac{A_{11}}{v+1} + \frac{A_{21}}{v+3}$, kullanılarak,

$$A_{11} = \{(v+1)G(v)\}|_{v=-1} = \frac{-1+2}{-1+3} = \frac{1}{2},$$

$$A_{21} = \{(v+3)G(v)\}|_{v=-3} = \frac{-3+2}{-3+1} = \frac{1}{2}.$$

$$h(t) = \frac{1}{2}e^{-t}u(t) + \frac{1}{2}e^{-3t}u(t).$$

$$x(t) = e^{-t}u(t).$$

$$Y(j\omega) = H(j\omega)X(j\omega) = \left[\frac{j\omega + 2}{(j\omega + 1)(j\omega + 3)}\right] \left[\frac{1}{j\omega + 1}\right]$$
$$= \frac{j\omega + 2}{(j\omega + 1)^2(j\omega + 3)}.$$

$$Y(j\omega) = \frac{A_{11}}{j\omega + 1} + \frac{A_{12}}{(j\omega + 1)^2} + \frac{A_{21}}{j\omega + 3}$$

$$G(v) = \frac{A_{11}}{v+1} + \frac{A_{12}}{(v+1)^2} + \frac{A_{21}}{v+3}$$

$$A_{ik} = \frac{1}{(\sigma_i - k)!} \left[\frac{d^{\sigma_i - k}}{dv^{\sigma_i - k}} [(v - \rho_i)^{\sigma_i} G(v)] \right]_{v = \rho_i}.$$

$$v = jw, G(v)$$

$$A_{11} = \frac{1}{(2-1)!} \frac{d}{dv} [(v+1)^2 G(v)] |_{v=-1} = \frac{1}{4},$$

$$A_{12} = [(v+1)^2 G(v)] |_{v=-1} = \frac{1}{2},$$

$$A_{12} = [(v+3)G(v)] |_{v=-3} = -\frac{1}{4}.$$

$$A_{11} = \frac{1}{4}$$
, $A_{12} = \frac{1}{2}$, $A_{21} = -\frac{1}{4}$, bulunara

$$Y(j\omega) = \frac{\frac{1}{4}}{j\omega + 1} + \frac{\frac{1}{2}}{(j\omega + 1)^2} - \frac{\frac{1}{4}}{j\omega + 3}.$$
 yazılabilir

$$e^{-at}u(t)$$
, $\Re e\{a\} > 0$ $\frac{1}{a+j\omega}$

$$te^{-at}u(t), \Re\{a\} > 0$$
 $\frac{1}{(a+j\omega)^2}$

dönüşüm çiftleri

kullanılarak

 $y(t) = \left[\frac{1}{4}e^{-t} + \frac{1}{2}te^{-t} - \frac{1}{4}e^{-3t}\right]u(t).$