HW Jan 23, Johannes Byle

- **2.4** (a) The amount of mass that is directly in contact with the projectile is the area of the projectile times the density of the fluid ρA . Since the mass density of the fluid is constant in any direction the amount of mass encountered of a period of time is ρAv .
- (b) In this example $\frac{\Delta E}{\Delta x} = F$. The amount of energy change per unit time is is $\frac{1}{2}\rho A v^3$. To get the force we divide by x, making the drag force per unit time $F = \frac{1}{2}\frac{\rho A v^2}{t}$.
 - (c) $f_{quad}=\gamma D^2 v^2=k \rho \frac{\pi D^2}{4} v^2$ thus $\gamma=k \rho \frac{\pi}{4}\approx 0.25$
- **2.6 (a)** We know $v_y(t) = v_{ter}(1 e^{-t/\tau})$, we also know $v_{ter} = g\tau$. Thus if Taylor approximations are good at low values of x then $v_y(t) = g\tau(1 (1 + (-t/\tau))) = gt$.
- (b) We know $y(t)=v_{ter}t+(v_{y0}-v_{ter})\tau(1-e^{-t/\tau})$, from part (a) we can reduce this to $y(t)=g\tau t+(v_{y0}-g\tau)\tau(1-(1+(-t/\tau)))$ which is $\frac{1}{2}gt^2$.
- **2.11 (a)** $v_y(t) = v_0 v_{ter}(1 e^{-t/\tau}) gt$
- (b) The highest point would be where $v_0 = v_{ter}(1 e^{-t/\tau}) + gt$. The position at this point would be $y_{max}(t) = v_0 v_{ter}t + (v_{y0} v_{ter})\tau(1 e^{-t/\tau}) \frac{1}{2}gt^2$
- **2.31 (a)** $v_{ter} = \frac{mg}{b}$ and $b = \beta D$, thus $v_{ter} = 20.2 \frac{m}{s}$.
 - **(b)** In vacuum it would take $\sqrt{\frac{60}{9}}$.