

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра оптимального управления

Программа для решения краевых задач методом продолжения по параметру на языке Python

Студент: Эмиров Самир Магомедович, группа 313

Преподаватели: Киселёв Юрий Николаевич Аввакумов Сергей Николаевич Дряженков Андрей Александрович

Содержание

1	Me	тод продолжения по параметру	2
2	Оп	роекте	4
	2.1	Постановка задачи	4
	2.2	Используемые библиотеки	4
	2.3	Пользовательский интерфейс	5
		2.3.1 Ввод данных	6
		2.3.2 Получение результатов	6
		2.3.3 Раздел «Меню»	7
3	При	имеры	8
	3.1	Краевая задача двух тел	8
	3.2	Предельные циклы в системе Эквейлера	9
	3.3	Функционал типа "энергия" для трёхкратного интегратора	10

1 Метод продолжения по параметру

Рассмотрим краевую задачу

$$\dot{x} = f(t, x), \ R(x(a), x(b)) = 0, \ t \in [a, b], \ x \in E^n.$$
 (1)

Здесь $f(t,x): E^1 \times E^n \mapsto E^n$, $R(x,y): E^n \times E^n \mapsto E^n$ являются гладкими векторными функциями. Предполагая существование решения краевой задачи (1), обсудим алгоритмические вопросы поиска её решения. Решение краевой задачи можно свести к некоторому нелинейному векторному уравнению в E^n . Выберем некоторую точку $t_* \in [a,b]$ и рассмотрим задачу Коши

$$x = f(t, x), \ x|_{t=t_*} = p \in E^n.$$
 (2)

Свобода выбора точки t_* может быть полезна для вычислительной практики. Пусть

$$x(t,p), \ a \le t \le b. \tag{3}$$

— решение задачи Коши (2). Предполагается продолжимость решения (3) на весь отрезок [a,b] для любого p. Начальное значение параметра $p \in E^n$ ищется из условий выполнения векторного граничного условия в задаче (1), т.е. искомое p является решением уравнения

$$\Phi(p) \equiv R(x(a,p), x(b,p)) = 0. \tag{4}$$

Итак, краевая задача (1) сведена к конечному векторному уравнению (4).

Далее к уравнению (4) применяется метод продолжения. Матрица $\Phi'(p)$ определяется равенством

$$\Phi'(p) = R'_x \frac{\partial x(a,p)}{\partial p} + R'_y \frac{\partial x(b,p)}{\partial p}$$

Здесь $(n \times n)$ — матрицы $R'_x(x,y)$, $R'_y(x,y)$ вычисляются вдоль решения (3), т.е. при x = x(a,p), y = x(b,p). Введём обозначение

$$X(t,p) \equiv \frac{\partial x(t,p)}{\partial p}$$

для $(n \times n)$ —матрицы производных решения (3) по начальному условию. Матрица X(t,p) определяется дифференциальным уравнением в вариациях

$$\dot{X} = AX, \ X|_{t=t_{a}} = I, \ a < t < b,$$

где $A=A(t,p)\equiv f_x'(t,x)|_{x=x(t,p)}$ есть $(n\times n)$ —матрица, I—единичная матрица. Основная задача Коши схемы продолжения по параметру имеет вид

IVP:
$$\frac{dp}{d\mu} = -[\Phi'(p)]^{-1}\Phi(p_0), \ p(0) = p_0, \ 0 \le \mu \le 1,$$
 (5)

где

$$\Phi(p) = R(x(a, p), x(b, p)),$$

$$\Phi'(p) = R'_x(x(a, p), x(b, p))X(a, p) + R'_y(x(a, p), x(b, p))X(b, p).$$

Для одновременного вычисления векторной функции x(t,p) и матричной функции X(t,p) может быть записана следующая векторно-матричная задача Коши

$$\begin{cases} \dot{x} = f(t, x), & x|_{t=t_*} = p, \\ \dot{X} = f'_x(t, x)X, & X|_{t=t_*} = I, \ a \le t \le b. \end{cases}$$
 (6)

Задачу Коши (5) будем называть внешней задачей, задачу Коши (6) — внутренней задачей. Таким образом, предлагается итерационный процесс для решения рассматриваемой краевой задачи (1) на основе внешней задачи (5) и внутренней задачи (6). На одном шаге итерационного процесса выполняется решение внешней задачи (5), в ходе решения которой происходит многократное обращение к решению внутренней задачи Коши (6) при различных значениях параметра p.

2 О проекте

2.1 Постановка задачи

В рамках курса «Практикум на ЭВМ» была поставлена задача изучить метод продолжения по параметру для решения краевых задач и написать программу на языке Python, реализующую данный метод.

2.2 Используемые библиотеки

Tkinter — библиотека (входит в стандартную библиотеку Python), предназначенная для работы с графическим интерфейсом.

NumPy — библиотека для высокоуровневой работы с многомерными массивами.

SciPy — библиотека для научных вычислений, в данной программе из нее используется функция, решающая задачу Коши.

odeintw — оболочка scipy.integrate.odeint, которая позволяет обрабатывать комплексные и матричные дифференциальные уравнения.

SymPy — библиотека символьных вычислений.

Pandas — библиотека для обработки и анализва табличных данных.

Matplotlib — библиотека для визуализации данных.

PIL – библиотека для работы с изображениями.

2.3 Пользовательский интерфейс

При запуске программы пользователя встречает основное окно:

Метод продолжения по параметру	- 🗆 X
Файл Информация	
	_
	Введите систему краевых условий:
	= 0
Введите систему дифференциальных уравнений:	= 0
$dx_1/dt =$	
dx_2/dt =	= 0
	= 0
$dx_3/dt =$	= 0
dx_4/dt =	
dx_5/dt =	= 0
	Вектор начального приближения параметра:
dx_6/dt =	Решить задачу
Начальный и конечный моменты времени:	· omns ougus,
Момент времени t* =	Алгоритм выполняется
	Оси графиков:
Метод решения внешней задачи:	14
	Интегральный функцион x-1 решения задачи:
	J(x) = x-3 x-4 x-5 x-6
	x3 x_6

Рис. 1: Основное окно программы

2.3.1 Ввод данных

Пользователь вводит правую часть системы дифференциальных уравнений $f_i(x_i,t)$ с краевыми условиями $R(x_i(a),x_j(b))=0$, начальный вектор p_0 , концы отрезка решения задачи a и b, точку t^* .

Если возникают трудности с вводом, имеется возможность перейти в раздел «информация -> помощь». Также можно перейти в раздел «Файл» -> «Открыть задачу...» и выбрать один из вариантов, после чего в поля ввода подставятся соответствующие уравнения.

2.3.2 Получение результатов

После ввода всех данных краевой задачи можно вычислить ее решение по нажатию кнопки «Решить задачу». Перед вычислением есть возможность выбрать 1 из 6 численных методов для решения внутренней и внешней задачи. После вычисления решения имеется возможность графически отобразить его. Также имеется возможность вычислить значение интегрального функционала вдоль полученной траектории. Примеры будут рассмотрены ниже.

2.3.3 Раздел «Меню»

В левом верхнем углу интерфейса находится раздел «меню», в котором можно открыть окна «Файл» и «Информация».

- Файл содержит в себе функции «Сохранить задачу», и «Открыть прошлый ввод» для сохранения введённого примера задачи и загрузки уже имеющейся. Также имеется функция «Сохранить решение», сохраняющая численное решение в виде сsv файла.
- Информация содержит в себе функции «О программе» (общая информация о проекте), «Об авторе» и «Помощь» (подробное руководство пользователя),

3 Примеры

3.1 Краевая задача двух тел

$$\begin{cases} \dot{x}_1 = x_3, & x_1(0) = a_1, \ x_1(T) = b_1, \\ \dot{x}_2 = x_4, & x_2(0) = a_2, \ x_2(T) = b_2, \\ \dot{x}_3 = -x_1(x_1^2 + x_2^2)^{-3/2}, \\ \dot{x}_4 = -x_2(x_1^2 + x_2^2)^{-3/2}. \end{cases}$$

Для данных

$$T = 7$$
, $a_1 = 2$, $a_2 = 0$, $b_1 = 1.0738644361$, $b_2 = -1.0995343576$,

при выборе параметра $t_* = 0$, для начального приближения

$$p_0 = [2, 0, 0.5, -0.5].$$

Рис. 2: График в осях x_1, x_2

3.2 Предельные циклы в системе Эквейлера

$$\begin{cases} \dot{x}_1 = x_3 x_2, & x_1(0) = x_4(0), \ x_1(1) = x_4(1), \\ \dot{x}_2 = x_3(-x_1 + \sin(x_2)), & x_2(0) = 0, \ x_2(1) = 0, \\ \dot{x}_3 = 0, \\ \dot{x}_4 = 0. \end{cases}$$

При выборе параметра $t_* = 0$, для начального приближения

$$p_0 = [2, 0, 2\pi, 2].$$

Рис. 3: График в осях x_1, x_2

3.3 Функционал типа "энергия" для трёхкратного интегратора

$$\begin{cases} \dot{x}_1 = x_2, & x(0) = (1,0,0), \ x(T) = (0,0,0), \ T = 3.275, \\ \dot{x}_2 = x_3, & \\ \dot{x}_3 = \frac{1}{2}(\sqrt{\nu + (x_6 + 1)^2} - \sqrt{\nu + (x_6 - 1)^2}), \\ \dot{x}_4 = 0, & \\ \dot{x}_5 = -x_4, & \\ \dot{x}_6 = -x_5. & \end{cases}$$

При выборе параметров $t_*=3.275,\; \nu=10^{-10},$ для начального приближения

$$p_0 = [0, 0, 0, -2.9, 4.9, -2.9].$$

Puc. 4: График функции $x_3(t)$

Список литературы

- [1] Ю.Н. Киселёв, С.Н. Аввакумов, М.В. Орлов Оптимальное управление. Линейная теория и приложения // 2007, Издательский отдел факультета ВМК МГУ имени М.В. Ломоносова, 270.
- [2] Лекции А.А. Дряженкова по практикуму.
- [3] С. М. Львовский *Набор и вёрстка в системе РТЕХ //* Издательство Макс Пресс, 2003.
- [4] Официальный сайт языка Python python.org.