Ninth International Olympiad, 1967

1967/1.

Let ABCD be a parallelogram with side lengths AB = a, AD = 1, and with $\angle BAD = \alpha$. If $\triangle ABD$ is acute, prove that the four circles of radius 1 with centers A, B, C, D cover the parallelogram if and only if

$$a \le \cos \alpha + \sqrt{3} \sin \alpha$$
.

1967/2.

Prove that if one and only one edge of a tetrahedron is greater than 1, then its volume is $\leq \frac{1}{8}$.

1967/3.

Let k, m, n be natural numbers such that m+k+1 is a prime greater than n+1. Let $c_s=s(s+1)$. Prove that the product

$$(c_{m+1}-c_k)(c_{m+2}-c_k)\cdots(c_{m+n}-c_k)$$

is divisible by the product $c_1c_2\cdots c_n$.

1967/4.

Let $A_0B_0C_0$ and $A_1B_1C_1$ be any two acute-angled triangles. Consider all triangles ABC that are similar to $\triangle A_1B_1C_1$ (so that vertices A_1 , B_1 , C_1 correspond

to vertices A, B, C, respectively) and circumscribed about triangle $A_0B_0C_0$ (where A_0 lies on BC, B_0 on CA, and C_0 on AB). Of all such possible triangles, determine the one with maximum area, and construct it.

1967/5.

Consider the sequence $\{c_n\}$, where

$$c_{1} = a_{1} + a_{2} + \dots + a_{8}$$

$$c_{2} = a_{1}^{2} + a_{2}^{2} + \dots + a_{8}^{2}$$

$$\vdots$$

$$c_{n} = a_{1}^{n} + a_{2}^{n} + \dots + a_{8}^{n}$$

$$\vdots$$

in which a_1, a_2, \ldots, a_8 are real numbers not all equal to zero. Suppose that an infinite number of terms of the sequence $\{c_n\}$ are equal to zero. Find all natural numbers n for which $c_n = 0$.

1967/6.

In a sports contest, there were m medals awarded on n successive days (n > 1). On the first day, one medal and $\frac{1}{7}$ of the remaining m-1 medals were awarded. On the second day, two medals and $\frac{1}{7}$ of the now remaining medals were awarded; and so on. On the n-th and last day, the remaining n medals were awarded. How many days did the contest last, and how many medals were awarded altogether?