Analysis of Adaptive Streaming for CDN/P2P Live Video Systems

Presenter: Xuanjia Qiu

Nov. 30, 2011

Introduction

- Author: A. Mansy and M. Ammar, from Georgia Institute of Technology.
- Published on ICNP 2011(October 17-20)

 Highlight: Build the model with existing models as building blocks.

Significance

- Existing researches have explored
 - Adaptive streaming systems (mainly layered streaming)
 - Hybrid CND/P2P streaming systems
- respectively, but not yet explored the combination of the two.

Definition

- Adaptive streaming (HTTP v.s. layered):
 - A video can be streamed at multiple qualities
 - Users can switch among different qualities
 - Download rate is assumed to be variable among clients but constant over time.
- Hybrid CDN/P2P
 - Users may receive data either from the server or other peers streaming the same quality of the same video

System Architecture

Questions

- How to find a way to switch the operation of the system between the CDN and P2P modes
- How to find the best bitrate adaption strategy
- Is a hybrid adaptive system better than a classic CDN adaptive system? How much better will it be? (can not answer without a quantitative model)

Approach: add dimensions one by one

- Hybrid system model with single rate
 - Unconstrained churnless system (fluid model)
 - Unconstrained system with churn (M/G/∞ queueing model)
 - Constrained churnless system
 - Constrained system with churn
- Adaptive hybrid system model
 - (similar as the previous part)
- CDN adaptive model

Single rate, unconstrained, churnless

- Relationship between
 - Streaming rate (or capacity of proxy server)
 - # of seeders and leechers
 - Bw. of seeders and of leechers

$$r \le \frac{n_s u_s + n_l u_l}{n_l}$$

Single rate, unconstrained, with churn

- The key is to find the probablity in terms of peer population
- M/G/∞

$$P(\text{support bitrate } r) = P(r \le \frac{n_s u_s + N u_l}{N})$$

$$= P(N \le \frac{n_s u_s}{r - u_l}) = F(\frac{n_s u_s}{r - u_l})$$

 Relationship between streaming rate, # of seeders and leechers, bw. of seeders and of leechers

$$n_s \ge \frac{(\phi_{1-\alpha}\sqrt{\rho} + \rho)(r - u_l)}{u_s}$$

• Approximation:

$$\sqrt{\hat{\rho}} = a + b\hat{\rho}$$

Single rate, constrained, churnless

Avg. download bw. of leechers

$$d = \sum_{x} E[d|\text{leecher is connected to } x \text{ seeders}] \times Pr\{x\}$$

$$= \sum_{x} \left(\frac{xu_s}{S_{in}} + \frac{(Y_{out} - x)\eta u_l}{Y_{in}}\right) \times Pr\{x\}$$

$$= \frac{Y_{out}\eta u_l}{Y_{in}} + \left(\frac{u_s}{S_{in}} - \frac{\eta u_l}{Y_{in}}\right) \sum_{x} xPr\{x\}$$

$$Y_{out} = (n_s S_{in} + n_l Y_{in})/n_l$$

$$(4)$$

• Therefore,

$$d = \frac{n_s u_s + \eta n_l u_l}{n_l}$$

Compare with the results for churnless system

$$r \le \frac{n_s u_s + n_l u_l}{n_l}$$

Adaptive, unconstrained, churnless

- Proxy can offer multiple bitrates.
- Upon arrival, a client requests a bitrate and then the proxy assigns it a bitrate according to the optimization results.
 - The difference between the two is called "client dissatisfaction"
- The objective is to minimize total client dissatisfaction over all clients.

Adaptive, unconstrained, churnless

Mininze peers' dissatisfaction under capacity constraints

$$\min \sum_{i=1}^{R} \sum_{j=i}^{R} x_{ij} n_{l_i} (r_i - r_j)$$
 (7)

subject to:
$$\sum_{j=i}^{R} x_{ij} = 1$$
, $0 \le x_{ij} \le 1$ for $i = 1, \ldots, R$

$$n_{s_i} u_s \ge \left(n_{l_i} x_{ii} + \sum_{k=1}^{i-1} n_{l_k} x_{ki} - n_{s_i}\right) (r_i - u_l)$$
 (8)

$$r \le \frac{n_s u_s + n_l u_l}{n_l} \qquad \sum_{i=1}^R n_{s_i} r_i \le C_{proxy} \tag{9}$$

Observation:

 Minimizing client dissatisfaction is equivalent to miximizing inter-client fairness

$$\sum_{i=1}^{R} \sum_{j=i}^{R} x_{ij} n_{l_i} r_i (1 - \frac{r_j}{r_i}) = \sum_{i=1}^{R} n_{l_i} r_i - \sum_{i=1}^{R} r_i \left(\sum_{j=i}^{R} n_{l_i} x_{ij} \frac{r_j}{r_i} \right)$$

Feasibility

 Only if the system can support the lowest bitrate for all clients,

$$\frac{C_{proxy}}{r_R} \ge \frac{r_R - u_l}{u_s} \sum_{i=1}^R n_{l_i}$$

Adaptive, unconstrained, with churn

 Relationship between streaming rate, # of seeders and leechers, bw. of seedrs and leechers

$$n_{s_i}u_s \ge (\phi_{1-\alpha/2}\sqrt{\hat{\rho}_i} + \hat{\rho}_i)(r_i - \eta u_l - \epsilon)$$

where $\hat{\rho}$ is defined as in the previous section.

CDN adaptive

 Mininze peers' dissatisfaction under capacity constraints.

$$\min \sum_{i=1}^{R} \sum_{j=i}^{R} x_{ij} n_i (r_i - r_j)$$

lacktriangle

subject to:
$$\sum_{j=i}^{R} x_{ij} = 1$$
, $0 \le x_{ij} \le 1$ for $i = 1, \dots, R$

$$\sum_{i=1}^{R} r_i \left(n_i x_{ii} + \sum_{k=1}^{i-1} n_k x_{ki} \right) \le C_e \tag{12}$$

Validation

- Validate single-rate model
 - compare results gained from fluid model and simulation. The accuracy of the whole model relies largely on the fluid model
- Validate the CDN adaptive model
- Fix bandwidth capacity and compare QoS
- Fix QoS and compare bandwidth savings

Numerical results of single-rate model

Fig. 2: n_s vs ρ for different video bitrates for systems with churn, $\alpha = 0.05$

Validate single-rate model

Fig. 3: CDF of average delivered rate for unconstrained system with churn

Validate single-rate model

Fig. 4: CDF of average delivered rate for constrained system with churn, r = 1100Kbps

Validate the CDN adaptive model

Fig. 5: CDN system with churn

Fix bandwidth capacity and compare QoS

(a) High bitrate bias

(b) Uniform distribution over bitrates

Fix bandwidth capacity and compare QoS

(c) Low bitrate bias

Fix QoS and compare bandwidth saving

Fig. 7: Required server capacity for CDN/P2P and CDN systems with churn

Q & A

Thank you!