PSALTer results panel

 ${\stackrel{0^{\scriptscriptstyle +}}{\circ}}\mathcal{R}^{\parallel} \qquad {\stackrel{0^{\scriptscriptstyle +}}{\circ}}{f}^{\parallel} \qquad {\stackrel{0^{\scriptscriptstyle +}}{\circ}}{f}^{\perp} \qquad {\stackrel{0^{\scriptscriptstyle -}}{\circ}}\mathcal{R}^{\parallel}$

$$S = \iiint \left(\frac{1}{6}\left(6\,t_{1}^{2}\,\mathcal{A}^{\alpha_{1}}_{\alpha}\,\mathcal{A}^{\theta}_{\beta}+6\,\mathcal{A}^{\alpha\beta\chi}\,\sigma_{\alpha\beta\chi}+6\,f^{\alpha\beta}_{\alpha}\,\tau_{(\Delta+\mathcal{K})_{\alpha\beta}}-12\,t_{1}^{2}\,\mathcal{A}^{\theta}_{\alpha}\,\partial_{\beta}f^{\alpha_{1}}+12\,t_{1}^{2}\,\mathcal{A}^{\theta}_{\beta}\,\partial_{\beta}f^{\alpha_{1}}-6\,t_{1}^{2}\,\partial_{\beta}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-6\,t_{1}^{2}\,\partial_{\beta}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-6\,t_{1}^{2}\,\partial_{\beta}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\beta}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{2}\,\partial_{\alpha}f^{\alpha_{1}}-4\,t_{1}^{$$

Wave operator

${}^{0^{\scriptscriptstyle +}}_{}\mathcal{R}^{\parallel}$ †	-t.		$i \sqrt{2} kt$	0	0										
° f †	$-i \sqrt{2}$	k t .	$-2 k^2 t$	0	0										
${\overset{0^+}{{}_{\scriptstyle\bullet}}}f^\perp$ †	0		0	0	Θ										
^{o-} ⁄⁄⁄⁄⁄/⁄// †	0		0	0	t. 2	${}^{1^{\scriptscriptstyle +}}_{\scriptscriptstyle ullet}\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}^{^{\perp}}{}_{\alpha\beta}$	$f^{\dagger}f^{\dagger}_{\alpha\beta}$	${\stackrel{1}{\cdot}}\mathcal{H}^{\parallel}{}_{\alpha}$	$^{1^{-}}_{}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$^{1}_{\bullet}f^{\perp}_{\alpha}$			
					$^{1^{+}}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_{.5} + t_{.7} + 4 t_{.2} \right)$			0	0	Θ	0			
					$\mathbf{\dot{\cdot}}^{1^{+}}\mathcal{R}^{\perp}\mathbf{\dagger}^{\alpha\beta}$	3 √2	$\frac{t \cdot +t}{\frac{1}{2}}$	$\frac{1}{3} i k \left(t_{1} + t_{2}\right)$	0	0	0	0			
					$f^{\dagger}f^{\dagger}$	$\frac{ik\left(t_1-2t_2\right)}{3\sqrt{2}}$	$-\frac{1}{3} i k \left(t_{\cdot} + t_{\cdot}\right)$	$\frac{1}{3} k^2 \left(t_1 + t_2 \right)$	0	0	0	0			
					$^{1}_{\cdot}\mathcal{A}^{\parallel}\dagger^{\alpha}$	0	0	0	$k^2 r_{\frac{1}{5}} - \frac{t_{\frac{1}{2}}}{2}$	$\frac{t_1}{\sqrt{2}}$	0	i k t . 1			
					$^{1}_{\bullet}\mathcal{A}^{\perp}\dagger^{\alpha}$	Θ	Θ	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
					$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
					$^{1}_{\bullet}f^{\perp}\dagger^{\alpha}$	0	0	Θ	-i k t .	0	0	0	$\mathcal{A}^{2^+}\mathcal{A}^{\parallel}_{\alpha\beta} \mathcal{A}^{2^+}f^{\parallel}$	$_{\alpha\beta}$ $^{2^{-}}\mathcal{A}^{\parallel}$	αβχ
												$\mathcal{A}^{\downarrow}\mathcal{A}^{\parallel}$	2 Λ	$\frac{t_i}{\sqrt{2}}$	9
												$f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt}{\sqrt{2}} k^2$		
											2	$\mathcal{A}^{\mathbb{P}^{-}}\mathcal{A}^{\mathbb{P}}$	0 0	<u>t</u>	<u>i</u>

Saturated propagator

${\stackrel{0^{\scriptscriptstyle +}}{\cdot}}\sigma^{\parallel}$ †	$-\frac{1}{\left(1+2k^2\right)^2t_{\underline{1}}}$	$\frac{i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	0	0										
	$-\frac{i\sqrt{2}k}{\left(1+2k^2\right)^2t}$		0	0										
$^{0^+}\tau^{\perp}$ †	0	0	0	0										
°-σ" †	0	0	0	$\frac{1}{t_{\cdot 2}}$	${}^{1^{+}}_{\bullet}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1^{+}}{\cdot}\sigma^{\perp}{}_{\alpha\beta}$	$1^+_{\tau}\ _{lphaeta}$	$^{1^{-}}\sigma^{\parallel}_{\alpha}$	$^{1}_{ullet}\sigma^{\!\scriptscriptstyle\perp}{}_{lpha}$	$^{1^{-}}_{\bullet}\tau^{\parallel}_{\alpha}$	$^{1^-}\tau^{\perp}_{\alpha}$			
				$\dot{\cdot}^{\sigma^{\parallel}}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2}\left(t_{1}^{-2}t_{2}\right)}{(1+k^{2})\left(3t_{1}^{2}t_{2}^{2}+2k^{2}r_{5}\left(t_{1}^{2}+t_{2}\right)\right)}$	$\frac{i \sqrt{2} k \left(t_{1}^{-2} t_{2}^{-2}\right)}{(1+k^{2}) \left(3 t_{1} t_{2}^{-+2} + 2 k^{2} r_{5} \left(t_{1}^{-+t} t_{2}^{-1}\right)\right)}$	0	0	0	0			
				$\dot{\cdot}^{\sigma^{\perp}}$	$\frac{\sqrt{2}\left(t_{1}-2t_{2}\right)}{(1+k^{2})\left(3t_{1}t_{2}+2k^{2}r_{5}\left(t_{1}+t_{2}\right)\right)}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	$\frac{i k \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0			
				$^{1^{+}}_{\bullet}\tau^{\parallel}$ † $^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t_{1}-2t_{2})}{(1+k^{2})(3t_{1}t_{2}+2k^{2}r_{5}(t_{1}+t_{2}))}$	$-\frac{ik\left(6k^2r_{_{5}}\!+\!t_{_{1}}\!+\!4t_{_{2}}\right)}{\left(1\!+\!k^2\right)^2\left(3t_{_{1}}t_{_{2}}\!+\!2k^2r_{_{5}}\left(t_{_{1}}\!+\!t_{_{2}}\right)\right)}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0			
				1 σ^{\parallel} $^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_{1}+2 k^{2} t_{1}}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$			
				1 $^{-}$ σ^{\perp} \dagger^{α}	0	Θ	0	$\frac{\sqrt{2}}{t_{\cdot}+2k^2t_{\cdot}\atop 1}$	$\frac{-2 k^2 r_{5} + t_{1}}{\left(t_{1} + 2 k^2 t_{1}\right)^2}$	0	$-\frac{i\sqrt{2} k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$			
				$1^{-} 1^{\parallel} 1^{\alpha}$	0	0	0	Θ	Θ	0	0			
				$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_{1}+2k^{2}t_{1}}$	$\frac{i \sqrt{2} k \left(2 k^2 r_{5} - t_{1}\right)}{\left(t_{1} + 2 k^2 t_{1}\right)^2}$	0	$\frac{-4 k^4 r_{.} + 2 k^2 t_{.}}{\left(t_{.} + 2 k^2 t_{.}\right)^2}$	2⁺ σ∥ _{αβ}	$2^+_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$2^{-}_{\bullet}\sigma^{\parallel}_{\alpha\beta\chi}$
											2 ⁺ _• σ † ^{αβ}	$\frac{2}{\left(1+2k^2\right)^2t_{\underline{1}}}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	
											$2^{+}_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{4 k^2}{\left(1+2 k^2\right)^2 t_1}$	Θ
											2- μ αβχ	0	0	2

Source constraints

Spin-parity form	Covariant form	Multiplicities
^{Θ+} τ [±] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} = 0$	1
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$i k \cdot 1^+ \sigma^{\perp}^{\alpha\beta} + \cdot 1^+ \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = = \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k \frac{2^{+}}{\cdot \sigma} \ ^{\alpha \beta} + \frac{2^{+}}{\cdot \tau} \ ^{\alpha \beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\beta\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} - 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} - 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \int_{\delta}^{\epsilon} -6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} -6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$	
	$ 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0 $	

16

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$\frac{\begin{vmatrix} -3t.t.(t.+t.) + 3r.(t.^2 + 2t.^2) \\ \frac{1}{2} \frac{1}{2} \frac{1}{2} & \frac{5}{2} \frac{1}{2} & \frac{2}{2} \\ \frac{7}{5} \frac{(t.+t.)}{1} \frac{(-3t.t.+2r.(t.+t.))}{1} & \frac{1}{2} \frac{t.+2r.(t.+t.)}{5} \end{vmatrix} > 0$
Square mass:	$-\frac{\frac{3t.t.}{12}}{2r.t.+2r.t.}_{51} > 0$
Spin:	1
Parity:	Even

Massless spectrum

(No particles)

Unitarity conditions

 $\left(t_{1}<0\,\&\&\left(\left(t_{2}<0\,\&\&\,r_{5}>0\right)||\left(t_{2}>-t_{1}\,\&\&\,r_{5}>0\right)\right)\right)||\left(t_{1}>0\,\&\&\,-t_{1}< t_{2}<0\,\&\&\,r_{5}>0\right)$