

Properties of low-mass baryons

					Marie and the second				
Name	Symbol	Spin (parity)	T Isospin	T ₃ Isospin projection	Hyper charge	Mass [MeV]	τ Lifetime	Main decay	Branching ratio [%]
	(p	1/2+	1/2	1/2	1	938.3	∞		
Nucleon	$N \begin{cases} n \end{cases}$	1/2 ⁺ 1/2 ⁺	1/2	$-\frac{1}{2}$	1	939.6	15 min	$pe^-\bar{v}_e$	100
Hyperons									
Lambda 10	1/2+	0	0	0	1116	$2.6 \times 10^{-10} \text{ s}$	$p\pi^-$	64.2	
							$n\pi^0$	35.8	
	$(\Sigma^+$	1/2+	1	1	0	1189	$0.8 \times 10^{-10} \text{ s}$	$p\pi^{0}$, $n\pi^{+}$	51.6, 48.4
Sigma	$\Sigma \begin{cases} \Sigma^+ \\ \Sigma^0 \\ \Sigma^- \end{cases}$	1/2+	1	0	0	1192	$5.8 \times 10^{-20} \text{ s}$	$\Lambda\gamma$	100
	Σ^-	1/2 + 1/2 + 1/2 +	1	-1	0	1197	1.5×10^{-10} s	$n\pi^-$	100
	_ (\(\varepsilon^{\alpha}\)	1/2+	$\frac{1}{2}$	$\frac{1}{2}$	- 1	1315	2.9×10^{-10} s	$\Lambda\pi^0$	100
Xi	$\mathcal{\Xi}\left\{egin{array}{l} \mathcal{\Xi}^{0} \\ \mathcal{\Xi}^{-} \end{array} ight.$	1/2 ⁺ 1/2 ⁺	$\frac{1}{2}$ $\frac{1}{2}$	$-\frac{1}{2}$	- 1	1321	$1.6 \times 10^{-10} \text{ s}$	$\Lambda\pi^-$	100
Omega	Ω-	3/2+	0	0	- 2	1672	$0.8 \times 10^{-10} \text{ s}$	$\Lambda K^-, \Xi^0 \pi^-$ $\Xi^- \pi^0$	68.6, 23.6 8

$$|p\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |n\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad |\Sigma^{+}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, |\Sigma^{0}\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, |\Sigma^{-}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rightarrow I = 1$$

$$\rightarrow I = \frac{1}{2}$$

Low Mass baryons - II

Properties	of	low-mass	baryons
------------	----	----------	---------

Symbol	Spin (parity)	T Isospin	T ₃ Isospin projection	Hyper charge	Mass [MeV]	τ Lifetime	Main decay	Branching ratio [%]
(p	1/2+	1/2	1/2	1	938.3	∞	-	
N n	1/2+	$\frac{1}{2}$	$-\frac{1}{2}$	1	939.6	15 min	$pe^-\bar{v}_e$	100
Λ^0	1/2+	0	0	0	1116	$2.6 \times 10^{-10} \text{ s}$	$p\pi^ n\pi^0$	64.2 35.8
(5+	1 /2 +	1	1	0	1189	0.8×10^{-10} s		51.6, 48.4
5 50	1/2+	1	0				- Transaction	100
$\left(\sum_{\Sigma^{-}}\right)^{2}$	1/2+	1	– 1	0	1197	$1.5 \times 10^{-10} \text{ s}$	$n\pi^-$	100
(<i>Ξ</i> °			$\frac{1}{2}$	- 1	1315	2.9×10^{-10} s	$\Lambda\pi^0$	100
$^{arnothing}\left\{ arnothing_{arnothing}^{-} ight.$	1/2+	$\frac{1}{2}$	$-\frac{1}{2}$	- 1	1321	$1.6 \times 10^{-10} \text{ s}$	$\Lambda\pi^-$	100
Ω^-	3/2+	0	0	- 2	1672	$0.8 \times 10^{-10} \text{ s}$	$\Lambda K^-, \Xi^0 \pi^-$ $\Xi^- \pi^0$	68.6, 23.6 8
	$N \begin{cases} p \\ n \end{cases}$ Λ^{0} $\Sigma \begin{cases} \Sigma^{+} \\ \Sigma^{0} \\ \Sigma^{-} \end{cases}$ $\Xi \begin{cases} \Xi^{0} \\ \Xi^{-} \end{cases}$	$ \begin{array}{ccc} & (parity) \\ & J^{(p)} \\ N \begin{cases} p & 1/2^+ \\ n & 1/2^+ \end{cases} $ $ \Lambda^0 & 1/2^+ \\ \Sigma \begin{cases} \Sigma^+ & 1/2^+ \\ \Sigma^0 & 1/2^+ \\ \Sigma^- & 1/2^+ \end{cases} $ $ \Xi \begin{cases} \Xi^0 & 1/2^+ \\ \Xi^- & 1/2^+ \end{cases} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

$$|p\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |n\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} |\Xi^0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |\Xi^-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\rightarrow I = \frac{1}{2}$

$$\rightarrow I = \frac{1}{2}$$

But different sets

→ Introduce Hypercharge

Properties of the baryon resonances									
Symbol	J^{P}	Q	T	T_3	Y Mass	Lifetime τ Γ		Main decay channels	Resonant partial waves
					[MeV]	[s]	[MeV]	chamicis	partial waves
(\(\Delta + + \)	3/2+	2							
$N*$ Δ^+	3/2 ⁺ 3/2 ⁺ 3/2 ⁺	1			1232 ± 2	5.49×10^{-24}	120	$N\pi$	$P_{33}\pi p$
1	3/2+	0			1232 1 2	3.47 × 10	120	1476	1 33 %
(<u></u> <u>/</u>	3/2+	- 1							
N' SN'+	1/2+	1			1440 ± 40	3.13×10^{-24}	210	Νπ, Νππ	$P_{11} \pi p$
N' N''	1/2+	0			1440 _ 40	3.13 × 10	210	1111, 11111	111 " P
1*	$1/2^{-}$	0			1405 ± 5	1.65×10^{-23}	40	$\Sigma\pi$	$S_{01} K^- p$
$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty}$	3/2+	1			1382.3 ± 0.4	1.50 10-25	25	4 5	D W
$\sum^* \left\{ \begin{array}{l} \sum^{*0} \\ \sum^{*-1} \end{array} \right.$	3/2+ 3/2+ 3/2+	0 - 1			1382.0 ± 2.5 1387.4 ± 0.6	1.78×10^{-25}	37	$\Lambda\pi$, $\Sigma\pi$	$P_{13} \mathrm{K}^{-} \mathrm{p}$
Ξ* (Ξ*°	3/2+	0			1531.8 ± 0.3	0.4. 10-23	7		D
Ξ^* $\left\{\Xi^{*-}\right\}$	3/2+	- 1			1535.0 ± 0.6	9.4×10^{-23}	7	$\Xi\pi$	P

Each Isospin symmetric state from a representation of the of total isospin I=T the states in a representation have different T_3 but also different charge Q.

$$2T + 1$$
 States separated by $\Delta T = \pm 1$

Determination of Isospin $2T = Q_{\text{max}} - Q_{\text{min}}$

When T3 increases by 1 so does Q $T_3 = Q + [$ State independent constant] Introduce Hypercharge common to all states in this set $Q = \frac{1}{2}Y + T_3$

$$\rightarrow$$
 $Q_{\text{max}} = \frac{1}{2}Y + T$, $Q_{\text{min}} = \frac{1}{2}Y - T$ \rightarrow $Y = Q_{\text{max}} + Q_{\text{min}}$

Example I: proton (p) and Neutron (n):

$$2T = Q_{\text{max}} - Q_{\text{min}} \qquad \to T = \frac{1}{2}$$

$$\rightarrow T = \frac{1}{2}$$

$$Q = \frac{1}{2}Y + T_3$$

$$Q = \frac{1}{2}Y + T_3$$
 $Y = Q_{\text{max}} + Q_{\text{min}} = 1$

$$p \rightarrow T = \frac{1}{2}, T_3 = +\frac{1}{2}, Y = 1$$

$$n \rightarrow T = \frac{1}{2}, T_3 = -\frac{1}{2}, Y = 1$$

Example I: Xi (Ξ) states:

Determination of Isospin $2T = Q_{\text{max}} - Q_{\text{min}} \rightarrow T = \frac{1}{2}$

$$2T = Q_{\text{max}} - Q_{\text{min}}$$

$$\rightarrow T = \frac{1}{2}$$

$$Q = \frac{1}{2}Y + T$$

Introduce Hypercharge
$$Q = \frac{1}{2}Y + T_3$$
 $Y = Q_{\text{max}} + Q_{\text{min}} = -1$

$$\Xi^{-} \rightarrow T = \frac{1}{2}, T_3 = +\frac{1}{2}, Y = -1$$

$$\Xi^0 \rightarrow T = \frac{1}{2}, T_3 = -\frac{1}{2}, Y = -1$$

Example III: Delta ∆ resonance :

$$-T = -\frac{3}{2}$$

$$+T = +\frac{3}{2}$$

$$\Delta^{-} \qquad \Delta^{0} \qquad \Delta^{+} \qquad \Delta^{++}$$

$$Q_{\min} = -1$$

$$Q_{\max} = 2$$

Determination of Isospin
$$2T = Q_{\text{max}} - Q_{\text{min}} \longrightarrow T = \frac{3}{2}$$

$$2T = Q_{\text{max}} - Q_{\text{min}}$$

$$\rightarrow T = \frac{3}{2}$$

$$Q = \frac{1}{2}Y + T_3$$

Introduce Hypercharge
$$Q = \frac{1}{2}Y + T_3$$
 $Y = Q_{\text{max}} + Q_{\text{min}} = 1$

$$\Delta^{++} \rightarrow T = \frac{3}{2}, \quad T_3 = +\frac{3}{2}, \quad Y = 1$$
 $\Delta^0 \rightarrow T = \frac{3}{2}, \quad T_3 = -\frac{1}{2}, \quad Y = 1$
 $\Delta^+ \rightarrow T = \frac{3}{2}, \quad T_3 = +\frac{1}{2}, \quad Y = 1$
 $\Delta^- \rightarrow T = \frac{3}{2}, \quad T_3 = -\frac{3}{2}, \quad Y = 1$

$$\Delta^0 \to T = \frac{3}{2}, T_3 = -\frac{1}{2}, Y =$$

$$\Delta^+ \rightarrow T = \frac{3}{2}, \quad T_3 = +\frac{1}{2}, \quad Y = 1$$

$$\Delta^{-} \rightarrow T = \frac{3}{2}, T_{3} = -\frac{3}{2}, Y = 1$$

Example IV: Quantum number of a nuclei composed of Z number of (p) and N (n)

Only T3 and Y is well determined

$$T_3 = \sum_{i=p,n} T_3(i) = \frac{1}{2}(Z-N)$$

From
$$Q = \frac{1}{2}Y + T_3$$
 $\rightarrow Z = \frac{1}{2}Y + T_3$ $\rightarrow Y = Z + N$

□ plot of T3 and Y

prediction of particle before observation

