COT 6405 Introduction to Theory of Algorithms

Topic 16. Single source shortest path

Problem definition

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
 - "Shortest-path" -> Weight of the path is minimum
 - Weight of a path is the sum of the weight of edges
 - E.g., a road map: what is the shortest path from USF ENB to USF water tower?

10/24/2018

Formal definition

• W(p), Weight of path $p = (v_0, v_1, \dots, v_k)$

•
$$W(p) = \sum_{i=1}^{\kappa} w(v_{i-1}, v_i)$$

- = sum of edge weights on path p
- Shortest-path weight, $\delta(u, v)$, from u to v

$$\delta(u, v) = \begin{cases} \min \left\{ w(p) : u \stackrel{p}{\leadsto} v \right\} & \text{if there exists a path } u \leadsto v \\ \infty & \text{otherwise} \end{cases}$$

Shortest path u to v is any path p such that $w(p) = \delta(u, v)$.

Example: shortest paths from s

[d values appear inside vertices. Shaded edges show shortest paths.]

- This example shows that the shortest path might not be unique
- It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Single source shortest path

- We can think of weights as representing any measure that
 - accumulates linearly along a path
 - we want to minimize
- Examples: time, cost, penalties, loss.
- We can use the breadth-first search to find shortest paths for un-weighted graphs

Variants can be solved by SSSP

- Single-source: Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$.
- **Single-destination**: Find shortest paths to a given destination vertex.
- *Single-pair:* Find shortest path from *u* to *v*.
- All-pairs: Find shortest path from u to v for all u, v ∈ V.

Shortest path properties: optimal

Lemma.

Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

Suppose this path p is a shortest path from u to v.

Then
$$\delta(u, v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yv})$$
.

Now suppose there exists a shorter path $x \stackrel{p'_{xy}}{\leadsto} y$.

Then
$$w(p'_{xy}) < w(p_{xy})$$
.

Construct p':

Cont'd

Then

$$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yv})$$

 $< w(p_{ux}) + w(p_{xy}) + w(p_{yv})$
 $= w(p)$.

Contradicts the assumption that p is a shortest path.

Shortest path properties

- In graphs with negative weight cycles, some shortest paths will not exist:
 - No shortest path from s to e: (s,e), (s,e,f,e), ...

Negative-weight edges

- Negative weight edges are ok for some cases
 - as long as no negative-weight cycles are reachable from the source
 - If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.
- Some algorithms work only if there are non negativeweight edges in the graph.
 - Dijkstra algorithm works on nonnegative weights
 - We'll be clear when they're allowed and not allowed
- Normally, we assume nonnegative weights

Cycles

- Shortest paths cannot contain cycles:
 - We already ruled out negative-weight cycles
 - Positive-weight cycle ⇒ Removing the cycle will give us a path with less weight
 - Zero-weight cycle: no reason to use them ⇒
 assume that our solutions won't use them.

10/24/2018

Output of SSSP algorithm

- For each vertex $v \in V$, $v.d = \delta(s, v)$
 - Initially, v.d = ∞
 - Reduces as algorithms progress. But always maintain $v.d \ge \delta(s, v)$
 - Call v.d a shortest-path estimate
- $\pi[v]$ = predecessor of v on a shortest path from s
 - If no predecessor, $\pi[v]$ = NIL.
 - $-\pi$ induces a tree: *shortest-path tree*.

Initialization

 All the shortest-paths algorithms start with INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)

for each vertex $v \in G.V$

$$v.d = \infty$$

$$v.\pi = NIL$$

$$s.d = 0$$

Initialization

- For all the single-source shortest-paths algorithms we'll look at,
 - start by calling INIT-SINGLE-SOURCE,
 - then relax edges by decreasing the path weight if possible
- The algorithms differ in the order and how many times they relax each edge.

Relaxation: reach v by u

```
Relax(u, v, w) {
  if (v.d > u.d + w(u,v))
                 v.d = u.d + w(u,v)
       v.\pi = u
          Relax
                                Relax
    decrease by
                            unchanged
                                         15
```

Properties of shortest paths

Triangle inequality

For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Proof Weight of shortest path $s \rightsquigarrow \nu$ is \leq weight of any path $s \rightsquigarrow \nu$. Path $s \rightsquigarrow u \rightarrow \nu$ is a path $s \rightsquigarrow \nu$, and if we use a shortest path $s \rightsquigarrow u$, its weight is $\delta(s,u) + w(u,\nu)$.

u

Upper-bound property

- Always have v.d $\geq \delta(s,v)$
 - Once v.d = $\delta(s,v)$, it never changes
- Proof: Initially, it is true: v.d = ∞
- Supposed v.d $< \delta(s,v)$
- Without loss of generality, v is the first vertex for this happens
- Let u be the vertex that causes v.d to change
- Then v.d = u.d + w(u,v)
- So, v.d $< \delta(s,v) \le \delta(s,u) + w(u,v) < u.d + w(u,v)$
- Then v.d < u.d + w(u,v)
- Contradict to v.d = u.d + w(u,v)

No-path property

- If $\delta(s,v) = \infty$, then v.d = ∞ always
- Proof: $v.d \ge \delta(s,v) = \infty \rightarrow v.d = \infty$

Convergence property

If $s \rightsquigarrow u \rightarrow v$ is a shortest path, $u.d = \delta(s, u)$, and we call RELAX(u, v, w), then $v.d = \delta(s, v)$ afterward.

Proof After relaxation:

$$v. \mathbf{d} \leq u. \mathbf{d} + w(u, v)$$
 (RELAX code)
= $\delta(s, u) + w(u, v)$
= $\delta(s, v)$ (lemma—op timal substructure)

Since ν . $\mathbf{d} \geq \delta(s, \nu)$, must have ν . $\mathbf{d} = \delta(s, \nu)$.

Path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then v_k d = $\delta(s, v_k)$.

Proof Induction to show that v_i . $\mathbf{d} = \delta(s, v_i)$ **after** (v_{i-1}, v_i) **is relaxed.**

Basis: i = 0. Initially, v_0 . $d = 0 = \delta(s, v_0) = \delta(s, s)$.

Inductive step: Assume v_{i-1} . $\mathbf{d} = \delta(s, v_{i-1})$. Relax (v_{i-1}, v_i) . By convergence property, v_i . $\mathbf{d} = \delta(s, v_i)$ afterward and v_i . \mathbf{d} never changes.

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes v.d and $v.\pi$ for all $v \in V$.
- Returns
 - TRUE, if no negative-weight cycles reachable from
 s;
 - FALSE, otherwise.

Bellman-Ford algorithm

```
BellmanFord(G, w, s)
  INIT-SINGLE-SOURCE(G, s)
                                  Relaxation:
                                 Make | V| -1 passes,
   for i=1 to |G.V|-1
                                  relaxing each edge
      for each edge (u,v) \in G.E
         Relax(u, v, w);
                                  Test for solution
   for each edge (u,v) \in G.E
                                  Under what condition
      if (v.d > u.d + w(u,v))
                                  do we get a solution?
           return "no solution";
Relax(u,v,w): if (v.d > u.d + w(u,v))
                               v.d = u.d + w(u,v)
```

Bellman-Ford Algorithm

```
BellmanFord(G, w, s)
                                   What will be the
  INIT-SINGLE-SOURCE(G, s)
                                   running time?
   for i=1 to |G.V|-1
      for each edge (u,v) \in G.E
                                   A: O(VE)
         Relax(u, v, w);
   for each edge (u,v) \in G.E
      if (v.d > u.d + w(u,v))
           return "no solution";
Relax(u,v,w): if (v.d > u.d + w(u,v))
                              v.d = u.d + w(u,v)
```

Example

(t,x), (t,y), (t,z), (x,t), (y,x),(y,z), (z,x), (z,s), (s,t), (s,y)

	d_s	d _t	d _x	d _y	d _z
inital	0	∞	∞	∞	∞
After Pass 1					
After Pass 2					
After Pass 3					
After Pass 4					

Pass 1

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),
 (z,x), (z,s), (s,t), (s,y)

	d_s	d _t	d_{x}	d _y	d _z
inital	0	∞	∞	∞	∞
After Pass 1	0	6,s	∞	7,s	∞
After Pass 2	0				
After Pass 3	0				
After Pass 4	0				

Pass 2

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

	d_s	d _t	d _x	d _y	d_z
inital	0	8	∞	8	∞
After Pass 1	0	6,s	∞	7,s	8
After Pass 2	0	6,s	4 ,y	7,s	2,t
After Pass 3					
After Pass 4					

Pass 3

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

	d_s	d _t	d_{x}	d _y	d_z
inital	0	∞	∞	∞	∞
After Pass 1	0	6,s	8	7,s	8
After Pass 2	0	6,s	4 ,y	7,s	2,t
After Pass 3	0	2,x	4,y	7,s	2,t
After Pass 4	0				

Pass 4

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

Example

	d _s	d _t	d _x	d _y	d _z
inital	0	∞	∞	∞	8
After Pass 1	0	6,s	∞	7,s	8
After Pass 2	0	6,s	4 ,y	7,s	2,t
After Pass 3	0	2,x	4,y	7,s	2,t
After Pass 4	0	2,x	4,y	7,s	-2,t

Running time

- Initialization: Θ(V)
- Line 2-4 : Θ(E) * |V|-1 passes
- Line 5-7 : O(E)
- O(VE)

Correctness

Proof Use path-relaxation property.

Let ν be reachable from s, and let $p = \langle \nu_0, \nu_1, \dots, \nu_k \rangle$ be a shortest path from s to ν , where $\nu_0 = s$ and $\nu_k = \nu$. Since p is acyclic, it has $\leq |V| - 1$ edges, so $k \leq |V| - 1$.

Each iteration of the for loop relaxes all edges:

- First iteration relaxes (v₀, v₁).
- Second iteration relaxes (ν₁, ν₂).
- k th iteration relaxes (v_{k-1}, v_k).

By the path-relaxation property, ν , $\mathbf{d} = \nu_k$, $\mathbf{d} = \delta(s, \nu_k) = \delta(s, \nu)$.

Correctness

How about the TRUE/FALSE return value?

Suppose there is no negative-weight cycle reachable from s.

At termination, for all $(u, v) \in E$,

$$v. \mathbf{d} = \delta(s, v)$$

 $\leq \delta(s, u) + w(u, v)$ (triangle inequality)
 $= u. \mathbf{d} + w(u, v)$.

So BELLMAN-FORD returns TRUE.

Now suppose there exists negative-weight cycle $c = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = v_k$, reachable from s.

Then
$$\sum_{i=1}^{\kappa} w(v_{i-1}, v_i) < 0$$

Suppose (for contradiction) that BELLMAN-FORD returns TRUE.

Then v_i d $\leq v_{i-1}$ d + $w(v_{i-1}, v_i)$ for i = 1, 2, ..., k.

Sum around c:

$$\sum_{i=1}^{k} \nu_{i} \cdot \mathbf{d} \leq \sum_{i=1}^{k} (\nu_{i-1} \cdot \mathbf{d} + w(\nu_{i-1}, \nu_{i}))$$

$$= \sum_{i=1}^{k} \nu_{i-1} \cdot \mathbf{d} + \sum_{i=1}^{k} w(\nu_{i-1}, \nu_{i})$$

The contradiction

•
$$\sum_{i=1}^{k} v_i \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• =>
$$\sum_{i=1}^{k} v_{i} \cdot d - \sum_{i=1}^{k} v_{i-1} \cdot d \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

• =>
$$\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge v_k \cdot d - v_0 \cdot d$$

- Since $v_0 = v_k$ (c is a cycle),
- $\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$
- This contradicts c being a negative-weight cycle

Dijkstra's Algorithm

- If no negative edge weights, we can beat Bellman Ford
- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 - Use a priority queue keyed on v.d

Dijkstra's Algorithm

- Assumes no negative-weight edges.
- Maintains a vertex set S whose shortest path from s has been determined.
- Repeatedly selects u in V–S with minimum Shortest Path estimate (greedy choice).
- Store V–S in priority queue Q.

```
DIJKSTRA(G, w, s)
Initialize-SINGLE-SOURCE(G, s);
S = \emptyset;
Q = G.V;
while Q \neq \emptyset
u = \text{Extract-Min}(Q);
S = S \cup \{u\};
for each v \in G.Adj[u]
Relax(u, v, w)
```


Dijkstra's Algorithm

```
Dijkstra(G)
       for each v \in V
          v.d = \infty;
       s.d = 0; S = \emptyset; Q = V;
      while (Q \neq \emptyset)
          u = ExtractMin(Q);
          S = S \cup \{u\};
          for each v \in u-G.Adj[]
              if (v.d > u.d+w(u,v))
                                                Relaxation
                                                Step
                  v.d = u.d + w(u,v);
Note: this
is really a
```

call to Q->DecreaseKey()

Dijkstra's correctness

- We will prove that whenever u is added to S, $u.d=\delta(s,u)$, i.e., that d is minimum, and that equality is maintained thereafter
- Proof
 - − Note that $\forall v, v.d \geq \delta(s,v)$
 - let u be the first vertex for which $u.d \neq \delta(s, u)$ (i.e., $u.d > \delta(s, u)$) when it is added to set S.
 - We will show that the assumption of such a vertex leads to a contradiction

Correctness (Cont'd)

 A shortest path p from source s to vertex u can be decomposed into:

$$-p_1 s \to x,$$

$$-x \to y$$

$$-p_2 : y \to u$$

 where y is the first vertex on the path that is not in S and x ∈ S immediately precedes y

Correctness (Cont'd)

- Then, it must be that $y.d = \delta(s,y)$ because
 - -X.d is set correctly for y's predecessor x ∈ S on the shortest path (by choice of u as the first vertex for which d is set incorrectly)
 - when the algorithm inserted x into S, it relaxed the edge (x,y), assigning y.d the correct value

Correctness (Cont'd)

• Thus, $y.d = \delta(s,y)$

 $\leq \delta(s,u)$ (y appears before u on the shortestpath)

≤u.d (upper-bound property)

But because both u and y are in V-S when u was chosen, we have u.d \leq y.d, and therefore the two inequalities are in fact equalities,

 $y.d = \delta(s,y) = \delta(s,u) = u.d$

Consequently, u.d = $\delta(s,u)$, which contradicts our

choice of u

Dijkstra's running time

```
Dijkstra(G)
                              How many times is
    for each v \in V
                              ExtractMin() called?
       \mathbf{v}.\mathbf{d}=\infty;
                                     A: |V|
    s.d = 0; S = \emptyset; Q = V;
    while (Q \neq \emptyset)
                               How many times is
       u = ExtractMin(Q);
                               DecreaseKey()called?
       S = S \cup \{u\};
                                         A: |E|
       for each v \in u-Adj[]
           if (v.d > u.d+w(u,v))
               DecreaseKey(v.d,u.d+w(u,v));
What will be the total running time?
```

Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time = |V| T_{Extract-Min} + |E| T_{Decrease-Key}
- Time = O(VlgV) + O (ElgV) = O(ElgV)

Summary

We learned

- Shortest-Path Problems
- Properties of Shortest Paths, Relaxation
- Bellman-Ford Algorithm
- Dijkstra's Algorithm
- Common mistakes: Do not forget to relax all edges in all algorithms.