

UNIVERSITÉ DE GENÈVE

Départment d'informatique

Advanced Image Processing

JPEG compression

TP Class N° 4 May 2, 2019

JPEG compression

JPEG compression main steps:

1. RGB color space to YCbCr color space conversion:

YCbCr (aka YCC) is the color space used in digital formats JPEG and MPEG.

Range: $R, G, B, Y \in [0, 255]$

Conversion RGB-YCbCr:

 $\begin{array}{rcl} Y & = & 0.299 \; R + 0.587 \; G + 0.114 \; B \\ Cb & = & -0.1687 \; R - 0.3313 \; G + 0.5 \; B + 128 \end{array}$

Cr = 0.5 R - 0.4187 G - 0.0813 B + 128

R = Y + 1.402 (Cr - 128)

G = Y - 0.34414 (Cb - 128) - 0.71414 (Cr - 128)

B = Y + 1.772 (Cb - 128)

2. Keep the Y component.

Downsample the Cb and Cr components in 2 times.

Apply JPEG compression to each component.

- 3. Preprocessing for DCT transformation
 - Split the image into 8×8 non-overlapping blocks
 - In each block subtract global mean computed as 2^{k-1} , where k is the number of gray levels in the image
- 4. DCT transformation per block: T(u, v)

5. Block coefficients quantization:

$$\bar{T}(u,v) = round\left(\frac{T(u,v)}{Z(u,v)}\right)$$

[10]	11	10	10	24	40	16	$o_1;$
12	12	14	19	26	28	60	55;
14	13	16	24	40	57	69	56;
14	17	22	29	51	87	80	62;
18	22	37	56	68	109	103	77;
24	35	55	64	81	104	113	92;
49	64	78	87	103	121	120	101;
72	92	95	98	112	100	103	99;]

- 6. Symbols encoding:
 - Zig-zag scanning
 - Huffman coding (see *Hint* below)

Zig-zag scanning 0 1 5 6 14 15 27 28

U	1	3	0	14	15	21	28
2	4	7	13	16	26	29	42
3	8	12	17	25	30	41	43
9	11	18	24	31	40	44	53
10	19	23	32	39	45	52	54
20	22	33	38	46	51	55	60
21	34	37	47	50	56	59	61
35	36	48	49	57	58	62	63

Exercise 1.

- (a) Implement by yourself the JPEG compression algorithm described above.
- (b) Take a colour image test.png. Compress this image by your JPEG algorithm implementation.
- (c) Perform the image reconstruction.
- (d) Display the original and reconstructed images. Compare those images based on the MSE. Make a conclusion about the compression efficiency based on the visual images quality and the files size.

Hint

For Huffman coding use the Matlab implementation https://ch.mathworks.com/help/comm/ ug/huffman-coding-1.html and see https://moodle.unige.ch/pluginfile.php/241361/mod_ folder/content/0/IN%20Theme%2010%20-%20lossless%20image%20compression.pdf page 22.

Submission

Please archive your report and codes in "Name_Surname.zip" (replace "Name" and "Surname" with your real name), and upload to "Assignments/TP4: JPEG compression" on https: //chamilo.unige.ch before Wednesday, May 15 2019, 23:59 PM. Note, the assessment is mainly based on your report, which should include your answers to all questions and the experimental results.