Tutoría 05

Problema 1: Un sistema trifásico balanceado Y- Δ tiene $V_{an}=240 \pm 0^{\circ} \, V_{rms}$ y $Z_{\Delta}=51+j45\,\Omega$. Si la impedancia por fase es de $0.4+j1.2\,\Omega$. Determine la potencia compleja total consumida a la carga.

Respuesta:

• $\mathbf{S}_{\mathrm{T}} = 5197,45 + j4585,99 \text{ VA}$

Problema 2: En relación con el circuito mostrado en la Figura 1, considere que la tensión de línea es de 208 V. Con base en lo anterior determine la potencia promedio suministrada a la carga.

Figura 1. Circuito Problema 2

Respuesta:

• $P_T = 1,019 \text{ kW}$

Problema 3: Según el circuito mostrado en la figura 2, determine la potencia promedio absorbida por la carga conectada en delta con $Z_{\Delta}=21+j24\,\Omega.$

Figura. 2. Circuito para el problema 3

Respuesta:

• $P_T = 1,542 \text{ kW}$

Problema 4: Considere el circuito mostrado en la figura 3, donde se interconectan dos wattímetros en la carga desbalanceada alimentada por una fuente balanceada de manera que $V_{ab} = 208 {\not \sim} 0^{\circ} V_{rms}$ con una secuencia de fase positiva.

- a) Determine la lectura de cada wattímetros.
- b) Calcule la potencia aparente total absorbida por la carga.

Figura. 3. Circuito para el problema 4

Respuestas:

- $P_{W1} = 2,590 \text{ kW}$
- $P_{W2} = 4,808 \text{ kW}$
- $S_T = 8,335 \text{ kVA}$

Problema 5: Determine las lecturas de los wattímetros en el circuito mostrado en la figura 4.

Figura. 4. Circuito para el problema 5

Respuestas:

- $P_{W1} = 205,12 \text{ W}$
- $P_{W2} = 371,65 \text{ W}$

 Problema 6: Considere el circuito de la Figura 5. Asuma que $\textbf{Z}_{\Delta}=9-j12~\Omega,~\textbf{Z}_{Y}=6+j8~\Omega$ y $\mathbf{Z_l} = 3 \Omega$.

Figura. 5. Circuito para el problema 6

Considerando lo anterior, determine:

- a) Las corrientes de línea: I_{aA} , I_{bB} e I_{cC} .
- Respuestas:
 - $I_{aA} = 15,17 \angle -14,9^{\circ} A_{rms}$
 - $I_{bB} = 15,17 \pm -134,9^{\circ} A_{rms}$ $I_{cC} = 15,17 \pm 105,1^{\circ} A_{rms}$
- b) Las tensiones de línea: $V_{AB},\ V_{BC}$ y $V_{CA}.$

Respuestas:

- $V_{AB} = 133,484 8,85^{\circ} V_{rms}$
- $V_{BC} = 133,48 \angle -128,85^{\circ} V_{rms}$
- $V_{CA} = 133,48 \pm 111,15^{\circ} V_{rms}$
- c) La potencia total consumida por la carga utilizando dos wattímetros conectados a las líneas A y C.

Respuesta:

• P = 3204,95 W

Problema 7: Considere el circuito trifásico mostrado en la Figura 6.

Figura. 6. Circuito para el problema 7

Considerando lo anterior, determine:

a) Las tensiones eléctricas de fase: V_{an} , V_{bn} y V_{cn} . Defina el tipo de secuencia de las fuentes.

Respuestas:

- $\mathbf{V_{an}} = \frac{100}{\sqrt{3}} \, \text{$^{\perp}$} 30^{\circ} \, \text{V_{rms}}$ $\mathbf{V_{bn}} = \frac{100}{\sqrt{3}} \, \text{$^{\perp}$} 150^{\circ} \, \text{V_{rms}}$ $\mathbf{V_{cn}} = \frac{100}{\sqrt{3}} \, \text{$^{\perp}$} 90^{\circ} \, \text{V_{rms}}$

- Secuencia positiva abc
- b) Las corrientes de línea y fase: I_{aA} , I_{bB} , I_{cC} , I_{AB} , I_{BC} e I_{CA} .

Respuestas:

- $I_{aA} = 6,68 \le -38,36^{\circ} A_{rms}$
- $I_{bB} = 7.3 4 141.19^{\circ} A_{rms}$
- $I_{cC} = 8,73 487,06^{\circ} A_{rms}$
- $I_{AB} = 4,54 \pm 34,16^{\circ} A_{rms}$
- $I_{BC} = 2,79 \pm -133,82^{\circ} A_{rms}$
- $I_{CC} = 6.86 \pm 102.59^{\circ} A_{rms}$
- c) La potencia compleja total $\mathbf{S_{total}}$ del circuito trifásico. Para ello considere las impedancias de pérdida en la línea de transmisión y la carga trifásica.

Respuesta:

- $S_{Total} = 1,301 \pm 0,76^{\circ} \text{ kVA}$
- d) Determine el factor de potencia del circuito trifásico e indique si el circuito tiene comportamiento inductivo o capacito.

Respuesta:

• $f_p = 0.99991 \downarrow$, comportamiento inductivo.