

Description

The VSM40N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150V, I_D = 40A$ $R_{DS(ON)} < 45mΩ @ V_{GS} = 10V$ (Typ:35mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40N15-T3	VSM40N15	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _G s	±12	V	
Drain Current-Continuous	I _D	40	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	29	А	
Pulsed Drain Current	I _{DM}	164	Α	
Maximum Power Dissipation	P _D	140	W	
Derating factor		0.93	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	310	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	1.07	°C/W	l
--	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	150	170	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	0.8	1.05	1.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =18A	-	35	45	mΩ
Forward Transconductance	g FS	V _{DS} =15V,I _D =18A	38	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	14 051414 014	-	4200	-	PF
Output Capacitance	C _{oss}	$V_{DS}=25V,V_{GS}=0V,$	-	203	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	96	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	17.8	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =2A, R_{L} =15 Ω	-	11.8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	14.6	-	nS
Total Gate Charge	Qg	V -20V I -20A		105	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=30A,$ $V_{GS}=10V$		21	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V		31.5	-	nC
Drain-Source Diode Characteristics	•		•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =18A	-	8.0	1.2	V
Diode Forward Current (Note 2)	Is		-	-	40	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 18A	-	70	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	230	-	nC
	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

v1.0 Page 5 http://www.vseei.com/