# A more efficient implementation of the subgraphs-world for the Glauber dynamics in the Ising model

#### Francesco Farina

Laurea Magistrale in Informatica Università degli Studi di Salerno

30 settembre 2016

#### Relatori

Prof. Vincenzo Auletta Dott. Diodato Ferraioli



- 1 Introduzione
- 2 Stato dell'arte
- 3 Lavoro di Tesi
- 4 Risultati
- 6 Conclusioni



# Reti Sociali

La rapida crescita delle **reti sociali** ha cambiato il modo in cui le persone interagiscono.

Le informazioni si diffondono molto più velocemente.

L'influenza di ogni singolo sui suoi vicini crea un'idea globale.



# Reti Sociali

La rapida crescita delle **reti sociali** ha cambiato il modo in cui le persone interagiscono.

Le informazioni si diffondono molto più velocemente.

L'influenza di ogni singolo sui suoi vicini crea un'idea globale.



# Reti Sociali

La rapida crescita delle **reti sociali** ha cambiato il modo in cui le persone interagiscono.

Le informazioni si diffondono molto più velocemente.

L'influenza di ogni singolo sui suoi vicini crea un'idea globale.



# Sistema complesso

- Insieme composto da più parti
  - Ogni parte possiede uno o più obiettivi
- Comportamento globale
  - ► Determinato dall'interazione delle singole parti
- Rilevato in ambiti differenti
  - ► Economico, fisico, informatico, biologico, ecc...
- Fenomeni analoghi si verificano al loro interno
  - Necessità di un linguaggio comune che modelli la struttura del sistema ed il comportamento delle parti



# Sistema complesso

- Insieme composto da più parti
  - Ogni parte possiede uno o più obiettivi
- Comportamento globale
  - ▶ Determinato dall'interazione delle singole parti
- Rilevato in ambiti differenti
  - ► Economico, fisico, informatico, biologico, ecc...
- Fenomeni analoghi si verificano al loro interno
  - ▶ Necessità di un linguaggio comune che modelli la struttura del sistema ed il comportamento delle parti



# Graph Theory

- Descrive le relazioni che intercorrono tra oggetti di un insieme
  - ► Branca della matematica nata nel 1700
- Grafo: struttura che descrive ed organizza tali relazioni
  - Nodo: oggetto dell'insieme
  - ► Arco: esprime la relazione tra coppie di oggetti



# Game Theory

- Modella il comportamento di agenti che devono prendere decisioni
  - Situazioni di conflitto o interazione strategica
  - ► Azioni che si influenzano a vicenda
- Interazioni modellate come gioco
  - Giocatori
  - Strategie
  - Payoff



# Game Theory classica

- Giocatori pienamente razionali
  - ► Conoscenza completa del gioco
  - Potere computazionale illimitato
  - Best response dynamics
- Non realistico nei casi del mondo reale
  - ▶ Risorse limitate
- Modellare la bounded rationality
  - Dinamica probabilistica
  - Strategia giocata
    - Alta probabilità: massima utilità
    - Bassa probabilità: scelta sbagliata

# Logit dynamics

#### Definizione

- Considera un gioco  $\mathcal{G} = ([n], S_1, \dots, S_n, u_1, \dots, u_n)$ 
  - n giocatori
  - $ightharpoonup S_i$ : insieme finito di strategie per il giocatore i
  - $\blacktriangleright u_i$ : funzione utilità per il giocatore i

# Ad ogni passo

- Seleziona un giocatore i a caso
- i modifica la sua strategia in accordo alla logit update rule

# Logit update rule

# Strategia

$$s \in S_i$$
 con probabilità  $\sigma_i(s|x) = e^{\beta u_i(s,x_{-i})}/Z_i(x)$ 

#### Parametri

- x: corrente profilo di strategie
- $Z_i(x)$ : fattore di normalizzazione

$$ightharpoonup \sum_{z \in S_i} e^{\beta u_i(s,x_{-i})}$$

- $\beta$ : grado di razionalità del sistema
  - $\rightarrow \beta = 0$ : scelta casuale
  - $\beta > 0$ : profili a payoff maggiore
  - $\beta \to \infty$ : best response

# Logit dynamics

## Potential game

- ullet Se  ${\mathcal G}$  è un potential game con funzione potenziale  $\Phi$ 
  - ▶ Distribuzione stazionaria → Gibbs measure

$$- \pi(x) = \frac{1}{Z} e^{\beta \Phi(x)}$$

- ► Logit dynamics → Glauber dynamics
- ightharpoonup Z 
  ightarrow Partition function
  - Descrive situazioni di equilibrio termodinamico

# Obiettivo del lavoro

Computare la Gibbs measure

#### Applicazioni

- Computare il Mean Magnetic Moment
- Prevedere l'adozione di un prodotto da parte di una popolazione sotto campagna pubblicitaria

# Obiettivo del lavoro (2)

# Approccio

- Simulare la dinamica finché non raggiunge la distribuzione stazionaria
- Calcolare la partition function Z
  - ► Problema #P-hard
    - Limiti computazionali per ottenere Z

## Soluzione Approssimata

Catena di Markov alternativa

- Rapidly Mixing
- Distribuzione stazionaria da cui derivare quella di nostro interesse

# Modello fondamentale

## Polynomial-time approximation algorithms for the Ising model

- Mark Jerrum ed Alistair Sinclair, 1993
- Algoritmo JS
  - ► fully polynomial randomized approximation scheme (fpras)
  - ► Calcolo della **partition function Z** della *Gibbs measure*
  - ► Descritto analiticamente

# Modello di Ising

## Configurazioni n giocatori

- Giocatore i:  $\sigma_i = \pm 1$
- Configurazione  $\sigma = (\sigma_1, \dots, \sigma_n)$
- Peso archi
  - $\blacktriangleright \ \forall (i,j) \in E : V_{ij} \neq 0$



# Simulare la catena di Markov

#### Spin-world process

- Stati:  $2^n$  configurazioni del gioco
- Transizioni tra configurazioni che differiscono in una sola componente
- Non è rapidly mixing

#### Subgraphs-world process

- Processo generico
- Applicabile al modello di Ising
- È rapidly mixing

# Simulare la catena di Markov

## Spin-world process

- Stati: 2<sup>n</sup> configurazioni del gioco
- Transizioni tra configurazioni che differiscono in una sola componente
- Non è rapidly mixing

#### Subgraphs-world process

- Processo generico
- Applicabile al modello di Ising
- È rapidly mixing

# Subgraphs-world process

# Configurazioni

- ullet Spanning subgraph del grafo d'interazione del gioco (n,E)
- Sottografo che contiene tutti i nodi del grafo iniziale
- Configurazione X: peso w(X)

# Catena di Markov ergodica

- Stati:  $2^m$  configurazioni, m = |E|
- Transizioni tra configurazioni che differiscono di un solo arco
- Distribuzione stazionaria

$$\qquad \qquad \pi(X) = w(X)/Z'$$

- Partition function
  - $\blacktriangleright \ Z' = \textstyle \sum_{X \subseteq E} w(X)$

# Algoritmo di Jerrum e Sinclair

# Input

- Modello di Ising (grafo)
- β: livello di razionalità
- B: campo magnetico esterno
- $\epsilon \in [0, 1]$ : accuratezza

#### Passi

- Simulare la subgsw-MC fino a raggiungere la stazionaria
- Calcolare la partition function Z'

## Output

Approssimazione della partition function Z

# Algoritmo di Jerrum e Sinclair (2)

#### Algoritmo FPRAS

- Approssima Z in un range  $(1 + \epsilon/2n)^n \le 1 + \epsilon$
- ullet Running time polinomiale in n

# Parametri che influenzano il tempo

- s: numero di campioni
- t: ripetizioni necessarie
- # passi di simulazione della subgsw-MC

# Prestazioni

#### Macchina di test

• CPU: AMD Opteron<sup>TM</sup> 6376 32 core

• RAM: 32GB

• S.O.: Ubuntu 14.04 LTS

# Random graph: 5 nodi e 10 archi

| В  | β   | $\epsilon$ | S     | t  | step    | Tempo        |
|----|-----|------------|-------|----|---------|--------------|
| 20 | 0.4 | 0.9        | 79778 | 25 | 1994450 | 1g 17h 45min |
| 20 | 0.1 | 09         | 79778 | 25 | 1994450 | 1g 18h 56min |

# Miglioramenti apportati in passato

## An efficient approximation algorithm for computing the Gibbs measure

- Rinaldi, 2016
- Prima implementazione dell'algoritmo JS (Partition)
- Migliorati i valori di s e t
  - Correttezza dimostrata nel lavoro di tesi

# Miglioramenti apportati in passato (2)

## Prestazioni algoritmo Partition

| В  | β   | $\epsilon$ | S  | t | step | Tempo | Tempo algoritmo JS |
|----|-----|------------|----|---|------|-------|--------------------|
| 20 | 0.4 | 0.9        | 1  | 2 | 2    | 377ms | 1g 17h 45min       |
| 20 | 0.1 | 0.9        | 58 | 2 | 116  | 863ms | 1g 18h 56min       |

#### Proof of concept

- Buon miglioramento, ma non abbastanza
- 45 nodi, 500 archi → Più di 4 ore

Inutilizzabile in situazioni reali

# Esigenze e Possibili soluzioni

## Esigenze<sup>l</sup>

- Poter utilizzare l'algoritmo Partition anche su reti di grandi dimensioni
- Ridurre il running time
- Sviluppare un'applicazione pratica

## Strade percorse

- Migliorare l'implementazione
- Analisi ed ottimizzazione del lavoro di JS
  - Simulazione della subgsw-MC
- Integrazione di contributi teorici più moderni
- Nuovo algoritmo per il calcolo del Mean Magnetic Moment

# Generatore per il subgraphs-world process

#### Algoritmo probabilistico

- Input:
  - Grafo
  - ightharpoonup Tolleranza  $\delta$
  - Insieme di configurazioni Ω
  - lacktriangle Distribuzione di probabilità  $\pi$  su  $\Omega$
- Output:
  - w(X), peso configurazione finale  $X \in \Omega$

# Approssimare Z

#### Algoritmo: intuizione

- Costruire insieme  $\{X_1,\ldots,X_s\}$  di configurazioni utilizzando il generatore
- Calcolare la media campionaria  $s^{-1} \sum_i f(X_i)$

Ripetere la procedura t volte e calcolare la mediana dei risultati

#### Problema

#Passi di simulazione della subgsw-MC troppo alto

# Approssimare Z

#### Algoritmo: intuizione

- Costruire insieme  $\{X_1,\ldots,X_s\}$  di configurazioni utilizzando il generatore
- Calcolare la media campionaria  $s^{-1} \sum_i f(X_i)$

Ripetere la procedura t volte e calcolare la mediana dei risultati

#### Problema

#Passi di simulazione della subgsw-MC troppo alto

# Nuovo punto di vista

# Convergence to Equilibrium of Logit Dynamics for Strategic Games

- Auletta, Ferraioli, Pasquale, Penna, Persiano
- Bound sul mixing time di catene di Markov associate a Logit dynamics

#### Idea

Sviluppare un upper bound al mixing time della nostra catena di Markov basandosi su questo lavoro

# Nuovo punto di vista

# Convergence to Equilibrium of Logit Dynamics for Strategic Games

- Auletta, Ferraioli, Pasquale, Penna, Persiano
- Bound sul mixing time di catene di Markov associate a Logit dynamics

#### Idea

Sviluppare un upper bound al mixing time della nostra catena di Markov basandosi su questo lavoro

# Integrazione del nuovo bound (2)

# Complessità: Jerrum e Sinclair

- $\Phi^{-2}(\ln \delta^{-1} + \ln \pi(X_0)^{-1})$
- $16 m^2 \mu^{-8} (\ln \delta^{-1} + m)$ 
  - ▶ m: numero di archi
  - $\mu = \tanh \beta B$

#### Complessità: Auletta et al

- $\rho(\ln \delta^{-1} + \ln \pi(X_0)^{-1})$
- ρ: congestione dell'insieme di path

# Integrazione del nuovo bound (2)

## Complessità: Jerrum e Sinclair

- $\Phi^{-2}(\ln \delta^{-1} + \ln \pi (X_0)^{-1})$
- $16 m^2 \mu^{-8} (\ln \delta^{-1} + m)$ 
  - ▶ m: numero di archi
  - $\mu = \tanh \beta B$

#### Complessità: Auletta et al.

- $\rho(\ln \delta^{-1} + \ln \pi(X_0)^{-1})$
- $\rho$ : congestione dell'insieme di path

# Upper bound per $\rho$

#### Idea

Introduzione

- Ordinamento degli archi del grafo
- Canonical path
  - Per ogni coppia di stati I, F in  $\Omega$
  - ► Transizione valida: profili che differiscono per un solo arco
  - Peso cp: prodotto delle probabilità stazionarie allo stato iniziale e finale
    - Indipendente dagli archi intermedi

#### Nuovo bounc

- $\rho(\Gamma^l) \le 2m^2 \, \mu^{-4} \, w(I) \, w(F)$
- Complessità Generatore =  $2m^2 \mu^{-4} (\ln \delta^{-1} + 1)$

# Upper bound per $\rho$

#### Idea

Introduzione

- Ordinamento degli archi del grafo
- Canonical path
  - ▶ Per ogni coppia di stati I, F in  $\Omega$
  - ► Transizione valida: profili che differiscono per un solo arco
  - ► Peso *cp*: prodotto delle probabilità stazionarie allo stato iniziale e finale
    - Indipendente dagli archi intermedi

#### Nuovo bound

- $\rho(\Gamma^l) \le 2m^2 \,\mu^{-4} \, w(I) \, w(F)$
- Complessità Generatore =  $2m^2 \mu^{-4} (\ln \delta^{-1} + 1)$

# Riscontro pratico

### Notevoli progressi

- Random graph da 45 nodi e 500 archi
- Più di 4 ore → 4 secondi

Risultati promettenti

## Caso di studio

## Mean Magnetic Moment: definizione

- $\mathcal{M}$ : derivata parziale della partition function Z rispetto a B e
- Valore atteso di variabili casuali opportunamente definite nel subgraphs-world
  - $ightharpoonup \mathcal{M} = n \tanh \beta B + \frac{2}{\sinh 2\beta B} E|odd(X)|$
- Stima tramite simulazione del subgraphs-world per un numero polinomiale di passi

# Enumerazione degli spanning subgraphs

#### Algoritmo L

- Iterazione efficiente di tutte le possibili permutazioni lessicografiche di una sequenza senza ripetizioni
- Sviluppato nel XIV secolo in India
- Mostrato da Donald Knuth in "The Art of Computer Programming"

Risultati

Introduzione

# Stima della funzione odd(X)

### Idea alla base dell'algoritmo

- Stima a soglia in due fasi
- ullet Fase 1: calcolo esatto del peso delle prime k configurazioni
- Fase 2: stima delle restanti  $2^m k$
- Output di E|odd(X)|

Semplice ottenere  $\mathcal{M}$ 

Test al variare delle dimensioni dell'input

## Partition2: scalabilità

| Nodi | Archi  | s  | t | Tempo           |
|------|--------|----|---|-----------------|
| 100  | 1000   | 1  | 2 | 16s 360ms       |
| 200  | 5000   | 1  | 2 | 6min 36s 600ms  |
| 500  | 10000  | 1  | 2 | 26min 51s       |
| 1000 | 10000  | 2  | 2 | 27min 47s 400ms |
| 2000 | 20000  | 4  | 2 | 1h 54min 36s    |
| 3000 | 50000  | 6  | 2 | 13h 51min 36s   |
| 5000 | 100000 | 10 | 2 | 2g 14h          |

#### Parametri

- B = 20
- $\beta = 0.4$
- $\epsilon = 0.1$

# Accuratezza e Razionalità

### Accuratezza $\epsilon$

- $\epsilon \in [10^{-1}, 10^{-4}]$
- Running time invariato fino a  $10^{-3}$

## $\mu$ , campo magnetico e razionalità

- $\mu \in [1, 0.75]$
- $B \in [20, 0.8]$
- $\beta \in [0.4, 0.10]$

# Accuratezza e Razionalità (2)



Tempo proporzionale al decrescere di campo esterno e razionalità

Risultati

000000

# Test di magnetizzazione

#### **Partition**

| Nodi | Archi | s     | t | Tempo         |
|------|-------|-------|---|---------------|
| 10   | 50    | 62245 | 2 | 14h 20min 16s |

#### Partition2

| Nodi | Archi | s      | t | Tempo        |
|------|-------|--------|---|--------------|
| 10   | 50    | 5950   | 2 | 3min 48s     |
| 20   | 100   | 13218  | 2 | 6min 31s     |
| 40   | 250   | 27754  | 2 | 12min 46s    |
| 100  | 1000  | 71361  | 2 | 34min 15s    |
| 500  | 5000  | 362075 | 2 | 3h 24min 17s |

# Gnutella

#### Descrizione

- Sequenza di 9 snapshots della rete di condivisione file peer-to-peer Gnutella a partire da Agosto 2002
- Nodi: host nella topologia della rete (6301)
- Archi: connessioni tra gli host (20777)

### Tempo

Partition function Z calcolata in circa 16 ore

Risultati

# **Facebook**

#### Descrizione

- Snapshot di un sottografo della rete di amicizie di Facebook
- Nodi: utenti della sottorete (4039)
- Archi: relazioni di amicizia tra utenti (88234)

## Tempo

Partition function Z calcolata in circa 7 giorni

# Conclusioni e sviluppi futuri

- Notevoli miglioramenti apportati all'algoritmo Partition
- Running time ragionevoli
- Possibilità di testare grandi dataset

### Sviluppi futuri

- Parallelizzare la simulazione della catena di Markov
- Migliorare il calcolo del mean magnetic moment

# Conclusioni e sviluppi futuri

- Notevoli miglioramenti apportati all'algoritmo Partition
- Running time ragionevoli
- Possibilità di testare grandi dataset

## Sviluppi futuri

- Parallelizzare la simulazione della catena di Markov
- Migliorare il calcolo del mean magnetic moment

