МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр.0382	Литягин С.М.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучить режимы адресации памяти и формирования исполнительного адреса в архитектуре Intel X86.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы. 3. Снова протранслировать программу и скомпоновать загрузочный модуль.

- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Вариант №1:

vec1 DB 1,2,3,4,8,7,6,5

vec2 DB -10,-20,10,20,-30,-40,30,40

matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5

Выполнение работы:

Описание ошибок, обнаруженных в исходной программе при первой трансляции, представлено в таблице 1.

Таблица 1 – Ошибки при первой трансляции.

Ошибка	Описание
mov mem3, [bx]	Перемещение из памяти в память запрещено на
	архитектурном уровне
mov cx, vec2[di]	Перемещение в регистр размера DW элемента
	массива размера DB
mov cx, matr[bx][di]	Перемещение в регистр размера DW элемента
	массива размера DB
mov ax, matr[bx*4][di]	Запрещено умножение 2-х байтовых регистров
mov ax, matr[bp+bx]	Запрещено использование нескольких базовых
	регистров для адресации
mov ax, matr[bp+di+si]	Запрещено использование нескольких индексных
	регистров для адресации

Результаты выполнения программы в пошаговом режиме представлены в табл. 2.

Таблица 2 — Протокол отладки программы Начальные значения (CS) = 1A0A, (DS) = 19F5, (ES) = 19F5, (SS) = 1A05.

Адрес	Символический	16-ричный код	Содержимое	регистров и
команд	код команды	команды	ячеек памяти	
Ы			До	После
			выполнения	выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			Stack +0 0000	Stack +0 19F5
0001	SUB AX, AX	2BCO	(AX) = 0000	(AX) = 0000
0003	PUSH AX	50	(SP) = 0016	(SP) = 0014
			Stack +0 19F5	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
0007	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(DX) = 01F4
000C	MOV CX, AX	B8F401	(CX) = 00B0	(CX) = 01F4
000E	MOV BL, 24	B7CE	(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0012	MOV [0002], FFCE	C7060200CEFFF	DS: 0000	DS: 0000
			00 00 00 00 00	00 00 CE FF
			00	00 00
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
001B	MOV [0000], AX	A30000	DS: 0000	DS: 0000
			00 00 CF FF	F4 01CF FF 00
			00 00	00
001E	MOV AL, [BX]	BA07	(AX) = 01F4	(AX) = 0101

0020	MOV AL, [BX+03]	8A4703	(AX) = 0101	(AX) = 0104
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 0804
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
0029	MOV AL,	8A850E00	(AX) = 0104	(AX) = 010A
	[000E+DI]			
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 010A	(AX) = 01FD
	[0016+BX+DI]			
0034	MOV AX, 1A07	8A811600	(AX) = 01FD	(AX) = 1A07
0037	MOV ES, AX	8ECO	(ES) = 19F5	(ES) = 1A07
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
003C	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
003F	MOV ES, AX	8ECO	(ES) = 1A07	(ES) = 0000
0041	PUSH DS	1E	(SP) = 0014	(SP) = 0012
			Stack +0 0000	Stack +0 1A07
			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
0042	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			Stack +0 1A07	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
			Stack +4 19F5	Stack +4 0000
0043	MOV CX,	268B4FFF	(CX) = 0804	(CX) = FFCF
	ES:[BX-01]			
0047	XCHG AX, CX	91	(AX) = 1A07	(AX) = FFCF
			(CX) = FFCF	(CX) = 0000
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
004B	MOV ES:[BX+DI],	268901	DS: 0000	DS: 0000

	AX		F4 01CF FF 00	F4 01CF FF 00
			00 00	CE FF
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
0050	PUSH [0000]	FF360000	(SP) = 0014	(SP) = 0012
			Stack +0 0000	Stack +0 01F4
			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
0054	PUSH [0002]	FF360200	(SP) = 0012	(SP) = 0010
			Stack +0 01F4	Stack +0 FFCF
			Stack +2 0000	Stack +2 01F4
			Stack +4 19F5	Stack +4 0000
			Stack +6 0000	Stack +6 19F5
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
005A	MOV DX, [BP+02]	8B4602	(DX) = 0000	(DX) = 01F4
005D	RET Far 0002	CA0200	(CS) = 1A0A	(CS) = 01F4
			(IP) = 005D	(IP) = FFCE
			(SP) = 0010	(SP) = 0016
			Stack +0 FFCF	Stack +0 19F5
			Stack +2 01F4	Stack +2 0000
			Stack +4 0000	Stack +4 0000
			Stack +6 19F5	Stack +6 0000

Выводы.

В ходе работы были изучены режимы адресации процессоров Intel X86, также были исправлены ошибки в программе и составлен протокол отладки.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

До исправления ошибок. Название файла: lb2.asm

```
EOL EQU '$'
ind EOU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 1,2,3,4,8,7,6,5
vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax, n1
     mov cx,ax
     mov bl, EOL
     mov bh, n2
; Прямая адресация
     mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al, [bx]
     mov mem3, [bx]
; Базированная адресация
     mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di, ind
     mov al, vec2[di]
     mov cx, vec2[di]
; Адресация с базированием и индексированием
```

```
mov bx, 3
     mov al, matr[bx][di]
     mov cx, matr[bx][di]
     mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ---- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es: [bx-1]
     xchg cx, ax
; ---- вариант 3
     mov di, ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp, sp
     mov ax, matr[bp+bx]
     mov ax, matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp, sp
     mov dx, [bp]+2
     ret 2
Main ENDP
CODE ENDS
     END Main
```

С исправлением ошибок. Название файла: lb2_correct.asm

```
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 1,2,3,4,8,7,6,5
vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA ENDS
; Код программы
```

```
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
     mov ax, n1
     mov cx, ax
     mov bl, EOL
     mov bh, n2
; Прямая адресация
     mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1,ax
; Косвенная адресация
     mov al, [bx]
     ;mov mem3, [bx]
; Базированная адресация
     mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di, ind
     mov al, vec2[di]
     ;mov cx, vec2[di]
; Адресация с базированием и индексированием
     mov bx, 3
     mov al, matr[bx][di]
     ;mov cx,matr[bx][di]
     ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ---- вариант 2
     mov es, ax
     push ds
     pop es
     mov cx, es: [bx-1]
     xchg cx, ax
; ---- вариант 3
     mov di, ind
     mov es:[bx+di],ax
; ----- вариант 4
     mov bp, sp
     ;mov ax,matr[bp+bx]
     ;mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
```

```
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

ПРИЛОЖЕНИЕ Б

ЛИСТИНГИ

10/5/21 23:41:26

До исправления ошибок. Название файла: lb2.lst

☐Microsoft (R) Macro Assembler Version 5.10

```
Page 1-1
= 0024
                          EOL EOU '$'
= 0002
                          ind EQU 2
= 01F4
                          n1 EQU 500
                          n2 EQU -50
=-0032
                     ; Стек программы
                    AStack SEGMENT STACK
0000
0000 000C[
                          DW 12 DUP(?)
        3333
                ]
0018
                    AStack ENDS
                    ; Данные программы
0000
                    DATA SEGMENT
                     ; Директивы описания данных
0000 0000
                          mem1 DW 0
0002 0000
                          mem2 DW 0
0004 0000
                         mem3 DW 0
0006 01 02 03 04 08 07 vec1 DB 1,2,3,4,8,7,6,5
      06 05
000E F6 EC 0A 14 E2 D8 vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
      1E 28
     01 02 03 04 FC FD matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-
0016
5
      FE FF 05 06 07 08
      F8 F9 FA FB
0026
                    DATA ENDS
                     ; Код программы
0000
                    CODE SEGMENT
                     ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
 0000
                    Main PROC FAR
0000 1E
                          push DS
0001 2B C0
                               sub AX, AX
0003 50
                          push AX
0004 B8 ---- R
                          mov AX, DATA
0007 8E D8
                               mov DS, AX
                    ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
0009 B8 01F4
                               mov ax, n1
 000C 8B C8
                               mov cx,ax
000E B3 24
                               mov bl, EOL
0010 B7 CE
                               mov bh, n2
                   ; Прямая адресация
0012 C7 06 0002 R FFCE mov mem2, n2
                        mov bx,OFFSET vec1
mov mem1,ax
0018 BB 0006 R
001B A3 0000 R
```

```
001E 8A 07
                        mov al, [bx]
                         mov mem3, [bx]
1b2.ASM(41): error A2052: Improper operand type
                    ; Базированная адресация
 0020 8A 47 03
                              mov al, [bx]+3
 0023 8B 4F 03
                              mov cx, 3[bx]
                    ; Индексная адресация
□Microsoft (R) Macro Assembler Version 5.10
                                                      10/5/21 23:41:26
                                                           Page 1-2
 0026 BF 0002
                              mov di, ind
0029 8A 85 000E R mov al, vec2[di]
002D 8B 8D 000E R mov cx, vec2[di]
lb2.ASM(48): warning A4031: Operand types must match
                   ; Адресация с базированием и индексированием
 0031 BB 0003
                              mov bx,3
 0034 8A 81 0016 R
                              mov al, matr[bx][di]
0038 8B 89 0016 R
                              mov cx, matr[bx][di]
1b2.ASM(52): warning A4031: Operand types must match
003C 8B 85 0022 R
                    mov ax, matr[bx*4][di]
lb2.ASM(53): error A2055: Illegal register value
                    ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                    ; Переопределение сегмента
                     ; ---- вариант 1
 0040 B8 ---- R
                         mov ax, SEG vec2
 0043 8E CO
                             mov es, ax
 0045 26: 8B 07
                        mov ax, es:[bx]
 0048 B8 0000
                              mov ax, 0
                    ; ---- вариант 2
 004B 8E CO
                              mov es, ax
 004D 1E
                         push ds
 004E 07
                         pop es
 004F 26: 8B 4F FF
                         mov cx, es:[bx-1]
                       xchg cx,ax
 0053 91
                   ; ----- вариант 3
 0054 BF 0002
                             mov di, ind
 0057 26: 89 01
                    mov es:[bx+di],ax
                   ; ----- вариант 4
mov bp, sp
005C 3E: 8B 86 0016 R mov
b2.ASM(72): 0777
                                   mov ax, matr[bp+bx]
1b2.ASM(72): error A2046: Multiple base registers
 0061 3E: 8B 83 0016 R
                                 mov ax,matr[bp+di+si]
lb2.ASM(73): error A2047: Multiple index registers
                   ; Использование сегмента стека
 0066 FF 36 0000 R
                              push mem1
 006A FF 36 0002 R
                               push mem2
 006E 8B EC
                               mov bp,sp
 0070 8B 56 02
                               mov dx, [bp] +2
 0073 CA 0002
                               ret 2
                   Main ENDP
1b2.ASM(80): error A2006: Phase error between passes
0076
                    CODE ENDS
                         END Main
```

; Косвенная адресация

Segments and Groups:

N a m e	Leng	th Alio	gn Combine Class
ASTACK		0018 PARA 0076 PARA 0026 PARA	NONE
Symbols:			
N a m e	Type	Value	Attr
EOL		NUMBER	0024
IND		NUMBER	0002
MAIN		F PROC L BYTE L WORD L WORD L WORD	0000 CODE Length = 0076 0016 DATA 0000 DATA 0002 DATA 0004 DATA
N1	· ·	NUMBER NUMBER	01F4 -0032
VEC1		L BYTE L BYTE	0006 DATA 000E DATA
@CPU	· · · · · · · · · · · · · · · · · · ·	TEXT 0101 TEXT 1b2_ TEXT 510	h comp

- 82 Source Lines
- 82 Total Lines
- 19 Symbols

47800 + 459460 Bytes symbol space free

- 2 Warning Errors
- 5 Severe Errors

С исправлением ошибок. Название файла: LB2_CORR.lst

10/7/21 03:52:28

☐Microsoft (R) Macro Assembler Version 5.10

Page 1-1 = 0024EOL EOU '\$' = 0002 ind EQU 2 = 01F4n1 EQU 500 =-0032 n2 EQU -50 ; Стек программы 0000 AStack SEGMENT STACK DW 12 DUP(?) 0000] D000 3333] 0018 AStack ENDS ; Данные программы 0000 DATA SEGMENT ; Директивы описания данных 0000 0000 mem1 DW 0 0002 0000 mem2 DW 0 0000 0004 mem3 DW 0 0006 01 02 03 04 08 07 vec1 DB 1,2,3,4,8,7,6,5 06 05 000E F6 EC 0A 14 E2 D8 vec2 DB -10,-20,10,20,-30,-40,30,40 0016 01 02 03 04 FC FD matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7, -6, -5 FE FF 05 06 07 08 F8 F9 FA FB 0026 DATA ENDS ; Код программы 0000 CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 Main PROC FAR 0000 1E push DS 0001 2B C0 sub AX, AX 0003 50 push AX 0004 B8 ---- R mov AX, DATA 0007 8E D8 mov DS, AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация 0009 B8 01F4 mov ax, n1 000C 8B C8 mov cx, ax 000E B3 24 mov bl, EOL 0010 B7 CE mov bh, n2 ; Прямая адресация 0012 C7 06 0002 R FFCE mov mem2, n2 0018 BB 0006 R mov bx, OFFSET vec1 001B A3 0000 R mov mem1,ax ; Косвенная адресация 001E 8A 07 mov al, [bx] ;mov mem3,[bx]

```
; Базированная адресация
      0020 8A 47 03
                            mov al, [bx]+3
      0023 8B 4F 03
                                   mov cx, 3[bx]
                         ; Индексная адресация
□Microsoft (R) Macro Assembler Version 5.10
                                                     10/7/21 03:52:28
                                                               Page
1 - 2
      0026 BF 0002
                                   mov di, ind
      0029 8A 85 000E R
                                   mov al, vec2[di]
                             ;mov cx,vec2[di]
                    ; Адресация с базированием и индексированием
      002D BB 0003
                                   mov bx,3
      0030 8A 81 0016 R
                                   mov al, matr[bx][di]
                              ;mov cx,matr[bx][di]
                              ;mov ax,matr[bx*4][di]
                         ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ
CELMEHTOB
                         ; Переопределение сегмента
                         ; ---- вариант 1
      0034 B8 ---- R
                             mov ax, SEG vec2
      0037 8E CO
                               mov es, ax
      0039 26: 8B 07
                             mov ax, es:[bx]
      003C B8 0000
                                  mov ax, 0
                         ; ---- вариант, 2
      003F 8E C0
                                   mov es, ax
      0041 1E
                              push ds
      0042 07
                              pop es
      0043 26: 8B 4F FF
                                   mov cx, es:[bx-1]
      0047 91
                             xchg cx,ax
                         ; ---- вариант 3
      0048 BF 0002
                                   mov di, ind
      004B 26: 89 01
                             mov es:[bx+di],ax
                         ; ----- вариант 4
      004E 8B EC
                                   mov bp,sp
                              ;mov ax,matr[bp+bx]
                              ;mov ax,matr[bp+di+si]
                         ; Использование сегмента стека
      0050 FF 36 0000 R
                                   push mem1
      0054 FF 36 0002 R
                                   push mem2
      0058 8B EC
                                   mov bp,sp
      005A 8B 56 02
                                   mov dx, [bp] + 2
      005D CA 0002
                                   ret 2
      0060
                        Main ENDP
      0060
                         CODE ENDS
                              END Main
□Microsoft (R) Macro Assembler Version 5.10
                                                     10/7/21 03:52:28
```

Symbols-1

Segments and Groups:

	Name Ler									Lengt	th Alig		ŋn	Combi	lne (Clas	S					
	ASTAC CODE DATA		•					•		•	•		•	•	•	0060	PARA PARA PARA	NONE				
	Symbo	Symbols:																				
							N	1 a	a n	1 ∈	9				Туре	Valı	ıe	Attr				
	EOL															NUMBI	ER	0024				
	IND														•	NUMBI	ER	0002				
0060	MAIN														•	F PRO	OC .	0000	CODE	Len	gth	=
0060	MATR MEM1 MEM2 MEM3														·	L BY'L WOLL WOLL	RD RD	0000 0002	DATA DATA DATA DATA			
	N1 . N2 .														•	NUMBI NUMBI		01F4 -0032				
	VEC1 VEC2															L BY			DATA DATA			
	@CPU @FILE @VERS	ENZ	AME	2											· ·	TEXT TEXT TEXT	0101 1b2_ 510					

⁸² Source Lines

47796 + 459464 Bytes symbol space free

⁸² Total Lines

¹⁹ Symbols

⁰ Warning Errors

O Severe Errors