► EDA + DPL PROJECT BY: V KAVYASRI (22070126129) AHMED QASEM(22070126137)

Show code

Importing the required libraries.

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Loading the dataset

df=pd.read_excel('/content/Crop Yield Analysis.xls')
df

	States	Crops	Yield (Kg./Hectare) - 2017- 18	Yield (Kg./Hectare) - 2018- 19	Yield (Kg./Hectare) - 2019- 20	Yield (Kg./He
0	All India	Rice	2576	2638	2722	
1	All India	Wheat	3368	3533	3440	
2	All India	Jowar	956	849	989	
3	All India	Bajra	1231	1219	1374	
4	All India	Maize	3065	3070	3006	
202	West Bengal	Pulses	969	796	801	
203	West Bengal	Foodgrains	2839	2938	2904	
204	West Bengal	Oilseeds	1198	1255	1060	
205	West Bengal	Sugarcane	75000	84485	79657	
206	West Bengal	Jute & Mesta	2616	2644	2805	
207 rowe v.7 columns						

207 rows × 7 columns

df.head()

	States	Crops	Yield (Kg./Hectare) - 2017-18	Yield (Kg./Hectare) - 2018-19	Yield (Kg./Hectare) - 2019-20	Yield (Kg./Hectare)
0	All India	Rice	2576	2638	2722	
1	All India	Wheat	3368	3533	3440	
2	All India	Jowar	956	849	989	
3	All India	Bajra	1231	1219	1374	
4	All India	Maize	3065	3070	3006	

Understand data and its features

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 207 entries, 0 to 206

Data	COTUMNS (COCAT / COTUMNS):		
#	Column	Non-Null Count	Dtype
0	States	207 non-null	object
1	Crops	207 non-null	object
2	Yield (Kg./Hectare) - 2017-18	207 non-null	int64
3	Yield (Kg./Hectare) - 2018-19	207 non-null	int64

```
Yield (Kg./Hectare) - 2019-20 207 non-null
                                                             int64
          Yield (Kg./Hectare) - 2020-21 207 non-null
                                                             int64
          Yield (Kg./Hectare) - 2021-22 207 non-null
                                                             int64
     dtypes: int64(5), object(2)
     memory usage: 11.4+ KB
#Display column names
print(df.columns)
     Index(['States', 'Crops', 'Yield (Kg./Hectare) - 2017-18',
             'Yield (Kg./Hectare) - 2018-19', 'Yield (Kg./Hectare) - 2019-20', 'Yield (Kg./Hectare) - 2020-21', 'Yield (Kg./Hectare) - 2021-22'],
Describe the data
#Get statistical summary
print(df.describe())
#For non-numeric columns, you can get a summary using:
print(df.describe(include='object'))
             Yield (Kg./Hectare) - 2017-18 Yield (Kg./Hectare) - 2018-19
     count
                                 207.000000
                                                                  207.000000
                                8811.140097
                                                                  8930.685990
     mean
     std
                               21904.132021
                                                                22380.611941
     min
                                 238.000000
                                                                  266.000000
     25%
                                 955.000000
                                                                  921.500000
     50%
                                1882.000000
                                                                  1835.000000
     75%
                                2853.500000
                                                                  2915.000000
                              109840.000000
                                                               105050.000000
     max
             Yield (Kg./Hectare) - 2019-20 Yield (Kg./Hectare) - 2020-21 \
     count
                                 207.000000
                                                                  207.000000
     mean
                                9033.043478
                                                                 9124.739130
     std
                               22591.497893
                                                                22768.063193
                                 251.000000
                                                                   275.000000
     min
     25%
                                 964.000000
                                                                   970.500000
     50%
                                1886.000000
                                                                  1938.000000
     75%
                                2901.500000
                                                                  3010.500000
                              127190.000000
                                                               115810.000000
     max
             Yield (Kg./Hectare) - 2021-22
     count
                                 207.000000
     mean
                                9196.328502
     std
                               22961.286578
     min
                                 261.000000
     25%
                                1000.500000
     50%
                                2027.000000
     75%
                                3019.500000
                              129950.000000
     max
                 States Crops
     count
                    207
                          207
     unique
                     22
                           11
     top
              All India Rice
     freq
                     11
                            22
```

Performing Data Preprocessing

One Hot Encoding

```
import pandas as pd
# Perform one-hot encoding for the 'States' and 'Crops' columns
data_encoded = pd.get_dummies(df, columns=['States', 'Crops'])
# Display the first few rows of the encoded dataset
print(data_encoded.head())
# Save the encoded dataset to a new CSV file
data_encoded.to_csv('encoded_crop_yields.csv', index=False)
        Yield (Kg./Hectare) - 2017-18 Yield (Kg./Hectare) - 2018-19
                                 2576
                                                                 2638
                                                                 3533
                                 3368
    1
     2
                                                                  849
                                  956
     3
                                 1231
                                                                 1219
     4
                                 3065
                                                                 3070
        Yield (Kg./Hectare) - 2019-20 Yield (Kg./Hectare) - 2020-21
```

0

0

0

0

0

0

a

a

```
989
     2
     3
                                 1374
                                                                 1420
     4
                                 3006
                                                                 3199
        Yield (Kg./Hectare) - 2021-22 States_All India States_Andhra Pradesh
     a
                                 2802
    1
                                 3484
                                                       1
    2
                                 1131
                                                       1
     3
                                 1414
                                                       1
                                 3347
                                                       1
       States_Assam States_Bihar States_Chhattisgarh
                                                               Crops_Cotton
                                                         . . .
     0
                                 0
                   0
                                                       0
     1
                   0
                                 0
                                                       0
                                                         . . .
     2
                   0
                                 0
                                                       0
     3
                   0
                                 a
                                                       a
                                                          . . .
     4
                   0
                                 0
                                                       0
       Crops_Foodgrains
                          Crops_Jowar Crops_Jute & Mesta Crops_Maize
     0
                                    0
                       0
                                                         0
                                                                      0
    1
                       0
                                    0
                                                         0
                                                                      0
                       0
                                                         0
                                                                      0
     2
                                    1
     3
                       0
                                    0
                                                         0
                                                                      0
    4
                       0
                                    a
                                                         a
                                                                      1
        Crops_Oilseeds
                        Crops_Pulses Crops_Rice Crops_Sugarcane
     0
                     0
                                   0
     1
                     0
                                   0
                                                0
                     0
                                                0
     2
                     0
                     0
                                   0
                                                0
                                                                 0
     [5 rows x 38 columns]
Using Min Max Scaler
from sklearn.preprocessing import MinMaxScaler
# Select the columns you want to scale (exclude the categorical columns)
columns_to_scale = [
    'Yield (Kg./Hectare) - 2017-18',
    'Yield (Kg./Hectare) - 2018-19',
    'Yield (Kg./Hectare) - 2019-20',
    'Yield (Kg./Hectare) - 2020-21',
    'Yield (Kg./Hectare) - 2021-22'
# Initialize the MinMaxScaler
scaler = MinMaxScaler()
# Fit and transform the selected columns
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
# Display the first few rows of the scaled dataset
print(df.head())
          States Crops Yield (Kg./Hectare) - 2017-18 \
    0 All India
                   Rice
                                                0.021332
       All India Wheat
                                                0.028558
     2
       All India
                  Jowar
                                                0.006551
       All India Bajra
                                                0.009060
       All India Maize
                                                0.025793
        Yield (Kg./Hectare) - 2018-19 Yield (Kg./Hectare) - 2019-20 \
     0
                             0.022637
                                                             0.019466
                             0.031178
                                                             0.025122
    1
                             0.005564
                                                             0.005814
     2
                             0.009095
    3
                                                             0.008847
    4
                             0.026760
                                                             0.021703
        Yield (Kg./Hectare) - 2020-21 Yield (Kg./Hectare) - 2021-22
                             0.021136
                                                             0.024852
    1
                             0.028095
                             0.007132
                                                             0.006708
     2
     3
                             0.009910
                                                             0.008890
                                                             0.023795
                             0.025308
Performing EDA
summary_stats = df.describe()
```

```
summary_stats
```

Yield (Kg./Hectare) - 2017-18 Yield (Kg./Hectare) - 2018-19 Yield (Kg./Hectare) - 2019-20 Yield (Kg./Hectare) - 2020-21 Yield (Kg./Hectare) count 207.000000 207.000000 207.000000 207.000000 mean 0.078221 0.082691 0.069183 0.076598 std 0.199852 0.213588 0.177971 0.197066 0.000000 0.000000 0.000000 0.000000 min 25% 0.006542 0.006256 0.005617 0.006020 50% 0.015000 0.014974 0.012880 0.014394 75% 0.023864 0.025281 0.020880 0.023677 max 1.000000 1.000000 1.000000 1.000000

```
# Box graph of rice yield for over the years
import matplotlib.pyplot as plt

# Data for rice production over the years
years = ["2017-18", "2018-19", "2019-20", "2020-21", "2021-22"]
rice_production = [2576, 2638, 2722, 2717, 2802]

# Creating a bar graph
plt.figure(figsize=(10, 6))
plt.bar(years, rice_production, color='green')
plt.xlabel('Years')
plt.ylabel('Rice Production (Kg./Hectare)')
plt.title('Rice Production Over the Years')
plt.xticks(rotation=30)
plt.tight_layout()

# Display
plt.show()
```



```
# Creating a histogram.
plt.hist(df['Yield (Kg./Hectare) - 2021-22'], bins=20)
plt.xlabel('Yield (Kg./Hectare) - 2021-22')
plt.ylabel('Frequency')
plt.title('Histogram of Yield (2021-22)')
plt.show()
```

Histogram of Yield (2021-22) 175 150 125 20 100 75 -

```
# Correlation matrix
correlation_matrix = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix,annot=True,cmap='coolwarm',linewidths=0.5)
plt.title('Correlation Heatmap of Crop Yields')
plt.xlabel('Yield Year')
plt.ylabel('Yield Year')
plt.show()
```

<ipython-input-13-c6a72e8492ac>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver correlation_matrix = df.corr()


```
# Pairplot
sns.pairplot(df)
plt.title('Pair Plot')
plt.show()
```



```
from matplotlib._api import define_aliases
# Calculate summary statistics
mean_yield = df['Yield (Kg./Hectare) - 2017-18'].mean()
median_yield = df['Yield (Kg./Hectare) - 2017-18'].median()
std_deviation = df['Yield (Kg./Hectare) - 2017-18'].std()
min_yield = df['Yield (Kg./Hectare) - 2017-18'].min()
max_yield = df['Yield (Kg./Hectare) - 2017-18'].max()
print(f"Mean: {mean_yield:.2f}")
print(f"Median: {median_yield:.2f}")
print(f"Standard Deviation: {std_deviation:.2f}")
print(f"Min: {min_yield:.2f}")
print(f"Max: {max_yield:.2f}")
     Mean: 0.08
     Median: 0.01
     Standard Deviation: 0.20
     Min: 0.00
     Max: 1.00
from matplotlib._api import define_aliases
# Calculate summary statistics
mean_yield = df['Yield (Kg./Hectare) - 2021-22'].mean()
median_yield = df['Yield (Kg./Hectare) - 2021-22'].median()
std_deviation = df['Yield (Kg./Hectare) - 2021-22'].std()
min_yield = df['Yield (Kg./Hectare) - 2021-22'].min()
max_yield = df['Yield (Kg./Hectare) - 2021-22'].max()
print(f"Mean: {mean_yield:.2f}")
print(f"Median: {median_yield:.2f}")
print(f"Standard Deviation: {std_deviation:.2f}")
print(f"Min: {min_yield:.2f}")
print(f"Max: {max_yield:.2f}")
     Mean: 0.07
     Median: 0.01
     Standard Deviation: 0.18
     Min: 0.00
     Max: 1.00
```