February 25, 2024

MATH 555 Homework 7

Problem 1 Let n be a positive integer, and compute

$$I_n := \int_{-1}^{1} (1 - x^2)^n dx.$$

Define

$$I(m,n) := \int_{-1}^{1} (1-x)^m (1+x)^n dx.$$

This is useful as we have

$$I_n = \int_{-1}^{1} (1 - x^2)^n dx = \int_{-1}^{1} [(1 - x)(1 + x)]^n dx = \int_{-1}^{1} (1 - x)^n (1 + x)^n dx = I(n, n).$$

We will first prove three lemmas.

Lemma 1: For all $m, n \geq 0$, we have

$$I(m,n) = \frac{m}{n+1}I(m-1,n+1).$$

Proof: We can use integration by parts with $u = (1-x)^m$, $dv = (1+x)^n dx$ to write

$$I(m,n) = \int_{-1}^{1} (1-x)^m (1+x)^n dx$$

$$= \frac{(1-x)^m (1+x)^{n+1}}{n+1} \Big|_{x=-1}^{1} - \int_{-1}^{1} \frac{(1+x)^{n+1} (-m)(1-x)^{m-1}}{n+1} dx \qquad \text{(from described } u,v)$$

$$= \frac{0^m 2^{n+1}}{n+1} - \frac{2^m 0^{n+1}}{n+1} + \int_{-1}^{1} \frac{m(1-x)^{m-1} (1+x)^{n+1}}{n+1} dx$$

$$= \frac{m}{n+1} \int_{-1}^{1} (1-x)^{m-1} (1+x)^{n+1} dx$$

$$= \frac{m}{n+1} I(m-1,n+1)$$

as desired.

Lemma 2: For all $n \geq 0$, we have

$$I(0,n) = \frac{2^{n+1}}{n+1}.$$

Proof: This is straightforward with u-substitution by choosing u = 1 + x. We have

$$I(0,n) = \int_{-1}^{1} (1+x)^n dx = \int_{0}^{2} u^n du = \frac{u^{n+1}}{n+1} = \frac{2^{n+1}}{n+1}.$$

Lemma 3: For all $1 \le k \le n$, we have

$$I(n,n) = \prod_{i=1}^{k} \left(\frac{n - (i-1)}{n+i} \right) I(n-k, n+k).$$

Proof: We will use induction on k. The base case k=1 follows directly from Lemma 1 as

$$I(n,n) = \frac{n}{n+1}I(n-1,n+1) = \frac{n-(1-1)}{n+1}I(n-1,n+1).$$

Now, let $1 < k \le n$ and assume that the claim holds for k-1. Then, we can use Lemma 1 to write

$$I(n,n) = \prod_{i=1}^{k-1} \left(\frac{n - (i-1)}{n+i}\right) I(n-k+1, n+k-1)$$

$$= \prod_{i=1}^{k-1} \left(\frac{n - (i-1)}{n+i}\right) \left(\frac{n-k+1}{n+k-1+1}\right) I(n-k+1-1, n+k-1+1)$$

$$= \prod_{i=1}^{k-1} \left(\frac{n - (i-1)}{n+i}\right) \left(\frac{n - (k-1)}{n+k}\right) I(n-k, n+k)$$
(simplifying)
$$= \prod_{i=1}^{k} \left(\frac{n - (i-1)}{n+i}\right) I(n-k, n+k).$$
(combining product)

So by induction, the lemma holds for all $1 \le k \le n$.

We can now compute I_n by writing

$$I(n,n) = \prod_{i=1}^{n} \left(\frac{n - (i-1)}{n+i}\right) I(n-n, n+n)$$
 (Lemma 3 with $k = n$)
$$= \frac{(n)(n+1)\dots(1)}{(n+1)(n+2)\dots(2n)} I(0,2n)$$

$$= \frac{(n!)^{2}}{(2n)!} I(0,2n)$$

$$= \frac{(n!)^{2}}{(2n)!} \left(\frac{2^{2n+1}}{2n+1}\right)$$

$$= \frac{2^{2n+1}(n!)^{2}}{(2n+1)!}.$$
 (Lemma 2)

Therefore,

$$I_n := \int_{-1}^{1} (1 - x^2)^n dx = \frac{2^{2n+1} (n!)^2}{(2n+1)!}.$$

Problem 2 Let $f:[0,1] \to \mathbb{R}$ be a continuous function with

$$f(x) + f(1-x) = 1.$$

Compute

$$\int_0^1 f(x)x(1-x)\,dx.$$

We can use u-substitution with u = 1 - x to write

$$\int_0^1 f(1-x)x(1-x) = \int_1^0 -f(u)(1-u)(1-(1-u)) \, du = \int_0^1 f(u)u(1-u) \, du,$$

so with a change of variables we have

$$\int_0^1 f(x)x(1-x)dx = \int_0^1 f(1-x)x(1-x). \tag{1}$$

Then, we can compute

$$\int_{0}^{1} f(x)x(1-x) dx = \frac{1}{2} \left[\int_{0}^{1} f(x)x(1-x) dx + \int_{0}^{1} f(x)x(1-x) dx \right]$$
 (real number property)
$$= \frac{1}{2} \left[\int_{0}^{1} f(x)x(1-x) dx + \int_{0}^{1} f(1-x)x(1-x) dx \right]$$
 (from (1))
$$= \frac{1}{2} \int_{0}^{1} (f(x) + f(1-x)) x(1-x) dx$$
 (combining integrals)
$$= \frac{1}{2} \int_{0}^{1} x(1-x) dx$$
 ($f(x) + f(1-x) = 1$ by assumption)
$$= \frac{1}{2} \int_{0}^{1} (x-x^{2}) dx$$

$$= \frac{1}{2} \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{x=0}^{1}$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{12}.$$

Problem 6.1 Prove that the series $\sum_{k=1}^{\infty} a_k$ converges if and only if for all $\varepsilon > 0$ there is an N such that

$$N \le m < n \implies |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon.$$

Let $\langle A_n \rangle_{n=1}^{\infty}$ be defined by $A_n = \sum_{k=1}^n a_k$. Then for all m < n, we can write

$$|A_n - A_m| = |a_{m+1} + a_{m+2} + \dots + a_n|.$$
(1)

By definition, $\sum_{k=1}^{\infty} a_k$ converges if and only if $\langle A_n \rangle$ converges. Since \mathbb{R} is complete, this convergence happens if and only if $\langle A_n \rangle$ is Cauchy. By definition, this is true if and only for all $\varepsilon > 0$ there is an N such that $N \leq m < n \implies |A_n - A_m| < \varepsilon$. From equation 1, this holds if and only if

$$N \le m < n \implies |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon.$$

Therefore, the statement holds.

Problem 6.2 Let $f:[1,\infty)\to[0,\infty)$ be a monotone decreasing non-negative function. Let $a_k=f(k)$ and let

$$A_n = \sum_{k=1}^n a_k$$

be the *n*-th partial sum of the series $\sum_{k=1}^{\infty} a_k$. Prove that

$$\int_{1}^{n} f(x) \, dx \le A_n \le f(1) + \int_{1}^{n} f(x) \, dx.$$

Let $1 \le k < n$ and let $x \in [k, k+1]$. Since f is monotone decreasing, we have

$$f(k) \ge f(x) \ge f(k+1).$$

We will show the inequalities separately. First, we can write

$$\int_{k}^{k+1} f(x) \, dx \le \int_{k}^{k+1} f(k) \, dx \qquad \text{(since } f(x) \le f(k) \text{ on the interval)}$$

$$= f(k)(k+1-k) \qquad \qquad (f(k) \text{ is constant)}$$

$$= a_{k} \qquad \qquad (f(k) = a_{k} \text{ by definition)}$$

$$\implies \sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) \, dx \le \sum_{k=1}^{n-1} a_{k}$$

$$\implies \int_{1}^{n} f(x) \, dx \le A_{n-1}$$

$$\le A_{n}. \qquad (\langle a_{k} \rangle \text{ is non-negative so } \langle A_{n} \rangle \text{ is monotone increasing)}$$

To show the other equality, we can write

$$f(k+1) = \int_{k}^{k+1} f(k+1) dx \qquad (f(k+1) \text{ is constant})$$

$$\leq \int_{k}^{k+1} f(x) dx \qquad (\text{since } f(k+1) \leq f(x) \text{ on the interval})$$

$$\implies \sum_{k=1}^{n-1} f(k+1) \leq \sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) dx$$

$$\implies \sum_{k=2}^{n} f(k) \leq \int_{1}^{n} f(x) dx \qquad (\text{adjusting/combining bounds})$$

$$\implies f(1) + \sum_{k=2}^{n} f(k) \leq f(1) + \int_{1}^{n} f(x) dx \qquad (A_n = \sum_{k=1}^{n} a_k = f(1) + \sum_{k=2}^{n} f(k))$$

Therefore,

$$\int_{1}^{n} f(x) \, dx \le A_{n} \le f(1) + \int_{1}^{n} f(x) \, dx$$

holds.

Problem 6.3 (Integral Test) Let $f:[1,\infty)\to [0,\infty)$ be a monotone decreasing non-negative function. Let $a_k=f(k)$ and let

$$A_n = \sum_{k=1}^n a_k$$

Nathan Bickel

be the *n*-th partial sum of the series $\sum_{k=1}^{\infty} a_k$. Prove that

$$\sum_{k=1}^{\infty} a_k < \infty \iff \lim_{n \to \infty} \int_1^n f(x) \, dx \text{ exists and is finite.}$$

 (\Rightarrow) Let $A:=\sum_{k=1}^{\infty}a_k$, and $n\in\mathbb{N}$. From Problem 6.2 we have

$$\int_{1}^{n} f(x) \, dx \le A_{n}.$$

Further, $A_n \leq A$ since $\langle a_k \rangle$ is non-negative, so

$$\int_{1}^{n} f(x) \, dx \le A$$

for all n. Then the sequence of integrals bounded above by A, and since it is monotone increasing since $f(x) \ge 0$, by a theorem we proved last semester it converges to a finite limit. Thus,

$$\lim_{n\to\infty}\int_1^n f(x)\,dx \text{ exists and is finite.}$$

(⇐) Suppose

$$L := \lim_{n \to \infty} \int_{1}^{n} f(x) \, dx$$

exists and is finite. By again applying Problem 6.2 and using similar reasoning to the forward direction, we can bound $\langle A_n \rangle_{n=1}^{\infty}$ above with f(1) + L. So $\langle A_n \rangle$ is a monotone increasing sequence that is bounded above, and therefore it converges to a finite limit. Thus,

$$\sum_{k=1}^{\infty} a_k < \infty.$$

Problem 6.4 Use the Integral Test to prove that for any real number p > 0, the series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges if and only if p > 1.

Let $f_p(x) := \frac{1}{x^p} = x^{-p}$.

(⇒) We will prove the contrapositive. Suppose $p \le 1$.

Case 1: p = 1. Then

$$\lim_{n\to\infty} \int_1^n f_1(x) \, dx = \lim_{n\to\infty} \int_1^n \frac{dx}{x} = \lim_{n\to\infty} \left[\ln(x)\right]_{x=1}^n = \infty,$$

since we showed in class that ln(x) is surjective and increasing. So by the Integral Test, since the integral diverges, $\sum_{k=1}^{\infty} \frac{1}{k^p}$ diverges as well.

Case 2: p < 1. Then

$$\lim_{n \to \infty} \int_{1}^{n} f_{p}(x) dx = \lim_{n \to \infty} \int_{1}^{n} x^{-p} dx = \lim_{n \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{x=1}^{n} = \frac{1}{1-p} \lim_{n \to \infty} \left[e^{(1-p)\ln(x)} \right]_{x=1}^{n}.$$
 (1)

We showed in class that e^u is surjective and increasing if u is positive. Since $\ln(x)$ is positive for $x \ge 1$ and 1-p is positive for p < 1, $(1-p)\ln(x)$ is positive in this case. Thus,

Nathan Bickel

$$\lim_{n \to \infty} e^{(1-p)\ln(n)} = \infty,$$

so the integral diverges. So by the Integral Test, $\sum_{k=1}^{\infty} \frac{1}{k^p}$ diverges as well.

So for all $p \leq 1$, the sum does not converge.

(\Leftarrow) Suppose p > 1. Then we can again use equation 1 to evaluate the integral. However, we now have 1 - p < 0, so $e^{(1-p)\ln(x)}$ is now decreasing. Since it is bounded below by 0,

$$\lim_{n \to \infty} e^{(1-p)\ln(n)}$$

exists and is finite. Therefore, the interval converges, so by the Integral Test, $\sum_{k=1}^{\infty} \frac{1}{k^p}$ also converges.

Problem 6.5 Use the Integral Test to show

$$\sum_{k=2}^{\infty} \frac{1}{n(\ln(n))^p}$$

converges if and only if p > 1.

Let

$$f_p(x) := \frac{1}{x(\ln(x))^p} = \frac{(\ln(x))^{-p}}{x}.$$

Then, we can use u-substitution with $u = \ln(x)$ to write

$$\int_{2}^{n} f_{p}(x) dx = \int_{2}^{n} \frac{(\ln(x))^{-p}}{x} dx = \int_{\ln(2)}^{\ln(n)} u^{-p} du.$$

Since

$$\lim_{n \to \infty} n = \lim_{n \to \infty} \ln(n) = \infty,$$

we have that

$$\lim_{n\to\infty}\int_{\ln(2)}^{\ln(n)}u^{-p}\,du \text{ converges if and only if }\lim_{n\to\infty}\int_{1}^{n}u^{-p} \text{ converges,}$$

and we proved in Problem 6.4 that the second integral converges if and only if p > 1.

Problem 6.6 Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series of non-negative terms. Assume there is a constant C > 0 such that

$$a_k \leq Cb_k$$

for all k. Prove that

- (a) If $\sum_{k=1}^{\infty} b_k$ converges, so does $\sum_{k=1}^{\infty} a_k$.
- (b) If $\sum_{k=1}^{\infty} a_k$ diverges, so does $\sum_{k=1}^{\infty} b_k$.

(a) Suppose $\sum_{k=1}^{\infty} b_k$ converges. Let $\varepsilon > 0$. From Problem 6.1 (and since both sequences have non-negative terms), there exists N such that for all $n > m \ge N$,

$$b_{m+1} + b_{m+2} + \dots + b_n < \frac{\varepsilon}{C}. \tag{1}$$

Let $n > m \ge N$. Then

$$a_{m+1} + a_{m+2} + \dots + a_n \le Cb_{m+1} + Cb_{m+2} + \dots + Cb_n$$

$$< C\left(\frac{\varepsilon}{C}\right) \qquad \text{(equation 1)}$$

$$= \varepsilon.$$

From Problem 6.1, this implies that $\sum_{k=1}^{\infty} a_k$ converges.

(b) This follows immediately from (a), as it is the contrapositive.

Problem 6.7 Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series of positive terms. Assume that

$$L := \lim_{k \to \infty} \frac{a_k}{b_k}$$

exists. Prove that

- (a) $\sum_{k=1}^{\infty} b_k < \infty$ implies $\sum_{k=1}^{\infty} a_k < \infty$
- (b) If $L \neq 0$ and $\sum_{k=1}^{\infty} a_k < \infty$, then $\sum_{k=1}^{\infty} b_k < \infty$.

Let $\langle q_k \rangle_{k=1}^{\infty}$ be defined for all k by

$$q_k = \frac{a_k}{b_k}.$$

Since $\langle q_k \rangle$ converges to L, it is bounded, so there exists C such that $q_k \leq C$ for all k.

(a) Suppose $\sum_{k=1}^{\infty} b_k$ converges. For all k we have

$$\frac{a_k}{b_k} = q_k \le C \implies a_k \le Cb_k,$$

so from Problem 6.6 $\sum_{k=1}^{\infty} a_k$ converges.

(b) Suppose $L \neq 0$ and $\sum_{k=1}^{\infty} a_k$ converges. Since L, C > 0, we have

$$\lim_{k \to \infty} \frac{b_k}{a_k} = \frac{1}{L}, \quad \frac{b_k}{a_k} \le \frac{1}{C} \text{ for all } k.$$

Then, from (a), we have that $\sum_{k=1}^{\infty} b_k$ converges.

¹I'm assuming this is what the problem was meant to be: what is written in the notes is simply the contrapositive of (a) and Corollary 6.18 only follows from this version.

Nathan Bickel

Problem 4 For what values of p do the following series converge?

(a)
$$\sum_{k=2}^{\infty} \frac{1}{k(\ln(k))^p}$$
 (b) $\sum_{k=2}^{\infty} \frac{1}{k \ln(k)(\ln(\ln(k)))^p}$

- (a) From Problem 6.5, this converges for all $p \in (1, \infty)$.
- (b) Let

$$f_p(x) := \frac{1}{x \ln(x) (\ln(x))^p} = \frac{(\ln(x))^{-p}}{x \ln(x)}.$$

Then, we can use *u*-substitution with $u = \ln(\ln(x))$ to write

$$\int_{2}^{n} f_{p}(x) dx = \int_{2}^{n} \frac{(\ln(x))^{-p}}{x \ln(x)} dx = \int_{\ln(\ln(2))}^{\ln(\ln(n))} u^{-p} du.$$

Since

$$\lim_{n \to \infty} n = \lim_{n \to \infty} \ln(\ln(n)) = \infty,$$

we have that

$$\lim_{n\to\infty}\int_{\ln(\ln(2))}^{\ln(\ln(n))}u^{-p}\,du \text{ converges if and only if }\lim_{n\to\infty}\int_{1}^{n}u^{-p} \text{ converges,}$$

and we proved in Problem 6.4 that the second integral converges if and only if $p \in (1, \infty)$.

Problem 5 Show that

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$

converges for all real numbers $x \notin \{-1, -2, -3, \ldots\}$.

Let $x \notin \{-1, -2, -3, \ldots\}$. Then, we have

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) = \sum_{k=1}^{\infty} \frac{x}{k(k+x)}.$$

Case 1: x = 0. Then the series is $0 + 0 + 0 + \dots$, so clearly it converges to 0.

Case 2: $x \neq 0$. We note from Problem 6.4 that

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

converges. With this in mind, we can write

$$\begin{split} \lim_{k \to \infty} \frac{\frac{x}{k(k+x)}}{\frac{1}{k^2}} &= \lim_{k \to \infty} \frac{k^2 x}{k(k+x)} \\ &= \lim_{k \to \infty} \frac{kx}{k+x} \\ &= \lim_{k \to \infty} \frac{x}{1} \\ &= x \neq 0. \end{split} \tag{L'Hôpital's rule}$$

We can then conclude from Problem 6.7 that since

$$\sum_{k=1}^{\infty}\frac{1}{k^2}<\infty \text{ and } \lim_{k\to\infty}\frac{\frac{x}{k(k+x)}}{\frac{1}{k^2}} \text{ exists and is non-zero,}$$

we also have

$$\sum_{k=1}^{\infty} \frac{x}{k(k+x)} < \infty.$$

Therefore,

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$

converges for all real numbers $x \not\in \{-1, -2, -3, \ldots\}$.