Нейронные сети

Зинина Анастасия

Нейронные сети как универсальная модель аппроксимации

Нейронные сети принято считать универсальным методом решения задач регрессии и классификации. Такое восприятие связано со следующим утверждением: **Колмогоров,1957** Каждая непрерывная функция a(x), заданная на единичном кубе n-мерного пространства, представима в виде

$$a(x) = \sum_{i=1}^{2d+1} \sigma_i (\sum_{j=1}^d f_{ij}(x_{ij})),$$

где $x = [x_1, ..., x_{xd}]^T$ -вектор описания объекта, функции σ_i и $f_{ij}(\cdot)$ являются непрерывными функциями.

Однослойная нейронная сеть

Модель линейного порогового классификатора МакКаллока-Питтса

- Пусть все признаки $f_i(x)$ бинарные.
- Значения признаков-величины импульсов, поступающих на вход нейрона через п синапсов.
- ullet Поступающие импульсы складываются с весами w_i
- Если суммарный импульс превышает порог активации, то нейрон выдаёт на выходе 1, иначе 0:

$$a(x) = \varphi(\sum_{j=1}^{n} w_j x^j - w_0),$$

где $\varphi(z)=I_{\{z\geqslant 0\}}$ -функция активации.

Различные функции активации

Позже модель была обобщена на случай произвольных вещественных входов и выходов, а также произвольных функций активации.

Многослойные нейронные сети

- Однослойные сети применимы только для линейно разделимых выборок.
- ullet Двухслойная сеть в R^n позволяет отделить произвольный выпуклый многогранник.
- Трёхслойная сеть в \mathbb{R}^n позволяет отделить произвольную многогранную (необязательно выпуклую, необязательно связную) область.
- Универсальная теорема аппроксимации, Hornik, 1991 Для любой непрерывной функции f(x) найдётся нейронная сеть a(x) $a(x,W)=\sigma^{(M)}(x)$, где

$$f^{(k)}(x) = w_0^{(k)} + W^{(k)}z^{(k-1)}(x), z^{(k)}(x) = \sigma^{(k)}(f^{(k-1)}(x)),$$

аппроксимирующая f(x) с заданной точностью.

Многослойные нейронные сети

Двухслойная нейронная сеть определяется как линейная комбинация D нейронов:

$$a(x,w) = \sigma^{(2)}(\sum_{i=1}^D w_i^{(2)}\sigma^{(1)}(\sum_{j=1}^d w_{ji}^{(1)}x_j^{(1)} + w_{0i}^{(1)}) + w_0^{(2)})$$

Аналогично определяются сети с большим числом слоёв.

Оптимизация параметров нейронной сети

Оптимальные значения параметров определяются как:

$$w^* = \underset{w}{\operatorname{argmin}} Q(w),$$

где Q-функция ошибки.

Методы оптимизации:

- стохастическая оптимизация(генетические алгоритмы, метод отжига, метод Нелдера-Мида);
- градиентные методы

Метод обратного распространения ошибок

Рассматриваем полносвязную сеть, $X=\mathbb{R}^n, Y=\mathbb{R}^M.$

- Выходной слой: М нейронов, функции активации σ_m , выходы a^m , m=1,...,М.
- Скрытый слой: Н нейронов, функции активации σ_h , выходы u^h , h=1,...,H.
- ullet Синаптические связи между h-м нейроном скрытого слоя и m-м нейроном выходного слоя обозначим w_{hm}
- Перед эти скрытым слоем находится либо распределительный, либо ещё один скрытый слой с выходами $v_j, j=1,...,J$ и синаптическими весами w_jh .

Выходные значения сети на объекте x_i определяются как суперпозиция:

$$a^{m}(x_{i}) = \sigma_{m}(\sum_{h=0}^{H} w_{hm}u^{h}(x_{i})),$$

$$u^{h}(x_{i}) = \sigma_{h}(\sum_{i=0}^{J} w_{jh}v^{j}(x_{i})).$$

Функционал среднеквадратичной ошибки для объекта x_i :

$$Q(w) = 0.5 \sum_{m=1}^{M} (a^{m}(x_{i}) - y_{i}^{m})^{2}.$$

в дальнейшем для вычисления градиента нам понадобятся частные производные:

$$\frac{\partial Q(w)}{\partial a^m} = a^m(x_i) - y_i^m = \varepsilon_i^m$$
 – ошибка на выходном слое,

$$\frac{\partial Q(w)}{\partial u^h} = \sum_{m=1}^M (a^m(x_i) - y_i^m) \sigma_m^{'} w_{hm} = \sum_{m=1}^M \varepsilon_i^m \sigma_m^{'} w_{hm} = \varepsilon_i^h - \text{ошибка на скрытом слое}$$

 $\varepsilon_i^h \varepsilon_i^m, "".$

Можем записать градиент Q:

$$\frac{\partial Q(w)}{\partial w_{hm}} = \frac{\partial Q(w)}{\partial a^{m}} \frac{\partial a^{m}}{\partial w_{hm}} = \varepsilon_{i}^{m} \sigma_{m}^{'} u^{h},$$
$$\frac{\partial Q(w)}{\partial w_{ij}} = \frac{\partial Q(w)}{\partial u^{h}} \frac{\partial u^{h}}{\partial w_{ij}} = \varepsilon_{i}^{h} \sigma_{h}^{'} v^{j},$$

Прореживание сети

Метод оптимального учечения сети(Optimal Brain Damage) удаляет те связи, к изменению которых функционал Q наименее чувствителен.

В локальном минимуме аппроксимируем Q квадратичной формой:

$$Q(w + \delta) = Q(w) + 0.5\delta^{T} H(w)\delta + o(||\delta||^{2})$$

NB Предполагается, что гессиан диагонален:

$$\delta^T H(w)\delta = \sum_{j=0}^J \sum_{h=1}^H \delta_{jh}^2 \frac{\partial^2 Q(w)}{\partial w_{jh}^2}$$

Исключаем параметр, если $w_{jh}+\delta_{jh}=0$ и корректируем остальные веса, чтобы $\Delta Q(w,\delta)$ было минимальным. Т.е. определяем исключаемый признак следующим образом:

$$j = \underset{j}{argmin}(\min_{\delta}(\delta^{T}H\delta \mid w_{jh} + \delta_{jh} = 0))$$

Можно показать, что для этого параметра w_{ih} будем минимальным значение функции выпуклости, называемой величеной значимости:

$$S_{jh} = w_{jh}^2 \frac{\partial^2 Q(w)}{\partial w_{jh}^2}$$

Рекуррентные сети: архитектура

- Трациционная сеть прямого распространения: входные векторы (и векторы, получаемые на выходе) независимы.
- RNN: выход зависит не только от входных нейронов и нейронов скрытого слоя, но и от вычислений на предыдущем шаге.
- Теоретически могут использовать произвольное число предыдущих шагов

Рекуррентные сети: как это работает

- ullet x_t входной вектор на шаге t
- ullet s_t скрытое состояние на шаге t, "память"сети

$$s_t = f(Ux_t + Ws_{t-1})$$

- ullet o_t -выход на шаге t. Например, $o_t = softmax(Vs_t)$
- ullet U,V,W одинаковы на каждом шаге, тогда как в традиционных сетях на каждом слое свои матрицы весов.

Рекуррентные сети: обучение

- Небольшое изменение backprop'a Backpropagation Through Time (BPTT)
- На каждом временном шаге параметры те же \to градиент зависит не только от текущего шага, но и от предыдущих. Т.о. нам нужно вычислить градиент предыдущих шагов и просуммировать.
- $s_t = tanh(Ux_t + WS_{t-1})$ $o_y = \hat{y}_t = softmax(Vs_t)$
- Функционал качества кросс-энтропия:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$E(y_t, \hat{y}_t) = \sum_t E_t(y_t, \hat{y}_t) = -\sum_t y_t \log \hat{y}_t$$

Рекуррентные сети: ВРТТ

• Находим градиент на каждом шаге и суммируем:

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_t}{\partial W}$$

ullet $rac{\partial E_t}{\partial V}$ зависит только от значений на текущем шаге

$$\frac{\partial E_t}{\partial V} = \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial V} = \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial z_t} \frac{\partial \hat{z}_t}{\partial V} = (\hat{y}_t - y_t)_t,$$

где $z_t = V s_t$

Рекуррентные сети: ВРТТ

ullet Для $rac{\partial E_t}{\partial W}$ и $rac{\partial E_t}{\partial U}$ ситуация иная

$$\frac{\partial E_t}{\partial W} = \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial W}$$

Вспомним, что $s_t = tanh(Ux_t + Ws_{t-1})$, а s_{t-1} в свою очередь снова выражается через W и s_{t-2} .

Получаем

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Рекуррентные сети: проблема затухающего градиента

- Использование ВРТТ через большое количество слоёв затруднительно
- ullet Посмотрим на $rac{\partial E_t}{\partial W} = \sum_{k=0}^t rac{\partial E_t}{\partial \hat{y}_t} rac{\partial \hat{y}_t}{\partial s_t} rac{\partial s_k}{\partial s_k} rac{\partial s_k}{\partial W}$ Здесь $rac{\partial s_t}{\partial s_{k-1}} = rac{\partial s_t}{\partial s_k} rac{\partial s_k}{\partial s_{k-1}}$ Т.о.

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \left(\prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

- Евклидова норма матрицы Якоби, о которой говорится выше, не превышает 1. Здесь играет роль тот факт, что функции активации и их производные по модулю не превышает 1.
- ullet Т.о. маленькие значения в матрицах и t-k уматричных умножений приводят к затуханию градиента.
- Решения проблемы затухающего градиента:
 - регуляризация;
 - использование ReLU;
 - Long Short-Term Memory (LSTM) и Gated Recurrent Unit (GRU)
- Обратная ситуация exploding gradient. Решение установление порога до обучения.

Рекуррентные сети: LSTM

- Борьба с затуханием градиента gating mechanism
- Вычисление скрытых состояний (о покомпонентное умножение):

$$i = \sigma(x_t U^i + s_{t-1} W^i)$$

$$f = \sigma(x_t U^f + s_{t-1} W^f)$$

$$o = \sigma(x_t U^o + s_{t-1} W^o)$$

$$g = \tanh(x_t U^g + s_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

$$s_t = \tanh(c_t) \circ o$$

LSTM: интерпретация

- i,g,o input, forget, output gates
 - input gate: какую часть вновь вычисленного состояния для данного входного вектора следует пропустить;
 - forget gate: какую часть предыдущего состояния следует пропустить;
 - output gate: какую часть внутреннего состояния следует пропустить дальше в верхние слои и следующий временной шаг.
- g "кандидатное"внутреннее состояние, вычисленное по входному вектору и предыдущему внутреннему состоянию. Берём $g \circ i$
- c_t внутренняя память на шаге t комбинация части предыдущего состояния памяти $c_{t-1} \circ f$ и части "кандидатного" внутреннего состояния $g \circ i$
- Наконец, получаем скрытое состояние, определяя, какую часть пропускаем дальше

• GRU - упрощение LSTM

$$z = \sigma(x_t U^z + s_{t-1} W^z)$$
$$r = \sigma(x_t U^r + s_{t-1} W^r)$$
$$s_t = (1 - z) \circ h + z \circ s_{t-1}$$

- r reset gate: как объединить новый входной вектор с предыдущим состоянием памяти;
 - z update gate: какую часть предыдущего состояния памяти следует сохранить
- Отличия от LSTM:
 - ullet GRU не имеет внутренней памяти c_t , не имеют output gate
 - input gate и forget gate соединены в reset gate
 - для вычисления выхода не используем ещё одну нелинейную функцию активации