

EE206: Communications Principles Tutorial

Assignment 10

TA: 周翔

4/28/2021

D3.1

A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal bandwidth to be 15kHz.

- (a) What is the Nyquist rate?
- (b) If the Nyquist samples are quantized into L=65,536 levels and then binary coded, determine the number of binary digits per second (bit/s) required to encode the audio signal.
 - (a) According to Nyquist Sampling Theorem, $f_s>2f_{max}=30 \mathrm{kHz}.$ Nyquist rate: $30 \mathrm{kHz}.$
 - (b) $L=65536=2^{16}$, so 16 bits are required to encode every sample. Since sample rate should be larger than Nyquist rate,

$$30 \times 10^3 \frac{\text{sample}}{\text{s}} \times 16 \frac{\text{bit}}{\text{sample}} = 480 \text{kbit/s}$$

So 480k bit/s required to encode the audio signal.

D3.2

Show that, with a non-uniform quantizer, the average power (mean-square value) of the quantization error is approximately equal to $(1/12)\sum_i \Delta_i^2 p_i$ where Δ_i is the i-th step size and p_i is the probability that the input signal amplitude lies within the i-th interval R_i . Assume that the step-size Δ_i is small compared with the range of input signal, such that the signal can be treated as uniformly distribution within each step size.

Hints:

(1) Let Q be the quantization error, the expectation of Q² is given by

$$E[Q^2] = \sum_{i} E[Q^2]$$
 signal is in the $i-th$ step size] Pr [signal is in the $i-th$ step size]

(2) The mean and variance of a uniform distributed random variable within [a,b] are given by $\frac{1}{2}(a+b)$ and $\frac{1}{12}(b-a)^2$, respectively.

Non-uniform quantizer is that R_i is different from each other.

The sampled signal amplitude is a discrete random variable M.

For i-th interval R_i , probability that sampled signal amplitude M lies within it is p_i , and step size of the interval is Δ_i .

Assuming that random variable M_i is the sampled signal amplitude within interval R_i . We know that $M_i \sim U\left[v_i - \frac{\Delta_i}{2}, v_i + \frac{\Delta_i}{2}\right]$, where v_i is the middle value in interval R_i .

Quantization error $Q_i = M_i - v_i$. It is also a random variable, and $Q_i \sim U(-\frac{\Delta_i}{2}, \frac{\Delta_i}{2})$.

$$\boldsymbol{E}[Q_i^2] = \int_{\frac{\Delta_i}{2}}^{-\frac{\Delta_i}{2}} x^2 \frac{1}{\Delta_i} dx = \frac{\Delta_i^2}{12}$$

 $E[Q^2] = \sum_i E[Q^2 | \text{signal is in the i}_{\text{th}} \text{step size}] Pr[\text{signal is in the i}_{\text{th}} \text{ step size}]$

$$=\sum_{i} \mathbf{E}[Q_i^2] p_i = \frac{1}{12} \sum_{i} \Delta_i^2 p_i$$