1 Change of variables

- 1. $0 < e^{-X} < 1$ so the support of the PDF is 0 < x < 1. Then $P(e^{-X} \le x) = P(X \ge -\log(x)) = 1 P(X \le -\log(x)) \implies f(x) = -\frac{d}{dx}(1 P(X \le -\log(x))) = -f_X(-\log(x))(-1/x) = f_X(-\log(X))/x = e^{-(-\log(x))}/x = 1$. We could also have done this by universality of the uniform since $e^{-X} = 1 F_X(X)$ and $F_X(X) \sim Unif(0,1)$ and $1 Unif(0,1) \sim Unif(0,1)$.
- 2. The support of the PDF is $0 < x < \infty$. $P(X^7 \le x) = P(X \le \sqrt[7]{x}) = F(\sqrt[7]{x})$ so the PDF is $f_X(\sqrt[7]{x})x^{-6/7}/7 = \lambda e^{-\lambda \sqrt[7]{x}}x^{-6/7}/7$.
- 3. The support of the PDF is $-\infty < z < \infty$. $P(Z^3 \le z) = P(Z \le \sqrt[3]{z}) = \Phi(\sqrt[3]{z})$ so the PDF is $\varphi(\sqrt[3]{z})z^{-2/3}/3 = \frac{1}{\sqrt{2\pi}}e^{-z^{2/3}/2}z^{-2/3}/3$.
- 4. The support of the PDF is $0 \le z < \infty$. $P(Z^4 \le z) = P(-\sqrt[4]{z} \le Z \le \sqrt[4]{z}) = \Phi(\sqrt[4]{z}) \Phi(-\sqrt[4]{z}) = 1 2\Phi(-\sqrt[4]{z}) = 2\Phi(\sqrt[4]{z}) 1$ so the PDF is $2\varphi(\sqrt[4]{z})z^{-3/4}/4 = \sqrt{2/\pi}e^{-z^{1/2}/2}z^{-3/4}/4$.
- 5. The support of the PDF is $0 \le z < \infty$. $P(|Z| \le z) = P(-z \le Z \le z) = 2\Phi(z) 1$ so the PDF is $2\varphi(z) = \sqrt{2/\pi}e^{-z^2/2}$.
- 6. The supports are both (0,1). (Note that we could apply the change of variables formula directly since both functions are increasing on the support.) The PDF of the first is $P(U^2 \le u) = P(U \le \sqrt{u})$ so the PDF is $u^{-1/2}/2$.

The PDF of the second is $P(\sqrt{U} \le u) = P(U \le u^2)$ so the PDF is 2u.

- 7. The support of the PDF is (0,1). (Again, we could apply the change of variables formula directly.) $P(\sin(U) \le u) = P(U \le \sin^{-1}(u))$ so the PDF is $2/pix/\sqrt{1-x^2}$.
- 8. (a) $P(X^2 = x) = P(X = \sqrt{x}) = 1/n$ if $x = i^2$ for $0 \le i \le n$. Thus $X^2 \sim Dunif(0, 1, 4, \dots, n^2)$.
 - (b) $P(X^2 = x) = P(X = \pm \sqrt{x}) = 2/n$ if $x = i^2$ for $1 \le i \le n$ and 1/n if x = 0 and 0 otherwise.
- 9. Y = (b a)X + a satisfies the requirements. P(Y = b) = P((b a)X + a = b) = P((b a)X = b a) = P(X = 1) = p and P(Y = a) = P((b a)X + a = a) = P((b a)X = 0) = P(X = 0) = (1 p).
- 10. $P(Y = 1) = \sum_{k \ge 0} e^{-\lambda} \lambda^{2k+1} / (2k+1)!$ and $P(Y = 0) = \sum_{k \ge 0} e^{-\lambda} \lambda^{2k} / (2k)!$. P(Y = 1) + P(Y = 0) = 1 since it is the total probability of the Poisson PMF while $P(Y = 0) P(Y = 1) = \sum_{k \ge 0} e^{-\lambda} (-\lambda)^k / k! = e^{-2\lambda}$. Thus $P(Y = 1) = (1 e^{-2\lambda}) / 2$.
- 11. If v=0 and T<0, then 1/T<0 so $V\leq 0$ if and only if $T\leq 0$ so $P(V\leq 0)=P(T\leq 0)$.

If v > 0 and T > 0, then $1/T < v \iff T > 1/v$ so $P(V \le v) = P(T > 1/v) = P(T \le 0) + P(T > 1/v)$.

Finally, if v < 0 and T < 0, then $1/T < v \iff 1 > Tv \iff 1/v < T$ so $P(V \le v) = P(T > 1/v) = P(T \le 0) - P(T \le 1/v)$.

- 12. (a) $f_V(v) = f_T(1/v)/v^2 = 1/\pi 1/(1+v^2) = f_T(v)$ so they have the same distribution.
 - (b) X/Y is equivalent in distribution to Y/X since X and Y are iid.
- 13. $P(T \le t) = P(\log(X/Y) \le t) = P(X \le (e^t)Y) = \int_0^\infty \int_0^{e^t y} \lambda e^{-\lambda x} \lambda e^{\lambda y} dx dy = 1 1/(e^t + 1)$. The PDF is $e^t/(1 + e^t)^2$.
- 14. (a) By 2d change of variables, $f_{T,W}(t, w) = f_{X,Y}((dt bw)/(ad bc), (-ct + aw)/(ad bc)) * 1/|ad bc|$.
 - (b) Plugging in a = b = c = 1, d = -1 to the above yields the desired result.
- 15. (a) Knowing θ gives no information about R since X, Y are spherically symmetric and thus depend only on the radial distance and not on the angle.
 - (b) By 2d change of variables, $f_{R,\theta}(r,\theta) = f_{X,Y}(r\cos\theta, r\sin\theta)r = r/\pi$. (Note that when we integrate, we are doing a normal cartesian integral rather than a polar integral, even though f is considered in polar coordinates.)
 - (c) $f_{R,\theta}(r,\theta) = 1/2\pi e^{-r^2\cos^2\theta/2} e^{-r^2\sin^2\theta/2} r = 1/2\pi e^{-r^2/2} r$.
- 16. Using the result of exercise 14(b), $f_{T,W}(t,w) = 1/2f_{X,Y}((t+w)/2,(t-w)/2) = 1/4\pi e^{-(t+w)^2/2-(t-w)^2/2} = 1/4\pi e^{-1/2((t^2+2tw+w^2)+t^2-2tw+w^2)/2} = 1/4\pi e^{-t^2-w^2}$. Thus T,W are independent N(0,2) random variables since the joint PDF factors as the product of the corresponding marginals.
- 17. $f_{R^2,\theta}(r,\theta) = f_{X,Y}(\sqrt{r}\cos\theta, \sqrt{r}\sin\theta)/2 = 1/4\pi e^{-r\cos^2/2 r\sin^2/2} = 1/4\pi e^{-r/2} = (1/2\pi)1/2e^{-1/2r}$ so $R^2 \sim Expo(1/2)$ and $\theta \sim Unif(0,2\pi)$.
- 18. (a) Let W = X. By the 2d change of variables, $f_{T,W}(t,w) = f_{X,Y}(w,w/t)w/t^2 = (wf_X(w))(f_Y(w/t)/t^2)$.
 - (b) $f_T(t) = \int_0^\infty f_{T,W}(t,w)dw = (wf_X(w))(f_Y(w/t)/t^2)dw$.
- 19. (a) The inverse transform is X = TW/(W+1), Y = T/(W+1) and the determinant of the Jacobian is $T/(W+1)^2$, so the change of variables formula gives $f_{T,W}(t,w) = f_{X,Y}(tw/(w+1),t/(w+1))t/(w+1)^2 = \lambda e^{-\lambda tw/(w+1)}\lambda e^{-\lambda t/(w+1)}t/(w+1)^2 = t\lambda^2 e^{-\lambda t}(1+w)^{-2}$. This factors so T and W are independent.
 - (b) Manipulating the joint PDF yields: $(\lambda t)^2/te^{-\lambda t}(1+w)^{-2}$ so the marginal distribution of T is $Gamma(2,\lambda)$ while the marginal distribution of W is $f_W(w) = 1/(1+w)^2$.

2 Convolutions

- 20. $P(U+X \le t) = \int_0^1 \int_0^{t-u} e^{-x} dx du = \int_0^1 1 e^{u-t} du = 1 e^{1-t} + e^{-t}$.
- 21. When l > 0, $P(L \le l) = P(X \le Y + l) = \int_0^\infty \int_0^{y+l} e^{-x} e^{-y} dx dy = \int_0^\infty (1 e^{-l} e^{-y}) e^{-y} dy = 1 e^{-l}/2$. When l < 0, $P(L \le l = P(X \le Y + l)) = \int_{-l}^\infty \int_0^{y+l} e^{-x} e^{-y} dx dy = \int_{-l}^\infty (1 e^{-y-l}) e^{-y} dy = e^l 1/2 e^l = 1/2 e^l$. Taking derivatives, we obtain $f(t) = e^{-l}/2 = e^{-|l|}/2$ when l > 0 and $f(t) = e^l/2 = e^{-|l|}/2$ when l < 0.

- 22. $P(T \le t) = \int_{-\infty}^{\infty} \int_{-\infty}^{t-x} \varphi(x)\varphi(y)dydx = \int_{-\infty}^{\infty} \varphi(x)\Phi(t-x)dx$ so by differentiating under the integral sign, the PDF is $\int_{-\infty}^{\infty} \varphi(x)\varphi(t-x)dx$whose calculation would yield a $N(\mu_1 + \mu_2, 2\sigma^2)$ PDF.
- 23. (a) $P(XY \le t) = P(X \le t/Y) = \int_0^\infty P(X \le ty|Y = y)f(y)dy = \int_0^\infty F_X(ty)f(y)dy$. Taking a derivative yields $f_T(t) = \int_0^\infty y f_X(ty)f(y)dy$.
 - (b) $\log(T) = \log(X) + \log(Y)$ so $P(T \leq t) = P(\log(T) \leq \log(t)) = P(\log(X) + \log(Y) \leq \log(t))$. Let $A = \log(X)$, $B = \log(Y)$ so we continue with $= P(A + B \leq \log(t)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\log(t) a} f_A(a) f_B(b) db da = \int_{-\infty}^{\infty} f_A(a) F_B(\log(t) a) da$. Taking a t derivative yields $\int_{-\infty}^{\infty} f_a(a) f_B(\log(t) a) / t da$. $P(A \leq a) = P(X \leq e^a) = F_X(e^a)$ so the PDF of A is $e^a f_X(e^a)$ and analogously for Y. Thus we obtain $\int_{-\infty}^{\infty} e^a f_X(e^a) e^{\log(t) a} f_Y(e^{\log(t) a}) / t da = \int_{-\infty}^{\infty} f_X(e^a) f_Y(e^{\log(t) a}) da$. Converting back to an integral with respect to $x = e^a \implies dx = e^a da \implies da = dx/x$ yields $\int_0^{\infty} f_X(x) f_Y(t/x) / x dx$. (The other integral can be reobtained by setting y = t/x.)
- 24. $P(T=t) = \sum_k P(X+Y=t|X=k)P(X=k) = 1/(n+1)\sum_k 1/(n+1)$ so the only question is how many terms the sum contains. For $0 \le t \le n$, there are t+1 possible ways. For $n+1 \le t \le 2n$, there are 2n+1-t ways. Thus $P(T=t) = (t+1)/(n+1)^2$ if 0 < t < n and $(2n+1-t)/(n+1)^2$ if n+1 < t < 2n.
- 25. (a) E(X Y) = E(X) E(Y) = 0 and Var(X Y) = Var(X) + Var(-Y) = 1/6.
 - (b) -W has the same distribution as W since $X-Y\sim Y-X$ are both a difference of iid Unif(0,1) random variables.
 - (c) $P(W \le w) = P(X Y \le w) = P(X \le Y + w)$. For w > 0, this is equal to $\int_0^1 \int_0^{\min(1,y+w)} dx dy = \int_0^1 \min(1,y+w) dy = 1 (1-w)^2/2$. For w < 0, this is equal to $\int_{-w}^1 \int_0^{y+w} dx dy = \int_{-w}^1 y + w dy = 1/2 w^2/2 + w + w^2 = 1/2(w^2 + 2w + 1) = 1/2(w+1)^2$. The PDF is then 1-w=1-|w| if w < 0 so the overall pdf is 1-|w|.
 - (d) $E(W) = \int_{-1}^{1} w(1-|w|)dw = \int_{-1}^{0} w(1+w)dw + \int_{0}^{1} w(1-w)dw = -1/6 + 1/6 = 0.$ $Var(W) = \int_{-1}^{1} w^{2}(1-|w|)dw = \int_{-1}^{0} w^{2}(1+w)dw + \int_{0}^{1} w^{2}(1-w)dw = 1/12 + 1/12 = 1/6.$ The distribution is symmetric since the PDF is even.
 - (e) W is a shifted version of the triangle distribution. Let Z = 1 Y. Then $Z \sim Unif(0,1)$ is independent of X, so 1 + W = X + (1 Y) = X + Z = T.
- 26. The area under the line x + y = t and in the unit square is the probability that $X + Y \le t$. For $t \le 1$, this is an isosceles right triangle with side lengths t so the area is $t^2/2$. For $t \ge 1$, this is the complement of an isosceles right triangle with side lengths $t \ge 1$ so the area is $t \ge 1$.
- 27. For $0 \le w \le 1$, then $P(X + Y + Z \le w) = P(T + Z \le w) = \int_0^w \int_0^{w-x} t dt dx = \int_0^w (w x)^2 / 2 dx = w^3 / 6$. For $1 \le w \le 2$, then $P(T + Z \le w) = \int_0^w \int_0^{\min(1, w t)} f_T(t) dx dt = \int_0^w f_T(t) \min(1, w t) dt = \int_0^1 t \min(1, w t) dt + \int_1^w (2 t) \min(1, w t) dt = \int_0^{w-1} t (w t) dt = \int_0^{w-1}$

 $t)dt + \int_{w-1}^{1} t dt + \int_{1}^{w} (2-t)(w-t) dt = (w-1)^{2}(w+2)/6 + 1/2(1-(w-1)^{2}) + 2w(w-1) - (w+2)(w^{2}-1)/2 + (w^{3}-1)/3 = 1/2(w^{2}-2w+2).$ Finally, for $2 \le w \le 3$, then $P(T+Z \le w)1 - P(T+Z > w) = \int_{w-1}^{2} \int_{t-w}^{1} (2-t) dx dt = \int_{w-1}^{2} (1-t+w)(2-t) dt = 2(2-w+1)-3/2(4-(w-1)^{2}) + 1/3(8-(w-1)^{3}) + 2w(2-w+1)-w/2(4-(w-1)^{2}) = 1/6(w-3)^{2}(w+3).$ (Probably made quite a few computational errors here, but the idea is straightforward enough...)

3 Beta and Gamma

- 28. (a) $P(1 B \le x) = P(B \ge 1 x) = 1 F(1 x)$. Thus the pdf is f(1 x) where $f(x) = 1/\beta(a,b)x^{a-1}(1-x)^{b-1}$ is the Beta(a,b) PDF. Thus the pdf is $f(1-x) = 1/\beta(a,b)(1-x)^{a-1}x^{b-1}$ which is the Beta(b,a) PDF.
 - (b) Thinking of a and b as the number of successes and failures in a long sequence of Bernoulli trials and then of Beta(a,b) as the distribution of the probability of success for each Bernoulli trial, then 1 Beta(a,b) should represent the distribution of the probability of failure for the same Bernoulli trials, so we should switch a and b.
- 29. (a) $f_T(t) = \int_0^\infty f_X(t-y) f_y(y) dy = \int_0^\infty (1/\Gamma(a)(\lambda(t-y))^a e^{-\lambda(t-y)}/(t-y)) (1/\Gamma(b)(\lambda y)^b e^{-\lambda y}/y) dy = (\lambda t)^{a+b} e^{-\lambda}/(t\Gamma(a)\Gamma(b)) \int_0^\infty ((1-z))^{a-1}(z)^{b-1} dz$. The inner integral is now the Beta(a,b) integral, so its value is $\Gamma(a)\Gamma(b)/(\Gamma(a+b))$ hence the result is $(\lambda t)^{a+b} e^{-\lambda}/(t\Gamma(a+b))$ which is the $Gamma(a+b,\lambda)$ integral.
 - (b) The MGFs of X and Y are $(\lambda/(\lambda-t))^a$ and $(\lambda/(\lambda-t))^b$ so the product is $(\lambda/(\lambda-t))^{a+b}$ which is the $Gamma(a+b,\lambda)$ MGF.
 - (c) One way to realize $Gamma(a, \lambda)$ is as the sum of a iid $Expo(\lambda)$ rvs. Thus, X + Y can be realized as the sum of a + b iid $Expo(\lambda)$ rvs so it has the $\Gamma(a + b, \lambda)$ distribution. (Thus this is the time until a + b occurrences.)
- 30. $E(B^k) = \int_0^1 x^k 1/\beta(a,b) x^{a-1} (1-x)^{b-1} dx = \int_0^1 1/\beta(a,b) x^{a+k-1} (1-x)^{b-1} dx = \beta(a+k,b)/\beta(a,b) = \Gamma(a+b)/\Gamma(a)\Gamma(a+k)/\Gamma(a+k+b) = (a+k-1)\cdots(a)/(a+k+b-1)\cdots(a+b).$
 - In particular, for k = 2, this is (a + 1)(a)/(a + b + 1)(a + b), so the variance is $(a + 1)(a)/(a + b + 1)(a + b) a^2/(a + b)^2 = ab/(a + b + 1)(a + b)^2$.
- 31. The inverse transform (as in 19) is X = TW/(W+1), Y = T/(W+1). Thus by 2d change of variables, $f_{T,W}(t,w) = f_{X,Y}(tw/(w+1),t/(w+1))t/(w+1)^2 = 1/\Gamma(a)(\lambda tw/(w+1))^a e^{-\lambda tw/(w+1)}/(tw/(w+1))1/\Gamma(b)(\lambda t/(w+1))^b e^{-\lambda t/(w+1)}/(t/(w+1)) * t/(w+1)^2 = 1/\Gamma(a)\Gamma(b)(\lambda t)^{a+b}e^{-\lambda t}/t * w^{a-1}/(w+1)^{a+b}$. Since the pdf factors, they are independent (similarly to problem 19 in the case a = b = 1).
 - Alternatively, X/Y = (X/(X+Y))/(1-X/(X+Y)) = W/(1-W) in the bank-post office story where W is the ratio of time spent waiting for X to the total amount of time spent waiting. Since W is independent of X+Y, then W/(1-W) is also independent of X+Y.

- 32. Simplifying, we find mV/(n+mV) = 1/(1+Y/X) = X/(X+Y). Since X, Y are both positive, then 1+Y/X > 1 so mV/(n+mV) has support (0,1), and we could try to find the answer by integrating against the PDF of Y/X which we found in the previous problem. since $P(mV/(n+mV) \le v) = P(Y/X \ge 1/v 1) = 1 F_{Y/X}(1/v 1)$ so the derivative with respect to v yields $f_{Y/X}(1/v 1)/v^2$.
 - However, an easier approach is to recognize X/(X+Y) as the ratio from the bank-post office story. In that story, $W \sim Beta(m/2, n/2)$.
- 33. This is the computation we already did with Gamma-Poisson conjugacy, so since we observed 2 customers in two hours, the updated posterior PDF is Gamma(3, 5).
- 34. (a) Let $X \sim Unif(0,1)$ and $Y \sim Unif(0,2)$. Then $E(X/(X+Y)) = \int_0^2 \int_0^1 x/2(x+y) dx dy$. Using some manipulation and integration by parts, the result is $1/2 3\log(3)/4 + \log(2) \approx .369188$ while E(X)/(E(X) + E(Y)) = .5/(.5+1) = 1/3. (Should have probably used a discrete example...)
 - (b) Cov(X/(X+Y), X+Y) = Cov(X/(X+Y), X) + Cov(X/(X+Y), Y) = Cov(X/(X+Y), X) + Cov(1-Y/(X+Y), Y) = Cov(X/(X+Y), X) Cov(Y/(X+Y), Y) = 0 since X, Y are iid. Thus $E(X) E(X/(X+Y))E(X+Y) = 0 \implies E(X)/E(X+Y) = E(X/(X+Y))$ if X and Y are iid.
 - (c) By the bank-post office story, X/(X+Y) and X+Y are independent, so $E(X^c) = E((X/(X+Y))^c(X+Y)^c) = E((X/(X+Y))^c)E((X+Y)^c) \implies E(X^c/(X+Y)^c) = E(X^c)/E((X+Y)^c)$.
- 35. $X \sim Gamma(1, \lambda)$. Since $\gamma > 0$, then $1/\gamma > -1$ so the previous result yields $E(T) = 1/\lambda^{1/\gamma}\Gamma(1+1/\gamma)/\Gamma(1)$. For the variance, $E(T^2) = 1/\lambda^{2/\gamma}\Gamma(1+2/\gamma)/\Gamma(1)$, so $Var(T) = 1/\lambda^{2/\gamma}\Gamma(1+2/\gamma)/\Gamma(1) (1/\lambda^{1/\gamma}\Gamma(1+1/\gamma)/\Gamma(1))^2 = 1/\lambda^{2/\gamma}\Gamma(1+2/\gamma) 1/\lambda^{2/\gamma}\Gamma(1+1/\gamma)^2$
- 36. (a) If $\lambda_1 = \lambda_2$, then by the bank-post office story, $T = T_1 + T_2$ and $W = T_1/(T_1 + T_2)$ are independent. Then T and $W/(1 W) = T_1/T_2$ are independent.
 - (b) $T_1 < T_2$ if and only if $T_1/T_2 = W/(1-W) < 1$. If $\lambda_1 = \lambda_2$, then by the bank-post office story, $W \sim Beta(1,1) = Unif(0,1)$ since $Expo(\lambda) = Gamma(1,\lambda)$, so $P(T_1 < T_2) = 1/2$. Otherwise, $P(T_1/T_2 \le t) = P(T_1 \le tT_2) = \int_0^\infty \int_0^{tx} \lambda_1 e^{-\lambda_1 y} \lambda_2 e^{-\lambda_2 x} dy dx = \int_0^\infty (1 e^{-\lambda_1 tx}) \lambda_2 e^{-\lambda_2 x} dx = \lambda_1 t/(\lambda_1 t + \lambda_2)$ so $P(T_1 < T_2) = \lambda_1/(\lambda_1 + \lambda_2)$.
 - (c) Alice first waits for $\min(Expo(\lambda_1), Expo(\lambda_2))$ time. Now let X be the time that it takes Alice to be served. Then using LOTP, $X = \lambda_1/(\lambda_1+\lambda_2)T_1+\lambda_2/(\lambda_1+\lambda_2)T_2$ so the expected total amount of time that Alice spends is $E(\min(Expo(\lambda_1), Expo(\lambda_2)) + \lambda_1/(\lambda_1+\lambda_2)T_1+\lambda_2/(\lambda_1+\lambda_2)T_2)$. Since $\min(Expo(\lambda_1), Expo(\lambda_2)) \sim Expo(\lambda_1+\lambda_2)$, the total expected waiting time is $3/(\lambda_1+\lambda_2)$.
- 37. Suppose we are waiting for arrivals in a period of length t with arrival rate λ . Then the waiting time until j arrivals is a sum of j iid $Expo(1, \lambda)$ random variables which is distributed as $Gamma(j, \lambda)$. Then the event that there are more than or equal to j arrivals in the length t time period is equal to the event that the time before j arrivals is less than or equal to t, so $P(X \ge j) = P(Y \le t)$.

- 38. Let T be Fred's time at the park and N be the total number of visitors during that time. Then $T \sim Expo(\lambda_2)$ and $N|T=t \sim Pois(\lambda t)$. To find the unconditional distribution of N, we need to integrate out t. $P(N=n) = \int_0^\infty P(N=n|T=t)f_T(t)dt = \int_0^\infty e^{-\lambda t}(\lambda t)^n/n!\lambda_2 e^{-\lambda_2 t}dt = \lambda_2 \lambda^n/n! \int_0^\infty e^{-(\lambda+\lambda_2)t}t^n dt = \lambda_2 \lambda^n/(\lambda+\lambda_2)^{n+1}/n! \int_0^\infty e^{-(\lambda+\lambda_2)t}((\lambda+\lambda_2)t)^{n+1}/t dt = \Gamma(n+1)\lambda_2 \lambda^n/n!(\lambda+\lambda_2)^{n+1} = \lambda_2 \lambda^n/(\lambda+\lambda_2)^{n+1}$. Thus $N \sim Geom(\lambda_2/(\lambda+\lambda_2))$.
- 39. (a) From a previous problem, $E(B^k) = (a+k-1)\cdots a/(a+b+k-1)\cdots (a+b)$. Then $E(p^2(1-2p+p^2)) = E(p^2)-2E(p^3)+E(p^4) = (a+1)a/(a+b+1)(a+b)-2(a+2)(a+1)a/(a+b+2)(a+b+1)(a+b)+(a+3)(a+2)(a+1)a/(a+b+3)(a+b+2)(a+b+1)(a+b) = a(a+1)b(b+1)/(a+b)(a+b+1)(a+b+2)(a+b+3).$
 - (b) The posterior distribution does not depend on the order of outcomes since we are assuming that p does not change over time. Thus we are in the situation of the beta-binomial conjugacy so the updated distribution depends only on the fact that A won 6 out of 10 games.
 - (c) The posterior distribution for p is Beta(7,5) by the story of beta-binomial conjugacy.
 - (d) Given p, the outcomes of the games are independent, so the first and second game are uncorrelated conditional on p.

 If we condition only on the historical data, then A winning the first game is positively correlated with A winning the second game. $P(A_1A_2) = \int_0^1 P(A_1A_2|p)f(p)dp = \int_0^1 1/\beta(7,5)p^8(1-p)^4dp = \beta(9,5)/\beta(7,5)$. Analogously, $P(A_1) = \beta(8,5)/\beta(7,5)$ so the covariance between winning games 1 and 2 is $\beta(9,5)/\beta(7,5)-\beta(8,5)^2/\beta(7,5)^2 = 8*7/13*12-(7/12)^2 = 7/12(8/13-7/12) = 7/12*(5/(12*13)) > 0$.
 - (e) Let T be the event of a tie after the first four games, which requires that A wins 2 of the first four. This $P(T) = \int_0^1 P(T|p) f(p) dp = \int_0^1 \binom{4}{2} p^2 (1-p)^2 1/\beta(7,5) p^6 (1-p)^4 dp = 6/\beta(7,5) \int_0^1 p^8 (1-p)^6 dp = 6\beta(9,7)/\beta(7,5) = 4/13.$
- 40. If all trials succeed, then $p \sim Beta(n+1,1)$. $P(p \geq r) = \int_r^1 1/\beta(n+1,1)p^n dp = \int_r^1 (n+1)p^n dp = 1 r^{n+1}$.

4 Order statistics

- 41. An equivalent way to view the Binomial distribution is that we are tossing n balls uniformly randomly into (0,1) and want to find the probability that at least j of them are below p. Equivalently, we want to find the probability that the j^{th} order statistic is at most p. Since the distribution of the j^{th} order statistic is exactly Beta(j, n j + 1), the desired equality follows.
- 42. These three events are disjoint (since they each correspond to a different random variable being the minimum) and exactly one must occur since there must be a minimum between three numbers, so the probability is equal to 1.

- 43. The LHS integral is exactly $P(B \le x)$ for $B \sim Beta(j, n-j+1)$ and the RHS is exactly $P(X \ge j)$ for $X \sim Bin(n, p)$.
- 44. By universality of the uniform, we can view each X_i as $F^{-1}(U_i)$ with inverse transformation $U_i = F(X_i)$. In particular, $F^{-1}(U_{(j)}) = X_{(j)}$ since F is strictly increasing so we can use the change of variables formula $f_{X_{(j)}}(x) = f_{Beta(j,n-j+1)}(F(x))f(x)$. Note that the RHS uses the known CDF and PDF of the X_i 's rather than the unknown CDF/PDF of the order statistic.
- 45. (a) $P(M \le m) = P(X \le m)^2$. Then $P(X \le m) = \int_0^m \lambda e^{-\lambda x} dx = 1 e^{-\lambda m}$ so $P(M \le m) = (1 e^{-\lambda m})^2$. On the other hand, $P(X + Y/2 \le m) = \int_0^m \int_0^{m-x} \lambda e^{-\lambda x} (2\lambda) e^{-2\lambda y} dy dx = \int_0^m \lambda e^{-\lambda x} (1 e^{-2\lambda(m-x)}) dx = (1 e^{-\lambda m}) (e^{-\lambda m} e^{-\lambda 2m}) = (1 e^{-\lambda m})^2$.
 - (b) We view the max as first waiting for one to happen, which is distributed as $\min(X,Y) \sim Expo(2\lambda)$. Then by the memoryless property, waiting for the other to happen takes another $Expo(\lambda)$ amount of time. Thus since $Y/2 \sim Expo(2\lambda)$, these two random variables have the same distribution.
- 46. (a) The continuous formula does not account for the possibility that X = Y which can have nonzero probability in the discrete setting. $P(M = m) = P(X \le m)P(Y = m) + P(X = m)P(Y \le m) P(X = m)P(Y = m) = 2F(m)P(X = m) P(X = m)^2$.
 - (b) There are three possibilities: P(M = 1, L = 1) = 1/4, P(M = 1, L = 0) = 1/2, P(M = 0, L = 0) = 1/4. The marginal PMFs are P(M = 1) = 3/4 and P(L = 1) = 1/4.
- 47. For $a \leq b$, $P(M_n \leq a, M_{n+1} \leq b) = P(M_{n+1} \leq b | M_n \leq a) P(M_n \leq a) = P(X_{n+1} \leq b) P(M_n \leq a) = F(b) F(a)^n$. For $a \geq b$, then $P(M_n \leq a, M_{n+1} \leq b) = P(M_n \leq a | M_{n+1} \leq b) P(M_{n+1} \leq b) = F(b)^{n+1}$.
- 48. If $a \ge b$ then $P(X_{(i)} \le a, X_{(j)} \le b) = P(X_{(i)} \le a | X_{(j)} \le b) P(X_{(j)} \le b) = P(X_{(j)} \le b)$. Otherwise, we repeat the argument used in the chapter: $f_{i,j}(a,b)dadb = nf(a)da(n-1)f(b)db\binom{n-2}{i-1,j-i-1,n-j}F(a)^{i-1}(F(b)-F(a))^{j-i-1}(1-F(b))^{n-j}$ and then dropping the differentials yields the desired PDF: $f_{i,j}(a,b) = nf(a)(n-1)f(b)\binom{n-2}{i-1,j-i-1,n-j}F(a)^{i-1}(F(b)-F(a))^{j-i-1}(1-F(b))^{n-j}$
- 49. (a) $L = \min(X, Y)$ where X, Y are the respective birth times. Note that E(L+M) = E(X+Y) = 0 where $M = \max(X,Y)$. Furthermore, $E(M-L) = E(|X-Y|) = \sqrt{2^7}E(|N(0,1)|)$ by properties of normal distributions. Then $E(|Z|) = \int_{-\infty}^{0} -ze^{-z^2/2}/\sqrt{2\pi}dz + \int_{0}^{\infty} ze^{-z^2/2}/\sqrt{2\pi}dz = \sqrt{2/\pi}$ so $E(M-L) = \sqrt{2^8/\pi}$. Then solving the system of equations yields $E(L) = -1/2\sqrt{2^8/\pi} = -8/\sqrt{\pi}$.
 - (b) $Var(T) = E(T^2) 64/pi$. $E(T^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \min(x,y)^2 \varphi(x) \varphi(y) dx dy$. To solve this, we can first subdivide into two integrals, one where $\min(x,y) = x$ and one where $\min(x,y) = y$. Then it's a straightforward integration problem...apparently the answer is 64.

- 50. (a) There are n+1 positions where Y_{new} can go relative to the order statistics of the Y_1, \ldots, Y_n and it is equally likely to land in any one of them. Thus the probability that $Y_{new} \in [Y_{(j)}, Y_{(k)}]$ is (k-j)/n+1.
 - (b) We can take any j < k which are at least 95 apart.
- 51. The median is the m=(n+1)/2 order statistic. The median of the sample median is $x_{(m)}$ such that $P(X_{(m)} \leq x_{(m)}) = P(X_{(m)} \geq x_{(m)}) = .5$. The median of the X_i 's is x_m such that $P(X_i \leq x_m) = P(X_i \geq x_m) = .5$. Then $P(X_{(m)} \leq x_m)$ is equal to the probability that at least half the X_i are at most x_m , which has probability $\sum_{k=m}^{n} \binom{n}{k} (1/2)^k (1/2)^{n-k} = 1/2^n \sum_{k=m} \binom{n}{k} = 2^{n-1}/2^n = 1/2$. (This is because for n odd, $\sum_{k=m}^{n} \binom{n}{k} = \sum_{k=m}^{n} \binom{n}{n-k} = \sum_{k=0}^{m-1} \binom{n}{k}$.)

5 Mixed practice

- 52. (a) $P(X_j \le x) = P(-\log(U_j) \le x) = P(\log(U_j) \ge -x) = P(U_j \ge e^{-x}) = 1 P(U_j \le e^{-x}) = 1 e^{-x}$. This is the CDF of the Expo(1) distribution.
 - (b) $U = U_1 \cdots U_n$ and $L = -\log(U_1) \cdots \log(U_n)$. For $x \in (0,1)$, $P(U \le x) = P(\log(U) \le \log(x)) = P(-\log(U) \ge -\log(x)) = P(X_1 + \cdots + X_n \ge -\log(x))$. Since each $X_i \sim Expo(1)$, then $X_1 + \cdots + X_n \sim Gamma(n,1)$ so U has CDF $P(Gamma(n,1) \ge -\log(x)) = 1 F_{\Gamma}(-\log(x))$ and PDF $f_{\Gamma}(-\log(x))/x$.
- 53. (a) Let I_j be the probability that starting at position j is CATCAT. Then $E(I_j) = (p_C p_A p_T)^2$ so $E(\sum_j I_j) = 110(p_C p_A p_T)^2$.
 - (b) We can ignore T and G so $p_1/(p_1+p_2)$.
 - (c) By the beta-binomial conjugacy story, the posterior probability of C is $p_2 \sim Beta(2,3)$. The expected value is 2/5.
- 54. (a) X is negative binomial so can be considered as a sum of r iid geometric random variables. Then $M(t) = E(e^{tX}) = \prod_i E(e^{tX_i}) = (\frac{p}{1-(1-p)e^t})^r$. Thus $M(tp/(1-p)) = (\frac{p}{1-(1-p)e^{tp/(1-p)}})^r$. Computing $\lim_{p\to 0} M(tp/(1-p)) = (\lim_{p\to 0} \frac{p}{1-(1-p)e^{tp/(1-p)}})^r = (\lim_{p\to 0} \frac{1}{e^{tp/(1-p)}(1-t/(1-p))})^r = 1/(1-t)^r$. This is the MGF of the sum of r iid Expo(1) random variables or equivalently the MGF of the Gamma(r, 1) distribution.
 - (b) We can view the Gamma(r, 1) distribution as the continuous limit of the Negative binomial distribution when the success probability goes to 0 (in a controlled way accounted for by the scaling p/1 p.