

Predicting Air Quality in Milan

blurb

Dan Herweg

May 2019

Contents

- I. Summary
- II. Background
 - I. Motivation
- III. Data
 - I. Methodology
 - **II.** Feature Construction
 - **III.** Data Exploration
- IV. Model
 - I. Feature Selection
 - **II.** Air Quality Index Prediction
 - III. Bonus: Is smoothed data better?
- V. Conclusion

Summary sentence

Summary

- A summary of results
- Pursuing hypothesis that it will work
- This deck is a brief documentation of the project

II. Background

I. Motivation

Milan has poor air quality

Motivation

Milan has second worst smog in Europe – WHO

A report by the World Health
Organization has placed Milan just
behind Turin and just before Naples
as the three European cities with
the worst levels of atmospheric
pollution.

Article based on WHO report using 2016 data

Poor air quality affects citizens' health

Motivation

A "Pyramid of Effects" from Air Pollution

Fine particles can enter deep into the lungs and enter the blood stream. **Health impacts from particles include:**

- Premature death
- Non-fatal heart attacks
- Aggravated asthma

US Environmental Protection Agency

Predicting AQI could help decision makers introduce interventions that are predicted to manage air quality in real time improving citizens' health

III. Data

- I. Methodology
- **II.** Feature Construction
- **III. Data Exploration**

We will take sensor data from weather and traffic to predict AQI using machine learning methods, selecting on accuracy Methodology

- The process will be the following:
 - 1. Features will be constructed, including the target
 - 2. Features will be selected based on a variety of dimensionality reduction techniques and intuition
 - 3. Train and test sets (Validation?) will be created
 - 4. Multiple prediction models will be trained and tested with these variables
 - 5. The model with the most accurate predictions in the test period will be selected

Data had to be extracted from files generated by sensors, cleaned and merged

Feature Construction

- The data had three main sources
 - Weather Sensors
 - Traffic Gates
 - Pollution Sensors (used to calculate AQI)

Sensors measuring the same thing were averaged

Source of this data was X

Missing data was an issue

Feature Construction

- We wished to predict on the hourly level of data, which was not always available.
 Additionally, in some periods data was just missing. The data was either recorded hourly for the whole period, or imputed to hourly with the appropriate covariates
- Noisy time series data with potential for measurement errors was smoothed (alpha=.2)

Some features were constructed somewhat arbitrarily

Feature Construction

- The vehicle length was selected by visually guessing where a tri modal distribution was best separated into small, medium and large cars
- We took the 15 minute traffic counts

AQI had to be calculated and then transformed to a classifier to serve as the target variable

Feature Construction

Everybody's favorite equation

$$I_{IQA} = \frac{I_{PM10} + \max(I_{NO2}, I_{O3})}{2}$$

Graphic of Scale from poor to good

Valori dell'indice	Cromatismi	Qualità dell'aria
< 50		Buona
50-99	<u> </u>	Accettabile
100-149	<u> </u>	Mediocre
150-199	•	Scadente
> 200	•	Pessima

Air Quality Index score

Feature Construction

Air Quality Index score distribution

Feature Construction

Temperature had a normal distribution and declined into year end

Wind speed was very right skewed, with large peaks

Traffic had obvious daily/weekly pattern and a "tri-modal" distribution

Different Vehicle types had different distributions

- Can see weekends in 1
- Dist more bimodal or uniform in 4, more power lawish in 1
- What are the vtypes and can we tell a story?

Pollutants looked a lot like AQI pollutants, Ozone least so Data Exploration

Show example of correlated, least correlated, most anticorrelated pollutants

Smoothing eliminates noise from the features

Apparently Euro5 vehicles tend to be medium length Data Exploration

- Though correlation rounds to 1, coefficient is about .5 so not 1:1
- Still, a good model should probably not have both of these variables

There were negatively correlated variables, but not as striking Data Exploration

Some variables not correlated

Pollutants are very correlated except ozone. This is good for imputation

Data Analysis - Multivariate

Weather data is not super correlated except the two radiation measures, which is to be expected

Traffic data is more correlated, and all positively correlated

All data (should make this just features?)

IV. Model

- I. Feature Selection
- **II.** Prediction
- III. Bonus: Is smoothed data better?

We have too many variables to drive an actionable result

Feature Selection

Some techniques to do dimensionality reduction:

Penalization: Lasso

Embedded: Tree-based methods

Algorithmic: Stepwise selection

Heuristic: A method I made up

 After these we may apply a Voting: What variables are common to these methods?

Variables from each method

Feature Selection

- Table
- Lets select the variables we want to use and try some methods that don't select for variables as well

Before we predict we need a train and test set

Prediction

- Distribution of classes in train test
- Strengths weaknesses tradeoff
- Validation?
- Visualization histogram,
 - grey version of AQI to emphasize
 - dividing line?

Picking the modal training classification for the test data sets a "naive" benchmark

Prediction

Each of our variables alone does not match the "naive" accuracy

• Bar chart of variables' accuracy

Each of our variables alone does not match the "naive" accuracy

Time series visualization of test data

Using the variables together yields better results, best in random forest probably with X%

Prediction

asdf

Using the variables together yields better results Prediction

Visualization of test set

Final selection of data and model

Prediction

asdf

Rerunning the data on the nonsmoothed versions was better or worse

Noisy Data

Wow I am surprised

V. Conclusion

X model with Y variables performed prediction best Conclusion

- Why it was selected
- Weaknesses
- Noisy data conclusion

Resources

