Zero-sum Games and Nash Equilibrium

Lemma

Let $\{\{1,2\},(A_i),(u_i)\}$ be a zero-sum strategic game. Then $\max_{y\in A_2}\min_{x\in A_1}u_2(x,y)=-\min_{y\in A_2}\max_{x\in A_1}u_1(x,y)$. Further, $y\in A_2$ solves the problem $\max_{y\in A_2}\min_{x\in A_1}u_2(x,y)$ if and only if it solves the problem $\min_{y\in A_2}\max_{x\in A_1}u_1(x,y)$.

- For any function f, $-\min_z f(z) = \max_z -f(z)$ and $\arg\min_z f(z) = \arg\max_z -f(z)$.
- $\bullet \min_{x \in A_1} u_2(x, y) = \max_{x \in A_1} -u_2(x, y) = \max_{x \in A_1} u_1(x, y).$
- $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y).$