```
In [1]:
        #import proper tools
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        #Access the csv files and remove the information that isn't necessary for this analysis
        anne_raw = pd.read_csv('Anne.csv').drop(['Unnamed: 0'], axis=1)
        sarah_raw = pd.read_csv('Sarah.csv').drop(['Unnamed: 0'], axis=1)
        anne_df = anne_raw.drop(['File One','File Two'], axis=1)
        sarah_df = sarah_raw.drop(['File One','File Two'], axis=1)
In [2]:
        #add_confus adds columns to the dataframes that represent what kind of correct or incorr
        ect they are
        #in the style of a confusion matrix
        def add confus(mat):
            same = mat['Other Vowel'].isnull()
            diff = np.logical_not(mat['Other Vowel'].isnull())
            truth = mat['Correctness']
            falth = np.logical_not(mat['Correctness'])
            mix = lambda a,b: np.where(np.logical_and(a,b),True, False)
            mat['True Same'] = mix(same, truth)
            mat['False Same'] = mix(diff,falth)
            mat['True Different'] = mix(diff,truth)
            mat['False Different'] = mix(same, falth)
        add_confus(anne_df)
        add_confus(sarah_df)
In [3]: t_types = [anne_df['Test Type'][i] for i in [1,26,51,76]]
        confus = list(anne df.columns[-4:])
        def get_test_type_stats(mat):
            data = dict([])
            for t in t_types:
```

```
confus = list(anne_df.columns[-4:])
def get_test_type_stats(mat):
    data = dict([])
    for t in t_types:
        temp = dict([])
        for c in confus:
            temp[c] = len( (np.where(mat[mat['Test Type']==t][c]))[0])
        data[t]=temp
    result = pd.DataFrame(data).T
    result.index.name = 'Test Type'
    return result

test_type_matrix = get_test_type_stats(anne_df)+get_test_type_stats(sarah_df)
test_type_matrix
```

Out[3]:

True Same False Same True Different False Different

BareVowel	25	0	25	0
SameCons	32	5	12	1
DiffCons	23	7	16	4
Words	8	1	29	12

In [4]: test_type_matrix.plot.bar(title='Results by Test Type')

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x2a6f6534d48>


```
#find_confused_vowels gets a dataframe with each pair of confused vowels and the frequen
In [5]:
        cy of that pair
        def find_confused_vowels(mat):
            false_sames = mat[mat['False Same']==True]
            pairs = list(zip(false_sames['Vowel'],false_sames['Other Vowel']))
            for i in range(len(pairs)):
                if pairs[i][0] > pairs[i][1]:
                    pairs[i] = (pairs[i][1],pairs[i][0])
            counts = {}
            for i in pairs:
                counts[i] = counts.get(i, 0) + 1
            return pd.DataFrame.from_dict(counts,orient='index')
        #Then we aggregate the confusions between each listener
        confused_vowels = find_confused_vowels(anne_df).append(find_confused_vowels(sarah_df))
        confused_vowels.reset_index(inplace=True)
        confused_vowels = confused_vowels.groupby(confused_vowels['index']).aggregate({0:'sum'})
        #And then it'd be nice to have it clearly labeled and sorted
        confused_vowels.index.name = "Vowels"
        confused_vowels.columns = ["Times Confused"]
        confused_vowels.sort_values(by='Times Confused',inplace=True,ascending=False)
        confused_vowels
```

Out[5]:

Times Confused

Vowels		
(ε, Ι)	;	3
(æ, I)	2	2
(a, eı)		1
(a, n)		1
(eɪ, ɪ)		1
(oʊ, u)		1
(æ, ε)		1
(æ, n)		1
(ɪ, ʊ)		1
(υ, Λ)		1

```
In [6]: #get_false_diff_data returns a Series containing each vowel
        #and the number of times it was falsely marked as different from itself
        vowels = ['a','æ','eɪ','ɛ','i','ɪ','oʊ','u','ʊ','∧']
        def get_false_diff_data(mat):
            false_diffs = mat[mat['False Different']==True]
            false_diffs = false_diffs['Vowel'].value_counts()
            result = pd.Series([0 for i in range(len(vowels))],index=vowels)
            result += false diffs
            return result.fillna(0).astype('int32')
        false_diff_data = get_false_diff_data(anne_df) + get_false_diff_data(sarah_df)
        #And then we sort it and label it
        false_diff_data.sort_values(ascending=False,inplace=True)
        false_diff_data.index.name = 'Vowels'
        false_diff_data = pd.DataFrame(false_diff_data)
        false_diff_data.columns = ['Times Confused']
        false_diff_data
```

Out[6]:

Times Confused

Vowels	
ช	4
٨	2
u	2
I	2
3	2
еі	2
а	2
i	1
ου	0
æ	0

```
In [7]: axs = [None,None]
    axs[0] = false_diff_data.plot.bar(legend=False,title='Vowels Falsely Labeled Different')
    plt.xticks(rotation='horizontal')
    axs[1] = confused_vowels.plot.bar(legend=False,title='Vowels Falsely Labeled The Same')
    for i in axs:
        i.set_ylabel('Times Confused')
        i.plot()
```



```
In [8]: #Now let's analyze in terms of formants
    #First, load up the formant measurements
    formants = {}
    for i in vowels:
        df = pd.read_csv('Vowel Formants/'+i+' formants.csv').drop('Unnamed: 0', axis=1)
        df.index = df['File']
        formants[i] = df.drop('File', axis=1)
```

```
In [9]: | #Now, we're going to get all the formant data for each type of correct/incorrect answer
        #compare formants takes a list with two vowels and two recording names
        #and returns a DataFrame with a row for each recording and a row of the differences betw
        een them
        def compare_formants(args):
            [v1,v2,rec1,rec2] = args
            v2 = v1 if type(v2) = type(0.1) else v2
            if v2!=v1:
                data = \{\}
                data[v1] = formants[v1].loc[rec1]
                data[v2] = formants[v2].loc[rec2]
                data['Differences'] = np.abs(data[v1] - data[v2])
                return pd.DataFrame(data).T
            else:
                row1 = {v1: formants[v1].loc[rec1]}
                row2 = {v2: formants[v2].loc[rec2]}
                result = pd.DataFrame(row1).T.append(pd.DataFrame(row2).T)
                result.loc['Differences'] = np.abs(result.iloc[0]-result.iloc[1])
                return result
        #get_formant_diffs gets all the formant difference DataFrames from compare_formants for
        #a particular person's data and a particular type of correct/incorrect answer
        def get_formant_diffs(mat_raw,mat,confus_type):
            start = mat_raw[mat[confus_type]==True].drop(['Test Type','Correctness'],axis=1)
            data = []
            for i in range(len(start.index)):
                data.append(compare_formants(list(start.iloc[i])))
            return pd.concat(data)
        getfd = lambda i: get_formant_diffs(anne_raw,anne_df,i).append(get_formant_diffs(sarah_r
        aw, sarah df,i))
        formant_differences = [getfd(i) for i in confus]
```

In [10]: true_sames = formant_differences[0] true_sames

Out[10]:

	F1	F2	F3
ប	446.734368	1879.037848	2618.457233
ប	449.088141	1382.682606	2827.117488
Differences	2.353773	496.355243	208.660255
еі	482.892249	1916.911926	2495.003712
еі	420.962731	1990.003836	2616.078624
I	471.408238	1859.902305	2620.249795
Differences	11.625154	23.288098	159.321337
æ	629.130745	1403.061221	1870.294175
æ	592.698554	1849.083031	2573.279145
Differences	36.432190	446.021810	702.984970

In [11]: false_sames = formant_differences[1]
 false_sames

Out[11]:

	F1	F2	F3
3	515.572416	1775.775877	2718.365807
æ	612.443391	1630.905556	2461.901065
Differences	96.870975	144.870321	256.464743
3	515.572416	1775.775877	2718.365807
I	457.423837	1893.682812	2810.138605
Differences	58.148579	117.906935	91.772798
æ	663.025620	1249.984673	2181.902514
I	449.237974	1618.567623	2243.761852
Differences	213.787645	368.582950	61.859338
I	404.352901	1816.292037	2575.728933
æ	607.018446	1473.480897	2351.374491
Differences	202.665545	342.811139	224.354443
ου	519.866292	994.608746	2949.863284
u	371.032908	1218.497455	2369.649039
Differences	148.833383	223.888709	580.214245
I	457.423837	1893.682812	2810.138605
ε	525.408082	1749.796837	2705.798191
Differences	67.984245	143.885975	104.340414
٨	599.391475	1403.895563	2701.419439
ប	475.125557	1551.899372	2761.487721
Differences	124.265918	148.003809	60.068282
а	798.367313	1313.082533	2928.810008
еі	483.991883	1950.212322	2633.034089
Differences	314.375430	637.129789	295.775919
æ	663.025620	1249.984673	2181.902514
٨	575.382804	1400.388502	2549.863140
Differences	87.642816	150.403829	367.960626
I	449.237974	1618.567623	2243.761852
еі	442.380112	1784.093832	2557.371887
Differences	6.857862	165.526209	313.610035
а	654.151902	1144.355144	2408.698477
٨	550.966384	1498.301414	2355.856070
Differences	103.185518	353.946270	52.842407
3	563.915391	1538.017191	2605.840116
I	404.352901	1816.292037	2575.728933
Differences	159.562490	278.274846	30.111182
I	449.237974	1618.567623	2243.761852
υ	448.093340	1814.923652	2949.367416

Out[12]:

	F1	F2	F3
٨	628.643811	1335.637772	2445.672216
I	443.777124	1881.837542	2672.748522
Differences	184.866686	546.199769	227.076306
i	258.124019	2268.928046	3198.124924
а	799.338950	1121.237671	2835.682242
I	483.033392	1836.614208	2460.928458
Differences	19.644212	673.168488	83.591145
еі	464.894189	1571.287326	1802.909397
3	576.352814	1628.385992	2415.239600
Differences	111.458625	57.098667	612.330203

246 rows × 3 columns

In [13]: false_diffs = formant_differences[3]
 false_diffs

Out[13]:

	F1	F2	F3
u	362.472216	1832.593644	2424.908777
u	387.673587	1837.815405	2588.727893
Differences	25.201371	5.221762	163.819116
3	527.694699	1782.176279	2566.590856
3	563.915391	1538.017191	2605.840116
Differences	36.220692	244.159088	39.249260
ប	448.093340	1814.923652	2949.367416
ប	445.342566	1335.476542	2629.003941
Differences	2.750774	479.447110	320.363475
еі	442.380112	1784.093832	2557.371887
еі	567.976686	1814.452738	2460.873349
Differences	125.596574	30.358907	96.498539
3	576.352814	1628.385992	2415.239600
3	642.513263	1465.413486	2728.941647
Differences	66.160449	162.972507	313.702047
I	471.408238	1859.902305	2620.249795
I	483.033392	1836.614208	2460.928458
Differences	11.625154	23.288098	159.321337
٨	648.839196	1348.077438	2385.181954
٨	593.614902	1548.153806	2435.873722
Differences	55.224294	200.076368	50.691767
I	471.408238	1859.902305	2620.249795
I	483.033392	1836.614208	2460.928458
Differences	11.625154	23.288098	159.321337
u	363.635113	1417.043586	1705.878628
u	371.032908	1218.497455	2369.649039
Differences	7.397796	198.546131	663.770411
а	609.356546	1372.475214	2138.313398
а	756.772726	1019.069894	3097.826607
Differences	147.416180	353.405320	959.513208
а	609.356546	1372.475214	2138.313398
а	756.772726	1019.069894	3097.826607
Differences	147.416180	353.405320	959.513208
٨	593.614902	1548.153806	2435.873722
٨	648.839196	1348.077438	2385.181954
Differences	55.224294	200.076368	50.691767
υ	448.093340	1814.923652	2949.367416
ប	445.342566	1335.476542	2629.003941

```
Differences
             2.750774
                       479.447110
                                   320.363475
        ช 502.677604 1163.445720 2377.337314
        บ 530.832678 1253.084204 2306.391676
            28.155073
Differences
                        89.638484
                                   70.945638
        บ 530.832678 1253.084204 2306.391676
        บ 502.677604 1163.445720 2377.337314
Differences
            28.155073
                        89.638484
                                   70.945638
       ei 429.501661 1938.924039 2457.808429
       ei 464.894189 1571.287326 1802.909397
Differences
            35.392528
                       367.636713
                                  654.899032
        i 283.523330 2208.375493 2951.898843
         i 337.670373 2276.986644 2983.364057
Differences
            54.147042
                        68.611151
                                   31.465214
#Is there a connection between average formant magnitude and confusion type?
formant heights = {}
for i in range(len(formant_differences)):
    checker = formant differences[i].drop('Differences')
    formant_heights[confus[i]] = checker.mean()
pd.DataFrame(formant_heights).T
#Not really, no
                    F1
                                F2
                                            F3
   True Same 503.427791 1677.298617 2578.756461
  False Same 525.230721 1568.985872 2561.303527
 True Different 510.817117 1599.091735 2513.850159
False Different 508.858198 1571.073796 2512.380914
#Is there a connection between formant differences and confusion type?
just differences = {}
for i in range(len(formant_differences)):
    checker = formant_differences[i].loc['Differences']
    just_differences[confus[i]] = checker.mean()
pd.DataFrame(just_differences).T
```

Out[15]:

In [15]:

In [14]:

Out[14]:

F3	F2	F1	
168.788264	104.988122	30.112704	True Same
241.921538	251.660524	121.948080	False Same
346.896550	463.075380	179.544871	True Different
299.122028	198.189236	49.438788	False Different

#Looks promising! Let's get more detail

F1

F2

F3

```
In [16]: all_differences = []
for i in range(len(formant_differences)):
    add_df = formant_differences[i][formant_differences[i].index=='Differences'].copy()
    add_df['Confusion Type'] = confus[i]
    all_differences.append(add_df)

all_differences = pd.concat(all_differences).reset_index().drop('index',axis=1)
    for i in ['1','2','3']:
        all_differences['F'+i+' Decile'] = list(pd.qcut(all_differences['F'+i],10,range(1,11)))
    deciles = all_differences.drop(['F1','F2','F3'], axis=1)
    deciles
```

Out[16]:

	Confusion Type	F1 Decile	F2 Decile	F3 Decile
0	True Same	1	9	7
1	True Same	6	3	4
2	True Same	1	3	2
3	True Same	5	6	4
4	True Same	2	1	3
195	False Different	1	8	8
196	False Different	4	4	3
197	False Different	4	4	3
198	False Different	4	8	10
199	False Different	5	3	2

200 rows × 4 columns

```
In [18]: decile_counts['F1 Decile'] = pd.DataFrame(decile_counts['F1 Decile'])
    decile_counts['F1 Decile']
```

Out[18]:

	1	2	3	4	5	6	7	8	9	10
True Same	16	15	17	15	13	7	3	2	0	0
False Same	2	0	0	0	0	2	4	2	2	1
True Different	1	1	5	0	5	7	14	12	18	19
False Different	2	3	0	5	1	3	1	2	0	0

```
decile_counts['F2 Decile'] = pd.DataFrame(decile_counts['F2 Decile'])
In [19]:
         decile_counts['F2 Decile']
Out[19]:
                           3 4 5 6
                                        7 8
                                               9 10
            True Same 16 17 18 10 8 11
           False Same
                      0
                         0
                            0
                               0 6
                                     2
                                         2
          True Different
                                5 6
                                     4 13 10 18 19
                            4
          False Different 3 1 1 2 1
                                     3
                                        1
                                            5
```

```
In [20]: decile_counts['F3 Decile'] = pd.DataFrame(decile_counts['F3 Decile'])
    decile_counts['F3 Decile']
```

Out[20]:

	1	2	3	4	5	ь	1	8	9	10
True Same	16	15	7	11	12	10	4	4	3	6
False Same	0	1	4	1	0	0	3	2	1	1
True Different	4	2	5	9	3	10	14	10	16	9
False Different	0	2	5	0	3	0	0	3	0	4

```
In [21]: axs = [None,None,None]
    ttl = 'Number of Each Type of Correct and Incorrect Answers in Each Decile Range of Diff
    erences in F'
    titles = [ttl+i for i in ['1','2','3']]
    for i in enumerate(decile_counts):
        axs[i[0]] = decile_counts[i[1]].T.plot.bar(title=titles[i[0]], figsize=(10,5))
        plt.xticks(rotation='horizontal')
        axs[i[0]].set_xlabel(i[1])
        axs[i[0]].set_ylabel('Number of Incidences')
        axs[i[0]].plot()
```

Number of Each Type of Correct and Incorrect Answers in Each Decile Range of Differences in F1

Number of Each Type of Correct and Incorrect Answers in Each Decile Range of Differences in F2

Number of Each Type of Correct and Incorrect Answers in Each Decile Range of Differences in F3

