Report on panel model results

Vicente López Díaz

July 30, 2021

Abstract

These notes relate panel data models used for data with two levels (city and brand) additional to time.

The objective is to relate the models that can describe the data. There are several usual features to consider in a model with panel data, for example, changes on parameters for time or individual. Also, specification on error term is relevant for interpretation.

1 Data plots

Here is a summary of the data available for the analysis.

Figure 1 presents the initial data points used for the analysis.

To decide which brands to include, I considered the number of observations on the period previous to the tax implementation, the tax started in january 2020, I made an exploratory analysis on the december 2019 data. This would ease the estimation, brands with few observations would have difficulties to calculate most estimates. Data for brands with few observations can be analyzed after defining a criteria to form brand groups.

Figure 2 only considers the 7 most frequent brands. The graph provides some guidance on what to consider for the proposed descriptive model. In particular, there is clear trend over time and there are price adjustments in almost every january. Results only consider data for the 7 brands. Brand labels are alphabetic, as shown in the graph: 1, Benson; 2, Camel; 3, Chesterfield; 4, Lucky; 5, Marlboro; 6, Montana; 7, Pall Mall.

Except for prices of other products, there are no other potential regressors to consider at the same level of the data.

2 Dummies for each level: city, brand, time

Estimations in this section use areg, it imposes fixed effects. Using this method there is one category with parameters "absorbed", which are not estimated as a result of the procedure.

Figure 1: All brands average price per unit

Precios promedio por unidad 3.0 -Marca Pesos corrientes BENSON & HEDGES CAMEL CHESTERFIELD LUCKY STRIKE MARLBORO MONTANA PALL MALL 2.0 -2016 Periodo 2014 2020 2012 2018

Figure 2: Seven brands average price per unit

Specification with indicators for city, brand and trend time, with the same tax effect on all the brands.

$$y_{ctm} = \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_1' tax 2020 + \beta_1' tax 2021 + u_{ctm}; \quad (2.1)$$

$$c = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

Specification with indicators for city, brand and trend time, with interacted effect for each brand.

$$y_{ctm} = \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_{1m}' tax 2020 + \beta_{2m}' tax 2021 + u_{itm};$$
 (2.2)
$$c = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

Dummy variables for time month and year, with same tax for all brands.

$$y_{ctm} = \alpha_{i}^{*} + \gamma_{m}^{*} + month + year + \beta_{0}^{'} jan + \beta_{1}^{'} tax 2020 + \beta_{2}^{'} tax 2021 + u_{itm}; \quad (2.3)$$

Dummy variables for time month and year, with different tax for each brand.

$$y_{ctm} = \alpha_i^* + \gamma_m^* + month + year + \beta_0' jan + \beta_{1m}' tax 2020 + \beta_{2m}' tax 2021 + u_{itm};$$
 (2.4)

The columns 1 and 3 consider the same effect for each brand (2.1) and (2.3), the columns 2 and 4 estimate a different effect for each brand (2.2) and (2.4). The columns 1 and 2 consider a time trend, columns 3 and 4 use a combination of dummy variables for year and month.

Table 1: Fixed Effects for city and brand combination

	(1)	(2)	(3)	(4)
VARIABLES	ppu	ppu	ppu	ppu
jan20	0.209***	0.238***	-0.017*	0.012
	(0.011)	(0.024)	(0.009)	(0.018)
jan21	0.242***	0.285***	-0.011	0.032*
	(0.011)	(0.024)	(0.010)	(0.019)
jan	-0.024***	-0.024***	-0.069***	-0.069***
	(0.004)	(0.004)	(0.004)	(0.004)
jan20#2.marca	, ,	-0.007	, ,	-0.012
		(0.042)		(0.032)
jan20#3.marca		-0.111**		-0.112***
		(0.043)		(0.033)
jan20#4.marca		-0.147***		-0.150***
		(0.039)		(0.030)
jan20#5.marca		0.052		0.051**
		(0.032)		(0.024)
jan 20 #6.marca		-0.239***		-0.235***

		(0.062)		(0.048)
jan20#7.marca		-0.028		-0.024
Jan20771.marca		(0.034)		(0.024)
jan21#2.marca		-0.034		-0.040
janzi#2.marca		(0.040)		(0.031)
ian 21 #2 marea		-0.116**		-0.118***
jan21#3.marca				
: 01 // /		(0.046) -0.132***		(0.035) $-0.134***$
jan21#4.marca				
: 01 // 5		(0.038)		(0.029)
jan21#5.marca		0.022		0.021
. 01 // 0		(0.032)		(0.024)
jan21#6.marca		-0.361***		-0.357***
		(0.063)		(0.048)
jan21#7.marca		-0.036		-0.031
		(0.034)		(0.026)
2.marca	-0.012***	-0.011***	-0.006**	-0.006**
	(0.003)	(0.003)	(0.003)	(0.003)
3.marca	-0.595***	-0.593***	-0.592***	-0.591***
	(0.004)	(0.004)	(0.003)	(0.003)
4.marca	-0.270***	-0.268***	-0.268***	-0.266***
	(0.003)	(0.003)	(0.003)	(0.003)
5.marca	0.011***	0.010***	0.011***	0.010***
	(0.003)	(0.003)	(0.002)	(0.002)
6.marca	-0.524***	-0.521***	-0.527***	-0.524***
	(0.005)	(0.005)	(0.004)	(0.004)
7.marca	-0.435***	-0.435***	-0.441***	-0.440***
	(0.003)	(0.003)	(0.002)	(0.002)
ym	0.009***	0.009***	, ,	, ,
	(0.000)	(0.000)		
Constant	-3.925***	-3.926***	1.991***	1.990***
	(0.018)	(0.018)	(0.004)	(0.004)
	` /	` ,	,	` ,
Observations	24,010	24,010	24,010	24,010
R-squared	0.897	0.897	0.940	0.940
*		rore in paror		

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Results only consider data for the 7 brands. In the results they have a number as label assigned in alphabetic order, the same shown in the graph: 1, Benson; 2, Camel; 3, Chesterfield; 4, Lucky; 5, Marlboro; 6, Montana; 7, Pall Mall.

Although the model with dummy time variables fits the data better, R-squared, for ease of analysis of the tax effect the model with trend will be used subsequently. Because the tax effect in the last models is spread in the combination of year and month, together with the explicit coefficients for january 2020 and january 2021.

2.1 Comparisons by segment

This section separates the previous estimation of interactions by brand type or segment.

Results by brand type: premium, columns 1 and 2; medium, columns 3 and 4; low, columns 5 and 6. The omitted identifier corresponds to the reference brand

Table 2: Fixed Effects by brand type

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	ppu	ppu	ppu	ppu	ppu	ppu
jan20	0.219***	0.198***	0.182***	0.119***	0.191***	0.225***
J	(0.012)	(0.019)	(0.021)	(0.033)	(0.034)	(0.040)
jan21	0.238***	0.235***	0.235***	0.188***	0.231***	0.310***
	(0.012)	(0.019)	(0.021)	(0.033)	(0.036)	(0.042)
jan	-0.018***	-0.018***	-0.040***	-0.040***	-0.013	-0.013
	(0.004)	(0.004)	(0.007)	(0.007)	(0.009)	(0.009)
jan20#2.marca		-0.009				
iam 20 // 5 manaa		(0.032) $0.051**$				
jan20#5.marca		(0.025)				
jan20#6.marca		(0.023)				-0.119*
Jan 20 77 O. marca						(0.072)
jan20#7.marca				0.102**		(31312)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(0.041)		
$\rm jan 21 \# 2.marca$		-0.037		, ,		
		(0.031)				
jan 21 #5.marca		0.022				
. 01 // 0		(0.025)				0.050***
jan21#6.marca						-0.252***
jan21#7.marca				0.076*		(0.073)
janzi#1.marca				(0.040)		
2.marca	-0.008***	-0.007***		(0.040)		
2 ,111,012,003	(0.003)	(0.003)				
5.marca	0.008***	0.007***				
	(0.002)	(0.002)				
6.marca					0.101***	0.102***
					(0.007)	(0.007)
7.marca			-0.165***	-0.166***		
	0.010***	0.010***	(0.004) $0.009***$	(0.004) $0.009****$	0.007***	0.007***
ym	0.010*** (0.000)	0.010*** (0.000)	(0.009^{4444})	$(0.009^{-1.17})$	0.007*** (0.000)	0.007*** (0.000)
Constant	-4.429***	-4.429***	-4.040***	-4.041***	-2.892***	-2.895***
Composition	(0.019)	(0.019)	(0.037)	(0.037)	(0.051)	(0.051)
	(/	\ /	(/	()	()	(/

Observations	$13,\!396$	$13,\!396$	6,700	6,700	3,914	3,914
R-squared	0.917	0.918	0.846	0.846	0.760	0.761

Brand labels are alphabetic: 1, Benson; 2, Camel; 3, Chesterfield; 4, Lucky; 5, Marlboro; 6, Montana; 7, Pall Mall.

Table 3 shows results to tests coefficient equality between brands. The first two rows correspond to the complete sample (Table 1, columns 1 and 2). Rows third and fourth test for difference in premium brands (Table 2, columns 1 and 2). Rows fifth and sixth test for difference in medium brands (Table 2, column 3 and 4). Rows seventh and eighth test for difference in lower priced brands (Table 2, column 5 and 6). Columns 1 to 3 indicate the parameters and result for the test of fixed effects or individual effects by brand. Columns 4 to 6 show the values to test for the equality of the effect by brand of the tax in 2020. Columns 7 to 9 show the values and test result for the equality of the effect by brand of the tax in 2021.

Table 3: F tests for equality of coefficients

(6)		Ξı		9.14		1.88		3.52		11.8	
(8)	Equality of Tax 2021	Numerator Denominator		23942		13340		6647		3865	
(7)	Equal	Numerator		9		2		1		1	
(9)		ഥ		8.15		2.89		60.9		2.74	Ţ,
(5)	Equality of $Tax 2020$	Immerator Denominator		23942		13340		6647		3865	t 1 percent level
(4)	Equali	Numerator		9		2		Н		1	All tests are significant at 1
(3)	t.	뇐	10163.44	10006.08	19.05	16.81	1604.66	1613.81	187	193.13	All tests an
(2)	Equality of Intercept	Denominator	23954	23942	13344	13340	6649	6647	3867	3865	
(1)	Eqι	Numerator	9	9	2	2	П	П	П	1	
		Equation	(2.1)	(2.2)	(2.1)	(2.2)	(2.1)	(2.2)	(2.1)	(2.2)	

3 Constant Parameters over time

This section presents estimations using xtreg. The first subsection presents static estimations, the second subsection contains dynamic estimates.

3.1 Static models

The first model includes the effect of the price change in every january, january 2020 and january 2021 and trend.

$$y_{it} = \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_1' tax 2020 + \beta_1' tax 2021 + u_{it};$$
 (4.1)

$$c = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

The second model includes interactions for the effect of the price change in january 2020 and january 2021, for different brand-types.

$$y_{it} = \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_{1m}' tax 2020 + \beta_{2m}' tax 2021 + u_{it}; \quad (4.2)$$

$$i = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

Because there are many omitted variables captured in the individual effects, there is the question of the relevance of them as fixed or random.

The result of the Hausman test for fixed effects does not rule out the non systematic difference in coefficients, this is in favour of the random effects model: $\text{Chi2}(4) = 0.60, Prob \ge chi2 = 0.9628$

Similarly the Breusch-Pagan test for random effects does rule out the alternative of OLS: chibar2(01) = 7.5e+05, $Prob \ge chibar2 = 0.0000$

The test of unit root, using the Fischer type estimation from Choi (2001): Inverse chi-squared(500) = 1112.8056, $Prob \ge chi2 = 0.0000$, does not rule out the presence of unit root for any panel (defined as a combination of city and brand), except for the model that includes a drift. The result suggests to consider different trends for each brand or city, there is an estimation by brand to test for unit roots by specifications of the panel.

Next are the results from the complete sample, columns (1,2,4,5) are estimated using random effects. The third column presents fixed individual effects estimates, since the estimates by brand (presented next) suggest that most brands have fixed effects for city.

Column (1) corresponds to the equation (4.1), column (4) restricts the estimation in column (1) to zero trend. Column (2) corresponds to equation (4.2) column (4) restricts the estimation in column (4) to zero trend. Column (3) corresponds to column (2) estimated using fixed effects.

Table 4: Fixed Effects for brand and city by brand type

	(1)	(2)	(3)	(4)	(5)
VARIABLES	ppu	ppu	ppu	ppu	ppu

jan20	0.202***	0.230***	0.230***	-0.015**	0.012
	(0.010)	(0.021)	(0.021)	(0.007)	(0.015)
jan21	0.232***	0.276***	0.275***	-0.012	0.027*
	(0.010)	(0.021)	(0.021)	(0.008)	(0.016)
jan	-0.023***	-0.023***	-0.023***	-0.070***	-0.070***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
2.marca $#$ jan 20		-0.012	-0.011		-0.011
		(0.037)	(0.037)		(0.026)
3.marca $#$ jan 20		-0.109***	-0.108***		-0.103***
		(0.039)	(0.039)		(0.027)
4.marca#jan 20		-0.125***	-0.124***		-0.129***
		(0.034)	(0.034)		(0.024)
5.marca#jan 20		0.056**	0.056**		0.052***
		(0.028)	(0.028)		(0.020)
6.marca#jan 20		-0.194***	-0.191***		-0.195***
		(0.056)	(0.056)		(0.039)
7.marca#jan20		-0.052*	-0.053*		-0.040*
		(0.030)	(0.030)		(0.021)
2.marca $#$ jan 21		-0.047	-0.051		-0.039
		(0.036)	(0.036)		(0.025)
3.marca $#$ jan 21		-0.101**	-0.101**		-0.100***
		(0.041)	(0.041)		(0.029)
4.marca#jan 21		-0.117***	-0.118***		-0.113***
		(0.034)	(0.034)		(0.024)
5.marca#jan 21		0.027	0.027		0.022
		(0.028)	(0.028)		(0.020)
6.marca $#$ jan 21		-0.364***	-0.364***		-0.360***
		(0.056)	(0.056)		(0.039)
7.marca#jan 21		-0.053*	-0.051*		-0.033
		(0.030)	(0.030)		(0.021)
2.marca	-0.013	-0.013		-0.009	-0.008
	(0.024)	(0.022)		(0.018)	(0.017)
3.marca	-0.605***	-0.604***		-0.603***	-0.602***
	(0.024)	(0.022)		(0.018)	(0.017)
4.marca	-0.274***	-0.272***		-0.269***	-0.268***
	(0.024)	(0.021)		(0.017)	(0.017)
5.marca	0.004	0.004		0.007	0.007
	(0.022)	(0.020)		(0.016)	(0.016)
6.marca	-0.502***	-0.500***		-0.505***	-0.503***
	(0.028)	(0.026)		(0.021)	(0.020)
7.marca	-0.426***	-0.425***		-0.443***	-0.442***
	(0.023)	(0.021)		(0.017)	(0.017)
ym	0.009***	0.009***	0.009***		
	(0.000)	(0.000)	(0.000)		

Constant	-3.940*** (0.023)	-3.940*** (0.022)	-4.137*** (0.017)	1.989*** (0.012)	1.989*** (0.012)
Observations Number of gr_marca_ciudad	23,926 263	23,926 263	23,926 263	23,926 263	23,926 263
R-squared			0.866		

Next table present the results by brand type: premium, columns 1 and 2; medium, columns 3 and 4; low, columns 5 and 6. The omitted identifier corresponds to the reference brand. Columns (1,3,5) correspond to the equation (4.1), columns (2,4,6) correspond to equation (4.2).

Table 5: Fixed Effects/Random Effects for brand and city by brand type

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	ppu	ppu	ppu	ppu	ppu	ppu
		والمالمانية والمالم	والمراديات م	الباليانية	والمالمالية والمالية	0.04.04.04.04.04
jan20	0.218***	0.196***	0.176***	0.132***	0.190***	0.212***
	(0.011)	(0.018)	(0.019)	(0.030)	(0.032)	(0.037)
jan21	0.235***	0.233***	0.228***	0.251***	0.217***	0.295***
	(0.011)	(0.018)	(0.019)	(0.024)	(0.034)	(0.040)
jan	-0.018***	-0.018***	-0.039***	-0.039***	-0.012	-0.012
	(0.004)	(0.004)	(0.006)	(0.006)	(0.008)	(0.008)
jan20#2.marca		-0.012				
		(0.031)				
jan20#5.marca		0.053**				
		(0.024)				
jan20#6.marca						-0.078
						(0.068)
jan20#7.marca				0.071*		, ,
•				(0.037)		
jan21#2.marca		-0.049		,		
		(0.030)				
jan21#4.marca		,		-0.062*		
3 11				(0.037)		
jan21#5.marca		0.024		()		
3		(0.024)				
jan21#6.marca		(0.021)				-0.245***
Jan 21 // Olinarea						(0.069)
4.marca			-4.013***	0.150***		(0.000)
1.111611 000			(0.041)	(0.028)		
7.marca			-4.162***	(0.020)		
1.111a1 Ca			(0.041)			
um	0.010***	0.010***	0.009***	0.009***	0.007***	0.007***
ym	0.010	0.010	0.009	0.009	0.007	0.007

Constant	(0.000) -4.417*** (0.019)	(0.000) -4.416*** (0.019)	(0.000)	(0.000) -4.164*** (0.041)	(0.000) -2.961*** (0.050)	(0.000) -2.963*** (0.049)
Observations	13,396	13,396	6,620	6,620	3,910	3,910
R-squared	0.916	0.916			0.720	0.721
Number of gr_marca_ciudad	126	126	80	80	57	57

By brand type, for premium(1) and low(3) brand types the Hausman test rejects the alternative of random effects in favour of fixed individual effects. The test for type 1 and 3 are Chi2(4) = 0.60, $Prob \ge chi2 = 0.9628$ and Chi2(4) = 0.60, $Prob \ge chi2 = 0.9628$, respectively.

Similarly the Breusch-Pagan test for random effects does rule out the alternative of OLS: chibar2(01) = 7.5e+05, $Prob \ge chibar2 = 0.0000$

The test of unit root, using the Fischer type estimation from Choi (2001): Inverse chi-squared(500) = 1112.8056 , $Prob \ge chi2 = 0.0000$, does not rule out the presence of unit root for any panel (defined as a combination of city and brand), except for the model that includes a drift. The result suggests to consider different trends for each brand or city, there is an estimation by brand to test for unit roots by specifications of the panel.

The next table presents F or Chi-squared tests for equality of coeficients, F corresponds to models by fixed effects, Chi-squared corresponds to models estimated by random effects.

The distribution is the same used in Table 3, first two rows correspond to the complete sample. Rows third and fourth test for difference in premium brands. Rows fifth and sixth test for difference in medium brands. Rows seventh and eighth test for difference in lower priced brands. Columns 1 to 3 indicate the parameters and result for the test of fixed effects or individual effects by brand. Columns 4 to 6 show the values to test for the equality of the effect by brand of the tax in 2020. Columns 7 to 9 show the values and test result for the equality of the effect by brand of the tax in 2021.

Except for the effect of the tax in 2020 for lower priced brands, based on these F tests, the prefered model includes interactions by brand.

Table 6: F tests for equality of coefficients

(6)	2021	${ m F/Chi2}$		67.31***		3.08***		2.85*		12.43*	
(8)	of Tax	Den				13262				3847	
(7)	Equality	Num/gl-chi2 Den F/Chi2		9		2		1		1	
(9)	2020	${ m F/Chi2}$		51.86***		3.51**		3.62*		1.32	0.1
(2)	of Tax	Den				13262				3847	5, * p<(
(4)	Equality	Num/gl-chi2 Den F/Chi2		9		2		1		1	*** p<0.01, ** p<0.05, * p<0.1
(3)	ercept	${ m F/Chi2}$	1287.39***	1547.03***	22.32***	22.32***	11224.48***	28.63***	41.93***	42.17***	d ***
(2)	Equality of Intercept	Den			13266	13262			3849	3847	
(1)	Equali	Num/gl-chi2 I	9	9	125	125	2	1	26	26	
		Equation	(4.1)	(4.2)	(4.1)	(4.2)	(4.1)	(4.2)	(4.1)	(4.2)	

13

The next table presents the static results by brand. The model was estimated using random or fixed effects for each brand, based on the Hausman test. The column number corresponds to the brand label: 1, Benson; 2, Camel; 3, Chesterfield; 4, Lucky; 5, Marlboro; 6, Montana; 7, Pall Mall.

Table 7: Fixed/Random individual effects for each brand

	(1)	(2)	(3)	(4)	(5)	(9)	(7)
VARIABLES	ndd	ndd	ndd	ndd	ndd	ndd	ndd
m1_20	0.193***	0.202***	0.202***	0.202***	0.202***	0.202***	0.202***
	(0.018)	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)
m1_21	0.231***	0.232***	0.232***	0.232***	0.232***	0.232***	0.232***
	(0.018)	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)
m1	-0.013**	-0.023***	-0.023***	-0.023***	-0.023***	-0.023***	-0.023***
	(0.006)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
ym	0.010***	0.009***	0.009***	0.009***	0.009***	0.009***	0.009***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Observations	4,650	23,926	23,926	23,926	23,926	23,926	23,926
R-squared	0.921	0.865	0.865	0.865	0.865	0.865	0.865
Number of gr_marca_ciudad	44	263	263	263	263	263	263
	*	Standard er	Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1	theses p<0.1			
			•	•			

15

3.2 Dynamic models

Since we cannot rule the presence of unit roots for each panel, by city, except for a model with drift, an alternative is to consider dynamics in the equation, in particular the lagged dependent variable.

$$y_{it} = \delta * y_{i,t-1} + \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_1' tax 2020 + \beta_1' tax 2021 + u_{it};$$
(4.3)
$$c = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

Similar to the previous section, estimations include interactions, to consider the effect of the price change in every january, january 2020 and january 2021.

$$y_{it} = \delta * y_{i,t-1} + \alpha_i^* + \gamma_m^* + \lambda * trend + \beta_0' jan + \beta_{1m}' tax 2020 + \beta_{2m}' tax 2021 + u_{it};$$

$$i = 1, \dots, N; t = 1, \dots, T; m = 1, \dots, M.$$

$$(4.4)$$

Table 8 shows the results prefered by the Hausman test, in this case fixed effects. It also shows the estimates by type. The first two columns correspond to the model estimation without interactions. Third and fourth columns include interactions by brand. Fifth and sixth columns consider interactions by brand type. Columns 2, 4 and 6 present, for reference, an estimation without lagged dependent variable.

The results show that the lag effect is captured, when omitted, by the parameter of the linear trend and the effect of the tax in january 2021.

The estimation by brand type is extended in Table 9, (1) and (2) show the estimates for premium brands, (3) and (4) show the estimates for medium brands, (5) and (6) show the estimates for lower brands. Columns (2,4,6) show results with interactions for brand and tax coefficients and columns (1,3,5) without interactions. In the next table, the dependent variable was transformed to cents.

The coefficient for jan20 and jan21 correspond to the value of the reference brand within a brand type. The coefficient for the other brands indicate the difference to that reference brand for the correspondent brand. The labels correspond to the alphabetical order, 1 is Benson, reference for premium brands, 2 is Camel, 3 is Chesterfield, reference for lower brands, 4 is Lucky Strike, reference for medium brands, 5 is Marlboro, 6 is Montana and 7 is Pall Mall.

With premium for the first label, results shows that the medium brands have the smallest tax impact, although, counterintuitively the lowest impact is estimated for the medium brands with a decrease of 8.9 cents while the lower brand only decreased 5 cents, both with respect to the premium brands average.

The distribution in the next table is the same used in Table 3 and Table 6. F tests for equality of coeficients, significant indicates difference between coeficients, the first two rows correspond to the complete sample. The third and fourth to the premium brands, where the equality is still relevant. Fifth and sixth rows are medium brands, where only is difference for the impact of

the tax in 2021. The last two rows correspond to the lower priced brands, here there is no difference in the coefficients for each brand.

Columns 1 to 3 indicate the parameters and result for the test individual effects by brand. Columns 4 to 6 show the values to test for the equality of the effect by brand of the tax in 2020. Columns 7 to 9 show the values and test result for the equality of the effect by brand of the tax in 2021.

The results show that exception of premium brands, brand type or segment is relevant for equality of all the coefficients considered: intercept, tax2020 and tax2021. When considered in one equation the prefered estimation is with complete interactions and lag dependent variable (Column 3, Table 8).

Table 8: Fixed/Random individual effects

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	ppu	ppu	ppu	ppu	ppu	ppu
jan20	0.182***	0.202***	0.207***	0.230***		0.253***
jan21	(0.003) $0.044***$	(0.010) $0.232***$	(0.006) $0.083***$	(0.021) $0.275***$		(0.013) $0.278***$
jan	(0.003) $0.022***$	(0.010) -0.023***	(0.006) $0.022***$	(0.021) -0.023***	0.022***	(0.013) -0.023***
2.marca#jan20	(0.001)	(0.003)	(0.001) -0.018* (0.010)	(0.003) -0.011	(0.001)	(0.003)
3.marca $#$ jan 20			-0.043*** (0.010)	(0.037) -0.108*** (0.039)		
4.marca#jan20			-0.088*** (0.009)	-0.124*** (0.034)		
5.marca $#$ jan 20			0.031*** (0.008)	0.056** (0.028)		
6. marca # jan 20			-0.049*** (0.015)	-0.191*** (0.056)		
7.marca#jan20			-0.073*** (0.008)	-0.053* (0.030)		
2.tipo#jan20			(0.000)	(0.000)	-0.089*** (0.006)	
3.tipo#jan20					-0.055*** (0.008)	
2.marca#jan21			-0.069*** (0.010)	-0.051 (0.036)	(0.000)	
3.marca#jan21			-0.023** (0.011)	-0.101** (0.041)		
4.marca#jan21			-0.083*** (0.009)	-0.118*** (0.034)		
5.marca#jan21			-0.013* (0.008)	0.027 (0.028)		
6.marca#jan21			-0.059***	-0.364***		
7.marca#jan21			(0.015) -0.069*** (0.008)	(0.056) $-0.051*$ (0.030)		
2.tipo#jan21			(0.000)	(0.030)	-0.056*** (0.006)	
3.tipo#jan21					-0.016*	
L.ppu	0.967***		0.966***		(0.009) $0.967***$	
ym	(0.002) $0.000***$	0.009***	(0.002) $0.000***$	0.009***	(0.002) $0.000***$	0.009***
Constant	(0.000) -0.170*** (0.00 9 8	(0.000) -4.138*** (0.017)	(0.000) $-0.171***$ (0.009)	(0.000) $-4.137***$ (0.017)	(0.000) -0.170*** (0.009)	(0.000) -4.137*** (0.017)
Obganistics -	` ,	` ,	, ,	, ,	, ,	, ,
Observations R-squared	23,616 0.990	$23,926 \\ 0.865$	23,616 0.990	23,926 0.866	23,616 0.990	$23,926 \\ 0.866$
_		263	$\frac{0.990}{262}$			
Number of gr_marca_ciudad	262	263		263	262	263

Table 9: Fixed individual effects by brand type, interacted

VARIABLES	(1) ppu100	(2) ppu100	(3) ppu100	(4) ppu100	(5) ppu100	(6) ppu100
m1_20	20.974***	19.904***	14.040***	13.084***	16.867***	17.046***
$1.m1_20\#2.marca$	(0.316)	(0.496) -1.762** (0.864)	(0.539)	(0.845)	(0.933)	(1.091)
$1.m1_20\#5.marca$		3.065**** (0.658)				
$1.\text{m}1_20\#6.\text{marca}$,				-0.620 (1.981)
$1.\text{m}1_20\#7.\text{marca}$				$ \begin{array}{c} 1.534 \\ (1.042) \end{array} $		
m1_21	5.700*** (0.320)	7.592*** (0.505)	1.948*** (0.544)	1.081 (0.833)	5.568*** (0.983)	6.670*** (1.175)
$1.\text{m}1_{-}21\#2.\text{marca}$		-6.874*** (0.840)				
$1.\text{m}1_21\#5.\text{marca}$		-1.311** (0.663)				
1.m1_21#6.marca						-3.465* (2.023)
1.m1_21#7.marca				1.421 (1.030)		
m1	2.960*** (0.104)	2.960*** (0.104)	0.846*** (0.191)	0.844*** (0.191)	1.862*** (0.261)	1.859*** (0.261)
ym	0.044*** (0.003)	0.044*** (0.003)	0.038*** (0.004)	0.038*** (0.004)	0.030*** (0.004)	0.030*** (0.004)
L.ppu	96.071*** (0.245)	96.065*** (0.244)	96.872*** (0.351)	96.853*** (0.351)	96.663*** (0.479)	96.618*** (0.480)
Constant	-19.521*** (1.204)	-19.513*** (1.199)	-18.151*** (1.744)	-18.251*** (1.744)	-13.425*** (2.032)	-13.580*** (2.034)
Observations	13,255	13,255	6,524	6,524	3,837	3,837
R-squared Number of gr_marca_ciudad	$0.994 \\ 125$	$0.994 \\ 125$	0.987 80	0.987 80	$0.976 \\ 57$	$0.976 \\ 57$

Table 10: F tests by brand type, interacted

	(I)	(7)	(3)	(4)	(2)	(9)	(7	$\widehat{\infty}$	6)
	Equa	lity of In	tercept	Equ	ality of T	Equality of $Tax 2020$	Equ	ality of T	Equality of Tax 2021
Equation	Num	Den	ĹΉ	Num	Den	됴	Num	Den	ſΞų
(4.3)	261	23349	1.6***						
	261	261 23337	1.62***	9	23337	47.36***	9	23337	25.88***
	124	13125	0.59						
(4.4)	124	13121	9.0	2	13121	20.34***	2	13121	35.05***
	79	6439	0.92						
(4.4)	79	6437	0.93	Н	6437	2.17	П	6437	1.9***
	56	3775	0.94						
(4.4)	56	3773	0.95	Н	3773	0.1	П	3773	2.93
,				0.01, **	*** p<0.01, ** p<0.05, * p<0.1	* p<0.1			

4 Consistent estimation for Variable Intercept

This models are based on Andrews, et al. (2006). The initial model comes from the transformation of:

$$y_{it} = x_{it}\beta_i + w_{j(i,t)t}\gamma + u_{it}\eta + q_{j(i,t)}\rho + \alpha_i + \phi_{j(i,t)} + \mu_t + \epsilon_{i,t};$$

 $i = 1, \dots, N; t = 1, \dots, T$

Given the interest only on the fixed independent variables, we can define an heterogeneity measure on brand and city (s), take the averages at that level, and make the transformation of variables, following:

$$y_{it} - \bar{y}_s = (x_{it} - \bar{x}_s)\beta_i + (w_{j(i,t)t} - \bar{w}_s)\gamma + (\epsilon_{i,t} - \bar{\epsilon}_s);$$

 $i = 1, \dots, N; t = 1, \dots, T$

Results in the left have the same estimate for the effect. Estimates in second column correspond to the first labeled brand, Benson.

	(1)	(2)
VARIABLES	$\mathrm{dm_ppu_cm}$	$\mathrm{dm_ppu_cm}$
$dm_m1_20_c$	0.202***	0.230***
	(0.010)	(0.021)
$dm_m1_21_cm$	0.232***	0.275***
	(0.010)	(0.021)
dm_m1_cm	-0.023***	-0.023***
	(0.003)	(0.003)
ym	0.009***	0.009***
	(0.000)	(0.000)
Observations	23,926	23,926
R-squared	0.865	0.866
Number of gr_marca_ciudad	263	263

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

5 Different parameters for each brand

Uses xtsur, user-defined, command. One estimate of each parameter for each brand. The intention was to make a unique model of Seemingly Unrelated Regressions to test the coefficients of the tax change for equality. Unfortunately, it is impossible (using the xtsur routine, in a 4th gen i7 with 16ram) to make

the estimation based on the complete sample, with 7 brands. I present the test based on three groups of brands.

$$y_{itm} = \alpha_i^* + \lambda_1 * t + \beta_0' janDummy_m + \beta_1' taxDummy_m + u_{itm};$$

$$i = 1, \dots, N; t = 1, \dots, T.m = 1, 2, \dots, 7$$

5.1 Comparisons by segment

Results for premium brands

· · · · · · · · · · · · · · · · · · ·			
	(1)	(2)	(3)
VARIABLES	ppu1	ppu2	ppu5
$m1_{-}20$	0.156***	0.135***	0.151***
	(0.018)	(0.018)	(0.012)
$m1_{-}21$	0.077	0.027	0.070
	(0.000)	(0.000)	(0.000)
m1	0.024***	0.000	0.003
	(0.004)	(0.004)	(0.002)
ym	0.009***	0.009***	0.009***
	(0.000)	(0.000)	(0.000)
Observations	2,543	2,543	2,543
Number of cve_ciudad	45	45	45

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Results for lower segment brands

(2) ppu6
ppu6
0.204***
(0.030)
0.446***
(0.030)
-0.035***
(0.010)
0.005***
(0.000)
614
43

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Results for mid-range segment brands

	(1)	(2)
VARIABLES	ppu4	ppu7
$m1_{-}20$	0.150***	0.071***
	(0.018)	(0.018)
$m1_{-}21$	0.050***	0.191***
	(0.018)	(0.018)
m1	-0.013***	-0.018***
	(0.005)	(0.005)
$_{ m ym}$	0.009***	0.010***
	(0.000)	(0.000)
Observations	2,112	2,112
Number of cve_ciudad	43	43