Whole brain effective connectivity from fMRI data

Some subtitle

Andrea Insabato

November 27th, 2017

Whole brain is divided in ROIs (parcellation)

- Whole brain is divided in ROIs (parcellation)
- Average activity in each ROI

- Whole brain is divided in ROIs (parcellation)
- Average activity in each ROI
- Connectivity between ROIs

Pearson correlation between ROIs

- Pearson correlation between ROIs
- Dense

- Pearson correlation between ROIs
- Dense
- Symmetric: no directionality of interactions

► Network model

- ► Network model
- Sparse

- ► Network model
- Sparse
- Asymmetric: no directionality of interactions

Network model

- Network model
- ▶ EC based subject and condition identification

- Network model
- ▶ EC based subject and condition identification
- Estimation of model parameters

► Each node is an Ornstein-Uhlenbeck process

- ► Each node is an Ornstein-Uhlenbeck process

- ► Each node is an Ornstein-Uhlenbeck process

Characterization of whole brain networks underlying watching a movie

Characterization of whole brain networks underlying remembering

Characterization of whole brain networks underlying calculating

Characterization of whole brain networks underlying pathological states (dementia, autism, depression, etc.)

Separate different sources of varibility

Separate different sources of varibility

- Separate different sources of varibility
 - classify subjects
 - classify conditions
 - extract networks underlying each classification

Datasets

Dataset name	Acquisition	Number of subjects	Sessions per subject	Session duration
Dataset A1	Day2day project	6	40-50	5 minutes
	CoRR	30	10	10 minutes
Dataset C	Gilson et al. 2017, Mantini et al. 2012	19	3 resting; 2 movie	10 minutes

▶ Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy

- ▶ Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:

- Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:
 - Comparison between FC and EC

- Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:
 - Comparison between FC and EC
 - Multinomial logistic regression (interpretability of fitted classifier)

- Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:
 - Comparison between FC and EC
 - Multinomial logistic regression (interpretability of fitted classifier)
 - ► **Test-retest** dataset (10-50 sessions per subject):

- Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:
 - Comparison between FC and EC
 - Multinomial logistic regression (interpretability of fitted classifier)
 - ► **Test-retest** dataset (10-50 sessions per subject):
 - accurate assessment of test accuracy

- Finn (Nat. Neuro. 2015): FC of \sim 100 subjects, 5 sessions per subject, Nearest Neighbor, 54-94% accuracy
- Our approach:
 - Comparison between FC and EC
 - Multinomial logistic regression (interpretability of fitted classifier)
 - ► **Test-retest** dataset (10-50 sessions per subject):
 - accurate assessment of test accuracy
 - impact of training set size

Multinomial Logistic Regression (MLR)

$$C_k = \sigma(\sum_j^N \beta_{jk} x_j)$$

Multinomial Logistic Regression (MLR)

- $C_k = \sigma(\sum_j^N \beta_{jk} x_j)$
- allows to estimate the most relevant features for the classification
- Recursive feature elimination:
 - recursively remove feature $i = \arg\min_{i} \sum_{k} \beta_{jk}$
 - survival time reflects relevance of each link

Classification accuracy using subsets of links according to RFE ranking

Average ranking by subsystem

Number of overlapping links is much higher than expected by chance

resting VS movie viewing

resting VS movie viewing Classification accuracy using subsets of links according to RFE ranking

Number of overlapping links is similar to that expected by chance

Subjects and conditions networks

Summary (ad interim)

Estimation of parameters in the MOU model

Estimation of parameters

- ▶ Lyapunov optimization (Gilson et al. PLoS Comp Biol 2015)
- ▶ minimize $V = \sum_{m,n} (\mathbf{Q}_{mn}^0 \hat{\mathbf{Q}}_{mn}^0)^2 + \sum_{m,n} (\mathbf{Q}_{mn}^{\tau} \hat{\mathbf{Q}}_{mn}^{\tau})^2$ redInstert fig 2E matt paper

ightharpoonup Posterior probability of parameters ightarrow connectivity estimation

- lacktriangle Posterior probability of parameters ightarrow connectivity estimation
- ightharpoonup Regularization ightarrow better estimation with few timepoints

- lacktriangle Posterior probability of parameters ightarrow connectivity estimation
- ightharpoonup Regularization ightarrow better estimation with few timepoints
- Model comparison

- ► MAP estimate with uniform prior (≡ MLE): Tizio et al. 2017
- $igspace{\sum} x(t')|x(t)\sim \ \mathcal{N}(x(t) expm(-\lambda(t'-t)), rac{\sigma^2}{2\lambda}(1-expm(-2\lambda(t'-t)))$
- $x(t) \sim \mathcal{N}(0, \frac{\sigma^2}{2\lambda})$
- $P(X|\lambda,\sigma^2) = \prod_{n=1}^{N-1} P(x_{n+1}|x_n,\lambda,\sigma^2) P(x_n|\lambda,\sigma^2)$
- $P(\lambda, \sigma^2 | X) = \frac{P(X | \lambda, \sigma^2) P(\lambda, \sigma)}{P(X)}$
- $C^* = logm[(\mathbf{Q^0})^{-1}\mathbf{Q^1}]$

MAP estimate for large scale networks

MAP estimate for small time samples

Influence of weight values

True and predicted weights

Summary

Acknowledgments

Vicente Pallares

Matthieu Gilson

Ana Sanjuan

Simone Kuhn

Dante Mantini

Gustavo Deco

John Cunningham

Acknowledgments

Vicente Pallares

Matthieu Gilson

Ana Sanjuan

Simone Kuhn

Dante Mantini

Gustavo Deco

John Cunningham

