LAUREA TRIENNALE IN SCIENZA E TECNOLOGIA DEI MEDIA, UNIVERSITÀ DI ROMA TOR VERGATA

Calcolo delle Probabilità

Anno accademico: 2017-2018. Titolare del corso: Claudio Macci

Appello del 1 Marzo 2018

Esercizi 1,2,3,4,5 per gli studenti che sostengono l'esame da 6 crediti.

Esercizi 1,2,3,4,5,6 per gli studenti che sostengono l'esame da 8 crediti.

Esercizio 1.

Un'urna ha 5 palline numerate da 1 a 5. Si estraggono 3 palline, una alla volta e senza reinserimento.

- D1) Calcolare la probabilità di estrarre 2 numeri dispari in un qualsiasi ordine.
- D2) Calcolare la probabilità di estrarre 2 numeri dispari e il numero 2 in un qualsiasi ordine.
- D3) Calcolare la probabilità di estrarre i numeri 1, 2 e 3 in un qualsiasi ordine.

Esercizio 2.

Siano $n_1, n_2 \ge 1$ interi. Abbiamo un'urna inizialmente vuota. Si lancia una moneta equa: se esce testa vengono messe nell'urna n_1 palline bianche e n_2 nere; se esce croce vengono messe nell'urna n_2 palline bianche e n_1 nere. Poi si estrae una pallina a caso dall'urna.

D4) Calcolare la probabilità di aver ottenuto testa nel lancio di moneta sapendo di aver estratto una pallina bianca.

Esercizio 3.

Siano $\lambda > 0$ e $p \in (0,1)$ fissati. Consideriamo la seguente densità congiunta: $p_{X_1,X_2}(x_1,x_2) = \frac{\lambda^{x_1}}{x_1!}e^{-\lambda} \cdot p^{x_2}(1-p)$, per $x_1,x_2 \geq 0$ interi.

- D5) Calcolare $P(X_2 = hX_1)$ per $h \ge 0$ intero fissato.
- D6) Calcolare $P(X_1 + X_2 = 1)$.

Esercizio 4.

Sia X una variabile aleatoria con distribuzione uniforme su (α, α^2) , per $\alpha > 1$ fissato.

- D7) Dire per quale valore di α si ha $\mathbb{E}[X] = 3$.
- D8) Trovare la densità continua di $Y = X^2$.

Esercizio 5.

Poniamo $\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{x^2}{2}} dx$.

D9) Sia X una variabile aleatoria Normale con media μ e varianza 4. Trovare il valore di μ affinché si abbia $P(X \le 8) = \Phi(3/2)$.

D10) Si lancia 100 volte una moneta equa. Facendo riferimento alla funzione Φ con argomento positivo, calcolare la probabilità di ottenere almeno 55 volte testa usando l'approssimazione Normale e la correzione di continuità.

Esercizio 6.

Consideriamo una catena di Markov omogenea $\{X_n : n \geq 0\}$ con spazio degli stati $E = \{1, 2, 3\}$ e matrice di transizione

$$P = \left(\begin{array}{ccc} 1/4 & 1/2 & 1/4 \\ 2/5 & 1/5 & 2/5 \\ 1 & 0 & 0 \end{array}\right).$$

- D11) Calcolare $P(X_2 = k | X_0 = 3)$ per $k \in E$.
- D12) Calcolare i tempi medi per raggiungere lo stato 2 partendo da 1 e da 3, rispettivamente.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

- D1) Per la teoria della distribuzione Ipergeometrica la probabilità richiesta è $\frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{2}} = \frac{6}{10}$.
- D2) Per la teoria della distribuzione Ipergeometrica (con più di 2 tipi) la probabilità richiesta è $\frac{\binom{2}{2}\binom{1}{1}\binom{1}{0}}{\binom{5}{1}} = \frac{3}{10}$.

D3) Per la teoria della distribuzione Ipergeometrica la probabilità richiesta è $\frac{\binom{3}{3}\binom{2}{0}}{\binom{5}{3}} = \frac{1}{10}$. Osservazione: si ottiene lo stesso valore della probabilità per l'evento "escono i numeri 1,2,5 in un qualsiasi ordine" e per l'evento "escono i numeri 2,3,5 in un qualsiasi ordine"; inoltre, se si sommano queste tre probabilità, si ottiene $\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{3}{10}$ che coincide (come deve) con la probabilità che escano "2 numeri dispari e il numero 2" che abbiamo calcolato alla seconda domanda.

Esercizio 2.

D4) Indichiamo con T l'evento "esce testa nel lancio di moneta" e con B l'evento "estratta pallina bianca". Allora, per la formula di Bayes, la probabilità condizionata richiesta è

$$P(T|B) = \frac{P(B|T)P(T)}{P(B)} = \frac{P(B|T)P(T)}{P(B|T)P(T) + P(B|T^c)P(T^c)} = \frac{\frac{n_1}{n_1 + n_2} \frac{1}{2}}{\frac{n_1}{n_1 + n_2} \frac{1}{2} + \frac{n_2}{n_1 + n_2} \frac{1}{2}} = \frac{n_1}{n_1 + n_2}.$$

Osservazione: possiamo dire che T e B sono indipendenti se e solo se P(T|B) = P(T), e cioè $\frac{n_1}{n_1+n_2} = \frac{1}{2}$; quindi T e B sono indipendenti se e solo se $n_1 = n_2$.

Esercizio 3.

D5) Si ha

$$P(X_2 = hX_1) = \sum_{k=0}^{\infty} p_{X_1, X_2}(k, hk) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \cdot p^{hk} (1-p) = e^{-\lambda} (1-p) \sum_{k=0}^{\infty} \frac{(\lambda p^h)^k}{k!} = e^{-\lambda} (1-p) e^{\lambda p^h}.$$

D6) Si ha

$$P(X_1 + X_2 = 1) = p_{X_1, X_2}(1, 0) + p_{X_1, X_2}(0, 1) = \lambda e^{-\lambda}(1 - p) + e^{-\lambda}p(1 - p) = (\lambda + p)e^{-\lambda}(1 - p).$$

Esercizio 4.

D7) Si ha $\mathbb{E}[X] = \frac{\alpha + \alpha^2}{2}$, da cui segue

$$\frac{\alpha + \alpha^2}{2} = 3$$
, $\alpha^2 + \alpha - 6 = 0$, $\alpha = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2}$.

La soluzione $\alpha = -3$ si scarta perché $\alpha > 1$, e l'unico valore di α richiesto è $\alpha = 2$. Del resto la speranza matematica di una variabile aleatoria con distribuzione uniforme su un intervallo coincide con il punto medio dell'intervallo e, per $\alpha = 2$, il punto medio di $(\alpha, \alpha^2) = (2, 4)$ è 3.

D8) Si ha $P(\alpha^2 \leq Y \leq \alpha^4) = 1$, da cui segue $F_Y(y) = 0$ per $y \leq \alpha^2$ e $F_Y(y) = 1$ per $y \geq \alpha^4$. Per $y \in (\alpha^2, \alpha^4)$ si ha

$$F_Y(y) = P(X^2 \le y) = P(X \le \sqrt{y}) = \int_{\alpha}^{\sqrt{y}} \frac{1}{\alpha^2 - \alpha} dx = \left[\frac{x}{\alpha^2 - \alpha} \right]_{x=-\infty}^{x=\sqrt{y}} = \frac{\sqrt{y} - \alpha}{\alpha^2 - \alpha}.$$

In conclusione la densità continua richiesta è $f_Y(y) = \frac{1}{2(\alpha^2 - \alpha)\sqrt{y}} 1_{(\alpha^2, \alpha^4)}(y)$.

Esercizio 5.

D9) Si ha

$$P(X \le 8) = P\left(\frac{X - \mu}{\sqrt{4}} \le \frac{8 - \mu}{\sqrt{4}}\right) = \Phi\left(\frac{8 - \mu}{\sqrt{4}}\right) = \Phi\left(\frac{8 - \mu}{2}\right),$$

da cui segue $\frac{8-\mu}{2}=\frac{3}{2}$, e $\mu=8-3=5$. D10) La probabilità richiesta è $P(S\geq 55)=P(S\geq 54.5)$ dove S è una variabile aleatoria Binomiale di

parametri n = 100 e p = 1/2. Quindi $S = X_1 + \cdots + X_{100}$, dove gli addendi sono Bernoulliani indipendenti di parametro p = 1/2. Allora per l'approssimazione Normale si ha

$$P(S \ge 54.5) = P\left(\frac{S - 100 \cdot \frac{1}{2}}{\sqrt{100 \cdot \frac{1}{2}(1 - \frac{1}{2})}} \ge \frac{54.5 - 100 \cdot \frac{1}{2}}{\sqrt{100 \cdot \frac{1}{2}(1 - \frac{1}{2})}}\right) \approx 1 - \Phi\left(\frac{54.5 - 50}{\sqrt{25}}\right) = 1 - \Phi(4.5/5) = 1 - \Phi(0.9).$$

Esercizio 6.

D11) Se consideriamo il vettore $\pi^{(2)} = (\pi_1^{(2)}, \pi_2^{(2)}, \pi_3^{(2)})$, dove $\pi_k^{(2)} = P(X_2 = k | X_0 = 3)$ per $k \in E$, si ha

$$(\pi_1^{(2)},\pi_2^{(2)},\pi_3^{(2)}) = (0,0,1) \left(\begin{array}{ccc} 1/4 & 1/2 & 1/4 \\ 2/5 & 1/5 & 2/5 \\ 1 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 1/4 & 1/2 & 1/4 \\ 2/5 & 1/5 & 2/5 \\ 1 & 0 & 0 \end{array} \right)$$

$$= (1,0,0) \left(\begin{array}{ccc} 1/4 & 1/2 & 1/4 \\ 2/5 & 1/5 & 2/5 \\ 1 & 0 & 0 \end{array} \right) = (1/4,1/2,1/4).$$

D12) I valori richiesti sono μ_1 e μ_3 e abbiamo il seguente sistema

$$\left\{ \begin{array}{l} \mu_1 = 1 + \frac{1}{4}\mu_1 + \frac{1}{4}\mu_3 \\ \mu_3 = 1 + \mu_1, \end{array} \right. \left\{ \begin{array}{l} \frac{3}{4}\mu_1 = 1 + \frac{1}{4}(1 + \mu_1) \\ \mu_3 = 1 + \mu_1, \end{array} \right. \left\{ \begin{array}{l} \mu_1 = \frac{5}{2} \\ \mu_3 = \frac{7}{2} \end{array} \right.$$

(la soluzione si ottiene con semplici calcoli).