- **1** A metre scale is moving with uniform velocity. This implies
- (a) the force acting on the scale is zero, but a torque about the centre of mass can act on the scale
- (b) the force acting on the scale is zero and the torque acting about centre of mass of the scale is also zero
- (c) the total force acting on it need not be zero but the
- torque on it is zero
- (d) Neither the force nor the torque need to be zero
- **2** Conservation of momentum in a collision between particles can be understood from
- (a) conservation of energy
- (b) Newton's first law only
- (c) Newton's second law only
- (d) Both Newton's second and third law
- **3** If the elevator in the shown figure is moving upwards with constant acceleration 1 ms⁻², the tension in the string connected to block A of mass

6 kg would be (Take, $q = 10 \text{ ms}^{-2}$)

(a) 60 N

(b) 66 N

(c) 54 N

- (d) 42 N
- **4** A block is placed on the top of a smooth inclined plane of inclination θ kept on the floor of a lift. When the lift is descending with a retardation a, the block is released. The acceleration of the block relative to the incline is
 - (a) $g \sin \theta$

- (b) $a \sin \theta$
- (c) $(g a) \sin \theta$
- (d) $(q + a) \sin \theta$
- **5** A cricket ball of mass 150 g has an initial velocity $\mathbf{u} = (3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \text{ ms}^{-1}$ and a final velocity $\mathbf{v} = -(3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \text{ ms}^{-1}$, after being hit. The change in
 - momentum (final momentum initial momentum) is $(in kg-ms^{-1})$
 - (a) zero

- (b) $-(0.45\hat{i} + 0.6\hat{j})$
- (c) $-(0.9\hat{i} + 1.2\hat{j})$
- (d) $-5(\hat{i} + \hat{i})\hat{i}$
- **6** In the previous question (5), the magnitude of the momentum transferred during the hit is
- (a) zero

- (b) 0.75 kg-ms^{-1}
- (c) 1.5 kg-ms^{-1}
- (d) 14 kg-ms^{-1}

- **7** A block of mass *m* is placed on a smooth plane inclined at an angle θ with the horizontal. The force exerted by the plane on the block has a magnitude (a) ma (b) $mq \sec \theta$ (c) $mq \cos \theta$ (d) $mq \sin \theta$
- **8.** A block has been placed on an inclined plane. The slope angle θ of the plane is such that the block slides down the plane at a constant speed. The coefficient of kinetic friction is equal to
 - (a) $\sin \theta$
- (b) $\cos \theta$
- (c) q (d) $\tan \theta$
- **9** A body is projected up a 45Yrough incline. If the coefficient of friction is 0.5, then the retardation of the block is

- (a) $\frac{g}{2\sqrt{2}}$ (b) $\frac{g}{\sqrt{2}}$ (c) $\frac{3g}{2\sqrt{2}}$ (d) $\frac{g}{2}$
- **10** A rope of length *L* and mass *M* is hanging from a rigid support. The tension in the rope at a distance xfrom the rigid support is
 - (b) $\left(\frac{L-x}{L}\right) Mg$ (c) $\left(\frac{L}{L-x}\right) Mg$ (d) $\frac{x}{L} Mg$
- 11 Consider the shown arrangement. Assume all surfaces to be smooth. If N represents magnitudes of normal reaction between block and wedge, then acceleration of M along horizontal is equal to

- (a) $\frac{N \sin \theta}{M}$ along + ve X-axis
- (b) $\frac{N\cos\theta}{M}$ along $-\operatorname{ve} X$ -axis
- (c) $\frac{N \sin \theta}{M}$ along ve X-axis
- (d) $\frac{N \sin \theta}{m + M}$ along ve X-axis
- **12** In the above problem, normal reaction between ground and wedge will have magnitude equal to
 - (a) $N \cos \theta + Mq$
- (b) $N\cos\theta + Mq + mq$ (d) $N \sin \theta + Mg + mg$
- (c) $N\cos\theta Mg$