Chapter 1 Section 3 Exercise Solutions

Samuel Lair

September 2022

Contents

Exercise 5	2
Exercise 6	2
Exercise 9	3
3.1 (a)	3
5.5 (c)	3
Exercise 10	4
4.1 (a)	4
(6)	_
Exercise 15	5
5.1 (a)	5
	_
0.0 (1)	U
Exercise 16	7
6.1 (a)	7
	Exercise 6 Exercise 9 3.1 (a)

p	q	r	$q \lor r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$
T	T	T	T	T	T	T	T
$\mid T$	T	F	T	T	T	F	T
$\mid T \mid$	F	T	T	T	F	T	T
$\mid T \mid$	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Since the truth values of the compound propositions $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ agree for all possible combinations of the truth values of p, q, and r, said compound propositions are logically equivalent.

2 Exercise 6

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\mid \neg p \vee \neg q \mid$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

Since the truth values of the compound propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ agree for all possible combinations of the truth values of p and q, said compound propositions are logically equivalent.

3.1 (a)

$$\begin{array}{ccc} p \implies \neg q & & \equiv \\ \neg p \vee \neg q & & \end{array}$$

3.2 (b)

$$\begin{array}{cccc} (p \Longrightarrow q) \Longrightarrow r & & \equiv \\ \neg (p \Longrightarrow q) \lor r & & \equiv \\ \neg (\neg p \lor q) \lor r & & \equiv \\ (p \land \neg q) \lor r & & \end{array}$$

3.3 (c)

4.1 (a)

4.2 (b)

$$\begin{array}{cccc} p \vee q &\Longrightarrow \neg p & \equiv \\ \neg (p \vee q) \vee \neg p & \equiv \\ (\neg p \wedge \neg q) \vee \neg p & \equiv \\ \neg p \vee (\neg p \wedge \neg q) & \equiv \\ \neg p & \end{array}$$

4.3 (c)

$$\begin{array}{cccc} (p \Longrightarrow \neg q) \Longrightarrow (\neg p \Longrightarrow q) & \equiv \\ \neg (p \Longrightarrow \neg q) \vee (\neg p \Longrightarrow q) & \equiv \\ \neg (\neg p \vee \neg q) \vee (p \vee q) & \equiv \\ (p \wedge q) \vee (p \vee q) & \equiv \\ ((p \wedge q) \vee p) \vee q & \equiv \\ (p \vee (p \wedge q)) \vee q & \equiv \\ p \vee q & \end{array}$$

5.1 (a)

$$\begin{array}{cccc} (p \wedge q) & \Longrightarrow & p & & \equiv \\ \neg (p \wedge q) \vee p & & \equiv \\ (\neg p \vee \neg q) \vee p & & \equiv \\ \neg q \vee (p \vee \neg p) & & \equiv \\ \neg q \vee T & & \equiv \\ T & & & \end{array}$$

5.2 (b)

$$\begin{array}{ll} p \implies (p \lor q) & \equiv \\ \neg p \lor (p \lor q) & \equiv \\ q \lor (p \lor \neg p) & \equiv \\ q \lor T & \equiv \\ T & \end{array}$$

5.3 (c)

5.4 (d)

$$\begin{array}{cccc} (p \wedge q) & \Longrightarrow & (p \Longrightarrow q) & & \equiv \\ (p \wedge q) & \Longrightarrow & (\neg p \vee q) & & \equiv \\ \neg (p \wedge q) \vee (\neg p \vee q) & & \equiv \\ (\neg p \vee \neg q) \vee (\neg p \vee q) & & \equiv \\ (\neg p \vee \neg p) \vee (q \vee \neg q) & & \equiv \\ \neg p \vee T & & \equiv \\ T & & & \end{array}$$

5.5 (e)

$$\neg(p \Longrightarrow q) \Longrightarrow p \qquad \qquad \equiv \\
 \neg(\neg p \lor q) \Longrightarrow p \qquad \qquad \equiv \\
 (\neg p \lor q) \lor p \qquad \qquad \equiv \\
 q \lor (p \lor \neg p) \qquad \qquad \equiv \\
 q \lor T \qquad \qquad \equiv \\
 T$$

5.6 (f)

$$\neg(p \Longrightarrow q) \Longrightarrow \neg q \qquad \qquad \equiv \\
 \neg(\neg p \lor q) \Longrightarrow \neg q \qquad \qquad \equiv \\
 (\neg p \lor q) \lor \neg q \qquad \qquad \equiv \\
 \neg p \lor (q \lor \neg q) \qquad \qquad \equiv \\
 \neg p \lor T \qquad \qquad \equiv \\
 T$$

6.1 (a)

```
[\neg p \land (p \lor q)] \implies q
                                                                                           \equiv
\neg [\neg p \land (p \lor q)] \lor q
                                                                                           \equiv
     p \vee \neg (p \vee q) \vee q
                                                                                           \equiv
      p \lor (\neg p \land \neg q) \lor q
                                                                                           \equiv
    (p \lor q) \lor (\neg p \land \neg q)
                                                                                           \equiv
   ((p \lor q) \lor \neg p) \land ((p \lor q) \lor \neg q)
                                                                                           \equiv
    (q \lor (p \lor \neg p)) \land (p \lor (q \lor \neg q))
                                                                                           \equiv
    (q \vee T) \wedge (p \vee T)
                                                                                           \equiv
      T \wedge T
                                                                                           \equiv
      T
```

6.2 (b)

$$[(p \Longrightarrow q) \land (q \Longrightarrow r)] \Longrightarrow (p \Longrightarrow r)$$

$$\lnot [(p \Longrightarrow q) \land (q \Longrightarrow r)] \lor (p \Longrightarrow r)$$

$$\lnot [(p \bowtie q) \land (\neg q \lor r)] \lor (\neg p \lor r)$$

$$\lnot [(\neg p \lor q) \land (\neg q \lor r)] \lor (\neg p \lor r)$$

$$\lnot [(p \land \neg q) \lor (q \land \neg r)] \lor (\neg p \lor r)$$

$$\lnot [(p \land \neg q) \lor (q \land \neg r)] \lor (\neg p \lor r)$$

$$\lnot [(p \land (q \land \neg q)) \lor ((p \lor \neg q) \land \neg r)] \lor (\neg p \lor r)$$

$$\lnot [(p \land F) \lor (\neg r \land (p \lor \neg q))] \lor (\neg p \lor r)$$

$$\lnot [F \lor ((\neg r \land p) \lor (\neg r \land \neg q))] \lor (\neg p \lor r)$$

$$\lnot [F \lor ((\neg r \land p) \lor (\neg r \land \neg q))] \lor (\neg p \lor r)$$

$$\lnot [(\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg p \lor r)$$

$$\lnot [(\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot [((\neg r \land \neg q) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\lnot$$

6.3 (c)

6.4 (d)

$$\begin{aligned} & [(p \lor q) \land (p \implies r) \land (q \implies r)] \implies r \\ \neg [(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)] \lor r \\ & \equiv \\ [\neg (p \lor q) \lor \neg (\neg p \lor r) \lor \neg (\neg q \lor r)] \lor r \\ & \equiv \\ [(\neg p \land \neg q) \lor (p \land \neg r) \lor (q \land \neg r)] \lor r \\ & [(\neg p \land \neg q) \lor (p \land \neg r)] \lor [r \lor (q \land \neg r)] \\ & = \\ [(\neg p \land \neg q) \lor (p \land \neg r)] \lor [r \lor q) \land (r \lor \neg r)] \\ & = \\ [(\neg p \land \neg q) \lor (p \land \neg r)] \lor (r \lor q) \\ & = \\ [(r \lor q) \lor (\neg p \land \neg q)] \lor (p \land \neg r) \\ & = \\ [(r \lor q) \lor \neg p) \land ((r \lor q) \lor \neg q)] \lor (p \land \neg r) \\ & = \\ ((r \lor q) \lor \neg p) \lor (p \land \neg r) \\ & = \\ ((r \lor q) \lor \neg p) \lor p) \land (((r \lor q) \lor \neg p) \lor \neg r) \\ & = \\ ((r \lor q) \lor (p \lor \neg p)) \land ((\neg p \lor q) \lor (r \lor \neg r)) \\ & = \\ T \land T \\ T \end{aligned}$$