Flaschenzugmodell in OpenModelica

Gruppe 2

Ziele

Simulationsfähiges variables Flaschenzugmodell Aufgebaut in Open Modelica

Verwendung von eigenen bidirektionalen Konnektoren Erstellen einer geeigneten Visualsierug

Anforderungen an das Modell

Variable Anzahl an Rollen Variable Last

Variable Drehrichtung des Motors **Einphasiger Motor**

Highlights

Seilaufwickelfunktion Sensorsteuerung zur Endlagenerkennung der Flaschen Vielseitge Biblothek

Modelle

Spannungsquelle

- Kontinuierlicher Spannungsverlauf
- Diskontinuierlicher Spannungsverlauf

Motor

- Einphasiger permanent erregter Gleichstrommotorer
- Umwandlung von elektrischer in mechanische Energie
- Hoher Freiheitsgrad der Parametrierung

Getriebe

- Zweistufige Übersetzung
- Frei einstellbares Übersetzungsverhältnis

Bremse

- **Erzeugung eines Bremsmoments**
- Automatische Sicherung der Last bei Spannungsfreiheit
- Variable Auswahlmöglichkeit der Bremskonstante

Seilwinde

- Anpassen des Windendurchmessers ab der zweiten Seillage
- Bidirektionale Umwandlung von Moment und Kraft

Flaschenzug

- Freie Wahl der Anzahl der Rollen
- Endlagenerkennung der Flaschen

- Frei einstellbare Masse
- Auf- und Abwärtsbewegung

Decke

Masse

- Fester Ankerpunkt des Flaschenzugs

Ports mit den dazugehörigen Größen

Port	Flussgröße	Potenzialgröße
Moment	Moment M in Nm	Winkel w in rad
F_s Kraft	Kraft F in N	Länge s in m
Spannung	Strom I in A	Spannung U in V
Bool In	Eingang für die boolesche Variable mit Wert 0 oder 1	
Bool Out	Ausgang für die boolesche Variable mit Wert 0 oder 1	

Gesamtmodell

Veranschauchlichung verschiedene Weafunktionen **Boolesche Variable Med in** ³ 2 12 16 10 14 2 4 Zeit in Sekunden

- Weg Heben-Halten Funktion
 - Bremse aktiv (=1) Heben-Halten Funktion
- Bremse aktiv (=1) Heben-Halten-Senken Funktion Weg Heben-Halten-Senken Funktion - •

Benötigte Kraft und Leistung bei verschiedenen Rolleanzahlen 600 500

- Zu überwindende Kraft
- Benötigte Kraft bei 2 Rollen

Benötigte Kraft bei 4 Rollen

- Benötigte Motorleistung bei 2 Rollen
- Benötigte Motorleistung bei 4 Rollen

Veranschauchlichung

- Windenmoment ohne Anpassung des Windendurchmesser
- Windenmoment mit Anpassung des Windendurchmesser
- Motorstrom ohne Anpassung des Windendurchmessers
- Motorstrom mit Anpassung des Windendurchmessers
- Beginn zweite Seillage auf Seilwinde: Durchmesser wird linear größer
- Drehmoment und Motorstrom steigen, da Windendurchmesser größer wird
- Konstanter und approximierter Anstieg der beiden Parameter