ACE Examination Paper 2

Year 12 Mathematics Extension 2 Yearly Examination Worked solutions and marking guidelines

Section	Section I		
	Solution	Criteria	
1	zw = (3+4i)(1-i) = 3-3i+4i-4i ² = 7+i	1 Mark: D	
2	$F_{1} + F_{2} + F_{3} = 0$ $(\iota - 2\iota) + (3\iota + 2\iota + k) + F_{3} = 0$ $F_{3} = -4\iota - k$	1 Mark: A	
3	$\int \frac{1}{x^2 - 6x + 13} dx = \int \frac{dx}{(x - 3)^2 + 2^2}$ $= \frac{1}{2} \tan^{-1} \frac{(x - 3)}{2} + C$	1 Mark: C	
4	Roots are $3 + i$, $3 - i$, α and β Product of the roots $(3 + i)(3 - i)\alpha\beta = \frac{d}{a} = \frac{20}{1}$ $(9 - i^2)\alpha\beta = 20$ $\alpha\beta = 2 \text{ (1)}$ Sum of the roots $(3 + i) + (3 - i) + \alpha + \beta = -\frac{b}{a} = -\frac{-4}{1} = 4$ $\alpha + \beta = -2$ $\alpha = -2 - \beta \text{ (2)}$ Substituting equation (2) into equation (1) $(-2 - \beta)\beta = 2$ $\beta^2 + 2\beta + 2 = 0$ $\beta = -1 \pm i$ Hence $P(z) = [z - (-1 + i)][z - (-1 - i)][z - (3 + i)][z - (3 - i)\}$ $= (z^2 + 2z + 2)(z^2 - 6z + 10)$	1 Mark: B	
5	Force = $\sqrt{3^2 + 4^2 - 2 \times 3 \times 4 \times \cos 135^{\circ}}$ = $\sqrt{25 + 12\sqrt{2}}$	1 Mark: B	

6	$z^{-1} = \frac{1}{2 - 3i} \times \frac{2 + 3i}{2 + 3i}$	1 Mark: C
	$=\frac{2+3i}{4+9}$	
	$=\frac{1}{13}(2+3i)$	
7	$Let u = 5 + \sin x$	1 Mark: D
	$\frac{du}{dx} = \cos x$	
	$\int \frac{\sin x \cos x}{5 + \sin x} dx = \int \frac{(u - 5)\cos x}{u} \times \frac{du}{\cos x}$	
	$=\int 1-\frac{5}{u}du$	
	$= u - 5\ln u + C$	
	$= 5 + \sin x - 5\ln 5 + \sin x + C$	
	$= \sin x - 5\ln 5 + \sin x + C$	
8	$9n^2 - 4 = (3n+2)(3n-2)$	1 Mark: B
	$n = 1 5 = 5 \times 1$	
	$n=2 32=8\times 4$	
	$n = 3 77 = 11 \times 7$	
	$n = 4$ $140 = 14 \times 10$	
	\therefore There is only 1 value of n (n = 1) making $9n^2 - 4$ prime.	
9	v = f(x)	1 Mark: D
	$a = v \frac{dv}{dx}$	
	dx = f(x)f'(x)	
	$-\int (x)\int (x)$	
10		1 Mark: A
	$\left \overrightarrow{QR} \right = \frac{1}{2} \left \overrightarrow{PQ} \right $ (Q divides PR into a ratio of 2 : 1)	
	$\underline{r} - \underline{q} = \frac{1}{2} (\underline{q} - \underline{p})$	
	$r = \frac{1}{2}(q - p) + q$	
	-	
	$=\frac{3}{2}\dot{q}-\frac{1}{2}\dot{p}$	

Section II		
	Solution	Criteria
11(a) (i)	$x^4 + x^2 - 12 = (x^2 + 4)(x^2 - 3)$	1 Mark: Correct answer.
11(a) (ii)	$x^4 + x^2 - 12 = (x^2 + 4)(x + \sqrt{3})(x - \sqrt{3})$	1 Mark: Correct answer.
11(a) (iii)	$x^4 + x^2 - 12 = (x + 2i)(x - 2i)(x + \sqrt{3})(x - \sqrt{3})$	1 Mark: Correct answer.
11(b)	Using De Moivre's theorem $z^{n} = \cos n\theta + i \sin n\theta \text{for } n = 1, 2, 3, \dots$ $z^{6} = \cos \left(6 \times \frac{\pi}{6}\right) + i \sin \left(6 \times \frac{\pi}{6}\right)$	2 Marks: Correct answer. 1 Mark: Uses
	$= \cos \pi + i \sin \pi$ $= -1$	De Moivre's theorem
11(c) (i)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= (-\underline{\iota} + 3\underline{\jmath} + 4\underline{k}) - (\underline{\iota} + 2\underline{\jmath} + 2\underline{k})$ $= -2\underline{\iota} + \underline{\jmath} + 2\underline{k}$	1 Mark: Correct answer.
11(c) (ii)	$ \overrightarrow{OA} = \sqrt{1^2 + 2^2 + 2^2}$ $= 3$ $ \overrightarrow{AB} = \sqrt{(-2)^2 + 1^2 + 2^2}$ $= 3$ $\overrightarrow{OA} \cdot \overrightarrow{AB} = (1 \times (-2)) + (2 \times 1) + (2 \times 2)$ $= 4$ $\cos\theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{AB}}{ \overrightarrow{OA} \overrightarrow{AB} } = \frac{4}{3 \times 3}$ $= \frac{4}{9}$	3 Marks: Correct answer. 2 Marks: Finds $\overrightarrow{OA} \cdot \overrightarrow{AB}$. 1 Mark: Finds $ \overrightarrow{OA} $ and $ \overrightarrow{AB} $.
11(c) (iii)	$ \overrightarrow{OB} = \sqrt{(-1)^2 + 3^2 + 4^2}$ $= \sqrt{26}$ In $\triangle OAB \ \overrightarrow{OB}$ is the longest side. $\cos\theta = \frac{4}{9}$ $\sin\theta = \sqrt{1 - \cos^2\theta}$ $= \sqrt{1 - \left(\frac{4}{9}\right)^2} = \frac{\sqrt{65}}{9}$ $A = \frac{1}{2}ab\sin\theta$ $= \frac{1}{2} \times 3 \times 3 \times \sin(\pi - \theta) = \frac{9}{2}\sin\theta$ $= \frac{9}{2} \times \frac{\sqrt{65}}{9}$ $= \frac{\sqrt{65}}{2} \text{ square units}$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Shows some understanding.

11(d)	Let $u = x$, $du = dx$ and $v = e^x$, $dv = e^x dx$	2 Marks: Correct
	$\int x e^x dx = x e^x - \int e^x dx$	answer.
	$= xe^x - e^x + C$	1 Mark: Correctly applies integration by parts.
12(a) (i)	$i\bar{z} = \overline{\iota(3-\iota)}$ $= 3\iota + 1$ $= 1 - 3i$	1 Mark: Correct answer.
12(a) (ii)	$\frac{1}{z} = \frac{1}{3-i} \times \frac{3+i}{3+i}$	1 Mark: Correct answer.
	$= \frac{3+i}{9+i}$ $= \frac{3+i}{10}$	
12(b) (i)		1 Mark: Correct answer.
	∴ Scalar product is –9.	
12(b) (ii)	Unit vector of $v = -2i - 2j + k$ $\hat{v} = \frac{v}{ v }$	2 Marks: Correct answer.
	$= \frac{-2\underline{\imath} - 2\underline{\jmath} + \underline{k}}{\sqrt{(-2)^2 + (-2)^2 + 1}}$	1 Mark: Shows some understanding.
	$=\frac{1}{3}(-2\underline{\iota}-2\underline{\jmath}+\underline{k})$	
12(c) (i)	$v = 10 - x$ $v^2 = 100 - 20x + x^2$	1 Mark: Correct answer.
	$\frac{1}{2}v^2 = 50 - 10x + \frac{1}{2}x^2$	
	$a = \frac{d}{dx} \left(50 - 10x + \frac{1}{2}x^2 \right)$ $= x - 10$	
12(c) (ii)	$\frac{dx}{dt} = 10 - x$ $\frac{dt}{dx} = \frac{1}{10 - x}$	2 Marks: Correct answer.
	$\frac{dx}{dx} = \frac{10 - x}{10 - x}$ $t = -\ln(10 - x) + C$ Initially $t = 0$ and $x = 0$	1 Mark: Finds <i>t</i> in terms of <i>x</i> .
	$0 = -\ln(10 - 0) + C$ $C = \ln 10$	
	$t = -\ln(10 - x) + \ln 10$ $= \ln\left(\frac{10}{x}\right)$	
	$= \ln\left(\frac{10}{10 - x}\right)$ $e^t = \frac{10}{10 - x}$	
	$e^{-t} = \frac{10 - x}{10}$	
	$x = 10 - 10e^{-t}$	

12(c)	$\lim_{t \to \infty} (10 - 10e^{-t}) = 10 - 10 \times 0$	1 Mark: Correct
(iii)	$t \to \infty$ = 10 metres to the right	answer.
12(d)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= (5\underline{\imath} + \underline{\jmath} + 7\underline{k}) - (2\underline{\imath} - 4\underline{\jmath} + 5\underline{k})$ $= (3\underline{\imath} + 5\underline{\jmath} + 2\underline{k})$ Therefore $\overrightarrow{OM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$ $= (2\underline{\imath} - 4\underline{\jmath} + 5\underline{k}) + \frac{1}{2}(3\underline{\imath} + 5\underline{\jmath} + 2\underline{k})$ $= \frac{1}{2}(7\underline{\imath} - 3\underline{\jmath} + 12\underline{k})$	2 Marks: Correct answer. 1 Mark: Finds \overrightarrow{AB} or shows some understanding.
12(e) (i)	$z_1 = \sqrt{3} + i$ $= 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$ $= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ $z_2 = -\sqrt{2} + \sqrt{2}i$ $= 2\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$ $= 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	2 Marks: Correct answer. 1 Mark: Finds z_1 or z_2 or shows some understanding.
12(e) (ii)	Rhombus is formed $z_{1} + z_{2}$ $z_{1} + z_{2}$ $z_{1} + z_{2}$ $z_{1} + z_{2}$ $z_{2} + z_{3}$ $z_{1} + z_{2}$ $z_{2} + z_{3}$ $z_{1} + z_{2} = (argz_{2} - argz_{1}) - \frac{1}{2}(argz_{1} + argz_{2})$ $z_{1} + z_{2} + z_{3}$ $z_{2} + z_{3} + z_{4} + z_{5}$ $z_{1} + z_{2} + z_{4} + z_{5} + z_{$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.

13(a) (i)	$\frac{5x^2 - 3x + 1}{(x^2 + 1)(x - 2)} = \frac{Ax + 1}{(x^2 + 1)} + \frac{B}{(x - 2)}$	2 Marks: Correct answer.
	Using partial fractions to find A and B $(Ax + 1)(x - 2) + B(x^{2} + 1) = 5x^{2} - 3x + 1$ $(A + B)x^{2} + (-2A + 1)x + (-2 + B) = 5x^{2} - 3x + 1$ $-2A + 1 = -3$ $A = 2$ $-2 + B = 1$ $B = 3$ $A = 2 \text{ and } B = 3$	1 Mark: Makes progress in finding <i>A</i> or <i>B</i> .
13(a) (ii)	$\int \frac{5x^2 - 3x + 1}{(x^2 + 1)(x - 2)} dx = \int \frac{2x + 1}{(x^2 + 1)} + \frac{3}{(x - 2)} dx$	2 Marks: Correct answer.
	$= \int \frac{2x}{(x^2+1)} + \frac{1}{(x^2+1)} + \frac{3}{(x-2)} dx$ $= \ln(x^2+1) + \tan^{-1}x + 3\ln x-2 + C$	1 Mark: Correctly finds one of the integrals.
13(b)	Step 1: To prove true for $n = 3$ $\frac{1}{3!} < \frac{1}{2^{3-1}} \text{ or } \frac{1}{6} < \frac{1}{4}$	3 marks: Correct answer.
	Result is true for $n = 3$ Step 2: Assume true for $n = k$ $\frac{1}{k!} < \frac{1}{2^{k-1}}$ Step 3: To prove true for $n = k + 1$	2 Marks: Proves the result true for $n = 3$ and attempts to use the result of $n = k$ to prove the result for $n = k + 1$
	$\left \frac{1}{(k+1)!} < \frac{1}{2^{(k+1)-1}} < \frac{1}{2^k} \right $	1 Mark: Proves the result true for $n = 3$.
	LHS = $\frac{1}{(k+1)!}$ $= \frac{1}{(k+1)k!}$	
	$< \frac{1}{(k+1)} \frac{1}{2^{k-1}} $ (assumption for $n = k$)	
	$<\frac{1}{2} \times \frac{1}{2^{k-1}} (k+1 > 2 \text{ as } n \ge 3)$	
	$= \frac{1}{2^k}$ $= RHS$	
	Step 4: True by induction	

13(c) (i)	$1 + i \text{ is a root that satisfies the equation.}$ $P(z) = z^2 - (3 - 2i)z + (5 - i)$ $P(1 + i) = (1 + i)^2 - (3 - 2i)(1 + i) + (5 - i)$ $= (1 + 2i - 1) - (3 + 3i - 2i + 2) + 5 - i$ $= 2i - 5 - i + 5 - i$ $= 0$	2 Marks: Correct answer. 1 Mark: Substitutes (1 + i) into the polynomial equation.
13(c) (ii)	Let the other root be α . Sum of the roots. $\alpha + (1+i) = -\frac{b}{a}$ $= -\frac{-(3-2i)}{1}$ $\alpha = 3 - 2i - 1 - i$ $= 2 - 3i$	1 Mark: Correct answer.
13(d) (i)	$x = 4\cos^2 t - 1$ $x = 2(\cos 2t + 1) - 1$ $= 2\cos 2t + 1$ $\dot{x} = -4\sin 2t$ $\ddot{x} = -4 \times 2\cos 2t$ $= -4(x - 1)$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
13(d) (ii)	$x = 4\cos^2 t - 1 \text{ or } x = 2\cos 2t + 1$ Particle passes through 0 when $t = \frac{\pi}{3}, \frac{2\pi}{3}$ $x = 4\cos^2 t - 1$ $\frac{\pi}{3}$ $\frac{2\pi}{3}$ $\frac{\pi}{3}$	1 Mark: Correct answer.

13(c) (iii)	Velocity is increasing most rapidly when \ddot{x} has the greatest positive value (or x takes the least value).	1 Mark: Correct answer.
	Greatest value: $\ddot{x} = -8\cos 2t = 8$ when $t = \frac{\pi}{2}$	unswerr
	\therefore Velocity is increasing most rapidly at $\frac{\pi}{2}$ seconds.	
14(a)	Let $u = 1 + e^x$	2 Marks: Correct
	$du = e^x dx$	answer.
	When $x = 0$ then $u = 2$ and when $x = 1$ then $u = 1 + e$ $\int_0^1 \frac{e^x}{(1 + e^x)^2} dx = \int_2^{1+e} u^{-2} du = [-u^{-1}]_2^{1+e}$ $= -\frac{1}{1+e} + \frac{1}{2}$ $= \frac{e-1}{2(e+1)}$	1 Mark: Uses an appropriate substitution and sets up the integration.
14(b) (i)	Integration by parts $\frac{\pi}{2}$	2 Marks: Correct
	$I_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \sin x dx$	answer.
	$= -\left[\sin^{n-1}x\cos x\right]_0^{\frac{\pi}{2}} + (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}x\cos^2x dx$	1 Mark: Sets up the integration and shows some
	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	understanding.
14(b) (ii)	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	2 Marks: Correct answer.
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) dx$ $= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x - \sin^2 x dx$	1 Mark: Makes some progress towards the solution
	$= (n-1)[I_{n-2} - I_n]$	
	$= (n-1)I_{n-2} - nI_n + I_n$	
	$nI_n = (n-1)I_{n-2}$	
	$I_n = \frac{(n-1)}{n} I_{n-2}$	
14(b) (iii)	$I_4 = \frac{(4-1)}{4}I_2$	1 Mark: Correct answer.
	$= \frac{3}{4} \times \frac{(2-1)}{2} I_0$	
	$=\frac{3}{8}\times\int_0^{\frac{\pi}{2}}1dx$	
	$=\frac{3\pi}{16}$	

	T .			Т
14(c) (i)	Newton's second law $\ddot{y} = kv - g$	kv N ↑		1 Mark: Correct answer.
	_	m = 1	1	allowel.
	$\frac{dv}{dt} = kv - g$	<i>m</i> - 1	↓	
		g N	V	
14(c)	$\frac{dt}{dt} = \frac{1}{1-t}$			3 Marks: Correct
(ii)	$\begin{array}{cccc} & dv & kv - g \\ & c & c & 1 \end{array}$			answer.
	$\frac{dt}{dv} = \frac{1}{kv - g}$ $\int \frac{dt}{dv} dv = \int \frac{1}{kv - g} dv$			
	$\frac{1}{1}\ln(\ln x) + C$			2 Marks: Correctly substitutes the
	$t = \frac{1}{k} \ln(kv - g) + C$			initial conditions
	Initial conditions $t = 0$ and $v = 0$			into the expression
	$0 = \frac{1}{k} \ln(-g) + C$			for t.
	$C = -\frac{1}{k} \ln g$			1 Mark: Finds the
	$t = \frac{1}{k} \ln(kv - g) - \frac{1}{k} \ln g$			correction
				expression for <i>t</i> .
	$= \frac{1}{k} \ln \left(\frac{kv - g}{g} \right)$			
	$kt = \ln\left(\frac{kv - g}{g}\right)$			
	$e^{kt} = \frac{kv - g}{g}$			
	$=\frac{kv}{a}-1$			
	$= \frac{kv}{g} - 1$ $v = \frac{g}{v}(e^{kt} + 1)$			
14(c)	$\frac{dv}{dt} = v\frac{dv}{dy}$			3 Marks: Correct
(iii)	$\frac{d}{dt} = v \frac{dy}{dy}$			answer.
	$kv - g = v\frac{dv}{dy}$			
	$\frac{dv}{dv} = \frac{kv - g}{dt}$			2 Marks: Finds the
	dv v			correction expression for <i>ky</i> .
	$\frac{dy}{dv} = \frac{v}{kv - g}$			expression for ky.
	$\begin{vmatrix} dv & kv - g \\ 1 & kw \end{vmatrix}$			1 Mark: Uses
	$= \frac{1}{k} \times \frac{kv}{kv - g}$			results for part (b)
	$\begin{bmatrix} 1 & kv - g + g \end{bmatrix}$			to determine an
	$= \frac{1}{k} \times \frac{kv - g + g}{kv - g}$			expression for dv
	$= \frac{1}{k} \times \left(1 + \frac{g}{kv - g}\right)$			$\frac{dv}{dy}$
	$ky = \left(v + \frac{g}{k}\ln(kv - g)\right) + C$			
	Initially $y = 0$ and $v = 0$			
	$0 = 0 + \frac{g}{k} \ln(-g) + C$			
	$C = \frac{g}{k} \ln g$			
	$ky = v + \frac{g}{k} \ln(kv - g) + \frac{g}{k} \ln g$			
	$ky = v + \frac{g}{k}(\ln(kv - g) + \ln g)$			
	$ky = v + \frac{\tilde{g}}{k} \ln(kgv - g^2)$			

4.4633		
14(d)	$Let u = tan^{-1}x$	2 Marks: Correct
	$\frac{du}{dx} = \frac{1}{1+x^2}$	answer.
	$\int \frac{dx}{dx} - \frac{1+x^2}{1+x^2}$	
	$\int \ln(\tan^{-1}x)$	1 Mark: Uses an
	$\int \frac{\ln(\tan^{-1}x)}{1+x^2} dx = \int \ln u du$	appropriate
	$\int_{-\infty}^{\infty} 1 + x^2$	substitution and
	$=u \ln u - \int 1 du$	sets up the
	J	integration.
	$=u\ln u-u+C$	
	$= \tan^{-1} x \ln(\tan^{-1} x) - \tan^{-1} x + C$	
15(a)	$t = \tan \frac{x}{2}$	4 Marks: Correct
	$t = \tan \frac{\pi}{2}$	answer.
	$dt = \frac{1}{2}\sec^2\frac{x}{2}dx$	
	$at = \frac{1}{2}\sec^2\frac{1}{2}ax$	3 Marks: Correct
	$dx = \frac{2}{1 + t^2} dt$	expression for the integral in terms of
	$dx = \frac{1}{1+t^2}dt$	t using partial
		fractions.
	π	11 41 61 61 61 61
	When $x = 0$ then $t = 0$ and when $x = \frac{\pi}{2}$ then $t = 1$	2 Marks: Finds the
	$2(1+t^2)+4t-(1-t^2)$	value of
	$2 + 2\sin x - \cos x = \frac{2(1+t^2) + 4t - (1-t^2)}{1+t^2}$	$2 + 2\sin x - \cos x$
		in terms of t and
	$=\frac{3t^2+4t+1}{1+t^2}$	changes the limits.
		1 Mark: Sets up the
	$=\frac{(3t+1)(t+1)}{1+t^2}$	integration using
	$-\frac{1+t^2}{1+t^2}$	t formulas.
	$\begin{bmatrix} \frac{\pi}{2} & 1 & c^1 & 1 & +^2 & 2 \end{bmatrix}$	
	$\int_0^{\frac{\pi}{2}} \frac{1}{2 + 2\sin x - \cos x} dx = \int_0^1 \frac{1 + t^2}{(3t + 1)(t + 1)} \times \frac{2}{1 + t^2} dt$	
	$\int_{0}^{1} 2 + 2\sin x - \cos x$ $\int_{0}^{1} (3t + 1)(t + 1) + t^{2}$	
	$= \int_0^1 \frac{2}{(3t+1)(t+1)} dt$	
	$-\int_0^{\infty} \frac{(3t+1)(t+1)}{(3t+1)(t+1)} ut$	
	$\int_{0}^{1} \begin{bmatrix} 3 & 1 \end{bmatrix}$	
	$= \int_0^1 \left[\frac{3}{3t+1} - \frac{1}{t+1} \right] dt$	
	$= [\ln(3t+1) - \ln(t+1)]_0^1$	
	$= 2\ln 2 - \ln 2$	
	= ln2	

4 - 6 >		
15(b)	$Now (a - b)^2 \ge 0$	2 Marks: Correct
(i)	$a^2 + b^2 > 2ab \textcircled{1}$	answer.
	$Also (a-c)^2 \ge 0$	
	$a^2 + c^2 > 2ac \ \ \textcircled{2}$	1 Mark: Makes
	$Also (b-c)^2 \ge 0$	some progress
	$b^2 + c^2 > 2bc \boxed{3}$	towards the
	Equations $(1) + (2) + (3)$	solution such as
	$2(a^2 + b^2 + c^2) \ge 2(ab + ac + bc)$	using
	$a^2 + b^2 + c^2 \ge (ab + ac + bc)$	$a^2 + b^2 > 2ab$
	$a^2 + b^2 + c^2 + 2(a^2 + b^2 + c^2)$	u 1 b > 2 ub
	$\geq 2(ab + ac + bc) + ab + ac + bc$	
	$a^2 + b^2 + c^2 + 2(a^2 + b^2 + c^2) \ge 3(ab + ac + bc)$	
	$(a+b+c)^2 \ge 3(ab+ac+bc)$	
15(b)	$a^2 + b^2 + c^2 \ge (ab + ac + bc)$	2 Marks: Correct
(ii)	Let $a = xy$, $b = xz$ and $c = yz$	answer.
	$x^2y^2 + x^2z^2 + y^2z^2 \ge (xyxz + xyyz + xzyz)$	
	$\geq xyz(x+y+z)$	1 Mark: Makes
	Replace $x = a$, $y = b$ and $z = c$	some progress
	$a^2b^2 + a^2c^2 + b^2c^2 \ge abc(a+b+c)$	towards the
450		solution.
15(c)	<i>y</i>	2 Marks: Correct
(i)		answer.
		1 Mark: Correctly
	2	graphs one of the
		inequalities or
	$\frac{1}{3}$	shows some
	\downarrow	understanding.
	-\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac	
	-4+	
15(c)	Area = $\frac{1}{2}(4^2 - 2^2)\frac{\pi}{3}$	1 Mark: Correct
(ii)	2 0	answer.
4500	$=2\pi$ square units	
15(d)	We have to prove that the negation is true.	2 Marks: Correct
	For all real numbers x we have $x^2 \neq -1$	answer.
	Clearly, for any real number x , we have $x^2 \ge 0$ and so $x^2 \ne -1$.	1 Mark: Shows
	\therefore There exists some real number x , we have $x = 0$ and so $x = -1$.	some
	There exists some real number x such that $x^- = -1$ is false	understanding.
15(e)	Simple harmonic motion occurs when $\ddot{r} = -n^2(r - h)$	1 Mark: Correct
(i)		
	• • • • • • • • • • • • • • • • • • • •	
	$= -4^2 \left(\sqrt{3} \cos 4t + \sin 4t \right)$	
	$\ddot{x} = -4^2(x-1)$	
	\therefore SHM about the position $x = -1$ ($n = 4$ and $b = 1$)	
15(e) (i)	$\ddot{x} = -4^2(x-1)$	1 Mark: Correct answer.

15(e)	$x = 1 + \sqrt{3}\cos 4t + \sin 4t$	1 Mark: Correct
(ii)	$=1+2\sin\frac{\pi}{3}\cos 4t+2\cos\frac{\pi}{3}\sin 4t$	answer.
	3 _	
	$= 1 + 2\left[\sin 4t\cos\frac{\pi}{3} + \cos 4t\sin\frac{\pi}{3}\right]$	
	$=1+2\sin\left(4t+\frac{\pi}{3}\right)$	
	(in the form $x = b + a\sin(nt + \alpha)$)	
	∴ Amplitude is 2	
15(e)	Maximum speed at $\ddot{x} = 0$ or $x = 0$ (centre of motion)	2 Marks: Correct
(iii)	$\ddot{x} = -4^2 \left(\sqrt{3} \cos 4t + \sin 4t \right) = 0$	answer.
	$\sqrt{3}\cos 4t + \sin 4t = 0$	4.14.1.14.1
	$\frac{\sin 4t}{\cos 4t} = -\sqrt{3}$	1 Mark: Makes some progress.
	$\tan 4t = -\sqrt{3}$	some progressi
	$4t = \frac{2\pi}{3}, \frac{5\pi}{3}, \dots$	
	3 3	
	$t = \frac{\pi}{6}, \frac{5\pi}{12}, \dots$	
	$\therefore \text{ Particle first reaches maximum speed at } t = \frac{\pi}{6}$	
16(0)	U	2 Marks: Correct
16(a) (i)	<i>i</i> component	answer.
	$6 + \lambda = 0$	
	$\lambda = -6$	1 Mark: Finds λ or shows some
	<u>j</u> component	understanding.
	$19 - 6 \times 4 = a$	
	a = -5	
	k component	
	$-1 - 6 \times (-2) = b$	
16(a)	$\therefore a = -5 \text{ and } b = 11.$	4 Marks: Correct
(ii)	$\overrightarrow{OP} = (6+\lambda)\underline{\imath} + (19+4\lambda)\underline{\jmath} + (-1-2\lambda)\underline{k}$	answer.
	Direction vector of l_1 : $\underline{\imath} + 4\underline{\jmath} - 2\underline{k}$	2 M 1 M 1
	\overrightarrow{OP} and l_1 are perpendicular	3 Marks: Makes significant progress
	$(6+\lambda)\underline{\iota} + (19+4\lambda)\underline{\iota} + (-1-2\lambda)\underline{k} \cdot (\underline{\iota} + 4\underline{\iota} - 2\underline{k}) = 0$	towards the solution.
	Hence	Solution.
	$6 + \lambda + (19 + 4\lambda)4 + (-1 - 2\lambda) - 2 = 0$	2 Marks: Applies
	$6 + \lambda + 76 + 16\lambda + 2 + 4\lambda = 0$	the statement for perpendicular
	$21\lambda + 84 = 0$	vectors.
	$\lambda = -4$	1 Mark: Shows
	Therefore	some
		understanding.
	$\overrightarrow{OP} = (6-4)\underline{\imath} + (19+4\times(-4))\underline{\jmath} + (-1-2\times(-4))\underline{k}$	
	$=2\underline{\imath}+3\underline{\jmath}+7\underline{k}$	

16(b) $ (i) $ $ (cos \frac{\pi}{3} + isin \frac{\pi}{3})^5 + (cos \frac{\pi}{3} + isin \frac{\pi}{3}) - 1 = 0 $ $ cos \frac{5\pi}{3} + isin \frac{5\pi}{3} + cos \frac{\pi}{3} + isin \frac{\pi}{3} - 1 = 0 $ $ \frac{1}{2} - i \frac{\sqrt{3}}{2} + \frac{1}{2} + i \frac{\sqrt{3}}{2} - 1 = 0 $ $ 0 = 0 $ $ \therefore a = cos \frac{\pi}{3} + isin \frac{\pi}{3} \text{ is a root of the equation } z^5 + z - 1 = 0 $ $ 2 \text{ Marks: Correct answer.} $ $ 1 \text{ Mark: Substitutes } a \text{ into the equation and uses De Moivre's theorem.} $
$ \frac{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}} + \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) - 1 = 0 $ $ \frac{5\pi}{\cos\frac{\pi}{3}} + i\sin\frac{5\pi}{3} + \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} - 1 = 0 $ $ \frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 = 0 $ $ 0 = 0 $ 1 Mark: Substitutes a into the equation and uses De Moivre's theorem.
$\cos \frac{5\pi}{3} + i\sin \frac{5\pi}{3} + \cos \frac{\pi}{3} + i\sin \frac{\pi}{3} - 1 = 0$ $\frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 = 0$ $0 = 0$ 1 Mark: Substitutes a into the equation and uses De Moivre's theorem.
$\frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 = 0$ $0 = 0$ and uses De Moivre's theorem.
$\begin{vmatrix} \frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 = 0\\ 0 = 0 \end{vmatrix}$ and uses De Moivre's theorem.
0 = 0
0 = 0
$\therefore a = \cos - + i \sin - i \sin a$ root of the equation $z^5 + z - 1 = 0$
16(b) Monic cubic equation is the root of $z^5 + z - 1 = 0$ 2 Marks: Correct
(ii) $z^5 + z - 1 = 0$ has real coefficients with a as a root. answer.
Complex roots occur in conjugate pairs or \bar{a} is a root.
$(z-a)(z-\bar{a}) = z^2 - (a+\bar{a})z + a\bar{a}$ 1 Mark: Uses the
$= z^2 - 2\cos\frac{\pi}{3}z + 1$ conjugate root
theorem of makes
Some progress
Therefore $z^2 + z - 1 = (z^2 - z + 1)(z^3 + az^2 + bz - 1)$ solution.
$\begin{bmatrix} z & 1 & z & 1 - (z & z + 1)(z + uz + bz & 1) \end{bmatrix}$
$= z^{5} + az^{4} + bz^{3} - z^{2} - z^{4} - az^{3} - bz^{2} + z + z^{3} + az^{2} + bz - 1$
$= z^5 + (a-1)z^4 + (b-a+1)z^3 + (a-b-1)z^2 + (b+1)z - 1$
Equating the coefficients of z^4 : $a - 1 = 0$, $a = 1$
Equating the coefficients of z : $b + 1 = 1$, $b = 0$
$\therefore \text{ Monic cubic equation } z^3 + z^2 - 1 = 0$
16(c) Step 1: To prove true for $n = 1$ 4 Marks: Correct
LHS = $\tan \left[(2 \times 1 - 1) \frac{\pi}{4} \right] = 1$ answer.
$RHS = (-1)^{1+1} = 1$
Result is true for $n = 1$ 3 Marks: Makes
Stop 2: Against two for n = k
towards the
$\tan\left[\left(2k-1\right)\frac{\pi}{4}\right] = (-1)^{k+1}$ solution.
Step 3: To prove true for $n = k + 1$ 2 Marks: Proves the
$\tan \left[(2(k+1)-1)\frac{n}{4} \right] = (-1)^{k+1+1}$ result true for $n=1$
LHS = $\tan \left[(2(k+1) - 1) \frac{\pi}{4} \right]$ and attempts to use the result of $n = k$ to
$= \tan \left[(2k - 1 + 2) \frac{\pi}{l} \right]$ prove the result for
$= \tan \left[\left(2k - 1 + 2j \right) \right]$ $= \tan \left[\left(2k - 1 \right) \frac{\pi}{4} + \frac{\pi}{2} \right]$
1 Mark: Proves the
$= -\cot \left[2k - 1\right] \frac{\pi}{4}$ result true for $n = 1$
$= -\left\{\tan\left[\left(2k-1\right)\frac{\pi}{4}\right]\right\}^{-1}$
$= -1 \times \{(-1)^{k+1}\}^{-1}$
$= -1 \times \{(-1)^{-1}\}^{k+1}$
$=-1\times(-1)^{k+1}$
$=(-1)^{k+1+1}$
= RHS
Step 4: True by induction