Билет 33

Непрерывность суперпозиции функций

Теорема

 $\phi(x)$ — определена на X и непрерывна в $x_0 \in X$

f(y) — определена на $\phi(X)$ и непрерывна в $\phi(x_0)$

Тогда $f(\phi(x))$ — непрерывна в x_0

Доказательство

Пусть $y_0 := \phi(x_0)$ и $z_0 := f(y_0)$

В силу непрерывности f в y_0

$$\forall \varepsilon > 0 \ \exists \delta_y > 0 : (\forall y \in (y_0 - \delta_y; y_0 + \delta_y)) \ |z_0 - f(y)| < \varepsilon$$

Для такой δ_y по непрерывности ϕ в x_0

$$\exists \delta_x > 0 : (\forall x \in (x_0 - \delta_x; x_0 + \delta_x)) \mid y_0 - \phi(x) \mid < \delta_y \Rightarrow |z_0 - f(\phi(x))| < \varepsilon \Rightarrow \lim_{x \to x_0} f(\phi(x)) = f(\phi(x_0)) \square.$$