ALJABAR BOOLEAN

Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf alfabet, dan tiga operasi dasar dengan AND, OR dan NOT (komplemen). Fungsi boolean terdiri dari variabel-variabel biner yang menunjukkan fungsi, suatu tanda sama dengan, dan suatu ekspresi aljabar yang dibentuk dengan menggunakan variabel-variabel biner, konstanta-konstanta 0 dan 1, simbol-simbol operasi logik, dan tanda kurung.

Suatu fungsi boolean bisa dinyatakan dalam tabel kebenaran. Suatu tabel kebenaran untuk fungsi boolean merupakan daftar semua kombinasi angka-angka biner 0 dan 1 yang diberikan ke variabel-variabel biner dan daftar yang memperlihatkan nilai fungsi untuk masing-masing kombinasi biner.

Aljabar boolean mempunyai 2 fungsi berbeda yang saling berhubungan. Dalam arti luas, aljabar boolean berarti suatu jenis simbol-simbol yang ditemukan oleh George Boole untuk memanipulasi nilai-nilai kebenaran logika secara aljabar. Dalam hal ini aljabar boolean cocok untuk diaplikasikan dalam komputer. Disisi lain, aljabar boolean juga merupakan suatu struktur aljabar yang operasi-operasinya memenuhi aturan tertentu.

DASAR OPERASI LOGIKA

LOGIKA:

Memberikan batasan yang pasti dari suatu keadaan, sehingga suatu keadaan tidak dapat berada dalam dua ketentuan sekaligus.

Dalam logika dikenal aturan sbb:

- Suatu keadaan tidak dapat dalam keduanya benar dan salah sekaligus
- ♦ Masing-masing adalah benar / salah.
- Suatu keadaan disebut benar bila tidak salah.

Dalam ajabar boolean keadaan ini ditunjukkan dengan dua konstanta : LOGIKA '1' dan '0'

Operasi-operasi dasar logika dan gerbang logika:

Pengertian GERBANG (GATE):

- ◆ Rangkaian satu atau lebih sinyal masukan tetapi hanya menghasilkan satu sinyal keluaran.
- ♦ Rangkaian digital (dua keadaan), karena sinyal masukan atau keluaran hanya berupa tegangan tinggi atau low (1 atau 0).
- ♦ Setiap keluarannya tergantung sepenuhnya pada sinyal yang diberikan pada masukan-masukannya.

Operasi logika NOT (Invers)

Operasi merubah logika 1 ke 0 dan sebaliknya \rightarrow x = x'

OT Simbol	Tabel Operasi NOT	
X'	X'	Х
1	1	0
0	0	1

Operasi logika AND

- ♦ Operasi antara dua variabel (A,B)
- ◆ Operasi ini akan menghasilkan logika 1, jika kedua variabel tersebut berlogika 1

Simbol

Tabel operasi AND

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Operasi logika OR

Operasi antara 2 variabel (A,B)

Operasi ini akan menghasilkan logika 0, jika kedua variabel tersebut berlogika 0.

Simbol

Tabel Operasi OR

Α	В	A + B
0	0	0
0 0 1	1	1
1	0	1
1	1	1

Operasi logika NOR

Operasi ini merupakan operasi OR dan NOT, keluarannya merupakan keluaran operasi OR yang di inverter.

Simbol

Tabel Operasi NOR

Α	В	(A + B)'
0	0	\ 1 <i>^</i>
0	1	0
1	0	0
1	1	0

Atau

Operasi logika NAND

Operasi logika ini merupakan gabungan operasi AND dan NOT, Keluarannya merupakan keluaran gerbang AND yang di inverter.

Simbol

Atau

Tabel Operasi NAND

Α	В	(A . B)'
0	0	1
0	1	1
1	0	1
1	1	0

Operasi logika EXOR

Operasi ini akan menghasilkan keluaran '1' jika jumlah masukan yang bernilai '1' berjumlah ganjil.

Simbol

Tabel Operasi EXOR

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Operasi logika EXNOR

Operasi ini akan menghasilkan keluaran '1' jika jumlah masukan yang bernilai '1' berjumlah genap atau tidak ada sama sekali.

Simbol

Tabel Operasi EXNOR

Α	В	(A⊕B)'
0	0	1 1
0	1	0
1	0	0
1	1	1

DALIL BOOLEAN;

- 1. X=0 ATAU X=1
- 2.0.0 = 0
- 3.1 + 1 = 1
- 4. 0 + 0 = 0
- 5. 1.1 = 1
- $6. \ 1.0 = 0.1 = 0$
- 7. 1 + 0 = 0 + 1 = 1

TEOREMA BOOLEAN

- 1. HK. KOMUTATIF
 - A + B = B + A
 - $A \cdot B = B \cdot A$
- 2. HK. ASSOSIATIF
 - (A+B)+C = A+(B+C)
 - (A.B) . C = A . (B.C)
- 3. HK. DISTRIBUTIF
 - $A \cdot (B+C) = A.B + A.C$
 - $A + (B.C) = (A+B) \cdot (A+C)$
- 4. HK. INVOLUSI
 - 0' = 1 1' = 0
 - (A')' = A
- 5. HK. ABRSORPSI
 - A + A.B = A
 - A.(A+B) = A

- 6. HK. IDEMPOTEN
 - A + A = A
 - $A \cdot A = A$
- 7. HK. IDENTITAS
 - 0 + A = A
 - 1 + A = 1
- 8. HK. NEGASI
 - A' + A = 1
 - $A' \cdot A = 0$
- 9. HK. IKATAN
 - A + 1 = 1
 - A . 0 = 0
- 10. DE MORGAN'S
 - $(A+B)' = A' \cdot B'$
 - (A.B)' = A' + B'

CONTOH:

1.
$$A + A \cdot B' + A' \cdot B = A \cdot (1 + B') + A' \cdot B$$

$$= A . 1 + A' . B$$

$$= A + A' \cdot B$$

$$= A + B$$

$$X = (A.B)' \cdot B$$
 = $(A' + B') \cdot B$
= $(A.B)' + B' \cdot B$
= $(A.B)' + 0$
= $A' \cdot B$

ATAU

