

$\underline{Betongkonstruktion-Konstruktionsteknik\ 2}$

TIBYH, AF 1747 Klass B.

Grupp 27

Tolga Kilic

Varman Ratha

Frida Yousef Lahdo

Erik Xu

Datum: 2023-11-26

1. Betongkonstruktion uppgift 1	4
1.1 Indata och materialegenskaper	4
1.1.2 Egentyngd, nyttig last och lastkombination.	4
Lastfall 1:	5
Lastfall 2:	8
Lastfall 3:	11
1.2 Beräkningar av böjarmering	14
1.2.1 Täckande betongskikt	14
1.2.3 minsta avstånd mellan armeringsstänger och den effektiva höjden	15
1.3 Armering i fält och över stöd	16
1.4 Nödvändig balkbredd för armering	17
2. Deluppgift b)	17
2.1.1 Kontroll för livtryckbrott	17
2.1.2 Kontroll för böjskuvbrott	18
2.1.3 Inverkan av last nära upplag:	18
2.2 Område 2	18
2.2.1 Kontroll av livtryckbrott:	18
2.2.2 Kontroll för böjskuvbrott:	19
2.2.3 Inverkan av last nära upplag:	19
2.3 Område 3	19
2.3.1 Kontroll för böjskuvbrott:	20
2.3.2 Inverkan av last nära upplag:	20
3.Deluppgift C. Erforderlig tvärkraftsarmering med vertikala byglar	20
3.1 Område 1	20
3.1.1 Underkant-Tvärkraftsarmering	20
3.1.2 Tvärkraft i område 1: 0 x 3.1932	21
3.1.3 Minimiarmering:	21
3.2 Område 2	21
3.2.1 Underkant-Tvärkraftsarmering	21
3.2.2 Tvärkraft i område 2: 3.4068 x 6.6	22
3.2.3 Minimiarmering:	22
3.3 Område 3	22
3.3.1 överkant-Tvärkraftsarmering	22
3.3.2 Tvärkraft i område 3:6.6 x 8.7	23
3.3.3 Minimiarmering:	23
4. Deluppgift D. Vy av balk samt redovisning	23
5. Redovisning av värden	26

Förutsättningar:

Spännvidd = L_1	6,6 meter
Spännvidd = L_2	2,1 meter
Centrumavstånd, balkar = c-c	5,4 meter
Nyttig last = q_k	10 kN/m ²
q _k , Partialkoefficient.	$\psi_0 = 0.8$
Betongens tunghet = V_t	24 kN/m ³
Exponeringsklass	XC2
Max vct, -beton C35/45	0.5
Livslängdsklass	L50
Max stenstorlek	16 millimeter
Armering	K500C-T
Underkant	Φ20
Överknat	Φ16
Byglar	Φ10
Säkerhetsklass 3	$V_d = 1.0$

1. Betongkonstruktion uppgift 1

Ett betongbjälklag för tung industri består av en platta på fritt upplagda två stödbalkar med konsoler. Balkarna har spännvidd= L1 , konsollängd = L2 och centrumavstånd = c. Bjälklaget belastas förutom av egentyngd, av nyttig last (variabel och fri last) med karakteristiskt värde qk och ψ = 0,8. Säkerhetsklass 3. Var god och räkna med betongens tunghet (γ = 24 kN/m3)

Balkarna skall dimensioneras som rektangulära balkar med måtten b \times h = 800×500 . Armering K500C-T, underkantsarmering Ø20, överkantsarmering Ø16 och byglar Ø10. Övrig information redovisas i förutsättningar.

1.1 Indata och materialegenskaper

Betong C35/45 ger f_{ck} = 25 Mpa.

K500C-T ger
$$f_{yk} = 500 \text{ Mpa}$$

Dimensioneringsvärde:

$$f_{vd} = 435 \text{ Mpa}.$$

$$\omega_{bal} = 0.293$$

$$m_{\rm bal} = 0.371$$

1.1.2 Egentyngd, nyttig last och lastkombination.

Egentyngd	$G_{BTG} = \gamma_{BTG} \cdot A_{tot} = 24 \cdot (0.3 \cdot 0.8 + 0.2 \cdot 5.4) = 31.68 \text{ kN/m}$
Nyttig last	$Q_k = q_k \cdot c - c = 10 \cdot 5.4 = 54 \text{ kN/m}$

6.10 a) (EK5)	6.10 b)
$G = \gamma_d \cdot 1.35 \cdot G_{BTG} = 1 \cdot 1.35 \cdot 31.68 = 42,768 \text{ kN/m}$	$G = \gamma_{d} \cdot 0.89 \cdot 1.35 \cdot G_{BTG} = 1 \cdot 0.89 \cdot 1.35 \cdot 31.68 = 38.0635$ kN/m $Q = \gamma_{d} \cdot 1.5 \cdot Q_{k} = 1 \cdot 1.5 \cdot 54 = 81 \text{ kN/m}$
	$\Sigma q_{Ed} = 119.06352 \text{ kN/m}$

Lastfall 1:

Dimensionering med hänsyn till farligaste lastställning för fri last ger q_{Ed} = 119.06352 kN/m

$$\begin{split} & \curvearrowright M_A = \ 0 \ \ \, \to \ \, q_{Ed} \cdot \frac{(L_1 + L_2)^2}{2} - \ \, 6. \, 6R_B = \ \, 0 \, \to 119. \, 0635 \, \cdot \frac{(8.7)^2}{2} - \ \, 6. \, 6R_B = \ \, 0 \\ & \Rightarrow R_B = \ \, 682. \, 7210 kN \\ & \uparrow : R_A + R_B - q_{Ed} \cdot (L_1 + L_2) = \ \, 0 \, \, \to R_A + \ \, 682. \, 721 \, - \ \, 119. \, 0635 \, \cdot \, (6. \, 6 \, + \, 2. \, 1) = \ \, 0 \\ & \Rightarrow R_A = \ \, 353. \, 1316 kN \end{split}$$

$$\downarrow: V = R_A - q_{Ed} \cdot x \rightarrow V = 0 \rightarrow x = \frac{353.1316}{119.0635} = 2.9659m$$

$$\therefore M = R_A \cdot x - \frac{q_{Ed} \cdot x^2}{2} \rightarrow M_{(x=2.9659)} = 353.1316 \cdot 2.9659 - \frac{119.0635 \cdot 2.9659^2}{2} = 523.6782kNm$$

$$M_{B(x=6.6)} = 353.1316 \cdot 6.6 - \frac{119.0635 \cdot 6.6^2}{2} = -262.5345kNm$$

Snitt 2: $6.6 \le x \le 8.7$

$$\downarrow: V = R_A + R_B - q_{Ed} \cdot x \rightarrow V = 0 \rightarrow x = \frac{1035.8526}{119.0635} = 8.7m$$

$$\Rightarrow M_{B(x=6.6)} = 682.7210 \cdot 0 + 353.1316 \cdot 6.6 - \frac{119.0635 \cdot 6.6^{2}}{2} = -262.5345 kNm$$

Lastfall 2:

Snitt 1:
$$0 \le x \le 6.6$$

$$\rightarrow$$
: N = 0 kN

$$\downarrow: V = R_A - q_G \cdot x \rightarrow V = 0 \rightarrow x = \frac{85,8315}{38,0635} = 2,2550m$$

Snitt:2

Lastfall 3

$$^{\alpha}M_{A} = 0 \rightarrow 38,0635 \cdot 8,7 \cdot (8,7/2) + 81 \cdot 6,6 \cdot (6,6/2) - 6.6R_{B} = 0$$

$$\Rightarrow R_{B} = 485,5596 \, kN$$

1:
$$R_A + R_B - 6.6 \cdot 81 - 38,0635 \cdot 8,7 = 0 \rightarrow R_A = 380,1929 \, kN$$

Snitt 1 $0 \le x \le 6.6 m$

 \rightarrow : N = 0 kN

$$\downarrow: V = 0 \rightarrow 380, 1929 - 81 x - 38, 0635 x = 0 \rightarrow x = 3, 1932 m$$

Snitt 2 6, 6 $m \le x \le 8, 7 m$

1:
$$V = 38,0635 \cdot (8,7-x)$$
, $x = 6,6 \rightarrow V = 38,0635 \cdot (8,7-6,6) = 79,9334 \, kN$
2: $M = -\frac{38,0635 \cdot (8,7-x)^2}{2}$, $x = 6,6 \rightarrow M = \frac{38,0635 \cdot (8,7-6,6)^2}{2} = -83,9300 \, kNm$

Lastfall 1	Lastfall 2	Lastfall 3
$R_A = 353.1316kN$	$R_A = 85,8315 kN$	R _A =380, 1929 <i>kN</i>
$R_B = 682.7210kN$	R _B =415, 4209 <i>kN</i>	$R_B = 485,5596 kN$
$V_{Ed,A} = 353.1316$	V _{Ed,A} = 85,315	$V_{Ed,A} = 380.1929$
$V_{Ed,BV} = -262.5351$	$V_{Ed,BV} = -165,3879$	$V_{Ed,BV} = -405,6262$
$V_{Ed,BH} = 250.0330$	$V_{Ed,BH} = 250.0333$	$V_{Ed,BH} = 79.9334$
$M_{fălt,max} = 523.6782$	$M_{fält,max} = 96,7731$	$M_{\text{fält,max}} = 607.0149$
$M_{\text{st\"od,max}} = -262.5345$	$M_{\text{st\"od},\text{max}} = -262.5345$	$M_{\text{st\"od},\text{max}} = -83.930$

$M_{fält,max}$	$M_{st\"{od},max}$	$V_{\text{Ed,A,max}}$	$V_{\text{Ed,Bv,max}}$	$ m V_{Ed,BH}$
607.0149 kNm	262.5348 kNm	380.1929 kN	405,6262 kN	250.0334kN

1.2 Beräkningar av böjarmering

$$\mathbf{f_{cd}} = 23.3 \text{ MPa}, \ \mathbf{f_{yd}} = 435 \text{ MPa}, \ \mathbf{m_{bal}} = 0.371, \ \mathbf{w_{bal}} = 0.493$$

1.2.1 Täckande betongskikt

Huvudarmering underkant

$$C_{\text{nom}} = C_{\text{min}} + \Delta C_{\text{del}}$$

$$C_{min,uk} = max\{C_{min,b}; C_{min,dur}; 10 mm\} = max\{20; 10; 10 mm\} = 20 mm$$

$$C_{\text{nom,uk}} = C_{\text{min,uk}} + \Delta C_{\text{dev}} = 20 + 10 = 30 \text{ mm}$$

Bygel underkant

$$C_{min,byg,uk} = max\{C_{min,b}; C_{min,dur}; 10 mm\} = max\{10; 10; 10 mm\} = 10 mm$$

$$C_{byg} = C_{min,byg} + \Delta C_{dev} + \phi_{byg} = 10 + 10 + 10 = 30$$
 mm, i och med detta svar kan vi välja C

$$\Rightarrow$$
 Välj C = 30 mm

Huvudarmering överkant

$$C_{\min,\delta k} = max\{C_{\min,\delta}; C_{\min,dur}; 10 \ mm\} = max\{16; 10; 10 \ mm\} = 16 \ mm$$

$$C_{\text{nom,\"{o}k}} = C_{\text{min,\"{o}k}} + \Delta C_{\text{dev}} = 16 + 10 = 26 \text{ mm}$$

Bygel överkant

$$C_{\text{min,byg,\"{o}k}} = max\{C_{\text{min,b}}; C_{\text{min,dur}}; 10 \text{ mm}\} = max\{10; 10; 10 \text{ mm}\} = 10 \text{ mm}$$

$$C_{\text{nom,\"{o}k}} = C_{min,byg,\"{o}k} + \Delta C_{dev} + \phi_{byg} = 10 + 10 + 10 = 30 \text{ mm}$$

$$\Rightarrow$$
 C = 30 mm

1.2.3 minsta avstånd mellan armeringsstänger och den effektiva höjden

$$\Phi = 20$$

$$d_g + 5 = 16 + 5 = 21$$

$$a \ge max \{ \phi; d_g + 5; 20 \} = max \{ 20; 16 + 5; 20 \} = 21 \text{ mm}$$

$$n_{uk} = \frac{bmin - 2*c + a}{\phi + a} = \frac{800 - (2*30) + 21}{20 + 21} = 18,567 \Rightarrow 19 \text{ st}$$

$$n_{\ddot{o}k} = \frac{800 - 2*30 + 21}{16 + 21} = 20,567 \Rightarrow 21 \text{ st}$$

Överkant

$$C_{tp,\delta k} = C + \frac{\Phi}{2} = 30 + \frac{16}{2} = 38 \text{ mm}$$

$$d_{\ddot{o}k} = h - C_{tp,\ddot{o}k} = 500 - 38 = 462 \ mm$$

Underkant

$$C_{tp,uk} = C + \frac{\phi}{2} = 30 + \frac{20}{2} = 40$$

$$d_{\text{uk}} = h - C_{\text{tp,uk}} = 500 - 40 = 460 \text{ mm}$$

1.3 Armering i fält och över stöd

 $M_{f\ddot{a}lt}$:

$$\omega_{bal} = 0.493, \ m_{bal} = 0.371$$

$$m = \frac{M_{ed,f\ddot{a}lt,max}}{b^* d_{uk}^2 f_{cd}^2} = \frac{607.0149 * 10^3}{0.8 * 0.460^2 * 23.3 * 10^6} = 0.1539 < m_{bal} = 0.371 \text{ ok!}$$

$$\omega = 1 - (1 - 2 * m)^{0.5} = 1 - (1 - 2 * 0.1539)^{0.5} = 0.1680 < \omega_{bal} = 0.493 \text{ ok!}$$

$$A_{s.uk} = \omega * \frac{b*d_{uk}*f_{cd}}{f_{yd}} = 0.1680 * \frac{0.8*0.460*(23.3*10^3)}{(435*10^3)} = 3311 \text{ mm}^2$$

$$\eta_{uk} = \frac{A_{s,uk}}{A_{d,20}} = \frac{3311}{314} = 10,5 \rightarrow V\ddot{a}lj \; 11st$$

$$800 = a(11 - 1) + 2 * 30 + 11 * 20 + 2 * 10$$

$$a_{ny}$$
= (800 - 2 * 30 - 11 * 20 - 2 * 10)/10 = 50 mm

$$b_{min} \ge a(n-1) + 2*c + n_{uk}*\phi_{uk} + \phi_{bygel}$$

$$800 \ge 21*(11-1) + 2*30 + 11*20 + 2*10$$

 $800mm \ge 510 mm \ ok!$

 $M_{\text{st\"od}}$:

$$m = \frac{M_{ed,st\"{o}d,max}}{b^*d_{\"{o}k}^2 f_{cd}} = \frac{262,5438 * 10^3}{0,8*0,462^2 * 23,3 * 10^6} = 0,06599 < m_{bal} = 0,371 \text{ ok!}$$

$$\omega = 1 - (1 - 2 * m)^{0.5} = 1 - (1 - 2 * 0.06599)^{0.5} = 0.0683 < \omega_{bal} = 0.493 \text{ ok!}$$

$$A_{s.\ddot{o}k} = \omega * \frac{b^* d_{\ddot{o}k}^* f_{cd}}{f_{yd}} = 0,,683 * \frac{0.8 * 0.462 * (23.3 * 10^3)}{(435 * 10^3)} = 1353 \text{ mm}^2$$

$$\eta_{\ddot{o}k} = \frac{A_{s,\ddot{o}k}}{A_{\phi,16}} = \frac{1353}{201} = 6,7 \rightarrow V \ddot{a}lj \ 7st$$

$$800 = a(7-1) + 2 * 30 + 7 * 16 + 2 * 10$$

$$a_{nv} = (800 - 2 * 30 - 7 * 16 - 2 * 10)/6 = 101.33 \, mm$$

$$b_{min} \ge a(n-1) + 2*c + n_{\ddot{o}k}*\phi_{\ddot{o}k} + \phi_{bygel}$$

$$800 \ge 21*(7-1) + 2*30 + 7*16 + 2*10$$

 $800mm \ge 318 \ mm \ ok!$

Balken ska armeras med 11st ϕ 20 i underkant och 7st ϕ 16 i överkant

1.4 Nödvändig balkbredd för armering

$$b_{min} \ge a(n-1) + 2 c_{huv} + n_{\phi}$$

2. Deluppgift b)

2.1 Område 1

2.1.1 Kontroll för livtryckbrott

$$d_{uk} = 460 \text{ mm}, f_{ck} = 35 \text{ MPa}$$

$$V_{Ed,A} \leq V_{Rd,max}$$

$$V_{Rd,max} = 0.5 * b_w * d_{uk} * V * f_{cd}$$

$$V = 0.6 * (1 - \frac{f_{ck}}{250}) = 0.6 * (1 - \frac{35}{250}) = 0.516$$

$$V_{Rd max} = 0.5 * 0.8 * 460 * 0.516 * 23.3*10^3 = 2212.2 \text{ kN}$$

$$V_{Ed,A} = 380,1929 \text{ kN} \le V_{Rd,max} = 2212,2 \text{ kN ok!}$$

2.1.2 Kontroll för böjskuvbrott

$$C_{Rd,c} = \frac{0.18}{\gamma_d} = \frac{0.18}{1.5} = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d_{nk}}} = 1 + \sqrt{\frac{200}{460}} = 1,66 \le 2,0$$
 ok!

$$P_I = \frac{A_{si}}{b_w^* d_{uk}} = \frac{11,314*10^3}{0.8*0.46} = 0,009386 < 0.02$$

$$V_{min} = 0.035 * \sqrt{k^3 * f_{ck}} = 0.035 * \sqrt{1.66^3 * 35} = 0.4429$$

$$V_{Rd,c} = [C_{Rd,c} * k*(100*P_1*f_{ck})^{(1/3)}] * b_w * d \ge V_{min} * b_w * d$$

$$V_{Rd,c} = [0,12*1,66*(100*0,009*35)^{(1/3)}]*800*460 \ge 0,4429*800*460$$

$$234,7758 \ge 162,9872$$
 ok!

2.1.3 Inverkan av last nära upplag:

$$V_{ed,A,red} = V_{ed,A,max} - 0.94 q*d$$

$$V_{ed,A,red} = 380,1929 - 0.94*119,0635*0.460 = 328,7018$$

$$V_{ed,A,red} = 328,7018 > V_{Rd,c} = 234,7758 \rightarrow ej \ ok \ !$$

Ej ok eftersom $V_{\text{ed,A,red}}$ (lasteffekten) ska vara mindre än $V_{\text{Rd,c}}$ (bärförmågan). Alltså behövs tvärkraftsarmering

2.2 Område 2

$$V_{ed,Bv} = 432.7 \text{ kN}, d_{uk} = 460 \text{ mm}$$

2.2.1 Kontroll av livtryckbrott:

$$V = 0.6 * (1 - \frac{f_{ck}}{250}) = 0.6 * (1 - \frac{35}{250}) = 0.516$$

$$V_{Rd,max} = 0.5 * 0.8 * 460 * 0.516 * 23.3*10^3 = 2212.2 \text{ kN}$$

$$V_{Ed,Bv} = 432.7 \text{ kN} \le V_{Rd,max} = 2212.2 \text{ kN}$$

2.2.2 Kontroll för böjskuvbrott:

$$C_{Rd,c} = \frac{0.18}{\gamma} = \frac{0.18}{1.5} = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d_{nk}}} = 1 + \sqrt{\frac{200}{460}} = 1,66 \le 2,0$$
 ok!

$$P_{I} = \frac{A_{si}}{b_{...}*d_{...}} = \frac{11,314*10^{3}}{0.8*0.46} = 0,009386 < 0.02$$

$$V_{min} = 0.035 * \sqrt{k^3 * f_{ck}} = 0.035 * \sqrt{1.66^3 * 35} = 0.4429$$

$$V_{Rd,c} = [C_{Rd,c} * k*(100*P_1*f_{ck})^{(1/3)}] * b_w * d \ge V_{min} * b_w * d$$

$$V_{Rd,c} = [0.12*1.66*(100*0.009*35)^{(1/3)}]*800*460 \ge 0.4429*800*460$$

$$234,7758 \ge 162,9872$$
 ok!

2.2.3 Inverkan av last nära upplag:

$$V_{Ed,Bv,red} = 432.7 - 0.94 *119.0635 *0.460 = 381.217$$

$$V_{Ed,By,red} = 381.217 > V_{Rd,c} = 234,7758$$
 ej ok!

Ej ok eftersom Ved,A,red (lasteffekten) ska vara mindre än VRd,c (bärförmågan). Alltså behövs tvärkraftsarmering

2.3 Område 3

$$V_{Ed,Bh} = 250,334 \text{ kN}, d_{\ddot{o}k} = 462 \text{ mm}$$

$$V = 0.6 * (1 - \frac{f_{ck}}{250}) = 0.6 * (1 - \frac{35}{250}) = 0.516$$

$$V_{Rd,max} = 0.5 * b_w * d_{uk} * V * f_{cd}$$

$$V_{Rd,max} = 0.5 * 800 * 462 * 0.516 * 23.3*10^3 = 2221.8 \text{ kN}$$

$$V_{Ed,Bh} = 250,334 \text{ kN} \le V_{Rd,max} = 2221,8 \text{ kN}$$

2.3.1 Kontroll för böjskuvbrott:

$$C_{Rd,c} = \frac{0.18}{\gamma_d} = \frac{0.18}{1.5} = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d_{ok}}} = 1 + \sqrt{\frac{200}{462}} = 1,6580 \le 2,0$$
 ok!

$$P_{I} = \frac{7*201*10^{-6}}{0.8*0,462} = 0,0038 < 0,02 \text{ ok!}$$

$$V_{min} = 0.035 * \sqrt{k^3 * f_{ck}} = 0.035 * \sqrt{1.658^3 * 35} = 0.04421$$

$$V_{Rd,c} = [C_{Rd,c} * k*(100*P_1*f_{ck})^{(1/3)}] * b_w * d \ge V_{min} * b_w * d$$

$$V_{Rd,c} = [0.12*1.658*(100*0.0038*35)^{(1/3)}]*800*462 \ge 0.4421*800*462$$

174,22 kN < 163,4 kN ok!

2.3.2 Inverkan av last nära upplag:

$$V_{Ed,Bh,red} = 250,0334 - 0.94 * 119,0635 0.462 = 198,833 \text{ kN}$$

$$V_{Ed,Bh,red} = 198,833 \text{ kN} > V_{Rd,c} = 174,22 \text{ kN}$$

Ej ok! → *behöver tvärkraftsarmering*

3.Deluppgift C. Erforderlig tvärkraftsarmering med vertikala byglar

3.1 Område 1

3.1.1 Underkant-Tvärkraftsarmering

$$V_{Ed} = R_A - q_{Ed} \cdot x_1 \rightarrow V_{Ed} = 0 \rightarrow x_1 = \frac{R_A}{q_{Ed}} = \frac{380.1929}{119.0635} = 3.1932$$

$$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\tan(40)} = 1.1918$$

$$z=0.9 \cdot d_{uk} = 0.9 \cdot 0.46 = 0.414$$

$$v = 0.6 \cdot (1 - \frac{f_{ck}}{250}) = 0.6 \cdot (1 - \frac{35}{250}) = 0.516$$

$$V_{Rd,max} = b_w \cdot 0.9 \cdot d \cdot v \cdot f_{cd} \cdot (1 - \frac{\cot(\theta)}{1 + \cot^2(\theta)}) = 0.8 \cdot 0.9 \cdot 0.46 \cdot 0.516 \cdot 23.3 \cdot 10^6 \cdot (1 - \frac{1.1918}{1 + 1.1918^2})$$

$$\Rightarrow$$
V_{Rd,max}=2021.2363 kN

3.1.2 Tvärkraft i område 1: $0 \le x \le 3.1932$

$$V_{Ed,1} = q \cdot (x - z \cdot cot(\theta)) = 119.0635 \cdot (3.1932 - 0.414 \cdot 1.1918) = 321.4470kN$$

$$V_{Ed,1} = 321.4470 \text{kN} \le V_{Rd,max} = 2021.2363 \text{ kN ok!}$$

$$V_{Ed} = \frac{A_{sw}}{S} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a) \rightarrow S = \frac{A_{sw} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a)}{VEd}$$

$$\Rightarrow s = \frac{157 \cdot 0.414 \cdot 435 \cdot (1.1918 + 0) \cdot 1}{321.4470 \cdot 10^{3}} = 104.8 \text{ mm}$$

välj Φ10s100

3.1.3 Minimiarmering:

$$p_{w} = \frac{A_{sw}}{s \cdot b \cdot sin(a)} = \frac{157}{105 \cdot 800 \cdot 1} = 0.001867$$

S,min:

$$p_{w} = 0.08 \cdot \frac{\sqrt{f_{ck}}}{f_{sub}} = 0.08 \cdot \frac{\sqrt{35}}{500} = 9.4657 \cdot 10^{-4}$$

$$p_w \ge p_w OK!$$

S,max:

$$s_{t,max} = 0.75 \cdot d \cdot (1 + cot(a)) = 0.75 \cdot 0.46 \cdot (1+0) = 345$$

$$S_{t,max} \ge S: OK!$$

3.2 Område 2

3.2.1 Underkant-Tvärkraftsarmering

$$x_2 = L_1 - x_1 = 6.6 - 3.1932 = 3.4068m$$

$$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\tan(40)} = 1.1918$$

$$z=0.9 \cdot d_{uk} = 0.9 \cdot 0.46 = 0.414$$

$$v = 0.6 \cdot (1 - \frac{f_{ck}}{250}) = 0.6 \cdot (1 - \frac{35}{250}) = 0.516$$

$$V_{\text{Rd,max}} = b_{\text{w}} \cdot 0.9 \cdot d \cdot v \cdot f_{\text{cd}} \cdot (1 - \frac{\cot(\theta)}{1 + \cot^{2}(\theta)}) = 0.8 \cdot 0.9 \cdot 0.46 \cdot 0.516 \cdot 23.3 \cdot 10^{6} \cdot (1 - \frac{1.1918}{1 + 1.1918^{2}})$$

$$\Rightarrow$$
V_{Rd max}=2021.2363 kN

3.2.2 Tvärkraft i område 2: 3.4068 $\leq x \leq 6.6$

$$V_{Ed,2} = q \cdot (x_2 - z \cdot \cot(\theta)) = 119.0635 \cdot (3.4068 - 0.414 \cdot 1.1918) = 346.8790kN$$

$$V_{Ed,2} = 346.8790 \text{kN} \le V_{Rd,max} = 2021.2363 \text{ kN ok!}$$

$$V_{\text{Ed}} = \frac{A_{sw}}{S} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a) \rightarrow S = \frac{A_{sw} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a)}{VEd}$$

⇒
$$s = \frac{157 \cdot 0.414 \cdot 435 \cdot (1.1918 + 0) \cdot 1}{346.8790 \cdot 10^{3}} = 97 \text{ mm}$$
 → välj 95 mm

välj Φ10s95

3.2.3 Minimiarmering:

$$p_{w} = \frac{A_{sw}}{95 \cdot b_{w} \cdot sin(a)} = \frac{157}{95 \cdot 800 \cdot 1} = 0.002066$$

s,min:

$$p_{w} = 0.08 \cdot \frac{\sqrt{f_{ck}}}{f_{vk}} = 0.08 \cdot \frac{\sqrt{35}}{500} = 9.4657 \cdot 10^{-4}$$

$$p_w \ge p_w$$
 ok!

s,max:

$$s_{t,max} = 0.75 \cdot d \cdot (1 + \cot(a)) = 0.75 \cdot 0.46 \cdot (1+0) = 345$$

$$S_{t,max} \ge S Ok!$$

3.3 Område 3

3.3.1 överkant-Tvärkraftsarmering

$$x_3 = L_2 = 2.1m$$

$$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\tan(40)} = 1.1918$$

$$z = 0.9 \cdot d_{ok} = 0.9 \cdot 0.462 = 0.416$$

$$v = 0.6 \cdot (1 - \frac{f_{ck}}{200}) = 0.6 \cdot (1 - \frac{35}{200}) = 0.516$$

$$V_{\text{Rd,max}} = b_{\text{w}} \cdot 0.9 \cdot d \cdot v \cdot f_{\text{cd}} \cdot (1 - \frac{\cot(\theta)}{1 + \cot^{2}(\theta)}) = 0.8 \cdot 0.9 \cdot 0.462 \cdot 0.516 \cdot 23.3 \cdot 10^{6} \cdot (1 - \frac{1.1918}{1 + 1.1918^{2}})$$

$$\Rightarrow$$
V_{Rd,max}=2030.0243 kN

3.3.2 Tvärkraft i område 3:6.6 $\leq x \leq 8.7$

$$V_{Ed,3} = q \cdot (x_3 - z \cdot \cot(\theta)) = 119.0635 \cdot (2.1 - 0.414 \cdot 1.1918) = 191.2868kN$$

$$V_{Ed,3} = 191.2868 \text{kN} \le V_{Rd,max} = 2030.0243 \text{ kN ok!}$$

$$V_{Ed} = \frac{A_{sw}}{S} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a) \rightarrow S = \frac{A_{sw} \cdot z \cdot f_{ywd} \cdot (\cot(\theta) + \cot(a)) \cdot \sin(a)}{VEd}$$

$$\Rightarrow s = \frac{157 \cdot 0.416 \cdot 435 \cdot (1.1918 + 0) \cdot 1}{191.2868 \cdot 10^{3}} = 177 \text{ mm} \rightarrow v\ddot{a}lj \ 175 \text{mm}$$

välj Φ10s175

3.3.3 Minimiarmering:

$$p_{w} = \frac{A_{sw}}{175 \cdot b_{w} \cdot sin(a)} = \frac{157}{175 \cdot 800 \cdot 1} = 0.001121$$

S,min:

$$p_{w} = 0.08 \cdot \frac{\sqrt{f_{ck}}}{f_{yk}} = 0.08 \cdot \frac{\sqrt{35}}{500} = 9.4657 \cdot 10^{-4}$$

$$p_w{\ge}p_w \ ok!$$

S,max:

$$s_{t,max}$$
= 0.75 · d · (1+ cot(a)) = 0.75 · 0.46 · (1+0) = 345

$$S_{t,max} \ge S Ok!$$

4. Deluppgift D. Vy av balk samt redovisning

I FÄLT

I STÖD B

5. Redovisning av värden

Namn/Klass: Tolga Kilic, Klass B	
Namn/Klass: Varman Ratha, Klass B	
Namn/Klass: Frida Yousef Lahdo, Klass B	
Namn/Klass: Erik Xu, Klass B	
Indata	Värde
Spännvidd, L ₁	6,6 meter
Konsollängd, L ₂	2,1 meter
Centrumavstånd, c	5,4 meter
Nyttig last q _k	10 kN/m ²
Betong, hållfasthetsklass	C35/45

Deluppgift	Svar	Bedömning
Karakteristisk egentyngd på balk (kN/m)	31,68 kN/m	
Karakteristisk nyttig last på balk (kN/m)	54 kN/m	
Dim max-moment (fält), M _{ed} ⁺ (kNm)	607.0149 kNm	
Dim max-moment (stöd), M _{ed} - (kNm)	-262.5348 kNm	
Dim tvärkraft, stöd A, V _{ed,A} (kN)	353.13 kN/m	
Dim tvärkraft, stöd B-vänster, V _{ed,Bv} (kN)	-405,6262 kN	
Dim tvärkraft, stöd B-höger, V _{ed,Bvh} (kN)		
Täckande betongskikt (mm)	30 mm	
Effektiv höjd i fält, d (mm)	460mm	

Erforderlig stödarmering (xØ20)	11st
Effektiv höjd vid stöd, d	462
Erforderlig stödarmering (xØ16)	7
Tvärkraftskapacitet, livtryckbrott, V _{Rd,max,A}	2212,2
- V _{Rd,max,B}	2221
Tvärkraftskapacitet, skjuvglidning, $V_{Rd,c,A}$	234,7758
- V _{Rd,c,B}	174,22
Tvärkraftsarmering för $V_{\text{Ed,max}}$ (byglar Ø - min s)	95