Phys 2010 (NSCC), Fall 2005 Problem Set #3

Unless stated otherwise, problems take place on the surface of the earth, where $g=9.8\,\frac{\rm m}{\rm s^2}$. Ignore air resistance.

1. A ball is thrown upward with a speed of 25 $\frac{m}{s}$. How long does it take to reach maximum height?

2. What is the maximum height attained by the ball in problem 1?

			thrown With w						ight 1	00 m.	It s	trikes	the	ground	below
4.	Wha	t was	the spe	eed of	the ro	ck in	proble	m 3 a	t the	time o	f imp	act?			

5. On a strange planet, an astronaut throw a rock upwards with an initial speed of $30.0 \frac{\text{m}}{\text{s}}$. The rock reaches maximum height 3.85 s later. What is the value of g on this planet?
6. In problem 5, what was the maximum height attained by the rock?

7.	A spacecraft moving in outer space is moving with a speed of $5.00 \frac{\text{m}}{\text{s}}$ in the $+x$ direct	ion
Its	s rockets give it a constant acceleration with components $a_x = +2.00 \frac{\text{m}}{\text{s}^2}$ and $a_y = +1.50$	$0 \frac{\mathrm{m}}{\mathrm{s}^2}$
T	he rockets fire for 4.0 s.	5

Find the final velocity components and the speed of the craft after the $4.0~\mathrm{s}.$

8. In problem 7 find the x and y displacements of the spacecraft for the 4.0 s period.