then we have

$$\lambda^{\top} r + (\rho/2) \|r\|_{2}^{2} = (\rho/2) \|r + (1/\rho)\lambda\|_{2}^{2} - (1/(2\rho)) \|\lambda\|_{2}^{2}$$
$$= (\rho/2) \|r + \mu\|_{2}^{2} - (\rho/2) \|\mu\|_{2}^{2}.$$

The scaled form of ADMM consists of the following steps:

$$x^{k+1} = \underset{x}{\operatorname{arg\,min}} \left(f(x) + (\rho/2) \left\| Ax + Bz^k - c + \mu^k \right\|_2^2 \right)$$
$$z^{k+1} = \underset{z}{\operatorname{arg\,min}} \left(g(z) + (\rho/2) \left\| Ax^{k+1} + Bz - c + \mu^k \right\|_2^2 \right)$$
$$\mu^{k+1} = \mu^k + Ax^{k+1} + Bz^{k+1} - c.$$

If we define the residual r^k at step k as

$$r^{k} = Ax^{k} + Bz^{k} - c = \mu^{k} - \mu^{k-1} = (1/\rho)(\lambda^{k} - \lambda^{k-1}),$$

then we see that

$$r = u^0 + \sum_{j=1}^k r^j$$
.

The formulae in the scaled form are often shorter than the formulae in the unscaled form. We now discuss the convergence of ADMM.

52.4 Convergence of ADMM \circledast

Let us repeat the steps of ADMM: Given some initial (z^0, λ^0) , do:

$$x^{k+1} = \underset{x}{\operatorname{arg\,min}} L_{\rho}(x, z^k, \lambda^k) \tag{x-update}$$

$$z^{k+1} = \arg\min L_{\rho}(x^{k+1}, z, \lambda^k)$$
 (z-update)

$$\lambda^{k+1} = \lambda^k + \rho(Ax^{k+1} + Bz^{k+1} - c). \tag{λ-update}$$

The convergence of ADMM can be proven under the following three assumptions:

- (1) The functions $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ and $g: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ are proper and closed convex functions (see Section 51.1) such that $\mathbf{relint}(\mathrm{dom}(f)) \cap \mathbf{relint}(\mathrm{dom}(g)) \neq \emptyset$.
- (2) The $n \times n$ matrix $A^{\top}A$ is invertible and the $m \times m$ matrix $B^{\top}B$ is invertible. Equivalently, the $p \times n$ matrix A has rank n and the $p \times m$ matrix has rank m.
- (3) The unaugmented Lagrangian $L_0(x, z, \lambda) = f(x) + g(z) + \lambda^{\top} (Ax + Bz c)$ has a saddle point, which means there exists x^*, z^*, λ^* (not necessarily unique) such that

$$L_0(x^*, z^*, \lambda) \le L_0(x^*, z^*, \lambda^*) \le L_0(x, z, \lambda^*)$$

for all x, z, λ .