Obliczenia naukowe lista 2

Stanisław Tomkowiak

Listopad 2024

Zadanie 1

Opis problemu

Zadanie polegało na minimalnej zmiany danych z zadania 5 z listy pierwszej i porównaniu wyników. Należało usunąć 9 z $x_4=0.5772156649$ oraz 7 z $x_5=0.3010299957$.

Rozwiązanie zadania

Należy zmienić dane z zadania 5 listy 1.

Wyniki i interpretacja

	Float32 wartości z listy 1	Float32 wartości z listy 2
"w przód"	-0.4999443	-0.4999443
"w tył"	-0.4543457	-0.4543457
"malejąco"	-0.5	-0.5
"rosnąco"	-0.5	-0.5

	Float64 wartości z listy 1	Float64 wartości z listy 2
"w przód"	$1.0251881368296672 \cdot 10^{-10}$	-0.004296342739891585
"w tył"	$-1.5643308870494366 \cdot 10^{-10}$	-0.004296342998713953
"malejąco"	0.0	-0.004296342842280865
"rosnąco"	0.0	-0.004296342842280865

Wyniki dla precyzji Float32 są takie same. Wynika to z tego, że zmiany danych wejściowych znajdowały się na 10 miejscu zapisu dziesiętnego. Zatem zmiany pojawiły się w miejscu, które przekracza precyzje arytmetyki. Precyzja ta wynosi $\epsilon = 2^{-24} \sim 10^{-7}$.

Wyniki dla precyzji Float64 dla sumowania "w przód" i "w tył" zmieniły się z $\sim 10^{-10}$ na $\sim 10^{-3}$. Natomiast dla sumowania "malejąco" i "rosnąco" z 0 na $\sim 10^{-3}$. Spowodowane jest to prawie prostopadłymi wektorami co sprawia, że nawet bardzo małe zmiany danych wpływają znacząco na wynik końcowy. Wskaźnik uwarunkowania dla tego zadania jest bardzo duży.

Wnioski

Zadanie jest źle uwarunkowane, małe zaburzenia wyników wpływają znacząco na wynik końcowy.

Zadanie 2

Opis problemu

Zadanie polega na zbadaniu funkcji $f(x) = e^x \ln(1+e^{-x})$. Należy wygenerować wykres funkcji w dwóch programach do wizualizacji. Następnie porównać otrzymane wyniki z policzoną granicą:

$$\lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

Wyniki i interpretacja

Rysunek 1: Wykres funkcji f(x) wygenerowany w pyplot

Rysunek 2: Wykres funkcji f(x) wygenerowany w Mathematica

Na obu wykresach 37 < x, funkcja osiąga wartość 0. W obu przypadkach wartość ta dla większych x pozostaje później niezmienna. Jest to wynik niepoprawny ponieważ, granica tej funkcji jest równa 1. Błąd wynika z drugiej części funkcji $\ln(1+e^{-x})$. Fragment e^{-x} w pewnym momencie osiąga wartość zera maszynowego przez co cały logarytm osiąga wartość 0, a przez to całe równanie.

Wnioski

Przez granicę precyzji funkcja osiąga błędną granicę.

Zadanie 3

Opis problemu oraz sposób rozwiązania

Należy rozwiązać równanie Ax=b, gdzie A to macierz Hilberta lub losowa macierz kwadratowa o stopniu n z zadanym wskaźnikiem uwarunkowania c. Rozwiązać je mamy za pomocą eliminacji Gaussa i $x=A^{-1}b$. Wektor b zadany jest następująco: b=Ax, gdzie $x=(1,...,1)^T$. Znamy zatem dokładne rozwiązanie.

Wyniki i interpretacja

N	δ_{Gauss}	δ_{inv}	cond(A)
2	5.661048867003676e-16	1.4043333874306803e-15	19.28147006790397
3	8.022593772267726e-15	0.0	524.0567775860644
4	4.137409622430382e-14	0.0	15513.73873892924
5	1.6828426299227195e-12	3.3544360584359632e-12	476607.2502425855
6	2.618913302311624e-10	2.0163759404347654e-10	1.4951058642254734e7
7	1.2606867224171548e-8	4.713280397232037e-9	4.753673567446793e8
8	6.124089555723088e-8	3.07748390309622e-7	1.5257575538060041e10
9	3.8751634185032475e-6	4.541268303176643e-6	4.9315375594102344e11
10	8.67039023709691e-5	0.0002501493411824886	1.602441698742836e13
11	0.00015827808158590435	0.007618304284315809	5.222701316549833e14
12	0.13396208372085344	0.258994120804705	1.7515952300879806e16
13	0.11039701117868264	5.331275639426837	3.1883950689209334e18
14	1.4554087127659643	8.71499275104814	$6.200786281355982\mathrm{e}{17}$
15	4.696668350857427	7.344641453111494	3.67568286586649e17
16	54.15518954564602	29.84884207073541	7.046389953630175e17
17	13.707236683836307	10.516942378369349	1.249010044779401e18
18	10.257619124632317	24.762070989128866	2.2477642911280653e18
19	102.15983486270827	109.94550732878284	6.472700911391398e18
20	108.31777346206205	114.34403152557572	1.1484020388436145e18

Tabela 1: Wyniki dla badania macierzy Hilberta rozmiaru $N\times N$

Wskaźnik uwarunkowania macierzy Hilberta rośnie bardzo szybko. Już dla n=13 wskaźnik uwarunkowania wynosi $6.20\cdot 10^{17}$ co przy precyzji naszej arytmetyki sprawia, że błąd jest bardzo duży. Metoda eliminacji Gaussa jest jednak bardziej skuteczna. Jej błąd względny rośnie wolniej niż metoda $x=A^{-1}b$.

N	c	δ_{Gauss}	δ_{inv}
5	1.0	0.0	1.4043333874306804e-16
5	10.0	2.220446049250313e-16	2.808666774861361e-16
5	1000.0	1.6119276058718354e-15	6.513897139161407e-15
5	1.0e7	2.443504566215332e-10	2.224111600609356e-10
5	1.0e12	1.2766640038565827e-5	8.001776490555966e-6
5	1.0e16	0.45749874095944465	0.45970438871083225
10	1.0	1.6467268631127714e-16	3.080743865682491e-16
10	10.0	3.1006841635969763e-16	3.080743865682491e-16
10	1000.0	1.8675654154580436e-14	2.2352514737340923e-14
10	1.0e7	3.5316264782910544e-10	3.725119764302025e-10
10	1.0e12	1.0377660292087753e-5	1.7608144247318942e-5
10	1.0e16	0.056918623263678886	0.04446952959611783
20	1.0	3.502045386036269e-16	4.461660218482181e-16
20	10.0	3.813741331030777e-16	4.736373295277993e-16
20	1000.0	2.04255692911631e-14	2.0390115599110518e-14
20	1.0e7	2.1724453442256892e-11	1.1063284362170502e-10
20	1.0e12	1.9804529591531784e-5	1.7630727486364327e-5
20	1.0e16	0.12846573399700378	0.118301992071668

Tabela 2: Wyniki dla badania macierzy losowej rozmiaru $N \times N$ i i cond(A) = c

Macierz losowa zachowuje się lepiej niż Hilberta. Błędy względne dla obu metod mają mniejszą wartość niż w badaniu pierwszym. Błąd można przedstawić jako $\delta \sim c \cdot \epsilon$.

Wnioski

Im większe są macierze, tym większy błąd względny. Powodem jest złe uwarunkowanie macierzy.

Zadanie 4

Opis problemu

W zadaniu należało użyć pakietu Polynomials do obliczenia pierwiastków wielomianu:

$$p(x) = (x - 20)(x - 19)(x - 18)...(x - 2)(x - 1)$$

oraz porównać błędy wyliczonych pierwiastków z prawdziwymi pierwiastkami. Należało także policzyć $p(z_k)$ i $P(z_k)$.

Rozwiązanie

Do rozwiązania zadania należało użyć funkcji roots aby wyliczyć pierwiastki wielomianu. Następnie obliczyć dla każdego pierwiastka $|p(z_k)|$ i $|P(z_k)|$ oraz $|z_k-k|$ gdzie k to jest prawdziwy pierwiastek a z_k pierwiastek z użytej funkcji roots. W drugim podpunkcie należało policzyć te same wartości w zaburzonym wielomianie. Od współczynnika -210 należało odjąć 2^{-23} .

Wyniki i interpretacja

Wyniki dla oryginalnego wielomianu przedstawiam poniżej:

k	$P(z_k)$	$p(z_k)$	$ z_k - k $	z_k
1	36352.0	36626.4254824228	3.0109248427834245e-13	0.999999999996989
2	181760.0	181303.9336725767	2.8318236644508943e-11	2.0000000000283182
3	209408.0	290172.2858891687	4.0790348876384996e-10	2.9999999995920965
4	3.106816e6	2.04153729027509e6	1.626246826091915e-8	3.9999999837375317
5	2.4114688e7	$2.0894625006962176\mathrm{e}7$	6.657697912970661e-7	5.000000665769791
6	1.20152064e8	1.1250484577562997e8	1.0754175226779239e-5	5.999989245824773
7	4.80398336e8	4.5729086427309465e8	0.00010200279300764947	7.000102002793008
8	1.682691072e9	1.5556459377357383e9	0.0006441703922384079	7.999355829607762
9	4.465326592e9	4.68781617564839e9	0.002915294362052734	9.002915294362053
10	1.2707126784e10	$1.2634601896949207\mathrm{e}{10}$	0.009586957518274986	9.990413042481725
11	3.5759895552e10	3.3001284744984142e10	0.025022932909317674	11.025022932909318
12	7.216771584e10	7.388525665404987e10	0.04671674615314281	11.953283253846857
13	$2.15723629056\mathrm{e}{11}$	1.84762150931442e11	0.07431403244734014	13.07431403244734
14	3.65383250944e11	3.551427752842085e11	0.08524440819787316	13.914755591802127
15	6.13987753472e11	8.423201558964255e11	0.07549379969947623	15.075493799699476
16	$1.555027751936\mathrm{e}{12}$	$1.5707287366258018\mathrm{e}{12}$	0.05371328339202819	15.946286716607972
17	3.777623778304e12	3.3169782238892354e12	0.025427146237412046	17.025427146237412
18	$7.199554861056\mathrm{e}{12}$	$6.344853141791281\mathrm{e}{12}$	0.009078647283519814	17.99092135271648
19	$1.0278376162816\mathrm{e}{13}$	$1.2285717366719662\mathrm{e}{13}$	0.0019098182994383706	19.00190981829944
20	2.7462952745472e13	$2.318309535271639\mathrm{e}{13}$	0.00019070876336257925	19.999809291236637

Błąd przybliżenia pierwiastków nie jest najgorszy największa różnica jest równa w przybliżeniu równa 0.085. W znaczącej ilości przypadków był on jednak dużo niższy. Możemy zaobserwować jednak duże odchylenie wartości wielomianu dla wartości bliskiej pierwiastkowi. Nawet dla z_1 wartość wielomianu zamiast 0 jest równa około 36000. Wynika to z dużej zmienności wartości wielomianu.

Wyniki dla zaburzonego wielomianu przedstawiam poniżej:

k	$P(z_k)$	$p(z_k)$	$z_k - k$	Roots
1	20496.0	19987.872313406842	1.6431300764452317e-13	0.999999999998357 + 0.0im
2	339570.0	352369.413808796	5.503730804434781e-11	2.0000000000550373 + 0.0im
3	2.2777455e6	2.416241558251844e6	3.3965799062229962e-9	2.99999999660342 + 0.0im
4	1.0488020625e7	1.126370230029202e7	8.972436216225788e-8	4.000000089724362 + 0.0im
5	4.1239073125e7	4.475744423806907e7	1.4261120897529622e-6	4.99999857388791 + 0.0im
6	1.406328934140625e8	2.1421031658039317e8	2.0476673030955794e-5	6.000020476673031 + 0.0im
7	4.122812662421875e8	1.7846173427860644e9	0.00039792957757978087	6.99960207042242 + 0.0im
8	1.0307901272578125e9	1.868697217000985e10	0.007772029099445632	8.007772029099446 + 0.0im
9	2.1574055781816406e9	1.3746309775142996e11	0.0841836320674414	8.915816367932559 + 0.0im
10	9.384147605647182e9	1.4900695352000583e12	0.6519586830380407	10.095455630535774 - 0.6449328236240688im
11	9.384147605647182e9	1.4900695352000583e12	1.1109180272716561	10.095455630535774 + 0.6449328236240688im
12	3.0012060598372482e10	3.2962792355717137e13	1.665281290598479	11.793890586174369 - 1.6524771364075785im
13	3.0012060598372482e10	3.2962792355717137e13	2.0458202766784277	11.793890586174369 + 1.6524771364075785im
14	2.0030917431984006e11	9.546022365750218e14	2.518835871190904	13.992406684487216 - 2.5188244257108443im
15	2.0030917431984006e11	9.546022365750218e14	2.7128805312847097	13.992406684487216 + 2.5188244257108443im
16	1.1583329328642004e12	2.742106076928478e16	2.9060018735375106	16.73074487979267 - 2.812624896721978im
17	1.1583329328642004e12	2.742106076928478e16	2.825483521349608	16.73074487979267 + 2.812624896721978im
18	5.867381806750561e12	4.25248587652037e17	2.4540214463129764	19.5024423688181 - 1.940331978642903im
19	5.867381806750561e12	4.25248587652037e17	2.0043294443099486	19.5024423688181 + 1.940331978642903im
20	9.550552334336e12	1.3743743559997601e18	0.8469102151947894	20.84691021519479 + 0.0im

Algorytm znalazł jedynie 10 pierwiastków rzeczywistych. Dla reszty pierwiastki są liczbami zespolonymi. Dodatkowo możemy zauważyć, że błąd między rzeczywistym pierwiastkiem a wyliczonym dzięki funkcji roots jest większy niż w pierwszym podpunkcie.

Wnioski

Zadanie obliczenia miejsc zerowych oraz wartości wielomianu jest źle uwarunkowane. Odjęcie od współczynnika równego -210 liczby 2^{-23} pokazuje to jeszcze dobitniej. Pierwiastki w znaczącej liczbie mają część urojoną. Dodatkowo wielomian na bardzo małych odcinkach zmienia wartość znacząco. Sprawia

to, że podstawiając do wielomianu teoretycznie wyliczony pierwiastek, wynik jest bardzo daleki od 0. Wniosek po analizie tego zadania jest taki, iż zadanie to jest źle uwarunkowane.

Zadanie 5

Opis problemu

Rozważamy równanie rekurencyjne (model logistyczny, model wzrostu populacji)

$$p_{n+1} := p_n + r \cdot p_n \cdot (1 - p_n), \text{ dla } n = 0, 1, \dots$$
 (1)

gdzie r jest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiąca procent maksymalnej wielkości populacji dla danego stanu środowiska.

Przeprowadzamy następujące eksperymenty:

- 1. Dla danych r=3 i $p_0=0.01$ wykonać 40 iteracji równania rekurencyjnego w precyzji Float32. Następnie powtórzyć eksperyment jednak po 10 wykonaniu równania obciąć wynik po trzecim miejscu po przecinku. Wykonać do końca iterację to znaczy do 40 iteracji.
- 2. Dla danych r=3 i $p_0=0.01$ wykonać 40 iteracji równania rekurencyjnego w precyzji Float32 i Float64.

Sposób rozwiązania

Podpunkt 1 wykonujemy stosując równanie z treści polecenia, jednak po 10 iteracji stosujemy funkcję floor z wartością digits = 3. Następnie wykonujemy 40 iteracji bez obcięcia.

Podpunkt2wykonujemy przeprowadzając40iteracji podanego wzoru w dwóch precyzjach <code>Float32</code> i <code>FLoat64</code>.

Wyniki i interpretacja

Wyniki dla podpunktu 1:

n	wartości kolejnych iteracji niezaburzone	wyniki kolejnych iteracji zaburzone
1	0.0397	0.0397
2	0.15407173	0.15407173
3	0.5450726	0.5450726
4	1.2889781	1.2889781
5	0.1715188	0.1715188
6	0.5978191	0.5978191
7	1.3191134	1.3191134
8	0.056273222	0.056273222
9	0.21559286	0.21559286
10	0.7229306	0.722
11	1.3238364	1.3241479
12	0.037716985	0.036488533
13	0.14660023	0.1419599
14	0.52192605	0.5073818
15	1.2704837	1.2572184
16	0.2395482	0.28707945
17	0.7860428	0.901074
18	1.2905813	1.168493
19	0.16552472	0.57784426
20	0.5799036	1.3096651
21	1.3107499	0.092992425
22	0.08880377	0.34602693
23	0.33155674	1.0249038
24	0.9964373	0.94833183
25	1.0070873	1.0953275
26	0.9856746	0.78208303
27	1.0280352	1.2933705
28	0.9415718	0.15506029
29	1.1066148	0.54811007
30	0.75267017	1.2911663
31	1.3111435	0.1633339
32	0.08728206	0.5733017
33	0.32627377	1.3071823
34	0.98573136	0.102552414
35	1.0279264	0.37865865
36	0.94180745	1.0844874
37	1.106226	0.8096107
38	0.7536962	1.2720344
39	1.3106109	0.23392308
40	0.089340806	0.7715323

Tabela 3: Wyniki podpunktu 1.

Wyniki w 40 iteracji są całkowicie od siebie różne. Wynika to z faktu obcięcia wyniku do 3 cyfr po przecinku po 10 iteracji. Wydawałoby się, że taka operacja nie powinna mieć takiego wpływu na wynik końcowy, jednak jest to nie prawda.

n	wyniki dla precyzji Float32	wyniki dla precyzjiFloat64
1	0.0397	0.0397000000000000006
2	0.15407173	0.15407173000000005
3	0.5450726	0.5450726260444214
4	1.2889781	1.2889780011888008
5	0.1715188	0.17151914210917463
6	0.5978191	0.5978201201070967
7	1.3191134	1.3191137924137961
8	0.056273222	0.05627157764626167
9	0.21559286	0.21558683923264893
10	0.7229306	0.7229143011796237
11	1.3238364	1.3238419441684237
12	0.037716985	0.037695297254799254
13	0.14660023	0.14651838271381398
14	0.52192605	0.5216706214360409
15	1.2704837	1.2702617739357684
16	0.2395482	0.24035217277573784
17	0.7860428	0.788101190228897
18	1.2905813	1.2890943027949757
19	0.16552472	0.17108484668450918
20	0.5799036	0.5965293124428507
21	1.3107499	1.3185755879607823
22	0.08880377	0.05837760834476091
23	0.33155674	0.22328659791088076
24	0.9964373	0.7435756772236771
25	1.0070873	1.3155883456187583
26	0.9856746	0.07003529709132894
27	1.0280352	0.26542635984930363
28	0.9415718	0.8503519818886585
29	1.1066148	1.2321124482487258
30	0.75267017	0.3741465376064961
31	1.3111435	1.0766292556171968
32	0.08728206	0.8291253603162694
33	0.32627377	1.254154851906327
34	0.98573136	0.297906229944765
35	1.0279264	0.9253805542593504
36	0.94180745	1.132534706433374
37	1.106226	0.6822342419051102
38	0.7536962	1.3326062851369196
39	1.3106109	0.0029066069884153833
40	0.089340806	0.011601082861106218

Tabela 4: Wyniki podpunktu 2.

W przypadku podpunktu 2 błąd pojawia się już w pierwszych iteracjach. W 22 iteracji wyniki nie mają żadnej wspólnej liczby w zapisie dziesiętnym. Wynika to z faktu powielania błędu z kwadratem. W 40 iteracji przez to powielanie jeden wynik jest około 8 razy większy od drugiego.

Wnioski

Dzięki temu eksperymentowi możemy zauważyć jak duży wpływ mają na wyniki wybrane arytmetyki oraz pozornie nieznaczące zaokrąglenia. Przy wielu iteracjach błąd zaczyna przez to narastać dzięki czemu można tak dobrać dane aby wyniki były kompletnie nie miarodajne.

Zadanie 6

Opis problemu

Rozważamy równanie rekurencyjne

$$x_{n+1} := x_n^2 + c$$

dla $n=0,1,2,\ldots$ gdzie c jest pewną daną stałą.

Należy przeprowadzić 40 iteracji równania rekurencyjnego w arytmetyce Float64 dla danych:

A.
$$c = -2, x_0 = 1$$

B.
$$c = -2, x_0 = 2$$

D.
$$c = -1, x_0 = 1$$

E.
$$c = -1, x_0 = -1$$

F.
$$c = -1, x_0 = 0.75$$

G.
$$c = -1, x_0 = 0.25$$

Sposób rozwiązania

Należy dla podanych danych w odpowiedniej arytmetyce przeprowadzić 40 iteracji podanego wzoru arytmetycznego.

Wyniki i interpretacja

Poniżej przedstawiam graficzne wyniki 40 iteracji dla danych A-G:

Rysunek 3: Podpunkt A

Rysunek 4: Podpunkt B

Rysunek 5: Podpunkt C

Rysunek 6: Podpunkt D

Rysunek 7: Podpunkt E

Rysunek 8: Podpunkt F

Rysunek 9: Podpunkt G

W przypadku c=-1 mamy równanie $x_{n+1}:=x_n^2-1$. Dla wartości $x_0=1$ oraz $x_0=-1$. Wyniki równania przyjmują naprzemiennie wartości 0 i 1. Ciekawszą próbką są wartości $x_0=0.75$ i $x_0=0.25$, które w rzeczywistości nigdy nie osiągają wartości 0 i -1 jednak przez skończoną precyzję oraz podnoszenie do kwadratu, co sprawia, że przez każde takie mnożenie potrzeba 2 razy więcej cyfr mantysy na wynik, oraz dodawanie -1 do bardzo małej liczby, wartości przyjmują wartości dokładne równe -1 i 0.

Wnioski

Zadanie jest źle uwarunkowane podnoszenie do kwadratu oraz odejmowanie od bardzo małych liczb 1 sprawia, że wynik staje się dokładny w przypadkach gdzie taka sytuacja matematycznie nie może się wydarzyć.