CS3319 Foundations of Data Science

5. Graph Data

Jiaxin Ding John Hopcroft Center

Graph

- Graph: structure of a set of objects some of which are related.
 - Vertices/Nodes (objects)
 - Edge/Links (relations, directed or undirected)

Graph Data

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between social media

Polarization of the network

Graph Data: Academic Networks

Graph Data: Web Pages

Graph Algorithm

- To derive information from a graph, we ask
 - Vertex:
 - How important is a vertex? Pagerank
 - Any features? Node classification
 - Edge:
 - How important is a link? Betweenness centrality, etc.
 - Any potential links? Link prediction, recommendation
 - Structure:
 - How is the graph connected? Community detection
 - Can we represent nodes/links in vector space? Representation Learning

PageRank

Challenges

- How to organize the Web?
 - Information Retrieval: Find best answer, (relevant docs in a small and trusted set), in huge number of websites, full of untrusted documents, random things, web spam, etc.

• Meaurements:

- Who to "trust"?
 - Trustworthy pages may point to each other.
- What is the "best" answer to a query?
 - Analyze the structure of the graph to get popular or high-valued answer.

Ranking Nodes on the Graph

- All web pages are not equally "important"
 - Mathew Effect

 There is large diversity in the web-graph node connectivity.

rank the pages by the link structure

Page Rank

Ranking the importance of a node

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page /'s own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank"/"importance" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

3 equations

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Additional constraint forces uniqueness:

$$\bullet r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
 - The flow equations can be written

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Columns sum to 1
 - The flow equations can be written

$$r = M \cdot r$$

- Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$

Eigenvector Formulation

• The flow equations can be written $r = M \cdot r$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

- So the vector r is an eigenvector of the stochastic web matrix M
 - Largest eigenvalue of *M* is **1** since *M* is column stochastic (with non-negative entries)
- We can now efficiently solve for *r*. The method is **Power iteration**.

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N, \dots, 1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{array}{c|ccccc} & y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

PageRank: How to solve?

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto **1**

	У	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2, ...

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}
- Process repeats indefinitely

• Let:

- p(t) ··· vector whose ith coordinate is the prob. that the surfer is at page i at time t
- So, p(t) is a probability distribution over pages

The Stationary Distribution

• Where is the surfer at time *t*+1?

Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

- lacksquare Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$
 - then p(t) is stationary distribution of a random walk
- lacktriangle Our original vector $m{r}$ satisfies $m{r} = m{M} \cdot m{r}$
 - ullet So, r is a **stationary distribution** for the random walk

Existence and Uniqueness

 A central result from the theory of random walks:

For graphs that satisfy irreducible and aperiodic, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

Observation: Does this converge?

Periodic:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

• Example:

Iteration 0, 1, 2, ...

Observation: Does it converge to what we want?

Reducible:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

• Example:

Iteration 0, 1, 2, ...

PageRank: Problems

- Spider traps (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - Eventually spider traps absorb all importance
 - Periodic

- Dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
 - Reducible

Problem: Spider Traps

Power Iteration:

- Set $r_j = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
y	1/2	1/2	0
a	1/2	0	0
n	0	1/2	1

m is a spider trap

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

• Example:

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	у	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

• Example:

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a neighbor link at random
 - With prob. $1-\beta$, jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution: Teleport!

- Teleports also solves dead-ends
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

