Unibrasil

Domus Tech: Automação Residencial

EROS NETTO ANTUNES RA: 2023200550

GABRIEL SCHULTZ DO AMARAL RA: 2024100666

VITOR HUGO KUERTEN DESCHAMPS RA: 2024100726

ORIENTADOR: FÁBIO GARCEZ BETTIO

1. RESUMO

O objetivo do projeto "Domus Tech: Automação Residencial" é criar um sistema de automação doméstica que use o microcontrolador ESP32. Ao usar um aplicativo de telefone, os usuários poderão controlar dispositivos eletrônicos de casa, como luzes e eletrodomésticos, bem como abrir e fechar o portão da garagem. Além disso, o sistema monitora o status dos dispositivos e do portão da garagem em tempo real, mostrando se estão ligados, desligados ou abertos. Inclua um sistema de alarme de segurança. A utilização de tecnologias acessíveis e amplamente disponíveis, como o ESP32 e aplicativos móveis, fornece uma solução de automação residencial eficiente. Isso torna o projeto viável.

2. INTRODUÇÃO

Nos últimos anos, a automação residencial tem ganhado popularidade porque permite o uso de dispositivos eletrônicos com mais facilidade, eficiência em casas e apartamentos. Este campo abrange sistemas de segurança, iluminação, controle remoto de eletrodomésticos e outros dispositivos domésticos conectados à rede. A automação residencial tornou-se viável para um público mais amplo com o surgimento de microcontroladores acessíveis, como o ESP32, e a popularização de aplicativos móveis.

Neste contexto, o objetivo do projeto é desenvolver um sistema de automação que permita o controle de dispositivos elétricos, como luzes e portões de garagem, além de fornecer alertas de segurança via aplicativo de celular e monitoramento em tempo real. A principal inovação é a unificação de várias funções em uma plataforma acessível. Isso permite que os usuários verifiquem o status de funcionamento dos dispositivos e alarme caso alguma coisa seja detectada.

O problema que este projeto busca solucionar é a falta de um sistema integrado que permita monitorar a segurança da residência em tempo real e controlar dispositivos domésticos de forma fácil e eficaz é o problema que este projeto visa solucionar. Embora existam opções de negócios disponíveis no mercado, elas geralmente são fragmentadas ou muito caras, o que significa que a automação é acessível apenas a um grupo limitado de pessoas. Um sistema integrado proposto pelo projeto oferecerá uma alternativa acessível e útil para automação residencial.

3. JUSTIFICATIVA

O avanço da tecnologia e o crescimento do conceito de "casas inteligentes" têm mudado a forma como as pessoas interagem com o ambiente doméstico, oferecendo mais conforto, segurança e eficiência energética. No entanto, muitas das soluções disponíveis no mercado são caras, fragmentadas ou de difícil acesso para a maioria das pessoas. O projeto "Domus Tech: Automação Residencial" foi escolhido justamente para preencher essa lacuna, oferecendo uma alternativa acessível, prática e de fácil implementação, utilizando tecnologias como o microcontrolador ESP32 e aplicativos móveis, que são amplamente disponíveis e conhecidos por sua versatilidade e baixo custo.

A relevância científica deste projeto está na aplicação prática de tecnologias modernas, como microcontroladores e Internet das Coisas (IoT), para solucionar problemas cotidianos de maneira eficiente e acessível. O "Domus Tech" propõe uma integração simplificada de múltiplas funções de automação em um único sistema, o que pode contribuir para o avanço da automação residencial, tornando-a mais acessível e popular.

Além disso, o desenvolvimento do projeto é viável dentro do tempo previsto, visto que as tecnologias utilizadas, como o ESP32, já estão bem documentadas e possuem uma ampla base de suporte e recursos disponíveis. A equipe também dispõe de conhecimentos em programação, eletrônica e integração de sistemas IoT, além do acesso aos materiais necessários para a implementação do protótipo. Dessa forma, o projeto poderá ser realizado de maneira eficiente, contribuindo para o desenvolvimento de soluções mais acessíveis e eficazes no campo da automação residencial.

4. OBJETIVOS

Objetivo Geral: Desenvolver um sistema de automação residencial baseado em ESP32, que permita o controle de dispositivos da casa, como luzes e portão da garagem, via aplicativo móvel, além de implementar um sistema de alarme e sensores de movimento para proporcionar uma experiência mais inteligente e automatizada ao usuário.

Objetivos Específicos: Analisar os requisitos necessários para o desenvolvimento do sistema, garantindo que o controle dos dispositivos seja eficiente e intuitivo para o usuário.

 Desenvolver a integração entre o ESP32 e o aplicativo móvel, possibilitando o controle remoto de dispositivos.

- Implementar o controle de luzes e portão da garagem, permitindo ao usuário ligar/desligar as luzes e abrir/fechar o portão, além de saber o status de cada dispositivo.
- Incorporar sensores de movimento para acender luzes automaticamente ao detectar movimento, proporcionando mais praticidade e economia de energia.
- Desenvolver um sistema de alarme via aplicativo móvel.
- Testar o funcionamento do sistema em um ambiente real, validando a comunicação entre o ESP32, os dispositivos da casa e o aplicativo móvel.
- Documentar o processo de desenvolvimento e implementação do sistema, garantindo que ele possa ser reproduzido ou aprimorado no futuro.

5. METODOLOGIA

A metodologia adotada será composta pelas seguintes etapas:

- 1. **Análise de Requisitos**: Nesta fase, será realizada uma análise detalhada das funcionalidades esperadas do sistema. Serão definidos os requisitos para o controle dos dispositivos (luzes, portão da garagem), o uso de sensores de movimento, e a integração com o aplicativo móvel. Essa etapa será complementada por pesquisas documentais, baseadas em fontes bibliográficas sobre automação residencial e tecnologias IoT, bem como sobre o uso do ESP32 e aplicativos móveis.
- 2. Projeto de Software e Hardware: Após a definição dos requisitos, será feito o design do sistema. No nível de hardware, o projeto incluirá a escolha dos componentes, como sensores de movimento, relés e o microcontrolador ESP32. No nível de software, será elaborada a arquitetura do sistema, contendo a comunicação entre o aplicativo móvel e o ESP32, o gerenciamento dos sensores e o controle de dispositivos, além da implementação do sistema de alarmes.
- 3. Implementação: Com o projeto definido, será iniciada a fase de implementação. O código será desenvolvido em duas partes principais: a programação do ESP32, que controlará os dispositivos e sensores, e o desenvolvimento do aplicativo móvel, que permitirá o controle remoto e a comunicação com o sistema. A implementação será feita

- de forma interativa, permitindo o desenvolvimento incremental e a realização de testes contínuos.
- 4. **Testes e Validação**: Nesta etapa, serão realizados testes unitários e integrados para verificar o correto funcionamento do sistema. Serão testadas a comunicação entre o ESP32 e o aplicativo móvel, a resposta dos sensores de movimento, o controle do portão da garagem, além da validação do sistema de alarmes. Cada funcionalidade será testada de forma isolada e em conjunto para garantir o funcionamento adequado do sistema.
- 5. **Implantação** e **Avaliação**: Após a validação do sistema, será feita a implantação de um protótipo funcional em ambiente real, permitindo a avaliação do desempenho do sistema de automação em uma residência. A implantação inclui a instalação dos sensores, o controle de luzes e do portão da garagem, além do monitoramento do sistema de alarmes. Essa etapa permitirá a coleta de dados sobre o uso do sistema e sua eficiência, verificando sua viabilidade técnica e prática.

6. LISTA DE REQUISITOS

Requisitos Funcionais

ID	Descrição	Prioridade	OBS
01	Controle de dispositivos via aplicativo móvel	Alta	Permitir ligar/desligar luzes e abrir/fechar o portão da garagem.
02	Verificação de status dos dispositivos	Alta	Mostrar o estado das luzes (ligadas/desligadas) e do portão (aberto/fechado).
03	Sistema de alarme	Baixa	Um sistema de segurança que será ativado dependendo dos sensores.
04	Sensores de movimento para automação de luzes	Média	Acender luzes automaticamente ao detectar movimento, com tempo definido.

Requisitos Não Funcionais

ID	Descrição	Prioridade	OBS
01	Confiabilidade	Alta	O sistema deve funcionar de forma estável e com mínima taxa de falhas.
02	Usabilidade	Média	Interface simples e intuitiva para facilitar o controle dos dispositivos.
03	Escalabilidade	Média	Suporte à adição de novos dispositivos e sensores sem grandes alterações.
04	Desempenho	Média	Baixo tempo de resposta para comandos como ligar/desligar dispositivos.
05	Eficiência Energética	Baixa	Otimizar o sistema para minimizar o consumo de energia.

Lista de Materiais, com as seguintes colunas

Descrição	Quantidade	Valor Unitário	Link Fornecedor	
ESP32	1	R\$ 44,55	Fornecedor ESP32	
Display LCD 16x2 com I2C	1	R\$ 28,40	Fornecedor Display LCD	
LEDs	10	R\$ 0,25	Fornecedor LEDs	
Resistor de 1kΩ	10	R\$ 1,20	Fornecedor Resistores	
Resistor de 150Ω	10	R\$ 0,06	Fornecedor Resistores	
Resistores de 50Ω	10	R\$ 0,06	Fornecedor Resistores	
Push Button	5	R\$ 0,20	Fornecedor Push Button	
Chave Fim de Curso	2	R\$ 3,32	Fornecedor Chave Fim de Curso	
Ponte H - L298N	1	R\$ 18,90	Fornecedor Ponte H	
Motor DC com Caixa de Redução	1	R\$ 8,00	Fornecedor Motor DC	
Sensor Magnético Reed Switch	1	R\$ 2,82	Fornecedor Reed Switch	
Sensor de Movimiento HCSR501	2	R\$ 8,45	Fornecedor Sensor Movimento	
Módulo Buzzer Ativo 5V	1	R\$ 5,60	Fornecedor Buzzer	
Módulo Relé 3.3V 10A 1 Canal	1	R\$ 18,95	Fornecedor Módulo Relé	
Fonte de alimentação 12v 3a	1	R\$ 14,90	Fornecedor Fonte de alimentação	
Regulador de Tensão Step Down - 3.3V / 5V / 12VDC	1	R\$ 12,84	Fornecedor Regulador de Tensão	
Protoboard 830 Pontos	1	R\$ 11,90	Fornecedor Protoboard	
Jumpers	20	R\$ 5,60	Fornecedor Jumpers	

7. CRONOGRAMA

Atividade	Data de Início	Data de Término	Duração
Proposta de Projeto	26/08/2024	01/09/2024	2 semana
Análise de Requisitos	16/03/2024	30/03/2024	2 semanas
Elaboração do Projeto e Definição do Tema	02/09/2024	08/09/2024	1 semana
Análise de Requisitos	09/09/2024	15/09/2024	1 semana
Lista de Materiais e Aquisição	16/09/2024	22/09/2024	1 semana
Pesquisa Bibliográfica e Tecnológica	23/09/2024	29/09/2024	1 semana
Slides Apresentação Quebra Gelo	23/09/2024	29/09/2024	1 semana
Desenvolvimento	30/09/2024	27/10/2024	4 semanas
Programação e Teste dos Sensores	07/10/2024	13/10/2024	1 semana
Programação e Testes dos LEDs e Atuadores	14/10/2024	24/10/2024	2 semana
Maquete Inicial	30/09/2024	06/10/2024	2 semana
Aplicativo	30/10/2024	14/11/2024	2 semanas
Maquete Funcional	07/10/2024	13/10/2024	1 semana
Ligações Elétricas e Eletrônicas	07/10/2024	13/10/2024	1 semana
Integração com Aplicativo	28/10/2024	03/11/2024	1 semana
Testes Finais e Validação	04/11/2024	10/11/2024	1 semana
Apresentação Final	12/11/2024	12/11/2024	1 dia
Defesa do Projeto	15/12/2024	15/11/2024	1 dia
Entrega do Artigo com Resultados	26/11/2024	26/11/2024	1 dia

8. REFERÊNCIAS BIBLIOGRÁFICAS

Artigos:

- Demonstração de Automação Residencial com Arduino (Link)
- Automação Residencial com Arduino (Link)
- Internet das Coisas (IoT): utilização do Arduino para automação residencial (Link)

Inspirações:

- Intelbras. 6 tipos de automação residencial para você se inspirar. Disponível em: (Link)
- Makerhero. Automação residencial por comando de voz com ESP32 e AppInventor.
 Disponível em: (Link)

Assistência:

- CHATGPT. Assistência na elaboração de conteúdo e estruturação de projeto para "Domus Tech: Automação Residencial". Disponível em: (Link)
- Usinainfo. Projetos com ESP32. Disponível em: (Link)
- YouTube. Por que usar a ESP32 na automação residencial? Disponível em: (Link)
- YouTube. Automação de Baixo Custo: ESP32 e 16 relés. Disponível em: (Link)