Programs were mostly entered using punched cards or paper tape. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. However, readability is more than just programming style. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Different programming languages support different styles of programming (called programming paradigms). The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Use of a static code analysis tool can help detect some possible problems. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language.