Student Information

Full Name : Ceydanur Köylü

Id Number: 2633386

Answer 1

	p	q	$\neg q$	$p \rightarrow q$	$p \land \neg q$	$(p \to q) \oplus (p \land \neg q)$
	Τ	Τ	F	Т	F	${f T}$
a)	Т	F	Т	F	Т	T
	F	Τ	F	Т	F	T
	F	F	Т	Т	F	T

- Since the target column is full of True values, the statement is a tautology.

b)

$$p \to ((q \lor \neg p) \to r) \equiv p \to (\neg (q \lor \neg p) \lor r) \qquad \text{because "} p \to q \equiv \neg p \lor q \text{"} \qquad \text{Table 7.1}$$

$$\equiv p \to ((\neg q \land \neg \neg p) \lor r) \qquad \text{by the second De Morgan's Law} \qquad \text{Table 6}$$

$$\equiv p \to ((\neg q \land p) \lor r) \qquad \text{by the Double Negation Law} \qquad \text{Table 6}$$

$$\equiv \neg p \lor ((\neg q \land p) \lor r) \qquad \text{because "} p \to q \equiv \neg p \lor q \text{"} \qquad \text{Table 7.1}$$

$$\equiv (\neg p \lor (\neg q \land p)) \lor r \qquad \text{by the first Associative Law} \qquad \text{Table 6}$$

$$\equiv ((\neg p \lor \neg q) \land (\neg p \lor p)) \lor r \qquad \text{by the first Distributive Law} \qquad \text{Table 6}$$

$$\equiv ((\neg p \lor \neg q) \land (p \lor \neg p)) \lor r \qquad \text{by the first Negation Law} \qquad \text{Table 6}$$

$$\equiv ((\neg p \lor \neg q) \land r) \lor r \qquad \text{by the first Identity Law} \qquad \text{Table 6}$$

$$\equiv (\neg p \lor \neg q) \lor r \qquad \text{by the first De Morgan's Law} \qquad \text{Table 6}$$

$$\equiv \neg (p \land q) \lor r \qquad \text{by the first De Morgan's Law} \qquad \text{Table 6}$$

$$\equiv (p \land q) \to r \qquad \text{because "} p \to q \equiv \neg p \lor q \text{"} \qquad \text{Table 7.1}$$

- c) 1. F
 - 2. F
 - 3. F
 - 4. T
 - 5. T

Answer 2

a)

$$\exists y (P(\operatorname{Can}, y) \land T(y, \operatorname{L}))$$

b)
$$\forall x \, (T(x,\mathbf{S}) \to \exists y \, (P(y,x) \land N(y, \mathbf{Turkish}))$$
 c)
$$\forall x \, (T(x,\mathbf{S}) \to \exists y \forall z \, (T(y,\mathbf{S}) \land R(x,y) \land (R(x,z) \to (\neg T(z,S) \lor y = z)) \\ \land \, (y = z \to R(x,z)) \land (y \neq x)))$$
 d)
$$\forall y \forall x \, ((P(x,y) \land N(x, \mathbf{English})) \to \neg W(\mathbf{M},y))$$
 e)
$$\exists x \exists y \forall z \Big(\Big(\big(P(y,\mathbf{G}) \land N(y, \mathbf{Turkish})\big) \land \big(P(x,\mathbf{G}) \land N(x, \mathbf{Turkish})\big) \Big) \\ \land \Big((y = z \lor x = z) \to \big(P(z,\mathbf{G}) \land N(z, \mathbf{Turkish})\big) \Big) \\ \land \Big((P(z,\mathbf{G}) \land N(z, \mathbf{Turkish})\big) \to (y = z \lor x = z) \Big) \\ \land (y \neq x) \Big)$$

f) $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land y \neq z)$

Answer 3

Answer 4

a) $\exists x(P(x) \to S(x))$: Some students need to study for the exam in order to pass.

 $\forall x(P(x))$: Every student passed the exam.

 $\exists x(S(x))$: There is at least one student that studied for the exam.

Our claim is that $\exists x(P(x) \to S(x)), \, \forall x(P(x)) \vdash \exists x(S(x))$

b) Following natural deduction proves our claim:

Table 2: Proof of $\exists x(P(x) \to S(x)), \forall x(P(x)) \vdash \exists x(S(x))$

		//;
1	$\exists x (P(x) \to S(x)))$	premise
2	$\forall x (P(x))$	premise
3	$P(c) \to S(c)$	assumption
4	P(c)	$\forall e, 2$
5	S(c)	\rightarrow e, 3,4
6	$\exists x(S(x))$	∃i, 5
7	$\exists x(S(x))$	$\exists e, 1, 3-6$
7	$\exists x(S(x))$	$\exists e, 1, 3-6$