PROBLEMAS II

JUAN FERRERA

- (1) La función característica de A es medible si y solo si A es medible.
- (2) Sea $f:[a,b]\to\mathbb{R}$, sea $x\in(a,b)$. f es continua en x si y solo si
- (3) Si $\varphi = \sum_{i=1}^{m} \alpha_i \aleph_{E_i} = \sum_{i=1}^{p} \beta_i \aleph_{D_i}$, entonces

$$\sum_{i=1}^{m} \alpha_i \mu(E_i) = \sum_{i=1}^{p} \beta_i \mu(D_i)$$

- (4) Probar que si φ y ψ son funciones simples no negativas, entonces
 - (a) Si c > 0, entonces $I(c\varphi) = cI(\varphi)$.
 - (b) $I(\varphi + \psi) = I(\varphi) + I(\psi)$.
 - (c) Si $\varphi \leq \psi$ c.t.p. entonces $I(\varphi) \leq I(\psi)$.
 - (d) Si $\varphi = \psi$ c.t.p. entonces $I(\varphi) = I(\psi)$.
- (5) Si f y g son funciones medibles no negativas y $f \leq g$ c.t.p. entonces

$$\int_{\mathbb{R}^n} f d\mu \le \int_{\mathbb{R}^n} g d\mu$$

- (6) Sea $f:[0.1]\times[0,1]\to\mathbb{R}$ definida por f(x,y)=0 if $(x,y)\not\in\mathbb{Q}\times\mathbb{Q}$, y $f(x,y)=\frac{1}{q}$ if $y=\frac{p}{q}$ irreducible en caso contrario. Demuestra que f medible y calcula su integral.
- (7) Sea $A \subset \mathbb{R}^n$ un rectángulo, sea $f: A \to \mathbb{R}^+$ medible. Prueba
- que si $\int_A f d\mu = 0$ y f es continua en x_0 , entonces $f(x_0) = 0$. (8) Sea $A \subset \mathbb{R}^n$ un conjunto de medida cero y $f: A \to \mathbb{R}^+$ una función medible. Demuestra que $\int_A f = 0$.
- (9) Prueba que la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 1 & \text{si } x \le y \\ x & \text{si } y < x \end{cases}$$

es medible.