Analysis II Assignment 3

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Solution 1:

Given, f, g are continuous functions satisfying

$$\int_0^1 f(t)t^n dt = \int_0^1 g(t)t^n dt$$

for all integers $n \geq 0$. Therefore,

$$\int_{0}^{1} (f(t) - g(t))t^{n}dt = 0,$$

and hence

$$\int_0^1 (f(t) - g(t))p(t)dt = 0$$

for all polynomials $p(t) \in \mathbb{R}[t]$. Let h(t) = f(t) - g(t) and $\epsilon > 0$. Then, since h is continuous on [0,1], by Weierstrass approximation theorem, there exists a polynomial p such that $|h(t) - p(t)| < \epsilon$ for all t in [0,1].

We shall prove that $h(t) = 0 \ \forall \ t \in [0, 1]$. We have,

$$\int_0^1 (h(t)^2) dt = \left| \int_0^1 (h(t)^2) dt \right|$$

$$= \left| \int_0^1 h(t)(h(t) - p(t)) dt \right|$$

$$< \left| \int_0^1 h(t) \cdot \epsilon dt \right|$$

$$\le \epsilon \cdot \int_0^1 |h(t)| dt.$$

Since h(t) = f(t) - g(t) is continuous on [0, 1], therefore it is bounded on [0, 1]. Hence,

$$\int_0^1 |h(t)| dt \le N$$

for some N > 0. Thus,

$$\int_0^1 \left(h(t)^2 \right) dt < \epsilon$$

for all $\epsilon > 0$. Therefore,

$$\int_0^1 \left(h(t)^2 \right) dt = 0,$$

and hence h(t) = 0, i.e., f = g as required.

Solution 3:

Given set is $S = \{z : z = \exp(i \sin t), t \in \mathbb{R}\} \subseteq \mathbb{C}$. We claim that S is path connected and hence connected. Consider two elements $z_1 = \exp(i \sin t_1), z_2 = \exp(i \sin t_2) \in S$. Define $f : [0,1] \to \mathbb{C}$ by $f(x) = \exp((1-x)\sin t_1 + x\sin t_2)$. Then clearly f is continuous and $f(0) = \exp(i \sin t_1) = z_1$, $f(1) = \exp(i \sin t_2) = z_2$. Also, we have,

$$\min\{\sin t_1, \sin t_2\} \le (1-x)\sin t_1 + x\sin t_2 \le \max\{\sin t_1, \sin t_2\}.$$

This gives,

$$-1 \le (1-x)\sin t_1 + x\sin t_2 \le 1.$$

Therefore, there exists $x_t \in \mathbb{R}$ such that

$$\sin x_t = (1-t)\sin t_1 + t\sin t_2.$$

Thus, we have shown that $f(t) = e^{i \sin x_t} \in \mathcal{S}$ and hence S is path connected. Hence, S is connected.