

Information Management School

Programming for Data Science

4th Session: Pandas

Flávio Pinheiro
fpinheiro@novaims.unl.pt
Maria Almeida
malmeida@novaims.unl.pt
Nuno Alpalhão
nalpalhao@novaims.unl.pt

What's next?

Class topics

Pandas

Python libraries: Pandas

Libraries!

In a general sense, a library in Python is a piece of reusable code.

There are many of them and they help us solve problems, store data, represent data, perform statistic tests, run algorithms, etc...

Pandas

Pandas!

Pandas is a widely-used Python library built on top of NumPy.

import numpy as np
import pandas as pd

- **Pandas** was designed to work with 2-dimensional data (like Excel spreadsheets/csv files).
- lt is known for its very useful data structure called the **DataFrame** (and for pandas Series).

Pandas Series

Pandas Series

- Series are a special type of data structure available in the pandas Python library.
- Pandas Series are like NumPy arrays, except that we can give them a **named or datetime index** instead of just a numerical index.
- You will learn about NumPy soon, but for now we can think of NumPy arrays as being very similar to lists.

Pandas Series

Pandas Series

- We can think of a Pandas Series as a List where each value can be indexed with a name and not only by a number!
- They help giving meaning to our data:

Pandas

16

Piper Chapman

dtype: int64

Pandas Series

Pandas Series:

```
grades = pd.Series(grades,index = students)

grades['Jerry Smith']

18
```

```
grades[grades == 17]
Leonard Hofstader 17
dtype: int64
```

```
grades[grades > 16]

Han Solo 20
Leonard Hofstader 17
Jerry Smith 18
Mildred Ratched 20
dtype: int64
```


Pandas DataFrames

Pandas DataFrames

- **DataFrames** are the most important data structure in the Pandas library.
- A pandas DataFrame is a 2-dimensional data structure that has labels for both its rows and columns.
- A DataFrame can be created in many ways. The most common by loading a .csv file (or an Excel sheet).

Pandas DataFrames

Pandas DataFrames

```
dict_ = {'key 1': 'value 1', 'key 2': 'value 2', 'key 3': 'value 3'}

pd.DataFrame([dict_])

    key 1    key 2    key 3

    value 1    value 2    value 3
```


Pandas

Pandas DataFrames

Pandas DataFrames

df = pd.read_csv("/Users/rizzoli/Desktop/Nova Ims/STATS/winequality-red.csv")

df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Pandas

https://towardsdatascience.com/a-quickintroduction-to-the-pandas-pythonlibrary-f1b678f34673

> https://www.youtube.com/wa tch?v=dcqPhpY7tWk&ab_ch annel=PythonProgrammer

End