IN THE CLAIMS:

 (Currently Amended) A method of manufacturing a laterally diffused metal oxide semiconductor (LDMOS) device, comprising:

forming first and second isolation structures within a substrate;

forming a lightly-doped source/drain region between the first and second isolation structures with only a first dopant and without the use of a mask; and

creating a gate over the lightly-doped source/drain region.

- (Original) The method as recited in Claim 1 wherein forming includes forming a lightly-doped source/drain region with a first N-type dopant.
- (Original) The method as recited in Claim 2 wherein the first N-type dopant has an implant dose ranging from about 1E12 atoms/cm² to about 1E13 atoms/cm².

Claim 4 (Canceled)

- (Original) The method as recited in Claim 1 further including diffusing a second dopant at least partially across the lightly-doped source/drain region and under the gate to form a first portion of a channel.
 - 6. (Previously Presented) The method as recited in Claim 5 wherein diffusing the

second dopant includes diffusing a P-type dopant having an implant dose ranging from about 1E13 atoms/cm² to about 1E14 atoms/cm².

- 7. (Previously Presented) The method as recited in Claim 5 wherein diffusing the second dopant includes diffusing a P-type dopant having an implant dose about 100 times higher than an implant dose of the first dopant.
- 8. (Original) The method as recited in Claim 5 further including placing a heavy concentration of the first dopant in a region adjacent a source side of the gate, and in the lightly-doped source/drain region adjacent a drain side of the gate.
- 9. (Original) The method as recited in Claim 8 wherein placing includes placing the heavy concentration of the first dopant in the lightly-doped source/drain region a distance ranging from about 2000 nm to about 3000 nm from the drain side of the gate.
- 10. (Original) The method as recited in Claim 8 wherein placing includes placing an implant dose of the first dopant ranging from about 1E15 atoms/cm² to about 1E16 atoms/cm².
- (Currently Amended) A method of manufacturing an integrated circuit, comprising:

fabricating laterally diffused metal oxide semiconductor (LDMOS) transistors, including:

forming first and second isolation structures in a substrate;

forming a lightly-doped source/drain region between the first and second
isolations structures and with only a first dopant and without the use of a mask; and

creating a gate over the lightly-doped source/drain region;

depositing interlevel dielectric layers over the LDMOS transistors; and

creating interconnect structures in the interlevel dielectric layers and interconnecting the
LDMOS transistors to form an operative-integrated circuit.

- (Original) The method as recited in Claim 11 wherein forming includes forming a lightly-doped source/drain region with a first N-type dopant.
- 13. (Original) The method as recited in Claim 12 wherein the first N-type dopant has an implant dose ranging from about 1E12 atoms/cm² to about 1E13 atoms/cm².

Claim 14 (Canceled)

- 15. (Original) The method as recited in Claim 11 further including diffusing a second dopant at least partially across the lightly-doped source/drain region and under the gate to form a first portion of a channel.
 - 16. (Previously Presented) The method as recited in Claim 15 wherein diffusing the

second dopant includes diffusing a P-type dopant having an implant dose ranging from about 1E13 atoms/cm² to about 1E14 atoms/cm².

- 17. (Previously Presented) The method as recited in Claim 15 wherein diffusing the second dopant includes diffusing a P-type dopant having an implant dose about 100 times higher than an implant dose of the first dopant.
- 18. (Original) The method as recited in Claim 15 further including placing a heavy concentration of the first dopant in a region adjacent a source side of the gate, and in the lightly-doped source/drain region adjacent a drain side of the gate.
- 19. (Original) The method as recited in Claim 18 wherein placing includes placing the heavy concentration of the first dopant in the lightly-doped source/drain region a distance ranging from about 2000 nm to about 3000 nm from the drain side of the gate.
- 20. (Original) The method as recited in Claim 18 wherein placing includes placing an implant dose of the first dopant ranging from about 1E15 atoms/cm² to about 1E16 atoms/cm².
- 21. (New Claim) The method as recited in Claim 1 wherein forming the lightly-doped source/drain region includes forming the lightly-doped source/drain region using a blanket implant process over the entire substrate.

22. (New Claim) The method as recited in Claim 11 wherein forming the lightly-doped source/drain region includes forming the lightly-doped source/drain region using a blanket implant process over the entire substrate.