Chapitre 6: Correction des tests

Test 1 (Voir solution.)

- 1. Montrer que : $\forall n > 1$, $\frac{1}{n^2} \leqslant \frac{1}{n-1} \frac{1}{n}$.
- 2. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n \ge 1}$ est majorée.
- 3. En déduire que la série $\sum_{n>1} \frac{1}{n^2}$ converge.

Test 2 (Voir solution.)

Montrer, à l'aide d'un télescopage, que la série $\sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right)$ diverge.

Test 3 (Voir solution.)

Pour tout $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $S_{2n} S_n \ge \frac{1}{2}$.
- 2. En déduire que, pour tout $n \in \mathbb{N}^*$, $S_{2^n} \ge \frac{n}{2}$.
- 3. Montrer que $(S_n)_{n\geqslant 1}$ n'est pas majorée et en déduire la nature de la série $\sum_{n\geqslant 1}\frac{1}{n}$.

Test 4 (Voir solution.)

Déterminer la nature de la série $\sum_{n\geqslant 0} \frac{n^2}{2^n}$ et, le cas échéant, calculer sa somme.

Test 5 (Voir solution.)

Déterminer la nature de la série $\sum_{n\geqslant 0} \frac{n+7}{2^n n!}$ et, le cas échéant, calculer sa somme.

Test 6 (Voir solution.)

On considère la série $\sum \frac{n^2}{3^n}$.

- 1. Montrer que le série est convergente et calculer sa somme.
- 2. Avec une boucle for, écrire une fonction Scilab qui prend un argument un entier naturel n et qui renvoie la somme partielle d'indice n de la série.
- 3. Avec une boucle while, écrire une fonction Scilab qui prend un argument un réel *e* > 0 et qui renvoie l'indice à partir duquel la somme partielle atteint sa limite à *e* près.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si $U=[u_0,\ldots,u_n]$ que renvoie sum(U)? et cumsum(U)?

Test 7 (Voir solution.)

Déterminer la nature des séries suivantes.

$$1. \sum_{n\geqslant 1} \frac{\sqrt{n}}{n^2 + \sqrt{n}}.$$

$$2. \sum_{n \ge 2} \frac{\sqrt{n}}{\sqrt{n^3 - 1}}.$$

Test 8 (Voir solution.)

Déterminer la nature de la série $\sum_{n\geqslant 0} (n^{27} + 2n^3)3^{-n}$.

Test 9 (Voir solution.)

Déterminer la nature des séries suivantes :

$$1. \sum \ln\left(1+\frac{1}{n^2}\right).$$

2.
$$\sum \frac{2^n-3^n}{2^n-4^n}$$

1

$$3. \sum \frac{n^2-4}{e^n-n-2\ln n}.$$

Test 10 (Voir solution.)

Déterminer la nature de la série $\sum \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2}$.

1 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

1. Soit *n* un entier supérieur ou égal à 2. Comme $n(n-1) \le n^2$, on a :

$$\frac{1}{n-1} - \frac{1}{n} = \frac{1}{n(n-1)} \geqslant \frac{1}{n^2}.$$

Ainsi: $\forall n > 1$, $\frac{1}{n^2} \leqslant \frac{1}{n-1} - \frac{1}{n}$.

2. Soit $n \ge 1$. Avec la question précédente, on peut écrire :

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) \quad \text{d'après la question précédente,}$$

$$\le 1 + 1 - \frac{1}{n} \quad \text{par télescopage,}$$

$$\le 2.$$

Cela montre que la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n \ge 1}$ est majorée.

3. Pour tout $n \ge 1$, on a

$$\sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} \ge 0$$

donc la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n\geqslant 1}$ est croissante. De plus, elle est majorée donc elle converge. Ainsi la série $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge.

Correction du test 2 (Retour à l'énoncer.)

Pour tout $n \ge 1$, on a

$$\ln\left(1+\frac{1}{n}\right) = \ln\left(\frac{n+1}{n}\right) = \ln\left(n+1\right) - \ln n.$$

Par conséquent :

$$\forall n \in \mathbb{N}, \quad \sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right) = \sum_{k=1}^{n} \left(\ln \left(k + 1 \right) - \ln k \right) = \ln \left(n + 1 \right).$$

Ainsi la série $\sum_{n \ge 1} \ln \left(1 + \frac{1}{n} \right)$ diverge.

Correction du test 3 (Retour à l'énoncer.)

1. Soit $n \in \mathbb{N}^*$. On a

$$S_{2n} - S_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}.$$

Or, pour tout $k \le 2n$ *, on a* $\frac{1}{k} \ge \frac{1}{2n}$ *donc*

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{1}{2n} (2n - (n+1) + 1) = \frac{1}{2}.$$

Ainsi: $\forall n \in \mathbb{N}^*$, $S_{2n} - S_n \ge \frac{1}{2}$.

- 2. Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n)$ la propriété « $S_{2^n} \ge \frac{n}{2}$ » et montrons que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - * Initialisation : $S_{2^1} = S_2 \ge 0$. La propriété $\mathcal{P}(1)$ est donc vraie.
 - * Hérédité : supposons $\mathcal{P}(n)$ vraie pour un certain rang $n \in \mathbb{N}$ et montrons que $\mathcal{P}(n+1)$ est vraie. Comme $2^{n+1} = 2 \cdot 2^n$, d'après la question précédente et l'hypothèse de récurrence, on a :

$$S_{2^{n+1}} \ge S_{2^n} + \frac{1}{2} \ge \frac{n}{2} + \frac{1}{2} = \frac{n+1}{2}.$$

La propriété $\mathcal{P}(n+1)$ est donc vraie.

* Conclusion : d'après le principe de récurrence :

$$\forall n \in \mathbb{N}^* \quad S_{2^n} \geqslant \frac{n}{2}$$

2

3. D'après la question précédente $(S_n)_{n\geqslant 1}$ n'est pas majorée. Montrons qu'elle est croissante. Soit $n\in \mathbb{N}^*$. Alors

$$S_{n+1} - S_n = \frac{1}{n+1} \geqslant 0.$$

Ainsi: $\forall n \in \mathbb{N}^*$, $S_{n+1} - S_n \geqslant 0$.

La suite $(S_n)_{n\geqslant 1}$ est donc croissante et non majorée. D'après le théorème de la limite monotone, elle diverge donc vers $+\infty$. La série $\sum_{n\geqslant 1}\frac{1}{n}$ est donc divergente.

Correction du test 4 (Retour à l'énoncer.)

Soit $n \in \mathbb{N}$. On a:

$$\sum_{k=0}^{n} \frac{k^2}{2^k} = \sum_{k=0}^{n} \frac{k(k-1)+k}{2^k} = \sum_{k=0}^{n} k(k-1) \left(\frac{1}{2}\right)^k + \sum_{k=0}^{n} k \left(\frac{1}{2}\right)^k = \frac{1}{4} \sum_{k=2}^{n} k(k-1) \left(\frac{1}{2}\right)^{k-2} + \frac{1}{2} \sum_{k=1}^{n} k \left(\frac{1}{2}\right)^{k-1}.$$

On reconnaît une combinaison linéaire de séries géométriques dérivées seconde et première de raison $\frac{1}{2}$, donc toutes deux convergentes. Ainsi $\sum_{n \geqslant 0} \frac{n^2}{2^n}$ est convergente comme combinaison linéaire de séries convergentes et

$$\sum_{n=0}^{+\infty} \frac{n^2}{2^n} = \frac{1}{4} \sum_{n=2}^{+\infty} n(n-1) \left(\frac{1}{2}\right)^{n-2} + \frac{1}{2} \sum_{n=1}^{+\infty} n \left(\frac{1}{2}\right)^{n-1} = \frac{2}{4\left(1-\frac{1}{2}\right)^3} + \frac{1}{2\left(1-\frac{1}{2}\right)^2} = 6.$$

Correction du test 5 (Retour à l'énoncer.)

Soit $n \in \mathbb{N}$. On a:

$$\sum_{k=0}^{n} \frac{k+7}{2^{k} k!} = \sum_{k=1}^{n} \frac{1}{2^{k} (k-1)!} + 7 \sum_{k=0}^{n} \frac{\left(\frac{1}{2}\right)^{k}}{k!}$$

$$= \frac{1}{2} \sum_{k=1}^{n} \frac{\left(\frac{1}{2}\right)^{k-1}}{(k-1)!} + 7 \sum_{k=0}^{n} \frac{\left(\frac{1}{2}\right)^{k}}{k!}$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} \frac{\left(\frac{1}{2}\right)^{k}}{k!} + 7 \sum_{k=0}^{n} \frac{\left(\frac{1}{2}\right)^{k}}{k!}.$$

Or la série exponentielle $\sum_{k\geqslant 0} \frac{\left(\frac{1}{2}\right)^k}{k!}$ converge vers $e^{\frac{1}{2}}$ donc la série $\sum_{n\geqslant 0} \frac{n+7}{2^n n!}$ et

$$\sum_{n=0}^{+\infty} \frac{n+7}{2^n n!} = \frac{1}{2} e^{\frac{1}{2}} + 7 e^{\frac{1}{2}} = \frac{15}{2} e^{\frac{1}{2}}.$$

Correction du test 6 (Retour à l'énoncer.)

- 1. En procédant comme au test 4, on montre que la série est convergente et que sa somme vaut $\frac{3}{2}$.
- 2. Avec une boucle for

3. Avec une boucle while

4. La commande cum (U) renvoie la valeur de $u_0 + ... + u_n$ (la somme partielle d'indice n de la série $\sum u_n$). La commande cum (U) renvoie la liste des sommes partielles d'indices 0 à n de la série $\sum u_n$.

Correction du test 7 (Retour à l'énoncer.)

1. Soit $n \ge 1$. Comme $n^2 + \sqrt{n} \ge n^2$ alors, par décroissance de la fonction inverse sur \mathbb{R}_+^* on a

$$\frac{1}{n^2 + \sqrt{n}} \leqslant \frac{1}{n^2}.$$

Par suite;

$$\forall n \geqslant 1$$
, $\frac{\sqrt{n}}{n^2 + \sqrt{n}} \leqslant \frac{\sqrt{n}}{n^2} = \frac{1}{n^{\frac{3}{2}}}$.

Or, les séries $\sum_{n\geqslant 1} \frac{\sqrt{n}}{n^2+\sqrt{n}}$ et $\sum_{n\geqslant 1} \frac{1}{n^{\frac{3}{2}}}$ sont à termes positifs et cette dernière est une série de Riemann conver-

gente. Par le critère comparaison des séries à termes positifs, on en déduit que $\sum_{n\geqslant 1} \frac{\sqrt{n}}{n^2+\sqrt{n}}$ est convergente.

2. De même

$$\forall n \geqslant 2, \quad \frac{\sqrt{n}}{\sqrt{n^3 - 1}} \geqslant \frac{\sqrt{n}}{\sqrt{n^3}} = \frac{1}{n}.$$

Or, les séries $\sum_{n\geqslant 2} \frac{\sqrt{n}}{\sqrt{n^3-1}}$ et $\sum_{n\geqslant 1} \frac{1}{n}$ sont à termes positifs et cette dernière est une série de Riemann diver-

gente. Par le critère comparaison des séries à termes positifs, on en déduit que $\sum_{n\geqslant 2} \frac{\sqrt{n}}{\sqrt{n^3-1}}$ est divergente.

Correction du test 8 (Retour à l'énoncer.)

Par croissance comparée et opération sur les limites on a :

$$\lim_{n \to +\infty} n^2 \cdot (n^{27} + 2n^3) 3^{-n} = 0.$$

Donc: $(n^{27} + 2n^3)3^{-n} = o_{n \to +\infty} \left(\frac{1}{n^2}\right)$.

De plus, les séries $\sum_{n\geqslant 0}(n^{27}+2n^3)3^{-n}$ et $\sum_{n\geqslant 1}\frac{1}{n^2}$ sont à termes positifs et cette dernière est une série de Riemann convergente. Par le critère comparaison des séries à termes positifs, on en déduit que $\sum_{n\geqslant 0}(n^{27}+2n^3)3^{-n}$ est

convergente.

Correction du test 9 (Retour à l'énoncer.)

1. Comme $\lim_{n \to +\infty} \frac{1}{n^2} = 0$, on a par équivalent usuel :

$$\ln\left(1+\frac{1}{n^2}\right) \sim \frac{1}{n^2}.$$

Or, les séries $\sum \ln \left(1 + \frac{1}{n^2}\right)$ et $\sum_{n \ge 1} \frac{1}{n^2}$ sont à termes positifs et cette dernière est une série de Riemann convergente. Par le critère d'équivalence des séries à termes positifs, on en déduit que $\sum \ln \left(1 + \frac{1}{n^2}\right)$ est convergente.

2. Pour tout $n \ge 0$ on a:

$$\frac{2^n - 3^n}{2^n - 4^n} = \frac{3^n \left(\left(\frac{2}{3} \right)^n - 1 \right)}{4^n \left(\left(\frac{2}{4} \right)^n - 1 \right)} = \left(\frac{3}{4} \right)^n \frac{1 - \left(\frac{2}{3} \right)^n}{1 - \left(\frac{1}{2} \right)^n}.$$

Or,
$$\lim_{n \to +\infty} \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \left(\frac{1}{2}\right)^n} = 1 \ donc \ \frac{2^n - 3^n}{2^n - 4^n} \sim \left(\frac{3}{4}\right)^n$$
.

De plus, la série $\sum \frac{2^n-3^n}{2^n-4^n}$ est à termes positifs (pourquoi?). La série $\sum \left(\frac{3}{4}\right)^n$ est aussi à termes positifs et converge (série géométrique de raison $\frac{3}{4}$). Par le critère d'équivalence des séries à termes positifs, on en déduit que $\sum \frac{2^n-3^n}{2^n-4^n}$ est convergente.

4

3. (a) Pour tout $n \ge 1$ on a:

$$\frac{n^2 - 4}{e^n - n - 2\ln n} = \frac{n^2}{e^n} \frac{1 - \frac{4}{n^2}}{1 - \frac{n}{e^n} - 2\frac{\ln n}{e^n}}$$

De plus, par croissances comparées, on a :

$$\lim_{n \to +\infty} \frac{n}{e^n} = \lim_{n \to +\infty} \frac{\ln n}{e^n} = \lim_{n \to +\infty} \frac{4}{n^2}$$

donc, par opérations sur les limites

$$\lim_{n \to +\infty} \frac{1 - \frac{4}{n^2}}{1 - \frac{n}{\rho^n} - 2\frac{\ln n}{\rho^n}} = 1.$$

Cela montre que $\frac{n^2-4}{e^n-n-2\ln n}\sim \frac{n^2}{e^n}$.

- (b) De plus, toujours par croissance comparée, $\lim_{n\to+\infty} n^2 \cdot \frac{n^2}{e^n} = 0$ donc $\frac{n^2}{e^n} = 0$, $\lim_{n\to+\infty} \left(\frac{1}{n^2}\right)$. Les séries $\sum \frac{n^2}{e^n}$ et $\sum \frac{1}{n^2}$ sont à termes positifs et cette dernière est une série de Riemann convergente. Par comparaison, la série $\sum \frac{n^2}{e^n}$ converge.

$$\forall n \in \mathbb{N}, e^n - n - 2 \ln n = e^n (1 - ne^{-n} - 2e^{-n} \ln n).$$

On en déduit par croissance comparée que :

$$\lim_{n \to +\infty} e^n - n - 2\ln n = +\infty.$$

En particulier, $e^n - n - 2 \ln n$ est positif pour tout n à partir d'un certain rang.

(d) Finalement, par le critère d'équivalence des séries à termes positifs, on en déduit que $\sum \frac{n^2-4}{e^n-n-2\ln n}$ converge.

Remarque: on peut remplacer les étapes (a) et (b) par le calcul suivant:

$$n^{2} \frac{n^{2} - 4}{e^{n} - n - 2\ln n} = \frac{n^{4}}{e^{n}} \frac{1 - \frac{4}{n^{2}}}{1 - \frac{n}{e^{n}} - 2\frac{\ln n}{e^{n}}}$$

pour montrer, par croissance comparée, que $\frac{n^2-4}{e^n-n-2\ln n}=o_{n\to+\infty}\left(\frac{1}{n^2}\right)$ puis conclure par le critère de comparaison. Dans les deux cas, il convient de justifier soigneusement que la série est à termes positifs à partir d'un certain rang car ce n'est pas si évident.

Correction du test 10 (Retour à l'énoncer.)

Montrons que la série est absolument convergente.

Soit $n \in \mathbb{N}$. On a:

$$\frac{(-1)^n(n^5+2n^3+1)}{e^n+2} = \frac{(-1)^n n^5}{e^n} \frac{(1+2n^{-2}+n^{-5})}{1+2e^{-n}}.$$

$$\begin{aligned} & \textit{Or,} \ \lim_{n \to +\infty} \frac{(1+2n^{-2}+n^{-5})}{1+2e^{-n}} = 1 \ \textit{donc} : \frac{(-1)^n(n^5+2n^3+1)}{e^n+2} \sim \frac{(-1)^nn^5}{e^n}. \\ & \textit{Par compatibilit\'e de la relation d'équivalence avec la valeur absolue, on obtient donc} : \end{aligned}$$

$$\left| \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2} \right| \sim \frac{n^5}{e^n}$$

puis:

$$n^2 \cdot \left| \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2} \right| \sim \frac{n^7}{e^n}.$$

Or, par croissance comparée : $\lim_{n\to+\infty} \frac{n^7}{\sigma^n} = 0$. Donc :

$$\left| \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2} \right| = \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right).$$

Les séries $\sum \left| \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2} \right|$ et $\sum \frac{1}{n^2}$ sont à termes positifs et cette dernière est une série de Riemann convergente.

Par comparaison, la série $\sum \left| \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2} \right|$ converge. Donc $\sum \frac{(-1)^n (n^5 + 2n^3 + 1)}{e^n + 2}$ est absolument convergente. En particulier elle converge.

5