中 国 科 学 技 术 大 学 2020 - 2021**学年第二学期期末考试试卷**(A卷)

考试科目: 线性代数(B1)

得分:

所在院、系: ______ 姓名: _____

学号:_____

题号	_	 111	四	五.	六	总分
得分						
复查						

- 一、【每小题5分,共30分】填空题:

- 4. 设 $\mathbb{R}_2[x]$ 中的某个内积在基 $\alpha_1 = x 1$, $\alpha_2 = x + 1$, $\alpha_3 = x^2$ 下的度量矩阵为 $\begin{pmatrix} 2 & 2 & 1 \\ 2 & 5 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,

则该内积在基 $\beta_1 = 2x$, $\beta_2 = -x + 1$, $\beta_3 = x^2 + 2$ 下的度量矩阵为_____.

- 5. 若矩阵 $\begin{pmatrix} 1 & 1 & -3 \\ 1 & a & 5 \\ -3 & 5 & 1 \end{pmatrix}$ 相合于 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则常数 $a = \underline{\qquad}$.
- 6. 若实二次型 $Q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 + tx_1x_2 + tx_1x_3 + x_2x_3$ 正定,则 t 满足条件_______.

二、【每小题5分,共20分】判断题:判断下列命题是否正确,并简要说明理由或举反例.
1. 设 $A \in \mathbb{R}^{m \times n}$, 则齐次线性方程组 $AX = 0$ 与 $A^{\mathrm{T}}AX = 0$ 同解.
2. 设 n 阶方阵 $A \neq 0$, 且存在正整数 k , 使得 $A^k = 0$, 则 $\det(I_n - kA) = 1$.
3. 设 A 是欧氏空间 V 中的一个线性变换, 满足条件: 存在 V 中的一组基 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 它们在 A 中的像仍是 V 中的一组基,且长度不变. 则 A 是 V 中的正交变换.
4. 设 A 和 B 都是 n 阶方阵, 则 AB 与 BA 有相同的特征多项式.

- 三、【10+6=16分】考虑线性空间 $V=F^{2\times 2}$,运算为矩阵的加法与数乘. 取定 $A=\begin{pmatrix}1&2\\0&4\end{pmatrix}$,定义 V 上的线性变换 $A\colon V\to V,\quad M\mapsto AM.$
- (1) 求 A 的所有特征值和特征向量.

(2) 求
$$\mathcal{A}$$
 在基 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ 下的矩阵.

四、【12分】考虑线性空间 $V=\mathbb{R}_2[x]$, 运算为多项式的加法与数乘. 对于 $f(x)=a_0+a_1x+a_2x^2,$ $g(x)=b_0+b_1x+b_2x^2,$ 定义

$$(f,g) = \int_0^1 f(x)g(x)\mathrm{d}x.$$

则 (V,(,)) 为欧氏空间. 用Schimidt正交化方法将 $1,x,x^2$ 按顺序改造成标准正交基.

五、【12+2=14分】设实二次型

$$Q(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 - 2x_2x_3.$$

- (1) 利用正交变换将该二次型化为标准形,并写出相应的正交变换矩阵.
- (2) 判断 $Q(x_1, x_2, x_3) = 0$ 在三维直角坐标系里所表示的曲面的类型.

六、【8分】已知 $A\in\mathbb{R}^{n\times n}$,且 A 的特征值皆为实数. 证明: 存在可逆矩阵 $T\in\mathbb{R}^{n\times n}$,使得 $T^{-1}AT$ 为上三角阵.