Approach_AV Dataverse Hack - Insurance Claim Prediction

Create a machine learning model to predict if the policyholder will file a claim in the next 6 months or not based on the set of car and policy features.

- Basic exploratory data analysis using pandas, matplotlib, seaborn packages.
- Data pre-processing
 - Feature Engineering
 - From max_torque split the newton meter and rpm value then convert them into numeric.
 - From max_power split the bhp and rpm value then convert them into numeric.
 - o Convert the engine displacement cc to litre.
 - Create car brand name feature from engine type
 - Map the 1 and 0 for the yes/no value categorical columns.
 - Based on the area cluster create numerical summary for the population density column.
 - Get groupby numerical summary for the columns,
 - Policy_tenure
 - Age_of_car
 - Age_of_policyholder
 - o Z-score outlier detection for numerical columns.

- The final features for the model
 - 0_policy_tenure
 - 1_age_of_car
 - 2_age_of_policyholder
 - 3_area_cluster
 - 4_population_density
 - 5_make
 - 6_segment
 - 7_model
 - 8_fuel_type
 - 9_engine_type
 - 10_airbags
 - 11_is_esc
 - 12_is_adjustable_steering
 - 13_is_tpms
 - 14_is_parking_sensors
 - 15_is_parking_camera
 - 16_rear_brakes_type
 - 17_cylinder
 - 18_transmission_type
 - 19_gear_box
 - 20_steering_type
 - 21_turning_radius
 - 22_length
 - 23_width

- 24_height
- 25_gross_weight
- 26_is_front_fog_lights
- 27_is_rear_window_wiper
- 28_is_rear_window_washer
- 29_is_rear_window_defogger
- 30 is brake assist
- 31_is_power_door_locks
- 32_is_central_locking
- 33_is_power_steering
- 34_is_driver_seat_height_adjustable
- 35_is_day_night_rear_view_mirror
- 36_is_ecw
- 37_is_speed_alert
- 38_ncap_rating
- 39_max_torque_nm
- 40_max_torque_rpm
- 41 max power bhp
- 42_max_power_rpm
- 43_engine
- 44_car_brand
- 45_population_density_min
- 46_population_density_max
- 47_population_density_mean
- 48_population_density_median

- 49_make_policy_tenure_median
- 50_make_policy_tenure_max
- 51_make_policy_tenure_min
- 52_make_policy_tenure_mean
- 53_make_age_of_car_median
- 54_make_age_of_car_max
- 55_make_age_of_car_min
- 56_make_age_of_car_mean
- 57_make_age_of_policyholder_median
- 58_make_age_of_policyholder_max
- 59_make_age_of_policyholder_min
- 60_make_age_of_policyholder_mean
- 61_segment_policy_tenure_median
- 62_segment_policy_tenure_max
- 63_segment_policy_tenure_min
- 64_segment_policy_tenure_mean
- 65_segment_age_of_car_median
- 66_segment_age_of_car_max
- 67_segment_age_of_car_min
- 68_segment_age_of_car_mean
- 69_segment_age_of_policyholder_median
- 70_segment_age_of_policyholder_max
- 71_segment_age_of_policyholder_min
- 72_segment_age_of_policyholder_mean
- 73_model_policy_tenure_median

```
74_model_policy_tenure_max
```

- 75_model_policy_tenure_min
- 76_model_policy_tenure_mean
- 77_model_age_of_car_median
- 78_model_age_of_car_max
- 79_model_age_of_car_min
- 80_model_age_of_car_mean
- 81_model_age_of_policyholder_median
- 82_model_age_of_policyholder_max
- 83_model_age_of_policyholder_min
- 84_model_age_of_policyholder_mean
- 85_fuel_type_policy_tenure_median
- 86_fuel_type_policy_tenure_max
- 87_fuel_type_policy_tenure_min
- 88_fuel_type_policy_tenure_mean
- 89_fuel_type_age_of_car_median
- 90_fuel_type_age_of_car_max
- 91_fuel_type_age_of_car_min
- 92_fuel_type_age_of_car_mean
- 93_fuel_type_age_of_policyholder_median
- 94_fuel_type_age_of_policyholder_max
- 95_fuel_type_age_of_policyholder_min
- 96_fuel_type_age_of_policyholder_mean
- 97_rear_brakes_type_policy_tenure_median
- 98_rear_brakes_type_policy_tenure_max

```
99_rear_brakes_type_policy_tenure_min
```

- 124_cylinder_policy_tenure_mean
- 125_cylinder_age_of_car_median
- 126_cylinder_age_of_car_max
- 127_cylinder_age_of_car_min
- 128_cylinder_age_of_car_mean
- 129_cylinder_age_of_policyholder_median
- 130_cylinder_age_of_policyholder_max
- 131_cylinder_age_of_policyholder_min
- 132_cylinder_age_of_policyholder_mean
- 133_transmission_type_policy_tenure_median
- 134_transmission_type_policy_tenure_max
- 135_transmission_type_policy_tenure_min
- 136_transmission_type_policy_tenure_mean
- 137_transmission_type_age_of_car_median
- 138_transmission_type_age_of_car_max
- 139_transmission_type_age_of_car_min
- 140_transmission_type_age_of_car_mean
- 141_transmission_type_age_of_policyholder_median
- 142_transmission_type_age_of_policyholder_max
- 143_transmission_type_age_of_policyholder_min
- 144_transmission_type_age_of_policyholder_mean
- 145_gear_box_policy_tenure_median
- 146_gear_box_policy_tenure_max
- 147_gear_box_policy_tenure_min
- 148_gear_box_policy_tenure_mean

```
149_gear_box_age_of_car_median
```

```
174_car_brand_age_of_car_max
175_car_brand_age_of_car_min
176_car_brand_age_of_car_mean
177_car_brand_age_of_policyholder_median
178_car_brand_age_of_policyholder_max
179_car_brand_age_of_policyholder_min
180_car_brand_age_of_policyholder_mean
181_policy_tenure_outlier
182_age_of_car_outlier
183_age_of_policyholder_outlier
```

- Created Random Forest classifier model with maximum depth 6.Model evaluated with f1-score.,
 - The model paremeters are,
 - bootstrap:True
 - ccp_alpha:0.0
 - class_weight:None
 - criterion:gini
 - max_depth:6
 - max_features:auto
 - max_leaf_nodes:None
 - max_samples:None
 - min_impurity_decrease:0.0
 - min_samples_leaf:1
 - min_samples_split:2

- min_weight_fraction_leaf:0.0
- n_estimators:100
- n_jobs:None
- oob_score:False
- random_state:42
- verbose:0
- warm_start:False

RandomForest Model - Top 10 Feature Importances

RandomForest Model - Top 10 Feature Importances

Randomforest model - SHAP top 10 feature importances

• SHAP Top feature influences the class 0

• SHAP Top feature influences the class 1

• Threshold Tuning Results

Geometric Mean Threshold - Best Threshold 0.06587,
 G-Mean 0.60513

	0	1	accuracy	macro avg	weighted avg
precision	0.9585	0.09282	0.57939	0.52566	0.90312
recall	0.57556	0.63541	0.57939	0.60548	0.57939
f1-score	0.71923	0.16198	0.57939	0.44061	0.68358
support	18099.0	1237.0	0.57939	19336.0	19336.0

Precision-Recall Curve - Best Threshold 0.18906, F-Score nan

weighted avg 0 1 macro avg accuracy precision 0.93602 0.0 0.93597 0.46801 0.87614 recall 0.99994 0.0 0.93597 0.49997 0.93597 f1-score 0.96693 0.0 0.93597 0.48346 0.90507 1237.0 support 18099.0 0.93597 19336.0 19336.0

Threshold Tuning - Optimal threshold 0.0745, F1-score
 0.16929

		0	1	accuracy	macro avg	weighted avg
	precision	0.9502	0.10619	0.73811	0.5282	0.8962
	recall	0.76004	0.41714	0.73811	0.58859	0.73811
	f1-score	0.84455	0.16929	0.73811	0.50692	0.80135
	support	18099.0	1237.0	0.73811	19336.0	19336.0

- The threshold tuning method performs better and gives good f1 score for class 1.
- Final Competiton Rank is 38

o Public LB -- Rank: 61 Score: 0.1671883631

o Private LB -- Rank: 38 Score: 0.1749408983