Colusión

Organización Industrial

Leandro Zipitría

Universidad de Montevideo

Licenciatura en Economía

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Presentación

- ► Cabral: son acuerdos entre empresas con el objetivo de aumentar su poder de mercado
- Motta: prácticas que permiten a las empresas ejercer un poder de mercado que de otra forma no tendrían, restringiendo la competencia y el bienestar
- Objetivo: estudiar la colusión de precios
- Práctica: se implementa a través de estrategias vinculadas:
 - reparto de mercados/clientes/zonas geográficas
 - establecimiento de cuotas o pagos laterales

Formalización

- Dos tipos:
 - Carteles: formas explícitas e institucionalizadas de colusión, donde existe una organización formal que apoya las decisiones conjuntas;
 - Acuerdos tácitos o implícitos: resultado de condiciones históricas o seguimiento de una empresa líder
- Explícita: Selten (1973) "Four are few and six are many", requiere que existan compromisos creíbles entre los participantes del acuerdo (teoría de juegos cooperativos)
- ➤ Tácita: las empresas deciden sus acciones siguiendo su interés y bajo la percepción de que el resto de las empresas actúan de la misma forma (juegos no cooperativos)

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Introducción

- La colusión se explica por un modelo dinámico
- A corto plazo, no hay incentivos a acordar
- Dos ejemplos:
 - Un período
 - Un juego repetido en forma finita

Una etapa

- Modelo de Cournot: demanda p = a bq; 2 empresas; $CT_i(q_i) = cq_i$
- \triangleright 2 acciones posibles: q^C -competir- o $q^M/2$ -coludir
- Pagos: $\pi_i \left(q^C, q^C \right) = 1/9; \ \pi_i \left(q^M/2, q^M/2 \right) = 1/8;$ $\pi_i \left(q^M/2, q^C \right) = 5/48 \ \text{y} \ \pi_i \left(q^C, q^M/2, \right) = 5/36$
- Se cumple que $\frac{5}{36} > \frac{1}{8} > \frac{1}{9} > \frac{5}{48}$

Matriz

Jugador 2

		q^C	q^M
Jugador 1	q^C	$\frac{1}{9}, \frac{1}{9}$	$\frac{5}{36}$, $\frac{5}{48}$
	q^M	$\frac{5}{48}$, $\frac{5}{36}$	1/8, 1/8

Cuadro: Juego de colusión en cantidades.

Solución

- ▶ Jugar $q^M/2$ es una estrategia estrictamente dominada
- Las empresas tienen incentivos a desviarse
- Es el "dilema del prisionero"
- No hay forma de sostener la colusión

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Juego finito

- Si el juego estático se repite un número finito de veces, el resultado no cambia
- Esta idea es la de Selten en su artículo sobre la paradoja de la cadena de tiendas
- Supongamos que las empresas quieren coludir en 20 períodos:
 - En t = 20 como no hay posterior período, las empresas no cooperan
 - ▶ En t = 19 como en t = 20 no cooperan, tampoco cooperan
 - ► Así sucesivamente ⇒ nunca cooperan

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Presentación

- Mismo escenario, pero el juego se repite infinitamente
- Hay que definir una estrategia: establece una acción en cada momento de tiempo, considerando la historia del juego hasta el período anterior
- Existen distintos tipos de estrategias en juegos dinámicos:
 - ► Gatillo: si alguno se desvía la cooperación termina
 - "Tit for tat": es el castigo equivalente, se repite lo que el rival jugó en el período anterior
 - Castigo por T períodos

Estrategias

- Las empresas viven para siempre o no saben cuando termina el juego
- ► Estrategia gatillo

$$q_i(au) = egin{cases} rac{q^M}{2} & \textit{si } q_i = q_j = rac{q^M}{2}; \ orall au = 1, \dots, au - 1 \ q^C & \textit{en otro caso} \end{cases}$$

- Las empresas cooperan $\left(q_i=q^M/2\right)$ y, si alguna se desvía $\left(q_i=q^C\right)$, el castigo es para siempre (guerra de precios)
- ightharpoonup Los beneficios se descuentan a tasa δ

Solución (I)

La cooperación se sostiene si los beneficios descontados son mayores al desvío (restricción de compatibilidad de incentivos):

$$\underbrace{\frac{\prod^{M}}{2} + \delta \frac{\prod^{M}}{2} + \delta^{2} \frac{\prod^{M}}{2} + \dots}_{\textit{si coopero}} \geq \underbrace{\prod^{D} + \delta \prod^{C} + \delta^{2} \prod^{C} + \dots}_{\textit{si se desvia}}$$

▶ Recordar que $\sum\limits_{i=0}^{\infty} \delta^i = \frac{1}{1-\delta}$ y $\sum\limits_{i=1}^{\infty} \delta^i = \frac{\delta}{1-\delta}$

$$\Rightarrow \frac{\prod_{1}^{M}}{2} + \delta \frac{\prod_{1}^{M}}{2} \frac{1}{1-\delta} \ge \prod_{1}^{D} + \prod_{1}^{C} \frac{\delta}{1-\delta}$$

Solución (II)

► Sea
$$V^C = \frac{\prod_{2}^{M} \frac{1}{1-\delta} \text{ y } V^P = \prod_{1-\delta}^{C} \frac{1}{1-\delta} \Rightarrow$$

 $\frac{\prod_{2}^{M} + \delta V^C}{2} \ge \prod_{1}^{D} + \delta V^P \Leftrightarrow \delta \left(V^C - V^P \right) \ge \left(\prod_{1}^{D} - \frac{\prod_{2}^{M}}{2} \right)$

► Se cumple:

$$\delta \ge \underline{\delta} \equiv \frac{\left(\prod^D - \frac{\prod^M}{2}\right)}{\left(V^C - V^P\right)}$$

Conclusión

Si la tasa de descuento es lo suficientemente alta (δ) , esto es si los agentes son lo suficientemente pacientes, \Rightarrow el resultado donde ambas empresas juegan la estrategia gatillo es un ENPSJ

Interpretación

- Numerador: diferencia entre el valor por desviarme y el que obtengo por cooperar en un período (es el incentivo que tenía a desviarme de la cooperación en el juego en una etapa)
- Denominador: diferencia entre el valor descontado de cooperar y el valor descontado de castigo por el desvío
- A mayor numerador ⇒ mayor la ganancia corriente de desviarme ⇒ mayor es la tasa de descuento que requiero para no desviarme
- Cuanto menor el denominador ⇒ menor es el beneficio descontado de cooperar ⇒ mayor también debe ser la tasa de descuento para sostener el acuerdo

Otros elementos

- ► La cooperación depende de que la tasa de descuento del futuro o del peso que las empresas asignen a los beneficios futuros tanto de cooperar como de ser castigados
- Paradoja (aparente): cuanto mayor sea el castigo por el desvío más fácil es llegar a acuerdos
- Supuestos implícitos:
 - 1. Período de tiempo entre la detección del desvío y la represalia
 - 2. Probabilidad de detección

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Varias empresas

- Ahora *n* empresas en el acuerdo
- Nueva estrategia gatillo (competencia en precio)

$$p_i(au) = egin{cases} p^M & \textit{si } p_i = p_j = p^M; \ orall au = 1, \ldots, au - 1 \ c & \textit{en otro caso} \end{cases}$$

► Si cooperan $\frac{\prod_{n=1}^{M}}{n}$, si se desvían $\prod_{n=1}^{M}$, si fase castigo $0 \Rightarrow V^P = 0$

$$\delta = \frac{\left(\prod^{D} - \frac{\prod}{n}\right)}{\left(\frac{\prod}{n} \frac{1}{1 - \delta} - V^{P}\right)} = \frac{\left(\prod^{M} - \frac{\prod^{M}}{n}\right)}{\left(\frac{\prod^{M}}{n} \frac{1}{1 - \delta}\right)} = \frac{\prod^{M} \left(1 - \frac{1}{n}\right)}{\prod^{M} \left(\frac{1}{n} \frac{1}{1 - \delta}\right)} \Leftrightarrow$$

$$\delta \geq 1 - \frac{1}{n}$$

Contacto multimercado: presentación

- ▶ Bernheim y Whinston (1990) demuestran que el contacto multimercado facilita la colusión
- ▶ Resultado de irrelevancia: si dos empresas idénticas con igual costo marginal se encuentran en mercados idénticos ⇒ el contacto multimercado no ayuda a sostener la colusión
- \blacktriangleright Diferencias entre mercados: diferencias de costos; distinto número de empresas entre mercados; distinto factor de descuento δ

Agrupar incentivos

El contacto multimercado sirve para relajar las asimetrías en mercados individuales \Rightarrow permite agrupar (pool) incentivos -reestablece la simetría- y facilita la colusión

Modelo

- Dos mercados k = A, B: A y B dos empresas i = 1, 2; en (B) hay una tercera empresa i = 3
- Estrategia gatillo: fijar p^M en cada período si todas las empresas fijaron precio de monopolio en los períodos anteriores, en caso contrario fijar p = c
- Mercados independientes ⇒ colusión si:
 - mercado A: $\delta^A \geq \frac{1}{2}$
 - mercado $B: \delta^B \geq \frac{2}{3}$
 - ightharpoonup \Rightarrow la colusión es más difícil de sostener en el mercado B
- ▶ Supongamos que las empresas descuentan el futuro a una tasa $\frac{1}{2} \leq \delta < \frac{2}{3} \Rightarrow$ la colusión no puede sostenerse en el mercado B

Restableciendo colusión

- ► Mecanismo: las empresas del mercado A pueden <u>aumentar</u> la cuota de mercado de la empresa 3 en el mercado B
- ▶ Parte 1: cuota de mercado λ en mercado B para empresa 3 $\Rightarrow \lambda \prod^M \frac{1}{1-\delta} \geq \prod^M \Leftrightarrow 1-\delta \leq \lambda$
- ▶ Parte 2: ¿cuanto están dispuestas a sacrificar las empresas 1 y 2 para sostener el acuerdo colusivo?
 - $\begin{array}{c} \frac{\prod_{A}^{M}}{2}\frac{1}{1-\delta}+\frac{\prod_{B}^{M}(1-\lambda)}{2}\frac{1}{1-\delta}\geq\prod_{A}^{M}+\prod_{B}^{M} \text{ (suponemos que } \\ \prod_{A}^{M}=\prod_{B}^{M}=\prod_{A}^{M}) \end{array}$
 - $\Rightarrow \frac{\prod^{M}}{1-\delta} \cdot \left[\frac{1}{2} \frac{(1-\lambda)}{2} \right] \ge 2 \prod^{M} \Leftrightarrow \frac{2-\lambda}{2} \ge 2(1-\delta)$ $\Leftrightarrow 2-\lambda \ge 4(1-\delta) \Leftrightarrow \lambda \le 2(2\delta-1)$

Condición

- ▶ De ambas condiciones $1 \delta \le \lambda \le 2(2\delta 1)$
- Las dos desigualdades se cumplen si $\delta \geq \frac{3}{5}$, $^1 \Rightarrow$ si $\lambda = \frac{2}{5}$ (cuota de mercado de la empresa 3 en el mercado B) \Rightarrow hay colusión en ambos mercados

Resultado

Las empresas utilizan la holgura en el cumplimiento de la restricción de incentivos de colusión en un mercado para sostener la colusión en otros mercados ⇒ las empresas que coluden en varios mercados y se enfrentan a otras empresas en ellos <u>restringen</u> la producción para fomentar la colusión

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Variables de estructura

- 1. Número de competidores: cuanto mayor el número de competidores, más difícil sostener la colusión.
- Barreras a la entrada: la colusión no puede sostenerse a menos que existan barreras a la entrada.
- Interacción entre empresas: cuanto más frecuente sea el contacto entre las empresas, más fácil es sostener la colusión.
- 4. Transparencia en el mercado: mercados más transparentes facilitan la colusión.

Demanda y oferta

1. Demanda:

- 1.1 ¿El mercado crece, declina o está estancado? La colusión es más fácil de sostener en mercados donde la demanda es creciente.
- 1.2 ¿Existen fluctuaciones o ciclos en el mercado? En mercados con fluctuaciones, la demanda es más difícil de sostener.

2. Oferta

- 2.1 ¿El mercado es de tecnologías o innovación, o es una industria madura con tecnologías estables? La colusión es más fácil de sostener con tecnologías estables.
- 2.2 ¿Las empresas son similares en cuanto a la tecnología o capacidad de producción? La colusión es más fácil de sostener cuanto más parecidas las empresas.
- 2.3 ¿Las empresas compiten en varios mercados a la vez? El contacto multimercado facilita la colusión.

Otros

- 1. Elasticidad de la demanda: cuanto mayor la elasticidad de la demanda, más difícil sostener la colusión.
- 2. Poder de compra: cuanto mayor el poder de compra más difícil sostener los acuerdos colusivos.
- ¿Existen otros acuerdos cooperativos entre las empresas, distinto del colusorio (ej. cooperación en I+D): estos acuerdos facilitan la cooperación.

¿Existe la colusión?

Modelo estático

Dinámica

Cooperación

Modelo base

Extensiones

Resumen de resultados

Presentación

- Si hay información asimétrica ⇒ las empresas no pueden identificar las causas de los "desvíos"
- ► Ejemplos:
 - Shocks idiosincráticos de costos
 - Shocks de demanda no observados u observados sólo por algunas empresas

Colusión + guerra de precio

- ► Green y Porter (1984): las empresas observan sólo su precio y la demanda que reciben
- ⇒ si su demanda baja no pueden saber si ello es resultado de que la demanda global disminuyó, o de que la otra empresa se desvió del acuerdo
- Estrategia: colusión; castigo por T de períodos si hay desvío y luego se restablece la colusión
- Equilibrio no cooperativo: las empresas tienen fases de cooperación y fases de guerra de precios
- Las guerras de precios son necesarias para disciplinar al rival aún cuando éste no se desvíe

Ciclo económico y precios

- ► En el modelo de Green y Porter las guerras de precio son procíclicas: si cae la demanda ⇒ guerra de precio (caen)
- ➤ Rotemberg y Saloner (1986): empresa coluden, pero la demanda tiene ciclos que son observables
- Cuando la demanda aumenta, dos efectos
 - Aumentan los beneficios de desvío
 - Se reducen las pérdidas por castigo (si vuelve a su nivel normal)
- En equilibrio los precios tienen que reducirse en períodos de expansión, de forma de reducir los incentivos al desvío ⇒ la fijación de precios es anti cíclica

Rigidez de precio: liderazgo

- Rotemberg y Saloner (1990): duopolio y una empresa conoce las condiciones de mercado, la otra sólo la distribución de los parámetros
- La demanda sufre shocks
- ► La mejor informada surge como líder del mercado (fija el precio para ambas)
- ▶ Problema: Iíder mejor informado respecto a las condiciones de demanda ⇒tiene incentivos a rebajar al rival
- Seguidor: si observa muchos cambios de precio ⇒ sospecha desvío del líder
- Solución: fijar precios rígidos a los cambios del mercado

Rigidez de precio: shocks de costo

- ▶ Athey, Bagwell y Sanchirico (2004): *n* empresas que enfrentan shocks de costos *iid*
- El esquema colusivo tiene que satisfacer:
 - off schedule deviation: para cada empresa i y momento t prefieren su precio a un precio no establecido para las demás empresas
 - on schedule deviation: ninguna empresa quiere elegir un precio para una empresa de otro tipo
- Esquema de precio rígido es superior a Green y Porter:
 - Si las empresas eficientes son pacientes \Rightarrow todas las empresas (independientemente del costo) fijan $p_i = \overline{v}$ (máxima disposición a pagar del consumidor)
 - Si las empresas eficientes no son pacientes ⇒precios rígidos, pero las eficientes pueden desviarse en equilibrio y arbitrar p

Rigidez de precio: evidencia empírica

- Basado en el trabajo de Andreoli-Versbach y Franck (2013)
 "Endogenous Price Commitment, Sticky and Leadership Pricing"
- Antes y después de política unilateral del líder de mercado de adoptar una política de precios rígidos
- ► Efecto I: facilita el alineamiento de precios y la coordinación de cambios de precio
- ▶ Efecto II: causa un significativo aumento en los precios

Evidencia empírica (cont.)

- 9 empresas tienen el 95% del mercado de petróleo en Italia
- ► ENI tiene 34%; Esso 16%,
- ► El 6 de octubre de 2004 ENI anuncia un mecanismo de ajustes de precio no frecuentes
- Mantuvo el precio incambiado por 57 días, hasta que los demás se acomodaron
- ➤ Aumenta el período de ajustes de 6 a 16 días y el cambio promedio de precio de 1% a 5,8%