

Using SEAWAT Version 4

- Obtaining the program and current information
- Name (NAM) file
- Preparation of the VDF (and VSC) input file
- Considerations for MODFLOW packages
- Preparation of MT3DMS datasets
- Running SEAWAT_V4

Name File

- Name file is requested when SEAWAT Version 4 runs
- Contains filetype, unit number, filename
- Contains file information for:
 - MODFLOW-2000 files
 - MT3DMS files
 - Variable-Density Flow (VDF) input file
 - Viscosity Package (VSC) input file [optional]
- Vistas creates valid SEAWAT Version 4 name file

VDF Input File By including in name file will activate the VDF process (otherwise GWF) Can have variable-density flow affected by one or more species VDF file is created by Groundwater Vistas

VSC Input File By including in name file will activate the VSC option VSC file is created by Groundwater Vistas Have multiple options from manual Concentration Temperature

Special Considerations for Packages

- All input and output is expressed in terms of head (not equivalent freshwater head)
- All storage and hydraulic properties must be represented in terms of equivalent freshwater values (or relative to the reference density)

f Auxiliary Variables for			
ackages			
Source-term	Auxiliary	Description	Default value (if not entered using auxiliary variable)
package	variable name		
Well	WELDENS	Density of injection well fluid	DENSEREF
Drain	DRNBELEV	Drain bottom elevation	Cell center
	RBDTHK	Thickness of riverbed sediments	Difference between river bottom elevatio and cell center
River	RIVDEN	Density of river	Density of model cel
General-Head Boundary	GHBELEV	Elevation of the general- head boundary	Cell center
General-Head Boundary	GHBDENS	Density of general-head boundary fluid	Density of model cel

Solver Packages

- Variable-density simulations may require a smaller value for head convergence in order to calculate accurate vertical flow velocities
- Residual criterion for flow convergence (RCLOSE, in PCG) may be set larger than for a similar constant-density flow problem by a factor of the density

Post Processing Groundwater Vistas Modelviewer Zone Budget MT3DMS MODPATH ETC...

Simultaneous Solute and Heat Transport Simulations

- Density and viscosity variations may be important
- Some MT3DMS input parameters must be entered as solute equivalents

Things to Consider

- Density is a function of C and T
 - Include relations in VDF Input file
- Viscosity Variations?
 - VSC Package must be used with LPF—does not work with BCF or HUF
- Heat Transport Processes
 - Conduction—need to calculate effective "diffusion coefficient" and include in DSP package
 - Heat storage in solid—need to calculate effective "distribution coefficient" and include in RCT package
 - Heat flux—calculate effective "mass flux" and include in SSM package (ITYPE=15)