The Complexity Classes QMA

Aareyan Manzoor

a2manzoo@uwaterloo.ca

January 1, 2024

The class NP

Definition

Recall the **class NP** consists of languages L such that there is a polynomial time verifier (Turing Machine) V with

- If $x \in L$, then there is a proof y such that V(x, y) = 1.
- If $x \notin L$, then there is a disproof y of polynomial length such that V(x,y)=0.

The class MA

Definition

The **class MA** consists of languages L such that there is a polynomial time verifier(Turing Machine) V with

- ① If $x \in L$, then there is a proof y such that $Pr(V(x,y) = 1) \ge 3/4$.
- If $x \notin L$, then there is a disprove y of polynomial length such that $Pr(V(x,y)=1) \le 1/4$.

When is a Quantum algorithm Polynomial?

• If the input has n qubits, then a quantum algorithm should use a Quantum circuit Q_n that takes n qubits as input and outputs a single qubit.

When is a Quantum algorithm Polynomial?

- If the input has n qubits, then a quantum algorithm should use a Quantum circuit Q_n that takes n qubits as input and outputs a single qubit.
- Size complexity would be a bad measure.

When is a Quantum algorithm Polynomial?

- If the input has n qubits, then a quantum algorithm should use a Quantum circuit Q_n that takes n qubits as input and outputs a single qubit.
- Size complexity would be a bad measure.

Definition

A **Polynomial time quantum algorithm** is a polynomial time turing machine that on n inputs outputs quantum circuit Q_n .

The class QMA

Definition

The class QMA consists of languages L such that there is a Quantum verifier V with

- ① If $x \in L$, then there is a proof state $|\phi\rangle$ such that $Pr(V(x, |\phi\rangle) = 1) \ge 3/4$.
- ② If $x \notin L$, then there is a disprove $|\phi\rangle$ of polynomial length such that $Pr(V(x,|\phi\rangle)=1) \le 1/4$.

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

The $k - LH_{\alpha,\beta}$ is the promise problem defined by:

• Input: m k-local Hamiltonians $H_1 \dots H_m$ on n qubits.

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

- Input: m k-local Hamiltonians $H_1 \dots H_m$ on n qubits.
- If the smallest eigenvalue of $H = H_1 + \cdots + H_m$ is $\leq \beta$ then return 1.

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

- Input: m k-local Hamiltonians $H_1 \dots H_m$ on n qubits.
- If the smallest eigenvalue of $H = H_1 + \cdots + H_m$ is $\leq \beta$ then return 1.
- If the smallest eigenvalue of $H = H_1 + \cdots + H_m$ is $> \alpha$ then return 0.

Definition

A k-local Hamiltonian is a self adjoint operator $0 \le H \le 1$ on n qubits that only acts on k qubits.

Definition

- Input: m k-local Hamiltonians $H_1 \dots H_m$ on n qubits.
- If the smallest eigenvalue of $H = H_1 + \cdots + H_m$ is $\leq \beta$ then return 1.
- If the smallest eigenvalue of $H = H_1 + \cdots + H_m$ is $> \alpha$ then return 0.

- Let $\phi(x_1 ... x_n) = \bigwedge_i R_i$ be a formula for 3Sat.
- $R_i = x_j \vee \ldots$: Define H_i to do $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ to jth qubit.

- Let $\phi(x_1 ... x_n) = \bigwedge_i R_i$ be a formula for 3Sat.
- $R_i = x_j \vee \ldots$: Define H_i to do $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ to jth qubit.
- $R_i = \neg x_j \lor \dots$: Define H_i to do $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ to jth qubit.

- Let $\phi(x_1 ... x_n) = \bigwedge_i R_i$ be a formula for 3Sat.
- $R_i = x_j \vee \dots$: Define H_i to do $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ to jth qubit.
- $R_i = \neg x_j \lor \dots$: Define H_i to do $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ to jth qubit.
- all the $|x\rangle$ are eigenvalues of H_i , with eigenvalue $0 \iff x$ satisfies R_i .

- Let $\phi(x_1 ... x_n) = \bigwedge_i R_i$ be a formula for 3Sat.
- $R_i = x_j \vee \dots$: Define H_i to do $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ to jth qubit.
- $R_i = \neg x_j \lor \dots$: Define H_i to do $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ to jth qubit.
- all the $|x\rangle$ are eigenvalues of H_i , with eigenvalue 0 \iff x satisfies R_i .
- Hence $H = \sum H_i$ has smallest eigenvalue $0 \iff \phi$ is satisfiable.

Proof.

 \bullet Take $|\psi\rangle$ to be a state that minimizes $\langle\psi|\,H\,|\psi\rangle.$

- Take $|\psi\rangle$ to be a state that minimizes $\langle\psi|H|\psi\rangle$.
- ullet pick i randomly and measure in POVM $\{H_i, 1-H_i\}$

- Take $|\psi\rangle$ to be a state that minimizes $\langle\psi|H|\psi\rangle$.
- pick i randomly and measure in POVM $\{H_i, 1 H_i\}$
- The probability of getting 0 is

$$\frac{1}{n}\sum_{i=1}^{m}\langle\psi|H_{i}|\psi\rangle=\frac{1}{n}\langle\psi|H|\psi\rangle.$$

Proof.

- Take $|\psi\rangle$ to be a state that minimizes $\langle\psi|H|\psi\rangle$.
- pick i randomly and measure in POVM $\{H_i, 1 H_i\}$
- The probability of getting 0 is

$$\frac{1}{n}\sum_{i=1}^{m}\langle\psi|H_{i}|\psi\rangle=\frac{1}{n}\langle\psi|H|\psi\rangle.$$

• If $|\psi\rangle^{\otimes N}$ for large N was the proof, we could figure out $\langle \psi | H | \psi \rangle$ to high precision.

Where does the "local" come in?

 Note 3-LH is **not** in NP. This is because a proof state would have exponential embedding.

Where does the "local" come in?

- Note 3-LH is **not** in NP. This is because a proof state would have exponential embedding.
- Locality assures input can be embedded independent of number of qubits n.

Where does the "local" come in?

- Note 3-LH is **not** in NP. This is because a proof state would have exponential embedding.
- Locality assures input can be embedded independent of number of qubits n.
- In 3Sat, the number of variables of the formula doesnt matter, the number of clauses does.

Proof: Kataev-Shen-Viyali.

• Goal: For each x, find Local Hamiltonian H_x .

- Goal: For each x, find Local Hamiltonian H_x .
- If $x \in L$ then H_x should have small eigenvalue and vice versa.

- Goal: For each x, find Local Hamiltonian H_x .
- If $x \in L$ then H_x should have small eigenvalue and vice versa.
- The quantum circuit for a given QMA problem is $U = U_T \dots U_1$.

- Goal: For each x, find Local Hamiltonian H_x .
- If $x \in L$ then H_x should have small eigenvalue and vice versa.
- The quantum circuit for a given QMA problem is $U = U_T \dots U_1$.
- Has N inputs, with m ancilla qubits set to 0.

- Goal: For each x, find Local Hamiltonian H_x .
- If $x \in L$ then H_x should have small eigenvalue and vice versa.
- The quantum circuit for a given QMA problem is $U = U_T \dots U_1$.
- Has N inputs, with m ancilla qubits set to 0.
- Find H on $(\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^{T+1}$ which will be of the form

$$H = H_{in} + H_{out} + H_{prop}$$
.

$$H_{in} = \left(\sum_{i=m+1}^{N} |1\rangle_i \langle 1|_i\right) \otimes |0\rangle\langle 0|$$

$$H_{in} = \left(\sum_{i=m+1}^{N} |1\rangle_i \langle 1|_i\right) \otimes |0\rangle\langle 0|$$

$$H_{out} = |0\rangle\langle 0|_1 \otimes |T\rangle\langle T|$$

$$H_{in} = \left(\sum_{i=m+1}^{N} |1\rangle_i \langle 1|_i\right) \otimes |0\rangle\langle 0|$$

$$H_{out} = |0\rangle\langle 0|_1 \otimes |T\rangle\langle T|$$

$$H_{prop} = \sum_{j=0}^{T} H_j$$

$$H_{in} = \left(\sum_{i=m+1}^{N} |1\rangle_i \langle 1|_i\right) \otimes |0\rangle\langle 0|$$

$$H_{out} = |0\rangle\langle 0|_1 \otimes |T\rangle\langle T|$$

$$H_{prop} = \sum_{j=0}^{T} H_j$$

$$2H_{j} = I \otimes (|j\rangle\langle j| + |j-1\rangle\langle j-1|) - U_{j} \otimes |j\rangle\langle j-1| - U_{j}^{*} \otimes |j-1\rangle\langle j|$$

Proof.

• Suppose $x \in L$ and has proof state $|\xi\rangle$ to feed to the circuit.

- Suppose $x \in L$ and has proof state $|\xi\rangle$ to feed to the circuit.
- Let

$$|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{T} U_j \dots U_1 |\xi,0\rangle \otimes |j\rangle.$$

Proof.

- Suppose $x \in L$ and has proof state $|\xi\rangle$ to feed to the circuit.
- Let

$$|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{T} U_j \dots U_1 |\xi,0\rangle \otimes |j\rangle.$$

• Clearly $\langle \psi | H_{in} | \psi \rangle = \langle \psi | H_{prop} | \psi \rangle = 0$.

- Suppose $x \in L$ and has proof state $|\xi\rangle$ to feed to the circuit.
- Let

$$|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{i=0}^{I} U_j \dots U_1 |\xi,0\rangle \otimes |j\rangle.$$

- Clearly $\langle \psi | H_{in} | \psi \rangle = \langle \psi | H_{prop} | \psi \rangle = 0$.
- Note

$$\langle \psi | H_{out} | \psi \rangle = \frac{1}{L+1} |\langle 0, 0 | U | \xi, 0 \rangle|^2 = \frac{P(V(x, |\xi\rangle) = 0)}{L+1}.$$

References

Kataev, Shen, Vyali, Classical and Quantum Computation, 1999 O' Donnell, Lecture 24: QMA: Quantum Merlin-Arthur, 2015. Kempe, Regev, 3-Local Hamiltonian is QMA-complete, 2003