Problem Title: Find the Greatest Common Divisor (GCD) of N Numbers

Company: Amazon

Scenario:

In large-scale systems, finding a common pattern or factor among multiple datasets is often required for optimization. Similarly, in number theory, the **Greatest Common Divisor** (**GCD**) helps determine the largest number that divides a set of numbers without leaving a remainder.

Your task is to compute the GCD of n integers efficiently.

Problem Statement:

Given n numbers, find the greatest common denominator between them.

For example, given the numbers [42, 56, 14], return 14.

Input Format:

- First line: integer n (number of integers).
- Second line: n integers separated by space.

Output Format:

• A single integer representing the GCD of the given numbers.

Example 1:

```
Input: 3 42 56 14 Output: 14
```

Explanation:

- Factors of $42 \rightarrow \{1, 2, 3, 6, 7, 14, 21, 42\}$
- Factors of $56 \rightarrow \{1, 2, 4, 7, 8, 14, 28, 56\}$
- Factors of $14 \rightarrow \{1, 2, 7, 14\}$
- Greatest common factor = 14

Example 2:

```
Input: 4 8 16 32 64 Output: 8
```

Constraints:

```
• 1 \le n \le 10^5
• 1 \le arr[i] \le 10^9
```

Approach Hints:

• Use the Euclidean Algorithm for efficiency:

```
o gcd(a, b) = gcd(b, a % b)
```

- o Extend to n numbers by iteratively applying gcd(result, arr[i]).
- Time Complexity: $O(n \log M)$ (where M is the largest number).

Practice Links:

- <u>LeetCode Find Greatest Common Divisor of Array</u>
- GeeksforGeeks GCD of N numbers

Video Explanations:

- Euclidean Algorithm GCD Explained
- GFG GCD of Multiple Numbers