Universidade Federal do Espírito Santo

Lista de exercícios de Álgebra Linear - MAT09592

Questões do livro texto:

Seção 4.1: 5 - 8, 21

Seção 4.2: 1, 5, 7, 25, 26, 31

Seção 4.3: 1 - 8, 21, 22, 29, 30, 32, 33

Seção 4.4: 3, 7, 11, 13, 15, 19, 27, 29

Seção 4.5: 5, 6, 9, 19, 26, 27, 29

Seção 4.7: 1, 2, 5, 6, 7, 11, 13, 19

Seção 5.4: 1, 3, 5, 9

Mais exercícios:

Questão 1: Mostre que se α é um conjunto gerador de um espaço vetorial V e que se β é um conjunto que contém α , então β é um conjunto gerador de V.

Questão 2: Mostre que $\beta = \{1, 2+x, 3x-x^2, x-x^3\}$ é uma base de \mathscr{P}_3 . Encontre $[1+x+x^2+x^3]_{\beta}$.

Questão 3: Sejam V um espaço vetorial e W_1 e W_2 dois subespaços vetoriais de V. Mostre que $W_1 + W_2 := \{\overrightarrow{w}_1 + \overrightarrow{w}_2; \overrightarrow{w}_1 \in W_1 \text{ e } \overrightarrow{w}_2 \in W_2\}$ e $W_1 \cap W_2$ são subespaços vetoriais de V. Mostre que em geral $W_1 \cup W_2$ não é um subespaço de V.

Questão 4: Sejam V um espaço vetorial e W_1 e W_2 dois subespaços vetoriais de V, ambos de dimensão finita. Então

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$$

Questão 5: Sejam V um espaço vetorial e W_1 e W_2 dois subespaços vetoriais de V, ambos de dimensão finita, com $W_1 \cap W_2 = \{\overrightarrow{0}\}$. Mostre que se β_1 e β_2 são conjuntos LI em W_1 e W_2 , respectivamente, então $\beta_1 \cup \beta_2$ é LI em V. Além disso, se β_1 e β_2 bases de W_1 e W_2 , respectivamente, então $\beta_1 \cup \beta_2$ é base de $W_1 + W_2$.

Questão 6: Encontre uma base de \mathbb{R}^4 que contém os vetores $\overrightarrow{u} = (1, 2, -2, 1)$ e $\overrightarrow{v} = (1, 0, -2, 2)$.

Questão 7: Considere o subespaço vetorial $W \subset \mathcal{P}_4$ gerado pelo conjunto $\beta = \{1 + 2x + x^2 + 3x^3 + x^4, 1 - 2x - 2x^2 - 2x^3 - 3x^4, 2 - x^2 + x^3 - 2x^4, x - x^3 + x^4, 3x^2 + 6x^3 + 3x^4\}$. Determine uma base β de W que esteja contida em β .

Questão 8: Mostre que $T: \mathbb{R}^2 \to \mathscr{P}_2$, dada por $T(a,b) = at^2 + bt + (a+b)$, é uma transformação linear.

Questão 9: Sejam $T:U\to U$ um operador linear. Prove que $T^2=0$ se, e somente se, $\operatorname{Im} T\subset\operatorname{Nuc} T.$

Questão 10: Considere em \mathbb{R}^4 os subespaços $V = \mathcal{L}\{(1,0,1,1),(0,-1,-1,-1)\}$ e $W = \{(x,y,z,t); x+y=0$ e $t+z=0\}$. Determine uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que Nuc T=V e Im T=W.

Questão 11: Seja V um espaço vetorial de dimensão finita n. Mostre que se n é impar, não existe transformação linear $T:V\to V$ tal que $\operatorname{Im} T=\operatorname{Nuc} T$. Além disso, mostre que a afirmação anterior é falsa se n é par.

Questão 12: Mostre que $T:U\to V$ é injetora se, e somente se, T leva cada subconjunto LI de U em um subconjunto LI de V.

Questão 13: Seja $T: V \to V$ uma transformação linear. Mostre que são equivalentes:

- (a) Im $T \cap \text{Nuc } T = \{\overrightarrow{0}\}.$
- **(b)** Se $(T \circ T)(\overrightarrow{v}) = 0$ para $\overrightarrow{v} \in V$, então $T(\overrightarrow{v}) = \overrightarrow{0}$.

Questão 14: Seja $T:U\to V$ uma transformação linear. Mostre que V possui um subespaço vetorial isomorfo a U.

Questão 15: Sejam $T: U \to U$ e $S: U \to U$ dois operadores lineares não nulos tais que $T \circ S = 0$. Mostre que existem vetores não nulos $\overrightarrow{u} \neq \overrightarrow{v}$ tais que $T(\overrightarrow{u}) = T(\overrightarrow{v})$.

Mais alguns exercícios:

1. Calcule o determinante da matriz

$$A = \left(\begin{array}{cccc} 3 & -3 & 3 & 6 \\ -2 & 2 & -2 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & -2 & 1 & 2 \end{array}\right)$$

usando escalonamento.

- 2. Seja $W = \{(x, y, z, s, r) \in \mathbb{R}^5; x y + s r = 0\}$ subespaço vetorial.
 - (a) Determine $\dim W$.
 - (b) Encontre uma base de W que contenha os vetores $\overrightarrow{u} = (1, 1, 1, 1, 1)$ e $\overrightarrow{v} = (1, 1, 0, 1, 1)$.
- 3. O vetor $\overrightarrow{v}=(x,y,z)$ foi escrito como combinação linear de $\overrightarrow{v}_1,$ $\overrightarrow{v}_2,$ \overrightarrow{v}_3 obtendo-se

$$\overrightarrow{v} = (y+z)\overrightarrow{v}_1 + (x-y+z)\overrightarrow{v}_2 + (x-2y+z)\overrightarrow{v}_3.$$

Seja T uma transformação linear tal que $T(\overrightarrow{v}_1) = \overrightarrow{v}_1, T(\overrightarrow{v}_2) = \overrightarrow{v}_2$ e $T(\overrightarrow{v}_3) = \overrightarrow{0}$.

- (a) Mostre que $\beta = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ é base de \mathbb{R}^3 .
- (b) Encontre $[T]_{\beta}$ e $[T]_{\epsilon}$, onde ϵ é a base canônica do \mathbb{R}^3 .
- 4. Use determinantes para decidir se os vetores

$$\{\mathbf{v}_1 = (3, 5, -6, 4); \ \mathbf{v}_2 = (2, -6, 0, 7); \ \mathbf{v}_3 = (-2, -1, 3, 0); \ \mathbf{v}_4 = (0, 0, 0, -3)\}$$

são linearmente independentes.

- 5. Sejam $\mathbf{v}_1 = (1, -2, 2, 3, 1), \mathbf{v}_2 = (3, -2, 3, 4, -1), \mathbf{v}_3 = (2, -8, 7, 11, 6), \mathbf{v}_4 = (-9, 2, -9, -2, 3)$ e $W = \mathcal{L}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ um subespaço do \mathbb{R}^5 .
 - (a) Encontre uma base β para W tal que $\mathbf{v}_3 \in \beta$.
 - (b) Encontre um vetor $\mathbf{v} \in \mathbb{R}^5$ tal que $\mathbf{v} \notin W$.
 - (c) O conjunto $\beta \cup \{\mathbf{v}\}$ é uma base para o \mathbb{R}^5 ?
- 6. Considere as bases $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ e $\beta' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, onde

$$\mathbf{v}_1 = (-3, 0, -3), \mathbf{v}_2 = (-3, 2, -1), \mathbf{v}_3 = (1, 6, -1)$$

e

$$\mathbf{u}_1 = (0, 1, 4), \mathbf{u}_2 = (1, 0, -3), \mathbf{u}_3 = (2, 3, 8)$$

- (a) Encontre a matriz de mudança de base de β para β' .
- (b) Calcule as coordenadas $[\mathbf{w}]_{\beta}$, onde $\mathbf{w} = (-5, 8, -5)$ e use o item a) para obter $[\mathbf{w}]_{\beta'}$.