Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 2 / 2 / 2

Выполнил: студент 103 группы Иванов М. Ю.

Преподаватель: Кузьменкова Е. А.

Содержание

Постановка задачи	2
Математическое обоснование	2
Функции	2
Поиск корней	2
Поиск интеграла	
Обоснавание выбора промежутка $[a,b]$	3
Значения ε_1 и ε_2	
Результаты экспериментов	5
Структура программы и спецификация функций	6
Вычислительный модуль	6
Модуль функций	6
Главный модуль	
Библиотеки	
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	9
Программа на Си и на Ассемблере	10
Анализ допущенных ошибок	10
Список цитируемой литературы	11

Постановка задачи

Необходимо реализовать многомодульную программу, вычисляющую площадь плоской фигуры, ограниченной графиками трех функций с заданной точностью ε . Для нахождения вершин фигуры использовался **метод хорд**. Отрезок для применения данного метода должен быть вычислен аналитически. Подсчет площади плоской фигуры производился с помощью **метода трапеций**.

Математическое обоснование

Функции

Необходимо было найти площадь между тремя кривыми, заданных функциями:

- 1. $f_1 = 3 * (\frac{0.5}{(x+1)} + 1)$
- 2. $f_2 = 2.5 * x 9.5$
- 3. $f_3 = \frac{5}{x}$

Ниже приведены графики данных функций (рис. 1).

Поиск корней

Нахождение корней проводилось с помощью **метода хорд** с вычислительной точностью $\varepsilon_1=0.001$ на промежутке [0.5,7]. Для использования данного метода необходимо выполнение следующих условий на отрезке [a,b]:

- 1. $F(x) \in C^1[a, b];$
- 2. F(a) * F(b) < 0;
- 3. F'(x) монотонна на [a, b];
- 4. F'(x) сохраняет знак на [a, b]. x[1]

Поиск интеграла

Интегрирование проводилось **методом трапеций** с вычислительной точностью $\varepsilon_2=0.001.$

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Обоснавание выбора промежутка [a, b]

Ниже приведено математическое обоснование выполнения условий применимости **метода хорд** поиска корней на промежутке [0.5, 7].

1.
$$F_{12}(x) = 3 * (\frac{0.5}{(x+1)} + 1) - 2.5 * x + 9.5$$

- (а) $F'_{12}(x) = -\frac{3}{2(x+1)^2} 2.5$ Производная функции непрерывна на промежутке [0.5,7].
- (b) $F_{12}(0.5)=4+8.25=12.25>0,$ $F_{12}(7)=\frac{51}{16}+8=-\frac{77}{17}<0$ Тогда $F_{12}(0.5)*F_{12}(7)<0.$
- (c) $F_{12}''(x) = \frac{3}{(x+1)^3} > 0$ (на промежутке [0.5,7]) => первая производная возрастает на этом промежутке.
- (d) $F'_{12}(x) < 0$ на всем промежутке [0.5, 7].

2.
$$F_{13}(x) = 3 * (\frac{0.5}{(x+1)} + 1) - \frac{5}{x}$$

(a)
$$F'_{13}(x) = -\frac{3}{2(x+1)^2} + \frac{5}{x^2}$$
 Производная функции непрерывна на промежутке [0.5, 7].

- (b) $F_{13}(0.5)=4-10=-6<0,$ $F_{13}(7)=\frac{51}{16}-\frac{5}{7}>0$ Тогда $F_{13}(0.5)*F_{13}(7)<0.$
- (c) $F_{13}''(x) = \frac{3}{(x+1)^3} \frac{10}{x^3}$ $F_{13}'''(x) = 3*(-\frac{3}{(x+1)^4} + \frac{10}{x^4}) = 0$ только при x < 0, значит $F_{13}''(x)$ возрастает на промежутке [a,b], так как $F_{13}'''(1) = 3*(-\frac{3}{16}+10) > 0$. При этом $F_{13}''(7) = \frac{3}{8^3} \frac{10}{7^3} = \frac{3*7^3 10*8^3}{56^3} < 0 => F_{13}''(x) < 0$ на всем промежутке [a,b], тогда $F_{13}'(x)$ убывает на данном промежутке.
- (d) $F'_{13}(7) = -\frac{3}{128} + \frac{5}{49} > 0$, тогда так как $F'_{13}(x)$ убывает на всем промежутке [0.5,7], то $F'_{12}(x)>0$ на данном промежутке.
- 3. $F_{23}(x) = 2.5 * x 9.5 \frac{5}{x}$
 - (a) $F_{23}'(x) = 2.5 + \frac{5}{x^2}$ Производная функции непрерывна на промежутке [0.5,7].
 - (b) $F_{23}(0.5) = -8.25 10 < 0,$ $F_{23}(7) = 8 - \frac{5}{8} > 0$ Тогда $F_{23}(0.5) * F_{23}(7) < 0.$
 - (c) $F_{23}''(x) = -\frac{10}{x^3} < 0$ (на промежутке [0.5,7]) => первая производная убывает на этом промежутке.
 - (d) $F'_{23}(x) > 0$ на всем промежутке [0.5, 7].

Значения ε_1 и ε_2

При вычислении корней методом хорд имеется погрешность, которая вычисляется по формуле $|x_n-x_{n-1}|<\frac{|F(x_n)|}{m}=\varepsilon_1$, где m - минимальное значение модуля первой производной на сегменте [a,b]. [1]

При вычислении площадей методом трапеции имеется погрешность $R=-\frac{F''(\xi)}{12n^2}(b-a)^3=\varepsilon_2$, где $a\leq \xi\leq b$, n - число разбиений отрезка [a,b] на равные части, a,b - корни уравнений. [1]

Результаты экспериментов

Координаты точек пересечения представлены в таблице (таблица 1) и на графике (рис. 2). Площадь фигуры, заключенной между кривыми, равна S=5.087 (рис. 2).

Кривые	x	y
1 и 2	5.078	3.247
2 и 3	1.375	3.632
1 и 3	4.267	1.168

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Вычислительный модуль

В вычислительном модуле calc.c описаны следующие функции:

- 1. double min(double a, double b) Возвращает минимальное из чисел а и b
- 2. double max(double a, double b) Возвращает максимальное из чисел а и b
- 3. int search_max(double *x, int n)
 Возвращает индекс максимального элемента в массиве вещесвенных чисел
 из n элементов
- 4. int search_mid3(double x[])
 Возвращает средний элемент массива из 3 чисел по возрастанию
- 5. double search_delta(double (*f)(double), double x1, double x2, double eps) Возвращает минимальное значение функции f, меньшее 0, или 0 на промежутке от x1 до x2.
- 6. double integral(double (*f)(double), double a, double b, double eps, double delta)
 Возвращает определенный интеграл функции f на промежутке от а до b с поднятием функции на delta.
- 7. double root(double (*f)(double), double (*g)(double), double a, double b, double eps)
 Возвращает координату абцисс точки пересечения функций f и g на отрезке от а до b.

Модуль функций

В модуле **func.asm** описаны 3 функции основного задания, на вход каждой из которых подается вещественное число, а на выход - значение функции в заданной точке.

Главный модуль

В главном модуле **main.c** описаны следующие функции:

- 1. int s_in_a(char *s, char *arr[], int n)
 Проверяет наличие строки s в массиве строк arr размером n и возвращает индекс строки в массиве если она там есть и 0 иначе.
- 2. double test_f1(double x) Тестовая функция 1. Возвращает значение функции в точке x.

- 3. double test_f2(double x) Тестовая функция 2. Возвращает значение функции в точке x.
- 4. double $test_f3(double x)$ Тестовая функция 3. Возвращает значение функции в точке x.
- 5. int main(int argc, char *argv[]) Главная функция модуля. В нем происходит подсчет площади и вывод ее на экран.

Библиотеки

Помимо стандартных библиотек языка C, в программе задействована вспомогательная библиотека lib.h, в которую занесены все функции вспомогательных модулей.

Рис. 3: Схема использования функций и модулей друг другом.

Сборка программы (Make-файл)

Итоговый проект square.e собирается из 3 объектных модулей:

main.o func.o calc.o

Они в свою очередь собираются из 3 файлов:

main.c calc.c func.asm

Все фунцкии, использующиеся в программе, описаны в библиотеке: lib.h Также используется библиотека: io.inc

Все модули находятся в папке SRC.

Итоговый проект состоит из следующих модулей:

• main.c

Главный модуль. В нем происходит обработка опций, вводимых в командной строке. Также в нем происходит подсчет искомой площади фигуры.

• calc.c

Вычислительный модуль. В нем находятся функция, вычисляющая корни уравнений, функция, вычисляющая определенный интеграл и другие вспомогательные функции.

• func.asm

Модуль функций. В нем вычисляются функции, заданные условием задачи

• lib.h

Библиотека. Здесь описаны прототипы всех используемых функций.

Для сборки проекта написан makefile, в котором отражены все зависисмости и прописаны все необходимые для компиляции ключи. С текстом makefile можно ознакомиться ниже.

MAKEFILE:

```
TARGET = bin/square.e
PROG_OBJ = obj/main.o obj/func.o obj/calc.o
C_FLAGS = -std = c99 - c - m32 - o
ASM_FLAGS = -f elf32 -DUNIX -o
all: $(TARGET)
run: $(TARGET)
./$(TARGET)
clean:
rm -f $(PROG_OBJ)
$(TARGET): $(PROG_OBJ)
gcc -o $(TARGET) $(PROG_OBJ) -m32
obj/main.o: src/main.c src/lib.h
gcc $(C_FLAGS) obj/main.o src/main.c
obj/%.o: src/%.c
gcc $(C_FLAGS) $0 $<
obj/%.o: src/%.asm
nasm $(ASM_FLAGS) $0 $<
```

Отладка программы, тестирование функций

Тестирование и отладка численных методов производилось на тестовых функций $test_f1$, $test_f2$, $test_f3$.

$$f_1 = \frac{2}{x}$$

$$f_2 = x$$

$$f_3 = x^2$$

Кривые	a	b	x	y
f_1 и f_2	0.5	5	1.413	1.413
f_1 и f_3	0.5	5	1.260	1.587
f_2 и f_3	0.5	5	0.996	0.996

Таблица 2: Координаты точек пересечения тестовых функций

Корни в тестах равны 1.414, 1.260 и 1.0 соответственно и проверяются непосредственно.

Рис. 4: Графики тестовых функций

Кривая	a	b	Результат
$f_1 = \frac{2}{x}$	1	2	1.386
$f_2 = x$	1	2	1.500
$f_3 = x^2$	1	2	2.333

Таблица 3: Примеры вычисления определенных интегралов

Для заданных тестов первообразными будут соответственно:

1.
$$\int_{1}^{2} f_1 = 2 \ln x + C$$

2.
$$\int_{1}^{2} f_2 = \frac{x^2}{2} + C$$

3.
$$\int_{1}^{2} f_3 = \frac{x^3}{3} + C$$

Значения определённых интегралов проверяются непосредственно через формулу Ньютона-Лейбница.

Программа на Си и на Ассемблере

Тексты всех модулей программы, включая библиотеку, имеются в приложенном архиве task6.zip.

Анализ допущенных ошибок

В ходе выполнения задания были допущены некоторые ошибки. В функциях SEARCH_MID3 и SEARCH_MAX в качестве параметра принималось INT *X вместо DOUBLE *X, что приводило к некорректной работе программы. Ошибка была допущенна из-за невнимательности и исправлялась изменением типа переменной *X.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.