Outline: Week 1 R

Least upper bound

- 1. We prove the least upper bounded principle (D&D 2.3) LEAST UPPER BOUND PRIN-CIPLE:every nonempty subset S of R that is bounded above has a supremum.
- 2. we prove uniqueness of supremum
- 3. We study exercise 1.3.5 from Abbott: Proving $\sup(cA) = \exp(A)$ for c > 0. WTS: $\forall \varepsilon > 0$ find $s_{\varepsilon} \in cA$ s.t. $csup(A) \varepsilon \leq s_{\varepsilon}$. We pick $\widetilde{\varepsilon} = \frac{\varepsilon}{c}$ to get for v := sup(A)

$$v - \frac{\varepsilon}{c} \le a_{\varepsilon/c} \Rightarrow cv - \varepsilon \le a_{\varepsilon/c}c$$

and thus let $s_{\varepsilon} := a_{\varepsilon/c}c$. By having $\sup(S) = -\inf(-S)$ we have $\sup(cA) = \sup((-c)(-A)) = (-c)\sup(-A) = c\inf(A)$ for c < 0.

Detailed proof for LUB for sup

We prove the least upper bounded principle (D&D 2.3) LEAST UPPER BOUND PRINCI-PLE:every nonempty subset S of R that is bounded above has a supremum.

Construction of the sup

- Let M be the upper bound for S with decimal expansion $M := m_0.m_1...$ We have that $m_0 + 1$ upper bounds S.
- (0th step) Let $s \in S$ have expansion $s = s_0.s_1...$, then let $s_0 < a_0 < m_0 + 1$ be the lowest number so that $a_0 + 1$ is still an upper bound for S but a_0 is not: $a_0 + 1 \ge s$ for all $s \in S$. Therefore, there is $x_0 \in S$ s.t. $a_0 \le x_0 \le a_0 + 1$.
- (1st step) Let $y_1 = a_0 + \frac{a_1}{10}$ where $a_1 \in \{0, ..., 9\}$ is the lowest number so that $y_1 + 0.1$ is still an upper bound for S but y_1 is not. Therefore, we can pick $x_1 \in S$ s.t. $a_0.a_1 \le x_1 \le a_0.a_1 + 0.1$.
- (2nd step) let $y_2 = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2}$ where $a_2 \in \{0, ..., 9\}$ is the lowest number so that $y_2 + \frac{1}{10^2}$ is still an upper bound for S but y_2 is not. Therefore, we can pick $x_2 \in S$ s.t. $a_0.a_1a_2 \le x_2 \le a_0.a_1a_2 + 0.01$

• (kth step) Given $y_{k-1} = a_0.a_1...a_{k-1}$ and x_{k-1} with $y_{k-1} \le x_{k-1} \le y_{k-1} + 10^{-(k-1)}$, select $y_k = a_0.a_1...a_k$ with the lowest a_k so that $y_k + 10^{-k}$ is an upper bound for S but y_k is not. So there exists $x_k \in S$ with

$$y_k \le x_k < y_k + 10^{-k}.$$

• We claim that $L := \lim_{n \to \infty} y_n = a_0.a_1...a_k...$ is the sup(S).

Upper bound step:

Start with abstract $s = s_0.s_1... \in S$.

- If $s_i = a_i$ for all i, then s = L.
- If $s_i = a_i$ for i < k but $s_k > a_k$ for some k then we get a contradiction:

Let

$$\widetilde{y}_k := a_0.a_1...a_{k-1}s_k00...$$

Then due to $s_k > a_k$ we have

$$y_k + 10^{-k} \le \widetilde{y}_k.$$

Due to $s_i = a_i$ for i < k we have

$$y_{k} + 10^{-k} < \widetilde{y}_{k}$$

$$= a_{0}.a_{1}...a_{k-1}s_{k}00...$$

$$= s_{0}.s_{1}...s_{k}0...$$

$$\leq s_{0}.s_{1}...s_{k}s_{k+1}...$$

$$= s.$$

However, we have that

$$y_k + 10^{-k} \ge s, \quad \forall s \in S.$$

• So we are left with the case $s_i = a_i$ for i < k but $s_k < a_k$ for some k, which implies

$$s = s_0.s_1...s_k... < a_0.a_1...a_k0... = y_k < L.$$

Subsequence step:

Given $\varepsilon > 0$ we have to find $x_{\varepsilon} \in S$ s.t.

$$L - \varepsilon < x_{\varepsilon}$$
.

• Let n be so large that $\frac{1}{10^n} < \varepsilon$, then

$$L - \varepsilon < L - \frac{1}{10^n},$$

• But we have that

$$L - \frac{1}{10^n} = a_0.a_1...a_{n-1}(a_n - 1)a_{n+1}... < y_n.$$

ullet This is in turn less than x_n from above. So all together

$$L - \varepsilon < L - \frac{1}{10^n} < y_n < x_n.$$

• So we let $x_{\varepsilon} := x_n$.