02-03 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \xrightarrow{c} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

(i) Note

上述断言仅对于**局部小范畴**成立, 其他范畴里 $c_1 \xrightarrow{c} c_2$ 未必构成集。

范畴 C 中特定的箭头可以进行复合运算:

$$\stackrel{\mathsf{C}}{\circ} : \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\to} \mathsf{c}_2) | \stackrel{\mathsf{Set}}{\times} (\mathsf{c}_2 \stackrel{\mathsf{C}}{\to} \mathsf{c}_3) | \stackrel{\mathsf{Set}}{\to} \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\to} \mathsf{c}_3) |}_{} }_{} }_{} (\underbrace{ i_1} \stackrel{\mathsf{C}}{\to} \underbrace{ i_2}) | \underbrace{ (i_1 \stackrel{\mathsf{C}}{\to} i_2) |}_{}$$

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1 \to c_1'$, $c_1 \to c_2$, $c_2 \to c_2'$ 那么便可知

• $(f_1^{\text{op}} \circ i) \circ f_2 = f_1^{\text{op}} \circ (i \circ f_2)$, 即箭头复合运算具有**结合律**。

另外固定住一侧实参便可获得新的函数:

$$\bullet \quad \overbrace{(f_1^{\operatorname{op}} \circ _)}^{\operatorname{C}} : \underbrace{(\operatorname{c}_1 \to _)}^{\operatorname{C}} \xrightarrow{\overset{\operatorname{Cat}}{\longrightarrow} \operatorname{Set}} \underbrace{(\operatorname{c}_1' \to _)}_{(f_1^{\operatorname{op}} \circ i)}$$

称作前复合。下图有助于形象理解:

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1^{\text{op}} \circ _) \circ (_ \circ f_2) = (_ \circ f_2) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_1^{\text{op}} \circ _)$
- $(-\circ i)$ \circ $(-\circ f_2)$ = $(-\circ (i \circ f_2))$ 前复合与复合运算的关系
- $(i \circ _)$ \circ $(f_1^{\text{op}} \circ _) = ((f_1^{\text{op}} \circ i) \circ _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $oldsymbol{c}_1i= \overline{c_1} \overset{\mathsf{c}}{\circ} i$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$c_1 id : c_1 \xrightarrow{c} c_1$$
 $c_1 \mapsto c_1$

如此我们便可以得出下述重要等式:

此外还可以得知

- $(c_1 id \circ _) : (c_1 \to _) \xrightarrow{c} c \xrightarrow{c} set c$ 为恒等自然变换,可记成是 $c_{ai} (c_1 \to _) id$;
- $(-\circ :_{c_2} id): (-\to c_2)$ $\xrightarrow{c_1 i(-) c_2} id$ 。

 为恒等自然变换,可记成是 $(-\to c_2)$ $\xrightarrow{c_2 id} id$ 。

单满态以及同构

接下来给出单/满态和同构的定义。

• i 为**单态**当且仅当对任意 \mathbf{c}_1' 若有 $\mathbf{f}_1, \mathbf{f}_1': \mathbf{c}_1 \xrightarrow{\mathsf{c}} \mathbf{c}_1'$ 满足 $\mathbf{f}_1^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i} = \mathbf{f}_1'^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i}$ 则有 $\mathbf{f}_1^{\mathrm{op}} = \mathbf{f}_1'^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i}$ 。详情见下图:

• i 为**满态**当且仅当对任意 c_2' 若有 f_2 , f_2' : $c_2 \to c_2'$ 满足 $i \circ f_2 = c \circ f_2'$ 则有 $c_2 \to c_2'$ 测元 $c_2 \to c_2'$ 满足 $c_2 \to c_2'$ 测元 $c_2 \to c_2'$ $c_2 \to c_2'$

• i 为**同构**当且仅当存在 i': $c_2 \xrightarrow{c} c_1$ 使得 $i \circ i' = {}_{:c_1} \mathrm{id} \perp \mathbf{l} = {}_{:c_2} \mathrm{id} \cdot \mathbf{l}$ 此时 $c_1, c_2 \in \mathbf{l}$ 间的关系可记作 $c_1 \cong c_2 \in \mathbf{l}$ 。

若还知道 $i=i_1$ 且 i_2 : $c_2 \stackrel{\mathsf{C}}{\to} c_3$ 则有

- 若 i₁, i₂ 为单态 / 满态 / 同构 则 i₁ i₂ 为单态 / 满态 / 同构 ;
- 若 $i_1 \circ i_2$ 为同构 且 i_1 , i_2 中有一个为同构 则 i_1 , i_2 两者皆构成同构 。

不仅如此我们还可以得出下述结论:

- c₁ 为单态 ,
 由 :c₁! 的唯一性可知 ;
- :0! = :1; 为同构,
 因为 0 → 0 = {:0id}
 并且 1 → 1 = {:1id}

同构与自然性

下图即为自然性对应的形象解释。 后面会将自然性进行进一步推广。

现提供自然变换 η_2 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $f: c \to c'$ 都有 $(f^{op} \to c_2)$ $c \to c'$ $c'^{\eta_2} = c^{\eta_2} \circ (f^{op} \to c'_2)$:

那么我们便会有下述结论:

• $c_2 \cong c_2'$ 当且仅当对任意 C 中的对象 cc⁷² 都是同构 。此时称 <mark>72</mark> 为**自然同构** 。

现提供自然变换 η_1 满足自然性 —— 即对

任意 C 中对象 c, c' 以及 任意 C 中映射 $f: c \to c'$ 都有 $(c_1 \to f)$ \circ $c'^{\eta_1} = c^{\eta_1} \circ (c'_1 \to f)$:

那么我们便会有下述结论:

 $c_1 \cong c_1'$ 当且仅当对任意 C 中的对象 $c_2 \cong c_1'$ c⁷1 都是同构 。此时称 <mark>7</mark>1 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_2 :

为了方便就用 etc 表示 $c_2 id(c^{\eta_2})$ 。由上图 $f^{op}(c'^{\eta_2}) = (f^{op} \circ etc) (见右图底部和右侧箭头),$ 故 $c'^{\eta_2} = c' \rightarrow etc (注意到箭头 f^{op} : c' \rightarrow c);$ 而 $c'^{\eta_2} = c' \rightarrow etc = c' \circ etc$ 始终是同构 故 etc : $c_2 \rightarrow c'_2$ 也是同构 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $_{:c_1}id(c^{\eta_1})$ 。由上图 知 $f(c'^{\eta_1}) = (etc \circ f)$ (见右图底部和右侧箭头), 故 $c'^{\eta_1} = \text{etc} \xrightarrow{c} c'$ (注意到箭头 $f: c \xrightarrow{c} c'$); 而 $c'^{11} = etc \xrightarrow{c} c' = c'^{(etc^{\circ})}$ 始终是同构 故 $\operatorname{etc}: \operatorname{c}_1 \to \operatorname{c}_1'$ 也是同构 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。