MATH 1426 IMS, Shanghai Tech

Linear Equations

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Boris Houska 2-1

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$. We are searching for solutions of the linear equation system

$$Ax = b$$
.

Names:

• For m < n: "under-determined linear equation system"

• For m = n: "quadratic linear equation system"

ullet For m>n: "over-determined linear equation system"

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$. We are searching for solutions of the linear equation system

$$Ax = b$$
.

Names:

- For m < n: "under-determined linear equation system"
- For m=n: "quadratic linear equation system"
- For m > n: "over-determined linear equation system"

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$. We are searching for solutions of the linear equation system

$$Ax = b$$
.

Names:

- For m < n: "under-determined linear equation system"
- For m = n: "quadratic linear equation system"
- ullet For m>n: "over-determined linear equation system"

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$. We are searching for solutions of the linear equation system

$$Ax = b$$
.

Names:

• For m < n: "under-determined linear equation system"

• For m = n: "quadratic linear equation system"

• For m > n: "over-determined linear equation system"

Known Results from Linear Algebra

The equation system Ax = b has a solution if and only if $\operatorname{rank}(A) = \operatorname{rank}(A,b)$.

This condition can, e.g., by checked with Gram-Schmidt algorithms.

For the quadratic case n=m, the following statements are equivalent:

- Ax = b has the unique solution x.
- $\operatorname{rank}(A) = n$.
- $\det(A) \neq 0$
- All eigenvalues of A are different from 0.

Known Results from Linear Algebra

The equation system Ax = b has a solution if and only if rank(A) = rank(A, b).

This condition can, e.g., by checked with Gram-Schmidt algorithms.

For the quadratic case n=m, the following statements are equivalent:

- Ax = b has the unique solution x.
- \bullet rank(A) = n.
- \bullet det $(A) \neq 0$.
- ullet All eigenvalues of A are different from 0.

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Overview: Perturbation Theory

Whenever we solve equations of the form Ax = b numerically, we have to take into account two possible sources of errors:

- ullet Errors that are due to working with inexact numerical values for A and b.
- Errors that are due to numerical rounding problems when implementing the algorithm based on finite precision arithmetics.

Matrix Norms

Recall that any vector norm $\|\cdot\|:\mathbb{R}^n \to \mathbb{R}$ can be generalized for matrices by defining

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||},$$

for any $A \in \mathbb{R}^{m \times n}$.

Simple examples:

$$||A||_1 = \max_j \sum_{i=0}^m |A_{i,j}|.$$

•
$$||A||_{\infty} = \max_{i} \sum_{j=0}^{n} |A_{i,j}|.$$

The Spectral Norm

The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of a square matrix $A \in \mathbb{R}^{n \times n}$ are the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$.

The matrix 2-norm is given by

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max \left\{ \sqrt{\lambda} \mid \det(A^T A - \lambda I) = 0 \right\}$$

If A is symmetric this expression for the 2-norm can be simplified

$$||A||_2 = \max\{|\lambda| \mid \det(A - \lambda I) = 0\}$$

The Spectral Norm

The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of a square matrix $A \in \mathbb{R}^{n \times n}$ are the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$.

The matrix 2-norm is given by

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max \left\{ \sqrt{\lambda} \mid \det(A^T A - \lambda I) = 0 \right\} ,$$

If A is symmetric this expression for the 2-norm can be simplified

$$||A||_2 = \max\{|\lambda| \mid \det(A - \lambda I) = 0\}$$
.

A Useful Matrix-Norm Inequality

If $\|\cdot\|$ is a matrix norm (assume $\|I\|=1$) and $A\in\mathbb{R}^{n\times n}$ a given matrix whose norm satisfies $\|A\|<1$, then the matrix I+A is invertible and we have

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}$$

Proof: From the inequality

$$|(I+A)x|| \ge \underbrace{(I-||A||)}_{>0} ||x||$$

we conclude that we have $(I+A)x \neq 0$ for all vectors $x \neq 0$; that is, I+A is invertible. Moreover, we have

$$1 = \|(I+A)(I+A)^{-1}\| \ge \|(I+A)^{-1}\|(1-\|A\|).$$

which implies the statement

A Useful Matrix-Norm Inequality

If $\|\cdot\|$ is a matrix norm (assume $\|I\|=1$) and $A\in\mathbb{R}^{n\times n}$ a given matrix whose norm satisfies $\|A\|<1$, then the matrix I+A is invertible and we have

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}$$

Proof: From the inequality

$$||(I+A)x|| \ge \underbrace{(I-||A||)}_{>0} ||x||$$

we conclude that we have $(I+A)x \neq 0$ for all vectors $x \neq 0$; that is, I+A is invertible. Moreover, we have

$$1 = \|(I+A)(I+A)^{-1}\| \ge \|(I+A)^{-1}\|(1-\|A\|),$$

which implies the statement.

Condition Numbers

Theorem:

Let x denote the solution of the invertible and quadratic linear equation system Ax=b and let δx be such that

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

assuming $\|\delta A\|<\frac{1}{\|A^{-1}\|}$ and $\|b\|\neq 0$ as well as $\|A\|\neq 0$. Then we have

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \quad \text{with} \quad \operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\| \;.$$

Interpretation

The condition number $\mathsf{cond}(A)$ can be interpreted as an error $\mathsf{amplification}$ factor,

$$\frac{\|\delta x\|}{\|x\|} \approx \operatorname{cond}(A) \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right)$$

Condition Numbers

Theorem:

Let x denote the solution of the invertible and quadratic linear equation system Ax=b and let δx be such that

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

assuming $\|\delta A\|<\frac{1}{\|A^{-1}\|}$ and $\|b\|\neq 0$ as well as $\|A\|\neq 0$. Then we have

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \quad \text{with} \quad \operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\| \; .$$

Interpretation:

The condition number $\operatorname{cond}(A)$ can be interpreted as an error amplification factor,

$$\frac{\|\delta x\|}{\|x\|} \approx \operatorname{cond}(A) \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right) \;.$$

Proof

From Ax = b and the equation

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

we find $\delta x = (A + \delta A)^{-1}(\delta b - \delta Ax)$ (recall that $\|\delta A\| \leq \frac{1}{\|A^{-1}\|}$ implies that $A + \delta A$ is invertible). This yields the estimate

$$\|\delta x\| \leq \|(A + \delta A)^{-1}\| (\|\delta b\| + \|\delta A\| \|x\|)$$

$$\leq \|(I + A^{-1}\delta A)^{-1}\| \|A^{-1}\| (\|\delta b\| + \|\delta A\| \|x\|)$$

$$\leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} (\|\delta b\| + \|\delta A\| \|x\|)$$

(Last step has used the matrix-norm ineq. from previous slides)

Proof (continued)

Because we have Ax = b, it follows that $||A|| ||x|| \ge ||b||$ and

$$\|\delta x\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} (\|\delta b\| + \|\delta A\| \|x\|)$$
$$\leq \frac{\|A^{-1}\| \|A\| \|x\|}{1 - \|A^{-1}\| \|\delta A\|} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

In the last step we substitute $cond(A) = ||A|| \cdot ||A^{-1}||$:

$$\|\delta x\| \leq \frac{\operatorname{\mathsf{cond}}(A)\|x\|}{1-\operatorname{\mathsf{cond}}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \ .$$

The statement of the theorem follows after dividing by ||x||.

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Triangular Matrices

If the matrix A is triangular, i.e.,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix} ,$$

the system Ax can be solved by a "backwards substitution":

$$x_n = \frac{b_n}{a_{n,n}}$$
 and $x_j = \frac{1}{a_{j,j}} \left(b_j - \sum_{k=j+1}^n a_{j,k} x_k \right)$

for
$$j = n - 1, \ldots, 1$$
. (Complexity: $\mathbf{O}(n^2)$.)

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns x_j , too.
- We may multiply one row by a scalar factor and add it to another row.

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns x_i , too.
- We may multiply one row by a scalar factor and add it to another row.

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns x_j , too.
- We may multpily one row by a scalar factor and add it to another row

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns x_j , too.
- We may multiply one row by a scalar factor and add it to another row.

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that $a_{1,1} \neq 0$.
- For all row indices $j=2,\ldots,n$: substract $q_j=\frac{a_{j,1}}{a_{1,1}}$ times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{n,2} & \dots & c_{n,n} \end{pmatrix}.$$

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that $a_{1,1} \neq 0$.
- For all row indices $j=2,\ldots,n$: substract $q_j=\frac{a_{j,1}}{a_{1,1}}$ times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{n,2} & \dots & c_{n,n} \end{pmatrix}.$$

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that $a_{1,1} \neq 0$.
- For all row indices $j=2,\ldots,n$: substract $q_j=\frac{a_{j,1}}{a_{1,1}}$ times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{n,2} & \dots & c_{n,n} \end{pmatrix}.$$

The first step of the Gauss elimination procedure can also be summarized in the form:

$$C = G_1 P_1 A \quad \text{and} \quad d = G_1 P_1 b$$

such that the equation system Ax=b is equivalent to the equation system Cx=d. Here, P_1 is a permutation matrix and G_1 a Frobenius matrix of the form

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ q_2 & 1 & 0 & \dots & 0 \\ q_3 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ q_n & 0 & \dots & 0 & 1 \end{pmatrix}.$$

In the second step of the Gauss elimination we apply the same transformation strategy to the remaining $(n-1)\times(n-1)$ dense block such that

$$E = G_2 P_2 G_1 P_1 A \quad \text{and} \quad f = G_2 P_2 G_1 P_1 b$$

such that the equation system Ax=b is equivalent to the equation system Ex=f. Here, E has the form

$$E = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} & \dots & c_{1,n} \\ 0 & e_{2,2} & e_{2,3} & \dots & e_{2,n} \\ 0 & 0 & e_{3,3} & \dots & e_{3,n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & e_{n,3} & \dots & e_{n,n} \end{pmatrix}.$$

If we keep on applying the same strategy we end up with a triangular matrix

$$R = G_{n-1}P_{n-1}\dots G_1P_1A.$$

and a vector $s=G_{n-1}P_{n-1}\dots G_1P_1b$ such that the equation system Ax=b is equivalent to the equation system Rx=s. The triangular system can then be solved by backwards substitution. The complexity of computing R is of order $\mathbb{O}(n^3)$.

If we keep on applying the same strategy we end up with a triangular matrix

$$R = G_{n-1}P_{n-1}\dots G_1P_1A.$$

and a vector $s=G_{n-1}P_{n-1}\dots G_1P_1b$ such that the equation system Ax=b is equivalent to the equation system Rx=s. The triangular system can then be solved by backwards substitution. The complexity of computing R is of order $\mathbf{O}(n^3)$.

LR Decomposition

We assume for simplicity that we do not have to permute the rows of ${\cal A}.$ The matrix

$$L = G_1^{-1} G_2^{-1} \dots G_{n-1}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{2,1} & 1 & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ l_{n,1} & l_{n,2} & \dots & l_{n,n-1} & 1 \end{pmatrix}$$

is lower triangular and satisfies LR=A by construction.

Uniqueness of LR-Decomposition

The LR-Decomposition is unique: if there were two LR decompositions

$$A = L_1 R_1 = L_2 R_2$$

we would have

$$L_2^{-1}L_1 = R_2R_1^{-1} = I ,$$

since the matrix $L_2^{-1}L_1$ is lower triangular (with ones on the diagonal) and R is an upper triangular matrix. Thus, we have $R_1=R_2$ and $L_1=L_2$.

Application of LR Decomposition in Practice

In practice, we are often in the situation that we want to solve mutiple linear equation systems of the form

$$Ax_i = b_i$$
, $i = 1, 2, \ldots, N$

for changing vectors $b_i \in \mathbb{R}^m$. A naive implementation of Gauss elimination would lead the complexity $\mathbf{O}(N \cdot n^3)$ for computing x_1, \dots, x_N .

A major speed-up can be obtained by computing if we store the LR-decomposition A=LR of the matrix A and then compute

$$x_1 = R^{-1}L^{-1}b_1$$
, $x_2 = R^{-1}L^{-2}b_2$

Now, the complexity is $O(n^3 + N \cdot n^2)$

Application of LR Decomposition in Practice

In practice, we are often in the situation that we want to solve mutiple linear equation systems of the form

$$Ax_i = b_i , \qquad i = 1, 2, \dots, N$$

for changing vectors $b_i \in \mathbb{R}^m$. A naive implementation of Gauss elimination would lead the complexity $\mathbf{O}(N \cdot n^3)$ for computing x_1, \dots, x_N .

A major speed-up can be obtained by computing if we store the LR-decomposition ${\cal A}=LR$ of the matrix ${\cal A}$ and then compute

$$x_1 = R^{-1}L^{-1}b_1$$
, $x_2 = R^{-1}L^{-2}b_2$

Now, the complexity is $O(n^3 + N \cdot n^2)$.

Computation of Determinants

If a LR-decomposition of the matrix $A \in \mathbb{R}^{n \times n}$ is known, the determinant can be computed from

$$\det(A) = \det(LR) = \det(L)\det(R) = \det(R) = \prod_{i=1}^{n} R_{ii}.$$

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Band-Structured Matrices

A band-structured matrix is a matrix whose components satisfy

$$a_{j,k} = 0$$
 for $k < j - m_{\rm l}$ or $k > j + m_{\rm r}$.

Here $m_{\rm I}$ and $m_{\rm r}$ are called the widths of the band-matrix A.

Examples:

- For $m_{\rm l}=0$ and $m_{\rm r}\leq n-1$: upper triangular matrix.
- ullet For $m_{
 m r}=0$ and $m_{
 m l}\leq n-1$: lower triangular matrix
- ullet For $m_{
 m l}=1$ and $m_{
 m r}=1$: tridiagonal matrix.

Band-Structured Matrices

A band-structured matrix is a matrix whose components satisfy

$$a_{j,k} = 0$$
 for $k < j - m_l$ or $k > j + m_r$.

Here $m_{\rm I}$ and $m_{\rm r}$ are called the widths of the band-matrix A.

Examples:

- For $m_{\rm l}=0$ and $m_{\rm r}\leq n-1$: upper triangular matrix.
- For $m_{\rm r}=0$ and $m_{\rm l}\leq n-1$: lower triangular matrix.
- For $m_{\rm l}=1$ and $m_{\rm r}=1$: tridiagonal matrix.

Gauss Elimination for Band-Structured Matrices

If we do not have to permute rows, equation systems of the form

$$Ax = b$$

can be solved with Gauss-elimination, too, while exploiting the band-structure. The complexity is in this case

$$\mathbf{O}(nm_{\mathsf{I}}m_{\mathsf{r}}) + \mathbf{O}(n(m_{\mathsf{I}} + m_{\mathsf{r}}))$$
.

Example: Tridiagonal Matrices

For the case that A is a tridiagonal matrix of the form

$$A = \begin{pmatrix} a_1 & b_1 & & & \\ c_2 & \ddots & \ddots & & \\ & \ddots & \ddots & b_{n-1} \\ & & c_n & a_n \end{pmatrix}$$

the matrices L and R have the form

$$L = \left(\begin{array}{ccc} 1 & & & \\ \gamma_2 & \ddots & & \\ & \ddots & 1 & \\ & & \gamma_n & 1 \end{array} \right) \quad \text{and} \quad R = \left(\begin{array}{cccc} \alpha_1 & b_1 & & \\ & \ddots & \ddots & \\ & & \alpha_{n-1} & b_{n-1} \\ & & & \alpha_n \end{array} \right) \;.$$

Example: Tridiagonal Matrices

The coefficients α_i and γ_i can be computed by the recursion

$$\begin{array}{rcl} & \alpha_1 & = & a_1 \; , \\ \\ \gamma_i & = & \frac{c_i}{\alpha_{i-1}} \; , & \quad \text{and} & \quad \alpha_i & = & a_i - \gamma_i b_i \end{array}$$

for $i=2,\ldots,n$.

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Symmetric Positive Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric positive definite if we have $A = A^T$ and

$$\forall v \in \mathbb{R}^n \setminus \{0\}, \qquad v^T A v > 0.$$

Equation systems of the form Ax = b with A being symmetric positive semi-definite are solved by representing A in the form

$$A = LDL^T ,$$

where $L \in \mathbb{R}^{n \times n}$ is a lower diagonal matrix with ones on the diagonal and $D \in \mathbb{R}^{n \times n}$ a diagonal matrix.

Symmetric Positive Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric positive definite if we have $A = A^T$ and

$$\forall v \in \mathbb{R}^n \setminus \{0\}, \qquad v^T A v > 0.$$

Equation systems of the form Ax=b with A being symmetric positive semi-definite are solved by representing A in the form

$$A = LDL^T$$
,

where $L \in \mathbb{R}^{n \times n}$ is a lower diagonal matrix with ones on the diagonal and $D \in \mathbb{R}^{n \times n}$ a diagonal matrix.

Let us work out the matrix product

We want to determine L and D such that

$$A = \left(\begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 & & \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots & \end{array} \right)$$

- We first set $D_1 = A_{1,1} > 0$ (since A is positive definite)
- We can find $L_{2,1} = A_{2,1}/D_1$.
- ullet The diagonal entry $D_2=A_{2,2}-L_{2,1}^2D_1>0$ must be positive.
- ullet General recursion (for i>j)

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right)$$

We want to determine L and D such that

$$A = \left(\begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set $D_1 = A_{1,1} > 0$ (since A is positive definite).
- We can find $L_{2,1} = A_{2,1}/D_1$.
- ullet The diagonal entry $D_2=A_{2,2}-L_{2,1}^2D_1>0$ must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left(\begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set $D_1 = A_{1,1} > 0$ (since A is positive definite).
- We can find $L_{2,1} = A_{2,1}/D_1$.
- ullet The diagonal entry $D_2=A_{2,2}-L_{2,1}^2D_1>0$ must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left(\begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set $D_1 = A_{1,1} > 0$ (since A is positive definite).
- We can find $L_{2,1} = A_{2,1}/D_1$.
- The diagonal entry $D_2 = A_{2,2} L_{2,1}^2 D_1 > 0$ must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left(\begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set $D_1 = A_{1,1} > 0$ (since A is positive definite).
- We can find $L_{2,1} = A_{2,1}/D_1$.
- The diagonal entry $D_2 = A_{2,2} L_{2,1}^2 D_1 > 0$ must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

Cholesky Decomposition

 \bullet Cholesky's algorithm works reliably for positive definite matrices, $D_{ii}>0. \ \mbox{We could also set}$

$$A = \tilde{L}^{\mathsf{T}} \tilde{L} \quad \text{with} \quad \tilde{L} = D^{\frac{1}{2}} L \; .$$

This is the "original" Cholesky decomposition (\tilde{L} can be interpreted as a "square-root" of A)

- Variants of the above $L^{\intercal}DL$ algorithm are applicable for symmetric indefinite matrices, but require permutation of rows/columns
- For the symmetric non-positive-definite matrix

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

the $L^{\mathsf{T}}DL$ algorithm fails (but we could permute rows).

Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices
- QR-Decomposition

Orthonormal Basis

- Let $A=(a_1,a_2,a_3,\ldots,a_m)\in\mathbb{R}^{n\times m}$ be a given matrix
- The vectors $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ are the columns of A
- The vectors $q_1,q_2,\ldots,q_r\in\mathbb{R}^n$ with $r\leq n$ are called an orthonormal basis if

$$\operatorname{span}(q_1, q_2, \dots, q_r) = \operatorname{span}(a_1, a_2, \dots, a_r) = \operatorname{Im}(A)$$

and

$$\forall i, j \in \{1, 2, \dots, r\}, \quad q_i^{\mathsf{T}} q_j = \delta_{i, j} = \left\{ \begin{array}{l} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{array} \right.$$

• Notice that we must have $r = \dim(\operatorname{Im}(A))$

QR Decomposition

ullet Regard the orthormal basis vectors as columns of a matrix Q,

$$Q = (q_1, q_2, \dots, q_r)$$

- The matrix Q satisfies $Q^{\mathsf{T}}Q = I$
- And we have Im(A) = Im(Q)
- \bullet On the next slides we will prove that there exist an upper triangular matrix R such that

$$A = QR$$
.

This is called a QR decomposition of A.

Gram-Schmidt Algorithm

Input: m vectors $a_1, \ldots, a_m \in \mathbb{R}^n$.

Gram-Schmidt Algorithm:

For i = 1, ..., m:

- Orthogonalization. $\overline{q}_i = a_i (q_1^\mathsf{T} a_i)q_1 \ldots (q_{i-1}^\mathsf{T} a_i)q_{i-1}$.
- Test for linear dependence. If $\overline{q}_i = 0$, set $q_i = 0$ and skip next step.
- Normalization. $q_i = \frac{\overline{q}_i}{\|\overline{q}_i\|_H}$.

Optional: delete all 0s from the sequence q_1, q_2, \ldots, q_m . This saves memory but we should keep an index list (or use a sparse matrix format)

Gram-Schmidt Algorithm

Input: m vectors $a_1, \ldots, a_m \in \mathbb{R}^n$.

Gram-Schmidt Algorithm:

For $i = 1, \ldots, m$:

- Orthogonalization. $\overline{q}_i = a_i (q_1^\intercal a_i)q_1 \ldots (q_{i-1}^\intercal a_i)q_{i-1}.$
- ullet Test for linear dependence. If $\overline{q}_i=0$, set $q_i=0$ and skip next step.
- Normalization. $q_i = \frac{\overline{q}_i}{\|\overline{q}_i\|_H}$.

Optional: delete all 0s from the sequence q_1, q_2, \ldots, q_m . This saves memory but we should keep an index list (or use a sparse matrix format).

Properties of Gram-Schmidt Algorithm

Gram-Schmidt constructs the q_1, q_2, \ldots, q_m (with 0s) such that

$$a_{1} = (a_{1}^{\mathsf{T}}q_{1})q_{1}$$

$$a_{2} = (a_{2}^{\mathsf{T}}q_{1})q_{1} + (a_{2}^{\mathsf{T}}q_{2})q_{2}$$

$$\vdots$$

$$a_{m} = (a_{m}^{\mathsf{T}}q_{1})q_{1} + (a_{m}^{\mathsf{T}}q_{2})q_{2} + \ldots + (a_{m}^{\mathsf{T}}q_{m})q_{m}$$

(1)

Moreover, we have $q_i^{\mathsf{T}}q_j=\delta_{i,j}$ (Exercise: proof by induction!)

QR Decomposition

Write
$$a_1 = r_{1,1}q_1$$

$$a_2 = r_{1,2}q_1 + r_{2,2}q_2$$

$$\vdots$$

$$a_m = r_{1,m}q_1 + r_{2,m}q_2 + \ldots + r_{m,m}q_m$$

with $r_{i,j} = a_i^{\mathsf{T}} q_j$, which yields A = QR with

$$\underbrace{(a_1, a_2, \dots, a_m)}_{=A} = \underbrace{(q_1, q_2, \dots, q_m)}_{=Q} \underbrace{\begin{pmatrix} r_{1,1} & r_{1,2} & \dots & r_{1,m} \\ & r_{2,2} & \dots & r_{2,m} \\ & & \ddots & \vdots \\ & & & r_{m,m} \end{pmatrix}}_{=B}$$

Complete QR decomposition

Problem:

- we might have $\dim(\operatorname{Im}(A)) = r < n$.
- Thus, if r < n, we have $Q^{\mathsf{T}}Q = I$ but $QQ^{\mathsf{T}} \neq I$.

Remedy:

- ullet apply Gram-Schmidt algorithm to the augmented matrix $\tilde{A}=[A,I]$
- ullet delete all "zero-columns" from Q (and corresponding rows of R)
- \bullet this yields Q and R such that $QR=\tilde{A}$ and

$$Q \in \mathbb{R}^{n \times n}, \quad R = \left[egin{array}{cc} R_{11} & R_{12} \\ 0 & R_{22} \end{array}
ight] \quad ext{with} \quad \left\{ egin{array}{cc} R_{11} \in \mathbb{R}^{r \times m} \\ R_{22} \in \mathbb{R}^{n-r \times n}, \end{array} \right.$$

where Q is orthogonal, R_{11} and R_{22} upper triangular (with full rank).

QR Decomposition

• In summary, Gram-Schmidt algorithm yields the representation

$$A = \left[\begin{array}{cc} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{array} \right] \left[\begin{array}{c} R_{11} \\ 0 \end{array} \right]$$

• The equation system Ax = b admits a solution if and only if

$$\left[\begin{array}{cc} Q_{12}^{\mathsf{T}} & Q_{22}^{\mathsf{T}} \end{array}\right] b = 0$$

ullet If the above condition holds, all solutions of Ax=b satisfy

$$R_{11}x = r_1 \qquad \text{with} \qquad r_1 = \left[\begin{array}{cc} Q_{11}^\intercal & Q_{21}^\intercal \end{array} \right] b$$

ullet Solve by backward substitution! (always works, as R_{11} has full rank!)

Householder's QR Algorithm

- Gram-Schmidt algorithm are sometimes affected by cancellation / numerical ill-conditioning: the vectors a_i are reduced in length after successive substraction of its projections.
- Householder's method is an alternative to Gram-Schmidt algorithms
- Key idea: introduce reflecting matrices of the form

$$H_i = I - 2w_i w_i^{\mathsf{T}}$$
 with unit vectors $w_i \in \mathbb{R}^n$, $||w_i||_2 = 1$

ullet The matrices H_i are symmetric and orthogonal, since

$$H_i^2 = I - 4w_i w_i^{\mathsf{T}} + 4w_i \underbrace{w_i^{\mathsf{T}} w_i}_{=1} w_i^{\mathsf{T}} = I$$

Householder's QR Algorithm: Derivation

- Let $a \neq 0$ be the first column of a matrix A.
- ullet Our first goal is find a unit vector w such that

$$(I-2ww^{\mathsf{T}})a\stackrel{!}{=}\lambda e_1 \quad \text{for a scalar} \quad \lambda \in \mathbb{R}$$

We claim that this is true for

$$w = \frac{a \pm ||a|| e_1}{||a \pm ||a|| e_1||}$$

Proof: either use your geometric intuition or directly show that

$$||a \pm ||a||e_1||_2^2 = 2(a \pm ||a||e_1)^{\mathsf{T}}a \implies (I - 2ww^{\mathsf{T}})a = \pm (-1)||a||e_1|$$

Householder's QR Algorithm: Summary

ullet We can find $H_1=I-2w_1w_1^{\mathsf{T}}$ such that

sacii tilat

$$H_1 A = \begin{pmatrix} \star & \star & \dots & \star \\ 0 & \star & \dots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \star & \dots & \star \end{pmatrix}$$

We repeat the same procedure for all sub-blocks until

$$H_{n-1}H_{n-2}\dots H_1A=R$$

is upper triangular. Finally, A=QR with $Q=H_1H_2\ldots,H_{n-1}$.