------ 1 & 2 ------ 1 & 2 ------ Introduction & Getting Started

1.1 Algorithms

Algorithm: A sequence of computational steps that transform the **input** of a **computational problem** into the **output**.

2.1 Insertion Sort: An efficient algorithm for sorting a small number of elements.

Example:

2.2 Analyzing Algorithms

RAM: Random-access machine, in which each memory access takes unit time and instructions are executed one by one.

Running time: number of steps, which is a function of the **input size**.

Example: Insertion Sort

Insertion-Sort (A)		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	$i \leftarrow j-1$	C_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} t_j + (c_6 + c_7) \sum_{j=2}^{n} (t_j - 1)$$

Best-case:

Each $t_{=}1$. (The input A is sorted.)

$$T(n) = (c_1+c_2+c_4+c_5+c_8)n-(c_2+c_4+c_5+c_8)$$

= $\Theta(n)$
(rate of growth, order of growth)

Worst-case: (upper bound)

Each t=j.

$$T(n) = k_1 n^2 + k_2 n + k_3$$
$$= \Theta(n^2)$$

Average-case: (Expected running time)

Each t = j/2.

$$T(n) = t_1 n^2 + t_2 n + t_3$$
$$= \Theta(n^2)$$

2.3 Designing Algorithms

Divide-and-Conquer:

Divide: (into the same problems of

smaller size)

Conquer: Combine:

Example: Merge Sort

MERGE-SORT(A, p, r)1 if p < r2 then $q \leftarrow \lfloor (p+r)/2 \rfloor$ 3 MERGE-SORT(A, p, q)4 MERGE-SORT(A, q + 1, r)5 MERGE(A, p, q, r)

Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Analysis: (recurrence)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$
$$= \Theta(n\log n)$$

Homework: Pro. 2-1 and 2-4.