THESIS PLAN: "SCALABLE CONTINUOUS RL WITH KULLBACK-LEIBLER POLICY CHAIN" UNDERGRADUATE FINAL YEAR PROJECT CHRIS DOYLE

DEADLINES:

- 25th January Introduction/Background
- 25th March [Entire Thesis] & Demo to be completed
- 25th March Demo Presentation
- 12th April Final Deadline for Thesis

BY 25th JANUARY:

ABSTR	ACT (OUTLINE PROBLEM & SOLUTION): Define lifelong learning. Define lifelong reinforcement learning. Existing issues being solved (scalability, catastrophic forgetting). Introduce idea of Kullback-Leibler Policy Chain (i.e. 2 parts, KL & RL).	
INTRO	PDUCTION Reinforcement Learning -> Lifelong Learning. Define catastrophic forgetting. What the worst case scenario etc. is.	
BACKG	Define Reinforcement Learning. Define Policy Gradient Methods. Define Kullback-Leibler Divergence & how it is being used in this project. Compare policies in adjacent figures to show effect	
BY 25 th MARCH		
THEOR	RY OF APPROACH Explain the concept of Kullback-Leibler policy chain in a mathematical sense. Derive & explain conceptualised cost function.	
PRACT	CICAL EXPERIMENT Create GridWorld environment & ability to change reward etc. Create RL agent to learn GW. Add functionality to record and turn to GIF. Add functionality to change the reward. Add KLPC functionality.	
RESUL [*]	TS Output of grid with snapshot of arrows whose length reflects the prob of that action. DEMO: GIF of standard RL agent vs GIF of KLPC agent	

CONCLUSIONS		
	How generalizable is this approach to other environments?	
	Compare to other approaches.	
	Shortcomings of this approach.	

- Outside boundary smaller % of grid as grid grows
- Technique works best when goals of tasks align similarly
- Worst case scenario with infinite tasks: uniform inside, perfect outside