静态平板 SDK 开发 Demo 工程说明

昊博研发部-软件组 2021-01-15

目录

一、	开发环境	2
	功能说明	
	图像校正	
四、	流程说明	6
Ŧi.	常见问题	12

目的:针对二次开发集成用户,易于掌握、方便调试和快速集成。

一、开发环境

win7 以上+独立网卡+vs2013+MFC+Opencv249

设置本地 IP 地址和防火墙,详细见附件静态 SDK API 接口开发说明书。

显示部分基于 Opencv249 开发,请先安装 Opencv249。

二、功能说明

2.1、主界面

如下图 1-1 所示,分为 4 个主要区域:**菜单栏、图像显示窗口、状态和控制参数窗口以及功能触发按钮窗口。**

图 1-1

菜单栏-子菜单"快速生成模板",用户可以通过该窗口生成校正模板;

图像显示窗口-**当选择"show Image"显示图像,"Save Image"保存图像。目前没有进行自** 适应窗宽窗位算法,仅为调试;

状态、控制参数窗口-**平板状态**(连接、断开、ready 或 busy 等)、**平板地址端口、触发模式、校正使能选项、帧率设置、PGA**档位调节等;

功能按钮窗口

Single frame acq:		•
3Prepare Delay Time	4 Prepare	5Single Acquisition
Set/Get Configuration:		
6 Firmware Version	7 Get SDK Version	8Get Serial Number
9 5et Image Property	10 Get FPD Config	11 igger & Correction
12set Trigger Mode	13et Correct Enable	14Get Acquire Time
15Set Gain Mode	16 Get Gain Mode	
Continuous collection:		
175et Acquire Time	18Live Acquisition	190p Live Acquisition

序	按钮	参数或者输出	接口函数	描述
1	Connect	FPD IP&PORT: 192 . 168 . 10 . 40 32897	HBI_RegEventCallBackFun(如果没有注册,请先注册) HBI_ConnectDetector	连接平板
2	Disconnect		HBI_DisConnectDetector	断开平板
3	Prepare Delay Time	Prepare Time: 1000 (ms)	HBI_SetPreAcqTm 参数: prepare 延时, 0 和>=1000,unit:ms	设置 prepare 延时时间 参数区别:主要是软触 发模式下的单帧采集 略有区别, 0-prepare+siggle shot 命令完成采集一帧图 像:>=1000-prepare 命 令延时后采集一帧图 像。
4	Prepare	Pre	HBI_Prepare	例,当 prepare 延时为 1000 时,点击后 1000 秒 之 后 上 图 , 当 "prepare"延时为 0 时,点击后显示 Pre 状态。
5	Single Acquisition	采集模式参数,默认 STATIC_ACQ_DEFAULT_MODE 模式	HBI_SingleAcquisition	当 prepare 延时为 0时,点击"prepare"再点击"Single Acquisition"后上一帧图像。
6	Firmware Version	OnBnClickedButtonFirmwareVer szFirmVer=Firmware-2.0.1-200706-release	HBI_GetFirmareVerion	获取固件版本号
7	Get SDK Version	szFirmVer=Firmware-2.0.1-200706-release	HBI_GetSDKVerion	获取 SDK 版本号
8	Get Serial Version	HBI_GetFPDSerialNumber:szSeiralNum=243CS201021001	HBI_GetFPDSerialNumbe	获取平板序列号
9	Get Image Property	HBI_GetImageProperty: nSize=2 width=2560, hight=3072 datatype is unsigned char. databit is 16bits. data is little endian. packet_sum=15360 frame_size=15728640	HBI_GetImageProperty	
10	Get FPD Config	get all firmware config info! HBI_GetDevCfgInfo:width=1280, height=1024 SourceIP:0.0.0.0:0 DestIP:192.168.10.40:32897 PanelSize:0x03,fpd type:3543 width=1280,hight=1024	HBI_GetDevCfgInfo	
11	Trigger & Correction	Trigger Mode: 01-Software Offset Correction: 02-Firmware PostOffset Correction Gain Correction: 01-Software Gain Correction Defect Correction: 01-Software Defect Correction	HBI_TriggerAndCorrectA pplay	设置触发模式和校正 使能
12	Set Trigger Mode	Trigger Mode: 01-Software	HBI_UpdateTriggerMode	设置触发模式

13	Set Correction Enable	Offset Correction: 02-Firmware PostOffset Correction Gain Correction: 01-Software Gain Correction Defect Correction: 01-Software Defect Correction	HBI_UpdateCorrectEnabl	设置校正使能,一版工 作站使用固件 offset 校 正效果比较好,点料机 使用软件 offset 校正。
14	Get Acquire Time		HBI_GetAcqSpanTm	获取连续采集时间间隔
15	Set Gain Mode	PGA Level: 06-7.2pC ▼	HBI_SetGainMode	设置 PGA 档位
16	Get Gain Mode		HBI_GetGainMode	获取 PGA 档位
17	Set Acquire Time	Live Acq Time: 0 (ms)	HBI_SetAcqSpanTm	设置连续采集时间间隔
18	Live Acquisition	Frame Num: 0 : Discard: 0 : 采集模式参数,默认 DYNAMIC_ACQ_DEFAULT_MODE 模式	HBI_LiveAcquisition	连续采集命令: Frame Number: 0-一直采集,直到发送停止采集命令: n>=1, 采集 1~n 张图像。 Discard: 表示抛弃前 n 张图像。
19	Stop Live Acquisition		HBI_StopAcquisition	停止连续采集

2.2、调试信息打印窗口

如下图 1-2 所示, 打印当前调试信息等。

图 1-2

2.3、快速生成模板界面

如下图 1-3 所示, 生成 Offset、Gain 和 Defect 模板。

✓ Offset 模板

需要采集暗场图像,只需要采集一组图像; 步骤:

Offset 模板一般需要每天重做一次(包括不存在 offset 模板)。

- 1》不存在 offset 模板或每天开机后先完成 offset 模板的制作。
- 2》中途有平板断电状况等,再次连接需要下载 offset 模板到固件,否则出现失校正现象。

3》客户可根据 offset 模板文件判断是否重做 offset 模板或者下载模板。

例如: offset 模板不存在或者文件属性创建日期为 T-1 的,重做 offset 模板,上位机发送做 offset 模板命令,软件端完成 offset 模板并在本地保存一张 offset 模板。

✓ Gain 模板

需要采集亮场图像,需要清场,不能在平板上放置物品等, 采集 1 组亮场场图,整常高压,毫安秒调节正常的 50%。 步骤:

- 1》设置固件 Offset 使能: 03-preoffset correction;
- 2》调节好剂量,采集一组亮场并成成模板;
- 3》将 gain 模板下载到固件;
- ✓ Defect 需要采集暗场图像,只需要采集一组图像

defect 模板需要采集 3 组亮场图像,需要清场,不能在平板上放置物品等

Group1: 正常高压,毫安秒调节正常的 10% Group2: 正常高压,毫安秒调节正常的 50%

Group3: 正常高压,毫安秒调节正常

步骤:

- 1》调节剂量采集第一组亮场;
- 2》调节剂量采集第二组亮场;
- 3》调节剂量采集完第三组亮场图,将自动生成 defect 模板,并保存在本地;

图 1-3

三、图像校正

静态平板一般使用软件校正,固件支持 offset 校正。默认校正使能如下图 1-4 所示。

图 1-4

例如:

医用或宠物工作站: 固件 offset、软件 gain 和 defect 校正,效果比较好。

点料机:软件 offset、gain 和 defect 校正,效果比较好。

四、流程说明

以本工程为例说明

HBI DLL 为 SDK 对外接口文件。

HBI_DLL\INCLUDES: 包含 HbFpdDll.h、HbDllType.h 和 HbDllError.h 一共三个头文件。

- a.《HbFpdDll.h》:导出函数以及说明,具体可参考《HBI Static FPD API Programming Reference Ver*.pdf;
 - b.《HbDIIType.h》: 命令、回调函数定义返回事件类型以及固件参数结构体;
 - c.《HbDllError.h》: 错误以及返回码信息表;

HBI DLL\BIN: 动态库库文件,注意 32bits 和 64bits;

HBI DLL\DOC: API 接口函数说明文档。

1、添加头文件

将"HBI_DLL\INCLUDES"头文件拷贝的用户开发指定目录下; 将动态库文件"HBI DLL\BIN"拷贝到用户工程目录或者系统目录下,注意 32bits 和 64bits;

2、接口调用流程

}

```
#define DLL EX IM O
#include "HbFpdD11.h"
#pragma comment(lib, "HBI_FPD.lib")
// 基本数据类型
void* m pFpd;
RegCfgInfo* m pLastRegCfg; // 固件配置
FPD_AQC_MODE aqc_mode; // 采集模式和参数,单帧采集、多帧采集、暗场图以及亮场图采集
bool IsOpen;
                                             //快速生成模板窗口句柄
HWND m templateHwnd;
int m_imgW, m_imgH;
                       // 图像分辨率
char m path[MAX PATH];
fpd_base_cfg_st *fpd_base;
IMAGE_PROPERTY img_pro;
char szSdkVer[128];
char szFirmVer[128];
char szSeiralNum[16];
CALIBRATE_INPUT_PARAM m_calibrate_param;
// 初始化 DLL 资源
void *m_pFpd = HBI_Init();
if (m_pFpd == NULL) {
 printf("HBI_Init init failed!\n");
 return false;
```

```
// 设置注册回调函数
// mvCallbackFun 回调函数
int ret = HBI_RegEventCallBackFun(m_pFpd, myCallbackFun);
if (ret != 0) {
    printf("HBI_RegEventCallBackFun failed!\n");
    HBI_Destroy(m_pFpd);
  m pFpd = NULL;
    return false;
}
// 连接
// timeout 参数系统已默认,改为 offset 模板控制参数
// 1-表示初始化做 offset 模板, 非 1 不做 offset 模板
ret = HBI_ConnectDetector(m_pFpd, "192.168.10.40", 32897, "192.168.10.20", 32896, 0);
if (ret != 0) {
    printf("连接失败!\n");
    HBI Destroy(m pFpd);
 m_pFpd = NULL;
    return false;
// 设置触发模式和图像矫正使能
int _triggerMode = 3; // 1-软触发, 3-高压触发, 4-freeAED
IMAGE_CORRECT_ENABLE* pCorrect = new IMAGE_CORRECT_ENABLE;
if (pCorrect != NULL) {
    pcorrect->bFeedbackCfg = true;
                                       //true-ECALLBACK_TYPE_ROM_UPLOAD
Event, false-ECALLBACK TYPE SET CFG OK Event
    pcorrect->ucOffsetCorrection = 0x02; //00-"Do nothing";01-"prepare Offset Correction";
02-"post Offset Correction";
    pcorrect->ucGainCorrection = 0x01; //00-"Do nothing";01-"Software Gain Correction";
02-"Hardware Gain Correction"
    pcorrect->ucDefectCorrection = 0x01; //00-"Do nothing"; 01-"Software Defect Correction";
02-"Software Defect Correction"
    pcorrect->ucDummyCorrection = 0x01; //00-"Do nothing";01-"Software Dummy Correction";
02-"Software Dummy Correction"
    ret=HBI_TriggerAndCorrectApplay(m_pFpd, _triggerMode, pCorrect);
    if (ret != 0) {
        printf("连接失败!\n");
    }
// 断开连接
//HBI_DisConnectDetector(m_pFpd));
// 回收资源(包括断开连接和资源释放)
HBI_Destroy(m_pFpd);
m_pFpd = NULL;
注意:
```

- 1》连接成功后,平板会自动反馈 ROM 参数。
- 2》HBI Init 和 HBI Destroy: 连接和断开平板对应;
- 3》HBI ConnectDetector 和 HBI DisConnectDetector: 初始化和释放设备对应;
- 4》HBI_SetSysParamCfg 和 HBI_GetSDKVerion:都是读取平板固件参数,HBI_SetSysParamCfg 是向固件发请求获取参数,异步函数;HBI_GetSDKVerion 是连接成功或设置成功后获取参数,同步函数。
- 5》HBI_ConnectDetector 连接平板,回调事件 ECALLBACK_TYPE_ROM_UPLOAD 反馈当前固件的参数,这里基本信息已固化好,用户可以直接使用
- 6》HBI_TriggerAndCorrectApplay,根据参数反馈 ECALLBACK_TYPE_ROM_UPLOAD 反馈当前固件的参数和 ECALLBACK TYPE SET CFG OK 事件确认成功,用户根据实际情况设置参数。
- 7》HBI_Destroy 释放资源,句柄为 NULL,如果直接关闭,调用 HBI_Destroy 即可,HBI_Destroy 中已包含 HBI_DisConnectDetector 的调用。
- 3、注册回调函数

#回调函数及事件说明:


```
#p0bj: 对象指针
#command: 事件 ID
#buff: 缓冲区地址
#len: 缓冲区长度
#nid: 图像数据为帧号

// 以下 theDemo 指针是自定义的全局指针,见 SDK 工程源码
CHB_SDK_DEM02008D1g *theDemo = (CHB_SDK_DEM02008D1g *) this;
// 回调函数
```

// 回调函数 int CHB SDK DEMO2008Dlg::handleCommandEvent (unsigned char command, void *buff, int len, int nId) int ret = 0; ((command ECALLBACK TYPE SINGLE IMAGE) if (command ECALLBACK TYPE MULTIPLE IMAGE) || (command == ECALLBACK TYPE ROM UPLOAD) | (command == ECALLBACK TYPE RAM UPLOAD)) if (buff == NULL | | len == 0) { printf("注册回调函数参数异常!\n"); return ret; // switch (command) case ECALLBACK_TYPE_NET_ERR_MSG: // 平板状态: 连接/断开/ready/busy break; case ECALLBACK TYPE ROM UPLOAD: // 更新配置 break: case ECALLBACK TYPE SET CFG OK: // 参数设置成功,不反馈全部参数 break; case ECALLBACK TYPE SINGLE IMAGE: // 单帧采集上图 case ECALLBACK TYPE MULTIPLE IMAGE: // 连续采集上图 case ECALLBACK TYPE THREAD EVENT: // 主线程监控 break; case ECALLBACK TYPE ACQ SUCCESS: // 连续采集保存成功 break; case ECALLBACK TYPE GENERATE TEMPLATE: // 生成模板结果信息 break. case ECALLBACK TYPE FILE NOTEXIST: // 反馈文件是否存在

```
break;
    default:
        printf("ECALLBACK_TYPE_INVALVE, command=%02x\n", command);
        break;
    return ret;
4、制作模板
1> Offset 模板
int CTemplateTool::DoOffsetTemp()
    if (theDemo == NULL) {
        ::AfxMessageBox("err:theDemo is NULL!");
        return -1;
    if (!theDemo->m_pFpd) {
        ::AfxMessageBox("warning:请初始化动态库!");
        return -1;
    if (!theDemo->IsOpen) {
        ::AfxMessageBox("warning:请连接平板!");
        return -1;
    }
    GetDlgItem(IDC_BTN_TEMPLATE GENERATE) -> EnableWindow(false);
    EnumIMAGE ACQ MODE enumTemplateType = OFFSET TEMPLATE MODE;
    int ret = HBI ImmediateGenerateTemplate(theDemo->m pFpd, enumTemplateType);
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(true);
    return ret:
2> Gain 模板
    int CTemplateTool::DoGainTemp()
    if (theDemo == NULL) {
        ::AfxMessageBox("err:theDemo is NULL!");
        return -1;
    }
    if (!theDemo->m pFpd) {
        ::AfxMessageBox("warning:请初始化动态库!");
        return -1;
    if (!theDemo->IsOpen) {
        ::AfxMessageBox("warning:请连接平板!");
        return -1;
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(false);
    EnumIMAGE ACQ MODE enumTemplateType = GAIN TEMPLATE MODE;
```

```
int ret = HBI_ImmediateGenerateTemplate(theDemo->m_pFpd, enumTemplateType);
    GetDlgItem(IDC BTN TEMPLATE GENERATE) -> EnableWindow(true);
    return ret;
3> Defect 模板
// 第一组亮场
int CTemplateTool::DoDefectGroup1()
    if (theDemo == NULL) {
        ::AfxMessageBox("err:theDemo is NULL!");
        return -1;
    }
    if (!theDemo->m_pFpd) {
        ::AfxMessageBox("warning:请初始化动态库!");
        return -1;
    if (!theDemo->IsOpen) {
        ::AfxMessageBox("warning:请连接平板!");
        return -1;
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(false);
    EnumIMAGE_ACQ_MODE enumTemplateType = DEFECT_ACQ_GROUP1;
    int ret = HBI ImmediateGenerateTemplate(theDemo->m pFpd, enumTemplateType);
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(true);
    return ret;
// 第二组亮场
int CTemplateTool::DoDefectGroup2()
    if (theDemo == NULL) {
        ::AfxMessageBox("err:theDemo is NULL!");
        return -1;
    if (!theDemo->m_pFpd) {
        ::AfxMessageBox("warning:请初始化动态库!");
        return -1;
    }
    if (!theDemo->IsOpen) {
        ::AfxMessageBox("warning:请连接平板!");
        return -1;
    }
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(false);
    EnumIMAGE_ACQ_MODE enumTemplateType = DEFECT_ACQ_GROUP2;
    int ret = HBI_ImmediateGenerateTemplate(theDemo->m_pFpd, enumTemplateType);
```

```
GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(true);
    return ret:
}
// 第三组亮场
int CTemplateTool::DoDefectGroup3()
    if (theDemo == NULL) {
         ::AfxMessageBox("err:theDemo is NULL!");
         return -1;
    if (!theDemo->m pFpd) {
         ::AfxMessageBox("warning:请初始化动态库!");
         return -1;
    if (!theDemo->IsOpen) {
         ::AfxMessageBox("warning:请连接平板!");
         return -1;
    }
    GetDlgItem(IDC BTN TEMPLATE GENERATE) -> EnableWindow(false);
    EnumIMAGE_ACQ_MODE enumTemplateType = DEFECT_ACQ_AND_TEMPLATE;
    int ret = HBI_ImmediateGenerateTemplate(theDemo->m_pFpd, enumTemplateType);
    GetDlgItem(IDC_BTN_TEMPLATE_GENERATE) -> EnableWindow(true);
    return ret;
具体请参考 Demo 源码例子工程。
5、校正使能
医用或宠物工作站: 固件 offset、软件 gain 和 defect 校正,效果比较好。
                                02-Firmware PostOffset Correction
                Offset Correction:
                                01-Software Gain Correction
                Gain Correction:
                Defect Correction:
                                01-Software Defect Correction
点料机:软件 offset、gain 和 defect 校正,效果比较好。
                                01-Software Offset Correction
                Offset Correction:
                                01-Software Gain Correction
                Gain Correction:
                Defect Correction:
                                01-Software Defect Correction
以点料机为例:
    IMAGE CORRECT ENABLE *pcorrect = new IMAGE CORRECT ENABLE;
    if (pcorrect != NULL) {
#if 0
         pcorrect->bFeedbackCfg = false; // false-ECALLBACK_TYPE_SET_CFG_OK Event
#else
         pcorrect->bFeedbackCfg = true; // //true-ECALLBACK TYPE ROM UPLOAD Event,
```

```
#endif
    pcorrect->ucOffsetCorrection = 1;
    pcorrect->ucGainCorrection = 1;
    pcorrect->ucDefectCorrection = 1;
    pcorrect->ucDummyCorrection = 0;
    int ret = HBI_UpdateCorrectEnable(m_pFpd, pcorrect);
    if (ret == 0)
        printf("OnBnClickedBtnCorrectEnable:\n\tHBI_UpdateCorrectEnable
success!\n");
    else
        ::AfxMessageBox("HBI_QuckInitDllCfg failed!");
    delete pcorrect;
    pcorrect = NULL;
}
else {
    ::AfxMessageBox("malloc IMAGE_CORRECT_ENABLE failed!");
}
```

五、常见问题

依赖库:目前 SDK 使用了 Opencv249,将 Opencv249 的库文件拷贝系统库目录或者 exe 目录下即可,注意 32 位和 64 位库。

有些 Window 系统缺少 vs 库,请安装 vs 环境库。

结束语:由于时间匆忙,文档可能会存在个别问题,望见谅!