Fall 2014

HW 2 (Section 2)

Solutions for 10-29

10)

a)
$$H(z) = \sum_{n=-\infty}^{\infty} h[n] z^{-n}$$

 $= \sum_{n=0}^{\infty} h[n] z^{-n} = 1 - \sqrt{2} z^{-1} + z^{-2}$
 $= \left(1 - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)z^{-1}\right) \left(1 - \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)z^{-1}\right)$
 $= \left(z - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)\right) \left(z - \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)z^{-1}\right)$

b) Since ROC contains the nit circle, this system has a frequency response. H(e)u)= H(z) = 1-52eju+1ej2u = e-ju (ejw - \(\overline{12} + e^{-ju} \) = e^{-ju} (2cosw - \(\overline{12} \)) | H(eju) = | 2005w-12 | 1 H(ein) = -w + 1 (2casw-12) 2 cosw- 52 ... periodic poriodia with 2 To with 2 Tr 14(ei-) · periodic with 27 periodic with 2 m -TI/2 +TI/4 4 H(ein) periodic with 27 periodic with 251 -11/4

i)
$$x_1[n] = \sin\left(\frac{\pi}{4}n + \frac{\pi}{4}\right) = \frac{e^{\frac{\pi}{4}n + \frac{\pi}{4}} - e^{\frac{\pi}{4}n + \frac{\pi}{4}}}{2j}}{2j}$$

$$y_1[n] = \frac{e^{\frac{\pi}{4}n} + 1e^{\frac{\pi}{4}n}}{2j} = \frac{e^{\frac{\pi}{4}n + \frac{\pi}{4}} - e^{\frac{\pi}{4}n + \frac{\pi}{4}}}{2j} + 1e^{\frac{\pi}{4}n}}{2j} = 0$$

$$y_1[n] = 0$$

ii)
$$x[n] = e^{j\omega n} u[n]$$

 $y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k] = \sum_{k=-\infty}^{\infty} h[k] e^{j\omega(n-k)}$

Since WINT is cousal

$$y[n] = \begin{cases} 0 & n < 0 \\ \left(\sum_{k=0}^{\infty} h[k] e^{jwk} \right) e^{jwn} & n \ge 0 \end{cases}$$

For nz0

$$y[n] = \left(\sum_{k=0}^{\infty} h[k] e^{-juk} \right) e^{jun} - \left(\sum_{k=n+1}^{\infty} h[k] e^{-juk} \right) e^{jun}$$

$$= H(e^{ju}) e^{jun} - \left(\sum_{k=n+1}^{\infty} h[k] e^{-juk} \right) e^{jun}$$

$$x_{2}[n] = \sin\left(\frac{\pi}{4}n + \frac{\pi}{4}\right) u[n] = \left(\frac{e^{j\pi/4}}{2j}e^{j\pi/4} - \frac{e^{j\pi/4}}{2j}e^{j\pi/4}\right) u[n]$$

$$y_{2}[n] = \frac{e^{j\pi/4}}{2j}e^{j\pi/4} + \left(\frac{e^{j\pi/4}}{2j}e^{j\pi/4}\right) - \left(\frac{e^{j\pi/4}}{2j}e^{j\pi/4}\right) + \left(\frac{e^{j\pi/4}}{$$

$$y_{2}[0] = -\left(\frac{2}{2}h[h]e^{-j\pi/4}k\right)e^{-j\pi/4}$$

$$y_{2}[1] = -\left(\frac{2}{2}h[k]e^{j\pi/4}k\right) = \frac{j\pi/4}{2j}e^{j\pi/4} + \left(\frac{2}{2}h[k]e^{j\pi/4}k\right) = \frac{j\pi/4}{2j}e^{j\pi/4}$$

$$= -1e^{-j\pi/2}e^{j\pi/2} + e^{-j\pi/2}e^{-j\pi/2} = 0$$

$$y_{2}[n] = 0 \quad n \ge 2$$

$$y_{2}[n] = \frac{1}{\sqrt{2}} \Im[n]$$

111)
$$X_{3}[n] = \sin\left(\frac{\pi}{L}n + \frac{\pi}{L}\right) + \sin\left(\frac{3\pi}{L}n\right)$$

$$x_{3}[n] = y_{4}[n] + y_{5}[n]$$

$$x_{5}[n] * h[n]$$

$$x_{5}[n] * h[n]$$

$$(fram i))$$

$$y_{3}[n] = \frac{e^{j3\pi/4n}}{2j} + (e^{j3\pi/4}) - \frac{e^{-j3\pi/4n}}{2j} + (e^{j3\pi/4})$$

$$H(e^{j\frac{3\pi}{4}}) = e^{j\frac{3\pi}{4}} \left(2\cos\frac{3\pi}{4} - \sqrt{2}\right) = 2\sqrt{2}e^{j\pi/4}$$

$$H(e^{j\frac{3\pi}{4}}) = e^{j\frac{3\pi}{4}} \left(2\cos\frac{3\pi}{4} - \sqrt{2}\right) = 2\sqrt{2}e^{j\pi/4}$$

$$H(e^{j\frac{3\pi}{4}}) = e^{j\frac{3\pi}{4}} \left(2\cos\left(\frac{2\pi}{4}\right) - \sqrt{2}\right)$$

$$H(e^{j\frac{3\pi}{4}}) = e^{j\frac$$

d) When the zeros of H(z) are on the vit circle, of the frequencies where these zeros are located H(e)u) of the frequencies where these zeros are located H(e)u) (frequency response) is O. For exemple when H(z) has a zero whose zo = ejwo; H(ejwa) is O.