PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-037992

(43) Date of publication of application: 19.02.1991

(51)Int.Cl.

H05B 33/10 C09K 11/06

H05B 33/14

(21)Application number: 01-171037

(71)Applicant: IDEMITSU KOSAN CO LTD

(22) Date of filing:

04.07.1989

(72)Inventor: YOKOYAMA SEIICHIRO

(54) MANUFACTURE OF ORGANIC ELECTROLUMINESCENCE ELEMENT

(57) Abstract:

PURPOSE: To enable the efficient manufacture of an organic electroluminnescent element of a large luminous amount and area, and long lifetime with relatively simple operation by forming a luminous layer on the electrode of anode or cathode via a process with power supply in the condition where the film of a luminous layer material is formed.

CONSTITUTION: A luminous layer material is dispersed or solubilized in a water soluble media with an interfacial active agent of 10 to 20 HLB. In addition, a luminous layer is formed on the electrode of anode or cathode via the processing of the dispersed or solubilized solution with power supply in the condition where the layer of the luminous layer is generated. According to the aforesaid construction, operation such as alignment is not required in laminating functional thin films on the electrode, and a desired thin film can be efficiently manufactured with relatively simple operation. Also, the obtained organic EL element has a wide contact area and high brightness and efficiency.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

http://www1.ipdl.jpo.go.jp/PA1/result/detail/main/wAAAa12570DA403037992P1.htm

11/22/2002

@ 公 開 特 許 公 報 (A) 平3-37992

@Int. Cl. '

證別記号 庁内整理番号

❸公開 平成3年(1991)2月19日

H 05 B 33/10 C 09 K 11/06 H 05 B 33/14 Z 6649-3K 7043-4H 6649-3K

審査請求 未請求 請求項の数 5 (全13頁)

◎発明の名称 有機エレクトロルミネッセンス素子の製造方法

②特 願 平1-171037

@出 頤 平1(1989)7月4日

⑩発 明 者 横 山 清 一 郎 ⑪出 願 人 出光興産株式会社

千葉県君津郡袖ケ浦町上泉1280番地 出光興産株式会社内

東京都千代田区丸の内3丁目1番1号

四代 理 人 弁理士 大 谷 保

明細霉

1. 発明の名称

有機エレクトロルミネッセンス素子の製造方法 2. 特許請求の範囲

- (1) 陽極/発光層/路極からなる有機エレクトロルミネッセンス素子を製造するにあたり、発光層材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは可溶化溶液を、陽極あるいは降極の電極上に前記発光層材料の膜が生成する条件下で通電処理して発光層を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
- (2) 陽極/正孔注入輸送層/発光層/陰極からなる有機エレクトロルミネッセンス素子を製造するにあたり、正孔注入輸送層材料及び/又は発光層材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは可溶化溶液を、陽極あるいは降極の電極上に前記材料の膜が生成する条件下で通電処理して正孔注入輸送層及び/又は発光層を形成すること

を特徴とする有機エレクトロルミネッセンス素子 の製造方法。

- (3) 陽極/発光層/電子注入輸送層/陰極からなる有機エレクトロルミネッセンス案子を製造するにあたり、発光層材料及び/又は電子注入輸送層材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは可溶化溶液を、陽極あるいは陰極の電極上に前記材料の膜が生成する条件下で通電処理して発光層及び/又は電子注入輸送層を形成することを特徴とする有機エレクトロルミネッセンス案子の製造方法。
- (4) 陽極/正孔注入輸送層/発光層/電子注入 輸送層/陸極からなる有機エレクトロルミネッセ ンス素子を製造するにあたり、正孔注入輸送層材料 料、発光層材料及び電子注入輸送層材料の少なく とも一層の材料を水性媒体中でHLB値10~ 20の界面活性剤にて分散あるいは可溶化して得 た分散液あるいは可溶化溶液を、陽極あるいは陰 極の電極上に前記材料の腹が生成する条件下で通

電処理して正孔注入輸送層、発光層及び電子注入 輸送層の少なくとも一層を形成することを特徴と する有機エレクトロルミネッセンス業子の製造方 法。

(5) 界面活性剤がフェロセン誘導体である請求 項1~4のいずれかに記載の製造方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は有機エレクトロルミネッセンス素子の 製造方法に関し、詳しくは発光量が多く、応答速 度が速く、種々の表示材料等として有用な有機エ レクトロルミネッセンス素子の効率のよい製造方 法に関する。

(従来の技術及び発明が解決しようとする課題) エレクトロルミネッセンス素子(以下EL業子 という)は、自己発光のため視認性が高く、また 完全固体素子であるため耐街製性に優れるという 特徴を有しており、現在、無機。有機化合物を発 光層に用いた様々なEL素子が提案され、実用化 が試みられている。このうち、有機薄膜EL案子

な操作で効率よく製造する方法を開発すべく鋭意 研究を重ねた。

その結果、発光層の材料あるいはその他の機能層の材料を水性媒体中でHLB値10~20の界面活性剤を用いて得られる分散液あるいは可溶化液を電極上で特定の条件下で通電処理する方法、所調ミセル電解法を用いて発光層等を形成することにより、上記の課題を達成できることを見出した。

本発明はかかる知見に基づいて完成したりである。すなわち、本発明は隔極/発光層/降極からなる有機Eし強子を製造するにあたり、発光層材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは降極の環体を、隔極あるいは降極の環境とに前記発光層を形成することを特徴とする有機Eし業子の製造方法を提供するものである。また、本発明は隔極/正孔注入輸送層/発光層/電子注入輸送

は、印加電圧を大幅に低下させることができるた め、各種材料が開発されつつある。

この有機譲居し案子としては、陽極/発光層/陰極からなる有機民し案子、陽極/正孔注入輪送層/発光層/陰極からなる有機民し素子、陽極/発光層/陰極からなる有機区し素子は陽極/正孔注入輪送層/発光層/電子注入輸送層/除極からなる有機民し業子など、電極に発光層及び各種機能を有する薄層を積層したものが種々開発されている。

世来、このような有機EL素子の製造方法としては種々の積層方法、例えば蒸着法、イオンビーム法、プラズマ重合法、LB法等を利用した方法が知られている。しかし、これらの方法では、その工程が複雑であり生産性が悪いという欠点があった。また、これらの方法で得られる有機EL素子は発光量や発光面積が小さいなどの問題がある。(課題を達成するための手段)

そこで本発明者らは、発光量及び発光面積が大きく、また券命が長い有機EL素子を比較的簡易

層/路極からなる有機EL案子あるいは陽極/正孔注入輸送層/発光層/電子注入輸送層/路極からなる有機EL案子を製造するにあたって、正孔注入輸送層材料,発光層材料及び電子注入輸送層材料の少なくとも一層の材料を上記方法と同様にして分散液あるいは可溶化溶液として、これを通電処理して所望する機能層を形成して有機EL案子を製造する方法をも提供するものである。

パッタリング法、エッチング法、キャスト法、ディップ法、LB法などを組み合わせて行うことができる。

本発明において用いられる有機EL素子の発光 層材料としては、発光機能の有機化合物であれば 良く、特に制限はなく、従来公知の化合物の中か ら任意に選択して用いることができる。例えば多 環総合芳香族化合物、ベンゾチアゾール系、ベン ゾイミダゾール系、ベンソオキサゾール系などの 蛍光増白剤、金属キレート化オキシノイド化合物、 ジスチリルベンゼン系化合物などを用いることが できる。

前記多環縮合芳香族化合物としては、例えばアントラセン、アントラキノン、ナフタレン、フェナンスレン、ピレン、クリセン、ベリレン骨格を含む縮合環発光物質や、約8個の縮合環を含む他の縮合理発光物質などを挙げることができる。また前記各系の蛍光増白剤としては、例えば特開昭59—194393号公報に記載のものを用いることができ、その代表例としては、2、5ービス

ベンソチアソールなどのベンゾチアソール系、2 - (2-(4-(2-ベンソイミダゾリル)フェ ニル)ビニル)ベンソイミダゾール:2-(2-(4-カルボキシフェニル)ビニル)ベンソイミ ダゾールなどのベンソイミダゾール系などの蛍光 増白剤が挙げられる。

また前記金属キレート化オキサノイド化合物としては、例えば特開昭 6 3 - 2 9 5 6 9 5 号公報記載のものを用いることができる。その代表のとしては、トリス(8 - キノリノール)マグネシウムム・ピス(8 - キノリノラート))アルシーとは、トリス(8 - キノリノラート))アルシーンがリス(8 - キノリノール))カルシーンのは、トリス(8 - キノリノール))カルシーンのは、トリス(8 - キノリノール))カルシーとに、ボリ(更鉛(Ⅱ)・ピス(8 - ヒドローン)などの8 - ヒドロール)メタン)などの8 - ヒドロール)メタン)などの8 - ヒドロール)メタン

(5、 7 - ジー L ー ペンチルー 2 ー ベンゾオキサ ゾリル) -1. 3. 4-チアジアゾール; 4, 4' -ピス (5. 7-t-ペンチルー2-ペンゾオキ ... サゾリル) スチルペン; 4、4′ ーピス (5、7 ージー(2-メチルー2ーブチル)ー2ーベンゾ オキサゾリル) スチルベン: 2, 5ーピス (5, **1ージーヒーペンチルー2ーペンゾオキサゾリル)** チオフェン; 2, 5 -ピス $\{5 - (α, α - ジメ$ チルベンジル) -2 -ベンゾオキサゾリル) チォ フェン;2、5ーピス(5、7ージー(2ーメチ ルー2ープチル) - 2 - ベンゾオキサゾリル) -3. 4ージフェニルチオフェン; 2, 5ーピス (5-メチルー2ーペンゾオキサゾリル)チオフ ェン: 4, 4'ーピスー (2ーペンゾオキサゾリ ル) ピフェニル: 5 -メチルー2 - (2 ~ (4 -(5-メチルー2-ベンゾオキサゾリル) フェニ ル】ピニル】ベンゾオキサゾール:2-〔2-(4-クロロフェニル) ピニル] ナフト〔1, 2 - d 〕 オキサゾールなどのペンプオキサゾール系、 2, 2'ー(pーフェニレンジピニレン)ーピス

シキノリン系金属指体やジリチウムエピンドリジ オンなどが挙げられる。

また、前記ジスチリルベンゼン系化合物としては、例えば特限平1-29681号明細書に記載のものを用いることができる。明細書記載の1、4-ビス(アルキルスチリル)ベンゼン誘導体としては各種のものがあるが、例えば次のものをあげることができる。

本発明の有機已上素子における発光層は、上記の材料から適宜選定して用いればよいが、二種類以上を併用することもできる。

また、発光層は、電極の間に一層だけ存在させてもよく、あるいは別の材料の発光層を積層してもよい。さらに、目的とする常子に応じて、電極と発光層の間に正孔注入輸送層及び/又は電子注入輸送層とを介在させることも有効である。また、各機能層は、一層からなるものでも、また複数の層からなるものでもよい。

このように、各機能層の積層構造とすることにより、発光層だけの単層型のものより発光強度を 大幅に向上させることができる。

本発明の有級已し素子としては、(1)隔極/発光 個/陸極,(2)隔極/正孔往入輸送層/発光層/陰 極,(3)隔極/正孔注入輸送層/発光層/電子注入 輸送層/陰極あるいは(4)陽極/発光層/電子往入 輸送層/陰極をこの順序で積層した各態機のもの をあげることができる。

正孔注入輪送層を隔極と発光層との間に快むことにより、より低い電界で多くの正孔が発光層のは発光層とは入される正孔注入輪送層の材料は、 は、 関極より注入された正孔を発光層に合物に伝染化合物は、 10 °~10°ボルト/とのでは、 10°~10°ボルトグロの電場を与えられた電極間に層が配置された場合は、 10°~10°ボルトがありました。 それに 10°では、 光線電材料として 10°でに 1

このような電荷輸送材として以下のような例が あげられる。

①米国特許第3112197号明細費等に記載されているトリアゾール誘導体、

②米国特許第3189447号明細督等に記載さ

れているオキサジアゾール誘導体、

②特公昭37-16096号公領等に記載されて いるイミダゾール誘導体、

④米国特許第3615402号。同3820989号。同3542544号明細書や特公昭45~555号。同51-10983号公報さらには特別昭51-93224号。同55-17105号。同56-4148号。同55-108667号。同55-156953号。同56-36656号公報等に記載されているポリアリールアルカン誘導体、

⑤米国特許 第3 1 8 0 7 2 9 号。同4 2 7 8 7 4 6 号明細審や特開昭 5 5 - 8 8 0 6 4 号。同5 5 - 8 8 0 6 5 号。同4 9 - 1 0 5 5 3 7 号。同5 5 - 5 1 0 8 6 号。同5 6 - 8 0 0 5 1 号。同5 6 - 8 8 1 4 1 号。同5 7 - 4 5 5 4 5 号。同5 4 - 1 1 2 6 3 7 号。同5 5 - 7 4 5 4 6 号公银等に記載されているピラゾリン誘導体およびピラゾロン誘導体

⑥米国特許第3615404号明細書や特公昭·

5 1 - 1 0 1 0 5 号、同 4 6 - 3 7 1 2 号、同 4 7 - 2 5 3 3 6 号公報さらには特別昭 5 4 - 5 3 4 3 5 号、同 5 4 - 1 1 0 5 3 6 号。同 5 4 - 1 1 9 9 2 5 号公報等に記載されているフェニレンジアミン誘導体、

⑦米国特許第3567450号。同3180703 号,同3240597号。同3658520号。 同4232103号。同4175961号。同 4012376号明細書や特公昭49-35702 号。同39-27577号公報さらには特別昭 55-144250号。同56-119132号。 同56-22437号公報、西独特許第1110518 号明細書等に記載されているアリールアミン誘導体、

①米国特許第3526501号明細書等に記載されているアミノ置換カルコン誘導体、②米国特許第3257203号明細書等に記載されているオキサゾール誘導体、

動特開昭56-46234号公報等に記載されているスチリルアントラセン誘導体、

①特開昭54-110837号公報等に記載されているフルオレノン誘導体、

①米国特許第3717462号明細審や特別昭 54-59143号,同55-52063号,同 55-52064号。同55-46760号。同 55-85495号,同57-11350号。同 57-148749号公報等に記載されているヒ ドラゾン誘導体。

砂特開昭61-210363号、同61 228451号、同61-14642号、同61 72255号、同62-47646号、同62-36674号、同62-10652号、同62-30255号、同60-93445号、同60-94462号、同60-174749号、同60-175052号公報等に記載されているスチルベン誘導体などを列挙することができる。

さらに特に好ましい例としては、特別昭63-2956.95号公報に開示されているホール輸送暦としての化合物(芳香族三級アミン)や正孔往入帯としての化合物(ポルフィリン化合物)をあ

げることができる。

さらに特に正孔伝達化合物として好ましい例は、特開昭53-27033号公報。同54-58445号公報。同54-149634号公報。同54-64299号公報。同55-79450号公報。同55-144250号公報。同56-119132号公報。同61-295558号公報。同61-98353号公報及び米国特許第4127412号明細書等に開示されているものである。それらの例を示せば次の如くである。

あって、陰極より注入された電子を発光層にする 機能を有するものである。このような材料として は上記の如き機能を有する薄膜を形成しうるもの であれば、特に制限なく使用することができる。 具体的には次のようなものがあげられる。

などのニトロ置換フルオレノン誘導体、

②特開昭 5 7 - 1 4 9 2 5 9 号, 同 5 8 - 5 5 4 5 0 号, 同 6 3 - 1 0 4 0 6 1 号公報等に記載されているアントラキノジメタン誘導体、

②Polymer Preprints, Japan Vol. 37, No.3 (1988).p.681等に記載されている

などのジフェニルキノン誘導体、

本発明の正孔注入輸送層はこれらの化合物を 1 種または 2 種以上から成る一層で構成されてもよいし、あるいは別種の化合物からなる他の正孔注入輸送層を積層したものであってもよい。

一方、本発明では、電子注入輸送層を陰極と発 光層との間に挟むことにより、より低い電界で多 くの電子が発光層に注入される。電子注入輸送層 の材料としては、電子伝達化合物から成るもので

などのチオピランジオ

キシド誘導体、

⑤J. J. APP1. Phys., 27, L 269(1988)等に記載されている

で表わされる化合物、

⑤特開昭60-69657号。同61-143764号。同61-148159号公報等に記載されているフレオレニリデンメタン誘導体、

⑦特開昭 6 1 - 2 2 5 1 5 1 号。同 6 1 - 2 3 3 7 5 0 号公報等に記載されているアントラキノジメタン誘導体及びアントロン誘導体などをおげることができる。

®日本学術振興会。光電相互変換第125委員会 第129回研究会にて九州大学 安達らの講演に より開示された

で表わされる化合物、

本発明の方法では、上記の如き材料を用いて、所謂ミセル電解法、即ちこれらの材料を水性媒体中でHLB値10~20の界面活性にて分散あるいは可溶化して得た分散液あるいは可溶化溶液を、電極(陽極又は陰極)上に前記材料の膜(薄膜)が生成する条件下で通電処理する方法を行うことにより、効率よく薄膜の層を形成することができる。

このような有機 P L 素子は通常基板上に形成される。本発明の有機 E L 素子において使用される 基板は、透明性を有するものが好ましく、一般に ガラス、透明プラスチック、石英等が充当される。 また、電橋(陽極、陰極)としては次の如きも、 のが好ましい。陽極としては仕事関数の大きい即

Na、Na-K合金、Mg、Li、Mg/Cu混合物、Al/AlOz、Inなどが挙げられる。 该路径は、これらの電極物質を蒸着あるいはスパッタリングなどの方法により、薄膜を形成させる。 ことにより作製することができる。前記のような 公知のマスク法、エッチング法によりパターンの 工できる。また電径としてシート抵抗は数百Ω/ に以下が好ましい。さらに膜厚は通常10nmの で選ばれる。なお、本発明の素子においては致弱 であることが発光を透過し、取り出す効率がよい ので好ましい。

本発明の方法では、まず上述の如き基板上に上記の方法にて電極(隔極または降極)をパターニングして形成し、このものの上に所望の薄層、即ち発光層。正孔注入輸送層あるいは電子注入輸送層の少なくとも一層を、所謂ミセル電解法にて積層し、さらに電極、基板上の電極が降極の場合は隔極を形成す

ち、4 e V 以上の金属、合金、電気伝導性化合物及びこれらの混合でなって極物質をあるの具体例としている。このでは、A u などのの場では、 C u l 、 l T O 、 S n O z 、 Z n O などとが明初をでは、 A u などととが明初をでは、 では、 T n O などというのでは、 T n O などというのでは、 T n o では、 T n o ではないができる。 などの方法によりできる。 ないは、 できないないない。 などの方法によりを形形では、 できないない。 などすることがのは、 できないない。 できないない。 できないない。 できないない。 または、 T o ではより先光を取り出する。 このでは、 またない。 またなり 発光をすることが 望ましい。 またない・ト 抵抗は数百Ω/では以下が好ましい。

一方、陰極としては仕事関数の小さい即ち、4 e V以下の金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、

さらに腹厚は材料にもよるが、通常10~200

nnの範囲で選択される。

る.

この積層にあたり、該積層材料、具体的には上記発光層。正孔注入輸送層あるいは電子注入輸送層の材料を1種あるいは必要により2種以上を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して分散液あるいは可溶化溶液を得る。ここで水性媒体としては水をはじめ、水とアルコールの混合物、水とアセトンの混合液など様々な媒体を挙げることができる。

一方、本発明の方法では、界面活性剤として、 HLB値10~20、好ましくは12~18のの 田活性剤を用いる。このような界面活性剤のルエー 例をあげれば、ポリオキシエチレンアルキル、ポリ オキシエチレンポリオキシアロピレンアルキル オキシエチレンポリオキシアロにして オキシエチレンポリオキシアロ活性剤をあげれば、ポリ オキシエチレンポリオキシアロにして カーテルなどの非イオン系界面活性剤をあばりまま かできる。そのほか、アルキル硫酸塩、塩化アルキ ルトリメチルアンモニウム、脂肪酸ジエチルアミ ノエチルアミドなどを使用することも可能である。 さらに、界面活性剤の好ましい例として次の如き フェロセン誘導体が挙げられる。すなわち一般式 (R')。

【式中、R・及びR* はそれぞれ炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、アミノ基、水酸基、アセチルアミノ基、カルボキシル基、メトキシカルボニル基、アセトキシ基、アルデヒド基あるいはハロゲンを示し、R* は水素又は炭素数4~18の直積あるいは分岐アルキル基又はアルケニル基を示し、R* 及びR* はそれぞれ水栗又はメチル基を示し、aは0~4の整数、bは0~4の整数、mは1~18の整数、nは2.0~70.0の実数を示す。】

アルケニル基を示している。

さらに Y は酸素 (-O-) 又はオキシカルボニル基 (-C-O-) を示し、R ', R は水素又し

はメチル基 (CHョ)を示す。従って、

-O(CH:CH:O).H.

等である。

またmは1~18の整数を示す。従って、環員 炭素原子と上記酸素又はオキシカルボニル基との 間に、エチレン基、プロピレン基等の炭素数1~ 18のアルキレン基が介在したものとなる。さら にnは上記オキシエチレン基などのオキシアルキ

で表わされるフェロセン誘導体を代表的なものと してあげることができる。ここで、一般式〔1〕 中の各記号は前述した通りである。つまり、国際 公開WO88/07538. WO89/01939. 特願昭63-233797号、その他に記載され る如く、R'及びR*はそれぞれ炭素数6以下の アルキル基 (メチル基(CH3), エチル基 (C2H5) 等), アルコキシ基 (メトキシ基 (OCHء), エ トキシ基 (OC:H:)等), アミノ基 (NH:), ジメチルアミノ基 (N(CH3)2)),水酸基 (OH), アセチルアミノ基 (NHCOCHョ), カルポキシ ル基 (COOH),アセトキシ基 (OCOCHョ), メトキシカルポニル基 (COOCHョ)、アルデヒ ド基(CHO)あるいはハロゲン(塩素、臭菜、 フッ素、沃素等)を示す。R * 及びR * は同一で あっても異なってもよく、さらにR!及びR!が それぞれ複数個フェロセンの五員環に存在した場 合にも、複数の置換基がそれぞれ同一であっても 異なっていてもよい。また、Rªは水素又は炭素 数4~18の直鎖あるいは分岐アルキル基または

レン基の繰り返し数を示すもので、2.0~70.0 の整数のみならず、これらを含む実数を意味し、 オキシアルキレン基などの繰り返し数の平均値を 示すものである。

本発明の方法で用いるフェロセン誘導体は、上記一般式(I)で表わされるもののほかに、様々なものがあり、アンモニウムタイプ、ピリジンタイプ (国際公開WO88/07538等)をはじめ、特願昭63-248600号明細書、同63-248600号明細書、同63-248600号明細書、同63-248600号明細書、同1-54956号明細書、同1-76498号明細書、同1-76498号明細書、コー70681号明細書、同1-76498号明細書および同1-76498号明細書および同1-7649号明細書に記載されたフェロセン誘導体を挙げることができる。

このなかで特に次に挙げるフェロセン誘導体が 好適に使用される。

で衷わされる化合物(FPEC)

ET (CH;), CO (CH; CH; O), ;,; H

で表わされる化合物 (FEST9) 上記の如きフェロセン誘導体は極めて効率良く

水性媒体に、所望の機能層の材料を分散あるいは 可溶化することができるものである。

本発明の方法では、まず水性媒体中に上記の界面活性剤および所望の機能層の材料を入れて、超音波、ホモジナイザーあるいは撹拌機等により、1時間~7日間程度充分に攪拌させる。この操作で機能層材料は、HLB値10~20を有する界面活性剤の作用で、水性媒体中に均一に分散あるいは可溶化して、分散液あるいはミセル溶液となる。本発明の方法では、このようにして得た均一

る。この支持塩を加えずに通電を行うこともできるが、この場合支持塩を含まない純度の高い薄膜が得られる。また、支持塩を用いる場合、その支持塩の種類は、可溶化の進行や電極への前記疎水性物質の折出を妨げることなく、水性媒体の電気伝導度を調節しうるものであれば特に制限はない。

具体的には、一般的に広く支持塩として用いられている硫酸塩(リチウム、カリウム。ナトリウム、ルビジウム、アルミニウムなどの塩)、酢酸塩(リチウム、カリウム、ナトリウム、ルビジウム、オーリウム、アルミニウムなどの塩)、水溶性酸化物塩(リチウム、カリウム、カルシウム、ルビジウム、カルシウム、ルビジウム、ナトリウム、ルビジウム、カルシウム、アクスシウム、アルミニウムなどの塩)、水溶性酸化物塩(リチウム、カリウム、ナトリウム、ルビジウム、カルシウム、アルミニウムなどの塩)が好適である。

本発明の方法における通電条件は、使用している電極、即ち陽極あるいは陰極上、正孔注入輸送

分散液あるいはミセル溶液に、所望に応じて支持 塩を加えて、また状況に応じて過剰の機能層材料 を遠心分離、デカンテーション。静止沈降等には 除去し、得られた電解液を静置したままある。 電処理中に機能層材料を電解液に補充添加しして 電処理中に機能層材料を電解液に補充添加しし よく、あるいは電解液の一部を系外へなき出した なき出した電解液に機能層材料を不力えて充分環境 は 合規律し、しかる後にこの液を系内へ戻す循環回 路を併設してもよい。

この際の機能層材料の温度は飽和濃度以上であればよい。また界面活性剤の濃度は、特に制限はないが、通常は10μ M~ 0.1 M、好ましくは0.5 m M~5 m M の範囲で選定する。また、支持塩(支持電解質)は、水性媒体の電気伝導度を調節するために必要に応じて加えるものである。この支持塩の添加量は、可溶化めるこのであるのである。この換能層材料の析出を妨げない範囲であればよく、過常は上記界面活性剤の0~300倍程度の濃度を目安とす

層上・発光層上あるいは電子注入輸送層上に前記機能層材料の薄膜が生成する条件下に設定を件で、設定を対して機をに立て機を返還へ80℃、陽極あるが、具体的には液温を室温~80℃、陽極あるいは陰極上に前記機能層材料の薄膜が生成するのはでは、状況に応じて様々に異なるが、具体的には過程を対して、対し、対して、対し、対し、対して、対し、が対しくは3.0~0.5 Vの電位に、定電流での通電処理にあたっては、両極間を0.5~10.0 V、好ましくは3.0~0.5 Vの電位に設定し、また、定電流での通電処理にあたっては、可極間を0.5~10.0 V、好ましくは3.0~0.5 Vの電位に設定し、また、定電流での通電処理にあたっては、可極間を1μA/cil~10 mA/cilの範囲には、電流密度を1μA/cil~10 mA/cilの範囲に設定すればよい。

本発明の方法で得られた薄膜には、さらに必要に応じて、通電洗浄、溶媒洗浄、150~350 てでのベーキング処理等の後処理を行うことも有効である。

このようにして得られた正孔注入輸送層、発光

超あるいは電子注入輸送層の上にさらにもう一方の電極を従来公知の方法で形成して、有機EL素子を得ることができる。

本発明の方法によれば、種々の有機EL素子を 製造することができる。例えば、(1)基板上に電極 (陽極あるいは陰極)を種々の方法にて形成し、 この上に上記ミセル電解法にて発光層を積層し、 さらに対電極を形成した有機EL素子、(2)基板上 に電極を種々の方法にて形成し、この上に上記ミ セル電解法あるいは他の方法にて正孔注入輸送層 を積層し、さらにミセル電解法あるいは他の方法 にて発光層を積層し(但し、正孔注入輸送層、発 光層の少なくとも一層はミセル電解法で形成)、 その上に陰極を形成した有機EL素子、(3)基板上 に電極を積々の方法にて形成し、この上に上記ミ セル電解法あるいは他の方法にて発光層を積層し、 さらにミセル電解法あるいは他の方法にて電子注 入輸送層を積層し(但し、発光層、電子注入輸送 層の少なくとも一層はミセル電解法で形成)、そ の上に対電極を形成した有機EL素子、(4)基板上

フェニル) - 4. 4'ージアミノピフェニル(TPD) 200 mを2mMのFPEG水溶液に加え、超音波で10分間分散した後、スターラーで3日間復搾した。その後、LiBrを加え、100mMの速度とし、上記基板を浸漬して陽極とし、対極に白金板を設け、0.5 Vで30分間電解した。通電量は、0.03クーロン(C)であった。

こうして、膜厚100mmの正孔注入輸送層が 形成された。さらに、クマリン30の入ったモリ ブデン製抵抗ボートを真空蒸着装置に入れ、通電 し、235℃まで加熱し、蒸着速度 0.5~ 0.7 mm/sec で、前記正孔注入輸送層の上に蒸着し て、膜厚100mmの発光層を設けた。なお、落 着時の該基板の温度は室温であった。

落着後、真空槽をあけ、発光層の上にステンレス調製のマスクを設置し、モリブテン製の抵抗加熱ポートにマグネシウムを3g入れ、電子ピーム落着装置のるつほに調を入れた。この後、再び真空槽を3×10~4 Pa まで波圧し、マグネシウム入りのポートに通電し蒸着速度 4 ~ 5 n m / sec

次に実施例及び比較例により本発明をさらに詳 細に説明する。

実施例1

膜厚 1 2 0 n m の I T O 透明電極が設けられているガラス基板(2 5 × 7 5 × 1.1 m サイズ、 H O Y A 社製)を透明支持基板とし、これをイソプロピルアルコールで 3 0 分間超音波洗浄し、さらにイソプロピルアルコールに浸漬して洗浄した。 N. N'ージフェニルーN. N'ージ (3 ーメチル

でマグネシウムを蒸着した。このとき同時に電子 ピームにより調を加熱し、蒸着速度 0.1 ~ 0.3 nm/secで調を蒸着し前記マグネシウムに調を 混合し、Mg: Cu対向電極とした。以上により目 的とするEL素子の作製を終えた。

この素子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流15Vを印加し たところ、電流密度32mA/cdの電流が流れ、 緑色の発光を得た。この際の発光極大波長は508 mm、発光輝度は500cd/㎡、発光効率は 0.33ℓm/Wであった。

なお、クマリン30は3- (2'-N-メチルベンズイミダゾリル)- 7-N, N-ジエチルアミノクマリンで、次の構造を有している。

実施例2

実施例1で用いたITO透明電極と同様のIT

O透明質極に、実施例1と同様の操作でTPDを 製膜し、TPD/ITO電極を得た。膜厚は95 ・ 的とするBL素子の作製を終えた。 n m であった。

クマリン30を200 mgと2mMのFPEC水 溶液に加え、超音波で10分間分散した後、スタ ーラーで3時間覆搾した。その後、LiBrを加え て、100mMの濃度とし、上記TPD/ITO 質極を浸漬して陽極とし、対極に白金を設け、0.5 Vで30分間電解した。 通電量は 0.03 Cであ った。この結果クマリン30/JPD/ITOを 得た。

孫若後、真空槽をあけ、発光層の上にステンレ ス鋼製のマスクを設置し、モリプテン製の抵抗加 **熱ポートにマグネシウムを3g入れ、電子ピーム** 蒸着装置のるつぼに銅を入れた。この後、再び真 空福を3×10-1Pa まで波圧し、マグネシウム 入りのポートに通電し蒸着速度4~5 nm/sec でマグネシウムを蒸着した。このとき同時に電子 ピームにより期を加熱し、蒸着速度 0.1~ 0.3 n m / secで鋼を落着し前記マグネシウムに鋼を

10⁻⁴Paまで減圧したのち、電子ピームにより A & を加熱して、 1 ~ 1.5 n m / secの 蒸着速度 でAlを蒸着して、膜厚150nmのAlから成 る対向電極とすることにより、目的とするEL素 子を作製した。

この素子のITO電極を正極、ALから成る対 向電極を負極として、直流40Vを印加したとこ ろ、電流密度37mA/ciの電流が流れ、責色の 発光を得た。この際の発光極大波長は420 nm、 発光輝度は7cd/mであった。

実施例 4

実施例1で用いた1TO透明電極と同様の透明 電極を、1Mのピロールと 0.1MのLiBrを溶 解した溶液に浸漉して陽極とし、対極に白金を設 け、1.5 Vの電位で3分間電解重合して、ピロー ル/ITO電極を得た。このとき流れた電流は・ 35 µA/ciであった。

次に、ペリレン100gと2mMのFPEGの 溶液を超音波で10分間分散させた後、スターラ ーで3日間荒拌した。その後、LiBrを加え

混合し、Mg: Cu対向電極とした。以上により目

この素子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流15 V を印加し たところ、電流密度21mA/cdの電流が流れ、 緑色の発光を得た。この際の発光極大波長は510 nm、発光輝度は830cd/㎡、発光効率は 1.46 l m / W で あった。

実施例3

テトラフェニルプタジエン (TPB) 200 mg を2mMのFPEC水溶液に加え、超音波で10 分間分散させた後、スターラーで3日間攪拌した。 その後、LiBrを加え100mMの湿度とし、 実施例1で用いたITO基板を浸漬して陽極とし、 対極に白金を設け、0.5 Vで300分間電解した。 通電量は、0.3℃であった。この結果、TPB/ ITOを得た。

次に、真空槽をあけ、該発光層の上にステンレ ス鋼製のマスクを設置し、一方、電子ピーム加熱 の蒸着用るつぼにAlを入れ、再び真空槽を3×

100mMの遠度とし、これに上記ピロール/1 TO電極を浸漬して陽極とし、対極に白金を設け、 0.5 Vで30分間電解した。通電量は0.03 Cで あった。この結果、ペリレン/ポリピロール/! TOを得た。

蒸着後、真空槽をあけ、発光層の上にステンレ ス匈製のマスクを設置し、モリブテン製の抵抗加 **熱ポートにマグネシウムを3g入れ、電子ピーム 蒸着装置のるつぼに網を入れた。この後、再び真** 空槽を3×10-4Paまで減圧し、マグネシウム 入りのポートに通電し蒸着速度 4~5 n m/sec でマグネシウムを蒸着した。このとき同時に電子 ピームにより網を加熱し、蒸着速度 0.1~ 0.3 n m/secで銅を蒸着し前記マグネシカムに銅を 混合し、Mg: Cu対向電極とした。以上により目 的とするEL素子の作製を終えた。

この素子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流13Vを印加し たところ、電流密度46mA/ciの電流が流れ、 緑味黄色の発光を得た。この際の発光極大波長は 5 6 0 n m、発光輝度は 2 4 0 cd/㎡、発光効率は 0.1 3 2 m/Wであった。

比較保1

「TOが付いているガラス基板(25m×75m×1.1mサイズ、HOYA社製)を透明支持基板とし、これをイソプロピルアルコールで30分超音波洗浄し、さらにイソプロピルアルコールに设置して洗浄したこの透明基板を乾燥窒素ガスで乾燥し、真空蒸着装置の基板ホルダーに固定し、モリブデン製の抵抗加熱ボートにN、N'ージフェニルーN、N'ーピス(3ーメチルフェニル)ー1、1'ーピフェニルー4、4'ージアミン(TPD)を200g入れ、さらに別のモリブデン製の抵抗加熱ボートにクマリン30を200g入れ真空蒸着装置に取付けた。

その後、真空槽を2×10¹¹Paまで減圧し、 TPDの入った前記ポートに通電し220℃まで 加熱し、蒸着速度 0.1~ 0.3 nm/砂で透明支 待基板上に蒸着し、膜厚100 nmの正孔注入層 (正孔注入輪送層) とした。さらにクマリン30

半値幅は60 n m、発光輝度は440 cd/㎡であった。

〔発明の効果〕

以上の如く、本発明の方法によれば、電極上に 機能を有する薄膜を積層するにあたり、位置あわ せなどの操作を必要とせず比較的簡易な操作で所 望の薄膜を効率良く製造することができる。また 得られた有機とし素子は、接触面積が広く、高輝 度、高効率である。

したがって、本発明の方法は、表示材料、プリンタ、液晶パックライトなどに用いられる有機E し素子の製造に有効に利用される。

> 特許出願人 出光與產株式会社 代理人 弁理士 大 谷 保

の入った前記ボートを通電し、235℃まで加熱 し蒸者速度 0.5~ 0.7 n m/秒で透明支持基板 上の正孔注入層の上に蒸着し膜厚 100 n m の発 光層を得た。このとき基板の温度は室温であった。

蒸着後、真空槽を開け、発光層の上にステンレス調製のマスクを設置し、モリブデン製の抵抗加熱ボートにマグネシウムを3g入れ、電子ビーム 蒸着装置のるつぼに関を入れた。その後、再度と 本のボードに通電し、 蒸着速度 4~5 nm/秒でマグネシウムを蒸着した。このとき、 同時に電子ピームにより網を加熱し、0.2~ 0.3 nm/秒で網を蒸着して前記マグネシウムに網を混合し、対向電極とした。以上によりEL素子の作製を終えた。

この案子のITO電極を賜極、マグネシウムと 調の混合物よりなる対向電極を負極として、直流 20 Vを印加したところ電流密度が87 m A / cal の電流が流れ、緑色の発光を得た。

このときの発光極大波長は510nm、発光体