COMP9414/9814/3411: Artificial Intelligence 16. Course Review

UNSW (©,Alan Blair, 2016

COMP9414/9814/3411 16s1 Review 2

Topics Covered

- Prolog Programming
- Environment/Agent Types
- Search Strategies
- Informed Search (A*)
- Game Playing
- Logical Agents
- First Order Logic
- Constraint Satisfaction Problems
- Learning and Decision Trees

- Perceptrons
- Neural Networks
- Reasoning under Uncertainty

Additional Thursday Topics:

- Reactive Agents
- Evolutionary Computation
- Reinforcement Learning

COMP9414/9814/3411 16s1 Review

Assessment

Assessable components of the course:

Assignment 1 10%

Assignment 2 8%

Assignment 3 12%

Written Exam 70%

- Exam Template is available on the course Web page
- Exam Questions will be similar in style to the Tutorial Questions

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

3

Not Examinable

- General Game Playing
- Learning Games

- Motion Planning
- Variations on Backprop
- Deep Learning

UNSW © Alan Blair, 2016

UNSW

© Alan Blair, 2016

COMP9414/9814/3411 16s1 Review

Review

Agent Model

UNSW © Alan Blair, 2016

Review

Reactive Agents

COMP9414/9814/3411 16s1

Environment types

We can classify environments as:

Fully Observable vs. Partially Observable

Stochastic Deterministic vs.

Single-Agent Multi-Agent VS.

Sequential Episodic VS.

Static Dynamic VS.

Continuous Discrete VS.

Unknown Known VS.

Situated or Embodied Simulated VS.

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1

UNSW

Review

Braitenberg Vehicles (Thu only)

UNSW © Alan Blair, 2016 © Alan Blair, 2016

Path Search Agent

Review

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1 Review 10

Search Strategies

- BFS and DFS treat all new nodes the same way:
 - ▶ BFS add all new nodes to the back of the queue
 - ▶ DFS add all new nodes to the front of the queue
- (Seemingly) Best First Search uses an evaluation function f() to order the nodes in the queue; we have seen one example of this:
 - ▶ UCS $f(n) = \cos g(n)$ of path from root to node n
- Informed or Heuristic search strategies incorporate into f() an estimate of distance to goal
 - ▶ Greedy Search f(n) = estimate h(n) of cost from node n to goal
 - A* Search f(n) = g(n) + h(n)

Path Search Algorithms

General Search algorithm:

- add initial state to queue
- repeat:
 - ▶ take node from front of queue
 - ▶ test if it is a goal state; if so, terminate
 - "expand" it, i.e. generate successor nodes and add them to the queue

Search strategies are distinguished by the order in which new nodes are added to the queue of nodes awaiting expansion.

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1 Review 11

Complexity Results for Uninformed Search

	Breadth-	Uniform-	Depth-	Depth-	Iterative
Criterion	First	Cost	First	Limited	Deepening
Time	$\mathcal{O}(b^{(d+1)})$	$\mathcal{O}(b^{\lceil C^*/\epsilon ceil})$	$O(b^m)$	$\mathcal{O}(b^l)$	$\mathcal{O}(b^d)$
Space	$\mathcal{O}(b^{(d+1)})$	$\mathcal{O}(b^{\lceil C^*/\epsilon ceil})$	O(bm)	O(bl)	O(bd)
Complete?	Yes ¹	Yes ²	No	No	Yes ¹
Optimal ?	Yes ³	Yes	No	No	Yes ³

b = branching factor, d = depth of the shallowest solution,

m = maximum depth of the search tree, l = depth limit.

- 1 =complete if b is finite.
- $2 = \text{complete if } b \text{ is finite and step costs } \geq \varepsilon \text{ with } \varepsilon > 0.$
- 3 =optimal if actions all have the same cost.

13

Game Search Agent

COMP9414/9814/3411 16s1 Review

α - β pruning

UNSW

Minimax Search

UNSW ©Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

Review

15

Logical Agent

14

Propositional Logic

A sentence is valid if it is true in all models,

e.g. TRUE,
$$A \lor \neg A$$
, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

 $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model

e.g.
$$A \vee B$$
,

A sentence is unsatisfiable if it is true in no models

e.g.
$$A \land \neg A$$

Satisfiability is connected to inference via the following:

 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

i.e. prove α by reductio ad absurdum

UNSW

© Alan Blair, 2016

© Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

Review

18

Resolution

Conjunctive Normal Form (CNF – universal) conjunction of disjunctions of literals

e.g.
$$(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$$

Resolution inference rule (for CNF): complete for propositional logic

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{i-1} \vee m_{i+1} \vee \dots \vee m_n}$$

where ℓ_i and m_i are complementary literals. e.g.

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Resolution is sound and complete for propositional logic.

Truth Tables

P	Q	¬ P	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
F	F	Т	F	F	T
F	T	Т	F	T	T
Т	F	F	F	T	F
Т	Т	F	T	T	T

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

19

First Order Logic

Constants Gold, Wumpus, [1, 2], [3, 1], etc.

Predicates Adjacent(), Smell(), Breeze(), At()

Functions Result()

Variables x, y, a, t, \dots

Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$

Equality =

Quantifiers $\forall \exists$

Sentences

Brothers are siblings

 $\forall x, y \, Brother(x, y) \Rightarrow Sibling(x, y)$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

One's mother is one's female parent

 $\forall x, y \, Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$

A first cousin is a child of a parent's sibling

 $\forall x, y First Cousin(x, y) \Leftrightarrow \exists p, ps Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1 Review

Statistical Learning Agent

Constraint Satisfaction Problems

- backtracking search
- enhancements to backtracking search
- local search

COMP9414/9814/3411 16s1

- ▶ hill climbing
- simulated annealing

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1 Review 23

Ockham's Razor

"The most likely hypothesis is the simplest one consistent with the data."

Since there can be noise in the measurements, in practice need to make a tradeoff between simplicity of the hypothesis and how well it fits the data.

22

27

Decision Tree

Review

Review 26

[4,2]

[3,2]

Minimal Error Pruning

Should the children of this node be pruned or not?

Left child has class frequencies [2,4]

$$E = 1 - \frac{n+1}{N+k} = 1 - \frac{4+1}{6+2} = 0.375$$

Right child has E = 0.333

Parent node has E = 0.444

Average for Left and Right child is

$$E = \frac{6}{7}(0.375) + \frac{1}{6}(0.333) = 0.413$$

Since 0.413 > 0.375, children should be pruned.

Choosing an Attribute

Patrons is a "more informative" attribute than Type, because it splits the examples more nearly into sets that are "all positive" or "all negative".

This notion of "informativeness" can be quantified using the mathematical concept of "entropy".

A parsimonious tree can be built by minimizing the entropy at each step.

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

Rosenblatt Perceptron

UNSW

COMP9414/9814/3411 16s1

[1,0]

31

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall:
$$s = w_1x_1 + w_2x_2 + w_0$$

if g(s) = 1 but should be 0, if g(s) = 0 but should be 1,

$$w_k \leftarrow w_k + \eta x_k \qquad w_k \leftarrow w_k - \eta x_k$$

$$w_k \leftarrow w_k - \eta x_k$$

Review

$$w_0 \leftarrow w_0 + \eta$$
 $w_0 \leftarrow w_0 - \eta$

$$w_0 \leftarrow w_0 - \eta$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_k^2\right)$$
 so $s \leftarrow s - \eta \left(1 + \sum_{k} x_k^2\right)$

so
$$s \leftarrow s - \eta (1 + \sum_{k} x_k^2)$$

otherwise, weights are unchanged. ($\eta > 0$ is called the **learning rate**)

Theorem: This will eventually learn to classify the data correctly, as long as they are linearly separable.

UNSW

© Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

30

Gradient Descent

We define an **error function** *E* to be (half) the sum over all input patterns of the square of the difference between actual output and desired output

$$E = \frac{1}{2} \sum (z - t)^2$$

If we think of E as height, it defines an error **landscape** on the weight space. The aim is to find a set of weights for which E is very low. This is done by moving in the steepest downhill direction.

$$w \leftarrow w - \eta \frac{\partial E}{\partial w}$$

Parameter η is called the learning rate.

Multi-Layer Neural Networks

IINSW © Alan Blair, 2016

COMP9414/9814/3411 16s1 Review

Probability and Uncertainty

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Bayes' Rule

Product rule $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

$$\rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

Useful for assessing diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

e.g., let *M* be meningitis, *S* be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

UNSW

© Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

Review

34

Reinforcement Learning Agent

Evolutionary Computation (Thu only)

- use principles of natural selection to evolve a computational mechanism which performs well at a specified task.
- start with randomly initialized population
- repeated cycles of:
 - evaluation
 - selection
 - ▶ reproduction + mutation
- any computational paradigm can be used, with appropriately defined reproduction and mutation operators

UNSW

© Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

35

Q-Learning (Thu only)

For each $s \in S$, let $V^*(s)$ be the maximum discounted reward obtainable from s, and let Q(s,a) be the discounted reward available by first doing action a and then acting optimally.

Then the optimal policy is

$$\pi^*(s) = \operatorname{argmax}_a Q(s, a)$$

where

 $Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$

then

 $V^*(s) = \max_a Q(s, a),$

SO

 $Q(s,a) = r(s,a) + \gamma \max_{b} Q(\delta(s,a),b)$

which allows us to iteratively approximate Q by

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{b} \hat{Q}(\delta(s,a),b)$$

COMP9414/9814/3411 16s1 Review COMP9414/9814/3411 16s1 Review

Beyond COMP9414/9814/3411

- COMP9444 Neural Networks and Deep Learning
- COMP9417 Machine Learning and Data Mining
- COMP4418 Knowledge Representation and Reasoning
- COMP3431 Robotic Software Architecture
- COMP9517 Machine Vision
- 4th Year Thesis topics

UNSW © Alan Blair, 2016

COMP9414/9814/3411 16s1

Review

38

COMP9414/9814/3411 16s1

UNSW

Review

© Alan Blair, 2016

COMP9414/3411 Artificial Intelligence

QUESTIONS?

Possible 4th Year Projects

- **■** Image Processing
 - generation of images by Deep Convolutional Neural Networks
- Language Processing
 - ▶ autoencoders, word2vec, LSTM
 - ▶ linguistic analysis
- Evolutionary Automatic Programing, with HERCL
 - ▶ combination of Linear Genetic Programming with stack-based GP
 - ▶ multiple tasks, transfer learning, evolving modularity
- combining Evolutionary Computation with Deep Learning
 - evolving memristor or spiking networks
 - evolutionary art, co-evolving images or text

39

COMP9414/3411 Artificial Intelligence

GOOD LUCK!

HNSW