Electronic Materials and Devices

6 Dielectric materials and insulation

陈晓龙 Chen, Xiaolong

电子与电气工程系

6.1 Matter polarization and relative permittivity

Dielectric material

$$E = V/d$$

Capacitance of parallel plate capacitor in vacuum:

$$C_0 = Q_0/V$$

Capacitance of parallel plate capacitor in dielectric material:

$$C = Q/V$$

Relative permittivity/dielectric constant is defined as:

$$\varepsilon_{\rm r} = Q/Q_0$$

Electric dipole moment 电偶极矩

Electric dipole moment: $\vec{p} = Q\vec{a}$

Electric dipole moment in an atom

A dipole is induced: $\vec{p} = \alpha_e \vec{E}$

polarizability 极化率 α_e is called the electronic polarization

The **polarization vector** of the medium: $\vec{P} = \frac{1}{\text{Volume}} [\vec{p}_1 + \vec{p}_2 + \dots + \vec{p}_N]$ 极化矢量

$$P = \frac{Q_{\rm P}d}{\rm Volume} = \frac{Q_{\rm P}d}{Ad} = \frac{Q_{\rm P}}{A} = \sigma_{\rm P}$$

 $Q_{\rm P}$: surface polarization charges

 $\sigma_{\rm P}$: surface polarization charge density

$$P_{\text{normal}} = \sigma_{\text{P}}$$

$$P = \chi_{\rm e} \varepsilon_0 E$$

 χ_{e} : electric susceptibility 电极化率

Relation between polarizability α_e and susceptibility χ_e :

$$\begin{cases} P = \chi_{e} \varepsilon_{0} E \\ P = N \alpha_{e} E \end{cases} \qquad \chi_{e} = \frac{1}{\varepsilon_{0}} N \alpha_{e}$$

N: number of molecules per unit volume

Relation between relative permittivity and susceptibility $\chi_{\rm e}$

Because electric field is the same with and without dielectric medium

$$\begin{cases} \varepsilon_0 E = \sigma - \sigma_P \\ P = \chi_e \varepsilon_0 E \\ P = \sigma_P \end{cases}$$

$$\sigma = \varepsilon_0 (1 + \chi_e) E$$

$$\varepsilon_r = \frac{Q}{r} = \frac{\sigma}{r} = 1 - \frac{1}{r}$$

$$\begin{cases} \varepsilon_{\rm r} = \frac{Q}{Q_0} = \frac{\sigma}{\sigma_0} = 1 + \chi_{\rm e} \\ \varepsilon_{\rm r} = 1 + \frac{1}{\varepsilon_0} N \alpha_{\rm e} \end{cases}$$

$$P = \chi_{\rm e} \varepsilon_0 E = (\varepsilon_{\rm r} - 1) \varepsilon_0 E$$

6.2 Gauss's law and boundary conditions

Gauss's law:

$$\oint_{\text{surface}} E_{\text{n}} dA = \frac{Q_{\text{total}}}{\varepsilon_0}$$

$$\oint_{\text{surface}} E_{\text{n}} dA = \frac{Q_{\text{free}}}{\varepsilon_{\text{r}} \varepsilon_{0}}$$

Total charge Q_{total} : free charges Q_{free} and bound polarization charges.

Boundary conditions

The first boundary condition: $\varepsilon_{r1}E_{n1} = \varepsilon_{r2}E_{n2}$

The second boundary condition: $E_{t1} = E_{t2}$

6.3 Frequency dependence: dielectric constant and dielectric loss

Under DC voltage bias ($\omega = 0$), the polarizability is $\alpha_{\rm e}(0)$.

The dipole moment per molecule: $p = \alpha_e E$.

Transient behavior 瞬时行为

Assume τ is the relaxation time, the relaxation equation:

$$\frac{dp}{dt} = -\frac{p - \alpha_{\rm e}E}{\tau}$$

For AC voltage bias (ω) , $E = E_0 \exp(j\omega t)$.

$$\frac{dp}{dt} = -\frac{p}{\tau} + \frac{\alpha_{\rm e}(0)}{\tau} E_0 \exp(\mathrm{j}\omega t)$$

$$\begin{cases} p = \alpha_{e}(\omega)E_{0}\exp(j\omega t) \\ \\ \alpha_{e}(\omega) = \frac{\alpha_{e}(0)}{1 + j\omega\tau} \end{cases}$$

Complex dielectric constant

$$\varepsilon_{\rm r}(\omega) = 1 + \frac{1}{\varepsilon_0} N \alpha_{\rm e}(\omega)$$

$$\varepsilon_{\rm r}(\omega) = 1 + \frac{1}{\varepsilon_0} N \frac{\alpha_{\rm e}(0)}{1 + {\rm j}\omega\tau}$$

$$\begin{cases} \varepsilon_{\rm r}(\omega) = \varepsilon_{\rm r}'(\omega) - j\varepsilon_{\rm r}''(\omega) \\ \\ \varepsilon_{\rm r}'(\omega) = 1 + \frac{N}{\varepsilon_0(1 + \omega^2 \tau^2)} \alpha_{\rm e}(0) \\ \\ \varepsilon_{\rm r}''(\omega) = \frac{N\omega\tau}{\varepsilon_0(1 + \omega^2 \tau^2)} \alpha_{\rm e}(0) \end{cases}$$

Orientational polarization

$$p = \alpha_{\rm d} E$$

$$p_{\rm av} = 0$$

$$p_{av} \neq 0$$

Interfacial and space charge

The total dipole moment of per molecule is the sum of all contributions.

Admittance of capacitor 电容的导纳

$$C = \frac{A\varepsilon_0\varepsilon_{\rm r}(\omega)}{d}$$

Admittance of capacitor Y: Impedance of capacitor X:

$$Y = \frac{1}{X} = j\omega C$$

$$Y = \frac{j\omega A \varepsilon_0 \varepsilon_r(\omega)}{d}$$

$$Y = \frac{j\omega A \varepsilon_0 \varepsilon_r'(\omega)}{d} + \frac{\omega A \varepsilon_0 \varepsilon_r''(\omega)}{d}$$

$$= j\omega C' + G_P$$

$$C' = \frac{A \varepsilon_0 \varepsilon_r'(\omega)}{d}, \quad G_P = \frac{\omega A \varepsilon_0 \varepsilon_r''(\omega)}{d}$$

Admittance of capacitor: $Y = j\omega C' + G_P$

$$\begin{cases} C' = \frac{A\varepsilon_0 \varepsilon_{\rm r}'(\omega)}{d} \\ G_{\rm P} = \frac{\omega A\varepsilon_0 \varepsilon_{\rm r}''(\omega)}{d} \end{cases}$$

Input power:

$$IV = YV^{2}$$

$$= j\omega C'V^{2} + G_{P}V^{2}$$

$$= j\omega C'V^{2} + \frac{V^{2}}{R_{P}}$$

The imaginary term:

Power stored in capacitor C'

No power is dissipated in C'

Input power:
$$j\omega C'V^2 + \frac{V^2}{R_P}$$

The real term:

Power dissipated in dielectric medium

Power dissipation reaches the maximum value at $\omega = 1/\tau$

$$C' = \frac{A\varepsilon_0 \varepsilon_{\rm r}'(\omega)}{d}$$

$$G_{\rm P} = \frac{\omega A \varepsilon_0 \varepsilon_{\rm r}^{\prime\prime}(\omega)}{d}$$

At $\omega = 1/\tau$, most energy is transferred to heat with a high efficiency.

This process is called **dielectric** resonance介电谐振.

$\varepsilon_{ m r}'(0)$ Relaxation peak $\varepsilon_{ m r}''$

$$\begin{cases} C' = \frac{A\varepsilon_0 \varepsilon_{\rm r}'(\omega)}{d} \\ G_{\rm P} = \frac{\omega A\varepsilon_0 \varepsilon_{\rm r}''(\omega)}{d} \end{cases}$$

Input power: $j\omega C'V^2 + \frac{V^2}{R_P}$

Energy stored: $\omega C'V^2$

Energy dissipated: G_PV^2

Loss tangent (loss factor) 损耗角正切

$$\tan \delta = \frac{G_{\rm P} V^2}{\omega C' V^2} = \frac{\varepsilon_{\rm r}''}{\varepsilon_{\rm r}'}$$

$\varepsilon_{ m r}'(0)$ Relaxation peak $\varepsilon_{ m r}''$

$$\begin{cases} C' = \frac{A\varepsilon_0\varepsilon_r(\omega)}{d} \\ G_P = \frac{\omega A\varepsilon_0\varepsilon_r''(\omega)}{d} \end{cases}$$

Energy dissipated per unit volume:

$$W_{\text{vol}} = \frac{\text{Power loss}}{\text{Volume}}$$

$$= \frac{V^2}{R_P} \times \frac{1}{dA}$$

$$= \frac{V^2}{d^2} \omega \varepsilon_0 \varepsilon_r''$$

$$= \omega E^2 \varepsilon_0 \varepsilon_r' \tan \delta$$

6.4 Capacitor dielectric materials

Energy dissipated per unit volume: $W_{\rm vol} = \omega E^2 \varepsilon_0 \varepsilon_{\rm r}' \tan \delta$

Ceramic parallel-plate capacitor 平行板陶瓷电容器

Single-layer ceramic capacitor

Multilayer ceramic capacitor

$$C = \frac{A\varepsilon_0\varepsilon_{\rm r}(\omega)}{d}$$

Polymer tape capacitor

Since polymer tapes are flexible, the capacitor can be rolled together

Supercapacitors 超级电容器

Capacitance is as high as 100 F or more

Thickness: d

Electrolyte should not react with electrode.

Separation between electrical double layer is < 1nm

$$C = \frac{A\varepsilon_0\varepsilon_{\rm r}(\omega)}{d}$$

Equivalent circuit

Electrolyte can use as gate electrode for transistors

Merits:

- Very large gate capacitance
- Can effectively tune the Fermi energy of the channel material
- Can even tune the Fermi energy of metallic materials

Drawbacks:

◆ Slow response speed

Electrolytic capacitors 电解电容器

Dielectric material is a thin layer of Al₂O₃ (~100 nm)

Electrolytic capacitors 电解电容器

- Positive voltage on anode: behave as capacitor
- Negative voltage on anode: conducting

Behave as a rectifier

Electrolytic capacitors 电解电容器

Capacitance:

$$C_{\text{Al2O3}} = \frac{A_1 \varepsilon_0 \varepsilon_{\text{r_Al2O3}}}{d_{\text{Al2O3}}}$$

$$C_1 = \frac{A_1 \varepsilon_0 \varepsilon_{\text{r_Eletro}}}{d_{\text{DL}}}$$

$$C_2 = \frac{A_2 \varepsilon_0 \varepsilon_{\text{r_Eletro}}}{d_{\text{DL}}}$$

Total capacitance: $C = C_{Al2O3} ||C_1||C_2 \approx C_{Al2O3}$

Electrolytic capacitors 电解电容器

Solid electrolyte tantalum capacitor

6.5 Touchscreens

◆ Resistive touchscreen

◆ Infrared touchscreen

- **♦** Surface acoustic wave touchscreen
- **♦** Capacitive touchscreen

♦ Resistive touchscreen

Advantages

- Cheap
- Strong

Disadvantages

- Reflection
- > No multitouch

♦ Infrared touchscreen

Some products:

- Amazon kindle touch
- Sony ebook readers

Light emitting diode Photocell

Ware gloves!

♦ Surface acoustic wave touchscreen

Use ultrasound wave to replace infrared light

◆ Capacitive touchscreen (Projective-type)

- ➤ Electric field can penetrate above the screen, so you even don't need to touch the screen.
- > Can do multitouch.

♦ Multitouch capability

- > 80 columns are electrically connected > Scan each row within 10us

♦ Screen protector

Glass screen

Chemically strengthened glass 化学钢化/强化玻璃

