INTRODUCTION TO THE DETERMINANT

- 1. Make a list of statements equivalent to: The $n \times n$ matrix A is nonsingular.
 - rref(A) = In
 - · Ax = 0 has a unique solution
 - · A-1 exists. (or A is invertible.)
 - · Ax= b has a unique solution
 - . A is the matrix representation of an isomorphism

- 2. Make the analogous list for: The $n \times n$ matrix A is singular.
 - · rref(A) will have a row of Zeros
 - · A-1 does not exist. (or A is not invertible)
 - · Ax = 0 will always have an infinite number of Solutions
 - · Ax= h will ether have no solution or an infinite number of solutions.
 - . A is the matrix representation of a linear map that is not 1-1 and not onto.

 $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad-bc$ 3. Cor 4.11 (pg 259) The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is nonsingular if and only if $ad-bc \neq 0$ why? Need (ab) = k(cd). But a = kc and b = kd means $K = \frac{a}{c} = \frac{b}{d}$ or ad = bc or ad - bc = 0.

UAF Linear

The Definition of the Determinant (from 4.3.1 text)

- 4. **definition:** Let $A = (a_{ij})$ be an $n \times n$ matrix. Then A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column from A.
- 5. **example:** Find B_{23} for $B = \begin{pmatrix} 1 & 2 & 4 \\ 4 & 1 & -1 \\ 2 & -3 & 5 \end{pmatrix}$. $B_{23} = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$
- 6. **definition:** The *determinant* of the $n \times n$ matrix $A = (a_{ij})$, denoted by det(A), is defined as follows.
 - For $A = (a_{11})$, $det(A) = a_{11}$
 - For $n \geq 2$, det(A) is the sum of n terms of the form $\pm a_{1j} det(A_{1j})$, with the plus and minus signs alternating starting with a plus. Specifically,

$$det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) + a_{13} det(A_{13}) - \dots + (-1)^{n-1} a_{1n} det(A_{1n})$$

7. Find det(B).

$$\det(B) = 1 \cdot \det(B_{11}) - (2) \det(B_{12}) + (4) \det(B_{13})$$

$$= 1 \cdot \begin{vmatrix} 1 & -1 \\ -3 & 5 \end{vmatrix} - 2 \begin{vmatrix} 4 & -1 \\ 2 & 5 \end{vmatrix} + 4 \begin{vmatrix} 4 & 1 \\ 2 & 3 \end{vmatrix}$$

$$= 1 (5 - 3) - 2 (20 + 2) + 4 (-12 - 2)$$

$$= 2 - 44 - 56 = -98$$

- Comments Cale III definition
 - Octave/Matlab for checking
 - Does coincide w/ 2×2 def from #3 on other page.
 - Can be used for any n but is clearly reavisive.
 - Now |A| = det (A), for matrix A.
 - Want det(A) +0 (=) A nonsingular