

LLaMA Architecture: Key Components

Delving into the foundational elements of Meta's LLaMA, focusing on architectural innovations for efficiency and performance.

```
Final output dimension: 10 tokens
Final token sequence:
Token 1: <s>
Token 15043: _Hello
Token 29892: ,
Token 445: _this
Token 338: _is
Token 263: _a
Token 1243: _test
Token 10541: _sentence
Token 29889: .
Token 2: </s>
Tokenized sequence length: 10
Token tensor shape: torch.Size([1, 10])
```

Tokenization: SentencePiece

Subword Units

Breaks words into smaller, common subword units. Handles OOV words and reduces vocabulary size.

SentencePiece

Integrates tokenization directly into training, preserving original text for reversibility.

Encoder

```
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
   assert type(s) is str
   print(f"\nInput string length: {len(s)} characters")
   print(f"Input text: {s}")
   t = self.sp_model.encode(s)
   print(f"\nAfter initial encoding: {len(t)} tokens")
   print("Token mapping:")
   for token_id in t:
       piece = self.sp_model.id_to_piece(token_id)
       print(f"Token {token_id}: {piece}")
    if bos:
        t = [self.bos_id] + t
       print(f"\nAfter adding BOS token: {len(t)} tokens")
        print(f"Added BOS token {self.bos_id}: {self.sp_model.id_to_piece(self.bos_id)}")
   if eos:
       t = t + [self.eos_id]
       print(f"\nAfter adding EOS token: {len(t)} tokens")
       print(f"Added EOS token {self.eos_id}: {self.sp_model.id_to_piece(self.eos_id)}")
   print(f"\nFinal output dimension: {len(t)} tokens")
   print("Final token sequence:")
   for token id in t:
        piece = self.sp_model.id_to_piece(token_id)
       print(f"Token {token_id}: {piece}")
    return t
```

Decoder

```
def decode(self, t: List[int]) -> str:
    print(f"\nDecoding input dimension: {len(t)} tokens")
    print("Input tokens:")
    for token_id in t:
        piece = self.sp_model.id_to_piece(token_id)
        print(f"Token {token_id}: {piece}")

    result = self.sp_model.decode(t)
    print(f"Decoded output length: {len(result)} characters")
    print(f"Decoded text: {result}")
    return result
```

Embedding Layer: Token to Vector

Transforms discrete tokens into continuous, dense vector representations.

Learned Embeddings

Each token gets a unique vector, capturing semantic relationships from training data.

Dimension Alignment

Embedding dimensions match the model's hidden size (e.g., 4096), ensuring seamless integration into the transformer block.

```
Input token_ids shape: torch.Size([1, 10])
After embedding shape: torch.Size([1, 10, 4096])
After dropout shape: torch.Size([1, 10, 4096])
Embeddings shape: torch.Size([1, 10, 4096])
RMSNorm input shape: torch.Size([1, 10, 4096])
RMSNorm output shape: torch.Size([1, 10, 4096])
```

Embedding Layer

```
class LlamaEmbedding(nn.Module):
    def __init__(self, config: EmbeddingConfig):
        super().__init__()
        self.config = config
        # Token embedding layer
        self.token_embedding = nn.Embedding(config.vocab_size, config.dim)
        print(f"Initialized embedding layer with shape: {self.token_embedding.weight.shape}")
        # Dropout for regularization
        self.dropout = nn.Dropout(config.dropout)
        # Initialize weights
        self.reset_parameters()
    def forward(self, token_ids: torch.Tensor) -> torch.Tensor:
        # Print input dimensions
        print(f"\nInput token_ids shape: {token_ids.shape}")
        # Get embeddings from the embedding layer
        embeddings = self.token_embedding(token_ids)
        print(f"After embedding shape: {embeddings.shape}")
        # Apply dropout
        embeddings = self.dropout(embeddings)
        print(f"After dropout shape: {embeddings.shape}")
        return embeddings
```

RMSNorm: Efficient Normalization

RMSNorm normalizes embedding by the root mean square, unlike LayerNorm's mean subtraction.

$$RMSNorm(x) = x/\sqrt{E[x^2] + \epsilon}$$

No mean centering leads to computational savings and potentially better performance in certain architectures.

```
Token 1 normalized embedding: tensor([ 0.9040, -0.6513, 1.8820, ..., 0.6344, 0.7983, -1.0108], grad_fn=<SliceBackward0>)
```

Root Mean Square Layer Normalization

RMS Normalization

```
class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
       # The gamma parameter
       self.weight = nn.Parameter(torch.ones(dim))
    def _norm(self, x: torch.Tensor):
       # (B, Seg_Len, Dim) * (B, Seg_Len, 1) = (B, Seg_Len, Dim)
       # rsqrt: 1 / sqrt(x)
       return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
    def forward(self, x: torch.Tensor):
       print(f"RMSNorm input shape: {x.shape}")
       # (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
       normalized = self.weight * self._norm(x.float()).type_as(x)
       # Print output dimensions
        print(f"RMSNorm output shape: {normalized.shape}")
        return normalized
```

RoPE: Rotary Positional Embeddings

$$\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{d/2} \\ \cos m\theta_{d/2} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \end{pmatrix}$$

$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}$$

Encodes relative positional information directly into attention mechanism through rotation.

Relative Positions

Focuses on the distance between tokens rather than absolute positions, crucial for long sequences.

Mathematical Rotation

Applies a rotation matrix to Query (Q) and Key (K) vectors in the complex plane, integrating position directly into attention scores.

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

RoPE: Long Context Handling

1

2

3

Improved Extrapolation

Better generalization to sequences longer than those seen during training.

Enhanced Performance

Maintains strong performance across varying sequence lengths.

Reduced Overfitting

Less prone to overfitting specific positional patterns, improving robustness.

RoPE: Rotary Positional Embeddings

```
def precompute_theta_pos_frequencies(head_dim: int, seq_len: int, device: str, theta: float = 10000.0):
  assert head_dim % 2 == 0, "Dimension must be divisible by 2"
  print(f"\nPrecomputing Rotary Embeddings:")
  print(f"Input dimensions - head_dim: {head_dim}, seq_len: {seq_len}")
  theta_numerator = torch.arange(0, head_dim, 2).float()
  print(f"Theta numerator shape: {theta_numerator.shape}")
   theta = 1.0 / (theta ** (theta_numerator / head_dim)).to(device)
  print(f"Theta shape: {theta.shape}")
  m = torch.arange(seg_len, device=device)
  print(f"Position indices shape: {m.shape}")
   freqs = torch.outer(m, theta).float()
  print(f"Frequencies shape after outer product: {freqs.shape}")
   freqs_complex = torch.polar(torch.ones_like(freqs), freqs)
  print(f"Complex frequencies shape: {freqs_complex.shape}")
   return freas complex
```

```
def apply_rotary_embeddings(x, freqs_complex, device=None):
   print(f"Input tensor shape: {x.shape}")
   print(f"Frequencies tensor shape: {freqs_complex.shape}")
   # Split into real and imaginary components
   x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
   print(f"Input as complex numbers shape: {x_complex.shape}")
   # Only take the frequencies we need for our sequence length
   seq_len = x.shape[1]
   freqs_complex = freqs_complex[:seq_len]
   freqs_complex = freqs_complex.unsqueeze(0).unsqueeze(2)
   print(f"Expanded frequencies shape: {freqs_complex.shape}")
   x_rotated = x_complex * freqs_complex
   x_rotated = torch.view_as_real(x_rotated).flatten(-2)
   x_rotated = x_rotated.type_as(x)
   return x_rotated
```

Key Takeaways

1

Tokenization

Efficient subword units with SentencePiece for multilingual processing.

2

Embeddings

Learned dense vectors align with hidden size for rich semantic representation.

3

RMSNorm

Simplified, faster normalization without mean subtraction for efficiency.

4

RoPE

Rotary embeddings for robust relative positional encoding and long context.

```
Model dimension: 4096
Number of query heads: 32
Number of key/value heads: 4

Precomputing Rotary Embeddings:
Input dimensions - head_dim: 128, seq_len: 2048
Theta numerator shape: torch.Size([64])
Theta shape: torch.Size([64])
Position indices shape: torch.Size([2048])
Frequencies shape after outer product: torch.Size([2048, 64])
Complex frequencies shape: torch.Size([2048, 64])
```