UNCLASSIFIED

AD 667 655

SYSTEM /360 INTERFACE ENGINEERING REPORT

David Mills

Michigan University Ann Arbor, Michigan

November 1967

 $Processed for \dots$

DEFENSE DOCUME ITATION CENTER DEFENSE SUPPLY AGENCY

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

THE UNIVERSITY OF MICHIGAN

Memorandum 1

CONCOMP

March 1968

SYSTEM/360 INTERFACE ENGINEERING REPORT

David Mills

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

THE UNIVERSITY OF MICHIGAN

Memorandum 13

SYSTEM/360 INTERFACE ENGINEERING REPORT

David Mills

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
F.H. Westervelt, Director

supported by:

DEPARTMENT OF DEFENSE ADVANCED RESEARCH PROJECTS AGENCY WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050 ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

November 1967

PREFACE

The System/360 interface provides a connection between the PDP-8 and the multiplexor channel of System/360 models 30, 40, and 50, as well as the 2870 Multiplexor Channel attached to other models. Either byte-interleaved or burst-mode operation can be sustained at transmission rates up to 70 kilobytesper-second. Interface control operations are supervised via the PDP-8 accumulator and interrupt facilities, while data transfer operations are directed via the three-cycle data break facility. The interface is attached directly to the channel-control unit interface cables which interconnect the IBM equipment and occupies one control unit position on the channel. The equipment satisfies all original equipment manufacturer's (OEM) specifications as described in the following IBM publications:

- 1. System/360 I/O Interface: Channel to Control Unit Original Equipment Manufacturer's Information, 1BM Corporation, Form A22-6843-3.
- 2. System/360 Power Control Interface: Original Equipment Manufacturer's Information, 1BM Corporation, Form A22-6906-0.

The accompanying photographs on the next two pages show the Data Concentrator, including the System/360 interface tegether with its test panel. The interface itself is assembled in the bays immediately above the test panel.

Figure i. The Data Concentrator. The Interface is in the Bay immediately above the Test Panel.

Figure ii. The Test Panel of the Interface.

ACKNOWLEDGMENTS

In the design of the equipment described herein, Mr. Dan Pence transcribed the logical functions to PCC Flip-Chip technology and constructed the working documentation, consisting of logic diagrams and computer-generated punched-card wiring lists. Working from these wiring lists, the Gardner-Denver Company of Grand Haven, Michigan, constructed the Flip-Chip mounting panels using automatic wire-wrap machinery.

Mr. Ken Burkhalter designed the IBM-DEC interface circuit boards and power control equipment described in Appendix D. The Test Panel, described in Appendix F, was constructed using photographic technicues by the Prin-Tek Company of Detroit, Michigan. All the special printed-circuit components were supplied by the Photo Tek Company of Ann Arbor. Mr. David Flower and Mr. Warren Kennison assembled the equipment in a most craftsmanlike fashion.

The IBM company provided documentation which was invaluable in the design of this equipment. In particular, Mr. Les Bailey and Mr. Dan Murphy, both of IBM, have contributed much useful advice.

TABLE OF CONTENTS

												Page
PREFA	CE.					, . .					 	iii
ACKNO	WLED	GMENT	S								 . ,	vii
LIST	OF F	IGURE	ES								 	xiii
I	INTR	oduci	TION.								 	1
ΙI	CHAN	NEL I	NTER	RFACE	LIN	IES.					 	2
		BUS Outh Inbo	IN bound ound ection	Tags	s ntro	ols.			· · · ·	• • •	 	2 4 4 4
III	CONT		_									
	3.1 3.2 3.3 3.4 3.5	Init Serv Spec Poll	ial vice cial	Sele Cycl Sequ Oper	ctic e ence	n S es	equ	ence	 		 	6 9 12 14
ΙV		RAMM I RFACE									/360 	19
	4.1 4.2 4.3	Serv	ice	Inte	rfac	e 0	per	atio	ons.		 	. 26
		Halt Test Prog	I/C I/C gramm)) ning	Note	 		• • • •		• • •	 	37 38 39
V						-						
APPEN												
APPEN												
APPEN												
APPEN												
MITEN												
		D1 D2 D3	Syst Powe	em C	onfi	gur ol U	ati nit	on.		· · ·	 	90

TABLE OF CONTENTS (cont'd)

		Page
APPENDIX	E	99
APPENDIX	F	145
F 1 F 2	The Test Panel	147 149

LIST OF FIGURES

Figure		Page
i	The Data Concentrator	iv
ii	The Test Panel of the Interface	v
1	Channel-Control Unit Interface Lines	3
2	Initial Selection	7
3	Service Cycle (Burst Mode)	10
4	Interface Disconnect	13
5	Control Unit Busy	16
6	Register Bit Assignments	21
7	Initial Selection-HIO	23
8 a	Service Cycle-Stop	27
8 b	Service Cycle-End	28
9	Principal Interface Components	40
10a	AR1, BR1, AR2 Registers	43
10b	BR2 and CTL Registers	44
11	PDP-8 Data Paths	45
12	Bus Gating	46
13	Select Interception	48
14	Channel Seizure	49
15	Command Storage/Proceed	51
16	Status	52
17	Parity Check	53
18	BR2 Gating	55
19	Command End	56
20	Service End	58
21	Cycle Reset	59
22	Control Operation Decoder and Channel Request Flip-Flop	60
A 1	Channel Seizure	64
A 2	Command Byte Storage	65
A 3	Command Status Presentation	66
A 4	Special Status Presentation	67

LIST OF FIGURES (cont'd)

Figure		Page
A 5	Service Cycle	68
A 6	Service Cycle End	69
A 7	PDP-8 Data Break Cycle	70
B 1	Initial electica	73
B 2	Service Cyc¹e	73
В 3	Control Unit Busy	75
B 4	Interface Disconnect	75
B 5	Channel Seizure	77
B6	Cate Transfer	77
B 7	Major State-Service Cycle	79
B8	Data-Break Service Cycle	79
В9	Test I/O Loop	81
B10	SEL OUT/SEL IN Delays	81
C1	Select Latch	86
C 2	Select Latch State Table	87
D1	Physical Configuration	91
D 2	Power Control Unit	93
D 3	DEC to IBM Bus Driver Module	95
D 4	IBM to DEC Bus Receiver Module	97
D 5	SEL OUT Bypass Module	98
E 1	AR1	101
E 2	BR1	102
E 3	AR1/BR1 Pulsing.	103
E 4	AR2	104
E 5	BR2	105
Ео	AR2/BR2 Pulsing	106
E 7	BR2 Gating	107
E8	Control Register	108
E 9	Clearing the Control Register	109
E10	Control Operation Decoder	110
E11	IOT Detection	111

LIST OF FIGURES (cont'd)

Figure		Page
E 1 2	Transfer Direction	112
E 1 3	Address Register Compare	113
E14	Address Detect	114
E 1 5	Channel Request	115
E16	Select Interception	116
E17	Channel Seizure	117
E 1 8	Command Storage	118
E19	Status	119
E 2 0	Command Cycle End	120
E 2 1	Data Break	121
E 2 2	Data Break	122
E 2 3	Service Cycle Reset	123
E 2 4	Command Cycle Reset. System Reset	124
E25	BUS OUT Parity	125
E 2 6	BUS IN Parity	126
E 2 7	BUS OUT Parity Check. BUS IN Parity Check	127
E28	BUS-TAGS OUT Gating	128
E 29	Select Out Gating	129
E30	BUS-TAGS in Gating	130
E31	On-Line/Off-Line Circuitry	131
E32	Test Panel Push Button Gating	132
E 3 3	Connectors Positions	133
E34	PDP-8 Cable Connectors (Page 1 of 3)	134
E34	PDP-8 Cable Connectors (Page 2 of 3)	135
E34	PDP-8 Cable Connectors (Page 3 of 3)	136
E 3 5	IBM Cable Connectors (Page 1 of 7	137
E35	IBM Cable Connectors (Page 2 of 2),	138
E36	Test Panel Connectors (Page 1 of 3)	139
E36	Test Panel Connectors (Page 2 of 3)	149
E36	Test Panel Connectors (Page 3 of 3)	141

LIST OF FIGURES (cont'd)

Figure		Page
F1	Test Panel Layout	148

SYSTEM/360 INTERFACE ENGINEERING REPORT

I. INTRODUCTION

The System/360 interface appears to the resident System/360 control program as similar to the 2702 Transmission Control. This approach is felt more fruitful in the face of heavy commitments to software support provided by the manufacturer. Its pertinent features are as follows:

- a. The interface recognizes a class of device addresses that are assigned according to the conventions established by IBM.
- b. Recognition of command codes and generation of status responses are in most cases under the control of the resident PDP-8 control program.
- c. Several buffer registers isolate the two machines so that the exchange of control and data information does not affect the timing of other control units that may be attached to the channel.
- a. Data transmission between the two machines proceeds in a byte-interleaved or burst-mode fashion at an aggregate data rate which may be programmed by the PDP-8 and indirectly by the System/360.

The System/360 interface consists of two principal components: the command interface, which services initial commands issued by the System/360 control program through the multiplexor channel, and the service interface, which transmits data and status information between the two machines. Both of these interfaces operate independently and in an overlapped fashion except at the channel interface circuitry itself, which is necessarily sequential in operation. At the channel interface the entire PDP-8 system appears to the System/360 as a control unit and accesses the interface transmission lines in the fashion prescribed for these devices.

II. CHANNEL INTERFACE LINES

The System/360 interface is connected to the multiplexor channel via a set of 34 lines which are common to all other control units serviced by the channel. All of these lines except one are simply looped through the interface and attached to the various bus drivers or receivers as required. Thus in off-line or power-down situations it is not necessary to physically reroute or switch these lines, but merely to gate off the bus drivers and receivers. The one exception (the SEL OUT line) is physically broken at the interface. The interface-inbound SEL OUT line is routed to a terminator and bus receiver, while the interface-outbound SEL OUT line is routed from a bus driver. During normal equipment operation, signals received on the inbound SEL OUT line are processed internally and then propagated to the next control unit via the outbound SEL OUT line. During off-line or power-down conditions the terminator, bus receiver, and driver are bypassed with a relay.

The interface lines and their nomenclature used throughout this document are summarized in Figure 1. Following is a brief description of the function of each of these lines. For greater detail, the reader is referred to the pertinent IBM publications.

BUS OUT. A set of nine lines, including a parity line, which propagates outbound information a byte at a time from the channel to all control units serviced by the channel. The information is conditioned by the outbound tag lines (ADR OUT, CMD OUT, SRV OUT) actuated by the channel and may represent a device address, a control unit command, or an outbound data byte.

<u>BUS IN</u>. A set of nine lines, including a parity line, which propagates inbound information a byte at a time from a selected control unit to the channel. The information

FIUGRE 1. CHANNEL-CONTROL UNIT INTERFACE LINES

is conditioned by the inbound tag lines (ADR IN, STA IN, SRV IN) actuated by the control unit and may represent a device address, a status byte, or an inbound data byte.

Outbound Tags. Three lines: ADR OUT, CMD OUT, and SRV OUT used to condition information on BUS OUT. If ADR OUT is up, the channel is attempting to gain initial selection of a control unit in order to transmit a command byte. When selection is achieved, CMD OUT indicates that a command byte is available on BUS OUT for interpretation by the control unit. SRV OUT is used as an interlock during data and status transmission cycles. These tags are also used in combination during certain control sequences not involving the use of BUS OUT.

Inbound Tags. Three lines: ADR IN, STA IN, and SRV IN used to condition information on BUS IN. If ADR IN is raised by the control unit, the information provided on BUS IN identifies the particular device requesting channel service. If STA IN is raised by the control unit, the information on BUS IN is the status byte pertaining to the device, and if SRV IN is raised, the control unit is requesting charnel service for a data byte.

Selection Controls. Seven lines controlling the seizure and sequencing of transmission operations between the channel and the control unit. SEL OUT and SEL IN form a loop from the channel outbound through all control units in turn and finally inbound to the channel. A signal propagated on this line is intercepted by a control unit depending upon its position along this loop, which in effect establishes its priority for channel service. OPL OUT and GPL IN are conditioned by the channel and the control unit respectively and indicate the availability and connection

status of each of these devices. In particular, a control unit raises OPL IN when it has achieved selection on the interface, and is held up for the duration of the particular channel-control unit sequence involved. HLD OUT is used in conjunction with SEL OUT to minimize propagation delays through the select circuitry of the control units. SUP OUT is raised by the channel to inhibit control unit seizure of the inverface under certain conditions. REQ IN is raised by each control unit requesting channel service and conditions the channel to poll the interface for seizure. Certain combinations of these selection control lines are used to indicate special conditions such as system and selective reset, and in conjunction with the outbound tag lines to indicate special conditions such as interface disconnect.

Metering Controls. Three lines used to condition usage meters on the various devices of a System/360 complex. The equipment described herein makes no use of these lines.

III. CONTROL SEQUENCES

A number of control sequences are possible between the channel and the interface and, of these, most have several variations. All sequences can be grouped in one of three classes, however:

- 1. those involving initial-command selection,
- 2. those involving data transmission, and
- 3. those involving presentation of ending status.

For any one device, these sequences proceed in the order named; that is, the device is selected and logically connected to the channel, then transmits its data, and finally transmits status regarding the condition of the I/O device at the conclusion of

the operation. However, certain conditions can occur which are asynchronous to the progression of an operation through the states corresponding to the three principal sequences. Such conditions include those that halt data transmission and those that test device status during the course of an operation. Some of these can be produced by the channel without intervention by the program. The operation of the interface using typical sequences is summarized below. Additional details of operation in exceptional cases are discussed in the pertinent IBM publications

3.1 Initial Selection Sequence

Figure 2* shows the sequence of interface tag line signals during an initial selection procedure. This sequence is used for all channel commands and, in addition, for the Test I/O (TIO) sequence. The sequence begins when ADR OUT is raised by the channel while a device address is on BUS OUT. If the address has odd parity and lies within the block recognized by a control unit, that control unit prepares to seize the channel when SEL OUT rises on the interface. When this occurs, the control unit

- a. inhibits propagation of SEL OUT to the next lower-priority control unit on the interface,
- b. raises OPL IN to indicate to the channel that the control unit has in fact seized the interface, and
- $\ensuremath{\text{c.}}$ internally stores the device address presented on BUS OUT.

The channel then acknowledges OPL IN by dropping ADR OUT. The control unit then places the just-stored device address on BUS IN with odd parity and raises ADR IN This returned address is checked by the channel for correct parity and for match

Wave forms shown in bottom of figures correspond to interface circuitry signals described in Section V. Timing information is given in the form of channel sequence photographs in Appendix B.

FIGURE 2. INITIAL SELECTION

against the address first transmitted on BUS OUT. If these tests fail, the channel performs a malfunction reset, which affects all I/O devices attached to the channel. Depending upon the particular machine model, this operation may result in a processor check or in a bit set in the Channel Status Word (CSW) stored as the result of the channel operation.

Following reception of a correct address on BUS IN, the channel next places the command byte (all zero bits for a TIO, nonzero for a valid channel command) on BUS OUT, and raises CMD OUT. The control unit stores the channel command internally and checks the byte for odd parity. Following this operation, the control unit drops ADR IN, which the channel acknowledges by dropping CMD OUT, an invitation for the control unit to present a status byte.

In most IBM control units, the allowable channel commands are well prescribed and represent only a few of the possible 255 codes. Accordingly, it is possible to detect immediately upon storage of the channel command byte whether the control unit can accept the particular command or not. Thus the control unit has the option of either accepting the command by presenting the channel with an all-zero status byte or rejecting the command with a status byte containing the unit check bit. In the equipment described here, the command may undergo analysis by the PDP-8 program, a process which may require a lengthy period compared to the channel selection sequence. Accordingly any channel command, other than TIO, is always accepted, even if it does not have odd parity. It is up to the PDP-8 program to interpret the particular command code and to transmit possible rejection using an ending-status presentation containing the unit check bit.

Thus, following the acceptance of the channel command, the control unit places an all-zero status byte on BUS IN and raises STA IN, to which the channel responds with SRV OUT. The control unit now drops all inbound tag and bus lines and disconnects from the interface. If the channel forces burst mode at this time, SEL OUT will still be up at the control unit,

and a sequence of SRV IN-SRV OUT signals is expected by the channel to transmit the data associated with the operation. However, the multiplex channel will force burst mode only in connection with an Initial Program Load (IPL) operation. Therefore the equipment considered here is not normally expected to operate under channel-forced burst mode conditions.

3.2 Service Cycle

Figure 3 shows the sequence of interface tag line signals during a service cycle procedure. This sequence is used for all data and status byte transmission between the channel and the control unit. In the byte-interleaved mode, one such sequence is executed for each data byte separately. In the control-unit-forced burst mode, the initial part of the service cycle sequence is followed by alternate SRV IN-SRV OUT pairs.

The service cycle sequence differs from the initial selection sequence in that the transmission is initiated by the control unit rather than by the channel. A control unit requesting service raises the REQ 1N tag line when the SUP OUT tag line is down at the control unit. (Certain sequences are expected to override the SUP OUT signal; see below.) When the channel next polls the control unit interface by raising SEL OUT, the highest priority control unit requesting service inhibits the propagation of SEL OUT, places its device address on BUS 1N, and raises OPL IN and ADR IN. The channel checks the device address for odd parity, retrieves the addressed subchannel status in its active registers, and issues CMD OUT.

The control unit recognizes CMD OUT as permission to proceed with the operation, and it next drops ADR IN. When the channel drops CMD OUT the control unit raises either

a. STA 1N and places a status byte on BUS IN,

FIGURE 3. SERVICE CYCLE (BURST MODE)

With the same of t

- b. SRV IN and places a data byte on BUS IN for transmission to the channel, or
- c. raises SRV 1N and waits for a SRV OUT channel acknowledgment that a data byte has been placed on BUS OUT for transmission to the control unit.

If the device address does not have odd parity, the channel performs a malfunction reset. If a status byte does not have odd parity, an interface control check condition is generated. If, in the case of channel-inbound transmission, a data byte does not have odd parity, a channel data check condition is generated. Depending upon the particular machine model, these indications appear as a processor or memory check and as a bit set in the CSW stored as the result of the channel operation.

The channel acknowledges the receipt of a data or status byte, as appropriate, with SRV OUT. This response is also used by the control unit to verify the presence of a data byte on BUS OUT where appropriate. The channel may alternatively respond to SRV 1N with CMD OUT, indicating that the data region in its main storage is exhausted, and may respond to STA IN with CMD OUT, indicating that the status byte is to be stacked in the control unit for later presentation to the channel.

In any case, the control unit responds to an outbound tag line at the end of the service cycle sequence by dropping all inbound tags and disconnecting from the interface. The channel is now free to continue polling for other control units on the interface or to issue new commands to the same or other control units. In particular, under some conditions, cert in channel-generated commands may be directed to a busy control unit before device-end status has been serviced by the channel (see below).

3.3 Special Sequences

Turing the course of normal equipment operation and in certain abnormal situations, special control-unit interface sequences may be generated by the channel. These fall into two classes: those intended to stop device activity by request from the System/360 program, and those generated either by manual intervention or by the machine itself for the purpose of temporarily disconnecting the device from the system.

The first class of sequences includes the interface disconnect sequence generated by the channel in response to a Halt I/O (HIO) instruction executed by the System/360 program. Such a sequence can occur at any time, either within an initial selection or a service cycle sequence. The sequence is signaled after the device address has been checked by the channel and when ADR OUT is up at the control unit while SEL OUT is down. The sequence usually occurs before the command byte is stored on initial selection, but may occur after CMD OUT rises during a service cycle.

Figure 4 shows an interface disconnect sequence on initial selection. Following such a sequence, the control unit is expected to remove immediately all signals from the interface and to present ending status following its device operation. The ending status is to be transmitted only if the associated System/360 subchannel was working at the time of the sequence and may be cleared by a channel-generated TIO command prior to program intervention.

The second class of sequences includes the selective and system reset sequences generated by the channel in response either to manual intervention or equipment malfunction. The system reset sequence is indicated when both OPL OUT and SUP OUT are down at any control unit. This sequence occurs when power is first applied to the system, or when either the SYSTEM RESET, LOAD, or PSW RESTART pushbuttons are depressed on the System/360 operator's control panel. The selective

FIGURE 4. INTERFACE DISCONNECT

reset sequence is indicated when OPL OUT is down while SUP OUT is up at a control unit during an operation involving that control unit. This sequence occurs when the channel has detected a malfunction of the control unit or channel circuitry. Such a malfunction may involve invalid BUS IN parity, improper signal sequencing, or excessive sequence timings.

In the case of either the system or selective reset sequences, the control unit is expected to disconnect from the interface without presenting ending status for the operation. Since the control unit may be reselected immediately following a reset sequence, the control unit must appear busy to the channel while any internal time-dependent reset operations are completed.

3.4 Polling Operations

Since both the channel, its attached control units, and their attached devices operate asynchronously with respect to each other, conventions for device polling and acknowledgment are required. The polling-acknowledgment conventions appear at three levels:

- a. during the initial selection of a control unit,
- b. during the channel seizure procedure by a control unit, and
- c. during the selection and deletion procedures of a device attached to a control unit.

Additional conflicts for both channel and subchannel access by the System/360 program are resolved by the channel and in some systems by the channel controller.

The channel selects an attached control unit with the initial selection sequence. If the control unit is free to accept a command (without respect to the status of its attached devices), it responds with the sequence shown in Figure 1. If not, then the control unit responds with the control unit busy sequence shown in Figur: 5. This sequence begins in the same fashion as the initial selection sequence; that is, the channel places a device address on BUS OUT and raises ADR OUT. When SEL OUT rises at the control unit servicing the device, and if the control unit is busy servicing some other device, the control unit responds by placing a status byte on BUS IN and raising STA IN. The channel responds with SRV OUT unconditionally, ollowing which the control unit disconnects from the interface. Note that this sequence does not require the control unit to store the device address presented on BUS OUT or to present stored status for the device, even if it is available somewhere in the control unit.

The status byte presented to the channel during the control unit busy sequence may take two forms. One form includes both the status modifier and busy bits, which by convention inform the System/360 program that the control unit is busy and will present a status byte containing the control unit end bit at some future time. The other form includes all three of these bits, which by convention inform the System/360 program that the control unit is temporarily busy and that the operation which was rejected by the control unit should be immediately retried. The second form of status byte is used when the control unit busy condition is expected to last somewhat less than a millisecond, the interrupt processing time of typical System/360 programs, and the first form is used in all other cases.

When the channel is not busy with some internal operation and is not in the process of issuing an initial selection sequence directed to some attached control unit, the channel normally reverts to the polling mode. In this mode the channel interprets REQ IN as a request to poll the interface with SEL OUT, an operation that presumably will result in some control unit raising OPL IN. In some models of the System/360 product line, the polling mode may be entered at interesting times, for instance while the channel is retrieving the Channel

FIGURE 5. CONTROL UNIT BUSY

Address Word (CAW) or a channel command from main storage. Since the System/360 CPU is interlocked between the time that an I/O instruction is decoded and the time that the channel or the addressed device responds, it is important that the control unit sequence following REQ IN be as short as possible. In extreme cases of control unit delay during a Start I/O (SIO) operation (either addressed to the control unit or not), a processor check may occur when the System/360 CPU microprogram attempts to update its interval timer

Data byte transmission operations for any particular device take precedence over all other channel operations, and are guaranteed to proceed without interference to the subchannels connected to other devices serviced by the channel. Status byte transmission operations, on the other hand, are considerably more involved and may take one of two alternate forms depending upon whether the subchannel in question is busy or not.

An ending status presentation to a busy subchannel must contain the channel end bit, but may contain others as well. Such a status presentation will always be accepted by the channel with a SRV OUT response to a STA 1N during the service cycle. Once this status has been stored in local subchannel storage, the channel requests a System/360 CPU interrupt which causes a channel status word (CSW) containing the subchannel status to be stored in main storage. An ending status presentation to a subchannel not in the busy state will be automatically stacked in the control unit with a CMD OUT response to a STA IN tag during the service cycle Before stacking the status at the control unit, however, the channel stores the device address of the requesting control unit in a special register called the Interrupt Buffer (IB) (or Interrupt Queue) time the channel requests a System/360 CPU interrupt, and, when granted, causes a channel-generated pseudo-Test I/O command to be issued to the device whose address as stored in the IB. The control unit in question now furnishes this status as the result of an initial selection sequence rather than the service

cycle sequence o iginally requested. Not all IBM control units can tolerate this interesting procedure; and, in fact, well-known machine hang-ups revealed in IBM documentation in connection with the 2702 Transmission Control are due to the failure of that device to process the pseudo-Test I/O.

3.5 Equipment Failure Diagnostics

Most control unit component malfunctions can be diagnosed by the channel; and, in many cases, the System/360 control program can recover from the malfunction condition, record the failure, and continue system operation. In the case of the programmable control unit equipment considered here, certain invalid programming sequences can also produce such malfunction indications to the channel. Six malfunction conditions are accognized by channel circuitry as probably originating in an ached control unit. These may or may not be detected separately or as distinct from a processor check, depending upon the machine model:

- 1. Channel timeout. The System/360 CPU had not been released a pre-set interval (typically 150 microseconds) following issuance of an I/O instruction.
- 2. Address-in check. The channel detected a parity error on the address received from the control unit during a service cycle.
- 3. Status-in check. The channel detected a parity error on the status byte received from the control unit.
- 4. Incorrect selection. The address received from the control unit during an initial selection sequence does not match that transmitted by the channel.
- 5. No response The control $n_{\rm cont}$ did not respond to re-selection on a chain-command operation.
- $\,$ 6. Incorrect tag sequence. The control unit disconnected from the channel before the channel dropped the SEL OUT tag line.

Any of these malfunctions cause the channel to assume an interface control check condition, which may be indicated as a bit set in the CSW stored as the result of the operation and further detailed in the log-out area peculiar to the model. Condition 6 can occur on the multiplex channel only as the result of an Initial Program Load (IPL) operation and will always be produced when such an operation is directed to a control unit such as the 2702 Transmission Control or the interface equipment described herein

IV. PROGRAMMING CONSIDERATIONS FOR IBM SYSTEM/360 INTERFACE

The System/360 interface is composed logically of two subinterfaces: the command interface and the service in-The command interface stores the channel command and device address developed during the multiplex channel initial selection sequence and presents the appropriate status byte to the channel to terminate the sequence. At the conclusion of the sequence, appropriate bits are set in a control register to indicate the particular type of sequence to the PDP-8 interrupt processor The service interface supervises data break operations between the PDP-8 and the multiplexor channel. This interface is started by the PDP-8 program by loading a three-bit command code in the control register, following which three-cycle data break operations occur for data transmission between a block of PDP-8 memory and the Both data and ending-status bytes are transmitted in this fashion. At the conclusion of the operation, either at channel-stop or word-count-equal-zero times, bits are set in the control register to indicate the termination condition to the PDP-8 interrupt processor

Five registers in the interface are available to the PDP-8 program. Two of these, AR1 and BR1, are used in connection with the command interface, while another two, AR2 and BR2, are used in connection with the service interface.

The fifth register, CTL, is common to both interfaces, and serves as the controlling element for the various operations. The AR1, BR1, and AR2 registers can be read, cleared, and loaded (one's-transfer) from the AC of the PDP-8. The BR2 register is connected only to the data break facility. The CTL register can be read, inverted, and tested bit-by-bit with appropriate microinstructions (see below). Some of these registers need not be read or loaded during the common interface operations; the general read/load facility is included primarily for diagnostic utilities. Figure 6 illustrates the coding of the various register bit assignments and establishes the IOT microinstruction codes for their access.

The operation of the control register invert-undermask (CTL INV) and test-under-mask (CTL TST) microinstruction is as follows: Both of these instructions address the twelve control register bits in one-to-one correspondence with the bits of the AC. The operation of the CTL INV microinstruction results in a bit-wise inversion of each bit in the control register for which the corresponding bit in the AC is a one. The operation of the CTL TST microinstruction results in a single-instruction program skip if each control register bit which is in correspondence with a one bit in the AC is a one. If any control register bit in correspondence with a one bit in the AC is a zero, no program skip is generated. An unconditional skip is generated if the AC contains all zeros.

The RD, CLR, and WR modifiers may be applied to the registers designated AR1, BR1, and AR2. The sequence of the IOP pulses is such that the micro-operations are performed in the order listed. The RD, TST, and INV modifiers may be applied to the register designated CTL. The micro-operations are performed in that order. Appendix F illustrates segments of code that are applicable in common programming situations.

FIGURE 6. REGISTER BIT ASSIGNMENTS

4.1 Command Interface Operations (Figure 7)

Three of the four System/360 I/O instructions will result in a channel sequence in the command interface, and two of these will normally end by interrupting the PDP-8 program. An SIO instruction executed by the System/360 will result in one or more channel commands being fetched from System/360 core storage and transmitted to a control unit. If the device address specified in the S7O instruction lies within the block recognized by the command interface and if the interface is not busy (i.e., holding a previously issued command), then the interface will seize the channel and store the device address in ARI and the command byte in BRI. If the channel sequence is generated as a result of a valid channel command, the command byte stored in BRI must be nonzero, and will be an odd number if channel-outbound service is indicated and an even number if channel-inbound service is indicated.

Note that in order for the selection sequence to be initiated, the parity of the device address must be odd. If this parity is odd and yet the parity of the command byte is not odd, then the CMD PCK bit of the control register is set. This situation, interpreted as a BUS OUT parity check, does not affect the progress of the selection sequence or the status byte subsequently transmitted to the channel.

At the conclusion of the initial selection operation, the CMD END bit of the control register is set if the channel accepted the interface-generated all-zero status byte and the CMD STK bit if the channel rejected the byte. If the channel sequence is generated as the result of a valid channel command, an occurrence of the later situation must be interpreted as a System/360 machine check.* When either the CMD END or CMD STK bits are set, the FDP-8 is interrupted.

Note that in current System/360 channel equipment, stack on initial selection (CMD STK) never occurs on an all-zero status byte. In the case of a nonzero status byte, stack on initial selection will be generated only in certain cases

INITIAL SELECTION-STATUS ACCEPTED

INITIAL SELECTION-TIO STATUS STACKED

INITIAL SELECTION-HIO

FIGURE 7.

:

A Hait I/O (HIO) instruction executed by the System/360 causes a special channel sequence to be transmitted to a control unit. If the device address specified in the HIO instruction lies within the block recognized by the command interface and if the interface is not busy, then the interface will seize the channel and store the device address in AR1. BR1 will be forced to an all-zero byte. This sequence ends by setting the CMD HLT bit of the control register. A selective reset sequence generated by the channel during the progress of any command interface operation will also set this bit.** When the CMD HLT bit is set, the PDP-8 is interrupted.

A Test I/O (TIO) instruction executed by the System/360 causes a special channel sequence which is identical to the SIO sequence except that the command byte contains only zero bits. If the device address specified in the TIO instruction lies within the block recognized by the interface and if the interface is not busy, then the sequence ends by the transmission to the channel of a status byte containing only the status-modifier bit. If the channel accepts this byte, the interface is released and the PDP-8 is not disturbed. If the channel rejects the status byte, then the CMD STK bit is set in the control register and the PDP-8 program is interrupted. It is the responsibility

involving command chaining. Since the command interface generates a nonzero status byte only in response to a Test I/O instruction, and since this "instruction" may not occur as an element of a channel-command sequence, it is not at all clear from extant documentation whether the CMD STK bit can ever be set in any likely programming situation.

^{**} A selective reset sequence is generated by channel equipment, at least in some models, in response to a status presentation of bad parity and possibly in response to an invalid tag-line sequence. A presentation of a device address of bad parity in conjunction with ADR IN will usually result in a channel-generated system reset sequence. A presentation of a data byte of bad parity is not always detected by the channel itself, but may be detected by the CPU or memory bus register circuitry and cannot be differentiated from parity errors due to other causes.

of the PDP-8 program to retransmit a status byt. concaining the status modifier bit via the service interface when allowed by the channe! (however, see preceding footnote). Note that this behavior in connection with the TIO instruction is consistent with that of the IBM 2702 Transmission Control and implies, in particular, that the command interface cannot provide status in response to a program-generated TIO instruction. Note further that pseudo-TIO instructions can be generated by the channel without intervention by the program, and in these cases the command and service interfaces must cooperate in the successful transmission of a status byte to the channel. Such situations arise in connection with ending-status transmissions to subchannels not in the busy state (see below).

If a system reset sequence is generated by the ch n-nel, either as the result of power-up, initial program load, or manual operator intervention, the CMD RST bit of the control register is turned on. This operation clears all other bits of the control register and results in a PDP-8 program interrupt. All System/360 registers and subchannels are reset and placed in the available state. Pending data and status transmissions on the part of the PDP-8 should be suspended.

If any System/360 channel operation is directed to the command interface when either the CMD STK,CMD RST,CMD HLT, or CMD END control register bits are set, the command interface will immediately reject the operation with the control unit busy sequence, which involves the transmission to the channel of a status byte containing the status modifier, busy, and control unit end bits. This sequence is by convention interpreted by both the channel and the System/360 program as an indication to immediately retry the operation. For this reason, the resident PDP-8 program should give high priority to command interface interrupts, since the System/360 program may be hung up during the response interval. The PDP-8 interrupt processor clears such interrupts by inverting the

appropriate bit of the control register to a zero. Previous to this operation, meaningful contents of both the AR1 and BR1 register must of course be preserved in core storage by the interrupt processor. It is possible in some System/360 programming systems that tight T10 or HIO loops may be executed under certain conditions. In the case of the HIO instruction, the resultant load on the command interface will most certainly lock up the PDP-8 interrupt processor, which then must clear the System/360 condition, presumably by the transmission of ending status to the channel. In any case, the PDP-8 program must be aware of situations inherent in the particular parent System/360 supervisory programming system in which T10 or H1O loops are involved or in which the multiplex channel is masked against interrupts, and must give high priority to channel service under those conditions.*

4.2 Service Interface Operations (Figure 8)

In all service-interface operations, a block of data is transferred either channel inbound or channel-outbound. The three-cycle data break facility of the PDP-8 is used for this block transfer operation, which once initialized by the PDP-8 program, continues until the PDP-8 residual word count decrements to zero, until the channel detects that a System/360 core memory storage area is exhausted, or until the System/360 program issues an HIO instruction. All transmission operations make use fouly the low-order eight

^{*} A typical instance of a tight TIO loop occurs after presentation of a unit check to certain present System/360 programming systems. Programming constraints imposed by other control unit; in particular the 2841, require that a TIO be directed to the control unit immediately following a unit check. In such a case, the selector channel must be disabled before issuance of the TIO. In such cases, the same behavior may exist on the multiplexor channel, a behavior which is strongly disadvised, since not only the command interface but other IBM control units as well will hang up the system for some time.

SERVICE CYCLE (BYTE-INTERLEAVED MODE)

SERVICE CYCLE-STOP

Figure 8a.

SERVICE CYCLE-END FIGURE 8b.

Handstoney

A CONTRACTOR OF THE PARTY OF TH

All stellarspairs

bits of a PDP-8 core memory location. The four high-order bits are ignored in channel-inbound operations, and are replaced by zeros in channel-outbound operations. Either data bytes or status bytes may be transferred using the appropriate interface order codes (see below). In the case of status byte transmission, the service interface will automatically represent status to the channel following a stack-status channel sequence.

All data and most status operations involving the service interface take place only when the associated System/360 subchannel is busy, that is when a valid channel command has been stored by the command interface. If the low-order bit of the channel command is a zero, then channel-inbound service is requested and the PDP-8 program must select the interface-outbound data operation. If the low-order bit of the channel command is a one, then channel-outbound service is requested and the PDP-8 program must select the interface-inbound data operation. Violation of these constraints will usually result in either a channel check, processor check, or storage check, depending upon the particular System/360 model.

channel is busy will not usually be stacked by the channel; and, if a status presentation happens to be stacked, it can eventually be cleared by re-presentation to the channel. If the subchannel is available to the System/360 program, then any status presentation will be automatically stacked and must be cleared by a channel-generated pseudo-TIO command. Such considerations dictate a careful organization of the PDP-8 program to avoid System/360 hangups due to conflicts at the command and service interfaces

 $\begin{tabular}{ll} A ? 1 & service & interface & operations & involve & a & programmed \\ procedure & which \\ \end{tabular}$

- a. presets the word count and current address locations accessed by the three-cycle data break facility,
- $\label{eq:b.loads} \textbf{b.} \quad \textbf{loads AR2 with the specified device address,} \\ \textbf{and finally}$
- $\,$ c. loads a three-bit order code into the control register.

The service interface then proceeds with alternate channel sequences and three-cycle data break operations until either the PDP-8 word count is decremented to zero, or until a stop sequence is generated by the channel. The appropriate bits are then set in the control register and the PDP-8 program is interrupted. The interrupt is cleared by inverting the appropriate control register bits to zeros.

In the case of data operations, operation can be selected in either the byte-interleaved or burst mode. The byte-interleaved mode is appropriate for either low-speed operations with all models or both low- and high-speed operations with the higher-numbered models. Depending upon the width of the data paths to core memory and the degree of CPU involvement in the multiplexor channel operations, the burst mode may be appropriate for high-speed operations with the lower-numbered models.

A channel-outbound byte-interleaved data operation is started by loading an octal 2 into the high-order three bits of the control register. An octal 3 starts the same operation in burst mode. These orders initiate a data operation from the channel to the PDP-8 core memory. When the PDP-8 word count decrements to zero, the SRV END bit is set in the control register. When a stop sequence is transmitted by the channel in response to a service request by the interface, the SRV HLT bit is set in the control register. No data byte is transmitted to the PDP-S core memory on a SRV HLT cycle.

This operation is suppressible. That is, if the channel is undergoing some critical sequence which should not be interrupted for lower priority operations, the service interface will suspend data transmission. Such is the case when another control unit on the channel is operating in burst mode or when certain status operations are pending at the channel. If an operation is not outstanding in the System/360 subchannel addressed by AR2, then, depending upon the model, the channel will either respond unconditionally with a stop sequence or ar interface disconnect sequence, either of which sets the SRV HLT bit of the control register, or hang up the channel. If a data byte presented by the channel does not have odd parity, then the SRV PCK bit is set in the control register. This condition does not affect the further progress of the operation and in particular does not cause a PDP-8 program interrupt.

A crannel-inbound byte-interleaved data operation is started by loading an octal 4 into the high-order three bits of the control register. An octal 5 starts the same operation in burst mode. This order initiates a data operation from the PDP-8 core memory to the channel. When the PDP-8 word count decrements to zero, the SRV END bit is set in the control register. The last byte fetched from FDP-8 memory on the SRV END cycle is transmitted to the channel. When a stop sequence is transmitted by the channel in response to a service request by the interface, the SRV HLT bit is set in the control register. The last byte obtained from PDP-8 memory on a SRV HLT cycle is then lost whether or not the SRV END bit is set during the same cycle.

The comments above under channel-outbound data transmission concerning data suppression and operation with an
available subchannel apply also to channel-inbound data transmission. Odd parity is automatically generated on all channelinbound operations whatever their nature, and the SRV PCK
control-register bit is never affected by such operations.

When either the SRV END or the SRV HLT control register bits become set as a result of a service interface operation, the PDP-8 program is interrupted. The interrupt processor can determine how many data bytes have been successfully transmitted by inspecting the residual word count stored by the three-cycle data break facility and applying the modifying factors shown in Table 1. If the SRV HLT bit is not on at the conclusion of an operation, the opportunity exists to transmit additional data blocks. If both the SRV HLT and SRV END bits are set in the control register following a channel-outbound data operation, an interface failure is evident.

At the conclusion of the transmission of all data blocks, and in any case following any operation terminated by the SRV HLT bit, a status presentation is expected by the channel. Such a presentation must include the channel end bit and may include others as well. Following the presentation of channel end, the subchannel involved reverts to the interruption-pending state and may allow certain I/O instructions addressing the subchannel to proceed directly to the command interface. The subchannel reverts to the available state upon receipt of an interrupt response from the System/ 360 CPU, following which any I/O instruction may be directed to the command interface. The channel end and device end bits may be combined in a single status byte.

A standard status operation is one in which a status byte containing the channel-end bit is to be transmitted to a working subchannel. Such an operation is started by loading an octal 7 into the high-order three bits of the control register. This order initiates a status operation involving status byte transmission from the PDP-8 core memory to the channel. Usually only one byte will be transmitted to the channel on any one operation; but, regardless of the number of bytes actually transferred, the operation can legitimately terminate only when the PDP-8 word count decrements to zero,

TABLE I

*Bytes Transmitted		M - N		N - W N - W - 1 N - W - 1		N-W N-W-1 N-W-1
Sequence		(see text)		PDP-8 stop channel stop channel stop on last byte		(see text) (see text)
		PDP-8 stop channel stop not possible		PDP-8 stop channel stop channel stop		PDP-8 stop not possible not possible
SRV END		1 0 1		1 0 1		1 0
SRV HLT		0 1 1		1 1 0		1 1 0
Order	Data Jutbound	رد الت دير الت	Data Inbound	CTL 4] CTL 5	Status Inbound	CTL 6] CTL 7]

N = initial word count
W = residual word count

a condition that sets the SRV END bit in the control register and interrupts the PDP-8 program. If an interface disconnect or selective reset sequence is transmitted by the channel in response to a status presentation, then the interface will immediately disconnect from the channel and cause the SRI HLT bit to be set in the control register.

The standard status operation is not suppressible by the channe'. That is, status presentations cannot be locked out of the system if the channel is disabled but has an interrupt pending for another device. Under these conditions, a T10 instruction issued by the System/360 program can clear pending status at the service interface. Such a procedure is called for following presentation of unit check in a status by e to certain System/360 programming systems (see preceding footnote). Such systems regularly follow presentation of unit check by a Sense channel command while the channel is disabled, and rely on clearing device status using a TIO loop. Note that in such cases a busy indication is returned to the System/360 program as long as the subchannel is working; and, in particular, the TIO is not propagated to the device itself. Thus, if the subchannel is working, a standard status operation will always terminate with the channel accepting the presentation by the service interface, and in particular without the generation of pseudo-TIO commands on the part of the channel.

by the channel for any purpose, then the interface itself automatically "demotes" the priority to that of a special status presentation. A special status operation is one in which a status byte is to be transmitted to a subchannel not in the working state. That is, a subchannel in either the available or interruption-pending states. Such an operation is started by loading an octal 6 into the high-order three bits of the control register. This order initiates a status byte transmission in the same manner as the standard operation, with

the exception that the presentation is suppressible by the channel. Such behavior is necessary to avoid the lockout of a channel-end status presentation of a lower-priority control unit on the channel interface cable by an unsolicited status presentation by the service interface. As in the standard operation, the special operation ends by setting the SRV END bit in the control register.

To summarize the application of the two kinds of status operations, the standard operation is used to transmit a status byte, which must contain the channel-and bit, to a working subchannel; and the special operation is used to transmit a status byte to a non-working subchannel. A failure to make this distinction will result in a machine hangup in the lower-numbered models of the System/360 product line and in an interface control check (channel timeout) in the higher-numbered models. Such situations may result in a diagnostic Channel Status Word (CSW) to be stored by the System/360.

If SUP OUT is up when SRV OUT is raised by the channel in response to an ending status presentation, the CMD CHN bit of the control register is set. Such an action is interpreted as an indication that the channel is command-chaining the previous operation and is about to reselect the interface for issuance of a new channel command. The indication of the CMD CHN bit is only advisory to the PDP-8 program and does not affect the progress of any channel or interface sequence. Depending upon the circumstances involved, the PDP-8 program may process this indication as a request to save such status presentations as the attention bit until the end of the System/360 channel program, or to assign high priority to command interface operations so that the immediately following reselection procedure will not delay the channel.

4.3 System/360 Control Program Operations

Interface programming considerations for the System/
360 resident control programs are similar to those for the
2702 Transmission Control However, due to the somewhat
richer architecture of the interface, the behavior of the
two machines will be slightly different. The main differences
are:

- channel-end and device-end status presentation do not necessarily have to occur in the same byte,
 - 2. burst-mode operation can be sustained,
- 3. no immediate channel command operations are possible,
 - 4. unsolicited status presentations are possible.

Considerations 1 and 2 imply that it is possible to use the interface on a shared subchannel, effecting a cost reduction in channel equipment on some models. However, since it is not possible to determine at initial selection time whether a particular device attached to the PDP-8 and logically connected to a particular System/360 subchannel can or cannot accept a channel command (consideration 3), use of this capability would be rather awkward. Consideration 2 implies that system performance at moderate data rates can be materially improved in the lower-numbered models by programming the PDP-8 to operate in short multi-byte burses. The System/360 programming problems in connection with burstmode operations are similar to those arising in connection with tape control unit operations on the multiplexor channel. Consideration 3 is another implication of the general interface characteristic that all commands are accepted if the interface is not busy. Consideration 4 is an implication of the capability of the interface to clear asynchronous unsolicited status presentations as the result of a pseudo-Test I/G instruction.

Following is a short summary of the operation of System/360 1/0 instructions when directed to a device address recognized by the interface. Only those features of operation dependent upon the peculiar characteristics of the interface are emphasized.

Start I/0

Issued to a nonworking channel and subchannel, this instruction will always result in a command interface operation involving the transmission of a channel command to the interface. If both the command and service interface are idle before transmission of the channel command, then condition code 0 is set at the conclusion of the Start I/O operation. I/O activity is begun and the subchannel is placed in the working state. If the command interface is busy, then condition code 1 (CSW stored) is set at the conclusion of the operation. The device status field of the CSW contains the busy, control unicend, and status modifier bits. No I/O activity is started and the command interface is undisturbed following this operation. Normally the indicated busy condition may be expected to last in the order of a few hundred microseconds, representing the interrupt processing time of typical PDP-8 programs. If the command interface is idle and the service interface is holding pending status for the device addressed by the Start I/O instruction, then condition code 1 is set at the conclusion of the operation. The device status field of the CSW contains the status presented by the service interface and in addition the busy bit. No I/O activity is started and both the command and service interfaces are idle following the operation.

Halt I/O.

Issued to a nonworking channel, this instruction will always result in a command interface operation without regard to the state of the subchannel In addition, the

subchannel will be set up to signal the service interface to stop data transmission the next time a service cycle is requested. If the command interface is idle prior to the issuance of a Halt 1/0 instruction, then condition code 1 is set at the conclusion of the Halt 1/0 operation and the status field of the CSW is replaced with zeros. 1/0 activity is stopped by the addressed device, which will then provide ending status under control of the resident PDP-8 program. If the command interface is busy, then condition code 1 is also set following the operation, but the status field of the CSW contains the busy, control unit end, and status modifier bits. The Halt I/O indication has not been stored by the command interface, although the subchannel is set up to signal this condition when the service interface next requests a service cycle.

Test I/O

Issued to a nonworking channel and subchannel, this instruction will always result in a command interface operation but will not affect the PDP-8 program unless status presented is stacked by the channel (Ard whether this can ever happen is highly dubious-see comments elsewhere in this document.) Condition Code 1 will always be stored at the conclusion of the Test I/O operation. If the command interface is busy prior to the issuance of this instruction, then the status field of the CSW will contain the busy, control unit end, and status modifier bits. If the command interface is idle and status for the addressed device is available at the service interface, then that status replaces the status field of the CSW. If neither of these conditions hold, then the single status modifier bit is placed in the status field of the CSW.

Programming Notes

Contrary to published doctrine, it is evidently possible to cause I/O interrupts from devices whose subchannels are working, but without including the channel end bit and without affecting the status of the subchannel. It is not at all clear whether this is possible on all models or whether unknown machine incompatibilities can occur. Use of this feature (for instance as an attention interlupt) in real-time control environments is obvious.

In some programming systems, an automatic Sense channel command is issued (with channels disabled) when a unit check bit is set in a status byte. These systems rely on a Test I/O loop to clear ending status from the Sense command. If the Test I/O loop is looking for device end, then the cooperating PDP-8 program must present channel end and device end together on the status byte which ends the Sense command. Alternatively, the PDP-8 program must arrange that a channel end status presentation for a particular device address be followed only by status pertaining to the same device. Otherwise conflicts between the channel and the interface can occur in which the channel is asking for status (via a programmed or pseudo-Test I/O) for a device that the service interface is just not prepared to surrender.

V. ARCHITECTURE OF SYSTEM/360 INTERFACE*

The System/360 interface contains the registers and control circuitry to provide a bidirectional asynchronous transmission of both command, status, and data bytes between the System/360 multiplexor channel and the PDP-8. The interface consists of four data registers, their transfer gates, a control register, and various sequencing circuitry. The organization of these components is shown in Figure 9.

Logic symbology in this section corresponds to IBM standard usage. See Preface

FIGURE 9. PRINCIPAL INTERFACE COMPONENTS

Referring to Figure 9, the four data registers are designated Address Register 1 (AR1), Buffer Register 1 (BR1), Address Register 2 (AR2), and Buffer Register 2 (BR2). four registers are provided with jam-transfer direct-coupled diode-capacitor-diode (DCD) gates from the test switches, and, in addition, all except BR2 are provided with onestransfer DCD gates from the PDP-8 AC. ARl is used to hold the device address presented by the channel during the initial selection sequence and is provided with jam-transfer directcoupled (DC) gates from BUS OUT. BR1 is used to hold the command byte presented by the channel during the initial selection sequence and is provided with ones-transfer DC gates from BUS OUT. AR2 is used to hold the device address presented to the channel during a service cycle. No inbound transfer gating is provided except for the DCD gates mentioned above. BR2 is used to hold a status or data byte during a service cycle and is provided with ones-transfer DCD gates from the PDP-8 MB and with ones-transfer DC gates from BUS OUT. BUS IN is provided with ones-transfer DC gates from AR1, AR2, and BR2 as well as constant generators 10, 40, and 70 (hex), which are used to synthesize certain status bytes. The PDP-8 AC is provided with a special set of ones-transfer DC gates called the EAC bus, which is in turn provided with ones-transfer DC gates from AR1, BR1, and AR2. The EAC bus is used both to isolate the PDP-8 AC bus from the loading of the transfer gates and to provide a uniform interface for additional equipment, other than the interface, which may be connected to the PDP-8. The PDP-8 MB is provided with onestransfer gates from BR2. These gates are used in connection with a special data multiplexor described elsewhere.

A nine-bit parity detector connected to BUS OUT indicates that odd parity is present on these lines and is used in conjunction with AR1, BR1, and BR2 when these registers are loaded from BUS OUT. A parity error during the

BR1 or BR2 loading operation will set the CMD PCK or SRV PCK bits of the control register respectively. An eight-bit parity generator connected to the BUS IN transfer gates provides odd parity for the BUS IN (P) line and is used in conjunction with all BUS IN operations.

An eight-bit zero detector connected to BR1 is used during the initial selection sequence to detect the occurrence of a Test I/O channel command and to condition the following BUS IN status accordingly. An eight-bit compare circuit is connected to AR1 and AR2 to detect when these two registers contain identical bits and is used during the pseudo-TIO status sequence.

A three-bit decoder connected to BUS OUT is used during the initial selection sequence to determine whether the device address present on BUS OUT falls within the block serviced by the interface. Eight blocks of addresses, each consisting of a contiguous block of 32 addresses, may be selected by a jumper card.

The twelve-bit Control Register (CTL) is composed of a three-bit Order Register (OR) and a nine-bit Status Register (SR). The OR is used to hold the order code during a service cycle and is automatically reset following the conclusion of a block transfer operation. The SR is used to hold the various bits that indicate termination conditions of the interface sequences. However, the SR has no direct connection with any status byte that may be presented to the channel.

The logical details of these registers and their transfer gates are shown in Figure 10. Figure 11 shows the logical details of the PDP-8 data paths, and Figure 12 shows those of the BUS IN data paths. Circuit names, which appear only in this simplified description, are indicated on these diagrams. In some cases the actual circuit names and logical details differ from those recorded here. The logical details of the circuitry for all of these components are straightforward and are recorded in Appendix E. The logical organization of the control and sequencing circuitry, however, is

FIGURE 10a. ARI, BR1, AR2 REGISTERS.

FIGURE 10b. BR2 AND CTL REGISTERS

FIGURE 11. PDP-8 DATA PATHS

FIGURE 12. BUS GATING

central to the operation of the interface and is discussed below.

Figures 13 and 14 show respectively the logical organization of the circuitry used to intercept polling signals from the channel and that used to seize the control unit interface for the various kinds of sequences. During an initial selection sequence, the OUR ADR gate (Figure 13) detects the conditions for channel-requested service (initial selection) and the REQ IN gate detects the condition for control-unit requested service (service cycle). These gates may not respond simultaneously.

The remaining circuitry shown in Figure 13 is used in conjunction with the channel polling signal to detect the conditions under which the interface may seize the channel. The principal functional block in this circuitry is the select latch, shown in simplified form in Figure 13 but actually consisting of two interconnected flip-flops. This rather interesting circuit is a high-speed two-input switch with inputs derived from SEL OUT and from the two service-request gates OUR ADR and REQ IN. An analy is of this circuit is given in Appendix C.

When SEL OUT rises at the interface while either of the two service-request gates OUR ADR and REQ IN have true-valued outputs, the interface will fall into one of three states: CMD CYC, SRV CYC, or CU BUSY (see Figure 14). If OUR ADR is true and if the command interface is not busy (i.e., contains no previously stored command), then CMD INT is falso and CMD CYC state is entered; if OUR ADR is true and if the interface is busy, then CMD INT is true and the CU BUSY state is entered. If OUR ADR is false and if REQ IN is true, then the SRV CYC state is entered. Entrance into either the CMD CYC or the SRV CYC state causes OPL IN to be raised after a short delay to allow the circuitry to stabilize, and entrance into the CMD CYC state causes the address presented by the channel on BUS OUT to be jam-transferred to

FIGURE 13. SELECT INTERCEPTION

FIGURE 14. CHANNEL SEIZURE.

AR1. Entrance into the CU BUSY state causes the control-unit-busy byte to be placed on BUS IN, and STA IN to be raised without disturbing any of the active interface registers. The CMD CYC and SRV CYC flip-flops each have their own reset line, which is connected to gates described below. The CU BUSY flip-flop is reset when SEL OUT drops.

Figure 15 shows the logical organization for the circuitry used during the command-storage/proceed phases of the sequences initiated by entrance into cither the CMD CYC and SRV CYC states. Both of these sequences begin by placing on BUS IN the contents of AR1 or AR2 as appropriate and proceeding through the channel sequence until CMD OUT is dropped. During the CMD CYC sequence the byte on BUS OUT is transferred to BR1 when CMD OUT is raised by the channel. The short delays indicated on Figure 15 allow time for the parity circuitry to stabilize before bus transfers are executed.

Following the command-storage/proceed phase of either the CMD CYC or SRV CYC sequence, both the CMD DL? and CHL SRV flip-flops are set. These flip-flops are reset when OPL IN drops. When the CHL SRV flip-flop becomes set, a byte of data or status information may be transferred between the channel and the interface. If the CMD CYC flip-flop is set. then the sequence ends by presenting to the channel either an all-zero status byte or a status byte containing the status modifier bit, depending upon whether BR1 has been stored as a nonzero byte or a zero byte respectively. If the SRV CYC flipflop is set, then the sequence ends by transferring a byte from BUS OUT to BR2 (channel-outbound service requested) or from BR2 to BUS IN (channel-inbound data or status service requested) with the appropriate tag line. If the CU BUSY flip-flop is set, then a status byte containing the status modifier, control unit end, and busy bits is placed on BUS IN. Appropriate delays are included to allow time for the parity circuitry to stabilize and for skew distortion to stabilize. Outbound parity-checking circuitry is shown in Figure 17.

FIGURE 15. COMMAND STORAGE/PROCEED

Treatment (

FIGURE 16. STATUS

en attituted in

FIGURE 17. PARITY CHECK

If a status request is pending at the time an initial selection procedure is signalled by the channel, then, if the contents of AR1 match those of AR2, the SRV CYC flip-flop will be set when the channel command is stored in BR2. The gate next to SRV CYC flip-flop in Figure 14.) This special condition is detected when the status byte is transmitted to the channel. If both CMD CYC and SRV CYC flip-flops are set following the command-storage/proceed phase of the sequence, then BR2 is transferred to BUS IN and STA IN is raised. If, furthermore, the command byte stored in BR1 during the sequence contains nonzero bits, then the busy bit is logically OR'ed into the status byte. Figure 18 shows the details of the BR2 gating.

The terminating conditions for the CMD CYC sequence are shown in Figure 19. If a nonzero command byte has been stored in BR1 during a CMD CYC sequence, and if the channel has responded to presentation of the all-zero status byte with SRV OUT (any other response is an equipment check), then the CMD END bit is set in the control register. If an all-zero command byte has been stored in BR1 during the sequence and if the channel has responded to the presentation of the status byte containing the status modifier bit with CMD OUT (stack status on initial selection), then the CMD STK bit is set in the control register. These are the only two bits that can be set following a complete CMD CYC sequence, and they are mutually exclusive.

If at any time, either during an interface operation or not, both SUP OUT and OPL OUT are down at the interface, the CMD RST bit is set in the control register. This operation clears all control register bits except the CMD RST bit, which is forced to the set condition, and in addition clears all flip-flops in the interface to the channel-disconnect condition. If during a CMD CYC sequence ADR OUT is up at the interface while SEL OUT is down (interface disconnect) or SUP OUT is up while OPL OUT is down (selective reset), then the CMD HLT

FIGURE 18. BR2 GATING

FIGURE 19. COMMAND END

bit of the control register is set. This operation clears all flip-flops in the interface to the channel-disconnect condition.

The terminating conditions for the SRV CYC sequence are shown in Figure 20. This sequence may end in three ways:

- a. in a request for a data break operation to fetch a data or status byte from PDP-8 core memory (BRK REQ),
- b. in an ending condition which stops data transmission and interripts the PDP-8 program (SRV END and SRV HLT), or
- c. in a stack-status condition which disconnects the interface from the channel and immediately recrequests channel service.

The PREP END flip-flop is set on a data or status operation in which the PDP-8 block transfer word count decrements to zero. In the channel-inbound case the channel must either accept or reject the byte before an ending-condition bit (SRV END or SRV HLT) is set in the control register.

Following the ending operation in the case either of a CMD CYC or SRV CYC sequence, the interface is disconnected from the channel with the circuit shown in Figure 21. Here the various terminating conditions are detected and the reset signals for the CMD CYC at 3RV CYC flip-flops are generated. In addition, signals are derived that condition the PDP-8 interrupt bus (INT REQ) and that indicate that the command interface is busy (CMD INT).

The channel-request circuitry is shown in Figure 22. Note that when a channel-outbound request is initiated a special pulse is generated which sets the CHL REQ flip-flop and starts the operation. Conversely, when a channel-inbound data or status request is initiated a special pulse is generated which sets the BRK REQ flip-flop (see Figure 20) and starts the operation.

FIGURE 20. SERVICE END

FIGURE 21. CYCLE RESET

FIGURE 22. CONTROL OPERATION DECODER AND CHANNEL REQUEST FLIP-FLOP.

 $\begin{tabular}{lllllll} Additional details of interface operation are summarized in flow chart form in Appendix A. Circuit details are shown in Appendix E. \\ \end{tabular}$

APPENDIX A

CHANNEL SEQUENCE FLOW CHARTS

FIGURE A1. CHANNEL SEIZURE

FIGURS A2. COMMAND BYTE STORAGE

FIGURE A3. COMMAND STATUS PRESENTATION

FIGURE A4. SPECIAL STATUS PRESENTATION

FIGURE AS. SERVICE CYCLE

FIGURE A6. SERVICE CYCLE END

FIGURE A7. PDP-8 DATA BREAK CYCLE

APPENDIX B

Jacobski Pittere

I Personal desirement

Special and the state of the st

destroyed trees

CHANNEL SEQUENCE PHOTOGRAPHS

10000

1μS/CM Fig. B1 INITIAL SELECTION

Fig. B2 SERVICE CYCLE

FIGURE BI
INITIAL SELECTION (lus/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	IBØIS	I BM
_				
2	OPL IN	OPI	1BØID	1 BM
3	ADR IN	ADI	1BØIH	I BM
4	CMD OUT	CMO	IBØIT	I BM
5	STA IN	STI	1BØ1E	IBM
6	SRV OUT	SRO	18310	I BM

FIGURE B2

SERVICE CYCLE (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	REQ IN	REI	1B31M	I BM
2	OPL IN	OPI	1 B Ø 1 P	I BM
3	ADR IN	ADI	1BØ1H	IBM
4	CMD OUT	СМО	IBØ1T	I BM
5	SRV IN	SRI	IBØIK	IBM
6	SRV OUT	SRO	1B3ID	I BM

1μS/CM Fig. B3 CONTROL UNIT BUSY

 0.5μ S/CM Fig. B4 INTERFACE DISCONNECT

FIGURE B3

CONTROL UNIT BUSY (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	18015	IBM
2	SEL OUT	SEL OUT	1BØ1P	IBM
3	STA IN	STI	1BØ1E	I BM
4	SUP OUT	SU0	1BØ1V	IBM

FIGURE B4

INTERFACE DISCONNECT (0.5µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	18018	I BM
2	SEL OUT	SEL OUT	1BØ1P	I BM
3	OPL IN	OPI	1BØ1D	I BM
4	ADR IN	ADI	1BØ1H	IBM
5	SUP OUT	รษง	1BØ1V	IBM

Fig. B5 CHANNEL SEIZURE

1.0 S CM. Fig. B6 GATE TRANSFERS

FIGURE B5
CHANNEL SEIZURE (0.5µs/cm)

Line Name		Signal Name	Pin	Folarity
1	ADR OUT	ADO+	1B18P	DEC +
2	OUR ADR	OURAD+	3B1ØP	DEC +
3	SEL CUT	SEO+	1A22N	DEC +
4	CU SEL	SEL+	3B1ØF	DEC +
5	CMD CYC	CMDCY+	3B12L	DEC +
6	OPL IN		1BØ1D	IBM

FIGURE B6
BUS TRANSFERS (1.0µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	OUR ADR	OURAD+	3B1ØD	DEC +
2	BO→AR1	BOAR1+	3B13P	DEC +
3	ADR IN	BADI+	3AØ9D	DEC +
4	AR1+BI	AR1BI+	3A13D	DEC +
5	CMD OUT	CMO+	1A25U	DEC +
6	BO→BR1	BOBR1+	3A13J	DEC

Fig. B7 MAJOR STATE-SERVICE CYCLE

1.0 μ S/CM Fig. B8 DATA BREAK-SERVICE CYCLE

FIGURE B7

MAJOR STATES-SERVICE CYCLE (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	CHL REQ	CHNRQ+	3818P	DEC+
2	CU SEL	SEL+	3B1¢F	DEC+
3	SRV CYC	SRVCY+	3B13N	DEC+
4	CMD DLY	CMDLY+	3A97J	DEC+
5	CH1. SRV	CHSRV+	3AØ7P	DEC+
6	BRK REQ	BRKRQ+	3B17P	DEC+

FIGURE B8

DATA BREAK-SERVICE CYCLE(1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	MPX REQ	REQ1	3A17D	DEC-
2	MPX SEL	SEL1-	27308	DEC-
3	BRK STA	BRKSTA	1B93P	DEC+
4	CHLREQ	CHNRQ+	3B18P	DEC+
5	BT1	BT1	3B29S	DEC(P)
6	BT2	BT2A	3B29T	DEC(P)

2μS/CM Fig. B9 TEST I/O LOOP

ADR OUT
OPL IN
CMD OUT
STA IN
SRV OUT

SUP OUT

Fig. BIO SEL OUT/SEL IN DELAYS

<u>1μS/CM</u>

SEL OUT

SEL OUT PROP

SEL IN

0.1µS/CM

SEL OUT

SEL OUT PROP

FIGURE B9
TEXT I/O LOOP (2µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	1BØ1S	IBM
2	OPL IN	OPI	1B#1D	I BM
3	CMD OUT	СМО	1BØ1T	I BM
4	STA IN	STI	1BØ1E	I BM
5	SRV OUT	SRO	1BØ1D	I BM
6	SUP OUT	SUO	1BØ1V	I BM

FIGURE B10
SEL OUT/SEL IN DELAYS

Line	Name	Signal	Name	Pin	Polarity
	(lus/cm)				
1	SEL OUT	SEL	OUT	1BØ1P	I BM
2	SEL OUT PROP	SEL	PRP	1BØ2P	IBM
3	SEL IN	SI	ΞI	1 B Ø 1 M	IBM
	(0.lµs/cm)				
1	SEL OUT	SEL	OUT	1BØ1P	I BM
2	SEL OUT PROP	SEL	PRP	1BØ1P	I BM

APPENDIX C

ANALYSIS OF SELECT LATCH CIRCUITRY

ANALYSIS OF SELECT LATCH CIRCUITRY

The select latch consists of two interlocking flip-flops interconnected as shown in Figure C1. The outputs of one flip-flop are designated 0 and 1 in the diagram and those of the other flip-flop as 2 and 3. The latchback lines connect from 1 to 1' and 3 to 3' respectively. The request signal is designated —REQ and the select signal as SEL.

By straightforward analysis, the state table of Figure C1 is derived, which gives the outputs of the circuit as a function of the inputs. Four states may be recognized; and these are called Q, R, S, and T. (T does not appear for any output and is an unstable state.)

A transition diagram for this circuit is shown in Figure C2. The stable states are designated idle (no activity), select (this control unit selected), and bypass (some other control unit selected). Gates connected to the circuit detect the select and bypass states and inhibit propagation of SEL OUT in the bypass case. These states and the output decoding are so arranged that races between states cannot occur and so that no noise appears on any output during transitions.

The circuitry is implemented using standard modular components of about 35 nS propagation delay. Decisions and state transitions must be completed in times comparable to this.

Two of these circuits are used in the System/360 interface. One is connected to the CU SEL line and used in the channel seizure operation; and the other is connected to the CU BUSY line and used in the control unit busy operation.

FIGURE C1. SELECT LATCH

a opposite and the

STREET STREET

THEFT WAS TREET

TABLE I

	INPU'	rs				OUTI	PUTS	
-REQ	SEL	1 '	3 '	0	1	2	3	STATE
0	0	0	0	1	1	1	1	Q
0	0	0	1	1	1	0	1	Q
0	o	1	0	1	1	1	1	Q
0	0	1	1	1	1	0	1	Q
0	1	0	0	1	1	1	0	R
0	1	0	1	1	0	0	1	S
0	1	1	0	1	1	1	0	R
0	1	1	1	1	0	0	1	S
1	0	0	0	1	1	1	1	Q
1	0	0	1	1	1	0	1	Q
1	0	1	0	0	1	1	1	Q
1	0	1	1	0	1	1	1	Q
1	1	0	0	1	1	1	0	R
1	1	0	1	1	0	0	1	S
1	1	1	0	0	1	1	0	R
1	1	1	1	0	1	1	0	R

FIGURE C2. SELECT LATCH STATE TABLE

APPENDIX D ADD TIONAL CONSTRUCTION DETAILS

ADDITIONAL CONSTRUCTION DETAILS

D1. System Configuration

The System/360 Interface as a component of the Data Concentrator is assembled in two equipment racks which also house a high-speed paper tape reader/punch and the various power supplies and connectors which service the system. eugipment layout in these racks is shown in Figure D1. FDP-8 occupies one of these racks in which space is available for further expansion of extended memory, from the now present 12K. The other rack contains interface circuitry, the reader/punch, and the power supplies. The top three bays contain the interface circuitry itself. These bays are connected to the Test Panel immediately below, to the PDP-8, and to the Channel Interface connectors (bottom bay) with DEC module connectors. The tape transport for both the reader and the punch are mounted on slides immediately above the operating table The two logic bays which service this equipment are installed immediately below the table. Except for the attached PDP-8 cables, which are routed through the interface, this equipment is entirely independent of the interface.

At the bottom of the rack is a panel which carries the four channel interface connectors. The eight cables which connect to the Data Concentrator side of these connectors are routed to DEC module connectors on Bays 1 and 2 above. The four cables which connect to the IBM side of these connectors enter through the fan hole in the bottom of the cabinet. The fan itself has been relocated to a panel on the rear plenum door immediately below the power supplies.

The power supplies and AC distribution system are mounted on the rear plenum door. A resonant-transformer—regulated supply provides +10 volts and -15 volts to the interface equipment and Test Panel. A separate supply provides various voltages to the reader/punch equipment. Power for

RACK 1	RACK2	_
SPARE	SPARE	
	BAY 1	
	BAY 2	
PDP - 8	BAY 3	
	INDICATOR PANEL	
	PCO1 TAPE READER/PUNCH	
	-	TABLE
	PCO1 BAY 1	
MEMORY EXTENSION	PCO1 BAY 2	
	SPARE	
	CHANNEL CONNECTORS	

FIGURE D1. PHYSICAL CONFIGURATION

margin-check operation is obtained from an internal supply of the PDP-8. Switches mounted on each mounting bay allow power for that bay to be obtained either from the regular supply or the margin-check supply. The Power Control Unit provides AC power to the Data Concentrator in response to control signals issued by the parent IBM system. Power requirements for the Data Concentrator, including the PDP-8, total about two kilowatts at 115 VAC. A single 30-ampere circuit is used to power the equipment.

D2. Power Control Unit

All line power to both the PDP-8 and the interface circuitry is controlled by the Power Control Unit. This equipment sequences power on and off in response to standardized signals furnished by the System/360. The operation of the equipment in response to these signals is summarized in System/360 Power Control Interface-Original Equipment Manufacturers' Information, IBM Corporation, Form A22-6906-0.

The Power Control Unit (Figure D2) includes a 24V DC power supply, which is connected to the line power at all times, and two relays. One of the relays is actuated by the power sequence control of the channel and turns on the line power to the PDP-8 and interface circuitry. The other relay is actuated by a DC power supply in the interface circuitry and enables the power sequence control of the channel to step to the next control unit on the interface.

Two switches are used to control the operation of the equipment. One of these, the LOCAL/REMOTE switch, is used to transfer control of the equipment between the channel (REMOTE) and the local controls (LOCAL) for maintenance purposes. This switch should not be actuated while the equipment is in the on-line state. The other switch (POWER ON/OFF) actuates a relay which turns on line power to the PDP-8 and interface circuitry. It is effective only when the LOCAL/REMOTE switch is in the LOCAL state.

.

D3. IBM/DEC Interface Modules

The accompanying circuits have been designed to provide IBM/DEC compatibility in a package appropriate for installation in DEC 1943 Mounting Panels. Characteristics have been chosen to satisfy the requirements outlined in System/360 I/O Interface—Channel-to-Control Unit Original Equipment Manufacturers' Information, Form A22-6843. None of the available DEC modules satisfy these requirements, notably that which specifies that the components not disturb the interface bus lines in the event of power failure or off-line operation.

BUS DRIVER (Figure D3)

Input

DEC standard levels of -3v and ground. The circuit acts as an AND for negative true-valued inputs and as an OR for positive inputs. Other input characteristics are identical to those of the R111 Diode Gate.

Output

IBM Standard SLT bus levels of ground and +3v. SLT conventions assign a logical 0 to ground level and a logical 1 to +3v. The leakage in the 0 state is less than lnA at +3v and the output voltage in the 1 state is 3.85V at 59.3 mA and 4.5 at 30 μ A. In a power-off condition the leakage in either state is less than lnA.

Performance

Propagation delay is 45ns for output rise (0 to +3V) and 25ns for output fall (+3v to 0). Transition time is 20ns for output rise and 10ns for output fall. Characteristics are not significantly affected for power supply variation of +5V on either the +10V or the -15V supply.

FIGURE D3. DEC TO 1BM BUS DRIVER MODULE.

BUS RECEIVER (Figure D4)

Input

IBM standard SLT bus levels of ground and +3V. SLT conventions assign a logical 0 to ground level and a logical 1 to +3v. The circuit is non-inverting. Input bus loading is +250µA at +3V and -90µA at ground. (+equals conventional current into the receiver input.) The input impedance (at 1kc/s) is 10K ohms. In a power-off condition the input bus is loaded at 285µA for an input voltage level of +3v, and linearly decreases to zero as the input voltage falls to zero.

Output

DEC standard levels of -3v and ground. Output characteristics are identical with those of the R111 Diode Gate.

Performance

Propagation delays and transition times are all 20ns for both output rise and output fall. Characteristics are not significantly affected for power supply variations of +5V on either the +10V or -15V supply.

SELECT-OUT BYPASS (Figure D5)

This module contains an encapsulated DPDT relay, together with its driving circuitry, and in addition an electronic switch which provides termination for the SEL OUT signal on the channel-control unit interface cables. The terminator is a 92-ohm resistor. Bus voltage levels are expected to be in the range zero to +5V.

Inputs

DEC standard levels of -3v and ground. Relay driver: ground level activates relay armature. Terminator switch: ground level causes terminator to be disconnected.

FIGURE D4. IBM TO DEC BUS RECEIVER MODULE

FIGURE D5. SEL OUT BYPASS MODULE

APPENDIX E

LOGIC DIAGRAMS

.

BLANK PAGE

FIGURE E1. AR1

FIGURE E2. BR1

FIGURE E3.

ARI/BRI PULSING

...

FIGURE E4. AR2

FIGURE E5. BR2

FIGURE E6. AR2/BR2 PULSING

FIGURE E7. BR2 GATING

FIGURE E8. CONTROL REGISTER

FIGURE E9. CLEARING THE CONTROL REGISTER

FIGURE E10: CONTROL OPERATION DECODER

.

- 1711111100 A

. .

Marketter (

7

FIGURE E11: IOT DETECTION

:

FIGURE E12.

MASK TEST

GATE EAC AC

FIGURE E 13.

ADDRESS DETECT

FIGURE E14.

CHANNEL REQUEST

FIGURE E15.

FIGURE E16. SELECT INTERCEPTION

FIGURE E17. CHANNEL SEIZURE

FIGURE EI8. COMMAND STORAGE

FIGURE E19. STATUS

FIGURE E20. COMMAND CYCLE END.

FIGURE E21. PATA BREAK

-

FIGURE E22. DATA BREAK.

FIGURE E23. SERVICE CYCLE RESET

:

SYSTEM RESET

CHANNEL SERVICE RESET

FIGURE E25. BUS OUT PARITY

FIGURE E26. BUS IN PARITY

•

NOTE: BSRO NEEDS A DELAY (0.001 µfd TO GROUND)
* -IBM LOGIC LEVELS

FIGURE E28. BUS-TAGS OUT GATING

- * IBM LOGIC LEVELS
- ** REMOVE AT EC 29 DEC 67

FIGURE E29. SELECT OUT GATING

FIGURE E30. BUS-TAGS IN GATING

FIGURE E31. ON-LINE/OFF-LINE CIRCUITRY

:

FIGURE E32. TEST PANEL PUSH BUTTON GATING

 «	4 20	∢	8	A	n ~
31-32 IBM BUS	31-32 IBM TAG	32 TEST PANEL	32 TEST PANEL	31-32 PDP-8 ME35	31-32 PDP-8 MF35
		31 TEST PANEL	31 TEST PANEL	29-30 PDP-8 ME34	29-30 PDP-8 MF34
		30 TEST PANEL	30 MPX	28 EAC	28 EAC
05-06 PDP-8 ME30		03 TEST PANEL			
03-04 PDP-8 PE03	03-04 PDP-8 PF03	02 TEST PANEL	02 TEST PANEL	03-04 PDP-8 PE04	03-04 PDP-8 PF04
01-02 IBM BUS	01-02 IBM TAG		01 TEST PANEL	01-02 PDP-8 PE02	01-02 PDP-8 PF02
Α ,	8	A (83	V	<u>ه</u>

FIGURE E33. CONNECTOR POSITIONS

FIGURE E34. PDP-8 CABLE CONNECTORS (Page 1 of 3)

FIGURE E34. PDP-8 CABLE CONNECTORS (Page 2 of 3)

BBIP+	D	
סביא+	E WØ21MJ	
BBI 1+	F CABLE	(ISOLATORS ON ALL LINES)
BBI 2+	н то	(**************************************
RBI3+	J TEST	
BBI4+	K PANE	
BBI5+	L 2B31	
BBI6+	M	
B617+	N	
CTLØØ+	P	
CTLØ1+		
CTLØ2+	R S	
CTLØ3+	T	
CTLØ4+	U	
CTLØ5+	v	
BO3+ BO4+ BO5+ EO6+ BO7+ CTLØ6+ CTLØ7+ CTLØ8+ CTLØ9+ CTLIØ+	J TEST PANEL 2B32 M N P R S T U V	
(SWITCH FILTERS	WØ21MJ	SBOP SBOØ
ON ALL LINES)	CABLE	SB01
	ТО	SBO2
	TEST	SB03
	PANEL	SBC4
	2A3Ø	SB05
		SB06
	<u> </u>	SRO7

FIGURE E36. TEST PANEL CONNECTORS (Page 3 of 3)

SB07

NOTE: ALL LINES CARRY IBM LOGIC LEVELS.

NOTE: ALL LINES CARRY IBM LOGIC LEVELS

FIGURE E35. IBM CABLE CONNECTORS(Page 2 of 2)

ARIØ+	D	
AR11+	E WØZIMJ	
AR12+	F CABLE	(ISOLATORS ON ALL LINES)
AR13+	H TO	(LINES)
AR14+	J TEST	
AR15+	K PANEL	
AR16+	l. 2AØ3	
AR17+	M	
BR1Ø+	N	
BR11+	P	
BR12+	R	
BR13+	S	
BP.14+	T	
BR15+	U	
BR10+	V	
(UNASSIGIED) BAD1+ BSTI+ BSRI> SPROP+ BOPI+ BREI+ BR17+ OFIST+ ADO+ CMO+ STO- SEO+ OPO+ SUO+	D E WØ21MJ F CABLE H TO TEST PANE 2AØ2 M N P R S T U	(ISOLATORS ON ALL LINES)
	WØ21MJ	PBØ
/**********	CABLE	PB2
(ISOLATORS ONLY ON*)	TO	PB3
(SWI.CH FILTERS ON #)	TEST	PB4
	PANEL 2BØ2	PBS
	2072	PB6
		PB7
	+ -	OL: i
0.54.54		OLSW2
OFLIN+		023112
ONLIN+		
	7	SSEO:
	; ‡ 	20101

FIGURE E36. TEST PANEL CONNECTORS (Page 1 of 3)

(SWITCH FILTERS ON ALL LINES)

	15.	
	D	TEST
WØ21MJ	E	SADO
CABLE	F	SCMO
TO	Н	SSRO
TEST	J	SSE02
PANEL 2BØ1	K	SOPO
2001	L	SSUO
	М	SWØ+
	N	SW1+
	P	SW2+
	R	S W 3+
	S	SW4+
	T	SW5+
	U	SW6+
	V	SW7+

AR2Ø+	D	
AR21+	E	
AR 22+	F	WØ21MJ CABLE
AR23+	Н	TO
AR24+	J	TEST
AR25+	K	PANEL
AR26+	L	2A31
AR27+	М	
SF I.+	N	
CMDCY+	P	
SRVCY+	R	
CUBSY+	S	
CMDLY+	T	
CHSRV+	Û	
		1

(ISOLATORS ON ALL LINES)

BR 2 Ø +	D	Tie
BR21+	Е	Waaru
BR22+	F	WØ21MJ CABLE
BR23+	Н	TO
BR24+	J	TEST
BR25+	К	PANEL
BR26+	L	2A32
BR27+	M	
CHNRQ+	N	ļ
PREND+	P	į
BRKRQ+	R	;
INTR8+	S	
SKIP+	Т	Ī
EACENB	U	ĺ
		- 1

(ISOLATORS ON ALL LINES)

FIGURE E36. TEST PANEL CONNECTORS (Page 2 of 3)

F1GURE E34. PDP-8 CABLE CONNECTORS (Page 3 of 3)

:

PANEL 1 ... IBM INTERFACE ... BUSS DRIVER

	A01	A02	A03	A04	A05	A06	A07	80A	A09	A10	A11	A12	A13	A14	A15	A16	A17	F
	W021CR	M021CR	W021CR	W021CR	W021CR	W021CR	R113	R113	R107	R113	R107	R123	R123	R123	R123	R123	R10/	R
A															1			
8																		
С	GN1A01																	
D	910	810	DADROO	DADBOO	ADREX1	AOREX1	9610-	8814+	#PRRIB	PRRIF	+0188=	B800	±804	8806	BCHO	BOPO	≈800+	αPj
Ε	871	5 I1	1.30801	DADB01	ADREX2	ADREX2	-1188	8815+	PARIA	PARIH	-0188	8801	9805	8807	BSRO	9 SU0	800-	В
F	CN1A01	GN1R01	GN1R01	GN1R01	GN1R01	GN1R01	=PARIA	«PAR IE	=PARIO	«PARIK	+1188#	ONL IN+	ONL IN+	ONL IN+	ONL IN+	ONL IN+	=801+	-8
H	815	812	DRDR02	DADR02	ADREX3	ADREX3	-018B	-9188	PARIC	PARIE	B911-	⊲B 00−	≈B 04~	≈80 6-	«CMO−	■0P0-	801-	8
J	GN1R01	GN1R01	CN1R01	GN1901	GH1R01	GN1RO1	8811+	8817-	«PARIF	PARIG	⊲88 12+	≈8 01-	≈80 5−	≈8 07−	≤SR0 -	«SUO-	≈802 +	×Α
K	813	813	DRDR03	DADAG3	OF0	OF0	■PANIA	-PARIG	31 AAG	=PARIK	B812-	3800	3804	980€	SCHO+	SOPO	B02-	A
L	SHIRCI	GN1R01	GNIROL	GNIRGI	GN1R01	GN1R01	8812-	+9188	■PAAIH	PARIJ	≈88 !3+	5801	\$805	5807	5SR0+	95U0	≈ 903+	■ C
М	814	BI4	DROR04	DRDR04	DF1	DF1	-6188	8817+	PARIG	PARIL	-6188	CELIN+	OFL IN+	OFLIN+	OFLIN+	OFL IN+	B03-	C
N	GN1R01	GN1R01	GN1R01	GN1R01	GN1R01	GN1RO1	=PARIC	■PARIG	«PARIJ	«PARI	aB8 [4+	≈ 800−	⊲B 04−	≈806 -	∈CMO-	■OPO-	aB 04+	•S
P	815	815	DRDR05	DRDR05	OF2	OF2	BB12+	PARIB	IIART	PRAII	8814-	≈801 -	≈805 -	≈8 07-	■SR0	■SUO-	B04-	S
R	CN1/401	GN1R01	GN1R01	GN1R01	GN1R01	GN1R01	+6188	PRMIO	-PARIL	PARIK	+218B=	BB02	SB02	880P	580P	SSEOI	«B05+	■0
5	816	818	080806	DAOR06	AXJ1	RXJ1	«PARIC	=PARII	PRRIK	«PARI	9815-	BB03	5803	8900	SACO	SSE02	B05-	0
T	817	817	DADR07	DADR07	FIXJ2	EX.YS	B814-	PARIA	«PARI»		+8188»	ONL IN+	OFLIN+	ONL IN+	OFLIN-	OFLIN+	#806+	■S
U	UN1A01	GN1R01	GN1R01	GN1R01	GN1R01	GN1801	8815-	PRRIC	PARI		-9188	≈802 ~	±802-	≈80P-	∝BûP-	■SEO-	B06-	S
٧	BIP	BIP	DADBOS	DROROB	AXJ3	AXJ3	«PARIE	IIARS			i	■P03-	■803 -	≰AD0-	I ≈ PD0-	#SEO+		П

	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	315	B16	B17	E
	F021CR	W021CR	W021CR	₩021CR	M990	80	80	80	80	80	80	80	80	BR	BR	8R	BR	BF
A																		П
В																		
С	GN1801																	
ລ	OP1	Obi	DADROS	DADBO9	LOADA5	-BIO	≈ 812	#8I4	#816	418m	#571	#PE [«SELPRP					
E	571	SYI	DRDR10	DRDR10	DADB09									≈8800	∉BB 02	≈8804	≈88 06	αΒ(
F	GN1801	GN1801	GN1801	GN1801	DRDRIO	BB I 0+	8812+	BB I 4+	+9188	98 IP+	BSTI+	BPEI+	SPROP+	B 00	B02	804	806	В
н	ROI	AD1	DRORLL	DADRII	DADBII	BOGATE	BOGRITE	BOGATE	BOGATE	BOGATE	BOGATE	BOGATE	BOGATE					
J	GN1801	GN1901	GN1801	GN1801	HIADAS													
К	SRI	SRI	BAKREQ	BRKREQ	ADREX1								Ĺ					
L	GN1801	CNIBOL	GN1801	CN1801	ROMEX2													
14	SE I	SEI	XFER	XFEP	ROREX3	BOGRITE	BOGATE	BOGATE	BOGATE	BOGATE	BOGATE	BOGATE					<u> </u>	
N	GN1801	GN1801	GN1601	GN1B01		+1188	BB I 3+	88IS+	8817+	+1095	8\$RI+	+1908		801	B03	805	807	P
Р	SELOUT	SELPAP	BRKSTA	BRKSTA										≈88C1	≈880 ?	48805	∈88 07	€8
R	GN1801	GN1801	GN1801	GN1801												L	<u> </u>	L
S	R00	R00	ROORCP	ADGACP													L	
J	CMO	CHO	MBINCR	H6 INCR		∉8 I1	€18 =	■BIS	48 17	=ROI	≡SRI	≡0PI	•				i	
U	GN1801	CHIBOL	GN1801	GN1801														
٧	SUO	SUO	DRJ	DBJ									L		i I			

RIVERS AND RECEIVERS

716	A17	A18	A19	A20	A21	922	A23	AZ:	A25	A26	A27	A28	A.19	A30	A31	A32	
123	B107	R107	M002	R121	R107	R107	R1/3	R113	R113	R107	R107	W501	H501	R107	WO21CR	W021CR	
																	А
																	В
																GN1A31	C
OP0	≈800+	uB 07+	90P-	#OFTST+	eOFTS1-	#ONL IN+	800+	806+	PAROF	€PP5108	₩88I7+	SCHO+	SSR0+	4	800	800	0
500	800-	807-	ADO-	TEQ.	OF (ST+	OHL IN-	801+	807+	PAROH	PAROA	8817-				B01	B01	Ε
NL IN+	#801+	=80P+	SRO-	OFLIN-	uPGRTE+	MOF! (N+	■PAROA	■PRROG	MPRROK	■PAR00	eBPEI+	«SCMO+	«CSRO+	•	GN1A31	GN1831	F
PO-	801-	30P-	M804	aOLñ-	RGATE-	OFLIN-	800-	806-	PAROE	PAROC	BREI-			1	802	B 02	Н
UO-	≈802+	€AD0+	MB05	OLSHL	#OLR+	«LCADAS	B01-	807-	PAROG	⊯PAROF	#SPROP+			■SAVENB	GN1R31	GN1A31	J
DP0	B02-	A00-	MB06	RGRTE+	OLA-	SEL1+	■PAROA	4PRR0G	₩PPROK	PAROE	SPROP-	P8092	PB102	80PI+	803	803	K
500	≈8 03+	uCHO+	M807	#RGATE-	«OLR-	HIADAS	602+	PRR06	PAROJ	«PRROH	⊯CDY2	P8092	P8102	■SK IP+	GN1R31	CNIRSI	L
FL IN+	803-	CH0-	MB08	BPE I-	OLA+	SEL1+	803+	PAROD	PAROL	PAROG	COYL	PB093	PB103	SKIP-	804	804	H
-0-	eB 04+	∈SR0+	MR09	ADO-	■80GATE	■SEO+	wPAROC	■PAROI	●PRR0	⊯PRR0J	-CDY3	PB093	PB103	-SAVENB	GN1R31	GN1831	N
10-	804-	SR0-	MB10	90P I -	OMLIN-	SEO-	802-	PARCA	PAROI	PAROI	CGA5			900+	805	805	P
\$E01	#805+	#0P0+	MBIL	#OLA+	#BOPAR-	■SEO-	803-	PRROC	PAROK	#PAROL	#198I+	PB091	PB101	#818RK+	GN1831	GN1R31	R
\$E02	BOS-	UPO-	OPO-	C-SH2	BOPAR	SEO+	«PAROC	PROI	■PARO	PAROK	1061-	SCMO	SSRO	BIRRK-	806	B06	S
LIN+	≈806 +	uSUO+	500-	RGATE+	ePHCLR+	eHLO-	B04+	304-	BA01+	⊯PARO-	■408I+	P8091	P8101	e	807	807	T
:0-	d0€-	SUC-	ONLIN-		PHCLR-	BHLO	B05+	B0S-	CHQ+	PAR0	4081-	SCMO	SSRO	1	GN1831	GN1A31	U
:0+			OFLIN-				⊌PRAOE	■PRROE	€CDY1					!	BOP	BOP	٧

16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	B32

	BR	BR	en	BR	BR	R141	R121	R121	R121	R121	R107	R121	R151	H990	W021CR	W021CF
_																
-			-				-			 	-		GN1829			GN1831
						#88 IP−	■BOPAR	œ88IP+	≈808R2+	CTL04-	488 I1−	#CHOCHN	GN1829	ADADT-	SR0	SRO
	≈880 6	≈880P	■BCM 0	r:BSE0	■BHL0	ARIBI+	PARO-	88 IP-	808R2-	ROPAR	4081+	SRSTA-	B01-	001F	CLO	CLO
	806	BOP	CHO	SELOUT	HL0	PRRI-	B0P+			B08R1+	≈88 I1-	SPSTA-	801+	203F	GN1831	GN1831
						RR281+	■BOPAR	#SUOP0	■BSRI+	CTL05-	CUBSY+	■SKIP-	B00+	405F	MTRO	MTRO
						PRRI-	PAR0	SUO-	SCCSBI	BOPPP	■BBI2-	CTLSMP	B00-	607F	GN1831	CN1831
						8R28I+	80P-	OPO-	SCCS80	808R2+	CUBSY+	ACTEST	B32-	809F *	HTBI	HINI
						PARI-	■SEO-	«SCCS81	≪SCCSB0	€808 R2-	≈8813 -	₩CTL03-	802+	A08F	GN1931	GN1831
		T				+1800	BSE0	SRVCY+	SAVCY+	BSRI+	CUESY+	CHOCHN	#001F	CODF	REI	REI
	807	P00	SRO	OP0	~)	PRRI-	BHL0	CHSRV+	CHSRV+	SPO+	-8138-	SUO+	■203F	EOFF	GN1831	GN1931
5_	€8807	=8 800	⊲BSR 0	≈80 P0	■BSU0	1081-	OFLIN-	BISEQ+	LOREQ+	BOPEQ+	1081+	SR0+	■405F		IEHJ	1BMJ
						PARI-	#SEO+	#BR28I+	≈28 82	-BPKST-	#ADADT+	€8TBRK-	≈ 607F		GN1831	GN1831
						408I+	OFLIN-	SCCSBI	SRYCY+	CTL00+	-10AOL	BRKSTA	±809 F		PHRINT	PWRINT
						PRHI-	HLO-	SP:STA-	BOMEQ+	BRKSTA	-80PI-	BTL	■ROBF		HLO	HLO
						CUBSY+		SP3TA-	CHSNV+	SEL 1+	P0PI+		mCOOF		GN1831	GN1831
						PANI-							eE0FF		OP0	OP0

PANEL 1 ... IBM INTENFACE ... BUSS DRIVERS AND NECEIVERS

PANEL 2 ... ADDRESS AND BUFFER REGISTERS

A01 R03 A04 A05 A06 A08 A09 A10 A02 A07 A11 A12 A13 A14 A15 A16 A17 A RELAY W0285 W501 W501 A205 R205 R205 R205 R205 W028S ₩501 W501 8603 R205 R205 R205 R141 R14 A 8 C G2901 G00 **GN2R17** D SHBR2 AR10+ 600 SHAR1 SHBR1 SHAR2 1092-PSHAR1 PSWAR1 PSWAT1 PSHAR1 PSHBR1 PSWBR1 PSMBB1 PSHBR1 aAR=AR #AR E BR0[+ AR11+ ■ARIAC-EPRIO-■R#11-**≪RR12**-«AR13-■BR10-#BR11-#BR12-■BR13-RR10+ AR1 F «SHPR2 ~:LOUT RB12+ 85TI+ SHAR1 -SHBR1 «SHBR2 PDCRR1 PDCRR1 PDCRR1 PDCAR1 PDCAR1 PDCBR1 POCBR1 PDC881 PDCBR1 AR20-AR2 Н BR13+ BSRI+ B9C04-BACO5-BAC06-BBC07-BACD4-B9C05-DACO6-R9C07-AR10-AR1 **#R**₹12+ «AR13+ AR14+ SPROP+ PHCLR-**≈**6810+ ■AB11+ #8R10+ 48811+ AR2 **■8812+ aB**R13+ PR20+ K PR15+ BOPI+ PB12 P822 SHAR1 SHO-SH2-PB02 3332 SHI-SH3-AR1 SHO-SH1-SH2-SH3-AB11+ L BREI+ P802 PB12 PB22 PB32 OFTST-SH1+ SH2+ SH3+ AR16+ SH0+ SH3+ SHQ+ SH1+ SH2+ RR21-RPI2 M **AB17**• BA17+ P803 PB13 PB23 P833 #PSHARI PACAR1 PACRR1 P9CAR1 PACAR 1 PACBA1 PACBR1 PACBR1 PACBR1 AR11-AR1 N OFLIN-BR10+ OFTST+ P803 P813 P823 P833 PSHAR1 PSHAR1 PSHAR1 PSHAR1 PSHBB1 PSK8R1 PSHBR1 PSHBR1 RR21+ AR2 P G2R01 8811+ **R00+** «AB14+ #ARIS+ =AB 16+ #BR14+ #BR15+ #BR17+ ARI R P831 CHO+ PB01 PB11 IDP4--RR14--5816-AR2 BB12+ PR21 #RRIS-#F#16-#AR17--RR14-**■B**R15-**■B**817~ GN2817 S 8R13+ SR0+ P**8**3 RRIAC-B9C11-P81 P62 BACO8-BAC09-BAC10-3AC11-BACO8-BAC09-BAC10-AR1 P801 #FACHA1 P811 Ţ BR14+ SEO+ PB21 PB31 SH4-SH5-946-SW7-SH4-SH5-SH6-SH7-GN2R17 AR2 SELPRP BR15+ OF:0+ SH4+ SH5+ SH6+ SH7+ SH4+ \$H5+ SH6+ SH7+ OLR+ BR16+ SUO+ PACARI PACARI PRCAR1 PACAR1 PACBR1 PACBA1 PACBA1 PACBR1 GN2R17 GN2

	BOI	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B1
	W028S	W026S	R123	₩501	W501	W501	₩501	R123	R123	R123	R123	R123	R123	R123	R123	R603	R002	B10
А									·								1	
В																		
С								ļ				 	ļ					
מ	TEST	P80	<u> </u>	SHCTL	ZIPCTL	PHCLR-	SHRST	PR10+	AR11+	AR12+	5813+	B00-	806-	BR11+	802+	SHBRI	BR10-	■EHC
Ε	SROO	P81						9R14+	RR15+	AR16+	AR17+	801-	807-	BR15+	806+	■OFTST-	BR11-	EAC
F	SCHO	P82	OFTST-	«SHCTL	«EIPCTL	aPMCLR-	«SHR5T	ARIAC+	ARIAC+	RR1AC+	ARIAC+	B09R1+	BOAR1+	BRINC+	B08R1+	PSHBR1	aB R1=0	uERC I
н	5 3 8 0	P63	aP84				l	■ERC04-	«ERCOS-	«ERCO6-	«EACO7-	≈ 8810+	■AR16+	«EACOS-	■BR12-		BR12-	EAC
J	SSE02	P84	■P8 5					«ERCO8-	ŒPC09-	■ERC10-	«EAC11-	#RR11+	«AR17+	«FACO9-	#8 816−		BR13-	■EAC!
К	SOPO	P85		P842	P852	P852	PB72	AR10+	RR11+	AR12+	AH13+	802-	BR10+	601+	3R13+	IOP4-	48 81=0	ERCI
L	SSU0	P86		PB4?	P852	PB62	P872	RR14+	RR15+	RR16+	AB17+	B03-	BR14+	B05+	BR17+	BRIAC-	BR14-	«EAC!
н	5H0+	P87	OFTST-	P843	P853	P863	P873	AR181+	ARIBI+	-181AB	RR10I+	BOAR1+	BRIAC+	B0881+	BR1AC+	■PRCBR1	BR15-	EACI
N	4 -45 +	OLSHI	aP86	P843	P853	P863	P873	-0188#	aBBI1-	-9812-	-813e	«AR12+	■ERC04-	#BR11-	■EAC07-		a8R1=0	«EAC!
Ρ,	.m2+	OL5H2	∉P8 7					#68I4-	-8315-	-8856-	≈88 17-	«AR13+	■EAC08-	■BR15-	■EAC11-		BR16-	EAC
R	SM3+	OFLIN+		P841	P851	P861	P871	B00+	801+	802+	803+	B04-	B00+	BR12+	803+	IOP4-	BR17-	«EAC(
S	SH4+	ONLIN+		P84	:*85	P86	P87	B04+	805+	806+	807+	805-	804+	BR16+	807+	CTLAC-	48R1=0	EAC
Г	SH5+	SSE01		P841	P851	F861	P871	3088L+	BOAR1+	BORR1+	BOAR1+	BCRR1+	B08R1+	BRIAC+	80891+	⊯PBAC		=1511
U	3H6+		•			1		F29.10-	eRA11-	«AR12-	≈ ₽913-	■AB14+	#8R10-	«EACO6-	⊲BR13		 	
٧	SH7+	 	•			1		«At\14−	=RR15-	«AR16	«AR17-	■AR15+	∉BR14-	∉EAC1G-	«BR17−		•	BR1

STERS

EOP4-

CTLAC-

BAC

BR17-

aBR1=0

wEACOS+ WEAC11+

EACOS- EAC11-

SH7+

aTSTIO- aSM7-

BR1=0

BPK5T-

GN2B20

■PDCBR2

ZBR2

AR21+

AR25+

AR2AC+

■EAC05-

FR22+

RR26+

≈88:2-

PHCLR- #EACO9- #8816- #SRVCY+ SMRST

AR2BI+

PHCLR+

#CHOCY+

A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	_
R205	R141	R141	R141	R205	R205	R205	R205	R603	R205	R205	R205	R205	R107	W028S	H028S	H028S	
			 			†	<u> </u>										A
] 8
	GN2R17] c
PSWBR1	«AR-AR	wAR≈AR	■AR=AR	PSHAM2	PSWAR2	PSWAR2	PSHAR2	I0P2-	(3HB92	PSHBR2	PSHBR2	PSWBR2	aSHO-	SBOP	RR20+	BR20+	ם [
■BR13-	AR10+	RR12+	PR15+	≪RR20-	∉AR21 −	≈AB22 -	€9R23 -	≪AR2AC-	■BR20-	⊌BR21-	∞BR 22−	eBR23 −	SWO+	\$600	AA21+	8R21+	E
PDC6R1	AR20-	AR22-	RR25-	PDCAR2	PDCAR2	PDCAR2	PDCAR2	PDCAR2	PDCBR2	FDCBR2	POCBR2	PDCBR2	aSH1-	3801	RR22+	BR22+] F
BAC07-	AR10-	PR12-	AH15-	BAC04-	BAC05-	BACC6-	BAC07-		BMB04-	8MB05-	BMB06-	BH807-	SH1+	5802	AR23+	BR23+] #
#BR13+	AR20+	NB22+	AR25+	≈RR20+	#AR21+	≈AR22+	≋AR23+	PHCLB-	#BR20+	■B R21+	∞BR 22+	#BR23+	=SH2-	SB03	RR24+	BP24+	J
SH3-	AR11+	RR13+	RR16+	SHO-	SH1-	SH2-	SW3-	SHAR2	SHO-	SH1-	SH2-	SH3-	SH2+	SB04	AR2S+	BR2S+	K
SH3+	AB21-	AR23-	AR26-	SWO+	SH1+	SH2+	SH3+	OFTST-	SHO+	SH1+	SH2+	SH3+	#\$H3-	\$805	RR26+	BR26+	L
PACOR1	PB11-	AR13-	AR16-	PRCAR2	PHCAR2	PACAA2	PRCAR2	#PSHAR2	PHBBR2	PMBBR2	PMBBR2	PHBBR2	SH3+	S806	RR27+	BR27+	M
PSHBR1	RR21+	PR23+	RR26+	PSHAR2	PSHAR2	PSHRR2	PSHAR2		PSHBR2	PSHBR2	PSMBR2	PSHBR2	aS₩4-	\$807	SEL+	CHNRQ+	N
18R17+		RR14+	PR17+	≪RR24+	#AR25+	≈ 8826+	#RR27+		#BR24+	≈8 825+	€BR26+	≈8 827+	SH4+		CMDCY+	PRENO+	P
1BR17-	GN2R17	RR24-	RR27-	≪AR24-	■AR25-	₩PR26-	#RR27-	IOP4-	wBR24-	⊯8 R25-	■B R26-	∞BR27 -	≈5¥5 -		SAVCY+	BRKRQ+	R
BAC11-		RR14-	RR17-	BAC08-	BAC09-	BAC10-	BAC11-	AR2AC-	BMB08-	BMB09-	BM810-	BM811-	SW5+		CUB5Y+	1N"98+	S
			AR27+	SH4-	SM5-	SH6-	SH7-	■PACAR2	SH4-	SM5-	SH6-	SW"-	#SH6-		CMDLY+	SKIP+	T
SH7-	GN2R17	RR24+	HINC /*	JAM	1 040	1											
SH7-	GN2R17	HR24+	PINE	Ski4+	SN5+	SM6+	SW7+		SH4÷	SH5+	SH6+	SH7+	SM6+		CHSRV+	EACENB	U
	GN2R17 GN2R17	GN2817	CN2AL7		-	-				SH5+ PMBBR2	SH6+ PMBBR2	SW7+ PMBBR2	SM6+		CHSRV+	EACEN8	V
SH7+				Sli4+	SM5+	SM6+	SW7+	824	SH4+				вие+ В29	B30	CHSRV+	B32	-1
SW7+ PACBR1	GN2917	GN2R17	GN2R17	SH4+ PACAR2	SN5+ PACRR2	SH6+ PACAR2	SH7+ PACAR2		SH4+ PHBBR2	PMSBR2	PHBBR2	PMBBR2		B30 H021CR	B31		-1
SN7+ PACBR1 B16	GN2917	GN2A17	GN2817 B19	Sk4+ PACAR2 B20	SNS+ PRCRP2	SM6+ PREM2	SW7+ PRICAR2 B23	824	SH4+ PHBBR2 B25	PMSBR2	PH88R2	РНВВЯ2 В28	B29		B31	B32	-1
SN7+ PACBR1 B16	GN2917	GN2A17	GN2817	Sk4+ PACAR2 B20	SNS+ PRCRP2	SM6+ PREM2	SW7+ PRICAR2 B23	824	SH4+ PHBBR2 B25	PMSBR2	PH88R2	РНВВЯ2 В28	B29		B31	B32] v]
B16	B17	B18 R107	B19 B107	Sk4+ PACAR2 B20	SNS+ PRCRP2	SM6+ PREM2	SW7+ PRICAR2 B23	824	SH4+ PHBBR2 B25	PMSBR2	PH88R2	РНВВЯ2 В28	B29		B31	B32] v
SH7+ PRCBR1 B16 3603 SHBR1	GN2917	GN2A17	GN2817	B20 B602	SNS+ PRCRP2	SM6+ PREM2	SW7+ PRICAR2 B23	B24 R603	SH4+ PHBBR2 B25	PMSBR2	PH88R2	РНВВЯ2 В28	B29		B31	B32	V A B
B16 3603 SHERL	B17	B18 R107	B19 B107	B20 B602	B21 R123	B22 R123	B23 R123	B24 R603	B25 R123	B26	B27	B28	B29 woo2	W021CR	B31 wg28s	B32 W028S	V ABCDE
SH7+ PRCBR1 B16 3603 SHBR1	B17 R002	B18 B107	B19 B107	B20 H602 GN2820	B21 R123 AR20+	B22 R123	B23 R123 RR23+	B24 R603 GN2824 SH8R2	B25 B123 B820	B26 B123	B27	B28 B123 BR23+	B29 woo2	H021CR	B31 W028S	B32 W028S	V ABCD
B16 3603 SHERL	B17 B002 BB10- BB11- BB12- BB12-	B18 B107 #ERC00+ #ERC01+ #ERC01-	B19 B107 #ERC06+ ERC06- #ERC07+ ERC07-	B20 B602 GN2820	B21 B123 AR20+ AR24+	B22 B123 B121 B121+ B125+	B23 R123 R823+ AR27+	B24 R603 GN2824 SH8R2 #0FTST-	B25 B123 B120 B120 B124	B26 R123 BR21+ BR25+	B27 R123 BR22+ BR26+	B28 B123 BR23+ BR27+	B29 W002 800- 801-	H021CR	B31 W0265 B81P+ B810+	B32 W028S B0P+ B00+	V ABCDE
B16 3603 SHBRI OFTST- PSHBRI	B17 B002 BB10- BB11- BB11- BB12- BB12- BB13-	B18 B107 #ERC00+ ERC00+ ERC01- #ERC01-	B19 B107 #ERC06+ ERC06- #ERC07+ ERC07- #ERC08-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820	B21 B123 AR20+ AR20+ AR20+ AR20+ AR20+	B22 B123 B123 B123 B121+ B125+ B1281+	B23 R123 RR23+ RR27+ RR27+ RR2RC+	B24 R603 GN2824 SH8R2 #0FTST-	B25 B123 BR20+ BR24+ SEL1+ eHB04 eHB08	B26 B123 BR21+ BR25+ SEL1+	B27 R123 BR22+ BR26+ SEL1+	B28 B123 BR23+ BR27+ SEL1+	B29 W002 800- 801- 802-	H021CR	B31 W0265 B81P+ B810+ B811+	B32 W028S B00+ B00+ B01+	V ABCDEF
SH7+ PRCBR1 B16 3603 SMBR1 OFTST- PSMBR1 IOP4-	B17 B002 B810- B811- B812- B812- B813- B813-	B18 B107 #ERC00+ ERC00- #ERC01- #ERC01- #ERC01-	B19 B107 #ERC06+ ERC06- #ERC07- #ERC07- #ERC08- ERC08-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820 PDC8R1	B21 B123 AR20+ AR20+ AR20+ AR20+ AR20+ AR20+ AR20+ AR200+ AR200+	B22 B123 B121 AR21 AR21 AR25 AR281 B811	B23 R123 RR23+ RR27+ RR27- RR26- aEAC07-	B24 R603 GN2824 SH8R2 #0FTST-	B25 B123 B123 B124 B124 B124 SEL14 antibut	B26 B123 BR21+ BR25+ SEL1+ #B05	B27 R123 BR22+ BR26+ SEL1+ arr906	B28 B123 B823+ B827+ SEL1+ wMB07	B29 W002 800- 801- 802- 803-	H021CR	B31 W026S B81P+ B810+ B811+ B812+	B32 W028S B00+ B00+ B01+ B02+	V ABCDEF
SH7+ PRCBR1 B16 3603 SMBR1 OFTST- PSMBR1 IOP4- BR1RC-	B17 B002 BB10- BB11- BB11- BB12- BB12- BB13-	B18 B107 #ERC00+ ERC00+ ERC01- #ERC01-	B19 B107 #ERC06+ ERC06- #ERC07+ ERC07- #ERC08-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820	B21 B123 AR20+ AR24+ FR2AC+ uERC04- uERC08-	B22 B123 B123 AR21+ AR25+ AR261+ aB811- aB815-	B23 R123 R123 R823+ R827- R827- R826- EEC07- EEC11-	B24 R603 GN2824 SH8R2 #0FTST- PSH8R2	B25 B123 BR20+ BR24+ SEL1+ eHB04 eHB08	B26 B123 BR21+ BR25+ SEL1+ #B05 #B09	B27 R123 BR22+ BR26+ SEL1+ aM906 aM810	B28 B123 B823+ B827+ SEL1+ wMB07 wMB11	B29 W002 800- 801- 802- 803- 804-	H021CR	B31 W026S B81P+ B810+ B811+ B812+ B813+	B32 W028S B0P+ B00+ B01+ B02+ B03+	A B C D E F H J
SH7+ PRCBR1 B16 3603 SMBR1 OFTST- PSMBR1 IOP4-	B17 B002 B810- B811- B812- B812- B813- B813-	B18 B107 #ERC00+ ERC00- #ERC01- #ERC01- #ERC01-	B19 B107 #ERC06+ ERC06- #ERC07- #ERC08- #ERC08- #ERC09-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820 PDC8R1	B21 B123 AR20+ AR24+ FR2AC+ uERC04- uERC08- AR20+ AR20+	B22 B123 B123 AR21+ AR25+ AR281+ aB811- aB815- AR22+	B23 R123 R123 RR23+ RR27+ RR27- RR26- aEAC07- aEAC11- RR23+	B24 R603 GN2824 SH8R2 #0FTST- PSH8R2 BT2R-	B25 B123 BR20+ BR24+ SEL1+ eMB04 eMB08 BR20+	B26 B123 BR21+ BR25+ SEL1+ #B05 #B09 BR21+	B27 R123 BR22+ BR26+ SEL1+ aM906 aM810 BR22+	B28 B123 B823+ B827+ SEL1+ wMB07 wMB11 B823+	B29 W002 800- 801- 802- 803- 804- 805-	H021CR	B31 W026S B61P+ B810+ B811+ B612+ B613+ B614+	B32 W028S B0P+ B00+ B01+ B02+ B03+ B04+	A B C D E F H J
SH7+ PRCBR1 B16 3603 SMBR1 OFTST- PSMBR1 IOP4- BR1RC-	B17 B002 B811- B811- B812- B813- B813- B814-	B18 B107 #ERC00+ ERC00- #ERC01- #ERC01- #ERC02- #ERC02-	B19 B107 #ERC06+ ERC06- #ERC07- #ERC07- #ERC08- #ERC08- #ERC09-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820 PDC8R1	B21 B123 B123 AR20+ AR24+ FR2AC+ uERC04- uERC08- AR20+ AR24+	B22 B123 B123 AR21+ AR25+ AR281+ aB811- aB815- AR22- AR26+	B23 R123 R123 R823+ A827- A827- A828- A827- A828- A827- A828- A827-	B24 R603 GN2824 SMBR2 #0FTST- PSMBR2 BT2R- BRKST-	B25 B123 BR20+ BR24+ SEL1+ uHB04 uHB08 BR20+ BR24+	B26 B123 B821+ B825+ SEL1+ #805 #809 B821+ B825+	B27 R123 BR22+ BR26+ SEL1+ aM906 aM810 BR22+ BR26+	B28 B123 B823+ B827+ SEL1+ amb07 amb11 B823+ B827+	B29 W002 800- 801- 802- 803- 804- 805- 806-	HO21CR RED1 SEL1- INTRPT	B31 W0265 B810+ B811+ B812+ B813- B814+ B815+	B32 W028S B0P+ B00+ B01+ B02+ B03+ B04+ B05+	N A B C D E F H J K L
SH7+ PRCBR1 B16 3603 SMBR1 OFTST- PSMBR1 IOP4- BR1RC-	B17 B002 BR10- BR11- BR11- BR12- BR19- BR14- BR15-	B18 B107 #ERC00+ ERC00- #ERC01- #ERC02- #ERC02- #ERC03-	B19 B107 #ERC06+ ERC06- #ERC07- #ERC08- #ERC08- #ERC09-	B20 B602 GN2820 IOP2- BRIAC- BORA1- GN2820 PDC8R1	B21 B123 B123 B124 B124 B124 B124 B1264 B1204	B22 B123 B123 B123 B124 B124 B126 B126 B126 B126 B126 B126 B126 B126	B23 R123 R123 R823+ AR27- AR27- AR2RC- aERC07- aERC11- AR23+ AR27- AR281+	B24 R603 GN2824 SMBR2 #0FTST- PSMBR2 BT2R- BRKST-	B25 B123 BR20+ BR24+ SEL1+ eMB04 eMB08 BR20+ BR24+ BR201+	B26 B123 BR21+ BR25+ SEL1+ #B05 #B09 BR21+ BR25+ BR28+	B27 R123 BR22+ BR26+ SEL1+ aM906 aM810 BR22+ BR26+ BR26+ BR26+	B28 B123 B823+ B827+ SEL1+ aMB07 aMB11 B823+ B827+ B8281+	B29 W002 800- 801- 802- 803- 804- 805- 806- 807-	HO21CR RED1 SEL1- INTRPT	B31 W0265 B810+ B811+ B812+ B813- B814+ B815+ B816+	B32 W028S B0P+ B00+ B01+ B02+ B03+ B04+ B05+ B06+	

SUOPO

GN2824

-SYSRST

800+

B04+

B0882+

-8820-

⊌8R24~

B02+

B06+

■BR22-

₩BR26-

B08R2+

803+

B07+

#BR23-

■BR27-

806R2+

B01+

B05+

B08R2+

#121-

■BP25-

PRIMEL 2 ... ADDRESS AND BUFFER REGISTERS

8814-

881S-

-6188

B817-

-9186

CTL91+ CTL07+ R

TL02+ CTL08+ S

CTL 10+ U

T

CTL03+ CTL09+

CTL05+ CTL11+

CTL04+

PANEL 3 ... CONTROL REGISTER AND SEQUENCE

	A01	A02	903	A04	A05	A06	A07	80A	P09	A10	A11	A12	A13	A14	A15	A16	A17	
	₩021CR	W021CR	W021CR	₩021CR	R123	R113	R205	B121	R121	R121	B121	B121	B107	B107	B121	B121	R121	R
A																		17
8									1				1					
С	CNRACT						GN3807											\top
D	AC00	AC00	MB00	MBOO	ERC00+	809E0-		■CHSRS	≓BADI+	«PREND-	■CTL10-	≪TS1I0+	■AR18I+	-CMINT-	■INTR8+	■SROBUR	enE01	af
Ε	AC01	AC01	MB01	MBOT	ERC01+	SEL1+	«CMDLY-	CMOLY+	ARIBI-	PREND+	AD0+	TSTIU-	AR181-	CHINT+	CHINT-	BURST+	SF'08UR	10
F	GN3A01	GN3A01	GN3A01	GN3A01	ERCRC+	TXFER	B0P1+	CHO-	RR281-	ZCTLO	SRVCY+		w- 128I+	■SPSTA+	SRINT-	SR0+	BHKRQ+	1
Н	HC02	AC02	MB02	HB02	<8C00	ERCENB	GN3R07	«CHSRV+	■RH2B1-	eCTL11-	€CTL10-	aCTL07-	RR2BI-	SPSTA-	44081−	≈108I-	*DC6	a:
J	GN3A01	GN3801	GN3A01	GN3R01	■ACO1	10P1	«CHDLY+	RSTCHN	CMDLY-	PREND+	SRVCY+	CMO+	■B08R1+	41800 ₽	+1800	SPSTA+	PHCLR-	1:
К	PC03	RC03	M803	MB03	EAC02+	«EACAC~			SRVCY+	CTL10+	OPO-	+1890	B06R1-	CHSTA-	TSTI0+	TST 10~	ZIPCTL	T
L	GN3A01	GN3A01	GH3801	GN3801	ERC03+	ROEN8+		<80981-	-ARIBI-	eCTL11−	€CTL10-	€CTL09-	-CAUCE	«CHNRQ+	€CMSTA-	aSPST#	eDC3	•
H	PC04	PC04	MB04	MB04	EACAC+	I0P1	COY3	BR01+	CMDCY+	PRENO+	SRVCY+	+1800	ADDACP	CLRCR+	CHOCY+	CHOCY+	SYSAST	T
N	CN3R01	GN3A01	GN3801	GN3R01	<ac02< td=""><td>«EACAC-</td><td>CHSRS</td><td>CHO+</td><td>AD0-</td><td>SPO+</td><td>BSRI+</td><td>SR0+</td><td>■PREND+</td><td>«CYCSEL</td><td>SRVCY-</td><td>SRYCY+</td><td>PHCLB-</td><td>T</td></ac02<>	«EACAC-	CHSRS	CHO+	AD0-	SPO+	BSRI+	SR0+	■PREND+	«CYCSEL	SRVCY-	SRYCY+	PHCLB-	T
Р	AC05	AC05	₩8 05	Mb05	≪ACO3	BURST+	eCHSRV+	CHDCY+	CMDLY-	SRVCY+	CMO+	TST IQ-	PRENO-	SEL 1+	CHSRV+	CHSAV+	ZIPCTL	-
R	GN3R01	GN3901	GN3A01	GN3R01	ERC04+	BRKRQ+	«CHSRV-	≪SBMR	⊲BPKRQ-	eCTL11-	«PRENO-	≪CTLQ8-	«RDENB+	«S€L1+	■SRSTA-	■BSTI+	⊲DC0	4 .
S	PC06	AC06	M806	M806	EAC05+	aBURBK-	SBMR	SRINT-	SR0+	BTBRK+		CMDCY+	RDENB	SEL1-	CHDCY-	CMSTR-	SYSAST	T
Ţ	PC07	AC07	M807	M807	ERCAC+	BUASK-	GN3A07	BRKSTR	PREND-	BOREQ+	SEL1+	AD0+	«ERCAC+	■BOPI-	SRVCY+	SASTA-	PHCLB-	1
U	GN3R01	GN3R01	GN3AQ1	GN3801	≪RC04	+1908		SEL1+	SHVCY+	SEL1+	MC=0	SE0-	ERCAC-	BOPI+	CHSRV+	SPSTA-	CTLOZ-	4
٧	PC08	AC08	MB08	H808	■AC05	■RSTCHN	BT2A-	SRVCY+	SRINT-	PRENO+					STREC+	CURSY-	ZIPCTI	

	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	i
	₩021CR	H021CR	W021CR	₩021CR	R123	R121	R001	R111	R121	R107	B121	R121	B107	R111	R001	R205	R205	R
A																		
В																		
c [GN3801																GN3B17	1
D [PC09	AC03	MB09	MB09	ERCO6+	■BOPI+	BOPAR-	0P0+	⊌PR0P3	#DURAU+	-OURCH:	■CURCH4	■CUBSY+	CMOCY+	CHNRQ+	PBAC	PBAC	1
Ε [AC10	AC10	M810	MB10	EAC07+	CHOCY-	■EXTA00	ADO+	PROP1	OURAD-	CMINT+	OURCH3	CUBSY-	AR=AA	■CSAC	■CTL00-	€CTLO3-	40
F	GN3801	GN3801	GN3801	GN3B01	EACAC+	SRVCY-	ADR01+	EXTA00	PROP2	■SEL+	OURAD+	SEL+	■BORR1+	CSAC	STREQ+	ZCTLO	PHCLR-	1 5
н [AC11	RC11	MBII	MB11	∎AC06	■CTLSKP	■EXTADO	■OURAD-	■PROP2	SEL-	■OURCM2	■SRVCY-	80AR1-	■SRVCY-	αCSAC	SHO-	SW2-	
J [GN3801	GN3801	GN3801	SN3801	■ACO?	SKPENB	B0P1-	OURAD-	PROP3	■PHCLR-	OURCHI	SEL+	■CMDCY+	A8=AR	BA01+	■CTL00+	eCTL∋2+	er(
Κĺ	SKIP	SKIP	CYCSEL	CYCSEL	ERCO8+	CTLAC-	■EXTROD	OP0+	SEO+	PHRCLR	CUBSY-	SRYENB	RSTCHD	INTRB+	■ CSAC	BACOO-	BRC02-	-
L [GN3801	GN3801	GN3B01	GN9B01	ERC09+	■PROP1	OISABL	ADO-	e SEL∵	•	«CUBSY-	-CHOCY+	«CMDCY∽		CMO+	BACOO-	BAC02-	₹
н [INTRPT	INTEPT	MB.11	MBJI	EACAC+	BRE 1-	■EX*RE^	FXTREQ	PROP L		OURCM2	B0AA1-	CMDCY+		■CSAC	SHETL	SHCTL	Ti
N [GN3801	GN3B31	GN3801	Ch3801	■ACU8	OURAD-	CHNRQ+	#8P: I−	SEO+	-ZCTLO	SEL+	CMDCY-	■SRVCY+	«IHTBPT	SYCVCO	PBAC	RODAC-	E
Ρ [ACCLA	FICCLR	HC=0	WC=0	= 8€00	SEL-	EXTREQ	BREI	PROP2	DCO	OURCM4		SRVCY-	CMO-	■SYCYC1	aCTL01+	-BRKRQ+	•(
в [GN3801	GN3801	GN3801	GN3301	ERC10+	■EACENB	80P1-	IOF2	e 'P" ()P-	■ZCTL3	#OURCM3	■80AR1-	■SRVCY-	SRINT-	SYCYCO	■CTL01-	-BRKRQ-	•(
s [RUN	RUN	MÐJ2	MBJ2	ERC11+	ARIAC-	«EXTREG	ACTEST	SEO+	DC3	OURCH2	CUBSY-	SRVCY+	BURBSK	«CTL02+	SH1-	GN3B17	T :
T [ACJ1	ACJ1	MBJ3	MBJ3	EACAC+	CA1AC-	CTLSKP	CTLSKI	PROP3	eZCTL6	OURCH4	OURAD+	≪SRVCY+	SYCVC1	ZCTLO	BHC01-		0
U [CN3B01	108END	GN3801	GN3801	■AC10	RB2RC-	eCTLSK1	a SKIP	SEL-	DC6		OURCM3	ASTSAV	≪RSTSRV	eC₹L02+	BACO1-	SEL1-	Γ
٧ [ACJ2	ACJ2	MBJ4	MBJ4	∉AC11	CTLAC-		SEL 1-	-1908			SEL+		ASTSAV		SHCTL	CTLOO-	

SEQUENCE GATING

A15	A16	817	A18	919	A20	A21	A22	A23	A24	A25	A26	A27	A28	P29	A30	A31	A32
F121	B121	B121	B121	B107	B121	R121	R151	R113	R107	R123	R141	R107	W021CB	W021CR	W021CR	H021CR	W021CR
																-147 Salandari Andrea	
		İ				ļ ———	GN3A22		 		GN3R26						GN3A28
INTR9+	≪SROBUR	∈REQ1	■RSTCMD	∝BT2A-	#SRINT+	€CHNRQ+	CM3R2S	BOR1	#BOREG-	CTL00+	ACTEST	S PCQQ∘	EACOO-	BAC00-	BAC 0:0-	B#800-	BM800-
CHINT-	BURST+	SAUBUR	CMINT-	BT2A	CTL10-	SRVCY+	CTLO1-	BOR2	BOREQ+	CTL01+	BAC00+	BACOO-	EACO1-	BACO1-	BAC01-	BM801-	S#€01-
SRINI-	SR0+	BRKRQ-	SCCC	∉8 11-	CTL11-	SRO+	CTL01+	WBOREQ+	•	CTLAC+	ERC00~	#8AC01+	CN3A28	GN3R28	GN3928	GN3928	GN3928
4081-	€108I-	≈ DC6	€SCCC	811	-BURBRK	€CLRCR+	CTLUO+	SIRI		« ΕΑΣ0 0 ~	BAC01+	BACO1-	EAC02-	BACO2-	BAC02-	BM802-	RPB02-
00EI+	SPSTA+	PHCLR-	SRQ+	∉IOP4-	8URST-	PHCLR-	CTLOO-	BIH2	eBuAST-	₩£ACO1-	EFICO1-	₩8 9C02+	GN3A28	GN3928	GN3A28	CN3928	GN3A28
TS110+	TST IQ-	ZIPCTL	CHDCY+	IOP4	BRKRQ+	CTL 10-	CTLO2-	aBTREQ+	BURST+	CTL02+	BPC02+	BALO2-	EAC03-	BAC03~	BAC03-	B#803+	8M903+
CHSTA-	=5P3TA-	∉ÜÜ3	∉SCCC	■10P2-	€SYEVEO	■8M830	CTLO2+	STRI	#RRIAC+	CTL03+	EAC05-	₩ 89€03+	GN3A28	GN3A28	CN3R28	GN3A28	GN3929
CHDCY+	CMDCY+	SYSEST	CHDCY+	IOP2	SRVCY+	EMB03-	4	STR2	AR1AC-	CTLAC.	BAC03+	BAC03-	ERC04-	BAC04-	BAC04-	BM803-	BM803-
SRVCY-	SRVCY+	PHCLR-	CHSRV+	oSRINT-	CHSRV+	BMB04+	•	STREQ.	#BRIAC+	■EAC02-	EAC03-	# £9C04+	CN3A28	GN3928	GN3A28	CN3928	GN3928
CHSRV+	CHSRV+	ZIPCTL	CMO+	SRINT+	CMO+	BMB05+	∉80R1	STR2	BRIAC-	₩EAC03-	BAC04+	BHC04-	ERC05-	BAC05-	BAC05-	BMB04+	BM804+
SASTA-	≈BSTI+	■DC0	≈ SCCC	aCTLOZ+	aCMINT+	∝SBM	≈608 2	SU0+	∉AB2AC+	CTL04+	ERC04-	#8AC05+	GN3928	GN3A28	CN3928	GN3828	GN3928
CHOCY-	CMSTA-	SYSAST	CMDCY+	SRIMT-	CTL06-	SRINT-	«BIR1	€DISABL	ARZHC-	C1L05+	BAC05+	BACO5-	EAC06-	BACO6-	BACO6-	BM804-	8#804-
SRVCY+	SASTA-	PHCLR-	OPO-	aCTLUZ-	CTLO7-	BRKSTA	€BIR2	8082	CTLAC+	CTLAC+	EACOS-	■B RC06+	ERC07 -	BACO7-	BACO7-	B#805+	B#805+
CHSRV+	SPSTA-	CTLOZ-	SU0+	CTLOZ+	CTLQ8-	SEL1+	■STR1	BIAS	CTLAC-	₩ERC94-	CN3A26	BACO6-	CN3A28	GN3A28	GN3A28	CN3A28	CN3928
STREQ+	CURSY-	ZIPCTL			C1L09-	SRVCY-	€STR2	∉BURST+		€AC05-			ERCO8-	BAC08-	B9008-	B#805-	BMB0S-

315	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	B32
001	R205	R205	R205	R205	R205	R205	R205	R151	₩002	R123	5141	B107	W021CR	W021CR	W021CR	W021CR	W021CR
		SN3B17	CN3B1B								GN3826				1		GN3528
HNRQ+	PBAC	PBAC	PBAC	Peac	PBAC	PBAC	PBAC	BMB30	EAC00-	C1L06+	⇔ ACTEST	■BAC07+	ERC03-	BAC09-	BAC09-	BM806+	8#80€+
SAC	₩CTLOO-	€C11.02-	€CTL06+	€CTL03-	€CTL05-	€CTL08-	eCTL10-	8MB07-	EACO1-	CTL07+	BAC06+	BAC07-	EAC10-	BAC10-	BHC10-	BM806-	BMB06-
TREQ+	ZCTLO	PHCLR-	SYSAST	ZCTL3	ZCTL3	7CTL3	ZCTL3	BMB07+	EACO2-	CTLAC+	EACO6-	± 89C08÷	GN3828	CN3B29	GN3828	GN3828	SN38JR
SAC	SH0-	SH2-	CN3818					+906MB	ERC03-	€ERCO6-	BAC07+	BAC08-	EAC11-	BAC11-	BAC11-	BF807+	BMB07+
1901+	€C1L00+	€CTL02+	aCTLO6-	aCTL03+	€CTLOS+	■CTL08+	œCTL10+	B#806-	EAC04-	■ERC07-	EAC07-	■BAC09+	CN3828	(N3828	GN3828	GN3B28	CN3828
SAC	BACCO-	BAC02-	BACO6-	BHC03-	BAC05-	BACC8-	B9C10-	BMB06-	EAC05-	CTL08+	8AC08+	BAC 09-	ADENB	IOP1	10F1	BF807-	S#807-
HO+	BACOO-	BAC02-	BACO6-	BAC03-	BAC05-	BACOB-	BAC10-	BM808+	EAC06-	CTL09+	EACO8-	∞BAC10+	GN3828	GN3828	GN3828	GA3828	GN3B28
SAC	SHCTL	SHCTL	ZCTL6					∉AR1AC-	EACO7-	CTLAC+	BAC09+	BAC10-	SKPENB	10P2	10P2	8≖408∙	8M808+
YCVC0	PBAC	RDDRC~	BORE 2-	PBAC	PBAC	PBAC	PBAC	€8R1AC-	EACO8-	⊯ERC08−	ERC09-	⊕BR C11+	GN3828	0N3B28	GN3828	GN3828	\$43828
YEVCL	€CTLO1+	«BRKRQ+	∉CHNRQ+	€CTL04+	∉CTL07+	€CTL09+	eCTL11+	eAR2AC−	EAC09-	⊯EAC09−	BAC10+	BAC11-		10P4 -	10P4	8F808-	BM808-
TCVCO	€CTL01-	#BRICRO-	«CHNRQ-	CTL04-	CTL07-	€CTL09-	⊲CTL11-	eCTLBC-	EAC10-	CTL10+	EAC10-	-10P2-	GN3B28	GN3828	GN3828	GN3828	GN3828
TL02+	S41-	GN3817	SBh					•	EACI1-	CTL11+	BAC11+	1065		BTL	811	BMB09-	BH809-
CTLO	BAC'/-		GN3818	BAC04-	BRC07-	BACC9-	B9C11-	4	ACTEST	CTERC+	EAC11-	∉I0P4-		812A	BT2A	BM810-	B#810-
TL02+	BAC01-	SEL1-		BAC04-	BPC07-	BAC09-	BAC11-	•	RDENB	∉ERC10−	GN3826	10P4	GN3828	GN3B28	GN3828	GN3828	GN3828
	SWCTL	CTL00-	812A-					w.	SKPENB	∉ERC11-				PHACLA	PHRCLR	BM811-	BM811-

PANEL 3 ... CONTROL REGISTER AND SEQUENCE CATING

APPENDIX F

MAINTENANCE AND DIAGNOSTIC FACILITIES

MAINTENANCE AND DIACNOSTIC FACILITIES

F1. The Test Panel

The System/360 interface contains facilities for self-checking during its operation and for diagnosing circuit faults. Maintenance operations can be carried out both onand off-line using built-in test controls and indicators. Precipitous fault conditions can be detected with conventional perturbation methods using the margin-check power supply of the PDP-8. The principal test component is the Test Panel, shown in Figure F1. The top two rows of indicators on the left on this panel monitor the contents of the four principal data registers of the interface: AR1, AR2, BR1, and BR2. The next two rows of indicators monitor the status of the channel interface tag lines and bus lines. The upper row of these monitors information placed by the interface on the inbound lines to the channel; the lower row moritors information placed by the channel on the outbound lines to the inter-Beneath these indicators is a row of switches used to simulate the outbound lines in off-line operation. The large pushbutton at the extreme lower right controls the on/offline status of the interface. None of the test controls are operable when this switch in the on-line position, although the various indicators continue to monitor the state of the circuitry. When the equipment is in the off-line or test condition the signals to the channel lines are deactivated in such a way that servicing operations and power up/down sequencing can be conducted without in any way affecting the operations by the channel with other control units. To the right of the block of indicators just described is a block of 24 indicators which monitor the status of most of the control flip-flops of the interface. These can be roughly grouped as follows: If one of the top row of indicators is lit, then the interface is actively communicating with the

IGU FI. TEST PANEL LAYOUT

channel. During various parts of a channel-interface operation, the next row of indicators may be lit. A service cycle (data or status) will result in alternate operation of the Ch' REQ and BRK REQ indicators. The last two rows of indicators represent the contents of the CTL register exactly as indicated to the resident PDP-8 program.

F2. Diagnostic Procedures

In rormal system operations the interface is online to the System/3:3 as indicated by the illuminated pushbutton switch at the lower right of the test panel. Alternate depressions of this pushbutton switch the interface
from the on-line, to the off-line state and vice versa. In
the off-line state the interface is logically disconnected
from the System/360 channel-control unit lines and may be
tested independently of the System/360 using the manual
controls on the test panel and certain PDP-8 test programs
constructed for this purpose and described below.

In some situations it is desirable to activate the manual controls on the test panel when the interface is on-line to the System/360. A special override switch (TEST) is provided for this purpose. The lamp above this switch indicates, when lit, that the manual controls are operative.

The interface contains special circuitry which prevents transitions to and from the on-line state when channel operations are pending at the interface. Therefore servicing operations involving such transitions can proceed without disturbing the System/360. Following is a description of diagnostic utilities intended to ferret out most component failures.

360 INTERFACE REGISTER TEST

Purpos**e**

Program tests AR1. BR1, AR2, and CTL gating with the AC, and in addition tests BR2 gating with the MB. Read, Clear, and Write operations are tested with AR1, BR1, and AR2. Read, test-under-mask and invert under-mask operations are tested with CTL. The interrupt facility is tested in conjunction with CTL; and the 3-cycle data break facility is tested in conjunction with BR2.

DIRECTIONS FOR USE

- a. Switch interface off-line.
- b. START program at 200. Program will stop at 214.
- c. Using manual controls, load all ones (377 octal) into ARl, BRl, and AR2. Press CONTINUE.
- d. Program will loop through all tests in about 3 seconds Error stops are documented in program listing.

360 INTERFACE ECHO TEST

Purpose

Program tests all channel interface circuitry except bus drivers, receivers and on-line/off-line circuitry. Channel interface sequences are simulated with the manual controls.

DIRECTIONS FOR USE

- a. Switch interface off-line. Raise OPL OUT and BUS OUT (P) switches.
- b. Load program. START at 0200. Lower SR switches. Program will loop.
- c. System Reset. Lower OPL OUT switch. Program will stop at 221. AC will contain 0040 and SYS RST lamp will be on in CTL. Raise OPL OUT; press CONTINUE.

PAGE

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
            /÷*******************
            / ☆
            / *
                   SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
            /*
            /INTERFACE REGISTER DEFINITIONS
            RD=1
                                    /IDP READ
                                    /IUP CLEAR
           CLR=2
            TST=2
                                    /IOP TEST
                                    /IOP WRITE
           WR=4
                                    /IOP INVERT
            INV=4
            AR1=6300
                                    /ADDRESS REGISTER 1
            BR1=6310
                                    /BUFFER REGISTER 1
            AR2=6320
                                    /ADDRESS REGISTER 2
                                    /CONTROL REGISTER
            CTL=6330
            /INTERFACE CONTROL REGISTER BIT DEFINITIONS
            STREQ=7000
                                    /STATUS REQUEST
            BIREQ=4000
                                    /BUS-INBOUND SERVICE REQUEST
                                    /BUS-OUTBOUND SERVICE REQUEST
            BUREQ=2000
                                    /COMMAND CHAIN
'BUS-OUT PARITY CHECK ON COMMAND BYT
            CMDCHN=04G0
            CMDPCK=0200
                                    /BUS-OUT PARITY CHECK ON DATA BYTE
            SRVPCK=0100
            CMDRST=0040
                                    /SYSTEM OR SELECTIVE RESET
            CMDSTK=0020
                                    /STACK STATUS ON INITIAL SELECTION
            CMDHLT=0010
                                    /HALT I/O
                                    /COMMAND ACCEPT
            CMDEND=0004
                                    /SERVICE STOP
            SRVHLT=0002
            SRVEND=0001
                                    /PDP-8 WC=0
            /SYSTEM/360 STATUS BYTE DEFINITIONS
            UNCHCK=002
                                    /02 UNIT CHECK
                                    /G4 DEVICE END
            DEVEND=004
            CHNEND=010
                                    /08 CHANNEL END
            #1
                   JMP I INTRPT
0001 5420
            BR2BLK,*.+2
            *10
            AXR1, *.+1
            #20
            INTRPT, INTX
0020
     0100
           BR2DBP,BR2BLK-1
BR2CA, TMP3-1
0021
     0001
0022
      0035
0023
     0002
           XSRHLT, SRVHLT
0024
      2000
            XBOREQ.BOREQ
0025
      4000
            XBIREQ, BIREO
0026
     0377
            K0377, 0377
           40777, 0777
K7000, 7050
K7400, 7400
0027
      0777
0030
      7000
0031
      7400
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                          PAGE
                                                                                  2
  0032
         7767
               K7767, 7767
  0033
        7772
               K7772, 7772
               TMP1,
                       *.+1
               TMP2,
                       *.+1
               TMP3.
                       *·+1
               AC,
                       *.+1
               *100
               /INTERRUPT ROUTINE
 0100
        3037
               INTX,
                       DCA AC
 0101
        6042
                       TCF
 0102
        6032
                       KCC
 0103
        6331
                      CTL RD
 0104
        0027
                       AND KO777
 0105
        7640
                      SZA CLA
 0106
        2000
                       ISZ O
 0107
        1037
                      TAD AC
 0110
        5400
                       JMP I O
              /START USING START KEY
              #200
              /TEST AR1, BR1, AR2 REGISTERS
 0200
        6301
              START, ARI RD
 0201
        7440
                      SZA
 0202
       7402
                      HLT
                                         /AR1-AC GATES PICKED UP A BIT (AC)
 0203
       7200
                      CLA
 0204
       6311
                      BR1 RD
 0205
        7440
                      SZA
 0206
       7402
                      HLT
                                         /BR1-AC GATES PICKED UP A BIT (AC)
 0207
       7200
                      CLA
 021C
       6321
                      AR2 RD
0211
        7440
                      SZA
0212
       7402
                      HLT
                                         /BR2-AC GATES FAILED A BIT (AC)
0213
       7200
                      CLA
0214
       7402
                      HI.T
                                         OPERATOR ACTION PAUSE
              /LOAD ONES INTO AR1, BR1, AND BR2 USING MANUAL /CONTROLS. RESTART USING CONTINUE KEY
0215
       1031
              AR1T1, TAD K7400
0216
       6301
                     AR1 RD
0217
       7040
                     CMA
0220
       7440
                     SZA
0221
       7402
                     HLT
                                         /AR1-AC GATES DROPPED A BIT (AC)
0222
       7200
                     CLA
0223
       6302
                     AR1 CLR
0224
       6301
                     AR1 RD
0225
       7440
                     SZA
0226
       7402
                     HLT
                                        /CLEAR ARI GATES FAILED A BIT (AC)
0227
      7240
                     STA
0230
       6304
                     AR1 WR
0231
      0031
                     AND K7400
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                       PAGE
                                                                               3
0232
       6301
                     AR1 RD
0233
       7040
                     CHA
0234
       7440
                     SZA
0235
       7402
                     HLT
                                        /AC-ARI GATES DROPPED A BIT (AC)
0236
       7200
                     CLA
0237
       6304
                     AR1 WR
0240
       1031
                     TAD K7400
0241
       6301
                     AR1 RD
07.42
       7040
                     CMA
0243
       7440
                     SZA
0244
       7402
                     HLT
                                        /AC-AR1 GATES INVERTED A BIT (AC)
0245
       7200
                     CLA
0246
       1031
             BR1T1, TAD K7400
0247
       6311
                     BR1 RD
0250
       7040
                     CMA
0251
       7440
                     SZA
0252
       7402
                     HLT
                                        /BR1-AC GATES DROPPED & BIT (AC)
0253
       7200
                     CLA
0254
       6312
                     BR1 CLR
0255
       6311
                     BR1 RD
0256
       7440
                     SZA
0257
                                        /CLEAR BR1 GATES FAILED A BIT (AC)
       7402
                     HLT
0260
       7240
                     STA
0261
       6314
                     BR1 WR
0262
      0031
                     AND K7400
0263
       6311
                     BR! RD
0264
       7040
                     CMA
0265
       7440
                     SZA
0266
      7402
                     HLT
                                        /AC-BR1 GATES DROPPED A BIT (AC)
0267
      7200
                     CLA
0270
       6314
                     BR1 WR
0271
       1031
                     TAD K7400
0272
       6311
                     BR1 RD
0273
       7040
                     CMA
0274
       7440
                     SZA
0275
      7402
                     HLT
                                        /AC-BR1 GATES INVERTED A BIT (AC)
0276
      7200
                    CLA
0277
      1031
             AR2T1, TAD K7400
0300
      6321
                     AR2 RD
0301
      7040
                     CMA
0302
      7440
                     SZA
0303
      7402
                     HLT
                                       /AR2-AC GATES DROPPED A BIT (AC)
0304
      7200
                     CLA
0305
      6322
                     AR2 CLR
0306
      6321
                     AR2 RD
0307
      7440
                     SZA
0310
      7402
                     HLT
                                       /CLEAR AR2 GATES FAILED A BIT (AC)
0311
      7240
                     STA
0312
      6324
                     AR2 WR
0313
      0031
                     AND K7400
0314
      6321
                     AR2 RD
0315
      7040
                    CMA
0316
      7440
                    SZA
0317
      7402
                    HLT
                                       /AC-AR2 GATES DROPPED A BIT (AC)
0320
      7200
                    CLA
0321
      6324
                    AR2 WR
```

-

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                        PAGE
                                                                               4
 0322
       1031
                      TAD K7400
 0323
        6321
                      AR2 RD
 0324
        7040
                      CMA
 0325
        7440
                      SZA
 0326
        7402
                      HLT
                                         /AC-AR2 GATES INVERTED A BIT (AC)
 0327
        7200
                      CLA
 0330
       5731
                      JMP I .+1
 0331
       0400
                      AR112
              *400
              /TEST AR1, BR1, AR2 REGISTERS
 0400
       3034
              ARITZ, DCA TMP1
 0401
       1034
                     TAD TMP1
 0402
       6306
                      ARI CLR+WR
 0403
       0031
                     AND K7400
 0404
       6301
                     ARI RD
 0405
       3035
                     DCA TMP2
 0406
       1035
                     TAD TMP2
 0407
       7040
                     CMA
 0410
       0034
                     AND TMP1
 0411
       7440
                     SZA
 0412
       7402
                     HLT
                                        /AR1 ECHO DROPPED A BIT (AC)
 0413
       7200
                     CLA
 0414
       1034
                     TAD TMP1
0415
       7040
                     CMA
0416
       0035
                     AND TMP2
0417
       7440
                     SZA
0420
       7402
                     HLT
                                        /ARI ECHO PICKED UP A BIT (AC)
0421
       7200
                     CLA
0422
       2034
                     ISZ TMP1
0423
                     JMP AR1T2+1
       5201
0424
       3034
             BRITZ, DCA TMPI
                     TAD TMP1
0425
      1034
0426
       6316
                     BRI CLR+WR
0427
      0031
                     AND K7400
0430
       6311
                     BR1 RD
0431
       3035
                     DCA TMP2
0432
       1035
                     TAD TMP2
0433
      7040
                     CMA
0434
      0034
                     AND TMP1
0435
      7440
                     SZA
0436
      7402
                    HL T
                                       /BR1 ECHO DROPPED A BIT (AC)
0437
      7200
                     CLA
0440
      1034
                     TAD TMP1
0441
      7040
                    CMA
0442
      0035
                     AND TMP2
0443
      7440
                    SZA
0444
      7402
                    HLT
                                       /BR1 ECHO PICKED UP A BIT (AC)
0445
      7200
                    CLA
0446
      2034
                    ISZ TMP1
0447
                    JMP BRIT2+.
      5225
0450
      3034
             AR2T2, DCA TMP1
0451
      1034
                    TAD TMP1
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                      PAGE
                                                                              5
0452
       6326
                     AR2 CLR+WR
0453
       0031
                     AND K7400
0454
       6321
                     AR2 RD
0455
       3035
                     DCA TMP2
0456
       1035
                     TAD TMP2
0457
       7040
                     CMA
0460
      0034
                     AND TMP1
0461
       7440
                     SZA
0462
       7402
                     HLT
                                       /AR2 ECHO DROPPED A BIT (AC)
0463
      7200
                     CLA
0464
       1034
                     TAD TMP1
0465
       7040
                     CMA
0466
       0035
                     AND TMP2
0467
       7440
                     SZA
0470
       7402
                     HLT
                                       /AR2 ECHO PICKED UP A BIT (AC)
0471
       7200
                     CLA
                     ISZ TMP1
0472
       2034
0473
       5251
                     JMP AR2T2+1
0474
                     JMP I .+1
       5675
0475
       0600
                     CTLT1
             *600
             /TEST CONTROL REGISTER GATING
0600
      6331
             CTLT1, CTL RD
0601
       7440
                    SZA
0602
      7402
                    HLT
                                       /CTL-AC GATES PICKED UP A BIT (AC)
0603
      7200
                    CLA
0604
      1027
                    TAD K0777
0605
      6334
                    CTL INV
0606
      7200
                    CLA
0607
      1030
                    TAD K7000
0610
      6331
                    CTL RD
0611
      7040
                    CMA
0612
       7440
                    SZA
0613
      7402
                                       /CTL-AC GATES DROPPED A BIT (AC)
                    HLT
0614
      7200
                    CLA
0615
      1027
                    TAD K0777
0616
      6334
                    CTL INV
0617
      7200
                    CLA
0620
      6331
                    CTL RD
0621
      7440
                    SZA
0622
      7402
                    HLT
                                      /CTL FAILED TO INVERT A BIT (AC)
0623
      720C
                    CLA
0624
      3034
            CTLT2, DCA TMP1
0625
                    TAD TMP1
      1034
0626
      6334
                    CTL INV
0627
      7200
                    CLA
0630
      6331
                    CTL RD
0631
      3035
                    DCA TMP2
0632
      1035
                    TAD TMP2
0633
      7040
                    CMA
0634
      0034
                    AND TMP1
0635
      7440
                    SZA
0636
      7402
                    HLT
                                      /CTL ECHO DROPPED A BIT (AC)
```

:

```
/SYSTEM/360 IFTERFACE DIAGNOSTIC ROUTINES
                                                                       PAGE
                                                                               6
 0637
       7200
                     CLA
 0640
       1034
                      TAD THE
 C541
       7040
                     CMA
 0642
       0035
                      ANO TMP2
 0643
       7440
                      SZA
 0644
       7402
                     HLT
                                        /CTL ECHO PICKED UP A BIT (AC)
 0645
       7200
                     CI.A
 0646
       1034
                      TAD TMF1
 0647
       6334
                     CTL INV
 0650
       7200
                     CLA
 0651
       6331
                     CTL RD
 0652
       7440
                     SZA
 0653
       7402
                                        /CTL FAILED TO INVERT A BIT (AC)
                     HLT
0654
       7200
                     CLA
 0655
       1034
                     TAD TMP1
0656
       7001
                     IAC
0657
       0027
                     ANO K. 777
0660
       7440
                     SZA
0661
       5224
                     JMP CTLT2
0662
             CTLT3, TAD K7767
       1032
0663
       3034
                     DCA TMP1
0664
       7120
                     STL
0665
             CTLT3A,CTL INV
       6334
0666
       6332
                     CTL TST
0667
       7402
                     HLT
                                        /CTL TST FAILED TO SKIP
0670
       7040
                     CMA
0671
       6332
                     CTL TS:
0672
       7410
                     SKP
0673
       7402
                     HLT
                                        /CTL TST SKIPPED IN ERROR
0674
       7040
                     CHA
0675
       6334
                     CTL INV
0676
       7004
                     RAL
0677
       2034
                     ISZ TMP1
0700
       5265
                     JMP CTLT3A
0701
       7200
                     CLA
0702
             CTLT4, DCA TMP1
       3034
0703
       1034
                     TAD TMP1
0704
      6334
                     CTL INV
0705
      7200
                     CLA
0706
      3035
             CTL4C. DCA TMP2
0707
       1035
                     TAD TMP2
0710
      0034
                     AND TMP1
0711
      7041
                     CIA
0712
      1035
                     TAD TMP2
0713
      7640
                     SZA CLA
0714
      5321
                     JMP CTL4A
0715
      1035
                     TAO TMP2
0716
      6332
                     CTL TST
0717
      7402
                    HLT
                                       /CTL TST FAILED TD SKIP
0720
      5325
                     JMP CTL4B
0721
             CTL4A, TAD TMP2
      1035
0722
      6332
                    CTL TST
0723
      7410
                    SKP
0724
      7402
                    HL T
                                       /CTL TST SKIPPED IN EMACR
0725
      7001
            CTL4B, IAC
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                        PAGE
                                                                                7
 0726
        7440
                      SZA
 0727
        5306
                      JMP CTL4C
 0730
        6335
                      CTL RD+INV
 0731
        7104
                      CLL RAL
 0732
        0027
                      AND KO777
 0733
        7440
                      SZA
 0734
        530∠
                      JMP CTLT4
 0735
              CTLT5, TAD K7772
        1033
 0756
        3035
                      DCA TMP2
 0737
        7120
                      STL
 0740
        7004
              CTLT5A, RAL
 0741
        6334
                      CTL INV
 0742
        6001
                      ION
 0743
        7000
                      NDP
 0744
       7402
                      HLT
                                        /CTL FAILED TO INTERRUPT
 0745
       6334
                      CTL INV
 0746
       6001
                      IDN
 0747
       7000
                      NOP
 0750
       7410
                      SKP
 0751
       7402
                      HLT
                                        /CTL INTERRUPTED IN ERROR
 0752
       6002
                      IOF
 0753
       2035
                      ISZ TMP2
 0754
       5340
                      JMP CTLTSA
 0755
       7200
                     CLA
0756
       5757
                      JMP 1 .+1
0757
       1000
                     BR2T1
              *1000
              /TEST BR2 AND DATA BREAK
1000
       3034
             BRZT1, DCA TMP1
                     TAD TMP1
1001
       1034
1002
       3036
                     DCA TMP3
1003
       1021
                     TAD BRZDBP
1004
       3010
                     DCA AXR1
1005
       7240
                     STA
1006
       3410
                     DC4 I AXR1
1007
       1022
                     TAD BRZCA
1010
       3410
                     DCA I AXR1
1011
      1025
                     TAD XBIREO
1012
       6334
                     CTL INV
1013
      7200
                     CLA
1014
      3035
                     DCA TMP2
1015
      1021
             BR2T1E, TAD BR2DBP
1016
      3010
                     DCA AXR1
1017
      1410
                     TAD I AXR1
1020
      7650
                     SNA CLA
1021
      5225
                     JMP BR2T1A
1022
                     ISZ TMP2
      2035
                     JMP BRZTIE
1023
      5215
1024
      7402
                    HLT
                                       /DB WORD COUNT FAILED TO DECREMENT
1025
      1022
             BR2T1A, TAD BR2CA
1026
      7040
                    CHA
1027
      1410
                    TAD I AXR1
1930
      7440
                    SZA
```

		/SYSTEM/360 INTERFACE	DIAGNOSTIC ROUTINES PAGE 8
1031	7402	HLT	/DB CURRENT ADDRESS FAILED TO INCREM
1032	7200	CLA	The second of th
1033	1034	TAD TMP1	
1034 1035	7041 1036	CIA TAD TMP3	
1036	7440	SZA	
1037	7402	HLT	/DB TRANSFER DIRECTION SENSE HOOMS
1040	7200	CLA	/DB TRANSFER DIRECTION SENSE WRONG
1041	1023	TAD XSRHLT	
1042	6335	CTL RD+INV	
1043	7200	CLA	
1044	6335	CTL RD+INV	
1045 1046	7200 3036	CLA	
1047	1021	DCA TMP3 TAD BR2DBP	
1050	3010	DCA AXR1	
1051	7240	STA	
1052	3410	DCA I AXR1	
1053	1022	TAD BRZCA	
1054 1055	3410	DCA I AXR1	
1055	1024 6334	TAD XBOREQ CTL INV	/(RATHER UNORTHODOX SEQUENCE)
1057	1025	TAD XBIRED	
1060	6334	CTL INV	
1061	6334	CTL INV	
1062	7200	CLA	
1063	3035	DCA TMP2	
1064	1021	GR2T1D, TAD BR2DBP	
1065	3010 1410	DCA AXR1	
1067	7650	TAD I AXR1 SNA CLA	
1070	5274	JMP BR2T1C	
1071	2035	ISZ TMP2	
1072	5264	JMP BR2T1D	
1073	7402	HLT	/DB WORD COUNT FAILED TO DECREMENT
1074 1075	1022	BR2T1C, TAD BR2CA	
1075	7040 1410	CMA TAD I AXR1	
1077	7440	SZA	
1100	7402	HLT	/DB CURRENT ADDRESS FAILED TO INCREM
1101	7200	CLA	POS COMENT ADDRESS PAREED TO INCREM
1102	1023	TAD XSRHLT	
1103	6335	CTL RD+INV	
1104 1105	7200 6335	CLA	
1105	7200	CTL RD+INV CLA	
1107	1036	TAD TMP3	
1110	0031	AND K7400	
1111	7440	SZA	
1112	7402	HLT	/DB PICKED UP BITS IN POS 0-3
1113	7200	CLA YMDI	
1114 1115	1034 0031	TAD TMP1 AND K7400	
1116	1036	TAD TMP3	
1117	3036	DCA TMP3	
1120	1034	TAD TMP1	
1121	7040	CMA	
1122	0036	AND TMP3	

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                        PAGE
 1123
        7440
                      SZA
 1124
        7402
                      HLT
                                         /BR2 ECHO FAILED
 1125
        7200
                      CLA
 1126
        1036
                      TAD TMP3
 1127
        7040
                      CMA
 1130
        0034
                      AND TMP1
 1131
        7440
                      SZA
 1132
        7402
                      HLT
                                         /BR2 ECHO FAILED
 1133
        7200
                      CLA
 1134
        2034
                      ISZ TMP1
 1135
                      JMP BR2T1+1
        5201
 1136
        5737
                      JMP I .+1
 1137
       0215
                      AR1T1
 AC
          0037
 AR1
          6300
 AR1T1
          0215
 AR1T2
          0400
 AR2
          6320
 AR2T1
          0277
 AR2T2
          0450
 AXR1
          0010
 BIREO
         4000
 BOREQ
         2000
 BR1
          6310
 BR1T1
         0246
 BR1T2
         0424
 BR 2BLK
         0002
 BR2CA
         0022
 BRZDBP
         0021
BR2T1
         1000
BR2T1A
         1025
BR2T1C
         1074
BR2T1D
         1064
BR2T1E
         1015
CHNEND
         0010
CLR
         0002
CMDCHN
         0400
CMDEND
         0004
CMDHLT
         0010
CMDPCK
         0200
CMDRST
         0040
CMDSTK
         0020
CTL
         6330
CTLT1
         0600
CTLT2
         0624
CTLT3
         0662
CTLT3A
         0665
CTLT4
         0702
CTLT5
         0735
CTLT5A
         0740
CTL4A
         0721
CTL4E
         0725
CTL4C
         0706
DEVEND
        0004
INTRFT
        0020
INTX
        0100
```

INV	0004
K0377	0026
K0777	0027
K7000	0030
K7400	0031
K7767	0032
K7772	0033
RD	0001
SRVEND	0001
SRVHLT	0002
SRVPCK	0100
START	0200
STREQ	7000
TMP1	0034
TMP2	0035
TMP3	0036
IST	0002
UNCHCK	0002
WR	0004
XBIREQ	0025
XBOREO	0024
XSRHLT	0023

- d. Test 1/0. Perform the following sequence.
 - 1. Place valid device address recognized by interface on BUS OUT switches.
 - 2. Raise ADR OUT.
 - Raise SEL OUT. Interface will respond with OPL IN, store BUS OUT in ARI and clear BRI, CU SEL and CMD CYC lamps will go on.
 - 4. Lower ADR OUT. Interface will respond with ADR IN and place AR1 on BUS IN. CU SEL lamp will go off.
 - 5. Raise BUS OUT (P). Lower al. other BUS UT switches.
 Raise CMD OUT. Interface will respond by dropping
 ADR IN. CMD DLY lamp will go on.
 - 6. Drop CMD OUT. Interface will respond with STA IN and place the status modifier bit (position 2) on BUS IN. CHL SRV lamp will come on.
 - 7. Raise SRV OUT. Interface will drop all inbound signals and disconnect. CMD CYC, CMD DLY, and CHL SRV lamps will all go off.
- e. Start I/O. Perform the above sequence except Step 5.
 At Step 5 place a valid (non zero) channel command on BUS OUT and raise CMD OUT. Interface will respond by dropping ADR IN. CMD DLY lamp will go on. At Step 6 the interface will place an all-zero status byte on BUS IN. Before Step 7 press STOP on PDP-8. After Step 7 the CMD END lamp will go on CTL. Press CONTINUE; the CMD END bit will go off and the CHN REQ lamp will go on together with one or more bits in the order field of the CTL. The PDP-8 will continue running.
- f. Service cycle sequences. Perform a Start 1/O operation with a channel command specifying channel-inbound service (e.g., octal 2). The CHL REQ and CTL (0) lamps will go on. The REQ IN tag line lamp will also go on. Perform the following procedure.
 - 1. Load a nonzero device address in AR2.

- 2. Raise SEL OUT. Interface will respond by placing AR2 on BUS IN and raising ADR IN and OPL IN. REQ IN will be dropped. CU SEL and SRV CYC lamps will go on.
- 3. Lower SEL OUT. CU SEL lamp will go out.
- 4. Raise CMD OUT. Interface will respond by dropping ADR IN. CMD DLY lamp will go on.
- 5. Drop CMD OUT. Interface will respond by raising SRV IN. CHL SRV lamp will go on.
- 6. Stop PDP-8. Raise SRV OUT. Interface will drop all inbound tags and disconnect. SRV CYC, CMD DLY, and CHL SRV lamps will go out. BRK REQ lamp will go on.
- 7. Start PDP-8. The cycle will recommence at Step 2 and may be continued until either PDP-8 word count decrements to zero or until at Step 6 CMD OUT is raised instead of SRV OUT. In these cases the appropriate bits are set in CTL. (See interface description.)

PAGE

/SYSTEM/360 INTERFACE ECHO TEST ROUTINES

```
/*
            /*
                  SYSTEM/360 INTERFACE ECHO TEST ROUTINES
            /*
                  DR - HOW TO GET ALONG FITH THE 2870 ALMOST
            /#
            /ASSEMBLY PARAMETERS
           BUFS1Z=4000
                                  /MAXIMUM SIZE OF DATA BUFFER
            /INTERFACE REGISTER DEFINITIONS
           RD=1
                                  /IOP READ
           CLR=2
                                  /IOP CLEAR
            TST=2
                                  /IOP TEST
           WR = 4
                                  /IOP WRITE
                                  /IOP INVERT
            INV=4
            AR1=6300
                                  /ADDRESS REGISTER 1
           BR1=6310
                                  /BUFFER REGISTER 1
           AR2=6320
                                   /ADDRESS REGISTER 2
           CTL=6330
                                  /CONTROL REGISTER
            /INTERFACE CONTROL REGISTER BIT DEFINITIONS
           STRE0=7000
                                  ISTATUS REQUEST
           BIREQ=4000
                                  /BUS-INBOUND SERVICE REQUEST
                                  /BUS-OUTBOUND SERVICE REQUEST
           BORE0=2000
           CMDCHN=0400
                                  /COMMAND CHAIN
           CMDPCK=0200
                                  /BUS-OUT PARITY CHECK ON COMMAND BYT
           SRVPCK=0100
                                  /BUS-OUT PARITY CHECK ON DATA BYTE
           CMDRST=0040
                                  /SYSTEM OR SELECTIVE RESET
           CMDSTK=0020
                                  /STACK STATUS ON INITIAL SELECTION
           CMDHLT=0010
                                  /HALT I/O
           CMDEND=0004
                                  /COMMAND ACCEPT
           SRVHLT=0002
                                  /SERVICE STOP
           SRVEND#0001
                                  /PDP-8 WC=0
           /SYSTEM/360 STATUS BYTE DEFINITIONS
           UNCHCK=002
                                  /02 UNIT CHECK
           DEVEND=004
                                  /04 DEVICE END
           CHNEND=010
                                  /08 CHANNEL END
           #2
           BLKXFR, *.+2
                                  /3-CYCLE DATA BREAK BLOCK
           *200
0200
           TEST,
     4246
                  JMS DELAY
                                  /WAIT FOR CHANNEL SERVICE
0201
     1320
                  TAD ACTIVE
                                  /DID CHANNEL STORE COMMAND
0202
     7450
                  SNA
0203
     5200
                  JMP TEST
                                  /NO. KEEP TRYING
                  CLL RAR
0204
     7110
                                  /YES. IS OUTBOUND SERVICE REQUESTED
0205
     7620
                  SNL CLA
0206
     5213
                  JMP TST2
                                  /NO. CONTINUE
0207
     1317
                  TAD BUFLING
                                  /GET BUFFFR SIZE
```

```
/SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                                       PAGE
                                                                              2
  0210
        4277
                      JMS XMT
                                        /YES. REQUEST OUTBOUND SERVICE
  0211
        2000
                      BOREQ
  0212
        5216
                      JMP TST3
  0213
        1317
              TST2.
                      TAD BUFLNG
                                        /GET BUFFER SIZE
  0214
        4277
                      JMS XMT
                                        /REQUEST INBOUND SERVICE
  0215
        4000
                      BIREO
  0216
        4232
              TST3,
                      JMS STATUS
                                        /TRANSMIT ENDING STATUS
 0217
        0004
                      DEVEND
 0220
        5200
                      JMP TEST
              ERROR, HLT
 0221
        7402
                                        /EQUIPMENT/PROGRAM CHECK
 9222
        6334
                     CTL INV
                                        RESET INTERFACE
 0223
        7604
                      LAS
                                        /SR = ENDING STATUS
 0224
       7450
                      SNA
 7225
       5200
                      JMP TEST
 0226
                     DC4 .+2
       3230
 0227
       4232
                     JMS STATUS
                                        /TRANSMIT ENDING STATUS
 0230
       0000
                     0
 0231
       5200
                     JMP TEST
                                        /RETURN TO WAIT LOOP
              /TRANSMIT STATUS TO CHANNEL
 0232
       0000
              STATUS, 0
                                        /NORMAL ENTRY
 0233
                     JMS DELAY
       4245
                                        /WAIT FOR CHANNEL SERVICE
 0234
       1312
                     TAD ENDCHN
                                        /1ST BYTE - CHAPNEL END
 0235
       3322
                     DCA BUF
 0236
       1632
                     TAD I STATUS
                                        /ARGUMENT=2ND BYIE - DEVICE-END STAT
 0237
       2232
                     ISZ STATUS
 0240
       3323
                     DCA BUF+1
 0241
       3320
                     DCA ACTIVE
                                       TRESET CHANNEL COMMAND
0242
       1311
                     TAD K7776
0243
       4277
                     JMS XMT
                                       /STATUS REQUEST
0244
       7000
                     STREQ
0245
       5632
                     JMP I STATUS
                                       /NORMAL EXIT
             /DELAY FOR CHANNEL OPERATION
0246
       0000
             DELAY, 0
                                       /NORMAL ENTRY
0247
       6331
                     CTL RD
                                       /READ INTERFACE STATUS
0250
       3321
                     DCA TMP
0251
       1321
                     TAD TMP
                                       /1S INTERFACE BUSY
0252
       0310
                     AND K7000
0253
      7640
                     SZA CLA
0254
      5247
                     JMP DELAY+1
                                       /YES. CONTINUE IN WAIT LOOP
0255
      1321
                    TAD TMP
                                       /NO. HAS DEVICE ADDRESS BEEN STORED
0256
      0315
                     AND CMDBIT
0257
      7650
                    SNA CLA
0260
      5266
                    JMP DEL1
                                       /NO. CONTINUE
0261
      6301
                    AR1 RD
                                       /YES. COPY ARI IN AR2
0262
      6326
                    ARZ CLR+WR
0263
      7200
                    CLA
0264
      6311
                    BR1 RD
                                       ISTORE CHANNEL COMMAND
0265
      3320
                    DCA ACTIVE
0266
      1321
            DFL1,
                    TAD TMP
                                       /RESET INTERFACE
0267
      0314
                    AND RSTBIT
0270
      6334
                    CTL INV
0271
      7200
                    CLA
```

```
/SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                                      PAGE
                                                                              3
0272
      1321
                     TAD TMP
                                       /ARE ANY UNUSUAL-END BITS SET
0273
      0313
                     AND BADBIT
      7450
0274
                     SNA
0275
      5646
                     JMP I DELAY
                                       /NO. NORMAL EXIT
0276
      5221
                     JMP ERROR
                                       /YES. ABORT
             /TRANSMIT BYTES ON MULTIPLEX CHANNEL
             XMT .
0277
      0000
                                       /ENTRY. AC=WC
      3002
0300
                    DCA BLKXFR
03,01
      1316
                     TAD PTR
0302
      3003
                    DC4 BLKXFR+1
0303
      1677
                    TAD I XMT
                                       /ARGUMENT=CTL BITS
0304
      2277
                     ISZ XMT
0305
      6334
                    CTL INV
                                       /START OPERATION
J306
      7200
                    CLA
£307
                    JMP I XMT
      5677
                                       /NORMAL EXIT
0310
      7000
             K7000, 7000
0311
      7776
             K7776, 7776
0312
      0010
             ENDCHN.CHNEND
0313
      0370
             BADBIT, CMDRST+CMDSTK+CMDHLT+CMDPCK+SRVPCK
             RSTBIT, CMDEND+SRVEND+SRVHLT+CMDCHN
      0407
0314
             CMDBIT, CMDSTK+CMDHLT+CMDEND
0315
      0034
0316
      0321
             PTR.
                  BUF-1
                                       /POINTER FOR DATA BREAK
             BUFLNG, -BUFSIZ
0317
      4000
                                       /BUFFER SIZE
0320
      0000
             ACTIVE,0
                                       /CHANNEL COMMAND
             TMP.
                    x • + J
                                       /TEMPORARY
             BUF,
                    *.+BUFSIZ
                                       /BUFFER
ACTIVE 0320
ARI
        6300
AR 2
        6320
BADBIT
        0313
BIREO
        4000
BLKXFR
        0002
BOREO
        2000
BRI
        6310
BUF
        0322
BUFLNG
        0337
BUFSIZ
        4000
        0010
CHNEND
CLR
        0002
CMDBIT
        07:15
CMDCHN
        0400
CMDEND
        0004
CMDHLT
        0010
CMDPCK
        020G
CMDRST
        0040
CMDSTK
        0020
CTL.
        6330
DELAY
        0246
DEL1
        0266
DEVEND
        0004
ENDCHN
        0312
ERROR
        0221
INV
        0004
K7000
        0310
```

K7776	0311
PTR	0316
RD	0001
RSTBIT	0314
SRVEND	0001
SRVHLT	0002
SRVPCK	0100
STATUS	0232
STRED	7000
TEST	0200
TMP	0321
TST	0002
TST2	0213
TST3	0216
UNCHCK	0002
WR	0004
XMT	0277

Security Classification								
DOCUMENT CONTROL DATA - R & D								
(Security classification of title, body of abstract and indexing annotation must be entared when the overall report is classified)								
THE UNIVERSITY OF MICHIGAN	24	SURITY CLASSIFICATION						
CONCOMP PROJECT	21	. GROUP						
3. REPORT TITLE								
SYSTEM/360 INTERFACE ENGINEERING	REPORT							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Memorandum 13								
5- AU THOR(\$) (First name, middle initial, last name)								
MILLS, DAVID								
6 REPORT DATE	78, 10TAL NO. OF F	AGES	7b. NO. OF REFS					
March, 1968	166		none					
SE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S R	EPORT NUMB						
DA-49-083 OSA-3050	Memorand	ım 13						
b. PROJECT NO.								
с,	9b. OTHER REPORT this report)	NO(5) (Any oth	er numbers that may be assigned					
d,								
10 DISTRIBUTION STATEMENT								
Qualified requesters may obtain co	opies of th	s repor	t from DDC					
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL	ITARY ACTIV	ITY					
	<u> </u>							
13 ABSTRACT								

An interface which connects a small special-purpose digital computer to a large general-purpose dicited lata processing system is described in this report. ' anall computer is the Digital Equipment Corporation PDP-8 which itself is a component of a data collection and distribution system called the Data Concentrator. The large data processing system is the IBM System/360 Model 67, which is the principal computing element at The University of Michigan Computing Center. The interface is designed to be attached to the multiplexor channel of the Model 67 along with other input-output components such as card readers, line printers, and communications equipment, and satisfies all IBM standards and interface conventions established for this type of attachment. The interface provides a bidirectional data transfer between the two machines of up to 80 thousand bytes (characters) per second using cycle-steal techniques in which data are transferred directly between the Model 67 multiplexor channel and the PDP-8 core memory without explicit program intervention.

DD FORM 1473

Unclassified

Security Classification LINK B LINK A LINK C KEY WORDS ROLE ROLE ROLE WT WT WT interface, multiplexor channel, cycle-steal, control unit, PDP-8, System/360, Model 67, data transmission,