

QUIS 2 SEMESTER GENAP 2023/2024 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Aljabar 2

Hari, Tanggal : Selasa, 14 - 06 - 2024 Waktu / Sifat : 90 menit tertutup

Kelas, Dosen : Drs. Komar Baihaqi, M.Si.

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

1. Diberikan $0 \neq f(x) \in \mathbb{Z}_3[x]$, tentukan semua unit di $\mathbb{Z}_3[x]$.

Jawab:

Perhatikan kedua teorema berikut:

Teorema (Akibat 6.3.1). *Himpunan* \mathbb{Z}_p *adalah lapangan jika dan hanya jika p adalah bilangan prima.*

Teorema (Teorema 6.3.4). Setiap lapangan adalah suatu daerah integral

Karena 3 adalah bilangan prima, maka \mathbb{Z}_3 adalah lapangan. Dan karena \mathbb{Z}_3 adalah lapangan maka \mathbb{Z}_3 merupakan daerah integral. Sekarang dapat digunakan teorema berikut:

Teorema (Teorema 8.1.1). Bila D adalah suatu daerah integral, maka D[x] adalah daerah integral dan hasil perkalian dua polinomial taknol $f(x), g(x) \in D[x]$ memenuhi $\deg(f(x), g(x)) = \deg(f(x)) + \deg(g(x))$.

Misalkan f(x) sebarang unit di $\mathbb{Z}_3[x]$, maka ada $g(x) \in \mathbb{Z}_3[x]$ sehingga f(x)g(x) = 1. Dari teorema 8.1.1, kita punya $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)) = 0$. Karena f(x)g(x) = 1, maka $\deg(f(x)g(x)) = 0$ berarti f(x) dan g(x) haruslah masing-masing konstanta. \therefore Semua unit di $\mathbb{Z}_3[x]$ adalah polinomial konstanta tak nol yaitu f(x) = 1 dan f(x) = 2.

2. Tinjau polynomial $f(x) = x^4 + 2x^2 + 1$ dan $g(x) = x^2 + x + 2$ di $\mathbb{Z}_3[x]$, tentukan $\gcd(f(x), g(x))$ dan tulislah dalam kombinasi linear.

Jawab:

Kita gunakan algoritma Euclid untuk mencari gcd(f(x), g(x)).

(i)
$$f(x) = x^4 + 2x^2 + 1$$
 dan $g(x) = x^2 + x + 2$

$$g(x) = x^{2} + x + 2$$

$$x^{2} + x + 2 \overline{\smash)x^{4} + 2x^{2} + 1}$$

$$x^{4} + x^{3} + 2x^{2}$$

$$-x^{3} + 1$$

$$-x^{3} - x^{2} - 2x$$

$$x^{2} + 2x + 1$$

$$x^{2} + x + 2$$

$$x - 1$$

hasil baginya adalah $x^2 + 2x + 1$ dan sisa bagi x + 2 di \mathbb{Z}_3 .

$$f(x) = (x^2 + 2x + 1)g(x) + (x+2)$$
(1)

(ii)
$$g(x) = x^2 + x + 2 \operatorname{dan} r_1(x) = x + 2$$

$$\begin{array}{r}
x & -1 \\
x+2 \overline{\smash)x^2 + x + 2} \\
\underline{x^2 + 2x} \\
-x+2 \\
\underline{-x + 2} \\
4
\end{array}$$

hasil baginya adalah x+2 dan sisa bagi 1 di \mathbb{Z}_3 .

$$g(x) = (x+2)(x+2) + 1 (2)$$

(iii)
$$r_1(x) = x + 2 \operatorname{dan} r_2(x) = 1$$

Perhatikan bahwa gcd(x+2,1)=1. Sehingga $gcd(f(x),g(x))=gcd(r_1(x),r_2(x))=1$.

Kemudian untuk mencari kombinasi linearnya, diperlukan sedikit manipulasi pada kedua persamaan. Persamaan (1) dapat ditulis ulang sebagai berikut

$$(x+2) = f(x) - (x^2 + 2x + 1)g(x)$$

Subtitusi (1) ke (2), sehingga kita punya

$$[f(x) - (x^2 + 2x + 1)g(x)](x + 2) + 1 = g(x)$$

$$g(x) - [f(x) - (x^2 + 2x + 1)g(x)](x + 2) = 1$$

$$g(x) - f(x)(x + 2) + g(x)(x^2 + 2x + 1)(x + 2) = 1$$

$$f(x)(-x - 2) + (x^3 + 4x^2 + x + 5x + 3)g(x) = 1$$

$$[(2x + 1)f(x) + (x^3 + x^2 + 2x)g(x) = 1]$$

3. Misalkan f(x) adalah suatu polynomial di $\mathbb{Q}[x]$. Bila $\alpha = a + b\sqrt{c}$ adalah suatu akar dari f(x), dimana $a,b\in\mathbb{Q}$ dan $\sqrt{c}\notin\mathbb{Q}$, Tunjukkan bahwa $\overline{\alpha}=a-b\sqrt{c}$ juga akar dari f(x). Jawab:

Karena f(x) adalah polynomial di $\mathbb{Q}[x]$, maka f(x) dapat ditulis sebagai

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

dimana $a_i \in \mathbb{Q}$ untuk $i = 0, 1, \dots, n$. Karena α adalah akar dari f(x), maka

$$f(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0 = 0$$

Kita konjugatkan kedua ruas persamaan tersebut, sehingga kita punya

$$\overline{a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0} = \overline{0}$$
(3)

Disini kita gunakan sifat konjugat, dimana misalkan $\alpha_1 = a_1 + b_1 \sqrt{c}$ dan $\alpha_2 = a_2 + b_2 \sqrt{c}$, maka akan memenuhi

$$\overline{\alpha_1 + \alpha_2} = \overline{\alpha_1} + \overline{\alpha_2}$$
$$\overline{\alpha_1 \alpha_2} = \overline{\alpha_1} \cdot \overline{\alpha_2}$$
$$\overline{\alpha_1^n} = (\overline{\alpha_1})^n$$

Dari persamaan (3), didapatkan

$$\overline{a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0} = \overline{0}$$

$$\overline{a_n} \overline{\alpha^n} + \overline{a_{n-1}} \overline{\alpha^{n-1}} + \dots + \overline{a_1} \overline{\alpha} + \overline{a_0} = 0$$

$$\overline{a_n} (\overline{\alpha})^n + \overline{a_{n-1}} (\overline{\alpha})^{n-1} + \dots + \overline{a_1} \overline{\alpha} + \overline{a_0} = 0$$

Sekarang perhatikan karena $a_i \in \mathbb{Q}$ untuk $i=0,1,\ldots,n,$ maka $\overline{a_i}=a_i.$ Pada akhirnya diperoleh

$$a_n(\overline{\alpha})^n + a_{n-1}(\overline{\alpha})^{n-1} + \dots + a_1\overline{\alpha} + a_0 = 0$$

$$\boxed{f(\overline{\alpha}) = 0}$$

 \therefore terbukti bahwa $\overline{\alpha}$ juga akar dari f(x).

4. Tunjukkan bahwa polinomial $f(x) = x^4 - 5x^2 + 6x + 1 \in \mathbb{Q}[x]$ adalah tak tereduksi **Jawab**:

Untuk menunjukkan bahwa polinomial $f(x) = x^4 - 5x^2 + 6x + 1$ adalah tak tereduksi dalam $\mathbb{Q}[x]$, kita bisa menggunakan Kriteria Eisenstein.

Kriteria Eisenstein menyatakan bahwa suatu polinomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ dalam $\mathbb{Q}[x]$ adalah tak tereduksi jika terdapat bilangan prima p sedemikian rupa sehingga:

- (1) p tidak membagi a_n
- (2) p membagi a_i untuk semua i < n
- (3) p^2 tidak membagi a_0

Mari kita coba beberapa bilangan prima.

- $p=2,a_0=1$ tidak habis dibagi 2, tidak memenuhi kondisi kedua.
- $p = 3, a_0 = 1$ tidak habis dibagi 3, tidak memenuhi kondisi kedua.
- $p = 5, a_0 = 1$ tidak habis dibagi 5, tidak memenuhi kondisi kedua.

Tidak ada bilangan prima p yang memenuhi Kriteria Eisenstein. Karena itu, kita harus mencari metode lain untuk menunjukkan bahwa f(x) tak tereduksi.

NOTE*: Kriteria Eisenstein bersifat "**jika maka**" bukan "**jika dan hanya jika**". Artinya, jika kita tidak menemukan bilangan prima yang memenuhi kriteria Eisenstein, kita tidak bisa menyimpulkan bahwa polinomial tersebut tereduksi.

Teorema (Teorema 8.4.5). Misalkan f(x) suatu polinomial taknol di $\mathbb{Z}[x]$. Maka f(x) dapat difaktorkan menjadi perkalian dua polinomial berderajad r dan s di $\mathbb{Q}[x]$ bila dan hanya bila f(x) juga bisa difaktorkan kedalam hasil kali dua polinomial yang mempunyai derajad sama r dan s di $\mathbb{Z}[x]$.

Sekarang kita periksa apakah f(x) bisa difaktorkan menjadi dua polinomial dengan derajat yang lebih rendah. Misalnya, jika f(x) bisa difaktorkan menjadi dua polinomial kuadrat, maka kita dapat menulis:

$$f(x) = (x^2 + ax + b)(x^2 + cx + d)$$

Mengalikan kedua polinomial kuadrat tersebut dan menyamakan koefisien dengan f(x):

$$(x^2 + ax + b)(x^2 + cx + d) = x^4 + (a+c)x^3 + (ac+b+d)x^2 + (ad+bc)x + bd$$

Bandingkan dengan $f(x) = x^4 - 5x^2 + 6x + 1$

- (i) a + c = 0
- (ii) ac + b + d = -5
- (iii) ad + bc = 6
- (iv) bd = 1.

Menurut teorema jika f(x) bisa difaktorkan di $\mathbb{Z}[x]$, maka f(x) juga bisa difaktorkan di $\mathbb{Q}[x]$. Sekarang pandang $a, b, c, d \in \mathbb{Z}$, maka bd = 1 berakibat $b = d = \pm 1$. Kemudia subtitusi pada (iii) sehingga kita punya $a+c = \pm 6$. Hal ini kontradiksi dengan (i) yang menyatakan a+c = 0.

 $\therefore f(x)$ adalah tak tereduksi di $\mathbb{Q}[x]$.

5. Misalkan $f(x) = 3x^4 - 6x^3 + 10x^2 - 5x + 9 \in \mathbb{Z}[x]$. Tunjukkan f(x) tak tereduksi di $\mathbb{Z}[x]$ Jawab:

Teorema (Teorema 8.4.7). Misalkan $f(x) \in \mathbb{Z}[x]$ dengan $\deg(f(x)) \leq 1$. Untuk suatu bilangan prima p, polinomial $\mathcal{F}(x) \in \mathbb{Z}_p[x]$ diperoleh dari $f(x) \in \mathbb{Z}[x]$ dengan melakukan semua koefisien menjadi modulo p. Bila $\deg(f(x)) = \deg(\mathcal{F}(x))$ dan $\mathcal{F}(x)$ tak-tereduksi di $\mathbb{Z}_p[x]$, maka f(x) tak-tereduksi di $\mathbb{Z}[x]$.

Hal yang pertama dilakukan adalah memilih bilangan prima p. Kita pilih p sehingga dia tak tereduksi di $\mathbb{Z}_p[x]$, karena jika tidak kita tidak dapat menarik kesimpulan.

Disini dengan mudahnya bisa kita pilih p=2, sehingga polinomial $\mathcal{F}(x)\in\mathbb{Z}_2[x]$ adalah

$$\mathcal{F}(x) = x^4 + x + 1$$

Subtitusi semua anggota \mathbb{Z}_2

$$x = 0 \implies \mathcal{F}(0) = 0 + 0 + 1 = 1 \in \mathbb{Z}_2$$

$$x = 1 \implies \mathcal{F}(1) = 1 + 1 + 1 = 1 \in \mathbb{Z}_2$$

Namun hal ini kurang tepat sebab cara ini menunjukkan bahwa $\mathcal{F}(x)$ tidak bisa dibentuk menjadi $\mathcal{F}(x) = (x-\alpha)(x^3+\beta x^2+\gamma x+\delta)$. Seharusnya kita cukup perlu menunjukkan bahwa $\mathcal{F}(x)$ tidak bisa difaktorkan menjadi dua polinomial kuadrat. (karena polinom kuadrat bisa difaktorkan kembali jika memang punya akar)

$$x^4 + x + 1 = (x^2 + ax + b)(x^2 + cx + d)$$

Dengan cara yang sama seperti nomor 4 kita dapatkan bd = 1 akibatnya b = d = 1. Namun 1 = bc + ad = a + c yang bertentangan dengan a + c = 0. Oleh sebab itu, $\mathcal{F}(x)$ tak tereduksi di $\mathbb{Z}_2[x]$.

 $\therefore f(x)$ tak tereduksi di $\mathbb{Z}[x]$.