• CountVectorizer & LogisticRegression

	precision	recall	f1-score	support
-1 0	0.69 0.61	0.59	0.64	902 972
1	0.30	0.03	0.06	180
avg / total	0.62	0.64	0.61	2054
Макросредняя	F1 мера –	0.4630642	12113	
Микросредняя	F1 мера –	0.6387536	51412	

• TF-IDF & LogisticRegression

	precision	recall	f1-score	support
-1	0.70	0.69	0.69	902
0	0.66	0.76	0.71	972
1	0.37	0.09	0.15	180
avg / total	0.65	0.67	0.65	2054
Макросредняя	F1 мера -	0.5172604	00863	

Теперь добавляем лемматизацию.

Для того, чтобы улучшить результаты, решила очистить выборку от всего "мусора".

- От знаков препинания, которые есть в string.punctuation, с добавлением кавычеклапок и кавычек-ёлочек, которые встречаются в выборке, а так же добавила троеточие;
- От ссылок. Постаралась рассмотреть все варианты: и http://, и https://, и просто www.;
- От обращений (начинаются с @);
- От всех английских слов;
- От лишних пробелов/переносов/табуляций.

Микросредняя F1 мера - 0.670886075949

TF-IDF & LogisticRegression + лемматизация

	precision	recall	f1-score	support
-1 0 1	0.75 0.62 0.52	0.55 0.86 0.13	0.63 0.72 0.21	902 972 180
avg / total	0.67	0.66	0.64	2054
Макросредняя Микросредняя				

Показатели у макросредней меры улучшились, а у микросредней меры ухудшились.

Потом решила делать с помощью стемминга, потому что с лемметизацией вышло как-то не очень: (Стемминг, по сравнению с лемматизацией, легче, потому что лемматизация опирается на словообразование. То есть она определает часть речи и применяет к слову различные способы нормализации. Стемминг же ищет флективную форму в своей таблице поиска, что значительно упрощает и ускоряет работу алгоритма. Кроме того, стемминг хорошо обрабатывает исключения, что в живой речи нам только на руку.

- В предварительной "очистке" текста ничего не меняла.
- Для твиттера есть отдельный токанайзер (TweetTokenizer), который хорошо распознаёт смайлики и хорошо определяет тон с их помощью и с помощью пунктуации. Используем его!

Те же самые TF-IDF и LogisticRegression + стемминг:

	precision	recall	f1-score	support
-1 0 1	0.72 0.68 0.61	0.71 0.78 0.15	0.72 0.73 0.24	902 972 180
avg / total	0.69	0.70	0.68	2054
Макросредняя Микросредняя				

Для сравнения, TF-IDF и LogisticRegression + лемматизация:

	precision	recall	f1-score	support
-1	0.75	0.55	0.63	902
0	0.62	0.86	0.72	972
1	0.52	0.13	0.21	180
avg / total	0.67	0.66	0.64	2054
Макросредняя	F1 мера -	0.5212608	84222	
Микросредняя	F1 Mepa -	0.6582278	48101	

И просто TF-IDF и LogisticRegression

	precision	recall	f1-score	support
-1	0.70	0.69	0.69	902
0	0.66	0.76	0.71	972
1	0.37	0.09	0.15	180
avg / total	0.65	0.67	0.65	2054
Макросредняя	F1 мера -	0.5172604	00863	
Микросредняя	F1 мера –	0.6708860	75949	

Как видно, **TF-IDF** и **LogisticRegression + стемминг** даёт лучшие результаты как по макросредней мере, так и по микросредней.

Теперь попробуем использовать другие классификаторы в комбинации с TF-IDF и стеммингом.

• **DecisionTree** (результаты ухудшились)

	precision	recall	f1-score	support
-1 0 1	0.63 0.63 0.20	0.62 0.65 0.17	0.62 0.64 0.18	902 972 180
avg / total	0.59	0.59	0.59	2054
Макросредняя Микросредняя				

• RandomForest (результаты ухудшились)

	precision	recall	f1-score	support
-1	0.69	0.48	0.57	902
0	0.58	0.83	0.69	972
1	0.42	0.09	0.15	180
avg / total	0.62	0.61	0.59	2054

Макросредняя F1 мера - 0.467094653922 Микросредняя F1 мера - 0.613437195716 • SGD (результаты очень хорошие!)

	precision	recall	f1-score	support
-1	0.71	0.77	0.74	902
0	0.72	0.73	0.73	972
1	0.54	0.26	0.35	180
avg / total	0.70	0.71	0.70	2054

Макросредняя F1 мера – 0.604001833634 Микросредняя F1 мера – 0.707400194742

Посмотрим на GridSearchCV с SVC.

Как показывает практика, лучшим среди параметров *kernel* подойдёт 'rbf' с C = до 1000. Но, давайте проверим (не по максимуму, но и не по минимуму):

```
params = [{'kernel':['poly'], 'C':[1.e-4, 2, 10, 100, 1000], 'degree':[2, 3, 5, 11]},

{'kernel':['rbf'], 'C':[1.e-4, 2, 10, 100, 1000], 'gamma':['auto', 1.e-4, 1.e-2]},

{'kernel':['linear'], 'C':[1.e-4, 2, 10, 100, 1000]}]
```

```
Так и получается: {'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
```

И посмотрим на облака слов, для двух лучших методов:

TF-IDF и LogisticRegression + стемминг

Смартфон ГОВНОСПАСИБО инуть ГОВНОСПАСИБО настройка ВЧЕРА работать работать работать обращения в прекратить СУК проблема вос дозвониться вос дозвониться в прекратить сукраина оштрафовать

(-0.5, 999.5, 499.5, -0.5)

