Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic

20 Gennaio 2020

Es 1.

Sia $A = \{2, \{1, 3\}, (3, 5)\}$ e $B = \{(2, 2), 5\}$. Allora:

- **A.** $2 \in A \cap B$; **Falso** $A \cap B = \emptyset$
- **B.** $1 \in A \cup B$; **Falso** $A \cup B = \{2, \{1, 3\}, (3, 5), (2, 2), 5\}$
- C. $B A \neq \emptyset$; Vero B A = B
- **D.** $\{1,3\} \subseteq A$; **Falso**
- **E.** $\exists x, y [(x \in A) \land (\{(x,y)\} \subseteq B)];$ **Vero** x = y = 2

Es 2.

Data la relazione $R = \{(1,2), (6,7), (2,3), (5,6), (3,4), (8,9)\} \subseteq \mathbb{N} \times \mathbb{N}$, indichiamo con \widehat{R} la sua chiusura transitiva.

- **A.** \widehat{R} ha 10 elementi; **Vero**
- **B.** $\widehat{R} = R$; **Falso**
- C. $R \widehat{R} = \emptyset$; Vero per tutte le chiusure in generale

$$\widehat{R} = R \cup \{(1,3), (1,4), (2,4), (5,7)\}$$

Es 3.

Sia $Q = \{(1,2), (1,3), (1,4), (2,3)\} \subseteq \{1,2,3,4\} \times \{1,2,3,4\};$ allora

- ${f A.}~Q$ è una funzione iniettiva; ${f Falso}$
- ${\bf B.}\ Q$ è una relazione di equivalenza; Falso
- $\mathbf{C}.~Q$ è una relazione transitiva; Vero
- ${\bf D.}\ Q$ non è una funzione; Vero

Es 4.

Si consideri la relazione $D = \{(a, b) \mid a, b \in \mathbb{N} \text{ e } a \text{ divide } b\}.$

- A. D è una relazione d'ordine stretto; Falso non è antiriflessiva
- **B.** D è una relazione d'ordine largo; **Vero** è riflessiva, antisimmetrica e transitiva
- **C.** esiste $x \in \mathbb{N}$ tale che per ogni $y \in \mathbb{N}$ se $x \neq y$ allora $(x,y) \in D$; **Vero** x = 1
- **D.** esiste $x \in \mathbb{N}$ tale che per ogni $y \in \mathbb{N}$ se $x \neq y$ allora $(y, x) \in D$; **Vero** x = 0

Es 5.

NOTA BENE: un insieme numerabile è un insieme finito oppure può essere messo in corrispondenza biunivoca con \mathbb{N} .

Per ogni coppia di insiemi A e B si ha che:

- **A.** se A è numerabile allora A B è numerabile; **Vero**
- **B.** se $A \in B$ sono numerabili allora A B è finito; **Falso**
- C. se $A \in B$ non sono numerabili allora $A \cap B$ non è numerabile; Falso ad esempio se $A = \mathbb{N} \cup 2^{\mathbb{N}}$ e $B = \mathbb{R}$, allora $A \cap B = \mathbb{N}$
- **D.** se A e B sono numerabili allora $A \times B$ è numerabile; **Vero**

Es 6.

Sia \mathbb{P} l'insieme dei numeri pari. Scrivere una **relazione di equivalenza** $R \subseteq \mathbb{P} \times \mathbb{P}$ che abbia tre classi di equivalenza, indicandone l'insieme quoziente.

$$R = \{(0,0), (2,2)\} \cup \widehat{\mathbb{P}} \times \widehat{\mathbb{P}}$$

L'insieme quoziente è $\{[0],[2],[4]\}$ dove [4]=[a] con $a\in\widehat{\mathbb{P}}$

Es 7.

La successione dei cosiddetti numeri pentagonali è definita come segue:

$$f(1) = 1$$
$$f(n+1) = f(n) + 3n + 1$$

Dimostrare che per ogni intero $n \ge 1$ vale $f(n) = \frac{n(3n-1)}{2}$

Caso base n = 1:

dove $\widehat{\mathbb{P}} = \mathbb{P} - \{0, 2\}$

$$f(1) = 1 = \frac{1(3-1)}{2}$$

Passo induttivo n + 1:

$$f(n+1) = f(n) + 3n + 1$$

$$= \frac{n(3n-1)}{2} + 3n + 1$$

$$= \frac{n(3n-1) + 6n + 2}{2}$$

$$= \frac{3n^2 + 5n + 2}{2}$$

$$= \frac{(n+1)(3n+2)}{2}$$

$$= \frac{(n+1)(3(n+3) - 1)}{2}$$

$$= \frac{(n+1)(3(n+1) - 1)}{2}$$

Es 8.

Dimostrare che se $\vDash (A \to B)$ allora $\vDash ((A \land B) \leftrightarrow A)$ e $\vDash ((A \lor B) \leftrightarrow B)$

		P	F	G	
A	В	$\vDash (A \to B)$	$\vDash ((A \land B) \leftrightarrow A)$	$\vDash ((A \lor B) \leftrightarrow B)$	$P \to F \wedge G$
F	F	V	V	V	V
F	V	V	V	V	V
V	F	F	F	F	V
V	V	V	V	V	V

Traducendo letteralmente la consegna "se ... allora ... e ... " in $P \to F \land G$

Es 9.

Decidere se i seguenti enunciati sono validi:

- **A.** $(\forall x(A(x) \lor B(x))) \to (\forall xA(x) \lor \forall xB(x));$ **Falso** con A(x) = x è pari e B(x) = x è dispari
- **B.** $(\exists x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x));$ **Vero**

Es 10.

Scrivere un enunciato che distingua fra $(\mathbb{N}, <)$ e $(\mathbb{Z}, <)$, vale a dire per il quale $(\mathbb{N}, <)$ sia un modello, mentre $(\mathbb{Z}, <)$ non lo sia. Usare il linguaggio predicativo con i simboli =, < (con le loro ovvie interpretazioni).

Uso la proprietà di avere minimo: vale per $\mathbb N$ ma non per $\mathbb Z$.

$$\exists x \forall y (x < y \lor x = y)$$

Esiste un x (x = 0) che è minore o uguale a tutti gli altri y.

Es 11.

Formalizzare i seguenti enunciati, usando simboli predicativi ed una loro opportuna interpretazione:

A. Qualche uomo è un genio;

$$\exists x (U(x) \land G(x))$$

B. Nessuna scimmia è un uomo;

$$\neg \exists x (S(x) \land U(x))$$

C. Qualche genio non è una scimmia;

$$\exists x (G(x) \land \neg S(x))$$

Usando i simboli predicativi U, G, S con le loro ovvie interpretazioni.