Домашняя работа к занятию 3

Для каждого из уравнений 1.1-1.3 найдите общее решение и решите поставленную задачу Коши.

1.1
$$\begin{cases} y' = 2y + \sin x \\ y(0) = 0 \end{cases}$$
 1.2
$$\begin{cases} xy' = y + x^3 e^{x^2} \\ y(1) = 0 \end{cases}$$
 1.3
$$\begin{cases} y' = \frac{1}{y^3 - x} \\ y(1) = 0 \end{cases}$$

Для каждого из уравнений 2.1-2.2 найдите общее решение, решите задачу Коши и укажите максимальный интервал существования полученного решения.

2.1
$$\begin{cases} y' + y = y^3 e^{2x} \\ y(0) = -1 \end{cases}$$
 2.2
$$\begin{cases} (x^2 \sin y + x)y' = y \\ y(\pi/2) = \pi/2 \end{cases}$$

- **3.1** Функция f(x) непрерывна на \mathbb{R} . Найдите решение уравнения $(x^2-1)y'+2xy=f(x)$, имеющее конечный предел при $x\to 1$. Найдите этот предел.
- **3.2** Найдите периодическое решение уравнения $y' = 2y \sin^2 x 1$. Каков его наименьший положительный период?

Ответы и указания

1.1 1)
$$y = Ce^{2x} - \frac{1}{5}\cos x - \frac{2}{5}\sin x$$
 2) $y = \frac{1}{5}e^{2x} - \frac{1}{5}\cos x - \frac{2}{5}\sin x$

1.2 1)
$$y = Cx + \frac{1}{2}xe^{x^2}$$
 2) $y = \frac{1}{2}x(e^{x^2} - e)$

1.3 1) Замечание: уравнение становится линейным, если рассматривать x как функцию от y.

Ответ:
$$x = Ce^{-y} + y^3 - 3y^2 + 6y - 6$$

2)
$$x = 7e^{-y} + y^3 - 3y^2 + 6y - 6$$

2.1 1) Замечание: это уравнение Бернулли, и оно сводится к линей-

ному уравнению заменой $u = y^{-2}$.

Ответ: $\frac{1}{v^2} = Ce^{2x} - 2xe^{2x}$; функция $y \equiv 0$ также является решением.

2)
$$y = -\frac{1}{e^x\sqrt{1-2x}}, x \in (-\infty; 0, 5)$$

2.2 1) Замечание: если рассматривать x как функцию от y, то получим уравнение Бернулли.

Other:
$$x = \frac{y}{C + \cos y}$$

2) $x = \frac{y}{1 + \cos y}, x \in (-\infty; +\infty)$

3.1
$$y(x) = \frac{1}{x^2 - 1} \int_{1}^{x} f(\tau) d\tau$$
; $\lim_{x \to 1} y(x) = \frac{f(1)}{2}$.

3.2 $y_{\text{o.o.}} = Ce^{x-0.5\sin 2x}$; периодическое решение (с периодом π)

$$y_{\text{\tiny Y.H.}} = e^{x-0.5\sin 2x} \int_{x}^{+\infty} e^{-\tau} e^{0.5\sin 2\tau} d\tau = \int_{0}^{+\infty} e^{-t} e^{\sin t \cos(t+2x)} dt.$$