Class Discussion

Unit 3 Topic 2 Part 1 logarithmic functions

Definition of $\log_a x$ when $a \neq 1, a > 0, x > 0$ (This mathematical symbol read as "log based a of x")

Interpretation of $\log_a x = y$ \rightarrow solve an exponential equation of y if $a^y = x$

Ex1: Use the definition of logarithmic expression to evaluate

(a)
$$\log_{\sqrt{2}} \left(\frac{1}{2}\right)$$

(b)
$$\log_{\frac{1}{8}}\sqrt{2}$$

(c)
$$\log_{\sqrt{11}} 121$$

(d)
$$\log_{16} \sqrt[3]{256}$$

(e)
$$\log_{13} \left(\frac{1}{169} \right)$$

Basic properties

(1)
$$\log_a 1 = 0$$

(2)
$$\log_a(a^x) = a^{\log_a x} = x$$

$$\log_a\left(\frac{1}{a}\right) = \log_{\frac{1}{a}} a = -1$$

(4) if
$$\log_a x = \log_a y \rightarrow x = y$$

Ex 2 Solve
$$\log_2 x = \log_2 (2x + 1)$$

Ex 3 Evaluate
$$\log_{\sqrt{2}} 4 + \log_7 \sqrt{343}$$

Ex 4 Evaluate $log_8 4 - log_8 16$