



School of Computer Engineering

### Predictive Analytics Mini Project

# Video Classification using MoViNets

Group Members:

Yash Gunjal (202201040106)

**Shripad Khandare (202201040103)** 

Ritesh Patil (202201090106)



#### Introduction

 Video classification involves identifying human actions or activities from video data.

• It has applications in surveillance, healthcare, sports analytics, and more.

 MoViNets (Mobile Video Networks) offer fast, efficient, and scalable solutions for video understanding.

# Pro

### Project Goals

To develop a deep learning model capable of:

- Classifying video sequences into human actions
- Operating in real-time environments with low compute power
- Leveraging a compact model architecture (MoViNet-A0) for efficient deployment

# Objectives

- Implement a MoViNet-based classification system using TensorFlow
- Utilize the UCF101 dataset for model training
- Optimize training using state-of-the-art preprocessing and augmentation
- Validate performance across training and test samples

### Dataset - UCF101

 A popular video dataset with 13,320 videos across 101 action categories

 Each class includes diverse environments and camera angles

Widely used for benchmarking video classification algorithms



### Methodology



7. Inference on GIFs (Top-5 Prediction)

# Data Preprocessing

- 1Frames resized to 172x172 resolution
- Pixel values normalized between 0 and 1
- Videos segmented into clips with fixed frame lengths
- Batch processing for model compatibility



#### Model Architecture



# Results & Evaluation

- The model achieved consistent training and validation accuracy
- Demonstrated generalization capability on unseen videos
- Suitable for real-time video analysis tasks due to low latency and memory footprint



### Code Implementation

Link to colab Notebook:

### Your paragraph text

#### Conclusion

 MoViNets deliver high performance with lightweight architecture

Ideal for applications with computational constraints

 Future work includes training on larger datasets and extending to multi-label classification

#### References

- https://www.researchgate.net/publication/359476644\_C
  omparative\_Analysis\_of\_OpenPose\_PoseNet\_and\_MoveN
  et\_Models\_for\_Pose\_Estimation\_in\_Mobile\_Devices
- https://www.researchgate.net/publication/233815759\_U
  CF101\_A\_Dataset\_of\_101\_Human\_Actions\_Classes\_From\_
  Videos\_in\_The\_Wild
- https://www.researchgate.net/publication/349853529\_H uman\_pose\_estimation\_and\_its\_application\_to\_action\_re cognition\_A\_survey



## THANK YOU