COMP SCI 5401 FS2017 Assignment 1d

John Niemeyer JJNB78@mst.edu

October 23, 2017

MOEA Explained

For my MOEA I decided that my Pareto Fronts would be based off the first objective fitness vs. the second objective fitness. Since we did not care about the lower fitness fronts, I was able to ignore any Pareto Fronts that were below P1 (the best Pareto Front so far). This means that i had to use a temp list when I found a new dominant Pareto Front due to having to remove the previous dominant Pareto Front "king," which i did by going through the current Pareto Front and seeing if the older values work with the newer dominant front. If it does I added it to the temp list (which already contained the newest dominant Pareto Front), when finished with going through the previous best Pareto Front I deepcopy the temp list to P1 and the temp list becomes the new Best Pareto Front.

Investigation

The trade-off between the best Pareto Front and the diversity of the obtained Pareto Front for all of my datasets would be that the generated solutions are extremely clustered... In fact, there are a lot of overlaps between the points within these Pareto Fronts. This is due to the extremely small change in the second objective fitness, which forces them to cluster closer together, even if the first objective fitness is extremely spread-out.

Overall my datasets for each problem were fairly close together in the end, meaning that the results were very loosely tied to the strategy parameters. There was no a clear winner throughout all of my datasets which means that I needed to change a parameter in order to get a better set of results and I failed to do so.

Experiment parameters and graphs

1 Problem 1a

1.1 Graphs

1.2 Result Tables

Problem 1a: final results

1		Problem 1a									
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness							
3	18.14	79	0.81	9							
4	17.46	89	0.8	9							
5	16.98	80	0.82	8							
6	16.82	85	0.81	1							
7	16.68	84	0.83	8							
8	16.42	83	0.82	8							
9	16.55	84	0.81	9							
10	16.63	83	0.82	9							
11	16.64	92	0.83	8							
12	16.39	93	0.82	9							
13	16.26	82	0.83	8							
14	16.4	75	0.83	8							
15	16.28	83	0.83	8							
16	16.28	78	0.81	8							
17	16.21	72	0.83	8							
18	16.21	77	0.85	8							
19	16.1	80	0.82	8							
20	16.14	74	0.84	8							
21	16.03	78	0.82	7							
22	16.08	80	0.82	8							
23	16.08	77	0.83	8							
24	16.03	74	0.84	8							
25	15.92	89	0.82	8							
26	15.93	84	0.82	8							
27	16.04	90	0.83	9							
28	15.94	78	0.83	7							
29	15.98	79	0.82	8							
30	16.04	86	0.86	8							
31	15.91	85	0.81	9							
32	15.94	79	0.84	8							

	Prol	olem 1a: Be	st Fitness			Proble	em 1a: Aver	age Fitness	
subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2	subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2
1	68	79	-11	121	1	5.4	18.14	-12.74	162.3076
2	77	89	-12	144	2	4.74	17.46	-12.72	161.7984
3	79	80	-1	1	3	4.67	16.98	-12.31	151.5361
4	75	85	-10	100	4	4.4	16.82	-12.42	154.2564
5	77	84	-7	49	5	4.48	16.68	-12.2	148.84
6	69	83	-14	196	6	4.23	16.42	-12.19	148.5961
7	75	84	-9	81	7	4.36	16.55	-12.19	148.5961
8	71	83	-12	144	8	4.19	16.63	-12.44	154.7536
9	65	92	-27	729	9	4.16	16.64	-12.48	155.7504
10	69	93	-24	576	10	4.13	16.39	-12.26	150.3076
11	77	82	-5	25	11	4.03	16.26	-12.23	149.5729
12	73	75	-2	4	12	4.11	16.4	-12.29	151.0441
13	73	83	-10	100	13	4.32	16.28	-11.96	143.0416
14	80	78	2	4	14	4.15	16.28	-12.13	147.1369
15	76	72	4	16	15	4.02	16.21	-12.19	148.5961
16	73	77	-4	16	16	4.21	16.21	-12	144
17	77	80	-3	9	17	4.08	16.1	-12.02	144.4804
18	73	74	-1	1	18	3.99	16.14	-12.15	147.6225
19	72	78	-6	36	19	3.89	16.03	-12.14	147.3796
20	74	80	-6	36	20	3.88	16.08	-12.2	148.84
21	77	77	0	0	21	3.84	16.08	-12.24	149.8176
22	71	74	-3	9	22	3.82	16.03	-12.21	149.0841
23	74	89	-15	225	23	4.02	15.92	-11.9	141.61
24	75	84	-9	81	24	4.01	15.93	-11.92	142.0864
25	65	90	-25	625	25	3.85	16.04	-12.19	148.5961
26	70	78	-8	64	26	3.72	15.94	-12.22	149.3284
27	66	79	-13	169	27	4.01	15.98	-11.97	143.2809
28	84	86	-2	4	28	3.65	16.04	-12.39	153.5121
29	72	85	-13	169	29	3.77	15.91	-12.14	147.3796
30	69	79	-10	100	30	3.86	15.94	-12.08	145.9264
SUM:			-256	3834	SUM:			-366.52	4479.078
L	t-value:	-0.21508		df: 29		t-value:	-0.98697		df: 29
	P-Value:	0.8312		t-value: 2.045		P-Value:	0.3318		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.21508 and the t-value of -0.98697, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config1a.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob1_random_log.txt
prob_log_EA: logs/prob1_EA_log_a.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob1_random_solution.txt
17 prob_solution_EA: solutions/prob1_EA_solution_a.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 1,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 0
  Survival_Strategy: plus: 1, comma: 0
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 1, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: 1,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 0
```

2 Problem 1b

2.1 Graphs

2.2 Result Tables

Problem 1b: final results

1	Problem 1b									
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness						
3	11.05	70	0.84	8						
4	11.15	71	0.84	8						
5	11.04	71	0.81	7						
6	11.1	72	0.86	8						
7	11.05	79	0.83	8						
8	11.12	78	0.84	8						
9	11.14	69	0.84	8						
10	11.3	75	0.83	8						
11	11.18	75	0.86	9						
12	11.05	64	0.84	8						
13	11.06	78	0.85	1						
14	11.08	75	0.84	8						
15	11.12	82	0.84	1						
16	11.03	73	0.85	9						
17	11.12	79	0.85	1						
18	11.12	68	0.84	8						
19	11.27	79	0.85	9						
20	11.15	73	0.85	8						
21	11.13	65	0.86	9						
22	11.19	70	0.83	8						
23	11.17	77	0.86	8						
24	11.15	67	0.83	9						
25	11.24	73	0.83	9						
26	11.1	76	0.87	9						
27	11.06	71	0.85	8						
28	11.12	71	0.86	8						
29	10.96	87	0.86	9						
30	11.07	78	0.86	8						
31	11.16	71	0.82	9						
32	11.19	71	0.87	9						

Ι	Prol	blem 1b: Be	st Fitness			Proble	m 1b: Aver	age Fitness	
subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2	subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2
	1 68	70	-2	4	1	5.4	11.05	-5.65	31.9225
	2 77	71	6	36	2	4.74	11.15	-6.41	41.0881
	3 79	71	8	64	3	4.67	11.04	-6.37	40.5769
	4 75	72	3	9	4	4.4	11.1	-6.7	44.89
	5 77	79	-2	4	5	4.48	11.05	-6.57	43.1649
	6 69	78	-9	81	6	4.23	11.12	-6.89	47.4721
	7 75	69	6	36	7	4.36	11.14	-6.78	45.9684
	8 71	75	-4	16	8	4.19	11.3	-7.11	50.5521
	9 65	75	-10	100	9	4.16	11.18	-7.02	49.2804
1	0 69	64	5	25	10	4.13	11.05	-6.92	47.8864
1	1 77	78	-1	1	11	4.03	11.06	-7.03	49.4209
1	2 73	75	-2	4	12	4.11	11.08	-6.97	48.5809
1	3 73	82	-9	81	13	4.32	11.12	-6.8	46.24
1	4 80	73	7	49	14	4.15	11.03	-6.88	47.3344
1	5 76	79	-3	9	15	4.02	11.12	-7.1	50.41
1	6 73	68	5	25	16	4.21	11.12	-6.91	47.7481
1	7 77	79	-2	4	17	4.08	11.27	-7.19	51.6961
1	8 73	73	0	0	18	3.99	11.15	-7.16	51.2656
1	9 72	65	7	49	19	3.89	11.13	-7.24	52.4176
2	0 74	70	4	16	20	3.88	11.19	-7.31	53.4361
2	1 77	77	0	0	21	3.84	11.17	-7.33	53.7289
2	2 71	67	4	16	22	3.82	11.15	-7.33	53.7289
2	3 74	73	1	1	23	4.02	11.24	-7.22	52.1284
2	4 75	76	-1	1	24	4.01	11.1	-7.09	50.2681
2	5 65	71	-6	36	25	3.85	11.06	-7.21	51.9841
2	6 70	71	-1	1	26	3.72	11.12	-7.4	54.76
2	7 66	87	-21	441	27	4.01	10.96	-6.95	48.3025
2	8 84	78	6	36	28	3.65	11.07	-7.42	55.0564
2	9 72	71	1	1	29	3.77	11.16	-7.39	54.6121
3	0 69	71	-2	4	30	3.86	11.19	-7.33	53.7289
SUM:			-12	1150	SUM:			-209.68	1469.6498
1									
1	t-value:	-0.01182		df: 29		t-value:	-1.02597		df: 29
	P-Value:	0.9906		t-value: 2.045		P-Value:	0.3134		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.01182 and the t-value of -1.02597, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config1b.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob1_random_log.txt
prob_log_EA: logs/prob1_EA_log_c.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob1_random_solution.txt
17 prob_solution_EA: solutions/prob1_EA_solution_c.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 1,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament_Selection_with_replacement: 1
  Survival_Strategy: plus: 1, comma: 0
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 1, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: 1,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 0
```

3 Problem 1c

3.1 Graphs

3.2 Result Tables

Problem 1c: final results

1	·		Problem 1c	<u> </u>
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness
3	11.22	67	0.85	7
4	11.16	74	0.8	1
5	10.99	79	0.85	7
6	11.16	71	0.82	8
7	11.23	68	0.85	8
8	11.15	74	0.86	7
9	10.96	77	0.86	8
10	11.19	68	0.84	8
11	11.2	74	0.84	8
12	11.1	95	0.85	8
13	11.06	80	0.82	8
14	11.2	74	0.86	7
15	11.13	69	0.83	8
16	11.05	71	0.85	9
17	10.88	68	0.81	9
18	11.11	69	0.83	9
19	11.02	80	0.83	8
20	11.26	66	0.85	8
21	11.18	78	0.86	8
22	11.21	70	0.84	9
23	11.08	62	0.84	8
24	11.21	74	0.83	7
25	11.28	72	0.84	7
26	11.25	74	0.84	8
27	11.14	72	0.84	9
28	11.11	66	0.86	7
29	11.04	61	0.84	8
30	11.1	71	0.86	7
31	11.09	66	0.86	1
32	11.14	77	0.86	9

	Prol	blem 1c: Be	st Fitness	-		Proble	em 1c: Aver	age Fitness	
subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2	subject #	Fitness 1c	fitness 1d	х-у	(x-y)^2
1	68	67	1	1	1	5.4	11.22	-5.82	33.8724
2	77	74	3	9	2	4.74	11.16	-6.42	41.2164
3	79	79	0	0	3	4.67	10.99	-6.32	39.9424
4	75	71	4	16	4	4.4	11.16	-6.76	45.6976
5	77	68	9	81	5	4.48	11.23	-6.75	45.5625
6	69	74	-5	25	6	4.23	11.15	-6.92	47.8864
7	75	77	-2	4	7	4.36	10.96	-6.6	43.56
8	71	68	3	9	8	4.19	11.19	-7	49
9	65	74	-9	81	9	4.16	11.2	-7.04	49.5616
10	69	95	-26	676	10	4.13	11.1	-6.97	48.5809
11	77	80	-3	9	11	4.03	11.06	-7.03	49.4209
12	73	74	-1	1	12	4.11	11.2	-7.09	50.2681
13	73	69	4	16	13	4.32	11.13	-6.81	46.3761
14	80	71	9	81	14	4.15	11.05	-6.9	47.61
15	76	68	8	64	15	4.02	10.88	-6.86	47.0596
16	73	69	4	16	16	4.21	11.11	-6.9	47.61
17	77	80	-3	9	17	4.08	11.02	-6.94	48.1636
18	73	66	7	49	18	3.99	11.26	-7.27	52.8529
19	72	78	-6	36	19	3.89	11.18	-7.29	53.1441
20	74	70	4	16	20	3.88	11.21	-7.33	53.7289
21	77	62	15	225	21	3.84	11.08	-7.24	52.4176
22	71	74	-3	9	22	3.82	11.21	-7.39	54.6121
23	74	72	2	4	23	4.02	11.28	-7.26	52.7076
24	75	74	1	1	24	4.01	11.25	-7.24	52.4176
25	65	72	-7	49	25	3.85	11.14	-7.29	53.1441
26	70	66	4	16	26	3.72	11.11	-7.39	54.6121
27	66	61	5	25	27	4.01	11.04	-7.03	49.4209
28	84	71	13	169	28	3.65	11.1	-7.45	55.5025
29	72	66	6	36	29	3.77	11.09	-7.32	53.5824
30	69	77	-8	64	30	3.86	11.14	-7.28	52.9984
SUM:			29	1797	SUM:			-209.91	1472.5297
	t-value:	0.02299		df: 29		t-value:	-1.02218		df: 29
	P-Value:	0.9818		t-value: 2.045		P-Value:	0.3151		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of 0.02299 and the t-value of -1.02218, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config1c.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob1_random_log.txt
prob_log_EA: logs/prob1_EA_log_c.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob1_random_solution.txt
17 prob_solution_EA: solutions/prob1_EA_solution_c.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 0,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 1
  Survival_Strategy: plus: 0, comma: 1
26
27
  Survival_Selection: Uniform_random_survival: 1, Truncation: 0, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 1,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 0
```

4 Problem 2a

4.1 Graphs

4.2 Result Tables

Problem 2a: final results

1	•		Problem 2a	•
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness
3	10.52	72	0.04	4
4	10.69	81	0.04	4
5	10.69	73	0.04	4
6	10.73	77	0.03	4
7	10.95	88	0.03	3
8	10.4	93	0.04	4
9	10.73	72	0.03	4
10	10.77	80	0.04	4
11	10.8	85	0.03	3
12	10.8	90	0.03	3
13	10.63	83	0.03	4
14	10.57	88	0.03	3
15	10.87	71	0.03	3
16	10.86	86	0.04	3
17	10.83	80	0.03	4
18	10.41	71	0.04	4
19	10.81	78	0.03	4
20	10.81	81	0.03	3
21	10.72	85	0.03	4
22	10.64	75	0.03	4
23	10.58	73	0.03	3
24	10.65	67	0.03	4
25	10.85	68	0.03	4
26	10.92	86	0.03	3
27	10.63	75	0.03	4
28	10.62	73	0.03	3 4
29	10.87	85	0.03	
30	10.62	76	0.03	3
31	10.81	82	0.04	3
32	10.87	73	0.03	3

	Prol	blem 2a: Be	st Fitness			Proble	em 2a: Aver	age Fitness	
subject #	Fitness 2c	fitness 2d	х-у	(x-y)^2	subject #	Fitness 2c	fitness 2d	х-у	(x-y)^2
1	68	72	-4	16	1	2.96	10.52	-7.56	57.1536
2	77	81	-4	16	2	1.57	10.69	-9.12	83.1744
3	79	73	6	36	3	1.3	10.69	-9.39	88.1721
4	75	77	-2	4	4	0.83	10.73	-9.9	98.01
5	77	88	-11	121	5	0.47	10.95	-10.48	109.8304
6	69	93	-24	576	6	0.63	10.4	-9.77	95.4529
7	75	72	3	9	7	1.02	10.73	-9.71	94.2841
8	71	80	-9	81	8	0.12	10.77	-10.65	113.4225
9	65	85	-20	400	9	0.57	10.8	-10.23	104.6529
10	69	90	-21	441	10	0.34	10.8	-10.46	109.4116
11	77	83	-6	36	11	0.36	10.63	-10.27	105.4729
12	73	88	-15	225	12	0.06	10.57	-10.51	110.4601
13	73	71	2	4	13	0.36	10.87	-10.51	110.4601
14	80	86	-6	36	14	0.28	10.86	-10.58	111.9364
15	76	80	-4	16	15	0.08	10.83	-10.75	115.5625
16	73	71	2	4	16	0.18	10.41	-10.23	104.6529
17	77	78	-1	1	17	-0.15	10.81	-10.96	120.1216
18	73	81	-8	64	18	-0.04	10.81	-10.85	117.7225
19	72	85	-13	169	19	0	10.72	-10.72	114.9184
20	74	75	-1	1	20	0.1	10.64	-10.54	111.0916
21	77	73	4	16	21	0.04	10.58	-10.54	111.0916
22	71	67	4	16	22	0.02	10.65	-10.63	112.9969
23	74	68	6	36	23	-0.25	10.85	-11.1	123.21
24	75	86	-11	121	24	-0.25	10.92	-11.17	124.7689
25	65	75	-10	100	25	-0.07	10.63	-10.7	114.49
26	70	73	-3	9	26	-0.03	10.62	-10.65	113.4225
27	66	85	-19	361	27	0.03	10.87	-10.84	117.5056
28	84	76	8	64	28	-0.17	10.62	-10.79	116.4241
29	72	82	-10	100	29	-0.12	10.81	-10.93	119.4649
30	69	73	-4	16	30	-0.32	10.87	-11.19	125.2161
SUM:			-171	3095	SUM:			-311.73	3254.5541
	t-value:	-0.12478		df: 29	-	t-value:	-1.05872		df: 29
	P-Value:	0.9016		t-value: 2.045		P-Value:	0.2985		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.12478 and the t-value of -1.05872, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config2a.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob2_random_log.txt
prob_log_EA: logs/prob2_EA_log_a.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob2_random_solution.txt
17 prob_solution_EA: solutions/prob2_EA_solution_a.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 0,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 1
  Survival_Strategy: plus: 0, comma: 1
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 1, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 1
```

5 Problem 2b

5.1 Graphs

5.2 Result Tables

Problem 2b: final results

1			Problem 2b	
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness
3	10.7	75	0.07	3
4	10.5	78	0.06	3
5	10.79	89	0.06	4
6	10.72	81	0.05	5
7	10.61	74	0.06	3
8	10.81	68	0.07	4
9	11.03	69	0.06	3
10	10.43	84	0.06	3
11	11.07	70	0.06	3 4 3
12	10.56	75	0.06	
13	10.86	69	0.07	4
14	10.44	79	0.06	3
15	10.91	78	0.05	4
16	10.78	82	0.06	3
17	10.8	78	0.06	4
18	10.99	76	0.05	3
19	10.73	70	0.05	4
20	10.92	72	0.06	3
21	10.66	65	0.06	4
22	10.75	75	0.06	3
23	10.53	77	0.05	4
24	10.69	78	0.06	3
25	10.77	68	0.06	3
26	10.78	88	0.06	3
27	10.86	72	0.06	3
28	10.54	82	0.05	3 4
29	10.81	78	0.04	
30	10.6	82	0.06	3
31	10.72	66	0.06	3
32	10.8	83	0.06	3

	Pro	blem 2b: Be	st Fitness	•		Proble	m 2b: Aver	age Fitness	
subject #	Fitness 2c	fitness 2d		(x-y)^2	subject #	Fitness 2c	fitness 2d	х-у	(x-y)^2
	1 68	75		49	1	2.96	10.7	-7.74	59.907
	2 77	78	-1	1	2	1.57	10.5	-8.93	79.744
	3 79	89	-10	100	3	1.3	10.79	-9.49	90.060
	4 75	81	-6	36	4	0.83	10.72	-9.89	97.812
	5 77	74	3	9	5	0.47	10.61	-10.14	102.819
	6 69	68	1	1	6	0.63	10.81	-10.18	103.632
	7 75	69	6	36	7	1.02	11.03	-10.01	100.200
	8 71	84	-13	169	8	0.12	10.43	-10.31	106.296
	9 65	70	-5	25	9	0.57	11.07	-10.5	110.2
1	0 69	75	-6	36	10	0.34	10.56	-10.22	104.448
1	1 77	69	8	64	11	0.36	10.86	-10.5	110.2
1	2 73	79	-6	36	12	0.06	10.44	-10.38	107.744
1	3 73	78	-5	25	13	0.36	10.91	-10.55	111.302
1	4 80	82	-2	4	14	0.28	10.78	-10.5	110.2
1	5 76	78	-2	4	15	0.08	10.8	-10.72	114.918
1	6 73	76	-3	9	16	0.18	10.99	-10.81	116.856
1	7 77	70	7	49	17	-0.15	10.73	-10.88	118.374
1	8 73	72	1	1	18	-0.04	10.92	-10.96	120.121
1	9 72	65	7	49	19	0	10.66	-10.66	113.635
2	0 74	75	-1	1	20	0.1	10.75	-10.65	113.422
2	1 77	77	0	0	21	0.04	10.53	-10.49	110.040
2	2 71	78	-7	49	22	0.02	10.69	-10.67	113.848
2	3 74	68	6	36	23	-0.25	10.77	-11.02	121.440
2	4 75	88	-13	169	24	-0.25	10.78	-11.03	121.660
2	5 65	72	-7	49	25	-0.07	10.86	-10.93	119.464
2	6 70	82	-12	144	26	-0.03	10.54	-10.57	111.724
2	7 66	78	-12	144	27	0.03	10.81	-10.78	116.208
2	8 84	82	2	4	28	-0.17	10.6	-10.77	115.992
2	9 72	66	6	36	29	-0.12	10.72	-10.84	117.505
3	0 69	83	-14	196	30	-0.32	10.8	-11.12	123.654
SUM:			-85	1531	SUM:			-312.24	3263.588
	t-value:	-0.07914		df: 29		t-value:	-1.04993		df: 29
	P-Value:	0.9375		t-value: 2.045		P-Value:	0.3024		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.07914 and the t-value of -1.04993, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config2b.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob2_random_log.txt
prob_log_EA: logs/prob2_EA_log_b.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob2_random_solution.txt
17 prob_solution_EA: solutions/prob2_EA_solution_b.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 1,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 0
  Survival_Strategy: plus: 0, comma: 1
26
27
  Survival_Selection: Uniform_random_survival: 1, Truncation: 0, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 1
```

6 Problem 2c

6.1 Graphs

6.2 Result Tables

Problem 2c: final results

1	-	_	Problem 2c	-
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness
3	10.61	92	0.05	3
4	10.39	73	0.05	3
5	10.81	71	0.05	3
6	10.92	91	0.05	5
7	10.84	84	0.03	3
8	10.75	73	0.03	3
9	10.86	67	0.03	4
10	10.69	72	0.03	3
11	10.75	84	0.04	4
12	10.79	82	0.04	3
13	10.96	72	0.04	4
14	10.58	65	0.03	3
15	10.76	83	0.03	3
16	10.58	69	0.04	3
17	10.85	73	0.03	4
18	10.96	69	0.03	3
19	10.6	75	0.04	3
20	10.72	83	0.03	4
21	10.62	82	0.03	4
22	10.79	86	0.04	4
23	10.68	69	0.04	4
24	10.77	68	0.04	4
25	10.63	70	0.03	3
26	10.74	65	0.03	3
27	10.66	88	0.03	3
28	10.67	97	0.03	3
29	10.8	85	0.03	4
30	10.84	81	0.04	3
31	10.9	69	0.03	3
32	10.8	83	0.03	4

	Prob	olem 2c: Be	st Fitness			Proble	em 2c: Aver	age Fitness	
subject #	Fitness 2c	fitness 2d	х-у	(x-y)^2	subject #		fitness 2d		(x-y)^2
1	68	92	-24	576	1	2.96	10.61	-7.65	58.5225
2	77	73	4	16	2	1.57	10.39	-8.82	77,7924
3	79	71	8	64	3	1.3	10.81	-9.51	90.4401
4	75	91	-16	256	4	0.83	10.92	-10.09	101.8081
5	77	84	-7	49	5	0.47	10.84	-10.37	107.5369
6	69	73	-4	16	6	0.63	10.75	-10.12	102.4144
7	75	67	8	64	7	1.02	10.86	-9.84	96.8256
8	71	72	-1	1	8	0.12	10.69	-10.57	111.7249
9	65	84	-19	361	9	0.57	10.75	-10.18	103.6324
10	69	82	-13	169	10	0.34	10.79	-10.45	109.2025
11	77	72	5	25	11	0.36	10.96	-10.6	112.36
12	73	65	8	64	12	0.06	10.58	-10.52	110.6704
13	73	83	-10	100	13	0.36	10.76	-10.4	108.16
14	80	69	11	121	14	0.28	10.58	-10.3	106.09
15	76	73	3	9	15	0.08	10.85	-10.77	115.9929
16	73	69	4	16	16	0.18	10.96	-10.78	116.2084
17	77	75	2	4	17	-0.15	10.6	-10.75	115.5625
18	73	83	-10	100	18	-0.04	10.72	-10.76	115.7776
19	72	82	-10	100	19	0	10.62	-10.62	112.7844
20	74	86	-12	144	20	0.1	10.79	-10.69	114.2761
21	77	69	8	64	21	0.04	10.68	-10.64	113.2096
22	71	68	3	9	22	0.02	10.77	-10.75	115.5625
23	74	70	4	16	23	-0.25	10.63	-10.88	118.3744
24	75	65	10	100	24	-0.25	10.74	-10.99	120.7801
25	65	88	-23	529	25	-0.07	10.66	-10.73	115.1329
26	70	97	-27	729	26	-0.03	10.67	-10.7	114.49
27	66	85	-19	361	27	0.03	10.8	-10.77	115.9929
28	84	81	3	9	28	-0.17	10.84	-11.01	121.2201
29	72	69	3	9	29	-0.12	10.9	-11.02	121.4404
30	69	83	-14	196	30	-0.32	10.8	-11.12	123.6544
SUM:			-125	4277	SUM:			-312.4	3267.6394
	t-value:	-0.06815		df: 29		t-value:	-1.05372		df: 29
	P-Value:	0.9461		t-value: 2.045		P-Value:	0.3007		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.06815 and the t-value of -1.05372, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config2c.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob2_random_log.txt
prob_log_EA: logs/prob2_EA_log_b.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob2_random_solution.txt
17 prob_solution_EA: solutions/prob2_EA_solution_b.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
  Initialization: Uniform_Random: 1
22
23
  Parent_Selection: Uniform_random_parent: 0,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 1
  Survival_Strategy: plus: 1, comma: 0
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 0, k-
      Tournament_Selection_without_replacement: 1
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 1
```

7 Problem 3a

7.1 Graphs

7.2 Result Tables

Problem 3a: final results

		- ,	,						
1	Problem 3a								
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness					
3	15.29	85	0.19	4					
4	15.8	104	0.1	4					
5	15.21	116	0.1	4					
6	15.54	109	0.1	5					
7	15.63	99	0.19	4					
8	15.68	98	0.2	3					
9	15.61	107	0.1	3					
10	15.59	101	0.1	3					
11	15.42	88	0.2	3 3 3					
12	15.52	104	0.1	3					
13	15.25	93	0.2						
14	15.18	98	0.19	3					
15	15.5	94	0.18	4					
16	15.57	103	0.1	4					
17	15.57	109	0.1	3					
18	15.51	99	0.19	4					
19	15.57	91	0.17	3					
20	15.52	94	0.19	3					
21	15.44	97	0.19	4					
22	15.32	110	0.1	4					
23	15.14	104	0.1	3					
24	15.87	107	0.1	4					
25	15.4	99	0.17	3					
26	15.69	95	0.17	4					
27	15.45	95	0.18	4					
28	15.46	107	0.1	4					
29	15.48	110	0.1	3					
30	15.17	98	0.19	4					
31	15.34	105	0.1	4					
32	15.43	99	0.18	3					

	Problem 3a: Best Fitness				Problem 3a: Average Fitness				
subject #	Fitness 3c	Fitness 3d	х-у	(x-y)^2	subject #		Fitness 3d		(x-y)^2
1	68	85	-17	289	1	7.42	15.29	-7.87	61.9369
2	2 77	104	-27	729	2	6.66	15.8	-9.14	83.5396
3	79	116	-37	1369	3	5.69	15.21	-9.52	90.6304
4	75	109	-34	1156	4	6.1	15.54	-9.44	89.1136
	77	99	-22	484	5	5.59	15.63	-10.04	100.8016
(69	98	-29	841	6	5.64	15.68	-10.04	100.8016
7	7 75	107	-32	1024	7	5.3	15.61	-10.31	106.2961
8	71	101	-30	900	8	5.42	15.59	-10.17	103.4289
9	65	88	-23	529	9	5.23	15.42	-10.19	103.8361
10	69	104	-35	1225	10	5.48	15.52	-10.04	100.8016
11	L 77	93	-16	256	11	4.51	15.25	-10.74	115.3476
12	73	98	-25	625	12	4.54	15.18	-10.64	113.2096
13	73	94	-21	441	13	4.75	15.5	-10.75	115.5625
14	80	103	-23	529	14	5.04	15.57	-10.53	110.8809
15	76	109	-33	1089	15	5.19	15.57	-10.38	107.7444
16	73	99	-26	676	16	5.04	15.51	-10.47	109.6209
17	77	91	-14	196	17	4.64	15.57	-10.93	119.4649
18	73	94	-21	441	18	5.41	15.52	-10.11	102.2121
19	72	97	-25	625	19	4.18	15.44	-11.26	126.7876
20		110	-36	1296	20	4.41	15.32	-10.91	119.0281
21		104	-27	729	21	4.71	15.14	-10.43	108.7849
22		107	-36	1296	22	5.01	15.87	-10.86	117.9396
23		99		625	23	4.76	15.4	-10.64	113.2096
24		95		400	24	5.06	15.69	-10.63	112.9969
25		95	-30	900	25	4.58	15.45	-10.87	118.1569
26		107	-37	1369	26	4.45	15.46	-11.01	121.2201
27		110	-44	1936	27	4.54	15.48	-10.94	119.6836
28	84	98	-14	196	28	4.67	15.17	-10.5	110.25
29		105	-33	1089	29	4.49	15.34	-10.85	117.7225
30	69	99	-30	900	30	4.39	15.43	-11.04	121.8816
SUM:			-822	24160	SUM:			-311.25	3242.8907
	t-value:	-0.93403		df: 29		t-value:	-1.04975		df: 29
	P-Value:	0.358		t-value: 2.045		P-Value:	0.3025		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.93403 and the t-value of -1.04975, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config3a.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob3_random_log.txt
prob_log_EA: logs/prob3_EA_log_a.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob3_random_solution.txt
17 prob_solution_EA: solutions/prob3_EA_solution_a.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
22 Initialization: Uniform_Random: 1
23
  Parent_Selection: Uniform_random_parent: 1,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 0
  Survival_Strategy: plus: 0, comma: 1
26
27
  Survival_Selection: Uniform_random_survival: 1, Truncation: 0, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 1
```

8 Problem 3b

8.1 Graphs

8.2 Result Tables

Problem 3b: final results

1	Problem 3b							
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness				
3	28.91	126	0.1	4				
4	27.65	120	0.1	4				
5	26.96	128	0.1	4				
6	26.68	115	0.1	3				
7	26.54	118	0.1	4				
8	26.48	154	0.1	3				
9	26.24	120	0.1	4				
10	26.17	120	0.1	3				
11	25.86	111	0.1	3 4				
12	25.79	112	0.1	4				
13	25.98	115	0.1	4				
14	25.69	112	0.1	3				
15	25.36	107	0.1	4				
16	25.49	119	0.1	4				
17	25.57	120	0.1	4				
18	25.14	138	0.1	3				
19	25.32	119	0.1					
20	25.47	116	0.1	4				
21	25.53	125	0.1	4				
22	24.88	135	0.1	3				
23	25.14	115	0.1	3				
24	25.26	125	0.1	4				
25	25.29	125	0.1	3				
26	25.19	111	0.1	4				
27	24.94	132	0.1	3				
28	25.04	107	0.1	3				
29	25.23	124	0.1	3				
30	24.87	106	0.1	3				
31	25.14	129	0.1	4				
32	25.38	131	0.1	4				

	Problem 3b: Best Fitness					Problem 3b: Average Fitness				
subject #	Fitness 3c	Fitness 3d	х-у	(x-y)^2	subject #		Fitness 3d	•	(x-y)^2	
	L 68	126	-58	3364	1		28.91	-21.49	461.8201	
	2 77	120	-43	1849	2	6.66	27.65	-20.99	440.5801	
:	3 79	128	-49	2401	3	5.69	26.96	-21.27	452.4129	
	1 75	115	-40	1600	4	6.1	26.68	-20.58	423.5364	
Į.	5 77	118	-41	1681	5	5.59	26.54	-20.95	438.9025	
	69	154	-85	7225	6	5.64	26.48	-20.84	434.3056	
	7 75	120	-45	2025	7	5.3	26.24	-20.94	438.4836	
	3 71	120	-49	2401	8	5.42	26.17	-20.75	430.5625	
	65	111	-46	2116	9	5.23	25.86	-20.63	425.5969	
10	69	112	-43	1849	10	5.48	25.79	-20.31	412.4961	
1:	L 77	115	-38	1444	11	4.51	25.98	-21.47	460.9609	
12	2 73	112	-39	1521	12	4.54	25.69	-21.15	447.3225	
13	3 73	107	-34	1156	13	4.75	25.36	-20.61	424.7721	
14	1 80	119	-39	1521	14	5.04	25.49	-20.45	418.2025	
1.	76	120	-44	1936	15	5.19	25.57	-20.38	415.3444	
10	73	138	-65	4225	16	5.04	25.14	-20.1	404.01	
1	7 77	119	-42	1764	17	4.64	25.32	-20.68	427.6624	
18	73	116	-43	1849	18	5.41	25.47	-20.06	402.4036	
19	72	125	-53	2809	19	4.18	25.53	-21.35	455.8225	
20	74	135	-61	3721	20	4.41	24.88	-20.47	419.0209	
2:	L 77	115	-38	1444	21	4.71	25.14	-20.43	417.3849	
2:	71	125	-54	2916	22	5.01	25.26	-20.25	410.0625	
2:	3 74	125	-51	2601	23	4.76	25.29	-20.53	421.4809	
2	75	111	-36	1296	24	5.06	25.19	-20.13	405.2169	
2.	65	132	-67	4489	25	4.58	24.94	-20.36	414.5296	
20	70	107	-37	1369	26	4.45	25.04	-20.59	423.9481	
2	7 66	124	-58	3364	27	4.54	25.23	-20.69	428.0761	
28	84	106	-22	484	28	4.67	24.87	-20.2	408.04	
29	72	129	-57	3249	29	4.49	25.14	-20.65	426.4225	
30		131		3844	30	4.39	25.38	-20.99	440.5801	
SUM:			-1439	73513	SUM:			-620.29	12829.9601	
									15.55	
	t-value:	-1.04453		df: 29		t-value:	-0.98839		df: 29	
	P-Value:	0.3049		t-value: 2.045		P-Value:	0.3311		t-value: 2.045	

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -1.04453 and the t-value of -0.98839, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config3b.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob3_random_log.txt
prob_log_EA: logs/prob3_EA_log_c.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob3_random_solution.txt
17 prob_solution_EA: solutions/prob3_EA_solution_c.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
  Initialization: Uniform_Random: 1
22
23
  Parent_Selection: Uniform_random_parent: 0,
24
      Fitness_Proportional_Selection: 1, k-
      Tournament\_Selection\_with\_replacement: \ 0
  Survival_Strategy: plus: 1, comma: 0
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 1, k-
      Tournament_Selection_without_replacement: 0
29
  Termination: Number_of_evals: 1,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 0
```

9 Problem 3c

9.1 Graphs

9.2 Result Tables

Problem 3c: final results

1	Problem 3c							
2	Average X Fitness	Best X Fitness	Average Y Fitness	Best Y Fitness				
3	15.39	119	0.1	3				
4	15.13	118	0.1	4				
5	15.27	101	0.1	4				
6	15.58	103	0.1	4				
7	15.7	101	0.1	3				
8	15.2	94	0.13	4				
9	15.52	100	0.1	3				
10	15.68	109	0.1	4				
11	15.6	105	0.1	4				
12	15.28	110	0.1	4				
13	15.53	106	0.1	4				
14	15.55	104	0.1	4				
15	15.33	118	0.1	4				
16	15.38	101	0.1	3				
17	15.28	104	0.1	3				
18	15.53	104	0.1	4				
19	15.7	119	0.1	4				
20	15.59	93	0.15	4				
21	15.29	105	0.1	4				
22	15.45	101	0.1	4				
23	15.43	103	0.1	4				
24	15.65	108	0.1	4				
25	15.5	93	0.14	5 3				
26	15.56	121	0.1	3				
27	15.37	96	0.14	4				
28	15.27	98	0.15	4				
29	15.47	105	0.1	4				
30	15.79	99	0.15	4				
31	15.66	98	0.14	3				
32	15.42	103	0.1	5				

Problem 3c: Best Fitness				Problem 3c: Average Fitness					
subject #	ubject # Fitness 3c Fitness 3d x-y (x-y)^2				subject #		Fitness 3d		(x-y)^2
1	68	119	-51	2601	1	7.42	15.39	-7.97	63.5209
2	77	118		1681	2	6.66	15.13	-8.47	71.7409
3	79	101	-22	484	3	5.69	15.27	-9.58	91.7764
4	75	103	-28	784	4	6.1	15.58	-9.48	89.8704
5	77	101	-24	576	5	5.59	15.7	-10.11	102.2121
6	69	94	-25	625	6	5.64	15.2	-9.56	91.3936
7	75	100	-25	625	7	5.3	15.52	-10.22	104.4484
8	71	109	-38	1444	8	5.42	15.68	-10.26	105.2676
9	65	105	-40	1600	9	5.23	15.6	-10.37	107.5369
10	69	110	-41	1681	10	5.48	15.28	-9.8	96.04
11	77	106	-29	841	11	4.51	15.53	-11.02	121.4404
12	73	104	-31	961	12	4.54	15.55	-11.01	121.2201
13	73	118	-45	2025	13	4.75	15.33	-10.58	111.9364
14	80	101	-21	441	14	5.04	15.38	-10.34	106.9156
15	76	104	-28	784	15	5.19	15.28	-10.09	101.8081
16	73	104	-31	961	16	5.04	15.53	-10.49	110.0401
17	77	119	-42	1764	17	4.64	15.7	-11.06	122.3236
18	73	93	-20	400	18	5.41	15.59	-10.18	103.6324
19	72	105	-33	1089	19	4.18	15.29	-11.11	123.4321
20	74	101	-27	729	20	4.41	15.45	-11.04	121.8816
21	77	103		676	21	4.71	15.43	-10.72	114.9184
22	71	108		1369	22	5.01	15.65	-10.64	113.2096
23	74	93		361	23	4.76	15.5	-10.74	115.3476
24	75	121	-46	2116	24	5.06	15.56	-10.5	110.25
25	65	96		961	25	4.58	15.37	-10.79	116.4241
26	70	98		784	26	4.45	15.27	-10.82	117.0724
27	66	105		1521	27	4.54	15.47	-10.93	119.4649
28		99		225	28	4.67	15.79	-11.12	123.6544
29	72	98		676	29	4.49	15.66	-11.17	124.7689
30	69	103		1156	30	4.39	15.42	-11.03	121.6609
SUM:			-943	31941	SUM:			-311.2	3245.2088
	t-value:	-0.87954		df: 29		t-value:	-1.06829		df: 29
	P-Value:	0.3863		t-value: 2.045		P-Value:	0.2942		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.87954 and the t-value of -1.06829, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

USING config3c.txt

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 runs: 30
8 mutation_rate: 0.01
9 fitness_evaluations: 10000
prob_log_random: logs/prob3_random_log.txt
prob_log_EA: logs/prob3_EA_log_c.txt
number_of_evals_till_termination: 5
13 tournament_size_for_parent_selection: 10
14 tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
prob_solution_random: solutions/prob3_random_solution.txt
17 prob_solution_EA: solutions/prob3_EA_solution_c.txt
  seed: time.time()
20 selfAdaptive: adaptMutation: 1
  Initialization: Uniform_Random: 1
22
23
  Parent_Selection: Uniform_random_parent: 0,
24
      Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 1
  Survival_Strategy: plus: 0, comma: 1
26
27
  Survival_Selection: Uniform_random_survival: 0, Truncation: 0, k-
      Tournament_Selection_without_replacement: 1
29
  Termination: Number_of_evals: 0,
      {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no\_change\_in\_best\_fitness\_in\_population\_for\_n\_generations: \ 1
```