CÀLCUL INTEGRAL EN DIVERSES VARIABLES. PRIMAVERA 2013

Laboratori 5: Teorema de Green. Àrees de superfícies d'R³

- 1. Comproveu el teorema de Green per al camp $F(x,y)=(x^3+y^3,x^4)$, sobre el quadrat $[0,1]\times[0,1]$
- **2.** Calculeu la integral de línia del camp $F(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ sobre la corba γ formada per l'arc de paràbola $y = x^2 1, -1 \le x \le 2$, i el segment que uneix els punts (2,3) i (-1,0).
- **3.** Sigui $S = \{(x, y, z) \mid x^2 + y^2 = 1, x, y, z > 0\}.$
 - a) Calculeu l'àrea de la part de la superfície S compresa entre $z=0\,$ i la corba intersecció d'S amb el pla $x+y-z=0\,$
 - b) Si $F(x,y,z)=(x^2+y,x+z^2,2yz)$, calculeu $\int_{\gamma}F\cdot d\gamma$ essent γ una corba sobre la superfície S que uneix els punts (1,0,1),(0,1,4).