Practice Test 2

Name

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Use factoring to find the zeros of the quadratic function. List the x-intercepts of the graph of the function.

1)
$$F(x) = x^2 - x - 56$$

Find the zeros of the quadratic function using the Square Root Method. List the x-intercepts of the graph of the function. 2) X=0,14

2)
$$g(x) = (x - 7)^2 - 49$$

$$(X-7)^2 = 49$$

X=0, 14

Find the zeros of the quadratic function by completing the square. List the x-intercepts of the graph of the function.

3)
$$F(x) = x^2 + 8x + 7$$

$$f(x) = x^2 + 8x + 4^2 + 7 - 4^2 = (x + 4) - 9$$

Find the real zeros, if any, of each quadratic function using the quadratic formula. List the x-intercepts, if any, of the graph of the function.

4)
$$G(x) = x^2 + 5x - 14$$

4)
$$X = -7,2$$

Find the real zeros of the function. List the x-intercepts of the graph of the function.

5)
$$H(x) = x^6 + 26x^3 - 27$$

$$y = x^3$$

$$y^{2}+26y-27=(y+27)(y-1)=0 \quad y=-27; y=$$

X=3 0x 60 8

X3--27 X3-1

Find the vertex and axis of symmetry of the graph of the function.

6)
$$f(x) = 3x^2 - 18x$$

$$X = \frac{b}{20} = \frac{18}{6} = 3$$

Solve the problem.

7) The quadratic function $f(x) = 0.0037x^2 - 0.45x + 36.77$ models the median, or average, age, y, at which U.S. men were first married x years after 1900. In which year was this average age at a minimum? (Round to the nearest year.) What was the average age at first marriage for that year? (Round to the nearest tenth.)

Solve the inequality.

$$8) x^2 - 3x \ge 0$$

$$X(X-3) \geq 0$$

Verter min X= -10 = 0.45 = 611 ~ 23.1 years &

Math 166 Practice Test 2

Find the complex zeros of the quadratic function. 9) $F(x) = x^2 - 10x + 61$ $X = 10 \pm \sqrt{50 - 244}$ State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not. 10) $f(x) = x(x - 9)$ 10)	
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question	
11) $f(x) = \frac{5 - x^5}{4}$ = $-\frac{1}{4}$ $x^5 + \frac{5}{4}$ No; it is a ratio No; x is a negative term B) Yes; degree 5 D) Yes; degree 1	11)
For the polynomial, list each real zero and its multiplicity. Determine whether the graph crosses or touches	the x-axis at
each x -intercept. 12) $f(x) = 4(x - 7)(x - 1)^2$ 7, multiplicity 1, crosses x-axis; -1, multiplicity 2, touches x-axis 8) 7, multiplicity 1, touches x-axis; 1, multiplicity 2, crosses x-axis 7, multiplicity 1, crosses x-axis; 1, multiplicity 2, touches x-axis -7, multiplicity 1, touches x-axis; -1, multiplicity 2, crosses x-axis	12)
13) $f(x) = 2(x^2 + 4)(x^2 + 1)^2$ A) -4, multiplicity 1, touches x-axis; -1, multiplicity 2, crosses x-axis B) 2, multiplicity 1, crosses x-axis; -2, multiplicity 1, crosses x-axis; 1, multiplicity 2, touches x-axis; -1, multiplicity 2, touches x-axis C) -4, multiplicity 1, crosses x-axis; -1, multiplicity 2, touches x-axis D) No real zeros Find the x- and y-intercepts of f. 14) $f(x) = (x + 4)(x - 6)(x + 6)$ A) x-intercepts: -4, -6, 6; y-intercept: 144 B) x-intercepts: -6, 6, 4; y-intercept: -144	13)
C)x-intercepts: -4, -6, 6; y-intercept: -144 D) x-intercepts: -6, 6, 4; y-intercept: 144	
Find the power function that the graph of f resembles for large values of $ x $. 15) $f(x) = (x + 5)^6(x - 8)^4$ A) $y = x^{24}$ B) $y = x^6$ C) $y = x^4$ D) $y = x^{10}$	15)
end behavior $f(x) \sim x^{10}$ as $x + \infty$ $y - \infty$ $y - \infty$ $y - \infty$ $y - \infty$	

Math 66 Practice Test 2