Solution TD2: Architecture des ordinateurs 2020/2021

Question 1

- \triangleright Par taille: Registres < L1 < L2 < RAM < CD < DD.
- \triangleright Par vitesse: Registres > L1 > L2 > RAM > DD > CD.

Question 2 Supposons qu'un livre contienne 500 pages de 80 lignes de 100 caractères chacune (ponctuations et blancs compris). Combien de caractères composent ce livre ? Sachant qu'un octet représente un caractère, combien de livres faut-il pour avoir l'équivalent de 30 Go ? Enfin l'épaisseur de ce livre est de 2cm, quelle hauteur de livres obtient-on avec 30 Go ?

- Nombre de caractères composant le livre = 500 x 80 x 100 = 4.000 .000 caractères = 4 Mo
- ightharpoonup Nombre de livres pour 30 Go = 30 Go / 4 Mo = (30 x 1000) / 4 = 7500 Livres
- \triangleright Hauteur de livres avec 30 Go = 7500 x 2 cm = 15000 cm = 150 mètre

Question 3

- \triangleright $(00101001)_2 = (41)_{10} + (11001010)_2 = (202)_{10} = (11110011)_2 = (243)_{10}$
- $> (10101011)_2 (171)_{10} + (11001010)_2(202)_{10} = (101110101)_2(303)_{10}$ le résultat produit un overflow.
- \rightarrow (11111111)₂ (255)₁₀+ 111111112(255)₁₀ = (111111110)₂(510)₁₀ le résultat produit un overflow.

Question 4

- ➤ Supposons sans perte de généralité que n ≥ m
- ightharpoonup Prenons $X_{max} = 2^n 1$ et $Y_{max} = 2^m 1$
- $ightharpoonup Or \ x+y \le \ X_{max} + Y_{max} = 2^n \ +2^m -2 = 2^n \ (1+2^{m-n} -2^{1-n}) < 2^n 2, \ il$ faut donc
- > n + 1 = max(n;m) + 1 bits.
- $X \cdot Y = (2^{n} 1) \cdot (2^{m} 1) = 2^{n+m} 2^{n} 2^{m} + 1 < 2^{n+m} + 1$
- \rightarrow (n + m) bits pour la multiplication

<u>Question 5</u> On dispose d'une mémoire RAM dont le boîtier comporte un bus d'adresse de 16 entrées et un bus de données de 8 entrées.

- 1. Quelle est la taille des registres RM et RA?
- 2. Quel est le nombre de cases adressables dans cette mémoire ?
- 3. Quel est le nombre de cases constituant un mot mémoire si la taille d'une case est de 4 bits?
- 4. Quelle est la taille de cette mémoire en octets pour chacun des cas suivants :
 - a. La taille d'une case mémoire est de 1 bit,
 - b. La taille d'une case mémoire est de 2 bits,
 - c. La taille d'une case mémoire est de 4 bits,
- 5. Pour des cases mémoire de 2 bits.
 - a. Quelle est la taille maximum de cette mémoire en octets ?

- **b**. Quelle est l'adresse en décimal et en hexadécimal du **15**ème **mot mémoire** ? (la numérotation commence de zéro)
- c. Calculer l'adresse en décimal puis en hexadécimal du $9^{\text{ème}}$ élément d'un tableau dont l'adresse du premier élément est $(34)_{10} = (0022)_{16}$, et dont tous les éléments sont composés de 6 bits ;
- d. Calculer le nombre d'éléments de ce tableau sachant que l'adresse de son dernier élément $est (91)_{10} = (005B)_{16}$;
 - e. Quelle est la taille de ce tableau en octets?
- f. combien de tableaux on peut charger dans cette mémoire si la capacité de chaque tableau est de 10 élément, chaque élément est de 4 bits, la case
 - ✓ **Solution Question 5**
 - ▶ 1. La taille du Registre Mémoire (RM) est 8 bits et le RA 16 bits
 - **> 2.** Nombre de case adressable est 2¹⁶
 - > 3. Pour une case mémoire de 4 bits le mot mémoire sera de 8 bits
 - ▶ 4. 1^{ier} Cas une case mémoire de 1 bit la taille en octet de cette mémoire est de : $2^{16}/8$ octet = 8192 = 8 Ko

 $2^{\text{ème}}$ Cas une case mémoire de 2 bit la taille en octet de cette mémoire est de : $2^{16} \times 2 / 8$ octet = 16384 = 16 Ko

 $3^{\text{ème}}$ Cas une case mémoire de 4 bit la taille en octet de cette mémoire est de : $2^{16} \times 4 / 8$ octet = 32768 = 32 Ko

 \gt 5. a. adresse du 15^{ème} mot mémoire (15-1) x 2 = (28)₁₀ = (001C)₁₆

Numéro case	Adr (Décimale)	Adr(Héxa)	Case mémoire (2bits)
1	0	0	
2	1	1	
3	2	2	
4	3	3	
5	4	4	
6	5	5	
7	6	6	
8	7	7	
9	8	8	
10	9	9	
11	10	A	
12	11	В	
13	12	C	
14	13	D	
15	14	E	
	15	F	
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		

25		
26		
27		
28		
29		

b . Calculer l'adresse en décimal puis en hexadécimal du $9^{\rm ème}\,$ élément du tableau est

Décimale : on a chaque élément a 6 bits et une case mémoire a 2 bits donc Chaque élément du tableau a

6/2 = 3 cases mémoire

Pour l'adresse du 9^{ème} éléments : $34 + ((9-1) \times 3) = (58)_{10} = (003A)_{16}$

c. nombre d'éléments du tableau : adr du dernier élément 91 (91 - 34)/3 = 19 éléments

d. taille du tableau en octet : (19 x 6) = (114)_{bit} = (114/8)_{octet} = 14,25 \approx 15 Octet

		((== 1/ 0/00000
Numéro case	Adr (Décimale)	Adr(Héxa)	Case mém(2bits)
1	0	0	
2	1	1	
3	2	2	
4	3	3	
5	4	4	
6	5	5	
7	6	6	
8	7	7	
9	8	8	
10	9	9	
11	10	A	
12	11	В	
13	12	C	
14	13	D	
15	14	E	
16	15	F	
17	16		
18	17		
19	18		
20	19		
21	20		
22	21		
23	22		
24	23		
25	24		
26	25		
27	26		
28	27		
29	28		
30	29		
31	30		
32	31		

33	32			
34	33			.
35	34	0022		Adr 1 ^{ère} éle du tab
36	35			
37	36			
38	37	0025		Adr 2 ^{ème} élem
39	38			
40	39			
41	40	0028		Adr 3 ^{ème} élem
42	41			
43	42			
44	43	002B		Adr 4 ^{ème} élem
45	44			
46	45			
47	46	002E		Adr 5ème élem
48	47			
49	48			
50	49	0031		Adr 6 ^{ème} élem
51	50			
52	51			
53	52	0034		Adr 7 ^{ème} élem
54	53			
55	54			
56	55	0037		Adr 8 ^{ème} élem
57	56			
58	57			
59	58	003A		Adr 9ème élem
60	59			
61	60			
62	61	003D		Adr 10 ^{ème} élem
63	62			
64	63			
65	64	0040		Adr 11 ^{ème} élem
66	65			
67	66			
68	67	0043		Adr 12 ^{ème} élem
69	68			
70	69			
71	70	0046		Adr 13 ^{ème} élem
72	71			
73	72			
74	73	0049		Adr 14 ^{ème} élem
75	74			
76	75			
77	76	004C		Adr 15 ^{ème} élem
78	77			
79	78			
80	79	004F		Adr 16 ^{ème} élem
81	80			
82	81			
83	82	0052		Adr 17 ^{ème} élem
84	83			
			 _	

			-	
85	84			
86	85	0055		Adr 18 ^{ème} élem
87	86			
88	87			
89	88	0058		Adr 19 ^{ème} élem
90	89			
91	90			
92	91	005B		Adr 20 ^{ème} élem
93	92			
94	93			

Question 6 Sachant que la taille du bus d'adresse d'un processeur est de 20 bit, combien de segments peut-il gérer ? Quelle est la taille de ces segments ? Justifier votre réponse.

Le registre de segment est sur 16 bits donc il y a 2¹⁶ segments, donc 65536 segments. A chaque segments correspond une adresse d'offset sur 16 bits donc il y a 65536 adresses par segment

Question 7 Le programme suivant réalise une temporisation. Pour ce faire, il décrémente un registre 16 bits, *i.e.* de 0100H (fixé au départ) à 0. Pour chacune des lignes du programme, on donne la durée d'exécution d'une instruction complète en microcycle (μ c). Le processeur travaille à une fréquence de 10 MHz, c'est-à-dire que chacune des opérations élémentaires est effectuée en 1 μ c de 100 ns (rappel 1 ns = 10^9 s). Modifier la valeur initiale de tempo pour que l'ensemble de la temporisation atteigne une durée 1ms

Data Tempo Data	SEGMENT DW	CS : Code, DS : Data
Code Debut :		Nombre de μ c AX , Data 10 DS , AX 2
Boucle :		AX , Tempo 10 AX , -1 4 Boucle 16
	MOV INT	AH , 4CH 4 21H 52
Code	ENDS END	Debut

Solution:

```
Durée = 10 + 2 + 10 +256 (4 + 16) + 4 + 52
= 5198 μc
= 5198 x 100 ns
= 519 800 ns
```

Modification de la valeur initiale de tempo pour que l'ensemble de la temporisation atteigne une durée 1ms

```
\begin{array}{l} 1\ 000\ 000\ ns = [10+2+10+Tempo\ x\ (4+16\ )+4+52]\ x\ 100\ ns \\ 10\ 000\ = 10+2+10+Tempo\ x\ (4+16)+4+52 \\ Tempo\ x\ (4+16\ ) = 10\ 000\ -10-2-10-4-52 \\ Tempo\ = 9922/20 \\ Tempo\ = (496)_{D\acute{e}cimal} = \ 1F0\ H \end{array}
```

<u>Question 8</u> Donner la définition du registre d'état et citer 4 indicateurs d'état en précisant leur fonction

Le registre d'état est un registre qui regroupe les indicateurs d'état du processeur. Citons 4 indicateurs d'état

- > ZF : indique si le résultat de la dernière opération est nul
- > CF : indique une éventuelle retenue
- > SF: indique le signe du résultat d'une opération
- > OF: indique un éventuelle dépassement