Derivadas Parciais de Ordem Superior

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

17 de agosto de 2025

Conteúdo

Derivadas Parciais de Segunda Ordem

Teorema das Derivadas Mistas

Derivadas Parciais de Ordem Superior

Lista Mínima

Conceito

Derivada de uma derivada de uma função

Notações

Derivadas de segunda ordem

$$\frac{\partial^2 f}{\partial x^2}$$

$$f_{xx}$$

$$\frac{\partial^2 f}{\partial y^2}$$

$$f_{yy}$$

Derivadas de segunda ordem mistas

$$\frac{\partial^2 f}{\partial x \partial y}$$

$$f_{yx}$$

$$\frac{\partial^2 f}{\partial y \partial x}$$

$$f_{xy}$$

Atenção Para a Ordem das Derivadas Mistas

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{xy} = \left(f_x\right)_y$$

Exemplo 1

Encontre as derivadas de segunda ordem da função

$$f(x, y) = x\cos(y) + ye^x$$

Note que f é contínua no plano

Precisamos calcular f_{xx} , f_{yy} , f_{xy} e f_{yx}

Exemplo $1 - f_x$

$$f_x(x, y) = \frac{\partial f}{\partial x}$$

$$= \frac{\partial}{\partial x} (x \cos(y) + ye^x)$$

$$= \frac{\partial}{\partial x} (x \cos(y)) + \frac{\partial}{\partial x} (ye^x)$$

$$= \cos(y) \frac{\partial x}{\partial x} + y \frac{\partial e^x}{\partial x}$$

$$= \cos(y) + ye^x$$

Exemplo $1 - f_y$

$$f_{y}(x, y) = \frac{\partial f}{\partial y}$$

$$= \frac{\partial}{\partial y} (x \cos(y) + ye^{x})$$

$$= \frac{\partial}{\partial y} (x \cos(y)) + \frac{\partial}{\partial y} (ye^{x})$$

$$= x \frac{\partial}{\partial y} \cos(y) + e^{x} \frac{\partial y}{\partial y}$$

$$= -x \sin(y) + e^{x}$$

$$= e^{x} - x \sin(y)$$

Exemplo $1 - f_{xx}$

$$f_{xx}(x, y) = \frac{\partial^2 f}{\partial x^2}$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$= \frac{\partial}{\partial x} (\cos(y) + ye^x)$$

$$= \frac{\partial}{\partial x} (\cos(y)) + \frac{\partial}{\partial x} (ye^x)$$

$$= 0 + y \frac{\partial e^x}{\partial x}$$

$$= ye^x$$

Exemplo 1 – f_{xy}

$$f_{xy}(x, y) = (f_x)_y(x, y)$$

$$= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

$$= \frac{\partial}{\partial y} (\cos(y) + ye^x)$$

$$= \frac{\partial}{\partial y} (\cos(y)) + \frac{\partial}{\partial y} (ye^x)$$

$$= -\sin(y) + e^x \frac{\partial y}{\partial y}$$

$$= -\sin(y) + e^x = e^x - \sin(y)$$
 (continua no plano)

Exemplo 1 – f_{yy}

$$f_{yy}(x, y) = \frac{\partial^2 f}{\partial y^2}$$

$$= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

$$= \frac{\partial}{\partial y} (e^x - x \operatorname{sen}(y))$$

$$= \frac{\partial}{\partial y} (e^x) - \frac{\partial}{\partial y} (x \operatorname{sen}(y))$$

$$= 0 - x \frac{\partial}{\partial y} \operatorname{sen}(y)$$

$$= -x \cos(y)$$

Exemplo $1 - f_{yx}$

$$f_{yx}(x, y) = (f_y)_x(x, y)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$= \frac{\partial}{\partial x} (e^x - x \operatorname{sen}(y))$$

$$= \frac{\partial}{\partial x} e^x - \frac{\partial}{\partial x} (x \operatorname{sen}(y))$$

$$= e^x - \operatorname{sen}(y) \frac{\partial x}{\partial x}$$

$$= e^x - \operatorname{sen}(y)$$

Exemplo 1 – Resposta

$$f_{xx}(x, y) = ye^{x}$$

$$f_{xy}(x, y) = e^{x} - \operatorname{sen}(y)$$

$$f_{yy}(x, y) = -x \cos(y)$$

$$f_{yx}(x, y) = e^{x} - \operatorname{sen}(y)$$

Exemplo 2

Encontre as derivadas de segunda ordem mistas da função $f(x, y) = \arctan\left(\frac{y}{x}\right)$

Dica
$$\frac{d}{dt} \arctan(t) = \arctan(t) = \frac{1}{1+t^2}$$

f não é contínua no plano

Precisamos calcular f_{xy} e f_{yx}

Exemplo $2 - f_x$

$$f_x(x, y) = \frac{\partial f}{\partial x}$$

$$= \frac{\partial}{\partial x} \left(\operatorname{arctg} \left(\frac{y}{x} \right) \right)$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) \frac{\partial}{\partial x} \left(\frac{y}{x} \right)$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) y \frac{\partial x^{-1}}{\partial x}$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) y \left(-x^{-2} \right)$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) \frac{-y}{x^2}$$

Lembrando que
$$\operatorname{arctg}'(t) = \frac{1}{1+t^2}$$

$$f_x(x,y) = \frac{1}{1+\left(\frac{y}{2}\right)^2} \frac{-y}{x^2}$$

$$= \frac{1}{\frac{x^2 + y^2}{x^2}} \frac{-y}{x^2}$$

$$= \frac{x^2}{x^2 + y^2} \frac{-y}{x^2}$$

$$= \frac{-y}{x^2 + y^2}$$

Exemplo $2 - f_y$

$$f_{y}(x, y) = \frac{\partial f}{\partial y}$$

$$= \frac{\partial}{\partial y} \left(\operatorname{arctg} \left(\frac{y}{x} \right) \right)$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) \frac{\partial}{\partial y} \left(\frac{y}{x} \right)$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) \frac{1}{x} \frac{\partial y}{\partial y}$$

$$= \operatorname{arctg}' \left(\frac{y}{x} \right) \frac{1}{x}$$

Lembrando que
$$\operatorname{arctg}'(t) = \frac{1}{1+t^2}$$

$$f_y(x,y) = \frac{1}{1+\left(\frac{y}{x}\right)^2} \, \frac{1}{x}$$

$$J_{y}(x, y) = \frac{1}{1 + \left(\frac{y}{x}\right)^{2}}$$

$$= \frac{1}{\frac{x^{2} + y^{2}}{x^{2}}} \frac{1}{x}$$

$$= \frac{x^{2}}{x^{2} + y^{2}} \frac{1}{x}$$

$$= \frac{x}{x^{2} + y^{2}}$$

Exemplo $2 - f_{xy}$

$$f_{xy}(x,y) = (f_x)_y(x,y)$$

$$= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

$$= \frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right)$$

$$= -\frac{(x^2 + y^2) \frac{\partial y}{\partial y} - y \frac{\partial}{\partial y} (x^2 + y^2)}{(x^2 + y^2)^2}$$

$$= -\frac{(x^2 + y^2) \frac{\partial y}{\partial y} - y \frac{\partial}{\partial y} (x^2 + y^2)}{(x^2 + y^2)^2}$$

$$= \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

Exemplo $2 - f_{yx}$

$$f_{yx}(x,y) = (f_y)_x(x,y)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2}\right)$$

$$= \frac{(x^2 + y^2) \frac{\partial x}{\partial x} - x \frac{\partial}{\partial x} (x^2 + y^2)}{(x^2 + y^2)^2}$$

$$= \frac{(x^2 + y^2) \frac{\partial x}{\partial x} - x \frac{\partial}{\partial x} (x^2 + y^2)}{(x^2 + y^2)^2}$$

$$= \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

Exemplo 2 – Resposta

$$f_{xy}(x, y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$f_{yx}(x,y) = rac{y^2 - x^2}{(x^2 + y^2)^2}$$

Conteúdo

Derivadas Parciais de Segunda Orden

Teorema das Derivadas Mistas

Derivadas Parciais de Ordem Superior

Lista Mínima

Teorema das Derivadas Mistas

Se a função f(x, y) e suas derivadas parciais f_x , f_y , f_{xy} e f_{yx} forem definidas em uma vizinhança do ponto (a, b) e todas forem contínuas, então

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Exemplo 3

Encontre
$$\frac{\partial^2 w}{\partial x \partial y}$$
 se $w = xy + \frac{e^y}{y^2 + 1}$

Assumindo que as derivadas são contínuas

Queremos calcular

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} \right)$$

Calculando a primeira derivada

$$\frac{\partial w}{\partial y} = \frac{\partial}{\partial y} \left(xy + \frac{e^y}{y^2 + 1} \right)$$
$$= \frac{\partial}{\partial y} (xy) + \frac{\partial}{\partial y} \left(\frac{e^y}{y^2 + 1} \right)$$

Precisamos calcular a derivada de uma divisão

Usando a hipótese de que as derivadas são contínuas

podemos usar o teorema

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 w}{\partial y \partial x}$$

Temos então que calcular

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} \right)$$

Calculando a derivada primeira

$$\frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left(xy + \frac{e^y}{y^2 + 1} \right)$$

$$= \frac{\partial}{\partial x} (xy) + \frac{\partial}{\partial x} \left(\frac{e^y}{y^2 + 1} \right)$$

$$= y \frac{\partial x}{\partial x} + 0$$

$$= y$$

Calculando a derivada segunda

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} \right)$$
$$= \frac{\partial}{\partial y} (y)$$
$$= 1$$

Conteúdo

Derivadas Parciais de Segunda Ordem

Teorema das Derivadas Mistas

Derivadas Parciais de Ordem Superior

Lista Mínima

Notações

Derivadas terceiras

$$\frac{\partial^3 f}{\partial x^3}$$

$$f_{xxx}$$

$$\frac{\partial^3 f}{\partial x^2}$$

$$f_{xxy}$$

Derivadas quartas

$$\frac{\partial^4 f}{\partial x^4}$$

$$f_{xxx}$$

$$\frac{\partial^4 f}{\partial y^2 \partial x^2}$$

$$f_{xxyy}$$

Ordem de Derivação

Desde que todas as derivadas envolvidas sejam contínuas a ordem de derivação é irrelevante

Exemplo 4

Encontre a derivada $f_{yxyz}(x, y, z)$ da função $f(x, y, z) = 1 - 2xy^2z + x^2y$

Oueremos calcular

$$f_{yxyz}(x, y, z) = \left(\left(\left(f_y(x, y, z) \right)_x \right)_y \right)_z = \frac{\partial}{\partial z} \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \right) \right)$$

$$f(x, y, z) = 1 - 2xy^{2}z + x^{2}y$$

$$f_{y}(x, y, z) = \frac{\partial}{\partial y} \left(1 - 2xy^{2}z + x^{2}y \right) = 0 - 2x2yz + x^{2} = -4xyz + x^{2}$$

$$f_{yx}(x, y, z) = \frac{\partial}{\partial x} \left(-4xyz + x^{2} \right) = -4yz + 2x$$

$$f_{yxy}(x, y, z) = \frac{\partial}{\partial y} \left(-4yz + 2x \right) = -4z + 0 = -4z$$

$$f_{yxyz}(x, y, z) = \frac{\partial}{\partial z} \left(-4z \right) = -4$$

Conteúdo

Derivadas Parciais de Segunda Orden

Teorema das Derivadas Mistas

Derivadas Parciais de Ordem Superior

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12ª ed. – Seção 14.3

- 1. Estudar o texto da seção
- 2. Resolver os exercícios: 43-45, 51-54, 57, 61

Atenção: A prova é baseada no livro, não nas apresentações