NUMERICAL METHODS-LECTURE XIII: DYNAMIC DISCRETE CHOICE ESTIMATION (See Rust 1987)

Trevor Gallen

Introduction

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - ▶ 10 years of monthly data
 - bus mileage and engine replacement
 - ▶ 104 buses
 - ▶ 1 Harold

Introduction

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - ▶ 10 years of monthly data
 - bus mileage and engine replacement
 - ► 104 buses
 - ▶ 1 Harold
- ▶ Not interested in Harold per se

Introduction

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - 10 years of monthly data
 - bus mileage and engine replacement
 - ▶ 104 buses
 - ▶ 1 Harold
- Not interested in Harold per se
- ► Interested in application of Dynamic Discrete Choice framework

DESCRIPTION

- Observe monthly bus mileage
- Observe maintenance diary with date, milage, and list of components repaired or replaced
- Three types of maintenance operations
 - Routine adjustments (brake adjustments, tire rotation)
 - Replacement of individual components when failed
 - Major engine overhauls
- Model Zurcher's decision to replace bus engines based on observables and unobservables

DESCRIPTION

- Observe monthly bus mileage
- Observe maintenance diary with date, milage, and list of components repaired or replaced
- Three types of maintenance operations
 - Routine adjustments (brake adjustments, tire rotation)
 - Replacement of individual components when failed
 - Major engine overhauls
- Model Zurcher's decision to replace bus engines based on observables and unobservables

Model

- ► Agent is forward looking
- Maximizes expected intertemporal payoff
- Estimate parameters of the models
- ► Test whether the agent's behavior is consistent with the model

REPLACEMENT DATA-I

TABLE IIa

SUMMARY OF REPLACEMENT DATA
(Subsample of buses for which at least 1 replacement occurred)

		Mileage at I	Replacement						
Rus Group	Мах	Min	Mean	Standard Deviation	Max	Mın	Mean	Standard Deviation	Number of Observation
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	273,400	124,800	199,733	37,459	74	38	59.1	10.9	27
4	387,300	121,300	257,336	65,477	116	28	73.7	23.3	33
5	322,500	118,000	245,291	60,258	127	31	85.4	29.7	11
6	237,200	82,400	150,786	61,007	127	49	74.7	35.2	7
7	331,800	121,000	208,963	48,981	104	41	68.3	16.9	27
8	297,500	132,000	186,700	43,956	104	36	58.4	22.2	19
Full									
Sample	387,400	83,400	216,354	60,475	127	28	68.1	22.4	124

REPLACEMENT DATA-II

TABLE IIb

CENSORED DATA
(Subsample of buses for which no replacements occurred)

		Mileage at N	1ay 1, 1985						
Bus Group	Max	Min	Mean	Standard Deviation	Max	Min	Mean	Standard Deviation	Number of Observation
1	120,151	65,643	100,117	12,929	25	25	25	0	15
2	161,748	142,009	151,183	8,530	49	49	49	0	4
3	280,802	199,626	250,766	21,325	75	75	75	0	21
4	352,450	310,910	337,222	17,802	118	117	117.8	0.45	5
5	326,843	326,843	326,843	0	130	130	130	0	1
6	299,040	232,395	265,264	33,332	130	128	129.3	1.15	3
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
Full									
Sample	352,450	65,643	207,782	85,208	130	25	66.4	34.6	49

REPLACEMENT DATA-III

SAMPLE

- ► Focus on bus groups 1-4
- ► Most recent acquisitions
- ▶ Have data on replacement costs only for this group
- Utilization fairly constant within each group (necessary for model)

▶ Harold chooses $\{i_1, i_2, ..., i_t, ...\}$ to maximize his expected utility

$$\max_{\{i_1,i_2,\dots,i_t,\dots\}} E_t \sum_{t=1}^{\infty} \beta^{t-1} u(x_t,\varepsilon_t,i_t;\theta)$$

- \triangleright x_t is the total mileage on an engine since last replacement
- \triangleright ε_t are unobservable (to the econometrician) shocks
- ▶ it is an indicator of engine replacement
- ightharpoonup heta is vector of parameters (to be discussed below)

Model - II

Cost function

$$c(x, \theta_1) = m(x, \theta_{11}) + \mu(x, \theta_{12})b(x, \theta_{13})$$

- $m(x, \theta_{11})$ is the conditional expectation of normal maintenance and operation expenditure
- $\mu(x, \theta_{12})$ is the conditional probability of an unexpected engine failure
- ▶ $b(x, \theta_{13})$ is the conditional expectation of towing costs, repair costs, and loss of customer goodwill costs resulting from engine failure
- No data on maintenance and operating costs, so only estimating the sum of costs $c(x, \theta_1)$

Model - III

▶ Stochastic process governing $\{i_t, x_t\}$ is the solution to

$$V_{\theta}(x_t) = \sup_{\Pi} E \left\{ \sum_{j=t}^{\infty} \beta^{j-t} u(x_j, f_j, \theta_1) | x_t \right\}$$

 \triangleright where utility u is given by

$$u(x_t, i_t, \theta_1) = \begin{cases} -c(x_t, \theta_1) & \text{if} \quad i_t = 0\\ -\left[\overline{P} - \underline{P} + c(0, \theta_1)\right] & \text{if} \quad i_t = 1 \end{cases}$$

- $ightharpoonup \Pi = \{f_t, f_{t+1}, ...\}$ is a sequence of decision rules where
- ▶ each f indicates the optimal choice (replace or not) at time t given the entire history of investment $i_{t-1},...,i_1$ and mileage $x_t,x_{t-1},...,x_1$ observed to date
- ightharpoonup is the scrap value of an engine
- $ightharpoonup \overline{P}$ is the cost of a new engine

Model - IV

 \triangleright Evolution of x_t is given by stochastic process:

$$\begin{split} p(x_{t+1}|x_t, i_t, \theta_2) \\ &= \left\{ \begin{array}{ll} \theta_2 \exp[\theta_2(x_{t+1} - x_t)] & \text{if} & i_t = 0 & \& & x_{t+1} \ge x_t \\ \theta_2 \exp[\theta_2(x_{t+1})] & \text{if} & i_t = 1 & \& & x_{t+1} \ge 0 \\ 0 & o/w & \end{array} \right. \end{split}$$

- Without investment, next period mileage is drawn from exponential CDF $1 \exp[\theta_2(x_{t+1} x_t)]$
- With investment, next period mileage is drawn from exponential CDF $1 \exp[\theta_2(x_{t+1} 0)]$

Bellman:

$$\begin{aligned} V_{\theta}(x_t) &= \max_{i_t \in \{0,1\}} u(x_t, i_t, \theta_1) + \beta E V_{\theta}(x_t, i_t) \\ E V_{\theta}(x_t, i_t) &= \int_o^{\infty} V_{\theta}(y) P(dy | x_t, i_t, \theta_2) \\ i_t &= f(x_t, \theta) = \begin{cases} 1 & \text{if} \quad x_t > \gamma(\theta_1, \theta_2) \\ 0 & \text{if} \quad x_t \leq \gamma(\theta_1, \theta_2) \end{cases} \end{aligned}$$

Where $\gamma(\theta_1, \theta_2)$ is the investment cut-off ("optimal stopping barrier") given by the unique solution to

$$(\overline{P} - \underline{P})(1 - \beta) = \int_0^{\gamma(\theta_1, \theta_2)} [1 - \beta \exp\{-\theta_2(1 - \beta)y\}] \frac{\partial c(y, \theta_1)}{\partial y dy}$$

We have a closed-form solution!?

- ▶ Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?

- ▶ Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?
- Add an error term:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

- ▶ Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?
- Add an error term:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

But that's dumb! Why?

- ▶ Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?
- Add an error term:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

- ► But that's dumb! Why?
- Whoops! Accidentally replaced! (Assuming agent is making decisions without thinking about the error term before this period)
- ▶ Reinterpret: ε_t is an unobservable state variable known to the agent but not the econometrician

- Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?
- Add an error term:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

- ► But that's dumb! Why?
- Whoops! Accidentally replaced! (Assuming agent is making decisions without thinking about the error term before this period)
- ▶ Reinterpret: ε_t is an unobservable state variable known to the agent but not the econometrician
- Choice(State)+error makes less sense than Choice(State,Error), which is interpretable and can be anticipated

- ▶ Problem: all engines are replaced at same point.
- ► How do we solve this? (In standard MLE)?
- Add an error term:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

- ► But that's dumb! Why?
- ▶ Whoops! Accidentally replaced! (Assuming agent is making decisions without thinking about the error term before this period)
- ▶ Reinterpret: ε_t is an unobservable state variable known to the agent but not the econometrician
- Choice(State)+error makes less sense than Choice(State,Error), which is interpretable and can be anticipated
- ▶ Add structure so model is consistent: no "mistakes" just

$$C(x_t)$$

$$\varepsilon_t = \{e_t(i)|i \in C(x_t)\}$$

$$x_t = \{x_t(1), ..., x_t(K)\}$$

$$u(x_t, i_t, \theta_1) + \varepsilon_t(i)$$

$$p(x_{t+1}, \varepsilon_{t+1}|x_t, \varepsilon_t, i_t, \theta_2, \theta_3)$$

$$\theta = (\beta, \theta_1, \theta_2, \theta_3)$$

Choice set. A finite set of allowable values of the control variable i_t when state variable is x_t A $\#C(x_t)$ -dimensional vector of state variables observed by agent by not by the econometrician. K-dimensional vector of state variables observed by both the agent and the econometrician.

Realized single period utility of decision i when state variable is x_t, ε_t). θ_1 is a vector of unknown parameters to be estimated

Markov transitional denisty for state variable (x_t, ε_t) when alternative i_t is selected. θ_1 and θ_2 are vectors of unknown parameters to be estimated.

The complete $1 + K_1 + K_2 + K_3$ vector of parameters to be estimated

Now we have our dynamic discrete choice model. Infinite horizon, discounted Harold decision problem:

$$V_{\theta}(x_t, \varepsilon_t) = \sup_{\Pi} E \left\{ \sum_{j=t}^{\infty} \beta^{j-t} \left(u(x_j, f_j, \theta_1) + \varepsilon_j(f_j) \right) \middle| x_t, \varepsilon_t, \theta_2, \theta_3 \right\}$$

The optimal value function V_{θ} is the unique solution to

$$V_{\theta}(x_t, \varepsilon_t) = \max_{i_t \in C(x_t)} [u(x_t, i_t, \theta_1) + \varepsilon_t(i) + \beta EV_{\theta}(x_t, \varepsilon_t, i_t)]$$

with the decision rule

$$i_t = f(x_t, \varepsilon_t, \theta) \equiv arg \max_{i_t \in C(x_t)} [u(x_t, i_t, \theta_1) + \varepsilon_t(i_t) + \beta EV_{\theta}(x_t, \varepsilon_t, i_t)]$$

Model - IX

Problems:

- \triangleright ε_t appears nonlinearly. Have to integrate out over ε_t to obtain choice probabilities
- ightharpoonup Dimensionality: grid approach to estimating ε would still be too large to be computationally tractable (especially in 1987).

Model - X

- ▶ Don't want to integrate over all possible x_t and ϵ_t combinations
- Fortunately, this problem is separable (the two are unrelated):
- Conditional Independence Assumption:

$$P(x_{t+1},\varepsilon_{t+1}|x_t,\varepsilon_t,i,\theta_2,\theta_3)=q(\varepsilon_{t+1}|x_{t+1},\theta_2)P(x_{t+1}|x_t,i,\theta_3)$$

- ► Estimate the transition matrix of miles
- ► Then, given the miles today, have disturbance term

ESTIMATION-I

- ► Three likelihood functions. Two partial likelihoods, and one full.
- ► Mileage transition probability (first step)

$$\ell^{1}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0},\theta) = \prod_{t=1}^{T} p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

► Choice given mileage (and shock) (second step)

$$\ell^2(x_1,...,x_T,i_1,...,i_T|\theta) = \prod_{t=1}^T P(i_t|x_t,\theta)$$

And the full likelihood function:

$$\ell^{f}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0},\theta)=\prod^{I}P(i_{t}|x_{t},\theta)p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

Three stages of estimation.

ESTIMATION-II

Recall, have value function which is given by the functional equation

$$EV_{\theta}(x,i) = \int_{y} \log \left\{ \sum_{j \in C(y)} \exp(u(y,j,\theta_1) + \beta EV_{\theta}(y,j)) \right\} p(dy|x,i,\theta_3)$$

Goal is to estimate θ using a nested fixed point algorithm:

- ▶ For each θ , compute EV_{θ} using a fixed point algorithm
- ightharpoonup Outer hill climbing algorithm searches for the value of θ which maximizes the likelihood function.

ESTIMATION-III

First estimate the parameters θ_3 of the transition probability

$$p(x_{t+1}|x_t, i_t, \theta_3) = \begin{cases} g(x_{t+1} - x_t, \theta_3) & \text{if} \quad i_t = 1\\ g(x_{t+1} - 0, \theta_3) & \text{if} \quad i_t = 0 \end{cases}$$

Using

$$\ell^{1}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0}\theta)=\prod_{t=1}^{T}p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

- ▶ g is a multinomial distribution on the set $\{0, 1, 2\}$ corresponding to monthly mileage intervals $[0, 5000), [5000, 10000), [10000, \infty)$
- so $\theta_{3j} = Pr\{x_{t+1} = x_t + j | x_t, i_t = 0\}, j = 0, 1$
- ▶ This first stage doesn't require estimation of EV_{θ} !

IDEA OF ESTIMATION

- Need to estimate mileage cost parameters θ_1 , replacement cost RC, and transition parameters θ_3
- ightharpoonup First, estimate transition probabilities θ_3
- ▶ Then, use these transitions and guess at θ_1 and RC to solve for V and simulate out. Choose θ_1 and RC parameters to best fit likelihood of replacement
- ► Then estimate all together using consistent first stage estimates
- ▶ Important part is nested fixed point estimation:
 - 1. Guess parameters
 - 2. Given parameters, solve for V
 - 3. Simulate outcomes
 - 4. Calculate error between outcomes and data: go back to step 1

ESTIMATION-IV

TABLE V
WITHIN GROUP ESTIMATES OF MILEAGE PROCESS
WITHIN GROUP HETEROGENEITY TESTS
(Standard errors in parentheses)

	Group 1 1983 Grumman	Group 2 1981 Chance	Group 3 1979 GMC	Group 4 1975 GMC	Group 5 1974 GMC (8V)	Group 6 1974 GMC (6V)	Group 7 1972 GMC (8V)	Group 8 1972 GMC (6V)
θ_{31}	.197	.391	.307	.392	.489	.618	.600	.722
	(.021)	(.035)	(.008)	(.007)	(.013)	(.014)	(.010)	(.009)
θ_{32}	.789	.599	.683	.595	.507	.382	.397	.278
-	(.021)	(.035)	(.008)	(.007)	(.013)	(.014)	(.010)	(.009)
θ_{33}	.014	.010	.010	.013	.005	.000	.003	.000
33	(.006)	(.007)	(.002)	(.002)	(.002)	(0)	(.001)	(0)
Restricted	(,	(/	()	(/	()	(-)	,,	(-)
Log, Likelihood	-203.99	-138.57	-2219.58	-3140.57	-1079.18	-831.05	-1550.32	-1330.35
Unrestricted								
Log Likelihood	-187.71	-136.77	-2167.04	-3094.38	-1068.45	-826.32	-1523.49	-1317.69
Likelihood								
ratio test								
statistic	32.56	3.62	105.08	92.39	21.46	9.46	53.67	25.31
Degrees of								
Freedom	42	9	141	108	33	18	51	34
Marginal						-		
Significance								
Level	.852	.935	.990	.858	.939	.948	.372	.859

ESTIMATION-V

TABLE VI
BETWEEN GROUP ESTIMATES OF MILEAGE PROCESS
BETWEEN GROUP HETEROGENEITY TESTS
(Standard errors in parentheses)

	1, 2, 3	1, 2, 3, 4	4, 5	6, 7	6, 7, 8	5, 6, 7, 8	Full Sample
θ_{31}	.301	.348	.417	.607	.652	.618	.475
	(.007)	(.005)	(.006)	(.008)	(.006)	(.006)	(.004)
θ_{32}	.688	.639	.572	.392	.347	.380	.517
	(.007)	(.005)	(.007)	(.008)	(.006)	(.006)	(.004)
θ_{33}	.011	.012	.011	.002	.001	.002	.007
	(.002)	(.001)	(.001)	(.001)	(.004)	(.001)	(.000)
Restricted							
Log Likelihood	-2575.98	-5755.00	-4243.73	-2384.50	-3757.76	-4904.41	-11,237.68
Unrestricted							
Log Likelihood	-2491.51	-5585.89	-4162.83	-2349.81	-3668.50	-4735.95	-10,321.84
Likelihood							
ratio test	168.93	338.21	161.80	69.39	180.52	336.93	1,831.67
statistic							
Degrees of							
Freedom	198	309	144	81	135	171	483
Marginal							
Significance							
Level	.934	.121	.147	.818	.005	1.5E-17	7-7E-10

ESTIMATION-VI

Given θ_3 , and using ℓ^2 we can obtain estimates for β , θ_1 , and RC $(RC = \overline{P} - P)$:

$$\ell^{2}(x_{1},...,x_{T},i_{1},...i,T)|\theta) = \prod_{t=1}^{T} P(i_{t}|x_{t},\theta)$$

where

$$P(i|x,\theta) = \frac{\exp\{u(x,i,\theta_1) + \beta EV_{\theta}(x,i)\}}{\sum_{i \in C(x)} \exp\{u(x,j,\theta_1) + \beta EV_{\theta}(x,j)\}}$$

with

$$EV_{\theta}(x, i) = \int_{y} \log \left\{ \sum_{j \in C(y)} \exp(u(y, j, \theta_1) + \beta EV_{\theta}(y, j)) \right\} p(dy|x, i, \theta_3)$$

and

$$u(x_t, i_t, \theta_1) + \varepsilon_t(i) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if} \quad i = 1 \\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if} \quad i = 0 \end{cases}$$

ESTIMATION-VII

- $ightharpoonup heta_1$ are the parameters of the cost function
- ► Compare different (parsimonious) specifications
- Linear and square root forms do well

ESTIMATION-VIII

TABLE VIII

SUMMARY OF SPECIFICATION SEARCH®

		Bus Group	
Cost Function	1, 2, 3	4	1, 2, 3, 4
Cubic	Model 1	Model 9	Model 17
$\theta(x, \theta_1) = \theta_{11}x + \theta_{12}x^2 + \theta_{13}x^3$	-131.063	-162.885	-296.515
	-131.177	-162.988	-296.411
juadratic	Model 2	Model 10	Model 18
$\theta(x, \theta_1) = \theta_{11}x + \theta_{12}x^2$	-131.326	-163.402	-297.939
	-131.534	-163.771	-299.328
inear	Model 3	Model 11	Model 19
$\theta(x, \theta_1) = \theta_{11}x$	-132.389	-163.584	-300.250
	-134.747	-165.458	-306.641
quare root	Model 4	Model 12	Model 20
$\theta(x, \theta_1) = \theta_{11}\sqrt{x}$	-132.104	-163.395	-299.314
	-133.472	-164.143	-302.703
oower	Model 5 ^b	Model 13b	Model 21 ^b
$\theta_1(x, \theta_1) = \theta_{11} x^{\theta_{12}}$	N.C.	N.C.	N.C.
	N.C.	N.C.	N.C.
ryperbolic	Model 6	Model 14	Model 22
$\theta(x, \theta_1) = \theta_{11}/(91-x)$	-133.408	-165.423	-305.605
	-138.894	-174.023	-325.700
nixed	Model 7	Model 15	Model 23
$(x, \theta_1) = \theta_{11}/(91-x) + \theta_{12}\sqrt{x}$	-131.418	-163,375	-298,866
	-131.612	-164.048	-301.064
onparametric	Model 8	Model 16	Model 24
(x, θ_1) any function	-110.832	-138.556	-261.641
(3, 0), 411, 141101011	-110.832	-138.556	-261.641

^{*} First entry in each box is (partial) log likelihood value ℓ^2 in equation (5.2)) at β = .9999. Second entry is partial log likelihood value at β = 0.

ESTIMATION-IX

- ▶ Next look at "myopic" replacement rule
- replace only when operating costs $c(x_t, \theta_1)$ exceed current cost of replacement $RC + c(0, \theta_1)$
- This model is rejected
- ightharpoonup eta = .999 produces a statistically significantly better fit of the model to the data

ESTIMATION-VIII

ESTIMATION-IX

► So what? Why not just do a logit?

- ► So what? Why not just do a logit?
- ▶ Rust estimates Harold's problem at a micro level

- ► So what? Why not just do a logit?
- ► Rust estimates Harold's problem at a micro level
- ► Changes in interest rates, costs, etc. he can still deal with even if no variation in data!

- ► So what? Why not just do a logit?
- ► Rust estimates Harold's problem at a micro level
- ► Changes in interest rates, costs, etc. he can still deal with even if no variation in data!
- ► Not myopic

- So what? Why not just do a logit?
- ► Rust estimates Harold's problem at a micro level
- ► Changes in interest rates, costs, etc. he can still deal with even if no variation in data!
- ► Not myopic
- Good example of indirectly inferring underlying parameters from agent behavior

Counterfactuals

Because parts costs haven't changed, all **reduced form** estimates would be clustered around the intersection: unable to predict counterfactual reliably (not true of structural method)

A BETTER WAY? MPEC

- ▶ Ordinarily, we have error function: $g(\theta; X; V)$ and value function: $Vnew(\theta) = \max\{R + \beta Vold\}$.
- ► Fixed point algorithm:
 - 1. Given θ , solve for V (inner loop, many iterations)
 - 2. Evaluate $g(\theta; X; V)$, find new θ to minimize g (outer loop, needs precise inner loop)
- ▶ MPEC: put the inner loop in as a constraint

$$\min_{\theta \mid V} \{g(\theta; X; V)\} \quad s.t.Vnew(\theta) = \max\{R + \beta Vold\}$$

- ldea: dont' need solve precisely for inner loop on bad θ 's.
- ▶ Much faster...3-800 times faster
- ► Constraints could instead be equilibrium
 - ▶ BLP: inner loop: (shares(demand shocks(θ)), outer loop: choose θ to match moments

- Rust's method is a dynamic form of what we've been saying all semester
- Most problems we write down have a natural fixed point in their estimation
- Guess estimated parameters, can solve your model, simulate your model, calculate likelihoods from your model
- With the feedback (errors, likelihood) can change parameters to minimize error, maximize likelihood, etc.
- Rust gives a now-canonical example of how to do that in a dynamic discrete choice framework