8. Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

PROOF The sequence $\{a_n\}_{n=1}^{\infty}$ tends to the limit L, so by the definition of limit: $(\forall \epsilon > 0)(\exists n)(\forall m \geq n)(|a_m - L| < \epsilon/M)$, where $m, n \in \mathcal{R}$. Let $\epsilon > 0$ be given.

- 1. Simplifying the limit definition mentioned above: $(\exists p)(\forall m \geq p)(M|a_m L| < \epsilon)$.
- 2. Simplifying the expression in (1) further: $(\exists p)(\forall m \geq p)(|Ma_m ML| < \epsilon)$.
- 3. The expression in (2) is the definition of limit for the sequence $\{Ma_n\}_{n=1}^{\infty}$, and it is evident that it tends to the limit ML.

This completes the proof. ■