

Работа на биполярен транзистор като усилвател

Полупроводникови елементи

Какво е усилвател?

Усилвател е електронна схема, която увеличава амплитудата на сигнала.

Транзисторът работи като усилвател, ако при осигурен подходящ постоянно токов режим, към входа му е свързан **източник на променлив сигнал**, а в изхода — **товар**, върху който се получава усиленият променлив сигнал.

Схеми на включване

В зависимост от това, кой от електродите на транзистора е общ за входната и изходната верига по отношение на променливата съставка на сигнала се различават схеми ОЕ, ОБ и ОК.

Схема ОЕ дефазира изходния сигнал на 180° спрямо входния. При схеми ОБ и ОК сигналите са във фаза.

Режими на работа на биполярен транзистор

Товарна права

Пресечната точка на товарната права с характеристика на транзистора определя постояннотоковата работна точка със стойности I_{BQ} , I_{CQ} , U_{CEQ} . При промяна на потояннотоковия режим (нови стойности на I_B , I_C , U_{CE}) работната точка се движи само по товарната права.

Установяване на работна точка – фиксиран базов ток

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{5 - 0.7}{28,6.10^{3}} = 150.10^{-6} \text{ A} = 150 \text{ uA}$$

$$I_C = \beta$$
. I_B

$$I_{Cmin} = 200 . 150.10^{-6} = 30 \text{ mA}$$

$$I_{Cmax}$$
 = 450 . 150.10⁻⁶ = 67,5 mA

Недостатък на схемата – силна зависимост на $I_{\mathcal{C}}$ от параметъра β , който има големи производствени толеранси.

$$U_{BB} = 5V$$
, $U_{CC} = 12V$
 $R_C = 150$, $R_B = 28,6k$
 $\beta = 200 - 450$

DC current gain	V_{CE} = 5 V, I_{C} = 2 mA	Current gain group :A	h _{FE}	110	-	220
		B C		200	-	450
				420	ı	800

Пример - фиксиран базов ток

Ток в базата:

Ib = (Ubb-Ube)/Rb=(2,7V-0,7V)/10k=0,2mA

Токове на насищане:

Icsat = Ucc/Rc = 20V/1k = 20mA

Ibsat = Icsat/ β

Определяме Ibsat за граничните стойности на β:

lbsat(max)=20mA/50=0.4mA

Ibsat(min)=20mA/150=0.13mA

В какъв режим работи транзистора?

Ib > Ibsat(min)

Ib < Ibsat(max)</pre>

В зависимост от конкретната стойност на β, транзисторът може да е както в активен режим, така и в режим на насищане.

Извод: схемата с фиксиран базов ток не е подходяща за проектиране на усилватели!

$$U_{BB} = 2,7V, U_{CC} = 20V$$

 $R_C = 1k, R_B = 10k$
 $\beta = 50-150$

$$U_{CE} = ?, I_{C} = ?$$

Установяване на работна точка – фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

$$I_C \approx I_E$$

$$U_{CE} = U_{CC} - I_C (R_C + R_E)$$

Стойността на $I_{\mathcal{C}}$ в работната точка не зависи от β , което гарантира стабилност на работната точка.

Пример - фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E} = \frac{5 - 0.7}{2.2.10^3} = 1,95 mA$$

$$I_C \approx I_E = 1.95 mA$$

$$U_{CE} = U_{CC} - I_C R_C - U_E = 15 V - 1,95 mA. 1 k\Omega - 4.3 V = 8,8 V$$

Стойността на I_C в работната точка не зависи от β , поради което не е нужно да се определя режима на транзистора (насищане или активен).

$$U_{BB} = 5V$$
, $U_{CC} = 15V$
 $R_C = 1k$, $R_E = 2.2k$

$$U_{CE} = ?, I_{C} = ?$$

Установяване на работна точка – делител на напрежение

делител на напрежение

Предимство на схемата – не е необходим отделен източник за Ubb

Ако
$$I_1 \gg I_B$$

$$U_{BB} \approx \frac{R_{B2}}{R_{B1} + R_{B2}} U_{CC}$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

$$I_C \approx I_E$$

$$U_{CE} = U_{CC} - I_C(R_C + R_E)$$

Пример - фиксиран емитерен ток и делител на напрежение в базата

$$U_{BB} \approx \frac{R_{B2}}{R_{B1} + R_{B2}} U_{CC} = \frac{10k\Omega}{47k\Omega + 10k\Omega} 10V = 1,75V$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E} = \frac{1,75V - 0,7V}{1k\Omega} \approx 1mA$$

$$I_C \approx I_E$$

$$U_{CE} = U_{CC} - I_C(R_C + R_E) = 10V - 1mA(4,7k\Omega + 1k\Omega) = 10V - 5,7V = 4,3V$$

$$U_{CC} = 10V$$

 $R_{B1} = 47\kappa$, $R_{B2} = 10k$
 $R_{C} = 4.7k$, $R_{E} = 1k$

$$U_{CE} = ?, I_{C} = ?$$

Пример - Схема общ колектор

$$U_{BB} \approx \frac{R_{B2}}{R_{B1} + R_{B2}} U_{CC} = \frac{150k\Omega}{150k\Omega + 100k\Omega} \, 10V = 6V$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E} = \frac{6V - 0.7V}{1k\Omega} = 5.3mA$$

$$I_C \approx I_E$$

$$U_{CE} = U_{CC} - I_C R_E = 10V - 5,3 mA . 1k\Omega = 4,7V$$

$$U_{CC} = 10V$$

 $R_{B1} = 100k$, $R_{B2} = 150k$, $R_{E} = 1k$
 $U_{CE} = ?$, $I_{C} = ?$

Съставки на базовото напрежение

Постоянна съставка – определя се от избраната работна точка Променлива съставка – това е усилваният сигнал

Графичен анализ

С₁ осигурява независимост на работната точка от постоянната съставка на източника

Променливото входно напрежение предизвиква появата на променлив ток в базата, което довежда до промяна в колекторния ток и съответно до промяна в изходното напрежение.

Графичен анализ

Графика на входния и изходния променливи сигнали

Сравнението на амплитудите на променливите съставки на входния и изходен сигнал показва, че изходният сигнал е усилен 10 пъти.

Товарна права по променлив ток

Разделителните кондензатори представляват отворена верига по отношение на постоянния сигнал и късо съединение по отношение на променливата съставка.

Постояннотоковият источник е късо съединение за променливата съставка.

Влияние на работната точка

Основно изискване на усилвателите е да осигуряват линейност на усилването, т.е. да не променят формата на сигнала, а само амплитудата му.

Изкривявания се получават, когато работната точка се избере в близост до областта на насищане или на отсечка.

За максимално неизкривена амплитуда на сигнала работната точка се избира в средата на товарната права по постоянен ток между насищане и запушване.

Динамични параметри

Динамичните параметри характеризират поведението на транзисторните усилватели по променлив ток.

$$A_{U} = \frac{u_{out}}{u_{in}} \qquad A_{I} = \frac{i_{out}}{i_{in}} \qquad A_{P} = A_{U}A_{I} \qquad r_{in} = \frac{u_{in}}{i_{in}} \qquad r_{out} = \frac{u_{out}}{i_{out}}$$

За изчислението им се използват еквивалентни схеми на транзисторите по променлив ток.

Схеми на усилватели

Усилвател ОЕ

 A_I — висок

 A_U - висок

Усилвател ОБ

 $A_I < 1$

 A_U - висок

Усилвател ОК

 A_I - висок

 $A_U < 1$

h-параметри

За анализ на усилвателни стъпала при **ниски честоти** и **малки променливи сигнали** се използват четириполюсни h-параметри.

$$u_1 = h_{11}i_1 + h_{12}u_2$$
$$i_2 = h_{21}i_1 + h_{22}u_2$$

Система с h-параметри – хибридна (смесена) система

h — параметрите имат **различни стойности** за различни схеми на свързване на транзистора.

h-параметри

h — параметрите са реални числа, които стойности могат лесно да се измерят

$$h_{11} = \frac{u_1}{i_1} \bigg|_{u_2 = 0}$$

Входно съпротивление при късо съединение в изхода по променлив ток

$$h_{12} = \frac{u_1}{u_2} \bigg|_{i_1 = 0}$$

Коефициент на обратна връзка по напрежение при отворена входна верига по променлив ток

$$h_{21} = \frac{i_2}{i_1} \mid_{u_2 = 0}$$

Коефициент на предаване (усилване) по ток при късо съединение в изхода по променлив ток

$$h_{22} = \frac{i_2}{u_2} \bigg|_{i_1 = 0}$$

Изходна проводимост при отворена входна верига по променлив ток

Еквивалентна схема с h-параметри

Обикновено в каталозите се дават h-параметрите за схема ОЕ, за конкретни стойности на постоянните напрежения и токове (т.е за фиксирана работна точка), при определена температура.

За останалите случаи в каталозите се дават нормирани криви на относителните h- параметри при различни токове, напрежения и температури.

Работа при високи честототи

При високи честоти върху поведението на транзистора започват да оказват влияние:

- инерционността на процесите на пренасяне на токоносителите от емитерния до колекторния преход
- капацитетите на преходите
- паразитните капацитети на корпуса и индуктивности на изводите

В резултат се наблюдава намаляване на амплитудата на изходния сигнал и изоставането му по фаза (закъсняване) спрямо входния.

За оценка на усилвателните свойства на транзистора при високи честоти се използват граничните честоти.

Транзитна честота

Произведението на модула на диференциалния коефициент на усилване β и текущата честота се нарича транзитна честота $f_{\mathcal{T}}$.

$$\beta . f = f_T$$

Ако
$$f = f_T$$
, $\beta \approx 1$

Транзитната честота $f_{\mathcal{T}}$ може да се дефинира и като честотата, при която модулът на коефициента β става приблизително единица.

Транзитна честота (gain bandwidth product)

Figure 6. Current-Gain - Bandwidth Product

FIGURE 4. NPN GAIN BANDWIDTH PRODUCT vs
COLLECTOR CURRENT

у - параметри

За анализ на усилвателни стъпала при високи честоти и малки променливи сигнали се използват четириполюсни упараметри.

$$i_1 = y_{11}u_1 + y_{12}u_2$$
$$i_2 = y_{21}u_1 + y_{22}u_2$$

Система с у-параметри

y – параметрите имат **различни стойности** за различни схеми на свързване на транзистора.

Използват се за анализ на схеми при честоти до 300 MHz.

у - параметри

$$y_{11} = \frac{i_1}{u_1} \mid u_2 = 0$$

Входна проводимост при късо съединение в изхода по променлив ток

$$y_{12} = \frac{i_1}{u_2} \mid u_1 = 0$$

 $y_{12} = rac{i_1}{u_2} igg|_{u_1 = 0}$ Обратна проходна проводимост при късо съединение на входа по променлив ток

$$y_{21} = \frac{i_2}{u_1} \bigg|_{u_2 = 0}$$

 $y_{21} = \frac{i_2}{u_1} igg|_{u_2 = 0}$ Права проходна проводимост (стръмност) при късо съединение в изхода по променлив ток

$$y_{22} = \frac{i_2}{u_2} \bigg|_{u_1 = 0}$$

Изходна проводимост при късо съединение на входа по променлив ток

Съществува връзка между *у-* и *h-*параметри.

Еквивалентна схема с у - параметри

Еквивалентна схема на транзистора с у - параметри при високи честоти и малък променлив входен сигнал

Еквивалентна схема на Джиаколето

 $r_{b\,'b}$ — обемно съпротивление на базата

 $C_{b^{\,\prime}e}$ — дифузен капацитет на емитерния преход

 $C_{b\,'c}$ — бариерен капацитет на колекторния преход

 $r_{b\,\dot{}c}$ — отчита ефента на Ърли

 r_{ce} — изходно съпротивление

 g_m — стръмност на транзитора