

SGM3005 Ultra Low ON-Resistance, Low Voltage, Dual, SPDT Analog Switch

GENERAL DESCRIPTION

The SGM3005 is a dual, low on-resistance, low voltage, bidirectional, single-pole/double-throw (SPDT) CMOS analog switch designed to operate from a single 1.8V to 5.5V power supply. Targeted applications include battery powered equipment that benefit from low R_{ON} (0.5 Ω) and fast switching speeds (t_{ON} = 50ns, t_{OFF} = 15ns).

The on-resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals.

The SGM3005 is a committed dual single-pole/double-throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

The SGM3005 is available in Green TDFN-3×3-10L and MSOP-10 packages.

FEATURES

• Low Voltage Operation: 1.8V to 5.5V

• Low On-Resistance: 0.5Ω (TYP)

• Low On-Resistance Flatness

• -3dB Bandwidth: 15MHz

• Fast Switching Times

ton 50ns

toff 15ns

• Rail-to-Rail Operation

Typical Power Consumption (< 0.01µW)

• TTL/CMOS Compatible

Microsize Packages

APPLICATIONS

Battery-powered, Handheld, and Portable Equipment

Cellular/Mobile Phones

Laptops, Notebooks, Palmtops

Communication Systems

Sample-and-Hold Circuits

Audio Signal Routing

Audio and Video Switching

Portable Test and Measurement

Medical Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3005	MSOP-10	-40°C to +125°C	SGM3005XMS/TR	SGM3005 XMS XXXXX	Tape and Reel, 4000
SGM3005	TDFN-3×3-10L	-40°C to +125°C	SGM3005XD/TR	SGM 3005D XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

NOTE:

1. Signals on NC, NO, or COM or IN exceeding $V_{\scriptscriptstyle +}$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V ₊	Power Supply.
2, 10	NO1, NO2	Normally-Open Terminal.
3, 9	COM1, COM2	Common Terminal.
4, 8	IN1, IN2	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
5, 7	NC1, NC2	Normally-Closed Terminal.
6	GND	Ground.

NOTE: NO, NC and COM terminals may be an input or output.

FUNCTION TABLE

LOGIC	NC1, NC2	NO1, NO2
0	ON	OFF
1	OFF	ON

ELECTRICAL CHARACTERISTICS

 $(V_+ = +5V \pm 10\%, GND = 0V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

		SYMBOL CONDITIONS			SGM3005			
PARAMETER	SYMBOL			+25℃	-40℃ to +125℃	UNITS	MIN/ MAX	
ANALOG SWITCH				•			•	
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}				0	V	MIN	
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}				V ₊	V	MAX	
On-Resistance	R _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I_{CO}$	$_{M} = -10 \text{mA},$	0.5		Ω	TYP	
On resistance	NON	Test Circuit 1	Test Circuit 1		1.1	Ω	MAX	
On-Resistance Match Between	ΔR_{ON}	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -10$ mA,		0.05		Ω	TYP	
Channels	ZITON	Test Circuit 1	Test Circuit 1		0.12	Ω	MAX	
On-Resistance Flatness	R _{FLAT(ON)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I_{CO}$	$_{M} = -10 \text{mA},$	0.25		Ω	TYP	
	T T EAT (ON)	Test Circuit 1		0.3	0.4	Ω	MAX	
LEAKAGE CURRENTS	1	T		1	Т		1	
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NO} or $V_{NC} = 4.5V/1V$, $V_{NO} = 4.5V/1V$		±4		nA	TYP	
		$V_+ = +5.5V$, Test Circuit	12	±10	±10 ±1000 ±4	nA	MAX	
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} ,	V_{NO} or $V_{NC} = V_{COM} = 1V$ or 4.5V, $V_{+} = +5.5V$, Test Circuit 3				nA	TYP	
	I _{COM(ON)}			±10	±1000	nA	MAX	
DIGITAL INPUTS	1	1		1	T			
Input High Voltage	V _{INH}					V	MIN	
Input Low Voltage	V _{INL}				0.8	V	MAX	
Input Current	I _{INL} or I _{INH}	$V_{IN} = V_{INH}$ or V_{INL}				μA	TYP	
DVALANIO OLIADAOTERIOTIOS				±0.1	±1	μA	MAX	
DYNAMIC CHARACTERISTICS		V 27V 2V		1				
Turn-On Time	t _{ON}	V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$,	Test Circuit 4	50		ns	TYP	
Turn-Off Time	t _{OFF}	V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$,	Test Circuit 4	15		ns	TYP	
Charge Injection	Q	$C_L = 1.0$ nF, $V_G = 0$ V, $R_G = 0$ V, R	₃ = 0Ω,	20		рС	TYP	
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{R_L} = 300\Omega$, $C_L = 35pF$,	/ _{NC2} = 3V, Test Circuit 6	10		ns	TYP	
Off Isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-69		dB	TYP	
On isolation	Oiso	Test Circuit 7	f = 10kHz	-85		dB	TYP	
Channel-to-Channel Crosstalk	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-90		dB	TYP	
Onamierto-Onamier Grossidik	∧ralk	Test Circuit 8	f = 10kHz	-105		dB	TYP	
Total Harmonic Distortion	THD	$ f = 20 \text{Hz to } 20 \text{kHz}, \ V_{\text{COM}} = 3.5 V_{\text{P-P}}, \\ R_{\text{L}} = 600 \Omega, \ C_{\text{L}} = 50 \text{pF} $		0.065		%	TYP	
-3dB Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$, Te	st Circuit 9	15		MHz	TYP	
Source OFF Capacitance	$C_{\text{NC(OFF)}}, C_{\text{NO(OFF)}}$			82		pF	TYP	
Channel ON Capacitance	$C_{NC(ON)}, C_{NO(ON)}, C_{COM(ON)}$			380		pF	TYP	
POWER REQUIREMENTS	COM(ON)	1		1	<u> </u>		1	
				0.001		μA	TYP	
Power Supply Current	I ₊	$V_{+} = +5.5V$, $V_{IN} = 0V$ or $5V$			1	μA	MAX	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_+ = +3V \pm 10\%, GND = 0V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

		CONDITIONS		SGM3005			
PARAMETER	SYMBOL			+25℃	-40°C to +125°C	UNITS	MIN/ MAX
ANALOG SWITCH		1		•			
Analog Signal Pango	\ \ \\ \\ \\				0	V	MIN
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}				V ₊	V	MAX
On-Resistance	R _{on}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I_{CO}$	$_{M} = -10 \text{mA},$	0.6		Ω	TYP
On resistance	NON	Test Circuit 1		1.0	1.3	Ω	MAX
On-Resistance Match	ΔR_{ON}	$0 \le V_{NO} \text{ or } V_{NC} \le V_{+}, I_{COM} = -10\text{mA},$		0.05		Ω	TYP
Between Channels	ZITON	Test Circuit 1	Test Circuit 1		0.13	Ω	MAX
On-Resistance Flatness	R _{FLAT(ON)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I_{CO}$	$_{M} = -10 mA,$	0.25		Ω	TYP
	1 2 ((0.1)	Test Circuit 1		0.3	0.4	Ω	MAX
LEAKAGE CURRENTS	T	1			ı	Π	ı
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NO} or $V_{NC} = 3V/1V$, V_{CR}		±5		nA	TYP
-		$V_+ = +3.3V$, Test Circuit		±11	±1000	nA	MAX
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} ,	V_{NO} or $V_{NC} = V_{COM} = 1V$ or $3V$,		±5 ±11		nA	TYP
DIGITAL INDUITO	I _{COM(ON)}	V ₊ = +3.3 V, Test Circuit	$V_+ = +3.3V$, Test Circuit 3		±1000	nA	MAX
DIGITAL INPUTS						.,	N 41N 1
Input High Voltage	V _{INH}				2.0	V	MIN
Input Low Voltage	V _{INL}			0.04	0.4	V	MAX
Input Current	I_{INL} or I_{INH} $V_{IN} = V_{INH}$ or V_{INL}		±0.01		μΑ	TYP MAX	
DYNAMIC CHARACTERISTICS				±0.1	±1	μA	IVIAV
		V_{NO} or $V_{NC} = 2V$,					
Turn-On Time	t _{ON}	$R_L = 300\Omega, C_L = 35pF,$	Test Circuit 4	50		ns	TYP
Turn-Off Time	t _{OFF}	V_{NO} or $V_{NC} = 2V$, $R_L = 300\Omega$, $C_L = 35pF$,	Test Circuit 4	17		ns	TYP
Charge Injection	Q	$C_L = 1.0$ nF, $V_G = 0$ V, R_C Test Circuit 5	₃ = 0Ω,	25		рС	TYP
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{RL} = 300\Omega$, $C_L = 35pF$,		11		ns	TYP
Off Isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-69		dB	TYP
On isolation	Oiso	Test Circuit 7	f = 10kHz	-85		dB	TYP
Channel-to-Channel Crosstalk	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-90		dB	TYP
Chamber to Chamber Orosotalk	MALK	Test Circuit 8	f = 10kHz	-105		dB	TYP
Total Harmonic Distortion	THD			0.06		%	TYP
-3dB Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$, Te	st Circuit 9	15		MHz	TYP
Source OFF Capacitance	$C_{\text{NC(OFF)}}, C_{\text{NO(OFF)}}$			82		pF	TYP
Channel ON Capacitance	$C_{NC(ON)}, C_{NO(ON)}, C_{COM(ON)}$			380		pF	TYP
POWER REQUIREMENTS	_ COM(ON)	1		1	ı	1	1
				0.001		μA	TYP
Power Supply Current	I ₊	$V_+ = +3.3V$, $V_{IN} = 0V$ or	$V_{+} = +3.3V$, $V_{IN} = 0V$ or $3V$		1	μA	MAX

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

0V

TEST CIRCUITS (continued)

Test Circuit 6. Break-Before-Make Time Delay, t_D

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

TEST CIRCUITS (continued)

Test Circuit 9. -3dB Bandwidth

PACKAGE OUTLINE DIMENSIONS MSOP-10

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimer In In	
	MIN	MAX	MIN	MAX
Α	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.180	0.280	0.007	0.011
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
е	0.500 BSC		0.020	BSC
L	0.400	0.800	0.016	0.031
θ	0°	6° 0°		6°

PACKAGE OUTLINE DIMENSIONS TDFN-3×3-10L

TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimer In In	nsions ches	
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203 REF		0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	2.300	2.600	0.091	0.103	
E	2.900	3.100	0.114	0.122	
E1	1.500	1.800	0.059	0.071	
k	0.200	0.200 MIN		3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.500	0.500 TYP) TYP	
L	0.300	0.500	0.012	0.020	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-10	13"	12.4	5.20	3.30	1.20	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-10L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5