实用第一智慧密集

基于 Selenium 的 Python 网络爬虫的实现

花君林

(淮阴工学院计算机与软件工程学院, 江苏 淮安 223003)

摘 要:随着大数据时代的到来,人们对数据的需求越来越大。尤其是商业数据,它的价值远远高出普通数据。而这些高价值数据往往被一些反爬机制保护着,为了解决这类问题,实现了一种基于 Selenium 的 Python 网络爬虫,它可以很好地解决此类问题,高效地爬取所需要的数据。

关键词: 网络爬虫; Python 语言; Selenium 技术

DOI:10.16184/j.cnki.comprg.2017.15.010

1 爬虫流程

网络流程如图 1 所示。

图 1 爬虫流程图

首先,需要认为的对爬虫主程序进行初始化信息,需要向爬虫提供一些参数,例如目标数据所在的初始网页地址,需要爬取的页面数、关键词等。然后,Selenium 开始工作,打开浏览器,输入网址,翻页。每次翻页过后,网页下载器便会获取当前页面的网页源代码,然后提交给网页解析器解析内容。通过一些合适方法将网页源代码中的目标数据提取出来,保存到数据库中,方便以后进行更进一步的处理。上述流程的时序图如图2 所示。

图 2 爬虫时序图

图 2 中最关键的点在于翻页之后,程序会在加载一段时间之后对加载的内容进行判断,是否已经加载完

成,假如没有加载完成,那么,目标数据有可能会缺失 甚至遗漏,在此,重新加载页面,直到加载完成后才进 行下一步的处理。

2 爬虫核心技术

2.1 Selenium 和 WebDriver

Selenium 主要用于 Web 应用程序的自动化测试,但并不局限于此,它还支持所有基于 Web 的管理任务自动化,实现的爬虫便应用到了 Selenium。

Selenium 的特点如下:

- (1) 开源,免费。
- (2) 多浏览器支持: Firefox、Chrome、IE、Opera。
- (3) 多平台支持: Linux、Windows、MAC。
- (4) 多语言支持: Java、Python、Ruby、C#、JavaScript、C++。
 - (5) 对 Web 页面有良好的支持。
 - (6) 简单、灵活。

WebDriver 属于 Selenium 体系中设计出来操作浏览器的一套 API,它是按照 Server-Client 的经典设计模式设计的。下面是它的工作流程:

- (1) WebDriver 启动目标浏览器,并绑定到指定端口。启动的浏览器实例将作为 WebDriver 的 Remote Server。
- (2) Client 端通过 CommandExcuter 发送 HTTPRequest 给 Remote Server 的侦听端口。
- (3) Remote Server 需要依赖原生的浏览器组件来转 化浏览器的 native 调用。

作者简介:花君林 (1993-), 男, 硕士, 研究方向: 化工大数据与云计算。

收稿日期:2017-04-27

-----SOFTWARE DEVELOPMENT & APPLICATION-----

Selenium 经历了两个版本,Selenium1.0 和 Selenium2.0。Selenium 不是由单独一个工具构成的,而是由一些插件、类库组成,每个部分都有其特点和应用场景。由于 WebDriver 是用于操作浏览器的一套工具,在 Selenium1.0 中是不包括它的。但是在 Selenium2.0 中将其加入了进来。所以,Selenium2.0=Selenium1.0+Web-Driver。

使用便是最新版本的 Selenium2.0 (以下均称为 Selenium)。在 Python 中,我们通过下面语句来导入 Web-Driver 包:

From Selenium import webdriver

既然需要实现自动化操作,那么必须要让机器知道它们需要操作什么东西,之后就是如何操作。 WebDriver提供了相当丰富的方法来分辨页面上的不同元素。

在 Python 中,有 8 种定位方法,分别为: id, name, class, tag, link, partial link, XPath, CSS 定位方法。元素一旦定位好,就需要对其进行操作了,在这里介绍 3 种最常用的方法:

- (1) clear(): 用于清除文本输入框中的内容。
- (2) send_keys(): 模拟键盘向输入框里输入内容。
- (3) click(): 用来实现单机一个元素,也就是点击功能。(前提是元素可以被点击)。

如今大多数网页都是用 AJax 技术,网页的内容并不是同时被加载出来,而是按时间先后加载内容。这就需要程序设置元素等待,不然就会造成获取数据残缺甚至获取不到数据的情况。WebDriver 提供了两种类型的等待方法,使得抓取数据这一环节在网页加载完成后进行。

1) 显示等待

等待某个条件成立时继续执行,超过最大时长时抛出异常 (TimeoutException)。

2) 隐式等待

等待一段时间后检测某元素加载完成,然后继续执行,否则抛出异常 (NoSuchElementException)。

设置元素等待可以保证爬虫可以抓取到完整且详细的数据,不会造成遗漏甚至爬虫停止运行的情况。在使用 Selenium 打开浏览器的时候,选择 PhantomJS 浏览器。PhantomJS 是一个拥有 JavaScript API 的无界面 WebKit 内核,与 HtmlUint 类似。因此,在启用它的时候只有内核在运行,不会出现窗口或者界面,可以大大提高

爬虫抓取目标数据的效率。PhantomJS 用来渲染解析 JS, Selenium 用来驱动以及与 Python 的对接, Python 进行后期的处理, 他们可以无缝对接。

2.2 网页下载器

网页下载器是爬虫程序的主要核心模块,因为目标数据都在网页的源代码中,而网页源代码只有通过网页下载器才可以获得。通过 Selenium 模块中自带的page_source 方法获得。具体代码如下:

from Selenium import webdriver brower=webdriver.PhantomJS() html=browser.page_source

2.3 网页解析器

通过要对它进行解析,这是在获取源代码之后需要进行的非常重要的一步。在此,列出了一些解析源代码的方法。

- (1) 正则表达式
- (2) beautifulsoup4
- (3) html.parser
- (4) lxml

第一种方法属于字符串式的模糊匹配模式,其他3种为结构化解析模式,它们都以DOM 树结构为标准,进行标签结构的提取。结构化解析是指通过源代码的结构,一层一层往下进行搜索,而不像模糊解析,通篇查找。

使用了 pyquery 网页解析器。pyquery 是 JQuery 的Python 实现,只要对 jQuery 有一定的了解,那么使用pyquery 就会如鱼得水,大大提高提取目标数据的效率。pyquery 有非常强大的 css 选择器功能。PyQuery 可以将传入的 html 数据源初始化为一个操作对象。下面是代码示例:

from pyquery import PyQuery as pq doc=pq(html)

这就创建了一个 pyquery 操作对象,这个对象有许多方法可以调用,例如 find() , parent() , children()。只要得到的类型还是 pyquery 类型,那么就可以继续使用 pyquery 来进行操作,直到获取目标数据。代码示例如下:

items=doc('#mainsrp-itemlist .items .item').items() for item in items:

Title=item.find('.title').text()

(下转第36页)

实用第一。智慧密集

随着计算机软件的飞速发展,计算机软件对硬件的要求不断提高,硬件配置越来越显得配置偏低。目前2008年引进的两套集群,由于资料处理精度不断提高,数据量不断加大,进行并行运算的能力较差。因此,可以考虑利用每个节点自带的硬盘,将其构建为集群分布式存储,形成两套较大的存储设备。同时,还可以利用Jason等软件进行并行反演等运算,使老旧资源重新得以利用,充分利用硬件资源。

参考文献

[1] 杨勇. 基于 GlusterFS 的分布式冗余存储 [J] . 西安

(上接第31页)

3 数据的保存

使用 MySQL 数据库进行目标数据的保存。使用了 Python 中的 MySQLdb 包。保存数据的步骤如下:

- (1) 创建数据库连接对象。
- (2) 创建游标对象。
- (3) 执行 SQL 语句。
- (4) 提交事务。
- (5) 关闭数据库连接。

代码示例如下:

import MySQLdb

conn=MySQLdb.connect()

cur=conn.cursor()

sqlstr="insert into product values('1','2','4')"

cur.execute(sqlstr)

cur.close();

conn.commit()

conn.close()

4 具体案例

以爬取淘宝宝贝数据为例,表1为该爬虫的核心 算法。

表 1 核心算法

本算法的具体参数为 page_number (需要爬取的页面数), url (初始页面), Key-Word (关键词)。	
1	输入参数。Page_number=100,url= "https://www.taobao.com/",KeyWord= "美食"
2	初始已爬页面数为 0
3	Begin
4	输入搜索内容"美食", url "https://www.taobao.com/"。开始搜索
5	While 已爬取页面数<=100
6	Repeat

文理学院学报(自然科学版), 2010, 04: 23-25.

- [2] 胡文波,徐造林.分布式存储方案的设计与研究 [J].计算机技术与发展,2010,04:41-43.
- [3] 刘仲,章文嵩,王召福,周兴铭.基于对象存储的集群存储系统设计[J].计算机工程与科学,2005,02:35-37.
- [4] 金弟,庄锡进,曹晓初,王启迪.基于多路径地震资料处理集群存储系统[J].计算机研究与发展,2012,S1:66-68.

本算法的具体参数为 page_number (需要爬取的页面数),url (初始页面),Ke Word (关键词)。	
7	抓取单个商品目标数据
8	保存到 mysql 数据库
9	Until 不存在没有被抓取的商品
10	已爬页面数加 1
11	If 已爬页面数达到 100 那么
12	Break;
13	End

5 结语

实现的网络爬虫可以非常高效地抓取目标数据,并 且可以避开网页对网络爬虫的限制,乃至封杀。从应用 方面来说,获取的目标数据保存在数据库中,下一步就 可以对数据库中的数据进行数据挖掘以及数据分析,挖 掘出更具价值的东西。

参考文献

- [1] 小甲鱼. 零基础入门学习 Python. 北京:清华大学出版社,2016.
- [2] 虫师. Selenium2 自动化测试实战——基于 Python 语言. 北京: 电子工业出版社, 2016.
- [3] 理查德 劳森. 用 Python 写网络爬虫. 北京: 人民邮电出版社, 2016.