# BDA Project: Hurricane forecasting in Stan

José Miguel Ramírez & Jonas Lindblad Aalto University

▶ Destructive storms occuring in the late summer and fall in the northern hemisphere's tropical region.



- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.



- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.
- They can cause extreme levels of flooding and destroy many buildings.



- Destructive storms occurring in the late summer and fall in the northern hemisphere's tropical region.
- Classified by their wind intensity at the eye wall.
- ▶ They can cause extreme levels of flooding and destroy many buildings.
- Monetary damages and loss of lives increase with an almost exponential character as a function of storm intensity.



► Forecasters predict two quantities: track and intensity

- Forecasters predict two quantities: track and intensity
- ▶ Two kinds of models: dynamical and statistical

- Forecasters predict two quantities: track and intensity
- ► Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics

- ► Forecasters predict two quantities: track and intensity
- ► Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics
  - Statistical: estimate based on historical data

- Forecasters predict two quantities: track and intensity
- ► Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics
    - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively

- ► Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics
    - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ... but for hurricane forecasts short-range is usually more interesting

- Forecasters predict two quantities: track and intensity
- Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics
    - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ...but for hurricane forecasts short-range is usually more interesting
- Rapid intensification: forecasted better by dynamical models

- Forecasters predict two quantities: track and intensity
- ► Two kinds of models: dynamical and statistical
  - Dynamical: simulate the laws of physics
  - Statistical: estimate based on historical data
- Dynamical vs. statistical: good at long- and short-range forecasts respectively
- ...but for hurricane forecasts short-range is usually more interesting
- Rapid intensification: forecasted better by dynamical models
- ► This project: a *statistical* model for *intensity*

The US government forecasting agency, the National Hurricane Center (NHC), uses a large number of models operationally. The models (together: the *model ensemble*) are used together with experienced meteorologists' judgment to provide the official forecast.

Surprisingly, the best single (short-range) model is a multiple linear regression!

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- ► The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- ► The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- ➤ SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- ► The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- ➤ SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC
- ► SHIPS dataset: publically available with no restrictions (link: SHIPS Development)

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- ► The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- ➤ SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC
- SHIPS dataset: publically available with no restrictions (link: SHIPS Development)
- ... but the documentation is terrible

- Surprisingly, the best single (short-range) model is a multiple linear regression!
- ► The NHC regression model: Statistical Hurricane Intensity Prediction Scheme (SHIPS)
- ➤ SHIPS: ~140 covariates, many calculated from data sources more easily available to the NHC
- SHIPS dataset: publically available with no restrictions (link: SHIPS Development)
- ... but the documentation is terrible
- ► SHIPS: only a point estimate; our project: a predictive distribution

The SHIPS developmental data is confusing!

|     | 82066 |      | 20   | 21   |      | 37.1 : |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | HEAD  |   |
|-----|-------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---|
| -12 | -6    | Θ    | 6    | 12   | 18   | 24     | 30   | 36   | 42   | 48   | 54   | 60   | 66   | 72   | 78   | 84   | 90   | 96   |      |      |      | 120  |       |   |
| 999 | 9999  | 20   | 25   | 30   | 40   | 50     | 75   | 65   | 55   | 45   | 40   | 30   | 25   | 25   | 25   | 25   | 25   | 20   | 9999 | 9999 | 9999 | 9999 | VMAX  |   |
| 999 | 9999  | 1005 | 1004 | 1003 | 1001 | 995    | 985  | 992  | 998  | 1002 | 1005 | 1007 | 1008 | 1009 | 1010 | 1010 | 1010 | 1010 | 9999 | 9999 | 9999 | 9999 | MSLP  |   |
| 999 | 9999  | - 1  | 1    | 1    | - 1  | - 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | - 1  | - 1  | 1    | 9999 | 9999 | 9999 | 9999 | TYPE  |   |
|     |       | 1    | 0    | 9    | 9    | 0      | 0    | 9    | 0    | 0    | 0    | 9    | 0    | 0    | 0    | 9    | 0    | 0    | 0    | Θ.   | 0    | 0    | HIST  |   |
| aaa | 9999  | ē    | 5    | 10   | 20   | 30     | 55   | 45   | 35   | 25   | 20   | 10   | 5    | 5    | 5    | 5    | 5    | 0    |      |      | 9999 |      |       |   |
|     |       | 9999 | 5    | 5    | 10   | 10     | 25   | -10  | -10  | -10  | -5   | -10  | -5   | 0    | 9    | 9    | 0    |      |      |      | 9999 |      |       |   |
|     | 9999  | 217  | 222  | 226  | 228  | 232    | 240  | 248  | 249  | 249  | 250  | 251  | 252  | 253  | 254  | 255  | 255  |      |      |      | 9999 |      |       |   |
|     |       |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |   |
|     | 9999  | 871  | 865  | 858  | 850  | 842    | 836  | 834  | 841  | 848  | 842  | 841  | 840  | 839  | 836  | 833  | 830  |      |      |      | 9999 |      |       |   |
|     | 9999  | 274  | 278  | 281  | 283  | 281    | 278  | 278  | 278  | 278  | 275  | 275  | 274  | 274  | 274  | 274  | 274  |      |      |      | 9999 |      |       |   |
|     | 9999  | 156  | 161  | 177  | 228  | 237    | 205  | 122  | 132  | 173  | 132  | 132  | 132  | 103  | 95   | 95   | 92   |      |      |      | 9999 |      |       |   |
| 999 | 9999  | 56   | 56   | 66   | 102  | 110    | 88   | 40   | 45   | 64   | 45   | 45   | 45   | 31   | 28   | 28   | 28   | 29   | 9999 | 9999 | 9999 | 9999 | CD26  |   |
| 999 | 9999  | 31   | 33   | 43   | 72   | 81     | 65   | 25   | 28   | 39   | 28   | 28   | 28   | 17   | 16   | 16   | 16   | 18   | 9999 | 9999 | 9999 | 9999 | COHC  |   |
| 999 | 9999  | 21   | 93   | 136  | 84   | 69     | 132  | 215  | 241  | 267  | 255  | 258  | 244  | 230  | 198  | 166  | 139  | 105  | 9999 | 9999 | 9999 | 9999 | DTL   |   |
| aga | 9999  | 0    | 46   | 65   | 67   | 63     | 55   | 60   | 94   | 95   | 181  | 227  | 266  | 299  | 297  | 279  | 267  | 220  | agga | agag | 9999 | gggg | OAGE  |   |
|     | 9999  | 0    | 10   | 17   | 22   | 27     | 33   | 41   | 60   | 54   | 98   | 113  | 120  | 123  | 115  | 101  | 91   |      |      |      | 9999 |      |       |   |
|     | 9999  | 280  | 280  | 278  | 276  | 274    | 270  | 269  | 272  | 274  | 272  | 271  | 271  | 270  | 269  | 268  | 267  |      |      |      | 9999 |      |       | 6 |
|     | 9999  | 267  | 279  | 280  | 272  | 267    | 267  | 279  | 273  | 270  | 273  | 273  | 272  | 272  | 272  | 272  | 272  |      |      |      | 9999 |      |       | 1 |
|     |       |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |   |
| 999 | 9999  | 271  | 278  | 279  | 272  | 267    | 268  | 270  | 272  | 270  | 272  | 272  | 272  | 271  | 271  | 272  | 272  |      |      |      | 9999 |      |       | 1 |
|     |       | 224  | 187  | 169  | 179  | 209    | 221  | 234  | 236  | 221  | 202  | 229  | 204  | 178  | 182  | 195  | 165  |      |      |      | 9999 |      |       |   |
|     |       | 238  | 162  | 153  | 143  | 139    | 170  | 206  | 158  | 108  | 94   | 125  | 102  | 132  | 149  | 159  | 120  |      |      |      | 9999 |      |       |   |
|     |       | 99   | 96   | 163  | 101  | 134    | 164  | 126  | -29  | -39  | 3    | -19  | -68  | -88  | -54  |      |      |      |      |      | 9999 |      |       |   |
|     |       | 3528 | 3528 | 3535 | 3523 | 3488   | 3506 | 3513 | 3509 | 3512 | 3525 | 3524 |      | 3505 | 3514 | 3523 | 3483 |      |      |      | 9999 |      |       |   |
|     |       | 113  | 114  | 114  | 107  | 86     | 104  | 109  | 109  | 118  | 125  | 118  | 116  | 120  | 130  | 141  | 111  | 115  | 9999 | 9999 | 9999 | 9999 | EP0S  |   |
|     |       | 8    | 9    | 8    | 9    | 11     | 10   | 10   | 10   | 10   | 10   | 9    | 10   | 11   | 11   | 10   | 14   | 14   | 9999 | 9999 | 9999 | 9999 | ENEG  |   |
|     |       | 51   | 48   | 52   | 48   | 22     | 42   | 42   | 42   | 50   | 55   | 46   | 46   | 48   | 47   | 53   | 22   | 26   | 9999 | 9999 | 9999 | 9999 | EPSS  |   |
|     |       | 16   | 20   | 18   | 18   | 21     | 23   | 21   | 19   | 18   | 22   | 20   | 19   | 19   | 25   | 23   | 28   | 26   | 9999 | 9999 | 9999 | 9999 | FNSS  |   |
|     |       | 70   | 68   | 70   | 70   | 66     | 69   | 67   | 67   | 68   | 68   | 69   | 70   | 68   | 62   | 59   | 56   | 55   | 9999 | 9999 | 9999 | 9999 | RHI 0 |   |
|     |       | 57   | 53   | 56   | 59   | 53     | 55   | 51   | 51   | 48   | 48   | 46   | 46   | 43   | 37   | 34   | 33   |      |      |      | 9999 |      |       |   |
|     |       | 50   | 51   | 54   | 59   | 54     | 49   | 48   | 43   | 35   | 35   | 34   | 31   | 26   | 23   | 24   | 25   |      |      |      | 9999 |      |       |   |
|     |       | 548  | 31   | 23   | 24   | 13     | 28   | 16   | 40   | 23   | 64   | 82   | 77   | 89   | 92   | 85   | 208  | 200  |      |      | 9999 |      |       |   |
|     |       | 7    | 17   | θ.   | -14  | -8     | 14   | -9   | -37  | -60  | -47  | -32  | -52  | -29  | -30  |      |      |      |      |      | 9999 |      |       |   |
|     |       |      |      |      |      |        |      |      |      |      |      |      |      |      |      | θ    | -4   |      |      |      |      |      |       |   |
|     |       | 64   | 65   | 84   | 70   | 51     | 114  | 42   | 27   | -7   | 8    | -17  | -37  | -48  | -52  | -25  | -32  |      |      |      | 9999 |      |       |   |
|     |       | 4    | 6    | 3    | 6    | 12     | 4    | 10   | 0    | -16  | -9   | -3   | -3   | -2   | 2    | 7    | 0    |      |      |      | 9999 |      |       |   |
|     |       | -1   | 0    | -1   | -1   | -2     | -1   | Θ    | 1    | 1    | 1    | 1    | 2    | 3    | 2    | 3    | 4    |      |      |      | 9999 |      |       |   |
|     |       | 259  | 267  | 266  | 261  | 253    | 265  | 264  | 258  | 255  | 268  | 265  | 258  | 254  | 269  | 269  | 257  |      |      |      | 9999 |      |       |   |
|     |       | 84   | 79   | 81   | 83   | 83     | 77   | 79   | 82   | 85   | 78   | 80   | 83   | 85   | 76   | 77   | 79   |      |      |      | 9999 |      |       |   |
|     |       | -27  | -24  | -31  | -20  | -20    | -8   | -16  | -10  | -8   | -2   | -18  | -8   | -8   | -3   | -7   | 4    | 8    | 9999 | 9999 | 9999 | 9999 | Z000  |   |
|     |       | 207  | 218  | 217  | 227  | 232    | 239  | 242  | 248  | 249  | 250  | 249  | 251  | 248  | 248  | 251  | 251  | 263  | 9999 | 9999 | 9999 | 9999 | TLAT  |   |
|     |       | 873  | 867  | 862  | 849  | 840    | 844  | 839  | 839  | 843  | 840  | 839  | 839  | 841  | 840  | 837  | 835  | 839  | 9999 | 9999 | 9999 | 9999 | TLON  |   |
|     |       | 67   | 76   | 69   | 63   | 70     | 83   | 67   | 60   | 65   | 62   | 60   | 51   | 41   | 32   | 22   | 18   |      |      |      | 9999 |      |       |   |
|     |       | 100  | 104  | 106  | 110  | 110    | 138  | 114  | 102  | 109  | 101  | 98   | 84   | 73   | 62   | 42   | 32   |      |      |      | 9999 |      |       |   |
|     |       | -5   | -4   | -1   | -1   | -1     | 130  | 114  | 0    | 109  | 9    | -1   | -2   | -4   | -3   | -1   | -1   |      |      |      | 9999 |      |       |   |
|     |       |      |      |      |      |        | 7    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |   |
|     |       | 3    | 4    | 11   | 12   | . 8    |      | 9    | 10   | 5    | 3    | 1    | 0    | -5   | -6   | -1   | -1   |      |      |      | 9999 |      |       |   |
|     |       | 13   | 12   | 12   | 14   | 11     | 7    | 9    | 10   | 7    | 5    | 4    | 4    | 1    | 0    | Θ    | 1    |      |      |      | 9999 |      |       |   |
|     |       | 44   | 38   | 33   | 23   | 18     | 27   | 21   | 18   | 18   | 25   | 14   | 10   | 15   | 13   | 2    | 3    |      |      |      | 9999 |      |       |   |
|     |       | 64   | 77   | 63   | 47   | 58     | 62   | 41   | 39   | 44   | 48   | 47   | 34   | 21   | 12   | 9    | 12   |      |      |      | 9999 |      |       |   |
|     |       | 67   | 63   | 8.4  | 70   | 62     | 78   | 70   | 52   | 32   | 22   | 18   | - 25 | -22  | -17  | -24  | -10  | -34  | 0000 | 0000 | 9999 | 0000 | VSOO  |   |

We are making synoptic models.

T = 0

| ALBE | 8206 | 2 12       | 20         | 21.        | .7 8 | 37.1 : | 1005 / | AL0119 | 982  |      |      |      |      |            |           |           |      |      |      |      |      |      | HEAD |   |   |
|------|------|------------|------------|------------|------|--------|--------|--------|------|------|------|------|------|------------|-----------|-----------|------|------|------|------|------|------|------|---|---|
| -12  | -6   | 0          | 6          | 12         | 18   | 24     | 30     | 36     | 42   | 48   | 54   | 60   | 66   | 72         | 78        | 84        | 90   | 96   | 102  | 108  | 114  | 120  | TIME |   |   |
| 9999 |      | 20         | 25         | 30         | 40   | 50     | 75     | 65     | 55   | 45   | 40   | 30   | 25   | 25         | 25        | 25        | 25   |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 1005       | 1994       | 1003       | 1001 | 995    | 985    | 992    | 998  | 1002 | 1005 |      | 1008 | 1889       | 1010      | 1010      | 1010 | 1010 |      |      | 9999 |      |      |   |   |
|      | 9999 | 1          | 1          | 1          | 1    | 1      | 1      | 1      | 1    | 1    | 1    | 1    | 1    | 1          | 1         | 1010      | 1    |      |      |      | 9999 |      |      |   |   |
| 1000 | 0000 | 1          | 0          | ā          | â    | ē      | Ö      | å      | ê    | 0    | ē    | å    | ė    | 0          | ā         | ê         | ē    | 0    | A    | 0    | 0    |      | HIST |   |   |
| 000  | 9999 | ė          | 5          | 10         | 20   | 30     | 55     | 45     | 35   | 25   | 20   | 10   | 5    | 5          | 5         | 5         | 5    | 0    | 9999 |      | 9999 |      |      |   |   |
|      |      | 9999       | 5          | 5          | 10   | 10     | 25     | -10    | -10  | -10  | -5   | -10  | -5   | 0          | 9         | 9         | 0    |      | 9999 |      | 9999 |      |      |   |   |
|      | 9999 |            | 222        |            | 228  | 232    | 240    | 248    | 249  | 249  | 250  | 251  | 252  | 253        | 254       | 255       | 255  |      |      |      | 9999 |      |      |   |   |
|      | 9999 | 217<br>871 | 865        | 226<br>858 | 850  | 842    | 836    | 834    | 841  | 848  | 842  | 841  | 840  | 839        | 836       | 833       | 830  |      |      |      | 9999 |      |      |   |   |
|      |      |            |            |            | 283  |        |        |        |      |      |      |      |      |            |           |           | 274  |      |      |      | 9999 |      |      |   |   |
|      | 9999 | 274        | 278<br>161 | 281        | 283  | 281    | 278    | 278    | 278  | 278  | 275  | 275  | 274  | 274<br>103 | 274<br>95 | 274<br>95 | 92   |      |      |      | 9999 |      |      |   |   |
|      |      | 156        |            | 177        |      |        |        | 122    | 132  | 173  | 132  | 132  | 132  |            |           |           |      |      |      |      |      |      |      |   |   |
|      | 9999 | 56         | 56         | 66         | 102  | 110    | 88     | 40     | 45   | 64   | 45   | 45   | 45   | 31         | 28        | 28        | 28   |      |      |      | 9999 |      |      |   |   |
|      | 9999 | 31         | 33         | 43         | 72   | 81     | 65     | 25     | 28   | 39   | 28   | 28   | 28   | 17         | 16        | 16        | 16   |      |      |      | 9999 |      |      |   |   |
|      | 9999 | 21         | 93         | 136        | 84   | 69     | 132    | 215    | 241  | 267  | 255  | 258  | 244  | 230        | 198       | 166       | 139  |      | 9999 |      | 9999 |      |      |   |   |
|      | 9999 | 0          | 46         | 65         | 67   | 63     | 55     | 60     | 94   | 95   | 181  | 227  | 266  | 299        | 297       | 279       | 267  |      |      |      | 9999 |      |      |   |   |
|      | 9999 | 0          | 10         | 17         | 22   | 27     | 33     | 41     | 60   | 54   | 98   | 113  | 120  | 123        | 115       | 101       | 91   |      | 9999 |      | 9999 |      |      |   |   |
|      | 9999 | 280        | 280        | 278        | 276  | 274    | 270    | 269    | 272  | 274  | 272  | 271  | 271  | 270        | 269       | 268       | 267  |      | 9999 |      | 9999 |      |      | Θ |   |
|      | 9999 | 267        | 279        | 280        | 272  | 267    | 267    | 270    | 273  | 270  | 273  | 273  | 272  | 272        | 272       | 272       | 272  |      | 9999 |      | 9999 |      |      | 1 |   |
| 999  | 9999 | 271        | 278        | 279        | 272  | 267    | 268    | 270    | 272  | 270  | 272  | 272  | 272  | 271        | 271       | 272       | 272  |      |      |      | 9999 |      |      | 1 |   |
|      |      | 224        | 187        | 169        | 179  | 209    | 221    | 234    | 236  | 221  | 202  | 229  | 204  | 178        | 182       | 195       | 165  | 172  | 9999 | 9999 | 9999 | 9999 | U200 |   |   |
|      |      | 238        | 162        | 153        | 143  | 139    | 170    | 206    | 158  | 108  | 94   | 125  | 102  | 132        | 149       | 159       | 120  | 212  | 9999 | 9999 | 9999 | 9999 | U20C |   |   |
|      |      | 99         | 96         | 163        | 101  | 134    | 164    | 126    | -29  | -39  | 3    | -19  | -68  | -88        | -54       | -77       | -149 | -189 | 9999 | 9999 | 9999 | 9999 | V20C |   |   |
|      |      | 3528       | 528        | 3535       | 3523 | 3488   | 3506   | 3513   | 3509 | 3512 | 3525 | 3524 | 3515 | 3505       | 3514      | 3523      | 3483 | 3477 | 9999 | 9999 | 9999 | 9999 | E000 |   |   |
|      |      | 113        | 114        | 114        | 107  | 86     | 104    | 109    | 109  | 118  | 125  | 118  | 116  | 120        | 130       | 141       | 111  | 115  | 9999 | 9999 | 9999 | 9999 | EP0S |   |   |
|      |      | 8          | 9          | 8          | 9    | 11     | 10     | 10     | 10   | 10   | 10   | 9    | 10   | 11         | 11        | 10        | 14   | 14   | 9999 | 9999 | 9999 | 9999 | ENEG |   |   |
|      |      | 51         | 48         | 52         | 48   | 22     | 42     | 42     | 42   | 50   | 55   | 46   | 46   | 48         | 47        | 53        | 22   | 26   | 9999 | 9999 | 9999 | 9999 | EPSS |   |   |
|      |      | 16         | 20         | 18         | 18   | 21     | 23     | 21     | 19   | 18   | 22   | 20   | 19   | 19         | 25        | 23        | 28   | 26   | 9999 | 9999 | 9999 | 9999 | ENSS |   |   |
|      |      | 70         | 68         | 79         | 70   | 66     | 69     | 67     | 67   | 68   | 68   | 69   | 70   | 68         | 62        | 59        | 56   | 55   | 9999 | 9999 | 9999 | 9999 | RHLO |   |   |
|      |      | 57         | 53         | 56         | 59   | 53     | 55     | 51     | 51   | 48   | 48   | 46   | 46   | 43         | 37        | 34        | 33   | 32   | 9999 | 9999 | 9999 | 9999 | RHMD |   |   |
|      |      | 50         | 51         | 54         | 59   | 54     | 49     | 48     | 43   | 35   | 35   | 34   | 31   | 26         | 23        | 24        | 25   |      |      |      | 9999 | 9999 | RHHT |   |   |
|      |      | 548        | 31         | 23         | 24   | 13     | 28     | 16     | 40   | 23   | 64   | 82   | 77   | 89         | 92        | 85        | 208  | 200  |      |      | 9999 |      |      |   |   |
|      |      | 7          | 17         | 9          | -14  | -8     | 14     | -9     | -37  | -60  | -47  | -32  | -52  | -29        | -30       | Θ         | -4   |      |      |      | 9999 |      |      |   |   |
|      |      | 64         | 65         | 84         | 70   | 51     | 114    | 42     | 27   | -7   | 8    | -17  | -37  | -48        | -52       | -25       | -32  |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 4          | 6          | 3          | 6    | 12     | 4      | 10     | 9    | -16  | -9   | -3   | -3   | -2         | 2         | 7         | - 02 |      |      |      | 9999 |      |      |   |   |
|      |      | -1         | 0          | -1         | -1   | -2     | -1     | 9      | 1    | 1    | 1    | 1    | 2    | 3          | 2         | 3         | 4    | -17  |      |      | 9999 |      |      |   |   |
|      |      | 259        | 267        | 266        | 261  | 253    | 265    | 264    | 258  | 255  | 268  | 265  | 258  | 254        | 269       | 269       | 257  |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 84         | 79         | 81         | 83   | 83     | 77     | 79     | 82   | 85   | 78   | 80   | 83   | 85         | 76        | 77        | 79   |      |      |      | 9999 |      |      |   |   |
|      |      | -27        | -24        | -31        | -20  | -20    | -8     | -16    | -10  | -8   | -2   | -18  | -8   | -8         | -3        | -7        | 4    |      |      |      | 9999 |      |      |   |   |
|      |      | 207        | 218        | 217        | 227  | 232    | 239    | 242    | 248  | 249  | 250  | 249  | 251  | 248        | 248       | 251       | 251  |      |      |      | 9999 |      |      |   |   |
|      |      |            | 867        | 862        | 849  | 840    | 844    | 839    | 839  | 843  | 840  | 839  |      | 841        |           | 837       | 835  |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 873        |            |            |      |        |        |        |      |      |      |      | 839  |            | 840       |           |      |      |      |      |      |      |      |   |   |
|      |      | 67         | 76         | 69         | 63   | 70     | 83     | 67     | 60   | 65   | 62   | 60   | 51   | 41         | 32        | 22        | 18   |      |      |      | 9999 |      |      |   |   |
|      |      | 100        | 104        | 106        | 110  | 110    | 138    | 114    | 102  | 109  | 101  | 98   | 84   | 73         | 62        | 42        | 32   |      | 9999 |      | 9999 |      |      |   |   |
|      |      | -5         | -4         | -1         | -1   | -1     | 0      | θ      | Θ    | 0    | 9    | -1   | -2   | -4         | -3        | -1        | -1   |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 3          | 4          | 11         | 12   | 8      | 7      | 9      | 10   | 5    | 3    | 1    | Θ    | -5         | -6        | -1        | -1   | 2    | 9999 |      | 9999 |      |      |   |   |
|      |      | 13         | 12         | 12         | 14   | 11     | 7      | 9      | 10   | 7    | 5    | 4    | 4    | 1          | 0         | Θ         | 1    |      |      |      | 9999 |      |      |   |   |
|      |      | 44         | 38         | 33         | 23   | 18     | 27     | 21     | 18   | 18   | 25   | 14   | 10   | 15         | 13        | 2         | 3    |      | 9999 |      | 9999 |      |      |   |   |
|      |      | 64         | 77         | 63         | 47   | 58     | 62     | 41     | 39   | 44   | 48   | 47   | 34   | 21         | 12        | 9         | 12   |      |      |      | 9999 |      |      |   |   |
|      |      | 67         | 63         | 8.4        | 70   | 62     | 78     | 70     | 52   | 32   | 22   | 18   | - 25 | -22        | -17       | -24       | -10  | -34  | 0000 | 0000 | 0000 | 0000 | V500 |   | _ |

We are making synoptic models and choosing variables.



#### Hurricane forecasting basics: our selection

We have not done statistical variable selection. Choice of variable subset is based on theory.

- ► CSST: (climatological) sea surface temperature
- ▶ RHLO: low-altitude relative humidity
- ▶ **T200**: air temperature at 200 mb (very high altitude)
- ▶ SHRD: wind shear between 850 and 200 mb
- ► VMPI: maximum potential intensity



- ► for testing, we have some variable sets *A*, *B*, *C*
- ► A: VMAX, CSST, SHRD
- ► B: VMAX, CSST, SHRD, VMPI
- ► C: VMAX, CSST, SHRD, VMPI, RHLO, T200

The SHIPS Blunder: a simple linear regression



Model 2: regression with skewness

errors not symmetric around the mean prediction!



Model 2: regression with skewness

- errors not symmetric around the mean prediction!
- rapid intensification!



Model 3: regression with a linear model for standard deviation

► fewer storms reach higher values of VMAX



Model 3: regression with a linear model for standard deviation

- fewer storms reach higher values of VMAX
- allow for higher variance to account for larger historical uncertainty



▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$ 

- ▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$
- reminder: we do 12-hour forecasts

- ▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale

- ▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale
- ► SHIPS data: 1982-2019; our restriction: 2017-2019

- ▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale
- SHIPS data: 1982-2019; our restriction: 2017-2019
- poor problem setup! True model is the laws of physics, but we are fitting a regression

- ▶ SHIPS: predict  $V_{max}$ ; our models: predict  $\Delta V_{max}$
- reminder: we do 12-hour forecasts
- we standardized all of our data; priors chosen to be weak in standardized scale
- ► SHIPS data: 1982-2019; our restriction: 2017-2019
- poor problem setup! True model is the laws of physics, but we are fitting a regression
- models were programmed in Stan; sampling with rstan resulted in no divergences or issues except for the skew model and the issue was solved by increasing max tree depth to 15

Model: posterior predictive checking



# Forecasting

## Forecasting: Model Comparison (1)

Dataset comparison for the linear regression model (LOOCV)

| Dataset | elpd_diff | se_diff |
|---------|-----------|---------|
| С       | 0.0       | 0.0     |
| В       | -25.0     | 6.5     |
| Α       | -27.4     | 6.3     |



#### Forecasting: Model Comparison (2)

Dataset comparison for the skewed regression model (LOOCV)

| Dataset | elpd_diff | se_diff |
|---------|-----------|---------|
| С       | 0.0       | 0.0     |
| В       | -23.2     | 6.2     |
| Α       | -28.7     | 6.2     |



### Forecasting: Model Comparison (3)

Dataset comparison for the Changing variance model (LOOCV)

| Dataset | elpd_diff | se_diff |
|---------|-----------|---------|
| С       | 0.0       | 0.0     |
| В       | -32.6     | 8.2     |
| Α       | -37.1     | 8.2     |



# Forecasting: Model Comparison (4)

Model comparison using the Dataset C (LOOCV)

| Model    | elpd_diff | se_diff |
|----------|-----------|---------|
| Variance | 0.0       | 0.0     |
| Skew     | -176.3    | 27.8    |
| Linear   | -205.5    | 34.9    |



## Problems to solve & development ideas

variable selection in full SHIPS dataset

### Problems to solve & development ideas

- variable selection in full SHIPS dataset
- more time series autoregressive components

### Problems to solve & development ideas

- variable selection in full SHIPS dataset
- more time series autoregressive components
- use LGEM model (will explain)



#### Additional information