Neighbors of a Pixel

A pixel p at coordinates (x,y) has four horizontal and vertical neighbors whose coordinates are given by:

$$(x+1,y), (x-1, y), (x, y+1), (x,y-1)$$

	(x, y-1)	
(x-1, y)	p (x,y)	(x+1, y)
	(x, y+1)	

This set of pixels, called the 4-neighbors or p, is denoted by $N_4(p)$.

Each pixel is one unit distance from (x,y) and some of the neighbors of p lie outside the digital image if (x,y) is on the border of the image.

Neighbors of a Pixel

• The four *diagonal* neighbors of *p* have coordinates: (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)

(x-1, y-1)		(x+1, y-1)
	p (x,y)	
(x-1, y+1)		(x+1, y+1)

and are denoted by $N_D(p)$.

These points, together with the 4-neighbors, are called the 8-neighbors of p, denoted by $N_8(p)$.

(x-1, y-1)	(x, y-1)	(x+1, y-1)
(x-1, y)	p (x,y)	(x+1, y)
(x-1, y+1)	(x, y+1)	(x+1, y+1)

As before, some of the points in $N_D(p)$ and $N_g(p)$ fall outside the image if (x,y) is on the border of the image.

Adjacency and Connectivity

- Let V: a set of intensity values used to define adjacency and connectivity.
- In a binary image, $V = \{1\}$, if we are referring to adjacency of pixels with value 1.
- In a gray-scale image, the idea is the same, but *V* typically contains more elements, for example, *V* = {180, 181, 182, ..., 200}
- If the possible intensity values 0 255, V set can be any subset of these 256 values.

Types of Adjacency

- **1. 4-adjacency:** Two pixels p and q with values from V are 4-adjacent if q is in the set $N_4(p)$.
- **2. 8-adjacency:** Two pixels p and q with values from V are 8-adjacent if q is in the set $N_8(p)$.
- 3. m-adjacency =(mixed)

Types of Adjacency

m-adjacency:

Two pixels p and q with values from V are m-adjacent if :

- q is in $N_4(p)$ or
- q is in $N_D(p)$ and the set $N_A(p) \cap N_A(q)$ has no pixel whose values are from V (no intersection)
- Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the ambiguities that often arise when 8-adjacency is used.

Types of Adjacency

- In this example, we can note that to connect between two pixels (finding a path between two pixels):
 - In 8-adjacency way, you can find multiple paths between two pixels
 - While, in m-adjacency, you can find only one path between two pixels
- So, m-adjacency has eliminated the multiple path connection that has been generated by the 8-adjacency.
- Two subsets S1 and S2 are adjacent, if some pixel in S1 is adjacent to some pixel in S2. Adjacent means, either 4-, 8- or m-adjacency.

A Digital Path

- A digital path (or curve) from pixel p with coordinate (x,y) to pixel q with coordinate (s,t) is a sequence of distinct pixels with coordinates (x_0,y_0) , (x_1,y_1) , ..., (x_n,y_n) where $(x_0,y_0)=(x,y)$ and $(x_n,y_n)=(s,t)$ and pixels (x_i,y_i) and (x_{i-1},y_{i-1}) are adjacent for $1 \le i \le n$
- n is the length of the path
- If $(x_0, y_0) = (x_n, y_n)$, the path is closed.
- We can specify 4-, 8- or m-paths depending on the type of adjacency specified.

Connectivity

- Let *S* represent a subset of pixels in an image, two pixels *p* and *q* are said to be connected in *S* if there exists a path between them consisting entirely of pixels in *S*.
- For any pixel p in S, the set of pixels that are connected to it in S is called a connected component of S.

Image Enhancement

Spatial Domain Methods: manipulates the pixel of a given image (in the image space) for enhancement.

Frequency Domain Methods: manipulates the Fourier transform of a given image for enhancement.

