EE 433 Intro. to DSP, Computer HW Part#2 (due to June 7, 2021)

NOTE: For plotting the amplitudes in **time**-domain, use **LINEAR** scale. For plotting the amplitudes in **frequency**-domain use **LOGARITMIC** scale.

- 5. Starting from your solution in question 1 of Computer HW Part #1 and using the frequency transformations of low-pass filters described in ed. 3 of the textbook (pp.526-532, section 7.4), design a high-pass filter with cut-off frequency $\omega_p = 0.7\pi$:
 - (a) Give the system function, H(z), of the designed filter.
 - (b) Plot the magnitude of frequency response, indicating the corner frequencies corresponding to passband and stopband amplitude design targets given in (1).
- 6. Starting from your solution in question 1 of Computer HW Part #1 and using the frequency transformations of low-pass filters described in ed. 3 of the textbook (pp.526-532, section 7.4), design a band-pass filter with cut-off frequencies $\omega_{p_1} = 0.3\pi$ and $\omega_{p_2} = 0.5\pi$:
 - (a) Give the system function, H(z), of the designed filter.
 - (b) Plot the magnitude of frequency response, indicating the corner frequencies corresponding to passband and stopband amplitude design targets given in (1).

GOTO NEXT PAGE FOR PROBLEMS 7 AND 8

- 7. Consider the DTFT shown below. That ideal filter will be approximated using a Kaiser window. The parameters of the design are $A_1/A_2 \ge 15$ dB and $A_2/A_3 \ge 25$ dB. Additionally, each transition band is not wider than 0.1π , that is the separation of successive critical frequencies obey the rule: $|\omega_i \omega_{i+1}| \le 0.1\pi$
 - (a) Give the formula of h[n], the impulse response of the DT-filter.
 - (b) Plot h[n].
 - (c) Plot the magnitude of the frequency response of the designed DT-filter. Check the gains at the critical frequencies.

8. A signal is defined as

$$x[n] = \cos(2 * \pi * 0.3 * n)$$
 for $n = 1, 2, ..., 15$.

Interpolate in time domain by a factor of 4 using zero padding in frequency domain. Plot all of the signals including every intermediate step in this procedure.

Instructions:

- Submit as a pdf-file report.
- Show your work. Give intermediate results where you think it useful.
- Also supply computer routines in an appendix.