SISTEMAS E SINAIS - EXERCÍCIO II

SÉRGIO CORDEIRO

1. Simular o sistema descrito pela equação abaixo (oscilador de diferença dada), nas situações de entrada nula e de entrada forçada, e analisar os resultados:

(1)
$$\frac{d^2x}{dt^2} + 0.2\frac{dx}{dt} - x + x^3 = 0.3\cos(\omega t)$$

A equação 1 deve ser reescrita da seguinte maneira para simulação:

(2)
$$\frac{d^2x}{dt^2} = 0.3\cos(\omega t) - 0.2\frac{dx}{dt} + x - x^3$$

O diagrama correspondente à equação 2 é o seguinte:

A resposta natural é obtida alterando-se para zero o multiplicador da fonte de sinal na entrada e estabelecendo valores não nulos para o estado inicial. Os gráficos da amplitude de x em função do tempo para os dois tipos de resposta são exibidos abaixo. Como mostram as figuras, a frequência do sinal de entrada influi pouco na forma da saída, que se torna mais estável com o aumento de ω . A resposta mostra uma característica fortemente oscilatória, mesmo na ausência de sinal de entrada e com estado inicial quase nulo.

Resposta forçada do oscilador, com $\omega = 2~mHz$

Resposta forçada do oscilador, com $\omega=20~Hz$

Resposta forçada do oscilador, com $\omega = 0.2~Hz$

Resposta forçada do oscilador, com $\omega=2~Hz$

Resposta natural do oscilador, com x(0) = 0.1, x'(0) = 0

Resposta natural do oscilador, com x(0) = 0, x'(0) = 1

Resposta natural do oscilador, com x(0) = -0.1, x'(0) = -0.5

Resposta natural do oscilador, com x(0) = 1, x'(0) = 0

As figuras abaixo ilustram o comportamento de $\frac{dx}{dt}$ para resposta natural. Um fenômeno interessante ocorre quando x'(0)=0 e x(0)=1: as oscilações desaparecem; trata-se de um ponto de equilíbrio instável.

Resposta natural x(t) com x(0) = 1, x'(0) = 2

Resposta natural x'(t) com x(0) = 1, x'(0) = 2

Resposta natural x(t) com x(0) = 1, x'(0) = 0

Resposta natural x'(t)com x(0) = 1, x'(0) = 0

Resposta natural x(t) com x(0) = 2, x'(0) = 0

Resposta natural x'(t)com x(0) = 2, x'(0) = 0

2. Simular o sistema descrito pela equação abaixo (oscilador de van der Pol), nas situações de entrada nula e de entrada forçada, e analisar os resultados:

(3)
$$\frac{d^2x}{dt^2} - \frac{1}{3}(1 - x^2)\frac{dx}{dt} + x = A\sin(\omega t)$$

A equação 3 deve ser reescrita da seguinte maneira para simulação:

(4)
$$\frac{d^2x}{dt^2} = A\sin(\omega t) + \frac{1}{3}(1-x^2)\frac{dx}{dt} - x$$

O diagrama correspondente à equação 4 é o seguinte:

A resposta natural é obtida alterando-se para zero o valor de A e estabelecendo valores não nulos para o estado inicial. Os gráficos da amplitude de x em função do tempo para os dois tipos de resposta são exibidos abaixo. Como mostram as figuras, o oscilador possui basicamente 3 regiões de funcionamento:

- i. uma onde a resposta é linear, ou próxima disso
- ii. uma onde a resposta é oscilatória
- iii. uma onde a resposta não é limitada (instável)

A frequência e a amplitude do sinal de entrada, bem como o estado inicial, determinam em que região o oscilador cairá. O aumento de $A,\,\omega,\,x(0)$ e x'(0) tornam o circuito menos estável.

Resposta forçada do oscilador, com $A=1,~\omega=1~mHz$

Resposta forçada do oscilador, com $A=1,~\omega=0.1~Hz$

Resposta forçada do oscilador, com $A=1,~\omega=1~Hz$

Resposta forçada do oscilador, com $A=0.5,~\omega=1~Hz$

Resposta forçada do oscilador, com $A=0.33,~\omega=1~Hz$

Resposta forçada do oscilador, com $A=0.33,~\omega=0.75~Hz$

Resposta natural do oscilador, com x(0) = -1, x'(0) = 0

Resposta natural do oscilador, com x(0) = 0, x'(0) = 1

Resposta natural do oscilador, com x(0) = 1, x'(0) = -1

Resposta natural do oscilador, com x(0) = 0.5, x'(0) = 0.5

As figuras abaixo ilustram o comportamento de $\frac{dx}{dt}$ para resposta natural. Verifica-se que a resposta é limitada para os casos em que x(t) também o é.

Resposta natural x(t) com x(0) = 0.1, x'(0) = 0

Resposta natural x(t) com x(0) = 0.1, x'(0) = 0.1

Resposta natural x'(t)com x(0) = 0.1, x'(0) = 0.1

Resposta natural x(t) com x(0) = 0.2, x'(0) = 0.2

Resposta natural x'(t) com x(0) = 0.2, x'(0) = 0.2

Resposta natural x(t) com x(0) = 0.9, x'(0) = 0.9

Resposta natural x'(t) com x(0) = 0.9, x'(0) = 0.9

Resposta natural x(t)com x(0) = 1.0, x'(0) = 1.0

Resposta natural x'(t) com x(0) = 1.0, x'(0) = 1.0

3. Considerando o processo de modulação em amplitude (AM), interpretar a alteração do espectro de frequências do sinal original:

Na modulação em amplitude tradicional, o sinal f(t) é multiplicado por uma portadora g(t) cuja forma geral é $g(t) = A\cos(\omega_c t)$, com $\omega_c >> \omega_u$, onde ω_u é a maior das frequências presentes em f(t). O sinal modulado h(t) pode ser escrito, então, como h(t) = f(t) g(t).

No domínio da frequência, a multiplicação no domínio do tempo corresponde a uma convolução, assim H(s)=F(s)*G(s). Como $\omega_c>>\omega_u$, podemos ignorar a resposta transitória e considerar apenas a frequência real. Nesse caso, $H(\omega)=F(\omega)*G(\omega)$; o espectro original de frequências $F(\omega)$ é, assim, transformado no espectro $H(\omega)$.

Como g(t) é, conhecido, podemos calcular $G(\omega)$. Como a transformada de Laplace $\mathcal{L}\{g(t)\}$ só é definida se $\Re s>0$] no caso de funções senoidais, é melhor usar a transformada de Fourier ¹:

$$G(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} A \cos(\omega_c t) e^{-j\omega t} dt$$

$$= A \int_{-\infty}^{\infty} \frac{1}{2} \left(e^{j\omega_c t} + e^{-j\omega_c t} \right) e^{-j\omega t} dt$$

$$= A \left[\int_{-\infty}^{\infty} e^{-j(\omega - \omega_c)t} dt + \int_{-\infty}^{\infty} e^{-j(\omega + \omega_c)t} dt \right]$$

$$= \begin{cases} 0 & \omega \neq \pm \omega_c \\ \pi A \delta(\omega) & \omega = \pm \omega_c \end{cases}$$

$$= \pi A \left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c) \right]$$

e então calcular $H(\omega)$, observando a propriedade da convolução com o impulso:

$$H(\omega) = F(\omega) * G(\omega)$$

$$= F(\omega) * \pi A \left[\delta (\omega - \omega_c) + \delta (\omega + \omega_c) \right]$$

$$= \pi A \left[F(\omega - \omega_c) + F(\omega + \omega_c) \right]$$

 $^{^{1}}$ Aqui foi adotada como convenção a transformada não normalizada.

O espectro do sinal modulado, $H(\omega)$, possui duas componentes, cada uma delas com a mesma forma do espectro do sinal original, e centradas em $\xi=\pm\omega_c$. O sinal original possui frequências na faixa $-\omega_u\leq\omega\leq\omega_u$, portanto a largura de banda $\mathrm{BW}_f=2\omega_u=4\pi f_u$, com $f_u=\frac{\omega_u}{2\pi}$. Se considerarmos um limite inferior ω_l para $|\omega|$, então $\mathrm{BW}_s=2(\omega_u-\omega_l)$. Neste caso, pode-se falar de duas bandas separadas, uma banda inferior onde $-\omega_u\leq\omega\leq-\omega_l$ e uma superior onde $\omega_s\leq\omega\leq\omega_u$. Evidentemente, a largura de banda total permanece a mesma; na saída, $\mathrm{BW}_h=2\mathrm{BW}_f$ em todos os casos.

Como $\omega_c > \omega_u$, apenas a componente centrada em ω_c é fisicamente real. Ademais, as componentes $\omega < 0$ carregam informação redundante com relação às componentes $\omega > 0$. Isso torna vantajoso suprimir uma delas antes da transmissão, de forma a economizar energia e diminuir a necessidade de largura de banda do transmissor. Essa alternativa é conhecida como single sideband (SSB), em oposição à tradicional, conhecida como double sideband (DSB).

Em adição às bandas laterais, aparece em $H(\omega)$ uma componente $\xi=\omega_c$ correspondente aos momentos de silêncio, em que o sinal f(t) não está presente e assim pode-se dizer que $\omega=0$. Essa componente também não carrega informação nenhuma e, portanto, pode ser suprimida; tal alternativa é conhecida como *supressed carrier* (SC) [?].

4. Considerando o circuito elétrico abaixo e entrada de sinal em degrau:

- a) Traçar a curva de tensão no capacitor em função do tempo para diversos valores de R.
- b) Justificar, analisando a situação no domínio da frequência, por que a subida da tensão fica mais lenta com o aumento de R.
- c) Traçar a curva de tensão no indutor em função do tempo para diversos valores de R.
- d) Analisar o comportamento da tensão no indutor no domínio da frequência.

As funções de transferência do circuito são as seguintes:

$$G_C(s) = \frac{V_C(s)}{V(s)}$$

$$= \frac{\frac{1}{Cs}}{R + Ls + \frac{1}{Cs}}$$

$$= \frac{\frac{1}{C}}{Rs + Ls^2 + \frac{1}{C}}$$

$$= \frac{8}{0.1s^2 + Rs + 8}$$

$$e$$

$$G_L(s) = \frac{V_L(s)}{V(s)}$$

$$= \frac{Ls}{R + Ls + \frac{1}{Cs}}$$

$$= \frac{Ls^2}{Rs + Ls^2 + \frac{1}{C}}$$

(6)

 $=\frac{0.1s^2}{0.1s^2+Rs+8}$

O diagrama de simulação correspondente ao circuito é o seguinte:

Os resultados obtidos para diversos valores de R, entrada em degrau e estado inicial nulo estão ilustrados nas figuras abaixo. À medida que R aumenta, a resposta vai ficando mais estável e mais lenta.

 $R=4.5~\Omega \qquad \qquad R=6~\Omega$ Analisando a situação no domínio da frequência, pode-se dizer que o aumento de R provoca uma diminuição da frequência de ressonância do circuito. Como a função de transferência $G_C(s)$ é a de um filtro passabaixas, o resultado é que as altas frequências vão sendo cada vez mais suprimidas, o que explica a subida mais lenta de $V_C(t)$. Já a função de $G_L(s)$ é a de um filtro passa-altas, por isso a diminuição da frequência de ressonância do circuito não afeta muito o espectro de $V_L(\omega)$, a não ser para valores muito baixos de R, que fazem com que o circuito apresente oscilações.

REFERÊNCIAS

[LATHI 1998] Bhagawandas Pannalai LATHI, **Signal Processing and Linear Systems**, Cambridge Berkeley Press, Carmichael, 1998, ISBN 0-941413-35-7, Chap. 4.7, pp. 277 a 289.

Simulação realizada com **Scilab** 5.5.2:

https://www.scilab.org

Texto formatado com **pdflatex** em ambiente **MiKTeX** 2.9:

http://miktex.org/download/