1 Diskrétní matematika – příklady

1. přednáška

Příklad 15/47

$$n^{2} - 1 = (n+1)(n-1) \Rightarrow (n+1 \mid n^{2} - 1)$$

$$(n+1 \mid n^{2} + 1) \land (n+1 \mid n^{2} - 1) \Rightarrow (n+1 \mid (n^{2} + 1) - (n^{2} - 1))$$

$$\Rightarrow (n+1 \mid 2) \Rightarrow n+1 \leqslant 2 \Rightarrow n \leqslant 1 \Rightarrow n \in \mathbb{N} = 1$$

Příklad 25/47

$$\exists s, t \in \mathbb{Z} : \left(\wedge \begin{array}{ccc} a & = & s \cdot m + 1 \\ b & = & t \cdot m + 1 \end{array} \right) \Rightarrow \exists u \in \mathbb{Z} : ab = u \cdot m + 1$$

$$ab = (s \cdot m + 1)(t \cdot m + 1) = stm^2 + tm + sm + 1 = (stm + t + s)m + 1$$

$$\exists u = stm + t + s : ab = u \cdot m + 1$$

2. přednáška

Příklad 9.1/24

$$5^{20} \% 26 = ?$$

$$(5^2 = 25) \equiv -1 \pmod{26}$$

$$(5^{20} = (5^2)^{10}) \equiv (-1)^{10} \pmod{26}$$

$$5^{20} \equiv 1 \pmod{26}$$

$$5^{20} \% 26 = 1 \% 26 = 1$$

Příklad 9.2/24

$$\forall n \in \mathbb{N} : 7 \mid 37^{n+2} + 16^{n+1} + 23^{n}?$$

$$37 \equiv 16 \equiv 23 \equiv 2 \pmod{7}$$

$$37^{n+2} \equiv 2^{n+2} \pmod{7}$$

$$16^{n+1} \equiv 2^{n+1} \pmod{7}$$

$$23^{n} \equiv 2^{n} \pmod{7}$$

$$37^{n+2} + 16^{n+1} + 23^{n} \equiv 2^{n+2} + 2^{n+1} + 2^{n} \pmod{7}$$

$$\equiv 2^{n}(4+2+1) = 2^{n} \cdot 7 = 0 \pmod{7}$$

$$7 \mid 37^{n+2} + 16^{n+1} + 23^{n}$$

Příklad 10/24

$$n = (835^5 + 6)^{18} - 1$$

 $112 \mid n \iff 16 \mid n \land 7 \mid n$ [16,7] = $16 \cdot 7 = 112$

 $7 \mid n$:

$$(835^{5} + 6)^{18} - 1 \equiv (2^{5} + 6)^{18} - 1$$

$$\equiv 38^{18} - 1$$

$$\equiv 3^{18} - 1 = 27^{6} - 1$$

$$\equiv (-1)^{6} - 1 = 0 \pmod{7}$$

 $16 \mid n$:

$$(835^{5} + 6)^{18} - 1 \equiv (3^{5} + 6)^{18} - 1 = (3 \cdot 81 + 6)^{18} - 1$$
$$\equiv (3 \cdot 1 + 6)^{18} - 1$$
$$\equiv 9^{18} - 1 = 81^{9} - 1$$
$$\equiv 1^{9} - 1 = 0 \pmod{16}$$

3. přednáška

Příklad 48.1/73

$$\varphi(72) = ?$$

$$\varphi(72) = \varphi(2^3 \cdot 3^2)
= 72 \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{3})
= 72 \cdot \frac{1}{2} \cdot \frac{1}{3}$$

Alternativně:

$$\varphi(72) = \varphi(8) \cdot \varphi(9)
= 4 \cdot 6
= 24$$

Příklad 48.2/73

Dokažte, že pro $\forall n \in \mathbb{N}$ platí $\varphi(4n+2) = \varphi(2n+1)$

$$\varphi(4n+2) = \varphi(2) \cdot \varphi(2n+1)$$
$$= \varphi(2n+1)$$

Příklad 61/73

Určete řád čísla 2 modulo 7.

$$2^1 = 2 \not\equiv 1 \pmod{7}$$

 $2^2 = 4 \not\equiv 1 \pmod{7}$
 $2^3 = 8 \equiv 1 \pmod{7}$

Řádem čísla 2 modulo 7 je 3.

4. přednáška

Příklad 23/62

Řešte $39x \equiv 41 \pmod{47}$

1) Řešení pomocí Eulerovy věty

$$\begin{array}{rcl} 39 \cdot x & \equiv & 41 \pmod{47} \\ 39^{\varphi(m)-1} \cdot 39 \cdot x & \equiv & 39^{\varphi(m)-1} \cdot 41 \pmod{47} \\ x & \equiv & 39^{45} \cdot 41 \pmod{47} \end{array}$$

Toto řešení je neoptimální, jelikož vyžaduje výpočet vysoké mocniny.

2) Řešení pomocí Bezoutovy věty

$$\exists k, l \in \mathbb{Z} : 39k + 47l = 1$$
$$39k \equiv 1 \pmod{47}$$

Zjevně je, v modulo 47, k inverzním prvkem k 39, což nám umožňuje provést následující:

$$39x \equiv 41 \pmod{47}$$
$$(39k \equiv 1) \cdot x \equiv 41k \pmod{47}$$

Zbývá nám nalézt hodnotu k pomocí Euklidova algoritmu:

$$47 = 1 \cdot 39 + 8$$

$$39 = 4 \cdot 8 + 7$$

$$8 = 1 \cdot 7 + 1$$

$$= 8 - 7$$

$$= 8 - (39 - 4 \cdot 8)$$

$$= 5 \cdot 8 - 39$$

$$= 5 \cdot (47 - 39) - 39$$

$$= 5 \cdot 47 - 6 \cdot 39$$

Platí tedy k = -6 a proto

$$x \equiv 41 \cdot (-6) \pmod{47}$$
$$\equiv -246 \pmod{47}$$
$$\equiv -11 \pmod{47}$$
$$\equiv 36 \pmod{47}$$

3) Řešení ad-hoc

$$39x \equiv 41 \pmod{47}$$

$$-8x \equiv -6 \pmod{47}$$

$$4x \equiv 3 \pmod{47}$$

$$4x \equiv -44 \pmod{47}$$

$$x \equiv -11 \pmod{47}$$

$$\equiv 36 \pmod{47}$$

Příklad 42/62 Řešte soustavu

$$x \equiv 1 \pmod{10}$$

 $x \equiv 5 \pmod{18}$
 $x \equiv -4 \pmod{25}$

Řešení Existuje řešení v modulu lcm(10, 18, 25) = 450:

Příklad Řešte lineární kongruenci $1723x \equiv 4321 \pmod{104}$.

Řešení Možným řešením je řešení rovnice

$$x \equiv 4321 \cdot 1723^{\varphi(104)-1} \pmod{104}$$

nicméně úprava pravé části kongruence by vyžadovala značné úsilí. CRT nám dává elegantnější nástroj pro řešení takovýchto případů. Provedeme prvočíselný rozklad $104=8\cdot 13$ a vyjádříme zadanou lineární kongruenci v těchto modulech:

$$3x \equiv 1 \pmod{8}$$
$$7x \equiv 5 \pmod{13}$$

CRT nám nyní zajišťuje, že existuje právě jedno řešení této soustavy modulo $8 \cdot 13 = 4321$, což je právě námi hledané řešení. Počítáme tedy:

$$3x \equiv 1 \pmod{8}$$
 $\equiv 9 \pmod{8}$
 $x \equiv 3 \pmod{8}$
 $x = 8k + 3$
 $7x \equiv 5 \pmod{13}$
 $7(8k + 3) \equiv 5 \pmod{13}$
 $56k \equiv -16 \pmod{13}$
 $4k \equiv k \equiv -4 \pmod{13}$
 $= 13t - 4$
 $x = 8k + 3$
 $= 8(13t - 4) + 3$
 $= 104t - 29$
 $\equiv 75 \pmod{104}$

Příklad Řešte $x \equiv 15^{14^{13}} \pmod{11}$.

$\check{\mathbf{R}}$ ešení

1. vnitrosemestrálka

Příklad Nalezněte všechna $k, n \in \mathbb{N}^+$, pro které je číslo $k^{n+2} + 2k^n$ prvočíslo.

Řešení Zjevně $k^{n+2}+2k^n=k(k^{n+1}+2k^{n-1})$, tzn. $k=\{1\}$. Zároveň platí, že pro $\forall n\in\mathbb{N}:1^{n+2}+2\cdot 1^n=3$, což je prvočíslo. Tímto jsme dostali naše řešení.

Příklad Řešte soustavu

$$33x \equiv 45 \pmod{63}$$

$$12x \equiv 5 \pmod{17}$$

Řešení

$$\begin{array}{rcl}
12x & \equiv & 5 \pmod{17} \\
-5x & \equiv & 5 \pmod{17} \\
x & \equiv & -1 \pmod{17} \\
x & = & 17k - 1
\end{aligned}$$

$$\begin{array}{rcl}
33x & \equiv & 45 \pmod{63} \\
11x & \equiv & 15 \pmod{21} \\
11(17k - 1) & \equiv & 15 \pmod{21} \\
187k & \equiv & 26 \pmod{21} \\
19k & \equiv & 26 \pmod{21} \\
-2k & \equiv & 26 \pmod{21} \\
-2k & \equiv & 26 \pmod{21} \\
k & \equiv & -13 \pmod{21} \\
k & \equiv & -13 \pmod{21} \\
k & \equiv & 8 \pmod{21} \\
k & \equiv & 17k - 1 \\
x & = & 17(21s + 8) - 1 \\
x & = & 357s + 135 \\
x & \equiv & 135 \pmod{357}
\end{aligned}$$

Příklad Určete poslední dvě cifry čísla 4⁷⁸⁹.

Řešení Řešíme lineární kongruenci $x \equiv 4^{7^{8^9}} \pmod{100}$. Využijeme opět obrácenou CRT a provedeme prvočíselný rozklad $100 = 2^2 \cdot 5^2$. Řešením kongruence je tedy řešení soustavy

$$x \equiv 4^{7^{8^9}} \pmod{2^2}$$
$$x \equiv 4^{7^{8^9}} \pmod{5^2}$$

Řešíme

$$x = 4^{78^9} = (2^2)^{7^{8^9}} \pmod{2^2}$$

$$= 0 \pmod{2^2}$$

$$= 4s$$

$$x = 4^{7^{8^9}} \pmod{5^2}$$

$$4s = 4^{7^{8^9}-1} \pmod{5^2}$$

$$s = 4^{7^{8^9}-1} \pmod{5^2}$$

$$s = 4^t, 4^t = 4^{7^{8^9}-1} \pmod{5^2}$$

$$\Leftrightarrow t = 7^{8^9} - 1 \pmod{5^2}$$

$$\Leftrightarrow t = 7^{8^9} - 1 \pmod{10}, \text{ kde } 10 \text{ je řád } 4 \text{ modulo } 5^2$$

$$t + 1 = 7^{8^9} \pmod{10}$$

$$t + 1 = 7^u, 7^u = 7^{8^9} \pmod{10}$$

$$\Leftrightarrow u = 8^9 \pmod{10}$$

$$u = 0 \pmod{4}, \text{ kde } 4 \text{ je řád } 7 \text{ modulo } 10$$

$$t + 1 = 3^u = 3^0 = 1 \pmod{4}, \text{ kde } 4 \text{ je řád } 7 \text{ modulo } 10$$

$$t = 0 \pmod{4}$$

$$t + 1 = 3^u = 3^0 = 1 \pmod{4}$$

$$t = 0 \pmod{4}$$

$$t + 1 = 3^u = 3^0 = 1 \pmod{4}$$

$$t = 0 \pmod{4}$$

Příklad Určete poslední dvě cifry čísla $2^{7^{8^9}}$.

Řešení Řešíme lineární kongruenci $x \equiv 2^{7^{8^9}}$ (mod 100). Využijeme opět obrácenou CRT a provedeme prvočíselný rozklad $100 = 2^2 \cdot 5^2$. Řešením kongruence je tedy řešení soustavy

$$x \equiv 2^{7^{8^9}} \pmod{2^2}$$
$$x \equiv 2^{7^{8^9}} \pmod{5^2}$$

Řešíme

$$x \equiv 2^{78^9} \qquad (\text{mod } 2^2)$$

$$\equiv 2^2 \cdot 2^{78^9 - 1} \qquad (\text{mod } 2^2)$$

$$\equiv 0 \cdot 2^{78^9 - 1} \qquad (\text{mod } 2^2)$$

$$\equiv 0 \qquad (\text{mod } 2^2)$$

$$\equiv 0 \qquad (\text{mod } 2^2)$$

$$\equiv 0 \qquad (\text{mod } 2^2)$$

$$\equiv 4s \qquad (\text{mod } 2^2)$$

$$\equiv 4s \qquad (\text{mod } 5^2)$$

$$4s \equiv 2^{78^9} - 2 \qquad (\text{mod } 5^2)$$

$$s \equiv 2^{78^9 - 2} \qquad (\text{mod } 5^2)$$

$$s \equiv 2^t, 2^t \equiv 2^{78^9 - 2} \qquad (\text{mod } 5^2)$$

$$\Leftrightarrow t \equiv 7^{8^9} - 2 \qquad (\text{mod } 5^2)$$

$$\Leftrightarrow t \equiv 7^{8^9} - 2 \qquad (\text{mod } 2^2)$$

$$\Leftrightarrow t \equiv 7^{8^9} - 2 \qquad (\text{mod } 2^2)$$

$$\Leftrightarrow t \equiv 7^{8^9} - 2 \qquad (\text{mod } 2^2)$$

$$t + 2 \equiv 7^u, 7^u \equiv 7^{8^9} \qquad (\text{mod } 2^2)$$

$$\Leftrightarrow u \equiv 8^9 \qquad (\text{mod } 2^2)$$

$$\equiv 4^9 \cdot 2^9 \qquad (\text{mod } 2^2)$$

$$\equiv 4^9 \cdot 2^9 \qquad (\text{mod } 2^2)$$

$$\equiv 4^9 \cdot 2^9 \qquad (\text{mod } 2^2)$$

$$\equiv 4^9 \cdot 0 \qquad (\text{mod } 4)$$

$$\equiv 4^9 \cdot 0 \qquad (\text{mod } 4)$$

$$\equiv 0 \qquad (\text{mod } 4)$$

$$t + 2 \equiv 7^u = 7^0 = 1 \qquad (\text{mod } 2^2)$$

$$t \equiv -1 \equiv 19 \qquad (\text{mod } 2^2)$$

$$s \equiv 2^t = 2^{19} \qquad (\text{mod } 2^2)$$

$$s \equiv 2^t = 2^{19} \qquad (\text{mod } 2^2)$$

$$s \equiv 2^t = 2^{19} \qquad (\text{mod } 2^2)$$

$$s \equiv 2^t = 2^{19} \qquad (\text{mod } 2^2)$$

$$s \equiv 1^3 \qquad (\text{mod } 2^2)$$

$$s$$

Příklad Vyřešte soustavu kongruencí:

$$20x \equiv 150 \pmod{250}$$

$$11x \equiv 17 \pmod{21}$$

Řešení Platí, že $\gcd(20,250)=10 \land 10 \mid 150 \text{ a } \gcd(11,21)=1 \land 1 \mid 21.$ Obě lineární kongruence tedy mají řešení. Řešíme:

$$20x \equiv 150 \pmod{250} / : 10$$

$$2x \equiv 15 \pmod{25}$$

$$2x \equiv 40 \pmod{25} / : 2$$

$$x \equiv 20 \pmod{25}$$

$$x = 25s + 20$$

$$11x \equiv 17 \pmod{21}$$

$$11(25s + 20) \equiv 17 \pmod{21}$$

$$275s \equiv -203 \pmod{21}$$

$$2s \equiv -14 \pmod{21} / : 2$$

$$s \equiv -7 \equiv 14 \pmod{21}$$

$$s = 21t + 14$$

$$x = 25(21t + 14) + 20$$

$$x = 525t + 370$$

$$x \equiv 370 \pmod{525}$$

5. přednáška

Příklad Drsně a svižně, st 634 - 637, příklady

Příklad Drsně a svižně, st 636, př 10.91

Mocněním na -1 (dělením) dostáváme v modulární aritmetice inverzní prvek daného čísla v aktuálním modulu. Tedy $(-9)^{-1}$ (mod 41) je takové číslo, že

$$(-9)^{-1} \cdot (-9) \equiv 1 \pmod{41}$$

Pokud se tedy vrátíme k našemu příkladu, platí, že

$$-9 \cdot 9 \equiv -81 \equiv 1 \pmod{41}$$

a zjevně tedy $(-9)^{-1} \equiv 9 \pmod{41}$. Pro samotné zjištění inverzního prvku aplikujeme postup z příkladu ze strany 4. Následující ukázka využívá postup s pomocí Bezoutovy věty. Řešíme tedy lineární kongruenci

$$-9x \equiv 1 \pmod{41}$$

Jelikož (9,41) = 1, platí podle Bezoutovy věty

$$\exists k, l \in \mathbb{Z} : -9k + 41l = 1$$
$$-9k \equiv 1 \pmod{41}$$

Zjevně tedy k je hledaný inverzní prvek k -9 v modulu 41. Zbývá nám nalézt hodnotu k pomocí Euklidova algoritmu:

$$41 = 4 \cdot 9 + 5$$

$$9 = 1 \cdot 5 + 4$$

$$5 = 1 \cdot 4 + 1$$

$$4 = 4 \cdot 1 + 0$$

$$1 = 5 - 4$$

$$= 5 - (9 - 1 \cdot 5)$$

$$= 2 \cdot 5 - 9$$

$$= 2 \cdot (41 - 4 \cdot 9) - 9$$

$$= 2 \cdot 41 - 9 \cdot 9$$

Tedy vidíme, že k je skutečně 9.

2. vnitrosemestrálka

Příklad Určete generující a kontrolní matice lineárního (8, 3)-kódu s polynomem $p(x) = x^5 + x^4 + x + 1$. V tomto kódování jste obdrželi kódové slovo 10111011. Určete odeslanou zprávu ze předpokladu, že během přenosu došlo k minimálnímu počtu chyb. 123

Řešení Hledáme generující matici
$$G = \begin{pmatrix} P \\ \mathbb{I}_k \end{pmatrix} = \begin{pmatrix} r_1 & r_2 & r_3 \\ e_1 & e_2 & e_3 \end{pmatrix}$$
:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$$
, kde e_i představuje k -ární přenášenou zprávu

$$r_1 \equiv e_1 \cdot x^{n-k} \equiv x^5 \equiv x^4 + x + 1 \pmod{p(x)} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$r_{1} \equiv e_{1} \cdot x^{n-k} \equiv x^{5} \equiv x^{4} + x + 1 \pmod{p(x)} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x, \qquad r_{2} \equiv x^{6} \equiv x^{4} + x^{2} + 1 \pmod{p(x)} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x^2, \quad r_3 \equiv x^7 \equiv x^4 + x^3 + 1 \pmod{p(x)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{1} & 1 & \frac{1}{1} \\ \hline 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, H = \begin{pmatrix} \mathbb{I}_{n-k} P \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

¹Teorie: Drsně a svižně, st 700 - 704

²Příklady: Drsně a svižně, st 700, př 11.141

³Pro pochopení fungování viz *Poznámky, 1.11.4 – Lineární kódy* a Lineární algebra (klíčová slova: Jádro zobrazení, faktorové prostory, podprostory (přednášky MB201: 6 a 7))

Nyní spočítáme syndrom \vec{s} přijatého slova $\vec{u} = 10111011$ jako $H \cdot \vec{u}$:

$$\vec{s} = H \cdot \vec{u} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & | & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Syndrom \vec{s} je nenulový, zpráva tedy byla přenesena s chybami. Nejprve nalezneme kódová slova s nejmenší hammingovou vzdáleností od syndromu \vec{s} :

Zpráva \vec{m}	Kód. slovo $\vec{v} = G \cdot \vec{m}$	Reprezentant $\vec{v} - \vec{s}$	Hamm. vzdálenost
000	00000 000	10001 000	2
001	10011 001	00010 001	2
010	10101 010	00100 010	2
011	00110 011	10111 011	6
100	11001 100	01000 100	2
101	01010 101	11011 101	6
110	01100 110	11101 110	6
111	11111 111	01110 111	6

V posledním kroku odečteme od přijatého kódového slova \vec{u} vedoucí reprezentanty \vec{w} s nejmenší hammingovskou vzdáleností od syndromu \vec{s} :

Kódové slovo \vec{u}	Reprezentant w	$\vec{u} - \vec{w}$	Opravená zpráva \vec{m}'
10111 011	10001 000	00110 011	011
10111 011	00010 001	10101 010	010
10111 011	00100 010	10011 001	001
10111 011	01000 100	11111 111	111

Možnými přijatými zprávami tedy jsou {000,010,001,111}.

1. závěrečná písemka

Příklad Najděte nějaký primitivní kořen modulo 79.

Řešení Pro primitivní kořen g modulo 79 musí platit následující:

1.
$$g^{\frac{79-1}{2}} \equiv -1 \pmod{79}$$

2. $\varphi(79)$ je řádem g modulo 79

Nejprve hledáme kandidátní primitivní kořen podle prvního z požadavků:

1. Testujeme 2 jako kandidátní primitivní kořen modulo 79:

(a)
$$2^{39} = 2^{32} \cdot 2^4 \cdot 2^3 = ((((2^2)^2)^2)^2)^2 \cdot (2^2)^2 \cdot 2^3$$

(b)
$$2^2 \equiv 4 \pmod{79}$$

(c)
$$2^4 \equiv 4^2 \equiv 16 \pmod{79}$$

(d)
$$2^8 \equiv 16^2 \equiv 19 \pmod{79}$$

(e)
$$2^{16} \equiv 19^2 \equiv 45 \pmod{79}$$

(f)
$$2^{32} \equiv 45^2 \equiv 50 \pmod{79}$$

(g)
$$2^{39} \equiv 2^{32} \cdot 2^4 \cdot 2^3 \equiv 50 \cdot 16 \cdot 8 \equiv 10 \cdot 8 \equiv 1 \not\equiv -1 \pmod{79}$$

2. Testujeme 3 jako kandidátní primitivní kořen modulo 79:

(a)
$$3^{39} = 3^{32} \cdot 3^4 \cdot 3^3 = ((((3^2)^2)^2)^2)^2 \cdot (3^2)^2 \cdot 3^3$$

(b)
$$3^2 \equiv 9 \pmod{79}$$

(c)
$$3^4 \equiv 9^2 \equiv 2 \pmod{79}$$

$$(d) 3^8 \equiv 2^2 \equiv 4 \pmod{79}$$

(e)
$$3^{16} \equiv 4^2 \equiv 16 \pmod{79}$$

(f)
$$3^{32} \equiv 16^2 \equiv 19 \pmod{79}$$

(g)
$$3^{39} \equiv 3^{32} \cdot 3^4 \cdot 3^3 \equiv 19 \cdot 2 \cdot 27 \equiv 38 \cdot 27 \equiv -1 \pmod{79}$$

3 je kandidátní primitivní kořen modulo 79. Nyní musíme zkontrolovat, že $\varphi(79)$ je řádem r čísla 3 modulo 79. Jelikož platí, že $r \mid \varphi(79)$ a $a^n \equiv 1 \pmod{m} \iff r \mid n$, tak nám stačí pouze zkontrolovat, že pro všechny prvočíselné dělitele d čísla $\varphi(79) = 78 = 2 \cdot 3 \cdot 13$ platí $3^{\varphi(79)/d} \not\equiv 1 \pmod{79}$:

1.
$$3^{78/2} = 3^{39} \equiv -1 \not\equiv 1 \pmod{79}$$

2.
$$3^{78/3} = 3^{26} \equiv 23 \not\equiv 1 \pmod{79}$$

3.
$$3^{78/13} = 3^6 = 3^4 \cdot 3^2 \equiv 2 \cdot 9 \equiv 18 \not\equiv 1 \pmod{79}$$

3 je tedy skutečně primitivním kořenem modulo 79.

Příklad Najděte nějaký primitivní kořen modulo 97.

Řešení Hledáme kandidátní primitivní kořen g splňující $g^{48} \equiv -1 \pmod{97}$.

- 1. Testujeme 2 jako kandidátní primitivní kořen modulo 79:
 - (a) $2^{48} = 2^{32} \cdot 2^{16} = ((((2^2)^2)^2)^2)^2 \cdot (((2^2)^2)^2)^2$
 - (b) $2^2 \equiv 4 \pmod{97}$
 - (c) $2^4 \equiv 4^2 \equiv 16 \pmod{97}$
 - (d) $2^8 \equiv 16^2 \equiv 62 \pmod{97}$
 - (e) $2^{16} \equiv 62^2 \equiv 61 \pmod{97}$
 - (f) $2^{32} \equiv 61^2 \equiv 35 \pmod{97}$
 - (g) $2^{39} \equiv 2^{32} \cdot 2^{16} \equiv 35 \cdot 61 \equiv 1 \not\equiv -1 \pmod{97}$
- 2. Testujeme 3 jako kandidátní primitivní kořen modulo 79:
 - (a) $3^{48} = 3^{32} \cdot 3^{16} = ((((3^2)^2)^2)^2)^2 \cdot (((3^2)^2)^2)^2$
 - (b) $3^2 \equiv 9 \pmod{97}$
 - (c) $3^4 \equiv 9^2 \equiv 81 \pmod{97}$
 - (d) $3^8 \equiv 81^2 \equiv 62 \pmod{97}$
 - (e) $3^{16} \equiv 62^2 \equiv 61 \pmod{97}$
 - (f) $3^{32} \equiv 61^2 \equiv 35 \pmod{97}$
 - (g) $3^{39} \equiv 3^{32} \cdot 3^{16} \equiv 35 \cdot 61 \equiv 1 \not\equiv -1 \pmod{97}$
- 3. Testujeme 4 jako kandidátní primitivní kořen modulo 79:
 - (a) $4^{48} = (2^{48})^2 \equiv 1^2 = 1 \not\equiv -1 \pmod{97}$
- 4. Testujeme 5 jako kandidátní primitivní kořen modulo 79:
 - (a) $5^{48} = 5^{32} \cdot 5^{16} = ((((5^2)^2)^2)^2)^2 \cdot (((5^2)^2)^2)^2$
 - (b) $5^2 \equiv 25 \pmod{97}$
 - (c) $5^4 \equiv 25^2 \equiv 43 \pmod{97}$
 - (d) $5^8 \equiv 43^2 \equiv 6 \pmod{97}$
 - (e) $5^{16} \equiv 6^2 \equiv 36 \pmod{97}$
 - (f) $5^{32} \equiv 36^2 \equiv 35 \pmod{97}$

(g)
$$5^{39} \equiv 5^{32} \cdot 5^{16} \equiv 36 \cdot 35 \equiv -1 \pmod{97}$$

5 je kandidátní primitivní kořen modulo 97. Nyní musíme zkontrolovat, že pro všechny prvočíselné dělitele d čísla $\varphi(97)=96=2^5\cdot 3$ platí $3^{\varphi(97)/d}\not\equiv 1$ (mod 97):

1.
$$5^{96/2} = 5^{48} \equiv -1 \not\equiv 1 \pmod{79}$$

2.
$$5^{96/3} = 5^{32} \equiv 35 \not\equiv 1 \pmod{79}$$

5 je tedy skutečně primitivním kořenem modulo 79.

Příklad Najděte všechna čísla, která mohou být gcd((5n + 4), (8n + 1)) pro nějaké $n \in \mathbb{Z}$.

Řešení Platí, že **gcd** čísel musí dělit libovolnou jejich lineární kombinaci, tedy i

$$8(5n+4) - 5(8n+1) = 32 - 5 = 27$$

Řešením tedy mohou být všechny kladné dělitele 27 (tzn $\{1,3,9,27\}$), přičemž vidíme, že skutečně jsou:

$$n=0: \gcd(4,1) = 1$$

 $n=1: \gcd(9,9) = 9$
 $n=4: \gcd(24,33) = 3$
 $n=10: \gcd(54,81) = 27$

Příklad Najděte všechna čísla, která mohou být $\gcd((5n+6), (8n+7))$ pro nějaké $n \in \mathbb{Z}$.

Řešení Platí, že **gcd** čísel musí dělit libovolnou jejich lineární kombinaci, tedy i

$$8(5n+6) - 5(8n+7) = 48 - 35 = 13$$

Řešením tedy mohou být všechny kladné dělitele 13 (tzn $\{1,13\}$), přičemž vidíme, že skutečně jsou:

$$n = 0$$
: $gcd(6, 7) = 1$
 $n = 4$: $gcd(26, 39) = 13$

Příklad Kolika způsoby lze vybrat 60 kuliček tří barev (červených, modrých a zelených), přičemž počet červených a modrých je sudý?

Řešení Víme, že:

1.
$$60 \mid (\check{c}+m+z) \Rightarrow 2 \mid (\check{c}+m+z), 2 \mid \check{c}, 2 \mid m$$

2.
$$2 \mid (\check{c}+m+z) \land 2 \mid \check{c} \Rightarrow 2 \mid (m+z)$$

3.
$$2 \mid (m+z) \land 2 \mid m \Rightarrow 2 \mid z$$

Z tohoto vyplývá, že počet kuliček každé barvy je sudý a úloha se tedy redukuje na náhodný výběr 30 kuliček tří barev, tzn.:

$$\begin{pmatrix} 3 \\ 30 \end{pmatrix} = \begin{pmatrix} 32 \\ 2 \end{pmatrix}$$

Příklad Určete zbytek čísla $14^{15^{14^{13}}}$ po dělení číslem 80.

Řešení Rovnici můžeme řešit přímo následujícím způsobem⁴:

 $[\]overline{\ ^4}$ http://forum.matematika.cz/viewtopic.php?pid=434615#p434615

Řešení Řešíme lineární kongruenci $x\equiv 14^{15^{14^{13}}}\pmod{80}$. Využijeme obrácenou CRT a provedeme prvočíselný rozklad $80=2^4\cdot 5$. Řešením kongruence je tedy řešení soustavy

$$x \equiv 14^{15^{14^{13}}} \pmod{5}$$

 $x \equiv 14^{15^{14^{13}}} \pmod{2^4}$

Řešíme

$$x \equiv 14^{15^{14^{13}}} \qquad (\text{mod } 5)$$

$$\equiv (-1)^{15^{14^{13}}} \qquad (\text{mod } 5), \text{ přičemž exponent } 15^n \text{ je lichý}$$

$$\equiv -1 \qquad (\text{mod } 5)$$

$$x = 5s - 1$$

$$x \equiv 14^{15^{14^{13}}} \qquad (\text{mod } 2^4 = 16)$$

$$\equiv (-2)^{15^{14^{13}}} \qquad (\text{mod } 16)$$

$$\equiv (-2)^4 \cdot (-2)^{15^{14^{13}} - 4} \qquad (\text{mod } 16)$$

$$\equiv 16 \cdot (-2)^{15^{14^{13}} - 4} \qquad (\text{mod } 16)$$

$$\equiv 0 \qquad (\text{mod } 16)$$

$$5s - 1 \equiv 0 \qquad (\text{mod } 16)$$

$$5s \equiv 1 \equiv -15 \qquad (\text{mod } 16) / : 5$$

$$s \equiv -3 \qquad (\text{mod } 16) / : 5$$

$$s \equiv -3 \qquad (\text{mod } 16)$$

$$s = 16t - 3$$

$$x = 5s - 1$$

$$= 5(16t - 3) - 1$$

$$= 80t - 16$$

$$x \equiv -16 \equiv 64 \pmod{80}$$

2. závěrečná písemka

Příklad V šifře ElGamal zveřejnil Honza klíč (53, 3, 12). Následně přijal od Martina šifru (2, 17). Jakou zprávu Martin odeslal?

Řešení Honza zasílá:

1.
$$p = 53$$

2.
$$q = 3$$

3.
$$h = g^a = 3^a \equiv 12 \pmod{53}$$

Martin zasílá:

1.
$$C_1 = q^b \equiv 2 \pmod{53}$$

2.
$$C_2 = M \cdot h^b \equiv M \cdot g^{a \cdot b} \equiv 17 \pmod{53}$$

Nejprve nalezneme a, tzn vypočítáme diskrétní logaritmus 19 pro primitivní kořen 2 v modulu 83:

$$3^{1} \equiv 3 \pmod{53}$$
 $3^{2} \equiv 9 \pmod{53}$
 $3^{3} \equiv 27 \pmod{53}$
...
 $3^{19} \equiv -19 \pmod{53}$
 $3^{20} \equiv -4 \pmod{53}$
 $3^{21} \equiv -12 \pmod{53}$

Diskrétní logaritmus 12 pro primitivní kořen 3 v modulu 53 je tedy $21+\frac{53-1}{2}=47$. Následně hledáme hodnotu $g^{a\cdot b}$. Počítáme tedy rovnici $C_1^a=(g^b)^a\equiv 2^{47}$ (mod 53):

1.
$$2^{47} = 2^{32} \cdot 2^8 \cdot 2^4 \cdot 2^3 = ((((2^2)^2)^2)^2)^2 \cdot ((2^2)^2)^2 \cdot (2^2)^2 \cdot 2^3$$

$$2. \ 2^2 \equiv 4 \ (\bmod \ 53)$$

3.
$$2^4 \equiv 4^2 \equiv 16 \pmod{53}$$

4.
$$2^8 \equiv 16^2 \equiv 256 \equiv -9 \pmod{53}$$

5.
$$2^{16} \equiv (-9)^2 \equiv 28 \pmod{53}$$

6.
$$2^{32} \equiv 28^2 \equiv -11 \pmod{53}$$

7.
$$2^{47} = 2^{32} \cdot 2^8 \cdot 2^4 \cdot 2^3 = (-11) \cdot (-9) \cdot 16 \cdot 8$$
$$\equiv -7 \cdot 16 \cdot 8 \equiv -6 \cdot 8 \equiv 5 \pmod{53}$$

Nyní hledáme hodnotu $(g^{a \cdot b})^{-1} \equiv (C_1^a)^{-1} \equiv 5^{-1} \pmod{53}$. Hledáme tedy prvek k takový, že

$$5k \equiv 1 \pmod{53}$$
$$5k + 53l = 1$$

Uvedené hodnoty $k, l \in \mathbb{Z}$ existují podle Bezoutovy věty a spočítáme je pomocí rozšířeného Euklidova algoritmu:

$$53 = 10 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

$$= 1 \cdot 3 - 1 \cdot 2$$

$$= 1 \cdot 3 - 1 \cdot (1 \cdot 5 - 1 \cdot 3)$$

$$= 2 \cdot 3 - 1 \cdot 5$$

$$= 2 \cdot (1 \cdot 53 - 10 \cdot 5) - 1 \cdot 5$$

$$= 2 \cdot 53 - 21 \cdot 5$$

Hledaná hodnota je tedy $5^{-1}\equiv -21\pmod{53}$. Následně spočítáme $M=C_2\cdot (C_1^a)^{-1}\equiv 17\cdot (-21)\equiv 14\pmod{53}$. Hledaná zpráva M je tedy 14. Zkouška: $M\cdot g^{a\cdot b}\equiv 14\cdot 5\equiv 17\pmod{53}$

Příklad Kolika způsoby lze vybrat 80 kuliček čtyř barev (červených, modrých, zelených a žlutých), přičemž součet počtu červených a modrých i zelených a žlutých je sudý?

Řešení

$$\sum_{0 \le n \le 80, 2 \mid n} {2 \choose n} \cdot {2 \choose 80 - n} = \sum_{\substack{0 \le n \le 80, 2 \mid n \\ 40}} {n \choose 1} \cdot {81 - n \choose 1}$$

$$= \sum_{n=0}^{40} (2n + 1) \cdot (81 - 2n)$$

$$= \sum_{n=0}^{40} -4n^2 + 160n + 81 = 45961$$

Kryptografie

Příklad 10.87 Šifrou RSA s veřejným klíčem (7,33) byla poslána čísla 29,7,21. Prolomte šifru.

Řešení Veřejný RSA klíč:

$$\begin{array}{rcl} e & = & 7 \\ n = p \cdot q & = & 33 \end{array}$$

V prvním kroku provedeme prvočíselný rozklad n na $n=p\cdot q=11\cdot 3$. Toto nám umožňuje vypočítat $\varphi(n)$:

$$\varphi(n) = \varphi(p) \cdot \varphi(q)
= 10 \cdot 2 = 20$$

S touto znalostí jsme již schopni spočítat soukromý klíč $d, e \cdot d \equiv 1 \pmod{\varphi(n)}$:

$$e \cdot d \equiv 1 \pmod{\varphi(n) = 20}$$

$$7d \equiv 1 \pmod{20}$$

$$\equiv 21 \pmod{20} / : 7$$

$$d \equiv 3 \pmod{20}$$

Se znalostí soukromého klíče můžeme nyní dešifrovat zadané zprávy:

$$29^d \equiv 29^3 \equiv (-4)^3 \equiv 2 \pmod{n = 33}$$

 $7^d \equiv 7^3 \equiv 13 \pmod{33}$
 $21^d \equiv 21^3 \equiv 21 \pmod{33}$

Příklad 10.92 V Rabinově kryptosystému Alice zvolila za svůj soukromý klíč p=23, q=31. Veřejným klíčem je pak n=pq=713. Zašifrujte pro Alici zprávu M=327 a ukažte, jak bude Alice tuto zprávu dešifrovat.

Řešení Nejprve demonstrujeme šifrování:

$$C \equiv M^2 \equiv 327^2 \equiv 692 \pmod{n = 713}$$

V následujícím kroku tuto zprávu opět dešifrujeme.

Nejprve vyřešíme soustavu

$$r \equiv C^{\frac{p+1}{4}} \pmod{p=23}$$

 $s \equiv C^{\frac{q+1}{4}} \pmod{q=31}$

Řešíme:

$$r \equiv 692^{\frac{24}{4}} \equiv 2^6 \equiv 18 \pmod{23}$$

 $s \equiv 692^{\frac{32}{4}} \equiv 10^8 \equiv 14 \pmod{31}$

Následně hledáme pomocí Euklidova algoritmu $a,b\in\mathbb{Z}$ takové, že

$$a \cdot p + b \cdot q = 1$$

Existenci a, b nám zajišťuje Bezoutova věta. Řešíme:

Hledaná a, b jsou tedy -4, 3. Množina možných řešení je pak

$$\pm aps \pm bqr \equiv \pm (-4 \cdot 23 \cdot 14) \pm (3 \cdot 31 \cdot 18) \pmod{n = 713}$$

 $\equiv \pm 138 \pm 248 \pmod{713}$

Řešíme:

1.
$$+138 + 248 \equiv 386 \pmod{713}$$

$$2. -138 + 248 \equiv 110 \pmod{713}$$

3.
$$+138 - 248 \equiv 603 \pmod{713}$$

4.
$$-138 - 248 \equiv 327 \pmod{713}$$

Příklad V šifře ElGamal zveřejnil Honza klíč (83, 2, 19). Následně přijal od Martina šifru (3, 16). Jakou zprávu Martin odeslal?

Řešení Honza zasílá:

1.
$$p = 83$$

2.
$$q = 2$$

3.
$$h = g^a = 2^a \equiv 19 \pmod{83}$$

Martin zasílá:

1.
$$C_1 = g^b \equiv 3 \pmod{83}$$

2.
$$C_2 = M \cdot h^b \equiv M \cdot g^{a \cdot b} \equiv 16 \pmod{83}$$

Nejprve nalezneme a, tzn vypočítáme diskrétní logaritmus 19 pro primitivní kořen 2 v modulu 83:

$$2^{1} \equiv 2 \pmod{83}$$
 $2^{2} \equiv 4 \pmod{83}$
 $2^{3} \equiv 8 \pmod{83}$
 $2^{4} \equiv 16 \pmod{83}$
 $2^{5} \equiv 32 \pmod{83}$
 $2^{6} \equiv 64 \pmod{83}$
 $\equiv -19 \pmod{83}$

Diskrétní logaritmus 19 pro primitivní kořen 2 v modulu 83 je tedy $6 + \frac{83-1}{2} = 47$. Následně hledáme hodnotu $g^{a \cdot b}$. Počítáme tedy rovnici $C_1^a = (g^b)^a \equiv 3^{47} \pmod{83}$:

1.
$$3^{47} = 3^{32} \cdot 3^8 \cdot 3^4 \cdot 3^3$$

2.
$$3^2 \equiv 9 \pmod{83}$$

3.
$$3^4 \equiv 9^2 \equiv 81 \equiv -2 \pmod{83}$$

4.
$$3^8 \equiv (-2)^2 \equiv 4 \pmod{83}$$

5.
$$3^{16} \equiv 4^2 \equiv 16 \pmod{83}$$

6.
$$3^{32} \equiv 16^2 \equiv 256 \equiv 7 \pmod{83}$$

7.
$$3^{47} = 3^{32} \cdot 3^8 \cdot 3^4 \cdot 3^3 = 7 \cdot 4 \cdot (-2) \cdot 27 \equiv -56 \cdot 27 \equiv 27^2 \equiv 65 \pmod{83}$$

Nyní hledáme hodnotu $(g^{a\cdot b})^{-1}\equiv (C_1^a)^{-1}\equiv 65^{-1}\pmod{83}.$ Hledáme tedy prvek ktakový, že

$$65k \equiv 1 \pmod{83}$$
$$65k + 83l = 1$$

Uvedené hodnoty $k, l \in \mathbb{Z}$ existují podle Bezoutovy věty a spočítáme je pomocí rozšířeného Euklidova algoritmu:

$$83 = 1 \cdot 65 + 8$$

$$65 = 3 \cdot 18 + 7$$

$$18 = 1 \cdot 11 + 7$$

$$11 = 1 \cdot 7 + 4$$

$$7 = 1 \cdot 4 + 3$$

$$4 = 1 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

$$= 1 \cdot 4 - 1 \cdot (1 \cdot 7 - 1 \cdot 4)$$

$$= 2 \cdot 4 - 1 \cdot 7$$

$$= 2 \cdot (1 \cdot 11 - 1 \cdot 7) - 1 \cdot 7$$

$$= 2 \cdot 11 - 3 \cdot 7$$

$$= 2 \cdot 11 - 3 \cdot (1 \cdot 18 - 1 \cdot 11)$$

$$= 5 \cdot 11 - 3 \cdot 18$$

$$= 5 \cdot 65 - 18 \cdot 18$$

$$= 5 \cdot 65 - 18 \cdot 18$$

$$= 5 \cdot 65 - 18 \cdot 18$$

$$= 23 \cdot 65 - 18 \cdot 83$$

Hledaná hodnota je tedy $65^{-1}\equiv 23\pmod {83}$. Následně spočítáme $M=C_2\cdot (C_1^a)^{-1}\equiv 16\cdot 23\equiv 36\pmod {83}$. Hledaná zpráva M je tedy 36. Zkouška: $M\cdot g^{a\cdot b}\equiv 36\cdot 65\equiv 16\pmod {83}$