Stochastic Methods for Finance

Exercises

Exercice 1 Consider a standard Brownian motion B_t .

- i) Find the real parameter α such that the process $\ln(1+\alpha B_t^2)$ is a martingale with respect to the natural filtration;
- ii) Find the real parameter α such that the process $\exp(1 + \alpha B_t^2)$ is a martingale with respect to the natural filtration;
- (iii) Compute the expected value at time t = 2 of the process X satisfying $dX_t = -X_t dt + 4dB_t$, $X_0 = 1$;
 - (v) Compute the variance of the random variable X_2 ;
 - \mathbf{v}) Compute the quadratic covariation between the processes X and B;
 - vi) Show that the process $Y = B^4 B^2$ is a sub-martingale;
 - vii) Find the Doob-Meyer decomposition of the process Y.

Exercice 2 Consider a Black & Scholes market and a derivative contract with payoff at the maturity T given by

chiedere

$$0 \quad if \ S_T < K_1;$$
 $K_2 - S_T \quad if \ K_1 < S_T < K_2;$ $K_2 - K_1 \quad if \ S_T > K_2,$

where $0 < K_1 < K_2$.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility.

Exercice 3 Dans le modéle de Black-Scholes, on considère un actif risqué S:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Soit t une date fixé, $0 \le t \le T$; une option Forward-Starting donne à la maturité T le payoff

$$Payoff_T^{FwCall} = \left(\frac{S_T}{S_t} - K\right)^+$$

- i) Déterminez à la date 0 le prix de cette option dans le cas où le taux d'intéret est constant, puis déterminer la stratégie de couverture.
- ii) Même question dans le cas où le taux d'intéret est stochastique. Expliciter le prix si le taux est du type Vasicek.

Exercice 4 Consider the process $X_t = \int_0^t e^{\pi} dB_s$ where B_t is a standard Brownian motion under the probability measure \mathbb{P} .

- i) Find the probability measure \mathbb{P}^1 under which the process X becomes a martingale;
- ii) Consider now the process $Y_t = \exp(X_t)$: show that it is not a martingale under the probability measure \mathbb{P} ;
- iii) Find the probability measure \mathbb{P}^2 under which Y becomes a \mathbb{P}^2 -martingale;
- iv) Compute $\mathbb{E}^{\mathbb{P}^1}[X_2]$;
 - v) Compute $\mathbb{E}^{\mathbb{P}^2}[X_2]$.

Exercice 5 Consider a Black & Scholes market and a derivative contract with payoff at the maturity T given by

conttollare e capire question sigma

$$a$$
 if $S_T < K$;
 $K + a - S_T$ if $K < S_T < K + a$;
 b if $S_T > K + a$,

where 0 < a < b < K.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility.

Exercice 6 A risky asset S in a 2-period binomial model (one period =1 year) evolves according to an increasing factor of $u_1 = 1, 1$ (resp. decreasing factor of $d_1 = 0, 9$) for the first period, and $u_1 = 1, 05$ (resp. decreasing factor of $d_1 = 0, 95$) for the second one, starting from the initial price $S_0 = 100$. The riskless interest rate is flat at r = 1% per year.

i) Find the initial price and the hedging strategy of a European PUT option on S with maturity T=2 years and strike price K=95;

ii) Find the initial price and the hedging strategy of an American PUT option on S with maturity T = 2 years and strike price K = 99;

iii) Same question at point ii) when the interest rate is $r_1 = 1\%$ per year for the first period and on the period [0, 2years] is $r_2 = 1, 5\%$ per year.

Exercice 7 Dans le modéle de Black-Scholes, on considère un actif risqué S:

$$dS_t = \mu S_t dt + \sigma S_t dW_t .$$

et un taux d'intéret constant r. Déterminez le prix d'une stratégie STRADDLE down-andout, où on a le droit au payoff si l'actif ne touche pas la barrière L, puis le comparer avec le prix du contrat corréspondent sans la présence de la barrière.

- X(t): la valeur à l'instant t en unité monétaire domestique d'une unité monétaire étrangère,
- r_d : le taux d'intérêt domestique,
- r_f : le taux d'intérêt étranger.

On suppose que la dynamique de X, sous la probabilité réelle, est donnée par

$$dX(t) = X(t)\mu dt + X(t)\sigma dW_t$$

où W est un mouvement brownien standard et où μ et σ sont deux constantes positives.

- 1. Déterminez la dynamique du taux de change X sous la probabilité risque-neutre.
- 2. Trouvez le prix d'un contrat STRADDLE sur X, de maturité T , et de prix d'exercice K.

Exercice 9 Consider the process $X_t = \exp(B_t - t)$ where B_t is a standard Brownian motion under the probability measure \mathbb{P} .

- *i)* Show that the process X is not a martingale under \mathbb{P} ;
- \vec{i}) Find the probability measure \mathbb{P}^1 under which the process X becomes a martingale;
- *iii*) Compute $\mathbb{E}^{\mathbb{P}^1}[X_2]$;
- iv) Consider now the process $Y_t = \exp(\int_0^t f(u)du + B_t)$, where f is a function of time: show that it is not a martingale under the probability measure \mathbb{P} ;
- - vi) Compute $\mathbb{E}^{\mathbb{P}^2}[Y_2]$ when f(t) = t.

Exercice 10 Résoudre l'EDP suivante

$$\frac{\partial F}{\partial t} + \frac{1}{2}x^2\alpha^2 \frac{\partial^2 F}{\partial x^2} + \beta F + \gamma x^{\delta} = 0$$
$$F(T, x) = 2x^3,$$

et vérifier que la solution satisfait l'EDP dans le cas $\delta = 1$.

Exercice 11 Soit S le prix d'un actif dont la dynamique sous la probabilité risque neutre \mathbb{Q} est la suivante

$$\frac{dS(t)}{S(t)} = r_t dt + \sigma dW_t,$$

où le taux d'intérêt r_t est stochastique et suive la dynamique (risque neutre) de Vasicek:

$$dr_t = (a - br_t) dt + \sigma_r dW_t$$

où W est le même Brownien de l'actif. Le but de cet exercice est d'évaluer le prix d'un contrat Butterfly Spread dans ce contexte.

- 1. Décomposez le payoff d'un butterfly spread a l'aide des contrats CALL
- 2. Introduisez la probabilité Forward associée aux maturités concernées
- 3. Determinez le prix du contrat en utilisant la formule de Black et Scholes d'aprés un changement de mesure.

Exercice 12 (Quanto Option) Soient X(t) la valeur à l'instant t en unité monétaire domestique d'une unité monétaire étrangère, r_d le taux d'intérêt domestique, r_f le taux d'intérêt étranger. On suppose que la dynamique de X, sous la probabilité risque neutre domestique, est donnée par

$$\frac{dX(t)}{X(t)} = (r_d - r_f) dt + \sigma_x dW_t^1$$

où W^1 est un mouvement brownien standard et σ est une constante positive. Soit aussi S^f le prix d'un actif étranger suivant

$$\frac{dS^f(t)}{S^f(t)} = r_f dt + \sigma_f dW_t^2,$$

où W^1 est un mouvement brownien standard indépendant de W^2 .

- 1. Déterminez la dynamique du taux de change $\frac{1}{X}$ sous la probabilité risque-neutre étrangère.
- 2. Trouvez le prix en unité monétaire étrangère d'un contrat CALL sur S^f de maturité T, où le prix d'exercice K est exprimé en unité monétaire domestique.

Exercice 13 (Option barrière) Dans le modèle de Black-Scholes, en utilisant les propriétés de symétrie et parité pour les contrats barrière, déterminez le prix d'une option UIP (Up and In Put dont le prix d'exercice est K), où on a le droit au payoff seulement si l'actif touche la barrière L.

Exercice 14 Solve the following Partial Differential Equation:

$$\frac{\partial F}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial^2 F}{\partial x^2} + 1 = 0$$
$$F(T, x) = x^2,$$

Exercice 15 In the Black-Scholes model, find the price at time $t \leq T$ of a Digital Call UP-AND-OUT with strike price K, where the owner receives a unitary payoff at the maturity T if and only if the asset has not reached the barrier L. Compare this price with the one of a Digital Call (without barrier). Finally, find the Delta of both options

Exercice 16 Let X(t) be the value at time t in domestic currency of one monetary unit of the foreign currency, r_d the domestic interest rate, r_f the foreign interest rate.

Suppose that the dynamics of X, under the real world probability measure, is given by

$$dX(t) = X(t)\mu dt + X(t)\sigma dW_t$$

where W is a standard Brownian motion and μ and σ are positive constants.

- i) Find the price at time t of a Digital Call option expiring at time $T \geq t$ with strike K written on X.
- ii) Find the price at time t of a Digital Call option expiring at time $T \ge t$ with strike K written on 1/X.
 - iii) Give an interpretation of 1/X in terms of X.

Exercice 17 A risky asset S in a 2-period binomial model (one period =1 year) evolves according to an increasing rate of 10% (resp. decreasing rate of -10%), starting from the initial price $S_0 = 100$. The riskless interest rate is r = 1%. The trader has a portfolio consisting in

- i) 5 short positions in a European Call on S with maturity T=2 years and strike price $K_1=95$;
- ii) 10 short positions in a American Put on S with maturity T = 2 years and strike price $K_2 = 100$;
- iii) 5 short positions in a European Call on S with maturity T = 1 year and strike price $K_3 = 98$.

Find the position that the trader has to take in a European Call with maturity T = 1 year and strike price $K_4 = 90$ in order to obtain a Delta-neutral portfolio at time 0.

Exercice 18 Consider a standard Brownian motion B_t .

- i) Find the real parameter α such that the process $\exp(1 + \alpha B_t^2 + B_t(\alpha 1))$ is a sub-martingale with respect to the natural filtration;
 - ii) For the values of α of point i) find the corresponding Doob-Meyer decomposition;
- iii) Compute the expected value at time t=2 of the process $Y=X^3$, where X satisfies the SDE $dX_t=-X_tdt+\sigma X_tdB_t$, $X_0=1$ ($\sigma>0$);
 - (v) Compute the variance of the random variable Y_2 ;
 - v) Compute the quadratic covariation between the processes X and Y;
- vi) Compute the values of σ for which the process Y is a submartingale and find the corresponding Doob-Meyer decomposition.

Exercice 19 In a Black&Scholes market let consider a risky asset evolving according to the risk neutral dynamics:

$$\frac{dS_t}{S_t} = rdt + \sigma dB_t$$
$$S_0 = s.$$

Consider the option paying the following payoff: Payof $f_T = min[S_T, K]$.

chiedere

 $\subset \cap \subset \vee$

- i) Find the price of this contract at a generic time $t \leq T$;
- ii) Compute the Delta and the Vega of this contract;
- iii) Give an illustration of the Delta and the Gamma for the contract when the volatility parameter has an upward shock from σ to $\hat{\sigma} > \sigma$.

Exercice 20 Consider a Black&Scholes market as in the previous exercise. Assume that $c_1, c_2 > 0$, $K_1 < K_2 < K_3$ and consider the following payoff at the maturity T:

$$\begin{cases} c_1 & for \ S_T \in [0, K_1); \\ K_1 - S_T + c_1 & for \ S_T \in [K_1, K_2]; \\ -c_2 & for \ S_T \in (K_2, K_3]; \\ -c_2 + S_T - K_3 & for \ S_t \in (K_3, +\infty) \end{cases}$$

- i) Compute the price of the contract at any time $t \in [0, +\infty)$; ii) Compute the Delta and the Gamma of the contract;
- iii) Give an illustration of the shape of the price and the Delta of the contract for an upward shock of the volatility from σ to $\hat{\sigma} > \sigma$.

Exercice 21 Consider a standard Brownian motion B_t .

- i) Find the real parameter α such that the process $\ln(1+\alpha B_t)$ is a martingale with respect to the natural filtration;
- ii) Find the real parameter α such that the process $\exp(1 + \alpha B_t)$ is a martingale with respect to the natural filtration;
 - (iii) Compute the expected value of the process X satisfying $dX_t = -X_t dt + 4dB_t$, $X_0 = 1$;
 - (v) Compute the variance of the random variable X_2 ;
 - v) Compute the quadratic covariation between the processes X and B;
 - vi) Show that the process $Y = B^4 B^2$ is a sub-martingale;
 - vii) Find the Doob-Meyer decomposition of the process Y.

Exercice 22–Consider the process $\exp(2B_t)$ where B_t is a standard Brownian motion under the probability measure \mathbb{P} .

- Show that the process $\exp(2B_t)$ is not a martingale under \mathbb{P} ;
- ii) Find the probability measure \mathbb{P}^1 under which the process $\exp(2B_t)$ becomes a martingale; iii) Compute $\mathbb{E}^{\mathbb{P}^1}[\exp(2B_t)]$;
- iv) Consider now the process $\exp(\int_0^t u dB_u)$: show that it is not a martingale under the probability measure \mathbb{P} ;

Exercice 23—Consider a Black&Scholes market where a risky asset evolves according to

$$\frac{dS_t}{S_t} = \mu dt + \sigma dB_t$$

$$S_0 = s,$$

and a riskless asset is associated to the risk free rate r. Consider a Static Butterfly option, that is a derivative contract with payoff at the maturity T given by

$$a$$
 if $S_T < K_1$;
 b if $K_1 < S_T < K_2$;
 a if $S_T > K_2$,

where 0 < a < b.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta and the Gamma of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility σ .

Exercice 24 Consider a standard Brownian motion B_t .

- i) Find the real parameter α such that the process $\exp(2B_t \alpha t)$ is a martingale with respect to the natural filtration;
- ii) Find the real parameter α such that the process $\exp(2B_t \alpha t)$ is a supermartingale with respect to the natural filtration;
 - iii) Compute the expected value of the process $\exp(\int_0^t B_u du)$;
 - iv) Compute the variance of the process $\exp(\int_0^t B_u du)$ for t fixed;

 $and B_t;$

- v) Compute the quadratic covariation between the processes $\exp(\int_0^t B_u du)$ and B_t ;
- vi) Find the Doob-Meyer decomposition of the submartingale $B_t^2 + t$.

Exercice 25 Consider the process $\exp(B_t)$ where B_t is a standard Brownian motion under the probability measure \mathbb{P} .

- i) Show that the process $\exp(B_t)$ is not a martingale under \mathbb{P} ;
- ii) Find the probability measure \mathbb{P}^1 under which the process $\exp(B_t)$ becomes a martingale;
- iii) Compute $\mathbb{E}^{\mathbb{P}^1}[\exp(B_t)]$;
- iv) Consider now the process $\exp(\int_0^t B_u du)$: show that it is not a martingale under the probability measure \mathbb{P} ;
- v) Find if there exixts a probability measure \mathbb{P}^2 under which the process $\exp(\int_0^t B_u du)$ becomes a martingale. chiedere ultimo punto

Exercice 26—Consider a Black&Scholes market where a risky asset evolves according to

$$\frac{dS_t}{S_t} = \mu dt + \sigma dB_t$$
$$S_0 = s,$$

and a riskless asset is associated to the risk free rate r. Consider a Purple Collar option, that is a derivative contract with payoff at the maturity T given by

$$a$$
 if $S_T < K_1$;
 S_T if $K_1 < S_T < K_2$;
 K_2 if $S_T > K_2$,

where $K_1 < a < K_2$.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta and the Gamma of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility σ .