6x4 DH Table

	Link	ai (cm)	«i (radians)	di (cm)	0 (radians)	
	1	0	-TT/2	76	0	
		:				
	2	43.18	0	23.65	Θ_2	
-	3	0	17/2	0	Θ 3	
	4	0	can TT/22	43-18	94	
	5	0	77/2	0	05	
	6	0	0	20	06	

(simplified of -RJ[
$$\frac{0}{16}$$
], and denote the resulting vector $\begin{bmatrix} x_c \\ y_c \end{bmatrix}$
 Θ_1 : at an $2(y_c, x_c)$ - at an $2(d_1, x^2 + y^2 - d_2^2)$
 Θ_2 : at an $2(z_c - Q_1, \sqrt{x_c^2 + y_c^2 - d_2^2})$ - $(\frac{\pi_c - Q_1}{2})$
 Θ_3 : at an $2(sin phi, (o_1 phi))$
 $Sin phi: -((-\sqrt{u_1^2 + 2o_3^2}) - d_4^2 + (2 - c_1 d_1)^2 + y - c^2 + x - c^2 - d_2^2)$
 $-2 \times \sqrt{u_3^2 + 2o_3^2} \times d_4$
 $Cosphi: \sqrt{1 - sinphi^2}$
 $Q = \frac{3\pi}{2} - at con 2(sinphi, (o_1 phi))$

Then, compute $\chi_1^0(\Theta_1, \Theta_2, \Theta_3)$ and compute $\chi_2^0(\Theta_1, \Theta_2, \Theta_3) + (\chi_2^0)^2 + \chi_2^0$

Use the Euler ongle formula, denote $(-2\pi_1, -2\pi_1)$
 $Q = \frac{1}{2} + \frac{1}{2}$

