

Balanced BSTs that are kept in balance through tree rotations on insert and remove are called AVL trees, named after Adelson-Velsky and Landis.

AVL Tree

Everything about finding, inserting, and removing from a BST remains true.

In an AVL tree, we add steps to ensure we maintain balance.

- Extra work on insert/remove
- To quickly compute the balance factor, AVL trees store the height of every node as part of the node itself.

AVL Trees

insert(11)

AVL Insert

insert(11)

1: Insert at proper place.

2: Check for imbalance.

3: Rotate, if necessary.

4: Update height.

avl/AVL.cpp

```
119 template <typename K, typename D>
120 void AVL<K, D>:: ensureBalance(TreeNode *& cur) {
      // Calculate the balance factor:
121
     int balance = height(cur->right) - height(cur->left);
122
123
      // Check if the node is current not in balance:
124
125
      if ( balance == -2 ) {
        int l balance = height(cur->left->right) - height(cur->left->left);
126
        if ( l_balance == -1 ) { _rotateRight( cur ); }
127
        else
                           { _rotateLeftRight( cur ); }
128
      } else if ( balance == 2 ) {
129
        int r balance = height(cur->right->right) - height(cur->right->left);
130
        if( r_balance == 1 ) { _rotateLeft( cur ); }
131
                             { _rotateRightLeft( cur ); }
        else
132
133
134
      _updateHeight(cur);
135
136
```

avl/AVL.cpp

```
142 template <typename K, typename D>
143 | void AVL<K, D>::_updateHeight(TreeNode *& cur) {
      cur->height = 1 + max(height(cur->left), height(cur->right));
144
145
 81 template <typename K, typename D>
    void AVL<K, D>::_rotateLeft(TreeNode *& cur) {
 83
      TreeNode *x = cur;
 84
      TreeNode *y = cur->right;
 85
 86
      x->right = y->left;
      y \rightarrow left = x;
 87
 88
      cur = y;
 89
      _updateHeight(x);
 90
      _updateHeight(y);
 91
 92
```

AVL::remove

remove(15)

* IOP: most right node in the left branch

* So 4 to replace removed 15

avl/AVL.cpp

```
221 /**
    * Recursive IoP remove.
222
223
    template <typename K, typename D>
    const D & AVL<K, D>::_iopRemove(TreeNode *& node, TreeNode *& iop) {
225 |
      if (iop->right != nullptr) {
226
227 |
        // IoP not found, keep going deeper:
        const D & d = _iopRemove(node, iop->right);
228
        if (iop) { _ensureBalance(iop); }
229 |
230
        return d;
231
      } else {
232
        // Found IoP, swap the location:
        _swap( node, iop );
233 |
        std::swap( node, iop );
234
235
        // Remove the swapped node (at iop's position):
236
        return _remove(iop);
237
238
239
```

AVL Trees

 An AVL Tree is an implementation of a balanced Binary Search Tree (BST).

- An implementation of an AVL tree starts with a BST implementation and adds two key ideas:
 - Maintains the height at each node
 - Maintains the balance factor after insert and remove

