# Architektura systemów wbudowanych

# Architektura systemu wbudowanego – ogólnie



#### Architektura Von Neumann'a



#### Architektura Harvardzka



## Różnice pomiędzy architekturami Von Neumann'a a Harvardzką

| Von Neumann                                                                                                                          | Harvard                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Pamięć współdzielona jest pomiędzy program i dane                                                                                    | Dedykowane rodzaje pamięci dla programu i danych                                                       |
| Procesor wczytuje dane w jednym cyklu i program w następnym cyklu zegara. Potrzebuje więc 2 cyklów do wykonania większości operacji. | Procesor wczytuje dane i program w jednym cyklu zegara bo operacje przebiegają na oddzielnych szynach. |
| Rozwiązania systemowe o większej prędkości                                                                                           | Wolniejsze rozwiązania systemowe.                                                                      |
| Prostszy projekt systemu                                                                                                             | Bardziej skomplikowany projekt systemu.                                                                |

## Systemy CISC i RISC

- CISC Complex Instruction Set Computer instrukcje są skomplikowane i o różnej długości instrukcji i danych
- RISC Reduced Instruction Set Computer instrukcje są proste o standardowej długości rozkazów i danych

### CISC vs RISC

| CISC                                                                        | RISC                                                                                      |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Duży zbiór instrukcji, łatwiejsze programowanie niskopoziomowe              | Mały zbiór instrukcji, kompilator potrzebuje wielu do wykonania operacji                  |
| Prostsza architektura kompilatora                                           | Złożona architektura kompilatora                                                          |
| Dużo trybów adresowania, złożone instrukcje, (z reguły) brak ortogonalności | Mała ilość trybów adresowania, prosty format instrukcji, częściej występuje ortogonalność |
| Instrukcje zmiennej długości                                                | Instrukcje stałej długości                                                                |
| Wysoka częstotliwość taktowania systemu                                     | Niska częstotliwość taktowania systemu                                                    |
| Skupienie na własnościach sprzętowych                                       | Skupienie na warstwie oprogramowania                                                      |
| Ogromny podsystem kontroli pracy procesora, wymagany mikroporogram          | Prosty blok kontroli, wszystkie instrukcje wykonuje bezpośrednio sprzęt                   |
| Powolne wykonanie, wymagane pobranie, dekodowanie i dalsze etapy            | Szybkie wykonanie, wszystkie instrukcje bezpośrednio wykonane w warstwie                  |

## Konsekwencje dla bezpieczeństwa

- Architektura Von Neumann umożliwia łatwiejszą zmianę zawartości programu (dane i program w jednej przestrzeni)
- Architektura Harwardzka może uniemożliwiać dostanie się do przestrzeni adresowej programu poprzez konsekwentne wydzielenie przestrzeni adresowych
- Oprogramowanie projektowane z uwzględnieniem aspektów bezpieczeństwa, nie powinno używać dynamicznego gospodarowania wektorami przerwań czy auto-modyfikacji programu

• ...

# Architektura Classic ECU w AUTOSAR

**Application Layer AUTOSAR Runtime Environment (RTE)** Services Layer Libs Complex **ECU Abstraction Layer Drivers** Microcontroller Abstraction Layer Microcontroller

### **AUTOSAR - warstwy**

- Micro-controller Abstraction Layer (MCAL) sterowniki niskiego poziomu, agregujące elementy mikrokontrolera i zapewniające separację od sprzętu
- ECU Abstracion Layer (ang. ECU Electronic Control Unit) warstwa abstrakcji sprzętu poza samym MCU ale występującego w ramach ECU
- Services Layer warstwa zapewnienia poprawnej pracy dla BSW (ang. Basic SoftWare). Serwisy udostępniające w standaryzowany sposób właściwości platformy sprzętowej
- RTE (ang. RunTime Environment) warstwa pozwalająca na osadzenie reużywalnych komponentów AUTOSAR. Zapewnia obsługę Virtual Function Bus w całości architektury
- CCD (ang. Component Device Driver) zapewnia szybszą obsługę specyficznych właściwości platformy, bez pośrednictwa warstw serwisowych
- Libraries warstwa bibliotek

# AUTOSAR – Crypto Service Manager





## Serwisy modułu Crypto Service Manager

- Moduł Crypto Service Manager zadania:
  - Szyfrowanie blokowe i wspierane przez sprzęt
  - Zarządzanie kluczem identyfikacja i szyfrowanie
- Serwis wspiera operacje synchroniczne i asynchroniczne
- Zlecenia gromadzone są w kolejkach priorytetowych
- Zlecenia posiadają status (START, UPDATE, FINISH)

## Kolejka Crypto Service



## Rekomendowane algorytmy

- Generowanie liczb losowych:
  - DRNG Deterministic
  - TRNG True
- Szyfrowanie symetryczne:
  - AES 128 i 256 bitów w trybie ECB, CBC, CTR, GCM, OFB, XTS
  - PRESENT 128 bitów w trybach jw.
- Szyfrowanie asymetryczne:
  - RSA 1024, 2048, 3072, 4096 bitów klucza
  - Curve25519/Ed25519

- Funkcja skrótu (Hash):
  - SHA-2 224, 256, 384, 512 bitów
  - SHA-3 j.w.
  - BLAKE jw.
  - RIPEMD-160
- MAC (ang. Message Authentication Code):
  - CMAC
  - GMAC
  - HMAC

### Zarządzanie kluczami







## Moduł certyfikatów

Root certificate

(self signed)

Intermediate certificate

End user

certificate

- Pod-moduł certyfikatów, może przechowywać hierarchię certyfikatów w:
  - CSM samym zarządcy Crypto
  - NVM pamięci nieulotnej platformy
- Operacje na pamięci NVM bywają szybsze stąd klucze pośrednie mogą być umieszczone w niej w celu przyśpieszenia operacji
- Zaleca się wykonanie parsowania certyfikatu jako operację w tle.

