

TD 4 – Fubini, intégrale à paramètre, changement de variables et espaces L^p

ightharpoonup Exercice 1. Soit $(u_{k,\ell})_{(k,\ell)\in\mathbb{N}^2}$ une double suite de réels positifs. Montrer, à l'aide du théorème de Fubini, que

$$\sum_{\ell \in \mathbb{N}} \sum_{k \in \mathbb{N}} u_{k,\ell} = \sum_{k \in \mathbb{N}} \sum_{\ell \in \mathbb{N}} u_{k,\ell}.$$

Remarque. On rappelle que λ est la mesure de Lebesgue.

► Exercice 2. On pose

$$I = \int_{\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}} \frac{1}{(1+y)(1+x^{2}y)} d\lambda(x) d\lambda(y)$$

- **2.1.** Vérifier que le théorème de Fubini s'applique à I.
- **2.2.** Montrer que

$$\int_{\mathbb{R}_+^*} \frac{1}{1 + x^2 y} \, \mathrm{d}\lambda(x) = \frac{1}{\sqrt{y}} \frac{\pi}{2}.$$

- **2.3.** En déduire que $I = \frac{\pi^2}{2}$.
- **2.4.** Retrouver ce résultat en utilisant le changement de variables : $v = x\sqrt{y}$, $t = \sqrt{y}$.
- \triangleright Exercice 3. Soit F la fonction définie par :

$$F(t) = \int_{\mathbb{R}_+} \frac{e^{-tx}}{1 + x^2} \, \mathrm{d}\lambda(x).$$

- 3.1. Déterminer le domaine de définition de F et son domaine de continuité.
- **3.2.** Calculer F(0) et $\lim_{t\to+\infty} F(t)$.
- \triangleright Exercice 4. Soit (E, \mathcal{A}, μ) un espace mesuré et $1 \le p < +\infty$. On dit que $f \in L^p(E, \mathcal{A}, \mu)$, si

$$\int_{E} |f|^p \, \mathrm{d}\mu < +\infty.$$

On pose alors

$$||f||_p = \left(\int_E |f|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}}.$$

Soient $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions de L^2 qui convergent vers f et g dans L^2 . Montrer que la suite $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^1 .

Exercice supplémentaire.

ightharpoonup Exercice 5. On considère la fonction F définie par :

$$F(t) = \int_{\mathbb{R}_+} \frac{\sin x}{\sqrt{x}(x+t^2)} \, \mathrm{d}\lambda(x).$$

- 5.1. Déterminer le domaine de définition de F et son domaine de continuité.
- **5.2.** Montrer que F est dérivable sur \mathbb{R}^* .
- **5.3.** Montrer que F admet une dérivée à droite en 0. Dans le calcul de $\frac{F(t)-F(0)}{t}$, on pourra faire le changement de variable $x=u^2t^2$ puis utiliser le théorème de convergence dominée.
- **5.4.** F est-elle dérivable sur \mathbb{R} ?