קווים כלליים לפתרון תרגיל בית 8

22: 00 תאריך הגשה: יום חמישי, 2/1/2014, עד שעה

:1 שאלה

תהי $f:\mathbb{R} \to \mathbb{R}$ הראו כי f מקבלת .lim $_{x \to \infty} f(x) = f(0)$ שי-זוגית ורציפה, כך ש- $f:\mathbb{R} \to \mathbb{R}$ מינימום ומקסימום.

 x_0 סיימנו, כי זהו המינימום והמקסימום. אם לא, אז קיים x_0 כך ש- x_0 אי-זוגית, לכן x_0 אי-זוגית, לכן x_0 אוב על הייכ כי x_0 אוב x_0 אוב בהייכ כי x_0 אוב בהייכ כי x_0 אוב בהייכ כי x_0 אוב בי x_0 אוב בי x

: 2 שאלה

 $f: \mathbb{R} \to \mathbb{R}$ מהי התמונה של $f: \mathbb{R} \to \mathbb{R}$ מהי $x \in \mathbb{R} \to \mathbb{R}$. מהי $x \in \mathbb{R} \to \mathbb{R}$ מהיתון נקבל כי $x \in \mathbb{R} \to \mathbb{R}$ מחקיים לכל $x \in \mathbb{R} \to \mathbb{R}$ מרכל $x \in \mathbb{R} \to \mathbb{R}$ מכלל המנה נוכל לקבל כי הסדרה $x \in \mathbb{R} \to \mathbb{R}$ כעת נסתכל על $x \in \mathbb{R} \to \mathbb{R}$ מכלל המנה נוכל לקבל כי הסדרה $x \in \mathbb{R} \to \mathbb{R}$ בנוסף, לכל $x \in \mathbb{R} \to \mathbb{R}$ מתקיים $x \in \mathbb{R} \to \mathbb{R}$ מתקיים $x \in \mathbb{R} \to \mathbb{R}$ ולכן מכלל הפיצה, $x \in \mathbb{R} \to \mathbb{R}$ ולכן גם $x \in \mathbb{R} \to \mathbb{R}$ בנוסף, לכל $x \in \mathbb{R} \to \mathbb{R}$ מתקיים $x \in \mathbb{R} \to \mathbb{R}$ מתקיים $x \in \mathbb{R} \to \mathbb{R}$ ולכן מכלל הפיצה נקבל כי $x \in \mathbb{R} \to \mathbb{R}$ ומכלל הפיצה נקבל כי $x \in \mathbb{R} \to \mathbb{R}$ מומכלל הפיצה ניתן להראות כי האגף הימני ב- (*) שואף ל- $x \in \mathbb{R} \to \mathbb{R}$ מקבלת כל ערך ממשי, $x \in \mathbb{R} \to \mathbb{R}$ מהגבולות של $x \in \mathbb{R} \to \mathbb{R}$ ורציפות $x \in \mathbb{R} \to \mathbb{R}$ נובע (ניתן להראות זאת) כי $x \in \mathbb{R} \to \mathbb{R}$

: 3 שאלה

תהי f:[a,b] o [a,b] מונוטונית עולה. הראו כי קיימת ל- f:[a,b] o [a,b] מונוטונית עולה. הראו כי קיימת ל- $f:[a,b] o x_0 \in [a,b]$

אם $f\left(\frac{a+b}{2}\right)=\frac{a+b}{2}$ אם $f\left(\frac{a+b}{2}\right)$ אם f(a)>a, f(a)>a, f(b)

<math>f(a)>a, f(a)=a אם f(a)=a אם f(a)=a אם f(a)=a, f(a

:4 שאלה

f(x+T)=f(x), $x\in\mathbb{R}$ ממשי כך שלכל T ממשי היא מחזורית אם היא מחזורית היא רציפה, אז היא מקבלת מינימום ומקסימום והיא רציפה במיש.

נעיר תחילה כי באינדוקציה ניתן להראות כי f(x)=f(x) לכל \mathbb{Z} ש. נוכל להניח בהייכ כי T, אחרת נסתכל T לכל T שגם הוא מקיים את תנאי המחזוריות. בקטע T היא רציפה, לכן מקבלת שם מינימום T ומקסימום T ומסמן: T שוא T בסמן: T בסמן: T שוא T בסמן: T בממן: T שוא T בממן: T שוא T בממן: T שוא T בממן: T שוא T במוסף, T ולכן T שוא T במוסף, T ולכן T במוסף, T ולכן T במוסף, T ולכן רציפה שם במייש, לכן לכל T פון לכל T כך שאם T כך שאם T ולכן רציפה שם במייש, לכן לכל T פון במיים בהתאמה של T ווגם על T שוא T ולכן רציפה שם במייש, לכן לכל T פון במיים במיים במיים שוא T ווא במיים במיים במיים שוא במיים במיים

. ולכן: ,
$$\left|(x-K_yT)-\left(y-K_yT\right)\right|=|x-y|<\delta\leq\delta_2$$
 , וגם מתקיים , $x-K_yT$, $y-K_yT\in\left[-\frac{T}{2},\frac{T}{2}\right]$.
$$\left|f(x)-f(y)\right|=f\left(x-K_yT\right)-f\left(y-K_yT\right)\right|<\varepsilon$$

<u>שאלה 5:</u>

. אינו קיים $\lim_{x \to \infty} [f(x)]$ אינו קיים וסופי, אך $\lim_{x \to \infty} f(x)$ אינו קיים $f: \mathbb{R} \to \mathbb{R}$

 $\lim_{x\to\infty}f(x)\in\mathbb{Z}$ א. הוכיחו כי

 $n\in\mathbb{N}$ לכל $f(x_n)=\lim_{x o\infty}f(x)$ -ש כך ש- $x_n\to\infty$ כך שכל $f(x_n)=\lim_{x\to\infty}f(x)$ לכל $x_n\to\infty$ הוכיחו כי קיימת סדרה x_1 כך ש- x_1 כך שכן x_1 אם לא קיים x_1 כנייל, אז x_2 אם לב כי לכל x_1 קיימים x_2 ולכן x_1 לכל x_2 ולכן x_2 ולכן x_1 - x_2 סתירה. באותו אופן עבור x_2 נבנה סדרה כך: עבור x_1 כבחר x_2 כבחר x_1 שמכיוון ש- x_2 מהטענה. אם x_1 בחר x_2 נובע כי קיים x_2 בקטע הפתוח בין x_1 ל- x_2 כך ש- x_2 כך ש- x_2 כר ש- x_2 כי קיים x_1 בקטע הפתוח בין x_2 כר ש- x_2

, (n בטענה ימלא x_0 -ה תפקיד ה- x_0 -י, נבחר באופן דומה המקיים $a_n>n$ המקיים ה- $a_n>n$ בעלב ה- a_n -י, נבחר באופן דומה.

:6 שאלה

. רציפה במייש בכל קטע סגור $f(x) = x^3 + 5x + 3$ רציפה במייש בכל קטע סגור

x , $y \in [a,b]$ לכל . $M = \max\{|a|,|b|\}$ נסמן arepsilon > 0 להל הסגור הנתון, ויהי

$$|f(x) - f(y)| = |x^3 + 5x + 3 - y^3 - 5y - 3| = |x^3 - y^3 + 5x - 5y| = |(x - y)(x^2 + xy + y^2 + 5)|$$

|f(x)-f(y)|<arepsilon אז , $|x-y|<\delta$ לכן אם נבחר לקבל מהחישוב הנייל מהחישוב הנייל ל

<u>שאלה 7:</u>

בדקו רציפות במייש במקרים הבאים, הוכיחו טענותיכם:

$$(0,\infty)$$
 ב- $xsin\left(\frac{1}{x}\right)$.

יהי
$$\lim_{x\to\infty}x\sin\left(\frac{1}{x}\right)=\lim_{x\to\infty}\frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}=\lim_{t\to0^+}\frac{\sin t}{t}=1$$
 כי קיים. $\varepsilon>0$ מתקיים. $\varepsilon>0$ מתקיים וווו $|f(x)-f(y)|<\frac{\varepsilon}{2}$, x , $y>x_0$ כך שלכל x

 $[0,x_0+1]$ בפרט ב- $[0,\infty)$, בפרט כי $[0,\infty)$ ביי חישוב גבול כי $[0,\infty)$ נגדיר ביי $[0,x_0+1]$, ניתן לבדוק עייי חישוב גבול כי $[0,x_0+1]$, בפרט ב- $[0,x_0+1]$

 $(0,x_0+1]$ על הקטע ($0,x_0+1$) – נולכן רציפה במייש, ולכן רציפה במייש גם ב-

. בקטע זה במייש בקטע היי איים במייש. רציפה במייש בקטע אוה או אולכן בקטע זה אולכן בקטע אוה אוא רציפה במייש. רציפה אולכן בקטע או $g=xsin\left(\frac{1}{x}\right)$

כעת, יהיו $(0,x_0+1]$ כך ש- $(0,x_0+1)$. אם $|x-y|<\delta$ אם $|x-y|<\delta$ כך ש- $(0,\infty)$ נקבל כי $x,y\in(0,\infty)$ אז מרציפות במייש ב- $|x-y|<\delta$ כעת, יהיו $|x-y|<\delta$ אם $|x-y|<\delta$ אם |x-y

 $|x-x_0+1|<\delta$ אז בפרט, או $y\geq x_0+1$ - ולכן, או $y\geq x_0+1$

$$.\left|f(x)-f(y)\right|\leq \left|f(x)-f(x_0+1)\right|+\left|f(x_0+1)-f(y)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

a > 0 ב- $x \sin x$ ב- $x \sin x$

xsinx . $(0,a)\subset [0,a]$ - במייש גם במייש, ולכן רציפה במייש גם ב-[0,a], לכן רציפה אכן

 $x \sin x$... $x \sin x$...

נראה כי xsinx לא רציפה במייש ב- $(0,\infty)$: נשים לב כי אם f רציפה במייש, מתקיים שאם ב- $(0,\infty)$: נשים לב כי אר כי xsinx לא רציפה במייש ב $\delta>0$ המתאים לו $\delta>0$ המתאים לו מתקיים ל

$$|x_n-y_n|=rac{1}{n} o 0$$
 אז $|x_n-y_n|=2\pi n$ נסתכל על. אבל:. ו $|f(x_n)-f(y_n)|$

$$|f(x_n) - f(y_n)| = \left| \left(2\pi n + \frac{1}{n} \right) \sin \left(2\pi n + \frac{1}{n} \right) - 2\pi n \sin(2\pi n) \right| = \left(2\pi n + \frac{1}{n} \right) \sin \left(\frac{1}{n} \right) = 0$$

. (
$$n\geq 1$$
 כי $\sin\left(\frac{1}{n}\right)>0$ מתקיים $2\pi\cdot\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}+\frac{1}{n}\cdot\sin\left(\frac{1}{n}\right)\to 2\pi$

 $(0,\infty)$ - א רציפה במייש ב $x\sin x$ אורר כי

 \mathbb{R} ב- $\sin(x^2)$. ד

נשתמש בהערה מטעיף ג', ונסתכל על הסדרות: $y_n=\sqrt{2\pi n}$, $y_n=\sqrt{2\pi n}$ נשתמש בהערה מטעיף ג', ונסתכל על הסדרות: $|\sin(x_n^2)-\sin(y_n^2)|=|1-0|=1$ כי $|x_n-y_n|\to 0$

שאלה 8: (לא להגשה)

הוכיחו כי אם f רציפה ב- [a,b], אז היא ניתנת לקירוב פוליגוני שם, כלומר, לכל [a,b], אז היא ניתנת לקירוב פוליגוני שם, כלומר, לכל $g:[a,b] o \mathbb{R}$ פונקציה רציפה [a,b] o g:[a,b] o g לינארית, ומתקיים [a,b] o g לינארית, ומתקיים [a,b] o g

שאלה 9: (לא להגשה)

לכל $|f(x)| \leq Kx$ - אז קיים K כך שבור a,∞ עבור a,∞ רציפה במייש ב- a,∞ עבור a,∞ עבור a,∞ רציפה במיש ב- a,∞ הראו כי הטענה אינה נכונה עבור a,∞