

Mouvement Brownien

Dan NTAMBWE MAKEPA

Glen ROGER

Introduction

Déplacement des particules

Robert Brown (1849 – 1853)

Plan

Implémentation d'une loi normale

O3
Etude de la diffusion
de l'encre

Simulation du mouvement brownien

La probabilité d'échappement d'une sphère

O1 Implémentation d'une loi normale

Loi de probabilité

$$p(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$$

, avec μ : moyenne et σ : variance

Fonction de répartition

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma \sqrt{2\pi}}\right) \right]$$

, avec $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$

Fonction inverse

Méthode de Box-Muller

- Tirer des u et v uniformes sur [0,1]
- Calculer à chaque fois $x = \sqrt{-2 \ln(u)} \cos(2\pi v)$

```
double uniform(){
    double num = (double)rand()/(double)RAND_MAX;
    return num;
}

/* generate a random value weighted within the normal (gaussian) distribution */
double gauss(){
    double u = uniform();
    double v = uniform();
    double x = sqrtf(-2 * log(u)) * cos(2 * M_PI * v);
    return x;
}
```

Code en langage C pour une loi normale suivant distribution uniforme entre 0 et 1

Résultat

Graphique d'une loi normale

Interprétation

- Courbe normale avec une forme dite « cloche ».
- Distribution normale centrée réduite:
 - Moyenne = 0
 - Variance = 1
- Convertir en une loi normale non centrée et non réduite :

$$X = Z\sqrt{\sigma} + \mu$$

```
/* convert non-standard normal distribution to standard */
double convert(double m, double sig){
    return gauss()*sqrtf(sig)+m;
}
```

Code de conversion d'une loi normale centrée réduite en une loi normale non-centrée et non-réduite

Résultats

Loi normale de moyenne 100 et de variance 14

Loi normale de moyenne 200 et de variance 45

Interprétation

Loi normale pour une moyenne et une variance quelconque.

02 Simulation du mouvement brownien

En 1D:

Calcul des positions d'une particule de fluide en fonction du temps en 1D

```
import numpy as np
import matplotlib.pyplot as plt
import math

fig = plt.figure(figsize=(6,6))
data = np.loadtxt('./brownian1D.txt')
T = data[:,0]
X = data[:,1]
plt.plot(T,X)
plt.title('Brownian motion 1D',fontweight = 'bold')
plt.show()
```

Code pour la représentation graphique du mouvement brownien en 1D

En 2D:

Calcul des positions d'une particule de fluide en fonction du temps en 2D

```
import numpy as np
import matplotlib.pyplot as plt
import math

fig = plt.figure(figsize=(6,6))
data = np.loadtxt('./brownian2D.txt')
X = data[:,0]
Y = data[:,1]
plt.plot(X,Y)
plt.title('Brownian Motion 2D',fontweight = 'bold')
plt.show()
```

Code pour la représentation graphique du mouvement brownien en 2D

En 3D:

```
ouble* brownian3D(int N, double m, double tmax){
  f=fopen("brownian3D.txt","w");
  double epsilon = tmax/(double)(N-1);
  double tab[N];
  double X[N], Y[N], Z[N];
  X[0]=0;
  Y[0]=0;
  Z[0]=0;
  fprintf(f, "%f %f %f\n", X[0], Y[0], Z[0]);
  for(int i=1; i<N; i++){
     tab[i] = tab[0] + epsilon * i;
     X[i] = X[i-1] + convert(0,tab[i]-tab[i-1]);
     Y[i] = Y[i-1] + convert(0,tab[i]-tab[i-1]);
     Z[i] = Z[i-1] + convert(0,tab[i]-tab[i-1]);
      fprintf(f,"%f %f %F\n",X[i],Y[i],Z[i]);
  fclose(f);
```

Calcul des positions d'une particule de fluide en fonction du temps en 3D

```
import numpy as np
import matplotlib.pyplot as plt
import math

fig = plt.figure()
fig = plt.figure(figsize=(6,6))
data = np.loadtxt('./brownian3D.txt')
X = data[:,0]
Y = data[:,1]
Z = data[:,2]
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X,Y,Z,s=20)
plt.title('Brownian Motion 3D',fontweight = 'bold')
plt.show()
```

Code pour la représentation graphique du mouvement brownien en 3D

O3 Etude de l'encre


```
ouble ink(int N, double m, double tmax){
 FILE* t0=fopen("t0.txt","w");
 FILE* t10=fopen("t10.txt", "w");
 FILE* t100=fopen("t100.txt", "w");
 double epsilon = tmax/(double)(N-1);
  double tab[N];
  double X[N], Y[N], distance[N];
  double dist = 0:
  for(int j=0; j<100; j++){
      fprintf(t0, "%f %f\n", X[0], Y[0]);
      fprintf(quadra, "%f %f %f\n", X[0], Y[0], distance[0]);
      for(int i=1; i<N+1; i++){
         Y[i] = Y[i-1] + convert(0,tab[i]-tab[i-1]);
         q += pow(distance[i]-distance[i-1],2);
      fprintf(t10,"%f %f\n",X[10],Y[10]);
      fprintf(t100, "%f %f\n", X[100], Y[100]);
      dist += sqrt(pow(X[N]-X[0],2)+pow(Y[N]-Y[0],2));
 printf("%f\n",dist/N);
 printf("%f\n",q/N);
```

Code pour calculer la position de chaque particule à t = 0 s, t = 10 s et t = 100 s

```
import numpy as np
import matplotlib.pyplot as plt
import math
fig = plt.figure(figsize=(8,8))
data = np.loadtxt('./t0.txt')
data10 = np.loadtxt('./t10.txt')
data10 = np.loadtxt('./t10.txt')
plt.scatter(data1:.0],data0[:.1],color='blue',label='t = 0 s')
plt.scatter(data10[:.0],data10[:.1],color='red',label='t = 10 s')
plt.scatter(data100[:.0],data100[:.1],color='black',label='t = 100 s')
plt.legend()
plt.show()
```

Code pour la représentation graphique de la diffusion de l'encre

Représentation graphique de la diffusion de l'encre

Résultat du code :

 Après 100 secondes pour 100 particules : distance moyenne ≈ 15,8 mm

Distance moyenne quadratique

$$MSD(\tau) = \langle (x(t + \tau) - x(t))^2 \rangle$$
 , avec τ : le pas de temps et MSD : mean squared displacement

De plus:

$$<\left(x(t+\tau)-x(t)\right)^2>=2dD\tau$$

x(t): la position à t d: nombre de dimensions D: coefficient de diffusion τ : pas de temps

On a donc:

$$D = \frac{85.8}{2 * 2 * 0.1} = 214.5 \ mm^2/s = 2.1 * 10^{-4} \ m^2/s$$

Car:

on sait qu'on se place en deux dimensions
$$d=2$$
 et $\tau=\frac{100}{10^3}=0.1$ s.

Probabilité d'échappement d'une sphère


```
ouble echappement(int N, double rayon, int tmax, int fois){
   double epsilon = tmax/(double)(N-1);
   double p ext = 0;
   double p tot = 0;
      for(int i=1; i<N+1; i++){
          X[i] = X[i-1] + convert(0,tab[i]-tab[i-1]);
          Z[i] = Z[i-1] + convert(0,tab[i]-tab[i-1]);
       distance = sqrt(pow(X[N]-X[0],2)+pow(Y[N]-Y[0],2)+pow(Z[N]-Z[0],2));
       if(distance>rayon){
   return p ext/(double)fois;
void plot echap(int N, double rayon){
  FILE* fich = fopen("echappement.txt","w");
  double p ext = 0;
   for(int i=1;i<rayon+1;i++){</pre>
      p ext = echappement(N,i,100,1000);
```

Code pour calculer la probabilité d'échappement

```
import numpy as np
import matplotlib.pyplot as plt
import math

fig = plt.figure(figsize=(6,6))
data = np.loadtxt('./echappement.txt')
plt.plot(data[:,0],data[:,1],color='r')
plt.title("Probabilité d'échappement en fonction du rayon",fontweight = 'bold')
plt.show()
```

Code pour la représentation graphique de la probabilité d'échappement

Conclusion

Merci de votre attention!