EST-46114 Métodos Multivariados

Primavera 2019

Tarea 03

Fecha de entrega: 5/Mar/2019

Nombre: Arantaa Ivanne, Pineda Sandoval
C.U.: 141194

26/Feb/2018

Consideren la sesión 12 del curso.

- 1. Desarrolla los cálculos analíticos para mostrar que la distribución condicional de X_1 dado $X_2 = x_2$, en el contexto donde (X_1, X_2) tienen la distribución gaussiana bivariada, corresponde a la distribución gaussiana donde la media es una regresión de la X_1 en x_2 .
- 2. Generalicen el resultado anterior considerando $X=(X_1,X_2)$, donde X es p-variado, X_1 y X_2 son p_1 y p_2 variados $(p=p_1+p_2)$, con $X\sim N_p(x|\mu,\Sigma)$, para derivar la distribución de X_1 condicional en $X_2=x_2$.

Se comienza con el ejercicio 2, para entender lo greral y conduir al caso particular.

Los suprestos son: $X \sim Z$; $Y = A \times$; $Z' = A Z A^T$; $-1 \le P = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \le 1$ Se asume que P = 0 y que Cov(X,Y) = 0Considerando que X es P-variado:

donde,
$$\mu = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim Np(\mu, \Xi)$$

$$\mu = \begin{bmatrix} E[X_1] \\ E[X_2] \end{bmatrix} ; \overline{Z} = \begin{bmatrix} \overline{Z}_{11} & \overline{Z}_{12} \\ \overline{Z}_{21} & \overline{Z}_{22} \end{bmatrix}$$

Se tiene que:
$$A = \begin{bmatrix} I & 1 - \overline{Z}_{12} \overline{Z}_{22} \\ 0 & I \end{bmatrix}$$

Con lo anterior se quiere derivar la distribución de X_1 condicional en $X_2 = X_2$. $X_1 \mid X_2 = X_2 \sim Normal Wullivariada$

Retornando el supresto de que
$$Y=A\times$$
 se tiene ahora, y $X(X-\mu)=\begin{bmatrix} I&I-\overline{Z_{12}}\overline{Z_{22}}\\ I&X_{2}-\mu_{2}\end{bmatrix}\begin{bmatrix} X_{1}-\mu_{1}&X_{2}-\mu_{2}\\ X_{2}-\mu_{2}\end{bmatrix}\begin{bmatrix} X_{1}-\mu_{1}&X_{2}-\mu_{2}\\ X_{2}-\mu_{2}\end{bmatrix}\begin{bmatrix} X_{2}-\mu_{2}\\ X_{2}-\mu_{2}\end{bmatrix}$
También, se desarrolla la matriz Z^{Y} bajo el supresto de $Z^{Y}=AZA^{T}$:

De los resultados auteriores, se identifican los parámetros signientes para XNNp(X/µ, E) X1-11- 212 22 (X2-12) Np (0; E11- 212 22 22)

Donde la media es d'delaido a que: \[\[\text{X1-\mu_1-\in 12 \frac{z_2}{z_2}' \(\text{X2-\mu_2} \) = \[\text{Z[X_1]-E[\mu_1]-\in \text{Z12 \in \text{Z2}' \in \text{Z12 \in \text{Z12}' \in \text{Z12} \in \text{Z12 \in \text{Z12}' \in \text{Z12}' \in \text{Z12}' \in \text{Z12}' \]

for al supurstor de Cov(X,Y)=0 se salve que: X1-11- Z12 Zzz (X2-12) 1 X2 Ahora, saleemas que X1-(\mu_1+\Z_1Z\Zz'(\Xz-\mu_z))~Ng(\mu^*,\Z*) Para sacar la Media de la Distribución 9=# de Particiones Por independencia de X2-pl2 se oumple: X1- (/41+ \(\frac{1}{2} \) \(\frac{1}{2 Salarmos: E[X1-(\mu_1+Z1z\Zzz'(\xz-\mu_2)) | Xz = x2] = 0 => E[X1 | X2 = X2] = M1 + Z12 Z22 (X2-M2) = M*. Para sacar la Varianza:

 $\sum_{i=1}^{\infty} \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2} \sum_{i$

Ox (9-1/2) = 1/2 = Ox (10 x2) Oxi (9-1/2)

Dia Cov (X1, X2) (X2-A1

A putil de la generalización anterior, se detiva el caso particular para mostras que la distribución rondicional de XI dado XI=XZ, en el contexto donde (X1, X2) tienen la distribución ganssiana bivariada, sonde la media es

Una regression de la
$$X_1$$
 en X_2 .
Se tiere que:

$$\sum_{i=1}^{\infty} \left[\frac{\sum_{i=1}^{\infty}}{\sum_{i=1}^{\infty}} = \frac{\left[\text{Var}(X_i) \cdot \text{Cov}(X_1, X_2) \right]}{\left(\text{Cov}(X_2, X_1) \cdot \text{Var}(X_2) \right]}$$

 $\times_1 \mid \times_2 = \times_2 N N (\mu, \nabla^2)$

Br el ejercicio @ auterior se deriva la media:

Sustituyendo por la correlación: $p = Cov(X_1, X_2)$ Se tiene: Oxi Oxe

$$\mu_{x} + \frac{\rho O_{x}}{O_{y}} (y - \mu_{2}) = \mu_{1} + \frac{cov(x_{1} X_{2}) O_{x_{1}}}{O_{x_{1}} O_{x_{2}} O_{x_{2}}} (y - \mu_{2})$$

$$= \mu_{1} + \frac{cov(x_{1} X_{2}) O_{x_{2}}}{O_{x_{2}}} (x_{2} - \mu_{2})$$

$$= \frac{cov(x_{1} X_{2}) O_{x_{2}}}{O_{x_{2}}} (x_{2} - \mu_{2})$$

Para mostrar que se tiene una regresión: $X_1 = \beta_0 + \beta_1 X_2$ $\mu_X + \frac{\rho O_X}{O_Y} y - \frac{\rho O_X}{O_Y} \mu_2$ Con $\beta_1 = \frac{\rho O_X}{O_Y} y \beta_0 = \mu_X - \frac{\rho O_X}{O_Y} \mu_2$

(X, X) + (X) W