3.2 Finite well and harmonic oscillator

Slides: Video 3.2.2 The finite potential well

Text reference: Quantum Mechanics for Scientists and Engineers

Section 2.9

Insert video here (split screen)

Lesson 7

Particles in potential wells

Insert number 2

Finite potential well

We will choose the height of the potential barriers as V_o with 0 potential energy at the bottom of the well The thickness of the well is L_{τ} Now we will choose the position origin in the center of the well

If there is an eigenenergy E for which there is a solution then we already know what form the solution has to take sinusoidal in the middle exponentially decaying on either side

For some eigenenergy
$$E$$
 V_o with $k = \sqrt{2mE/\hbar^2}$ and $\kappa = \sqrt{2m(V_o - E)/\hbar^2}$ for $z < -L_z/2$ $\psi(z) = G \exp(\kappa z)$ for $-L_z/2 < z < L_z/2$ $\psi(z) = A \sin kz + B \cos kz$ for $z > L_z/2$ $\psi(z) = F \exp(-\kappa z)$ with constants $A_t B_t F_t$ and G

From continuity of the wavefunction at
$$z = L_z/2$$

$$\psi(L_z/2) = F \exp(-\kappa L_z/2)$$

$$= A \sin(kL_z/2) + B \cos(kL_z/2)$$
 Writing $X_L = \exp(-\kappa L_z/2)$
$$S_L = \sin(kL_z/2)$$

$$C_L = \cos(kL_z/2)$$
 gives
$$FX_L = AS_L + BC_L$$

$$-L_z/2 \quad 0 \quad L_z/2 \quad \overline{z}$$

Similarly at
$$z=-L_z/2$$
 V_o $GX_L=-AS_L+BC_L$ Continuity of the derivative gives at $z=-L_z/2$
$$\frac{\kappa}{k}GX_L=AC_L+BS_L$$
 at $z=L_z/2$
$$-\frac{\kappa}{k}FX_L=AC_L-BS_L$$

$$-L_z/2$$
 0 $L_z/2$ z

So we have four relations

$$GX_{L} = -AS_{L} + BC_{L}$$

$$FX_{L} = AS_{L} + BC_{L}$$

$$\frac{\kappa}{k}GX_{L} = AC_{L} + BS_{L}$$

$$-\frac{\kappa}{k}FX_{L} = AC_{L} - BS_{L}$$

Now we need to find what solutions are compatible with these

Adding
$$GX_L = -AS_L + BC_L$$
 V_o

$$FX_L = AS_L + BC_L$$
gives $2BC_L = (F+G)X_L$

Subtracting $-\frac{\kappa}{k}FX_L = AC_L - BS_L$
from $\frac{\kappa}{k}GX_L = AC_L + BS_L$
gives $2BS_L = \frac{\kappa}{k}(F+G)X_L$

$$-L_z/2 \quad 0 \quad L_z/2 \quad z$$

As long as
$$F \neq -G$$

we can divide

by
$$2BS_L = \frac{\kappa}{k} (F+G) X_L$$
$$2BC_L = (F+G) X_L$$

to obtain

$$\tan(kL_{z}/2) = \kappa/k$$

This relation is effectively a condition for eigenvalues

Subtracting
$$GX_L = -AS_L + BC_L$$
 V_o from $FX_L = AS_L + BC_L$ gives $2AS_L = (F-G)X_L$

Adding $-\frac{\kappa}{k}FX_L = AC_L - BS_L$ and $\frac{\kappa}{k}GX_L = AC_L + BS_L$ 0

gives $2AC_L = -\frac{\kappa}{k}(F-G)X_L$ 0
 $-L_c/2$ 0 $L_c/2$ z

condition for eigenvalues

Similarly, as long as
$$F \neq G$$
 V_o we can divide
$$2AC_L = -\frac{\kappa}{k}(F-G)X_L$$
 by
$$2AS_L = (F-G)X_L$$
 to obtain
$$-\cot(kL_z/2) = \kappa/k$$
 This relation is also effectively a

So the only possibilities are

$$1 - F = G$$

and $\tan(kL_z/2) = \kappa/k$

$$2 - F = -G$$
and $-\cot(kL_z/2) = \kappa/k$

$$1 - F = G$$
and $\tan(kL_z/2) = \kappa/k$
Note from $2AS_L = (F - G)X_L$
and $2AC_L = -\frac{\kappa}{k}(F - G)X_L$

$$S_L \text{ and } C_L \text{ cannot both be 0}$$
so $A = 0$
Hence in the well we have
$$\psi(z) \propto \cos kz$$
which is an even function $-L_z/2 = 0$

$$1 - F = -G$$
and $-\cot(kL_z/2) = \kappa/k$
Note from $2BC_L = (F+G)X_L$
and $2BS_L = \frac{\kappa}{k}(F+G)X_L$

$$S_L \text{ and } C_L \text{ cannot both be 0}$$
so $B = 0$
Hence in the well we have $\psi(z) \propto \sin kz$
which is an odd function

Though we have found the nature of the solutions we have not yet formally solved for the eigenenergies and hence for k and κ We do this by solving $\tan(kL_z/2) = \kappa/k$ and $-\cot(kL_{z}/2) = \kappa/k$

Solving for the eigenenergies

Change to "dimensionless" units Use the energy of the first level in the "infinite" potential well width L_z leading to a dimensionless eigenenergy and a dimensionless barrier height $E_1^\infty = \frac{\hbar^2}{2m} \left(\frac{\pi}{L_z}\right)^2$

$$k = \sqrt{2mE/\hbar^2} = (\pi/L_z)\sqrt{E/E_1^{\infty}} = (\pi/L_z)\sqrt{\varepsilon}$$

$$\kappa = \sqrt{2m(V_o - E)/\hbar^2} = (\pi/L_z)\sqrt{(V_o - E)/E_1^{\infty}} = (\pi/L_z)\sqrt{V_o - \varepsilon}$$

Solving for the eigenenergies

Consequently
$$\frac{\kappa}{k} = \sqrt{\frac{V_o - E}{E}} = \sqrt{\frac{v_o - \varepsilon}{\varepsilon}}$$

$$\frac{kL_z}{2} = \frac{\pi}{2} \sqrt{\frac{E}{E_1^{\infty}}} = \frac{\pi}{2} \sqrt{\varepsilon} \quad \text{and} \quad \frac{\kappa L_z}{2} = \frac{\pi}{2} \sqrt{\frac{V_o - E}{E_1^{\infty}}} = \frac{\pi}{2} \sqrt{v_o - \varepsilon}$$
So $\tan(kL_z/2) = \kappa/k$ becomes $\tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
or $\sqrt{\varepsilon} \tan[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$
and $-\cot(kL_z/2) = \kappa/k$ becomes $-\cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)/\varepsilon}$
or $-\sqrt{\varepsilon} \cot[(\pi/2)\sqrt{\varepsilon}] = \sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Now add the curves

Choose a specific well depth v_o and plot the curve $\sqrt{(v - \varepsilon)}$

Now add the curves

$$\sqrt{\varepsilon} \tan \left(\frac{\pi}{2} \sqrt{\varepsilon} \right)$$

Choose a specific well depth v_o and plot the curve $\sqrt{(v_o - \varepsilon)}$

Now add the curves

$$\sqrt{\varepsilon} \tan \left(\frac{\pi}{2} \sqrt{\varepsilon} \right) - \sqrt{\varepsilon} \cot \left(\frac{\pi}{2} \sqrt{\varepsilon} \right) - \cdots$$

For a specific v_o the solutions are the values of ε at the intersections of

$$\sqrt{(v_o - \varepsilon)}$$

and

$$\sqrt{\varepsilon} \tan \left(\frac{\pi}{2} \sqrt{\varepsilon} \right)$$

or

$$-\sqrt{\varepsilon}\cot\left(\frac{\pi}{2}\sqrt{\varepsilon}\right)$$

Solutions

width

n=3

These are the solutions for a well depth V_o of $8E_1^{\infty}$ Note that they are all lower energies than the corresponding solutions for the infinitely

deep well of the same

