

沈阳工业大学 电子技术教研室

计数器

• 用于计数、分频、定时、产生节拍脉冲等

 分类:按时钟分,同步、异步 按计数过程中数字增减分,加、减和可逆 按计数器中的数字编码分,二进制、二-十进制和循环码... 按计数容量分,十进制,六十进制...

1.1 同步计数器

1.1.1 同步二进制计数器

同步二进制加法计数器

原理:根据二进制加法运算规则可知:在多位二进制数末位加1,若第i位以下皆为1时,则第i位应翻转。

由此得出规律,若用T触发器构成计数器,则第i位 触发器输入端Ti的逻辑式 应为: $T_i = Q_{i-1}Q_{i-2}...Q_0$

$$T_0 \equiv 1$$

器件实例: 74161

(CLK	R_D'	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	J	1	0	X	X	预置数 (同步)
٠	X	1	1	0	1	保持 (包括C)
	X	1	1	X	0	保持 (<i>C</i> =0)
	几	1	1	1	1	计数

1.1.2 同步十进制计数器

加法计数器

基本原理:在四位二进制计数器基础上修改,当计到1001时,则下一个CLK电路状态回到0000。

 $T_3 = Q_2Q_1Q_0 \Rightarrow Q_2Q_1Q_0 + Q_3Q_0$

能自启动

器件实例: 74 160

CLK	R'_D	LD'	EF	PET	工作状态
X	0	X	X	X	置 0 (异步)
JL	1	0	X	X	预置数 (同步)
X	1	1	0	1	保持 (包括C)
X	1	1	X	0	保持 (<i>C</i> =0)
JL	1	1	1	1	计数

1.2 任意进制计数器的构成方法

用已有的N进制芯片,组成M进制计数器,是常用的方法。

$$\begin{cases} N > M \\ N < M \end{cases}$$

1.2.1 N > M

原理: 计数循环过程中设法跳过N-M个状态。

具体方法: 置零法

置数法

(b)

异步置零法同步置零法

(a)

「异步预置数法 同步预置数法

例: 将十进制的74160接成六进制计数器

(CLK	R_D'	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	J	1	0	X	X	预置数 (同步)
	X	1	1	0	1	保持 (包括C)
	X	1	1	X	0	保持 (C=0)
	T	1	1	1	1	计数

例:将十进制的74160接成六进制计数器

缺点:置0信号作用时间短

置数法

- (a)置入0000
- (b)置入1001

 $(1)M=N1\times N2$

先用前面的方法分别接成N1和N2两个计数器。

N1和N2间的连接有两种方式:

a.并行进位方式:用同一个CLK,低位片的进位输出作为高位片的计数控制信号(如74160的EP和ET)

b.串行进位方式:低位片的进位输出作为高位片的 CLK,两片始终同时处于计数状态

例: 用74160接成一百进制

CLK	R'_D	LD'	EP	ET	工作状态
X	0	X	X	X	置 0 (异步)
T	1	0	X	X	预置数 (同步)
X	1	1	0	1	保持 (包括C)
X	1	1	X	0	保持 (C=0)
几	1	1	1	1	计数

例:用两片74160接成一百进制计数器

②M不可分解 采用整体置零和整体置数法:

先用两片接成 M'> M 的计数器

然后再采用置零或置数的方法

例: 用74160接成二十九进制

C	LK	R'_D	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	J	1	0	X	X	预置数 (同步)
	X	1	1	0	1	保持 (包括C)
	X	1	1	X	0	保持 (C=0)
	工	1	1	1	1	计数

例: 用74160接成二十九进制

整体置零

(异步)

整体置数(同步)

1.3 计数器应用实例

例1, 计数器+译码器→顺序节拍脉冲发生器

例2, 计数器+数据选择器→序列脉冲发生器

发生的序列: 00010111

知识点小结

知识要点: 中规模计数器的原理和用法

知识难点: 用中规模计数器的灵活解决实际问题