線形同型写像と部分空間の線形同型

線形同型は、部分空間が「同じ」であることを述べた概念である

線形同型写像 V,W を線形空間とし、線形写像 $f:V\to W$ が全単射であるとき、f は線形同型写像あるいは単に線形同型であるという

このとき、同型を表す記号 ≅ を用いて、

 $f: V \xrightarrow{\cong} W$

と書くこともある

 $V \cong W$

と書く

ref: 行列と行列式の基 礎 p101

ref: 図で整理!例題で 納得!線形空間入門 p91

~92

線形同型の性質

ここでは、線形同型写像の恒等写像、逆写像、合成写像との関係を述べる

ref: 図で整理!例題で 納得!線形空間入門 p93 ~94

線形同型と恒等写像

🕹 恒等写像の線形同型性 恒等写像は線形同型写像である

恒等写像は明らかに全単射であり、線形写像でもあるため、線形同型写像である ■

この事実は、部分空間の線形同型に関して次のように言い換えられる

** 部分空間の自己同型性 部分空間 *V は *V 自身と線形同型である

すなわち、

 $V \cong V$

線形同型と逆写像

・ 線形同型写像の逆写像 線形同型写像の逆写像は線形同型写像である

[Todo 1: ref: 図で整理!例題で納得!線形空間入門 p93~94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

・ 線形同型性の対称性 部分空間 V が部分空間 W と線形同型 なら、W は V と線形同型である すなわち、

 $V \cong W \Longrightarrow W \cong V$

線形同型と合成写像

・ 線形同型写像の合成 線形同型写像の合成は線形同型写像である

[Todo 2: ref: 図で整理!例題で納得!線形空間入門 p94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

すなわち、

 $V \cong W \land W \cong U \Longrightarrow V \cong U$

ここまでで登場した、部分空間の線形同型に関する性質をまとめると、

- ♣ 線形同型の同値関係としての性質
 - i. $V \cong V$
 - ii. $V \cong W \Longrightarrow W \cong V$
 - iii. $V \cong W \land W \cong U \Longrightarrow V \cong U$

となり、これらは、

同型 ≅ が等号 = と同じ性質をもつ

ことを意味している

線形同型写像と基底

ref: 図で整理!例題で 納得!線形空間入門 p94

・ 線形同型写像による基底の保存 線形同型写像 f によって、
部分空間の基底は基底に写る

証明

単射な線型写像は線型独立性を保つことから、f の単射性により、基底の線型独立性が保たれる

また、f の全射性により、基底の生成性も保たれるよって、f によって基底は基底に写る

座標写像

このとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}}: K^n \to V$ を

$$\Phi_{\mathcal{V}}(oldsymbol{x}) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (oldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

を ン で定まる座標写像と呼ぶ

このように定めた線形写像が<mark>座標写像</mark>と呼ばれる背景は、この座標写像が 線形同型であることを示し、それがどんな意味を持つのかを考えることで わかる

 $oldsymbol{\$}$ 線形空間の基底によって定まる線形同型写像 V を線形空間 V を線形空間 V とし、 $V = \{oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n\}$ を V の基底とする このとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}} \colon K^n \to V$ を

$$\Phi_{\mathcal{V}}(oldsymbol{x}) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (oldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

と定めると、これは線形同型写像である

証明

線形写像 Φν が全単射であることを示す

単射であること

ref: 行列と行列式の基

礎 p101

ref: 図で整理!例題で 納得!線形空間入門 p94

~95

基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ の線型独立性は、

$$\sum_{i=1}^n x_i \boldsymbol{v}_i = \mathbf{0}$$

で表される線形結合が、 $x_i = 0$ を満たすことを意味する $\Phi_{\mathcal{V}}$ の定義をふまえると、この条件は、

$$Ker(\Phi_{\mathcal{V}}) = \{\mathbf{0}\}$$

と書ける

よって、線形写像の単射性と核の関係より、Φν は単射であ

る

全射であること

基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ が V を生成することは、

$$oldsymbol{u} \in V \iff oldsymbol{u} \in \langle oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n
angle$$

$$\iff \exists (x_i)_{i=1}^n \in K^n \ s.t. \ oldsymbol{u} = \sum_{i=1}^n x_i oldsymbol{v}_i$$

$$\iff \exists oldsymbol{x} \in K^n \ s.t. \ \Phi_{\mathcal{V}}(oldsymbol{x}) = oldsymbol{u}$$

$$\iff oldsymbol{u} \in \operatorname{Im}(\Phi_{\mathcal{V}})$$

という言い換えにより、

$$V = Im(\Phi_{\mathcal{V}})$$

を意味する

よって、像空間と全射性の関係により、Φν は全射である

この定理を部分空間の線形同型に関して言い換えると、次のような主張に なる ♣ 有限次元部分空間と数ベクトル空間の線形同型性 任意の部分空間は次元の等しい数ベクトル空間と線形同型である

つまり、

和とスカラー倍だけに着目すれば、 どんな部分空間も数ベクトル空間と「同じ」

ということを意味する

この同型により、部分空間に座標を与えることができる そしてその座標によって、ベクトルの成分表示が得られる

.....

Zebra Notes

Туре	Number
todo	2