Integral Review

textbook	: Calc	ulus	Earl	y Tro	ins	cer	nde	ent	als	5	3"	d ec	tik	ior	1	pa	ge	4	40	,		_	
scare dans	2.100		. 10	1-7	7 4	26	. 2	2	50	,	12	7	2 /	1									_
random	numi	oers	10	, 17,	4 L ,	, 4:	ν, τ	٥۷,	36	, -	13,	+,	,,	1									
18. S4 (x2-1)) ² dx		impr	oper:	χ²	-1=	0		=>	χ÷	+	1											
u-subs				-1 #	ner		du	= 2-	t d	t	bı	4	n	0	t.	dt	e	xis	ts				
partia	trac	ction	ns!																				
factor	denn	mir	otor	: (L ² -	.112	- (1	LL	11/4	-1)	\2 .	= 1 L	71/2	<u> </u>	1/2									
controls Aor Axt	B	, ¢	ontrol	s # of ed fro	ctic	ms	CT	,,,,		X+1) i	5 a	de	ar	99	1	fa	cto	Y				
factors (x+1)	dea	mı	ulti		1				A	4	1	В		٥		+	1	>					
(x+1)	1	2	2	(x:	H)2 (X -1)s	(x	+1)	·	(x	11)2	(lx-	1),		(x ·	- 1)²					
(x-1)	1	2	2		(x-	1) }	nas	m	ult	ipli	icit	42											
1		Δ	5	2				1	D			11-			•	•			100:14				
1 (x+1) ² (x-	-1) ² = -	x+1)'	+ (x)	$\frac{1}{1}$	(x-	.1)'	+	(x	- 132													solv he	
																			•		·		
1	_ = _	A	(x+1)	(x-1)2	+	1	В	(X -	1)2	+ -	С	_+	<u>(x</u>	-1)	(x+	1)2	+ -	D)	<u>(x</u>	+1)2	
(x+1)2 (x-	1) _s ()	(+1)	(X+1)	$(x-1)^2$		(x	11)2	(x -	172	(x-1),	(x	-1)(X+	1)2		(x -	1)2	(x	+1) ₅	
4 - 0 ()			2				2 .			,2													
1= A(x+1))(X-1)	+8(X-1) 1	FC(X-	1)(X	(11)	+	DI	X+Ι)_													
when x	:1:1	= A(z)(n)²	+ B (0) _S 1	- C(0) (2)2	+ 1	D (2	, ,2												
		=4E																					
	D	= 1/2	1																				
			_	2		7			2			2											_
when >				5 + B	(-2)	5+	C(-	-z)	(0)	+ '	D(0	2											_
		1 = 1 B=																					
1= A(x3.	-x ² -×+	+(1	B(x2-	.2×+1) + (c(x	3+	x ² -	X-1) +	D(x² +	2×-	۲۱)									
9 0			2								E	dua	in.										_
x3: 0 x3				7 -	2			0:	A	+(י, נ	B=1) = 1	4						_ ac			-
χ^2 : O χ^3												+C+					=-				- 코 - 남	=2c	-
c: 1=				CX TZ	νX							C+;	_				= - = 0				4	- 0	
																				4.14			
Sy (x2-1)2	$dx = \int$	(X+)	7 + (x	+1)2 + 7	- 1/4 X - 1 }	+ (1/4 X-1) ² 0	x =	4	nlx	+11-	낙()	(+1)-'-	4	nlx	-11	- 4	(x-	1)-1	4	
									=	4	[In	1 ×+	- -	(x	+1)	- (x	-1)	4					

17. 5 10x +4 dx						
u-substitution: u=x²-1 separate it	then	du = -	xdx b	out we h	nave (bx+1)·dx
$\int \frac{6x+4}{x^2-1} dx = \int \frac{6x}{x^2-1} + \frac{4}{x^2-1} dx = \frac{4}{x^2-1} + \frac{4}{x^2-1} dx = \frac{4}{x^2-1} + \frac{4}{x^2-1}$		1x + 5 x2	not a			irctan(x)+c)
you could do partial	fracti	ions f	rom tr	ial fract ne beginn		find partial
fractions with only a	CONST	ant c	on top	easier		
factor denominator: x2-1	= (x+1)	(1-X)				
factors deg multi (x+1) 1 1 (x-1) 1 1	(x+1)()	K-1) (A + (/+x	(x-1)		
	4 = A()	x-1) +	B(X+1)			
			4 = A(0) 2 = B			
$\int \frac{6x+4}{x^2-1} dx = \int \frac{6x}{x^2-1} + \frac{-2}{(x+1)} + \frac{1}{(x+1)}$			-2 = 1	2A + B(0) A		
$=6\ln x^2-1 \cdot\frac{1}{2}-2\ln x^2-1 \cdot\frac{1}{2}$	n x+1 }+	-2 ln 1 x	<-11 tc			
= 3 ln x²-11-2 ln	x+1 +2	2 Inlx-	11 +0			
check: $3x^{2}-1\cdot 2x - 2x + 1 = 0$	2 1					
$= \frac{x^2+1}{6x} - \frac{x+1}{x} + \frac{x-1}{x}$						

L. S. In (4.	-2×)	dx		im	pro	pe	Y:	4.	-2×	=()	wh	rs	\	(=)	2						
if you	see	ln	in	iı	nte	egr	al	+	ner	ı i	nte	gro	ati	on	t	Ŋ	pa	rts				
integra!	tion	h	~	<u>ا</u>			/7	~		ماه	1.	100	,da		(,,		<u></u>	d., '				
pick u			Yu								thir				10	/ / -	7.//	au_				
Log												19										
Inv. tr	io.																					
Algebra																						
Trig.																						
Expone	ntial																					
we run	into	a	100	a i	mr	ne.	dia	te!	\u :													
u= In[4-	2x)		dù) = 4	-2>	<u>-</u> -2	2 d:	X														
dy = 1 dx			V=																			
uv-Sud	u																					
=(\\n(4-2x))) · (x)	- - - -	(x)	. (प	-2 -2×) o	lx															
= x · In (4-	2.11-	.('-	X																			
- X • IFI (4-	ZX 110	J ₀ 2				et:	1	ha) C	0 W)	200	ml:		Cor	207	tov	202			
		IA =	2 -											5111	1	101		161		1		
			=-1					are	u-	-ba	sund	ds										
						^	u	ha	5 0	dif	fer	en-l	- b	וטכ	mc	S						
= x.1n (4.	-2×) l	! - S	2-1	dı	1		th	an	X,	bu	4	L	dor	1+	w	an-						
											r											
= x. In(4-	2x)	- 1.	<u>u</u> –	u	du		de	no	te	th	at	th	ey	OY	e							
		(p)					di	te	rer	1+	usi	ing	a	an	d	b_						
= x. In (4-	2×)	_ J <u>~</u> t	- - !	L d	u_																	
= x.ln(4-	2\1	21	ماما	۱	, 1 ⁶	•																
- x. IN 14-	ZX) 10	-2	mu	1-1	1_le																	
= x. In 14	-2x)	-21	nl2	-x	_	(2-	- x `)],														
					-			-														
1 1	1 1							1	1	1	1					1	1	1			1	

$25. \int_{0}^{\pi/4} \sin(3x)$	cos(5x) dx						
trigonometr							
identities gi	ven on te	st					
$\sin A \cos B = \frac{1}{2}$	[sin(A+B)	t sin(A-B)]				
A=3x B=5	×						
=50 = [Sin (3	3x+5x) t sin	(3x -5x	()]dx				
$= \frac{1}{2} \int_0^{\pi/4} \sin(8x)$	+ sin (-2x)	dx					
= ½[\$sin(8x)							
32. $\int_{\pi/2}^{\pi} \cot^2(\frac{\Theta}{2})$	dΘ						
$CSC^2x = COt^2$ $COt^2x = CSC^2$							
$=\int_{\pi/2}^{\pi} CSC^{2}(\frac{\theta}{2})$	1 d0						
$\frac{d}{dx} \left[\cot(x) \right] = -$ $\int \csc(x) dx = -$		J abo	out ofter	n, it wou	tive or initial		
$= -2\cot\left(\frac{\Theta}{2}\right) - \Theta$	η π ₁₂	int	egrals o	on a test			
58. Sin(x) cosh	(x) dx	not	part of	course			
43. S (x-2)2 (x2+4)				a test			
factor denor							
factors dea	multi 2	16 (x-z)2($\frac{A}{(x-2)}$	+ Cx+D	4 is a	deg 2 factor
(x²+4) Z	1				*roc		nod fails as disappears

<u>5</u>	$\frac{1}{x(x^2-1)^{3/2}} dx$	
	partial fractions only works when exponents are whole numbers	
	this uses a method called trig. substitution which we do not learn in detail but you have seen in mobius	7
	we would tell you take x = sec0 and solve	
	$x = \sec \theta$ $dx = \sec \theta + an\theta d\theta$	
	= Seco (seco - 1)3/2 · seco · tano do	
	$\sec^2\theta - 1 = \tan^2\theta$	
	$= \int \frac{1}{\sec\theta (\tan^2\theta)^{3/2}} \sec\theta \cdot \tan\theta \cdot d\theta$	
	= S seco tano do	
	= S tarto do	
	$=S \cot^2 \Theta d\Theta$	
	$\cot^2\theta = \csc^2\theta - 1$	
	= Scsc ² 0-1 d0	
	=-cot(e)-0 tc	
3.	Scos³0 sin80 d0	
	trigonometric integration:	
	identities given on test replace lowest odd power	
	$= \int \cos\theta \cdot \cos^2\theta \cdot \sin^8\theta \ d\theta$	
	$\cos^2\Theta = 1 - \sin^2\Theta$	

$=\int \cos\theta (1-\sin^2\theta)\cdot \sin^8\theta$	de	
= [(sin80-sin100) · cos0	de	
u= sin \theta du= cos\theta d\theta		
=S u ⁸ -u ¹⁰ du		
= \(\frac{1}{4} u^4 - \frac{1}{11} u'' + C		
= 4 sin90 - 11 sin"0 +c		
4. $\int xe^{-12x}dx$		
u-substitution: u=	-12x then du=-12 dx but we have x-dx	
two unrelated thing	s being multiplied => integration by parts	
LIATE => algebra	is hit first	
$dv = e^{-12x} dx \qquad du = dx$ $dv = e^{-12x} dx \qquad v = -\frac{1}{12}e^{-\frac{1}{12}}$	12×	
uv - Svdu		
$= (x)(-\frac{1}{12}e^{-12x}) - \int -\frac{1}{12}e^{-1}$	2× d×	
$=-\frac{1}{12} \times e^{-12 \times} + \frac{1}{12} \int e^{-12 \times} dx$	A×	
$= -\frac{1}{12} \times e^{-12x} + \frac{1}{12} \left(-\frac{1}{12} e^{-12x} \right)$	() +c	
=-12 xe-12x - 144 e-12x +		
=-12 xe-12x - 144 e-12x +		
=-12 x e ^{-12 x} - 144 e ^{-12 x} +		
=-\frac{1}{12} \times e^{-12 \times - \frac{1}{144}} e^{-12 \times + \frac{1}{144}}		