1 Fundamentals of unconstrained optimization

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, write A as a sum of rank 1 matrices. Use the Eigenvalue decomposition of A.
- 2. Let $a \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Define $f_1(x) = a^{\top}x$ and $f_2(x) = \frac{1}{2}x^{\top}Ax$. Compute ∇f_1 , $\nabla^2 f_1$, ∇f_2 , and $\nabla^2 f_2$.
- 3. Let f be a strictly convex function. Show that if x^* is a local minimizer then it is a global minimizer.
- 4. Show that $-\nabla f$ is a descent direction.
- 5. Let $f(x,y) = (x+y^2)^2$. Show that $p = [-1,1]^{\top}$ is a descent direction at $[1,0]^{\top}$. State the steepest descent direction and Newton's direction. What is the optimum of this function? For Newton's method how many steps do we need to reach such optimum?

2 Newton and Quasi-Newton methods

- 1. State Newton's update formula.
- 2. State two differences between Newton's method and steepest descent (other than the formulas).
- 3. Let $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ be a constant matrix (i.e. independent of x). Let $d \in \mathbb{R}^n$ such that it solves the following system:

$$0 = \nabla f(y) + \nabla^2 f(y)d.$$

Prove that y + d is a stationary point of f.

4. Let:

$$B_k = (I - \rho \gamma s^{\mathsf{T}}) B_{k-1} (I - \rho s \gamma^{\mathsf{T}}) + \rho \gamma \gamma^{\mathsf{T}},$$

with $\rho = 1/(\gamma^{\top} s)$, γ, s fixed vectors.

- (a) Which update formula is this?
- (b) What does B_k approximates? What is the difference between this method and Newton's method?
- (c) Prove that $B_k s = \gamma$
- (d) Prove that if B_{k-1} is spd and $s^{\top} \gamma > 0$ then B_k is also spd. What is the practical importance of this?
- (e) Prove that if $B_{k-1}s = \gamma$ then $B_k = B_{k-1}$. What does this mean?

3 KKT Conditions

1. State the KKT conditions for the following optimization problem:

min
$$f_0(x)$$

s.t. $f_k(x) = 0$ $k = 1, ..., m$
 $g_j(x) \le 0$ $j = 1, ..., r$

2. Solve the following optimization problem using the KKT conditions:

$$min - xy$$

s.t. $x + y = 10$

3. Using the KKT conditions, find the point on the circle $x^2 + y^2 = 80$ that is closest to (1,2). You are going to find to KKT points, what is the relation between that other non optimal point and (1,2)?

4 Duality

- 1. What is strong duality? What is weak duality?
- 2. State the definition of the Lagrange dual function
- 3. How does the Lagrange dual function relate to the dual LP problem?
- 4. Find the Lagrange dual function of the following problem:

$$\min x^{\top} x$$

s.t. $Ax = b$

5. Consider the following LP in standard form:

$$\min c^{\top} x$$

s.t. $Ax = b$
 $x \ge 0$

Compute the Lagrangua dual function. What can you tell about the dual LP problem from this function?

5 Quadratic programming

1. Consider the following optimization problem:

$$\min q(x) = \frac{1}{2}x^{\top}Qx + c^{\top}x \tag{1}$$

$$s.t. Ax = 0, (2)$$

where $Q \in \mathbb{R}^{n \times n}$ is spd, $A \in \mathbb{R}^{m \times n}$ with rank(A) = m.

- (a) Let x^* be the optimum, prove that $q(x^*) \leq 0$.
- (b) Prove that $q(x^*) = 0 \iff x^* = 0$.
- 2. Consider the problem of finding the point on a hyperplane H that has the minimum distance to a fixed point x_0 . This hyperplane is defined as:

$$H = \{ x \in \mathbb{R}^n : Ax = b \},$$

where $x_0, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ are fixed and rank(A) = m.

- (a) Write this as a constrained optimization problem.
- (b) Write down the Lagrange function for this problem
- (c) Deduce that the solution is given by:

$$x^* = x_0 + A^{\top} (AA^{\top})(b - Ax_0)$$
$$\lambda^* = -(AA^{\top})^{-1}(b - Ax_0).$$