

Today's agenda b understanding Sorting Problems on Sorting Sorting techniques
4 understanding Solting
Problems on sosting
6 Sosting rechniques
2
ManDron
EN AIGULIEU

200 ting	Mod	anging		× 1N	incac	ding	hon who	d Palames
	En1:	2 4	10 15	27	-> tou	e		
	En2:	20 7	3	-5 -	·8 ->	true		
	En3;	T 2	3	7 4	96	7	bosis of	on the
#1	octos:	1 2	2	2 3		ی و۔		the bas
-> sele	bble soon		a	78 [4]	• 3		9 8	n
	Ation 80	_ 00	relan P			L		Sive ea
->de	V	054			A 6 6 0	7s. So	84 (000)	rc; of alo
bu	cres b	051		000 /4	J: 1	3	8 9	


```
Q) Order of hemoval
     G Criven N elements at every step remove an array
 Clement. Cost to remove element: Sum of array elements
  Present. Find min cost to remove all elements.
            Note: Add cost first and then hemove.
  En1: a \circ o \circ (3) = (3 2 5) a \circ o \circ (3) = (3 2 5)
                                 hemove 2: 10
           gemore 3: 10
                                 hemore 5: 8
           hemore 2: 7
                                  hemore 3: 3
           hemove 5: 5
     Enz: aso[4] = ( 4 6
            Semove 7: 4+6+2+7
            hemore 2 :
                         4+6+2
                           4 + 6
            Iremove 6:
             hemore 4: 4
                              minimile overall 60 yr
          man contribution = oth inden : min ele
          and mor controlledien: 1st index = 2nd min ele.
                                         300 min ele.
      -> Arroy should be sorted in inc. order.
```


axo[4] = { 4 6 2 7}
- semoval lole = N-1
(24 6 13
Citing Jang thry Lains
11Psuedo code
int hemovalorder (int cos [2]) <
Arrays. sold (aso)
int ansco;
T.C: Olaloga + A) JOE (ind i= M-1; i>=0; i){
= 0(210gh) ans = and + (are li) * (N-9);
31901100
S.c. o(1)
Seturn ans;

	ass[4]: 4 6 2 7
hemovalordes (int cos [2]) < Arrays. 5084 (aux)	<u>+</u>
Horays. 2014 (aso);	ars/47: 12 4 6 73
for lind is My; i >=0; :) { and = and + (are 1:) * (N-9);	(12
3	8 244 = 39
setum on;	1=3: 2 + 4 + 6 + 7
	i=2 : 2 + 4 + 6
Á AI	i: 1: 2+ 4 i: 0: 2

0) Good Integer (only distinct)

4 Criven avolv), Calculate no. of good integest.

An element is Said to be good if

(No. of element rele := ele itell)

Hideal

and check if they are same. (nested book).

T.C: 0(12) S.C: 0(1)

11 idea 2

(-5-4-13793

After Count of elements smaller than arrij:

	ind goodintegers line around	1)イ
	Arrays. sold (arra);	
	ind Cound = 0;	
ic: Olaloga)	for line iso; ich; itt)	4
s-c: ou)		
	if (000 [i] = = i) (60	nd 44;
/%		
	ManDra	
	neturn count;	
	3	

{No. of element Lele := ele itself]

Crood Integers: { Data can refeat]

En1: (0 2 2 3 3 8 } -> an = 3
HIESS: 0 1 1 3 3 5

En2: (-4-4 2 2 5 5 5 8 8 8 10 17 3

41 10st: 0 0 2 2 4 4 4 4 8 8 8 11 12

After soming 4 any: 5

Obsi: All the occurrences of some number will be either good or bad.

0652: if ele is 150 occ -> 000 [i] != 000 [i-1]

No of ele < ele == i

i = = a so [i]

Obs3: if Ble is not the 1st occ.

11Psuedo code

	ind	goodintegerdufficate (int arm (N))
		Arrays.sold (arr);
		ind cound = 0°
		int less count = 0;
		for (int i:1; i <n; i++)="" td="" }<=""></n;>
T.C: Olnlogn)		if (are [i] != are [i-1]) \ ///ist+ occ
2·c. 0 (1)		less count : i;
		else 11 nent ocr.
		3
		if (avoli] == less count) (count ++;]
		J
	3	

			(- y - y	2 2 5 5	6 7 8 9 5 5 8 8	8 10 17 3
		माध्यः:	0 0	2 2 4 4	4488	8
M	goodintegerdulicate (int aros (m))	<u> </u>				
	ind counds or			Country	r 10000	
		2		Court :	Legg Ce	8
	if (000 (0) =:0) (Cart ++;	1		. 8	45	0
	ind less count = 0;					
	for (int 1:1; 1<1) ++) }					
	in a constant					
H	if (arr [i] != arr [i-1])4 (188 count : i)	Wist occ.				
	3					
	elses /// nent ocr.					
	nothing					
	8					
	//					
	if Carrid == less count) {	Courd #13]				
١,						
1						

//Sosting techniques 1 Bubble Jost G Sost the assay in asc. order but we can swal adjacent elements only. aror (8): {5 7 5 4 10 -2 6 3 } 15 x 8 n 10 -2 6 8 } -2 (0, N-2) 5 x 4 7 -2 10 10 45547-263103 15847-28803→10, N·33 45-276737 iter 1: 15 45 -263703 LO, N. 43 ites 6 Ly N length -> N-1 iteration (0, N-2) iter 7 ??

119 suedo code

	Void	bubblesort (int arr [N]) <
		; < 1-2
		100 (i=0; i<= N-2; i+4) {
c: 0(1)		100 Cint j=0; je= N-2-i; j++) {
		if (are [j] > are [ji]) { int tem? = are (ji);
		(aw [j) = Owr [j+i]
		3 ans Giti = temp;
	7//	31901100
	3	

	; 2 Alog	1:0	
Jos Cizo	; i<: <mark>N-2</mark> ; 744) {		i j-6,
	(int j=0) j <= N-2-1; j+ if (aso (j) > aso (j+1)) \ int temp = aso (j); aso (j+1) = temp; 3	15 7 B 4	1 -2 15 8 3 1 -2 15 6 5 10
دا	are [] = are [+]; are [it] = +ene;	155	4 7 -2 6 3
		1=1	j-2 40,53
	A	15 5 H 3	2 4 5 6 7 7 2 4 8 (0) 2 76 7 ₃ 7
		1545	-2 6 2 7 10 3