Klein-Nishina Formula and Total Compton Scattering Determination

Bhaskar Mookerji Charles Herder

8.13 Experimental Physics I MIT Department of Physics

3 December 2007

Outline

- 1 Introduction
 - Compton Scattering
 - Klein-Nishina and QFT
- 2 Experimental
 - Signal Chain and Scattering Geometry
- 3 Results and Error Analysis
 - Random/Systematic Error Accounting
 - Compton Profile and Features
 - Linear Attenuation from PVT, PP, and PC
 - Total Cross Section
- 4 Fermi Energy and Free Electron Gas Model
 - Theory: "Simple" Metal (Al) as a Free Electron Gas
 - Problems and Possible Results

Interaction picture:

Sum of possible events:

S-Matrix scattering and Feynman Rules:

$$\sigma = (2\pi)^{2} \frac{\epsilon \omega}{|p_{\mu}k^{\mu}|} \mathbf{S}_{f} \mathbf{S}_{i} \delta \left(p' + k' - p - k\right) |\langle f| M |i\rangle|^{2}$$

$$= \left(\frac{e^{2}}{4\pi}\right)^{2} \frac{1}{2\kappa \epsilon' \omega'} \int d\Gamma \delta \left(p' + k' - p - k\right) X$$
(2)

$$\beta = 0, \gamma = 1, k = m\omega, k' = m\omega' (c = 1 = \hbar)$$
:

$$\sigma \stackrel{\text{Magic}}{\longrightarrow} \frac{d\sigma}{d\Omega} = \frac{1}{4} r_0^2 \left(\frac{\omega'}{\omega}\right)^2 \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - 2 + 4|\hat{\mathbf{e}} \cdot \hat{\mathbf{e}}'|^2\right)$$

$$\sim \frac{1}{2} r_0^2 \left(\frac{\omega'}{\omega}\right)^2 \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2\theta\right) \tag{3}$$

$$\sigma_{\rm KN} = \int d\Omega \frac{d\sigma}{d\Omega} = 0.2566b \left(b = 10^{-24} \text{cm}^2 \right) \tag{4}$$

$$\sigma_{\rm T} = \int d\Omega \left[\theta\right] r_0^2 \frac{1 + \cos^2 \theta}{2} = \frac{8\pi}{3} r_0^2 = 0.662b \tag{5}$$

Signal Chain and Scattering Geometry

$$\cos \theta' = \frac{R \cos \theta - r}{\sqrt{R^2 + r^2 - 2Rr \cos \theta}} \tag{6}$$

- Gaussian line broadening (Poisson with large mean)
- Spread of beam profile ($\Delta \theta \sim 8^{\circ}$)
- Fermi motion of target electron (Lorentzian line broadening)
- Efficiency in Nal scintillator
- Mean free path of photon: Scattering Geometry (θ' vs. θ)
- Integration Error

Possible photon-electron interaction cross-sections

$$I(n) = \frac{I_0}{\sqrt{2\pi\sigma^2}} e^{-\frac{(n-n_0)^2}{2\sigma^2}}$$
 (7)

$$I(n) = \frac{I_0}{\sqrt{2\pi\sigma^2}} e^{-\frac{(n-n_0)^2}{2\sigma^2}}$$
 (8)

$$I(x) = I_0 e^{-\mu x}$$
 $\mu = n_e \sigma_{\rm KN} = \rho \frac{NZ}{A} \sigma_{\rm KN}$ (9)

Table: Total electron cross-section.

Target	μ (m $^{-1}$)	n_e (cm $^{-3}$)	σ (b= 10^{-24} cm ²)
$PP(C_3H_6)_n$	$\textbf{6.12} \pm \textbf{0.81}$	5.11×10^{23}	$\textbf{0.12} \pm \textbf{0.02}$
PVT	8.68 ± 0.90	3.37×10^{23}	$\textbf{0.25} \pm \textbf{0.03}$
$PC (C_{16}H_{14}O_3)_n$	$\textbf{11.43} \pm \textbf{3.00}$	3.81×10^{23}	$\boldsymbol{0.28 \pm 0.04}$

Summary

- QFT origins and assumptions for KN cross section
- Characterized Compton Profile
- Measured total cross-section to 0.25 ± 0.03 b, in excellent agreement with theoretical 0.2566b.

La Theory: "Simple" Metal (Al) as a Free Electron Gas

General idea: Energy spectrum into momentum scale for Al foil.

$$\frac{p_z}{m_e c} = \frac{\omega_1 - \omega_2 + \hbar \omega_1 \omega_2 (1 - \cos \theta) / m_0 c^2}{(\omega_1 + \omega_2 - 2\omega_1 \omega_2 \cos \theta)^{1/2}}$$
(10)

$$J(p_z) = \int d^2 p_{xy} n(\mathbf{p}) = \frac{3N}{4p_F^3} \left(p_F^2 - p_z^2 \right)$$
 (11)

$$B(z) = F[J(z)] = \frac{3N}{(p_F z)^2} \left(\frac{\sin p_F z}{p_F z} - \cos p_F z \right)$$
 (12)

Problems:

- 137 Cs is too an high-energy γ -source.
- ¹³³Ba can calibrate, but low activity.
- Resolution is currently too low.

Acknowledgements

- Charles Herder
- JLab staff: For being helpful despite knowing more than we do.
- E.M. Purcell: You can't spell NMR without "enema"+"r".