Hafta 10: Laplace Dönüşümü

Ele Alınacak Ana Konular

- Laplace dönüşümü
- Laplace dönüşümünün yakınsaklık bölgesi
- Ters Laplace dönüşümü
- Laplace dönüşümünün özellikleri
- Laplace dönüşümü kullanarak LTI sistemlerin analizi

• İmpuls yanıtı h(t) olan bir LTI sistemin, e^{st} girişine olan yanıtının y(t) = H(s) e^{st} olduğunu görmüştük. H(s) aşağıdaki gibi hesaplanıyordu:

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

- s=jw için yukarıda verilen integral ifadesi h(t)'nin Fourier dönüşümünü verir. s'in genel karmaşık değişken ($s=\Box+jw$) olması durumunda integral ifadesine <u>Laplace</u> <u>dönüşümü</u> denir.
- s karmaşık bir sayı olmak üzere, bir sürekli-zaman işaret x(t)'nin Laplace dönüşümü

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

denklemiyle tanımlanır. Laplace dönüşümünü belirtmek için $\mathcal{L}\{x(t)\}$ kullanacak, işaret ile Laplace dönüşümü arasındaki ilişkiyi, aşağıdaki şekilde belirteceğiz.

$$x(t) \stackrel{L}{\longleftrightarrow} X(s)$$

• Laplace dönüşümü ile sürekli-zaman Fourier dönüşümü arasındaki ilişki aşağıda gösterilmiştir.

•
$$s=jw$$
 için, $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \xrightarrow{s=jw} X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$

• Dolayisi ile $X(s)|_{s=jw} = F\{x(t)\}$

•
$$s = \Box + jw$$
 için, $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \xrightarrow{s = jw} X(\sigma + jw) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma + jw)t}dt$

$$X(\sigma + jw) = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-jwt}dt = \int_{-\infty}^{\infty} \left[x(t)e^{-\sigma t}\right]e^{-jwt}dt$$

Bu durumda eşitliğin sağ tarafının $x(t) e^{-\Box t}$ 'nin Fourier dönüşümüne eşit olduğu görülür.

• Görüldüğü gibi Laplace dönüşümü, karmaşık s-düzleminde jω-ekseni üzerinde hesaplandığında sürekli-zaman Fourier dönüşümünü verir. !!!

$$X(s)\big|_{s=iw} = F\left\{x(t)\right\}$$

- $x(t)e^{-\Box t}$ işaretinin Fourier dönüşümü de x(t) işaretinin Laplace dönüşümünü verir.
- Bu durumda:
 - 1-) Bir x(t) işaretinin Laplace dönüşümünün var olabilmesi için $x(t)e^{-\Box t}$ işaretinin Fourier dönüşümü yakınsamalıdır. Verilen bir x(t) işareti için, Laplace dönüşümünün var olduğu \Box değerleri kümesine YAKINSAKLIK BÖLGESİ (Region Of Converge, ROC) denir.
 - 2-) Eğer ROC imajiner ekseni ($s=j\omega$) içeriyorsa, işaretin Fourier dönüşümü de vardır.
 - 3-) Bazı işaretler için Fourier dönüşümü yakınsamaz iken Laplace dönüşümü yakınsayabilir.

ÖRNEK 1 : $x(t) = e^{-at}u(t)$ işaretinin Laplace dönüşümünü hesaplayınız.

ÇÖZÜM: Bu işaret için Fourier dönüşümü önceki haftalarda aşağıdaki gibi hesaplanmıştır.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt = \frac{1}{a+j\omega}, \quad a > 0$$

İşaretin Laplace dönüşümü ise,

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt = \int_{0}^{\infty} e^{-at}e^{-st} dt = \int_{0}^{\infty} e^{-(s+a)t} dt$$

$$|X(s)|_{s=\sigma+jw} = \int_0^\infty e^{-(\sigma+a)t} e^{-jwt} dt = \frac{1}{(\sigma+a)+jw}, \quad \sigma+a>0$$

veya,
$$s = \sigma + jw \rightarrow X(s) = \frac{1}{s+a}$$
, $\operatorname{Re}\{s\} > -a$

ÖRNEK 2: $x(t) = -e^{-at}u(-t)$ işaretinin Laplace dönüşümünü hesaplayınız.

ÇÖZÜM:
$$X(s) = -\int_{-\infty}^{\infty} e^{-at} e^{-st} u(-t) dt = -\int_{-\infty}^{0} e^{-(s+a)t} dt$$

$$-e^{-at}u(-t) \xrightarrow{L} X(s) = \frac{1}{s+a}, \operatorname{Re}\{s\} < -a$$

Örnekler incelediğinde farklı iki işarete ait Laplace dönüşümlerinin cebirsel olarak birbirine eşit olduğu görülür.

$$-e^{-at}u(-t) \xrightarrow{L} X(s) = \frac{1}{s+a}, \operatorname{Re}\{s\} < -a$$

$$e^{-at}u(t) \xrightarrow{L} X(s) = \frac{1}{s+a}, \operatorname{Re}\{s\} > -a$$

Fakat eşitliklerin geçerli olduğu tanım aralıklarının (yakınsaklık bölgesinin) $\{Re\{s\} < -a\}$ ve $\{Re\{s\} > -a\}$ birbirinden farklı olduğuna dikkat ediniz.

Bu durumda Laplace dönüşümü için cebirsel ifadenin yanısıra tanım aralığıda belirtilmelidir.

$$e^{-at}u(t) \xrightarrow{L} X(s) = \frac{1}{s+a}, \quad \operatorname{Re}\{s\} > -a \qquad -e^{-at}u(-t) \xrightarrow{L} X(s) = \frac{1}{s+a}, \quad \operatorname{Re}\{s\} < -a$$

ÖRNEK: $x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$ işaretinin Laplace dönüşümünü hesaplayınız..

$$X(s) = \int_{-\infty}^{\infty} \left[3e^{-2t}u(t) - 2e^{-t}u(t) \right] e^{-st} dt = 3\int_{0}^{\infty} e^{-2t} e^{-st} dt - 2\int_{0}^{\infty} e^{-t} e^{-st} dt$$

$$e^{-2t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+2}, \quad \operatorname{Re}\{s\} > -2$$

$$e^{-t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+1}, \operatorname{Re}\{s\} > -1$$

$$X(s) = \frac{3}{s+2} - \frac{2}{s+1} = \frac{s-1}{s^2 + 3s + 2}$$
 Re $\{s\} > -1$ her iki koşulun sağlandığı bölge...

ÖRNEK: $x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$ işaretinin Laplace dönüşümünü hesaplayınız..

$$x(t) = \left[e^{-2t} + \frac{1}{2}e^{-(1-3j)t} + \frac{1}{2}e^{-(1+3j)t}\right]u(t)$$

$$e^{-2t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+2}, \operatorname{Re}\{s\} > -2$$

$$e^{-(1-3j)t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+(1-3j)}, \text{ Re}\{s\} > -1$$

$$e^{-(1+3j)t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+(1+3j)}, \quad \text{Re}\{s\} > -1$$

$$X(s) = \frac{1}{s+2} + \frac{1}{2} \frac{1}{s+(1+3j)} + \frac{1}{2} \frac{1}{s+(1-3j)} = \frac{2s^2 + 5s + 12}{\left(s^2 + 2s + 10\right)(s+2)}, \operatorname{Re}\left\{s\right\} > -1$$

Örneklerden görüldüğü gibi reel veya karmaşık üstel işaretlerin doğrusal kombinasyonu olarak tanımlanan işaretin Laplace dönüşümü;

$$X(s) = \frac{N(s)}{D(s)}$$

yapısındadır.

Pay N(s) ve payda D(s) için tanımlanan polinomlara ait köklerin s-düzleminde yerine yerleştirilmesi ve ROC bölgesinin tanımlanması Laplace dönüşümünün ifadesi için alternatif bir yöntemdir.

Bu tip gösterimde N(s)'in kökleri "o", D(s)'in kökleri ise "x" ile belirtilir.

$$X(s) = \frac{s-1}{s^2 + 3s + 2} \quad \text{Re}\{s\} > -1$$

$$X(s) = \frac{2s^2 + 5s + 12}{\left(s^2 + 2s + 10\right)(s+2)}, \text{Re}\{s\} > -1$$

N(s)'in kökleri X(s)'in sıfırları olarak adlandırılır. Çünkü s'in bu değerleri için X(s) = 0 değerini alır. D(s)'in kökleri ise kutup olarak adlandırılır ve $X(s) = \Box$ olur

Örnek: $x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$ işaretinin Laplace dönüşümünü hesaplayınız..

$$\delta(t) \xrightarrow{L} \int_{-\infty}^{\infty} \delta(t) e^{-st} dt = 1 \quad \text{ROC } ?$$

$$e^{-t}u(t) \xrightarrow{L} X(s) = \frac{1}{s+1}, \quad \text{Re}\{s\} > -1 \quad e^{2t}u(t) \xrightarrow{L} X(s) = \frac{1}{s-2}, \quad \text{Re}\{s\} > 2$$

$$X(s) = 1 - \frac{4}{3} \frac{1}{s+1} + \frac{1}{3} \frac{1}{s-2} = \frac{(s-1)^2}{(s+1)(s-2)} \operatorname{Re}\{s\} > 2$$

Soru: x(t) işaretinin Fourier dönüşümü için ne söylenebilir?

Özellik 1: Laplace dönüşümü X(s)' e ait ROC jw eksenine paralel bir şerittir.

Daha önce belirtildiği gibi $s = \Box + jw$ olmak üzere x(t) nin Laplace dönüşümünün var olabilmesi için $x(t)e^{-\Box t}$ işaretinin Fourier dönüşümü yakınsamalıdır.

$$\int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} dt < \infty$$

Dolayısı ile koşul sadece s in gerçel kısmına \square bağlıdır.

Özellik 2: X(s)' e ait ROC kutup içermez.

Kutup noktalarında $X(s) = \Box$ olduğundan $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$ integrali yakınsamayacaktır.

Özellik 3: x(t) sonlu bir işaret ve mutlak integrallanabilir ise X(s)'e ait ROC tüm s-düzlemidir.

Özellik 4: x(t) sağ tarafa dayalı bir işaret ise ve $Re\{s\} = \sigma_0$ ROC bölgesinde ise $Re\{s\} > \sigma_0$ şartını sağlayan tüm s noktalarıda ROC alanındadır.

$$\int_{T_1}^{\infty} |x(t)| e^{-\sigma_0 t} dt < \infty \quad \text{ise} \quad \sigma_0 < \sigma_1 \quad \text{sartını sağlayan} \quad \sigma_1 \quad \text{içinde} \quad \int_{T_1}^{\infty} |x(t)| e^{-\sigma_1 t} dt < \infty$$
 geçerli olacaktır.

Özellik 5: x(t) sol tarafa dayalı bir işaret ise ve $Re\{s\} = \sigma_0 ROC$ bölgesinde ise $Re\{s\} < \sigma_0$ şartını sağlayan tüm s noktalarıda ROC alanındadır.

