Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.931 S/m; ϵr = 40.626; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.266 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.161 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.302 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.261 W/kg

0 dB = 0.261 W/kg = -5.83 dBW/kg

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.931 S/m; ϵr = 40.626; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0897 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.383 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.058 W/kg

Maximum value of SAR (measured) = 0.0980 W/kg

0 dB = 0.0980 W/kg = -10.09 dBW/kg

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.931 S/m; ϵr = 40.626; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.411 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.211 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.199 W/kg

Maximum value of SAR (measured) = 0.359 W/kg

0 dB = 0.359 W/kg = -4.45 dBW/kg

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.931 S/m; ϵr = 40.626; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.165 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.118 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.095 W/kg

Maximum value of SAR (measured) = 0.157 W/kg

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; $\sigma = 1.008$ S/m; $\epsilon r = 54.111$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.915 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.31 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.728 W/kg; SAR(10 g) = 0.506 W/kg

Maximum value of SAR (measured) = 0.901 W/kg

0 dB = 0.901 W/kg = -0.45 dBW/kg

Test Plot 6#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 1.008$ S/m; $\epsilon r = 54.111$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.810 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.82 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.910 W/kg

SAR(1 g) = 0.650 W/kg; SAR(10 g) = 0.452 W/kg

Maximum value of SAR (measured) = 0.814 W/kg

0 dB = 0.814 W/kg = -0.89 dBW/kg

Test Plot 7#: GSM 1900_Head Left Cheek_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ r = 38.616; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.701 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.204 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.793 W/kg

SAR(1 g) = 0.515 W/kg; SAR(10 g) = 0.330 W/kg

Maximum value of SAR (measured) = 0.695 W/kg

0 dB = 0.695 W/kg = -1.58 dBW/kg

Test Plot 8#: GSM 1900_Head Left Tilt_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ r = 38.616; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.125 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.621 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.136 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.064 W/kg

Maximum value of SAR (measured) = 0.119 W/kg

0 dB = 0.119 W/kg = -9.24 dBW/kg

Test Plot 9#: GSM 1900_Head Right Cheek_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ r = 38.616; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.583 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.475 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.649 W/kg

SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.272 W/kg

Maximum value of SAR (measured) = 0.564 W/kg

0 dB = 0.564 W/kg = -2.49 dBW/kg

Test Plot 10#: GSM 1900_Head Right Tilt_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ r = 38.616; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.133 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.142 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.149 W/kg

SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.133 W/kg

0 dB = 0.133 W/kg = -8.76 dBW/kg

Test Plot 11#: GSM 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.557 S/m; ϵ r = 51.933; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.02 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.89 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.603 W/kg; SAR(10 g) = 0.324 W/kg

Maximum value of SAR (measured) = 0.955 W/kg

0 dB = 0.955 W/kg = -0.20 dBW/kg

Test Plot 12#: GSM 1900_Body Back_Middle

DUT: Mobile Phone; Type: C26; Serial: 17071001420;

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.557$ S/m; $\epsilon r = 51.933$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.15 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.326 W/kg

Maximum value of SAR (measured) = 0.965 W/kg

