Four-Color Theorem [1, 2]

A problem that remained open for over a century.

Merkouris Papamichail†

[†]Computer Science Department University of Crete

Technical Writing in English, Fall Semester 2022

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- 5 Conclusions & Future Work
- 6 Bibliography

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- Conclusions & Future Work
- 6 Bibliography

The Problem

Problem 1 (Francis Guthrie, 1852)

Can a map be drawn on a sheet of paper, using only *four* colors, in such a way that countries sharing a common border have different colors?

Figure 1: A map of 846 countries colored with four colors, by Edward F. Moore

History

Correcting a century old proof..

- First stated by Francis Guthrie, 1852.
- 2 "There is no map s.t. there are five neighbor countries", Augustus De Morgan (around the same time).
- Arthur Cayley presents the problem to the London Mathematical Society, 1878.
- First (false) "proof" by Alfred Bray Kempe, 1879.
- Percy John Headwood finds a mistake in Kempe's proof, 1890.
- Improvments on Kempe's arguments, by George D. Birkhoff, 1913.
- Further work by Heinrich Heesch, 1936.
- The problem solved with the use of computers, by Kenneth Appel and Wolfrang Haken, 1976.

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- Conclusions & Future Work
- 6 Bibliography

Graph Theory

Definition

Graph Let V be a finite set. Also, let E be a set of *undirected* pairs on V, i.e.,

$$E\subseteq \{\{v,u\}\mid v,u\in V\}.$$

We call the pair G = (V, E) a graph on V. We call the elements of V nodes (or vertices), and the elements of E edges.

- N(v) denotes the *neighborhood* of v.
- d(v) = |N(v)| denotes the *degree* of v.

Figure 2: Example of a graph.

Planar Graphs

Definition

A graph G = (V, E) is called *planar* if it can be drawn on the plane \mathbb{R}^2 , with no crossing edges.

- We call the bounded areas of a planar graph faces.
- Euler's formula for planar graphs,

$$n - m + f = 2$$

Planar Graphs are sparse,

$$m \leq 3n - 6$$

• There is some $v \in V$, with $d(v) \leq 5$.

Figure 3: A planar embeding of the graph of Figure 2.

Kuratowski's Theorem

Kuratowski's Theorem (1930)

If a graph G contains the 5-clique K_5 or the complete bipartite graph $K_{3,3}$, then it is not planar.

Figure 4: The forbiden graphs of Kuratowski's Theorem.

Dual Graphs

From a planar graph, we can construct the *dual graph*. The vertices correspond to faces of the primal graph, while two vartices of the dual are connected, if the corresponding faces share a common edge at their border.

(a) The dual graph of the Figure 2.

(b) The dual graph of Figure 2 is 3-colorable.

A graph-theoretical definition

Definition Chromatic Number of a Graph

Let G = (V, E) be a graph. Let $\phi \colon V \to \{1, \dots, k\}$ be a function such that $\phi(v) \neq \phi(u)$, if $\{v, u\} \in E$. If such function exist, we call G k-colorable. The *smallest* number k such that G is k-colorable is called the *chromatic number* of G and denoted with $\chi(G)$.

Problem 2.

Let G = (V, E) be an arbitrary *simple*, *planar* graph. Does it hold,

$$\chi(G) \leq 4$$
?

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- 4 Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- Conclusions & Future Work
- 6 Bibliography

Preliminary Results

- The is a planar graph that is *not* 3-colorable.
- ② Kuratowski's Theorem (that forbids K_5 from planar graphs) doesn't guarantees 4-colorability.

(b) The number of mutual adjacent nodes, is not the same are the chromatic number. Here we have at most 3 mutually adjacent nodes, but $\chi(\mathcal{G})=4$.

Figure 6: Examples that suggest that the four color conjecture should hold.

Five-color Theorem (1/4)

Five-color Theorem (Percy John Headwood, 1890)

Let G = (V, E) an arbitrary simple, planar graph. Then $\chi(G) \leq 5$.

Proof:

- Let, for sake of *contradiction*, that there is a graph G with $\chi(G) > 5$.
- Let *G* be the *smallest* such graph, with respect to the number of vertices.
- From Euler's formula we know that $\exists v, \ d(v) \leq 5$.

Five-color Theorem (2/4)

We consider the following cases:

- ▶ We have $d(v) \le 4$. (easier case)
 - **1** Then $G \setminus v$ can be colored with five colors.
 - ② There are at most 4 colors that have been used on neighbors of v.
 - **1** Hence, there is at least one color available for v.
 - Therefore, G can be colored using five colors.
 - A contradiction!

Figure 7: The first case of the five-color theorem.

Five-color Theorem (3/4)

From the above discussion..

- $\mathbf{0}$ v_1, v_3 should be on the same connected component.
- ② Hence, there is a v_1 , v_3 -path with colors 1, 3.

Figure 8: The second case of the five-color theorem, for colors 1,3.

Five-color Theorem (4/4)

Regarding the nodes v_2 , v_4 and the colors 2, 4, following the same reasoning, there is a path between v_2 , v_4 using only the colors 2, 4.

Figure 9: The second case of the five-color theorem, for colors 2, 4.

Therefore, there must be two edges the cross each other. This is absurd, since G is planar.

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- 5 Conclusions & Future Work
- 6 Bibliography

Triangulations, Configurations & Unavoidable Sets

Planar Triangulations

A planar graph G = (V, E) is a graph, that does *not* contain cycles with length *larger than three*.

- A configuration in a planar triangulation is a separation cycle C (also called a ring) together with the portion of the graph inside C.
- A set of configurations is unavoidable if a minimal counter-example must contain a member of it.
- A configuration is *reducible* if a planar graph containing it cannot be a minimal counter-example.

Unavoidable Sets

- We know that in planar graphs, there is a vertex v, with $d(v) \leq 5$.
- In a triangulation every vertex has degree $d(v) \ge 3$.
- ▶ From the above, the three configurations below form an unavoidable set.

Figure 10: An unavoidable set for the four-color theorem.

Kempe's Proof (1/2)

- Kempe proof follows a technique similar to the Five-color's Theorem proof.
- Consider the center vertex, as the vertex v of the proof.
- From a 4-coloring in $G \setminus v$, we want to construct a 4-coloring for G.
- The 3-ring configuration is trivial.
- For the 4-ring we use an argument similar to the Five-color Theorem.
- for the 5-ring..

Figure 11: Alternating color paths for the 5-ring.

Kempe's Proof (2/2)

Figure 12

- So we can change the red and blue colors, on the right, and red and green colors on the left, thus releasing red for the vertex *v* right?
- Unfortunately, no!
- Thus, Kempe's proof collapses.

A Computer Aided Proof

- We have not shown that the 5-ring is reducible, thus we must consider larger configurations.
- The first proof (Appel, Hanken) used configurations with ring size up to 14.
- A ring os size 13 has 66.430 different colorings.
- Reducibility requires showing that each leads to a 4-coloring of the full graph.
- Appel and Hanken, working with Koch, found an unavoidable set of 1936 reducible configurations.
- They used 1000 hours of computation time.
- In 1996 Robetson et al. simplified the proof to consist of 633 configurations.
- In 1997 a desktop workstation could prove the Four-color Theorem in 3 hours!

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- 5 Conclusions & Future Work
- 6 Bibliography

Conclusions

In this presentation..

- We examined the historic outline of the Four-color Theorem.
- We made a brief introduction in Planar Graphs and Chromatic Numbers.
- We proved the Five-color Theorem.
- We outlined the main points of the Four-color theorem by Appel and Hanken.
- The Four-color Theorem was the first (and only so far) theorem that proved with the aid of computer.
- Appel and Hanken's proof cannot be verified by hand from a mathematician.
- Until this day this novel approach raises questions regarding the acceptance of computers as a mathematical instrument.

Since 1976..

- A shorter more elegant proof of the Four-color Theorem has not be found yet!
- It is unknown is such a proof is possible.
- If it can be proven that such a proof is impossible it would raise many existential questions regarding the nature of mathematical proofs.
- In 1995 Robertson et al. improve on the proof by Appel and Hanken, but their proof still uses a computer [4].
- In 2005 George Gonthier formalizes Robertson's et al. proof in order to be checked by Coq v7.3.1 proof assistant [3].

Thank you for your time!

Figure 13: The IBM 370-158 computer. One of the computers used by Appel and Hanken for the proof of the four color theorem. The computer was installed at the University of Illinois.

- Introduction
- 2 Formalization
 - Graph Theory
 - Planar Graphs
 - Formal Definition of the Problem
- The Road to the Theorem
 - Some Preliminary Results
 - Five-color Theorem
- Four-color Theorem
 - Prelimineries
 - Kempe's Proof
 - A Computer Aided Proof
- 5 Conclusions & Future Work
- 6 Bibliography

Bibliography

K. APPEL AND W. HAKEN, *Every planar map is four colorable. Part I: Discharging*, Illinois Journal of Mathematics, 21 (1977), pp. 429 – 490.

K. APPEL, W. HAKEN, AND J. KOCH, Every planar map is four colorable. Part II: Reducibility, Illinois Journal of Mathematics, 21 (1977), pp. 491 – 567.

G. GONTHIER, A computer-checked proof of the four colour theorem, 2005.

N. ROBERTSON, D. SANDERS, P. SEYMOUR, AND R. THOMAS, *The four-colour theorem*, Journal of Combinatorial Theory, Series B, 70 (1997), pp. 2–44.