Lecture 02 Set Theory and Topology

Ryan McWay[†]

 $^{\dagger}Applied\ Economics,$ University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August~8th,~2023

LAST LECTURE REVIEW

► Logic:

Lecture Review

- ► Logical statements
- ► Necessary vs. sufficient
- Proofs:
 - ▶ Proof by Deduction/Construction (Direct Proofs)
 - ▶ Proof by Contradiction
 - ▶ Proof by Induction

REVIEW ASSIGNMENT

- 1. Problem Set 01 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

Lecture Review

- ► Attendance via prompt:
 - ► Name
 - ► Program and track
 - ▶ Daily icebreaker subject...

Review

Topic: Set Theory

- ► General background
 - ► How collections of mathematical objects are organized.
 - ► A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
- ► Application in this career
 - Rarely.
 - ► Sometimes useful when considering proofs.

- ► General background
 - ▶ How collections of mathematical objects are organized.
 - ► A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
- ► Application in this career
 - ► Rarely.
 - ► Sometimes useful when considering proofs.

- ► General background
 - ► How collections of mathematical objects are organized.
 - ► A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
- ► Application in this career
 - ► Rarely.
 - ► Sometimes useful when considering proofs.

OVERVIEW

- 1. Sets
- 2. Set Operators
- 3. Set Space
- 4. de Morgans' Law & Cartesian Product
- 5. Cardinality & Countability
- 6. Convex Sets
- 7. Open & Closed Sets
- 8. Bounded & Compact Sets

1. Sets

- Sets
 - ► A collection of objects (elements or members)
 - \triangleright $S = \{s \in U : P\}$ for the universal set U such that is satisfies properties P.
- ► Elements
 - ► The components within a set.
 - ► An element can be a complex object; such as another set.
- ► Empty Set
 - \blacktriangleright $\emptyset = \{s \notin U\}$ contains nothing.
 - $\triangleright \emptyset \neq \{\emptyset\}$

1. Sets

Lecture Review

\mathbb{R}	Real Numbers: $\{x : -\infty \le x \le \infty\}$
$\mathbb{R} imes \mathbb{R}$	Cartesian Plane
\mathbb{N}	Natural Numbers
\mathbb{W}	Whole Numbers: $\mathbb{N} \wedge 0$
${\mathbb Z}$	Integers
\mathbb{Q}	Rational Numbers
${\mathbb P}$	Irrational Numbers

2. SET OPERATORS

- ightharpoonup Complement: $A^c \equiv \{x \in U : x \notin A\}$
- ▶ Intersection: $A \cap B \equiv \{x \in U : x \in A \land x \in B\}$
- ▶ Union: $A \cup B \equiv \{x \in U : x \in A \lor x \in B\}$
- ▶ Set Difference (Partition): $A \setminus B \equiv \{x \in U : x \in A \land x \notin B\}$
- ▶ Disjoint Set: $A \cap B = \emptyset$
- ▶ Subset: $B \subset A$ if $[x \in B] \implies [x \in A]$
- ▶ Proper (Strict) Subset: $B \subset A \land B \neq A$.
- Power Set: $(A) \equiv \{X : X \subseteq A\}$
- ▶ Indexed Set: A_1, A_2, \ldots, A_i

Topology

2. SET OPERATORS

Figure A1.1. Venn diagrams.

Source: Jehle & Reny (2011)

2. SET OPERATORS

Lecture Review

3. SET SPACE

► Set Product: A set of ordered pairs

$$S \times T \equiv \{(s,t)|s \in S, t \in T\}$$

► N-dimensional Euclidean Space

$$\mathbb{R}^n \equiv \mathbb{R} \times \mathbb{R} \times \cdots \mathbb{R} \equiv \{(x_1, \dots, x_n) | x_i \in \mathbb{R}, \forall i = 1, \dots, n\}$$

Cartesian Plane

$$\mathbb{R}^2 \equiv \mathbb{R} \times \mathbb{R} \equiv \{(x_1, x_2) | x_1, x_2 \in \mathbb{R} \}$$

4. DE MORGAN'S LAW AND CARTESIAN PRODUCT

 \blacktriangleright de Morgan's Law: Assume A_i are subsets

$$\left[\bigcup_{i=1}^k A_i\right]^c = \bigcap_{i=1}^k A_i^c$$

► Cartesian Product: For 2 sets A and B, the cartesian product is:

$$A \times B \equiv \{(a, b) : a \in A, b \in B\}$$

5. CARDINALITY AND COUNTABILITY

- ightharpoonup Cardinality: |A| is the number of elements in the set.
 - ► Types: Finite, countably infinite, and uncountable
- ► Countable (Finite) Set: Any infinite set that can be placed in a 1 to 1 correspondence with N.

▶ $S \subset \mathbb{R}^n$ is a convex set $\forall x_1, x_2 \in S$, if we have $tx_1 + (1 - t)x_2 \in S$.

Figure A1.4. Some convex combinations in \mathbb{R}^2 . Source: Jehle & Reny (2011)

7. OPEN AND CLOSED SETS

- Metric Space (e.g., point distance): $d(x_1, x_2) = |x_1 x_2|$
- ▶ An open ε -ball with center x_0 and radius $\varepsilon > 0$ is a subset of points in \mathbb{R}^n :

$$B_{\varepsilon}(x_0) \equiv \{x \in \mathbb{R}^n | |x - x_0| < \varepsilon\}$$

 \triangleright A closed ε -ball is similar, but includes the circumference (e.g., edge of the ball)

$$B_{\varepsilon}(x_0) \equiv \{x \in \mathbb{R}^n | |x - x_0| \le \varepsilon \}$$

7. OPEN AND CLOSED SETS

Sets

Figure A1. 10. Balls in \mathbb{R} and \mathbb{R}^2 .

Source: Jehle & Reny (2011)

8. BOUNDED AND COMPACT SETS

- ▶ Bounded: A set $S \subset \mathbb{R}^n$ is bounded if it is entirely contained within some ε -ball (either closed or open)
- ▶ Compact: A set $S \subset \mathbb{R}^n$ is compact if it is both closed and bounded.
- ▶ We like working with compacted sets.

Review

Topic: Topology

► General background

▶ Understanding of spatial relationships and how the parts are integrated into the whole.

Topology

- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ▶ Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ▶ Welfare theorem
 - ► Consumer behavior
 - ► Macroeconomics and time series

- ► General background
 - ▶ Understanding of spatial relationships and how the parts are integrated into the whole.
- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ► Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ► Welfare theorem
 - Consumer behavior
 - ► Macroeconomics and time series

- ► General background
 - ▶ Understanding of spatial relationships and how the parts are integrated into the whole.
- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ► Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ▶ Welfare theorem
 - ► Consumer behavior
 - ► Macroeconomics and time series

OVERVIEW

- 1. Supremum & Infimum
- 2. Sequences and Limits
- 3. Separating Hyperplane Theorem

1. SUPREMUM AND INFIMUM

- ▶ Ordered Set: When elements have a defined order (<).
- ► To be ordered:
 - For $x, y \in A$, only one of the following statements can be true: (1) x < y, x = y, x > y.
 - $For x, y, z \in A, if x < y \land y < z \implies x < z.$
- ightharpoonup A subset (A_1) of an ordered set may be bounded from above and below if:
 - ▶ Upper Bound: $\{\beta \in A : x \leq \beta \forall x \in A_1\}$
 - ▶ Lower Bound: $\{\beta \in A : x \ge \beta \forall x \in A_1\}$

1. SUPREMUM AND INFIMUM

► Supremum: Least upper bound (1 value)

$$\beta = \sup A_1 | \beta \in A : y < \beta \exists x \in A_1 : x > y$$

► Infimum: Greatest lower bound (1 value)

$$\alpha = \inf A_1 | \alpha \in A : \delta > \alpha \exists x \in A_1 : x < \delta$$

2. SEQUENCES AND LIMITS

- ▶ Sequence: Function $f(\cdot)$ defined on a set of natural numbers, \mathbb{N} .
- ▶ Limit: A sequence $\{x_n\}$ converges to a limit, $x_n \to L$ or $\lim_{n\to\infty} x_n = L$, if given $\varepsilon > 0$ there is an element N such that whenever $n > N : |x_n L| < \varepsilon$.
- ▶ A sequence diverges when it does not converge to a limit.

Theorem:

If the sequence $\{x_n\}$ converges, then the limit of $\{x_n\}$ is unique (e.g., single valued).

3. SEPARATING HYPERPLANE THEOREM

- ► There exists a line dividing an n-dimensional space.
- ▶ Given $p \in \mathbb{R}^n : p \neq 0$ and $c \in \mathbb{R}$, the hyperplane generated is the set $H_{p,c} = \{z \in \mathbb{R}^n | p \cdot z = c\}$.

REVIEW OF SETS

- 1. Sets are the foundation of organizing objects in math.
- 2. de Margan's Law
- 3. Cartesian Product
- 4. Convex Sets
- 5. Bounded Sets
- 6. Compact Sets

REVIEW OF TOPOLOGY

- 1. Supremum and Infimum
- 2. Seperating Hyperplane Theorem

ASSIGNMENT

- ► Readings on Derivatives before Lecture 03:
- ► Assignment:
 - ► Problem Set 02 (PS02)
 - ► Solution set will be available following end of Lecture 03
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly