Quantum Mechanics 2

Dominik Szablonski

February 5, 2025

Contents

1	Orb	oital Angular Momentum
	1.1	Basics of QM
		1.1.1 The Simple Harmonic Oscillator
		1.1.2 Simple Perturbation Theory
	1.2	Particle in 2D SHO
		1.2.1 Degeneracy
	1.3	Orbital Angular Momentum
		1.3.1 Eigenfunctions and Eigenvalues of \hat{L}_z
		1.3.2 Angular Momentum of the 2D SHO
		1.3.3 3D Angular Momentum

Chapter 1

Orbital Angular Momentum

1.1 Basics of QM

Let us recall some basic facts of quantum mechanics.

The expectation value of an observable A with an associated operator \hat{A} is given by,

$$\langle \hat{A} \rangle = \langle \Psi | \hat{A} | \Psi \rangle = \int \Psi^* \hat{A} \Psi \, d\mathbf{r} \,.$$
 (1.1)

The fundamental position, momentum, and angular momentum operators are defined as follows,

Definition 1: Fundamental Operators

$$\hat{\mathbf{r}} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}} \tag{1.2}$$

$$\hat{p} = -i\hbar \nabla \tag{1.3}$$

$$\hat{L}_i = \varepsilon_{ijk} \hat{r}_j \hat{p}_k \tag{1.4}$$

The Hamiltonian is defined,

Definition 2: Hamiltonian

$$\hat{H} = \hat{T} + \hat{V} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t). \tag{1.5}$$

We obtain the wavefunction Ψ by solving the TDSE,

Definition 3: Time Dependent Schrodinger Equation

$$i\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \hat{H}\Psi(\mathbf{r},t).$$
 (1.6)

For the static case, this reduces to the TISE,

$$\hat{H}\Psi = E\Psi. \tag{1.7}$$

If $\Psi(\mathbf{r},0)$ is written in the energy eigenbasis, i.e., $\Psi(\mathbf{r},0) = \sum_{i} c_{i} |E_{i}\rangle$, then the time-dependent solution is trivial,

$$\Psi(\mathbf{r},t) = \sum_{i} c_i |E_i\rangle \exp\left(\frac{-iE_it}{\hbar}\right). \tag{1.8}$$

1.1.1 The Simple Harmonic Oscillator

The SHO has a Hamiltonian,

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2} m\omega^2 x^2 \tag{1.9}$$

with energy eigenvalues,

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{1.10}$$

and has normalised Eigenfunctions,

$$\psi_n(x) = \left(\frac{1}{n!2^n a\sqrt{\pi}}\right) H_n\left(\frac{x}{a}\right) \exp\left(-\frac{x^2}{2a^2}\right)$$
(1.11)

where $a = \sqrt{\hbar/m\omega}$ and $H_n(x/a)$ is a Hermite polynomial.

1.1.2 Simple Perturbation Theory

In simple perturbation theory, we write the Hamiltonian as,

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{1.12}$$

where the Hamiltonian \hat{H}_0 is trivial and for which we already have obtained its eigenfunction ψ and eigenvalues $E_n^{(0)}$. We then use this to find the expectation value of the total Hamiltonian,

$$\langle \hat{H} \rangle = \langle \psi | \hat{H}_0 + \hat{V} | \psi \rangle = E_n^{(0)} + \Delta E.$$
 (1.13)

Writing this more explicitly,

Definition 4: First Order Perturbation Theory

$$E_n = E_n^{(0)} + \langle \psi | \hat{V} | \psi \rangle \tag{1.14}$$

1.2 Particle in 2D SHO

The Hamiltonian of the 2D SHO is given by,

$$\hat{H}\psi(x,y) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{2} m\omega(x^2 + y^2)\psi(x,y) = E\psi(x,y)$$
(1.15)

We can separate this Hamiltonian into its x and y components,

$$\hat{H}_x = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} m\omega x^2 \qquad \qquad \hat{H}_y - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} + \frac{1}{2} m\omega y^2. \tag{1.16}$$

We know the solution to the 1D SHO, as by eq. (1.10). We can intuit that the total solution of the 2D Hamiltonian will be a product of the two 1D wavefunctions. This comes from the fact that to add probabilities, we multiply the probability densities. So, we write,

$$\hat{H}\psi_{n_x}(x)\psi_{n_y}(y) = \left(\hat{H}_x + \hat{H}_y\right)\psi_{n_x}(x)\psi_{n_y}(y)
= \left(\hat{H}_x\psi_{n_x}(x)\right)\psi_{n_y}(y) + \psi_{n_x}(x)\left(\hat{H}_y\psi_{n_y}(y)\right)
= \left(n_x + \frac{1}{2}\right)\hbar\omega\psi_{n_y}(y) + \left(n_y + \frac{1}{2}\right)\hbar\omega\psi_{n_x}(x)
= (n_x + n_y + 1)\hbar\omega\psi_{n_x}(x)\psi_{n_y}(y)
\Longrightarrow E_{n_x,n_y} = (n_x + n_y + 1)\hbar\omega.$$
(1.17)

1.2.1 Degeneracy

This is when there is more than one state with the same energy. The degeneracy D is the number of energy states that share the same energy. Non-degenerate states are those with D = 1.

1.3 Orbital Angular Momentum

The angular momentum in given direction in a classical system is given by,

$$L_i = \varepsilon_{ijk} r_j p_k. \tag{1.18}$$

The angular momentum operator in quantum mechanics is thus,

$$\hat{L}_i = \varepsilon_{ijk} \hat{r}_i \hat{p}_k. \tag{1.19}$$

We are particularly interested in the case where i=z, in which case the operator becomes,

$$\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right). \tag{1.20}$$

Let us consider this operator in plane polar coordinates, (r, θ) . We have,

$$x = r\cos\theta \qquad \qquad y = r\sin\theta \tag{1.21}$$

Let us consider the following,

$$\frac{\partial}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial}{\partial y} = -r \sin \theta \frac{\partial}{\partial x} + r \cos \theta \frac{\partial}{\partial y}
= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$
(1.22)

So, in plane polars,

Definition 5: Angular Momentum Operator in Z

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \theta}.\tag{1.23}$$

1.3.1 Eigenfunctions and Eigenvalues of \hat{L}_z

We wish to consider the following,

$$\hat{L}_z \Theta(\theta) = L_z \Theta(\theta). \tag{1.24}$$

So,

$$-i\hbar \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} = L_z\Theta \tag{1.25}$$

which we can solve trivially,

$$\Theta(\theta) = Ae^{\frac{L_z \theta}{\hbar}} \tag{1.26}$$

where $A = \frac{1}{\sqrt{2\pi}}$ is a normalisation constant. We require a cyclic boundary condition, such that $\Theta(\theta) = \Theta(\theta + 2\pi)$. So,

$$Ae^{\frac{iL_z(\theta+2\pi)}{\hbar}} = Ae^{\frac{iL_z\theta}{\hbar}}$$

$$e^{\frac{iL_z^2\pi}{\hbar}} = 1.$$
(1.27)

Not all values of L_z satisfy the eq. (1.27), so we have to impose the following restriction,

$$L_z = \hbar m, \quad m \in \mathbb{Z}$$
 (1.28)

and thus, we can write the angular momentum eigenfunction as,

Definition 6: Angular Momentum Eigenfunction

$$\Theta_m(\theta) = \frac{1}{\sqrt{2\pi}} e^{im\theta} \tag{1.29}$$

1.3.2 Angular Momentum of the 2D SHO

We wish to express eigenfunctions of the 2D SHO as eigenfunctions of angular momentum. we will find that we require a combination of all degenerate eigenfunctions for a givevn D in order to represent angular momentum eigenfunction. Observing the ground state,

$$\Psi_{00}(x,y) = e^{-\frac{x^2}{2a^2}} \cdot e^{-\frac{y^2}{2a^2}} = e^{-\frac{r^2}{2a^2}}, \qquad a^2 = \frac{\hbar}{2m}.$$
 (1.30)

Applying the angular momentum operator we find,

$$\hat{L}_z \Psi_{00} = 0 \cdot \Psi_{00} \tag{1.31}$$

which holds, as 0 is an allowed value of m. The first excited states of D=2 are given by,

$$\Psi_{10} = xe^{-\frac{x^2}{2a^2}} \cdot e^{-\frac{y^2}{2a^2}} \qquad \qquad \Psi_{01} = e^{-\frac{x^2}{2a^2}} \cdot ye^{-\frac{y^2}{2a^2}} \tag{1.32}$$

which we combine to form,

$$\Psi_{\pm} = \Psi_{10} \pm i\Psi_{01}
= [r\cos\theta \pm ir\sin\theta] e^{-\frac{r^2}{2a^2}} = re^{\pm i\theta} e^{-\frac{r^2}{2a^2}}.$$
(1.33)

Applying \hat{L}_z to eq. (1.33),

$$\hat{L}_z \Psi_{\pm} = \pm \hbar \Psi_{\pm} \tag{1.34}$$

 $\Rightarrow \Psi_{\pm}$ is an eigenfunction of \hat{L}_z with eigenvalues $\pm \hbar$. Furthermore, Ψ_{\pm} is an eigenfunction of \hat{H} , so \hat{H} and \hat{L}_z commute. This allows for the 2D SHO to be described by *good quantum numbers*. These satisfy the following,

- 1. Can be known simultaneously,
- 2. Fully and uniquely specify the state of a system.

For the 2D SHO, its good quantum numbers are (n, m), where $n = n_x + n_y$. n specifies the energy of the system (as by $E_n = (n+1)\hbar\omega$), and m specifies the angular momentum of the system (as by $L_z = m\hbar$).

1.3.3 3D Angular Momentum

Definition 7: Angular Momentum Commutation Relation

$$\left[\hat{L}_i, \hat{L}_j\right] = \epsilon_{ijk} i\hbar \hat{L}_k \tag{1.35}$$

where i, j, k indicate orthogonal directions.

The above definition indicates that components of \hat{L}_i do not commute in different directions, however it can be shown that,

$$\left[\hat{L}^2, \hat{L}_i\right] = 0. \tag{1.36}$$

Proof.

$$\hat{L}^{2} = \sum_{j} \hat{L}^{2}$$

$$\left[\hat{L}^{2}, \hat{L}_{i}\right] = \sum_{j} \left[\hat{L}_{j}^{2}, \hat{L}_{i}^{2}\right]$$

$$= \sum_{j} \left(\hat{L}_{j} \left[\hat{L}_{j}, \hat{L}_{i}\right] + \left[\hat{L}_{j}, \hat{L}_{i}\right] \hat{L}_{j}\right)$$

$$= i\hbar \sum_{j,l} \left(\hat{L}_{j}\varepsilon_{ijk}\hat{L}_{k} + \underbrace{\hat{L}_{k}\varepsilon_{ijk}\hat{L}_{j}}_{-\varepsilon_{ijk}\hat{L}_{j}\hat{L}_{k}}\right)$$

$$= \sum_{j,l} \left(\hat{L}_{j}\hat{L}_{k} - \hat{L}_{j}\hat{L}_{k}\right) = 0$$

$$(1.37)$$

Eigenvalues and eigenfunctions of Angular Momentum

It can be shown that the angular momentum operators in the 3 cardinal directions expressed in polar coordinates are given by,

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi} \tag{1.38}$$