

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ АКАДЕМИЧЕСКИЙ УНИВЕРСИТЕТ РОССИЙСКОЙ АКАДЕМИИ НАУК

Теоретическое исследование эффективной генерации второй гармоники бирезонансной металл-диэлектрической наноантенной

Гончаров А. С.

Научный руководитель: к.ф.-м.н. Петров М. И.

Генерация второй гармоники

$$P_i = X_{ij}^{(1)} E_j + X_{ijk}^{(2)} E_j E_k + ...$$

• Макрокристаллы • Микро- и нанокристаллы

- Визуализация биологических объектов (D. Staedler et al., 2012 ACS Nano; L. Bonacina et al., 2013 Mol. Pharm.)
- Оптоэлектроника на микромасштабах (S. Kim et. al., 2008 Nature)

Проблема:

• маленькая эффективность нелинейных процессов(η)

$$\eta = \frac{\sigma_{SHG}}{\sigma_{geom}}; \quad \eta \approx 10^{-9}$$

Металл-диэлектрические наноантенны

Усиление генерации второй гармоники – до 15 раз

Монорезонансная гибридная наноантенна

F. Timpu et al., Nano Lett., 2017

Усиление генерации второй гармоники – ?

Бирезонансная гибридная наноантенна

Цель:

Теоретически исследовать генерацию второй гармоники бирезонансной гибридной наноантенной

Задачи:

- 1) Подобрать конфигурацию с плазмонным резонансом на частоте падающего поля и Ми резонансом на частоте генерации второй гармоники
- 2) Рассчитать эффективность генерации второй гармоники гибридной наноантенной и сравнить ее с отдельной наночастицей ВаТіО₃
- Исследовать зависимость генерации второй гармоники от конфигурации наноантенны
- 4) Сравнить полученные данные с экспериментом

Рассеяние диэлектрическим шаром

Сечение рассеяния: $\sigma_{scat} = \frac{P_{scat}}{|S_{inc}|}$

Эффективность рассеяния: $\eta = \frac{\sigma_{scat}}{\sigma_{geom}}$

 $\varepsilon(BaTiO_3) \simeq 5$

Ми резонанс на 600 нм: r=120 нм

Рассеяние на металлической наноантенне

P. Biagioni, et. al., NCBI, 2012

- Решаем численно
- Используется метод конечных элементов
- Длина волны: 500-1300 нм, шаг 10 нм

Рассеяние света на гибридной системе

Генерация второй гармоники

$$\frac{\chi_{Au}^{(2)}}{\chi_{BaTiO_{3}}^{(2)}} \sim 10^{-4}$$

$$P_i^{(2)} = X_{ijk}^{(2)} E_j E_k$$

$$\frac{\chi_{Au}^{(2)}}{\chi_{BaTiO_3}^{(2)}} \sim 10^{-4}$$

$$P_i^{(2)} = \chi_{ijk}^{(2)} E_j E_k$$

$$\text{BaTiO}_3: \chi_{ijk}^{(2)} = \begin{pmatrix} 0 & 0 & 0 & \chi_{15} & 0 \\ 0 & 0 & 0 & \chi_{15} & 0 & 0 \\ \chi_{13} & \chi_{13} & \chi_{33} & 0 & 0 & 0 \end{pmatrix} \text{ where } \mathbf{p}$$

Эффективность:
$$\eta = \frac{\sigma_{SHG}}{\sigma_{geom}}$$
 (I=10¹² Bt/м²)

M. J. Weber, Handbook of optical materials, 2002

Зависимость генерации второй гармоники от ориентации ВаТіО₃

Зависимость генерации второй гармоники от зазора между плазмонными частицами

Экспериментальная часть

ETH Zürich

Optical Nanomaterial Group

Dr. Rachel Grange

http://www.ong.ethz.ch/

Выводы

- Подобрана бирезонансная конфигурация с резонансами на частоте падающего поля и частоте генерации второй гармоники
- Теоретически получено максимальное усиление генерации второй гармоники на два порядка
- Теоретически показана зависимость генерации второй гармоники от ориентации кристаллической решетки нелинейной частицы и от зазора между плазмонными частицами

Спасибо за внимание

Микроскопия

Флуоресцентная микроскопия

Визуализация процесса деления клетки

Генерация второй гармоники в микроскопии

гармоники

P. Pantazis, et. al., PNAS U.S.A., 2010

ткани

Генерация второй гармоники в микроскопии

Преимущества:

- отсутствие выгорания
- отсутствие прерывистой флюоресценции

Недостатки:

 маленькая эффективность генерации второй гармоники (η)

Глубина наблюдения – до 120 мкм

D. Staedler et al., 2012 ACS Nano

Создание кластеров золотых частиц

D. S. Sebba, et al, Nano Lett., 2008

C. A. Mirkin, et al, Nature, 1996

Моделирование

Моды гибридной наноантенны

Зависимость генерации второй гармоники от резонансной структуры

Усиление поля в зазоре

Генерация второй гармоники вперед и назад

Диаграмма направленности

Задача Ми

$$E_{s} = \sum_{n=1}^{\infty} a_{n} M_{e1n}^{(3)} + bn N_{o1n}^{(3)}$$

$$\eta = \frac{\sigma_{SCA}}{\sigma_{geom}} \sim \sum |a_n|^2 + |bn|^2$$

а₁ – электрическая дипольная мода

 b_1 – магнитная дипольная мода

а₂ – электрическая квадрупольная мода

b₂ – магнитная квадрупольная мода