Chapter 7, Solution 57.

At $t = 0^-$, the circuit has reached steady state so that the inductors act like short circuits.

$$i = \frac{30}{6 + (5 \parallel 20)} = \frac{30}{10} = 3$$
, $i_1 = \frac{20}{25} (3) = 2.4$, $i_2 = 0.6$
 $i_1(0) = 2.4 \text{ A}$, $i_2(0) = 0.6 \text{ A}$

For t > 0, the switch is closed so that the energies in L_1 and L_2 flow through the closed switch and become dissipated in the 5 Ω and 20 Ω resistors.

$$i_1(t) = i_1(0) e^{-t/\tau_1}, \quad \tau_1 = \frac{L_1}{R_1} = \frac{2.5}{5} = \frac{1}{2}$$

$$i_1(t) = 2.4e^{-2t}u(t) A$$

$$i_2(t) = i_2(0)e^{-t/\tau_2}$$
, $\tau_2 = \frac{L_2}{R_2} = \frac{4}{20} = \frac{1}{5}$

$$i_2(t) = 600e^{-5t}u(t) mA$$