Financial Engineering and Risk Management Swaps

Martin Haugh Garud Iyengar

Columbia University
Industrial Engineering and Operations Research

Swaps

Definition. Swaps are contracts that transform one kind of cash flow into another.

Example.

- Plain vanilla swap: fixed interest rate vs floating interest rates
- Commodity swaps: exchange floating price for a fixed price. e.g. gold swaps, oil swaps.
- Currency swaps

Why swaps?

- Change the nature of cash flows
- Leverage strengths in different markets

Example of leveraging strengths

Two companies

Company	Fixed	Floating
А	4.0%	LIBOR + 0.3%
В	5.2%	LIBOR + 1.0%

Company A is "better" in both but relatively weaker in the floating rate market

Company A

- Borrows in fixed market at 4.0%
- \bullet Swap with B: pays LIBOR and receives 3.95%

Company B

- \bullet B borrow in the floating market at LIBOR + 1.0%
- Swap with A: pays 3.95% and receives LIBOR

Effective rates:

- A: -4% + 3.95% LIBOR = -(LIBOR + 0.05%)
- B: LIBOR 1% + LIBOR 3.95% = -4.95%

Both gain!

Role of financial intermediaries

Same two companies

Company	Fixed	Floating
А	4.0%	LIBOR + 0.3%
В	5.2%	LIBOR + 1.0%

Financial intermediary that constructs the swap.

Company A

- Borrows in fixed market at 4.0%
- Swap with Intermediary: pays LIBOR and receives 3.93%

Company B

- ullet B borrow in the floating market at LIBOR + 1.0%
- Swap with Intermediary: pays 3.97% and receives LIBOR

Financial intermediary makes 0.04% or 4 basis points. Why?

Compensation for taking on counterparty risk and providing a service

Pricing interest rate swaps

 $r_t =$ floating (unknown) interest rate at time t

Cash flows at time $t = 1, \ldots, T$

- Company A (long): receives Nr_{t-1} and pays NX
- ullet Company B (short): receives NX and pays Nr_{t-1}

Value of swap to company A

• $N(r_0,\ldots,r_{T-1})=$ Cash flow of floating rate bond - Face value. Therefore, value of swap to company A

$$V_A = N(1 - d(0, T)) - NX \sum_{t=1}^{T} d(0, t)$$

• Set X so that $V_A = 0$, i.e.

$$X = \frac{1 - d(0, T)}{\sum_{t=1}^{T} d(0, t)}$$