An Introduction To Systems Biology Design Principles of Biological Circuits Uri Alon

Lukáš Kuhajda 2019/2020

Transkripční síť

- tranksripce (přepis) výroba RNA dle informace z DNA
- transkripční síť interakce mezi transkripčními faktory a geny
- buňka tisíce proteinů každý svůj úkol vysoká přesnost
 - sledování prostředí, produkce co je třeba v potřebném množství prováděno transkripční sítí

1.1 Kognitivní problémy buňky

- kognitivní poznávací, vjemový
- rozeznávání tepla, tlaku, signály z jiných buněk, prospěšné živiny, škodlivé látky..., vnitřního stavu (poškození DNA, proteinů, membrány)
- transkripční faktory reprezentace stavu prostředí
 - pro rychlý přechod mezi aktivními a psivními molekulovými stavy
 - aktivní trans.fak. se může vázat na DNA a regulovat rychlost čtení cílových genů
 - čtení genů do mRNA \rightarrow přeložení do proteinu (**produkt genu**) \rightarrow působení na prostředí

1.2 Prvky transkripční sítě

- gen úsek DNA sekvence kóduje informaci pro produkci proteinu
 - transkripce genu RNA polymeráza tvoří mRNA odpovídající kódovací sekvenci genu
 - promotor kontrola rychlosti přepsání genu, množství mRNA za jednotku času
 - regulační oblast DNA předcházející genům
 - vazba RNAp s daným místem v promotoru kvalita místa úměrná s transk. mírou
 - RNAp jednání se všemi geny, změny ale prováděny z jednotlivých genech transkr. faktory
 - vazbou transkr.fak. s místem v promotoru cílového genu dochází k ovlivnění trans.míry
 - ovlivnění kdy RNAp zahájí transkripci genu
 - transkripční faktor
 - aktivátor zvyšuje míru transkripce genu
 - represor nepřepisování genu v RNA, redukce míry transkripce
 - transkripční síť proteiny transk.fak. kódovány geny, které jsou regulovány jinými trans.fak.
 - popisuje všechny regulační transkripční interakce v buňce
 - nody uzly v grafu, geny
 - hrany transkripční regulace genu produktem proteinu jiného genu
 - **signály** vstup do sítě
 - molekuly, modifikace proteinu přímé ovlivnění aktivitu transkr.fak.

- často způsobení fyzické změny tvaru proteinu transkr.fak.
 - převzetí aktivního molekulového stavu
- signál \rightarrow změna aktivity transk.
fak. \rightarrow změna produkce proteinů
- některé proteiny jsou transk.fak., které aktivují další geny
- zbytek vykonává různé funkce v buňce budování struktury, katalyzace

1.2.1 Oddělění časových intervalů

- vázání transkr.fak. k dané části DNA v rámci sekund
- transkripce a translace cílového genu v rámci minut
- hromadění proteinového produktu v rámci minut až hodin
- úroveň aktivity trans.fak. považována za stabilní v rámci rovnic popisujících dynamiku pro pomalý časový rozvrh změn úrovně proteinů
- velká škála mechanismů, jak transkr.fak. regulují geny
- při spojení transkr.fak. s DNA se doplní o RNAp pro kontrolu produkce mRNA
- transkripční síť modularita komponentů
 - možnost vzít DNA z genu z jednoho do druhého organismu
 - síť tvárná evoluce, snadné začlenění nových genů a regulací
- GFP green fluorescent protein světélkování u medúz
- hrany v síti se jeví, že se vyvíjí v rychlejších intervalech než kódování částí genů
 - myši, lidi podobné geny, rozdíl transkripční regulaci genů
 - rozdíl v druzích ne tolik v genech, ale v hranách transrk.sítě

1.2.2 Označení hran: aktivátory a represory

- aktivátor pozitivní kontrola, vzrůst míry transkripce, node obsahuje více + hran
- represor negativní kontrola, redukce míry transkripce, node obsahuje více hran
- síť většinou obsahuje více pozitivních hran 60-80%
- většina aktivátorů funguje za určitých podmínek jako represory pro dané cílové geny
 - platí i naopak
- duální transkr.fak při splnění podmínky působí na gen jako aktivátor, při jiné jako pasivátor
- transkr.fak. mají tendenci použít stejný mód regulace pro většinu jejich cílových genů
 - označení hran jdoucích do nodu (transkrypční interakce regulující gen) nejsou tak korelované
- označení hran odcházejících bývaá spíše korelované, než označení hran příchozích

1.2.3 Čísla na hranách: vstupní funkce

- označení síly interakce
- vstupní funkce síla účinku transk.fak. na míru transkripce cílového genu
- $X \to Y$... rate of production $Y = f(X^*)$ míra produkce proteinu Y za jednotku času
- X^* aktivní forma koncetrace X $f(X^*)$ obvykle monotóní, tvar S rostoucí když X aktivátor a naopak
- Hillova funkce popisuje mnoho vsupních funkcí genů
 - pro aktivátor

$$f(X^*) = \frac{\beta X^{*n}}{K^n + N^{*n}} \tag{1.1}$$

- ${\bf K}$... aktivační koeficient udává se v koncentraci Xnutnou pro aktivaci výrazu
 - souvisí se slučivostí mezi X a jeho umístěním na promotoru, + další faktory
- β maximální hodnota výrazu, $X^* >> K$
 - při vysoké koncentraci se X^* váže na promotors vysokou ppstí a stimuluje RNAp k produkci velkého množství mRNA za jednotku času
- n Hillův koeficient řídí šikmost vstupní funkce
 - obvykle 1-4, čím vyšší tím šikmější
- pro represor

$$f(X^*) = \frac{\beta}{1 + (\frac{X^*}{K})^n} \tag{1.2}$$

- každá hrana tedy může nést 3 čísla, změny při evoluci
- spousta genů má nenulový počáteční stav hodnoty výrazu **základní hodnota výrazu** β_0

1.2.4 Logické vstupní funkce: jednoduchý framwork k pochopení dynamiky sítě

- Hill dobrý pro detailní modely, z matematického hlediska lepší jednodušší funkce pro zachycení základního chování
- logická aproximace častá aproximace vstupní funkce v transkripční síti, skoková
 - pro jednoduché grafické řešení dynamických rovnic
 - gen buď zapnutý (ON $f(X^*) = \beta$)/ vypnutý (OFF $f(X^*) = 0$), aktivační práh = K
 - pro aktivátor

$$f(X^*) = \beta \theta(X^* > K) \tag{1.3}$$

 $\theta \dots 0/1$ - pro represor obrácené logické znaménko

1.2.5 Vícerozměrové vstupní funkce řídící geny s více vstupy

- sousta nodů má více než 1 vstupní hranu
- aktivita promotoru je vícerozměrné vstupní funkce různých transk.fak. můžou být aproximovány logickými funkcemi
- geny co pro aktivaci potřebují oba aktivátory proteinu vázané na promotor

$$f(X^*, Y^*) = \beta \theta(X^* > K_x) \theta(Y^* > K_y) \sim X^* A N D Y^*$$
(1.4)

- alespoň jeden

$$f(X^*, Y^*) = \beta \theta(X^* > K_x OR Y^* > K_y) \sim X^* OR Y^*$$
(1.5)

- některé jako suma vstupů

$$f(X^*, Y^*) = \beta_x X^* + \beta_y Y^* \tag{1.6}$$

- jednoduchá změna funkční formy vstupní funkce mutací v promotoru regulovaného genu
 - změna z AND na OR během pár mutací promotoru v lac (E.coli)

1.2.6 Prozatimní shrnutí

- transkripční síť popisuje transkripční regulaci genů
- node reprezentuje gen, hrana z X \to Y gen X se kóduje pro trans.fak proteinu, který se váže na promotor genu Y, upravuje míru transkripce
- protein kódovaný genem X mění míru produkce proteinu kódovaného genem Y, Z pak zas může být transk.fak. genu Z vytváření sítě
- většina nodů značí geny, které nejsou transk.fak, ale nesou různé funkce buňky
- vstupy do sítě jsou informace o prostředí, mění příslušné transkr.fak.
- aktivní transkr.fak. se vážou na daná místa DNA promotoru cílového genu regulace míry transkripce
 - míra produkce produktu genu Y je funkce koncentrace aktvního transkr.fak. X^*
 - geny regulované více transkr.fak. ají vícerozměrovou vstupní funkci Hill, logické
- hrany a vstupní funkce jsou pod tlakem výběru, nevyužívaná hrana zanikne mutacemi
- změna jednoho nebo pár písmen v oblasti DNA, kde se váže X v promotoru Y k zrušení hrany X \rightarrow Y

1.3 Dynamika a časová odezva jednoduché regulace genu

- 1 hrana sítě, gen regulovaný 1 regulátorem bez dalších vstupů (nebo jen konstanty)
- $X \to Y$ transk.fak. X reguluje gen Y
- bez vstupu X neaktivní a Y není produkováno
- objevení signálu S_x , okamžitá přeměna X do aktivní formy X^* a navázání na promotor genu Y
 - \rightarrow přepis genu Y,překlad m
RNA \rightarrow hromadění proteinu Y
 - buňka produkuje protein Y v konstatní míře β jednotky koncentrace za jednotku času
- vyvážení produkce proteinu

degradace - specifická destrukce speciálními proteiny v buňce

- míra degradace - α_{deg}

ředění - redukce koncentrace v důsledku zvýšení objemu buněk během růstu

- míra ředění α_{dil}
- míra degradace/ředění

$$\alpha = \alpha_{deg} + \alpha_{dil} \tag{1.7}$$

- změna koncentrace Y v čase

$$dY/dt = \beta - \alpha Y \tag{1.8}$$

- v ustáleném stavu, konstantní koncentrace Y_{st} , řešení dY=0

$$Y_{st} = \beta/\alpha \tag{1.9}$$

- odstranění signálu, konec produkce ... $\beta=0$

$$Y(t) = Y_{st}e^{-\alpha t} \tag{1.10}$$

- časová odezva měří rychlost změny Y, $T_{1/2}$
 - čas k dosažení poloviny počáteční a koncovou úrovní v dynamické procesu
 - z předchozí rovnice z Y_{st} do $Y=0 \rightarrow Y(t)=Y_{st}/2$

$$T_{1/2} = \log(2)/\alpha \tag{1.11}$$

- některé proteiny mají vysokou degradační míru α , je tedy nutná vysoká produkce β
 - cyklus produkce a destrukce rychlá reakce, když je potřeba změny

- Y=0,spuštění signálu, začátek hromadění Y,růst k $Y_{st}=\beta/\alpha$

$$Y(t) = Y_{st}(1 - e^{-\alpha t}) (1.12)$$

1.3.1 Časová odezva stabilních proteinů je jedna generace buněk

- stabilní proteiny $\alpha_{deg}=0,$ nejsou aktivně degradovány v rostoucích buňkách
 - produkce hlídána ředěním, $\alpha = \alpha_{dil}$
- produkce proteinu, náhlý konec ($\beta=0$), růst buňky do dvojnásobku, rozdělění ve dví po **jednogeneračním čase** τ koncentrace klesá na 50%

$$T_{1/2} = log(2)/\alpha_{dil} = \tau$$
 (1.13)

- tato časová odezva může být limitujícím faktorem, který představuje omezení pro tvorbu efektivních genetických obvodů

Autoregulace: síťové motivy

- cíle
- síťový motiv definovat vzor stavebních bloků v síti
- zkoumat nejjednodušší motiv v transkipční síti **negativní autoregulace**
- ukázat, že tento motiv má užitečnou funkci urychlení odezvy transk.interakce a stabilizace

2.1 Vzory, náhodně vytvořené sítě, síťové motivy

- E.coli mnoho vzorů nodů a hran, hledání důležitých vzorů statistika
 - porovnávání se souborem náhodných sítí
 - sítě se stejným počtem nodů a hran jako reálné, náhodné spojení mezi nody a hranami
- síťové motivy vzory opakující se výrazně častěji než v náhodných sítích
 - motivy odolávající mutacím, které náhodně upravují hrany

2.1.1 Detekce motivů srovnáváním s náhodnými sítěmi

- ER model Erdos and Renyi nejjednodušší soubor náhodých sítí
- pro hodnotné srovnání je třeba náhodných sítí se základními rysy reálných sítí
 - stejný počet hran (edge E) a nodů (N) jako reálná, náhodně vytvořené spoje mezi nody
 - N(N-1)/2 možných párů nodů, možné oba směry $\rightarrow N(N-1)$
 - hrana může do stejného nodu, ze kterého vycházela N počet možných hran:

$$N(N-1) + N = N^2 (2.1)$$

- pravděpodobnost hrany $p = E/N^2$

2.2 Autoregulace: motiv sítě

- srovnávání transripční sítě E.coli s náhodnými
- vlastní hrany vrací se do stejného nodu, ze kterého vyšly 40
 - transkr.fak. regulující transkripci vlastního genu
 - autogenní kontrola, autoregulace
 - 34 jsou zde represory potlačení vlastní transripce negativní autoregulace
 - statisticky by v náhodně vytvořené síti měla být pouze 1±1 vlastní hrana
 - vypočtená odpovídající odchylka Z ~ 32 je statisticky velmi významná

- vlastní hrany - autoregulace - je motiv sítě

2.2.1 Urychlení odevzy obvodu genu negativní autoregulací

- transrk.fak X se naváže na vlastní promotor k potlačení produkce mRNA
- čím vyšší koncentrace, tím nižší míra produkce
- dynamika popsána mírou produkce f(X) a mírou degradace/ředění pro aproximaci využit Hill X na začátku není, t=0
 - rychlá produkce, dosažení vysokého ustáleného stavu, konec produkce na X=K (koef. represe)

$$T_{1/2} = \frac{K}{2\beta} \tag{2.2}$$

- čím silnější nerepresovaná aktivita β , tím rychlejší odezva
- negativní autoregulací rychlé nabytí počáteční produkce, autorepresí ukončení produkce
- evolucí jednoduché nastavení parametrů β a K nezávisle na sobě
 - K například mutací v místě vázání X v promotoru
 - β mutacemi v místě vázání RNAp v promotoru
- dosažení výrazně vyšší rychlosti odezvy než v případě bez negativní autoregulace
- negativní autoregulace
 - silný promotor dá rychlou produkci
 - vhodný koeficient represe poskytuje žádoucí ustáleného stav
 - v jednoduché regulaci dosažení značně vyššího ustáleného stavu, potom nežádoucí nadměrná exprese produktu genu

2.2.2 Negativní autoregulace podporuje robusnost v kolísání míry produkce

- další výhodou negativní autoregulace zvýšení robusnosti expresní úrovně ustáleného stavu ke kolísání produkční míry β
- kolísání metabolické kapacity v buňce, regulačního systému, náhodné efekty v produkci
 - \rightarrow buněčná dvojčata rozdílné míry produkce β u většiny proteinů
 - rozdíly i po dobu celé generace
 - represní práh K se většinou moc neliší
- lineární závislost regulace na kolísání produkční míry β $X_{st}=\beta/\alpha$ u negativní autoregulace závisí hodnota ustáleného stavu pouze na represním práhu K $X_{st}=K$
 - K se v porovnání buňka-buňka tolik neliší \to zvýšení robusnosti ustáleného stavu z hlediska kolísání míry produkce

2.2.3 Pozitivní regulace zpomaluje odezvu a může vést ke dvojí stabilitě

- aktivace vlastní transkripce, 10% transkr.fak. v E.coli, pomalá dynamika
- s růstem úrovně X roste míra produkce
- dosahuje polovičního zpoždění ve srovnání s jednoduchou regulací
- vhodné pro procesy trvající dlouhou dobu vývojové procesy
- dvojí stabilita míra pozitivní autoregulace je silná v porovnání míry degradace/ředění
- při aktivaci genu zůstane aktivní i po zmizení vsupního signálu
- využití ve vývojových transripčních sítích, kde je potřeba stanovit osud buňky

Motiv sítě dopředné smyčky

- mnoho vzorů, jen ty nalézané významně jsou motivy
- motivy mají definovanou funkčnost zpracování informace
 - jeich benefity vysvětlují, proč evolucí znikají v různých organismech
- zde zaměření na motivy se 3 nody
 - 13 možností, pouze jedna je motiv sítě (feed-forvard loop FFL)
 - důležité pochopit regulace jednotlivých hran každá může být buď aktivátor nebo represor
 - 8 FFL typů, poze 2 se vyskytují častěji v sítích
 - zde zabývání se dynamikou, běžné typy filtrují šum, pulsy a odezvové zrychlení

3.1 Výskyt subgrafu v náhodných sítích

- $\mathbf{subgraf}$ \mathbf{vzor} z více $\mathbf{nod}\mathring{\mathbf{u}}$
- dopředná smyčka 3 nody, nevrací se do počátečního
- výskyt trojúhelníkových subgrafů je náhodných sítích velice vzácný
- při výskytu v reálné síti lze považovat za motiv

3.2 Dopředná smyčka je motiv sítě

- v E.coli 42 dopředných smyček, žádná se zpětnou vazbou (3 nody spojeny dokola, často jako antimotiv)
 - FFL je silný motiv, mnohem častěji než v náhodných
 - FFL jediný motiv ze všech 13 3-nodových možností

3.3 Struktura dopředné smyčky genetického obvodu

- transkr.fak. X reguluje traskr.fak. Y a oba regulují transkr.fak. Z, 2 paralelní regulační cesty, 8 typů
 - koherentní nepřímá cesta má stejné celkové znaménko jako přímá cesta
 - nekoherentní nepřímá cesta má celkově opačné znaménko co přímá
- nejčastěji C1-FFL (coherent 1) všechny aktivátory +/++
- 2. nejčastější je I1-FFL (incoherent 1) +/+-
- všechny ostatní se objevují výrazně méně často
- integrace X a Y do promotoru Z aktivace AND/OR
- X a Y často reagují na vnější podněty např. molekuly vázající se na transkr.fak. podnět z venku

většinou zpracováván výrazně rychleji než vnitřní transkripční interakce v FFL

- příchod S_x , aktivace $X \to X^*$, navázaní na dané místo DNA promotoru genu Y a Z během pár s, také změna míru transkripce \to koncentrace Z se mění v intervalu od minut do hodin

3.4 Dynamika C1-FFL s logikou AND

- signál S_x , aktivace na X^* (**kroková stimulace** X), navázání k promotoru Y, produkce proteinu Y \rightarrow druhý transrk.fak. v FFL
- paralelně se X^* váže na promotor genu Z logika AND nestačí k aktivaci
 - aktivace po překročení kocentrace Y aktivačního práhu genu Z K_{yz}
 - aktivace vyžaduje i 2. vstupní signál S_y Y v aktivní formě Y^*
- příchod S_x , čekání na akumulaci Y pro aktivaci Z **zpoždění**

3.5 C1-FFL je prvek zpoždění citlivý na znaménka

- zpoždění s ON krokem S_x , ne při OFF kroku zpoždění citlivé na znaménko
- může být bráno jako druh asymetrického filtru
 - signál S_x s kratší dobou trvání než odezva nijak dál nepůsobí na Z **detektor trvání** na ON
 - okamžitá odezva na OFF pulsy
- inženýrské použití když náklady na chybu jsou nesymetrické
- transkripční sítě spíše ochranná funkce, filtrace kolísání
- případ OR odpadá zpoždění při ON, vzniká při OFF buzení Z i když zrovna vypadnul signál
 zpoždění cca o hodinu

3.6 I1-FFL

- X aktivátorem Y i Z, Y represorem Z
- $S_x \to \text{aktivace na } X^*$, vazba k Z, inicializace transkripce produkce proteinu
 - paralelně aktivace produkce Y, nahromadění nad práh, tlumení Z
- I1-FFl tedy může generovat pulsy produkce Z
- urychlení odezvy nejdříve vysoká produkční míra, se zpožděním represor na snížení produkční míry
 udržení žádoucí úrovně ustáleného stavu
- při zmizení signálu S_x žádná akcelerace nebo zpoždění okamžité ukončení produkce Z
 - kvůli AND logice promotoru Z
 - s logikou OR funguje stejně, akorát je odezva při OFF a ne při ON
 - po ukončení exponenciální pokles Z podle míry degradace/ředění
 - I1-FFL je prvek zpoždění citlivý na znaménka

3.7 Proč jsou jiné FFL typy tak vzácné?

- některé postrádají citlivost k jednomu z jejich dvou vstupů
- nepřítomnost signálu S_u u I1-FFL Z není represován, velký vliv na úroveň ustáleného stavu Z
- I4-FFL +/-+ cca 5% z FFL
 - urychlovač s citlivostí na znaménko i pulsní generátor
 - narozdíl od I1-FLL nezávisí na S_y , při nepřítomnosti S_x je nesplněna logika AND z X do Z

- nepřítomnost citlivosti vůči jednomu vstupu je důvod, proč se nevyskytuje moc často
 - stejný důvod i pro I3-FFL
 - podobný důvod i u C3-FFL a C4-FFL
 - u ostatních případů a OR formy je složitější vysvětlování

3.8 Konvergentní evoluce FFLs

- základní V-tvar kdy X a Y regulují Z, od jedné do pár mutací se může přidat i regulace X \to Y pokud nepomůže nebo ještě zhorší rychle evolucí odstraněna u C1-FFL a I1-FFL je fukce jasná
- homologní geny geny z jednoho společného, značný stupeň podobnosti
 - možný podobný vznik u FFLs většinou však ne
- vznik spíše nezávislý na stejných obvodech ve spoustě případech

Časové programy a globální struktura transkripčních sítí

- zde kompletace průzkumu smyslových motivů sítě předtím autoregulace a dopředné smyčky
- další 2 motivy
 - SIM single-input module
 - 1 regulátor kontroluje skupinu genů
 - vytváří časové programy exprese geny jsou zapnuty postupně jeden po druhém ve stanoveném pořadí
 - "just-when-needed" strategy není produkce proteinu, dokud neni potřeba
 - optimální pro rychlou produkci systému, který se skládá z různých typů proteinů
 s omezeným zdrojem pro produkci těchto proteinů
 - DORs dense overlapping regulons hustě se překrývající regulony
 - husté pole regulátorů kombinatoricky kontrolující výstupní geny
 - můžou nést výpočty důležité pro rozhodování
- nakonec, jak motivy zapadají do sebe, aby vytvořily síť

4.1 Síťový motiv SIM

- větší motiv více vzorů pohromadě s typickým vzorem architektury 1. rodina motivů je SIM
- hlavní transrk.fak. X kontroluje skupinu cílových genů každý jeden vstup
 - znaménko (aktivace/represe) pro všechny kontrolované nody stejné
- X bývá často autoregulované
- silný motiv oproti náhodným sítím
- geny mají běžné biologické funkce geny se účastní v nějaké metabolické cestě
- geny pracují sekvenčně pro nashromáždění žádoucí molekuly atom po atomu
- jiné kontrolují geny reagující na stresové podněty poškození DNA, teplotní šok...
 - produkce proteinů opravujících škody
 - podskupiny genů specializovaných na dané aspekty

4.2 SIM umí generovat časové programy exprese

- aktivace genů v daném pořadí
- různé práhy X pro každý cílový gen
 - práh pro každý promotor závisí na místě jeho vázání s X v jeho promotoru
- postupná aktivacce genů, při úbytku zas postupná deaktivace z druhé strany LIFO

- v E.Coli systém argininu, SOS DNA poničení zpoždění v pořadí o 0.1 generaci genu (5-10 min)
- ekonomický design produkce až ve chvíli potřeby
- přesné časový řád může být pozměněn mutacemi
 - při opravách rychlá produkce opravných prostředků, po ukončení různě rychlý pokles
 - geny řešící nejmenší problémy se vypnou první, ty pro rozsáhlejší se vypínají později
 - řeší celou řadu globálních buněčných odezev geny časované podle buněčného cyklu v bakterii
 - geny často regulované hlavním regulátorem + přídavnými regulátory pro subsystémy
 - nemusí být tedy SIM
 - více regulátorů, jeden má konstatní aktivitu během sledovaného intervalu
- vznik SIM evoluční konvergencí ke stejnému regulačnímu vzoru u různých organismů jako u FFL
- udžuje se vůči mutacím, protože je dostatečně užitečný
- někdy proces aktivace-deaktivace jako FIFO
 - některé části procesu potřebné dříve jiné později, ale jen jednou

4.3 Topologická generalizace síťových motivů

- zatím jednoduché už 4 nody 199 možných vzorů, přes 9000 pro 5
- topologická generalizace motivů rozdělení motivů do rodin dle jejich funkcionality
 - když je FFL motiv, každý z těch 3 vzorů může být motiv pouze 1 je ale opravdu motiv
 - multi-output FFL může generovat časový FIFO program

4.4 multi-output FFL umí generovat časové FIFO pořadí

- genetický systém kontrolující produkci flagel (bičík) mototry E.coli
- když je buňce fajn, nikam se nepřemisťuje, když špatně nechá si narůst motůrky, vygeneruje navigační systém
- bičík cca 50nm, z 30 typů proteinů, 10x delší než tělo, 30 mikronů/s
 - skládá se dohromady po fázích lego
 - uvnitř kanálek, kterým se další proteiny dostávají dál
 - informace o proteinech kódovaná v 6 operonech
 - skupina genů transkribována stejným kusem mRNA
 - operony regulovány 2 transkr.fak. aktivátory
 - hlavní aktivátor X aktivuje Y, oba aktivují každý ze 6 operonů
 - multi-output FFL
 - každý operon může být aktivován pouze pomocí X nebo Y podobné OR branám
 - just-when-needed produkce
 - + oproti SIM FIFO X najede, postupně překročí hranice aktivace promotorů
 - klesáním zpět by bylo opět LIFO X klesne, ale je furt Y
 - Y má vlastní hranice pro každý gen jiné pořadí na OFF než na ON
 - dále všechny funkce FFL vytváření zpoždění při vypínání Z
 - deaktivace po určitém čase detektor zpoždění pro každý výstup
 - při krátké ztrátě X se díky OR nemusí přerušit vstup
 - multi-output je generalizace FFL, která se vyskytuje nejčastěji v transkr. sítích

4.5 Integrace signálu a kombinatorická kontrola: bi-fan a hustě se překrývající regulony

- 4-nodové vzory ze 199 možností jsou známé 2 motivy two-output FFL a **bi-fan** bi-fan X_1 a X_2 oba regulují Z_1 Z_2
 - patří do skupiny **hustě se překrývajících regulonů DORs**
- DOR řada transkr.fak. regulující sadu výstupních genů v hustě se překrývající směru
 - většinou ne všechny vstupy regulují všechny výstupy
 - kombinatorický rozhodovací systém
 - E.coli a kvasnice pár DORs regulace někalika set genů
 - sdílená společná globální funkce reakce na stres, metabolismus živin...

4.6 Síťové motivy a globální struktury smyslových transkripčních sítí

- autoregulace, FFL, SIM, DOR jak jsou vůči sobě, jak se překrývají?
- procedura hrubého zrna substituce motivů za tvary zjednodušení grafického znázornění sítě
- všechny geny jsou pokryty nějakým z rodiny motivů
- poměrně vzácné dlouhé kaskády ve smyslových transkr.sítích časové nároky
 - jiné biologické sítě je často obsahují

Síťové motivy ve vývojových, transdukčních a neuronových sítích

- vše předtím ve smyslových sítích potřeba rychlých reakcí
- byly tvořeny malými sadami těchto motivů
- tady síťové moivy v jiných typech bio sítí
- vývojová transkripční síť transkr. sítě řídící osudy buněk z vajíčka do mnohobuněčného org
 - diference buňky na jiný typ buňky
 - od smyslových rozdíl v časových intervalech a reverzibilitě
 - pomalejší nevratná rozhodování vznik nových motivů sítě
- kromě trankr. sítí používá buňka další interakčí sítě
 - interakční síť protein-protein, signálová transdukční síť, metabolické sítě
 - graficky různé barvy hran pro rozeznání různých sítí
 - rozdíly v časových intervalech
 - transkr. sítě v hodinách, signálová transdukční síť funguje v sekundách až minutách

5.1 Síťové motivy ve vývojových transkripčních sítích

- senzorová transkr.síť reakce na vnější změny, skoro ve všech buňkách
- vývojové transkripční sítě diferenciační procesy, vývoj, vajíčko \to vícebuněčný organismus
 - rozdělením diferencují do jiné tkáně/pletiva
 - aby se staly součástí nové tkáně, musí vyjádřit specifickou sadu proteinů
 - sada určuje, jestli bude tkáň svalová nebo neurální
 - zkoumání na octomilkách, červech, mořských ježcích a lidech pár silných motivů
 - C1-FFL a I1-FFL jako u senzorových sítí, taky autoregulační motivy a SIMs
 - dále pak jiné, co u senzorových sítí nebyly

5.1.1 Dvounodová pozitivní zpětná smyška pro dělání rozhodování

- dva transkr.fak. regulují samy sebe ve vývojových sítích spíše pozitivní
 - 2 pozitivní interakce double-positive feedback transkr.fak. se navzájem aktivují
 - 2 ustálené stavy X a Y oba ON / oba OFF
 - signál pro produkci X/Y může nereverzivně uzamknout oba proteiny do ON
 - vzájemná aktivace
 - blokovací mechanismus
 - neujúčinější, když geny regulované X a Y kódují proteiny patřící stejné tkáni

- 2 negativní interakce double-negatice feedback vzájemná represe
 - také 2 stabilní ustálené stavy X ON a Y OFF / X OFF a Y ON
 - vyjádření buď X nebo Y
- vhodné, když geny regulované X patří buňkám s jiným osudem než geny regulované Y
- často ještě u obou nodů pozitivní autoregulace
 - zvyšování produkce při dosažení určité hranice
 - tím také stabilizace ON ustálený stav transkr.faktoru
- bistabilní přirozenost těchto motivů dovoluje buňkám dělat nereverzivní rozhodnutí a přiřadit osudy,
 kdy specifická sada genů se vyjadřuje a další je utlumená

5.1.2 Regulující zpětná vazba a regulovaná zpětná vazba

- 2 hlavní 3-nodové motivy obsahují zpětnou vazbu
- trojúhelníhový motiv, kde X a Y vzájemně regulují Z regulující zpětná vazba $10\ \mathrm{možných}$ kombinací znamének
 - double-positive stejné znaménko z obou do Z
 - double-negative často rozdílné znaménko do Z
 - také 2-nodová smyčka, kde jsou oba nody společně regulovány zezhora 1 transkr.fak.
 - regulovaná zpětná vazba
 - prvek paměti Z může řídit zapnutí/vypnutí smyčky
 - smyčka si pamatuje, jestli bylo Z aktivní nebo ne
 - zapamatování si osudu buněk, i když už zmizel původní signál

5.1.3 Dlouhé transkripční kaskády a vývojové časování

- dlouhé transkripční kaskády vzácné v senzorových sítích, ve vývojových motivy
- řetězy interakcí X \rightarrow Y \rightarrow Z \rightarrow ...
- čas odezvy každého článku je daný mírou degradace/ředění v $T_{1/2}$ odezva kolem jedné generace
 - u vývojových sítí tato odezva sedí líp lepší řízení vývojových procesů

5.1.4 Propojená dopředná smyčka v B. subtilis sporulační sítí

- sporulace proces tvorby spor buňka sloužící k dlouhodobému přežití bakterie v nepříznivých podmínkách
- b.subtilis bacil senný
- ve vývojových sítích FFL často jen část větších a složitějších obvodů, než u senzor.sítí
- při hladovění se buňky přestanou dělit a diferencuje do odolných sporů
 - spory obsahují mnoho proteinů, co se v bakterii při růstu nevyskytují
 - odpočívající buňka, skoro úplně dehydrovaná přežije dlouho, spící stav
 - při správných podmínkách se tranformuje zpět na normální bakterii
- při tvorbě sporu je třeba změnit tvorbu sady proteinů sporulace
 - potřeba stovek genů spínání ON a OFF ve vlnách každá specifický vliv na formaci sporu
 - síť tvořena několika transkr.fak. sežazenými ve spojeném C1 a I1-FFL
 - nakomibování FFLs pro využití jejich zpoždění a generování pulsů časový program genetické exprese
 - kaskádově sežazené FFLs generují 2 pulsy genů následované třetí pozdním

5.2 Síťové motivy v signálových transdukčních sítích

- signálová transdukční síť mnohem rychlejší zpracovávání informací než 1 generace
- interake mezi signálovými proteiny
- vycítit informaci z okolí, zpracovat, regulovat aktivitu transkr.fak
- vstupy obvykle detekovány receptorovými proteiny
 - jeden konec mimo buňku, druhý uvnitř v cytoplasmě
 - mimobuněčný konec detekuje molekuly zvané ligandy
 - navázáním konformační změna v receptoru, vnitří část se stane aktivní a katalyzuje dané chemické modifikace do difusního messenger proteinu v buňce
 - poslání 1 bitu informace z receptoru do messengeru
 - modifikace funguje v rámci sekund až minut

5.3 Informace zpracovávaná pomocí vícevrstvých perceptronů

- v signálových transdukčních sítích jsou nody signálové proteiny a hrany interakce
- silné 2 4-nodové motivy bi-fan, diamant
- diamant vícevrstvý vzor, podobný strukturám DOR v kaskádě s DOR, který dostává informaci z nadřazeného DORu
 - vzory DOR se ale normálně nevskytují v kaskádě
- vícevrstvé perceptrony podobná struktura využívaná v umělé inteligenci a neuronových sítích

5.3.1 Tréninkový model pro perceptrony proteinové kinázy

- kináza enzym, který přenáší fosfátovou skupinu z vysokoenergetické donorové molekuly (např. ATP) na určitou cílovou molekulu (substrát)
- kaskáda proteinové kinázy cesty zpracování informací nalezené ve většině eukaryotických organismů
- aktivace kaskády, když se receptor naváže na ligand a aktivuje první kinázu $X \rightarrow$
 - \rightarrow X fosforylace kinázy Y na dvou daných místech \rightarrow Y dvojně zfosforylovaná \rightarrow
 - \rightarrow začne fosforylovat Z \rightarrow po dvojné fosforylaci fosforyluje transkr.fak. \rightarrow exprese genu
- fosfatázy enzymy proteinů postupně defosforylující kinázy také obsažené v kaskádách
- často využito lešenářské proteiny držící kinázy u sebe
- adaptorové proteiny můžou spojit danou kaskádu k rozdílným vstupním receptorům v odlišném typu buňky
 - kaskády tedy znovuvyužitelné moduly
 - stejná kaskáda transdukuje rozdílný signál v rozdílné tkáni
- kaskády většinou ve vrstvách, často 3
 - v 1. řadě kinázy $X_1, X_2...$ aktivují další řadu kináz $Y_1, Y_2...$...
 - formování vícevrstvého perceptronu který může integrovat vstupy z více receptorů
- kinetika prvního řádu nejednodušší kinetika pro kinázy
 - míra fosforylace Y z X je proporční vůči koncentraci aktivního X násobené koncentrací jeho substrátu nefosforylované Y, značení Y_0

$$rate of phosphorylation = vXY_0 (5.1)$$

míra v kinázy X - kináza Y fosforylovaná 2 rozdílnými vstupními kinázami - X_1 X_2 fosforylovaná forma Y_p , nefosforylovaná forma Y_o

$$Y = Y_o + Y_p \tag{5.2}$$

$$dY_{p}/dt = v_{1}X_{1}Y_{o} + v_{2}X_{2}Y_{o} + \alpha Y_{p}$$
(5.3)

- stabilní stav $dY_p/dt = 0$
- řešení

$$Y_p/Y = f(w_1 X_1 + w_2 X_2) (5.4)$$

f - rostoucí saturující funkce

$$f(u) = \frac{u}{1+u} \tag{5.5}$$

w - váhy vstupů

$$w_1 = v_1/\alpha \tag{5.6}$$

- koncentrace fosforylovaného Y je rostoucí funkce vážených sum dvou aktivit kinázy
- když je Y kináza, která musí být fosforylována na dvou místech aby byla aktivní, vstupní funkce je strmější

$$f(u) = \frac{u^2}{1 + u + u^2} \tag{5.7}$$

- S-shaped vstupní funkce vedou k aktivaci Y pouze pokud je suma vstpů větší než mezní hranice tady $1\,$
- hranice aktivace $w_1X_1 + w_2X_2 = 1$
 - přímka v ploše vymezené vstupními aktivitami

5.3.2 Vícevrstvé perceptronu mohou provést detailní výpočty

- jednovstvý perceptron X_1 - X_2 rozdělí plochu přímkou do 2 částí přidáním vstvy možnost složitějších výpočtů
- 2 vstvy Y_1 a Y_2 mají vlastní sady mezí ze 2 vstupů X_1, X_2 rozdělení v půlce
 - oblasti nízké a vysoké aktivity
- kinázy Y_1 a Y_2 můžou fosforylovat kinázu Z pouze pokud jsou fosforylované

$$Z_p/Z = f(w_{z1}Y_1 + w_{z2}Y_2) (5.8)$$

- když jsou váhy wmalé, Y musí být fosforylované pro překročení hranice
 - Z je fosforylované pouze na ploše X_1 - X_2 , když jsou Yny aktivní
 - oblast dána průsečíky dvou regionů aktivity Y_1 a Y_2
 - aktivace Z v regionu vyhrazeném 2 úsečkami
- když v prostřední vrstvě místo kinázy specifická fosfatáza fosfatáza odstraní fosforylní úpravu negativní váha
 - složitější aktivační regiony
- diskriminace schopnost rozeznat jistý stimulující vzor
 - nastavením vah možnost rozeznat od sebe velmi podobné stimulující vzory
- generalizace "vyplňování mezer" v částečných stimulujících vzorech
 - vpuštěním neúplného vzoru obdov reaguje jako by byl celý, pokud je mu daná část podobná
- pozvolná degradace vadou na prvcích sítě nedojde k úplnému ukončení
 - výkon se zhoršuje úměrně poškození
- tyto 3 fenomény můžou charakterizovat funkcionalitu signálové transdukční sítě v buňce

5.4 Kompozitní síťové motivy: záporná zpětná vazba a oscilátorové motivy

- zatím proteinové signálové sítě a transkripční sítě zvlášť v buňce ale pracují pospolu
 - často výstup signáloé transduční cesty je transrk.fak
- spojená síť se 2 barvami hran transripční a protein-protein interakce
- motivy
 - 3 nody trnaskr.fak. X transkripčně reguluje 2 geny Y a Z, protein.prod. pak přímo interagují
 např. Y fosforyluje Z
 - kompozitní zpětnovazební smyčka ze 2 proteinů, které spolu interagují různými barvami
 - X transkr.fak aktivující gen Y, produkt Y interaguje s X na proteinové úrovni
 - často opačným způsobem
 - Y naváže na X a potlačuje jeho aktivitu transkr.faktoru bráněním přístupu k DNA
 - nejčastěji se objevuje v genetickém systému bakterie-člověk
 - pomalá aktivace Y, rychlé potlačování X negativní stabilizace
 - stabilnější, než 2 pomalé interakce
- homeostáza stabilita okolo fixovaného stavu v mnoha systémech žádoucí
- oscilační dynamika chování u některých systémů
 - cyklus buňky, kdy se periodicky duplikují genomy
 - cirkadiánské hodiny pozoruhodně přesné biochemické obvody produkující oscilace na škále jednoho dne

...

- typický charakter časování výrazně přesnější než amplituda
 - variace amplitudy způsobená měnícím se vnitřním šumem z produkce proteinů
- mnoho oscilátorů bývá implementováno pomocí 2-barevného motivu kompozitní negativní zpětnovazební smyčky
 - transkr.fak. X má pozitivní autoregulaci
 - robustní časování i přes fluktuace biochemických parametrů komponenty
 - rodina relaxačních oscilátorů
- zpětnovazebné smyčka složená z regulátorů poskládaných dokola tvořící negativní zpětnovazební smyčku
 - 3 represory za sebou represilátor
 - rodina oscilátorů zpoždění méně precizní časování

5.5 Síťové motivy v neuronové síti C.elegans

- Ceanorhabditis elegans háďátko obecné půdní červ cca 1000 buněk
 - nesouvisející sítě mají shodné motivy, anti-motivy a častěji se opakující různé vzory
- nody neurony
- $X \to Y$ X má synaptický spoj s Y
- podobné motivy jako v biochemických interakčních sítích i přes odlišné prostorové a časové vazby
 - komunikace mezi buňkami v rámci milisekund
 - v transkr.síti v rámci buňky v časoech od minut po hodiny
- FFL sprostředkovává přenos zašuměných signálů pomocí komponent šumu

5.5.1 Vícevstupové FFL v neuronových sítích

- v obou motivy, ale FFL jsou zde spojeny jinak než v transkr.sítích
 - v transkr.sítích generalizací multi-output FFL nejčastější
 - v neuronových u C.elegans multi-input
- zjednosušeně model aktivity neuronů má rovnice podobné těm v transkr.sítích a signálových transdukčních sítích, molekulární mechanismy jsou ale velmi odlišné
- neurony komunikují přenosem elektrických signálů přes sinapse do dalších neuronů
- neurony mají časově závislý transmembránový rozdíl napětí aktivita neuronu
- u c.elegans odstupňované napětí X(t), Y(t), Z(t)
- integrate-and-fire model pro dynamiku neuronů sečtení synaptických vstupů ze vstupního neuronu
- Y má 2 synaptické vstupy ze 2 neronů X_1 a X_2 , změna napětí Y aktivována skokovou funkcí přes váhovou sumu napětí dvou vstupních neuronů

$$dY/dt = \beta \theta(w_1 X_1 + w_2 X_2 > K_y) - \alpha Y \tag{5.9}$$

 α - relaxační míra vůči úniku proudu přes membránu neuronové buňky váhy w - síla synaptických spojení - AND i OR brány

- **detekce náhody** krátkých vstupních signálů aktivace Z i když nebyly přítomné oba vstupní signály, ale oba jen na krátkou chvíli a chvíli po sobě
- časová odezva v desítkách milisekund

5.5.2 Vícevrstvé perceptrony v neuronové sítí C.elegans

- podobné jako v signálových transdukčních sítích, zde větší hojnost vzájemných spojení
- zpracovávání informací, správnost závisí na přesnosti měření vah hran

Robusnost proteinových obvodů: příklad bakteriální chemotaxe

- chemotaxe - pohyb organismu ve směru chemického gradientu - bílá krvinka k zánětu

6.1 Princip robustnosti

- výpočty v biologických obvodech závisí na biochemických parametrech koncentrace proteinu
- paramtery odlišné buňka od buňky náhodné jevy
- biologické obvody mají robustní konstrukci tak, že jejich základní funkce je téměř nezávislá na biochemických parametrech, které mají tendenci se měnit od buňky k buňce **robustnost**
 - musí se uvést jaká vlastnost je robustní k jakému parametru
- fine-tuned nerobustní vlastnosti
 - značně se mění při odlišných biochemických parametrech
- robustnost vůči změám parametru není nikdy absolutní
- demonstrace principů robustnosti na proteinových signálových sítích obvod kontrolující bekteriální chemotaxi

6.2 Bakteriální chemotaxe, jak bakterie myslí

6.2.1 Chování chemotaxe

- pipeta s živinami k plujícím E.coli, jsou zaujaty a vytvoří obláček kolem atraktant
 - když se škodlivými, uplavou pryč **repelent**
 - bakteriální chemotaxe
- některé buňky pohyb za světlem (fototaxe), magnetickým polem (magnetotaxe)
- baktrie dokáží detekovat koncentrační gradienty malé jako změna molekuly na objem buňky na mikron a funkce v pozadí koncentrací přes 5 řádů
 - i přes lomcování Brownovým pohybem buňka chce rovně po dobu 10s orientace náhodně v rozsahu 90^o
- dočasné gradienty k řízení pohybu využití biased-random-walk
 - když buňka pluje od gradienty, zastaví se rychleji, aby našla nový směr
 - v tekutině se pohybuje náhodnou procházkou
 - běh udržování konstantního směru 1s
 - tumbles přemet změna směru 0.1s

- při přbližování snižování pravděpodobnosti přemetu (frerkvence přemetu) pokračování stejným směrem
- běhy a přemety jsou generovány různými stavy motoruů, které otáčí bičíky
 - clockwise CW, counterclockwise CCW
 - CCW pluje dopředu, jedna se změní na CW, konec pohybu, přemet, náhodná orientace
 motor na CCW znova pohyb dopředu

6.2.2 Odezva a přesná adaptace

- pozorování buňky bez gradientu, běhy a přemety s průměrnou **ustálenou frekvencí přemetu** cca 1s
- atraktant ve vzduchu nad tekutinou, zatím žádný prostorový gradient, snížení frekvence přemetů
- buňky zjistí, že byly napáleny, zvýšní frekvence přemetů, i když je atraktant stále na místě **adap-**
- **přesná adaptace** frekvence přemetů zůstane stejná, když se objeví atraktant ve stejné míře jako předtím
 - ustálená frekvence přemetů je nezávislá na úrovni atraktantu

6.3 Chemotaxinový proteinový obvod E.coli

- proteinový obvod vykonávající odezvu a výpočty adaptace
 - vstup koncentrace atraktantu
 - výstup pravděpodobnost sepnutí motorů na CW určení frekvence přemetu
- receptory vnímání atraktorů a repelentů 5 druhů
 - část venku, druhá vevnitř navázání ligandů
 - uvnitř receptor navázaný na proteinovou kinázu (CheA) receptor a kináza dohromady X X rychle mezi 2 stavy aktivní X^* /neaktivní mikrosekundy
 - aktivní X^* změna na příslušný regulátor proteinu CheY, který je rozptýlenýv buňce
 - změna je přídavek fysforylační skupiny (PO_4) k CheY pro formování fosfo-CheY
 - značení CheY-P, fosforylace poslání bitů informací mezi signálovými proteiny
 - CheY-P naváže na motor bičíku, zvýší pravděpodobnost změny z CCW na CW
 čím všší koncentrace CheY-P, tím vyšší frekvence přemetů
 - fosforylace CheY-P je odstraněna enzymem CheZ
 - proti sobě působící CheZ a aktivní X^* ustálený stav CheY-P a frekvence přemetů

6.3.1 Atraktanty snižují aktivitu X

- navázání ligandu, změna pravděpodobnosti aktivního stavu X^{*}
- aktivita X koncentrace X v aktivním stavu
- navázáním atraktantu pokles aktivity redukce míry fosforylace CheY od X tedy i poklesu CheY-P
 - pokles pravděpodobnosti rotace motoru CW, redukce frekvence přemetu, delší plavba 1 směrem
 - repelenty opačný efekt

6.3.2 Adaptace je díky pomalé modifikaci X, která zvyšuje jeho aktivitu

- obvod chemotaxe má druhou cestu věnovanou adaptaci
- metylační modifkace receptory mají pár biochemických tlačítek, která při stlačení zvyšují akti-

vitu a potlačují útlum X

- metylová skupina (CH_3) přidána na 4-5 míst receptoru
- metylace receptoru je katalyzována enzymem CheR a je odstraněna enzmem CheB metylové skupiny jimi průběžně přidávány a ubírány
 - pouze ale pokud bakterie necítí ligand
 - vypadá zbytečně, ale dává buňce možnost adaptace
- výrazně pomalejší než hlavní reakce z X na CheY do motoru
- design zpětné smyčky je takový, že je dosaženio přesné adaptace
 - zvyšující se metylace X přesně vyvažuje redukci aktivity, která je způsobena atraktantem

6.4 Dva modely můžou vysvětlit přesnou adaptaci: robustní a finetuned

- zjednodušené modely zanedbávající mnoho detailů, cíl pochopení základní rysy systému
- oba kopírují základní odezvu systému chemotaxe a zobrazují přesnou adaptaci
 - fine-tuned závisí na přesné vyváženosti rozdílných biochemicých parametrech
 - robustní pro širší rozptyl parametrů

6.4.1 Fine-tuned model

- zjednodušený model teoretického modelu chemotaxe
- receptorový komplex X může být metylován X_m v rámci akce CheR, demetylován CHeB
- ignorování přesného počtu metylových skupin na receptor, skupina všech metylovaných receptorů do jedné proměnné X_m
- jen metylovaný receptor je aktivní, aktivita a * 0 na metylovaný receptor
- takovýto model ztrácí přesnou adaptaci, když A_0 (ustálený stav bez atraktantu) neni rovno A_2 (ustálený stav s atraktantem)
 - zde změna v úrovni proteinu CheR o 20% trojásobný rozdíl v ustálených aktivitách s a bez ligandu
 - přesná adaptace je zde fine-tuned vlastnost

6.4.2 Barkai-Leiblerův robustní mechanismus pro přesnou adaptaci

- mechanismus pro přesnou adaptaci na širokém rozptylu parametrů
- model má několik míst metylace, dalších detailů, reprodukuje mnoho pozorování na dynamiku systému chemotaxe
- robustnost přesné adaptace závisí na tom, že CheB pracuje pouze na aktivních receptorech a nedemetyluje receptory, které jsou neaktivní
 - nezbytné pro robustní adaptaci, není nereálné
 - povolením malého množství ϵ pro CheB provádět akce na neaktivních receptorech způsobí ztrátu přesné adaptace faktorem ϵ

6.4.3 Robustní adaptace a integrální zpětná vazba

- speciální zpětná vazba
 - míra demetylace je úměrná přímo aktivitě víc než jakékoliv jiné entitě
 - negativní zpětná vazba působí přímo na promměnou, která má být kontrolována

- souvisí s inženýrským řídícím principem integrální zpětné vazby
 - řízení signálem, který v čase integruje chybu mezi výstupem a žádaným výstupem
 - garantování navedení do chtěného stavu i přes změny v parametrech systému
 - často se ukazuje jako jedinné možné robustní řešení tohoto problému

Experimenty ukázaly, že přesná adaptace je robustní, zatímco ustálený stav aktivity a adaptační časy jsou fine-tuned

6.5 Individualita a robustnost v bakteriálních chemotaxích

- identické buňky mají rozdílný charakter, jak provádějí chemotaxi
 - některé nervóznější a přemetují častěji, jiné klidnější
- individuální charakteristiky buněk trvají desítky minut
- čas adaptace na atraktant je také individuální
- ustálená frekvence přemetů a je inverzně korelovaná s adaptačním časem buňky
- obvod bakteriální chemotaxe má design takový, že klíčová vlastnost, jako je přesná adaptace, je robustní s ohledem na rozdílnost v úrovni proteinů

Robustní vzorování ve vývoji

- vývoj proces kdy se z vajíčka stává mnohobuněčný organismus mnoho rozdělení na vznik embrya
- všechny buňky stejný genom
 - kdyby všechny vyjadřovaly stejný protein, tělo by bylo beztvré a tvořené identickými buňkami
 - třeba tedy udělit osud, rozdíl v proteinech, které vyjadřují
- morfogeny signálové molekuly (často proteiny)
 - k vytvoření prostorového vzoru je třeba poziční informace, kterou nesou jejich gradienty
 - jejich produkce v daném zdrojovém místě, rozptyluje se do regionu který bude paternován
 - koncentrace vysoká v blízkosti zdroje, snižuje se vzdáleností
 - buňky v poli jsou ze začátku identické a můžoucítit morfogen pomocí receptorů
 - navázání morfogenu na receptor, aktivace signálových cest, exprese sady genů
 - jaké geny vyjadřovány a osud buňky závisí na koncentraci morfogenu
- Model Francouzské vlajky koncentrace morfogenu M(x), zdroj x=0
 - buňky cítí koncentraci vyšší hraniční hodnota T_1 osud A
 - nižší než T_1 a vyšší než hranici T_2 osud B
 - nižší než T_2 osud C
 - 3-regionální vzor normálně více než 3 osudy
- komplexní prostorové vzory se neformují najednou, sekvenční proces
- když hrubý vzor vytvořen, buňky vy regionech můžou skrývat další morfogeny pro generování jemnějších subvzorů
- některé vzory optřebují průsečík 2+ morfogenů vznik složitých prostorových rozloženítkání
- vývojová transkripční síť sekvenční regulace genů během vzorovacího procesu
- vzorování gradientů morfogenů díky rozptýlení molekul cítěných biochemickými obvody
 - citlivost vzorů na různost parametrů?
 - velmi robustní na s ohledem na širokou škálu genetických a prostorových poruch
 - nejčastěji se měnící parametr je produkční míra proteinů
- změnou míry produkce morfogenu často vede k malé změně velikostí a pozic formovaného regionu

7.1 Exponenciální profily morfogenů nejsou robustní

- nejjednodušší meganismus morfogen produkován ve zdroji x=0 a rozptyluje se do okolí s identickými buňkami
- degradace α kombinací s rozptylem to vede k profilu morfogenu s klesající exponenciálou
- vzdálenost rozpadu λ vzdálenost, kterou po uražení morfogenu v poli začne degradovat
- čím větší konstanta rozptylu D, tím mneí je degradační míra α

- rozpad je dramatický vzdálenost 10λ koncentrace 5% a 5.10^{-5} původní hodnoty
- λ typická velikost regionu, která může být vzorována daným gradientem
- problém, když je produkční míra zdroje morfogenu porouchaná (M_0) dosažení jiné hranice, jiného osudu
- tento proces nevysvětluje robustnost pozorovanou ve vývojovém vzorování

7.2 Zvýšená robustnost se samozlepšnou degradací morfogenu

- použití nelineární míry degradace
- posun δ (rozdíl mezi originální a posunutou hranicí) v morfogenním profilu po změně M_0 je v prostoru jednotný
 - všechny regiony jsou posunuty o stejnou vzdálenost jako M_0
- cílem zvýšit robustnost co nejmenší posun δ při změně v M_0 na M_0'
 - míra rozpadu blízko x=0 co největší, dosažení M_0^\prime s malým posunem
 - lze klesajícím vzdáleností λ neakceptovatelné
 - rozsah morfogenu, tedy velikost vzoru, je silně redukována
 - potřeba najít profil s velkým dosahem a robustností
 - rychlý rozpad kolem x=0 k dosažení robustnosti při změně v M_0
 - pomalý rozpad na velkém x k dosažení velkého rozsahu M
- nelineární samozlepšená degradace
 - vzpětnovazební mechanismus dělající degradační míru M rostoucí s koncentrací M
- samozlepšená degradace povoluje ustálený stav profilu morfogenu s mírou nestejnoměrného rozpadu
 - profil se rozpadá rychle kolem zdroje robustnost ve změnách produkce morfogenu
 - pomalý rozpad dále od zdroje vzorování ve velkém rozsahu

7.3 Motivy sítě, které provádí degradační zpětnou vazbu pro robustní vzorování

- navázání morfogenu na receptor, změna exprese genu
 - 2 typy smyček v rozdílných vývojových procesech
- zpětnovazební smyčka, kde receptor R zlepšuje degradaci M
 - morfogen vážící se k R spouští signalizaci, zvýšení exprese R
- degradace M způsobena zvedáním vazby morfogenu do receptoru a jeho poruchou v rámci buňky
 - M zlepšuje produkci R, R zlepšuje míru endocytózy a degradace M
- symčka, když R potlačuje degradaci M
 - navázáním M na R se spouští signalizace, represe exprese R
 - R potlačuje navázáním se degradaci M a potlačuje protein degradující M (mimobuněčná protáza) nebo represuje expresi protázy
- v obou případech M zvyšuje vlastní míru degradace, která podporuje robustní vrozování ve velkém rozsahu

Kinetické korektury

- kinetická korektura principy s vysokou přesností, které jsou využívány v rozmanitých molekulárních rozpoznávacích systémech
- čtení genetického kódu během translace řerězec je syntetizován přidáváním monomeru v každém kroce
 - typ monomeru je zvolen informací kódovanou v šabloně při translaci je to v mRNA
 - kvůli teplotnímu šumu je občas přidán nesprávný monomer
 - kinetická odezva je hlavní nástroj na redukci míry chybovosti
 - výrazně přesnější než obyčejné rozvnovážné porovnávání mezi monomery
- zavedení do poznávacího problému v imunitním systému
 - jak imunitní systém rozpozná proteiny jdoucí ze škodlivých mikrobů přes přítomnost velmi podobných proteinů jdoucích z ze zdravých buněk těla
 - použití malý rozdíl ve slučivosti proteinového ligandu pro vytvoření velmi přesného rozhodnutí
- strategie Picassovy místnosti půlka ho má ráda (v místnosti 10min), půlka ne(v místnosti 1min)
 - otevření mísnosti, vpuštění lidí, zavření, otevření východu z místnosti
 - po minutě odchází co nemají rádi a zůstávají pouze ti co jo výrazně více než 10x víc
 - v případě stálého průchodu by to bylo 10x více
 - použití podobné strategie, jwjí reakce jsou nereverzivní, nevyvážená

8.1 Kinetická korektura genetického kódu může redukovat míru chybovosti molekulárního rozpoznávání

- při translaci ribozomy produkují proteiny spojováním se s aminokyselinami jedna po druhé do řetězce
 - pořadí informací kódovanou mRNA
 - aminokyseliny kódované kodonem série 3 písmen na mRNA
 - mapování mezi 64 kodony a 20 aminokyselinami je genetický kód
- při tvorbě proteinu musí kodony být čteny a odpovídající aminokyseliny přivedeny do ribozomu
 - aminokyselina je přivedena připojena k dané tRNA molekule
 - tRNA má 3 písmenné rozpoznávací komplementární místo
 - páruje se se sekvencí kodonů pro aminkoyselinu na mRNA
 - pro každý kodon je tRNA, která specifikuje aminokyselinu v genetickém kódu
- kodon musí rozpoznat a připojit se na správnou tRNA termální šum chybovovst
 - ze 100 aminokyselin bývá 1% šance, že je 1 špatně více by bylo fatální
 - nepřijatelná frakce buňky

8.1.1 Rozvnováha vázání nevysvětluje přesnost translace

- nejjednodušší model pro tento porovnávací proces produkce míry chybovosti 100x větší než ta pozorovaná
- kodon C na mRNA v ribisomu, který kóduje aminokyselinu a je přidáván na konec proteinového řetězce
 - míra správného navázání na C c, C se váže na c s on-mírou k_c
 - tRNA se odváže od kodonu s off-mírou k'_c
 - tRNA navázané pravděpodobnost, aminokyselina navázaná na tRNA bude kovalentně spojena s rostoucím translatovaným proteinovým řetězcem
 - osvobozené tRNA se odváže od kodonu a ribozom se přesune k dalšímu kodonu v mRNA
 - počet správných tRNA je přibližně stejný jako počet nesprávných tRNA
 - míra chybovosti poměr správného a špatného začlenění aminokyseliny
- špatné tRNA se odváže od mnohem rychleji než správná tRNA slaší vazba Picassova místnost
- rovnováha vázání provede rozlišování jen tak dobré, jako je poměr mezi správnými a chybnými cíly

8.1.2 Kinetická korekce může dramaticky snížit míru chybovosti

- tRNA, po navázání kodonu, projde chemickou modifikací c naváže C a změní se v c^*
 - modifikovaná tRNA c^* může odpadnou od kodonu nebo darovat aminokyselinu prodlužujícímu se řetězci
 - prakticky nereverzivní zdá se zbytečné, může dojít ke ztrátě správné tRNA
 - design generující vysokou přesnost
 - c^* nabídne 2. rozlišovací krok
 - jednou modifikovaná špatná tRNA může odpadnout od kotonu, ale ne už se zpátky navázat
 - nereverzivní reakce funguje jako Picassova místnost s 1 dveřmi
 - povolení 2 nezávislých rovnovážných procesech rozpoznávání
 - druhý pracuje na výstupu prvního míra chybovosti rovna 2. odmocnině
- míra chybovosti 1/10000 podobné pozorované chybovosti
- dosáhnutí větší míry přesnosti spojením dohromady více nereverzivních korekčních procesů

8.2 Rozeznávání vlastního a nevlastního imunitním systémem

- trochu jiné vysvětlení kinetické korekce časová zpoždění kinetická korekce v imunitním systému
- imunitní systém monitoruje tělo nebezpečné patogeny
 - při zpozorování vypočítá a zmobilizuje odpovídající odpověď
 - imunitní sytém je obrovská kolekce buněk komunikujících mezi sebou nesčetně způsoby
 - protilátky protein s designem, aby se vázal na cizí proteiny vytvářené patogeny antigen
 - T-cells buňky skenující tělo, hledání antigenů
 - receptory z daných protilátek proti cizímu proteinovému antigenu
 - k poskytnutí informace T-buňce, každá buňka těla má zlomky proteinů na povrchu
 proteiny ve vyhrazených proteinových komplexech na povrchu buňky MHCs
 - cílem eliminovat infikovanou buňku
 - rozpoznání antigenu receptorem, cizí fragment proteinu v MHC na proteinu spustí signál transdukční kaskádou v buňce, T-buňka zabije buňku prezentovanou cizím peptidem
 - T-buňky ničí buňky těla autoimunitní choroba

- míra chybovosti je méně než 10^{-6} , ačkoliv spříznění antigenů je často jen 10x větší než spříznění vlastních buněk

8.2.1 Rovnováha navazování není vysvětlení nízké míry chybovosti imunitního rozpoznávání

- receptory na T-buče tak, aby rozpoznaly specifický cizí protein přesný ligand c
- -c se váže na receptor s velkým spřízněním
 - receptory dále vystaveny mnoha vlastním proteinům menší spříznění
- míra chybovosti vedoucí k poměru spříznění přesných a nepřesných cílů vynásobená poměrem jejich koncentrací
- spříznění přesných a nepřesných cílů je velmi podobné, míra nerozpoznání je příliš vysoká
- přesný ligand stráví více času navazováním spojení s receptorem
- nepřesné ligandy mají cca 10x menší spříznivost než přesné, nepřesných (zdravé) je ale často více než přesných
- míra nepřesnosti je zde větší než $0.1 \to \text{výrazně}$ více než pozorovaná 10^{-6} a méně

8.2.2 kinetická korekce zvyšující přesnost T-buněčného rozpoznávání

- zesílení malého rozdílu na velký rozdíl pro míru rozpoznávání
- po navázání ligandu dochází k sérii kovalentních modifikací receptoru fosforylace na početných místech
 - konzumují energii a jsou zadrženy od termální rovnováhy
- při modifikaci naváže receptor v buňce pár proteinových partnerů
- aktivace signálové cesty až po všech modifikacích
- kinetická korekce závisí na zpoždění, které je těmito kroky vytvořeno
 - pouze ligandy, které se udrží déle, mají šanci aktivovat T-buňku
 - čím větší je zpoždění, tím je větší počet událostí navazování přesného ligandu, který se odpojí před začátkem signalizace
 - zvýšení zpoždění může mít za následek ztrátu citlivosti
 - tolerováno díky značně zlepšenému rozlišování mezi přesnými a nepřesnými ligandy
 - modifikace musí zmizet dříve, než se odpojí ligand, aby se mohl hned připojit jiný
 - čím je ligand připojen déle, tím je větší šance, že bude spouštět signalizaci
- proces v T-buňkách není unikátní, děje se skoro všude v receptorech v savčích buňkách
- poskytuje robustnost proti chybnému ropoznání pozadí různých molekulo v oraganismu

8.3 Kinetická korekce se může objevit v různých rozpoznávacích procesech v buňce

- hlavním znakem kinetické korekce je existence nerovnovážná reakce při rozpoznávacím procesu, která formuje mezistav, který vytváří zpoždění po navázání ligandu
- systém musí pracovat mimo rozvnováhu, aby ligandy nemohly obejít zpoždění znovunavázáním přímo na již modifikovaný stav
- další výskyty vazba DNA opravným proteinem, rekombinace proteinů
- rozpoznávací protein A se naváže na poničená vlákna DNA vyšší spřízněnost k poničené DNA než normální DNA
 - potom modifikace (fosforylace), naváže další proteiny B a C, které nahradí poničená vlákna

DNA

- modifikační krok proteinu A může zabránit chybému orzpoznání DNA jako zničené navazování aminokyseliny na dané místo tRNA
 - speciální enzym rozpozná tRNA a její specifickou aminoky
selinu a kovalentně se připojí $\,$
 - připojení špatné aminokyseliny na tRNA by mohlo vést k začlenění chybné aminokyseliny v translatovaném proteinu
 - chybovost kolem 10^{-4}
 - docíleno vysokoenergetickým mezistavem, ve kterém enzym, který spojuje aminokyselinu k tRNA, nejdříve naváže oba reaktanty, modifikuje tRNA, a až pak formuje kovalentní vazbu mezi nimi

Optimální design genového obvodu

- zde jednoduchá aplikace teorie přirozeného výběru v genovém obvodu
- optimalita buněčného obvodu?
 - mnoho mutací zhorší výkon
 - funkce zdatnosti maximalizace potíž, že ji v reálném světě neznáme
 - není tedy třeba optimalizovat, ale jen dojít "uspokojivého" výsledku
- optimalita idealizovaný předpoklad, dobrý startovací bod pro generování testovacích hypotéz genového obvodu
 - zde rozebrání nejjednodušších systémů, dá se vytvořit fenomenologický popis základních sil, které působí při hře přirozeného výběru
- jednoduchá situace, bakterie roste konstantním prostředí, které je konstantně doplňováno
 - lze definovat funkci zdatnosti základ na míře růstu organismu
 - bekterie s nejrychlejší mírou růstu může převzít populaci
 - zajištěno, že růstová výhoda je dostatečně velká na to, aby překonala náhodný efekt genetického driftu
- evol. výběr podmíněný růstem v konstantním prostředí vede k maximalizaci míry růstu detailní příklad funkce zdatnosti laktózy (lac) v E.coli

9.1 Optimální úroveň exprese proteinu při konstatních podmínkách

- funkce zdatnosti f velikost k optimalizaci
 - v příznivém prostředí f míra růstu buňky
- pár bakterií, růst počtu N exponenciálně, dokud nejsou příliš hustě

$$N(t) = N(0)e^{ft} (9.1)$$

- souboj 2 druhů s různým f ten s vyšší vyhraje a získá celý prostor
- co určuje míru exprese proteinu? lac system E.coli
 - kódování proteinů LacZ zozklad cukr laktózy zdroj energie a uhlíku
 - cca 60000 kopií LacZ na buňku
 - úroveň exprese je vybrána maximalizací funkce zdatnosti
 - nejjednodušší prostředí s konst. podmínkami prostředí s konstatní koncentrací cukr laktózy
- náklady produkce proteinu LacZ, prospěch, který to přivádí buňce

9.1.1 Prospěch z proteinu LacZ

- prospěch relativní nárůst míry růstu díky akci proteinu
- prospěch úměrný míře, kdy LacZ rozkládá substrát laktózu
- míra enzymu LacZ je dobře popsána LacZ rozkládá laktózu v míře úměrné počtu kopií proteinu (Z), vynásobené saturační funkcí koncentrace laktózy (L)

$$b(Z, L) = \frac{\delta ZL}{K + L} \tag{9.2}$$

K ... Michaelisova konstanta

 δ ... maximální výhoda míry růstu na protein LacZ při saturující laktóze

- prospěch roste lineárně s úrovní proteinu Z
- experimentálně vyvolávačem IPTG chemický analog laktózy exprese proteinu Lac není metabolizován buňkami
 - nerokuje žádný prospěch pro sebe

9.1.2 Náklady proteinu LacZ

- experimentálně změřeno vyvoláním exprese proteinu LacZ na různé úrovně pomocí vyvolávače IPTG při absenci laktózy
 - IPTG vynakládá pouze náklady produkce proteinu, nedává žádný prospěch, protože nemůže být využit buňkami
- exprese LacZ snižuje míru růstu buňky
 - náklady rovné míře růstu jsou nelineární funkce Z
 - čím více produkováno, tím je vyšší náklad na každou další buňku
 - produkce proteinu závisí na zrdojích buňky, které se tvorbou redukují i pro další užitečné proteiny
 - míra růstu buňky závisí na vnitřních zrojích R

$$f \sim \frac{R}{K_R + R} \tag{9.3}$$

- produkce Z je pro buňku břemeno produkce mRNA, sytetizace aminkyselin a spojení k formě Z
 - redukce interních zdrojů R
 - redukce míry růstu začne divergovat, když je vyprodukováno příliš Z a R se začne vyčerpávat

$$c(Z) = \frac{\eta Z}{1 - Z/M} \tag{9.4}$$

- vytvořeno pár kopií proteinu náklady skoro lineární
- náklady rostou prudce když jeZ srovnatelné s horním limitem exprese (M), když začne značně zasahovat do ostatních nezybtných proteinů
- reálně se proteiny nedostávají příliš blízko hranici Z=M, kde by nákladová funkce divergovala relativní redukce míry růstu komplentně vyvolaným systémem lac je kolem 4.5%

9.1.3 Funkce zdatnosti a optimální míra exprese

- funkce zdatnosti - rozdíl v nákladech a prospěchu

$$f_L(Z) = b(Z, L) - c(Z) \tag{9.5}$$

- maximalizace:

$$Z_{opt} = M(1 - \sqrt{\frac{\eta(K+L)}{\delta L}}) \tag{9.6}$$

- čím více laktózy v prostředí, tím vyšší odhadovaná optimální úroveň proteinu
 - žádná laktóza $Z_{opt}=0$ protein by si rokoval jen náklady a nebyl by žádný prospěch
 - normálně kolem $Z_{opt} = 60000$ /buňka
 - když náklady převyšují prospěch, neni důvod protein vyrábět málo laktózy v prostředí
 více generací v takovém prostředí ztráta genu kódujícího LacZ

9.1.4 Experiment laboratorní evoluce ukazuje, že buňky dosáhnou optimální úrovně LacZ za pár set generací

- růst buněk E.coli ve zkumavkách s danou úrovní laktózy
 - úroveň dostatečná, aby garantovala plnou indukci erxprese LacZ
- každý den byla 1/100 buněk z každé zkumavky přendána do nové s čerstvým prostředím **sériové ředění** růst buněk do stacionární fáze, 1/100 jinam a pořád dokola
- předpokládané úrovně LacZ dosaženy po několika stech generacích

9.2 Regulovat nebo ne: optimální regulace v proměnných prostředích

- některé geny se regulují, některé ne kdy se to vyplatí? nekonstatní prostředí produkt genu Z dává prospěch buňce, když je splněna podmínka prostředí C_Z
- regulace Z produkováno při podmínce C_Z a když je potřeba
 - náklady produkce a udržování regulačního systému
- **poptávka** po Z pravděpodobnost p,že organismus ukáže podmínku C_Z když C_Z nadbytečné pravděpodobnost 1-p
- funkce zdatnosti prospěch, nároky
 - s produkcí Z klesá míra růstu kvůli břemenu syntézy a údržby nároky c
 - prospěch buňky z akce Z výhoda míry růstu b
- 1. organismus protein Z neregulován, produkován konstantně za všech podmínek
 - konstitutivní exprese
 - neustálá produkce Z prospěch pouze ve zlomku doby, když je Z požadováno

$$f_1 = pb - c \tag{9.7}$$

- 2. organismus regulační systém, Z produkováno při podmínce C_Z požadovaná podmínka
 - šetří produkcí, která je jen, když je třeba platí nároky c je zlomek času
 - nese nároky r na trovbu a údržbu regulačního systému R

$$f_2 = pb - pc - r \tag{9.8}$$

- 3. organismus - nemá regulátor ani gen na produkci Z

$$f_3 = 0 (9.9)$$

- výběr regulace, když má organismus 2 největší zdatnost, neregulovaný design, když ma největší zdatnost 1. organismus

9.3 Výběr prostředí motivu sítě dopředné smyčky

- koherentní FFL zpoždění na vstupu při ON, ne při OFF
- rozšířený v transkripčních sítích, ne každý gen je zahrnut v FFL
- transkripční síť E.coli 40% známých genů regulováno 2 vstupy je regulováno pomocí FFL
 - 60% regulováno jednoduchým 2-vstupovým designem
- zjednodušená analýza prospěchu-nákladů pro výběr genového obvodu v daném kolísajícícm prostředí
 - prostředí časově závoslý profil vstupního signálu v přirozeném místě výskytu organismu
- předpoklad přítomnost systému se vstupním signálem S_x po dobu D
- funkce zdatnosti založena na proprospěchu a nákladech proteinu Z

$$\phi(D) = \int_0^D f(t)dt \tag{9.10}$$

- krátké pulsy mají určitý efekt na růst vedou k redukci zdatnosti
 - redukce zdatnosti vstupní impuls kratší než kritická doba pulsu (D_C) , protein Z nemá čas nahromadit se tak aby prospěch předěil náklady produkce
- když je zdatnost zredukována expresí proteinu Z v reakci na krátý puls, začne být obvod výhodný
 - C1-FFL přesně tohle umí exprese Z až po uplynutí zpoždění
- filtrace signálů kratších než T_{ON} zabraňuje redukci růstu pro krátké pulsy
- nevýhody produkce Z po zpoždění vynechává potenciální prospěch pulsu někdy více škody než užitku
- analýza rozložení signálů v daném prostředí
 - pravděpodobnostní rozložení trvání vstupního pulsu P(D)
 - oddělení pulsů kyždý při příchodu začání na počáteční hodnotě Z=0 i Y=0 v případě FFL
 - průměrná zdatnost integrace zdatnosti na puls přes rozložení pulsu

$$\Phi = \int P(D)\phi(D)dD \tag{9.11}$$

- design s vyšší průměrnou zdatností má výhodu výběru
- FFL není vybráno v prostředích s exponenciálním rozdělením pulsů
- naopak výběr v prostředích s bimodálním rozložením pulsů
- zpoždění u FFL ideálně takové, aby bylo přesně rovno krátkým pulsům
- odfiltrování pulsů bez prospěchu a zároveň minimální negativní dopad na zdatnost při dlouhých pulsech