

Signal degradation in fiber cable

Fiber Dispersion

• Fiber dispersion results in optical pulse broadening and hence digital signal degradation.

Dispersion mechanisms:

- Modal (or intermodal) dispersion
- Chromatic dispersion (CD)
- Polarization mode dispersion (PMD)

Dispersion in digital systems

Pulse broadening limits fiber bandwidth (data rate)

Dispersion types

- Intermodal (modal) Dispersion
- Intramodal Dispersion
- Chromatic Dispersion
 - Material Dispersion
 - Waveguide Dispersion
- Polarization Mode Dispersion

Modal dispersion

- When numerous waveguide modes are propagating, they all travel with different net velocities with respect to the waveguide axis.
- An input waveform distorts during propagation because its energy is distributed among several modes, each traveling at a different speed.
- Parts of the wave arrive at the output before other parts, spreading out the waveform. This is thus known as multimode (modal) dispersion.
- Multimode dispersion does not depend on the source linewidth (even a single wavelength can be simultaneously carried by multiple modes in a waveguide).
- Multimode dispersion would not occur if the waveguide allows only one mode to propagate the advantage of single-mode waveguides!

Inter modal dispersion (meridional rays)

Inter modal dispersion (meridional rays)

Shortest path $\rightarrow \theta_i = 0$

path length = L

Longest path $\rightarrow \phi = \phi_c$

path length = $L / Sin \phi_c$

Velocity $V \rightarrow c / n_1$

Time delay ΔT_{mod} = Path length difference / Velocity

$$\underbrace{ \left[\left(\frac{L}{\sin \phi_c} \right) - L \right] / \left[\frac{c}{n_1} \right] }_{\text{Sin } \phi_c} = \underbrace{ \left[\left(\frac{L}{c} \right) \left(\frac{n_1^2}{n_2} \right) \Delta \right] + \left[\frac{L}{n_1} \right] }_{\text{Mod}} = \underbrace{ \left(\frac{L}{c} \right) \left(\frac{n_1^2}{n_2} \right) \Delta \right] + \left[\frac{L}{n_1} \right] }_{\text{Constant}}$$

1 T mod = Path length difference velocity

RMS pulse broadening

RMS pulse width
$$\sigma = \tau / (2 \sqrt{3})$$

RMS pulse spread for a MMSIF:
$$\sigma_s = \Delta T_{mod} / (2\sqrt{3}) = L n_1 \Delta / (c 2\sqrt{3})$$

RMS pulse spread for a MMSIF considering mode coupling:

$$\sigma_{sc} = \Delta T_{sc} / (2\sqrt{3}) = (L L_c)^{1/2} n_1 \Delta / (c 2\sqrt{3})$$
 $L_c \rightarrow characteristic length of fiber$

RMS pulse spread for a MMGIF:

$$\begin{array}{lll} \Delta T_{gi} = & Ln_1 \, \Delta^2 \, / \, 2c & \left[\text{ using ray theory approach } \right] \\ & = & Ln_1 \, \Delta^2 \, / \, 8c & \left[\text{ using mode theory approach } \right] \\ & = & Ln_1 \, \Delta^2 \, / \, Dc & \left[\text{ where D varies from 2 to 10} \right] \\ \sigma_{gi} & = & \Delta T_{gi} \, / \, (2 \, \sqrt{3} \,) \\ & = & L \, n_1 \, \Delta^2 \, / \, (20 \, c \, \sqrt{3} \,) = \sigma_s \, (\Delta \, / \, 10 \,) \end{array}$$

Attenuation units - Numerical problem

Compare the rms pulse broadening per kilometer for the following three fibers:

- (i). a multimode step index fiber with core index $n_1 = 1.49$ and $\Delta = 1.0$ %,
- (ii). a graded index fiber having an optimum parabolic index profile and the same n_1 and Δ as in (i),
- (iii). the same type of graded index fiber as in (ii) but with $\Delta = 0.5 \%$.

Attenuation units - Numerical problem

Compare the rms pulse broadening per kilometer for the following three fibers:

- (i). a multimode step index fiber with core index $n_1 = 1.49$ and $\Delta = 1.0$ %,
- (ii). a graded index fiber having an optimum parabolic index profile and the same n_1 and Δ as in (i),
- (iii). the same type of graded index fiber as in (ii) but with $\Delta = 0.5 \%$.

```
\begin{array}{lll} \text{(i)} & \sigma_{\text{step}} & = & 14.3 \text{ ns / km} \\ \text{(ii)} & \sigma_{\text{gi}} & = & 14.3 \text{ ps / km} \\ \text{(iii)} & \sigma_{\text{gi}} & = & 3.58 \text{ ps / km} \\ \end{array}
```

Dispersion Characteristics of optical fiber

FIG. 2. Characteristics of common optical fibers—(a) multimode step index; (b) single-mode step index; (c) multimode graded index.

How much will a light pulse spread after traveling along 1 km of a step-index fiber whose NA = 0.275 and ncore = 1.487?

How does modal dispersion restricts fiber bit rate?

Suppose we transmit at a low bit rate of 10 Mb/s

 \rightarrow Pulse duration = 1 / 10⁷ s = 100 ns

Using the above e.g., each pulse will spread up to approx. 100 ns (i.e. approx. pulse duration!) every km

→ The broadened pulses overlap! (Intersymbol interference (ISI))

*Modal dispersion limits the bit rate of a fiber-optic link to ~ 10 Mb/s. (a coaxial cable supports this bit rate easily!)

- We can relate the pulse broadening ΔT to the information-carrying capacity of the fiber measured through the bit rate B.
- Although a precise relation between B and ΔT depends on many details, such as the pulse shape, it is intuitively clear that ΔT should be less than the allocated bit time slot given by 1/B.
- An order-of-magnitude estimate of the supported bit rate is obtained from the condition $B\Delta T < 1$.
- Bit-rate distance product (limited by modal dispersion)

$$BL < \frac{c}{n_1 \Delta}$$

• This condition provides a rough estimate of a fundamental limitation of step-index multimode fibers.

(the smaller is the NA, the larger is the bit-rate distance product)

- The capacity of optical communications systems is frequently measured in terms of the bit rate-distance product.
- e.g. If a system is capable of transmitting 10 Mb/s over a distance of 1 km, it is said to have a bit rate-distance product of 10 (Mb/s)-km.
- This may be suitable for some local-area networks (LANs).
- Note that the same system can transmit 100 Mb/s along 100 m, or 1 Gb/s along 10 m, or 10 Gb/s along 1 m, or 100 Gb/s along 10 cm, 1 Tb/s along 1 cm

Single-mode fiber eliminates modal dispersion

- The main advantage of single-mode fibers is to propagate only one mode so that modal dispersion is absent.
- However, pulse broadening does not disappear altogether. The group velocity associated with the fundamental mode is frequency dependent within the pulse spectral linewidth because of chromatic dispersion.