## Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Afsaneh Mastouri\*, Yuchen Zhu\*, Limor Gultchin, Anna Korba, Ricardo Silva, Matt Kusner Arthur Gretton\*, Krikamol Muandet\*











The Alan Turing Institute











Machine learning allows us to create models that excel at making prediction.



- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.



- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students?



- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students?
- Experimental data are not available. Only Observational.



- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students? >
- Experimental data are not available. Only Observational.
- We cannot rule out the effect of unobserved confounders (Simpson's paradox)







- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students?
- Experimental data are not available. Only Observational.
- We cannot rule out the effect of unobserved confounders (Simpson's paradox)







- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students? >
- Experimental data are not available. Only Observational.







• We cannot rule out the effect of unobserved confounders (Simpson's paradox)



- Machine learning allows us to create models that excel at making prediction.
- We aim to predict an outcome of some intervention.
  - Will holding back a grade, improve the test scores of students? >
- Experimental data are not available. Only Observational.
- We cannot rule out the effect of unobserved confounders (Simpson's paradox)





























#### Average causal effect estimation:

$$\mathbb{E}[Y|do(A=a)] = \int_{XW} h(a, w, x)p(w, x)dxdw$$



#### Average causal effect estimation:

$$\mathbb{E}[Y|do(A=a)] = \int_{XW} h(a, w, x) p(w, x) dx dw$$

How to get h?



#### Average causal effect estimation:

$$\mathbb{E}[Y|do(A=a)] = \int_{XW} h(a, w, x) p(w, x) dx dw$$

How to get h?



 $\mathbb{E}[Y - h(A, W, X) | A, Z, X] = 0 \quad \text{a.s. } P_{AZX}$ 

 $\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s.} \ P_{AXZ}$ 

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

True Loss 
$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

True Loss .

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

$$Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$$

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### **Kernel Proxy Variable (KPV)**

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

$$Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$$

$$Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$$

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

**True Loss** 

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

 $Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$ 

#### Proxy Maximum Moment Restriction(PMMR)

 $\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \text{ a.s. } P_{AXZ}$  characteristic equation

1

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

#### KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

$$Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$$

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \text{ a.s. } P_{AXZ}$$

$$\text{characteristic equation}$$



$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

#### KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

$$Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$$

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \text{ a.s. } P_{AXZ}$$

$$\text{characteristic equation}$$



$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

**True Loss** 

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

$$Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$$

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s.} \ P_{AXZ}$$
 characteristic equation



$$\mathbb{E}[(Y-h(A,X,W))k((A,X,Z),.)]=0 \text{ a.s. } P_{AXZ}$$

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

**True Loss** 

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^{2}]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^2]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

$$Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$$

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s.} \ P_{AXZ}$$
 characteristic equation



$$\mathbb{E}[(Y-h(A,X,W))k((A,X,Z),.)]=0 \text{ a.s. } P_{AXZ}$$

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

**True Loss** 

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^2]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^{2}]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

 $Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$ 

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s.} \ P_{AXZ}$$
 characteristic equation



$$\mathbb{E}[(Y-h(A,X,W))k((A,X,Z),.)]=0 \text{ a.s. } P_{AXZ}$$

PMMR surrogate loss 
$$R_k(h)$$
  
 $R_k(h) = \|\mathbb{E}[(Y - h(A, W, X))k((A, Z, X), .)]\|_{\mathcal{H}_{AXZ}}^2$   
 $\arg\min R(h) = \arg\min R_k(h)$ 

$$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \quad \text{a.s. } P_{AXZ}$$

**True Loss** 

$$\min_{h} R(h) := \mathbb{E}_{AXZ}[(\mathbb{E}[Y - h(A, X, W) | A, X, Z])^2]$$

#### Kernel Proxy Variable (KPV)

KPV surrogate loss \

$$\tilde{R}(h) := \mathbb{E}_{AXYZ}[(Y - \mathbb{E}_{W|(A,X,Z)}h(A,X,W))^{2}]$$

$$R(h) \leq \tilde{R}(h)$$

 $Stage1: (A, X, Z) \xrightarrow{f} \phi(W)$ 

 $Stage2: \mathbb{E}_{W|A,X,Z}h(A,X,W) = \gamma(A,X,Z)$ 

#### Proxy Maximum Moment Restriction(PMMR)

$$\mathbb{E}[Y - h(A, X, W) \mid A, X, Z] = 0 \quad \text{a.s.} \ P_{AXZ}$$
 characteristic equation



$$\mathbb{E}[(Y-h(A,X,W))k((A,X,Z),.)]=0 \text{ a.s. } P_{AXZ}$$

PMMR surrogate loss 
$$R_k(h)$$
  
 $R_k(h) = \|\mathbb{E}[(Y - h(A, W, X))k((A, Z, X), .)]\|_{\mathcal{H}_{AXZ}}^2$   
 $\arg\min R(h) = \arg\min R_k(h)$ 

## Results



## Results

