

Faculdade de Ciências da Universidade de Lisboa Departamento de Informática Mestrado em Engenharia Informática

Relatório

Configuração e Gestão de Sistemas

Performance Estimate

Aluno: Rodrigo Craveiro Rodrigues (fc64370)

Professor: **Doutor Hugo Miranda**

2º Semestre Letivo 2024/2025

maio 2025

Índice

1.	Introdução	3
2.	Pressupostos	3
3.	Arquitetura do Sistema	3
4.	Metodologia	4
5.	Análise de Capacidade	4
	5.1 Conversão para Unidades Comuns	4
	5.2 Cálculo da Capacidade a 30% de Utilização	5
	5.3 Cálculo da Procura por Visualização de Página	5
	5.4 Cálculo Final da Capacidade Máxima	6
6.	Redundância para Duplicar Capacidade	6
7.	Análise Complementar	7
	7.1 Lei de Little Aplicada ao Sistema	7
	7.2 Lei do Fluxo Forçado	7
	7.3 Teoria das Filas	8
	7.4 Análise de Resiliência	9
	7.5 Análise de Capacidade em Condições de Pico	9
8.	Avaliação1	0
9.	Conclusão1	0
10) Referêncies	11

1. Introdução

Este relatório analisa uma infraestrutura web organizada em várias camadas para determinar o débito máximo em visualizações de página por segundo (pv/s), garantindo que nenhum dos componentes ultrapasse 30% de utilização. Em seguida, propõe-se um plano de redundância para duplicar esta capacidade mantendo a margem de segurança operacional, incorporando avaliações ao recorrer a métricas e leis fundamentais de desempenho do sistema.

2. Pressupostos

- Cada visualização de página gera 60 pedidos HTTP e transfere 5 MB de dados para o cliente (aproximadamente 83 KB por pedido).
- Dos 60 pedidos HTTP:
 - 30% são para conteúdos estáticos (logotipos, CSS, imagens), tratados pelo sistema de cache.
 - o **70%** são pedidos dinâmicos:
 - 10% correspondem a operações de escrita na DB.
 - 50% a operações de leitura na DB.
 - 10% correspondem a outras operações dinâmicas (overhead de aplicação).
- Todos os componentes estão configurados em modo ativo, pelo que as suas capacidades somam linearmente.
- Objetivo de utilização máxima de 30% da capacidade nominal de cada componente.
- Tempo médio de resposta estimado para um pedido ao servidor web: 0,5 segundos.
- Disponibilidade base de cada componente individual: 99,9%.

3. Arquitetura do Sistema

O sistema é composto pelos seguintes componentes:

- Camada de Segurança: 2 firewalls (perímetro e interno), cada um com capacidade de
 250 Mbps.
- Camada de Distribuição de Carga: 2 load balancers, cada um capaz de processar
 10.000 pedidos/min.

- Camada de Cache: 3 web caches, cada uma capaz de processar 8.000 pedidos/min.
- Camada de Aplicação: 10 servidores web, cada um capaz de processar 120 pedidos/min.
- Camada de Dados: 5 servidores de BD, cada um com capacidade de 1 transação de escrita/seg e 10 transações de leitura/seg.

4. Metodologia

- 1. Converter todas as capacidades para unidades p/segundo.
- 2. Calcular o valor correspondente a 30% da capacidade nominal de cada componente.
- Determinar quantos pedidos/megabits p/seg cada componente consegue processar a 30%.
- 4. **Dividir o valor pela "procura"** (número de pedidos/megabits exigidos por visualização de página) para **obter o débito em pv/s**.
- 5. **Identificar o** *bottleneck*: o componente com menor capacidade em pv/s.
- 6. **Aplicar leis fundamentais de performance** (Lei de Little, Lei do Fluxo Forçado) para análise complementar.
- 7. Realizar análise de resiliência e comportamento em condições de pico.

5. Análise de Capacidade

5.1 Conversão para Unidades Comuns

Componente	Capacidade Original	Conversão	Capacidade (p/seg)
Firewalls	2 x 250 Mbps		500 Mbps
Load Balancer 1	2 x 10.000 req/m	÷ 60	333,33 req/s
Web Caches	3 x 8.000 req/m	÷ 60	400 req/s
Load Balancer 2	2 x 10.000 req/m	÷ 60	333,33 req/s
Servidores Web	10 x 120 req/m	÷ 60	20 req/s
BD (Escrita)	5 x 1 w/s		5 w/s

BD (Leitura)	5 x 10 r/s		50 r/s
--------------	------------	--	--------

5.2 Cálculo da Capacidade a 30% de Utilização

Para cada componente, podemos calcular o limite de 30% da sua capacidade máxima:

Componente	Capacidade (p/segundo)	30% da Capacidade
Firewalls Externos	500 Mbps	150 Mbps
Load Balancer 1	333,33 req/s	100 req/s
Web Caches	400 req/s	120 req/s
Firewalls Internos	500 Mbps	150 Mbps
Load Balancer 2	333,33 req/s	100 req/s
Servidores Web	20 req/s	6 req/s
BD (Escrita)	5 w/s	1,5 w/s
BD (Leitura)	50 r/s	15 r/s

5.3 Cálculo da Procura por Visualização de Página

Podemos determinar quanto **cada visualização de página** exige de cada componente:

Componente	Cálculo da Procura	Procura p/Page-view
Firewalls Externos	5 MB x 8 bits/byte	40 Mb
Load Balancer 1	Todos os pedidos	60 req
Web Caches	30% dos pedidos	18 req
Firewalls Internos	70% x 5 MB x 8	28 Mb
Load Balancer 2	70% dos pedidos	42 req
Servidores Web	70% dos pedidos	42 req
BD (Escrita)	10% dos pedidos	6 req
BD (Leitura)	50% dos pedidos	30 req

5.4 Cálculo Final da Capacidade Máxima

Com base nos cálculos anteriores, podemos determinar **quantas visualizações de página p/seg** cada componente suporta a **30% de utilização**:

Componente	30% da Capacidade	Procura p/Page-view	Máximo Page-views/s
Firewalls Externos	150 Mbps	40 Mb	150/40 = 3,75
Load Balancer 1	100 req/s	60 req	100/60 = 1,67
Web Caches	120 req/s	18 req	120/18 = 6,67
Firewalls Internos	150 Mbps	28 Mb	150/28 = 5,36
Load Balancer 2	100 req/s	42 req	100/42 = 2,38
Servidores Web	6 req/s	42 req	6/42 = 0,143
BD (Escrita)	1,5 w/s	6 req	1,5/6 = 0,25
BD (Leitura)	15 r/s	30 req	15/30 = 0,50

O *bottleneck* do sistema são claramente os **servidores web**, limitando a capacidade total a **0,143 visualizações de página p/seg** (aproximadamente **8,6 visualizações p/min**).

6. Redundância para Duplicar Capacidade

Para atingir aproximadamente **0,286 pv/s** (o **dobro da capacidade atual**) **sem exceder 30% de utilização** em nenhum componente:

Componente	Capacidade atual (pv/s)	Capacidade desejada (pv/s)	Capacidade necessária	Ação recomendada
Servidores Web	0,143	0,286	20 servidores (10 para 20)	Adicionar 10 servidores
BD (Escrita)	0,25	0,286	6 servidores (5 para 6)	Adicionar 1 servidor

Os componentes *firewalls, caches, load balancers* e réplicas de leitura da BD mantêm folga significativa mesmo a 30% de utilização e não requerem alterações para satisfazer o objetivo de duplicação da capacidade.

7. Análise Complementar

7.1 Lei de Little Aplicada ao Sistema

A **Lei de Little** estabelece que o número médio de pedidos pendentes num sistema é igual ao produto do *throughput* pelo tempo médio de resposta:

$$N = \lambda \times R$$

Onde:

- **N** é o número médio de pedidos no sistema.
- λ é o throughput.
- R é o tempo médio de resposta.

Para os **servidores web** (componente limitante), com um tempo médio de resposta estimado de 0,5 segundos:

$$N = 6 \text{ reg/s} \times 0.5s = 3 \text{ pedidos}$$

Isto significa que, no cenário de **30% de utilização**, há uma **média de 3 pedidos** a serem processados simultaneamente pelos **servidores web**. Para outros componentes:

Componente	Throughput (pedidos/s)	Tempo médio estimado (s)	Número médio de pedidos
Load Balancer 1	100	0,01	1
Web Caches	120	0,01	1,2
Load Balancer 2	100	0,01	1
BD (Escrita)	1,5	0,1	0,15
BD (Leitura)	15	0,05	0,75

7.2 Lei do Fluxo Forçado

A **Lei do Fluxo Forçado** indica que o *throughput* através de diferentes componentes é proporcional ao número de vezes que cada componente necessita de processar cada pedido.

Com um *throughput* do sistema de **0,143 pv/s**, podemos calcular o *throughput* efetivo em cada componente:

Componente	Throughput efetivo
Firewalls Externos	$0,143 \times 60 = 8,58 \text{ req/s}$
Load Balancer 1	$0,143 \times 60 = 8,58 \text{ req/s}$
Web Caches	0,143 × 18 = 2,57 req/s
Firewalls Internos	$0.143 \times 42 = 6.01 \text{ req/s}$
Load Balancer 2	$0.143 \times 42 = 6.01 \text{ req/s}$
Servidores Web	$0.143 \times 42 = 6.01 \text{ req/s}$
BD (Escrita)	$0.143 \times 6 = 0.858 \text{ w/s}$
BD (Leitura)	$0,143 \times 30 = 4,29 \text{ r/s}$

Estes valores confirmam que **nenhum componente** está a operar **acima** dos **limites de 30% de utilização** calculados anteriormente.

7.3 Teoria das Filas

Aplicando a teoria das filas, podemos modelar os servidores web como um sistema M/M/10 (chegadas Poisson, tempo de serviço exponencial, 10 servidores):

- Taxa de chegada (λ): 6 req/s.
- Taxa de serviço por servidor (μ): 0,033 req/s (2 req/min).
- Utilização ($\rho = \lambda/(\mu \times 10)$): 6 / (0,033 x 10) = 18,18%

Para um sistema M/M/c com utilização ρ , o tempo médio de espera na fila é dado por:

$$W_q = (P_0 \times (\lambda/\mu)^c \times \rho) / (c! \times c \times \mu \times (1-\rho)^2)$$

Onde **P_0** é a probabilidade de o sistema estar vazio.

Num cenário de **baixa utilização** (18,18%), o **tempo médio** de espera na fila seria **próximo de zero**, indicando que os pedidos são processados praticamente sem atraso.

Se considerarmos um modelo M/D/10 (tempo de serviço determinístico):

 O tempo médio de espera seria ainda menor do que no modelo M/M/10, demonstrando a vantagem de tempos de serviço previsíveis.

7.4 Análise de Resiliência

A resiliência do sistema pode ser avaliada calculando a disponibilidade total, considerando as configurações em série e paralelo:

Disponibilidade das Componentes em Paralelo:

Assumindo uma disponibilidade individual de 99,9% para cada componente:

Componente	Cálculo	Disponibilidade
Firewalls (2)	1 - (0,001)^2	99,9999%
Load Balancers (2)	1 - (0,001)^2	99,9999%
Web Caches (3)	1 - (0,001)^3	99,9999%
Servidores Web (10)	1 - (0,001)^10	99,9999%
BD (5)	1 - (0,001)^5	99,9995%

Disponibilidade Total do Sistema (Componentes em Série):

Disponibilidade = 0,999999 x 0,999999 x 0,999999 x 0,999995 = **99,999%**

Isto indica que o sistema tem uma **disponibilidade de "cinco noves**" (99,999%), equivalente a aproximadamente **5,26 minutos** de **indisponibilidade p/ano**.

A arquitetura do sistema, com múltiplos componentes em **paralelo** em cada camada, proporciona uma **elevada resiliência**, mesmo que algum componente individual falhe.

7.5 Análise de Capacidade em Condições de Pico

Utilizando a regra dos 3σ, podemos dimensionar o sistema para lidar com picos de tráfego:

Se assumirmos que o tráfego segue uma distribuição normal com:

Média: 0,143 pv/s

Desvio padrão estimado: 0,05 pv/s.

O sistema deve ser capaz de lidar com: $0.143 / 3 \times 0.05 = 0.293 \text{ pv/s}$ (aprox. 17,6 pv/min)

Esta análise reforça a recomendação de duplicar a capacidade para aproximadamente 0,286 pv/s, garantindo que o sistema possa lidar com picos de tráfego sem exceder os limites de utilização estabelecidos.

8. Avaliação

Para além da análise fundamental realizada, podemos identificar aspetos importantes a considerar:

- 1. Desequilíbrio na utilização dos componentes: O sistema apresenta um desequilíbrio significativo na utilização dos seus componentes. Enquanto os servidores web funcionam a 30% da sua capacidade no cenário de capacidade máxima, outros componentes operam com utilização muito abaixo deste valor:
 - Firewalls: 3,8% da capacidade máxima.
 - Web Caches: 2,1% da capacidade máxima.
 - Load Balancers: 8,6% e 6% da capacidade máxima.

Isto sugere um possível **sobredimensionamento** destes componentes ou a necessidade de **reconfigurar** o sistema para **melhor balanceamento** de **recursos**.

- Otimização de custos: Considerando o desequilíbrio identificado, poderia ser mais económico reduzir o número de componentes sobredimensionados e investir em mais servidores web para aumentar a capacidade geral do sistema.
- Monitorização dinâmica: Implementar um sistema de monitorização em tempo real que aplique as métricas discutidas (*throughput*, utilização, tempo de resposta) para ajustar recursos dinamicamente seria benéfico para otimizar o desempenho do sistema.
- 4. **Testes de carga**: Seria recomendável realizar testes simulando diferentes padrões de tráfego para validar se o comportamento real do sistema corresponde às previsões teóricas baseadas nas leis de performance aplicadas.
- 5. Estratégia de escalonamento: Definir gatilhos de escalonamento automático baseados nas métricas de utilização, tempo de resposta e throughput para otimizar custos e desempenho em função das necessidades reais.

9. Conclusão

- Capacidade atual: 0,143 pv/s (aprox. 8,6 visualizações de página p/min) com todos os componentes a ≤ 30% de utilização.
- Plano de redundância:
 - o Servidores Web: 10 para 20 (acréscimo de 10).
 - Servidores BD para Escrita: 5 para 6 (acréscimo de 1).

Esta configuração garante capacidade para 0,286 pv/s (aprox. 17,2 visualizações de página p/min), mantendo a margem de segurança operacional (máximo de 30% de utilização).

A aplicação das leis fundamentais de performance (Lei de Little, Lei do Fluxo Forçado) e a análise de resiliência e capacidade em condições de pico reforçam a adequação da solução proposta, validando que o sistema:

- 1. Terá capacidade suficiente para lidar com picos de tráfego.
- 2. Manterá **tempos de resposta** adequados.
- 3. Apresentará alta disponibilidade (99,999%).
- 4. Distribuirá a carga de forma eficiente entre os componentes.

Esta proposta assegura não só a duplicação da capacidade como também uma estrutura equilibrada em termos de redundância N+1 para todos os componentes críticos do sistema, garantindo uma operação eficiente e escalável.

10. Referências

[1] Moodle 2024/2025, Configuração e Gestão de Sistemas, Prof. Hugo Miranda: https://moodle.ciencias.ulisboa.pt/pluginfile.php/569945/mod_resource/content/1/t130-slides.pdf