Deep Learning Quiz Solution

1. (a) T (b) T (c) T

2.

∴ A is real symmetric

 \therefore All eigenvalues $\lambda_i \in \mathbb{R}$, All eigenvectors $\{v_i\}$ can be chosen to be orthogonal to each other

 $v : \{v_i\}$ forms an orthogonal basis for \mathbb{R}^d

$$\therefore \exists \{c_i\} \subseteq \mathbb{R} \text{ s.t. } x = \sum_{i=1}^d c_i \, v_i$$

Thus,
$$x^{T}Ax = x^{T}A(\sum_{i=1}^{d} c_{i} v_{i}) = x^{T}(\sum_{i=1}^{d} c_{i} Av_{i}) = x^{T}(\sum_{i=1}^{d} c_{i} \lambda_{i} v_{i})$$

i.
$$x^{\mathrm{T}} \left(\sum_{i=1}^{d} c_i \lambda_i v_i \right) \leq x^{\mathrm{T}} \lambda_{max} \sum_{i=1}^{d} c_i v_i = \lambda_{max} x^{\mathrm{T}} x \Rightarrow \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} \leq \lambda_{max}, \forall x \neq 0$$

ii.
$$x^{\mathrm{T}}\left(\sum_{i=1}^{d}c_{i}\,\lambda_{i}v_{i}\right)\geq x^{\mathrm{T}}\lambda_{min}\sum_{i=1}^{d}c_{i}\,v_{i}=\lambda_{min}x^{\mathrm{T}}x\Rightarrow\frac{x^{\mathrm{T}}Ax}{x^{\mathrm{T}}x}\geq\lambda_{min},\forall x\neq0$$

Hence, by i. and ii., $\lambda_{min} \le \frac{x^{T}Ax}{x^{T}x} \le \lambda_{max}$

3. (a)

(b)

4.

Solution 1:

$$Var(y) = Var(\sum_{i} w_{i} x_{i}) = E\left(\left(\sum_{i} \left(w_{i} x_{i} - E(w_{i} x_{i})\right)\right)^{2}\right) = E\left(\sum_{i} \sum_{j} \left(w_{i} x_{i} - E(w_{i} x_{i})\left(w_{j} x_{j} - E(w_{j} x_{j})\right)\right)^{2}\right)$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} Cov(x_{i}, x_{j}) = \sum_{i} \sum_{j} w_{i} w_{j} \sum_{ij} = \sum_{i} w_{i} \left(\sum_{j} w_{j} \sum_{ij}\right) = \sum_{i} w_{i} \left(\sum_{j} w_{j} \sum_{ij}\right) = w^{T} \sum_{i} w_{i} \left(\sum_{j} w_{i} \sum_{i} w_{i}\right) = w^{T} \sum_{i} w_{i} \left(\sum_{j} w_{i}\right) = w^{T} \sum_{i} w_{i} \left(\sum_{j}$$

Solution 2:

$$E(y) = w^{T}E(x)$$

$$Var(y) = E((y - E(y))(y - E(y))^{T}) = E((w^{T}x - w^{T}E(x))(w^{T}x - w^{T}E(x))^{T})$$

$$= E\left(w^{\mathrm{T}}(x - E(x))(x - E(x))^{\mathrm{T}}w\right) = w^{\mathrm{T}}E\left((x - E(x))(x - E(x))^{\mathrm{T}}\right)w$$

$$= w^{\mathrm{T}} \sum_{x} w$$

- 5. Compared to the probability of disease given a symtom, P(y|x), it's easier to know the probability of a symptom given a disease, P(x|y). Accordingly, Bayes' rule simplify the procedure of evaluation.
- 6.2
- 7. (a) Numeric issues may occur when $b \gg a$, because $\frac{a}{a+b}$ is near to 0 and $\log(0) \cong -\infty$.
 - (b) Convert $\log(\frac{a}{a+b})$ to $\log(a) \log(a+b)$
- 8. (a) $\frac{\partial}{\partial \varepsilon} f(a + \varepsilon \vec{u}) = \nabla f(a + \varepsilon \vec{u})^T \vec{u}$, when $\varepsilon = 0$, ans $= \nabla f(a)^T \vec{u}$
 - (b) $\operatorname{argmin}_{u,\|u\|=1} \nabla f(\mathbf{a})^{\mathrm{T}} \vec{u} = \operatorname{argmin}_{u,\|u\|=1} \left\| \nabla f(\mathbf{a})^{\mathrm{T}} \right\| \|\vec{u}\| \cos\theta = \operatorname{argmin}_{u,\|u\|=1} \cos\theta$

$$\rightarrow \theta = 180^{\circ}, u = -\nabla f(a)^{\mathrm{T}}$$