20210926 10:45

Numerical Methods $\frac{1^{2} dx}{x} = \ln x \Big|_{1}^{2} = \ln 2 - \ln 1 = \ln 2 \approx 0.693147$

O 2 intervals.

B. traperoidal rule:

$$\Delta X \left(\frac{1}{2} y_0 + y_1 + \frac{1}{2} y_2 \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{1} + 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$= \frac{17}{24}$$

$$\approx 0.70\%$$

C. Simpson's rule: $\frac{\Delta x}{3} (y_0 + 4y_1 + y_2)$ $= \frac{1/2}{3} (1 + 4 + \frac{2}{3} + \frac{1}{2})$ $= \frac{35}{12}$

≈ 0.69444...

Simpson's - ExactAns ≈ (0x)4

Cimpton's rule use all exact and of all parabales.

Prut works bad for \(\times (x near 0) (singles, large f) better fishice and smooth.

Memoric device:

N-2

$$=\frac{b-a}{n}(n-\frac{4}{3})$$

20210926 10:45

Numerical Methods $\frac{1^{2} dx}{x} = \ln x \Big|_{1}^{2} = \ln 2 - \ln 1 = \ln 2 \approx 0.693147$

O 2 intervals.

B. traperoidal rule:

$$\Delta X \left(\frac{1}{2} y_0 + y_1 + \frac{1}{2} y_2 \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{1} + 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \right)$$

$$= \frac{17}{24}$$

$$\approx 0.70\%$$

C. Simpson's rule: $\frac{\Delta x}{3} (y_0 + 4y_1 + y_2)$ $= \frac{1/2}{3} (1 + 4 + \frac{2}{3} + \frac{1}{2})$ $= \frac{35}{12}$

≈ 0.69444...

Simpson's - ExactAns ≈ (0x)4

Cimpton's rule use all exact and of all parabales.

Prut works bad for \(\times (x near 0) (singles, large f) better fishice and smooth.

Memoric device:

N-2

$$=\frac{b-a}{n}(n-\frac{4}{3})$$

	Review Sheet CZxam>
	1. CALCULATE DEFINITE INTEGRALS (VIA FTC1 & SUBSTITUTION) 2. NUMERICAL APPROX: RIEMANN SUM TRAPEZOIDAL RULE SIMPSUN'S RULE 3. AREAS / VOLUMES 4. OTHER CUMULATIVE SUMS (AVERAGE VALUE, PROBABILITY, NORK) 5. SKETCH FAT= JA THICHT.
	Pai cua
	left, n'ght, upper, louver:
	loft, right, wifer, cower:
	lover sum, also right-hand sum
	•
2-21-9-1-2-	
202/09/16 12:20	

sum