Uge 10

Danny Nygård Hansen

7. november 2023

7.10 · 🖘

- (a) Funktionen $x \mapsto x^{-1/s} \mathbf{1}_{(1,\infty)}(x)$ ligger i $\mathcal{L}^r(\lambda)$ men ikke i $\mathcal{L}^s(\lambda)$, og det omvendte gælder for $x \mapsto x^{-1/r} \mathbf{1}_{(0,1)}(x)$. (Sammenlign Sætning 7.3.2(ii).)
- (b) Funktionen $x\mapsto 1$ ligger i $\mathcal{L}^\infty(\lambda)$ men ikke i $\mathcal{L}^r(\lambda)$, og det omvendte gælder f.eks. funktionen $x\mapsto x^{-1/s}\mathbf{1}_{(1,\infty)}(x)$ fra del (a). (Sammenlign Opgave 7.6(b).)

7.16 • Bemærk at

$$\int_{X} |f - g| d\mu = \int_{X} \liminf_{n \to \infty} |f - f_n| d\mu \le \liminf_{n \to \infty} \int_{X} |f - f_n| d\mu = 0$$

ved Fatous lemma, så $f = g \mu$ -n.o.

8.1 • 🗇

- (a) Bemærk at Re(f) og Im(f) er kontinuerte og derfor har stamfunktioner, sig hhv. F_1 og F_2 . Da er $F_1 + iF_2$ en stamfunktion for f.
- (b) Da er $f \mathbf{1}_I$ begrænset og dermed integrabel. Lad F være stamfunktionen fra del (a).

8.2 · 🖘

- (a) Bemærk at $x \mapsto \exp(kx)$ er integrabel på $[0, \infty)$ netop når k < 0, så $K = \{z \in \mathbb{C} \mid \text{Re}(z) < 0\}$.
- (b) Find en stamfunktion for f_z , og beregn integralet af $f\mathbf{1}_{[0,n]}$ for ethvert $n \in \mathbb{N}$, jf. vinket (bemærk at $f\mathbf{1}_{[0,\infty)}$ er en integrabel majorant). Vi finder

$$\int_0^\infty f_z \, \mathrm{d}\lambda = -\frac{1}{z}.$$

(c) Bemærk at

$$\frac{1}{a+\mathrm{i}\,b} = \frac{a-\mathrm{i}\,b}{a^2+b^2},$$

og betragt real- og imaginærdelene af integralet fra del (b) med z = a + ib.

7.17 • 🖘

(a) Bemærk at

$$||u|| = ||(u - v) + v|| \le ||u - v|| + ||v||.$$

(b) Dette følger direkte af del (a).

7.9 • 🖘

- (a) Vis at funktionen $x \mapsto (1 + x^2)^{-1/2}$ ligger i $\mathcal{L}^2(\lambda)$ og benyt Hölders ulighed.
- (b) Bemærk f.eks. at $1 \le 0 + \cos(0)$, og at funktionen $x \mapsto x + \cos(x)$ er voksende på $[0, \infty)$. Vi har da for $x \in (0, 1]$ at

$$|h(x)| \le x^{\gamma - 1/5}.$$

Det er da let at tjekke at $h \in \mathcal{L}^5(\lambda)$, så det ønskede følger af Hölders ulighed.

(c) Ifølge Sætning 7.3.2(ii) ligger $f|_{(0,1]}$ da også i $\mathcal{L}^{5/4}(\lambda_{(0,1]}^r)$.