高集積センサネットワークにおける 異種無線を用いた電力効率化の研究

2020/02/04 (火) 卒論最終発表

公立はこだて未来大学 システム情報科学部 情報システムアーキテクチャ学科 高度ICTコース 稲村浩研究室配属 戸澤涼

目次

=

- 1. 背景
- 2. 目的
- 3. 関連研究
- 4. 提案手法
- 5. 電力実測実験
- 6. 考察
- 7. まとめ

WSN (Wireless Sensor Network)とは

- IoT(バッテリ駆動のセンサ)におけるネットワーク技術
- 「利用用途」ごとに様々な規格が用意されている
 - 遠くに多くのデータを送信したい ⇒ LTE
 - 近くに少ないデータを送信したい ⇒ BLE

	短距離	長距離
広帯域	Wi-Fi	LTE 3G WiMAX
狭帯域	BLE	NB-IoT LoRaWAN SIGFOX

[補足]

広帯域:送信データ量が大きい狭帯域:送信データ量が小さい

LPWA (Low Power Wide Area Network)が注目

- 低消費電力で広範囲をカバーする無線通信
- 電源確保が困難な場所で電池交換を極力少なく済ませたい

	短距離	長距離
広帯域	Wi-Fi	LTE 3G WiMAX
狭帯域	BLE	NB-IoT LoRaWAN SIGFOX

LoRaWAN とは

=

- 低電力・長距離通信に特化した無線通信規格(LPWANの1つ)
- 免許不要の帯域で動作,安価に導入可能
- 拡散率という通信距離とデータ量を制御する値が存在

将来想定される環境

- デバイスが安価,利用に免許を必要としない
- ⇒ 都市部のような密集した地域では、

センサノードは隣接している可能性がある

LoRaWANに接続するセンサ数が増加した場合に

頻繁な衝突によるパケット到達率の低下

≒ スケーラビリティの課題

再送による、消費電力の増加を引き起こす

[補足]

- スケーラビリティ:機器やソフトウェア,システムなどの拡張性,拡張可能性のこと

消費電力効率化のために

ノードのスケーラビリティを管理することで

省電力な異種無線の適応機会を確保する

LoRaWANにおけるネットワーク効率化のための ノードのグループ構成法と通信制御方式 [1]

LPWA通信を利用するIoTプラットフォーム向けの電力効率を考慮したゲートウェイ配置手法の検討[2]

ノードのグループ構成法と通信制御方式

[目的]

● 消費電力量を抑制

[提案手法]

周波数利用効率の向上

図2 SFによる通信時間の変化

- 適切な伝送量を割り当て、伝送時間を最適化
- ≒ 拡散率に基づいたタイムスロットの割り当て

送信衝突の抑制

- センサをグループ化し,代表者が周囲の通信を代理送信
- ⇒ LoRaWANに接続するセンサの台数の低減

「補足]

- 拡散率 (SF: Spread Factor) : 送信データ速度に対する拡散符号速度の比(データ量∥通信時間៧)

- タイムスロット :データを送るとき、一つのチャンネルが占有する時間間隔

ノードのグループ構成法と通信制御方式

「課題〕

- 通信を集約する際に,センサ間通信の手法が明記されていない
- ⇒ LoRaWANは, センサ間通信が未対応
- グループを作成するには,センサの位置を手動で登録する必要がある
- ⇒ 都市部のような密集した地域ではセンサの台数が多く その全てを手動で登録するのは現実的ではない

- 代表者に長距離通信の回数が偏る
- ⇒ 特定のセンサの消費電力量が増加する

ノードのグループ構成法と通信制御方式 [番号]

[課題]

● グループを構成する際の手順が明記されていない

ゲートウェイ配置手法の検討

[目的]

● 消費電力の平準化

[提案手法]

輻輳の抑制

● 拡散率に基づき,

通信距離と消費エネルギーのトレードオフを考慮した

ゲートウェイの配置を最適化

≒ ゲートウェイから遠い通信は,

通信時間が長く消費電力が大きいため

拡散率をもとに、ゲートウェイの配置場所を考慮

[補足]

- 輻輳:ネットワークが混雑している状態

ゲートウェイ配置手法の検討

「課題〕

- 拡散率をエネルギー消費のみをもとに決定している
- ⇒ 近場に**同じ拡散率を割り当てた端末**がいると**,通信の衝突が発生**
- ゲートウェイに接続できるデバイス数の上限が考慮されていない
- ⇒ ゲートウェイの同時接続台数には限りがあり**,通信の衝突が発生**

異種無線 (BLE・LoRaWAN) による センサノードのグループ化

センサノードのグループ化

長距離伝送の利用を削減する既存手法を活用する場合の課題

センサノードのグループ化

=

卒業研究において対応した課題

センサノードのグループ化

課題に対するアプローチ

- ① センサノード間はどのように通信するのか?
- ⇒ 消費電力削減のため、異種無線の導入に関する検討
- ② どのようにグループを構築するか?
- ⇒ **グループ決定のため**,センサ起動時のプロトコルに関する検討
- ③ 代表者の通信回数が増加しバッテリーが早く切れないか?
- ⇒ バッテリ残量平準化のため,代表者の入替方式に関する検討

センサノード間の通信方式

消費電力削減のため、センサノード間通信には異種無線を適用

近距離通信:BLE

長距離通信:LoRaWAN

■ ゲートウェイ

■ グループメンバー (GM: Group Member)

■ グループリーダー (GL: Group Leader)

→ LoRaWAN

→ BLE

グループ構成法の検討

グループ決定のため、センサ起動時のプロトコルに関する検討

- 以下の3点が必要となる
- ① 自身から見える周囲のセンサ情報の収集
- ② 収集した情報をもとにグループの構成
- ③ グループ構成の通知

グループ決定のため、センサ起動時のプロトコルに関する検討

- ① 自身から見える周囲のセンサ情報の収集
- ゲートウェイ
- センサノード
- → LoRaWAN
- → BLE

一定期間データを収集したあと ゲートウェイへ送信

LoRaWANの固有IDを発信 : アドバタイズ

⇒ ex: 000b78fffe052c58
周囲のノード情報を受信:スキャン

⇒ 固有ID・BLEの信号強度(RSSi)

グループ決定のため、センサ起動時のプロトコルに関する検討

- ② 収集した情報をもとにグループの構成
- ゲートウェイ
- センサノード
- → LoRaWAN

グループ構成法の検討

=

グループ決定のため、センサ起動時のプロトコルに関する検討

- ③ グループ構成の通知
- ゲートウェイ
- センサノード
- → LoRaWAN

バッテリ残量平準化のため、代表者の入替方式に関する検討

- GLは消費電力を算出し,余裕のあるセンサを次の代表者に決定
- ゲートウェイ
- グループメンバー (GM: Group Member)
- グループリーダー (GL: Group Leader)
- → BLE

- ① 異種無線によるグループ化の適用可能性
- ≒ 消費電力の観点で提案手法が有効であるか
- ② 代表者の入れ替え

BLE, LoRaWANにおける消費電力の参考値が必要

異種無線によるグループ化の適用点の評価

モデル式(既存方式 / 提案手法)

•
$$E_{lorawan} = W_{dr2}N$$
 $(N \ge 2)$

•
$$E_{group} = W_{dr2} + W_{scan} + (N-1)W_{adv} \ (N \ge 2)$$

グループ化アルゴリズムの適用点を示す関係式

• $E_{lorawan} > E_{group}$

W_{dr2}	LoRaWAN (DR2)での1送信あたりの消費電力量
W_{scan}	BLE受信側の消費電力量
W_{adv}	BLE送信側の消費電力量
N	グループのノード台数

モデル式のパラメーター

LoRaWANの消費電力実測

実験概要

- 大学⇔自宅, 3.5kmの場所にデバイスを配置
- 1施行:固定長のデータを30秒間送り続ける
- ⇒ 12施行

GWとセンサの距離	3.5km
データレート (LoRaWAN)	2
拡散率	10

LoRaWANの設定値

シングルボードコンピューター	Arduino Uno R3
LoRaWANモジュール	LoRaWAN Shield for Arduino
LoRaWANゲートウェイ	SW-GW01
マルチメータ(電力計測)	Kotomi Premium

実験機材

実験環境

実験の様子

実験結果

● 「起動からネットワーク参加」・「データ送信」・「スリープ」

イベントごとに単位時間(s)あたりの平均消費電力を抽出

消費電力測定における各イベント(縦軸:消費電流(mA), 横軸:時間(s))

LoRaWANの消費電力実測

実験結果

イベント	時間(s)	電流 (mA)	消費電力(mW)
起動→ネットワーク参加	7	20	120
起動→ネットワーク参加→データ送信	11	21	105
スリープ	任意	3	15
データ送信	4	29	145

LoRaWAN消費電力実測結果(電圧は5V)

グループ化の適用点について

グループ化アルゴリズムの適用点の評価

モデル式に代入 (N = 2)

•
$$E_{lorawan} = W_{dr2}N$$

$$= 1160 mW$$

•
$$E_{group} = W_{dr2} + W_{scan} + (N-1)W_{adv} = 580.477mW$$

- $lacksymbol{\bullet} E_{lorawan} > E_{group}$ を満たし
 - 1台あたり,580mWの削減可能性

種類	消費電力(mW)
PD	0.423
CD	0.054

BLE消費電力参考值

イベント	時間(s)	消費電力(mW)
起動→ネットワーク参加	7	120
起動→ネットワーク参加→データ送信	11	105
スリープ	任意	15
データ送信	4	145

LoRaWAN消費電力実測結果

卒業研究での成果

=

① 消費電力削減

⇒ 異種無線の導入に関する検討

② グループの決定

- ⇒ センサ起動時のプロトコルに関する検討
- ③ バッテリ残量平準化
- ⇒ 代表者の入替方式に関する検討
- ④ グループ化の有効性
- ⇒ 消費電力実測の実施

消費電力効率化のため 異種無線によるグループ化アルゴリズムの システム実現可能性の示唆

今後の課題

前述した未解決の課題

- ① 現実的にグループの規模はどのくらいか?
- ⇒ グループ化の**性能限界**についての検討
- ② 通信タイミングを考慮しないと衝突しない?
- ⇒ グループに割り当てる**拡散率や通信タイミング**の検討

シミューレータでの実装をもって評価

期間		内容	
2020年	3月	情報処理学会 第82回全国大会	
	6月	マルチメディア , 分散 , 強調とモバイル (DICOMO2020)シンポジウム	
	7月	課題研究発表I	

参考文献

=

[1] LoRaWANにおけるネットワーク効率化のためのノードのグループ構成法と通信制御方式 瑞基 湯 素華 小花 貞夫 Proposal on Node Grouping and Communication Control for Improving Network Efficiency of LoRaWAN.2018(13),

[2] LPWA通信を利用するIoTプラットフォーム向けの電力効率を考慮したゲートウェイ配置手法の検討近藤正章, & 中村宏. (2017). 情報処理学会研究報告会 , 32(1), 46-53.

まとめ

=

[目的]

- 消費電力効率化のため, 異種無線によるグループ化手法の実現 [提案手法]
- 異種無線(BLE, LoRaWAN)の適用, グループ化のプロトコル定義[実験結果]
- 異種無線によるグループ化は,

既存のLoRaWANと比較し消費電力の観点から有効であるといえる

[今後の課題]

- グループの**性能限界**についての検討
- グループに割り当てる拡散率や通信タイミングの検討