

DATA AND ARTIFICIAL INTELLIGENCE

Learning Objectives

By the end of this lesson, you will be able to:

- Describe supervised learning and its types
- Summarize the flow of supervised learning

- Analyze the supervised learning use cases
- List the various types of classification algorithms

Supervised Learning: Overview

Supervised Learning

Supervised learning is used to train models using labeled training data. It provides the ability to predict the output of future or unseen data.

The goal of a supervised learning algorithm is to discover a mapping function that will translate the input variable (x) to the output variable (y).

Supervised Learning

Supervised Learning: Examples

Example 1: Weather Apps

The predictions made by weather apps at a given time are based on prior knowledge and analysis of weather over a period for a particular place.

Supervised Learning: Examples

Example 2: Gmail filters

It helps to filter a new email into an inbox (normal) or junk folder (Spam) based on past information of spam.

Netflix: Real-Life Scenario

Ever wondered how Netflix makes recommendations?

Netflix: Real-Life Scenario

Netflix uses **supervised learning** algorithms to recommend shows for the users based on the viewing history and ratings by similar classes of users.

New input

Algorithms trained on historical data

Predicted outcome

Understanding the Algorithm

Supervised Learning: Process Flow

Training and Testing

Prediction

Supervised Learning: Process Flow

Training and testing

Prediction

Use the learned algorithm y = f(x) to predict production data

Algorithm prediction can be improved by more training data, capacity, or algorithm redesign.

Types of Supervised Learning

Types of Supervised Learning

In supervised learning, an algorithm is selected based on the target variable.

Regression Algorithms

Regression

Regression is a statistical model used to predict the relationship between independent and dependent variables denoted by x and y respectively

Examine 2 factors

Prediction

When the relationship between x and y is known, use this to predict future values of y for a value of x. This is done by fitting a regression line and represented by a linear equation

y = a * x + b

How closely are x and y related?

Linear regression gives a number between -1 and 1 indicating the strength of correlation between the two variables

0: no correlation

1: positively correlated

-1: negatively correlated

Types of Regression Algorithms

Regression: Use Case

Predicting profit based on expenditures of the company

Classification Algorithms

Classification

- Classification is a technique used for determining which class the dependent variable belongs to based on one or more independent variables.
- It is mainly used for predicting discrete values.

Simplilearn. All rights reserved.

Classification: A Supervised Learning Algorithm

Classification is a supervised learning algorithm, and the training data contains labels.

Record ID	Age	Spectacle Prescription	Astigmatic	Tear production Rate	Class Label Lenses
1	Young	Myope	No	Reduced	Noncontact
2	Young	Myope	No	Normal	Soft contact
3	Young	Myope	Yes	Reduced	Noncontact
4	Young	Myope	Yes	Normal	Hard contact
5	Young	Hypermetrope	No	Reduced	Noncontact
6	Young	Hypermetrope	No	Normal	Soft contact
7	Young	Hypermetrope	Yes	Reduced	Noncontact
8	Young	Hypermetrope	Yes	Normal	Hard contact
9	Pre-presbyopic	Myope	No	Reduced	Noncontact
10	Pre-presbyopic	Myope	No	Normal	Soft contact
11	Pre-presbyopic	Myope	Yes	Reduced	Noncontact
12	Pre-presbyopic	Myope	Yes	Normal	Hard contact
13	Pre-presbyopic	Hypermetrope	No	Reduced	Noncontact
14	Pre-presbyopic	Hypermetrope	No	Normal	Soft contact
15	Pre-presbyopic	Hypermetrope	Yes	Reduced	Noncontact
16	Pre-presbyopic	Hypermetrope	Yes	Normal	Noncontact
17	Presbyopic	Myope	No	Reduced	Noncontact
18	Presbyopic	Myope	No	Normal	Noncontact
19	Presbyopic	Myope	Yes	Reduced	Noncontact
20	Presbyopic	Myope	Yes	Normal	Hard contact

Types of Classification Algorithms

Types Logistic Used to estimate discrete values (binary values like 0/1, yes/no, true/false) based on Regression given set of independent variable(s) Decision Trees make sequential, hierarchical decisions about the outcome variable **Decision Trees** based on the predictor data Random Forest is an ensemble of decision trees that gives better prediction and Random Forest accuracy than decision tree Based on Bayes theorem and works with an assumption that features are Naive Bayes Classifier independent

Support Vector Machines

SVM draws hyperplane in a feature space that separates instances into different categories with margins in between as far apart as possible

Classification: Use Case

Sentiment analysis, fraud detection, spam filtering, and product categorization are examples of classification.

Difference between Regression and Classification Outputs

Classification and Regression: Graphs

Classification

- It classifies discrete values such as male or female, true or false, and spam or not spam.
- It must identify the best fit line that predicts the output more accurately.

Regression

- It predicts continuous values like price, wage, and age.
- It must identify the best decision boundary that divides the dataset into different classes.

Key Takeaways

- In supervised learning, the program is given labeled input data and expected output results.
- Regression is preferred to predict a continuous quantity and classification is preferred to predict a discrete class label.
- Regression can be used for profit estimation in different departments such as R & D, administration, and marketing.
- In supervised learning, an algorithm is selected based on the target variable.

