

Representação de Conhecimento e Raciocínio

Prof. Elder Rizzon Santos ersantos@inf.ufsc.br

+ Conhecimento

- O conhecimento que é **agora** considerado conhecimento prova-se a si mesmo somente em **ação**. O que significa conhecimento é a informação efetiva em ação, a informação focada nos resultados...
- Peter Druker

+ Conhecimento

- Dado
 - 95 graus Celcius
- Informação
 - Temperatura da caldeira = 95 graus Celcius
- Conhecimento
 - Temperaturas acima de 90 graus Celcius colocam a caldeira em risco. Temperatura da caldeira está acima de 90 graus Celcius, então desligar aquecimento.

Conhecimento

- "consiste em
- (1) descrições simbólicas que caracterizam os relacionamentos empíricos e definicionais em um domínio e
- (2) os procedimentos para manipulação dessas descrições."
- Conhecimento inclui a informação sobre o domínio e a forma como essa informação é **utilizada** para resolver problemas.
- Ex.: Maria tem mais de 18 anos. Maiores de 18 anos são responsáveis legais por seus atos. Maria será cobrada pelos danos.
- Hayes-Roth, Waterman, Lenat, 1983

+ Informação

- Reconhecimento dos objetos do domínio, suas características, suas restrições e seus relacionamentos com os outros objetos, sem ater-se a utilidade dessa informação. É o dado com o seu significado associado.
- Ex.: Idade de Maria = 20 anos

+ Dado

■ Ex.: 20 anos

Conhecimento e Raciocínio

- Descrições simbólicas que caracterizam os <u>relacionamentos empíricos</u> <u>e definicionais</u> num domínio e os <u>procedimentos</u> para manipulação dessas descrições (Hayes-Roth et al)
- Alguns tipos/categorias de conhecimento
 - Declarativo, Procedimental, Semântico, Episódico, MetaC
 - Tácito e Focal
 - Implícito e Explícito
- Raciocínio (Turban, 92)
 - Dedutivo, Indutivo, Analogia, Numérico, Abstração, Meta-nível
- Representações de Conhecimento (KR)
 - Inteligência Artificial

Rac. Dedutivo

- São definidas um conjunto de premissas gerais a respeito do domínio que são aplicadas para obter uma inferência específica.
- O raciocínio parte de um princípio geral, chamado de premissa maior, conduzido por premissas menores, mais específicas, para uma conclusão particular.

+ Exemplo

- Premissa 1: Na baixa temporada, pacotes de viagem são vendidos com desconto.
- Premissa 2: Janeiro é baixa temporada.
- Conclusão: Pacotes de viagem vendidos em Janeiro tem desconto.

Rac. Indutivo

- O raciocínio indutivo utiliza fatos ou premissas particulares e busca generaliza-las para novos fatos
- Nem sempre a conclusão é alcançável e podem ainda mudar se novas premissas forem acrescentadas.
- Sempre existe alguma incerteza envolvida em no raciocínio indutivo, uma vez que não é possível determinar se toda informação relevante é conhecida.

+ Exemplo

- Premissa 1: Em verões chuvosos, o Hotel Beiramar oferece descontos.
- Premissa 2: Em verões chuvosos, o Hotel Praiatur oferece descontos.
- Premissa 3: Em verões chuvosos, o Hotel Solimar oferece descontos.
- Premissa 4: O verão está chuvoso.
- Conclusão: Solicitar descontos a hotéis localizados no litoral.

Rac. Analogico

- Forma de raciocínio bastante natural para os seres humanos, porém ainda difícil de ser implementada.
- Assume que pode-se aplicar uma solução que mostrou-se válida em uma mesma classe de problemas em outro domínio, apenas adaptando-se aos requisitos do problema em questão.

+ Exemplo

- Procedimentos conhecidos:
 - Reservar hotel para conferências.
 - Reservar hotel para pessoas em viagem.
- Solução: Aplicar o mesmo método, adaptando a solução para o fato de que conferências acontecem em um único local, enquanto excursões se deslocam.
- Aplicar o procedimento utilizado para pessoas que viajam, porém considerando que a reserva deve ser feita para um grupo e não para um indivíduo.

Rac. Meta-nível

- Aplica conhecimento sobre o que é conhecido, como a importância de certos fatos ou regras em comparação com outros,
 - a ordem provável em que os fatos serão inferidos,
 - a avaliação de que determinadas conclusões nunca poderão ser alcançadas.
- Implica em utilizar informações sobre o comportamento do domínio julgadas através de bom senso.
- É mais utilizado em sistemas para otimizar formas de raciocínio padrão e avaliar se as soluções são pertinentes ao problema.

Representação de Conhecimento

- Papéis de uma Representação de Conhecimento (Davis, 92)
 - Substituto para as coisas do mundo
 - Conjunto de compromissos ontológicos
 - Uma teoria fragmentada de raciocínio inteligente
 - Um meio para computação eficiente
 - Um meio para expressão humana

KR – Outras Definições

- Desenv. formalismos que possibilitem descrições em altonível do mundo, as quais podem ser eficientemente utilizadas para construir aplicações inteligentes. Brachman & Nardi 2003
- Nebel, 1990
 - Aspectos Estáticos
 - Linguagem Formal, Semântica
 - Aspectos Dinâmicos
 - Raciocínio → inferir conhecimento implícito
 - Conhecimento explicitamente e declarativamente representado através de um formalismo

+ C&R – Visão geral

Abordagem	Origem	Compromisso Ontologico	Raciocínio
Lógica	Lógica Matemática	Fatos, objetos, relações	Dedução (SAT, Resolução, etc.)
Frames	Psicologia	Estereótipos	Classificação, Herança, Demons
Redes Semânticas	Psicologia	Padrões de nodos + arcos	Herança, Padrões
Sistemas de Produção	Lógica	Condições e Ações	Validação, Comparação, Conflitos
Redes Bayesianas	Estatística	Variáveis e influências	Propagação de Evidências
Redes Neurais	Biologia	Visão Micro Conc.	Aprendizagem
CBR	C. Cognitivas, IA, Mat.	Experiência Passada	Analogia, Adaptação

Redes Semânticas

- Proposta por Quillian (formalizando o trabalho de Selz, 1913), 1968, a partir da modelagem da memória semântica humana
 - Relacionamento semântico representado pelo relacionamento entre dois objetos
- Utiliza um grafo com nodos e arcos dirigidos
 - Nodos: objetos, conceitos, eventos
 - Arcos: relações entre conceitos (é-um, parte-de, tem-um)
- Forma mais flexível e intuitiva de representar conhecimento.
- Raciocínio
 - Busca e casamento de padrões
 - Herança de propriedades

+ Exemplo rs

Busca como Ferramenta Explicativa

- Para provar a declaração "Cães comem"
 - pode-se supor que c\u00e3es comem, e usar busca sobre a rede para provar a hip\u00f3tese.
- Buscando a partir do nó "<u>Cão</u>", temos:
 - "Cão é-um mamífero"
 - "Mamífero é-um animal"
 - "Animal faz comer"
 - Isto é uma prova para "Cães comem"

Explorar exaustivamente um tópico

- Para derivar todo o conhecimento sobre "cães", usa-se Busca em Amplitude a partir do nó "Cão"
 - "Cães são Mamíferos"
 - "Cães têm Pêlos"
 - "Cães são Animais"
 - "Cães Comem"

+ Frames

- Base: modelos mentais de psicologia cognitiva usados na resolução de problemas, Bartlett 1932
 - Estruturas de conhecimento (estereótipos)
- Proposta por M. Minsky, 74
 - Winston (1975), Haugeland (1981), Brachman e Levesque (1985) –
 KL-ONE
 - São considerados uma evolução das Redes Semânticas:
 - nós são substituídos por frames
 - arcos são substituídos por atributos (slots)
 - procedimentos podem ser anexados a um frame (demons)

⁺ Frames & RS – Exemplo

Funcionalidades de frames

Facetas

- Restrições sobre os slots
- Valores: padrão (default), herdado, procedimento (daemon), uma exceção
- Os frames integram conhecimento declarativo e procedimental.
 - Os frames integram conhecimento declarativo sobre objetos e eventos e conhecimento procedimental sobre como recuperar informações ou calcular valores.
 - Daemons: Procedimentos anexados aos frames, disparados por consultas ou atualizações.
 - Exemplos: when-requested, when-read, when-written

Frames – Raciocínio

- Classificação
 - Instância dentro da taxonomia de frames
- Herança
 - Simples
 - Múltipla
- Daemons
 - Procedimentos/Regras associados às facetas
 - Se modificado, se solicitado, ... (executados ao modificar uma propriedade)

Frames e redes semânticas

- Capturar propriedades de senso comum sobre pessoas, eventos e ações
 - primeiras tentativas de estruturar conhecimento declarativo sem usar regras.
- Organização centrada em objetos
- Herança
- Atualmente esses sistemas dificilmente são utilizados, mas as idéias e conceitos contiuam presentes
 - Orientação à Objetos
 - Ontologias

Sistemas Baseados em Regras

- Representam conhecimento com pares de *condição-ação*
 - Se condição (ou premissa ou antecedente)

 então ação (resultado, conclusão ou conseqüente)
 - Se o agente percebe luz do freio do carro em frente acesa
 - então ele deve frear o carro (regra de ação)
- Raciocínio
 - determina o método utilizado (progressivo ou regressivo)
 - utiliza estratégias de busca com casamento (unificação)
 - resolve conflitos e executa ações.

Exemplo regras: mycin

- Regra 102
- SE o local da cultura for o sangue
 E a morfologia do organismo for bastonete
 E a mancha de Gram do organismo for Gram-positiva
 E o doente for um hóspede em perigo
 ENTÃO existe evidência sugestiva (0.6) de que a identidade do organismo é Pseudomonas-aeruginosa.

Objeto	Atributo	Valor
Cultura	Local	Sangue
Organismo	Morfologia	Bastonete
Organismo	Mancha de Gram	Gram-positiva
Doente	Comprometido	Verdade
Organismo	Identidade	Pesudomonas

Sistemas de Produção

- São sistemas baseados em regras de produção
- Consistem em 3 módulos principais:
 - A Base de Regras (BR): permanente
 - regras se-então e fatos conhecidos
 - A Memória de Trabalho: temporária
 - base de fatos derivados durante a "vida" do agente
 - percepções do agente e fatos gerados a partir da BR pelo mecanismo de inferência
 - O Mecanismo (máquina) de Inferência
 - determina o método de raciocínio utilizado (progressivo ou regressivo)
 - utiliza estratégias de busca com casamento (unificação)
 - resolve conflitos e executa ações.

+ Arquitetura rbs

Base de Regras

Conhecimento Permanente

- fatos
- regras de produção

Meta-conhecimento

 estratégias para resolução de conflito

Memória de Trabalho

Conhecimento volátil

- descrição da instância do problema atual
- hipóteses atuais
- objetivos atuais
- resultados intermediários

Conjunto de conflito

conjunto de possíveis regras a serem disparadas

+

Exemplo de regras para veículos

■ Bicicleta: Se veículoTipo=ciclo

E num-rodas=2

E motor=não

Então veículo=Bicicleta

■ Triciclo: Se veículoTipo=ciclo

E num-rodas=3

E motor=não

Então veículo=Triciclo

■ Motocicleta: Se veículoTipo=ciclo

E num-rodas=2

E motor=sim

Então veículo=Motocicleta

+

RBS - Tipos de Raciocínio

Raciocínio progressivo

- dos dados à conclusão data-driven inference
- as regras da BC são usadas para gerar informação nova (novos fatos) a partir de um conjunto inicial de dados
- os fatos gerados passam a fazer parte da BC

■ Raciocínio regressivo

- da hipótese aos dados goal-directed inference
- usa as regras da BC para responder a perguntas
- prova se uma asserção é verdadeira
- só processa as regras relevantes para a pergunta (asserção)

RBS - Encadeamento Progressivo

- Dos dados à conclusão data-driven inference
 - Parte dos fatos na BR e na memória de trabalho, buscando quais regras eles satisfazem, para produzir assim novas conclusões (fatos) e/ou realizar ações.
- Três etapas:
 - Busca, Casamento (unificação), Resolução de conflito
- Usada em sistemas de monitoramento e diagnóstico em tempo real.

+

Algoritmo - Progressivo

- 1. Armazena as regras da BR na máquina de inferência (MI) e os fatos na memória de trabalho (MT);
- 2. Adiciona os dados iniciais à memória de trabalho;
- 3. Compara o antecedente das regras com os fatos na MT. Todas as regras cujo antecedente "casa" (unifica) com esses fatos podem ser disparadas e são colocadas no *conjunto de conflito;*
- 4. Usa o procedimento de resolução de conflito para selecionar uma única regra desse conjunto;
- 5. Dispara a regra selecionada e verifica o seu consequente:
 - a) se for um fato, atualiza a MT
 - b) se for uma ação, chama o procedimento que ativa os efetuadores do agente e atualiza a MT
- 6. Repete os passos 3, 4 e 5 até que o conjunto de conflito se torne vazio.