$$L_1 = \{a^n b^m | n \le m\}$$

non regolare.

Per il pumping lemma: dato n, consideriamo la stringa $z=a^nb^n$. Necessariamente, per ogni u,v,w tali che $|uv|\leq n$, $|v|\geq 1$ e z=uvw, deve essere $uv=a^k$ per $k\leq n$ e quindi $v=a^h$ per $1\leq h\leq k$. Per i=2, abbiamo allora che n+h>n e quindi $z_2=a^{n+h}b^n\not\in L_1$.

$$L_1' = \{a^n b^m | n < m\}$$

non regolare.

Per il pumping lemma: dato n, consideriamo la stringa $z=a^nb^{n+1}$. Necessariamente, per ogni u,v,w tali che $|uv|\leq n$, $|v|\geq 1$ e z=uvw, deve essere $uv=a^k$ per $k\leq n$ e quindi $v=a^h$ per $1\leq h\leq k$. Per i=2, abbiamo allora che $n+h\geq n+1$ e quindi $z_2=a^{n+h}b^{n+1}\not\in L_1'$.

$$L_2 = \{a^n b^m | n \ge m\}$$

non regolare.

Per il pumping lemma: dato n, consideriamo la stringa $z=a^nb^n$. Necessariamente, per ogni u,v,w tali che $|uv|\leq n$, $|v|\geq 1$ e z=uvw, deve essere $uv=a^k$ per $k\leq n$ e quindi $v=a^h$ per $1\leq h\leq k$. Per i=0, abbiamo allora che $z_0=a^{n-h}b^n\not\in L_2$.

In alternativa, osserviamo che dato che L_1 non è regolare, non lo è neanche \overline{L}_1 . Osserviamo inoltre che $\overline{L}_1=L_2\cup L_3$, con $\overline{L}_3=\{a^*b^*\}$. Dato che \overline{L}_3 è regolare, lo è anche L_3 , per cui, se L_2 fosse regolare ne risulterebbe che \overline{L}_1 sarebbe regolare in quanto unione di linguaggi regolari, e quindi L_1 sarebbe regolare, cosa non vera. Quindi, $L_2=\{a^nb^m|n\geq m\}$ non è regolare.

$$L = \{a^i b^j | i - i > 4\}$$

non regolare.

Per il pumping lemma: dato n, consideriamo la stringa $z=a^nb^{n-3}$. Necessariamente, per ogni u,v,w tali che $|uv|\leq n$, $|v|\geq 1$ e z=uvw, deve essere $uv=a^k$ per $k\leq n$ e quindi $v=a^h$ per $1\leq h\leq k$. Per i=0, abbiamo allora che n-h< n< n-3+4=n+1 e quindi $z_0=a^{n-h}b^{n-3}\not\in L$.

$$L = \{a^i b^j | i - j < 4\}$$

non regolare.

Per il pumping lemma: dato n, consideriamo la stringa $z=a^nb^{n-3}$. Necessariamente, per ogni u,v,w tali che $|uv|\leq n$, $|v|\geq 1$ e z=uvw, deve essere $uv=a^k$ per $k\leq n$ e quindi $v=a^h$ per $1\leq h\leq k$. Per i=2, abbiamo allora che n+h>n-3+4=n+1 e quindi $z_0=a^{n-h}b^{n-3}\not\in L$.

$$L=\{a^ib^j|i+j>4\}$$

regolare. Si può definire un ASFD che lo riconosce.

$$L = \{a^ib^j|i+j<4\}$$

regolare. Si tratta in effetti di un linguaggio finito.