Real-world use cases of Deep Learning for Image Processing

Vitalii Duk

Vitalii Duk

- Currently: Lead Data Scientist @ EMLC.ai
- **Previously**: Senior Data Scientist @ dubizzle
- Co-organizer of Dubai Data Science meetups
- https://www.linkedin.com/in/vit-d
- vitalii.duk@emlc.ai

2nd annual Dubai Data Science Meetup @ AREA 2071

http://dubaidatascience.a

About ODS Dubai:

- the biggest Data
 Science community in UAE
- ~ **1200** group members
- ~ 90 participants every event
- completely free of charge

Basics of Artificial Neural Networks

Artificial Neural Networks

• Computing systems vaguely inspired by the biological neural networks that constitute animal brains.

Artificial Neural Networks

• The multilayer perceptron is a universal function approximator, as proven by the universal approximation theorem.

Neuron looks like ... Logistic Regression

Artificial Neural Networks - backpropagation (1960's - 1980's)

Building blocks of Convolutional Neural Networks

How does the computer see an image?

RGB representation

Image classifier using Fully-Connected Neural Network

Main issues with FC networks for image classification

- **a huge** number of parameters to learn (more than 17M in the example below)
- **not invariant** to small transformations or distortions of the input image
- tend to overfit

Convolutional Neural Networks

- were inspired by biological processes in that the connectivity pattern between neurons resembles the organization of the animal visual cortex.
- individual cortical neurons respond to stimuli only in a restricted region of the visual field known as the receptive field
- the receptive fields of different neurons partially **overlap** such that they cover the entire visual field.

Convolutional Neural Networks

- Work by Hubel and Wiesel in the 1950s and 1960s showed that cat and monkey visual cortexes contain neurons that individually respond to small regions of the visual field.
- Kunihiko Fukushima in the 1980s proposed the **neocognitron** a hierarchical, multi-layered artificial neural network used for handwritten character recognition. The neocognitron was inspired by the model proposed by Hubel & Wiesel.
- LeCun et in 1989, used back-propagation to learn the **convolution kernel** coefficients directly from images of hand-written numbers.
- In 1998 LeCun developed LeNet-5 a pioneering 7-level convolutional network.
- 2012 was the first year that Convolutional Neural Networks grew to prominence as **Alex Krizhevsky** used them to win that year's **ImageNet** competition.

Convolutions

• **convolution operation** is an element-wise product and sum between two matrices/vectors - **kernel** or **filter** and part of the **original input** or **image**.

1D convolution

Convolutions

2D convolution

Original input

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Kernel

1	0	1
0	1	0
1	0	1

Convolutions

- The **convolution** of the **5x5 image** and the **3x3 kernel** can be computed as shown in the animation.
- We slide the **kernel** (orange matrix) over our **original image** (green) by 1 pixel (also called **stride**) and for every position and for every position, we compute element-wise multiplication (between the two matrices) and add the multiplication outputs.
- The **3×3 kernel** observes only a part of the input image in each stride.
- **Kernel** acts as a **feature detector** from the original input image.

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Convolutions - more examples

Edge detection

Gaussian blur

$$\star \qquad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad = \qquad \boxed{}$$

Sharpen

$$* \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} =$$

Convolutions - visualization

• instead of manually hand-crafting a specific filter, ConvNets are designed to learn them during the training process

Non-linearity in ConvNets

• we add non-linear transformation after each convolution layer to make our neural network more robust and able to deal with linearly not-separable data

Output = Max(zero, Input)

Downsampling and pooling

• **Spatial Pooling** also referred to as **subsampling** or **downsampling** reduces the dimensionality of each feature map but retains the most important information.

Architectures of Convolutional Neural Networks

LeNet-5 architecture (1998)

AlexNet architecture (2012)

VGG-19 & ResNet-34 (2014 & 2015)

Transfer learning

Transfer learning

- Research problem that implies re-using knowledge gained while solving one problem to a different task.
- Example: re-use weights of the neural network learned while categorizing dogs to categorize cats.

Original model trained on ImageNet dataset

Transfer learning

- Research problem that implies **re-using knowledge** gained while solving one problem to a **different task**.
- Example: re-use weights of the neural network learned while categorizing dogs to categorize cats.

Use cases of Convolutional Neural Networks

Use case: image quality assessment

• Make sure that images that are uploaded to your platform have a good quality and comply with your requirements

How it works: image quality assessment

- Label small dataset manually, splitting images into two classes: good and bad.
- Use the pre-trained ConvNet on ImageNet (e.g. ResNet34).
- Train image classifier using your own labeled dataset.
- 4. Once training is done run inference steps on the unlabeled dataset.
- 5. **Manually** go through the newly labeled dataset, **pick misclassified** images and **add** them to the **training dataset**.
- 6. Go to step 3 and repeat.

Use case: visual search and image similarity

Allow the user to search products based on the photo or screenshot

Find duplicate images in the database of e-commerce store

Bing Pinterest

How it works: visual search

- Train ConvNet on the original dataset to classify images into classes.
- Once training is done run inference step for each image in the dataset and extract it's embedding.
- 3. Last **FC layers** are typically used for image **embeddings**.
- 4. Compute **cosine similarity** between two embeddings (vectors) to estimate their **similarity**.

Is there a better way to implement visual search?

Visual search: advanced

• Triplet loss is minimizing a distance between an anchor and a positive sample (as they have the same identity) and maximizes a distance between an anchor and negative sample (as they have a different identity)

$$\mathcal{L} = max(d(a,p) - d(a,n) + margin, 0)$$
triplet loss function

Visual search: triplet loss

Code examples

https://github.com/dubai-open-data-science/deep-learning-course

Question?

Thanks!