

Scientific Computing with Python

Kamini Garg kamini.garg@supsi.ch

University of Applied Sciences and Arts of Southern Switzerland (SUPSI)

Matplotlib

- matplotlib is a python 2D plotting library that produces publication quality figures.
- matplotlib is the standard Python plotting library
- We will focus on matplotlib.pyplot for data analysis
- matplotlib is designed for both interactive and script-based use.

Line plot

```
import numpy as np
import matplotlib . pyplot as plt
x = np. linspace (0, 100, 1000)
y = np. power(x, 2)
plt . plot (x, y)
plt.savefig("lineplot_1.png")
```


Add some more details

Add some more details

```
import numpy as np
import matplotlib . pyplot as plt
x = np. linspace (0, 100, 1000)
y = np. power(x, 2)
plt . plot (x, y)
# add limits
plt.xlim((1, 50))
plt_ylim((0, 5000))
# add labels and title
plt.xlabel("X_Label")
plt.ylabel("Y_Label")
plt.title("plot title")
plt.savefig("lineplot_2.png")
```

Lets add even more

Lets add even more

```
import numpy as np
import matplotlib . pyplot as plt
x = np. linspace (0, 100, 1000)
y = np. power(x, 2)
# add another data points
z = np. power(x, 3)
# plot both data points together
plt.plot(x, y, 'b-', x, z, 'go')
# add limits
plt.xlim((1, 50))
plt.ylim((0, 5000))
# add labels and title
plt.xlabel("X Label")
plt.ylabel("Y_Label")
plt.title("plot title")
# add legend
plt.legend(('$x^2$','$x^3$'))
plt.savefig("lineplot_2.png")
```

Controlling line properties

to change line width
plt.plot(x, y, linewidth=2.0)

Here are the available Line2D properties.

Property	Value Type
alpha	float
animated	[True False]
antialiased or aa	[True False]
clip_box	a matplotlib.transform.Bbox instance
clip_on	[True False]
clip_path	a Path instance and a Transform instance, a Patch
color or c	any matplotlib color
contains	the hit testing function
dash_capstyle	['butt' 'round' 'projecting']
dash_joinstyle	['miter' 'round' 'bevel']
dashes	sequence of on/off ink in points
data	(np.array xdata, np.array ydata)
figure	a matplotlib.figure.Figure instance
label	any string
linestyle or Is	['-' '' ':' 'steps']
linewidth or lw	float value in points
lod	[True False]
marker	['+' ',' '.' '1' '2' '3' '4']
markeredgecolor or mec	any matplotlib color
markeredgewidth or mew	float value in points
markerfacecolor or mfc	any matplotlib color
markersize or ms	float

For more information: http://matplotlib.org/users/pyplot_tutorial.html

Assignment 7(a) (20 mins)

1. Plot the following sincos curve with 200 data points between -pi to +pi (3pts)

Assignment 7(a) (20 mins)

2. Try to change the plot as follows (2pt)

- 1. File name : as7a_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.

Error bars

```
error = 0.1*np.random.random(len(x))
plt.errorbar(x,y,error,ecolor='r')
```


Scatter Plots

A scatter plot just shows one point for each dataset entry

```
# generate points from normal distribution

npoints = 100
x = np.random.standard_normal(npoints)
y = np.random.standard_normal(npoints)
plt.scatter(x,y)
plt.savefig("scatter_1.png")
```


Assignment 7(b) (20 mins)

1. Plot the following scatter plot (3pts)

Assignment 7(b) (20 mins)

1. Plot the centre of data points as follows (2pts) Hint: you can use median

- 1. File name : as7b_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.

Box Plots

Boxplot is a convenient way of graphically depicting groups of numerical data through their quartiles.

```
# generate points from normal distribution

npoints = 200
x = np.random.standard_normal(npoints)
plt.boxplot(x)
plt.savefig("box_1.png")
```


Multiple Box Plots

```
# generate points from normal distribution

npoints = 200
x = np.random.standard_normal(npoints)
y = 0.5 + np.random.standard_normal(npoints)
plt.boxplot((x,y))
```


Assignment 7(c) (15mins)

1. Plot the following box plot (2pts)

- 1. File name : as7c_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.

Working with multiple figures and axes

Similar to MATLAB, pyplot also have the concept of the current figure and the current axes.

```
def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

# create the canvas for figure
fig = plt.figure()

#subplot(numrows, numcols, fignum)
axis1 = fig.add_subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
axis1.set_title("Plot 1")

axis2 = fig.add_subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r---')
axis2.set_title("Plot 2")
plt.savefig("multiple_plots.png")
```


Histograms

Histogram are convenient to sum-up results

```
data = np. random. randn(1000)
# histogram (pdf)
plt . subplot (1, 2, 1)
plt . hist (data , bins=30, normed=True, facecolor='b')
# empirical cdf
plt \cdot subplot (1, 2, 2)
plt . hist (data , bins=30, normed=True,
color='g',cumulative=True)
plt . savefig ('histogram.png')
                                                   0.4
                                                                                 0.8
                                                   0.3
                                                                                 0.6
                                                   0.2
                                                                                 0.4
                                                   0.1
                                                                                 0.2
                                                                                      -3 -2 -1
```

Assignment 7(d) (15 mins)

1. Plot the following histogram, generate data using np.abs(np.random.standard_normal(30)) (5pts)

- File name : as7d_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.

Scatter Matrix

Scatter Matrix

matplotlib doesn't have everything, especially functions that are designed to act on more than one axis at once.

Pandas come for your rescue :)

```
from pandas.tools.plotting import scatter_matrix
from pandas import DataFrame
df=DataFrame(np.random.normal(loc=0.,scale=1.,size=(1000,
5)),columns=['a', 'b', 'c', 'd', 'e'])
scatter_matrix(df, alpha=0.4, diagonal='kde')
plt.savefig('scattermatrix.png')
```

Try to draw the same thing with histogram in the diagonal!!

Pie Chart

```
n = 20
Z = np.random.uniform(0,1,n)
plt.pie(Z)
plt.savefig('pie.png')
```


Image Plot

```
A = np.random.random((100, 100)
plt.imshow(A)
plt.hot()
plt.colorbar()
plt.savefig('image.png')
```


3D-Plot

```
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
plt.savefig('3d.png')
```


Assignment 7(e) (25 mins)

1. Download the file "bill_of_rights.txt" from A07 folder, find 10 most and least frequent words and plot them. (5pts)

- File name : as7e_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.


```
# initialise a figure
fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
                                                               bold figure suptitle
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
                                                                     axes title
ax.set_title('axes title')
                                             1.0
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
                                             8.0
ax.axis([0, 10, 0, 10])
                                             0.6
                                           ylabel
                                             0.4
                                             0.2
                                            0.0
0.0
                                                        0.2
                                                                  0.4
                                                                            0.6
                                                                                      0.8
                                                                                                1.0
                                                                       xlabel
```


text() - add text at an arbitrary location to the Axes

lets add an equation

ax.text(2, 6, r'an equation: \$E=mc^2\$', fontsize=15)

Latex like style

You can also add unicodes
ax.text(3, 2, u'Institut für Festkörperphysik')

Annotation on Plots

Assignment 7(f) (15 mins)

- 1. File name : as7f_yoursurname_name.py
- 2. Upload your solution at Moodle under A07 folder after completion.