

3 Forward & Backward Propagation

Propagation to Neural Network

여러 자극이 들어오고 일정 기준을 넘으면 이를 다른 뉴런에 전달하는 구조

"Non-deep" feedforward neural network

$$y = w2(act(w1 * input + b1)) + b2$$

Deep neural network

$$y = w4(act(w3(act(w2(act(w1 * input + b1)) + b2)) + b3)) + b4)$$

만약 activation function 이 없다면 아래의 식은 결국 linear function.

$$y = w4(act(w3(act(w1*input + b1)) + b2)) + b3)) + b4$$

만약 activation function 이 없다면 아래의 식은 결국 linear function.

$$y = w4(act \left(w3 \left(act(w2(act(w1 * input + b1)) + b2)\right) + b3)\right) + b4$$

activation function 으로 non-linearity 를 추가해야 함

만약 activation function 이 없다면 아래의 식은 결국 linear function.

$$y = w4(act(w3(act(w1*input + b1)) + b2)) + b3)) + b4$$

activation function 으로 non-linearity 를 추가해야 함

그렇다면 어떤 activation function 을 써야 할까?

Step function

$$h(x) = \begin{cases} 0 \ (x \le 0) \\ 1 \ (x > 0) \end{cases}$$

0.8 -0.6 -0.4 -0.2 -0.0 --4 -2 0 2 4

Step function

Sigmoid

$$h(x) = \frac{1}{1 + \exp(-x)}$$

ReLU (Rectified Linear Unit)

$$h(x) = \begin{cases} 0 & (x < 0) \\ x & (x \ge 0) \end{cases}$$

활성화 함수로는 반드시

비선형 함수를 사용한다

→ 선형 함수는 층을 깊게

하더라도 의미가 없기 때문

Step function

```
def step_function(x):
    return np.array(x > 0, dtype=np.int)
```

x > 0의 True/False를 (numpy)int로 변환하여 0 또는 1의 값으로 return

Sigmoid

$$sigmoid(x) = \frac{1}{1 + \exp(-x)}$$
 식의 값을 return

• ReLU (Rectified Linear Unit)

0과 x를 비교하여 큰 값을 출력한다. x >= 0일 때는 x를,x < 0일 때는 0을 출력

• Softmax 함수

```
def softmax(x):
    c = np.max(x)
    exp_x = np.exp(x - c) # overflow prevention
    sum_exp_x = np.sum(exp_x)
    return exp_x / sum_exp_x
```

- $softmax(x) = \frac{\exp(x_k C)}{\sum_{i=1}^n \exp(x_i C)}$ 의 값을 return

<i>W</i> 10	<i>W</i> 11	W 02W 12W 22	<i>W</i> 13	X	W 00 W 10 W 20	W 11 W 21	<i>W</i> 12 <i>W</i> 22	<i>W</i> 13<i>W</i> 23	X	W 00 W 10 W 20 W 30	W 11 W 21	
					LW 30	W 31	<i>W</i> 32	W 33		LW 30	W31	I

W oo W 10 W 20	_		W 03W 13W 23	X	W 00 W 10 W 20 W 30	_	_	W 03W 13W 23W 33	X	_	_	
3x4					4x4					4x2		

$$y^* = w3 * sig(w2 * sig(w1 * x + b1) + b2) + b3$$

쉽게 이해되도록 loss = 예측값 - 실제로 설정

쉽게 이해되도록 loss = 예측값 - 실제로 설정

$$y^* = w3 * sig w2 * sig w1 * x + b1 + b2 + b3$$

$$loss = y^* - y$$

$$= w3 * sig w2 * sig w1 * x + b1 + b2 + b3 - y$$

$$y^* = w3 * sig(w2 * sig(w1 * x + b1) + b2) + b3$$

쉽게 이해되도록 loss = 예측값 - 실제로 설정

$$loss = y^* - y$$

= $w3 * sig(w2 * sig(w1 * x + b1) + b2) + b3 - y$

$$\frac{\partial loss}{\partial w^3} = sig (w2 * sig (w1 * x + b1) + b2)$$

$$\frac{\partial loss}{\partial w^3} = sig \left(w^2 * sig \left(w^1 * x + b^1 \right) + b^2 \right)$$

$$\frac{\partial loss}{\partial b3} = 1$$

쉽게 이해되도록 loss = 예측값 - 실제로 설정

$$y * = w3 * sig(w2 * sig(w1 * x + b1) + b2) + b3$$

$$loss = y * - y$$

$$loss = y * - y$$

= $w3 * sig (w2 * sig (w1 * x + b1) + b2) + b3 - y$

$$\frac{\partial loss}{\partial w3} = sig(w2 * sig(w1 * x + b1) + b2)$$

$$\frac{\partial loss}{\partial b3} = 1$$

$$\frac{\partial loss}{\partial w^2} = ??$$

쉽게 이해되도록 loss = 예측값 - 실제로 설정

$$loss = y * - y$$

= $w3 * sig(w2 * sig(w1 * x + b1) + b2) + b3 - y$

$$\frac{\partial loss}{\partial w^3} = sig(w^2 * sig(w^1 * x + b^1) + b^2)$$

$$\frac{\partial loss}{\partial b3} = 1$$

$$\frac{\partial loss}{\partial w^2} = chain \ rule \, \blacksquare$$

쉽게 이해되도록 loss = 예측값 - 실제로 설정

Simple Chain Rule

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$\frac{\partial f}{\partial z} = q = x + y = -2 + 5 = 3$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$\frac{\partial f}{\partial z} = q = x + y = -2 + 5 = 3$$

$$\frac{\partial f}{\partial q} = z = -4$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial z} = q = x + y = -2 + 5 = 3$$

$$\frac{\partial f}{\partial q} = z = -4 = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} - 4 * 1 = -4$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$\frac{\partial f}{\partial z} = q = x + y = -2 + 5 = 3$$

$$\frac{\partial f}{\partial q} = z = -4 = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} - 4 * 1 = -4$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = -4 * 1 = -4$$

$$\frac{\partial loss}{\partial w2} = w3 * sigmoid(h2_in) * sigmoid(w1 * x + b)$$

(참고) sigmoid 함수의 미분

$$\sigma(x)' = \frac{\delta\{1 + e^{-x}\}^{-1}}{\delta x} = -(1 + e^{-x})^{-2} - e^{-x} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$\sigma(x)(1 - \sigma(x)) = \frac{1}{1 + e^{-x}}(1 - \frac{1}{1 + e^{-x}}) = \frac{1}{1 + e^{-x}}(\frac{e^{-x}}{1 + e^{-x}}) = \frac{e^{-x}}{(1 + e^{-x})^2}$$

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

(출처: cs231n_lecture4 p.31)

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) &= e^x &
ightarrow & rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x^2 \ f_a(x) &= ax &
ightarrow & rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

(출처: cs231n_lecture4 p.31)

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

(출처:cs231n_lecture4 p.31)

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

(출처:cs231n_lecture4 p.31)

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

(출처:cs231n_lecture44p.31)

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

출처 : cs231n_lecture4 p.31

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

(출처:cs231n_lecture4 p.31

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

(출처:cs231n_lecture44p.31

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{array}{lll} f(x)=e^x &
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} &
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax &
ightarrow & rac{df}{dx}=a & f_c(x)=c+x &
ightarrow & rac{df}{dx}=1 \end{array}$$

(출처:cs231n_lecture4 p.31

Neural Network

Neural Network


```
test.py
    import numpy as np
   import torch
   import torch.nn as nn
   import torch.optim as optim
   import torch.nn.init as init
   from torch.autograd import Variable
    from visdom import Visdom
    viz = Visdom()
9
10
    num_data = 1000
11
    num_epoch = 5000
12
    x = init.uniform(torch.Tensor(num_data,1),-15,15)
14
    y = 8*(x**2) + 7*x + 3
15
    noise = init.normal(torch.FloatTensor(num_data,1),std=1)
16
    y_noise = y + noise
```

필요한 라이브러리

```
test.py
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.init as init
    from torch.autograd import Variable
    from visdom import Visdom
    viz = Visdom()
 8
10
    num_data = 1000
11
    num_epoch = 5000
12
    x = init.uniform(torch.Tensor(num_data,1),-15,15)
14
    y = 8*(x**2) + 7*x + 3
15
    noise = init.normal(torch.FloatTensor(num_data,1),std=1)
16
    y_noise = y + noise
```

```
test.py
                                  import numpy as np
                                  import torch
필요한 라이브러리
                                  import torch.nn as nn
                                  import torch.optim as optim
                                  import torch.nn.init as init
                                  from torch.autograd import Variable
                                  from visdom import Visdom
                                  viz = Visdom()
                               8
                                  num_data = 1000
                              10
                              11
                                  num_epoch = 5000
                              12
   데이터 생성
                                  x = init.uniform(torch.Tensor(num_data,1),-15,15)
                              14
                                  y = 8*(x**2) + 7*x + 3
                              15
                                  noise = init.normal(torch.FloatTensor(num_data,1),std=1)
                              16
                                  y_noise = y + noise
```

```
model = nn.Sequential(
            nn.Linear(1,10),
22
23
            nn.ReLU(),
            nn.Linear(10,6),
24
25
            nn.ReLU(),
            nn.Linear(6,1),
26
27
        ).cuda()
28
29
    loss_func = nn.L1Loss()
    optimizer = optim.SGD(model.parameters(), tr=0.001)
31
    loss arr =[]
    label = Variable(y_noise.cuda())
    for i in range(num_epoch):
        output = model(Variable(x.cuda()))
35
        optimizer.zero_grad()
36
37
38
        loss = loss_func(output,label)
        loss.backward()
39
40
        optimizer.step()
        if i % 100 ==0:
41
42
            print(loss)
43
        loss_arr.append(loss.cpu().data.numpy()[0])
44
    param list = list(model.parameters())
    print(param_list)
```

Neural Network 모델 생성

loss function 및 gradient descent optimizer 생성

```
model =
            nn.Sequential(
22
            nn.Linear(1,10),
23
            nn.ReLU(),
            nn.Linear(10,6),
25
            nn.ReLU(),
            nn.Linear(6,1),
26
27
        ).cuda()
28
    loss_func = nn.L1Loss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)
31
    loss arr =[]
    label = Variable(y_noise.cuda())
    for i in range(num_epoch):
        output = model(Variable(x.cuda()))
35
        optimizer.zero grad()
        loss = loss func(output, label)
38
        loss.backward()
39
40
        optimizer.step()
        if i % 100 ==0:
41
42
            print(loss)
43
        loss_arr.append(loss.cpu().data.numpy()[0])
44
    param list = list(model.parameters())
    print(param_list)
```

Neural Network 모델 생성

loss function 및 gradient descent optimizer 생성

```
model =
            nn.Sequential(
22
            nn.Linear(1,10),
23
            nn.ReLU(),
            nn.Linear(10,6),
25
            nn.ReLU(),
            nn.Linear(6,1),
26
27
        ).cuda()
28
    loss_func = nn.L1Loss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)
31
    loss arr =[]
    label = Variable(y_noise.cuda())
    for i in range(num_epoch):
        output = model(Variable(x.cuda()))
35
        optimizer.zero grad()
        loss = loss_func(output,label)
38
        loss.backward()
39
40
        optimizer.step()
        if i % 100 ==0:
41
42
            print(loss)
43
        loss_arr.append(loss.cpu().data.numpy()[0])
44
    param list = list(model.parameters())
    print(param_list)
```

Neural Network 모델 생성

loss function 및 gradient descent optimizer 생성

<training 단계 >

- 1. 모델로 결과값 추정
- 2. loss 및 gradient 계산
- 3. 모델 업데이트

```
model = nn.Sequential(
22
            nn.Linear(1,10),
23
            nn.ReLU(),
            nn.Linear(10,6),
25
            nn.ReLU(),
            nn.Linear(6,1),
26
        ).cuda()
28
    loss_func = nn.L1Loss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)
    loss arr =[]
    label = Variable(y_noise.cuda())
    for i in range(num_epoch):
        output = model(Variable(x.cuda()))
        optimizer.zero grad()
38
        loss = loss func(output,label)
        loss.backward()
39
        optimizer.step()
40
        if i % 100 ==0:
42
            print(loss)
43
        loss_arr.append(loss.cpu().data.numpy()[0])
    param list = list(model.parameters())
    print(param_list)
```

Neural Network 모델 생성

loss function 및 gradient descent optimizer 생성

<training 단계 >

- 1. 모델로 결과값 추정
- 2. loss 및 gradient 계산
- 3. 모델 업데이트

training 이후 파라미터 값 확인

```
model =
            nn.Sequential(
22
            nn.Linear(1,10),
            nn.ReLU(),
            nn.Linear(10,6),
25
            nn.ReLU(),
            nn.Linear(6,1),
26
        ).cuda()
28
    loss_func = nn.L1Loss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)
    loss arr =[]
    label = Variable(y_noise.cuda())
    for i in range(num_epoch):
        output = model(Variable(x.cuda()))
        optimizer.zero grad()
        loss = loss func(output,label)
        loss.backward()
        optimizer.step()
        if i % 100 ==0:
42
            print(loss)
        loss_arr.append(loss.cpu().data.numpy()[0])
44
    param list = list(model.parameters())
    print(param_list)
```

퍼셉트론의 학습과정

- 1. 임의의 w와 b를 설정
- 2. 주어진 훈련 데이터를 이용하여, 결과값(y)를 도출
- 3. 결과값(y)와 실제 결과값 (\hat{y}) 사이의 오차 계산
- 4. 오차(Loss)를 줄이는 방향으로 w와 b를 재설정(학습)
- 5. 오차를 최소한으로 줄이도록 2~4의 과정을 계속반복진행

Book

주교재

밑바닥부터 시작하는 딥러닝 1, 사이토 고키 지음, 개앞맨시 옮김. (Deep Learning from Scratch의 번역서입니다.)

부교재

Pytorch로 시작하는 딥러닝, 비슈누 수브라마니안 지음 김태완 옮김. (Deep Learning with PYTORCH 의 번역서입니다.)

O'REILLY"

파이썬으로 익하는 딥러닝 이론과 구현

