ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ στο Τμήμα Επιστήμης Υπολογιστών

 $\mathbf{\ThetaEMA}$ 1ο. (2) Να ευρεθεί $a \in \mathbb{R}$ ώστε το γραμμικό σύστημα

$$3y - 3z - 5w = a$$
$$2x - y + z - w = 2$$
$$x - 2y + 2z + 2w = 1$$
$$x + y - z - 3w = 1$$

να έχει τουλάχιστον μια λύση. Για αυτή την τιμή του a να περιγραφεί το σύνολο των λύσεων ως σύμπλοχο ενός χατάλληλου υπόχωρου του \mathbb{R}^4 . Πόση είναι η τάξη του πίναχα των συντελεστών του συστήματος;

 $\mathbf{\ThetaEMA}$ 20. (2) Εστω $f: \mathbb{R}^3 \to \mathbb{R}^3$ η γραμμική απεικόνιση με

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 2y + 3z \\ x - 5y + 5z \\ 2x - y + 4z \end{pmatrix}.$$

- (α) Να ευρεθεί ο πίνακας της f ως προς τη διατεταγμένη κανονική βάση του \mathbb{R}^3 .
- (β) Να ευρεθούν ο πυρήνας $\operatorname{Ker} f$ και η εικόνα $\operatorname{Im} f$ της f, βρίσκοντας από μια βάση για το καθένα.
- (γ) Είναι η f ισομορφισμός;

ΘΕΜΑ 3ο. (1) Να υπολογιστεί ο αντίστροφος του πίνακα

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

 $\mathbf{\ThetaEMA}$ 40. (2,5) Εστω $a,b,c\in\mathbb{R}$. Να ευρεθεί ικανή και αναγκαία συνθήκη για να είναι ο πίνακας

$$A = \begin{pmatrix} 2 & 0 & 0 \\ b & 1 & a \\ c & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

διαγωνοποιήσιμος.

 Θ EMA 50. (2,5) Να κατασκευαστεί μια ορθογώνια βάση του \mathbb{R}^4 που περιέχει το διάνυσμα

$$\begin{pmatrix} 1 \\ -3 \\ 1 \\ -1 \end{pmatrix}.$$

ΚΑΛΗ ΕΠΙΤΥΧΙΑ