

Universidade Estadual de Campinas Cursos de Extensão FEM 351 – Sistemas Supervisórios Industriais e Redes de Comunicação em Automação

Redes de Comunicação Industriais

Aula Introdutória

Pedro Yoshito Noritomi noritomi@fem.unicamp.br

- uso da força animal;
- descoberta de novas fontes de energia naturais;
- aplicação da energia na transformação da natureza;
- Arquimedes de Siracusa;
- Ctésibios de Alexandria;
- Héron de Alexandria;
- Pascal;
- Gutemberg
- Dênis Papin;
- Newcomen e James Watt;

- Arquimedes de Siracusa:
 - matemático, astrônomo e inventor;
 - lei do empuxo (hidrostática);
 - princípios de geometria e óptica:
 - defesa da cidade de Siracusa;
 - fundamentos da ciência moderna:
 - alteração na relação do homem com a natureza;
 - nova perspectiva da realidade.

Ε

- Ctésibios de Alexandria:
 - inventor grego;

aprimorou a clepsydra, instrumento de medição do tempo em substituição
 ao relógio solar.

 Utilização do ar para transmitir energia e acionar um órgão de água

- Héron de Alexandria:
 - geômetra e técnico em mecânica;
 - desenvolveu diversos dispositivos mecânicos:

 Também é creditada a Héron o desenvolvimento de um órgão pneumático, sendo esse o primeiro registro de um reservatório para ar comprimido;

Blaise Pascal:

 publicou trabalhos relacionando a multiplicação de forças com a distribuição homogênea de pressão

estática

Gutemberg:

- surgem as primeiras idéias de automação para

aplicação na imprensa

- Dênis Papin:
 - lançou as idéias primordiais para o acionamento mecânico a partir de vapor

- Newcomen e James Watt:
 - desenvolvimento da máquina à vapor

- Essa linha de eventos leva a:
 - aumento no grau de controle dos fenômenos naturais;
 - direcionamento da energia obtidas de fontes mais potentes para realização de mais trabalho;
 - aumento na velocidade de transformação da natureza;
 - criação de dispositivos mecânicos automáticos;
 - controle baseado no tempo.

Revolução Industrial

- Primórdios da automação:
 - desenvolvimento de novas máquinas pneumáticas;
 - ênfase para tecnologias baseadas em ar comprimido;
 - linhas de ar comprimido;
 - dispositivos movidos a ar comprimido;
 - maneira eficiente de transportar a energia gerada pelas máquinas à vapor:
 - viabilidade de transporte a longas distâncias (impossível para vapor devido a problemas de condensação).

- 1857: inicia-se a construção de um túnel em Mt. Cernis, Alpes Suíços
 - extensão de 13,6 km num prazo de 30 anos para perfuração manual;
 - uso de energia de vapor inviabilizado pela condensação do vapor que ocorre em grandes extensões;
- 1861: adoção de perfuratrizes pneumáticas
- 1871: concluídas duas linhas de 7 km cada, graças à transmissão de energia por via pneumática.

- Os avanços na pneumática permitiram a mecanização de diversas atividades:
 - elevadores;
 - teares;
 - máquinas ferramenta.
- Mas apresentava grandes riscos de explosão devido às altas pressões envolvidas.

Década de 50:

- início da construção de elementos lógicos pneumáticos;
- elementos lógicos: dispositivos que controlam a atuação de acordo com roteiro pré-definido;
- aplicações na automação das tarefas previamente mecanizadas com o uso de dispositivos pneumáticos.
- uso de sensores pneumáticos para controle da automação.

- Década de 60:
 - pneumática, juntamente com hidráulica e dispositivos elétricos passa a ser usadas na mecanização e automação industrial;
 - características:
 - simplicidade;
 - baixos custos de componentes;
 - robustez;
 - versatilidade para uso em diversos sistemas de acionamento e para diversas funções

Década de 70:

- introdução de solenóides para acionamento de válvulas controladoras de atuadores pneumáticos;
- controladores elétricos (relés) conjugados a dispositivos de atuação pneumática passam a ser empregados;
- isso permite a aplicação de técnicas de controle digital sobre os relês, conferindo controle lógico digital aos sistemas de comando.
- surgem sistemas eletro-pneumáticos.

- Década de 80:
 - popularização da microeletrônica e informática;
 - aplicação de sensores elétricos, digitais,
 microprocessadores e microcontroladores em substituição aos sensores pneumáticos e relês eletropneumáticos;
 - combinação de atuadores pneumáticos com novas válvulas controladas eletronicamente, bem com sensores digitais e microeletrônica levam a uma nova revolução industrial.

Universidade Estadual de Campinas Cursos de Extensão FEM 351 – Sistemas Supervisórios Industriais e Redes de Comunicação em Automação

Conceitos de Automação

Pedro Yoshito Noritomi noritomi@fem.unicamp.br

- Com a invenção da máquina à vapor, por James Watt (Newcomen) em 1781, pode ser definida a "primeira" Revolução Industrial.
 - Êxodo rural;
 - Teares mecânicos;
 - Aglomerações urbanas.
- A "segunda Revolução" Industrial, iniciou-se na Inglaterra (meados do século XVIII), e estabeleceu uma nova era:
 - •Sociedade agrícola (artesa::;) industrial (trabalho x capital);
 - •Substituição da força muscular.

Era Industrial

- Produção em massa
 - taylorismo: gerenciamento científico
 - estrutura rígida e organizada;
 - trabalho contínuo.

Core Business Process: Fool Proof

Support Technology:
Controlled

- fayolismo: administração científica
 - divisão do trabalho;
 - disciplina;
 - centralização;
 - espírito de corpo.

Henry Ford

- produção em massa na prática: linha de montagem;
- especialização: cada operário especializado em sua parte da montagem, reduzindo habilidade necessária;
- estudo do tempo: tempos de montagem;

estudo do movimento: mínima movimentação para

obter a montagem;

- Automação rígida:
 - segue os mesmos conceitos de Ford;
 - substituição dos operários por máquinas automatizadas;
 - redução nos tempos de montagem;
 - maximização do uso do espaço.

- Conceito de automação (1946) nos Estados Unidos (Era da Informação).
- A máquina-ferramenta teve um aperfeiçoamento contínuo. Na década de 50 - comando numérico (CN).
- O Controle Numérico viabilizou a fabricação de lotes pequenos e variados, com geometrias complexas, através da programação eletrônica das seqüências de usinagem.
- MIT (1952) utiliza uma fresadora de 3 eixos para demonstrar o protótipo de um comando numérico (aplicação na indústria de manufatura).

- Funcionamento de um comando numérico consiste no recebimento de um programa pela unidade de entrada, na leitura e interpretação, armazenamento e sua execução.
- CNC: controle numérico computadorizado (surgimento dos microprocessadores), voltado para máquinas-ferramenta e máquinas operatrizes.

Maior uniformidade e complexidade

Redução dos tempos improdutivos

- Automação Flexível:
 - mudança de prisma;
 - flexibilidade;
 - fluidez da organização;
 - interação com a produção;
 - foco no consumidor.

- maior velocidade para atender ao consumidor;
- maior satisfação.
- Controle da Informação

Automação na Manufatura

- Automação do "Chão-de-Fábrica": CAM, AGV´s, Robôs; ferramentas da qualidade;
- Automação de processo de projeto de Engenharia (CAD, CAE, PDM);
- Automação no Planejamento e Controle (MRP; CAPP).

Computer Integrated Manufacturing

CIM

Define-se por CIM o uso da tecnologia de computadores ligando todas as funções relacionadas à manufatura de um produto, caracterizando-se como um sistema de informação e controle de manufatura.

- Mudanças na Estrutura de Custos: (substituição do trabalho humano por máquinas; redução de custos variáveis);
- Aumento da Repetibilidade dos Processos [competitividade]: (melhoria de desempenho dos produtos e menor retrabalho);
- Redução de Inventários (redução do tempo de montagem; redução da necessidade de estoques);
- Aumento da Flexibilidade (rápidas trocas de ferramentas e equipamentos; variação de produtos em função da demanda do mercado);
- Pedução do Tempo de Movimentação entre as estações de processamento (redução de percurso de materiais e otimização das rotas a serem seguidas pelos mesmos).

CIM – Níveis Hierárquicos

CIM

Conexão de diversas Células do nível 2, formando ilhas, através da utilização de Redes de

CELULARES de equipamentos e materiais para a produção de famílias de peças. integração através de diversos equipamentos individuais do nível 1.

normalmente computadores existentes nas máquinas ou por CONTROLADORES PROGRAMÁVEIS.

AGV's, máquinas ferramentas robôs - equipamentos que fazem uso limitado de informações locais.

Manufatura Flexível

Células flexíveis de manufatura

- Produção de peças individuais ou pequenos lotes de peças;
- Realizam todas as funções necessárias para completar o processo de produção da peça programada;
- Versáteis quanto a variações no tipo de peças fabricadas, dependendo de programação de seus elementos componentes para alterações no processo produtivo.

Sistemas Flexíveis de Manufatura (FMS)

Um Sistema Flexível de Manufatura é composto por estações de processamento interligadas por sistemas automatizados de manipulação e de carga/descarga de materiais, permitindo a produção de volumes variáveis de peças diferentes.

Sistema Automático de Manipulação de materiais

- Veículos Comandados (AGV's);
- Transportadores;
- Dispositivos de Armazenamento Automatizado;

Automação Industrial Principais Elementos

A automação é um conceito e um conjunto de técnicas através das quais se constroem sistemas ativos capazes de atuar com uma eficiência ótima pela utilização de informações recebidas do ambiente sobre o qual atuam.

Universidade Estadual de Campinas Cursos de Extensão FEM 351 – Sistemas Supervisórios Industriais e Redes de Comunicação em Automação

Redes de Informação de Chão de Fábrica

Pedro Yoshito Noritomi noritomi@fem.unicamp.br

Histórico:

- início da computação: computadores isolados, rodando tarefas sem interação;
- década de 60, "time sharing", compartilhamento de um mainframe por diversos usuários interagindo com seus programas: transmissão de dados para estações;
- década de 70: advento do minicomputador adaptado às necessidades, especialista, necessitava de comunicação com outros dispositivos para completar suas tarefas;

- interconexão de miniprocessadores resultava em uma maior capacidade de processamento;
- levou à necessidade de comunicação entre os processadores, especialistas em cada dispositivo (armazenamento, cálculo, impressão, etc.);

- Redes de computadores:
 - maior capacidade de processamento;
 - economia: computadores menores apresentam melhor relação custo/desempenho;
 - especialização dos componentes da rede.

REDES DE COMUNICAÇÃO

EXEMPLOS DE APLICAÇÃO

- Interligação de Computadores
- Integração de computadores aos CLP's
- Integração dos CLP's a dispositivos inteligentes
 - Controladores de solda
 - Robôs
 - Terminais de válvulas
 - Balanças
 - Sistemas de Identificação
 - Sensores
 - Centros de Comando de Motores

FILOSOFIAS DE DISTRIBUIÇÃO E/S

Tradicional

Cada dispositivo é ligado individualmente ao CLP Alto custo de instalação

Distribuição de E/S ao longo da fabrica. Menor custo de instalação

PADRÕES DE CONTROLE DISTRIBUÍDO

REDES DE COMUNICAÇÃO

FILOSOFIAS ATUAIS e HIERARQUIA

sensore e atuadores

REDES DE COMUNICAÇÃO

O QUE É NECESSÁRIO OTIMIZAR?

- Instalação mais rápida e mais simples
- Diagnósticos mais completos
- Facilidade de Manutenção
- Reconfiguração mais rápida
- Maior Flexibilidade
- Menor Fiação
- Redução de CUSTOS

DeviceNet

O QUE É DeviceNet?

É uma rede de comunicação de baixo custo idealizada para interligar equipamentos industriais, tais como:

- •Sensores de proximidade indutivos, capacitivos, fotoelétricos,
- •paineis e interfaces de operação,
- •sensores de processos,
- •leitores de código de barras,
- •variadores de frequência,
- •motores de partida,
- válvulas solenóides

DeviceNet VANTAGENS

- Além de eliminar o excesso de gasto com a instalação dos equipamentos, a rede proporciona a comunicação entre os participantes, implementando níveis de auto diagnóstico, nem sempre disponível nas instalações convencionais.
- DeviceNet é uma solução simples para instrumentação de redes industriais reduzindo os custos de instalação (cabos, bandejas, caixas de junção, etc.) e os tempos de montagem dos equipamentos ao mesmo tempo em que permite a intercambialidade dos instrumentos de diversos fabricantes.

DeviceNetENDEREÇAMENTO

- •A rede DeviceNet permite o endereçamento de até 64 nós sendo que cada endereço pode suportar um elevado número de I/Os, como por exemplo um atuador pneumático de 32 válvulas ou um módulo com 16 entradas discretas.
- •Cada equipamento possui um micro-controlador que gerencia o armazenamento em memória não volátil do seu endereço, que pode ser definido por software ou chaves.

DeviceNet MEIO FÍSICO

A rede DeviceNet utiliza um cabo padrão de 2 pares de fios, sendo um dos pares responsável pela distribuição da alimentação 24 Vcc nos diversos nós, e o outro utilizado para o sinal de comunicação.

REDE FIELDBUS

INTRODUÇÃO

FIELDBUS é um sistema de comunicação digital bidirecional que interliga equipamentos inteligentes de campo com sistema de controle ou equipamentos localizados na sala de controle.

INTRODUÇÃO

O "FIELDBUS" não é apenas uma nova tecnologia, mas também trás uma redução de aproximadamente 40% nos custos de projeto, instalação, operação e manutenção de um processo industrial.

INTRODUÇÃO

O termo " **FIELDBUS** " se refere a um **PROTOCOLO DE COMUNICAÇÃO** digital, bidirecional usado para comunicações entre instrumentos de campo e sistemas de controle em processo e manufatura, entre outras aplicações propicia:

- •A migração do controle ao chão de planta;
- •O acesso para uma riqueza sem precedentes de dados do campo;
- A redução de custo de telemetria;
- •O aumento da capacidade de manutenção avançada;
- •A redução de custos de instalação.

- •Redução no custo de fiação, instalação, operação e manutenção de plantas industriais;
- •Informação imediata sobre diagnóstico de falhas nos equipamentos de campo. Os problemas podem ser detectados antes deles se tornarem sérios, reduzindo assim o tempo de inatividade da planta;
- •Distribuição das funções de controle nos equipamentos de campo instrumentos de medição e elementos de controle final. Serão dispensados os equipamentos dedicados para tarefas de controle;

- Aumento da robustez do sistema, visto que dados digitais são mais confiáveis que analógicos;
- •Melhoria na precisão do sistema de controle, visto que conversões D/A e A/D não são mais necessárias. Consequentemente, a eficiência da planta será aperfeiçoada.

- •Redução de custo de engenharia;
- Melhoria na qualidade das informações;
- •Os transmissores transmitem muito mais informações;
- Os equipamentos indicam falha em tempo real;
- •Facilidade na manutenção.

AS VERTENTES MUNDIAIS

- Por se tratar de uma comunicação puramente digital é necessário que se estabeleçam regras para que seja possível a interoperabilidade entre instrumentos de fabricantes diferentes. Inicialmente cada fabricante procurou desenvolver sua própria tecnologia, ficando o usuário final subordinado à REDE PROPRIETÁRIA.
- Padrão ISO/OSI Open Systems Interconnect: protocolo modelo de referência.

AS VERTENTES MUNDIAIS

- A partir da união de grandes empresas surgem duas vertentes mundiais:
 - FIELDBUS FOUNDATION formada basicamente por empresas americanas e
 - FIELDBUS PROFIBUS formada por empresas européias.

AS VERTENTES MUNDIAIS

- A FIELDBUS PROFIBUS saiu na frente e estabeleceu seus padrões, tendo hoje mais de 1400 instrumentos de diversos fabricantes aprovados em testes de conformidade e com o certificado da fundação.
- A FIELDBUS FUNDATION completou o seu processo de padronização no final do ano de 1997. A tradução do jornal de divulgação mundial da Foundation que pode ser encontrado em www.fieldbus.org.

UMA GRANDE EVOLUÇÃO NAS REDES DE COMUNICAÇÃO INDUSTRIAL

Convencional **Field Bus**

Exemplo de uma arquitetura de REDE FIELBUS, onde podemos observar a estação de SUPERVISÃO, uma placa de interface com múltiplos canais, o barramento linear, terminador do barramento (BT-302), fonte de alimentação (PS-302), impedância (PSI-302) e diversos instrumentos, inclusive um CLP com placa de interface para o barramento.

Arquitetura da Rede FIELDBUS

INSTALAÇÃO TÍPICA FIELDBUS

PROFIBUS é um padrão de FIELDBUS aberto para largas aplicações, entre elas:

- Processos contínuos,
- Manufatura elétrica.

A independência dos vendedores e abertura estão garantidas pelo padrão **PROFIBUS EN 50 170**.

Com o **PROFIBUS**, dispositivos de diferentes fabricantes podem comunicar-se entre si sem a necessidade de interface especiais.

PROFIBUS pode ser usado onde necessitamos de alta velocidade de transmissão de dados e tarefas de comunicação complexas e extensas.

A família de PROFIBUS consiste em três versões compatíveis.

PROFIBUS-DP

Aperfeiçoado para velocidade alta e montagem barata, esta versão de PROFIBUS é especialmente projetada para comunicação entre sistemas de controle de automatização e I/O distribuído para dispositivos.

PROFIBUS-PA

PROFIBUS-PA é especialmente projetado para automatização de processo. Permite conectar sensor e atuadores até mesmo em um barramento comum em áreas intrinsecamente seguras. PROFIBUS-PA permite comunicação de dados e pode ser usado com tecnologia 2 fios de acordo com o padrão internacional IEC 1158-2.

PROFIBUS-FMS

PROFIBUS-FMS é a solução de propósito geral para comunicação de tarefa em escala de células. Serviços de FMS poderosos abrem um amplo alcance de aplicações e provêem grande flexibilidade. PROFIBUS-FMS também pode ser usado para tarefas de comunicação extensas e complexas.

PROTOCOLO DE ACESSO AO MEIO

PROFIBUS especifica as características técnicas e funcionais de um sistema de FIELDBUS SERIAL, descentralizando os controladores digitais, trabalhando no patamar de células. Há uma distinção entre DISPOSITIVOS MESTRE e DISPOSITIVOS ESCRAVOS.

PROTOCOLO DE ACESSO AO MEIO

DISPOSITIVOS MESTRES

Dispositivos mestres determinam a comunicação de dados no barramento. Um mestre pode enviar mensagens sem um pedido externo quando segura os direitos de acesso do barramento (O TOKEN). Também são chamados de ESTAÇÕES ATIVAS.

PROTOCOLO DE ACESSO AO MEIO

DISPOSITIVOS ESCRAVOS

Dispositivos escravos são dispositivos periféricos. Dispositivos escravos típicos incluem dispositivos de I/O, válvulas, drivers e transmissores. Eles não têm direitos de acesso ao barramento e só podem reconhecer mensagens ou podem enviar mensagens ao mestre quando requisitados. Também são chamados de ESTAÇÕES PASSIVAS. Eles só requerem uma porção pequena do protocolo do barramento, sua implementação é particularmente econômica.

Observamos que interação com o CLP é totalmente possível, desde que tenhamos um cartão que promova a interface. Muitos fabricantes já possuem cartões de interface com certificado de conformidade, entre eles GEFANUC, ALLEN BRADLEY, entre outros. Ao lado temos a figura do cartão de interface para PROFIBUS-DP do fabricante Allen Bradley.