PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/12, 15/11, 15/85, C12Q 1/68, C07K 14/47

A1

US

(11) International Publication Number:

WO 95/06118

(43) International Publication Date:

2 March 1995 (02.03.95)

(21) International Application Number:

PCT/US94/09395

(22) International Filing Date:

19 August 1994 (19.08.94)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

SE).

(30) Priority Data:

08/110,158

20 August 1993 (20.08.93)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/110,158 (CIP) 20 August 1993 (20.08.93)

(71) Applicant (for all designated States except US): BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA [US/US]; 600 Parrington Oval, Norman, OK 73109 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): McEVER, Rodger, P. [US/US]; 1716 Guilford Lane, Oklahoma City, OK 73120 (US). PAN, Junliang [CN/US]; Apartment 2714, 2301 North West, 122 nd Street, Oklahoma City, OK 73120 (US).

(74) Agent: PABST, Patrea, L.; Kilpatrick & Cody, Suite 2800, 1100 Peachtree Street, Atlanta, GA 30309-4530 (US).

(54) Title: EXPRESSION CONTROL SEQUENCES OF THE P-SELECTIN GENE

(57) Abstract

DNA molecules and methods for the regulated expression of a gene in endothelial cells or megakaryocytes, are described, wherein the 5' flanking region of the P-selectin gene, or portions thereof, is ligated to the 5' end of a gene. The DNA molecules are also used as probes for screening individuals with abnormal levels of expression of P-selectin, or for production of pharmaceutical compositions to inhibit inflammation by inhibition of expression of P-selectin. These DNA molecules can also be used to identify and isolate previously unknown proteins which are involved in regulation of gene expression.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR.	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	II	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	· SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
		ш	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	TD	Chad
CN	China	LU	Luxembourg	TG	Togo
CS	Czechoslovakia	LV	Latvia	TJ	Tajikistan
CZ	Czech Republic	MC	Monaco	TT	Trinidad and Tobago
DE	Germany	MD	Republic of Moldova	UA ·	Ukraine
DK	Denmark			US	United States of America
ES	Spain	MG	Madagascar	UZ	Uzbekistan
FI	Finland	ML	Mali	VN	Viet Nam
FR	France	MN	Mongolia	VIA.	A TOT I AMILIA
	C-b				

EXPRESSION CONTROL SEQUENCES OF THE P-SELECTIN GENE

Background of th Invention

This invention is generally in the field of compositions and methods for the treatment and prevention of inflammatory responses involving P-selectin (formerly, GMP-140 or PADGEM) binding reactions, particularly adhesive interactions between platelets, leukocytes, and endothelial cells.

5

10

The adherence of leukocytes to vascular surfaces is a critical component of the inflammatory response, and is part of a complex series of reactions involving the simultaneous and interrelated activation of the complement, 15 coagulation, and immune systems. adherence to vascular endothelium is a key initial step in migration of leukocytes to tissues in response to microbial invasion. The initial rolling contacts of leukocytes with the endothelium 20 are mediated by the selectins, a family of receptors that interact with cell-surface carbohydrate ligands (reviewed in McEver, Curr. Opin. Cell Biol., 4, pages 840-859 (1992); Lasky, Science, 258, pages 964-969, (1992)). 25 transient adhesive interactions allow time for leukocytes to become activated by signaling molecules that are released from the endothelium or the underlying tissues. Upon activation, leukocytes functionally upregulate members of the 30 integrin family of adhesion receptors. The integrins strengthen adhesion by binding to immunoglobulin-like counter-receptors on the endothelial cell (McEver, Curr. Opin Cell Biol., 4, pages 840-859 (1992)). Adhesion and signaling 35 molecules function cooperatively to regulate leukocyte recruitment during the inflammatory response.

20

25

30

35

Leukocytes also adhere to activated platelets, through interactions of P-selectin on the activated platelet surface with carbohydrate ligands on the leukocyte surface (McEver, in Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion, pages 135-150 (Lipsky et al., eds., Springer-Verlag, New York, 1993)). Platelet-leukocyte interactions may serve as important links between the hemostatic and inflammatory responses to tissue injury.

The coagulation and inflammatory pathways are regulated in a coordinated fashion in response to tissue damage. For example, in addition to becoming adhesive for leukocytes, activated endothelial cells express tissue factor on the cell surface and decrease their surface expression of thrombomodulin, leading to a net facilitation of coagulation reactions on the cell surface. In some cases, a single receptor can be involved in both inflammatory and coagulation processes. For example, the Mac-1 receptor on leukocytes, a member of the CD11-CD18 group, mediates phagocytosis and serves as a receptor for the degradation product of complement C3bi, is involved in one pathway of adherence of leukocytes to endothelium, mediates granulocyte aggregation, and binds coagulation Factor X.

Proteins involved in the hemostatic and inflammatory pathways are of interest for diagnostic purposes and treatment of human disorders. An example is P-selectin, formerly known as GMP-140 (granule membrane protein 140) or PADGEM, an integral membrane glycoprotein with an apparent molecular weight of 140,000 as assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). P-selectin contains an N-terminal lectin-like domain, followed by an

5

10

15

3

epidermal growth factor-like module, a series of consensus repeats related to those in complementbinding proteins, a transmembrane domain, and a cytoplasmic tail, as described in the parent application, United States Serial No. 07/320,408, filed March 8, 1989, the teachings of which are incorporated herein. P-selectin is a member of the selectin family of adhesion receptors that mediate leukocyte interactions with vascular endothelium or platelets (McEver, Curr. Opin. Cell Biol., 4, pages 840-849 (1992); Lasky, Science, 258, pages 964-969 (1992); Bevilacqua and Nelson, J. Clin. Invest., 91, pages 379-387 (1993)). The human P-selectin gene spans over 50 kilobases (kb) and contains 17 exons, most of which encode structurally distinct domains (Johnston et al., J. Biol. Chem., 265, pages 21381-21385 (1990)).

P-selectin was first purified (as GMP-140) from human platelets by McEver and Martin, J. Biol. Chem., 259, pages 9799-9804 (1984). Monoclonal and 20 polyclonal antibodies to P-selectin were also prepared, as reported by McEver and Martin (1984) and P.E. Stenberg, et al., J. Cell Biol., 101, pages 80-886 (1985). The protein is present in 25 alpha granules of resting platelets but is rapidly redistributed to the plasma membrane following platelet activation, as reported by Stenberg, et al., (1985). The presence of P-selectin in endothelial cells and its biosynthesis by these cells was reported by McEver, et al., Blood, 70(5) 30 Suppl. 1:355a, Abstract No. 1274 (1987). In endothelial cells, P-selectin is found in storage granules known as the Weibel-Palade bodies. When platelet or endothelial cells are activated by mediators such as thrombin, the membranes of the 35 storage granules fuse with the plasma membrane, the soluble contents of the granules are released to

4

the external environment, and membrane bound P-selectin is presented within seconds on the cell surface, where it mediates adhesion of neutrophils, monocytes, and subsets of lymphocytes (McEver, in Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion, pages 135-150 (Lipsky et al., eds., Springer-Verlag, New York, 1993).

The expression of P-selectin, as observed by immunohistochemistry (McEver et al., J. Clin. 10 Invest., 84, pages 92-99 (1989)) and Northern blot analysis (Johnston et al., Cell, 56, pages 1033-1044 (1989)), is restricted to megakaryocytes and endothelial cells. Under certain circumstances, 15 steady-state levels of mRNA and protein are increased by inflammatory mediators such as tumor necrosis factor and endotoxin (Sanders et al., Blood, 80, pages 795-800 (1992); Weller et al., J. Biol. Chem., 267, pages 15176-15183 (1992); Hahne et al., J. Cell Biol., 121, pages 655-664 (1993)). 20 Thus, an understanding of the molecular mechanisms that control transcription of the P-selectin gene may help clarify the mechanisms for gene expression in megakaryocytes and endothelial cells and for 25 regulation of leukocyte adhesion in response to tissue injury.

The promoters of several genes whose expression is restricted to endothelial cells or megakaryocytes have been partially characterized (Lee et al., J. Biol. Chem., 265, pages 10446-10450 (1990); Wilson et al., Mol. Cell Biol., 10, pages 4854-4862 (1990); Ravid et al., Mol. Cell Biol., 11, pages 6116-6127 (1991); Romeo et al., Nature, 344, pages 447-449 (1990); Uzan et al., J. Biol. Chem., 266, pages 8932-8939 (1991)). The GATA element, initially recognized in erythroid-specific promoters, plays an important role in expression of

30

35

5

some of these genes (Wilson et al., (1990), Romeo et al., (1990)). However, this element is not sufficient to mediate tissue-specific expression, as expression of the GATA-binding proteins does not directly correlate with expression of the genes containing GATA elements (Yamamoto et al., Genes & Dev., 4, pages 1650-1662 (1990)). A functional ETS element has been identified in the megakaryocyte-specific gene for glycoprotein IIb (Prandini et al., J. Biol. Chem., 267, pages 10370-10374 (1992); Lemarchandel et al., Mol. Cell. Biol., 13, pages 668-676 (1993)), but this element is also found in genes expressed in other tissues (see, for example, Macleod et al., Trends Biochem. Sci., 17, pages 251-256 (1992)).

5

10

15

20

25

30

It is an object of the present invention to characterize and provide DNA and RNA sequences of the 5' flanking region of the human P-selectin gene and to provide methods of using these sequences to specifically express P-selectin and other genes in endothelial cells and megakaryocytes.

It is another object of this invention to provide nucleic acid probes for screening for individuals with abnormal levels of P-selectin.

It is a further object of this invention to provide compositions and methods including the DNA or RNA sequences of the 5' flanking region of the human P-selectin gene for inhibiting or regulating P-selectin expression to control the inflammatory and hemostatic processes involving endothelial or megakaryocytic cells.

Summary of the Invention

The 5' flanking region of the P-selectin gene
contains the regulatory sequences necessary for
expression of P-selectin in endothelial and
megakaryocytic cells. These regulatory sequences

6

are demonstrated to be useful to specifically express other genes in endothelial and megakaryotic cells, both in vitro, for example, in tissue culture, and in vivo, for example, in transgenic animals. In addition, these regulatory sequences can be used as probes to screen for individuals with abnormal levels of P-selectin and to make pharmaceutical compositions for the regulation or inhibition of P-selection expression in individuals having or predisposed to inflammation.

Furthermore, sequences of the 5' flanking region of the P-selectin gene can be used to identify and isolate previously unknown proteins which are involved in regulation of gene expression.

15

20

25

30

35

10

5

Brief Description of the Drawings

Figure 1 is a schematic of the nucleotide (SEQ ID NO:3) and deduced amino acid (SEQ ID NO:4) sequence of endothelial cell P-selectin that was determined from a composite of four overlapping cDNAs: lambda GMPE1-lambda GMPE4. The relative positions of each of the cDNAs are shown by the solid arrows. The dotted arrows indicate regions found in some clones, but deleted in others. The numbering of the nucleotide sequence was arbitrarily started at the first base following the adapter oligonucleotide sequence of the most 5' clone. The translated amino acid sequence of the open reading frame is given in the single-letter The initiating methionine was assigned to the first in-frame ATG sequence that agreed with the consensus sequence for initiation of translation. The stop codon is shown by the asterisk. The thin underlines show the matching positions of amino acid sequences determined from the N-terminus and from 26 peptides of platelet Pselectin. The signal peptide corresponds to

PCT/US94/09395 WO 95/06118

7

positions -41 to -1. The putative transmembrane domain is heavily underlined. The cysteine residues are circled and potential asparaginelinked glycosylation sites (NXS/T) are shown by the dark circles. Two potential polyadenylation signals in the 3' untranslated region are underlined and overlined.

5

10

20

25

30

35

Figure 2 is the structure of the 5' flanking region of the P-selectin gene. The map shows the cloned region (scale in kb) with the positions of exons (numbered 1-3) and the bacteriophage and plasmid clones used. The region of the 5' flanking region sequenced is shown by the open box. All restriction sites for the following enzymes are shown on the map: B = BamHI, E = EcoRI, Ev = EcoRV, H = HindIII, and X = XbaI.

Figure 3 illustrates the strategy to identify transcriptional start sites of the P-selectin gene and the primers used for primer extension studies and anchored polymerase chain reaction (PCR) and the probes used for RNase protection assays.

Figure 4 shows a summary of transcriptional start sites in the 5' flanking region (Seq ID No:5) of the P-selectin gene. Vertical arrowheads, vertical arrows, and horizontal arrows indicate, respectively, the positions of the transcriptional start sites determined by primer extension, RNase protection and anchored-PCR cloning. horizontal arrow represents an independent cDNA clone obtained by anchored PCR with sequence beginning at the indicated position between nucleotides (nt) 4768 and 4842 of SEQ ID NO. 5.

Figure 5 demonstrates transient expression analysis of P-selectin gene promoter activity. On the left are diagrams of the P-selectin promoterluciferase fusion constructs. Vertical bars indicate the restriction sites used to make the

8

constructs. The PCR primers used to generate the shorter constructs are depicted with short arrows. The constructs are aligned with the 5' P-selectin gene sequences numbered relative to the translational start site. Constructs p1339RLUC and p701RLUC have 5' flanking sequence oriented in the reverse direction. On the right is plotted the relative luciferase activity of bovine aortic endothelial cells (BAEC) transfected with each construct. Activity is graphed as a percentage, 10 with 100% equal to 24,000 light units per 25 μ g of cellular protein. The data represent the means ± SD of at least three independent experiments. Duplicate transfections were performed in each 15 experiment; the variation between duplicates did

not exceed 10% of the mean for the experiment.

20

25

30

35

Figure 6 demonstrates cell-specific expression of the 5' flanking sequence of the human P-selectin gene. The P-selectin-expressing BAEC and the P-selectin-nonexpressing cell lines HeLa, 293, and COS-7 were transfected with the indicated constructs. Parallel transfections with the positive control plasmid pRSVLUC were simultaneously performed. Luciferase activity is expressed as light units per 25 μ g of cellular protein. The data represent the means \pm SD of three independent experiments. Duplication transfections were performed in each experiment.

Figure 7 is the mutational analysis of the GATA element. Three wild-type truncated chimeric constructs, and their three corresponding mutant constructs in which the TTATCA sequence was changed to TTTAGA, are depicted on the left of the figure. These constructs were transfected into BAEC, and the luciferase activities were measured as percent relative luciferase activity. The data represent the means ± SD of three independent experiments.

Duplicate transfections were performed in each experiment; the variation betw en duplicates did not exceed 5% of the mean for the experiment.

5

10

15

20

25

30

Figure 8 demonstrates the binding of nuclear proteins to the regulatory sequence encompassing the GATA element. The sequences of the upper strand oligonucleotides were used as probes and competitors. The P-selectin GATA and the nonconsensus GATA are from the indicated regions of the 5' flanking sequence of the human P-selectin The mutant oligonucleotide contains three nucleotide changes in the core GATA motif of the wild-type P-selectin sequence; the same changes were used in the mutant expression constructs listed in Figure 7. The endothelin-1 GATA oligonucleotide corresponds to the functional GATA element in the human endothelin-1 promoter (Wilson et al., Mol. Cell. Biol., 10, pages 4854-4862 (1990)).

Figure 9 shows five different recombinant gene constructs used to make transgenic mice. Each construct contains a different portion of the 5' flanking region of the P-selectin gene fused to the lacZ gene. Arrows indicate the orientation of the portion of the 5' flanking region of the P-selectin gene fused to lacZ. Construct 2 is like Construct 1, except that the portion of the 5' flanking region of the P-selectin gene has been fused in the opposite orientation so that P-selectin gene promoter function is directed away from lacZ.

10

Detailed Description of th Invention

I. <u>Isolation</u>, cloning and charact rization of the gene encoding P-selectin and regulatory sequences associated with the P-selectin gene.

5

30

35

As used herein, unless otherwise specified, the term nucleic acid refers to DNA and the equivalent RNA.

Cloning of the gene for P-selectin was first 10 reported by G.I. Johnston, R.G. Cook and R.P. McEver in Abstract 1238 Supplement II Circulation, 78(4) (October 1988). Oligonucleotides were prepared based on N-terminal amino acid sequencing of P-selectin peptides and used to screen a human 15 endothelial cell cDNA library. A 3.0 Kilobase (kb) clone was isolated which encoded a protein of 727 amino acids. An N-terminal domain of 158 residues containing many cysteines, lysines, and tyrosines, is followed by an EGF-type repeating domain 20 structure, and eight tandem repeats of 62 amino acids each, except for the sixth tandem repeat which has 70 amino acids. The repeats are homologous to those found in a family of proteins that include proteins regulating C3b and C4b, but 25 are unique in having six conserved cysteines per repeat instead of the typical four. These are followed by a 24 amino acid transmembrane region and a 35 amino acid cytoplasmic tail.

As reported by Johnston, et al., in Abstract 1218, Blood Suppl. 72, 327a (November 1988), the gene for P-selectin has been localized to the long arm of chromosome 1, where genes for a number of C3b/C4b regulating proteins have been mapped.

As also reported, there appears to be at least two forms of the protein derived from alternative splicing of mRNA: a soluble form and a membrane or granule bound form. Both forms generally have a 186 bp insertion, encoding a ninth 62 amino acid

```
tandem repeat, between the sixth and seventh tandem man countries have a common of the common of the
                                                                                                                                                                                                  tandem repeat, between the sixth and seventh tandem the sixth and seventh has a mine soluble protein has a fine including the removee An amine acide including the removee An amine acide including that removee An amine acide including the acide including that the acide including t
                                                                                                                                                                                                                      repeate of the sequence.

The soluble protein has a including the including the amino acids including the deletion that remiers deletion that the deletion that remiers deletion that the 
                                                                                                                                                                                                                                                                                                                                                        The conclusion that p-selectin serves as a
WO 95/06118
                                                                                                                                                                                                                                                                                                   receptor for the adnerence of leukocyces to was based and platelets was based the ranid ranid activated endothelial receptor activated endothelial receptor activated endothelial receptor activated endothelial receptor receptor activated endothelial receptor receptor for the adnerence activated endothelial receptor receptor for the adnerence of leukocyces to was based and platelets was based receptor for the adnerence of leukocyces to was based and platelets was based and platelets was based receptor for the adnerence of leukocyces to was based and platelets and platelets and platelets was based and platelets was based and platelets was based and platelets was been activated 
                                                                                                                                                                                                                                                                                  receptor for the adherence of leukocytes to
                                                                                                                                                                                                                                                 transmembrane region.
                                                                                                                                                                                                                                                                                                                       activated engotnelial cells and platelets we the rapid on several observations.
                                                                                                                                                                                                                                                                                                                                                            appearance of P-selectin on the surface of histamine appearance of p-selectin on the surface of histamine appearance of stimulated with thrombin or non-translated with thrombin of non-transl
                                                                                                                                                                                                                                                                                                                                           on the surface of p-selectin on the surface of appearance of p-selectin on the surface of appearance of p-selectin or the surface or the surface of p-selectin or the surface or the surface of p-selectin or the surface or the
                                                                                                                                                                                                                                                                                                                                                                            endothelium stimulated with thrombin or histamine to reducible adherence of neutrophils to adherence of neutrophils to parallels the inducible with these amonists. In the parallels the inducible with these amonists.
                                                                                                                                                                                                                                                                                                                                                                                                    Parallels the inducible adherence of neutroph these agonists.
                                                                                                                                                                                                                                                                                                                                                                                                                     addition, placelets interact with neutrophilis or nonocytes only after activation with agonists such nonocytes only after real attribution of property of the control of th
                                                                                                                                                                                                                                                                                                                                                                                                                                                             monocytes only after activation with agoniets redistribution of particular thrombin which cause redistribution of activation which cause redistribution of activation with a second contraction of the cont
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          as thrombin which cause redistribution of property agonists
as thrombin to the cell surface; platelet agonists
selectin to the cell surface; platelet agonists
selectin to the cell surface; and announce agonists
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              selectin to the cell surface; platelet agonists and such as ADP which do not induce degranulation and such as automorphism of property of the cell surface; and are not induced as automorphism of property of the cell surface; and are not induced as automorphism of property of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and are not induced as a contraction of the cell surface; and the cell surface; and the cell surface; and the cell surface; and the cell surface; an
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  such as ANY Which do not linduce degranulation for the surface expression of Preelectin do not cause surface expression to lawron.tor
                                                                                                                                                                                                                                                                                  10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Placelets to agnere to leukocytes. Second in Preclectin is concentrated in endotherium.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   surface expression of to leukocytes.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Enwouserlum, reserectin is concentrated in is postcapillary venules, where reservoir or of nothing postcapillary venules, and concentrated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           The concentration of both proteins
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             concentrated. The concentration of both proteins in this region is important pecause for hinding of in this are the medaminant mitter for hinding of the medaminant mitter.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             In this region is important because postcapillary of binding of venules are the predominant sites the important sites the impo
                                                                                                                                                                                                                                                                                                                                                                                   15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              venules are the predominant sites their migration whire leukocytes to platelets prior to tie and the leukocytes to platelets prior the tie and the leukocytes to platelets prior the tie and the leukocytes the the leuk
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Leurovy the endothelium into the tissues.

across the endothelium into the tissues.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          across the engotherian coated on tissue abnormal purified president madiator madiato
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Purified Preelectin coated on tissue culture of microtiter wells mediates specific adherence of microtiter wells mediates the wall microtiter wells mediates the wall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   concentrated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               purified neutrophils to the wells. Fourth,

purified neutrophils to the wells. Fourth,

purified neutrophils to the wells. Fourth,

polyclonal and monoclonal antibodies to P-selectin

polyclonal and monoclonal antibodies to P-selectin

polyclonal and monoclonal antibodies to P-selectin

polyclonal and monoclonal antibodies of nautronnile to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                polyclonal and nonoclonal antibodies to y-selection of neutrophile to block 60-90% of the adherence of neutrophile to block
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           purified neutrophils to the Wells.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    block 60-90% of the adherence of neutrophile to cultured human unbilical vein endothelial cells cultured human which with the cultured of the adherence of neutrophile to the adherence of neu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        cultured numan umbilical vein endothelial cells

cultured numan umbilical vein endothelial cells

fifth, indicates that

stimulated with histomine.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Stimulated with nistamine. Fifth the cona-derive that amino acid sequence of p-selectin indicates that amino acid sequence of p-selectin indicates that it manufacture is a manufacture in a manu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             amino acid sequence or prelectin indicates that of Erration acid sequence or prelectin indicates that of Erration acid sequence of prelectin indicates that of Erration acid sequence of prelectin indicates that of Erration in the sequence of present acid in the sequence of present acid in the sequence of present acid in the sequence of the sequence 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Its structure is remarkably similar to known to bind endothelial cell protein known to bind selectin, an endothelial cell protein known to bind
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      30
```

12

neutrophils. Sixth, leukocytes adhere to cells transfected with P-selectin cDNA.

The following methods were used for the production and characterization of P-selectin, antibodies thereto, and nucleotide sequences encoding P-selectin.

Protein Sequencing.

5

P-selectin was isolated and purified from human platelet membranes. On one occasion it was reduced under an atmosphere of nitrogen by the 10 addition of dithiothreitol (20 mM, final concentration) and alkylated in the presence of iodoacetamide (Bray, et al., Proc. Natl. Acad. Sci. USA, 83, pages 1480-1484 (1986). It was then 15 digested with trypsin. The resultant peptides were isolated by two-step, reverse-phase, high performance liquid chromatography (HPLC) using previously described methods (Rosa, et al., Blood, 72:593-600 (1988). On a second occasion, P-20 selectin was reduced and alkylated in the presence of 50 μCi [14C]-iodoacetamide (Amersham) before unlabeled iodoacetamide was added. It was then gel-purified (Bray, et al., 1986) and electroeluted into 25 mM Tris, 192 mM glycine, pH 8.0, containing 25 0.1% Triton X-100 (Jacobs and Clad, Anal. Biochem., 154, pages 583-589, 1986). One milligram of Pselectin was digested with endoglycosidase Glu-C (Boehringer-Mannheim Biochemicals) at a ratio of 1:10 W/w at 37°C. After 6 hr, an equal amount of 30 protease was added and the mixture was incubated for a further 14 hr at 37°C. Peptides were isolated by reverse-phase HPLC as described by Rosa, et al., (1988), except that the initial separation on the C4 HPLC column was carried out using ammonium acetate buffer and the second 35 separation on the C18 HPLC column was carried out using trifluoroacetic acid. Fractions containing

13

the purified peptides were concentrated to 50 μ l and kept frozen before sequencing. Amino acid sequences were determined from the N-terminus of the intact protein and from the peptides by using a gas-phase protein sequencer (Applied Biosystems Model 470A) (Rosa, et al., 1988). Cysteine residues were identified by their elution profile on the HPLC system used by the protein sequencer, and confirmed by measuring 14 C radioactivity in duplicate aliquots from each sequencing cycle.

cDNA Screening.

5

10

15

20

25

Based upon a portion of the amino acid sequence data, two pools of a 35-mer oligonucleotide probe, designed according to codon usage tables (Lathe, J. Mol. Biol., 183:1-12 (1985), were synthesized. The complementary strand was used to allow hybridization to RNA by Northern blotting. Inosine was used in one position because the third base of a glycine codon showed no preferential nucleotide. The sequences of the pools were: POOL 1 (SEQ ID NO. 1): 5'-GC TGT CCA CTG ICC GAG GTT GTC ACA GCG CAC AAT-3'

A A C T C

POOL 2 (SEQ ID NO. 2):

5'-GC TGT CCA CTG ICC GAG GTT GTC ACA TCT CAC AAT-3'
A C

On Northern blots, both oligonucleotide probes

hybridized to a 3.6 kb transcript from poly(A) + RNA
isolated from CHRF-288 cells, a leukemia cell line
with megakaryocyte-like properties (Witte, et al.,
Cancer, 58:238-244 (1986). Pool 2 probes
hybridized more strongly and were therefore used to
screen a cDNA library by standard procedures
(Maniatis, et al., Molecular Cloning: A Laboratory

PCT/US94/09395

Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1982). Approximately 1.4 million recombinant phage from an unamplified human endothelial cell lambda gtl1 library (Ye, et al., J. Biol. Chem., 262, pages 3718-3725 (1987) were plated out on E. coli Y1088 at a density of 200,000 plaques per 230-mm square plate of NZCYM agar. Duplicate nylon filters (Hybond-N, Amersham) were lifted, denatured, neutralized, and incubated at 42°C for 24 hr in prehybridization solution 10 containing 5x standard saline citrate (SSC) [1x SSC is 150 mM NaCl, 15 mM sodium citrate], 5x Denhardt's solution [0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% BSA], 0.2% SDS, and 200 15 μq/ml herring sperm DNA. The 35-mer oligonucleotide probe 2 was end-labeled with [gamma-32P]ATP by 5'-polynucleotide kinase and was added to prehybridization solution to give a specific activity of 1 x 106 cpm/ml. The filters 20 were hybridized at 42°C overnight and the final washing conditions were 2x SSC, 0.1% SDS at 52°C. Positive plaques, identified by autoradiography of filters, were rescreened twice using the same probe and purified. The positive cDNA inserts were 25 isolated from an agarose gel following digestion of phage DNA with SalI or EcoRI. Either enzyme could be used because, during the library construction, cDNAs were ligated to adapter oligonucleotides containing a SalI restriction site as well as an EcoRI site (Ye, et al., 1987). The inserts were 30 subcloned into pIBI20 (IBI Biotechnologies, Inc.) for restriction mapping and DNA sequencing, and into M13mp18 (New England Biolabs) for DNA sequencing. Sequencing in M13mp18 was carried out 35 by the dideoxy chain-termination procedure (Sanger, et al., Proc. Natl. Acad. Sci. USA, 74, pages 5463-

5467 (1977)) using either modified T7 polymerase

15

(Sequenase from United States Biochemicals) or Klenow fragment of DNA polymerase (Bio-Rad Laboratories). Priming was performed with either the M13 universal primer or with 17-mer

5 oligonucleotides designed from cDNA sequence. Double-stranded plasmid DNA, isolated by a standard alkaline-lysis mini-prep method (Maniatis, et al., 1982), was sequenced using the method described by Kraft, et al., Biotechniques, 6, pages 544-547

10 (1988). The plasmid templates were primed with either universal primer, reverse primer (International Biotechnologies, Inc.), or 17-mer oligonucleotides.

Isolation and Characterization of cDNA Clones. Three clones, positive after tertiary screening, were plaque purified, and phage DNA was prepared. The inserts from the clones, designated lambdaGMPE1, lambdaGMPE2, and lambdaGMPE3, were subcloned into plasmids and sequenced. The DNA sequences of all three clones contained long open reading frames which overlapped. The translated sequence of the longest clone, lambdaGMPE1, contained an amino acid sequence which matched the N-terminal amino acid sequence of intact platelet P-selectin but which lacked an in-frame ATG, which encodes a methionine to initiate translation, 5' to this sequence.

15

20

25

30

35

To identify full-length cDNAs, 1.4 million recombinant phage of the now amplified endothelial-cell cDNA library were rescreened with a 1 kb SmaI fragment from the 5' end of lambda GMPE1. Of the 55 positive clones identified, five were purified. DNA sequence from the 5' end of one of these new clones, designated lambdaGMPE4, matched the 5' end of lambdaGMPE1, except that the first 88 bp were not found within the first 140 bp of lambdaGMPE1. Translation of the sequence of lambdaGMPE4 showed

that there was an in-frame ATG sequence beginning at nucleotide 39. The sequence of the 5' end of lambdaGMPE4 was also found in the other four clones obtained in the second screening of the cDNA library, suggesting that it was the correct sequence and that the first 140 bp of lambdaGMPE1 was a cloning artifact. As shown in Figure 1, sequence ID No.1 is a composite nucleotide sequence of the four clones, with 91% of the sequence derived from lambdaGMPE1. Sequence ID No. 2 is the predicted amino acid sequence.

The composite sequence predicts a 5' untranslated region of 38 bp, followed by an open reading frame of 2490 bp coding for a protein of 830 amino acids, then a 3' untranslated sequence of 614 bp including two potential polyadenylation signals of AATAAA and AATTAAA. The latter signal precedes a 12 bp sequence, then a poly(A) tail of 75 bp. The nucleotide sequence GxxATGG, surrounding the first in-frame ATG beginning at base 39, agrees with the consensus sequence for initiation of protein translation (Kozak, Nucl. Acids Res., 12, pages 857-872 (1984)). Therefore the first amino acid was assigned to this codon.

When compared to the sequence of the other clones, there was a 186 bp segment deleted from lambda GMPE1, corresponding to nucleotides 1744 to 1929 (Sequence ID No. 1). A 120 bp deletion was also found in lambda GMPE2 and lambda GMPE3 (nucleotides 2326 to 2445). Eight single-base substitutions (confirmed by sequencing both strands of the cDNAs) were found in the first three clones. Three were silent substitutions, changing the third degenerate base of a codon. The other five produced conservative amino-acid changes.

Northern Blot Analysis.

Total RNA was prepared from the human megakaryocyte-like leukemia cell lines CHRF-288 (Witte, et al., Cancer, 58, pages 238-244 (1986)) and HEL (Papayannopoulou, et al., J. Clin. Invest., 5 79, pages 859-866) (1982)), the myeloid cell line K562 (Lozzio and Lozzio, Blood, 45, pages 321-334 (1975)), human umbilical vein endothelial cells, the EA.hy 926 hybrid endothelial cell line (Edgell, et al., Proc. Natl. Acad. Sci. USA, 80, pages 3734-10 3737 (1983), human platelets, and the Daudi B-cell line (Klein, et al., Cancer Res., 283, pages 1300-1310 (1969)) by an acid-guanidinium-phenolchloroform procedure (Chomczynski and Sacchi, Anal. Biochem., 162:156-159 (1987)). Both HEL cells and 15 K562 cells were treated with Phorbol myristate acetate (PMA) for 48 hr. to induce differentiation before RNA was prepared. Poly(A) + RNA was isolated from total RNA by oligo-dT cellulose chromatography (Davis, et al., Basic Methods in Molecular Biology 20 (Elsevier, New York 1986). Total or poly(A) * RNA was electrophoresed on a 1% agarose gel containing formaldehyde, then transferred to a Hybond-N nylon membrane by standard procedures (Maniatis, et al., Molecular Cloning, A Laboratory Manual (Cold Spring 25 Harbor, NY, 1982). The membrane was prehybridized in 5x SSC, 5x Denhardt's solution, 0.2% SDS, and 200 µg/ml herring sperm DNA for oligonucleotide probes, or in 5x Denhardt's solution, 50% formamide, 10% dextran sulfate, and 200 μ g/ml 30 herring sperm DNA for cDNA probes. Oligonucleotide probes were labeled by the procedure described above, and cDNA probes were random-labeled with a $\alpha\text{--}^{32}\text{P}$ dCTP using the Klenow fragment of DNA polymerase in a commercial kit (Boehringer-Mannheim 35 Biochemicals). Probes were hybridized overnight at 42°C at a specific activity of at least 1 x 106

cpm/ml. The filters to which the oligonucleotides were hybridized were washed with 2x SSC, 0.5% SDS for 20-min periods at increasing temperatures up to 52°C, whereas those used with the cDNA probes were washed with 0.2x SSC, 0.1% SDS at temperatures up to 60°C and were exposed to film (X-OMAT AR, Kodak) at -80°C. Molecular weight markers of lambda DNA (Boehringer-Mannheim Biochemicals), electrophoresed in parallel with the RNA samples, were visualized by including labeled lambda/HindIII DNA fragments (Bethesda Research Laboratories) [5 x 10⁵ cpm/ml] in the hybridization solution.

Southern Blot Analysis.

WO 95/06118

10

Human placental genomic DNA (intact or digested with EcoRI, BamHI, and BamHI/HindIII) were 15 obtained from Oncor. Intact DNA was also digested with PstI, TaqI, and XbaI. Ten μg of each digested DNA was electrophoresed on a 1.5% agarose gel and transferred to a nylon membrane using a 20 modification of the procedure of Reed and Mann, Nucl.Acids Res., 13, pages 7207-7221 (1985). Briefly, the gel was soaked in 0.2 M HCl for 10 minutes, rinsed four times in water, and transferred to a nylon membrane in 0.4 M NaOH buffer for 1 hr, then in 20x SSC overnight. 25 DNA was fixed to the membrane by exposure to UV light and hybridized with cDNA as described for the Northern blot. Lambda/HindIII fragments and ΦX174/HaeIII fragments (Bethesda Research Laboratories) were used as standards and were 30 visualized by including randomly labeled DNA fragments of lambda and \$X174 (5 x 105 cpm/ml) in the hybridization solution.

Computer Analysis.

DNA and protein sequence were analyzed using the Genetics Computer Group software package of the University of Wisconsin (Devereux, et al.,

Nucl.Acids Res., 12, pages 387-395 (1984)). The amino acid sequence of P-selectin was compared with the published sequences of other proteins contained in the National Biomedical Research Foundation (NBRF) database (Release 16.0; 3/88).

The 5' Flanking Region of the Human P-selectin Gene

The following methods were used for the isolation and characterization of the 5' flanking region of the P-selectin gene.

Cells.

WO 95/06118

5

10

15

20

25

30

35

Human HL-60 promyelocytic cells (ATCC No. CCL240), K562 erythroid cells (ATCC No. CCL 243), HEL erythroleukemia cells (ATCC No. TIB180), and Jurkat T-lymphocytes were maintained in RPMI 1640 supplemented with 10% fetal calf serum (FCS). Human HeLa epithelioid cells (ATCC No. CCL 2), 293 human embryonal kidney cells (ATCC No. CRL 1573), and COS-7 SV40-transformed African green monkey kidney cells (ATCC No. CRL 1651) were maintained in Dulbecco's Minimal Essential Medium (DMEM, high glucose) supplemented with 10% FCS. CHRF-288 human megakaryocytic cells (Witte et al., Cancer, 58, pages 251-256 (1986)) were maintained in Fisher's medium supplemented with 20% horse serum. Human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) were cultured as previously described (Moore et al., J. Clin. Invest., 79, pages 124-130 (1987)).

Genomic cloning and Southern blot analysis.

A human genomic clone designated EMBL3-1 was obtained by screening a human genomic DNA library with a ³²P-labeled P-selectin cDNA as described above and by Johnston et al., *J. Biol. Chem.*, 265, pages 21381-21385 (1990). DNA restriction fragments derived from this clone were subcloned into the plasmid pIBI20 (IBI) for restriction enzyme mapping and DNA sequencing. All sequencing

35

was carried out by the chain-termination procedure (Sanger et al., Proc. Natl. Acad. Sci. USA, 74, pages 5463-5467 (1977)) using Sequenase (United States Biochemicals). Southern blot analysis of human placenta genomic DNA was done as previously described (Johnston et al., Cell, 56, pages 1033-1044 (1989)) using a random-labeled probe corresponding to the 5' flanking region of the P-selectin gene from nucleotides (nt) 4405 to 4842 of SEQ ID NO. 5.

Determination of transcriptional start sites. Poly(A) + RNAs were prepared from cultured HUVEC, CHRF-288, HEL, and HL-60 cells by using the Fasttrack kit (Invitrogen). The poly(A) * RNAs were used for primer extension studies, RNase protection 15 experiments, and anchored polymerase chain reaction (PCR) cloning. For primer extension analysis, a 27-mer primer was prepared with the sequence, 5'-TTCTGGTTTGTTAGTTCAGAGATCAGG-3'(SEQ ID NO. 6). The primer was 5' end-labeled with $[\gamma^{-3}P]$ ATP (New 20 England Nuclear, Inc) using T4 polynucleotide kinase (Pharmacia) and purified twice through a RNase free G-25 spin column (5'-3' Inc.). specific activity of the labeled primer was 4 x 106 cpm/pmol. The annealing of the primer and the 25 extension reaction were performed as described by Mackman et al., Proc. Natl. Acad. Sci. USA, 87, pages 2254-2258 (1990) except that actinomycin D was not added. The reaction products were then extracted with phenol/chloroform, precipitated by 30 ethanol, and separated on a 6% sequencing gel along with a known DNA sequencing ladder.

To confirm the results obtained by primer extension analysis, RNase protection studies were carried out with two different cRNA probes by the method of Cox et al., *Blood*, 77, pages 286-293 (1991). Briefly, two genomic DNA fragments

25

30

35

spanning the region from nt 4555 to 4842 and nt 4405 to 4842, respectively, of SEQ ID NO. 5 w re amplified by PCR and subcloned into plasmid pIBI20 which contains a T7 promoter. The insert nucleotide sequences were confirmed. 5 recombinant plasmids were linearized with an appropriate restriction enzyme and the cRNA probes were generated with T7 RNA polymerase (Promega). The cRNA probes were then purified on a 6% sequencing gel. The linearized plasmids and cRNA 10 probes were hybridized in 4 M guanidine thiocyanate and 25 mM EDTA (pH 6.0) at 42°C overnight, followed by treatment with RNase A and RNase T1 (Promega). Analysis of the protected products was performed as described for the primer extension studies. 15

As a definitive approach to determine the transcriptional start sites, anchored PCR (Frohman et al., Proc. Natl. Acad. Sci. USA, 85, pages 8998-9002 (1988) was used to clone the 5' ends of a number of P-selectin cDNAs. First-strand cDNA was synthesized from 2 μ g of HEL cell mRNA with the cDNA Cyclekit (Invitrogen), containing the strong RNA denaturant methylmercuric hydroxide (MeHgOH), with a specific primer,

5'-GATGTATATCTCCACGCAGTCCTCG-3' (SEQ ID NO. 7), which is complementary to nt 446-422 of SEQ ID NO. 3. After removing the excess primer with a Centricon 100 spin filter (Amicon), the 3' end of the first strand cDNA was tailed in a $30-\mu l$ volume containing tailing buffer (Bethesda Research Laboratories), 1 mM dATP, and 15 units of terminal deoxynucleotidyl-transferase (Bethesda Research laboratories) for 10 min at 37°C, and then heated for 15 min at 65°C. The reaction mixture was diluted to 200 μl , and $10-\mu l$ aliquots were used to synthesize the second strand cDNA with 10 pmol of the anchored-primer, 5'-GAATTCGAGCTCGGTACC

TTTTTTTTTTTTT-3'(SEQ ID NO. 8), using 2.5 units of Taq DNA polymerase (Cetus) at 72°C for 7 min. The mixture was then subjected to PCR with two additional primers to improve specific

- amplification and facilitate subcloning: an adaptor primer, 5'-GAATTCG AGCTCGGTACC-3'(SEQ ID NO. 9), which corresponded to the 5' end of the anchored primer and included restriction sites for EcoRI, SacI and KpnI, and a nested primer
- 5'-GTCGACTCTAGAATCAGCCCAGTTCTCAGC-3' (SEQ ID NO.
 10), which was complementary to nucleotides 378-395
 of the cDNA sequence and included XbaI and SalI
 sites. PCR was performed in a Perkin-Elmer/Cetus
 thermal cycler; the amplification profile involved
 denaturation at 94°C for 1.5 min, primer annealing
 at 55°C for 2.5 min, and extension at 72°C for 1
 min. The anchored PCR products were detected by
 Southern blot analysis with two 32P-labeled internal
 oligonucleotides to verify the specificity of the
 reaction. The largest products were then subcloned

<u>Construction of chimeric luciferase expression vectors.</u>

into pIBI20, and plasmid inserts from 21 individual

colonies were sequenced.

Plasmid pOLUC (originally designated p19LUC) 25 and pRSVLUC (DeWet et al., Mol. Cell. Biol., 7, pages 725-737 (1987)) were gifts from Dr. Donald Helinski (University of California, San Diego). The parental DNA for the creation of deletion mutants was a 5-kb HindIII fragment inserted into 30 pIBI20 (pGHindIII, Figure 2) that contained the 5' flanking region, first exon, and part of the first intron of the P-selectin gene. Plasmid pl339LUC in the correct orientation and p1339RLUC in reverse orientation were constructed by inserting the 1.3 35 kb P-selectin 5' flanking region excised by HinfI from pGHindIII into the SmaI site of pOLUC. Plasmids p701LUC, p701RLUC, p459LUC, p309LUC,

p249LUC, p197LUC, p147LUC, p128LUC, p100LUC, and p80LUC were constructed by ligation of the respective DNA segments generated by PCR from pGHindIII into the SmaI site of pOLUC. Plasmid 5 p4863LUC was constructed in three steps: 1) ligation into the EcoRV and EcoRI sites of pBluescript II KS (Stratagene, La Jolla, CA) of the fragment from nt 4596 to 4851 of SEQ ID NO. 5 released from p309LUC with EcoRV and EcoRI; 2) insertion between the HindIII and EcoRV sites of 10 the above construct of a fragment from nt 1 to 4596 of SEQ ID NO. 5 released from pGHindIII with HindIII and EcoRV; and 3) removal by HindIII and Smal of the sequence from nt 1 to 4851 of SEQ ID 15 NO. 5 from the above construct followed by ligation into the HindIII and SmaI sites of pOLUC. Plasmid pm309LUC, pm249LUC, and pm197LUC, each of which contained three identical mutations in the TTATCA element, were constructed by an overlap extension 20 PCR protocol (Disdier et al., Mol. Biol. Cell, 3, pages 309-321 (1992)). Briefly, two separate PCR products, one for each half of the hybrid product, were generated with either an antisense or sense mutated GATA oligonucleotide (described below for 25 the gel shift assay) and one outside primer. two products were gel purified and mixed. A second PCR was then performed using the two outside The PCR product was blunt-ligated into primers. the SmaI site of pOLUC. All the constructs were 30 verified by sequencing the inserts and flanking

Molecular cloning of the 5' flanking region of the P-selectin gene.

The genomic clone EMBL3-1 encoding the 5'
untranslated region of P-selectin cDNA was
obtained, as described above, by screening a
genomic DNA library with a 32P-labeled P-selectin
cDNA (Johnston et al., J. Biol. Chem., 265, pages

sites in the plasmid.

24

21381-21385 (1990)). A 5 kb HindIII fragment encoding the 5-untranslated region of the P-selectin gene, derived from genomic clone EMBL3-1, was subcloned into pIBI20, analyzed by restriction mapping (Figure 2), and sequenced on both strands. Southern blot analysis of human genomic DNA with a labeled DNA fragment derived from this clone revealed that restriction fragments were identical in size to those in the clone, suggesting that there was no DNA rearrangement during cloning.

Transcriptional start sites in the 5' flanking region.

To define the transcriptional start sites for the P-selectin gene, three assays were used, as shown in Figure 3.

10

15

20

25

30

35

To map transcriptional start sites by primer extension, 10 μg of poly (A⁺) RNA from HEL cells, CHRF-288 cells, or HUVEC, or 10 μg of yeast tRNA was hybridized with a 5'-end-labeled oligonucleotide primer. After incubation with reverse transcriptase, primer-extended products were analyzed on a 6% sequencing gel. A sequence ladder of the plasmid pIBI20 was used as size markers (lanes G, A, T, and C). At least 12 extension products were seen from nt 4769 to 4839 of SEQ ID NO. 5 relative to the ATG codon initiating translation of mRNA. Extension products of the same size were produced by mRNA from HUVEC and from the megakaryocytic cell lines CHRF-288 and HEL, but not by control tRNA.

Similar results were obtained by RNase protection assay using two independent cRNA probes surrounding the first exon. The two cRNA probes produced the same protected band patterns, most of which corresponded in size to the primer extension products. Ten micrograms of poly (A⁺) RNA from HEL cells, HL-60 cells, or yeast tRNA were hybridized with each of the two different cRNA probes. After

treatment with RNase, the protected products were run on a 6% sequencing gel. RNase-protected bands corresponding to the smallest primer extension products were not observed due to the short cRNA probes used. However, these short primer extension products were consistently observed, indicating that they reflected alternative transcriptional start sites rather than premature stops during reverse transcription.

To rule out generation of multiple bands through alternative splicing of pre-mRNAs, anchored PCR was performed to clone the 5' ends of cDNAs from HEL cell mRNA. Twenty-one clones were sequenced. The sequences of the 5' ends of these cDNA clones matched the genomic sequence and corresponded in length to those predicted from the primer extension and RNase protection products.

The most abundant clones began at 4786, 4814, and 4832 (four clones each) of SEQ ID NO. 5, which matched the sizes of the most prominent products determined by RNase protection and/or primer extension. These data, summarized in Figure 4, indicate that transcription of the P-selectin gene is initiated at multiple identical start sites in both endothelial and megakaryocytic cells.

Structural features of the 5' flanking region.

The sequence of 4866 bp of 5' flanking region concluding with the ATG at the end of the exon 1 is shown in SEQ. ID NO:3. No canonical TATA and CCAAT boxes were found in the P-selectin flanking sequence. The nucleotide sequence was not GC rich and lacked a GC box (the binding site for transcription factor Sp1) that is found in many "housekeeping" genes without TATA boxes (Reynolds et al., Cell, 38, pages 275-285 (1984)). It also lacked an "initiator" sequence which is required for accurate initiation of transcription in some

TATA-less genes (Smale et al., Cell, 57, pages 103-113 (1989)). A number of potential regulatory elements were present, including two sites at 4707-4711 and 4105-4110 recognized by the GATA family of zinc finger transcription factors (Yamamoto et al., Genes & Dev., 4, pages 1650-1662 (1990); Orkin, Cell, 63, pages 665-672 (1990), a CACCC (GGGTG) element at 4648-4652 frequently seen in the promoters of erythroid-expressed genes (Frampton et al., Mol. Cell. Biol., 10, pages 3838-3842 (1990); 10 Schule et al., Nature, 332, pages 87-90 (1988), a GGGGGTGACCCC (4646-4657 of SEQ ID No. 5) overlapping with the CACCC element that is similar to the binding sites recognized by the subunit 15 NFKB1 (p50) of the NF-kB/rel family (Blank et al., Trends Biochem Sci., 17, pages 135-140 (1992)) and by a zinc finger nuclear protein family that includes MBP-1 and MBP-2, 10 elements beginning at 4761, 4727, 4641, 4645, 4505, 4471, 4457, 4212, 20 4206, and 3732 of SEQ ID NO. 5, which contain a GGAAG/A SEQ core sequence that is similar to the binding site for the ETS class of oncoproteins (Karim et al., Genes & Dev., 4, pages 1451-1453 (1990)), and a TCTGGAATGTG (4747-4757 of SEQ ID NO. 25 5) that is related to the GT-IIC element of the

II. Cell Specific Expression under the control of the 5' P Selectin Regulatory Sequence.

Transfection and Luciferase assay.

SV40 enhancer (Burglin, Cell, 66, pages 11-12

(1991)).

30

35

Plasmids used for transfections were purified by cesium chloride banding. At least two different batches of plasmids for each construct were tested for the transfections. Cells were plated on a 100 mm petri dish at a density adjusted so that they reached 70-80% confluence prior to transfection. Equal volumes of 60 μ g of test plasmid and 50 μ g of lipofectin reagent (BRL), each diluted in 2.5 ml of

PCT/US94/09395 WO 95/06118

OptiMEM medium (BRL), were incubated for 20 min and the resulting transfection mixture was then added to the cells. After an 8 to 12 h incubation at 37°C, the transfection medium was replaced by complete medium for an additional 36 h and the 5 cells were then harvested for luciferase assays in a total volume of 120 μ l (DeWet et al., Mol. Cell. Biol., 7, pages 725-727 (1987)). Briefly, following lysis and removal of the cell debris by centrifugation, 20 µl of total cellular extracts were used for each measurement for luciferase activity. The luciferase activity for each transfection was measured three times with a Monolight 2001 luminometer. The luciferase activities were normalized to the amount of protein in cellular extracts as measured by the Bradford reagent (Bio-Rad).

10

15

Preparation of cell extracts and gel shift assay.

HEL, CHRF-288, K562, Jurkat, Hela, and BAEC 20 cell nuclear extracts were prepared as described by Dignam et al., Nucl. Acids Res., 11, pages 1475-1489 (1983). Extracts from HUVEC were prepared at miniscale as described by Schreiber et al., Nucl. Acids Res., 17, pages 6419 (1989). COS-7 cells 25 were transfected with a plasmid encoding human GATA-2 (Dorfman et al., J. Biol. Chem., 267, pages 1279-1285 (1992)), a gift from Dr. Stuart Orkin (Harvard Medical School, Cambridge, MA), or mocktransfected with the plasmid pIBI20. Extracts from 30 GATA-2-transfected or mock-transfected COS-7 cells were prepared as described in Tsai et al., Nature, 339, pages 446-451 (1989). A standard gel shift assay (20 μ l) contained 5,000-10,000 cpm of labeled oligonucleotide, 2.5 μ g of poly(dI·dC), 60 mM KCl, 35 4 mM Tris (pH 7.5), 12 mM Hepes, 1 mM dithiothreitol, 1 mM EDTA, 10 μg bovine serum

15

20

25

30

35

albumin, and 3 μ l (6 μ g) of cell extracts. Gels of 4-6% acrylamide (19:1 acrylamide/N,N'-methylenebis- acrylamide w:w) were run in 0.25 x TBE buffer (1x TBE = 0.089 M Tris, 0.089 M boric acid, and 0.002 M EDTA) at 150 V and then dried prior to autoradiography. For competition experiments, unlabeled competitor duplex DNA was added to the reaction mixture before the addition of labeled probe.

Transgenic Mice.

The lacz gene was excised from pCH110 (Pharmacia-LKB) by digestion with HindIII and ApaI and ligated into the phagemid, pBluescript SK+ (Stratagene), pre-digested with the same enzymes. Constructs 1-3 were prepared by removing the 5' flanking sequences of the P-selectin gene from, respectively, p1339LUC, p1339RLUC, and p701LUC (see above), by digestion with BamHI and XbaI and inserting the sequences into pBluescript at the corresponding sites such that the 5' flanking sequence was separated from lacZ by only a few base pairs of sequence in the polylinker region of the plasmid. Constructs 4 and 5 were prepared by excising the 5' flanking sequences from p459LUC and p309LUC with HindIII and EcoRI and inserting the sequences into the same lacz-Bluescript vector.

Each of the five plasmids was purified on cesium chloride gradients. The insert containing the P-selectin 5' flanking region fused to lacz was released from the plasmid by digestion with BamHI and XbaI. After purification from agarose gels, the DNA insert was microinjected into the pronuclei of oocytes obtained from mating mice. The microinjected oocytes were then implanted into the infundibulum of the Fallopian tubes of pseudopregnant mice using standard techniques (Hogan et al. in Manipulating the Mouse Embryo. A

Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1986) (incorporated herein by reference). Incorporation of the transgene into offspring was determined by PCR analysis of tailvein DNA, using primers specific for the 5' flanking sequence and the lacZ sequence (Chen and Evans, Biotechniques, 8, 32-33 (1990)). Expression of the transgene in tissues of founder mice or their offspring was determined by a cytochemical staining procedure for β -galactosidase (Sanes et al., EMBO J., 5, pages 3133-3142 (1986)).

Transient expression analysis of the 5' flanking region.

To test whether the 5' flanking region of the P-selectin gene had promoter activity, chimeric 15 constructs were prepared in which serially deleted fragments of 5' flanking sequence were inserted before a promoterless luciferase gene in the plasmid pOLUC (Figure 5). Luciferase expression was measured following transfection of the 20 constructs into BAEC. Constructs p4863LUC, p1339LUC, p701LUC, p459LUC, p309LUC, and p249LUC promoted similar levels of luciferase activity that were significantly higher than the background amounts in pOLUC-transfected cells. 25 decreases in expression were observed following transfection with p197LUC and with p147LUC and p128LUC. Only background expression was observed following transfection with p100LUC and p80LUC. These data indicate that the sequences responsible 30 for most of the promoter activity are located between 4615 and 4861 of SEQ ID NO. 5. These data also indicate that there are at least three positive regulatory domains between 4615 and 4764 of SEQ ID NO. 5 (for example, compare p249LUC, 35 p197LUC, p128LUC, and p100LUC). The results also show that some of the positive elements in the longer constructs were position dependent, as

p1339RLUC and p701RLUC, which contained flanking sequence in reverse orientation, expressed no more luciferase in BAEC than p0LUC.

5

10

15

20

To determine whether the constructs mediated tissue-specific expression, they were transfected into COS-7, 293, and Hela cells, which do not normally synthesize P-selectin, as shown by Figure In contrast to their effects in BAEC, constructs p1339LUC, p701LUC, p459LUC, and p309LUC had only basal promoter activity in these cells, although the basal levels did exceed the background activity of mock-transfected cells or cells transfected with pOLUC. Parallel transfections with RSVLUC, a plasmid containing luciferase driven by the Rous sarcoma virus promoter, resulted in high levels of expression, indicating that the cells could be transfected. These data indicate that the flanking sequence from nt 4555 to 4851 of SEQ ID NO. 5 includes elements that can direct the regulated expression of a gene in endothelial cells.

The GATA element at 4706 of SEO ID NO. 5 is required for optimal function of the P-selectin promoter.

25 Deletion of the sequence between nt 4667 and 4717 of SEQ ID NO. 5 significantly reduced luciferase expression in BAEC, as shown by Figure 5, indicating the presence of a positive regulatory element(s) in this region. To determine whether the GATA (TTATCA) element at 4706 of SEQ ID NO. 5 30 functioned as such a positive element, the wild-type sequence TTATCA was mutated to TTTAGA in the three constructs p309LUC, p249LUC, and p197LUC, as shown by Figure 6. When the mutant constructs were transfected into BAEC, luciferase expression 35 in each case was reduced to the level of p147LUC, which was only 20% of that produced by p309LUC. These results indicate that the GATA element is

15

20

25

30

35

essential for optimal transcription of the P-selectin gene, perhaps through interactions with other regulatory sequences located between nt 4555 to 4666 of SEQ ID NO. 5.

5 <u>Gene Expression in Megakaryocytes of</u>
Transgenic Mice Containing the P-selectin
Promoter.

The use of the 5' flanking region of the P-selectin gene to direct the expression of a heterologous gene in megakaryocytes was demonstrated by analysis of transgenic mice carrying portions of the 5' flanking region of the P-selectin gene fused to the bacterial lacz gene.

Five constructs were made in which DNA, having the sequence of nt 3525 to 4851 (or the same sequence inserted in the opposite orientation), 4163 to 4851, 4405 to 4851, or 4555 to 4851 of SEQ ID NO. 5, was fused to the 5' coding region of the lacZ gene, as described in Figure 9. Each construct was then cloned and used to prepare transgenic mice as described above. Offspring carrying the transgenes for each of the five constructs were produced from founders. An analysis of bone marrow cells from mice carrying the construct having the sequence of nt 4163 to 4851 of SEQ ID NO. 5 fused to lacZ indicated that the transgene was expressed by megakaryocytes but not by other bone marrow cells.

The above results clearly indicate that the sequences of the 5' flanking region of the P-selectin gene can specifically direct the regulated expression of a gene in endothelial and megakaryocytic cells. Accordingly, a gene can be specifically expressed in endothelial cells or megakaryocytes by ligating, or otherwise fusing (for example, by PCR), the 5' end of the coding sequence of the gene to the 3' end of a DNA sequence consisting essentially of nucleotides 1 to

32

4863 of SEQ ID NO. 5, or one or more of the transcriptional regulatory sequences of SEQ ID NO. 5, to yield a recombinant gene construct, and transfecting, or otherwise inserting using methods known to those skilled in the art (for example, by transgenic methods, microinjection, liposome fusion) the recombinant gene construct into endothelial cells or megakaryocytes.

10

15

20

25

30

35

It is likely that some modifications in the sequence of the 5' flanking region can be introduced into the cells without alteration in function. For example, the 5' flanking sequences of a given gene in different species may be slightly different; the differences are usually in regions not critical for function and therefore not conserved among species. It is believed that the 5' flanking sequences of the P-selectin gene in other species will also be functional in humans; this prediction is supported by the observed function of the human P-selectin flanking sequence in transgenic mice (see above).

III. The 5'-P Selectin Regulatory Sequence can be used to isolate Novel Proteins.

The function of the GATA element correlates with its ability to bind nuclear proteins.

To determine whether the GATA element bound nuclear proteins, a 40-bp double-stranded oligonucleotide probe encompassing this sequence was synthesized, as shown in Figure 8. The 32P-labeled probe was incubated with nuclear extracts from various cell lines in the presence of poly (dI·dC) as a competitor for nonspecific DNA-protein interactions. The resultant complexes were separated by electrophoresis on a nondenaturing polyacrylamide gel. For example, two distinct complexes (labeled A and B, where A has the slower mobility in the gel) were observed on gels when K562 and HEL cell nuclear extracts were incubated

with end-labeled P-selectin GATA oligonucleotide. Complex formation was sequence specific, as it was prevented by addition of a 100-fold molar excess of the unlabeled GATA oligonucleotide, but not by a 100-fold excess of an oligonucleotide encoding a nonconsensus GATA sequence located further upstream in the P-selectin 5' flanking region. Similar complexes were formed using nuclear extracts from CHRF-288, BAEC, HUVEC, and Jurkat cells, although sometimes one of the complexes was only present in relatively small amounts. Two minor complexes were also observed in the gels, but these appeared to represent proteolytic degradation products as they were noted only in nuclear extracts stored for prolonged intervals.

10

15

20

25

30

35

To determine whether the GATA element was required to form the observed complexes in the gel shift assays, competition gel shift assays were carried out on HEL cell nuclear extracts with an oligonucleotide encoding the GATA motif from the human endothelin-1 gene promoter and the results compared to a competition gel shift assay carried out with the oligonucleotide encoding the Pselectin GATA motif, as shown by Figure 8. The results indicated that the unlabeled human endothelin-1 GATA oligonucleotide probe prevented formation of complex B, but not complex A, by the 32P-labeled P-selectin probe containing the GATA consensus sequence. The labeled endothelin-1 probe formed a complex with a mobility similar, although not identical, to complex B. Formation of this complex was prevented by addition of either the unlabeled endothelin-1 probe or the P-selectin probe.

These data indicate that complex B represents the interaction of a member of the GATA protein

34

family with the GATA consensus sequence in the P-selectin promoter.

· 5

10

15

20

25

30

To test whether the core GATA sequence was required for binding of nuclear proteins, a mutant oligonucleotide was synthesized (Figure 8) in which the core sequence TTATCA was converted to TTTAGA, the same changes made in the mutant constructs shown in Figure 7. HEL cell and BAEC nuclear extracts were incubated with end-labeled wild-type or mutant P-selectin GATA probe in the absence or the presence of the indicated unlabeled competitor. The results showed that a 100-fold molar excess of the unlabeled mutant probe prevented formation of complex A, but not complex B, when the labeled Pselectin GATA oligonucleotide was incubated with nuclear extracts from HEL and BAEC. Furthermore, the labeled mutant probe formed complex A, but not complex B. These data indicate that the core GATA sequence is required for formation of complex B, but not complex A.

To confirm that the consensus GATA element in the P-selectin promoter bound to a member of the GATA protein family, gel shift assays were performed with extracts from COS-7 cells transfected with an expression plasmid encoding human GATA-2. Labeled P-selectin probe was incubated with extracts from mock-transfected COS-7 cells (mock) or with COS-7 cells transfected with an expression plasmid encoding human GATA-2 (hGATA-2) in the present or absence of unlabeled P-selectin GATA, unlabeled human endothelin-1 GATA, or nonconsensus GATA oligonucleotides as competitors.

The hGATA-2-transfected COS-7 extracts, but

not those from mock-transfected cells, formed a

DNA-protein complex with the ³²P-labeled P-selectin

GATA probe. Formation of this complex was

35

inhibited by addition of the unlabeled endothelin-1 GATA oligonucleotide as well as by the unlabeled P-selectin probe. These results indicate that the P-selectin GATA probe binds a member(s) of the GATA protein family.

Other nuclear protein binding sites.

5

10

15

20

25

30

35

The luciferase expression studies described above indicated that the sequences responsible for most of the P-selectin promoter activity in endothelial cells are located in the sequence between nt 4615 and 4851 of SEQ ID NO. 5 and that at least three positive regulatory sequences are located between nt 4615 and 4764 of SEQ ID NO. 5. In addition to these sites, gel shift studies also indicated the existence of at least three regulatory sites in a 52 base pair portion of the 5' flanking region of the P-selectin gene having the sequence from nt 4615 to 4666 of SEQ ID NO. 5. This conclusion was obtained by gel shift studies of four complexes that were first observed to form between nuclear protein extracts from several cell types and a double-stranded 32P-labeled oligonucleotide corresponding to the sequence from nt 4632 to 4672 of SEQ ID NO. 5. Starting with the complex with slowest mobility in the gels, these complexes were designated as I, then a closelyspaced doublet IIa and IIb, then III. Extracts from some cell types formed some, but not all, of the complexes. For example, complex I was not formed by extracts of HUVECs.

complex I was also formed by mixing nuclear extracts with an oligonucleotide having the sequence of nt 4650 to 4669 of SEQ ID NO. 5. This sequence is not related to those of known DNA regulatory elements. Complex I was formed with nuclear extracts from BAECs, but complex formation was prevented when extracts were prepared from the

same cells following stimulation with phorbol myristate acetate. These results indicate that the sequence of nt 4650 to 4669 of SEQ ID NO. 5 is bound by previously undescribed regulatory protein(s).

The complexes corresponding to the IIa and IIb doublet (referred to collectively as complex II for simplicity) represent interactions of the DNA with members of the NFkB family, a group of homodimeric or heterodimeric DNA-binding proteins that help 10 regulate expression of many genes (Blank et al., Trends Biochem. Sci., 17, pages 135-140 (1992). Complex II was formed not only when nuclear extracts were mixed with the oligonucleotide having the sequence of nt 4632 to 4672 of SEQ ID NO. 5, 15 but also when mixed with a oligonucleotide having the shorter sequence of nt 4642 to 4664 of SEQ ID NO. 5. Formation of complex II was inhibited by an unlabeled oligonucleotide having the sequence CGGCTGGGGATTCCCCATCT (SEQ ID NO. 11), which 20 contains the NF κ B element of the mouse $H-2K^b$ class I major histocompatibility (MHC) promoter. Complex formation was also inhibited by a combination of antisera to NFKB1 and NFKB2 subunits, two of the subunits found in certain dimeric NF-KB proteins, 25 but not by preimmune sera. Furthermore, the labeled oligonucleotides bound to purified recombinant homodimers of NFKB1 and NFKB2, but not to homodimers of recombinant Rel A, another subunit found in some dimeric NF-KB proteins, or to 30 heterodimers that contain the Rel A subunit in cell extracts. Methylation interference studies indicated that the GGGG sequence in the sense strand (nt 4646 to 4650 of SEQ ID NO. 5) and the GGGG in the antisense strand (nt 4654 to 4657 of 35 SEQ ID No. 5) participated in direct contacts with NFKB1 and NFKB2 homodimers. Furthermore, a mutant

```
oligonucleotide spanning the 4642 to 4664 sequence oligonucleotide correspondence at ARRA to ARRI was
                                                                                                                                                                           oligonucleoride spanning the 4642 to 4651 was oligonucleoride spanning the at 4654 to 4651 was in which the CCCC serior to involve the cocce serior to involve the cocce serior to involve the cocce serior to involve to annothing the sequence at 4654 to 4651 was never to involve the cocce serior to involve to annothing the sequence at 4654 to 4651 was never to involve the cocce serior to invol
                                                                                                                                                                                          In which the CCCC sequence at 4654 to 4651 was or interact with MFKB1 or altered to ATAG! Assays where results in altered in as shift assays were attended to ATAG!
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            These results indicate
                                                                                                                                                                                                                           NFKB2 in gel shift assays. These results indicate in MFKB2 in the sequences region are consistent with known that the arra region are consistent with a second consistent with a second consistent with the arrangement of the arr
                                                                                                                                                                                                                                             that the sequences recognized by NKKHI and NKKHI it known the 4642 to 4664 region are consistent with known the 4642 to 4664 region are consistent with the sequences recognized by NKKHI and NKKHI it known
WO 95/06118
                                                                                                                                                                                                                                                               The 4044 to 4004 region are consistent with MR-KB recognition features for members of the MR-KB
                                                                                                                                                                                                               NFKB2 in gel shift assays.
                                                                                                                                                                                                                                                                                                                                                                                        Formation of complex III required the inverted
                                                                                                                                                                                                                                                                                                                Formation of complex III required the inverted in No. 5.

Formation of nt 4635 to 4646 of EEQ in No. 5.

Tepeat sequence of nt 4635 to noth halves of the complex in noth halves of the co
                                                                                                                                                                                                                                                                                                                                        repear sequence or nr 40jp both halves of the simultaneous nutations in the common from
                                                                                                                                                                                                                                                                                                                                                                      Inverted repeat changing the sequence from 5) to report of SEQ ID NO. con To the sequence of SEQ ID NO. con To the concentration of the
                                                                                                                                                                                                                                                                                                                                                       CTTCCATGGAAG (nt 4635 to 4646 of SEQ ID NO. 14), abolished GTTGGTTCCAAG (SEQ ID NO. 15), abolished (SEQ ID NO. 15), abolished (SEQ ID NO. 15), abolished (SEQ ID NO. 1
                                                                                                                                                                                                                                                                                                                                                                                                    GTTGGTTTTAAG (SEQ ID NO. 12); GTTGGTTTTAAG (SEQ ID NO. 12); GTTGGTTTTAAG Aboliehed

GTTGGTTCCAAG (SEQ ID NO. 12); An oligonucleotide having the

No. 13); formarion
                                                                                                                                                                                                                                                                                                 family.
                                                                                                                                                                                                                                                                                                                                                                                                                      No. 13); or crrccarccaag (SEQ ID No. 14); aboliened the naving the An oligonucleotide having a second to the secon
                                                                                                                                                                                                                                                                                                                                                                                                                                        complex formation. An oligonucleotide naving the complex formation. 4626 to 4650 of SEQ ID NO. 5 also remains a complex formation.
                                                                                                                                                                                                                                                                                                                                                                                                                                                       sequence from nt 4626 to 4650 of SEQ ID NO. 5 also requirements for the formation of complex to the formation of complex 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Tormed complex III. The sequence requirements one or the formation of the rmc rises of transcription the formation of the rmc rises of transcription
                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           the rormarion of the Ens class of transcription note members of the this common of the first process of the first 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             more members bind to this sequence of the 51 factors may bind to the first sequence of the factors may bind to the first sequence of the factors may be the first sequence of the factors may be the first sequence of the factors may be the factors of the factors 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         flanking region of the P-selectin all cells tested

flanking region of extracts from all remarks with the formed by extracts from the formed by the formed b
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ractors may ging of the P-selectin gene.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 III was formed by extracts from all cells tested
HUVEC, BAEC,
HUVEC, B
                                                                                                                                                                                                                                                                                                                                        15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LANY. 926, and Helal, interacting with sequence interacting with factor(s) interacting with factor(s) interacting with factor of and interacting with sequence interacting with sequence interacting with sequence interacting with sequence factor of and interacting with sequence interactions with seq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             EANY . 9261 And Hela)! indicating that the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 good of the known as here where and the known as here.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LEANEUL LPULON LAULOF 181 INLERAULLING WILLING ST. AND A MAN TO A 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            expressed. Of the known ETS proteins (Macleod et Widely alstributed 251-256
                                                                                                                                                                                                                                                                                                                                                                                                                            20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Widely alstributed (Macleod 17, pages 251-256 17, pages ancoming 17, pages ancoming antides ancoming al. Trends However al. 1199211
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       However! for these proteins that is
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (1992)). However, oligonucleotides encoding kni
However, oligonucleotides encoding kni
that is,
recognition sites for these rn Nn is or
recognition sites for these rn Nn is or
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TCGAGCAAGCAAGCATGTG (SEQ ID NO. 15) or ets-2 and (SEQ ID NO. 16) for rn wn 17)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GGCCAAACCGGAAGCGAAGCGGAAACCGCCGGATCG (SEQ ID NO. 777

AGCTTGCGGAAGCGGAAGCGGAAACCGCCGGATCG Commandian for a factor of a factor 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for GABP, labeled -238 to -214 oligonucleotide, with the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (1992)).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   35
```

indicating that ets-2 and GABP are not interacting with this region in the 5' flanking region of the P-selectin gen. These results indicate that the portion of the 5' flanking region of the P-selectin gene defined by nt 4635 to 4646 of SEQ ID NO. 5 is bound by previously undescribed protein(s). Such proteins may be unidentified members of the ETS family or of other families of transcription factors.

Recently a pathway has been elucidated that 10 connects signaling at the cell surface directly to gene activation (reviewed by Darnell, et al., Science, 264, pages 1415-1421 (1994); Ihle, et al., Trends Biochem. Sci., 19, pages 222-227 (1994); Sato and Miyajima, Curr. Opin. Cell Biol., 6, pages 15 174-179 (1994)). This pathway is used by the interferons and by many cytokines and growth factors, including IL-3, IL-4, IL-6, oncostatin M, and epidermal growth factor. In general, binding of ligand induces dimerization or oligomerization 20 of its receptor that allows association with JAK kinases, which phosphorylate a tyrosine residue in a group of transcription factors known as the STATs (signal transducers and activators of transcription). The phosphorylated STATs then 25 dimerize and migrate to the nucleus, where they bind to specific DNA elements, alone or in combination with other transcription factors, resulting in transciptional activation. Cytokines IL-3, IL-4, IL-6, and oncostatin M induce increased 30 levels of P-selectin mRNA in cultured human umbilical vein endothelial cells or in bovine aortic endothelial cells, as measured by Northern blotting. Transcript levels begin to increase at 7 hours and are even higher at 24 hours following 35 stimulation with each cytokine. A review of the sequence of the 5' flanking region of the human P-

sel ctin gene revealed at least four elements that shared sequence similarity to consensus binding sites for members of the STAT protein family: nt 4453 to 4461, nt 4636 to 4645, nt 4722 to 4731, and nt 4745 to 4753 of SEQ ID NO. 5. A double-stranded 5 oligonucleotide encompassing the first putative element, consisting of the sequence from nt 4446 to 4469 of SEQ ID NO. 5, formed inducible complexes with nuclear proteins from several cell lines stimulated for 30 min with interferon- γ or IL-6. 10 Formation of these complexes was inhibited by addition of an unlabeled oligonucleotide containing the hSIE sequence, an element known to bind with high affinities to stat1 homodimers, stat3 homodimers, and stat1-3 heterodimers (Zhong, et 15 al., Science, 264, pages 95-98 (1994)). Antibody supershift experiments confirmed that two of the complexes formed by the SEQ 18 oligonucleotide contained stat1, and the mobility of another complex, elicited primarily by IL-6, suggests that 20 it represents stat3 homodimers. The SEQ 18 element formed two additional complexes with nuclear extracts from the human megakaryocytic cell line, CHRF-288; one of these complexes was inducible by treatment with IL-4 for 16 hours. Formation of the 25 latter two complexes, which may represent binding to novel STAT proteins, was not competed with the hSIE oligonucleotide. Collectively, these data indicate that several different cytokines can induce increased steady-state levels of P-selectin 30 transcripts, and that one potential mechanism for these inducible increases may be binding of phosphorylated STAT proteins to elements in the 5' flanking region of the human P-selectin gene.

The gel-shift assays clearly indicate that sequences defined by nt 4650 to 4669, 4635 to 4646, and 4642 to 4664 of SEQ ID NO. 5, identify distinct

```
domains within in the seignificant role in the grant role in the seignificant role in the seigni
                                                                                                                                                                                                                                          domains within in the 5' flanking region of the production of the play a significant presion of the presion of 
                                                                                                                                                                                                                                                                    selectin gene which play a significant role in the p-selectin gene which play a significant role in the p-selectin gene which play a significant role in the p-selectin gene man role regulation of the expression of the expression
                                                                                                                                                                                                                                                                                          regulation of the expression of the presenctin gene in endothelial and megakaryocytic cells.
WO 95/06118
                                                                                                                                                                                                                                                                                                                        shift assays also indicate the existence indi
                                                                                                                                                                                                                                                                                                                                         Snire assays also regulatory proteins that bind regulatory proteins that previously unknown regulatory proteins are according to the continuous previously unknown regulatory proteins are according to the continuous according t
                                                                                                                                                                                                                                                                                                                                                                   previously unknown regulatory proteins that bind of the 5' flanking region of the 5' flanking region of the 5' flanking remarks the breeze distinct domains to narticular engineers these breezentin game the preparation of the second protection of 
                                                                                                                                                                                                                                                                                                                                                                                             these distinct domains of the 5' flanking region

the P-selectin gene.

the P-selectin veno * Akko *
                                                                                                                                                                                                                                                                                                                                                                                                                        the Prelectin gene. In particular, sequences

the Prelectin gene. to 4669 and nt 4635 to 4646 of

the Prelectin gene. to 4669 and nt form the form the defined by nt 4650 cores of the form the form the defined by nt 4650 cores of the form the form
                                                                                                                                                                                                                                                                                                                                                                                                                                             derined by nt 4650 to 4669 and nt form two distinct sed ID No. 5 were sufficient rand committee or remains a committee or remains a committee or remains a committee or remains and committee or remains a com
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                complexes; i.e., which the eventual average and complex III;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    unlike the sequence defined by nt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           respectively.

The sequence defined by nt the sequence defined by nt the sequence has recognition which has remnatory

The NO. 5, which has remnatory

The NFKR remnatory

The NFKR remnatory

The NFKR remnatory
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       features for proteins of the NFKB regulatory

the sequences required for complex

the protein no onvious homology to earning the sequences recommended for the protein no onvious homology to earning the sequences recommended for the protein no onvious homology to earning the sequences recommended for the protein and the sequences recommended for the protein sequences recommended f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4042 to 4004 or 5EV 10 NO. 5, Which has recogn the NEKB regulatory features for proteins of the new rows.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 protein family, the sequences required for complex man family, the sequences required for complex man family, the sequences required for complex man family, many the sequences required for family, many many arms, which is family, and the sequences required for the sequences of 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 by any known regulatory protein family. The sallow form complex III may allow form complex form family or sequences required to member of the one family or sequences required to member of the one family or sequences.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              respectively.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           by any known regulatory protein family.

Have Hown regulatory protein family.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           sequences required to form complex III may allow or the ETS family or the ETS family
                                                                                                                                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                pinging of a previously uncharacterized protein binding of a previously protein binding of a previously protein to binding of a previously protein to binding of a previously the protein to binding of a previous of the protein to be a prot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                some other class of transcription factors. The of transcription factors. The of transcription of 4446 to 4469 of transcription of 4446 to 4469 of transcription of transcription
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Some other
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          nucleotide sequence defined by nt 4446 to 4469 of family

nucleotide sequence defined bind two known star family

seQ ID NO. 5 appears to bind man, wind man
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    nembers: and statis and may bind to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    additional novel members of this family. A731, and and this family to 4731, and and the area also candidate encompassing nt 4636 to TD NO. 5 are also candidate encompassing to 4753 of SRO. TD NO. 5 are also candidate and area are also candidate.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          memoers; stati and seats; of this family.

additional novel members are a analysis and additional novel members.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     encompassing nt 4636 to 4645; nt 4722 to 4731, and enamed also candidate of SEQ ID NO. 5 are also candidate of 4745 to 4753 of For proving or notice of the forest proving or no
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    binding sites for known or novel star since the sites for the common of the sites for 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ang sites for known or novel start proteins.

the sequences of the 5' recommendation of the president of the president of the sequences of the president of the proteins.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Accordingly, the sequences of the 5, flanking to the sequences of the by nt 4650 to the sequences of the by nt 4650 to the peselectin gene to NO 5 are to ARAK of are to AR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4669 and 4639 to 4646 or SEQ ID NO. proteins with frequency province and are nearly indecertional frequency province.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  recognized and bound by regulatory proteins with for recognized and bound by regulatory proteins with for recognized and bound by resulting of more requirements of more requirements.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   previously undescribed reactures and are userul ror

previously undescribed isolation of such regulatory

the identification and argument of the identification argument of the identification of the 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             the lagnification and leolation of such regulatory

the lagnification of s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   proteins. Sequences encompassing no 4446 to 4469 to and no 4745 to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             nt 4636 to 4645, nt 4722 to 4731, and nt 4743 to novel members had to novel members also bind to novel members
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30
```

of the STAT family of transcription factors and could be used for th identification and isolation of such proteins. For example, such sequences could be attached to resins for use in the isolation of unknown DNA binding proteins by affinity chromatography. As another example, such sequences could be labeled using standard methodology and used to screen for clones expressing previously unknown regulatory proteins, or functional peptides thereof, in cDNA expression libraries made from mRNA from endothelial cells, megakaryocytic cells, or other cells. Of course, any other consecutive sequence of SEQ ID NO. 5 that has been shown to define a regulatory site in the 5' flanking region of the P-selectin gene could similarly be used in such methods to isolate the particular regulatory protein(s) that bind that sequence using techniques described herein.

IV. Diagnostic Methods

5

10

15

20 The luciferase expression studies, the gel shift studies, and the lacZ transgene experiments, above, clearly demonstrate that the integrity of the 5' flanking region of the P-selectin gene is critical for gene expression in endothelial and 25 megakaryocytic cells. A disruption, deletion or other mutation in the sequence of nucleotides in this region can reduce or otherwise alter expression of the P-selectin gene, or heterologous gene properly ligated to this 5' flanking region. Accordingly, the DNA sequences of the 5' flanking 30 region of the P-selectin gene can be used as hybridization probes to detect or screen for mutations in the 5' flanking region of the Pselectin gene of individuals with abnormal levels of expression of P-selectin, particularly those 35 with elevated expression which have clinical symptoms of inflammation. In addition, DNA

molecules including the DNA sequences of the 5' flanking region of the P-selectin gene can be transcribed to yield the corresponding RNA molecules, if in the judgment of the skilled practitioner it is more desirable to use RNA probes instead of DNA probes.

5

Calculations and empirical work by Lathe and others, Lathe, J. Mol. Biol., 183, pages 1-12 (1985); Ikuta et al., Nucleic Acids Res., 15, pages 797-811 (1987); and Sambrook et al., Molecular 10 Cloning, A Laboratory Manual, Second Edition, pages 11.7, 11.8 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989), incorporated herein by reference, have established helpful guidelines for the skilled practitioner to select the length of 15 probes most sensitive to mismatches in standard hybridization protocols. For example, to detect a single mismatch in a specific DNA sequence of the mammalian genome by hybridization, a probe length of 14 to 20 nucleotides is recommended (see, for 20 example, Sambrook et al., pages 11.7-11.8; Lathe, Table 6, page 10). Accordingly, DNA and RNA molecules including DNA sequences, or the corresponding RNA sequences, which include at least 14 consecutive nucleotides of SEQ ID NO. 5, or 25 functionally equivalent molecules, for example, obtained by hybridization under stringent conditions or substitution of specific bases followed by screening for function, for use as probes in diagnostic hybridization methods to 30 detect mutations in the 5' flanking region of the P-selectin gene of individuals with altered (for example, abnormally low or high) levels of expression of P-selectin. A whole series of nucleic acid probes including nucleotide sequences 35 consisting essentially of 14 to 20 consecutive nucleotides of SEQ ID NO. 5 can be used to detect

43

mutations along the entire or a portion of the 5' flanking region of the P-selectin gene.

Standard methods to isolate DNA and RNA from mammalian cells and tissues are well known in the 5 art and can be used to prepare DNA (or RNA) for routine diagnostic screening by hybridization using the probes described herein. See, for examples of methods known to those skilled in the art which can be adapted for use herein using routine variation, 10 Sambrook et al., Molecular Cloning, A Laboratory Manual, Second Edition, pages 6.53-6.54 (DNA); pages 7.6-7.11 (RNA) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989); and Chomczyniski and Sacchi, Anal. Biochem., 162, pages 156-159 15 (1987) (RNA), the teachings of which are incorporated herein by reference. Furthermore, methods of carrying out hybridizations (for example, Southern and Northern blot methods) of nucleic acids immobilized on various supports, such 20 as nylon membranes or nitrocellulose filters, using DNA probes described herein labelled with some standard detectable marker, for example, by using commercially available biotinylated, chemiluminescent, fluorescent, enzyme or 25 radioactive labeling systems, are also routine and readily adapted to screening samples of DNA (or RNA) from individuals for alterations in the 5' flanking region of the P-selectin gene. See also, Leary et al., Proc. Natl. Acad. Sci. USA, 80, pages 30 4045-4049 (1983) (biotinylated probes); and Sambrook et al., Chapter 9 ("Analysis of Genomic DNA by Southern Hybridization"), Chapter 10 ("Preparation of Radiolabeled DNA and RNA Probes")). In addition to using membranes, the 35 advantages of probing nucleic acid samples immobilized to the plastic wells of microtiter

plates has recently been advocated, offering

44

another variation of the available methods of screening DNAs or RNAs by hybridization using nucleic acid probes (see Mitsuashi et al., Nature, 357, pages 519-520 (1992). One of ordinary skill in the art is readily able to select from a variety of standard methods the particular conditions under which hybridizations are carried out in order to diagnostically screen DNA or RNA from individuals for alterations in the 5' flanking region of the P-selectin gene using the DNA molecules described herein as probes.

V. Therapeutic Methods and Compositions

5

10

As the above luciferase expression and the lacZ transgene expression studies indicate, nucleic acid molecules containing the 5' regulatory 15 sequences of the P-selectin gene can be inserted into endothelial or megakaryocytic cells and used to regulate or inhibit heterologous gene expression in vivo. In the luciferase experiments, the 20 plasmid pOLUC was used as the vector to carry and express the various recombinant 5' flanking regionluciferase gene constructs in endothelial cells. However, other vectors, including both plasmid and eukaryotic viral vectors, may be used to express a particular recombinant 5' flanking region-gene 25 construct in endothelial or megakaryocytic cells depending on the preference and judgment of the skilled practitioner (see, for example, Sambrook et al., Chapter 16). Furthermore, a number of viral and nonviral vectors are being developed that 30 enable the introduction of nucleic acid sequences in vivo (see, for example, Mulligan, Science, 260, pages 926-932 (1993); United States Patent No. 4,980,286; United States Patent No. 4,868,116; incorporated herein by reference). Recently, a 35 delivery system was developed in which nucleic acid is encapsulated in cationic liposomes which can be

PCT/US94/09395 WO 95/06118

injected intravenously into a mammal. This system has been used to introduce DNA into the cells of multiple tissues of adult mice, including endothelium and bone marrow (see, for example, Zhu et al., Science, 261, pages 209-211 (1993); incorporated herein by reference).

10

15

20

25

30

The 5' flanking sequences of the P-selectin gene can also be used to inhibit the expression of the P-selectin gene in cells and thereby affect the inflammatory response. For example, an antisense RNA of all or a portion of the 5' flanking region of the P-selectin gene can be used to inhibit expression of P-selectin in vivo. Expression vectors (for example, retroviral expression vectors) are already available in the art which can be used to generate an antisense RNA of a selected DNA sequence which is expressed in a cell (see, for example, U.S. Patent No. 4,868,116; U.S. Patent No. 4,980,286). Accordingly, DNA containing all or a portion of the sequence of the 5' flanking region of P-selectin gene can be inserted into an appropriate expression vector so that upon passage into the cell, the transcription of the inserted DNA yields an antisense RNA that is complementary to the mRNA transcript of the P-selectin gene normally found in the cell. This antisense RNA transcript of the inserted DNA can then base-pair with the normal mRNA transcript found in the cell and thereby prevent the mRNA from being translated. It is of course necessary to select sequences of the 5' flanking region that are downstream from the transcriptional start sites for the P-selectin gene to ensure that the antisense RNA contains complementary sequences present on the mRNA. Based 35 on the transcriptional start site analysis (see above and Figure 4) sequences between 4863 and 4842 of SEQ ID NO. 5 are most likely to be transcribed.

Accordingly, the DNA to be inserted into the expression vector for antisense therapy should at least contain these sequences.

Antisense RNA can be generated in vitro also, and then inserted into cells. Oligonucleotides can 5 be synthesized on an automated synthesizer (for example, Model 8700 automated synthesizer of Milligen-Biosearch, Burlington, MA or ABI Model 380B). In addition, antisense deoxyoligonucleotides have been shown to be 10 effective in inhibiting gene transcription and viral replication (see, for example, Zamecnik et al., Proc. Natl. Acad. Sci. USA, 75, pages 280-284 (1978); Zamecnik et al.; PNAS, 83, pages 4143-4146 (1986); Wickstrom et al., Proc. Natl. Acad. Sci. 15 USA, 85, pages 1028-1032 (1988); Crooke, FASEB J., 7, pages 533-539 (1993). Furthermore, recent work has shown that improved inhibition of expression of a gene by antisense oligonucleotides is possible if the antisense oligonucleotides contain modified 20 nucleotides (see, for example, Offensperger et. al., EMBO J., 12, pages 1257-1262 (1993) (in vivo inhibition of duck hepatitis B viral replication and gene expression by antisense phosphorothicate oligodeoxynucleotides); Rosenberg et al., PCT WO 25 93/01286 (synthesis of sulfurthioate oligonucleotides); Agrawal et al., Proc. Natl. Acad. Sci. USA, 85, pages 7079-7083 (1988) (synthesis of antisense oligonucleoside phosphoramidates and phosphorothicates to inhibit 30 replication of human immunodeficiency virus-1); Sarin et al., Proc. Natl. Acad. Sci. USA, 85, pages 7448-7794 (1989) (synthesis of antisense methylphosphonate oligonucleotides); Shaw et al., 35 Nucleic Acids Res, 19, pages 747-750 (1991) (synthesis of 3' exonuclease-resistant

oligonucleotides containing 3' terminal

10

15

20

25

30

35

phosphoroamidate modifications); incorporated herein by reference).

The sequences of the 5' flanking region of Pselectin can also be used in triple helix (triplex) gene therapy. Oligonucleotides complementary to gene promoter sequences on one of the strands of the DNA have been shown to bind promoter and regulatory sequences to form local triple nucleic acid helices which block transcription of the gene (see, for example, Maher et al., Science, 245, pages 725-730 (1989); Orson et al., Nucl. Acids Res., 19, pages 3435-3441 (1991); Postal et al., Proc. Natl. Acad. Sci. USA, 88, pages 8227-8231 (1991); Cooney et al., Science, 241, pages 456-459 (1988); Young et al., Proc. Natl. Acad. Sci. USA, 88, pages 10023-10026 (1991); Duval-Valentin et al., Proc. Natl. Acad. Sci. USA, 89, pages 504-508 (1992); Blume et al., Nucl. Acids Res., 20, pages 1777-1784 (1992); Grigoriev et al., J. Biol. Chem., 267, pages 3389-3395 (1992).

Recently, both theoretical calculations and empirical findings have been reported which provide guidance for the design of oligonucleotides for use in oligonucleotide-directed triple helix formation to inhibit gene expression. For example, oligonucleotides should generally be greater than 14 nucleotides in length to ensure target sequence specificity (see, for example, Maher et al., (1989); Grigoriev et al., (1992)). Also, many cells avidly take up oligonucleotides that are less than 50 nucleotides in length (see, for example, Orson et al., (1991); Holt et al., Mol. Cell. Biol., 8, pages 963-973 (1988); Wickstrom et al., Proc. Natl. Acad. Sci. USA, 85, pages 1028-1032 To reduce susceptibility to intracellular (1988)). degradation, for example, by 3' exonucleases, a free amine can be introduced to a 3' terminal

48

hydroxyl group of oligonucleotides without loss of sequence binding specificity (Orson et al., 1991).

Furthermore, more stable triplexes are formed if any cytosines that may be present in the oligonucleotide are methylated, and also if an intercalating agent, such as an acridine derivative, is covalently attached to a 5' terminal phosphate (for example, via a pentamethylene bridge); again without loss of sequence specificity (Maher et al., (1989); Grigoriev et al., (1992).

Methods to produce or synthesize oligonucleotides are well known in the art. methods can range from standard enzymatic digestion followed by nucleotide fragment isolation (see, for 15 example, Sambrook et al., Chapters 5, 6) to purely synthetic methods, for example, by the cyanoethyl phosphoramidite method using a Milligen or Beckman System 1Plus DNA synthesizer (see also, Ikuta et al., in Ann. Rev. Biochem., 53, pages 323-356 20 (1984) (phosphotriester and phosphite-triester methods); Narang et al., in Methods Enzymol., 65, pages 610-620 (1980) (phosphotriester method). Accordingly, DNA sequences of the 5' flanking region of the P-selectin gene described herein can 25 be used to design and construct oligonucleotides including a DNA sequence consisting essentially of at least 15 consecutive nucleotides of SEQ ID NO. 5, with or without base modifications or intercalating agent derivatives, for use in forming 30 triple helices specifically within the 5' flanking region of a P-selectin gene in order to inhibit expression of the gene in endothelial or megakaryocytic cells.

In addition, Rosenberg et al. (PCT WO 93/01286) teach the topical application of compositions including antisense oligonucleotides, generally 15-30 nucleotides in length, and

35

49

PluronicTM (polypropyl ne oxide - polyethylene oxide block copolymer) gel, which is liquid at 4°C and solid at room temperature. Cells in direct contact with the gel compositions will take up the antisense oligonucleotides which will then basepair to the complementary mRNA and inhibit expression of the target gene. Other biodegradable polymers can be substituted for the pluronicsTM such as the polylactic acid and polyglycolic acid copolymers, polyethylene, and polyorthoesters which can be used to form implants for controlled release of the nucleic acid directly to a tissue where expression is desired.

5

10

15

20

25

30

35

Compositions including Pluronic™ gel and the antisense oligonucleotides or oligonucleotides complementary to one of the strands of the 5' flanking region (for triplex formation) can be delivered locally to the endothelial cells in blood vessels by using a catheter which is advanced into a vessel and applying the composition directly to the endothelial tissue. Other means of delivering such compositions locally to cells include using infusion pumps (for example, from Alza Corporation, Palo Alto, California) or incorporating the compositions into polymeric implants (see, for example, P. Johnson and J.G. Lloyd-Jones, eds., Drug Delivery Systems (Chichester, England: Ellis Horwood Ltd., 1987), which can effect a sustained release of therapeutic compositions to the immediate area of the implant.

Inhibition of Inflammation by inhibition of P-selectin expression.

The above methods and compositions may be used locally or systemically to inhibit the expression of P-selectin in vivo and thereby inhibit inflammation. The ability to inhibit or otherwise regulate the inflammatory response at a site is desirable therapeutically because an inflammatory

response may cause damage to the host if unchecked, since leukocytes release many toxic molecules that can damage normal tissues. These molecules include proteolytic enzymes and free radicals. Examples of pathological situations in which leukocytes can cause tissue damage include injury from ischemia and reperfusion, bacterial sepsis and disseminated intravascular coagulation, adult respiratory distress syndrome, tumor metastasis, and atherosclerosis. Systemic administration of compounds to achieve chronic systemic down-regulation of P-selectin expression may also be useful, for example, in a chronic disorder such as rheumatoid arthritis.

There are a number of other common clinical disorders in which ischemia and reperfusion results in organ injury mediated by adherence of leukocytes to vascular surfaces, including strokes; mesenteric and peripheral vascular disease; organ transplantation; and circulatory shock (in this case many organs might be damaged following restoration of blood flow).

Bacterial sepsis and disseminated intravascular coagulation often exist concurrently in critically ill patients. They are associated with generation of thrombin, cytokines, and other inflammatory mediators, activation of platelets and endothelium, and adherence of leukocytes and aggregation of platelets throughout the vascular system. Leukocyte-dependent organ damage is an important feature of these conditions.

Adult respiratory distress syndrome is a devastating pulmonary disorder occurring in patients with sepsis or following trauma, which is associated with widespread adherence and aggregation of leukocytes in the pulmonary circulation. This leads to extravasation of large

51

amounts of plasma into the lungs and destruction of lung tissue, both mediated in large part by leukocyt products.

Two related pulmonary disorders that are often fatal are in immunosuppressed patients undergoing allogeneic bone marrow transplantation and in cancer patients suffering from complications that arise from generalized vascular leakage resulting from treatment with interleukin-2 treated LAK cells (lymphokine-activated lymphocytes). LAK cells are known to adhere to vascular walls and release products that are presumably toxic to endothelium. Although the mechanism by which LAK cells adhere to endothelium is not known, such cells could potentially release molecules that activate endothelium and then bind to endothelium by mechanisms similar to those operative in neutrophils.

10

15

20

25

30

35

Tumor cells from many malignancies (including carcinomas, lymphomas, and sarcomas) can metastasize to distant sites through the vasculature. The mechanisms for adhesion of tumor cells to endothelium and their subsequent migration are not well understood, but may be similar to those of leukocytes in at least some cases. The association of platelets with metastasizing tumor cells has been well described, indicating a role for platelets in the spread of some cancers.

Platelet-leukocyte interactions are believed to be important in atherosclerosis. Platelets might have a role in recruitment of monocytes into atherosclerotic plaques; the accumulation of monocytes is known to be one of the earliest detectable events during atherogenesis. Rupture of a fully developed plaque may not only lead to platelet deposition and activation and the

52

promotion of thrombus formation, but also the early recruitment of neutrophils to an area of ischemia.

Modifications and variations of the present invention, will be recognized by those skilled in the art from the foregoing detailed description. It is understood that such modifications and variations are intended to come within the scope of this invention as defined in the specification, and that this invention is not limited by the specific embodiments that have been presented by way of example.

5

10

SEQUENCE LISTING

TITLE OF INVENTION: Expression Control Sequences of the P-Selectin Gene the University of Oklahoma APPLICANT: Board of Regents of GENERAL INFORMATION: (T)

NUMBER OF SEQUENCES: 17

CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Patrea L. Pabst

STREET: 1100 Peachtree Street, Suite 2800 (E) (C)

CITY: Atlanta

STATE: GA

COUNTRY: USA

ZIP: 30309-4530

COMPUTER READABLE FORM:

3

MEDIUM TYPE: Floppy disk (A)

COMPUTER: IBM PC compatible

(B) ΰ

OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.25

ATTORNEY/AGENT INFORMATION (viii)

REGISTRATION NUMBER: 31,284 NAME: Pabst, Patrea L. (A)

(B)

(ix)

TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (404)-815-6508

TELEFAX: (404)-815-6555 (B)

(2) INFORMATION FOR SEQ ID NO: 1:

(A) LENGTH: 35 base pairs SEQUENCE CHARACTERISTICS

STRANDEDNESS: single TYPE: nucleic acid (B) ΰ

TOPOLOGY: linear <u>e</u>

MOLECULE TYPE: synthetic DNA

HYPOTHETICAL: NO

ANTI-SENSE: yes

FEATURE:

(A) NAME/KEY: misc_feature

LOCATION: 12

OTHER INFORMATION: /function= "N is inosine." <u>e</u>e

ANTI-SENSE: yes

(iv)

```
OTHER INFORMATION: /function= "The nucleotide at position 15 can also
                                                                                                                                                               OTHER INFORMATION: /function= "The nucleotide at position 28 can also
                                                                                                                                                                                                                                                                                                                                                                                                              35
                                                                                                                                                                                                                                                                                      JOURNAL: Abstract 1238 Supplement II Circulation
                                                                                                                                                                                                                                                                                                                                                                    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
                                                                                                                                                                                                                                                                   McEver, Rodger P.
                                                                                                                                                                                                                                                                                                                                                                                                             GCTGTCCACT GNCCGAGGTT GTCACAGCGC ACAAT
                                                                                                                                                                                                                          (A) AUTHORS: Johnston, G. I. Cook, R. G.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MOLECULE TYPE: synthetic DNA
                                                                                                            (A) NAME/KEY: misc_feature(B) LOCATION: 28(D) OTHER INFORMATION: /final
                  NAME/KEY: misc_feature
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (A) LENGTH: 35 base pairs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    STRANDEDNESS: single
                                                                                                                                                                                                                                                                                                                                                                                                                                                  (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS:
                                                                                                                                                                                                     PUBLICATION INFORMATION:
                                                                                                                                                                                                                                                                                      (C) JOURNAL: Abstract 1
(D) VOLUME: 78
(F) PAGE: II-310
(G) DATE: October-1988
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TYPE: nucleic acid
                                                                                                                                                                                                                                               Cook, R.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D) TOPOLOGY: linear
                                       LOCATION: 15
                                                                                                  (ix) FEATURE:
(ix) FEATURE:
                                                                                                                                                                                   or C."
                                                         <u>e</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (<u>a</u>)
                    (B)
                                                                              be A or C."
                                                                                                                                                                                   be A,
```

(A) NAME/KEY: misc_feature (B) LOCATION: 12 (B) LOCATION: 12 (B) LOCATION: 15 (B) LOCATION: 15 (B) LOCATION: 15 (D) OTHER INFORMATION: /function= "The nucleotide at postence (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 28 (D) OTHER INFORMATION: /function= "The nucleotide at postence (B) LOCATION: 28 (D) OTHER INFORMATION: /function= "The nucleotide at postence of chemology of the content of content of the content
--

1440	出しつが出りでしませ		プロンママンロンファ	正しいが出来でいます。 ひょうしゅう かまりゃくかん こうしゅう そうしかまり そうしょ ようかくじじょうしゃ こうしょうしゅつ かんしゅう しゅうしゅう しゅう 	ないが出げないい	出る出 ながかないのか
1380	GCTTTGCAGT	AGTCTGTCAA	CACCAGCCCC	TTCGGTGTGA TAACTTGGGA CAGTGGACAG CACCAGCCCC AGTCTGTCAA GCTTTGCAGT	TAACTTGGGA	TTCGGTGTGA
1320	GCCGATATAG	GCTGAGAGGA	AAGGTTTCAT	ATGACACCAA CTGTAGCTTC CGCTGTGCTG AAGGTTTCAT GCTGAGAGGA GCCGATATAG	CTGTAGCTTC	ATGACACCAA
1260	GCGTTTCAGT	ATCCTTGAGA	ATTGCTCTCC	CGCTGGAGAG TCCTGTCCAC GGAAGCATGG ATTGCTCTCC ATCCTTGAGA GCGTTTCAGT	TCCTGTCCAC	CGCTGGAGAG
1200	TCGTGTGAGC	TGAGGCTATT	TGCCAACCTG	GCATTGACTC TGGACACTGG TCTGCACCCT TGCCAACCTG TGAGGCTATT TCGTGTGAGC	TGGACACTGG	GCATTGACTC
1140	ATGCTCCGCT	GGGCTTGGAC	ACAGAGTGAG	CCAGCTGCAA ATTTGAGTGC CAGCCCGGCT ACAGAGTGAG GGGCTTGGAC ATGCTCCGCT	ATTTGAGTGC	CCAGCTGCAA
1080	GCCTATGGCT	CACTGCTTTT	TTCATCCGCT	AAGCCCCCAG TGAAGGAACC ATGGACTGTG TTCATCCGCT CACTGCTTTT GCCTATGGCT	TGAAGGAACC	AAGCCCCCAG
1020	CAGCACCTGG	TGTGCAGTGT	TGTGTAAAGC	CCTCGGGGGT ATGGACAGCC CCAGCCCCAG TGTGTAAAGC TGTGCAGTGT CAGCACCTGG	ATGGACAGCC	CCTCGGGGGT
960	CAATGCACAG	GGAAGTGGTG	TAGTTGGACC	GCAGCTTCAG TTGTGAAGAG GGATTTGCAT TAGTTGGACC GGAAGTGGTG CAATGCACAG	TTGTGAAGAG	GCAGCITCAG
006	CAGTCTAGCT	ATTCCAGCAT	CTGCAAAAGC	CTGAACGAGG AAACATGATC TGCCTTCATT CTGCAAAAGC ATTCCAGCAT CAGTCTAGCT	AAACATGATC	CTGAACGAGG
840	CTGAAGATTC	Grecceacce	TAGCTGCCCA	GAATCTGGAC AAATAAGCCT CCACAGTGTT TAGCTGCCCA GTGCCCACCC CTGAAGATTC	AAATAAGCCT	GAATCTGGAC
780	TTGGCTTCTG	GCTGGAATGC	GGCCCAGCAA	TCCACTGCAC TGACGGGTAC CAAGTAAATG GGCCCAGCAA GCTGGAATGC TTGGCTTCTG	TGACGGGTAC	TCCACTGCAC
720	CAGTGCAGCT	TTTTAACTCG	GAAACTTCTC	ACGTGCTCAT GAACTGCAGC CACCCTCTGG GAAACTTCTC TTTTAACTCG CAGTGCAGCT	GAACTGCAGC	ACGTGCTCAT
099	CTCCCTCAAC	AGAACTTGAG	GAGAGTGTGG	GATTCTATGG GCCAGAATGT GAATACGTGA GAGAGTGTGG AGAACTTGAG CTCCCTCAAC	GCCAGAATGT	GATTCTATGG
009	TGTTACCCTG	CACCTGCTCC	TCGGGAACTA	GCAGCAAACA AGGAGAGTGC CTCGAGACCA TCGGGAACTA CACCTGCTCC TGTTACCCTG	AGGAGAGTGC	GCAGCAAACA
540	GACATGTCCT	CTCCTGCCAG	GTTACACAGC	AGCACTGCTT GAAGAAAAAG CACGCATTGT GTTACACAGC CTCCTGCCAG GACATGTCCT	GAAGAAAAAG	AGCACTGCTT
480	TGGAATGATG	CCCTGGCAAG	GTCCGTCAGC	ACGAGGACTG CGTGGAGATA TACATCAAGA GTCCGTCAGC CCCTGGCAAG TGGAATGATG	CGTGGAGATA	ACGAGGACTG
420	AAAAGGAACA	ACCTAACAAC	CTGATAATGA	AGGCTCTCAC CAACGAGGCT GAGAACTGGG CTGATAATGA ACCTAACAAC AAAAGGAACA	CAACGAGGCT	AGGCTCTCAC
360	GGAACCAAAA	GACATGGGTG	ATAAGACATG	CCTACTACTG GATTGGGATC CGAAAGAACA ATAAGACATG GACATGGGTG GGAACCAAAA	GATTGGGATC	CCTACTACTG

2580	CCTTAGATTA	CATGGAATTA	GAATCAAAGA	CCASCINCTIFIA AGGITTINGCAT AAACACCCAT GAATCAAAGA CATGGAATTA CCTTAGATTA	AGGTTTCCAT	☆ は は な む む む む む む む む む む む む む む む む む
2520	GCATTTGACC	TACAAACGCT	ATGGAGTTTT	CCTTGAATCC TCACAGCCAC CTAGGAACAT ATGGAGTTTT TACAAACGCT GCATTTGACC	TCACAGCCAC	CCTTGAATCC
2460	GGGAAATGCC	AAAAGATGAT	GTTTCAGACA	GTGGGACGCT CCTGGCTTTG CTAAGAAAGC GTTTCAGACA AAAAGATGAT GGGAAATGCC	CCTGGCTTTG	GTGGGACGCT
2400	CTGATAATGG	TACAATAGGT	CGGTGGCTTC	TCCAGGAAGC CCTGACTTAC TTTGGTGGAG CGGTGGCTTC TACAATAGGT CTGATAATGG	CCTGACTTAC	TCCAGGAAGC
2340	CCATTGACTA	CCAAGCAGGA	TGCCAACCTG	GCCAAGAGAA TGGCCACTGG TCAACTACCG TGCCAACCTG CCAAGCAGGA CCATTGACTA	TGGCCACTGG	GCCAAGAGAA
2280	CAAACAGCAT	TGGCTCTGCA	AGTTACTTAA	CAATCTGCTC TTTCCATTGT CTAGAGGGCC AGTTACTTAA TGGCTCTGCA CAAACAGCAT	TTTCCATTGT	CAATCTGCTC
2220	AGTTATGGAT.	GGGAAACTTC	CCAACCTCTG	ATGTTAATAA GCCAATAGCG ATGAACTGCT CCAACCTCTG GGGAAACTTC AGTTATGGAT	GCCAATAGCG	ATGTTAATAA
2160	TCAGAACTAC	TGTGAAATGC	CATGCAGAGC	CTTCAGGACA ATGGACAGCA GTAACTCCAG CATGCAGAGC TGTGAAATGC TCAGAACTAC	ATGGACAGCA	CTTCAGGACA
2100	AGCTGCAGAC	CAGCACTCTC	TCATAGGAGA	CTGCAACGCT GGATTCACAC TCATAGGAGA CAGCACTCTC AGCTGCAGAC	CTGCAACGCT	GTTACTTTGG
2040	AATACCACTT	CTTTGGTTTŢ	ATCCGGGAAC	CTGGGCAGGG AACCATGTAC TGTAGGCATC ATCCGGGAAC CTTTGGTTTT AATACCACTT	AACCATGTAC	CTGGGCAGGG
1980	CTCACCACTC	ATGTCCAGCC	CAGGGTTGCA	CCTGCAAAGG CATAGCATCA CTTCCTACTC CAGGGTTGCA ATGTCCAGCC CTCACCACTC	CATAGCATCA	CCTGCAAAGG
1920	ACTCCACCAA	ATGGTCAGCT	CTTCTGGAAG	TGGAGGGGCC CAATAATGTG GAATGCACAA CTTCTGGAAG ATGGTCAGCT ACTCCACCAA	CAATAATGTG	TGGAGGGCC
1860	GGCTTTAAGC	TTGTAACAAT	GTCATTTCTC	GGCTCCACCT GTCATTTCTC TTGTAACAAT GGCTTTAAGC	CTCGTGGAGA ATTCAATGTT	CTCGTGGAGA
1800	TGTTCTGACA	CAGCCTGGAT	CAGAGCAGGG	AAGCCATCAA GTGCCCAGAA CTCTTTGCCC CAGAGCAGGG CAGCCTGGAT TGTTCTGACA	GTGCCCAGAA	AAGCCATCAA
1740	CCAATGTGTG	AGACTCCCCA	GACGCTGGAC	GACCAGAAAG ATTGGATTGT ACTCGATCGG GACGCTGGAC AGACTCCCCA CCAATGTGTG	ATTGGATTGT	GACCAGAAAG
1680	TCTTTGTCTG	CGAGGGATAT	TCATCTGTGA	GAAGTICCAG ITAIAAAICC ACAIGICAAI ICAICIGIGA CGAGGGAIAI ICIIIGICIG	TTATAAATCC	GAAGTTCCAG
1620	CAACCTCTTG	GACCTGTGTT	ATGGAACAAT	TICCCIGCAC ACCITIGCIA AGCCCICAGA AIGGAACAAI GACCIGIGII CAACCICIIG	ACCTTTGCTA	TICCCIGCAC
1560	TGCCAAGCCA	TCCTCCAGAA	GGAATTCTGT	GTGTGCTACA GTGCTTGGCT ACTGGAAACT GGAATTCTGT TCCTCCAGAA TGCCAAGCCA	GTGCTTGGCT	GTGTGCTACA
1500	GTGGGAGCAA	CTIGCICCIG	GCAATGAAGG	TTAGGTACCA GTCAGTCTGC AGCTTCACCT GCAATGAAGG CTTGCTCCTG GTGGGAGCAA	GTCAGTCTGC	TTAGGTACCA

GCTCTGGACC AGCCTGTTGG ACCGCTCTG GACCAACCCT GTTTCCTGAG TTTGGGATTG	AGCCTGTTGG	Acceectere	GACCAACCCT	GTTTCCTGAG	TTTGGGATTG	2640
TGGTACAATC	TCAAATTCTC	AACCTACCAC	CCCTTCCTGT	CCCACCTCTT	CTCTTCCTGT	2700
AACACAAGCC	ACAGAAGCCA	GGAGCAAATG	TTTCTGCAGT	AGTCTCTGTG	CTTTGACTCA	2760
CCTGTTACTT	GAAATACCAG	TGAACCAAAG	AGACTGGAGC	ATCTGACTCA	CAAGAAGACC	2820
AGACTGTGGA	GAAATAAAAA	тасстсттта	TTTTTTGATT	GAAGGAAGGT	TTTCTCCACT	2880
TTGTTGGAAA	GCAGGTGGCA	TCTCTAATTG	GAAGAAATTC	CTGTAGCATC	TTCTGGAGTC	2940
TCCAGTGGTT	GCTGTTGATG	AGGCCTCTTG	GACCTCTGCT	CTGAGGCTTC	CAGAGAGTCC	3000
TCTGGATGGC	ACCAGAGGCT	GCAGAAGGCC	AAGAATCAAG	CTAGAAGGCC	ACATGTCACC	3060
GIGGACCITC	CTGCCACCAG	TCACTGTCCC TCAAATGACC	TCAAATGACC		CAAAGACCAA TATTCAAATG	3120
CGTAATTAAA AGAATTTTCC		ည				3142
(2) INFORMA (1) SE (1) SE (1) (1) MO (xi) SE	INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 830 amino (B) TYPE: amino acid (C) STRANDEDNESS: sing (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: S	MATION FOR SEQ ID NO:4: SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 amino ac (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear MOLECULE TYPE: peptide SEQUENCE DESCRIPTION: SEQ	i: CS: acids Igle			
Met Al	a Asn Cys (Ala Asn Cys Gln Ile Ala 5	Ile Leu Tyr 10	Gln Arg	Phe Gln Arg Val	
Val Phe	Gly Ile 20	Ser Gln Leu Leu	Leu Cys Phe 25	Ser Ala	Leu Ile Ser Glu 30	
Leu Thr	ır Asn Gln I 35	Asn Gln Lys Glu Val Ala 35 40		Ala Trp Thr Tyr His 45	is Tyr Ser Thr	

Tyr	Asn 80	Lys	Asn	Asn	Lys	Thr 160	Glu	Pro	His	Ser	Ser 240
	Leu	Arg 95	Thr	Asn	Gly	Tyr	Leu 175	Glγ	Gln	Asn	Pro
Cys Gln Asn Arg 60	Tyr	Ile	Leu 110	Arg	Pro	Cys	Cys	Tyr 190	Pro	Phe	Gly
Gln	Asp	Ile Gly	Ala	Lys 125	Ala	Leu	Glu	Phe	Leu 205	Ser	Val Asn
Cys 60	Ile		Lys	Asn	Ser 140	Ala	Gly	Gly	Glu	Phe 220	
Tyr	G1u 75	Trp	Lys	Asn	Pro	His 155	Gln	Pro	Leu	Asn	Gln 235
Ser Arg Lys	Asn	Tyr 90	Thr	Pro	Ser	Lys	Lys 170	Tyr	G1u	Gly	Tyr
Arg	Lys	Tyr	G1y 105	Glu	Lys	Lys	Ser	Cys 185	$\mathtt{G1}\mathtt{y}$	Leu	Gly
Ser	Asn	Ser	Val	Asp Asn 120	Ile	Lys	Cys	Ser	Cys 200	Pro	Thr Asp Gly
Ile 55	Gln	Ser	Trp	Asp	Tyr135	Leu	Ser	Cys	Glu	His 215	
Asn	Ile 70	Tyr	Thr	Ala	Ile	Cys 150	Met	Thr	Arg	Ser	Cys 230
Trp	Ala	Tyr 85	Trp	Trp	Glu	His	Asp 165	Tyr	Val	Cys	His
Ser	Val	Pro	Thr 100	Asn	Val	Glu	Gln	Asn 180	Tyr	Asn	Phe
Tyr	Leu	Leu	Lys	Glu 115	Cys	Asp	Cys	Gly	Glu 195	Met	Ser
Ala 50	Asp	Val	Asn	Ala	Asp 130	Asn	Ser	Ile	Cys	Leu 210	Суs
Lys	Thr 65	Lys	Asn	Glu	Glu	Trp 145	Ala	Thr	Glu	Val	Gln 225

Gln	Asn	Cys	Val	Lys 320	Asp	Phe	Суs	Ile	Ser 400	Cys	Asn
Pro Pro 255	Gly	Ser	Val	Cys	Met 335	Lys	Arg	Ala	Cys	Arg 415	Asp
Pro	Arg 270	Ser		Val	Thr	Cys 350	Leu	Glu	Asp	Phe	Cys 430
Asn Lys	Glu	Gln 285	Pro Glu	Pro	Gly	Ser	Met 365	Суs	Met	Ser	Arg
Asn	Pro	His	G1y 300	Ala	Glu	Ser	Asp	Thr 380	Ser	Cys	Val
Thr	Ile	Phe Gln	Leu Val	Pro 315	Ser	Tyr Gly	Arg Gly Leu	Pro	G1y 395	Asn	Asp Ile Val
Trp 250	Lys		Leu	Ala	Pro 330		Gly	Leu	His	Thr 410	Asp
Ile	Leu 265	Ala	Ala	Thr	Ala	Ala 345	Arg	Pro	Val	Asp	Ala 425
Gly	Pro	Lys 280	Phe	Trp	Glu	Phe	Val 360	Ala	Pro	Tyr	G1 y
Ser	Pro	Ala	G1y 295	Val	Leu	Ala	Arg	Ser 375	Ser	Gln	Leu Arg Gly Ala
Ala	Cys	Ser	Glu	G1y 310	His	Thr	Tyr	Trp	Glu 390	Phe	Leu
Leu 245	Gln	His	Glu	Ser	Gln 325	Leu	Pro Gly	His	Leu	Ala 405	Met
Cys	Ala 260	Leu	Cys	Ala	Cys	Pro 340		Ser Gly His	Pro	Arg	Phe 420
Leu Glu	Ala	Cys 275	Ser	Thr	Gln	His	Gln 355		Glu	Leu	Gly
Leu	Leu	Ile	Phe 290	Cys	Val	Val	Cys	Asp 370	Cys	Ser	G1u
Lys	Cys	Met	Ser	Gln 305	Ala	Cys	Glu	Ile	Ser 385	Pro	Ala

Phe Phe Arg Trp Ser Ala Trp 560 Phe Lys Leu Pro 480 cys Pro Glu Gly Pro Leu Gly Leu 575 Glu Arg His Thr 495 Thr Asp Glu Gly Ala Leu Gln 445 Asn Gla Gly G1y 590 **Cys** 510 Cys Cys Ser Gln Cys Leu Ala Ser Ile Lys Cys Pro 570 Arg \mathtt{Thr} Pro Gln 525 G1y 605 G1y 620 Arg Thr Asn **Cys** 540 Asn 460 Phe Ile Trp Thr Ala Pro Ala Pro Val Cys Gln 440 Thr Met Thr Cys Val 520 Ser Asp Cys Asn Ile Thr 555 Thr Ser Ser 475 Gln Ala Asp Leu Pro Val Pro Asn Glu Ala Arg Val 450 Cys Gln Phe Leu Cys 490 Thr Cys 585 Ser **Cys** 505 Arg Leu Asp Cys Glu Ala Tyr Gln Ser Val Gly Ala Ser Val Glu Cys 3 615 cys Phe 600 Ser Leu Asp Pro Pro Glu Ser Thr Cys His Thr 535 Pro Gln Asn Gly Met Glu 550 Gly Pro Asn Asn Val 610 Ser Gly Pro 565 Val Pro Tyr Lys Phe Gly Ala Phe Arg 465 Val 485 Gln 580 Pro Gly Leu Leu Leu Ser 500 G1Y 595 ser 515 Ser Ser Glu Leu Ser Gln 435 Asn Trp Asn Pro Leu Ser 530 Asn Val Leu Gly Glu Ser Thr Ala Gln Gly Leu Ser

Leu 640	Arg	Cys	Pro	Cys	Leu 720	Glu	Gly	Ile	Gly	Arg 800	Gly
	Cys 7 655	Gly	Arg	Lys	Asn	Leu 735	Asn	Thr	Ile	Phe	Leu Gly 815
ero Sro	Tyr (Phe (670	Cys i	Val	Ser	Cys	Glu 750	Leu	Thr	Arg	His
ihr E	Met 1	Tyr 1	Ser (685	Ala	Cys	His	Gln	Pro 765	Ser	Lys	Ser
Pro Thr Pro Gly	Thr 1	cys ?	Leu	Arg 700	Asn	Phe	Cys	Gly	Ala 780	Arg	His
Leu 635	Gly	Thr	Thr	Cys	Met 715	Ser	Ala	Ala	Val	Leu 795	Pro
Ser	Gln 650	Thr	Ser	Ala	Ala	Cys 730	Thr	Gln	Ala	Leu	Asn 810
	Gly	Asn 665	Asp	Pro	Ile	Ile	Gln 745	Cys	Gly	Ala	Leu
Ile Ala	Pro	Phe	G1Y 680	Thr	Pro	Ser	Ala	Thr 760	Gly	Leu	Pro
Gly	Thr	Gly	Ile	Val 695	Lys	Gly	Ser	Pro Thr 760	Phe 775	Leu	Cys
Lys 630	Thr	Phe	Leu	Ala	Asn 710	Tyr	$_{ m G1y}$	Val	Tyr	Thr 790	Lys
Cys		Thr	Thr	Thr	Val	Ser 725	Asn	Thr	Leu. Thr	Gly	G1y 805
Thr	Ala Leu 645	G1y 660	Phe	Trp	His	Phe	Leu 740	Thr		G1y	Asp
Pro	Pro	Pro	G1y 675	Gln	Leu	Asn	Leu	Ser 755	Ala	Met	Asp
Pro	Cys	His	Ala	G1 <u>y</u> 690	Glu	Gly	Gln	Trp	Glu 770	Ile	Gln Lys Asp
Thr 625	Gln	His	Asn	Ser	Ser 705	Trp	Gly	His	Gln	Leu 785	Gln

540

480

900

099

780

300

240

360

420

180

9

Pro	830
Ser	
Pro	
Asp	
Phe	
Ala	825
Ala	
Asn	
Thr	
Phe	
Val	820
Gly	
Tyr	
hr	

INFORMATION FOR SEQ ID NO:5: 뜹 (5)

LENGTH: 4866 base pairs SEQUENCE CHARACTERISTICS: (i)

TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:5: (ii) (xi)

120 CACCAAATTG TTTCTCTGTG TTTGCTTCAA AGTAACTGAG CTTCTTTAAA AACAATTATC TTATGATTTC AATCTTTCTG TTACATTTCT TATGTTGTGC ATTTATTGTT TCTCTGATTT AAGCTTCCTG TACCTGGAAT ATTAATATTT TATTTCAGAT TTGGGAAATT TTCAGCTAGC ATGCAGTCTC ACTCTGTCAC CCAGGCTGGA GTGCAGTGGC ATGATCTCAG CTCACTGCAA CCTTTGCCTT CTAGGTTGAA GAGATTCTGC TGCCTCAGTC TCCCCATGAG CTGGGATTAC AGCATGTGCC ACAATCCCTG GCTAATTTTT TTGTATTTTT AGTAGAGACT GGGTTTCACC ATGITGGICA GGCIGGICIT GACTCCIGAC CICAGGIGAT CCACICACCI IGGCCICCCA AAGCGCTGGG ATTATGGCAT GAGCCACTGA GTCTGGCTGA ATGTTAGCTC TCTTGATGCT GTCCCATAAA TCTTGTAGGC TTTCATCATT TCTTTTCATT CTTTTTTCTC CTCTCACTGT ATATITICAA AAACCIGICI ICAGIICACA GAIICITITCI ICIGCIIGAI CAAGICIGCI ACTGGTGATT TCTACTGCAT TTCTCACTTC ATTCATTATA TTTTTCAGCT CCAATTTCTT AATCTTTAAA TAIGCTTTCT GACCCCCTTT TCCTCTATTT TCTCCTTCTT AAACTACTGT

1920	ン山々じじじじ山山山	出してないないがな	しかなけな中で山つ山	なけるないけいかいか	しょうしょう しょくしょく しょくしょく しょくしょく しょうしょく しょくしょく しょく		
1860	GTGCACTGCA	ACATGAGGAG	AGTGTCTGAG	TTCACAACAG CAGTGACTCC AGTGTCTGAG ACATGAGGAG GTGCACTGCA	TTCACAACAG	TGAGATCTAG	
1800	GGTCCCAGGG	CTTGGCTTGG	ACAGAGAGAA	TGTCTGGAGC AAAGACTTTC ACAGAGAA CTTGGCTTGG	TGTCTGGAGC	GCTGAACTAG	
1740	TTCTACAGTG	TGGGTTACCT	GTTGAGAATA	CAGCTCTGGA	AGGTGTGCAC ATTACTACAG CAGCTCTGGA GTTGAGAATA TGGGTTACCT TTCTACAGTG	AGGTGTGCAC	
1680	TCTGGAGCGC	AGAGACAGGG	GTACAGCCTC	GGTGTGTGTA	GCTCTGGTGT TGGAGGTGTG GGTGTGTA GTACAGCCTC AGAGACAGGG TCTGGAGCGC	GCTCTGGTGT	
1620	TATAGTGGTG	ACTAGCTCAC	CAGGGTGTTC	CTCTAGGACC	CAGGCACAGA GAAACCTTGA CTCTAGGACC CAGGGTGTTC ACTAGCTCAC TATAGTGGTG	CAGGCACAGA	
1560	AGAGCATGGA	GCTGGTGACT	TGGTGGCTGA	TAGCTCTCCT	CCAGGATCCA GGGTGTGGGC TAGCTCTCCT TGGTGGCTGA GCTGGTGACT AGAGCATGGA	CCAGGATCCA	
1500	TACAGTGGCT	TACGCAGAGC	ACTGCATGCA	CAGGGACTTT	TTATAAAGCA GCTAAGGAGC CAGGGACTTT ACTGCATGCA TACGCAGAGC TACAGTGGCT	TTATAAAGCA	
1440	ATGCAGGTAC	GGTGTGTAAA	CATTGATAAT	CTTACTATCA	GTGCCCAAGG CACAGGCATA CTTACTATCA CATTGATAAT GGTGTGTAAA ATGCAGGTAC	GTGCCCAAGG	
1380	AATGGTACCA	CAATTGTAGC	GCACCAGATT	AGGGACCACA	TGAAGCATGG GCATGCATGG AGGGACCACA GCACCAGATT CAATTGTAGC AATGGTACCA	TGAAGCATGG	
1320	AGCCAAGGCC	AGTGGCCAAG	GTGCCCATGG	CTGATGAACA	GGTGGTGGTG ACACTGGTGT CTGATGAACA GTGCCCATGG AGTGGCCAAG AGCCAAGGCC	GGTGGTGGTG	
1260	GCCTGCTCCT	TAACTTGCAG	GAATTAGGTC	ATCCCTCTTG	GGGAAGTCAT GACTGAGGAC ATCCCTCTTG GAATTAGGTC TAACTTGCAG GCCTGCTCCT	GGGAAGTCAT	
1200	TTCCCCACCT	ATCTCTTTT	AGTCCTCCAT	TGAGGTTTTC AATTGTGACA AGTCCTCCAT ATCTCTTTTT	TGAGGTTTTC	ATGAGGCTGT	
1140	TACAGTGGCA	TGTGGGTATC	AGGCCAACAC	AATACTACAG GGATCCTTAG AGGCCAACAC TGTGGGTATC		GGTGTTAGTG	
1080	AGCTGAGGTT	CAGATCTGTC	GGTCTCCATG	CAGTAGGGGC AAAGCTGTG GGTCTCCATG CAGATCTGTC AGCTGAGGTT		GTTCTGACTT	
1020	GGATGCAAAA	recerecere	GCGAGGATGC	GTGGAATAAT	GTGGAGAAAT ACCTTCTTAT GTGGAATAAT GCGAGGATGC TGGCTGGGTG GGATGCAAAA	GTGGAGAAAT	
960	GCTGACTTTG	GGCTGTATGG	CCCAATTTCA	TGAGCATCTG GTGGATCTGC CCCAATTTCA GGCTGTATGG GCTGACTTTG		CACTGCTGTC	
006	TGCTGCCTTA	TCATGTTTCT	ATTTGGGTTT	TCTTAGGTGG TGATATTTTA ATTTGGGTTT TCATGTTTCT		TTATTGTGTT	
840	TACTGGGAAA	TTGGGTCAGC	TCCATTTCTT	TTTGTAGTAC	TIGAAICCAI IGICAGGCCA ITIGIAGIAC ICCAITICII IIGGGICAGC IACIGGGAAA	TTGAATCCAT	

3060	中ではいりませる	中 く 山山 く ご 山 ご ご 山	中でする中の中の中の中の中の中の中の中の中の中の中の中の中の中の中の中の中の中の中の	がある。文字をして中中へし中	асантавант сантпавнее посттавляе потанент неепеантин вапоствия	ATTACA	
3000	TGTTCCAAAC	TGATAGGTAT	CTTAACAGCG	TAAACTTACA	ATAGAATAAT AGCCAACACT TAAACTTACA CTTAACAGCG TGATAGGTAT TGTTCCAAAC	ATAGAATAAT	
2940	GGCAAGTCTT	AAGACATGGA	Taagaacaga	TGAGTGAAAG	ATGCCAAAAA GAGGAGCTGG TGAGTGAAAG TAAGAACAGA AAGACATGGA GGCAAGTCTT	ATGCCAAAAA	
2880	ACATGAGGCA	ATTTTTCTA	GACTATATAT	CCCCATCTGA	TACATACCAC ACTTCTTCAT CCCCATCTGA GACTATATAT ATTTTTTCTA ACATGAGGCA	TACATACCAC	
2820	CCTACTAGTC	AAAAAAAGAA	ACCCIGICIC	GCAGAGTGAG	ACTGCACTCC AGCCTGGGCC GCAGAGTGAG ACCCTGTCTC AAAAAAAAAA	ACTGCACTCC	
2760	TAATCATGCC	CAGCAAGCAG	GTCAAGGCTG	AGCCCAGGAG	TGAGGTGGGA GAATTGCTTG AGCCCAGGAG GTCAAGGCTG CAGCAAGCAG TAATCATGCC	TGAGGTGGGA	
2700	CTCAGGAGGC	GTCCCAGCTA	сасатстата	AGTGATGGCA	TTTTTTTTA ATTAGCCAGT AGTGATGGCA CACATCTATA GTCCCAGCTA CTCAGGAGGC	TTTTTTTA	
2640	TCTAGAGATT	AGACCCTATC	AAATATAGAG	CCAGCCTGGG	TTGAGCCCAG GAATTCAAGA CCAGCCTGGG AAATATAGAG AGACCCTATC TCTAGAGATT	TTGAGCCCAG	
2580	AAAGGATCAC	GGCTGAGGTG	CATTTTGGGA	GTAATCCCAA	GGGCATGGTG GCTCATGCCT GTAATCCCAA CATTTTGGGA GGCTGAGGTG AAAGGATCAC	GGCCATGGTG	
2520	CTACCAGGCT	AAATAAGAAA	AACTTATTAT	ATTAATATCA	ACATATGATC AATTGAACTT ATTAATATCA AACTTATTAT AAATAAGAAA CTACCAGGCT	ACATATGATC	
2460	AAACTTAAAA	TAACAATATC	CACTAAAATT	TTTTATGCTT TCCTTATATT CACTAAAATT TAACAATATC AAACTTAAAA		ATAGGAATCT	
2400	TGTCACCTGC	ATCTTGCTAA	CTACTCCACC	GGGCATAAGG CTGACATCTC CTACTCCACC ATCTTGCTAA TGTCACCTGC	GGGCATAAGG	TTTTTGTTG	
2340	CTATGTTTGT	GTATAACTGT	TTTGGTTTGT GTATAACTGT	TGAGGGCTAT	CCCCCAACTC CCCACCCTTG TGAGGGCTAT	CCCCCAACTC	
2280	TGAGCCCCAT	AACAGGCTCT	CAAATTCTŤT	TITICICCAI IGIGIIGIIC CAAAIICITI AACAGGCICI		ATATTCTTTC	
2220	TTCTACATGA	CCGGTGATTC	GCCAGTCTCA	TCTCCTGGTG TCTCATATAT GCCAGTCTCA CCGGTGATTC	rcrccreere	TTCGTAGCTA	
2160	AATTTCTTTA	ATAGCCTACA	ACTGACACAG	GTGTCACATG	CTGGGGGCCT CAGTGGCTCT GTGTCACATG ACTGACACAG ATAGCCTACA AATTTCTTTA	CTGGGGGCCT	
2100	GAGCAGGACA	GTCCTCTGTG	AGATGCCAGT	GTTGGACAAA	ATCCTGCTAT GGGAATGGCT GTTGGACAAA AGATGCCAGT GTCCTCTGTG	ATCCTGCTAT	
2040	CCTTTTTAGC	ACTGTGTTTC	GGGTAGTGCA	TCTTGGTGAG GGGTGTGAG GGGTAGTGCA ACTGTGTTTC	TCTTGGTGAG	AATAGCTGCT	
1980	CGAGTGCAAC	CCAGTCCTGG	AACCCTGGCC	GAGAGGTGGT	AGGAACACAC ATAGAATTGT GAGAGGTGGT AACCCTGGCC CCAGTCCTGG CGAGTGCAAC	AGGAACACAC	

4200	TCCTACACAT	AGCTTTTTTCC	CTATGCCAAC	GTCTTAACCA	AGTITTAACAG CACAGCTGAA GTCTTAACCA CTATGCCAAC AGCTTTTTGG TCCTTACACAT	AGTTTAACAG
4140	GGTCTCGGGC	AGCCAGGATG	CCAGAAGAGG	CAGTAGATAG	GAGAGCTTAA GTAGTTTGCC CAGTAGATAG CCAGAAGAGG AGCCAGGATG GGTCTCGGGC	GAGAGCTTAA
4080	CAGAGGCATA	GTTGAGGAAA	CTGTTTTACA	TTCTGTTATT	CAACAACCCG GTGAGGCAAG TTCTGTTATT CTGTTTTACA GTTGAGGAAA CAGAGGCATA	CAACAACCCG
4020	TTTCATCCTA	TATTAACTCA	ACTCTGTACA	CATTTCAATC	ATCAATTGTG GGCCAAGTGT CATTTCAATC ACTCTGTACA TATTAACTCA TTTCATCCTA	ATCAATTGTG
3960	TTTGTTGAGC	ATCACTAACA	AGTAATAATA	CAATCTGAAA	TTGATTTTGC TGTCTGAGAT CAATCTGAAA AGTAATAATA ATCACTAACA TTTGTTGAGC	TTGATTTTGC
3900	TACTTGATAC	TGAAACTAAA	CTTTCTGACT	GGAGTTATGG	GAATTCCAAG AGTATAAATA GGAGTTATGG CTTTCTGACT TGAAACTAAA TACTTGATAC	GAATTCCAAG
3840	CTGTACAATA	ATACCTACTA	ATGAAGAATA	CATGAAGTGA	TATTTACAAG CTGTAACCAT CATGAAGTGA ATGAAGAATA ATACCTACTA CTGTACAATA	TATTTACAAG
3780	ATGAGATGCC	AAATTTATCC	ATTCCATTT	TCTTCCAATG TTTCTACTTC ATTCCATTTT AAATTTATCC ATGAGATGCC		CTTTAGACTT
3720	TCATCTTTAC	ATACCCTAAT	GCAGCCTTAT	CCAAATTCCA ACGTGCAAAT GCAGCCTTAT ATACCCTAAT	CCAAATTCCA	CTTCTTGGTC
3660	TTAATTTTT	TACTATATAA	TTTCTACTTC	TTCACCATCT	ATTCCTTCAA CAGCATTTCC TTCACCATCT TTTCTACTTC TACTATAAA TTAATTTTT	ATTCCTTCAA
3600	CCCTACAGIC	TCCCTTATTC	TCTCTAAGTT	TTTTTTCCTC	TGCTGCCAAG AAGTTCCTCA TTTTTTCCTC TCTCTAAGTT TCCCTTATTC CCCTACAGTC	TGCTGCCAAG
3540	AACTGCATCA	CTGGACTCTG	ACTCTAGGGT	AGGCAGTCTG	AGCTGGTAGG TGGTGGAGCC AGGCAGTCTG ACTCTAGGGT CTGGACTCTG AACTGCATCA	AGCTGGTAGG
3480	CGCCCAACAC	AGATTAGTAA	AGTTATAGGG	GAGGAAACTG	CACAGCCAAA CCACATCACT GAGGAAACTG AGTTATAGGG AGATTAGTAA CGCCCAACAC	CACAGCCAAA
3420	TGGGTGGGGA	AGATGAGATT	CTACAATTCC	ATTATGGGAG	GCCTCCCACA ACCTGTGGGA ATTATGGGAG CTACAATTCC AGATGAGATT	GCCTCCCACA
3360	TCTACCAGGT	GATTCAATGA	CCACCCCCAT	ATGGGGGAAA	TTCACTACCA TGAGAACAGT ATGGGGGAAA CCACCCCCAT GATTCAATGA TCTACCAGGT	TCACTACCA
3300	ATGCGACTTA	ATCAGCTCTC	TTATAAAACC	GGGTTTCCCC	AAATGAGAAC CAAACAAAAG GGGTTTCCCC TTATAAAACC ATCAGCTCTC ATGCGACTTA	AAATGAGAAC
3240	GAAGAGAGAG	TGGCAGCAGG	ACGTCTTACA	AGCAAAAGAC	CATGGTAGAA AGCAAAAGAC ACGTCTTACA TGGCAGCAGG GAAGAGAGAG	TCCTCACAAT
3180	GGATGGGGAG	AGTTCCACGT	ATGGACTCAC	ATTAAAAAAA AAAAGGTTTA ATGGACTCAC AGTTCCACGT GGATGGGGAG	ATTAAAAAA	TGGATAACTT
3120	TACCCGAGAC	GATAGAGACA	TCATGATGCT	TATTCTGTTC	ATTCACATTG CTGAGTGTAT TATTCTGTTC TCATGATGCT GATAGAGACA TACCCGAGAC	ATTCACATTG

27				GATCAGG	TTCTGGTTTG TTAGTTCAGA GATCAGG	TTCTGGTTTG
			: cs: airs d igle SEQ ID NO:6:	NFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) TOPOLOGY: linear (D) TOPOLOGY: linear (D) TOPOLOGY: SEQ xi) SEQUENCE DESCRIPTION: SEQ	(2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 27 base pa (B) TYPE: nucleic acid (C) STRANDEDNESS: sing (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: S	(2) INFORM (i) S (ii) M (ii) M (xi) S
4866						GAGATG
4860	AGTCACAGAG	CAGTGAGACT GTAAGCAGTC TGGGTTGGGC AGAAGGCAGA AAACCAGCAG AGTCACAGAG	AGAAGGCAGA	TGGGTTGGGC	GTAAGCAGTC	CAGTGAGACT
4800	TGAGGGGAGG	TGAGTTTCTG GAATGTGAAT AGGAAGTTGT TTTTCTAAAC AGCCTGACAÇ TGAGGGGAGG	TTTTCTAAAC	AGGAAGTTGT	GAATGTGAAT	TGAGTTTCTG
4740	AGGGCTGTGG	CTAAGCTGCC AACATTACTC TTGCATTATC AACATTCTAA CTTCATGGGA AGGGCTGTGG	AACATTCTAA	TTGCATTATC	AACATTACTC	CTAAGCTGCC
4680	ACCACTATT	TGCCTCCAGA CCATCTTCCA TGGAAGGGGG TGACCCCTTG CCTCTTGGCA ACCACTATTT	TGACCCCTTG	TGGAAGGGGG	CCATCTTCCA	TGCCTCCAGA
4620	AccTTGCGCC	TGCTCAGCCT GGGATATCCA GGAGTAATTC ACCTTGCGCC	GGGATATCCA	TGCTCAGCCT	TGTGTGTACT GTTCCCACAT	TGTGTGTACT
4560	GAAACCTTTG	ATGTTTTCCA AATGTACTAC TTTAAATTGG AGCTTATATC ATAATCCAAG GAAACCTTTG	AGCTTATATC	TTTAAATTGG	AATGTACTAC	ATGTTTCCA
4500	AATTCAAAGC	GACATGTCAT AATTACTGGA AAATGGGCAC TGGAAAATCA CATTGTAATT AATTCAAAGC	TGGAAAATCA	AAATGGGCAC	AATTACTGGA	GACATGTCAT
4440	AACATTCACT	TITGIGCTAC TAAITITIGCT TCTITCCCIC AGAAGGCIGC CGGAATAGIA AACAITCACI	AGAAGGCTGC	TCTTTCCCTC	TAATTTTGCT	TTTGTGCTAC
4380	ICTATTTTT	CCAAGCGCCA GAAAACTGTT AGTGGCTTTT TCCATTCTTC TCTATTTTTT	AGTGGCTTTT	GAAAACTGTT	CCAAGCGCCA	ATAAAATTTC
4320	AAACTTACCA	TCCTTTCACA TGACCTATGT CTATTTAATA CGTCATTTTG AAACTTACCA	CTATTTAATA	TGACCTATGT	TCCTTTCACA	GAAGCAGAAT
4260	rctgatataa	CCCATGGGAA GAGGAAATA AAAAGGTATC TATTTGTATA CCTTTTTATT TCTGATATA	TATTTGTATA	AAAAGGTATC	GAGGAAAATA	CCCATGGGAA

(2) INFORMATION FOR SEQ ID NO:7:

25

35

SEQUENCE DESCRIPTION: SEQ ID NO:8: SEQUENCE DESCRIPTION: SEQ ID NO:7: GAATTCGAGC TCGGTACCTT TTTTTTTTTT TTTTT MOLECULE TYPE: synthetic DNA (A) LENGTH: 35 base pairs (A) LENGTH: 18 base pairs (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid STRANDEDNESS: single STRANDEDNESS: single SEQUENCE CHARACTERISTICS: STRANDEDNESS: single (i) SEQUENCE CHARACTERISTICS: SEQUENCE CHARACTERISTICS: TYPE: nucleic acid TYPE: nucleic acid (2) INFORMATION FOR SEQ ID NO:9: (2) INFORMATION FOR SEQ ID NO:8: TOPOLOGY: linear (D) TOPOLOGY: linear MOLECULE TYPE: CDNA GATGTATATC TCCACGCAGT CCTCG **E**OE (A) (C) (A) ΰ (ii) (xi) (xi)

18

(2) INFORMATION FOR SEQ ID NO:10:

SEQUENCE DESCRIPTION: SEQ ID NO:9:

(xi)

GAATTCGAGC TCGGTACC

MOLECULE TYPE: synthetic DNA

TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid

SEQUENCE DESCRIPTION: SEQ ID NO:10:

(xi)

MOLECULE TYPE: synthetic DNA

TOPOLOGY: linear

<u>e</u>

STRANDEDNESS: single

20

(B)

(A) LENGTH: 20 base pairs

SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO:11:

GICGACTCIA GAATCAGCCC AGTICTCAGC

TYPE: nucleic acid

STRANDEDNESS: single TOPOLOGY: linear

SEQUENCE DESCRIPTION: SEQ ID NO:11: MOLECULE TYPE: DNA (genomic) (ii) (xi)

CGGCTGGGGA TTCCCCATCT

(i) SEQUENCE CHARACTERISTICS: (2) INFORMATION FOR SEQ ID NO:12:

(A) LENGTH: 12 base pairs

STRANDEDNESS: single TYPE: nucleic acid (B) ပြ

SEQUENCE DESCRIPTION: SEQ ID NO:12: MOLECULE TYPE: synthetic DNA TOPOLOGY: linear <u>e</u> (ii) (xi)

GTTGGTTCCA AG

(i) SEQUENCE CHARACTERISTICS: (2) INFORMATION FOR SEQ ID NO:13:

(A) LENGIH: 12 base pairs

STRANDEDNESS: single TYPE: nucleic acid (B)

ΰ

MOLECULE TYPE: synthetic DNA TOPOLOGY: linear (ii)

GGCCAAACCG GAAGCATGTG

12

21

12

SEQUENCE DESCRIPTION: SEQ ID NO:14: (D) TOPOLOGY: linear MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:16: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: (D) TOPOLOGY: linear MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:15: (ii) MOLECULE TYPE: synthetic DNA (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid LENGTH: 21 base pairs (A) LENGTH: 12 base pairs STRANDEDNESS: single STRANDEDNESS: single STRANDEDNESS: single (2) INFORMATION FOR SEQ ID NO:16: (1) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS (i) SEQUENCE CHARACTERISTICS (2) INFORMATION FOR SEQ ID NO:15: (2) INFORMATION FOR SEQ ID NO:14: TYPE: nucleic acid TYPE: nucleic acid TYPE: nucleic acid TOPOLOGY: linear TCGAGCAGGA AGTGACGTCG A <u></u> GTTGGTTTTA AG (B) CTTCCATCCA AG (ii) (xi) (ii) (xi) (x1)

AGCTTGCGGA ACGGAAGCGG AAACCGCCGG ATCG

(A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

(2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS:

We claim:

- 1. A method for the regulated expression of a gene in endothelial cells or megakaryocytes comprising fusing the 5' end of the coding sequence of the gene to the 3' end of a DNA molecule comprising a nucleotide sequence consisting essentially of nucleotides 1 to 4863 of SEQ ID NO. 5, or portions thereof effective to control expression of a gene, to yield a recombinant gene construct; inserting the recombinant gene construct into endothelial cells or megakaryocytes; and assaying for expression of the recombinant gene inserted into the endothelial cells or megakaryocytes.
- 2. The method of claim 1 for the regulated expression of a gene encoding a protein wherein the 5' end of the coding sequence of the gene is fused to the 3' end of a DNA molecule comprising a nucleotide sequence of at least eight contiguous nucleotides of a sequence selected from the group consisting of nucleotides 1 to 4863, 1 to 4851, 3525 to 4851, 3525 to 4863, 3732 to 4866, 4163 to 4851, 4163 to 4863, 4206 to 4866, 4212 to 4866, 4405 to 4851, 4405 to 4863, 4446 to 4469, 4453 to 4461, 4457 to 4866, 4471 to 4866, 4505 to 4866, 4555 to 4666, 4555 to 4851, 4555 to 4863, 4615 to 4666, 4615 to 4764, 4615 to 4851, 4615 to 4861, 4615 to 4863, 4626 to 4650, 4632 to 4672, 4635 to 4646, 4636 to 4645, 4641 to 4866, 4642 to 4664, 4645 to 4866, 4646 to 4650, 4646 to 4657, 4650 to 4669, 4667 to 4863, 4667 to 4717, 4717 to 4863, 4722 to 4731, 4727 to 4866, 4747 to 4757, 4734 to 4758, 4736 to 4764, 4736 to 4863, 4745 to 4753, 4761 to 4866 of SEQ ID NO. 5, and combinations thereof.
- 3. The method of claim 1 wherein the gene encodes P-selectin.

- A method for screening for defects in the 5' flanking region of the P-selectin gene of individuals comprising hybridizing nucleic acid from cells of the individuals to a nucleic acid probe molecule comprising a nucleotide sequence consisting essentially of nucleotides 1 to 4863 of SEQ ID NO. 5, or portions thereof consisting essentially of at least fourteen consecutive nucleotide bases.
- The method of claim 4 wherein the cells are selected from the group consisting of megakaryocytes and endothelial cells.
- 6. The method of claim 4 wherein the probe molecule comprises a nucleotide sequence consisting essentially of sequences selected from the group consisting of any one of the sequences defined by nucleotides 1 to 4851, 3525 to 4851, 3525 to 4863, 3732 to 4866, 4163 to 4851, 4163 to 4863, 4206 to 4866, 4212 to 4866, 4405 to 4851, 4405 to 4863, 4446 to 4469, 4453 to 4461, 4457 to 4866, 4471 to 4866, 4505 to 4866, 4555 to 4666, 4555 to 4851, 4555 to 4863, 4615 to 4666, 4615 to 4764, 4615 to 4851, 4615 to 4861, 4615 to 4863, 4626 to 4650, 4632 to 4672, 4635 to 4646, 4636 to 4645, 4641 to 4866, 4642 to 4664, 4645 to 4866, 4646 to 4650, 4646 to 4657, 4650 to 4669, 4667 to 4863, 4667 to 4717, 4717 to 4863, 4722 to 4731, 4727 to 4866, 4747 to 4757, 4734 to 4758, 4736 to 4764, 4736 to 4863, 4745 to 4753, 4761 to 4866 of SEQ ID NO. 5, and combinations thereof.
- 7. An isolated nucleic acid molecule comprising a nucleotide sequence consisting essentially of nucleotides 1 to 4863 of SEQ ID NO. 5, or portions thereof consisting essentially of at least fourteen consecutive nucleotides of SEQ ID NO. 5.

- The isolated nucleic acid molecule of 8. claim 7 comprising a nucleotide sequence consisting essentially of the consecutive nucleotides of SEQ ID NO. 5 selected from the group consisting of nucleotides 1 to 4851, 3525 to 4851, 3525 to 4863, 3732 to 4866, 4163 to 4851, 4163 to 4863, 4206 to 4866, 4212 to 4866, 4405 to 4851, 4405 to 4863, 4446 to 4469, 4453 to 4461, 4457 to 4866, 4471 to 4866, 4505 to 4866, 4555 to 4666, 4555 to 4851, 4555 to 4863, 4615 to 4666, 4615 to 4764, 4615 to 4851, 4615 to 4861, 4615 to 4863, 4626 to 4650, 4632 to 4672, 4635 to 4646, 4636 to 4645, 4641 to 4866, 4642 to 4664, 4645 to 4866, 4646 to 4650, 4646 to 4657, 4650 to 4669, 4667 to 4863, 4667 to 4717, 4717 to 4863, 4722 to 4731, 4727 to 4866, 4747 to 4757, 4734 to 4758, 4736 to 4764, 4736 to 4863, 4745 to 4753, 4761 to 4866 of SEQ ID NO. 5, and combinations thereof.
- 9. The isolated nucleic acid molecule of claim 7 further comprising a gene, wherein the 5' end of the gene is ligated to the 3' end of the nucleic acid molecule.
- 10. The isolated nucleic acid molecule of claim 9 inserted into cells capable of expressing the ligated gene.
- 11. The isolated nucleic acid molecule of claim 10 wherein the ligated gene is inserted into the cells in an expression vehicle capable of replicating in the cells.
- 12. The isolated nucleic acid molecule of claim 10 wherein the ligated gene is stably incorporated into the genome of the cells.
- 13. The isolated nucleic acid molecule of claim 12 wherein the cells are transgenic animals.
- 14. The isolated nucleic acid molecule of claim 7 inserted into an expression vector.

75

- 15. The isolated nucleic acid molecule of claim 14 wherein the vector is a retroviral vector.
- 16. The isolated nucleic acid molecule of claim 7 further comprising a pharmaceutically acceptable carrier for administration to a person in need of treatment thereof.
- 17. The isolated nucleic acid molecule of claim 16 wherein the carrier is a polymeric material providing controlled release of the nucleic acid molecule.
- 18. The isolated nucleic acid molecule of claim 7 wherein an intercalating agent is covalently linked to a 5' terminal phosphate.
- 19. The isolated nucleic acid molecule of claim 18 wherein the intercalating agent is an acridine.
- 20. The isolated nucleic acid molecule of claim 7 wherein an amine is covalently linked to a 3' terminal hydroxyl group.
- 21. The isolated nucleic acid molecule of claim 7 wherein cytosine residues are methylated.
- 22. A method of inhibiting P-selectin expression in cells expressing P-selectin comprising inserting into the cells a nucleic acid molecule comprising a nucleotide sequence consisting essentially of at least fifteen consecutive nucleotides of SEQ ID NO. 5.
- 23. The method of claim 22 for the regulated expression of a gene encoding a protein wherein the 5' end of the coding sequence of the gene is fused to the 3' end of a DNA molecule comprising a nucleotide sequence consisting essentially of sequences selected from the group consisting of sequences between nucleotide 4769 and nucleotide 1 of SEQ ID No. 5.

- 24. The method of claim 22 comprising inserting into the cells a nucleotide sequence forming a triplex structure with any of the sequence between nucleotides 4864 and 1 of SEQ ID No. 5.
- 25. A method for isolating a gene transcriptional regulatory protein, or functional DNA-binding peptide portion thereof, comprising binding to the regulatory protein or peptide portion, an isolated DNA molecule comprising a nucleotide sequence of at least eight contiguous nucleotides of SEQ ID NO. 5.
- The method of claim 25 for isolating a gene transcriptional regulatory protein, or functional DNA-binding peptide portion thereof, comprising binding to the regulatory protein or peptide portion, an isolated DNA molecule comprising a nucleotide sequence consisting essentially of sequences selected from the group consisting of nucleotides 1 to 4863, 1 to 4851, 3525 to 4851, 3525 to 4863, 3732 to 4866, 4163 to 4851, 4163 to 4863, 4206 to 4866, 4212 to 4866, 4405 to 4851, 4405 to 4863, 4446 to 4469, 4453 to 4461, 4457 to 4866, 4471 to 4866, 4505 to 4866, 4555 to 4666, 4555 to 4851, 4555 to 4863, 4615 to 4666, 4615 to 4764, 4615 to 4851, 4615 to 4861, 4615 to 4863, 4626 to 4650, 4632 to 4672, 4635 to 4646, 4636 to 4645, 4641 to 4866, 4642 to 4664, 4645 to 4866, 4646 to 4650, 4646 to 4657, 4650 to 4669, 4667 to 4863, 4667 to 4717, 4717 to 4863, 4722 to 4731, 4727 to 4866, 4747 to 4757, 4734 to 4758, 4736 to 4764, 4736 to 4863, 4745 to 4753, 4761 to 4866 of SEQ ID NO. 5, and combinations thereof.