Chapter 6 Constraint Satisfaction Problems

Jane Hsu National Taiwan University

Acknowledgements: This presentation is created by Jane hsu based on the lecture slides from *The Artificial Intelligence: A Modern Approach* by Russell & Norvig, a PowerPoint version by Min-Yen Kan, as well as various materials from the web.

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Constraint propagation algorithms
- Problem structure and decomposition
- Local search for CSPs

Example

TWO + TWO -----FOUR SEND + MORE

MONEY

Constraint Satisfaction Problems (CSPs)

- CSP is a specialization of the general search
- state is defined by
 - variables Xi with values from domain Di
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{\text{red,green,blue}\}$
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

Solutions are complete and consistent assignments, e.g., WA = red, NT = green,Q = red,NSW = green,V = red,SA = blue,T = green

Constraint Graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints

Varieties of Constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ red
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
- Preferences (soft constraints)
 - e.g., green is better than red

Example: Cryptarithmetic

- □ Variables: F T U W $R O X_1 X_2 X_3$
- Domains: {0,1,2,3,4,5,6,7,8,9}
- Constraints: Alldiff (F,T,U,W,R,O)
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F, T \neq 0, F \neq 0$

Varieties of CSPs

Discrete variables

- finite domains:
 - \square n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - □ need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$

Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Real-World CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems may involve real-valued variables

Standard Search Formulation (Incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
- Goal test: the current assignment is complete
- This is the same for all CSPs
- Every solution appears at depth n with n variables
 → use depth-first search
- 3. Path is irrelevant, so can also use complete-state formulation
- 4. b = (n l)d at depth l, hence $n! \cdot d^n$ leaves

Backtracking Search

- Variable assignments are commutative, i.e.,
 - [WA=red then NT=green] same as [NT=green then WA=red]
- Need to consider assignments to a single variable at each node
 - \blacksquare \rightarrow Given d values for n variables, there are dn leaves.
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- □ Can solve n-queens for $n \approx 25$

Backtracking Search Algorithm

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```


Improving Backtracking Efficiency

- General-purpose methods can give huge gains in speed:
- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Most Constrained Variable

Most constrained variable: choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic

Most Constraining Variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least Constraining Value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Intelligent Backtracking

- Chronological Backtracking
 - Basic policy: when the search fails, back up to the preceding variable and try a different value, i.e. the most recent decision point is revisited.
- Alternative: go all the way back to one of the set of variables that caused the failure.
 - Conflict set
- Backjumping: backtracks to the most recent variable in the conflict set

Solve the Puzzle

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
3		7	2	6	9		
	4		5	8		7	

Waltz Labeling Algorithm

Example: Scene Analysis for Polyhedra

Edge Labeling

Edge Labeling as a CSP

- A variable is associated with each junction
- The domain of a variable is the label set of the corresponding junction
- Each constraint imposes that the values given to two adjacent junctions give the same label to the joining edge

The Line Labeling Problem

Edge Labeling

Edge Labeling

Combinatorics: Simple Case

- Trihedral vertices, no concave or crack edges, uniform illumination (no shadows)
 - 4 ways to label a line, so
 - $= 4^2 = 16$ labelings for an L
 - \Box 4³ = 64 labelings for fork, arrow, and T
- BUT out of 208 junctions, only 18 are physically possible.

The Huffman-Clowes Label Sets

Edge Labeling Constral. 36

Edge Labeling

Edge Labeling

Edge Labeling

Waltz's Algorithm

- 1. Identify and label the lines at the border.
- 2. Label each vertex with all possible labelings for its vertex type.
- 3. Pick a vertex (starting from the border), *V* For each neighboring vertex, *N*,
 - If N and V agree on the possible labelings for the line between them, do nothing.
 - Otherwise, remove the inconsistent labelings.
 - Propagate the constraint by repeating the process for all neighboring vertices.

Termination condition:

- Every vertex has been visited at least once.
- There are no more constraints to propagate.

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

С

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each arc consistent

for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent

for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

- Simplest form of propagation makes each arc consistent

for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc Consistency Algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting all is NP-hard)

n: the number of variables; *d*: the size of domain

k-Consistency

- □ A CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to the kth variable.
 - Node-consistency
 - Path-consistency
- □ A graph is strongly k-consistent if it is k-consistent and is also (k-1)-consistent, (k-2)-consistent,...all the way to 1-consistent.

Problem Structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Analysis

- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is linear in n.

$$n/c \bullet d^c$$

- □ Example: n=80, d=2, c=20
 - 2⁸⁰= 4 billion years at 10 million nodes/sec
 - $4 \times 2^{20} = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n\,d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

Algorithm

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply RemoveInconsistent($Parent(X_j), X_j$)
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Local Search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Evaluation Function

- h = number of pairs of queens that are attacking each other, either directly or indirectly
 - h = 17 for the state on the left
 - h = 1 for the state (local minimum) on the right

Example: *n*-queens

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
 - States: any configuration of n queens
 - E.g. 4 queens in 4 columns ($4^4 = 256$ states)
 - Actions: move any queen within its column
 - Goal test: no attacks
 - **Evaluation**: h(n) = number of attacks

Constraint Satisfaction © Jane Hsu 58

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice