M25 Návrh vloženého systému

#technicke_vybaveni_pocitacu

- na co dávat pozor při návrhu
 - · definice požadavků
 - Jaké úlohy má systém vykonávat? Jaké vstupy a výstupy potřebuje? Jaká je požadovaná rychlost a přesnost?
 - Jak jsme omezení hmotností, velikostí, spotřebou? Jaké jsou okolní podmínky?
 - Jaké bezpečnostní opatření je třeba přijmout?
 - výběr hardware
 - jaký procesor je nejvhodnější?
 - jaký typ a velikost paměti je potřeba?
 - jaké periférie potřebuji pro realizaci požadovaných funkcí?
 - jak budu systém napájet?
 - vývoj software
 - nechám běžet software na holém hardware nebo použiji operační systém?
 - jaký programovací jazyk použiji?
 - jaké metody testování použiji?
 - design systému
 - jakou architekturu použiji?
 - bude systém rozdělen do modulů?
 - optimalizace
 - jaké certifikace budou potřeba pro daný systém? při komerčním použití
- jak postupovat při míchání analogových a digitálních součástí
 - analogové části zpracovávají signály ze skutečného světa
 - digitální části provádějí výpočty a řídí systém
 - analogové a digitální části by měly být od sebe co nejvíce izolovány aby se zabránilo vzájemnému rušení
 - každá část by měla mít vlastní zdroj napájení aby se zabránilo šumu a rušení
 - vybírat převodníky s vhodným rozlišením a rychlostí převodu; správně převodníky zkalibrovat
 - pomocí osciloskopu vizualizovat analogové signály pro kontrolu
 - při návrhu multimetrem hlídat hodnoty napětí a proudu
 - pečlivě prostudovat datasheety
 - správně uzemnit obvody
- jak zvážit volbu procesoru
 - definice požadavků
 - jaké výpočetní nároky systém bude mít?
 - bude provádět složité výpočty nebo jen jednoduché úkoly?
 - kolik RAM bude systém potřebovat?
 - jaké periférie bude procesor ovládat?
 - jaká je maximální povolená spotřeba energie?
 - je nutné aby systém reagoval v reálném čase?
 - jaké jsou provozní podmínky?
 - výběr architektury
 - RISC nebo CISC?
 - RISC energeticky úspornější, jednodušší na programování
 - CISC větší výkon
 - kolik jader?
 - · velikost cache paměti
 - periférie
 - zkontrolovat, zda procesor již obsahuje potřebné periférie snížení externích součástek a nákladů
 - je dostupná široká škála vývojových nástrojů pro daný procesor?

- · cena a dostupnost
- velikost
- spotřeba energie v různých režimech

Zpětnovazební systém

- výstup systému je srovnáván s požadovanou hodnotou; rozdíl mezi nimi (chyba) je použit k úpravě vstupu systému tak, aby se výstup přiblížil k požadované hodnotě
- důvody
 - umožňuje dosáhnout vysoké přesnosti a opakovatelnosti výsledků
 - zvyšuje stabilitu systému a jeho odolnost vůči rušivým vlivům
 - umožňuje systému adaptovat se na změny v prostředí nebo požadavcích
- výhody
 - · vysoká přesnost
 - stabilita systém je odolnější vůči rušivým vlivům
 - adaptabilita
 - optimalizace výkonu systému pro dosažení požadovaných výsledků
- nevýhody
 - složitost
 - při nesprávném návrhu může dojít ke kmitání nebo nestabilitě systému
- funkční princip
 - měření
 - srovnání
 - řízení
 - akce
 - zpětná vazba (zopakování předešlých 4 bodů)

Části zpětnovazebního systému

- čidlo měří fyzikální veličinu relevantní pro řízený proces; převádí měřenou fyzikální veličinu na elektrický signál, který může být zpracován elektrickým obvodem
- srovnávač
 - porovnává aktuální hodnotu měřené veličiny (výstup čidla) s požadovanou hodnotou (referencí)
 - vytváří chybový signál reprezentující rozdíl mezi aktuální hodnotou a referencí
 - může být realizován pomocí analogového nebo digitálního obvodu
- řídící člen
 - na základě chybového signálu vypočítá potřebnou korekci a generuje řídící signál
 - realizace pomocí mikroprocesoru, mikrokontroléru nebo specializovaného obvodu
- aktuátor převádí řídící signál na fyzickou akci

PID regulátor

Účel

analogové sekce digitální sekce

Napájení