MATH 340

Advanced Linear Algebra

mgtrinh.github.io/math/teaching/yale/math-340/

9 psets

36% 1 midterm Wed 2/26 24%

1 final

40%

Axler, Lin Alg Done Right, 4th Ed

Treil, Lin Alg Done Wrong

[late hw policy]

[schedule]

[intros]

(Axler §1B–1C)

F is either

R, the set of real #s

C, the set of complex #s

addition

identity 0

inverse –a

multiplication

identity 1 inverse 1/a when $a \neq 0$

Fⁿ, the set of tuples (a 1, a 2, ..., a n)

Idea vectors without choosing coordinates!

such that for all u, w, v in V and a, b in F,

$$(u + v) + w = u + (v + w)$$

 $u + v = v + u$

V contains $\mathbf{0}$ s.t. $\mathbf{v} + \mathbf{0} = \mathbf{v}$

V contains (for each v) some z s.t. v + z = 0

$$(a \cdot b) \cdot v = a \cdot (b \cdot v)$$
$$1 \cdot v = v$$

$$a \cdot (v + w) = a \cdot v + a \cdot w$$

 $(a + b) \cdot v = a \cdot v + b \cdot v$

Lem
$$0 \cdot v = 0$$
 for all v in V

 $z = (-1) \cdot v$

$$0 \cdot v = (0 + 0) \cdot v = 0 \cdot v + 0 \cdot v$$

add inverse of $0 \cdot v$ to both sides, regroup ():
 $\mathbf{0} = 0 \cdot v$

Lem
$$v + z = 0$$
 if and only if $z = (-1) \cdot v$

if
$$z = (-1) \cdot v$$
:
 $v + z = 1 \cdot v + (-1) \cdot v = (1 - 1) \cdot v = 0 \cdot v$
which is **0** by previous lemma
if $v + z = \mathbf{0}$:
 $v + z = v + (-1) \cdot v$ by first half
add z on the left to both sides, regroup ():

Rem similarly $a \cdot 0 = 0$ for all a in F

<u>Ex</u> for any positive integer n
F^n is a vector space over F

Ex {0} (by convention, view as "F^0")

Ex let X be any set:

F^X def by {functions f : X to F} f + g def by (f + g)(x) = f(x) + g(x) $a \cdot f$ def by $(a \cdot f)(x) = af(x)$

special case: $F^n = F^(\{1, ..., n\})$

Rem $F^{(0, 1, 2, ...)}$ is bigger than you might think $F^{(0, 1]}$ is even bigger

Ex $F[x] = \{\text{polynomials in } x \text{ with } F\text{-coeffs}\}\$ f + g def by (f + g)(x) = f(x) + g(x) $a \cdot f$ $def by (a \cdot f)(x) = af(x)$

can multiply polynomials, but it doesn't matter only scaling matters

[how big is F[x] compared to F^n?]

[is F[x] the same as $F^{(0, 1, 2, ...)}$]

Ex fix a, b in F

$$V_a = \{(x, ax) \mid x \text{ in } F\}$$

 $V_{a, b} = \{(x, ax + b) \mid x \text{ in } F\}$

[are V_a or V_{a, b} vector spaces?]

 V_a for all a $V_{a, b}$ if and only if b = 0

[draw picture]

Ex C is a vector space over R

Ex any vector space over C is also a vector space over R

(if we can scale by a in C, then certainly by a in R) [how about the reverse?]

<u>Ex</u> if V is a vector space over R then its <u>complexification</u> V_C is

$$V_C = \{(u, v) \mid u, v \text{ in } V\}$$

 $(u, v) + (u', v')$ def by $(u + u', v + v')$
 $(a + ib) \cdot (u, v)$ def by $(au - bv, av + bu)$

think of (u, v) as "u + iv": see Axler 1B, #8

V = {positive real numbers}
u "+" v def by uv
a "•" v def by |v^a| (for all a in R)
"0" def by 1 in V

thus "-v" def by v^(-1)

[is V a vector space over R?]

$$(uv)w = u(vw),$$
 $uv = vu,$ $v1 = v$
 $v^{(ab)} = (v^{(b)}a,$ $v^{(ab)} = v$
 $(uv)^a = (u^a)(v^a),$ $v^{(ab)} = (v^a)(v^b)$

Ex define a magic square over F as

a 3 by 3 grid of elements of F s.t. the sums along rows, cols, main diag's all match

Mag(F) = {magic squares over F}

via inclusion of Mag(F) into F^9, deduce: Mag(F) is a vector space over F

[how big is it compared to F^9?]