Параметрический синтез ПИД-регуляторов с реальным дифференциатором на заданную степень колебательности

 Γ . К. Аязян 1 , Е. В. Таушева 2 Уфимский государственный нефтяной технический университет 1 AyazyanGK@ rambler.ru, 2 TaushevaEV@ mail.ru

Аннотация. Рассматривается алгоритм расчета настроек ПИД-регуляторов с реальным дифференциатором на заданную степень колебательности низкочастотных возмущений действующих на объект. Для однозначного выбора коэффициента усиления дифференциальной части используются формулы, полученные на базе критерия компенсации низкочастотных возмущений (КНВ). В результате задача расчета сводится к оптимизации двух параметров. Использование пакета символьных вычислений Maple позволило исследовать особенности кривой заданной степени колебательности в настроечных параметров Работоспособность алгоритма проверена на тестовых примерах.

Ключевые слова: ПИД-регулятор; реальный дифференциатор; степень колебательности; Maple

І. Введение

Процедура параметрического синтеза ПИД регуляторов осложняется наличием трех настроечных параметров. Это коэффициент усиления $k_{\scriptscriptstyle p}$, время интегрирования $T_{\scriptscriptstyle i}$ и время дифференцирования T_d , или эквивалентные им $k_1 = k_p$, $k_0 = k_1/T_i$, $k_2 = k_1 \cdot T_d$. Часто параметры коэффициент T_d или k_2 определяется по формулам $T_{\scriptscriptstyle d} = \alpha T_{\scriptscriptstyle i}$ и $k_{\scriptscriptstyle 2} = \alpha k_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}/k_{\scriptscriptstyle 0}$ [1]. Параметр α выбирается, например, в диапазоне $\alpha = 0.15...0.25$, причем часто достаточно произвольно. Выбор оптимальных параметров осуществляется (k_1, k_0) условия минимума лополнительного показателя качества. например интегрального критерия IE [1]. В [2] на базе критерия низкочастотных возмущений получены формулы, позволяющие однозначно определять коэффициент k_2 как функцию k_1 , k_0 и параметров модели объекта. В работе [3] на этой основе разработан алгоритм параметрического синтеза ПИД регулятора с идеальным дифференциатором. Процедура синтеза сводится к построению в плоскости двух параметров (k_1, k_0) кривой заданного значения корневого запаса устойчивости при различных значениях частоты. Выбор оптимальных параметров (k_1, k_0) осуществляется из

условия минимума интегрального критерия IE . В работах [4,5] метод был использован для синтеза идеального ПИД регулятора, когда в качестве показателя запаса устойчивости (робастности) использовался максимум функции чувствительности $M_s = \max_{\omega} |S(j\omega)|$ или дополнительной чувствительности $M_p = \max_{\omega} |T(j\omega)|$. В настоящей работе на основе этого метода синтезируется система управления с ПИД регулятором с реальным дифференциатором. Показателем запаса устойчивости является степень колебательности m — корневой критерий качества [6].

II. ФОРМУЛИРОВКА ЗАДАЧИ

Рассматривается система регулирования с одним входом и одним выходом. Обозначим G(s), $G_c(s)$ — передаточные функции модели объекта и регулятора, x, y, e=x-y — задание, регулируемая величина и ошибка регулирования, f_1 и f_2 — возмущения, приложенные ко входу и выходу объекта соответственно. Общий вид передаточной функции модели объекта

$$G(s) = \frac{1}{s^{r}} \tilde{G}(s) = \frac{1}{s^{r}} \frac{b_{0} + b_{1} s \dots + b_{m} s^{m}}{a_{0} + a_{1} s \dots + a_{n} s^{n}} e^{-s\tau},$$
 (1)

где $\tilde{G}(0)=|b_0/a_0|<\infty$; $r=0,\ 1$; a_i,b_i - постоянные коэффициенты, $a_n>0,\ b_0>0$; $m\le n$; τ - транспортное запаздывание. Представим (1) в виде ряда Тейлора относительно s в точке s=0

$$G(s) = \frac{1}{s'} (\mu_0 + \mu_1 s + \dots + \mu_k s^k + \dots)$$
 (2)

где $\mu_{\scriptscriptstyle k} = \frac{1}{k\,!} \frac{d^{\scriptscriptstyle k}}{ds^{\scriptscriptstyle k}} \left. \tilde{G} \left(s \right) \right|_{s=0}, \; k=0,1,\dots \qquad \text{-} \qquad \text{моменты}$

передаточной функции $\tilde{G}(s)$.

Передаточная функция регулятора

$$G_c(s) = k_p \left(1 + \frac{1}{T_i s} + \frac{T_d s}{\gamma T_d s + 1} \right) = k_1 + \frac{k_0}{s} + \frac{k_2 s}{\gamma k_2 s / k_1 + 1},$$
 (3)

где коэффициент γ в промышленных системах изменяется в пределах γ =0.05...0.125 [1, 2]. Из необходимого условия устойчивости замкнутой системы и $b_0 > 0$ в (1) следует, что $k_0 > 0$.

Настройки регулятора будем определять из условия минимума линейного интегрального критерия IE, при ограничении на заданный запас устойчивости

$$IE = \min_{k_0, k_1, k_2} I_0, \ m \ge m_{3a\partial},$$
 (4)

где m — степень колебательности системы $m = \min_i \left| \frac{\operatorname{Im} s_i}{\operatorname{Re} s_i} \right|$; s_i — корни характеристического полинома замкнутой системы.

Для решения задачи в плоскости ($K_1.K_0$) строится граница области $m \ge m_{_{3a\partial}}$ и на ней находится точка минимума IE .

Из критерия КНВ следуют следующие ограничения на коэффициенты регулятора k_0 , k_2 [2, 3]

$$k_0 = \max k_0$$

$$k_2 = \alpha \cdot \frac{k_1^2}{k_0} + \alpha_1 \cdot \frac{k_1}{k_0} + \frac{\alpha_1^2}{2 \cdot k_0} + \alpha_2 \cdot k_0 + \alpha_3,$$
(5)

где
$$\alpha = \frac{1}{2}$$
, $\alpha_1 = \frac{1}{\mu_0}$, $\alpha_2 = \frac{\mu_1^2 - 2 \cdot \mu_0 \cdot \mu_2}{2 \cdot \mu_0^2}$, $\alpha_3 = \frac{\mu_1}{\mu_0^2}$.

Первое ограничение в (5) соответствует минимуму IE[1].

Формулы для $\alpha_i,\ i\in 1,3$ зависят от свойств объекта и точки приложения возмущения. Для возмущения, действующего на входе объекта $\alpha_2=0$, для астатического объекта $\alpha_1=0$ и $\alpha_3=-1/\mu_0$. Если $\alpha_1=\alpha_2=\alpha_3=0$ и α константа, получим известную формулу $k_2=\alpha k_1^2/k_0$. Коэффициент α_2 может служить мерой колебательности объекта, а при $\alpha_2\leq 0$ процесс является слабоколебательным [3].

III. Алгоритм решения задачи

Уравнение границы области $m \ge m_{3a\partial}$ (кривую D-разбиения) находим из характеристического уравнения замкнутой системы подстановкой $s = -m\omega + j\omega$ [2, 3, 6]

$$\left(k_1 + \frac{k_0}{-m\omega + j\omega} + \frac{k_2(-m\omega + j\omega)}{\gamma k_2(-m\omega + j\omega)/k_1 + 1}\right) \times (6)$$

$$\times \left(V_1(m,\omega) + jV_2(m,\omega)\right) + 1 = 0$$

где $W_y \left(-m\omega + j\omega \right) = V_1 \left(m, \omega \right) + j V_2 \left(m, \omega \right)$ - расширенная частотная характеристика объекта.

Здесь и в дальнейшем $m=m_{3a\partial}$, $\omega \ge 0$, $j=\sqrt{-1}$. Подставив выражение для k_2 из (5) в (6), приняв $\alpha=0.5$, выделяя действительную и мнимую часть, после преобразований получим систему полиномиальных уравнений третьего порядка относительно k_1

$$\begin{cases}
F_1 = A_3 \cdot k_1^3 + A_2 \cdot k_1^2 + A_1 \cdot k_1 + A_0 = 0 \\
F_2 = B_3 \cdot k_1^3 + B_2 \cdot k_1^2 + B_1 \cdot k_1 + B_0 = 0
\end{cases} ,$$
(7)

ΓД6

$$A_{1} = \varphi_{1}(V_{1}, V_{2}, \gamma, m, \omega, \alpha_{1}, \alpha_{2}, \alpha_{3}),$$

$$A_{2} = -\omega(2+\gamma)(mV_{1}+V_{2})k_{0}+$$

$$+2\omega^{2}\alpha_{1}(1+\gamma)((m^{2}-1)V_{1}+2mV_{2})+\omega^{2}\gamma(m^{2}-1)$$

$$A_{3} = \omega^{2}(1+\gamma)((m^{2}-1)V_{1}+2mV_{2})$$

$$B_{0} = \omega \cdot \gamma(2\alpha_{2}k_{0}^{2}+2\alpha_{3}k_{0}+\alpha_{1}^{2})(-2m\omega+(V_{1}-mV_{2})k_{0})$$

 $A_0 = -\omega \cdot \gamma (2\alpha_2 k_0^2 + 2\alpha_3 k_0 + \alpha_1^2)(\omega \cdot (1 - m^2) + (mV_1 + V_2)k_0),$

$$\begin{split} B_1 &= \varphi_2(V_1, V_2, \gamma, m, \omega, \alpha_1, \alpha_2, \alpha_3) \\ B_2 &= (2 + \gamma)\omega(V_1 - mV_2)k_0 + \\ &+ 2\alpha_1\omega^2(1 + \gamma)((m^2 - 1)V_2 - 2mV_1) - 2\gamma m\omega^2 \end{split}$$

$$B_3 = -\omega^2 (1 + \gamma)((m^2 - 1)V_2 + 2mV_1)$$

Коэффициенты $A_{\rm l}$ и $B_{\rm l}$ слишком громоздки и в явном виде не приводятся.

Алгоритм решения полиномиальной системы (7) базируется на теории исключения и подробно описан в [3,4,5]. Применяя его к системе (7) получим два уравнения

$$Res = \gamma \omega k_0 (2\alpha_2 k_0^2 + 2\alpha_3 k_0 + \alpha_1^2) \times \\ \times \left(\beta_5 k_0^5 + \beta_4 k_0^4 + \dots + \beta_1 k_0 + \beta_0 \right)$$

$$k_1 = \frac{\eta_4 k_0^4 + \eta_3 k_0^3 + \eta_2 k_0^2 + \eta_1 k_0 + \eta_0}{\lambda_3 k_0^3 + \lambda_2 k_0^2 + \lambda_1 k_0 + \lambda_0}$$
(8)

Коэффициенты β_i , η_i и λ_i в уравнениях (8) зависят от частоты ω и постоянных параметров и ввиду их громоздкости здесь не приводятся. Первое уравнение (8) есть результант системы (7), сомножители k_0 и

 $P_0 = 2\alpha_2 k_0^2 + 2\alpha_3 k_0 + \alpha_1^2$ определяют особые решения. Подстановка корней уравнения $P_0 = 0$ во второе уравнение (8) дает $k_1 = 0$. Основная кривая D- разбиения рассчитывается следующим образом. Задаваясь ω , определяем k_0 как положительные корни полинома

$$Res_1 = \beta_5 k_0^5 + \beta_4 k_0^4 + \dots + \beta_1 k_0 + \beta_0, \qquad (9)$$

коэффициент k_1 определяется из второго уравнения (8). Расчеты произведенные для различных объектов показали, что положительных решений k_0 , как правило, не более трех. Решения, соответствующие неустойчивой системе легко отсеиваются. Структура «основной» кривой Dразбиения совпадает с аналогичной кривой для случая, когда значение k_2 определяется по формуле $k_2 = \alpha k_1^2/k_0$. Этот случай детально исследован в [2]. Кривая имеет две основные ветви сходящиеся в одной точке, при частоте, когда полином (9) имеет кратный корень, рис. 1. В этой точке дискриминант полинома равен нулю. Область $m \ge m_{_{3a\partial}}$ выделяется по правилу штриховки [2, 6]. В точках верхней ветви согласно знаку якобиана системы (7) штрихуется правая сторона кривой, нижней ветви левая. Для ограничения диапазона частот получены формулы для определения значений ω , в которых кривая D-разбиения пересекает оси координат. Последовательно подставляя в уравнения (7) $k_1 = 0$ и $k_0 = 0$ и решая полученные системы методом исключения, получим при $k_1 = 0$

$$Res_{k_1} = \omega(m^2 + 1)(V_1 + mV_2) = 0,$$

$$k_0 = \frac{2m\omega}{V_1 - mV_2}.$$
(10)

Частота находится как точка пересечения прямой $V_1 + mV_2 = 0$ с расширенной ${\rm A}\Phi{\rm X}$ объекта.

При $k_0 = 0$ получим

$$Res_{k_0} = \gamma \cdot \omega \cdot (m^2 + 1)^2 V_2 = 0,$$

$$k_1 = \frac{2\gamma m}{(1 + \gamma)(2mV_1 + (1 - m^2)V_2}.$$
(11)

Частота находится как точка пересечения расширенной АФХ объекта с действительной осью.

Как уже отмечалось условие $k_0 = \max k_0$ (формулы (5)), соответствует минимуму критерия *IE*.

Рис. 1. Д-разбиение для системы управления с реальным ПИД регулятором

Запишем уравнения (7) следующим образом

$$F_1 = F_1(k_1, k_0, \omega) = 0$$

$$F_2 = F_2(k_1, k_0, \omega) = 0$$
(12)

В точке минимума IE $dk_0/dk_1=0$. Считая k_1 и k_0 функциями частоты продифференцируем уравнения (12) по ω

$$\frac{dF_1}{d\omega} = \frac{\partial F_1}{\partial k_0} \cdot \frac{dk_0}{d\omega} + \frac{\partial F_1}{\partial k_1} \cdot \frac{dk_1}{d\omega} + \frac{dF_1}{d\omega} = 0$$

$$\frac{dF_{12}}{d\omega} = \frac{\partial F_2}{\partial k_0} \cdot \frac{dk_0}{d\omega} + \frac{\partial F_2}{\partial k_1} \cdot \frac{dk_1}{d\omega} + \frac{dF_2}{d\omega} = 0$$
(13)

Система (13) линейна относительно $dk_0/d\omega$ и $dk_1/d\omega$, решая ее методом Крамера получим

$$\frac{dk_0}{d\omega} = \frac{\Delta_0}{\Delta}, \quad \frac{dk_1}{d\omega} = \frac{\Delta_1}{\Delta}$$

где Δ — Якобиан системы, в общем случае не равный нулю, Δ_0 , Δ_1 — соответствующие определители метода Крамера. Из последних уравнений находим условие оптимума $dk_0/dk_1=0$

$$F_3(k_0, k_1, \omega) = \frac{dk_0}{dk_1} = \frac{\Delta_0}{\Delta_1} = 0$$
 (14)

Уравнения (12) и (14) определяют оптимальные настройки регулятора и частоту ω .

IV. ПРИМЕРЫ РАСЧЕТОВ НАСТРОЕК

Эффективность предложенного алгоритма проектирования ПИД регулятора была протестирована для m=0.3, $\gamma=0.125$ на следующих моделях объектов:

$$G_1 = \frac{1}{(s+1)^4}$$
; $G_2 = \frac{1}{s \cdot (s+1)^3}$; $G_3 = \frac{1-2s}{(s+1)^3}$;
 $G_4 = \frac{1}{(4s-1) \cdot (s+1)^2}$; $G_5 = \frac{1}{(s+1)^3}$.

Модели 1, 3 и 5 устойчивы, модель 3 имеет правый нуль, модель 2 содержит интегратор, а модель 4 неустойчива. На рис. 1 изображена кривая D-разбиения для модели 5.

Оптимальные настройки реального ПИД регулятора k_0 и k_1 рассчитывались по уравнениям (12) и (14), k_2 — по формуле (5). Результаты расчетов приведены в таблице I.

Там же для сравнения приведены оптимальные настройки идеального ПИД регулятора, когда $\gamma=0$. На рис. 2 изображены кривые D-разбиения идеального (пунктирная линия) и реального (сплошная) ПИД регуляторов для модели 2. На рис. 3 приведены переходные процессы в замкнутой системе с идеальным и реальным регулятором и моделью 2 для ступенчатого возмущения на входе объекта. Корни характеристического полинома замкнутой системы управления с реальным дифференциатором для этой модели равны

$$s_{1,2} = -0.185225 \pm \text{j}0.617416$$
, $s_{3,4} = -0.317890 \pm \text{j}0.234623$,
$$s_5 = -2.040609$$
, $s_5 = -5.957241$.

Как видно, доминирующими являются пара комплексно-сопряженных корней со степенью колебательности m=0.3. Другая пара имеет m=1.348. Действительные корни далеки от мнимой оси. Такое распределение корней характерно для данного метода.

Результаты расчетов подтверждают эффективность предложенного алгоритма. Достоинством рассмотренного метода является автоматический выбор коэффициента K_2 , значение которого зависит от характеристик объекта.

Отметим, что программа расчетов реализована на языке символьных вычислений Maple 14. Например, уравнения (8) получены «вручную» и проверены с помощью команды eliminate пакета Maple 14.

ТАБЛИЦА І ОПТИМАЛЬНЫЕ ЗНАЧЕНИЯ НАСТРОЕК РЕГУЛЯТОРА для m=0.3 , $\gamma=0.125$

Модель объекта	Тип ПИД	Частота ,	k_0	k_1	k_2
G_1	реал.	0.936	0.935	2.326	1.917
	идеал.	1.584	1.081	2.752	2.510
G_2	реал.	0.617	0.131	0.717	0.955
	идеал.	1.140	0.166	0.867	1.259
G_3	реал.	0.822	0.299	0.816	0.521
	идеал.	1.795	0.312	0.872	0.618
G_4	реал.	1.071	1.527	6.130	6.615
	идеал.	2.960	3.210	10.832	13.056
G_5	реал.	1.910	3.860	6.252	3.812
	идеал.	4.937	6.931	11.383	8.062

Рис. 2. Кривые Д-разбиения системы управления с идеальным ПИД регулятором (пунктирная линия) и реальным (сплошная) для молели 2

Рис. 3. Переходные характеристики системы управления с идеальным ПИД регулятором (пунктирная линия) и реальным (сплошная) для модели 2

Список литературы

- Åström K. J., Hägglund T. Advanced PID control //The Instrumentation, Systems, and Automation Society, 2006.
- [2] Аязян Г.К. Расчет автоматических систем с типовыми алгоритмами регулирования: Учеб. пособ. Изд-во УНИ, Уфа, 1989.
- [3] Аязян Г.К., Новоженин А.Ю., Таушева Е.В. Параметрический синтез ПИД-регуляторов на заданную степень колебательности // XII Всероссийское совещания по проблемам управления (ВСПУ-2014). Москва, 2014. Р. 147–159.
- [4] Аязян Г.К., Таушева Е.В., Шаймухаметова М.Р. Применение системы символьных вычислений Марlе для параметрического синтеза регуляторов // Математика, ее приложения и математическое образование (МПМО17) Материалы VI Международной конференции. Улан-Удэ Байкал, 2017. Р. 59–64.
- [5] Аязян Г.К., Таушева Е.В. Параметрический синтез ПИДрегуляторов с ограничениями / XXI Международная конференция по мягким вычислениям и измерениям (SCM-2018). Сборник докладов в 2-х томах. Санкт-Петербург. 25–27 мая 2018 г. СПб.: СПбГЭТУ «ЛЭТИ». Том 1. С.356–360.
- [6] Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. 3-е изд. М.: Наука, 1975.