

Clustering – Day 2

Store_id	P.Whisky	Revenue
1	0.40	80
2	0.20	60
3	0.35	40
4	0.22	90
5	0.45	75

How many clusters? 3, K=3

Income	Credit Limit	# Withdrawls	Card Usage	FICO	Age

How many clusters? 3,4,5,6,..16?

How would we know?

Sometimes, there is **context**. For example, the marketing team of a bank might want to understand only three segments.

Income	Credit Limit	# Withdrawls	Card Usage	FICO	Age

How many clusters? 3,4,5,6,..16?

How would we know?

Sometimes, there may be **no context** available, then how do we figure out a good value of K?

Income	Credit Limit	# Withdrawls	Card Usage	FICO	Age

How many clusters? 3,4,5,6,..16?

How would we know?

Sometimes, there may be **no context** available, then how do we figure out a good value of K?

If we create 3 clusters:

- i. Clusters are compact
- ii. Clusters are far apart

So, a good choice of K will lead to:

- i. Compact Clusters
- ii. Well separated clusters

#Clusters	Compactness
1	M1
2	M2
3	M3
4	M4

Rev	P.Whisky
•	

Rev	P.Whisky
••	••
••	••
••	••

Rev	P.Whisky
••	••
••	••
••	••

Rev	P.Whisky
78	0.42
75	0.45
76	0.42
••	

Rev	P.Whisky
78	0.42
75	0.45
76	0.42
••	
••	

Rev	P.Whisky
78	0.42
75	0.45
76	0.42

- Can we measure the compactness of clusters?
- $WSS_{Total} = WSS_1 + WSS_2 + WSS_3$

- Can we measure the compactness of clusters?
- $WSS_{Total} = WSS_1 + WSS_2 + WSS_3$

or

•
$$WSS_{Average} = \frac{1}{3}(WSS_1 + WSS_2 + WSS_3)$$

- Can we measure the compactness of clusters?
- $WSS_{Total} = WSS_1 + WSS_2 + WSS_3$

or

•
$$WSS_{Average} = \frac{1}{3}(WSS_1 + WSS_2 + WSS_3)$$

#Clusters	WSS
1	M1
2	M2
3	M3
4	M4
	••

Anything between 8 to 12 clusters is a good number.

Clustering Class Exercise

Age	Weight	Cluster
30	67	C1
35	70	C1
25	64	C2
23	62	C2

Center	X (Age)	Y (Weight)
C1	32	68
C2	24	63

Find out $WSS_{average}$ for the data given above.

Clustering Class Exercise

Age	Weight	Cluster
30	67	C1
35	70	C1
25	64	C2
23	62	C2

Center	X (Age)	Y (Weight)
C1	32	68
C2	24	63

Find out $WSS_{average}$ for the data given above.

See **Numerical Example Clustering.xlsx** in sheet Class Exercise WSS

Clustering: Elbow Curve Demo

Links: https://github.com/Gunnvant/Self-Paced-Content/tree/main/python/clustering/Class%20Demos

Anything between 8 to 12 clusters is a good number.

Now what?

Clustering: Profiling Clusters

- Once you finalize the number of clusters, you will then need to describe these clusters.
- This is done via a process known as cluster profiling.

Revenue	P.Whisky	Cluster
••	••	1
••	••	1
••	••	2
••	••	2
••	••	3
••		3
••		1

Mean Revenue = 120, std = 10

Mean Revenue Cluster 1 = 200

Mean Revenue Cluster 2 = 125

Mean Revenue Cluster 3 = 75

Mean P.Whisky = 0.20, std= 0.10 Mean P.Whisky Cluster 1 = 0.40 Mean P.Whisky Cluster 2 = 0.21 Mean P.Whisky Cluster 3 = 0.05

Revenue	P.Whisky	Cluster
••	••	1
••	••	1
••	••	2
••	••	2
••	••	3
••		3
		1

Mean Revenue= 120, std = 10

Mean Revenue Cluster 1 = 200

Mean Revenue Cluster 2 = 125

Mean Revenue Cluster 3 = 75

Revenue in cluster 1 is more than average, so cluster 1 is a cluster with high revenue. Mean P.Whisky= 0.20, std= 0.10

Mean P.Whisky Cluster 1 = 0.40

Mean P.Whisky Cluster 2 = 0.21

Mean P.Whisky Cluster 3 = 0.05

Revenue	P.Whisky	Cluster
••	••	1
••	••	1
••	••	2
••	••	2
••	••	3
		3
••		1

Mean Revenue= 120, std = 10

Mean Revenue Cluster 1 = 200

Mean Revenue Cluster 2 = 125

Mean Revenue Cluster 3 = 75

Revenue in cluster 3 is less than average, so cluster 1 is a cluster with low revenue. Mean P.Whisky= 0.20, std= 0.10

Mean P.Whisky Cluster 1 = 0.40

Mean P.Whisky Cluster 2 = 0.21

Mean P.Whisky Cluster 3 = 0.05

Revenue	P.Whisky	Cluster
••	••	1
••	••	1
••		2
••	••	2
••		3
••		3
••		1

Mean Revenue = 120, std = 10

Mean Revenue Cluster 1 = 200

Mean Revenue Cluster 2 = 125

Mean Revenue Cluster 3 = 75

Mean Revenue= 120, std = 10

Z Revenue Cluster 1 = 8

Z Revenue Cluster 2 = 0.5

Z Revenue Cluster 3 = -4.5

Mean P.Whisky = 0.20, std = 0.10

Mean P.Whisky Cluster 1 = 0.40

Mean P.Whisky Cluster 2 = 0.21

Mean P.Whisky Cluster 3 = 0.05

Mean P.Whisky= 0.20, std= 0.10

Z P.Whisky Cluster 1 = 2

Z P.Whisky Cluster 2 = 1

Z P.Whisky Cluster 3 = -1.5

Cluster Profiling: Code Demo

Links: https://github.com/Gunnvant/Self-Paced-Content/tree/main/python/clustering/Class%20Demos

Thank You!

Copyright © HeroX Private Limited, 2023. All rights reserved.