Machine Learning Example 2:降維度方法 作者:廖柄爚

摘要

隨著科技發展,資料大量的資訊化形成巨量資料,多維度與大量資料容易造成可閱讀性低,所以降維度技術日趨重要。主成份分析(PCA)、線性判別分析(LDA)、局部線性嵌入(LLE)是常見降維度技術。Iris Data Set (鳶尾屬植物數據集)、Optical Recognition of Handwritten Digits Dataset、Wine資料集,視資料特性採取合適方法,透過降維度方法能讓龐大的資料集顯示出過去未知的有用數據。

關鍵詞:降維度技術、PCA、LDA、LLE

一、緒論

1.1 動機

Iris Data Set (鳶尾屬植物數據集)包含三種鳶尾花的品種 (Iris Setosa, Iris Versicolour, Iris Virginica),另外還有萼片長度(cm)、萼片寬度(cm)、花瓣長度(cm)、花瓣寬度(cm) 4個特徵差別,如能進行有效的分類能達資料視覺化。Optical Recognition of Handwritten Digits Dataset 由於相似字間筆劃結構非常類似,因此必須使用能夠精確顯示些微差異的特徵,隨著電腦化的發展,如能將手寫字進行光學辨識,開發出文字辨識系統,當某個使用者一再的輸入手寫字時,系統即能逐漸地學習到這個使用者的書寫風格,能加速數位化的工作、降低人工成本。本研究葡萄酒資料集由13種化學原料所組成,可分成3種酒的類別。

1.2目的

目前已許多降維度技術被廣泛運用,主要包含線性及非線性,兩個常被使用的線性方法為主成份分析(PCA)、線性判別分析(LDA)。然而線性降維度方法不適合處理非線性、彎曲的資料,因此許多非線性的方法提出來,如局部線性嵌入(LLE)、Isomap等方法,採取合適的方法不僅能達到資料視覺化,可以進一步分析找出隱藏在資料中有用的訊息。

機器學習領域中的降維度技術就是指採用某種映射方法,將原高維度空間中的數據點映射到低維度的空間中。降維度的本質是學習一個映射函數 f: x-y,其中 x 是原始數據點的表達,目前最多使用向量表達形式。 y 是數據點映射後的低維度向量表達,通常 y 的維度小於 x 的維度。 f 可能是顯式或隱式、線性的或非線性的。

Principal Component Analysis(PCA)是最常用的線性降維度方法,它的目標是通過某種線性投影,將高維度的數據映射到低維度的空間中表示,並期望在所投影的維度上數據的方差最大,以此使用較少的數據維度,同時保留住較多的原數據的特性。

如果把所有的點都映射到一起,那麼幾乎所有的資訊(如點和點之間的距離關係)都遺失了,而如果映射後方差盡可能的大,那麼數據點則會分散開來,以此來保留更多的資訊。可以證明,PCA是丟失原始數據資訊最少的一種線性降維度方式。

Linear Discriminant Analysis (又稱Fisher Linear Discriminant)是一種有監督的 (supervised) 線性降維度方法。與PCA 保持數據資訊不同,LDA 是為了使得降維度後的數據點盡可能地容易被區分。

Locally linear embedding (LLE)是一種非線性降維算法,它能夠使降維 後的數據較好地保持原有流形結構。LLE可以說是流形學習方法最經典的工作 之一。很多後續的流形學習、降維度方法都與LLE有密切聯繫。

二、方法

本實驗程式的流程如下圖,首先使用 scikit-learn 的內建資料集 load_datasetName API 來讀取 Iris、Optical Digits、Wine 資料集。接著使用 PCA、LDA、LLE 三種降維度方法將資料縮減,最後透過 matplotlib 繪出圖形。

圖1:程式流程

程式專案資料夾有 Ex2_Iris. py、Ex2_Optdigits. py、Ex2_Wine. py 三個檔案分別用來處理 Iris、Digit、Wine 資料集的程式,每個程式都是以 PCA、LDA、LLE 之順序來做 dimensionality reduction。

三、實驗

3.1 資料集

本實驗採用三個資料集: Iris Plants Database、Optical Recognition of Handwritten Digits、Wine recognition data。

3.1.1 Iris Plants Dataset

此資料集共有150筆資料,分為三類,每一類各50筆。每筆資料有五種屬性分別為input attributes:萼片長度(cm)、萼片寬度(cm)、花瓣長度(cm)、花瓣寬度(cm)、以及用來分類的output attribute (有 Setosa、Versicolour、Virginca)。

萼片長度	萼片寬度	花瓣長度	類別			
5. 1	3. 5	1.4	setosa			
5. 3	3. 7	1.5	0.2	setosa		
5	3. 3	1.4	0.2	setosa		
6. 2	2.9	4. 3	1.3	versicolor		
5. 1	2.5	3	1.1	versicolor		
5. 7	2.8	4.1 1.3		versicolor		
6. 3	3. 3	6 2.5		virginica		
5.8	2. 7	5.1 1.9		virginica		
7. 1	3	5. 9	virginica			

表1:Iris資料集欄位

3.1.2 Optical Recognition of Handwritten Digits Dataset

此資料集共有1797筆資料,每一筆資料有一個8x8的圖形矩陣,也就是有共64個 input attributes,最後一個屬性為 output attribute,用來表示此圖形是哪一個數字,例如資料集的第一筆資料的圖形矩陣為下圖:

1	[0.	0.	5.	13.	9.	1.	0.]
2	[0.	0.	13.	15.	10.	15.	5.]
3	[0.	3.	15.	2.	0.	11.	8.]
4	[0.	4.	12.	0.	0.	8.	8.]
5	[0.	5.	8.	0.	0.	9.	8.]
6	[0.	4.	11.	0.	1.	12.	7.]
7	[0.	2.	14.	5.	10.	12.	0.]
8	[0.	0.	6.	13.	10.	0.	0.]

圖2:數字0的矩陣

將上圖以灰階的方式畫出,會得到下圖:

圖3:數字0矩陣的灰階圖

顯示的數字正好是第一筆資料 output 屬性的分類結果:數字 0。所有 input attributes 的數值範圍為 0~16; output attribute 數值範圍為 0~9。

表 2: Digits 資料筆數分布

, ,	
數字	筆數
0	178
1	182
2	177
3	183
4	181
5	182
6	181
7	179
8	174
9	180

3.1.3 Wine Recognition Dataset

共有178筆資料,每一筆有13種化學分析名稱,分別為(1)Alcohol、(2)Malic acid、(3)Ash、(4)Alcalinity of ash、(5)Magnesium、(6)Total phenols、(7)Flavanoids、(8)Nonflavanoid phenols、(9)Proanthocyanins、(10)Color intensity、(11)Hue、(12)OD280/OD315 of diluted wines、(13)Proline,以及類別。

表 3: Wine 資料集欄位

米石 口门	類別 Attrl	Attr	Attr	Attr	Attr	Attr	Attr	Attr	Attr	Attr1	Attr1	Attr1	Attr1
類別	ALLII	2	3	4	5	6	7	8	9	0	1	2	3
1	14. 23	1.71	2. 43	15.6	127	2.8	3.06	0.28	2.29	5. 64	1.04	3. 92	1065
1	13. 2	1.78	2.14	11.2	100	2.65	2. 76	0.26	1.28	4. 38	1.05	3.4	1050
1	13. 16	2.36	2.67	18.6	101	2.8	3. 24	0.3	2.81	5. 68	1.03	3. 17	1185
2	11.87	4. 31	2. 39	21	82	2. 86	3. 03	0. 21	2. 91	2.8	0. 75	3.64	380
2	12.07	2.16	2.17	21	85	2.6	2.65	0.37	1.35	2. 76	0.86	3. 28	378

2	12. 37	1.63	2.3	24. 5	88	2. 22	2. 45	0.4	1.9	2.12	0.89	2. 78	342
2	12.04	4. 3	2. 38	22	80	2. 1	1.75	0.42	1.35	2.6	0.79	2.57	580
3	12.86	1.35	2. 32	18	122	1.51	1.25	0.21	0.94	4.1	0.76	1.29	630
3	12.88	2.99	2.4	20	104	1.3	1.22	0.24	0.83	5. 4	0.74	1.42	530
3	12.81	2. 31	2. 4	24	98	1.15	1.09	0.27	0.83	5. 7	0.66	1.36	560

表 4: Wine 資料筆數分布

類別	筆數
1	59
2	70
3	48

3.2實驗設計 (實驗如何進行、參數如何設定等)

將 PCA、LDA、LLE 三個方法的 n_c components 參數設定為 2,就可以取得前兩大特徵向量,除了 LLE 有額外設定 n_c ighbors 為 30 與 method 為 standard 之外,其餘的參數皆使用預設值。

3.3實驗結果

3.3.1 Iris 資料集

PCA 前兩大特徵向量可解釋的變異量比例為: [0.92461621 0.05301557]

5

LDA 前兩大特徵向量可解釋的變異量比例為: [0.99147248 0.00852752]

LLE 重建錯誤率: 1.7181595957426014e-05

3.3.2 Optical Recognition of Handwritten Digits 資料集 下圖呈現 Digits 資料集的前 400 筆資料的灰階圖。

A selection from the 64-dimensional digits dataset

圖7:資料集部分灰階圖

PCA 前兩大特徵向量可解釋的變異量比例為: [0.14890594 0.13618771]

圖 8: Digit PCA 結果

LDA 前兩大特徵向量可解釋的變異量比例為: [0.28901578 0.18252926]

圖 9: Digit LDA 結果

LLE 重建錯誤率: 5.16179e-07

圖 10: Digit LLE 結果

3.3.3 Wine 資料集

PCA 前兩大特徵向量可解釋的變異量比例為: [0.99809123 0.00173592]

LDA 前兩大特徵向量可解釋的變異量比例為: [0.68747889 0.31252111]

LLE 重建錯誤率: 0.0001739967328243908

圖 13: Wine LLE 結果

四、結論

以PCA、LDA、LLE 三種方法來處理 Iris、Wine 兩種資料集時,使用前兩大的特徵向量約可代表 98%以上的原始資料。而 Hand written digits 使用 PCA 與 LDA 約可解釋 27%與 46%的原始資料,LLE 反而能解釋更多,這是因為 PCA 與 LDA 都是 Linear dimensionality reduction 而 LLE 為 Non-Linear dimensionality reduction。

Iris 資料集使用 LDA 及 PCA 降維度技術似乎差異不大,優過於 LLE。Wine 資料集使用 LDA 降維度技術似乎優於 PCA 及 LLE,Class 之間距離較遠彼此間分隔比較清楚。Optical Recognition of Handwritten Digits 資料集使用 LDA 降低資料的維度不只能提高辨識率,似乎優於 PCA 及 LLE。最後整體顯示 LDA 有最好的效果。