1 Повторение.

Царства:

- 1. Животные.
- 2. Растения.
- 3. Грибы.
- 4. Бактерии.

Растения:

- 1. 5 тканей: механическая, основная, образовательная, проводящая, фотосинтезирующая.
- 2. Неограниченный рост.
- 3. Прикрепленный образ жизни.
- 4. Фотосинтез.

Животные:

- 1. Передвигаются в поисках пищи.
- 2. Рост ограничен.
- 3. Нет клеточной стенки.
- 4. Гетеротрофы.
- 5. 4 ткани: соединительная, мышечная, нервная, эпителиальная.

Человек:

- 1. Речь.
- 2. Изгибы опорно-двигательной системы.
- 3. Пятый палец.

Науки.

Наука	О чем		
Птеридология	Папоротники		
Акарология	Клещи		
Карцинология	Ракообразные		
Герпетология	Рептилии		
Гельминтология	Паразитические черви		
Альгология	Водоросли		
Бриология	Мхи		
Этология	Биологические основы поведения животны		
Энтомология	Насекомые		
Малакология	Моллюски		
Лихенология	Лишайники		

Направление	OX	Ученные	
Классическое	Многообразие живой при-	Аристотель, Теофраст	
	роды		
Эволюционное	Ответы на сложные во-	Дарвин	
	просы		
Физико-	Биохимия	Пастер, Кох	
химическое			

2 Цитология.

Цитология — наука о клетке.

Становление цитологии как науки.

Ученный	Век	Достижения	
Евклид	3 – 4 век до на-	Первые изогнутые поверхности.	
	шей эры.		
Д"Армате	13 век.	Изобрел очки.	
Да Винчи	16 век.	Изобрел лупу.	
Янсен	16 век.	Совместил две линзы и получил трубу	
		(почти микроскоп).	
Гук	17 век.	Понятие клетки.	
Левенгук	18 век.	Микроскоп.	
Браун	19 век.	Обнаружил ядро.	
Пуркине	19 век.	Обнаружил цитоплазму.	
Мечников	20 век.	Открыл фагоцитоз — клеточный иммуни-	
		тет.	
Мальпиги,	17 век.	Клеточное строение растений.	
Грю			
Шванн,	19 век.	ОХ клетки, основоположники клеточной	
Шлейден		теории. Положения:	
		1. Клетка — структурная функцио-	
		нальная единица.	
		2. Все клетки похожи (содержат бел-	
		ки, жиры и углеводы).	
		3. Клетка от клетки.	
		4. Специализированны по выполняе-	
		мой функции.	
		5. Обмен веществ.	

2.1 Химический состав клетки.

Химический состав живой и неживой природы одинаковый. Элементы в организме:

- Макро ... 0.001%.
- Микро 0.001%...0.000001%.
- Ультра микро 0.000001%

Вещества:

- Органические:
 - Белки.
 - Жиры.
 - Углеводы.
 - Нуклеиновые кислоты.
- Неорганические:
 - Вода. f растворение, давление, транспорт.

Вещество	Синоним	Пример	OX	f
Углеводы.	Сахариды.	Глюкоза,	Группа ор-	Строй материал,
		крахмал.	ганических	энергетическая.
			соединений.	
Жиры.	Липиды.	Растительные	Жидкий или	Запас, защита,
		жиры.	твердый.	энергетическая,
				регуляторная.
Белки.	Протеины.	Галогены,	Составнаяа	
		актины.	часть амино-	
			кислоты.	

Жир состоит из глицерина и трех жировых остатка.

2.1.1 Нуклеиновые кислоты.

Нуклеиновые кислоты делятся на:

- ДНК (содержит дезоксирибозу).
- РНК (содержит рибозу).

Биополимеры состоят из мономеров. В нуклеиновых кислотах мономеры — нуклеотиды.

Нуклеотиды состоя из:

- Азотистое основания.
- Углевода.
- Остатка фосфорной кислоты.

Ферментальная функция выполняется у белков.

Формула глюкозы — $C_6H_{12}O_6$.

Азотистые основания:

- ДНК. А (аденин), 2; Т (тимин), 2; Г (гуанин), 3; Ц (цитозин), 3.
- РНК. А, 2; У (урацил), 2; Г, 3; Ц, 3.

Рис. 1: ДНК

Виды РНК:

ullet Информационные. f- считывание информации.

Рис. 2: иРНК

• Транспортные. f — транспорт.

Рис. 3: тРНК

ullet pPHK, находятся в рибосомах. f — синтез белка.

Задачи:

- 1. Дана 1 цепочка ДНК. Построить 2 цепочку ДНК и посчитать количество водородных соединений. Строи по принципу комплементарности. А \leftrightarrow Т, $\Gamma \leftrightarrow$ Ц.
- 2. Дана 1 цепочка ДНК. Построить 2 цепочку ДНК и цепочку иРНК. Строим по принципу комплементарности. Сначала 2 цепочку ДНК $A \leftrightarrow T$, $\Gamma \leftrightarrow U$. Потом от 2 цепочки ДНК, цепочку иРНК $A \leftrightarrow Y$, $\Gamma \leftrightarrow U$.
- Дана молекула. Определить, что это за молекула и построить 2 другие.
- 4. В молекуле ДНК Т 15%. Определить сколько % А, Г, Ц. А 15%, по принципу комплементарности. Тогда $\Gamma+$ Ц = 70%. Значит Γ и Ц по 35%.
- 5. Дано: 210 нуклеотидных соединений, в которых 3 водородные связи, и 140, в которых 2 водородные связи. Найти количество A, T, Γ , Ц. A и T по 70, Γ и Ц по 105.
- 6. В одной цепочке ДНК содержится А 50, Γ 40, Π 80, Π 25. Найти сколько нуклеотидов каждого вида в молекуле ДНК. А и Π = A + T, Π и Π = Π + Π . Тогда A и Π по 75, Π и Π по 120.

2.2 Витамины.

Делятся на водорастворимые и жирорастворимые (K, D, E, A). Роль витаминов: поддержка организма.

2.3 Биокатализаторы.

ОХ биокатализаторов:

- 1. Катализаторы вещества, которые изменяют скорость химической реакции и не входят в состав продуктов реакции.
- 2. Основными биокатализаторами в клетке являются ферменты.
- 3. Ферменты участвуют в процессе синтеза и распада белков.
- 4. Молекулы ферментов имеют активный центр небольшой участок, на котором идет данная реакция.
- 5. С активным центром могут связываться только определенный молекулы в силу их формы и комплементарности.
- 6. Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов.

- 7. Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение кофермент.
- 8. Ферменты действуют в строго определенном порядке и они специфичны для каждого вещества, тк зависят от строения.
- 9. Ферменты зависят от температуры, природы, давления, концентрации.
- 10. Каталитической способностью обладают некоторые молекулы РНК.

2.4 Вирусы.

ОХ вирусов:

- 1. Неклеточная форма жизни.
- 2. Переходное состояние между живой и неживой природой.
- $3.\ 100\%$ внутриклеточные паразиты.
- 4. Вирусы состоят из 2 частей: белковая оболочка (капсид) и ДНК/РНК.
- 5. Быстро изменяемые частицы (хорошо адаптируются).
- 6. Вирусные заболевания у:
 - Человека: грипп, оспа, корь, полиомиелит, свинка, бешенство, СПИД, краснуха, клещевой энцефалит, гепатит.
 - Животных: ящур, чума свиней и птиц, инфекционную анемию лошадей, коровья оспа, бешенство.
 - Растений: мозаичная болезнь табака, томатов, огурцов, скручивание листьев, карликовость, желтуха.
- 7. Существуют в кристаллическом виде за пределами клетки.
- 8. Специфичность.
- 9. Заболевания связанные с:
 - РНК-вирусами: $\frac{1}{3}$ вирусов вызывающих OP3.
 - ДНК-вирусами: попиломы, оспа, герпес.

2.5 Клетка.

Клетка наименьшая структурная (все состоит из них) и функциональная (на уровне клетки начинается обмен веществ) единица. Состоят из органелл.

Главная часть клетки — ядро.

Кариоплазма = ядерный сок.

Рис. 4: Ядро клетки.

Хромосомный набор клетки называется кариотипом. Клетки:

- Соматические. Диплоидный НХ (полный, двойной). 46 хромосом.
- Половые = гаметы (оплодотворение). Гаплоидный (половинный от полного набора). 23 хромосомы.

44 — аутосомы. Одинаковые и у мужчин, и у женщин.

2 — половые хромосомы. У женщин — XX (гомогаметный), у мужчин — XY (гетерогаметный).

Исключения: у птиц, некоторых насекомых и незначительного количества рыб наоборот — мужской пол гомогаметный, женский — гетерогаметный. Ядрышко:

- 1. f синтез РНК и белков.
- $2. \ \, {
 m Ot} \, \, 1$ до 7 в клетке.
- 3. Хорошо видны когда клетка не делится.
- 4. Взвешены в ядерном соке.

5. Плотное круглое тело.

Часть клетки	Количество	OX	f
	мембран		
ЭПС	1	Сложная система из полостей трубочек и канальцев. Занимает большой объем клетки. Гладкая и шероховатая.	Синтез белков (шероховатая), липидов и углеводов (гладкая). Транспорт (внутри клетки).
Рибосома	не мембранные	Много. Состоит из большой, малой и РНК. Могут объединятся в группы — полисомы. У эукариотов могут находятся в митохондриях и пластидах.	Синтез белка.
Аппарат Голь-	1	Состоит из цистерн, мешоч-ков, полостей, пузырьков, образованных гладкой мембранной.	Накопление, сортировка, хранение, пре- образование веществ. Образо- вания лизосом.
Лизосома	1	Имеет вид пузырька. Наполнены пищеварительными ферментами. Образовывается аппаратом Гольджи.	Внутриклеточное пищеварение.
Митохондрии	2	Состоят из внутренних складок (кристов). Содержат собственную ДНК.	Энергия связей питательных веществ запасается в химических связях молекул АТФ. Энергетические станции клетки (преобразуют энергию).

Пластиды	2	Свойствен толь-	Фотосинтез.
r 1		ко раститель-	Запасающая.
		ным клеткам.	Восстанавливаю-
		Зеленые (хлоро-	щая. Цвет.
		пласты), желтые	щал. цвет.
		и оранжевые	
		(хромопласты),	
		без цветные	
		(лейкопласты).	
		Способны к	
		делению, тк	
		содержат коль-	
		цевую ДНК.	р п
Вакуоль	1	Полость, окру-	Запас. Поддер-
		женная мем-	жания внутрен-
		бранной, за-	него давления
		полненная кле-	клетки.
		точным соком,	
		производная	
		ЭПС. Содержит	
		ферменты, ми-	
		неральные соли,	
		продукты обме-	
		на веществ. Ва-	
		куоль — признак	
		растительных	
		организмов.	
Клеточный	не мембранные	Из микротрубо-	Формирует кле-
центр		чек. В середине	точный скелет
		два тельца —	клетки. Обеспе-
		центриоли (толь-	чивает движение
		ко у животных и	органоидов клет-
		водорослей). По	ки.
		микротрубочкам	
		происходит пере-	
		мещение.	
Органеллы	не мембранные	Органеллы дви-	Позволяют пе-
движения	•	жения — реснич-	ремещаться
		ки и жгутики.	клетке.
	l		