

CMSC 471 Intro to Al

Search (Cont.)

General search algorithm

```
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
function general-search (problem, QUEUEING-FUNCTION)
  nodes = MAKE-QUEUE (MAKE-NODE (problem.INITIAL-STATE) )
  loop
      if EMPTY(nodes) then return "failure"
      node = REMOVE-FRONT(nodes)
      if problem.GOAL-TEST (node.STATE) succeeds
         then return node
      nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
                problem.OPERATORS))
 end
  ;; Note: The goal test is NOT done when nodes are generated
  ;; Note: This algorithm does not detect loops
```


Properties of Searching Strategies

Completeness

- Guarantees finding a solution whenever one exists
- Time complexity (worst or average case)
 - Usually measured by number of nodes expanded

Space complexity

Usually measured by maximum size of graph/tree during the search

Optimality/Admissibility

If a solution is found, is it guaranteed to be an optimal one, i.e.,
 one with minimum cost

Uninformed Search (Recap)

Search Strategy	Expanded nodes
BFS	
DFS	
Iterative-Deepening Search	
Uniform-Cost Search	

Uninformed Search (Recap)

Search Strategy	Expanded nodes
BFS	SABCDEG
DFS	SADEG
Iterative-Deepening Search	SSABCSADEG
Uniform-Cost Search	SADBCEG

Comparing Search Strategies

Search Strategy	Time	Space	Complete?	Optimal?
BFS				
DFS				
Iterative-Deepening Search				
Uniform-Cost Search				

Comparing Search Strategies

Search Strategy	Time	Space	Complete?	Optimal?
BFS	p _q			
DFS	p_q			
Iterative-Deepening Search	b ^d			
Uniform-Cost Search	b ^d			

Comparing Search Strategies

Search Strategy	Time	Space	Complete?	Optimal?
BFS	b ^d	p _q		
DFS	b ^d	bd		
Iterative-Deepening Search	b ^d	bd		
Uniform-Cost Search	b ^d	p_q		

Comparing Search Strategies

Search Strategy	Time	Space	Complete?	Optimal?
BFS	b ^d	p _q	Yes	
DFS	p_q	bd	No	
Iterative-Deepening Search	b ^d	bd	Yes	
Uniform-Cost Search	b ^d	b ^d	Yes	

Comparing Search Strategies

Search Strategy	Time	Space	Complete?	Optimal?
BFS	b ^d	p _q	Yes	Yes (Only for unitary cost)
DFS	b ^d	bd	No	No
Iterative-Deepening Search	b ^d	bd	Yes	Yes (Only for unitary cost)
Uniform-Cost Search	b ^d	b ^d	Yes	Yes

Notes on Uniform-Cost Search

- Greedy Algorithm
 - Algorithms that make locally optimal choice in the hopes of reaching global optima
- Uniform because:
 - Tries to reach uniform cost on the priority queue or node list

UCS vs BFS vs DFS

- DFS:
 - Goes too far down the depth before backtracking
 - Can find solution in less time
- BFS:
 - Goes too far down the width before backtracking
 - Optimal
- UCS
 - Tries to find a balance between going too far deep or wide

Informed (Heuristic) Search

- Heuristic search
- Best-first search
 - -Greedy search
 - -Beam search
 - -A* Search
- Heuristic functions

Big idea: heuristic

Merriam-Webster's Online Dictionary:

Heuristic (pron. \hyu-'ris-tik\): adj. [from Greek heuriskein to discover] involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods

Heuristics, More Formally

h(n) is a **heuristic function**, that maps a state n to an estimated cost from n-to-goal

Heuristics, More Formally

h(n) is a **heuristic function**, that maps a state n to an estimated cost from n-to-goal

h(n) is **admissible** iff $h(n) \le$ the lowest actual cost from n-to-goal

Heuristics, More Formally

h(n) is a **heuristic function**, that maps a state n to an estimated cost from n-to-goal

h(n) is **admissible** iff $h(n) \le$ the lowest actual cost from n-to-goal

h(n) is **consistent** iff $h(n) \leq \text{lowestcost}(n, n') + h(n')$

Informed methods add domain-specific information

- Select best path along which to continue searching
- h(n): estimates goodness of node n
- h(n) = estimated cost (or distance) of minimal cost path from n
 to a goal state.
- Based on domain-specific information and computable from current state description that estimates how close we are to a goal

Heuristics

- All domain knowledge used in search is encoded in the heuristic function, h(<node>)
- Examples:
- -8-puzzle: number of tiles out of place
- -8-puzzle: sum of distances each tile is from its goal

In general

- $-h(n) \ge 0$ for all nodes n
- -h(n) = 0 implies that n is a goal node
- $-h(n) = \infty$ implies n is a dead-end that can't lead to goal

Example 3.5

(Partial) Heuristic
$$h(n)$$
 for goal r123

$$h(o123) = 4$$
 $h(o125) = 6$ $h(r123) = 0$

(Partial) Heuristic h(n) for goal r123

Example 3.5

```
\begin{array}{llll} h\left(mail\right) \,=\, 26 & h\left(ts\right) \,=\, 23 & h\left(o103\right) \,=\, 21 \\ h\left(o109\right) \,=\, 24 & h\left(o111\right) \,=\, 27 & h\left(o119\right) \,=\, 11 \\ h\left(o123\right) \,=\, 4 & h\left(o125\right) \,=\, 6 & h\left(r123\right) \,=\, 0 \\ h\left(b1\right) \,=\, 13 & h\left(b2\right) \,=\, 15 & h\left(b3\right) \,=\, 17 \\ h\left(b4\right) \,=\, 18 & h\left(c1\right) \,=\, 6 & h\left(c2\right) \,=\, 10 \\ h\left(c3\right) \,=\, 12 & h\left(storage\right) \,=\, 12 \end{array}
```


(Partial) Heuristic h(n) for goal r123

Example 3.5

Q: Is this an **admissible** heuristic?

$$\begin{array}{llll} h\left(mail\right) \,=\, 26 & h\left(ts\right) \,=\, 23 & h\left(o103\right) \,=\, 21 \\ h\left(o109\right) \,=\, 24 & h\left(o111\right) \,=\, 27 & h\left(o119\right) \,=\, 11 \\ h\left(o123\right) \,=\, 4 & h\left(o125\right) \,=\, 6 & h\left(r123\right) \,=\, 0 \\ h\left(b1\right) \,=\, 13 & h\left(b2\right) \,=\, 15 & h\left(b3\right) \,=\, 17 \\ h\left(b4\right) \,=\, 18 & h\left(c1\right) \,=\, 6 & h\left(c2\right) \,=\, 10 \\ h\left(c3\right) \,=\, 12 & h\left(storage\right) \,=\, 12 \end{array}$$

(Partial) Heuristic h(n) for goal r123

Example 3.5

Q: Is this an **admissible** heuristic?

Q: Is it an accurate heuristic?

$$\begin{array}{llll} h\left(mail\right) \,=\, 26 & h\left(ts\right) \,=\, 23 & h\left(o103\right) \,=\, 21 \\ h\left(o109\right) \,=\, 24 & h\left(o111\right) \,=\, 27 & h\left(o119\right) \,=\, 11 \\ h\left(o123\right) \,=\, 4 & h\left(o125\right) \,=\, 6 & h\left(r123\right) \,=\, 0 \\ h\left(b1\right) \,=\, 13 & h\left(b2\right) \,=\, 15 & h\left(b3\right) \,=\, 17 \\ h\left(b4\right) \,=\, 18 & h\left(c1\right) \,=\, 6 & h\left(c2\right) \,=\, 10 \\ h\left(c3\right) \,=\, 12 & h\left(storage\right) \,=\, 12 \end{array}$$

Heuristics for 8-puzzle

Current State

1	2	3
4	5	6
7		8

The number of misplaced tiles (not including

the blank)

Goal State

1	2	3
4	5	6
7	8	

In this case, only "8" is misplaced, so heuristic function evaluates to 1

In other words, the heuristic *says* that it *thinks* a solution may be available in just 1 more move

N	N	N
N	N	N
N	Y	

Heuristics for 8-puzzle

Manhattan
Distance (not including the blank)

Current State 3 2 8 4 5 6 7 1

Goal State

1	2	3
4	5	6
7	8	

- The **3**, **8** and **1** tiles are misplaced (by 2, 3, and 3 steps) so the heuristic function evaluates to 8
- Heuristic says that it *thinks* a solution may be available in just 8 more moves.
- The misplaced heuristic's value is 3

Total 8

We can use heuristics to guide search

Manhattan Distance heuristic helps us quickly find a solution to the 8puzzle

Best-first search

 Search algorithm that improves depth- first search by expanding most promising node chosen according to heuristic rule

 Order nodes on nodes list by increasing value of an evaluation function, f(n), incorporating domainspecific information

Best-first search

- Search algorithm that improves depth- first search by expanding most promising node chosen according to heuristic rule
- Order nodes on nodes list by increasing value of an evaluation function, f(n), incorporating domainspecific information
- This is a generic way of referring to the class of informed methods

Greedy best first search

- A <u>greedy algorithm</u> makes locally optimal choices in hope of finding a global optimum
- Uses evaluation function f(n) = h(n), sorting nodes by increasing values of f
- Selects node to expand appearing closest to goal (i.e., node with smallest f value)
- Not complete
- Not Admissible

Greedy best first search example

- Proof of non-admissibility
 - Assume arc costs = 1, greedy search finds goal g, with solution cost of 5
 - Optimal solution is path to goal with cost 3

Beam search

- Use evaluation function f(n), but maximum size of the nodes list is k, a fixed constant
- Only keep k best nodes as candidates for expansion, discard rest
- k is the beam width
- More space efficient than greedy search, but may discard nodes on a solution path
- As k increases, approaches best first search
- Complete?
- Admissible?

Beam search

- Use evaluation function f(n), but maximum size of the nodes list is k, a fixed constant
- Only keep k best nodes as candidates for expansion, discard rest
- k is the beam width
- More space efficient than greedy search, but may discard nodes on a solution path
- As k increases, approaches best first search
- Not Complete
- Not Admissible

We've *got* to be able to do better, right?

A* Search

Use an evaluation function

$$f(n) = g(n) + h(n)$$

estimated total cost from start to goal via state n

to the goal

A* Search

Use an evaluation function

$$f(n) = g(n) + h(n)$$

estimated total cost from the start state to state n start to goal via state n

minimal-cost path from cost estimate from state n to the goal

- g(n) term adds "breadth-first" component to evaluation function
- Ranks nodes on search frontier by estimated cost of solution from start node via given node to goal

A*

- Pronounced "a star"
- h is admissible when h(n) <= h*(n) holds
 - $-h*(n) = true \ cost \ of \ minimal \ cost \ path \ from \ n \ to \ a \ goal$
- Using an admissible heuristic guarantees that 1st solution found will be an **optimal** one
- A* is **complete** whenever branching factor is finite and every action has fixed, positive cost
- A* is admissible

Implementing A*

Q: Can this be an instance of our general search algorithm?

Implementing A*

Q: Can this be an instance of our general search algorithm?

A: Yup! Just make the fringe a priority queue ordered by f(n)

Alternative A* Pseudo-code

- 1 Put the start node Son the nodes list, called OPEN
- 2 If OPEN is empty, exit with failure
- 3 Select node in OPEN with minimal f(n) and place on CLOSED
- 4 If n is a goal node, collect path back to start and stop
- 5 Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 - 1 If n' not already on OPEN or CLOSED
 - put n' on OPEN
 - compute h(n'), g(n')=g(n)+c(n,n'), f(n')=g(n')+h(n')
 - 2 If n' already on OPEN or CLOSED and if g(n') is lower for new version of n', then:
 - Redirect pointers backward from n' on path with lower g(n')
 - Put n' on OPEN

 Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an optimal solution path expanded; no extra work is done

- Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an optimal solution path expanded; no extra work is done
- **Null heuristic:** If h(n) = 0 for all n, then it is an admissible heuristic and A* acts like uniform-cost search

- Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an optimal solution path expanded; no extra work is done
- Null heuristic: If h(n) = 0 for all n, then it is an admissible heuristic and A* acts like uniform-cost search
- Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal nodes, then h2 is a better heuristic than h1

- Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an optimal solution path expanded; no extra work is done
- **Null heuristic:** If h(n) = 0 for all n, then it is an admissible heuristic and A* acts like uniform-cost search
- Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal nodes, then h2 is a *better* heuristic than h1
 - If A1* uses h1, and A2* uses h2, then every node expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
 - -We say that A2* is better informed than A1*

- Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an optimal solution path expanded; no extra work is done
- **Null heuristic:** If h(n) = 0 for all n, then it is an admissible heuristic and A* acts like uniform-cost search
- **Better heuristic:** If h1(n) < h2(n) <= h*(n) for all non-goal nodes, then h2 is a *better* heuristic than h1
 - If A1* uses h1, and A2* uses h2, then every node expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
 - -We say that A2* is better informed than A1*
- The closer h to h*, the fewer extra nodes expanded

Proof of the optimality of A*

- Assume that A* has selected G2, a goal state with a suboptimal solution, i.e., g(G2) > f*
- Proof by contradiction shows it's impossible

Proof of the optimality of A*

- Assume that A* has selected G2, a goal state with a suboptimal solution, i.e., g(G2) > f*
- Proof by contradiction shows it's impossible
 - Choose a node n on an optimal path to G
 - -Because h(n) is admissible, $f^* >= f(n)$
 - -If we choose G2 instead of n for expansion, then f(n) >= f(G2)
 - -This implies $f^* >= f(G2)$
 - -G2 is a goal state: h(G2) = 0, f(G2) = g(G2).
 - -Therefore $f^* >= g(G2)$
 - -Contradiction

How to find good heuristics

Some options (mix-and-match):

- If h1(n) < h2(n) <= h*(n) for all n, h2 is better than (dominates) h1
- Relaxing problem: remove constraints for easier problem; use its solution cost as heuristic function
- Max of two admissible heuristics is a Combining heuristics: admissible heuristic, and it's better!
- Use statistical estimates to compute h; may lose admissibility
- Identify good features, then use machine learning to find heuristic function; also may lose admissibility