Примеры практических заданий

1. Изобразите на координатной плоскости область истинности предиката

$$(\overline{x > y}) \land (x < y)$$

- 2. Изобразите на координатной плоскости область истинности предиката $(x \ge 3) \to (y < 5)$
- 3. Проверить равносильность формул, не используя таблицу истинности,

$$((x \lor y) \land (x \land \overline{z}))$$
 и $x \to z$,

4. Проверить равносильность формул, не используя таблицу истинности,

$$\overline{((x \vee \overline{y}) \wedge y)} \wedge \overline{(\overline{x} \wedge y)}$$
 и \overline{y}

- 5. Доказать с помощью метода резолюций или опровергнуть, используя таблицу истинности, что из формул $X \lor Y \lor Z$, $\overline{X} \lor Y$, \overline{Y} логически следует $\overline{X} \land Z$
- 6. Доказать с помощью метода резолюций или опровергнуть, используя таблицу истинности, что из формул $X \lor Y \lor Z, \ \ \overline{X} \lor Y, \ \ \overline{Y}$ логически следует Z
- 7. Установите значение истинности высказывания $\exists x(x+5=x+3)$, если область определения предиката R
- 8. Установите значение истинности высказывания $\forall x(x^2+x+1>0)$, если область определения предиката R
- 9. Установите значение истинности высказывания $\exists x((x^2-5x+6<0)\land (x^2-6x+8\leq 0))$, если область определения предиката R
 - 10. Найти отрицание следующей формулы $\forall x (P(x) \land O(x))$
 - 11. Найти отрицание следующей формулы $\exists x (P(x) \lor O(x))$
- 12. Пусть даны предикаты P(x): x- четное число; Q(x)- x кратно 3; определенные на множестве N, найти область истинности предиката

$$P(x) \wedge Q(x)$$
.

13. Доказать для исчисления высказываний 16 выводимостей, например

$$A, B \mapsto A \vee B$$

$$A, B \mapsto \overline{A} \vee B$$

- 14. Доказать равносильность формул:
- a) $\neg(\exists x)[(\forall y)P(x,y)\rightarrow(\forall z)(P(z,z)\lor Q(z))]$ \lor $(\forall x)(\forall y)(\exists z)[P(x,y)\&\neg P(z,z)\&\neg Q(z)];$
- б) $\neg(\forall x)[T(x)\rightarrow(\exists y)(\forall z)(R(y,z)\&T(z)\rightarrow R(z,z)]$ и

 $(\exists x)(\forall y)(\exists z)[T(x)\&\neg R(z,z)\&\neg (R(y,z)\rightarrow\neg T(z))];$

B) $(\forall x)[(\forall y)P(x,y)\rightarrow(\exists z)(P(x,z)\&Q(z))]$ и $(\forall x)(\exists u)[P(x,u)\rightarrow Q(u)]$.

- 15. Будут ли равносильны следующие пары формул:
- a) $(\forall x)(F(x)\lor G(x))$ и $(\forall x)F(x)\lor (\forall x)G(x)$;
- 6) $(\exists x)(F(x)\&G(x))$ и $(\exists x)F(x)\&(\exists x)G(x)$;
- в) $(\forall x)(F(x)\rightarrow G(x))$ и $(\forall x)F(x)\rightarrow (\forall x)G(x)$.
- 16. Постройте машину Тьюринга, которая правильно вычисляет функцию O(x)=0 для всех неотрицательных целочисленных значений аргумента. (10 баллов)
- 17. Постройте машину Тьюринга, которая правильно вычисляет для всех неотрицательных целочисленных значений аргумента функцию f(x) = x+1 для всех неотрицательных целочисленных значений аргумента.
- 18. Постройте машину Тьюринга, которая правильно вычисляет для всех неотрицательных целочисленных значений аргумента функцию

$$f(x) = \begin{cases} x - 2, & \text{если } x \ge 2, \\ \text{не определено, если } x = 0 \text{ или } x = 1. \end{cases}$$

19. Машина Тьюринга задается программой П:

П	q_1	q_2
0	q_20R	q_10R
1	q_21R	-

Выясните, применима ли машина Тьюринга к слову $P=1^3$. Если да, то определите заключительную конфигурацию.

20. Машина Тьюринга задается программой П:

Π	q_1	q_2
0	q ₂ 0R	q_10R
1	q_21R	-

Выясните, применима ли машина Тьюринга к слову Р=1001. Если да, то определите заключительную конфигурацию.

- 21. Построить диаграмму Хассе для частично упорядоченного множества $\{n: 1 \le n \le 30 \text{ и } n \text{ кратно } 3\}$ с отношением «n делит m». Указать максимальный и минимальный элементы; наибольший и наименьший элементы, если они есть.
- 22. Построить диаграмму Хассе для частично упорядоченного множества всех подмножеств в $\{a,b,c\}$ с отношением порядка «Х- подмножество Y». Указать максимальный и минимальный элементы; наибольший и наименьший элементы, если они есть.
- 23. Построить диаграмму Хассе для частично упорядоченного множества $\{n: 1 \le n \le 50 \text{ и } n \text{ кратно } 5\}$ с отношением «n делит m». Указать максимальный и минимальный элементы; наибольший и наименьший элементы, если они есть.
- 24. Доказать, что функция примитивно рекурсивна f(x) = x + n, где n > 1 натуральное число.
 - 25. Доказать, что функция примитивно рекурсивна $sg(x) = \begin{cases} 1, & \text{если } x > 0, \\ 0, & \text{если } x = 0. \end{cases}$
- 26. Во время испытания король объявил, что утверждения на обеих табличках одновременно либо истинны, либо ложны. Надписи же были вот какие:

I Либо в этой комнате сидит тигр, либо принцесса находится в другой комнате	II Принцесса в другой комнате
---	-------------------------------------

Кто же обнаружится в первой комнате - принцесса или тигр? А во второй?

- 27. Относительно левой комнаты (комната I) король говорил вот что:
- Если в этой комнате находится принцесса, то утверждение на табличке истинно, если же тигр, то ложно.

В правой же комнате (комната II) все было наоборот: утверждение на табличке ложно, если в комнате находится принцесса, и истинно, если в комнате сидит тигр. Ну и опять же, вполне может статься, что в обеих комнатах находятся принцессы или в них сидит по тигру, либо, наконец, в одной комнате пребывает принцесса, а в другой - тигр.

Теперь на табличках было написано:

I	П
Что выбрать - большая	Лучше выбрать другую
разница	комнату