Qusetion 1

```
1) I do not appear on either side of functional dependency
) J € F
: C> T & F*
コ) F1 = PAB つし、船コE, DコG, DコH, EコB, EコC, EコD,
       C>D, C-DI, H>G, EHOI
Appearied on the lift side L= [A,B,C,D,E,H]
            Right side R= {B,C,D, E,B,H,I).
 : all condiduce key must in hide (A, J)
 : (A, J) + +> k. : (A, J) is not the only condidate key.
 .: IAB= ABCDEGHI (AC) = A COI
   (AP) = ADGH (AET = AEBCOGHI
   (AH)+ AHB
 :. All candidate keys are ABJ / AEJ
3) F'={AB>C, AB>E, D>6, D>H, E>B, E>C, E>D, C>D, C>I, H>G,
      EH > I].
   AB 30
 A+={A}, B+={B}:. AB>C connot be replaced., as same as AB>E
  EH OI
  E = { E.B.C.D.B.H.I] : EH can be replaced by E >I
  FI'= PAB TC, ABTE, DTG, DTH, ETB, ETC, ETD, ETI, COD, COI,
        U->63
 (AB)+ |F" - [AB>C] = {A,B,E,C,D,I,G,H,I}
                                        remove
 [ABJ | P' - PAB=E] = PA.B.C. D.I. G.H.
  Dt 18"- - {0 > 6] = { D. 4, 6}
```

D+1 P' - 10-11 = 10,6}

E+1 F" - 1E-10 = 1E, C.D.I. B.H S

E+1 F" - 1E-10 = 1E, B.C.D.I. B.H S

E+1 F" - 1E-10 = 1E, B.C.D.I. B.H S

E+1 F" - 1E-10 = 1E, B.C.D.I. B.H S

E+1 F" - 1E-10 = 1E, B.C.D.I. B.H S

E+1 F" - 1E-11 = 1C, D.B.H S

C+1 F" - 1C-11 = 1C, D.B.H S

H+1 F'' - 1H-36) = 1H S

Ans, AB-1C, D-16, E-10 And E-1 can be removed from Fm'.

Fmin = 1 AB-1E, D-1H, E-10, E-10, C-10, C-11, H-16]

4) Frain = {AB >E, D-7H, E>B, E>C, C>D, C>I, H>6]

From AB >E, derive R, (A, B, E)

From D>H, derive P>LD, H)

From E>B, E>C, derive P3(E, B, C)

From C>D, C>I, derive P4(C, D, I)

From H>6, derive A5(H, G)

Note of the relation shemas contains a key of P, add one relation

solema R6(A,B,J)

ABCDE 6 H L J PA(ABE) aabbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	a b b a b b a b b a b b a b b a b b a b b b a b
--	---

Qusetion 2

- 1) 96. Super keys can be found for R.

 (A,B,J,C) (A,B,J,D) (AB,J,H)

 (A,B,J,I) (A,E,J,C)
- 2) Finin = {AB >E, D-TH, E-DB, E->C, C->D, C->I, H->G]
 prime attributes { A, B, E,]}
 - .. Non-prime attribute C is functionally dotermined by E.

 INF is the highest normal form of R with respect to F.
- 3) Finin = {AB >E, D=>H, E=>B, E=>C, C=>D, C=>I, H=>G]

 R_1 = {ABCDE} => AB >> E, E=>B, E=>C, C=>D

 R_2 = {EGN} => H=>G

 R_3 = {EI]}

 Since Can 1st lanuch D=>H, C=>I

 .: Not dependency-preserving

4) ABCDEGHIJ PH(ABCDE) aaaaabbbb P2(EGH) bbbaabb P3(EIJ) bbbbabbaabbaa

ABCDEGHIJ

PHABCOE) aaaaaaaab

REGEGHS baaaaaab

REFEIJS baaaaaaaa

'. Not 10551055-join

5) Finin = {AB >E, D=>H, E=>B, E=>C, C=>D, C=>I, H=>G]

Consider AB =>E for Pinin: P. (A,B,E), P. (A,B,G), 6, H,IJ)

Consider E=>B for P(: Pin(A,B) Piz(E,B)

Consider D=>H for Pz': Pz(D,H) Pz'(A,B,C,D,G,Z,J)

Consider C=>D and C=>Z for Pz': Pz(C,D,Z), Pz(A,B,C,S,J)

One of the possible bassless-join decompositions to BCNF is: fir, Prz, Pz, Pz, Pz, Rx.

~	A	B	C	D	E	G 4	II	J	_
Ru(AB)		a			b	b	b	7	
P12(B,E)			5				Ь		
P2 (D,M)	b	b	b	a	þ	ab	b	5	
R3(C,D,I)	b	b	a	A	Ь 1	b . h	OL L	<i>b</i>	
Ry (AB,C)	Ü	0	æ	b	D	an	D	a	