Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

Fehler bei Aufgabe 4.2

Es muss heißen: $a \diamond e = e \diamond a = a$.

Ursprünglich stand da: $a \diamond e = e \diamond a = e$.

Beispiel: $f: \mathbb{N}_0 \to \mathbb{N}_0$

 $n\mapsto 2n$.

 M_0 sind die natürlichen Zahlen, M_1 die geraden Zahlen, M_2 die durch 4 teilbaren Zahlen usw.

$$M_0 \supseteq M_1 \supseteq M_2 \dots$$

Wieso?

Alle Elemente aus M_1 liegen in M_0 , werden also auf Elemente aus M_1 abgebildet.

Wieso?

Alle Elemente aus M_1 liegen in M_0 , werden also auf Elemente aus M_1 abgebildet.

Allgemein: Wenn $M_{i+1}\subseteq M_i$, liegen alle Elemente aus M_{i+1} auch in M_i und werden auf Elemente aus M_{i+1} abgebildet.

Wieso?

Alle Elemente aus M_1 liegen in M_0 , werden also auf Elemente aus M_1 abgebildet.

Allgemein: Wenn $M_{i+1} \subseteq M_i$, liegen alle Elemente aus M_{i+1} auch in M_i und werden auf Elemente aus M_{i+1} abgebildet.

Nach Definition gilt dann: $M_{i+2} \subseteq M_{i+1}$.

Wieso?

Alle Elemente aus M_1 liegen in M_0 , werden also auf Elemente aus M_1 abgebildet.

Allgemein: Wenn $M_{i+1}\subseteq M_i$, liegen alle Elemente aus M_{i+1} auch in M_i und werden auf Elemente aus M_{i+1} abgebildet.

Nach Definition gilt dann: $M_{i+2} \subseteq M_{i+1}$.

(Allgemein gilt: $A \subseteq B \Rightarrow \{f(x) \mid x \in A\} \subseteq \{f(x) \mid x \in B\}.$)

Sprechweise: M kleinste Menge mit Eigenschaft $X \iff \forall M'$ mit Eigenschaft $X: M \subseteq M'$.

→ muss nicht immer existieren!

Sprechweise: $S\subseteq M$ ist abgeschlossen bezüglich Operation

$$\diamond: M \times M \to M \iff \forall x, y \in S: x \diamond y \in S$$

Gegeben: $L \subseteq A^*$

Gesucht: Kleinste Menge $M\subseteq A^*$ mit $L\subseteq M\wedge M$ ist abgeschlossen bezüglich Konkatenation.

Gegeben: $L \subseteq A^*$

Gesucht: Kleinste Menge $M\subseteq A^*$ mit $L\subseteq M\wedge M$ ist abgeschlossen bezüglich Konkatenation.

Behauptung: $M = L^+$.

Beweis: Sei M eine Menge, die L enthält und abgeschlossen bezüglich Konkatenation ist.

Wir zeigen

- $L \subseteq L^+$ und L^+ ist abgeschlossen bezüglich Konkatenation.
- $\forall i \in \mathbb{N}_+ : L^i \subseteq M$.
- $L^+ \subseteq M$

_

$$L^+ = L \cup \bigcup_{i=2}^{\infty} L^i \Rightarrow L \subseteq L^+.$$

 L^+ abgeschlossen: $w_1, w_2 \in L^+ \Rightarrow \exists i_1, i_2 \in \mathbb{N}_0 : w_1 \in L^{i_1} \land w_2 \in L^{i_2}$.

Damit gilt $w_1w_2 \in L^{i_1+i_2} \subseteq L^+$.

IA: $L^1 = L \subseteq M$ nach Voraussetzung.

IV: Für ein beliebiges, aber festes $i \in \mathbb{N}_+$ gilt $L^i \subseteq M$.

IS: Dann muss auch $L^{i+1} \subseteq M$ gelten.

Sei
$$w \in L^{i+1} \Rightarrow \exists w_1 \in L^i \exists w_2 \in L : w = w_1 w_2$$

 $\exists W_1 \in M \exists w_2 \in M : w = w_1 w_2$
 $\Rightarrow w \in M$ wegen Abgeschlossenheit.

 L^* entsprechend kleinste Menge M, die $L \cup \{\epsilon\}$ enthält und abgeschlossen bezüglich Konkatenation ist.

Damit leicht zu zeigen:

•
$$L \subseteq K \Rightarrow L^* \subseteq K^*$$

$$\bullet \ L \subseteq K^* \Rightarrow L^* \subseteq K^*$$

•
$$(L^*)^* = L^*$$

• . . .

Anna, Otto und der Reliefpfeiler

Ein Wort w, für das gilt $\forall i \in \mathbb{G}_{|w|}$: w(i) = w(|w|-1-i) heißt Palindrom.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

1.

2.

3.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

1. Vorne und hinten gleiche Zeichen. $(X \rightarrow aXa \mid bXb)$

2.

3.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

- 1. Vorne und hinten gleiche Zeichen. $(X \rightarrow aXa \mid bXb)$
- 2. Vorne und hinten verschiedenes Zeichen. $(X \to Y, Y \to aZb \mid bZa)$

3.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

- 1. Vorne und hinten gleiche Zeichen. $(X \rightarrow aXa \mid bXb)$
- 2. Vorne und hinten verschiedenes Zeichen. ($X \to Y, Y \to aZb \mid bZa$)
- 3. Entweder Palindrom ... $(Z \rightarrow aZa \mid bZb \mid a \mid b \mid \epsilon)$

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

- 1. Vorne und hinten gleiche Zeichen. $(X \rightarrow aXa \mid bXb)$
- 2. Vorne und hinten verschiedenes Zeichen. $(X \to Y, Y \to aZb \mid bZa)$
- 3. Entweder Palindrom ... $(Z \rightarrow aZa \mid bZb \mid a \mid b \mid \epsilon)$
- 4. oder aus L(G). $(Z \rightarrow X)$

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Definition: $L(G) = \{w \in \{a, b\}^* \mid X \Rightarrow^* w\}$

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Definition: $L(G) = \{w \in \{a, b\}^* \mid X \Rightarrow^* w\}$

Beschreibung:

$$L(G) = \{ w \in \{a, b\}^* \mid \exists i \in \mathbb{G}_{|w|} : w(i) \neq w(|w| - 1 - i) \}$$

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Beweis: Klar: L(G) enthält keine Palindrome. (Irgendwann kommt Y, danach verschiedene Zeichen.)

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Beweis: Nicht-Palindrome in L(G): Induktion über Länge.

(Induktionsvoraussetzung: Für festes, aber beliebiges $n \in \mathbb{N}_0$ gilt: Alle Wörter der Länge $m \le n$, die keine Palindrome sind, liegen in L(G).)

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Beweis: Nicht-Palindrome in L(G): Induktion über Länge.

• $ab, ba \in L(G)$.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Beweis: Nicht-Palindrome in L(G): Induktion über Länge.

- $ab, ba \in L(G)$.
- $w = aw'a \stackrel{IV}{\Rightarrow} X \Rightarrow aXa \Rightarrow^* aw'a$

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Beweis: Nicht-Palindrome in L(G): Induktion über Länge.

- $ab, ba \in L(G)$.
- $w = aw'a \stackrel{IV}{\Rightarrow} X \Rightarrow aXa \Rightarrow^* aw'a$
- w = aw'b: Falls w' Palindrom: $X \Rightarrow Y \Rightarrow aZb \Rightarrow^* aw'b$, sonst $X \Rightarrow Y \Rightarrow aZb \Rightarrow aXb \Rightarrow^* aw'b$ wegen IV.

$$N = \{X, Y, Z\}, T = \{a, b\}, S = X,$$

$$P = \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa,$$

$$Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\}$$

Ableitung von w = aabaabbbaaaa:

 $X \Rightarrow aXa \Rightarrow aaXaa \Rightarrow aaYaa \Rightarrow aabZaaa \Rightarrow aabXaaa \Rightarrow aabaXaaaa \Rightarrow aabaYaaaa \Rightarrow aabaAZbaaaa \Rightarrow aabaAZbbaaaa \Rightarrow aabaabBbbaaaa$

$$\begin{split} N &= \{X, Y, Z\}, T = \{a, b\}, S = X, \\ P &= \{X \rightarrow aXa \mid bXb \mid Y, Y \rightarrow aZb \mid bZa, \\ Z \rightarrow aZa \mid bZb \mid X \mid a \mid b \mid \epsilon\} \end{split}$$

Ableitungsbaum von w = aabaabbbbaaaa: Siehe Tafel.

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

$$N = \{S\}, T = \{a, b\}, P = \{S \to aSb \mid aS \mid Sb \mid \epsilon\}$$

•
$$P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon\}$$

$$\bullet \ P = \{S \to SS \mid a \mid b \mid \epsilon\}$$

•
$$P = \{S \rightarrow aS \mid bS \mid \epsilon\}$$

•
$$P = \{S \rightarrow aSa \mid aaSa \mid b\}$$

•
$$P = \{S \to S_1 S_2, S_1 \to \dots, S_2 \to \dots\}$$

•
$$P = \{S \to S_1 \mid S_2, S_1 \to \dots, S_2 \to \dots\}$$

•
$$P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon\} \rightarrow \mathsf{Palindrome}$$

•
$$P = \{S \rightarrow SS \mid a \mid b \mid \epsilon\} \rightarrow \{a, b\}^*$$

•
$$P = \{S \rightarrow aS \mid bS \mid \epsilon\} \rightarrow \{a, b\}^*$$

•
$$P = \{S \rightarrow aSa \mid aaSa \mid b\} \rightarrow \{a^nba^m \mid m \le n \le 2m\}$$

•
$$P = \{S \rightarrow S_1 S_2, S_1 \rightarrow \dots, S_2 \rightarrow \dots\}$$

 $\rightarrow \{w \mid S_1 \Rightarrow^* w\} \cdot \{w \mid S_2 \Rightarrow^* w\}$

•
$$P = \{S \to S_1 \mid S_2, S_1 \to \dots, S_2 \to \dots\}$$

 $\to \{w \mid S_1 \Rightarrow^* w\} \cup \{w \mid S_2 \Rightarrow^* w\}$

$$G = (\{S\}, \{a, b\}, S, P = \{S \rightarrow aSa \mid aaSa \mid b\})$$

Man beweise: Wenn $S \Rightarrow^* a^n X a^m$ gilt, folgt $m \le n \le 2m$.

Vollständige Induktion über Ableitungslänge!

$$G = (\{S\}, \{a, b\}, S, P = \{S \rightarrow aSa \mid aaSa \mid b\})$$

Man beweise: Wenn $S \Rightarrow^* a^n S a^m$ gilt, folgt $m \le n \le 2m$.

IA:
$$S \Rightarrow^0 a^n S a^m \Rightarrow n = m = 0 \Rightarrow m \le n \le 2m$$
.

IV: Für festes, aber beliebiges $i \in \mathbb{N}_0$ gilt: $S \Rightarrow^i a^n S a^m \Rightarrow m \leq n \leq 2m$.

IS: Zu zeigen: Dann muss auch gelten $S \Rightarrow^{i+1} a^{n'} S a^{m'} \Rightarrow m' < n' < 2m'$.

$$(S \Rightarrow^{i+1} a^{n'}Sa^{m'}) \Rightarrow (S \Rightarrow^{i} a^{n}Sa^{m} \Rightarrow a^{n}aSaa^{m}) \lor (S \Rightarrow^{i} a^{n}Sa^{m} \Rightarrow a^{n}aaSaa^{m}).$$

1. Fall:
$$S \Rightarrow^i a^n S a^m \Rightarrow a^n a S a a^m = a^{n+1} S a^{m+1}$$
.

Nach IV gilt $m \le n \le 2m$, und es folgt $m+1 \le n+1 \le 2m+1 \le 2(m+1)$, weswegen die Behauptung in diesem Fall korrekt ist.

2. Fall:
$$S \Rightarrow^i a^n S a^m \Rightarrow a^n a a S a a^m = a^{n+2} S a^{m+1}$$
.

Nach IV gilt $m \le n \le 2m$, und es folgt $m+1 \le n+2 \le 2m+2=2(m+1)$, weswegen die Behauptung auch in diesem Fall korrekt ist.

Achtung!

Bei Induktionsschritt verwendet:

$$u \Rightarrow^{i+1} v \iff \exists w : u \Rightarrow^i w \Rightarrow v.$$

Nach Definition: $u \Rightarrow^{i+1} v \iff \exists w : u \Rightarrow w \Rightarrow^i v$.

Beide Definitionen sind äquivalent!

Anschaulich: *i* Ableitungsschritte.

Formal: Nervige Rechnerei ...

Aber: Seien Sie sich **sehr sicher**, bevor Sie alternative Definitionen enfach so verwenden ...

Fragen zum dritten Übungsblatt?

(für nächste Woche)