Problem Set II

Amaan Rahman

February 23, 2023

Fundamentals

- 1. (a)
- 2. (a) The proof incorrectly defines a subset, stating that there exists an element in the smaller set that's in the larger set rather than that all elements in the smaller set are in the larger set.
 - (b) True
 - (c) Suppose A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Since $A \subseteq B$, every element in A is in B. Since $B \subseteq C$, every element in B is in C. Therefore, every element in A is in C implying $A \subseteq C$.
- 3. (a) The proof makes the statement that $B \subseteq A \cap B$ based on the givens. However, such a statement is invalid because B can contain elements outside of the set $A \cap B$ because B maybe larger than its intersection with A.
 - (b) False
 - (c) Suppose A, B, and C are sets such that $A \cap B \subseteq C$. Lets assume that $B \subseteq C$. Based on the transitive property of subsets, $B \subseteq A \cap B$. However, such a statement is false because B may contain elements outside its intersection with A violating the transitive property of subsets. Therefore, $B \subseteq C$ is false implying the claim is also false.

Advanced

1. Prove the following via induction. For every $n \in \mathbb{N}$ we have:

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \tag{1}$$

(i) Base Case:

$$n = 1$$
$$(1)^3 = \frac{(1)^2(1+1)^2}{4}$$

(ii) Inductive Step:

Assume that (1) holds true for n = k. Consequently, (1) can be proven to hold true for n = k + 1. Left-hand side:

$$\sum_{i=1}^{k+1} i^3 = (k+1)^3 + \sum_{i=1}^{k} i^3$$

$$= (k+1)^3 + \frac{k^2(k+1)^2}{4} : induction hypothesis$$

Right-hand side:

$$(k+1)^3 + \frac{k^2(k+1)^2}{4} = \frac{(k+1)^2(k+2)^2}{4}$$
$$(k+1)^2 (4(k+1) + k^2) = (k+1)^2(k+2)^2$$
$$4k+4+k^2 = k^2+4k+4$$

- (iii) Thus, by weak induction, the statement (1) holds for all $n \in \mathbb{N}$.
- 2. Let $n \in \mathbb{Z}$. Consequently, $n+1 \in \mathbb{Z}$. Then, $(n+1)^2 n^2 = n^2 + 2n + 1 n^2 = 2n + 1$. Thus, for any $n \in \mathbb{Z}$, every odd integer can be written as the difference of perfect squares since the result is 2n + 1.