Chapter 3.5-3.6 Definition and the Multiplication Rule

Jim Albert and Monika Hu

Chapter 3 Conditional Probability

Introduction

- There is a formal definition of conditional probability.
 - Suppose one has two events A and B where the probability of event B is positive, that is P(B) > 0.
 - ▶ Then the probability of A given B is defined as the quotient

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

How many boys?

- Suppose a couple has four children. One is told that this couple has at least one boy. What is the chance that they have exactly two boys?
- ▶ If one lets L be the event "at least one boy" and B be the event "have two boys", one wishes to find $P(B \mid L)$.

The sample space

- Represent the genders of the four children (from youngest to oldest) as a sequence of four letters.
- ▶ There are 16 possible outcomes of four births

BBBB	BGBB	GBBB	GGBB
BBBG	BGBG	GBBG	GGBG
BBGB	BGGB	GBGB	GGGB
BBGG	BGGG	GBGG	GGGG

If one assumes that boys and girls are equally likely, each outcome is assigned a probability of 1/16.

Computation

Applying the definition of conditional probability, one has

$$P(B \mid L) = \frac{P(B \cap L)}{P(L)}.$$

- ► There are 15 outcomes in the set *L*, and 6 outcomes where both events *B* and *L* occur.
- ► So using the definition

$$P(B \mid L) = \frac{6/16}{15/16} = \frac{6}{15}.$$

The multiplication rule

▶ If one takes the conditional probability definition and multiplies both sides of the equation by P(B), one obtains the multiplication rule

$$P(A \cap B) = P(B)P(A \mid B).$$

Choosing balls from a random bowl

- Suppose one has two bowls Bowl 1 is filled with one white and 5 black balls, and Bowl 2 has 4 white and 2 black balls.
- ➤ One first spins the spinner below that determines which bowl to select, and then selects one ball from the bowl.
- What the chance that the ball one selects is white?

The experiment

A tree diagram

Add probabilities to diagram

- ➤ Since one quarter of the spinner region is "Bowl 1", the chance of choosing Bowl 1 is 1/4 and so the chance of choosing Bowl 2 is 3/4
- ▶ Also one knows that if Bowl 1 is selected, the chances of choosing a white ball and a black ball are respectively 1/6 and 5/6
- Also, if one selects Bowl 2, the conditional probabilities of selecting a white ball and a black ball are given by $P(\text{white} \mid \text{Bowl 2}) = 4/6$ and $P(\text{black} \mid \text{Bowl 2}) = 2/6$

Labeled tree diagram

Computing probabilities

- What is the probability of selecting Bowl 1 and selecting a white ball?
- By the multiplication rule

$$P(\text{Bowl } 1 \cap \text{white ball}) = P(\text{Bowl } 1)P(\text{white ball} \mid \text{Bowl } 1)$$

$$= \frac{1}{4} \times \frac{1}{6} = \frac{1}{24}.$$

One is just multiplying probabilities along the top branch of the tree.

Computing probabilities

- ▶ What is the probability of selecting a white ball?
- ► There are two ways of selecting a white depending on which bowl is selected. One can either (1) select Bowl 1 and choose a white ball or (2) select Bowl 2 and choose a white ball.
- One finds the probability of each of the two outcomes and add the probabilities

$$\begin{split} P(\text{white ball}) &= P(\text{Bowl } 1 \cap \text{white ball}) + P(\text{Bowl } 2 \cap \text{white ball}) \\ &= \frac{1}{4} \times \frac{1}{6} + \frac{3}{4} \times \frac{4}{6} = \frac{13}{24}. \end{split}$$