

planetmath.org

Math for the people, by the people.

positive element

Canonical name PositiveElement
Date of creation 2013-03-22 17:30:31
Last modified on 2013-03-22 17:30:31
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 8

Author asteroid (17536)

Entry type Definition
Classification msc 46L05
Classification msc 47L07
Classification msc 47A05
Synonym positive

Defines positive operator Defines positive cone

Defines square root of positive element

Let H be a complex Hilbert space. Let $T: H \longrightarrow H$ be a bounded operator in H.

Definition - T is said to be a **positive operator** if there exists a bounded operator $A: H \longrightarrow H$ such that

$$T = A^*A$$

where A^* denotes the adjoint of A.

Every positive operator T satisfies the very strong condition $\langle Tv, v \rangle \geq 0$ for every $v \in H$ since

$$\langle Tv, v \rangle = \langle A^*Av, v \rangle = \langle Av, Av \rangle = ||Av||^2 \ge 0$$

The converse is also true, although it is not so to prove. Indeed,

Theorem - T is positive if and only if $\langle Tv, v \rangle \geq 0 \quad \forall_{v \in H}$

0.1 Generalization to C^* -algebras

The above notion can be generalized to elements in an arbitrary http://planetmath.org/CAlgebra algebra.

In what follows \mathcal{A} denotes a C^* -algebra.

Definition - An element $x \in \mathcal{A}$ is said to be **positive** (and denoted $0 \le x$) if

$$x = a^*a$$

for some element $a \in \mathcal{A}$.

Remark—Positive elements are clearly http://planetmath.org/InvolutaryRingself-adjoint.

0.2 Positive spectrum

It can be shown that the positive elements of \mathcal{A} are precisely the normal elements of \mathcal{A} with a positive spectrum. We it here as a theorem:

Theorem - Let $x \in \mathcal{A}$ and $\sigma(x)$ denote its spectrum. Then x is positive if and only if x is and $\sigma(x) \subset \mathbb{R}_0^+$.

0.3 Square roots

Positive elements admit a unique positive square root.

Theorem - Let x be a positive element in \mathcal{A} . There is a unique $b \in \mathcal{A}$ such that

- b is positive
- $x = b^2$.

The converse is also true (with assumptions): If x admits a square root then x is positive, since

$$x = b^2 = bb = b^*b$$

0.4 The positive cone

Another interesting fact about positive elements is that they form a http://planetmath.org/Conesconvex cone in \mathcal{A} , usually called the **positive cone** of \mathcal{A} . That is stated in following theorem:

Theorem - Let a, b be positive elements in \mathcal{A} . Then

- a + b is also positive
- λa is also positive for every $\lambda \geq 0$
- If both a and -a are positive then a = 0.

0.5 Norm closure

Theorem - The set of positive elements in \mathcal{A} is norm closed.