Esame di Elementi di Automatica Ingegneria Meccanica 15 settembre 2016 (B)

Cognome:	Nome	Matricola:	E-mail:

1. Dato il sistema di controllo raffigurato, con

$$C(s) = K_c; P_1(s) = \frac{2}{s(s+2)}; P_2(s) = \frac{1}{s+3}; H(s) = 0.1$$

determinare:

- a. Per quali valori di **Kc** il sistema risulta stabile a ciclo chiuso
- b. Il tipo di sistema di controllo
- c. Astatismo rispetto al disturbo costante z
- d. L'uscita permanente yp(t) con $u(t) = 5 \delta_{-2}(t) e z(t)=0$
- e. L'uscita permanente yz(t) con u(t)=0 e z(t)=4 $\delta_{-1}(t)$

2. Sia dato un processo **P(s)** descrivibile mediante la funzione di trasferimento

$$P(s) = \frac{5(s^2/10^2 + 0.4s/10 + 1)}{(s/3 + 1)(s/30 + 1)}$$

Sintetizzare il sistema di controllo in figura determinando

- h
- K_c

con Kd uguale a 4 in modo tale che l'errore per ingresso a rampa u(t)=5t sia minore o uguale a 0.8

Scelto il valore minimo di $\textbf{K}_{\textbf{c}}$ compatibile con le specifiche, tracciare i diagrammi di

- BODE
- NYQUIST

della funzione a ciclo aperto, e determinare su questi la

- pulsazione di attraversamento ω_t
- e, in caso di sistema stabile a ciclo chiuso, i
 - margini di stabilità (**m**, e **m**_q)

3. Dato il diagramma di **BODE** della funzione di trasferimento a ciclo aperto F(s) sotto riportata (non ci sono poli a parte reale positiva) determinare la rete compensatrice R(s) tale da assicurare $\omega_t >= 80$ rad/sec, $m_{\bullet} >= 55^{\circ}$ e il rispetto della finestra proibita indicata in figura. Tracciare quindi il diagramma di **NICHOLS** della funzione compensata F'(s)=F(s)R(s) e determinare su di esso il modulo alla risonanza **Mr** e la banda passante a -3 Decibel ω_{-3} .

