

<u>课程 > Exam 1 > Exam 1 > 3</u>. Independence: T...

3. Independence: True or false

Problem 2. Independence: True or false

4/4 points (graded)

Determine whether each of the following statements about events $\pmb{A}, \pmb{B}, \pmb{C}$ is always true or not.

	1	. Suppose that $oldsymbol{A}$	$oldsymbol{B}$, a	nd $oldsymbol{C}$	are inde	pendent	events; then	A^c δ	and $oldsymbol{B}$ ($ C^c$	are inde	pendent
--	---	-------------------------------	--------------------	-------------------	----------	---------	--------------	----------------	----------------------	-----------	----------	---------

● True ✔	
O False	

- 2. From now on, we do not assume that A,B,C are independent. Suppose that A is independent of B, given C.
 - (a) $m{A^c}$ is independent of $m{B}$, given $m{C}$.

● True	~		
○ False			

(b) $A \cap C$ is independent of $B \cap C$, given C.

- True ✓
- False
- (c) $m{A}$ is independent of $m{B}$, given $m{C^c}$.
 - True
- False ✔

Solution:

1. True. This follows from the intuitive meaning of event independence: when A, B, and C are independent, the occurrence or non-occurrence of some of these events does not provide any information on the occurrence or non-occurrence of the remaining ones.

A formal proof is also possible but is somewhat tedious.

- 2. (a) True. We know that if ${\pmb A}$ and ${\pmb B}$ are independent, then ${\pmb A}^{\pmb c}$ and ${\pmb B}$ are independent. We now apply this fact to the conditional universe, and obtain the validity of the statement in question.
 - (b) True. Within the conditional universe where C is known to have occurred, the events $A \cap C$ and $B \cap C$ coincide with the events A and B, respectively. The truth of the statement follows because we assumed that A and B are independent given C.
 - (c) False. Let X and Y be independent binary random variables and let $A=\{X=1\}$, $B=\{Y=1\}$, $C=A\cap B=\{X=Y=1\}$. Given C, the random variables X and Y are deterministic, hence trivially independent. On the other hand, given $C^c=A^c\cup B^c=\{X=0\}\cup \{Y=0\}$, the event X=0 allows for both Y=1 or Y=0 to be true, whereas the event X=1 conveys the information that Y=0 must be true. In particular, X and Y are not independent given Y0. Equivalently, Y1 and Y2 are not independent given Y3.

提交

You have used 1 of 1 attempt

Answers are displayed within the problem

Error and Bug Reports/Technical Issues

显示讨论

Topic: Exam 1 / 3. Independence: True or false

Learn About Verified Certificates

© All Rights Reserved