MATH-331 Introduction to R	teal Analysis
Homework 02	

Pierre-Olivier Parisé Fall 2021

Due date: 20-09-2021 1:20pm Total: /70.

Exercise	1 (10)	2 (5)	3 (5)	4 (5)	5 (5)	6 (10)	7 (5)	8 (10)	9 (5)	10 (10)
Score										

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LATEX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

WRITING PROBLEMS

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- b) Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Solution: a) Let
$$A := \{a_n : n \ge 1\}$$
. By the hypothesis, we know that $a_1 \le a_2 \le a_3 \le \cdots$, $b_1 \ge b_2 \ge b_3 \ge \cdots$ and $a_n \le b_n$ for any $n \ge 1$. In fact, if $n, m \ge 1$ and $M := \max\{n, m\}$, then

$$a_n \le a_M \le b_M \le b_m$$
.

So we have $a_n \leq b_m$ for any $n, m \geq 1$. This implies that for any $m \geq 1$, the number b_m is an upper bound for A. So, by AC, sup A exists. Put $c := \sup A$. We will verify that c satisfy all the requirements. Since c is the supremum of A, we have $a_n \leq c$ for any $n \geq 1$. Also, since b_m is an upper bound of A for any $m \geq 1$, by the definition of the supremum, we get that $c \leq b_m$ for any $m \geq 1$. Thus, for any $n \geq 1$, we get $a_n \leq c \leq b_n$. In other words, this means $c \in [a_n, b_n]$ for any $n \geq 1$.

- **b)** Let $f: \mathbb{N} \to \mathbb{R}$ be a function. Since $f(1) \in \mathbb{R}$, there are real numbers a_1 and b_1 such that $a_1 < b_1 < f(1)$ (just take $a_1 = f(1) \varepsilon$ and $b_1 = f(1) \varepsilon/2$ for $\varepsilon > 0$). Now let $a_2, b_2 \in \mathbb{R}$ such that $a_2 < b_2$ and $[a_2, b_2] \subset [a_1, b_1]$ and $f(2) \notin [a_2, b_2]$. This is possible because
 - if $f(2) \notin (a_1, b_1)$, then take $a_2 = a_1/2$ and $b_2 = b_1/2$.
 - if $f(2) \in (a_1, b_1)$, then by the density of the rational numbers, there are rational numbers r, \tilde{r} such that $a_1 < r < \tilde{r} < f(2) < b_1$. Set $a_2 = r$ and $b_2 = \tilde{r}$.

Continue in this fashion to construct a sequence of intervals $[a_n, b_n]$ such that

- $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$ and
- $f(n) \notin [a_n, b_n]$ for every $n \ge 1$.

By a), there is some $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for every $n \ge 1$. This implies that $c \ne f(n)$ for every $n \ge 1$ and so f is not surjective.

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Solution: Let $a_n \to A$. This means that for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - A| < \varepsilon$. Let $\varepsilon > 0$ be arbitrary. We know, from the definition of convergence, that there is a $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - A| < \varepsilon$. Let $n \ge N$, then, by the properties of the absolute value, we have

$$||a_n| - |A|| \le |a_n - A| < \varepsilon.$$

So, for any $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that if $n \geq N$, then $||a_n| - |A|| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary, we conclude that $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Solution: Let (a_n) , (b_n) and (c_n) be sequences such that $a_n \to L$ and $b_n \to L$. Suppose also that $a_n \le c_n \le b_n$ for any $n \ge 1$. We want to prove that $c_n \to L$. Let $\varepsilon > 0$. Then, from the definition of convergence, there are $N_A, N_B \in \mathbb{N}$ such that

- if $n \geq N_A$, then $|a_n L| < \varepsilon$ and;
- if $n \ge N_B$, then $|b_n L| < \varepsilon$.

These last inequalities are equivalent to $-\varepsilon < a_n - L < \varepsilon$ for $n \ge N_A$ and $-\varepsilon < b_n - L < \varepsilon$ for $n \ge N_B$. The goal is to prove that $|c_n - L| < \varepsilon$. Now, from the hypothesis, we know that $a_n \le c_n \le b_n$ for any $n \ge 1$. So, for such n, we have

$$a_n - L \le c_n - L \le b_n - L$$

Take $N := \max\{N_A, N_B\}$. Then, if $n \ge N \ge N_A$, we get

$$a_n - L > -\varepsilon \implies c_n - L > -\varepsilon.$$

Also, if $n \geq N \geq N_B$, we get

$$b_n - L < \varepsilon \implies c_n - L < \varepsilon$$
.

So, combining these last two inequalities, if $n \geq N$, then $-\varepsilon < c_n - L < \varepsilon$. This is the same thing as $|c_n - L| < \varepsilon$. Thus, we have just shown that if $\varepsilon > 0$, then there is a $N \in \mathbb{N}$ such that if $n \geq N$, then $|c_n - L| < \varepsilon$. Since ε was arbitrary, we conclude that $c_n \to L$.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A = 0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Solution: Let A=0 and $\varepsilon>0$. Then, $a_n\to 0$ and this implies that there is a $N\in\mathbb{N}$ such that if $n\geq N$, then $|a_n|<\varepsilon^2$. We know that $a_n\geq 0$, then $|a_n|=a_n$. Taking the square root in the last expression gives $\sqrt{a_n}<\varepsilon$ if $n\geq N$. So, for $\varepsilon>0$, there is a $N\in\mathbb{N}$ such that if $n\geq N$, then $|\sqrt{a_n}|<\varepsilon$. In other words, $\sqrt{a_n}\to\sqrt{0}=0$.

Let $A \neq 0$ and $\varepsilon > 0$. For $n \geq 1$, we have

$$\sqrt{a_n} - \sqrt{A} = \frac{a_n - A}{\sqrt{a_n} + \sqrt{A}}. (1)$$

Since $a_n \to A$ with $A \neq 0$, there is a $N_1 \in \mathbb{N}$ such that if $n \geq N$, then $|a_n - A| < \frac{|A|}{2}$ (take $\varepsilon = |A|/2 > 0$ in the definition of convergence). Now, by the properties of the absolute value, we have $|A| - |a_n| \leq ||a_n| - |A|| \leq |a_n - A|$. So, if $n \geq N_1$, then

$$|A| - |a_n| < \frac{|A|}{2} \quad \Rightarrow \quad \frac{|A|}{2} < |a_n|.$$

Taking the square root on each side of the inequality, we obtain $\sqrt{a_n} > \sqrt{\frac{|A|}{2}}$ if $n \ge N_1$. Since $\sqrt{2} < 2$, we also see that $\sqrt{|A|/2} \ge \sqrt{|A|}2$. So,

$$n \ge N_1 \quad \Rightarrow \quad \sqrt{a_n} \ge \frac{\sqrt{|A|}}{2}.$$
 (2)

By the definition of the convergence of the sequence (a_n) , there is a $N_2 \in \mathbb{N}$ such that if $n \geq N_2$, then $|a_n - A| < \frac{3}{4}\sqrt{|A|}\varepsilon$. Put $N := \max\{N_1, N_2\}$. Then, using $(\ref{eq:n_1})$, if $n \geq N$, then

$$\left|\sqrt{a_n} - \sqrt{A}\right| = \left|\frac{a_n - A}{\sqrt{a_n} + \sqrt{A}}\right| = \frac{|a_n - A|}{\sqrt{a_n} + \sqrt{A}}.$$

Now, since $n \ge N \ge N_1$, we know that $\sqrt{a_n} \ge \sqrt{|A|}/2$ and so $\sqrt{a_n} + \sqrt{A} \ge \frac{3}{4}\sqrt{|A|}$. Using this, we can bound $|\sqrt{a_n} - \sqrt{A}|$ by

$$\frac{|a_n - A|}{\frac{3}{4}\sqrt{|A|}}$$

and since $n \geq N \geq N_2$, we also have

$$\frac{|a_n - A|}{\frac{3}{4}\sqrt{|A|}} < \frac{\frac{3}{4}|A|\varepsilon}{\frac{3}{4}|A|} = \varepsilon.$$

Thus, we have just shown that if $\varepsilon > 0$ is arbitrary, then there exists a $N \in \mathbb{N}$ such that $|\sqrt{a_n} - \sqrt{A}| < \varepsilon$. We then conclude that $\sqrt{a_n} \to \sqrt{A}$.

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Solution: Let $a_n \to A$. We want to prove that $\sigma_n \to A$. This means that for any $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that if $n \geq N$, then $|\sigma_n - A| < \varepsilon$. Let $\varepsilon > 0$ be arbitrary. From the definition of the convergence of (a_n) , there exists a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $|a_n - A| < \varepsilon/2$. So, we get

$$|\sigma_n - A| = \left| \frac{\sum_{k=1}^n a_k}{n} - A \right| = \left| \frac{\sum_{k=1}^n a_k - nA}{n} \right|$$

Separate the sum from k = 1 to $k = N_1 - 1$ and from $k = N_1$ to k = n and use triangle inequality twice to obtain

$$\left| \frac{\sum_{k=1}^{n} a_k - nA}{n} \right| \le \frac{\sum_{k=1}^{N_1 - 1} |a_k - A|}{n} + \frac{\sum_{k=N_1}^{n} |a_k - A|}{n}.$$

We know that a convergence sequence is bounded. So, there is a M>0 such that $|a_k|\leq M$ for any $k\geq 1$. Then

$$|a_k - A| \le |a_k| + |A| \le M + |A| \quad \forall k \ge 1.$$

Also, when $k \ge N_1$, then $|a_k - A| < \varepsilon/2$. Also, by the AP, there is a natural number $N_2 \in \mathbb{N}$ such that $N_2(\varepsilon/2) > (N_1 - 1)(M + |A|)$.

Take $N := \max\{N_1, N_2\}$ and $n \ge N$. Putting everything together, we obtain

$$|\sigma_n - A| \le \frac{(N_1 - 1)(M + |A|)}{n} + \sum_{k=N_1}^n \frac{\varepsilon/2}{n} < \frac{(N_1 - 1)(M + |A|)}{N_2} + (n - N_1)(\varepsilon/2)/n < \varepsilon/2 + \varepsilon/2.$$

Then, for any ε , we just proved that there is a $N \in \mathbb{N}$ such that if $n \geq N$, then $|\sigma_n - A| < \varepsilon$. We conclude that $\sigma_n \to A$.

Take $a_n = (-1)^n$. Then (a_n) diverge, but $\sigma_n \to 0$.

Homework problems

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Solution: a) Take A = 5. Let $\varepsilon > 0$ be arbitrary. Then, for any $n \ge 1$, we have

$$|5 - 1/n - 5| = |-1/n| = 1/n.$$

By the AP $(x = \varepsilon \text{ and } y = 1)$, there is a $N_0 \in \mathbb{N}$ such that $N_0 \varepsilon > 1$ and so $1/N_0 < \varepsilon$. Take $N = N_0$, so, if $n \ge N_0$, we have

$$|5 - 1/n - 5| = 1/n \le 1/N_0 < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we just proved that for any $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that $|a_n - 5| < \varepsilon$. Thus, $a_n \to 5$.

b) Take A = 3/2. Let $\varepsilon > 0$. We have

$$\left| \frac{3n}{2n+1} - \frac{3}{2} \right| = \left| \frac{6n-6n-3}{2(2n+1)} \right| = \frac{3}{2(2n+1)}.$$

By the AP $(x = \varepsilon \text{ and } y = 1/2)$, there is a $N_0 \in \mathbb{N}$ such that $(2N_0 + 1)\varepsilon > \frac{1}{2}$ and so $\frac{1}{2(2N_0+1)} < \varepsilon$. Take $N = N_0$, so if $n \ge N_0$, then we have $2(2n+1) \ge 2(2N_0+1)$ and

$$\left| \frac{3n}{2n+1} - \frac{3}{2} \right| = \frac{3}{2(2n+1)} \le \frac{1}{2(2N_0+1)} < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we just proved that for any $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that $|a_n - 3/2| < \varepsilon$. Thus $a_n \to 3/2$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Solution: Let $\varepsilon > 0$ be arbitrary. For $n, m \ge 1$, we have

$$\left|\frac{2n+1}{n} - \frac{2m+1}{m}\right| = \left|\frac{2nm+m-2nm-n}{nm}\right| = \frac{|m-n|}{nm}.$$

By the triangle inequality, $|m-n|/mn \le (m+n)/mn = \frac{1}{n} + \frac{1}{m}$ and so

$$\left|\frac{2n+1}{n} - \frac{2m+1}{m}\right| \le \frac{1}{n} + \frac{1}{m}.$$

By the AP $(x = \varepsilon \text{ and } y = 2)$, there is a $N_0 \in \mathbb{N}$ such that $N_0 \varepsilon > 2$, so that $\frac{1}{N_0} < \varepsilon/2$. Take $N = N_0$ and let $n, m \ge N_0$. Then, we have

$$\left| \frac{2n+1}{n} - \frac{2m+1}{m} \right| \le 1/n + 1/m < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we just proved that for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ such that if n, m > N, then $|a_n - a_m| < \varepsilon$. Thus the sequence is Cauchy.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

- a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$
- **b)** $(a_n)_{n=1}^{\infty} = (\sin(\frac{2n+1}{2}\pi))_{n=1}^{\infty}$.

Solution: a) Suppose that the sequence converges to A. Let $\varepsilon = |A|$, if $A \neq 0$ and $\varepsilon = 1/2$, if A = 0, in the definition of convergence of a sequence. Then there exists a $N \in \mathbb{N}$ such that if $n \geq N$, then $|a_n - A| < \varepsilon$.

If $A \neq 0$ and if $n \geq N$, then, by the properties of the absolute value, we have

$$|a_n - A| < \varepsilon \iff -|A| < a_n - A < |A| \iff A - |A| < (-1)^n < A + |A|.$$

- If A > 0, then A |A| = 0 and for any $n \ge N$, $0 < (-1)^n$ which is false if n is odd.
- If A < 0, then A + |A| = 0 and for any $n \ge N$, $(-1)^n < 0$ which is false if n is even.

If A = 0, then $|(-1)^n| < 1/2$ and so 1 < 1/2 a contradiction.

Thus, the sequence $(a_n)_{n=1}^{\infty}$ is not convergent.

b) We see that $\sin(4n+1)\pi/2 = (-1)^n$. So, from a), it is not a convergent sequence.

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) don't converge, but $(a_n + b_n)$ converge.

Solution: Let $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$, then $a_n + b_n = 0$. The sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ both diverge, but $(a_n + b_n)_{n=1}^{\infty}$ converge.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

- a) $\frac{n^2+4n}{n^2-5}$.
- b) $\frac{n}{n^2-3}$.
- c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]
- d) $(\sqrt{4-\frac{1}{n}}-2)n$.

Solution: a) We can't use the limit rules directly. We rearrange the expression:

$$\frac{n^2 + 4n}{n^2 - 5} = \frac{1 + 4/n}{1 - 5/n^2}.$$

Now, $1/n \to 0$, so $1 + 4/n \to 1$. Also, $1/n^2 \to 0$ according to the product rule and so $1 - 5/n^2 \to 1$. Thus, by the quotient rule, we get

$$\lim_{n \to \infty} \frac{n^2 + 4n}{n^2 - 5} = \frac{1}{1} = 1.$$

b) Again, we can't use the limit rules directly. We rearrange the expression:

$$\frac{n}{n^2-3} = \left(\frac{1}{n}\right)\left(\frac{1}{1-3/n^2}\right).$$

We know that $1/n \to 0$ and $1/n^2 \to 0$. So, by the limit rules, $1 - 3/n^2 \to 1$. Thus, by the product rule, we get

$$\lim_{n \to \infty} \frac{n}{n^2 - 3} = \left(\lim_{n \to \infty} \frac{1}{n}\right) \left(\lim_{n \to \infty} \frac{1}{1 - 3/n^2}\right) = 0.$$

- c) We know that $|\cos(x)| \leq 1$ for any $x \in \mathbb{R}$. So, use a Theorem in the lecture notes with $(a_n) = (1/n)_{n=1}^{\infty}$ and $(b_n) = (\cos n)_{n=1}^{\infty}$, we have that $a_n b_n \to 0$ since $1/n \to 0$. In other words, $\cos(n)/n \to 0$.
- d) Here we can't apply the limit rules directly. We have to rearrange the expression. We have

$$\left(\sqrt{4-\frac{1}{n}}-2\right)n = \frac{(4-1/n-4)n}{\sqrt{4-1/n}+2} = \frac{-1}{\sqrt{4-1/n}+2}.$$

Now, from the working problems, since $1/n \to 0$ and so $4-1/n \to 4$, we get that $\sqrt{4-1/n} \to \sqrt{4} = 2$. Thus, from the quotient rule,

$$\lim_{n \to \infty} \left(\sqrt{4 - \frac{1}{n}} - 2 \right) n = -\frac{1}{2 + 2} = -\frac{1}{4}.$$