Basic definitions of kinematics

· position: $\vec{x} = \langle x, y \rangle$

· displacement: $\Delta \vec{x} = \vec{x}_f - \vec{x}_i$ for finite displacement

· instantaneous velocity: $\vec{v} = \frac{d\vec{x}}{dt}$

· instantaneous acceleration: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{x}}{dt^2}$

Kinematic equations, $\vec{v} = \text{constant (i.e., } \vec{a} = 0)$

$$\cdot \ \vec{v} = \frac{\Delta \vec{x}}{\Delta t}$$

$$\cdot \vec{x}_f = \vec{x}_i + \vec{v}\Delta t$$

Kinematic equations, $\vec{a} \neq 0$ and $\vec{a} = \text{constant}$

$$\cdot \ \vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\cdot \vec{v}_f = \vec{v}_i + \vec{a}\Delta t$$

$$\cdot \ \Delta \vec{x} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

$$(v_{x,f})^2 - (v_{x,i})^2 = 2a_x \Delta x$$
 and $(v_{y,f})^2 - (v_{y,i})^2 = 2a_y \Delta y$

$$\cdot$$
 common example of $a={\rm constant}$ is $g=9.81~{\rm m/s^2}$

Motion of object A relative to object C

$$\cdot \ \vec{v}_{ac} = \vec{v}_{ab} + \vec{v}_{bc}$$

Basic definitions for circular and rotational motion

· angular position: $\theta(\text{radians}) = \frac{s}{r}$; s = arclength, r = radius

· angular displacement: $\Delta \theta = \theta_f - \theta_i$

· angular velocity: $\omega = \frac{d\theta}{dt} = 2\pi f = \frac{2\pi}{T}$; f =frequency, T =period

· angular acceleration:
$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

Kinematic equations for constant angular acceleration

$$\cdot \ \omega_f = \omega_i + \alpha \Delta t$$

$$\Delta \theta = \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2$$
; if $\alpha = 0$, $\omega_f = \omega_i = \text{constant}$.

$$\cdot \ \omega_f^2 - \omega_i^2 = 2\alpha \Delta \theta$$

Speed, acceleration, and forces

· speed: $v = \omega r$

· centripetal acceleration: $a_c = \frac{v^2}{r} = \omega^2 r$

· centripetal force: $F_c = ma_c = m\frac{v^2}{r} = m\omega^2 r$; points toward center of circle

· tangential acceleration: $a_t = \alpha r$

Newton's Laws

1. if
$$\vec{F}_{net} = 0 \Rightarrow \vec{a} = 0$$

$$2. \ \sum \vec{F} = m\vec{a}$$

3.
$$\vec{F}_{12} = -\vec{F}_{21}$$

Types of forces

· Newton's Law of Gravity: $F_{12} = F_{21} = \frac{Gm_1m_2}{r^2}$; points from one object to another; this can also be expressed as $\vec{F}_{12} = -\frac{Gm_1m_2}{r^2}\hat{r}_{12}$ where \hat{r}_{12} is the unit vector that points from object 1 to object 2.

- Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

· For objects near the Earth's surface, $F_g = mg$

· normal force, \vec{F}_n , is perpendicular to surface and prevents objects from penetrating the surface

- frictional force depends on \vec{F}_n and \vec{v}

- if $\vec{v}=0$ use static friction; $\vec{F_s}$ balances other forces as long as $\left|\vec{F_s}\right| \leq \mu_s \left|\vec{F_n}\right|$

- if $\vec{v}\neq 0$ use kinetic friction; $\left|\vec{F}_{k}\right|=\mu_{k}\left|\vec{F}_{n}\right|$

· tensional force, $\vec{F_t}$, is transmitted through a rope and around pulleys