INFORMAÇÃO ESSENCIAL PARA COMPREENDER A VERSÃO MULTI-CYCLE DO DATAPATH (SIMPLIFICADO) DO MIPS

TOMÁS OLIVEIRA E SILVA, NOVEMBRO DE 2016

FORMATO DAS INSTRUÇÕES

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Tipo R	opcode (0)	rs	rt	rd	shamt	funct
	bits 31:26	bits 25:21	bits 20:16	bits 15:11	bits 10:6	bits 5:0

Exemplos: add \$rd,\$rs,\$rt

sll \$rd,\$rt,shamt

sllv \$rd,\$rt,\$rs

jr \$rs

Exemplos: addi \$rt,\$rs,Imm

lw \$rt,Imm(\$rs)

sw \$rt,Imm(\$rs)

lui \$rt,Imm

beq rs, rt, Label # o valor imediato 'e dado por (Label - (PC + 4))/4

 Tipo J
 6 bits
 26 bits

 Dits 31:26
 Imm

 bits 25:0
 bits 25:0

Exemplos: j Label # o valor imediato é dado pelos 26 bits menos significativos de Label/4 # os quatro bits mais significativos de PC+4 e de Label $t\hat{e}m$ de ser iguais

SIGNIFICADO DO SINAL ALUOP

valor (em binário)	00	01	10	11
operação efectuada pela ALU	add	sub	definida pelo campo funct	stli

FASES DE EXECUÇÃO

Nome/Tipo da instrução	Instruction Fetch (IF)	Instruction Decode (ID)	Execute (EX)	Memory Access (MEM)	Write Back (WB)
Tipo R	Fase 1	Fase 2	Fase 3		Fase 4
	Lê instrução da memória; Soma 4 ao PC	Descodifica a instrução; Lê registos; Calcula BTA	Efectua a operação definida pelo campo funct		Escreve registo
sw	Fase 1	Fase 2	Fase 3	Fase 4	
	Idem	Idem	Calcula endereço	Escreve na memória	
lw	Fase 1	Fase 2	Fase 3	Fase 4	Fase 5
	Idem	Idem	Calcula endereço	Lê da memória	Escreve registo
bne	Fase 1	Fase 2	Fase 3		
Notes DTA 4 a sin	Idem	Idem	Compara (subtrai); Se o resultado não for zero transfere BTA para PC		

Nota: BTA é a sigla de $Branch\ Target\ Address.$

Tabela (incompleta) dos campos opcode e funct

n	4n	opcode	funct
0x000000, 0x00	0x00	Tipo R	sll
0x000001, 0x01	0x04		
0x000010, 0x02	0x08	j	srl
0x000011, 0x03	0x0C	jal	sra
0x000100, 0x04	0x10	beq	sllv
0x000101, 0x05	0x14	bne	
0x000110, 0x06	0x18	blez	srlv
0x000111, 0x07	0x1C	bgtz	srav
0x001000, 0x08	0x20	addi	jr
0x001001, 0x09	0x24	addiu	jalr
0x001010, 0x0A	0x28	slti	
0x001011, 0x0B	0x2C	sltiu	
0x001100, 0x0C	0x30	andi	syscall
0x001101, 0x0D	0x34	ori	
0x001110, 0x0E	0x38	xori	
0x001111, 0x0F	0x3C	lui	
0x010000, 0x10	0x40		mfhi
0x010001, 0x11	0x44		mthi
0x010010, 0x12	0x48		mflo
0x010011, 0x13	0x4C		mtlo
0x010100, 0x14	0x50		
0x010101, 0x15	0x54		
0x010110, 0x16	0x58		
0x010111, 0x17	0x5C		
0x011000, 0x18	0x60		mult
0x011001, 0x19	0x64		multu
0x011010, 0x1A	0x68		div
0x011011, 0x1B	0x6C		divu
0x011100, 0x1C	0x70		
0x011101, 0x1D	0x74		
0x011110, 0x1E	0x78		
0x011111, 0x1F	0x7C		

	4	1	c ·
n	4n	opcode	funct
0x100000, 0x20	0x80	lb	add
0x100001, 0x21	0x84	lh	addu
0x100010, 0x22	0x88		sub
0x100011, 0x23	0x8C	lw	subu
0x100100, 0x24	0x90	lbu	and
0x100101, 0x25	0x94	lhu	or
0x100110, 0x26	0x98		xor
0x100111, 0x27	0x9C		nor
0x101000, 0x28	0xA0	sb	
0x101001, 0x29	0xA4	sh	
0x101010, 0x2A	0xA8		slt
0x101011, 0x2B	0xAC	sw	sltu
0x101100, 0x2C	0xB0		
0x101101, 0x2D	0xB4		
0x101110, 0x2E	0xB8		
0x101111, 0x2F	0xBC		
0x110000, 0x30	0xC0		
0x110001, 0x31	0xC4		
0x110010, 0x32	0xC8		
0x110011, 0x33	0xCC		
0x110100, 0x34	0xD0		
0x110101, 0x35	0xD4		
0x110110, 0x36	0xD8		
0x110111, 0x37	0xDC		
0x111000, 0x38	0xE0		
0x111001, 0x39	0xE4		
0x111010, 0x3A	0xE8		
0x111011, 0x3B	0xEC		
0x111100, 0x3C	0xF0		
0x111101, 0x3D	0xF4		
0x111110, 0x3E	0xF8		
0x111111, 0x3F	0xFC		