

Claims

1. A 14-member macrolide which incorporates an acetate starter unit so that it has a 13-methyl substituent, with the proviso that it is not norerythromycin C, 6-deoxy-15-norerythromycin B or 6-deoxy-15-norerythromycin D.

2. 15-norerythromycin A.

10 3. 15-norerythromycin B.

4. A compound of the formula 1:

15

or a pharmaceutically acceptable salt thereof, wherein:

R₁ is H or OH; R₂-R₄ are each independently H, CH₃, or CH₂CH₃; R₅ is H or OH; and R₆ is H, CH₃, or CH₂CH₃; R₇ is H or desosamine; R₈ is H, CH₃, or CH₂CH₃; R₉ is OH, mycarose (R₁₂ is H), or cladinose (R₁₂ is CH₃), R₁₀ is H; or R₉ = R₁₀

20

= O; and R₁₁ is H, CH₃, or CH₂CH₃, with the proviso that when R₂-R₄ are CH₃, R₆ is CH₃, R₈ is CH₃, and R₁₁ is CH₃, then R₁ and R₅ are not H and R₁₂ is not H; or also when R₂-R₄ are CH₃, R₆ is CH₃, R₈ is CH₃, and R₁₁ is CH₃, then R₁ and R₅ are not OH and R₁₂ is not H.

5. A compound according to claim 4 wherein R₁ is OH; R₂-R₄ are CH₃; R₅ is OH; R₆ is CH₃, R₇ is desosamine; R₈ is CH₃; R₉ is cladinose (R₁₂ is CH₃); and R₁₁ is CH₃

10. 6. A compound according to claim 4 wherein R₁ is H; R₂-R₄ are CH₃; R₅ is OH; R₆ is CH₃, R₇ is desosamine; R₈ is CH₃; R₉ is cladinose (R₁₂ is CH₃); and R₁₁ is CH₃.

7. A process for making compounds of the formula 1:

15

wherein:

R₁ is H or OH; R₂-R₄ are each independently H, CH₃, or CH₂CH₃; R₅ is H or OH; and R₆ is H, CH₃, or CH₂CH₃; R₇ is H or desosamine; R₈ is H, CH₃, or CH₂CH₃; R₉ is OH, mycarose

(R₁₂ is H), or cladinose (R₁₂ is CH₃), R₁₀ is H; or R₉ = R₁₀ = O; and R₁₁ is H, CH₃, or CH₂CH₃

8. A process for making compound of the formula 1 as set out in claim 7 wherein R₁ is OH; R₂-R₄ are CH₃; R₅ is OH; R₆ is CH₃, R₇ is desosamine; R₈ is CH₃; R₉ is cladinose (R₁₂ is CH₃); and R₁₁ is CH₃

9. A process for making compound of the formula 1 as set out in claim 7 wherein R₁ is H; R₂-R₄ are CH₃; R₅ is OH; R₆ is CH₃, R₇ is desosamine; R₈ is CH₃; R₉ is cladinose (R₁₂ is CH₃); and R₁₁ is CH₃

10. A system for producing a 14-membered macrolide incorporating an acetate starter unit, said system comprising DNA encoding and arranged to express a PKS multienzyme which comprises a loading module and a plurality of extension modules; wherein in the expressed multienzyme, said loading module is adapted to load a malonyl residue and then to effect a decarboxylation of the loaded residue to provide an acetate starter unit which is transferred to an adjacent one of said extension modules; and wherein the extension modules, or at least one thereof, are not naturally associated with a loading module that effects decarboxylation.

11. A system according to claim 10 wherein the macrolide is a compound of formula 1 as defined in any of claims 4-9.

12. A system according to claim 10 or 11 wherein said adjacent extension module to which the acetate starter is transferred is not naturally associated with a loading module that effects decarboxylation.

5

13. A system according to claim 10, 11 or 12 wherein the decarboxylating functionality of the loading module is provided by a ketosynthase-type domain having a glutamine residue in the active site.

10

14. A system according to claim 10, 11 or 12 wherein the decarboxylating functionality of the loading module is provided by a CLF-type domain.

15

15. A system according to claim 14 wherein the CLF-type domain is substantially as any shown in Fig 2.

16. A system according to any of claims 10-15 wherein the loading module's loading functionality is provided by an acyltransferase-type domain having an arginine residue in the active site.

20

17. A system according to any of claims 10-16 wherein the loading module includes an acyl carrier protein.

25

18. A system according to any of claims 10-13, 16 or 17
wherein at least the KS₀ domain of said loading module
corresponds to the loading module of the PKS multienzyme
of oleandomycin, spiramycin, niddamycin, methymycin, or
monensin.

5

19. A PKS multienzyme as expressible by the DNA of the
system of any of claims 10-18 or a variant having the
ability to synthesise a compound of formula 1.

10

20. Nucleic acid encoding the PKS multienzyme of
claim 19.

15

21. A vector containing nucleic acid as defined in
claim 20.

22. A transformant organism comprising a system
according to any of claims 10-18.

20

23. A process according to claim 7, 8, or 9 which
comprises culturing an organism according to claim 22 and
recovering a compound of formula 1.

25

24. A process according to claim 23 wherein said
macrolide is a compound of formula 1 as defined in any of
claims 4-9.

25. A system, organism or process according to any of claims 10-24 wherein the plurality of extension modules corresponds to the extension modules of a PKS selected from erythromycin, narbomycin, pikromycin, lankamycin, kujimycin or megalomycin or a mutant or variant thereof able to direct synthesis of a macrolide.