CS 341 Automata Theory STUDENT NAME - EID

Homework 13

Due: Tuesday, April 17

This assignment covers Sections 21.1 - 21.3

1) In Appendix E.3, we describe a straightforward use of reduction that solves a grid coloring problem by reducing it to a graph problem. Given the grid G shown here:

a) Show the graph that corresponds to G.

Solution.

$$\begin{split} G' &= \{V, E\} \\ V &= \{A, B, C, D, 1, 2, 3, 4\} \\ E &= \{(A, 3), (A, 4), (B, 1), (B, 3), (B, 4), (C, 4), (D, 2)\} \end{split}$$

b) Use the graph algorithm we describe to find a coloring of G.

Solution. Start with B and color each edge alternately.

$$Red = \{(B, 1), (B, 4)\}$$

 $Blue = \{(B, 3)\}$

Now do vertex 3:

$$Red = \{(B, 1), (B, 4), (A, 3)\}$$

 $Blue = \{(B, 3)\}$

Now vertex A:

$$Red = \{(B, 1), (B, 4), (A, 3)\}$$

 $Blue = \{(B, 3), (A, 4)\}$

Now vertex 4: (it has one of each already, so pick arbitrarily.)

$$Red = \{(B, 1), (B, 4), (A, 3)\}\$$

 $Blue = \{(B, 3), (A, 4), (C, 4)\}\$

And now the last edge:

$$Red = \{(B,1), (B,4), (A,3), (D,2)\}$$

$$Blue = \{(B,3), (A,4), (C,4)\}$$

			Ш
2)	In	this problem, we consider the relationship between H and a very simple language $\{a\}$.	
	a)	Show that $\{a\}$ is mapping reducible to H .	
		Solution.	
	b)	Is it possible to reduce H to $\{a\}$? Prove your answer.	
		Answer.	
		Proof.	
3)	Sh	ow that H_{ALL} is not in D by reduction from H .	
	So	lution.	
4)	For each of the following languages L , state whether or not it is in D . Prove your answer. As any input of the form $\langle M \rangle$ is a description of a Turing machine.		hat
	a)	$\{\langle M\rangle \ : \ ab \in L(M)\}.$	
		Answer.	
		Proof.	
	b)	$\{\langle M,w \rangle: {\rm TM}\; M,$ on input $w,$ begins by moving right one square onto $w.$ Then it never moves off	w.
		Answer.	
		Proof.	
	c)	$\{\langle M \rangle$: there exists a string w such that $ w < \langle M \rangle $ and that M accepts $w\}$.	
		Answer.	
		Proof.	
5)	mo	Appendix J.2, we proved Theorem J.1, which tells us that the safety of even a very simple secunded is undecidable, by reduction from H_{ϵ} . Show an alternative proof that reduces $A = \{\langle M, w \rangle :$ a Turing machine and $w \in L(M)\}$ to the language Safety.	
	Pr	roof.	