Together we are beating cancer

Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

21st February 2025

Linear regression models

Fixed-effects models

Process flow

Predictors values					
1	X _{1,1}		X _{r,1}		
1	X _{1,2}		$X_{r,2}$		
1	X _{1,n-1}		X _{r,n-1}		
1	X _{1,n}		X _{r,n}		

 $\begin{array}{c} \textbf{Error} \\ \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \dots \\ \boldsymbol{\epsilon}_{n-1} \\ \boldsymbol{\epsilon}_n \end{array}$

Multivariable regression model

Definition and classification

12.00 -12.20 am

Together we are beating cancer

4

- 1. The unit k (e.g. mouse), k = 1,...,N
- 2. β_0 : intercept
- 3. β_i : effect of predictor i, i = 1,...,r
- 4. $x_{i,k}$: predictor value of the unit k, i = 1,...,r; k=1,...N
- 5. ϵ_k : the *random* part of the model (i.e. error term of the model). It is a blanket characterization of the uniqueness of the k_{th} unit

Equation of the statistical model:

$$Y = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \cdot \mathbf{x}_{1,k} + \dots + \boldsymbol{\beta}_r \cdot \mathbf{x}_{r,k} + \varepsilon_k$$

Using language of matrices:

						9	5 5		
Υ		Predictors values					Fixed effects		Error
y ₁		1	X _{1,1}		X _{r,1}		β_0		ε ₁
y ₂		1	X _{1,2}		X _{r,2}		$\boldsymbol{\beta}_1$		\mathcal{E}_2
	=					*	• • •	+	
y _{n-1}		1	X _{1,n-1}		X _{r,n-1}		$oldsymbol{eta}_{r}$		\mathcal{E}_{n-1}
y _n		1	X _{1,n}		X _{r,n}				\mathcal{E}_{n}

Assumptions of multivariable linear regression models are the following:

- The effect of each factor is additive on μ (i.e. population mean) parameter
- ε_k is assumed to be independent of one another and normally distributed with mean = 0 and common standard deviation = σ

Hypothesis testing in R: single predictor

> head(*dSet*)

IDmouse	Sex	Age (months)	Weight (grams)	Tumour Volume (mm³)	
Key1	F	8.9	93.1	1	160.8
Key2	F	9.3	95.1	1	132.8
Key3	F	11.0	83.8	1	128.1
Key4	F	5.0	82.2	1	151.9
Key5	M	2.9	83.7	1	150.5
Key6	M	5.5	114.2	1	154.0

- > fittedModel = $lm(tumourVolume \sim sex + age + weight, data=dSet)$
- > summary(fittedModel)

Ξ	5
7	5
£	=
Ξ	\supset
)

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	133.6318	22.5550	5.925	4.88e-08 ***	
sex M	5.3824	5.5175	0.976	0.332	
age	0.2296	0.8733	0.263	0.793	
weight	0.1285	0.2403	0.535	0.594	/

Hypothesis testing in R: combined predictors

```
> library(multcomp)
> fittedModel = lm(tumourVolume ~ sex + age + weight, data=dSet)
> mComb = matrix(0, nrow=2, ncol=4)
> mComb[1,1] = 1; mComb[1,3] = -1; mComb[2,4] = 1
> tumVol.glht = glht(fittedModel, linfct = mComb)
> summary(tumVol.ghlt, test = adjusted("none"))
```

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|) 1 == 0 133.4021 22.7385 5.867 6.31e-08***2 == 0 0.1285 0.2403 0.535 0.594

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 (Adjusted p values reported -- none method)

Hypotheses to test: 1) $\beta_{\text{INTERCEPT}}$ - β_{age} = 0 2) β_{weight} = 0

Hypothesis testing in R: combined hypotheses

```
> fittedModel1 = Im(tumourVolume ~ sex + age + weight, data=dSet)
> fittedModel2 = Im(tumourVolume ~ sex, data=dSet)
```

> anova(fittedModel2, fittedModel1)

```
Analysis of Variance Table
Model 1: tumourVolume ~ sex
Model 2: tumourVolume ~ sex + age + weight
        Res.Df
                                                          F
                        RSS
                                 Df
                                         Sum of Sq
                                                                          Pr(>F)
        98
                        67337
                        67053
                                                          0.2033
                                                                          0.8164
        96
                                         284.04
```

Hypothesis to test: $\beta_{age} = \beta_{weight} = 0$

Hypothesis testing in R: combined hypo. & pred.

```
> library(multcomp)
> fittedModel = Im(tumourVolume ~ sex + age + weight, data=dSet)
> mComb = matrix(0, nrow=2, ncol=4)
> mComb[1,1] = 1; mComb[1,3] = -1; mComb[2,4] = 1
> tumVol.glht = glht(fittedModel, linfct = mComb)
> summary(tumVol.ghlt, test = Ftest())
```

Linear Hypotheses:

Estimate

1 == 0 133.4021

2 == 0 0.1285

Global Test:

F DF1 DF2 **Pr(>F)**

1 126.4 2 96 1.285e-27

Hypothesis to test: $\beta_{INTERCEPT}$ - $\beta_{age} = 0$ and $\beta_{weight} = 0$

Assumptions of normality and homoscedasticity **must be satisfied** by residuals, overall and by each single level (e.g. residuals at female level) or combined levels (e.g. residuals at female level and weight below 90 grams)

Residuals behaviour

Please, refer to slide n.9

Sums of squared residuals (RSS)

The sum of the squared differences between observed and predicted values

- > fittedModel = $lm(tumourVolume \sim sex + age + weight, data=dSet)$
- > RSS = sum(resid(fittedModel)^2)

R-squared index

Adjusted R-squared index

$$R^2 = 1 - \frac{RSS}{TSS}$$
 Adjusted $R^2 = 1 - \left(\frac{(1 - R^2)(n - 1)}{n - p - 1}\right)$

Higher values are better for both R² and adjusted R². Adjusted R² includes a penalty for the number of predictors introduced in the model so tends to favor more simple models with fewer predictors.

TSS = Total sum of squares (the sum of the squared differences between observed values and the mean of the observed values) n = number of observations (data points) p = number of predictors

Information criteria: AIC and BIC indices

- > fittedModel = $lm(tumourVolume \sim sex + age + weight, data=dSet)$
- > AIC = AIC(fittedModel); BIC = BIC(fittedModel)

AIC index

BIC index

 $K \cdot \log_{e}(n) - 2 \cdot (\log-likelihood)$

Lower values are better for both AIC and BIC. AIC favors more complex models, while BIC includes a penalty for the number of parameters estimated so tends to favor more simple models with fewer parameters.

K = number of parameters
log-likelihood = maximised value of the log-likelihood function of the model
n = number of observations (data points)

ANOVA and likelihood ratio tests for nested models

ANOVA test: please, refer to slide n.7

Likelihood ratio test:

```
> library(Imtest)
```

- > fittedModel1 = $Im(tumourVolume \sim sex + age + weight, data=dSet)$
- > fittedModel2 = Im(tumourVolume ~ sex, data=dSet)
- > Irtest(fittedModel2, fittedModel1)

Likelihood ratio test

Model 1: tumourVolume ~ sex

Model 2: tumourVolume ~ sex + age + weight

	#Df	LogLik	Df	Chisq	Pr(>Chisq)
1	3	-467.51			
2	5	-467.30	2	0.4227	0.8095

Hypothesis to test: $\beta_{age} = \beta_{weight} = 0$

http://bioinformatics-core-sharedtraining.github.io/IntroductionToStats/practical.html

