Step-1

Let A be any matrix.

We have to prove that $||A|| = ||A^T||$ by comparing the eigenvalues of $A^T A$ and AA^T .

Step-2

We know that if *B* is a square matrix, then $\|B\| = \max_{\mathbf{x}_i \neq 0} \frac{\|B\mathbf{x}_i\|}{\|\mathbf{x}_i\|}$ $\hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in (1)$

And also we know that $|P| = |P^T|$ whenever *P* is a square matrix.

And
$$|PP^T| = |P||P^T|$$

$$= |P^T||P|$$
$$= |P^TP|$$

Therefore,
$$|A^T A| = |AA^T|$$

From this, we follow that $|A^T A - \lambda I| = |AA^T - \lambda I|$

(Note that the addition of $-\lambda I$ to any matrix will result the change in the diagonal entries only which will not affect the transposing on the matrix and its determinant.)

Step-3

From this discussion, we can say that the eigenvalues of $A^T A$ and those of AA^T are one and the same.

Also by (1), the eigenvalues of A and those of A^T are one and the same whose squares are the eigenvalues of A^TA .

So, we have $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$ and $A^T \mathbf{x}_i = \lambda_i \mathbf{x}_i$ for each eigenvalue λ_i and the corresponding eigenvector \mathbf{x}_i .

From these equations, we can write

$$\max_{\mathbf{x}_i \neq 0} \frac{\left\| A\mathbf{x}_i \right\|}{\left\| \mathbf{x}_i \right\|} = \max_{\mathbf{x}_i \neq 0} \frac{\left\| A^T \mathbf{x}_i \right\|}{\left\| \mathbf{x}_i \right\|}$$

$$\Rightarrow ||A|| = ||A^T||$$
 (Since by (1))

Hence
$$||A|| = ||A^T||$$