

CSC 241 LINEAR ALGEBRAII

BILINEAR AND QUADRATIC FORMS

Mrs G.O. Alao

BILINEAR FORMS

Let V be a vector space of finite dimension over a field K.

A bilinear form on V is a mapping $f: V \times V \to K$ such that for all $a, b \in K$ and for all $u_i, v_i \in V$:

i)
$$f(au_1 + bu_2, v) = af(u_1, v) + bf(u_2, v)$$

ii)
$$f(u, av_1 + bv_2) = af(u, v_1) + bf(u, v_2)$$

We express condition (i) and (ii) by saying f is linear in the first and second variables respectively.

Let A be an $n \times n$ matrix over K. Show that the mapping f defined below is a bilinear form on K^n

$$f(X,Y) = X^T A Y$$

For any $a,b \in K$ and for any $X_i, Y_i \in K^n$

i)
$$f(aX_1 + bX_2, Y) = (aX_1 + bX_2)^T AY$$

$$= (aX_1^T + bX_2^T) AY$$

$$= aX_1^T AY + bX_2^T AY$$

$$= af(X_1, Y) + bf(X_2, Y)$$

Hence f is linear in the first variable.

Solution (Cont.)

ii)
$$f(X, aY_1 + bY_2) = X^T A(aY_1 + bY_2)$$

$$= aX^T AY_1 + bX^T AY_2$$

$$= af(X, Y_1) + bf(X, Y_2)$$

Hence f is linear in the second variable.

Therefore, f is a bilinear form on K^n .

Let $u = (x_1, x_2)$ and $v = (y_1, y_2)$. Determine which of the following are bilinear forms on \mathbb{R}^2 .

i)
$$f(u,v) = 2x_1y_2 - 3x_2y_1$$

ii)
$$f(u,v) = x_1x_2 + y_1y_2$$

Let $u = (x_1, x_2, x_3)$ and $v = (y_1, y_2, y_3)$. Express f in matrix notation, where

$$f(u,v) = 3x_1y_1 - 2x_1y_3 + 5x_2y_1 + 7x_2y_2 - 8x_2y_3$$
$$+ 4x_3y_2 - 6x_3y_3$$

Let $A = [a_{ij}]$, where a_{ij} is the coefficient of $x_i y_i$. Then

$$f(u,v) = X^{T}AY = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 3 & 0 & -2 & y_1 \\ 5 & 7 & -8 & y_2 \\ 0 & 4 & -6 & y_3 \end{bmatrix}$$

Express the following functions in matrix notations:

i)
$$f[(x_1, x_2), (y_1, y_2)] = 2x_1y_1 - 3x_1y_2 + 4x_2y_2$$

ii)
$$f\left[(x_1, x_2), (y_1, y_2)\right] = 3x_1y_1 - 2x_1y_2 + 4x_2y_1 - x_2y_2$$

SYMMETRIC BILINEAR FORMS

Let f be a linear form on V. Then f is said to be symmetric if, for every $u, v \in V$

$$f(u,v) = f(v,u)$$

QUADRATIC FORMS

A mapping $q:V\to K$ is a quadratic form if q(v)=f(v,v) for some symmetric bilinear form f on V:

Let $X = [x_i]$ denote a column vector of variable, q can be represented in the form:

$$q(X) = f(X, X) = X^{T}AX$$

Find the symmetric matrix that corresponds to the quadratic form below:

$$q(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$$

Hint

The symmetric matrix, $A = |a_{ij}|$ that represents the quadratic forms, $q(x_1, x_2, \dots, x_n)$ has the diagonal entries, a_{ii} equal to the coefficients of the square terms, x_i^2 and the non-diagonal entries a_{ii} and a_{ii} each equal to half of the coefficients of the cross product terms $x_i x_j$

The symmetric matrix is thus:

$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & -1 & -3 \\ 4 & -3 & 1 \end{bmatrix}$$

Find the symmetric matrix that corresponds to each of the following quadratic forms:

i)
$$q(x, y, z) = 3x^2 + xz - 2yz$$

ii)
$$q(x, y, z) = 2x^2 - 5y^2 - 7z^2$$

Find the quadratic form, q(X) that corresponds to the following symmetric matrix:

$$A = \begin{bmatrix} 5 & -3 \\ -3 & 8 \end{bmatrix}$$

Hint

The quadratic matrix, q(X) that corresponds to a symmetric matrix, A is defined by

$$q(X) = X^T A X$$

where $X = [x_i]$ is the column vectors of unknown.

$$q(x,y) = X^{T}AX = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 5 & -3 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} 5x - 3y & -3x + 8y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= 5x^{2} - 3xy - 3xy + 8y^{2}$$
$$= 5x^{2} - 6xy + 8y^{2}$$

Find the quadratic forms, q(X) that correspond to each of the following symmetric matrices:

i)
$$M = \begin{bmatrix} 4 & -5 & 7 \\ -5 & -6 & 8 \\ 7 & 8 & -9 \end{bmatrix}$$

i)
$$M = \begin{bmatrix} 4 & -5 & 7 \\ -5 & -6 & 8 \\ 7 & 8 & -9 \end{bmatrix}$$
 ii) $P = \begin{bmatrix} 2 & 4 & -1 & 5 \\ 4 & -7 & -6 & 8 \\ -1 & -6 & 3 & 9 \\ 5 & 8 & 9 & 1 \end{bmatrix}$