Package 'StanMoMo'

September 23, 2023

Title Bayesian Mortality Modelling with 'Stan'

Version 1.2.0

Description Implementation of popular mortality models using the 'rstan' package, which provides the R interface to the 'Stan' C++ library for Bayesian estimation. The package supports well-known models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.1080/01621459.1992.10475265> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. By a simple call, the user inputs deaths and exposures and the package outputs the MCMC simulations for each parameter, the log likelihoods and predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave future-out validation.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3

Biarch true

Depends R (>= 3.5.0)

Imports loo, methods, RcppParallel, Rcpp (>= 0.12.0), rstan (>= 2.26.0), rstantools (>= 2.0.0), tidyverse, dplyr, tibble, httr, bridgesampling, stats, utils, tidyselect, latex2exp, tidyr, ggplot2

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.26.0), StanHeaders (>= 2.26.0), RcppParallel

SystemRequirements GNU make

Suggests knitr, rmarkdown, shinystan, Cairo

VignetteBuilder knitr

URL https://github.com/kabarigou/StanMoMo

BugReports https://github.com/kabarigou/StanMoMo/issues

NeedsCompilation yes

2 StanMoMo-package

Author Karim Barigou [aut, cre] (https://orcid.org/0000-0003-3389-9596), Pierre-Olivier Goffard [aut] (https://orcid.org/0000-0002-2667-6207)

Maintainer Karim Barigou < karim 290492@gmail.com>

Repository CRAN

Date/Publication 2023-09-23 21:10:02 UTC

R topics documented:

	StanMoMo-package																 	2
	apc_stan																 	3
	boxplot_post_dist .																 	5
	cbd_stan																	
	compute_weights_B																	
	extract_map																	
	fit_mo_mo																 	9
	FRMaleData																 	10
	lc_stan																	
	m6_stan																	
	mortality_weights .																	
	rh_stan																	
	sim_death_apc																	
	sim_death_cbd																	
	sim_death_lc																 	19
	sim_death_m6																	
	sim_death_mix_cbd	_rh .															 	20
	sim_death_rh																 	21
	sim_mortality_data																	
	_ •_																	
Index																		23
		m																
Stan	MoMo-package	The	Sta	пM	oM	0'1	pac	kaş	ge.									

Description

The **StanMoMo** package performs Bayesian Mortality Modeling with **Stan** for a variety of popular mortality models. The current package supports the Lee-Carter model, the Renshaw-Haberman model, the Age-Period-Cohort model, the Cairns-Blake-Dowd model and the M6 model. By a simple call, the user inputs deaths and exposures and the package outputs the MCMC simulations for each parameter, the log likelihoods and predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave-future-out validation.

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. https://mc-stan.org

apc_stan 3

apc_stan

Bayesian Age-Period-Cohort model with 'Stan'

Description

Fit and Forecast Bayesian APC model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```
apc_stan(
  death,
  exposure,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

death Matrix of deaths.

exposure Matrix of exposures.

forecast Number of years to forecast.

validation Number of years for validation.

family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter ϕ .

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

or

with

The created model is either a log-Poisson or a log-Negative-Binomial version of the APC model:

$$D_{x,t} \sim \mathcal{P}(\mu_{x,t}e_{x,t})$$

$$D_{x,t} \sim NB(\mu_{x,t}e_{x,t}, \phi)$$

To ensure the identifiability of th model, we impose

$$\kappa_1 = 0, \gamma_1 = 0, \gamma_C = 0,$$

 $\log \mu_{xt} = \alpha_x + \kappa_t + \gamma_{t-x}.$

apc_stan

where C represents the most recent cohort in the data.

For the priors, we assume that

$$\alpha_x \sim N(0, 100), \frac{1}{\phi} \sim Half - N(0, 1).$$

For the period term, similar to the LC model, we consider a random walk with drift:

$$\kappa_t = c + \kappa_{t-1} + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)$$

with the following hyperparameters assumptions: $c \sim N(0, 10), \sigma \sim Exp(0.1)$.

For the cohort term, we consider a second order autoregressive process (AR(2)):

$$\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_t^{\gamma}, \quad \epsilon_t^{\gamma} \sim N(0, \sigma_{\gamma}).$$

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

$$\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_{\gamma} \sim Exp(0.1).$$

Value

An object of class stanfit returned by rstan::sampling

References

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 1-35.

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1990:2010
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitAPC=apc_stan(death = deathFR,exposure=exposureFR, forecast = 5, family = "poisson",
iter=iterations,chains=1)</pre>
```

boxplot_post_dist 5

boxplot_post_dist	Boxplot for the posterior distribution
-------------------	--

Description

The function generates boxplots for the posterior distribution of the main parameters

Usage

```
boxplot_post_dist(stan_fit, parm_name, ages, years)
```

Arguments

```
stan_fit stan fit object

parm_name string to indicate the name of the parameter, to choose from c('a', 'b', 'g', 'k', 'k2', 'phi')

ages range of ages

years range of years
```

Value

Posterior distribution shown as boxplots

Examples

```
years <- 1990:2017
ages <- 50:90
cohorts <- sort(unique(as.vector(sapply(years, function(year) year - ages))))
death <- FRMaleData$Dxt[formatC(ages),formatC(years)]
exposure <- FRMaleData$Ext[formatC(ages),formatC(years)]
iterations<-50 # Toy example, consider at least 2000 iterations
stan_fit <- fit_mo_mo("m6", death , exposure, ages, 0, 5, "nb", 1, 4,
log_marg = FALSE,iter=iterations)
boxplot_post_dist(stan_fit, "k", ages, years)
boxplot_post_dist(stan_fit, "g", ages, years)</pre>
```

6 cbd_stan

cbd_stan

Bayesian Cairns-Blake-Dowd (CBD) model with Stan

Description

Fit and Forecast Bayesian CBD model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```
cbd_stan(
  death,
  exposure,
  age,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

death Matrix of deaths.

exposure Matrix of exposures.

age Vector of ages.

forecast Number of years to forecast.

validation Number of years for validation.

family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter ϕ .

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the CBD model:

or
$$D_{x,t}\sim \mathcal{P}(\mu_{x,t}e_{x,t})$$
 or
$$D_{x,t}\sim NB\left(\mu_{x,t}e_{x,t},\phi\right)$$
 with
$$\log\mu_{xt}=\kappa_t^{(1)}+(x-\bar{x})\kappa_t^{(2)},$$

where \bar{x} is the average age in the data.

For the period terms, we consider a multivariate random walk with drift:

$$oldsymbol{\kappa}_{t} = oldsymbol{c} + oldsymbol{\kappa}_{t-1} + oldsymbol{\epsilon}_{t}^{\kappa}, \quad oldsymbol{\kappa}_{t} = \left(egin{array}{c} \kappa_{t}^{(1)} \ \kappa_{t}^{(2)} \end{array}
ight), \quad oldsymbol{\epsilon}_{t}^{\kappa} \sim N\left(oldsymbol{0}, \Sigma
ight),$$

with normal priors: $c \sim N(0, 10)$.

The variance-covariance matrix of the error term is defined by

$$\mathbf{\Sigma} = \left(egin{array}{cc} \sigma_1^2 &
ho_\Sigma \sigma_1 \sigma_2 \\
ho_\Sigma \sigma_1 \sigma_Y & \sigma_2^2 \end{array}
ight)$$

where the variance coefficients have independent exponential priors: $\sigma_1, \sigma_2 \sim Exp(0.1)$ and the correlation parameter has a uniform prior: $\rho_{\Sigma} \sim U[-1,1]$. As for the other models, the overdispersion parameter has a prior distribution given by

$$\frac{1}{\phi} \sim Half - N(0, 1).$$

Value

An object of class stanfit returned by rstan::sampling

References

Cairns, A. J. G., Blake, D., & Dowd, K. (2006). A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk and Insurance, 73(4), 687-718.

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-NB model
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitCBD=cbd_stan(death = deathFR,exposure=exposureFR, age=ages.fit, forecast = 10,
family = "poisson",iter=iterations,chains=1)</pre>
```

compute_weights_BMA

Compute the model evidence/marginal likelihood via bridge sampling (or via the harmonic mean estimator if bridge sampling fails)

Description

Compute the model evidence/marginal likelihood via bridge sampling (or via the harmonic mean estimator if bridge sampling fails)

8 extract_map

Usage

```
compute_weights_BMA(stan_fits, mortality_models)
```

Arguments

stan_fits list of Stan model fits where the marginal likelihood was computed via bridge sampling

mortality_models

vector of mortality models names

Value

data frame with model evidence for BMA

extract_map

Function to get the a posterior means of the parameters based on a stanfit object

Description

Function to get the a posterior means of the parameters based on a stanfit object

Usage

```
extract_map(stan_fit)
```

Arguments

stan_fit a stanfit object

Value

named list with the point estimates of the parameters

fit_mo_mo

 fit_mo_mo

Wrapper function to fit and forecast mortality models

Description

Wrapper function to fit and forecast mortality models

Usage

```
fit_mo_mo(
  mortality_model = "lc",
  death,
  exposure,
  ages = 50:90,
  validation = 0,
  forecast = 1,
  family = "nb",
  chains = 1,
  cores = 4,
  log_marg = FALSE,
  iter = 2000
)
```

Arguments

mortality_model

name of the mortality model

death death matrix
exposure exposure matrix
ages vector of ages

validation size of the validation set

forecast number of calendar years to be forecast

family underlying count distribution chains number of Markov chains cores number of cores used

log_marg Do we compute the marginal likelihood or not?

iter Length of the Markov chain trajectory

Value

a stanfit object

10 FRMaleData

Examples

```
years <- 1990:2017
ages <- 50:90
cohorts <- sort(unique(as.vector(sapply(years, function(year) year - ages))))
death <- FRMaleData$Dxt[formatC(ages),formatC(years)]
exposure <- FRMaleData$Ext[formatC(ages),formatC(years)]
stan_fit <- fit_mo_mo("m6", death , exposure, ages, 0, 5, "nb", 1, 4,
log_marg = FALSE,iter=50)
boxplot_post_dist(stan_fit, "k", ages, years)
boxplot_post_dist(stan_fit, "g", ages, years)</pre>
```

FRMaleData

Deaths and Exposures Data of French Males

Description

List containing deaths and exposures of French Male for ages 0-110 and years 1816-2017.

Usage

FRMaleData

Format

A list of 2 matrices

Dxt Matrix of deaths, with 111 rows (ages) and 202 columns (years)

Ext Matrix of exposures, with 111 rows (ages) and 202 columns (years)

Source

Human Mortality Database https://www.mortality.org/

References

Human Mortality Database (2011). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at https://www.mortality.org/

lc_stan

lc_stan

Bayesian Lee-Carter with Stan

Description

Fit and Forecast Bayesian Lee-Carter model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```
lc_stan(
  death,
  exposure,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

death Matrix of deaths.

exposure Matrix of exposures.

forecast Number of years to forecast.

validation Number of years for validation.

family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter ϕ .

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the Lee-Carter model:

 $D_{x,t} \sim \mathcal{P}(\mu_{x,t}e_{x,t})$

or

 $D_{x,t} \sim NB\left(\mu_{x,t}e_{x,t},\phi\right)$

with

$$\log \mu_{xt} = \alpha_x + \beta_x \kappa_t.$$

To ensure the identifiability of th model, we impose

$$\sum_{x} \beta_x = 1, \kappa_1 = 0.$$

m6_stan

For the priors, the model chooses relatively wide priors:

$$\alpha_x \sim N(0, 100), \beta_x \sim Dir(1, \dots, 1), \frac{1}{\phi} \sim Half - N(0, 1).$$

For the period term, we consider a first order autoregressive process (AR(1)) with linear trend:

$$\kappa_t = c + \kappa_{t-1} + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)$$

with
$$c \sim N(0, 10), \sigma \sim Exp(0.1)$$
.

Value

An object of class stanfit returned by rstan::sampling.

References

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87(419), 659-671.

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitLC=lc_stan(death = deathFR,exposure=exposureFR, forecast = 10,
family = "poisson",iter=iterations,chains=1)</pre>
```

m6_stan

Bayesian M6 model with Stan

Description

Fit and Forecast Bayesian M6 model (CBD with cohort effect) introduced in Cairns et al (2009). The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

m6_stan 13

Usage

```
m6_stan(
  death,
  exposure,
  forecast,
  age,
  validation = 0,
  family = c("poisson", "nb"),
   ...
)
```

Arguments

death Matrix of deaths.

exposure Matrix of exposures.

forecast Number of years to forecast.

age Vector of ages.

validation Number of years for validation.

family specifies the random component of the mortality model. "Poisson" assumes a

Poisson model with log link and "nb" assumes a negative-binomial model with

log link and overdispersion parameter ϕ .

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the M6 model:

$$D_{x,t} \sim \mathcal{P}(\mu_{x,t}e_{x,t})$$

or

$$D_{x,t} \sim NB\left(\mu_{x,t}e_{x,t},\phi\right)$$

with

$$\log \mu_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + \gamma_{t-x},$$

where \bar{x} is the average age in the data.

To ensure the identifiability of th model, we impose

$$\gamma_1 = 0, \gamma_C = 0,$$

where C represents the most recent cohort in the data.

For the period terms, we consider a multivariate random walk with drift:

$$oldsymbol{\kappa}_{t} = oldsymbol{c} + oldsymbol{\kappa}_{t-1} + oldsymbol{\epsilon}_{t}^{\kappa}, \quad oldsymbol{\kappa}_{t} = \left(egin{array}{c} \kappa_{t}^{(1)} \ \kappa_{t}^{(2)} \end{array}
ight), \quad oldsymbol{\epsilon}_{t}^{\kappa} \sim N\left(oldsymbol{0}, \Sigma
ight),$$

with normal priors: $c \sim N(0, 10)$.

14 m6_stan

The variance-covariance matrix of the error term is defined by

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \rho_{\Sigma}\sigma_1\sigma_2 \\ \rho_{\Sigma}\sigma_1\sigma_Y & \sigma_2^2 \end{pmatrix}$$

where the variance coefficients have independent exponential priors: $\sigma_1, \sigma_2 \sim Exp(0.1)$ and the correlation parameter has a uniform prior: $\rho_{\Sigma} \sim U[-1,1]$. As for the other models, the overdispersion parameter has a prior distribution given by

$$\frac{1}{\phi} \sim Half - N(0, 1).$$

For the cohort term, we consider a second order autoregressive process (AR(2)):

$$\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_t^{\gamma}, \quad \epsilon_t^{\gamma} \sim N(0, \sigma_{\gamma}).$$

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

$$\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_{\gamma} \sim Exp(0.1).$$

Value

An object of class stanfit returned by rstan::sampling.

References

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 1-35.

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1990:2010
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitM6=m6_stan(death = deathFR,exposure=exposureFR, age=ages.fit,forecast = 5,
family = "poisson",iter=iterations,chains=1)</pre>
```

mortality_weights 15

mortality_weights

Description

Mortality Model averaging via stacking of predictive distributions and Pseudo-BMA weighting. Based on Yao et al. (2018) but adapted by Barigou et al. (2021) for mortality forecasting.

Usage

```
mortality_weights(X)
```

Arguments

X A list of stanfit objects.

Details

Mortality model averaging via stacking of predictive distributions or pseudo-BMA weighting. Both approaches were proposed in Yao et al. (2018) based leave-one-out cross-validation which is not suited for forecasting. Barigou et al. (2021) adapted both approaches based on leave-future-out validation which is more appropriate for mortality forecasting.

The stacking method combines all models by maximizing the leave-future-out predictive density of the combination distribution. That is, it finds the optimal linear combining weights for maximizing the leave-future-out log score.

The pseudo-BMA method finds the relative weights proportional to the expected log predictive density of each model.

Similar to Yao et al. (2018), we recommend stacking for averaging predictive distributions as pseudo-BMA tends to select only one model.

Value

A matrix containing one weight for each model and each approach.

References

Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917-1007.

Barigou K., Goffard P-O., Loisel S., Salhi Y. (2021). Bayesian model averaging for mortality forecasting using leave-future-out validation. arXiv preprint arXiv:2103.15434.

rh_stan

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
#where the 10 last years are held out for validation. We search for the model weights between
#the Lee-Carter model and the RH model (Lee-Carter with cohort effect).
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-1000 # Toy example, consider at least 2000 iterations
fitLC=lc_stan(death = deathFR,exposure=exposureFR, forecast = 10, validation=10,
family = "poisson",iter=iterations,chains=1)
fitRH=rh_stan(death = deathFR,exposure=exposureFR, forecast = 10, validation=10,
family = "poisson",iter=iterations,chains=1)
model_weights<-mortality_weights(list(fitLC,fitRH))</pre>
```

rh_stan

Bayesian Renshaw-Haberman model with Stan

Description

Fit and Forecast Bayesian Renshaw-Haberman model (Lee-Carter with cohort effect) introduced in Renshaw and Haberman (2006). The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```
rh_stan(
  death,
  exposure,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

death Matrix of deaths.
exposure Matrix of exposures.

forecast Number of years to forecast.

validation Number of years for validation.

rh_stan 17

family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter ϕ .

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the Renshaw-Haberman model:

$$D_{x,t} \sim \mathcal{P}(\mu_{x,t}e_{x,t})$$

or

$$D_{x,t} \sim NB\left(\mu_{x,t}e_{x,t},\phi\right)$$

with

$$\log \mu_{xt} = \alpha_x + \beta_x \kappa_t + \gamma_{t-x}.$$

To ensure the identifiability of th model, we impose

$$\kappa_1 = 0, \gamma_1 = 0, \sum gamma_i = 0, \gamma_C = 0,$$

where C represents the most recent cohort in the data.

For the priors, the model chooses wide priors:

$$\alpha_x \sim N(0, 100), \beta_x \sim Dir(1, \dots, 1), \frac{1}{\phi} \sim Half - N(0, 1).$$

For the period term, we consider the standard random walk with drift:

$$\kappa_t = c + \kappa_{t-1} + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)$$

with $c \sim N(0, 10), \sigma \sim Exp(0.1)$.

For the cohort term, we consider a second order autoregressive process (AR(2)):

$$\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_t^{\gamma}, \quad \epsilon_t^{\gamma} \sim N(0, \sigma_{\gamma}).$$

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

$$\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_{\gamma} \sim Exp(0.1).$$

Value

An object of class stanfit returned by rstan::sampling.

References

Renshaw, A. E., & Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38(3), 556-570.

sim_death_apc

Examples

```
#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1990:2010
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitRH=rh_stan(death = deathFR,exposure=exposureFR, forecast = 5, family = "poisson",
iter=iterations,chains=1)</pre>
```

sim_death_apc Simulation of death counts from the Age-Period-Cohort mortality model

Description

Simulation of death counts from the Age-Period-Cohort mortality model

Usage

```
sim_death_apc(a, k, g, phi, years, ages, exposure)
```

Arguments

a	vector of age component
k	vector of period component
g	vector of cohort component
phi	dispersion parameter
years	vector of calendar years
ages	vectors of ages
exposure	matrix of exposure data

Value

matrix of death count

sim_death_cbd

CIM	death	chd
O T III	ucatii	CDU

Simulation of death counts from the CBD model

Description

Simulation of death counts from the CBD model

Usage

```
sim_death_cbd(k, k2, phi, years, ages, exposure)
```

Arguments

k first vector of period componentk2 second vector of period component

phi dispersion parameter years vector of calendar years

ages vectors of ages

exposure matrix of exposure data

Value

matrix of death count

			-
sim_	dea	th	I٢
OTIII"	_uca	CII_	

Simulation of death counts from the Lee-Carter mortality model

Description

Simulation of death counts from the Lee-Carter mortality model

Usage

```
sim_death_lc(a, b, k, phi, exposure)
```

Arguments

a vector of age component
b vector of age/year component
k vector of year component
phi dispersion parameter
exposure matrix of exposure data

Value

matrix of death count

		_
Cim	death	m6
STIII	ucatii	IIIO

Simulation of death counts from the M6 model

Description

Simulation of death counts from the M6 model

Usage

```
sim_death_m6(k, k2, g, phi, years, ages, exposure)
```

Arguments

k first vector of period componentk2 second vector of period component

g vector of cohort component

phi dispersion parameter years vector of calendar years

ages vectors of ages

exposure matrix of exposure data

Value

matrix of death count

sim_death_mix_cbd_rh

Simulation of death counts from a hybrid model that averages the mortality rates from the cbd and rh models

Description

Simulation of death counts from a hybrid model that averages the mortality rates from the cbd and rh models

Usage

```
sim_death_mix_cbd_rh(params_cbd, params_rh, years, ages, exposure, q)
```

Arguments

params_cbd named list that contains the parameters of the cbd model params_rh named list that contains the parameters of the rh model

years vector of calendar year

ages vector of ages

exposure matrix of exposure data

q mixing parameter (0 <- rh, 1 <- cbd)

sim_death_rh 21

Value

matrix of death count

sim_death_rh Simulation of death counts from the Renshaw-Haberman mortality model		m the Renshaw-Haberman mortality
---	--	----------------------------------

Description

Simulation of death counts from the Renshaw-Haberman mortality model

Usage

```
sim_death_rh(a, b, k, g, phi, years, ages, exposure)
```

Arguments

a	vector of age component
b	vector of age/year component
k	vector of period component
g	vector of cohort component
phi	dispersion parameter
years	vector of calendar years
ages	vectors of ages
exposure	matrix of exposure data

Value

matrix of death count

sim_mortality_data

Simulation of mortality data from various models

Description

Simulation of mortality data from various models

Usage

```
sim_mortality_data(a, k, k2, b, g, phi, years, ages, exposure, mortality_model)
```

22 sim_mortality_data

Arguments

vector of age component а first vector of time component k second vector of time component k2 vector of age/time component b vector of cohort component g dispersion parameter phi years vector of calendar year vector of ages ages exposure matrix of exposure mortality_model name of the mortality model that we simulate from

Value

matrix of death counts

Index

```
* datasets
    FRMaleData, 10
apc\_stan, 3
{\tt boxplot\_post\_dist}, {\tt 5}
cbd_stan, 6
compute_weights_BMA, 7
extract_map, 8
fit_mo_mo, 9
{\sf FRMaleData}, \textcolor{red}{10}
lc_stan, 11
m6_stan, 12
mortality\_weights, 15
rh_stan, 16
sim\_death\_apc, 18
sim_death_cbd, 19
sim_death_lc, 19
sim_death_m6, 20
sim_death_mix_cbd_rh, 20
sim_death_rh, 21
sim_mortality_data, 21
StanMoMo (StanMoMo-package), 2
StanMoMo-package, 2
```