Problem #1

Use the Euclidean algorithm to calculate the greatest commmon divisor for 24,024 and 7,524. Then use your work to write the gcd as a linear combination of 24,024 and 7,524.

Solution

$$24024 = (3)7524 + 1542$$
$$7524 = (5)1452 + 264$$
$$1452 = (5)264 + 132$$
$$132 = (2)132$$

So the GCD of 24,024 and 7524 is 132. To write the GCD as a linear combination of the two numbers we first solve for the remainders.

$$1452 = 24042(1) + 7524(-3)$$
$$264 = 7524(1) + 1452(-5)$$
$$132 = 1452(1) + 264(-5)$$

And then we plug in these values to the equations from the first step.

$$132 = 1452(1) + 264(-5)$$

$$= 1452(1) + (7524 + 1452(-5))(-5)$$

$$= 1452(1) + 7524(-5) + 1452(25)$$

$$= 1452(26) + 7524(-5)$$

$$= (24024 + 7524(-3))(26) + 7524(-5)$$

$$= 24024(26) + 7524(-78) + 7524(-5)$$

$$= 24024(26) + 7524(-83)$$
(1)

Problem #2

Suppose R is an equivalence relation on A, S is an equivalence relation on B, and A and B are disjoint. Prove that $R \cup S$ is an equivalence relation on $A \cup B$.

Solution

• Reflexive For any $x \in A \cup B$, either

- Case 1:
$$x \in A$$

 $(x,x) \in R \implies (x,x) \in R \cup S$
- Case 2: $x \in B$
 $(x,x) \in S \implies (x,x) \in R \cup S$

• Symmetric

For any $(x, y) \in R \cup S$, either

- Case 1:
$$(x, y) \in R$$

 $\implies (y, x) \in R \implies (y, x) \in R \cup S$

- Case 2:
$$(y, x) \in S$$

 $\implies (y, x) \in S \implies (y, x) \in R \cup S$

• Transitive

Take arbitrary $(x, y), (y, z) \in R \cup S$. y cannot be an element of both A and B because they are disjoint so either

- Case 1:
$$(x, y), (y, z) \in R$$

 $\implies (x, z) \in R \implies (x, z) \in R \cup S$

- Case 2:
$$(x, y), (y, z) \in S$$

 $\implies (x, z) \in S \implies (x, z) \in R \cup S$

 $R \cup S$ is reflexive, symmetric, and transitive, so $R \cup S$ is an equivalence relation.

Problem #3

Suppose that R is a partial order relation on a set A and that B is a subset of A. The restriction of R to B is defined as follows:

$$\{(x,y) \mid x \in B, y \in B, \text{ and } (x,y) \in R\}$$

In other words, two elements of B are related by the restriction of R to B if, and only if, they are related by R. Prove that the restriction of R to B is a partial order relation on B. (In less formal language, this says that a subset of a partially ordered set is partially ordered.)

Solution

Let S = the restriction of R to B.

- Reflexive For any $b \in B$, $(b, b) \in R \implies (b, b) \in S$.
- Antisymmetric For any $(x, y) \in S$ such that $x \neq y$:

$$(x,y) \in S \implies (x,y) \in R$$

 $\implies (y,x) \notin R$
 $\implies (y,x) \notin S$

• Transitive

For any $(x, y), (y, z) \in S$ it must be the case that $x, y, z \in B$ and:

$$(x,y), (y,z) \in S \implies (x,y), (y,z) \in R$$

 $\implies (x,z) \in R$
 $\implies (x,z) \in S$

So S is transitive.

So the restriction of R to B is a partial order relation.

Problem #4

Suppose R is a partial order on A. Prove that R^{-1} is also a partial order on A.

Solution

• Reflexive

For all $x \in A$, $(x, x) \in R \implies (x, x) \in R^{-1}$

• Antisymmetric

For any $x, y \in A$ such that $x \neq y$

$$(x,y) \in R \implies (y,x) \in R^{-1}$$

and

$$(x,y) \in R \implies (y,x) \notin R$$

 $\implies (x,y) \notin R^{-1}$

• Transitive

For all $x, y, z \in A$ such that $(x, y), (y, z) \in R^{-1}$.

$$(x,y), (y,z) \in R^{-1} \implies (y,x), (z,y) \in R$$

 $\implies (z,x) \in R$
 $\implies (x,z) \in R^{-1}$

So R^{-1} is a partial order on A.

Problem #5

In each case, say whether or not R is a partial order on A. If it is explain why and if not explain why not.

(a) A =the set of all words in English,

 $R = \{(x, y) \in A \times A | \text{ the word } y \text{ occurs at least as late in alphabetical order as the word } x.\}$

(b) A is the same as above and

 $R = \{(x, y) \in A \times A \mid \text{The first letter of the word } y \text{ occurs at least as late in the alphabet as the first letter of the word } x\}$

Solution

Part (a)

The relation is a partial order on A. It is reflexive, antisymmetric, and transitive.

Part (b)

The relation is not a partial order on A. It is reflexive and transitive but not antisymmetric. For example, ("cat", "crab") $\in R$ and ("crab", "cat) $\in R$ and "cat" \neq "crab".

Problem #6

For any sets A, B, C, and D, if $A \times B \subseteq C \times D$ then $A \subseteq C$ and $B \subseteq D$. Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?

Proof. Suppose $A \times B \subseteq C \times D$. Let a be an arbitrary element of A and let b be an arbitrary element of B. Then $(a,b) \in A \times B$. Since $A \times B \subseteq C \times D$, $(a,b) \in C \times D$. Therefore $a \in C$ and $b \in D$. Since a and b were arbitrary elements of A and B respectively, this shows that $A \subseteq C$ and $B \subseteq D$.

Solution

The proof is not correct. If B and C are empty then $A \times B \subseteq C \times D$ and it is not necessarily the case that $A \subseteq C$. The proof can be made correct by adding the qualification that the sets A, B, C, and D are not empty.

Problem #7

Let p=7 and q=13 and e=5, using RSA Encryption, encrypt the following message and decrypt it to prove you get the same message back. The message is "I \P MATH", use the Caesar cipher for the letters (A=1, B=2,..., Z=26) and let \P =27. You can use a calculator but you must show where the numbers come from.

Solution

The multiplicative inverse of 5 mod (6)(13) is 29. Then with I=9, \P =27, M=13, A=1, T=20, and H=8 and using the encryption function encrypt(T) = (T^e) mod pq we have: encrypt(I) = 81, encrypt(\P) = 27, encrypt(M) = 13, encrypt(A) = 1, encrypt(T)=76, and encrypt(H)=8.

Then using the decryption function $\operatorname{decrypt}(C) = C^D \mod PQ$ we have: $\operatorname{decrypt}(81) = I$, $\operatorname{encrypt}(27) = \Psi$, $\operatorname{encrypt}(13) = M$, $\operatorname{encrypt}(1) = A$, $\operatorname{encrypt}(76) = T$, and $\operatorname{encrypt}(8) = H$, the original message.