Gram Schmidt

Jeremy Teitelbaum

Gram Schmidt

In our discussion so far we have been handed orthogonal bases for various subspaces.

How do we find such a thing?

Problem: Given a set of vectors v_1,\ldots,v_k in ${\bf R}^n$, find an orthogonal basis (or an orthonormal basis) for the span W of those vectors.

Strategy: Work systematically:

- \triangleright Start with v_1 ; it becomes u_1 .
- Subtract the component of v_2 in the v_1 direction from v_2 ; call this u_2 .
- Subtract the projection of v_3 into the span of u_1 and u_2 from v_3 , and call that u_3 .
- Continue in this way, subtracting the projection of v_n from the span of u_1, \ldots, u_{n-1} , to obtain u_n .

If you normalize these vectors u_i you get an orthonormal basis.

Gram Schmidt (Example)

Suppose

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

The first two vectors in the sequence of G-S vectors is

$$u_1 = v_1, u_2 = v_2 - 3/4v_1 = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

Example (continued)

The third vector

$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2}$$

Now $u_1 \cdot u_1 = 4$ and

$$u_2 \cdot u_2 = v_2 \cdot v_2 - 3/2v_2 \cdot v_1 + 9/16v_1 \cdot v_1 = 3 - 9/2 + 9/4 = 3/4$$

Also $v_3 \cdot u_2 = v_3 \cdot v_2 - 3/4 v_3 \cdot v_1 = 1/2.$ So

$$u_3 = v_3 - \frac{2}{4}u_1 - \frac{2}{3}u_2 = \begin{bmatrix} 0\\ -2/3\\ 1/3\\ 1/3 \end{bmatrix}$$

The QR decomposition

Suppose that A is an $n \times m$ matrix with linearly independent columns. Then there is an orthogonal matrix Q (of size $n \times m$) and an upper triangular matrix R of size $m \times m$ so that

$$A = QR$$

The columns of Q form an orthonormal basis for the column space of $A;\,Q^TQ=I;$ and the diagonal entries of R are positive.

(This is called the "QR" decomposition of A).

It's really a restatement of the Gram-Schmidt process.