Lista nº 4

Disciplina: Álgebra Linear

Nome:

Matrícula:

1. Verifique se o conjunto $V = \{(1,y); y \in R\}$ com as operações

$$(1,y_1)+(1,y_2)=(1,y_1+y_2)$$
 e $\alpha(1,y)=(1,\alpha y)$ é um espaço vetorial real.

- 2. Seja o conjunto $R^2 = \{(x, y); x, y \in R\}$. Mostre que R^2 não é um espaço vetorial com as operações assim definidas: (x, y) + (z, w) = (x+z, y+w) e $\alpha(x, y) = (\alpha x, y)$.
- 3.Mostre que $W = \{(x, -3x); x \in R\}$ é um subespaço vetorial de R^2 .
- 4.Mostre que W={(x, x, 2x); $x \in R$ } é um subespaço vetorial de R^3 .
- 5. Mostre que $W = \{(x, y, z) \in R^3; z y = 0\}$ é um subespaço vetorial de R^3 .
- 6. Mostre que cada um dos subconjuntos de R⁴ a seguir são subespaços vetoriais.

(a)W =
$$\{(x, y, z, t) \in \mathbb{R}^4; x+y=0 \text{ e } z-t=0\}$$

(b)U =
$$\{(x, y, z, t) \in \mathbb{R}^4; 2x+y-t=0 \text{ e } z=0\}$$

7. Verifique se os subconjuntos U e W, abaixo, são subespaços vetoriais de M(2,2).

(a)
$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = c \in a, b, c, d \in \mathbb{R} \right\}$$

(b) $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = c + 1 \in a, b, c, d \in \mathbb{R} \right\}$

- 8. Considere os subconjuntos de R³: $U=\{(x, x, x); x \in R\}$ e $W=\{(x, y, 0); x, y \in R\}$.
- (a) Mostre que U é um subespaço vetorial de R³;
- (b)Mostre que W é um subespaço vetorial de R³;
- (c)Calcule U∩W.
- (d)R³=U+W? Justifique.
- 9. Sejamos vetores u=(2,-3,2) e v=(-1,2,4) em R^3 .
- (a) Escrever o vetor w=(7,−11,2) como combinação linear de u e v.
- (b) Para que valor de k o vetor (−8,14,k) é combinação linear de u e v?
- (c) Determinar uma condição para a, b e c de modo que o vetor (a, b, c) seja uma combinação linear de u e v.

Lista nº 4 2

10. Consideremos no espaço $P_2=at^2+bt+c$; a, b, $c \in R$ os vetores $p(t)=t^2-2t+1$, q(t)=t+2 e $h(t)=2t^2-t$.

- (a)Escrever o vetor $m(t)=5t^2-5t+7$ como combinação linear de p(t), q(t) e h(t).
- (b)É possível escrever o vetor $m(t)=5t^2-5t+7$ como combinação linear de p(t) e q(t).
- (c)É possível escrever p(t) como combinação linear de q(t) e h(t)?
- (d) Determinar uma condição para a,b e c de modo que o vetor at²+bt+c seja combinação linear de q(t) e h(t).
- 11. Verifique se cada um dos vetores a seguir são LD ou LI.
- (a)v1=(1,2), v2=(0,1), v3=(-1,1) em $V = R^{2}$.

(a)
$$v = (1,2)$$
, $v = (0,1)$, $v = (1,1)$ cm $v = (1,2)$, $v = (0,1)$ em $v = (1,2)$ em $v = (1$