Extensiones a OLS

Abril 17, 2024

Prof. Sergio Béjar

Departamento de Estudios Políticos, CIDE

Plan para Hoy

Vamos a hacer extensiones al modelo OLS que ya conocemos (i.e. regresión lineal bivariada).

Limitaciones de la Regresión Bivariada (o Simple)

La regresión bivariada nunca es suficiente.

- En ciencia política y relaciones internacionales hay muchas variables de interés que no son de intervalo (i.e. medidas en escala continua, ordenadas y con intervalos iguales entre sus valores).
- Regresión Bivariada no nos permite controlar por "confounders" (i.e. explicaciones alternativas).

Este presentación nos ayudará a entender estos temas con más claridad.

Variables Dicotómicas (Dummies)

Las variables dicotómicas (dummy) están por todos lados en ciencias políticas y RI.

- Juegan un papel importante en la regresión de efectos "fijos".
- Algunas veces simplemente estamos interesados en el efecto de "una sola cosa".

Estados Pivotales (Swing States) y Turnout

Vamos a regresar al ejemplo de turnout. Pero ahora estamos interesados en entender el efecto en turnout de un estado que es "pivotal". Variable "ss" en la base de datos.

- Asumamos (basados en los datos de 538) que los estados pivotales son: CO,
 FL, IA, MI, MN, NV, NH, NC, OH, PA, VA, y WI.
- Cuando x = 0, tenemos *y*-intercept.

En R

Table 1: Efecto de ser Estado Pivotal en Turnout, 2016

Estado Pivotal	7.371***
	(1.747)
Constant	59.087***
	(0.847)
N	51
Adj. R-squared	0.252
alvaliate and alvalia	

^{***}p < .01; **p < .05; *p < .1

Estados Pivotales (Swing States) y Turnout

- El turnout estimado en estados "seguros" es 59.09%
- El turnout estimado en estados "pivotales" es 66.46%
- El efecto de un estado pivotal en turnout es 7.37% (e.s. = 1.75)
- El valor de *t* es 4.22

Podemos inferir con alto grado de confianza que ser un estado pivotal tiene un efecto positivo en turnout.

Variación Regional y Turnout

Los estados del Sur tienden a tener niveles de turnout bajos.

- La mayoría son estados "seguros".
- Tienen alto porcentaje de pobreza que incrementa el costo de salir a votar.
- Tienen historia de amplias restricciones en el derecho a votar.

Vamos primero a desempacar "variación regional" viendo el efecto que tiene el Sur (relativo a no-Sur) en turnout.

Table 2: Efecto de ser un Estado del Sur en Turnout, 2016

Sur	-3.465*		
	(1.768)		
Constant	61.976***		
	(1.020)		
N	51		
Adj. R-squared	uared 0.054		

^{***}p < .01; **p < .05; *p < .1

Variación Regional y Turnout

- El turnout estimado en estados que no son del sur es 61.98%.
- El turnout estimado en estados del sur es '58.51%.
- El efecto estimado del "Sur" es -3.46% .
- *t*: -1.96

Los resultados sugieren en efecto negativo. - Pero no es un efecto muy grande. La diferencia es de aproximadamente 3%.

Efectos Fijos de Región y Turnout

El modelo anterior no es muy informativo.

 Además, es un tanto problemático porque trata a todos los estados que no están en el sur como homogéneos.

Obviously, this last regression isn't that informative.

- It also problematically treats non-Southern states as homogenous.
- Una R² baja suggiere que:

Podemos especificar otras regiones como "efectos fijos".

- Estos modelos tratan a las variables explicativas como una serie de variables dummy para cada valor de x.
- Un grupo se deja afuera como "categoría base"
 - O no tendríamos intercepto en y.

En R

Table 3: Efecto de Regiones en Turnout, 2016

Noreste	6.099**
	(2.351)
Medio-Oeste	4.805**
	(2.151)
Oeste	0.404
	(2.102)
Constant	58.512***
	(1.383)
N	51
Adj. R-squared	0.131
***n < 01. **n	/ OE: *p / 1

^{***}p < .01; **p < .05; *p < .1

Efectos Fijos de Región y Turnout

Interpretación de esta regresión:

Todos los coeficientes indican el efecto de esa región contra la categoría base.

- La categoría base en este modelo es el Sur.
- El turnout estimado en el Sur es 58.51%.
- El turnout en el Noreste es sustancialmente más alto que en el Sur (t = 2.59).
- El turnout en el Medio-Oeste es más alto que en el sur (t = 2.23).
- No hay diferencia significativa importante entre el turnout en el Oeste y en el Sur (t=0.19).

Regresión Múltiple

El ejemplo anterior (i.e. efectos fijos por región) es un ejemplo de **regresión múltiple**.

• Pero no tiene variables de control.

La regresión múltiple produce coeficientes parciales de regresión.

Regresión Múltiple

Regresemos al ejemplo de turnout. Asumamos:

- x_1 : % de ciudadanos en el estado con licenciatura.
- x₂: estados en el Sur.
- x₃: estado es pivotal.

Importante: al añadir variables estamos "controlando" por confounders potenciales.

Racional al Usar Variables de Control

Asumamos que uno de ustedes esta proponiendo un argumento en el que el nivel de educación a nivel estatal explica turnout. Yo podría decir que hay un "sesgo por variables omitidas" por lo siguiente:

- Ser un estado en el Sur disminuye educación y turnout.
- El efecto de ser un "estado pivotal" puede explicar el nivel de educación e incrementar turnout.

En otras palabras, yo sostengo que tu argumento relacionando educación (x) con turnout (y) es espurio a estos factores (z).

 Para eso "controlamos". No queremos explicar variación sino ver el efecto de los confounders.

En R

Table 4: Comparación de Modelos

	Model 1	Model 2	Model 3
Universidad			0.384***
			(0.111)
Estado Pivotal	7.371***		7.008***
	(1.747)		(1.546)
Sur		-3.465*	-1.940
		(1.768)	(1.415)
Constant	59.087***	61.976***	48.479***
	(0.847)	(1.020)	(3.468)
N	51	51	51
R-squared	0.266	0.073	0.455
Adj. R-squared	0.252	0.054	0.420

Regresión Múltiple

- Turnout estimado para (1) estado no en el Sur, (2) no pivotal, y (3) nadie se gradua de la universidad es 48.48%.
 - Parece razonable pero el valor mínimo de turnout en los datos es 19.2% (West Virgina).
- El coeficiente parcial de regresión para la variable "universidad" es .38 (t = 3.47).
- El coeficiente parcial de regresión para la variable "Sur" es insignificante.
- El efecto estimado de ser un "estado pivotal" es de un incremento de \sim 7% (t=4.53) en turnout.

Efectos Interactivos

La regresión múltiple es lineal y aditiva.

• Sin embargo, algunos efectos (digamos: x_1) pueden depender en el valor de otra variable (digamos: x_2).

A esto le llamamos un efecto interactivo.

Ejemplo del Mundo Real

Consideremos el aegumento de Zaller (1992):

- Democrats son ligeramente más pro-aborto que los Republicanos.
- Esa diferencia es condicional en que tanto los individuos entienden de política.

Usaremos datos de ANES 2012 para evaluar esta hipótesis.

Nuestros Datos

Variables Independientes: Partidismo (Party ID), conocimiento político, interacción entre las dos variables.

- Partidismo: (0 = Dem, 1 = Independiente, 2 = Rep)
- Conocimiento político: la persona sabe quién es el Orador de la Cámara de Representantes?

Nuestros Datos

Variable Dependiente: Score pro-aborto.

El estimado tiene media cero y desviación estándar de uno.

• Valores más altos = más "pro-aborto."

Densidad del Score Pro-Aborto (ANES, 2012)

24/32

Efectos Interactivos

La fórmula de esta regresión quedaría de la siguiente forma:

$$\hat{y} = \hat{a} + \hat{b_1}(x_1) + \hat{b_2}(x_2) + \hat{b_3}(x_1 * x_2)$$

where:

- $\hat{y} = \text{valor estimado de score pro-aborto.}$
- $x_1 = \text{partidismo} (0 = \text{Dems}, 1 = \text{Ind.}, 2 = \text{Rep}).$
- x_2 = conocimiento político (0 = no conoce al Orador, 1 = conoce al Orador).
- $x_1 * x_2 = \text{producto de las dos variables.}$

Interpretación de los Coeficientes

Hay que tener cuidado cuando interpretamos los coeficientes de regresión en este caso.

- El coeficiente de regresión de partidismo es el efecto de partidismo cuando conocimiento político = 0.
- El coeficiente de conocimiento político es el efecto de conocimiento político cuando partidismo = 0 (i.e. entre Demócratas).

En R

```
M5 <- lm(lchoice - pid*knowspeaker, data*anes_prochoice)
M5df <- broom::tidy(M5)

stargazer(M1, M2, M4, style="ajps",
    omit.stat=c("F","ser"), header=FALSE,
    dep.var.labels.include = FALSE,
    covariate.labels = c("partidismo", "conocimiento pol.", "interacción"),
    title= "Efectos Interactivos")
```

Table 5: Efectos Interactivos

partidismo	-0.237***
	(0.020)
conocimiento político	0.414***
	(0.036)
part*conoc	-0.184***
	(0.031)
Constant	0.099***
	(0.022)
N	5196
R-squared	0.092
Adj. R-squared	0.091

^{***}p < .01; **p < .05; *p < .1

Efectos Interactivos

Interpretación de Tabla 5:

- El estimado del score pro-aborto es 0.099 para Demócratas con poco conocimiento político.
- $\hat{b_1}$, $\hat{b_2}$, and $\hat{b_3}$ son estadísticamente insignificantes.
- Cuando x_1 y $x_2 = 1$, restamos -0.184 de \hat{y} .
- Conocimiento político produce scores pro-aborto más altos entre demócratas.

Efectos Interactivos

Esto pasa para demócratas:

- \hat{y} para demócratas con bajo conocimiento: 0.099.
- \hat{y} para demócratas con alto conocimiento: 0.513.

Para Republicanos es más interesante:

- \hat{y} para Republicanos con bajo conocimiento: -0.374.
- \hat{y} para Republicanos con alto conocimiento : -0.328.

Vemos un efecto **grande** de conocimiento político en Demócratas, pero en Republicanos es muy.. **muy pequeño**.

Plot de Densidad para Score Pro-Aborto con Efectos Interactivos

Hay que notar que el efecto de conocimiento político es mucho más grande para Demócratas que para Republicanos.

Líneas Sólidas = bajo conocimiento. Líneas discontinuas= conocimiento alto.

Table of Contents

Introducción

Extendiendo OLS

Variables Dicotómicas (Dummies)

Modelos con Efectos Fijos

Regresión Múltiple

Efectos Interactivos