Interactive Global Illumination in Dynamic Scenes

Parag Tole, Fabio Pellacini, Bruce Walter, Donald P. Greenberg

Program of Computer Graphics
Cornell University

Interactive Global Illumination

- For modeling and lighting design
- Requirements:
 - Interactive movement of objects and lights
 - Camera motion with view-dependent lighting
 - Quick feedback about changes in illumination
 - Little or no pre-computation

Previous Work

- Radiosity-based
 - Interactive HR Drettakis and Sillion '97
- Hardware based
- Caching schemes
 - RenderCache Walter et al '99
 - Tapestry Simmons and Sequin '00
 - Corrective Texturing Stamminger et al '00

Why do we need caching?

- Global illumination using path tracing is very slow
 - Can compute about 10 100 pixels/second on a Pentium 4
 - But need 10 million pixels/second for 640 X
 480 images at 30 frames/second
- Try to produce an image without path tracing each pixel

Overview of Caching Schemes

- Image update independent of ray-tracing speed
- Synchronous updates (2 10+ cycles/sec)

Parag Tole

Our System

Cache Update

~ 2 cycles/second

Image Update
30
frames/second

Path Trace

Cache

Ima ge

System Overview

Cache update Jpdate Camera & New Frame mage **Object Position**

System Overview

The Shading Cache

Shading Cache

Reconstructed

- Hierarchical subdivision mesh in object space
- •Shading Cache + Geometry + Texture

 = Image

 Parag Tole

 SIGGRAPH 2002

Shading Cache Update

Priority Map

- •Estimated interpolation error for gradients
- •Aging to detect dynamic view-dependent changes Parag Tole

Shading Cache Update

Sample Selection

Hit-and-test Samples

To reduce error

Random Samples
To prevent bias

Flood filled samples

To reconstruct

edges

Shading Cache Update

New Image

Progressive refinement of shading up to one patch per pixel

Cache Management

- Delete old patches
- Cache only as much as you can update
 - Detect image regions with changing illumination
 - Reduce target-resolution for cache in those parts
 - Increase target-resolution later

Implementation details

- Dual Pentium 4 for cache update and image display
- Parallel Sample Renderer
 - Bi-directional path tracing (400-1200 samples)
 - 16 Pentium 4 CPUs used for the results
 - About 10 100 pixels/second on one 1.7 GHz P4
- Image update displays 10 million pixels per second!

Results

4,000 primitives, 1 area light source Soft shadows, diffuse and non-diffuse reflections

SIGGRAPH 2002

Results - Moving Lights

Results - Glossy reflections

Results

300 primitives, 1 area light source Strong diffuse inter-reflections

Parag Tole

SIGGRAPH 2002

Results - Moving Objects

Results

- Good shading quality in few seconds
- High frame rate display (30+ fps)
- Very low overhead for caching (~10%)
- Scalability (tested up to 32 CPUs)

Summary

- Spatial separation
 - Separate shading from visibility
 - Accurate display of geometry and textures
- Temporal separation
 - Asynchronous update of shading
 - High frame rates
 - Smooth camera and object motion

Summary

- Object-space cache
 - More suitable for dynamic scenes
 - Exploit spatial and temporal coherence
 - Object-space data available for sampling
- View-driven update
 - Allows pixel-level accuracy

Future work

- Handling more complex scenes
 - LOD and occlusion culling for high frame rate
 - Cluster shading values Texture coordinate assignment problem
- Better reconstruction
 - Blending to reduce aliasing and popping
 - Faster updates for view-dependent shading
- Higher level error metrics for sampling

Acknowledgements

- Thanks to Philip Dutré, Steve Westin, Randy Fernando, Reynald Dumont, Jeremy Selan and others at PCG and the anonymous reviewers
- NSF Science and Technology Center for Computer Graphics and Visualization (ASC-8920219) and MRA parallel global illumination project (ASC-9523483)
- Equipment from Intel Corp. and NVIDIA Corp.
- Thanks to Paul Bourke and Eleganza.com for textures and 3dcafe.com for models