Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>ЭМ СУиР 1.1.1</u>	К работе допущен
Студенты _Сайфуллин Д.Р. R3243	Работа выполнена
Преполаватель Боярский К. К	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний

2. Задачи, решаемые при выполнении работы.

- Измерить период колебаний в контуре и значения $2U_i$, $2U_{i+n}$ удвоенной амплитуды колебаний напряжения на конденсаторе для двух моментов времени, разделенных количеством периодов n = 1-5, при разных сопротивлениях магазина R_M ;
- Построить график зависимости логарифмического декремента λ от сопротивления магазина R_M . Найти значение собственного сопротивления контура R_0 и полное сопротивление R. Найти значения индуктивности L при $R_M \leq 100$ Ом, найти среднее значение индуктивности $L_{\rm cp}$ и оценить его погрешность. Вычислить период колебаний в контуре при некоторых значениях R_M ;
- Вычислить добротность контура Q при различных сопротивлениях магазина. Построить график зависимости добротности от сопротивления контура. Для двух малых сопротивлений посчитать добротность другим способом;
- Найти экспериментально и теоретически критическое сопротивление контура и период колебаний в контуре. Построить графики периодов от емкости конденсатора. Рассмотреть формулу Томсона.

3. Метод экспериментального исследования.

Получение экспериментальных значений амплитуды выходного напряжения при разных значениях частоты генератора.

5. Рабочие формулы и исходные данные.

Ёмкости конденсаторов

С ₁ , Ф	С ₂ , Ф	С ₃ , Ф	С ₄ , Ф	<i>L</i> , Гн	Δ
$2.2 \cdot 10^{-8}$	$3.3 \cdot 10^{-8}$	$4.7 \cdot 10^{-8}$	$47 \cdot 10^{-8}$	$10 \cdot 10^{-3}$	10%

Логарифмический декремент затухания

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+1}}$$

- через амплитуду колебаний напряжения

$$\lambda = \beta T = \frac{R}{L} \frac{\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

- через параметры элементов контура

Полное сопротивление контура:

$$R = R_M + R_0$$

Собственное сопротивление контура:

$$R_0 = -R_M|_{\lambda=0}$$

Добротность контура:

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

Критическое сопротивление контура:

$$R_{\text{крит}} = 2\sqrt{\frac{L}{C}}$$

Теоретическое значение периода:

$$T = 2\pi\sqrt{LC}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф	Электроизмерительный	$2-3\cdot 10^3$ Гц	-

7. Схема установки

Рис. 1: Колебательный контур

8. Результаты прямых измерений и их обработки.

Результаты измерения периодов колебаний $T_{3\text{ксп}}$ в контуре и значений $2U_i$, $2U_{i+n}$ удвоенной амплитуды колебаний напряжения на конденсаторе для двух моментов времени, разделенных количеством периодов n=1-3, при разных сопротивлениях магазина R_{M} . Результаты вычислений логарифмического декремента λ , полного сопротивления R, индуктивности L, добротности контура Q и периода колебаний $T_{\text{теор}}$ в контуре при $R_{\text{M}}=0$, 200, 400 Ом.

Примеры вычислений λ и Q:

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+1}} = \frac{1}{3} \ln \frac{6,24}{2,24} = 0,342$$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}} = \frac{2\pi}{1 - e^{-2\cdot 0,342}} = 12,696$$

Для нахождения $R = R_{\rm M} + R_0$ необходимо найти R_0 . Построим график $\lambda(R_M)$ (Рис. 2) и аппроксимируем с помощью МНК. Имеем линейный график $\lambda = kR + b$, по нему же найдем $k = 4,86 \cdot 10^{-3}$ и b = 0,327. Вычислим R при λ =0:

$$R = -\frac{b}{k} = -67,28 = -R_0 \Rightarrow R_0 = 67,28 \text{ Om}$$

Примеры вычислений R, L:

$$R_2 = R_M + R_0 = 10 + 67,28 = 77,28 \ \mathrm{OM}$$

$$L_1 = \left(\frac{\pi R_1}{\lambda_1}\right)^2 \cdot C_1 = \left(\frac{67,28\pi}{0,342}\right)^2 \cdot 2,20 \cdot 10^{-8} = 8,428 \ \mathrm{M}\Gamma\mathrm{H}$$

R_M , Om	$T_{\mathfrak{S}KC\Pi},\mathbf{c}$	$2U_i$, дел	$2U_{i+n}$, дел	n	λ	Q	<i>R</i> , Ом	L , м Γ н
0	9,3	6,24	2,24	3	0,342	12,696	67,280	8,428
10	92	5,92	3,08	2	0,327	13,097	77,280	12,149
20	94	5,84	3,84	1	0,419	11,069	87,280	9,410
30	94	5,68	3,44	1	0,501	9,923	97,280	8,171
40	94	5,44	3,2	1	0,531	9,608	107,280	8,875
50	94	5,2	2,96	1	0,563	9,295	117,280	9,407
60	93	5,12	2,72	1	0,633	8,754	127,280	8,792
70	93	4,96	2,48	1	0,693	8,378	137,280	8,517
80	91	4,72	2,32	1	0,710	8,285	147,280	9,337
90	94	4,64	2,16	1	0,765	8,021	157,280	9,187

100	93	4,4	2	1	0,788	7,919	167,280	9,774
200	93	3,12	0,96	1	1,179	6,940	267,280	
300	94	2,24	0,4	1	1,723	6,490	367,280	
400	93	1,6	0,08	1	2,996	6,299	467,280	

Таблица 1: Результаты измерений логарифмического декремента затухания при различных сопротивлениях R_M

Результаты измерений периода $T_{\mathfrak{gkcn}}$ при нулевом сопротивлении магазина при различной емкости конденсатора C. Результаты вычислений периодов T_{reop} и погрешностей δT Примеры вычислений T_{reop} и δT :

$$T_{\text{Teop}_{1}} = \frac{2\pi}{\sqrt{\frac{1}{LC_{1}} - \frac{R_{0}^{2}}{4L^{2}}}} = \frac{2\pi}{\sqrt{\frac{1}{9,232 \cdot 10^{-3} \cdot 2,20 \cdot 10^{-8}} - \frac{67,28^{2}}{4(9,232 \cdot 10^{-3})^{2}}}} = 8,97 \cdot 10^{-5}c$$

$$\delta T = \frac{\left|T_{\text{3KCII}} - T_{\text{Teop}}\right|}{T_{\text{Teop}}} \cdot 100\% = \frac{\left|9,4 - 8,97\right|}{8,97} \cdot 100\% = 4,84$$

С,Ф	$T_{ m эксп}$, с	$T_{ m Teop}$, c	δT,%
$2.2 \cdot 10^{-8}$	$9.4 \cdot 10^{-5}$	$8,97 \cdot 10^{-5}$	4,84
$3.3 \cdot 10^{-8}$	$1,17 \cdot 10^{-4}$	$1,98 \cdot 10^{-4}$	6,47
$4.7 \cdot 10^{-8}$	$1,35 \cdot 10^{-4}$	$1,31 \cdot 10^{-4}$	2,85
$47 \cdot 10^{-8}$	$4,40\cdot 10^{-4}$	$4,26 \cdot 10^{-4}$	3,20

Таблица 2: Результаты измерений $T_{\text{эксп}}$ при различных сопротивлениях

9. Расчет результатов косвенных измерений.

Усредним полученные значения L при $R_{\rm M} \leq 100$ Ом, $L_{\rm cp} = 9,232 \cdot 10^{-3}$ Гн. Периодичность процесса разряда конденсатора исчезает при R=1000 Ом, оценим критическое сопротивление контура по формуле:

$$R_{\text{крит}} = R_{\text{м}} + R_0 = 1000 + 67,28 = 1067,28 \text{ Ом}$$

Вычислим критическое сопротивление по следующей формуле:

$$R_{ ext{ iny KPMT}} = 2\sqrt{\frac{L_{ ext{cp}}}{C_1}} = 2\sqrt{\frac{9,232 \cdot 10^{-3}}{2,20 \cdot 10^{-8}}} = 1295,57 \text{ Om}$$

Результаты вычисления периода по формуле Томсона. Так как при малом затухании величина заряда меняется по времени по закону:

$$q(t) = q_0 e^{-\beta t} \cos(\omega t + \varphi_0),$$

то период можно вычислять по формуле Томсона. Выразим эту формулу:

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$
$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

При $\beta \ll \omega_0$:

$$T = \frac{2\pi}{\omega_0}, \omega_0 = \frac{1}{\sqrt{LC}}$$
$$T = 2\pi\sqrt{LC}$$

Вычислим Т:

$$T_1 = 2\pi\sqrt{LC} = 8,96 \cdot 10^{-5}$$

 $T_2 = 2\pi\sqrt{LC} = 1,11 \cdot 10^{-4}$
 $T_3 = 2\pi\sqrt{LC} = 1,31 \cdot 10^{-4}$
 $T_4 = 2\pi\sqrt{LC} = 4,14 \cdot 10^{-4}$

10. Расчет погрешностей прямых и косвенных измерений

Оценим абсолютную погрешность ΔL среднего значения индуктивности $L_{\rm cp}$, где коэффициент Стьюдента $\alpha=0.95$:

$$\sigma = \sqrt{\sum_{i=1}^{N} \frac{(L_i - L_{cp})^2}{N(N-1)}} = 0,17$$

$$\Delta L_{cp} = \frac{\sigma}{\sqrt{N}} = 0,057$$

11.Графики

Рисунок 2: График зависимости логарифмического декремента λ от сопротивления магазина $R_{\scriptscriptstyle \mathrm{M}}$

Рисунок 3: Зависимость добротности от сопротивления

Рисунок 4: Зависимости теоретического и экспериментального периодов от ёмкости конденсатора

12.Окончательные результаты

Индуктивность катушки:

$$L_{\rm cp} = 9,232 \cdot 10^{-3} \; \Gamma$$
н

Сопротивление контура:

$$R_0 = 67,28 \text{ Om}$$

Экспериментальное критическое сопротивление контура:

$$R_{\text{крит}} = 1067,28 \text{ Om}$$

Теоретическое критическое сопротивление контура:

$$R_{\text{KDHT}} = 1295,57 \text{ OM}$$

13.Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были получены графики зависимости логарифмического декремента λ от сопротивления магазина $R_{\rm M}$, зависимости добротности Q от сопротивления контура R, зависимости измеренного периода $T_{\rm эксп}$ и вычисленного периода $T_{\rm теор}$ от емкости конденсатора C. Была выяснена возможность применения формулы Томсона для расчета периода.