Chapter 2.3 Análisis y Diseño de Algoritmos (Algorítmica III)

-Heaps--Heap Sort--Priority Queues-

> Profesores: Herminio Paucar. Luis Guerra.

Special Types of Trees

- Def: Full binary tree = a binary tree in which each node is either a leaf or has degree exactly 2.
- Def: Complete binary tree = a binary tree in which all leaves are on the same level and all internal nodes have degree 2.

Complete binary tree

Definitions

- **Height** of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- **Height of tree** = height of root node

Useful Properties

- There are at most 2^l nodes at level (or depth) l of a binary tree
- A binary tree with height d has at most 2^{d+1} -1 nodes
- A binary tree with n nodes has height at least [lgn]

$$n \le \sum_{l=0}^{d} 2^{l} = \frac{2^{d+1} - 1}{2 - 1} = 2^{d+1} - 1$$

The Heap Data Structure

- Def: A heap is a <u>nearly complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node x: Parent(x) ≥ x

From the heap property, it follows that: "The root is the maximum element of the heap!"

A heap is a binary tree that is filled in order

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] ≤ length[A]
- The elements in the subarray
 A[([n/2]+1) .. n] are leaves

Heap Types

• Max-heaps (largest element at root), have the max-heap property:

for all nodes i, excluding the root: $A[PARENT(i)] \ge A[i]$

• Min-heaps (smallest element at root), have the min-heap property:

for all nodes i, excluding the root: $A[PARENT(i)] \le A[i]$

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right to left)

Operations on Heaps

- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT
- Priority queues

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of *i* are max-heaps
- To eliminate the violation:
 - 1) Exchange with larger child
 - 2) Move down the tree
 - Continue until node is not smaller than children

Example

MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[4] violates the heap property

 $A[2] \leftrightarrow A[4]$

Maintaining the Heap Property

Assumptions:

- Left and Right subtrees of i are max-heaps
- A[i] may be smaller than its children


```
Alg: MAX-HEAPIFY(A, i, n)
   I \leftarrow LEFT(i)
   r \leftarrow RIGHT(i)
   if l≤n and A[l]>A[i] then
       largest← l
   else
        largest← i
   if r≤n and A[r]>A[largest] then
       largest← r
   if largest ≠ i then
       exchange(A[i] \leftrightarrow A[largest])
       MAX-HEAPIFY(A, largest, n)
```

MAX-HEAPIFY Running Time

Intuitively:

- It traces a path from the root to a leaf (longest path h)
- At each level, it makes exactly 2 comparisons
- Total number of comparisons is 2h
- Running time is O(h) or O(lg n)
- Running time of MAX-HEAPIFY is O(lgn)
- Can be written in terms of the height of the heap, as being
 O(h)
 - Since the height of the heap is [lg n]

Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray A[([n/2]+1) .. n] are leaves
- Apply MAX-HEAPIFY on elements between 1 and [n/2]

```
Alg: BUILD-MAX-HEAP(A)

n = length[A]

for i \leftarrow \lfloor n/2 \rfloor to 1 do

MAX-HEAPIFY(A, i, n)
```


Running Time of BUILD MAX HEAP

```
Alg: BUILD-MAX-HEAP(A)

n = length[A]

for i \leftarrow \lfloor n/2 \rfloor to 1 do

MAX-HEAPIFY(A, i, n) O(lgn)
```

\Rightarrow Running time: O(nlgn)

This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

 HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree

$$\Rightarrow T(n) = \sum_{i=0}^{h} n_i h_i = \sum_{i=0}^{h} 2^i (h-i) = O(n)$$

 $h_i = h - i$ height of the heap rooted at level i $n_i = 2^i$ number of nodes at level i

Running Time of BUILD MAX HEAP

$$T(n) = \sum_{i=0}^{h} n_i h_i$$

 $T(n) = \sum_{i=1}^{n} n_i h_i$ Cost of HEAPIFY at level i * number of nodes at that level

$$=\sum_{i=0}^h 2^i (h-i)$$

 $= \sum_{i=1}^{h} 2^{i} (h - i)$ Replace the values of n_{i} and h_{i} computed before

$$= \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^{h}$$

 $= \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^{h}$ Multiply by 2^h both at the numerator and denominator and write 2ⁱ as $\frac{1}{2^{-i}}$

$$=2^{h}\sum_{k=0}^{h}\frac{k}{2^{k}}$$

 $=2^{h}\sum_{k=0}^{h}\frac{k}{2^{k}}$ Change variables: k = h - i

$$\leq n \sum_{k=0}^{\infty} \frac{k}{2^k}$$

The sum above is smaller than the sum of all elements to ∞ and h = Ign

$$= O(n)$$

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

Heapsort

· Goal:

Sort an array using heap representations

· Idea:

- 1. Build a max-heap from the array
- 2. Swap the root (the maximum element) with the last element in the array
- 3. "Discard" this last node by decreasing the heap size
- 4. Call MAX-HEAPIFY on the new root
- 5. Repeat this process until only one node remains

Example:

A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 1)

Algoritmo Heapsort (A)

```
Alg: HEAPSORT(A)

BUILD-MAX-HEAP(A) O(n)

for i \leftarrow length[A] to 2 do

exchange (A[1] \leftrightarrow A[i])

MAX-HEAPIFY(A, 1, i - 1) O(lgn)
```

• Running time: $O(n \lg n)$ Can be shown to be $O(n \lg n)$

Problem.

Let $S=\{(s_1,p_1), (s_2,p_2),...,(s_n,p_n)\}$ where s(i) is a key and p(i) is the priority of s(i).

How to design a data structure/algorithm to support the following operations over S?

ExtractMin: Returns the element of S with minimum priority

Insert(s,p): Insert a new element (s,p) in S

RemoveMin: Remove the element in S with minimum p

Properties

- Each element is associated with a value (priority)
- The key with the highest (or lowest) priority is extracted first
- Major operations
 - o *Remove* an element from the queue
 - Insert an element in the queue

Solution 1. Used a sorted list

- ExtractMin: O(1) time
- Insert: O(n) time
- **DeleteMin:** O(1) time

Solution 2. Use a list with the pair with minimum p at the first position

- ExtractMin: O(1) time
- Insert: O(1) time
- **DeleteMin:** O(n) time

Can we do better? How?

Operations on Priority Queues

- Max-priority queues support the following operations:
 - INSERT(S, x): inserts element x into set S
 - EXTRACT-MAX(S): removes and returns element of S with largest key
 - MAXIMUM(S): <u>returns</u> element of S with largest key
 - INCREASE-KEY(S, x, k): increases value of element x's key to k (Assume k ≥ x's current key value)

HEAP-MAXIMUM

Goal:

- Return the largest element of the heap

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

Example: HEAP-EXTRACT-MAX

Heap size decreased with 1

HEAP-EXTRACT-MAX

```
Alg: HEAP-EXTRACT-MAX(A, n)

if n < 1

then error "heap underflow"

max \leftarrow A[1]

A[1] \leftarrow A[n]

MAX-HEAPIFY(A, 1, n-1)

return max
```


> remakes heap

Running time: O(lgn)

HEAP-INCREASE-KEY

- · Goal:
 - Increases the key of an element i in the heap
- · Idea:
 - Increment the key of A[i] to its new value
 - If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

Example: HEAP-INCREASE-KEY

$$Key[i] \leftarrow 15$$

HEAP-INCREASE-KEY

```
Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]

then error "new key is smaller than current key"

A[i] \leftarrow \text{key}

while i > 1 and A[PARENT(i)] < A[i]

do exchange A[i] \leftrightarrow A[PARENT(i)]

i \leftarrow PARENT(i)
```

Running time: O(Ign)

MAX-HEAP-INSERT

· Goal:

Inserts a new element into a max-heap

· Idea:

- Expand the max-heap with a
 new element whose key is -∞
- Calls HEAP-INCREASE-KEY to set the key of the new node to its correct value and maintain the max-heap property

Example: MAX-HEAP-INSERT

Insert value 15:

- Start by inserting -∞

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

The restored heap containing the newly added element

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n) heap-size[A] \leftarrow n + 1 $A[n + 1] \leftarrow -\infty$ HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

Summary

· We can perform the following operations on heaps:

MAX-HEAPIFY	O(lgn)	
- BUILD-MAX-HEAP	O(n)	
- HEAP-SORT	O(nlgn)	
MAX-HEAP-INSERT	O(lgn)	
- HEAP-EXTRACT-MAX	O(lgr)	Average
- HEAP-INCREASE-KEY	O(lgn)	O(lgn)
- HEAP-MAXIMUM	O(1)	

Priority Queue Using Linked List

Applications of Priority Queue:

- 1) CPU Scheduling
- Graph algorithms like Dijkstra's shortest path algorithm,
 Prim's Minimum Spanning Tree, etc
- 3) All queue applications where priority is involved.

Assuming the data in a max-heap are distinct, what are the possible locations of the second-largest element?

(a) What is the maximum number of nodes in a max heap of height h?

(b) What is the maximum number of leaves?

(c) What is the maximum number of internal nodes?

Demonstrate, step by step, the operation of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]

Let A be a heap of size n. Give the most efficient algorithm for the following tasks:

- A. Find the sum of all elements
- B. Find the sum of the largest lgn elements