EX1

November 26, 2023

Download (right-click, save target as) this page as a Jupyterlab notebook from: EX-1
1 CE 3305 Engineering Fluid Mechanics Spring 2024 Exam 1
LAST NAME, FIRST NAME
R00000000
1.0.1 Purpose:
Demonstrate ability to apply fluid mechanics and problem solving principles covering topics such as: Fluid properties, viscosity, vapor pressure, fluid statics and pressure.
1.0.2 Problem 1
Argon gas is used as a sheilding gas for welding for fabrication of metal objects. A 160-liter tank has an empty weight of $40~\rm kg$.
Determine: 1. The total weight of the 160-liter tank of argon at a pressure of $3{,}500$ psia at a temperature of $293^o\mathrm{K}$.
sketch(s) here
list known quantities
list unknown quantities
governing principles
solution (step-by-step)
script (code) here
discussion

[13]

1.0.3 Problem 2

A fixed mass of water has a bulk modulus of compressibility of $2.2 \times 10^9 \ Pa$.

Determine: 1. The pressure increase (p) required to reduce the volume of a mass of water by 2-percent (2 %)

sketch(s) here

list known quantities

list unknown quantities

governing principles

solution (step-by-step)

[14]: # script (code) here

discussion

1.0.4 Problem 3

The figure below is a schematic of a sliding plate viscometer used to measure the viscosity of a fluid. The top plate is moving to the right with a constant velocity of 10 meters per second in response to a force of 3 Newtons.

Determine: - The viscosity of the fluid between the plates.

sketch(s) here

list known quantities

list unknown quantities

governing principles

solution (step-by-step)

[15]: # script (code) here

1	•				•		
а	is	C	11	CC	11	റ	n
u	LO	·	u	OK	ЭΙ.	v	11

1.0.5 Problem 4

A small spherical drop of water with diameter d=4~mm and surface tension $(\sigma=72.8\times 10^{-3}\frac{N}{m})$ is depicted in the drawing below.

Determine:

1. The gage pressure of the water in the drop.

sketch(s) here

list known quantities

list unknown quantities

governing principles

solution (step-by-step)

[16]: # script (code) here

discussion

1.0.6 Problem 5

A liquid with specific weight of $2700~\mathrm{N/m^3}$ is restrained by a circular gate as ahown.

The dimensions of interest are: R = 1.5 m, H = 6 m, Gate width (into the plane of the image) b = 3 m.

Determine:

- 1. The liquid pressure at the hinge.
- 2. The liquid pressure at the bottom of the gate
- 3. The horizontal and vertical force of the liquid acting on the circular gate

sketch(s) here

list known quantities

list unknown quantities

governing principles

solution (step-by-step)

[17]: # script (code) here

discussion