Math 240 Tutorial Questions

July 25

Question 1. Let a finite dimensional vector space V have two bases β and β' , and let Q be the transformation matrix from β' -coordinates to β -coordinates. Show that for any linear transformation $T:V\to V$, it holds that

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q.$$

Question 2. A scalar matrix is a matrix of the form λI for some scalar λ .

- (a) Prove that is a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
- (b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
- (c) Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Question 3. For each of the following linear operators T on a vector space V and ordered basis β , compute $[T]_{\beta}$ and determine whether β is a basis consisting of eigenvectors of T.

(a)
$$V = \mathbf{R}^2$$
, $T(\frac{a}{b}) = \begin{pmatrix} 10a - 6b \\ 17a - 10b \end{pmatrix}$, and $\beta = \{(\frac{1}{2}), (\frac{2}{3})\}$.

(b)
$$V = \mathbf{P}_1(\mathbf{R}), T(a+bx) = (6a-6b) + (12a-11b)x, \text{ and } \beta = \{3+4x, 2+3x\}.$$

(c)
$$V = \mathbf{R}^3$$
, $T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3a+2b-2c \\ -4a-3b+2c \end{pmatrix}$, and $\beta = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\}$.

(d)
$$V = \mathbf{P}_2(\mathbf{R})$$
, $T(a+bx+cx^2) = (-4a+2b-2c) - (7a+3b+7c)x + (7a+b+5c)x^2$, and $\beta = \{x-x^2, -1+x^2, -1-x+x^2\}$.

(e)
$$V=P_3(\mathbf{R}), T(a+bx+cx^2+dx^3)=-d+(-c+d)x+(a+b-2c)x^2+(-b+c-2d)x^3,$$
 and $\beta=\{1-x+x^3,1+x^2,1,x+x^2\}.$

(f)
$$V = \mathcal{M}_{2\times 2}(\mathbf{R}), T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -7a - 4b + 4c - 4d & b \\ -8a - 4b + 5c - 4d & d \end{pmatrix}, \text{ and } \beta = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \right\}.$$

Question 4. For each of the following matrices $A \in \mathcal{M}_{n \times n}(F)$:

- (i) Determine all the eigenvalues of A.
- (ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- (iii) If possible, find a basis for F^n consisting of eigenvectors of A.
- (iv) If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 for $F = \mathbf{R}$.

(b)
$$A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$$
 for $F = \mathbf{R}$.

(c)
$$A = \begin{pmatrix} i & 1 \\ 2 & -i \end{pmatrix}$$
 for $F = \mathbf{C}$.

(d)
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$$
 for $F = \mathbf{R}$.

Question 5. Prove the geometric multiplicity of an eigenvalue is at most the algebraic multiplicity.

1