Double-click (or enter) to edit

Assignment 3

LAKSHI V S

21BIT0016

import pandas as pd
df=pd.read_csv('/content/penguins_size.csv')
df

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.1	18.7	181.0	3
1	Adelie	Torgersen	39.5	17.4	186.0	3
2	Adelie	Torgersen	40.3	18.0	195.0	3
3	Adelie	Torgersen	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3
339	Gentoo	Biscoe	NaN	NaN	NaN	
340	Gentoo	Biscoe	46.8	14.3	215.0	4
341	Gentoo	Biscoe	50.4	15.7	222.0	5
342	Gentoo	Biscoe	45.2	14.8	212.0	5
343	Gentoo	Biscoe	49.9	16.1	213.0	5
344 ro	ws × 7 coli	umns				>

Univariate Analysis
a) Pie Chart
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(4,4))
condition=df['sex']=='MALE'
plt.pie(condition)
plt.show()

Distribution Plot
plt.figure(figsize=(4,4))
sns.distplot(df['body_mass_g'])
plt.show()

<ipython-input-3-918725f44299>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751


```
# Bivariate Anaysis
# a) Scatter graph
plt.figure(figsize=(4,4))
plt.scatter(df['culmen_length_mm'], df['culmen_depth_mm'])
plt.show()
```


b) Bar graph
plt.figure(figsize=(4,4))
plt.bar(df['flipper_length_mm'], df['body_mass_g'])
plt.show()

c) Jointplot
sns.jointplot(x='culmen_length_mm', y='body_mass_g',data=df)

<seaborn.axisgrid.JointGrid at 0x7f8b91b91c30>

Multivariate Analysis
a) Heatmap
sns.heatmap(df.corr())

<ipython-input-7-d40a44c373f1>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is sns.heatmap(df.corr())

b) Pairplot
sns.pairplot(df)

 $\ensuremath{\mathtt{\#}}$ Perform descriptive statistics on the dataset. $\ensuremath{\mathsf{df.describe}}()$

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

```
\# Check for Missing values and deal with them. df.isnull().any()
```

```
species False
island False
culmen_length_mm True
culmen_depth_mm True
flipper_length_mm True
body_mass_g True
sex True
dtype: bool
```

df.sex.value_counts ()

```
MALE 168
FEMALE 165
. 1
Name: sex, dtype: int64
```

```
df['sex']=df['sex'].replace(".", "MALE")
df.sex. value_counts ()
```

```
MALE
              169
     FEMALE
              165
     Name: sex, dtype: int64
df['sex']=df['sex'].fillna ("MALE")
df.median ()
     <ipython-input-13-73b9c0aff334>:2: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future
       df.median ()
     culmen_length_mm
                            44.45
     culmen_depth_mm
                           17.30
     flipper_length_mm
                           197.00
     body_mass_g
                          4050.00
     dtype: float64
    4
df=df.fillna(df.median ( ))
df.isnull ().sum()
     <ipython-input-14-fea379c4db1f>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future
       df=df.fillna(df.median ( ))
     species
                         0
     island
                          0
     culmen_length_mm
     culmen_depth_mm
                          0
     flipper_length_mm
                          0
     body_mass_g
                          0
                          0
     sex
     dtype: int64
    4
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 344 entries, 0 to 343
     Data columns (total 7 columns):
      # Column
                            Non-Null Count Dtype
```

```
344 non-null
                                       object
    species
    island
                       344 non-null
                                       object
    culmen_length_mm 344 non-null
                                       float64
                       344 non-null
                                       float64
    culmen_depth_mm
    flipper_length_mm 344 non-null
                                       float64
                       344 non-null
                                       float64
 5
    body_mass_g
6
    sex
                       344 non-null
                                       object
dtypes: float64(4), object(3)
memory usage: 18.9+ KB
```

Find the outliers and replace them outliers plt.figure(figsize=(4,4)) sns.boxplot(df.culmen_length_mm)

plt.figure(figsize=(4,4)) sns.boxplot(df.culmen_depth_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.flipper_length_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.body_mass_g)

no outliers
Check for Categorical columns and perform encoding.
df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 344 entries, 0 to 343 Data columns (total 7 columns):

Data	COTUMNIS (COCAT / C	oiumis).	
#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	344 non-null	float64
3	culmen_depth_mm	344 non-null	float64
4	flipper_length_mm	344 non-null	float64
5	body_mass_g	344 non-null	float64
6	sex	344 non-null	object
	63		

dtypes: float64(4), object(3) memory usage: 18.9+ KB

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.10	18.7	181.0	3750.0	1
1	0	2	39.50	17.4	186.0	3800.0	0
2	0	2	40.30	18.0	195.0	3250.0	0
3	0	2	44.45	17.3	197.0	4050.0	1
4	0	2	36.70	19.3	193.0	3450.0	0

Check the correlation of independent variables with the target
df.corr().species.sort_values(ascending=False)

```
      species
      1.000000

      flipper_length_mm
      0.850819

      body_mass_g
      0.747547

      culmen_length_mm
      0.728706

      sex
      0.010240

      island
      -0.635659

      culmen_depth_mm
      -0.741282

      Name: species, dtype: float64
```

Split the data into dependent and independent variables
x=df.drop(columns=['species'], axis=1)
y=df.species
x.head()

	island	<pre>culmen_length_mm</pre>	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	2	39.10	18.7	181.0	3750.0	1
1	2	39.50	17.4	186.0	3800.0	0
2	2	40.30	18.0	195.0	3250.0	0
3	2	44.45	17.3	197.0	4050.0	1
4	2	36.70	19.3	193.0	3450.0	0

y.head()

Name: species, dtype: int64

Scaling the data
from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()
x_s=pd.DataFrame(scale.fit_transform(x),columns=x.columns)
x_s.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0
4	1.0	0.167273	0.738095	0.355932	0.208333	0.0

```
# Split the data into training and testing
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_s,y,test_size=0.2,random_state=0)
# check the training and testing data shape.
x_train.shape
```

(275, 6)

x_test.shape

(69, 6)

y_train.shape

(275,)

y_test.shape

(69,)

• ×