13. előadás

SPECIÁLIS FÜGGVÉNYEK 2.

4. Az exp és az ln függvény

Megjegyzés. **Hatványok értelmezése.** Az n tényezős $a \cdot \ldots \cdot a$ szorzatot a^n -nel jelöltük, és az a szám n-edik hatványának neveztük. Nyilvánvaló, hogy bármely a, b valós és x, y pozitív egész számra fennállnak a hatványozás alapazonosságai:

(*)
$$(ab)^x = a^x \cdot b^x, \qquad a^{x+y} = a^x \cdot a^y, \qquad (a^x)^y = a^{x \cdot y}.$$

A hatványozás műveletének kiterjesztését egyéb x,y valós kitevőkre úgy célszerű definiálni, hogy a fenti alapazonosságok érvényben maradjanak. **Racionális kitevőkre** a feladat egyszerűen megoldható. Világos például az, hogy $a \neq 0$ esetén az $a^{x+y} = a^x \cdot a^y$ azonosság csak úgy maradhat érvényben, ha a^0 -t 1-nek, a^{-n} -et pedig $1/a^n$ -nek értelmezzük minden pozitív egész n-re, azaz

$$a^0 := 1$$
 és $a^{-n} := \frac{1}{a^n}$ $(n = 1, 2, ...).$

Ezeket a definíciókat elfogadva (*) mindhárom azonossága érvényben marad minden $a,b \in \mathbb{R} \setminus \{0\}$ és $x,y \in \mathbb{Z}$ esetén. A továbbiakban csak nemnegatív a számok hatványaival foglalkozunk. Viszonylag egyszerűen meg lehet mutatni azt, hogy az imént jelzett célnak megfelelően egy a>0 valós szám r=p/q (p,q relatív prím egészek és q>0) racionális kitevős hatványát így kell definiálnunk:

$$a^{\frac{p}{q}} := \sqrt[q]{a^p}.$$

Az is viszonylag könnyen megmutatható, hogy a (*) azonosságok minden a,b>0 és $x,y\in\mathbb{Q}$ esetén teljesülnek.

Irracionális kitevőkre a hatványok értelmezése már jóval bonyolultabb feladat. Hogyan értelmezzük egy pozitív a valós szám irracionális kitevőjű hatványát, például $2^{\sqrt{2}}$ -őt?

A felvetett kérdés megválaszolására két lehetőség is kínálkozik.

1. lehetőség. Felhasználva a valós számok struktúrájának a tulajdonságait, valamint azt, hogy pozitív valós szám racionális ketevőjű hatványait már értelmeztük, megállapodhatnánk a következő definícióban:

1

Legyen x egy valós szám.

- Ha a > 1, akkor $a^x := \sup\{a^r : r \le x \text{ \'es } r \in \mathbf{Q}\}.$
- Ha 0 < a < 1, akkor $a^x := \left(\frac{1}{a}\right)^{-x}$.
- $Ha\ a = 1,\ akkor\ 1^x := 1.$

Ezt a definíciót elfogadva már be lehetne bizonyítani a (*) azonosságokat.

2. lehetőség. A továbbiakban pozitív valós szám irracionális kitevőjű hatványainak értelmezéséhez mi a következő utat követjük. Az első lépésként az e szám tetszőleges valós kitevőjű hatványait értelmezzük. Ezt korábban az exp függvény bevezetésénél már meg is tettük. Az exp függvény inverzeként vezetjük be a természetes alapú logaritmusfüggvényt. Ezek felhasználásával fogjuk definiálni az a^x hatványokat tetszőleges a > 0 és $x, y \in \mathbb{R}$ számokra.

Emlékeztetünk arra, hogy az e számot a szigorúan monoton növekedő és felülről korlátos (tehát konvergens)

$$a_n := \left(1 + \frac{1}{n}\right)^n \quad \left(n \in \mathbb{N}^+\right)$$

sorozat határértékeként definiáltuk, és akkor megjegyeztük azt, hogy ez a határérték egy irracionális szám. Most bebizonyítjuk ezt az állítást.

1. tétel. Az e szám irracionális.

Bizonyítás. Azt már tudjuk, hogy

$$e = \sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Az állítással ellentétben tegyük fel, hogy e racionális, azaz

$$e = \frac{p}{q}$$
, ahol $p, q \in \mathbb{N}^+$ és $q \ge 2$

(a $q \ge 2$ feltehető, egyébként bővítjük a törtet). Az

$$s_n := 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \quad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekedő módon tart e-hez, ha $n \to +\infty$. Legyen n>q tetszőleges egész. Ekkor

$$0 < q! \cdot (s_n - s_q) = q! \cdot \left(\frac{1}{(q+1)!} + \frac{1}{(q+2)!} + \dots + \frac{1}{n!}\right) =$$

$$= \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1) \cdot \dots \cdot n} \le$$

$$\le \frac{1}{q+1} \cdot \left(1 + \frac{1}{q+1} + \frac{1}{(q+1)^2} + \dots + \frac{1}{(q+1)^{n-q-1}}\right) \le$$

$$\le \frac{1}{q+1} \cdot \frac{1}{1 - \frac{1}{1-1}} = \frac{1}{q} \le \frac{1}{2}.$$

Ebből az $n \to +\infty$ határátmenetet véve és az $e > s_q$ egyenlőtlenséget felhasználva azt kapjuk, hogy

$$(*) 0 < q! \cdot (e - s_q) \le \frac{1}{2}.$$

Az indirekt feltételből az következik, hogy

$$0 < q! \cdot (e - s_q) = q! \cdot \left(\frac{p}{q} - s_q\right) = q! \cdot \left(\frac{p}{q} - 1 - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{q!}\right)$$

egész szám. Ez viszont (*) alapján nem lehetséges.

Megjegyzés. A bizonyításból következik, hogy minden $n \in \mathbb{N}^+$ esetén

$$0 < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right) < \frac{1}{n \cdot n!},$$

és ez (elvben) lehetőséget ad arra, hogy e értékét tetszőlegesen előírt pontossággal kiszámítsuk. Például n = 6-ot véve azt kapjuk, hogy

Most emlékeztetünk az exp függvény értelmezésére. Láttuk, hogy a $\sum_{n=0} x^n/n!$ $(x \in \mathbb{R})$ hatványsor minden $x \in \mathbb{R}$ pontban konvergens (l. például a hányadoskritériumot). Ennek a hatványsornak az összegfüggvényeként definiáltuk az exp függvényt:

$$\exp(x) := \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad (x \in \mathbb{R}),$$

és megállapítottuk számos fontos tulajdonságát. Ezek alapján az e szám hatványait tetszőleges $x \in \mathbb{R}$ kitevő esetén így *értelmeztük*: legyen

$$e^x := \exp(x) \quad (x \in \mathbb{R}),$$

ezért az exp függvényt e alapú exponenciális függvénynek is nevezzük.

Most felsoroljuk az exp függvény tulajdonságait.

2. tétel: Az exp függvény tulajdonságai.

$$\mathbf{1}^{o} \ e^{x} := \exp\left(x\right) := \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots \quad (x \in \mathbb{R});$$

- $2^o \bullet \exp(0) = 1$
 - $\exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e,$ $\exp(x) > 0$ minden $x \in \mathbb{R}$ pontban,

 - $\exp(-x) = \frac{1}{e^x} \quad (x \in \mathbb{R});$

3° (i)
$$e^{x+y} = e^x \cdot e^y$$
, (ii) $(e^x)^y = e^{xy}$ $(x, y \in \mathbb{R})$;

 $\mathbf{4}^{o} \exp \uparrow \acute{e}s \ folytonos \ \mathbb{R} - en$,

$$\mathbf{5}^{o} \lim_{-\infty} \exp = 0$$
 és $\lim_{+\infty} \exp = +\infty$, $\mathbf{6}^{o} \exp szigorúan konvex \mathbb{R} -en,$

$$8^{o} \mathcal{R}_{exp} = (0, +\infty).$$

Bizonyítás. A 3^o (ii) és a 6^o állítások kivételével mindegyiket már bebizonyítottuk. Ezek igazolásához azonban további meggondolások szükségesek.

Az

$$(e^x)^y = e^{xy} \quad (x, y \in \mathbb{R})$$

azonosság x, y racionális kitevőkre az $e^{\frac{p}{q}} = \sqrt[q]{e^p}$ felhasználásával egyszerűen bizonyítható. Irracionális kitevőkre való kiterjesztéshez fel kell használni egyrészt azt, hogy minden irracionális számhoz van hozzá konvergáló racionális sorozat; másrészt alkalmazni kell az exp függvény folytonosságát, valamint az összetett függvény határértékére vonatkozó tételt.

A 6^o állítás (vagyis az, hogy az exp függvény szigorúan konvex \mathbb{R} -en) is bebizonyítható az eddigi ismereteink alapján. A részleteket itt nem ismertetjük, mert később (a differenciálszámítás eszköztárának a felhasználásával) ezt az állítást jóval egyszerűbben fogjuk igazolni.

Az exp függvény garfikonja:

A logaritmusfüggvényt az exponenciális függvény inverzeként definiáljuk.

1. definíció. Mivel az exp : $\mathbb{R} \to \mathbb{R}$ függvény $\uparrow \mathbb{R}$ -en, ezért \exists inverze. Legyen

$$ln := log := exp^{-1}$$

a (természetes alapú vagy e alapú) logaritmusfüggvény.

A definíció közvetlen következményei az alábbi állítások:

- $\mathcal{D}_{ln} = \mathcal{R}_{exp} = (0, +\infty)$ és $\mathcal{R}_{ln} = \mathcal{D}_{exp} = \mathbb{R}$.
- Ha x > 0, akkor

$$\ln x := \ln (x) = y \iff e^y = x \iff e^{\ln x} = x.$$

 $\ln x$ tehát az a kitevő, amire az alapot (vagyis az e számot) emelve x-et kapunk. Ez azt jelenti, hogy a fenti módon értelmezett logaritmus a középiskolai definícióval egyezik meg.

• Ha $x \in \mathbb{R}$, akkor $\ln e^x = x$.

Az l
n függvény grafikonja az exp függvény grafikonjának az y=x egyen
letű egyenesre vonatkozó tükörképe.

3. tétel. $Az \ln: (0, +\infty) \to \mathbb{R}$ logaritmusfüggvény folytonos, szigorúan monoton növekedő és szigorúan konkáv a $(0, +\infty)$ intervallumon, továbbá

$$\lim_{0+0} \ln = -\infty \quad \text{\'es} \quad \lim_{+\infty} \ln = +\infty.$$

Megjegyzés. Az expx minden $x \in \mathbb{R}$ esetén (elvileg) tetszőleges pontossággal számolható, mert expx egy végtelen sor összege. Az $\ln x$ minden x > 0 számra értelmezve van, de az értéke (bizonyos speciális értékektől eltekintve) így nem számolható. A differenciálszámítás alkalmazásainál mutatjuk majd meg, hogy az \ln függvény helyettesítési értékeit (elvileg) tetszőleges pontossággal hogyan lehet kiszámolni.

5. Az \exp_a és a \log_a függvény

Először tetszőleges $0 < a \in \mathbb{R}$ alap és tetszőleges $b \in \mathbb{R}$ kitevő esetén értelmezzük az a^b hatványt. Ha b racionális, akkor a^b -t már definiáltuk, és ekkor a hatványozás "megszokott" tulajdonságai érvényben maradnak.

Az e szám tetszőleges $b \in \mathbb{R}$ kitevőjű hatványait, valamint pozitív szám logaritmusát már értelmeztük. Az a^b értelmezéséhez abból indulunk ki, hogy az a>0 valós számot felírhatjuk e hatványaként: $a=e^{\ln a}$. A hatvány hatványozására vonatkozó azonosság csak úgy marad érvényben, ha a^b -t így definiáljuk:

$$a^b = \left(e^{\ln a}\right)^b = e^{b \cdot \ln a}.$$

2. definíció. Legyen a>0 valós szám. Tetszőleges $b\in\mathbb{R}$ esetén az a szám b-edik hatványát így értelmezzük:

$$a^b := e^{b \cdot \ln a}.$$

Jegyezzük meg, hogy ha b racionális, akkor a fenti definíció által adott érték megegyezik a korábbi definícióból kapott számmal.

Most definiáljuk az \exp_a függvényt:

3. definíció. Legyen a>0 valós szám. Az a **alapú exponenciális függvényt** így értelmezzük:

$$\exp_a : \mathbb{R} \to \mathbb{R}, \quad \exp_a(x) := \exp(x \cdot \ln a) = a^x \quad (\forall x \in \mathbb{R}).$$

Világos, hogy $\exp_e=\exp$. Az exp, illetve az l
n függvény tulajdonságati is figyelembe véve kapjuk a következő állításokat.

4. tétel: Az exp_a függvény tulajdonságai.

 ${f 1}^o$ Ha a>1 valós, akkor az \exp_a függvény pozitív, szigorúan monoton növekedő, folytonos és szigorúan konvex $\mathbb R$ -en, továbbá

$$\lim_{-\infty} \exp_a = 0 \quad \text{\'es} \quad \lim_{+\infty} \exp_a = +\infty.$$

 ${\bf 2^o}$ Ha0 < a < 1 valós, akkor az \exp_a függvény pozitív, szigorúan monoton csökkenő, folytonos és szigorúan konvex \mathbb{R} -en, továbbá

$$\lim_{-\infty} \exp_a = +\infty \quad \text{\'es} \quad \lim_{+\infty} \exp_a = 0.$$

 $Az \exp_a$ függvény grafikonja:

Most a log_a függvényt értelmezzük.

4. definíció. Ha a>0 valós szám és $a\neq 1$, akkor az \exp_a szigorúan monoton \mathbb{R} -en, ezért van inverze, amelyet a **alapú logaritmusfüggvénynek** nevezünk és \log_a -val jelölünk, azaz

$$\log_a := (\exp_a)^{-1}, \quad ha \ a > 0 \ \text{\'es} \ a \neq 1.$$

Világos, hogy $\log_e = \ln$, ezért szokás az l
n függvényt a log szimbólummal is jelölni.

A definíció közvetlen következményei az alábbi állítások:

- $\mathcal{D}_{\log_a} = \mathcal{R}_{\exp_a} = (0, +\infty)$ és $\mathcal{R}_{\log_a} = \mathcal{D}_{\exp_a} = \mathbb{R}$.
- Ha $x \in (0, +\infty)$, akkor

$$\log_a x := \log_a (x) = y \iff \exp_a y = a^y = x,$$

azaz $\log_a x$ tehát az a kitevő, amire az alapot (vagyis az a számot) emelve x-et kapunk.

A \log_a függvény grafikonja:

5. tétel: A \log_a függvény tulajdonságai.

 ${\bf 1^o}\ Ha\ a>1,\ akkor \log_a\,szigorúan\,monoton\,növő\,folytonos,\,szigorúan\,konkáv függvény a <math display="inline">(0,+\infty)$ intervallumon és

$$\lim_{0 \to 0} \log_a = -\infty, \qquad \lim_{+\infty} \log_a = +\infty.$$

 ${f 2^o}$ Ha 0 < a < 1, akkor \log_a szigorúan monoton fogyó folytonos, szigorúan konvex függvény a $(0,+\infty)$ intervallumon és

$$\lim_{0+0} \log_a = +\infty, \qquad \lim_{+\infty} \log_a = -\infty.$$

 3^{o} Logaritmusazonosságok: Legyen $0 < a \neq 1$. Ekkor

- $\log_a(x \cdot y) = \log_a x + \log_a y \quad (x, y > 0);$
- $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y \quad (x, y > 0);$
- $\log_a(x^y) = y \log_a x \quad (x > 0, \ y \in \mathbb{R}),$
- $\bullet \log_a x = \frac{\log_c x}{\log_c a} \quad (a, c > 0, \ a, c \neq 1, \ x > 0).$

6. Általános hatványfüggvények

Ha az a^b hatványban az alapot rögzítettnek, a kitevőt pedig változónak tekintjük, akkor megkapjuk az **exponenciális függvényeket**. Ha a kitevőt tekintjük rögzítettnek és az alapot változónak, akkor megkapjuk a **hatványfüggvényeket**. Ez utóbbi függvényeket csak a $(0, +\infty)$ intervallumon fogjuk tekinteni. Az előzőek alapján már tetszőges b valós kitevő és a > 0 esetén értelmezni tudjuk az a^b hatványt.

5. definíció. Tetszőleges $\alpha \in \mathbb{R}$ szám esetén az α kitevőjű hatványfüggvényt így értelmezzük:

$$h_{\alpha}:(0,+\infty)\ni x\mapsto x^{\alpha}:=e^{\alpha\ln x}.$$

Ha α racionális, akkor a fenti definíció megegyezik hatványfüggvényekre megadott korábbi definíciókkal.

Ha $\alpha = 0$, illetve $\alpha = 1$, akkor a

$$h_0(x) = 1$$
, illetve a $h_1(x) = x$ $(x \in (0, +\infty))$

függvényeket kapjuk. Egyéb α kitevőkre az alábbi állítások érvényesek:

6. tétel: A hatványfüggvények tulajdonságai.

 $\mathbf{1}^{o}$ Ha $\alpha > 0$, akkor a h_{α} hatványfüggvény pozitív, szigorúan monoton növekedő és folytonos a $(0, +\infty)$ intervallumon, továbbá

$$\lim_{0 \to 0} h_{\alpha} = 0 \quad \text{\'es} \quad \lim_{+\infty} h_{\alpha} = +\infty.$$

A h_{α} függvény szigorúan konvex a $(0,+\infty)$ intervallumon, ha $\alpha>1$ és szigorúan konkáv $(0,+\infty)$ -n, ha $0<\alpha<1$.

 2^{o} Ha $\alpha < 0$, akkor a h_{α} hatványfüggvény pozitív, szigorúan monoton csökkenő, folytonos és szigorúan konvex a $(0, +\infty)$ intervallumon, valamint

$$\lim_{0+0} h_{\alpha} = +\infty \quad \text{\'es} \quad \lim_{+\infty} h_{\alpha} = 0.$$

A h_{α} függvények grafikonjai:

7. A sin és a cos függvények

Emlékeztetünk arra, hogy a szinusz- és a koszinuszfüggvényt az egész \mathbb{R} -en konvergens hatványsor összegfüggvényeként értelmeztük:

$$\sin x := \sin(x) := x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \qquad (x \in \mathbb{R}).$$

$$\cos x := \cos(x) := 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} x^{2k} \qquad (x \in \mathbb{R}).$$

Most összefoglaljuk azokat az állításokat, amelyeket korábban már megismertünk:

1º A sin függvény páratlan, azaz $\sin(-x) = -\sin x \quad (x \in \mathbb{R}),$ a cos függvény páros, vagyis $\cos(-x) = \cos x \quad (x \in \mathbb{R}).$

 2^o Addíciós képletek: minden $x, y \in \mathbb{R}$ esetén

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y,$$

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y.$$

 3^{o} Érdemes megjegyezni azt a tényt, hogy $k\acute{e}t$ szinusz, illetve koszinusz összege és különbsége szorzattá alakítható. A következő azonosságok az addíciós képletek egyszerű következményei. Tetszőleges $x,y\in\mathbb{R}$ esetén

$$\sin x + \sin y = 2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \sin x - \sin y = 2 \cdot \sin \frac{x-y}{2} \cdot \cos \frac{x+y}{2},$$

$$\cos x + \cos y = 2 \cdot \cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \cos x - \cos y = -2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}.$$

Az igazolásukhoz legyen $\alpha:=\frac{x+y}{2}$ és $\beta:=\frac{x-y}{2}$. Ekkor $x=\alpha+\beta$ és $y=\alpha-\beta$. Az első esetben azt kapjuk, hogy

$$\sin x + \sin y = \sin (\alpha + \beta) + \sin (\alpha - \beta) = 2 \sin \alpha \cdot \cos \beta = 2 \cdot \sin \frac{x + y}{2} \cdot \cos \frac{x - y}{2}.$$

A többi azonosság hasonlóan látható be.

 $\boxed{\mathbf{4}^{o}}$ Minden $x \in \mathbb{R}$ esetén

$$\sin(2x) = 2\sin x \cdot \cos x, \qquad \cos(2x) = \cos^2 x - \sin^2 x.$$

 5^o Négyzetes összefüggés:

$$\sin^2 x + \cos^2 x = 1 \quad (x \in \mathbb{R}).$$

 $\boxed{\mathbf{6}^{o}}$ A sin és a cos függvény folytonos \mathbb{R} -en.

Most a sin és a cos függvények hatványsoros definícióiból kiindulva, bevezetjük az egész matematika egyik fontos állandóját, a π számot.

9

7. **tétel:** A π szám értelmezése. A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]-nek pontosan egy ξ pontjában áll fenn a cos $\xi = 0$ egyenlőség. Ennek a ξ számnak a kétszereseként értelmezzük a π számot:

$$\pi := 2\xi$$
.

Bizonyítás. A Bolzano-tételt alkalmazzuk. Világos, hogy $\cos \in C[0,2]$ és $\cos 0 = 1$. Másrészt

$$\cos 2 = 1 - \frac{2^{2}}{2!} + \frac{2^{4}}{4!} - \frac{2^{6}}{6!} + \frac{2^{8}}{8!} - \frac{2^{10}}{10!} + \frac{2^{12}}{12!} - \dots =$$

$$= 1 - 2 + \frac{2}{3} - \frac{2^{6}}{6!} \cdot \underbrace{\left(1 - \frac{2^{2}}{7 \cdot 8}\right)}_{>0} - \frac{2^{10}}{10!} \cdot \underbrace{\left(1 - \frac{2^{2}}{11 \cdot 12}\right)}_{>0} - \dots < -\frac{1}{3} < 0.$$

A Bolzano-tétel feltételei tehát teljesülnek, ezért $\exists \xi \in [0,2]$: $\cos \xi = 0$.

A ξ pont egyértelműsége következik abból, hogy $\cos \downarrow$ a [0,2] intervallumban, azaz

(*) ha
$$0 \le x < y \le 2$$
, akkor $\cos x > \cos y$.

Az eddigiekből következik, hogy

$$\cos x > \cos y \iff \cos x - \cos y = -2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2} = 2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{y-x}{2} > 0.$$

Mivel $0 \le x < y \le 2 \implies 0 < \frac{x+y}{2} < 2$ és $0 < \frac{y-x}{2} \le 2$, ezért a (*) állítás a

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = z \cdot \underbrace{\left(1 - \frac{z^2}{2 \cdot 3}\right)}_{>0} + \underbrace{\frac{z^5}{5!} \cdot \left(1 - \frac{z^2}{6 \cdot 7}\right)}_{>0} + \dots > 0 \quad \left(z \in (0, 2)\right)$$

egyenlőtlenség következménye.

Megjegyzések

- 1. A Bolzano-tétel bizonyításánal alkalmazott Bolzano-féle felezési eljárással π közelítő értékei meghatározhatók. Világos, hogy $0 < \pi < 4$. Az is megmutatható, hogy $3,141 < \pi < 3,142$, ezért hasznáhatjuk a $\pi \approx 3.14$ közelítést.
 - 2. Igazolható, hogy π irracionális és transzcendens szám.
- **3.** Az addíciós képletek, valamint a négyzetes összefüggés felhasználásával a sin és a cos függvény számos helyen vett helyettesítési értékeit pontosan ki tudjuk számolni. Például: $\sin \frac{\pi}{2} = 1$, $\cos \pi = -1$, $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.
- 4. Az integrálszámítás alkalmazásainál értelmezni fogjuk a körív hosszát, és megmutatjuk, hogy az egységsugarú kör kerülete 2π . Ez azt jelenti, hogy az előző tételben definiált π szám valóban megegyezik a korábbi tanulmányainkban megismert π számmal.

A trigonometrikus függvényekkel kapcsolatos alapvető fogalom a következő: Az f valós-valós függvény **periodikus**, ha van olyan p > 0 valós szám, hogy minden $x \in \mathcal{D}_f$ elemre $x \pm p \in \mathcal{D}_f$ és

$$f(x+p) = f(x).$$

A p számot f periódusának, az f függvényt pedig p szerint periodikus függvénynek nevezzük.

Ha az f függvény p szerint periodikus, akkor bármely $x \in \mathcal{D}_f$, $k \in \mathbb{Z}$ esetén $x \pm kp \in \mathcal{D}_f$ és

$$f(x + kp) = f(x).$$

Vagyis, ha p az f függvénynek periódusa, akkor minden $k = 1, 2, \ldots$ esetén kp is periódusa f-nek. Egy függvény periódusának megadásán általában a legkisebb (pozitív) periódus megadását értjük, amennyiben ilyen létezik.

Nem minden periodikus függvénynek van legkisebb periódusa. Az

$$f(x) := \begin{cases} 0, & \text{ha } x \in \mathbb{Q} \\ 1, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet-függvénynek minden *racionális* szám periódusa, és ezek között nyilván nincs legkisebb pozitív szám.

A szinusz- és a koszinuszfüggvény fontos tulajdonságát fejezi ki a következő állítás:

8. tétel. A sin és a cos függvény 2π szerint periodikus, azaz

$$\sin(x+2\pi) = \sin x, \qquad \cos(x+2\pi) = \cos x \qquad (x \in \mathbb{R}),$$

és 2π mindegyik függvénynek a legkisebb periódusa.

Bizonyítás. Meggondolható.

A sin és a cos függvények monotonitási és konvexitási/konkávitási tulajdonságainak a vizsgálatához a differenciálszámítás eszköztárára lesz szükségünk. Ezeket az ismereteket megelőlegezve most az alábbi ábrán szemléltetjük a sin és a cos függvények "jól ismert" grafikonjait:

A sin és a cos függvények grafikonjai a

$$\cos x = \sin \left(x + \frac{\pi}{2}\right)$$
, illetve a $\sin x = \cos \left(x - \frac{\pi}{2}\right)$ $(x \in \mathbb{R})$

azonosságok alapján egymásból eltolással származtathatók.

Megjegyzés. Emlékeztetünk arra, hogy ha $f,g\in\mathbb{R}\to\mathbb{R},\,a\in\mathbb{R}$ és f(x):=g(x+a) $(x\in\mathcal{D}_g)$, akkor az f függvény grafikonját g grafikonjának x tengely irányú eltolásával kapjuk meg úgy, hogy a>0 esetén az eltolást a egységgel "balra", a<0 esetén pedig a egységgel "jobbra" végezzük.