#1 Membership

Show that each of the following languages are in NP.

- 1. $A_1 = \{ \langle P \rangle \mid P \text{ is a satisfiable boolean formula } \}.$
- 2. $A_2 = \{ \langle S, t \rangle \mid S \subseteq \mathbb{Z} \text{ and there exists } x_1, \dots, x_k \in S \text{ such that } \sum_{i=1}^k x_i = t \}.$
- 3. $A_3 = \{ \langle G, k \rangle \mid G = (V, E) \text{ is a graph and there exists some } V' \subseteq V \text{ is a } k\text{-covering of } G \}$. A k-cover of a graph is a subset of vertices that includes at least one endpoint of every edge in the graph.

#2 Completeness

Define the following languages:

```
CLIQUE = \{ \langle G, k \rangle \mid G \text{ is a graph and } G \text{ contains a } k\text{-clique} \}
ISO = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are graphs and there is a subset } G' \subseteq G \text{ isomorphic to } H \}
```

Call graphs G_1 and G_2 isomorphic if the vertices of G_1 may be relabeled so that G_1 and G_2 are identical graphs. See https://en.wikipedia.org/wiki/Graph_isomorphism for a good picture (and better definition).

Show that CLIQUE \leq_p ISO.

(Hint: what is the type of the mapping function f in this case?)