UFRJ/IM/DCCFES - Fundamentos de Engenharia de Software

AOO / UML Diagramas de Classes

Sildenir Alves Ribeiro, DSc

Visão Geral: CLASSES

Uma classe é uma descrição de um conjunto de objetos que compartilham os mesmos atributos, operações e relacionamentos.

Usam-se classes para classificar os objetos que identificamos no mundo real.

Exemplo: modelagem de uma loja

classes = cliente, pedido, produto, etc.

Em UML as classes são representadas por um retângulo dividido em três compartimentos: nome da classe, atributos e operações.

Cliente

Nome da classe

nome: nome
idade: num

Atributos

adicionar ()
remover ()

Operações

OBJETOS

São elementos que podemos manipular, acompanhar seu comportamento, criar, destruir, etc.

São instâncias de uma classe.

 Paula: Cliente
 → Nome do objeto

 nome: "Paula"
 → Atributos

 idade: 20
 → Operações

ATRIBUTOS

Um atributo é um substantivo que representa uma propriedade da classe.

Cliente

nome

idade

Atributos

OPERAÇÕES

Representam o comportamento da classe.

RESPONSABILIDADES

São textos que explicam o funcionamento de determinada classe.

SensorTemperatura

Responsabilidades

- medir temperatura
- disparar um alarme caso a temperatura alcance determinado ponto.

Exemplo: Um conjunto de classes definidas a partir de um simples sistema de uma loja.

Cliente

nome

idade

adicionar ()

remover ()

Produto

descrição

preço

adicionar_prod ()

remover_prod ()

Pedido

numero

quantidade

Herança

Indica que uma classe pode ser gerada a partir de outra, herdando seus atributos e operações.

RELACIONAMENTOS

Os relacionamentos ligam as classes entre si criando relações entre estas entidades.

O relacionamento é representado como um caminho, sendo que cada relacionamento possui linhas diferentes, para uma melhor visualização.

São 3 tipos de relacionamentos mais importantes:

- Dependências;
- Generalizações;
- Associações.

Dependências: É um relacionamento entre elementos, um independente e outro dependente.

Se o elemento for modificado, o outro também sofrerá a alteração

Representação Gráfica da Dependência:

Exemplo:

rome
palyon(c:canal)
start()
stop()

Generalização

É um relacionamento de um elemento mais geral e outro mais específico.

Os objetos da classe-filha podem ser utilizados em qualquer lugar onde a classe-mãe ocorra, mas não o contrário.

Representação Gráfica da Generalização:

Associações

É uma conexão entre classes. É um relacionamento que descreve uma série de ligações.

Representação Gráfica de Associação:

Nome

Papel

Multiplicidade

Nome: Uma associação pode ter um nome, que pode ser utilizado para descrever a natureza do relacionamento.

Papel: Quando uma classe está em uma associação, ele possui um papel específico neste relacionamento.

Multiplicidade: É importante determinar a quantidade (multiplicidade) de objetos que podem ser conectados pela instância de uma conexão.

Pode ser representado por 1; 0..1; 1..*

Agregação

É o relacionamento entre classes que estão em um nível diferente.

DIAGRAMAS

O diagrama é uma representação gráfica de um conjunto de elementos que formam o sistema.

Facilita a compreensão do sistema que está sendo desenvolvido.

Os diagramas são utilizados para organizar os elementos.

DIAGRAMAS DE CLASSES

Costumam conter os seguintes itens:

- Classes
- Interfaces
- Colaborações
- Relacionamentos de dependência, generalização e associação.

São utilizados para fazer a modelagem da visão estática de um sistema.

Permite a visualização dos serviços que o sistema deverá fornecer aos usuários finais.

dependência

■ Diagrama de Classes

. Abrange as Fases de Análise e Projeto

. Modelagem de classes e seus relacionamentos.

■ Diagrama de Classes

. Correntista

. Conta Corrente

. <u>Lançamento</u>

Analisando os casos de uso, podemos identificar classes e atributos.

- Diagrama de Classes
 - . Correntista
- . Conta Corrente
- . <u>Lançamento</u>

Modelando as Classes e Atributos.

■ Diagrama de Classes

Correntista
nome
cpf
endereco
dataNascimento
•••

cadastrar()

ContaCorrente

numero agencia dataAbertura senha

••

abrirConta() bloquearConta() validarSenha(senha)

• •

Lancamento

data tipo valor numDocumento

lancar()
listarLancamen
tos(periodo)

. .

OBS: Primeira abstração: Atributos

A Modelagem evolui com o conhecimento do sistema

AOO / UML - Sildenir Alves Ribeiro

Diagrama de Classes

Correntista	ContaCorrente
nome cpf endereco dataNascimento 	numero agencia dataAbertura senha
cadastrar()	abrirConta() bloquearConta() validarSenha(senha)

Lancamento data tipo valor numDocumento ... lancar() listarLancamen tos(periodo) ...

Obs: Precisamos estabelecer os relacionamentos entre as classes!

Diagrama de Classes

OBS: Nas abstrações de níveis mais baixos, não precisamos trabalhar com todos os elementos

Diagrama de Classes

OBS: É preciso definir a cardinalidade dos Relacionamentos!

Diagrama de Classes

. Relacionamento de Generalização/Especialização

Pessoa nome dataNascimento crm especialidade Medico: nome dataNascimento crm especialidade

Exemplo: Diagrama de Classe

AOO / UML - Sildenir Alves Ribeiro

Descrição do Caso de Uso "Matricular em Disciplina"

- Esse caso de uso se inicia quando o Estudante de Curso inicia uma sessão no sistema e apresenta suas credenciais.
- O sistema verifica se a credencial é válida.
- O sistema solicita que o estudante realize sua matrícula, selecionando 4 disciplinas.
- O estudante preenche um formulário eletrônico de matrícula e o submete para uma análise de consistência.
- O sistema analisa as informações contidas no formulário.
 - Se as informações são consistentes, o estudante é incluído em turmas abertas de 4 disciplinas, iniciando pelas preferenciais.
 - Se as informações não são consistentes, o sistema informa o motivo da inconsistência e solicita que o formulário seja alterado.

Diagrama de Classes: identificando as classes

Professor

Coordenador

Estudante

Universidade

Disciplina

Turma

Curso

FormularioMatricula

AnalisadorMatricula

SistemaRegistroAcademico

ListaAlunos

Diagrama de Classes: identificando os relacionamentos

- Exemplos de candidatos a relacionamentos:
 - A é parte física ou lógica de B.
 - A está contido fisicamente ou logicamente em B.
 - A é uma descrição de B.
 - A é membro de B.
 - A é subunidade organizacional de B.
 - A usa ou gerencia B.
 - A se comunica/interage com B.
 - A está relacionado com uma transação B.
 - A é possuído por B.
 - A é um tipo de B.

Diagrama de Classes: identificando os relacionamentos

 O formulário de matrícula <u>é processado por</u> um analisador de matrícula

O analisador de matrícula gerencia a disciplina

Diagrama de Classes

Diagrama de Classes: identificando os atributos

 Os atributos podem ser encontrados examinando-se as descrições dos casos de uso e também pelo conhecimento do domínio do problema.

 Cada turma oferecida possui um código, uma sala e um horário.

código sala horário

Diagrama de Classes

Diagrama de Classes: identificando os métodos

 Somente depois de modelar os diagramas de seqüência

Diagrama de Classes:

■ E a navegabilidade?

Estudante *está-matriculado-em* Turma 3..10 4

```
public class Estudante {
    private String nome;
    private String matricula;
    ...
}
```

```
public class Turma {
   private String codigo;
   private String sala;
   private Estudante alunos[];
   ...
}
```

OBS: Turma não aparece como atributo de Estudante!

Diagrama de Classes:

- Acrescentando generalizações:
 - Atributos, operações e/ou relacionamentos comuns podem ser movidos para uma classe mais geral.

AOO / UML - Sildenir Alves Ribeiro

