CS2323: HOMEWORK-1

ANSWERS:

1.a. addi x8, x5, -5

EXPLANATION: addi is used to add the value of one register and one immediate value. The immediate value can also be a negative number. So, here the operation will be like: x8(destination register) $\leftarrow x5+(-5)$

1.b. slli x5, x3, 3

EXPLANATION: slli(Shift Left Logical Immediate) is used to shift the bits of a source register to the left by specified number of positions. This operation effectively multiplies the value by 2ⁿ where n is the number of bit positions to be shifted. So here, the value of x3 register is shifted to the left by 3 bits, which ultimately means multiplying the value by 2³ and storing the result in x5 register.

1.c. add x19,x19,x10

EXPLANATION: x19+=x10 ultimately means x19=x19+x10. So directly we can use the add instruction to add the values of x19 and x10 registers and store the result in x19 register.

1.d. addi x15, x15, 1

EXPLANATION: ++x15 means incrementing the value in x15 register by 1. As we are adding the value in register by a constant number, we have to use the addi instruction, to add the x15 register value with 1 and store the result in the same register x15.

1.e. srai x9, x15, 2

EXPLANATION: srai(Shift Right Arithmetic Immediate) is used to shift the bits of a source register to the right by specified number of positions. This operation effectively divides the value by 2^n where n is the positions to be shifted. Here, the n value will be provided by the immediate value that is,2 . sSo, it means the register x15's value will be shifted to right by 2 bits, means, it will be divided by $2^2 = 4$ and stored in register x9.

1.f. li x12, 24

EXPLANATION: li which means load immediate value is used to declare and load the value in the register. Here, we load the value 24 into the register x12.

```
2.a. ld x9, 160(x5)
    addi x7, x9, 100
    sd x7, 96(x5)
2.b. addi x9, x9, 1
     sd x9, 160(x5)
2.c. ld x9, 96(x5)
    1d \times 10, 40(\times 5)
    sd x9, 40(x5)
    sd x10, 96(x5)
2.d. ld x10, 32(x5)
     lui x11, 0x0000000FFFFFFF
     and x10, x11, x10 // 32 0's and 32 lsb's
     sd x10, 32(x5)
2.e. ld x9, 16(x5)
     srli x12, x9, 32 // 32 0's and 32 msb's
     slli x10, x10, 32 //lsb comes in front
     or x9, x10, x12 //swapping
     sd x9, 16(x5)
```

3.a.

	01000000
3.a.	+23. C is decimal & is 2.55+
	in 8 bits. As it is a positive integer, 2's complement is same as the unsigned binary representation. So answer is 0001 0111

3.b.

J.D.	
Ь.	-1
	The binary representation of 1 in 8 bits is
	The binary representation of 1 in 8 bits is
	Next, finding 1's complement we get 1111 1110
	TVEXT / SITE OF
	± in the second
S	o, 1111 1111 is the representation of 2's complement
	of -1.

3.c.	
	C. +255
C.	+255
	and the represent in 8 bit
as	+255 is actually not possible to represent in 8 bit
.on	alc complement. Ac the lange with
emo2	11 /00 bire or all comments
2112	In 16 bits, +255 is represented as
	0000 00001 1111 1111. As it is positive,
	the 2's complement representation is same as
	the binary representation.
	In binary representation, 128 & written as
	1000 0000.
Mark Street	1/c compensate, our

3.d.

3.d.	
d	128 . tation 128 is written as
	In binary representation, 128 is written as 1000 0000.
	1000 0000. 1's complement, 0111 1111
	1000 0000
	a's complement representation of -128 is
	1000 000°.

4.a.	
4.	a. 1101 0100
	As MSB ic 1, it is a negative number. So,
	As MSB is 1, it is a negative number. So,
	+ 1
	00101100
	So, -44 is the decimal notation of 11010100 in 2's complement.
	So, -44 is the decimal notation of 11010100
	in 2's complement.

4.b. and 4.c.

b.	00101011 11101000 - 254 - 25
CN	D 1 - 0000 0001 [81nary representation as
	AC MAR in O this is a positive number.
	Co in decimal = 0x2+ 0x26+ 2x23+ 0x2+ + 1x2+0x2
	+1x2'+1x2°
	= 32+8412+11=43
	The answer is (43),0.1111 1111 + 775+ 13
	d128 A 6100 0000.
C.	11111110 0000001
	11/1/10
	As MSB is 1, this is a negative number. 1111 1110 <u>is complement</u> , 0000 0001
	1111 1110 <u>is complement</u> 0000 0001
	+ 1
	00000010
	(6000 0010)2 in decimal is 2.85+ . D. E
0 100	As negative, the answer in (-2)
	in 8 bits. As it is a positive integer
	13 8 DICE AS IL (A C DOSTING TIREGET