

INFORMATICS INSTITUTE OF TECHNOLOGY In Collaboration with UNIVERSITY OF WESTMINSTER

Recourse Recommendations System

A Project Proposal by Mr. Ushan Sankalpa

Supervised by Mr. Cassim Farook

Submitted in partial fulfilment of the requirements for the BEng (Hons) Software Engineering degree at the University of Westminster.

November 2022

Table of Contents

1.	Introduction	4
2.	Problem Domain	4
3.	Problem Definition	4
3.	3.1. Problem Statement	5
4.	Research Motivation	5
5.	Existing work	6
6.	Research Gap	9
7.	Contribution to the Body of Knowledge	9
7.	'.1. Technological contribution	9
7.	7.2. Domain contribution	9
8.	Research Challenge	9
9.	Research question/s	10
10.	Research Aim	10
11.	Research Objectives	10
12.	Project Scope	11
12	2.1. In-scope	11
12	2.2. Out-scope	12
12	2.3. Diagram showing prototype feature	12
13.	Methodology	13
13	3.1. Research methodology	13
13	3.2. Development methodology	14
	13.2.1. Life cycle model	14
	13.2.2. Design Methodology	14
	13.2.3. Evaluation Methodology	14
	Benchmarking Error! Bookmark	not defined.
13	3.3. Project management methodology	14

13.3.1.	Schedule	15
Gantt Cha	art	15
Deliverab	bles	16
13.3.2.	Resource Requirements	16
Software	Requirements	16
Hardware	e Requirements	17
Data Req	juirements	17
Skill Req	juirements	17
13.3.3.	Risk Management	17
References		18
List of Fig	gures	
_	gures otype Diagram	12
Figure 1 Proto		
Figure 1 Proto	t Chart	
Figure 1 Proto Figure 2 Gantt List of Tal	t Chart	15
Figure 1 Proto Figure 2 Gantt List of Tal Table 1 Existin	btype Diagramt Chartbles	8
Figure 1 Proto Figure 2 Gantt List of Tal Table 1 Existin Table 2 Resea	btype Diagramt Chart	8
Figure 1 Proto Figure 2 Gantt List of Tal Table 1 Existin Table 2 Resea Table 3 Resea	bles ng Workrch Objectives	811
Figure 1 Proto Figure 2 Gante List of Tal Table 1 Existin Table 2 Resea Table 3 Resea Table 4 Delive	bles ng Work rch Objectives rch Methodology	
Figure 1 Proto Figure 2 Gantt List of Tal Table 1 Existin Table 2 Resear Table 3 Resear Table 4 Delive Table 5 Softwar	bles ng Work rch Objectives rch Methodology erables	1515111316

List of Abbreviations

Abbreviations	Definition
LO	Learning Outcomes
RO	Research Objectives
RQ	Research Questions
ML	Machine Learning
DL	Deep Learning

1. INTRODUCTION

E-learning systems are successfully employed for education and training in academic and non-academic contexts because of the Internet's explosive expansion. Several studies have addressed the need for personalization in the e-learning area, although many e-learning systems still lack it. Many of today's e-learning platforms continue to provide students with various learning preferences with the same educational materials in the same manner. Personalization in e-learning systems includes adaptive interaction, adaptive course delivery, content search and assembly, and adaptive collaborative assistance. This document defines the background of the problem, the existing works that are related to my research topic, the solution that Author planning to implement, and how Author supposed to address the currently facing issues.

2. PROBLEM DOMAIN

Nowadays, most students learn using online resources. Even though students gained knowledge in universities, schools, and other institutes, they always tend to explore more to ability in their fields with the help of online sources. There are several types of online resources for different learning styles (visual, read and write, auditory). For example, some students may be interested in watching tutorial videos. It will help them to extract the content more than reading documentation. But some students are more interested in reading and gaining knowledge than watching a video. Sometimes we cannot find the most suitable learning type that suits us. When someone must be ready for an exam within two to three days, he/she must face difficulties in finding the best learning material for a specific subject that matches their learning style. In such cases, it would be a great solution to have an online resources recommendation system by identifying our learning styles.

The existing e-learning system's lack of personalization is another issue. There are students with comparable learning preferences. Even if they cater to distinct learning styles and similar learning resources, learning profiles for every student can address this issue. They consider that every student is catered to in the learning paradigm. Those systems will suggest educational material based on format.

Providing the appropriate student with the appropriate learning resources is another problem. The suggested solution can address this issue by employing content-based and collaborative filtering techniques. In content-based filtering, e-learners are shown related online information comparable to what they have already enjoyed, viewed, or found interesting. In collaborative filtering, online learners suggest related relevant web information that other

online learners have already visited, appreciated, or liked. Information filtering is a strategy that makes use of resources for learners. These strategies operate based on a "ranked" or "preference" system.

3. PROBLEM DEFINITION

Every student has a different learning style. Some students are visual learners, while some students prefer to learn through audio. The online learning system, with its range of options and resources, can be personalized in many ways. It is hard to find the perfect online material for our subject and learning style. It takes more time to try out various sources and find the relevant ones. The main issue with most online resources is reliability. Even though we found the perfect match for our choice, the information it contains may not be reliable.

This issue occurs when it cannot make pertinent recommendations due to a lack of knowledge about the prior preferences of e-learners. Another Collaborative filtering has the drawback of requiring a community of familiar learners. No collaborative filter can thus be suggested. Furthermore, results from content-based filtering cannot be shared since it takes each learner into account. The suggested system would include a range of surveys to determine the learners' initial learning styles and address information filtering issues.

3.1. Problem Statement

Students are facing difficulties in finding the best online resources that match their learning styles.

4. RESEARCH MOTIVATION

As a university student, Author faced problems when choosing the right online sources when studying. It took me a period to find myself the best learning style that suits me. Author found it by trying and following videos, reading materials, and making notes. It takes some time. In some situations, Author had to watch so many tutorial videos from different sites to find the best one that meet my requirement. During the exam days, Author encountered complications finding the suitable reference.

5. EXISTING WORK

Citation	Brief Description	Limitations	Contribution
(Shao, n.d.)	Using the symbolic dataset from AI-Ismail, Gedeon, and Yamin's study, this paper offers a deep neural network (DNN) classification model to predict four preferences of mobile learners, including audio, PowerPoint, video, and e-books.	way to create a learning material adaptation model that links a user profile to a content group using the Naive Bayes classifier and K-Means clustering	how to train a classification model with pre-encoded data
("Intelligent Recommendations for e-Learning Personalization Based on Learner's Learning Activities and Performances," 2018)	This recommendation system is an application that enables a user to propose an item based on their past choices and the preferences of a group of people who share their interests and worldviews. Therefore, recommendation systems both provide tailored access to material for a particular topic and aid learners in	intelligent suggestions for an e-learning customization system that utilizes content-based filtering, collaborative filtering, and educational data mining techniques for recommendations and forecasts while also taking into consideration the	Discuss, rank, evaluate, and bookmark subjects. to accumulate points the graphic displays the grades each student

	reducing the information overload they now experience.	learning styles. Here, we introduce a basic skill level test to identify the startup profile to solve the cold-start issue. a new student.	this point indication encouraged students to engage with the system more.
(Krishnamoorthy and Lokesh, 2020)	Learning style preferences provide us insight on how to make better use of the educational materials at our disposal, especially with the growth of online and personalized learning platforms. On the idea that pupils like knowledge, Fleming and Bonwell created VARK learning styles.	the connection between education and demographic elements including learning preferences and place of upbringing. The outcomes contradicted their theories, it turned out. They concluded that the development	This study illustrates how machine learning algorithms may create correlations between several types of data. Students' learning styles have a significant role in how they assimilate knowledge while in school.
(De Medio et al., 2020)	The web presents special potential in this article. Technologies and	The instructor can choose a specific LO from those on the rated	In this paper, they focused on teaching activities. The

	educational materials	list based on this	presentation is an
	may make enormous	analysis of prior uses	addition to the LMS
	sums of money. Simple	of intriguing LOs.	that aids in helping the
	options are available: For	Based on their	teacher create a course
	instructors, the internet is	utilization, which was	based on suggested
	a vast resource where	not included in the	LOs. The suggestions
	they may obtain helpful	inquiry response,	were made in response
	instructional materials	she/he may be	to features that LOs
	for adding to or	encouraged to utilize	had requested as well
	establishing courses.	additional LOs in	as from the use of LOs
		addition to the	by other teachers in
		pertinent LO in other	various courses.
		courses.	
(Ezaldeen et al.,	The major goal of online	This study provides a	Incorporating
2019)	learning is to give people	way to create a	intelligent support
	from all over the world	learning material	systems, this article
	access anywhere, at any	adaptation model that	proposes an AI-based
	time, and the ability to	links a user profile to a	e-learning system.
	discover the right	content group using	Learning resources
	courses quickly and	the Naive Bayes	may be chosen
	easily.	classifier and K-	depending on a
		Means clustering	student's ability and
		method.	needs, assisting
			instructors and
			students in improving
			overall learning
			results.
		Ī	

Table 1 Existing Work

6. RESEARCH GAP

The suggested solution is recommending learning resources for people with the same learning preferences using an algorithm to identify their learning styles. The accuracy can be improved using that algorithm. The users can also suggest learning materials they followed using the feedback form.

The existing recommendation systems only use normal algorithms and do not specify domains. When we are doing a system for an education category, we have enough ability to create a better output using specific knowledge. But that area has not been fully researched yet. Author planning to create a domain-specific improved personalized recommendation system by using the knowledge of the education domain and identifying the learning styles of students minimizing time waste.

7. CONTRIBUTION TO THE BODY OF KNOWLEDGE

7.1. Technological contribution

There is a set of questions to be filled in by the user to identify his/her learning style. Machine learning is used there to extract the learning style from the answers the user provides. There is a feedback section, so previously logged students can share the resource that helped them. After the system identified the learning style of the user, it recommends learning materials and feedback from similar learning styles users using the machine learning algorithm.

7.2. Domain contribution

The main drawback of e-learning and education systems is not being domain personalized. As a solution for that issue, a domain-specific recommendation system is designed using the learning style to save time and increase efficiency.

8. RESEARCH CHALLENGE

There are several challenges. The main challenge is that the author's having to learn machine learning because there is no previous knowledge. The other challenge is the lack of research papers. There are dataset-related challenges too. In some identified datasets, the number of records in datasets is not enough.

9. RESEARCH QUESTION/S

RQ1: How to design and develop a maintainable resource recommendation system according to the learning style of the students?

10. RESEARCH AIM

The aim of this project is to design and develop a web-based solution that recommends accurate learning resources according to the learning preference of the students.

11. RESEARCH OBJECTIVES

The below research objectives must be successfully completed to achieve the above aim and research questions.

Research	Explanation	Learni	ing
Objectives		Outco	me
Literature	Compare previous research work critically before reading	LO1,	LO4,
Review	and collecting them	LO8	
	RO1: Conduct research on the existing resource		
	recommendation system and its architecture		
	RO2: Conduct research on the learning styles of students		
	and e-learning		
	Ro3: Examine resource recommendation techniques		
	RO4: Analyse factors about the desires and preferences of		
	students		
Data Gathering	Identify the requirements of the project by understanding	LO1,	LO3,
and Analysis	the gaps in previous research works and by using	LO5	
	techniques and tools		
	RO1: Collect information about the desire of students for		
	e-learning and online education		
	RO2: Gather requirements of recommendation systems		
	and understand the software requirements.		

	Ro3: Meet domain experts and ask for their ideas		
Research	Design a system that can solve identified problems and	LO1,	LO5,
Design	designed architectures	LO8	
	RO1: Identify the learning style of the students		
	RO2: Design a resource recommendation system with		
	machine learning according to the learning style		
	RO3: Design the system to improve the DL or ML		
	resource recommendation model		
Implementation	Implement a system to solve the identified gaps and	LO1.	LO5,
	achieve the aim	LO7	
	RO1: Develop a recommendation system that provides		
	accurate resources		
	RO2: Develop an algorithm to recommend resources		
	according to the learning style.		
Testing and	Test the implemented data science model and designed	LO1. l	LO5
Evaluation	system		
	RO1: Create a test plan for functional testing		

Table 2 Research Objectives

12.PROJECT SCOPE

Based on the project objectives and an evaluation of comparable goods while considering the time limit allotted for this research project, the scope is described as follows.

12.1.In-scope

- Provide a questionnaire to identify user learning style using machine learning algorithm.
- Ability to get user feed (rating) for resources using feedback form.
- Recommending learning resources according to similar learners' feedback using a Machine Learning algorithm.
- Ability to search resources.

- User profile maintenance.
- Administrators can insert learning resources.

12.2.Out-scope

- Currently providing only selected resources (Learning resource limitation)
- In the beginning, the recommendation is reduced due to a feedback shortage.
- Learning style identifying test will not contain essay type of questions.
- Inability to identify inside of the resources.

12.3. Diagram showing prototype feature

Figure 1 Prototype Diagram

13.METHODOLOGY

13.1.Research methodology

Research	According to positivist research, knowledge exists independently of
Philosophy	the subject being investigated. In other words, the subject of the study
	must be impartial; it cannot reflect the ideas or viewpoints of the
	researcher, who only records data. According to positivism, there is
	just one reality, and all meanings are constant across subjects.
	Positivists believe that empirical inquiry built on measurement and
	observation is the only way to get knowledge. In other words, all
	information is posteriori knowledge, the knowledge that is obtained
	from study rather than human thinking.
Research Approach	When examining alterations in the physical characteristics of animals
	through time, a logical strategy is used, which has its roots in the
	theory of evolution. In other words, a reputable, already-existing
	research organization serves as the beginning point.
Research Strategy	Archival research is the last but not the least. A study of the data
	provides context for an archival research technique, which draws on
	already-existing resources. This approach may make use of resources
	like manuscripts and documents and is especially well suited to
	historical study.
Research Choice	There are several techniques. people will employ a variety of
	methodologies, including more than one quantitative and one
	qualitative approach, when people apply a multi-method approach.
	For example, consider doing research using archives from a certain
	culture. To examine numerical data, they can utilize two qualitative
	approaches in addition to quantitative methods.
Time zone	Like all other decisions, choosing a time horizon is based on the nature
	of the research's goals and objectives. Additionally, we must consider
	practical limitations like the time they have to finish studying.

Table 3 Research Methodology

13.2. Development methodology

13.2.1. Life cycle model

Software Development Agile Since iterative development is necessary, life cycle was selected as the research development approach. Iterative and incremental process paradigms create the agile software development life cycle. Through process flexibility and quick delivery of effective software solutions, it places a strong emphasis on client satisfaction. Production is divided into brief incremental builds by agile. Iterative builds are offered for these.

13.2.2. Design Methodology

The incremental model is a software development cycle in which requirements are broken down into several modules. Each module in this paradigm goes through the requirements, design, implementation, and testing processes. The capability of the module is increased with each new edition. Up till the entire system is established, the procedure is continued.

13.2.3. Evaluation Methodology

Creating an evaluation process entails devoting specific resources, identifying the expected results, and including them in the project planning. Next, determine the techniques and the time range for obtaining the results.

13.3. Project management methodology

Agile project management has inspired several other sub-frameworks and approaches. Agile project management approaches strongly emphasize teamwork, speed, and adaptability to data-driven change. Because of this, agile project management approaches often feature brief work periods with regular testing, appraisal, and modification.

13.3.1. Schedule

Gantt Chart

Figure 2 Gantt Chart

Deliverables

Deliverable	Date
Project Proposal Document	3 rd November 2022
Literature Review Document	15 th November 2022
Software Requirement Specification	24 th November 2022
System Design Document	23 rd January 2023
Prototype	2 nd February 2023
Thesis	30 th March 2023
Review Paper	3 rd February 2023
Manuscript Paper	17 th February 2023
Final Research Paper	27 th April 2023
Public project library	3 rd July 2023

Table 4 Deliverables

13.3.2. Resource Requirements

Software Requirements

Software Requirements	Solutions
Operation System	Windows, Linux
Programming Language	Java, Python, JavaScript
Frameworks	Flask, Angular, Node js,
Diagram Design Tools	Drow.io
Project Management Tools	Mendeley, Zotero
Documentation Tool	Microsoft word, Google sheet, Microsoft excel
IDE	Jupiter notebook, IDEA, Anaconda, PyCharm

Libraries	TensorFlow/ Scikit learn Python packages

Table 5 Software Requirements

Hardware Requirements

• 16 GB Memory or above.	To be able to develop the Resource Recommendation
• 15 GB Storage or above	System and to store the data and code. As well as managing the dataset and training process.
• Core i7 processor	managang and damage and training process.

Table 6 Hardware Requirements

Data Requirements

• Student learning preference - Kaggle open datasets. Use as ML dataset

Skill Requirements

- Creation of required Resource Recommendation Systems.
- Ability to train and optimize Machine learning and Deep learning Models.
- Creative writing and Research writing skills.
- Knowledge of ML and DL.

13.3.3. Risk Management

Risk Item	Severity	Frequency	Mitigation Plan
Existing development code is	5	3	Keep an external backup and
no longer accessible.			GitHub backups of
			development code.
Getting lost in the paperwork	4	4	Use daily backups and a cloud-
			first approach to
			documentation (One-drive &
			Google drive).

Failure to accomplish all	4	2	Work on deliverables
anticipated deliveries within			according to a timeline and
the time frames set out.			priority basis.
Due to sickness, Unable to	2	1	Record demonstration and
describe research work.			detailed documentation with
			an explanation.

Table 7 Risk Management

REFERENCES

de Medio, C., Limongelli, C., Sciarrone, F., Temperini, M., 2020. MoodleREC: A recommendation system for creating courses using the moodle e-learning platform. Comput Human Behav 104, 106168. https://doi.org/10.1016/J.CHB.2019.106168

Ezaldeen, H., Misra, R., Alatrash, R., Priyadarshini, R., 2019. Machine Learning Based Improved Recommendation Model for E-learning. International Conference on Intelligent Computing and Remote Sensing, ICICRS 2019 - Proceedings. https://doi.org/10.1109/ICICRS46726.2019.9555866

Intelligent Recommendations for e-Learning Personalization Based on Learner's Learning Activities and Performances, 2018. International Journal of Computer Science and Software Engineering (IJCSE). https://doi.org/10.13140/RG.2.2.12672.74241

Krishnamoorthy, D., Lokesh, D., 2020. Process of building a dataset and classification of vark learning styles with machine learning and predictive analytics models. Journal of Contemporary Issues in Business and Government 26. https://doi.org/10.47750/cibg.2020.26.02.128

Shao, Y., n.d. Prediction of preferences on M-Learning based on VARK score using DNN to classify multi-label and single-label data.

Lu, J. *et al.* (2015) "Recommender System Application Developments: A survey," *Decision Support Systems*, 74, pp. 12–32. Available at: https://doi.org/10.1016/j.dss.2015.03.008.

Dutsinma, F.L. *et al.* (2018) "Identifying child learning style by using human physiological response and Vark Model," *2018 Global Wireless Summit (GWS)* [Preprint]. Available at: https://doi.org/10.1109/gws.2018.8686547.