2.7

We consider the population of gas mileages for the GSX-50, with a normal distribution defined by a mean, $\mu = 31.5$ and standard deviation, $\sigma = 0.8$

- a. $P(30.7 \le y \le 32.3) = 0.6826894809$
- b. $P(29.1 \le y \le 33.9) = 0.9973000656$
- c. $P(29.5 \le y \le 32.3) = 0.8351350606$
- d. $P(31.0 \le y \le 31.3) = 0.1353082579$
- e. $P(y \le 29.5) = 0.0062096799$
- f. $P(y \ge 29.5) = 0.9937903201$
- g. $P(y \ge 33.4) = 0.0087744625$
- h. $P(y \le 33.4) = 0.9912255375$

2.8

Using the table, we compute as follows:

- a. $z_{.05} = 1.644853626$
- b. $z_{.02} = 2.053748911$
- c. $z_{.01} = 2.326347877$
- d. $z_{.005} = 2.575829303$

2.9

Using the table, we compute as follows:

- a. $t_{.05}^7 = 1.894578584$
- b. $t_{.01}^7 = 2.997951566$
- c. $t_{.005}^7 = 3.499483292$

2.10

Using the table, we compute as follows:

- a. $F_{.05}^{7,5} = 4.8759$ b. $F_{.05}^{5,2} = 19.2964$

2.11

Using the table, we compute as follows:

- a. $\chi^2_{.05}(3) = 7.815$
- b. $\chi^2_{.01}(2) = 9.210$

2.16

- a. Confidence Intervals,
 - (a) $CI_{90} = (56.7, 58.9)$
 - (b) $CI_{95} = (56.489, 59.111)$
 - (c) $CI_{98} = (56.244, 59.356)$
 - (d) $CI_{99} = (56.077, 59.523)$
- b. Yes. Given that 60 feet is greater than the upper bound on the 95% interval, we may state that we are 95% confident that the mean is less than 60.
- c. Yes. Given that 60 feet is greater than the upper bound on the 98% interval, we may state that we are 98% confident that the mean is less than 60.

2.17

We consider the shampoo problem, with n = 6, $\bar{y} = 15.7665$, s = .1524.

- a. We shall test $H_0: \mu = 16$ vs $H_a: \mu \neq 16$. Computing, we find a value, $p = 1.748 \times 10^{-4}$. Using the basis of $\alpha = .05$, we note that the process should be readjusted.
- b. Using the test as before and the new basis $\alpha = .01$, we note that the process should still be readjusted.