Homework Quiz 6

Due 3 Nov at 6:00

Points 210

Questions 22

Available 27 Oct at 6:00 - 3 Nov at 6:00

Time limit None

This quiz was locked 3 Nov at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	362 minutes	203.33 out of 210

Score for this quiz: 203.33 out of 210

Submitted 3 Nov at 3:25

This attempt took 362 minutes.

Correct!	In the Markov chain shown above, if $m{s}(5) = egin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$ what is the $m{s}_2(6)$?	e value of
	Question 2	5 / 5 pts
	State 1 from the previous problem is an absorbing state.	
	O True	
Correct!	False	

Question 3 10 / 10 pts

Consider the PageRank network below with d=0.5. Using Markov chain analysis, what is the value of the free variable such that $(I-P^T)s^\star=0$ and $\sum_i s_i^\star=1$? Remember to first construct the Hyperlink matrix H, then use H to construct P. Enter your answer to 4 decimal places. (Hint: an example is done in section 2.2 of the Markov chain case study)

Correct!

0.1543

orrect Answers

Correct!

0.1543 (with margin: 0.001)

Why can the Markov chain interpretation of Page Rank have self-loops even though the underlying network has no self-links? The Markov chain interpretation is independent of the underlying network. The Markov chain interpretation cannot have self-loops if the underlying network has no self-links. When \$d<1\$, there is a nonzero probability that we don't leave a page. Markov chains need self-loops to function.

Which of the following collections of vectors from the exercises in section 1.7 in the Lay text are linearly independent? Check all that apply.

Correct!

- The columns of the matrix in Exercise 6: $\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$
- The collection in Exercise 16: $\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$
- The collection in Exercise 20: $\begin{bmatrix} 1 \\ 4 \\ -7 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- The collection in Exercise 18: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$

Correct!

The collection in Exercise 2: $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$

Correct!

- The collection in Exercise 4: $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -8 \end{bmatrix}$
- The columns of the matrix in Exercise 8: $\begin{bmatrix} 1 & -3 & 3 & -2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3 \end{bmatrix}$

Question 6

10 / 10 pts

Two non-zero vectors in \mathbb{R}^3 are linearly dependent if and only if they both lie on the same line through the origin.

Correct!

True

	○ False	
	Question 7	10 / 10 pts
	If vectors x, y, and z are such that z belon collection {x,y,z} must be linearly dependent.	gs to span{x,y}, then the
Correct!		
	True False	
	Question 8	10 / 10 pts
	If the columns of a matrix are linearly depondent of the columns than rows.	endent, then the matrix must
	○ True	
Correct!	False	
	Question 9	10 / 10 pts
	If a collection of vectors in R ⁿ contains the must be linearly dependent.	e zero vector, then the collection
Correct!	True	

○ False	
Question 10	10 / 10 pts
If the third column of a 4x4 matrix is not three columns, then the columns of this independent.	
three columns, then the columns of this	

Question 11

If the set of vectors {v₁, v₂, v₃, v₄, v₅} is linearly independent, then so is {v₁, v₂, v₄, v₅}.

True

False

Question 12 10 / 10 pts

A = [1 -3 2; 0 1 -4; 3 -5 -9]

b = [6; -7; -9]

Correct!

Correct!

Suppose T() is defined by T(x) = Ax. Find a vector x whose image under T is b, and determine whether x is unique.

Correct!

- x = [5; 3; -1] and the answer is unique.
- x = [-5; -3; 1] and the answer is unique.
- x = [-5; -3; 1] and the answer is not unique.
- x = [5; 3; -1] and the answer is not unique.

Question 13

10 / 10 pts

A = [1 -2 1; 3 -4 5; 0 1 1; -3 5 -4]

b = [1; 9; 3; -6]

Suppose T() is defined by T(x) = Ax. Find a vector x whose image under T is b, and determine whether x is unique.

Correct!

- x = [1; 1; 2] and the answer is not unique.
- x = [7; 3; 0] and the answer is unique.
- x = [-3; -1; 1] and the answer is not unique.
- x = [1; 1; 2] and the answer is unique.

Question 14

10 / 10 pts

Suppose T is a linear transformation from R^3 to R^2 , and suppose $T(e_1)=[1;2]$, $T(e_2)=[4;-8]$, and $T(e_3)=[-6;4]$,

where e_1 , e_2 , and e_3 denote the columns of the 3x3 identity matrix from left to right. What is the matrix of this transformation T?

There is no matrix for this transformation.

A = [0 0 0 0; 1 1 0 0; 0 1 1 0; 0 0 1 1] The transformation T(x)=Ax is: both one-to-one and onto onto but not one-to-one one-to-one but not onto neither one-to-one nor onto

	Question 18	10 / 10 pts
	A = [1 -5 4; 0 1 -6] The transformation T(x)=Ax is:	
Correct!	onto but not one-to-one	
	oneither one-to-one nor onto	
	oboth one-to-one and onto	
	one-to-one but not onto	

Question 19 10 / 10 pts

	Suppose A is a 4-by-7 matrix. Then the transformation T(x)=Ax is:		
	onto but not one-to-one		
	both one-to-one and onto		
	one-to-one but not onto		
	o neither one-to-one nor onto		
Correct!	not enough information is provided		
	Question 20	10 / 10 pts	
	Suppose A is a matrix such that rref(A) is the identite transformation T(x)=Ax is:	ty matrix. Then the	
	onot enough information is provided		
	neither one-to-one nor onto		
	onto but not one-to-one		
Correct!	both one-to-one and onto		
	one-to-one but not onto		
	Question 21	10 / 10 pts	
	If a matrix A is 3x6 and the product AB is 3x2, then what is the size of B?		
	○ 2x6		

Quiz score: 203.33 out of 210