1. Answer any **FIVE** of the followings: $[5 \times 2 = 10]$ Evaluate $\int_0^1 \int_0^2 f(x, y) dy dx$. a. Form the iterated integral: $\iiint_R dV$, $R = \{(x, y, z)|\}$ b. Evaluate $\int_0^{\pi/2} \int_0^1 f(r, \theta) dr d\theta$. d. Form the double integral, $\iint_R \ dA$ over the triangular region R enclosed by e. Solve the DE $\frac{dy}{dt}$ = - using separation of variables. Write down the complementary function y_c whose auxiliary roots are given as m =f. Find the particular integral y_p for the given DE $\frac{d^2y}{dx^2} = f(x)$. g. 2. Answer any **ONE** of the followings: 6 a. Evaluate $\iint_D dA$, where D is the region bounded by the curves y b. Evaluate $\iint_R f(x, y) dA$ by changing to polar coordinates, where R is the region 3. Answer any **ONE** of the followings: 6 Find the center of mass of a lamina occupied by the ***** having density function $\rho(x, y)$. a. Find the volume of a tetrahedron enclosed by the coordinate planes and the plane b. 4. Answer any **ONE** of the followings: 6 a. Solve the first order linear DE b. Solve the system of DE 5 Answer any **TWO** of the followings: $[2 \times 6 = 12]$ Solve the initial value problem . a. Solve the DE using method of undetermined coefficients. b. c. Solve the DE using method of undetermined coefficients.

Solve the DE using method of undetermined coefficients

d.