Business Case: Target SQL

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset a) <u>Data type of columns in a table</u>

S.No.	Table	Columns	Datatype
1	columns	customer_id	Varchar(50)
2	columns	customer_unique_id	Varchar(50)
3	columns	customer_zip_code_prefix	Int
4	columns	customer_city	Varchar(50)
5	columns	customer_state	Varchar(50)
6	sellers	seller_id	Varchar(50)
7	sellers	seller_zip_code_prefix	Varchar(50)
8	sellers	seller_city	Varchar(50)
9	sellers	seller_state	Varchar(50)
10	order_items	order_id	Varchar(50)
11	order_items	order_item_id	Varchar(50)
12	order items	product_id	Varchar(50)
13	order_items	seller_id	Varchar(50)
14	order items	shipping_limit_date	datetime
15	order items	price	Float8
16	order items	freight_value	Float8
17	geolocations	geolocation_zip_code_prefix	int
18	geolocations	geolocation lat	Float8
19	geolocations	geolocation Ing	Float8
20	geolocations	geolocation city	Varchar(50)
21	geolocations	geolocation_state	Varchar(50)
22	payments	order id	Varchar(50)
23	payments	payment_sequential	Int
24	payments	payment_type	Varchar(50)
25	payments	payment_installments	Int
26	payments	payment value	Float8
27	orders	order id	Varchar(50)
28	orders	customer id	Varchar(50)
29	orders	order status	Varchar(50)
30	orders	order purchase timestamp	Datetime
31	orders	order delivered carrier date	Datetime
32	orders	order_delivered_customer_date	Datetime
33	orders	order_estimated_delivery_date	Datetime
34	reviews	review_id	Varchar(50)
35	reviews	order_id	Varchar(50)
36	reviews	review_score	Int
37	reviews	review_comment_title	Varchar(50)
38	reviews	review_comment_message	Varchar(50)
39	reviews	review_creation_date	Datetime
40	reviews	review answer timestamp	Datetime

41	products	product_id	Varchar(50)
42	products	product_category_name	Varchar(50)
43	products	product_name_length	int
44	products	product_description_length	int
45	products	product_photos_qty	int
46	products	product_weight_g	int
47	products	product_length_cm	int
48	products	product_height_cm	int
49	products	product_width_cm	int

b) Time period for which the data is given

The data is for a period:

2016-09-04 to 2018-11-12

c) <u>Cities and States of customers ordered during the given</u> <u>period</u>

CODE:

SELECT DISTINCT
customer_city
FROM target.customers
ORDER BY customer_city ASC

Result up to 10 rows:

CODE:

SELECT DISTINCT

customer_state

Result up to 10 rows:

2. In-depth Exploration:

a) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

CODE:

SELECT DISTINCT

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
COUNT(*) as no_of_orders
FROM target.orders o
GROUP BY year,month
ORDER BY year,month

Quer	y results						 EXPLO
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW		
Row	year //	month //	no_of_orders				
1	2016	9	4				
2	2016	10	324				
3	2016	12	1				
4	2017	1	800				
5	2017	2	1780				
6	2017	3	2682				
7	2017	4	2404				
8	2017	5	3700				
9	2017	6	3245				
10	2017	7	4026				
					Re	esults per page: 50 ▼	1 – 25 of 25

Insight/Observation:

As can be seen from the data, we do see a growing trend of ecommerce in Brazil which peaks around mid-year months, i.e., 4th to 8th month. This could be attributed to several cultural and social factors. In Brazil, the period from April to August marks the fall and winter season, and during this time, people tend to spend more time at home and indoors. This means they are more likely to engage with indoor activities like online shopping. Additionally, the months of June and July include popular Brazilian holidays such as São João and Independence Day, which may drive more online shopping activity.

Recommendation:

To capitalize on this surge in sales, Target could focus on creating a strong social media strategy during this period. They could create seasonal campaigns that are focused on fall and winter products such as warm clothing, heaters, and home decor items that align with the cultural and social context of this period. For example, they could create a series of social media posts and ads featuring cozy winter outfits or home decor products that are designed to be used during the fall and winter seasons.

NOTE: Assuming: Dawn - 00:00-06:00, Morning - 06:00-12:00, Afternoon - 12:00-18:00, Night - 18:00-23:59

CODE:

SELECT CASE

WHEN EXTRACT(HOUR FROM CAST(order_purchase_timestamp AS TIMESTAMP)) BETWEEN 0 AND 6 T HEN 'Dawn'

WHEN EXTRACT(HOUR FROM CAST(order_purchase_timestamp AS TIMESTAMP)) BETWEEN 6 AND 12 THEN 'Morning'

WHEN EXTRACT(HOUR FROM CAST(order_purchase_timestamp AS TIMESTAMP)) BETWEEN 12 AND 18 THEN 'Afternoon'

WHEN EXTRACT(HOUR FROM CAST(order_purchase_timestamp AS TIMESTAMP)) BETWEEN 18 AND 23 THEN 'Night'

END AS purchase_time,

COUNT(*) AS total_purchases
FROM
target.orders o
JOIN target.customers c
ON o.customer_id = c.customer_id

GROUP BY purchase_time ORDER BY

total_purchases DESC;

Result up to 10 rows:

Query results

Row p			
	urchase_time	//	total_purchases
1 A	fternoon		38135
2 N	light		28331
3 N	orning		27733
4 D	awn		5242

Insight/Observation:

From the data it can be observed that the Brazilians tend to shop more during the afternoon period with the night time being a far 2nd and Morning a closer 3rd.

Recommendation:

The majority of customers are buying during the afternoon and night, so Target should optimize its marketing campaigns accordingly, targeting its advertising efforts during the afternoon and night, which are the peak times for shopping. This can include running targeted social media campaigns and offering promotions during these times.

3. Evolution of E-commerce orders in the Brazil region:

a) Get month on month orders by states

CODE:

```
SELECT DISTINCT
c.customer_state,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
COUNT(*) AS count_
FROM target.orders o
JOIN target.customers c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state,month
ORDER BY c.customer_state,month
```

Result up to 10 rows:

Insight/Observation:

Observation of data suggests that the sale across all states surges during the midyear months, i.e., 4th to 8th months.

Recommendation:

They could create a series of social media posts and ads featuring cozy winter outfits or home decor products that are designed to be used during the fall and winter seasons. Additionally, they could leverage the Brazilian holidays in their social media campaigns, offering exclusive discounts and promotions to customers during these periods.

b) <u>Distribution of customers across the states in Brazil</u>

CODE:

SELECT
customer_state,
COUNT(*) AS count_of_customers
FROM target.customers
GROUP BY customer_state
ORDER BY count_of_customers DESC

Result up to 10 rows:

Insight/Observation:

Here, it can be seen that the top 3 states with the highest number of sales are São Paulo (SP), Rio de Janeiro (RJ), and Minas Gerais (MG), with SP having the highest number of sales by a large margin. This might be because of the fact that SP is the most populous state in Brazil and is home to many large cities and urban areas., leading to higher concentration of potential customers.

Recommendation:

To design an appropriate growth engine for further business expansion in Brazil, Target can focus on building brand awareness and loyalty in the top 3 states with the highest sales, especially São Paulo. This could involve targeted advertising and promotions on social media platforms popular in Brazil leveraging appropriate performance marketing tools, such as Facebook and Instagram ads, as well as partnering with local influencers and bloggers to showcase their products.

- 4. Impact on Economy: Analyse the money movement by ecommerce by looking at order prices, freight and others.
- a) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table

CUDE:

SELECT

ROUND(((SUM(CASE WHEN EXTRACT(YEAR FROM CAST(o.order_purchase_timestamp AS DATE)) = 2018

AND EXTRACT(MONTH FROM CAST(o.order_purchase_timestamp AS DATE)) BETWEEN 1 AND 8 THEN p.p ayment_value ELSE 0 END)

- SUM(CASE WHEN EXTRACT(YEAR FROM CAST(o.order_purchase_timestamp AS DATE)) = 2017 AND EXT RACT(MONTH FROM CAST(o.order_purchase_timestamp AS DATE)) BETWEEN 1 AND 8 THEN p.payment_v alue ELSE 0 END))

/ (SUM(CASE WHEN EXTRACT(YEAR FROM CAST(o.order_purchase_timestamp AS DATE)) = 2017 AND EX TRACT(MONTH FROM CAST(o.order_purchase_timestamp AS DATE)) BETWEEN 1 AND 8 THEN p.payment_value ELSE 0 END))),2) * 100 AS increase_percentage

FROM target.orders o

JOIN target.payments p

ON o.order_id = p.order_id

Query results

JOB IN	IFORMATION	R	ESULTS
Row	increase_percentaç	ge /	
1	137.	.0	

Insight/Observation:

We can observe that there is a 137% increase in total sales for the Target Ecommerce in Brazil from FY17 to FY18. (For the data pertaining to Jan to Aug months). This seems to be a significant growth given its only the second year of Target in the country. This indicates that Target has been successful in acquiring weighty market share in the early days.

Recommendation:

Target should continue to focus on better customer experience because down the road retaining the customers is going to be more important than just keep gaining new ones. Hence, a push for a better loyalty program may be a good strategy.

b) Mean & Sum of price and freight value by customer state

CODE:

```
SELECT
```

```
c.customer_state,
ROUND(AVG(oi.price),2) AS avg_price,
ROUND(AVG(oi.freight_value),2) AS avg_freight_value,
ROUND(SUM(oi.price),2) AS total_price,
ROUND(SUM(oi.freight_value),2) AS total_freight_value
FROM target.customers c
JOIN target.orders o
ON o.customer_id = c.customer_id
JOIN target.order_items oi
ON oi.order_id = o.order_id
GROUP BY customer_state
ORDER BY avg_price DESC
```

Quer	y results					▲ SAVE RESULTS ▼	M EXPLO
JOB IN	NFORMATION RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH PREVIE	EW	
Row	customer_state	avg_price //	avg_freight_valu	total_price	total_freight_valu		
1	PB	191.48	42.72	115268.08	25719.73		
2	AL	180.89	35.84	80314.81	15914.59		
3	AC	173.73	40.07	15982.95	3686.75		
4	RO	165.97	41.07	46140.64	11417.38		
5	PA	165.69	35.83	178947.81	38699.3		
6	AP	164.32	34.01	13474.3	2788.5		
7	PI	160.36	39.15	86914.08	21218.2		
8	TO	157.53	37.25	49621.74	11732.68		
9	RN	156.97	35.65	83034.98	18860.1		
10	CE	153.76	32.71	227254.71	48351.59		

CODE:

Result up to 10 rows:

Quer	y results						≛ SAVE R	ESULTS *	M EXPLO
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	ECUTION GRAPH PRE	VIEW		
Row	customer_state		avg_price	avg_freight_valu	total_price	total_freight_valu			
1	RR		150.57	42.98	7829.43	2235.19			
2	PB		191.48	42.72	115268.08	25719.73			
3	RO		165.97	41.07	46140.64	11417.38			
4	AC		173.73	40.07	15982.95	3686.75			
5	PI		160.36	39.15	86914.08	21218.2			
6	MA		145.2	38.26	119648.22	31523.77			
7	TO		157.53	37.25	49621.74	11732.68			
8	SE		153.04	36.65	58920.85	14111.47			
9	AL		180.89	35.84	80314.81	15914.59			
10	PA		165.69	35.83	178947.81	38699.3			

CODE:

```
SELECT
c.customer_state,
ROUND(AVG(oi.price),2) AS avg_price,
ROUND(AVG(oi.freight_value),2) AS avg_freight_value,
ROUND(SUM(oi.price),2) AS total_price,
ROUND(SUM(oi.freight_value),2) AS total_freight_value
FROM target.customers c
JOIN target.orders o
ON o.customer_id = c.customer_id
JOIN target.order_items oi
ON oi.order_id = o.order_id
GROUP BY customer_state
ORDER BY total_price DESC
```

Result up to 10 rows:

Quer	y results							M EXPLO
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXI	CUTION GRAPH PREV	/IEW	
Row	customer_state	//	avg_price	avg_freight_valu	total_price	total_freight_valu		
1	SP		109.65	15.15	5202955.05	718723.07		
2	RJ		125.12	20.96	1824092.67	305589.31		
3	MG		120.75	20.63	1585308.03	270853.46		
4	RS		120.34	21.74	750304.02	135522.74		
5	PR		119.0	20.53	683083.76	117851.68		
6	SC		124.65	21.47	520553.34	89660.26		
7	BA		134.6	26.36	511349.99	100156.68		
8	DF		125.77	21.04	302603.94	50625.5		
9	GO		126.27	22.77	294591.95	53114.98		
10	ES		121.91	22.06	275037.31	49764.6		

CODE:

```
SELECT

c.customer_state,

ROUND(AVG(oi.price),2) AS avg_price,

ROUND(AVG(oi.freight_value),2) AS avg_freight_value,

ROUND(SUM(oi.freight_value),2) AS total_price,

ROUND(SUM(oi.freight_value),2) AS total_freight_value

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

JOIN target.order_items oi

ON oi.order_id = o.order_id

GROUP BY customer_state

ORDER BY total_freight_value DESC
```

Result up to 10 rows:

Insight/Observation:

We know when it comes to sheer volume of sales, SP, RJ and MG are the states that top the chart. While, PB, AL and AC seem to be getting more higher ticket orders which suggests a financially well-off customer base in those regions.

Recommendation:

It would be recommended that Target further investigates more about the states like SP, RJ and MG through conducting customer surveys, analysing the competition, and identifying potential opportunities for expansion and try and find a duplicate audience in other states as well

5. Analysis on sales, freight and delivery time:

a) <u>Calculate days between purchasing, delivering and estimated</u> <u>delivery</u>

CUDE:

```
SELECT
order_id,
order_purchase_timestamp,
EXTRACT(DAY FROM order_estimated_delivery_date) -
EXTRACT(DAY FROM order_purchase_timestamp) AS days_to_deliver
FROM target.orders
ORDER BY order_purchase_timestamp
```


- b) <u>Find time to delivery & diff estimated delivery. Formula for the same given below:</u>
 - 1. <u>time_to_delivery = order_purchase_timestamp-order_delivered_customer_date</u>
 - 2. <u>diff_estimated_delivery = order_estimated_delivery_date-</u> order_delivered_customer_date

CODE:

SELECT

order_id, order_purchase_timestamp,

TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS time_to_delivery,

TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date, DAY) AS diff_estimated _delivery

FROM target.orders
ORDER BY order_purchase_timestamp

c) <u>Group data by state, take mean of freight value, time_to_delivery, diff_estimated_delivery</u>

CUDE:

GROUP BY c.customer_state

d) Sort the data to get the following:

CODE:

SELECT

c.customer_state,
ROUND(AVG(oi.freight_value),2) AS avg_freight_value,

ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)),2) AS avg_time_to_delivery,

ROUND(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, DAY)),2
) AS avg_diff_estimated_delivery

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

JOIN target.order_items oi

ON o.order_id = oi.order_id

GROUP BY c.customer_state

ORDER BY avg_freight_value

e) <u>Top 5 states with highest average freight value - sort in desc</u> limit 5

CODE:

```
SELECT
```

c.customer_state,

ROUND(AVG(oi.freight_value),2) AS avg_freight_value,

ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)),2) AS avg_time_to_delivery,

ROUND(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, DAY)),2) AS avg_diff_estimated_delivery

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

JOIN target.order_items oi

ON o.order_id = oi.order_id

GROUP BY c.customer_state

ORDER BY avg_freight_value DESC

LIMIT 5

Quer	y results					▲ SAVE RESULTS ▼	
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EX	XECUTION GRAPH PREVIEW	
Row	customer_state	//	avg_freight_valu	avg_time_to_deli	avg_diff_estim	at	
1	RR		42.98	27.83	17.43		
2	PB		42.72	20.12	12.15		
3	RO		41.07	19.28	19.08		
4	AC		40.07	20.33	20.01		
5	PI		39.15	18.93	10.68		

f) <u>Top 5 states with lowest average freight value - sort in asc</u> limit 5

CODE:

```
SELECT
```

c.customer_state,

ROUND(AVG(oi.freight_value),2) AS avg_freight_value,

ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)),2) AS avg_time_to_delivery,

ROUND(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, DAY)),2

) AS avg_diff_estimated_delivery

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

JOIN target.order_items oi

ON o.order_id = oi.order_id

GROUP BY c.customer_state

ORDER BY avg_freight_value ASC

LIMIT 5

Result up to 5 rows:

Quer	y results					▲ SAVE RESULTS ▼	
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EX	ECUTION GRAPH PREVIEW	
Row	customer_state	6	avg_freight_valu	avg_time_to_deli	avg_diff_estima	t	
1	RR		42.98	27.83	17.43		
2	PB		42.72	20.12	12.15		
3	RO		41.07	19.28	19.08		
4	AC		40.07	20.33	20.01		
5	PI		39.15	18.93	10.68		

g) Top 5 states with highest average time to delivery

CODE:

Result up to 5 rows:

Quer	y results				₫ SAVE RESULTS	★ EXPLORE DATA ★
JOB IN	NFORMATION	RESULTS	JSON EX	XECUTION DETAILS	EXECUTION GRAPH PREV	IEW
Row	customer_state	/	avg_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery	
1	RR		42.98	27.83	17.43	
2	AP		34.01	27.75	17.44	
3	AM		33.21	25.96	18.98	
4	AL		35.84	23.99	7.98	
5	PA		35.83	23.3	13.37	

h) Top 5 states with lowest average time to delivery

CODE:

Result up to 5 rows:

Quei	ry results					♣ SAVE RESULTS ▼	
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH PREVIEW	
Row /	customer_state	6	avg_freight_valu	avg_time_to_deli	avg_diff_estimat		
1	SP		15.15	8.26	10.27		
2	PR		20.53	11.48	12.53		
3	MG		20.63	11.52	12.4		
4	DF		21.04	12.5	11.27		
5	SC		21.47	14.52	10.67		

i) <u>Top 5 states where delivery is really fast compared to estimated date</u>

CODE:

SELECT

c.customer_state,

AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)) AS avg_tim e to delivery,

AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, DAY)) AS avg_diff_es timated_delivery,

(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)))/(AVG(TIMES TAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, DAY))) as ratio

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY ratio DESC

LIMIT 5

Result up to 10 rows:

Quer	y results			
JOB IN	IFORMATION	RESULTS JSC	ON EXECUTION DETAILS	S EXECUT
Row	customer_state //	avg_time_to_delivery	avg_diff_estimated_delivery	ratio
1	AL	24.04	32.23	0.75
2	MA	21.12	30.11	0.7
3	SE	21.03	30.35	0.69
4	CE	20.82	30.94	0.67
5	BA	18.87	29.04	0.65

j) <u>Top 5 states where delivery is not so fast compared to</u> estimated date

CODE:

SELECT

c.customer_state,

ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)),2) AS avg_time_to_delivery,

ROUND(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, DAY)),2) AS avg_diff_estimated_delivery,

ROUND((AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)))/(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, DAY))),2) as ratio

FROM target.customers c

JOIN target.orders o

ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY ratio ASC

Result up to 10 rows:

query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS		EXECUT	
Row	customer_state	le	avg_time_to_de/i	avg_diff_estimat	ratio	11	
1	SP		8.3	18.81		0.44	
2	PR		11.53	24.25		0.48	
3	MG		11.54	24.22		0.48	
4	RO		18.91	38.41		0.49	
5	AC		20.64	40.77		0.51	

6. Payment type analysis:

a) <u>Month over Month count of orders for different payment types:</u>

CODE:

SELECT

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,

COUNT(CASE WHEN p.payment_type = 'credit card' THEN 1 END) AS credit_card,

COUNT(CASE WHEN p.payment_type = 'UPI' THEN 1 END) AS upi,

COUNT(CASE WHEN p.payment_type = 'debit card' THEN 1 END) AS debit_card,

COUNT(CASE WHEN p.payment_type = 'voucher' THEN 1 END) AS voucher,

COUNT(CASE WHEN p.payment_type = 'not defined' THEN 1 END) AS not_defined

FROM target.orders AS o

JOIN target.payments AS p

ON o.order_id = p.order_id

GROUP BY month

ORDER BY month

Result up to 10 rows:

PREVIEW	CUTION GRAPH	ILS EXE	EXECUTION DET	JSON	RESULTS	FORMATION	JOB IN
	not_defined //	voucher	debit_card //	upi //	credit_card //	month	Row /
	0	477	0	1715	0	1	1
	0	424	0	1723	0	2	2
	0	591	0	1942	0	3	3
	0	572	0	1783	0	4	4
	0	613	0	2035	0	5	5
	0	563	0	1807	0	6	6
	0	645	0	2074	0	7	7
	0	589	0	2077	0	8	8
	0	302	0	903	0	9	9
	0	318	0	1056	0	10	10

Insight/Observation:

The data suggests that only UPI and Vouchers are the payment types being used by the Brazilian customers. Now, UPI is a payment type used in India so, it's unlikely that Brazilian customers are using UPI as payment type, but if the data suggests it, this tells one of the two things about the customers. Either the Brazilians are slow at adopting to the traditional payment techniques of credit card and debit card, or they have leapfrogged the technology into using the UPI.

b) Count of orders based on the no. of payment instalments:

CODE:

SELECT
p.payment_installments,
COUNT(*) AS count_of_orders

FROM target.orders o

JOIN target.payments p
ON o.order_id = p.order_id
GROUP BY p.payment_installments
ORDER BY count_of_orders DESC

Insight/Observation:

Here, we can see that mostly the payments ate being done in a single instalment itself which is an indicator of a financially strong customer segment that is getting attracted towards the company's products on its ecommerce platform. Though, we see a large number of orders being paid in 2, 3 or 4 instalments too, which indicates an audience base that prefers paying in multiple payments.

Recommendation:

Looking at the number of orders paid in multiple instalments, the company needs to accommodate, if it is not already, Buy Now Pay Later facilities by having third party collaborations. This might help increase those numbers. Also, Target can incentivise the customers to pay in a single payment by offering attractive discounts.