CLAIMS:

- 1. An integrated circuit device comprising:
- a semiconductor die;
- a first housing encapsulating the semiconductor die;
- a heat sink positioned proximate to the first housing; and
- a second housing encapsulating at least a portion of the heat sink.
- 2. The integrated circuit device according to claim 1 further comprising at least one first lead coupled with the semiconductor die and the first housing encapsulates at least a portion of the at least one first lead.
- 3. The integrated circuit device according to claim 1 wherein the heat sink comprises:
 - a body; and
- at least one second lead coupled with the body and the second housing encapsulates at least a portion of the at least one second lead.
- 4. The integrated circuit device according to claim 3 wherein the at least one second lead is configured to dissipate heat from the semiconductor die.

PAT-US\AP-00

- 5. The integrated circuit device according to claim 1 wherein the second housing encapsulates a majority of the heat sink.
- 6. The integrated circuit device according to claim 1 wherein the second housing encapsulates a majority of the heat sink and at least a portion of the first housing.
- 7. The integrated circuit device according to claim 1 wherein the second housing encapsulates a majority of the heat sink and a majority of the first housing.
- 8. The integrated circuit device according to claim 1 wherein the semiconductor die comprises a synchronous-link dynamic random access memory device and the second housing forms one of a vertical surface mounted package and a horizontal surface mounted package.

II

1	An integrated circuit device comprising:
2	a semiconductor die having a plurality of bond pads;
3	a plurality of leads electrically coupled with the bond pads of the
,	semiconductor die;
5	a first housing encapsulating the semiconductor die and at least
6	a portion of the leads;
7	a heat sink thermally coupled with the first housing; and
8	a second housing encapsulating at least a portion of the heat
g	sink.
10	
11	10. The integrated circuit device according to claim 9 wherein
12	the heat sink comprises a metal and the first housing contacts the
13	metal.
14	
15	11. The integrated circuit device according to claim 9 wherein
16	the heat sink includes at least one lead configured to dissipate heat
17	from the semiconductor die.
18	·
19	12. The integrated circuit device according to claim 9 wherein
20	the second housing forms one of a vertical surface mounted package
21	and a horizontal surface mounted package.
22	
23	13. The integrated circuit device according to claim 9 wherein

the second housing encapsulates the first housing.

14.	An	integrated	circuit	device	comprising:
-----	----	------------	---------	--------	-------------

- a first housing formed about a semiconductor die and at least portions of a plurality of leads electrically coupled with the semiconductor die;
 - a heat sink thermally coupled with the first housing; and
- a second housing formed about the heat sink and at least a portion of the first housing.
- 15. The integrated circuit device according to claim 14 wherein the first housing and second housing individually comprise an encapsulant housing.
- 16. The integrated circuit device according to claim 14 wherein the heat sink contacts the first housing.
- 17. The integrated circuit device according to claim 14 wherein the heat sink further includes at least one lead configured to dissipate heat from the semiconductor die.

1	18. A synchronous-link dynamic random access memory device
2.	comprising:
3	a semiconductor die bearing synchronous-link dynamic random
4	access memory circuitry and having a plurality of bond pads coupled
5	therewith;
6	a plurality of leads electrically coupled with the bond pads of the
7	semiconductor die;
8	a first housing encapsulating the semiconductor die and at least
9	a portion of the leads;
10	a heat sink positioned proximate the first housing and configured.
11	to draw heat from the semiconductor die; and
12	a second housing encapsulating the heat sink and at least a
13	portion of the first housing.
14	
15	19. The synchronous-link dynamic random access memory device
16	according to claim 18 wherein the second housing forms one of a
17	vertical surface mounted package and a horizontal surface mounted
18	package.
19	
20	20. The synchronous-link dynamic random access memory device
21	according to claim 18 wherein the heat sink comprises at least one lead
22	configured to dissipate heat from the semiconductor die.

?

	21. A method of forming an integrated circuit device comprising:
	providing a semiconductor die;
	forming a first housing about the semiconductor die;
	thermally coupling a heat sink with the first housing; and
	forming a second housing about at least a portion of the heat
sink	following the thermally coupling.

- 22. The method according to claim 21 wherein the providing comprises providing a semiconductor die coupled with plural leads of a lead frame.
- 23. The method according to claim 22 further comprising bending the leads to form one of a vertical surface mounted package and a horizontal surface mounted package.
- 24. The method according to claim 21 wherein the forming the first housing and the forming the second housing individually comprise encapsulating.
- 25. The method according to claim 21 wherein the forming the second housing comprises encapsulating at least a portion of the first housing.

26. The method according to claim 21 further comprising
providing the heat sink with at least one lead.
27. A method of forming an integrated circuit device comprising:
providing a semiconductor die having a plurality of bond pads;
providing a first lead frame having a plurality of leads;
providing a second lead frame having a heat sink;
electrically coupling the bond pads of the semiconductor die with
the leads of the first lead frame;
first encapsulating the semiconductor die and at least a portion
of the leads, the first encapsulating forming a first housing;
thermally coupling the heat sink with the first housing; and
second encapsulating at least a portion of the heat sink forming
a second housing following the thermally coupling.
28. The method according to claim 27 wherein the second
encapsulating further comprises encapsulating at least a portion of the
first housing.
29. The method according to claim 27 wherein the second
encapsulating further comprises encapsulating a majority of the heat sink
and a majority of the first housing.

?

б

30. The method according to claim 27 wherein the thermally
coupling comprises positioning the heat sink to contact the first housing.
•
31. The method according to claim 27 further comprising
bending the leads to form one of a vertical surface mounted package
and a horizontal surface mounted package.
32. The method according to claim 27 wherein the providing the
second lead frame comprises providing the heat sink with at least one
lead.

33. A method of forming an integrated circuit device comprising:

providing a semiconductor die electrically coupled with a plurality

of leads;

forming a first housing about the semiconductor die and at least a portion of the leads;

providing a heat sink; and

forming a second housing about at least a portion of the heat sink, the forming the second housing thermally coupling the heat sink with the semiconductor die.

34. The method according to claim 33 further comprising positioning a heat sink proximate the first housing prior to forming the second housing.

1	
2.	
3	
4	
5	
б	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	***************************************
21	
22	

- 35. The method according to claim 33 wherein the forming the first housing and the forming the second housing individually comprise encapsulating.
- 36. The method according to claim 33 wherein the forming the second housing comprises forming the second housing about at least a portion of the first housing.
- 37. The method according to claim 33 wherein the forming the second housing comprises encapsulating at least a portion of the heat sink and at least a portion of the first housing.
- 38. The method according to claim 33 wherein the providing the heat sink comprises providing the heat sink having at least one lead.
- 39. The method according to claim 33 further comprising bending the leads to form one of a vertical surface mounted package and a horizontal surface mounted package.

,	40. A method of forming a synchronous-link dynamic random
2	access memory edge-mounted device comprising:
3	providing a semiconductor die having a plurality of bond pads;
,	providing a first lead frame having a plurality of leads;
5	providing a second lead frame having a heat sink;
6	electrically coupling the bond pads of the semiconductor die with
7	the leads of the first lead frame;
8	positioning the semiconductor die and the first lead frame within
9	a first mold following the electrically coupling;
10	first encapsulating the semiconductor die and at least a portion
11	of the leads within the first mold using a first encapsulant;
12	curing the first encapsulant forming a first housing;
13	removing the first housing from the first lead frame;
14	positioning the heat sink of the second lead frame to contact a
15	surface of the first housing;
16	providing the semiconductor die and the second lead frame within
17	a second mold following the positioning the heat sink;
18	second encapsulating the first housing and the heat sink within the
19	second mold using a second encapsulant;
20	curing the second encapsulant forming a second housing;
21	removing the second housing from the second lead frame;
22	trimming the leads; and
23	bending the leads to form one of a vertical surface mounted
24	package and a horizontal surface mounted package.