L_1 regression

Problem. Given points with coordinates (x_i, y_i) for i = 1, ..., n find a function f(x) = ax + b such that the sum

$$\sum_{i=1}^n |f(x_i) - y_i|$$

is a as small as possible.

Note. Compare with L_2 regression (least squares): we want to minimize

$$\sqrt{\sum_{i=1}^n |f(x_i) - y_i|^2}$$

Problem. Given points with coordinates (x_i, y_i) for i = 1, ..., n find a function f(x) = ax + b such that the sum

$$\sum_{i=1}^{n} |f(x_i) - y_i| = \sum_{i=1}^{n} |a_{x_i}| + b_i - y_i$$

is a as small as possible.

Decision variables: a, b ∈ R

We want to minimize

Problem: What to do with the absolute value?

Solution: Introduce new variables e,,..., en such that

then minimize e, + ez+...+ en.

e; > lax; +b: | if and only if the following hold:

- i) e: > 0
- 2) e; > ax; + b y;
- 3) e; > (ax; +b y;) = -ax; -b+ y;

Linear program:

Decision variables: a,b, e,,,, en

We want to minimize

Constraints:

$$Q_i > -ax_i - b + y_i$$
 (or: -y; > -ax; -b - Q;)

L_1 regression vs L_2 regression

ullet L₁ regression is less sensitive that L₂ if we change the value of a single point.

 \bullet L₂ regression gives a uniquely defined line if there are at least two points with different x-coordinates. L₁ regression can have infinitely many solutions.

