Operation Mode For Non User

By GAO

Revision History

Version	Date	Author	Description	
0.1	May 12	GAO	Initial	
0.2	May 14	GAO	Update IRC Trim	
0.3	May 21	GAO	 Change the Mis-Match command to 8'h10101011 Remove the IRC_TRIM_END command Add the OTP operation end command Add OPCODE PROGRAM command 	
0.4	June 15	GAO	Define IRC4K TRIM CODE and IRC1K TRIM Code to 6bits respectively by MSB of otp_dout[7:0] 1: IRC4M trim code 0: IRC1K trim code	
0.5	July 3	GAO	 Change P50 as IRC1K Clock Output Change P51 as IRC4M Clock Output Change the section 1.4.5 for IRC1K and IRC 4M clock 	
0.6	July 24	GAO	1) Add register Summary	
0.7	July 26	GAO	Refine the next operation description 1)	

Reference Doc

- 1. OTP Macro Test Methodology Version 1.3
- 2. SC201 Reference Manual Version 1.0 (Later prepared)

1 Description

The operation mode for non-user major includes two points: one is for OTP, the another is for IRC trimming.

The OTP operation includes test and normal operation modes, The test modes includes OTP margin-1 read, OTP margin-2 read, OTP off-state margin read. The normal operation modes include OTP program, OTP read.

Only Type-II in **OTP Macro Test Methodology** is used for OTP mass production test, all instructions for Type-II are supported in design, but it will be to be decided later for final test methodology.

The IRC trimming includes two steps, the first one is to find the best trim code for accurate IRC frequency, The 2nd step is to write the best trim code into the 1038 or 1037 (from 0) byte of OTP for auto load in user mode during reset.

These operations to OTP and IRC are encoded into different command types, the UART is used for communication between SC201 and external controller on PCB or external Desktop. The external 12Mhz external crystal is a must for accurate the baud rate of UART for all non-user operations. So the pin assignment in non-user mode is different with the user mode.

1.1 Pin Configuration for non-user modes

Index	Name	User Mode	Non-User Mode	Comment
1	VDD	Power Supply	5V/3.3V	For 5V and 3V device
				respectively
2	P65/OSCI	IO or crystal clock input	12Mhz crystal clock In	
3	P64/OSCO	IO or Crystal Clock	12Mhz Crystal Clock	
		Output	Output	
4	P63/RST/VPP	Input or external Reset	VPP: 7.35V or 7.6V	Mode Entry or OTP
				program
5	P67	10	Same as user mode	
6	P50	10	1K IRC Clock Output	
7	P51	10	4M IRC clock Output	
8	P52	10	Same as user mode	
9	P53	10	Same as user mode	
10	P66	10	Same as user mode	
11	P62/TCC	10	Same as user mode	
12	P61	10	TX	38.4K baud rate
13	P60/INT	10	RX	38.4K baud rate
14	VSS	Power Ground	Same as user mode	

1.2. Mode Entry

The always applied 7.35V or 7.6V voltage on VPP pad in non-user modes (100mV internal IR Drop) trig internal vpp_high signal to logic high

1.3. Command Type and Code

Operation	Code	Comment
OTP Program with VPP_Lo, Vdd_std	8'b1010_0001	OTP: VPP=VPP_Lo, VDD = Vdd_std
OTP Program with VPP_std, Vdd_std	8'b1010_0010	OTP: VPP=VPP_std, VDD = Vdd_std
User Mode OTP Read with Vdd_Lo	8'b1010_0011	OTP: VPP=Vdd_Lo, VDD = Vdd_Lo
User Mode OTP Read with Vdd_Hi	8'b1010_0100	OTP: VPP=Vdd_Hi, VDD = Vdd_Hi
Test Mode OTP Margin-1 Read with	8'b1010_0101	OTP: VPP=Vdd_std, VDD = Vdd_std
Vdd_std		
Test Mode OTP Margin-2 Read with	8'b1010_0110	OTP: VPP=Vdd_std, VDD = Vdd_std
Vdd_std		
Test Mode OTP off-state Margin Read	8'b1010_0111	OTP: VPP=Vdd_std, VDD = Vdd_std
with Vdd_std		
IRC Trim Code	8'b1010_1000	OTP: VPP=Vdd_std, VDD = Vdd_std
		Indicate the following data will be trim
		code
Program IRC Trim Code (Last Byte of OTP)	8'b1010_1010	OTP: VPP=VPP_std, VDD = Vdd_std
with VPP_std, Vdd_std		
Data Match	8'b1010_1100	Received data is same as transmitted
Data Mis-match	8'b1010_1011	Received data is diff with transmitted
PROGRAM SCR	8'b1010_1101	Program opcode
OTP Operation End	8'b1010_1111	all operation end

Note: VPP_Lo=7.25V, VPP_std =7.5V,

Vdd_Lo=2V, Vdd_std=3.3V, Vdd_Hi=3.6V

1.4. Communication Protocol

The physical layer protocol is general uart protocol, its configuration and operation can be found in DW8051 doc.

In order to improve the reliability, all data transaction are confirmed by shakehand, The transmitter send the data to slave, then the slave send the received data back to transmitter, The transmitter compare the received data from slave, then send the data match or mismatch code to slave, the transmitter will re-send the last data after

sending the data mis-match code, else it will send the next data after send the data match code

The transmitter always initiates the data transaction, compares the original data with received data, and send data match or mismatch command, re-send the data or send next data

The slave (receiver) always receives and sends back the data.

After completion of current transaction, the internal controller will be started from test code again.

1.4.1. Sequence and Direction For Data Match

Data-1	Received data	Data-Match command	Data-2
Transmitter to slave	slave to Transmitter	Transmitter to slave	Transmitter to slave

1.4.2. Sequence and Direction For Data Mismatch

Data-1	Received data	Data-Mismatch command	Data-1 (re-send)
Transmitter to slave	slave to Transmitter	Transmitter to slave	Transmitter to slave

There are a few types data transmitted: test code, command code, program code, IRC trim code.

The test code is dedicated to 8'h55, 8'haa in sequence, it is used to test if the connection is ready, After 100us from 7.5V applied on VPP, the transmitter can start to send the test code to SC201. In case of 8'h55 can be transferred successfully, but failed in 8'haa, then it is required to restart test code from 8'h55.

After test code, the following transmission is command codes, which indicate what it will do in next step, the next command can be transacted when last command execution is end without test code re-transaction, non-user operations are described as following.

1.4.3. OTP Program

Test Code	OTP Program Command(8'ha1 or 8'ha2)	10bits-Begin	Address(8bits
		per byte)	
10bits-Prog	ram Length in Byte (8bits per byte)	Program Code	

In OTP program, The external controller is transmitter, The SC201 is slave or receiver. The 10bits begin address define the starting location of program code, 10bits program length define the how many bytes which will be programmed into OTP in current program operation. The program code is 8bits data which user want to

program.

After completion of current length transaction, the next transaction operation will be started from test code.

1.4.4. OTP Read

Test Code	OTP Read Command(8'ha3 to 8'ha7)	Begin Address
Read Lengtl	n in Byte (8bits per byte)	Program Code in OTP

In OTP read, The external controller is transmitter in command, address, length transaction, The SC201 is transmitter in program code transaction from OTP to external.

The 10bits begin address define the starting location of reakback, 10bits read length define the how many bytes which will be readback from OTP in current read operation. The program code is 8bits data which user want to readback.

After completion of current length transaction, the next transaction operation will be started from test code.

1.4.5. IRC Trim Code

Test Code	IRC Trim Code command (8'ha8)	Trim Code-1	
Test Code	IRC Trim Code command (8'ha8)	Trim Code-2	

In IRC trim code, The external controller is transmitter, The SC201 is slave or receiver, The MSB of trim code is to indicate IRC1K or IRC4M trim

0: The trim code is for IRC1K oscillator

1: The trim code is for IRC4M oscillator

Any one trim code transaction will start from test code

1.4.6. Program IRC Trim Code

Test Code Program IRC Trim Code command (8'haa	a) One byte Trim Code
--	-----------------------

In OTP program, The external controller is transmitter, The SC201 is slave or receiver.

1.4.7. Program SCR

Test Code Program SCR Command	(8'had)	One byte SCR
-------------------------------	---------	--------------

In OTP program, The external controller is transmitter, The SC201 is slave or receiver.

1.4.8. Register Summary

SCR: System Configuration Register, Address is 'd1039

BIT	7	6	5	4	3	2	1	0
	RESET	WDGE	CLK2	CLK1	CS	SUT1	SUT0	RCOUT
Default	1	1	1	1	1	1	1	1
R/W	Read Only							

7	RESET	Reset function enable or disable on P63 pin
		1: P63 is not a reset pin
		0: P63 is a reset pin
6	WDGE	Watch Dog module enable or disable from power on or recover from LVD
		reset
		1: Watchdog is enabled
		0: Watchdog is disabled
5:4	CLK[2:1]	System clock configuration
		2'b00: LXT, Crystal oscillator low frequency mode,32Khz-1Mhz
		2'b01: HXT, Crystal oscillator high frequency mode, 1Mhz-14Mhz
		2'b10: ERC, External RC oscillator
		2'b11: IRC, Internal RC 4Mhz oscillator
3	CS	Chip Security for preventing un-authorization read
		1: Program in OTP is protected for read
		0: Program in OTP is free for read
2:1	SUT[1:0]	Crystal Start Up time configuration
		2'b00: 18ms
		2'b01: 36ms
		2'b10: 4.5ms
		2'b11: 72ms
0	RCOUT	OSCO/P64 function selection
		1:OSCO function is selected
		0: P64 as general purpose IO is selected

Confidential Property, Non Disclosure Is Required

IRC4MTRIM: 4MHZ IRC TRIMMING Register, The address is 'd1038

BIT	7	6	5	4	3	2	1	0
	Reserved]	IRC4MTRI	M	
Default			1	1	1	1	1	1
R/W					Read Only	,		

7:6		Reserved
5:0	IRC4MTRIM[5:0]	IRC4MHZ clock trimming

IRC1KTRIM: 1KHZ IRC TRIMMING Register, The address is 'd1037

BIT	7	6	5	4	3	2	1	0
	Reserved					IRC1KTRIN	M	
Default			1	1	1	1	1	1
R/W					Read Only	,		

7:6		Reserved
5:0	IRC1KTRIM[5:0]	IRC1KHZ clock trimming