COS 514: Fundamentals of Deep Learning

Fall 2025

Instructor: Prof. Sanjeev Arora TA: Gon Buzaglo

Assignment 3

Instructions:

- Submission deadline is November 3.
- You may collaborate in groups of up to 3 students.
- If you collaborate on a problem, you must clearly state the names of your collaborators at the beginning of the solution to that problem.
- All group members must declare that they contributed equally to the solutions.
- You must write up your own solutions independently in LATEX. Handwritten or scanned solutions will not be accepted.
- Cite any resources (papers, textbooks, websites) that you use.
- Submit your assignment as a single PDF on gradescope.

Problems

Problem 3: Diffusion Models

Let $\{x_t\}_{t\geq 0} \subset \mathbb{R}^d$ follow

$$q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I), \qquad \beta_t \in (0, 1),$$

and define $\alpha_t := 1 - \beta_t$, $\bar{\alpha}_t := \prod_{i=1}^t \alpha_i$ (with $\bar{\alpha}_0 := 1$).

(a) Forward marginal. Show that

$$q(x_t \mid x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)I). \tag{1}$$

Hint: Linear combination of independent samples from two Gaussians is itself distributed like a Gaussian.

- (b) Reverse posterior and noise prediction. This question studies in more detail why learning to predict the error from the noised image x_t in Diffusion models suffices to construct the reverse-step mean.
 - (i) Using Bayes' rule and (1), show

$$q(x_{t-1} \mid x_t, x_0) \propto \exp\left[-\frac{1}{2}\left(\frac{\|x_t - \sqrt{\alpha_t}x_{t-1}\|^2}{\beta_t} + \frac{\|x_{t-1} - \sqrt{\bar{\alpha}_{t-1}}x_0\|^2}{1 - \bar{\alpha}_{t-1}}\right)\right].$$

(ii) Complete the square in x_{t-1} to derive the mean

$$\tilde{\mu}_t(x_t, x_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} x_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x_t.$$

(iii) From (1), write $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$ with $\epsilon \sim \mathcal{N}(0, I)$, so $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon)$. Substitute this into $\tilde{\mu}_t$ to express $\tilde{\mu}_t = \tilde{\mu}_t(x_t, \epsilon)$.

Problem 2: Orthogonal Equivariance

A learning algorithm A is orthogonally equivariant if for any orthogonal R, training A on inputs Rx yields predictions R times those from training on x. Prove that both SGD and SGD with momentum are orthogonally equivariant. (Hint: Track how gradients transform under $x \mapsto Rx$.)

Problem 3: ReLU and Vanishing Gradients

In a deep network $\hat{y} = f_L(\cdots f_1(x))$, gradients are products of Jacobians. Compare gradient propagation in networks using ReLU vs. sigmoid:

- (a) Why does ReLU reduce—but not fully eliminate—the vanishing gradient problem?
- (b) Discuss roles of activation derivatives, initialization, and depth.
- (c) Give one training failure mode specific to ReLU and how it's mitigated.

Problem 4: Batch Normalization

- (a) If BN is used without affine parameters (γ, β) , does the network lose expressive power? Can other layers replicate their effect?
- (b) In a block ReLU \rightarrow Linear \rightarrow BN, scaling pre-ReLU activations by c multiplies u by c. For c > 0 vs. c < 0, how does this affect BN's scale invariance? What role does the bias b play?

Problem 5: ResNets and Normalization

Let

$$H(x) = x + F(x), \quad F(x) = \operatorname{Conv}_2(\operatorname{ReLU}(\operatorname{BN}_1(\operatorname{Conv}_1(x)))).$$

- (a) Does scaling $W_1 \mapsto cW_1$ change H(x)? Explain how scale invariance of BN interacts with ReLU, Conv₂, and the residual sum.
- (b) Consider $x_{l+1} = \frac{1}{\sqrt{2}}(x_l + F(x_l))$. Assuming $Var(F(x_l)) \approx Var(x_l)$ and they're uncorrelated, does this fix variance explosion? What drawback might it introduce compared to the standard ResNet block?