Notes on Math in Economics

Victor Li

October 2023

Contents

1	LOGIC	2
2	SET	3
3	TOPOLOGY ON EUCLIDEAN SPACE	4
4	TOPOLOGY	9
5	LINEAR ALGEBRA	10
6	FIXED POINT	11
7	LATITICE AND SUPER-MODULARITY	12
8	STATIC OPTIMIZATION	13
9	DYNAMIC OPTIMIZATION	14

1 LOGIC

Proposition

is a declaration that can be either true or false, but not both. If withour further notice, P and Q is propositions as default.

Negation

 $\neg P$

Conjunction

 $P \wedge Q$

Disjunction

 $P \vee Q$

Implication

 $P \Rightarrow Q$

Equivalence

 $P \iff Q$

Converse

 $P \Rightarrow Q : Q \Rightarrow P$

Inverse

$$P \Rightarrow Q : \neg P \Rightarrow \neg Q$$

Contrapositive

$$P \Rightarrow Q : \neg Q \Rightarrow \neg P$$

Contradiction

$$(P \land \neg Q) \Rightarrow \neg P$$
 ,
where P is a priori $\Rightarrow Q$

Logically equivalence

$$P \equiv Q, (P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P) \equiv [(P \land \neg Q) \Rightarrow \neg P]$$

Truth table

Р	Q	¬ P	$P \lor Q$	$P \land Q$	$P{\Rightarrow}Q$	$P \Longleftrightarrow Q$	$\mathbf{Q}{\Rightarrow}\mathbf{P}$	$\neg P \Rightarrow \neg Q$	$\neg Q \Rightarrow \neg P$
Т	Т	F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	F	T	Т	F
F	Т	Т	Т	F	Т	F	F	F	Т
F	F	Т	F	F	Т	T	Т	T	T

Universal quantifier

$$\forall x, P(x)$$

Existence quantifier

$$\exists x, P(x)$$

Negation of the two quantifier

$$\neg [\forall x, P(x)] \equiv [\exists x, \neg P(x)]; \tag{1}$$

$$\neg [\exists x, P(x)] \equiv [\forall x, \neg P(x)] \tag{2}$$

2 SET

 Set

$$e.g.X = \{1, 2, 3\}$$

Element

$$\omega \in X$$

Family

$$\mathscr{X} = \{A,B,C\}$$

Union

$$A \cup B = \{\omega | (\omega \in A) \lor (\omega \in B)\} = A + B$$

Intersection

$$A \cap B : \{\omega | (\omega \in A) \land (\omega \in B)\} = AB$$

Complement

$$A \setminus B = \{\omega | (\omega \in A) \land (\omega \notin B)\} = A - B \tag{3}$$

$$A^c = \Omega \setminus A \tag{4}$$

$$A \setminus B = A \cap B^c \tag{5}$$

Disjoint

$$A \cap B = \emptyset \tag{6}$$

$$A \cap A^c = \emptyset \tag{7}$$

Subset

$$A \subset B : \omega \in A \Rightarrow \omega \in B$$

Superset

$$B \supset A$$

Equivalence

$$A = B \iff (A \subset B) \land (B \subset A)$$

Equivalent difference

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Algorithing rules

$$A \cap B = B \cap A, A \cup B = B \cup A \tag{8}$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \tag{9}$$

De Morgan's Rule

$$(\cup A_i)^c = \cap A_i^c, (\cap A_i)^c = \cup A_i^c$$

Cartesian products

$$\underset{i \in I}{\pi} A_i = A_1 \times A_2 \times \dots \times A_I$$

3 TOPOLOGY ON EUCLIDEAN SPACE

Euclidean space

the space of vectors of real numbers with n components, denoted as \mathbb{R}^n . Metric on \mathbb{R}^n

$$(x,y) \in \mathbb{R}^n, (\mathbb{R}^n, d) : d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Equal of vectors on \mathbb{R}^n

$$x = y \iff \forall i, x_i = y_i$$

Greater than or equal of vectors on \mathbb{R}^n

$$x \geqslant y \iff \forall i, x_i \geqslant y_i$$

Greater than of vectors on \mathbb{R}^n

$$x > y \iff \forall i, x_i \geqslant y_i; \exists j, x_i > y_i$$

Much greater than of vectors on \mathbb{R}^n

$$x \gg y \iff \forall i, x_i > y_i$$

 ϵ -open ball/ ϵ -neighborhood of x on \mathbb{R}^n

$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n | d(x, y) < \epsilon \}$$

Max on \mathbb{R}

$$\exists A \in \mathbb{R}, (x \in A) \land (\forall a \in A, x \geqslant a) \Rightarrow x = \max A$$

Min on \mathbb{R}

$$\exists A \in \mathbb{R}, (x \in A) \land (\forall a \in A, x \leqslant a) \Rightarrow x = \min A$$

Upper bound on \mathbb{R}

$$\exists A \subset \mathbb{R}, (x \in \mathbb{R}) \land (\forall a \in A, x \geqslant a) \Rightarrow x \text{ is the upper bound of } A$$

Supremum on \mathbb{R} x is the least upper bound of $A \subset \mathbb{R} \iff x = \sup A$ Lower bound on \mathbb{R}

$$\exists A \subset \mathbb{R}, (x \in \mathbb{R}) \land (\forall a \in A, x \leqslant a) \Rightarrow x \text{ is the lower bound of } A$$

Infimum on \mathbb{R} x is the least lower bound of $A \subset \mathbb{R} \iff x = \inf A$ Open set on \mathbb{R}^n

$$S \subset \mathbb{R}^n, \forall x \in S, \exists \epsilon > 0, B_{\epsilon}(x) \subset S$$

Theorem 1. some theorems of open set:

1.
$$\varnothing$$
 and \mathbb{R}^n are open (10)

Topology

a system $\tau = \{S_{\alpha}\}_{{\alpha} \in A}$ is a topology on space X if

1.
$$\emptyset$$
 and $X \in \tau$ (13)

2.
$$\forall \{S_{\beta} | S_{\beta} \in \tau\}, \cup S_{\beta} \in \tau$$
 (14)

3.
$$\forall \{S_k | S_k \in \tau, k = 1, 2...n\}, \cap S_k \in \tau$$
 (15)

Closed set

$$S \subset \mathbb{R}^n$$
 is closed if S^c is open

Theorem 2. Some theorems of closed set:

1.
$$\varnothing$$
 and \mathbb{R}^n are open (16)

Sequence in \mathbb{R}^n

$$\{x^i\}_{n=1}^{\infty} = \{x_1, x_2, ..., x_n, ...\}, x_i \in \mathbb{R}^n$$

Converge

if for a sequence $\{x^i\}$, $\forall \epsilon > 0$, $\exists N, i \ge N, d(x^i, \alpha) < \epsilon \Rightarrow x$ is the limit of the sequence $\{x^i\}$

Bounded

$$\exists M > 0, S \subset B_M(\cdot)$$

Theorem 3. A non-decreasing and bounded sequence $\{x^i\}_{i=1}^{\infty}$ in \mathbb{R} converges.

Proof.

bounded
$$\Rightarrow \exists M > 0, \{x_i\}_{i=1}^{\infty} \subset B_M(0) = \{y \in \mathbb{R} : \sqrt{(y-0)^2} < M\}$$
 (19)

$$\Rightarrow \sup\{x^i\}_{i=1}^{\infty} < M \tag{20}$$

$$\forall \epsilon > 0, x - \epsilon$$
 is not an upper bound of the sequence (21)

$$\Rightarrow \exists x^N \in x_i, x^N > x - \epsilon \tag{22}$$

nondecreasing
$$\Rightarrow \forall i \geqslant N, x^i \geqslant x^N \Rightarrow x^i > x - \epsilon$$
 (23)

$$\forall i, x \geqslant x^i \Rightarrow x > x^i - \epsilon \tag{24}$$

$$\Rightarrow |x - x^i| = d(x, x^i) < \epsilon \Rightarrow \text{converge}$$
 (25)

Using convergence to define closed set

$$S \in \mathbb{R}^n, \{x^i\} \subset S, \{x^i\} \to x \in S \Rightarrow S$$
 is a closed set

Non-empty closed cell in \mathbb{R}^n

$$I = \{x = (x_1, x_2, ..., x_n) : a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, ..., a_n \le x_n \le b_n, \}$$
 (26)

$$= [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n]$$
 (27)

Theorem 4 (Nested cells theorem).

Let
$$\{I_i\}$$
 be a sequence of non-empty closed cells in \mathbb{R}^n that are nested, (28)

$$i.e.I_1 \supset I_2 \supset \cdots \supset I_k \supset I_{k+1} \supset \dots$$
 (29)

$$then \bigcap_{i=1}^{\infty} I_i \neq \emptyset \tag{30}$$

Subsequence

$$\exists \{x^i\} \in \mathbb{R}^n, \{x^{i_k}\} \text{ where } i_k < i_{k+1}$$

$$\tag{31}$$

$$e.g. (32)$$

$$\{x^i\} = \{x_1, x_2, x_3, x_4, x_5, \dots\}$$
(33)

$$\{x^{i_k}\} = \{x_1, x_3, x_5, \dots\} \tag{34}$$

Theorem 5 (Bolzano-Weierstrass theorem). The theorem states that each infinite bounded sequence in \mathbb{R}^n has a convergent subsequence. An equivalent formulation is that a subset of \mathbb{R}^n is sequentially compact if and only if it is closed and bounded. The theorem is sometimes called the sequential compactness theorem.

Open cover

a family $\{T_{\alpha}\}_{\alpha \in A} \in \mathbb{R}^n$ is said to be an open cover of $S \subset \mathbb{R}^n$ if T_{α} is open for each $\alpha \in A$ and $S \subset \cup_{\alpha} T_{\alpha}$

Finite open subcover

given an open cover $\{T_{\alpha}\}_{\alpha \in A} \in \mathbb{R}^n$, $\{T_{\alpha_k}\}_{k=1}^N$ is said to be a finite subcover if for each $\alpha_k \in A, S \subset \bigcup_{\alpha_k} T_{\alpha_k}$.

Compact

a set $S \subset \mathbb{R}^n$ is compact if for any open cover of S, there exists a finite open subcover

Theorem 6 (Heine-Borel theorem). $S \subset \mathbb{R}^n$ is compact $\iff S$ is closed and bounded

Function

$$f: X \to Y = \{ y \in Y | \exists x \in X, f(x) \in Y \}; \tag{35}$$

$$\exists S \subset X, f(S) = \{ y \in Y | \exists x \in S, f(x) = y \}$$
 (36)

One-to-one or Injection

$$f(x_1) \neq f(x_2), x_1 \neq x_2$$

Continuent function

$$\exists f: \mathbb{R}^n \to \mathbb{R}^m, \forall x \in \mathbb{R}^n, \exists \delta > 0, \forall x' \in B_{\delta}(x), f(x') \in B_{\delta}[f(x)]$$
 (37)

$$or$$
 (38)

$$\forall \text{ open } T \subset \mathbb{R}^n, f^{-1}(T) \text{ is open}$$
 (39)

Theorem 7 (Weierstrass theorem).

$$D \subset X$$
 is a nonempty compact set (40)

$$f: X \to Y \text{ is a continuent function}$$
 (41)

$$\Rightarrow f(D) \subset Y \text{ is compact}$$
 (42)

Lemma 1 (Corollary of Weierstrauss theorem on real Number space).

$$D \subset X$$
 is a nonempty compact set (43)

$$f: X \to \mathbb{R} \text{ is a continuent function}$$
 (44)

$$\Rightarrow \exists x_1, x_2 \in D, \forall x \in D, f(x_1) \leqslant f(x) \leqslant f(x_2) \tag{45}$$

Distance between point and closed set

using Weierstrauss theorem to make sure there is a shortest distance between a point and a closed set

Vector/a point in Euclidean space

$$x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

Convex

 $C \subset \mathbb{R}^n$ is convex if and only if $\forall x, y \in C$ and $\lambda \in [0,1], \lambda x + (1-\lambda)y \in C$

Theorem 8 (Two theorems about convexity).

$$\exists C, D \in \mathbb{R}^n \ are \ convex \Rightarrow$$
 (46)

$$C + D = \{x + y | x \in C, y \in D\} \text{ is convex}; \tag{47}$$

$$\forall \alpha \in \mathbb{R}, \alpha C \text{ is also convex} \tag{48}$$

Hyperplane

$$\exists h \in \mathbb{R}^n, \lambda \in \mathbb{R}, \{x \in \mathbb{R}^n | hx = \lambda\} \text{ is a hyperplane}$$

Half-space

$$\exists h \in \mathbb{R}^n, \lambda \in \mathbb{R}, \{x \in \mathbb{R}^n | hx \leq \lambda\} \text{ or } \{x \in \mathbb{R}^n | hx \geq \lambda\} \text{ is a half-space}$$

Theorem 9 (seperating hyperplane theorem).

Suppose that a set
$$C \neq \emptyset \subset \mathbb{R}^n$$
 is closed and convex, and a point $b \notin C$ (49)

$$\Rightarrow \exists h \in \mathbb{R}^n, \exists \lambda \in \mathbb{R}, \forall x \in C, h \cdot b < \lambda < h \cdot x \tag{50}$$

Using hyperplane to seperate two convex sets

Suppose that two nonempty sets $C, D \subset \mathbb{R}^n$ are closed and convex, and $C \cap D = \emptyset$ (51)

if at least one of the two sets is bounded, then $\exists h \neq 0 \in \mathbb{R}^n, \exists \lambda \in \mathbb{R},$ (52)

$$\forall x \in C, \forall y \in D, h \cdot x < \lambda < h \cdot y \tag{53}$$

Corrospondance

$$F: X \Rightarrow Y \iff \forall x \in X, F(x) \subset Y$$

- F(x) is assumed non-empty from now on if without furthur notice Compact-valued correspondence

$$\forall x \in X, F(x) \subset Y \text{ is compact}$$

Convex-valued correspondance

$$\forall x \in X, F(x) \subset Y \text{ is convex}$$

Closed-valued correspondance

$$\forall x \in X, F(x) \subset Y \text{ is closed}$$

Singleton-valued correspondance

$$\forall x \in X, F(x) \subset Y$$
 is a singleton set $\iff F(x)$ is a function $f(x)$

Continuous function

A function f is continuous if and only if for any open $\forall x \in X$

Upper hemi-continuous correspondance Lower hemi-continuous correspondance

Theorem 10.

F is continuous if and only if F is both upper hemi-continuous and lower hemi-continuous.

4 TOPOLOGY

a topology τ on X is a family of subsets of X satisfying

$$\begin{cases} \varnothing, X \in \tau \\ \tau \text{ is closed under finite intersections} \\ \tau \text{ is closed under unions} \end{cases}$$

Topological space

$$(X,\tau)$$

Open set

a member of τ is an open set

Closed set

the complement of an open set is a closed set

Interior and Closure

let (x,τ) be a topological space and $A\subset X$, interior is the largest open set included by A

and closure is the smallest closed set including A

Dense

If
$$D \in (X, \tau)$$
, $Cl(D) = X \Rightarrow D$ is dense

Seperable

$$\exists D \in (X, \tau), Cl(D) = X \Rightarrow X \text{ is seperable}$$

Continuous function

In $(X,\tau), f:X\to Y$ is continuous if $f^{-1}(U)\subset X$ is open whenever $U\subset Y$ is open

Hemeomorphic

 $\exists (X,\tau), (Y,\tau)$, if a one-to-one continuous function $f: X \to Y$ such that f^{-1} is continuous Compact

 $\exists K \subset (X, \tau), \forall$ open cover K includes a finite subcover $\iff K$ is compact

Theorem 11 (Weierstrass theorem). Every continuous function from topological space to another carries compact sets to compact sets.

5 LINEAR ALGEBRA

6 FIXED POINT

7 LATITICE AND SUPER-MODULARITY

8 STATIC OPTIMIZATION

 $\begin{array}{c} {\rm Lagrangian~method} \\ {\rm KKT~method} \end{array}$

9 DYNAMIC OPTIMIZATION

Hamiltonian method Bellman method Discrete time optimization