Mathematics for Economists Kapitel 5 – Sædvanlige Differentialligninger af Første Orden

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 5

- Introduktion (5.1)
- Retningsfelter (5.2)
- Separable DL (5.3)
- Lineære DL af første orden (5.4)
- Substitution (5.6)
- Kvalitativ Teori (5.7)

5.6 Substitution

5.6 Substitution

Nogle gange kan substitution hjælpe med at bringe DL i løsbare form.

Eksempel

Betragt Bernoullis ligning:

$$\dot{x} + a(t)x = b(t)x^r,$$

 $r\in\mathbb{R}$ og a(t), $b(t)\in C^1$. DLen er lineær hvis r=0,1 og separabel hvis r=1: $\dot{x}+(a(t)-b(t))x=0$. Den almindelige form for $r\neq 1$ kan løses ved substitution: Dividér DLen med x^r :

$$x^{-r}\dot{x} + a(t)x^{1-r} = b(t).$$

Introducér substitutionen $z = x^{1-r}$, så gælder det at

$$\dot{z} = (1 - r)x^{-r}\dot{x}.$$

DLen bliver til

$$\frac{1}{1-r}\dot{z}+a(t)z=b(t),$$

som er en lineær DL for z = z(t).

5.7 Kvalitativ Teori og Stabilitet

5.7 Kvalitativ Teori og Stabilitet

Mange DL i økonomien kan udtrykkes som autonome ligninger

$$\dot{x} = F(x)$$

For at studere egenskaberne for løsningerne betragter man fasediagrammet.

Figure 1

Et punkt a siges at repræsentere en **ligevægtstilstand** eller **steady state** hvis F(a) = 0. I dette tilfælde er $x(t) \equiv a$ en løsning.

Eksemplet i Fig. 1 har en ligevægtstilstand a, som kaldes for **global asymptotisk stabil**, fordi hvis x(t) er en løsning for $\dot{x} = F(x)$ med $x(t_0) = x_0$, så vil x(t) altid konvergere mod punktet x = a for hvert begyndelsespunkt (t_0, x_0) .

5.7 Kvalitativ Teori og Stabilitet

Figure 2 a_1 is a locally stable equilibrium state for $\dot{x} = F(x)$, whereas a_2 is unstable.

Figure 3 A corresponding directional diagram and some solution curves for $\dot{x} = F(x)$.

I Fig. 2 er der to ligevægte, a_1 og a_2 . Man siger at a_1 er en **lokal asymptotisk stabil ligevægt**, hvorimod a_2 er **ustabil**.

- (a) F(a) = 0 og $F'(a) < 0 \Rightarrow a$ er en lokal asymptotisk stabil ligevægt.
- (b) F(a) = 0 og $F'(a) > 0 \Rightarrow a$ er en ustabil ligevægt.