Presentation on

Nucleic acid therapeutics based on biotechnology

Course Code: BMB553

Presented by

Shamrat Kumar Paul

Graduate Student

ID: 20151216025

Dept. of Biochemistry and Molecular Biology Life Science Faculty

Life Science Faculty

Bangabandhu Sheikh Mujibur Rahman

Science and Technology University

Gopalganj-8100, Bangladesh

Presented to

Mahbub Hasan, PhD

Professor (Assistant)

Dept. of Biochemistry and Molecular Biology

Bangabandhu Sheikh Mujibur Rahman

Science and Technology University

Gopalganj-8100, Bangladesh

Nucleic acid therapeutics based on biotechnology

Introduction

Half a century ago;

- Friedmann and Roblin conceptualilzed that, (dysfunctional gene products) are cause of inherited disorders
- It could be treated by introducing a functional gene copy.

And today;

- COVID-19 is being treated by nucleic acid therapeutics
- Conventional drugs targeting proteins.
- Whereas, genetic drugs modulate **gene expression**.
- And giving long term therapeutic effects/cure.

Four platforms based on biotechnologies:

- 1. **ASOs**; chemically modified antisense oligonucleotides (ASOs)
- 2. **GalNAc-siRNA**; acetylgalactosamine (GalNAc) ligand-modified short interfering RNA (siRNA) conjugates,
- 3. LNPs; lipid nanoparticles (LNPs),
- 4. AAV; adeno-associated virus (AAV) vectors

Li, H., Yang, Y., Hong, W. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther 5, 1 (2020). https://doi.org/10.1038/s41392-019-0089-y

Properties and Classification

Source: Sridharan K, Gogtay NJ. Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol. 2016;82(3):659-672. doi:10.1111/bcp.12987

Delivery technologies

ASOs

- Improve nuclease resistance
- alter circulation characteristics
- modulate immunological properties

LNP containing GalNAc-siRNA

- Terminal **GalNAc** covalently linked to **siRNA**
- The (GalNAc)3 ligand enable hepatocyte-specific targeting of siRNA via the asialoglycoprotein receptor.

AAV vector

- containing a 4.7-kb ssDNA
- with inverted terminal repeats (ITR)

Routes of administration and modes of action

Kulkarni, J.A., Witzigmann, D., Thomson, S.B. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021). https://doi.org/10.1038/s41565-021-00898-0

Challenges and Conclusive

Challenges:

- Susceptible to degradation by nucleases
- Contribute to immune activation
- having unfavourable physicochemical characteristic prevent facile transmission into cells
- For safe and effectiveness required **sophisticated delivery platform** technologies

To conclude:

- Transform therapeutics approches from intriguing **theory** into clinical **reality**.
- These therapeutics aim to treat orphan diseases,
- Their delivery technologies have enabled rapid vaccine development in times of a pandemic (COVID19).
- In addition, these emerging therapeutics are **facilitating** the **clinical translation** of novel approaches, such as **gene-editing therapeutics**.
- It is clear that nucleic acid therapeutics are poised to have a revolutionary impact on many diseases that previously had limited or no treatment options.

Thank you for your attention

