Department of Computer Science and Engineering

Examination: Midterm
Duration: 60 Minutes
No. of Questions: 3

Semester: Summer 2022
Full Marks: 20
No. of Pages: 2

Name:	ID:	Section:
(Please write in CAPITAL LETTERS)		

A

- ✓ Use the back part of the answer script for rough work. No washroom breaks.
- ✓ At the end of the exam, put the question **paper** inside the answer script and **return both**.

Question 1: CO2, CO4 [4 Points]

Design the **Exam** class with necessary properties so that the given output is produced:

#Write your code here	Output:
e1 = Exam('Midterm', 2, 10)	Exam Type: Midterm Number of questions: 2
print(e1.detail())	Marks per questions: 10
print("======"")	Total Marks: 20
e2 = Exam('Final', 3, 10)	Exam Type: Final Number of questions: 3
print(e2.detail())	Marks per questions: 10
	Total Marks: 30

Question 2: CO4 [6 Points]

1	class MidA:
2	<pre>definit(self):</pre>
3	self.x = 3
4	self.y = 7
5	self.sum = 0
6	<pre>def methodA(self, x):</pre>
7	self.y = x + self.sum + self.x
8	self.sum = x + self.y
9	z = MidA()
10	z.sum = self.sum + self.y
11	self.methodB(z)
12	<pre>print(self.x, self.y, self.sum)</pre>
13	<pre>def methodB(self, a):</pre>
14	y = 3
15	a.x = self.x + self.sum;
16	self.sum = a.x + a.y + y
17	<pre>print(a.x, a.y, a.sum)</pre>

Illustrate the output of the following statements:			
a = MidA()			
a.methodA(5)			
Output [Answer on question paper]			
[Allswer C	n questi	on paper j	

Suppose you are making a program for a Television remote control named "RickMote". The TV channel provider has **provided only 6 channels** where the corresponding channel numbers are **0,2,3,6,7,9**. This is a vital information as you might need to store the list of channel numbers in an instance variable. Now your task is to **design** the "**RickMote**" class in such a way that the expected output is produced for the given code below: [Hint:

- The channel numbers are not circular. So, channel number 0 is the first channel while 9 is the last. You cannot go below channel number 0 and beyond channel number 9.
- If power is turned off, there is no point in changing channel and volume.
- Increasing channel number means going to the next channel in the channel list and decreasing it means going to the previous channel in the channel list.]

#Write your code here	Output:
oTV = RickMote()	1.#####################################
oTV.power()	ID Cable Box Status:
print("1.################")	Cable Box is: ON Channel:0
oTV.showInfo()	Volume:3
print("2.###############")	2.#####################################
oTV.changeChannel()	ID Cable Box Status:
oTV.changeVolumeLevel()	Cable Box is: ON Channel:2
oTV.showInfo()	Volume:4
print("3.###############")	3.#####################################
	ID Cable Box Status:
oTV.power()	Cable Box is: OFF
oTV.showInfo()	4.#####################################
print("4.################")	ID Cable Box Status:
oTV.power()	Cable Box is: ON
oTV.changeVolumeLevel(4)	Channel:3 Volume:8
oTV.changeChannel(3)	5.####################################
oTV.showInfo()	ID Cable Box Status:
	Cable Box is: ON
print("5.##############")	Channel:3
oTV.changeVolumeLevel(-2)	Volume:6
oTV.showInfo()	6.#####################################
print("6.################")	Power is turned off. Cannot change channel. Power is turned off. Cannot change volume.
oTV.power()	ID Cable Box Status:
oTV.changeChannel(9)	Cable Box is: OFF
oTV.changeVolumeLevel(-1)	7.####################################
oTV.showInfo()	ID Cable Box Status:
print("7.###############")	Cable Box is: ON
oTV.power()	Channel:3
oTV.changeChannel(11)	Volume:6
oTV.showInfo()	

Department of Computer Science and Engineering

Examination: Midterm
Duration: 60 Minutes
No. of Questions: 3

Semester: Summer 2022
Full Marks: 20
No. of Pages: 2

Name:	ID:	Section:
(Please write in CAPITAL LETTERS)		

- ✓ Use the back **part** of the answer script for rough work. **No washroom breaks.**
- ✓ At the end of the exam, put the question **paper** inside the answer script and **return both**.

Question 1: CO2, CO4 [4 Points]

Design the **Exam** class with necessary properties so that the given output is produced:

#Write your code here Output: Exam Type: Midterm e1 = Exam('Midterm', 2, 10)Number of questions: 2 Marks per questions: 10 print(e1.detail()) Total Marks: 20 print("======="") _____ Exam Type: Final e2 = Exam('Final', 3, 10)Number of questions: 3 print(e2.detail()) Marks per questions: 10 Total Marks: 30

Question 2: CO4 [6 Points]

1	class MidA:
2	<pre>definit(self):</pre>
3	self.x = 5
4	self.y = 3
5	self.sum = 0
6	<pre>def methodA(self, x):</pre>
7	self.y = x + self.sum + self.x
8	self.sum = x + self.y
9	z = MidA()
10	z.sum = self.sum + self.y
11	self.methodB(z)
12	<pre>print(self.x, self.y, self.sum)</pre>
13	<pre>def methodB(self, a):</pre>
14	y = 4
15	a.x = self.x + self.sum;
16	self.sum = a.x + a.y + y
17	<pre>print(a.x, a.y, a.sum)</pre>

following statements:			
a = MidA()			
a.methodA(6)			
Output [Answer on question paper]			

Suppose you are making a program for a Television remote control named "RickMote". The TV channel provider has **provided only 6 channels** where the corresponding channel numbers are **0,2,3,6,7,9**. This is a vital information as you might need to store the list of channel numbers in an instance variable. Now your task is to **design** the "**RickMote**" class in such a way that the expected output is produced for the given code below: [Hint:

- The channel numbers are not circular. So, channel number 0 is the first channel while 9 is the last. You cannot go below channel number 0 and beyond channel number 9.
- If power is turned off, there is no point in changing channel and volume.
- Increasing channel number means going to the next channel in the channel list and decreasing it means going to the previous channel in the channel list.]

#Write your code here	Output:
oTV = RickMote()	1.#####################################
oTV.power()	ID Cable Box Status:
print("1.################")	Cable Box is: ON Channel:0
oTV.showInfo()	Volume:3
print("2.###############")	2.#####################################
oTV.changeChannel()	ID Cable Box Status:
oTV.changeVolumeLevel()	Cable Box is: ON Channel:2
oTV.showInfo()	Volume:4
print("3.###############")	3.#####################################
	ID Cable Box Status:
oTV.power()	Cable Box is: OFF
oTV.showInfo()	4.#####################################
print("4.################")	ID Cable Box Status:
oTV.power()	Cable Box is: ON
oTV.changeVolumeLevel(4)	Channel:3 Volume:8
oTV.changeChannel(3)	5.####################################
oTV.showInfo()	ID Cable Box Status:
	Cable Box is: ON
print("5.##############")	Channel:3
oTV.changeVolumeLevel(-2)	Volume:6
oTV.showInfo()	6.#####################################
print("6.################")	Power is turned off. Cannot change channel. Power is turned off. Cannot change volume.
oTV.power()	ID Cable Box Status:
oTV.changeChannel(9)	Cable Box is: OFF
oTV.changeVolumeLevel(-1)	7.####################################
oTV.showInfo()	ID Cable Box Status:
print("7.###############")	Cable Box is: ON
oTV.power()	Channel:3
oTV.changeChannel(11)	Volume:6
oTV.showInfo()	

BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Midterm **Duration**: 60 Minutes

CSE 111: Programming Language

II

Semester: Fall 2022 Full Marks: 20 No. of Pages: 2

Name:

No. of

Questions: 3

(Please write in CAPITAL LETTERS)

ID:

Section:

- ✓ Use the back part of the answer script for rough work. No washroom breaks.
- ✓ At the end of the exam, put the question paper inside the answer script and return both.

Question 1: CO2 [4 Points]

Design the "**Spotify**" class with required properties to produce the given output for the provided driver code.

#Write your code here

rock= Spotify("Heavy Metal", "This Fire Burns", "Here I Am")
print(rock.show_playlist())

Output:

Genre: Heavy Metal

Song list: This Fire Burns, Here I Am

Question 2: CO4 [6 Points]

1	class MidA:
2	<pre>definit(self):</pre>
3	self.x = 4
4	self.y = 1
5	self.sum = 3
6	<pre>def methodA(self, x):</pre>
7	self.y = self.sum + self.x + x
8	self.sum = x + self.y
9	d = MidA()

Illustrate the output of the following statements:

- a = MidA()
- a.methodA(4)
- a.methodB(a, 99)

10	d.sum = self.sum + self.methodB(d)
11	<pre>print(self.x, self.y, self.sum)</pre>
12	<pre>def methodB(self, t, z=0):</pre>
13	y = 3
14	t.x = self.x + self.sum
15	self.sum = t.x + t.y + y
16	<pre>print(t.x, t.y, t.sum)</pre>
17	if z == 0:
18	return t.sum

Implement the "PizzaMachine" class with necessary properties, so that the given output is produced for the provided driver code.

[Hint:

- 1. The Pizza machine can only bake pizzas of 3 spice levels: Regular, Hot and Super Naga.
- 2. Pizza cannot be baked if no toppings are specified.
- 3. "type(variable)" function returns the data type of the variable passed to it as an argument. You may need it.]

#Write your code here pizza1 = PizzaMachine() order1 = pizza1.customizePizza(["Cheese", "Pepperoni"], "Hot") print("1################"") print(order1) print("2======="") pizza2 = PizzaMachine("Vege") order2 = pizza2.customizePizza("Super Naga") print("3################") print(order2) print("4======="") pizza3 = PizzaMachine("Chicken Blast",12) order3 = pizza3.customizePizza(["Mushroom"]) print("5######################") print(order3) print("6======="") pizza4 = PizzaMachine("Beef Bonanza",16) order4 = pizza4.customizePizza(["Cheese","Beef kala bhuna"],"Mild") print("7#################") print(order4) print("8======="")

Output:

BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Midterm **Duration**: 60 Minutes

CSE 111: Programming Language
II

Semester: Fall 2022 Full Marks: 20 No. of Pages: 2

No. of **Questions**: 3

D			
D	Name:	ID:	
	(Please write in CAPITAL LETTERS)		Section:

- ✓ Use the back part of the answer script for rough work. No washroom breaks.
- ✓ At the end of the exam, put the question paper inside the answer script and return both.

Question 1: CO2 [4 Points]

Design the "**Spotify**" class with required properties to produce the given output for the provided driver code.

```
#Write your code here

rock= Spotify("Heavy Metal", "This Fire Burns", "Here I Am")

print(rock.show_playlist())

Output:

Genre: Heavy Metal

Song list: This Fire Burns, Here I Am
```

Question 2: CO4 [6 Points]

1	class MidB:
2	<pre>definit(self):</pre>
3	self.x = 3
4	self.y = 0
5	self.sum = 5
6	<pre>def methodA(self, x):</pre>
7	self.y = self.sum + self.x + x
8	self.sum = x + self.y
9	d = MidB()

Illustrate the output of the following
statements:
b = MidB()
b.methodA(6)
b.methodB(b, 99)

Page 1 of 2

10	d.sum = self.sum + self.methodB(d)
11	<pre>print(self.x, self.y, self.sum)</pre>
12	<pre>def methodB(self, t, z=0):</pre>
13	y = 3
14	t.x = self.x + self.sum
15	self.sum = t.x + t.y + y
16	<pre>print(t.x, t.y, t.sum)</pre>
17	if z == 0:
18	return t.sum

Implement the "PizzaMachine" class with necessary properties, so that the given output is produced for the provided driver code.

[Hint:

- 1. The Pizza machine can only bake pizzas of 3 spice levels: Regular, Hot and Super Naga.
- 2. Pizza cannot be baked if no toppings are specified.
- 3. "type(variable)" function returns the data type of the variable passed to it as an argument. You may need it.]

#Write your code here pizza1 = PizzaMachine() order1 = pizza1.customizePizza(["Cheese", "Pepperoni"], "Hot") print("1################"") print(order1) print("2======="") pizza2 = PizzaMachine("Vege") order2 = pizza2.customizePizza("Super Naga") print("3################") print(order2) print("4======="") pizza3 = PizzaMachine("Chicken Blast",12) order3 = pizza3.customizePizza(["Mushroom"]) print("5######################") print(order3) print("6======="") pizza4 = PizzaMachine("Beef Bonanza",16) order4 = pizza4.customizePizza(["Cheese","Beef kala bhuna"],"Mild") print("7#################") print(order4) print("8======="")

Output:

Department of Computer Science and Engineering

Examination: Midterm
Duration: 60 Minutes
No. of Questions: 3

Semester: Spring 2023
Full Marks: 20
No. of Pages: 2

Name:	ID:	Section:
(Please write in CAPITAL LETTERS)		

✓ Use the back part of the answer script for rough work. No washroom breaks.

Question 1: CO2 [4 Points]

Design the "**CoffeeMachine**" class with required properties to produce the given output for the provided driver code.

```
#Write your code here

cm1 = CoffeeMachine("Miyako")
cm1.insertIngredients("Coffee beans", "Milk", "Sugar")
print(cm1.getDetails())

Output:

Brand Name: Miyako
Ingredients: Coffee beans, Milk, Sugar
```

Question 2: CO4 [6 Points]

1	class MidA:
2	definit(self):
3	self.y,self.z,self.sum = 2,3,-1
4	def m1(self, mg2, mg1=2):
5	x = 0
6	self.y = self.y + mg2[0]
7	x += 33 + mg1
8	self.sum += x + self.y
9	mg2[0] = self.y + mg1
10	mg1 = mg1 + x + 2
11	<pre>print(x, self.y, self.sum)</pre>
12	def m2(self, y=3):
13	mid = [0]
14	mid[0] = 7
15	self.m1(mid, mid[0])
16	z = y + mid[0]
17	y = self.y + mid[0]
18	self.sum = z + y + mid[0]
19	<pre>print(z, y, self.sum)</pre>

a.m1([6])				
a.m2()				
	Output			
[Answer on question paper]				
		<u> </u>		
		97		
25		84		

Illustrate the output of the

following statements:

a = MidA()

[✓] At the end of the exam, put the question **paper** inside the answer script and **return both**.

Design the **Sphere** class such that the following output is produced. **Hints**:

- 1. Volume of the sphere = $\frac{4}{3} * \pi * r^3$, where r = radius of the sphere and π = 3.1416.
- 2. Merging spheres together conserves the total volume. The volume of the bigger sphere can be calculated by adding the volume of the spheres being merged. [see pictures for details]. Pay attention to how the object is updated.
- 3. When spheres of different colors are merged together then the merged sphere will have 'Mixed Color' instead of one particular color.
- 4. Your code should work for any number of Sphere objects passed to the merge_sphere() method.
- 5. You do not need to worry about how many digits should be printed after the decimal point.
- 6. The default value of the radius r is 1.

#Write your code here

```
sphere1 = Sphere("Sphere 1")
print("1***********")
sphere1.printDetails()
print("2***********")
sphere2 = Sphere("Sphere 2", 3)
print("3***********")
sphere2.printDetails()
print("4**********")
sphere3 = Sphere("Sphere 3", 2)
print("5***********")
sphere3.printDetails()
print("6***********")
sphere3.merge sphere(sphere1,sphere2)
print("7***********")
sphere3.printDetails()
print("8***********")
sphere4 = Sphere("Sphere 4", 5, "Purple")
print("9**********")
sphere4.merge_sphere(sphere3)
print("10***********")
sphere4.printDetails()
```

Output:

1****** Sphere ID: Sphere 1 Color: White Volume: 4.1888 2********* 3********* Sphere ID: Sphere 2 Color: White Volume: 113.09759999999999 4********** 5********** Sphere ID: Sphere 3 Color: White Volume: 33.5104 6******* Spheres are being merged 7*********

7*************

Sphere ID: Sphere 3

Color: White

Volume: 150.7968

8***********

9***********

Spheres are being merged

10*************

Sphere ID: Sphere 4 Color: Mixed Color

Volume: 674.3967999999999

Department of Computer Science and Engineering

Examination: Midterm
Duration: 60 Minutes
No. of Questions: 3

Semester: Spring 2023
Full Marks: 20
No. of Pages: 2

Name:	ID:	Section:
(Please write in CAPITAL LETTERS)		

✓ Use the back part of the answer script for rough work. No washroom breaks.

Question 1: CO2 [4 Points]

Design the "**CoffeeMachine**" class with required properties to produce the given output for the provided driver code.

```
#Write your code here

cm1 = CoffeeMachine("Miyako")
cm1.insertIngredients("Coffee beans", "Milk", "Sugar")
print(cm1.getDetails())

Output:

Brand Name: Miyako
Ingredients: Coffee beans, Milk, Sugar
```

Question 2: CO4 [6 Points]

1	class MidB:
2	<pre>definit(self):</pre>
3	<pre>self.y,self.z,self.sum = 3,2,-1</pre>
4	<pre>def m1 (self, mg2, mg1=2):</pre>
5	x = 0
6	self.y = self.y + mg2[0]
7	x += 23 + mg1
8	self.sum += x + self.y
9	mg2[0] = self.y + mg1
10	mg1 = mg1 + x + 4
11	<pre>print(x, self.y, self.sum)</pre>
12	<pre>def m2(self, y=3):</pre>
13	mid = [0]
14	mid[0] = 5
15	<pre>self.m1(mid, mid[0])</pre>
16	z = y + mid[0]
17	y = self.y + mid[0]
18	self.sum = z + y + mid[0]
19	<pre>print(z, y, self.sum)</pre>

a.m1([8])
a.m2()

Output
[Answer on question paper]

79
24
82

Illustrate the output of the

following statements:

a = MidB()

R

[✓] At the end of the exam, put the question **paper** inside the answer script and **return both**.

Design the **Sphere** class such that the following output is produced. **Hints**:

- 1. Volume of the sphere = $\frac{4}{3} * \pi * r^3$, where r = radius of the sphere and π = 3.1416.
- 2. Merging spheres together conserves the total volume. The volume of the bigger sphere can be calculated by adding the volume of the spheres being merged. [see pictures for details]. Pay attention to how the object is updated.
- 3. When spheres of different colors are merged together then the merged sphere will have 'Mixed Color' instead of one particular color.
- 4. Your code should work for any number of Sphere objects passed to the merge_sphere() method.
- 5. You do not need to worry about how many digits should be printed after the decimal point.
- 6. The default value of the radius r is 1.

#Write your code here

```
sphere1 = Sphere("Sphere 1")
print("1***********")
sphere1.printDetails()
print("2***********")
sphere2 = Sphere("Sphere 2", 3)
print("3***********")
sphere2.printDetails()
print("4**********")
sphere3 = Sphere("Sphere 3", 2)
print("5***********")
sphere3.printDetails()
print("6***********")
sphere3.merge sphere(sphere1,sphere2)
print("7***********")
sphere3.printDetails()
print("8***********")
sphere4 = Sphere("Sphere 4", 5, "Purple")
print("9**********")
sphere4.merge_sphere(sphere3)
print("10***********")
sphere4.printDetails()
```

Output:

1****** Sphere ID: Sphere 1 Color: White Volume: 4.1888 2********* 3********* Sphere ID: Sphere 2 Color: White Volume: 113.09759999999999 4********** 5********** Sphere ID: Sphere 3 Color: White Volume: 33.5104 6******* Spheres are being merged 7********* Sphere ID: Sphere 3 Color: White Volume: 150.7968 **8************** 9******

Spheres are being merged