Trabalho Prático 2

Análise de Séries Temporais - 1/2023

Ana Carolina Vianna - 18/0097261

César Augusto Galvão - 19/0011572

Yan Flávio Vianna - 14/0166149

Table of contents

Introdução: série selecionada, características e decomposição	2
Modelos ARIMA: seleção, transformações e resíduos	3
Modelo sem transformação	3
Modelo com transformação	
Modelos ETS: seleção, transformações e resíduos	7
Modelo sem transformação	7
Modelo com transformação	8
Estudo de desempenho preditivo	10
Resultados da Janela Deslizante	10
Performance em relação aos horizontes de previsão	10
Resultados	10
Apêndice	10

Introdução: série selecionada, características e decomposição

A série temporal escolhida foi a de número *id* correspondente a 2183. De acordo com a definição do próprio pacote, refere-se a *Fluid power shipments - hydraulic index*. Foram realizadas medidas mensais de 1983 a 1992 e o horizonte de previsão requerido é das 18 ocorrências seguintes.

O gráfico da série, com in e out-sample, é exposto a seguir.

Série Temporal M3-2183

A série aparenta ter dois períodos, pelo menos: um ciclo anual e outro que compreende um período maior. No entanto, ao se tentar decompor a série com múltiplas sazonalidades, obté-se o seguinte:

- Adicionando uma componente sazonal com ciclo menor que 1 ano uma das componentes sazonais apresenta heteroscedasticidade;
- Adicionando uma componente sazonal com ciclo maior que 1 ano resíduos apresentam periodicidade ou heteroscedasticidade.

Optou-se portanto pela decomposição STL (apesar de os dados terem inicialmente formado um objeto msts) apenas com a sazonalidade anual, mas fica evidente que esta decomposição não é adequada quando se avalia a componente de tendência, que aparenta ainda carregar algum componente periódico. Os resíduos aparentam um comportamento aleatório e têm média -0.104, o que é próximo de zero o suficiente considerando a magnitude dos dados da série. A decomposição é exposta a seguir.

Modelos ARIMA: seleção, transformações e resíduos

Modelo sem transformação

Seleção

Primeiramente, utilizou-se as funções ndiffs() e nsdiffs() do pacote forecast para identificar quantas diferenças simples e sazonais seriam necessárias para que a série se tornasse estacionária. Concluiu-se pelo resultado dessas funções que são necessárias uma diferenciação simples e uma sazonal. O teste KPSS confirma isso ao não rejeitar a hipótese nula de estacionariedade da série (com diferenças já aplicadas) ao nível de 5% de significância.

	Estatística	p-valor
KPSS Test for Level Stationarity	0.11	0.1

Prosseguimos com a seleção do melhor modelo ARIMA avaliando os gráficos de ACF e PACF. O primeiro parece apresentar quebra no primeiro lag sazonal, enquanto o segundo tem quebra no segundo lag simples. Entretanto, como não fica nítido um comportamento de queda amortizada, preferiu-se utilizar outro critério para a seleção do modelo.

Optou-se pela varredura de combinações de p, q, P e Q, com d e D fixados em 1, como resultado das diferenciações ja avaliadas. Utilizando o critério de Akaike corrigido, seleciona-se o modelo ARIMA $(2,1,2)\times(0,1,2)_{12}$ para a série, que possui o menor escore entre os modelos testados.

Ao se utilizar a função auto.arima(), recebe-se um modelo sugerido ARIMA $(2,1,2) \times (2,1,0)_{12}$, porém com AICc superior àquele identificado na varredura. Opta-se pelo modelo selecionado manualmente.

Resíduos

Foram retirados os zeros da inicialização para possibilitar a análise dos resíduos. Observa-se pelo gráfico que os resíduos são aleatórios e aparentemente centrados em zero, com variação constante. Além disso, verifica-se uma distribuição aproximadamente normal, mas com caudas mais pesadas. Finalmente, o gráfico ACF apresenta que a autocorrelação dos resíduos está, em sua grande maioria, dentro da banda de confiança, com exceção de um ponto, que extrapola ligeiramente a margem.

Por fim, realiza-se testes de hipótese para independência e normalidade (o teste KPSS para estacionariedade já foi apresentado) e seus resultados são apresentados na tabela a seguir. De fato, o teste de Shapiro-Wilk não rejeita a normalidade da distribuição dos resíduos apesar de o gráfico QQ apresentar caudas pesadas. Além disso, o teste Ljung-Box com *lag* igual a 15 também não rejeita a independência entre os resíduos e, consequentemente, os dados da série.

	Estatística	p-valor	Lag
Box-Ljung test	8.90	0.88	15
Shapiro-Wilk normality test	0.99	0.35	

Modelo com transformação

Seleção

Foi utilizada a função BoxCox.lambda() do pacote forecast para decidir de forma automatizada o melhor valor de lambda para a transformação de Box-Cox. A função sugere um valor de $\lambda = 0.71$.

Apesar de haver uma sugestão de transformação, não é possível avaliar graficamente se houve uma diferença significativa no comportamento da série temporal excetuando-se a escala, como se pode ver nos eixos dos gráficos a seguir.

Série transformada

Após aplicar a tranformação de Box-Cox na série, utilizou-se as funções ndiffs() e nsdiffs() para identificar quantas diferenciações simples e sazonais seriam necessárias para que a série se torne estacionária. Concluiu-se que são necessárias uma diferenciações simples e uma diferenciações sazonal, o que é confirmado pelo resultado do teste KPSS nos resíduos da série com as diferenças já aplicadas.

	Estatística	p-valor
KPSS Test for Level Stationarity	0.12	0.1

O gráfico da ACF parece apresentar quebra no primeiro lag sazonal, enquanto o PACF tem quebra no segundo lag simples. Entretanto, os gráficos não evidenciam comportamentos claros para a série. Novamente, os resíduos parecem ter média igual a zero.

Foram testadas combinações de p, q, P e Q, com d e D fixados em 1 e, em seguida, selecionouse o modelo ARIMA que apresentava menor valor do AICc. Temos, então, que o modelo escolhido para a série transformada é um ARIMA $(2,1,2) \times (0,1,2)_{12}$, assim como no caso da série sem transformação. Utilizando-se a função auto.arima() recebe-se uma sugestão de um modelo $ARIMA(3,1,1) \times (2,1,0)_{12}$ mas, assim como ocorre no modelo sem transformação, opta-se pelo modelo selecionado manualmente por apresentar um AICc menor.

Resíduos

Foram retirados os zeros da inicialização para seguir com a análise dos resíduos. O gráfico da série dos resíduos sugere aleatoriedade e o QQ plot distribuição aproximadamente normal. Por último, o gráfico ACF mostra que a autocorrelação dos resíduos está dentro da banda de confiança, com exceção de um ponto que excede um pouco este limite.

Assim como ocorre para a série não transformada, os testes de Shapiro-Wilk e Ljung-box com lag igual a 15 não apresentam indicação para rejeição de suas hipóteses nulas. Isto é, pode-se dizer que a série transformada tem distribuição normal e seus resíduos são independentes.

	Estatística	p-valor	Lag
Box-Ljung test	8.41	0.91	15
Shapiro-Wilk normality test	0.98	0.23	

Modelos ETS: seleção, transformações e resíduos

Modelo sem transformação

Seleção

Iniciamos a exploração do modelo

Modelo	AIC	AICc	BIC
$\mathrm{ETS}(\mathrm{M},\mathrm{Ad},\mathrm{M})$	1761.30	1768.36	1810.87
ETS(M,M,M)	1761.94	1769.00	1811.51
ETS(A,Ad,A)	1764.25	1771.30	1813.81
ETS(M,Ad,A)	1767.73	1774.78	1817.29
ETS(M,A,M)	1769.04	1775.29	1815.86
ETS(A,A,A)	1771.20	1777.44	1818.01

Decomposition by ETS(M,Ad,M) method

Resíduos

Modelo com transformação

Seleção

a série com transformacao

Série com transformação Box-Cox $\lambda = 0.712$

decomposicao

Decomposição da série com transformação Box-Cox

selecao do modelo com transformação

Modelo transformado	AIC	AICc	BIC
$\mathrm{ETS}(\mathrm{M},\mathrm{Ad},\mathrm{M})$	1761.30	1768.36	1810.87
ETS(M,M,M)	1761.94	1769.00	1811.51
$\mathrm{ETS}(\mathrm{Ad},\!\mathrm{A},\!\mathrm{A})$	1764.25	1771.30	1813.81
ETS(M,Ad,A)	1767.73	1774.78	1817.29
ETS(M,A,M)	1769.04	1775.29	1815.86
$\mathrm{ETS}(\mathrm{A,A,A})$	1771.20	1777.44	1818.01

OS MODELOS SAO OS MESMO, PODEMO SELECIONAR O SEGUNDO MELHOR

Resíduos

Estudo de desempenho preditivo

Resultados da Janela Deslizante

Performance em relação aos horizontes de previsão

ARIMA

ETS

Resultados

apresente em tabelas e gráficos as previsões dos 4 modelos selecionados e também apresente em uma tabela os resultados de acurácia dos 4 modelos selecionados e dos modelos benchmarks. Comente os resultados de modo objetivo;

Apêndice

Todo o projeto de composição deste documento pode ser encontrado aqui: https://github.com/cesar-galvao/trabalhos_series_temporais