Regular expressions

Regular languages

Sipser 1.3 (pages 63-76)

Last time...

Regular expressions

• Definition 1.52:

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ
- 2. ε
- 3. Ø
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions
- 6. (R_1^*) , where R_1 is a regular expression

Regular expressions and NFAs

- Theorem 1.54: A language is regular if and only if some regular expression describes it.
- Proof (⇐)
 - 1. If $a \in \Sigma$, then a is regular.
 - 2. ε is regular.
 - 3. Ø is regular.
 - 4. If R_1 and R_2 are regular, then $(R_1 \cup R_2)$ is regular.
 - 5. If R_1 and R_2 are regular, then $(R_1 \circ R_2)$ is regular.
 - 6. If R_j is a regular, then (R_j^*) is regular

Today...

Going forward

 Theorem 1.54: A language is regular if and only if some regular expression describes it.

Mount Holyoke College

Generalized NFA

Proof

DFA to GNFA...

- Step 1: Add a unique start state with an *\varepsilon* jump to the original one
- Step 2: Add a unique accept state with *s* jumps from the previous accept states
- Step 3: Convert multiple labels to U
- Step 4: Add Ø jumps for any transition that's missing

Induction step: rip a state

A simple example

