Sungguk Cha 4 April 2022

Contents

- Introduction to Human Interaction Recognitions
- Benchmarks
- General Approaches

Fundamental visual recognition techniques are insufficient for HIR.

Fundamental visual recognition techniques are insufficient for HIR.

E.g., we want to recognize if a man is calling (talking on the phone)

Fundamental visual recognition techniques are insufficient for HIR.

E.g., we want to recognize if a man is calling (talking on the phone)

Figure. Man holding the phone

Fundamental visual recognition techniques

E.g., we want to recognize if a man is callir

First, we may detect human and phone.

Figure. Man talking on the phone

Figure. Man holding the phone

Fundamental visual recognition techniques

E.g., we want to recognize if a man is callir

First, we may detect human and phone. Next, we need to determine if the man is calling.

Figure. Man talking on the phone

Figure. Man holding the phone

Fundamental visual recognition techniques

E.g., we want to recognize if a man is callir

First, we may detect human and phone. Next, we need to determine if the man is calling. Technically, we can handle it naively.

Figure. Man talking on the phone

Algorithm: Determine If Calling

Given human and phone

display_side <- find_phone_display_side(phone)
cheek <- find_cheek()</pre>

if *cheek* is not *None* and *phone* is close to *cheek* and *phone*'s *display_side* is toward *cheek* and

else if ...

gure. Man holding the phone

Fundamental visual recognition techniques

E.g., we want to recognize if a man is callir

First, we may detect human and phone. Next, we need to determine if the man is calling. Technically, we can handle it naively.

It is impractical and expensive engineering.

Figure. Man talking on the phone

Algorithm: Determine If Calling

Given human and phone

display_side <- find_phone_display_side(phone)
cheek <- find_cheek()</pre>

if cheek is not None and phone is close to cheek and phone's display_side is toward cheek and

else if ...

gure. Man holding the phone

Fundamental visual recognition techniques

E.g., we want to recognize if a man is callir

First, we may detect human and phone. Next, we need to determine if the man is calling. Technically, we can handle it naively.

It is impractical and expensive engineering. Solution to the demand, **HIR** arises.

Figure. Man talking on the phone

Algorithm: Determine If Calling

Given human and phone

display_side <- find_phone_display_side(phone)
cheek <- find_cheek()</pre>

if *cheek* is not *None* and *phone* is close to *cheek* and *phone*'s *display_side* is toward *cheek* and

else if ...

gure. Man holding the phone

In this presentation, I present

- some benchmarks those are similar but different tasks
- each benchmark`s SOTA approach
- high-level explanation for general approaches

Benchmark section

General Approaches section

In this presentation, I present

- some benchmarks those are similar but different tasks
- each benchmark's SOTA approach
- high-level explanation for general approaches

Benchmark section

General Approaches section

I want you to think

"what is HIR",

and "how others have solved it?"

Benchmarks represent research field's objective.

Benchmarks represent research field's objective.

In this section, I introduce benchmarks along with their SOTA methods.

Benchmarks represent research field's objective.

In this section, I introduce benchmarks along with their SOTA methods.

I prepared 3 major benchmarks. Let's look into it.

- HICO
- HICO-DET
- V-COCO

Benchmarks represent research field's objective.

In this section, I introduce benchmarks along with their SOTA methods.

I prepared 3 major benchmarks. Let's look into it.

- HICO
- HICO-DET
- V-COCO

These three benchmarks are about human interaction understanding with common objects

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015 three highlight key features

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015

three highlight key features

diverse interactions

Dataset	#images	#actions	Sense	Clean
Sports event dataset [18]	1579	8	Y	Y
Ikizler et al. [11]	467	6	Y	Y
Ikizler-Cinbis et al. [12]	1727	5	Y	Y
The sports dataset [9]	300	6	Y	Y
Pascal VOC 2010 [6]	454	9	Y	Y
Pascal VOC 2011 [6]	2424	10	Y	Y
Pascal VOC 2012 [6]	4588	10	Y	Y
PPMI [33]	4800	12	Y	Y
Willow dataset [3]	968	7	Y	Y
Stanford 40 Actions [35]	9532	40	Y	Y
TBH dataset [23]	341	3	Y	Y
HICO (ours)	47774	600	Y	Y
89 action dataset [16]	2038	89	N	Y
TUHOI [17]	10805	2974	N	Y
MPII Human Pose [1]	40522	410	Y	Y
Google Image Search [24]	102830	2938	N	N

Table 2: Comparison of existing image datasets on action recognition. "Sense" means whether the category list is based on senses instead of words. "Clean" means whether the dataset is human verified.

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015

three highlight key features

- diverse interactions
- sense based Human-Object Interaction (HOI) categories
 - not word-based
 - e.g., "repair a bike", "fix a bicycle" are the same

Dataset	#images	#actions	Sense	Clean
Sports event dataset [18]	1579	8	Y	Y
Ikizler et al. [11]	467	6	Y	Y
Ikizler-Cinbis et al. [12]	1727	5	Y	Y
The sports dataset [9]	300	6	Y	Y
Pascal VOC 2010 [6]	454	9	Y	Y
Pascal VOC 2011 [6]	2424	10	Y	Y
Pascal VOC 2012 [6]	4588	10	Y	Y
PPMI [33]	4800	12	Y	Y
Willow dataset [3]	968	7	Y	Y
Stanford 40 Actions [35]	9532	40	Y	Y
TBH dataset [23]	341	3	Y	Y
HICO (ours)	47774	600	Y	Y
89 action dataset [16]	2038	89	N	Y
TUHOI [17]	10805	2974	N	Y
MPII Human Pose [1]	40522	410	Y	Y
Google Image Search [24]	102830	2938	N	N

Table 2: Comparison of existing image datasets on action recognition. "Sense" means whether the category list is based on senses instead of words. "Clean" means whether the dataset is human verified.

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015 three highlight key features

- diverse interacti
- sense based H(
 - o not word-
 - o e.g., "repa
- multilabeled!

Figure 1: The "Humans Interacting with Common Objects" (HICO) dataset.

Human Interacting with Common Objects

HICO: A Benchmark for Recognizing Human-Object Interactions in Images, Yu-Wei (UMICH) et al., ICCV2015

Figure 1: The "Humans Interacting with Common Objects" (HICO) dataset.

Task description

Figure 1: The "Humans Interacting with Common Objects" (HICO) dataset.

The task is multi-label classification.

E.g., categories are 'hold-bicycle', 'ride-bicycle', 'repair cell phone', ...

HICO HOI category

	#action	#HOI	#object	#action/object
MPII Human Pose [1]	410	102	66	1.55
HICO (ours)	520	520	80	6.50

Table 5: Comparison of action/HOI categories between MPII Human Pose [1] and our dataset (excluding "no interaction" classes).

- 80 objects (MSCOCO setting)
 - o E.g., 'hold-bicycle', 'ride-bicycle', 'repair cell phone', ...
- 520 HOI categories
 - o E.g., 'hold-bicycle', 'ride-bicycle', 'repair cell phone', ...

DEtection FRee (DEFR)

DEtection FRee (DEFR)

		Extra			
Rank Model	Model	mAP↑ Trai			
			Data		
1	DEFR	65.6	×	The	
				Rei	
2	HAKE	47.1	~	HA	
3	HAKE	46.3	~	Pa:	
4	Pairwise-Part	39.9	×	Pai	
	rall wise-ral t	37.7		Ob	

DEtection FRee (DEFR)

DEtection FRee (DEFR)

The Overlooked Classifier in Human-Object Interaction Recognition, Ying et al., 2021

2. Create dataset classifier from label text

I.e., DEFR = CLIP

+ their own loss (for multi-labeled classification)

DEtection FRee (DEFR)

In contrast to previous approaches, DEFR brought multi-modal (NLP knowledge) concept and got overwhelming performance.		mAP ↑ T	Extra raining Data	Papi	
	1	DEFR	65.6	×	The
	2	HAKE	47.1	~	НА
	3	HAKE	46.3	~	Pa:
	4	Pairwise-Part	39.9	×	Pai

HICO-DET

Human Interacting with Common Objects Detection

Learning to Detect Human-Object Interactions, Yu-Wei (UMICH) et al., WACV2018

HICO-DET Example

Figure 6: Sample annotations of our HICO-DET.

Task requires

- 1. detection humans and objects
- 2. matching human-object
- 3. classifying the interaction

HICO-DET Example

Figure 2: Generating human-object proposals from human and object detections.

This figure explains general approaches.

- 1. two-stage approach
 - a. first, detect
 - b. second, match and classify
- 2. one-stage approach
 - a. detect and classify at once
 - b. like detection transformer (DETR)

HICO-DET

Human Interacting with Common Objects Detection

Learning to Detect Human-Object Interactions, Yu-Wei (UMICH) et al., WACV2018

Contributions

HICO-DET

Human Interacting with Common Objects Detection

Learning to Detect Human-Object Interactions, Yu-Wei (UMICH) et al., WACV2018

Contributions

- The first large benchmark for HOI detection
 - by augmenting HICO classification with instance annotations

HICO-DET

Human Interacting with Common Objects Detection

Learning to Detect Human-Object Interactions, Yu-Wei (UMICH) et al., WACV2018

Contributions

- The first large benchmark for HOI detection
 - by augmenting HICO classification with instance annotations

-	ı
•	
4	,

	HICO-DET					
	#image #positive #instance		#bounding box			
Train	38118	70373	117871 (1.67/pos)	199733 (2.84/pos)		
Test	9658	20268	33405 (1.65/pos)	56939 (2.81/pos)		
Total	47776	90641	151276 (1.67/pos)	256672 (2.83/pos)		

Table 1: Statistics of annotations in our HICO-DET.

QAHOI

QAHOI

Rank	Model	mAP 1 Per Frame (ms)	Extra Training Data
1	QAHOI	35.78	×
2	UPT-R101-DC5	32.62 124	×
3	DEFR	32.35	×
4	UPT-R101	32.31 61	×
5	CDN (ResNet101)	32.07	×
6	UPT-R50	31.66 42	×

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection, Junwen and Keiji, 2021

Rank	Model	mAP ↑	Per Frame (ms)	Extra Training Data	
1	QAHOI	35.78		×	One-st (transfo
2	UPT-R101-DC5	32.62	124	×	
3	DEFR	32.35		×	
4	UPT-R101	32.31	61	×	
5	CDN (ResNet101)	32.07		×	
6	UPT-R50	31.66	42	×	

One-stage approach (transformer)

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection, Junwen and Keiji, 2021

Rank	Model	mAP ↑	Per Frame (ms)	Extra Training Data
1	QAHOI	35.78		×
2	UPT-R101-DC5	32.62	124	×
3	DEFR	32.35		×
4	UPT-R101	32.31	61	×
5	CDN (ResNet101)	32.07		×
6	UPT-R50	31.66	42	×

One-stage approach (transformer)

Two-stage approach

QAHOI

Rank	Model	Time Per Frame (ms)	Extra Training Data	
1	QAHOI	35.78	×	One-stage approach
2	UPT-R101-DC5	32.62 124	×	Two-stage approach
3	DEFR	32.35	×	CLIP based two-stage approach
4	UPT-R101	32.31 61	×	
5	CDN (ResNet101)	32.07	×	
6	UPT-R50	31.66 42	×	

QAHOI

QAHOI

BRAIN

QAHOI

Visual Semantic Role Labeling, Saurabh and Jitendra, 2015

V-COC Verbs in

Visual Semai

Visual Semantic Role Labeling, Saurabh and Jitendra, 2015

Very similar to HICO-DET, but less number of images, annotations and action categories.

Visual Semantic Role Labeling, §

Very similar to HICO-DET, but les

Rank	Model	AP(S1) ↑	AP(S2)	Time Per Frame(ms)	
1	OCN (ResNet101)	65.3	67.1		orie
2	OCN (ResNet50)	64.2	66.3	43	
3	CDN (ResNet101)	63.91	65.89		
4	UPT-R101-DC5	61.3	67.1	131	

Visual Semantic Role Labeling, §

Very similar to HICO-DET, but les

Object-guided Cross-modal Calibration Network (OCN)

Object-guided Cross-modal Calibration Network (OCN)

Object-guided Cross-modal Calibration Network (OCN)

Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics, Hangjie et al., 2022

The main idea is to guide *action* by object. I.e.,

object prediction effects action prediction

Object-guided Cross-modal Calibration Network (OCN)

Object-guided Cross-modal Calibration Network (OCN)

Object-guided Cross-modal Calibration Network (OCN)

Object-guided Cross-modal Calibration Network (OCN)

Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics, Hangjie et al., 2022

Their main idea is to guide *interaction prediction* with *object prediction*.

It consists of

- detection module
- action embedding module
- HOI predictor

General Approaches High-level Explanations for HIR

General Approaches High-level Explanations for HIR

There are two HIR tasks dealing with common objects.

- HOI classification
- HOI detection

General Approaches HOI detection

General Approaches HOI detection

TL; DR

- Introduce human interaction recognition.
- Visit benchmarks.
- Explain general approaches.

