10+CART(Regression)

2019年3月12日

0.1 CART(Regression)

0.2 一、概念

回归树和分类树相似,区别在于划分变量的方法和叶节点预测结果的产生方式。

- 1. 划分方法:
- 分类树: 基尼系数
- 回归树: 均方误差
- 2. 预测方式
- 分类树: 划分后的样本集的目标变量的众数
- 回归树: 划分后的样本集的目标变量的平均数

假设输入空间有 $R_1, R_2, ..., R_M$ 个划分单元,回归树模型可以看作是针对每个划分单元上的固定输出值 $c_1, c_2, ..., c_M$

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

每个划分上的预测结果为:

$$\hat{c}_m = mean(y_i|x_i \in R_m)$$

选用第j个变量 $x^{(j)}$ 和它取的值s,作为切分变量和切分点,划定两个区域:

$$R_1(j,s) = \{x | x^{(j)} \le s\} R_2(j,s) = \{x | x^{(j)} > s\}$$

寻找最优切分变量和切分点就是求解:

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

对固定的输入变量 j 可以找到最优切分点 s:

$$\hat{c}_1 = mean(y_i|x_i \in R_1)\hat{c}_2 = mean(y_i|x_i \in R_2)$$

遍历所有输入变量,找到最优分割变量的最优分割点分成两个区域,并对每个区域重复上述操作, 直到满足停止条件为止。

0.3 二、划分方法:均方误差 vs 方差

均方误差和方差的区别在于常系数的不同,均方误差除以样本数(减一)就是方差。 以下给出几个例子对方差和均方误差进行比较:

1. 等差数列:

以数据的索引作为划分变量,假设数据是等差数列,也即数据是 y=0.1*x 直线上均匀的点。

```
In [2]: import numpy as np
      data = np.linspace(0.1,10, 100)
      data
Out[2]: array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1,
             1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.
                                                            2.1,
             2.3, 2.4, 2.5, 2.6, 2.7, 2.8,
                                            2.9,
                                                 3., 3.1, 3.2, 3.3,
             3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4., 4.1, 4.2, 4.3, 4.4,
             4.5, 4.6, 4.7, 4.8, 4.9, 5., 5.1, 5.2, 5.3, 5.4, 5.5,
             5.6, 5.7, 5.8, 5.9, 6., 6.1,
                                            6.2, 6.3, 6.4, 6.5, 6.6,
             6.7, 6.8, 6.9, 7., 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7,
             7.8, 7.9, 8., 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8,
             8.9, 9., 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9,
             10.])
```

显然 numpy 的方差是近似方差,不是方差的无偏估计

```
if var:
                  tmp = np.var(a) + np.var(b)
               else:
                  tmp = len(a)*np.var(a) + len(b)*np.var(b)
               if tmp < loss:</pre>
                  split = i
                  loss = tmp
           return split, loss
       print(find(data, var=True))
        print(find(data, var=False))
(50, 4.165)
(50, 208.25)
   显然,如果数据是严格的等差数列,则无论是方差还是均方误差,则划分点都是中位数
 2. 数据是不对称的,增减性在转折点前后相反的折线
In [25]: data = np.append(data, np.linspace(10, 1, 10))
       print(data)
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
                                              1.1 1.2 1.3 1.4
 1.5 1.6 1.7 1.8 1.9 2.
                            2.1 2.2 2.3 2.4
                                              2.5 2.6 2.7 2.8
 2.9 3.
          3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
                                              3.9 4.
                                                       4.1 4.2
 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.
                                     5.1 5.2 5.3 5.4 5.5 5.6
 5.7 5.8 5.9 6.
                   6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.
 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.
                                              8.1 8.2 8.3 8.4
 8.5 8.6 8.7 8.8 8.9 9.
                            9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8
 9.9 10. 10.
               9.
                   8.
                       7.
                            6.
                                 5.
                                     4.
                                          3.
                                              2.
                                                  1. ]
In [26]: print(find(data, var=True))
       print(find(data, var=False))
(37, 5.355548883467819)
(47, 323.36984126984123)
In [30]: print(data[37])
       print(np.mean(data[0: 37]))
       print(np.mean(data[37: 110]))
```

```
3.8000000000000003
```

1.9

6.708219178082191

2.4

7.098412698412699

可见,是方差的情况下,分离点更倾向于偏离转折点,是均方误差的情况下分离点更接近转折点

3. 数据是对称的,增减性在转折点前后相反的折线

```
In [32]: data = np.linspace(0.1,10, 100)
       data = np.append(data, np.linspace(10,0.1, 100))
       print(data)
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
                                              1.1 1.2 1.3 1.4
                                    2.3
 1.5 1.6 1.7
              1.8 1.9
                      2.
                            2.1
                                2.2
                                         2.4
                                              2.5
                                                  2.6 2.7
                                                           2.8
 2.9 3.
          3.1
              3.2 3.3 3.4
                            3.5
                                3.6 3.7
                                         3.8
                                              3.9
                                                  4.
                                                       4.1
                                                           4.2
 4.3 4.4 4.5
              4.6 4.7 4.8
                            4.9
                                5.
                                     5.1 5.2
                                             5.3
                                                  5.4 5.5
                                                          5.6
 5.7 5.8 5.9
              6.
                   6.1 6.2
                            6.3
                                6.4 6.5
                                         6.6
                                              6.7 6.8
 7.1 7.2 7.3 7.4 7.5 7.6 7.7
                               7.8 7.9
                                         8.
                                              8.1 8.2 8.3
                                                           9.8
 8.5 8.6 8.7 8.8
                   8.9
                       9.
                            9.1
                                9.2 9.3
                                        9.4
                                              9.5 9.6
                                                      9.7
 9.9 10. 10.
              9.9 9.8 9.7
                            9.6 9.5 9.4 9.3
                                              9.2 9.1
                                                      9.
                                                           8.9
 8.8 8.7 8.6 8.5
                   8.4 8.3
                            8.2
                                8.1
                                         7.9
                                              7.8 7.7
                                                          7.5
                                     8.
                                                      7.6
 7.4 7.3 7.2 7.1 7.
                            6.8 6.7
                                        6.5
                                              6.4 6.3
                       6.9
                                     6.6
                                                      6.2
      5.9 5.8 5.7 5.6 5.5
                           5.4 5.3 5.2 5.1
                                             5.
                                                  4.9 4.8
                                                          4.7
 4.6 4.5 4.4 4.3 4.2 4.1 4.
                                3.9 3.8 3.7
                                             3.6 3.5 3.4 3.3
 3.2 3.1 3.
               2.9 2.8 2.7
                            2.6
                                2.5 2.4 2.3
                                              2.2
                                                  2.1
                                                      2.
                                                           1.9
 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.
                                         0.9 0.8 0.7 0.6 0.5
 0.4 0.3 0.2 0.1]
```

- 1.79999999999999
- 3.9000000000000004

数据是对称的情况下分割点应该也是对称等价的,所以方差分割点 182 应该和 18 是等价的,只是因为计算机精度的问题造成结果是 182。

可以发现在方差的条件下分割点对比均方误差条件仍然是远离转折点。

4. 数据是单调前后斜率不同的折线

(66, 39841.59701492537)

```
In [44]: data = np.linspace(1,100, 100)
         data = np.append(data, np.linspace(100.1,110, 100))
         print(data)
Γ 1.
         2.
               3.
                      4.
                            5.
                                  6.
                                        7.
                                               8.
                                                     9.
                                                           10.
                                                                 11.
                                                                       12.
  13.
        14.
              15.
                     16.
                           17.
                                 18.
                                        19.
                                              20.
                                                    21.
                                                          22.
                                                                 23.
                                                                       24.
  25.
        26.
              27.
                           29.
                                 30.
                                              32.
                     28.
                                        31.
                                                    33.
                                                          34.
                                                                 35.
                                                                       36.
  37.
              39.
                                 42.
        38.
                     40.
                           41.
                                        43.
                                              44.
                                                    45.
                                                          46.
                                                                 47.
                                                                       48.
  49.
                     52.
                           53.
                                 54.
                                        55.
                                              56.
                                                    57.
                                                          58.
                                                                 59.
                                                                       60.
        50.
              51.
  61.
        62.
              63.
                     64.
                           65.
                                 66.
                                        67.
                                              68.
                                                    69.
                                                          70.
                                                                 71.
                                                                       72.
  73.
              75.
                                 78.
                                       79.
                                                          82.
                                                                 83.
        74.
                    76.
                           77.
                                              80.
                                                    81.
                                                                       84.
  85.
        86.
              87.
                     88.
                           89.
                                 90.
                                        91.
                                              92.
                                                    93.
                                                          94.
                                                                 95.
                                                                       96.
                   100. 100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8
  97.
        98.
              99.
             101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8 101.9 102.
 102.1 102.2 102.3 102.4 102.5 102.6 102.7 102.8 102.9 103. 103.1 103.2
 103.3 103.4 103.5 103.6 103.7 103.8 103.9 104. 104.1 104.2 104.3 104.4
 104.5 104.6 104.7 104.8 104.9 105. 105.1 105.2 105.3 105.4 105.5 105.6
 105.7 105.8 105.9 106. 106.1 106.2 106.3 106.4 106.5 106.6 106.7 106.8
 106.9 107. 107.1 107.2 107.3 107.4 107.5 107.6 107.7 107.8 107.9 108.
 108.1 108.2 108.3 108.4 108.5 108.6 108.7 108.8 108.9 109. 109.1 109.2
 109.3 109.4 109.5 109.6 109.7 109.8 109.9 110. ]
In [41]: print(find(data, var=True))
         print(find(data, var=False))
(57, 465.49729408121016)
```

可以发现,方差条件下的分割点仍然相较均方误差条件是远离转折点的。 以上几种不同的模拟数据均出现了类似的情况,那我们如果分折线两端对数据进行打乱呢?

5. 打乱的等差数列:

```
In [50]: data = np.linspace(0.1,10, 100)
       np.random.seed(2099)
       np.random.shuffle(data)
       print(data)
       print(find(data, var=True))
       print(find(data, var=False))
[5.9 3.3 4.1 2.8 9.
                       9.2 1.6 2.
                                    6.7 9.5 6.3 4.4 4.5 7.6
 1.3 1.5 8.4 0.1 8.7 8.9 9.8 0.8 5.7 7.
                                             2.5 7.2 2.6 6.5
 3.9 5.4 3.5 3.
                   4.8 3.4 0.6 6.
                                    6.6 0.4 8.
                                                  1.4 5.5 6.1
 1.8 8.8 1.1 8.2 3.1 1.9 6.9 7.9 4.9 5.8 4.
                                                  9.6 2.2 0.2
 8.5 5.3 9.7 10.
                   0.3 4.6 3.2 0.7 1.2 6.8 4.7 7.1 7.5 2.7
 5.6 8.3 2.9 9.9 1. 2.1 7.8 3.7 5.2 8.6 6.4 3.8 2.4 5.1
 2.3 9.1 7.7 8.1 9.4 4.2 5.
                                6.2 7.4 0.9 7.3 9.3 0.5 3.6
 1.7 4.3]
(1, 8.409294969901032)
(96, 806.6848958333334)
```

可以看出来此时方差的分割更极端,其实无论是哪个随机种子,影响的只有均方误差情况,方差情况永远是第二个作为分割点。

6. 数据是不对称的,增减性在转折点前后相反的折线,不同增减性的部分分别打乱

```
8.5 5.3 9.7 10.
                    0.3 4.6
                             3.2 0.7 1.2 6.8 4.7 7.1 7.5 2.7
 5.6 8.3 2.9 9.9
                             7.8
                                  3.7
                                      5.2 8.6
                                               6.4
                                                        2.4 5.1
                        2.1
                                                    3.8
 2.3 9.1 7.7 8.1
                    9.4 4.2
                             5.
                                  6.2 7.4 0.9
                                               7.3 9.3 0.5 3.6
 1.7 4.3 3.
               2.
                    1.
                        9.
                             5.
                                  6.
                                      7.
                                         10.
                                                4.
                                                    8.]
(1, 8.412204359902365)
(103, 890.3446601941747)
  7. 数据是对称的,增减性在转折点前后相反的折线,不同增减性的部分分别打乱
In [52]: data = np.linspace(0.1,10, 100)
        data = np.append(data, np.linspace(10,0.1, 100))
        np.random.shuffle(data[0: 100])
        np.random.shuffle(data[100: 200])
        print(data)
        print(find(data, var=True))
        print(find(data, var=False))
[ 6.2 4.4 0.9 4.1 0.2 8.2
                             6.7 9.6 1.6 7.5
                                               3.4 0.6
 6.
          3.9 7.4
                   4.5
                        3.6
                             3.7
                                  0.3
                                      8.5
                                          5.9
                                                2.4
                                                    0.4
          8.4
               3.2 4.8
                       8.9
                             3.1
                                  3.3 9.3
                                           2.1
                                               5.3 0.1
                                                         8.3
 1.7 9.2 6.3
              7.7
                    2.8
                       2.5
                             3.
                                  2.
                                      9.9
                                          6.9
                                               9.8
                                                    9.1
                                                         7.3
                                                             3.8
 2.2 4.3
          1.9
               6.6 5.5 6.5
                             1.5 0.5 10.
                                               1.8
                                           5.8
                                                    6.4
                                                         1.1
                                                             8.8
 7.2 2.9
          4.6
               7.
                    2.6 8.7
                             9.5
                                  5.4 5.6
                                           8.6
                                               7.6
                                                    8.
                                                         8.1
                                                             9.7
 1.4 1.2 4.7 5.7
                    4.9 7.1
                             4.
                                  2.7
                                      6.1
                                           7.8
                                               5.1
                                                    7.9
 0.8
               3.
                    5.6 8.6
                             3.1
                                  4.9
                                      3.7
                                           5.1
                                               8.8
                                                    4.3
          2.2 9.6 8.5 8.4
                             3.3
                                          2.8
 7.1 6.4
                                 1.1 7.8
                                               2.4 5.2
                                                         8.3 8.7
 4.8 5.5
          6.
               7.3
                   7.2 5.3
                             1.6
                                 1.3
                                      2.6
                                           9.
                                                9.4 8.
                                                         9.9
                                                             0.2
          2.
 0.7 6.3
               8.1
                    9.5
                        5.7
                             4.2
                                  6.1
                                      1.9
                                           0.1
                                               4.5
                                                    5.
                                                         6.9 7.6
 1.5 9.7
               3.8
                   7.5
                        8.9
                             4.4
                                  1.8
                                      3.5
                                          6.2
                                               0.3
                                                    4.7
                                                         7.4 10.
 8.2 5.9
          5.8 1.7 1.2 6.8
                             2.1
                                 9.2 0.6 2.5 7.9
                                                    1.
                                                         2.7 6.6
 0.8 0.4 4.6 9.1 3.9 2.3 3.2 7.
                                      4.
                                           7.7 6.7 0.5 3.6 6.5
 0.9 4.1 9.3 1.4]
(1, 8.367692735031945)
```

8. 数据是单调前后斜率不同的折线,不同斜率分别打乱

(171, 1634.541036499294)

```
In [53]: data = np.linspace(1,100, 100)
         data = np.append(data, np.linspace(100.1,110, 100))
         np.random.shuffle(data[0: 100])
         np.random.shuffle(data[100: 200])
         print(data)
         print(find(data, var=True))
         print(find(data, var=False))
[ 32.
        84.
                     89.
                                              19.
                                                     10.
                                                            6.
                                                                  41.
                                                                        43.
              61.
                           13.
                                  35.
                                        44.
  95.
        28.
              72.
                     18.
                            5.
                                  12.
                                        30.
                                              64.
                                                     93.
                                                           69.
                                                                  51.
                                                                        81.
  96.
        66.
              71.
                     58.
                            3.
                                  38.
                                        23.
                                              15.
                                                     37.
                                                           52.
                                                                  76.
                                                                        60.
   2.
        21.
              75.
                     74.
                           80.
                                  73.
                                        57.
                                              45.
                                                     46.
                                                           86.
                                                                  87.
                                                                        50.
  62.
        68.
               4.
                     79.
                            1.
                                  98.
                                        77.
                                              70.
                                                      9.
                                                           59.
                                                                 47.
                                                                        27.
  48.
        97.
              31.
                     20.
                           85.
                                  40.
                                        33.
                                              39.
                                                     56.
                                                           65.
                                                                  82.
                                                                        90.
  34.
        42.
              16.
                     99.
                           26.
                                  29.
                                       100.
                                              55.
                                                      7.
                                                           14.
                                                                  91.
                                                                        49.
  94.
        67.
              25.
                     36.
                           54.
                                  11.
                                        24.
                                              78.
                                                     92.
                                                            8.
                                                                  83.
                                                                        88.
  63.
        17.
              53.
                     22.
                          107.4 104.4 109.8 105.5 103.3 109.
                                                                106.
                                                                       101.8
 107.
       105.8 100.8 102.3 108.2 107.9 101.4 102.4 105. 103.1 108.6 104.6
 108.9 108.3 104.8 104.5 109.2 103.2 104.7 108. 107.2 106.8 106.6 108.4
 109.5 109.4 102.8 105.9 108.8 106.4 102.7 103.6 105.4 101.2 104.9 106.3
 102.1 100.5 104.1 107.5 106.5 100.3 103.9 100.9 105.6 105.3 101.7 101.3
 101.6 102.5 109.1 108.1 107.8 107.3 106.9 105.7 100.6 109.9 102.
 101.5 101. 102.6 103.8 105.2 103.5 102.9 108.5 105.1 107.6 103.4 108.7
 107.7 107.1 109.3 104. 102.2 103. 106.1 100.7 100.1 109.7 106.2 101.9
 110. 103.7 106.7 104.2 104.3 109.6 100.4 101.1]
(100, 841.5825)
(100, 84158.25)
```

0.4 三、应用

好的现在我们坚定了用均方误差而非方差的选择,这次选用的数据集是经典的波士顿房价数据集, 共有506个样本,每个样本都有13个自变量变量和1个因变量:

自变量:

- 城镇人均犯罪率。
- 住宅用地超过25000平方英尺的比例。

- 城镇非零售商用土地的比例。
- 是否临近查理斯河。
- 一氧化氮浓度。
- 住宅平均房间数。
- 1940年之前建成的自用房屋比例。
- 到波士顿五个中心区域的加权距离。
- 接近高速公路的程度。
- 每10000美元的不动产税率。
- 城镇师生比例。
- 城镇黑人比例。(相当不政治正确)
- 低收入人口比例

因变量:

• 房屋价格

```
In [105]: from sklearn.datasets import load_boston
    import pandas as pd
    import copy

boston, target = load_boston(return_X_y=True)
    x = np.array(boston)
    x = np.hstack([x, np.ones((x.shape[0], 1))]) # bias
    y = np.array(target).reshape(len(target), 1)
        print(x.shape)
        print(y.shape)

(506, 14)
(506, 1)
```

先用正规方程求解线性回归的参数

```
In [106]: np.random.seed(2099)
    index = np.random.permutation(506)
    train_index = index[0: int(0.7*506)]
```

```
test_index = index[int(0.7*506): 506]
          train_x = x[train_index, :]
          train_y = y[train_index, :]
          test_x = x[test_index, :]
          test_y = y[test_index, :]
In [107]: beta = np.dot(train_x.T, train_x)
          beta = np.linalg.inv(beta)
          beta = np.dot(beta, train_x.T)
          beta = np.dot(beta, train_y)
          print(beta)
[[-1.38207153e-01]
 [ 6.02124371e-02]
 [-2.41967408e-03]
 [ 1.38906414e+00]
 [-1.57956187e+01]
 [ 3.26425169e+00]
 [-2.01230038e-03]
 [-1.68034194e+00]
 [ 2.89084987e-01]
 [-9.48385187e-03]
 [-1.03060887e+00]
 [ 8.00698188e-03]
 [-5.77222645e-01]
 [ 4.15481705e+01]]
In [108]: y_hat = np.dot(test_x, beta)
In [109]: def mse(y, y_hat):
              tmp = np.power(y-y_hat, 2)
              tmp = np.sum(tmp)
              return tmp
          mse(test_y, y_hat)
Out[109]: 3906.4556806536502
In [110]: names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM',
                   'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
```

```
boston = pd.DataFrame(boston)
          boston.columns = names
          boston['target'] = target
In [111]: def split_value(data, index, variable, discrete, target='target'):
              tmp = data.loc[index]
              n = tmp.shape[0]
              mse = float('inf')
              split = None
              split_value = data[variable][0]
              if discrete:
                  values = np.unique(data[variable])
                  for value in values:
                       index1 = tmp[tmp[variable] == value].index
                       index2 = tmp[tmp[variable]!=value].index
                      tmp_mse = len(index1)*np.var(tmp.loc[index1][target])
                      tmp_mse += len(index2)*np.var(tmp.loc[index2][target])
                       if tmp_mse < mse:</pre>
                          split_value = value
                          mse = tmp_mse
              else:
                  for value in tmp[variable]:
                       index1 = tmp[tmp[variable] <= value].index</pre>
                       index2 = tmp[tmp[variable]>value].index
                       tmp_mse = len(index1)*np.var(tmp.loc[index1][target])
                      tmp_mse += len(index2)*np.var(tmp.loc[index2][target])
                       if tmp_mse < mse:
                          split_value = value
                          mse = tmp_mse
              return mse, split_value
          split_value(boston, index=train_index, variable='CRIM', discrete=False)
Out[111]: (22817.2744320397, 6.65492)
```

```
In [112]: def split_variable(data, index, variable_set, target='target'):
              mse = float('inf')
              to_split_value = None
              to_split_variable = None
              tmp_mse = None
              tmp_value = None
              var_type = None
              for dtype in variable_set:
                  discrete = dtype=='discrete'
                  for variable in variable_set[dtype]:
                      tmp_mse, tmp_value = split_value(data, index, variable,
                                                        discrete, target)
                      #print(str(variable)+': '+str(tmp_value)+': '+str(tmp_mse))
                      if tmp_mse < mse:
                          mse = tmp_mse
                          to_split_value = tmp_value
                          to_split_variable = variable
                          var_type = discrete
              return mse, to_split_variable, to_split_value, var_type
          variable_set = {
              'discrete':['CHAS'],
              'continuous':['CRIM','ZN','INDUS','NOX','RM','AGE',
                             'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
          }
          split_variable(boston, index=train_index, variable_set=variable_set)
Out[112]: (15224.583135593219, 'LSTAT', 7.85, False)
In [113]: def build_tree(data, index, variable_set, tree, target, node=1):
              11 11 11
              data: all the data
              index: the data on which shall be splited, data won't change in recursion but index
              variable_set: variables to be split
              tree: a dataframe with node, split_variable, split_value, discrete, leaf, left and right
              target: the label variable
```

```
node: the node of the tree
tmp = data.iloc[index]
leaf = len(variable set[str(node)]['discrete'])==0
leaf = leaf and (len(variable_set[str(node)]['continuous'])==0)
leaf = leaf or (len(index)<=10)</pre>
print(str(node)+":"+str(leaf))
#print(variable_set[str(node)])
if not leaf:
   mse,variable,value,discrete = split_variable(data, index,
                                        variable_set[str(node)], target)
    #print(variable)
    if variable is not None:
        if discrete:
            variable_set[str(node)]['discrete'].remove(variable)
            variable_set[str(node*2)] = copy.deepcopy(variable_set[str(node)])
            variable_set[str(node*2+1)] = copy.deepcopy(variable_set[str(node)])
            index1 = tmp[tmp[variable] == value].index
            left_prediction = np.mean(data.iloc[index1][target])
            index2 = tmp[tmp[variable] != value].index
            right_prediction = np.mean(data.iloc[index2][target])
        else:
            variable_set[str(node)]['continuous'].remove(variable)
            variable_set[str(node*2)] = copy.deepcopy(variable_set[str(node)])
            variable_set[str(node*2+1)] = copy.deepcopy(variable_set[str(node)])
            index1 = tmp[tmp[variable] <= value].index</pre>
            left_prediction = np.mean(data.iloc[index1][target])
            index2 = tmp[tmp[variable] > value].index
            right_prediction = np.mean(data.iloc[index2][target])
        tree.loc[node] = [variable, value, discrete,
                          left_prediction, right_prediction]
        build_tree(data=data, index=index1, variable_set=variable_set,
```

```
tree=tree, target='target', node=node*2)
                      build_tree(data=data, index=index2, variable_set=variable_set,
                              tree=tree, target='target', node=node*2+1)
          tree = {
              'split_variable':[None],
              'split_value':[None],
              'discrete':[None],
              'left_prediction': [None],
              'right_prediction':[None]
          }
          tree = pd.DataFrame(tree)
          variables = {
              'discrete':['CHAS'],
              'continuous':['CRIM','ZN','INDUS','NOX','RM','AGE',
                             'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
          }
          variable_set={
              '1':variables
          }
          build_tree(boston, train_index, variable_set, tree, target='target')
1:False
2:False
4:False
8:True
9:False
18:False
36:False
72:True
73:False
146:True
147:False
294:True
295:True
37:False
74:False
148:True
149:False
```

- 298:False
- 596:False
- 1192:True
- 1193:True
- 597:True
- 299:True
- 75:False
- 150:True
- 151:False
- 302:True
- 303:False
- 606:True
- 607:True
- 19:False
- 38:True
- 39:False
- 78:True
- 79:False
- 158:False
- 316:True
- 317:False
- 634:True
- 635:False
- 1270:False
- 2540:True
- 2541:True
- 1271:True
- 159:True
- 5:False
- 10:True
- 11:True
- 3:False
- 6:False
- 12:True
- 13:False
- 26:False
- 52:False
- 104:True
- 105:False

- 210:False
- 420:False
- 840:False
- 1680:True
- 1681:False
- 3362:False
- 6724:False
- 13448:True
- 13449:True
- 6725:True
- 3363:True
- 841:False
- 1682:True
- 1683:True
- 421:True
- 211:False
- 422:False
- 844:False
- 1688:False
- 3376:True
- 3377:True
- 1689:True
- 845:True
- 423:False
- 846:True
- 847:False
- 1694:True
- 1695:False
- 3390:True
- 3391:True
- 53:True
- 27:False
- 54:False
- 108:True
- 109:False
- 218:True
- 219:False
- 438:True
- 439:False

- 878:True
- 879:False
- 1758:True
- 1759:False
- 3518:True
- 3519:False
- 55:False
- 110:False
- 220:False
- 440:False
- 880:False
- 1760:True
- 1761:True
- 881:True
- 441:True
- 221:False
- 442:False
- 884:True
- 885:False
- 1770:True
- 1771:True
- 443:True
- 111:False
- 222:False
- 444:True
- 445:True
- 223:True
- 7:False
- 14:False
- 28:False
- 56:True
- 57:False
- 114:True
- 115:True
- 29:False
- 58:False
- 116:True
- 117:True
- 59:True

15:False 30:False 60:True 61:True 31:True

In [114]: tree

Out[114]:	split_variable	split_value	discrete	left_prediction	right_prediction
0	None	NaN	None	NaN	NaN
1	LSTAT	7.85000	False	31.495763	18.367797
2	RM	7.42000	False	28.742857	44.985000
4	DIS	1.35670	False	50.000000	28.071579
9	PTRATIO	18.40000	False	29.756452	24.906061
18	TAX	264.00000	False	32.385000	28.504762
36	AGE	21.10000	False	27.800000	33.531250
73	ZN	0.00000	False	36.600000	32.823077
147	CRIM	0.04932	False	31.325000	33.488889
37	CRIM	0.06724	False	27.121739	30.178947
74	INDUS	1.52000	False	31.700000	25.850000
149	В	396.06000	False	26.975000	23.600000
298	ZN	85.00000	False	26.500000	32.200000
596	NOX	0.46000	False	25.371429	28.475000
75	RAD	4.00000	False	26.533333	31.861538
151	В	353.89000	False	25.650000	32.990909
303	NOX	0.42800	False	23.300000	33.960000
19	CRIM	0.03615	False	29.020000	24.171429
39	В	354.70000	False	27.500000	24.048148
79	TAX	305.00000	False	23.705556	24.733333
158	INDUS	4.86000	False	25.566667	23.333333
317	RAD	3.00000	False	24.500000	23.041667
635	NOX	0.49300	False	23.254545	20.700000
1270	AGE	40.10000	False	23.757143	22.375000
5	PTRATIO	14.70000	False	47.740000	42.230000
3	NOX	0.65500	False	20.219643	13.792647
6	DIS	1.16910	False	50.000000	20.041317
13	PTRATIO	19.60000	False	21.708247	17.731429
26	RM	6.59000	False	21.196629	27.400000
52	INDUS	2.46000	False	26.075000	20.967059

844	CHAS	0.00000	True	20.100000	23.000000
1688	RAD	2.00000	False	20.600000	19.683333
423	В	297.09000	False	23.800000	18.652941
847	RAD	3.00000	False	16.150000	18.986667
1695	TAX	304.00000	False	20.257143	17.875000
27	В	352.58000	False	15.600000	18.644898
54	CRIM	0.20746	False	8.100000	15.975000
109	RM	3.86300	False	23.100000	15.600000
219	AGE	48.20000	False	19.900000	15.361111
439	INDUS	8.14000	False	13.533333	15.726667
879	TAX	384.00000	False	18.600000	15.521429
1759	RAD	4.00000	False	15.600000	15.515385
55	AGE	91.90000	False	19.512500	17.011765
110	TAX	334.00000	False	18.481250	20.543750
220	RM	6.09600	False	18.150000	20.800000
440	INDUS	8.14000	False	18.630769	11.900000
880	CRIM	0.62739	False	19.012500	18.020000
221	RM	6.22900	False	20.178571	23.100000
442	CRIM	0.01360	False	18.900000	20.276923
885	RAD	5.00000	False	20.071429	20.516667
111	RM	6.18500	False	15.836364	19.166667
222	CRIM	0.13262	False	19.500000	15.470000
7	CRIM	9.82349	False	16.247619	9.826923
14	AGE	91.40000	False	18.081250	15.119231
28	В	272.21000	False	13.540000	20.145455
57	INDUS	18.10000	False	20.630000	15.300000
29	В	391.71000	False	16.255556	12.562500
58	RM	6.12200	False	17.400000	15.111111
15	RM	6.15200	False	8.568750	11.840000
30	DIS	1.70280	False	7.770000	9.900000

[70 rows x 5 columns]

```
In [115]: def climb(data, tree):
    n = data.shape[0]
    prediction = pd.Series()
    for i in range(n):
        tmp = data.iloc[i]
        leaf = False
        node = 1
```

```
while not leaf:
                     variable = tree.loc[node]['split_variable']
                     discrete = tree.loc[node]['discrete']
                      if discrete:
                         left = tmp[variable] == tree.loc[node]['split_value']
                     else:
                         left = tmp[variable] <= tree.loc[node]['split_value']</pre>
                      if left:
                         prediction.loc[i] = tree.loc[node]['left_prediction']
                         node = node*2
                      else:
                         prediction.loc[i] = tree.loc[node]['right_prediction']
                         node = node*2+1
                      leaf = not (node in tree.index)
             return prediction
         prediction = climb(boston.iloc[test_index], tree)
In [121]: y_hat = np.array(prediction).reshape(len(prediction),1)
         print(y_hat.shape)
(152, 1)
In [118]: test_y.shape
Out[118]: (152, 1)
In [123]: mse(test_y, y_hat)
Out[123]: 3743.746454860767
   回忆线性回归的 mse 是 3906,表明回归树相比线性回归表现要好一些。
In []:
```