Nhóm 7

Thành viên nhóm:

- Vũ Minh Phương
- Võ Lê Ngọc Thịnh

Câu 1:

Thứ tự tăng dần khi $n o \infty$

- 1. 0(1)
- 2. O(log n)
- 3. 0(n)
- 4.0(n log n)
- 5. O(n^2)
- 6. O(n³)
- 7. $O(2^n)$
- 8.0(n!)

Câu 2:

Ta có: $\forall n \geq 1$, $n \leq n^2$ và $1 \leq n^2$, nên:

$$3n+1 \le 3n^2+1 \cdot n^2 = 4n^2.$$

Suy ra

$$f(n) = 5n^2 + 3n + 1 \le 5n^2 + 4n^2 = 9n^2 = 9g(n).$$

Ta có: $3n+1\geq 0$, $\forall n\geq 1$ nên:

$$f(n) = 5n^2 + 3n + 1 \ge 5n^2 = 5g(n).$$

Tồn tại $c_1=5,\;c_2=9,\;n_0=1$ sao cho

$$c_1. g(n) \leq f(n) \leq c_2. g(n), \quad \forall n \geq 1.$$

```
Suy ra f(n) = \Theta(g(n))
```

Câu 3:

```
for (int i = 1; i <= n; i *= 2) {
    for (int j = 1; j <= i; j++) {
        // O(1)
    }
}</pre>
```

Với vòng lặp ngoài (i):

- Ta có i = 1 và nhân 2 mỗi vòng lặp, các giá trị của i: 1, 2, 4, 8,...
- Số lần lặp là $log_2(n)$;

Với vòng lặp trong (j):

• Với mỗi i, vòng lặp j sẽ lặp i bước.

Vậy tổng số phép toán cần thực hiện = 1 + 2 + 4 + 8 + ... + n = 2n - 1 pprox O(n).

Câu 4:

Áp dụng các quy tắc Big-O:

• Bỏ hằng số:

$$T(n) = n^2 + n + \log n + 1$$

• Giữ bậc cao nhất:

$$T(n)pprox n^2$$

Vậy: Độ phức tạp tiệm cận của $T(n)=O(n^2)$