

spatial machine learning information error mitigation (ML-IEM)

faiz ikramulla mano ramireddy Maryville University Data Science, September 2020

Influence – neither good nor bad

- Fundamental concept in organization behavior
- "the power or capacity of causing an effect in indirect or intangible ways" (mw)
 - -Is social media influence spatially random?
 - -Is social media influence spatially unbiased?
 - -Is social media influence spatially proprietary? NO!
- Social media data is MASSIVE, yet (some?) is free and open source!
- We can model and locate the "error", and optimize or "fix" it

Machine Learning

- FAST(ER) computation of MASSIVE information to achieve explainable human & machine usable solutions
 - -"all models are wrong, some models are useful"
 - -error modeling global and local optimizations possible
 - -quantization, discretization, transformation
 - -3D (lat,lon,z) possible for spatial
 - -4D(x,y,z+t) (time-series) good for temporal spatial
- Patterns of "error" in space and time in dimensions not perceivable by humans alone

Machine Learning

- Indirect to direct
- Intangible to tangible
- Invisible to visible...
- … Influence to neutrality
- -SORT , FILTER , SELECT , JOIN , REMOVE
- -NLP (Text, Audio, Locational, Other Behaviors)
- -Clustering / Vector Machines

Machine Learning - Ex.

https://towardsdatascience.com/animations-of-neural-networks-transforming-data-42005e8fffd9

Machine Learning - Feature Engineering

- Word source (original, re-post, human generated, machine generated)
- Word stats (static) min, max, mean, standard deviation, histos
- Word stats (dynamic) time series min, max, mean, std.
- Word association per time or per location or per time&location
- Same as above for emoji / symbols / digital images / digital video / etc.
- ESTIMATION: only about 10-20% of the social media has an original source. The rest is reposts or "shares".

Machine Learning – Label Determination

- · Word association to other words or other events
- Unsupervised Learning we are agnostic on influence based on our features, we just want the machine to differentiate in ways we can not (easily) perceive
- We can then look for correlations between the differentiators (or their transformations) and apply optimization methods to reduce the error

Solution Proposal (ML-IEM)

Like an FMEA

- Mode normal, abnormal, incorrect
- Severity catastrophic, critical, marginal, negligible
- Likelihood frequent, probable, occasional, remote, improbable

FUNCTIONS		POTENTIAL FAILURE MODES				POTENTIAL CAUSES			
Item / Function	Sub-Item / Sub-Function	Potential Failure Mode	Potential Effects of Failure	SEVERITY	CLASS	Potential Causes / Mechanisms of Failure	OCCURRENCE	Current Design Controls Prevention	Current Desi
				1			1	- Anna Caraca	7,000
				1	+		1		
				1			1		
				-1			- 1		
				1.1			1.1		

Dataset - Twitter Hydroxychloroquine

https://digital.library.unt.edu/ark:/67531/metadc1706013/

Twitter Hydroxychloroquine (UNT)

- Mode normal, abnormal, incorrect
- · Severity catastrophic, critical, marginal, negligible
- · Likelihood frequent, probable, occasional, remote, improbable
- FACT: only 13-14% of this tweet data consisted of original posts.

Machine Learning - Algo Development

Main Flow:

- STEP 1: Model with all tweets
- STEP 2: Model with retweets/reposts FILTERed OUT / REMOVEd
- STEP 3: Compare Are the differentiators now more or less or similarly evident?

REPEAT 1-3 (SORT, FILTER, REMOVE, etc.):

- · Repetitive twitter handle sources, repetitive associate words
- · Human vs. machine source
- Paid vs. unpaid source need independent data set

Machine Learning + Geospatial

Example:

Probability Dist. Function of model "error" computation based on geocoded input data

Not normalized / not random

3 possible anomalies

Where AND when are they?

Events in that timeframe / location?

How to normalize / reduce?

Solution Proposal - reduce "error"

- · Identify factors that when removed trend towards normalization.
- Spatially correlate these to specific locations with statistical power
- Highlight these as geocoded "influencers" to users
 - -words, handles, expressions, linguistics, behaviors + correlations
 - -make non-personal
- Present space-time alternative view "FMEA dashboard" per metro region
 - -as-is
 - -with "influencers" removed
 - -with alternate "influencer" weighting (frequency* + TBD, pending model)

Workflow

!!! "An ounce of SQL is a worth a pound of python" !!!

- SQL Query / aggregate / filter / sort / combine / join / transform geocoded data with built-in integrity @Quality
- R/Python tidy, transform, process, analyze, model,
 visualize with automated math, stats, and logic @Speed
- General structured data, ethical data @Performance
- Operation/Deployment anywhere you like! @Interoperable
 ~70% of the time should be spent on preparing data to ensure reliable results.

Open Source Geospatial Tools

PostgreSQL (PostGIS)

R (rgdal, raster, sf, sp, leaflet)

Python (gdal, rasterio)

OSM

Open data everywhere!

Many other applications... election, census,

References

https://en.wikipedia.org/wiki/Failure_mode,_effects,_and_critica lity_analysis

https://github.com/mona-kay/odsc-sql-for-data-science

https://www.merriam-webster.com/

https://towardsdatascience.com/animations-of-neural-networkstransforming-data-42005e8fffd9

https://digital.library.unt.edu/ark:/67531/metadc1706013/