AD-753 076

ATMOSPHERIC TRANSMITTANCE, 7-30 MUM: ATTENUATION OF CO2 LASER RADIATION

R. A. McClatchey, et al

Air Force Cambridge Research Laboratories
L. G. Hanscom Field, Massachusetts

12 October 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

AFCRL-72-06/1 12 OCTOBER 1972 ENVIRONMENTAL RESEARCH PAPERS, NO. 419

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

Atmospheric Transmittance, 7-30 μ m: Attenuation of CO₂ Laser Radiation

R.A. McCLATCHEY J.E.A. SELBY

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
US Department of Commerce
Special Guide Va 2018

AIR FORCE SYSTEMS COMMAND Unked States Air Force

77

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

Unclassified
Security Classification

Security Classification					
]	DOCUMENT CONT				
(Security classification of title,		annotation must be ente			
1. ORIGINATING ACTIVITY (Corpor		. (0.7)		ORT SECURITY CLASSIFICATION	
Air Force Cambridge Research Laboratories (OP)			2h GRO	nclassified	
L.G. Hanscom Field Bedford, Massachusetts 01730			200 ONO	JOP	
1 REPORT TITLE	ts 01730		L		
		4 mm	m****	n (10	
ATMOSPHERIC TRAN LASER RADIATION	ISMITTANCE, 7-30	m: ATTENUA	TION	of CO ₂	
4. DESCRIPTIVE HOTES (Type of re Scientific. Inter	•				
S. AUTHOR(S) (First name, middle in	itial, last name)				
R.A. McClatchey J.E.A. Selby					
6 REPORT DATE 12 October 1972		74 TOTAL NO. OF PA	GES	76 NG, OF REFS	
84. CONTRACT OR GRANT NO.		94 ORIGINATOR'S RE	PORT NUM	BENS)	
		AFCR	L-72-0	0611	
& PROJECT, TASK, WORK UNIT	ios. 76700901				
	62101F				
C. DOD ELEMENT	021011	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)			
& DOD SUBELEMENT	681000		£	ERP No. 419	
10. DISTRIBUTION STATEMENT		L			
Approved for public r	elease; distribution				
11. SUPPLEMENTARY HOTES		12 SPONSORING MIL			
		Air Force Car			
TECH, OTH	ER	Laboratori			
		L.G. Hanscom Field Bedford, Massachusetts 01730			
13. ABSTRACT		1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -			
	ransmittance curves	are presented	for the	spectral region	
320-1400 wavenumber wavelengths for atmo dition, this report pr efficients of 41 CO ₂ r	rs. These spectra a spheric propagation ovides specific infor otational laser lines	re useful as a g studies in this mation concern in the 10.4 mi	guide for spectra sing the cromet	or selecting laser / al region. In ad- attenuation co- eer band system /	
(v3+v1). Charts for	predicting the atmos	spheric atteuat	ion of t	the CO ₂ laser lipes	
are provided for each	of five climatologic	al model atmos	pneres	and two haze models.	
CO lease ettenuation	ort extends the work	c presenteu 1. t •1 (4 79-7 11,,	wo ear	tion: AFCRL-7/1-0370	
and (2) HF and DF las	ser attenuation in the	2120-3740 cm	-1 (2.6	7-4.72 µm) region:	
AFCRL-72-0312.				/	
This report, whe	en combined with the	two previous r	eports	described above,	
provides synthetic sp	ectra for the entire	region from 2.	67-31.	25μm. /	
				/	
1				/	
1				/	
				/	
				j	
				/	
				/	
				i	
	المارية المراكات المراكب المراكب			<u>, , , , , , , , , , , , , , , , , , , </u>	

DD FORM 1473

Unclassified
Security Classification

工

Unclassified

Security Classification

Security Classification	LINK A LINK			K B	B LINK C		
14. KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WI	
CO2 laser Atmospheric transmittance Laser transmittance	ROLE	WT	ROLE	WT	ROLE		
77_							

Unclassified

Security Classification

AFCRL-72-0611 12 OCTOBER 1972 ENVIRONMENTAL RESEARCH PAPERS, NO. 419

OPTICAL PHYSICS LABORATORY

PROJECT 7670

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

Atmospheric Transmittance, 7-30 μ m: Attenuation of CO₂ Laser Radiation

R.A. McCLATCHEY J.E.A. SELBY

Approved for public release; distribution unlimited.

AIR FORCE SYSTEMS COMMAND
United States Air Force

Contents

•
3
3
rion 6
7
27
27
21
29
-
29
29 Illustrations
29 Illustrations sphere 3

Preceding pageSblank

Tables

1.	CO ₂ Laser Frequencies for which Attenuation Coefficients Have Been Computed	4
2.	Amount of Water Vapor (precipitable centimeters) in the Five Model Atmospheres for which Calculations Have Been made	6

Atmospheric Transmittance, 7-30 μ m: Attenuation of CO ₂ Laser Radiation

1. INTRODUCTION

Theoretical investigations of the attenuation of laser emission through the aimosphere require a knowledge of the molecular absorption of the atmosphere at very high spectral resolution. Absorption line widths of atmospheric molecules are typically of the order of 0.1 cm⁻¹ at one atmosphere pressure and decrease with decreasing pressure. Thus, from the point of view of computations, a spectral resolution of better than 0.1 cm⁻¹ is required. In two previous reports, calculation of synthetic atmospheric spectra were made for a spectral resolution of 0.01 cm⁻¹. The resulting spectra can thus be considered as representing an infinite resolution spectrum, limited only by the real width of the atmospheric absorption lines. One of the previous reports (McClatchey, 1971) provided spectra covering the region of CO emission - 1400-2120 cm⁻¹. A second report (McClatchey and Selby, 1972) provided spectra covering the region of HF and DF emission from 2120-3740 cm⁻¹.

In addition to the "infinite" resolution spectra provided in these reports, specific laser attenuation charts have been provided for a great number of laser wavelengths in the CO, HF, and DF systems. Although it is useful to have these laser attenuation coefficients immediately available, we have found the "infinite" resolution spectra of great value for a large number of purposes. For example,

(Received for publication 11 October 1972)

these spectra can be used directly as a guide to selecting other lasers which have lines that lie in the spectral interval in question.

Because of the growing interest in finding relatively transparent atmospheric windows for propagating new laser emission lines through the atmosphere, it was decided to extend the calculations reported earlier to longer wavelengths including three significant atmospheric windows centered near 9, 11, and 22 micrometers. The spectral region covered in this report is from 320-1400 cm⁻¹ (about 7.14-31.25µm). The molecular absorption responsible for atmospheric absorption in this region includes the wing of the 6.3 µm band of water vapor (Benedict and Calfee, 1967), the ν_{A} band of methane centered near 7.7 μm (Kyle, 1968), the ozone bands near 9.6μm and 14.3μm (Clough and Kneizys, 1965; McCaa and Shaw, 1967), the important CO, band centered near 15 µm (Drayson and Young, 1967), the rotational water vapor band (see Goody, 1964, p. 184), the 9.4 and 10.4 μ m bands of CO, (Burch, 1962), and weak bands of nitrous oxide located near $8.5\mu m$ and 17µm (Burch et al, 1971 and Burch et al, 1962). In addition to the rotational lines associated with water vapor, carbon dioxide, ozone, nitrous oxide and methane, at low levels in the atmosphere there is the important water vapor continuum of particular importance in the 8-13 µm region and between 16 µm and 30 µm (Burch, 1970 and Bignell, 1970). Absorption by each of the molecules mentioned here has been included in the calculations of synthetic spectra provided below.

In addition to molecular absorption, three other sources of attenuation should be considered (McClatchey et al, 1971): molecular (or Rayleigh) scattering, aerosol scattering, and aerosol absorption. Attenuation due to molecular scattering (σ_{11}) is easily computed and is found to be less than 10^{-6} per km at all altitudes and is thus completely negligible. Aerosol attenuation (both absorption and scattering) can be significant, so examples of this attenuation for two specific aerosol models have been included (see Figures 1a and 1b). It should be noted that aerosol attenuation is a very slowly varying function of frequency and, therefore, provides a quasi-continuum attenuation over the whole spectral range of interest, whereas the molecular absorption is highly frequency-dependent. Thus, molecular absorption determines the relative "windows" where the transmittance of a laser beam is greatest.

An attenuation chart was previously constructed for a variety of atmospheric models for the P20 line of the $10.4\,\mu\mathrm{m}$ CO $_2$ band (see McClatchey et al, 1971). In this report we have specifically included attenuation coefficient charts for all P-branch lines of this vibrational band from P2-P40 and all R-branch lines from R0-R40. Although much of the work done with CO $_2$ lasers has utilized the P20 line, many other lines have been observed (Patel, 1964; Howe, 1965) and there is a growing interest in developing lasers in which different lines can be isolated.

Figure 1a. Atmospheric Transmittance due to Aerosols Through a 10-km Horizontal Path at Sea Level in a "clear" and a "hazy" Atmosphere

Figure 1b. Atmospheric Transmittance due to Aerosols Through a 10-km Horizontal Path at an Elevation of 12 km

2. CO2 LASER EMISSION FREQUENCIES

Since the frequencies of the atmospheric absorption lines are known quite accurately ($\pm 0.01~{\rm cm}^{-1}$), and since ${\rm CO}_2$ absorption in the atmosphere is a significant portion of the total attenuation, the laser emission frequencies were assumed to be identical to the ${\rm CO}_2$ absorption line frequencies. The frequencies of the ${\rm CO}_2$ lines are presented in Table 1. Computations of atmospheric attenuation were made for each line appearing in Table 1. The column in Table 1 associated with each laser frequency gives the attenuation per kilometer computed on the basis of the Midlatitude Winter Model (see Section 3). This gives a good idea of the relative atmospheric attenuation for all lines.

3. ATMOSPHERIC MODELS

The atmospheric models used in the computations have been fully described by McClatchey et al (1971), and so only a brief sketch will be provided here. Five model atmospheres for pressure, temperature, $\rm H_2O$, and $\rm O_3$ distributions have been used and are referred to as Tropical, Midlatitude Summer, Midlatitude Winter, Subarctic Summer, and Subarctic Winter. They refer to models of the same names defined in the Handbook of Geophysics and Space Environment

Table 1. CO2 Laser Frequencies for which Attenuation Coefficients Have Been Computed. The Attenuation Coefficients included in this Table Refer to Molecular Absorption through a 1-km Horizontal Path at Sea Level

Rot. I.D.	Frequency (cm ⁻¹)	k _{mw}
P40	924.970	0.0359
P38	927.004	0.0423
P36	929.013	0.0584
P34	930.997	0.0536
P32	932.956	0.0650
P30	934.890	0.0737
P28	936.800	0.0852
P26	938.684	0.0853
P24	940.544	0.0955
P22	942.380	0.1021
P20	944.190	0.0958
P18	945.976	0.1223
P16	947.738	0.0747
P14	949.476	0.1101
P12	951.189	0.1058
P10	952.877	0.1008
P8	954.541	0.0817
P6	956.181	0.0615
P4	957.797	0.0498
P2	959.388	0.0753
R0	961.729	0.0347
R2	963.260	0.0401
R4	964.765	0.0502
R6	966.247	0.0614
R8	967.704	0.0663
R10	969.136	0.0714
R12	970.544	0.0788
R14	971.927	0.0796
R16	973.285	0.0799
R18	974.618	0.0755
R20	975.927	0.2140
R22	977.210	0.0871
R24	978.468	0.0641

Table 1. CO₂ Laser Frequencies for which Attenuation Coefficients Have Been Computed. (Cont)

Rot. I.D.	Frequency (cm ⁻¹)	k _{mw}	
R26	979.701	0.0579	
R28	980.909	0.0529	
R30	982.091	0.0587	
R32	983.248	0.0436	
R34	984.379	0.0439	
R36	985.484	0.9357	
R38	986.563	0.0328	
R40	987.616	0.0306	

(Valley, 1965). Because the major effect these five different models have on the computations in this report is due to the differences in water vapor distribution, Table 3 indicates the water vapor amounts in a 10-km sea level path, a 10-km horizontal path at 12-km altitude, and in a vertical path through the entire atmosphere. The water vapor distribution in all models is identical above 11-km altitude.

In addition to the five models described above, computations were made for two aerosol models (see Figures 1a and 1b). The details of these models are also described by McClatchey et al (1971). Briefly, the two models describe a "clear" and "hazy" atmosphere corresponding to a ground level visibility of 23 and 5 km, respectively. The aerosol size distribution function for both models is the same at all altitudes and similar to one suggested by Deirmendjian (1963) for continental haze. It differs from Deirmendjian's model "C" in that the large particle cut-off has been extended from 5µm to 10µm.

The refractive index for the aerosols is assumed real for $\lambda \le 0.6 \mu m$. For $\lambda \ge 0.6 \mu m$, the imaginary part is assumed to increase linearly to a value of 0.1 for $\lambda \ge 2 \mu m$. This model is based on measurements by Volz (1957).

The total numbers of aerosol particles per unit volume for the "clear" atmosphere have been adjusted to give an extinction coefficient at $\lambda = 0.55\mu m$ identical to the attenuation model of Elterman (1968 and 1970) at each altitude. The "clear" and "hazy" models are identical above 5 km. Below 5-km altitude, the number of aerosol particles in the "hazy" model increases exponentially to a value corresponding to a ground visibility of 5 km.

Table 2. Amount of Water Vapor (precipitable centimeters) in the Five Model Atmospheres for which Calculations have been made

	Tropical	Midlat. Summer	Midlat. Winter	Subarc. Summer	Subarc. Winter
10-kni Horizontal					
Path at Sea Level	19.0	14.0	3.50	9.10	1.20
10-km Horizontal Path at 12-km					
Altitude	0.006	0.006	0.006	0.006	0.006
Vertical Path from Sea Level to Space	4.13	2.93	0.853	2.08	0.410

4. COMPUTATIONAL TECHNIQUES FOR MOLECULAR ABSORPTION

In the spectral region covered, molecular absorption by water vapor, carbon dioxide, nitrous oxide, ozone and methane occurs. Carbon dioxide, nitrous oxide and methane were taken to be uniformly mixed by volume in the atmosphere at 330 ppmv, 0.28 ppmv and 1.6 ppmv, respectively. The water vapor and ozone were distributed according to the models described above. A Lorentz line shape as given in Fountion (1) was assumed for each line.

$$k_{\rm m} = \frac{S\alpha}{\pi \left[(\nu - \nu_{\rm o})^2 + \alpha^2 \right]} \tag{1}$$

in which S is the line intensity, α is the line half-width, $\nu_{\rm O}$ is the central line frequency, and ν is the laser frequency. For pressures less than 10 mb, a Voigt profile was used in the calculations (see Young, 1965). The laser frequency (ν) was assumed monochromatic for the purposes of this calculation. In general, a large number of absorption lines belonging to different molecules contribute to the attenuation at any specific laser frequency, so the total optical depth (O.D.) must be evaluated and is given by Equation (2).

O.D. =
$$\Sigma_{j} \Sigma_{i} = \frac{S_{ij} \alpha_{ij} m_{j}}{\pi [(\nu - \nu_{ij})^{2} + \alpha_{ij}^{2}]}$$
, (2)

where m_{j} represents the amount of the j^{th} absorbing gas.

Pressure broadening enters through the α_{ij} values in Equation (2). The Lorentz line width is given by

$$\alpha = \alpha_0 P/P_0 \sqrt{\frac{T_0}{T}}$$
.

The line intensity (S) is also temperature dependent through the population of the lower state of the transition and through the partition functions. These pressure and temperature effects have been included for all lines. The wings of all lines within ± 20 cm⁻¹ of frequency, ν , were considered to contribute to the absorption coefficient at frequency ν .

In addition to this, absorption due to the water vapor continuum has been included based on the measurements of Burch et al, 1971 and Bignell, 1970, between 1250-320 cm⁻¹.

5. RESULTS

Figures 2a through 2h provide a high resolution (infinite resolution) transmittance spectrum for a 10-km horizontal path at sea level corresponding to the Midlatitude Winter model atmosphere. These curves cover the entire spectral region from 320 to 1400 wavenumbers. The resulting curves for frequencies in the range 320 to 440 cm⁻¹ were entirely black (transmittance $\leq 10^{-3}$).

Figures 3a through 3i provide a high resolution transmittance spectrum for a 10-km horizontal path at a 12-km (approximately 40,000 ft) altitude.

Figures 2 and 3 are intended to provide the reader with an "infinite" resolution spectrum for estimating atmospheric transmittance in the middle infrared. These figures taken together with similar figures presented by McClatchey (1971) and McClatchey and Selby (1972), provide synthetic atmospheric spectra for sea level and 12-km altitude for the entire spectral region from 320 to 3740 cm^{-1} : (31.25-2.67 μ m).

The Appendix provides detailed quantitative information on attenuation for each of the CO₂ laser emission frequencies specified in Table 1 and for each of the mcJel atmospheres described above. The notations used in the column headings should be read as follows:

km = Molecular absorption coefficient,

 $\sigma_{\mathbf{m}}$ = molecular scattering coefficient,

k, = aerosol absorption coefficient,

 $\sigma_{_{\rm R}}$ = aerosol scattering coefficient.

All attenuation coefficients are given in units of km⁻¹. Zero entries indicate that the computed value is less than 10^{-6} . The total attenuation coefficient per kilometer is given by Equation (3).

For horizontal paths, γ can be simply multiplied by the range, R, in km in order to determine the total optical depth. The transmittance is then given by Equation (4).

$$\tau = \exp(-\gamma R). \tag{4}$$

If the atmospheric transmittance is required for a vertical or slant path, the entries in the Appendix must be summed (excluding the first entry) between the two altitude levels of interest and multiplied by the height increment ($\Delta H = 1 \text{km}$ below 25 km). The result should be multiplied by the appropriate $\sec \theta$ (where θ is the zenith angle) value to determine the total optical depth. The transmittance is then given by Equation (5). The use of $\sec \theta$ in Equation (5) must be restricted to $\theta \le 80^\circ$. For larger angles, curvature and refractive effects become increasingly important, and $\sec \theta$ must be replaced by an appropriate air mass parameter (see McClatchey et al. 1971).

$$\tau = \exp - (\sec \theta \Sigma_k \chi \Delta H_k). \tag{5}$$

Special note should be made of the spectral region shown in Figures 2a-2g. Absorption due to the water vapor continuum is responsible for the continuous underlying absorption in this region. For example, at 992 cm^{-1} the sea level transmittance over a 10-km horizontal path (see Figure 2f) is about 0.70. However, due to the partial pressure of H_2O , the transmittance increases :apidly with height as can be seen in Figures 3a-3f.

An example of the use of the data presented in Figures 2 and 3 and the Appendix follows: An examination of Figure 2e shows, at a glance, the atmospheric absorption at the frequencies of the CO₂ laser lines. For example the transmittance over a 10 km horizontal path in the case of the Midlatitude Winter model for the P20 CO₂ line at 944.190 is seen to be about 0.40. Furthermore, it can be seen that about half the absorption at this frequency is due to the water vapor continuum and the other half is due to absorption by atmospheric CO₂.

Reference can now be made to the appropriate page of the Appendix for more detailed information. Here, we can determine, for example, that the optical depth per kilometer at sea level corresponding to the Midlatitude Winter Model and neglecting aerosol scattering and absorption effects is 0.0958. For a 10-km horizontal path at sea level, the optical depth is thus 0.958 and the transmittance is

exp (-0.958) = 0.384. If aerosol effects are to be included, the attenuation coefficients (or optical depths) must first be added and then transmittance determined according to τ = exp (-optical depth). The resulting transmittance for a 10-km horizontal path at sea level including aerosol effects is 0.347 for the "clear" aerosa' model and 0.236 for the "hazy" model.

Figure 2a. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

Figure 2b. Atmospheric Transmittane due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

Figure 2c. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

Figure 2d. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

and the statement of th

Figure 2e. Atmospheric Trarsmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea I $^\circ$ vel

Figure 2g. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

Figure 2h. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at Sea Level

Figure 3a. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3b. Atmospheric Transmittance due to Molecular Absorption Through a 16-km Horizontal Path at an Elevation of 12 km

Figure 3c. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3d. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3e. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3f. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3g. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figure 3h. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Figur 3i. Atmospheric Transmittance due to Molecular Absorption Through a 10-km Horizontal Path at an Elevation of 12 km

Acknowledgements

We wish to acknowledge the time and effort provided by James Chetwynd in working with the computer programs to generate the results contained in this report in a timely manner. Without such help this report would have been delayed a considerable amount of time.

References

- Benedict, W.S. and Calfee, R.F. (1967) <u>Line Parameters for the 1.9 and 6.3 Micron</u> Water Vapor Bands, ESSA Professional Paper (No. 2).
- Bignell, K.J., (1970) Q.J.R.M.S., 96: 409.
- Burch, D.E., Gryvnak, D., Singleton, E.G., France, W.L., and Williams, D.

 Infrared Absorption by Carbon Dioxide, Water Vapor, and Minor Atmospheric
 Constituents, AFCRL-62-698, July 1962.
- Burch, D.E. Semi-Annual Technical Report, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Philoo-Ford Corporation, Aeronutronic Div., U-4784, January 1970.
- Burch, D.E., Gryvnak, D.A., Pembrook, J.D. Investigation of the Absorption of Infrared Radiation by Nitrous Oxide from 760 to 2380 cm⁻¹, AFCRL-71-0620, U-4995, December 1971.
- Clough, S.A. and Kneizys, F.X. Ozone Absorption in the 9.0 Micron Region, Phys. Sciences Res. Papers No. 170, AFCRL-65-862, Nov. 1965.
- Deirmendjian, D. (1963) <u>Scattering and Polarization Properties of Polydispersed Suspensions with Partial Absorption</u>, Proc. of the Interdisciplinary Conf. on Electromagnetic Scattering, Potsdam, NY, Milton Kerker, Ed., Pergamon Press.

- Drayson, S.R. and Young, C. <u>The Frequencies and Intensities of Carbon Dioxide</u>

 <u>Absorption Lines between 12 and 18 Microns</u>, Tech. Report 08183-1-T of the

 <u>University of Michigan</u>, November 1967.
- Elterman, L. (1968), UV Visible and IR Attenuation for Altitudes up to 50km, AFCRL, Environmental Res. Paper No. 285, AFCRL-68-0153.
- Elterman, L. (1970) Vertical-Attenuation Model with Eight Surface Meteorological Ranges 2 to 13 Kilometers, AFCRL, Environmental Res. Paper No. 318, AFCRL-70-0200.
- Goody, R.M. (1964) <u>Atmospheric Radiation: I Theoretical Basis</u>, Oxford, Clarendon Press.
- Howe, J.A. (1965) Appl. Physics Letters. 7: 1.
- Kyle, T.G. (1968) <u>Line Parameters of the Infrared Methane Bands</u>, AFCRL-68-0521.
- McCaa, D.J. and Shaw, J.H. <u>The Infrared Absorption Bands of Ozone</u>, AFCRL-67-0237, February 1967.
- McClatchey, R.A., Fenn, R.W., Selby, J.E.A., Garing, J.S. and Volz, F.E. (1971)

 <u>Optical Properties of the Atmosphere (Revised)</u>, Environmental Res. Paper
 No. 354, AFCRL-71-0229, May 1971.
- McClatchey, R.A. (1971) <u>Atmospheric Attenuation of CO Laser Radiation</u>, Environmental Res. Paper No. 359, AFCRL-71-0370, July 1971.
- McClatchey, R.A. and Selby, J.E.A. <u>Atmospheric Attenuation of HF and DF Laser</u> Radiation, Environmental Res. Paper No. 400, AFCRL-72-0312, May 1972.
- Patel, C.K.N. (1964) Physical Review 136: 5A.
- Valley, S.L. Ed. (1965), <u>Handbook of Geophysics and Space Environments</u>, AFCRL. Young, C. (1965), J.Q.S.R.T. 5: 549-552.

Appendix

Attenuation Coefficients (km⁻¹) for a Selected List of CO₂ Laser Frequencies for Five Geographical Model Atmospheres and Two Aerosol Models

HICROMETERS
10.811161
#AVELENGT# =

FREDUENCY * 924.970 #AVEYUMBERS

	TROPICAL	MIDLATITUDE SUMMER	HIOLATITUDE VINTER	SUBARCTIC SUMMER	SUBARCTIC VINTER	CLEAR	AEROSOI		HAZY
HT (KM)	k(km 1) g(km 1)	k(km ⁻¹)	صرادس") الإلاس") صرادس")	k(kn -)	0 (km-1) K (km-1) 0 (km-1)		g(km -1	k(!m-1)	c.[km-1)
2	5138E-01 0.00	2.949E-01	00.00	1.4245-01 0.00	1.1245-02	5.2875-03	m	2.575E-02	2.170E-02
	••	.093E-01	2.976E-02 0.00	1.0235-01	1.111E-02 0.00	3.609E-03	_	1.6246-02	1.358E-02
ري •	ċ	.0178-01	1.890E-02 0.00	5.5245-02 0	9.5845-03	1.575E-03	1.325E-03	5.225E-03	* 402E-03
	ė	.685E-02	1.274E-02 0.00	3.1155-02 0	7.2455-03 0.0		5.659F-04.	1-9156-03	1.5296-03
• • • • • • • • • • • • • • • • • • •	ő	.317E-02	8.228E-03 0.00	1.7905-02 0	5.2595-03 0.00	3.120E-04 2	. 628E-54	7.923E-0¢	5.579E-04
ر ا	ö,	•281E-02	5.390E-03 0.00	1.071=.02 0	3.5165-03 0.00	1.943E-04 1	.637E-04	2.835E-04	2.439E-04
o r	ċ	.363E-03	3.729E-03 0.00	6.750=03 0	2.355E-03 0.00	1.4195-04 1		90-46 15 ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
- a	6.717F=03 0.00	4.283F=03 0.0	1. Ap5F=03 0.00	2.9135.03 0.00	1,1015-03 0,00	1.119E-04	9.423F=05	1.1.25-04	9.493F-P5
	; ;	.026E-03	1.392E-03 0.00	1.9835-03 0	8-2665-94 0.00	1.112E-04 9		1126-04	9.355E-05
- 10	6	.239E-03	9.812E-04 0.00	1.3585-03 0	7.478E-04 0.00	1.075E-04 9		1.0756-04	9.035E-05
- 11	ċ	.628E-03	8.469E-04 0.CO	1.1155-03 0	7.4395-04 0.00	1.028E-04 8		1.0285-04	3.558E-05
- 12	ċ	.164E-03	8.115E-04 0.00	1.1425-03 0.	7.412E-04 0.00	1.0206-04 8		1.020E-04	8.589E-05
	ċ	.137E-04	7.924E-04 0.00	1.0935-03 0	7.257E-04 0.00	1.004E-04 B		-0346-04	3.4595~05
	ö	.805E-04	7.838E-04 0.00	1.1365-03 0	7.563E-04 0.00	9.545E-05 8		.545E-05	8.040E-05
	ö	+0-3160·	7.498E-04.0		7.3805-04 0.00	9-157E-05 7		0.157E-05	7.713E-95
	ö	.926E-04	7.235E-04 0	1.078=-03 0	7.2505-04 0.00	8.55E-05 7		2.635E-05	7.231E-05
	•	# 822E-04	(*039E-04 0	101142101	/*012E-04 0.00	8.390t=05 /	/•00/E-35	3404-05	/• 957E-05
	•	9015-04	6.677F=04 0		6.612F104 0.00	7.416F=05 6		2 C 1 S F 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	5.2485.35
50	; ;	7.446E-04 0.0	6.463E-04 0	1.1252-03 0	6.292E-04 0.00	5.847E-05 4	925E-35	5.6476-03	4.9256~05
- 2	ö	.772E-04	6.605E-04 0	1.0975-03 0	6.160E-04 0.00	4.255E-05 3	194E-05	+.255E-05	3.5945-05
- 25	ö	.344E-04	6.616E-04 0	1.1185-03 0	5.9085-04 0.0	3.149E-05 2	2.652E-05	3.148E-05	2-5528-05
- 23	ં	8.861E-04 0.0	6.594E-04 0	1.118=-03 0	5.514E-04 0.0		12E-05	2.338E-05	2.012E-05
1 50	ċ	.982E-04	6.554E-04 0		5.6595-04 0.0	_	. 565E-05]	. 8584-03	1.5555-05
	.	1.010E-03 0.0	6.777E-04. 0	1.215=-03 0	5.235E-04 0.0	-	78E-05	5176-05	1.279E-05
	ċ	1.300E-03 0.0	0.059E-04 0	1.470=-03 0	5.729E-04 0.0	8.094c-05 5	.818E-05	*0 +4E-0P	5-3185-05
	ċ	1.471E-03 0.0	6.154E-04 0	2.2885-03 0	4.8775-04 0.0	2.311E-06 1	47E-05	2.311E-06	1.347E-05
	.	• 523E-03	7.132E-04 0	1.842=-03 0	4.959E-04 0.0	•	•	•	•
	•	1.54/E-03 0.0	(.041E-0	1.727 03 0.	4.551c-04 0	•	•	•	• •
) ()	• •	50-31610	0.C88E-04 U.		10.00	•	•	•	•
200	1.228E-06 0.00	1.311E-04 0.00	1.378E-05 0.	1.3785-04 0	1.7215-04 0	•••	•	•	• •
•	;				,	•	•		•

りゅらり らりらわむってり ちもょうらか もこそり ちもょうらっとうしょくりょく ちょうごろごろごろうしょくしょしょしょ

SOL HAZY	k (km 1) og (km 1)	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
AEROSOL	g(km ⁻¹)	4.468E-03 3.049E-03 3.049E-03 5.6377F-04 1.6427F-04 9.6517F-04 9.3957F-05 9.3957F-05 7.3387F-05 7.3
NM3E2S CLEAR	1) k{km ⁻¹)	
927.004 #AVENIMAERS Subarchic Winter	0 (km-1) k (km-1) 0 (km-1)	1.535E-02 0.00 1.339E-02 0.00 1.339E-02 0.00 3.339E-02 0.00 3.339E-02 0.00 3.339E-03 0.00 1.505E-03 0.00 1.157E-03 0.00
NCY = SUBARCTIC SUPPRER	k(km-1) ogkm-1	1.508 1.1508
FREGUENCY MIDLATITUDE SI WINTER	ورادس") الإلاس") ورادس")	4.233E-02-0-00 1.245F-02-0-00 1.245F-02-0-00 2.456F-02-0-00 3.946F-02-0-00 3.946F-03-0-00 3.946F-03-0-00 1.956F-03-0-00 1.956F-03-00
MIDLATITUDE Sunner	k(km ⁻¹)	23.50.0000000000000000000000000000000000
TROPICAL	[- Es]	2.27.298886
	HT(W)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.787440 MICRONETERS

WAVELENGTH =

10.764112 MICROWETERS

#AVELENGTH =

HAZY		2 1845	02 1.377E-02	4-4235-0	1.539	6.721E-0				•		٠.	٠.		٠.	,	-,	-	03 3.75.05 03 5.28,7F.05	-	٠,	•••			_	,	á	•	•	• •	•
6	k(km ⁻¹)	7 5005	1.6326-02	5.2506-03				\$0-400 · 1		• ~	1.0306-04	1.0336-04	1.0246-04	1.0096-	9.530£-05	9.200E-	8-6354	0.470 0.470	7.4.796-03	5.8756-	4.236E-	3.1535-	2.399E-05	1.65/6-1	R 122F			••	•	•	•
AEROSOL	g(km)	, 407E-02	3.059E-03	1.335E-03	5.695E-04	2.645E-04	1.647E-04	1.203E-04	9.482F-05	9.424E-05	9.113E-05	8.713E-05	8.643E-05	8.512E-05	8.091E-05	7.762E-05	7.337E-05	(.112E-05	6.287F=05	4.957E-03	3.616E-05	2.669E-05	2.024E-05	1.5755-05	1.2002-03	1.959F-05		••	•	•	•
3ERS CLEAR	k(km)	20.30.00	3.625E-03	1.582E-03	.750E-04	E-04	• 952E-04	1.425E-04	1.1265-04	1175-04	1.080E-04		1.024E-04	1.009E-04	9.590E-05	9.200E-05	695E-05	8.429E=05	4525-05	875E-05	4.286E-05	3,163E-05	2.3995-05	1.867E-02	1.3045=U3	322E-0		••	•	•	•
HAVEVU4	o(km-1)	6		0.00	0.0	ċ	~	7			0.00	00.00	0.00	0.00	0.00	0.00	0	0000		0	0.00	0.00	0000	3000	2000) M	9	•	0	90	00.00
929.013 WAVENUNBERS SUBARCTIC WINTER	k(km-1) o		1.929E-02	1.7455-0	1.380E-0	1.054E-02	7.4175-0	5.221c-0	2.652FED	2.0515-0	1.872E-03	1.867E-03	1.863E-0	1.826E-0	1.9045-03	1.8585-0	1.8285-0	1.//25-0	1.6785-03	1.6015-03	1.5715-0	1.510E-0	1.439E-0	1.4535-0	1.0475-03	1.0815-0	1.0145-0	8.885E-0	7.2995-04	ыц	30 2 2 2 CE-(1)
••	g km-1)	6		0000	0000	0.00	000			00.00	00.0	0.00	0	0	0	3 0.00	01	2000	, ,	. 0	0		o,	200	7 C	9 0	0	0:0	0.0	000	00.0
FREQUENCY = SUBARCTIC SUMMER	k(km ⁻¹)	0.12446 6	1.6695-01		.673	3.458=-02	157	1.40/2702	677	4.593=-03	3.2495-0	2.7162-0	2.7885-0	2.6745-0	2.782=-0	2.766=-0	2.540ET0	Z. / 34: F03	7.717=10	2.7575-0	2.6885-0	2.7415-0	2.740=-03	2. (3/11-0	2.504:10	5.329570	3.532=-0	3.2255~03	2.2995-03	2.4485-0	04211042
	ورادس-ا	6	0.00	2 0.00	2 0.00			90	3 0 0	0000	0.00	00.0	00.0	0.00	0.00	0.00	000			0	0:0	3 0.00	0	0000			0.0	0.0	0.0	0	0000
HIOLATITUDE VINTER] [km-1]	S. 87.35	4.816E-02	3.360E-0	2.399E-0	1.634E-02	1.118E-0	6.021E-0	4-378F-0	3.328E-03	2.405E-0	2.105E-0	2.023E-0	1.983E-0	1.967E-0	1 - 886E-0		1.778E-03			•	1.679E-0	1.6735-03	1.0535-03	1.683F=03	1.354E-0	1.431E-0	•	1.120E-0	6.193E-05	C. 1335-U
3 6	o(km ⁻¹)	6		00.0	2 000	0000	0000	000		0000	0.00	0.00	0.00	0.00	0.00	0.00	2000	2000		3 0.00	3 0.00	3 0.00	3 0.00	0000		300	3 0.00	3 0.00	3 0.00	0000	00.0
MIDLATITUD SUHHER	k(km-1)	u	3,3435-01	ш	311E	4.751E-0	7230	200	555	3045	1536	353€	332E	326	720E	795E	1565	7475	1-776F-0	873E	948E	084E	202E	2004	76.26	91E	137E	802E	076E		מינים
CAL		00	000	0.00	1 0.0	0	N	• •		0	9	900	9	е В	0	ö	•	• •	, 0	•	ં	ċ	ं ,	;	5		Ġ	ċ	ċ	• •	•
TROPICAL	k(km-1) o(km-1)	7.7445-0	536746-01	ó	ó	Ó.	ò١	<u>ې د</u>	ò	ó	ó	ó	ó	ó	ó	1.091E-0	7.450E-0	3.392E-0	7.543E-04	9-462E-0	1 > 198E-0	18494E-0	1.727E-0	1.911E-0	2.7835-0	2.727E-0	.645E	• 254E	•601E	97.6	3064
	HT (KM)	c		•			•	1 1	•		-	7 - 0		7	-	-	-		18 - 19		7	•	N (U (y (**	1 (1)	1	4	in 1		2

	> -	o{km-1}	
	L HAZY	k (km 1)	
	AEROSOL	g(km ⁻¹)	
ERS	ERS	k (km - 1)	
ICROYET	MAVENUMBERS IC	ر _{*س:} ا	
10.741173 MICROWETERS	930.997 d Subarctic Hinter	0 [km-1 k [km-1)	2.2746 2.30746
7	<u> </u>	σ{km²-	
HETH #	REQUENCY & SUBARCTIC SUMMER	k(ign -)	1.066001 1.0660
MAVELENGTH	FREGU ITUDE ER	, \$ \$	
	F HIDLATITUDE WINTER	o(km-1) k(km-1)	3.8.4.6.9.2.4.6.9.9.3.3.3.3.3.3.3.0.9.3.3.0.9.3.3.0.0.0.3.3.0.0.0.3.3.0.0.0.0
	DLATITUDE SUMMER		
	MIDLATITU SUMMER) k(km ⁻¹)	0.00 3.195E 0.00 1.2646E 0.00 1.2646E 0.00 1.2646E 0.00 2.3463E 0.00 2.956E 0.00 3.9683E 0.00 3.466E 0.00 3.466E 0.00 3.4666E 0.00 3.4666E 0.
	TROPICAL	k (km - 1) o (km - 1)	
	T.R.	k ka	3.5.00 3.5.00
		нт (км)	10000000000000000000000000000000000000

10.718519 MICROWETERS

WAVELENGTH =

HAZY 	ojka")	\$14-4400466666666666666666666666666666666
¥ ~	k(km')	N = N = N = M = M = M = M N = M N = M N = M N = M N O O O O O O O O O O O O O O O O O O
AEROSO!	g(km)	34.050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43ERS CLEAR	K K K K K K	
) g(km)	3.019E-02 0.00 2.879E-02 0.00 2.879E-02 0.00 2.879E-02 0.00 3.879E-03 0.00
932.956 SUBARCTIC WINTER	0 (km) k (km)	
= ARCTIC PUPER -15	۲(الج	1 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
F- ≪	F E	
MIDLATIT VINTER	O(Km.) K(Km.)	00000000000000000000000000000000000000
2 %		3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
TROPICAL	k(km) o(km)	

WICRDWETERS	
10.696466	
#AVELENGTH =	

	3				FREQUENCY	ENCY =		934.890 #AVENJM3ERS	を	3585		į	
TROPICAL MIDLATITUDE HIDLATITUDE "SUMMER VINYER			MIDLAT	2 2	3	SUMMER		SUBARCTIC WINTER		CLEAR	AEROSOL		нагу
k [km-1) o (km-1) k (km-1) o (km-1) k (km-1)	k(kp ⁻¹)	(ióm-1) k(km-1)	k(km ⁻¹)		9 	^{لا (پو} اً-)	(Fa -)	o(km-1) k(km-1) o	o(km-1)	k(km ⁻¹)	g(km ⁻¹)	k{km ⁻¹ }	o(km 1)
.724E-01 0.00 3,516E-01 0.00	3.516E-01 0.00	-00 7.367E-0	.367E-0	N	00.0	1.943=-01	00.0	3.601E-02	00.0	348E-0		2.536E-02	2.204E-02
242E-01 0,00 2,657E-01 0	2.657E-01 0.00	-00 6-467E-0	-467E-0	A 1 4	000	1.5225-01	0.00	3.6675-02	000	3.650E-03	.087E-03	1.6431-02	1,3895-02
3495-01 0:00 0:535-01 0:00 3495-01	1.553E-01 0.00	00 0 26 85 00	0-140E-0	ນຄ	9 6	7. VGDE-02	9 6	3.454E-02	000	1.593E-03	1.30 (E=03	0. 404 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.4040-03
-30-101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.578F-02 0.00		435F-0	'n		5.284:102		2.532F=02			9.669F=94	400000000000000000000000000000000000000	5.7825-03
616E-02 0.00 4.829E-02 0.00	4.829E-02 0.00		-315E-	, W	000	4.0145-02	000	1.9825-02	0000	1.965E-04		2-9306-04	2. 4.7 7E-04
SE-U2 0.00 3.904E-02 0.00	3.904E-02 0.00		-148E-0	N	0.00	3.1635-02	00.0	1.5185-02	0.00		_	1.4356-04	1.2145-04
17E-02 0.00 3.217E-02 0.00	3.217E-02 0.00		-710E-0	A.	0.00	2.3675-02	0.00	1.1485-02	0.00	1.157E-04	9.779E-05	1.1576-04	9.779E-05
2.694E-02 0.00 2.524E-02 0.00 1.340E-02 0.146E-02 0.00 1.054E-02	2.5245-02 0.00	00 1.340E-0	• 340E-0	S	8	1.8285.02	000	8.573E-03	000	1.132E-04	9.568E-05	1-132E-04	9.558E-05
14E 02 6.00 1.562F=02 0.00	1.5425-02 0.00	00 7.887F-0	. 887F-0	ď		201120401		6.3045E-03	7 C	1.0886-04	9.1956-03	1.0385-04	9. 2.945-05
3E-02 0-00 1-204E-02 0-00	1.204E-02 0.00	.00 7.022E-0	. 022E-0	3	000	8.8205-03	00.00	6.300E-03	, 0	1-040E-04	8.792E-05	1.0406-04	8. 792E-05
5E-03 0.00 9.178E-03 0=00	9.178E-03 0:00	-00 6.767E-C	-367E-0	ū	0.00	9.0735-03		6.291E-03	0		8.721E-0		8.721E-05
FE-03 0.00 5.803E-03 0.00	5.803E-03 0.00		0-3759.	e	0.00	8.7145-03	0	6.168E-03	O	1.016E-04	8.590E-05	1.0156-04	9.590E-05
0E-03 C-04 5-847E-03 0-90	5.8475-03 0.00	.00 6.626E-0	626E-0	n	0.00	9.070=-03	0.00	6.434E-03	00.0	9,656E-05	8-164E-05	9.655E-05	9.1546-05
3.880E=03 0.00 6.102E=03 0.00 6.368E=03 2.760E=03 0.00 6.378E=03	6.102E-03 0.00	0.00 6.368E-0	, 368E-0	~~	000	9.0205-03	000	6.281E-03	0000	9.263E-05	7.832E-05	9.253k-05	7.832E-05
19E-03 0.00 5.867E-03 0.00	5.867E=03 0.00	.00 6.031E-0	.031E-0	. C		8.9835-03	000	6.016E-03		9.487E-05	7-1765-05	9-4376-05	7.175E-05
3E-03 0.00 5.941E-03 0.00	5.941E-03 0.00	1.00 6.002E-	002E-(č	0000	8.8885-03	0.00	5.832E-03	00.0	300E-05	7.018E-05	8.300E-05	7.018E-05
73E-03 0.00 6.025E-03 0.00	6.025E-03 0.00	1.00 5.771E-0	1.771E-0	C)	0000	8.860=-03	0.00	5.7325-03	0	.503E-05	6.344E-05	7.5036-05	5.3446-05
3E-03 0.00 6.324E-03 0.00	6.324E-03 0.00	1.00 5.598E-0	. 598E-0	(C)	0.00		0.00	5.485E-03	0.0	915E-05	5.002E-05	5.915E-05	5.002E-05
4.219E=03 0.00 6.546E=03 0.00 5.722E=03 5.1645E=03	6.546E-03 0.00	1.00 5.722E-0	722E-0	س (د	000	8.767=-03	000	5.398E-03	000	4, 316E=05	3.649E-05	4.3154-05	3.544E-05
0.00 7.312E-03-0.00	7.312E-03-0.00	.00-5-712E-0	1.7 IZE-0	3	9	8.9385-03		4.970E-03		2.416E-05	2.043E-05		2.0435-05
1 0.00 8.138E-03 0.00	8.138E-03 0.00	00 5.677E-0	-677E-0	3	0000	8.9075-03		5.037E-03		.880E-05	1.590E-05	S	1.5906-05
0.00 8.172E-03 0.00	8.172E-03 0.00	00 5.871E-C	-871E-C	3	0.00	9.559=-03	00.0	4.684E-03	0.0	1.5346-05	1.297E-05		1.2976-05
0.00 1.007E-02 0.00	1.007E-02 0.00	.00 5.715E-0.	. 715E-0	~	00.00	1.1185-02	00.0	5.032E-03	00.0	.188E-06	6.924E-05	8.138E-06	5.324E-06
0.00 7.773E-03 0.00	7.773E-03 0.00		1.611E-0	m		1.6265-02	0.00	2.908E-03	00.0	2.338E-06	1.977E-05	2.3396-06	1.977E-06
.977E-03 0.00 7.049E-03 0.00	7.049E-03 0.00	0	1.377E-0	3		7.8565-03	0.00	2.452E-03	00.0	••	•	•	. • 0
.718E-03 0.00 5.798E-03 0.00	5.798E-03 0.00		1.052E-	3		6.5895-03	0.00	1.972E-03	0.00	. 0	•0	1 0	٥.
-201E-03 0-00 4-088E-03 0-00	4.088E-03 0.00		-268E-0	ლ.		4.495=-03	0.0	1,521E-03	00.0	•		•	•
.215E-04 0.00 5.108E-04 0.	5.108E-04 0.00	0	-30SE-0	۱ ځ	0	5.1965-04	0	3.746E-04	0	• 0	•	•	• •
-06 0.00 6.783E-06 0.00	.783E-06 0.00	00	1.397E=0	Ω	0000	6.8165-06	000	7.535E-06	•	•	•	•	•

HICROMETERS	
10.674637	
LENGTH =	
AVE	

10.653212 MICROWETERS	938.684 #AVENUMBERS
#AVELEVGT# =	FREQUENCY =

			FRE	FREDUENCY =	938.684 #AVENUMBERS	UMBERS			
	TROPICAL	HIOLATITUDE SUHMER	HIDLATITUDE WINTER	SUBARCTI C SUMMER	SUBARCTIC VINTER	CLEAR	AEROSOL		HAZY
нт (км)	k Km) o Km]) k(km ⁻¹) og(km	ورادس] درادس] مرادس] مرادساً) درادساً) مرادساً)	۲(کسم) ۲	صرالم") الإلاس") والاس") الالاس") الالاس")	1) K(km ⁻¹)	g(km ⁻¹)	k (km 1)	o(km-1)
0	0.00	3.642E-01 0.0	0 8.527E-02 0.00	2.0775-01 0	4.4655-02	5.372E-03		-6194-02	2.215E-02
٠	.362E-01 0.00	2.792E-01 0.00	7.588E-02	1.6575-01 0	4.552E-02 0.00	3.666E-03			1.397E-02
t	0 10-		6.234E-02	1.1272-01 0	4.335E-02	1.500E-03	1.355E-03 5	5.3096-03	4.435E-03
•	.503E-01 @		5.261E-02	8.235=-02 0	3.7945-02	5.8266-04	5. /80E-04- 1	1.8446-03	1.552E-03
•	• 309E-02 0	7.856E-02 0.00	4.334E-02	6.395=-02 0	3.269E-02 0	3.170E-04	2.684E-04. 9		5.821E-04
4 U			3.500E-02	4.993EF02 0	2.609E-02 0	1.974E-04		- 945m-04	2.431E-04
•	3715-02 0.00	4.123F=02 0-0	0 2.2815-02 0.00	0 *0 *0*******************************	2.563F=02.0	1.1626104	1.66716-04-1	\$ 0 1 1 1 0 1 c .	1 • CK. E • 0 •
•	.491E-02 0.00	3.287E-02 0.00	1.816E-02	2.427±-02 0	1.1935-02	1.137E-04		1376-04	0.524E-05
ı	.845E-02 0.00	2.560E-02 0	1.455E-02 0	1.8795-02 0	9.659E-03 0	1.1305-04		.130E-04	9. 555E-05
6	.211E-02 0.00	2.0725-02 0	1.102E-02	1.4235-02 0	8.9475-03 0	1.092E-04			3.24-9E-05
•	-05 0 20-	o	9.900E-03 0	1,2265-02 0	8.937E-03 0	1.044E-54	ın	*0-34+0*	3.8435-05
•	.327E-02 0	.274E-02	9.554E-03	1.2615-02 0	8.9255-03 0	1.036E-04	8.772E-05	.0356-04	3.772E-05
ŧ	-05 0	*605E-03 0	9.413E-03	1.2115-02 0	8.751E-03 0	1.020E-04	8.639E-03	1-0206-04	3.539E-05
•	.309E-03 0.00	8.322r-03	9.381E-03	1.2615-02 0	9.129E-03 0	9.598E-05	8.212E-05	.6986-05	3.212E-05
1	*667E-03 0.00	8.6855-03	9.029E-03	1.254=-02 0	8.9125-03 0	9.304E-05	7.878E-05	3046-05	7.879E-05
n d	.096E-03 0.00	8.478E-03 0.00	8.763E-03	1.1975-02 0	8.786E-03 0	9.795E-05	7.447E-05	1.7956-05	7.44.7E-05
12 - 12		8.457F-03	0 8.5/4E-03 0.00	00.0 2047442.1 0		3.5255.05 0.375.05	/.Z18E-05	20-4020 0-4020 0-4020	7.219E-05
•	125E-03 0	2.565E-03 0	8.227E-03	1.2325102.0	8.179E-03 0	7.535E-05	6.381E-05	7.5356-05	5.38.E-05
•	.000E-03 0	8.966E-03 0	7.987E-03	1.2505-02 0	7.841E-03 0	5.942E-05	5,0316-05	5.9426-05	5.031E-05
ŧ	.127E-03 0	9.256E-03	8.164E-03	1.2195-02	7.730E-03	4.335E-05	3.6706-05		3.570E-05
•	*399E-03 0	9.829E-03 0	8.176E-03	1.243=+02 0	7.461E-03	3.1995-05		1.1995-05	2.709E-05
22 - 23	8.358E=03 0.00	1.02/5-02 0	8.148E-03		7 340E=03 0	2.425E-05	:	-4256-05 0000	2.03%E-05
	.006E-02 0	1-140E-02 0	8.376E-03 0	1.3225-02 0	6.752E-03 0.00	0 1.5416-05	1.305E-05: 1	1 544 F 05	1.305E-05
•	.249E-02 0	1.387E-02 0	8.128E-03 0	1.5305-02 0	7.211E-03 0	8.224E-06	964E-05	B-2246-06	5.954E-06
•	.858E-03 0	.110E-02 0	5.389E-03		4.388E-03 0	2.348E-0	50		1,9985-06
ı	.535E-03	.992E-03 0	4.973E-03	1,1075-02 0	3.674E-03 0	0.	•0	•	•
1 9 t	\$658E-03 0.0	.107E-03 0	4.388E-03	9.147=-03 0	2.898E-03 0	•	•	•	•
	~ <	656E-0	3.205E-03	6.1935-03 0.0	e c	•	•	•	•
7	.480E-06 0.	SE-05 0	9.959E-05	1.083	1.1515-05 0.00	••	•••	• •	•

4ICROMETERS	
លិ	
32145	
ĕ	
3	
#	
Ξ	
LEVGTH	
띡	
Ž	
MAVE	

MICROMETERS	1
10.611431	
MAVELENGTH =	

o(km-1) 2.6529E-02.1.6529E-02.1.6832E-03.1.6932E-03.1.6932E-03.1.6932E-03.1.6932E-04.695E-04.6 £-04 22 0.00 5.395E-03 3.122E-03 1.657E-03 2.629E-03 3.122E-03 3.12E-03 g(km⁻¹) k('tal') 942.380 MAVENUMBERS 5.5.56888 5.5.68888 5.5.69868 5.5.6988 SUBARC1 IC k(km⁻¹) WINTER م(km⁻¹)) SUBARCTIC k(km⁻¹) FREGUENCY راً۔ اس^ا ام MIDLATITUDE VINTER k(km⁻¹) ر (السام) ب MIDLATITUDE SUMMER 9.688E-02 6.358E-02 6.358E-02 6.358E-02 7.864E-02 7.866E-02 3.867E-01 3.017E-01 1.910E-01 k(km⁻¹) o(km⁻¹) **TROP [CAL** k(km) ET (SE) りらりらりられ もろそ りもお よみら やを こすり ちゅくり らか もろすら かっとん ごろろろろ ごうししし しょしょし

10.591089 WICROWETERS	944.190 MAVENJYBERS
#AVELEVGT4 = 10	FREDUENCY =

		, e	2.235E-02	20-36	533E-03	1.0705-03 4.8705-04	2E-04	1.2315-04	37 - US	5456-05	9.325E-05	7E-05	5E-05	8.712E-05		3E-05	7.273E-05	3E-05	\$E-05	3E-05	3.731F=05	2.072E-05	1.512E-05	ç	2E-05) - 				
	HAZY	o (km-1)	2 2.23	04.							•••				0 0	2000	7.57	7.11	(A)	70.0	2.00	5 2.07				v c		•	•	•
	SOL.	k(km-1)	N	1.65/16-02	0-404000	1.60006-03	2.95/16-04	1-4516-04	1.1576-04	1.1376-04	1.0396-04	1.0516-04	~	1.0274-0	0-1001-6	8 - 8 - 0 E - 0 E	8.5736-05	9.390E-0	7.5346-0	5.9736-05	4.357E-05	2.442E-0	1.9304-05	1.5316-63	776-0	C. 3536-05	•	•0	•	•
	AEROSOL	o(km ⁻¹)	~	3-130E-03	1.366E-03	3.868E-34	1.685E-04.	1.231E-04	7.918E-35	9.645E-05	9.326E-05	3.917E-05	3.845E-05	3.712E-05	2. CBUE-US	7.509F-05	7.278E-05	7.1185-05	5.434E-05	5.073E-05	3. (01E-05	2.072E-05	1.612E-35	1.316E-05	22E-(<	• •	•	•	•
:34S	CLEAR	K(km-1)	5.405E-03 4	. 590E-03		30.870E=04	1.987E-04	1.451E-04	1.1595-04	1.1375-04	1.0998-04	.051E-04	1.043E-04	1.027E-04	- 100E-UD	- 303E-03	8.579E-05	. 390E-05	. 584E-05	9795-05	4.3625-05	. 442E-05	1.900E-05	. 551E-05	277E-06	. 353E-05		•	•	•
ヒドクマミン		o(km-1)								00.00											00.00				e 00.0			0.00	0000	00.0
944.190 MAVENJYBERS	SUBARCTIC WINTER	og [4m-1] kg [4m-1] og	5.2145-02	5.3155-02	5.093E-02				1.9845-02	1.2655-02	1.1795-02	1.1795-02	1.1765-02	1.1535-02	1.603:-06	1.1745.00	1.1305-02	1.0995-02	3.083E-02	1.0405-02	1.02/2-02 50-3756	9.5115-03	9.568E-03			5.4635-03 5.4605-03		3,1352-03	7.8105-04	1. (85=-05
		o(km-1)	00.0	0.00	000	200		00.0	000		0.00	0.00	00.0	000	ם ס•ס		.00	0.00	0.00	0.00	000	0.00	00.00	0.00	000	00.0	000	0.00	0000	0000
EVCY =	SUBARCT I C SUMMER	k(km-1)	2.2385-01	1.8025-01	1.2475-01	9.208EF02	5.808=-02	4.774=-02	3.7115-02	2.348:102	1.812=-02	1.5775-02	1.6235-02	1.5595-02	1.063:-06	1.540:107	1.606=-02	1.5895-02	1.5835-02	1.605=-02	1.55502	1.5935-02	1.5815-02	1.6825-02	1.916=-02	2.5482102	1.245=-02	8.396=-03		1./62=-05
FREDUENCY	l TUDE ER) o(km-1)	0.00	00.0	00.0	000	000	0.00	0.0		000	0.00	0				-02 0.00		-05 0.00		00.00	00.0	0.00	0.00	00.0				9	00.0 +0-
	MIOLATITUDE WINTER	0 (km-1) k (km-1)	9.575E-02	8.576E	7.137E	6.096E-02	4.179E-02	3.416E-02	2.810E-02	2.2/3E-02 1.853F-02	1.428E	1.295E-02	1.252E-02	1.235E-02	1.6335	1.1895	1.132E-02	1.1295-02	1.0895-02	1.057E-02	1.080E-02	1.077	1.069E-02	1.105E-U2	1.067E-02	7.221E-0	6.251E-03	4.490E-03	2.765E-04	1.580E
	w.	م(ا_ م	00.0	00.0	000	000		0.00	000				0	0			000			Φ.	000	000	0000		000	000		00	9	0.00
	MIDLATITUC SUMMER	k(km-1)	3.8525-01	2.9775-01	1.8415-01	1.218t-01	6-8495-02	5.7455-02	4.879E-02	3.1235-02	2.568E-02	2.073E-02	1.637E-02	1.2595-02	1.1015-02	701474701	1.1045-02	1.1185-02	1.1305-02	1.1785-02	1.2125-02	1.3335-02	1.4695-02	1.4665-02	1.7505-02	1.5235-02	1136	7.711E-03	0	1./435-05
	כאר	o(km-1)	0.00	0.00	0	0	000	0.00	000		0.00	0.00	0.00	30.0	300			0.00	0.00	00.0	000		0		0		, 0	0	•	00.0
	TROPICAL	k (km 1) o (km 1)	5.094E-01	4.586E-01	2.766E-01	1.540E-01	7.809E-02	5.346E-02	5.143E-02	3-4546-02	2. 729E-02	2.177E-02	1.698E-02	1.366E-02	7.74/E-0:	/• / CSE = 0.	4.379E-03	4.695E-03	5.743E-03	6.857F-03	8.279E-03	1.102E-02	1.1935-02	1.307E-02	1.587E-02	1.366E-02	9.253E-03	5.178E-03	9.095E-04	1.535E-0:
		нт (км)	>		•		1 4 1 1		•	00 00 1 1 ~ 00	•	1	•	•	1		•	•	•	t	20 - 21	1	•	ı			•	,	•	70 -100

10.571093 4ICRDWETERS	945.976 KAVENUMBERS
WAVELENGTH =	FREGUENCY =

	TROPICAL	MIOLATITUDE SUMMER	HIDLATITUDE VINTER	SUBARC F1C SUMMER	SUBARCTIC VINTER	CLEAR	AEROSOL	£
HT (KM)	K(km-1) O(km-1) K(km-1)		0 km 1 k km 1 0 km 1	د (ديم - ا	0 (km-1) k(km-1) 0 (km-1)	k(km ⁻¹)	g(km-1) k(km-1)	0 (km-1)
0	6.346E-01 0.00	7		2.548=-01 0.00	~	5.417E-03 4.	N	'n
-	0	3.2915-01	1.114E-01	2.1135-01 0.	7.313E-02	e e	-	-
ر ا	0	2.1695-01	9.551E-02	1.544=-01 0.	7.0485-02	1.513E-03		•
m •	1.969E-01 0.00	1.5395-01	8.351E-02	1.202=-01	6.3045-02	5.884E-04	5.843E-04. 1.850E-03	
÷	1.365E-01 0.00	1.1852-01	7.124E-02	9.8652-02	5.565E-02	3.197E-04 2	714E-04	
in i	1.062E-01 0.00	9.417E-02	5.938E-02	8.0325-02 0.	4.571E-02	1.991E-04 1		4 5.519E-04
9	8.811E-02 0.00		4.908E-02	6.7365-02	3.674E-02	1.454E-04 1.	.234E-04 1.4546-04	4 1.2345-04
	0	6.9215-02		5.3085-02	2.9095-02		_	
	9	5.6555-02	3.323E-02	4.3035-02	2.277E-02	1.145E-04	9.7295-05 1.1466-04	
	0	4.5115-02	2.727E-02 0.00	3.4285-02	1.884E-02	1.1395-04	- 10 0	
	3.965E-02 0.00	3.7395-02	2.117E-02	2.6685-02	1.7585-02		~	4 9.350E-05
	0	3.041E-02	1.927E-02		1.757E-02	1.053E-04	~	
	0	2.4195-02	1.864E-02		1.754E-02	1.045E-04	8.868E-05 1.045E-04	
	2.030E-02 0.00	1.8745-02	1.840E-02		1.7205-02	1.029E-04		
	1.460E-02 0.00	1.644E-02	~		~	חי	ın	œ
	1+166E-02 0.00	1.716E-02	1.7735-02	2.3875-02	1.752E-02	9.382E-05		7.954E-0
	8.701E-03 0.00	1.6755-02	1.724E-02		1.7295-02	9.869E-05 7	ın	7.52BE-0
	6.703E-03 0.00	1.6505-02	1.691E-02	2,3775-02	1.6895-02	8.5968-05		S 7.297E-05
	7.179E-03 0.00	1.6715-02	1.6895-02					5 7.135E-05
	8.740E-03 0.00	1.6895-02	1.630E-02	2,345=-02	1.6235-02	ın		
	1.0396-02 0.00	_	1.584E-02	2.379EH02	1.5605-02		5.086E-05 5.992E-05	5 5.085E-05
	1.249E-02 0.00	1.8105-02	1.6198-02	2.3205-02	1.5425-02		3.710E-05 4.3716-05	3.710E-0
	1.482E-02 0.00	1.9135-02	1.621E-02	2,365=-02	1.4925-02		738E-05 3.2256-	
	0	1.987E-02	1.616E-02	2.3655-02	1.4315-02	in	N	
- 24	.785E-02 0	2.189E-02	1.605E-02		1.4575-02	1.9046-05 1	1.616E-05 1.934E-05	1.515E-0
- 25	0	2.1845-02		2.497Er02	1.3615-02	1.5546-05 1	~	~
- 30	. 363E-02 0	2.5995-02	1.604E-02		1.4405-0	9.2946-05 7	-05 8.2	7.040
32	.676E-02	1.877E-02	9.683E-03		7.984E-03 (2.358E-05 2.	010E-05 2.358C-06	6 2.010E-06
0 + -	1.372E-02 0.00	1.593E-02	8.348E-03		6.324E-03	٥.	•	•
- 45	,024E-02 0	1.231E-02	6,9216-03		4.7215-03	· •	ċ	•
- 50	.684E-03	8.3275-03	4.858E-03	9.0575-03	3.4075-03	••	•	90
- 70	884E-04	1.182E-03	2.992E-04	1.2055-03	8.4155-04	•	ċ	•
-100	•	1.9285-05	1.7396-04	1,951	_	•	•	•

9 MICROMETERS
*
551439
53
10.5
~
16
VELEV6T4
Ž

	o(km-1)	2.245E-02	4.555E-03	335-03	2,0255.04	1.2375-04	757E-05	93E-05	73E-05	525-05	3.734F=03	225-05	33E-05	45E-05	53E-05	55E-05	99E-05	45E-05	32E-05	20E-05	1,95,00	15E-05				
HAZY	8				.,							8	6.	, r	7.1	5.4						. 0	•	.	•	•
AEROSOL	k (km)	2.645E-02	3.355£-03	1.9544-03	3.1 +1 = 04 2.973E-04	1.437E-04	1.1746-04	1.1416-04	1-1346-04	1.0556-04	1.0475-04	9.830E-05	9.402E-05	8.83.78-05 9.3148-05	9.4246-05	7.615E-05	5,0346-05	4.330E-05		~ .	1.37/65-1	3736-0	.0	•	•	•••
AER	ر انسار هارسا	4.610E-03	1.3735-03	5.858E-04	2./20E-04].694E-04	1.237E-04	9.967E-05	9.693E-05	9.373E-05	8.962E-05	8.889E-05		7.983E-05	7.546E-05 7.315F-05	in	5.466E-05	in i	2.745E-05	2.082E-15	1.620E-05	1 • 366E = 05	2.015E-05	•	•	•	•
SERS CLEAR	k(km)	5.429E-03	1.517E-03				1.174E-04				1.047E-04	9.800E-05	0.402E-05	8.897E-05	3.424E-03	7.515E-05		3.232E-05				373E-05		•	•	
E VOVE	رائس) سالم	00.0			00.00		000				0000	00.				• 00	00			90	3 6	000		00.00		
947.738 MAVENUMBERS Subarctic Winter	(, ka -1	3.7825-02 0	3.5155-02 0				1.395E-02 0				8.4546-03 0 8.2846-03 0		3.441E-03 0			7.8325-03 0			.9235-03	-	0.00%2-03 0.00%2-03 0.00%2-03				3.374E-03 C	2.0535-05 0
	م(ا ⁻ سا) ه	0000			000	00.	000				000	8	000	000	8	00.0	000		00.	000		200	00•			_
ENCY = SUBARCTIC SUMMER	k(km ⁻¹)	1.9535-01	9.9345-02			-	2.555=-02				1.1495102			1.091=-02				1.1325-02			20-1841-1	_	_	_	8.003:-03	2.0895-05
FREQUENCY MIDLATITUDE SU VINTER S	9. Fa.	00.00		0000	2.884E-02 0.00	0.00	000	000	0.00		.970E-03 0.00	m		8.310E-03 0.00		0		.824E-03 0.00			7.726E-03 0.00			000	4.764E-03 U.00	30
2 3	1, k(km-1)	7.466	5.24	4.34	2.89.5	2.35	46.	1.30	1.01	9.27	8,84	8.82	8,547	8.31(8.15)	8.146	7.86	7.64	7.82	7.79	7.75	10.0	7.09	7.17	6.49	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3.035 1.849E
TUDE A	, #2 E	1 0.00	1 0000	2 0.00	-05 0 000	0.00	0000	2 0.00	00.00	20.00	00.00	3 0.00	_	000	0000	00.00	m c	- 0	0	a c	y n	. N	2	N C	20,00	າທ
HIDLATITU SUHHER	ž	m d	ب ر	121	6.400%-0 4.746E-(915	3.3175-02	2.145E-(1.780E-(1.451E-(1.1585~02 9.015F-03	7.931E-0	8-277E-0	8.079E-03	8.059E=(8-1415-0	9679	9-2025-03	9.5435-0	1.050E-0	1.044.6	3195	1.3125-0	1195	1071111	52E
TROPICAL	1) g(km ⁻¹)	00.00	• -	0.0	00.000	0.0	a a	0	0	00.0	00.00 20-	0.00	00-0 6	000	3 0.00	3 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	'n	30.0	0 c			0.0	0.0		20.0
1 8	, s	5.772E-0	1000 1000 1000 1000 1000 1000 1000 100	• 338E	7.032E-0	•359E	. 502E	365E	884E	.519E	1-198E-	.058E	•670E	4.255E-0	. 523E	•273E	• 059E	7.163E-0.	.966E	396E	•	200E	.147E	• 407E	0.4046-0	. 314E
	HT (KM)	- د د د	•	•	1 I	•	- 4 - 7	•	6	٠	11 - 12	ŧ	•	15 - 15		•	•		•	•			ı	•	40 - 00	. 7

MICROMETERS	
10.532125	
E4614 =	
MAVELE	

						Į T	1000 X	10		ジャー・ファイン あるくじょうしょうしゃ	AVENU	43145				
	TROPICAL	75	HIDLATITU SUMMER	36	MIDLATITUDE VINTER	300.	₩ ·	SUBARCT I C SUMMER		SUBARCT IC		CLEAR		AERO SOL	нагу	>
нт (км)	k(km ⁻¹) o	o(km ⁻¹)	k(km-1)	o(km-1)	1) k(km-1)	ا_شا ا_شا		k(kg-1)	o(km-1)	0 (km 1) k (km 1)	م(^{اس})) k[km ⁻¹)	g(km ⁻¹)) k(km ⁻¹)		0 (km-1)
0				0.00	1.101E-0	1 0.00		_	00.00	6.417E-02	00.00	5.439E-0	3	•••	Ň	252E-02
			3.0745-01	0.00	9.990		~			6.5385-02		3.712E-03	3.154E-0	m	-	4205-02
2		30.	1,9805-01	0.00	ø		0 1.39		0	6.292E-02		1.520E-03	1.376E-03		.+	557E-03
m .		0	375E-01	0000	7.424E		0.1.0			•632E-0		5.912E-04	5.872E-	4 1.857E-0	03 1.	595E-03
t			1.0475-01	000	6.3338		9.75	202	-	4.983E-02	0000	3.210E-04	2.727E-04	4 B-157E-04	90.	5.930E-04
			1045-66		0.49BE		7.0			Ģ q		1.9996-04	= -	14 2.973E-	* ·	531E-04
~			6-1335-02	000	0	2000	4.74	4.748==02	00	2.6625-02		1.1755-0		14. 1.450c-04	100	40FF-04
æ			5.043E-02	0.00	3.0245		3.87		0000	2.1045-02		1.1516-0	6		0.40	775E-05
5		00.	.052E-02	0.00	Ň.		3.11		00.0	1.7536-02	00.0	1.1445-0	6		.6 40.	9.717E-05
2:		8	385E-02	0.00	<u></u>		2.44		00.0	1.6415-02		1.105E-0	6		.04 9.	395E-05
٦,		3	.776E-02	0.0	<u>.</u>		2.15		00.0	1.6395-02	0.00	1.057E-0	8		0. 40.	933E-05
~		3	-229E-02	0000	<u>-</u>		2,2		00.0	1.6375-02	0.00	1.049E-04	8		04 3.	911E-05
٠,		3	. 743E-02	000	<u>.</u>	0.0			00.0	1.6035-02	0		8	5 1.033E-04	90	777E-05
		3	.537E-02	000	<u>.</u>				00.0	1.674E-02	000		8		.03	342E-05
		3	- 604E-02	000	٦.				000	1 • 635E-02	0.00		8			003E-05
2.			5435-02		-					1.5145-02	000		.,			555E+05
			552F-02		-			20110		2375100	•		.,		0.00	3326-03
6.	8.382E-03		1.5775-02	000	1.525E-02	200		25.102	000	1.5195-02	000	7.630E-05	9	5 7.630£-05	5 5	5.4825-05
- 20		00.	642E-02	0.00	-			20-13-	00.0	1.4625-02			3		0.0	1115-05
. 23 -		30.	1.685E-02	0.00	-				00.0	1.4455-02	00.0		ě		.05 3	729E-05
- 25		9	-7796-02	0.00	~	2 0.00			00.0	1,4015.02		3.239E-D	2	٠.	.05 2.	751E-05
53		3	.8435-02	0.00	<u>.</u>				00.0	1.345E-62		2.4575-0	2.	10	.5 2	037E-05
			.026E-02	000	٠.				0.0	1.371E-02		1.912E-n	-		00.	524E-05
0 6	1.613E-02	3 6	20-1810-1	000	-	0000			000	9		1.550E-0		· ^		1.3255-05
		3 6	14.30CE=0C		۰ د				00.0	Ò.	9.0	5.32/E-0	1.074E-	o ·	99	0745-05
		•	20-1900-1	300	,				0	0-2062.	9			5 2.3784-	9	0205-05
		3 6	1.00 VE-02	000	3.504/E-U				2	6.525E-03			•	•	• ·	
	475-06	3 3	70-37474	3	1 - 143E-0				000	Ò.	0		•	•	•	
	0.6116-03	00.0	3.432E-03	000	4.987E-0	0.0	· •	60494	0	.5355-0	0	•	.	•	ċ	
2	1-0405-03	•	- 238E-03	000	3.135E-0	0		2	_	?	•	•	•	•	ċ	
001-	1.4692-05	•	:•122F-05	9	-	0	2.15	55-05	00.00	2.1055-05	0.00	•	•	•	ċ	

n	
۲	
ハイドーコトロインゴト	
7	
9	
ř	
2	
=	
Ø	
n	
⇉	
3	
ñ	
٠	
0010100	
٠	
H	
2074	

						FRED	FREGUENCY =		951.189 WAVENUMBERS	AVEVU	MBERS			
	TROPICAL	CAL	HIDLATITU SUMMER	J0E	HIOLATITUDE WINTER	UDE	SUBARCTIC SUMMER	ပ	SUBARCTIC WINTER		CLEAR		AEROSOL	HAZY
нт (км)	k(kg-1)	و(اا	k(km ^{'-} i	g(kg	0 km 1 k km 1	o(kn-1)	', k(km ⁻¹)		0(km-1) k(km-1)	σ{km-¹)	1) k ₄ km ⁻¹)	g(km ⁻¹)	k{km-1)	مرًابس]
0	.911E-01		.7975-01	00.0	1.058E-01	00.0		0.00	6.194E-02	0.00	5.450E-03	4.632E-0	2.6556-02	2.257E-02
_	.491E-03	0.00	2.9752-01	0000	0	000	-	0000	6.309=-02	0	3.720E-03	3.161E-0	1.6746-02	. 423E
2	70		.906E-01	00	8.193E-02			0	6.075E-02		1.623E-03	1.379E-03	5.336E-03	4.573E-03
۳ •	.719E-01	_	•319	00.0	7.153E-02	0	-	0.00	5.4485-02	0	5.925E-04	5.886E-04	1.871E-03	1.590E-03
t 1	.157E-01	.00.	005E-01	00.	6.115E-02	0	_	ċ	4.8325-02	_	3.216E-04	2.734E-04.	9.173E-04	5.945E-04
S •	.969E-02	- 00.	.971E-0	000	5.132E-02	0	_	ċ	9	0	2.003E-04	1.702E-04	2.9356-04	2.5375-04
	.473E-02	• 00 •	•846E	000	4.279E-02		٠.	0	3.2555-02	0	1.463E-04	1.243E-04.	1.453E-04	1.2435-04
	•195E-02	0.00 5.	-9295-02	0.00	3.5ABE-03		4.6085-02	0	2.6105-02	0	1.1785-04		1.1738-04	1.002E-04
20 1		3.	.890£-02	0.00	2.958E-02	0.00	3.778=-02	0	2.0715-02		1.153E-04	9.800E-05	1.1535-04	9.900E-05
	.335E-02	0.00 3	-9425-02	0.00	2.455E-03		3.0475-02	0:0	1.7325-02	0	1.145E-04	_	1.1464-04	9.740E-05
	.491E-02	0.00 3.	.305E-02	0000	1.930E-02		2.4045-02	ċ	1.6225-02	0	1.109E-04	_	1.1386-04	9.419E-05
	844E-02	0,00 2,	.7205-02	0.00	1.7695-02		2,1165-02	0		0		9.005E-05	1.050E-04	9.005E-05
	.263E-02	0.00 2.	•192E-02	0.00	1.713E-02		2.1775-02	0		0		8.932E-05	1.0516-04	9.932E-05
- 13		0.00	.722E-02	0.00	1.693E-02		2.0925-02	0		0		8.798E-05	1.0356-04	8.739E-05
†	.358E-02	3	.521E-02	0	1.693E-02 0	0.00	2.1785-02	0.00	1.6555-02	0.00	9.839E-05	8.362E-05	9.839E-05	3.352E-05
- 15		.00	.588E-02	0000	-	00.0	2.1665-02	0	1.6155-02	0.00	9.4395-05	8.022E-05	9.439E-05	8.022E-05
	•355E-03	900	•550E-02	0		0.00	2.057=-02	ċ	1.5975-02	0	8.922E-05	7.583E-05	8.922E-05	7.593E-05
- 17	.514E-03	.00	.527E-02	0	-	0.00	2.1575-02	0	1.5615-02	0	8.548E-05	7.350E-05	8.648E-05	7.350E-05
- 18		00.	.546E-02	0	-	0.00	2.1345-02	ċ	1.5225-02	0	9.459E-05	7.188E-05	9.459E-05	7.198E-05
- 13	.382E-03	3	.560E-02	0		0.00	2.1275-02	0	1.5045-02	0	7.545E-05	6.497E-05	7.645E-05	5.437E-05
- 20	.862E-03	9	.623E-02	0		0000	2.1595-02	ċ	1.4485-02	0	5.029E-05	5.123E-05	6.0236-05	5.123E-05
- 21		30.	•665E-02		•	0.00	2.1055-02	ċ	1.4335-02		4.398E-05	3.737E-05	4.398E-05	3.737E-05
- 25	.380E-02	9	.756E-02	0		0.00	2.1465-02	0	1.389E-02	0	3.2455-05	2.758E-05	3.245E-05	2.759E-05
. 23 -	9	0.00	.8185-02	0		000	2.1461-02	ċ	1.3345-02		2.462E-05	2.092E-05	2.452E-05	2.032E-05
- 24	.644E-02	90.	.997E-02	0		0.00	2.1295-02	ં	1.3505-02	0	-	_	9156-05	1.5235-05
- 25	a	900	*988E-02	0		0.00	2.256=-02	0	1.2725-02	0	<u>ن</u>	~	.554E-05	1.3295-05
- 30	.137E-02	0.00 2	.3395-92	0		0.00	2.5435-02	0	1.3395-02	0	9.3445-0	.091E-0	.344E-05	7.091E-05
- 35	Ş	900	.822E-02	0	9.765E-03	0.00		0	8.1385-03	0	2.382E-05	2.025E-05	2.332E-05	2.025E-05
0+	•352E-02	9	.5595-02		8.446E-03	0.00	Ť	0	6.4985-03	0	9.	•	•	•
45	9	0.00	.201E-02	0	6.921E-03	0		0.00	4.8085-03	0	•	•	•	•
- 50	03	00.	.0895-03	0	•	0	œ	9	3.4215-03	0	•	•	•	•0
	1.010E-03	90.	1.2025-03	0	3.0416-0	0		0.00	2	0	•	••	••	••
-100	50	00.	-1025-05	C		0	2.1325-0	0.00	2.0645-05	9	•	•	•	•

4ICROMETERS	
10.494534	
#AVELENGTH =	

Selected described by the control of the control of

	HAZY	-1) ogkm-1)	'n.	1. + 1/3 UT = 0				-04 1.245E-04	104 9. 923E-05	-04 9.753E-05	9-4405-0	-04 3.025E-05	-04 8.953E-05	3.819E-0	·05 9.332E-05	-05 8.041E-05	-05 7-501E-05	-05 /-357E-05	.05 / C00t-00	-05 5.135E-05				-05 1.532E-05	05 1.332E-U5	7.0745-0	•0	•0	•0	•	_
	AEROSOL	-1) k(km-1)	-03 2.654E-02	- "			_		-						-05 9.858E-	-95 9.457E-	-05 8-940E-	-05 8.656k-	20 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-05 5-039K-05			•	-65 1-9196-05		, ,	•	•	•	ó	ć
	CLEAR	-1) g(km ⁻¹)	-03 4.643E-03	-U3 3-104E-U3		N	-				-30+5.6 +0-	-04 9.026E-	-04 8.953E-	-04 8.818E-	-05 8.382E-				-05 / -205E-05			-05 2.764E-05		-05 1.632E-63		ď	•0	•	6	•	0
EYUMBERS		o(km-1) k{km-1)	0.00 5.451E-03	0.00 3.121E-U3				•00 1-456E-04	0.00 1.155E-04	_				0.00 1.037E-04		0-00 9-457E-0		0.00 8.555E	00 3 4 7 4 C - 00 4 7 4 C - 00 5	0.00 5.039E				0.00 1.9196-05	0.00 1.350F_0		000	.00 00	0.00 0.	0.00	0000
952.877 #AVE4U43E4S	SUBARCTIC WINTER	0 (km 1) k (km 1) of	5.802E-02	5 4715-02 0	5.075E-02 0	4.495E-02 0	3.7255-02 0		9425-02	1.628E-02 0	1.525E-02 0	1.5255-02 0	1.5235-02 0	1.4935-02 0	1.5585-02 0	1.5215-02 0	1.5025-02 0	1.469E-02 0	1.4335-06 0	1.3655-02 0	1,3515-02 0	1.309E-02 0	1.258E-02 0	1.2835-02 0	0 20-35-92-1	• ⊂	. 0	3 0		7.849E-04 0	
" _	SUBARC FIC SUMMER	k(km 1) o(km	2.2445-01 0.00	1.6641=01 0.00 3.284=01 0.00		•	0	5.378=-02 0.00	;;		20-3					295-02 0.00			00-00 00-00	2.0235-02 0.00	ċ				00.00 00.00		•	1.2235-02 0.00	8.0302-03 0.00	1.1365-03 0.00	17.705 0.00
FREQUENCY		of km 1)	00.0			0.00	0.00	000	000	0.00	0.00	0.00	00° 0	0.00	0.00	0.00	000	0000		000	0.00	0.00	000	0000			00.0	0.00	0.00	0.00	0,0
	MIDLATITUDE WINTER	0(km-1) k(km-1)	.00 1.008E-01		0.00 6.6735-02		00 4.766E-(00 3.977E-02	00 2.759E-02		00 1.810E-C	00 1.663E-0	00 1.610E-0	00 1.592E-00	_	00 1.539E-02		-	-	0.00 1.382E-02			0.00 1.410E-02	-00 1.402E-(00 9-152F-03	8	.00 6.399E-03		.00 2.814E-04	9
	MIDLATITUDE SUMMER	k(km-1)	1.799E-01 0	- -		-4095-02		6.340=-02 0.		N	۸.	٠.	٠.	۸.	۸.		• 459E-02				N	.651E-02	• 707E-02 0	.873E-02 0))	693E-02 0	.441E-02 0	0	0	<u>۰</u>	
	TROPICAL	k(km-1) o(km-1)	.960E-01 0.00		-010-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-01 0.00	-05 0.00	.	00.00	-05 0.00	0.00	-05 0.00	0.00	0.00	0	1.043E-02 0.00	0	9	2-05-03-0-00 7-963F-03-0-00	0	9	0	0	546E-02 0.00		, 0	0	0.0	SE-03 0.0	E-04 0.0	38E-05 0.0U
		нт (кн)	יה א	ŕ	3 m	~	အ _'	<i>D</i> (1	. .	j	m	Ň			-•		9:	3			_	_	-i		٠,	i	-	ŏ	ŏ	œ.	_

4ICROYETER!	
10.476239	
ELEVGTH =	
AVE	

AEROSOL HAZY	km 1) k(km 1) ogkm 1)	4.653E-03 2.656E-02 1.430E-02 1.75E-03 1.593E-02 1.430E-03 1.593E-02 1.430E-03 1.593E-03 1.593E-03 1.593E-03 1.593E-03 1.593E-03 1.593E-03 1.593E-03 1.593E-04 1.505E-04 1.505E-04 1.505E-04 1.505E-05 1.153E-04 9.945E-05 1.905E-05 1.153E-04 9.945E-05 1.905E-05 1.905E-
E4U43E4S CLEAR	-1) k[km-1) g(km	00 3.7346 - 0.0 3
954.541 MAVENUMBERS Subarctic Winter	0 (km-1) k(km-1) 0 (km-1)	0.00
FREGUENCY = SUBARCTIC SUBARCTIC	k(km ⁻¹)	0.00 1.958899 0.00 1.0558899 0.00 0 4.0058899 0.00 0 4.0058999 0.00 0 2.0558999 0.00 0 2.0558999 0.00 0 1.0558999 0.00 0 1.0558999 0.00 0 1.055899999999999999999999999999999999999
F7 MIDLATITUDE VINTER	1) K(km-1) o(km-1)	8.16 7.25
HIDLATITUDE SURWER	k (km 1) o (km 1)	2.628E-0 2.628E-0 2.628E-0 2.628E-0 2.628E-0 1.6268E-0 1.6268E-0 1.6268E-0 1.6268E-0 1.6268E-0 1.6268E-0 1.666
TROPICAL	K (km 1) o (km 1)	5.530E-01 1.398E-01 0.
	нт (км)	100 100 100 100 100 100 100 100

MICROWETERS	
10.458271	
MAVELENGTH =	

AEROSOL HAZY	g(km ⁻¹) k _k km ⁻¹) o _k km ⁻¹) 13.4.664E-C3 2.671E-D2 2.273E-D2 3.183E-D3 1.634E-D3 4.509E-D3 4.509E-D
/EVJM3EQS CLEAR	02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
953.181 #AVEVUMBERS Subarchic Winter	1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
FREQUENCY & SUBARCTIC SUBARCTIC	(
FRED MIDLATITUDE WINTER	5.1 k(km ⁻¹) o _q (km ⁻¹) b _e 185 E _e
HIDLATITUDE SUMMER	K(m ⁻¹) g(km ⁻¹
TROPICAL	**************************************
	### ##################################

MICADMETER
10.440526
AVELEVGTH =

			FREG	FREQUENCY =	957.797 #AYENUM3ERS	WBERS			
	TROPICAL	MIOLATITUDE SUHMER	MIDLATITUDE WINTER	SUBARCT & C SUMMER	SUBARCTIC WINTER	CLEAR	AEROSOL	. HA	.
(XX)	k(km-1) o(km-1)	k (km) o (km	K K W O W	k(km.') o km ') k(km')	k(km-1) ogkm-1)	k (km 1)	g(km ⁻¹)	k(km-1)	0{km ⁻¹ }
0	-	2.8695-01	00 4.979E-02 0.00	1.4885-01 0.00	2.359E-02 0.00	5.491E-03	4.674E-03	2.6756-02	.278E-0
	10-3	2.0995-01	4.280E-02 0.0	1.1245-01 0.00	2.3755-62 0.00	3.748E-03	3.190E-0	6376-0	435E
ح.	-030	1.1275-01	3.308E-02 0	6.893E-62 0.00	2.2195-02 0.00	1.535E-03	1.3925-03		4.520E-03
.	******************	6.2495-02	2.666E-02	4.595Erc2 C.00	1.921E-02 0.00	5.978E-04	5.940E-04	1.8356-03	1.505E-03
	.85BE-02 0.	3.9735-02	2.135E-02 0	3.2915-02 (1.00	1.6495-02 0.00	3.241E-04	2.759E-04	2358-04	7.010E-04
	.287E-02 C.9	2.8295-0	1.726E-02 0	2.464Em02 0.00	1.3355-02 0.00	2.0185-04	1.718E-04	3.008E-04	2.550E-04
	0-0 20-	2.299E-02	1.416E-02	1.9695-02 0.00	1.0775-02 0	1.4745-04		1.4746-04	1.255E-04
	.059E-02 0.0	1.949E-62	1.179E .02 0.	1.5315-02 0.00	8.6535-03 0	1.187E-04		1.13.75-04	1,0115-04
	.680E-02 0.0	1.596E-02	9.716E-03 0.	1.243=-02 0.00		1.162E-04	9.850E-05	1.1521-04	9.890E-05
	.411E-02 0.	1.2865-02	8.111E-03 0	001E-02 0.00	0	1,1555-04	_	1.1556-04	9.930F~05
- 10	.138E-02 0.	1.081E-02	6.422E-03 0	7.9415-03 0.00	0000	1.117E-04	9.505E-05	1.1178-04	9.5055-05
	9 9	8.9465-03	5.9156-03	7.0165-03 0.00	0.00	1.069E-04	9.088E-05		9.098E-05
~	.481E-03 0.	7.2645-03	5.730E-03 0.	7.2165-03 0.09	0.00	1.0596-04	9.015E-05	1.0396.04	9.015E-05
- 13	:04E-03	5.758E-03	5.667E-03 C.	6.9305-03 0.00	0.00	1.043E-04	8.878E-05	1.0436-04	8.873E-05
~	.583E-03 0.	5.1115-03	5.671E-03	7.2135-03 0.00	00.0	9.9146-05	8.439E-05	9.9146-05	8.439E~05
_	.759F-03 0.	5,3346-03	5.479E-03 0	7,1745-03 0,00	5,4195-03 0,00	9.511E-05	8.096E-35	9.5118-05	8,035E-05
_	•885E-03 0.	5.206E-03	5.340E-03 0	6.847E-03 0.00	5.3555-03 0.00	8,390E-05	7.653E-05	8-990E-05	7.53JE-05
-	9E-03 0.	5.129E-03	5.246E-03 0	7.1445-03 0.00	5.2425-03 0.00	9.7145-05	7.418E-05	8.7146-05	7.419E-05
~	•418E-03 0.	5.1935-03	5.250E-03 0	7.0685-03 0.00	5.1152-03 0.00	9.5225-05	7.254E-05	8.5226-05	7.2546-05
~	.491E-03 0.	5.2385-03	5.075E-03 0	7.0475-03 0.00	5.0605-03 0.00	7.7035-05	6.557E-05	7.7036-05	5.3375-05
N	.377E-03 0.	5.4395-03	4.937E-03	7.1505-03 0.00	4.8775-03 0.00	5.074E-05	5.170E-05	6.0746-05	5.1702-05
ر ا د	992E	5.5705-0	00 5.046E-03 0.00	6.9725-03 0.00		4.431E-05	3.772E05	4.431E-05	3.772E-05
N	0 0	5.8682-03	E+054E-03	7.1085-03 0.00	4.5855-03	3.270E-05	2.783E-05	3.2706-05	2.793E-05
v	.133E-03 6.	6,0595-03	5.037E-03 0.	7.1085-03 0.00	4.507E-03 0.	2.480E-05	2,1116-05	2.430E-05	2.111E-05
N	.506E-03 0.	6.639E-03	5.005E-03 0	7.0482-03 0.00	4.593E-03	1.930E-05	1,643E-US	1.930E-05	1.643]-05
S	-03 0.0	6.599£-03	5.177E-03 0.	7.4515-03 0.00	4.305E-03 0.00	1.575E-05	1.341E-0	1,5756-05	1.341E-05
- 30	.064E-03 0.0	7.7015-03	00 4.979E-03 0.00	8.3425-03 0	j	8.407E-05	7.156E-0	.437E-06	7.155E-05
- 35	431E-03 0.0	7.0805-03		1.1125-02 0	3.325E-03 0	2.400E-05	2.043E-0	.430E-05	ຕ
4	-03 0.0	0-3604-9		6.9705-03 0	2.805E-03 0	•			•
- 45	302E-03 0.0	5.089E-03	3.008E-0	5.6165-03 0	2.1235-03 0	•	•	•	•
- 50	38E-03 0.0	:-03	2.105E-03 0	3.7572-03 0	1.5175-03 0	•		•	•
- 70	.566E-04 0.0	5.409E-04 0	1.371E-04 0	5.5212-04 0	3.8175-04 0	•	0.	•	•
-100	-06 0.0	-02 0-	00 8.830E-03 0.00	1.0202-05 0	47E-05 0		••	•	•0

WICRDWETERS
10.423312
и
MAVELENGTH

			FRE	FREQUENCY =	959.388 #AVEVUN3ERS	MBERS			
	TROPICAL	MIDLATITUDE SUMMER	HIDLATITUDE VINTER	SUBARCTIC SUHMER	SUBARCTIC WINTER	CLEAR	AERÒSOL	OL HAZY	X 2
нт (км)	K(km 1) O(km 1)	x(km-1) o(k	0 (km-1) k (km-1) of km-1)	_ k(km -1)	0 (km 1) k (km 1) c (km 1)	k_km-1	g(km ⁻)	k(km ⁻¹)	0 (km-1)
0	.778E-01 0.00		7.534E-	2.8185-01 0		5.501E-03	4.685E-33	2.6316-02	2.233E-02
→	.166E-01 0.00	<u>-</u> 0	6.317E-02	2.1105-01	2.8662-02	3.755E-03	m		1.4335-02
~	-942E-01 0.00	_	4.595E-02	1.2215-01 0	2.663E-02	1.539E-03	1.395E-03	5.4376-03	4.530E-03
	.962E-01 0.00	_	3.462E-02	7.4085-02	2.2335-02	5.991E-04	5.953E-04.	1.8394-03	1.506E-03
.	.727E-02 0.00	6.4055-02 0.	2.559E-02	4.737 E-02.0	1.8495-02	3.247E-04	2.765E-34	8-2506-04	7.025E-04
	.875E-02 0.90	3.883E-02 0.	1.943E-02	3.1725-02	1.453E-0?	2.022E-04	1.721E-04	3.013E-04	2.556E-04
D 1	05 0.00	2.789E-02 0.	1.543E-02	2.2995-02	1.1535-02	1.477E-04	1.257E-04	1-4776-04	1.257E-04
• (-411E-02 0-00	2.212=-02 0.	1.262E-02.	1.6945-02	9.209E-03	1.1905-04	1.0136-04.	1 - 1 306-04	1.0135-04
20 0	.658E-02 0.00	1.7462-02 0.	0-00 1-033E-02 0-00	0 1.338=-02 0.00		1.154E-04	9.912E-05	1.1545-04	9.9125-05
,	00.0 20-2610.	1.3862-06 0.	8.613E-03	1.0662-02	6.161E-03	1.1575-04	9.851E-05	1.1578-04	9.851E-05
٠,	. ZIZE -UZ 0.00	1.1525-02 0.	6.822E-03	8.4345-03 0	5.7865-03	1.1195-04	9.526E-05	1.1196-04	9.525E-05
٦,	000	7.5031-03 0.	.00 %.285E-03 0.00	7.450=-03 0	5.779E-03	1.070E-04	9.108E-05	1.0706-04	9.109E-05
٠ ٠	4740E=03 0-00		6.090E-03	7.662=-03	5.771E-03	1.061E-04	9.034E-05	1.0516-04	9.0346-05
٠,	.589E-03 0.00		6.023E-03	7.3585-03	5.658E-03	1.045E-04	8.898E-05	1.0456-04	8.839E-05
3 !	0.0	_	6.027E-03	7.6585-03	5.9025-03	9.932E-05	8.457E-05	9.932E-05	8.457E-05
			0.00 5.8245-03 0.00	7.616=-03	5.7615-03	9.528E-05	8.114E-05	9.523E-05	3.114E-05
010			5-675E-03		5.594E-03 0	9.005E-05	7.669E-05	9.035E-05	7.559E-05
٠-			50-27/15-03	1.0041403	5.5735=03	8.730£-05	7.434E-05	9.730E-05	7.434E-05
٦,			0.00 5.581E-03 0.00	-		3.537E-05	7.270E-05	9.537E-05	7.270E-05
502	0000		5.249F=03	0 60-1004-7	5 186F103	7.11/E-U3	5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	CO-8/1/9/	0.0/2E+05
- 21	0.0		5.365E-03	7.4015-03 0	5-139F-03	4.4395.03	3.780F=05	A. 4.200.000	3.7855.05
- 22	.954E-03 0.00	m	5.3736-03	7.545=-03	4.9835-03 0	3.276E-05	2.7895-05	3-2756-05	2.793E-05
- 23	0	.435E-03	5.355E-03	7.5445-03	4.793E-03	2.485E-05		2.435E-05	2-1155-05
- 24	0	·049E-03	5.322E-03	7.480=-03	4.891E-03 0	1.9346-05		1.9346-05	1.547E-05
N) (0.0	*005E-03	5.504E-03	7.9065-03 0	4.580E-03 0	1.578E-05		5736-05	1.3446-05
30	•495E-03 0	.168E-03	5.292E-03 0	8.8455-03 0	4.803E-03 0		s	8.4226-06	7.172E-05
m .	.448E-03 0.	m	00 2.704E-03 0.00	1.1785-02 ∪	2.251E-03 0	2.405E-06	ş	2.4356-06	2.0485-05
04	.404E-03 0.	9275-03	2.153E-03 0	.4.271 €-03	1.668E-03 0	70		٠.	•
1 V	.415E-03 0.	•873E-03	1.6716-03	3.1712-03 0	1.174E-03 0		•	:	•
051 •	95-03	880E-03	1.126E-03	2.0325-03 0	8.090E-04 0	•	•	•	0
2	.40ZE-04 0.	*850E-04	7.181E-05 0	2.9125-04 0	0 1.993E-04 0	•		•	•0
-100	41573E-06 0.00	9	0.00 4.574E-05 0.00	0.5.2925-06 0.0(0 4.991E-05 0:00	•	•	•	, . 0

HICROMETERS	
10.397940	
AAVELEVGTH =	

	48. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
,	######################################

The state of the s

		AEROSJI	g(km-1)	710E-03 2.
TERS	(3E4S	CLEAR	k{km-1)	5.525E-03 4
HICROME	963.260 MAVENUMBERS	ပ္	g(km ⁻¹)	02 0.00
10.381413 MICROWETERS	963.260	SUBARCT IC	, k(km-1)	1.702E-
		CT I C) o(km-1	-03 0.00
MAVELENGTH #	FREQUENCY =	SUBARCTIC SUMMER	× FE	1.345E
MAVEL	FREC	41DLAT1TUDE WINTER	والرسا المراسا والرسا المراسا والرسا المراسا المراسا المراسا المراسا والرسا والرسا والرسا] 0.00 2.666E-01 0.00 4.018E-02 0.00 1.345E-01 0.00 1.702E-02 0.00 5.525E-03 4.710E-03 2. 0.00 1.934E-01 0.00 3.370E-02 0.00 9.919E-02 0.00 1.703E-02 0.00 3.771E-03 3.214E-03 1.
		30.	o(km-1)	4 00.00
		MIDLATITUDE SUMMER	k(km-1)	2.686E-0 1.934E-0
		<u> </u>	o(km-1)	000

780	TROPICAL		10E	MIDLATITUDE	Ĺ	SUBARCTIC		SUBARCTIC	;; ;; ;; ;;	25.45	AEROSJI		HAZY
			7	AIN EX	-	Surner -1.	•	WINIER	-	1-17	-		
			, §	o(km ') k(km ') o(km ')	§	주 같 (و الم	K(km) o(km) k(km) o(km)	5	EX S	<u> </u>	K Krit. J	S
00.	ລ໌.	1.686E-01	0000	4.018E-02	2 0.00	1.3455-01	0.00	1.7025-02	0.00	5.5256-03	4.710E-03	2.6736-02	9
	∴ •	934E-01	000		00.00		000	1.7035-02	000	3.771E-03	3.214E-03	1.6996-02	1.44.7E-02
	, 5	058F-02			0000			1.27.65-06		1.546E-U.	1.403E-02		4.50%E=03
0	'n	354E-02	000			2.4225-04		1.3155-02		3.261E-04	2.779E=14.	B-237E-04	7-0535-04
0.0	-	968E-02	000	1.1446-02		1.7205-02	0.00	8.755E-03	00.0	2-030E-04	1.731E-04		2.530E-04
30.0	-	535E-02	0.50	9.237E-0	3 0.00	1.3195-02	0.00	6.9725-03	0.00	1.483E-04	1.264E-04	1.4	1.254E-04
9	-	276E-02	000	7.6022	•		000	5.5705-03	0.00	1.195E-0+	1.018E-04	וין וין	1.019E-04
	8	8.279E-03		5.195E-03	00.00	6.4275763	900	4.423E-03 3.716E-03	00.0	1.169E-04	9.964E-05	1.1594-04	9.354E-05
0.00	ŝ	937E-03	000	4.214E-0	3 0.00		9.00	3.4895-03	000	1,1265,34	9.576E-05	• ~	9.575E-05
0.00	ŝ	729E-03	0.00	3.789E-0	3 0.00	•	0.00	3.484E-03	0.00	1.074E-04.	9.156E-05	1.0	• 155E
2	3	649E-03	000	3.672E-0	3 0.00		00.0	3.480E-03	0000	*066E-04	9.082E-05	1.0564-04	9.082E-05
	m (567E-03	000	3.631E-0	00.00	•	000	3.4125-03	00.0	1.050E-04	8.945E-05	1.050E-04	8.945E-05
	, c	K 4 C = 0.5	000	3.033E-0		\$.	0000	3.559E-03	00.00	9.976E-05	8.502E-05	9.9756-05	8.5025-05
	1 0	335E-03		3,4215-03	2000	4.0411704		3.6367-03		9.570t=05	8.157E-05	9.570k=05	3.1575-05
0.00	3.0	85E-03	0.0	3.361E-0		*	0	3.360E-03	00.00	3.768E-05	7.473E-05	8.7586-05	7.473E-05
000	m (3275-03	00.0	3.364E-0	00.00	3	0.00	3.2795-03	00.0	8.575E-05	7.309E-05	8.5751-05	7.309E-05
	,	355E-03	000	3.252E-0		;	000	3.244E-03	0000	7.751E-05	6.607E-05	7.751E-05	5.507E-05
	• m	566F-03		3.223F=0	0000	3 4	000	3.125E-03	000	5.111E-05	5.209E=35	5.1116-05	
3	'n	3.7565-03	000	3.238E-03		-	000	3.0035-03	00.0	חו ר	2.804E-05	3-2906-05	2.804E-05
00.0	e.	877E-03	00.0	3.226E-0	3 0.00	3	0.00	2.889£ ·03	0.00	496E-05	2.127E-05	2.435E-05	2.127E-0
000	3	247E-03	00.0	3.207E-0	3 0.00	3	0.00	2.947E-03	0.00	ın	1.655E-05	1.9421-05	1.555E-D
90.0		221E-03	8	3,316E-0	3 0.00	.	000	2.759E-03	0.00	-05	1,3516-05	1.535E-0	1,3516-05
	3	4.921E-03	000	3.188E-03	0000	5.3285=03	000	2.894£-03	00.0	• 460E-05	7.210E-05	9.450E-0	7.2105-05
3000	,	637E-03	9 6	2.6295-0				2.041E=03		20.00	-2600	00-101-00	• 00411-0
3 0.00	ë	787E-03	8	2.258E-03		4-1775-03	0000	1.6005-03	000			• •	• •
3 0.00	å.	630E-03	8	1.601E-0	3 0.00		0.00	1.1572-03	00.0		•0	•	•
70000000		7.8095-04 0.	96	1.054E-04 6.860F-05	900	9 ~	000	2.937E-04		•	•	•	<i>.</i>
,		1	,	1	,	, ,	•		3	•	•	•	•

WICROMETER!
10,365218
#AVELEY/TH =

10.349321 WICROWETERS	
MAVELENGTH =	

			FRED	REQUENCY #	966.247 MAVEYUNBERS	HERS			
	TROPICAL	HIDLATITUDE SUHHER	HOLATIT VINTER	SUBARCTIC SUMMER	SUBARCTIC WINTER	CLEAR	AEROSOL		HAZY
HT (KM)	k(km 1) o(km 1)	k, (km-1) o (km-1) i	-1) k(km-1) ogkm-1)	k (km -1	0 (km-1) K (km-1) o (km-1)	k(km-1)	g(km ')	k(km ⁻¹)	o(km-1)
	5.187E-01 0.00	3.1412-01	143E-0	1.6915-01 0.	3.075E-02	5.5446-03 4	-03		2.304E-02
	Ş	2.3365-01 0.00	5.3516-02	1.3025-01 0.		3.784E-03 3			ç
.	0.0	1.309E-01 0.0	4.242E-02	8.2845-02 0.0	2.9275-02	1.6518-03			4.674E-03
	6.167E-02 0.00	5.127E-02 0.00	2.854E-0		7.220F102		\$ 6	1.90-88-03 8.31-56-04	1.563E-03 7.032E-04
	0.0	3.765E-02 0.0	2.3345-02	3.2645-02 0.0	1.8145-02	2.037E-04 1	9	-037E0	2.590E-04
	00.0	3-110E-02 0.0		2.6525-02 0.	1.468E-02	1.4885-04 1	ġ.	-438E-04	1.259E-04
_	7945-02 0-90	2.654E-02 0.0	1.610E-02	2.079EF02 0.0	- 0	1.1995-04.1	023E-04- 1	1396-04	1.023E-04
0 0	00.00	1.7595-02 0.0	1.1095-02	1.3595=02 0.	7.9165-03	1.1665-04	. 964F-04: 1	1565-04	1 + 00 1 E + 0 4:
2	558E-02 0.00	1.479E-02 0.0	8.777E-03	1.0865-02 0	7.4316-03 0.00	1.1276-04	9.615E-05 1	1.1275-04	. 515E-05
= -	277E-02 0.00	1.224E-02 0.0	8.081E-03	9.5952-03 0.	7.428E-03	1.0785-04	193E-05 1	.0796-04	.193E-05
- 12	023E-02 0.00	9.934E-03 0.0	7.632E-03	9.8755-03 0.	7.425E-03	1.069E-04	120E-05' 1	+0-3650*	7.120E-05
	000	7.864E-03 0.0	7.750E-03 0	9.4915-03 0.	7.287E-03	1.053E-04	.982E-05 1	•0535-04·	3.992E-05
	0.0	6.978E-03 0.0	7.757E-03	9.8835-03 0.	7.606E-03	1.0015-04	537E-05	.004 E-04	3.537E-05
5	5.114E=03 0.00	7.284E-03 0.00	10 7.498E-03 0.00	9.83451-03.0	7.430E-03 0.00	9.602E-05 8.	190E-05	9-6026-05	9-190E-05
	0	7.009E-03 0.0	7.182E-03	9-8045-03 0-	7-195E-03	8.798E=03.7	504F-05	7396-05	. 504F-05
- 18	0.00	7.100E-03 0.0	7.188E-03	9.705EH03 0.	7.020E-03	8.504E-05 7	339E-05	6346-05	7.339E-05
	0.00	7.166E-03 0.0	6.950E-03	9.677E-03 0.	6.942E-03	7.7786-05 6.	634E-05	. 7786-05	5.534E-05
	300	7.446E-03 0.0	6.762E-03	9.8175-03 0.	6.687E-03	5.132E-05 5.	230E-05	.1326-05	5. 230E-05
70		7.629E-03 0.0	6-910E-03	9.5715-03 0.	6.620E=03	4.474E-05 3,	816E-15	4746-05	3.815E-05
	0	8.302E-03 0.0		9.7465-03	6.163E-03	2.504E-05 2.	136E-05	5046-05	2-136E-05
- 24	0.00	9.095E-03 0.0	6.846E-03	9.6612-03 0.	6.281E-03	1.949E-05 1	662E-05	94-36-05	. 562E-05
- 25	0.00	9.0405-03 0.0	7.076E-03	1.0213-02 0.	5.8775-03	1.5916-05 1.	357E-05	.5916-05	. 357E-05
	00.0	1.055E-02 0.0	6.800E-03 0.0	.143E-02 0.	6.1635-03 0.0	8.4E8E-06 7	40E-05	3.438E-06	240E
		1.0552-02 0.0	5.885E-03 0.0	1.5265-02	4.988E-03	*454E-05	067E-05.	\$0-MAN.5.	.05/E-0
) U		9.989E-03 0.0	5-631E-03 0	1.0872402 0.	4.4052.03	•		•	•
י דע דע		0 0	4.05VE=03 0.0	0.00 6.00 1.00 1.00 1.00 1.00 1.00 1.00	3.431E=03 0.	•	•	•	•
	5285.04	915F=04 0-	2.265F=04 0-	•	00-0 40-144-2 0	•		•	•
_	455E-05 0	.656E-05 0.	1.459E-04 0.0	.683E-05 0.0	1.5976-05 0			• •	

MAVENUMBERS AEROSOL CLEAR -111.	of km) k km) of km) k km) of km)	0.00 5.554E-03 4.738E-03 2.735E-02 0.00 3.790E-03 3.234E-03 1.735E-02	0.00 1.654E-03 1.411E-03 5.438E-03 0.00 7.057E-04 6.021E-04 1.907E-03	0.00 3.277E-04 2.796E-04 3.329E-04 7.00 0.00 2.041E-04 1.741E-04 3.042E-04 2.3	0.00 1.491E-04 1.272E-04 1.491E-04	0.00 1.175E-04 1.002E-04 1.175E-04	0.00].]68E-D4 9.964E-D5].]58E~O4 0.00].]29E-D4 9.635E-D5].]29E-04	0.00 1.080E-04 9.212E-05 1.030E-04	0.00 1.071E-04 9.139E-05 1.071E-04 0.00 1.055E-04 9.000E-05 1.055E-04	0.00 1.003E-04 8.554E-05 1.033E-04	0.00 9.618E-05 8.206E-05 9.619E-05 0.00 9.092E-05 7.757E-05 9.092E-05	0.00 8.813E-05 7.519E-05 9.813E-05	0.00 7.790E-05 6.647E-05 7.790E-05	0.00 5.142E-05 5.241E-05 5.142E-05	0.00 4.401E=03 3.401E=03 0.00 0.00 0.401E=03 0.00 0.401E=03 0.	1 0.00 2.508E-05 2.140E-05 2.508E-05	0.00	1 0.00 9.502E-06 7.254F-05 9.532E-05	3 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	3 0.00 0.		0 00 0
RACTIC HER	K Km) K Km)	7005-01 3305-01	000	4.8335-02 0.00 2.6255-03 3.7995-02 0.00 2.1585-03	0.00 1.75			0.00	0000	0.00	1.1705-02 0.00 8.8015-03 1.1175-02 0.00 8.6955-03	000	.0	000		00.0		000	U. P.U. 5.258	0.00 4.110		97E-05 0.00 1.905
FREQUE TUDE R	- §	5.858E-02 0.00	0000	3.348E-02 0.00 2.769E-02 0.00	2.298E-02 0.00	1.589E-02 0.00	1.324E-02 0.00 1.046E-02 0.00	9.616E-03 0.00	9.210E-03 0.00	9.213E-03 0.00	8.900E-03 0.00 8.670E-03 0.00	8.515E-03 0.00	8.233E-03 0.00	8.007E-03 0.00	8.197E-03 0.00	8.169E-03 0.00	8.396E-03 0.00	8.081E-03 0.00	6.736E-03 0.00	5.839E-03 0.00	00 5 - 20E - 03 0.00 1	.00 1.737E-04 0.00 1
HIDLATITUD SURMER	- EX	3.089E-01 2.322E-01	1.344E-01 8.280E-02	5.7885-02	3.682E-02	2.6075-02	1.7705-02	1.4635-02	1.185E-02 9.359E-03	8.293E-03	8.655E-03 8.448E-03	8.322E-03	8.502E-03	8.834E-03	9.542E-03	9.861E-03	1.076E-02	1.2595-02	1.2005-02	9.8675-03	1.070E-03	1.9675-05
TAOPICAL	ža –	5.054E-01 0.00 3.729E-01 0.00		00	00	.740E-02	•3115-02 0 •866E-02 0	.527E-02 0	• 6616-06 0 • 009E-02 0	.424E-03 0	.064E-03 0 .632E-03 0	00	.644E-03 0	.439E-03 0	.545E-03 0	.328E-03 0	.729E-03 0	99	.053E-02 0	.345E-03 0	.027E-04 0	.728E-05 0
7	<u> </u>	~ (0	 	1 I	9 ~	• 1	1	•		1	14 - 15 15 - 16		ŧ		•	8 1			•	1 1	•	7

10.318469 WICROWETERS	
WAVELENGTH =	

UENCY = 969.136 #AVENUM3ERS SUBARCTIC SUBARCTIC AEROSOL SUPHER WINTER CLEAR	صرادساً) لارابساً) صرادساً) لمرادساً) صرادساً) لمرادساً) لمرادساً) مرادساً)].7625ml)	10.00E -01	\$ 3605=02 0.00 3.7585=02 0.00 1.6575=03 1.6165=03 4.6375=03 4.6375		5.324E-02 0.00 2.927E-02 0.00 3.283E-04 2.802E-04 B.342E-04	4.223E-02 0.00 2.410E-02 0.00 2.044E-04 1.745E-04 3.0476-04	3.5045-02 0.00 1.955E-02 0.00 1.493E-04 1.274E-04 1.493E-04	0.00 1.569E-02 0.00 1.203E-04 1.027E-04 1.203E-04	7.60000FUC 0.00 1.67400FUC 0.00 1.176FUG 1.0004FUG 1.0177BFUG 1.18677BFUG 1.18687FUG 0.000FUG 1.1868FUG 0.000FUG 1.1868FUG 0.0005FUG 1.1868FUG 0.000FUG 0.000FUG 1.1868FUG 0.000FUG 1.1868FUG 0.000FUG 1.1868FUG 0.000FUG 0.000FUG 1.1868FUG 0.000FUG 0.000FUG 0.000FUG 1.1868FUG 0.000FUG 0.00	1.055/2702 0.00 1.0043C=02 0.00 1.131E=04 9.653E=03 1.131E=04 3.653E=05 1.131E=04	1.275E-02 0.00 9.827E-03 0.00 1.081E-04 9.230E-05 1.031E-04	1.3132-02 0.00 9.8375-03 0.00 1.073E-04 9.156E-05 1.073E-04	1.2622-02 0.00 9.669E-03 0.00 1.057E-04 9.017E-05 1.057E-04	1.315Er02 0.00 1.010E-02 0.00 1.004E-04 8.571E-05 1.004E-04 0	**00 1*309%=02 0*00 9*889%=03 0*00 9*634%=05 8*222E=05 9*634%=05 3*222E=05 -00 1*252=02 0*00 9*80%F±03 0*00 9*104%=05 7*22E=05 9*34%=05 7*22E=05	1.3085#02 0.00 9.619E#03 0.00 9.827E#05 7.534E#05 9.827E#05	1.296=-02 0.00 9.399E-03 0.00 8.632E-05 7.368E-05 8.632E-05	1.294=-02 0.00 9.304=-03 0.00 7.803E-05 6.660E-05 7.803E-05 (1-31313 -07		3035-02 0.00 8.232E-03 0.00 2.512E-05 2.144E-05 2.512E-05	1.291E-02 0.00 8.364E-03 0.00 1.955E-05 1.669E-05 1.955E-05	1.3655-02 0.00 7.8085-03 0.00 1.5965-05 1.3 2E-05 1.595E-J5 1	1.530E+02 0.00 8.154E=03 0.00 8.516E-06 7.268E-05 8.515E-05	2.051=-02 0.00 6.597E=03 0.00 2.431E-06 2.075E-05 2.431E=06 3	7 1-404FPUT U-UU D-605EFUT U-UU U-UU U-UU U-UU U-UU U-UU U-UU U	0 8.405EF03 0.00 3.362EF03	0 1.2222703 0.00 8.523E-04.0.00 0. 0. 0.	0 2.206±-05 0.00 2.119E-05 0.00 0. 0. 0.
HIDLATIT	مرادس") لارادس") مر	0.00 7.140F	000	000	0000	0.00	0.00 3.095E-02	00.0	000		•	0.00	00.0	000	000	0.00 9.704E-03	00.0	0000		0.00 9.229F-0	0.00	0.00 9.199E-0	0.00 9.126E-0	0.00 9.418E-0	0.00 9.023E-0	0.00 /.808E-0		0.00 4.687E-0	0.00 3.048E-0	0.00 1.925E
M LOLAT I TUC SUMMER	k(km ⁻ 1)	3-1475-0	00 2.385	00 1.410	.00 B.923	.00 6.371E	00 4.883	.00 4.124	0023.5000	00 2.357	00 1.979	.0u 1.633E	.00 1.320E	.00 1.041	100 9.2181	0.00 9.4095-03	.00 9.281E	.00 9.414E	35.50.00.00.00.00.00.00.00.00.00.00.00.00	00 1.018	00 1.073	-00 1-109	.00 1.215E	.03 1.208E			100 11175	00 7.771	.00 1.198E	.00 2.174€
TROPICAL		0 5.102E-01	- 1 3.786E	- 2 2.213E	- 3 1.244E	- 4 7.490E	= 5 5.548E	6 4.533E	- / 3./21E	- 9 2,589E	- 10 25087E	- 11 1.704E	- 12 1,360E	- 13 1-121E-02	- 14 0.263E-03	- 16 5:102E-03	- 17 3.993E-03	- 18 4.268E-03	- 19 0.138E-03	- 21 7.193E-03	- 22 8.441E-03	- 23 9.340E-03	- Z4 1.004E-02	- 25 1.092E-02	# 30 1.696E=02	20 1.5035-02	- 45 9.389F=03	- 50 6.327E-03	- 70 1.010E-03	-100 1.910E-05

٠		
	MICROMETERS	
	10.303500	
	WAVELEYGIM =	

970.544 MAVENUMBERS

FREQUENCY

g(km⁻¹) k('m-1) g(km⁻¹) SUBARCTIC WINTER k(km⁻¹ g(km⁻¹) SUBARCTIC SUMMER صر^{اد}") HIDLATITUDE WINTER 7.885E 6.989E 6.989E 6.989E 1.0026 1.0026 1.0026 1.0026 1.0036 k(ka-1) MIDLATITUDE 7.002E-0 3.6448E-0 3.183E-0 3.183E-0 2.100E-0 1.391E-0 1.005E-0 1. k(km-1) ر (المالية) المالية TROPICAL k(km-1) (圣) 王

		AEROSOL HAZY	g(km ⁻¹) k(km ⁻¹) o(km ⁻¹)	70000000000000000000000000000000000000	
4IC-204ETE-2S	MAVENUMBERS	CLEAR	k(km ⁻¹)	20,000 000 000 000 000 000 000 000 000 0	
10.288839 VIC-2	971.927 #AVEV	SUBARCTIC VINTER	0 [km]	1.000000000000000000000000000000000000	3.6635-03 0 9.2815-04 0 2.2525-05 0
MAVELENGTH =	REQUENCY =	SUBARCT1C SUPMER	k(km 1)		1.3272-03 0. 1.3242-03 0. 2.3052-05 0.
MAVEL	FREQ	HIOLATITUDE VINTER	0 (km-1) k (km-1) 0 (km-1)	• FN 440 NN MAMAMAMAMAMAMADAQQQQQQQQQQQQQQQQQQQQQQQ	444 444 644 644 644 644 644 644 644 644
		HIDLATITUDE SUHMER	k(km-1) o(km-1	2.500 2.5000 2.5	2000
		TROPICAL	k(!m-1) o(km-1)	1982 19	.978E-03 0.00 .092E-03 0.00 .000E-05 0.00
			нт (км)	こうちゅうちょうしゅう しょうしょう しょうしょう ちゅうしゅうしょうしょうしょう しょうしょう しゅうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしゅう しゅう	1.5

11C2OMETE2S	973.285 #AVENUMBERS
10.274483 WICROWETERS	973,285
MAVELEVGTH =	FREGUENCY =

	TROPICAL	MIDLATITUDE SUMMER	MIDLATITUGE VINTER	SUBARCTIC SUMMER	SUBARCTIC Winter	AE	AER050L HAZY	> :
HT (KM)	k(km 1) o(km 1)	k(km-1)	صررا المرادس] مرادس] مرادساً المرادساً) مرادساً)	۲(ادماً) ا	0 (km-1) k (km-1) 0 (km-1)	k[km-1) g(km-1)	k(km ⁻¹)	o(km)
o	5.544E-01 0.00	-01	.00 7.989E-02 0.00	1.9642-01 0.00	4.252E-02 0.00	0-3689	3 2.723E-02	3255-02
•	•	_	7.090E-02	1.5572-01 0.00	4,3165-02 0.00	60	1.7174-02	45.7E~0
ı	2.438E-01 0.00	1.5785-01 0.	5.807E-02	1.0475-01 0.00	00.0	_	5.523E-03	,719E-0
ŧ	9.0	1.0045-01 0.	4.906E-02	7.6085-02 0.00	000	7.101E-04 6.067E-04	1.9196-03	. 539E
ı	0:0	7.1375-02 9.	4.076E-02	5.901=-02 0.00	000	3.298E-04 2.819E-0	3.33.1k=04	•
ŧ	•	5.423E-02 0.	3.3485-02	4.642=-02 0.00	000	~	_	4 5 1 5E = 0 4
	5.013E-02 0.00	4.537E-02 0.	0.00 2.154E-02 0.00	3.8135-02 0.00	2.064E=02 0.00	1.500E=04 1.281E=04	1.0000000000000000000000000000000000000	40-1162
	•	3-1545-02 0-	2.686E-06	2.4115-02 0.	2875-02	1.182E-04 1.010E-3	4. 1.132E-04	. 010E-04
ı	0.0	2.518E-02 0.	1.536E	1.9225-02 0.	.0695-02	-	1.1.175E-04	.004E-0
ı	Š	2.092E-00 0.	1.198E-02	1.5032-02 0.		1.135E-04 9.708E-0	1.135E-04	709E-0
ı	0.0 50.	1.707E-02 0.	1.094E-02	1.3175-02 0.00		ው	3 1.036E-04 5	232E-0
•	05 0.0	1.3645-02 0.	1.059E-02	1.3552-02 0.00	0	o.	3 1.078E-04	207E-0
ŧ	0.0 20.	1.062E-02 0.	1.046E-02	1.3035-02 0.00	0		1.0516-04	0.58E-0
•	93	9.3465-03	1.045E-02 0	1.356=-02 0.00	1.0235-02 0.00	w	1.0039E-04	51 3E - 0
ŧ	Ö	9.753E-03	1.008E-02 0	1.349=-02 0.00	9.990E-03 0.00		9.679E-05	0
ı	Ö	9.5205-03	9.810E-03 0	1.2885-02 0.00	9.8655-03 0.00	9.149E-05 7.816E-0	9.149E-05	Ó.
ŧ	Ö	9.3795-03	9.622E-03.0	1.343EY02 0.00	4.634E-03 0.00		3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ې ږ
•	•144E-03	9.497E-03	9.611E-03 0	1,329=-02 0,00	00.0	• •	3 3.07.3E-UD	Żο
ŧ	.027E-03	9.5962-03	9.276E-03 0	1.324=-02 0.00	00.00		7.6839E-05	Ò.
•	\$954E-03	9.9935-03	9.014E-03 0	1.3435-02 0.00			0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	0.130E-00
•	20-34C-4	1.0205-02	V. CGVE-03 U	1.30%=00 0.00			3.329F=03	, ,
, ,	376F=03 0-	1.1245-02	9.183F-03 0	1.3337-02 0.00			2.5246-05	Ö
ŧ	.012E-02	1.2365-02	9-1235-03	1,323=-02 0,00	0.00	.964E-05 1.678E	5 1.9546-05	1.573E-03
•	.105E-02 0	1.2325-02	9.431E-03 0	1.404=-02 0.00	0.00	1.370E	5 1.603E-05	.370E-0
ŧ	.329E-02 0	1.4595-02	9.095E-03 0	1.590=-02 0.00	0.00	7.3095-	5 3.555E~05	• 30 5 E-
•	.353E-02 0	1.4916-02	7.985E-03 C	2.1712-02 0.00	0.0	.443E-06	5 2.4435-06	.037
ŧ	.263E-02 0	1.4475-02	7.871E-03 0	1.5842-02 0.00	0.0	0.0	•	•
•	•019E-02 0	1.2135-02	7.0192-03 0	1.349E-02 0.00	0.0	•	•	•
1	.934E-03 0	8.575E-03	5.101E-03 0	9.3035-03 0.00	135-03 0.0	•• ••	•	•
70 - 100	1.924E-05 0.00	2.1875-05	0.00 3.252E-04 0.00	2.2165-05 0.00	2.188E-05 0.00	•••	•••	•
•								

and the beautiful as the print of

			0 (km-1)		581E-05 372E-05 322E-05 091E-06
		JL HAZY	k(km-1) 0	1	0.05.4 0.
		AEROSOL	g(km)	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1.681E-05 1.342E-05 7.342E-05 2.091E-06 0.0000000000000000000000000000000000
:TE4S	43545	CLEAR	k{km ⁻ⁱ)	3,3336 - 0.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,967E-05 1,505E-05 2,505E-05 2,645E-06 0. 0.
30 MICROWETER	18 MAVENUMBERS	C1 IC ER	1) og (km-1)		
10.260430	974.518	SUBARC11C WINTER	0/km-1) k(km-1)		
4ETH =	EVCY =	SUBARCT IC SUMMER	k(km ⁻¹) o	2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.000000000000000000000000000000000000
WAVELENGTH	FREGUENCY	MIDLATITUDE Winter	k [km-1) o [km-1)	25 25 25 25 25 25 25 25 25 25 25 25 25 2	.588F-03 0.00 .857E-03 0.00 .439E-03 0.00 .698F-03 0.00 .990E-04 0.00
		MIDLATITUDE SUMMER	k(km-1) o(km-1)	2546 - 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		TROPICAL	k (km 1) o (km 1)		
			нт (км)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4ICROYETERS	
10.246558	
#AVELE467H ≠	

FREQUENCY = 975,927 #AVEVJ43E2S

HAZY	0{km-1}	2.335E-02	1.472E-02	4.735E-03	1.545E-03	7.185E-04	2.524E-04	1.285E-04	1.035E-04	1.014E-04	1.008E-04	9.742E-05	9.315E-05	9.240E=05	9.100E-05	8.550E-05	8.239E-05	7.844E-05	7,503E-05	7.435E-05	5.721E-05	5.2395-05	3.855E-05	2.853E+05	Z.154E-05	1.5945-05	2	33	2.034E-06	•0	•	• 0	•	•0
	k(km-1)	2.7316-02	٠.	5.539£-03	1.9246-03	B.436E-04	3.0706-04	1.5344-04	1.212A-04	1 . 1 35h-04	1 - 1 7 3h - 04	1 - 3 +04-04	1.030fi-04	1.0314-04	1.0556-04	1.012E-04	9.738£-05	9-1751-05	8.8344-05	8.639A-05	7.853k-05	5.139E-05		•337k=05			.609E-05	-06	90.	.0	•	•	•	•
AEROSOL	g(km ⁻¹)	4.791E-0	m			•	1.761E-04		1.036E-04	1.014E-04					ው		8.298E-0		7.603E-D	7.436E-0	6.721E-0	5.299E-3		2.853E-0	2.164E-0	1.5845-0	_	7,33	2.0948-05	•	•0	•	•	•
CLEAR	k (km-1)-	5.603E-0	3.825	7.0	~	• •	2.050E-04				-	-	~	1.081E	_	_	9.708E-0	9.176E-0	9.894E-0	8.698E-0	7.863E-0	5.199E-0	4.523E-0	3.337E-0	2.532E-0	1.970E-0	1.508E-0	9.581E	3 2.450E-05	0 0.	.00	•	•	• 0 •
SUBARCT I C WINTER	(km-1) o(km-1)	7.403E-02 0.00	,775E-02 0.00	555E-02	3465-02	ċ		2.5325-02 0.00		1.369E-02 0.00	•	ċ	ံ	ċ	1.005E-02 0.00	.047E-02 0.00	0.0	ċ	•		0.0		•	•	-	ċ	ċ	.273E-03 0.00		3 0.0	-	3.2585-03 0.00	ė.	.872E-05 G.01
SUBARCTIC SUMMER	k(km-1) o(km-1) k(km-1)	0.00	000	000	0000	-01 0.00	-01 0.00	-05 0.00	000	0000	000	0000	00.0	00.0	1.348Er02 0.00 1	0000	00.0	0.00	000	0.00	0.00	00.0	0.00	0.00	000	000	0.00	0.00	0000	2 0.00	2 0.00	0.00	00.0	E-05 0.00 1
	9(km-1) k(km	00.0	0000	0.00	00.0	0.00	00.0	00.0	, 00.0	0000	0000	0.00	00.0	0.00	0.00	0.00	0.00	0.00 1.	0000	0.00	90	0.00	0.00	0.00	0.00	0.00	0.00	ä	0.00	0.00	0.00 1.6	0.00 8.6	00.00	0.00 1.847
HIDLATITUDE VINTER	o(km-1) k(km-1)	0		~	10 1.120E-01	~	10 5.485E-0	0 3.935E-0	0 2.852E-0	10 2.105E-0	10 1.646E-0	10 1.247E-0	10 1-127E-U	10 1.092E-02	10 1.072E-0	10 1.065E-0	10 1.026E-02	10 9.973E-0				0 9.162E-03 0.		0 9.371E-03	10 9.333E-0.	10 9.275E-03	9.592E-0	9.246E-0	7.5215-0	7.225E-U	Ø	4.656E-0	0 5.898E-0	00 1.656E-04
HIDLATITUDE SUMMER	k(km-1) o('km				3.958E-01 0.0			4.	۸.	4.832E-02 0.0	3.434E-02 0.0	2.5795-02 0.0	1.9215-02 0.0	1.4375-02 0.0	1.0845-02 0.0	9.4435-03 0.0	9.8455-03 0.00	9.6145-03 0.0	9.479E-03 0.0	9.607E-03 0.00	9.7305-03 0.0	1.0165-02 0.03	1.047E-02 0.0	1.108E-02 0.0	1.152E-02 0.0	1.2715-02 0.0	1.271E-02 0.0	1.5145-02 0.0	1.4505-02 0.0		1.1326-02 0.00	7.9535-03 0.00	ċ	ċ
TROPICAL	k(km-1) o(km-1)	.944E+00 0.0U	.359E+00 0.00	.034E+00 0.00	.247E-01 0.00	.216E-01 0.00	.882E-01 0.00	.263E-01 0.00	.194E-02 0.00	*468E-02 0.00	.836E-02 0.00	*686E-02 0.00	.972E-02 0.00	478E-02 0.00	.170E-02 0.00	0.00	00.0	0.00	0.00	0.00	0 0	.887E-03 0.30	.122E-03 0.00	.498E-03 0.00	.519E-03 0.9U	.033E-02 0.04	.134E-02 0.00	.375E-02 0.90	.308E-02 0.00	.186E-02 0.00	.436E-03 0.00	384E-03 0.00	.477E-04 0.00	00.00
	нт (км)	0	•	ر د	·	3	 (3)	•	~	20 1	о •	02 -	= -	- 12	_	1 14	- 15	- 16	- 17	- 18	61 -	02 - 6	0 - 21	- 22	2 - 23	3 - 24	4 - 25	5 - 30	35	2 - 40	45	45 - 50 5	- 70	70

10.233215 WICROWFIERS
WAVELENGTH =

		01 km 1	3395-02	1.475E-02	4.743E-03	4 Q	. 529E-04	995-04	395-04	100000	.7595-05	9.331E-05	555-05	1 SE-05	555-05	135-05	595-05	7.5155-05	735.05	095-65	73E-05	139E-05	58E-05	. ~	1485-05	8				
	HAZY	ָּטָ <i>יי</i>				7	2		~		• ••	•••	••		9.	a,	7.9			וו	3,9	٥,		-	~	٥ د. د	• •	•	•	•
		k (km 1	2.7355-02	1.725E-02	5.547E-03	2.477E-U3	3.0755-04	1.5376-04	1.2145-04	1.1436-04	1.141E-04		1.0325-04	1.056E-04	1.013E-04	9.721E-05	9,1395-05	3.937E-05	7.8745.05	5.238E-05	4.529E-05	3.342E-05	2.535E-05	1.510E-05	8.533E-06	2.454E-06	•	• •	•0	•0
	AEROSCL	g(km ⁻¹)	4.800E-03	3.276E-03		0.039F=34 2.833F=04	764E-94		.033F-04	1.015E-04	50-3651.6	9.331E-05	9.256E-05	9.116E-05	3.6650-05	3.313E-05	7.8595-95	7.6165-05	7. 732F . 05	5.309E-05	3.873E-05	P. 458E-05	2.168E-05	1.377E-07	7.348E-05	•	•	• •	•	•
35.45	CLEAR	k(km ⁻¹)	5.513E-03 4	3.831E-03				1.5076-04		101446	1.1415-04	1.091E-04	1.092E-04	1.055E-04	1.013E-04	9.721E-05	9.189E-05	8.907E-05	7.8745-03	5.209E-35	.95	Ę,	ا ال	5165-05	. 593E-05	•454E~05	•		•	•
- N		C(km-1)	0.00		000		0	_	00.	000	00		00.	900	00.	00.	00•	000	2 0	000	60.	00.	000	00	00.	0	60	0	00	00.
*	2	₹	32 0	٥ ک	2.0	>	0	•	0	-			·	O	0	0	0	0	> c	90	0	0	0	0	0	0 i	0 c	ים מינים	0 50	50
977.210 WAVENIMBERS	SUBARCTIC WIRTER	0 Km-1) K(km-1)	3.9795-(4.020E-	3.7355-02	3.17.17.0	P.094E-0	1.5305-	1.2555-02	V. /5/2-03	7.505E-0	7.577E-(7.560=-03	7.5955-(7.9585-(7.8305-03	7.8095-	7,5695-03	7 3535	7.0455-03	6.901E-	6.5150	6 293. 0	5.9495-03	5.0845-0	4.9935-0	4.599E-0	II LA!	141 (1.5545-0
		75	0.00						8	9 6	0000												60.0			?	000		0	• 00
EVCY =	SUBARCTIC SUMMER	k(kn) o	2.383E-01 0			2 0	. 6	20-3	6	0 20-105 6-1			-0°	205				1.0495-07		1.0547-02				1.0865-02 0		20-	1.275=-02	9 6	920	1.6095-05 (
FREQUENCY		م(الاس ⁻¹)				000			00•	000	00.	0.00	00.0	0.00	0.03	00.0	00.0	0.00		000	0.00	0.00	000	000	0.00	0	000	000	•	00.0
u.	HIDLATITUDE WINTER	c(Km ⁻¹)	7135-02		767F-02	7. 500F-02 (19E-02		.813E-02		9.077F-03		8.027F-03 (7.966E-03 (.996F-03	.73E-03		7.429E-03 (7.1675-03 (6.078E-03 (4.159E-03 (1.454F-04 (
		σ(km²1) i	00.0	00.0	00.0				00.	000	000	00.	900	00.			00.	00.0					00.0			00.	000	000	00.	00
	MIDLATITUDE SUMMER	k(kg-1)	.2395-01	ē	8725-01	7.0935-01 0	<u>ر</u> ن	-02 0	90	7	20	20	-020	03 0	.998E-03	ė,	93		2 6	Ģ	Ę,	င္ပ			-02	.167E-02 0	1545-02 0	1345-03 0	0 65-03 0	ر د د
	TROPICAL	K(km-1) O(km-1)	.738E-0	.023F-91	c c	8.578F-01 0-00	000	.48!E-02 0.10	047.2E-02 0.00		.763E-02 0.00	. 380E-02	.071E-02 0	-03 0	C	0	.542F-03 0	2.714F-03 0.00	623E-03 0	375F-03 0	.324E-03 0.30	.372E-03 0.00		.476E-03 0.00	.022E-02 0.00	.055E-02 0.0	.004E-02 0.0	5.712E-03 0.00	.430E-04 0.0	1.403F-05 0.00
		HT (KM)	·	r	N 1	n d	ر ا ا	,	,	1 (-	,	;	<u>.</u>	;	-	;	,, , I	, ,	- (U	, \ 1	(C) (1 1	· N	1	i.	J (1 1	•	-10

.0.220058 4ICROWETERS	978.468 #AVEVUN3EQS	SUBARCTIC AEROSOL AEROSOL HAZY	وإداراً الله الله الله الله الله الله الله ال	1825-02 0.00 5.5215-03 4.808F-03 2.7335-02	3.935E-03 3.281E-03 1.727E-02 1.4	047E-02 0.00 1.574E-02 1.432E-03 5.555E-03 4.	43E=02 0.00 1.143E=34 0.109E=04:1.930B=03 1. 60E=02 0.00 3.317E=04 2.837E=34:8.630E=04 7.	-02 0.00 2.066E-04 1.767E-04 3.079E-04	4085-02 0.00 1.509E-04 1.290E-04 1.509E-04 1.	400E-03 0.00 1.189E-04 1.017E-04 .	882E-03 0.00 1.182E-04 1.011E-04 1.132E-04	483E-03 0.00 1.143E-04 9.776E-05 1.143E-04	1.093E-04 9.347E-05 1.093E-04	0.00 1.054E.04 9.27ZE.30 1.034E-04 0.00 1.048E.04 0.132E.05 3 040E.04	0.00 1.015E-04 8.679E-03 1.015E-04	*00 9.735E-05 8.327E-05 9.735E-05	0.00 9.202E-05 7.871E-05 9.202E-05	0.00 8.723F=03 f-669E=03 8.928E=05 0.00 8.723F=03 7.461F=15 8.723F=05	0.00 7.885E-05 6.744E-05 7.835E-05	0.00 5.217E-05 5.317E-05 6.217E-05	3736=03 0.00 4.5356=05 3.879E=05 4.5356=05 3706=03 0.00 3.367F=05 2.8636=05 3.2676=0	995E-03 0.00 2.539E-05 2.171F-03 2.5346E-03	40E-03 0.00 1.975E-05 1.690E-05 1.975E-05	452E-03 0.00 1.513E-05 1.379E-05 1.613E-05	495E-03 0.00 8.505E-06 7.360E-05 8.605E-05	0 0-00 K-45/E-00 K-10ZE-05 Z-45/E-05 Z-10Z	3255±03 0+00 0+	5575-03 0.00 0. 0. 0.	7E-04 0.00 0. 0. 0.	-0 <u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>
WAVELENGTH =	FREQUENCY =	MIDLATITUDE SUBARCTIC SURMER SUMMER	k [km-1) o [km-1) k [km-1) o [km-1) k (km-1) o [km	1 0.00 6.405E-02 0.00]	01 0.00 5.614E-02 0.00 1.323E-01	**************************************	-02 0.00 3.006E-02 0.00	-02 0.00 2.408E-02 0.00 3.483E-02 0	-02 0.00 1.5740C+02 0.00 -02 0.00 1.575F+02 0.00	-02 0.00 1.261E-02 0.00 1.676E-02 0.0	-02 0.00 1.022E-02 0.00 1.307E-02	-02 0.00 7.854E-03 0.00 1.001E-02 0.0	175-UZ U.OU (.15UE-U3 U.UO 8./285+U3 175-03 0.00 6.9045-03 0.00 0.0565-03	-03 0:00 0:734E-03 0:00 0:03E-03 0:0	-03 C-00 7-044E-03 0-00 9-243E-03 0	-03 0-00 6-868E-03 0-00 9-298E-03	-03 0.00 6.763F=03 0.00 9.018E=03 0.03 0.00 6.763F=03 0.00 0.409=603 0	-03 0.00 6.766E-03 0.00 9.546E-03 0	-03 0.00 6.624E-03 0.00 9.607E-03 0	-03 0.00 6.542E-03 0.00 9.763E-03 0	-03 0.00 6.717E-03 0.00	-03 0-00 6-664E-03 0-00 9-575E-03 0	3 0.00 6.556E-03 0.00 9.4905-03 0	-03 0-00 0-091E-03 0-00 1-004E-02	.UZ U.UU 0.CSUE=U3 U.OU 1.1225=U2 U	E-02 0.00 5.373E-03 0.00 1.146F-02	-03 0.00 4.958E-03 0.00 9.995E-03 0	=-03 0.00 3.700E-03 0.00 6.982E-03 0	-04 0.00 2.267E-04 0.00 9.002E-04 0.0	0E-05 0.00 1.241E-04 0.00 1.36
		TROPICAL MI		0 5.034E-01 9.00	- 1 3.720E-01 0.00	- 3 1.172E-01 0.00 8.	- 4 6.712E-02 0.00 5.	4,762E-02 0.00 4.	- 7 2.983E-02 0.00 2.	8 2.380E-02 0.00 2.	- 9 12944E-02 0.00 1.	- 10 1.519E-02 0.00 1.	- 15 9.2475-03 0.00 9.	- 13 7.361E-03 0.00 6	- 14 5.193E-03 0.00 6.	4.068E-03 0.00 6.	- 17 25274E-03 0.00 6.	- 18 2.470E-03 0.00 6.	- 19 3.095E-03 0.00 6.	- 20 3.808E=03 0.00 /.	- 22 5.749E-03 0.00 7.	- 23 6.569E-03 0.00 8.	- 24 7.217E-03 0.00 8.	- 30 0-5075-03 0-00 0-	- 35 9.632F-03 0.00 1.	- 40 8.980E-03 0.00 1.0	- 45 7.376E-03 0.00 8.8	- 50 5,101E-03 0,00 6,3	- 70 7.373E-04 0.00 8	-100 1-190E-05 0-00 I.

4ICRO4ETERS	
10.207196	
WAVELENGTH =	

U (km 1) **AEROSOL** 1.511E-04 1.217E-04 1.191E-04 1.184E-04 7.153E-04 CLEAR 1.576E-03 7.8968-05 k(km⁻¹) 979.701 MAVENUMBERS 0.00 2.8300 2.8386 2.5706 2.3046 1.9956 1.02 1.02 1.02 4.01998 5.01998 5.01998 5.01998 5.01986 6.0296 6.0296 6.01966 6.019 SUBARC1 IC 0 (km-1) k (km-1) . 2295-01 . 8895-02 . 4695-02 SUBARCTIC 1.5882-01 . k(km 1) SUMMER FREDUENCY = م(ا⁻¹) 0000 0000 00000 00.0 MIDLATITUDE WINTER 5.789E-02 5.048E-02 3.994E-02 k(kin-1) 577E 907E MIDLATITUDE SUMMER k(kg -) k(km 1) o(km TROPICAL 2.597E-02 2.056E-02 2.508E-03 4.835E-01 6.041E-02 5 938E-03 6.520E-03 \$999E-03 7.612E-03 .013E-0 .41 H(SE)

MAVELEVGTH = 10.194626 MICROMETERS

FREQUENCY * 100174050 48VEYURESS

k(km) o(km-1) SUBARCTIC VINTER k(km-1) SUBARCTIC SUMMER .2465-03 k(km-1 .3232-03 9(km-1) 000 0.00 MIDLATITUDE WINTER 0 2.835=01 0.00 5.291 0 2.118E=01 0.00 4.572E=02 0.00 1.178E=02 0.00 3.572E=02 0.00 2.8572E=02 0.00 2.8572E=02 0.00 2.8572E=02 0.00 2.8572E=02 0.00 1.8572E=02 0.00 1.8572E=03 0.00 4.8372E=03 0.00 4.8372E=03 0.00 4.8472E=03 0.00 4.8472E=03 0.00 4.872E=03 0.00 4.872E=0 4.238E-03 4.238E-03 4.2312-03 4.339E-03 k(km⁻¹) σ(km⁻¹) ; HIDLATITUDE SUHMER k(km-1) 2(km⁻¹) 0000 TROPICAL 8.344E-03 6.344E-03 4.969E-03 2.646E-03 1.896E-03 1.423E-03 1.542E-03 1.943E-03 1.019E-01 3.447E-02 3.443E-02 2.863E-02 2.220E-02 1.397E-02 3.671E-03 4.224E-03 4.679E-03 5.216E-03 6.530E-03 k(km⁻¹) 3.441E-03 5.284E-04 7.907E-06 5.6735-03 \$398E-03 .988E-03 4.744E-01 1.9536-03 3.843E-03 3.472E-0

WICROWETERS	
10.182356	
WAVELENGTH =	

AEROSOL HAZY) k(km ⁻¹) o(km ⁻¹)	03 2.750E-02 2.35%E-0	1.7346-02	5.573E-03 4.774E-0	1.938E-03 1.559E-0	9.454E-04 7.245E-0	3.099 1-04	1.5156-04	-04. -6/00#-04 -040#-04.	1.1376-04	1.1486-04 9.823E-0	1.0976-04 9.392E-0	1.038E-04 9.317E-0	1.072E-04 9.175E-0	1.019E-04 8.722E-0	9-7745-05 8-3575-0	9.23#E=05 /.909E=0 0.05#E.06 7 ///E	9.7586-05 7.497E-0	7.9176-05 S.777E-0	5.242E-05 5.343E-0	-05 4-5546-05 3-8986-05	7.5446.05 2.199Fe0	1.434E+05 1.599E+0	1.6196-05 1.385E-0	8.640E-06 7.395E-0	.457E-06			• •	,
CLEAR	K[km ⁻¹ g(km ⁻¹)	0 5.644E-03 4.831E-	3.8525-03 3	1.581E-03	7-172E-04		2.074E-04	1.5155-04	0 1 6 GCOC-04 1 6 040F-04.	1.187E-04	1.148E-04	1.0975-04	1.038E-04	1.072E-04	1.0195-04	9-7745-05	9.239E-05	8.758E-05	7.917E-03	6.242E-05	4.554E-0	2.549E-05	1.984E-05		8.540E-05	2.467E-06 2.112E		•		•
982.091 MAVENUMBERS Subarctic Winter	0 (km-1) k (km") c (km-1)	2.4045-02 0.0	0.0	2.285E-02	1.9152-02	0.00 1.550E-02 0.00	1.1575-02 0	8.5175-03	0.00 0.3195-03 0.00		3.5085-03	3.573E-03 0.	3.6355-03	3.603E-03	3.740E-03	3.6495-03	3.500t-0		3.244E-03	3.0685-03 0.	0.00 2.9805-03 0.00	2.593E-03 0	2.7035-03 0.	2.4996-03 0	2.6525-03 0.	2.245E-03	• d	1.5095-03	.00 3.804E-04 0.00 .00 7.762E-05 0.00	200
FREQUENCY = SUBARCTIC SUPPER	K(km-1)	19-3008-1 00	00 1.3895-01	8.7535-02	20-	4.0175-02	2.8142-02	2.032=-02		7.6845-03	5.639=-03	4.8245-03	4.980=-03	4.810E-03	0 5.0032-03	• 982E-03	5041897 * 0 0	0 4.9015-03	0 4.8625-03	0 4.8965-03		4-77103	0 4.736=-03	5.0625-03	5.876=-03	8.504=-03 0	00 6,1165-03 0.	4.3732-03 0	5.2215-04 0 7.0225-06 0	• • • • • • • • • • • • • • • • • • • •
F3 HIDLATITUDE WINTER	صراس") لإلاس") ورادس")	.00 5.870E-02 0.	5.039E-02	3.8285-02	2.981E-02	2.234E-02	1.652E-02	1.2536-02	0.00 3.337F-03 0.	5.753E-03	4.319E-63	3.880E-03	3.777E-03	3.734E-03	3.717E-03	3.5726-03	3.455E-03	3.336E-03	3.197E-03	3.051E-03 0	0.00 3.133E-03 0.	3.082E-03	3.044E-03	3.130E-03	3.016E-03	2.749E-03 0	2.802F-03 0	2.239E-03 0	0.00 1.318E-04 0.	3 (0-1040)
MIDLATITUDE SUHHER	k(km-1)	3.3645-01	J 2.537E-01	1.4445-01	8.2535-02	.078E-02	3.3595-02	2.485E-02	1.4677-02	1.0965-02	8.5385-03	6.5558-03	4.964E-03	3.692E-03	3.1016-03	3.3285-03	3.005-03	3.2435-03	3.2935-03	3.4485-03	3.5565.03	3.927E-03	0 4.3415-03	0 4.3435-03	5,3075-03	5.768E-03	0 5.385F=03	0 3.982E-03	0 5.138E-04 0 6.987E-06	
TROPICAL	k(km-1) o(km-1)	•	4.114E-01 0.0	2.395E-01 0.0	1275E-01 0.0	6.454E-02 0.0	4.081E-02 0.0	2.462E-02 0	1.5835-02 0.00	1.213E-02 0	9.012E-03 0	6.811E-03 0	5.093E-03 0	3.942E-03 0	2.701E-03 0	2.057E=03 0	1 4 4 5 0 K = 0 3 0	1 + 1 7 9 E - 0 3	1.487E-03 0	1.830E-03 0	2,268E-03 0	3.144E-03 0.0	3.439E-03 0.0	3.802E-03 0.	4.7556-03	5 169E=03 0.	4.412F-03 0.0	33131E-03 0.0	4.249E-04 0.0 6.172E-06 0.0	
	HT (KM)	0	•	•	ŧ	•	•				1		•				, ,	•	1	1		•	•	•	•				50 - 70 70 -100	٠

AAVELENGTH = 10.170374 4ICROMETERS

	HAZY	0 (km-1)	2 2-3595-02	2 1.487E-02	3 4.782E-03	3 1.554E-03	- ~			40-W4W-04	٠	4 9.407E-05	\$ 9.331E-05	4 9-1306-05	4 9.735E-05	5 8.3305-05	5 7.921E-05	5 7.303E-05	5 5.73.7E-05	5 5.351E-05	5 3.9046-05				5 7.403E	0	•	•	• •
3)50L	k (km - 1)	2.7546-0	1.7356-02	5.5356-0	1 • 9 ÷ 0 tc − 0	3.0956-0	1.5176-04	1.2225-04	40-4061-1	7 -	1.0395-04	1.0906-04	1.0732-04	1.020E-04	9.737E-0	9.251E-0	8.770£-05	7.9278-0	5.2506-0	4.550E-0	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.936E-0	1.621E-0	.651E-0	• + / OF - O	•	•	••
Ì	AEKOSOL	g(km ⁻¹)	4	3.302E-0	I.441E-03	0.148E-04	1.778E-04	1.29E-04	1.046E-04	1.024E-04	1.017E-04	9.407E-05	9,331E-05	9.190E-05	8.735E-05	8.380E-05	7.921E-05	7.509E~05	6.787E-05	5.351E-15	3.904E-05	2,185F+05	1.701E-05	1.389E-05	-408E-0	<pre><-115E=05 0-</pre>	•	•	•••
BEAS	CLEAR	k (km)	5.551E-03	3.857E-03	1.683E-03	7.181E-04	2.077E-04	1.517E-04	1.222E-04	1.1965-04	101005-04	1.099E-04	1.090E-04	1.0735-04	1.020E-04	9.787E-05	9.251E-05	8.770E-05	7.9276-05	5.250E-05	4.550E-05	2, 152F-03	1.985E-05	1.521E-05	651E-0	C. 4 (UE-US)	•	•	•••
983.248 MAVENUM3EAS) o(km-1)	00.0	0.00	00.00			0.00	00.0	000			-	0.00	0.00	00.0	000		0.00	00.0	000		0.00	0.00	-	00.00		-03 0.0	E-04 0.00 E-05 0.00
983.248	WINTER	o(km-1) k(km-1)		0.00 1.8435-02		124-1 00	0.00 8.8435-03	**00 6.6245-0	0.00 4.976	0.00 3.777E-03			0.00 3.280E-03	.00 3.280			0.00 3.200	.00 2.8885-03		0.00 2.561	0.00 2.4445-03	00 C C C C C C C C C C C C C C C C C C	.00 2-132	.00 1.955	00	000	7.00	·W	m 0
ENCY =	SUMMER	k(km-1) of					1.9635-02		1.0745-02	8.1425-03		4.022EF03	4.1985-03	4.099E-03	4.2552-03 0	4.2305-03	4.052E-03	4.1195-03	4.053E+03	4.0352-03 (3.874=-03	3.822:103	3,775=-03 (4.021E-03 (0./JY:F03 0	92:103	0-11-56	4.1625-04 (5.3515-06 (
FREQUENCY	rek) o(km-1)	-02 0.00	0.00	0000			0.00	00.0	900		0000	00.0	0.00	0.00	000	000		0.00	0.00	000		000	0.00	00.0			000	0000
¥	WINTER	o(km-1) k(km-1)	.00 4.361E	00 3.697E-02	385/*Z 00	00 2-139	00 1.235E-02	00 9.625E	00 7.5616	00 5.888	3.603	00 3.2836	00 3.2376	00 3.220	00 3,195	00 3.0538	00 2 9338	00 2.781	00 2.648	00 2.5456	00 2.551E-03	26443	.00 2.4116	00 2.4618	00 2.346	00 2-136E-03	00 2.3186	0.00 1.816	~ °
MIDLATITUDE	SUMMER	k(km ⁻¹)	.683E-01	.961E-01	.045E-01	.671E-02		.8155-02	.460E-02	1315-02	E012E08	.293E-03	.051E-03	.029E-03	.628E-03	.7315-03	•661E-03	646E-03	.689E-03	2.8095-03	2.8865-03	3-1525-03	3.4605-03 0	3.4485-03 0	4-1965-03	4.5861-03	4-3785-03 0	3.265E-03 0	4.099E-04 0 5.333E-06 0
TROPICAL		k(km 1) o(km 1)	.536E-01 C.0	.288E-01 0.0	.802E-01 0.0	342F-02 0.0	790E-02 0	.074E-02 0.0	.558E-02 n.0	.188E-6c 0.0	.350E-03 0.0	.385E-03 0.0	.030E-03 0.0	\$101E-03 0.0	.109E-03 0.0	.589E-03 0.0	.115E-03 0.0	013E-04	.148E-03 0.0	.429E-03 0.0	0.0	491E-03 0-0	.726E-03 0.0	.009E-03 0.0	.753E-03 0.0) c	570E-03 0.0	554E-03 0.0	.380E-04 0.
		нт (км)	0					•	:			· ~	•	-	-	- -			8 - 1	9 - 2	t t	, , ,	9 1 1	4 1 2	e i	יו פו פו		. N	50 - 70 70 -100

		HAEY	0 (km-1)			3 4.759E-03		4 2.55%E-04	4 1.301E-04		4 1.0195-04	4 9.853E-05	4 9.421E-05	4 9.3452-05	4 7.204E-05	4 0. 140Fe00	5 7.9332-05	5 7.590E-05	5 7.5205-05	3 3 3 3 5 0 E = 0.3		5 2.837E-05					• •	•	••
		AERO SOL	k(km-1)			0.0356=03 1.0456=03	9-4306-04	3.0394-04	1.5136-04			~			1.0754-04	+0-36C-C	9.253E-0	8.9786-05	8.731E-05	9		ų (0-2000 -		8.652€	2.4736-05	•	•	••
		·	g(km ⁻¹)	4.846E-03		1.443E-33 6.158F-06		1.781E-04	1.301E-04	1.025E-04	1.019E-04	9.853E-05	9.421E-35	9.345E-05	9.204E-05	8.3935-05	7.933E-05	7.690E-05	7.520E-0	5.360E-0	3.910E-0		2.109E-U	1,390E-0	7.419E-0		•	•	•••
reas	3E2S	CLEAR	k{km ⁻¹)	. 658E-03	3.862E-03	7.190E=04		2.079E-04	1.5195-04	1.1976-04	1.190E-04.	1.150E-04	1.100E-04	1.091E-04	1.0755-04.	3.799E-05	9.263E-05	9.978E-05	5.781E-05	6.259E-05	4.366E-05	3.3695-05	2.333E=03	1.623E-0F	3.662E-06	2.473E-06	•	•	••
4IC404ETER	VENUM		o(km-1)	0.00	800			00•	000	000	00.0	0.00	0000	000	0 0		00.0	00.0	0000		00.0	000		200	0.00	000			00
10.158689 4	984.379 #AVENU43EAS	SUBARCT IC WINTER	(km 1	1.5765-0	-i -	1.1735		6.9415-0			2.204E-03				7.25E-03		2.3146-03	2,236E-03		1.9055-03		1.7135-03	1.5865-03			1.303E-03			2.3955-04 4.5925-06
7		<u>v</u>	م(السام) ب		0000		00.0	0.00	00.00	000	0.0	0	00.0	9		00.0	0.00	00.0	000	000	00.0	96		, 0	00.00	000		0	0000
* H19N	ENCY =	SUBARCT I C SUMMER) k(km-1)	•	1.0055-01 5.8655-02	3.6565-02	2.4015-02	1.6435-02	1.188:102	6-2415-03	6.6125 ⊢03	3,389≅+03	2.9085-03	3.030=03	3.096710	3.101E-03	2.989=-03	3.1105-03	3.080=+03	3.0455103	2.9305-03	2.9375-03	2.865"±03	3.0582:-03	3.5565-03	5.235EF03	3.986.103	2.8915-03	3.2425-04
MAVELENGTH	FREQUENCY	JOE	را المارة المارة	0.00	000	000	0.00	000	000	0.0	0.00	30.0	0.00	000		000	0.00	00.0		9	0.00			8	0.00			0.00	0.00
		MIDLATITUDE WINTER	(Km)	039E-1 2	3,372E	1.8308		, v		4	3.457E-03	2.585E-03	2.326E-03	2 2035-03	2.285F-03	2.204E-03	2.136E-03	2.080E-03	2.054E-03	1.893E-03	1.903E-03	1.875E-03	•	ò	-	1.512E-03		~	8.221E-05 3.816E-05
		DOE	o(km ⁻¹) i	0000	000	000	00.0	0000		000	000	0.00	0000			000	0.00	800		8	0000	000	00.0	0.00	000	000		0.00	0.00
		HIDLATITI SUMMER) k(km ⁻¹)	2-6745-01	1.9405-01	5.257E-02	3.052E-02	1.977E-02	1.1585-02	8.798E-03	6.589E-03	5.138E-03	0.446F-00.0	2.1965-03	1.897E-03	1.985E-03	1.946E-03	1.924E-03	1.9965-03	2.0955-03	2.162E-03	2.283E-03	2-6145-03	2.6105-03	3.200E-03	3.779F=03	3.481E-03	2.620E-03	3.195E-04 3.956E-06
		<u>I</u> CAL	2(ta-1)	-		9.00	000	900		9.0	00.0	000			30.0	0.0	000	96		0.00	0.00	900	0.0	30.0	99	900	3	0.00	000
		TROPICAL	k(km ⁻¹)	4.54BE-01	1.776E-01	8.523E-02	3 902E-02	2.389E-02	1.2576-02	91390E-03	7.277E-03	0.428E=03	4.007.6-03	2.30703	1.5525-03	1-158E-03	8.045E-04	5.927E-04	B-327E=(+	1.046E-03	1,316E-03	1.054F-03	2,046E-03	2.266E-03	2 852E-03	3.217F-03	2.824E-03	2.038E-03	2.626E-04 3.509E-06
			HT (KM)	0	1 1	•	•	•	•	t	•	• 1		•	•	•	•			•	•	• •	•	•	•	• •	•	•	-100

●りらゅらゅらかにごしゅらほんゆらかにごしゅうらゅくりらか ここしょうかか じたごごごごごごごごここししょしょしょし

MAVELENGTH = 10.147298 4ICROWETERS

0.0 5.665E-03 4.853E-03 2.750E-02 2.355E-02 0.0 3.865E-03 3.312E-03 1.740E-02 1.495E-03 1.740E-02 1.697E-02 0.0 3.865E-03 3.312E-03 1.740E-02 1.695E-03 0.7199E-04 1.895E-03 1.655E-03 0.0 2.085E-04 1.895E-04 1.895E-05 1.895E-04 1.895E-05 1.895E-04 1.895E-05 1.895E-04 1.895E-05 1.8995E-05 1.895E-05 1.895E-05 1.895E-05 1.895E-05 1.895E-05 1.895E-05 1.899E-05 1.899E-0 0 (km - 1) HAZY k(km⁻¹) AEROSOI g(ka ...) k(km⁻¹) MAVENUABERS 1.3286 g(kn-1) SUBARCTIC VINTER k(km-1) 985.484 o(km-1) 5 2.000 1.2512101 0.00 SUBARCTIC k(kg-1) SUMMER FREQUENCY ر المخارة المخارة MIDLATITUDE WINTER k(km⁻¹) HIDLATITUDE SUMMER k(km⁻¹) o(km⁻¹) TROPICAL 1.997E-04 2.550E-06 k(km⁻¹) HT(KH)

WICROWETERS	
10,136200	
#AVELENGTH =	

			FRED	FREQUENCY =	986.563 WAVENUMBERS	JMBERS			
	TROPICAL	MIDLATITUDE SUHMER	HIOLATITUDE WINTER	SUBARCTIC SUMMER	SUBARCTIC WINTER	CLEAR	AEROSOL	HAZY	
HT (KM)	k(km 1) o(km1)	κ(km-1) σ(km-1) ι) k (km 1) o (km 1)	k(km-1) o(km-1)	o(km-1) k(km-1) o(km-1)	k(km ⁻¹)	ص(اے عرافس ⁻¹)	k(km ⁻¹) q	0 (km-1)
9	.282E-01 0	2.475E-	3.280E	1.215=-01 0.00	1.144E-02 C.00	5.572E-03	60	02	2,3595-02
T - 0	.063E-01 0	1.7705-01	2.678E-02	8.8315-02 0.00	1.1335-02	3.871E-03	٣		1.493E-02
•	0	8.833E-02	1.840E-02	4.9285-02 0.00		1.6895-03		m	4. 903E-03
•	.358E-02 0	4.286E-02	1.309E-02	2.9085-02 0.00	7.932E-03	7.207E-04			.558E-03
•	*017E-02 0	2.288E-02 0	9.080E-03		6.029E-03	3.34.7E-04	2.868E-04.		7.238E-04
ŧ	.701E-02 0	1.375E-02	6.314E-03 0		4.290E-03	2.094E-04			- 562E-04
•	0	9.651E-03	4.639E-03		3.021E-03	1.5226-04			1.304E-04
ŧ	•033E-03 0	7.315E-03	3.455E-03		2.172E-03	1.2266-04 1	.051E-04		1.051E-04
ı	.753E-03 0	5.408E-03	2.583E-03		1.5956-03	1.200E-04 1			1.029E-04
•	4316E-03 0	3.961E-03	2.016E-03	2.7145-03	1.282E-03	1.193E-04			.022E-04
ŧ	0	3.024E-03 0	1.520E-03	1.978=-03	1.2655-03	1.1535-04			-982E-05
•	304E-03 0	2.2815-03	~		~	1.103E-04			-448E-05
•	.674E-03 0	1.7052-0	1.384E-03	1,7955-03	1.452E-03	1.0946-04			372E-05
•	.252E.03 0	1.2575-03	1.394E-03		1.487E-03 0	1.077E-04			.231E-05
ŧ	0	1.0946-03	1.398E-03		1.5425-03 (1.024E-04	8.774E-05]	1.024E-04	8.774E-05
•	.073E-04 0	1.146E-03	1.3536-03		1.5255-03	9.823E-05	.417E-05	.823E-05	3.417E-05
: :	0	1.1295-0	0 1-316E-03 0.00	1.8235-03	1.535E-03 (9.285E-05	7.956E-05	9.235E-05	7.955E-05
ا ص	0	1 - 1 22E - 03	1.284E-03	1.8985-03	1.490E-03	9.000E-05	.712E-05 9	.000m-05	.712E-05
•	3.414E-04 0.00	1.151E-03	1.268E-03	1.8945-03	1.411E-03 0.0	9.802E-05	.542E-05	. 80-E-05	. 542E-05
# 60 :	C	1.189E-03	1.216E-03	1.8725-03	1.337E-03 0.0	0 7.9568-05	.817E-05 7	. 9556-05	5.817E-05
•	.819E-04 0	1.2555-03	1.175E-03	1.8545-03	1.2275-03	5.273E-05	.375E-05	. 273£-05	5.375E-05
•	.438E-04 0	1.296E-03	1.165E-03	1.7675-03		4.577E-05	3.922E-05 (ß	3.922E-05
;	,282E-04 0	1.3595-03	1.131E-03	1.740=-03	1.049E-03	3.377E-05			3.8346-05
22 - 23	•073E-03	1.4015-03	1.090E-03		9.5795-04	2.562E~05		'n	2.195E-05
1		1.5165-03	1.045E-03		9.162E-04	1.9945-05		ហ	1.709E-05
1	.298E-03 0	1.499E-03 0	1.046E-03		8.200E-04 0.0	1.5275-05	1.394E-05 1	ß	394E-05
•	\$607E-03 0	1.806E-03	9.523E-04.	2.0025-03 0.00	8.239E-04 0.0	0 8.583E-06	+0E-05	8.633E-06	.440E-05
1	0 M	2.005E-03 0		2.9645-03 0.00	6.941E-04 0	0 2.4795-06	2.124E-05 8		2.124E-06
10	*849E-03 0	2.189E-03	9.907E-04		6.983E-04	•		•	•
:	.664E-03 0	2.073:-03	1.047E-03	2.396EH03 0.00		•		•	•
•	1.223E-03 0.00	1.5915-03	8.534E-04 0	1.7662-03 0.00	5.516E-04	•			•0
	•487E-04 0	1.8215-04	4.703E-05		1.385E-04	•		•	•
- 0	\$809E-06 0	2.041E-06	2.008E-05	0.09	2.475E-06		٠.	٠.	
							•	•	•

987.516 #AVENUMBERS

	2
HAZY	
30 L	K
AEROSOL	24 (
CL EAR	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
SUBARCTIC WINTER	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUBARCTIC SUMMER	2
w	
HIDLATITUDE VINTER	\$\\ \text{2} \\ \text{2} \\ \text{3} \\ \text{2} \\ \text{3} \\ \text{3} \\ \text{3} \\ \text{4} \\ \text{4} \\ \text{5} \\ \t
MIDLATITUDE SUMMER	### 1
ير بر	
TROPICAL	K. S.
	HT (X3) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- marine marine and a substitute of the state of the stat