Artificial Neural Network

Artificial Neural Network

1. Introduction

- 1.1. Artificial Neuron
- 1.2. Activation functions
 - 1.2.1. Projection Functions
 - 1.2.2. Kernal Functions
 - 1.3.3. Common Choices

2. Simple Networks

- 2.1. Feedforward neural network example
- 2.2. Function approximation with neural nets: examples
- 2.3. Input-Output Mapping

Compact formula:

2.4. Approximation capability of neural nets

Cybenko Theorem

Barron Theorem

Understanding

3. Deep Learning

4. Training

4.1. Goal

Important Notes

Supervised Learning Example

- 4.2. General Process
- 4.3. Back-Propagation

Recall Chain Rules

Examples

- 4.4 Cost Function
- 4.5. (Stochastic) Gradient Descent

Basic Way to Update Weights

Improvement 1: Second-order gradient methods

Improvement 2: Momentum

Improvement 3: RMSProp

Improvement 4: ADAM

5. Regularization & Validation

- 5.1. Overfitting
- 5.2. Validation & Cross-Validation
- 5.3. Test Set
- 5.4. Regularization

Weight Penalty

Dropout

Model ensembles

Data augmentation

6. Specialized Network Architetures

- 6.1. Recurrent Neural Networks (RNN)
- 6.2. LSTM
- 6.3. Convolutional Neural Networks (CNN)

Convolution & Nonlinear Detector

7. Unsupervised Learning

- 7.1. Additional Training Criteria
- 7.2. Auto Encoders

ENCODER

Decoder

7.3. Auxiliary training objectives

1. Introduction

1.1. Artificial Neuron

 x_i : ith **input** of the neuron

 w_i : adaptive **weight** (synaptic strength) for x_i

z: weighted sum of inputs:

$$z = \sum_{i=1}^{p} w_i x_i = \mathbf{w}^T \mathbf{x} + b \tag{1}$$

 $\sigma(z)$: activation function

1.2. Activation functions

Transformation of the input space (squeezing).

1.2.1. Projection Functions

threshold function, piece-wise linear function, tangent hyperbolic, sigmoidal, rectified linear, ... function:

$$\sigma(z) = 1/(1 + \exp(-2z)) \tag{2}$$

1.2.2. Kernal Functions

$$\sigma(\mathbf{x}) = \exp(-(\mathbf{x} - \mathbf{c})^2 / s^2) \tag{3}$$

1.3.3. Common Choices

Sigmoid:

$$\sigma(z) = 1/(1 + \exp(-z)) \tag{4}$$

Tangent Hyperbolic:

$$\sigma(z) = \frac{2}{1 + e^{-2z}} - 1 \tag{5}$$

Rectified Linear Unit (ReLU):

$$\sigma(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$
 (6)

Exponential Linear Unit (ELU):

$$\sigma(z) = \begin{cases} z & \text{if } z > 0\\ \alpha \left(e^z - 1 \right) & \text{if } z \le 0 \end{cases}$$

$$(7)$$

2. Simple Networks

2.1. Feedforward neural network example

• Activation of hidden-layer neuron j:

$$z_{j} = \sum_{i=1}^{p} w_{ij}^{h} x_{i} + b_{j}^{h} \tag{8}$$

• Output of hidden-layer neuron j

$$v_j = \sigma(z_j) \tag{9}$$

• Output of output-layer neuron l:

$$y_l = \sum_{j=1}^m w^o_{jl} v_j + b^o_l$$
 (10)

2.2. Function approximation with neural nets: examples

$$y = w_1^o \tanh(w_1^h x + b_1^h) + w_2^o \tanh(w_2^h x + b_2^h)$$
(11)

Activation (weighted summation)

Transformation through tanh

Summation of neuron outputs

2.3. Input-Output Mapping

$$egin{aligned} \mathbf{Z} &= \mathbf{X}_b \mathbf{W}^h \ \mathbf{V} &= \sigma(\mathbf{Z}) \ \mathbf{Y} &= \mathbf{V}_b \mathbf{W}^\circ \end{aligned}$$
 with $\mathbf{X}_b = [\mathbf{X}, \mathbf{1}]$ and $\mathbf{V}_b = [\mathbf{V}, 1]$

Compact formula:

$$\mathbf{Y} = \left[\sigma\left([\mathbf{X}\mathbf{1}]\mathbf{W}^h\right)\mathbf{1}\right]\mathbf{W}^\circ \tag{13}$$

2.4. Approximation capability of neural nets

Cybenko Theorem

A feedforward neural net with at least one hidden layer can approximate any continuous nonlinear function $\mathbb{R}^p \to \mathbb{R}^n$ arbitrarily well, provided that sufficient number of hidden neurons are available (not constructive).

Barron Theorem

• A feedforward neural net with one hidden layer with sigmoidal activation functions can achieve an integrated squared error of the order

$$J = \mathcal{O}\left(\frac{1}{h}\right) \tag{14}$$

- **independently** of the dimension of the **input space p**, where **h denotes the number** of hidden neurons
- For a **basis function expansion** (polynomial, trigonometric expansion, singleton fuzzy model, etc.) with **h terms**, in which only the parameters of the linear combination are adjusted

$$J = \mathcal{O}\left(rac{1}{h^{2/p}}
ight)$$
 (15)

Understanding

- Does mean neural networks are suitable for a range of problems with high dimensional inputs.
- Does not mean it is always possible to get near the theoretical limit.
- Does not mean adding more neurons per layer always results in a lower approximation error.
- Does not mean one layer is optimal

3. Deep Learning

4. Training

4.1. Goal

Find the **weight vector W** that minimizes some **cost function** J(f(x; W)) for **all** (especially unseen) inputs x.

Important Notes

When training, we always calculate the loss over the examples in the dataset. We actually want to minimize the loss over the true underlying distribution of examples (Regularization)

Supervised Learning Example

Make a neural network approximate a known function $x \to t$ by minimizing: $J(W) = \frac{1}{2} (f(x;W) - t)^2$

4.2. General Process

- 1. Initialize W to small random values
- 2. Repeat until the performance (on a separate test-set) stops improving
 - a. **Forward pass**: Given an input x, calculate the neural network output y = f(x; W). Then calculate the cost J(y; t) of predicting y instead of the target output t.
 - b. Backward pass: Calculate the gradient of the cost with respect to the weights

$$abla J(y(x;W),t) = egin{bmatrix} rac{\partial J}{\partial w_1}, & \ldots, & rac{\partial J}{\partial w_n} \end{bmatrix}^T$$

c. **Optimization step: Change the weights** based on the gradient to reduce the cost.

4.3. Back-Propagation

Calculate the **gradient** of the cost with respect to the weights

$$\nabla J(y(x;W),t) = \begin{bmatrix} \frac{\partial J}{\partial w_1}, & \dots, & \frac{\partial J}{\partial w_n} \end{bmatrix}^T$$
(16)

Recall Chain Rules

$$\frac{d}{dx}f\left(g_1(x),\ldots,g_k(x)\right) = \sum_{i=1}^k \left(\frac{d}{dx}g_i(x)\right)D_if\left(g_1(x),\ldots,g_k(x)\right) \tag{17}$$

Examples

Output-layer weights example

$$J = \frac{1}{2} \sum_{l} e_{l}^{2}, \quad e_{l} = t_{l} - y_{l}, \quad y_{l} = \sum_{j} w_{j}^{o} v_{j}$$

$$\frac{\partial J}{\partial w_{jl}^{o}} = \frac{\partial J}{\partial e_{l}} \cdot \frac{\partial e_{l}}{\partial y_{l}} \cdot \frac{\partial y_{l}}{\partial w_{jl}^{o}} = -v_{j} e_{l}$$
(18)

Hidden-layer weights example

$$\frac{\partial J}{\partial w_{ij}^{h}} = \frac{\partial J}{\partial v_{j}} \cdot \frac{\partial v_{j}}{\partial z_{j}} \cdot \frac{\partial z_{j}}{\partial w_{ij}^{h}} = -x_{i} \cdot \sigma_{j}'(z_{j}) \cdot \sum_{l} e_{i} w_{j}^{o}$$

$$\frac{\partial J}{\partial v_{j}} = \sum_{l} -e_{i} w_{jl}^{o}, \quad \frac{\partial v_{j}}{\partial z_{j}} = \sigma_{j}'(z_{j}), \quad \frac{\partial z_{j}}{\partial w_{ij}^{h}} = x_{i}$$
(19)

More General Example

$$\frac{\partial J}{\partial w_{11}^{h1}} = \left(\frac{\partial J}{\partial v_1^{h2}} \frac{\partial v_1^{h2}}{\partial v_1^{h1}} + \frac{\partial J}{\partial v_2^{h2}} \frac{\partial v_2^{h2}}{\partial v_1^{h1}}\right) \frac{\partial v_1^{h1}}{\partial w_{11}^{h1}} \tag{20}$$

4.4 Cost Function

Two main criteria:

• The minimum of the cost function $w^* = \arg\min_w J(f(w))$ should correspond to desirable behavior.

e.g.

$$J(y,t) = \|y-t\|^2 \quad : y = f\left(x; w^*
ight)
ightarrow ext{ mean } t ext{ for each } x \ J(y,t) = \|y-t\|_1 \quad : y = f\left(x; w^*
ight)
ightarrow ext{ median of } t ext{ for each } x$$

Illustration:

- ullet the first one like minimize $(x-a)^2+(y-a)^2$, when a is mean, the least
- the second one like "absolute distance", the median is the smallest
- The error gradient should be informative (**below are some classical examples**)
 - linear output, Minimum Square Error (MSE):

$$y=z, \quad J=rac{1}{2}(y-t)^2 \quad o rac{\partial J}{\partial z}=rac{\partial J}{\partial y}rac{\partial y}{\partial z}=(y-t)\cdot 1$$

Sigmoidal output, MSE

$$egin{aligned} y &= rac{1}{1+e^{-z}}, \quad J &= rac{1}{2}(y-t)^2, \ & o rac{\partial J}{\partial z} &= rac{\partial J}{\partial y}rac{\partial y}{\partial z} = (y-t)\cdot y (1-y) = \left(y^2-ty
ight)(1-y) \end{aligned}$$

Note: may have a problem when y=0 or y=1

sigmoidal output, negative log likelihood

$$egin{aligned} y &= rac{1}{1 + e^{-z}}, \quad J &= -t \ln(y) - (1 - t) \ln(1 - y) \ & o rac{\partial J}{\partial z} &= rac{\partial J}{\partial y} rac{\partial y}{\partial z} = \left(rac{-t}{y} + rac{1 - t}{1 - y}
ight) y (1 - y) = y - t \end{aligned}$$

Different gradient features: \rightarrow different "aggressive" extent to modify error and weight

4.5. (Stochastic) Gradient Descent

Basic Way to Update Weights

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \alpha_n \nabla J(\mathbf{w_n})$$

$$\text{where} \nabla J(\mathbf{w}) = \left(\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \dots, \frac{\partial J}{\partial w_M}\right)^T$$
(21)

• Gradient Discent:

use
$$\nabla J(\mathbf{w}) = \frac{1}{K} \sum_{i=1}^K \left(\frac{\partial J(t_i, f(x_i; W))}{\partial W} \right)$$
 with **K equal to the size of the database**

• Stochastic Gradient Descent:

use
$$\hat{\nabla} J(\mathbf{w}) = rac{1}{k} \sum_{i=1}^k \left(rac{\partial J(t_i, f(x_i; W))}{\partial W}
ight)$$
 with $\mathbf{k} ext{ << } \mathbf{K}$ the batch size

- The x_i ; t_i data points in the batches should be independent and identically distributed (i.i.d)
- In practice: $k pprox 10^0 10^2$, $K pprox 10^4 10^9$

Improvement 1: Second-order gradient methods

$$J(\mathbf{w}) pprox J(\mathbf{w}_0) + \nabla J(\mathbf{w}_0)^T (\mathbf{w} - \mathbf{w}_0) + \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^T \mathbf{H} (\mathbf{w}_0) (\mathbf{w} - \mathbf{w}_0)$$
 (22)

Update rule for the weights:

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mathbf{H}^{-1} \left(\mathbf{w}_n \right) \nabla J \left(\mathbf{w}_n \right)$$
(23)

• $H^{-1}\nabla J$ computes a good step for each weight, **only feasible for (very) small networks.**

Improvement 2: Momentum

increase step-size if we keep going in the same direction

$$\mathbf{v} \leftarrow \beta \mathbf{v} - \alpha \nabla J \tag{24}$$
$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{v}$$

- the v is initialized $0, \beta \in [0, 1)$
- if keep going in the same ∇J , then the speed will be faster
- if there once be ∇J , the later movement always keep the trend
- if one dimension (component) always positive in ∇J , then the effect on this dimension will be accumulated

Improvement 3: RMSProp

decrease step-size over time, especially if gradients are large

$$\mathbf{r} \leftarrow \gamma \mathbf{r} + (1 - \gamma)
abla J \odot
abla J \ \mathbf{w} \leftarrow \mathbf{w} - rac{lpha}{\sqrt{10^{-6} + \sqrt{\mathbf{r}}}} \odot
abla J$$

⊙ menas **Hadamard Product**, "element-wise product"

• the r is initialized 0, $\gamma \in [0,1)$

Improvement 4: ADAM

combine both previous ideas and correct for their initial bias

$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla J$$

$$\mathbf{r} \leftarrow \gamma \mathbf{r} + (1 - \gamma) \nabla J \odot \nabla J$$

$$\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \beta^{\ell}}$$

$$\hat{\mathbf{r}} \leftarrow \frac{\mathbf{r}}{1 - \gamma^{\ell}}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\hat{\mathbf{s}}}{\sqrt{10^{-6} + \hat{\mathbf{r}}}}$$

$$(25)$$

- Initialize s; r to 0. Choose $\beta, \gamma \in [0; 1)$: Common values: $\beta = 0.9; \gamma = 0.999$
- when time growing, the denominator of third and forth equation is larger, means, smaller change between \hat{x} and x

5. Regularization & Validation

5.1. Overfitting

5.2. Validation & Cross-Validation

True Criterion

$$I = \int_{X} \|f(\mathbf{x}) - F(\mathbf{x})\| d\mathbf{x}$$
 (26)

But, Usually cannot be computed as f(x) is not available, use available data to numerically approximate

Cross-Validation Ways

• Regular Criterion (for two data sets)

$$ext{RC} = rac{1}{2} \left[rac{1}{N_A} \sum_{i=1}^{N_A} \left(y^A(i) - \hat{y}_B^A(i)
ight)^2 + rac{1}{N_B} \sum_{i=1}^{N_B} \left(y^B(i) - \hat{y}_A^B(i)
ight)^2
ight]$$
 (27)

• Means Squared Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \hat{y}(i))^{2}$$
(28)

• Variance accounted for (VAF)

Is a summary of how much of the variability of the data can be explained by a fitted regression model

$$VAF = 100\% \cdot \left[1 - \frac{var(y - \hat{y})}{var(y)} \right]$$
 (29)

From: https://blog.csdn.net/qq_36330643/article/details/77452951

From: https://baike.baidu.com/item/交叉验证/8543100?fromtitle=Cross validation&fromid=18081946&fr=aladdin

• 简单交叉验证(simple cross validation)

常识来说,Holdout 验证并非一种交叉验证,因为数据并没有交叉使用。 随机从最初的样本中选出部分,形成交叉验证数据,而剩余的就当做训练数据。 一般来说,少于原本样本三分之一的数据被选做验证数据。

• k-fold cross validation

K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次,10折交叉验证是最常用的

5.3. Test Set

The **validation set** is used to **select the right hyper-parameters**, Use a **separate test set** to verify the hyper-parameters have not been over-fitted to the validation set.

- Structure of the network
- Cost function
- Optimization parameters

5.4. Regularization

Any strategy that attempts to **improve the test performance**, but not the training performance

Weight Penalty

- Large weights in a neural network are a sign of overfitting.
- A network with large weights has very likely **learned the statistical noise** in the training data. This results in a model that is unstable, and **very sensitive** to changes to the input variables. In turn, the overfit network has **poor performance** when making predictions on new unseen data.

$$J_r(y, t, \mathbf{w}) = J^*(y, t) + \lambda \|\mathbf{w}\|_p^p \tag{30}$$

- p = 1: L^1 : Leads to 0-weights (sparsity, feature selection)
- p = 2: L^2 : Leads to small weights

Dropout

Practical approximation of an automatic ensemble method. During training, **drop out** units (neurons) with probability p. During testing use all units, multiply weights by (1 - p).

From: https://blog.csdn.net/u013007900/article/details/78120669/

第一种理解方式是,在每次训练的时候使用dropout,每个神经元有百分之50的概率被移除,这样可以使得一个神经元的训练不依赖于另外一个神经元,同样也就使得特征之间的协同作用被减弱。Hinton认为,过拟合可以通过阻止某些特征的协同作用来缓解。

第二种理解方式是,我们可以把dropout当做一种多模型效果平均的方式。对于减少测试集中的错误,我们可以将多个不同神经网络的预测结果取平均,而因为dropout的随机性,我们每次dropout后,网络模型都可以看成是一个不同结构的神经网络,而此时要训练的参数数目却是不变的,这就解脱了训练多个独立的不同神经网络的时耗问题。在测试输出的时候,将输出权重除以二,从而达到类似平均的效果。

Model ensembles

- ullet For k models, where the errors made are zero mean, normally distributed, with variance $v=E[\epsilon_i^2]$, covariance $c=E[\epsilon_i\epsilon_j]$
- The variance of the ensemble is:

$$\mathbb{E}\left[\left(rac{1}{k}\sum_{i}\epsilon_{i}
ight)^{2}
ight]=rac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left[\epsilon_{i}^{2}+\sum_{j
eq i}\epsilon_{i}\epsilon_{j}
ight)
ight]=rac{1}{k}v+rac{k-1}{k}c$$

• When the errors are not fully correlated (c < v), the variance will reduce.

Data augmentation

Sometimes existing data **can be transformed to get more data**. Noise can be added to inputs, weights, outputs, Make noise realistic.

• e.g. rotate, noise

6. Specialized Network Architetures

6.1. Recurrent Neural Networks (RNN)

Also Refer to: https://zhuanlan.zhihu.com/p/123211148

RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,利用了 RNN的这种能力,使深度学习模型在解决语音识别、语言模型、机器翻译以及时序分析等 NLP领域的问题时有所突破。

Example: sequence with time characteristic 举个例子,现在有两句话: 第一句话: I like eating apple! (我喜欢吃苹果!) 第二句话: The Apple is a great company! (苹果真是一家很棒的公司!)

RNN training: Back Propagation Through Time (BPTT)

- 1. Make n copies of the network, calculate y_1, \cdots, y_n
- 2. Start at time step n and propagate the loss backwards through the unrolled networks
- 3. Update the weights based on the average gradient of the network copies $\nabla_w J = \tfrac{1}{n} \sum_{i=1}^n \nabla_{w_i} J$

Exploding/vanishing gradients problem

Scalar case with no input: $x_n = w^n \cdot x_0$, For $w < 1; x_n o 0$, for $w > 1; x_n o \infty$.

6.2. LSTM

Also Refer to: https://zhuanlan.zhihu.com/p/123211148

LSTM不一样,它会选择性的存储信息,它有门控装置,它可以尽情的选择

this is a structure grarph of a single memory cell

- Input Gate: 中文是输入门,在每一时刻从输入层输入的信息会首先经过输入门,输入门的开关会决定这一时刻是否会有信息输入到Memory Cell。
- Output Gate: 中文是输出门,每一时刻是否有信息从Memory Cell输出取决于这一道门。
- Forget Gate: 中文是遗忘门,每一时刻Memory Cell里的值都会经历一个是否被遗忘的过程,就是由该门控制的,如果打卡,那么将会把Memory Cell里的值清除,也就是遗忘掉。

按照上图的顺序, 信息在传递的顺序, 是这样的:

先经过输入门,看是否有信息输入,再判断遗忘门是否选择遗忘Memory Cell里的信息,最后再经过输出门,判断是否将这一时刻的信息进行输出。

6.3. Convolutional Neural Networks (CNN)

Also refer to: https://zhuanlan.zhihu.com/p/27908027

Convolution & Nonlinear Detector

- Step 1: **Convolution**: S(i,j) = (I * K)(i,j) = $\sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$
- Step 2: <u>Detector stage</u>: nonlinearities on top of the feature map
- Step 3 (optional) Pooling:
 Take some function (e.g. max)
 of an area

7. Unsupervised Learning

7.1. Additional Training Criteria

Inputs x are often much easier to obtain than targets t.

- For deep networks, many of the earlier layers perform very **general functions** (e.g. edge detection).
- These layers can be **trained on different tasks for which there is data.**

7.2. Auto Encoders

Also From: https://zhuanlan.zhihu.com/p/24813602

<u>Unsupervised Learning (UL):</u> find some structure in input data without extra information

Auto Encoders (AE) do this by reconstructing their input

- 有时神经网络要接受大量的输入信息,比如输入信息是高清图片时,输入信息量可能达到上千万,让神经网络直接从上千万个信息源中学习是一件很吃力的工作。
- 通过压缩,提取出原图片中的**最具代表性的信息**,缩减输入信息量,再把缩减过后的信息放进神经网络学习.这样学习起来就简单轻松了.
- 自编码就能在这时发挥作用. 通过将原数据白色的X 压缩, 解压 成黑色的X, 然后通过对比黑白 X, 求出预测误差, 进行反向传递, 逐步提升自编码的准确性. 训练好的自编码中间这一部分就是能总结原数据的精髓.
- 从头到尾,我们只用到了输入数据 X,并没有用到 X 对应的数据标签,所以也可以说自编码是一种非监督学习.到了真正使用自编码的时候.通常只会用到自编码前半部分.
- 换句话说, 自编码 可以像 主成分分析(PCA) 一样 给特征属性降维.

ENCODER

compresses the input, useful feature hierarchy for later supervised tasks.

Decoder

decompresses the input, can be used as a generative model.

7.3. Auxiliary training objectives

Auxiliary training objectives can be added

• Because they are easier and allow the optimization to make faster initial progress.

• To force the network to keep more generic features, as a regularization technique.

