

เรื่อง ระบบตรวจจับเปลวไฟ

จัดทำ โดย

นางสาว ธัญญาทิพย์ สอนวงศา รหัสนักศึกษา 6204062630050

เสนอ

อาจารย์ กอบเกียรติ สระอุบล

รายงานเล่มนี้เป็นส่วนหนึ่งของวิชา 040613375 Internet of Things ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ประยุกต์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2564

คำนำ

รายงานเล่มนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของวิชา 040613375 Internet of Things เพื่อให้ ได้ศึกษาหาความรู้ในเรื่อง IoT โดยศึกษาผ่านการทดลองต่อวงจรและ ได้ศึกษาอย่างเข้าใจเพื่อ เป็นประโยชน์กับการเรียน

ผู้จัดทำหวังว่า รายงานเล่มนี้จะเป็นประโยชน์กับผู้อ่าน หรือ ผู้ที่กำลังหาข้อมูลเรื่องนี้อยู่ หากมีข้อแนะนำหรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อมรับไว้และขออภัยมา ณ ที่นี้ด้วย

> ชัญญาทิพย์ สอนวงศา วันที่ 25 เมษายน 2565

สารบัญ

คำอธิบาย	1	
สถาปัตยกรรมของระบบ	1	
วงจรระบบตรวจจับเปลวไฟ	2	
การทำงานของระบบ	2	
รายละเอียค Code	3	
โครงสร้างข้อมูล		6
แจ้งเตือนใน Blynk Application	7	
ภาพการทำงาน	7	
ที่มาของรูปภาพ	8	

ระบบตรวจจับเปลวไฟ

เป็นระบบการตรวจจับเปลวไฟในบริเวณใกล้เคียงโดยใช้ Flame Sensor ในการตรวจจับ จากนั้น NodeMCU จะสั่งการไปยัง Relay เพื่อควบคุม Water Pump ให้ทำหน้าที่ในการดับไฟ นอกจากนี้ยังสามารถแจ้งเตือนการตรวจพบเปลวไฟโดยใช้ Blynk Application เพื่อให้ผู้ใช้งานที่ ไม่ได้อยู่ในบ้านหรือบริเวณนั้นได้รับทราบ

สถาปัตยกรรมของระบบ

Service Layer	B Blynk
Network Layer	WiFi®
Device Layer	

- Service Layer : Blynk Application เพื่อใช้ในการแจ้งเตือน
- Network Layer : ใช้ Wi-Fi ในการเชื่อมต่อข้อมูล
- Device Layer : ได้แก่ NodeMCU ESP8266, Relay 5v, Flame sensor และ Mini water pump 5v ใช้ในการต่อวงจร

วงจรระบบตรวจจับเปลวไฟ

การทำงานของระบบ

- Flame sensor มีหน้าที่ทำการตรวจจับเปลวไฟในบริเวณ ซึ่งหลักการทำงานคือ ตรวจจับ รังสีอินฟราเรคและรังสีอุลตราไวโอเลตที่เกิดจากเปลวไฟ โดยหากพบเปลวไฟแล้ว จะ ทำการส่งค่าไปยัง NodeMCU
- NodeMCU เมื่อได้รับค่าจาก Flame sensor แล้ว จะทำงานโดยเข้าไปสั่งการ Relay ให้ทำ การเปิดหรือปิด
- Relay เป็นเหมือนสวิตซ์ควบคุมอุปกรณ์ไฟฟ้าที่ต่อเข้ามา ซึ่งเมื่อได้รับค่าจาก NodeMCU แล้ว Relay จะทำงานโดยเข้าไปสั่งการให้ Water pump ทำงาน
- Water pump เมื่อได้รับค่าจาก Relay แล้วก็จะทำงานทันที เพื่อใช้ในการดับไฟ

รายละเอียด Code

```
# #define BLYNK_PRINT Serial
# #include <ESP8266WiFi.h>
# #include <BlynkSimpleEsp8266.h>

int RELAY = D4;
int Flame_sensor = D1;
int Flame_detected;

### BlynkTimer timer;
char auth[] = "ROxKff15shIAsKUPGhcWA2ZJTjrr7YIV";
char ssid[] = "Mr.Dumm007_2.4GHz";
char pass[] = "family555";
```

บรรทัด 5 – 7 กำหนดตัวแปร

บรรทัด 9 – 12 ใส่ Token ที่ได้รับจากอีเมล์ของ Blynk เพื่อไว้ทำการแจ้งเตือน และเชื่อมต่อ Wifi

```
Flame_Detection
13
14 void notifyOnFire()
15 {
     Flame detected = digitalRead(Flame sensor);
16
17
     Serial.println(Flame detected);
     if (Flame detected == 0) {
18
19
       Serial.println("Flame detected!!!");
       Blynk.notify("Alert: Flame detected!!!");
20
       digitalWrite(RELAY, HIGH);
21
22
    }
23
    else
24
     {
       Serial.println("No Flame detected.");
25
       digitalWrite(RELAY, LOW);
26
27
28 }
29
```

บรรทัด 14 – 28 ฟึงก์ชัน แจ้งเตือนการตรวจพบเปลวไฟ โดยหากพบค่าเป็น 0 ข้อมูลจะแสดงใน Serial Monitor ว่าตรวจพบเปลวไฟ และจะส่งแจ้งเตือนไปยังแอพพลิเคชัน Blynk ให้ทราบ

```
Flame_Detection
28 }
29
30 void setup()
31 {
     Serial.begin (115200);
32
     Blynk.begin(auth, ssid, pass);
33
    pinMode(RELAY, OUTPUT);
34
     digitalWrite(RELAY, LOW);
35
     pinMode(Flame sensor, INPUT PULLUP);
36
     timer.setInterval(1000L, notifyOnFire);
37
38 }
39
บรรทัด 30 – 38 ฟึงก์ชัน ตั้งค่าเตรียมการทำงาน
40 void loop()
41 {
42
      Blynk.run();
      timer.run();
43
44 }
                                         บรรทัด 40 – 44 ฟังก์ชันการวนลูป
```

ใน Serial Monitor

```
COM10
                                                               Send
04:03:12.456 -> No Flame detected.
04:03:13.460 -> 1
04:03:13.460 -> No Flame detected.
04:03:14.463 -> 1
04:03:14.463 -> No Flame detected.
04:03:15.464 -> 1
04:03:15.464 -> No Flame detected.
04:03:16.465 -> 1
04:03:16.465 -> No Flame detected.
04:03:17.466 -> 1
04:03:17.466 -> No Flame detected.
04:03:18.424 -> 1
04:03:18.424 -> No Flame detected.
04:03:19.424 -> 1
04:03:19.424 -> No Flame detected.
✓ Autoscroll ✓ Show timestamp
                                           No line ending V 115200 baud V Clear output
```

ถ้าหากไม่มีการตรวจพบเปลวไฟ จะแสดงค่า 1 และคำว่า No Flame detected.

แต่ถ้าหากมีการตรวจพบเปลวไฟจะแสดงค่า 0 และคำว่า Flame detected!!!

โครงสร้างข้อมูล

NodeMCU ซึ่งเป็น Publisher จะส่งข้อมูลไปยัง MQTT Broker ซึ่งเป็นตัวกลาง จากนั้น MQTT Broker จะส่งข้อมูลไปยัง Blynk ซึ่งเป็น Subscriber แล้วจะแสดงข้อความแจ้งเตือนให้รับทราบ

แจ้งเตือนใน Blynk Application

ภาพการทำงาน

เมื่อ Flame sensor ตรวจพบเปลวไฟ Water pump จะทำงานเพื่อคับไฟและมีแจ้งเตือน

ที่มาของรูปภาพ

https://commons.wikimedia.org/wiki/File:Nodemcu_amica_bot_02.png

 $https://www.modulemore.com/p/229\ https://www.arduinostore.in.th/p/192$

https://www.ebay.co.uk/itm/264899164252

https://commons.wikimedia.org/wiki/File:Wifi.png

https://miro.medium.com/max/1172/0*1zgVQCKb-PRHqRng.pn