

Introduction to Clustering

APA YANG AKAN KITA PELAJARI

Clustering and applications

- What is Unsupervised Learning
- Clustering Intuition
- Clustering Algorithm
- Applications of Clustering
- Clustering Cases

Unsupervised Learning:
The learning method
finding new possibilities
or/and patterns without
any targets from the
given data

Unsupervised Learning Process

Apa itu Clustering Mengapa Kita Pelajari di Data Science ?

don't know what the groups resulting from an analysis might be, you should use clustering technique, in order to discover new possibilities and patterns.

Clustering Algorithm

- 1. K-Means
- 2. Density Based Clustering
- 3. Hierarchical Clustering
- 4. Gaussian Mixture Model

K-means Cases in Industries

Identify Subscriptions

Loyalty Customers Identifications

Virus Classes Clustering

A Glance on Clustering Data Example

⇔ CustomerID =	▲ Gender =	# Age =	# Annual Inc =	# Spending =
1	Male	19	15	39
2	Male	21	15	81
3	Female	20	16	6
4	Female	23	16	77
5	Female	31	17	40

X(Independent):

- CustomerID
- Gender
- Age
- Annual Income
- Spending Score

Mall visitors dataset

Hierarchical Clustering Intuition

Hierarchical Types

- **1.** Agglomerative (Bottom-Up) -> Each data is a cluster of its own, further pairs of clusters are merged as one moving up hierarchy
- Single Linkage (Min)
- Complete Linkage (Max)
- Average Linkage (Mean)
- 1. **Divisive (Top-Down)** -> All data points in dataset belong to one cluster and split is performed recursively as one move down the hierarchy

Agglomerative Steps

- Compute distance matrix between data points
- 2. Merge each data point as a cluster depends on the parameter types
- 3. Repeat:

Update the distance matrix to represent the new cluster between each data point and the remains

1. Until: single cluster remains

Distance Matrix

1. Manhattan Distance

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

l. Euclidean Distance

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

1. Minkowski Distance

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{1/p}$$

https://medium.com/@tribinty/algo rithm-agglomerative-hierarchical-c lustering-31d2cea14d9

K-means Clustering Intuition

K-Means Steps

- 1. Select a K number of clusters (min K = 2)
- 2. Select the centroids at random K points
- 3. Assign each data point to their closest centroid

Repeat:

Determine and place the new centroid of each new cluster

- Reassign each data point to the new closest centroids
- 2. Until: Converges (Centroids doesn't changes)

Demonstration of the standard algorithm

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the *k* clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.