### Image Retrieval

Digital Signal and Image Management Project University of Milano-Bicocca

Matteo Breganni 869549 Francesco Cavallini 920835



### **Dataset Description**

- Mammals dataset [1]
- **45 Categories**, 13751 images
- 60-20-20 Train/Val/Test split, category specific
- Index-Category dictionaries saved for later use









# Pre-Trained CNN Approach

### **Pre-Trained CNN**

- Features extraction with MobileNetV2
- Train features to build the KD-Tree
- **Example query** with k=5:



Query: horse-0021.jpg



Query: snow\_leopard-0156.jpg



african\_elephant-0060.jpg (Dist: 11.03)



horse-0054.jpg (Dist: 19.99)



snow\_leopard-0295.jpg (Dist: 8.80)



african\_elephant-0226.jpg (Dist: 11.23)



water\_buffalo-0266.jpg (Dist: 20.46)



snow\_leopard-0225.jpg (Dist: 9.50)



african\_elephant-0006.jpg (Dist: 11.47)



horse-0027.jpg (Dist: 20.55)



snow\_leopard-0018.jpg (Dist: 9.68)



african\_elephant-0338.jpg (Dist: 11.67)



horse-0229.jpg (Dist: 20.65)



snow\_leopard-0136.jpg (Dist: 9.77)



african\_elephant-0138.jpg (Dist: 11.90)



horse-0296.jpg (Dist: 20.85)



snow\_leopard-0081.jpg (Dist: 9.98)



### **Pre-Trained CNN: Evaluation**

- Results evaluated with k=3
- Accuracy: 86,20%
- ANMRR (Average Normalized Modified Retrieval Rank): 0.39
- Dataframe created to better nagivate the classification report's results
  - Sorted by F1-Score:

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| orangutan    | 0.98      | 0.99   | 0.99     |
| red_panda    | 0.99      | 0.99   | 0.99     |
| snow_leopard | 0.98      | 0.98   | 0.98     |
| porcupine    | 0.97      | 0.95   | 0.96     |
| armadillo    | 0.95      | 0.96   | 0.96     |

| Class    | Precision | Recall | F1-Score |
|----------|-----------|--------|----------|
| seal     | 0.58      | 0.52   | 0.55     |
| sea_lion | 0.66      | 0.61   | 0.64     |
| yak      | 0.69      | 0.70   | 0.70     |
| vicuna   | 0.68      | 0.73   | 0.70     |
| walrus   | 0.79      | 0.66   | 0.72     |

- Some classes retrieved almost perfectly
- Only 2 classes with F1-Score under 70%

### **Pre-Trained CNN: Evaluation**

- Testing the worst class (seal)
  - **F1-Score**: 0.55 (overall accuracy was 86,20%)
  - Class-specific ANMRR (5 test images, 3 retrieved images each): 0.47 (was 0.39)
- Often confused with similar animals like:
  - Walrus
  - Manatee
  - Sea lion





Query: seal-0051.jpg

Query: seal-0267.jpg

Query: seal-0184.jpg





walrus-0116.jpg (Dist: 26.13)



seal-0055.jpg (Dist: 19.86)



seal-0207.jpg (Dist: 14.55)





seal-0013.jpg (Dist: 20.99)



sea\_lion-0090.jpg (Dist: 19.20)



seal-0317.jpg (Dist: 20.10)





seal-0243.jpg (Dist: 27.78)



seal-0043.jpg (Dist: 21.26)



seal-0002.jpg (Dist: 19.91)



seal-0315.jpg (Dist: 21.43)



seal-0239.jpg (Dist: 16.19)



# Siamese Network Approach

### Siamese Network

- The Siamese Network requires:
  - **Encoder model** (CNN shared between the images that extracts their embedding)

| Layer Type                            | Output Shape   | Param # |
|---------------------------------------|----------------|---------|
| Input                                 | (244, 244, 3)  | 0       |
| Conv, 64, 3x3                         | (244, 244, 64) | 1792    |
| Batch normalization + max pooling 2x2 | (112, 112, 64) | 256     |
| Conv, 128, 3x3 + max pooling 2x2      | (56, 56, 128)  | 73,856  |
| Conv, 256, 3x3 + max pooling 2x2      | (28, 28, 256)  | 295,168 |
| Global Average Pooling                | (256)          | 0       |
| Dense, 128                            | (128)          | 32,896  |



- **Triplet loss** that evaluates the results on:
  - **Anchor** (reference image)
  - Positive (image from the same class as the anchor)
  - Negative (image from a different class)

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$

### Siamese Network: Training Results

- Terrible training results
  - Barely any learning



- Network too small
  - Bigger network would be harder and more expensive to train
- Output features of the encoder are too few (128) for the 45 categories

### Siamese Network: Evaluation

• Terrible peformance on the KD-Tree:

• **Accuracy**: 12,14%

• ANMRR: 0.88

| Class      | Precision | Recall | F1-Score |
|------------|-----------|--------|----------|
| mantee     | 0.44      | 0.45   | 0.44     |
| blue_whale | 0.43      | 0.38   | 0.40     |
| zebra      | 0.50      | 0.30   | 0.37     |
| polar_bear | 0.34      | 0.30   | 0.32     |
| dolphin    | 0.28      | 0.33   | 0.30     |

|            | <b>.</b>  |        | E4 0     |
|------------|-----------|--------|----------|
| Class      | Precision | Recall | F1-Score |
| Mongoose   | 0.03      | 0.03   | 0.03     |
| Rhinoceros | 0.03      | 0.04   | 0.03     |
| Opossum    | 0.04      | 0.05   | 0.04     |
| Yak        | 0.05      | 0.05   | 0.05     |
| Squirrel   | 0.05      | 0.05   | 0.05     |

- Even the **best classes** don't have good performance
- The worst classes are barely ever retrieved

### Fine-Tuned Siamese Network

- Same structure of the Siamese Network (triplet loss)
- Encoder network: MobileNetV2 with no freeze or added layer
  - Fine-tuning instead of training a big model from scratch to have a «hot start»



Much better learning process

### FT Siamese Network: Evaluation

• Performance slightly lower than the first method:

• Accuracy: 83,80% (was 86,20%)

• **ANMRR**: 0.40 (was 0.39)

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| red_panda    | 0.99      | 1      | 0.99     |
| snow_leopard | 0.98      | 0.97   | 0.98     |
| porcupine    | 0.98      | 0.94   | 0.96     |
| orangutan    | 0.96      | 0.96   | 0.96     |
| zebra        | 0.95      | 0.96   | 0.95     |

| Class      | Precision | Recall | F1-Score |
|------------|-----------|--------|----------|
| seal       | 0.52      | 0.57   | 0.54     |
| sea_lion   | 0.63      | 0.51   | 0.56     |
| yak        | 0.70      | 0.69   | 0.70     |
| blue_whale | 0.66      | 0.77   | 0.71     |
| alpaca     | 0.76      | 0.67   | 0.71     |

- Very similar on the top classes
- Slightly different on the worst classes

## Comparison and Combination

### Comparing the two best methods

- Comparison dataframe created
  - F1-Score delta
    - Sorted by delta

| Class    | F1-Score1 | F1-Score2 | Delta |
|----------|-----------|-----------|-------|
| alpaca   | 0.84      | 0.71      | 0.13  |
| camel    | 0.88      | 0.76      | 0.12  |
| tapir    | 0.86      | 0.77      | 0.09  |
| horse    | 0.84      | 0.77      | 0.07  |
| sea_lion | 0.64      | 0.57      | 0.07  |

| Class            | F1-Score1 | F1-Score2 | Delta |
|------------------|-----------|-----------|-------|
| highland_cattle  | 0.82      | 0.87      | -0.05 |
| walrus           | 0.72      | 0.74      | -0.02 |
| vampire_bat      | 0.80      | 0.82      | -0.02 |
| vicuna           | 0.70      | 0.72      | -0.02 |
| african_elephant | 0.93      | 0.94      | -0.02 |

- The delta almost always favors the first method
- Few classes favor the second method slightly

### Combining the two best methods

- Attempt to improve the performance by combining the two best methods
  - Normalize each array of feature arrays between 0 and 1
  - Concatenate each corresponding feature array (now twice the size)
  - Define a **new KD-Tree** with the new feature arrays
- Test the KD-Tree with k=3

• Accuracy: 87.09%

<-- was 86,20% and

• **ANMRR**: 0.39

<-- was 0.39

and

0.40

83,80%

Slight performance increase

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| red_panda    | 0.99      | 0.99   | 0.99     |
| orangutan    | 0.98      | 0.99   | 0.99     |
| snow_leopard | 0.99      | 0.98   | 0.98     |
| porcupine    | 0.97      | 0.96   | 0.97     |
| koala        | 0.95      | 0.97   | 0.96     |

| Class         | Precision | Recall | F1-Score |
|---------------|-----------|--------|----------|
| seal          | 0.58      | 0.58   | 0.58     |
| sea_lion      | 0.69      | 0.60   | 0.64     |
| yak           | 0.73      | 0.71   | 0.72     |
| walrus        | 0.80      | 0.70   | 0.75     |
| water_buffalo | 0.77      | 0.73   | 0.76     |

### First method vs Combined

#### • First method results:

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| orangutan    | 0.98      | 0.99   | 0.99     |
| red_panda    | 0.99      | 0.99   | 0.99     |
| snow_leopard | 0.98      | 0.98   | 0.98     |
| porcupine    | 0.97      | 0.95   | 0.96     |
| armadillo    | 0.95      | 0.96   | 0.96     |

| Class    | Precision | Recall | F1-Score |
|----------|-----------|--------|----------|
| seal     | 0.58      | 0.52   | 0.55     |
| sea_lion | 0.66      | 0.61   | 0.64     |
| yak      | 0.69      | 0.70   | 0.70     |
| vicuna   | 0.68      | 0.73   | 0.70     |
| walrus   | 0.79      | 0.66   | 0.72     |

#### • **Combined** method results:

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| red_panda    | 0.99      | 0.99   | 0.99     |
| orangutan    | 0.98      | 0.99   | 0.99     |
| snow_leopard | 0.99      | 0.98   | 0.98     |
| porcupine    | 0.97      | 0.96   | 0.97     |
| koala        | 0.95      | 0.97   | 0.96     |

| Class         | Precision | Recall | F1-Score |
|---------------|-----------|--------|----------|
| seal          | 0.58      | 0.58   | 0.58     |
| sea_lion      | 0.69      | 0.60   | 0.64     |
| yak           | 0.73      | 0.71   | 0.72     |
| walrus        | 0.80      | 0.70   | 0.75     |
| water_buffalo | 0.77      | 0.73   | 0.76     |

• The main difference is the slight increase in performance for the **worst classes** 

### **Evaluating the Combination**

- Testing the worst class (seal)
  - **F1-Score**: 0.58 (worst class was 0.55)
  - Class-specific ANMRR (5 test images, 3 retrieved images each):
     0.44 (was 0.47)
- Still struggling because of the high similarity with other classes like sea\_lion
  - But better performance than before









































### Relevance Feedback

#### Relevance Feedback

- Relevance feedback to improve the performance of the worst classes
- Returning 10 images from the class «sea\_lion»:























- Only 4 of them are from the correct class
- Manually flag each relevant (0, 1, 4, 9) and irrelavant (2, 3, 5, 6, 7, 8) image
- Use the Rocchio Algorithm to calculate the new query:
  - Query = alpha \* original\_query + beta \* relevant\_mean gamma \* irrelevant\_mean
  - with alpha=1, beta=0.75, gamma=0.15
- The new query returns all correct images























## Thanks for your attention

#### **ANMRR**

- Averange Normalized Modified Retrieval Rank (ANMRR)
  - Proposed in the MPEG-7 standard

$$ANMRR = \sum_{q=1}^{NQ} \frac{AVR(q) - 0.5[1 + N(q)]}{1.25K - 0.5[1 + N(q)]}$$

- AVR(q) = average rank of relevant documents
- N(q) = number of relevant documents
- K = rank threshold