Identifying Age-Related Conditions

August 9, 2023

Akhila Ganti Megan Nguyen Leslie Nie Kevin Stallone Tim Tung

Introduction

- The goal of our project is to predict if a person has any of three age-related medical conditions. In order to assess, we created models trained on measurements of health characteristics.
- Aging is a risk factor for numerous diseases and complications. The growing field of bioinformatics includes research into interventions that can help slow and possibly reverse biological aging and prevent major age-related ailments.
 - o <u>Biological Aging Is No Longer an Unsolved Problem</u>
 - <u>Machine learning for predicting lifespan-extending chemical compounds</u>
- Data science has a role to play in developing new methods to solve problems with diverse data, even if the number of samples is relatively small.
- We established a baseline model and then explored decision trees, random forests, logistic regression, and feedforward neural networks for potential performance improvement.

EDA – Initial Observations

ICR - Age Related Diseases

- Data is sourced from an active (June 2023) Kaggle competition
- Small dataset (617 observations)
- Imbalanced target class:
 - 82.5% of class 0
 - o 17.5% of class 1
- 56 health characteristic features
- Possibly multicollinearity from the correlation matrix
- Feature selection will be considered

EDA – Summary of Statistics

- 56 anonymized features (AB GL)
- All features are floats except EJ (which we one-hot encoded)

	data type	#missing	%missing	#unique	min	max	first quartile	second quartile	third quartile
id	object	0	0.000000	617	NaN	NaN	NaN	NaN	NaN
ab	float64	0	0.000000	217	0.081187	6.161666	0.252107	0.354659	0.559763
af	float64	0	0.000000	599	192.59328	28688.18766	2197.34548	3120.31896	4361.63739
ah	float64	0	0.000000	227	85.200147	1910.123198	85.200147	85.200147	113.73954
am	float64	0	0.000000	605	3.177522	630.51823	12.270314	20.53311	39.139886
						•••	•••	•••	
ej	object	0	0.000000	2	NaN	NaN	NaN	NaN	NaN
				•••					
gh	float64	0	0.000000	596	9.432735	81.210825	25.034888	30.608946	36.863947
gi	float64	0	0.000000	615	0.897628	191.194764	23.011684	41.007968	67.931664
gl	float64	1	0.162075	355	0.001129	21.978	0.124392	0.337827	21.978
class	int64	0	0.000000	2	0.0	1.0	0.0	0.0	0.0

EDA – Feature Distributions

Disproportion of label 0 and 1 observed across all features

Preprocessing

- Null values:
 - Occur in nine of the features
 - KNNImputer were used to fill the null values
- Separation of data:
 - Data was split into 80/20 for train and test
- Standardization:
 - sklearn.StandardScaler to scale using mean and standard deviation
- Feature reduction
 - Tested PCA and t-SNE
 - Maintains at least 80% of the variance

Explained Variance of PCA

Baseline Model - Majority Vote

Majority vote baseline train/test accuracies 0.826/0.823

- Majority voting selecting the most frequent label
- No learning from features, merely reflecting the distribution of our dataset
- Yields a 82% accuracy due to imbalanced datasets benchmark for more sophisticated models

ROC AUC: 0.5

Decision Tree (dt)

model	рса	class_weight	criterion	min_impurity_decrease	max_depth	max_features	accuracy on train	accuracy on dev
dt1	N	Default (None)	Default (gini)	Default (0)	Default (None)	Default (None)	1	.81
dt2	N	Balanced	Default (gini)	Default (0)	Default (None)	Default (None)	1	.88
dt3	N	Balanced	entropy	Default (0)	Default (None)	Default (None)	1	.86
dt4	N	Balanced	entropy	.1	Default (None)	Default (None)	.84	.81
dt5	N	Balanced	Default (gini)	Default (0)	3	Default (None)	.88	.85
dt6	N	Balanced	Default (gini)	Default (0)	Default (None)	sqrt	1	.89
dt7	Y	Default (None)	Default (gini)	Default (0)	Default (None)	Default (None)	1	.8
dt8	Υ	Balanced	Default (gini)	Default (0)	Default (None)	Default (None)	1	.78
dt9	Υ	Default (None)	entropy	Default (0)	3	sqrt	.88	.83
dt10	Υ	Default (None)	entropy	.1	3	sqrt	.83	.82
dt11	Υ	Default (None)	Default (gini)	Default (0)	3	sqrt	.87	.85

- Creates a hierarchical structure that effectively classifies data based on feature decisions
- Optimized accuracy of 89% on the test dataset without PCA transformation
- Improvement over baseline model while presents a tendency towards overfitting

Decision Tree (cont.)

Training Data: 493, 24 Test Data: 124, 24

Best Performer

- data before pca transformation
- class_weight = 'balanced'
- criterion = gini
- min_impurity_decrease = 0
- max_depth = None
- max_features = sqrt

Model Evaluation:

Train/test accuracies 1.000/0.887

Precision score: 0.819 Recall score: 0.771

F1 score 0.791

ROC AUC: 0.771

Random Forest (rf)/Ensembles

- Significant improvement over baseline model and single decision tree, leveraging multiple learning algorithms
- Random forest exhibits robust resistance to outliers and excels at mitigating overfitting, achieving an accuracy of 93% on test data

model	рса	class_weight	n_estimators	bootstrap	max_depth	max_features	accuracy on train	accuracy on dev
rf1	N	Default (None)	Default (100)	Default (T)	Default (None)	Default (None)	1	.92
rf2	N	Balanced	Default (100)	Default (T)	Default (None)	Default (None)	1	.91
rf3	N	Default (None)	50	Default (T)	Default (None)	Default (None)	1	.89
rf4	N	Default (None)	Default (100)	F	Default (None)	Default (None)	1	.92
rf5	N	Default (None)	Default (100)	Default (T)	10	Default (None)	1	.93
rf6	N	Default (None)	Default (100)	Default (T)	10	sqrt	1	.93
rf7	Υ	Default (None)	Default (100)	Default (T)	Default (None)	Default (None)	1	.88
rf8	Υ	Balanced	Default (100)	Default (T)	Default (None)	Default (None)	1	.85
rf9	Υ	Default (None)	50	F	Default (None)	Default (None)	1	.88
rf10	Υ	Default (None)	50	F	10	Default (None)	.99	.86
rf11	Υ	Default (None)	50	F	Default (None)	sqrt	1	.88
Bag using dt6	N	NA	500	NA	NA	NA	1	.90
Bag using dt6	Υ	NA	500	NA	NA	NA	1	.84
Adaboost using dt6	N	NA	500	NA	NA	NA	1	.83
Adaboost using dt6	Υ	NA	500	NA	NA	NA	1	.84

Random Forest/Ensembles (cont.)

Training Data: 493, 24 Test Data: 124, 24

Best Performer

• data before pca transformation

class_weight = 'balanced'

n_estimators = 100

bootstrap = True

• $max_depth = 10$

max_features = sqrt

Model Evaluation:

Train/test accuracies 1.000/0.927 g

Precision score: 0.908 Recall score: 0.831

F1 score 0.863

ROC AUC: 0.907

Logistic Regression

Model implemented in TensorFlow

Model Parameters:

Activation: relu

Optimizer: Adam

Learning rate: 0.01

Number of Epochs: 200

Number of K-folds: 5

Evaluation Results:

Binary Accuracy: 0.8387

Precision: 0.6909

• Recall: 0.5389

F1 Score: 0.3014

Validation loss curve is below the training loss curve, possibly indicative of underfitting → Remedy by increasing model capacity.

Feedforward Neural Network (FFNN)

Hyperparameters used for model tuning:

- # of hidden layers
- # of units per hidden layer
- Activation (relu, tanh)
- Learning Rate
- Dropout Rate
- Number of Epochs

Addressed class imbalances by using class weights.

Observations from hand tuning:

- Lower learning rate with more training epochs led to smoother learning curves than higher learning rates with fewer epochs
- Increasing the dropout rate seemed to produce better results than reducing model complexity

FFNN: Keras Tuner HP Optimization

Keras Tuner provides an automated method for hyperparameter optimization.

```
Search space summary
Default search space size: 8
num lavers (Int)
{'default': None, 'conditions': [], 'min value': 1, 'max value': 3, 'step': 1, 'sampling': 'linear'}
units 0 (Int)
{'default': None, 'conditions': [], 'min value': 5, 'max value': 100, 'step': 5, 'sampling': 'linear'}
activation (Choice)
{'default': 'relu'. 'conditions': []. 'values': ['relu'. 'tanh']. 'ordered': False}
dropout (Boolean)
{'default': False, 'conditions': []}
1r (Float)
{'default': 0.0001, 'conditions': [], 'min value': 0.0001, 'max value': 0.01, 'step': None, 'sampling': 'log'}
units 1 (Int)
{'default': None, 'conditions': [], 'min value': 5, 'max value': 100, 'step': 5, 'sampling': 'linear'}
units 2 (Int)
{'default': None, 'conditions': [], 'min value': 5, 'max value': 100, 'step': 5, 'sampling': 'linear'}
dropout rate (Int)
{'default': None, 'conditions': [], 'min value': 20, 'max value': 50, 'step': 5, 'sampling': 'linear'}
```

```
Trial 153 Complete [00h 00m 27s]
val binary accuracy: 0.9220430056254069
Best val binary accuracy So Far: 0.9301075339317322
Total elapsed time: 01h 04m 44s
Search: Running Trial #154
Value
                   Best Value So Far
                                     Hyperparameter
                                      num layers
90
                   95
                                      units 0
                   tanh
                                      lactivation
tanh
                                      dropout
True
                   True
0.0037935
                   0.0061472
                                      units 1
                   40
                                      units 2
                  25
                                     |dropout_rate
Results summary
Results in my dir\ICR
Showing 10 best trials
Objective(name="val binary accuracy", direction="max")
Trial 179 summary
Hyperparameters:
num lavers: 2
units 0: 100
activation: tanh
dropout: True
lr: 0.0012440718000666692
units 1: 50
units 2: 35
dropout rate: 25
Score: 0.9327957034111023
```


FFNN: Model Summary

Best Parameters

- Learning rate = 0.001244
- Activation = tanh
- optimizer = Adam
- hidden layers = [100, 50]
- dropout rate = 0.25
- epochs = 250

Model Evaluation:

• Binary Accuracy: 0.8806

• Precision: 0.6091

• Recall: 0.6895

F1 Score: 0.3014

Feed Forward Neural Network: Ablation Table

Run	Activation	Hidden Layer Size	Learning rate	Dropout rate	Loss, Accuracy
1	relu	95, 10	0.0090591	0.1	[1.153681, 0.83871]
2	relu	95, 10	0.0090591	0.25	[1.99791, 0.87097]
3	tanh	95, 10	0.0090591	0.1	[0.55234, 0.87097]
4	tanh	95, 10	0.0090591	0.2	[0.44030, 0.90323]
5	tanh	95, 10	0.0090591	0.25	[0.456542, 0.88709]
6	tanh	85, 10	0.0090591	0.25	[0.54294, 0.87903]
7	tanh	100,50	0.0061472	0.25	[0.62982, 0.89516]

- FFNN model that classifies data based on pca reduced dimensionality features
- Accuracy data for multiple variations of hyperparameter tuning
- Optimized accuracy of 90% on the test dataset but not consistent

Fairness -**Model is Unfair**

Confusion Matrix for Subgroup A Model (EJ Split)

Precision score: 1.000 Recall score: 0.875 F1 score: 0.933 Accuracy: 0.98

Confusion Matrix for Population Model

Accuracy: 0.927

Potential thoughts of what feature 'EJ' could be:

- Gender
- **Age** (Under 50 and over 50)
- Level of Education (Have an education and doesn't have an education)
- **Geographic Location**

Confusion Matrix for **Subgroup B** Model (EJ Split)

Precision score: 0.800 Recall score: 0.571

F1 score: 0.667 Accuracy: 0.891

Conclusion/Future Work

Random Forest is one of the powerful models that can be used to predict a medical condition using a person's health characteristics due to an imbalance within the dataset and a limited number of observations.

Future work:

- **Feature Engineering**: Develop additional features (if not anonymized)
- **Combine Data Types**: Integrate genetic, clinical, and lifestyle data for better predictions.
- **Temporal Analysis**: Use longitudinal data to track changes and predict age-related conditions.
- **Adaptive Modeling**: Design models that update over time for changing demographics.
- **Validation**: Thoroughly validate models for broader applicability.
- **Ethical Considerations**: Address biases with fairness techniques.
- **Improve Generalization**: A larger dataset aids better pattern recognition. Collect more data.

Questions

Contributions

Akhila Ganti: Introduction, EDA, Fairness, FFNN Ablation Table

Megan Nguyen: EDA, Fairness Analysis, Random Forests, Conclusion

Leslie Nie: EDA, Decision Tree, Random Forests

Kevin Stallone: EDA, Preprocessing, Coding and Research

Tim Tung: EDA, Preprocessing, Logistic Regression/FFNN

