

Selbst-organisierende, adaptive Systeme

Vorlesung 12: Constraint Programming

Einordnung

Bisher:

- Mechanismen für eigennützige Agenten
- Optimierungsprobleme bei Auszahlung
- Systematische Ansätze für SOAS
- RIA: Zustände über Constraints beschrieben

In dieser Vorlesung:

- Prinzipien Diskreter Optimierung
- Constraint Programming
- Propagationen
- Suchstrategien + Heuristiken

Constraint Programming: Einordnung

- Generischer Ansatz zur Lösung von Erfüllbarkeitsproblemen
- Ausnützen von **Struktur** von logischen Bedingungen (Tsang, 1993)
- Konzentration auf endliche Wertebereiche und Erfüllbarkeit (Russell and Norvig, 2010, Kap. 5)

Constraint Programming: Einordnung

- Generischer Ansatz zur Lösung von Erfüllbarkeitsproblemen
- Ausnützen von **Struktur** von logischen Bedingungen (Tsang, 1993)
- Konzentration auf endliche Wertebereiche und Erfüllbarkeit (Russell and Norvig, 2010, Kap. 5)
 - Im Gegensatz z.B. zu linearer Programmierung, konvexe Optimierung
 - Verallgemeinert Boolesche Erfüllbarkeitsprobleme (SAT)
 - Scheduling-Probleme
 - Reorganisationen
 - Zuweisungsprobleme (z.B. Frequenzen an Sender, Energie and Produzenten, ...)

Constraint Programming: Einordnung

- Generischer Ansatz zur Lösung von Erfüllbarkeitsproblemen
- Ausnützen von Struktur von logischen Bedingungen (Tsang, 1993)
- Konzentration auf endliche Wertebereiche und Erfüllbarkeit (Russell and Norvig, 2010, Kap. 5)
 - Im Gegensatz z.B. zu linearer Programmierung, konvexe Optimierung
 - Verallgemeinert Boolesche Erfüllbarkeitsprobleme (SAT)
 - Scheduling-Probleme
 - Reorganisationen
 - Zuweisungsprobleme (z.B. Frequenzen an Sender, Energie and Produzenten, ...)
- Deklarativ, aber Constraints sind an Algorithmen geknüpft (Rossi et al., 2006)!

Ein prototypisches CSP

Und noch eins

Definition (Constraint-Problem)

Ein Constraint-Problem (X, D, C) ist beschrieben durch

• Variablen X, Domänen $D = (D_x)_{x \in X}$ (endlich), Constraints C

Definition (Constraint-Problem)

Ein Constraint-Problem (X, D, C) ist beschrieben durch

• Variablen X, Domänen $D = (D_x)_{x \in X}$ (endlich), Constraints C

Technisch ist ein Constraint $c \in C$ mit $Scope \operatorname{sc}(c) \subseteq X$ eine Einschränkung auf gültige Tupel des kartesischen Produktes der Domänen des Scopes: $c \subseteq \prod_{x \in \operatorname{sc}(c)} D_x$.

Definition (Constraint-Problem)

Ein Constraint-Problem (X, D, C) ist beschrieben durch

• Variablen X, Domänen $D = (D_x)_{x \in X}$ (endlich), Constraints C

Technisch ist ein Constraint $c \in C$ mit $Scope \operatorname{sc}(c) \subseteq X$ eine Einschränkung auf gültige Tupel des kartesischen Produktes der Domänen des Scopes: $c \subseteq \prod_{x \in \operatorname{sc}(c)} D_x$.

Constraints sind entweder:

- **Extensional**; direkte Auflistung der Menge (z.B. $\{1,2\},\{2,3\}$
- Intensional; Syntaktische Vorschrift gegeben (z.B. x + 1 = y)

Definition (Constraint-Problem)

Ein Constraint-Problem (X, D, C) ist beschrieben durch

• Variablen X, Domänen $D = (D_x)_{x \in X}$ (endlich), Constraints C

Technisch ist ein Constraint $c \in C$ mit $Scope \operatorname{sc}(c) \subseteq X$ eine Einschränkung auf gültige Tupel des kartesischen Produktes der Domänen des Scopes: $c \subseteq \prod_{x \in \operatorname{sc}(c)} D_x$.

Constraints sind entweder:

- **Extensional**; direkte Auflistung der Menge (z.B. {1,2}, {2,3}
- Intensional; Syntaktische Vorschrift gegeben (z.B. x + 1 = y)

Wir verwenden beide in *funktionaler* Form: $c: [X \to D] \to \mathbb{B} = \{\mathsf{tt}, \mathsf{ff}\}$, wobei $[X \to D]$ die Menge aller Abbildungen von X nach D ist.

Das eigentliche Erfüllbarkeitsproblem

Eine (partielle) Zuweisung ist eine (partielle) Abbildung $\theta: X \to D$ mit Scope sc als definierter Wertebereich.

Definition (Lösung)

Eine Lösung für ein Constraint-Problem (X, D, C) ist eine Zuweisung θ mit $sc(\theta) = X$, sodass θ alle Constraints $c \in C$ erfüllt, also $\forall c \in C : c(\theta) = tt$.

Ein Constraint-Satisfaction-Problem (CSP) besteht darin, eine Lösung θ aus dem Suchraum $[X \to D]$ zu finden (Rossi et al., 2006).

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_y = \{0, 1, 2\}, D_z = \{0, 1\}$
- (
- $c_1: x \neq y$, $y \neq z$, $x \neq z$
- $c_2: x+1=y$

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_y = \{0, 1, 2\}, D_z = \{0, 1\}$
- (
- $c_1: x \neq y$, $y \neq z$, $x \neq z$
- $c_2: x+1=y$

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_y = \{0, 1, 2\}, D_z = \{0, 1\}$
- C
- $c_1: x \neq y, y \neq z, x \neq z$
- $c_2: x+1=y$

```
var 0..2: x;
var 0..2: y;
var 0..1: z;
% c1
constraint x != y /\ y != z /\ x != z;
% c2
constraint x + 1 = y;
solve satisfy;
```

Welche Zuweisung ist eine Lösung dieses Problems?

• $\Theta = \{(x \to 1, y \to 2, z \to ?), (x \to 0, y \to 1, z \to ?)\}$ erfüllen c_2 ;

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_y = \{0, 1, 2\}, D_z = \{0, 1\}$
- C
- $c_1: x \neq y, y \neq z, x \neq z$
- $c_2: x+1=y$

```
var 0..2: x;
var 0..2: y;
var 0..1: z;

% c1
constraint x != y /\ y != z /\ x != z;
% c2
constraint x + 1 = y;
solve satisfy;
```

Welche Zuweisung ist eine Lösung dieses Problems?

- $\Theta = \{(x \rightarrow 1, y \rightarrow 2, z \rightarrow ?), (x \rightarrow 0, y \rightarrow 1, z \rightarrow ?)\}$ erfüllen c_2 ;
- $(x \to 0, y \to 1, z \to ?)$ lässt sich aber zu keiner Lösung erweitern, da z entweder 0 oder 1 sein muss und somit garantiert c_1 verletzt

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_y = \{0, 1, 2\}, D_z = \{0, 1\}$
- C
- $c_1: x \neq y, y \neq z, x \neq z$
- $c_2: x+1=y$

```
var 0..2: x;
var 0..2: y;
var 0..1: z;

% c1
constraint x != y /\ y != z /\ x != z;
% c2
constraint x + 1 = y;
solve satisfy;
```

Welche Zuweisung ist eine Lösung dieses Problems?

- $\Theta = \{(x \to 1, y \to 2, z \to ?), (x \to 0, y \to 1, z \to ?)\}$ erfüllen c_2 ;
- $(x \to 0, y \to 1, z \to ?)$ lässt sich aber zu keiner Lösung erweitern, da z entweder 0 oder 1 sein muss und somit garantiert c_1 verletzt
- Also ist die einzige Lösung $(x \to 1, y \to 2, z \to 0)$

Komplexität?

Sind Constraint-Probleme schwierig?

Theorem

Das zu einem CSP gehörende Entscheidungsproblem ist NP-vollständig.

Bew. Sei $A = \{a_1, \ldots, a_n\} \subseteq \mathbb{Z}$ und $s \in \mathbb{Z}$; Gibt es eine Teilmenge $A' \subseteq A$ sodass $\sum_{a \in A'} a = s$? (Teilsummenproblem, subset sum \to NP-vollständig)

Definiere als CSP (X, D, C):

- $X = \{x_1, \ldots, x_n\}$ mit $D_{x_i} = \{0, 1\}$
- $C \equiv \{ [s = \sum_{i=1}^n x_i \cdot a_i] \}$

```
int: n = 5; int: s = 4;
array[1..n] of int: a = [-7, -3, -2, 5, 8];
array[1..n] of var 0..1: x;
constraint sum(i in 1..n) (x[i]*a[i]) = s;
solve satisfy;
```

NP-Vollständigkeit

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

[CHOTCHKIES RESTAURANT]	
~ APPETIZERS	
MIXED FRUIT	2.15
FRENCH FRIES	2.75
SIDE SALAD	3.35
HOT WINGS	3.55
MOZZARELLA STICKS	4.20
SAMPLER PLATE	5.80
→ SANDWICHES →	
BARRECUE	6 55

https://xkcd.com/287/

- Systematische (vollständige) Suche ("Try")
 - Backtracking
 - Branch & Bound

- Systematische (vollständige) Suche ("Try")
 - Backtracking
 - Branch & Bound
- Constraint-Propagation, Inferenz
 - Einfache, lokale Konsistenzchecks (Logische Schlüsse)
 - Reduktion der Domänen

- Systematische (vollständige) Suche ("Try")
 - Backtracking
 - Branch & Bound
- Constraint-Propagation, Inferenz
 - Einfache, lokale Konsistenzchecks (Logische Schlüsse)
 - Reduktion der Domänen
- Relaxierung
 - Löse einfachere Teilprobleme
 - Nehme Ergebnis als Schranken

- Systematische (vollständige) Suche ("Try")
 - Backtracking
 - Branch & Bound
- Constraint-Propagation, Inferenz
 - Einfache, lokale Konsistenzchecks (Logische Schlüsse)
 - Reduktion der Domänen
- Relaxierung
 - Löse einfachere Teilprobleme
 - Nehme Ergebnis als Schranken
- Lokale (heuristische) Suche
 - Min-Conflicts-Heuristik
 - Large-neighborhood Search
 - Tabu-Suche / Simulated Annealing

Systematische Suche

Partielle Zuweisungen schrittweise um ein Variablen-Wert-Paar erweitert.

Ausnützen der Konjunktivität: Wenn eine partielle Zuweisung bereits einen Constraint verletzt, wird die letzte Zuweisung rückgängig gemacht (backtracking) und neuer Wert versucht.

Im schlimmsten Fall exponentielle Exploration aller vollständigen Zuweisungen $O(|D|^{|X|})$.

- \rightarrow in der Praxis:
 - Einschränkung der Lösungsraums durch Propagation
 - Frühzeitiges Abschneiden von "Sackgassen"
 - Frühzeitiges Probieren von vielversprechenden Kandidaten

$$X = \{WA, NT, \dots V\}, D_x =$$

$$X = \{WA, NT, ... V\}, D_x = \{r, g, b\}, C =$$

$$X = \{WA, NT, ..., V\}, D_x = \{r, g, b\}, C = \{WA \neq NT, NT \neq SA, ...\}$$

Systematische Suche I

Systematische Suche II

Systematische Suche


```
function Search((X, D, C))
    \theta \leftarrow \emptyset
    return SEARCHREC(\theta, (X, D, C))
function SEARCHREC(\theta, (X, D, C))
    if |\theta| = |X| then return \theta
    else
         x \leftarrow \text{SelectUnassignedVariable}(\theta, (X, D, C))
         for all d \in D_x do
             \theta' \leftarrow \theta \cup (x, d)
             if \forall c \in C : c(\theta') \neq \text{ff then}
                                                                              D' \leftarrow \text{PropagateConstraints}(\theta', D)
                                                                                       Shrinks D
                  \theta'' \leftarrow \text{SEARCHREC}(\theta', (X, D', C))
                  if \theta'' \neq \bot then return \theta''
         return |
```

Stellschrauben

Heuristiken entwickelt, um "geschickte" Auswahl der Reihenfolgen von Variablen $x \in X$ und Werten $d \in D_x$ zu treffen.

- Minimum-Remaining-Values (MRV): Wähle die Variable mit der kleinsten verbleibenden Domäne als nächste
- Most-constrained (MC): Wähle die Variable aus, die an den meisten Constraints beteiligt ist.
- Minimum reduction (MR): Wähle den nächsten zu testenden Wert so aus, dass minimal viele Domänenreduktionen erfolgen.

Dadurch frühe Sackgassenerkennung und sinnvolle Wahl, um Suchbaum zu begrenzen.

Variablenordnung

Beispiel für MRV+MC (MC bricht Unentschieden nach MRV):

 $|D_{OL}|$ nur 2

 $|D_{\mathsf{NT}}|$ nur 1

Wertordnung

Wähle die Belegung für die selektierte Variable, die die wenigsten Domäneneinschränkungen zur Folge haben.

Es bleibt kein Wert für SA.

Es bleibt ein Wert für SA.

Architektur von Constraint-Lösern

Architektur von Constraint-Lösern

Constraint-Propagation

- Nutze Constraints, um Suchraum einzugrenzen
- Idee: Entferne alle Werte aus Domänen, die in keiner Lösung vorkommen können (*Domain Store*)

Constraint-Propagation

- Nutze Constraints, um Suchraum einzugrenzen
- Idee: Entferne alle Werte aus Domänen, die in keiner Lösung vorkommen können (*Domain Store*)
- $|x_1 x_2| > 5$ für $x_1, x_2 \in X$ und $D_{x_i} = \{1, \dots, 10\}$
- Welche Werte sind nicht möglich?
- jeweils 5 und 6

Constraint-Propagation

- Nutze Constraints, um Suchraum einzugrenzen
- Idee: Entferne alle Werte aus Domänen, die in keiner Lösung vorkommen können (*Domain Store*)
- $|x_1 x_2| > 5$ für $x_1, x_2 \in X$ und $D_{x_i} = \{1, \dots, 10\}$
- Welche Werte sind nicht möglich?
- jeweils 5 und 6
- Propagierungsschritte beeinflussen einander
 - "Kettenreaktion"
 - Fixpunktalgorithmus → Keine Propagierung möglich
 - Wenn Domäne nur mehr einen Wert enthält, muss dieser zugewiesen werden.

Constraint-Propagation: Beispiel

Entfernen von Werten, die zu keiner Lösung führen können.

Send More Money

Problem

S E N D + M O R E

MONEY

Send More Money

Problem

S E N D + M O R E ------M O N E Y C4 C3 C2 C1 S E N D + M O R E ------M O N E Y

Send More Money

Problem

S F. N D

MOR.F.

```
M O N E Y

C4 C3 C2 C1

S E N D

+ M O R E

-----

M O N E Y
```

```
% send more money
include "alldifferent.mzn":
int: s = 1: int: e = 2: int: n = 3:
int: d = 4: int: m = 5: int: o = 6:
int: r = 7; int: y = 8;
set of int: Letters = {s,e,n,d,m,o,r,v};
set of int: Digits = 0..9;
array[Letters] of var Digits: value;
array[1..4] of var 0..1: carry;
constraint alldifferent(value):
constraint value[s] != 0 /\ value[m] != 0;
constraint carrv[4] = value[m]:
constraint carry[3] + value[s] + value[m] =
           value[o] + 10*carry[4];
constraint carry[2] + value[e] + value[o] =
           value[n] + 10*carry[3];
constraint carry[1] + value[n] + value[r] =
           value[e] + 10*carrv[2]:
constraint value[d] + value[e] =
           value[v] + 10*carrv[1]:
solve satisfy:
```


 $ext{value[S]}
eq 0$ $ext{value[M]}
eq 0$ $ext{c[4]} = ext{value[M]}$

 $ext{value[S]}
eq 0$ $ext{value[M]}
eq 0$ $ext{c[4]} = ext{value[M]}$

 $value[S] \neq 0$ $value[M] \neq 0$ c[4] = value[M]

$$carry[3] + value[S] + value[M] = value[0] + 10 * carry[4];$$

$$\overbrace{ \begin{array}{c} \in [3..11] \\ \hline \texttt{carry}[3] + \texttt{value}[S] + 1 \\ \hline \texttt{value}[0] + 10; \\ \hline \in [10..19] \end{array} }$$

$$\underbrace{ \begin{array}{c} \in [3..11] \\ \hline \text{carry}[3] + \text{value}[S] + 1 = \\ \hline \text{value}[0] + 10; \\ \hline \in [10..19] \\ \hline [3..11] \cap [10..19] = [10..11] \end{array} }_{\text{carry}[3] + 10.66 \text{ model} \begin{bmatrix} 10..11 \\ 10..11 \end{bmatrix}$$

$$\begin{aligned} &10 \leq \texttt{carry[3]} + \texttt{value[S]} + 1 \leq 11 \\ &9 \leq \texttt{carry[3]} + \texttt{value[S]} \leq 10 \\ &9 - \texttt{carry[3]} \leq \texttt{value[S]} \\ &\leq 10 - \texttt{carry[3]} \\ &8 \leq \texttt{value[S]} \leq 10 \end{aligned}$$

$$\overbrace{\mathtt{carry[3] + value[S] + 1}}^{\in [3..11]} = \underbrace{\mathtt{value[0] + 10}}_{\in [10..19]};$$

$$[3..11] \cap [10..19] = [10..11]$$

$$10 \le \operatorname{carry}[3] + \operatorname{value}[S] + 1 \le 11$$

 $9 \le \operatorname{carry}[3] + \operatorname{value}[S] \le 10$
 $9 - \operatorname{carry}[3] \le \operatorname{value}[S]$
 $\le 10 - \operatorname{carry}[3]$
 $8 \le \operatorname{value}[S] \le 10$

$$\overbrace{ \begin{array}{c} \in \text{[10..11]} \\ \hline \texttt{carry[3]} + \texttt{value[S]} + 1 \\ \hline \texttt{value[0]} + 10; \\ \hline \in \text{[10..11]} \end{array} } =$$

$$10 \leq \mathtt{value}[\mathtt{0}] + 10 \leq 11$$

$$\underbrace{\overbrace{\mathtt{carry}[3] + \mathtt{value}[S] + 1}_{\in [10..11]} = \underbrace{\mathtt{value}[0] + 10}_{\in [10..11]};$$

$$\begin{aligned} 10 \leq \mathtt{value}[\mathtt{0}] + 10 \leq 11 \\ 0 \leq \mathtt{value}[\mathtt{0}] \leq 1 \end{aligned}$$

$$\underbrace{\overbrace{\mathtt{carry}[3] + \mathtt{value}[S] + 1}^{\in [10..11]}}_{\text{calue}[0] + 10} = \underbrace{\mathtt{value}[0] + 10}_{\in [10..11]}$$

$$\begin{aligned} 10 \leq \mathtt{value}[\mathtt{0}] + 10 \leq 11 \\ 0 \leq \mathtt{value}[\mathtt{0}] \leq 1 \end{aligned}$$

Lösung

Problem

C4 C3 C2 C1
S E N D
+ M O R E
----M O N E Y

Lösung

Problem

Output:

Lösung

Problem

Output:

Globale Constraints

- Betrachten wir folgendes einfaches Problem
 - $X = \{x_1, x_2, x_3\}$
 - $(D_x)_{x \in X} = \{1, 2\}$
 - $C: x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3$
- Ist dieses Problem nach Constraint-Propagation mit binären Constraints lösbar?

Globale Constraints

- Betrachten wir folgendes einfaches Problem
 - $X = \{x_1, x_2, x_3\}$
 - $(D_x)_{x \in X} = \{1, 2\}$
 - $C: x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3$
- Ist dieses Problem nach Constraint-Propagation mit binären Constraints lösbar?
- Ja, für jedes $d \in D_x$ gibt es einen Partner

Globale Constraints

- Betrachten wir folgendes einfaches Problem
 - $X = \{x_1, x_2, x_3\}$
 - $(D_x)_{x \in X} = \{1, 2\}$
 - $C: x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3$
- Ist dieses Problem nach Constraint-Propagation mit binären Constraints lösbar?
- Ja, für jedes $d \in D_x$ gibt es einen Partner
- Insgesamt allerdings nicht, da mindestens 3 unterschiedliche Werte nötig
- $\bullet \to \mathsf{daher}$ globale Constraints, die eine größere Menge von Variablen im Auge betrachten können
- Und spezialisierte Propagationsalgorithmen haben!
- alldifferent(x₁, x₂, x₃)

Häufig auftretende Constraints samt Propagierungsalgorithmen. Gesammelt im $Global\ Constraints\ Catalogue^1$

alldifferent(VARIABLES) Erfordert, dass alle Variablen unterschiedliche Werte haben, z.B: [1,2,3]

¹http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Häufig auftretende Constraints samt Propagierungsalgorithmen. Gesammelt im $Global\ Constraints\ Catalogue^1$

alldifferent(VARIABLES) Erfordert, dass alle Variablen unterschiedliche Werte haben, z.B: [1,2,3]

allequal(VARIABLES) Erfordert, dass alle Variablen den gleichen Wert haben, z.B: [5,5,5]

¹ http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Häufig auftretende Constraints samt Propagierungsalgorithmen. Gesammelt im $Global\ Constraints\ Catalogue^1$

alldifferent(VARIABLES) Erfordert, dass alle Variablen unterschiedliche Werte haben, z.B: [1,2,3]

allequal(VARIABLES) Erfordert, dass alle Variablen den gleichen Wert haben, z.B: [5,5,5]

nvalue (VARIABLES, N) Erfordert, dass genau N verschiedene Werte vorkommen, z.B: ([1,2,1],2)

http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Häufig auftretende Constraints samt Propagierungsalgorithmen. Gesammelt im $Global\ Constraints\ Catalogue^1$

- alldifferent(VARIABLES) Erfordert, dass alle Variablen unterschiedliche Werte haben, z.B: [1,2,3]
- allequal(VARIABLES) Erfordert, dass alle Variablen den gleichen Wert haben, z.B: [5,5,5]
- nvalue (VARIABLES, N) Erfordert, dass genau N verschiedene Werte vorkommen, z.B: ([1,2,1],2)
- at_most(N, VARIABLES, V) Erfordert, dass höchstens N Variablen den Wert V annehmen z.B: (2, [2, 2, 4], 2)

 $^{^{1}}$ http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Diskrete Optimierungsprobleme

Reine Erfüllbarkeitsprobleme reichen mitunter nicht aus

- Lösungen können nach Zielfunktion geordnet sein
- Alle Constraints sind nicht gleichzeitig erfüllbar es existiert keine Lösung

Daher Erweiterungen des klassischen Constraint-Frameworks

- Zielfunktion $f: [X \to D] \to \mathbb{R}$
- Macht aus Constraint-Satisfaction-Problem (X, D, C) ein Constraint-Satisfaction-Optimization-Problem (CSOP)

Ziel: Bestimme diejenige Lösung θ , die f maximiert (bzw. minimiert)

Branch and Bound

- Sehr weit anwendbare Lösungstechnik
- Systematische Suche mit Zielfunktion f
 - ullet "Branching" o Auffächern von möglichen Lösungen
 - Best-first, Depth-first
- Zusätzlich "Bounding" mit best-case-Abschätzungen
 - ullet Wenn "best-case" eines Knotens im Suchbaum $(\hat{f}(\hat{ heta})$ bereits schlechter als beste bisher gefundene Lösung, schneide Teilbaum ab

CSOP: Beispiel Knapsack

Betrachten wir das eindimensionale Knapsack-Problem mit Gegenständen $i \in I$ samt Gewichten $(w_i)_{i \in I}$ und Werten $(v_i)_{i \in I}$, die in den Rucksack mit Kapazität K aufgenommen werden.

Knapsack

```
int: n; set of int: ITEMS = 1..n;
int: K; % capacity
array[ITEMS] of int: v;
array[ITEMS] of int: w;

array[ITEMS] of var bool: x;

constraint sum(i in ITEMS) (x[i] * w[i]) <= K;
solve maximize sum(i in ITEMS) (x[i] * v[i]);</pre>
```

Geeignete Best-Case-Abschätzung an Knoten?

CSOP: Beispiel Knapsack

Betrachten wir das eindimensionale Knapsack-Problem mit Gegenständen $i \in I$ samt Gewichten $(w_i)_{i \in I}$ und Werten $(v_i)_{i \in I}$, die in den Rucksack mit Kapazität K aufgenommen werden.

Knapsack

```
int: n; set of int: ITEMS = 1..n;
int: K; % capacity
array[ITEMS] of int: v;
array[ITEMS] of int: w;

array[ITEMS] of var bool: x;

constraint sum(i in ITEMS) (x[i] * w[i]) <= K;
solve maximize sum(i in ITEMS) (x[i] * v[i]);</pre>
```

Geeignete Best-Case-Abschätzung an Knoten? Nehme an, alle verbleibenden Gegenstände passen in den Rucksack

MiniZinc-IDE zum Download unter http://www.minizinc.org/ (neueste Version)

Alle Beispiele aus dieser Vorlesung im Digicampus!

Zusammenfassung

- Constraint Programming bietet generische Algorithmen für Erfüllbarkeitsprobleme
- Effizienz hängt von Propagationsstärke der verwendeten Constraints ab
- Heuristiken beschleunigen die Suche
- Erweiterung auf Optimierungsprobleme mit klassischen Techniken
 - · Branch and Bound

Quellen I

Rossi, F., Beek, P. v., and Walsh, T. (2006).

Handbook of Constraint Programming (Foundations of Artificial Intelligence).

Elsevier Science Inc., New York, NY, USA.

Russell, S. and Norvig, P. (2010).

Artificial Intelligence: A Modern Approach.

Prentice Hall series in artificial intelligence. Prentice Hall.

Tsang, E. (1993).

Foundations of constraint satisfaction, volume 289.

Academic press London.