1994年全国硕士研究生招生考试

数 学 (一)

(科目代码:301)

一、填空题(本题共5小题,每小题3分,满分15分)

(1)
$$\lim_{x\to 0} \cot x \left(\frac{1}{\sin x} - \frac{1}{x}\right) = \underline{\qquad}$$

(2) 曲面 $z - e^z + 2xy = 3$ 在点(1,2,0) 处的切平面方程为_____.

(3) 设
$$u = e^{-x} \sin \frac{x}{y}$$
,则 $\frac{\partial^2 u}{\partial x \partial y}$ 在点 $\left(2, \frac{1}{\pi}\right)$ 处的值为_____.

(4) 设区域
$$D$$
 为 $x^2 + y^2 \le R^2$,则 $\int_{D} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) dx dy = ____.$

(5) 已知
$$\boldsymbol{\alpha} = (1,2,3)$$
, $\boldsymbol{\beta} = \left(1,\frac{1}{2},\frac{1}{3}\right)$, 设 $\boldsymbol{A} = \boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\beta}$, 其中 $\boldsymbol{\alpha}^{\mathrm{T}}$ 是 $\boldsymbol{\alpha}$ 的转置,则 $\boldsymbol{A}^{n} = \underline{^{\mathrm{T}}\boldsymbol{\beta}}$.

二、选择题(本题共5小题,每小题3分,满分15分)

(1)
$$abla M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos^4 x \, dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, dx, P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx, M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) \, dx$$

(B)
$$M < P < N$$

(D)
$$P < M < N$$

- (2) 二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0), f'_y(x_0,y_0)$ 存在是 f(x,y) 在 该点连续的().
 - (A) 充分条件但非必要条件
- (B) 必要条件但非充分条件

(C) 充分必要条件

(D) 既非充分条件又非必要条件

(3) 设常数
$$\lambda > 0$$
,且级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{|a_n|}{\sqrt{n^2 + \lambda}}$ ().

(A) 发散

(B) 条件收敛

(C) 绝对收敛

(D) 收敛性与 λ 有关

(4) 设
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{c \ln(1-2x) + d(1-e^{-x^2})} = 2$$
,其中 $a^2 + c^2 \neq 0$,则必有().

$$(A)b = 4d$$

(B)
$$b = -4d$$

$$(C)a = 4c$$

(D)
$$a = -4c$$

(5) 已知向量组 α_1 , α_2 , α_3 , α_4 线性无关,则向量组().

$$(A)\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
 线性无关

$$(B)$$
 $\alpha_1 - \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$ 线性无关

$$(C)$$
 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 - \alpha_1$ 线性无关

$$(D)$$
 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$ 线性无关

三、(本题共3小题,每小题5分,满分15分)

(1)
$$\mathcal{U}$$
 $\begin{cases} x = \cos t^2, \\ y = t \cos t^2 - \int_1^{t^2} \frac{1}{2\sqrt{u}} \cos u \, du, \, \Re \frac{dy}{dx}, \frac{d^2y}{dx^2} \stackrel{\cdot}{\text{d}} t = \sqrt{\frac{\pi}{2}} \text{ Prior} \stackrel{\cdot}{\text{d}} i. \end{cases}$

(2) 将函数
$$f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$$
 展开成 x 的幂级数.

四、(本题满分6分)

计算曲面积分 $\iint_S \frac{x\,\mathrm{d}y\,\mathrm{d}z+z^2\,\mathrm{d}x\,\mathrm{d}y}{x^2+y^2+z^2}$,其中 S 是由曲面 $x^2+y^2=R^2$ 及两个平面 z=R, z=-R (R>0) 所围成的立体表面的外侧.

五、(本题满分9分)

设 f(x) 具有二阶连续导数,f(0) = 0,f'(0) = 1,且 $[xy(x+y) - f(x)y] dx + [f'(x) + x^2y] dy = 0$ 为一个全微分方程,求 f(x) 及此全微分方程的通解.

六、(本题满分8分)

设 f(x) 在 x=0 的某一邻域内具有二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明:级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛.

七、(本题满分6分)

已知点A 与点B 的直角坐标分别为(1,0,0) 与(0,1,1),线段AB 绕z 轴旋转一周所围成的旋转曲面为S,求由S 及两平面z=0,z=1 所围成的立体的体积.

八、(本题满分8分)

设四元齐次线性方程组(I)为 $\begin{cases} x_1 + x_2 = 0, \\ x_2 - x_4 = 0. \end{cases}$ 又已知某线性齐次方程组(II)的通解为 $k_1(0,1,1,0)^{\mathrm{T}} + k_2(-1,2,2,1)^{\mathrm{T}}.$

- (1) 求线性方程组(I) 的基础解系;
- (2) 问线性方程组(Ⅰ)与(Ⅱ) 是否有非零公共解? 若有,求出所有非零的公共解;若没有,说明理由.

九、(本题满分6分)

设 A 为 n 阶非零方阵, A^* 为 A 的伴随矩阵, A^T 是 A 的转置矩阵,当 $A^* = A^T$ 时,证明: $|A| \neq 0$.

十、填空题(本题共2小题,每小题3分,满分6分)

- (1) 设随机事件 A,B 满足条件 $P(AB) = P(\overline{AB})$,且 P(A) = p,则 $P(B) = \dots$
- (2) 设相互独立的两个随机变量 X,Y 具有同一分布律,且 X 的分布律为

X	0	1
P	$\frac{1}{2}$	$\frac{1}{2}$

则随机变量 $Z = \max\{X, Y\}$ 的分布律为 .

十一、(本题满分6分)

已知随机变量(X,Y) 服从二维正态分布,且 X 和 Y 分别服从正态分布 $N(1,3^2)$ 和 $N(0,4^2)$, X,Y 的相关系数 $\rho_{XY}=-\frac{1}{2}$,设 $Z=\frac{X}{3}+\frac{Y}{2}$.

- (1) 求 Z 的数学期望 E(Z) 和方差 D(Z);
- (2) 求 X 与 Z 的相关系数 ρ_{XZ} ;
- (3) 问 X 与 Z 是否相互独立? 为什么?