Рівняння з відокремлюваними змінними Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020

Диференціальне рівняння

Означення

$$f\left(x, y, \frac{dy}{dx}, ..., \frac{d^n y}{dx^n}\right) = 0 \tag{1}$$

називається диференціальним рівнянням.

Означення

п називається порядком диференціального рівняння.

Ісаак Ньютон

Диференціальне рівняння

Означення

Функція y(x) називається розв'язком диференціального рівняння (1), якщо вона n-разів неперервно диференційована на деякому інтервалі (a,b)=I і задовольняє диференціальному рівнянню (1) $\forall \ x \in I$.

Приклад

$$y'' + 3xy' + 2y = x^2$$

диференціальне рівняння другого порядку

Диференціальне рівняння

Означення

При n=1 диференціальне рівняння (1) називається диференціальним рівнянням першого порядку

$$F(x, y, y') = 0. (2)$$

Означення

Диференціальне рівняння (2) називається розвязаним відносно похідної, якщо його можна представити у вигляді

$$\frac{dy}{dx} = f(x, y). {3}$$

Диференціальне рівняння. Розв'язок

Означення

Розвязком диференціального рівняння (3) на інтервалі I назвемо функцію

$$y = \varphi(x),$$

визначену і неперервно диференційовану на І, яка не виходить з області визначення функції f(x,y) і яка перетворює диференціальне рівняння (3) в тотожність $\forall x \in I$, тобто

$$\frac{d\varphi(x)}{dx} \equiv f(x, y(x)), \ x \in I.$$

Приклад

$$y' = y$$
$$y = e^{x}$$
$$y = 2e^{x}$$

Диференціальне рівняння. Розв'язок

- частинний розв'язок
- загальний розв'язок
- особливий розв'язок
- загальний інтеграл
- інтеграл

Диференціальне рівняння в диференціальній формі

Означення

Поряд з

$$\frac{dy}{dx} = f(x, y)$$

будемо розглядати еквівалентне диференціальне рівняння, записане в диференціальній формі

$$dy - f(x, y)dx = 0$$

або в більш загальному вигляді

$$M(x,y)dx + N(x,y)dy = 0. (4)$$

M(x,y), N(x,y) – неперервні в деякій області.

Задача Коші

Означення

$$\frac{dy}{dx} = f(x, y)$$

Знайти такий розв'язок y = y(x), який проходить через задану точку (x_0, y_0)

$$y(x_0) = y_0. (5)$$

Задача Коші

Огюстен Луї Коші

Рівняння з відокремленими змінними

Означення

Розглянемо рівняння

$$X(x)dx + Y(y)dy = 0, (6)$$

де X(x), Y(y) – неперервні функції своїх аргументів. Диференціальне рівняння (6) називається рівнянням з відокремленими змінними.

Рівняння з відокремленими змінними

$$X(x)dx + Y(y)dy = 0$$

$$\updownarrow$$

$$d\left(\int X(x)dx + \int Y(y)dy\right) = 0$$

$$\updownarrow$$

Загальний розв'язок в квадратурах

$$\int X(x)dx + \int Y(y)dy = C, \tag{7}$$

C – довільна константа.

Рівняння з відокремленими змінними

$$\int_{x_0}^{x} X(s)ds + \int_{y_0}^{y} Y(s)ds = C.$$
 (8)

Якщо потрібно знайти розв'язок задачі Коші $y(x_0)=y_0$, то $\mathcal{C}=0$

$$\int_{x_0}^{x} X(s)ds + \int_{y_0}^{y} Y(s)ds = 0$$
 (9)

Рівняння з відокремлюваними змінними

Означення

Рівняння вигляду

$$m(x)n(y)dx + f(x)g(y)dy = 0$$
(10)

називають рівнянням з відокремлюваними змінними.

Тут m(x), n(y), f(x), g(y) – неперервні функції.

Відокремлюємо змінні

Припустимо

$$f(x)n(y) \neq 0$$

$$\frac{m(x)}{f(x)}dx + \frac{g(y)}{n(y)}dy = 0.$$
 (11)

Загальний інтеграл диференціального рівняння (10)

$$\int \frac{m(x)}{f(x)} dx + \int \frac{g(y)}{n(y)} dy = C,$$
 (12)

С – довільна константа.

При діленні на f(x)n(y) ми можемо втратити розв'язки, які визначаються рівняннями $n(y)=0,\ f(x)=0.$

Задача 1

Розв'язати рівняння

$$y'\sin x = y\ln y$$

$$\frac{dy}{dx}\sin x = y\ln y$$

Розділивши змінні, отримаємо рівняння

$$\frac{dy}{y \ln y} = \frac{dx}{\sin x}$$

Проінтегрувавши, знайдемо

$$\int \frac{dy}{y \ln y} = \int \frac{dx}{\sin x} + \ln C,$$

С – довільна константа. Перший інтеграл дає

$$\int \frac{dy}{y \ln y} = \int \frac{d \ln y}{\ln y} = \ln |\ln y|$$

Другий інтеграл

$$\int \frac{1}{\sin x} dx = \int \frac{\sin x}{\sin^2 x} dx = -\int \frac{d\cos x}{1 - \cos^2 x} = -\int \frac{d\cos x}{(1 - \cos x)(1 + \cos x)}.$$

Оскільки

$$\frac{1}{(1-\cos x)(1+\cos x)} = \frac{1}{2} \left[\frac{1}{(1-\cos x)} + \frac{1}{(1+\cos x)} \right],$$

TO

$$\int \frac{1}{\sin x} dx = -\frac{1}{2} \int \left(\frac{1}{1 - \cos x} + \frac{1}{1 + \cos x} \right) d\cos x =$$

$$= \frac{1}{2} \ln|1 - \cos x| - \frac{1}{2} \ln|1 + \cos x| = \ln\left|tg\frac{x}{2}\right|$$

$$\ln|\ln y| = \ln\left|tg\frac{x}{2}\right| + \ln C$$

С – довільна константа.

$$\Downarrow$$

$$\ln y = C \, tg \frac{x}{2}$$

$$\downarrow \downarrow$$

$$y = e^{C tg \frac{x}{2}}$$

загальний розв'язок рівняння. Тут C – довільна константа.

При y = 1 функція $y \ln y = 0$. Підставляємо y = 1 в

$$y' \sin x = y \ln y$$

Одержуємо тотожність.

y(x) = 1 – розв'язок, який ми втратили при розділенні змінних

Аналогічно перевіряємо x = 0 – не є розв'язком.

Відповідь

$$y = e^{C tg \frac{x}{2}}$$

загальний розв'язок рівняння, C – довільна константа, y=1

Задача 2

Розв'язати рівняння

$$x^2y^2y'+y=1.$$

$$x^{2}y^{2}\frac{dy}{dx} + y = 1.$$

$$\downarrow \downarrow$$

$$x^{2}y^{2}\frac{dy}{dx} + y - 1 = 0.$$

$$\downarrow \downarrow$$

$$x^{2}y^{2}dy + (y - 1)dx = 0.$$

$$x^2y^2dy + (y-1)dx = 0.$$

Розділимо на $x^2(y-1)$

$$\Downarrow$$

$$\frac{y^2}{y-1}dy + \frac{dx}{x^2} = 0.$$

$$\int \frac{y^2}{y-1} dy + \int \frac{dx}{x^2} = C.$$

Тут C – довільна константа.

$$\int \frac{y^2}{y-1} dy = \int \frac{y^2 - 1}{y-1} dy + \int \frac{1}{y-1} dy =$$

$$\int (y+1) dy + \int \frac{1}{y-1} dy = \frac{y^2}{2} + y + \ln|y-1|$$

$$\int \frac{dx}{x^2} = -\frac{1}{x}.$$

$$\frac{y^2}{2} + y + \ln|y - 1| - \frac{1}{x} = C$$

загальний інтеграл рівняння. Тут C – довільна константа.

При y = 1 функція y - 1 = 0. Підставляємо y = 1 в

$$x^2y^2dy + (y-1)dx = 0.$$

Одержуємо тотожність.

y(x) = 1 – розв'язок, який ми втратили при розділенні змінних

Відповідь

$$\frac{y^2}{2} + y + \ln|y - 1| - \frac{1}{x} = C$$

загальний інтеграл рівняння, C – довільна константа, y=1

Спеціальний випадок

$$\frac{dy}{dx}=f(ax+by+c),$$

де $a, b \neq 0, c$ — сталі, f(x) — неперервна функція. Зробимо заміну

$$z = ax + by + c$$

$$\frac{dz}{dx} = a + b\frac{dy}{dx}$$

$$\downarrow \downarrow$$

$$\frac{dy}{dx} = \frac{1}{b}\frac{dz}{dx} - \frac{a}{b}$$

Спеціальний випадок

$$\frac{dy}{dx} = \frac{1}{b}\frac{dz}{dx} - \frac{a}{b}$$

Підставляємо в

$$\frac{dy}{dx} = f(ax + by + c)$$

$$\frac{dz}{dx} = a + bf(z)$$

Маємо рівняння з відокремлюваними змінними

$$\frac{dz}{a+bf(z)}-dx=0$$

Задача 3

Розв'язати рівняння

$$y'=\sqrt{4x+2y-1}.$$

Введемо заміну змінних

$$z = 4x + 2y - 1.$$

$$z' = 4 + 2y'$$

$$z' - 4 = 2\sqrt{z}$$

$$z' = 4 + 2\sqrt{z}$$

$$\frac{dz}{2 + \sqrt{z}} = 2dx.$$

$$\int \frac{dz}{2 + \sqrt{z}} = \int 2dx + C,$$

С – довільна константа

Знайдемо

$$\int \frac{dz}{2 + \sqrt{z}}$$

Заміна

$$\sqrt{z}=t,\quad dz=2tdt,\quad 2+\sqrt{z}=2+t,$$

$$\int \frac{dz}{2+\sqrt{z}} = \int \frac{2tdt}{2+t} = 2 \int \frac{t+2-2}{t+2} dt =$$

$$= 2t - 4 \ln|2+t| = 2\sqrt{z} - 4 \ln(2+\sqrt{z}).$$

$$\int \frac{dz}{2+\sqrt{z}} = \int 2dx + C,$$

C — довільна константа

$$2\sqrt{z} - 4\ln\left(2 + \sqrt{z}\right) = 2x + 2C.$$

$$z = 4x + 2y - 1$$

Відповідь

$$\sqrt{4x+2y-1}-2\ln\left(2+\sqrt{4x+2y-1}\right)-x=C,$$

С – довільна константа

Задача 4

Розв'язати рівняння

$$x(1+y^2) + y(1+x^2)\frac{dy}{dx} = 0.$$

Представимо дане рівняння у вигляді

$$x(1+y^2)dx + y(1+x^2)dy = 0.$$

Розділивши обидві частини цього рівняння на $(1+x^2)(1+y^2)$, отримаємо рівняння з розділеними змінними

$$\frac{x}{1+x^2}dx + \frac{y}{1+y^2}dy = 0.$$

Інтегруючи це рівняння, послідовно знаходимо

$$\int \frac{xdx}{1+x^2} + \int \frac{ydy}{1+y^2} = C_1,$$

$$\frac{1}{2}\ln(1+x^2) + \frac{1}{2}\ln(1+y^2) = \frac{1}{2}\ln C \left(\frac{1}{2}\ln C = C_1\right).$$

Звідси $(1+x^2)(1+y^2)=C$.

Відповідь

Загальний інтеграл рівняння

$$(1+x^2)(1+y^2) = C,$$

С – довільна константа

Задача 5

Знайти частинний розв'зок рівняння

$$(1+e^x)yy'=e^x,$$

який задовольнить початкову умову

$$y(0) = 1.$$

$$(1+e^{x})y\frac{dy}{dx}=e^{x}.$$

Розділюючи змінні, отримуємо

$$ydy = \frac{e^x dx}{1 + e^x}.$$

Інтегруючи, знайдемо загальний інтеграл

$$\frac{y^2}{2} = \ln(1 + e^x) + C. \tag{13}$$

Підставлюючи в (13) x=0 та y=1, матимемо

$$\frac{1}{2} = \ln 2 + C$$
, звідки $C = \frac{1}{2} - \ln 2$.

Підставляючи в (13) знайдене значення C, отримуємо

$$\frac{y^2}{2} = \ln(1 + e^x) + \frac{1}{2} - \ln 2.$$

Відповідь

$$\frac{y^2}{2} = \ln \frac{1 + e^x}{2} + \frac{1}{2}.$$

Однорідні рівняння та ті, що до них зводяться Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

Однорідні функції

Означення

Функція f(x,y) називається **однорідною функцією** виміру m, якщо для довільного t > 0 знайдеться m таке, що для будь-яких x, y

$$f(tx,ty)=t^mf(x,y).$$

Приклад

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = \frac{x^2 + y^2}{x^2 - y^2}$$

Однорідне диференціальне рівняння

Означення

$$M(x,y)dx + N(x,y)dy = 0, (14)$$

в якому функції M(x,y) і N(x,y) є однорідними функціями однієї і тієї ж степені однорідності т, називається однорідним диференціальним рівнянням.

Однорідне рівняння можна звести до рівняння вигляду

$$\frac{dy}{dx} = f(x, y), \tag{15}$$

в якому функція f(x, y) – однорідна функція нульового виміру

$$f(tx, ty) = f(x, y).$$

Заміна змінних

Заміна змінних

$$y = zx$$
,

де z- нова шукана функція від x, приводить до рівняння з відокремлюваними змінними.

$$dy = d(zx) = zdx + xdz$$

Розв'язування

$$M(x,y)dx + N(x,y)dy = 0$$

$$y = zx, dy = d(zx) = zdx + xdz$$

$$\downarrow \downarrow$$

$$M(x,zx)dx + N(x,zx)(zdx + xdz) = 0$$

$$\downarrow \downarrow$$

$$x^{m}M(1,z)dx + x^{m}N(1,z)(zdx + xdz) = 0,$$

$$\downarrow \downarrow$$

Розв'язування

$$(M(1,z) + zN(1,z)) dx + xN(1,z)dz = 0$$

одержуємо рівняння з відокремлюваними змінними

$$\Downarrow$$

$$\frac{dx}{x} + \frac{N(1,z)}{M(1,z) + zN(1,z)}dz = 0$$

$$\Downarrow$$

$$\ln |x| + \int \frac{N(1,z)}{M(1,z) + zN(1,z)} dz = \ln C$$

С – довільна константа

Розв'язування

$$y = zx, \ z = \frac{y}{x}$$

Загальний інтеграл

$$x = e^{\varphi(\frac{y}{x})},$$

де
$$\varphi(z) = \int \frac{N(1,z)}{M(1,z) + zN(1,z)} dz$$
.

При відокремленні змінних ми могли загубити розв'язки з рівності

$$M(1,z) + N(1,z)z = 0.$$

47 / 495

Задача 1

Розв'язати рівняння

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

Це однорідне рівняння m=2.

$$M(x,y) = x^{2} + xy + y^{2}$$

$$M(tx, ty) = t^{2}M(x, y)$$

$$N(x, y) = x^{2}$$

$$N(tx, ty) = t^{2}N(x, y)$$

49 / 495

$$(x^2 + xy + y^2)dx - x^2dy = 0$$

Зробимо заміну

$$y = zx, dy = zdx + xdz$$

$$(1+z+z^2)dx-(xdz+zdx)=0$$

$$(1+z^2)dx - xdz = 0$$

одержуємо рівняння з відокремлюваними змінними

$$\frac{dx}{x} - \frac{dz}{1+z^2} = 0$$

$$\ln |x| - arctg z = \ln C$$

С – довільна константа

$$x = Ce^{arctg z}$$

$$y = zx, \ z = \frac{y}{x}$$

Відповідь

$$x = Ce^{arctg \frac{y}{x}}$$

загальний інтеграл, C – довільна константа x = 0 – також розв'язок, який загубили при діленні

Задача 2

Розв'язати рівняння

$$xy' = \sqrt{x^2 - y^2} + y$$

Запишемо рівняння у вигляді

$$y' = \sqrt{1 - \left(\frac{y}{x}\right)^2} + \frac{y}{x},$$

так що дане рівняння виявляється однорідним щодо x та y. Покладемо

$$u=\frac{y}{x}$$

або y = ux. Тоді

$$y'=xu'+u.$$

Підставляючи в рівняння вирази для y та y', отримуємо

$$x\frac{du}{dx} = \sqrt{1 - u^2}.$$

Підставляючи в рівняння вирази для y та y', отримуємо

$$x\frac{du}{dx} = \sqrt{1 - u^2}.$$

Розділюючи змінні, отримуємо

$$\frac{du}{\sqrt{1-u^2}} = \frac{dx}{x},$$

Звідси інтегруванням знаходимо

$$\arcsin u = \ln |x| + \ln C_1$$
 ($C_1 > 0$), also $\arcsin u = \ln C_1 |x|$.

Так як $C_1|x|=\pm C_1 x$, то, позначаючи $\pm C_1=C$, отримуємо arcsin $u=\ln Cx$, де $|\ln Cx|\leq \frac{\pi}{2}$ або $e^{-\pi/2}\leq Cx\leq e^{\pi/2}$. Замінюючи u на $\frac{y}{x}$, матимемо загальний інтеграл

$$\arcsin \frac{y}{x} = \ln Cx.$$

Звідси загальний розв'язок

$$y = x \sin \ln Cx$$
.

При розділенні змінних ми ділили обидві частини рівняння на добуток

$$x\sqrt{1-u^2}$$
,

тому могли втратити розв'язок, які звертають в нуль цей добуток. Покладемо тепер x=0 та $\sqrt{1-u^2}=0$.

При $x \neq 0$, $u = \frac{y}{x}$ з співвідношення

$$\sqrt{1-u^2}=0$$

отримуємо, що

$$\frac{y^2}{x^2} = 1,$$

звідки $y=\pm x$.

Безпосередньо перевіркою переконуємося, що функція y = -x і y = xтакож є розв'язок даного рівняння.

Відповідь

$$y = x \sin \ln Cx$$

загальний розв'язок, C – довільна константа y = -x, y = x

Рівняння, яке зводиться до однорідного

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$$

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$$

$$\begin{cases} a_1x + b_1y + c_1 = 0, \\ a_2x + b_2y + c_2 = 0. \end{cases}$$

$$x_0, y_0$$

Заміна

$$\begin{cases} u = x - x_0, \\ v = y - y_0. \end{cases}$$

$$du = dx, \ dv = dy$$

приходимо до однорідного рівняння

Рівняння, яке зводиться до однорідного

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$$

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$$

Припустимо $b_1 \neq 0$. Заміна

$$z = a_1x + b_1y$$
, $a_2x + b_2y + c_2 = kz$,

k – коефіцієнт пропорційності.

$$dz = a_1 dx + b_1 dy \Rightarrow dy = \frac{dz - a_1 dx}{b_1}$$

приходимо до рівняння з відокремлюваними змінними

$$(z + c_1)dx + (kz + c_2)\frac{dz - a_1dx}{b_1} = 0$$

Задача 3

Розв'язати рівняння

$$(x-1)dy = (x+y+2)dx$$

$$(x+y+2)dx - (x-1)dy = 0$$

$$\Delta = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1$$

$$\begin{cases} x+y+2=0, \\ x-1=0. \end{cases}$$

$$x_0 = 1, \ y_0 = -3$$

Заміна

$$\begin{cases} u = x - 1, \\ v = y + 3. \end{cases}$$

du = dx, dv = dy

$$(u+v)du-udv=0$$

Це однорідне рівняння m=1.

$$M(u, v) = u + v$$

$$M(tu, tu) = tM(u, u)$$

$$N(x, y) = -u$$

$$N(tu, tu) = tN(u, v)$$

$$(u+v)du-udv=0$$

Зробимо заміну

$$v = zu$$
, $dv = zdu + udz$

$$(u+uz)du-u(udz+zdu)=0$$

$$(1+z)du - udz - zdu = 0$$

$$du - udz = 0$$

одержуємо рівняння з відокремлюваними змінними

$$\frac{du}{u}-dz=0$$

$$\ln |u| - z = \ln C$$

C — довільна константа

$$u = Ce^z$$

$$v = zu, \ z = \frac{v}{u}$$

$$u = Ce^{\frac{v}{u}}$$

загальний інтеграл, С – довільна константа u = 0 – також розв'язок, який загубили при діленні

Відповідь

$$x - 1 = Ce^{\frac{y+3}{x-1}}$$

загальний інтеграл, C – довільна константа, x=1

Задача 4

Розв'язати рівняння

$$(x + y + 1)dx + (2x + 2y - 1)dy = 0$$

$$(x+y+1)dx + (2x+2y-1)dy = 0$$
$$\Delta = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 0$$

Заміна

$$z = x + y$$
, $dz = dx + dy$, $2z = 2x + 2y$
$$dy = dz - dx$$

$$(z+1)dx + (2z-1)(dz - dx) = 0$$

$$(2-z)dx + (2z-1)dz = 0$$

приходимо до рівняння з відокремлюваними змінними

$$dx - \frac{2z - 1}{z - 2}dz = 0$$

$$x - 2z - 3\ln|z - 2| = -C$$

С – довільна константа

$$-x - 2y - 3 \ln|x + y - 2| = -C$$

 $x + 2y + 3 \ln|x + y - 2| = C$

С – довільна константа

z = 2 також розв'язок, x + y = 2

Відповідь

$$x + 2y + 3 \ln |x + y - 2| = C$$

загальний інтеграл, C – довільна константа, x + y = 2

69 / 495

Узагальнено-однорідні диференціальні рівняння

Рівняння

$$M(x,y)dx + N(x,y)dy = 0 (16)$$

називається узагальнено однорідним, якщо існує таке число k, що ліва частина рівняння стає однорідною функцією від величин

при умові, що вони вважаються величинами відповідно першого, k-го, нульового і k-1-го порядків.

X	1
у	k
dx	0
dy	k-1

Узагальнено-однорідні диференціальні рівняння

Це означає, що рівність

$$M(tx, t^k y) dx + N(tx, t^k y) t^{k-1} dy = t^m [M(x, y) dx + N(x, y) dy]$$
 (17)

виконується при всіх t для довільних x, y, dx та dy або, іншими словами, при всіх t виконуються

$$M(tx, t^{k}y) = t^{m}M(x, y), N(tx, t^{k}y) = t^{m-k+1}N(x, y).$$
(18)

При k = 1 маємо звичайне однорідне рівняння.

Алгоритм

- Розбиваємо ліву частину рівняння M(x,y)dx + N(x,y)dy на доданки, які не містять додавання і віднімання
- Оцінюємо вагу кожного доданку за правилом, яке наведене у таблиці. Вага добутку рівна сумі їхніх ваг
- ullet Знаходимо k так, щоб ваги кожного доданку співпали
- Робимо підстановку (19)
- Приходимо до рівняння з розділеними змінними

X	1
x ^m	m
У	k
ys	sk
dx	0
dy	k-1

$$y = zx^{k}, dy = d(zx^{k}) = x^{k}dz + kx^{k-1}zdx$$
 (19)

Задача 5

Розв'язати рівняння

$$(6 - x^2y^2)dx + x^2dy = 0. (20)$$

$$(6-x^2y^2)dx + x^2dy = 0$$

Розбиваємо на доданки

$$6dx - x^2y^2dx + x^2dy = 0$$

$$\begin{array}{c|cc} x & 1 \\ \hline x^m & m \\ \hline y & k \end{array}$$

$$\begin{array}{c|cc}
x^m & m \\
y & k \\
y^s & sk \\
dx & 0 \\
dy & k-1
\end{array}$$

$$0 = 2 + 2k = 2 + k - 1. (21)$$

Ця система сумісна,

$$k = -1$$
.

Підстановка

$$y = \frac{z}{x} \tag{22}$$

$$df(x) = f'(x)dx$$
$$d(f(x)g(x)) = g(x)df(x) + f(x)dg(x)$$

$$dy = d\frac{z}{x} = \frac{dz}{x} - \frac{z}{x^2}dx$$

$$xdz - (z^2 + z - 6)dx = 0.$$
 (23)

Маємо рівняння з відокремлюваними змінними. Інтегруючи, знаходимо

$$\frac{dz}{z^2 + z - 6} - \frac{dx}{x} = 0$$

$$\int \frac{dz}{z^2 + z - 6} - \int \frac{dx}{x} = \ln C_1$$

$$\int \frac{dz}{(z - 2)(z + 3)} - \ln |x| = \ln C_1$$

$$\frac{1}{(z - 2)(z + 3)} = \frac{1}{5(z - 2)} - \frac{1}{5(z + 3)}$$

$$\int \frac{dz}{(z-2)(z+3)} - \ln|x| = \ln C_1$$

$$\int \frac{dz}{5(z-2)} - \int \frac{dz}{5(z+3)} - \ln|x| = \ln C_1$$

$$\frac{1}{5} \ln|z-2| - \frac{1}{5} \ln|z+3| - \ln|x| = \ln C_1$$

$$\ln|z-2| - \ln|z+3| - 5 \ln|x| = 5 \ln C_1$$

$$\ln|z-2| - \ln|z+3| - \ln|x|^5 = \ln C_1^5, C_1^5 = C$$

$$\ln \frac{|z-2|}{|z+3||x|^5} = \ln C$$

$$\frac{z-2}{(z+3)x^5} = C {24}$$

$$z = xy$$

Відповідь

$$\frac{xy-2}{(xy+3)x^5}=C$$

загальний інтеграл, С – довільна константа

78 / 495

Маріус Софус Лі

Лінійні диференціальні рівняння першого порядку Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

80 / 495

Означення

Означення

Диференціальне рівняння вигляду

$$\frac{dy}{dx} = a(x)y + g(x) \tag{25}$$

називається **лінійним диференціальним рівнянням першого по- рядку**. Тут a(x), g(x) — неперервні функції.

Означення

При g(x) = 0 рівняння (35) називається **однорідним**. В іншому випадку – **неоднорідним**.

Однорідне лінійне диференціальне рівняння

Це є рівняння з відокремлюваними змінними

$$\frac{dy}{dx} = a(x)y$$

$$dy = a(x)ydx$$

$$\frac{dy}{y} = a(x)dx$$

$$\int \frac{dy}{y}dy = \int a(x)dx + \ln C,$$

С – довільна константа

Однорідне лінійне диференціальне рівняння

$$\int \frac{dy}{y} dy = \int a(x)dx + \ln C$$

$$\ln |y| = \int a(x)dx + \ln C$$

$$\ln \frac{|y|}{C} = \int a(x)dx$$

Однорідне лінійне диференціальне рівняння

$$\frac{|y|}{C} = e^{\int a(x)dx}$$

Загальний розв'язок

$$y(x) = Ce^{\int a(x)dx},$$

С – довільна константа

Загальний розв'язок у формі Коші

Якщо $y(x_0) = y_0$,то

$$y(x) = y_0 e^{\int_{x_0}^x a(\tau)d\tau}$$

– розв'язок задачі Коші.

Задача 1

Розв'язати диференціальне рівняння

$$y'-y=0$$

Розв'язання

Це є рівняння з відокремлюваними змінними

$$\frac{dy}{dx} = y$$

$$\frac{dy}{y} = dx$$

$$\int \frac{dy}{y} dy = \int dx + \ln C,$$

С – довільна константа

$$\ln|y| = x + \ln C$$

Розв'язання

$$\ln |y| = x + \ln C$$

$$\ln \frac{|y|}{C} = x$$

$$\frac{|y|}{C} = e^{x}$$

Відповідь

$$y(x) = Ce^x$$

загальний розв'язок, де С – довільна константа

Неоднорідне лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + g(x)$$

Theorem (про структуру загального розв'язку)

Загальний розв'язок неоднорідного лінійного диференціального рівняння

=

загальний розв'язок відповідного однорідного лінійного диференціального рівняння

+

частинний розв'язок неоднорідного лінійного диференціального рівняння

Неоднорідне лінійне диференціальне рівняння

Отже, спочатку знаходимо загальний розв'язок відповідного однорідного лінійного диференціального рівняння

$$\frac{dy}{dx} = a(x)y$$

$$y(x) = Ce^{\int a(x)dx},$$

С – довільна константа

Методи

€ такі методи знаходження частинного розв'язку неоднорідного лінійного диференціального рівняння

- метод Лагранжа (метод варіації довільної сталої)
- метод Коші
- метод Бернуллі
- метод Ейлера
- метод невизначених коефіцієнтів

метод Лагранжа (метод варіації довільної сталої)

$$\frac{dy}{dx} = a(x)y + g(x)$$

Розв'язок шукаємо у вигляді

$$y = C(x)e^{\int a(x)dx}. (26)$$

Підставивши (26) в (35), отримаємо

$$C'(x)e^{\int a(x)dx} + C(x)e^{\int a(x)dx}a(x) = a(x)C(x)e^{\int a(x)dx} + g(x)$$

метод Лагранжа (метод варіації довільної сталої)

$$C'(x)e^{\int a(x)dx} = g(x)$$

$$C'(x) = g(x)e^{-\int a(x)dx}$$

$$C(x) = \int g(x)e^{-\int a(x)dx}dx$$

метод Лагранжа (метод варіації довільної сталої)

Частинний розв'язок

$$y = e^{\int a(x)dx} \int g(x)e^{-\int a(x)dx} dx$$

Загальний розв'язок

$$y = e^{\int a(x)dx}C + e^{\int a(x)dx} \int g(x)e^{-\int a(x)dx}dx$$

Загальний розв'язок (формула Коші)

$$y = e^{\int a(x)dx} \left(C + \int g(x)e^{-\int a(x)dx} dx \right)$$

С – довільна константа

Загальний розв'язок в формі Коші

$$\frac{dy}{dx} = a(x)y + g(x)$$
$$y(x_0) = y_0$$

Загальний розв'язок (формула Коші)

$$y = e^{\int_{x_0}^{x} a(t)dt} y_0 + \int_{x_0}^{x} e^{\int_{\tau}^{x} a(t)dt} g(\tau) d\tau.$$
 (27)

Жозеф-Луї Лагранж

95 / 495

Задача 2

Розв'язати рівняння

$$xy'=y+2x^3.$$

Дане рівняння є лінійним. Застосовуємо метод варіації довільної сталої. Спочатку знаходимо розв'язок відповідного однорідного рівняння

$$xy' = y.$$

$$x\frac{dy}{dx} = y$$

$$\frac{dy}{y} = \frac{dx}{x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln|y| = \ln|x| + \ln C$$

v = Cx

Застосовуємо метод варіації довільної сталої.

$$y = C(x)x$$

$$y' = [C(x)x]' = C'(x)x + C(x)$$

$$x [C'(x)x + C(x)] = C(x)x + 2x^{3}$$

$$C'(x)x^{2} + C(x)x = C(x)x + 2x^{3}$$

$$C'(x) = 2x$$

98 / 495

$$C(x) = \int 2x dx = x^2$$
$$y = C(x)x = x^3$$

Відповідь

$$y = Cx + x^3$$

-загальний розв'язок рівняння, С – довільна константа

Задача 3

Розв'язати рівняння

$$\frac{dy}{dx} + y\cos x = \sin x\cos x.$$

100 / 495

Дане рівняння ϵ лінійним.

Записуємо відповідне однорідне рівняння

$$\frac{dy}{dx} + y\cos x = 0.$$

Це рівняння з розділеними змінними

$$\frac{dy}{y} + \cos x dx = 0, \int \frac{dy}{y} + \int \cos x dx = \ln C;$$

$$\ln |y| = -\sin x + \ln C, \ln \frac{y}{C} = -\sin x, \ y_0(x) = Ce^{-\sin x}.$$

Отже, знайдено загальний розв'язок однорідного рівняння. Шукаємо частинний розв'язок методом варіації довільної сталої (методом Лагранжа).

$$y_1(x) = C(x)e^{-\sin x}$$

$$y'(x) = C'(x)e^{-\sin x} - C(x)e^{-\sin x}\cos x$$

Підставляємо y'(x) у рівняння.

$$C'(x)e^{-\sin x} - C(x)e^{-\sin x}\cos x + C(x)e^{-\sin x}\cos x = \sin x\cos x$$

$$C'(x) = e^{\sin x} \sin x \cos x$$

$$C(x) = \int e^{\sin x} \sin x \cos x dx = \int e^{\sin x} \sin x d \sin x =$$

$$= \int e^{t} t dt = t e^{t} - \int e^{t} dt = (t - 1)e^{t} = (\sin x - 1)e^{\sin x}.$$

Тут $t = \sin x$.

Одержуємо частинний розв'язок

$$y_1(x) = \sin x - 1.$$

Загальний розв'язок $y(x) = y_0(x) + y_1(x) = Ce^{-\sin x} + \sin x - 1$.

Відповідь

$$y(x) = Ce^{-\sin x} + \sin x - 1$$

-загальний розв'язок рівняння, С – довільна константа

Задача 4

Розв'язати рівняння

$$\frac{dy}{dx} = \frac{1}{x\cos y + \sin 2y}.$$

Дане рівняння є лінійним, якщо розглядати x як функцію від y:

$$\frac{dx}{dy} - x\cos y = \sin 2y. \tag{28}$$

Застосовуємо метод варіації довільної сталої. Спочатку знаходимо розв'язо відповідного однорідного рівняння

$$\frac{dx}{dy} - x\cos y = 0,$$

яке є рівнянням із роздільними змінними. Його загальний розв'язок має вигляд

$$x = Ce^{\sin y}$$
, $C =$ const.

Частинний розв'язок рівняння (28) шукаємо у вигляді

$$x = C(y)e^{\sin y}, \tag{29}$$

де C(y) — невідома функція від y. Підставляючи (29) в (28), отримуємо

$$C'(y)e^{\sin y} + C(y)e^{\sin y}\cos y - C(y)e^{\sin y}\cos y = \sin 2y,$$

або

$$C'(y) = e^{-\sin y} \sin 2y.$$

Звідси, інтегруючи по частинах, матимемо

$$C(y) = \int e^{-\sin y} \sin 2y \, dy = 2 \int e^{-\sin y} \cos y \sin y \, dy =$$

$$= 2 \int e^{-\sin y} \sin y \, d\sin y = |t = \sin y| =$$

$$= 2 \int t e^{-t} \, dt = 2 \int t \, d(-e^{-t}) =$$

$$= 2 \left(-t e^{-t} + \int e^{-t} \, dt \right) = 2(-t e^{-t} - e^{-t}) =$$

$$= -2e^{-t}(t+1) = -2e^{-\sin y}(\sin y + 1),$$

отже,

$$C(y) = -2e^{-\sin y}(1 + \sin y).$$
 (30)

Пічкур В. В., Матвієнко В. Т., ХарченкЛінійні диференціальні рівняння першо

Підставляючи (30) в (29), отримуємо загальний розв'язок рівняння (28) а значить,

Відповідь

$$x = Ce^{\sin y} - 2(1 + \sin y).$$

-загальний інтеграл рівняння.

Метод Коші

$$\frac{dy}{dx} = a(x)y + g(x)$$

Загальний розв'язок (формула Коші)

$$y = e^{\int a(x)dx} \left(C + \int g(x)e^{-\int a(x)dx} dx \right)$$

С – довільна константа

Загальний розв'язок (формула Коші)

$$y = e^{\int_{x_0}^x a(t)dt} y_0 + \int_{x_0}^x e^{\int_{\tau}^x a(t)dt} g(\tau) d\tau.$$

Огюстен Луї Коші

Задача 5

Розв'язати диференціальне рівняння

$$y' + xy = x$$

Використовуючи формулу Коші, записуємо загальний розв'язок неоднорідного диференціального рівняння

$$y = e^{-\frac{x^2}{2}} \left[\int x e^{\frac{x^2}{2}} dx + C \right] = 1 + Ce^{-\frac{x^2}{2}}$$

С – довільна константа

Задача 6

Розв'язати диференціальне рівняння

$$y' - y \operatorname{tg} x = \cos x.$$

Розв'язання

Використовуючи формулу Коші, записуємо загальний розв'язок неоднорідного диференціального рівняння

$$y = e^{\int \operatorname{tg} x dx} \left(\int e^{-\int \operatorname{tg} x dx} \cos x dx + C \right).$$

Тут С – довільна константа Знаходимо

$$\int \operatorname{tg} x dx = -\ln|\cos x|$$

Розв'язання

$$y = e^{-\ln|\cos x|} \left(\int e^{\ln|\cos x|} \cos x \, dx + C \right) =$$

$$= \frac{1}{\cos x} \left(\int \cos^2 x dx + C \right) =$$

$$= \frac{1}{\cos x} \left(\frac{x}{2} + \frac{\sin 2x}{4} + C \right).$$

Відповідь

$$y = \frac{C}{\cos x} + \frac{x}{2\cos x} + \frac{\sin x}{2}.$$

Тут C – довільна константа

Задача 7

Розв'язати задачу Коші

$$y' - \frac{y}{x} = x^2, \ y(2) = 2$$

Розв'язання

Використовуючи формулу Коші, отримаємо

$$y = e^{\int \frac{1}{x} dx} \left(\int e^{-\int \frac{1}{x} dx} x^2 dx + C \right) =$$

$$= e^{\ln|x|} \left(\int e^{-\ln|x|} x^2 dx + C \right) =$$

$$= x \left(\int x dx + C \right) = x \left(\frac{x^2}{2} + C \right).$$

Звідси

$$y=Cx+\frac{x^3}{2}.$$

Тут C – довільна константа. Одержали загальний розв'язок.

Розв'язання

$$y=Cx+\frac{x^3}{2}.$$

Підставивши початкові умови y(2) = 2, одержимо

$$2 = 2C + 4$$
.

Маємо C=-1

$$y(x) = \frac{x^3}{2} - x.$$

Відповідь

$$y(x) = \frac{x^3}{2} - x.$$

Метод Бернуллі полягає у тому, що ми розв'язуємо лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + g(x)$$

у вигляді

$$y(x) = u(x)v(x), \ y'(x) = u'(x)v(x) + u(x)v'(x)$$

Тоді, роблячи підстановку у та y' в рівняння, матимемо

$$(u'v + uv') = a(x)uv + g(x).$$

$$u'v + (uv' - a(x)uv) = g(x).$$

$$\frac{du}{dx}v + \left(\frac{dv}{dx} - a(x)v\right)u = g(x).$$
(31)

Функцію v = v(x) знаходимо з

$$\frac{dv}{dx} - a(x)v = 0.$$

Беремо будь-яку функцію, яка задовольняє

$$\frac{dv}{dx} = a(x)v$$

Наприклад

$$v(x) = e^{\int a(x)dx}$$

Підставляємо цю функцію в (31)

$$\frac{du}{dx}e^{\int a(x)dx}=g(x)$$

$$\frac{du}{dx} = e^{-\int a(x)dx}g(x)$$

$$\frac{du}{dx} = e^{-\int a(x)dx}g(x)$$

$$u(x) = \int e^{-\int a(x)dx}g(x)dx + C$$

Одержуємо формулу Коші

$$y(x) = v(x)u(x) = e^{\int a(x)dx} \left(C + \int e^{-\int a(x)dx}g(x)dx\right)$$

Даниїл Бернуллі

Задача 8

Знайти розв'язок задачі Коші

$$x(x-1)y' + y = x^{2}(2x-1), \ y(2) = 4$$
 (32)

Шукаємо загальний розв'язок (32) у вигляді

$$y = u(x)v(x).$$

Оттримуємо y' = u'v + uv'.

Роблячи підстановку у та y' в (32), матимемо

$$x(x-1)(u'v+uv')+uv=x^2(2x-1),$$

або

$$x(x-1)vu' + [x(x-1)v' + v]u = x^{2}(2x-1)$$
(33)

Функцію v = v(x) знаходимо з умови

$$x(x-1)v'+v=0.$$

Беручи будь-який частинний розв'язок останнього рівняння, наприклад

$$v = \frac{x}{x - 1}$$

і підставляючи його в (33), отримуємо рівняння

$$u'=2x-1,$$

з якого знаходимо функцію

$$u(x) = x^2 - x + C.$$

Отже, загальний розв'язок рівняння (32) буде

$$y = uv = (x^2 - x + C)\frac{x}{x - 1}$$
, also $y = \frac{Cx}{x - 1} + x^2$.

Використовуючи початкову умову, отримуємо для знаходження C в рівняні

$$4 = C \frac{2}{2-1} + 2^2$$

звідки C = 0.

Отже, розв'язком поставленої задачі Коші є

$$y = x^2$$
.

Метод Ейлера

$$\frac{dy}{dx} = a(x)y + g(x)$$

Метод Ейлера полягає у такому. Розглянемо лінійне диференціальне рівняння

$$\frac{dy}{dx} - a(x)y = g(x)$$

Домножимо ліву і праву частину рівняння на деяку функцію $\mu(x)$

$$\mu(x)\frac{dy}{dx} - \mu(x)a(x)y = \mu(x)g(x)$$

Метод Ейлера

Підберемо $\mu(x)$ так, щоб ліва частина рівняння була похідною функції $\mu(x)y$, тобто, щоб виконувалась умова

$$\frac{d}{dx}(\mu(x)y) = \mu(x)\frac{dy}{dx} - \mu(x)a(x)y$$

$$\mu'(x)y + \mu(x)y' = \mu(x)\frac{dy}{dx} - \mu(x)a(x)y$$

$$\mu'(x)y = -\mu(x)a(x)y$$

$$\mu'(x) = -\mu(x)a(x)$$

$$\mu(x) = e^{-\int a(x)dx}$$

Функція $\mu(x)$ називається інтегрувальним множником.

Метод Ейлера

$$\frac{d}{dx}(\mu(x)y) = \mu(x)\frac{dy}{dx} - \mu(x)a(x)y$$

$$\frac{d}{dx}(\mu(x)y) = \mu(x)g(x)$$

$$\mu(x)y = \int \mu(x)g(x)dx + C$$

$$e^{-\int a(x)dx}y = \int e^{-\int a(x)dx}g(x)dx + C$$

Одержуємо формулу Коші

$$y(x) = e^{\int a(x)dx} \left(C + \int e^{-\int a(x)dx} g(x)dx \right)$$

Леонард Ейлер

Задача 9

Розв'язати диференціальне рівняння

$$y' + xy = x$$

Застосуємо метод Ейлера. Домножимо ліву і праву частину рівняння на деяку функцію $\mu(x)$

$$\mu(x)y' + \mu(x)xy = \mu(x)x$$

Накладемо умову

$$\frac{d}{dx}(\mu(x)y) = \mu(x)y' + \mu(x)xy$$

$$\mu'(x)y + \mu(x)y' = \mu(x)y' + \mu(x)xy$$

$$\mu'(x)y = \mu(x)xy$$

$$\mu'(x) = \mu(x)x$$

Отже, інтегрувальний множник

$$\mu(x) = e^{\int x dx} = e^{\frac{x^2}{2}}$$

$$\frac{d}{dx}(\mu(x)y) = \mu(x)x$$

$$\frac{d}{dx}(e^{\frac{x^2}{2}}y) = e^{\frac{x^2}{2}}x$$

$$e^{\frac{x^2}{2}}y = \int e^{\frac{x^2}{2}}xdx + C$$

$$\int e^{\frac{x^2}{2}}xdx = \int e^{\frac{x^2}{2}}d\frac{x^2}{2} = e^{\frac{x^2}{2}}$$

$$e^{\frac{x^2}{2}}y = e^{\frac{x^2}{2}} + C$$

$$y=1+Ce^{-\frac{x^2}{2}},$$

С – довільна константа

Відповідь

Загальний розв'язок

$$y=1+Ce^{-\frac{x^2}{2}},$$

С – довільна константа

Спеціальний випадок

$$f'(y)\frac{dy}{dx} = a(x)f(y) + g(x)$$

Заміна

$$z = f(y), \ \frac{dz}{dx} = f'(y)\frac{dy}{dx}$$

$$\frac{dz}{dx} = a(x)z + g(x)$$

Задача 9

Розв'язати диференціальне рівняння

$$\frac{1}{y}\frac{dy}{dx} + (2-x)\ln y = x(e^{-2x} - e^{\frac{x^2}{2}}).$$

Робимо заміну змінних $z = \ln y$. Тоді

$$\frac{dz}{dx} = \frac{1}{y} \frac{dy}{dx}.$$

Одержуємо рівняння

$$\frac{dz}{dx} = (x-2)z + x(e^{-2x} - e^{\frac{x^2}{2}}).$$

Це ϵ лінійне рівняння.

Розв'язуємо спочатку однорідне рівняння

$$\frac{dz}{dx} = (x-2)z, \frac{dz}{z} = (x-2)dx.$$

Звідси

$$\ln|z| = \frac{x^2}{2} - 2x + \ln C, \ln|\frac{z}{c}| = \frac{x^2}{2} - 2x,$$
$$z_0(x) = Ce^{\frac{x^2}{2} - 2x}.$$

Застосуємо метод Лагранжа для знаходження частинного розв'язку

$$z(x) = C(x)e^{\frac{x^2}{2}-2x}.$$

$$z'(x) = C'(x)e^{\frac{x^2}{2}-2x} + C(x)e^{\frac{x^2}{2}-2x}(x-2).$$

Підставимо z(x), z'(x) у рівняння.

$$C'(x)e^{\frac{x^2}{2}-2x} = x(e^{-2x} - e^{\frac{x^2}{2}})$$

$$C'(x) = x\left(e^{-\frac{x^2}{2}} - e^{2x}\right)$$

$$C(x) = \int xe^{-\frac{x^2}{2}} dx - \int xe^{2x} dx$$

Знайдемо перший інтеграл.

$$\int xe^{-\frac{x^2}{2}} dx = \int e^{-\frac{x^2}{2}} d\frac{x^2}{2} = -e^{-\frac{x^2}{2}},$$

$$\int xe^{2x} dx = 4 \int te^t dt = 4 \int tde^t =$$

$$= 4(te^t - \int e^t dt) = e^t(t-1) = e^{2x}(2x-1),$$

$$t = 2x.$$

Отже,

$$C(x) = -e^{-\frac{x^2}{2}} - 4e^{2x}(2x - 1)$$

$$z_1(x) = C(x)e^{\frac{x^2}{2} - 2x} = -(e^{-\frac{x^2}{2}} + 4e^{2x}(2x + 1))e^{\frac{x^2}{2} - 2x} =$$

$$= -(e^{-2x} + 4e^{\frac{x^2}{2}}(2x + 1)).$$

$$z(x) = z_0(x) + z_1(x) = Ce^{\frac{x^2}{2} - 2x} - e^{2x} - 4e^{\frac{x^2}{2}}(2x + 1).$$

Оскільки $z = \ln y$, то

$$\ln y = Ce^{\frac{x^2}{2} - 2x} - e^{-2x} - 4e^{\frac{x^2}{2}}(2x + 1)$$

буде загальним інтегралом рівняння.

Відповідь

Загальний інтегралом рівняння

$$\ln y = Ce^{\frac{x^2}{2} - 2x} - e^{-2x} - 4e^{\frac{x^2}{2}}(2x + 1),$$

С – довільна константа

Рівняння Бернуллі і Ріккаті

Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020

Означення диференціального рівняння Бернуллі

Означення

Диференціальне рівняння вигляду

$$\frac{dy}{dx} = a(x)y + b(x)y^k \tag{34}$$

називається диференціальним рівнянням Бернуллі. Тут a(x), b(x)неперервні функції.

Даниїл Бернуллі

Диференціальне рівняння Бернуллі

Ділимо ліву і праву частини рівняння на y^k

$$\frac{dy}{dx} = a(x)y + b(x)y^k$$

$$y^{-k}\frac{dy}{dx} = a(x)y^{1-k} + b(x)$$

Так як

$$\frac{d}{dx}y^{1-k} = (1-k)y^{-k}\frac{dy}{dx}$$

$$\Downarrow$$

$$y^{-k}\frac{dy}{dx} = \frac{1}{1-k}\frac{d}{dx}y^{1-k}$$

Диференціальне рівняння Бернуллі

$$\frac{1}{1-k}\frac{d}{dx}y^{1-k} = a(x)y^{1-k} + b(x)$$

Одержали лінійне рівняння відносно $z = y^{1-k}$

$$\frac{dz}{dx} = (1-k)a(x)z + (1-k)b(x)$$

Заміна

$$y=z^m, \ m=\frac{1}{1-k}$$

Приходимо до лінійного неоднорідного диференціального рівняння. При 0 < k < 1 рівняння Бернуллі має особливий розв'язок $y(x) \equiv 0$.

Рівняння Бернуллі може бути проінтегрувати також методом Бернуллі за допомогою підстановки

$$y(x) = u(x)v(x).$$

Задача 1

Розв'язати рівняння

$$y' - xy = -xy^3$$

Ділимо обидві частини рівняння на y^3

$$\frac{y'}{y^3} - x \frac{1}{y^2} = -x.$$

Робимо заміну

$$\frac{1}{y^2} = z, \ -\frac{2y'}{y^3} = z'$$

$$\frac{y'}{y^3} = -\frac{1}{2}z'$$

Після підстановки одержуємо лінійне рівняння

$$-\frac{1}{2}z'-xz=-x$$

$$z' = -2xz + 2x$$

Розв'язуємо одним з методів. Одержуємо загальний розв'язок

$$z=1+Ce^{-x^2}.$$

Звідси отримуємо загальний інтеграл цього рівняння

$$\frac{1}{y^2} = 1 + Ce^{-x^2}.$$

Відповідь

Загальний інтеграл

$$\frac{1}{v^2} = 1 + Ce^{-x^2},$$

С – довільна константа

Задача 2

Розв'язати рівняння

$$y'-y=(1+x)y^2$$

Це ϵ рівняння Бернуллі при n=2.

$$y' - y = (1+x)y^{2}$$
$$-y^{-2}y' + \frac{1}{y} = -(1+x),$$
$$\frac{1}{y} = z, \frac{dz}{dx} + z = -(1+x)$$

одержуємо лінійне рівняння

$$z = e^{-x} \left[\int (-1 - x)e^{x} dx + C \right] = Ce^{-x} - x$$
$$\frac{1}{y} = Ce^{-x} - x$$

загальний інтеграл цього рівняння

$$y = \frac{1}{Ce^{-x} - x}$$

його загальний розв'язок

Відповідь

Загальний розв'язок

$$y=\frac{1}{Ce^{-x}-x},$$

С – довільна константа

Диференціальне рівняння Ріккаті

Означення

Диференціальне рівняння вигляду

$$\frac{dy}{dx} = a(x)y^2 + b(x)y + c(x)$$
 (35)

називається диференціальним рівнянням Ріккаті. Тут a(x), b(x) – неперервні функції.

В загальному випадку рівняння Ріккаті не інтегрується в квадратурах, лише в окремих випадках. Розглянемо два випадки:

- **9** Якщо a(x), b(x), b(x) є константами, то одержуємо рівняння з розділеними змінними.
- ② Нехай відомий один частинний розв'язок $y_1(x)$. Робимо заміну

$$y = y_1(x) + z$$

і одержуємо рівняння Бернуллі при k=2.

Диференціальне рівняння Ріккаті

$$z=rac{1}{u}$$

Одержуємо лінійне неоднорідне диференціальне рівняння

Заміна

$$y = y_1(x) + \frac{1}{u}$$

приводить диференціальне рівняння Ріккаті до лінійного неоднорідного диференціального рівняння

Jacopo Riccati

Задача 3

Розв'язати рівняння

$$y' = xy^2 + x^2y - 2x^3 + 1,$$

 $y_1(x) = x$ — частинний розв'язок.

Це є рівняння Ріккаті. Перевіряємо, що $y_1(x) = x$ — частинний розв'язок.

$$x' = xx^2 + x^2x - 2x^3 + 1,$$

$$1 = x^3 + x^3 - 2x^3 + 1$$

Зробимо підстановку

$$y = x + \frac{1}{u}$$

отримаємо

$$u' + 3x^2u = -x,$$

звідки

$$u = e^{-x^3} \left(C - \int e^{x^3} x dx \right).$$

Отже,

$$y = x + \frac{e^{x^3}}{C - \int e^{x^3} x dx}.$$

Відповідь

Загальний розв'язок

$$y = x + \frac{e^{x^3}}{C - \int e^{x^3} x dx},$$

С – довільна константа

2020

Ми вивчили

• Рівняння з відокремлюваними змінними

$$m(x)n(y)dx + f(x)g(y)dy = 0$$

• Однорідне диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0$$

- $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$
- Узагальнено-однорідне диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0$$

• Лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + b(x)$$

- Диференціальне рівняння Бернуллі $\frac{dy}{dx} = a(x)y + b(x)y^k$
- ullet Диференціальне рівняння Ріккаті $\frac{dy}{dx}=a(x)y^2+b(x)y+c(x)$

Рівняння в повних диференціалах Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020

Розв'язок диференціального рівняння

- частинний розв'язок
- загальний розв'язок
- особливий розв'язок
- загальний інтеграл
- інтеграл

Загальний розв'язок диференціального рівняння

Загальним розв'язком диференціального рівняння першого порядку

$$\frac{dy}{dx} = f(x, y)$$

називається функція

$$y = \varphi(x, C),$$

де C – довільна константа, така, що

- при будь-якому фіксованому $y = \varphi(x, C)$ є частинним розв'язком диференціального рівняння $\frac{dy}{dx} = f(x, y)$;
- \bullet для будь-якої умови Коші $y(x_0) = y_0$ знайдеться така константа C_0 , що

$$y = \varphi(x, C_0)$$

є розв'язком задачі Коші

$$\frac{dy}{dx}=f(x,y),\ y(x_0)=y_0.$$

 $y = \varphi(x, x_0, y_0)$ – загальний розв'язок у формі Коші

Інтеграл диференціального рівняння

Інтегралом диференціального рівняння першого порядку

$$\frac{dy}{dx} = f(x, y)$$

називається функція

$$U(x, y)$$
,

яка не є тотожною константою, і яка при підстановці в неї довільного розв'язка y(x) стає тотожною константою, тобто, існує константа C, така, що

$$U(x,y(x))\equiv C.$$

Якщо U(x,y) є інтегралом диференціального рівняння, то U(x,y)=C є загальним інтегралом диференціального рівняння.

Означення диференціального рівняння у повних диференціалах

Означення

Диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0 (36)$$

називається рівнянням у повних диференціалах, якщо його ліва частина ϵ повним диференціалом деякої функції U(x,y), тобто

$$dU(x,y) = M(x,y) dx + N(x,y) dy.$$
(37)

Тут функції M(x,y) і N(x,y) ϵ неперервно диференційованими.

Загальний інтеграл

Функція U(x,y) є інтегралом диференціального рівняння (36). Тоді

$$dU(x,y)=0$$

$$U(x,y) = C$$

– загальний інтеграл диференціального рівняння (36).

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$
$$dU(x,y) = M(x,y) dx + N(x,y) dy$$

$$\frac{\partial U(x,y)}{\partial x} = M(x,y); \ \frac{\partial U(x,y)}{\partial y} = N(x,y)$$

Задача 1

Перевірити, що функція

$$U(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$

є інтегралом рівняння

$$xdx + ydy = 0.$$

Знайти загальний інтеграл рівняння.

$$U(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$
$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy =$$
$$= xdx + ydy = 0$$
$$\frac{x^2}{2} + \frac{y^2}{2} = C$$

- загальний інтеграл рівняння.

Необхідні і достатні умови

Теорема

Для того, щоб диференціальне рівняння

$$M(x, y)dx + N(x, y)dy = 0$$

було рівнянням у повних диференціалах, необхідно і достатньо, щоб

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$
 (38)

Нехай маємо рівняння

$$M(x,y)dx + N(x,y)dy = 0.$$

Спочатку перевіряємо умову

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$

Припустимо, що вона виконується. Якщо ця умова не виконується, то це не рівняння в повних диференціалах.

Отже, за означенням, існує функція U(x,y)

$$dU(x,y) = M(x,y) dx + N(x,y) dy.$$

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$

Отже, записуємо систему

$$\begin{cases} \frac{\partial U(x,y)}{\partial x} &= M(x,y), \\ \frac{\partial U(x,y)}{\partial y} &= N(x,y). \end{cases}$$

3

$$\frac{\partial U(x,y)}{\partial x} = M(x,y)$$

випливає

$$U(x,y) = \int M(x,y)dx + \varphi(y),$$

де $\varphi(y)$ — невідома функція. Диференціюємо останнє співвідношення за у і використовуємо другу рівність системи

$$\frac{\partial U(x,y)}{\partial y} = N(x,y).$$

$$\frac{\partial U(x,y)}{\partial y} = \frac{\partial}{\partial y} \left(\int M(x,y) dx \right) + \varphi'(y) = N(x,y).$$

$$\varphi'(y) = N(x,y) - \frac{\partial}{\partial y} \left(\int M(x,y) dx \right).$$

Звідси

$$\varphi(y) = \int \left(N(x, y) - \frac{\partial}{\partial y} \left(\int M(x, y) dx \right) \right) dy.$$

$$U(x, y) = \int M(x, y) dx + \varphi(y),$$

$$U(x, y) = \int M(x, y) dx + \int \left(N(x, y) - \frac{\partial}{\partial y} \left(\int M(x, y) dx \right) \right) dy$$

є інтегралом рівняння.

$$U(x,y) = C,$$

$$\int M(x,y)dx + \int \left(N(x,y) - \frac{\partial}{\partial y} \left(\int M(x,y)dx\right)\right) dy = C$$

є загальним інтегралом рівняння.

Задача 1

Розв'язати диференціальне рівняння

$$(x^3 + y)dx + (x - y) dy = 0.$$

$$M(x,y) = x^{3} + y,$$

$$N(x,y) = x - y$$

$$\frac{\partial M}{\partial y} = 1,$$

$$\frac{\partial N}{\partial x} = 1.$$

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$

Отже, за означенням, існує функція U(x,y)

$$dU(x, y) = (x^3 + y)dx + (x - y) dy.$$

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$

Отже, записуємо систему

$$\begin{cases} \frac{\partial U(x,y)}{\partial x} &= x^3 + y, \\ \frac{\partial U(x,y)}{\partial y} &= x - y. \end{cases}$$

$$\frac{\partial U(x,y)}{\partial x} = x^3 + y$$

випливає

$$U(x,y) = \int (x^3 + y)dx + \varphi(y) = \frac{x^4}{4} + xy + \varphi(y),$$

де $\varphi(y)$ — невідома функція.

Диференціюємо останнє співвідношення за у і використовуємо другу рівність системи

$$\frac{\partial U(x,y)}{\partial y} = x - y.$$

$$\frac{\partial U(x,y)}{\partial y} = x + \varphi'(y) = x - y.$$

$$x + \varphi'(y) = x - y.$$

$$\varphi'(y) = -y.$$

$$\varphi(y) = -\frac{y^2}{2}.$$

$$U(x, y) = \frac{x^4}{4} + xy - \frac{y^2}{2}$$

є інтегралом рівняння.

$$\frac{x^4}{4} + xy - \frac{y^2}{2} = C$$

є загальним інтегралом рівняння.

Відповідь

$$\frac{x^4}{4} + xy - \frac{y^2}{2} = C$$

є загальним інтегралом рівняння. Тут С – довільна константа.

Задача 3

Розв'язати диференціальне рівняння

$$2xydx + \left(x^2 + 3y^2\right)dy = 0.$$

2020

$$M(x,y) = 2xy,$$

$$N(x,y) = x^2 + 3y^2$$

$$\frac{\partial M}{\partial y} = 2x,$$

$$\frac{\partial N}{\partial x} = 2x.$$

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$

Отже, за означенням, існує функція U(x,y)

$$dU(x,y) = 2xydx + (x^2 + 3y^2) dy.$$

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$

Отже, записуємо систему

$$\begin{cases} \frac{\partial U(x,y)}{\partial x} &= 2xy, \\ \frac{\partial U(x,y)}{\partial y} &= x^2 + 3y^2. \end{cases}$$

3

$$\frac{\partial U(x,y)}{\partial x} = 2xy$$

випливає

$$U(x,y) = \int 2xydx = x^2y + \varphi(y),$$

де $\varphi(y)$ — невідома функція.

Диференціюємо останнє співвідношення за y і використовуємо другу рівність системи

$$\frac{\partial U(x,y)}{\partial y} = x^2 + 3y^2.$$

$$\frac{\partial U(x,y)}{\partial y} = x^2 + \varphi'(y) = x^2 + 3y^2.$$

$$x^{2} + \varphi'(y) = x^{2} + 3y^{2}.$$

$$\varphi'(y) = 3y^{2}.$$

$$\varphi(y) = y^{3}.$$

$$U(x, y) = x^{2}y + y^{3}$$

є інтегралом рівняння.

$$x^2y + y^3 = C$$

є загальним інтегралом рівняння.

Відповідь

$$x^2y + y^3 = C$$

 ϵ загальним інтегралом рівняння. Тут C – довільна константа.

Задача Коші

$$\frac{dy}{dx} = f(x, y),$$

$$y(x_0) = y_0$$

 $f: D \to \mathbb{R}^1$, $D \subset \mathbb{R}^2$, $(x_0, y_0) \in D$

188 / 495

Теорема Пеано

Theorem (Пеано)

Якщо в деякому околі $V\subset D$ точки $(x_0,y_0)\in D$ функція f(x,y) ϵ неперервною, то знайдеться інтервал

$$x \in [x_0 - h, x_0 + h],$$

на якому існує розв'язок задачі Коші

$$\frac{dy}{dx}=f(x,y),\ y(x_0)=y_0.$$

Зокрема, якщо

$$V = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\},\$$

то

$$h = \max \left\{ a, \frac{b}{M} \right\}, \ M = \max_{(x,y) \in V} |f(x,y)|$$

Giuseppe Peano

Теорема Пікара

Theorem (Пікара)

Якщо в деякому околі $V\subset D$ точки $(x_0,y_0)\in D$ функція f(x,y) є неперервною, а також має місце умова Ліпшиця, тобто знайдеться константа L>0, для якої

$$|f(x,y)-f(x,z)| \leq L|y-z|, \ \forall (x,y),(x,z) \in V,$$

то знайдеться інтервал

$$x \in [x_0 - h, x_0 + h],$$

на якому існує розв'язок задачі Коші

$$\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0$$

і цей розв'язок буде єдиним.

Теорема Пікара

Зокрема, якщо

$$V = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\},\$$

то

$$h = \max \left\{ a, \frac{b}{M} \right\}, \ M = \max_{(x,y) \in V} |f(x,y)|$$

Якщо функція f(x,y) є неперервно диференційованою на V, то умову Ліпшиця

$$|f(x,y)-f(x,y)| \le L|y-z|, \ \forall (x,y),(x,z) \in V$$

можна замінити на

$$\left|\frac{\partial f(x,y)}{\partial y}\right| \le L, \ \forall (x,y) \in V$$

Charles Emile Picard

Ми вивчили I

• Рівняння з відокремлюваними змінними

$$m(x)n(y)dx + f(x)g(y)dy = 0$$

• Однорідне диференціальне рівняння

$$M(x, y)dx + N(x, y)dy = 0$$

- $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$
- Узагальнено-однорідне диференціальне рівняння

$$M(x, y)dx + N(x, y)dy = 0$$

• Лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + b(x)$$

Ми вивчили II

- Диференціальне рівняння Бернуллі $\frac{dy}{dx} = a(x)y + b(x)y^k$
- Диференціальне рівняння Ріккаті $\frac{dy}{dx} = a(x)y^2 + b(x)y + c(x)$
- Рівняння в повних диференціалах

$$M(x,y)dx + N(x,y)dy = 0$$

Інтегрувальний множник Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

2020

Означення інтегрувального множника

Диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0 (39)$$

не є рівнянням у повних диференціалах. Тут функції M(x,y) і N(x,y) є неперервно диференційованими.

Означення

Неперервно диференційована функція $\mu(x,y)$ називається **інтегрувальним множником**, якщо

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$
(40)

є рівнянням у повних диференціалах.

Рівняння для інтегрувального множника

$$\frac{\partial}{\partial y}(\mu(x,y)M(x,y)) = \frac{\partial}{\partial x}(\mu(x,y)N(x,y))$$

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) + \mu(x,y) \frac{\partial M(x,y)}{\partial y} = \frac{\partial \mu(x,y)}{\partial x} N(x,y) + \mu(x,y) \frac{\partial N(x,y)}{\partial x}$$

Рівняння

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \neq 0$$

Випадок 1. $\mu = \mu(x)$

$$\mu(x,y) = \mu(x), \ \frac{\partial \mu}{\partial y} = 0$$
$$-\frac{d\mu(x)}{dx} N(x,y) = \mu(x) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$
$$\mu'(x) = \frac{d\mu(x)}{dx}$$

Рівняння

$$\frac{\mu'(x)}{\mu(x)} = -\frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{N(x,y)}$$

$$-\frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{N(x,y)} = F(x)$$

Випадок 1. $\mu = \mu(x)$

$$\frac{\mu'(x)}{\mu(x)} = F(x)$$

$$\int \frac{\mu'(x)}{\mu(x)} dx = \int F(x) dx$$

$$\int \frac{d\mu(x)}{\mu(x)} = \int F(x) dx$$

$$\ln |\mu(x)| = \int F(x) dx$$

Інтегрувальний множник

$$\mu(x) = e^{\int F(x)dx}$$

Випадок 2. $\mu = \mu(y)$

$$\mu(x,y) = \mu(y), \ \frac{\partial \mu}{\partial x} = 0$$

$$\frac{d\mu(y)}{dy} M(x,y) = \mu(y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\mu'(y) = \frac{d\mu(y)}{dy}$$

<u>Рівня</u>ння

$$\frac{\mu'(y)}{\mu(y)} = \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y)}$$

$$\frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y)} = F(y), \quad \frac{\mu'(y)}{\mu(y)} = F(y)$$

Випадок 2. $\mu = \mu(y)$

$$\frac{\mu'(y)}{\mu(y)} = F(y)$$

$$\int \frac{\mu'(y)}{\mu(y)} dy = \int F(y) dy$$

$$\int \frac{d\mu(y)}{\mu(y)} = \int F(y) dy$$

$$\ln |\mu(y)| = \int F(y) dy$$

Інтегрувальний множник

$$\mu(y) = e^{\int F(y)dy}$$

Задача 1

Розв'язати диференціальне рівняння

$$(xy^2 - 2y^3) dx + (3 - 2xy^2) dy = 0,$$

$$\mu = \mu(x)$$
, або $\mu = \mu(y)$

$$M(x,y) = xy^{2} - 2y^{3},$$

$$N(x,y) = 3 - 2xy^{2}$$

$$\frac{\partial M}{\partial y} = 2xy - 6y^{2}.$$

$$\frac{\partial N}{\partial x} = -2y^{2},$$

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}.$$

$$\mu(x) (xy^2 - 2y^3) dx + \mu(x) (3 - 2xy^2) dy = 0$$

$$\frac{\partial}{\partial y} (\mu(x) (xy^2 - 2y^3)) = \frac{\partial}{\partial x} (\mu(x) (3 - 2xy^2))$$

$$\mu(x) (2xy - 6y^2) = \mu'(x) (3 - 2xy^2) - 2\mu(x)y^2$$

$$\mu'(x) (3 - 2xy^2) = \mu(x) (2xy - 4y^2)$$

$$\frac{\mu'(x)}{\mu(x)} = \frac{2xy - 4y^2}{3 - 2xy^2}$$

$$\mu(y) (xy^{2} - 2y^{3}) dx + \mu(y) (3 - 2xy^{2}) dy = 0$$

$$\frac{\partial}{\partial y} (\mu(y) (xy^{2} - 2y^{3})) = \frac{\partial}{\partial x} (\mu(y) (3 - 2xy^{2}))$$

$$\frac{\partial}{\partial y} (\mu(y) (xy^{2} - 2y^{3})) = \mu'(y) (xy^{2} - 2y^{3}) + \mu(y) (2xy - 6y^{2})$$

$$\frac{\partial}{\partial x} (\mu(y) (3 - 2xy^{2})) = -2\mu(y)y^{2}$$

$$\mu'(y) (xy^{2} - 2y^{3}) + \mu(y) (2xy - 6y^{2}) = -2\mu(y)y^{2}$$

$$\mu'(y)y (xy - 2y^{2}) + \mu(y) (2xy - 6y^{2} + 2y^{2}) = 0$$

$$\mu'(y)y (xy - 2y^{2}) + 2\mu(y) (xy - 2y^{2}) = 0$$

$$\mu'(y)y + 2\mu(y) = 0$$

$$\frac{\mu'(y)}{\mu(y)} = -\frac{2}{y}$$

$$\int \frac{\mu'(y)}{\mu(y)} dy = -\int \frac{2}{y} dy$$

$$\int \frac{\mu'(y)}{\mu(y)} dy = -\int \frac{2}{y} dy$$

$$\ln |\mu(y)| = -2 \ln |y|$$

$$\ln |\mu(y)y^2| = 0$$

$$|\mu(y)y^2| = 1$$

Інтегрувальний множник

$$\mu(y) = y^{-2}$$

$$\mu(y) (xy^2 - 2y^3) dx + \mu(y) (3 - 2xy^2) dy = 0$$
$$y^{-2} (xy^2 - 2y^3) dx + y^{-2} (3 - 2xy^2) dy = 0$$
$$(x - 2y) dx + (3y^{-2} - 2x) dy = 0$$

$$(x-2y) dx + (3y^{-2} - 2x) dy = 0$$

– рівняння в повних диференціалах Отже, за означенням, існує функція $U\left({x,y} \right)$

$$dU(x,y) = (x - 2y) dx + (3y^{-2} - 2x) dy.$$

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$

Отже, записуємо систему

$$\begin{cases} \frac{\partial U(x,y)}{\partial x} &= x - 2y, \\ \frac{\partial U(x,y)}{\partial y} &= 3y^{-2} - 2x. \end{cases}$$

3

$$\frac{\partial U(x,y)}{\partial x} = x - 2y$$

випливає

$$U(x,y) = \int (x-2y) dx + \varphi(y) = \frac{1}{2}x^2 - 2xy + \varphi(y),$$

де $\varphi\left(y\right)$ — невідома функція.

Диференціюємо останнє співвідношення за y і використовуємо другу рівність системи

$$\frac{\partial U(x,y)}{\partial y} = 3y^{-2} - 2x.$$

$$\frac{\partial U(x,y)}{\partial y} = -2x + \varphi'(y) = 3y^{-2} - 2x,$$

$$-2x + \varphi'(y) = 3y^{-2} - 2x,$$
$$\varphi'(y) = 3y^{-2},$$
$$\varphi(y) = -\frac{3}{y}$$
$$U(x, y) = \frac{1}{2}x^2 - 2xy - \frac{3}{y},$$

є інтегралом рівняння.

$$\frac{1}{2}x^2 - 2xy - \frac{3}{y} = C$$

є загальним інтегралом рівняння.

Пересвідчуємось, що y=0 є розв'язком диференціального рівняння.

Відповідь

$$\frac{1}{2}x^2 - 2xy - \frac{3}{y} = C$$

 ϵ загальним інтегралом рівняння, де C – довільна константа, y=0.

Задача 2

Розв'язати диференціальне рівняння

$$(x+y^2)dx - 2xydy = 0,$$

$$\mu = \mu(x)$$
, abo $\mu = \mu(y)$

$$M(x,y) = x + y^{2},$$

$$N(x,y) = -2xy$$

$$\frac{\partial M}{\partial y} = 2y$$

$$\frac{\partial N}{\partial x} = -2y,$$

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}.$$

$$\frac{\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}}{N(x,y)} = \frac{2y + 2y}{-2xy} = -\frac{2}{x},$$

$$\ln |\mu(x)| = -\int \frac{2}{x} dx = -2 \ln |x|$$

$$\mu(x) = \frac{1}{x^2}.$$

Рівняння

$$\frac{x+y^2}{x^2} dx - 2\frac{xy}{x^2} dy = 0$$

є рівнянням в повних диференціалах.

$$U(x,y) = \ln|x| - \frac{y^2}{x},$$

є інтегралом рівняння.

$$x = C \cdot e^{y^2/x}$$

є загальним інтегралом рівняння.

Відповідь

$$x = C \cdot e^{y^2/x}$$

 ϵ загальним інтегралом рівняння, де C – довільна константа.

Задача 3

Розв'язати диференціальне рівняння

$$2xy \ln y \ dx + (x^2 + y^2 \sqrt{y^2 + 1}) dy = 0,$$

$$\mu = \mu(x)$$
 або $\mu = \mu(y)$

$$M(x,y) = 2xy \ln y,$$

$$N(x,y) = x^2 + y^2 \sqrt{y^2 + 1}$$

$$\frac{\partial M}{\partial y} = 2x \ln y + 2x = 2x (\ln y + 1)$$

$$\frac{\partial N}{\partial x} = 2x$$

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}.$$

$$\begin{split} \frac{\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}}{M(x,y)} &= \frac{2x(\ln y + 1) - 2x}{2xy \ln y} = \frac{1}{y}, \\ \ln |\mu(y)| &= -\int \frac{1}{y} dy = -\ln |y| \\ \mu(y) &= \frac{1}{y}. \end{split}$$

Рівняння

$$\frac{2xy \ln y \ dx}{y} + \frac{x^2 + y^2 \sqrt{y^2 + 1}}{y} dy = 0$$

є рівнянням в повних диференціалах.

$$U(x,y) = x^2 \ln y + \frac{1}{3} (y^2 + 1)^{\frac{3}{2}},$$

є інтегралом рівняння.

$$x^2 \ln y + \frac{1}{3} (y^2 + 1)^{\frac{3}{2}} = C$$

є загальним інтегралом рівняння.

Відповідь

$$x^2 \ln y + \frac{1}{3} (y^2 + 1)^{\frac{3}{2}} = C$$

 ϵ загальним інтегралом рівняння, де C – довільна константа.

Випадок 3. $\mu = \mu(\omega(x,y))$

$$\mu(x,y) = \mu(\omega(x,y)),$$

 $\omega(x,y)$ – відома функція.

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\frac{\partial \mu}{\partial x} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial x}, \quad \frac{\partial \mu}{\partial y} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial y}$$

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) =$$

$$= \frac{d\mu}{d\omega} \left[\frac{\partial \omega(x,y)}{\partial y} M(x,y) - \frac{\partial \omega(x,y)}{\partial x} N(x,y) \right]$$

Випадок 3. $\mu = \mu(\omega(x, y))$

$$\begin{split} \frac{d\mu}{d\omega} \left[\frac{\partial \omega(x,y)}{\partial y} M(x,y) - \frac{\partial \omega(x,y)}{\partial x} N(x,y) \right] &= \\ &= \mu(\omega(x,y)) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right] \\ &\qquad \qquad \frac{d\mu}{d\omega} = \mu'(\omega) \\ \frac{\mu'(\omega)}{\mu(\omega)} &= \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{\frac{\partial \omega(x,y)}{\partial y} M(x,y) - \frac{\partial \omega(x,y)}{\partial x} N(x,y)} \end{split}$$

Випадок 3. $\mu = \mu(\omega(x,y))$

Якщо

$$\frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{\frac{\partial \omega(x,y)}{\partial y} M(x,y) - \frac{\partial \omega(x,y)}{\partial x} N(x,y)} = F(\omega(x,y))$$

$$\frac{\mu'(\omega)}{\mu(\omega)} = F(\omega)$$

$$\int \frac{\mu'(\omega)}{\mu(\omega)} d\omega = \int F(\omega) d\omega$$

$$\ln |\mu| = \int F(\omega) d\omega$$

Інтегрувальний множник

$$\mu(\omega) = e^{\int F(\omega)d\omega}, \ \omega = \omega(x, y)$$

Випадок 3. $\mu = \mu(\omega(x,y))$

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

Приклади функції $\omega(x,y)$ 1.

$$\omega(x,y) = x + y, \ \frac{\partial \omega}{\partial x} = 1, \ \frac{\partial \omega}{\partial y} = 1$$

$$\frac{\partial \mu}{\partial x} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial x} = \frac{d\mu}{d\omega}, \ \frac{\partial \mu}{\partial y} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial y} = \frac{d\mu}{d\omega}$$

$$\frac{d\mu}{d\omega} M(x,y) - \frac{d\mu}{d\omega} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\frac{\mu'(\omega)}{\mu(\omega)} = \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y) - N(x,y)} = F(x+y) = F(\omega)$$

Випадок 3. $\mu = \mu(\omega(x, y))$

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\omega(x,y) = x - y$$

$$\frac{\partial \omega}{\partial x} = 1, \ \frac{\partial \omega}{\partial y} = -1$$

$$\frac{\partial \mu}{\partial x} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial x} = \frac{d\mu}{d\omega}, \ \frac{\partial \mu}{\partial y} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial y} = -\frac{d\mu}{d\omega}$$

$$\frac{d\mu}{d\omega} M(x,y) + \frac{d\mu}{d\omega} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\frac{\mu'(\omega)}{\mu(\omega)} = \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y) + N(x,y)} = F(x-y) = F(\omega)$$

Випадок 3. $\mu = \mu(\omega(x,y))$

$$\frac{\partial \mu(x,y)}{\partial y} M(x,y) - \frac{\partial \mu(x,y)}{\partial x} N(x,y) = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

3.

$$\omega(x,y) = xy, \ \frac{\partial \omega}{\partial x} = y, \ \frac{\partial \omega}{\partial y} = x$$

$$\frac{\partial \mu}{\partial x} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial x} = \frac{d\mu}{d\omega} y, \ \frac{\partial \mu}{\partial y} = \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial y} = \frac{d\mu}{d\omega} x$$

$$\frac{d\mu}{d\omega} M(x,y)x - \frac{d\mu}{d\omega} N(x,y)y = \mu(x,y) \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]$$

$$\frac{\mu'(\omega)}{\mu(\omega)} = \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y)x - N(x,y)y} = F(xy) = F(\omega)$$

Задача 4

Розв'язати диференціальне рівняння

$$(xy + 1) dx + x^2 dy = 0,$$

$$\mu = \mu(xy), \ \omega(x, y) = xy$$

$$M(x,y) = xy + 1,$$

$$N(x,y) = x^{2}$$

$$\frac{\partial M}{\partial y} = x,$$

$$\frac{\partial N}{\partial x} = 2x.$$

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}.$$

$$\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} = -x.$$

$$\mu = \mu(\omega), \ \omega(x,y) = xy$$

$$\mu(xy) (xy + 1) dx + \mu(xy)x^2 dy = 0,$$

$$\mu(\omega) (xy + 1) dx + \mu(\omega)x^2 dy = 0,$$

$$\omega(x, y) = xy, \ \frac{\partial \omega}{\partial x} = y, \ \frac{\partial \omega}{\partial y} = x$$

$$\frac{\partial}{\partial y} (\mu(\omega) (xy + 1)) = \frac{\partial}{\partial x} (\mu(\omega)x^2)$$

$$\frac{\partial}{\partial y} (\mu(\omega) (xy + 1)) = \frac{d\mu(\omega)}{d\omega} x (xy + 1) + \mu(\omega)x$$

$$\frac{\partial}{\partial x} (\mu(\omega)x^2) = \frac{d\mu(\omega)}{d\omega} x^2 y + 2\mu(\omega)x$$

$$\frac{d\mu(\omega)}{d\omega}x(xy+1) + \mu(\omega)x = \frac{d\mu(\omega)}{d\omega}x^2y + 2\mu(\omega)x$$

$$\frac{d\mu(\omega)}{d\omega}x^2y + \frac{d\mu(\omega)}{d\omega}x + \mu(\omega)x = \frac{d\mu(\omega)}{d\omega}x^2y + 2\mu(\omega)x$$

$$\frac{d\mu(\omega)}{d\omega} = \mu(\omega)$$

$$\frac{\mu'(\omega)}{\mu(\omega)} = 1$$

$$\int \frac{1}{\mu}d\mu = \int d\omega, \ \ln|\mu| = \omega$$

Інтегрувальний множник

$$\mu(\omega) = e^{\omega} = e^{xy}$$

2020

$$e^{xy}(xy+1) dx + e^{xy}x^2 dy = 0$$

– рівняння в повних диференціалах Отже, за означенням, існує функція $U\left({x,y} \right)$

$$dU(x,y) = e^{xy}(xy+1) dx + e^{xy}x^2 dy.$$

$$dU(x,y) = \frac{\partial U(x,y)}{\partial x} dx + \frac{\partial U(x,y)}{\partial y} dy$$

Отже, записуємо систему

$$\begin{cases} \frac{\partial U(x,y)}{\partial x} &= e^{xy} \left(xy + 1 \right), \\ \frac{\partial U(x,y)}{\partial y} &= e^{xy} x^2. \end{cases}$$

$$\frac{\partial U(x,y)}{\partial y} = e^{xy}x^2$$

випливає

$$U(x,y) = \int x^2 e^{xy} dy + \varphi(x) = x^2 \int e^{xy} dy + \varphi(x) =$$
$$= x^2 \cdot \frac{1}{x} e^{xy} + \varphi(x) = x e^{xy} + \varphi(x),$$

де $\varphi(x)$ — невідома функція.

Диференціюємо останнє співвідношення за x і використовуємо другу рівність системи

$$\frac{\partial U(x,y)}{\partial x} = e^{xy} (xy + 1).$$

$$\frac{\partial U(x,y)}{\partial x} = \frac{\partial}{\partial x} \left[x e^{xy} + \varphi(x) \right] = (xy+1) e^{xy},$$

$$\frac{\partial}{\partial x} \left[x e^{xy} + \varphi(x) \right] = (xy + 1) e^{xy},$$

$$1 \cdot e^{xy} + xy e^{xy} + \varphi'(x) = xy e^{xy} + e^{xy},$$

$$\varphi'(x) = 0, \ \varphi(x) = 0$$

$$U(x, y) = x e^{xy}$$

 ε інтегралом рівняння.

$$xe^{xy} = C$$

є загальним інтегралом рівняння.

Відповідь

$$xe^{xy} = C$$

 ϵ загальним інтегралом рівняння, де C – довільна константа.

Задача 5

Розв'язати диференціальне рівняння

$$\left(y - \frac{ay}{x} + x\right) dx + ady = 0,$$

$$\mu = \mu(x + y), \ \omega(x, y) = x + y,$$

а – параметр

$$M(x,y) = y - \frac{ay}{x} + x;$$

$$N(x,y) = a.$$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(y - \frac{ay}{x} + x \right) = 1 - \frac{a}{x};$$
$$\frac{\partial N}{\partial x} = \frac{\partial a}{\partial x} = 0.$$

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}.$$

Отже, рівняння не є рівнянням у повних диференціалах.

$$\mu = \mu(\omega), \ \omega(x, y) = x + y$$

$$\mu = \mu(\omega), \ \omega(x, y) = x + y, \ \frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial y} = 1;$$

$$\mu(\omega) \left(y - \frac{ay}{x} + x \right) dx + \mu(\omega) a dy = 0;$$

$$\frac{\partial}{\partial y} \left(\mu(\omega) \left(y - \frac{ay}{x} + x \right) \right) =$$

$$= \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial y} \left(y - \frac{ay}{x} + x \right) + \mu(\omega) \left(1 - \frac{a}{x} \right) =$$

$$= \frac{d\mu}{d\omega} \left(y - \frac{ay}{x} + x \right) + \mu(\omega) \left(1 - \frac{a}{x} \right);$$

$$\frac{\partial}{\partial x} \left(\mu(\omega) a \right) = a \frac{d\mu}{d\omega} \frac{\partial \omega}{\partial x} = a \frac{d\mu}{d\omega};$$

$$\begin{split} \frac{d\mu}{d\omega} \left(y - \frac{ay}{x} + x \right) + \mu(\omega) \left(1 - \frac{a}{x} \right) &= a \frac{d\mu}{d\omega}; \\ \frac{d\mu}{d\omega} \left(y - \frac{ay}{x} + x - a \right) + \mu(\omega) \left(1 - \frac{a}{x} \right) &= 0; \\ \frac{d\mu}{d\omega} \left(y \left(1 - \frac{a}{x} \right) + x \left(1 - \frac{a}{x} \right) \right) + \mu(\omega) \left(1 - \frac{a}{x} \right) &= 0; \\ \left(1 - \frac{a}{x} \right) \left(\frac{d\mu}{d\omega} (x + y) + \mu(\omega) \right) &= 0; \\ \frac{d\mu}{d\omega} \omega + \mu &= 0; \\ \frac{d\mu}{d\omega} \omega + \frac{d\omega}{\omega} &= 0; \end{split}$$

$$\begin{split} \int \frac{d\mu}{\mu} + \int \frac{d\omega}{\omega} &= 0;\\ \ln|\mu| + \ln|\omega| &= 0;\\ \ln|\mu\omega| &= 0;\\ \mu &= \frac{1}{\omega}; \end{split}$$

Інтегрувальний множник

$$\mu(x,y) = \frac{1}{x+y}$$

Одержуємо

$$\frac{y - \frac{ay}{x} + x}{x + y} dx + \frac{a}{x + y} dy = 0;$$

$$\left(1 - \frac{ay}{x(x + y)}\right) dx + \frac{a}{x + y} dy = 0;$$

$$dU(x, y) = \frac{\partial U(x, y)}{\partial x} dx + \frac{\partial U(x, y)}{\partial y} dy;$$

$$\frac{\partial U(x,y)}{\partial x} = 1 - \frac{ay}{x(x+y)};$$
$$\frac{\partial U(x,y)}{\partial y} = \frac{a}{x+y};$$

Беремо другу рівність

$$\frac{\partial U(x,y)}{\partial y} = \frac{a}{x+y};$$

$$U(x,y) = a \int \frac{1}{x+y} dy + \varphi(x) = a \ln(x+y) + \varphi(x);$$

$$\frac{\partial U(x,y)}{\partial x} = \frac{a}{x+y} + \varphi'(x) = 1 - \frac{ay}{x(x+y)};$$

$$\frac{a}{x+y} + \varphi'(x) = 1 - \frac{ay}{x(x+y)};$$

$$\varphi'(x) = 1 - \frac{ay}{x(x+y)} - \frac{a}{x+y};$$

$$\varphi'(x) = 1 - \frac{ay + ax}{x(x+y)} = 1 - \frac{a(x+y)}{x(x+y)};$$

$$\varphi'(x) = 1 - \frac{a}{x};$$

$$\varphi(x) = \int \left(1 - \frac{a}{x}\right) dx = x - a \ln|x|;$$

Інтеграл рівняння

$$U(x,y) = a \ln |x+y| + x - a \ln |x| = a \ln \left| \frac{x+y}{x} \right| + x.$$

Загальний інтеграл

$$a \ln \left| \frac{x+y}{x} \right| + x = C,$$

де C – довільна константа.

При y = -x

$$\left(-x + \frac{ax}{x} + x\right)dx - adx = adx - adx = 0,$$

отже, y = -x -розв'язок.

Відповідь

$$a \ln \left| \frac{x+y}{x} \right| + x = C,$$

 ϵ загальним інтегралом рівняння, де C – довільна константа, y=-x – розв'язок.

Ми вивчили I

• Рівняння з відокремлюваними змінними

$$m(x)n(y)dx + f(x)g(y)dy = 0$$

• Однорідне диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0$$

- $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$
- Узагальнено-однорідне диференціальне рівняння

$$M(x, y)dx + N(x, y)dy = 0$$

• Лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + b(x)$$

Ми вивчили II

- ullet Диференціальне рівняння Бернуллі $rac{dy}{dx}=a(x)y+b(x)y^k$
- ullet Диференціальне рівняння Ріккаті $rac{dy}{dx}=a(x)y^2+b(x)y+c(x)$
- Рівняння в повних диференціалах

$$M(x,y)dx + N(x,y)dy = 0$$

• Інтегрувальний множник

Диференціальні рівняння, не розв'язані відносно похідної. Метод параметризації Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

Диференціальні рівняння, не розв'язані відносно похідної

$$F(x, y, y') = 0.$$
 (41)

Диференціальні рівняння, розв'язані відносно шуканої функції

$$y = f(x, y'). \tag{42}$$

Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$y = f(x, p)$$
.

Візьмемо диференціали обох частин рівняння

$$dy = \frac{\partial f(x,p)}{\partial x} dx + \frac{\partial f(x,p)}{\partial p} dp.$$

Диференціальні рівняння, розв'язані відносно шуканої функції

$$dy = pdx$$

$$pdx = \frac{\partial f(x, p)}{\partial x} dx + \frac{\partial f(x, p)}{\partial p} dp.$$

$$\left(\frac{\partial f(x, p)}{\partial x} - p\right) dx + \frac{\partial f(x, p)}{\partial p} dp = 0.$$

Одержуємо диференціальне рівняння, розв'язане відносно похідної.

Диференціальні рівняння, розв'язані відносно шуканої функції

Нехай

$$x = \varphi(p, C)$$

є загальним розв'язком цього рівняння. Отримали загальний розв'язок в параметричній формі

$$\begin{cases} y = f(x, p), \\ x = \varphi(p, C), \end{cases}$$

де C – довільна константа.

Диференціальні рівняння, розв'язані відносно незалежної змінної

$$x = f(y, y'). (43)$$

Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$x = f(y, p)$$
.

Візьмемо диференціали обох частин рівняння

$$dx = \frac{\partial f(y, p)}{\partial y} dy + \frac{\partial f(y, p)}{\partial p} dp.$$

Диференціальні рівняння, розв'язане відносно незалежної змінної

$$dy = pdx$$

$$dy = p\frac{\partial f(y,p)}{\partial y}dy + p\frac{\partial f(y,p)}{\partial p}dp.$$

$$\left(p\frac{\partial f(y,p)}{\partial y} - 1\right)dy + p\frac{\partial f(y,p)}{\partial p}dp = 0.$$

Одержуємо диференціальне рівняння, розв'язане відносно похідної.

Диференціальні рівняння, розв'язані відносно незалежної змінної

Нехай

$$y = \varphi(p, C)$$

є загальним розв'язком цього рівняння. Отримали загальний розв'язок в параметричній формі

$$\begin{cases} x = f(y, p), \\ y = \varphi(p, C), \end{cases}$$

де C – довільна константа.

Задача 1

Знайти розв'язок рівняння

$$9(y')^2-4x=0.$$

Це рівняння відноситься вигляду

$$x=f\left(x,y^{\prime}\right) .$$

Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$x=\frac{9}{4}p^2.$$

Візьмемо диференціали обох частин рівняння

$$dx = \frac{9}{4} \cdot 2pdp = \frac{9}{2}pdp.$$

Оскільки dy = pdx, то

$$\frac{dy}{p} = \frac{9}{2}pdp \quad \Rightarrow \quad dy = \frac{9}{2}p^2dp.$$

Інтегруючи, знаходимо завімость змінної у від параметра р:

$$y = \int \frac{9}{2}p^2dp = \frac{9}{2}\int p^2dp = \frac{9}{2}\cdot\frac{p^3}{3} + C = \frac{3}{2}p^3 + C,$$

де C – довільна константа.

Таким чином, ми отримали загальний розв'язок рівняння в параметричній формі:

$$\begin{cases} y &= \frac{3}{2}p^3 + C, \\ x &= \frac{9}{4}p^2. \end{cases}$$

Відповідь

$$\begin{cases} y = \frac{3}{2}p^3 + C, \\ x = \frac{9}{4}p^2. \end{cases}$$

Тут C – довільна константа.

Задача 2

Знайти розв'язок рівняння

$$y = \ln\left[25 + \left(y'\right)^2\right].$$

Це диференціальне рівняння

$$y = f(y')$$
.

Введемо параметр

$$y' = p, dy = pdx$$

$$y=\ln\left(25+p^2\right).$$

Візьмемо диференціали від обох частин

$$dy = \frac{2pdp}{25 + p^2}.$$

Оскільки dy = pdx, то

$$pdx = \frac{2pdp}{25 + p^2}, \Rightarrow dx = \frac{2dp}{25 + p^2}.$$

Тепер можна проінтегрувати останній вираз і знайти x як фукнции p.

$$x = \int \frac{2dp}{25 + p^2} = 2 \int \frac{dp}{25 + p^2} = 2 \cdot \frac{1}{5} \operatorname{arctg} \frac{p}{5} + C = \frac{2}{5} \operatorname{arctg} \frac{p}{5} + C.$$

Отримуємо параметричне представлення розв'язку диференціального рівняння

$$\begin{cases} x = \frac{2}{5} \arctan \frac{p}{5} + C, \\ y = \ln \left(25 + p^2\right), \end{cases}$$

де C — довільна константа.

Відповідь

$$\begin{cases} x = \frac{2}{5} \arctan \frac{p}{5} + C, \\ y = \ln \left(25 + p^2\right), \end{cases}$$

де C – довільна константа.

Задача 3

Знайти розв'язок рівняння

$$2y = 2x^2 + 4xy' + (y')^2.$$

Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$2y = 2x^2 + 4xp + p^2.$$

Візьмемо диференціал

$$2dy = 4xdx + 4pdx + 4xdp + 2pdp,$$

$$dy = 2xdx + 2pdx + 2xdp + pdp,$$

$$\underline{pdx} = 2xdx + \underline{2pdx} + 2xdp + pdp,$$

$$0 = 2xdx + pdx + 2xdp + pdp,$$

$$(2x + p) dx + (2x + p) dp = 0,$$

$$(2x + p) (dx + dp) = 0.$$

266 / 495

Маємо два розв'язки. Перший розв'язок має вигляд

$$2x + p = 0.$$

$$2x + y' = 0$$
, $y' = -2x$, $dy = -2xdx$.

Інтегруючи, отримуємо

$$y = -x^2 + C,$$

де C – довільна константа. Щоб визначити значення C, підставимо $y = -x^2 + C$ у вихідне диференціальне рівняння

$$2(-x^2+C) = 2x^2 + 4x \cdot (-2x) + (-2x)^2.$$

$$-2x^{2} + 2C = 2x^{2} - 8x^{2} + 4x^{2},$$

$$2C = 0, C = 0.$$

Отже, перший розв'язок

$$y = -x^2$$
.

268 / 495

Тепер розглянемо другий розв'язок

$$dx + dp = 0$$
.

Тоді

$$\int dx = -\int dp + C, \ x = -p + C.$$

Враховуємо, що

$$2y = 2x^2 + 4xp + p^2.$$

$$2y = 2(-p+C)^2 + 4(-p+C)p + p^2.$$

$$2y = 2(p^{2} - 2pC + C^{2}) - 4p^{2} + 4pC + p^{2},$$
$$2y = 2p^{2} - 4pC + 2C^{2} - 3p^{2} + 4pC,$$
$$2y = 2C^{2} - p^{2}, \ y = C^{2} - \frac{p^{2}}{2}.$$

Таким чином, другий розв'язок описується в параметричної формі так

$$\begin{cases} x = -p + C, \\ y = C^2 - \frac{p^2}{2}, \end{cases}$$

де C – довільна константа.

$$p = C - x$$
,

$$y = C^2 - \frac{(C - x)^2}{2} = C^2 - \frac{(x - C)^2}{2}.$$

Відповідь

$$y = -x^2$$
, $y = C^2 - \frac{(x - C)^2}{2}$,

де C – довільна константа.

Рівняння Лагранжа

Означення

Рівняння вигляду

$$y = a(y')x + b(y') \tag{44}$$

називається **рівнянням Лагранжа**. Тут a(t), b(t) — наперервні функції, $a(t) \neq t$.

$$y' = p$$
, $dy = pdx$

Приходимо до лінійного неоднорідного рівняння.

Рівняння Лагранжа

$$y = a(p)x + b(p), dy = pdx.$$

$$dy = a(p)dx + (a'(p)x + b'(p)) dp, dy = pdx$$

$$(45)$$

$$a(p)dx + (a'(p)x + b'(p)) dp = pdx$$

$$(a(p) - p) dx + (a'(p)x + b'(p)) dp = 0.$$
 (46)

Диференціальне рівняння (46) лінійне за x

$$\frac{dx}{dp} = \frac{a'(p)}{p - a(p)}x + \frac{b'(p)}{p - a(p)}.$$
 (47)

Рівняння Лагранжа

Знаходимо загальний розв'язок диференціального рівняння (47).

$$x = g(p)C + h(p)$$

Загальний розв'язок рівняння Лагранжа в параметричній формі

Загальний розв'язок

$$\begin{cases} x = g(p)C + h(p) \\ y = a(p)(g(p)C + h(p)) + b(p) \end{cases}.$$

Тут C – довільна константа.

Особливі розв'язки шукаємо з умови

$$a(p) - p = 0 \tag{48}$$

Задача 4

Знайти розв'язок рівняння

$$y=2xy'-3(y')^2.$$

Тут ми маємо справу з рівнянням Лагранжа. Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$y=2xp-3p^2.$$

Диференціюючи обидві частини, одержуємо

$$dy = 2xdp + 2pdx - 6pdp, \ dy = pdx$$

$$pdx = 2xdp + 2pdx - 6pdp$$

$$-pdx = 2xdp - 6pdp$$

Розділивши на р можна записати

$$-dx = \frac{2x}{p}dp - 6dp$$

Пізніше ми перевіримо, чи не є p=0 розв'язоком вихідного рівняння

$$\frac{dx}{dp} + \frac{2}{p}x - 6 = 0.$$

Отримали лінійне рівняння

$$x(p)=2p+\frac{C}{p^2}.$$

Підставляючи цей вираз для x в рівняння Лагранжа, знаходимо

$$y = 2\left(2p + \frac{C}{p^2}\right)p - 3p^2 = 4p^2 + \frac{2C}{p} - 3p^2 = p^2 + \frac{2C}{p}.$$

Таким чином, загальний розв'язок в параметричній формі визначається системою рівнянь

$$\begin{cases} x(p) = 2p + \frac{C}{p^2}, \\ y(p) = p^2 + \frac{2C}{p}. \end{cases}$$

Крім загального розв'язку, рівняння Лагранжа може мати ще особливий розв'язок

$$p = 0$$
.

Отже, особливий розв'язок

$$y = a(0)x + b(0) = 0 \cdot x + 0 = 0.$$

Відповідь

$$\begin{cases} x(p) &= 2p + \frac{C}{p^2}, \\ y(p) &= p^2 + \frac{2C}{p}, \end{cases}$$

особливий розв'язок

$$y = 0.$$

Тут C – довільна константа.

Жозеф-Луї Лагранж

Частинний розв'язок

Нехай задане рівняння

$$F(x, y, y') = 0,$$
 (49)

де $F:D\to\mathbb{R}^n$ – неперервно диференційовна функція.

Означення

Розв'язок y(x) диференціального рівняння (49) називається частин**ним,** якщо в кожній точці (x_0, y_0) такій, що $y_0 = y(x_0)$, виконується єдиність розв'язку задачі Коші

$$F(x, y, y') = 0, y(x_0) = y_0.$$

Особливий розв'язок

Означення

Розв'язок y(x) диференціального рівняння (49) називається особливим, якщо в кожній точці (x_0, y_0) такій, що $y_0 = y(x_0)$, порушується єдиність розв'язку задачі Коші

$$F(x, y, y') = 0, y(x_0) = y_0.$$

Дискримінантна крива

Якщо в точці (x_0, y_0) порушується єдиність розв'язку задачі Коші, то

$$F(x_0, y_0, p) = 0, \ \frac{\partial F(x_0, y_0, p)}{\partial p} = 0$$
 (50)

при деякому p.

Для відшукання точки (x_0, y_0) з (50) виключаємо p і одержуємо множину

$$\Psi(x_0,y_0)=0,$$

яка називається дискримінантною кривою.

Дискримінантна крива містить всі точки, в яких порушується єдиність розв'язку, але може містити також і інші точки.

Особливий розв'язок

Обвідною сім'ї кривих $\varphi(x,y,\mathcal{C})=0$ називається крива γ , яка в кожній своїй точці дотикається до кривої сім'ї $\varphi(x,y,\mathcal{C})=0$, що відрізняється від γ в довільному околі точки дотику.

Для визначення обвідної записуємо систему рівнянь

$$\varphi(x, y, C) = 0, \ \frac{\partial \varphi(x, y, C)}{\partial C} = 0$$

і визначаємо з неї C.

Якщо інтегральна крива деякого розв'язку y(x) рівняння (49) є обвідною сім'ї інтегральних кривих загального розв'язку рівняння (49), то розв'язок y(x) є особливим.

Рівняння Клеро

Означення

Рівняння вигляду

$$y = y'x + b(y') \tag{51}$$

називається **рівнянням Клеро**. Тут b(t) – наперервна функція.

Це випадок рівняння Лагранжа при a(t) = t.

$$y' = p$$
, $dy = pdx$

Рівняння Клеро

$$y = px + b(p), dy = pdx.$$

$$dy = pdx + xdp + b'(p)dp, dy = pdx$$

$$pdx + xdp + b'(p)dp = pdx$$

$$xdp + b'(p)dp = 0$$

$$(x + b'(p)) dp = 0.$$
(53)

Рівняння Клеро

$$(x+b'(p)) dp = 0.$$

$$dp = 0, x + b'(p) = 0.$$
 (54)

Перший випадок

$$dp = 0$$

$$p = C$$

Загальний розв'язок

$$y=Cx+b(C).$$

Тут C – довільна константа.

Рівняння Клеро

Другий випадок

$$x+b'(p)=0$$

$$x = -b'(p)$$

$$y = px + b(p) = -b'(p)p + b(p)$$

Рівняння Клеро

Розглянемо загальний розв'язок рівняння Клеро

$$y = px + b(p), p = C$$

$$\varphi(x,y,C)=y-Cx-b(C)=0.$$

Знайдемо обвідну

$$\frac{\partial \varphi(x,y,C)}{\partial C} = -x - b'(C) = 0$$

Звідси

$$\begin{cases} x = -b'(C), \\ y = -b'(C)C + b(C). \end{cases}$$

Це є параметричне задання обвідної, де p = C – параметр

Рівняння Клеро

Особливий розв'язок рівняння Клеро

$$\begin{cases} x = -b'(p), \\ y = -b'(p)p + b(p). \end{cases}$$

Задача 5

Знайти розв'язок рівняння

$$y = xy' + (y')^2.$$

Тут ми маємо справу з рівнянням Клеро. Введемо параметр

$$y' = p$$
, $dy = pdx$

і запишемо рівняння у вигляді

$$y=xp+p^2.$$

Диференціюючи обидві частини, одержуємо

$$dy = xdp + pdx + 2pdp, dy = pdx$$

$$pdx = xdp + pdx + 2pdp,$$
$$xdp + 2pdp = 0,$$
$$(x + 2p) dp = 0.$$

Перший випадок

$$dp = 0$$

$$p = C$$

Загальний розв'язок

$$y = Cx + C^2$$

Другий випадок

$$x + 2p = 0$$

$$\begin{cases} x &= -2p, \\ y &= px + p^2. \end{cases}$$

$$p = -\frac{x}{2}$$

$$y = px + p^2 = -\frac{x^2}{2} + \frac{x^2}{4}$$

$$y = -\frac{x^2}{4}$$

Загальний розв'язок

$$y = Cx + C^2$$

$$\varphi(x,y,C)=y-Cx-C^2=0.$$

Знайдемо обвідну

$$\frac{\partial \varphi(x, y, C)}{\partial C} = -x - 2C = 0$$

$$C_0 = -\frac{1}{2}x$$

$$\varphi(x, y, C_0) = y + \frac{1}{2}x^2 - \frac{1}{4}x^2 = 0.$$

$$y = -\frac{x^2}{4}$$

Парабола

$$y = -\frac{x^2}{4}$$

є обвідною сімейства прямих

$$y = Cx + C^2,$$

які визначають загальний розв'язок.

Відповідь

Загальний розв'язок:

$$y = Cx + C^2$$

С – довільна константа, особливий розв'язок:

$$y=-\frac{x^2}{4}.$$

Alexis Claude Clairault

Задача 5

Розв'язати рівняння

$$x^3 + y'^3 - 3xy' = 0.$$

Застосуємо метод параметризації.

$$y' = px, dy = pxy$$

Тоді

$$x^3 + p^3 x^3 - 3x^2 p = 0.$$

Звідси

$$x^{2}(x + p^{3}x - 3p) = 0,$$

$$x + p^{3}x - 3p = 0,$$

$$x = \frac{3p}{1 + p^{3}}.$$

Тоді

$$dx = \frac{3(1+p^3) - 9p^3}{(1+p^3)^2} dp = \frac{3(1-2p^3)}{(1+p^3)^2} dp.$$

$$dy = pxdx = p\frac{3p}{1+p^3} \frac{3(1-2p^3)}{(1+p^3)^2} dp =$$

$$= \frac{9p^2(1-2p^3)}{(1+p^3)^3} dp = \frac{3(1-2p^3)}{(1+p^3)^3} dp^3$$

$$y = \int \frac{3(1 - 2p^3)}{(1 + p^3)^3} d(p^3 + 1) = [1 + p^3 = t] =$$

$$= \int \frac{3(3 - 2t)}{t^3} dt = 9 \int \frac{1}{t^3} dt - 6 \int \frac{1}{t^2} dt =$$

$$= -\frac{9}{2}t^{-2} + 6t^{-1} + C = -\frac{9}{2(1 + p^3)^2} + \frac{6}{(1 + p^3)} + C.$$

Одержали загальний розв'язок в параметричній формі

Відповідь

$$\begin{cases} x = \frac{3\rho}{1+\rho^3}, \\ y = -\frac{9}{2(1+\rho^3)^2} + \frac{6}{1+\rho^3} + C, \end{cases}$$

де C – довільна константа.

Диференціальні рівняння, які містять тільки похідну

$$F\left(y'\right) = 0. \tag{55}$$

Нехай

$$F(t) = 0$$

$$y' = t$$

$$y = tx + C$$

С – довільна константа

$$t = \frac{y - C}{x}$$

$$F\left(\frac{y-C}{x}\right)=0$$

– загальний інтеграл диференціального рівняння (55).

Задача 5

Знайти розв'язок рівняння

$$(y')^3-1=0.$$

$$t^3 - 1 = 0, \ y' = t$$

$$y = tx + C$$

С – довільна константа

$$t = \frac{y - C}{x}$$

$$\left(\frac{y-C}{x}\right)^3 - 1 = 0$$

- загальний інтеграл

Відповідь

$$\left(\frac{y-C}{x}\right)^3-1=0$$

загальний інтеграл, де С – довільна константа

309 / 495

Ми вивчили I

• Рівняння з відокремлюваними змінними

$$m(x)n(y)dx + f(x)g(y)dy = 0$$

• Однорідне диференціальне рівняння

$$M(x,y)dx + N(x,y)dy = 0$$

- $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$
- Узагальнено-однорідне диференціальне рівняння

$$M(x, y)dx + N(x, y)dy = 0$$

Лінійне диференціальне рівняння

$$\frac{dy}{dx} = a(x)y + b(x)$$

Ми вивчили II

- ullet Диференціальне рівняння Бернуллі $rac{dy}{dx}=a(x)y+b(x)y^k$
- ullet Диференціальне рівняння Ріккаті $rac{dy}{dx}=a(x)y^2+b(x)y+c(x)$
- Рівняння в повних диференціалах

$$M(x,y)dx + N(x,y)dy = 0$$

- Інтегрувальний множник: три випадки
- Метод параметризації
- Рівняння Лагранжа

$$y = a(y')x + b(y')$$

• Рівняння Клеро

$$y = y'x + b(y')$$

Інтегрування і пониження порядку диференціальних рівнянь з вищими похідними

Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

312 / 495

Інтегрування і пониження порядку

$$y^{(n)}(x) = f(x),$$
 (56)

f(x) – неперервна функція.

$$y^{(n-1)}(x) = \int f(x)dx + C$$

Задача 1

Знайти розв'язок задачі Коші

$$y''' = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 2$

314 / 495

$$y'' = C_1$$

$$y''(0) = 2 \Rightarrow C_1 = 2$$

$$y' = C_1 x + C_2.$$

$$y'(0) = 0 \Rightarrow C_2 = 0$$

$$y = C_1 \frac{x^2}{2} + C_2 x + C_3$$

$$y(0) = 1 \Rightarrow C_3 = 1$$

Відповідь

$$v = x^2 + 1$$
.

Задача 2

Знайти розв'язок рівняння

$$y'' = \sin x + \cos x.$$

316 / 495

$$y'' = \sin x + \cos x,$$

$$y' = \int (\sin x + \cos x) dx + C_1,$$

$$y' = -\cos x + \sin x + C_1.$$

$$y = \int (-\cos x + \sin x + C_1) dx + C_2$$

Відповідь

$$y = -\sin x - \cos x + C_1 x + C_2,$$

 $v = -\sin x - \cos x + C_1 x + C_2$.

 C_1 , C_2 – довільні константи

Інтегрування і пониження порядку

$$F\left(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}\right) = 0$$

$$z(x) = y^{(k)}(x)$$

$$F\left(x, z, z', \dots, z^{(n-k)}\right) = 0$$
(57)

Задача 3

Знайти загальний розв'язок диференціального рівняння

$$y''' + \frac{2}{x}y'' = 0.$$

Рівняння не містить функцію y та її першу похідну y' Тому зробимо заміну

$$y'' = z$$
.

Отримуємо рівняння першого порядку з відокремлюваними змінними

$$z' + \frac{2}{x}z = 0.$$

Інтегруючи, знаходимо розв'язок

$$\begin{split} \frac{dz}{dx} &= -\frac{2}{x}z, \\ \frac{dz}{z} &= -\frac{2}{x}dx, \\ \int \frac{dz}{z} &= -2\int \frac{dx}{x} + \ln C_1, \\ \ln |z| &= -2\ln |x| + \ln C_1, \\ z &= \frac{C_1}{x^2}. \end{split}$$

$$y'' = z = \frac{C_1}{x^2}.$$
 $y' = -\frac{C_1}{x} + C_2,$ $y = -C_1 \ln|x| + C_2 x + C_3.$

Відповідь

$$y = -C_1 \ln |x| + C_2 x + C_3,$$

 C_1 , C_2 , C_3 – довільні константи

Задача 4

Розв'язати диференціальне рівняння

$$x^2y'''=y''^2.$$

Виконаємо заміну: y'' = z. Тоді

$$x^2z'=z^2.$$

Отже.

$$x^2 \frac{dz}{dx} = z^2; \ \frac{dz}{z^2} = \frac{dx}{x^2}.$$

Зазначимо, що при діленні ми, можливо, втрачаємо розв'язки z=0, x = 0.

Інтегруємо

$$\int \frac{dz}{z^2} = \int \frac{dx}{x^2} - C_1.$$

Звідси

$$-\frac{1}{z} = -\frac{1}{x} - C_1,$$

$$\frac{1}{z} = \frac{1}{x} + C_1,$$

$$\frac{1}{z} = \frac{1 + C_1 x}{x},$$

$$z = \frac{x}{1 + C_1 x},$$

$$y'' = \frac{x}{1 + C_1 x}.$$

Якщо $C_1 \neq 0$, то

$$y' = \int \frac{x}{1 + C_1 x} dx + C_2 = \frac{1}{C_1^2} \int \frac{C_1 x}{1 + C_1 x} d(C_1 x) =$$

$$= \begin{vmatrix} t = C_1 x \\ C_1 x \neq 0 \end{vmatrix} =$$

$$= \frac{1}{C_1^2} \int \frac{t dt}{1 + t} + C_2 = \frac{1}{C_1^2} \int \frac{1 + t}{1 + t} dt - \frac{1}{C_1^2} \int \frac{dt}{1 + t} + C_2 =$$

$$= \frac{1}{C_1^2} t - \frac{1}{C_1^2} \ln|1 + t| + C_2 = \frac{1}{C_1^2} (C_1 x - \ln|1 + C_1 x| + C_2).$$

Якщо
$$C_1=0$$
, то
$$y'=\int xdx+C_2=\frac{x^2}{2}+C_2,$$

$$y=\int \frac{x^2}{2}dx+C_2x+C_3=\frac{x^3}{6}+C_2x+C_3.$$

Отже, при $C_1 \neq 0$ маємо

$$y'(x) = \frac{1}{C_1^2} (C_1 x - \ln|1 + C_1 x|) + C_2,$$

$$y(x) = \frac{1}{C_1} \int x dx - \frac{1}{C_2^2} \int \ln|1 + C_1 x| dx + C_2 x + C_3 =$$

$$= \frac{1}{C_1} \frac{x^2}{2} - \frac{1}{C_1^2} \int \ln|1 + C_1 x| dx + C_2 x + C_3.$$

Розглянемо

$$\int \ln|1 + C_1 x| dx = \frac{1}{C_1} \int \ln|1 + C_1 x| d(1 + C_1 x) =$$

$$= |t = 1 + C_1 x| =$$

$$= \frac{1}{C_1} \int \ln t dt = \frac{1}{C_1} \left(t \ln t - \int t d \ln t \right) =$$

$$= \frac{1}{C_1} \left(t \ln t - \int \frac{t}{t} dt \right) = \frac{1}{C_1} \left(t \ln t - t \right) =$$

$$= \frac{t}{C_1} (\ln t - 1) = \frac{1 + C_1 x}{C_1} (\ln|1 + C_1 x| - 1).$$

Отже, отримали загальний розв'язок:

$$y(x) = \frac{x^3}{6} + C_2 x + C_3,$$

при $C_1 = 0$,

$$y(x) = \frac{1}{C_1} \frac{x^2}{2} - \frac{1 + C_1 x}{C_1^3} (\ln|1 + C_1 x| - 1) + C_2 x + C_3,$$

при $C_1 \neq 0$.

Розглянемо також випадок

$$x = 0, z = 0.$$

x = 0 не є розв'язком. Це перевіряється підстановкою. z=0 при підстановці в $x^2z'=z^2$ дає тотожність, тому z=0 є розв'язком. З z = 0 випливає y'' = 0.

Звідси

$$y' = C_4, \ y(x) = C_4x + C_5.$$

Відповідь

Загальний розв'язок при $C_1 \neq 0$

$$y(x) = \frac{1}{C_1} \frac{x^2}{2} - \frac{1 + C_1 x}{C_1^3} (\ln|1 + C_1 x| - 1) + C_2 x + C_3;$$

якщо $C_1 = 0$, то

$$y(x) = \frac{x^3}{6} + C_2 x + C_3;$$

маємо також сім'ю розв'язків

$$y(x)=C_4x+C_5.$$

Тут C_1 , C_2 , C_3 , C_4 , C_5 – довільні константи

Інтегрування і пониження порядку

$$F\left(y, y', \dots, y^{(n)}\right) = 0$$

$$y' = z(y)$$

$$y'' = \frac{d}{dx}y' = \frac{d}{dx}z(y) = \frac{dz(y)}{dy}\frac{dy}{dx} = z'z$$

$$y''' = \frac{d}{dx}y'' = \frac{d}{dx}(z'z) =$$

$$= \frac{d}{dy}(z'z)\frac{dy}{dx} = (z''z + z'^2)z$$
(58)

Підстановка

$$y' = z(y), \ y'' = z'z, \ y''' = (z''z + z'^2)z$$

Задача 5

Знайти загальний інтеграл диференціального рівняння

$$y'' = (2y + 3) (y')^3.$$

333 / 495

Рівняння не містить незалежної змінної x.

$$y'=z(y), \ y''=z'z$$

$$z'z=(2y+3)z^3.$$

Якщо z=0, то

$$y' = 0, y = C_0$$

Підстановка $y = C_0$ в рівняння показує, що це є розв'язок задачі.

Одержали рівняння з відокремлюваними змінними

$$\frac{dz}{dy} = (2y + 3)z^2$$

$$\frac{dz}{z^2}=(2y+3)\,dy,$$

$$-\frac{1}{z} = y^2 + 3y + C_1,$$

$$-\frac{1}{z} = y^2 + 3y + C_1,$$

$$z = -\frac{1}{y^2 + 3y + C_1}$$

$$y' = -\frac{1}{y^2 + 3y + C_1}$$

Інтегруючи ще раз, отримуємо

$$(y^2 + 3y + C_1) dy = -dx,$$

$$\int (y^2 + 3y + C_1) dy + C_2 = -\int dx$$

$$\int (y^2 + 3y + C_1) dy + C_2 = -\int dx$$
$$\frac{y^3}{3} + \frac{3y^2}{2} + C_1 y + C_2 = -x$$
$$\frac{y^3}{3} + \frac{3y^2}{2} + C_1 y + C_2 + x = 0$$

де C_1 , C_2 – довільні константи.

Відповідь

Загальний інтеграл

$$\frac{y^3}{3} + \frac{3y^2}{2} + C_1 y + C_2 + x = 0$$

 C_1 , C_2 – довільні константи; $y = C_0$, де C_0 – довільна константа.

Задача 6

Знайти загальний інтеграл диференціального рівняння

$$y'' + (y')^2 = 2e^{-y}$$
.

338 / 495

Рівняння не містить незалежної змінної x.

$$y'=z(y),\ y''=z'z$$

$$z\frac{dz}{dy} + z^2 = 2e^{-y}.$$

Отримуємо рівняння Бернуллі

$$\frac{dz}{dy} + z = 2e^{-y}z^{-1}.$$

Підстановка $z^2 = u$ зводиться до лінійного рівняння

$$\frac{du}{dy} + 2u = 4e^{-y},$$

$$u(y) = 4e^{-y} + C_1e^{-2y}$$

$$u(y) = 4e^{-y} + C_1e^{-2y}$$

Замінивши u на $z^2 = (y')^2$, отримаємо

$$\frac{dy}{dx} = \pm \sqrt{4e^{-y} + C_1 e^{-2y}}.$$

Відокремлюючи змінні та інтегруючи, матимемо

$$x + C_2 = \pm \frac{1}{2} \sqrt{4e^y + C_1},$$

звідки

$$e^y + \frac{C_1}{4} = (x + C_2)^2$$

Відповідь

$$e^y + \frac{C_1}{4} = (x + C_2)^2,$$

 C_1 , C_2 – довільні константи

Інтегрування і пониження порядку

$$F\left(x, y, y', \dots, y^{(n)}\right) = 0$$

$$F\left(x, y, y', \dots, y^{(n)}\right) = \frac{d}{dx}G\left(x, y, y', \dots, y^{(n-1)}\right)$$

$$\frac{d}{dx}G\left(x, y, y', \dots, y^{(n-1)}\right) = 0$$

$$G\left(x, y, y', \dots, y^{(n-1)}\right) = C_1$$
(59)

Інтегрування і пониження порядку

$$yy'' + (y')^{2} = \frac{d}{dx}(yy')$$

$$\frac{yy'' - (y')^{2}}{y^{2}} = \frac{d}{dx}\frac{y'}{y}$$

$$2yy' = \frac{d}{dx}(y^{2})$$

Задача 6

Знайти загальний інтеграл диференціального рівняння

$$yy'' + (y')^2 = 2x + 1.$$

343 / 495

$$\frac{d}{dx}(yy') = yy'' + (y')^{2}$$
$$\frac{d}{dx}(yy') = 2x + 1.$$

Інтегруємо

$$yy'=x^2+x+C_1.$$

$$yy'=x^2+x+C_1.$$

Помітимо

$$\frac{d}{dx}\left(y^2\right) = 2yy'$$

$$\frac{d}{dx}\left(y^2\right) = 2\left(x^2 + x + C_1\right)$$

Інтегруємо

$$y^2 = \frac{2x^3}{3} + x^2 + C_1x + C_2$$

Відповідь

$$y^2 = \frac{2x^3}{3} + x^2 + C_1x + C_2,$$

 C_1 , C_2 – довільні константи

Задача 7

Знайти загальний інтеграл диференціального рівняння

$$y'y''' + (y'')^2 = 0.$$

Ліву частину даного рівняння можна представити у вигляді повної похідної

$$y'y''' + (y'')^2 = \frac{d}{dx}(y'y'')$$

$$y'y''=C_1.$$

Помітимо

$$y'y'' = \frac{1}{2} \frac{d}{dx} y'^2.$$

$$\frac{d}{dx}y'^2 = 2C_1$$

$$y'^2 = 2C_1x + C_2$$

$$y'^2 = 2C_1x + C_2$$

$$y'=\pm\sqrt{C_1x+C_2}.$$

Нехай $C_1 \neq 0$. Інтегруючи, знаходимо

$$y(x) = \pm \frac{1}{C_1} (C_1 x + C_2)^{\frac{3}{2}} + C_3.$$

Нехай $C_1 = 0$. Інтегруючи, знаходимо

$$y(x) = \pm C_2^{\frac{1}{2}}x + C_4.$$

348 / 495

Відповідь

$$y(x) = \pm \frac{1}{C_1} (C_1 x + C_2)^{\frac{3}{2}} + C_3,$$

 $C_1 \neq 0$, C_2 , C_3 – довільні константи;

$$y(x) = \pm C_2^{\frac{1}{2}}x + C_4,$$

 $C_1 = 0$, C_2 , C_4 – довільні константи

Пониження порядку: однорідне рівняння

$$F\left(x, y, y', \dots, y^{(n)}\right) = 0$$

$$F\left(x, y, y', \dots, y^{(n)}\right)$$
(60)

– однорідна функція відносно $y, y', ..., y^{(n)}$

$$F\left(x,\lambda y,\lambda y',\ldots,\lambda y^{(n)}\right)=\lambda^m F\left(x,y,y',\ldots,y^{(n)}\right),$$

 $\lambda > 0$

Пониження порядку: однорідне рівняння

Заміна

міна
$$\frac{y'}{y} = z(x) \text{ або } y(x) = e^{\int z(x)dx}$$

$$y' = yz, \ y'' = y'z + yz' = y \left(z^2 + z'\right), \ \dots$$

$$y^{(n)} = yg\left(z, z', z^2, \dots, z^{(n-1)}\right).$$

$$F\left(x, y, y', \dots, y^{(n)}\right) = y^m F\left(x, 1, z, \dots, g\left(z, z', z^2, \dots, z^{(n-1)}\right)\right)$$

$$F\left(x, 1, z, \dots, g\left(z, z', z^2, \dots, z^{(n-1)}\right)\right) = 0$$

Задача 8

Розв'язати рівняння

$$x^2yy''=(y-xy')^2.$$

Рівняння є однорідним відносно y, y', y''.

$$F(x, y, y', y'') = x^{2}yy'' - (y - xy')^{2}$$

$$F(x, \lambda y, \lambda y', \lambda y'') = \lambda^{2} (x^{2}yy'' - (y - xy')^{2})$$

$$\frac{y'}{y} = z(x), \ y' = yz, \ y'' = y'z + yz' = y (z^{2} + z')$$

$$x^{2}yy (z^{2} + z') = (y - xyz)^{2}.$$

$$y^{2}x^{2} (z' + z^{2}) = y^{2} (1 - xz)^{2}.$$

Скорочуємо на y^2 , зауваживши, що y = 0 є розв'язком рівняння.

$$x^{2}(z'+z^{2})=(1-xz)^{2}$$
.

$$x^2z' + 2xz = 1.$$

Це рівняння— лінійне. Ліву частину його можна записати як $(x^2z)'$

$$(x^2z)'=1$$

$$x^2z=x+C_1$$

$$z = \frac{1}{x} + \frac{C_1}{x^2}$$

354 / 495

$$z = \frac{1}{x} + \frac{C_1}{x^2}, \ \frac{y'}{y} = z(x)$$

$$\frac{y'}{y} = \frac{1}{x} + \frac{C_1}{x^2}$$

$$\int \frac{y'}{y} dx = \int \left(\frac{1}{x} + \frac{C_1}{x^2}\right) dx + \ln|C_2|$$

$$\int \frac{1}{y} dy = \ln|x| - \frac{C_1}{x} + \ln|C_2|$$

$$\ln|y| = \ln|x| - \frac{C_1}{x} + \ln|C_2|$$

$$\ln|y| = \ln|x| - \frac{C_1}{x} + \ln|C_2|$$

$$\ln\frac{|y|}{|xC_2|} = -\frac{C_1}{x}$$

Відповідь

$$y=C_2xe^{-\frac{C_1}{x}},$$

 C_1 , C_2 – довільні константи

Задача 9

Розв'язати рівняння

$$yy'' = \left(y'\right)^2 - \frac{3y^2}{\sqrt{x}}.$$

Розв'язок. Перший спосіб

Рівняння є однорідним відносно y, y', y'', m = 2. Підстановка

$$\frac{y'}{y} = z(x), \ y' = yz, \ y'' = y'z + yz' = y(z^2 + z')$$
$$y^2(z^2 + z') = y^2z^2 - \frac{3y^2}{\sqrt{x}}.$$

Скорочуємо на y^2 , зауваживши, що y = 0 є розв'язком рівняння.

$$z^2 + z' = z^2 - \frac{3}{\sqrt{x}}$$

358 / 495

Розв'язок. Перший спосіб

$$z' = -\frac{3}{\sqrt{x}}.$$

$$z = -\int \frac{3}{\sqrt{x}} dx + C_1$$

$$z = -6\sqrt{x} + C_1, \ \frac{y'}{y} = z(x)$$

$$\frac{y'}{y} = -6\sqrt{x} + C_1$$

359 / 495

Розв'язок. Перший спосіб

$$\int \frac{y'}{y} dx = \int \left(-6\sqrt{x} + C_1 \right) dx + \ln|C_2|$$

$$\ln \frac{|y|}{|C_2|} dy = C_1 x - 4x^{\frac{3}{2}}$$

$$y = C_2 e^{C_1 x - 4x^{\frac{3}{2}}}$$

Відповідь

$$y = C_2 e^{C_1 x - 4x^{\frac{3}{2}}}.$$

 C_1 , C_2 – довільні константи

Розв'язок. Другий спосіб

$$yy'' - \left(y'\right)^2 = -\frac{3y^2}{\sqrt{x}}.$$

Застосуємо співвідношення

$$\frac{yy''-(y')^2}{y^2}=\frac{d}{dx}\frac{y'}{y},$$

звідки

$$yy'' - (y')^2 = y^2 \frac{d}{dx} \frac{y'}{y}$$

Повертаємося до рівняння

$$y^2 \frac{d}{dx} \frac{y'}{y} = -\frac{3y^2}{\sqrt{x}}.$$

Скорочуємо на y^2 , зауваживши, що y=0 є розв'язком рівняння.

Розв'язок. Другий спосіб

$$\frac{d}{dx}\frac{y'}{y} = -\frac{3}{\sqrt{x}}.$$

Інтегруємо

$$\frac{y'}{y} = -\int \frac{3}{\sqrt{x}} dx + C_1.$$
$$\frac{y'}{y} = -6\sqrt{x} + C_1.$$

Далі хід розв'язування аналогічний першому способу

Лінійні диференціальні рівняння вищих порядків зі сталими коефіцієнтами

Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

Лінійне диференціальне рівняння n-го порядку

$$a_0(x)y^{(n)}(x)+a_1(x)y^{(n-1)}(x)+\ldots+a_{n-1}(x)y'(x)+a_n(x)y(x)=f(x),$$
 (61) $a_0(x)\neq 0,\ a_1(x),\ \ldots,\ a_n(x),\ f(x)$ — неперервні функції, $x\in (a,b).$ $f(x)=0,\ x\in (a,b)$ — рівняння називається однорідним, інакше — неоднорідним.

Пічкур В. В., Матвієнко В. Т., ХарченкЛінійні диференціальні рівняння вищи

Лінійне диференціальне рівняння *п*-го порядку. Задача Коші

$$a_{0}(x)y^{(n)}(x)+a_{1}(x)y^{(n-1)}(x)+\ldots+a_{n-1}(x)y'(x)+a_{n}(x)y(x)=f(x),$$
 (62)
$$y(x_{0})=z_{0},$$

$$y'(x_{0})=z_{1},$$

$$y''(x_{0})=z_{2},$$

$$\ldots$$

$$y^{(n-1)}(x_{0})=z_{n-1},$$
 $a_{0}(x)\neq0,\ a_{1}(x),\ldots,a_{n}(x),\ f(x)$ — неперервні функції, $x\in(a,b),$ $x_{0}\in(a,b),\ z_{0},\ z_{1},\ldots,z_{n-1}$ — задані.

Лінійне однорідне диференціальне рівняння n-го порядку

$$a_0(x)y^{(n)}(x)+a_1(x)y^{(n-1)}(x)+\ldots+a_{n-1}(x)y'(x)+a_n(x)y(x)=0,$$
 (63) $a_0(x), a_0(x), \ldots, a_n(x)$ – неперервні функції, $x \in (a,b)$.

Theorem (про фундаментальну систему розв'язків)

Існує п лінійно незалежних розв'язків

$$y_1(x), y_2(x), \ldots, y_n(x)$$

рівняння (63)

Theorem (про загальний розв'язок)

Загальний розв'язок рівняння (63)

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x),$$

 $C_1. C_2. ... C_n$ – довільні константи.

Лінійне однорідне диференціальне рівняння

$$a_0 y^{(n)}(x) + a_1 y^{(n-1)}(x) + \ldots + a_{n-1} y'(x) + a_n y(x) = 0,$$
 (64)

 $a_0 \neq 0$, a_2 , ..., a_n – дійсні числа.

Характеристичний многочлен

$$P(\lambda) = a_0\lambda^n + a_1\lambda^{n-1} + \ldots + a_{n-1}\lambda + a_n.$$

Характеристичне рівняння

$$P(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0.$$

$$\lambda_1, \lambda_2, \ldots, \lambda_n$$

- корені характеристичного рівняння.

Кожному кореню характеристичного рівняння ставимо у відповідність один член фундаментальної системи розв'язків.

$$\lambda_1 \in \mathbb{R}^1$$

– дійсний корінь кратності 1

$$y_1(x) = e^{\lambda_1 x}$$

 відповідний йому член фундаментальної системи розв'язків. Якщо

$$\lambda_1, \lambda_2, \ldots, \lambda_n$$

– дійсні корені кратності 1

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$$

– загальний розв'язок, C_1 , C_2 , ..., C_n – довільні константи.

368 / 495

$$\lambda_1 \in \mathbb{R}^1$$

- дійсний корінь кратності k,

$$\lambda_1 = \lambda_2 = \dots = \lambda_k,$$

$$y_1(x) = e^{\lambda_1 x},$$

$$y_2(x) = x e^{\lambda_1 x},$$

$$y_3(x) = x^2 e^{\lambda_1 x}$$

$$\dots$$

$$y_k(x) = x^{k-1} e^{\lambda_1 x}$$

– відповідні йому члени фундаментальної системи розв'язків.

$$\lambda_1 = a + ib \in \mathbb{C}^1$$

– комплексний корінь кратності 1, a, b – дійсні числа, $i^2 = -1$

$$\lambda_2 = a - ib \in \mathbb{C}^1$$

комплексний корінь кратності 1

$$y_1(x) = Re \ e^{\lambda_1 x} = e^{ax} \cos bx,$$

 $y_2(x) = Im \ e^{\lambda_1 x} = e^{ax} \sin bx$

- відповідні йому члени фундаментальної системи розв'язків.

$$\lambda_1 = a + ib \in \mathbb{C}^1$$

– комплексний корінь кратності k, a, b – дійсні числа, $i^2=-1$

$$\lambda_1 = \lambda_2 = \ldots = \lambda_k$$

$$\lambda_{k+1} = a - ib \in \mathbb{C}^1$$

- комплексний корінь кратності k

$$\lambda_{k+1} = \lambda_{k+2} = \ldots = \lambda_{2k}$$

$$y_1(x) = e^{ax} \cos bx,$$

$$y_2(x) = e^{ax} \sin bx$$

$$y_3(x) = xe^{ax} \cos bx,$$

$$y_4(x) = xe^{ax} \sin bx$$

$$y_5(x) = x^2 e^{ax} \cos bx,$$

$$y_6(x) = x^2 e^{ax} \sin bx$$
...

 $y_{2k-1}(x) = x^{k-1}e^{ax}\cos bx,$ $y_{2k}(x) = x^{k-1}e^{ax}\sin bx$

- відповідні йому члени фундаментальної системи розв'язків.

Задача 1

Знайти загальний розв'язок рівняння

$$y''' + 2y'' - y' - 2y = 0.$$

$$\lambda^3 + 2\lambda^2 - \lambda - 2 = 0.$$

$$(\lambda+2)(\lambda-1)(\lambda+1)=0$$

$$\lambda_1 = -2, \ \lambda_2 = 1, \ \lambda_3 = -1.$$

$$\lambda_1 = -2, \ y_1(x) = e^{\lambda_1 x} = e^{-2x}$$

$$\lambda_2 = 1, \ y_2(x) = e^{\lambda_2 x} = e^x$$

$$\lambda_3 = -1, \ y_3(x) = e^{\lambda_3 x} = e^{-x}$$

Відповідь

$$y(x) = C_1 e^{-2x} + C_2 e^x + C_3 e^{-x}$$

– загальний розв'язок, C_1 , C_2 , C_3 – довільні константи.

Задача 2

Знайти загальний розв'язок рівняння

$$y''' - 7y'' + 11y' - 5y = 0.$$

$$\lambda^3 - 7\lambda^2 + 11\lambda - 5 = 0.$$

$$(\lambda - 1)(\lambda^2 - 6\lambda + 5) = 0$$

$$(\lambda - 1)^2(\lambda - 5) = 0.$$

$$\lambda_1 = \lambda_2 = 1, \ \lambda_3 = 5.$$

$$\lambda_1 = \lambda_2 = 1, \ y_1(x) = e^x$$

$$y_1(x) = e^x, \ y_2(x) = xe^x$$

$$\lambda_3 = 5, \ y_3(x) = e^{5x}$$

Відповідь

$$y(x) = C_1 e^x + C_2 x e^x + C_3 e^{5x}$$

– загальний розв'язок, C_1 , C_2 , C_3 – довільні константи.

Задача 3

Знайти розв'язок рівняння

$$y^{IV} - y''' + 2y' = 0.$$

$$\lambda^4 - \lambda^3 + 2\lambda = 0.$$

$$\lambda \left(\lambda^3 - \lambda^2 + 2\right) = 0.$$

$$\lambda (\lambda + 1) (\lambda^2 - 2\lambda + 2) = 0.$$

380 / 495

$$\lambda^2 - 2\lambda + 2 = 0$$

$$D = 4 - 8 = -4$$

$$\lambda = \frac{2 \pm i\sqrt{4}}{2} = 1 \pm i.$$

$$\lambda_1 = 0, \ \lambda_2 = -1, \ \lambda_3 = 1 + i, \ \lambda_4 = 1 - i.$$

$$\lambda_1 = 0, \ y_1(x) = e^{0x} = 1$$
 $\lambda_2 = -1, \ y_2(x) = e^{-x}$
 $\lambda_3 = 1 + i, \ \lambda_4 = 1 - i$
 $y_3(x) = e^x \cos x,$
 $y_4(x) = e^x \sin x$

Відповідь

$$y(x) = C_1 + C_2 e^{-x} + C_3 e^x \cos x + C_3 e^x \sin x$$

– загальний розв'язок, C_1 , C_2 , C_3 , C_4 – довільні константи.

Задача 4

Знайти розв'язок рівняння

$$y^V + 18y''' + 81y' = 0.$$

$$\lambda^{5} + 18\lambda^{3} + 81\lambda = 0$$

$$\lambda (\lambda^{4} + 18\lambda^{2} + 81) = 0$$

$$\lambda (\lambda^{2} + 9)^{2} = 0$$

$$\lambda_{1} = 0, \ \lambda_{2} = \lambda_{3} = 3i, \ \lambda_{4} = \lambda_{5} = -3i.$$

$$\lambda_1 = 0, \ y_1(x) = e^{0x} = 1$$
 $\lambda_2 = \lambda_3 = 3i, \ \lambda_4 = \lambda_5 = -3i.$
 $\lambda_3 = 1 + i, \ \lambda_4 = 1 - i$
 $y_2(x) = e^{0x} \cos 3x = \cos 3x,$
 $y_3(x) = e^{0x} \sin 3x = \sin 3x$
 $y_4(x) = xe^{0x} \cos 3x = x \cos 3x,$
 $y_5(x) = xe^{0x} \sin 3x = x \sin 3x$

$$y(x) = C_1 + C_2 \cos 3x + C_3 x \cos 3x + C_4 \sin 3x + C_5 x \sin 3x$$

Відповідь

$$y(x) = C_1 + (C_2 + C_3 x) \cos 3x + (C_4 + C_5 x) \sin 3x$$

– загальний розв'язок, C_1 , C_2 , C_3 , C_4 , C_5 – довільні константи.

Задача 5

Знайти розв'язок рівняння

$$y'' - 5y' + 4y = 0, \ y(0) = 1, \ y'(0) = 0$$

$$\lambda^{2} - 5\lambda + 4 = 0$$
 $\lambda_{1} = 1, \ y_{1}(x) = e^{x}$
 $\lambda_{2} = 4, \ y_{2}(x) = e^{4x}$
 $y(x) = C_{1}e^{x} + C_{2}e^{4x}$

– загальний розв'язок, C_1 , C_2 – довільні константи.

$$y(x) = C_1 e^x + C_2 e^{4x}$$

$$y'(x) = C_1 e^x + 4C_2 e^{4x}$$

$$y(0) = 1, \ y'(0) = 0$$

$$y(0) = C_1 e^0 + C_2 e^0 = 1$$

$$y'(x) = C_1 e^0 + 4C_2 e^0 = 0$$

$$C_1 + C_2 = 1$$

$$C_1 + 4C_2 = 0$$

$$C_1 + C_2 = 1$$
$$C_1 + 4C_2 = 0$$

$$C_1 = \frac{4}{3}$$
$$C_2 = -\frac{1}{3}$$

$$C_2=-rac{1}{3}$$

Відповідь

$$y(x) = \frac{4}{3}e^x - \frac{1}{3}e^{4x}$$

Задача 6

Розв'язати крайову задачу

$$y'' - y = 0$$
, $y'(0) = 0$, $y(1) = 1$.

391 / 495

$$\lambda^2 - 1 = 0$$

$$\lambda_1 = -1, \ \lambda_2 = 1.$$

Загальний розв'язок даного рівняння

$$y(x) = C_1 e^x + C_2 e^{-x},$$
 (65)

$$y'(x) = C_1 e^x - C_2 e^{-x}. (66)$$

$$y'(0) = 0, \quad y(1) = 1.$$

Підставляючи x=0 в (66) та x=1 в (65) враховуємо крайові умови і отримуємо для знаходження значень коефіциентів C_1 та C_2 неоднорідну лінійну систему

$$\begin{cases} C_1 - C_2 = 0, \\ C_1 e + C_2 e^{-1} = 1. \end{cases}$$

Визначник цієї системи

$$\Delta = \begin{vmatrix} 1 & -1 \\ e & e^{-1} \end{vmatrix} = e^{-1} + e = 2\cosh 1 \neq 0,$$

отже, вона має єдиний розв'язок

$$C_1 = \frac{1}{2\cosh 1}, \quad C_2 = \frac{1}{2\cosh 1}.$$

Підставляючи знайдені значення C_1 та C_2 в (65), отримуємо розв'язок заданої крайової задачі

$$y(x) = \frac{e^x + e^{-x}}{2\cosh 1} = \frac{\cosh x}{\cosh 1}.$$

Відповідь

$$y(x) = \frac{\cosh x}{\cosh 1}.$$

Методи розв'язування лінійних неоднорідних диференціальних рівняння вищих порядків Практичне заняття з курсу "Диференціальні рівняння"

Пічкур В. В., Матвієнко В. Т., Харченко І. І., Васін П. О., Волощук С. Д.

> Київський національний університет імені Тараса Шевченка кафедра моделювання складних систем

> > 2020

Лінійне неоднорідне диференціальне рівняння n-го порядку

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_{n-1}(x)y'(x) + a_n(x)y(x) = f(x),$$
(67)

 $a_0(x) \neq 0$, $a_1(x)$, ..., $a_n(x)$, f(x) – неперервні функції, $x \in (a,b)$.

$$\mathcal{L}(y) = a_0(x)y^{(n)}(x) + \ldots + a_{n-1}(x)y'(x) + a_n(x)y(x)$$
 (68)

$$\mathcal{L}(y) = f(x), \tag{69}$$

 $x \in (a, b)$.

Теорема про структуру загального розв'язку

Theorem (про структуру загального розв'язку)

Загальний розв'язок неоднорідного лінійного диференціального рівняння

загальний розв'язок відповідного однорідного лінійного диференціального рівняння

$$\mathcal{L}(y)=0$$

частинний розв'язок неоднорідного лінійного диференціального рівнян-ΗЯ

Методи

Спочатку знаходимо загальний розв'язок відповідного однорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = 0$$

$$y_0(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$$

Методи

Потім знаходимо частинний розв'язок неоднорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = f(x)$$

Е такі методи знаходження частинного розв'язку неоднорідного лінійного диференціального рівняння

- метод Лагранжа (метод варіації довільної сталої)
- метод Коші
- метод невизначених коефіцієнтів

Не обмежуючи загальності $a_0(x) = 1$

$$y_0(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$$

Шукаємо частинний розв'язок неоднорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = f(x)$$

Частинний розв'язок

$$y_1(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + \ldots + C_n(x)y_n(x)$$

$$y(x) = \sum_{i=1}^{n} C_i(x)y_i(x)$$
$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i'(x) + \sum_{i=1}^{n} C_i'(x)y_i(x)$$

$$\sum_{i=1}^n C_i'(x)y_i(x)=0$$

$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i'(x)$$
$$y''(x) = \sum_{i=1}^{n} C_i(x)y_i''(x) + \sum_{i=1}^{n} C_i'(x)y_i'(x)$$

$$\sum_{i=1}^n C_i'(x)y_i'(x) = 0$$

$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i'(x)$$
$$y''(x) = \sum_{i=1}^{n} C_i(x)y_i''(x) + \sum_{i=1}^{n} C_i'(x)y_i'(x)$$

$$\sum_{i=1}^n C_i'(x)y_i'(x)=0$$

$$y^{(n-1)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n-1)}(x) + \sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x)$$

$$\sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x) = 0$$

$$y^{(n-1)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n-1)}(x) + \sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x)$$

$$\sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x) = 0$$

$$y^{(n)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n)}(x) + \sum_{i=1}^{n} C_i'(x) y_i^{(n-1)}(x)$$

$$y(x) = \sum_{i=1}^{n} C_i(x)y_i(x)$$

$$y'(x) = \sum_{i=1}^{n} C_i(x)y_i'(x)$$

. . .

$$y^{(n-1)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n-1)}(x)$$
$$y^{(n)}(x) = \sum_{i=1}^{n} C_i(x) y_i^{(n)}(x) + \sum_{i=1}^{n} C_i'(x) y_i^{(n-1)}(x)$$

Підставляємо в

$$\mathcal{L}(\mathbf{v}) = f(\mathbf{x})$$

$$\sum_{i=1}^{n} C_i(x)L(y_i) + \sum_{i=1}^{n} C'_i(x)y_i^{(n-1)} = f(x).$$

$$\sum_{i=1}^{n} C_i(x)L(y_i) = 0.$$

$$\sum_{i=1}^{n} C'_i(x)y_i^{(n-1)} = f(x)$$

$$\begin{cases} \sum_{i=1}^{n} C_{i}'(x)y_{i}(x) &= 0, \\ \sum_{i=1}^{n} C_{i}'(x)y_{i}'(x) &= 0, \\ \dots &\\ \sum_{i=1}^{n} C_{i}'(x)y_{i}^{(n-2)}(x) &= 0, \\ \sum_{i=1}^{n} C_{i}'(x)y_{i}^{(n-1)}(x) &= f(x). \end{cases}$$

Розв'язуємо систему, знаходимо

$$C'_1(x), C'_2(x), \ldots, C'_n(x)$$

Інтегруємо і знаходимо

$$C_1(x), C_2(x), \ldots, C_n(x)$$

Частинний розв'язок

$$y_1(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + ... + C_n(x)y_n(x)$$

Загальний розв'язок

$$y(x) = y_0(x) + y_1(x) = \sum_{i=1}^n C_i y_i(x) + \sum_{i=1}^n C_i(x) y_i(x)$$

Жозеф-Луї Лагранж

Задача 1

Знайти загальний розв'язок рівняння

$$y'' - 2y' + y = \frac{e^x}{x}.$$

$$y''-2y'+y=0.$$

$$\lambda^2 - 2\lambda + 1 = 0.$$

$$\lambda_1 = 1, \ \lambda_2 = 1.$$

$$y_0(x) = C_1 e^x + C_2 x e^x$$

$$y(x) = C_1(x)e^x + C_2(x)xe^x.$$

$$y'(x) = C_1'(x)e^x + C_2'(x)xe^x + C_1(x)e^x + C_2(x)(x+1)e^x.$$

$$C_1'(x)e^x + C_2'(x)xe^x = 0$$

Рівняння 1

$$C_1'(x) + C_2'(x)x = 0$$

$$y'(x) = C_1(x)e^x + C_2(x)(x+1)e^x.$$

$$y''(x) = C_1'(x)e^x + C_2'(x)(x+1)e^x + C_1(x)e^x + C_2(x)(x+2)e^x.$$

$$y(x) = C_1(x)e^x + C_2(x)xe^x.$$

$$y'(x) = C_1(x)e^x + C_2(x)(x+1)e^x.$$

$$y''(x) = C'_1(x)e^x + C'_2(x)(x+1)e^x + C_1(x)e^x + C_2(x)(x+2)e^x.$$

$$y'' - 2y' + y = \frac{e^x}{x}.$$

$$C_1'(x)e^x + C_2'(x)(x+1)e^x + C_1(x)e^x + C_2(x)(x+2)e^x -$$

$$-2(C_1(x)e^x + C_2(x)(x+1)e^x) + C_1(x)e^x + C_2(x)xe^x = \frac{e^x}{x}.$$

$$C_1'(x)e^x + C_2'(x)(x+1)e^x = \frac{e^x}{x}.$$

Рівняння 2

$$C_1'(x) + C_2'(x)(x+1) = \frac{1}{x}.$$

Для знаходження функцій $C_1(x)$, $C_2(x)$ отримаємо систему

$$\begin{cases} C_1'(x) + C_2'(x)x = 0, \\ C_1'(x) + C_2'(x)(x+1) = \frac{1}{x}. \end{cases}$$

$$C'_1(x) = -1, \ C'_2(x) = \frac{1}{x}$$

$$C_1(x) = -x, \ C_2(x) = \int \frac{1}{x} dx = \ln|x|$$

$$y_1(x) = -xe^x + xe^x \ln|x|.$$

$$y(x) = C_1e^x + C_2xe^x - xe^x + xe^x \ln|x|.$$

Відповідь

Загальний розв'язок

$$y(x) = C_1 e^x + C_2 x e^x - x e^x + x e^x \ln |x|,$$

де C_1 , C_2 – довільні числа.

Задача 2

Знайти загальний розв'язок рівняння

$$y''' + y' = \frac{1}{\cos x}.$$

Відповідне однорідне рівняння має вигляд

$$y'''+y'=0.$$

Характеристичне рівняння

$$\lambda^3 + \lambda = 0$$

$$\lambda \left(\lambda^2 + 1 \right) = 0$$

$$\lambda_1=0,\ \lambda_{2,3}=\pm i.$$

Загальний ров'язок однорідного рівняння має вигляд

$$y_0(x) = C_1 + C_2 \cos x + C_3 \sin x,$$

де C_1 , C_2 , C_3 – довільні числа.

Щоб побудувати загальний розв'язок неоднорідного рівняння, відповідно до методу варіації сталих, замість чисел C_1 , C_2 , C_3 розглядатимемо функції $C_1(x)$, $C_2(x)$, $C_3(x)$.

$$y_1(x) = C_1(x) + C_2(x)\cos x + C_3(x)\sin x$$

$$y_1(x) = C_1(x) + C_2(x)\cos x + C_3(x)\sin x$$

$$y_1'(x) = C_1'(x) + C_2'(x)\cos x + C_3'(x)\sin x - C_2(x)\sin x + C_3(x)\cos x$$

Рівняння 1

$$C_1'(x) + C_2'(x)\cos x + C_3'(x)\sin x = 0$$

$$y_1'(x) = -C_2(x)\sin x + C_3(x)\cos x$$

$$y_1'(x) = -C_2(x)\sin x + C_3(x)\cos x$$

$$y_1''(x) = -C_2'(x)\sin x + C_3'(x)\cos x - C_2(x)\cos x - C_3(x)\sin x$$

Рівняння 2

$$-C_{2}'(x)\sin x + C_{3}'(x)\cos x = 0$$

$$y_1''(x) = -C_2(x)\cos x - C_3(x)\sin x$$

$$y_1''(x) = -C_2(x)\cos x - C_3(x)\sin x$$

$$y_1'''(x) = -C_2'(x)\cos x - C_3'(x)\sin x + C_2(x)\sin x - C_3(x)\cos x$$

$$y_{1}(x) = C_{1}(x) + C_{2}(x)\cos x + C_{3}(x)\sin x$$

$$y_{1}'(x) = -C_{2}(x)\sin x + C_{3}(x)\cos x$$

$$y_{1}''(x) = -C_{2}(x)\cos x - C_{3}(x)\sin x$$

$$y_{1}'''(x) = -C_{2}'(x)\cos x - C_{3}'(x)\sin x + C_{2}(x)\sin x - C_{3}(x)\cos x$$

$$y''' + y' = \frac{1}{\cos x}.$$

$$-C_{2}'(x)\cos x - C_{3}'(x)\sin x + C_{2}(x)\sin x - C_{3}(x)\cos x -$$

$$-C_{2}(x)\sin x + C_{3}(x)\cos x = \frac{1}{\cos x}.$$

Рівняння 3

$$-C_{2}'(x)\cos x - C_{3}'(x)\sin x = \frac{1}{\cos x}.$$

$$\begin{cases} C'_1(x) + C'_2(x)\cos x + C'_3(x)\sin x &= 0, \\ -C'_2(x)\sin x + C'_3(x)\cos x &= 0, \\ -C'_2(x)\cos x - C'_3(x)\sin x &= \frac{1}{\cos x}. \end{cases}$$

$$\begin{cases} -C_2'(x)\sin x + C_3'(x)\cos x &= 0, \\ -C_2'(x)\cos x - C_3'(x)\sin x &= \frac{1}{\cos x}. \end{cases}$$

$$\Delta = \begin{vmatrix} -\sin x & \cos x \\ -\cos x & -\sin x \end{vmatrix} = 1$$

$$\Delta_1 = \begin{vmatrix} 0 & \cos x \\ \frac{1}{\cos x} & -\sin x \end{vmatrix} = -1$$

$$\Delta_2 = \begin{vmatrix} -\sin x & 0 \\ -\cos x & \frac{1}{\cos x} \end{vmatrix} = -\operatorname{tg} x$$

$$C_2'(x) = \frac{\Delta_1}{\Delta} = -1, \ C_3'(x) = \frac{\Delta_2}{\Delta} = -\lg x$$

$$C_1'(x) = -C_2'(x)\cos x - C_3'(x)\sin x = \cos x + \operatorname{tg} x \sin x = \frac{1}{\cos x}$$

$$C_1'(x) = \frac{1}{\cos x}, \quad C_2'(x) = -1, \quad C_3'(x) = -\lg x.$$

$$C_1(x) = \int \frac{dx}{\cos x} = \ln\left|\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|$$

$$C_2(x) = \int (-1) dx = -x$$

$$C_3(x) = \int (-\lg x) dx = \ln\left|\cos x\right|$$

Частинний розв'язок неоднорідного рівняння має вигляд

$$y_1(x) = C_1(x) + C_2(x)\cos x + C_3(x)\sin x$$

$$y_1(x) = \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| - x\cos x + \ln\left|\cos x\right|\sin x$$

Загальний розв'язок неоднорідного рівняння має вигляд

$$y(x) = y_0(x) + y_1(x) = C_1 + C_2 \cos x + C_3 \sin x +$$

 $+ \ln \left| \lg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| - x \cos x + \ln \left| \cos x \right| \sin x,$

де C_1 , C_2 , C_3 – довільні числа.

Відповідь

Загальний розв'язок

$$y(x) = y_0(x) + y_1(x) = C_1 + C_2 \cos x + C_3 \sin x +$$

 $+ \ln \left| \lg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| - x \cos x + \ln \left| \cos x \right| \sin x,$

де C_1 , C_2 , C_3 – довільні числа.

Метод Коші

$$\mathcal{L}(y) = a_0(x)y^{(n)}(x) + \ldots + a_{n-1}(x)y'(x) + a_n(x)y(x)$$

 $x \in (a, b)$.

Шукаємо розв'язок однорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = 0$$

$$y(s) = 0, y'(s) = 0, \dots, y^{(n-1)}(s) = 0, y^{(n-1)}(s) = 1, x, s \in (a, b)$$

$$y = \varphi(x, s)$$

$$\mathcal{L}(y) = f(x)$$

Частинний розв'язок (формула Коші)

$$y_1(x) = \int_{x_0}^{x} \varphi(x, s) f(s) ds$$

Огюстен Луї Коші

Задача 3

Знайти загальний розв'язок рівняння

$$y'' + 3y' + 2y = \frac{1}{e^x + 1}.$$

Розглянемо однорідне рівняння

$$y'' + 3y' + 2y = 0.$$

Характеристичне рівняння

$$\lambda^2 + 3\lambda + 2 = 0.$$

$$\lambda_1=-1,\ \lambda_2=-2.$$

Загальний ров'язок однорідного рівняння має вигляд

$$y_0(x) = C_1e^{-x} + C_2e^{-2x},$$

де C_1 , C_2 – довільні числа.

Частинний розв'язок неоднорідного рівняння шукаємо методом Коші. Для цього розглянемо умови Коші

$$y(s) = 0, y'(s) = 1.$$

Знайдемо похідну

$$y_0'(x) = -C_1 e^{-x} - 2C_2 e^{-2x},$$

 $y_0(s) = C_1 e^{-s} + C_2 e^{-2s} = 0,$
 $y_0'(s) = -C_1 e^{-s} - 2C_2 e^{-2s} = 1.$

$$\begin{cases} C_1 e^{-s} + C_2 e^{-2s} &= 0, \\ -C_1 e^{-s} - 2C_2 e^{-2s} &= 1. \end{cases}$$

$$\Delta = \begin{vmatrix} e^{-s} & e^{-2s} \\ -e^{-s} & -2e^{-2s} \end{vmatrix} = -e^{-3s}$$

$$\Delta_1 = \begin{vmatrix} 0 & e^{-2s} \\ 1 & -2e^{-2s} \end{vmatrix} = -e^{-2s}$$

$$\Delta_2 = \begin{vmatrix} e^{-s} & 0 \\ -e^{-s} & 1 \end{vmatrix} = e^{-s}$$

$$C_{1} = \frac{\Delta_{1}}{\Delta} = e^{s}, \ C_{2} = \frac{\Delta_{2}}{\Delta} = -e^{2s}$$

$$\varphi(x,s) = e^{s}e^{-x} - e^{2s}e^{-2x}$$

$$\varphi(x,s) = e^{-(x-s)} - e^{-2(x-s)}$$

$$y_{1}(x) = \int_{x_{0}}^{x} \varphi(x,s) f(s) ds = \int_{x_{0}}^{x} \left(e^{-(x-s)} - e^{-2(x-s)}\right) \frac{1}{e^{s} + 1} ds$$

$$y_1(x) = \int_{x_0}^{x} \left(e^{-(x-s)} - e^{-2(x-s)} \right) \frac{1}{e^s + 1} ds =$$

$$= e^{-x} \int_{x_0}^{x} \frac{e^s}{e^s + 1} ds - e^{-2x} \int_{x_0}^{x} \frac{e^{2s}}{e^s + 1} ds$$

$$\int \frac{e^x}{e^x + 1} dx = \int \frac{1}{e^x + 1} d(e^x + 1) = \ln(e^x + 1)$$

$$\int \frac{e^{2x}}{e^x + 1} dx = \int \frac{e^x}{e^x + 1} de^x = |t = e^x| =$$

$$= \int \frac{t}{t + 1} dt = t - \ln|t + 1| = e^x - \ln|e^x + 1|$$

$$\begin{split} y_1(x) &= e^{-x} \, \ln |e^s + 1||_{s = x_0}^{s = x} - e^{-2x} \, \left(e^s - \ln |e^s + 1| \right)|_{s = x_0}^{s = x} = \\ &= e^{-x} \, \left(\ln |e^x + 1| - \ln |e^{x_0} + 1| \right) - \\ &- e^{-2x} \, \left(e^x - e^{x_0} - \ln |e^x + 1| + \ln |e^{x_0} + 1| \right). \end{split}$$

Загальний ров'язок неоднорідного рівняння має вигляд

$$y(x) = y_0(x) + y_1(x) = C_1 e^{-x} + C_2 e^{-2x} + e^{-x} \left(\ln|e^x + 1| - \ln|e^{x_0} + 1| \right) - e^{-2x} \left(e^x - e^{x_0} - \ln|e^x + 1| + \ln|e^{x_0} + 1| \right),$$

де C_1 , C_2 , x_0 – довільні числа.

$$\begin{split} y\left(x\right) &= \, C_1 e^{-x} + C_2 e^{-2x} + \\ &+ e^{-x} \ln \frac{|e^x + 1|}{|e^{x_0} + 1|} - e^{-2x} \left(e^x - 1 - \ln \frac{|e^x + 1|}{|e^{x_0} + 1|}\right). \end{split}$$

Наприклад, якщо $x_0 = 0$

$$y(x) = C_1 e^{-x} + C_2 e^{-2x} + \\ + e^{-x} \ln \frac{|e^x + 1|}{2} - e^{-2x} \left(e^x - 1 - \ln \frac{|e^x + 1|}{2} \right)$$

Відповідь

Загальний розв'язок

$$y(x) = C_1 e^{-x} + C_2 e^{-2x} +$$

$$+ e^{-x} \ln \frac{|e^x + 1|}{|e^{x_0} + 1|} - e^{-2x} \left(e^x - 1 - \ln \frac{|e^x + 1|}{|e^{x_0} + 1|} \right),$$

де C_1 , C_2 , x_0 – довільні числа.

Метод невизначених коефіцієнтів

$$\mathcal{L}(y) = a_0 y^{(n)}(x) + \ldots + a_{n-1} y'(x) + a_n y(x)$$

$$\mathcal{L}(y) = f(x)$$

- застосовується для рівнянь з постійними коефіцієнтами;
- для функції f(x) спеціального вигляду

Характеристичний многочлен

 $x \in (a, b)$.

$$\mathcal{P}(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n.$$

Метод невизначених коефіцієнтів. Випадок 1

$$f(x)=e^{lpha x}P_m(x),$$
 $P_m(x)=p_0x^m+p_1x^{m-1}+...+p_{m-1}x+p_m,\;(m\geq 0),$ $lpha$ — дійсне число.

• α не є коренем характеристичного многочлена;

$$y_1(x) = e^{\alpha x} Q_m(x)$$

ullet lpha ϵ коренем характеристичного многочлена кратності k

$$y_1(x) = e^{\alpha x} x^k Q_m(x)$$

$$Q_m(x) = q_0 x^m + q_1 x^{m-1} + \dots + q_{m-1} x + q_m$$
$$q_0, q_1, \dots q_{m-1}, q_m$$

невизначені коефіцієнти

446 / 495

Метод невизначених коефіцієнтів. Випадок 1

$$f(x) = P_m(x),$$

$$P_m(x) = p_0 x^m + p_1 x^{m-1} + \dots + p_{m-1} x + p_m, \ (m \ge 0),$$

$$\alpha = 0$$

0 не є коренем характеристичного многочлена;

$$y_1(x) = Q_m(x)$$

• $0 \in \mathsf{к}$ оренем характеристичного многочлена кратності k

$$y_1(x) = x^k Q_m(x)$$

$$Q_m(x) = q_0 x^m + q_1 x^{m-1} + \dots + q_{m-1} x + q_m$$
$$q_0, q_1, \dots q_{m-1}, q_m$$

невизначені коефіцієнти

Задача 4

Знайти загальний розв'язок рівняння

$$y'' - 5y' + 6y = 6x^2 - 10x + 2.$$

$$y'' - 5y' + 6y = 0$$

$$\lambda^2 - 5\lambda + 6 = 0$$

$$\lambda_1 = 2, \ \lambda_2 = 3$$

$$y_0 = C_1 e^{2x} + C_2 e^{3x}.$$

$$y'' - 5y' + 6y = 6x^{2} - 10x + 2.$$

$$f(x) = 6x^{2} - 10x + 2, \ \alpha = 0$$

$$y_{1} = Ax^{2} + Bx + C$$

$$y_{1} = Ax^{2} + Bx + C$$

$$y'_{1} = 2Ax + B$$

$$y''_{1} = 2A$$

$$y'' - 5y' + 6y = 6x^{2} - 10x + 2.$$

$$2A - 5(2Ax + B) + 6(Ax^{2} + Bx + C) = 6x^{2} - 10x + 2$$

$$6Ax^{2} + (6B - 10A)x + 6C - 5B + 2A = 6x^{2} - 10x + 2$$

$$(6A - 6)x^{2} + (6B - 10A + 10)x + 6C - 5B + 2A - 2 = 0$$

$$6A = 6, 6B - 10A = -10$$

$$6C - 5B + 2A = 2$$

$$A = 1, B = 0, C = 0$$

$$y_1(x) = Ax^2 + Bx + C = x^2$$

$$y(x) = C_1e^{2x} + C_2e^{3x} + x^2$$

Відповідь

Загальний розв'язок

$$y(x) = C_1 e^{2x} + C_2 e^{3x} + x^2,$$

де C_1 , C_2 – довільні константи.

Задача 5

Знайти загальний розв'язок рівняння

$$y''' + 3y'' - 10y' = x - 3.$$

Спочатку знайдемо загальний розв'язок однорідного рівняння

$$y''' + 3y'' - 10y' = 0.$$

Обчислимо корені характеристичного рівняння

$$\lambda^{3} + 3\lambda^{2} - 10\lambda = 0$$
$$\lambda (\lambda^{2} + 3\lambda - 10) = 0$$
$$\lambda (\lambda - 2)(\lambda + 5) = 0$$
$$\lambda_{1} = 0, \ \lambda_{2} = 2, \ \lambda_{3} = -5$$

Загальний розв'язок однорідного рівняння має вигляд:

$$y_0(x) = C_1 + C_2e^{2x} + C_3e^{-5x},$$

де C_1 , C_2 , C_3 – довільні константи.

$$f(x) = x - 3, \ \alpha = 0, \ \lambda_1 = 0$$

Тому частинний розв'язок

$$y_1(x) = x(Ax + B) = Ax^2 + Bx.$$

$$y_1'(x) = 2Ax + B, \quad y_1''(x) = 2A, \quad y_1'''(x) = 0$$
$$y''' + 3y'' - 10y' = x - 3.$$
$$0 + 3 \cdot 2A - 10(2Ax + B) = x - 3$$
$$6A - 20Ax - 10B = x - 3$$
$$6A - 10B = -3, \quad -20A = 1$$
$$A = -\frac{1}{20}, \quad B = \frac{27}{100}$$

Частинний розв'язок $y_1(x)$ записується як

$$y_1(x) = x(Ax + B) = Ax^2 + Bx = -\frac{1}{20}x^2 + \frac{27}{100}x$$

Отже, загальний розв'язок неоднорідного диференціального рівняння виражається формулою

$$y(x) = C_1 + C_2 e^{2x} + C_3 e^{-5x} - \frac{1}{20}x^2 + \frac{27}{100}x,$$

де C_1 , C_2 , C_3 – довільні константи.

Відповідь

Загальний розв'язок

$$y(x) = C_1 + C_2 e^{2x} + C_3 e^{-5x} - \frac{1}{20}x^2 + \frac{27}{100}x,$$

де C_1 , C_2 , C_3 – довільні константи.

Задача 5

Знайти загальний розв'язок рівняння

$$y''-y=2e^x.$$

Спочатку знайдемо загальний розв'язок однорідного рівняння

$$y''-y=0.$$

Знайдемо корені характеристичного рівняння

$$\lambda^2 - 1 = 0$$

$$\lambda_1 = -1, \ \lambda_2 = 1$$

Загальний розв'язок однорідного рівняння має вигляд:

$$y_0(x)=C_1e^{-x}+C_2e^x,$$

де C_1 , C_2 – довільні константи.

$$f(x) = 2e^x, \ \alpha = 1, \ \lambda_2 = 1$$

Тому частинний розв'язок

$$y_1(x) = Axe^x$$
.

$$y'_{1}(x) = Ae^{x} + Axe^{x}, \ \ y''_{1}(x) = Ae^{x} + Ae^{x} + Axe^{x} = 2Ae^{x} + Axe^{x}$$

$$y'' - y = 2e^{x}.$$

$$2Ae^{x} + Axe^{x} - Axe^{x} = 2e^{x}.$$

$$2Ae^{x} = 2e^{x}.$$

$$A = 1$$

Частинний розв'язок $y_1(x)$ записується як

$$y_1(x) = xe^x$$

Отже, загальний розв'язок неоднорідного диференціального рівняння

$$y(x) = C_1 e^{-x} + C_2 e^x + x e^x,$$

де C_1 , C_2 – довільні константи.

Відповідь

Загальний розв'язок

$$y(x) = C_1 e^{-x} + C_2 e^x + x e^x$$
,

де C_1 , C_2 – довільні константи.

Метод невизначених коефіцієнтів. Випадок 2

$$f(x) = e^{\alpha x} (P_m(x) \cos \beta x + R_s(x) \sin \beta x),$$

$$P_m(x) = p_0 x^m + p_1 x^{m-1} + \dots + p_{m-1} x + p_m, (m \ge 0),$$

$$R_s(x) = r_0 x^s + r_1 x^{s-1} + \dots + r_{s-1} x + r_s, (s \ge 0),$$

 α , β – дійсні числа.

Метод невизначених коефіцієнтів. Випадок 2

$$M = \max\{m, s\}$$

• $\alpha + i\beta$ не є коренем характеристичного многочлена;

$$y_1(x) = e^{\alpha x} (Q_M(x) \cos \beta x + T_M(x) \sin \beta x)$$

• $\alpha + i\beta$ є коренем характеристичного многочлена кратності k

$$y_1(x) = e^{\alpha x} x^k (Q_M(x) \cos \beta x + T_M(x) \sin \beta x)$$

$$Q_{M}(x) = q_{0}x^{M} + q_{1}x^{M-1} + \dots + q_{M-1}x + q_{M}$$

$$T_{M}(x) = t_{0}x^{M} + t_{1}x^{M-1} + \dots + t_{M-1}x + t_{M}$$

$$q_{0}, q_{1}, \dots, q_{M-1}, q_{M}; t_{0}, t_{1}, \dots t_{M-1}, t_{M}$$

невизначені коефіцієнти

Задача 6

Знайти загальний розв'язок рівняння

$$y'' + y' - 2y = e^x (\cos x - \sin x)$$

Спочатку знайдемо загальний розв'язок однорідного рівняння

$$y'' + y' - 2y = 0.$$

Знайдемо корені характеристичного рівняння

$$\lambda^2 + \lambda - 2 = 0$$

$$\lambda_1 = 1, \ \lambda_2 = -2$$

Загальний розв'язок однорідного рівняння має вигляд:

$$y_0(x) = C_1 e^x + C_2 e^{-2x},$$

де C_1 , C_2 – довільні константи.

$$f(x) = e^{x} (\cos x - \sin x)$$
$$\alpha = 1, \ \beta = 1$$
$$\alpha + \beta i = 1 + i$$

не є коренем характеристичного рівняння.
 Тому частинний розв'язок

$$y_1(x) = e^x (A\cos x + B\sin x).$$

$$y'_{1}(x) = e^{x} (A \cos x + B \sin x) +$$

 $+ e^{x} (-A \sin x + B \cos x) =$
 $= e^{x} ((A + B) \cos x + (B - A) \sin x)$

$$y_1''(x) = e^x ((A+B)\cos x + (B-A)\sin x) + + e^x (-(A+B)\sin x + (B-A)\cos x) = = e^x (2B\cos x - 2A\sin x) = = 2e^x (B\cos x - A\sin x)$$

$$y'' + y' - 2y = e^x (\cos x - \sin x)$$

$$y_1(x) = e^x (A \cos x + B \sin x),$$

 $y_1'(x) = e^x ((A + B) \cos x + (B - A) \sin x),$
 $y_1''(x) = 2e^x (B \cos x - A \sin x).$

$$y'' + y' - 2y = e^{x} (\cos x - \sin x)$$
$$2e^{x} (B \cos x - A \sin x) + e^{x} ((A + B) \cos x + (B - A) \sin x) + e^{x} ((A + B) \cos x + (A + B) \cos x) + e^{x} ((A + B) \cos x + (A + B) \cos x) + e^{x} ((A + B) \cos x + (A + B) \cos x) + e^{x} ((A + B) \cos x) + e^{x} (($$

 $-2e^{x}(A\cos x + B\sin x) =$

 $= e^{x} (\cos x - \sin x)$

$$2(B\cos x - A\sin x) +$$

$$+(A+B)\cos x + (B-A)\sin x +$$

$$-2(A\cos x + B\sin x) =$$

$$=\cos x - \sin x$$

$$2(B\cos x - A\sin x) +$$

$$+(A+B)\cos x + (B-A)\sin x +$$

$$-2(A\cos x + B\sin x) =$$

$$=\cos x - \sin x$$

$$\cos x (2B + (A + B) - 2A - 1) + \sin x (-2A + (B - A) - 2B + 1) = 0$$

$$-A + 3B = 1,$$

$$-3A - B = -1$$

$$A = \frac{1}{5},$$
$$B = \frac{2}{5}$$

Частинний розв'язок $y_1(x)$ записується як

$$y_1(x) = e^x \left(\frac{1}{5}\cos x + \frac{2}{5}\sin x\right)$$

Отже, загальний розв'язок неоднорідного диференціального рівняння

$$y(x) = C_1 e^x + C_2 e^{-2x} + e^x \left(\frac{1}{5}\cos x + \frac{2}{5}\sin x\right),$$

де C_1 , C_2 – довільні константи.

Відповідь

Загальний розв'язок

$$y(x) = C_1 e^x + C_2 e^{-2x} + e^x \left(\frac{1}{5}\cos x + \frac{2}{5}\sin x\right),$$

де C_1 , C_2 – довільні константи.

Метод невизначених коефіцієнтів. Випадок 3

Функція f(x) не підпадає ні під перший, ні під другий випадки, але

$$f(x) = f^{(1)}(x) + f^{(2)}(x) + \ldots + f^{(r)}(x),$$

де кожна з функцій $f^{(1)}(x)$, $f^{(2)}(x)$, ..., $f^{(r)}(x)$ підпадає або під перший, або під другий випадки методу невизначених коефіцієнтів.

• Знаходимо частинний розв'язок

$$y^{(i)}(x)$$

неоднорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = f^{(i)}(x), i = 1, 2, ..., r$$

для кожної функції $f^{(1)}(x)$, $f^{(2)}(x)$, ..., $f^{(r)}(x)$.

Знаходимо частинний розв'язок неоднорідного лінійного диференціального рівняння

$$\mathcal{L}(y) = f(x)$$

як суму частинних розв'язків

$$y_1(x) = y^{(1)}(x) + y^{(2)}(x) + \ldots + y^{(r)}(x).$$

Задача 7

Знайти загальний розв'язок рівняння

$$y''' - y' = \sin 3x + 2e^x.$$

Спочатку знайдемо загальний розв'язок однорідного рівняння

$$y'''-y'=0.$$

Знайдемо корені характеристичного рівняння

$$\lambda^3 - \lambda = 0$$

$$\lambda \left(\lambda^2 - 1 \right) = 0$$

$$\lambda_1 = 0, \ \lambda_2 = 1, \ \lambda_3 = -1$$

Загальний розв'язок однорідного рівняння має вигляд:

$$y_0(x) = C_1 + C_2 e^x + C_3 e^{-x},$$

де C_1 , C_2 , C_3 – довільні константи.

$$y''' - y' = \sin 3x + 2e^{x}$$
$$f^{(1)}(x) = \sin 3x$$
$$f^{(2)}(x) = 2e^{x}$$

$$f^{(1)}(x) = \sin 3x$$
$$\alpha = 0, \ \beta = 3$$

$$\alpha + \beta i = 3i$$

- не є коренем характеристичного рівняння. Тому частинний розв'язок

$$y_1(x) = A\cos 3x + B\sin 3x.$$

$$y_1'(x) = 3A\cos 3x - 3B\sin 3x$$

$$y_1''(x) = -9A\sin 3x - 9B\cos 3x,$$

$$y_1'''(x) = -27A\cos 3x + 27B\sin 3x.$$

$$-27A\cos 3x + 27B\sin 3x - 3A\cos 3x + 3B\sin 3x = \sin 3x,$$

$$-30A\cos 3x + 30B\sin 3x = \sin 3x.$$

$$-30A = 0$$
, $30B = 1$

$$A = 0, B = \frac{1}{30}$$

Частинний розв'язок $y_1(x)$ записується як

$$y_1(x) = \frac{1}{30}\cos 3x$$

$$f^{(2)}(x) = 2e^{x}$$

$$\alpha = 1$$

$$\lambda = 1$$

– є коренем характеристичного рівняння. Тому частинний розв'язок

$$y_2(x) = Axe^x$$
.

$$y'_1(x) = Ae^x + Axe^x = A(x+1)e^x,$$

 $y''_1(x) = Ae^x + A(x+1)e^x = A(x+2)e^x,$
 $y'''_1(x) = Ae^x + A(x+2)e^x = A(x+3)e^x.$

$$A(x+3)e^{x} - A(x+1)e^{x} = 2e^{x},$$

 $A(x+3) - A(x+1) = 2,$
 $Ax + 3A - Ax - A = 2$

$$2A = 2, A = 1$$

Частинний розв'язок $y_2(x)$ записується як

$$y_2(x) = xe^x$$

Частинний розв'язок неоднорідного диференціального рівняння

$$y_3(x) = \frac{1}{30}\cos 3x + xe^x.$$

Отже, загальний розв'язок неоднорідного диференціального рівняння

$$y(x) = C_1 + C_2 e^x + C_3 e^{-x} + \frac{1}{30} \cos 3x + x e^x,$$

де C_1 , C_2 , C_3 – довільні константи.

Відповідь

Загальний розв'язок

$$y(x) = C_1 + C_2e^x + C_3e^{-x} + \frac{1}{30}\cos 3x + xe^x,$$

де C_1 , C_2 , C_3 – довільні константи.

Зауваження

В попередній задачі частинний розв'язок $y_1(x)$ неоднорідного диференціального рівняння можна відразу шукати у вигляді

$$y_1(x) = A\cos 3x + B\sin 3x + Cxe^x,$$

де А. В. С – невизначені коефіцієнти.

488 / 495

Задача 8

Застосуємо метод невизначених коефіцієнтів до розв'язування лінійного неоднорідного рівняння першого порядку Знайти загальний розв'язок рівняння

$$y' = y + x^2 + 1.$$

Спочатку знайдемо загальний розв'язок однорідного рівняння

$$y'=y$$
.

Загальний розв'язок однорідного рівняння має вигляд:

$$y_0(x) = Ce^x$$
,

де C – довільна константа.

$$y' = y + x^2 + 1$$
$$\alpha = 1$$

Тому частинний розв'язок

$$y_1(x) = Ax^2 + Bx + D.$$

$$y_{1}'\left(x\right) =2Ax+B.$$

$$2Ax + B = Ax^{2} + Bx + D + x^{2} + 1.$$

$$x^{2}(A+1) + x(B-2A) + 1 - B + D = 0.$$

$$A+1=0, B-2A=0, 1-B+D=0.$$

$$A=-1, B=-2, D=-3$$

Частинний розв'язок $y_1(x)$ записується так

$$y_1(x) = -x^2 - 2x - 3.$$

Отже, загальний розв'язок неоднорідного диференціального рівняння

$$y(x) = Ce^x - x^2 - 2x - 3,$$

де C – довільна константа.

Відповідь

Загальний розв'язок

$$y(x) = Ce^x - x^2 - 2x - 3$$

де C – довільна константа.