

Group Theory

Homework Assignment 08

Spring, 2020

- 1. Identify the point group that is obtained by combining the two symmetry elements in each case.
 - (a) A 2-fold rotation axis and an inversion center.
 - (b) Two mirror planes at right angles to each other.
 - (c) A 2-fold rotation axis and an intersecting mirror plane.
- 2. Let a rotation about an axis passing through the origin and perpendicular to the xOy plane through an angle of θ be represented by the matrix R_{θ} and a reflection in the line passing through the origin and making an angle of $\theta/2$ with the positive x axis be represented by the matrix S_{θ} . Show that R_{θ} and S_{θ} can be expressed as

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

- 3. Continue from the above problem.
 - (a) Compute the effect of rotating the vector $2_x + 3e_y$ counterclockwise about the origin through an angle of $\pi/2$ radians.
 - (b) Compute the effect of reflecting the vector $e_x + e_y$ through the line y = 2x.
 - (c) Compute the effect of rotating the vector e_y counterclockwise about the origin through an angle of $\pi/3$ radians and then reflecting through the line y = 2x.
- 4. Continue from the above problem.
 - (a) Show that $S_{\theta}S_{\psi}$ is a rotation and find the angle of rotation.
 - (b) Show that $S_{\theta}R_{\psi}S_{\theta}=R_{-\psi}$.
 - (c) Let T_v be a translation through v, $T_v w = w + v$. Show that $T_{R_\theta v} R_\theta = R_\theta T_v$.
- 5. Consider the point groups C_{2v} and D_{2h} .
 - (a) Find all invariant subgroups of C_{2v} .
 - (b) Find all invariant subgroups of D_{2h} .