Recurrence

Recurrences

Recurrences

- An algorithm contains a recursive call to itself, its running time can be described by a recurrence.
- Many algorithms (divide and conquer) are recursive in nature.
- When we analyze them, we get a recurrence relation for time complexity.
- We get running time as a function of n (input size) and we get the running time on inputs of smaller sizes.

Recurrences

- A recurrence is a recursive description of a function, or a description of a function in terms of itself.
- A recurrence relation recursively defines a sequence where the next term is a function of the previous terms.

Recurrences...

- Three methods to solve recurrences
 - substitution method
 - Forward Substitution
 - Backward Substitution
 - recursion-tree method
 - converts the recurrence into a tree whose nodes present the costs incurred at various levels of the recursion
 - master method
 - provides bounds for recurrences of the form
 - $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, Where $a \ge 1, b > 1$ and f(n) given function

```
Void Test(int n)
     if(n>0)
            for(i=0;i<n;i++)
                    printf("%d",i);
    Test(n-1);
```

```
Void Test(int n).....T(n)
      if(n>0).....1
            for(i=0;i<n;i++).....(n+1)
                  printf("%d",i);.....n
      Test(n-1);.....T(n-1)
T(n)=T(n-1)+2n+2
  Recurrence Relation:
T(n) = \begin{cases} 1 & n = 0 \\ T(n-1) + n & n > 0 \end{cases}
```

$$T(n) = \underline{T(n-1)} + n$$

▶ Replacing n by n-1 and n-2, we can write following equations.

$$\underline{T(n-1)} = \underline{T(n-2)} + n - 1 \qquad -----2$$

$$\underline{T(n-2)} = T(n-3) + n-2 \qquad ---- \qquad 3$$

Substituting equation 3 in 2 and equation 2 in 1 we have now,

$$T(n) = T(n-3) + n - 2 + n - 1 + n$$
 --- (4)

$$T(n) = T(n-3) + n - 2 + n - 1 + n$$
 --- 4

From above, we can write the general form as,

$$T(n) = T(n-k) + (n-k+1) + (n-k+2) + ... + n$$

Suppose, if we take k = n then,

$$T(n) = T(n-n) + (n-n+1) + (n-n+2) + ... + n$$

$$T(n) = 0 + 1 + 2 + ... + n$$

$$T(n) = \frac{n(n+1)}{2} = O(n^2)$$

$$t(n) = \begin{cases} c1 & \text{if } n = 0\\ c2 + t(n-1) & \text{o/w} \end{cases}$$

Rewrite the equation,

$$t(n) = c2 + \underline{t(n-1)}$$

Now, replace n by n-1 and n-2

$$t(n-1) = c2 + t(n-2)$$
 $\therefore t(n-1) = c2 + c2 + t(n-3)$
 $t(n-2) = c2 + t(n-3)$

 \triangleright Substitute the values of n-1 and n-2

$$t(n) = c2 + c2 + c2 + t(n-3)$$

In general,

$$t(n) = kc2 + t(n - k)$$

Suppose if we take k = n then,

$$t(n) = nc2 + t(n - n) = nc2 + t(0)$$

 $t(n) = nc2 + c1 = \mathbf{0}(\mathbf{n})$

Example 3

```
Void Test(int n)
     if(n>0)
      for(i=1;i<n;i=i*2)
                    printf("%d",i);
     Test(n-1);
```

Example 3

```
void Test(int n).....T(n)
      if(n>0) ......1
       for(i=1;i<n;i=i*2)
                   printf("%d",i);.....(log n)
      Test(n-1);.....T(n-1)
Recurrence Relation:
T(n) = \begin{cases} 1 & n = 0 \\ T(n-1) + \log n & n > 0 \end{cases}
```

```
Example 4:
Algorithm Test(int n)
      if(n>1)
            printf("%d",n);
            Test(n/2);
```

```
Algorithm Test(int n) ......T(n)
   if(n>1) ......1
      printf("%d",n); ......1
      Test(n/2);.....T(n/2)
```

Recurrence Relation:

T(n)=
$$\begin{cases} 1 & n = 1 \\ T(n/2) + 1 & n > 1 \end{cases}$$

- Example 5:
- Recurrence Relation:

T(n)=
$$\begin{cases} 1 & n = 1 \\ T(n/2) + n & n > 1 \end{cases}$$

Example 6:

```
Find the recurrence relation for following:
void test(int n)
      if(n>0)
            printf("%d",n);
            test(n-1);
```

```
• Example 7:
void test(int n)
       if(n>1)
             for(i=0;i<n;i++)
                     stmts;
              test(n/2);
              test(n/2);
```

Recursion tree method

Recursion tree method

- Each node represents **the cost of a single sub problem** somewhere in the set of recursive function invocations.
- Sum the costs within each level of the tree to obtain a set of per-level costs.
- Sum all the per-level costs to determine the total cost of all levels of the recursion.
- Recursion tree useful when the recurrence describes the running time of a divide-and-conquer algorithm.
- When we have more than one recursive term in R.H.S. in recurrence relation then we can solve that relation using recursion tree method.
- T(n)=T(n/2)+T(n/3)+n

• E.g.,
$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

• F(n) is the cost of **splitting or combining** the sub problems.

Recurrence Tree Method

The recursion tree for this recurrence is

Example 1: T(n) = 2T(n/2) + n

- n/2^k=1
- k=logn
- For Running Time:
- Level 0-n
- Level 1-n
- **-**
- Level k-n

Total Time=(n*k)

T(n)=(n log n)

Recurrence Tree Method

The recursion tree for this recurrence is

Example 2: T(n) = T(n/3) + T(2n/3) + n

Height of Left Subtree n/3^k=1

- K=log ₃n
- Height of Right Subtree:
- $n/(3/2)^k = 1$
- K=log (3/2) n
- Computing Time=n*k
- T(n)= n log (3/2) n

Recurrence Tree Method

The recursion tree for this recurrence is

Example 3: $T(n) = 2T(n/2) + n^2$

$$T(n) = O(n^2)$$

The Master Theorem

Master Theorem

- Where $a \ge 1$ and b > 1 are constants and $f(n) = \theta$ ($n^k \log^p n$)
- ▶ This recurrence would arise in the analysis of a recursive algorithm.
- When input size n is large, the problem is divided up into a sub-problems each of size n/b. Sub-problems are solved recursively and results are recombined.
- The work to split the problem into sub-problems and recombine the results is f(n).

The Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Where $a \geq 1$ and b > 1 are constants and $f(n) = \theta(n^k \log^p n)$

- Case 1: if $\log_b a > k$ then $T(n) = \theta(n^{\log_a b})$
- Case 2: if log ba = k then
 - If p > -1 then $T(n) = \theta (n^k \log^{p+1} n)$
 - If p = -1, then $T(n) = \theta$ ($n^k \log \log n$)
 - If p < -1, then $T(n) = \theta(n^k)$
- Case 3: if log ba > k then
 - If p < 0, then $T(n) = O(n^k)$
 - If $p \ge 0$, then $T(n) = \theta$ ($n^k \log^p n$)

The Master Theorem: Example #1

The Master Theorem: Example #1

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

The Master Theorem

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

• Case 1: if $\log_a b > k$ then $T(n) = \theta(n^{\log_a b})$

The Master Theorem: Example #2

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

- Case 2: if log ab = k then
 - If p > -1 then $T(n) = \theta (n^k \log^{p+1} n)$
 - If p = -1, then $T(n) = \theta$ ($n^k \log \log n$)
 - If p < -1, then $T(n) = \theta(n^k)$

The Master Theorem: Example #3

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n^3$$

- Case 3: if log ab > k then
 - If p < 0, then $T(n) = O(n^k)$
 - If $p \ge 0$, then $T(n) = \theta$ ($n^k \log^p n$)

The Master Theorem Examples

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n^2 \log n$$

•
$$T(n) = 4T\left(\frac{n}{2}\right) + n^3 \log^3 n$$

Changing Variable

Changing Variable

- Consider the following recurrence
- $T(n) = 2T\sqrt{n} + \log n$

Changing Variable

- Consider the following recurrence
- $T(n) = 2T(\sqrt{n}) + \log n$
 - Take, $m = \log n$

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$
 - $n=2^{m}$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$

$$- T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$$

- Still we can not apply master theorem.
- $-S(m) = T(2^m)$ to produce the new recurrence

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

- Consider the following recurrence
- $T(n) = 2T(|\sqrt{n}|) + \log n$
 - Take, $m = \log n$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$
 - Now, we can rename $S(m) = T(2^m)$ to produce the new recurrence

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

Solution for S(m) = ?

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$
 - Now, we can rename $S(m) = T(2^m)$ to produce the new recurrence

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

Solution for $S(m) = O(m \log m)$

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$
 - Now, we can rename $S(m) = T(2^m)$ to produce the new recurrence

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

Solution for $S(m) = O(m \log m)$

Changing back from S(m) to T(n) then T(n) = ?

- Consider the following recurrence
- $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$
 - Take, $m = \log n$
 - $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$
 - Now, we can rename $S(m) = T(2^m)$ to produce the new recurrence

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

Solution for $S(m) = O(m \log m)$

Changing back from S(m) to T(n)

$$T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$$

AMORTIZED ANALYSIS

Introduction

- Amortized analysis considers not just one operation, but a sequence of operations on a given data structure or a database.
- Amortized Analysis is used for algorithms where an occasional operation is very slow, but most of the other operations are faster.
- ▶ The time required to perform a sequence of data structure operations is averaged over all operations performed.
- In Amortized Analysis, we analyze a sequence of operations and guarantee a worst case average time which is lower than the worst case time of a particular expensive operation.
- So, Amortized analysis can be used to show that the average cost of an operation is small even though a single operation might be expensive.

Amortized Analysis Techniques

- There are three most common techniques of amortized analysis,
 - 1. The aggregate method
 - A sequence of n operation takes worst case time T(n)
 - Amortized cost per operation is T(n)/n
 - 2. The accounting method
 - Assign each type of operation an (different) amortized cost
 - Overcharge some operations
 - Store the overcharge as credit on specific objects
 - Then use the credit for compensation for some later operations
 - The potential method
 - Same as accounting method
 - But store the credit as "potential energy" and as a whole.

Amortized Analysis - Example

Counte r value	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	Increment cost	Tota I
										cost
0	0	0	0	0	0	0	0	0		U
1	0	0	0	0	0	0	0	1	1	-1
2	0	0	0	0	0	0	1	0	2	3
3	0	0	0	0	0	0	1	1	1	4
4	0	0	0	0	0	1	0	0	3	7
5	0	0	0	0	0	1	0	1	1	8
6	0	0	0	0	0	1	1	0	2	10
7	0	0	0	0	0	1	1	1	1	11
8	0	0	0	0	1	0	0	0	4	15
9	0	0	0	0	1	0	0	1	→ 1	16
10	0	0	0	0	1	0	1	0	→ 2	18
11	0	0	0	0	1	0	1	1	1	19

Incrementing a Binary Counter

- Implementing a k-bit binary counter that counts upward from $0 \ to \ n$.
- Use array A[0 ... k 1] of bits as the counter where,

length[A] = k

- A[0] is the least significant bit.
- A[k-1] is the most significant bit.

Amortized Analysis - Example

Counte r value	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	Increment cost	Tota I
										cost
0	0	0	0	0	0	0	0	0		U
1	0	0	0	0	0	0	0	1	→ 1	1
2	0	0	0	0	0	0	1	0	→ 2	3
3	0	0	0	0	0	0	1	1	1	4
4	0	0	0	0	0	1	0	0	→ 3	7
5	0	0	0	0	0	1	0	1	→ 1	8
6	0	0	0	0	0	1	1	0	→ 2	10
7	0	0	0	0	0	1	1	1	1	11
8	0	0	0	0	1	0	0	0	4	15
9	0	0	0	0	1	0	0	1	1	16
10	0	0	0	0	1	0	1	0	→ 2	18
11	0	0	0	0	1	0	1	1	1	19

Aggregate Method

- The running time of an increment operation is proportional to the number of bits flipped.
- However, all bits are not flipped at each INCREMENT.
- A[0] flips **at each** increment operation;
- A[1] flips at alternate increment operations;
- A[2] flips only once for 4 successive increment operations;
 - In general, bit A[i] flips $\lfloor n/2^i \rfloor$ times in a sequence of n INCREMENTs.

Aggregate Method

For k=4 (no. of bits) and n=8 (counter value) total number of flips of bit can be given as,

$$A = \frac{8}{2^0} + \frac{8}{2^1} + \frac{8}{2^2} + \frac{8}{2^3}$$

total bit flipping operations can be

$$A = 8 + 4 + 2 + 1 = 15$$

$$A = \sum_{i=0}^{k-1} \frac{n}{2^i}$$

n	Counter value	Number of bit flips							
0	0000	0							
1	0001	1							
2	0010	2							
3	0011	1							
4	0100	3							
5	0101	1							
6	0110	2							
7	0111	1							
8	1000	4							
	Total Flips = 15								

Aggregate Method

Therefore, the total number of flips in the sequence is,

$$\sum_{i=0}^{K-1} \lfloor n/2^i \rfloor < n \sum_{i=0}^{\infty} 1/2^i = 2n$$

- Total time T(n) = O(n)
- ▶ The amortized cost of each operation is O(n)/n = O(1)

Accounting Method

- If we charge an amortized cost of ₹2 to set a bit to 1.
- ▶ If we charge an amortized cost of ₹0 to set a bit to 0.
- ▶ When a bit is set we use ₹1 to pay for the actual setting of the bit and we place the other ₹1 on the bit **as a credit**.

Amortized Analysis - Example

Counte r value	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	Amortize d cost	Actual cost	Credit
0	0	0	0	0	0	0	0	0		0	0
1	0	0	0	0	0	0	0	1	2	1	1
2	0	0	0	0	0	0	1	0	2	1	1
3	0	0	0	0	0	0	1	1	2	2	2
4	0	0	0	0	0	1	0	0	2	1	1
5	0	0	0	0	0	1	0	1	2	2	2
6	0	0	0	0	0	1	1	0	2	2	2
7	0	0	0	0	0	1	1	1	2	3	3

Total Amortized Cost 14

Amortized Analysis - Example

Counte r value	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	Amortize d cost	Actual cost	Credit
0	0	0	0	0	0	0	0	0		0	0
1	0	0	0	0	0	0	0	1	2	1	1
2	0	0	0	0	0	0	1	0	2	1	1
3	0	0	0	0	0	0	1	1	2	2	2
4	0	0	0	0	0	1	0	0	2	1	1
5	0	0	0	0	0	1	0	1	2	2	2
6	0	0	0	0	0	1	1	0	2	2	2
7	0	0	0	0	0	1	1	1	2	3	3

Total Amortized Cost 14

Accounting Method

- Total Amortized cost= (0+2+2+2+2+2+2) for 7 increments
- Total Amortized cost= 14 for 7 increments
- Total Amortized cost=2*7 for 7 increments
- Total Amortized cost= 2 * n for n increments
- T(n)=2n
- The total amortized cost is O(n).

Potential Method

- Same as accounting method: something prepaid is used later.
- Different from accounting method.
 - The prepaid work not as credit, but as "potential energy", or "potential".
 - The potential is associated with the data structure as a whole rather than with specific objects within the data structure.

Potential Method

The Amortized cost c_i of the i th operation with respect to potential function Φ is defined by :

$$c_i' = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

ie (actual cost + potential change)
where

- c_i is Amortized cost of the i th operation.
- c_i is Actual cost of the i th operation.
- D_i is Data structure.
- A potential function Φ: {D_i} → R (real numbers)
- Φ(D_i) is called the potential of D_i.

- Potential of the counter after ith Increment() operation to be b_i the number of 1's in the counter after ith operation.
- □ Therefore $Φ(D_i) = b_i$, the number of 1's. clearly, $Φ(D_i) ≥ 0$.

Counter Value	A[2]	A[1]	A[0]	Actual Cost	Ф(D)	Φ(<i>D_{i-1}</i>)	Potential Difference	Amortized Cost
0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	1	2
2	0	1	0	2	1	1	0	2
3	0	1	1	1	2	1	1	2

- ▶ Total Amortized cost for 7 operations =14
- ► Total Amortized cost for 7 operations = 2 * 7
- ▶ Total Amortized cost of n operations =2 * n
- \blacktriangleright The total amortized cost is O(n)

Mathematical Proof Techniques

- Deduction, or direct proof
- Proof by Contradiction
- Proof by Mathematical Induction.

Probabilistic Analysis