Atividade 03 Solução

GEN 253 - Circuitos Digitais

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

1) Considerando a expressão abaixo faça o que se pede:

$$S = \overline{A}.B + (A.B.C.(\overline{A} + (\overline{B}.C)))$$

- a) Apresente o circuito correspondente
- b) Apresente a tabela-verdade correspondente
- c) Obtenha a simplificação algébrica da expressão
- d) Apresente a expressão na forma de um produto de somas (POS)

- 2) Dado o circuito, faça o que se pede:
 - a) Apresente a expressão booleana correspondente
 - b) Apresente a tabela-verdade correspondente
 - c) Obtenha a simplificação algébrica da expressão
 - d) Apresente a expressão na forma de uma soma de produtos (SOP)

1) Considerando a expressão abaixo faça o que se pede:

$$S = \overline{A}.B + (A.B.C.(\overline{A} + (\overline{B}.C)))$$

- a) Apresente o circuito correspondente
- b) Apresente a tabela-verdade correspondente
- c) Obtenha a simplificação algébrica da expressão
- d) Apresente a expressão na forma de um produto de somas (POS)

Α	В	С	s
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

S = (A+B+C).(A+B+C).(A+B+C).(A+B+C)

1) Considerando a expressão abaixo faça o que se pede:

$$S = \overline{A}.B + (A.B.C.(\overline{A} + (\overline{B}.C)))$$

- a) Apresente o circuito correspondente
- b) Apresente a tabela-verdade correspondente
- c) Obtenha a simplificação algébrica da expressão
- d) Apresente a expressão na forma de um produto de somas (POS)

$$S = \overline{A}.B + (A.B.C.(\overline{\overline{A} + (\overline{B}.C}))) \qquad \text{DeMorgan}$$

$$S = \overline{A}.B + (A.B.C.(\overline{\overline{A}}.(\overline{\overline{B}.C}))) \qquad \text{Identidade do complemento e DeMorgan}$$

$$S = \overline{A}.B + (A.B.C.(A.(\overline{B} + \overline{C}))) \qquad \text{Identidade do complemento}$$

$$S = \overline{A}.B + (A.B.C.(A.(B + \overline{C}))) \qquad \text{Distributiva}$$

$$S = \overline{A}.B + (A.B.C.(A.B + A.\overline{C})) \qquad \text{Distributiva}$$

$$S = \overline{A}.B + (A.B.C.A.B) + (A.B.C.A.\overline{C}) \qquad \text{Identidades das portas lógicas}$$

$$S = \overline{A}.B + A.B.C + 0 \qquad \text{identidades das portas lógicas}$$

$$S = \overline{A}.B + A.B.C \qquad \text{B em evidência}$$

$$S = B.(\overline{A} + A.C) \qquad \text{Identidade auxiliar 2}$$

$$S = B.(\overline{A} + C) \qquad \text{Distributiva}$$

$$S = \overline{A}.B + B.C \qquad \text{Resposta final}$$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

- 2) Dado o circuito, faça o que se pede:
 - a) Apresente a expressão booleana correspondente
 - b) Apresente a tabela-verdade correspondente
 - c) Obtenha a simplificação algébrica da expressão
 - d) Apresente a expressão na forma de uma soma de produtos

$$S = (\overline{\overline{A} + \overline{B} + \overline{C}}) + (\overline{A \oplus C}. \overline{A}) + (((A.\overline{B}) + B).C)$$

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.C$$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

- 2) Dado o circuito, faça o que se pede:
 - a) Apresente a expressão booleana correspondente
 - b) Apresente a tabela-verdade correspondente
 - c) Obtenha a simplificação algébrica da expressão
 - d) Apresente a expressão na forma de uma soma de produtos (SOP)

$S = \overline{\overline{A} + \overline{B} + \overline{C}} + (\overline{A \oplus C}.\overline{A}) + ((A.\overline{B} + B).C)$	DeMorgan
$S = A.B.C + (\overline{A \oplus C}.\overline{A}) + ((A.\overline{B} + B).C)$	Expandir Ou Exclusivo
$S = A.B.C + ((\overline{A}.\overline{C} + A.C).\overline{A}) + ((A.\overline{B} + B).C)$	Distributiva
$S = A.B.C + (\overline{A}.\overline{C}.\overline{A} + A.C.\overline{A}) + ((A.\overline{B} + B).C)$	Identidades das portas lógicas
$S = A.B.C + \overline{A}.\overline{C} + 0 + ((A.\overline{B} + B).C)$	Identidade auxiliar 2
$S = A.B.C + \overline{A}.\overline{C} + ((A+B).C)$	Distributiva
$S = A.B.C + \overline{A}.\overline{C} + A.C + B.C$	Colocar A.C em evidência
$S = A.C.(B+1) + \overline{A}.\overline{C} + B.C$	Identidade das portas
$S = A.C.1 + \overline{A}.\overline{C} + B.C$	Identidade das portas
$S = A.C + \overline{A}.\overline{C} + B.C$	Resposta final

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais