Logică computațională Curs 6

Lector dr. Mihiș Andreea-Diana

Metoda rezoluției (Robinson, 1965)

- metodă de demonstrare automată sintactică, prin respingere
- este o metodă corectă și completă de demonstrare automată
- verificarea *consistenței/inconsistenței* unei mulțimi de clauze (scop)

Sistem formal (axiomatic) asociat Rezoluției propoziționale

- Res = $(\sum_{\text{Res}}, F_{\text{Res}}, A_{\text{Res}}, R_{\text{Res}})$
 - $\sum_{\text{Res}} = \sum_{P} \setminus \{ \land, \rightarrow, \leftrightarrow \} \text{alfabetul}$
 - ullet $F_{\mathrm{Res}} \cup \{\Box\}$ mulţimea formulelor bine-formate
 - F_{Res} mulțimea tuturor clauzelor ce se pot forma folosind alfabetul Σ_{Res}
 - □ clauza vidă care nu conține nici un literal, simbolizează inconsistența
 - $A_{\mathrm{Res}} = \emptyset$ mulțimea axiomelor
 - $R_{\text{Res}} = \{res\}$ mulțimea regulilor de inferență care conține doar
 - regula rezoluției: $A \vee l$, $B \vee \neg l \mid_{res} A \vee B$, unde l este un literal, iar $A, B \in F_{Res}$

Terminologie

- clauzele $C_1 = A \lor l$, $C_2 = B \lor \neg l$ rezolvă deoarece conțin doi literali opuși (complementari)
- Notație: $C_3 = Res_l(C_1, C_2)$
- C₃ rezolventul clauzelor C₁ și C₂
- clauzele C₁, C₂ clauze părinte
- caz particular: $C_1 = l$, $C_2 = \neg l$, $Res_l(C_1, C_2) = \square$ inconsistentă

Observație:

• Rezoluţia ca şi regulă de inferenţă este o generalizare a regulilor *modus ponens, modus tollens* şi a *silogismului*.

Algoritmul rezoluției propoziționale:

Date de intrare: S – o mulțime de clauze

Date de ieșire: S consistentă sau inconsistentă

$$S_0 = S$$
$$i = 0$$

Repetă

@ se aleg două clauze C_1 , $C_2 \in S$ care rezolvă

$$C_3 = Res (C_1, C_2)$$

$$S_{i+1} = S_i \cup \{C_3\}$$

Dacă
$$C_3 = \Box$$

Atunci Scrie "S este inconsistentă"; STOP

Altfel
$$i = i + 1$$

Sfârșit dacă

Până când $S_i = S_{i-1}$ //nu se mai pot deriva clauze noi Scrie "S este consistentă"

Sfârșit algoritm

Notație:

• $S \mid_{-Res} \square$ "din mulțimea S de clauze s-a derivat clauza vidă prin aplicarea algoritmului rezoluției propoziținale"

Teorema de corectitudine și completitudine

• Teorema de corectitudine

Dacă $S \mid_{\mathsf{Res}} \square$ atunci S este inconsistentă.

• Teorema de completitudine

Dacă S este inconsistentă atunci $S \mid_{-Res} \square$.

• Teorema de corectitudine și completitudine

Mulțimea S este inconsistentă dacă și numai dacă $S \mid_{-\mathrm{Res}} \square$.

Teoreme

- U este tautologie dacă și numai dacă FNC ($\neg U$) $|\neg_{Res} \square$
- $U_1, U_2, ..., U_n \models V$ dacă și numai dacă $U_1, U_2, ..., U_n \models V$ dacă și numai dacă $FNC (U_1 \land U_2 \land ... \land U_n \land \neg V) \models_{Res} \Box$

$$S_i \stackrel{\text{not.}}{=} FNC(U_i), i = \overline{1,n}$$

$$S_{n+1} \stackrel{\text{not.}}{=} FNC(\neg V)$$

$$S_1 \cup S_2 \cup ... \cup S_n \cup S_{n+1} \mid \neg_{\text{Res}} \square$$

Exemplu

$$S = \{ \neg p \lor q, \neg p \lor r, p, \neg q \lor \neg r \}$$

$$C_{1} \stackrel{\text{not.}}{=} \neg p \lor q, \quad C_{2} \stackrel{\text{not.}}{=} \neg p \lor r, \quad C_{3} \stackrel{\text{not.}}{=} p, \quad C_{4} \stackrel{\text{not.}}{=} \neg q \lor \neg r$$

$$C_{1} = \neg p \lor q \qquad C_{3} = p \qquad C_{3} = p \qquad C_{2} = \neg p \lor r$$

$$C_{5} = q \qquad C_{4} = \neg q \lor \neg r \qquad C_{6} = \underline{r}$$

$$C_{7} = \neg \underline{r}$$

Automatizarea procesului rezolutiv

- prin intermediul unor strategii
 - asigură exploatarea tuturor modurilor posibile de derivare a clauzei vide
 - evitarea deducerii unor clauze redundante sau irelevante pentru obţinerea □

Strategia eliminării

 \emptyset sau $\{\Box\}$

- inspirată din procedura Davis-Putman
- O multime S de clauze poate fi simplificată, păstrând consistența/inconsistența ei prin aplicarea următoarelor transformări:
 - Eliminarea clauzelor tautologice (nu pot contribui la derivarea clauzei vide): $\neg p \lor q \lor p \lor \neg r$
 - Eliminarea clauzelor subsumate de alte clauze din S: clauza C_1 este subsumată de C_2 dacă există o clauză C_3 astfel încât $C_1 = C_2 \vee C_3$: $\neg p \lor q \lor r$ este subsumată de $\neg p \lor q$
 - Eliminarea clauzelor care conțin literali puri în S: Un literal este pur dacă negația sa nu apare în nici o clauză din S: clauza C_1 este subsumată de C_2 dacă există o clauză C_3 astfel încât $C_1 = C_2 \vee C_3$:

$$\{\neg p \lor q, \neg p \lor \underline{r}, p, \neg q \lor \underline{r}\}$$

• Dacă C=l este o clauză unitate din S, se șterg toate clauzele care-l conțin pe l și —l din clauzele rămase.

$$\{q, r, \neg q \lor \neg r\}$$

Strategia saturării pe nivele (algoritmul)

Date de intrare: S – o mulțime de clauze Date de ieșire: S consistentă sau inconsistentă //Se generează mulțimile de clauze S^0 , S^1 , ... S^k ce reprezintă nivelele $S^0 = S$ k=0Repetă k = k + 1 $S^k = \{ \text{Res} (C_1, C_2) \mid C_1 \in S^0 \cup S^1 \cup ... \cup S^{k-1}, C_2 \in S^{k-1} \}$ $S^k = S^k \setminus (S^0 \cup S^1 \cup \ldots \cup S^{k-1})$ **Până când** $\square \in S^k$ sau $S^k = \emptyset$ **Dacă** $\square \in S^k$ Atunci Scrie "S este inconsistentă"; Altfel Scrie "S este consistentă" Sfârșit dacă Sfârșit algoritm

Strategia mulțimii suport

- se *evită* aplicarea regulii de rezoluție asupra unor clauze dintr-o *submulțime consistentă* a mulțimii inițiale de clauze, deoarece rezolvenții obținuți sunt *irelevanți* în procesul de derivare a
- Această strategie a fost inspirată din faptul următor: în general mulțimea *premizelor* (faptelor) unei deducții este *consistentă*, deci rezolvarea unor clauze din această mulțime consistentă nu poate duce la derivarea clauzei vide (inconsistența)
- **Definiție:** Fie S o mulțime de clauze. O submulțime Y a lui S se numește *mulțime suport* a lui S, dacă $S \setminus Y$ este consistentă. **Rezoluția mulțimii suport** este rezoluția a două clauze care nu aparțin ambele mulțimii $S \setminus Y$.