Exercise Sheet 4

Due: Monday, 26. Sept.

Exercise 1. Let n > 1, and consider a smooth function $f : \mathbb{R}^n \to \mathbb{R}$.

1. Let $U \subset \mathbb{R}^n$ be an open subset. Show that the graph of f on U, i.e. the set

$$Graph_{U}(f) := \{(x, y) \in U \times \mathbb{R} \mid y = f(x)\} \subset \mathbb{R}^{n+1}$$

is a smooth submanifold of dimension n.

2. Suppose that df_x has rank 1 for every x such that f(x) = 0. Show that the set

$$M = \{x \in \mathbb{R}^n \mid f(x) = 0\} \subset \mathbb{R}^n$$

is a smooth submanifold of dimension n-1. (Hint: Implicit function theorem.)

3. Let

$$M = \{x \in \mathbb{R}^n \mid f(x) = 0\} \subset \mathbb{R}^n$$

as in part (2). Show that $v \in T_pM$ if and only if v is orthogonal to the vector

$$\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right).$$

at p. Note that this is the same thing as requiring that v is in the kernel of the linear map

$$df_p: T_pM \longrightarrow T_{f(p)}\mathbb{R}$$

Exercise 2. The *n*-sphere S^n is the subset of \mathbb{R}^{n+1} consisting of points which are unit distance from the origin.

- 1. Show that S^n is a smooth submanifold of \mathbb{R}^{n+1} for $n \geq 1$.
- 2. Consider the odd-dimensional sphere $S^{2n-1} \subset \mathbb{R}^{2n}$. Let $(x^1, \dots, x^n, y^1, \dots, y^n)$ be coordinates on \mathbb{R}^{2n} . Write e_{x^i} and e_{y^j} for constant vector fields on \mathbb{R}^{2n} corresponding to the standard basis. Show that the vector field

$$X(x^1, \dots, x^n, y^1, \dots, y^n) := \sum_{i=1}^n y^i e_{x^i} - x^i e_{y^i}$$

on \mathbb{R}^{2n} restricts to a smooth tangent vector field on S^{2n-1} . Show that X is non-zero for every point in S^{2n-1} .

Remark 1. An fascinating fact about vector fields on spheres is the *Hedgehog Theo*rem: There is a non-zero tangent vector field on the n-sphere $S^n \subset \mathbb{R}^{n+1}$ if and only if n is odd. (You can't comb a hedgehog, or at least not well.) For an analytic proof see this document. **Exercise 3.** Find two smooth tangent vector fields X and Y on the torus $T^2 \subset \mathbb{R}^3$, which has a parameterization

$$\phi(u^1, u^2) = \left(\sin(u^1)(\cos(u^2) + 2), \cos(u^1)(\cos(u^2) + 2), \sin(u^2)\right).$$

Your vector fields satisfy the following condition.

• At each $p \in T^2$, X(p) and Y(p) form a basis of T_pT^2 .

Verify that your vector fields are indeed smooth, and show that they satisfy this condition. (Hint: draw a picture, then try to formal definition.)

Exercise 4. Let $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ be two submanifolds, and let $f: M \to N$ be a smooth function. Let $\phi: U \to M$ be a chart around p and $\psi: V \to N$ a chart around f(p). Define the differential of f at a point $p \in M$

$$df_p: T_pM \longrightarrow T_{f(p)}N$$

to be the unique linear map such that the diagram

$$T_{p}M \xrightarrow{df_{p}} T_{f(p)}N$$

$$d(\phi)_{p} \uparrow \qquad \uparrow d(\psi)_{f(p)}$$

$$\mathbb{R}^{k} \xrightarrow{d(\psi^{-1} \circ f \circ \phi)_{\phi(p)}} \mathbb{R}^{\ell}$$

commutes. Define

$$df:TM\longrightarrow TN$$

to send (p, v) to $(f(p), df_p(v))$.

- 1. Show that df is independent of the choice of charts in the definition.
- 2. Show that df is a smooth map between manifolds.
- 3. Show that, given a smooth curve $\gamma:(-a,a)\to M$ with $\gamma(0)=p$, the tangent vectors of γ and $f\circ \gamma$ at 0 are related by

$$df_p(\gamma'(0)) = \frac{d}{dt}(f \circ \gamma)|_{t=0}.$$