Primeira Lista de Àlgebra Linear II: Geometria Analítica

O Espaço
$$R^2$$

1 - Questões do Livro Texto: exercícios 1 até 12.

ÁLGEBRA LINEAR BÁSICA com GEOMETRIA ANALÍTICA – Paulo Parga, editora EDUR, Seropédica 2014 – 4ª ou 5ª edição.

Questão 2: Dados vetores $\vec{u} = (u_1, u_2)$, $\vec{v} = (v_1, v_2)$ e $\vec{w} = (w_1, w_2)$, sendo k e λ números reais qualquer. Já dabemos que podemos realizar a adição de vetores e a multiplicação por escalar. Verifique que tais operações satisfazem as propriedades:

- 1. comutatividade da soma: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;
- 2. associatividade da soma: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$;
- 3. distributividade 1: $k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$;
- 4. distributividade 2: $(k+\lambda)\vec{u} = k\vec{u} + \lambda\vec{u}$;
- 5. associatividade na multiplicação: $(k.\lambda)\vec{u} = k(\lambda \vec{u})$

Quetão 3: Considere $P = (1,-1), Q = (-2,4)e R = (-\frac{3}{2},-3)$ e encontre

- 1. P+Q+R;
- $2. \quad \frac{1}{2}Q P + 2R$
- 3. um valor de λ e um valor de k tal que $P = \lambda Q + kR$. Faça a prova real e mostre que você acertou as contas.

Questão 3: Já sabemos, pela regra do paralelogramo a interpretação geométrica da adição de vetores $\vec{u}+\vec{v}$ que não possuem a mesma direção. Ou seja, o vetor soma é uma das diagonais do paralelogramo. Se \vec{u} é representado por \vec{OP} e \vec{v} é representado por \vec{OA} , então escreva que a outra diagonal $\vec{AP}=P-A$ é resultante da conta $\vec{u}-\vec{v}$

Questão 4 (desafio): Seja ABC um triângulo qualquer com medianas AD, BE e CF.

Verifique que os passos abaixo estão corretos e podem ser utilizados para provar que

$$\vec{BE} + \vec{AD} + \vec{CF} = (0,0)$$
.

Passo 1: Pela regra do paralelogramo valem

- $\vec{BE} = \vec{BC} + \vec{CE}$,
- $\vec{AD} = \vec{AC} + \vec{CD}$,
- $\vec{CF} = \vec{CB} + \vec{BF}$

Passo2: Some as equações anteriores e obtenha

•
$$\vec{BE} + \vec{AD} + \vec{CF} = (\vec{CE} + \vec{AC}) + \vec{CD} + \vec{BF} = (-\vec{EC} + \vec{AC}) + \vec{CD} + \vec{BF}$$
;

Passo3: Como foram construídas medianas, então

•
$$\vec{BE} + \vec{AD} + \vec{CF} = \frac{1}{2}\vec{AC} + \frac{1}{2}\vec{CB} + \frac{1}{2}\vec{BA} = \frac{1}{2}[(\vec{AC} + \vec{CB}) + \vec{BA}] = \frac{1}{2}(\vec{AB} + \vec{BA})$$
.

Questão 4:

- 4.1) Encontre as equações paramétricas e cartesianas da reta r que passa por A=(1,2) e B=(2,1). A reta r intercepta o eixo x? Em que ponto?
- 4.2) Encontre um vetor unitário na direção de \vec{AB} . Existe mais de um? Quantos?
- 4.3) Quais são as coordenadas do ponto que divide o segmento AB ao meio?
- 4.4) Encontre uma reta ortogonal a reta r e que passa pelo ponto médio do segmento AB

Questão 5: Calcule a distância entre o ponto $A = (\cos \theta, sen \theta)$ e a origem. Em que figura geométrica estão todos os pontos do R^2 com as coordenadas desse tipo?

Questão 6: Verifique se os pontos (1,2), (2,1) e (2,-2) estão na mesma reta.

Questão 7: Exercício sobre o produto interno. Sejam \vec{u} e \vec{v} vetores quaisquer e verifique que

- $\langle \vec{u}, \vec{u} \rangle = ||\vec{u}||^2 ,$
- 7.2) $\langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle = ||\vec{u}||^2 + 2\langle \vec{u}, \vec{v} \rangle + ||\vec{v}||^2 ,$
- 7.3) $\langle \vec{u} + \vec{v}, \vec{u} \vec{v} \rangle = ||\vec{u}||^2 ||\vec{v}||^2$

Questão 8: Considere um triangulo ABC qualquer de lados $a = \|\vec{BC}\|$, $b = \|\vec{AC}\|$ e $c = \|\vec{AB}\|$ e chamemos de o ângulo entre \vec{AB} e \vec{AC} . Lembrando que o produto interno entre \vec{u} e \vec{v} vetores quaisquer não nulos satisfaz $\langle \vec{u}, \vec{v} \rangle = \|\vec{u}\| \|\vec{v}\| \cos(\beta)$ e utilizando os resultados do exercício 7, verifique que vale a lei dos cossenos, isto é,

Questão 9: Desigualdades importantes:

- 9.1) Designaldade de Schwartz: $|\langle \vec{u}, \vec{v} \rangle| \le ||\vec{u}||.||\vec{v}||$, pode ser demonstrada utilizando que $\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| ||\vec{v}|| \cos(\beta)$ e que $|\cos(\beta)| \le 1$.
- 9.2) Desigualdade triangular: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ Dica: A desigualdade 9.2 pode ser obtida utilizando a expressão $\langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle$ e a desigualdade de Schwartz.

Questão 10: Determine os ângulos do triângulo cujos vértices são A= (1,2), B= (2,4) e C= (4,2). Encontre as coordenadas de um quarto ponto D de forma que ABCD formam um parelelogramo.

Questão 11: Encontre as distâncias

- 11.1) Entre o ponto (1,-1) e a reta r de equações paramétricas x=1+2t e y=2-3t;
- 11.2) Entre as retas r do item anterior e a reta de equação cartesiana 3x+2y=7.