Chan_ Escamen 1 - Reprise Witzel The discosts (sc). $\cos^2(q)$ disc thing because dy = 0. $\Rightarrow \frac{\cos(x)}{\sec^2(x)}$ disc $+\frac{\sin(x)}{\cos^2(q)}$ dy = 0. Mario 7019XM8 WITH 20040400 => 1 cos3 (xc) dx + 1 xm(g) dy =10. 15/02/2024 >) (1-sin2(21). cos(20) dbe + sec(g) = K. \$ 1 cos(x) - cos(x). sin2(x) due + sec(y) = K. \Rightarrow $\lim_{x \to \infty} (x) - \frac{\lim_{x \to \infty} (x)}{3} + \sec(g) = K$ D 34 - 38 = 5×3 On repose l'équation différentielle linéaire avec; $P(x) = -\frac{3}{x}$ et $Q(x) = 5x^3$. Pour le facteur intégrant. Je P(x) de = e-3) * de = e-3 (n(x)) = xe-3 e-) (x) de = e3) * de = e3 (n(x)) = xe-3 e-) (x) de = e3) * de = e3 (n(x)) = xe-3 => y= x3 (1x-3.5x3.dic +K) 3) y= 203 (5xx +K) & g = 5x4+K.x3. 2) a) 6m a: x2 tyx ty2-2y tx2 +83=-2 > be+2)2+(g-1)2+&+4)2=-2+4+1+10 > (x+2)2 + (g-1)2 + (z+9)2 = 19. La sphère est centrée en (-2,1,-4) et son reyon voutros. La sphère coupe le plan g Oz lorsque sc=0: Donc l'équation de cette courbe est: (g-1/2+(g+9/2=19). (b)

6) Soit P(-1,-1,3) et la droite d:) x=1.+t. y=2-t z=-1+2t Toit A sur la droite: A= (1,2,1) Le vectour directeur de d'est: 2 (1,-1,2). On a , selon les règles trigonometriques: Ba, dust = 11 AP 11 sin 0 = 11 AP 11

Ba, dust = 11 A71. 11 AP 11. sin 0 = 11 AP 11 On applique: AF= (-1-1,-1-2,3+1) =(-2,-3,4) $|\vec{x} \wedge \vec{x}| = |\vec{c}| \vec{x} |\vec{k}| = |\vec{c}| \cdot 4 - |\vec{c}| \cdot 2 |\vec{c}| + |\vec{c}| \cdot 3 \cdot 2 |\vec{c}| + |\vec{c}| \cdot 3 \cdot 7 \cdot 7 \cdot 1 = |\vec{c}| \cdot 8 \cdot 7 \cdot 7 \cdot 1 = |\vec{c}| \cdot 8 \cdot 7 \cdot 7 \cdot 1 = |\vec{c}| \cdot 8 \cdot 7 \cdot 7 \cdot 1 = |\vec{c}| \cdot 8 \cdot 1 = |\vec{c}| \cdot$ 1101 = V1+1+1 = V61 Donc dut = 1/93 - 1/2 7) Gn a = 2= xc2+y3 Soit l'équation vectorielle d'une droite; 3(t)=(0,0,0) +t(a,0,c), (a,b,c) ETR3. 3 /2x=at => 2 E2 = 2 +2 + B2 E2 \$ 22-02+02 Soit 25=16+9, on a C=5, a=4 et &=3

81a) Gra
$$3^2 = \ell^2$$
. $\cos 2\theta$.
 $\Rightarrow 3^2 = \ell^2$. $(2\cos^2 \theta - 1)$.
 $3^2 = 2e^2$. $\cos^2 \theta - e^2$.
 $3^2 = 2e^2 - (x^2 + y^2)$.
 $3^2 = 2x^2 - 3e^2 - y^2$.
 $3^2 = x^2 - y^2$.

Ear: x= e.coso y= e.smo &= x=1y?

Selon l'équation d'en cercle: $\Rightarrow (x-2)^2 + y^2 = 4$ $\Rightarrow x^2 - 4x + 4 + y^2 = 9$ $\Rightarrow x^2 - 4x + y^2 = 0$ $\Rightarrow x^2 - 4x + y^2 = 0$ $\Rightarrow x^2 - 4x + y^2 = 0$ $\Rightarrow x^2 - 4x + y^2 = 0$

3) L'équation y² + z² = 1 + z² représente une forme hyperboloide à une nagre sur l'arce des x Nous pouvous la dessine,

Hickory