Selected Topics in Mathematics of Learning

High-Dimensional Statistics

Lecturer: Marius Yamakou

Winter Semester 2024/25 Department of Data Science, FAU

December 17, 2024

Part V: Large Inverse Covariance Matrices continued ...

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

■ The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}.$$

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

■ The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}.$$

Challenges with This Approach:

■ Non-Invertibility: $\widehat{\Sigma}$ is not invertible when $n \ll p$.

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,...,p}.$$

 \blacksquare The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}$$
.

Challenges with This Approach:

- Non-Invertibility: $\widehat{\Sigma}$ is not invertible when $n \ll p$.
- Non-Sparsity: Even if invertible, $\widehat{\Sigma}$ typically lacks exact zeros.

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

■ The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}$$
.

Challenges with This Approach:

- Non-Invertibility: $\widehat{\Sigma}$ is not invertible when $n \ll p$.
- Non-Sparsity: Even if invertible, $\widehat{\Sigma}$ typically lacks exact zeros.
- Numerical Instability: Inversion can lead to large estimation errors, especially in high dimensions.

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

■ The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}$$
.

Challenges with This Approach:

- Non-Invertibility: $\widehat{\Sigma}$ is not invertible when $n \ll p$.
- Non-Sparsity: Even if invertible, $\widehat{\Sigma}$ typically lacks exact zeros.
- Numerical Instability: Inversion can lead to large estimation errors, especially in high dimensions.

Proposed Solution:

Re-parameterize the maximum likelihood estimation (MLE) in terms of the precision matrix ⊖.

First Natural Thought:

- Use the sample covariance matrix and compute its inverse.
- Recall the sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})^{\top} =: (\widehat{\sigma}_{ij})_{i,j=1,\dots,p}.$$

■ The inverse of the sample covariance matrix provides an estimator for Θ :

$$\widehat{\Theta} = \widehat{\Sigma}^{-1}$$
.

Challenges with This Approach:

- Non-Invertibility: $\widehat{\Sigma}$ is not invertible when $n \ll p$.
- **Non-Sparsity:** Even if invertible, $\widehat{\Sigma}$ typically lacks exact zeros.
- Numerical Instability: Inversion can lead to large estimation errors, especially in high dimensions.

Proposed Solution:

- Re-parameterize the maximum likelihood estimation (MLE) in terms of the precision matrix Θ.
- Introduce a **penalty term** to enforce sparsity or improve stability.

What is Maximum Likelihood Estimation (MLE)?

 A method to estimate the parameters of a probability distribution by maximizing the likelihood function.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

Steps in Maximum Likelihood Estimation:

 Assume a random sample from an unknown joint probability distribution, parameterized by a set of parameters.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

Steps in Maximum Likelihood Estimation:

- Assume a random sample from an unknown joint probability distribution, parameterized by a set of parameters.
- Define the joint density function for the observed data:
 - If random vectors are independent, the joint density equals the product of their individual densities.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

Steps in Maximum Likelihood Estimation:

- Assume a random sample from an unknown joint probability distribution, parameterized by a set of parameters.
- Define the joint density function for the observed data:
 - If random vectors are independent, the joint density equals the product of their individual densities.
- Evaluate the likelihood function: $L(\theta) = \prod_{k=1}^n f(X_k; \theta)$, where $f(X_k; \theta)$ is the density function.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

Steps in Maximum Likelihood Estimation:

- Assume a random sample from an unknown joint probability distribution, parameterized by a set of parameters.
- Define the joint density function for the observed data:
 - If random vectors are independent, the joint density equals the product of their individual densities.
- Evaluate the likelihood function: $L(\theta) = \prod_{k=1}^n f(X_k; \theta)$, where $f(X_k; \theta)$ is the density function.
- Maximize the likelihood function to find parameter values that best explain the observed data.

What is Maximum Likelihood Estimation (MLE)?

- A method to estimate the parameters of a probability distribution by maximizing the likelihood function.
- Ensures that, under the assumed model, the observed data is most probable.

Steps in Maximum Likelihood Estimation:

- Assume a random sample from an unknown joint probability distribution, parameterized by a set of parameters.
- Define the joint density function for the observed data:
 - If random vectors are independent, the joint density equals the product of their individual densities.
- Evaluate the likelihood function: $L(\theta) = \prod_{k=1}^n f(X_k; \theta)$, where $f(X_k; \theta)$ is the density function.
- Maximize the likelihood function to find parameter values that best explain the observed data.

Intuition:

 MLE identifies the parameter values that make the observed data most probable under the given statistical model.

Multivariate normal: A real random vector $X=(X_1,\ldots,X_p)^T$ is called a normal random vector if there exists a random p-vector Z, which is a standard normal random vector, a p-vector μ , and a matrix A, such that $X=A^TZ+\mu$.

Multivariate normal: A real random vector $X=(X_1,\ldots,X_p)^T$ is called a normal random vector if there exists a random p-vector Z, which is a standard normal random vector, a p-vector μ , and a matrix A, such that $X=A^TZ+\mu$.

Suppose $X \sim \mathcal{N}_p(\mu, \Sigma)$ and that Σ is full rank; then X has a density:

$$f_{\mathbf{X}}(x_1,\ldots,x_p) = \frac{1}{\sqrt{(2\pi)^p|\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where $|\Sigma|$ denotes the determinant of Σ .

Multivariate normal: A real random vector $X=(X_1,\ldots,X_p)^T$ is called a normal random vector if there exists a random p-vector Z, which is a standard normal random vector, a p-vector μ , and a matrix A, such that $X=A^TZ+\mu$.

Suppose $X \sim \mathcal{N}_p(\mu, \Sigma)$ and that Σ is full rank; then X has a density:

$$f_{\mathbf{X}}(x_1,\ldots,x_p) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where $|\Sigma|$ denotes the determinant of Σ .

Key Properties:

■ The density is symmetric and bell-shaped, extending into *p*-dimensional space.

Multivariate normal: A real random vector $X=(X_1,\ldots,X_p)^T$ is called a normal random vector if there exists a random p-vector Z, which is a standard normal random vector, a p-vector μ , and a matrix A, such that $X=A^TZ+\mu$.

Suppose $X \sim \mathcal{N}_p(\mu, \Sigma)$ and that Σ is full rank; then X has a density:

$$f_{\mathbf{X}}(x_1,\ldots,x_p) = \frac{1}{\sqrt{(2\pi)^p|\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where $|\Sigma|$ denotes the determinant of Σ .

Key Properties:

- The density is symmetric and bell-shaped, extending into p-dimensional space.
- \blacksquare The covariance matrix Σ controls the shape and orientation of the distribution

Setup:

- We have random vectors $X_n = (X_{n,1}, \dots, X_{n,p})^{\top}$, for $n = 1, \dots, N$, where $X_n \sim \mathcal{N}_n(\mu, \Sigma)$.
- The mean vector $\mu \in \mathbb{R}^p$ and covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$ are unknown.

Setup:

- We have random vectors $X_n = (X_{n,1}, \dots, X_{n,p})^{\top}$, for $n = 1, \dots, N$, where $X_n \sim \mathcal{N}_p(\mu, \Sigma)$.
- The mean vector $\mu \in \mathbb{R}^p$ and covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$ are unknown.

Joint Density: The joint density of the observations X_1, \ldots, X_N is:

$$\prod_{n=1}^{N} f_{\mathbf{X}_n}(x_1, \dots, x_p) = \prod_{n=1}^{N} \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu})\right).$$

Negative Log-Likelihood: Taking the negative log of the joint density:

Negative Log-Likelihood: Taking the negative log of the joint density:

$$-\log \prod_{n=1}^{N} f_{\mathbf{X}_n}(x_1, \dots, x_p) = -\log \prod_{n=1}^{N} \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu})\right)$$

$$= -\log \left(\frac{1}{((2\pi)^p |\Sigma|)^{N/2}} \exp\left(-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu})\right)\right)$$

$$= \frac{N}{2} \log\left((2\pi)^P |\Sigma|\right) + \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu})$$

$$= \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\mathbf{x}_n - \boldsymbol{\mu})$$

2. Estimation: Maximum Likelihood Estimators

Negative Log-Likelihood:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (X_n - \mu)^{\top} \Sigma^{-1} (X_n - \mu).$$

2. Estimation: Maximum Likelihood Estimators

Negative Log-Likelihood:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (X_n - \mu)^{\top} \Sigma^{-1} (X_n - \mu).$$

Estimating μ and Σ : To minimize $L(\mu, \Sigma)$, the Maximum Likelihood Estimators (MLEs) are:

$$\begin{split} & \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \ L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{N} \sum_{n=1}^{N} X_n, \\ & \underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \ L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{N} \sum_{n=1}^{N} (X_n - \boldsymbol{\mu}) (X_n - \boldsymbol{\mu})^\top. \end{split}$$

2. Estimation: Maximum Likelihood Estimators

Negative Log-Likelihood:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (X_n - \mu)^{\top} \Sigma^{-1} (X_n - \mu).$$

Estimating μ and Σ : To minimize $L(\mu, \Sigma)$, the Maximum Likelihood Estimators (MLEs) are:

$$\begin{aligned} & \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \ L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{N} \sum_{n=1}^{N} X_n, \\ & \underset{\boldsymbol{\Sigma}}{\operatorname{argmin}} \ L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{N} \sum_{n=1}^{N} (X_n - \boldsymbol{\mu}) (X_n - \boldsymbol{\mu})^\top. \end{aligned}$$

Key Idea: - The sample mean $\hat{\mu}$ and sample covariance matrix $\hat{\Sigma}$ are natural estimators under the MLE framework.

Re-Parameterization: To get MLE for Θ we can re-parameterize in terms of precision matrix $\Theta=\Sigma^{-1}.$

Re-Parameterization: To get MLE for Θ we can re-parameterize in terms of precision matrix $\Theta=\Sigma^{-1}.$

Rewriting the negative log-likelihood:

Re-Parameterization: To get MLE for Θ we can re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$.

Rewriting the negative log-likelihood:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (X_n - \mu)^{\top} \Sigma^{-1} (X_n - \mu)$$

$$= \frac{pN}{2} \log(2\pi) + \frac{N}{2} \underbrace{\log|\Sigma|}_{-\log|\Sigma^{-1}|} + \frac{1}{2} \underbrace{\sum_{n=1}^{N} (X_n - \mu)^{\top} \underbrace{\Sigma^{-1}}_{\Theta} (X_n - \mu)}_{\operatorname{tr} \left(\sum_{n=1}^{N} X_n - \mu\right)^{\top} \Theta(X_n - \mu)}$$

$$\stackrel{(*)}{=} \operatorname{tr} \left(\sum_{n=1}^{N} (X_n - \mu)(X_n - \mu)^{\top} \Theta \right)$$

$$= \operatorname{tr} \left(N \hat{\Sigma} \Theta\right)$$

$$= N \operatorname{tr} \left(\hat{\Sigma} \Theta\right)$$

Re-Parameterization: To get MLE for Θ we can re-parameterize in terms of precision matrix $\Theta = \Sigma^{-1}$.

Rewriting the negative log-likelihood:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) + \frac{N}{2} \log|\Sigma| + \frac{1}{2} \sum_{n=1}^{N} (X_n - \mu)^{\top} \Sigma^{-1} (X_n - \mu)$$

$$= \frac{pN}{2} \log(2\pi) + \frac{N}{2} \underbrace{\log|\Sigma|}_{-\log|\Sigma^{-1}|} + \frac{1}{2} \underbrace{\sum_{n=1}^{N} (X_n - \mu)^{\top} \underbrace{\Sigma^{-1}}_{\Theta} (X_n - \mu)}_{\text{tr} \left(\sum_{n=1}^{N} X_n - \mu\right)^{\top} \Theta(X_n - \mu)}$$

$$\stackrel{(*)}{=} \text{tr} \left(\sum_{n=1}^{N} (X_n - \mu)(X_n - \mu)^{\top} \Theta \right)$$

$$= \text{tr} \left(N \hat{\Sigma} \Theta\right)$$

$$= N \text{tr} \left(\hat{\Sigma} \Theta\right)$$

$$\implies L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) - \frac{N}{2} \log |\Theta| + \frac{1}{2} N \operatorname{tr}(\hat{\Sigma}\Theta)$$

where:

 $\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n - \mu)(X_n - \mu)^{\top} \text{ is the sample covariance matrix.}$

where:

- $\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n \mu) (X_n \mu)^{\top}$ is the sample covariance matrix.
- (*) exploit the cyclic property of the trace operator $\operatorname{tr}(\cdot)$ given by:

$$tr(ABC) = tr(CAB).$$

where:

- $\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n \mu) (X_n \mu)^{\top}$ is the sample covariance matrix.
- (*) exploit the cyclic property of the trace operator $\operatorname{tr}(\cdot)$ given by:

$$tr(ABC) = tr(CAB).$$

Summary: The MLE for Θ minimizes:

$$L(\mu, \Sigma) = \frac{pN}{2} \log(2\pi) - \frac{N}{2} \log|\Theta| + \frac{N}{2} \mathrm{tr}(\hat{\Sigma}\Theta).$$

2.2 Graphical LASSO

Motivation: The graphical LASSO introduces sparsity into the estimation of the precision matrix $\Theta=\Sigma^{-1}$, leading to interpretable graphical models by penalizing small off-diagonal entries.

2.2 Graphical LASSO

Motivation: The graphical LASSO introduces sparsity into the estimation of the precision matrix $\Theta = \Sigma^{-1}$, leading to interpretable graphical models by penalizing small off-diagonal entries.

Maximum Likelihood Estimator (MLE): Based on the sample covariance matrix $\widehat{\Sigma}$, the MLE of Θ is:

$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^\top = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right),$$

subject to two constraints:

Motivation: The graphical LASSO introduces sparsity into the estimation of the precision matrix $\Theta=\Sigma^{-1}$, leading to interpretable graphical models by penalizing small off-diagonal entries.

Maximum Likelihood Estimator (MLE): Based on the sample covariance matrix $\widehat{\Sigma}$, the MLE of Θ is:

$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^\top = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right),$$

subject to two constraints:

- $\Theta \succ 0$: Positive definiteness of the precision matrix.
- $lackbox{f \Theta}^{ op}=\Theta$: Symmetry of the precision matrix.

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^\top = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right) \ ?$$

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

- $\operatorname{tr}(\Theta \widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$.
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

- $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.
- $-\log |\Theta|$ represents the log-determinant of Θ , which has two key roles:

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

- $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.
- $-\log |\Theta|$ represents the log-determinant of Θ , which has two key roles:
 - **E**nsures the matrix Θ is invertible.

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

- $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.
- $-\log |\Theta|$ represents the log-determinant of Θ , which has two key roles:
 - **Ensures** the matrix Θ is invertible.
 - Penalizes overly large or overly small eigenvalues, maintaining numerical stability.

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

Because:

- $\operatorname{tr}(\Theta \widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.
- $-\log |\Theta|$ represents the log-determinant of Θ , which has two key roles:
 - **E**nsures the matrix Θ is invertible.
 - Penalizes overly large or overly small eigenvalues, maintaining numerical stability.

Intuition: The objective function balances:

■ Fidelity: The trace term $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures consistency with the observed data.

Why the Objective:
$$\widehat{\Theta} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| \right)$$
 ?

Because:

- $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures that the precision matrix Θ aligns with the empirical covariance matrix $\widehat{\Sigma}$
 - It penalizes deviations of Θ from matching $\widehat{\Sigma}$.
- ullet $-\log|\Theta|$ represents the log-determinant of Θ , which has two key roles:
 - **E**nsures the matrix Θ is invertible.
 - Penalizes overly large or overly small eigenvalues, maintaining numerical stability.

Intuition: The objective function balances:

- Fidelity: The trace term $\operatorname{tr}(\Theta\widehat{\Sigma})$ ensures consistency with the observed data.
- **Regularization:** The log-determinant term $-\log |\Theta|$ prevents degenerate solutions and stabilizes the optimization.

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

$$\widehat{\Theta}_{\lambda} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| + \lambda \|\Theta\|_{1, \operatorname{off}} \right),$$

where:

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

$$\widehat{\Theta}_{\lambda} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| + \lambda \|\Theta\|_{1, \operatorname{off}} \right),$$

where:

$$\|\Theta\|_{1,\text{off}} = \sum_{\substack{i,j=1\\i\neq j}}^{p} |\Theta_{ij}|.$$

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

$$\widehat{\Theta}_{\lambda} = \underset{\Theta \succ 0, \Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| + \lambda \|\Theta\|_{1, \operatorname{off}} \right),$$

where:

$$\|\Theta\|_{1,\text{off}} = \sum_{\substack{i,j=1\\i\neq j}}^{p} |\Theta_{ij}|.$$

Key Question:

- Is the penalized likelihood a convex function in Θ ?

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

$$\widehat{\Theta}_{\lambda} = \underset{\Theta \succ 0.\Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| + \lambda \|\Theta\|_{1, \operatorname{off}} \right),$$

where:

$$\|\Theta\|_{1,\text{off}} = \sum_{\substack{i,j=1\\i\neq j}}^{p} |\Theta_{ij}|.$$

Key Question:

- Is the penalized likelihood a convex function in Θ ?

Key Insight:

- The graphical LASSO objective is a combination of a convex negative log-likelihood function and a convex ℓ_1 -norm penalty term.

Graphical LASSO: Introducing Sparsity The graphical LASSO estimator adds an ℓ_1 -penalty on the off-diagonal entries of Θ to induce sparsity:

$$\widehat{\Theta}_{\lambda} = \underset{\Theta \succ 0.\Theta^{\top} = \Theta}{\operatorname{argmin}} \left(\operatorname{tr}(\Theta \widehat{\Sigma}) - \log |\Theta| + \lambda \|\Theta\|_{1, \operatorname{off}} \right),$$

where:

$$\|\Theta\|_{1,\text{off}} = \sum_{\substack{i,j=1\\i\neq j}}^{p} |\Theta_{ij}|.$$

Key Question:

- Is the penalized likelihood a convex function in Θ ?

Key Insight:

- The graphical LASSO objective is a combination of a convex negative log-likelihood function and a convex ℓ_1 -norm penalty term.
- Therefore, the overall problem remains convex in Θ . And the answer to the above question is Yes!