(19)世界知的所有権機関 国際事務局

PCT

(43) 国際公開日 2003年1月23日 (23.01,2003)

(10) 国際公開番号 WO 03/007079 A1

(51)	国際特許分類?:	G03F 7/039, H01L 21/027	(72)	発明者;およ

- (21) 国際出開番号: PCT/JP02/06218
- (22) 国際出願日: 2002 年6 月21 日 (21.06.2002)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ: 特願2001-189003 2001年6月22日(22.06.2001) JP
- (71) 出願人 /米国を除く全ての指定国について): 和光純 薬工業株式会社 (WAKO PURE CHEMICAL INDUS-TRIES, ITD) [IP)P]: 〒540-8605 大阪府 中央区 道修 町三丁目 1-2 Osaka (JP).
- (72) 発明者; および (75) 発明者/出版人 (米国についてのみ): 前沢 典明 (MAE-SAWA, Tsuneaki) [JP/JP]: 〒350-1101 埼玉県 川越市 大 字的場 1 6 3 3 Saitama (JP). 浦野 文良 (URANO, Fumiyoshi) [JP/JP]: 〒350-1101 埼玉県 川越市 大字的場 1 6 3 3 Saitama (JP).
- (74) 代理人: 和光純薬工業株式会社 東京支店 (WAKO PURE CHEMICAL INDUSTRIES, LTD.): 〒103-0023 東京都中央区日本橋本町二丁目1番7号 Tokyo (JP).
- (81) 指定国 (国内): AF, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CII, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO.

/統葉有7

(54) Title: RESIST COMPOSITIONS

(54)発明の名称:レジスト組成物

$$(A) \longrightarrow (A) \longrightarrow (A)$$

(57) Abstract: Practical resist compositions which have high resolution, high sensitivity and good pattern profile suitable for electron beam microlithography or the like and do not cause outgassing even when irradiated with an actinic radiation under high vacuum. Namely, (1) a resist composition composed essentially of at least one polymer comprising monomer represented by the general formula [1], monomer units represented by the general formula [2], and monomer units represented by the general formula [3]: [1] [2] [3] at least one compound represented by the general formula [4] which generates an acid by irradiation: [4] an organic basic compound, and a solvent; (2) a resist composition as set forth in item (1) which further contains a polymer represented by the general formula [13]: [13] and (3) a resist composition as set forth in item (1) or (2) which further contains a compound represented by the general formula [12] which generates an acid by irradiation: [12]

WO 03/007079 A1

(57) 要約:

本発明は電子線などに代表される超微細加工技術に対応した高解像性、 高感度、良好な形状を有し、且つ高真空下でのエネルギー照射に対して、 アウトガスが発生しない実用的なレジスト組成物に関するものであり、

(1) 下配一般式[1]

で示されるモノマー単位と、下記一般式「2]

で示されるモノマー単位及び下記一般式 [3]

で示されるモノマー単位とを構成成分とするポリマー1種以上と、少な くとも下記一般式 [4]

で示される放射線照射により酸を発生する化合物 1種以上と、有機塩基 性化合物及び溶剤とからなるレジスト組成物、(2)更に下記一般式[1 3]

で示されるポリマー単位を含む(1)に記載のレジスト組成物、(3)更 に下記一般式 [12]を

$$\underset{\mathsf{R}_{12}}{\overset{\oplus}{\longleftarrow}}\underset{\mathsf{I}}{\overset{\oplus}{\longleftarrow}}\underset{\mathsf{R}_{12}}{\overset{\otimes}{\longleftarrow}}\underset{\mathsf{xso}_3}{\overset{\ominus}{\bigcirc}} \quad \ \ \, [12]$$

放射線照射により酸を発生する化合物として有する (1) 及び (2) に 記載のレジスト組成物等を提供する。

NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, 添付公開書類: TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA. — 国際調査報告書 ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特 許 (AT. BE, CH. CY, DE, DK, ES, FL FR, GB, GR, IE, IT. LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

レジスト組成物

20

技術分野

本発明は半導体素子等の製造に於いて使用される、照射エネルギーが 電子線、極紫外線、X線等の真空下での転写技術を用いてポジ型のパタ ーンを形成する際のレジスト組成物に関する。

技術背景

近年、半導体デバイスの高密度集積化に伴い、微細加工、中でもフォ トリソグラフィに用いられる露光装置のエネルギー源は益々、短波長化 し、今では遠紫外線光(300 nm 以下)、K r F エキシマレーザ光(248 nm) が実用化され、A r F エキシマレーザ光(193 nm) も実用に近づきつつ あるが、これらの技術は解像性能の問題から 100 n m以下の超微細加工 には使用できない。そこでこの目的のためF₂ レーザ光(157 nm) や電 子線を利用した転写技術が検討されているがF₂ レーザ光はもとより、電子線用のレジスト組成物も未だ適当なものが見出されていない。

電子線用レジストについては、主鎖切断型のレジスト組成物(例えば、 特開平 1-163738 号公報など)がマスク作製などに使用されているが半 導体素子作製を目的とした超微細加工のデザインルール用途には感度が 低すぎる、解像性が不足しているなどのために使用できない。これらの 課題を克服する目的で近年ではエネルギー照射により発生した酸の触媒 作用を利用した化学増幅型レジストが検討され、多くの報告があるが実 用上、多くの課題を抱えている。

例えば、特問平 7-209868 号公報;特別平 11-305440 号公報;特別 25 2000-66401 号公報などではポリ(ヒドロキシスチレン/スチレン/アクリ ル酸 tert-ブチル) とトリフェニルスルホニウム トリフルオロメタンス ルホネートを組合せたレジスト組成物、又、特開平 7-261377 号公報; 特開平 8-179500 号公報などではボリ (p-ヒドロキシスチレン/スチレン /アクリル酸 tert-ブチル)とボリ(p-ヒドロキシスチレン/アクリル酸 tert-ブチル)の混合ボリマーとトリフェニルスルホニウム トリフルオロメタ ンスルホネートを組合せたレジスト組成物が夫々開示されているが、エ ネルギー照射により発生したトリフルオロメタンスルホン酸の揮発性が 高く又それが移動し易いため、電子線利用の様な高真空状態が長く続く 条件では、露光から加熱処理の間にその酸が揮発又は移動し、必要とす る形状の超微細パターンの形成は出来ていない。

10 例えば、特開 2000-66382 号公報などでは、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) とトリフェニルスルホニウム p-トルエンスルホネートを組合せたレジスト組成物が開示されているがエネルギー照射により発生した p-トルエンスルホン酸の酸性度が弱いために感度が低すぎ、スループットの高い超微細パターンの形成は出来で15 いない。

例えば、特開平 8-146610 号公報などでは、ポリ (p-ヒドロキシスチレン/メタクリル酸 tert-アミル) とトリフェニルスルホニウム トリフルオロメタンスルホネートを組合せたレジスト組成物が、又、H.Ito 等、J. Photopolym. Sci. Technol., 1997 年, 10 巻(3 号), 397~408 頁; H.Ito 等、J. Photopolym. Sci. Technol., 1996 年, 9 巻(4 号), 557~572 頁; 特開平 7-261377 号公報; 特開平 8-179500 号公報などでは、ポリ (p-ヒドロキシスチレン/アクリル酸 tert-ブチル) とトリフェニルスルホニウム トリフルオロメタンスルホネートを組合せたレジスト組成物が夫々開示されているが、前記と同様にエネルギー照射により発生したト25 リフルオロメタンスルホン酸の揮発性、移動性に起因して良好な超微細パターンは形成できていない。又、微細パターンを形成してもポリマー

20

25

のドライエッチング耐性が低すぎるため、実際には使用できないという 問題も有している。

例えば、特開平 11-805440 号公報などでは、ポリ (ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル)とトリフェニルスルホニウム パー
5 フルオロブタンスルホネートを組合せたレジストが、又、特開 2000-66382 号公報などでは、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) とトリフェニルスルホニウム パーフルオロブタンスルホネートを組合せたレジストが夫々開示されているが、エネルギー照射により発生したパーフルオロブタンスルホン酸などのパーフルオロア
10 ルカンスルホン酸では酸性度が不足しているために感度が低い、溶解阻害性が乏しいためコントラストが不良で解像性が低い等の問題を有している。

例えば、特開平 7-209868 号公報などでは、ポリ (ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) と N- (トリフルオロメチルスルホニルオキシ) ビシクロ-[2,2,1]-ヘブト-5-エン 2,3-ジカルボキシイミドを組合せたレジストが、又、H.Ito 等、ACS. Symp. Ser.,1995 年, 614巻 (Microelectronics Technology), 21 ~ 34 頁; H.Ito 等、J.Photopolym.Sci.Technol.,1996 年,9 巻(4号),557~572 頁などでは、ポリ (p-ヒドロキシスチレン/アクリル酸 tert-ブチル) と N.カンファースルホニルオキシナフタルイミド又は N-トリフルオロメタンスルホニルオキシ・5-ノルボルネン・2,3-ジカルボキシイミドを組合せたレジストが夫々報告されている。しかしながら、これらの化学増幅で利用されるトリフルオロメタンスルホン酸は上記と同様な課題を有しており、超微細加工では使用できず、又、カンファースルホン酸も酸性度が弱いために感度が不足し、使用できないという問題を有している。

例えば、特開平 11-167200 号公報、欧州公開特許 第 813113 号公報な

どでは、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) とジ- (4-tert-ブチルフェニル) ヨードニウムカンファースルホネートを 組合せたレジストが、特開平 11-305441 号公報などでは、ポリ (ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) とジ- (4-tert-ブチルフェニル) ヨードニウムパーフルオロブタンスルホネートを組合せたレジストが、又、特開 2000-89453 号公報などでは、ポリ (ヒドロキシスチレン/アクリル酸 tert-ブチル) とジ- (4-tert-ブチルフェニル) ヨードニウムカンファースルホネートを組合せたレジストが夫々報告されている。しかしながら、これらのヨードニウム塩を使用した場合、溶解阻害効果が乏しいためにコントラストが不良で感度が低い、または溶解阻害効果が強すぎるため形状不良となり解像性が低い等の問題を有しており超微細加工では使用できない。

例えば、特開 2000-187330 号公報などでは、ポリ (p-1-tert-ブトキシ エトキシスチレン/p-ヒドロキシスチレン) と 4-ブトキシフェニルジフェ ニルスルホニウム 4-トリフルオロメチルベンゼンスルホネートを組合 15 せたレジスト組成物が、又、特開平 9-160246 号公報などでは、ポリ(n-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシス チレン)とジフェニル-4-tert-ブトキシフェニル)スルホニウム n-トル エンスルホネートを組合せたレジスト組成物が、又、特開平 9-211866 20 号公報などでは、ポリ (p-1-メトキシプロポキシスチレン/p-ヒドロキシ スチレン/p-tert-ブトキシカルボニルオキシスチレン)とトリス(4tert-ブトキシフェニル) スルホニウム トリフルオロメタンスルホネー トを組合せたレジスト組成物が夫々開示されているが、これらの非環状 のアセタール基を酸不安定基として含有するポリマーは放射線照射時に 分解発生するガス (所謂、アウトガス) のために電子ビームが揺らぎ所 望のパターンが得られない、パターン側壁の荒れが酷い等の問題を有し

ている。又、トリフルオロメタンスルホン酸が発生する場合は揮発性が 高いため表面難溶化層が生成し、微細パターンを形成することは出来な い。

例えば、特開平 7-261377 号公報;特開平 8-179500 号公報;特開 5 2000-187380 号公報などでは、ポリ (p-tert-プトキシカルボニルメトキシスチレン/p-ヒドロキシスチレン) とトリフェニルスルホニウム トリフルオロメタンスルホネートの組み合わせが開示されているが、前記と同様にエネルギー照射により発生したトリフルオロメタンスルホン酸の揮発性、移動性に起因して良好な超微細パターンを形成することはでき10 ない。

又、特開平 9-160246 号公報;特開平 9-211866 号公報;特開平 11-344808 号公報;特開 2000-122296 号公報;特開 2000-187380 号公報などでは、トリフェニルスルホニウム ベンタフルオロベンゼンスルホネート、トリス (tert-ブチルフェニル) スルホニウム ベンタフルオロベンゼンスルホネート、トリス (tert-ブトキシフェニル) スルホニウム ベンタフルオロベンゼンスルホネート、トリフェニルスルホニウム 3・トリフルオロメチルベンゼンスルホネート、ピス (4・メチルフェニル) フェニルスルホニウム 3・5・ピス (トリフルオロメチル) ベンゼンスルホネートなどを開示しているがこれらと組み合わせるポリマーは何れも酸不安定基として非環状のアセタール基を含有するポリマーが使用されており、上記同様の問題 (アウトガスのために電子ビームが揺らぎ所望のパターンが得られない、パターン側壁の荒れ等)を有している。

このように電子線などの真空下で使用される化学増幅ボジ型レジスト はエネルギー照射により発生した酸の揮発性が高い、酸が移動し易いな 25 どの理由により、また、使用するポリマーのドライエッチング耐性が不 足している、基板との密着性が不良である、エネルギー照射中にポリマ ーに懸垂された保護基の分解脱離が生じてビームが揺らぐなどの理由に より所望のパターン形成できていない。さらに、エネルギー照射により 発生した酸の酸性度が弱いために感度も低すぎる等の大きな課題も有し ている。従って、現在、これらの問題点を改善したレジスト組成物の開 発が望まれている。

上記した如き状況に鑑み本発明が解決使用とする課題は、電子線など に代表される超微細加工技術に対応した高解像性、高感度、良好な形状 を有し、且つ高真空下でのエネルギー照射に対して、アウトガスの発生 が少ない実用的なレジスト組成物を提供することである。

10

発明の開示

本発明は上記課題を解決する目的でなされたものであり、下記の構成 から成る。

『(1) 少なくとも下記一般式 [1]

15 [式中、R₁ は水素原子又はメチル基を表す。]で示されるモノマー単位と、下記一般式 [2]

[式中、 R_1 は前記と同じであり、 R_2 は水素原子又は炭素数 $1\sim 4$ の 直鎖状若しくは分枝状のアルキル基を表す。]で示されるモノマー単位及 び下記一般式 [3]

10

15

$$\begin{array}{c}
-\left(-CH_2\cdot C - \right) \\
COOR_3
\end{array}$$

[式中、 R_1 は前記と同じであり、 R_s は酸の作用により脱離し易く且つカルボン酸とエステル結合できる酸不安定基を表す。]で示されるモノマー単位とを構成成分とするポリマー1 種以上と、少なくとも下記一般式 [4]

$$(R_{10}) \stackrel{R_9}{\longrightarrow} R_6 \stackrel{R_9}{\longrightarrow} R_8$$

$$R_9 \stackrel{R_9}{\longrightarrow} R_8$$

$$R_9 \stackrel{R_9}{\longrightarrow} R_8$$

$$R_9 \stackrel{R_9}{\longrightarrow} R_8$$

[式中、 R_5 及び R_7 はそれぞれ独立して水素原子又は電子吸引基を表し(但し、 R_5 及び R_7 が同時に水素原子の場合は除く)、 R_4 、 R_6 及び R_8 はそれぞれ独立して水素原子又はハロゲン原子を表し、 R_9 及び R_{10} はそれぞれ独立して水素原子、ハロゲン原子、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルキル基、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、 又は炭素数 $4\sim5$ の電状アセタール基を表し、 $1\sim3$ の整数を表す。1 で示される放射線照射により酸を発生する化合物 1 種以上と、有機塩基性化合物及び溶剤とからなるレジスト組成物。

(2) 前記のポリマーが下記一般式 [5]

$$\begin{array}{c|c} - \left(\begin{array}{c} \mathbf{R}_1 \\ \mathbf{C} \\ \mathbf{H}_2 \\ \mathbf{C} \\ \end{array} \right)_k \left(\begin{array}{c} \mathbf{R}_1 \\ \mathbf{C} \\ \mathbf{H}_2 \\ \mathbf{C} \\ \end{array} \right)_{1} \left(\begin{array}{c} \mathbf{C} \\ \mathbf{H}_2 \\ \mathbf{C} \\ \end{array} \right)_{m} \\ = \begin{array}{c} \mathbf{C} \\ \mathbf{OOOR}_3 \\ \mathbf{R}_2 \\ \end{array} \quad [5]$$

[式中、 R_1 、 R_2 及び R_3 は前記と同じであり、k、1 及びmは整数 (但し、 $0.25 \ge 1/k + 1 + m \ge 0.10$ 、 $0.20 \ge m/k + 1 + m \ge 0.07$ である。) を表す。]で示される(1)に記載のレジスト組成物。 (3) 放射線照射により酸を発生する化合物が少なくとも下記一般式 [6]

$$\underset{(R_{10})\cap I}{\overset{P_9}{\longleftarrow}} \underset{S}{\overset{R_5}{\longrightarrow}} \underset{R_6}{\overset{R_4}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\overset{P_6}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\overset{P_6}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\overset{P_6}{\longleftarrow}} \underset{R_9}{\overset{P_6}{\overset{P_6}{\longleftarrow}}} \underset{R_9}{\overset{P_6}{\overset{P_6}{\longleftarrow}}} \underset{R$$

[式中、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 、 R_9 及びn は前記と同じであり、 R_{10} はハロゲン原子、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim5$ の環状アセタール基を表す。]で示される化合物1 種以上と、下配一般式 [7]

- 10 [式中、R₄、R₅、R₆、R₇及びR₈は前記と同じである。] で示される化合物 1 種以上との混合物である(2) に記載のレジスト組成物。
 - (4) 放射線照射により酸を発生する化合物が少なくとも下配一般式 [6]

$$(R_{10}) \cap A \longrightarrow R_{6} \longrightarrow R_{7} \longrightarrow R_{8}$$

$$R_{7} \longrightarrow R_{8} \longrightarrow R_{8}$$

$$R_{7} \longrightarrow R_{8}$$

$$R_{9} \longrightarrow R_{9} \longrightarrow R_{10} \longrightarrow R_$$

15 [式中、R₄、R₅、R₆、R₇、R₈、R₉及びnは前記と同じであ

り、 R_{10} はハロゲン原子、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルキル基、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim5$ の環状アセタール基を表す。] で示される化合物 1 種以上と、

5 下記一般式「7]

[式中、 R_4 、 R_5 、 R_6 、 R_7 及び R_8 は前記と同じ。] で示される化合物 1 種以上と、下記一般式 [12]

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

[式中、 R_{12} はそれぞれ独立して水素原子又は炭素数 $1\sim5$ の直鎖状若しくは分枝状のアルキル基を表し、X は炭素数 $3\sim8$ のハロアルキル基、

10 又は置換基を有していてもよいアリール基を表す。]で示される化合物1 種以上との混合物である(1)に配載のレジスト組成物。

(5) ポリマーとして、更に下記一般式[13]

15

[式中、 R_1 は前記と同じであり、 R_{11} は酸の作用により脱離し易く且 つフェノール基とエーテル結合または炭酸エステル結合できる酸不安定 基を表し、n は自然数を表す。] で示されるポリマー単位を含む、(2) に記載のレジスト組成物。 (6) 放射線照射により酸を発生する化合物が少なくとも下記一般式 [6]

$$(R_{10}) \cap \bigvee_{g} \begin{matrix} R_{9} & R_{5} & R_{4} \\ \vdots & R_{6} & So_{3} \end{matrix} \qquad [6]$$

[式中、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 、 R_9 及びn は前記と同じであり、 R_{10} はハロゲン原子、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルキル基、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim 5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim 5$ の環状アセタール基を表す。] で示される化合物 1 種以上と、下記一般式 [7]

- 10 [式中、R₄、R₅、R₆、R₇及びR₈ は前記と同じ。] で示される化合物1種以上との混合物である(5) に記載のレジスト組成物。
 - (7) 放射線照射により酸を発生する化合物が少なくとも下記一般式 [6]

$$(R_{10})_{11} \xrightarrow{R_9} R_8 \xrightarrow{R_9} R_9 = R_7 \cdot R_8$$

$$(R_{10})_{11} \xrightarrow{R_9} R_9 = R_7 \cdot R_8$$

$$(R_{10})_{11} \xrightarrow{R_9} R_9 = R_9 \cdot R_9 = R_9 \cdot$$

15 [式中、R₄、R₅、R₆、R₇、R₈、R₉及びnは前記と同じであ

り、 R_{16} 'はハロゲン原子、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルキル基、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim 5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim 5$ の環状アセタール基を表す。] で示される化合物 1 種以上と、

5 下記一般式[7]

[式中、R $_4$ 、R $_5$ 、R $_6$ 、R $_7$ 及びR $_8$ は前記と同じ。]で示される化合物 1 種以上と、下記一般式 [12]

[式中、R₁₂ はそれぞれ独立して水素原子又は炭素数 1~5の直鎖状若 しくは分枝状のアルキル基を表し、X は炭素数 3~8のハロアルキル基、 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から機

10 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から選ばれるものを有してもよいアリール基を表す。]で示される化合物1種以上との混合物である(5)に記載のレジスト組成物。』

図面の簡単な説明

15 図1は本発明の実施例で示された矩形形状のレジストパターンである。 図2は本発明の比較例で示された膜表層が丸い不良のレジストパターンである。

図3は本発明の比較例で示された膜表層部がやや張った不良のレジストパターンである。

20

発明を実施するための最良の形態

一般式 [2] 及び一般式 [5] に於いてR₂ で示される炭素数 1~4 の直鎖状又は分枝状のアルキル基としては、例えばメチル基、エチル基、 n-プロビル基、イソプロビル基、n-プチル基、イソプチル基、sec-プチ ル基、tert-プチル基等が挙げられる。

一般式[3]及び一般式[5]に於いてR。で示される酸不安定基は、 酸の作用により脱離し易く日つカルボン酸とエステル結合できるもので あればよく、その具体例としては、例えば tert-ブチル基、tert-ペンチル 基、1-メチルシクロヘキシル基等の炭素数4~10の分枝状又は環状の 10 第3級アルキル基、例えばトリフェニルメチル基、11-ジフェニルエチ ル基、2-フェニル-2-プロピル基等の第3級炭素を有する炭素数9~24 のアラルキル基、例えばテトラヒドロピラニル基、テトラヒドロフラニ ル基等の環状アセタール基、例えば1-アダマンチル基、2-メチル-2-アダ マンチル基等の第3級炭素を有する有橋脂環式炭化水素基、例えば4-メ 15 チル-2-オキソ-4-テトラヒドロピラニル基(メバロニックラクトニル基) 等のラクトニル基等が挙げられ、中でも tert-ブチル基、1-メチルシクロ ヘキシル基、1-アダマンチル基、2-メチル-2-アダマンチル基、4-メチル -2-オキソ-4-テトラヒドロピラニル基 (メバロニックラクトニル基) 等が 好ましい。

一般式 [5] において k、 1 及びmは夫々整数を表し、 $0.25 \ge 1/k + 1 + m \ge 0.10$ 、 $0.20 \ge m/k + 1 + m \ge 0.07$ の 2 式を満たすものであれば何れでもよい。

一般式[4]、一般式[6]及び一般式[7]に於いてR。及びR。で 示される電子吸引基としては、フッ素、塩素、臭素、ヨウ素等のハロゲ 25 ン原子、二トロ基、スルホ基、カルボキシ基、トリフルオロメチル基等 が挙げられ、中でもフッ素、塩素、臭素、ヨウ素等のハロゲン原子、二

トロ基、トリフルオロメチル基等が好ましい。

一般式 [4]、一般式 [6] 及び一般式 [7] に於いて R_4 、 R_6 及び R_8 で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。

一般式 [4]、一般式 [6] 及び一般式 [7] に於いてR。及びR,。

- で示される、ハロゲン原子の具体例としては、上記のR4、R6及びR8で示されるハロゲン原子と同じものが挙げられ、炭素数1~4の直鎖状又は分枝状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブラル基、イソブチル基、soc-ブチル10基、tert-ブチル基等が挙げられ、炭素数1~4の直鎖状又は分枝状のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、sec-ブトキシ基、tert-ブトキシ基等が挙げられ、炭素数2~5の直鎖状又は分枝状のアルコキシルルボール・カースをはります。
- コキシカルボニルオキシ基としては、例えばメトキシカルボニルオキシ 基、エトキシカルボニルオキシ基、n-プロボキシカルボニルオキシ基、イソプロボキシカルボニルオキシ基、n-プトキシカルボニルオキシ基、イソプトキシカルボニルオキシ基、sec-プトキシカルボニルオキシ基、tert-プトキシカルボニルオキシ基等が挙げられ、炭素数4~5の環状アセタール基としては、例えばテトラヒドロピラニルオキシ基、テトラヒ20 ドロフラニルオキシ基等が挙げられる。上記の如く例示されるR。及びR1の中でも、夫々独立して水素原子、或いは、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-プチル基、イソプチル基、sec-プチル基、tert-プチル基等の炭素数1~4の直鎖状又は分枝状のアルキル基等が好ましい。
- 25 一般式[6] に於いてR₁₀'で示される、ハロゲン原子、炭素数1~4 の直鎖状又は分枝状のアルキル基、炭素数1~4の直鎖状又は分枝状の

アルコキシ基、炭素数 2~5の直鎖状又は分枝状のアルコキシカルボニ ルオキシ基及び炭素数 4~5の環状アセタール基の具体例としては、上 記のR、。と同じものが挙げられる。

一般式 [12] に於いて示される炭素数 1~5の直鎖状又は分枝状の アルキル基としては、例えばメチル基、エチル基、n-プロビル基、イソプロビル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル某、イソペンチル某等が挙げられる。

一般式 [12] のXに於いて示される炭素数3~8のハロアルキル基 としては、炭素数3~8のアルキル基がハロゲン化(例えばフッ素化、

10 塩素化、臭素化、ヨウ素化等)されたもの等が挙げられる。炭素数3~8のアルキル基としては、例えば直鎖状、分枝状、環状の何れにてもよく、具体的にはn-プロピル基、イソプロピル基、n-ブチル基、イソプチル基、tert-ブチル基、sec-ブチル基、n-ベンチル基、イソベンチル基、tert-ベンチル基、1-メチルベンチル基、n-ヘキシル基、

15 イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、シクロプロビル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられ、これらがハロゲン化された具体的なものとしては3-クロロプロビル基、3-プロモプロビル基、3,3,3-トリフルオロプロビル基、4-クロロブチ

ル基、5 - クロロベンチル基、6 - クロロヘキシル基、7 - クロロヘブ チル基、8 - クロロオクチル基、ヘブタフルオロプロピル基、ノナフル オロブチル基、ウンデカフルオロベンチル基、トリデカフルオロヘキシ ル基、ベンタデカフルオロヘブチル基、ヘプタデカフルオロオクチル基、 ヘブタブロモプロピル基、ノナプロモブチル基、ウンデカプロモベンチ

25 ル基、トリデカプロモヘキシル基、ペンタデカプロモヘプチル基、ヘプタデカプロモオクチル基等が挙げられる。

一般式 [12] のXに於いて示される置換基を有してもよいアリール基としては、アリール基としては、例えば炭素数6~10のものが挙げられ、具体的には、例えばフェニル基、ナフチル基等が挙げられる。また、その置換基としては、例えばハロゲン原子、ハロ低級アルキル基、

5 二トロ基等が挙げられる。ここでいう、ハロゲン原子としては例えばフッ素、塩素、臭素、ヨウ素等が挙げられる。また、ハロ低級アルキル基としては、炭素数 1 ~ 6 のアルキル基がハロゲン化されたものが挙げられ、具体的には例えばクロロメチル基、プロモメチル基、トリフルオロメチル基、2 - クロロエチル基、3 - クロロブロピル基、3 - プロモブロピル基、3 - プロモブロピル基、5 - クロロブチル基、5 - クロロベンチル基、6 - クロロヘキシル基等が挙げられる。

一般式 [13]のR₁₁で示される酸不安定基としては、酸の作用により脱離し易く且つフェノール基とエーテル結合または炭酸エステル結合できるものであればよく、例えば tert-ブチル基、tert-ベンチル基、1-メチルシクロヘキシル基、tert-ブトキシカルボニル基、トリメチルシリル基、tert-ブトキシカルボニルメチル基等が挙げられる。

一般式 [1] で示されるモノマー単位の具体例としては、例えば p-ヒドロキシスチレン、p-ヒドロキシ- α -メチルスチレン等に由来するもの等が挙げられる。

20 一般式 [2] で示されるモノマー単位の具体例としては、例えばスチレン、p-メチルスチレン、m-メチルスチレン、p-エチルスチレン、p-n ープロピルスチレン、p-イソプロピルスチレン、p-イソプチルスチレン、p-イソプチルスチレン、p-sec-ブチルスチレン、p-tert-ブチルスチレン等が挙げられ、好ましくはスチレン、p-メチルスチレン、m-メチルスチレン、p- tert-ブチルスチレン等に由来するもの等である。

一般式[3]で示されるモノマー単位の具体例としては、例えばアク

リル酸 tert-ブチル、アクリル酸 tert-ペンチル、アクリル酸 1-メチルシ クロヘキシル、アクリル酸テトラヒドロピラニル、アクリル酸テトラヒ ドロフラニル、アクリル酸 1-アダマンチル、アクリル酸 2-メチル-2-ア ダマンチル、アクリル酸 4-メチル-2-オキソ-4-テトラピラニル、アクリ ル酸トリフェニルメチル、アクリル酸 1.1-ジフェニルエチル、アクリル 酸 2-フェニル-2-プロピル、メタクリル酸 tert-ブチル、メタクリル酸 tert-ペンチル、メタクリル酸 1-メチルシクロヘキシル、メタクリル酸テトラ ヒドロピラニル、メタクリル酸テトラヒドロフラニル、メタクリル酸 1-アダマンチル、メタクリル酸 2-メチル-2-アダマンチル、メタクリル酸 4-メチル-2-オキソ-4-テトラピラニル、メタクリル酸トリフェニルメチル、 メタクリル酸 1.1-ジフェニルエチル、メタクリル酸 2-フェニル-2-プロピ ル等が挙げられ、好ましくはアクリル酸 tert-ブチル、アクリル酸 1-メチ ルシクロヘキシル、アクリル酸 1-アダマンチル、アクリル酸 2-メチル。 2-アダマンチル、アクリル酸 4-メチル-2-オキソ-4-テトラピラニル、メ タクリル酸 tert-ブチル、メタクリル酸 1-メチルシクロヘキシル、メタク リル酸 1-アダマンチル、メタクリル酸 2-メチル-2-アダマンチル、メタ クリル酸 4-メチル-2-オキソ-4-テトラピラニル等に由来するもの等であ る。

10

15

一般式 [5] で示されるポリマーの具体例としては、例えばポリ (p-20 ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 7-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 7-ラヒドロピラニル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/スチレン/スチレン/アクリ

15

20

25

ル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレ ン/スチレン/アクリル酸 トリフェニルメチル)、ポリ (p-ヒドロキシ スチレン/スチレン/アクリル酸 1.1-ジフェニルエチル)、ポリ (n-ヒ ドロキシスチレン/スチレン/アクリル酸 2-フェニル-2-プロピル)、ボ 「リ (p-ヒドロキシ-α-メチルスチレン/スチレン/アクリル酸 tert-ブチ ル)、ポリ (p-ヒドロキシ-α-メチルスチレン/スチレン/アクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/スチレン/メタクリル 酸 tert-プチル)、ポリ (p-ヒドロキシスチレン/スチレン/メタクリル 酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/スチレン/メタクリ ル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/スチレ ン/メタクリル酸 テトラヒドロピラニル)、ポリ (n-ヒドロキシスチレ ン/スチレン/メタクリル酸 1-アダマンチル)、ポリ (n-ヒドロキシス チレン/スチレン/メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/スチレン/メタクリル酸 4-メチル-2-オキソ-4-テ トラピラニル)、ポリ (p-ヒドロキシスチレン/スチレン/メタクリル酸 トリフェニルメチル)、ポリ (p-ヒドロキシスチレン/スチレン/メタク リル酸 1.1-ジフェニルエチル)、ポリ (n-ヒドロキシスチレン/スチレ ン/メタクリル酸 2-フェニル-2-プロピル)、ポリ (p-ヒドロキシ- α -メ チルスチレン/スチレン/メタクリル酸 tert-ブチル)、ポリ(p-ヒドロ キシ- α -メチルスチレン/スチレン/メタクリル酸 tert-ペンチル)、ポ リ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 tert-ブチ ル)、ポリ(p-ヒドロキシスチレン/m-メチルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリ ル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/m-メチルスチレン /アクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-メチル

スチレン/アクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシ

10

15

20

25

スチレン/m-メチルスチレン/アクリル酸 1-メチルシクロヘキシル)、 ポリ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 テトラヒ ドロピラニル)、ポリ (n-ヒドロキシスチレン/n-メチルスチレン/アク リル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/m-メチルスチ レン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (n-ヒド ロキシスチレン/m-メチルスチレン/アクリル酸 2-メチル-2-アダマン チル)、ポリ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/m-メチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポ リ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 トリフェニ ルメチル)、ポリ (n-ヒドロキシスチレン/n-メチルスチレン/アクリル 酸 1.1-ジフェニルエチル)、ポリ (p-ヒドロキシスチレン/p-メチルス チレン/アクリル酸 2-フェニル-2-プロピル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-メチルスチレン/アクリル酸 tert-ブチル)、ポリ(p-ヒドロキシ-α-メチルスチレン/n-メチルスチレン/アクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/n-メチルスチレン/メタクリ ル酸 tert-プチル)、ポリ (p-ヒドロキシスチレン/m-メチルスチレン/ メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p-メチルス チレン/メタクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/ m-メチルスチレン/メタクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシ スチレン/p-メチルスチレン/メタクリル酸 1-メチルシクロヘキシル)、 ポリ(p-ヒドロキシスチレン/m-メチルスチレン/メタクリル酸 1-メ チルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン /メタクリル酸 テトラヒドロピラニル)、ポリ (p-ヒドロキシスチレン

/p-メチルスチレン/メタクリル酸 1-アダマンチル)、ポリ (p-ヒドロ

15

20

25

キシスチレン/m-メチルスチレン/メタクリル酸 1-アダマンチル)、ポ リ(p-ヒドロキシスチレン/p-メチルスチレン/メタクリル酸 2-メチル -2-アダマンチル)、ポリ (p-ヒドロキシスチレン/m-メチルスチレン/ メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン /p-メチルスチレン/メタクリル酸 4-メチル-2-オキソ-4-テトラピラニ ル)、ポリ (n-ヒドロキシスチレン/m-メチルスチレン/メタクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/ p-メチルスチレン/メタクリル酸 トリフェニルメチル)、ポリ (p-ヒド ロキシスチレン/p-メチルスチレン/メタクリル酸 1.1-ジフェニルエ チル)、ポリ (n-ヒドロキシスチレン/n-メチルスチレン/メタクリル酸 2-7 = 2-7メチルスチレン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-メチルスチレン/メタクリル酸 tert-ペンチル)、ポ リ (p-ヒドロキシスチレン/p-エチルスチレン/アクリル酸 tert-ブチ ル)、ポリ(p-ヒドロキシスチレン/p-エチルスチレン/アクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-エチルスチレン/アクリル 酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-エチル スチレン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン /p-エチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-エチルスチレン/アクリル酸 4-メチル-2-オキ ソ-4-テトラピラニル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-エチ ルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシ-α-メチル スチレン/p-エチルスチレン/アクリル酸 tert-ペンチル)、ポリ (p-ヒ ドロキシスチレン/p-エチルスチレン/メタクリル酸 tert-プチル)、ポ リ(p-ヒドロキシスチレン/p-エチルスチレン/メタクリル酸 tert-ペン

チル)、ポリ (p-ヒドロキシスチレン/p-エチルスチレン/メタクリル酸

1 メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-エチルスチ レン/メタクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/ p-エチルスチレン/メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-エチルスチレン/メタクリル酸 4-メチル-2-オ キソ-4-テトラピラニル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-5 エチルスチレン/メタクリル酸 tert-ブチル)、ポリ (n-ヒドロキシ-α-メチルスチレン/n-エチルスチレン/メタクリル酸 tert-ペンチル)、ポ リ (p-ヒドロキシスチレン/p-n-プロピルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p-n-プロピルスチレン/アク . 10 リル酸 tert-ペンチル)、ポリ(p-ヒドロキシスチレン/p-n-プロピルス チレン/アクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシス チレン/p-n-プロピルスチレン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-n-プロピルスチレン/アクリル酸 2-メチ ル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-n-プロピルスチ 15 レン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒド ロキシ-α-メチルスチレン/p-n-プロピルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシ- α -メチルスチレン/p-n-プロピルスチレ ン/アクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/n-n-プロピルスチレン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシス 20 チレン/p-n-プロピルスチレン/メタクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-n-プロピルスチレン/メタクリル酸 1-メ チルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-n-プロピルス チレン/メタクリル酸 1-アダマンチル)、ポリ (n-ヒドロキシスチレン /p-n-プロピルスチレン/メタクリル酸 2-メチル-2-アダマンチル)、ポ リ (p-ヒドロキシスチレン/p-n-プロピルスチレン/メタクリル酸 4-25

メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシ-α-メチルス

10

15

20

25

チレン/p-n-プロピルスチレン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-n-プロピルスチレン/メタクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-イソプロピルスチレン /アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p-イソプロ ピルスチレン/アクリル酸 tert-ペンチル)、ポリ(p-ヒドロキシスチレ ン/n-イソプロピルスチレン/アクリル酸 1-メチルシクロヘキシル)、 ポリ(p-ヒドロキシスチレン/p-イソプロピルスチレン/アクリル酸 1-アダマンチル)、ポリ(p-ヒドロキシスチレン/p-イソプロピルスチレン /アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン /n-イソプロピルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピ ラニル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-イソプロピルスチ レン/アクリル酸 tert-プチル)、ポリ (p-ヒドロキシ-α-メチルスチレ ン/p-イソプロピルスチレン/アクリル酸 tert-ペンチル)、ポリ (p-ヒ ドロキシスチレン/n-イソプロピルスチレン/メタクリル酸 tert-ブチ ル)、ポリ(p-ヒドロキシスチレン/p-イソプロピルスチレン/メタクリ ル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-イソプロピルス チレン/メタクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシ スチレン/p-イソプロピルスチレン/メタクリル酸 1-アダマンチル)、 ポリ (p-ヒドロキシスチレン/p-イソプロピルスチレン/メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-イソプロピ ルスチレン/メタクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシ-α-メチルスチレン/p-イソプロピルスチレン/メタク リル酸 tert-ブチル)、ポリ (n-ヒドロキシ-α-メチルスチレン/n-イソ プロピルスチレン/メタクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシ スチレン/p-n-プチルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒ

ドロキシスチレン/n-n-プチルスチレン/アクリル酸 tert-ペンチル)、

10

15

20

25

ポリ(p-ヒドロキシスチレン/p-n-ブチルスチレン/アクリル酸 1-メチ ルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p- n-ブチルスチレ ン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-n-プチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒド ロキシスチレン/p-n-ブチルスチレン/アクリル酸 4-メチル-2-オキソ -4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/p-n-ブチルスチレ ン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p- n-プチルスチレン/メタクリル酸 tert-ペンチル)、ポリ(p-ヒドロキシス チレン/p-n-ブチルスチレン/メタクリル酸 1-メチルシクロヘキシ ル)、ポリ (p-ヒドロキシスチレン/p- n-ブチルスチレン/メタクリル 酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-n-プチルスチレ ン/メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチ レン/p-n-ブチルスチレン/メタクリル酸 4-メチル-2-オキソ-4-テト ラピラニル)、ポリ(p-ヒドロキシスチレン/p-イソプチルスチレン/ア クリル酸 tert-プチル)、ポリ (p-ヒドロキシスチレン/p- イソプチルス チレン/アクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-イソブチルスチレン/アクリル酸 1メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p- イソブチルスチレン/アクリル酸 1-アダマン チル)、ポリ (p-ヒドロキシスチレン/p- イソブチルスチレン/アクリ ル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p- イソ プチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポ リ(p-ヒドロキシスチレン/p-イソプチルスチレン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p- イソブチルスチレン/メタ クリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p- イソブチル スチレン/メタクリル酸メチルシクロヘキシル)、ポリ(p-ヒドロキシス

チレン/p- イソブチルスチレン/メタクリル酸アダマンチル)、ポリ(p-

10

15

20

25

ヒドロキシスチレン/p- イソプチルスチレン/メタクリル酸 2-メチル -2-アダマンチル)、ポリ (p-ヒドロキシスチレン/p- イソブチルスチレ ン/メタクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒド ロキシスチレン/p-sec-プチルスチレン/アクリル酸 tert-ブチル)、ポ リ (p-ヒドロキシスチレン/p-sec-ブチルスチレン/アクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/n-sec-プチルスチレン/アク リル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-sec-ブチルスチレン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシス チレン/p-sec-ブチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、 ポリ (p-ヒドロキシスチレン/p-sec-プチルスチレン/アクリル酸 4-メ チル-2-オキソ-4-テトラピラニル)、ポリ(p-ヒドロキシスチレン/p-sec-プチルスチレン/メタクリル酸 tert-ブチル)、ポリ (n-ヒドロキシスチ レン/n-sec-ブチルスチレン/メタクリル酸 tert-ペンチル)、ポリ (p-ヒドロキシスチレン/p-sec-ブチルスチレン/メタクリル酸 1-メチル シクロヘキシル)、ポリ(p-ヒドロキシスチレン/p-sec-ブチルスチレン /メタクリル酸 1-アダマンチル)、ポリ(p-ヒドロキシスチレン/p-sec-ブチルスチレン/メタクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒ ドロキシスチレン/p-sec-ブチルスチレン/メタクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチ ルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/ p-tert-プチルスチレン/アクリル酸 tert-ペンチル)、ポリ (p-ヒドロキ シスチレン/p-tert-ブチルスチレン/アクリル酸 1-メチルシクロヘキ シル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチルスチレン/アクリル 酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチルスチ レン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチ

レン/p-tert-ブチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラ

15

20

ピラニル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチルスチレン/アク リル酸 トリフェニルメチル)、ボリ (p-ヒドロキシスチレン/p-tert-ブ チルスチレン/アクリル酸 1.1-ジフェニルエチル)、ポリ (p-ヒドロキ シスチレン/p-tert-ブチルスチレン/アクリル酸 2-フェニル-2-プロピ ル)、ポリ (n-ヒドロキシ-α-メチルスチレン/n-tert-ブチルスチレン/ アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシ-α-メチルスチレン/ptert-ブチルスチレン/アクリル酸 tert-ペンチル)、ポリ(p-ヒドロキシ スチレン/p-tert-ブチルスチレン/メタクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチルスチレン/メタクリル酸 tert-ペンチル)、ポリ (n-ヒドロキシスチレン/n-tert-ブチルスチレン/メタ クリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/ptert-ブチルスチレン/メタクリル酸 1-アダマンチル)、ポリ (p-ヒドロ キシスチレン/p-tert-ブチルスチレン/メタクリル酸 2-メチル-2-アダ マンチル)、ポリ (p-ヒドロキシスチレン/p-tert-ブチルスチレン/メタ クリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (n-ヒドロキシス チレン/p-tert-ブチルスチレン/メタクリル酸 トリフェニルメチル)、 ポリ(p-ヒドロキシスチレン/p-tert-プチルスチレン/メタクリル酸 1.1-ジフェニルエチル)、ポリ(p-ヒドロキシスチレン/p-tert-ブチルス チレン/メタクリル酸 2-フェニル-2-プロピル)、ポリ (p-ヒドロキシα-メチルスチレン/p-tert-ブチルスチレン/メタクリル酸 tert-ブチ ル)、ポリ(p-ヒドロキシ-α-メチルスチレン/p-tert-ブチルスチレン/

これらの中でも、高解像性能、エッチング耐性が高い、例えばポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒ ** ドロキシスチレン/スチレン/アクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル)、

メタクリル酸 tert-ペンチル) 等が挙げられる。

15

20

ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 2-メチル-2-アダ マンチル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 4-メ チル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/p-メ ·チルスチレン/アクリル酸 tert-ブチル)、ポリ(p-ヒドロキシスチレン /m-メチルスチレン/アクリル酸 tert-ブチル)、ポリ (n-ヒドロキシス チレン/p-メチルスチレン/アクリル酸 1-メチルシクロヘキシル)、ポ リ (p-ヒドロキシスチレン/m-メチルスチレン/アクリル酸 1-メチル シクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン/ア クリル酸 1-アダマンチル)、ポリ (n-ヒドロキシスチレン/m-メチルス チレン/アクリル酸 1-アダマンチル)、ポリ (n-ヒドロキシスチレン/ p-メチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒ ドロキシスチレン/m-メチルスチレン/アクリル酸 2.メチル-2.アダマ ンチル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/ m-メチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、 ポリ(p-ヒドロキシスチレン/p-tert-ブチルスチレン/アクリル酸 tert-ブチル)、ポリ(p-ヒドロキシスチレン/p-tert-ブチルスチレン/ アクリル酸 1-メチルシクロヘキシル)、ポリ(p-ヒドロキシスチレン/ p-tert-ブチルスチレン/アクリル酸 1-アダマンチル)、ポリ(p-ヒドロ キシスチレン/p-tert-ブチルスチレン/アクリル酸 2-メチル-2-アダマ ンチル)、ポリ(p-ヒドロキシスチレン/p-tert-ブチルスチレン/アクリ ル酸 4-メチル-2-オキソ-4-テトラピラニル) 等が好ましく、ポリ (p-ヒ ドロキシスチレン/スチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒド ロキシスチレン/スチレン/アクリル酸 1-メチルシクロヘキシル)、ポ リ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル)、

25 リ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル)、 ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 2-メチル-2-アダ

マンチル)、ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 4-メ チル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシスチレン/p-メ チルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン /p-メチルスチレン/アクリル酸 1-メチルシクロヘキシル)、ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 1-アダマンチル)、 ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 2-メチル -2-アダマンチル)、ポリ (p-ヒドロキシスチレン/アクリル酸 2-メチル アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)、ポリ (p-ヒドロキシ スチレン/m-メチルスチレン/アクリル酸 tert-ブチル)、ポリ (p-ヒドロキシスチレン/アクリル酸 1-メチルシクロヘキ シル)、ポリ (p-ヒドロキシスチレン/アクリル酸 1-メチルシクロへキ シル)、ポリ (p-ヒドロキシスチレン/m-メチルスチレン/アクリル酸 1-アダマンチル)、ポリ (p-ヒドロキシスチレン/m-メチルスチレン/アクリル酸 2-メチル-2-アダマンチル)、ポリ (p-ヒドロキシスチレン/アクリル酸 2-メチル-2-アグマンチル)、ポリ (p-ヒドロキシスチレン/アクリル酸 3-メチルスチレン/アクリル酸 4-メチルスチレン/アクリル酸 4-メチル-2-オキソ-4-テトラピラニル)

, 15 等がより好ましい。これらのポリマーは単独でも、2種以上を組み合わせて用いてもよい。

一般式 [5] で示されるポリマーの合成法は、一般式 [1] で示されるモノマー単位の基となるビニル化合物モノマー、一般式 [2] で示されるモノマー単位の基となるビニル化合物モノマー及び一般式 [3]で 20 示されるモノマー単位の基となるビニル化合物モノマーを、最終的に得られたポリマー中の各モノマーに由来するモノマー単位の比率が上記した如くなるように混合し、モノマーに対して 1~10 倍容量の適当な溶媒、例えばトルエン、1,4・ジオキサン、テトラヒドロフラン、イソプロバノール、メチルエチルケトン等に溶解し、窒素気流下でモノマーに対して 0.1~30 重量%の重合開始剤、例えばアゾイソプチロニトリル、2,2・アゾビス(2,4・ジメチルパレロニトリル)、2,2・アゾビス(2,4・ジメチルパレロニトリル)、2,2・アゾビス(2,4・ジメチルプロピオ

ン酸メチル)、2,2°-アゾピス(2・メチルプチロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等の存在下、50~150℃で1~20時間反応させることにより行なわれ、反応後は高分子取得の常法に従って処理することにより一般式[5]で示されるポリマーが得られる。

5 一般式 [5] で示されるポリマーの重量平均分子量 (Mw) は、通常 3,000~50,000、好ましくは 5,000~25,000、より好ましくは 5,000~20,000 である。また、その分散度 (Mw/Mn) は、通常 1.0~3.5、好ましくは 1.0~2.5 である。

一般式 [1 3] で示されるボリマーの具体例としては、例えばポリ (p-10 ヒドロキシスチレン/p-tert-ブトキシスチレン)、ポリ (p-ヒドロキシスチレン オレン/p-tert-ベンチルオキシスチレン)、ポリ (p-ヒドロキシスチレン / 1-メチルシクロヘキシルオキシスチレン)、ポリ (p-ヒドロキシスチレン / 1-メチルシクロヘキシルオキシスチレン)、ポリ (p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)、ポリ (p-ヒドロキシスチレン/p-tert-ブトキシカルボニルメトキシスチレン) 等が挙げられ、中でも、ポリ (p-ヒドロキシスチレン/p-tert-ブトキシスチレン)、ポリ (p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 等が好ましい。尚、これらポリマーを合成する方法としては、自体公知の方法、例えば特間平 4-221258 号公報、特間平 8-123032 号公報、特間平

一般式 [13] で示されるポリマーの重量平均分子量 (Mw) は、通常 $3,000\sim50,000$ 、好ましくは $5,000\sim25,000$ 、より好ましくは $5,000\sim20,000$ である。また、その分散度 (Mw/Mn) は、通常 $1.0\sim3.5$ 、好ましくは $1.0\sim2.5$ である。

10-53621 号公報等に記載の方法に準じて行えばよい。

25 一般式[13]で示されるポリマーは、一般式[5]で示されるポリマーと混合して用いられるが、その混合比率は、一般式[5]で示されるポ

15

リマーと一般式[13]で示されるポリマーとの比率として、通常95: $5\sim60:40$ であり、好ましくは90:10 $\sim70:30$ である。

一般式 [13] で示されるポリマーと一般式[5]で示されるポリマーとを混合して用いる場合には、上記の一般式 [5] を合成する際に一般式 [13]を上記した如き比率となるように予め添加しておいてもよく、調製した一般式 [5] と調製した一般式 [13] とを上記した如き比率になるように混合してもよい。これらのうち、調製のし易さの点から後者の方がより好ましい。

本発明のレジスト組成物に於いては、前記のコポリマーの他、一般式 [4]で示される放射線照射により酸を発生する感光性化合物(以下、『酸発生剤』と略記する。)が主要な構成成分となる。一般式 [4]で示される酸発生剤は、カウンターアニオン部の芳香環のm(メタ)-位に少なくとも1個以上の電子吸引性基が導入されているため、強い酸性度を有するスルホン酸を発生させることができる。該カウンターアニオン部の好ましいものとしては、例えばペンタフルオロベンゼンスルホネート、3-トリフルオロメチルベンゼンスルホネート等が挙げられる。

上記一般式 [4] で示される酸発生剤は、強酸を発生すると共に現像 液に対する溶解阻害効果が極めて高い一般式 [6] で示される酸発生剤 20 と、強酸を発生し現像液に対する溶解阻害効果は一般式 [6] のものに 比べて弱いが高感度化に付与する一般式 [7] で示される酸発生剤とに 大別され、一般式 [6] で示される酸発生剤及び一般式 [7] で示される酸発生剤を表々単独で用いてもよいが、一般式 [6] で示される酸発生剤と一般式 [7] で示される酸発生剤とを失々 1 種類以上混合して用いることで、更に高感度化、高解像性能が達成出来、解像パターンの形状も良好となるので、両者を混合して用いることが特に好ましい。

10

15

20

25

一般式 [6] で示される酸発生剤及び一般式 [7] で示される酸発生 剤を混合して用いる場合の酸発生剤の組み合わせとしては、下記の一般 式[6]で示される酸発生剤の具体例及び一般式 [7]で示される酸発 生剤の具体例から夫々1種以上を選択して用いればよい。また、その場 合の一般式 [6] で示される酸発生剤と一般式 [7] で示される酸発生 剤の混合比率は、重量比で2:1~1:5の範囲であることが好ましい。 一般式 [6] で示される酸発生剤の具体例としては、例えばジフェニ ル 4-メチルフェニルスルホニウムペンタフルオロベンゼンスルホネー ト、ジフェニル 4-メチルフェニルスルホニウム 2.5-ジクロロベンゼンス ルホネート、ジフェニル 4-メチルフェニルスルホニウム 2.4.5-トリクロ ロベンゼンスルホネート、ジフェニル 4-メチルフェニルスルホニウム 8-ニトロベンゼンスルホネート、ジフェニル 4-メチルフェニルスルホニウ ム 3.5-ジニトロベンゼンスルホネート、ジフェニル 4-メチルフェニルス ルホニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル 4-メチルフェニルスルホニウム 3.5-ジ-トリフルオロメチルベンゼンスル ホネート、ジフェニル 2.4-ジメチルフェニルスルホニウムペンタフルオ ロベンゼンスルホネート、ジフェニル 2.4-ジメチルフェニルスルホニウ ム 2.5-ジクロロベンゼンスルホネート、ジフェニル 2.4-ジメチルフェニ ルスルホニウム 2,4,5-トリクロロベンゼンスルホネート、ジフェニル 2,4-ジメチルフェニルスルホニウム 3-ニトロベンゼンスルホネート、ジ フェニル 2.4-ジメチルフェニルスルホニウム 3.5-ジニトロベンゼンス ルホネート、ジフェニル 2.4-ジメチルフェニルスルホニウム 3-トリフル オロメチルベンゼンスルホネート、ジフェニル 2,4-ジメチルフェニルス ルホニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェニ ル 2.4.6-トリメチルフェニルスルホニウムペンタフルオロベンゼンス ルホネート、ジフェニル 2.4.6-トリメチルフェニルスルホニウム 2.5-ジ

15

20

· クロロベンゼンスルホネート、ジフェニル 2,4,6-トリメチルフェニルス ルホニウム 2,4,5-トリクロロベンゼンスルホネート、ジフェニル 2,4,6-トリメチルフェニルスルホニウム 3-ニトロベンゼンスルホネート、ジフ エニル 2.4.6-トリメチルフェニルスルホニウム 3.5-ジニトロベンゼンス ルホネート、ジフェニル 2.4.6-トリメチルフェニルスルホニウム 3-トリ フルオロメチルベンゼンスルホネート、ジフェニル 2.4.6-トリメチルフ ェニルスルホニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート. ジフェニル 4-エチルフェニルスルホニウムペンタフルオロベンゼンス ルホネート、ジフェニル 4-エチルフェニルスルホニウム 2.5-ジクロロベ ンゼンスルホネート、ジフェニル 4-エチルフェニルスルホニウム 8-ト リフルオロメチルベンゼンスルホネート、ジフェニル 4-エチルフェニル スルホニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェ ニル 4-n-プロピルフェニルスルホニウムペンタフルオロベンゼンスル ホネート、ジフェニル 4-n-プロピルフェニルスルホニウム 3-トリフルオ ロメチルベンゼンスルホネート、ジフェニル 4-イソプロピルフェニルス ルホニウムペンタフルオロベンゼンスルホネート、ジフェニル 4-イソプ ロピルフェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネ ート、ジフェニル 4-n-ブチルフェニルスルホニウムペンタフルオロベン ゼンスルホネート、ジフェニル 4-n-ブチルフェニルスルホニウム 3-トリ フルオロメチルベンゼンスルホネート、ジフェニル 4-イソブチルフェニ ルスルホニウムペンタフルオロベンゼンスルホネート、ジフェニル 4-イソブチルフェニルスルホニウム 3-トリフルオロメチルベンゼンスル ホネート、ジフェニル 4-sec-ブチルフェニルスルホニウムペンタフルオ ロベンゼンスルホネート、ジフェニル 4-sec-ブチルフェニルスルホニウ ム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル 4-tert-ブ

25 ム 8-トリフルオロメチルベンゼンスルホネート、ジフェニル 4-tert-ブ チルフェニルスルホニウムベンタフルオロベンゼンスルホネート、ジフ

10

15

エニル 4-tert-ブチルフェニルスルホニウム 2.5-ジクロロベンゼンスル ホネート、ジフェニル 4-tert-プチルフェニルスルホニウム 2.4.5-トリク ロロベンゼンスルホネート、ジフェニル 4-tert-ブチルフェニルスルホニ ウム 3-ニトロベンゼンスルホネート、ジフェニル 4-tert-ブチルフェニ ルスルホニウム 3.5-ジニトロベンゼンスルホネート、ジフェニル 4-tert-ブチルフェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネ ート、ジフェニル 4-tert-ブチルフェニルスルホニウム 35-ジ-トリフル オロメチルベンゼンスルホネート、トリス(4-メチルフェニル)スルホ ニウムペンタフルオロベンゼンスルホネート、トリス(4-メチルフェニ ル) スルホニウム 3-トリフルオロメチルベンゼンスルホネート、トリス (4-メチルフェニル) スルホニウム 3.5-ジ-トリフルオロメチルベンゼン スルホネート、トリス(4-エチルフェニル)スルホニウムペンタフルオ ロベンゼンスルホネート、トリス(4-n-プロピルフェニル)スルホニウ ムペンタフルオロベンゼンスルホネート、トリス(4-イソプロピルフェ ニル)スルホニウムペンタフルオロベンゼンスルホネート、トリス(4-イソプロピルフェニル)スルホニウム 3-トリフルオロメチルベンゼンス ルホネート、トリス(4-イソプロピルフェニル)スルホニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート、ビス(4-メチルフェニル) フェニルスルホニウムペンタフルオロベンゼンスルホネート、ビス(4-メチルフェニル)フェニルスルホニウム 2.5-ジクロロベンゼンスルホネ

20 メチルフェニル) フェニルスルホニウム 2,5-ジクロロベンゼンスルホネート、ビス (4-メチルフェニル) フェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート、ビス (4-メチルフェニル) フェニルスルホニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート等が挙げられ、好ましくは、ジフェニル-2,4,6-トリメチルフェニルスルホニウムペ

25 ンタフルオロベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェ ニルスルホニウム 8-トリフルオロメチルベンゼンスルホネート、ジフェ ニル-2,4,6-トリメチルフェニルスルホニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム 2,5-ジクロロベンゼンスルホネート、ジフェニル-4-メチルフェニルスルホニウムベンタフルオロベンゼンスルホネート、ジフェニル-4-

5 メチルフェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル-4-メチルフェニルスルホニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェニル-4-メチルフェニルスルホニウム 2,5-ジクロロベンゼンスルホネート等であり、より好ましくはジフェニル-2,4,6-トリメチルフェニルスルホニウムベンタフルオロベンゼンス 10 ルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム 3-トリ

10 ルホネート、ジフェニル・2,4,6・トリメチルフェニルスルホニウム 3・トリフルオロメチルベンゼンスルホネート、ジフェニル・2,4,6・トリメチルフェニルスルホニウム 3,5・ジ・トリフルオロメチルベンゼンスルホネート、ジフェニル・4・メチルフェニルスルホニウム 3・トリフルオロメチルベンゼンスルホネート、ジフェニル・4・メチルフェニルスルホニウム 3・トリフルオロム 3・5・ジ・トリフルオロメチルベンゼンスルホネート等である。

一般式 [7] で示される酸発生剤の具体例としては、例えばトリフェニルスルホニウムベンタフルオロベンゼンスルホネート、トリフェニルスルホニウム 2,5-ジクロロベンゼンスルホネート、トリフェニルスルホ こウム 2,4,5-トリクロロベンゼンスルホネート、トリフェニルスルホニウム 3-ニトロベンゼンスルホネート、トリフェニルスルホニウム 3,5-ジニトロベンゼンスルホネート、トリフェニルスルホニウム 3,5-ジトリフルオロメチルベンゼンスルホネート、トリフェニルスルホニウム 3,5-ジトリフルオロメチルベンゼンスルホネート、トリフェニルスルホニウムベンダフルオロベンゼンスルホネート、トリフェニ 25 エニルスルホニウムベンタフルオロベンゼンスルホネート、トリフェニ

ルスルホニウム 3-トリフルオロメチルベンゼンスルホネート、トリフェ

ニルスルホニウム 3,5・ジ・トリフルオロメチルベンゼンスルホネート、トリフェニルスルホニウム 2,5・ジクロロベンゼンスルホネート等であり、より好ましくはトリフェニルスルホニウムベンタフルオロベンゼンスルホネート、トリフェニルスルホニウム 3.5・ジトリフルオロメチルベンゼンスルホネート、トリフェニルスルホニウム 3,5・ジトリフルオロメチルベンゼンスルホネート等である。

一般式[4](又は一般式[6],一般式[7])で示される酸発生剤は、 例えば下記で示されるような方法等によって合成出来る。

即ち、一般式[8]

$$R_{g}$$
 [8]

10 [式中、R。は前記と同じ。]で示される化合物を例えば塩化メチレン, 臭化メチレン, 1,2・ジクロロエタン, クロロホルム等のハロゲン化炭化水素、例えばベンゼン, トルエン, キシレン等の芳香族炭化水素等の溶媒、又はこれらと、例えばエチルエーテル, イソプロピルエーテル, テトラヒドロフラン, 1,2・ジメチルエタン等のエーテル類との混合溶媒に
 15 溶解し、これに一般式[8]で示される化合物の 0.5~3倍モルの下記一般式 [9]

[式中、R₁₀ 及びnは前記と同じであり、Xはハロゲン原子を表す。] で示されるグリニャール試業を-10~100℃で添加した後、0~100℃で0.5~10 時間撹拌反応させる。反応終了後、反応液を0~30℃で例えば 20 臭化水素酸水溶液、塩酸水溶液又はヨウ化水素酸水溶液等のハロゲン化水素酸水溶液で処理することにより、下記一般式[10]

$$\underset{(R_{10})_{1}}{\overset{R_{9}}{\bigcirc}} Y^{\bigodot} \qquad [10]$$

[式中、 R_0 及び R_{10} は前記と同じであり、Yはハロゲン原子を表す。] で示される化合物が得られる。得られた化合物を例えば塩化メチレン、メタノール、エタノール、イソプロパノール、水又はこれらの混合溶媒に溶解し、これに $0.9\sim1.5$ モルの下記一般式「1.1]

$$\begin{array}{c|cccc}
R_5 & R_4 \\
R_6 & SO_3^{\ominus} & Z
\end{array}$$

$$\begin{array}{c|cccc}
R_7 & R_8
\end{array}$$
[11]

- 5 [式中、 $R_4 \sim R_8$ は前記と同じであり、Z はA g $^+$ 、N a $^+$ 、 K^+ 、L i $^+$ 、テトラメチルアンモニウム等のカウンターカチオンを表す。] で示される有機スルホン酸塩を添加し、 $0 \sim 50$ $^{\circ}$ で $0.5 \sim 20$ 時間撹拌反応させれば一般式 [4] (又は一般式 [6], 一般式 [7]) で示される化合物が得られる。
- 10 一般式 [12]で示される化合物の具体例としては、例えばジフェニルヨードニウム ノナフルオロブタンスルホネート、ジフェニルヨードニウム ヘプタデカフルオロオクタンスルホネート、ジフェニルヨードニウム ベンタフルオロベンゼンスルホネート、ジフェニルヨードニウム 2,4・ジフルオロベンゼンスルホネート、ジフェニルヨードニウム 3-フルオロベンゼンスルホネート、ジフェニルヨードニウム 4フルオロベンゼンスルホネート、ジフェニルヨードニウム 4フルオロベンゼンスルホネート、ジフェニルヨードニウム 24.5・トリクロロ

ベンゼンスルホネート、ジフェニルヨードニウム 2.5-ジクロロベンゼ ンスルホネート、ジフェニルヨードニウム 2-ニトロベンゼンスルホ ネート、ジフェニルヨードニウム 3-ニトロベンゼンスルホネート. ジフェニルヨードニウム 4-ニトロベンゼンスルホネート、ジフェニ ルヨードニウム 3.5-ジニトロベンゼンスルホネート、ジフェニルヨー 5 ドニウム 2-トリフルオロメチルベンゼンスルホネート、ジフェニル ヨードニウム 3-トリフルオロメチルベンゼンスルホネート. ジフェ ニルヨードニウム 4-トリフルオロメチルベンゼンスルホネート、ジ フェニルヨードニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネ ート、ジ 4-メチルフェニルヨードニウム ノナフルオロブタンスルホ 10 ネート、ジ 4-メチルフェニルヨードニウム ヘプタデカフルオロオク タンスルホネート、ジ 4-メチルフェニルヨードニウム ペンタフルオ ロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 2.4-ジ フルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 2-フルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 15 3-フルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 4-フルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 2.4.5-トリクロロベンゼンスルホネート、ジ 4-メチルフェニルヨードニ ウム 2.5-ジクロロベンゼンスルホネート、ジ 4-メチルフェニルヨー 20 ドニウム 2-ニトロベンゼンスルホネート、ジ 4-メチルフェニルヨー ドニウム 3-ニトロベンゼンスルホネート、ジ 4-メチルフェニルヨー ドニウム 4-ニトロベンゼンスルホネート、ジ 4-メチルフェニルヨー ドニウム 3.5-ジニトロベンゼンスルホネート、ジ 4-メチルフェニル ヨードニウム 2-トリフルオロメチルペンゼンスルホネート、ジ 4-メ 25 チルフェニルヨードニウム 3-トリフルオロメチルベンゼンスルホネ ート、ジ 4-メチルフェニルヨードニウム 4-トリフルオロメチルベン

ゼンスルホネート、ジ 4-メチルフェニルヨードニウム 3.5-ジ-トリフ ルオロメチルベンゼンスルホネート、ジ 4-エチルフェニルヨードニウ ム ノナフルオロブタンスルホネート、ジ 4-エチルフェニルヨードニ ウム ヘプタデカフルオロオクタンスルホネート、ジ 4-エチルフェニ ルヨードニウム ペンタフルオロベンゼンスルホネート、ジ 4-エチル 5 フェニルヨードニウム 2.4-ジフルオロベンゼンスルホネート、ジ 4-エチルフェニルヨードニウム 2-フルオロベンゼンスルホネート、ジ 4-エチルフェニルヨードニウム 3-フルオロベンゼンスルホネート、ジ 4-エチルフェニルヨードニウム 4-フルオロベンゼンスルホネート, ジ 10 4-エチルフェニルヨードニウム 2.4.5-トリクロロベンゼンスルホネ ート、ジ 4-エチルフェニルヨードニウム 2,5-ジクロロベンゼンスル ホネート、ジ 4-エチルフェニルヨードニウム 2-ニトロペンゼンスル ホネート、ジ 4-エチルフェニルヨードニウム 3-ニトロベンゼンスル ホネート、ジ 4-エチルフェニルヨードニウム 4-ニトロペンゼンスル ホネート、ジ 4-エチルフェニルヨードニウム 3.5-ジニトロベンゼン 15 スルホネート、ジ 4-エチルフェニルヨードニウム 2-トリフルオロメ チルベンゼンスルホネート、ジ 4-エチルフェニルヨードニウム 3-ト リフルオロメチルベンゼンスルホネート、ジ 4-エチルフェニルヨード ニウム 4-トリフルオロメチルベンゼンスルホネート、ジ 4-エチルフ 20 ェニルヨードニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネー ト、ジ 4-プロピルフェニルヨードニウム ノナフルオロブタンスルホ ネート、ジ 4-プロピルフェニルヨードニウム ヘプタデカフルオロオ クタンスルホネート、ジ 4-プロピルフェニルヨードニウム ペンタフ ルオロベンゼンスルホネート、ジ 4-プロピルフェニルヨードニウム 2,4-ジフルオロベンゼンスルホネート、ジ 4-プロピルフェニルヨード 25 ニウム 2-フルオロベンゼンスルホネート、ジ 4-プロピルフェニルヨ

ードニウム 3-フルオロベンゼンスルホネート、ジ 4-プロビルフェニ ルヨードニウム 4-フルオロベンゼンスルホネート、ジ 4-プロビルフ ェニルヨードニウム 2,4,5-トリクロロベンゼンスルホネート、ジ 4-プロビルフェニルヨードニウム 2,5-ジクロロベンゼンスルホネート、

- 5 ジ 4-プロピルフェニルヨードニウム 2-ニトロベンゼンスルホネート、 ジ 4-プロピルフェニルヨードニウム 3-ニトロベンゼンスルホネート、 ジ 4-プロピルフェニルヨードニウム 4-ニトロベンゼンスルホネート、 ジ 4-プロピルフェニルヨードニウム 3,5-ジニトロベンゼンスルホネ ート、ジ 4-プロピルフェニルヨードニウム 2-トリフルオロメチルベ
- 10 ンゼンスルホネート、ジ 4-プロピルフェニルヨードニウム 3-トリフ ルオロメチルベンゼンスルホネート、ジ 4-プロピルフェニルヨードニ ウム 4-トリフルオロメチルベンゼンスルホネート、ジ 4-プロピルフ ェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート、ジ 4-イソプロピルフェニルヨードニウム ノナフルオロブタンス
- ルホネート、ジ 4イソプロピルフェニルヨードニウム ヘプタデカフ ルオロオクタンスルホネート、ジ 4イソプロピルフェニルヨードニウ ム ベンタフルオロベンゼンスルホネート、ジ 4イソプロピルフェニ ルヨードニウム 2,4・ジフルオロベンゼンスルホネート、ジ 4イソプロピルフェニルヨードニウム 2・フルオロベンゼンスルホネート、ジ
- 20 4-イソプロピルフェニルヨードニウム 8-フルオロベンゼンスルホネート、ジ 4-イソプロピルフェニルヨードニウム 4-フルオロベンゼンスルホネート、ジ 4-イソプロピルフェニルヨードニウム 2,4,5-トリクロロベンゼンスルホネート、ジ 4-イソプロピルフェニルヨードニウム 2,5-ジクロロベンゼンスルホネート、ジ 4-イソプロピルフェニルヨー
- 25 ドニウム 2-ニトロベンゼンスルホネート、ジ 4-イソプロビルフェニ ルヨードニウム 3-ニトロベンゼンスルホネート、ジ 4-イソプロビル

10

15

20

25

フェニルヨードニウム 4-ニトロベンゼンスルホネート、ジ 4-イソプ ロピルフェニルヨードニウム 35-ジニトロベンゼンスルホネート, ジ 4-イソプロピルフェニルヨードニウム 2-トリフルオロメチルベンゼ ンスルホネート、ジ 4-イソプロピルフェニルヨードニウム 3-トリフ ルオロメチルベンゼンスルホネート、ジ 4-イソプロピルフェニルヨー ドニウム 4-トリフルオロメチルベンゼンスルホネート、ジ 4-イソプ ロピルフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンス ルホネート、ジ 4-tert-ブチルフェニルヨードニウム ノナフルオロブ タンスルホネート、ジ 4-tert-ブチルフェニルヨードニウム ヘプタデ カフルオロオクタンスルホネート、ジ 4-tert-ブチルフェニルヨードニ ウム ペンタフルオロベンゼンスルホネート、ジ 4-tert-ブチルフェニ ルヨードニウム 2.4-ジフルオロベンゼンスルホネート、ジ 4-tert-ブ チルフェニルヨードニウム 2-フルオロベンゼンスルホネート、ジ 4tert-プチルフェニルヨードニウム 3-フルオロベンゼンスルホネート. ジ 4-tert-ブチルフェニルヨードニウム 4-フルオロベンゼンスルホネ ート、ジ 4-tert-ブチルフェニルヨードニウム 2.4.5-トリクロロベン ゼンスルホネート、ジ 4-tert-プチルフェニルヨードニウム 2.5-ジク ロロベンゼンスルホネート、ジ 4-tert-ブチルフェニルヨードニウム 2-ニトロベンゼンスルホネート、ジ 4-tert-ブチルフェニルヨードニウ ム 3-ニトロベンゼンスルホネート、ジ 4-tert-ブチルフェニルヨード ニウム 4-ニトロベンゼンスルホネート、ジ 4-tert-ブチルフェニルヨ ードニウム 3.5-ジニトロベンゼンスルホネート、ジ 4-tert-ブチルフ ェニルヨードニウム 2-トリフルオロメチルベンゼンスルホネート、 ジ 4-tert-ブチルフェニルヨードニウム 3-トリフルオロメチルベンゼ ンスルホネート、ジ 4-tert-ブチルフェニルヨードニウム 4-トリフル

オロメチルベンゼンスルホネート、ジ 4-tert-ブチルファニルヨードニ

ウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート、ジ 4-tert-ペ ンチルフェニルヨードニウム ノナフルオロブタンスルホネート、ジ 4-tart-ペンチルフェニルヨードニウム ヘプタデカフルオロオクタン スルホネート、ジ 4-tert-ペンチルフェニルヨードニウム ペンタフル オロベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨードニウム 5 2.4-ジフルオロペンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨ ードニウム 2-フルオロベンゼンスルホネート、ジ 4-tart-ペンチルフ ェニルヨードニウム 3-フルオロベンゼンスルホネート、ジ 4-tert-ペ ンチルフェニルヨードニウム 4-フルオロベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨードニウム 2.4.5-トリクロロベンゼンス 10 ルホネート、ジ 4-tert-ペンチルフェニルヨードニウム 2.5-ジクロロ ベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨードニウム 2-ニトロベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨードニウ ム 3-ニトロベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨー ドニウム 4-ニトロベンゼンスルホネート、ジ 4-tert-ペンチルフェニ 15 ルヨードニウム 3.5-ジニトロベンゼンスルホネート、ジ 4-tert-ペン チルフェニルヨードニウム 2-トリフルオロメチルベンゼンスルホネ ート、ジ 4-tert-ペンチルフェニルヨードニウム 3-トリフルオロメチ ルベンゼンスルホネート、ジ 4-tert-ペンチルフェニルヨードニウム 20 4-トリフルオロメチルベンゼンスルホネート、ジ 4-tert-ペンチルフェ ニルヨードニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート 等が挙げられ、中でもジフェニルヨードニウム ノナフルオロブタン スルホネート、ジフェニルヨードニウム ヘプタデカフルオロオクタ ンスルホネート、ジフェニルヨードニウム ペンタフルオロベンゼン スルホネート、ジフェニルヨードニウム 3-トリフルオロメチルベン 25 ゼンスルホネート、ジフェニルヨードニウム 3.5-ジ-トリフルオロメ

0.1

15

20

チルベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム ノナフルオロブタンスルホネート、ジ 4-メチルフェニルヨードニウム ヘブタデカフルオロオクタンスルホネート、ジ 4-メチルフェニルヨードニウム ベンタフルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 3-トリフルオロメチルベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート等が好ましい。

尚、一般式 [12] で示される酸発生剤は、自体公知の方法、例えば James.V.Crivello;Julia.H.W.Lam、Macromolecules,1977 年,10 巻(6 号),1307 ~ 1315 頁 ; James.V.Crivello;Julia.H.W.Lam 、 J.Org.Chem,1978 年,43 巻(15 号),3055~3058 頁等に記載の方法に準 じて合成すればよい。

上配した一般式 [12] で示される酸発生剤は、一般式 [4] (或いは一般式 [6] 又は/及び [7]) で示される酸発生剤と混合して用いられるが、その比率は、通常50:1~1:5、好ましくは10:1~1:2である。

また、一般式 [12] で示される酸発生剤と一般式 [4] (或いは一般式 [6] 又は/及び [7]) で示される酸発生剤とを混合する方法としては、上記した如き比率となるように一般式 [12] で示される酸発生剤と一般式 [4] で示される酸発生剤とを混合すればよい。

本発明のレジスト組成物に於いて、ポリマー成分と酸発生剤との混合 比としては、ポリマー100 重量部に対して酸発生剤は通常 1~30 重量部、 好ましくは 1~20 重量部である。

本発明のレジスト組成物には前記のポリマー及び酸発生剤の他、溶剤、 25 有機塩基化合物が使用され、必要に応じて界面活性剤、溶解補助剤等の 添加物が使用される。

10

15

25

本発明に係る溶剤としては、本発明のポリマー、酸発生剤、及び塩基性化合物、要すれば界面活性剤、溶解補助剤等を溶解可能なものであれば何れにてもよいが、通常、成膜性が良好なものが使用され、例えばメチルセロソルプアセテート、エチルセロソルプアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸プロピル、酢酸2・エトキシエチル、ピルビン酸メチル、乳酸エチル、乳・3・エトキシプロピオン酸メチル、3・エトキシプロピオン酸メチル、3・エトキシプロピオン酸メチル、3・エトキシプロピオン酸メチル、3・エトキシプロピオン酸メチル、3・エトキシプロピオン酸スチルで、3・エトキシプロピオン酸スチル、3・エトキシプロピオン酸エチル等のカルボン酸エステル類、シクロヘキサノン、メチルエチルケトン、2・ヘブタノン等のケトン類、1、4・ジオキサン等の環状エーテル類、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジロピルエーテル等のエーテル類、N・メチル・2・ピロリドン等の環状アミド等が挙げられ、中でもプロピレングリコールモノメチルエーテル、プロピ

本発明に係る溶剤の量としては、ポリマー1重量部に対して通常3~ 20 40 重量部、好ましくは5~20 重量部である。

2種以上組み合わせて用いてもよい。

レングリコールモノメチルエーテルアセテート、乳酸エチル、3-エトキ シプロピオン酸エチル等が好ましい。また、これらは単独で用いても、

10

25

み合わせて用いてもよい。

レンセチルエーテル等が好ましい。

ン、トリベンジルアミン、トリス [2- (2-メトキシエトキシ) エチル] アミン等の第3級アルキルアミン、例えば N-メチルピロリジン、N-メ チルピベリジン、1,4-ジアザピシクロ[2,2,2]オクタン等の脂環状アミン、例えばトリエタノールアミン、トリイソプロパノールアミン等の第3級トリアルカノールアミン、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、例えばポリピニルピリジン、ポリ (ビニルピリジン/メタクリル酸メチル) 等のピニルピリジンボリマー等が挙げられ、中でもα,α',α"-トリピリジン、ジオクチルメチルアミン、ジメチルへキサデシルアミン、14-ジアザピシクチルドデシルアミン、ジメチルへキサデシルアミン、14-ジアザピシク

口[2.2.2]オクタン等が好ましい。これらは単独で用いても、2種以上組

界面活性剤としては、例えばポリエチレングリコールジステアレート、ポリエチレングリコールジラウレート、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル等のノニオン系界面活性剤、フッ素含有カチオン系界面活性剤、フッ素含有ノニオン系界面活性剤、フッ素含有アニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤。20 等が挙げられる。本発明に於いては、前記の界面活性剤の内、レジスト膜の成膜性が良好な、例えばフロラード(住友スリーエム(株)商品名)、サーフロン(旭硝子(株)商品名)、ユニダイン(ダイキン工業(株)商品名)、メガファック(大日本インキ(株)商品名)、エフトップ(トーケムプロダクツ(株)商品名)等のフッ素含有ノニオン系界面活性剤、

ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチ

15

本発明に係る塩基性化合物及び界面活性剤の使用量は何れのレジスト に於いてもポリマーの全重量に対して夫々通常 0.000001~1 重量%、好 ましくは 0.00001~0.5 重量%である。

本発明のレジスト組成物に於て必要に応じて使用される溶解補助剤と しては、例えば N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、 β -プロピオラクトン、 β -プチロラクトン、 γ -ブチロラクトン、 γ -バレロラクトン、 δ -パレロラクトン等が挙げられる。これらは、単独で用いても、適宜 2 種以上組合せて用いてもよい。

本発明に係る溶解補助剤の使用量としては、通常この分野で使用され る使用量から適宜選択して用いればよい。

本発明のレジスト組成物を用いてパターン形成を行う際に使用することが出来る放射線としては、電子線、極紫外線($1\sim30$ nm帯)、X線、 F_2 レーザー(157nm)、Kr F エキシマレーザー(248nm)、Ar F エキシマレーザー(193nm)、i 線光(365nm)等であるが、好ましくは電子線、極紫外線又はX線等が用いられ、より好ましくは電子線が用いられる。

本発明のレジスト組成物を用いてパターン形成を行うには、例えば以 下のごとく行えば良い。

20 即ち、本発明のレジスト組成物を、回転塗布(スピンコート)等によってシリコンウエハー等の半導体基板上に塗布した後、ホットプレート上で $70\sim150$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ たの か問加熱処理(プレベーク)して膜厚 $^{\circ}$ $^{\circ}$

25 照射後、ホットプレート上で70~150℃、60~120秒間加熱処理(PEB)
を行った後、アルカリ現像液を用いて30~120秒間、スプレー法、パド

ル法又はディップ法等により現像、水洗して所定のレジストパターンを 形成させる。

尚、アルカリ現像液としては、例えば、アルカリ金属水酸化物、アンモニア水、アルキルアミン類、アルカノールアミン類、複素環式アミン、

5 テトラアルキルアンモニウムヒドロキシド類等のアルカリ性化合物の1 種以上を、通常、0.01~20 重量%、好ましくは1~5%の濃度となるように溶解したアルカリ性水溶液を使用すればよく、特に好ましいものは、テトラアルキルアンモニウムヒドロキシド類の水溶液である。また、前記アルカリ性水溶液からなる現像液には、例えば、メタノール、エタノ

10 一ル等の水溶性有機溶剤や界面活性剤等を適宜添加してもよい。

本発明のレジスト組成物は、一般式 [1] で示されるモノマー単位、一般式 [2]で示されるモノマー単位及び酸不安定基を有する一般式 [3] に示されるモノマー単位を構成成分とするボリマー(例えば、一般式 [5] で示されるボリマー) 1種以上と、一般式 [4]に示される酸発生剤 1種以 上 (例えば、一般式 [6] で示される酸発生剤と一般式 [7] で示される酸発生剤との混合物) と、塩基性化合物及び溶媒とから構成されるもの、更にポリマーとして一般式 [13]で示されるポリマーを有するもの、更に成射線照射により酸を発生する化合物として一般式 [12]で示される酸発生剤を有するもの等であり、放射線照射部位では発生した20 酸が加熱作用により酸不安定基が解離して、カルボン酸を生成し、これにより酸ポリマーがアルカリ可溶性となり、ボジ型のレジストバターンを形成するものである。

該ポリマーは、酸存在下でも加熱しなければ分解解離しない酸不安定 基を懸垂しているため、酸存在下では非加熱状態でも直ちに分解する非 環状のアセタール基等を酸不安定基として懸垂するポリマーと比較する と、電子線服射中のアウトガス発生によるピームの揺らぎを引き起こす

恐れが少なく、高真空下でも良好なパターンを形成することができる。 又、スチレン単位の芳香環にアルキル基を導入したものや、(メタ)アク リル酸エステルのエステル残基に有橋脂環式炭化水素基を導入したもの 等をポリマー中に導入することにより(一般式 [5]で示されるポリマー)、この種のポリマーの欠点であるエッチング耐性不足を解消すること も可能である。更に、一般式 [13]で示されるポリマーを加えること により、パターン形成時の露光マージンを拡大し照射部のパターンのパ ラツキを抑える事ができ、その結果精度の高いパターン形成が可能とな る。

10 また、該酸発生剤は、カルボン酸エステルを低エネルギー照射量(高 感度)で解離させると共に酸の揮発性や移動性を極力少なくさせること を目的として芳香族スルホニウム塩を使用し、そのカウンターアニオン 部位には、特に強い酸性度を有する芳香族スルホン酸を生成させるため に、芳香環のm-位に少なくとも1個以上の電子吸引性基(例えば、ハロ 15 ゲン原子、ニトロ基、トリフルオロメチル基等)が導入してある。これ により、生成した酸の揮発や移動が少なくなり、PED (post exposure delav)等従来から問題であった点を解消している。又、カチオン部位に、 現像液に対する溶解阻害効果が極めて高く日つ限界解像領域でパターン 潰れ防止効果のある、芳香環にアルキル基を導入した層様アリールスル 20 ホニウム (即ち、一般式 [6] で示される酸発生剤)と、溶解阻害効果 は弱いが高感度化に付与する無置換アリールスルホニウム(一般式[7] で示される酸発生剤)とを併用することで、レジスト組成物の高感度化、 高解像性が達成出来、また得られるパターン形状も良好とすることがで きる。また、上記したような、芳香環にアルキル基等を導入した置換ア リールスルホニウム若しくは無置換アリールスルホニウム又はこれらを 25

5 リールスルホニウム若しくは無置換アリールスルホニウム又はこれらを 併用した酸発生剤に、更に酸発生効率が高いので極めて高感度化に付与 するジフェニルヨードニウム塩 (即ち、一般式 [12] で示される酸発 生剤)を併せて用いることにより、更にレジスト組成物の高感度化を可 能とする。更に、これら酸発生剤は、貯蔵安定性の面の問題もない。

本発明のレジスト組成物は、上記したようなポリマー及び酸発生剤を 適宜組み合わせて用いることにより、両者の特徴部、即ちポリマーの改 良による、高真空下での良好なパターン形成及び露光マージンの拡大 (露光裕度の向上) による精度の高いパターン形成、並びに酸発生剤の改 良によるレジスト組成物の高感度化及び高解像性、を有するものであり 、半導体素子等の製造に於ける超微細加工技術に適合し、且つ、高解像 性、高感度化並びに良好なパターン形状を可能にする有用なレジスト組 成物である。

以下に合成例、実施例、比較例を挙げて本発明を更に群細に説明するが、本発明はこれらにより限定されるものではない。

実施例

15

合成例 1 ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-プチル) の合成

p-ヒドロキシスチレン 84.1g、スチレン 20.8g及びアクリル酸 tert-ブチル 12.8gをイソプロパノール'400mLに溶解し、これにアゾビスイ 20 ソプチロニトリル 14.1gを添加し、窒素気流下80℃で6時間反応させた。 反応後、該反応液を水10L中に注入して沈殿させ、析出結晶を濾取、減 圧乾燥して、微褐色粉末晶のポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 tert-ブチル) 95gを得た。得られた共重合体をポリマー1とした。また、ポリマー1における、p-ヒドロキシスチレン単位、スチレン単位及びアクリル酸 tert-ブチル単位の構成比率は、1°CNMRの測定結果から約7:2:1であった。また、ポリスチレンを標準としたゲルパー

ンチル) の合成

ミエーションクロマトグラフィーの測定結果から、共重合体の重量平均 分子量(Mw)は約10,000、分散度(Mw/Mn)は約1.9であった。

合成例 2 ポリ (p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸 tert-ブチル) の合成

5 上記合成例1のスチレンを p-メチルスチレン 23.6 g に代えた以外は 合成例1と同様に合成、後処理して、微褐色粉末晶のポリ (p-ヒドロキ シスチレン/p-メチルスチレン/アクリル酸 tert-ブチル) 96gを得た。得 られた共重合体をポリマー2とした。ポリマー2における、p-ヒドロキ シスチレン単位、p-メチルスチレン単位及びアクリル酸 tert-ブチル単位 10 の構成比率は、18 CNMR の測定結果から約7:2:1 であった。また、 ポリスチレンを標準としたゲルパーミエーションクロマトグラフィーの 測定結果から、共重合体の重量平均分子量(Mw)は約10,500、分散度

(Mw/Mn)は約 1.85 であった。 合成例 3 ポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマ

p-ヒドロキシスチレン 87.7g、スチレン 18.7g 及びアクリル酸 1-ア ダマンチル 18.6gをイソプロパノール 400mLに溶解し、これに 2.2'-アゾビス (2-メチルプロピオン酸メチル) [和光純薬工業(株) 製、商品名:V-601] 10.0gを添加し、窒素気流下 80℃で 6時間反応させた。反 応後、該反応液を水 10L 中に注入して沈殿させ、折出結晶を濾取、減圧 乾燥して、微褐色粉末晶のポリ (p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル) 100gを得た。得られた共重合体をポリマー3とした。ポリマー3における、p-ヒドロキシスチレン単位、スチレン単位及びアクリル酸 1-アダマンチル単位の構成比率は、13 CNMR の測定 結果から約 73:18:9 であった。また、ポリスチレンを標準としたゲルバーミエーションクロマトグラフィーの測定結果から、共重合体の重量

平均分子量(Mw)は約9,800、分散度(Mw/Mn)は約1.80あった。

合成例 4 ジフェニル-2,4,6-トリメチルフェニルスルホニウム ベンタ フルオロベンゼンスルホネート合成

- (1)ジフェニルスルホキシド 24.0g を窒素雰囲気下でテトラヒドロフラン
- 5 600mL に溶解した後、クロロトリメチルシラン 31.5g を注入した。そこに、常法により 2-プロモメシチレン 60g 及びマグネシウム 4.70g から調製したグリニャール試薬を、氷冷下で滴下した後、同温度で3時間反応させた。反応終了後、該反応液に 24%臭化水素酸水溶液 480mL を0~5℃で滴下し、更にトルエン 600mL を注入して撹拌した。その後、分
- 10 離した有機層を 12%臭化水素酸水溶液 120mL で 2 回抽出して水層と合わせた後、更に塩化メチレン 480mL で 3 回抽出した。得られた有機層を無水硫酸マグネシウムで乾燥した後に減圧濃縮して、白色結晶のジフェニル-2,4,6・トリメチルフェニルスルホニウムプロマイド 22.0g を得た。得られた結晶の融点及びNMRの測定結果を以下に示す。
- 15 融点:199~200℃
 - ¹HNMR(CDCl₃) δ ppm: 2.36(6H, s, CH₃ × 2). 2.43(3H, s, CH₃). 7.21(2H,7.69-7.74(4H, m, Ar-H). 7.75-7.79(6H, m, Ar-H)
 - (2)上記(1)で得られたジフェニル-2,4,6-トリメチルフェニルスルホニウ ムブロマイド 19.8g(0.05 t/l)をメタノール 100mL に溶解し、これにペン
- 20 タフルオロベンゼンスルホン酸テトラメチルアンモニウム塩 20.9g(0.065 th)を加え、室温下で4時間攪拌反応させた。反応後、該反 応液を濃縮し、残さに水100mL及び塩化メチレン100mLを注入して攪 拌、静置した。分離した有機層を分取し、水洗(100mL×1、50mL×1) 後、無水MgSO4で乾燥した。乾燥剤を濾別後、減圧濃縮して、白色結
- 25 晶のジフェニル・2,4,6-トリメチルフェニルスルホニウム ベンタフルオロベンゼンスルホネート 26.8g を得た。得られた結晶を酸発生剤 1 とし

た。酸発生剤1の融点及びNMRの測定結果を以下に示す。

融点:132~133℃

 $^1\, HNMR(CDCl_3) \ \delta \, ppm: 2.31(6H, \ s, \ CH_3 \times 2), \ 2.41(3H, \ s, \ CH_3), \\ 7.08(2H, \ s, \ Ar-H), \ 7.50-7.51 \ (4H, \ s, \ Ar-H), \ 7.63-7.82(6H, \ m, \ Ar-H)$

5 合成例 5 トリフェニルスルホニウム ペンタフルオロベンゼンスルホ ネート合成

合成例 4 の(1)の 2-プロモメシチレン 60g をプロモベンゼン 47.3g に 代えた以外は合成例 4 の(1)と同様に反応、後処理して、白色結晶のトリ フェニルスルホニウムプロマイド 20.2g を得た。得られた結晶の融点及 10 びNMRの測定結果を以下に示す。

融点:288-290℃

¹ HNMR(CDCl₃) δ ppm: 7.72-7.89(15H, m, Ar-H)

(2)上記(1)で得られたトリフェニルスルホニウムプロマイド 17.2g(0.05 tll)とペンタフルオロベンゼンスルホン酸テトラメチルアンモニウム塩

15 20.9g(0.065 th)とを用いて合成例4の(2)と同様に反応、後処理して、無 色粘稠油状物のトリフェニルスルホニウム ベンタフルオロベンゼンス ルホネート 19.1g を得た。得られた結晶を酸発生剤2とした。酸発生剤 2のNMRの測定結果を以下に示す。

¹ HNMR(CDCl₃) δ ppm: 7.25-7.80(15H, m, Ar-H)

20 合成例 6~11

上記合成例4の操作法に準じて本発明に係る各種酸発生剤(酸発生剤 3~8)を合成した。得られた各酸発生剤の物性を下配表1に示す。

表 1

合成例	化合物名	外観·融点	1HNMR(GDCl₃) δ ppm
6 (酸発生剤 3)	ロロベンゼンスルホネート	粘稠油状物	2.30(6H, s, CH ₃ ×2), 2.40(3H, s, CH ₃), 7.13-7.29(4H, m, Ar-H), 7.62-7.71(10H, m, Ar-H), 8.02(1H,s, Ar-H)
7 (酸発生剤 4)		(アセトンから再	2.31(6H, s, CH ₃ ×2), 2.40(3H, s, CH ₃), 7.17(2H, s, Ar-H), 7.37-7.39(1H, d, Ar-H), 7.48-7.50(1H, d,Ar-H), 7.62- 7.73(10H, m,Ar-H), 8.05-8.07(1H, d,Ar-H), 8.13(1H, s,Ar-H)
8 (酸発生剤 5)	ジフェニル-2,4,6-トリメチルフェ ニルスルホニウム 3-ニトロベンゼンスルホネート	微黄色、 粘稠油状物	2.33(6H, s, CH3 × 2), 2.41(3H, s,CH ₃), 7.19(2H, s, Ar-H), 7.43-7.47 (1H, t, Ar- H), 7.63-7.75(10H, m,Ar-H), 8.03- 8.10(2H, d,Ar-H), 8.23-8.25(1H, d,Ar- H), 8.64(1H, s,Ar-H)
9 (酸発生剤 6)	トリフェニルスルホニウム 2,5-ジクロロベンゼンスルホ ネート	微黄色結晶	7.15(1H,d,Ar-H)、7.27(1H,d,Ar-H)、 7.65-7.80(15H,m,Ar-H)、8.11(1H,s,Ar-H)
10 (酸発生剤 7)	トリフェニルスルホニウム 3,5-ジートリフルオロメチルベン ゼンスルホネート	白色結晶 127-128℃	7.61-7.69(16H, m,Ar-H)、8.36(2H,s, Ar-H)
11 (酸発生剤 8)	ジフェニル-4-メチルフェニルス ルホニウム ペンタフルオロ ベンゼンスルホネート	無色、 粘稠油状物	2.47(3H, s, CH ₃), 7.48-7.50(2H, d,Ar- H), 7.66-7.76(12H, m,Ar-H)

合成例 1 2 ポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン) の合成

p-アセトキシスチレン 56.7g と p-tert-プトキシスチレン 26.4g とを イソプロパノール 400mL に溶解し、更にこれに 2,2・アゾビス (2-メチルプロビオン酸メチル) [和光純薬工業(株) 製、商品名:V-601] 8.3 g を添加し、窒素気流下 80℃で 6 時間反応させた。反応後、得られた反応溶液を水 10L 中に注入して沈殿させ、析出晶を濾取した。得られた結晶をメタノール 450ml に添加した後、15%テトラメチルアンモニウム 10 ヒドロキシド水溶液 234g を注入して、撹拌しながら 4 時間還流下に反応させた。得られた溶液を、室温まで冷却した後、氷酢酸 12.9g を滴下して中和し、その中性溶液を水 10L 中に注入して沈殿させ、析出晶を濾取した。その後、減圧乾燥して、白色粉末晶のポリ (p-ヒドロキシスチレン/p-tert-プトキシスチレン) 42.6g を得た。得られた結晶をポリマーA1とした。次いで、ポリマーA1におけるp-ヒドロキシスチレン単

25

位と p-tert-ブトキシスチレン単位の構成比率は、1³CNMR 測定から約7:3 であった。また、ポリスチレンを標準としたゲルバーミエーションクロマトグラフィー測定からポリマーA1の重量平均分子量(Mw)は約9,500、分散度(Mw/Mn)は約1.75 であった。

5 合成例13 ポリ (p-ヒドロキシスチレン/ p-tert-ブトキシカルボニルオキシスチレン)の合成

ポリ(p-ヒドロキシスチレン)[日本曹達(k)製、重量平均分子量(Mw)約 15,000:分散度(Mw/Mn)約 1.05]50.0g を酢酸エチル 250ml に溶解し、更にそこに二炭酸ジ tert-プチル 14.8g 及びビリジン 11.0g を添加し、室温で4時間反応させた。次いで、反応溶液を減圧濃縮し、それらをアセ

トン 250ml に溶解させた後、該アセトンを水 3L 中に注入し、結晶を析 出させ、その結晶を遮取、減圧乾燥して、白色粉末晶のポリ(p-ヒドロキ シスチレン/p-tert-プトキシカルポニルオキシスチレン) 50.8g を得た。 得られた結晶をポリマーA2とした。ポリマーA2におけるp-ヒドロキ シスチレン単位と p-tert-プトキシカルポニルオキシスチレン単位の構

システレン単位と p-tert-プトキシカルボニルオキシステレン単位の構成比率は、 13 CNMR 測定から約 85:15 であった。また、ポリスチレンを標準としたゲルバーミエーションクロマトグラフィー測定からポリマーA 2 の重量平均分子量(Mw)は約 16,500、分散度(Mw/Mn)は約 1.05 であった。

20 合成例 1 4 ジフェニルヨードニウム ノナフルオロブタンスルホネートの合成

ジフェニルヨードニウム プロマイド 3.61g(0.01 モル)及び酸化銀 1.62g(0.007 モル)をメタノール 100ml に懸濁させ、室温で 2 時間攪拌反 応させた。次いで、そこにノナフルオロブタンスルホン酸 4.2g(0.014 モル)を室温で滴下し、同温度で 2 時間攪拌反応させた。得られた反応液を 濾過、減圧濃縮し、その残渣 6.4g をカラムクロマト 「ワコーゲル C-200、

溶離液:塩化メチレン/メタノール=9/1(v/v)] で分離してジフェニルヨードニウム ノナフルオロブタンスルホネートの無色結晶 4.6g を得た。 得られた結晶を酸発生剤B1とした。酸発生剤B1の融点及びNMRの 測定結果を以下に示す。

5 融点:85-86℃

¹HNMR(DMSO-d_e) δ ppm: 7.43 \sim 7.47(4H, t, Ar-H), 7.59 \sim 7.63(2H, t, Ar-H), 7.98 \sim 8.00(4H, t, Ar-H)

合成例15 ジ-p-トリルヨードニウム ノナフルオロブタンスルホネートの合成

10 (1) 無水酢酸 68.4g(0.67 モル)とトルエン 33.2g(0.36 モル)とを混合、冷

- 却し、5℃以下として、そこにヨウ素酸カリウム 32.1g(0.15 モル)を添加した。次いで、得られた混合溶液に、無水酢酸 34.2g(0.33 モル)に濃硫酸 38.5g(0.39 モル)を 20℃以下で滴下混合して得られた溶液を、.5~5℃で 3時間要して滴下した。得られた反応溶液を 0~5℃で 30 分攪拌した 後、20~25℃に保ちながら 4 時間攪拌反応させた。その後、該反応溶液を室温で一夜放置後、25℃以下で攪拌しながら水 112.5ml に滴下した。次いで、該反応溶液をイソプロピルエーテルで洗浄(35ml×2)した後に、
- イソプロピルアルコール 25ml を注入し、更に臭化ナトリウム水溶液 (NaBr 15.4g/H₂O 37.5ml)を室温で滴下した。その後、室温で 80 分攪拌 した後、析出晶を濾過、水洗(60ml×1)、イソプロピルアルコール洗浄 (25ml×1)、減圧乾燥してジ-p-トリルヨードニウム プロマイド 38.4g の 微黄色粉末晶を得た。得られた結晶のNMRの測定結果を以下に示す。

¹HNMR(DMSO-d₆) δ ppm : 2.33(6H, s, CH₃), 7.13 \sim 7.15(4H, d, Ar-H), 7.83 \sim 7.85(4H, d, Ar-H)

25 (2)上記(1)で得たジ-p-トリルヨードニウム プロマイド 5.85g(0.015 モル)及び酸化銀 2.43g(0.0105 モル)をメタノール 150ml に懸濁させ、室温

で2時間攪拌し、次いで得られた懸濁液にノナフルオロブタンスルホン酸 6.3g(0.021 モル)を注入して室温で2時間攪拌反応した。反応後、該反応液を濾過、減圧濃縮して得られた残渣11.5gをカラムクロマト[ワコーゲル C-200、溶離液:塩化メチレン/メタノール=9/1(v/v)]で分離

5 してジ-p-トリルヨードニウム ノナフルオロブタンスルホネートの微 黄色粉末晶 5.4g を得た。得られた結晶を酸発生剤 B 2 とした。酸発生剤 B 2 の融点及びNMRの測定結果を以下に示す。

融点:104~105℃

10

¹HNMR(DMSO-d₆) δ ppm : 2.39(6H, s, CH₃×2), 7.25~7.26(4H, d, Ar-H), 7.83~7.85(4H, d,Ar-H)

合成例16 ジフェニルヨードニウム ベンタフルオロベンゼンスルホ ネートの合成

0 塩化メチレン/メタノール=9/1(v/v)]してジフェニル ベンタフルオロベンゼンスルホネートの微黄色結晶 1.0g を得た。得られた結晶を酸発生剤B3とした。酸発生剤B3の融点及びNMRの測定結果を以下に示す。 融点 163-170℃

 $^{1}\rm{HNMR}(DMSO\text{-}d_{6}) \ \delta \ ppm:7.51{\sim}7.55(4H, \, t, \, Ar\text{-}H), \, 7.65{\sim}7.67(2H, \, d, \, d)$

25 Ar-H), 8.23~8.25(4H, t, Ar-H) 合成例 1 7 ジ・p・トリルヨードニウム ペンタフルオロベンゼンスル ホネートの合成

合成例 15(1)で得たジ-p-トリルヨードニウム ブロマイド 4.3g(0.011 モル)及び酸化銀 1.78g(0.008 モル) をメタノール 110ml に懸濁し室温で 2 時間提拌反応させた。次にこの懸濁液に、ベンタフルオロベンゼンス

5 ルホン酸テトラメチルアンモニウム塩 4.8g(0.015 モル)を水 100ml に溶解し濃塩酸 3.0g(0.03 モル)を注入後減圧濃縮して得られた固形物を添加し、室温で 2 時間攪拌反応させた。攪拌後、減圧濃縮し、残流に塩化メチレン 100ml 及び水 100ml を注入し 1 時間攪拌した。その後、そこから不溶物を濾別し、静置、分液して有機層を分取し、水洗(50ml×4)した 後、減圧濃縮した。得られた暗褐色油状の残渣 4.2g をカラムクロマト分離 [ワコーゲル C-200、溶離液:塩化メチレン/メタノール=9/1(v/v)]してジ-p-トリルヨードニウム ベンタフルオロベンゼンスルホネート

得られた結晶を酸発生剤B4とした。酸発生剤B4の融点及びNMRの 測定結果を以下に示す。

融点:125~135℃

の微黄色結晶 2.9g を得た。

¹HNMR(DMSO-d₆) δ ppm : 2.36(6H, s, CH₅×2), 7.17~7.19(4H, d, Ar-H), 7.84~7.86(4H, d, Ar-H)

実施例1

15

20 下記の組成から成るレジスト組成物を調製した。

表 2

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブ チル) (ポリマー1)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生剤1)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

10

15

上記のレジスト組成物を使用して以下のようにパターンを形成した。レジスト組成物を 0.1μ m のメンプランフィルターで濾過し、シリコン基板上にスピンコートした後、 $130 \mathbb{C} 90$ 秒間ホットプレート上でプレベークし、膜厚 0.3μ m のレジスト膜を得た。ついで EB 直描機(加速電圧 50 keV)で高真空下で照射しパターンを<u>措面</u>した。次いで $120 \mathbb{C} 60$ 秒間ホットプレート上でベークした後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液で現像を行い、水洗してレジストパターンを形成した。その結果、 6.2μ C/cm² の感度で 100 nm L&S $(1.0 \mu$ m L&S)パターンが得られた。また、その形状は、ほぼ矩形であった。尚、100 nm L&S

実施例 2

下記の組成から成るレジスト組成物を調製した。

表 3

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	6.0g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤2)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 4.0μ C/cm² の感度で 100 nm L&S(0.1μ m L&S)パターンが得られた。また、その形状は、膜表層部が少し丸みを帯びていた。尚、100 nm L&S パターンでの露光裕度は 5%であった。実施例 3

表4 .

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニルー2.4.6-トリメチルフェニルスルホニウム 2.5-ジクロロ ベンゼンスルホネート(酸発生剤3)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

・上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $7.2 \mu \, \mathrm{C/cm^2}$ の感度で $100 \mathrm{nm} \, \mathrm{L\&S}$ パターンが得ら

実施例 4

下記の組成から成るレジスト組成物を調製した。

5 れた。また、その形状は、ほぼ矩形であった。

表 5

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート(酸発生剤4)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

10 上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $7.2\,\mu$ C/cm² の感度で $100\,\mathrm{nm}$ L&S パターンが得られた。また、その形状は、ほぼ矩形であった。

実施例5

表 6

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム 3-ニトロベンゼンスルホネート(酸発生剤5)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 を行った。その結果、 $7.2\,\mu$ C/cm² の感度で $100\,\mathrm{nm}$ L&S パターンが得ら 5 れた。また、その形状は、ほぼ矩形であった。

実施例 6

下記の組成から成るレジスト組成物を調製した。

表 7

10

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
トリフェニルスルホニウム 2,5-ジクロロベンゼンスルホネート (酸発生剤6)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0,1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $3.2\,\mu$ C/cm² の感度で $110\,\mathrm{nm}$ L&S パターンが得られた。また、その形状は、膜表層部が少し丸みを帯びていた。実施例 7

表 8

WO 03/007079

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
トリフェニルスルホニウム 3,5-ジ-トリフルオロメチルベンゼン スルホネート(酸発生剤7)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $4.2\,\mu$ C/cm² の感度で $100\,\mathrm{nm}$ L&S パターンが得られた。また、その形状は、ほぼ矩形であった。

実施例8

下記の組成から成るレジスト組成物を調製した。

表 9

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニルー2,4,6-トリメチルフェニルスルホニウム ベンタフル オロベンゼンスルホネート (酸発生剤1)	0.1g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤2)	0.2g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

10 上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 5.2μ C/cm² の感度で 80nm L&S パターンが得られた。また、その形状は、ほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は 8%であった。

実施例9

. 表10

組成	重量
ポリ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸tert-ブチル)(ポリマー2)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフル オロベンゼンスルホネート (酸発生剤1)	0.1g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤2)	0.2g
ジシクロヘキシルメチルアミン	0.02g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	40.0g
プロピレングリコールモノメチルエーテル	20.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、 $5.0\,\mu\,C/cm^2$ の感度で80nm L&S パターンが得られた。また、その形状は、ほぼ矩形であった。

実施例10

下記の組成から成るレジスト組成物を調製した。

表11

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸 1-アダマンチル) (ポリマー3)	6.0g
ジフェニル-2.4.6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤1)	0.1g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤2)	0.2g
ジシクロヘキシルメチルアミン	0.02g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	40.0g
プロピレングリコールモノメチルエーテル	20.0g

10 上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $5.5 \mu \, \text{C/cm}^2$ の感度で $80 \text{nm} \, \text{L\&S}$ バターンが得られた。また、その形状は、ほぼ矩形であった。

実施例11

表 1 2

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニル-4-メチルフェニルスルホニウムペンタフルオロベンゼンスルホネート(酸発生剤8)	0.3g
α,α',α"-トリピリジン	0.005g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $7.4\,\mu$ C/cm² の感度で $100\,\mathrm{nm}$ L&S パターンが得られた。また、その形状は、ほぼ矩形であった。尚、 $100\,\mathrm{nm}$ L&S パターンでの露光裕度は 8%であった。

実施例12

下記の組成から成るレジスト組成物を調製した。

表13

10

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニル-4-メチルフェニルスルホニウムペンタフルオロベンゼンスルホネート (酸発生剤8)	0.15g
トリフェニルスルホニウム 2,5-ジクロロベンゼンスルホネート (酸発生剤6)	0.15g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60 0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $5.8\,\mu$ C/cm² の感度で $80\mathrm{nm}$ L&S パターンが得られた。また、その形状は、ほぼ矩形であった。

実施例13

. 15 下記の組成から成るレジスト組成物を調製した。

表 1 4

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル) (ポリマー1)	6.0g
ジフェニルー4-メチルフェニルスルホニウムペンタフルオロベン ゼンスルホネート (酸発生剤8)	0.15g
トリフェニルスルホニウム3,5-ジ-トリフルオロメチルベンゼン スルホネート (酸発生剤7)	0.15g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成 を行った。その結果、5.2 µ C/cm²の感度で80nm L&S パターンが得ら 5 れた。また、その形状は、ほぼ矩形であった。

実施例14

下記の組成から成るレジスト組成物を調製した。

表 1 5

組成	重量
ポリ(p-ヒドロキシスチレン/p-メチルスチレン/アクリル酸tert-ブチル) (ポリマー2)	6.0g
ジフェニル-2.4.6-トリメチルフェニルスルホニウム 3-トリフルオロ メチルベンゼンスルホネート(酸発生剤4)	0.1g
トリフェニルスルホニウムペンタフルオロベンゼンスルホネート (酸発生剤2)	0.2g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60 0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $5.0\,\mu$ C/cm² の感度で $80\mathrm{nm}$ L&S パターンが得られた。また、その形状は、ほぼ矩形であった。

実施例15.

表16

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート (酸発生剤1)	0.2g
ジフェニルヨードニウム ノナフルオロブタンスルホネート(酸発生剤B1)	0.1g
シクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 を行った。その結果、得られたレジストパターンは $3.0\,\mu$ C/cm² の感度で $100\,\mathrm{nm}$ L&S $(0.1\,\mu\,\mathrm{m}$ L&S)を解像した。パターン形状もほぼ矩形であった。即ち、酸発生剤 B 1 (3-1) に対しているにない実施例 1 の結果 $(6.2\,\mu\,\mathrm{C/cm}^2)$ と比較して感度が向上していることが分かった。尚、 $100\,\mathrm{nm}$ L&S パターンでの露光裕度は 7%であった。

10 実施例 1 6

下記の組成から成るレジスト組成物を調製した。

表17

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポ	
リマー1)	6.0g
トリフェニルスルホニウム 3,5-ジトリフルオロベンゼンスルホネー	
ト(酸発生剤7)	0.2g
ジ-p-トリルヨードニウム ノナフルオロブタンスルホネート(酸発	
生剤B2)	0.1g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 15 を行った。その結果、2.2 μ C/cm² の感度で 100nm L&S(0.1 μ m L&S) を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は 9%であった。即ち、酸発生剤 B 2 (ヨードニウム 塩)を添加していない実施例 7 の結果 (4.2 μ C/cm²)と比較して感度が向

上していることが分かった。

実施例17

下記の組成から成るレジスト組成物を調製した。

表18

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート	
(酸発生剤1)	0.1g
トリフェニルスルホニウム ペンタフルオロペンゼンスルホネート(酸発生剤2)	0.1g
ジフェニルヨードニウム ペンタフルオロベンゼンスルホネート(酸発生剤B3)	0.1g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

5 上配のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 2.8μ C/cm² の態度で 80nm L&S(0.08μ m L&S)を解像した。パターン形状もほぼ矩形であった。即ち、酸発生剤 B 3 (ヨードニウム塩)を添加していない実施例 8 の結果 $(5.2 \mu$ C/cm²) と比較して感度が向上していることが分かった。尚、100nm L&S パターンで 10 の露光裕度は 7%であった。

実施例18

下記の組成から成るレジスト組成物を調製した。

表19

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	5.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)(ポリマーA1)	1.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート	
(酸発生剤1)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロビレングリコールモノメチルエーテルアセテート	60.0g

15

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 6.4μ C/cm² の感度で 100nm L&S(0.1μ m L&S)を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パタ

ーンでの露光裕度は 17%であった。即ち、ポリマーA1を添加していない実施例1の結果(6%)に比較して露光裕度が向上していることがわかった。

実施例19

5 下記の組成から成るレジスト組成物を調製した。

表 2 0

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	6.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン)(ポリマーA1)	1.0g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生	
剤2)	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、4.6C/cm²の感度で100nm L&S(0.1μm L&S)を解10 像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は17%であった。即ち、ポリマーA1を添加していない実施例2の露光裕度(5%)に比較してその値が拡大していることが分かった。

実施例20

15 下記の組成から成るレジスト組成物を調製した。

表 2 1

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	5.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)	
(ポリマーA2)	1.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼン	
スルホネート(酸発生剤1)	0.2g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生剤	
2)	0.1g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
乳酸エチル	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成

を行った。その結果、 5.6μ C/cm² の感度で 80nm L&S(0.08μ m L&S) を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は 18%であった。即ち、ポリマー Λ 2 を添加していない実施例 8 の露光裕度(8 %) に比較して拡大していることが分かった。

5 実施例21

下記の組成から成るレジスト組成物を調製した。

表 2 2

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	5.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン)(ポリマーA1)	1.0g
ジフェニル-4-メチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸	
発生剤8)	0.2g
ジフェニルヨードニウム ノナフルオロブタンスルホネート(酸発生剤B1)	0.1g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
ジシクロヘキシルメチルアミン	0.01g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、2.4 µ C/cm² の感度で 100nm L&S(0.1 µ m L&S)を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は17%であった。即ち、ポリマーA1及び酸発生剤B1(ヨードニウム塩)を添加していない実施例11の結果(感度:7.4 µ C/cm²、露光裕度 8%)と比較して感度が向上し、露光裕度も向上していることが分かった。

実施例22

表 2 3

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	6.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)(ポリマーA2)	1.0g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生剤2)	0.2g
ジ-p-トリルヨードニウム ペンタフルオロベンゼンスルホネート (酸発生剤B4)	0.1g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成 を行った。その結果、2.2 µ C/cm² の感度で 100nm L&S(0.1 µ m L&S) を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は18%であった。即ち、ポリマーA 2 及び酸発生剤 B 4 (ヨードニウム塩)を添加していない実施例2の結果(感度:4.0 µ C/cm²、露光裕度5%)に比較して感度が向上し、露光裕度も向上していることが 10 分かった。

実施例23

下記の組成から成るレジスト組成物を調製した。

表 2 4

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	5.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)(ポリマーA2)	1.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート	
(酸発生剤1)	0.1g
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生剤2)	0.1g
ジフェニルヨードニウム ノナフルオロブタンスルホネート(酸発生剤B1)	0.1g
ジシクロヘキシルメテルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

15 上記のレジスト組成物を使用して実施例1と同様にしてパターン形成 を行った。その結果、3.0 μ C/cm² の感度で 80nm L&S(0.08 μ m L&S) を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パタ ーンでの露光裕度は 20%であった。即ち、ポリマーΑ 2 を添加していな い実施例17 の結果(露光裕度 7%)と比較して露光裕度が向上している ことが分かった。

実施例24

下記の組成から成るレジスト組成物を調製した。

表25

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)(ポリマー1)	5.0g
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン)(ポリマーA2)	
	1.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸	0.1g
発生剂1)	
トリフェニルスルホニウム ペンタフルオロベンゼンスルホネート(酸発生剤2)	0.1g
ジ-p-トリルヨードニウム ノナフルオロブタンスルホネート(酸発生剤B2)	0.1g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
乳酸エチル	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、3.4μ C/cm² の感度で 80nm L&S(0.08μm L&S)を解像した。パターン形状もほぼ矩形であった。尚、100nm L&S パターンでの露光裕度は18%であった。即ち、上記結果は、溶剤にプロピレングリコールモノメチルエーテルアセテートを用いている実施例 23 と比較して、感度、解像性及び露光裕度が同等の結果となっており、溶剤に乳酸エチルを用いても、高感度、高解像性で高い露光裕度を有するレジスト組成物が得られることが分かった。

比較例1

下記の組成から成るレジスト組成物を調製した。

15 尚、以下の比較例1~16で用いた各種スルホニウム塩は上配合成例 4と同様の方法に従って合成した。

表 2 6

組成	重量
ポリ(p-ヒドロキシステレン/スチレン/アクリル酸tert-ブチル)	6.0g
トリフェニルスルホニウム トリフルオロメタンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $2.2\,\mu$ C/cm² の感度で $150\,\mathrm{nm}$ L&S パターンが得られたに留まり性能不良であった。また、パターン形状も膜表層の丸みが大きく不良であった。

5 比較例 2

下記の組成から成るレジスト組成物を調製した。

表 2 7

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
トリフェニルスルホニウム p-トルエンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $8.8\,\mu$ C/cm² の感度で $150\,\mathrm{nm}$ L&S パターンも得られず性能不良であった。また、パターン形状もテーパーで不良であった。比較例 3

下記の組成から成るレジスト組成物を調製した。

表 2 8

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル 4-メチルフェニルスルホニウム トリフルオロメタン スルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 15 を行った。その結果、 $3.2\,\mu$ C/cm² の感度で $150\,\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状も裾引きが強く不良であった。

比較例 4

下記の組成から成るレジスト組成物を調製した。

表 2 9

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム p-トルエンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロビレングリコールモノメチルエーテルアセテート	60,0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、 $13.8 \, \mu \, \text{C/cm}^2$ の感度で $150 \, \text{nm} \, \text{L&S}$ を解像出来ず性能不良であった。また、パターン形状もテーパーで不良であった。

比較例 5

下記の組成から成るレジスト組成物を調製した。

表30

. 40 ch	
組成	里里
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
トリフェニルスルホニウム パーフルオロブタンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 10 を行った。その結果、 3.4μ C/cm² の感度で 120nm L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層の丸みが大きく不良であった。

比較例 6

表 3 1

組成		
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g	
トリフェニルスルホニウム パーフルオロオクタンスルホネート	0.3g	
ジシクロヘキシルメチルアミン	0.01g	
フッ素含有ノニオン系界面活性剤[市販品]	0.1g	
プロピレングリコールモノメチルエーテルアセテート	60.0g	

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 5.0μ C/cm² の感度で 120 nm L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層の丸みが 大きく不良であった。

比較例7

下記の組成から成るレジスト組成物を調製した。

表 3 2

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニルー4-tert-ブチルフェニルスルホニウム パーフルオロオクタンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成
10 を行った。その結果、8.4μ C/cm²の感度で120nm L&S パターンを得ら
れたに留まり性能不良であった。また、パターン形状も膜表層が張って
おり不良であった。

比較例8

表 3 3

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム4-クロロベ ンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $9.0\,\mu$ C/cm² の感度で $150\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層が丸く不

5 良であった。

比較例.9

下記の組成から成るレジスト組成物を調製した。

表 3 4

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム 4-トリフル オロメチルベンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 10 を行った。その結果、 $8.2\,\mu$ C/cm² の感度で $120\,\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層が丸く不良であった。

比較例10

表 3 5

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム 2-トリフル オロメチルベンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 $9.2\,\mu$ C/cm² の感度で $120\,\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層が丸く不

5 良であった。比較例11

下記の組成から成るレジスト組成物を調製した。

表36

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジフェニル-4-メチルフェニルスルホニウム パーフルオロオク タンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 10 を行った。その結果、 $9.2\,\mu$ C/cm² の感度で $120\,\mathrm{nm}$ L&S パターンを得ら れたに留まり性能不良であった。また、パターン形状も膜表層が丸く不 良であった。

比較例12

表 3 7

組成	重量
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン) [構成比率=67/33 ; Mw 20,500 ; Mw/Mn 1.10]	6.0g
ジフェニルー2.4,6ートリメチルフェニルスルホニウム ペンタフルオロベンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロビレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 4.4μ C/cm² の感度で 120 nm L&S パターンを得られたに留まり性能不良であった。また、パターン形状は膜表層部がやや 張っており不良であった。

比較例13

下記の組成から成るレジスト組成物を調製した。

表38

組成	重量
ポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン) [構成比率=65/35 ; Mw 20,300 ; Mw/Mn 1.10]	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフル オロベンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 10 を行った。その結果、 3.6μ C/cm² の感度で 120 nm L&S パターンを得られたに留まり性能不良であった。また、パターン形状は膜表層部がやや 張っており不良であった。

比較例14

表 3 9

組成	重量
ボリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシスチレン) [構成比率=24/66/10 : Mw 20,500 : Mw/Mn 1.10]	6.0g
ジフェニル-2,4,6-トリメチルフェニルスルホニウム ペンタフル オロベンゼンスルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成を行った。その結果、 5.4μ C/cm² の感度で $120\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状はほぼ矩形であっ

5 たが側壁荒れが大きく不良であった。

比較例 1 5

下記の組成から成るレジスト組成物を調製した。

表 4 0

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
ジー(p-tert-ブチルフェニル)ヨードニウム パーフルオロブタン スルホネート	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例 1 と同様にしてパターン形成 10 を行った。その結果、 $4.5\,\mu$ C/cm² の感度で $130\,\mathrm{nm}$ L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層が丸く不良であった。

比較例16

表 4 1

組成	重量
ポリ(p-ヒドロキシスチレン/スチレン/アクリル酸tert-ブチル)	6.0g
N-トリフルオロメタンスルホニルオキシ-5-ノルボルネン-2,3- ジカルボキシイミド	0.3g
ジシクロヘキシルメチルアミン	0.01g
フッ素含有ノニオン系界面活性剤[市販品]	0.1g
プロピレングリコールモノメチルエーテルアセテート	60.0g

上記のレジスト組成物を使用して実施例1と同様にしてパターン形成を行った。その結果、 6.5μ C/cm² の感度で 130nm L&S パターンを得られたに留まり性能不良であった。また、パターン形状も膜表層が丸く不良であった。又、パターン側壁の荒れも大きく不良であった。

実施例1~24の結果と比較例1、3、5、6及び12~16の結果 とを比較すると、感度的には同等の高感度ではあったが、これら比較例 により得られたバターン形状は、実施例のそれに比べて形状不良や側壁 荒れが見られ解像性能はかなり低いことが分かった。また、比較例2、

4及び7~11の結果は感度、解像性、形状の何れも本発明のものより 劣っており、本発明に係るポリマーと酸発生剤とを組み合わせたレジス ト組成物を用いることにより、従来よりも高感度且つ高解像性でパター ン形成を行えることが確認された。

また、実施例18~24に示されるように、本発明に係るポリマーと して一般式 [5] で示されるポリマーと一般式 [13] で示されるポリ マーの両者を添加したレジスト組成物を用いると、これらの何れかしか 添加されていないものに比べて、露光裕度が約10%向上することが分 かった。

更に、一般式 [6] で示される酸発生剤又は一般式 [7] で示される 20 酸発生剤のどちらか一方しか用いていない実施例 1 ~ 7、11、15、 16、18、19、21及び22と、一般式 [6] で示される酸発生剤 と一般式 [7] で示される酸発生剤の両方を用いている実施例 8 ~ 10、 12~14、17、20、23及び24とを比較すると、一般式 [6] で示される酸発生剤と一般式 [7] で示される酸発生剤の両方を用いている方が、一般式 [6] で示される酸発生剤又は一般式 [7] で示される酸発生剤のどちらか一方しか用いていないものより高解像性であることが確認できた。

また、実施例 $15\sim17$ 及び $21\sim24$ で示すように一般式 [12]で示される酸発生剤を混合したものを用いることにより、極めて高感度化が図れることが分った。

5

更にまた、実施例23及び24の結果から、ポリマーとして一般式[5] 10 で示されるポリマーと一般式[13]で示されるポリマーの両者の併用 し、且つ酸発生剤として一般式[6]で示される酸発生剤と一般式[7] で示される酸発生剤と一般式[12]で示される酸発生剤との混合物を 用いることにより、露光裕度が向上し、且つ感度及び解像性を高くする ことができることが分かった。即ち、これらポリマー及び酸発生剤を併 15 用することで両者の特徴を有するレジスト組成物が得られることが分か った。また、溶剤が異なっていても、これらの効果が維持されることも 分かった。

産業上の利用の可能性

本発明のレジスト組成物は、電子線に代表される各種放射線に対して 20 高感度であり、且つ高真空下でのエネルギー照射に対してアウトガスの 発生が少ないので、精度が高い優れた解像性能およびパターン形状をも たらすことができるものである。従って、本発明は、今後更に微細化が 進行すると予想される半導体製造における超微細パターンの形成に貢献 するものである。

請求の範囲

1. 少なくとも下記一般式 [1]

[式中、 R_1 は水素原子又はメチル基を表す。] で示されるモノマー単位と、下記一般式 [2]

$$\begin{array}{c} -\left(\text{CH}_2, \stackrel{\gamma_1}{C} \right) \\ \hline \\ R_2 \end{array}$$
 [2]

5 [式中、 R_1 は前配と同じであり、 R_2 は水素原子又は炭素数 $1\sim 4$ の 直鎖状若しくは分枝状のアルキル基を表す。]で示されるモノマー単位及 び下記一般式 [3]

[式中、 R_1 は前配と同じであり、 R_3 は酸の作用により脱離し易く且 つカルボン酸とエステル結合できる酸不安定基を表す。]で示されるモJ 10 マー単位とを構成成分とするポリマー1 種以上と、少なくとも下配一般 式 [4]

$$(R_{10}) \cap \begin{array}{c} \stackrel{H_9}{\longrightarrow} R_5 & \stackrel{R_4}{\longrightarrow} R_6 \\ \stackrel{R_7}{\longrightarrow} R_8 & \stackrel{R_5}{\longrightarrow} R_6 \end{array}$$
 [4]

[式中、 R_5 及び R_7 はそれぞれ独立して水素原子又は電子吸引基を表し(但し、 R_5 及び R_7 が同時に水素原子の場合は除く)、 R_4 、 R_5 及 び R_5 はそれぞれ独立して水素原子又はハロゲン原子を表し、 R_5 及び

R₁₀ はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4の直鎖 状若しくは分枝状のアルキル基、炭素数1~4の直鎖状若しくは分枝状 のアルコキシ基、炭素数2~5の直鎖状若しくは分枝状のアルコキシカ ルボニルオキシ基、又は炭素数4~5の環状アセタール基を表し、nは 1~3の整数を表す。1で示される枚射線照射により酸を発生する化合物

5 1~3の整数を表す。]で示される放射線照射により酸を発生する化合物 1種以上と、有機塩基性化合物及び溶剤とからなるレジスト組成物。 2. ポリマーが下記一般式 [5]

[式中、 R_1 、 R_2 及び R_3 は前配と同じであり、k、l 及びmは整数 (但し、 $0.25 \ge 1/k + 1 + m \ge 0.10$ 、 $0.20 \ge m/k + 1 + m \ge 0.07$ である。)を表す。] で示される請求項 1 に記載のレジスト組成物。

3. 放射線照射により酸を発生する化合物が少なくとも下記一般式[6]

$$(R_{10})n \xrightarrow{R_9} R_9 \xrightarrow{R_9} R_4$$

$$R_7 \xrightarrow{R_9} R_9$$

$$R_9 \xrightarrow{R_9} R_9$$

$$R_9 \xrightarrow{R_9} R_9$$

$$R_9 \xrightarrow{R_9} R_9$$

$$R_9 \xrightarrow{R_9} R_9$$

[式中、 R_4 、 R_6 、 R_6 、 R_7 、 R_8 、 R_9 及びnは前記と同じであり、 R_{10} はハロゲン原子、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim 5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は 炭素数 $4\sim 5$ の環状アセタール基を表す。]で示される化合物 1 種以上と、下記一般式 [7]

[式中、 R_4 、 R_5 、 R_5 、 R_7 及び R_8 は前記と同じ。]で示される化合物 1 種以上との混合物である請求項 2 に記載のレジスト組成物。

4.一般式 [6] で示される放射線照射により酸を発生する化合物と一 6 般式 [7] で示される放射線照射により酸を発生する化合物の重量比率 が2:1~1:5の範囲であることを特徴とする請求項3に記載のレジ スト組成物。

- 5. 一般式 [.6] で示される放射線照射により酸を発生する化合物と一 般式 [7] で示される放射線照射により酸を発生する化合物とを混合使 10 用する場合において、一般式[6]の化合物がジフェニル-2.4.6-トリメ チルフェニルスルホニウムペンタフルオロベンゼンスルホネート、ジフ ェニル-2.4.6-トリメチルフェニルスルホニウム 3-トリフルオロメチル ベンゼンスルホネート、ジフェニル-2.4.6-トリメチルフェニルスルホニ ウム 3.5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェニル-4-15 メチルフェニルスルホニウムペンタフルオロベンゼンスルホネート. ジ フェニル-4-メチル 3-トリフルオロメチルベンゼンスルホネート又はジ フェニル-4-メチル 3.5-ジ-トリフルオロメチルベンゼンスルホネートで あり、一般式「7]の化合物がトリフェニルスルホニウムペンタフルオ ロベンゼンスルホネート、トリフェニルスルホニウム 3-トリフルオロメ 20 チルベンゼンスルホネート又はトリファニルスルホニウム 35.ジ.トリ フルオロメチルベンゼンスルホネートであることを特徴とする請求項3 に記載のレジスト組成物。
 - 6. 放射線照射により酸を発生する化合物として、更に下記一般式[1

10

$$\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

上を含有する、請求項1に記載のレジスト組成物。

[式中、 R_{1s} はそれぞれ独立して水素原子又は炭素数 $1\sim5$ の直鎖状若 しくは分枝状のアルキル基を表し、Xは炭素数 $3\sim8$ のハロアルキル基、 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から選 ばれるものを有してもよいアリール基を表す。]で示される化合物 1 種以

7. 一般式 [4] で示される放射線照射により酸を発生する化合物と一般式 [12] で示される放射線照射により酸を発生する化合物との重量 比率が $50:1\sim1:5$ の範囲であることを特徴とする請求項6に記載のレジスト組成物。

8. 一般式 [12] の化合物が、ジフェニルヨードニウム ノナフルオロ ブタンスルホネート、ジフェニルヨードニウム ヘプタデカフルオロオク タンスルホネート、ジフェニルヨードニウム ペンタフルオロベンゼンス ルホネート、ジフェニルヨードニウム 8-トリフルオロメチルベンゼン

15 スルホネート、ジフェニルヨードニウム 8,5-ジ-トリフルオロメチルベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム ノナフルオロブタンスルホネート、ジ 4-メチルフェニルヨードニウム ヘプタデカフルオロオクタンスルホネート、ジ 4-メチルフェニルヨードニウム ペンタフルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 8-

20 トリフルオロメチルベンゼンスルホネート、又はジ4-メチルフェニルヨ ードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネートである、 請求項6に記載のレジスト組成物。

9. 放射線照射により酸を発生する化合物が少なくとも下記一般式[6]

$$(R_{10})^{\eta} \xrightarrow{\int_{0}^{R_{9}}} R_{9} \xrightarrow{R_{9}} R_{4} \operatorname{so}_{3}^{\odot} \qquad [6]$$

[式中、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 、 R_9 及びn は前記と同じであり、 R_{10} はハロゲン原子、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルキル基、炭素数 $1\sim 4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim 5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim 5$ の環状アセタール基を表す。] で示される化合物 1 種以上と、下配一般式 [7]

[式中、 R_4 、 R_5 、 R_6 、 R_7 及び R_8 は前配と同じ。]で示される化合物 1 種以上と、下記一般式 $[1\ 2]$

$$B_{co}$$
 $\longrightarrow I$
 $\longrightarrow B_{co}$
 XSO_3
 $\longrightarrow [12]$

- 10 [式中、 R_{12} はそれぞれ独立して水素原子又は炭素数 $1 \sim 5$ の直鎖状若 しくは分枝状のアルキル基を表し、X は炭素数 $3 \sim 8$ のハロアルキル基、 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から選ばれるものを有してもよいアリール基を表す。] で示される化合物 1 種以上との混合物である請求項 1 に記載のレジスト組成物。
- 15 10. 一般式 [6] で示される放射線照射により酸を発生する化合物と一般式 [7] で示される放射線照射により酸を発生する化合物との重量 比率が2:1~1:5の範囲であり、目つ、一般式 [6]で示される放

射線照射により酸を発生する化合物及び一般式 [7] で示される放射線 照射により酸を発生する化合物の総重量と一般式 [12] で示される放 射線照射により酸を発生する化合物の重量との比率が50:1~1:5 の範囲であることを特徴とする請求項9に記載のレジスト組成物。

- 5 11. 一般式「6」で示される放射線照射により酸を発生する化合物と 一般式 [7] で示される放射線照射により酸を発生する化合物と一般式 「12]で示される化合物1とを混合使用する場合において、一般式[6] の化合物がジフェニル-2.4.6-トリメチルフェニルスルホニウムペンタフ ルオロベンゼンスルホネート、ジフェニル-2.46-トリメチルフェニルス 10 ルホニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル。 2.4.6-トリメチルフェニルスルホニウム 3.5-ジ-トリフルオロメチルベ ンゼンスルホネート、ジフェニル-4-メチルフェニルスルホニウムペンタ フルオロベンゼンスルホネート、ジフェニル-4-メチル 3-トリフルオロ メチルベンゼンスルホネート又はジフェニル-4-メチル 3.5-ジ-トリフル 15 オロメチルベンゼンスルホネートであり、一般式「7]の化合物がトリ フェニルスルホニウムペンタフルオロベンゼンスルホネート. トリフェ ニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート又はト リフェニルスルホニウム 3.5-ジ-トリフルオロメチルベンゼンスルホネ ートであり、一般式[12]の化合物がジフェニルヨードニウム ノナフ 20 ルオロブタンスルホネート、ジフェニルヨードニウム ヘプタデカフルオ ロオクタンスルホネート、ジフェニルヨードニウム ペンタフルオロペン ゼンスルホネート、ジフェニルヨードニウム 3.トリフルオロメチルベ ンゼンスルホネート、ジフェニルヨードニウム 3.5-ジ-トリフルオロメ チルベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム・ノナフ
- 25 ルオロプタンスルホネート、ジ 4メチルフェニルヨードニウム ヘプタ デカフルオロオクタンスルホネート、ジ4メチルフェニルヨードニウム

PCT/JP02/06218

ペンタフルオロベンゼンスルホネート、ジ4メチルフェニルヨードニウム 3-トリフルオロメチルベンゼンスルホネート、又はジ4-メチルフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネートである、請求項9 に記載のレジスト組成物。

- 5 12.一般式[3]のR₃で示される酸不安定基が、炭素数4~10の 分枝状若しくは環状の第3級アルキル基、第3級炭素を有する炭素数9 ~24のアラルキル基、第3級炭素を有する有橋脂環式炭化水素基、環 状アセタール基、又はラクトニル基である請求項1に記載のレジスト組 成物。
- 10 13. 一般式 [3] のR₃で示される酸不安定基が、tert-ブチル基、1-メチルシクロヘキシル基、1-アダマンチル基、2-メチル-2-アダマンチル基、及び 4-メチル-2-オキソ-4-テトラヒドロピラニル基(メバロニックラクトニル基)の何れかである請求項12に記載のレジスト組成物。14. 一般式 [4] のR₅及びR₇で示される電子吸引差が、ハロゲン
- 15 原子、二トロ基又はトリフルオロメチル基である請求項1に記載のレジスト組成物。
 - 15. 更に、一般式 [4] のR。及びR₁₀が、夫々独立して水素原子又 は炭素数 1~4の直鎖状若しくは分枝状のアルキル基である請求項14 に記載のレジスト組成物。
- 20 16.一般式 [4] で示される放射線照射により酸を発生する化合物の カウンターアニオン部がペンタフルオロベンゼンスルホネート、3-トリ フルオロメチルベンゼンスルホネート又は 3,5-ジ-トリフルオロメチル ベンゼンスルホネートである請求項15に記載のレジスト組成物。
 - 17. ポリマーとして、更に下記一般式[13]

[式中、 R_1 は前記と同じであり、 R_{11} は酸の作用により脱離し易く且 つフェノール基とエーテル結合または炭酸エステル結合できる酸不安定 基を表し、n は自然数を表す。] で示されるポリマー単位を含む、請求項 2 に記載のレジスト組成物。

18 上記一般式 [5] と上記一般式 [13] の重量比率が3:2~1
 9:1の範囲であることを特徴とする請求項17に記載のレジスト組成物。

19. 一般式 [13] の R_{11} で示される酸不安定基が、tert-ブテル基、tert-ブンテル基、1-メチルシクロヘキシル基、tert-ブトキシカルボニル 基、トリメチルシリル基及び tert-ブトキシカルボニルメチル基の何れか

20. 放射線照射により酸を発生する化合物が少なくとも下記一般式 [6]

$$(R_{10})_{\text{pf}} = \begin{pmatrix} R_{9} & R_{4} & R_{4} \\ S & R_{9} & R_{9} & R_{9} \\ R_{9} & R_{7} & R_{8} \end{pmatrix}$$
 [6]

である、 請求項17に記載のレジスト組成物。

10

 般式 [7]

[式中、 R_4 、 R_5 、 R_6 、 R_7 及び R_8 は前記と同じ。]で示される化合物 1 種以上との混合物である請求項 1 7 に記載のレジスト組成物。

21. 一般式 [6] で示される放射線照射により酸を発生する化合物と一般式 [7] で示される放射線照射により酸を発生する化合物の重量比率が2:1~1:5の範囲であることを特徴とする請求項20に記載のレジスト組成物。

22. 一般式 [6] で示される放射線照射により酸を発生する化合物と一般式 [7] で示される放射線照射により酸を発生する化合物とを混合 10 使用する場合において、一般式 [6] の化合物がジフェニル・2,4,6-トリメチルフェニルスルホニウムベンタフルオロベンゼンスルホネート、ジフェニル・2,4,6-トリメチルフェニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル・2,4,6-トリメチルフェニルスルホニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート、ジフェニル・

15 4-メチルフェニルスルホニウムペンタフルオロペンゼンスルホネート、 ジフェニル-4-メチル 3-トリフルオロメチルペンゼンスルホネート又は ジフェニル-4-メチル 3,5-ジ-トリフルオロメチルペンゼンスルホネート であり、一般式 [7] の化合物がトリフェニルスルホニウムペンタフル オロベンゼンスルホネート、トリフェニルスルホニウム 3-トリフルオロ メチルベンゼンスルホネートとはトリフェニルスルホニウム 3,5-ジ-ト リフルオロメチルベンゼンスルホネートであることを特徴とする請求項

20に記載のレジスト組成物。

10

23. 放射線照射により酸を発生する化合物として、更に下記一般式[1 2]

$$R_{12}$$
 \rightarrow R_{12} \times $R_{$

[式中、R_{1a} はそれぞれ独立して水素原子又は炭素数 1 ~ 5 の直鎖状若 しくは分枝状のアルキル基を表し、Xは炭素数 3 ~ 8 のハロアルキル基 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から選 ばれるものを有してもよい、アリール基を表す。]で示される化合物 1 種 以トを含有する、請求項 1 7 に記載のレジスト組成物。

24. 一般式 [4] で示される放射線照射により酸を発生する化合物と一般式 [12] で示される放射線照射により酸を発生する化合物との重量比率が50:1~1:5の範囲であることを特徴とする請求項23に
新齢のレジスト組成物。

25. 一般式 [12] の化合物が、ジフェニルヨードニウム ノナフルオ ロプタンスルホネート、ジフェニルヨードニウム ヘプタデカフルオロオ クタンスルホネート、ジフェニルヨードニウム ベンタフルオロベンゼン

スルホネート、ジフェニルヨードニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム ノナフルオロブタンスルホネート、ジ 4-メチルフェニルヨードニウム ペプタデカフルオロオクタンスルホネート、ジ 4-メチルフェニルヨードニウム ペ20 ンタフルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム

8-トリフルオロメチルベンゼンスルホネート又はジ4-メチルフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネートである、 請求項23に記載のレジスト組成物。

26. 放射線照射により酸を発生する化合物が少なくとも下記一般式

15

$$(R_{10})_{71} \xrightarrow{R_9} R_5 R_4 \\ R_6 \xrightarrow{R_7} R_9 So_3^{\odot}$$
 [6]

[式中、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 、 R_9 及びn は前記と同じであり、 R_{10} はハロゲン原子、炭素数 $1\sim4$ の直鎖状若しくは分枝状のアルコキシ基、炭素数 $2\sim5$ の直鎖状若しくは分枝状のアルコキシカルボニルオキシ基、又は炭素数 $4\sim5$ の環状アセタール基を表す。]で示される化合物1種以上と、下記一般式 [7]

[式中、 R_4 、 R_5 、 R_6 、 R_7 及び R_8 は前記と同じ。]で示される化 10 合物 1 種以上と、下記一般式 $[1\ 2]$

[式中、R₁₂ はそれぞれ独立して水素原子又は炭素数1~5の直鎖状若 しくは分枝状のアルキル基を表し、Xは炭素数3~8のハロアルキル基、 又は置換基としてハロゲン原子、ハロ低級アルキル基、ニトロ基から選 ばれるものを有してもよいアリール基を表す。]で示される化合物1種以 上との混合物である請求項17に記載のレジスト組成物。

27. 一般式 [6] で示される放射線照射により酸を発生する化合物と 一般式 [7] で示される放射線照射により酸を発生する化合物との重量

88

比率が2:1~1:5の範囲であり、かつ、一般式 [6] で示される放射線照射により酸を発生する化合物及び一般式 [7] で示される放射線照射により酸を発生する化合物の総重量と一般式 [12] で示される放射線照射により酸を発生する化合物との重量比率が50:1~1:5の範囲であることを特徴とする請求項26に記載のレジスト組成物。

5

28. 一般式 [6] で示される放射線照射により酸を発生する化合物と一般式 [7] で示される放射線照射により酸を発生する化合物と一般式 [12]で示される化合物1とを混合使用する場合において、一般式[6] の化合物がジフェニル-2.4.6・トリメチルフェニルスルホニウムペンタフ

10 ルオロベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルス ルホニウム 3-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム 3,5-ジ-トリフルオロメチルベ ンゼンスルホネート、ジフェニル-4-メチルフェニルスルホニウムベンタ フルオロベンゼンスルホネート、ジフェニル-4-メチル 3-トリフルオロ

15 メチルベンゼンスルホネート又はジフェニル-4-メチル 8,5-ジ-トリフル オロメチルベンゼンスルホネートであり、一般式 [7] の化合物がトリ フェニルスルホニウムベンタフルオロベンゼンスルホネート、トリフェ ニルスルホニウム 3-トリフルオロメチルベンゼンスルホネート又はト リフェニルスルホニウム 8,5-ジ-トリフルオロメチルベンゼンスルホネ

20 ートであり、一般式 [12]の化合物がジフェニルヨードニウム ノナフ ルオロブタンスルホネート、ジフェニルヨードニウム ヘブタデカフルオ ロオクタンスルホネート、ジフェニルヨードニウム ペンタフルオロベン ゼンスルホネート、ジフェニルヨードニウム 3-トリフルオロメチルベ ンゼンスルホネート、ジフェニルヨードニウム 3,5-ジ-トリフルオロメ

25 チルベンゼンスルホネート、ジ 4メチルフェニルヨードニウム ノナフ ルオロブタンスルホネート、ジ 4メチルフェニルヨードニウム ヘプタ

20

デカフルオロオクタンスルホネート、ジ 4-メチルフェニルヨードニウム ペンタフルオロベンゼンスルホネート、ジ 4-メチルフェニルヨードニウム 3-トリフルオロメチルベンゼンスルホネート、又はジ 4-メチルフェニルヨードニウム 3,5-ジ-トリフルオロメチルベンゼンスルホネートである、 請求項 2.6 に記載のレジスト組成物。

29. 一般式 [3] のR₃で示される酸不安定基が、炭素数 4~10の分枝状若しくは環状の第3級アルキル基、第3級炭素を有する炭素数9~24のアラルキル基、第3級炭素を有する有橋脂環式炭化水素基、環状アセタール基、又はラクトニル基である請求項17に記載のレジスト組成物。

30.一般式[3]のR。で示される酸不安定基が、tert-ブチル基、1-メチルシクロヘキシル基、1-アダマンチル基、2-メチル-2-アダマンチル基及び 4-メチル-2-オキソ-4-テトラヒドロピラニル基(メバロニックラクトニル基)の何れかである請求項29に記載のレジスト組成物。

15 31. 一般式 [4]のR₅及びR₇で示される電子吸引基が、ハロゲン 原子、ニトロ基又はトリフルオロメチル基である請求項17に記載のレ ジスト組成物。

32. 更に、一般式 [4]のR。及びR₁₀が、夫々独立して水素原子又 は炭素数1~4の直鎖状若しくは分枝状のアルキル基である請求項31 に記載のレジスト組成物。

33. 一般式 [4] で示される放射線照射により酸を発生する化合物の カウンターアニオン部がベンタフルオロベンゼンスルホネート、3-トリ フルオロメチルベンゼンスルホネート又は 3,5-ジ-トリフルオロメチル ベンゼンスルホネートである請求項 32 に記載のレジスト組成物。

25 34. ポリマーの重量平均分子量が5,0000~20,000であり、 分散度が1.0~2.5である請求項1~33の何れかに記載のレジス ト組成物。

35. 放射線が電子線、極紫外線又はX線である請求項1~33の何れかに記載のレジスト組成物。

1/3

図 1

2/3

図2

3∕3 図3

INTERNATIONAL SEARCH REPORT

International application No.

			PCT/J	P02/06218
	SIFICATION OF SUBJECT MATTER .Cl ⁷ G03F7/039, H01L21/027			
_	to International Patent Classification (IPC) or to both n	ational classification ar	nd IPC	
	S SEARCHED			
	locumentation searched (classification system followed C1 G03F7/00-7/42, H01L21/027	by classification symb	ols)	
Jits Koka	tion searched other than minimum documentation to the uyo Shinan Koho 1922—1996 i Jitsuyo Shinan Koho 1971—2002	Toroku Jitsuy Jitsuyo Shina	o Shinan Koh n Toroku Koh	io 1994–2002 io 1996–2002
	lata base consulted during the international search (nan	ne of data base and, wh	ere practicable, sea	urch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a			Relevant to claim No.
х	[0027] to [0029], [0040], [0046], [0057], [0098], [0089] (b-1) (b-3) (b-5), [0097]			12-13,29-30, 14-16,31-33, 3-11,20-28,
Х	JP 2000-122296 A (Shipley Co 28 April, 2000 (28.04.00), Claims 11, 12; Par. Nos. [00: [0061], [0084] & KR 2000016920 A		[0053] to	2 1,14-16, 2,12-13, 17-19 3-11,20-28, 34,35
× Furth	er documents are listed in the continuation of Box C.	See patent fam	ily annex.	
"A" docum conside "B" earlier date "L" docum cited to special "O" docum means "P" docum than the	E considered to be of particular relevance considered to be of particular relevance to entire document but published on or after the international filling the document of particular relevance; the claimed invention cannot considered anything the document of particular relevance; the claimed invention cannot considered anything the considere		he application but cited to terrying the invention claimed invention cannot be read to involve an inventive e claimed invention cannot be p when the document is a documents, such a skilled in the art family the report	
Name and m	nailing address of the ISA/	Authorized officer		

Telephone No.

Facsimile No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/06218

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	JP 11-305440 A (Tokyo Ohka Kogyo Co., Ltd.), 05 November, 1999 (05.11.99), Claims 1 to 3; Par. Nos. [0018], [0036] & US 6255041 B	2,34,35
		*

国際調査報告 国際出願番号 PCT/JP02/06218 A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int.Cl' G03F 7/039, H01L 21/027 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' G03F 7/00-7/42, H01L 21/027 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) C. 関連すると認められる文献 引用文献の 関連する 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP 2000-187330 A (富士写真フイルム株式会社) 2000.07.04. Х 【請求項1】【請求項2】【請求項6】【請求項7】 1, 35 [0093] (b-26) (b-27) 12-13, 29-30 14-16, 31-33 [0027] - [0029][0040] [0046] [0057] 3-11, 20-28 [0098] [0089] (b-1) (b-3) (b-5) 17 - 19[0097] 34 γ & US 6265135 B & KR 2000029118 A 2 パテントファミリーに関する別紙を参照。 区欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用す数のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T I 国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの 「E」国際出願目前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 よって進歩件がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査を完了した日 国際調査報告の発送日 15.10.02 02.10 02

特許庁審査官 (権限のある職員)

山鹿勇次郎

電話番号 03-3581-1101 内線 3273

2M 9223

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

	EMBARCELTA D	TO IN LINE OF THE PARTICIPATION OF THE PARTICIPATIO	2,00210
C (続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、	関連する 請求の範囲の番号	
х Y	JP 2000-122296 A (シップレーカンパニー, L.L.C.) 2000.04.28, [請求項11] [請求項12] [0015] [0073] [0084] & KR 2000016920 A		1, 14-16 2, 12-13 17-19 3-11, 20-28 34, 35
Y	JP 11-305440 A (東京応化工美 1999. 11. 05, 【請求項1】-【請求項3】,【0018 & US 6255041 B		2, 34, 35