

Web Scraping/Regression Presentation Slides

Predicting Final Sales Price for Single Family Homes in the West San Fernando Valley

George Pappy - 15 September 2021

Introduction

Motivation:

- Historic rise in home sales during the COVID-19 pandemic
- Prices are at all time highs and still climbing
- Local realtors want a reasonably accurate price predictor
 - Provides a competitive advantage
 - Prices changing too fast: lack of confidence in their own estimates

Methodology

- Primary Data: Single Family Home Sales (Past 90 Days)
 - Excluded Condominiums and Multi-Family Dwellings (different market)
 - West San Fernando Valley only (18 zip codes covering 13 communities)
 - Data scraped from a well-known real estate website (10 predictors):

Target: Sale Price

<u>Predictors</u>: Beds, Baths, Square Footage, Lot Size, Year Built, Zipcode, Pool, Garage, Number of Stories (Floors), Average Schools Rating

Methodology (con't.)

- Supplemental Data: Downloadable csv (same website):
 - Homeowners Association Fee (HOA, monthly)
 - Number of Days on Market (could be an alternate target, NOT a predictor)

Methodology (con't.)

- Models: Linear Regression with & without Regularization
 - Lasso, Ridge, ElasticNet
 - Also tried tree-based regressors (Random Forest, XGBoost)
 - Extensive feature engineering to improve performance

Metrics

- Primarily Mean Absolute Error (MAE, \$)
- Also, R² and Root Mean Square Error (RMSE, \$)

Methodology (con't.)

Tools

- Requests/BeautifulSoup: web scraping
- Pandas: clean, explore, engineer features and generate final modeling data
- Statsmodels/ScikitLearn: build regression models as well as to perform cross validation, variable selection and regularization
- Matplotlib/Seaborn: visualizing data exploration, modeling and final results
- Python 3.8: to run all of the above

Cross Validation Results – (Model Selection)

• Initial Linear Model (Baseline)

(11 predictors \rightarrow 26 predictors after one-hot encoding the distinct zipcodes)

Basic Linear Model: Mean CV R-squared = 0.826 +/- 0.015
Basic Linear Model: Mean CV MAE = \$136193 +/- \$10081

Should be able to do better than this
Basic Linear Model: Mean CV RMSE = \$197568 +/- \$27254

Cross Validation Results – (Model Selection)

Best Linear Model: ElasticNet

METIS®

All 2nd-order terms & interactions filtered down to 58 Lasso-selected predictors; log(target)

• Best Linear Model: ElasticNet

METIS®

All 2nd-order terms & interactions filtered down to 58 Lasso-selected predictors; log(target)

```
Best Linear Model (ElasticNet): Test Set R-Squared = 0.82

Best Linear Model (ElasticNet): Test Set MAE = $112550

Best Linear Model (ElasticNet): Test Set RMSE = $177272
```


Standardized Coefficient Magnitude (Absolute Value)

- Square Footage, Lot Size & Schools Rating play very important roles in this model's predictions
- Initial Exploratory Data Analysis (EDA) showed high correlation to the target for Square Footage and Lot Size
- Schools Rating had much weaker target correlation (0.36), so this is an interesting result

METIS®

Best Linear Model: ElasticNet

All 2nd-order terms & interactions filtered down to 58 Lasso-selected predictors; log(target)

```
Best Linear Model (ElasticNet): Test Set R-Squared = 0.82
Best Linear Model (ElasticNet): Test Set MAE = $112550
Best Linear Model (ElasticNet): Test Set RMSE = $177272
```


Best Tree-Based Model: XGBoost

METIS®

All 2nd-order terms & interactions filtered down to 58 Lasso-selected predictors; log(target)

XGBoost: Mean CV R-squared = 0.832 +/- 0.032; Test Set R-Squared = 0.82

XGBoost: Mean CV MAE = \$105136 + /- \$9840; Test Set MAE = \$111591 XGBoost: Mean CV RMSE = \$148594 + /- \$16258; Test Set RMSE = \$163912

Conclusions

Recommendations

- If possible, use the XGBoost model in the short term
- Longer-term, seriously consider funding the future work (see below)

• Interesting Insights

- Square Footage, Lot size, School Rating are the most important predictors
- Square Footage is a proxy for Beds and Baths

Future Work

- Create a Home Rating categorical predictor (e.g., {Poor, Fair, Good, Excellent})
- Train, cross validate & test with more data (maybe scrape the entire Valley)
- Consider narrowing the price range down even more (perhaps <= \$2Mil)
- Build a predictive model for the **alternate target**: Number of Days on Market

Appendix

One Obvious Initial Outlier Was Dropped

• One home (out of 1011) had a Lot Size more than 10x that of any other

Distribution of Sale Prices in Dataset

• Dropping prices outside of [\$575k, \$3.0M] is justified by this distribution (even dropping prices \geq \$2.0M is probably reasonable)

	sold_price
count	1.010000e+03
mean	1.125490e+06
std	5.020166e+05
min	4.000000e+05
25%	8.400000e+05
50%	9.650000e+05
75%	1.260000e+06
max	5.500000e+06

Original Data Correlations w/ Sales Price

- Square Footage, Baths and Lot Size are by far the strongest correlations
- Note strong correlations between:
 - Beds & Baths
 - Sq. Footage & Beds
 - Sq. Footage & Baths

0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Original Data Correlations w/ Sales Price

- Schools Rating has a fairly weak correlation with the target
- All other correlations to the target are weak or very weak
- Note: Pool and Garage are highly correlated with each other, leading to the decision to drop Pool from the modeling dataset

MEIIS

-0.8

-1.0

-0.6

-0.4

-0.2

-0.0

No Real VIF Issues w/ Beds/Baths/Sq. Feet

- Despite strong correlations between Beds, Baths & Square Feet, their VIFs are not really an issue
- Decision was made to accept VIF of 5.44 for Square Feet (barely > 5.0)
- No surprise that Pool & Garage have such high VIFs given 0.95 correlation (justifying decision to drop Pool from the dataset)

Variable	VIF
beds	2.374858
baths	4.072735
hm_sqft	5.437265
lot_size	1.873326
yr_built	1.570090
pool	11.575024
garage	11.747186

High VIFs in One-Hot Encoded Zipcodes

- Variance Inflation Factors (VIFs) surprisingly high for the Zipcodes
- Ideally want all VIFs < 5 (as is true for the other variables)
- Idea: try reducing 18 Zipcodes down to 13 communities (some of which contain multiple Zipcodes)

VIF	Variable	
6.572945	zipcode_91303	
17.114664	zipcode_91304	
9.160317	zipcode_91306	
14.155095	zipcode_91307	
9.843143	zipcode_91311	
12.274967	zipcode_91316	
6.336829	zipcode_91324	
10.785262	zipcode_91325	
13.688698	zipcode 91326	

Variable	VIF
zipcode_91335	14.904258
zipcode_91343	14.012338
zipcode_91344	23.141578
zipcode_91356	9.990088
zipcode_91364	22.477096
zipcode_91367	19.839412
zipcode_91406	17.563902
zipcode_91436	5.248329

Zipcodes Mapped to Cities: VIFs Much Better!

 Simply mapping 18 Zipcodes to their 13 associated city (community) names and one-hot encoding those variables solves the high VIF problem!

VIF	Variable	VIF	Variable
2.009986	city_porter_ranch		city_chatsworth
1.692616	city_reseda	2.162079	city_encino
1.645058	city_tarzana	2.372798	city_granada_hills
1.969172	city_west_hills	1.942892	city_lake_balboa
1.390593	city_winnetka	1.767004	city_north_hills
4.226194	city_woodland_hills	1.854837	city_northridge

Log-Transforming Target Improved Model

Log-transformed target less skewed, improving model performance

XGBoost Model – Variable Importance

- Square Footage, Lot Size & Schools Rating also play very important roles in this model's predictions
- Initial Exploratory Data Analysis (EDA) showed high correlation to the target for Square Footage and Lot Size
- Schools Rating had much weaker target correlation (0.36), so this is an interesting result

Random Forest Models Never Beat XGBoost

Best Random Forest Model

METIS®

All 2nd-order terms & interactions filtered down to 58 Lasso-selected predictors; log(target)

RandomForest: Mean CV R-squared = 0.818 +/- 0.035; Test Set R-Squared = 0.806

RandomForest: Mean CV MAE = \$109312 +/- \$8352; Test Set MAE = \$113709 RandomForest: Mean CV RMSE = \$155945 +/- \$16837; Test Set RMSE = \$174812

