Day 2. Tabular Q-learning

SAMSUNG AI
Reinforcement Learning

June 17, 2022 Jaeuk Shin, Mingyu Park

With Q, we don't need a policy!

$$Q^*(\boldsymbol{s}, \boldsymbol{a}) = \underbrace{r(\boldsymbol{s}, \boldsymbol{a})}_{\text{immediate reward}} + \gamma \underbrace{\sum_{s' \in S} p(s'|\boldsymbol{s}, \boldsymbol{a}) v^*(s')}_{\text{optimal value of next state}}$$
 optimal value of next state
$$= r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \sum_{s' \in S} p(s'|\boldsymbol{s}, \boldsymbol{a}) \max_{a' \in A} Q^*(s', a')$$

ullet Define the Bellman operator ${\mathcal T}$ for Q-functions by

$$(\mathcal{T}Q)(oldsymbol{s},oldsymbol{a}) := r(oldsymbol{s},oldsymbol{a}) + \gamma \sum_{oldsymbol{s}' \in S} p(oldsymbol{s}'|oldsymbol{s},oldsymbol{a}) \max_{oldsymbol{a}' \in A} Q(oldsymbol{s}',oldsymbol{a}').$$

Then, it is a monotone contraction mapping.

Bellman equation:

$$Q = \mathcal{T}Q$$
.

Q-Learning (tabular):

Initialize Q;

Replace model with data!

• Take some action and observe (s, a, s', r);

 $2 \text{ Set } Q(s,a) \leftarrow (1-\alpha) \underbrace{Q(s,a)}_{\text{old estimate}} + \alpha \underbrace{\left[r + \gamma \max_{a'} Q(s',a')\right]}_{\text{new estimate}};$

Repeat until convergence;

Can you see the difference?

MDP definition

```
class MyEnv:
         num_actions = 4
 3
         def __init__(self):
 5
              pass
 6
         def reset(self):
 8
              pass
 9
         def step(self, action):
10
              pass
```

 s_t is kept internally, and is updated in **step** method

sample an initial state $s_0 \sim \rho_0(s)$

agent-env interaction: $s_{t+1} \sim p(\cdot|s_t, a_t), \ r_t = r(s_t, a_t)$

Example - Pendulum

21

```
MDP as a Python class(gym.Env)
        class PendulumEnv(gym.Env):
        metadata = {
            'render.modes': ['human', 'rgb array'],
            'video.frames_per_second': 30
        def init (self, g=10.0):
            self.max speed = 8
            self.max torque = 2.
            self.dt = .05
            self.g = g
            self.m = 1.
            self.l = 1.
            self.viewer = None
            high = np.array([1., 1., self.max speed], dtype=np.float32)
            self.action space = spaces.Box(
17
                low=-self.max_torque,
18
                high=self.max_torque, shape=(1,),
                dtype=np.float32
20
```


https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py

```
Example - Pendulum
                                    \longrightarrow action input a_t (torque applied at t)
         def step(self, u):
             th, thdot = self.state # th := theta
                                                               \rightarrow state s_t: s_t = (\theta_t, \dot{\theta}_t)
             g = self.g
             m = self.m
             l = self.l
                                                                                           compute reward r_t = r(s_t, a_t)
             dt = self.dt
             u = np.clip(u, -self.max torque, self.max torque)[0]
             self.last u = u # for rendering
10
                                                                                                    compute the next state s_{t+1}
             costs = angle normalize(th) ** 2 + .1 * thdot ** 2 + .001 * (u ** 2)
11
12
             newthdot = thdot + (-3 * g / (2 * 1) * np.sin(th + np.pi) + 3. / (m * 1 ** 2) * u) * dt]
13
             newth = th + newthdot * dt
             newthdot = np.clip(newthdot, -self.max speed, self.max speed)
15
16
                                                              \longrightarrow return next state s_{t+1} & reward r_t
             self.state = np.array([newth, newthdot])
             return self._get_obs(), -costs, False, {}
18
```

https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py

More examples - OpenAI Gym, Deepmind Control Suite, etc.

Q-learning - Implementation

Algorithm Implementation

```
class QTable:
          def __init__(self, num_states, num_actions, gamma=0.99):
                                                                                    store Q-function as a table
              self.gamma = gamma
              self.Q = np.zeros(shape=(num_states, num_actions))
 5
          def update(self, state, action, reward, next state, alpha):
              target = reward + self.gamma * np.max(self.Q[next_state]) - self.Q[state, action]
              self.Q[state, action] += alpha * target
                                                                                          Q-learning update!
 9
                                       Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t(s_t, a_t) \left( r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)
          def act(self, state):
10
              return np.argmax(self.Q[state])
                                                                                            error
```

greedy action $a_t = \arg \max_a Q(s_t, a)$

Q-learning - Implementation

Complete Outline

s = s next

18

```
learner = QTable(num states=env.observation space.n, num actions=env.action space.n, gamma=gamma)
     rollout len = 1000000
     visit count = np.zeros(shape=(num states, num actions))
                                                                  # save visit counts N(s, a) of all state-action pairs
     alpha = VisitCountStepsizeSchedule(deg=0.5001)
                                                                                   stepsize rule: \alpha_t(s,a) = \frac{1}{n_t(s,a)^d}
     epsilon = LinearExplorationSchedule(rollout_len, final_epsilon=0.4)
                                                                                                                1/2 < d < 1
     s = env.reset()
     for t in tqdm(range(rollout len + 1)):
         u = np.random.rand()
                                                                 exploration strategy: start with large \varepsilon, and decrease it.
         if u < epsilon(t):</pre>
10
11
             a = env.action space.sample()
         else:
12
             a = learner.act(state=s)
13
                                                                      \sim \varepsilon-greedy action selection
         s_next, r, _, _ = env.step(action=a)
14
         n = visit count[s, a]
15
         learner.update(state=s, action=a, reward=r, next state=s next, alpha=alpha(n))
16
         visit count[s, a] += 1
17
```


Practice1 - GridWorld

In Day 1, we learned how to compute the value function of GridWorld via **value iteration** when the model is completely **known**.

Practice1 - GridWorld

- 16

- 14

- 10

Q-learning. Gridworld						
9.64	10.71	11.90	13.22	14.69		14.69
8.68	9.64	10.71	11.90	13.22	14.69	13.22
7.81	8.68	9.64	10.71	11.90	13.22	11.90
7.03	7.81	8.68	9.64	10.71	11.90	10.70
7.81	8.68	9.64	10.71	11.90	10.70	9.54
8.68	9.64	10.71	11.90	13.22	11.89	10.67
9.64	10.71	11.90	13.22	14.69	13.20	11.78

$$s := (x, y, \dot{\theta}) \quad \begin{cases} x = \cos \theta : \text{x coordinate of the pendulum tip} \\ y = \sin \theta : \text{y coordinate of the pendulum tip} \\ \dot{\theta} \qquad : \text{Angular velocity} \end{cases}, \quad a := \ddot{\theta},$$

Where the origin is set to the joint of the pendulum, and $-\pi \le \theta \le \pi$ as $\theta = 0$ is set to the +y direction. Finally, as control objective is $\theta = \dot{\theta} = 0$, we will give the reward of

$$r := -(\theta^2 + 0.1\dot{\theta}^2 + 0.001\ddot{\theta}^2).$$

- discretize pendulum dynamics
 - 2-dim. state $(\theta, \dot{\theta})$
 - 1-dim action τ
- goal : apply a torque τ to a joint for swing-up
- 2460 discretized states & 15 discretized actions

$$s := (x,y,\dot{\theta}) \quad \begin{cases} x = \cos\theta : \text{x coordinate of the pendulum tip} \\ y = \sin\theta : \text{y coordinate of the pendulum tip} \\ \dot{\theta} \qquad : \text{Angular velocity} \end{cases}, \quad a := \ddot{\theta},$$

Where the origin is set to the joint of the pendulum, and $-\pi \le \theta \le \pi$ as $\theta = 0$ is set to the +y direction. Finally, as control objective is $\theta = \dot{\theta} = 0$, we will give the reward of

$$r := -(\theta^2 + 0.1\dot{\theta}^2 + 0.001\ddot{\theta}^2).$$

Why Deep Q-Network?

- It seems like Q-learning works well in these examples.
- Why deep reinforcement learning then?

⇒ For most real-world problems, discretization is not a good strategy...

$$n = 160, m = 5$$
(coarse)

$$n = 620, m = 10$$

$$n = 2460, m = 15$$
(fine)

