What is claimed is:

35

- A powder slurry curable thermally and with actinic
 radiation and comprising highly viscous and/or solid particles dimensionally stable under storage and application conditions, comprising
- (A) at least one binder free of carbon-carbon 10 activatable with actinic double bonds least radiation, comprising at one (meth) acrylate copolymer containing on average per molecule at least one isocyanate-reactive functional group and at 15 least one ion- forming group,
 - (B) at least one blocked and/or part-blocked polyisocyanate, and
- 20 (C) least olefinically one unsaturated constituent which is free of isocyanatereactive functional groups and contains on average per molecule at least one isocyanate group blocked with pyrazole or with at least 25 one substituted pyrazole and at least two carbon-carbon double bonds which activated with actinic radiation, preparable by reacting at least one polyisocyanate with and/or pyrazole with at least substituted pyrazole and also with at least 30 compound containing an isocyanatereactive functional group and at least two carbon-carbon double bonds activatable with actinic radiation.

2. The powder slurry as claimed in claim 1, wherein the binder (A) has a glass transition temperature of from +5 to +25°C.

- 3. The powder slurry as claimed in claim 1 or 2, wherein the isocyanate-reactive groups are selected from the group consisting of hydroxyl, thiol, and primary and secondary amino groups.
- 4. The powder slurry as claimed in any of claims 1 to 3, wherein the isocyanate-reactive groups are hydroxyl groups.

10

5

- 5. The powder slurry as claimed in any of claims 1 to 4, wherein the substituted pyrazole is a dialkylpyrazole.
- 15 6. The powder slurry as claimed in claim 5, wherein the dialkylpyrazole is 3,5-dimethylpyrazole.
- 7. The powder slurry as claimed in any of claims 1 to 6, wherein the constituents (C) contain 20 hydrophilic groups
- The powder slurry as claimed in any of claims 1 to 7, wherein the carbon-carbon double bonds are present in (meth)acryloyl, ethacryloyl, crotonate, vinyl ether, vinyl 25 cinnamate, ethenylarylene, dicyclopentadienyl, norbornenyl, isoprenyl, isopropenyl, allyl or butenyl groups; ethenylarylene ether, dicyclopentadienyl ether, norbornenyl ether, isoprenyl ether, isopropenyl ether, allyl ether or butenyl ether groups; or 30 ethenylarylene ester, dicyclopentadienyl ester, norbornenyl ester, isoprenyl ester, isopropenyl
- 35 9. The powder slurry as claimed in claim 8, wherein the carbon-carbon double bonds are present in (meth)acryloyl groups.

ester, allyl ester or butenyl ester groups.

10. The use of the powder slurry as claimed in any of claims 1 to 9 as a coating material, adhesive or sealing compound.

5

10

- The use as claimed in claim 10, wherein the 11. coating material is used as a clearcoat material and/or as a color and/or effect coating material producing clearcoats, single-coat color and/or effect, electrically multicoat, magnetically shielding and/or conductive, fluorescent coatings and combination effect coats.
- 12. The use as claimed in claim 10 or 11, wherein the coating material, adhesive or sealing compound is used in the fields of automotive OEM finishing, automotive refinish, the coating of buildings, inside and out, the coating of furniture, windows or doors, and industrial coating, including coil coating, container coating, the impregnation or coating of electrical components, and the coating of white goods, including domestic appliances, boilers and radiators.
- 25 13. A process for preparing a powder slurry curable thermally and with actinic radiation, as claimed in any of claims 1 to 9, by means of a secondary dispersion process, which comprises the following steps:

3,0

35

(I) emulsifying an organic solution comprising the constituents (A), (B) and (C) and also, where appropriate, (D), to give an emulsion of the oil-in-water type,

- (II) removing the organic solvent or solvents, and
- (III) replacing all or some of the volume of solvent removed by water, to give the powder slurry.