Introduction to Data Science

Lecture 5: Unsupervised Learning

Hierarchical Clustering, DBSCAN

Data Science and Engineering Department
Faculty of Informatics
ELTE University

Reminder: what is a Clustering?

 In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Clustering Algorithms

- K-means
- Hierarchical clustering

DBSCAN

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) is left
 - Divisive:
 - Start with one all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies.
 - Examples in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Example: Agglomerative Clustering

Example: Divisive Clustering

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6.** Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

p11

p12

Intermediate Situation

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

p11

p12

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
p 4						
<u>p4</u> p5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u>.</u>
p1						
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> p5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Single Link – Complete Link

 Another way to view the processing of the hierarchical algorithm is that we create links between their elements in order of increasing distance

- The MIN Single Link, will merge two clusters when a single pair of elements is linked
- The MAX Complete Linkage will merge two clusters when all pairs of elements have been linked.

Hierarchical Clustering: MIN

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Limitations of MIN

Sensitive to noise and outliers

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Strength of MAX

Less susceptible to noise and outliers

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters

Cluster Similarity: Group Average

• The proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{j}|}$$

• We need to use average connectivity for scalability since total proximity favors large clusters.

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error (SSE) when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

External sources related to Hierarchical Clustering:

Hierarchical Clustering: Problems and Limitations

- Computational complexity in time and space
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

DBSCAN: Density-Based Clustering

- DBSCAN is a Density-Based Clustering algorithm
- Reminder: In density-based clustering, we partition points into dense regions separated by not-so-dense regions.
- Important Questions:
 - How do we measure density?
 - What is a dense region?
- DBSCAN:
 - Density at point p: number of points within a circle of radius Eps
 - Dense Region: A circle of radius Eps that contains at least MinPts points

DBSCAN

- Characterization of points
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These points belong in a dense region and are at the interior of a cluster.
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

Density-Connected points

Density edge

 We place an edge between two core points q and p if they are within distance Eps.

Density-connected

 A point p is density-connected to a point q if there is a path of edges from p to q

DBSCAN Algorithm

- Label points as core, border and noise
- Eliminate noise points
- For every core point p that has not been assigned to a cluster
 - Create a new cluster with the point p and all the points that are density-connected to p.
- Assign border points to the cluster of the closest core point.

DBSCAN: Determining Eps and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at a farther distance
- So, plot sorted distance of every point to its kth nearest neighbor
- Find the distance d where there is a "knee" in the curve
 - Eps = d, MinPts = k

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Other algorithms

- PAM, CLARANS: Solutions for the k-medoids problem
- BIRCH: Constructs a hierarchical tree that summarizes the data and then clusters the leaves.
- MST: Clustering using the Minimum Spanning Tree.
- ROCK: clustering categorical data by neighbor and link analysis
- LIMBO, COOLCAT: Clustering categorical data using information-theoretic tools.
- CURE: Hierarchical algorithm uses different representations of the cluster
- CHAMELEON: Hierarchical algorithm uses closeness and interconnectivity for merging