CHAPTER 1

NORMED VECTOR SPACES

1.1 Review of Vector Spaces

In this section, we will review properties of vector spaces with relation to vector spaces.

Definition 1.1.1. A vector space $(V, +, \cdot)$ (over a field \mathbb{K}) is a set V and functions $(+): V \times V \to V$ and $(\cdot): \mathbb{K} \times V \to V$ such that:

- (V, +) is an abelian group;
- · is associative over +, i.e. for $a, b \in \mathbb{K}$ and $v \in V$, $a \cdot (b \cdot v) = (ab) \cdot v$;
- · left- and right-distributes over +, i.e. for $a \in \mathbb{K}$ and $v, w \in V$, $a \cdot (v+w) = a \cdot v + a \cdot w$.

In this course, we set $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. We are familiar with many vector spaces, e.g. \mathbb{R}^n over \mathbb{R} and \mathbb{C}^n over \mathbb{C} (and \mathbb{R}).

We now review the concept of dimensionality.

Definition 1.1.2. Let V be a vector space and let $S \subseteq V$.

• We say that S spans V if for all $v \in V$, there exists a collection of scalars $(c_{v_i})_{v_i \in S}$ such that

$$v = \sum_{v_i \in S} c_{v_i} \cdot v_i.$$

 \bullet We say that S is linearly independent if for all linear combinations

$$\sum_{v_i \in S} c_{v_i} \cdot v_i = 0,$$

we have $c_{v_i} = 0$ for all $v_i \in S$.

• We say that S is a basis for V if S spans V and is linearly independent.

For \mathbb{R}^n , a basis is given by $\{e_1, e_2, \dots, e_n\}$, with

$$e_i(j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

for $1 \leq i \leq n$. This basis is not unique, e.g. another basis for \mathbb{R}^n is $\{f_1, f_2, \dots, f_n\}$, with

$$f_i = \sum_{j=1}^i e_j.$$

Although the basis is not unique, if it is finite, then any other basis will also be finite and have the same number of elements. This value is defined the

1

dimension of the vector space. Vector spaces that have a basis with finitely many elements are called *finite-dimensional*. We know that for a field \mathbb{K} , if V is an n-dimensional vector space over \mathbb{K} , then V is isomorphic to \mathbb{K}^n . So, these are all the finite-dimensional vector spaces.

We can represent the vector space \mathbb{R}^n as a function. In particular, for some set $X = \{x_1, x_2, \dots, x_n\}$, let $\operatorname{Fun}(X, \mathbb{R})$ be the set of functions $f \colon X \to \mathbb{R}$. We claim that $\operatorname{Fun}(X, \mathbb{R})$ is isomorphic to \mathbb{R}^n , with the isomorphism map $\varphi \colon \operatorname{Fun}(X, \mathbb{R}) \to \mathbb{R}^n$

$$\varphi(f) = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}.$$

Note however that this format is not limited to finite sets; the space of functions $\operatorname{Fun}(X,\mathbb{R})$ is a vector space even when X is infinite. In particular, we consider the case where X is countable, i.e. $X=\mathbb{Z}_{\geq 1}$. The space $\operatorname{Fun}(X,\mathbb{R})$ in this case is the space of all functions $f\colon \mathbb{Z}_{\geq 1}\to \mathbb{R}$, i.e. sequences in \mathbb{R} . We denote this as $\operatorname{Seq}(\mathbb{R})$ as well. The sequences form a vector space with respect to pointwise addition and scalar multiplication. This sequence is infinite-dimensional, i.e. it does not have a finite basis. This is because it has the basis $\{e^{(1)}, e^{(2)}, \ldots\}$, with the sequence $(e_n^{(k)})_{n=1}^\infty$ given by

$$e_n^{(k)} = \begin{cases} 1 & n = k \\ 0 & \text{otherwise.} \end{cases}$$

We know that every basis of a finite-dimensional space is finite, so $Seq(\mathbb{R})$ is infinite-dimensional. This space has many interesting subspaces, including:

- the space of bounded sequences ℓ^{∞} ;
- the space of convergent sequences c;
- the space of sequences that converge to $0 c_0$;
- the space of sequences $(x_n)_{n=1}^{\infty}$ such that the series

$$\sum_{n=1}^{\infty} |x_n|^p$$

converges, denoted ℓ^p , for some $p \in [1, \infty)$;

• the space of sequences that are eventually zero c_{00} .

Also, the space of continuous functions from the compact subset [0,1] to \mathbb{R} , denoted by C[0,1], is a vector space- it forms a vector space over pointwise addition and scalar multiplication, i.e. for $c \in \mathbb{R}$ and $f \in C[0,1]$, we define the function $c \cdot f \in C[0,1]$ by $(c \cdot f)(x) = c \cdot f(x)$ for $x \in [0,1]$. This is also an infinite-dimensional space- it has a subspace consisting of polynomial functions, whose basis is given by

$$\{f_n \mid n \in \mathbb{Z}_{\geq 1}\},\$$

where $f_n(x) = x^n$ for all $x \in [0, 1]$. Hence, it has an infinite-dimensional subspace, meaning that the entire space must also be infinite-dimensional. We

2 Pete Gautam

will later see that the space of polynomials is a dense subspace of C[0,1], i.e. a continuous function can be approximated by a polynomial function arbitrarily well.

Pete Gautam 3