```
#importing the libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Wine Dataset:

• These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the **three types of wines**.

```
#importing the datasets
df=pd.read_csv("/content/Wine.csv")
df.head()
```

_ →		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Pro
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
	4									•

#Checking for null values
df.isnull().sum()

\rightarrow	Alcohol	0
	Malic_Acid	0
	Ash	0
	Ash_Alcanity	0
	Magnesium	0
	Total_Phenols	0
	Flavanoids	0
	Nonflavanoid_Phenols	0
	Proanthocyanins	0
	Color_Intensity	0
	Hue	0
	OD280	0
	Proline	0
	Customer_Segment	0
	dtype: int64	

df.describe()

-	_	_
		•
-	→	$\overline{}$

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoi
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	1
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	
4								•

df.columns

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 178 entries, 0 to 177
 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Alcohol	178 non-null	float64
1	Malic_Acid	178 non-null	float64
2	Ash	178 non-null	float64
3	Ash_Alcanity	178 non-null	float64
4	Magnesium	178 non-null	int64
5	Total_Phenols	178 non-null	float64
6	Flavanoids	178 non-null	float64
7	Nonflavanoid_Phenols	178 non-null	float64
8	Proanthocyanins	178 non-null	float64
9	Color_Intensity	178 non-null	float64
10	Hue	178 non-null	float64
11	OD280	178 non-null	float64
12	Proline	178 non-null	int64
13	Customer_Segment	178 non-null	int64

dtypes: float64(11), int64(3)
memory usage: 19.6 KB

df.hist(figsize=(25,20))

Start coding or generate with AI.

```
plt.figure(figsize=(12,10))
p=sns.heatmap(df.corr(), annot=True,cmap ='RdYlGn')
```


plt.figure(figsize=(15,10))
sns.boxplot(df)

x=df.iloc[:,:-1]

-	₹	ጔ.
- 7	7	

→		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	F
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
	173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
	174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
	175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
	176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
	177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	
	170 -	v 12 oc	ali imam a							

178 rows × 13 columns

```
y=df.iloc[:,-1]
₹
     0
             1
     2
     3
             1
     4
             1
     173
             3
     174
             3
     175
             3
     176
             3
     177
     Name: Customer Segment, Length: 178, dtype: int64
## split data into train and test data set
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2,random_state=0)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x test=sc.transform(x test)
from sklearn.discriminant analysis import LinearDiscriminantAnalysis as LDA
lda= LDA(n_components= 2)
x_train = lda.fit_transform(x_train,y_train)
x_test= lda.transform(x_test)
x_train
array([[ 3.57315552, 1.94018924],
             [ 0.85475898, -2.08182977],
             [ 0.62173655, -3.06234453], [ 4.80786412, 2.00638739],
             [-3.8579759 , 0.14987256],
[-3.59455458, 1.24961706],
             [-0.53772906, -3.0852704],
             [ 0.04058577, -2.47312446],
             [ 0.99835348, -3.36989668],
             [-3.74095658, 1.94844242],
             [ 3.76035226, 0.82126218],
             [-0.15106412, -1.86820292],
             [ 3.62762899, 2.05460026],
             [-3.94229781, 2.80328429],
[ 3.33429017, 0.73627798],
             [ 3.90206871, 1.03276135],
             [-3.55835472, 0.18783108],
             [ 5.63175281, 2.40524214],
             [-5.56217254, 0.85694946],
             [0.23296188, -3.94615581],
             [ 5.03141997, 3.23313754],
             [ 3.52861651, 0.94605778],
             [-1.17815662, -2.17294825],
             [ 3.58320131, 0.67947364],
[ 5.21649905, 2.41090952],
             [-3.01647841, 1.24411621],
             [ 1.86178658, -0.47484926],
             [ 3.93816398, -0.2204059 ],
             [-1.0836235, -3.32496762],
             [\ 1.8691488\ ,\ -0.63362283],
             [ 3.27717205, 1.51263542],
             [-0.47842302, -1.16766723],
             [-4.14433134, 1.37391708],
[ 2.45009727, -2.49336285],
```

[-1.20844631, -2.30679956],

```
[-1.95474568, -2.02963924],
               [ 5.54394234, 1.5236766 ],
               [ 5.74409562, 1.85156779],
               [ 1.13553056, -3.93865462],
               [-1.2483554 , -3.08106324],
[-0.00961488 , -3.62708415],
[ 5.21418108 , 2.66981962],
               [ 4.2290474 , 0.3886969 ],
[-3.94237521, 0.76214343],
               [ 5.30822458, 2.18894363],
               [-0.20862902, -3.05785486],
               [ 0.47295413, -2.560251 ],
               [ 0.46692465, -1.86886738],
               [-1.05818513, -2.61576658],
              [ 0.33551985, -3.26643922],
[-4.74777848, 2.23081211],
[-2.80968166, 1.32816126],
[-1.02804047, -2.60107642],
               [-6.15432728, 2.12945198],
from sklearn.linear model import LogisticRegression
classifier=LogisticRegression(random_state=0)
classifier.fit(x_train,y_train)
y_pred=classifier.predict(x_test)
🔂 array([1, 3, 2, 1, 2, 2, 1, 3, 2, 2, 3, 3, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1,
               1, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1])
```

from sklearn.metrics import confusion_matrix

y_pred

[2.55631466, -0.98550214], [-1.6091476 , 0.55066705], [-5.52462148, 2.19178828], [-2.44685583, -2.28937848],