Algorithmic Game Theory COMP6207

Recap and Q&A on Basics of Game Theory

Bahar Rastegari b.rastegari@soton.ac.uk Electronics and Computer Science University of Southampton

Game

- A set of players
- A set of strategies for each player
 - Countable
 - Uncountable
- A set of outcomes
- Game rule: mapping from strategy profiles to outcomes
- Payoff for each player: mapping from outcomes to some some set (we usually assume \mathbb{R})

Two Standard Representations

- Normal Form (a.k.a. Matrix Form, Strategic Form)
 - Players move simultaneously
 - Example: Prisoner's dilemma
- Extensive Form (Sequential games)
 - Players move sequentially
 - Example: Chess

Normal Form (a.k.a. Strategic-form) Game

A tuple (N, A, u) where

- $N = \{1, \dots, n\}$ is a finite set of agents.
- $A = A_1 \times ... \times A_n$, where A_i is a finite set of actions (i.e. pure strategies) available to agent i.
- $u = (u_1, \dots, u_n)$, where $u_i : A \mapsto \mathbb{R}$ is the utility (a.k.a. payoff) function for player i.

Attention: In Enrico M recordings (COMP6203), S_i is used to denote the set of pure strategies available to player i. In this module, I use

- S_i to refer to the set of all strategies (pure and mixed) available to agent i, and use s_i to denote a (mixed) strategy of agent i, and
- A_i to denote the set of actions (or, pure strategies) available to agent i.

Traveler's Dilemma: Guess the Laptop Game

- Two of you each lost a laptop (identical) and claimed for compensation towards the insurance company.
- Insurance company does not know the actual value of the laptop, only you two know.
- To find out a reasonable compensation amount, the IC separates you two and asks you its value ∈ [2, 100].
 - If you declare the same number x, each of you will be given x.
 - If you declare different numbers x and y (x < y), then you will be given x + 2 and x 2 respectively

Normal Form representation of Traveler's Dilemma

	100	99	98	97	•••	3	2
100	100, 100	97, 101	96, 100	95, 99		1, 5	0, 4
99	101, 97	99, 99	96, 100	95, 99		1, 5	0, 4
98	100, 96	100, 96	98, 98	95, 99		1, 5	0, 4
97	99, 95	99, 95	99, 95	97, 97		1, 5	0, 4
:	:	:	:	:	٠.	:	:
3	5, 1	5, 1	5, 1	5, 1		3, 3	0, 4
2	4, 0	4, 0	4, 0	4, 0		4, 0	2 , 2

Strict Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i strictly dominates s_i' if **for all** $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- In this case we say that s'_i is a strictly dominated strategy.

A strategy is strictly dominant for an agent if it strictly dominates any other strategy for that agent.

Strict Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i strictly dominates s_i' if **for all** $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- In this case we say that s'_i is a strictly dominated strategy.

A strategy is strictly dominant for an agent if it strictly dominates any other strategy for that agent.

Example. How many strictly dominated pure strategies does Player 1 have?

Player 2

	D	Ε	F
Α	1 2	2 3	0 3
Player 1 B	2 2	2 1	3 2
С	2 1	0 0	1 0

Weak Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and for at least one $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- In this case we say that s_i is a weakly dominated strategy.

A strategy is weakly dominant for an agent if it weakly dominates any other strategy for that agent.

Weak Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and for at least one $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- In this case we say that s'_i is a weakly dominated strategy.

A strategy is weakly dominant for an agent if it weakly dominates any other strategy for that agent.

Example. How many weakly dominated pure strategies does Player 2 have?

Player 2

	D	Ε	F
Α	1 2	2 3	0 3
Player 1 B	2 2	2 1	3 2
С	2 1	0 0	1 0

Very Weak Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i very weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.
- In this case we say that s'_i is a very weakly dominated strategy.

A strategy is very weakly dominant for an agent if it weakly dominates any other strategy for that agent.

Very Weak Dominance

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- s_i very weakly dominates s_i' if **for all** $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.
- In this case we say that s'_i is a very weakly dominated strategy.

A strategy is very weakly dominant for an agent if it weakly dominates any other strategy for that agent.

Example. How many very weakly dominated pure strategies does player 2 have?

Player 2

		L)	I	Ξ	I	_
A	۱ [1	2	2	3	0	3
Player 1 E	3	2	2	2	1	3	2
C	7	2	1	0	0	1	0

Summary: Dominated and dominant strategies

Let s_i and s'_i be two strategies of agent i, and S_{-i} the set of all strategy profiles of the remaining agents.

- **1** s_i strictly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- 2 s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and for at least one $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- 3 s_i very weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.

In all cases above we say that s'_i is a strictly (resp. weakly; very weakly) dominated strategy.

A strategy is strictly (resp. weakly; very weakly) dominant for an agent if it strictly (resp. weakly; very weakly) dominates any other strategy for that agent.

		Player 2						
		L)	E	Ξ	F	=	
	Α	1	2	2	3	0	3	
Player 1	В	2	2	2	1	3	2	
	С	2	1	0	0	1	0	

		Player 2						
		L)	E	Ξ	ŀ	=	
	Α	1	2	2	3	0	3	
Player 1	В	2	2	2	1	3	2	
	С	2	1	0	0	1	0	

Quiz question 1: How many strictly dominated pure strategies does Player 2 have?

		Player 2						
		L)	E	Ξ	ŀ	=	
	Α	1	2	2	3	0	3	
Player 1	В	2	2	2	1	3	2	
	С	2	1	0	0	1	0	

Quiz question 2: How many weakly dominated pure strategies does Player 1 have?

			Player 2						
		L)	E	Ξ	ŀ	=		
	Α	1	2	2	3	0	3		
Player 1	В	2	2	2	1	3	2		
	С	2	1	0	0	1	0		

Quiz question 3: How many very weakly dominated pure strategies does Player 1 have?

		Player 2						
		L	D	E	Ξ	ŀ	Ξ	
	Α	1	2	2	3	0	3	
Player 1	В	2	2	2	1	3	2	
	С	2	1	0	0	1	0	

Quiz question 4: How many weakly dominant pure strategies does Player 1 have?

		Player 2						
		L)	E	Ξ	ŀ	=	
	Α	1	2	2	3	0	3	
Player 1	В	2	2	2	1	3	2	
	С	2	1	0	0	1	0	

Quiz question 5: Write down a weakly dominant pure strategy profile in this game (if any exists).

On Rationality and Common Knowledge

In (traditional) Game Theory we assume that

- all agents are rational, and
- this fact F = "all agents are rational" is common knowledge.
 - All agents know F, they all know that they know F, they all know that they all know that they know F, and so on forever.

With this assumption, a rational player will never play strictly or weakly dominated strategies which can then be eliminated from the game.

Traveler's Dilemma: Elimination of Dominated Strategies

	100	99	98	97	•••	3	2
100	100, 100	97, 101	96, 100	95, 99		1, 5	0, 4
99	101, 97	99, 99	96, 100	95, 99		1, 5	0, 4
98	100, 96	100, 96	98, 98	95, 99		1, 5	0, 4
97	99, 95	99, 95	99, 95	97, 97		1, 5	0, 4
:	:	:	:	:	٠.	:	:
3	5, 1	5, 1	5, 1	5, 1		3, 3	0, 4
2	4, 0	4, 0	4, 0	4, 0		4, 0	2 , 2

Traveler's Dilemma: Elimination of Weakly Dominated Strategies

Nash Equilibrium

Let s_{-i} be a strategy vector for all agents not including i. Agent i's strategy s_i is called a **best response** to s_{-i} if and only if

$$u_i(s_i, s_{-i}) = \max_{s_i' \in S_i} s_i', s_{-i}$$

Nash Equilibrium

Let s_{-i} be a strategy vector for all agents not including i. Agent i's strategy s_i is called a **best response** to s_{-i} if and only if

$$u_i(s_i, s_{-i}) = \max_{s_i' \in S_i} s_i', s_{-i}$$

A strategy profile $s = (s_1, ..., s_n)$ is a **Nash Equilibrium** if s_i is a best response to s_{-i} for every player $i \in N$.

Nash Equilibria and Dominated Strategies

Given a game G let G^* be the game obtained by iterated elimination of **strictly** dominated (pure) strategies.

- The order of elimination does not matter; We always get the same G*.
- The set of NE of G^* is the same as the set of NE of G.
- So if we end up with a single strategy profile s, then s is the unique NE of G.

Nash Equilibria and Dominated Strategies

Given a game G let G^* be the game obtained by iterated elimination of **strictly** dominated (pure) strategies.

- The order of elimination does not matter; We always get the same G*.
- The set of NE of G^* is the same as the set of NE of G.
- So if we end up with a single strategy profile s, then s is the unique NE of G.

Given a game G let G^* be the game obtained by iterated elimination of **weakly** dominated (pure) strategies.

- The order of elimination matters.
- The set of NE of G^* is a subset of the set of NE of G.
- The iterated elimination of weakly dominated strategies can result in the elimination of some (if not all!) the NE of the original game.

- If everyone writes down 100 the average is going to be 66.66.
- Guessing any number above 66.66 is weakly dominated for every player.

- If everyone writes down 100 the average is going to be 66.66.
- Guessing any number above 66.66 is weakly dominated for every player.
- Once we eliminated these weakly dominated strategies, then guessing any number above 44.44 is weakly dominated for every player.

- If everyone writes down 100 the average is going to be 66.66.
- Guessing any number above 66.66 is weakly dominated for every player.
- Once we eliminated these weakly dominated strategies, then guessing any number above 44.44 is weakly dominated for every player.
- By continuing this process, all numbers except 0 will be dominated.
- Writing down 0 is the unique pure strategy NE of this game.