

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-089930

(43) Date of publication of application: 28.03.2003

(51)Int.Cl.

DO1F 9/127 CO1B 31/02 CO8K 7/00 C08L101/00 HO1B 1/00 HO1B 1/06 HO1B

(21)Application number: 2001-328391

(71)Applicant: SHOWA DENKO KK

NATIONAL INSTITUTE OF ADVANCED

INDUSTRIAL & TECHNOLOGY

(22)Date of filing:

20.09.2001

(72)Inventor: MORITA TOSHIO

YAMAMOTO TATSUYUKI

INOUE HITOSHI OSHIMA SATORU YUMURA MORIO

(54) FINE CARBON FIBER MIXTURE AND COMPOSITION CONTAINING THE SAME.

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a fine carbon fiber having ≤500 nm diameter and 10-15,000 aspect ratio. and further having excellent characteristics such as slidability, electroconductivity and heat conductivity in a mass-production scale.

SOLUTION: This fine carbon fiber mixture produced by a gas phase method is the mixture of the fine carbon fiber having a multilayered structure made of overlapped cylindrical carbon layers, a hollow structure at the center axis, 1-500 nm outer diameter and 10-15,000 aspect ratio, with a nonfibrous carbon in a shape such as a flake shape, a granular shape and a sheet shape. The granular carbon may have a hollow structure, or may include a metal or a metallic compound in the interior. The weight ratio of the fine carbon fiber to the nonfibrous carbon is (10:90)-(95:5).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-89930 (P2003-89930A)

(43)公開日 平成15年3月28日(2003.3.28)

(51) Int.Cl.7	識別記号	FI	テーマコート*(参考)
D01F 9/127		D01F 9/127	4 G O 4 6
C 0 1 B 31/02	101	C 0 1 B 31/02	101Z 4J002
CO8K 7/00		C08K 7/00	4 L 0 3 7
CO 8 L 101/00		C 0 8 L 101/00	5 G 3 O 1
H01B 1/00		H01B 1/00	Н
	審査請求	未請求 請求項の数5 書面	(全 11 頁) 最終頁に続く
(21)出顯著号	特驥2001-328391(P2001-328391)	(71)出順人 000002004	
		昭和電工株式	
(22) 出顧日	平成13年9月20日(2001.9.20)		大門1丁目13番9号
		(71)出願人 301021533	
		独立行政法人	產業技術総合研究所
		東京都千代田	区震が関1-3-1
		(72)発明者 森田 利夫	
		神奈川県川岭	市川崎区大川町5-1 昭和
		電工株式会社	生産技術センター内
		(74)代理人 100077517	
		弁理士 石田	敬 (外4名)
			最終頁に続く

(54) 【発明の名称】 微細炭素繊維混合物及びそれを含む組成物

(57)【要約】

【課題】 500 nm以下の径と10~15000のアスペクト比を有し、摺動性、導電性、熱伝導性等の特性に優れた微細炭素繊維を量産規模で得ること。

【解決手段】 気相法で製造された炭素繊維混合物であって、筒状の炭素層が重なり合い多層構造をなし、その中心軸が空洞構造であり、外径1~500nm、アスペクト比10~15000の微細炭素繊維と、片状、粒子状、シート状などの非繊維状炭素との混合物である。粒子状炭素が中空構造であるか、または内部に金属あるいは金属化合物を含んでよい。微細炭素繊維と非繊維状炭素との質量比が10:90~95:5の範囲内である。

【特許請求の範囲】

【請求項1】 気相法で製造された微細炭素繊維混合物であって、筒状の炭素層が重なり合い多層構造をなし、その中心軸が空洞構造であり、外径1~500nm、アスペクト比10~15000の微細炭素繊維と、片状、粒子状、シート状の非繊維状炭素との混合物であることを特徴とする微細炭素繊維混合物。

【請求項2】 片状またはシート状の非繊維状炭素を必須に含む請求項1に記載の微細炭素繊維混合物。

【請求項3】 粒子状炭素が中空構造であるか、または 内部に金属あるいは金属化合物を含んでいる請求項1ま たは2に記載の微細炭素繊維混合物。

【請求項4】 微組炭素繊維と非繊維状炭素との質量比が10:90~95:5の範囲内である請求項1~3のいずれか1項に記載の微細炭素繊維混合物。

【請求項5】 請求項1~4のいずれか1項に記載の微細炭素繊維混合物を樹脂またはゴムに含んだことを特徴とする微細炭素繊維混合物の組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は片状、粒子状、シート状などの非繊維状炭素を含む微細炭素繊維混合物に係り、特に導電性、熱伝導性、摺動性に優れた微細炭素繊維、及びそれを含む樹脂又はゴム組成物に関する。

[0002]

【従来の技術】炭素繊維は、その高強度、高弾性率、高 導電性等の優れた特性から各種の複合材料に使用されて いる。従来から応用されてきた優れた機械的特性ばかり でなく、炭素繊維あるいは炭素材料に備わった導電性を 生かし、近年のエレクトロニクス技術の発展に伴い、電 磁波シールド材、静電防止材用の導電性樹脂フィラーと して、あるいは樹脂への静電塗装のためのフィラーとし ての用途が期待されてきている。また、炭素材料として の化学的安定性、熱的安定性と微細構造との特徴を生か し、フラットディスプレー等の電界電子放出材料として の用途が期待されている。さらに磨耗性が高い導電性材 料として電気ブラシ、可変抵抗器などの用途にも期待さ れている。

【0003】従来の炭素繊維は、PAN、ピッチ、セルロース等の繊維を熱処理し炭化することにより製造するいわゆる有機系カーボンファイバーとして生産されている。これらを繊維強化複合材のフィラーとして用いる場合、母材との接触面積を大きくするために、径を細くすること、長さを長くすること等が補強効果を上げるために望ましい。また、母材との接着性を改善するためには、炭素繊維の表面が滑らかでなく、ある程度荒れている方が好ましく、このために空気中で高温に晒し酸化させたり、表面にコーティングを施こしたり等の表面処理が行なわれている。

【0004】しかし、これらの炭素繊維は、その原料と

なる有機繊維の糸径が5~10μm程度であり、径の小さい、炭素繊維の製造は不可能であった。また、径に対する長さの比(アスペクト比)に限界があり、細くてアスペクト比の大きい炭素繊維が要望されていた。

【0005】また、自動車ボディーへの樹脂の使用、あ るいは電子機器への樹脂・ゴム等の使用に関しては、金 属並の導電性を要求され、これに伴い、フィラー材とし ての炭素繊維もこれら各種導電性塗料、導電性樹脂など の要求を満たすために導電性を上げる必要が出てきた。 そのための手段として、黒鉛化することでこれら特性を 向上させる必要があり、このために更に高温での黒鉛化 処理が行なわれるのが通例である。しかし、この黒鉛化 処理によっても金属並の導電性は得られず、これを補う ために配合量を多くすると加工性や機械的特性が低下す るという問題が生じ、繊維自体の更なる導電性の改良、 繊維の細径化による強度の向上等が必要とされてきた。 【0006】その後、1980年代後半に、これら有機 系繊維と製法を全く異にするものとして、気相法炭素繊 維(Vapor Grown Carbon Fibe r;以下VGCFと略す。)が研究されるようになっ た。このVGCFは、炭化水素等のガスを有機遷移金属 系触媒の存在下で気相熱分解することによって直径
1µ m以下、数100nmまでの炭素繊維が得られることが 知られている。

【0007】たとえば、ベンゼン等の有機化合物を原料とし、触媒としてのフェロセン等の有機遷移金属化合物をキャリアーガスとともに高温の反応炉に導入し、基盤上に生成させる方法(特開昭60-27700号公報)、浮遊状態でVGCFを生成させる方法(特開昭60-54998号公報)、あるいは反応炉壁に成長させる方法(特許2778434号)等が開示されている。【0008】これら製法によれば、比較的細くて導電性に優れ、アスペクト比の大きいフィラー材に適した炭素繊維が得られるようになり、100~200nm程度の径で、アスペクト比10~500程度のものが量産化され、導電性フィラー材として樹脂用フィラーや鉛蓄電池の添加材等に使用されるようになった。

【0009】これらVGCFは、形状や結晶構造に特徴があり、炭素六角網面の結晶が年輪状に円筒形に巻かれ積層した構造を示し、その中心部には極めて細い空洞部を有する繊維である。

【0010】また、このVGCFよりも更に細い炭素繊維として、飯島らによりヘリウムガス中でアーク放電により炭素電極を蒸発させた煤の中から、多層カーボンナノチューブが発見された。この多層カーボンナノチューブの直径は、1nm~30nmであり、VGCFと同様に炭素六角網面の結晶が繊維の軸を中心に年輪状に幾重にも重なり円筒状に閉じられており、その中心部に空洞径を有する微細炭素繊維である。

【0011】このアーク放電を使用する方法について

は、その製法から量産には向かず実用化には至っていない。

【0012】一方、気相法によるものは大きなアスペクト比、高導電性の可能性があり、この方法を改良し、より細い炭素繊維を製造しようとする試みがなされている。米国特許第4663230号、特公平3-64606号公報では、約3.5~70nmの径でアスペクト比100以上の黒鉛質からなる円柱状の炭素フィブリルが開示されている。その構造は、規則的に配列した炭素原子の連続層が多層にわたり円柱軸に対し同心的に配列され、炭素原子の各層のC軸がフィブリルの円柱軸に実質的に直交しており、全体に熱分解により析出する熱炭素被膜を含まず、滑らかな表面を持っているものである。

【0013】同様に、特開昭61-70014号公報には、10~500nmでアスペクト比2~30000の気相法による炭素繊維が紹介されており、熱分解炭素層の厚みが直径の20%以下であることが記されている。

【0014】上述のこれらの気相法による微細な炭素繊維においても、摺動電気接点(電気ブラシ、可変抵抗器など)などの摩擦、放熱などの関係する導電性材料として用いる場合にはさらに高い摺動性、導電性、熱伝導性を持つものが望まれる。

[0015]

【発明が解決しようとする課題】本発明においては、5 00nm以下の径と10~15000のアスペクト比を 有し、摺動性、導電性、熱伝導性等の特性に優れた微細 な炭素繊維を量産規模で得ることが目的である。

[0016]

【課題を解決するための手段】本発明は上記目的を達成するために下記を提供するものである。

(1) 気相法で製造された微細炭素繊維混合物であって、筒状の炭素層が重なり合い多層構造をなし、その中心軸が空洞構造であり、外径1~500nm、アスペクト比10~15000の微細炭素繊維と、片状、粒子状、シート状などの非繊維状炭素との混合物であることを特徴とする微細炭素繊維混合物。

【0017】(2)片状またはシート状の非繊維状炭素を含む(1)に記載の微細炭素繊維混合物。

- (3)粒子状炭素が中空構造であるか、または内部に金属あるいは金属化合物を含んでいる(1)(2)に記載の微細炭素繊維混合物。
- (4)微細炭素繊維と非繊維状炭素との質量比が10: 90~95:5の範囲内である(1)~(3)に記載の 微細炭素繊維混合物。
- (5)(1)~(4)に記載の微細炭素繊維混合物を樹脂またはゴムに含んだ組成物。

[0018]

【発明の実施の形態】以下、本発明について詳細に説明 する。本発明は、導電性の良い、外径500mm以下の 微網な炭素繊維を得るために、気相法で製造する微細な 炭素繊維(VGCF)の製造条件をいろいろの変えて検 討を進める中で、或る製造条件下で、従来知られていない、微細炭素繊維と共に非繊維状炭素を含む微細炭素繊 維混合物が得られ、これが導電性が高く、また摺動性に も優れ、従ってさらには熱伝導性などにも優れた炭素繊 維材料であることを見出したものである。本発明の微細 炭素繊維混合物は基本的に気相法で微細な炭素繊維(V GCF)を製造しようとする過程に得られる非繊維状炭 素を含む炭素繊維混合物であると理解される。

【0019】本発明の微細炭素繊維混合物について説明する。本発明の微細炭素繊維混合物に含まれる微細炭素繊維は、従来の微細炭素繊維と同様に繊維径1~500 nm程度、好ましくは5~200 nm、アスペクト比10~15000、好ましくは10~1000の微細炭素繊維を含み、その微細炭素繊維は円筒状の炭素層が重なり合い多層構造(年輪構造)をなし、その中心軸が空洞構造のものである。なお、本発明の微細炭素繊維混合物に含まれる微細炭素繊維は繊維の途中あるいは端部に瘤状部、さらには繊維の分岐を有するものでもよい。

【0020】本発明の微細炭素繊維混合物は、気相法で 生成した微細炭素繊維と共に、やはり気相法で同時に生 成した非繊維状の炭素を含むことを特徴とする。非繊維 状の炭素は、気相法で微細炭素繊維を製造する過程で、 製造条件の変更によって、例えば、助触媒としての硫黄 化合物が不足したような場合に、微細炭素繊維が十分に 成長できずに、片状、粒子状、シート状などの非繊維状 の炭素が成長して得られるものであると考えられる。こ こで片状、粒子状、シート状などの形状は、いずれも非 繊維形状の炭素という意味であり、これらは寸法が繊維 径の0.1倍から500倍程度の大きさを有することが でき、言うならば、粒子状の場合には比較的等方的で3 次元いずれの方向も繊維径の0.1~50倍程度の寸法 であり、シート状の場合には2次元方向の寸法が20~ 500倍程度の寸法の薄物であり、片状の場合には2次 元方向の寸法が1~50倍程度の寸法の薄物である。片 状、シート状の場合はその厚さは透過電子顕微鏡では不 明であるが、繊維径の0.01~0.5倍程度の薄いも のであり得るようである。

【0021】これらの片状、粒子状、シート状などの非繊維状炭素は、いずれも気相法で生成するものであるから、表面全体を覆う比較的に整然とした炭素層が観察され、例えば、炭素繊維の破砕物では破砕面が存在するがそれとは明確に異なる結晶組織を有するものである。またカーボンブラックとは、大きさ、炭素結晶が異なるものである。そのほか単なる非晶質炭素とは勿論異なる。【0022】また、特に粒子状炭素の場合には、内部は空洞であることができる。これは微細炭素繊維の成長の過程で変形してできた非繊維状炭素であることの証左であると考えられる。また、空洞内には非結晶炭素や、金属化合物(炭化物などの触媒金属化合物など)などを含

んでいる場合もある。これは微細炭素繊維の成長の過程 でその触媒物質などの存在が非繊維状炭素の生成原因で あったか、あるいは逆に炭素の成長の異常による非繊維 状炭素の生成の結果として非繊維状炭素内部に触媒物質 などが包摂されたものと考えられる。非繊維状炭素の内 部に触媒物質などが包摂された場合、焼成段階で触媒物 質などは気化して消失する場合もあるが、非繊維状炭素 の内部に完全に包摂されているために消失できないで残 存し易いものと考えられる。

【0023】また、シート状炭素は、触媒物質が関与せず、気相から微細繊維の表面を核として炭素が析出して生成したものと考えられる。また、以上に説明した片状、粒子状、シート状などの非繊維状炭素は、気相法で微細炭素繊維を生成する過程において、微細炭素繊維と非繊維状炭素は独立して存在するが、生成過程あるいは生成後の条件によっては非繊維状炭素の少なくとも一部が微細炭素繊維に付着して存在してもよい。

【0024】本発明の微細炭素繊維混合物は、従来の気相法による微細炭素繊維の製造では報告されておらず、新規なものであると考えられる。特に所定量以上に、特に片状またはシート状の炭素が、同時生成した気相法微細炭素繊維混合物は新規である。

【0025】これら本発明の微細炭素繊維混合物は、従来の微細炭素繊維に対し非繊維状炭素が存在しているので、混合物全体としてみたとき、気相法で製造した微細炭素繊維だけの場合よりも、電気伝導性、熱伝導性、摺動性等の特性が向上する効果がある。本発明の微細炭素繊維混合物は、非繊維状炭素を5質量%以上、さらに5~95質量%、好ましくは10~70質量%、特に10~50質量%を含むとその構造の特徴により、上記の効果がより有効に得られる。

【0026】本発明の微細炭素繊維混合物の微細炭素繊維は、外径が1~500nmで、アスペクト比10~15000の微細で長い繊維が得られるので、フィラー材として多量に添加が可能であり補強効果にも優れるものである。

【0027】以下に本発明の微細炭素繊維混合物を製造するために好適な方法について説明する。本発明のような微細炭素繊維は、一般的には、遷移金属触媒を用いて有機化合物、特に炭化水素類を熱分解することにより微細炭素繊維を得ることができる。好ましくは得られる微細炭素繊維の表面に付着したタールなどを除くために900~1300℃で熱処理をしてから、通常は、それを更に2000~3500℃、好ましくは2500~3500℃の熱処理を行ってグラファイト化している。

【0028】即ち、微細炭素繊維は遷移金属触媒を用いて有機化合物、特に炭化水素類を熱分解することにより得ることができる。炭素繊維の原料となる有機化合物は、ベンゼン、トルエン、キシレン、メタノール、エタ

ノール、ナフタレン、フェナントレン、シクロプロパン、シクロペンテン、シクロへキサン有機化合物や揮発油、灯油等あるいはCO、天然ガス、メタン、エタン、エチレン、アセチレン、ブタジエン等のガス及びそれらの混合物も可能である。中でもベンゼン、トルエン、キシレン等の芳香族化合物が特に好ましい。

【0029】有機遷移金属化合物は、触媒となる遷移金属を含むものである。遷移金属としては、周期律表第IVa, VIA, VIII族の金属を含む有機化合物である。中でもフェロセン、ニッケルセン等の化合物が好ましい。触媒としての有機遷移金属化合物の含有量としては、有機化合物の炭素量に対して0.01~15.0質量%、好ましくは0.03~10.0質量%、好ましくは0.1~5.0質量%が良い。

【0030】本発明によれば、反応装置の形態、反応系、反応条件のほか、特に有機化合物と触媒となる有機遷移金属化合物の種類と量、さらには助触媒の種類と量を或る種の条件などに選択、制御することにより、本発明の瘤状部を有する微細炭素繊維を得ることができることが見出された。

【0031】特に有機化合物と触媒となる有機遷移金属化合物の種類として、一般的に、有機化合物としてベンゼン、トルエン、アセチレン、エチレン、ブタジエンあるいはそれらの混合物から選択したものと、有機遷移金属化合物としてニッケロセンあるいはフェロセンとを組み合わせることが好ましく、中でもベンゼンとフェロセンを組合せることが、本発明の目的のためには好適である。

【0032】本発明では、限定するものではないが、さらに助触媒として硫黄化合物を用い、特にその使用量を従来よりも少なくした場合に、特異的に有利に本発明の微細炭素繊維混合物を得ることができた。硫黄化合物の形態は特に制限は無く、炭素源である有機化合物に溶解するものなら良く、その硫黄化合物としてチオフェンや各種チオールあるいは、無機硫黄等が用いられる。硫黄化合物の使用量は硫黄原子を基準にして、有機化合物(炭化水素などの炭素原料)に対して3~10質量%、好ましくは、4~10質量%、さらに好ましくは4~8質量%が良い。硫黄が少ないと、微細炭素繊維の成長が遅く、炭素繊維が得られない。また硫黄が多いと、微細炭素繊維の成長が遅く、炭素繊維が得られない。

【0033】このように、反応系、特に有機化合物と触媒となる有機遷移金属化合物の種類と量、さらには助触媒の種類と量などを選択、制御することにより、特定の組成を有する微細炭素繊維混合物を製造することができるということは従来知られておらず、またこの新規な微細炭素繊維混合物の有用性も知られていなかったものであり、本発明によりこの新規な構造の微細炭素繊維混合物が提供されることは、産業上有用なものである。

【0034】キャリアーガスとしては、通常水素ガスをはじめとする還元性のガスが使用される。キャリアーガスを予め500~1300℃に加熱しておくことが好ましい。加熱する理由は、反応時に触媒の金属の生成と炭素化合物の熱分解による炭素源の供給を一致させ、反応を瞬時に起こすようにして、より微細な炭素繊維が得られるようにするためである。キャリアーガスを原料と混合した際に、キャリアーガスの加熱温度が500℃未満では、原料の炭素化合物の熱分解が起こりにくく、1300℃をこえると炭素繊維の径方向の成長が起こり、径が大くなりやすい。

【0035】キャリアーガスの使用量は、炭素源である有機化合物1.0モル部に対し1~70モル部が適当である。炭素繊維の径は、炭素源とキャリアーガスの比率を変えることにより、制御することが出来る。原料は、炭素源の有機化合物に遷移金属化合物及び助触媒の硫黄化合物を溶解し調整する。そして原料は液体のままキャリアーガスで噴霧して反応炉へ供給することも出来るが、キャリアーガスの一部をパージガスとして気化させて反応炉へ供給し反応させることも出来る。繊維径の細い炭素繊維を得る場合は原料は気化して反応炉へ供給した方が好ましい。

【0036】反応炉は、通常縦型の電気炉を使用する。 反応炉温度は800~1300℃、好ましくは1000 ~1300℃である。所定の温度に昇温した反応炉へ、 原料液とキャリアーガスあるいは原料を気化させた原料 ガスとキャリアーガスとを供給し、反応させ炭素繊維を 得る。

【0037】このようにして反応炉に吹き込まれたガスが熱分解し、有機化合物は炭素源となり、有機遷移金属化合物は触媒の遷移金属粒子となり、この遷移金属粒子を核とした微細炭素繊維の生成が行われる。この微細炭素繊維の生成の過程において、本発明では、反応系の条件、特に硫黄化合物の量が少ないなどの条件のために、部分的に微細炭素繊維の成長が阻害され、炭素粒子あるいは触媒金属を含む粒子の成長が起こり、微細炭素繊維混合物を得ることが出来る。

【0038】得られた微細炭素繊維混合物は、さらに、ヘリウム、アルゴン等の不活性ガス雰囲気化で、900~1500℃の熱処理を行う。あるいは、更に2000~3500℃の熱処理を行う、あるいは、反応により得られた状態の微細炭素繊維混合物を不活性ガス雰囲気化、直接2000~3500℃の熱処理を行うことが好ましい。

【0039】反応により得られた状態の微細炭素混合物に、あるいはその微細炭素繊維混合物を不活性ガス雰囲気下で900~1500℃の熱処理を行った後に、炭化ホウ素(B_4 C)、酸化ホウ素(B_2 O $_3$)、元素状ホウ素、ホウ酸(H_3 BO $_3$)、ホウ酸塩等のホウ素化合物と混合して、更に不活性ガス雰囲気下2000~35

○○℃で熱処理を行ってもよい。ホウ素化合物の添加量は、用いるホウ素化合物の化学的特性、物理的特性に依存するために限定されないが、例えば炭化ホウ素(B₄ C)を使用した場合には、微細炭素繊維混合物に対して ○ ○ ○ ○ ○ 1 ○ 質量%、好ましくは ○ ・ 1 ~ 5 質量%の範囲が良い。

[0040]

【実施例】以下、本発明の実施例をあげて説明する。

(実施例) 概略図の図1に示すように縦型加熱炉1(内径170mm、長さ1500mm)の頂部に、原料気化器5を通して気化させた原料を供給する原料供給管4と、キャリアーガス供給配管6を取りつけた。

【0042】得られた微細炭素繊維混合物のいろいろな箇所の透過型電子顕微鏡写真を図2〜図5に示す。図2〜図5のいずれでも、微細炭素繊維混合物中の微細炭素繊維は炭素原子からなる筒状の炭素層が重なりあった多層構造であり、その中心軸が空洞構造である。繊維の外径は5〜200nmでアスペクト比数2000以上の繊維であった。

【0043】図2では、微細炭素繊維とともに、球状に近い形状の炭素粒子が観察され、微細炭素繊維の径は5~20nm程度、それに対して炭素粒子の寸法は5~50nm程度である。この粒子状炭素の内部は空洞である。また、この炭素粒子がお互いに互着したり、微細炭素繊維の表面に付着したりしている。

【0044】図3では、図2と同様に粒子状炭素が見られるが、粒子の内部に金属あるいは金属化合物が含まれているのが観察される。図4では、微細炭素繊維の間に炭素シートあるいは被膜が観察される。寸法は100nm×100nm程度のものから10,000nm×10,000nmを10,000nmを10,000nmを10,000nmを10,000nmを10,000nmを10,000nmを10,000nmを10,000nmを10のは微細繊維径より小さい厚さであると考えられるが、繊維径よりも厚いシートも存在する可能性がある。また、片状の炭素は炭素結晶が発達しており、その積層構造が見られる。しかし、シート状はアモルファスであり、炭素結晶の発達が少ない。図5では、1300℃処理後の微細炭素繊維の透過電子顕微鏡写真であるが、多くの炭素粒子が互着し、凝集しているのが見られる。

【0045】 (比較例) 概略図の図1に示すように縦型加熱炉1 (内径170mm、長さ1500mm)の頂部

に、原料気化器5を通して気化させた原料を供給する原料供給管4と、キャリアーガス供給配管6を取りつけた。原料供給管4からは、フェロセン4質量%、チオフェン0.5質量%(硫黄原子換算0.4質量%)溶解したトルエンを気化させ200℃に保って15g/分で供給し、キャリアーガスとして水素を用い、180リットル/分で供給し反応させた。

【0046】この反応で得られた微細炭素繊維をAr (アルゴン)雰囲気下1300℃で熱処理し、更に13 00℃処理品をAr雰囲気下2800℃で熱処理し、熱 処理工程における質量回収率90%で微細炭素繊維を得 た。透過電子顕微鏡で観察したが、均一な繊維径をも ち、非繊維状炭素が存在しない以外は実施例の微細炭素 繊維混合物中の微細炭素繊維と同様の微細炭素繊維であ った。

【0047】(複合材調製)実施例及び比較例で得られた微細炭素繊維を用いてポリアセタールとの複合材を調整し、複合材の摩擦係数及び体積固有抵抗を測定した。 結果を下記表1に示す。

【0048】 【表1】

微細炭素繊維		実施例1	比較例1	比較例1	
添加量	(mass%)	15	1 3		
摩擦係数	(—)	0.12	0. 2		
体積固有抵	丸 (Ω・cm)	1 0 °	1 0°		

【0049】表1から、反応条件を選択することにより、微細炭素繊維と共に非繊維状炭素を形成することができ、その効果は、樹脂と複合材にしたとき摺動特性などに優れた微細炭素繊維混合物を得ることができることが確認された。

[0050]

【発明の効果】本発明によれば、従来の炭素繊維や気相法炭素繊維と異なり、外径が1~500nmであり、そのアスペクト比が10~15000で、微細炭素繊維と共に非繊維状炭素を含むことを特徴とする微細炭素繊維混合物を提供でき、電気摺動材料。電気摩擦材料などのフィラー材料等として有用である。

【図面の簡単な説明】

【図1】本発明の実施例に示す製造のための装置の概略 図である。 【図2】実施例の微細炭素繊維の透過電子顕微鏡写真である。

【図3】実施例の微細炭素繊維の透過電子顕微鏡写真である.

【図4】実施例の微細炭素繊維の透過電子顕微鏡写真である。

【図5】 実施例の微細炭素繊維の透過電子顕微鏡写真である。

【符号の説明】

- 1…縦型加熱炉
- 2…加熱炉用ヒーター
- 3…原料回収系
- 4…原料供給管
- 5…原料気化器
- 6…キャリアーガス供給管

【図1】

【図2】

図面代用写真(カラー)

[図3]

図面代用写真(カラー)

【図4】

図面代用写真(カラー)へ

【図5】

図面代用写真(カラー)

フロントペー	ージの続き						
(51) Int. C1.	7	識別記号		FΙ		テーマコート(含	多考)
H01B	1/00			H01B	1/00	J	
	1/06				1/06	Z	
	1/20				1/20	Z	
(72)発明者	2)発明者 山本 竜之 神奈川県川崎市川崎区大川町 5 — 1 電工株式会社生産技術センター内		昭和	(72)発明者	井上 斉 神奈川県川崎市川崎区大川町5-1 電工株式会社生産技術センター内		昭和

(11) \$2003-89930 (P2003-8PI{A)

(72)発明者 大嶋 哲 茨城県つくば市東1-1-1 独立行政法 人産業技術総合研究所 つくばセンター内

(72)発明者 湯村 守雄茨城県つくば市東1-1-1 独立行政法人産業技術総合研究所 つくばセンター内

F ターム(参考) 4G046 CA01 CB01 CB02 CC06 CC08 4J002 AA001 AA011 AC001 DA016 FA016 FA046 FA086 FD116 FD206 4L037 CS04 CS05 FA05 PA05 PA06 PA13 UA04 UA06 UA17