

Choose certainty.
Add value.

# Report On

Application for Grant of Equipment Authorization of the Protequus LLC Nightwatch NW-1000 Smart Halter

FCC Part 15 Subpart F §15.519 RSS-220 Issue 1 March 2009

Report No. CG72118338-0617A Rev 1.0

September 2017

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



**REPORT ON** Radio Testing of the

Protequus LLC Smart Halter

TEST REPORT NUMBER CG72118338-0617A Rev 1.0

PREPARED FOR Proteguus LLC

3001 S Lamar Blvd Suite 250

Austin, TX 78704

CONTACT PERSON Jeffery Schab

CEO

(512) 515-1095

jrschab@protequus.com

PREPARED BY

(iaoying Zhang

Name

Authorized Signatory

Title: EMC/Wireless Test Engineer

APPROVED BY

Alex Chang

Name

**Authorized Signatory** 

Title: EMC/Wireless Test Engineer

**DATED** 

August 15, 2017



# **Revision History**

| CG72118338-0617A Rev 1.0 Protequus LLC Nightwatch Smart Halter |                 |              |                                                                                                                                                                      |                   |             |  |
|----------------------------------------------------------------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--|
| DATE                                                           | OLD REVISION    | NEW REVISION | REASON                                                                                                                                                               | PAGES<br>AFFECTED | APPROVED BY |  |
| 08/15/2017                                                     | Initial Release |              |                                                                                                                                                                      |                   | Alex Chang  |  |
| 09/25/2017                                                     | Initial Release | Rev 1.0      | Update the test diagram for<br>Radiated Emission above 1GHz;<br>Re-organize the test result note for<br>section 2.6.8 to make the limit<br>align with test distance. | 41<br>35          | Alex Chang  |  |
|                                                                |                 |              |                                                                                                                                                                      |                   |             |  |
|                                                                |                 |              |                                                                                                                                                                      |                   |             |  |
|                                                                |                 |              |                                                                                                                                                                      |                   |             |  |



# **CONTENTS**

| Section |                                          | Page No |
|---------|------------------------------------------|---------|
| 1       | REPORT SUMMARY                           | 5       |
| 1.1     | Introduction                             | 6       |
| 1.2     | Brief Summary of Results                 | 7       |
| 1.3     | Product Information                      | 8       |
| 1.4     | EUT Test configuration                   |         |
| 1.5     | Deviations from the Standard             |         |
| 1.6     | Modification Record                      |         |
| 1.7     | Test Methodology                         |         |
| 1.8     | Test Facility Location                   | 12      |
| 1.9     | Test Facility Registration               |         |
| 2       | TEST DETAILS                             | 14      |
| 2.1     | Antenna Requirement                      | 15      |
| 2.2     | Operational Requirement                  | 16      |
| 2.3     | UWB Bandwidth                            | 17      |
| 2.4     | Spurious Radiated Emissions              | 20      |
| 2.5     | Radiated Emissions in GPS Bands          | 31      |
| 2.6     | Peak Emissions in a 50 MHz Bandwidth     | 34      |
| 3       | TEST EQUIPMENT USED                      | 36      |
| 3.1     | Test Equipment Used                      | 37      |
| 3.2     | Measurement Uncertainty                  |         |
| 4       | DIAGRAM OF TEST SETUP                    | 39      |
| 4.1     | Test Setup Diagram                       | 40      |
| 5       | ACCREDITATION, DISCLAIMERS AND COPYRIGHT | 44      |
| 5 1     | Accreditation Disclaimers and Convright  | 45      |

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



# **SECTION 1**

# **REPORT SUMMARY**

Radio Testing of the Protequus LLC Nightwatch NW-1000 Smart Halter



# 1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Protequus LLC Smart Halter to the requirements of FCC Part 15 Subpart F §15.519 and RSS-220 Issue 1 March 2009.

Objective To perform Radio Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for the

series of tests carried out.

Manufacturer Protequus LLC

Model Number(s) NW-1000

FCC ID Number 2AJZL-NW1000

IC Number 22101-NW1000

Serial Number(s) XB-0001022

Number of Samples Tested 1

Test Specification/Issue/Date • FCC Part 15 Subpart F §15.519 (October 1, 2016).

• RSS-220 Issue 1 March 2009 – Devices Using Ultra-

Wideband (UWB) Technology

RSS-Gen - General Requirements for Compliance of Radio

Apparatus (Issue 4, November 2014).

393764 D01 Ultra-Wide Band (UWB) Device FAQ (July 31,

2015)

Start of Test August 01, 2017

Finish of Test August 08, 2017

Name of Engineer(s) Xiaoying Zhang

Related Document(s) protequus\_nightwatch\_test\_unit\_userguide\_v2.pdf



# 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC Part 15 Subpart F §15.519 with cross-reference to the corresponding RSS standard is shown below.

|         | Operation in the U-NII 1 and U-NII 3 Bands (New Rules) |                        |                                         |           |                                                                        |  |
|---------|--------------------------------------------------------|------------------------|-----------------------------------------|-----------|------------------------------------------------------------------------|--|
| Section | Spec Clause                                            | RSS-220                | Test Description                        | Result    | Comments/<br>Base Standard                                             |  |
| -       | §15.207(a)                                             | RSS-Gen 8.8            | Conducted Emissions                     | N/A       | EUT is battery powered.                                                |  |
| 2.1     | §15.203<br>§15.519 (a)(2)                              | §5.1 (b)<br>§5.3.1 (a) | Antenna Requirement                     | Compliant | The antenna is surface mounted.                                        |  |
| 2.2     | §15.519 (a)(1)                                         | §6.2.1 (b)             | Operational Requirements                | N/A       | There is no UWB receiver. The EUT transmits data through Cell or WiFi. |  |
| 2.3     | 15.503 (a)(d)<br>15.519 (b)                            | §6.2.1 (a)             | UWB Bandwidth                           | Compliant | -                                                                      |  |
| 2.4     | §15.519 (c)<br>§15.209                                 | §3.4<br>§5.3.1 (d)     | Spurious Radiated Emissions             | Compliant | -                                                                      |  |
| 2.5     | §15.519 (d)                                            | §5.3.1 (e)             | Radiated Emissions in GPS<br>Bands      | Compliant | -                                                                      |  |
| 2.6     | §15.519 (e)                                            | §5.3.1 (g)             | Peak Emissions in a 50 MHz<br>Bandwidth | Compliant |                                                                        |  |



#### 1.3 PRODUCT INFORMATION

# 1.3.1 Technical Description

The Equipment Under Test (EUT) was a Protequus LLC Model NW-1000 Smart Halter as shown in the photograph below. The EUT is designed to alert you via text, phone call, and/or email at the early signs of equine distress, such as colic or being cast. This device monitors real-time data on your horse's vital signs using Ultra Wide Band (UWB) and behaviors, works across cellular and Wi-Fi networks, offers GPS tracking, and adapts to your horse over time as the system learns their unique and normal patterns and parameters.





**Equipment Under Test** 



# 1.3.2 EUT General Description

| EUT Description      | Smart Halter                                             |
|----------------------|----------------------------------------------------------|
| Model Name           | Nightwatch                                               |
| Model Number(s)      | NW-1000                                                  |
| Rated Voltage        | 5VDC via USB                                             |
| Mode Verified        | 6.1GHz Ultra-Wide Band (UWB)                             |
| Capability           | WCDMA Band 2 and 5, 802.11b/g and 6.1GHz Ultra-Wide Band |
| Primary Unit (EUT)   | □ Production                                             |
|                      | Pre-Production                                           |
|                      | ☐ Engineering                                            |
| Antenna Type         | PCB Patch                                                |
| Antenna Manufacturer | NRGXP                                                    |
| Antenna Model Number | 4200-1101                                                |
| Antenna Gain         | Max. 1.7 dBi                                             |



# 1.4 EUT TEST CONFIGURATION

# 1.4.1 Test Configuration Description

| Test<br>Configuration | Description                                                                                                                                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Default               | Radiated Test Setup (Cabinet Spurious Emissions). EUT and the support laptop connect to the Router through WiFi. The EUT was set to work in UWB mode using putty with command provide by the client. |

#### 1.4.2 EUT Exercise Software

The EUT is connected to the support laptop via WiFi. Putty was used to communicate with the EUT. The manufacturer provided different macros to load and configures the RF settings of the EUT.

# 1.4.3 Support Equipment and I/O cables

| Manufacturer | Equipment/Cable           | Description                                                           |
|--------------|---------------------------|-----------------------------------------------------------------------|
| нтс          | AC/DC Adaptor             | P/N TC U250 S/N 2RRA113W038188<br>IP 100 – 240 VAC 200 mA 50 – 60 Hz; |
| піс          | AC/DC Adaptor             | OP 5VDC 1A                                                            |
| Nightwatch   | DC Charger                | Model NWC 2000                                                        |
| Sony         | Support Laptop            | M/N PCG-31311L S/N 27545534 3006488                                   |
| Sony         | Support Laptop AC Adapter | M/N PCGA-AC19V9 S/N 147839091 0023259                                 |

# 1.4.4 Worst Case Configuration

The EUT has only one modulation scheme. Being a mobile device, the EUT was verified on all axes. Only the worst axis ("X") presented in this test report for radiated measurements.









# 1.4.5 Simplified Test Configuration Diagram

# **Radiated Test Configuration**



EUT transmitting through integral antenna



Not To Scale - Illustration Purpose Only

Objects may not represent actual image of original equipment/s or set-up.



# 1.5 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

### 1.6 MODIFICATION RECORD

| Description of Modification | Modification<br>Fitted By | Date<br>Modification<br>Fitted |  |  |  |  |
|-----------------------------|---------------------------|--------------------------------|--|--|--|--|
| Serial Number XB-0001022    |                           |                                |  |  |  |  |
| N/A                         |                           |                                |  |  |  |  |

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

#### 1.7 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013. American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For conducted and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.4-2014. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

#### 1.8 TEST FACILITY LOCATION

### 1.8.1 TÜV SÜD America Inc. (Mira Mesa)

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 FAX: 858-546 0364

### 1.8.2 TÜV SÜD America Inc. (Rancho Bernardo)

16936 Via Del Campo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 942 5542 Fax: 858 546 0364.

#### 1.9 TEST FACILITY REGISTRATION

### 1.9.1 FCC – Registration No.: US1146

TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Registration is US1146.



# 1.9.2 Innovation, Science and Economic Development Canada Registration No.: 3067A-1 & 22806-1

The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego Rancho Bernardo) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 3067A-1.

The 3m Semi-anechoic chamber of TUV SUD America Inc. (San Diego Mira Mesa) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 22806-1.

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



# **SECTION 2**

# **TEST DETAILS**

Radio Testing of the Protequus LLC Nightwatch NW-1000 Smart Halter



# 2.1 ANTENNA REQUIREMENT

### 2.1.1 Specification Reference

Part 15 §15.203 and §15.519 (a)(2) RSS-220 §5.1 (b) and §5.3.1 (a)

# 2.1.2 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

### 2.1.3 Equipment Under Test and Modification State

Serial No: XB-0001022/Default Test Configuration

# 2.1.4 Test Results

Compliant. The antenna utilized by the device under test is a PCB surface mount type.



# 2.2 OPERATIONAL REQUIREMENT

### 2.2.1 Specification Reference

Part 15 §15.519 (a)(1) RSS-220 §6.2.1 (b)

# 2.2.2 Standard Applicable

A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

# 2.2.3 Equipment Under Test and Modification State

Serial No: XB-0001022 / Default Test Configuration

### 2.2.4 Test Results

N/A. The EUT has no UWB receiver. It transmits data thourgh Cell or WiFi.



# 2.3 UWB BANDWIDTH

#### 2.3.1 Specification Reference

Part 15 §15.503 (a)(d) and §15.519 (b) RSS-220 §6.2.1 (a)

# 2.3.2 Standard Applicable

UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated fH and the lower boundary is designated fL. The frequency at which the highest radiated emission occurs is designated fM.

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

# 2.3.3 Test Methodology

C63.10 §10.1 Evaluation of -10 dB bandwidth

#### 2.3.4 Equipment Under Test and Modification State

Serial No: XB-0001022 / Default Test Configuration

### 2.3.5 Date of Test/Initial of test personnel who performed the test

August 04, 2017/XYZ

# 2.3.6 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.



#### 2.3.7 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

 $\begin{array}{lll} \mbox{Ambient Temperature} & 25.5 \ \mbox{°C} \\ \mbox{Relative Humidity} & 49.0 \ \% \\ \mbox{ATM Pressure} & 98.8 \ \mbox{kPa} \end{array}$ 

# 2.3.8 Additional Observations

- This is a radiated test.
- Span is wide enough to capture the channel transmission.
- RBW is 1 MHz.
- VBW is 3X RBW.
- Sweep is auto.
- Detector is peak.
- Trace is Max Hold.
- The -10 dB points were marked.
- The % Power Bandwidth setting in the spectrum analyzer was set to 99% (default).
- The Channel Bandwidth measurement function of the spectrum analyzer was used for this test.

# 2.3.9 Summary Test Results

| -                  | Description                               | Result (GHz) | Limit (GHz) |
|--------------------|-------------------------------------------|--------------|-------------|
| f <sub>M</sub>     | The highest emission pek                  | 6.103        | -           |
| fL                 | 10 dB below the highest peak              | 5.24         | 3.1         |
| fн                 | 10 dB above the highest peak              | 6.784        | 10.6        |
| fc                 | fc (f <sub>H</sub> + f <sub>L</sub> ) / 2 |              | -           |
| Bandwidth          | (f <sub>H</sub> - f <sub>L</sub> )        | 1.544        | -           |
| Fraction Bandwidth | UWB Bandwidth is greater than 500<br>MHz  | N/A          | -           |



#### 2.3.10 Test Plots



Date: 4.AUG.2017 16:54:24

UWB -10 dB Bandwidth



# 2.4 SPURIOUS RADIATED EMISSIONS

### 2.4.1 Specification Reference

Part 15 §15.519 (c) and §15.209 RSS-220 §3.4 and 5.3.1 (d)

# 2.4.2 Standard Applicable

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in § 15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

| Frquency in MHz | EIPR at 3 meter in dBm | EIRP at 3 meter in dBμV/m |
|-----------------|------------------------|---------------------------|
| 960 - 1610      | -75.3                  | 19.9                      |
| 1610 - 1990     | -63.3                  | 31.9                      |
| 1990 – 3100     | -61.3                  | 33.9                      |
| 3100 – 10600    | -41.3                  | 53.9                      |
| Above 10600     | -61.3                  | 33.9                      |

# Radiated Emissions Field Strength Limits at 3 Meters (Section 15.209)

| Frquency in MHz | EIRP at 3 meter in dBμV/m |
|-----------------|---------------------------|
| 0.009 to 0.490  | 128.5 to 93.8             |
| 0.490 to 1.705  | 73.8 to 63                |
| 1.705 - 30      | 69.5                      |
| 30 - 88         | 40                        |
| 88 - 216        | 43.5                      |
| 216 - 960       | 46                        |

# 2.4.3 Equipment Under Test and Modification State

Serial No: XB-0001022 / Default Test Configuration

# 2.4.4 Date of Test/Initial of test personnel who performed the test

August 01 to 08, 2017 /XYZ

Report No. CG72118338-0617A Rev 1.0



# 2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature  $25.1 - 26.9 \,^{\circ}\text{C}$  Relative Humidity  $46.5 - 53.7 \,^{\circ}\text{M}$  ATM Pressure  $98.7 - 99.0 \,^{\circ}\text{RP}$ 

# 2.4.7 Additional Observations

- This is a radiated test.
- The spectrum was searched from 9 kHz to 40 GHz.
- For spurious below 960 MHz, verification was performed at 3 meters
- For spurious from 1 GHz to 10.6 GHz, verification was performed at 1 meter
- For spurious from 960 MHz to 1 GHz and 10.6 GHz to 40 GHz, verification was performed at 0.2 meter.
- Measurement was done using EMC32 V8.53 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.4.8 for sample computation.

#### 2.4.8 Sample Computation (Radiated Emission)

| Measuring equipment raw me   | 24.4                       |       |       |
|------------------------------|----------------------------|-------|-------|
|                              | Asset# 1066 (cable)        | 0.3   |       |
|                              | Asset# 1172 (cable)        | 0.3   |       |
| Correction Factor (dB)       | Asset# 1016 (preamplifier) | -30.7 | -12.6 |
|                              | Asset# 1175(cable) 0.3     |       |       |
|                              | Asset# 1033 (antenna) 17.2 |       |       |
| Reported QuasiPeak Final Mea | 11.8                       |       |       |



# 2.4.9 Test Result



# Quasi Peak Data

| Frequency<br>(MHz) | QuasiPeak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 0.154000           | 54.4                  | 1500.0                | 9.000              | 100.0          | Н            | 145.0            | 14.2          | 49.4           | 103.9             |
| 1.147754           | 39.4                  | 1500.0                | 9.000              | 100.0          | Н            | 175.0            | 14.8          | 27.0           | 66.4              |
| 2.811064           | 31.4                  | 1500.0                | 9.000              | 100.0          | Н            | 72.0             | 15.0          | 38.2           | 69.5              |
| 11.058174          | 43.9                  | 1500.0                | 9.000              | 100.0          | Н            | 195.0            | 15.8          | 25.7           | 69.5              |
| 22.120627          | 52.0                  | 1500.0                | 9.000              | 100.0          | Н            | 35.0             | 15.4          | 17.5           | 69.5              |
| 29.953000          | 30.8                  | 1500.0                | 9.000              | 100.0          | Н            | 171.0            | 14.5          | 38.7           | 69.5              |





# Radiated Spurious Emission below 960 MHz

### **Quasi Peak Data**

| Frequency<br>(MHz) | QuasiPeak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 30.000000          | 23.2                  | 1000.0                | 120.000            | 110.0          | V            | 256.0            | -5.9          | 16.8           | 40.0              |
| 50.358878          | 18.5                  | 1000.0                | 120.000            | 106.0          | V            | 15.0             | -14.4         | 21.5           | 40.0              |
| 70.341643          | 6.4                   | 1000.0                | 120.000            | 150.0          | V            | 78.0             | -17.0         | 33.6           | 40.0              |
| 87.852745          | 8.7                   | 1000.0                | 120.000            | 105.0          | V            | 216.0            | -16.3         | 31.4           | 40.0              |
| 703.865170         | 22.4                  | 1000.0                | 120.000            | 400.0          | V            | 300.0            | 2.9           | 23.6           | 46.0              |
| 875.271182         | 25.0                  | 1000.0                | 120.000            | 300.0          | Н            | 108.0            | 5.0           | 21.0           | 46.0              |





Radiated Spurious Emission from 960 MHz - 1 GHz at the distance of 0.2 meter





Radiated Spurious Emission from 1 GHz - 10.6 GHz at the distance of 1 meter

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1583.758317        | 39.4                | 1000.0                | 1000.000           | 125.7          | Н            | 1.0              | -5.9          | -10.0*         | 29.4              |
| 1991.775952        | 50.5                | 1000.0                | 1000.000           | 151.2          | Н            | 161.0            | -2.0          | -7.1*          | 43.4              |
| 2771.743086        | 33.5                | 1000.0                | 1000.000           | 132.7          | Н            | 77.0             | 0.3           | 9.9            | 43.4              |
| 3149.692585        | 29.4                | 1000.0                | 1000.000           | 103.7          | V            | 80.0             | 1.1           | 33.4           | 62.8              |
| 6223.824850        | 56.8                | 1000.0                | 1000.000           | 123.7          | Н            | 20.0             | 6.7           | 6.0            | 62.8              |

Note: The spurious at 1583.758317 MHz and 1991.775952 MHz which are above the limit were verified with the digital part on only (UWB off) and proved were caused by the digital part.





Radiated Spurious Emission from 10 GHz - 18 GHz at the distance of 0.2 meter

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 11420.63126        | 36.1                | 1000.0                | 1000.000           | 205.3          | 36.1         | 20.0             | 14.8          | 21.4           | 57.4              |
| 16466.31543        | 40.4                | 1000.0                | 1000.000           | 205.3          | 40.4         | 20.0             | 21.7          | 17             | 57.4              |
| 16885.17555        | 41.5                | 1000.0                | 1000.000           | 177.6          | 41.5         | -20.0            | 23.1          | 15.9           | 57.4              |





Radiated Spurious Emission from 18 GHz – 26.5 GHz at the distance of 0.2 meter

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 18070.33627        | 34.3                | 1000.0                | 1000.000           | 157.2          | Н            | -5.0             | 11.2          | 23.1           | 57.4              |
| 22726.87094        | 34.1                | 1000.0                | 1000.000           | 157.2          | Н            | 0.0              | 13.2          | 23.3           | 57.4              |
| 26194.38677        | 35.6                | 1000.0                | 1000.000           | 157.2          | Н            | 0.0              | 14.7          | 21.8           | 57.4              |





Radiated Spurious Emission from 26 GHz – 40 GHz at the distance of 0.2 meter

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 26280.76112        | 35.2                | 1000.0                | 1000.000           | 159.0          | V            | 12.0             | 2.2           | 22.2           | 57.4              |
| 26469.95390        | 34.4                | 1000.0                | 1000.000           | 159.0          | Н            | 5.0              | 2.1           | 23             | 57.4              |
| 31972.15190        | 38.0                | 1000.0                | 1000.000           | 159.0          | Н            | -2.0             | 4.4           | 19.4           | 57.4              |
| 34625.02645        | 40.9                | 1000.0                | 1000.000           | 159.0          | Н            | 2.0              | 6.1           | 16.5           | 57.4              |
| 35475.96593        | 40.8                | 1000.0                | 1000.000           | 159.0          | Н            | 7.0              | 6.6           | 16.6           | 57.4              |
| 37837.07935        | 41.1                | 1000.0                | 1000.000           | 159.0          | Н            | -2.0             | 7.6           | 16.3           | 57.4              |





Radiated Spurious Emission below 1GHz in worst case simultaneous transmission (WCDMA, WiFi and UWB on) (UWB has been verified separately)

### Quasi-Peak Data

| Frequency<br>(MHz) | QuasiPeak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 30.240000          | 19.2                  | 1000.0                | 120.000            | 250.0          | V            | -10.0            | -6.1          | 20.8           | 40.0              |
| 50.078878          | 17.5                  | 1000.0                | 120.000            | 100.0          | V            | 182.0            | -14.4         | 22.5           | 40.0              |
| 71.021643          | 14.8                  | 1000.0                | 120.000            | 100.0          | V            | 133.0            | -16.9         | 25.2           | 40.0              |
| 89.212745          | 17.0                  | 1000.0                | 120.000            | 100.0          | V            | 164.0            | -16.1         | 26.5           | 43.5              |
| 345.853707         | 16.6                  | 1000.0                | 120.000            | 110.0          | Н            | 8.0              | -5.8          | 29.4           | 46.0              |
| 904.909499         | 24.8                  | 1000.0                | 120.000            | 150.0          | V            | 96.0             | 5.9           | 21.2           | 46.0              |





# Radiated Spurious Emission above 1GHz in worst case simultaneous transmission (WCDMA, WiFi and UWB on) (UWB has been verified separately)

### **Peak Data**

| Frequency<br>(MHz) | Peak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1572.558317        | 37.7             | 1000.0                | 1000.000           | 152.6          | Н            | 19.0             | -6.0          | 36.2           | 73.9              |
| 1887.571543        | 41.7             | 1000.0                | 1000.000           | 292.2          | Н            | 281.0            | -2.6          | 32.2           | 73.9              |
| 3799.387174        | 41.6             | 1000.0                | 1000.000           | 201.5          | V            | 246.0            | 2.1           | 32.3           | 73.9              |
| 6322.429259        | 45.8             | 1000.0                | 1000.000           | 233.4          | Н            | 39.0             | 6.9           | 28.1           | 73.9              |
| 6950.923848        | 47.2             | 1000.0                | 1000.000           | 102.7          | Н            | 19.0             | 7.8           | 26.7           | 73.9              |
| 17806.99118        | 54.2             | 1000.0                | 1000.000           | 292.2          | V            | 322.0            | 23.0          | 19.7           | 73.9              |

### **Average Data**

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1572.558317        | 24.7                | 1000.0                | 1000.000           | 152.6          | Н            | 19.0             | -6.0          | 29.2           | 53.9              |
| 1887.571543        | 29.1                | 1000.0                | 1000.000           | 292.2          | Н            | 281.0            | -2.6          | 24.8           | 53.9              |
| 3799.387174        | 29.1                | 1000.0                | 1000.000           | 201.5          | V            | 246.0            | 2.1           | 24.8           | 53.9              |
| 6322.429259        | 32.9                | 1000.0                | 1000.000           | 233.4          | Н            | 39.0             | 6.9           | 21.0           | 53.9              |
| 6950.923848        | 34.0                | 1000.0                | 1000.000           | 102.7          | Н            | 19.0             | 7.8           | 19.9           | 53.9              |
| 17806.99118        | 40.9                | 1000.0                | 1000.000           | 292.2          | V            | 322.0            | 23.0          | 13.0           | 53.9              |

Note: A 2.4GHz and a 1900 MHz Notches are used when testing. No significant emissions observed above 18GHz. Measurements above 18GHz were noise floor figures.



# 2.5 RADIATED EMISSIONS IN GPS BANDS

### 2.5.1 Specification Reference

Part 15 §15.519 (d) RSS-220 5.3.1 (e)

# 2.5.2 Standard Applicable

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

| Frquency in MHz | EIPR at 3 meter in dBm | EIRP at 3 meter in dBμV/m |
|-----------------|------------------------|---------------------------|
| 1164 - 1240     | -85.3                  | 9.9                       |
| 1559 - 1610     | -85.3                  | 9.9                       |

# 2.5.3 Equipment Under Test and Modification State

Serial No: XB-0001022 / Default Test Configuration

# 2.5.1 Date of Test/Initial of test personnel who performed the test

August 04, 2017 / XYZ

# 2.5.2 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.



### 2.5.3 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

 $\begin{array}{lll} \mbox{Ambient Temperature} & 25.5 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 49.0 \ \% \\ \mbox{ATM Pressure} & 98.8 \ \text{kPa} \end{array}$ 

# 2.5.4 Additional Observations

- This is a radiated test.
- The spectrum was searched from 1164 MHz to 1240 MHz, and 1559 MHz to 1610 MHz.
- Verification was performed at 3 meters

#### 2.5.5 Test Results



Radiated Spurious Emissions in 1164 MHz to 1240 MHz





Radiated Spurious Emissions in 1559 MHz to 1610 MHz



# 2.6 PEAK EMISSIONS IN A 50 MHZ BANDWIDTH

#### 2.6.1 Specification Reference

Part 15 §15.519 (e) RSS-220 5.3.1 (g)

# 2.6.2 Standard Applicable

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs,  $f_M$ . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in § 15.521.

# 2.6.3 Equipment Under Test and Modification State

Serial No: XB-0001022 / Default Test Configuration

# 2.6.4 Date of Test/Initial of test personnel who performed the test

August 04, 2017 / XYZ

### 2.6.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature 25.5 °C Relative Humidity 49.0 % ATM Pressure 98.8 kPa

# 2.6.7 Additional Observations

- This is a radiated test
- Verification was performed at the distance of 0.2 meter
- RBW is 10 MHz.
- VBW is 10 MHz.
- Sweep is auto.
- Detector is peak.
- Trace is Max Hold.
- The limit is 20lg (10/50) + 20 lg (3/0.2) = 9.54 dBm



# 2.6.8 Test Plots



Date: 4.AUG.2017 16:58:24

### Peak Emissions in Ultra Wide Band

Peak Emission at 0.2m in 10MHz RBW = -23.9dBm (limit at 0.2m is 9.54 dBm, Complies);

#### **Calculation:**

EIRP in 50MHz RBW = -23.9dBm + 20lg (50/10) - 20 lg (3/0.2) = -33.44 dBm (limit at 3m is 0 dBm, Complies)

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



# **SECTION 3**

# **TEST EQUIPMENT USED**



# 3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

| ID Number<br>(SDGE/SDRB) | Test Equipment                       | Туре                  | Serial Number   | Manufacturer                 | Cal Date      | Cal Due<br>Date |
|--------------------------|--------------------------------------|-----------------------|-----------------|------------------------------|---------------|-----------------|
| Radiated Test S          | ietup                                |                       |                 |                              |               |                 |
| 1033                     | Bilog Antenna                        | 3142C                 | 00044556        | EMCO                         | 10/11/16      | 10/11/18        |
| 1040                     | EMI Test Receiver                    | ESIB40                | 100292          | Rhode & Schwarz              | 10/07/16      | 10/07/17        |
| 1016                     | Pre-amplifier                        | PAM-0202              | 187             | PAM                          | 02/09/17      | 02/09/18        |
| 7575                     | Double-ridged waveguide horn antenna | 3117                  | 00155511        | EMCO                         | 06/01/17      | 06/01/18        |
| 1049                     | EMI Test Receiver                    | ESU                   | 100133          | Rhode & Schwarz              | 04/26/17      | 04/26/18        |
| 8628                     | Pre-amplifier                        | QLJ 01182835-JO       | 8986002         | QuinStar Technologies        | 02/09/17      | 02/09/18        |
| 9001                     | Horn Antenna (18-26GHz)              | H042S                 | 101             | Custom Microwave             | 08/23/16      | 08/23/17        |
| 8893                     | Pre-amplifier (18-40 GHz)            | SLKKa-30-6            | 15G27           | Spacek Labs                  | 09/04/16      | 09/04/17        |
| 9002                     | Horn antenna (26-40 GHz)             | HO28S                 | 102             | Custom Microwaves            | 07/14/17      | 07/14/19        |
| 8893                     | Pre-amplifier (18-40 GHz)            | SLKKa-30-6            | 15G27           | Spacek Labs                  | Verified b    | y and 1040      |
| 7640                     | Loop Antenna                         | AL-130R               | 121086          | Com-Power                    | 11/21/16      | 11/21/17        |
| 7608                     | Vector Signal Generator              | SMBV100A              | 259021          | Rhode & Schwarz              | 09/02/16      | 09/02/17        |
| 7582                     | Signal/Spectrum Analyzer             | FSW26                 | 101614          | Rhode & Schwarz              | 10/26/15      | 10/26/17        |
| 1153                     | High-frequency cable                 | SucoFlex 100 SX       | N/A             | Suhner                       | Verified by 7 | 7608 and 7582   |
| 8543                     | High-frequency cable                 | Micropore<br>19057793 | N/A             | United Microwave<br>Products | Verified by 7 | 7608 and 7582   |
| 6815                     | 2.4GHz Band Notch Filter             | BRM50702              | 008             | Micro-Tronics                | Verified      | d by 1040       |
| 8806                     | 1.8GHz to 2.0GHz Notch<br>Filter     | BRM50707              | 005             | Micro-Tronics                | Verified      | d by 1040       |
| Miscellaneous            |                                      |                       |                 |                              |               |                 |
| 6792                     | Multimeter                           | 3478A                 | 2911A70964      | Hewlett Packard              | 08/29/16      | 08/29/17        |
| 11312                    | Mini Environmental<br>Quality Meter  | 850027                | CF099-56010-340 | Sper Scientific              | 08/22/16      | 08/22/17        |
|                          | Test Software                        | EMC32                 | V8.53           | Rhode & Schwarz              | N             | N/A             |



# 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:

# 3.2.1 AC Conducted Emissions

|   | Contribution               | Probability<br>Distribution<br>Type | Probability<br>Distribution<br>Xi | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )] <sup>2</sup> |
|---|----------------------------|-------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                         | 0.36                              | 0.21                                          | 0.04                              |
| 2 | Cables                     | Rectangular                         | 0.50                              | 0.29                                          | 0.08                              |
| 3 | LISN                       | Rectangular                         | 0.66                              | 0.38                                          | 0.15                              |
| 4 | Attenuator                 | Rectangular                         | 0.30                              | 0.17                                          | 0.03                              |
| 5 | EUT Setup                  | Rectangular                         | 1.00                              | 0.58                                          | 0.33                              |
|   |                            |                                     | Combined                          | d Uncertainty (u₅):                           | 0.80                              |
|   |                            |                                     | Co                                | verage Factor (k):                            | 2                                 |
|   |                            |                                     | Expar                             | nded Uncertainty:                             | 1.59                              |

# 3.2.2 Radiated Measurements (Below 1GHz)

|   | Contribution               | Probability<br>Distribution<br>Type | Probability Distribution x <sub>i</sub> | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )]² |
|---|----------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                         | 0.45                                    | 0.26                                          | 0.07                  |
| 2 | Cables                     | Rectangular                         | 0.50                                    | 0.29                                          | 0.08                  |
| 3 | Preamp                     | Rectangular                         | 0.50                                    | 0.29                                          | 0.08                  |
| 4 | Antenna                    | Rectangular                         | 0.75                                    | 0.43                                          | 0.19                  |
| 5 | Site                       | Rectangular                         | 2.70                                    | 1.56                                          | 2.43                  |
| 6 | EUT Setup                  | Rectangular                         | 1.00                                    | 0.58                                          | 0.33                  |
|   |                            |                                     | Combined                                | d Uncertainty (u₅):                           | 1.78                  |
|   |                            |                                     | Co                                      | verage Factor (k):                            | 2                     |
|   |                            |                                     | Expar                                   | nded Uncertainty:                             | 3.57                  |

# 3.2.3 Radiated Measurements (Above 1GHz)

|   | Contribution               | Probability<br>Distribution<br>Type | Probability<br>Distribution<br>Xi       | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )]² |
|---|----------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                         | 0.57                                    | 0.33                                          | 0.11                  |
| 2 | Cables                     | Rectangular                         | 0.70                                    | 0.40                                          | 0.16                  |
| 3 | Preamp                     | Rectangular                         | 0.50                                    | 0.29                                          | 0.08                  |
| 4 | Antenna                    | Rectangular                         | 0.37                                    | 0.21                                          | 0.05                  |
| 5 | Site                       | Rectangular                         | 2.70                                    | 1.56                                          | 2.43                  |
| 6 | EUT Setup                  | Rectangular                         | 1.00                                    | 0.58                                          | 0.33                  |
|   |                            |                                     | Combined Uncertainty (u <sub>c</sub> ): |                                               | 1.78                  |
|   |                            |                                     | Coverage Factor (k):                    |                                               | 2                     |
|   |                            |                                     | Expanded Uncertainty:                   |                                               | 3.57                  |

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



# **SECTION 4**

**DIAGRAM OF TEST SETUP** 



# 4.1 TEST SETUP DIAGRAM



Radiated Emission Test Setup (Below 1GHz)





Radiated Emission Test Setup (Above 1GHz)





**Conducted Emission Test Setup** 





# **Frequency Stability Test Configuration**

<sup>\*</sup> Diagram presented is for a typical licensed cellular test setup, the EUT on the other hand does not use a Communication tester instead it uses a direct connection to the support laptop (please see separate test setup photo for details).

FCC ID 2AJZL-NW1000 IC: 22101-NW1000 Report No. CG72118338-0617A Rev 1.0



# **SECTION 5**

ACCREDITATION, DISCLAIMERS AND COPYRIGHT



# 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.







