1.]i) X conexo $\Longrightarrow A f: X \to fo.1$ cont. y sobre. con la top. discreta $f: X \to fo.1$ lo mismo que demostrar

i) X no conexo \iff $\exists f: X:\longrightarrow \text{Cont. } y \text{ sobre. con la top. discreta.}$

To conexo $\Rightarrow X = UUV$, U,V abtos A $UAV = \emptyset$ Podemos definir $f: X \longrightarrow \{0,1\}$ $\times \longmapsto 0$ si $\times \in U$ $\times \iota \longrightarrow 1$ si $\times \in V$

Sea U = f'(50t), $V = f^{-1}(54t)$ Como f es continua U, V son abiertos. Además, $U \neq \emptyset$, $V \neq \emptyset$, $U \cup V = X$, $U \cap V = \emptyset$, por ser f sobre. $\Rightarrow X$ no conexo.

ii) Probar: S subconjunto conexo de X y $SCKCS \implies K$ conexo. Supongamos K no conexo $\implies \exists f: K \longrightarrow \{0,1\}$ cont. y sobre. Definimos $g = f|_S: S \longrightarrow \{0,1\}$ g es continua por ser la restricción de una continua.

g es continua por ser la restricción de una continua. Si g es sobre, S sería no conexo; reamos en qué falla: Supongames g(x) = 0 $\forall x \in S$ (S dominio de g) f(x) = 0 $\forall x \in S$. Como f es sobre $\exists c \in K$ tal que $f(c) = 1 \implies c \in f(s,t)$

Este U es abierto (f cont.) que contiene a $C \in K$ pero UNS = \emptyset parque $\forall x \in S$ f(x) = 0, que contradice $S \subset K \subset S$ $\Longrightarrow K$ conexo.

[2. [1] A1,..., An conexos of AKII AK+1 ' j=1' j

Supongamos que AC UUV abiertos. Como A_1 es conexo \Rightarrow $A_1 \subset U$ $A_1 \subset V$ $A_1 \cap U = \emptyset$ $A_1 \cap U = \emptyset$ $A_1 \cap U = \emptyset$ $A_1 \cap U = \emptyset$ Tomo Az es conexo y Ann Az # AZN V= AZN V= AZCU [Como An es conexo f $A_{n-1} \cap A_n \neq \emptyset \Rightarrow A_n \cap V = \emptyset \land A_n \subset U$ $\Rightarrow A \in U \land A \cap V = \emptyset \Rightarrow A \text{ conexo}.$ Esto ge generaliza a un conjunto numerable por inducción. \hookrightarrow folso (inducción es para finito). ii) Sea $\overline{A} = (\bigcup_{\alpha \in \Lambda} A_{\alpha}) \cup A$ [Recuerda: $A_{\alpha} \cap A \neq \emptyset$ $\forall \alpha \in \Lambda$] Supongamos que ACÜUT y ANUNV=0 Como $AC\overline{A} \Rightarrow AnunV = \emptyset$ y como $\overline{ACUUV} \Rightarrow AC\overline{U}$ S.p.d.g. ACU 1 ANV = Ø [*] Como An Aa Vae A y por [*] => Aa CU Aanv= & Vae. ⇒ ĀCU ∧ ĀNV=Ø ⇒ Ā conexo.

$$X = \int (x, f(x)) : x \in I \cap C = I \times R$$

La aplicación $I \xrightarrow{F} R^2$ es continua

 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$
 $X = \int (x, f(x)) \cdot X = I \cap C = I \times R$

OTRA POSIBLE FORMA:
$$g: I \longrightarrow \mathbb{R}^2$$
 continua $\times \longmapsto (x_1 f(x))$

Supongamos que $g(I)$ no es conexo, e.d., fU,V ables. Subconjuntos de \mathbb{R}^2 tales que $U \cap V = \emptyset \land U \cup V = g(I)$
 $g^{-1}(u) = T_1(u)$ ablo. en I
 $g^{-1}(v) = T_1(v)$ ablo. en I
 $g^{-1}(u) \cap g^{-1}(v) = \emptyset$ ablos en I , que contradice

que I es conexo en R.
ii) Caso particular ej. 2 ii).

4.]

i) $f: X \longrightarrow Y$ homeomorfismo $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_1), ..., f(x_n) f$ i homeomorfismo? $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_1), ..., f(x_n) f$ i homeomorfismo? $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_1), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n), ..., f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus X_1, ..., x_n f \longrightarrow Y \setminus f(x_n) f$ $g: X \setminus$

Que g⁻¹ es continua se demuestra igual.

[1.] (Más formas de demostrar ii) FORMA 1: Si K no es conexo => K=A &B Con A,B separación de K (ANBK=Ø, AKNB=Ø) SCK con S conexo => (SCA) Si SCA => SKCAK => SNB = Ø = contradicción

AKNB = Ø pero BCKC 5 **

METALLICA DE CONTRADICCIÓN FORMA 2: Si K no es conexo \Rightarrow $\exists f: K \longrightarrow \{0,1\} \text{ cont. y sobrt}$ $\Rightarrow f(s) \text{ conexo} \text{ de } \{0,1\} \text{ , e.d., } f(s) = 0 \text{ of } f(s) = 1$ Si f(s) = 0 \wedge xoe K\S $\times \circ \in f^{-1}(f(1))$ [*] f cont. $\int_{\overline{S}} \int_{\overline{S}} = f(x_0) \in f(\overline{S}) \subset f(\overline{S})$ $\int_{\overline{S}} \int_{\overline{S}} |f(x_0)| = f(\overline{S}) \subset f(\overline{S})$ contradicción × (xo) =0