Zusätzliche Aufgaben - übungsblatt 1

1) a)
$$(A \Rightarrow B) \iff (\neg B \land A)$$

A	B	17B	A >B	7BA A	$(A \Rightarrow B) \iff$	(7 BA A)
0 0 1 1	0 1 0 1	1 0 1 0	1 0 1	0 0 1 0	0	L'Kontradiktion)

b)
$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

O)			- 1	A > D	1 77 -> 7A	$(A \Rightarrow B)$	(7 B => 1A)
A	B	7A	73	ABB	15-7	1	
0	0	1	1	1	1	1	L (Tantologie)
0	1	1	0	1	0	1	L (Vauro (1916)
1	0	0	1	1	1	1	
1	1	0		1 1	,	1	

2) Beweisen Sie mit vollståndigen Induktion:

Reweiser Sie Mut Woustwerters

a)
$$73 + 2n$$
 ist durch 3 teilbar ($n \in M$)

b) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} b_{\frac{1}{2}} w$. $\sum_{k=1}^{n} k^3 = \frac{(1+2+...+n)^2}{4}$

13+2n ist für ein nen durch 3 teilbar; dh. n3+2n=3k für

IB Zuzeigen (n+1)3 + 2(n+1) ist durch 3 teilbar

$$\frac{18}{(n+1)^3} + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2$$

$$= (n^3 + 2n) + 3n^2 + 3n + 3$$

$$= (n^3 + 2n) + 3n^2 + 3n + 3$$

$$= 3(k+n^2+n+1) \vee$$