Recursive descent top-down parsing

LL(1) parser can be written simply as a set of recursive functions:

```
void E() { M(); E1(); }
void E1() {
  if (next == '+')
     { skip('+'); E(); }
  else if (next == ')')
     { }
  else
     { syntaxerror(); }
}
```

$$E \rightarrow M E'$$
 $E' \rightarrow + E$
 $E' \rightarrow$
 $M \rightarrow F M'$
 $M' \rightarrow * M$
 $M' \rightarrow$
 $F \rightarrow x$
 $F \rightarrow y$
 $F \rightarrow (E)$

Recursive descent top-down parsing

LL(1) parser can be written simply as a set of recursive functions:

```
void E() { M(); E1(); }
void E1() {
  if (next == '+')
     { skip('+') E(); }
  else if (next == ')')
     { }
  else
     { syntaxerror(); }
}
```

Where do these symbols come from?

What if they overlap?

$$E \rightarrow M E'$$

$$E' \rightarrow + E$$

$$E' \rightarrow$$

$$M \rightarrow F M'$$

$$M' \rightarrow * M$$

$$M' \rightarrow$$

$$F \rightarrow x$$

$$F \rightarrow y$$

$$F \rightarrow (E)$$

How does it work?

- Use current terminal symbol(s) to choose production
- Then skip matching terminal symbols and recursively parse nonterminal symbols in production
- How to use terminal symbol to decide which production to use?

How to construct a parser for any LL(1) grammar.

Top-down parsing: how?

- Use current terminal symbol(s) to choose production
- Then skip matching terminal symbols and parse nonterminal symbols in production
- How to map from terminal symbol to production?

General method:

Compute, for each nonterminal symbol *N*:

- FIRST(*N*): set of terminal symbols that can begin strings derived from *N*.
- FOLLOW(*N*): set of terminal symbols that can immediately follow strings derived from *N*.
- nullable(*N*): whether empty string can be derived from *N*.

To compute FIRST and FOLLOW (simple)

```
Initialize: \forall N \text{ FIRST}(N) = \emptyset, FOLLOW(N)=\emptyset
For each terminal symbol T, FIRST(T)={T}
Repeat (until FIRST and FOLLOW do not change):
For each production X \rightarrow Y_1 \dots Y_k:
Add FIRST(Y_1) to FIRST(X);
Add FOLLOW(X) to FOLLOW(Y_k);
For each i from 1 to k-1:
Add FIRST(Y_{i+1}) to FOLLOW(Y_i);
```

To compute FIRST, FOLLOW, nullable

```
Initialize: \forall N \text{ FIRST}(N) = \emptyset, \text{FOLLOW}(N) = \emptyset, \text{nullable}(N) = \text{false}
For each terminal symbol T, FIRST(T)={T}
Repeat (until FIRST, FOLLOW, nullable do not change):
   For each production X \to Y_1 \dots Y_k:
       If k=0 or Y_1 \dots Y_k are all nullable then nullable(X) = true;
       For each i from 1 to k:
           If i=1 or Y_1 \dots Y_{i-1} are all nullable
              then add FIRST(Y_i) to FIRST(X);
           If i=k or Y_{i+1} \dots Y_k are all nullable
              then add FOLLOW(X) to FOLLOW(Y_i);
           For each j from i+1 to k:
              If i+1=j or Y_{i+1} ... Y_{i-1} are all nullable
                  then add FIRST(Y_i) to FOLLOW(Y_i);
```

0	nullable	FIRST	FOLLOW
E	false	Ø	Ø
E'	false	Ø	Ø
M	false	Ø	Ø
M'	false	Ø	Ø
F	false	Ø	Ø

$$E \rightarrow M E'$$

$$E' \rightarrow + E$$

$$E' \rightarrow$$

$$M \rightarrow F M'$$

$$M' \rightarrow * M$$

$$M' \rightarrow$$

$$F \rightarrow x$$

$$F \rightarrow y$$

$$F \rightarrow (E)$$

1	nullable	FIRST	FOLLOW
E	false	Ø	{)}
E'	true	{+ }	Ø
M	false	Ø	Ø
M'	true	{* }	Ø
F	false	$\{x,y,(\}$	Ø

$$E \to M E'$$

$$E' \to + E$$

$$E' \to$$

$$M \to F M'$$

$$M' \to * M$$

$$M' \to$$

$$F \to x$$

$$F \to y$$

$$F \to (E)$$

2	nullable	FIRST	FOLLOW
\boldsymbol{E}	false	$\{x,y,()\}$	{)}
E'	true	$\{+\}$	{) }
M	false	$\{x,y,()\}$	{ + ,)}
M'	true	{*}	Ø
$oldsymbol{F}$	false	$\{x,y,(\}$	{* }

$$E \to M E'$$

$$E' \to + E$$

$$E' \to$$

$$M \to F M'$$

$$M' \to * M$$

$$M' \to$$

$$F \to x$$

$$F \to y$$

$$F \to (E)$$

3	nullable	FIRST	FOLLOW
\boldsymbol{E}	false	$\{x,y,(\}$	{)}
E'	true	$\{+\}$	{)}
M	false	$\{x,y,(\}$	{+,)}
M'	true	{*}	{ + ,)}
F	false	$\{x,y,(\}$	{*,+,)}

$$E \rightarrow M E'$$

$$E' \rightarrow + E$$

$$E' \rightarrow$$

$$M \rightarrow F M'$$

$$M' \rightarrow * M$$

$$M' \rightarrow$$

$$F \rightarrow x$$

$$F \rightarrow y$$

$$F \rightarrow (E)$$

Predictive parsing table (LL(1) table)

Row for each nonterminal, column for each terminal symbol.

Put production $X \to Y_1 \dots Y_k$ in row X, column a if:

- $a \in FIRST(Y_1 \dots Y_k)$
- $a \in \text{FOLLOW}(X)$ if $Y_1 \dots Y_k$ are all nullable

 $FIRST(Y_1 ... Y_k) = FIRST(Y_1) \cup FIRST(Y_2 ... Y_k)$ if Y_1 nullable

 $FIRST(Y_1 ... Y_k) = FIRST(Y_1)$ otherwise

Predictive parsing table (LL(1) table)

```
Or, for production X \to Y_1 \dots Y_k:
      set = \emptyset:
      for each i from 1 to k {
           add FIRST(Y_i) to set;
           if (Y_i \text{ is not nullable}) return set;
      add FOLLOW(X) to set;
      return set;
```

Put production $X \to Y_1 \dots Y_k$ in row X, column a for all a in set.

Example predictive parsing table

3	nullable	FIRST	FOLLOW
E	false	$\{x,y,(\}$	{)}
E'	true	{+}	{)}
M	false	$\{x,y,(\}$	{+,)}
M'	true	{*}	{+,)}
F	false	$\{x,y,(\}$	{*,+,)}

$E \rightarrow M E'$
$E' \rightarrow + E$
$E' \rightarrow$
$M \rightarrow F M'$
$M' \rightarrow *M$
$M' \rightarrow$
$F \rightarrow x$
$F \rightarrow y$
$F \rightarrow (E)$

	()	+	*	x	y
\overline{E}	$E \rightarrow M E'$				$E \rightarrow M E'$	$E \rightarrow M E'$
E'		$E' \rightarrow$	$E' \rightarrow + E$			
M	$M \to F M'$				$M \to F M'$	$M \to F M'$
M'		$M' \rightarrow$	$M' \rightarrow$	$M' \rightarrow * M$		
F	$F \rightarrow (E)$				$F \rightarrow x$	$F \rightarrow y$

Top-down parsing algorithm

Same as recursive descent but using stack (of symbols) instead of recursion.

```
Push start symbol on stack;
a = first terminal symbol from input;
X = top symbol on stack;
while (stack not empty) {
    if (X == a) {
       pop stack;
       a = next terminal symbol from input;
    else if ( X is a terminal ) error();
    else if ( M[X,a] is empty ) error();
    else if (M[X,a] = X \rightarrow Y_1 ... Y_k)
        output production X \to Y_1 \dots Y_k;
       pop stack;
       push Y_k on stack; ...; push Y_1 on stack;
   X = top symbol on stack;
```

Top-down parsing example

a	X	Output	Stack
(\overline{E}	$E \rightarrow ME'$	M E'
(M	$M \rightarrow FM'$	F M' E'
($\boldsymbol{\mathit{F}}$	$F \rightarrow (E)$	(E)M'E'
((E) M' E'
$\boldsymbol{\mathcal{X}}$	E	$E \rightarrow ME'$	M E') M' E'
$\boldsymbol{\mathcal{X}}$	M	$M \rightarrow FM'$	$F\ M'\ E'\)\ M'\ E'$
$\boldsymbol{\mathcal{X}}$	F	$F \rightarrow x$	x M' E') M' E'
$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$		M' E') M' E'
)	M'	$M' \rightarrow$	E') M' E'
)	E'	$E' \rightarrow$) M' E'
))		M' E'
+	M'	$M' \rightarrow$	E'
+	E'	$E' \rightarrow +E$	+ E
+	+		E
Y	$\boldsymbol{\mathit{E}}$	$E \rightarrow ME'$	M E'
Y	M	$M \rightarrow FM'$	F M' E'
Y	$\boldsymbol{\mathit{F}}$	$F \rightarrow y$	у М' Е'
Y	y		M'E'
\$	M'	$M' \rightarrow$	E'
\$	E'	$E' \rightarrow$	

$$E \rightarrow M E'$$

$$E' \rightarrow + E$$

$$E' \rightarrow$$

$$M \rightarrow F M'$$

$$M' \rightarrow * M$$

$$M' \rightarrow$$

$$F \rightarrow x$$

$$F \rightarrow y$$

$$F \rightarrow (E)$$

Input string:
$$(x)+y$$

div : SD text ED

text: item text

text:

item : CHAR

item : div

Compute nullable, FIRST, FOLLOW for each of the nonterminals: div, text, item.

	nullable	FIRST	FOLLOW	
div	false	SD	CHAR SD ED	
text	true	CHAR SD	ED	
item	false	CHAR SD	CHAR SD ED	