Report No: CCISE181004701

FCC & IC REPORT

(Bluetooth)

Applicant: Solaborate LLC

Address of Applicant: 8300 Utica Ave #283, Rancho Cucamonga, CA 91730

Equipment Under Test (EUT)

Product Name: HELLO 2

Model No.: HELLO2

FCC ID: 2ALUI-HELLO2

IC ID: 24458-HELLO2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-Gen Issue 5, April 2018 RSS-247 Issue 2, February 2017

Date of sample receipt: 26 Oct., 2018

Date of Test: 26 Oct., to 22 Nov., 2018

Date of report issued: 23 Nov., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE181004701

2 Version

Version No.	Date	Description
00	23 Nov., 2018	Original

Tested by: Ouren (hem. Date: 23 Nov., 2018

Test **E**ngineer

Reviewed by: 23 Nov., 2018

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3		_
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.3 TEST ENVIRONMENT AND TEST MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	_
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.10 SPURIOUS EMISSION	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7	TEST SETUP PHOTO	55
-		
8	B EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Se	Result	
rest items	FCC	IC	Result
Antenna Requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	RSS-GEN Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(1)	RSS-247 Section 5.4 (b)	Pass
20dB&99% Occupied Bandwidth	15.247 (a)(1)	RSS-247 Section 5.1 (a)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	RSS-247 Section 5.1 (b)	Pass
Hopping Channel Number	15.247 (a)(1)	RSS-247 Section 5.1 (d)	Pass
Dwell Time	15.247 (a)(1)	RSS-247 Section 5.1 (d)	Pass
Spurious Emission	15.205/15.209	RSS-GEN Section 6.13 RSS-247 Section 5.5	Pass
Band Edge	15.247(d)	RSS-GEN Section 8.10 RSS-247 Section 5.5	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Solaborate LLC
Address:	8300 Utica Ave #283, Rancho Cucamonga, CA 91730
Manufacturer:	Shenzhen YITOA Digital Appliance CO.,LTD
Address:	5/F,Yitoa Building,Keji South Road 5th,Hi-tech Industrial Park,Nanshan District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	HELLO 2
Model No.:	HELLO2
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	FPC
Antenna gain:	1.5 dBi
AC adapter with two plugs :	Model: EA1019AVRS-050 Input: AC100-240V, 50/60Hz, 0.8A Output: DC 5.0V, 3A
Remarks:	EUT has camera cable from two different manufacturers. Their manufacturers and models are: Unison is HELLO2-274-V8.0, and Seasons is HELLO2-274-V8.0.1. They have the same lens, but the Camera cable is different.
Test Sample Condition:	The applicant provided engineering samples for staying in continuously transmitting for testing.

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
							•••
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Cl	nannel 0, 39 &78	3 selected fo	or GFSK, π/4-D	QPSK and 8	BDPSK.		

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE181004701

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181004701

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
nom Antenna	SCHWARZBECK	DDNA 9170	BBHA9170562	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzor	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
Spectrum analyzer	Runde & Schwarz	F3F40	100303	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an FPC antenna which permanently attached, and the best case gain of the antenna is 1.5 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207 RSS-GEN Section 8.8			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz_Sween time=auto		
Limit:	Frequency range	Limit (dBuV)	
Ellint.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test setup:	Reference	Plane		
	AUX Equipment Test table/Insulation plane Remark E U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Product name:	HELLO 2	Product model:	HELLO 2
Test by:	Carey	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.170	44.84	0.17	10.77	55.78	64.94	-9.16	QP
2	0.194	43.36	0.15	10.76	54.27	63.84	-9.57	QP
3	0.194	22.93	0.15	10.76	33.84	53.84	-20.00	Average
4	0.253	39.50	0.14	10.75	50.39	61.64	-11.25	QP
2 3 4 5 6 7	0.294	18.07	0.13	10.74	28.94	50.41	-21.47	Average
6	0.330	35.89	0.13	10.73	46.75	59.44	-12.69	QP
7	0.494	22.53	0.12	10.76	33.41	46.10	-12.69	Average
8	0.513	32.12	0.12	10.76	43.00	56.00	-13.00	QP
9	0.747	12.86	0.13	10.79	23.78	46.00	-22.22	Average
10	3.190	12.37	0.17	10.91	23.45	46.00	-22.55	Average
11	11.139	18.94	0.32	10.93	30.19	50.00	-19.81	Average
12	11.498	24.45	0.32	10.93	35.70		-24.30	. N. 18 C. C. S. S. S. S. C. C. C. C. S.

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	HELLO 2	Product model:	HELLO 2	
Test by:	Carey	Test mode:	BT Tx mode	
Test frequency: 150 kHz ~ 30 MHz		Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%	
100 Level (dBuV) 90 70 50	-7	Marie appropriate the following of the second	FCC PART 15.247 QP FCC PART 15.247 AV	
-1015 .2 Trace: 33	Read LISN Cal		ne Limit Remark	
1 0.15 2 0.17 3 0.20 4 0.21 5 0.26 6 0.31 7 0.34 8 0.43 9 0.50 10 0.69 11 0.72 12 2.96	68 45.36 0.98 10. 62 22.17 0.96 10. 66 44.82 0.92 10. 69 21.68 0.93 10. 66 39.45 0.96 10. 8 16.95 0.97 10. 8 16.469 0.97 10. 9 22.69 0.97 10. 9 27.78 0.97 10. 9 14.79 0.97 10.	.77 57.11 6577 33.90 5476 56.50 6376 33.37 5275 51.16 6174 28.66 4973 56.39 5973 46.37 5776 34.42 4677 39.52 5678 26.54 46.	May dB 56 -8.45 QP 86 -20.96 Average 36 -6.86 QP 88 -19.51 Average 25 -10.09 QP 75 -21.09 Average 13 -2.74 QP 24 -10.87 QP 00 -11.58 Average 00 -16.48 QP 00 -19.46 Average 00 -20.20 Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
	RSS-247 section 5.4(b)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	FCC: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. IC: For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
	GFSK mo	de			
Lowest	5.85	30.00	Pass		
Middle	6.91	30.00	Pass		
Highest	6.18	30.00	Pass		
	π/4-DQPSK mode				
Lowest	5.12	21.00	Pass		
Middle	5.39	21.00	Pass		
Highest	4.81	21.00	Pass		
	8DPSK mode				
Lowest	5.18	21.00	Pass		
Middle	5.42	21.00	Pass		
Highest	4.84	21.00	Pass		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) RSS-247 section 5.1(a)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode: Non-hopping mode		
Test results: Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)		
rest channel	GFSK	π/4-DQPSK	8DPSK
Lowest	836	1158	1170
Middle	836	1170	1176
Highest	834	1164	1176
Test channel	99% Occupy Bandwidth (kHz)		
rest channel	GFSK	π/4-DQPSK	8DPSK
Lowest	996	1212	1212
Middle	1002	1212	1206
Highest	1002	1212	1206

Test plot as follows:

6.5 Carrier Frequencies Separation

Test Requirement: Test Method: Receiver setup:	FCC Part 15 C Section 15.247 (a)(1) RSS-247 section 5.1(b) ANSI C63.10:2013 and DA00-705 RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	GFSK		
Lowest	1004	834.00	Pass
Middle	1000	834.00	Pass
Highest	1000	834.00	Pass
π/4-DQPSK mode			
Lowest	1004	772.00	Pass
Middle	1004	772.00	Pass
Highest	1004	772.00	Pass
8DPSK mode			
Lowest	1000	780.00	Pass
Middle	1000	780.00	Pass
Highest	1004	780.00	Pass

Note: According to section 6.4

teres in the contract of the c			
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)	
GFSK	834	834.00	
π/4-DQPSK	1158	772.00	
8DPSK	1170	780.00	

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) RSS-247 section 5.1(d)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (a)(1) RSS-247 section 5.1(d) ANSI C63.10:2013 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results: Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result	
	DH1	0.13696			
GFSK	DH3	0.27296	0.4	Pass	
	DH5	0.31424			
	2-DH1	0.13888			
π/4-DQPSK	2-DH3	0.27232	0.4	Pass	
	2-DH5	0.31552			
	3-DH1	0.13888			
8DPSK	3-DH3	0.27296	0.4	Pass	
	3-DH5	0.31595			

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.428*(1600/(2*79))*31.6=136.96ms DH3 time slot=1.706*(1600/(4*79))*31.6=272.96ms DH5 time slot=2.946*(1600/(6*79))*31.6=314.24ms

Test plot as follows:

Report No: CCISE181004701

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) and RSS 247 section 5.1 requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

-					
Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5				
Test Method:	ANSI C63.10:2013 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Non-hopping mode and hopping mode				
Test results:	Pass				

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	RSS-GEN section 8.10							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detecto		or RBW		BW	Remark	
·	Above 1GHz	Peak				ЛHz	Peak Value	
		RMS		1MHz	3MHz		Average Value	
Limit:	Frequen	Limit (dBuV/m @3m)			Remark			
	Above 1GHz		54.00 74.00			Average Value Peak Value		
Test setup:	Horn Antenna Tower AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Amptier Controller							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Non-hopping mode							
Test results:	Passed							

GFSK Mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	ct Name:	HELLO 2			Product Model: HELLO 2				
Test By	y:	Carey			Te	st mode:		DH1 Tx mode	
Test Cl	hannel:	Lowest channel			Ро	larization:		Horizontal	
Test Vo	Test Voltage:		AC 120/60Hz		En	vironment	:	Temp: 24°C Huni: 57%	
Le	evel (dBuV/m)								
1000									
100									0
									J 1
80								FCC	PART 15 (PK)
20									
60	0 - 0 0 0 0 0		a promote	mn	~~~~	_ ~~~~	Amer 1	FCC	PART 15 (AV)
40	***********						V		
40									
20									
23	10 2320	11	Ti ku	2350 Eroc	uency (MH	17)			2403
10.554 (10.555)		Readá	ntenna	DADE DARRANDO DE A	The Control of the Co	12)	Limi	t Over	
	Freq							e Limit	
	MHz	—dBu₹				dBuV/m	dBu₹/	m dB	
1 2	2390.000		27.37	4.69				0 -24.30	
2	2390.000	8. 24	21.31	4.69	0.00	40.30	04.0	0 -13.70	Average
Romark	**								

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor	Cable		Limit Line	Remark
	MHz	dBu∇			<u>d</u> B	 	
1 2	2483.500 2483.500						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Freq	juency (MH	Z)			
	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2			27.57 27.57	4.81 4.81		52.90 40.67			Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

Product Name: HELLC			HELLO 2			duct Mod	el: H	HELLO 2		
Test B	y:	Carey			Tes	st mode:	21	DH1 Tx mo	de	
Test C	hannel:	Lowest channel Polarization:				V	ertical			
Test V	oltage:	AC 120/6	i0Hz		Env	/ironment	: T	Temp: 24℃ Huni: 57%		
Lev	vel (dBuV/m)									
110	ror (abarrin)									
100										
										Λ
80								FCC	PART 15 (F	040
										Ť
60								ECC	PART 15 (A	M
-	mun	mm	www	~~~	~~~~	m	~~~	many		.vj
40										
20										
20										
23	10 2320	114		2350		-1				240
	-	Reads	int enna	2000	uency (MH Preamp		Limit	Over		
	Freq							Limit	Remark	
		dBu₹	dB/m	āB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
	MHz	and a	200							
1	MHz 2390.000	19.84		4.69	0.00	51.90	74.00	-22.10	Peak	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	Ct Name: HELLO 2 Product Model:		el: H	HELLO 2						
est By:		Carey Test mode: 2DH1 Tx mode				ode				
est Cha	annel:	Lowest channel			Lowest channel Polarization:		He	orizontal		
est Vol	tage:	AC 120/60	OHz		Env	Environment:		Temp: 24℃ Huni: 57%		
Leve	el (dBuV/m)									
The state of the s	,									
100										
80								FCC	PART 15 (PK)	
								FCC	BABT 45 (410)	
60							4000	FUL	PART 15 (AV)	
60		~~~	V	~~~	man	man	~~~	my	PART 15 (AV)	
40		m	V	~~~				man 2	PART 15 (AV)	
			V-m	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~	mum)	PART 15 (AV)	
			Arran-			m		2	PART 15 (AV)	
40			V	~~~		m		2	PART 15 (AV)	
40	2220		V	2350				2		
40	2320			2350 Frequ	Jency (MHz)		2	24	
40	2320	ReadA	unt enna	Frequ			Limit	2	24	
40	W 2007	ReadA Level	intenna Factor	Frequ Cable	Preamp			Over	24	
40	W 2007	Level	ntenna Factor	Frequ Cable	Preamp Factor		Line	Over Limit	24 Remark	
40	Freq MHz	Level — <u>dBu</u> V	Factor —dB/m	Frequ Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m	Over Limit	24 Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				rrequ	neuch (mur	-)			
	Freq		Antenna Factor				Limit Line		
	MHz	—dBu∀	— <u>d</u> B/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>ab</u>	
1	2483.500 2483.500					54.78 41.25			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor					Remark	
MHz	dBu∜	— <u>d</u> B/π	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		
2483.500 2483.500			0.00 0.00	53.84 41.09	74.00 54.00	-20.16 -12.91	Peak Average	

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8DPSK mode

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	ct Name: HELLO 2 Product Model:		el: HI	ELLO 2						
Test By	y:	Carey			Tes	t mode:	30	DH1 Tx mo	de	
Γest Cl	hannel:	Lowest channel			Pol	arization:	Н	Horizontal		
Γest Vo	oltage:	AC 120/60	OHz		Env	vironment:	Те	Temp: 24°C Huni: 57%		
Lo	evel (dBuV/m)									
110	ver (ubuviiii)									
100										
									\wedge	
80								ECC	PART 15 (PK)	
-								100	TART TO LET	
60								FCC	PART 15 (AV)	
77	mm	~~~~	man	my	~~~~	Vinner	mon	mm		
40								2		
40								2		
								2		
20								2		
								2		
20	10 2320			2350 Freq	uency (MHz	z)		2	2403	
20	-	ReadA Level		Frequ Cable	Preamp			Over Limit		
20	-			Frequ Cable	Preamp Factor		Line	Limit		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Limit Line		Remark
	MHz	dBu∀	<u>d</u> B/m	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483,500 2483,500				54.75 40.83			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Test plot as follows:

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 RSS-Gen section 6.13								
Test Method:	ANSI C63.10: 2	013							
Test Frequency Range:	9 kHz to 25 GH	Z							
Test Distance:	3m								
Receiver setup:	Frequency	Detec	tor	RBW	VBV	٧	Remark		
	30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Valu								
	Above 1GHz Peak 1MHz 3MHz Pe						Peak Value		
	Above 10112	RMS	3	1MHz	3MH	lz	Average Value		
Limit:	Frequenc	y	Lim	it (dBuV/m @	23m)		Remark		
	30MHz-88N	ИHz		40.0			Quasi-peak Value		
	88MHz-216	MHz		43.5			Quasi-peak Value		
	216MHz-960	MHz		46.0			Quasi-peak Value		
	960MHz-1G	SHz		54.0			Quasi-peak Value		
	Above 1GI	Hz -		54.0			Average Value		
	7,5000 101	12		74.0			Peak Value		
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz Figure Receiver Test Receiver								

Test Procedure:	The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference receiving.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above
Remark:	

Measurement Data (worst case):

Below 1GHz:

Product Name:	HELLO 2	Product Model:	HELLO 2
Test By:	Carey	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	·	-	<u>-</u>

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Name:	HELLO 2			Prod	luct Mode	l: H	HELLO 2 BT Tx mode				
Test By:		Carey			Test	mode:	В					
Test Fre	equency:	30 MHz ~	· 1 GHz		Pola	Polarization:		Horizontal		Horizontal		
Test Voltage: AC 120/60Hz Environment:		ronment:	Т	emp: 24℃	Huni: 5	57%						
80 Level 70 60 50 40 30	(dBuV/m)	va. of work	Manufacture of the second	Å		Market Ma		FCC PAR	MANA AMARIA	S B		
030	50		100	Frequ	200 iency (MHz)		500		1000		
115000		Read	Antenna	A - 6 - 10 10 00 00 00 00 00 00 00 00 00 00 00	Preamp	,	Limit	Over				
	Freq		Factor		Factor	Level	Line		Remark			
5 <u>-</u>	MHz	—dBuV	<u>dB</u> /m		<u>d</u> B	dBuV/m	dBuV/π	ā <u>ā</u>				
1 2 3 4 5 6	114. 114 138. 387 159. 225 300. 367 473. 835 601. 427	43.08 53.18 48.11 50.46 43.57 39.48	11.41 8.19 9.06 13.61 16.79 19.22	2.10 2.38 2.58 2.94 3.40 3.94	29. 43 29. 28 29. 14 28. 45 28. 91 28. 93	27.16 34.47 30.61 38.56 34.85 33.71	43.50 43.50 46.00 46.00	-12.89	QP QP QP QP			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Test channel:			Lowest		Lev	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804	48.73	31.60	6.80	41.81	45.32	74.00	-28.68	Vertical	
4804	48.62	31.60	6.80	41.81	45.21	74.00	-28.79	Horizontal	
Te	st channel		Lowest		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.89	31.60	6.80	41.81	35.48	54.00	-18.52	Vertical	
4804.00	38.45	31.60	6.80	41.81	35.04	54.00	-18.96	Horizontal	

Te	st channel:		Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	46.99	31.72	6.86	41.84	43.73	74.00	-30.27	Vertical	
4882.00	46.90	31.72	6.86	41.84	43.64	74.00	-30.36	Horizontal	
Te	st channel		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	36.48	31.72	6.86	41.84	33.22	54.00	-20.78	Vertical	
4882.00	36.26	31.72	6.86	41.84	33.00	54.00	-21.00	Horizontal	

Te	st channel:		Highest		Lev	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	45.26	31.84	6.91	41.87	42.14	74.00	-31.86	Vertical	
4960.00	45.94	31.84	6.91	41.87	42.82	74.00	-31.18	Horizontal	
Te	st channel		Highest		Le	vel:	Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	35.34	31.84	6.91	41.87	32.22	54.00	-21.78	Vertical	
4960.00	35.42	31.84	6.91	41.87	32.30	54.00	-21.70	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.