

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

TỐI ƯU LẬP KẾ HOẠCH

Mô hình hóa

Nội dung

- Tổng quan mô hình hóa
- Ví dụ minh họa

Tổng quan mô hình hóa

- Mô hình hóa
 - Xác định biến quyết định
 - Xác định các ràng buộc của bài toán
 - Xác định hàm mục tiêu
- Một bài toán có thể có nhiều phương pháp mô hình hóa khác nhau

- Các thư viện phần mềm cho quy hoạch tuyến tính tỏ ra rất hiệu quả trong nhiều bài toán
- → Chuyển mô hình chưa tuyến tính (hàm mục tiêu, ràng buộc chưa phải tuyến tính) về mô hình tuyến tính
- Ví dụ
 - Tuyến tính hóa ràng buộc $X = \min\{x_1, x_2\}$

- Các thư viện phần mềm cho quy hoạch tuyến tính tỏ ra rất hiệu quả trong nhiều bài toán
- → Chuyển mô hình chưa tuyến tính (hàm mục tiêu, ràng buộc chưa phải tuyến tính) về mô hình tuyến tính
- Ví dụ
 - Tuyến tính hóa ràng buộc $X = \min\{x_1, x_2\}$

Giải pháp: Định nghĩa thêm biến phụ trợ y là biến nhị phân $D(y) = \{0,1\}$, giả định M là một hằng số rất lớn

- $X_1 \geq X$
- $X_2 \geq X$
- $X \ge x_1 M(1-y)$
- $X \ge x_2 My$

- Ví dụ
 - Tuyến tính hóa ràng buộc $(x = 1) \Rightarrow (z \ge y)$ trong đó x là biến nhị phân, y và z là các biến thực ?

- Ví dụ
 - Tuyến tính hóa ràng buộc (x = 1) ⇒ (z ≥ y) trong đó x là biến nhị
 phân, y và z là các biến thực?

Giải pháp: giả định M là một hằng số rất lớn

• $M(x-1) + y \le z$

- Ví dụ
 - Tuyến tính hóa ràng buộc $(x > 0) \Rightarrow (z \ge y)$ trong đó x, y và z là các biến thực (và x >=0) ?

- Ví dụ
 - Tuyến tính hóa ràng buộc $(x > 0) \Rightarrow (z \ge y)$ trong đó x, y và z là các biến thực (và x >=0) ?

Giải pháp:

- Giả định M là một hằng số rất lớn,
- Đưa thêm biến nhị phân $t \in \{0,1\}$:
 - t = 1 mang ý nghĩa x > 0, và t = 0 mang ý nghĩa là x = 0
- Thay thế bằng ràng buộc
 - *x* ≤ *M*.*t*
 - $z + (1-t)M \ge y$

Bài toán phân công giảng dạy

- Cần phân công m giáo viên T = {0,1,2,..., m-1} phụ trách giảng dạy n lớp
 C = {0,1,2,...,n-1} một cách cân bằng nhau nhất có thể
 - Mỗi giáo viên chỉ có thể dạy một số lớp nào đó phụ thuộc vào chuyên môn và được thể hiện ở ma trận A_{mxn} , trong đó A(t,c)=1 nếu giáo viên t có thể dạy lớp c
 - Các lớp được xếp thời khóa biểu từ trước, do đó các lớp có thể trùng thời khóa biểu với nhau, ký hiệu B là tập các cặp 2 lớp (i,j) bị trùng thời khóa biểu
 - Tải của một giáo viên được tính bằng số lớp phân công cho giáo viên đó
- Cần lập kế hoạch phân công sao cho
 - Mỗi lớp được phân cho đúng 1 giáo viên
 - Tải của giáo viên nhiều tải nhất phải nhỏ nhất có thể được (để nhằm mục đích san đều tải giữa các giáo viên)

Bài toán phân công giảng dạy

• Ví dụ

Course	0	1	2	3	4	5	6	7	8	9	10	11	12
credits	3	3	4	3	4	3	3	3	4	3	3	4	4

Teachers	Preference Courses
0	0, 2, 3, 4, 8, 10
1	0, 1, 3, 5, 6, 7, 8
2	1, 2, 3, 7, 9, 11, 12

Conflicting courses

0	2
0	4
0	8
1	4
1	10
3	7
3	9
5	11
5	12
6	8
6	12

Bài toán phân công giảng dạy

Ví dụ

Course	0	1	2	3	4	5	6	7	8	9	10	11	12
credits	3	3	4	3	4	3	3	3	4	3	3	4	4

Teachers	Preference Courses
0	0, 2, 3, 4, 8, 10
1	0, 1, 3, 5, 6, 7, 8
2	1, 2, 3, 7, 9, 11, 12

Teacher	Assigned courses	Load
0	2, 4, 8, 10	15
1	0, 1, 3, 5, 6	15
2	7, 9, 11, 12	14

Lớp trùng TKB

0	2
0	4
0	8
1	4
1	10
3	7
3	9
5	11
5	12
6	8
6	12

Bài toán phân công giảng dạy – CP Model

- Biến quyết định
 - X(i): giáo viên dạy lớp i, ∀i ∈ C, miền giá trị D(X(i)) = {t ∈ T | A(t,i) = 1}
 - Y(i): tải của giáo viên i, miền giá trị $D(Y(i)) = \{0,1,...,n-1\}$
 - Z: tải lớn nhất giữa các giáo viên
- Ràng buộc
 - $X(i) \neq X(j), \forall (i,j) \in B$
 - $Y(i) = \sum_{j \in C} (X(j) = i), \forall i \in T$
 - $Z \ge Y(i), \forall i \in T$
- Hàm mục tiêu cần tối thiểu hóa: Z

Bài toán phân công giảng dạy – ILP model

- Biến quyết định
 - X(i,j) = 1: giáo viên i được phân công dạy lớp j, và X(i,j) = 0, ngược lại, $\forall i \in T, j \in C$, miền giá trị $D(X(i,j)) = \{0,1\}$
 - Y(i): tải của giáo viên i, miền giá trị D(Y(i)) = {0,1,...,n-1}
 - Z: tải lớn nhất giữa các giáo viên
- Ràng buộc
 - $\sum_{i \in T} X(i,j) = 1$, $\forall j \in C$
 - $X(t,i) + X(t,j) \le 1$, $\forall (i,j) \in B$, $t \in T$
 - $Y(i) = \sum_{j \in C} X(i,j), \forall i \in T$
 - $Z \ge Y(i), \forall i \in T$
- Hàm mục tiêu cần tối thiểu hóa: Z

Bài toán người du lịch (TSP)

Có n điểm 1, 2, ..., n. Một người du lịch xuất phát từ điểm 1, cần đi thăm các điểm khác, mỗi điểm đúng 1 lần và quay trở về điểm 1. Biết d(i,j) là khoảng cách từ điểm i đến điểm j. Hãy tìm hành trình cho người du lịch sao cho tổng độ dài là nhỏ nhất

Bài toán người du lịch (TSP)

- · Biến quyết định
 - Biến nhị phân X(i,j) = 1 nếu hành trình đi theo cung (i, j), and X(i,j) = 0, ngược lại.
- Ràng buộc
 - Mỗi điểm có đúng 1 cạnh đi vào và đúng 1 cạnh đi ra

$$\sum_{j=1}^{N} X(i,j) = \sum_{j=1}^{N} X(j,i) = 1, \forall i \in \{1,2,...,N\}$$

Ràng buộc cấm tạo chu trình con

$$\sum_{(i,j) \in S} X(i,j) \le |S| - 1, \ \forall \ S \subseteq \{1,2,...,N\} \text{ and } |S| < N$$

Hàm mục tiêu cần tối thiểu hóa

$$f(X) = \sum_{j=1}^{N} \sum_{i=1}^{N} d(i,j)X(i,j)$$

Bài toán người du lịch biến thể (eTSP)

• Có n điểm 1, 2, ..., n. Một người du lịch xuất phát từ điểm 1, cần đi thăm các điểm khác, mỗi điểm đúng 1 lần và quay trở về điểm 1. Biết d(i,j) là khoảng cách từ điểm i đến điểm j. Biết Q là tập các bộ (i,j) sao cho điểm i phải được thăm trước điểm j trên hành trình. Hãy tìm hành trình cho người du lịch sao cho tổng độ dài hành trình là nhỏ nhất

- Một đội K xe tải 1, 2, ..., K cần được lập lộ trình đi qua N khách hàng 1, 2, ..., N để thu gom hàng hóa
 - Khách hàng i nằm ở điểm i và có một lượng hàng cần thu gom là r(i)
 đơn vị, i = 1, 2, ..., N
 - Xe tải k (k = 1,..., K)
 - Xuất phát từ điểm N+k và kết thúc lộ trình ở điểm N + K + k (trong một số trường hợp, N+k và N+K+k có thể tham chiếu đến 1 điểm kho duy nhất)
 - Có tải trọng là c(k) biểu diễn số lượng đơn vị hàng tối đa có thể vận chuyển trên 1 chuyến
 - Khoảng cách di chuyển từ điểm i đến điểm j là d(i,j), i,j = 1,...,N + 2K
- Tính lộ trình cho các xe
 - Mỗi khách hàng được thăm bởi đúng 1 xe
 - Thỏa mãn ràng buộc về tải trọng
 - Tổng độ dài hành trình của các xe là nhỏ nhất

	1	2	3	4	5	6	7	8
1	0	2	3	4	3	3	3	3
2	4	0	2	6	1	1	1	1
3	2	4	0	2	1	1	1	1
4	5	7	7	0	4	4	4	4
5	3	1	5	7	0	0	0	0
6	3	1	5	7	0	0	0	0
7	3	1	5	7	0	0	0	0
8	3	1	5	7	0	0	0	0

- Ký hiệu
 - $B = \{1, ..., N+2K\}$
 - $F_1 = \{(i, k+N) \mid i \in B, k \in \{1,...,K\}\}$
 - $F_2 = \{(k+K+N, i) \mid i \in B, k \in \{1,...,K\}\}$
 - $F_3 = \{(i, i) \mid i \in B\}$
 - $A = B^2 \setminus F_1 \setminus F_2 \setminus F_3$
 - $A^+(i) = \{ j \mid (i, j) \in A \}, A^-(i) = \{ j \mid (j, i) \in A \}$
- Biến quyết định
 - X(k,i,j) = 1 nếu xe k di chuyển qua cạnh (i, j), ∀k = 1,...,K, (i,j) ∈ A
 - Y(k,i): số đơn vị hàng hóa được thu gom trên xe k sau khi rời khỏi điểm i, ∀k = 1,...,K, ∀i = 1,...,N+2K
 - Z(i): chỉ số của xe đi thăm điểm i, ∀ i = 1,2,..., N+2K

- Ràng buộc
 - $\sum_{k=1}^{K} \sum_{j \in A^{+}(i)} X(k, i, j) = \sum_{k=1}^{K} \sum_{j \in A^{-}(i)} X(k, j, i, j) = 1, \forall i = 1, ..., N$
 - $\sum_{j \in A^{+}(i)} X(k,i,j) = \sum_{j \in A^{-}(i)} X(k,j,i), \forall i = 1,...,N, k = 1,...,K$
 - $\sum_{j=1}^{N} X(k, k+N, j) = \sum_{j=1}^{N} X(k, j, k+K+N) = 1, \forall k = 1, ..., K$
 - $M(1-X(k,i,j)) + Z(i) \ge Z(j), \ \forall \ (i,j) \in A, \ \forall k = 1,...,K$
 - $M(1-X(k,i,j)) + Z(j) \ge Z(i), \ \forall \ (i,j) \in A, \ \forall k = 1,...,K$
 - $M(1-X(k,i,j)) + Y(k,j) \ge Y(k,i) + r(j), \forall (i,j) \in A, \forall k = 1,...,K$
 - $M(1-X(k,i,j)) + Y(k,i) + r(j) \ge Y(k,j), \forall (i,j) \in A, \forall k = 1,...,K$
 - $Y(k,k+K+N) \le c(k), \forall k = 1,...,K$
 - $Y(k,k+N) = 0, \forall k = 1,...,K$
 - $Z(k+N) = Z(k+K+N) = k, \forall k = 1,...,K$
- Hàm mục tiêu
 - $f(X,Y,Z) = \sum_{k=1}^{K} \sum_{(i,j) \in A} X(k,i,j) d(i,j) \rightarrow \min$

Bài toán quảng bá dữ liệu

- Cho mạng truyền thông, trong đó V = {1,...,N} là tập các máy tính, E⊆ V² là tập các đường truyền kết nối giữa các máy tính. Một máy s ∈ V là điểm phát tin tức.
- Mỗi máy tính khi nhận được gói tin có thể truyền tiếp đến các máy tính kết nối với nó
 - t(i,j) và c(i,j) tương ứng là thời gian và chi phí truyền tin từ máy i đến máy j
- Tìm tập các đường kết nối để quảng bá gói tin từ s đến các nút khác trong mạng sao cho
 - Thời gian gói tin truyền từ s đến mỗi nút khác không vượt quá L
 - Tổng chi phí truyền tin là nhỏ nhất

Bài toán quảng bá dữ liệu

- Ký hiệu $A(i) = \{j \in V \mid (i,j) \in E\}$, M là hằng số rất lớn
- Biến quyết định
 - Biến nhị phân X(i,j) = 1 nếu gói tin được truyền từ nút i đến nút j, và
 X(i,j) = 0, ngược lại, ∀(i,j)∈E
 - Y(i): thời điểm gói tin đến nút i, ∀i∈ V
- Ràng buộc
 - $\sum_{i \in A(j)} X(i,j) = 1, \forall j \in V \{s\}$
 - $Y(i) + t(i,j) + M(1-X(i,j)) \ge Y(j), \forall (i,j) \in E$
 - $Y(i) + t(i,j) + M(X(i,j)-1) \le Y(j), \forall (i,j) \in E$
 - $Y(i) \leq L, \forall j \in V \{s\}$
 - Y(s) = 0
- · Hàm mục tiêu cần tối thiểu hóa

$$f(X) = \sum_{(i,j) \in E} c(i,j)X(i,j)$$

Bài toán Facility Location

- Có M điểm 1, 2, ..., M có thể được sử dụng để mở dịch vụ phục vụ N khách hàng 1, 2, ..., N.
 - f(i) là chi phí để mở điểm i
 - Q(i) là khả năng phục vụ của điểm i (tổng lượng hàng hóa tối đa có thể phục vụ các khách hàng)
 - c(i,j) là chi phí vận chuyển 1 đơn vị hang hóa từ điểm i đến khách hàng j
 - d(j) là lượng hàng yêu cầu được phục vụ của khách hàng j
- Lập kế hoạch mở điểm phục vụ và lượng hàng hóa mỗi điểm phục vụ mỗi khách hàng
 - Thỏa mãn ràng buộc về khả năng phục vụ
 - · Tối thiểu hóa tổng chi phí

Bài toán Facility Location

- Biến quyết định
 - Y(i) biến nhị phân, Y(i) = 1 có nghĩa điểm phục vụ i được mở, và Y(i) = 0, ngược lại
 - X(i,j) lượng hàng mà điểm dịch vụ i phục vụ cho khách hàng j
- Ràng buộc
 - $\sum_{i=1}^{M} X(i,j) = d(j), \forall j = 1,..., N$
 - $\sum_{j=1}^{N} X(i,j) \leq Q(i) Y(i), \forall i = 1,..., M$
 - $0 \le X(i,j) \le d(j)Y(i), \forall i = 1,..., M, \forall j = 1,..., N$
- Hàm mục tiêu cần tối ưu

$$\sum_{i=1}^{M} f(i)Y(i) + \sum_{i=1}^{M} \sum_{j=1}^{N} c(i,j)X(i,j) \rightarrow \min$$

Bài tập

- Resource constrained shortest path problem
 - Cho đồ thị G = (V,E), mỗi cung e của E có chi phí là c(e) và lượng tài nguyên tiêu thụ khi đi qua cung e là r(e). Cho đỉnh nguồn s và đỉnh đích t. Hãy tìm đường đi từ s đến t trên G sao cho
 - Tổng lượng tài nguyên tiêu thụ dọc theo các cung trên đường đi
 lớn hơn hoặc bằng L và nhỏ hơn hoặc bằng U
 - Tổng chi phí các cung trên đường đi là nhỏ nhất
- Degree constrained minimum spanning tree problem
 - Cho đồ thị vô hướng G=(V,E) trong đó c(e) là trọng số cạnh e. Cho hàng số D, hãy tìm cây khung nhỏ nhất của G sao cho bậc của mỗi đỉnh trên cây khung không vượt quá D

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

