Aula 5 Arrays 1D Vetores

- Estruturas de itens de dados relacionados
- Entidade estática ➤ Tamanho constante ao longo de todo o programa
- Grupo de locações consecutivas de memória
- Mesmo nome e tipo

- Referência a elementos de um array
 - Nome do array
 - Número da posição do elemento no array
- Formato

```
nome_array[número_posição]
```

- Primeiro elemento ➤ Posição 0 do array
- Array c de n elementos
 - c[0], c[1] ... c[n-1]

- Exemplo
 - Nome do array ➤ vet
 - Número de elementos ► 12

Nome do array

Todos os elementos do array têm o mesmo nome, **vet**

Posição do elemento

Número que indica a posição do elemento no array acompanha o nome, entre colchetes

vet[0]	-45
vet[1]	6
vet[2]	0
vet[3]	72
vet[4]	1543
vet[5]	-89
vet[6]	0
vet[7]	62
vet[8]	-3
vet[9]	1
vet[10]	6453
vet[11]	78

 Elementos de array são semelhantes à variáveis normais

```
c[0] = 3;
printf("%d", c[0]);
```

 Realização de operações em subscritos. Se x igual a 3

```
c[5-2] == c[3] == c[x]
```

Declaração de *Arrays*

- Declaração de arrays
 - Nome
 - Tipo
 - Número de elementos

```
tipo_array nome_array[número_elementos];
```

Exemplos
 int c[10];
 float mey_array[3284]

- Declaração de múltiplos arrays do mesmo tipo
 - Formato similar para variáveis regulares
 - Exemplo
 int b[100], x[27]

Exemplos de Uso de Arrays

Inicializadores

```
int n[6] = \{1, 20, 0, 4, 5, 6\}
```

 Número de inicializadores insuficiente > Atribuição de 0 aos elementos mais à direita

$$int n[6] = \{0\}$$

- Todos os elementos iguais a 0
- Número de inicializadores excessivo ➤ Produção de um erro de sintaxe
- Arrays em C não têm verificação de limites

Exemplos de Uso de Arrays

Omissão do tamanho > Determinação a partir dos inicializadores

• 6 inicializadores ► *Array* com 6 elementos

Exercício

- Faça um programa na linguagem C que leia um vetor com N elementos e calcule:
 - a) Soma dos elementos;
 - b) Maior elemento;
 - c) Porcentagens de elementos pares;
 - d) Média Ponderada dos elementos usando como peso o índice;
 - e) Média Geométrica dos elementos

Exercício 2 para fazer

- Faça um programa na linguagem C que leia um vetor com N elementos e calcule:
 - a) Produto dos elementos;
 - b) Menor elemento impar;
 - c) Porcentagens de elementos >0, =0, <0;
 - d) Média Aritmética dos elementos pares;

Exercício 3

 Faça um programa na linguagem C que leia dois A e B vetores com N e M elementos cada e calcule:

Exercício 4

 Faça um programa na linguagem C que leia um vetor com N elementos que podem variar de zero 1000 e calcule quantos elementos 0, 1, 2,..., 1000 tem no vetor.