

I Made A Water Computer And It Actually Works

MINIMIZATION

Number of Gates
Number of Inputs (2-input vs 4-input)
Number of Interconnections
Propagation Time
Cost of Gates
Circuit Area

A circuit may not satisfy all due to conflicting constraints!

- o Needs to be smart. It is hard due to guesswork (which rules to apply?)
- o If the number of variables (ABCDEF...) and/or number of minterms (MAXTERMS) grows
- o No Algorithm
- o Is the result minimal?!

BASIC THEOREMS Prove by postulates

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$
= $(X + X)$ 1 using identity $e_x = 1$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) 1 \text{ using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X+X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$= X + Q \text{ using complement property}$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$= X + 0 \text{ using complement property}$$

$$= X \text{ using identity property of } e_x = 0$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) 1 using identity e_{*} = 1$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) 1 using identity e_{*} = 1$$

$$= (X + 1) (X + X') using complement property$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) \text{ 1 using identity } e_x = 1$$

$$= (X + 1) (X + X') \text{ using complement property}$$

$$= X + (1X') \text{ using distributive property of } + \text{ over } \times$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) \text{ 1 using identity } e_x = 1$$

$$= (X + 1) (X + X') \text{ using complement property}$$

$$= X + (1X') \text{ using distributive property of } + \text{ over } \times$$

$$= X + X' \text{ using identity } e_x = 1$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$\frac{X + XY = X}{X} + \frac{XZW + ... + XWAD = X}{X}$$

Absorption

$$X + XY = X$$

$$X + XY + XZW + ... + XWAD = X$$

X + XY =

= X_1+XY using identity $e_x=1$

= X(1 + Y) using distributive property of \times over +

= X1 using previous theorem x+1=1

= X using identity $e_x = 1$

Absorption

DUALITY THEORY

DUALITY

Dual(F) =
$$\overrightarrow{OR} \rightleftharpoons \overrightarrow{AND}$$
, $1 \rightleftharpoons 0$

Dual(F) may or may not equal to F!

DUALITY

$$\begin{array}{c} X + 1 \rightleftharpoons X0 \\ X + X' \rightleftharpoons X \rightleftharpoons X' \\ (X + Y)' \rightleftharpoons (X \rightleftharpoons Y)' \end{array}$$

DUALITY FOR COMPLEMENT (NOT)

DUALITY FOR COMPLEMENT (NOT)

$$F=A+(BC) \rightarrow F'=[A+(BC)]'=[A'(BC)]'=[A'(BC)']=[A'(B'+C')]$$

DUALITY FOR COMPLEMENT (NOT)

$$F=A+(BC) \rightarrow Dual(F) \rightarrow A(B+C) \rightarrow F'=A'(B'+C')$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$F' = [AB(C+(DL'G(B'+A+E)))(H+(J'A'B))]'$$

$$F' = [AB(...)(H+(J'A'B))]'$$

$$F' = [A'+B'+(...)'+(H+(J'A'B))']$$

$$F' = [A'+B'+(...)'+(H'(J'A'B)')]$$

$$F' = [A'+B'+(...)'+(H'(J+A+B'))]$$

$$F' = [A'+B'+(C+(...))'+(H'(J+A+B'))] OMG!$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A +$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A + B$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A + B + ($$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A+B+(C)$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A+B+(C($$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A+B+(C(D+L'+G+(B'AE)))(H(J'+A'+B))$$

$$F = AB(C+(DL'G(B'+A+E)))(H+(J'A'B))$$

$$Dual(F) = A+B+(C(D+L'+G+(B'AE)))(H(J'+A'+B))$$

Complement all variables only!

$$F' = A'' + B'' + (C''(D'' + L + G' + (BA'E')))(H'(J + A + B'))$$

DUALITY THEOREM

A postulate or a proved theorem for F, also a postulate or a proved theorem for Dual(F)

DUALITY

$$\{X+1=1\} \rightleftarrows \{X0=0\}$$

$$\{X+X'=1\} \rightleftarrows \{XX'=0\}$$

$$\{(X+Y)'=X'Y'\} \rightleftarrows \{(XY)'=X'+Y'\}$$

$$X(X+Y) = X$$

$$X(X+Y)(X+Z) \dots (X+W) = X$$

$$\{X(X+Y)=X\} \quad \rightleftarrows \quad \{X+XY=X\}$$

- → We proved the dual version
 - → Using the duality property, this is also true!

Absorption

MINIMIZATION

Boolean Algebra (algebraically)

aka. Algebraic Manipulation

EXAMPLE

$$F = \underbrace{ZY'X'}_{m_4} + \underbrace{ZYX}_{m_6} + \underbrace{ZYX'}_{m_6} + \underbrace{ZY'X}_{m_5}$$

4 × 3-input-AND 1 × 4-input-OR

$$F = \frac{Z}{Y'X'} + \frac{Z}{ZYX} + \frac{Z}{ZYX'} + \frac{Z}{ZYX'}$$

$$F = \frac{Z}{Z}(Y'X' + YX + YX' + Y'X)$$

$$F = Z(Y'X' + YX + YX' + Y'X)$$

$$F = \frac{Z}{Y'}(X'+X) + YX + YX')$$

$$F = \frac{Z}{Y'}(X'+X) + YX + YX')$$

$$F = Z(Y'1 + YX + YX')$$

$$F = Z (Y'1 + YX + YX')$$

$$F = Z(Y' + YX + YX')$$

$$F = Z(Y' + YX + YX')$$

$$F = Z(Y' + Y(X+X'))$$

$$F = Z(Y' + Y(X+X'))$$

$$F = Z(Y' + Y1)$$

$$F = Z (Y' + Y)$$

$$F = \frac{Z}{Y'+Y}$$

$$F = \frac{Z1}{2}$$

$$F = Z$$

0 gates!

$$F = ZY'X' + ZYX + ZYX' + ZY'X$$

 4×3 -input-AND 1×4 -input-OR

EXAMPLE

Another Approach

$$F = \frac{ZY'}{X'}X' + \frac{ZYX}{ZYX'} + \frac{ZY'}{ZYX'}X$$

$$F = \frac{ZY'}{(X'+X)} + ZYX + ZYX'$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{ZY}X + \frac{ZY}{ZY}X'$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{(X+X')}$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{(X+X')}$$

$$F = \frac{ZY'1}{2Y'1} + \frac{ZY'1}{2Y'1}$$

$$F = ZY' + ZY$$

$$F = \frac{Z}{Y'+Y}$$

$$F = \frac{Z}{1}$$

$$F = Z$$

0 gates!

$$F = ZY'X' + ZYX + ZYX' + ZY'X$$

 4×3 -input-AND 1×4 -input-OR

EXAMPLE

Another Approach

$$F = \frac{Z}{Y'X'} + \frac{Z}{Z}YX' + \frac{Z}{Z}YX' + \frac{Z}{Z}YX'$$

Absorption?

EXAMPLE II

$$F = ZY'X' + ZYX' + Z'YX$$

3 × 3-input-AND 1 × 3-input-OR

$$F = \frac{ZY'X'}{X} + \frac{ZYX'}{ZYX'} + \frac{Z'Y'X}{ZYX'}$$

$$F = \frac{ZX'}{(Y'+Y)} + Z'Y'X$$

$$F = \frac{ZX'}{(Y'+Y)} + Z'Y'X$$

$$F = \frac{ZX'}{1} + \frac{Z'Y'X}{1}$$

$$F = ZX' + Z'Y'X$$

1 × 2-input-AND 1 × 3-input-AND 1 × 2-input-OR

$$F = ZYX' + ZYX' + Z'Y'X$$

 3×3 -input-AND 1×3 -input-OR

DESIGN RECAP

SoP (ANDs-OR) → NAND PoS (ORs-AND) → NOR

Given two unsigned numbers x and y, design a logic circuit to see $x \ge v$

What is the range of x and y? $x \ge y$

What is the range of x and y? $x, y \in [0, 3]_{10}$

What is the range of x and y? $x, y \in [0, 3]_{10} = [00, 11]_{2}$

What is the range of output? $F \in \{0, 1\}$

Y2	Y1_	X2	X1	F(Y2,Y1,X2,X1)=?
0	0	0	0_	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	Q
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	O
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

Which design?

Which design?

SoP and PoS are both effective SoP and PoS have same efficiency (2-levels)

Which design?

Cost: How many gates in SoP vs. PoS?

	$F(Y2,Y1,X2,X1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1) = \Pi M(4,8,9,12,13,14)$
AND	?	?
OR	?	?
NOT	?	?
NAND	?	?
NOR	?	?

	$F(Y2,Y1,X2,X1) = \Sigma_m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1) = \Pi M(4,8,9,12,13,14)$
AND	Each minterm one 4-input-AND	Each MAXTERM one 4-input-OR
OR	One final 10-input-OR	One final <u>6</u> -input-AND
NOT	Doesn't Matter Much	Doesn't Matter Much

	$F(Y2,Y1,X2,X1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1) = \Pi M(4,8,9,12,13,14)$
AND	10 × 4-input-AND	6 × 4-input-OR
OR	10-input-OR = 3×4 -input-OR	6 -input-AND = 2 \times 4-input-AND
NOT	Doesn't Matter Much	Doesn't Matter Much

	$F(Y2,Y1,X2,X1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1) = \Pi M(4,8,9,12,13,14)$
AND	10 × 4-input-AND	6 × 4-input-OR
OR	10-input-OR = 3×4 -input-OR	6 -input-AND = 2×4 -input-AND
NOT	Doesn't Matter Much	Doesn't Matter Much

	$F(Y2,Y1,X2,X1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1) = \Pi M(4,8,9,12,13,14)$
NAND	10 × 4-input-NAND + 1 × 10-input-NAND	
NOR		6 × 4-input-NOR + 1 × 6-input-NOR

 $F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)$

= (M4)(M8)(M9)(M12)(M13)(M14)

 $= (Y_2 + Y_1' + X_2 + X_1)(Y_2' + Y_1 + X_2 + X_1)(Y_2' + Y_1' + X_2 + X_1)(Y_2' + Y_1' + X_2 + X_1)(Y_2' + Y_1' + X_2' + X_1)$

OMG!!

 $F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)$

= (M4)(M8)(M9)(M12)(M13)(M14)

= $(Y_2+Y'_1+X_2+X_1)(Y'_2+Y_1+X_2+X_1)(Y'_2+Y'_1+X_2+X_1)(Y'_2+Y'_1+X_2+X'_1)(Y'_2+Y'_1+X'_2+X'_1)$ Dual \rightarrow $(Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X_2X'_1)$

```
\begin{split} &F(Y_2,Y_1,X_2,X_1) = \prod M(4,8,9,12,13,14) \\ &= (M4)(M8)(M9)(M12)(M13)(M14) \\ &= (Y_2+Y'_1+X_2+X_1)(Y'_2+Y_1+X_2+X_1)(Y'_2+Y'_1+X_2+X_1)(Y'_2+Y'_1+X_2+X'_1)(Y'_2+Y'_1+X'_2+X'_1) \\ &Dual & \rightarrow (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2X'_1X_2X'_1) + (Y'_2X'_1X_2X'_1) + (Y'_2X'_1X_2X'_1)
```

```
\begin{split} &F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14) \\ &= (M4)(M8)(M9)(M12)(M13)(M14) \\ &= (Y_2+Y'_1+X_2+X_1)(Y'_2+Y_1+X_2+X_1)(Y'_2+Y'_1+X_2+X_1)(Y'_2+Y'_1+X_2+X'_1)(Y'_2+Y'_1+X'_2+X'_1) \\ &Dual \rightarrow (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) +
```

 $= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)$

$$\begin{split} &F(Y_2,Y_1,X_2,X_1) = \prod M(4,8,9,12,13,14) \\ &= (M4)(M8)(M9)(M12)(M13)(M14) \\ &= (Y_2+Y'_1+X_2+X_1)(Y'_2+Y_1+X_2+X_1)(Y'_2+Y'_1+X_2+X_1)(Y'_2+Y'_1+X_2+X'_1)(Y'_2+Y'_1+X'_2+X'_1) \\ &Dual \rightarrow (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) +$$

 $= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)$

```
F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X_1)
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_{2}Y'_{1}X_{2}X_{1}) + (Y'_{2}X_{2}X_{1}) + (Y'_{2}Y'_{1}X_{2}X'_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1})
```

Are we done?!

```
F(Y_2, Y_1, X_2, X_1) = \Pi M(4, 8, 9, 12, 13, 14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X'_1)(Y'_2 + Y'_1 + X'_2
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_{2}Y'_{1}X_{2}X_{1}) + (Y'_{2}X_{2}X_{1}(1)) + (Y'_{2}Y'_{1}X_{2}X'_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1})
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
```

 $= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y_1X_2X_1)$

OMG!!

```
F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X_1)
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_{2}Y'_{1}X_{2}X_{1}) + (Y'_{2}X_{2}X_{1}) + (Y'_{2}Y'_{1}X_{2}X'_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1})
```

 $= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y'_1X_2X_1)$

```
F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X_1)
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_{2}Y'_{1}X_{2}X_{1}) + (Y'_{2}X_{2}X_{1}) + (Y'_{2}Y'_{1}X_{2}X'_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1})
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y'_1X_2X_1)
```

 $= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2(X'_1 + X_1)) + (Y'_2Y'_1X'_2X_1)$

```
F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X_1)
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X_2X'_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_{2}Y'_{1}X_{2}X_{1}) + (Y'_{2}X_{2}X_{1}) + (Y'_{2}Y'_{1}X_{2}X'_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1}) + (Y'_{2}Y'_{1}X'_{2}X_{1})
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y'_1X_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2(X'_1 + X_1)) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (X_2X_1Y'_2) + (Y'_2Y'_1X_2(1)) + (Y'_2Y'_1X'_2X_1)
```

OMG!!

```
F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)
= (M4)(M8)(M9)(M12)(M13)(M14)
= (Y_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X_1)(Y'_2 + Y'_1 + X_2 + X'_1)(Y'_2 + Y'_1 + X'_2 + X'_1)
Dual \rightarrow (Y_2Y'_1X_2X_1)+(Y'_2Y_1X_2X_1)+(Y'_2Y'_1X_2X_1)+(Y'_2Y'_1X_2X'_1)+(Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2Y_1X_2X_1) + (Y'_2Y'_1X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(Y_1 + Y'_1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1(1)) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y_1X_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2X'_1) + (Y'_2Y'_1X'_2X_1) + (Y'_2Y'_1X_2X_1)
= (Y_2Y'_1X_2X_1) + (Y'_2X_2X_1) + (Y'_2Y'_1X_2(X'_1 + X_1)) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (X_2X_1Y'_2) + (Y'_2Y'_1X_2(1)) + (Y'_2Y'_1X'_2X_1)
= (Y_2Y'_1X_2X_1) + (X_2X_1Y'_2) + (Y'_2Y'_1X_2) + (Y'_2Y'_1X'_2X_1)
```

Are we done?! Honestly, I don't know 😊 😊

MINIMIZATION

- I) Boolean Algebra (algebraically)
- o Needs to be smart. It is hard due to guesswork (which rules to apply?)
- o If the number of variables (ABCDEF...) and/or number of minterms (MAXTERMS) grows
- o No Algorithm
- o Is the result minimal?!

MINIMIZATION

II) Map (Karnaugh map, K-map)

aka. Graphical Manipulation

II) Map (Karnaugh map, K-map) aka. Graphical Manipulation

Algorithm; Straightforward, up to six variables

Result is always minimal

II) Map (Karnaugh map, K-map) aka. Graphical Manipulation

Algorithm; Straightforward, up to six variables

Result is always minimal

Maurice Karnaugh Physicist Mathematician Inventor

Bell Labs (1954)
"The Map Method for Synthesis of Combinational Logic Circuits"

MINIMIZATION

II) Map (Karnaugh map, K-map)

aka. Graphical Manipulation

KARNAUGH MAP

1-Variable KARNAUGH MAP

2-Variable KARNAUGH MAP

Y	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	X	F
0	0	m_0
0	1	m_1
1	0	m_2 /
1	1	m_3

Υ	X	F
0	0	1
0	1	0
1	0	0
1	1	0

$$F(Y,X) = m_0 = Y'X'$$

$$F(Y,X) = Y'X'$$

Υ	X	F
0	0	0
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_1 = Y'X$$

$$F(Y,X) = Y'X$$

Υ	X	F
0	0	0
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_2 = YX'$$

$$F(Y,X) = YX'$$

Υ	X	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_3 = YX$$

$$F(Y,X) = YX$$

Υ	X	F
0	0	1
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_0 + m_1$$

= Y'X' + Y'X
= Y'(X' + X)
= Y'

$$F(Y,X) = Y'$$

Y	X	F
0	0	0
0	1	0
1	0	1
1	1	1

$$F(Y,X) = m_2 + m_3$$

= YX' + YX
= Y(X' + X)
= Y

$$F(Y,X) = Y$$

Υ	X	F
0	0	0
0	1	1
1	0	0
1	1	(1)

$$F(Y,X) = m_1 + m_3$$

= Y'X + YX
= X(Y' + Y)
= X

$$F(Y,X) = X$$

Υ	Χ	F
0	0	1
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_2$$

= Y'X' + YX'
= X'(Y' + Y)
= X'

$$F(Y,X) = X'$$

WHAT IF

Y	X	F
0	0	1 ~0
0	1	1 ,
1	0	1 m
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'(X' + X) + YX'$$

$$= Y' + YX'$$

$$F(Y,X) = Y' + YX'$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= X'(Y' + Y) + Y'X$$

$$= X' + Y'X$$

$$F(Y,X) = X' + Y'X$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'X' + Y'X' + Y'X + YX'$$

$$= Y'(X' + X) + Y'X' + YX'$$

$$= Y' + Y'X' + YX'$$

$$= Y' + X'(Y' + Y)$$

$$= Y' + X'$$

$$F(Y,X) = Y' + X'$$

WHAT IF

Υ	X	F
0	0	1
0	1	1
1	0	1
1	1	1

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

$$= Y'X' + Y'X + YX' + YX$$

$$= Y'(X' + X) + Y(X' + X)$$

$$= Y' + Y$$

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

Υ	X	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_1 + m_2$$
$$= Y'X + YX'$$

$$F(Y,X) = m_1 + m_2$$
$$= Y'X + YX'$$

Υ	X	F
0	0	1
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_0 + m_3$$
$$= Y'X' + YX$$

$$F(Y,X) = m_0 + m_2$$
$$= Y'X' + YX$$

3-Variable KARNAUGH MAP

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

		Χ			
		0	1		
Υ	0	m_0	m ₁		
	1	m_2	m_3		

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		Χ			
		0	1		
V	0	m_0	m ₁		
Y	1	m_2	m_3		

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

		YX				
		00	01	11	10	
7	0	m_0	m_1	m_3	m_2	
Z	1	m_4	m ₅	m ₇	m ₆	

Z

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		YX				
	00	01	11	10		
0	m_0	m_1	m_3	m_2	\ \rightarrow Z'	
1	m_4	m_5	m ₇	m ₆		

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

X′ ?

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m ₆ m ₇
1	1	1	m_7

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

WHAT IF

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

		YX			
		00	01	11	10
7	0	\neg	1	1	1_
Ζ	1	0	0	1	1

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

XY

00

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + ZY$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + Y$