MATH1564 K – Linear Algebra with Abstract Vector Spaces Homework 1

Due Aug. 29, submit to both Canvas-Assignment and Graadescope

- 1. Let $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 5\}$ and $C = \{2, 4, 5\}$.
 - i. Find the following sets:

$$A \cup B$$
, $A \cap B \cap C$, $(A \cap C) \cup B$.

ii. Assume that A, B, and C all belong to the universal set $U = \{x \in \mathbb{N} : x \leq 6\}$. Find the following sets:

$$(B \cup C)^c$$
, $A^c \cap B^c \cap C^c$, U^c .

iii. Find how many elements are in each one of the following sets (these are called the *cardinalities* of the sets):

$$(B \cap C)^c$$
, $(B \cup C)^c$, $\{X : X \subseteq B\}$, $\{X : X \subseteq A \text{ and } X \text{ has at most two elements } \}$.

- 2. Draw a sketch of the following subsets of \mathbb{R}^2 :
 - i. $\{(x,y): x \le 2y+1, x \in \mathbb{R}\}.$
 - ii. $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}^c$.
 - iii. $\{(-1,1) + t(1,2) : t \in \mathbb{R}\}.$
 - iv. $\{s(1,2) + t(-1,1) : s, t \in \mathbb{R}\}.$
 - v. $\{s(1,2) + t(2,4) : s, t \in \mathbb{R}\}.$
 - vi. $\{t(1,2) : 0 < t\}$.
- 3. Express the following sets without the use of 'three dots' nor the use of \cap, \cup , or complement.
 - i. $\{4, 16, 36, 64, 100, \ldots\}$
 - ii. $\{..., \frac{2}{9}, \frac{2}{3}, 2, 6, 18, ...\}$
 - iii. ${3n : n \in \mathbb{Z}} \cap {2n + 1 : n \in \mathbb{Z}}$.
- 4. Let A,B and C all be sets with a universal set U. In each of the following parts, a statement is written about these sets (or some of them). We consider such a statement **true** if it is true for every possible sets A,B,C and U. We consider it **false** if there is at least one example of sets A,B,C and U for which the statement does not hold. Determine for each one of the following statements if it is **true** or **false**. If you claim that it is **false** then provide an example for which the statement fails ("counterexample"). If you claim that the statement is **true** then **prove** your claim as best you can.
 - i. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.
 - ii. $(A B) \cup (B A) = A \cup B$.
 - iii. $(A \cap B) \times C = (A \times C) \cap (B \times C)$.

iv.
$$(A \cap B)^c = A^c \cap B^c$$
.

v.
$$(A \cap B)^c = A^c \cup B^c$$
.

- 5. Decide and prove if the following statement true or false.
 - i. If x is a multiple of 4, then x is even.
 - ii. If x is even, then it is a multiple of 4.
 - iii. There exists a real number a such that for x = a + x for all real number x.
- 6. Negate the following statements in quotation.
 - i. Suppose x_1, x_2, x_3 are given. "If $a_1x_1 + a_2x_2 + a_3x_3 = 0$ for some real numbers a_1, a_2, a_3 , then $a_1 = a_2 = a_3 = 0$."
 - ii. Let A and B are subsets of X and $x \in X$. " $x \in A$ and $x \in B$."
 - iii. "There exists a real number a for which a+x=x for every real number x."