Monte Carlo Simulation MA - 323 Lab - 7

Name – Rasesh Srivastava

Roll Number – 210123072

Branch – Mathematics and Computing

Question 1:

1. Consider the expectation $I = E[\exp(\sqrt{U})]$ where, $U \sim U(0,1)$. Use the following antithetic method to approximate I:

$$\widehat{I}_M = \frac{1}{M} \sum_{i=1}^{M/2} \widehat{Y}_i \text{ where } \widehat{Y}_i = \exp(\sqrt{U_i}) + \exp(\sqrt{1 - U_i}) \text{ with } U_i \sim U(0, 1).$$

Take the values of M to be $10^2, 10^3, 10^4$ and 10^5 . Determine the 95% confidence interval for I_M for all the four values of M that you have taken.

 $I = E \left[\exp \left(\sqrt{U} \right) \right]$ where, $U \sim U \left(0, 1 \right)$

Actual Value of I = 2

$$\left(\int_0^1 \exp(\sqrt{x}) \, dx = 2\right)$$

It is calculated by taking the integral of exp(sqrt(x)) with limits from 0 to 1.

For M = 100,

Estimated Value of I = 1.9930161300230471

95% Confidence Interval for I = (1.9824862654143782, 2.003545994631716)

For M = 1000,

Estimated Value of I = 1.9980843243353144

95% Confidence Interval for I = (1.9951848623546362, 2.0009837863159925)

For M = 10000,

Estimated Value of I = 1.999877417024356

95% Confidence Interval for I = (1.9989581894176025, 2.0007966446311096)

For M = 100000,

Estimated Value of I = 1.9999567501250843

95% confidence interval for I = (1.999669273369198, 2.0002442268809704)

```
For M = 100,
Estimated Value of I = 1.9930161300230471
95% Confidence Interval: (1.9824862654143782, 2.003545994631716)

For M = 1000,
Estimated Value of I = 1.9980843243353144
95% Confidence Interval: (1.9951848623546362, 2.0009837863159925)

For M = 10000,
Estimated Value of I = 1.999877417024356
95% Confidence Interval: (1.9989581894176025, 2.0007966446311096)

For M = 100000,
Estimated Value of I = 1.9999567501250843
95% Confidence Interval: (1.999669273369198, 2.0002442268809704)

Actual Value of I = 2
```

Observations:

- 1. As the value of M increases, that is, when we take a greater number of samples, the estimated value of I approaches to the exact value of I, that is, the error in the estimation of the value of I decreases as M increases.
- 2. As the value of M increases, that is, when we take a greater number of samples, the lower bound of the 95% confidence interval increases and approaches towards the actual value of I, that is, 2 and the upper bound of the 95% confidence interval decreases and approaches towards the actual value of I, that is, 2.

Question 2:

2. Present the results that you have obtained in Question 1 of Lab 06 and Question 1 of Lab 07 in a tabular form. Your table must consist of the values of \widehat{I}_M (using two methods), 95% confidence intervals for I (from two methods), and the ratio of widths of both the intervals. How do the values of I_M and \widehat{I}_M compare with the actual value of I?

```
Actual Value of I = 2
```

```
\left(\int_0^1 \exp(\sqrt{x}\,)\,dx = 2\right)
```

It is calculated by taking the integral of $\exp(\operatorname{sqrt}(x))$ with limits from 0 to 1.

```
Comparison of the results of Question 1 of Lab 6 and Question 1 of Lab 7 in a tabular form:
               I_M I_M using Antithetic Method
      100 1.960903
                                        2.002870
1
    1000 1.988475
                                        2.000169
   10000 2.005029
                                        1.999793
3 100000 2.001313
                                        1.999829
              95% Confidence Interval for I \
   (1.874969408782346, 2.0468372483732935)
1 (1.9619602860598633, 2.0149889510933785)
   (1.9964424354588663, 2.013616026655882)
      (1.998584624620874, 2.00404159465956)
 95% Confidence Interval for I using Antithetic Method Ratio of the Widths
0
               (1.995348588266023, 2.01039060431981)
                                                                   11.425851
             (1.997369909260367, 2.002967478042018)
1
                                                                    9.473517
             (1.9988864280096155, 2.000699635644898)
2
                                                                    9.471387
             (1.999540452485819, 2.0001178512663493)
                                                                    9.450955
Actual value of I = 2
```

M	I _M (Lab	${ m I_M}$	95%	95%	Ratio of Widths
	6)	(Lab	Confidence	Confidence	of the 95%
		7)	Interval	Interval	Confidence
			(Lab 6)	(Lab 7)	Intervals (Lab 6
					width / Lab 7
					width values)
100	1.960903	2.002870	(1.8749694087	(1.9953485882	11.425851
			82346,	66023,	
			2.04683724837	2.01039060431	
			32935)	981)	
1000	1.988475	2.000169	(1.9619602860	(1.9973699092	9.473517
			598633,	60367,	
			2.01498895109	2.00296747804	
			33785)	2018)	
10000	2.005029	1.999793	(1.9964424354	(1.9988864280	9.471387
			588663,	096155,	
			2.01361602665	2.00069963564	
			5882)	4898)	
100000	2.001313	1.999829	(1.9985846246	(1.9995404524	9.450955
			20874,	85819,	
			2.00404159465	2.00011785126	
			956)	63493)	

If width of 95% Confidence Interval of Lab 6/width of 95% Confidence Interval of Lab 7 = x, then the ratio of the widths = x : 1.

Observations:

- 1. The Antithetic method is better than the other simple Monte Carlo estimator method used in Lab 6 assignment because it improves the width of the 95% confidence interval approximately by a factor of 10 since the ratio of the widths of the 95% confidence intervals of Lab 6 and Lab 7 is approximately 10:1, so the Antithetic method reduces the Variance.
- 2. Also, in the Antithetic method, we are calculating uniform random variable only M/2 times compared to M times in the method that was used in Assignment 6. So, the Antithetic method used in Lab 7 assignment is better than the method used in Lab 6 assignment.
- 3. As the value of M increases, that is, when we take a greater number of samples, the estimated value of I approaches to the exact value of I, that is, the error in the estimation of the value of I decreases as M increases. For most of the values of M, the value of I_M_hat is closer to 2 (the actual value of I) than the value of I M.