Homework 15: The Change of Basis Formula

Assignments should be **stapled** and written clearly and legibly.

- 1. §8.5, #10, 13.
- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be projection to the line $y = \frac{1}{5}x$. Let $\mathcal{B} = \{\begin{bmatrix} 5 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \end{bmatrix}\}$ and $\mathcal{C} = \{\mathbf{e}_1, \mathbf{e}_2\}$, two bases of \mathbb{R}^2 .
 - (a) Find $[T]_{\mathcal{B}}$.
 - (b) Use (a) and the change of basis formula to find $[T]_{\mathcal{C}}$, the standard matrix for T.
 - (c) Find the projection of $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ to the line $y = \frac{1}{5}x$, i.e., find $T(\begin{bmatrix} 3 \\ 7 \end{bmatrix})$.
- 3. Let $T: P_1 \to P_1$ be the linear transformation given by T(p(x)) = xp'(x) + p(x). Let $\mathcal{B} = \{1, x\}$ and $\mathcal{C} = \{1 + 2x, 3 + 5x\}$, two bases for P_1 .
 - (a) Find the change of coordinates matrices $[I]_{\mathcal{B},\mathcal{C}}$ and $[I]_{\mathcal{C},\mathcal{B}}$.
 - (b) Find $[T]_{\mathcal{B}}$.
 - (c) Use the change of basis formula and your answers to parts (a) and (b) to find $[T]_{\mathcal{C}}$.
- 4. Let a_1, a_2, a_3 be constants. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined by the formula

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} a_1 x_1 \\ a_2 x_2 \\ a_3 x_3 \end{bmatrix}$$

- (a) Under what conditions will T have an inverse?
- (b) Assuming the conditions determined in part (a) are satisfied, find a formula for $T^{-1}\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right)$.