Определение 1. Обозначим через C_n^k количество k-элементных подмножеств множества из n элементов. Например, $C_4^2 = 6$, так как у множества $\{1, 2, 3, 4\}$ есть ровно 6 двухэлементных подмножеств:

$$\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}.$$

Иначе говоря, величина C_n^k равна числу способов выбрать k предметов из n.

Задача 1. Комбинаторными методами (не используя явную формулу) докажите, что

a)
$$C_n^k = C_n^{n-k}$$
; 6) $C_n^{k-1} + C_n^k = C_{n+1}^k$; B) $C_n^k C_{n-k}^{m-k} = C_m^k C_n^m$.

Задача 2. Найдите явную формулу для C_n^k .

Задача 3. а) На рисунке изображен план города (линии — это улицы, пересечения линий — перекрестки). На улицах введено одностороннее движение: можно ехать только «вверх» или «вправо». Сколько разных маршрутов ведёт из точки A в точку B?

б) Сколько из этих маршрутов не проходят через отмеченную на плане точку внутри города?

Задача 4. Сколькими способами можно высадить в ряд 3 груши и 4 яблони?

Определение 2. *Треугольником Паскаля* называется треугольная таблица (см. рисунок справа), составленная из чисел согласно следующему правилу. По краям треугольника стоят единицы, а каждое из остальных чисел равно сумме двух, стоящих справа и слева над ним.

Задача 5. На рисунке выписаны первые 5 строк треугольника Паскаля. Напишите следующие 5 строк.

Задача 6. Докажите, что k-ое число n-ой строки равно C_n^k (строки нумеруются сверху вниз, начиная с нуля, а числа в строках нумеруются слева направо, также начиная с нуля).

Задача 7. Возьмём любое число C в треугольнике Паскаля и сложим все числа, начиная с него и идя по прямой направо-вверх. Докажите, что полученная сумма равна числу, стоящему под C справа.

Задача 8. Выведите из задачи 7 формулы для сумм $1+\ldots+n,\,T_1+\ldots+T_n,\,\Pi_1+\ldots+\Pi_n.$

Задача 9*. Как из предыдущей задачи вывести формулы для $1^2+\ldots+k^2,\, 1^3+\ldots+k^3,\, \ldots$?

Задача 10*. В каких строках треугольника Паскаля все числа нечётные?

Задача 11*. Найдите сумму $C_n^0 + C_{n-1}^1 + C_{n-2}^2 + \dots$

Задача 12. Докажите, что при всех n>0 выполнены неравенства $\frac{2^{2n}}{2n+1}\leqslant C_{2n}^n\leqslant 2^{2n-1}.$

Задача 13. (*Бином Нъютона*) Раскроем скобки и приведём подобные в выражении $(a+b)^n$. Возьмём любое слагаемое. Оно имеет вид $C \cdot a^k \cdot b^{n-k}$ (почему?). Докажите, что $C = C_n^k$.

Задача 15. Сколько существует разбиений множества A, состоящего из n элементов,

- а) на три непересекающихся подмножества A_1 , A_2 , A_3 , состоящих из k_1 , k_2 и k_3 элементов соответственно, где k_1 , k_2 , k_3 такие заданные числа, что $k_1 + k_2 + k_3 = n$;
- **б)** на m непересекающихся подмножеств A_1, \ldots, A_m , состоящих из k_1, \ldots, k_m элементов соответственно, где k_1, \ldots, k_m такие заданные числа, что $k_1 + \ldots + k_m = n$;
- **в)** на m непересекающихся подмножеств A_1, \ldots, A_m с произвольным количеством элементов?

1 a	<u>1</u> б	1 В	2	3 a	3 6	4	5	6	7	8	9	10	11	12	13	14 a	14 б	14 B	14 г	15 a	15 б	15 B