EFREI -L1 ABCD février 2011

ALGEBRE LINEAIRE

Corrigé succinct

Questions de cours (8 points)

Exercice n°1 (10 points)

Soit H le sous-espace vectoriel de \mathbf{R}^4 formé des vecteurs de coordonnées (x; y; z; t) vérifiant les équations :

CE – durée : 1 heure

x - 2y + 3z = 0 et x + y + z - t = 0; trouver une base de H.

On élimine par exemple x = 2y-3z

Donc H= $\{(2y-3z, y, z,t) \text{ telque } 3y-2z-t=0\}$ d'où par exemple t=3y-2z

Donc H = $\{(2y-3z, y, z, 3y-2z)\}$ = $\{y(2,1,0,3) + z(-3,0,1,-2)\}$

Les 2 vecteurs qui apparaissent sont générateurs de H; on vérifie qu'ils sont libres; ils forment donc une base de H.

Exercice n°2 (9 points)

Déterminer en fonction de n le terme général de la suite (u_n) vérifiant :

$$6 u_n = 5 u_{n-1} - u_{n-2}, \quad \forall n > 1 \text{ avec } u_0 = -1 \text{ et } u_1 = -1/6.$$

Posons $u_n = r^n$; alors $6r^2-5r+1=0$; deux racines réelles ½ et 1/3;

 $u_n = A(1/2)^n + B(1/3)^n$. Par les conditions initiales A=1 et B=-2

donc $u_n = (1/2)^n - 2(1/3)^n$

Exercice n°3 (9 points)

Déterminer en fonction de n le terme général de la suite (v_n) vérifiant :

$$v_{n+2} = -v_n + v_{n+1}$$
, $\forall n \in \mathbb{N}$, avec $v_0 = let v_1 = -l$.

Posons $v_n = r^n$; d'où $r^2-r+1=0$; deux racines complexes (1+-irac(2))/2 de module égal à 1 et d'argument =+-Pi/3. Donc $v_n = 1^n$ (Acos(nPi/3) + Bsin (nPi/3)). Par les conditions initiales A=1 et B=- rac(3); donc $v_n = cos(nPi/3) - rac(3)sin(nPi/3)$

Exercice n°4 (9 points)

Déterminer en fonction de n le terme général de la suite (w_n) vérifiant :

$$w_{n+2} - w_{n+1} + (1/4)w_n = 0, \forall n \in \mathbb{N}, avec \ w_0 = 1 \ et \ w_1 = 2.$$

Posons $w_n = r^n$; d'où $r^2-r+1/4=0$; une racine double $r = \frac{1}{2}$

D'où $w_n = (A+nB)$. $(1/2)^n$. Par les conditions initiales A=1 et B=3; d'où $w_n = (1+3n).(1/2)^n$