Mathematical Logic Homework 9

Ding Yaoyao

December 7, 2018

Solution 9.1.

1)

 $\mathfrak{A} \models \varphi_0$: When $P: \square \to \infty$, we have $A_{\mathbb{P}} = \mathbb{N}$, $<^{\mathfrak{A}}$ is the less order of \mathbb{N} and $f^{\mathfrak{A}}(x) = x + 1$. Of course, $<^{\mathfrak{A}}$ is an order. x < x + 1 for all $x \in \mathbb{N}$ implies $\mathfrak{A} \models \forall x (x < fx)$. No $y \in \mathbb{N}$ such that x < y < x + 1 implies $\mathfrak{A} \models \forall x (\forall z (x < z \to (fx < z \lor fx \equiv z)))$. So $\mathfrak{A} \models \varphi_0$. When $P: \square \to halt$, we have $A_{\mathbb{P}} = \{0, \ldots, e\}$, $<^{\mathfrak{A}} = \{(i, j) \mid 0 \le i < j \le e\}$ and $f^{\mathfrak{A}}(x) = min(x + 1, e)$. $c^{\mathfrak{A}} = 0$ implies $\mathfrak{A} \models \forall x (c < x \lor c \equiv x)$. For all $x \in A$, x < min(x + 1, e) or x = min(x + 1, e), which implies $\mathfrak{A} \models \forall x (x < fx \lor x \equiv fx)$. The last part of φ_0 is the same as above when x < e. When x = e, no $y \in A$ such that x < y, so it's true directly. So $\mathfrak{A} \models \varphi_0$.

 $\mathfrak{A} \models R\overline{00} \dots \overline{0}$: When \mathbb{P} starts with \square , the initial configuration is $(0,0,\dots,0)$. The definition of R implies $(\overline{0},\dots,\overline{0}) \in R$, which means $\mathfrak{A} \models R\overline{00}\dots\overline{0}$.

 $\mathfrak{A} \models \varphi_{\alpha_i}$: Assume c_t is the configuration of the machine at step t and the next instruction is i and c_{t+1} is the configuration that the i-th instruction has been executed. Because φ_{α_i} describe that 'if c_t is the configuration before executing instruction i, then c_{t+1} is also a configuration'. By the definition of configuration, c_{t+1} must also be a configuration of the program \mathbb{P} , then $\mathfrak{A} \models \varphi_{\alpha_i}$.

Above all, $\mathfrak{A} \models \varphi_{\mathbb{P}}$.

(2)

Because (L, m_0, \ldots, m_n) is a configuration $\mathbb P$ after s steps, there exists s configurations:

$$c_0, c_1, \ldots, c_{s-1}$$

such that the configuration of \mathbb{P} transforms from c_0 initially to c_{s-1} and then $c_s = (L, m_0, \dots, m_n)$.

Every configuration corresponds a state $S_i = (\overline{s_i}, \overline{L_i}, \overline{m_0^{(i)}}, \dots, \overline{m_n^{(i)}})$, specially $S_0 = (\overline{0}, \dots, \overline{0})$. $\mathfrak{A} \models R(\overline{0}, \dots, \overline{0})$ implies $\mathfrak{A} \models R(S_0)$. Assume $\mathfrak{A} \models R(S_i)$, and the next instruction of S_i is instruction j, then by definition of φ_{α_j} , we have $\mathfrak{A} \models R(S_{i+1})$. Finally we have $\mathfrak{A} \models R(S_s)$, which means $\mathfrak{A} \models R(\overline{s}), \overline{L}, \overline{m_0}, \dots, \overline{m_n}$.

Solution 9.2.

$$A = \mathbb{N}$$

$$f(x) = x + 1,$$

 $R = \{(s, L, m_0, \dots, m_n) \mid \mathbb{P} \text{ reachs configuration } (L, m_0, \dots, m_n) \text{ after } s \text{ steps } \}.$ $c^{\mathfrak{A}} = 0.$

Solution 9.3.1 Assume it's R-enumerable and the program is P_1 . Because $\{\varphi \in L_0^{S_\infty} \mid \models \varphi\}$ is enumerable, there exists a program P_2 that can enumerable all such sentences. For a given formula $\varphi \in L_0^{S_\infty}$, run the two programs simultaneously. Once P_2 prints φ or P_1 prints $\neg \varphi$, we can decide whether $\models \varphi$ holds. This process will stops in finite steps for any φ because one of the two conditions must hold. As a result, we construct a program P_3 that can decide
$$\begin{split} \{\varphi \in L_0^{S_\infty} \mid \models \varphi\}, \text{ which is a contradiction.} \\ \text{Above all, } \{\varphi \in L_0^{S_\infty} \mid \varphi \text{ is satisfiable } \} \text{ is not R-enumerable.} \end{split}$$

 $^{^{1}} refers:\ https://github.com/blargoner/math-logic-ebbinghaus/blob/master/exercises.pdf$