CHAPTER 11

REACTION KINETICS MCQS

Q.1	In zero	order reaction, the rat	e is inde	pendent of				
	(a)	temperature of reaction	on					
	(b)	concentration of reac	tants					
	(c)	concentration of prod	lucts					
	(d)	none of above						
Q.2	If the ra	ate equation of a react	ion 2A	$+ B \otimes Product, Rate = k$				
[A]2 [I	3] and	A is present in large	excess th	nen order of reaction is:				
	(a)	1	(b) /	2				
	(c)	3	(d)	none of these				
Q.3	The rat	te of reaction						
	(a)	increases as the react	ion proc	eeds				
	(b)	decreases as the react	tion proc	ceeds				
	(c) remains the same as the reaction proceeds							
	(d)	may decrease or incre	ease as th	he reaction proceeds				
Q.4	With in	ncreases of 10 oC tem	perature	the rate of reaction				
double	s. This i	increase in the rate of	reaction	is due to				
	(a)	decrease in activation	n energy	of reaction				
	(b)							
molecu	ıles							
	(c)	increase in activation	energy	of reactants				
	(d)	increase in number of	f effectiv	ve collisions				
Q.5	The un	it of the rate constant	is the sar	me as that of the rate of				
reactio	n in							
	(a)	first order reaction	(b)	second order reaction				
	(c)	zero order reaction	(d)	third order reaction				

Q.6	The ur	nit of reaction is						
	(a)	mole/dm3	(b)	mol	e/pound			
	(c)	mole/dm3 sec	(d)	mole/	/cm3			
Q.7	In the	rate equation, when the	conc.	of reacta	ents is unity then rate			
is equa	ıl to							
	(a)	specific rate constant	(b)	averag	ge rate constant			
	(c)	instantaneous rate cor	ıstant					
	(d)	none of above						
Q.8	The rate of reaction between two specific time intervals is called							
	(a)	instantaneous rate	(b)	averag	ge rate			
	(c)	specific rate	(d) (ordina	ary rate			
Q.9	Instantaneous rate of a chemical reaction is							
	(a)	(a) rate of reaction in the beginning						
	(b)	rate of reaction at the end						
	(c)	rate of reaction at a gi	ven inst	tant				
	(d)	rate of reaction b/w ty	vo spec	ific time	e intervals			
Q.10	At the beginning the decrease in the conc. of reactants is							
	(a)	slow	(b)	modei	rate			
	(c)	rapid	(d)	none o	of above			
Q.11	The su	im of exponents of the o	conc. te	rms in t	he rate equation is			
called								
	(a)			` '	order of reaction			
	(c)	specific rate constant		-				
Q.12	The average rate and instantaneous rate of a reaction are equal							
	(a)	at the start	(b)	at the	end			
	(c)	in the middle						
	(d) when two rate have time interval equal to zero							
Q.13	The equation 2N2O5 ® 2N2 has order							
	(a)	first order	(b)		d order			
	(c)	negative order	(d)		onal order			
Q.14	The hydrolysis of tertiary butyl has order							
	(a)	first order	(b)	-	o first order			
	(c)	fractional order		(d)	zero order			

Q.15	Photoc						
_	(a)	one	(b)	zero			
	(c)	two	(d)	three			
Q.16	The ex	xperimental relationshi	p betwee	en a reac	ction rate and the		
concer	ntration	of reactants is called					
	(a)	order of reaction	(b)	specif	ic rate		
	(c)	law of mass action	(d)	rate la	lW		
Q.17							
reactar	nts mole	ecule then order of read	ction is	()			
	(a)	zero	(b)	first			
	(c)	second	(d)	third			
Q.18	Half li	fe of U is	.(7)				
	(a)	7.1 x 108 years		(b)	6.1 x 108 years		
	(c)	8.1 x 107 years		(d)	7.1 x 1010 years		
Q.19	Half li	fe period for decompo	sition of	N2O5	at 45 oC is		
	(a)	24 minutes	(b)	34 mii	nutes		
	(c)	44 minutes	(d)	54 mii	nutes		
Q.20	The de	ecomposition of ozone	has orde	er			
	(a)	first	(b)	negati			
	(c)	second	(d)	_	o first order		
Q.21	The eq	quation CHCl3 + Cl2	® CCl4	+ HCl	has order		
	(a)	first	(b)	negati	ve		
	(c)	fractional	(d)	secono	d		
Q.22	When	a reaction occurs in m	any steps	s then th	ne slowest step is the		
	(a)	main step					
	(b)	enthalpy determining step					
	(c)	mechanism determining step					
	(d)	rate determining step)				
Q.23	Spectrometry applied for rate determination when						
	(a)	reactants or product a	absorb U	.V., I.R	. light		
	(b)	reaction involve ion					
	(c)	reaction involve char	nge in vo	lume			
	(d)	none of above					

- Q.24 Electrical conductivity method is applied for rate determination when
- (a) reactants and products involve absorption of U.V. or I.R. radiation
 - (b) reaction involving ions
 - (c) reaction which involve change in refractive indices
 - (d) reactions which involve small volume change
- Q.25 Dilatometric method is used for rate determination when
 - (a) reactions involving ions
 - (b) reactions involving change of optical activity
 - (c) reaction involving small volume change
 - (d) none of above
- Q.26 Refractrometric method is used when
 - (a) reactions involving absorption of I.R. or U.V.
 - (b) reactions involving change of refractive index
 - (c) reactions involving ions
 - (d) change of optical activity

,						
•						
ial						
The factors which affect rate of reaction (a) nature of reactants (b) surface area						
n rate						
Arrhenius equation describe the effect of						
pressure on rate of reaction						

	(a)	reactants and catalys	st have sa	ıme ph	ase			
	(b)	products and catalyst have same phase						
	(c)	reactant and product	s have sa	me ph	ase			
	(d)	none of above						
Q.37	The h	eterogenous catalysis						
	(a)	reactants and produc	ts have o	lifferer	it phases			
	(b)	reactants and catalys	st have d	ifferen	t phases			
	(c)	products and catalys	t have di	fferent	phases			
	(d)	all the above		C				
Q.38	Tetra	ethyl lead when added	to petro	l, acts a	as			
	(a)	negative catalyst	(b)	auto	catalyst			
	(c)	promoter	(d)	catal	yst			
Q.39	Conc	entrated sugar solution	undergo	es hyd	rolysis by an e	enzyme		
	(a)	invertase	(b)	ureas	se			
	(c)	zymase		(d)	glucase			
Q.40	Gluce	ose is converted into etl	hanol by	an enz	yme			
	(a)	urease	(b)	inver	tase			
	(c)	zymase		(d)	glucose			

ANSWERS

Question s	1	2	3	4	5
Answers	b	a	b	d	С
Question	6	7	8	9	10
S					
Answers	С	a	b	С	С
Question	11	12	13	14	15

S					
Answers	b	d	a	b	b
Question	16	17	18	19	20
S				2	
Answers	d	a	a	a	b
Question	21	22	23	24	25
S			0	•	
Answers	c	d	a	b	c
Question	26	27	28	29	30
S			5		
Answers	b	c	b	a	С
Question	31	32	33	34	35
S					
Answers	d	d	b	a	b
Question	36	37	38	39	40
s					
Answers	a	b	a	a	С