Klausur am 24.09.2011:

Musterlösungen

Aufgabe 1

Im Induktionsanfang sei $n_0 = 1$. Dann ist $A^{n_0} = A$, und $\begin{pmatrix} 1 & n_0 & \frac{n_0(n_0 - 1)}{2} \\ 0 & 1 & n_0 \\ 0 & 0 & 1 \end{pmatrix} = A$. Es gilt also der Induktionsanfang.

Als Induktionsannahme nehmen wir an, dass $A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$ für ein $n \geq 1$ gilt.

Wir werden im Induktionsschritt zeigen, dass daraus $A^{n+1} = \begin{pmatrix} 1 & n+1 & \frac{(n+1)n}{2} \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}$ folgt.

Es gilt

$$A^{n+1} = A^n \cdot A = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 & n+\frac{n(n-1)}{2} \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Wir sind fertig, wenn wir zeigen können, dass $n + \frac{n(n-1)}{2} = \frac{(n+1)n}{2}$ ist. Das gilt aber, denn

$$n + \frac{n(n-1)}{2} = \frac{2n+n^2-n}{2} = \frac{n^2+n}{2} = \frac{(n+1)n}{2}.$$

Aufgabe 2

1. Durch die elementaren Zeilenumformungen: Addition der zweiten Zeile zur ersten und Subtraktion der zweiten Zeile von der vierten (= Addition der (-1)-fachen der zweiten Zeile zur vierten) geht A über in die Matrix

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right).$$

Addition der ersten zur dritten Zeile und Subtraktion der vierten Zeile von der dritten ergibt die Matrix

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1+1 \\
0 & 1 & 0 & 0
\end{array}\right).$$

Nach Vertauschung der zweiten und vierten Zeile und danach Vertauschung der dritten und vierten Zeile erhält man die Matrix

$$A' = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1+1 \end{array}\right).$$

In $\mathbb{K} = \mathbb{R}$ ist $1 + 1 = 2 \neq 0$. Durch die Umformungen: Multiplikation der vierten Zeile mit $\frac{1}{2}$ und danach Subtraktion der vierten Zeile von der ersten Zeile erhält man die Einheitsmatrix I_4 .

Die Treppennormalform von A ist also die Einheitsmatrix I_4 und damit gilt Rg(A) = 4.

2. Im Fall $\mathbb{K} = \mathbb{F}_2$ kann man die oben angegebenen Umformungen analog durchführen, bis man zur Matrix A' gelangt. Da 1+1=0 in \mathbb{F}_2 ist, ist man dann an dieser Stelle fertig. Die Treppennormalform von A lautet dann

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),$$

und folglich ist Rg(A) = 3.

Aufgabe 3

Sei
$$U=\{\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}\in\mathbb{R}^4\mid x_1+x_2+x_3+x_4=0\}.$$
 Dann ist U als Lösungsmenge des honogenen

linearen Gleichungssystems Ax = 0 mit A = (1111) ein Unterraum von \mathbb{R}^4 . Die Matrix A ist bereits in Treppennormalform und hat den Rang 1. Deshalb gilt $\dim(U) = 4 - 1 = 3$. Für die Vektoren der Standardbasis gilt jeweils $x_1 + x_2 + x_3 + x_4 = 1$, daher liegen sie nicht in U.

Aufgabe 4

Sei $x \in \text{Kern}(f) \cap \text{Kern}(g)$. Dann ist f(x) = 0 = g(x). Es folgt 0 = f(x) + g(x) = (f+g)(x), also $x \in \text{Kern}(f+g)$. Es folgt $\text{Kern}(f) \cap \text{Kern}(g) \subseteq \text{Kern}(f+g)$, die Behauptung.

Aufgabe 5

Wir zeigen, dass die Folge monoton fallend und beschränkt ist. Damit ist bewiesen, dass

sie konvergent ist. Für die Monotonie berechnen wir $a_{n+1} - a_n$. Es gilt

$$a_{n+1} - a_n = \sum_{k=n+1}^{2n+2} \frac{1}{k} - \sum_{k=n}^{2n} \frac{1}{kl}$$

$$= \left(\sum_{k=n+1}^{2n} \frac{1}{k} + \frac{1}{2n+1} + \frac{1}{2n+2}\right) - \left(\sum_{k=n+1}^{2n} \frac{1}{k} + \frac{1}{n}\right)$$

$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n}$$

$$= \left(\frac{1}{2n+1} - \frac{1}{2n}\right) + \left(\frac{1}{2n+2} - \frac{1}{2n}\right) < 0.$$

Somit ist (a_n) monoton fallend. Nach oben ist (a_n) durch a_1 beschränkt, und da alle Folgenglieder positiv ist, ist (a_n) durch 0 nach unten beschränkt. Es folgt die Konvergenz der Folge.

Aufgabe 6

1. Es ist $\sqrt[3]{(\sin(2x))^2} = (\sin(2x)^2)^{\frac{1}{3}} = \sin(2x)^{\frac{2}{3}}$ also $f(x) = \sin(2x)^{\frac{2}{3}}$. Diese Funktion leiten wir mit der Kettenregel ab:

$$f'(x) = (\sin(2x))' \cdot \frac{2}{3} \cdot \sin(2x)^{\frac{2}{3}-1} = \frac{2}{3} \frac{(\sin(2x))'}{\sqrt[3]{\sin(2x)}}.$$

Die Ableitung $(\sin(2x))'$ wird wieder mit der Kettenregel berechnet. Es ist $(\sin(2x))' = 2 \cdot \cos(2x)$, also

$$f'(x) = \frac{4}{3} \frac{\cos(2x)}{\sqrt[3]{\sin(2x)}}.$$

2. Wir verwenden zur Berechnung partielle Integration, also die Formel $\int_a^b f'(x) \cdot g(x) dx = f(x)g(x) \mid_a^b - \int_a^b f(x) \cdot g'(x) dx$. Dafür sei $f'(x) = \cos(x)$ und $g(x) = x^2$, also $f(x) = \sin(x)$ und g'(x) = 2x. Es folgt

$$\int_{a}^{b} x^{2} \cdot \cos(x) dx = \sin(x) \cdot x^{2} \mid_{a}^{b} - \int_{a}^{b} 2x \cdot \sin(x) dx = \sin(x) \cdot x^{2} \mid_{a}^{b} - 2 \int_{a}^{b} x \cdot \sin(x) dx.$$

Zur Berechnung von $\int_a^b x \cdot \sin(x) dx$ verwenden wir wieder partielle Integration, und zwar jetzt mit $f'(x) = \sin(x)$ und g(x) = x, also $f(x) = -\cos(x)$ und g'(x) = 1. Es folgt

$$\int_{a}^{b} x \cdot \sin(x) dx = (-\cos(x)) \cdot x \mid_{a}^{b} - \int_{a}^{b} (-\cos(x)) dx = -x \cdot \cos(x) \mid_{a}^{b} + \int_{a}^{b} \cos(x) dx.$$

Jetzt verwenden wir, dass sin eine Stammfunktion von cos ist, und es folgt

$$\int_{a}^{b} x^{2} \cos(x) dx = (x^{2} \sin(x) + 2x \cdot \cos(x) - 2\sin(x)) \mid_{a}^{b}.$$

Aufgabe 7

Für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ sei $a_n = \frac{n}{n+1}x^n$. Es gilt

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\left|\frac{n+1}{n+2}x^{n+1}\right|}{\left|\frac{n}{n+1}x^n\right|} = |x|\frac{n+1}{n+2}\frac{n+1}{n} = |x|\frac{n^2+2n+1}{n^2+2n}.$$

Es ist $\lim_{n\to\infty}|x|\frac{n^2+2n+1}{n^2+2n}=|x|\lim_{n\to\infty}\frac{n^2+2n+1}{n^2+2n}=|x|$. Für |x|<1 konvergiert damit die Reihe, und für |x|>1 divergiert sie. Die Folgen $(\frac{n}{n+1})$ und $((-1)^n\cdot\frac{n}{n+1})$ sind keine Nullfolgen, und es folgt, dass die Reihen für x=1 und x=-1 divergieren.

Aufgabe 8

Sei $a \in \mathbb{R}$, a > 0. Die Funktion $f: (0, \infty \to \mathbb{R} \text{ mit } f(x) = ax - \sqrt{x} \text{ ist differenzierbar, und es ist}$

$$f'(x) = a - \frac{1}{2\sqrt{x}} \text{ für } x > 0.$$

Es folgt f'(x)=0, falls $x=\frac{1}{4a^2}$, und f'(x)<0, falls $0< x<\frac{1}{4a^2}$, und f'(x)>0, falls $x>\frac{1}{4a^2}$ ist. Somit ist f auf $(0,\frac{1}{4a^2})$ streng monoton fallend, und auf $(\frac{1}{4a^2},\infty)$ streng monoton wachsend. Die einzige Nullstelle von f' ist $x_0=\frac{1}{4a^2}$. Da f in $(0,\frac{1}{4a^2})$ streng monoton fällt und in $(\frac{1}{4a^2},\infty)$ streng monoton wächst, liegt hier ein Minimum vor.

Aufgabe 9

Die gegebene Formel wird mittels Äquivalenzumformungen in eine Negations- und diese dann in eine pränexe Normalform überführt:

	$\neg \exists x (\forall y P(y, x) \to \exists y Q(y, c))$	Umbenennung
\approx	$\neg \exists x (\forall y P(y, x) \to \exists z Q(z, c))$	Implikation
\approx	$\neg \exists x (\neg (\forall y P(y, x)) \lor \exists z Q(z, c))$	Quantorwechsel
\approx	$\forall x \neg (\neg(\forall y P(y, x)) \lor \exists z Q(z, c))$	De Morgan
\approx	$\forall x (\neg \neg (\forall y P(y, x)) \land \neg \exists z Q(z, c))$	Doppelte Negation
\approx	$\forall x (\forall y P(y, x) \land \neg \exists z Q(z, c))$	Quantorwechsel
\approx	$\forall x (\forall y P(y, x) \land \forall z \neg Q(z, c))$	Negationsnormalform,
		Quantifizierung
\approx	$\forall x (\forall y (P(y,x) \land \forall z \neg Q(z,c)))$	Kommutativgesetz
\approx	$\forall x (\forall y (\forall z \neg Q(z, c) \land P(y, x)))$	Quantifizierung
\approx	$\forall x (\forall y (\forall z (\neg Q(z,c) \land P(y,x))))$	Klammern
\approx	$\forall x \forall y \forall z (\neg Q(z,c) \land P(y,x))$	pränexe Normalform