My First Document

Mark Ng

1 Introduction

1.1 Lines of Text

this is a text. but entering a new line does not create a new line this will create new line

this creates a new line 5.75 millimetres below

this is a new paragraph this i

1.2 Text Formatting

Some formatting techniques:

this is bold-faced text

this is italicised text

this is underlined text

this is interesting

this is centralised bold-faced

1.3 Some Special Characters

Some special characters are:

Here are some ways of writing accents:

L'Hôpital, Marché, Hölder's Inequality... for other accents just Google.

"This is a bad quote"...

Remark. Never use "

"This is a good quote"

'This is also a good quote'

2 Mathematics

In this section, we will discuss essential features of the mathematics environment.

2.1 Basic Mathematics

The most basic mathematical environment is this x + y - z = 1. Compare this with x + y - z = 1. Here's a list of basic math features:

- 1. Greek Symbols: Let $\varepsilon > 0$, or $\epsilon > 0$. $\alpha, \beta, \gamma, \delta, \pi, \xi, \phi, \varphi, \psi, \sigma, \Sigma, \Gamma$.
- 2. Common Symbols: $1 \in \{1, 2, 3, 4, 5\}$
- 3. More Common Symbols: $\infty \notin \{1, 2, 3\}$.
- 4. Elementary Functions: $\sin(x)$, $\cos(x)$, $\exp(x)$, $\log(x)$, $\ln(x)$, \tan , $\arctan(x)$, ... remember not to write $\sin(x)$ etc.
- 5. Some more: $f: A \to B, g: B \to C$
- 6. Even more: $g \circ f : A \to C$

Let's talk about fractions, subscripts and superscripts...

- 1. Fractions: $\frac{1}{2}$, $\frac{1}{1+\frac{1}{2}} = \frac{2}{3}$
- 2. Subscripts: $x_1, x_2, x_3, \ldots, x_{2017}$
- 3. Superscripts: $x^1, x^2, \dots, x^{2017}$
- 4. Combinations: $(1 + \frac{1}{n})^n \to e$ as $n \to \infty$... Always remember, subscripts first followed by superscripts, e.g. $x_n^2, w_{1_2}^{3^4}$. α^{ϵ}

2.2 Mathematical Fonts

Here are some useful fonts:

- 1. Default: a, b, c, d, e
- 2. These are not default fonts:
 - (i) Blackboard Bold: $\mathbb{Q} \subset \mathbb{R}$
 - (ii) Bold-faced: $\mathbf{P}(X=k) = 0.4$
 - (iii) Caligraphy: $A \in \mathcal{A} \cup \mathcal{B}$, $(\Omega, \mathcal{F}, \mu)$
 - (iv) Fraktur: ABCDEFG.

2.3 Equations

• An example of an numbered equation is

$$e^{i\pi} + 1 = 0. (1)$$

• An example of an unnumbered equation is

$$1 + 1 = 2$$
.

• This is how we split equations:

$$(1+2) + 3 = 3 + 3$$

= 6
= 6.0

2.4 Integrals, Limits, Summation

- This is an integral: $\int_0^1 f(x) dx$.
- This is a limit $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$.
- This is a summation $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.

Some fancy stuff:

$$\iint f(x,y) \, dx dy \le \frac{\pi^2}{6}$$

$$\ge \frac{1}{1^2} + \frac{1}{2^2} + \dots$$

$$\ne 1 + \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Partial Derivative example: $\frac{\partial f}{\partial x}$

2.5 Matrices, Vectors

A Matrix:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \tag{3}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \tag{4}$$

A Vector:

$$\vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \tag{5}$$

2.6 Theorems, Lemma, Definitions, Corollaries

Definition 2.1. Let $(x_n)_{n=1}^{\infty}$ be a real-valued sequence. A sequence is said to converge to a limit $x \in \mathbb{R}$ if for any given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $|x_n - x| < \varepsilon$.

Based on Definition 2.1 we can prove the following lemma.

Lemma 2.2. If $x_n \to x$, then $|x_n| \to |x|$.

Proof. The proof is left as an exercise to readers.

Remark 2.3. The converse of Lemma 2.2 is not true in general!

Refer to [1]

Theorem 2.4 (Central Limit Theorem). Let X_1, X_2, X_3, \ldots be a sequence of IID random variables, with finite mean μ and variance σ^2 . Then

$$\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \tag{6}$$

can be approximated by the standard normal distribution.

3 Others

3.1 Tables

Name	Age	Favourite Food
Mark	25	Burgers
John	18	Hotdogs

3.2 Figures

This is a figure:

Figure 1: My Favourite Photo

References

[1] Mark Ng (2017), "A First Course in $L\!\!\!/ T_E\!\!\! X$ ". NUS Mathematics Society.