CONTENTS

# **CONTENTS**

| <b>13</b> | 多變   | 數函數    |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 1  |
|-----------|------|--------|-----|-----|-----|----|------------|---|---|---|----|---|----|---|--|--|--|--|--|--|--|--|----|
|           | 13.1 | 多變數    | 函數導 | 論   |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.1.1 | 多變  | 數函  | 數   |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.1.2 | 兩變. | 數函  | 數的  | 圖形 | <i>'</i> . |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.1.3 | 等高  | 線 . |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.1.4 | 等位  | 面 . |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.1.5 | 電腦  | 繪圖  |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           | 13.2 | 極限與    | 連續. |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 4  |
|           |      | 13.2.1 | 平面. | 上的  | 鄰域  |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 4  |
|           |      | 13.2.2 | 兩變. | 數函  | 數的; | 極限 | ξ.         |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 2  |
|           |      | 13.2.3 | 兩變. | 數函  | 數的: | 連續 | 性          |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 4  |
|           |      | 13.2.4 | 三變  | 數函  | 數的: | 連續 | 性          |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | ٦  |
|           | 13.3 | 偏導函    |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ę  |
|           |      | 13.3.1 | 兩變: | 數函  | 數的  | 偏導 | 函          | 數 |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ę  |
|           |      | 13.3.2 | 三個. | 或三位 | 個以. | 上變 | 數          | 函 | 數 | 的 | 偏  | 導 | 函: | 數 |  |  |  |  |  |  |  |  | Ę  |
|           |      | 13.3.3 | 高階  | 偏導」 | 函數  |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ę  |
|           | 13.4 | 微分 .   |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 6  |
|           |      | 13.4.1 | 增量: | 與微  | 分   |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | (  |
|           |      | 13.4.2 | 可微: | 分性  |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | (  |
|           |      | 13.4.3 | 以微: | 分求主 | 近似  | 值  |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 6  |
|           | 13.5 | 多變數    | 函數的 | )連鎖 | 率   |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 6  |
|           |      | 13.5.1 | 多變  | 數函  | 數的: | 連鎖 | 率          |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | (  |
|           |      | 13.5.2 |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 7  |
|           | 13.6 | 方向導    | 數和核 | 度向  | ]量  |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 7  |
|           |      | 13.6.1 | 方向  | 導數  |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | -  |
|           |      | 13.6.2 | 兩變. | 數函  | 數的; | 梯度 | 向          | 量 |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 8  |
|           |      | 13.6.3 | 梯度  | 向量的 | 的應  | 用  |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 8  |
|           |      | 13.6.4 | 三個  | 變數的 | 的函. | 數  |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ć  |
|           | 13.7 | 切平面    | 和法絲 | ξ.  |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ć  |
|           |      | 13.7.1 | 曲面  |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ć  |
|           |      | 13.7.2 | 平面  | 傾斜的 | 的角  | 度  |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ć  |
|           |      | 13.7.3 |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | Ć  |
|           | 13.8 | 兩變數:   |     |     |     |    |            |   |   | , | ٠. |   |    |   |  |  |  |  |  |  |  |  | 10 |
|           |      | 13.8.1 | 絕對  | 和相  | 對極  | 值  |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 10 |
|           |      | 13.8.2 |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 10 |
|           | 13.9 | 兩變數    | 函數超 | 医值的 | 應用  | ]. |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 11 |
|           |      | 13.9.1 |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 1. |
|           |      | 13.9.2 |     |     |     |    |            |   |   |   |    |   |    |   |  |  |  |  |  |  |  |  | 11 |

| CONTENTED | •• |
|-----------|----|
| CONTENTS  | 11 |
| CONTENTS  | 11 |

| 13.10 | )拉格朗<br>13.10.1    | 拉格良 | 明日主 | 乘子法 | Ļ. | · . |  |  |  |  |  |  |  |  |  |  |  | 11 |
|-------|--------------------|-----|-----|-----|----|-----|--|--|--|--|--|--|--|--|--|--|--|----|
|       | 13.10.2<br>13.10.3 |     |     |     |    |     |  |  |  |  |  |  |  |  |  |  |  |    |
| Index |                    |     |     |     |    |     |  |  |  |  |  |  |  |  |  |  |  | 12 |

# 13

# 多變數函數

# Contents

| 13.1 多變數函數導論          |     |      | <br> | 2 |
|-----------------------|-----|------|------|---|
| 13.1.1 多變數函數          |     |      | <br> | 2 |
| 13.1.2 兩變數函數的圖形       |     |      | <br> | 2 |
| 13.1.3 等高線            |     |      | <br> | 2 |
| 13.1.4 等位面            |     |      | <br> | 2 |
| 13.1.5 電腦繪圖           |     |      | <br> | 2 |
| 13.2 極限與連續            |     |      | <br> | 2 |
| 13.2.1 平面上的鄰域         |     |      | <br> | 2 |
| 13.2.2 兩變數函數的極限       |     |      | <br> | 2 |
| 13.2.3 兩變數函數的連續性 .    |     |      | <br> | 4 |
| 13.2.4 三變數函數的連續性 .    |     |      | <br> | 5 |
| 13.3 偏導函數             |     |      | <br> | 5 |
| 13.3.1 兩變數函數的偏導函數     | έ   |      | <br> | 5 |
| 13.3.2 三個或三個以上變數函     | 數的偏 | 導函數. | <br> | 5 |
| 13.3.3 高階偏導函數         |     |      | <br> | 5 |
| 13.4 微分               |     |      | <br> | 6 |
| 13.4.1 增量與微分          |     |      | <br> | 6 |
| 13.4.2 可微分性           |     |      | <br> | 6 |
| 13.4.3 以微分求近似值        |     |      | <br> | 6 |
| 13.5 多變數函數的連鎖率        |     |      | <br> | 6 |
| 13.5.1 多變數函數的連鎖率 .    |     |      | <br> | 6 |
| 13.5.2 隱 (偏) 微分       |     |      | <br> | 7 |
| 13.6 方向導數和梯度向量        |     |      | <br> | 7 |
| $13.6.1$ 方向導數 $\dots$ |     |      | <br> | 7 |
| 13.6.2 兩變數函數的梯度向量     | ·   |      | <br> | 8 |
| 13.6.3 梯度向量的應用        |     |      | <br> | 8 |
| 13.6.4 三個變數的函數        |     |      | <br> | 9 |
| 13.7 切平面和法線           |     |      | <br> | 9 |
| 13.7.1 曲面的切平面和法線 .    |     |      | <br> | 9 |

|      | 13.7.2  | 平面   | 1傾斜         | 的角         | 度      |    |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>9         |
|------|---------|------|-------------|------------|--------|----|---|----------|---|-----|----|----|---|-----|----|---|---|---|--|---|--|---|---|---------------|
|      | 13.7.3  | 梯度   | 向量          | $\nabla f$ | (x, y) | y) | 和 | $\nabla$ | F | (x, | y, | z) | 的 | jet | 之較 |   |   |   |  |   |  |   |   | <br>9         |
| 13.8 | 雨變數     | 函數   | 的極值         | 直 .        |        |    |   | •        |   | •   |    |    |   |     |    |   |   | • |  | • |  |   | • | <br><b>10</b> |
|      | 13.8.1  | 絕對   | <b>}和相</b>  | 對極         | 值      |    |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>10        |
|      | 13.8.2  | 二階   | 诣偏導         | 數檢         | 定      |    |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>10        |
| 13.9 | 兩變數     | 函數   | 極値的         | 内應用        | 月.     |    |   |          | • |     |    | •  | • |     |    | • | • | • |  |   |  | • | • | <br>11        |
|      | 13.9.1  | 最佳   | 化問          | 題的         | 應用     | ]  |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>11        |
|      | 13.9.2  | 最小   | 、平方         | 法.         |        |    |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>11        |
| 13.1 | Q拉格朗    | 日乘   | 子法          | (補充        | [章]    | 節) |   |          |   | •   |    | •  | • |     |    |   | • |   |  | • |  |   |   | <br>11        |
|      | 13.10.1 | 1 拉格 | <b>}</b> 朗日 | 乘子         | 法      |    |   |          |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>11        |
|      | 13.10.2 | 2限#  | 修件          | 下的         | 最佳     | 比  | 問 | 題        |   |     |    |    |   |     |    |   |   |   |  |   |  |   |   | <br>11        |
|      | 13.10.3 | 3雙重  | 限制          | 條件         | 下的     | 拉  | 格 | 朗        | 日 | 乘.  | 子  | 法  |   |     |    |   |   |   |  |   |  |   |   | <br>11        |

# 13.1 多變數函數導論

# 13.1.1 多變數函數

**Definition 13.1** (兩變數函數). 設 D 是一個有序實數對的集合。如果對 D 中任一個序對 (x,y) 恆有唯一的實數 f(x,y) 與之對應,則 f 就稱爲一個 x 和 y 的函數。集合 D 是 f 的定義域 (domain),所對應的 f(x,y) 的全體稱爲 f 的值域 (range)。

- 13.1.2 兩變數函數的圖形
- 13.1.3 等高線
- 13.1.4 等位面
- 13.1.5 電腦繪圖
- 13.2 極限與連續
- 13.2.1 平面上的鄰域
- 13.2.2 兩變數函數的極限

**Definition 13.2** (兩變數函數極限). 設 f 是一個在以  $(x_0,y_0)$  爲中心的開圓盤上,其中除了  $(x_0,y_0)$  可能無定義外,到處都有定義的函數,L 是一個實數,則記號

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

的意思是任給一個  $\varepsilon > 0$ , 恆有一  $\delta > 0$  與之對應, 使得只要

$$|f(x,y)-L| 不等式  $0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta$$$

就會成立。

Lemma 13.1 (絕對值函數的連續性). 若

$$\lim_{x \to a} f(x) = L,$$

則

$$\lim_{x \to a} |f(x)| = |L|.$$

Proof. 令 g(t) = |t|。因 g 在  $\mathbb{R}$  上連續,可將極限與 g 互換:

$$\lim_{x \to a} |f(x)| = g\left(\lim_{x \to a} f(x)\right) = g(L) = |L|.$$

Lemma 13.2. 若

$$\lim_{x \to a} |f(x)| = 0,$$

則

$$\lim_{x \to a} f(x) = 0.$$

證明(夾擠定理). 對所有足夠靠近 a 的 x 有

$$-|f(x)| \le f(x) \le |f(x)|.$$

由假設  $\lim_{x\to a} |f(x)| = 0$  可知

$$\lim_{x \to a} \left( -|f(x)| \right) = 0, \qquad \lim_{x \to a} |f(x)| = 0.$$

依夾擠定理 (Sandwich Theorem)遂得

$$\lim_{x \to a} f(x) = 0.$$

- 對於兩個變數來說:
- **○** 幂次路徑:令  $y = m x^k$ ,其中  $m \in \mathbb{R} \setminus k > 0$ 。

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} f(x, m x^k).$$

若極限值會隨 m (或 k) 改變,則原極限不存在。

對稱幂次路徑:令  $x = ny^{\ell}$ ,其中  $n \in \mathbb{R} \setminus \ell > 0$ 。

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{y\to 0} f(n y^{\ell}, y).$$

若極限值會隨 n (或  $\ell$ ) 改變,則原極限不存在。

極座標: 取  $x = r \cos \theta$  、  $y = r \sin \theta$  , 其中  $r = \sqrt{x^2 + y^2}$  。

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0^+} f(r\cos\theta, r\sin\theta).$$

若最終表達式與 $\theta$ 無關,則極限存在;反之,極限不存在。

13.2. 極限與連續 4

- □ 對於三個變數來說:
- ☑ 幂次曲線路徑:令

$$y = m_1 x^{k_1}, \qquad z = m_2 x^{k_2}, \quad m_1, m_2 \in \mathbb{R}, \ k_1, k_2 > 0.$$

則

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = \lim_{x\to 0} f(x, m_1 x^{k_1}, m_2 x^{k_2}).$$

若極限值隨  $m_1, m_2, k_1, k_2$  改變,則原極限不存在。

□ 幂次曲面路徑:亦可令

$$x = n_1 z^{\ell_1}, \quad y = n_2 z^{\ell_2}, \quad n_1, n_2 \in \mathbb{R}, \ \ell_1, \ell_2 > 0,$$

得

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = \lim_{z\to 0} f(n_1 z^{\ell_1}, n_2 z^{\ell_2}, z).$$

若極限值隨  $n_1, n_2, \ell_1, \ell_2$  改變,則原極限不存在。

○ 柱座標路徑:取

$$x = r \cos \theta,$$
  $y = r \sin \theta,$   $z = z,$   $r = \sqrt{x^2 + y^2}.$ 

則

$$\lim_{\substack{(x,y,z)\to (0,0,0)}} f(x,y,z) \ = \ \lim_{\substack{r\to 0^+\\z\to 0}} f\!\!\left(r\cos\theta,\,r\sin\theta,\,z\right).$$

若最終表達式與 $\theta$ 無關(並可適當控制z與r的關係),則極限有可能存在;反之,極限不存在。

□ 球座標路徑:取

$$x = \rho \sin \varphi \cos \theta,$$
  $y = \rho \sin \varphi \sin \theta,$   $z = \rho \cos \varphi,$   $\rho = \sqrt{x^2 + y^2 + z^2}.$ 

則

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = \lim_{\rho\to 0^+} f(\rho\sin\varphi\cos\theta, \,\rho\sin\varphi\sin\theta, \,\rho\cos\varphi).$$

若最終表達式與 $\theta, \varphi$  無關,則極限存在且等於該共同值;反之,極限不存在。

# 13.2.3 兩變數函數的連續性

**Definition 13.3** (兩變數函數的連續性). 如果在一個含  $(x_0, y_0)$  的開區間 R 中,當 (x, y) 趨近  $(x_0, y_0)$  時,恆有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

我們就稱 f <u>在點  $(x_0, y_0)$  是連續的</u> <u>(continuous at a point  $(x_0, y_0)$ )</u>, 如果 f 在 R 中的每一點都連續,我們就稱 f 在開區域 R 是連續的 (continuous in the open region R)。

#### Theorem 13.1 (兩變數的連續函數).

假設 k 是實數,並且 f 和 g 在  $(x_0,y_0)$  連續,則下列函數均在  $(x_0,y_0)$  連續。

- 1. 常數倍: kf 2. 乘積: fg
- 3. 和差:  $f \pm g$  4. 商: f/g,  $g(x_0, y_0) \neq 0$

**Theorem 13.2** (合成函數的連續性). 如果 h 在  $(x_0, y_0)$  連續, 並且 g 在  $h(x_0, y_0)$  連續, 則合成函數  $(g \circ h)(x, y) = g(h(x, y))$  也在  $(x_0, y_0)$  連續。亦即

$$\lim_{(x,y)\to(x_0,y_0)} g(h(x,y)) = g(h(x_0,y_0))$$

## 13.2.4 三變數函數的連續性

Definition 13.4 (三 變 數 函 數 連 續). 如 果 f 在一個含  $(x_0, y_0, z_0)$  是連續的  $(continuous\ at\ a\ point\ (x_0, y_0, z_0))$ ,並且當 (x, y, z) 趨近  $(x_0, y_0, z_0)$  時,恆有

$$\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0)$$

我們就稱 f 在  $(x_0, y_0, z_0)$  連續。如果 f 在 R 中的每一點都連續,我們就稱 f 在開區域 R 是連續的 (continuous in the open region R)。

# 13.3 偏導函數

# 13.3.1 兩變數函數的偏導函數

**Definition 13.5** (兩變數函數的偏導函數). 如果 z = f(x,y) 是一個兩變數的函數,則 f 對 x 和 y 的第一階偏導數 (first partial derivatives)  $f_x$  和  $f_y$  的定義分別是

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \quad \text{for} \quad f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

(如果極限存在的話)。

(一階偏導函數的記號) 函數 z = f(x, y) 的偏導函數  $f_x$  和  $f_y$  的各種記法如下

$$\frac{\partial}{\partial x}f(x,y) = f_x(x,y) = z_x = \frac{\partial z}{\partial x} \quad \text{fo} \quad \frac{\partial}{\partial y}f(x,y) = f_y(x,y) = z_y = \frac{\partial z}{\partial y}$$

而偏導數在點 (a,b) 的值則記爲

$$\frac{\partial z}{\partial x}\Big|_{(a,b)} = f_x(a,b) \quad \text{fo} \quad \frac{\partial z}{\partial y}\Big|_{(a,b)} = f_y(a,b)$$

#### 13.3.2 三個或三個以上變數函數的偏導函數

## 13.3.3 高階偏導函數

Theorem 13.3 (混合偏導數的恆等式 (Equality of mixed partial derivatives)). 如果 f 是 x 和 y 的函數並且  $f_{xy}$  和  $f_{yx}$  在一個開圓盤 R 上各自連續,則在 R 上的每一點 (x,y) 有

$$f_{xy}(x,y) = f_{yx}(x,y)$$

13.4. 微分

# 13.4 微分

# 13.4.1 增量與微分

**Definition 13.6** (全微分). 如果 z = f(x,y) 並且  $\Delta x$  和  $\Delta y$  是 x 和 y 的增量,則獨立變數 x 和 y 的微分 (differentials) 是

$$\mathrm{d}x = \Delta x$$
  $\Leftrightarrow$   $\mathrm{d}y = \Delta y$ 

我們定義應變數 z 的全微分 (total differential) dz 如下

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x(x, y) dx + f_y(x, y) dy$$

#### 13.4.2 可微分性

**Definition 13.7** (可微). 如果函數 z = f(x,y) 在點  $(x_0,y_0)$  相應於  $\Delta z$ ,  $\Delta y$  兩個增量所得的增量可以表成

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

其中  $\epsilon_1$  和  $\epsilon_2$  會隨著  $(\Delta x, \Delta y) \rightarrow (0,0)$  而同時趨近於 0,函數 f(x,y) 就稱爲在  $(x_0, y_0)$  <u>可微</u> ( <u>differentiable</u>)。如果 f <u>在區域 R 上可微的</u> ( <u>differentiable</u> in a region R),就稱 f 在 R 上可微。

Theorem 13.4 (可微的充分條件). 假設 f 是兩變數 x 和 y 的函數,如果  $f_x$  和  $f_y$  在開區域 R 上連續,則 f 在 R 上可微。

#### 13.4.3 以微分求近似值

Theorem 13.5 (可微性隱含連續性 (Differentiability implies continuity)). 如果一個  $x \approx y$  的函數  $f \in (x_0, y_0)$  可微,則  $f \otimes e (x_0, y_0)$  連續。

# 13.5 多變數函數的連鎖率

## 13.5.1 多變數函數的連鎖率

Theorem 13.6 (連鎖律:一個獨立變數的情形 (Chain Rule: one independent variable)). 假設 w = f(x,y) 是 x 和 y 的可微函數,x = g(t) 和 y = h(t) 又是 t 的可微函數,則 w 是 t 的可微函數,並且

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} \qquad \mathbf{v} \quad \mathbf{0} \quad \mathbf{13.1}$$

Theorem 13.7 (連鎖律:兩個獨立變數的情形 (Chain Rule: two independent variables)). 假設 w = f(x,y) 是 x 和 y 的可微函數,x = g(s,t) 和 y = h(s,t) 又是 s 和 t 的函數滿足  $\frac{\partial x}{\partial s}$ ,  $\frac{\partial x}{\partial t}$ ,  $\frac{\partial y}{\partial s}$  和  $\frac{\partial y}{\partial t}$  同時存在,則  $\frac{\partial w}{\partial s}$  和  $\frac{\partial w}{\partial t}$  也會存在,並且由下式給出

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} \quad \text{fo} \quad \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t}$$



Figure 13.1: 連鎖率:w 是 x 和 y 的函數,而後兩者同時又是 t 的函數,本圖代表 w 對 t 的導函數。

假設 w=f(x,y,z) 是 x,y,z 的可微函數,且  $x=g(s,t) \cdot y=h(s,t) \cdot z=k(s,t)$  是 s 和 t 的可微函數,滿足  $\frac{\partial x}{\partial s} \setminus \frac{\partial y}{\partial t} \setminus \frac{\partial y}{\partial s}$  和  $\frac{\partial z}{\partial t}$  同時存在,則  $\frac{\partial w}{\partial s}$  和  $\frac{\partial w}{\partial t}$  也會存在,並且由下式給出:

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s},$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}.$$

# 13.5.2 隱 (偏) 微分

Theorem 13.8 (連鎖率: 隱函數微分 (implicit differentiation)). 如果方程式 F(x,y) = 0 定出一個 x 的可微隱函數 y ,則

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x(x,y)}{F_y(x,y)}, \quad F_y(x,y) \neq 0$$

如果方程式 F(x,y,z) = 0 定出一個 x 和 y 的可微隱函數 z,則

$$\frac{\partial z}{\partial x} = -\frac{F_x(x,y,z)}{F_z(x,y,z)} \quad \text{fo} \quad \frac{\partial z}{\partial y} = -\frac{F_y(x,y,z)}{F_z(x,y,z)}, \quad F_z(x,y,z) \neq 0$$

# 13.6 方向導數和梯度向量

## 13.6.1 方向導數

**Definition 13.8** (方向導數). 假設 f 是兩變數 x 和 y 的函數, $\mathbf{u} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}$  是一個單位向量。如果極限

$$D_{\mathbf{u}}f(x,y) = \lim_{t \to 0} \frac{f(x + t\cos\theta, y + t\sin\theta) - f(x,y)}{t}$$

存在,我們稱此極限爲 f 沿 u 方向的方向導數,以  $D_u f$  表示。

Theorem 13.9 (方向導數 (Directional derivative)). 如果  $f \in \mathcal{X}$  和 y 的可微函數,則 沿方向  $\mathbf{u} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}$  的方向導數是

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$$

# 13.6.2 兩變數函數的梯度向量

**Definition 13.9** (兩變數函數的梯度向量). 假設 z = f(x,y) 是 x,y 的函數並且  $f_x$  和  $f_y$  都存在,則向量

$$\nabla f(x,y) = f_x(x,y) \mathbf{i} + f_y(x,y) \mathbf{j}$$

稱爲 f 的梯度 (向量) 以  $\nabla f(x,y)$  表示。 $\nabla f$  讀做「 $del\ f$ 」,另一個常用的記號是  $\mathbf{grad}f(x,y)$ 。在圖 13.2 中,注意到對每一個點 (x,y) 而言,梯度向量  $\nabla f(x,y)$  都是一個平面向量 (而非空間向量)。



Figure 13.2: f 的梯度向量是 xy-平面上的向量。

Theorem 13.10 (方向導數的內積公式). 假設 f 是 x 和 y 的可微函數,則沿單位向量  $\mathbf{u}$  方向的方向導數是

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

# 13.6.3 梯度向量的應用

Theorem 13.11 (梯度向量的性質). 已知 f 在點 (x,y) 可微。

- 1. 如果  $\nabla f(x,y) = \mathbf{0}$ ,則對所有方向  $\mathbf{u}$  而言,其方向導數  $D_{\mathbf{u}}f(x,y) = \mathbf{0}$ 。
- 2. 令 f 遞增最快的方向是  $\nabla f(x,y)$  的方向,所有方向導數的最大值是  $\|\nabla f(x,y)\|$ 。
- 3. 令 f 遞減最快的方向是  $-\nabla f(x,y)$  的方向,所有方向導數的最小值是  $-\|\nabla f(x,y)\|$ 。

**Theorem 13.12** (梯度向量與等高線垂直). 已知 f 在  $(x_0, y_0)$  可微並且  $\nabla f(x_0, y_0) \neq \mathbf{0}$ ,则  $\nabla f(x_0, y_0)$  與通過  $(x_0, y_0)$  的等高線在  $(x_0, y_0)$  互相垂直。

#### 13.6.4 三個變數的函數

**Definition 13.10** (三個變數的方向導數和梯度向量). 假設 f 是 x, y 和 z 的函數,其一階 偏導數都是連續函數,沿單位向量  $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ 

$$D_{\mathbf{u}}f(x,y,z) = af_x(x,y,z) + bf_y(x,y,z) + cf_z(x,y,z)$$

f 的梯度 (gradient) 向量定為

$$\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$

其相關性質如下:

- 1.  $D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$
- 2. 如果  $\nabla f(x,y,z) = \mathbf{0}$ , 則對所有的  $\mathbf{u}$ ,  $D_{\mathbf{u}}f(x,y,z) = 0$ 。
- 3.  $\nabla f(x,y,z)$  是 f 的最大遞增方向, f 的方向導數  $D_{\mathbf{u}}f(x,y,z)$  的最大值是

$$\|\nabla f(x,y,z)\|$$

4.  $-\nabla f(x,y,z)$  是 f 的最小遞增方向, f 的方向導數  $D_{\mathbf{u}}f(x,y,z)$  的最小值是

$$-\left\|\nabla f(x,y,z)\right\|$$

# 13.7 切平面和法線

#### 13.7.1 曲面的切平面和法線

**Definition 13.11** (切平面和法線). 已知方程式 F(x,y,z)=0 定出一個曲面 S。如果函數 F(x,y,z) 在 S 上一點  $P(x_0,y_0,z_0)$  可微,並且有  $\nabla F(x_0,y_0,z_0)\neq \mathbf{0}$ ,我們定義 S 在 P 點 的切平面和法線如下:

- $1. \ S \ A \ P \ B holy \ \sqrt{F(x_0,y_0,z_0)}$  爲法向量的平面。
- 2. S 在 P 點的法線 (normal line)就是過 P 點而以  $\nabla F(x_0, y_0, z_0)$  爲方向向量的直線。

**Theorem 13.13** (切平面方程式). 如果 F 在  $(x_0,y_0,z_0)$  可微,並且  $(x_0,y_0,z_0)$  在 F(x,y,z)=0 所定出的曲面上,則此曲面在  $(x_0,y_0,z_0)$  的切平面方程式是

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

- 13.7.2 平面傾斜的角度
- 13.7.3 梯度向量  $\nabla f(x,y)$  和  $\nabla F(x,y,z)$  的比較

**Theorem 13.14** (梯度向量與等位面垂直). 如果 F 在  $(x_0,y_0,z_0)$  可微,並且  $\nabla F(x_0,y_0,z_0) \neq \mathbf{0}$ ,則  $\nabla F(x_0,y_0,z_0)$  會與過  $(x_0,y_0,z_0)$  的等位面垂直。

# 13.8 兩變數函數的極值

#### 13.8.1 絕對和相對極值

- 1. f 至少在 R 上的某一點有極小 (最小) 值。
- 2. f 至少在 R 上的某一點有極大 (最大) 值。

**Definition 13.12** (相對極值). f 是定義在包含  $(x_0, y_0)$  的一個區域 R 上的函數。

1. 如果在一個含  $(x_0, y_0)$  的開圓盤上,對所有的點 (x, y) 恆有

$$f(x,y) \ge f(x_0, y_0)$$

則稱 f 在  $(x_0, y_0)$  有<u>相對極小</u>  $(\underline{relative\ minimum})$ 。

2. 如果在一個含  $(x_0, y_0)$  的開圓盤上,對所有的點 (x, y) 恆有

$$f(x,y) \le f(x_0,y_0)$$

則稱 f 在  $(x_0, y_0)$  有相對極大  $(\underline{relative \ maximum})$ 。

**Definition 13.13** (臨界點). 設 f 定義在一個含  $(x_0, y_0)$  的開區域上,如果下式其中之一成立,就稱點  $(x_0, y_0)$  是 f 的一個<mark>臨界點</mark>  $(critical\ point)$ 。

- 1.  $f_x(x_0, y_0) = 0$   $f_y(x_0, y_0) = 0$
- 2.  $f_x(x_0, y_0)$  或  $f_y(x_0, y_0)$  不存在。

**Theorem 13.16** (相對極值一定發生在臨界點). 已知 f 在開區域 R 上一點  $(x_0, y_0)$  有相對極小值或相對極大值,則  $(x_0, y_0)$  是 f 的一個臨界點。

#### 13.8.2 二階偏導數檢定

Theorem 13.17 (<u>二階偏導數檢定</u> (<u>Second Partials Test</u>)). 假設函數 f 在一個含點 (a,b) 的開區域上定義,具連續的二階偏導數,並且在 (a,b) 满足

$$f_x(a,b) = 0$$
  $f_y(a,b) = 0$ 

考慮一個以在 (a,b) 的二階偏導數計算的量

$$d = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

- 1. 如果 d>0 並且  $f_{xx}(a,b)>0$ ,則 f 在 (a,b) 有相對極小  $(\underline{relative\ minimum})$ 。
- 2. 如果 d>0 並且  $f_{xx}(a,b)<0$ ,則 f 在 (a,b) 有相對極大  $(\underline{relative\ maximum})$ 。
- 3. 如果 d < 0 則 (a, b, f(a, b)) 是一個<u>鞍點</u>  $(saddle\ point)$ 。
- 4. 如果 d=0,本檢定無結論。

# 13.9 兩變數函數極值的應用

# 13.9.1 最佳化問題的應用

## 13.9.2 最小平方法

Theorem 13.18 (最小平方回歸直線). 數據  $\{(x_1,y_1), (x_2,y_2), (x_3,y_3), \ldots, (x_n,y_n)\}$  的最小平方迴歸線 (least squares regression line) 方程式是 f(x) = ax + b 其中  $S_x = \sum_{i=1}^n x_i, S_y = \sum_{i=1}^n y_i, S_{xx} = \sum_{i=1}^n x_i^2, S_{xy} = \sum_{i=1}^n x_i y_i,$ 

$$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2} = \frac{\sum_{i=1}^n (x_i - \frac{S_x}{n})(y_i - \frac{S_y}{n})}{\sum_{i=1}^n (x_i - \frac{S_x}{n})^2} \quad and \qquad \text{fo} \quad b = \frac{S_y - aS_x}{n}$$

# 13.10 拉格朗日乘子法 (補充章節)

## 13.10.1 拉格朗日乘子法

Theorem 13.19 (拉格朗日定理 (Lagrange's Theorem)). 已知函數 f 和 g 所有的一階 偏導數都是連續函數,並且限制在平滑曲線 g(x,y)=c 上討論時,函數 f 在點  $(x_0,y_0)$  有極值。如果  $\nabla g(x_0,y_0)\neq \mathbf{0}$ ,則必存在實數  $\lambda$  使得

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

拉格朗日乘子法 (Method of Lagrange Multipliers) 函數 f 和 g 滿足定理 13.19 中拉格朗日定理的假設,並且 f 在限制條件 g(x,y)=c 上有極值。求極值的步驟是:

1. 解聯立方程式  $\nabla f(x,y) = \lambda \nabla g(x,y)$  和 g(x,y) = c , 亦即

$$f_x(x,y) = \lambda g_x(x,y)$$
  $f_y(x,y) = \lambda g_y(x,y)$   $g(x,y) = c$ 

- 2. 將步驟 (a) 所有的解代入 f(x,y) 中,比較大小以求出 f 在限制條件 g(x,y)=c 之下的最大值和最小值。
- 13.10.2 限制條件下的最佳化問題
- 13.10.3 雙重限制條件下的拉格朗日乘子法

# **INDEX**

| alternative form 另一型式                                                                                                                                                                                       | alternative form of 另一型式, 8                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of the directional derivative 方向導數, 8                                                                                                                                                                       | of $f$ in the direction of $\mathbf{u}$ 在 $\mathbf{u}$ 方向的 $f$ ,                                                                                                                                                          |
| Chain Rule 連鎖律 implicit differentiation 隱函數微分, 7 one independent variable 一個獨立變數, 6 two independent variables 兩個獨立變數, 6                                                                                     | 7,9 of a function in three variables 三變數的 函數,9 domain 定義域 of a function 函數 of two variables 兩個變數,2                                                                                                                        |
| composite function 合成函數         continuity of 連續, 5 continuity 連續         of a composite function 合成函數         of two variables 兩個變數, 5 continuous 連續                                                       | equality of mixed partial derivatives 混合偏導數的恆等式, 5 equation(s) 方程式 of tangent plane 切平面, 9 Extreme Value Theorem 極值定理, 10                                                                                                 |
| at a point 在一點, 4, 5 function of two variables 兩變數的函數, 4 in the open region $R$ 在開區域 $R$ , 4, 5 critical point(s) 臨界點 of a function of two variables 兩變數的函數, 10 relative extrema occur only at 相對極值僅發生在, 10 | first partial derivatives 一階偏導數 notation for 記號, $5$ first partial derivatives 第一階偏導數, $5$ function(s) 函數 of $x$ and $y$ $x$ 和 $y$ , $2$ of three variables 三變數 continuity of 連續, $5$ directional derivative of 方向導數, $9$ |
| derivative(s) 導數 Chain Rule 連鎖律 implicit differentiation 隱函數微分, 7 one independent variable 一獨立變數, 6 two independent variables 二獨立變數, 6 directional 主力, 7, 0                                                 | gradient of 梯度, 9 of two variables 兩個變數, 2 continuity of 連續, 4 critical point of 臨界點, 10 differentiability implies continuity 可微 性隱含連續性, 6 differentiable 可微, 6                                                           |
| directional 方向, 7, 9 differentiability 可微分 implies continuity 隱含連續性, 6 sufficient condition for 充分條件, 6 differentiable function 可微函數 in a region R 在區域 R, 6 of two variables 兩個變數, 6 differentiation 微分     | domain of 定義域, 2<br>gradient of 梯度, 8<br>limit of 極限, 2<br>partial derivative of 偏導數, 5<br>range of 值域, 2<br>relative maximum of 相對極大值, 10<br>relative minimum of 相對極小值, 10                                               |
| implicit 隱<br>chain rule 連鎖律, 7<br>directional derivative 方向導數, 7                                                                                                                                           | total differential of 全微分, 6<br>relative maximum of 相對極大值, 10<br>relative minimum of 相對極小值, 10                                                                                                                            |

| gradient 梯度                                            | range of a function 函數的值域                                                      |
|--------------------------------------------------------|--------------------------------------------------------------------------------|
| normal to level curves 垂直於等高線, 8                       | of two variables 兩個變數, 2                                                       |
| normal to level surfaces 垂直於等位曲面,                      | region $R$ 區域 $R$                                                              |
| 9                                                      | differentiable function in 可微函數, 6                                             |
| of a function of three variables 三變數的                  | open 開                                                                         |
| 函數, 9                                                  | continuous in 連續, $4, 5$                                                       |
| of a function of two variables 雨變數的函數, 8               | regression, least squares 最小平方迴歸, 11<br>relative extrema 相對極值                  |
| properties of 性質, 8                                    | occur only at critical points 僅發生在臨<br>界點, 10                                  |
| implicit differentiation 隱函數微分, 7<br>Chain Rule 連鎖律, 7 | Second Partials Test for 二階偏導數檢定,<br>10                                        |
| Lagranga's Theorem 技校的日字理 11                           | relative minimum 相對極小值                                                         |
| Lagrange's Theorem 拉格朗日定理, 11<br>least squares 最小平方    | of a function 函數, 10                                                           |
| regression 迴歸                                          | Second Partials Test for 二階偏導數檢定,                                              |
| line 直線, 11                                            | 10                                                                             |
| level curve 等高線                                        | and dla naint 的即 10                                                            |
| gradient is normal to 梯度垂直於, 8                         | saddle point 鞍點, 10                                                            |
| level surface 等位曲面                                     | Second Partials Test 二階偏導數檢定, 10 sufficient condition for differentiability 可微 |
| gradient is normal to 梯度垂直於, 9                         | 分的充分條件, 6                                                                      |
| limit(s) 極限                                            | 7 14 7C 7 14 F1 , 0                                                            |
| of a function of two variables 兩個變數函                   | tangent plane 切平面, 9                                                           |
| 數, 2                                                   | equation of 方程式, 9                                                             |
| line(s) 直線                                             | Theorem 定理                                                                     |
| least squares regression 最小平方迴歸, 11                    | Extreme Value 極值, 10                                                           |
| normal 法, 9                                            | total differential 全微分, 6                                                      |
| Method of 方法                                           | vector(s) 向量                                                                   |
| Lagrange multipliers 拉格朗日乘子, 11                        | zero 零, 11                                                                     |
| mixed partial derivatives 混合偏導數                        |                                                                                |
| equality of 恆等式, 5                                     | 一階偏導數 first partial derivatives                                                |
| 1 7                                                    | 記號 notation for, 5                                                             |
| normal line 法線, 9                                      | 二階偏導數檢定 Second Partials Test, 10                                               |
| notation 記號                                            | 偏導數 partial derivatives                                                        |
| for first partial derivatives 一階偏導數, 5                 | 兩個變數函數 of a function of two vari-                                              |
|                                                        | ables, 5                                                                       |
| open region R 開區域 R                                    | 混合 mixed                                                                       |
| continuous in 連續, 4, 5                                 | 恆等式 equality of, 5                                                             |
| partial derivatives 偏導數                                | 第一 first, 5                                                                    |
| first 第一, 5                                            | 記號 notation for, 5                                                             |
| mixed 混合                                               | 全微分 total differential, 6                                                      |
| equality of 恆等式, 5                                     | 函數 function(s)                                                                 |
| notation for 記號, 5                                     | $x \not = y \text{ of } x \text{ and } y, 2$                                   |
| of a function of two variables 兩個變數函                   | 三變數 of three variables                                                         |
| 數, 5                                                   | 方向導數 directional derivative of, 9                                              |
| plane 平面                                               | 梯度 gradient of, 9                                                              |
| tangent $t_0$ , 9                                      | 連續 continuity of, 5                                                            |
| equation of 方程式, 9                                     | 兩個變數 of two variables, 2                                                       |
| properties 性質                                          | 值域 range of, 2                                                                 |
| of the gradient 梯度 8                                   | 偏導數 partial derivative of 5                                                    |

全微分 total differential of, 6 微分 differentiation 隱 implicit 可微 differentiable, 6 可微性隱含連續性 differentiability im-連鎖律 chain rule, 7 plies continuity, 6 性質 properties 定義域 domain of, 2 梯度 of the gradient, 8 梯度 gradient of, 8 拉格朗日定理 Lagrange's Theorem, 11 極限 limit of, 2 方向導數 directional derivative, 7 相對極大值 relative maximum of, 10 三變數的函數 of a function in three vari-相對極小值 relative minimum of, 10 ables, 9 臨界點 critical point of, 10 另一型式 alternative form of, 8 連續 continuity of, 4 在  $\mathbf{u}$  方向的 f of f in the direction of  $\mathbf{u}$ , 相對極大值 relative maximum of, 10 7.9 相對極小值 relative minimum of, 10 方法 Method of 函數的值域 range of a function 拉格朗日乘子 Lagrange multipliers, 11 兩個變數 of two variables, 2 方程式 equation(s) 切平面 tangent plane, 9 切平面 of tangent plane, 9 方程式 equation of, 9 最小平方 least squares 區域 R region R 迴歸 regression 可微函數 differentiable function in, 6 直線 line, 11 開 open 最小平方迴歸 regression, least squares, 11 連續 continuous in, 4, 5 梯度 gradient 另一型式 alternative form 三變數的函數 of a function of three vari-方向導數 of the directional derivative, 8 ables, 9 可微函數 differentiable function 雨變數的函數 of a function of two vari-兩個變數 of two variables, 6 在區域 R in a region R, 6垂直於等位曲面 normal to level surfaces, 可微分 differentiability 9 充分條件 sufficient condition for, 6 垂直於等高線 normal to level curves, 8 隱含連續性 implies continuity, 6 性質 properties of, 8 可微分的充分條件 sufficient condition for dif-極值定理 Extreme Value Theorem, 10 ferentiability, 6 極限 limit(s) 合成函數 composite function 兩個變數函數 of a function of two vari-連續 continuity of, 5 ables, 2 向量 vector(s) 法線 normal line, 9 零 zero, 11 混合偏導數 mixed partial derivatives 定理 Theorem 恆等式 equality of, 5 極值 Extreme Value, 10 混合偏導數的恆等式 equality of mixed partial 定義域 domain derivatives, 5 函數 of a function 兩個變數 of two variables, 2 直線 line(s) 導數 derivative(s) 最小平方迴歸 least squares regression, 11 方向 directional, 7, 9 法 normal. 9 連鎖律 Chain Rule 相對極值 relative extrema 一獨立變數 one independent variable, 6 二階偏導數檢定 Second Partials Test for, 二獨立變數 two independent variables, 6 僅發生在臨界點 occur only at critical points, 隱函數微分 implicit differentiation, 7 10 平面 plane 相對極小值 relative minimum 二階偏導數檢定 Second Partials Test for, 切 tangent, 9 方程式 equation of, 9 10

函數 of a function, 10

第一階偏導數 first partial derivatives, 5

等位曲面 level surface

梯度垂直於 gradient is normal to, 9

等高線 level curve

梯度垂直於 gradient is normal to, 8

臨界點 critical point(s)

兩變數的函數 of a function of two variables, 10

相對極值僅發生在 relative extrema occur only at, 10

記號 notation

一階偏導數 for first partial derivatives, 5

連續 continuity

合成函數 of a composite function 兩個變數 of two variables, 5

連續 continuous

兩變數的函數 function of two variables, 4 在一點 at a point, 4, 5

在開區域 R in the open region R, 4, 5

連鎖律 Chain Rule

一個獨立變數 one independent variable, 6

兩個獨立變數 two independent variables, 6

隱函數微分 implicit differentiation, 7

開區域 R open region R

連續 continuous in, 4, 5

隱函數微分 implicit differentiation, 7

連鎖律 Chain Rule, 7

鞍點 saddle point, 10