MATH6222 Week 8 Lecture Notes

Rui Qiu

2017-04-24

1 Monday

Viewing times

Apr. 26 10:30-11:30, 3:00-4:00

Apr. 27 1-2

Apr. 28 10:30-11:30, 3:00-4:00

Midterm questions

Hand-deck probability $(5,4,3,1,) \rightarrow \frac{4\binom{13}{5}3\binom{13}{4}2\binom{13}{3}13}{\binom{52}{13}}$

But for
$$(5,4,4,0) o frac{4\binom{13}{5}\binom{3}{2}\binom{13}{2}\binom{13}{4}^2}{\binom{52}{13}}$$

Bug-path problem

Suppose that $|a| + |b| \le k$, a, b have the same parity as k.

Then the bug can reach (a, b) on day k.

Clearly, the bug can walk to (a, b) in |a| + |b| days. (By walking a steps up/down if a + /-, and b steps right/left if b + /-).

Note if k has same parity as a+b, then it also has same parity as |a|+|b|. Thus, k-(|a|+|b|) is divisible by 2.

If the bug walked up and down $\frac{k-(|a|+|b|)}{2}$?... then it lands on (a,b) on day k.

...

If (a, b) denotes the current position of the bug, then |a| + |b| changes by at most 1 each day. Thus on day k, $|a| + |b| \le k$.

For parity, note that, the parity of a + b changes every day, either from odd to even or from even to odd.

Thus the parity of a + b is always the same as the parity of the day k.

Problem: Determine all integers satisfying $x^2 \equiv 1 \mod 5$. 1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29...

- any integer where last digit is 1, 4, 6, 9
- all integers in congruence classes 1, 4, 6, 9 mod 10

• all integers in congruence classes $\overline{1}, \overline{4} \mod 5$

Note: If x, y are in same congruence class $\mod 5$, then $x^2 \equiv y^2 \mod 5$.

Just need to figure out which congruence classes $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\} \rightarrow \{\overline{0}, \overline{1}, \overline{4}, \overline{4}, \overline{1}\}$

 \mathbb{Z}_5

So solution is just all integers in these 2 congruence classes $\overline{1}, \overline{4} \mod 5$

 $2x = 5 \mod 5$ has no solutions in \mathbb{Z}_6 .

Key Question: Given working mod n, given congruence class \overline{a} . When can we find a \overline{c} such that $\overline{c} \cdot \overline{a} = 1$?

2 Thursday

Proposition: Fix $n \in \mathbb{N}$. Suppose $a \in \mathbb{Z}$ satisfies (a, n) = 1. Then $\exists b \in \mathbb{Z}$ such that $ab = 1 \mod n$.

Furthermore, b is unique up to congruence mod n. Equivalently, if (a, n) = 1, then $\overline{a} \in \mathbb{Z}_n$ has a unique multiplicative inverse: $\exists ! \overline{b} \in \mathbb{Z}_n$ such that $\overline{a}\overline{b} = 1$.

Notation: $(a, b) = \gcd(a, b)$.

Lemma: Given $a, b, n \in \mathbb{Z}$, and suppose (a, n) = 1. If n|ab, then n|b.

Proof: (a, n) = 1 means a and n have no prime factors in common. Therefore, the set of all prime factors of n is contained in the set of all $1, \ldots, ab$.

Proof of Proposition: Consider multiples of $a \mod n$:

$$\{0 \cdot a, 1 \cdot a, 2 \cdot a, \dots, (n-2) \cdot a\} = \{i \cdot a : 0 < i < n-1\}$$

Claim: These n integers are all distinct $\mod n$.

 $ia \equiv ja \mod n \iff n|(ia-ja) \iff n|a(i-j) \iff n|(i-j)$ (Use lemma in the last step)

This is impossible, because i,j are distinct integers between 0 and n-1. Therefore $i-j\neq 0$ and $|i-j|\leq n-1$, so i-j cannot be divisible by n. This says we have a bijection from $\mathbb{Z}_n\to\mathbb{Z}_n$ by $\overline{x}\to\overline{ax}$.

Since there are only n congruence classes $\mod n$, every congruence class appears in this set

$$\{ia: 0 \le i \le n-1\}$$

Therefore $\overline{1}$ is represented by some integers in this set: We have $i \cdot a \equiv 1 \mod n$ for some $0 \le i \le n-1$.

Second Proof: By Euclidean algorithm,

 $\exists k, l \in \mathbb{Z} \text{ such that } ka + ln = 1 \iff ka \equiv 1 \mod n$ Suppose we are working with $\mod 17$, find $\overline{5}^{-1}$.

 $17 = 3 \times 5 + 2, 5 = 2 \times 2 + 1, 2 = 17 - 3 \times 5.$

 $1 = 7 \times 5 - 2 \times 17.$

 $7 \cdot 5 \equiv 1 \mod 17$

 $5x \equiv 3 \mod 17$

 $x \equiv 7 \cdot 5x \equiv 7 \cdot 3 \mod 17 \equiv 4 \mod 17.$

Observation: If p is prime, then $1, \ldots, p-1$ are all relatively prime to p.

- This implies that **every** non-zero congruence class in \mathbb{Z}_p has a multiplication inverse.
- $ax \equiv b \mod p \ (a \not\equiv 0 \mod p)$ has a unique solution $\mod p$.

Fermat's Little Theorem: Let p be a prime. If $a \in \mathbb{Z}$ and $a \not\equiv 0 \mod p$, then $a^{p-1} \equiv 1 \mod p$.

Proof: Consider non-zero multiples of a: $1 \cdot a, 2 \cdot a, \ldots, (p-1) \cdot a$. These are distinct and non-zero mod p.

Multiply: $(1 \cdot a) \cdot (2 \cdot a) \cdots (p-1) \cdot a \equiv (p-1)! \mod p$

 $\implies a^{p-1} \equiv 1 \mod p.$

Example (modulo 7): $5 \cdot 10 \cdot 15 \cdot \dots \cdot 30 \equiv 6! \mod 7$

Wilson's Theorem: Let p be a prime. Then p|[(p-1)!+1].

Example: p = 5, [(p-1)! + 1] = 25, 5|25.

Proof: In fact, $(p-1)! \equiv -1 \mod p$. (Try to prove this as a key step.)

 $\overline{a}=1,2,3,4,5,6$

 $\overline{a}^{-1} = 1, 4, 5, 2, 3, 6$

 $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \equiv 6 \cdot 1 \cdot 1 \cdot 1 \equiv -1 \mod 7$

Lemma: Fix p prime, let $a \in \mathbb{Z}$ $(a \not\equiv 0 \mod p)$. Then $a^2 \equiv 1 \mod p \iff a \equiv 1 \mod p$ or $a \equiv -1 \mod p$.

Proof: $a^2 \equiv 1 \mod p \iff p|(a^2-1) \iff p|(a-1)(a+1) \iff p|(a-1)$ or $p|(a+1) \iff a \equiv 1 \mod p$ or $a \equiv -1 \mod p$.

Proof of Wilson's Theorem: Each of the integers $2, \ldots, p-2$ pairs off with a unique inverse. Thus $2 \cdot 3 \cdot \cdots \cdot (p-2) \equiv 1 \mod p$. Then $(p-1)! \equiv (p-1) \equiv -1 \mod p$. We are done.

3 Friday: Some miscellaneous

3.1 Permutations

How many swaps do we need from 6-5-4-3-2-1 to 1-2-3-4-5-6?

3 swaps. 6 to 1, 5 to 2, then 4 to 3. How would you prove that you cannot do this in 2 swaps. If you have 2n numbers out of position, you at least need n number of swaps to make then right. (Each swap changes at most 2 positions.)

How many swaps do we need from 2-3-4-5-6-1 to 1-2-3-4-5-6?

5 swaps.

2-3-4-5-1-6

2 - 3 - 4 - 1 - 5 - 6

2 - 3 - 1 - 4 - 5 - 6

2-1-3-4-5-6

1-2-3-4-5-6

But how to prove that 4 or 3 swaps cannot make this?

Definition: A **permutation** of $[n]: \{1, 2, ..., n\}$ is a bijection f: [n]: [n].

The word form of a permutation is the list $f(1), f(2), \ldots, f(n)$.

A transposition is just a permutation which swaps i and j (some $i, j \in [n]$) but leaves all other entries the same. Let $\sigma_{ij} := \text{transposition swapping}$ integers i, j.

Let f be the permutation associated to some out of order list. We seek a sequence of transpositions $\sigma_{i_1,j_1}, \sigma_{i_2,j_2}, \sigma_{i_3,j_3}, \ldots$ such that

$$\sigma_{i_k,j_k} \circ \sigma_{i_2,j_2} \circ \cdots \circ \sigma_{i_1,j_1} \circ f = identity function$$

$$f(i) = j, f(j) = i, f(k),$$
for all $k \neq i, j.$

Remark: Every transposition is its own inverse.

Therefore,
$$\iff f = \sigma_{i_1,j_1} \circ \sigma_{i_2,j_2} \circ \cdots \circ \sigma_{i_k,j_k}.$$

Permutation is a map $f:[n] \to [n]$. So generally, given a function $f:A \to A$, we define the functional digraph of f to be a graph with a vertex for every $a \in A$ and arrow from $f(a) \to f(a), \forall a \in A$.

Given a permutation f whose digraph has k cycles, the minimal number of swaps to sort it is n - k.

Proposition: composing a permutation f with a transposition $\sigma_{i,j}$, changes the digraph by adding 1 cycle if i, j are on the same cycle, deleting 1 cycle if i, j are on different cycles.

3.2 Relation

Let S be a set. An **relation** on S is a subset $R \subseteq S \times S$.

Example:

 $\{(x,y):x\leq y\}\subseteq R\times R$ "\leq" relation on R.

 $\{(a,b):a|b\}\subseteq\mathbb{N}\times\mathbb{N}$ "divisibility relation".

Let S be the set of all sets.

 $\{(A,B):A\subseteq B\}\subseteq S\times S$

 $\{(A,B): \exists \text{ bijection } A \to B\} \subseteq S \times S$

Fix $n \in \mathbb{N} : \{(a, b) : a \equiv b \mod n\} \subseteq \mathbb{Z} \times \mathbb{Z}$

Fix a permutation $f: \{(a,b): f^k(a) = b \text{ some } k \in \mathbb{N}\} \subseteq [n] \times [n]$

An equivalence relation is a relation which satisfies:

- 1. $\forall x \in S, (x, x) \in R$. (reflexive)
- 2. $\forall x, y \in S, (x, y) \in R \implies (y, x) \in R$. (symmetric)
- 3. $\forall x, y, z \in S, (x, y) \in R \text{ and } (y, z) \in R \implies (x, z) \in R.$ (transitivity)

If R is an equivalence relation, then for any $x \in S$, we can consider the "equivalence class" of x. Notation:

$$\overline{X} = [x] = \{y \in S : y \sim x\}$$

Think about "congruence class" in modulo arithmetic.