제 10회 대한임베디드공학회 ICT 대학생 논문경진대회

안저영상과 임상정보를 활용한 멀티모달 멀티태스크 딥러닝 기반 심혈관 질환 분류

Multimodal Multitask Deep Learning for CVD Classification Using Fundus Images and Clinical Data

성신여자대학교 바이오헬스융합학부 황정현, 강대성*

목차

01

서론

- 연구 배경
- 연구 목적

03

실험 및 결과

• 6개의 모델 결과 비교

02

연구 방법

- 데이터셋 구성
- 모델 구조
- 실험 설정

04

결론

• 결론 및 향후 계획

연구 배경

배경 요인 1

심혈관 질환(CVD)은 전 세계 주요 사망 원인으로, 조기 진단과 예방이 매우 중요함

배경 요인 2

경동맥 내중막 두께(carotid intima-media thickness, CIMT)는 동맥경화 및 심혈관 위험 평가에 널리 사용되는 바이오마커로 심혈관 발생 위험과 밀접한 관련이 있음

배경 요인 3

비침습적 검사가 가능한 망막 안저영상은 미세혈관의 변화를 직접 관찰할 수 있어, 심혈관 질환 조기 발견의 가능성이 있음

연구 목적

데이터셋 구성

수집 병원

Anhui Medical Universty 부속병원

데이터 수

2,903명

훈련 (2603명), 검증 (200명), 테스트 (100명)

데이터 구성

양안 안저 이미지, CIMT 수치, 나이, 성별

그룹 분류

CIMT < 0.9mm → 정상군

CIMT ≥ 0.9mm → 비후군

필드	이름 의미				
gender	성별 정보 (0 = 여성, 1 = 남성)				
thickness	CIMT 수치 (단위: mm, 범위: 0.5 ~ 1.7)				
label	CIMT 그룹 라벨 (0 = 정상, 1 = 비후)				
age	정규화된 나이 값				
left_eye	왼쪽 눈 이미지 파일명 (PatientID_L.png)				
right_eye	오른쪽 눈 이미지 파일명 (PatientID_R.png)				

Uni-L, Uni-R 모델 구조

왼쪽 안저영상과 오른쪽 안저영상을 입력으로 사용하는 단일모달

MM 모델 구조

양안 안저영상을 입력으로 사용하는 Siamese Network 멀티모달

MM-R 모델 구조

양안 안저영상을 입력으로 사용하는 Siamese Network 멀티모달 멀티태스크 모델

MM-C 모델 구조 1*1280 Augmentation Concatenate left eye Resize (224x224) EfficientNetV2-S Random rotation (512x512) Random brightness Random saturation Share Weights Normal Augmentation right eye train Resize (224x224) EfficientNetV2-S Classification dataset Random rotation (512x512) set Random brightness Random saturation Thickened 1*1280 Normalization Age Age Clinical Gender **Female** OneHot 1*2688 Male 1*128

양안 안저영상과 임상 정보를 입력으로 사용하는 Siamese Network 멀티모달

MM-C-R 모델 구조 1*1280 Augmentation Concatenate left eye Resize (224x224) ➤ EfficientNetV2-S (512x512) Random rotation Normal Random brightness Classification Random saturation Share Weights Augmentation Thickened train right eye ➤ EfficientNetV2-S Resize (224x224) dataset (512x512) Random rotation set Random brightness Random saturation 1*1280 Normalization Age Age Thickness Regression Clinical Gender Female OneHot 1*2688 Male

양안 안저영상과 임상 정보를 입력으로 사용하는 Siamese Network 멀티모달 멀티태스크 모델

1*128

실험 설정

실험 설정

- Google Colab Pytorch 프레임워크
- 20 epochs

옵티마이저

- AdamW
- 학습률: 1e-3, 2.5e-3, 1e-4 세 가지 설정으로 실험
- 하이퍼파라미터: beta1=0.9, beta2=0.999, weight decay=1e-4

손실 함수

- 분류: Focal loss
- 회귀: MSE loss

표 1. 모델별 심혈관 질환 분류 성능 비교

모델	ACC	AUC	PRE	SEN	F1
Uni-L	75.33	0.863	0.780	0.773	0.747
Uni-R	75.67	0.866	0.783	0.757	0.753
MM	78.33	0.874	0.820	0.783	0.777
MM-R	78.33	0.881	0.803	0.783	0.780
MM-C	80.67	0.937	0.827	0.807	0.807
MM-C-R	83.67	0.926	0.853	0.837	0.837

MM 모델은 단일 안저영상 모델(Uni-L, Uni-R)보다 개선된 성능을 보임

표 1. 모델별 심혈관 질환 분류 성능 비교

모델	ACC	AUC	PRE	SEN	F1
Uni-L	75.33	0.863	0.780	0.773	0.747
Uni-R	75.67	0.866	0.783	0.757	0.753
MM	78.33	0.874	0.820	0.783	0.777
MM-R	78.33	0.881	0.803	0.783	0.780
MM-C	80.67	0.937	0.827	0.807	0.807
MM-C-R	83.67	0.926	0.853	0.837	0.837

MM 모델과 MM-R 모델은 유사한 성능을 보임

표 1. 모델별 심혈관 질환 분류 성능 비교

모델	ACC	AUC	PRE	SEN	F1
Uni-L	75.33	0.863	0.780	0.773	0.747
Uni-R	75.67	0.866	0.783	0.757	0.753
MM	78.33	0.874	0.820	0.783	0.777
MM-R	78.33	0.881	0.803	0.783	0.780
MM-C	80.67	0.937	0.827	0.807	0.807
MM-C-R	83.67	0.926	0.853	0.837	0.837

MM-C, MM-C-R 모델은 MM, MM-R 모델보다 크게 개선된 성능을 보임

표 1. 모델별 심혈관 질환 분류 성능 비교

모델	ACC	AUC	PRE	SEN	F1
Uni-L	75.33	0.863	0.780	0.773	0.747
Uni-R	75.67	0.866	0.783	0.757	0.753
MM	78.33	0.874	0.820	0.783	0.777
MM-R	78.33	0.881	0.803	0.783	0.780
MM-C	80.67	0.937	0.827	0.807	0.807
MM-C-R	83.67	0.926	0.853	0.837	0.837

MM-C-R 모델은 대부분의 지표에서 최고 성능을 달성함

표 2. 모델별 최고 정확도 모델 성능 비교

모델	ACC	AUC	PRE	SEN	F1
Uni-L	78	0.879	0.820	0.780	0.770
Uni-R	77	0.859	0.800	0.770	0.760
MM	80	0.889	0.830	0.800	0.800
MM-R	81	0.900	0.830	0.810	0.810
MM-C	85	0.944	0.860	0.850	0.850
MM-C-R	86	0.921	0.870	0.860	0.860

결론 및 향후 계획

결론

- 양안 안저영상과 임상 정보를 결합한 멀티모달 멀티태스크 딥러닝 모델을 개발
- 단일 영상 입력보다 양안 안저영상, 임상 정보, CIMT 회귀 구조를 모두 활용했을 때 분류 성능이 개선됨을 확인
- 비침습적이고 접근성이 높은 안저영상과 최소한의 임상 정보 만으로도 심혈관 질환 고위험군을 조기 선별할 가능성 제시

향후 계획

- 외부 데이터셋을 활용한 일반화 검증
- GradCAM과 같은 설명 가능한 인공지능 기법 적용을 통해 실제 임상 적용을 위한 후속 연구 진행 예정

제 10회 대한임베디드공학회 ICT 대학생 논문경진대회

감사합니다

성신여자대학교 바이오헬스융합학부 황정현, 강대성*