• X=1 if female

	Coefficient	Std. Error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
<pre>gender[Female]</pre>	19.73	46.05	0.429	0.6690

• X=1 if male

• X=1 if female

		(Coefficie	nt	Std. I	Error	t-s	tatistic	p-val	lue
Intercep	Intercept		509.80		;	33.13		15.389 < 0.		001
gender[F	ender[Female]					46.05		0.429 0.		
	AUY	Balo	ina for	fen	ale =	30 + B	B1 =	509.8	+ 19.73	4
Y-1 if mala	11 -1			\sim		DO	=	50110		

• X=1 if male

fenale
$$\pm b = 509.7 \pm 19.73$$
 moles: $B_0' \pm B_1' = 509.8$

$$B_0' = -19.73$$

Objectives of this Unit

- Shrinkage methods:
 - Ridge regression
 - Lasso regression

Impact of Number of Features

• We can define a polynomial regression function with p features as follows:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + ... + \beta_p X_1^p$$

Impact of the Number of Observations

Needs a lot of observations to avoid overfitting

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + ... + \beta_p X_1^p$$

Large p, small n (n is # observations)

square feet (sq.ft.)

Large p, large n

Need of sufficient training observations

- Same phenomena applies when there are many features in a linear regression model without using polynomial terms
 - We need number of features p << n
 - Data to reflect all possible combinations between the features and the response

 Accuracy: if number of features (p) is large without large number of observations, accuracy will degrade (large variance)

Feature Selection

- Recall the concept of feature selection methods:
 - Best subset: search over all possible combinations of features
 - Forward selection
 - Backward selection
 - Mixed selection

Can we include large number of features without overfitting?

- Can we do better with linear regression?
 - Can we include large number of features, without overfitting?

- Can we replace the ordinary least square fitting by another fitting that solve this problem?
 - We can fit a <u>single</u> model and include <u>all features</u> but use a technique that shrinks some coefficient estimates towards zero. (why zero?)
 - This is the main idea behind Ridge and Lasso regression

Ridge Regression

Ordinary Least Squares (OLS) estimates the coefficients by minimizing

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- Ridge Regression, also called L_2 regularization (as it uses the L2 norm),
 - Modifies the objective function (that needs to be minimized) to

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$= RSS + \left(\lambda \sum_{j=1}^{p} \beta_j^2 \right)$$
Shrinkage penalty
$$\sum_{i=1}^{p} \beta_i^2$$
Shrinkage penalty

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- The first term: Ridge regression tries to find coefficient estimate that minimizes the RSS (same as least squares)
 - To better fit to the training data

- The second term is called shrinkage penalty: has the effect of shrinking coefficients towards zero
 - To avoid overfitting and reducing the variance of the fitted model
- λ is a tuning parameter ($\lambda \geq 0$) controls the relative impact of these two terms

Finding Coefficients of Ridge Regression

The optimal solution can be obtained by:

- Close-form solution: $\frac{\partial J(\beta)}{\partial \beta} = 0 \implies \hat{\beta} = (X^T X + \lambda I_m)^{-1} X^T y$
 - I_m is the (p+1)x (p+1) identity matrix with first row all zeros, and rest of rows have ones on diagonal elements
 - For example, if p=2, then $I_m = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• Gradient descent, same iterative procedure as described before

Impact of the tuning parameter on regularization

• The objective function to minimize is: $J(\beta) = RSS(\beta) + \lambda \sum_{j=1}^{p} \beta_j^2$

- If $\lambda = 0 \Rightarrow J(\beta) = RSS(\beta)$, same least squares solution as before
 - May result in overfitting

- If λ is very large ($\lambda = \infty$) \Rightarrow minimizing $J(\beta)$ will result in setting all coefficients to zero (low magnitude)
 - This results in underfitting

Example: Credit dataset

- Credit data set (10 features): Records <u>balance</u> (average credit card debt for a number of individuals), <u>age</u> ,<u>number of cards</u>, years of <u>education</u>, income, credit <u>limit</u>, <u>student</u> status, and credit <u>rating</u>, other features
- Using ridge regression with different values of λ
 - Figure shows the change of coefficient with λ
 - λ close to zero → least square estimates
 - λ large \rightarrow coefficient shrinks to zero

Standardized coefficient are the coefficient estimate when **features** are **scaled to have unit variance**

Select the tuning parameter to avoid overfitting

Figure shows simulated data with **n=50 training** examples and **p=45 features**

The shrinkage parameter is selected to achieve good biasvariance tradeoff

Ridge regression works in situations where OLS has high variance ($p \approx n$ or p > n)

Bias-Variance Tradeoff

- λ increases => flexibility of the model decreases (less complex)
 - At extreme case with very large λ : no features will be included (simple/trivial model)
- Ridge regression works in situations where OLS has high variance ($p \approx n$ or p > n)

Ridge Regression

- Advantages:
 - Reduce variance, avoid overfitting when p is large
 - Fit single model
- Disadvantages:
 - All coefficients shrink towards zero, but non of them will be set exactly to zero (if $\lambda \neq \infty$)
 - Will not exclude any feature
 - Credit card data: Ridge will always include all 10 features instead of selecting the most relevant ones
 - Challenge in the model interpretation

Note: L1 and L2 Norms (Linear Algebra)

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Lasso Regression

- Tries to overcome disadvantages of Ridge regression
- Modifies the objective function to use the L_1 norm (instead of the L_2 norm in Ridge)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

 $= RSS + \lambda \sum_{j=1}^{p} |\beta_j|$

 \rightarrow L₁ norm of coefficients (excluding β_0)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- When the tuning parameter (λ), some coefficients will be forced to be zero
 - Equivalent to feature selection
 - Easy to interpret
- Called sparse model, as it contains subset of features

Assume one feature and find B1 with Lasso

Example: Credit Dataset with Lasso Regression

- Features: Limit, Income, Rating Student, other features
- Apply the Lasso to the credit data set
 - λ close to zero \rightarrow least square estimates
 - λ large → coefficient shrinks to zero
- For a given λ, subset of features can be selected, and other coefficients are set to zero

Example: Compare Ridge and Lasso

Ridge vs Lasso

• Lasso performs better when small number of features are in fact related to the response (have substantial coefficients)

- Ridge performs better when the response is a function of all features
 - All contribute to response with a small amount

But the number of features that are related to response is typically unknown

 Cross-validation can be used to find which approach works better on a particular data set

Ridge Regression in Python

RidgeModel.score(X test,Y test)

• Default value for tuning parameter (called alpha in python) is $\lambda = 1$ from sklearn.linear_model import Ridge

```
# train and fit the ridge regression model with training data
RidgeModel=Ridge().fit(X_train, Y_train) # this uses default alpha (=lambda) of 1
#find the R<sup>2</sup> metric with the .score
```

- To specify a value of λ (referred to as alpha in python): for example set $\lambda = 10$
 - RidgeModel10=Ridge(alpha=10).fit(X_train, Y_train)

Lasso Regression in Python

Default value for tuning parameter (called alpha in python) is λ = 1
from sklearn.linear_model import Lasso
lassoModel=Lasso().fit(X_train, Y_train)

• Update the tuning parameter to 0.01

LassoModel001=Lasso(alpha=0.01). fit(X train, Y train)

- Use the .score method to get the performance
- You can find number of coefficients that are equal to zero using: numpy.sum(LassoModel001.coef_==0)

Note

• Ridge problem formulation is analytically similar to maximizing likelihood function when coefficients have prior probability that is Gaussian (B $\sim N(0,c^2I)$, error $e_i \sim N(0,\sigma^2)$)

Note

• Lasso problem formulation is analytically similar to maximizing likelihood function P(Y|x) when coefficients have prior probability that is Laplace $(P(B) \sim e^{-|B|/c}$, error $e_i \sim N(0, \sigma^2)$)