Car Crash Analysis Strategic First Response LLC

July 14th 2023

Response Team

Simon Hui
Technical Lead
LinkedIn / GitHub

Lillian Lakes
Presentation Lead
LinkedIn / GitHub

Sangyun Thom
GitHub Lead
LinkedIn / GitHub

Agenda

Bottom Line

Driving in rain storms in low light raises the risk of incapacitating injury by up to 23% in car crashes.

"... Rain Likely Cause of 30-Car Crash in Washington State"

"... eight-car pile-up due to slick roads..."

Business Problem

- 77% decrease in licensed EMTs and paramedics
- No new CFD contract agreement
- Because of this, first responders of Chicago need optimization

Data Overview

- From E-Crash CPD database
- Analyzed 35,000 Chicago car crashes
- 2015 to present day
- Crashes specifically under rainfall
- Analyzed across different lighting conditions

Data Limitations

- Reporting discrepancies
- Subjective data recording

Data Analysis

- Injury Severity by Month
- Number of Car Crashes by Lighting Condition
- Binomial and Multinomial Models
 - Decision Trees
 - Logistic Regressions

Number of crashes during rainfall resulting in Injuries increases in April-May and October

Daylight, followed by lowly lit areas have high number of car crash injuries during rainfall

Darkness during rainfall is a key determinant of injury -> Explore more

- Binomial Decision Tree
 - Correctly predicts 33.7% of all injuries
 - Most important factor: Darkness (no/little lighting)

Darkness and month driving during rainfall are key determinants of fatalities and incapacitating injuries -> Explore more

- Multinomial Decision Tree
 - Correctly predicts 17.7% of the most severe injuries
 - Most important factors: Darkness (no/little lighting) and month of crash

Darkness increases likelihood of injury most during rainfall -> But we care more about fatalities & incapacitating injuries

- Binomial Logistic Regression Model
 - Correctly predicts 34.1% of all injuries
 - 1.5 times more likely to be injured in darkness with a bit of light (maybe dim street light) during rainfall

Poor lighting condition in rain increases the odds of more severe injuries 1.4X

- Multinomial Logistic Regression Model
 - Correctly predicts 10.2% of the most severe injuries
 - 1.4 times more likely to result in incapacitating injury at darkness with a bit of light (maybe dim street light)

Recommendations

81

Future Directions

Recommendations

- Install safety measures to poorly lit area
- Proactive weather monitoring focusing on these areas
- Optimize personnel being dispatched

Future Steps and Insights

Questions?

Simon Hui Technical Lead LinkedIn / GitHub

Lillian Lakes
Presentation Lead
LinkedIn / GitHub

Sangyun Thom
GitHub Lead
LinkedIn / GitHub

Thanks!

Appendix

- Dummy Classifier (0%)
- Binomial Decision Tree (33.7%)
- Multinomial Decision Tree (17.7%)
- Binomial Logistic Regression Model (34.1%)
- Multinomial Logistic Regression Model (10.2%)

Decision Tree Visualizations

- Binomial
- Multinomial

Dummy Classifier correctly identifies 0% of injuries

Recall Rate

= TP/(TP + FN)

= 0/1446

= 0%

Binomial Decision Tree correctly identifies 33.7% of injuries

Recall Rate

= TP/(TP + FN)

= 487/1446

= 33.7%

Multinomial Decision Tree correctly identifies 17.7% of injuries

Binomial Logistic Regression Model correctly identifies 34.1% of injuries

Recall Rate

= TP/(TP + FN)

= 493/1446

= 34.1%

Multinomial Logistic Regression Model correctly identifies 10.2% of injuries

Binomial Decision Tree

Multinomial Decision Tree

