Unidad 2. XML

1. INTRODUCCIÓN

XML es un metalenguaje, de propósito general desarrollado por la W3C y la base para la construcción de otros lenguajes más específicos. Define las reglas de construcción de los documentos. Se puede utilizar para intercambiar información entre sistemas, guarda configuraciones de una aplicación o difundir información mediante RSS.

Fue lanzado en 1998 y de formato abierto. La extensión es .xml.

Tiene fundamentos robustos, una sintaxis muy simple. Se utiliza para, crear ficheros de configuración, diseño de interfaces gráficas, publicación de contenidos, etc.

Es una **herramienta poderosa** por las tecnologías que tiene alrededor, como validadores, transformadores, editores, etc.

2. ESTRUCTURA Y SINTAXIS

Los documentos XML constan de dos partes:

- Prólogo: contiene la información relativa al conjunto del documento.
- Cuerpo: recoge los elementos con la información propiamente dicha.
- Comentarios: es opcional y deben empezar por <!-- y terminar por -->

En el **prólogo** se **declara** la **versión** del XML, el **encoding**, que es la codificación utilizada y el **standalone**, que indica si el documento es independiente (yes) o no (no) a un DTD (Document Type Definition)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

El **cuerpo** del documento está formado por los **elementos**, que son el componente fundamental de XML. Los elementos están formados por una etiqueta de apertura y, opcionalmente, una de cierre y deben tener el mismo nombre. Además pueden tener o no uno o más atributos.

<nombre-elemento nombre-atributo="valor1" nombre- atributo-2="valor2"></nombre-elemento>

Las **reglas** para la asignación de nombres son:

- Diferencian entre mayúsculas y minúsculas.
- Deben comenzar con una letra o un guion bajo.
- Los nombres de elementos son idénticos en las etiquetas de apertura y cierre.
- No pueden contener espacios.

Las reglas de creación de atributos son:

- Deben tener asignado un valor.
- Los valores siempre van entrecomillados.
- Diferencian entre mayúsculas o minúsculas.
- Deben comenzar con una letra o guion bajo.
- Pueden estar formados por caracteres alfanuméricos, guiones bajos y puntos.

En el **DTD** están definidas las **entidades**. Estas entidades se utilizan para representar información haciendo referencias de ella en lugar de incluirlas directamente. Esta fragmentación aporta mejor estructura y facilita el trabajo en grupo.

El CDATA es una sección que contiene un conjunto de caracteres que no debe ser tratado por el validador.

3. VALIDACIÓN DE XML

Para que un XML esté bien formado tiene que cumplir las siguientes reglas:

- Debe haber uno y solo un elemento raiz.
- Todos los elementos deben estar cerrados.
- Los elementos tienen que estar anidados correctamente.
- Todos los valores de los atributos están entrecomillados.
- Los nombres de elementos y atributos han de cumplir con sus respectivas reglas.

El **DTD** interno se forma empezando con:

<!DOCTYPE nombre-elemento-raiz[</pre>

Elementos-v-sus-relaciones

<u>|</u>>

Si el **DTD** es externo tendremos que decirle a nuestro documento dónde mirar, eso se hace de la siguiente manera:

<!DOCTYPE nombre-elemento-raiz SYSTEM "nombre-archivo-externo">

Si declaramos una entidad en nuestro DTD, podemos poner:

<!ENTITY nombre-entidad "texto de reemplazo">

Esto hará que si en nuestro documento utilizamos & nombre-entidad, transformará ese código en el texto de reemplazo que hemos mencionado anteriormente.

Los elementos se declaran de la siguiente forma:

<!ELEMENT nombreElemento (contenido)>

El contenido de nuestro elemento puede contener los siguientes tipos:

- EMPTY: debe estar vacío.
- ANY: puede contener cualquier contenido.
- #PCDATA: puede tener datos de tipo carácter.
- nombreElemento: puede contener el elemento indicado

El **nombreElemento** puede tener varios usos:

- ?: puede contener ninguna o solo una ocurrencia.
- +: puede contener una o más ocurrencias.
- *: puede contener ninguna o más ocurrencias.
- nombreElemento1, nombreElemento2: debe contener todos los elementos mencionado.
- nombreElemento1 | nombreElemento2: debe contener uno u otro elemento.

Los **atributos** también forman parte de nuestro DTD y la sintaxis es la siguiente:

<!ATTLIST nombreElemento nombre-atributo tipo-atributo valor-atributo>

Los **tipos** de atributos son los siguientes:

- CDATA: cadena de caracteres.
- (valor1 | valor2 | ...): lista de posibles valores.
- ID: un identificador único.
- IDREF: una referencia a un identificador único de otro elemento.
- IDREFS: lista de referencias separadas por espacios a identificadores de otros elementos.
- NMTOKEN: un nombre XML válido.
- ENTITY: una referencia a una entidad.

Los **valores** que le damos a los atributos son:

- valor: valor por defecto del atributo.
- #REQUIRED: indica que el atributo es obligatorio.
- **#IMPLIED**: el atributo es opcional.
- #FIXED valor: fija el valor del atributo.

El **XML Schema** es el lenguaje utilizado para describir la estructura, relaciones y restricciones de los documentos XML. Utiliza la extensión .xsd ya que su nombre técnico es XML Schema Definition.

Con el XSD se consigue un mayor nivel de **precisión** en el establecimiento de reglas de validación. La primera versión fue en 2001 por la W3C.

Se creó para cubrir las carencias de los DTD.

Su estructura sería la siguiente:

<!xml version="1.0" encoding= "UTF-8"?> <xs:schema xmlns:ns="http://www.w3.org/2001/XMLSchema">

Existen **dos** tipos de elementos:

- **simpleType**: marca que un elemento es simple "solo texto".
- complexType: indica que el elemento es complejo y contiene atributos, secuencias, etc "es padre de".

Siendo name el atributo principal de todo elemento, existen además varios atributos que vamos a utilizar:

- type: el tipo de dato.
- default: permite asignar valores por defecto.
- fixed: determina el valor del atributo en caso de que éste exista.
- minOccurs: numero mínimo inclusive de ocurrencias del elemento.
- maxOccurs: numero máximo inclusive de ocurrencias del elemento.

En los casos de minOccurs y maxOccurs, para que sea ilimitado debemos poner el valor "unbounded".

Los elementos pueden contener subelementos, de los cuales existen 3 tipos:

- xs:sequence: indica una secuencia de elementos obligatorios. Deben aparecer el el orden marcado.
- xs:choice: señala elementos alternativos. Solo debe aparecer uno.
- xs:all: indica una secuencia de elementos opcionales. No tienen que aparecer todos ni en el mismo orden.

Los elementos pueden tener **restricciones**, si dicho elemento solo tiene restricciones y no atributos, puede ser de tipo simpleType:

A nombre de la restricción se le conoce como facetas y existen estos tipos:

- xs:length: determina una longitud fiia.
- xs:minLength: establece una longitud mínima.
- xs:maxLength: establece una longitud máxima.
- xs:totalDigits: determina el numero máximo de dígitos que puede tener un numero.
- xs:fractionDigits: establece el máximo numero de decimales que puede tener un numero.
- xs:minExclusive: determina que el valor debe ser mayor al indicado.
- xs:maxExclusive: determina que el valor debe ser menos al indicado.
- xs:minInclusive: fija que el valor debe ser igual o mayor al indicado.
- xs:maxInclusive: fija que el valor debe ser igual o menos al indicado.
- xs:enumeration: establece una lista de valores posibles.
- xs:whiteSpace: determina cómo tratar los espacios en blanco, tabulaciones y saltos de lineas.
- xs:pattern: fija un patrón de caracteres permitidos.

En los XSD se puede indicar el **tipo de dato** preciso que contiene un elemento y existen varios tipos:

- xs:string: cadera de caracteres.
- **xs:integer**: números enteros.
- xs:decimal: números decimales, usando el punto como separador no la coma.
- xs:boolean: tipo de dato lógico, usando los valores "true" o "false".
- xs:date: fechas en formato "AAAA-MM-DD".
- xs:time: horas en formato "hh:mm:ss".
- xs:duration: periodo de tiempo en formato PnYbMnDnHnMnS".
 - P: inicio del periodo.
 - nY: numero de años.
 - nM: numero de meses.
 - nD: numero de días.
 - T: inicio del tiempo.
 - nH: numero de horas.
 - **nM**: numero de minutos.
 - **nS**: numero de segundos.