First Name:	Last Name:	Student ID:
i ii st ivaiile.	Last Ivallie.	Student ID.

Derivatives (2)

1. Differentiate:

1. Differentiate.	
a. $f(x) = \frac{3x+1}{x-1}$	b. $f(x) = \frac{x^2 - 1}{x^2 + 1}$
c. $f(x) = \sqrt{3x^2 - 1}$	$d. f(x) = \sqrt{\frac{x}{x+2}}$
e. $f(x) = (5x - 1)^3(x^2 + 1)^5$	f. $f(x) = (\frac{x-1}{x+1})^4$

2.

- a. Suppose that h(x) is an odd, differentiable function. Show that h'(x) is an even function.
- b. Suppose that g(x) is an even, differentiable function. Show that g'(x) is an odd function.

3. Cotangent Curves

Two curves which both pass through the point P are said to be cotangent at P if they have the same tangent line at P. For what values of the constants a and b are the curves $C_1:y=\frac{8}{x}-2$, and $C_2:y=x^2+ax+b$ cotangent at the point P at which x=2?

- **4.** Suppose that f is a function satisfying the equation f(x + y) = f(x) + f(y) for all real x and y, and that f'(0) = c, a constant.
 - i. Show that f(0)=0, and hence that $f'(0)=\lim_{h\to 0}\frac{f(h)}{h}$
- ii. Use the definition of the derivative, $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$, and the given equation for f(x+y), to show that f'(x) = c for all real x, i.e., that the graph of y = f(x) has slope c for all real x.

5. Find the equation of the normal line to the graph of the given function at the given point:

$$f(x) = -2x + 2x^2$$
; $P(1, 0)$

6. Find $f^{(n)}(x)$ for the following functions

a.
$$f(x) = x^3 + x^2 + x + 1$$

b.
$$f(x) = \frac{1}{x-a}$$

7.

- a. Let f(x) = x|x|. Find f'(0), or show that it does not exist.
- b. Let f(x) = |x|, and show that $f'(x) = \frac{x}{|x|}$.
- c. Consider the function f(x) = ||x|-1|.
 - i. Sketch the graph of y = |x|-1.
 - ii. Use your graph in part i) to sketch the graph of y = f(x).
 - iii. Find an explicit piecewise definition of f(x).
 - iv. Indicate any points where f'(x) does not exist, giving reasons. Find an explicit expression for f'(x) wherever it does exist. (It will be a piecewise-defined derivative function.)

8. Find the points on the curve $y = x^3 - x^2 - x + 1$ where the tangent lines are horizontal.

9. Given $y = x^3 - 8x + 7$ where x = f(t). If f(0) = 3 and f'(0) = 2, what is the value of $\frac{dy}{dt}$ when t = 0?

10. Determine the slope of the tangent line to the curve $x^2 + 2xy - y^3 = 0$ at (1, -1).