Интервальное оценивание. Доверительные интервалы

<u>Интервальная оценка</u> — оценка параметра θ (параметром обычно является среднее или дисперсия или доля некоторого признака генеральной совокупности), определяемая двумя числами — концами интервала, покрывающего θ .

$$\left(\stackrel{\sim}{\theta}-\delta;\stackrel{\sim}{\theta}+\delta\right)$$
, где $\stackrel{\sim}{\theta}$ - точечная оценка.

Границы интервала — случайные величины \Rightarrow можно говорить, что интервал $\left(\stackrel{\circ}{\theta} - \delta; \stackrel{\circ}{\theta} + \delta\right)$

покрывает θ с какой-то вероятностью.

<u>Доверительный интервал</u> – интервал $(\tilde{\theta} - \delta; \tilde{\theta} + \delta)$, который покрывает неизвестный параметр θ

с заданной надежностью (вероятностью) у:

$$P\left(\stackrel{\sim}{\theta} - \delta < \theta < \stackrel{\sim}{\theta} + \delta\right) = \gamma$$
 или $P\left(\left|\theta - \stackrel{\sim}{\theta}\right| < \delta\right) = \gamma$.

Число у называется доверительной вероятностью (надежностью).

Число δ – полуширина доверительного интервала – *точность оценки*.

Интервальные оценки используются для выборок малого объема, так как в этом случае точечные оценки имеют невысокую надежность.

 $\gamma = 1 - \alpha \implies \alpha = 1 - \gamma - \underline{\gamma posehb 3 + \alpha + umocmu}$ — вероятность противоположного события.

$$\Rightarrow P\left(\tilde{\theta} - \delta < \theta < \tilde{\theta} + \delta\right) = 1 - \alpha$$

Полуширина доверительного интервала δ зависит от объема выборки (n) и доверительной вероятности $(\gamma=1-\alpha)$: $n\uparrow \Rightarrow \delta \downarrow$, $\gamma=1-\alpha \to 1 \Rightarrow \delta \uparrow$

Обычно используют доверительные вероятности, равные 0,9; 0,95; 0,99.

Доверительные интервалы (формулы)

для среднего <i>а</i> при неизвестной	$\overline{x}-t_{lpha/2,n-1}\cdot rac{s}{\sqrt{n}} < a < \overline{x}+t_{lpha/2,n-1}\cdot rac{s}{\sqrt{n}}$, где $t_{lpha/2,n-1}$ - критическая точка			
дисперсии	распределения Стьюдента с числом степеней свободы <i>n</i> –1			
	<u>B Excel:</u> $t_{\frac{\alpha}{2}, n-1} = \text{СТЬЮДЕНТ. ОБР. 2X}(\alpha; n-1)$			
для дисперсии σ^2	$\left \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}} \right , $ где $\chi^2_{\alpha/2,n-1}$ и $\chi^2_{1-\alpha/2,n-1}$ - критические точки хи-			
	квадрат-распределения с $n-1$ числом степеней свободы			
	<u>B Excel:</u> $\chi^2_{\frac{\alpha}{2}, n-1}$ = XИ2. ОБР. ΠХ(α/2; $n-1$)			
	$\chi_{1-\frac{\alpha}{2}, n-1}^2 = XM2.0BP(\alpha/2; n-1)$			
для доли р	$\overline{p}-z_{lpha/2}\sqrt{rac{\overline{p}\overline{q}}{n}} , где \overline{q}=1-\overline{p} , z_{rac{lpha}{2}} – квантиль$			
	стандартного нормального распределения (берется по модулю)			
	<u>B Excel:</u> $z_{\frac{\alpha}{2}} = -\text{HOPM.CT.OEP}(\frac{\alpha}{2})$			

Проверка статистических гипотез

<u>Статистическая гипотеза</u> — утверждение о значениях одного или нескольких параметров генеральной совокупности или о ее законе распределения.

Проверить статистическую гипотезу – это значит проверить, согласуются ли данные, полученные из выборки, с этой гипотезой.

При проверке статистических гипотез выдвигаются две гипотезы:

- *Нулевая гипотеза* H_0 основная гипотеза, подлежащая проверке.
- Aльтернативная (конкурирующая) гипотеза H_1 гипотеза, противоречащая основной.

Нулевая гипотеза может быть принята или отвергнута. Если выборочные данные свидетельствуют о несправедливости нулевой гипотезы, то она отвергается в пользу альтернативной. Если выборочные данные не противоречат утверждению основной гипотезы, то она принимается.

Нулевая гипотеза всегда формулируется в форме равенства. Если θ - параметр ген.совокупности, то

$$H_0: \theta = \theta_0$$

где θ_0 – гипотетическое значение параметра.

Альтернативная гипотеза может быть записана в виде:

 $H_1: \theta \neq \theta_0$

 $H_1: \theta > \theta_0$

 $H_1: \theta \leq \theta_0$

Проверка гипотезы осуществляется с помощью статистического критерия. Статистический критерий — это случайная величина K, закон распределения которой известен в случае, если принятая гипотеза справедлива. Как правило, статистический критерий имеет одно из следующих распределений: t-распределение Стьюдента, χ^2 -распределение, стандартное нормальное, распределение Фишера-Снедекора, тогда вместо обозначения «K» для статистического критерия используются соответствующие символы T, χ^2 , N, F соответственно. Статистический критерий можно рассматривать как меру расхождения имеющейся выборки с проверяемой гипотезой.

<u>Область принятия гипотезы</u> (область допустимых значений) — совокупность значений критерия K, при которых принимается H_0 .

<u>Критической областью</u> называется совокупность значений критерия K, при которых отвергается H_0 .

<u>Критическими точками</u> $K_{\kappa p}$ называются точки, отделяющие критическую область от области принятия гипотезы. Критические точки находят, используя уровень значимости α , по таблицам критических точек.

Критическая область определяется формулировкой альтернативной гипотезы и может быть:

- Правосторонней (соответствует гипотезе $H_1: \theta > \theta_0$): $K \ge K_{\kappa p}$
- Левосторонней (соответствует гипотезе H_1 : $\theta < \theta_0$): $K \le K_{KD}$
- Двусторонней (соответствует H_1 : $\theta \neq \theta_0$): $K \leq K_{\kappa p1}$ или $K \geq K_{\kappa p2}$

При проверке гипотез возможны следующие варианты:

		Наше решение	
Принять ${ m H}_0$			Отвергнуть H_0
	Н ₀ верна	Правильное решение	Ошибка первого рода
Действительное		1-α	α
положение вещей	Н ₀ не верна	Ошибка второго рода	Правильное решение
		β	1-β

Пример: решение присяжных о виновности подсудимого.

Ошибка І-го рода — отвергнуть правильную H_0 .

Ошибка II-го рода — принять неправильную H_0 .

Вероятность ошибки I-го рода =α (*уровень значимости*).

Вероятность ошибки II-го рода =β.

α и β - малые величины!

 $\underline{Mощность критерия} \ 1-\beta$ - вероятность отвергнуть нулевую гипотезу, когда она неверна.

Для нахождения критических областей используется уровень значимости α:

• Правосторонняя (соответствует гипотезе H_1 : $\theta > \theta_0$): $P(K \ge K_{KP}) = \alpha$

• Левосторонняя (соответствует гипотезе H_1 : $\theta < \theta_0$): $P(K \le K_{\text{kp}}) = \alpha$

• Двусторонняя (соответствует H_1 : $\theta \neq \theta_0$): $P(K \leq K_{\kappa p.1}) = P(K \geq K_{\kappa p.2}) = \alpha/2$

План проверки статистической гипотезы:

- 1. Формулировка H_0 и H_1 ;
- 2. Задание уровня значимости α (0,05; 0,1; 0,01);
- 3. Выбор статистического критерия K;
- 4. Вычисление $K_{\text{набл.}}$;
- 5. Вычисление критических точек $K_{\text{кр.}}$;
- 6. Принятие статистического решения: принять или отвергнуть H_0 .

Параметрические критерии проверки гипотез

Параметрические критерии используются для выборок, извлеченных из нормально распределенных генеральных совокупностей. Ниже представлены наиболее часто используемые критерии.

1. Проверка гипотезы о равенстве среднего значения гипотетическому значению при неизвестной дисперсии

Нулевая гипотеза о равенстве математического ожидания нормально распределенной случайной величины гипотетическому значению формулируется как H_0 : $a=a_0$, где a- математическое ожидание (среднее значение) случайной величины X, a_0- его гипотетическое значение. В качестве статистического критерия используется статистика

$$t = \frac{\bar{x} - a_0}{\frac{s}{\sqrt{n}}},$$

имеющая t-распределение Стьюдента с (n-1) числом степеней свободы.

Альтернативная гипотеза	Критическая область		
H_1 : $a > a_0$	Правосторонняя: $t \ge t_{\alpha,n-1}$, где $t_{\alpha,n-1}$ – критическое значение t - распределения Стьюдента с $(n-1)$ числом степеней свободы В Excel: $t_{\alpha, n-1} = -$ СТЬЮДЕНТ. ОБР $(\alpha; n-1)$		
H_1 : $a < a_0$	Левосторонняя: $t \le -t_{\alpha,n-1}$, где $t_{\alpha,n-1}$ – критическое значение t - распределения Стьюдента с $(n-1)$ числом степеней свободы В Excel: $t_{\alpha, n-1} = -\text{СТЬЮДЕНТ. ОБР}(\alpha; n-1)$		
H_1 : $a \neq a_0$	Двусторонняя: $t \le -t_{\alpha/2,n-l}$ и $t \ge t_{\alpha/2,n-l}$, где $t_{\alpha/2,n-l}$ — критическое значение t -распределения Стьюдента с $(n-1)$ числом степеней свободы		

2. Проверка гипотезы о равенстве доли гипотетическому значению

Нулевая гипотеза о равенстве доли признака гипотетическому значению формулируется как H_0 : $p=p_0$, где p- доля признака в генеральной совокупности, p_0- ее гипотетическое значение. В качестве статистического критерия используется статистика

$$z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}},$$

при больших объемах выборки стремящаяся к стандартному нормальному распределению N(0;1). Здесь \bar{p} – выборочная доля признака, n – объем выборки.

Альтернативная гипотеза	Критическая область		
$H_1: p > p_0$	Правосторонняя: $z \ge z_\alpha$, где z_α – квантиль стандартного		
	нормального распределения (берется по модулю)		
	<u>B Excel:</u> $z_{\alpha} = -\text{HOPM.CT.OBP}(\alpha)$		
$H_1: p < p_0$	Левосторонняя: z ≤ $-z_\alpha$		
	<u>B Excel:</u> $z_{\alpha} = -\text{HOPM. CT. OBP}(\alpha)$		

H_1 : $p\neq p_0$	Двусторонняя: $z \le -z_{\alpha/2}$ и $z \ge z_{\alpha/2}$,где $z \le \frac{\alpha}{2}$ – квантиль стандартного
	нормального распределения (берется по модулю)
	<u>B Excel:</u> $z_{\frac{\alpha}{2}} = -\text{HOPM.CT.OEP}(\frac{\alpha}{2})$

3. Проверка гипотезы о равенстве двух дисперсий

В этом пункте и далее производится сравнение двух генеральных совокупностей X и Y. При этом используются следующие обозначения:

- $x_1, x_2, ..., x_{n_X}$ выборка объема n_X из генеральной совокупности X со средним a_X и дисперсией σ_X^2 ;
- $y_1, y_2, ..., y_{n_Y}$ выборка объема n_Y из генеральной совокупности Y со средним a_Y и дисперсией σ_Y^2 ;
- p_X -доля признака в генеральной совокупности X;
- p_Y доля признака в генеральной совокупности Y.

Нулевая гипотеза о равенстве дисперсий двух генеральных совокупностей формулируется как H_0 : $\sigma_X^2 = \sigma_Y^2$. В качестве статистического критерия используется статистика

$$f = \frac{s_X^2}{s_Y^2}$$

имеющая распределение Фишера. Здесь s_X^2 и s_Y^2 - исправленные выборочные дисперсии.

Альтернативная гипотеза	Критическая область
H_1 : $\sigma_X^2 > \sigma_Y^2$	Правосторонняя: $f \ge F_{\alpha}$, где F_{α} – критическая точка распределения
	Фишера с n_X -1, n_Y -1 числом степеней свободы
	<u>B Excel</u> : $F_{\alpha} = \text{F.Obp.} \Pi X(\alpha; n_{\chi} - 1; n_{y} - 1)$
H_1 : $\sigma_X^2 < \sigma_Y^2$	Левосторонняя: $f \leq F_{1-\alpha}$, где $F_{1-\alpha}$ критическая точка распределения
	Фишера с n_X -1, n_Y -1 числом степеней свободы
	<u>B Excel</u> : $F_{1-\alpha} = F.OEP(\alpha; n_x - 1; n_y - 1)$
$H_1: \sigma_X^2 \neq \sigma_Y^2$	Двусторонняя: $f \le F_{1-\alpha/2}$ или $f \ge F_{\alpha/2}$, где $F_{\alpha/2}$ и $F_{1-\alpha/2}$ —
	критические точки распределения Фишера с n_X -1, n_Y -1 числом
	степеней свободы
	<u>B Excel</u> : $F_{1-\frac{\alpha}{2}} = \text{F. OBP}\left(\frac{\alpha}{2}; n_x - 1; n_y - 1\right)$
	$F_{\frac{\alpha}{2}} = \text{F. OBP. } \Pi X(\frac{\alpha}{2}; n_x - 1; n_y - 1)$

Проверку равенства дисперсий также можно осуществить с помощью Пакета анализа: Данные \rightarrow Анализ данных \rightarrow Двухвыборочный F-тест для дисперсии. Но этот инструмент используется только для одностороннего критерия, поэтому для двусторонней критической области уровень значимости α нужно делить на 2.

4а. Проверка гипотезы о равенстве средних при неизвестных равных дисперсиях

Нулевая гипотеза о равенстве математических ожиданий двух генеральных совокупностей при неизвестных равных дисперсиях формулируется как H_0 : $a_X=a_Y$. В качестве статистического критерия используется статистика $a_X \neq a_Y$

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}}} \cdot \sqrt{\frac{n_X \cdot n_Y}{n_X + n_Y}}$$

имеющая t-распределение Стьюдента с $n_X + n_Y - 2$ числом степеней свободы. Здесь \bar{x} , \bar{y} - выборочные средние, s_X^2 и s_Y^2 — исправленные выборочные дисперсии.

Альтернативная	Критическая область
гипотеза	
H_1 : $a_X > a_Y$	Правосторонняя: $t \ge t_\alpha$, где t_α – критическая точка t -распределения
	Стьюдента с $n_X + n_Y - 2$ числом степеней свободы
	<u>B Excel:</u> $t_{\alpha} = -$ СТЬЮДЕНТ. ОБР $(\alpha; n_{x} + n_{y} - 2)$
H_1 : $a_X < a_Y$	Левосторонняя: $t \le -t_\alpha$, где t_α – критическая точка t -распределения
	Стьюдента с $n_X + n_Y - 2$ числом степеней свободы
	<u>B Excel:</u> $t_{\alpha} = -$ СТЬЮДЕНТ. ОБР $(\alpha; n_{x} + n_{y} - 2)$
$H_1: a_X \neq a_Y$	Двусторонняя: $t \le -t_{\alpha/2}$ или $t \ge t_{\alpha/2}$, где $t_{\alpha/2}$ критическая точка t -
	распределения Стьюдента с $n_X + n_Y - 2$ числом степеней свободы
	<u>B Excel:</u> $t_{\frac{\alpha}{2}} = -$ СТЬЮДЕНТ. ОБР. 2 $X(\alpha; n_x + n_y - 2)$

Проверку равенства средних также можно осуществить с помощью Пакета анализа: Данные \rightarrow Анализ данных \rightarrow Двухвыборочный t-тест с одинаковыми дисперсиями.

46. Проверка гипотезы о равенстве средних при неизвестных неравных дисперсиях

Нулевая гипотеза о равенстве математических ожиданий двух генеральных совокупностей при неизвестных равных дисперсиях формулируется как H_0 : $a_X=a_Y$. В качестве статистического критерия используется статистика

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}}$$

имеющая t-распределение Стьюдента с числом степеней свободы

$$k = \frac{\left(s_X^2/n_X + s_Y^2/n_Y\right)^2}{\frac{\left(s_X^2/n_X\right)^2}{n_X - 1} + \frac{\left(s_Y^2/n_Y\right)^2}{n_Y - 1}}$$

Здесь \bar{x}, \bar{y} - выборочные средние, s_X^2 и s_Y^2 — исправленные выборочные дисперсии.

Альтернативная гипотеза	Критическая область
H_1 : $a_X > a_Y$	Правосторонняя: $t \ge t_{\alpha}$, где t_{α} – критическая точка t -распределения Стьюдента с k числом степеней свободы B Excel: $t_{\alpha} = -$ СТЬЮДЕНТ. ОБР $(\alpha; k)$
H_1 : $a_X < a_Y$	Левосторонняя: $t \le -t_{\alpha}$, где t_{α} – критическая точка t -распределения Стьюдента с k числом степеней свободы B Excel: $t_{\alpha} = -$ СТЬЮДЕНТ. ОБР $(\alpha; k)$
$H_1: a_X \neq a_Y$	Двусторонняя: $t \le -t_{\alpha/2}$ или $t \ge t_{\alpha/2}$, где $t_{\alpha/2}$ критическая точка t -распределения Стьюдента с k числом степеней свободы B Excel: $t_{\alpha} = -\text{СТЬЮДЕНТ. OБР. 2X}(\alpha; k)$

Проверку равенства средних также можно осуществить с помощью Пакета анализа: Данные \to Анализ данных \to Двухвыборочный t-тест с различными дисперсиями.

5. Проверка гипотезы о равенстве долей признака

Нулевая гипотеза о равенстве долей признака двух генеральных совокупностей формулируется как H_0 : $p_X = p_Y$. В качестве статистического критерия используется статистика

$$z = \frac{\bar{p}_X - \bar{p}_Y}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}},$$

имеющая стандартное нормальное распределение N(0,1). Здесь $\hat{p} = \frac{n_X \bar{p}_X + n_Y \bar{p}_Y}{n_X + n_Y}$ – общая выборочная доля (относительная частота признака, если выборки объединить в одну), \bar{p}_X , \bar{p}_Y – выборочные доли для каждой из выборок, n_X и n_Y – объемы выборок, $\hat{q} = 1 - \hat{p}$.

Альтернативная	Критическая область
гипотеза	
$H_1: p_X > p_Y$	Правосторонняя: $z \ge z_{\alpha}$, где z_{α} – квантиль стандартного
	нормального распределения (берется по модулю)
	<u>B Excel:</u> $z_{\alpha} = -\text{HOPM.CT.OFP}(\alpha)$
H_1 : $p_X < p_Y$	Левосторонняя: z ≤ $-z_{\alpha}$
	<u>B Excel:</u> $z_{\alpha} = -\text{HOPM.CT.OFP}(\alpha)$
$H_1: p_X \neq p_Y$	Двусторонняя: $z \le -z_{\alpha/2}$ и $z \ge z_{\alpha/2}$,где $z = \frac{\alpha}{2}$ – квантиль стандартного
	нормального распределения (берется по модулю)
	<u>B Excel:</u> $z_{\frac{\alpha}{2}} = -\text{HOPM. CT. OEP}(\frac{\alpha}{2})$

6. Проверка гипотезы о равенстве средних для парных выборок

Имеется n независимых случайным образом выбранных объектов, для которых проведены по два измерения: x_i – измерение в один момент времени (или до какого-то воздействия), y_i – измерение в другой момент времени (или после воздействия). Таким образом, исходные данные представлены в виде n независимых случайным образом выбранных пар значений (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) из генеральных совокупностей X и Y (строки 2 и 3 в таблице):

1	Генеральные	Выборочные данные			
	совокупности				
2	X	x_1	x_2		χ_n
3	Y	<i>y</i> ₁	y_2		y_n
4	D=X-Y	$d_1 = x_1 - y_1$	$d_2 = x_2 - y_2$		$d_n = x_n - y_n$

Значения наблюдений из совокупностей X и Y в парах не являются независимыми, поэтому нельзя использовать t-критерий Стьюдента.

В таком случае рассматривают новую выборку – выборку значений случайной величины D=X-Y (строка 4 в табл.5): $d_1,d_2,...,d_n$, где $d_i=x_i-y_i$. Ее математическое ожидание (генеральное среднее) равно разности математических ожиданий случайных величин $a_D=a_X-a_Y$. Таким образом, нулевая гипотеза H_0 : $a_X=a_Y$ может быть переформулирована как гипотеза о равенстве нулю математического ожидания совокупности D при неизвестной дисперсии: H_0 : $a_D=0$ (см. 1.

Проверка гипотезы о равенстве среднего значения гипотетическому значению при неизвестной дисперсии).

Для проверки данной гипотезы используется статистический критерий

$$t = \frac{\overline{d}}{\frac{s_D}{\sqrt{n}}}$$

имеющий t-распределение Стьюдента с (n-1) числом степеней свободы. Здесь \bar{d} — выборочное среднее (посчитанное по выборке $d_1, d_2, ..., d_n$), s_D — исправленное выборочное среднее квадратическое отклонение (посчитанное по выборке $d_1, d_2, ..., d_n$), n — объем выборки.

Альтернативная гипотеза	Критическая область			
H_1 : $a_D > 0$	Правосторонняя: $t \ge t_{\alpha,n-1}$, где $t_{\alpha,n-1}$ – критическое значение t -			
	распределения Стьюдента с (n-1) числом степеней свободы			
	<u>B Excel:</u> $t_{\alpha, n-1} = -$ СТЬЮДЕНТ. ОБР $(\alpha; n-1)$			
H_1 : $a_D < 0$	Левосторонняя: t ≤ $-t_{\alpha,n-1}$, где $t_{\alpha,n-1}$ – критическое значение t -			
	распределения Стьюдента с (n-1) числом степеней свободы			
	<u>B Excel:</u> $t_{\alpha, n-1} = -$ СТЬЮДЕНТ. ОБР($\alpha; n-1$)			
H_1 : $a_D \neq 0$	Двусторонняя: $t \le -t_{\alpha/2,n-1}$ и $t \ge t_{\alpha/2,n-1}$, где $t_{\alpha/2,n-1}$ – критическое			
	значение <i>t</i> -распределения Стьюдента с (<i>n</i> -1) числом степеней			
	свободы			
	<u>B Excel:</u> $t_{\frac{\alpha}{2}, n-1} = \text{СТЬЮДЕНТ. ОБР. 2X}(\alpha; n-1)$			

Проверку равенства средних также можно осуществить с помощью Пакета анализа: Данные \rightarrow Анализ данных \rightarrow Парный двухвыборочный t-тест для средних.

Задания

Выборочные данные представляют собой результаты коэффициента интеллектуального развития (IQ) случайно выбранных респондентов одного возраста, полученные в результате двух измерений с разницей в месяц.

- **I.** Построить доверительные интервалы.
- 1. Построить доверительный интервал для среднего значения IQ всех респондентов (для первого измерения) с надежностью 0,95.
- 2. Построить доверительный интервал для среднего квадратического отклонения IQ всех респондентов (для первого измерения) с надежностью 0,95.
- 3. Построить доверительный интервал для доли респондентов, имеющих IQ выше 100 (для первого измерения), с надежностью 0,95. В Excel: используйте функцию СЧЁТЕСЛИ(...) для подсчета количества респондентов с IQ> 100.
- **II.** Проверить статистические гипотезы
- **1.** При уровне значимости 5% проверить гипотезу о равенстве среднего значения коэффициента IQ всех респондентов (для первого измерения) значению 100.
- **2.** При уровне значимости 5% проверить гипотезу о том, что менее (или более, в зависимости от полученной выборочной доли) половины респондентов имеют коэффициент IQ > 100 (для первого измерения). В Excel: используйте функцию СЧЁТЕСЛИ(...) для подсчета количества респондентов с IQ> 100.
- **3.** При уровне значимости 5% проверить гипотезу о равенстве разброса значений коэффициента IQ у мужчин и женщин (для первого измерения). Для этого предварительно разделите исходные данные по IQ (первое измерение) на две выборки: отдельно для мужчин и женщин. Проверку осуществить двумя методами: по формулам и с помощью Пакета Анализа.

Один из способов, как можно создать две отдельные выборки в Excel, - с использованием инструмента Фильтр:

а) Выделите ячейки, содержащие заголовки «Пол» и «IQ (первое измерение)», и нажмите кнопку «Фильтр»: Данные \rightarrow Фильтр. В этих ячейках появятся маленькие стрелочки:

1	Α	В	С	D
1	V	ые данные		
2	Номер респондента	Пол	IQ (первое измерени →	IQ (втор измерен
3	1	муж	80	82
4	2	муж	86	85
5	3	муж	85	86
6	4	MVЖ	86	81

- б) Нажмите стрелочку в ячейке «Пол» и в появившейся вкладке снимите галочку в квадратике напротив «жен». Теперь все данные по IQ, соответствующие респондентам женского пола, будут скрыты.
- в) Скопируйте значения коэффициента IQ из ячейки «IQ (первое измерение)» (они соответствуют данным только для респондентов мужского пола) на **новый** лист.
- г) Проделайте то же самое с данными для респондентов женского пола, скопировав их на тот же новый лист в соседний столбец.
- д) Снимите фильтр с ячеек «Пол» и «IQ (первое измерение)», выделив их и нажав кнопку «Фильтр». Маленькие стрелочки должны исчезнуть.
- е) Скопируйте две выборки со значениями IQ для мужчин и женщин на старый рабочий лист и продолжайте работать с этими двумя выборками. Выборку значений для мужчин будем считать извлеченной из совокупности X, а для женщин из совокупности Y.
- **4.** При уровне значимости 5% проверить гипотезу о равенстве средних значений IQ у мужчин и женщин (для первого измерения). Выбрать соответствующий критерий (с неизвестными равными или неравными дисперсиями) в зависимости от результатов предыдущего пункта. Проверку осуществить двумя методами: по формулам и с помощью Пакета Анализа.
- **5.** При уровне значимости 5% проверить гипотезу о равенстве долей респондентов с IQ > 100 у мужчин и женщин (для первого измерения). В Excel: используйте функцию СЧЁТЕСЛИ(...) для подсчета количества респондентов с IQ > 100.
- **6.** При уровне значимости 5% проверить гипотезу о равенстве значений IQ при первом и втором измерении у всех респондентов. Проверку осуществить двумя методами: по формулам и с помощью Пакета Анализа.