Sinple bar finite element method

Consider a bar of length l and using 2 nodes at each end. So we will have $x_1=0, x_2=l$

At each node the displacement ond force function are $q_i(t)$, $Q_i(t)$ respectfully.

Now, assume a simple shape function for the bar $u(x,t)=a_0+a_1x$

We want to convert the differential equation

$$\ddot{u}(x,t) = c^2 u''(x,t)$$

where \ddot{u}, u'' are second derivatives relative to time and displacement respectfully.

To a system of ordinary differential equations

$$[m]\ddot{u}(t) + [k]u(t) = \vec{F}(t)$$

that can be easily solved by a computer.

With the previously shape function, we can combine the boundry conditions

$$x = 0, u(0, t) = q_1(t)$$

to get

$$a_0 = q_1(t)$$

and

$$x = l, u(l, t) = q_2(t)$$

to get

$$a_1=rac{q_2(t)-q_1(t)}{l}$$

Now replug the value back to the orginal shape function we can get

$$egin{aligned} u(x,t) &= q_1 + rac{q_2 - q_1}{l}x \ &= \left[\left. 1 - rac{x}{l} \quad rac{x}{l} \,
ight] \left[egin{aligned} q_1 \ q_2 \end{aligned}
ight] \end{aligned}$$

We will rewrite the two parts as

 $u(x,t)=\overrightarrow{\Phi^T}(x)\cdot \vec{q}(t)$ Where $\overrightarrow{\Phi^T}$ is the shape function and \vec{q} is the nodal coordinates.