NF93 - Printemps 2011 Examen médian

Durée: 2h.

Les polycopiés de cours et les notes sont les seuls documents autorisés. Il est fortement recommandé de justifier les réponses.

Exercice 1 (2.5 pt) -

- 1. Ecrire en extension les ensembles suivants :
 - (a) $A = \{x \in \mathbb{R}/(n,p) \in \mathbb{N} \times \mathbb{N}, x = n/p \text{ et } 1 \leq p \leq 2n \leq 7\}.$
 - (b) $B = \{x \in \mathbb{R}/(x > 2) \Rightarrow (x \in [1, 3])\}.$
- 2. Proposez une partition infinie $\mathcal P$ de $\mathbb N$ vérifiant la propriété suivante :
 - (a) chaque $X \in \mathcal{P}$ est fini
 - (b) pour tout n il existe un unique $X \in \mathcal{P}$ avec n éléments.

Exercice 2 (2.5 pt) -

Soit E un ensemble non vide et A, B et C trois sous-ensembles de E.

- 1. Soient les ensembles $E = \{a \; ; \; b \; ; \; c\}, A = \{a \; ; \; b\},$ et $B = \{b \; ; \; c\}$. L'égalité $A \cup (B \cap C) = (A \cup B) \cap C$ est-elle toujours vérifiée ?
- 2. Déterminer alors une condition nécessaire de l'égalité $A \cup (B \cap C) = (A \cup B) \cap C$.
- 3. Cette condition est-elle suffisante?

Exercice 3 (3 pts) -

On considère les relations suivantes :

- 1. Soit la relation binaire $\Re_1 = \{(a, a); (c, c); (c, d); (d, d); (d, f): (f, c); (f, d); (f, f); (c, f); (d, c)\}.$
 - (a) Représenter \Re_1 par un diagramme sagittal.
 - (b) \Re_1 est-elle symétrique? réflexive? transitive? antisymétrique?
- 2. Soir \Re_2 la relation définie dans \mathbb{R} par : $x \Re_2 y$ ssi $x^3 y^3 = 3(x y)$.
 - (a) Montrer que \Re_2 est une relation d'équivalence.
 - (b) Quelle est la classe d'équivalence de 2?

Exercice 4 (4 pts) -

Soit • une opération sur E commutative, associative, et idempotente ($\forall x \in E, x \bullet x = x$). On définit la relation \leq sur E par : $\forall x, y \in E, x \leq y \Leftrightarrow x \bullet y = x$.

- 1. Reconnaître \leq quand \bullet est la relation \cap sur $E = \mathcal{P}(X)$. Même question lorsque \bullet est la relation \cup .
- 2. Montrer que \leq est une relation d'ordre.
- 3. Soient x et y deux éléments de E. On rappelle que la borne inférieure de $\{x ; y\}$, si elle existe, est l'élément de E qui désigne le plus grand des minorants de $\{x ; y\}$.
 - (a) Démontrer que $x \bullet y$ est un minorant commun à x et à y.
 - (b) Montrer alors que $x \bullet y$ est la borne inférieure de $\{x ; y\}$.

Exercice 5 (4.5 pts) -

Soit Σ un alphabet dont le nombre de caractères est supérieur ou égal à 2. On appelle retournement l'application $\rho: \Sigma^* \to \Sigma^*$ telle que $\rho(\epsilon) = \epsilon$, qui associe au mot σ de longueur n non nulle, $\tau = \rho(\sigma)$, appelé retourné de σ , défini par : $\tau(k) = \sigma(n-k+1)$, avec $1 \le k \le n$.

- 1. Déterminer $\rho(\sigma)$ quand $\sigma = aabcdea$. D'une façon générale, comment le retournement opère-t-il sur la chaîne de caractères qui représente un mot ?
- 2. Exprimer $\rho(\sigma\tau)$ à l'aide de $\rho(\sigma)$ et de $\rho(\tau)$. Que vaut $\rho(\rho(\sigma))$?
- 3. On dit qu'un mot est un palindrome si $\rho(\sigma) = \sigma$.
 - (a) Soient les mots suivants : *abbebba*, *abceecba*, *aabcaeecbaa*. Ces mots sont-ils des palindromes ? Chaque réponse devra être justifiée précisément.
 - (b) Soit σ un mot de longueur n. Montrer rigoureusement que $\rho(\sigma)\sigma$ est un palindrome.
 - (c) Tous les palindromes peuvent-ils être écrits sous la forme $\rho(\sigma)\sigma$?
 - (d) Montrez que le langage constitué de tous les palindromes sur $\{a;b\}$ est algébrique.

Exercice 6 (3.5 pts) -

Soit G = (X, U) un graphe non orienté où $X = \{x_1, x_2, ..., x_n\}$ est un ensemble de n sommets et $U = \{u_1, u_2, ..., u_m\}$ est un ensemble de m arêtes. On note, pour $1 \le i \le m$, $G_i = (X, U_i)$ le graphe partiel formé du même ensemble de sommets X et du sous-ensemble d'arêtes $U_i = \{u_1, u_2, ..., u_i\}$, et $G_0 = (X, \phi)$.

- 1. Soit G = (X, U), avec $X = \{1 ; 2 ; 3 ; 4 ; 5\}$, $U = \{u_1 ; u_2 ; u_3 ; u_4 ; u_5\}$, et enfin $u_1 = \{1 ; 3\}$, $u_2 = \{2 ; 4\}$, $u_3 = \{4 ; 5\}$, $u_4 = \{2 ; 5\}$ et $u_5 = \{2 ; 3\}$. Dessiner les graphes $G_0, G_1, G_2, G_3, G_4, G_5$ et, pour chacun d'eux, donner $C(G_i)$ où $C(G_i)$ désigne le nombre de composantes connexes de G_i . Quels sont les graphes sans cycle de la suite?
- 2. On se place dans le cas d'un graphe G quelconque. Montrer que, quand on passe du graphe G_{i-1} au graphe G_i , deux cas peuvent survenir :
 - le nombre de composantes connexes reste constant,
 - le nombre de composantes connexes diminue d'une unité.
- 3. Questions subsidiaires et facultatives, à traiter à partir des questions précédentes :
 - (a) Montrez qu'un graphe connexe a au moins n-1 arêtes.
 - (b) Montrez qu'un graphe sans cycle a au plus n-1 arêtes.
 - (c) Montrez qu'un arbre a n-1 arêtes.