

Institut National Polytechnique
Félix Houphouët – Boigny

SERVICE DES CONCOURS

Concours A2GP session 2017

Composition : **Physique 5** (thermodynamique)

Durée : 3 Heures

EXERCICE

A.

- 1- Expliquer le principe de fonctionnement d'un réfrigérateur (trois lignes maximum).
- 2- Définir la chaleur latente de solidification d'un corps pur (trois lignes maximum).
- 3- Lorsqu'on chauffe un système sa température peut rester constante, justifier votre réponse (une ligne).
- 4- Qu'est-ce qu'une source de chaleur ?
- 5- Qu'est-ce qu'une transformation monotherme?

В.

Un bouchon de liège cylindrique de hauteur H = 5 cm et de rayon r = 0.8 cm est placé verticalement dans une éprouvette graduée également cylindrique de diamètre légèrement supérieur. Les frottements sur les parois sont négligés. L'éprouvette contient une quantité d'eau suffisante pour que le bouchon flotte sans toucher le fond.

- 1- Faire un schéma indiquant clairement les forces agissant sur le système.
- 2- Déterminer la hauteur h de liège immergée.

On donne $\rho_{eau} = 1,00 \text{ g cm}^{-3}, \ \rho_{li\`{e}ge} = 0,24 \text{ g cm}^{-3},$

C.

On dispose d'un cylindre d'axe vertical, fermé par un piston sur lequel peut s'exercer une force supplémentaire F (par l'intermédiaire d'un levier). Le cylindre contient une masse m=10~g d'ammoniac. Le piston imperméable à la chaleur a une section $s=200~cm^2$ Il coulisse sans frottement et la pression est de $P_0=1~bar$.

On supposera que le piston (et le levier) du fait de leur propre poids exercent sur le contenu du cylindre une force constante $f' = 1200 \, N$.

- 1) Calculer la force minimale F_0 de la force supplémentaire F qu'il faut exercer pour que, à 0°C tout l'ammoniac soit sous forme liquide.
- 2) On part de l'état précédent, le cylindrique étant plongé dans un thermostat constitué d'un mélange d'eau et de glace (en équilibre à 0°C, sous la pression atmosphérique P_0 ; le thermostat est parfaitement calorifugé vis-à-vis de l'extérieur).

On cesse d'exercer la force F_0 , lorsque l'équilibre thermique est rétabli une masse Mg de glace s'est formée. Calculer Mg dans les deux cas suivant.

- a) On cesse d'exercer brutalement F_0 .
- b) On a laissé le piston s'élever lentement en diminuant la force F.

On fera l'hypothèse que l'ammoniac gazeux se comporte comme un gaz parfait. On donne :

 $L_f = 335 \, kJ/kg$, chaleur latente de fusion de la glace à 0°C.

 $L_V = 1,23.10^3 \, kJ/kg$, chaleur latente de vaporisation de NH₃ à 0°C

 $P_e = 4,38.\,10^5\,Pa$, pression d'équilibre liquide-vapeur de NH₃ à 0°C

 $V_l = 1,56.10^{-3} m^3/kg$, volume massique de NH₃ à 0°C

 $M_O = 19 g$, masse molaire de NH₃.

PROBLEME: Réfrigérateur

On considère un fluide décrivant un cycle ditherme réversible entre une source chaude de température T_c et une source froide de température T_f . On note Q_c (respectivement Q_f) le transfert thermique reçu par le fluide, pendant un cycle, de la part de la source chaude (respectivement froide). Cette machine est un réfrigérateur réversible, la source chaude est l'extérieur du réfrigérateur, la source froide est l'intérieure du réfrigérateur.

- 1. Justifier que $Q_c < 0$ et $Q_f > 0$.
- 2-a/ Donner la définition de l'efficacité e_{fr} d'un réfrigérateur.
- 2-b/ Donner son expression en fonction de Q_c et Q_f .
- 2-c/ Etablir que pour le réfrigérateur réversible $e_{fr} = \frac{T_f}{T_c T_f}$.
- 3 Calculer e_{fr} pour $T_c = 297 K$ et $T_f = 277 K$

En régime permanent, la température de la source froide reste constante, le fluide reçoit la puissance mécanique moyenne P_{m_1} de 100 W.

- 4- Calculer le transfert thermique moyen Q_{fm_1} reçu par la source froide de la part du fluide effectuant le cycle, pendant une durée de 1 jour (notée Δt).
- 5- L'isolation de la source froide est imparfaite, elle reçoit de la part de l'extérieur une puissance thermique P_{perte} . Calculer P_{perte}

Dans les mêmes conditions qu'à la question précédente, on place un volume V=1,00~L d'eau initialement à la température $T_0=297~K$, dans le réfrigérateur réversible. On suppose que la masse d'eau ajoutée est suffisamment petite pour que la source froide garde une température constante égale à T_f .

On constate que lors du refroidissement du volume V d'eau, la puissance mécanique moyenne reçue par le fluide vaut $P_{m_2}=103\ W$.

- 6- Exprimer la durée nécessaire Δt_{eau} pour que le volume V atteigne la température T_f en fonction de c_e, ρ_e , V, T_c, T_f et P_{eau}. Préciser l'expression de P_{eau} la puissance impliquée lors du refroidissement de l'eau.
- 7- Calculer cette durée.

On donne la capacité thermique massique de l'eau :

 $c_e=4$,18 kJ. kg^{-1} . K^{-1} et la masse volumique de l'eau : $\rho_e=1$,00. $10^3~kg$. m^{-3} .