Techniki inteligencji obliczeniowej - zadanie 2

W ramach zadania postarano się rozwiązać problem kolorowania grafu (kolorowania wierzchołków) z użyciem rozbudowanego algorytmu genetycznego z zadania pierwszego. Wygenerowany graf (użyty jako zbiór danych) był określony jako tablica asocjacyjna, sam graf był nieskierowany.

Zaimplementowanie metody

Metoda selekcji

- selekcja turniejowa
- selekcja rankingowa
- selekcja ruletkowa

Metoda krzyżowania

- krzyżowanie jedno-punktowe
- krzyżowanie dwu-punktowe
- krzyżowanie równomierne (uniform crossover)

Dodatkowo, zaimplementowano operator inwersji, który sprawdzono dla prawdopodobieństw wystąpienia: 5%, 7.5%, 10%, 12.5%, 15%.

Wszystkie testy przeprowadzono dla parametrów, które dały najlepsze wyniki w pierwszym zadaniu:

- prawdopodobieństwo mutacji: 12.5% i 15%
- prawdopodobieństwo krzyżowania: 30% i 70%

W ramach zadania wykonania łącznie 180 testów, dla wszystkich możliwych kombinacji.

Wyniki

10 najlepszych rozwiązań

L.p.	Liczba kolorów	Liczba generacji	Prawd. mutacji	Prawd. krzyżowani a	Prawd. inwersji	Funkcja selekcji	Funkcja krzyżowania
1	8	3189	0.125	0.7	0.125	rank_selection	uniform_crossover
2	9	3308	0.125	0.3	0.15	rank_selection	uniform_crossover
3	9	2804	0.15	0.3	0.05	tournament_selection	two_point_crossover

4	9	2818	0.15	0.3	0.125	rank_selection	uniform_crossover
5	9	2422	0.15	0.7	0.075	rank_selection	two_point_crossover
6	9	2198	0.15	0.7	0.075	rank_selection	uniform_crossover
7	9	2641	0.15	0.7	0.15	rank_selection	uniform_crossover
8	10	2959	0.125	0.3	0.1	tournament_selection	single_point_crossover
9	10	2521	0.125	0.7	0.05	rank_selection	single_point_crossover
10	10	1868	0.125	0.7	0.05	rank_selection	uniform_crossover

Wpływ prawdopodobieństwa inwersji

Wnioski:

- prawdopodobieństwo inwersji nie ma znaczącego wpływu na medianę.
- wzrost wartości parametru powoduje większy rozrzut wyników.
- najlepsze wartości średnie są jednak osiągane dla niskich wartości (0.05)
- przy większych wartościach parametru możliwe są wyższe wyniki jednak z dużo większym ryzykiem jego pogorszenia

Wpływ metody krzyżowania

Wnioski:

 średnie wyniki dla każdej metody są zbliżone, krzyżowanie równomierne jest minimalnie lepsze od pozostałych

- krzyżowanie równomierne jest najbardziej stabilne, najmniej stabilne jest dwupunktowe
- ze względu na najniższe wartości średnie, medianę i pierwszy kwartyl metoda równomierna jest prawdopodobnie najlepsza

Wpływ metody selekcji

Wnioski:

- selekcja turniejowa i rankingowa wypadły porównywalnie, minimalnie lepiej radzi sobie selekcja rankingowa
- selekcja ruletkowa wypadła znacznie gorzej
- selekcja rankingowa osiąga lepszą medianę i trochę lepsze minimalne wyniki

Wyniki ze względu na metody selekcji i krzyżowania

Wnioski:

- najlepsze wyniki dała kombinacja selekcji rankingowej i krzyżowania równomiernego
- metoda selekcji ruletkowej daje słabe wyniki niezależnie od metody krzyżowania

Kombinacje metod selekcji/krzyżowania wraz z prawdopodobieństwem inwersji były do siebie zbliżone (większy wpływ miała wybrana metoda).

Podsumowanie