

PRACTICE EXAM (MID-YEAR) SOLUTIONS

Year 12 Mathematics Methods Exam 2

Part 1

Multiple-choice questions

1 C	11 C
2 E	12 D
3 E	13 A
4 A	14 B
5 B	15 E
6 C	16 C
7 C	17 D
8 B	18 A
9 E	19 C
10 A	20 A

Part 2

Long-answer questions

Question 1

a i $P(\text{no red lights}) = 0.7 \times 0.6 \times 0.5 \times 0.4 = 0.084$

[2 marks]

ii $P(R_2 \cap R_3 \cap R_4 / R_1) = 0.4 \times 0.5 \times 0.6 = 0.12$

[2 marks]

b i
$$g(x) = e^{-x} + \frac{2}{\sqrt{x}} - \sin(4x)$$

 $g'(x) = -1 \times e^{-x} - x^{-3/2} - 4\cos(4x)$
 $= -\frac{1}{e^x} - \frac{1}{\sqrt{x^3}} - 4\cos(4x)$
 $g'(\pi) = -\frac{1}{e^{\pi}} - \frac{1}{\sqrt{\pi^3}} - 4\cos(4\pi)$
 $g'(\pi) = -\frac{1}{e^{\pi}} - \frac{1}{\sqrt{\pi^3}} - 4$

[2 marks]

ii
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\cos 2x - 1) dx = \left[\frac{\sin(2x)}{2} - x \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$$
$$= \left(\frac{\sin(\pi)}{2} - \frac{\pi}{2} \right) - \left(\frac{\sin(\frac{2\pi}{3})}{2} - \frac{\pi}{3} \right)$$
$$= -\frac{\pi}{2} - \frac{\sqrt{3}}{4} + \frac{\pi}{3}$$
$$= -\frac{\pi}{6} - \frac{\sqrt{3}}{4}$$

[2 marks]

Question 2

a
$$y = \cos(x)$$
 for $0 \le x \le \frac{\pi}{2}$.

Area
$$_{\text{rectangle}} = x \times y = x \cos(x)$$

Max. area when
$$\frac{dA}{dx} = 0$$
 and $\frac{d^2A}{dx^2} < 0$

$$\frac{dA}{dx} = 1 \times \cos(x) - x \times \sin(x)$$

$$\frac{d^2A}{dx^2} = -\sin(x) - [1 \times \sin(x) + x \times \cos(x)]$$

$$\frac{d^2A}{dx^2} = -x\cos(x) - 2\sin(x)$$

If
$$\frac{dA}{dx} = 0$$
,

$$\cos x = x \sin(x)$$

$$x = 0.86033$$
 (radians)

$$\frac{d^2A}{dx^2} = -0.86033 \cos(0.86033) - 2 \sin(0.86033) < 0$$
, therefore max. dimensions are

$$x \times \cos(x)$$

i.e.
$$0.86 \times 0.65$$

[5 marks]

b Area =
$$3\int_{-\frac{\pi}{2}}^{\pi} |\cos(x)| dx$$

= $3\int_{0}^{\frac{\pi}{2}} \cos(x) dx$
= $3\left[\sin(x)\right]_{0}^{\frac{\pi}{2}}$
= $3\left[\sin\left(\frac{\pi}{2}\right) - \sin(0)\right]$
= 3 units^2

[3 marks]

$$\mathbf{c} \quad x = \cos(t)$$

i
$$v = -\sin(t)$$

max.
$$\nu$$
 for $0 = t = 2\pi$ is 1

[2 marks]

ii
$$a = -\cos(t)$$

At
$$x = \frac{1}{\sqrt{2}}$$

$$\therefore a = -\frac{1}{\sqrt{2}}$$

[2 marks]

Question 3

Two normal six-sided dice are rolled.

a Outcome: 6,6 $\overline{6,6}$

Probability:
$$\frac{1}{36}$$
 $\frac{35}{36}$

$$E(X) = np = 50 \times \frac{1}{36} = 1.39$$

$$S(x) = \sqrt{npq} = \sqrt{50 \times \frac{1}{36} \times \frac{35}{36}} = 1.16$$

[3 marks]

b i Difference table:

0	1	2	3	4	5
1	0	1	2	3	4
2	1	0	1	2	3
3	2	1	0	1	2
4	3	2	1	0	1
5	4	3	2	1	0

[2 marks]

П	П

x	0	1	2	3	4	5
P(X=x)	6	10	8	6	<u>4</u>	<u>2</u>
	36	36	36	36	36	36

[2 marks]

iii
$$E(X) = 0 \times \frac{6}{36} + 1 \times \frac{10}{36} + 2 \times \frac{8}{36} + 3 \times \frac{6}{36} + 4 \times \frac{4}{36} + 5 \times \frac{2}{36}$$

= 1.94

[2 marks]

iv The most likely difference is 1.

[1 mark]

Question 4

a Got 15 correct, want 2 more from 5 to get 17.

$$n = 5, p = 0.2, P(x = 2) = 0.2048$$

[3 marks]

b Got 7 correct, want 3 or more from 13 to pass.

$$n = 13, p = 0.2, P(x \ge 3) = 1 - P(x \le 2)$$

= 1 - 0.5017
= 0.4983

[3 marks]

c $L(t) = \sin(t)$ for $0 \le t \le 2$

$$\frac{dL}{dt} = \cos(t)$$

$$\frac{dL}{dt} \approx \frac{\delta L}{\delta t}$$

$$\delta L \approx \delta t \times \frac{dL}{dt}$$

At
$$t = 1$$
,

$$\delta L \approx 0.25 \times \cos(1) = 0.135$$

The percentage increase in effective learning

$$= \frac{\delta L}{L} \times 100\% = \frac{0.135}{\sin(1)} \times 100$$
$$= 16\%$$

[4 marks]

Question 5

[3 marks]

b
$$P_r = 400e^{-0.04t}$$

$$100 = 400e^{-0.04t}$$

$$t = 34.66$$

2044.66, i.e. in the year 2045

[2 marks]

c i
$$P_{\rm wc} = 200e^{0.08t}$$

$$\frac{dP_{wc}}{dt} = 200e^{0.08t} \times 0.08$$

$$\frac{dP_{wc}}{dt} = 16e^{0.08t}$$

i.e. rate of growth of cat population is $16e^{0.08t}$

$$P_{r} = 400e^{-0.04t}$$

$$\frac{dP_{r}}{dt} = 400e^{0.04t} \times (-0.04)$$

$$\frac{dP_{r}}{dt} = -16e^{0.04t}$$

i.e. rate of growth of rat population is $-16e^{0.04t}$

[2 marks]

ii The population of wild cats is increasing at the fastest rate because it is a positive rate. The rate of increase of the rat population is negative.

[2 marks]

d
$$200e^{0.08t} = 400e^{-0.04t}$$

 $t = 5.78$

i.e. 2016; that is, the rats would die at a faster rate in the year 2016.

[2 marks]