Math 177 Summary & Formulas

Jiaping Zeng

5/28/2020

Chapter 1

- Key topics: interest rates, accumulation, force of interest
- Important formulas:
 - Nominal interest $(i^{(m)})$: $1 + i = \left(1 + \frac{1^{(m)}}{m}\right)^m$
 - Present value factor: $v = \frac{1}{1+i}$
 - Rate of discount: $d = \frac{i}{1+i}$
 - Force of interest (δ_t) : $a(t) = e^{\int_0^{\delta} \delta_s ds}$

Chapter 2

- Key topic: annuities
- Important formulas:
 - Annuity-immediate: $s_{\overline{n}|i}=\frac{(1+i)^n-1}{i},\,a_{\overline{n}|i}=\frac{1-v^n}{i}$
 - Annuity-due: $\ddot{s}_{\overline{n}|i}=\frac{(1+i)^n-1}{d},\,\ddot{a}_{\overline{n}|i}=\frac{1-v^n}{d}$
 - Arithmetically increasing annuity: $(Is)_{\overline{n}|i} = \frac{\ddot{s}_{\overline{n}|i} n}{i}$, $(Ia)_{\overline{n}|i} = \frac{\ddot{a}_{\overline{n}|i} nv^n}{i}$

Chapter 3

- Key topic: loans
- Important formulas:
 - Basic/recursive definition: $B_0 = L$, $I_t = iB_{t-1}$, $P_t = K_t I_t$, $B_t = B_{t-1} P_t$
 - Loan with level payments: $B_t = a_{\overline{n-t}}, I_t = 1 v^{n+1-t}, P_t = v^{n+1-t}$

Chapter 4

- Key topic: bonds
- Important formulas:
 - Price of bond: $P = Cv_j^n + Fra_{\overline{n}|j}$

- Premium/Discount (when C = F): $P = F + F(r - j)a_{\overline{n}|j}$

– Makeham's formula $(K = Cv_j^n)$: $P = K + \frac{r}{j}(F - k)$

Chapter 5

• Key topic: rate of return

• Important formulas:

– Net present value: $P(i) = \sum_{k=0}^{n} C_k v_i^{t^k}$ (C_k : net flow at time t)

– Dollar-weighted rate of return (i_D) : $A(1+i_D) + \sum_{k=1}^{n} C_k (1+i_D(1-t_k)) = B$, (A, B): amount in fund at start, end of the year)

– Time-weighted rate of return (i_T) : $1 + i_T = \prod_{k=1}^{n+1} \frac{[\text{amount just before } t_k]}{[\text{amount just after } t_{k-1}]}$

Chapter 6

• Key topics: spot rates, forward rates

• Important formulas:

- Forward interest rate $(f_{[t_1,t_2]})$: $(1+r_{t_1})^{t_1}(1+f_{[t_1,t_2]})^{t_2-t_1}=(1+r_{t_2})^{t_2}$

– Spot rate (r_t) from forward rates: $(1+r_n)^n = \prod_{t=1}^n (1+f_{[t-1,t]})$

Chapter 7

• Key topic: cash flows

• Important formulas:

- Macaulay duration: $D_{mac}(i) = \frac{\sum_{t=1}^{n} t K_t (1+i)^{-t}}{\sum_{t=1}^{n} K_t (1+i)^{-t}}$

– Modified duration: $D_{mod}(i) = -\frac{\frac{d}{di}P(i)}{P(i)}$, $(P(i) = \sum_{t=1}^{n} K_t(1+i)^{-t})$: present value of cash flow)

2

– For flat term structure: $D_{mod}(i) = vD_{mac}(i)$

- Macaulay convexity: $C_{mac}(i) = \frac{\sum_{t=1}^{n} t^2 K_t v^t}{\sum_{t=1}^{n} K_t v^t}$

– Modified convexity: $C_{mod}(i) = \frac{\frac{d^2}{di^2}P(i)}{P(i)}$