Attention is all you need

NIPS' 17

Jung Soo Lee 19.11.26

- Novelty: first transduction model entirely based on attention
- 2 main contributions:
 - 1) parallelization
 - Attention on each position (X need to wait previous hidden state like RNN)
 - 2) reduction of computation

Model Architecture

Figure 1: The Transformer - model architecture.

- Encoder-decoder structure
 - Autoregressive (use all previous info)
 - $x1,x2,...,xn \rightarrow z1,z2,...zn \rightarrow y1,y2...,ym$
- Encoder
 - Multi-Head Attention + feed forward
 - N layers
- Decoder
 - Multi-Head Attention + feed forward
 - + linear & softmax
 - N layers
- Attention -> Key / Value / Query

Attention

- Seq2seq model -> long term dependency problem
 - Solve: context vector can't deliver all information
- Assumption
 - Encoder time t vector similar with Decoder time t-1 vector
 - Similar -> increased value of each position in a vector

Attention

- x_t : input from encoder in time t
- y_t : output from decoder in time t
- h_n : encoder nth hidden state vector
- s_t : decoder hidden state vector in time t
- $a_{t,n}: n^{th}$ weight in time t (=attention vector)
 - Which vector to look into
- c_t : context vector in time t
- T = length of the sequence
- $s_t = f(s_{t-1}, y_{t-1}, c_t)$
- Assumption -> training is finished

Attention

•
$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

- $s_t = f(s_{t-1}, y_{t-1}, c_t)$ $c_t = \sum_{i=1}^{T} a_{t,i} h_i$
 - weighted sum of attention vector
- $a_{t,i} = \operatorname{softmax}(e_{ti})$
- e_{ti} = score value
 - $a(s_{t-1}, h_i)$
 - a : alignment model (extracts similarity)
 - Various methods for alignment model
 - a: $v_a^T \tanh(W_a[s_{t-1}, h_i])$
 - V, W -> parameters
 - Earned during training
 - a: $[s_{t-1}^T h_i] \rightarrow e_{ti} = [s_{t-1}^T h_1, s_{t-1}^T h_2, ..., s_{t-1}^T h_N]$

Transformer – Encoder

- Positional Encoding
- Multi-head self attention & position-wise fully connected feed-forward network
- Layer normalization
- Residual connection for two sublayers
 - x+Sublayer(x)
- Stacked N layers

Positional Encoding

```
PE_{(pos,2i)} = \sin(pos/1000^{2i/d_{model}})

PE_{(pos,2i+1)} = \cos(pos/1000^{2i/d_{model}})
```

- Word Embedding -> positional information
- Positional encoding vector + embedding vector (same dimension)
- Pos: position / i : dimension
- Function: sinusoidal function with cycle: $1000^{2i/d_{model}} \cdot 2\pi$
- $PE_{pos} = [\cos(pos/1), \sin(pos/1000^{2/d_{model}}), ..., \sin(pos/1000^{2i/d_{model}})]$
- Same word have different value in different position
- Linear Function

Scaled dot product attention

- $Attention(Q, K, V) = softmax(QK^T/\sqrt{d_k})V$
 - d_k = dimension of K
- Key: hidden state vector of a word
- Value: hidden state vector of a word
- Query: hidden state vector of a word (current-word)
- dot product -> similarity between K & Q
- Scaling -> Softmax: big value have minimal gradient
- Softmax * V -> Attention(Q,K,V) increases as value and query are similar
- Faster than additive attention

Scaled dot product attention - K, V, Q

 $Attention(Q, K, V) = softmax(QK^{T}/\sqrt{d_{k}})V$

- d_{model} = dimension of word embedding = 512 (normally length of longest sentence)
- $d_k = d_V = d_Q = d_{model}$ / num_heads
 - Num heads = 8

Multi-head Attention –K,V,Q

 $Multi - head \ Attention = Concat(head1, head2, ..., headh) \ W^o$ $headi = Attention(QWi^Q, KWi^K, VWi^V)$

Multi-head attention matrix

https://wikidocs.net/31379

Transformer – Decoder

- Positional Encoding
- Masking
- Multi-head self attention & position-wise fully connected feed-forward network
 - 2nd: from encoder output (key, value)
- Residual connection for three sublayers
 - x+Sublayer(x)
- Layer normalization
- Linear / Softmax

Masking

- 1 Attention until a -> don't look into b,c
- 2 Attention until a,b -> don't look into c
- 3 Attention until a,b,c

Masked input value = $-\infty$

Encoder – Decoder

- Query from decoder attention layer
- -> attention until ith position due to masking out
- Can give attention to all positions

Regularization

- 1. Dropout to output of each sub-layer
- 2. Dropout to output to positional encoding
- 3. Label smoothing

Strength of Self Attention

- 1. Computational complexity
- 2. Parallelization
- 3. Shorten path length

Result

 Task: Machine Translation (WMT 2014 English-to-German translation & WMT 2014 English-to-French translation task)

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 8	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	$2.3 \cdot 10^{19}$	