ISO Geodetic Registry

Item class Transformation

Name IGb08 to IGS14 [IGS v1]

Item statusVALIDIdentifier611

Information source Title ITRF2014: A new release of the International

Terrestrial Reference Frame modeling nonlinear

station motions

Author Z. Altamimi, P. Rebischung, L. Metivier, X.

Collilieux

Publisher American Geophysical Union

Publication date 2016-08-04

Edition date

Series/Journal name Journal of Geophysical Research Solid Earth

Issue identification Volume 121, Issue 8

Information source Title Upcoming switch to IGS14/igs14.atx

Author P. Rebischung

Publisher International GNSS Service (IGS)

Publication date 2016-12-21 Series/Journal name IGSMAIL Issue identification 7399.0

Information source Title Analysis and results of ITRF2014

Author Z. Altamimi, P. Rebischung, L. Metivier, X.

Collilieux

Publisher International Earth Rotation and Reference

Systems Service Central Bureau, Verlag des Bundesamts fur Kartographie und Geodasie,

Frankfurt am Main, Germany

Publication date 2017

Edition date

Series/Journal name IERS Technical Notes

Issue identification 38.0 ISO Geodetic Registry

Remarks Transformation identical with ITRF2008 to ITRF2014 due to IGb08

being aligned to ITRF2008 and IGS14 being aligned to ITRF2014. Accuracy of transformation is given at the reference epoch for the transformation parameters. Accuracy at other epochs depends on the accuracies of the parameters at the reference epoch and their rates of change. Refer to citations for accuracies of the parameters and their

rates of change.

Operation version IGS v1

Scope Spatial referencing

 Operation accuracy
 0.001 m

 Source CRS
 IGb08 - XYZ

 Target CRS
 IGS14 - XYZ

Operation method Time-Dependent Position Vector Transformation (geocentric Cartesian

domain)

Extent

Data source

Description	World.	
Geographic Bounding Box	West-bound longitude	-180.0
	North-bound latitude	90.0
	East-bound longitude	180.0
	South-bound latitude	-90.0

Operation parameter values

V assig translation	A. C. and Illian a fun
X-axis translation	-1.6 millimetre
Y-axis translation	-1.9 millimetre
Z-axis translation	-2.4 millimetre
X-axis rotation	0.0 milliarc-second
Y-axis rotation	0.0 milliarc-second
Z-axis rotation	0.0 milliarc-second
Scale difference	0.02 parts per billion
Rate of change of X-axis translation	0.0 millimetre per year
Rate of change of Y-axis translation	0.0 millimetre per year
Rate of change of Z-axis translation	0.1 millimetre per year
Rate of change of X-axis rotation	0.0 milliarc-second per year
Rate of change of Y-axis rotation	0.0 milliarc-second per year
Rate of change of Z-axis rotation	0.0 milliarc-second per year
Rate of change of scale difference	-0.03 parts per billion per year
Time reference	2010.0 year

ISO Geodetic Registry

Item class OperationMethod

Name Time-Dependent Position Vector

Transformation (geocentric Cartesian domain)

Item statusVALIDIdentifier82

Alias Time-Dependent 7-Parameter Transformation

Alias 14-Parameter Transformation

Alias Time-Dependent Position Vector Transformation

Data source ISO Geodetic Registry

Remarks Note the analogy with the rotation for the Time-dependent Coordinate

Frame Transformation but beware of the differences! The Position

Vector Transformation convention is used by IAG.

Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation

Formula

Y-axis translation

Z-axis translation

X-axis rotation

Y-axis rotation

Z-axis rotation

Scale difference

Rate of change of X-axis translation

Rate of change of Y-axis translation

Rate of change of Z-axis translation

Rate of change of X-axis rotation

Rate of change of Y-axis rotation

Rate of change of Z-axis rotation

Rate of change of scale difference

Time reference