COLLABORATIVE SEARCH FOR A PUBLIC GOOD

MARIA (MASHA) TITOVA

UC SAN DIEGO

May 2, 2019

MOTIVATION

- ▶ group of agents often searches for possible solutions to a given problem
- resulting solution, as well as the information gathered during search, are often a public good
- examples of collaborative search for a public good:
 - ♦ consumer search
 - search for investment opportunities
 - adoption of new technologies
 - research and development

MODELING CHOICES

- ▶ I extend the sequential search model of Weitzman (1979) to 2 searchers
- ▶ each public good (project) is represented by a **box**:
 - o uncertain reward revealed upon paying a search cost
- \blacktriangleright once the search process is over, the best uncovered project is implemented

QUESTIONS ASKED

- ▶ What is the optimal **search order** among risky alternatives?
- ▶ What are the **incentives to free ride** on colleague's search efforts?
- ► How does collaborative search by a group of people compare to the (socially optimal) individual search?

PREVIEW OF THE RESULTS

- ▶ search order and stopping rule are that of a social planner:
 - ♦ same project is implemented in the end
 - ♦ same information is gathered in the same order
- ▶ there is delay at each stage of search process
 - $\diamond\,$ each agent free rides in hopes that her colleague will pay the search cost
- ▶ overall, collaborative search is **inefficient**, but **preferred by each** individual agent to searching alone

LITERATURE

- ▶ collective experimentation:
 - ♦ Bolton and Harris (1999), Keller et al. (2005), Keller and Rady (2010), Bonatti and Rantakari (2016)
 - **what I do**: consider multi-armed bandit and study the *order* and *stopping* rule
- ▶ collaboration in teams:
 - ⋄ Bonatti and Hörner (2011), Campbell et al. (2014), Georgiadis (2015)
 what I do: agents choose the order in which to search and decide when to stop.
- ▶ dynamic provision of public goods:
 - ♦ Fershtman and Nitzan (1991), Marx and Matthews (1991), Admati and Perry (1991), Compte and Jehiel (2004), Bowen et al. (2019)
 what I do: study search for a public good

SETUP

- ▶ 2 players:
 - risk-neutral
 - ♦ maximize expected present value of best uncovered reward (free recall)
 - \diamond discount time at exponential rate $\delta = e^{-r\Delta t}$
- ▶ each period, one player is randomly (with prob. 1/2) **chosen** to perform search
- ▶ game ends if either
 - there are no options left to search among
 - players agree unanimously to terminate search process

ACTIONS

- \blacktriangleright when player *i* is **chosen**, she can
 - open exactly one box of her choice
 - do nothing
 - propose to terminate the game
- \blacktriangleright in the latter case, her **opponent** (player j) can
 - accept the offer
 - ⋄ reject it

PUBLIC GOODS

- ▶ N unopened boxes. Box $b_k \equiv (c_k, F_k(\cdot))$
 - \diamond contains an uncertain **reward** $x_k \sim F_k(\cdot)$ (independent)
 - $\diamond c_k$ is **search cost** paid to learn contents of the box
 - reward is drawn in the following period
- ▶ initially, there is a fallback reward $z_0 = 0$

STATE VARIABLES

- ▶ at each stage, **state** $s = (z, \mathcal{B}^c)$ of the problem is
 - \diamond current best option z,
 - e.g. at t = 0 it is $z_0 = 0$
 - \diamond set of unopened boxes \mathcal{B}^c

MARKOV PERFECT EQUILIBRIUM

- ▶ let $\Phi_i^{ch}(s)$ and $\Phi_i^{op}(s)$ be discounted continuation payoff, depending on player *i*'s role in state *s*
- ▶ let $\alpha_i(s) \equiv (\alpha_i^{ch}(s), \alpha_i^{op}(s))$ be a stationary Markov strategy

Theorem

A pair of strategies $(\alpha_1(s), \alpha_2(s))$ is an **MPE** if $\forall i, \forall j \neq i, \forall s$

$$\alpha_i^{ch}(s) = \arg\max_{\hat{\alpha}_i^{ch}(s)} \Phi_i^{ch}(s), \quad \alpha_i^{op}(s) = \arg\max_{\hat{\alpha}_i^{op}(s)} \Phi_i^{op}(s)$$

given $(\alpha_2^{ch}(s), \alpha_2^{op}(s))$ and subject to

$$\Phi_i^{ch}(z,\emptyset) = \Phi_i^{op}(z,\emptyset) = z$$

SOCIAL PLANNER: WEITZMAN (1979)

- ▶ social planner solves individual search problem
- ▶ if there is only one box *left*, the SP opens it iff

$$-c_k + \delta S(z, F_k) \ge z$$
 (SP)

where

$$S(z, F_k) \equiv \mathbb{E}\left[\max\{z, x_k\}\right] = z \int_{-\infty}^{z} dF_k(z) + \int_{z}^{+\infty} x dF_k(x)$$

RESERVATION VALUE OF A BOX

ightharpoonup let \bar{z}_k solve

$$-c_k + \delta S(\bar{z}_k, F_k) = \bar{z}_k$$

▶ then,

$$-c_k + \delta S(z, F_k) \ge z \iff \bar{z}_k \ge z$$
 (SP)

 \triangleright \bar{z}_k is reservation value of box b_k that contains all relevant information about this box

Theorem

Social Planner opens box b_k iff box is good enough i.e. when reservation value of this box is higher than the current best option

2 AGENTS, 1 BOX: OPPONENT

- ▶ when opponent receives a termination offer, he can
 - ♦ accept, get z immediately
 - ⋄ reject, eventually open the box, and get

▶ offer is **rejected** if and only if

$$z \le \frac{\delta}{2-\delta} \cdot \left[-c_k + \delta S(z, F_k) \right] \iff z \le z_k^{IR}$$
 (IR)

2 AGENTS, 1 BOX: CHOSEN PLAYER

- ► consider problem of **chosen** player
- ightharpoonup if $z > \bar{z}_k$, proposing termination is strictly dominant
 - $\diamond\,$ this offer is always accepted since $z_k^{IR} < \bar{z}_k$
- ightharpoonup if $z \leq \bar{z}_k$, chosen player can do better by mixing between
 - opening the box
 - doing nothing

EQUILIBRIUM IN MIXED STRATEGIES

- ▶ suppose each player, when chosen, opens box with prob. π and does nothing with prob. (1π) .
- ▶ in equilibrium, chosen player must be indifferent btw
 - \diamond opening herself: $-c_k + \delta S(z, F_k)$
 - someone opening it in the future:

• the search cost is paid half the time in expectation

 $\triangleright \pi$ is obtained from the indifference condition

EQUILIBRIUM

▶ chosen player

 \diamond if $z \leq \bar{z}_k$, opens the box b_k with prob.

$$\pi_k = \begin{cases} \frac{2(1-\delta)}{\delta c_k} \left[-c_k + \delta S(z,F_k) \right] < 1 \text{ if } c_k > S(z,F_k) \cdot \frac{2\delta(1-\delta)}{2-\delta} \\ & 1 \text{ otherwise} \end{cases}$$

and does nothing with prob. $1 - \pi_k$

 \diamond if $z > \bar{z}_k$, proposes to terminate the game

opponent

- \diamond accepts termination proposal if $z > z_k^{IR}$
- \diamond **rejects** proposal if $z \leq z_k^{IR}$

DELAY AND WELFARE IMPLICATIONS

- ▶ on equilibrium path, box is opened eventually if $z \leq \bar{z}_k$
 - this is socially optimal cutoff
- ▶ for *large* search costs, box is opened with a **delay**
 - \diamond whenever $\pi_k < 1$, chosen player is **free riding**
 - \diamond if Δt is time interval between periods, then **expected delay** is $\Delta t \cdot \frac{1-\pi_k}{\pi_k}$
- ▶ each agent pays search cost half of the time on average

PROPERTIES OF π_k

Corollary

Higher π means less delay

- ightharpoonup for very low values of c_k , there is no delay because it is strictly dominant to open box right away
- \blacktriangleright otherwise, $\pi_k(z)$ is **increasing** and convex in z.
- ▶ comparative statics: $\pi_k(z)$ is increasing in the reservation value of the box, i.e. as
 - \diamond search cost c_k decreases
 - ♦ distribution of rewards gets "better" (in terms of FOSD or MPS)

SOCIAL PLANNER: OPTIMAL SEARCH PROTOCOL

Weitzman (1979)

- ▶ selection rule: if a box is to be opened, it should be that closed box with highest reservation value
- ▶ stopping rule: terminate search whenever best sampled reward exceeds reservation value of every closed box

COLLABORATIVE SEARCH: OPTIMAL SEARCH PROTOCOL

 $\blacktriangleright \text{ let } \bar{z}_k = \max_{b_l \in \mathcal{B}^c} \bar{z}_l$

► chosen player

- \diamond if $z \leq \bar{z}_k$, opens the box b_k with prob. $\tilde{\pi}_k \in (0,1]$ and does nothing with prob. $1 \tilde{\pi}_k$
- \diamond if $z > \bar{z}_k$, proposes to terminate the game
- ▶ opponent, upon receiving a termination offer
 - \diamond accepts termination proposal if $z > \tilde{z}_k^{IR}$
 - \diamond **rejects** proposal if $z \leq \tilde{z}_k^{IR}$

PROPERTIES OF EQUILIBRIUM

- ▶ search order and termination rule are myopic
 - \diamond only depend on highest reservation value \bar{z}_k
 - socially optimal on equilibrium path
- ▶ prob. of opening the box $\tilde{\pi}_k(s)$ is NOT myopic
 - ♦ can only be estimated numerically
 - \diamond known lower bound π_k (from the one box case)
 - ♦ less than one for large enough search costs ⇒ delay at each stage of the learning process

DYNAMICS OF THE DELAY

- ▶ How does the delay change as they search?
 - \diamond the more boxes are opened, the better the uncovered reward, so

$$z \uparrow \Longrightarrow \pi \uparrow$$
, the delay decreases

the more they search, the worse boxes are left so

$$\bar{z}_k \downarrow \Longrightarrow \pi \downarrow$$
, the delay increases

DISCUSSION

- ▶ all results still **hold** if
 - \diamond there are N players
 - players alternate or are chosen with unequal probability
 - there is no explicit option to do nothing
- ▶ results do not hold if players value boxes differently:
 - best uncovered reward is not a public good
 - they have different discount factors
 - players have <u>different costs</u> of opening the same box

CONCLUSION

- ▶ this paper examines a model of sequential search for a public good by a group of agents
- ▶ I find that
 - search order and stopping rule are socially optimal
 - delay occurs at every stage of the search process because agents free ride
 - each agent prefers to search in group rather than by herself

Thank You!

BELLMAN EQUATION FOR SOCIAL PLANNER

Bellman equation is

where

PROPERTIES OF π_k

BELLMAN EQUATIONS FOR 2 SEARCHERS

- \blacktriangleright let $\bar{\Phi}_i = 1/2\Phi_i^{ch}(s) + 1/2\Phi_i^{op}(s)$ be average discounted continuation payoff
- \blacktriangleright when player *i* is **chosen**, her Bellman equation is

$$\Phi_i^{ch}(s) = \max_{\alpha_i^{ch}} \left\{ \alpha_j^{op}(s) \cdot z, \delta \bar{\Phi}_i(s), \max_{b_k \in \mathcal{B}^c} \left\{ -c_k + \delta \bar{\Phi}_i(s^{-b_k}) \right\} \right\}$$

 \blacktriangleright when player *i* is **opponent**, her Bellman equation is

$$\begin{split} & \Phi_i^{op}(s) = \max_{\alpha_i^{op}} \left\{ \mathbbm{1}_{\{\alpha_j^{ch}(s) = T\}} \cdot r_i \cdot z, \ \delta \bar{\Phi}_i(s') \right\} \\ \text{s.t. } s' = \begin{cases} s & \text{if } \alpha_j^{ch}(s) = T, r_i = 0 \text{ or } \alpha_j^{ch}(s) = \varnothing \\ s^{-b_k} & \text{if } \alpha_j^{ch}(s) = b_k \end{cases} \end{split}$$