Project Title:

Manual vs. Scikit-learn GridSearchCV for Hyperparameter Tuning and Model Comparison

Name:

Nisschay Khandelwal

SRN:

PES2UG23CS394

Course Name:

ML Lab

Submission Date:

August 31, 2025

1. Introduction

- This project's purpose was to implement and compare two methods for hyperparameter tuning: a manual grid search and scikit-learn's built-in GridSearchCV.
- Three classification algorithms—Decision Tree, k-Nearest Neighbors (kNN), and Logistic Regression—were tuned and evaluated.
- The tuned models were then combined into a soft-voting ensemble classifier to assess if combining models could improve predictive performance.

2. Dataset Description

- Wine Quality Dataset
 - Instances: 1599 (1119 training, 480 testing)
 - Features: 11 chemical properties (e.g., acidity, sugar, alcohol).
 - Target Variable: A binary value indicating if the wine quality is "good" (rating > 5) or not.
- Banknote Authentication Dataset
 - Instances: 1372 (960 training, 412 testing)
 - Features: 4 statistical measures from banknote images (variance, skewness, etc.).
 - Target Variable: A binary value indicating if a banknote is authentic (0) or fake (1).

3. Methodology

- Key Concepts
 - Hyperparameter Tuning: The process of finding the optimal set of parameters for a learning algorithm (e.g., max_depth for a Decision Tree) that are set before the training process begins.

- Grid Search: An exhaustive search technique that systematically tests all specified combinations of hyperparameters to find the combination that yields the best performance.
- K-Fold Cross-Validation: A technique to evaluate model performance by splitting the training data into 'k' subsets (folds). The model is trained on k-1 folds and validated on the remaining fold. This process is repeated k times, and the results are averaged to provide a more robust performance estimate. A 5-fold Stratified cross-validation was used to maintain the target class distribution in each fold. ML Pipeline
 - The machine learning pipeline consisted of three sequential steps for each model:
 - StandardScaler: Standardizes features by removing the mean and scaling to unit variance.
 - SelectKBest: Selects the top 'k' features based on ANOVA F-tests (f_classif), helping to reduce noise and model complexity. The value of 'k' was a hyperparameter that was tuned.
 - Classifier: The specific algorithm being trained (Decision Tree, kNN, or Logistic Regression).
- Implementation Process
 - Part 1 (Manual):
 - A grid of hyperparameters was defined for each classifier.
 - All possible combinations of these parameters were generated using itertools.
 - For each combination, a 5-fold stratified cross-validation was performed manually.
 - The ROC AUC score was calculated on the validation fold in each split and then averaged.
 - The parameter combination with the highest average ROC AUC score was selected as the best.
 - The final model was re-fitted on the entire training dataset using these best parameters.

o Part 2 (Scikit-learn):

- The same pipeline and parameter grids were used.
- Scikit-learn's GridSearchCV was employed to automate the entire cross-validation and tuning process.
- The tool was configured with 5-fold stratified cross-validation and scoring='roc_auc' to match the manual implementation.

4. Results and Analysis Performance

Tables

• Wine Quality Dataset

Classifier	Method	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual/Built-in	0.7271	0.7716	0.6965	0.7321	0.8039
k-NN	Manual/Built-in	0.7812	0.7774	0.8288	0.8023	0.8731
Logistic Regression	Manual/Built-in	0.7312	0.7520	0.7510	0.7476	0.8218
Voting Classifier	Manual/Built-in	0.7750	0.7833	0.7821	0.7923	0.8648

Banknote Authentication Dataset

Classifier	Method	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual/Built-in	0.9806	0.9944	0.9617	0.9778	0.9918
	Manual/Built-in					
k-NN		1	1	1	1	1
Logistic Regression	Manual/Built-in					
		0.9976	0.9785	0,9945	0.9864	0.9999
Voting Classifier	Manual/Built-in					
		0.9976	1	0.9945	0.9973	1

• Compare Implementations

- The results from the manual and scikit-learn implementations were identical across all datasets and all models.
- This is because the manual implementation correctly replicated the logic of GridSearchCV. Both methods used the same
 StratifiedKFold strategy with a fixed random_state=42, ensuring the data splits were the same for both. The scoring metric (roc_auc) and parameter grids were also identical, leading to the same optimal hyperparameters and final performance scores.

Visualizations

- ROC Curves: The ROC curves visually confirm the performance metrics.
 - For the Wine Quality, the kNN and Logistic Regression models showed strong performance, with curves arching

- toward the top-left corner. The Voting Classifier's curve was also competitive, with a high Area Under the Curve (AUC).
- For the Banknote Authentication dataset, the ROC curves for kNN, Logistic Regression, and the Voting Classifier are almost perfect right angles, hugging the top-left corner with AUCs of 1.000 or 0.9999, indicating exceptional classification ability.
- Confusion Matrices: The confusion matrices for the Voting Classifier visualize its prediction accuracy.
 - For the Banknote dataset, the matrix shows zero misclassifications (perfect accuracy).
 - For the Wine dataset, the matrices show a good number of true positives and true negatives, but also some false positives and false negatives, reflecting the models' imperfect but strong performance on these more challenging datasets.

Best Model Analysis

- Wine Quality: The Voting Classifier achieved the highest ROC KNN (0.8731), slightly edging out the best individual model, AUC (0.8648). This suggests that ensembling provided a small benefit by combining the strengths of the different models.
- Banknote Authentication: Both kNN and the Voting Classifier achieved perfect scores (1.000) across all metrics on the test set. The problem appears to be very well-defined, making it easy for these models to achieve flawless separation.

5. Screenshots

• Wine Quality

```
MODEL EVALUATION - MANUAL METHOD
Individual Model Performance:
Decision Tree:
  Accuracy: 0.7271
 Precision: 0.7716
  Recall: 0.6965
  F1-Score: 0.7321
  ROC AUC: 0.8039
k-NN:
 Accuracy: 0.7812
  Precision: 0.7774
  Recall: 0.8288
  F1-Score: 0.8023
  ROC AUC: 0.8731
Logistic Regression:
  Accuracy: 0.7312
 Precision: 0.7520
  Recall: 0.7432
  F1-Score: 0.7476
  ROC AUC: 0.8218
    Voting Classifier Performance:
```

Voting Classifier Performance:

Voting Classifier Results:

Accuracy: 0.7438
Precision: 0.7659
Recall: 0.7510
F1-Score: 0.7583
ROC AUC: 0.8648

MODEL EVALUATION - BUILT-IN METHOD

Individual Model Performance:

Decision Tree:

Accuracy: 0.7271
Precision: 0.7716
Recall: 0.6965
F1-Score: 0.7321
ROC AUC: 0.8039

k-NN:

Accuracy: 0.7812
Precision: 0.7774
Recall: 0.8288
F1-Score: 0.8023
ROC AUC: 0.8731

Logistic Regression:

Accuracy: 0.7312
Precision: 0.7520
Recall: 0.7432
F1-Score: 0.7476
ROC AUC: 0.8218

Voting Classifier Performance: Voting Classifier Results: Accuracy: 0.7750 Precision: 0.7833 Recall: 0.8016

0.7923

F1-Score:

RESULTS COMPARISON AND SUMMARY

■ WINE QUALITY DATASET - PERFORMANCE SUMMARY

Model	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree (Manual)	0.7271	0.7716	0.6965	0.7321	0.8039
Decision Tree (Built-in)	0.7271	0.7716	0.6965	0.7321	0.8039
k-NN (Manual)	0.7812	0.7774	0.8288	0.8023	0.8731
k-NN (Built-in)	0.7812	0.7774	0.8288	0.8023	0.8731

Logistic Regression (Manual) 0.7312 0.7520 0.7432 0.7476 0.8218 Logistic Regression (Built-in) 0.7312 0.7520 0.7432 0.7476 0.8218 Voting (Manual) 0.7438 0.7659 0.7510 0.7583 0.8648

Voting (Built-in) 0.7750 0.7833 0.8016 0.7923 0.8648

BEST PERFORMING MODELS:

Best Individual Model: k-NN (Manual) (AUC: 0.8731)

Manual Voting AUC: 0.8648 Built-in Voting AUC: 0.8648

IMPLEMENTATION COMPARISON:

Manual vs Built-in Grid Search Results:

• Decision Tree AUC difference: 0.000000

• • •

■ WINE QUALITY ANALYSIS COMPLETED!

• Banknote Authentication

```
MANUAL GRID SEARCH IMPLEMENTATION

Manual Grid Search for Decision Tree

Testing 108 parameter combinations...
Progress: 25/108 | Best AUC: 0.9676
Progress: 50/108 | Best AUC: 0.98875
Progress: 100/108 | Best AUC: 0.9889
Progress: 100/108 | Best AUC: 0.9889
Progress: 100/108 | Best AUC: 0.9889

**Decision Tree Results:
Best Parameters: {'feature_selection_k': 3, 'classifier_max_depth': 7, 'classifier_min_samples_split': 10, 'classifier_min_samples_leaf': 2}
Best CV AUC: 0.9889

**Manual Grid Search for k-INI

Testing 60 parameter combinations...
Progress: 25/60 | Best AUC: 0.9999
Progress: 50/60 | Best AUC: 1.0000

**V k-INI Results:
Best Parameters: {'feature_selection_k': 3, 'classifier_n_neighbors': 5, 'classifier_weights': 'distance', 'classifier_metric': 'euclidean'}
...
Best Parameters: {'feature_selection_k': 4, 'classifier_C': 100, 'classifier_penalty': 'l1', 'classifier_solver': 'liblinear'}
Best CV AUC: 0.9996
```

```
BUILT-IN GRID SEARCH (GridSearchCV)
GridSearchCV for Decision Tree
Fitting GridSearchCV...
Fitting 5 folds for each of 108 candidates, totalling 540 fits
✓ Decision Tree Results:
 Best Parameters: {'classifier_max_depth': 7, 'classifier_min_samples_leaf': 2, 'classifier_min_samples_split': 10, 'feature_selection_k': 3}
 Best CV AUC: 0.9889
GridSearchCV for k-NN
Fitting GridSearchCV...
Fitting 5 folds for each of 60 candidates, totalling 300 fits
 Best Parameters: {'classifier_metric': 'euclidean', 'classifier_n_neighbors': 5, 'classifier_weights': 'distance', 'feature_selection_k': 3}
GridSearchCV for Logistic Regression
Fitting GridSearchCV...
Fitting 5 folds for each of 24 candidates, totalling 120 fits

√ Logistic Regression Results:

 Best Parameters: {'classifier_C': 100, 'classifier_penalty': 'l1', 'classifier_solver': 'liblinear', 'feature_selection_k': 4}
 Best CV AUC: 0.9996
```

```
Manual Grid Search for Decision Tree

Testing 108 parameter combinations...
Progress: 25/108 | Best AUC: 0.9676
Progress: 50/108 | Best AUC: 0.9885
Progress: 50/108 | Best AUC: 0.9889
Progress: 108/108 | Best AUC: 0.9889
Progress: 108/108 | Best AUC: 0.9889
Progress: 108/108 | Best AUC: 0.9889

/ Decision Tree Results:
Best Parameters: ('feature_selection_k': 3, 'classifier_max_depth': 7, 'classifier_min_samples_split': 10, 'classifier_min_samples_leaf': 2}
Best CV AUC: 0.9889

Manual Grid Search for k-NN

Testing 48 parameter combinations...
Progress: 25/48 | Best AUC: 1.0000

/ k-NN Results:
Best Parameters: ('feature_selection_k': 3, 'classifier_n_neighbors': 5, 'classifier_weights': 'distance', 'classifier_metric': 'euclidean'}
Best CV AUC: 1.0000

...
Best Parameters: ('feature_selection_k': 4, 'classifier_C': 100, 'classifier_penalty': '11', 'classifier_solver': 'liblinear'}
Best CV AUC: 0.9996
```

```
BUILT-IN GRID SEARCH (GridSearchCV)
GridSearchCV for Decision Tree
Fitting GridSearchCV...
Fitting 5 folds for each of 108 candidates, totalling 540 fits
✓ Decision Tree Results:
  Best Parameters: {'classifier_max_depth': 7, 'classifier_min_samples_leaf': 2, 'classifier_min_samples_split': 10, 'feature_selection_k': 3}
  Best CV AUC: 0.9889
GridSearchCV for k-NN
Fitting GridSearchCV...
Fitting 5 folds for each of 48 candidates, totalling 240 fits 
√ k-NN Results:
 Best Parameters: {'classifier_metric': 'euclidean', 'classifier_n_neighbors': 5, 'classifier_weights': 'distance', 'feature_selection_k': 3}
  Best CV AUC: 1.0000
GridSearchCV for Logistic Regression
Fitting GridSearchCV...
Fitting 5 folds for each of 24 candidates, totalling 120 fits

√ Logistic Regression Results:

  Best Parameters: {'classifier_C': 100, 'classifier_penalty': 'l1', 'classifier_solver': 'liblinear', 'feature selection k': 4}
  Best CV AUC: 0.9996
```

MODEL EVALUATION - MANUAL METHOD

Individual Model Performance:

Decision Tree:

Accuracy: 0.9806
Precision: 0.9944
Recall: 0.9617
F1-Score: 0.9778
ROC AUC: 0.9918

k-NN:

Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1-Score: 1.0000
ROC AUC: 1.0000

Logistic Regression:

Accuracy: 0.9879
Precision: 0.9785
Recall: 0.9945
F1-Score: 0.9864
ROC AUC: 0.9999

Voting Classifier Performance: Voting Classifier Results: Accuracy: 0.9976 Precision: 1.0000 Recall: 0.9945 F1-Score: 0.9973 ROC AUC: 1.0000 MODEL EVALUATION - BUILT-IN METHOD

MODEL EVALUATION - BUILT-IN METHOD Individual Model Performance: Decision Tree: Accuracy: 0.9806 Precision: 0.9944 Recall: 0.9617 F1-Score: 0.9778 ROC AUC: 0.9918 k-NN: Accuracy: 1.0000 Precision: 1.0000 Recall: 1.0000 F1-Score: 1.0000 ROC AUC: 1.0000 Logistic Regression: Accuracy: 0.9879 Precision: 0.9785 Recall: 0.9945 F1-Score: 0.9864 ROC AUC: 0.9999

Voting Classifier Performance: Voting Classifier Results: Accuracy: 0.9976 Precision: 1.0000 Recall: 0.9945 F1-Score: 0.9973 ROC AUC: 1.0000

RESULTS COMPARISON AND SUMMARY

BANKNOTE AUTHENTICATION - PERFORMANCE SUMMARY

Model Accuracy Precision Recall F1-Score ROC AUC Decision Tree (Manual) 0.9806 0.9944 0.9617 0.9778 0.9918 Decision Tree (Built-in) 0.9778 0.9806 0.9944 0.9617 0.9918 k-NN (Manual) 1.0000 1.0000 1.0000 1.0000 1.0000 k-NN (Built-in) 1.0000 1.0000 1.0000 1.0000 1.0000 Logistic Regression (Manual) 0.9879 0.9785 0.9945 0.9864 0.9999 Logistic Regression (Built-in) 0.9879 0.9785 0.9945 0.9864 0.9999 Voting (Manual) 0.9976 1.0000 0.9945 0.9973 1.0000 Voting (Built-in) 0.9976 1.0000 0.9945 0.9973 1.0000

BEST PERFORMING MODELS:

Best Individual Model: k-NN (Manual) (AUC: 1.0000)

Manual Voting AUC: 1.0000 Built-in Voting AUC: 1.0000

6. Conclusion

- Key Findings
 - The best classification model is highly dependent on the dataset. Although kNN excelled on the Wine and Banknote datasets.
 - A soft-voting ensemble improved performance on the Wine dataset/
- The results for the manual and scikit-learn grid search implementations were identical, confirming that the manual code correctly replicated the library's logic. Main Takeaways
 - This lab highlights the trade-off between understanding and efficiency. Implementing grid search manually provides a deep understanding of the cross-validation and hyperparameter tuning process.
 - However, for practical applications, using a library like scikit-learn's GridSearchCV is far superior. It is more concise, less prone to implementation errors, and significantly faster due to built-in optimizations like parallel processing (n_jobs=-1).