Guia bàsica de input en $Mathematica^{\mathbb{R}}$

David Rojas Pérez Oficina de l'Autònoma Interactiva Docent Universitat Autònoma de Barcelona

Per introduir una resposta en ACME, el llenguatge que es fa servir és $Mathematica^{\circledR}$. A continuació explicarem com és la sintaxi bàsica d'aquest llenguatge.

Números

Si hom vol introduir un número com a resposta o part d'una resposta a un problema, només cal introduir-lo com es faria en una calculadora usual, tenint en compte que el símbol . (el punt) s'utilitza per designar l'inici de la part decimal d'un número (mai posarem una coma per designar això). Per exemple:

Si aquest número és un racional, una altra forma d'expressar-lo és com **una fracció**. Per això, fem servir el símbol /. Per exemple:

Cal tenir en compte que també s'admet la sintaxi científica alhora d'introduir els números, fent servir l'operador producte * i l'exponent ^ tal com s'il·lustra a l'exemple.

$$10^6$$
 s'escriu 10^6
 $4 \cdot 10^{-3}$ s'escriu $4 * 10^6 (-3)$
 $6.022 \cdot 10^{23}$ s'escriu $6.022 * 10^6 (23)$

També cal saber que existeixen certes constant que representen alguns dels nombres irracionals més freqüents. Entre ells, es troben els següents:

$$e$$
 s'escriu E π s'escriu Pi

Finalment, si hom vol introduir un número complex, ho ha de fer com a suma + de un número real i un imaginari. Aquest segon serà un número real multiplicat per la constant i, que en el llenguatge $Mathematica^{\mathbb{R}}$ es representa per \mathbf{I} . Per exemple:

$$i$$
 s'escriu I $3+4i$ s'escriu $3+4*I$ $-1-\frac{1}{2}I$ s'escriu $-1-(1/2)*I$

Notem que fem servir **parèntesis** per assegurar-nos que la màquina farà les operacions en l'ordre que volem.

Operadors

Tot i que ja els hem vist, llistem els operadors més frequents:

Funcions

Les funcions a $Mathematica^{\circledR}$ s'escriuen, com a regla general, amb la primera lletra en **majúscula** i sempre amb l'argument entre **claudàtors** []. A continuació, mostrem una llista amb les funcions més usuals.

```
e^x
                        Exp[x]
            s'escriu
  ln(x)
            s'escriu
                        Log[x]
  \sin(x)
            s'escriu
                         Sin[x]
 \cos(x)
            s'escriu
                         Cos[x]
 tan(x)
            s'escriu
                        Tan[x]
                         Csc[x]
 \csc(x)
            s'escriu
                         Sec[x]
 sec(x)
            s'escriu
 \cot(x)
            s'escriu
                         Cot[x]
\arcsin(x)
            s'escriu
                       ArcSin[x]
\arccos(x) s'escriu
                      ArcCos[x]
\arctan(x)
                      ArcTan[x]
            s'escriu
   \sqrt{x}
                        Sqrt[x]
            s'escriu
```

Cal notar que les funcions $\sqrt[n]{x}$ i $\log_a(x)$ només¹ estan implementades per n=2 i a=e. Per tant, per introduir aquestes funcions per qualsevols n i a (sempre que sigui possible), farem:

$$\sqrt[n]{x}$$
 s'escriu $x^{\wedge}(1/n)$
 $\log_n(x)$ s'escriu $\log[x]/\log[n]$

Finalment, per fer les funcions **hiperbòliques** només caldrà afegir una \mathbf{h} al final de la funció. Per exemple: $\sinh(x)$ s'escriu $\sinh[x]$ (la \mathbf{h} no es posa en majúscula).

Vectors i Matrius

A *Mathematica*[®], un **vector** és una llista de números (o altres elements) separats per comes i entre **claus** {}. Per exemple:

$$(1,2,3,4)$$
 s'escriu $\{1,2,3,4\}$ $(-4,0,a,7,9)$ s'escriu $\{-4,0,a,7,9\}$

Amb la mateixa idea, una **matriu** és una llista de llistes. Cada llista representa una fila de la matriu, que serà la fila que determina la seva posició en la llista gran. Per exemple:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \text{s'escriu} \qquad \{\{1,2\}, \{3,4\}\}$$

$$\begin{pmatrix} -5 & 9 & 1 \\ 7 & -3 & a \end{pmatrix} \quad \text{s'escriu} \quad \{\{-5,9,1\}, \{7,-3,a\}\}$$

 $^{^{1}}$ De fet, per $\log_{10}(x)$ i $\log_{2}(x)$ si que hi han implementades dues funcions directes, que són $\log 10[x]$ i $\log 2[x]$ respectivament per versions de $Mathematica^{\textcircled{\$}}$ superiors a la 7. Això no és cert per altres, com a=4,5,6...