ML PROJECT MINI REPORT

Thoracic Disease Detection

1. Introduction

Early and accurate detection of thoracic diseases such as pneumonia, atelectasis, and pleural effusion from Chest X-ray (CXR) images is vital for effective treatment. This project develops an automated diagnostic system that leverages **Deep Convolutional Neural Networks (CNNs)** for feature extraction and **shallow machine learning** for interpretable classification. The task is formulated as a **multi-label classification** problem, as a single X-ray can exhibit multiple diseases.

2. Methodology

Dataset: NIH Chest X-ray Dataset containing 14 thoracic pathologies.

Feature Extraction: A CNN is used (with transfer learning) to derive Bag of Visual Words

(BOVW) feature vectors from CXR images.

Model Architecture:

- Stage 1 Deep Feature Extraction: CNN compresses high-dimensional pixel data into a meaningful feature representation.
- Stage 2 Shallow Classification: An optimized Logistic Regression (LR) model performs the final classification using the BOVW vectors.

Disease	ROC-AUC SCORES {Avg score:- 0.7301}	
Cardiomegaly	0.6295	
Edema	0.7726	
Emphysema	0.7583	
Hernia	0.6752	
Pneumonia	0.4882	
Fibrosis	0.4674	
Pneumothorax	0.7301	