

cuu duong than cong . com

Chương VI: Sắp xếp

- Nội dung
 - 1. Bài toán sắp xếp
 - 2. Ba phương pháp sắp xếp cơ bản
 - 1. Lựa chọn, thêm dần và đổi chỗ
- 2. Phân tích, đánh giá
 - Sắp xếp kiểu hòa nhập
 - 4. Sắp xếp nhanh
 - 5. Sắp xếp kiểu vun đống
 - 6. Một số phương pháp sắp xếp đặc biệt

Bài toán Sắp xếp

- Khóa sắp xếp
 - Một bộ phận của bản ghi biểu diễn đối tượng được sắp
 - Khóa sẽ được sử dụng để xác định thứ tự sắp xếp bản ghi trong một tập các bản ghi
- Bảng khóa:
- Sử dụng trong sắp xếp khi muốn hạn chế việc di chuyển các bản ghi dữ liệu
 - Một tập các bản ghi chỉ chứa hai trường
 - Khóa: chứa khóa sắp xếp
 - Link: Con trỏ ghi địa chỉ của bản ghi đối tượng dữ liệu tương ứng
 - Thứ tự các bản ghi trong bảng khóa cho phép xác định thứ tự của các bản ghi dữ liệu

cuu duong than cong . com

Bài toán Sắp xếp

- Trong chương này, bài toán sắp xếp được đơn giản hóa dưới dạng như sau
 - Đầu vào: Một dãy các số nguyên a₁, a₂, ..., a_n
 - Đầu ra: Một hoán vị của dãy số đã cho trong đó các giá trị được sắp xếp theo chiều tăng dần

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Ba phương pháp sắp xếp cơ bản

- 1. Sắp xếp kiểu lựa chọn (Selection Sort)
- 2. Sắp xếp kiểu thêm dần (Insertion Sort)
- Sắp xếp kiểu đổi chỗ Sắp xếp kiểu nổi bọt (Buble Sort)

cuu duong than cong . com

Sắp xếp kiểu lựa chọn – Selection Sort

- Ý tưởng:
 - Tại mỗi lượt, chọn phần tử nhỏ nhất trong số các phần tử chưa được sắp. Đưa phần tử được chọn vào vị trí đúng bằng phép đổi chỗ.
 - Sau lượt thứ i (i = 1..n-1), dãy cần sắp coi như được chia thành 2 phần
 - Phần đã sắp: từ vị trí 1 đến i
 - Phần chưa sắp: từ vị trí i +1 đến n

Đỗ Bích Diệp - Khoa CNTT

Sa	Sắp xếp kiểu lựa chọn								
Г	-	-		/ sau theo	o thứ tự tả 9, 16}	íng dần:			
		Lượt 1	Lượt 2	Lượt 3	Lượt 4	Lượt 5	Lượt 6	Lượt 7	
	12	3	3	3	3	3	3	3	
	5	5	4	4	4	4	4	4	
C	3	12	12	5	5 0 0	5	5	5	
	10	10	10	10	9	9	9	9	
	18	18	18	18	18	10	10	10	
	4	4	5	12	12	12	12	12	
	9	9	9	9	10	18	18	16	
	16	16	16	16	16	16	16	18	
	Đỗ Bích Diệp - Khoa CNTT								

Sắp xếp kiểu lựa chọn Procedure SELECTION-SORT(A,n) 1. for i = 1 to n-1 do begin 2. {Duyệt từ đinh} min = i; 3. {Chọn phần tử nhỏ nhất} for j = i+1 to n do if A[j] < A[min] then min = j; 4. {Đổi chổ phần tử i và phần tử nhỏ nhất} T = A[i]; A[i] = A[min]; A[min] = T;end; End.

```
Sắp xếp kiểu lựa chọn

- Thời gian thực hiện thuật toán

• Trường hợp tốt nhất:

- Dãy ban đầu đã được sắp xếp

- 0 phép đổi chỗ, chỉ thực hiện n(n-1)/2 phép so sánh

• Trường hợp xấu nhất

- n-1 phép đổi chỗ, n(n-1)/2 phép so sánh

- Độ phức tạp thời gian trung bình O(n²)
```

Sắp xếp kiểu thêm dần – Insertion sort

- - Dãy cần sắp được chia thành 2 phần: một là phần đã sắp, còn lại là phần chưa sắp
 - Tại mỗi lượt, phần tử đầu tiên trong phần chưa sắp sẽ được "thêm" vào đúng vị trí của nó trong phần đã sắp.

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Sắp xếp kiểu thêm dần - Ví dụ: Sắp xếp dãy sau theo thứ tự tăng dần: • A = {12, 5, 3, 10, 18, 4, 9, 16} Lượt 1 | Lượt 2 | Lượt 3 | Lượt 4 | Lượt 5 | Lượt 6 Lượt 7 16 16 18 CNTT

Sắp xếp kiểu thêm dần Procedure INSERTION-SORT(A,n) 1. for i := 2 to n do begin 2. {Chọn phần tử dầu tiên của phần chưa được sắp xếp} val := A[i]; j := i; {Tìm vị trí thích hợp đề chèn phần tử A[i] trong phần đã sắp- chứa các phần tử từ vị trí 1 đến i-1} while (j > 1) and (A[j-1] > val) do begin A[j] := A[j-1]; j := j -1; end; 4. {Chèn phần tử A[i] vào vị trí thích hợp} A[j] := val; end; 5. End

cuu duong than cong . com

Sắp xếp kiểu thêm dần - Sắp xếp thêm dần là tại chỗ và ổn định - Thời gian thực hiện giải thuật • Trường hợp tốt nhất: - Dãy ban đầu đã được sắp xếp - 0 thực hiện phép đổi chỗ, n-1 phép so sánh • Trường hợp xấu nhất - n(n-1)/2 phép đổi chỗ và so sánh - Độ phức tạp thời gian trung bình O(n²)

Sắp xếp kiểu nổi bọt								
Ví dụA = {12, 5, 3, 10, 18, 4, 9, 16}								
		Lượt 1	Lượt 2	Lượt 3	Lượt 4	Lượt 5	Lượt 6	Lượt 7
12	2	3	3	3	3	3	3	3
5		12	4	4	4	4	4	4
3		5	12	5	5	5	5	5
10	0	4	5	12	9	9	9	9
18	8	10	9	9	12	10	10	10
4		18	10	10	10	12	12	12
9		9	18	16	16	16	16	16
16	6	16	16	18	18	18	18	18
	Đỗ Bích Diệp - Khoa CNTT							

cuu duong than cong . com

Sắp xếp kiểu nổi bọt Procedure BUBBLE-SORT(A,n) 1. for i := 1 to n-1 do 2. {Duyệt từ đáy} for j:= n down to i+1 do 3. {Kiểm tra 2 phần tử kề cận nhau, nếu ngược thứ tự thì đổi chỗ } if A[j] < A[j-1] then begin X:= A[j]; A[j-1] := X; end 4. return

Sắp xếp nhanh

- Pha phân đoạn Partition
 - Hàm Partition thực hiện chia dãy đầu vào A[left..right] thành 2 đoạn
 - A[left, p-1] gồm các phần tử nhỏ hơn hoặc bằng A[p]
 - A[p+1, right] gồm các phần tử lớn hơn hoặc bằng A[p]
 - Gồm hai công đoạn chính
 - Lựa chọn chốt
 - Thực hiện Phân đoạn

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Sắp xếp nhanh

- Lựa chọn chốt
 - Chọn chốt là phần tử đứng đầu hoặc cuối danh sách
 - Chọn phần tử đứng giữa danh sách làm chốt
 - Chọn phần tử trung vị trong 3 phần tử đứng đầu, đứng giữa và đứng cuối danh sách
 - Chọn phần tử ngẫu nhiên

cuu duong than cong . com

cuu duong than cong . com

Sắp xếp nhanh

Function PARTITION-MID(A, left, right)

{A là mảng cần sắp, left là chỉ số của phần tử đầu , right là chỉ số của phần tử cuối. Phần tử chốt là phần tử ở đầu danh sách}

```
    i:=left; j := right; pivot = [(left + right) /2]
    {pivot là số nguyên >= (left+right)/2}
```

2. repeat

```
while (A[i] \le A[pivot]) do i := i+1;
while (A[j] \ge A[pivot]) do j := j-1;
if i \le j then begin A[i] \le A[j]; i := i+1; j := j-1; end
until i \ge j
```

4. Return j

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Đánh giá giải thuật Sắp xếp nhanh

- Sắp xếp nhanh là tại chỗ nhưng không ổn định
- Thời gian thực hiện giải thuật
 - Trường hợp tổng quát
 - T(0) = T(1) = c

cuu

- Pha phân đoạn được thực hiện bằng việc duyệt danh sách ban đầu 1 lần → Thời gian thực hiện là O(n)
- Trong giải thuật xuất hiện 2 lời gọi đệ qui: Giả sử sau khi phân đoạn, phần tử chốt ở vị trí p thì
 T(n) = T(p-1) + T(n-p) + O(n) + O(1)

Đánh giá giải thuật Sắp xếp nhanh

- Trường hợp xấu nhất:
 - Công thức đệ qui: T(n) = T(n-1) + O(n) + O(1)
 - Độ phức tạp của giải thuật sắp xếp nhanh là O(n²) khi A vốn đã được sắp và chốt được chọn là nút nhỏ nhất
- Trường hợp hoàn hảo:
 - Phân đoạn cân bằng T(n) = 2 T(n/2) + n
 - Độ phức tạp trung bình của giải thuật là O(nlog₂n)

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Sắp xếp kiểu hòa nhập

- Tương tự như sắp xếp nhanh dựa vào cơ chế chia để trị để thực hiện sắp xếp.
- Bao gồm 3 bước
 - Chia: Phân chia dãy cần được sắp S gồm n phần tử thành 2 dãy con với số phần tử là n/2 S₁ và S₂
- Tri: Lần lượt sắp xếp hai dãy con S₁ và S₂ bằng sắp xếp kiểu hòa nhập
 - Tổ hợp: Nhập 2 dãy con đã được sắp ${\rm S_1}\,$ và ${\rm S_2}\,$ thành một dãy duy nhất

Đỗ Bích Diệp - Khoa CNTT

Đỗ Bích Diệp -Khoa CNTT - ĐHBKHN CuuDuongThanCong.com

cuu duong than cong . com

cuu duong than cong . com

Sắp xếp kiểu hòa nhập

- 3. { Nếu dãy A hết }
 - if $i > sizea \{d\tilde{a}y \land d\tilde{a} \land h\hat{e}t\}$ then for t := 0 to sizeb t do C[k+t] := B[j+t];
- 4. **else** { $d\tilde{a}y B h\hat{e}t$ } **for** t := 0 **to** sizea t **do** C[k+t] := A[i+t];
- 5. return.

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Sắp xếp kiểu hòa nhập

- Thời gian thực hiện giải thuật
 - T(n) = 2 T(n/2) + n
- Độ phức tạp trong tình huống xấu nhất và trung bình là O(n log₂n)

cuu duong than cong . com

Sắp xếp kiểu vun đống

- Phép tạo đống
 - Dãy số cần sắp được coi là dãy các phần tử của một cây nhị phân hoàn chỉnh được lưu trữ kế tiếp
 - Dãy số A: {31, 54, 21, 11, 79, 47, 28, 87, 69, 65, 51}
 - Vector luu trữ

31	54	21	11	79	47	28	87	69	65	51
V[1]	V[2]	V[3]	V[4]	V[5]	V[6]	V[7]	V[8]	V[9]	V[10]	V[11]

Đỗ Bích Diệp - Khoa CNTT

Sắp xếp kiểu vun đống

- Hai thao tác cần thực hiện
 - Khôi phục tính chất đống của một nhánh cây có gốc là nút thứ i và hai con đã là đống
 - Xây dựng đống tương đương với một cây nhị phân hoàn chỉnh chưa phải là đống
 - Với lần lượt các cây con có gốc từ [n/2] xuống đến 1, khôi phục tính chất đống với các cây đó

Đỗ Bích Diệp - Khoa CNTT

Sắp xếp kiểu vun đống

- Sắp xếp kiểu vun đống: Chia làm 2 giai đoạn
 - Giai đoạn tạo đống ban đầu
 - Giai đoạn sắp xếp (Thực hiện n-1 lần với dãy gồm n số)
 - Đổi chế
 - Vun đống mới cho một dãy với ít hơn 1 phần tử so với đống trước

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com

Sắp xếp kiểu vun đống - Giải thuật sắp xếp kiểu vun đống Procedure HEAP-SORT(V,n) 1. {Tạo đống ban đầu} for $i:=\lfloor n/2 \rfloor$ down to 1 do call BUILD-HEAP(i,n); 2. {Sắp xếp} for i:= n-1 down to 1 do begin $V[1] \leftrightarrow V[i+1];$ call BUILD-HEAP(1,i) end; 3. return.

cuu duong than cong . com

cuu duong than cong . com

Độ phức tạp của các phương pháp sắp xếp

Thuật giải	Average Case	Worst Case			
Lựa chọn	O(n²)	O(n²)			
Thêm dần	O(n²)	O(n²)			
Đổi chổ	O(n²)	O(n²)			
Vun đống	O(nlogn)	O(nlogn)			
Hòa nhập	O(nlogn)	O(nlogn)			

Đỗ Bích Diệp - Khoa CNTT

cuu duong than cong . com