Tuletis

Siim Erik Pugal

13. oktoober 2017. a

Sissejuhatus

Funktsiooni **tuletis** on **matemaatilise analüüsi** üks põhimõisteid. Funktsiooni tuletis mingil kohal näitab selle funktsiooni väärtuse muutumise kiirust funktsiooni **argumendi** muutumisel — täpsemalt, funktsiooni tuletis on funktsiooni väärtuse muudu ja argumendi muudu suhte **piirväärtus** argumendi muudu lähenemisel nullile.

Füüsikas on nihke tuletiseks aja järgi hetkkiirus, kiiruse tuletiseks omakorda kiirendus.

Reaalarvulise argumendiga ning reaalarvuliste väärtustega funktsiooni korral on selle funktsiooni tuletiseks mingil kohal selle **funktsiooni graafiku puutuja** tõus sellel kohal.

Matemaatilise analüüsi eeskujul on tuletise mõistet mitmel viisil üldistatud teistesse matemaatika valdkondadesse. Käesolev artikkel käsitleb põhiliselt reaal- või kompleksmuutuja funktsiooni tuletist matemaatilise analüüsi tähenduses.

1 Määratlus

1.1 Tuletis antud kohal

Olgu antud reaalarvuliste väärtustega funktsioon f ning x mõni reaalarv funktsiooni määramispiirkonnast. Kui leidub (lõplik või lõpmatu) piirväärtus

$$\lim_{x \to \infty} \frac{f(x+h) - f(x)}{h},\tag{1}$$

siis seda nimetatakse funktsiooni f tuletiseks kohal x ning tähistatakse sümboliga f'(x).

Tavaliselt määratletakse funktsiooni tuletis vaid tema määramispiirkonna sisepunktides, s. t. eeltoodud definitsiooni lisatakse veel eeldus, et \boldsymbol{x} on hulga \boldsymbol{D} sisepunkt.

Kui funktsioonil \boldsymbol{f} on lõplik tuletis kohal \boldsymbol{x} , nimetatakse funktsiooni \boldsymbol{f} diferentseeruvaks kohal \boldsymbol{x} .

Samamoodi defineeritakse tuletis ja diferentseeruvus ka kompleksmuutuja funktsiooni korral, s. t. juhul $f:D\to\mathbb{C}$, kus $D\subset\mathbb{C}$.