# Socket programming with Python

Socket là cánh cổng ngăn cách giữa Application Layer với Transport Layer.



Figure 1: Mô hình socket

Thư viện socket của Python hỗ trợ một số API sau để thiết lập kết nối socket TCP/UDP:

- socket()
- bind()
- listen()
- accept()
- connect()
- connect\_ex()
- send()
- recv()
- close()

Thư viện socket của Python hỗ trợ cả TCP socket lẫn UDP socket. Trong project này, nhóm dự định sử dụng TCP socket để hiện thực dự án.

Flow của một TCP socket connection có thể được thể hiện như hình dưới đây:



Figure 2: Quy trình một kết nối socket để gửi nhận dữ liệu (Nguồn ResearchGate)

# Application design

# Architecture design



Figure 3: Kiến trúc tổng quan của hệ thống

# Flow protocol design

## Register



Figure 4: Sơ đồ luồng của chức năng đăng ký

### Login



Figure 5: Sơ đồ luồng của chức năng đăng nhập

## Ping



Figure 6: Sơ đồ luồng của chức năng ping

#### Discover

Discover



Figure 7: Sơ đồ luồng của chức năng discover

## **Publish**



Figure 8: Sơ đồ luồng của chức năng publish

## Fetch



Figure 9: Sơ đồ luồng của chức năng fetch

# **Activity diagram**

# Register



Figure 10: Sơ đồ hoạt động của chức năng đăng ký

## Login



Figure 11: Sơ đồ hoạt động của chức năng đăng nhập

### Ping



Figure 12: Sơ đồ hoạt động của chức năng ping

### Discover



Figure 13: Sơ đồ hoạt động của chức năng discover

## **Publish**



Figure 14: Sơ đồ hoạt động của chức năng publish

## **Fetch**



Figure 15: Sơ đồ hoạt động của chức năng fetch