Dynamical Systems I: Important Definitions, Theorems, Lemmas, Propositions, and Corollaries

Chris Hayduk

December 8, 2020

1 Introduction

Phase space: space of all possible states: set X, M, Y, Ω , etc. often with a structure:

- Topological space (metric space)
- Vector space: \mathbb{R}^n , \mathbb{C}^n
- Differentiable manifold: $S^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$

Metric space: (X, d) is a metric space if:

- 1. $X \neq \emptyset$
- 2. $d: X \times X \to \mathbb{R}_0^+$
- $3. \ d(x,y) = 0 \iff x = y$
- 4. d(x,y) = d(y,x) for all $x, y \in X$
- 5. $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$

Open set: Let (X,d) be a metric space. $U \subset X$ is open if for all $x \in U$, $\exists r > 0$ such that $B(x,r) = \{y \in X : d(x,y) < r\} \subset U$

Compact set: X is a compact set if for every open cover of X there exists a finite subcover.

Heine-Borel Theorem: A set $X \subset \mathbb{R}^n$ is compact if and only if X is closed and bounded.

Topology: (X, τ) where $\tau = \{U \subset X : U \text{ open}\}$ is a topology if,

- 1. $\phi, X \in \tau$
- 2. if $U_1, \ldots, U_\ell \in \tau$, then $U_1 \cap \cdots \cap U_\ell \in \tau$

3. if $(U_{\alpha})_{\alpha \in I}$ is a family of open sets, then $\bigcup_{\alpha \in I} U_{\alpha}$ is open, i.e., in τ

Continuity at a point: The following are equivalent to $f: X \to Y$ being continuous at $x_0 \in X$:

- 1. if $\lim_{n\to\infty} = x_n = x_0$, then $\lim_{n\to\infty} f(x_n) = f(x_0)$
- 2. $\lim_{x\to x_0} f(x) = f(x_0)$
- 3. $\forall \epsilon > 0, \exists \delta > 0$ such that if $x \in X$ with $d(x, x_0) < \delta$, then $d'(f(x), f(x_0)) < \epsilon$

A sequence $(x_n)_{n\in\mathbb{N}}\subset X$ converges to x_0 if $\forall \epsilon>0,\ \exists N\in\mathbb{N}$ such that if $n\geq N$, then $d(x_n,x_0)<\epsilon$. We write $\lim_{n\to\infty}x_n=x_0$

$$f:X\to Y$$
 is continuous if $\forall U\subset Y$ open, $f^{-1}(U)$ is open in X

Cauchy sequence: (X,d) metric space. We say $(x_n)_{n \in mathbb N} \subset X$ is a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $d(x_k, x_n) < \epsilon$ whenever $k, n \geq N$.

Complete metric space: (X, d) is a complete metric space if Cauchy sequences converge.

Fact: If (X, d) is a complete metric space and $Y \subset X$ is closed, then $(Y, d|_Y)$ is a complete metric space.

Disconnected set: $Y \subset X$ is disconnected if there exist $U, V \subset X$ open such that,

- 1. $U \cap Y, V \cap Y \neq \emptyset$
- $2. \ (U \cap Y) \cap (V \cap Y) = \emptyset$
- $3. \ (U\cap Y)\cup (V\cap Y)=Y$

We say that (U, V) is a disconnection of Y in this case.

Connected set: $Y \subset X$ is connected if it is not disconnected.

Theorem: Let $Y \subset \mathbb{R}$. Then Y is connected if and only if Y is an interval.

Connected component: Let $Y \subset X$ and $a \in Y$. Then,

$$C_a = \bigcup_{A \subset Y \text{ connected}, a \in A} A$$

is called the connected component of a relative to Y. It is "the largest connected set in Y containing a".

Cantor sets: totally disconnected, compact, perfect metric space

1.1 Review from Advanced Calc I

Let $D \subset \mathbb{R}$, $x_0 \in D$ be an accumulation point of D, i.e., $\forall \epsilon > 0 \exists x \in D$ such that $|x - x_0| < \epsilon$ and $x \neq x_0$.

We say $f: D \to \mathbb{R}$ is differentiable at x_0 if,

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. This definition is equivalent to that $\exists L \in \mathbb{R}$ such that $\forall \epsilon > 0, \exists \delta > 0$ such that if $x \in D$ with $0 < |x - x_0| < \delta$, then

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - L \right| < \epsilon$$

 $f: D \to \mathbb{R}$ is differentiable if g is differentiable at all $x_0 \in D$

If f' is continuous, then we say f is one-times continuously differentiable, we write $f \in C^1(D, \mathbb{R})$

Suppose $x \mapsto f(x)$ is k-times differentiable and $x \mapsto f^{(k)}(x)$ is differentiable. We call,

$$f^{(k+1)}(x) = (f^{(k)}(x))'$$

the (k+1)-th derivative of f.

If f is k-times differentiable and $f \mapsto f^{(k)}(x)$ is continuous, we say,

$$f \in C^k(D, \mathbb{R})$$

If $f \in C^k(D, \mathbb{R}) \forall k \in \mathbb{N}$, then we write $f \in C^{\infty}(D, \mathbb{R})$

Analytic functions: $D \subset \mathbb{R}$ open, $f: D \to \mathbb{R}$. We say f is analytic if $\forall x_0 \in D, \exists \epsilon > 0$ and $(a_k)_{k=0}^{\infty} \subset \mathbb{R}$ such that

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

If this is the case, then $a_k = \frac{f^{(k)}(x_0)}{k!}$.

We denote the set of all analytic functions on D by $C^{\omega}(D, \mathbb{R})$.

Fact: $C^{\infty}(D,\mathbb{R}) \supset C^{\omega}(D,\mathbb{R})$ but not $C^{\infty}(D,\mathbb{R}) \subset C^{\omega}(D,\mathbb{R})$

Min-Max Theorem: Let $f:[a,b]\to\mathbb{R}$ be continuous. Define $m(f)=\inf\{f(x):x\in[a,b]\text{ and }M(f)=\sup\{f(x):x\in[a,b]\}$. Then $\exists\underline{x},\overline{x}\in[a,b]$ such that $f(\underline{x})=m(f)$,

$$f(\overline{x}) = M(f)$$

Intermediate Value Theorem: Let $f : [a, b] \to \mathbb{R}$ be continuous and let m(f) < d < M(f). Then $\exists c \in [a, b]$ such that f(c) = d.

Mean Value Theorem: Let $f:[a,b]\to\mathbb{R}$ be continuous and f differentiable in (a,b). Then $\exists c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$

Cauchy Mean Value Theorem: Let $f, g : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b). Then $\exists c \in (a, b)$ such that f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a))

Rolle's Theorem: Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable in (a,b). Suppose f(a) = f(b). Then $\exists c \in (a,b)$ such that f'(c) = 0.

One-variable version of Implicit Function Theorem: Let $U \subset \mathbb{R}^2$ be open and let $P: U \to \mathbb{R}$, $(u, x) \mapsto P(u, x)$ be C^1 and suppose that $(u_0, x_0) \in U$ such that $P(u_0, x_0) = 0$. Suppose $\frac{\partial P}{\partial x}(u_0, x_0) \neq 0$. Then $\exists \delta > 0$ and $\epsilon > 0$ such that the equation

$$P(u, x) = 0$$

has a unique solution x = g(u) in $|u - u_0| < \delta$ and $|x - x_0| < \epsilon$. Moreover, g is differentiable, and,

$$\frac{\partial g}{\partial u} = -\left[\frac{\partial P}{\partial x}\right]^{-1} \cdot \left[\frac{\partial P}{\partial u}\right]$$

Banach Fixed Point Theorem: Let (X,d) be a complete metric space and let $f: X \to X$ be a contraction, i.e., $\exists 0 < L < 1$ such that $d(f(x), f(y)) \leq Ld(x, y)$ for all $x, y \in X$. Then f has a unique fixed point.

2 One-Dimensional Dynamics

2.1 Intro

Time evolution law: discrete times $T = \{0, 1, 2, \dots, \} = \mathbb{N} \cup \{0\}$. eg. $f: X \to X$ where X is a phase space, then $x_0 \to f(x_0) \to f^2(x_0) = f(f(x_0)) \to f^3(x_0) \to \cdots$

Forward orbit of x_0 : $O^+(x_0) = \{x_0, f(x_0), f^2(x_0), \ldots\}$

Backward orbit of x_0 : If f is invertible, then $f^{-(n+1)}(x_0) = f^{-1}(f^{-n}(x_0))$ and the backward orbit is given by $O^-(x_0) = \{x_0, f^{-1}(x_0), f^{-2}(x_0), \ldots\}$

Fixed point: A point x is a fixed point of a function f if f(x) = x

Periodic Point: $f: X \to X$ is a periodic point if $\exists p \in \mathbb{N}$ such that $f^p(x) = x$. p is called the period of x if it is the minimal natural number satisfying $f^p(x) = x$.

Homeomorphism: A function $h: X \to Y$ is a homeomorphism if h is bijective, continuous, and h^{-1} is continuous.

S. Smale Conjecture: A "typical" higher dimensional system has finitely many periodic points.

Topologically conjugate: $f: X \to X$ is topologically conjugate to $\sigma: Y \to Y$ if there exists a homeomorphism $h: X \to Y$ such that $f = h^{-1} \circ \sigma \circ h$. (Note this implies $f^n = h^{-1} \circ \sigma^n \circ h$)

Chaos: Let V be a set. $f: V \to V$ is said to be chaotic on V if

- 1. f has sensitive dependence on initial conditions. That is, $\exists \delta > 0$ such that for any $x \in V$ and any neighborhood N of x, there exists $y \in N$ and $n \geq 0$ such that $|f^n(x) f^n(y)| > \delta$.
- 2. f is topologically transitive. That is, $\exists x \in V$ such that the orbit $O(x) = \{f^n(x) : n \in \mathbb{N}_0\}$ of x is dense in V.
- 3. The periodic points of f(Per(f)) are dense in V

2.2 Continuous Time Dynamics in \mathbb{R}

Flow: Let (X, d) be a metric space. A map $\phi : \mathbb{R} \times X \to X$ is called a flow if:

- 1. $\phi(s+t,x) = \phi(s,\phi(t,x))$ for all $s,t \in \mathbb{R}$ and for all $x \in X$. (called "flow property")
- 2. for all $t \in \mathbb{R}$, $\phi(t, \cdot) = \phi_t : X \to X$ is a homeomorphism of X
- 3. $\phi(0,\cdot) = \mathrm{id}_X$

2.3 Entropy

Idea: assign to each dynamical system a positive real number $h_{top}(f)$ where $f: X \to X$ is continuous and (X, d) is a compact metric space such that,

- 1. if f and g are topologically conjugate then $h_{top}(f) = h_{top}(g)$
- 2. if $h_{top}(f) > 0$, then f is chaotic
- 3. if $0 < h_{top}(f) < h_{top}(g)$, then g is more chaotic than f

Entropy will be the exponential growth rate of the number of distinc orbits.

Bowen metric: $d_n(x, y) = \max_{k=0,...,n-1} d(f^k(x), f^k(y))$

Let $\epsilon > 0$, $n \in \mathbb{N}$ be fixed. $I \subset X$ is called (n, ϵ) -separated if $\forall x, y \in I$ with $x \neq y$, we have $d_n(x, y) \geq \epsilon$. Assume $I_n(\epsilon)$ is a maximal (n, ϵ) -separated set, i.e.,

- 1. $I_n(\epsilon)$ is (n, ϵ) —separated
- 2. if $y \in X \setminus I_n(\epsilon)$, then $I_n(\epsilon) \cup \{y\}$ is not (n, ϵ) —separated.

Remark: Since X is compact, $I_n(\epsilon)$ is finite.

Entropy: $h_{top}(f) = \lim_{\epsilon \to 0} \lim \sup_{n \to \infty} \frac{1}{n} \log (\operatorname{card} I_n(\epsilon))$

Example: card $I_n(\epsilon) = 2^n \implies \frac{1}{n} \log 2^n = \log 2 \implies h_{top}(f) = \log 2$

2.4 Attractors and repellers

From now on, f is a C^2 -function. $f: X \to X$, $X \subset \mathbb{R}$ an interval (X = [a, b]). Suppose f(a) = a, $a \in X$. We say a is **attracting** if |f'(a)| < 1 (stable fixed point) and if f'(a) = 0, we say a is **superattracting**.

a is **repelling** if |f'(a)| > 1. If a is either attracting or repelling we say a is **hyperbolic**.

Now let $a \in X$ be an attracting fixed point. Define the **stable set** of a by,

$$W^s(a) = \{ x \in X : f^n(x) \to aasn \to \infty \}$$

Fact: $W^s(a)$ is open set containing a.

Lemma: $\exists \epsilon > 0$ such that $B(a, \epsilon) \subset W^s(a)$

Corollary: $W^s(a) = \bigcup_{n \in \mathbb{N}} f^{-n}(B(a, \epsilon))$

Definition: $W_{loc}^s(a)$ is the connected component of $W^s(a)$ containing a. It is called the *immediate basin of attraction* of a.

Higher period orbits: $a \in Per_p(f) \iff f^p(a) = a \text{ and } f^k \neq a \text{ for all } k = 1, \dots, p-1.$ We say a is attracting if it is an attracting fixed point of f^p (that is, $|(f^p)'(a)| < 1$.

$$W^{s}(a) = \{x : \lim_{n \to \infty} |f^{n}(a) - f^{n}(a)| = 0\}$$

$$W^s(a) = W^s(f^p, a)$$

If a is attracting with period p, then $f(a), \ldots, f^{p-1}(a)$ are also attracting with period p.

$$W^s(f(a)) = f(W^s(a))$$

Fact: If a is attracting fixed point, $f(W^s(a)) = f^{-1}(W^s(a)) = W^s(a)$, i.e. "stable set is f-invariant"

$$f(W_{loc}^s(a)) = W_{loc}^s(a)$$

Definition: We say c is a critical point of f if f'(c) = 0. We say the critical point c is non-degenerate if $f''(x) \neq 0$, otherwise degenerate.

Two types of attracting fixed points:

- 1. Orientation preserving: 0 < f'(a) < 1
- 2. Orientation reversing: -1 < f'(a) < 0

Theorem: $f : \mathbb{R} \to \mathbb{R}$ continuous, \exists periodic point of prime period 3. Then \exists periodic points of any other period.

Sarkovskii's Theorem: Order periods in the following manner:

$$3 \triangleright 5 \triangleright 7 \triangleright \cdots \geq 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \geq 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^3 \cdot 7 \triangleright \cdots \geq 2^3 \cdot 3 \triangleright 2^3 \cdot 5 \triangleright 2^3 \cdot 7 \triangleright \cdots \geq 2^3 \cdot 3 \triangleright 2^3 \cdot 5 \triangleright 2^3 \cdot 7 \triangleright \cdots \geq 2^3 \cdot 3 \triangleright 2^3 \cdot 5 \triangleright 2^3 \cdot 7 \triangleright \cdots \geq 2^3 \cdot 3 \triangleright 2^3 \cdot 2^3 \cdot 2 \triangleright 2^3 \cdot 2^3 \cdot$$

Now let $f: \mathbb{R} \to \mathbb{R}$ be continuous. If $k \triangleright \ell$ in the order above and if f has a periodic point of prime period k, then f has a periodic point of prime period ℓ .

Corollary: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and suppose f has finitely many periodic points. Then all these periods are powers of 2.

2.5 The Logistic Family

For every μ we consider the dynamical system $f_{\mu}: \mathbb{R} \to \mathbb{R}, f_{\mu}(x) = \mu x(1-x)$.

This is a "model in population dynamics". $0 \le x \le 1$, the function gives the percentage of max possible population.

For $0 < \mu < 1$, the only fixed point in [0,1] is f(0) = 0. For every $x \in [0,1]: f^n(x) \to 0$ as $n \to \infty$.

0 is an attracting fixed point since |f'(0)| < 1. 1 is eventually periodic.

 $\frac{\mu-1}{\mu}$ is a fixed point in (0,1) whenever $\mu > 1$.

Proposition: If $\mu > 1$ and $x \in [0,1]$, then $f_{\mu}^{n}(x) \to -\infty$ as $n \to \infty$.

Proposition: Let $1 < \mu < 3$:

- (a) f_{μ} has an attracting fixed point $p_{\mu} = \frac{\mu-1}{\mu}$ and repelling fixed point 0
- (b) if 0 < x < 1, then $\lim_{n \to \infty} f_{\mu}^{n}(x) = p_{\mu}$. That is, $W_{loc}^{s}(p_{\mu}) = (0, 1)$

For $\mu > 4$:

Theorem: There exists Cantor set $C \subset [0,1]$ such that if $x \in \mathbb{R} \setminus C$, then $|f^n(x)| \to \infty$ and C is f-invariant, i.e., $f(C) = C = f^{-1}(C)$ where $f^{-1}(C) = \{x \in \mathbb{R} : f(x) \in C\}$. $f|_C$ is chaotic

2.6 Bifurcation Theory

"Change of the behavior in family of dynamical systems" $f_{\lambda}: I \to I, \lambda$ in some interval

- 1. for λ fixed, f_{λ} is a C^{∞} map
- 2. f_{λ} depends smoothly on λ " $(\lambda, x) \mapsto f_{\lambda}(x)$ is at least C^1 -map"

Goal: Hyperbolic periodic orbits are preserved

Theorem: Let $(f_{\lambda})_{\lambda}$ be a smooth family of C^{∞} maps on an interval $I \subset \mathbb{R}$. Suppose λ_0 has the property that f_{λ_0} has a hyperbolic periodic point α_{λ_0} of prime period p (i.e. $|(f^p)'(\alpha_{\lambda_0})| \neq 1$. Then $\exists \epsilon > 0$ such that $\forall \lambda \in (\lambda_0 - \epsilon, \lambda_0 + \epsilon)$, f_{λ} has a periodic point α_{λ} with prime period p. Moreover, $\lambda \mapsto \alpha_{\lambda}$ is a C^1 -map. Moreover, by making ϵ smaller if necessary, we can assure that α_{λ} is hyperbolic for all $\lambda \in (\lambda_0 - \epsilon, \lambda_0 + \epsilon)$

Now consider the logistic family, $f_{\mu}(x) = \mu x(1-x)$. For $0 < \mu < 1$: one periodic point which is a fixed point. For $2 + \sqrt{5} < \mu$: $|Per_n(f)| = 2^n$ and Per(f) is dense in [0,1].

Saddle Node Bifurcation Theorem: Suppose

- 1. $f_{\lambda_0}(0) = 0$
- 2. $f'_{\lambda_0}(0) = 1$
- 3. $f_{\lambda}''(0) \neq 0$

4.
$$\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$$

Then \exists interval I about 0 and a smooth function $p: I \to \mathbb{R}$ with $p(0) = \lambda_0$ such that $f_{p(x)}(x) = x$ and p'(0) = 0, $p''(0) \neq 0$.

The signs in (3) and (4) determine the opening direction.

Period Doubling Bifurcation: Let $G(x,\lambda) = f_{\lambda}(x) - x$, $G(0,\lambda_0) = 0$. 0 is a fixed point of f_{λ_0} . $(x,\lambda) \mapsto f_{\lambda}(x) \in C^3$, $L(\lambda) = f'(0,\lambda)$. Assumption:

- (a) $f_{\lambda_0}(0) = -1$
- (b) $\frac{\partial L}{\partial \lambda}(\lambda_0) > 0$
- (c) $2\frac{\partial^3 f_{\lambda}}{\partial x^3}(\lambda_0, 0) + 3\left(\frac{\partial^2 G}{\partial x^2}(\lambda_0, 0)\right) > 0$

Then \exists non-empty intervals (λ_1, λ_0) and (λ_0, λ_2) such that,

- 1. if $\lambda \in (\lambda_0, \lambda_2)$ then f has a repelling fixed point and an attracting 2-cycle in $(-\epsilon, \epsilon)$.
- 2. if $\lambda \in (\lambda_1, \lambda_0)$, then f_{λ} has one attracting fixed point on $(-\epsilon, \epsilon)$.

3 Complex Dynamics

3.1 Introduction to Complex Analysis

 $\mathbb{C} = \{z = a + ib : a, b \in \mathbb{R}\}$ where $i^2 = -1$

Let $z = a_1 + ib_1, w = a_2 + ib_2$. Then addition and multiplication are defined as,

$$z + w = (a_1 + a_2) + i(b_1 + b_2)$$

$$z \cdot w = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1)$$

 $(\mathbb{C}, +, \cdot)$ is a field. \mathbb{C} is a \mathbb{C} -vector space

$$|z| = \sqrt{a^2 + b^2}$$

 $z = |z| \cdot e^{2\pi i \rho}$ for some $\rho \in [0, 1)$.

We can compactify \mathbb{C} by using the one-point compactification:

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

We say U is a neighborhood of ∞ if it is $\{\infty\}$ union a complement of a compact set in \mathbb{C}

 $\overline{\mathbb{C}}$ with this topology is called the Riemann sphere

Fact: $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is compact

Definition: Let $D \subset \mathbb{C}$ be open, $f: D \to \mathbb{C}$ be a function. Let $z_0 \in D$. We say f is complex differentiable at z_0 if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists and we call this limit $f'(z_0)$

Definition: We say f is holomorphic on D if f is complex differentiable at all $z_0 \in D$.

$$f(a+ib) = u(a,b) + iv(a,b).$$
 $u(a,b) = Re(f(z)), iv(a,b) = Im(f(z))$

Fact: f is holomorphic in D if and only if the partial derivatives of u and v exist and are continuous and satisfy

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{1}$$

 $f: D \to \mathbb{C}$ is analytic if for all $\forall z_0 \in D \exists r > 0$ such that,

$$f|_{B(z_0,r)} = \sum_{k=0}^{\infty} a_k (z-z_0)^k$$

where $a_k = \frac{f^{(k)}(z_0)}{k!}$. In particular, f analytic implies f is C^{∞} .

Fact: The following are equivalent:

- (a) f holomorphic on D
- (b) f analytic on D

Results:

- (a) Cauchy's Integral Formula: f holomorphic, γ rectifiable, curve simply connected $\Longrightarrow \int_{\gamma} f(z)dz = 0$
- (b) $f'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^2} dz$
- (c) Identity Theorem: Suppose $D \subset \mathbb{C}$ is open and connected, let $g, f : D \to \mathbb{C}$ be holomorphic. Suppose $\exists z_0 \in D$ and r > 0 such that $f|_{B(z_0,r)} = g|_{B(z_0,r)}$. Then f = g.

3.2 Introduction to Complex Dynamics

Normal families: $D \subset \mathbb{C}$ open: $\mathcal{F} \subset \{f : D \to \mathbb{C} : f \text{ hol }\} = Hol(D)$

 \mathcal{F} is normal if \forall sequences $(f_n)_n \subset \mathcal{F} \exists$ subsequence $(f_{n_k})_{k \in \mathbb{N}}$ which converges uniformly on compact subsets of D.

 $f_{n_k} \to f: D \to \mathbb{C}$ for all $K \subset D$ compact $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that if $n_k \geq N$ we have $|f_{n_k}(z) - f(z)| < \epsilon \ \forall z \in K \implies f$ is also holomorphic.

Convergence to ∞ is also possible.

Montel's theorem: Let $\mathcal{F} \subset Hol(D)$. Then,

- (a) \mathcal{F} is normal if $\{f(D): f \in \mathcal{F} \text{ is bounded } \}$
- (b) \mathcal{F} is normal if $|\mathbb{C} \setminus \{f(D) : f \in \mathcal{F}\}| \geq 2$ (This the Big Theorem of Montel)

3.3 Julia and Fatou Sets

Main idea: Split up \mathbb{C} into two sets J ad F such that $f|_J$ is chaotic and $f|_F$ is stable. We call J the Julia set of f and F the Fatou set of f.

Definition: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial with degree $d \geq 2$. Then we call $F_f = \{z \in \mathbb{C} : \{f^n : n \in \mathbb{N}\} \text{ is normal in a neighborhood of z} \}$ the Fatou set of f.

We call $\mathbb{C} \setminus F_f = J_f$ the Julia set f.

Lemma: F_f is open and J_f is closed.

f is holomorphic if one of the following holds:

- (a) f is complex differentiable at all $z \in D$
- (b) f has continuous partial derivatives and satisfies equation (1) from Section 3.1 above
- (c) f is analytic

Often D domain means D open and connected

Big Theorem of Montel: If $\exists \alpha, \beta \in \mathbb{C}$ such that $\bigcup_{f \in \mathcal{F}} f(D) \subset \mathbb{C} \setminus \{\alpha, \beta\}$, then \mathcal{F} is normal.

3.4 Polynomials

Proposition: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. Then $\exists r > 0$ such that if $z \in \mathbb{C}$ with |z| > r then $f^n(z) \to \infty$ as $n \to \infty$.

Claim: $W^s(\infty) \neq \mathbb{C}$, i.e. all periodic points cannot converge to ∞ and f(z) has d fixed points counted by multiplicity.

Definition: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. We call $K = K_f = \{z : \{f^n(z) : n \in \mathbb{N}\} \}$ is bounded the filled-in Julia set of f

Theorem: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. Then $J_f = \partial W^s(\infty) = \partial K_f$

Corollary: If $f: \mathbb{C} \to \mathbb{C}$ is a polynomial of degree $d \geq 2$, then $J_f \neq \emptyset$

Definition: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. If f(z) = z, then we say,

- z is attracting if |f'(z)| < 1
- z is repelling if |f'(z)| > 1
- z is parabolic if $f'(z) = e^{2\pi i q}$ for some $q \in \mathbb{Q}$
- elliptic if $f'(z) = e^{2\pi i \rho}$ for some $\rho \in [0,1) \setminus \mathbb{Q}$

Proposition: Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. Let $z \in Per_n(f)$. Then,

- if z is attracting, then $z \in F_f$
- if z is repelling, then $z \in J_f$

Theorem: J_f and F_f are completely invariant sets (that is, $J_f = f(J_f) = f^{-1}(J_f)$ and $F_f = f(F_f) = f^{-1}(F_f)$

Fatou component: We define $C_z(F_f)$ as the connected component of F_f which contains z and call it a Fatou component. The exact defintion for $C_z(F_f)$ is:

$$C_z(F_f) = \bigcup_{U \subset F_f \text{ connected, } z \in U} U$$

 $C_z(F_f)$ is the largest connected subset of F_f which contains z.

Lemma: If C is a Fatou component, then f(c) is also a Fatou component.

Possibilities for Fatou Set:

- (a) Periodic Fatou Component: $\exists n \in \mathbb{N} \text{ such that } f^n(C) = C$
- (b) Preperiodic Fatou Component: $\exists n \geq 1 \text{ such that } f^n(C) \text{ is periodic and } C, \ldots, f^{n-1}(C)$ is not periodic
- (c) Wandering Fatou Component: $f^i(C) \cap f^j(C) = \emptyset$ for all $i, j \in \mathbb{N}_0$ with $i \neq j$

Conjecture: There are no wandering Fatou components.

Theorem (Sullivan, 1983): Absence of wandering Fatou components for rational maps

Theorem: If C is a periodic Fatou component, then C is one and only of the following types:

- 1. C is immediate basin of attraction of an attracting fixed point
- 2. C is a parabolic domain
- 3. C is Siegel disk
- 4. C is a Herman ring

Proposition: Let z be a periodic point of period $p \in \mathbb{N}$ and suppose z is attracting (i.e. $|(f^p)'(z)| < 1$. Then $\exists r > 0$ such that if $w \in B(z,r)$ then $(f^p)^n(w) \to z$ as $n \to \infty$

Basin of attraction: The basion of attraction of the attracting fixed point z is given by $W^s(z) = \{w \in \mathbb{C} : f^n(w) \to z \text{ as } n \to \infty\} = \bigcup_{n \in \mathbb{N}} f^{-n}(B(z, r))$

We define $W^s_{\epsilon}(z)$ to be the connected component of $W^s(z)$ which contains z. We call $W^s_{\epsilon}(z)$ the immediate basin of attraction.

Claim:
$$f(W^s_{\epsilon}(z)) = W^s_{\epsilon}(z)$$

We can also define the basin of attraction of z by

$$W^{s}(z) = \{ w \in \mathbb{C} : |f^{n}(w) - f^{n}(z)| \to 0 \text{ as } n \to \infty \}$$

Theorem: f is hyperbolic if and only if all critical points of f are contained in the basins of attraction of attracting periodic cycles including ∞ . Moreover, every basin of attraction of an attracting periodic orbit contains at least one critical point.

Corollary: Let $f(z) = z^2 + c$, $c \in \mathbb{C}$. Then 0 is the only critical point of f. Therefore, if f has an attracting periodic orbit, then f is hyperbolic.

Fact: $J_f \neq 0$, uncountable, perfect (without isolated points), transitive, $J_f = \overline{\text{Rep Per}(f)}$

Lemma: Let $z \in \mathbb{C}$ be a repelling periodic point with period p. Then $z \in J_f$.

 $c \in \mathbb{C}$ is a critical point of f if f'(c) = 0. In that case, we call f(c) a critical value.

Theorem: Critical points

- (a) J_f is connected if and only if all critical points have bounded orbits
- (b) f is hyperbolic if and only if all critical points are contained in immediate basin of attraction (including infinity)

Corollary: If $f(z) = z^2 + c$, $c \in \mathbb{C}$ then f is hyperbolic if and only if either $0 \in W^s(\infty)$ or f has an attracting periodic orbit

3.5 Hausdorff Dimension

Let $K \subset \mathbb{C}$ be a set, $\delta > 0$. We say $\{D_i : i \in \mathbb{N}\}$ is a δ -cover of K if

- 1. D_i are balls of diameter less than or equal to δ
- 2. $K \subset \cup_i D_i$

Let $s \in [0, 2]$. We define,

$$H^s_{\delta}(K) = \inf\{\Sigma_{i \in \mathbb{N}}(\operatorname{diam}(D_i))^s : (D_i)_i is \delta - \text{cover of } K\}$$

Define $H^s(K) = \lim_{\delta \to 0} H^s_{\delta}(K) \in [0, \infty]$. $H^s(K)$ is called the s-dimensional outer Hausdorff measure of K.

If
$$s > \alpha$$
, then $H^s(K) = 0$. If $s < \alpha$, then $H^s(K) = \infty$

We call α the Hausdorff dimension of K (HD(K)).

We can define HD(K) in the following ways:

$$HD(K) = \inf\{s \ge 0 : H^s(K) = 0\}$$

 $HD(K) = \sup\{s \ge 0 : H^s(K) = \infty\}$

Basic facts of $H^s(K)$:

- 1. If $H^s(K) < \infty$, then $H^{s'}(K) = 0$ for all s' > s
- 2. If $H^s(K) = \infty$, then $H^{s'}(K) = \infty$ for all s' < s

- 3. $H^0(K)$ is the cardinality of K
- 4. $H^s(a+K)=H^s(K)$ for all $a\in\mathbb{R}^n$ and $H^s(tA)=t^sH^s(A)$ for all $t\geq 0$ where $a+K=\{a+x:x\in K\}$ and $tK=\{tx:x\in K\}$
- 5. If K has non-empty interior, then $H^n(K) = C(n) \cdot \text{vol}(K)$ where $C(n) = \frac{2^n}{\text{Vol}(B(0,1))}$
- 6. If s > n, then $H^{s}(K) = 0$

4 Symbolic Dynamics

4.1 Intro and Full Shift

Full shift: $\Sigma_{\mathcal{A}} = \{x = (x_k)_{k \in \mathbb{Z}} : x_k \in \mathcal{A}\}$. \mathcal{A} is called the alphabet of the full shift.

A special case of the full shift is Σ_d , where the alphabet is given by $\{0, 1, \ldots, d-1\}$

 $0 < \theta < 1$,

$$d(x,y) = d_{\theta}(x,y) = \begin{cases} 0 & x = y \\ \theta^{\min\{|k|: x_k \neq y\}} & x \neq y \end{cases}$$

Fact: (Σ_d, d_θ) compact metric space

Word: For all $n \in \mathbb{N}_0$ we call the n-tuple $w = w_1 \cdot w_n$, $w_i \in \mathcal{A}$ a word in $\Sigma_{\mathcal{A}}$ of length n. The empty word ϵ has length 0.

If $i \leq j \in \mathbb{Z}$, we write $x_{[i,j]} = x_i x_{i+1} \cdots x_j$. If i > j, then $x_{[i,j]}$ is the empty word ϵ . Note that $|x_{[i,j]}| = j - i + 1$.

Subword: Let $w = w_1 \cdots w_n$ be a word of length n and let $1 \le i \le j \le n$. Then $v = w_i w_{i+1} \cdots w_j$ is a subword of w.

If $w = w_1 \cdots w_n$ and $v = v_1 \cdots v_m$ are words of length n and m respectively, we define the concatenation of w and v as $wv = w_1 \cdots w_n v_1 \cdots v_m$ and hence |wv| = n + m.

For all $k \in \mathbb{N}$ we write $w^k = ww \cdots w$, $w^{\infty} = www \cdots$, $^{\infty}w = \cdots www$

Shift map: We define the (left) shift map on $\Sigma_{\mathcal{A}}$ denoted by σ as $(\sigma(x))_k = x_{k+1}$ for all $k \in \mathbb{Z}$.

Entropy of shift map: If $\sigma: \Sigma_b \to \Sigma_b$ is the shift map on the alphabet with b symbols, then $h_{top}(\sigma) = \log b$.

Entropy from transition matrix: If A is the transition matrix of a subshift of finite type, then $h_{top}(\sigma_A) = \log \zeta$ where ζ is the largest eigenvalue of A.

Proof of entropy of shift map: Now let $\Sigma_b = \{x = (x_k)_{k=-\infty}^{+\infty} : x_k \in \{0, \dots, b-1\}\}$ and define $\sigma(x)_k = x_{k+1}$. Fix $\theta \in (0, 1)$ and define d_θ as above. Define $\epsilon_k = \theta^k$. Then,

$$d(x,y) \ge \epsilon_k \iff x_i \ne y_i \text{ for some } i \in \{-k, \dots, k\}$$

 $d(\sigma(x), \sigma(y)) \ge \epsilon_k \iff x_i \ne y_i \text{ for some } i \in \{-k+1, \dots, k+1\}$

 $d(\sigma^{n-1}(x), \sigma^{n-1}(y)) \ge \epsilon_k \iff x_i \ne y_i \text{ for some } i \in \{-k+n-1, \dots, k+n+1\}$

Thus, we have that,

$$d_n(x,y) \ge \epsilon_k$$
 if $x_i \ne y_i$ for some $i \in \{-k, \dots, k+n-1\}$

The length of this segment $(\{-k, \ldots, k+n-1\})$ is 2k+n, so $|I_n(\epsilon_k)| = b^{2k+n}$. Thus,

$$\limsup_{n \to \infty} \log b^{2k+n} = \limsup_{n \to \infty} \left(\frac{2k}{n} \log b \right) + \limsup_{n \to \infty} \left(\frac{n}{n} \log b \right)$$
$$= \log b$$

Thus,

$$h_{top}(\sigma) = \lim_{\epsilon_b \to 0} \log b = \log b$$

Cylinder set $(\epsilon_k = \theta^{k+1}, k \in \mathbb{N}, \epsilon > 0)$:

$$B(x, \epsilon_k) = \{ y \in \Sigma : d(x, y) < \epsilon_k \}$$

$$= \{ y \in \Sigma : y_{-k} = x_{-k}, y_{-k+1} = x_{-k+1}, \cdots, y_k = x_k \}$$

$$= [x]_{-k}^k$$

$$= C_{-k,k}(x)$$

Fact: $C_{-k,k}$ is open and closed (clopen).

Corollary: $\Sigma_{\mathcal{A}}$ is totally disconnected.

Shift space: We say $X \subset \Sigma_{\mathcal{A}}$, $X \subset \Sigma_{\mathcal{A}}$ is a shift space if X is closed and σ invariant, in the case of the one-sided shift this means $\sigma(X) = X$. In the case of the two-sided shift space, this means $\sigma(X) = X = \sigma^{-1}(X)$.

We call $(X, \sigma|_X)$ a subshift.

4.2 One-Sided Shift Map

 $b \in \mathbb{N} \setminus \{1\}$

$$\Sigma^+ = \Sigma_b^+ = \{x = (x_k)_{k=0}^\infty : x_k \in \{0, \dots, b-1\}$$

Shift map: $\sigma((x_k)_{k=0}^{\infty}) = (x_{k+1})_{k=0}^{\infty}$. We are "cutting off the first element in the sequence" σ is b-to-one. That is, $|\sigma^{-1}(x)| = b$.

Let $0 < \theta < 1$. Then the distance metric (similarly to the full shift) is given by,

$$d(x,y) = d_{\theta}(x,y) = \begin{cases} 0 & x = y \\ \theta^{\min\{k: x_k \neq y\}} & x \neq y \end{cases}$$

Fact: σ is chaotic.

Definition: $X \subset \Sigma_b^+$ is a subshift if

- (a) $\sigma(x) \in X$ for all $x \in X$
- (b) X is closed

 $\mathcal{L}_n(X) = \{ \text{words of length n that occur in at least one } x \in X \}$

$$\mathcal{L}(X) = \cup_{n \in \mathbb{N}} \mathcal{L}_n(X)$$

" $\mathcal{L}(X)$ is called the language of X"

Definition: $\mathcal{L} \subset \mathcal{L}(\Sigma_b^+)$ is a language if

- (a) if $w \in d$ and v is a subword of w then $v \in \mathcal{L}$
- (b) if $w \in \mathcal{L}$ then $\exists a \in \{0, \dots, b-1\}$ such that $wa \in \mathcal{L}$

Theorem: If \mathcal{L} is a language, then \exists unique subshift X such that $\mathcal{L}(X) = \mathcal{L}$

Theorem: $h_{top}(\sigma|_X) = \lim_{n \to \infty} \frac{1}{n} \log |\mathcal{L}_n(X)|$

4.3 Languages

Let $X \subset \Sigma_{\mathcal{A}}$ be a shit space. We define $\mathcal{L}_n(X) = \{w : w \text{ is a word of length } n \text{ that occurs in some } x \in X\}$. Note that $\mathcal{L}_0(X) = \{\epsilon\}$.

We call,

$$\mathcal{L}(X) = \bigcup_{n \in \mathbb{N}_0} \mathcal{L}_n(X)$$

the language of the shift space X.

On the other hand, we say $\mathcal{L} \subset \mathcal{L}(\Sigma_d) = \{w_1 \cdots w_n : n \in \mathbb{N}_0, w_i \in \{1, \dots, d-1\}\}$ is a language if the following hold,

- 1. If $w \in \mathcal{L}$ and v is a subword of w, then $v \in \mathcal{L}$
- 2. For all $w \in \mathcal{L}$, $\exists i \in \{0, \dots, d-1\}$ such that $wi \in \mathcal{L}$
- 3. For all $w \in \mathcal{L}$, $\exists j \in \{0, \dots, d-1\}$ such that $jw \in \mathcal{L}$

The same notions hold for languages of one-sided shift spaces with the exception that (3) is not needed.

Proposition: Let $\mathcal{L} \subset \mathcal{L}(\Sigma_{\mathcal{A}})$ be a language. Then,

$$X_{\mathcal{L}} = \{ x \in \Sigma_{\mathcal{A}} : x_i \cdots x_j \in \mathcal{L} \text{ for all } i, j \in \mathbb{Z} \}$$

is a shift space whose language is \mathcal{L} .

Now fix $d \geq 2$. We define,

$$\Sigma_{cs} = \{X \subset \Sigma_{\mathcal{A}} : X \text{ shift space } \}$$

Here "cs" stands for closed and shift invariant.

We define the **lexicographic order** on $L = \mathcal{L}(\Sigma_{\mathcal{A}})$. Let $v, w \in L$:

- If $v = \epsilon$ and $w \neq \epsilon$, then v < w
- If |v| < |w|, then v < w
- If |v| = |w|, define $k = \min\{k : v_k \neq w_k\}$. We define v < w if $v_k < w_k$ and w < v if $w_k < v_k$.

This define the lexicographic order on L

Let X be a shift space. We call $\mathcal{F} = \mathcal{F}_X = \{w \in \mathcal{L}(\Sigma_A : w \notin \mathcal{L}(X))\}$ the set of forbidden words of X. In other words, $\mathcal{F}_X = \mathcal{L}(\Sigma_A) \setminus \mathcal{L}(X)$.

Let $\mathcal{F} \subset \mathcal{L}(\Sigma_{\mathcal{A}})$, we denote by $\overline{\mathcal{F}}$ the set of all words $w \in \mathcal{L}(\Sigma_{\mathcal{A}})$ such that w has a subword that belongs to \mathcal{F} . We say that $\mathcal{F} \subset \mathcal{L}(\Sigma_{\mathcal{A}})$ is a forbidden set if $L = \mathcal{L}(\Sigma_{\mathcal{A}}) \setminus \overline{\mathcal{F}}$ is a language. In this case, we write $X_{\mathcal{F}} = X_L$.

Definition: We say a shift space X is irreducible if for all $u, v \in \mathcal{L}(X)$ there exists $w \in \mathcal{L}(X)$ such that $uvw \in \mathcal{L}(X)$.

Definition: Suppose X is a shift space. We say X is a subshift of finite type if there exists a finite forbidden set \mathcal{L} such that $X = X_{\mathcal{L}}$

4.4 Higher Block Order

$$d \geq 2$$
 fixed, $\Sigma_d = \mathcal{A}^{\mathbb{Z}}$, $\mathcal{A} = \{0, \dots, d-1\}$

X shiftspace in Σ_d . Fix $N \geq 2$ and let B be the set of words of length N in X, i.e., $B = \mathcal{L}_N(X)$

$$B = \{0, \dots, d' - 1\}$$
 where $d' = |\mathcal{L}_N(X)|$. Define $B_N : X \to B^{\mathbb{Z}}$.

$$B_N(x)_k = x_k x_{k+1} \cdots x_{k+N-1}$$

We define $X^{[N]} = B_N(X) \implies B_N$ is surjective.

Proposition: $X^{[N]}$ is a shift space.

Remark: We shall see that (X, σ) and $(X^{[N]}, \sigma)$ are topologically conjugate.

We call $X^{[N]}$ a block code of length N.

Remark: If $u = u_1 \cdots u_N$ and $v = v_1 \cdots v_N$. We say u and v progressively overlap if $v_2 \cdots v_N = u_1 \cdots u_{N-2}$

Proposition: Let X be shift space and let $N \in \mathbb{N} \setminus \{1\}$. Then $X^{[N]}$ is a shift space.

Definition: A subshift of finite type is M-step if it can be described y a forbidden set of words all of which are of length M+1.

Proposition: If X is a subshift of finite type, then $\exists M \in \mathbb{N}_0$ such that X is M-step

Theorem: A subshift X is an M-step subshift of finite type if and only if whenever $uv, vw \in \mathcal{L}(X)$ and $|v| \geq M$ then $uvw \in \mathcal{L}(X)$

Theorem: A shift space X which is conjugate to a subshift of finite type is a subshift of finite type.

Corollary: Let X be an M-step subshift of finite type. Then X is conjugate to a 1-step subshift of finite type.

4.5 Shift Spaces via Graphs

Definition: A graph G is a finite set V = V(G) of vertices (also called states) together with a finite set of edge $\epsilon = \epsilon(G)$. Each edge $e \in \epsilon(G)$ starts at a vertex $i(e) \in V$ and ends at vertex $t(e) \in V$. There may be multiple edges that have the same starting vertex and terminal vertex. The set of edges is called a multiple set.

For a vertex $I \in V$ we denote by ϵ_I the set of all edges going out from I and by ϵ^I the set of all edges coming into I.

An edge e with i(e) = t(e) is called a self loop.

Definition: Let G be a graph with vertex set V and edge set ϵ . For vertices I and J in V, let $A_{I,J}$ be the number of edges with initial state I and terminal state J. Then the adjacency matrix of G is defined by $A = [A_{I,J}] \implies A = A(G)$

Let A be $r \times r$ matrix with non-negative integral values. Then the graph $G = G(A) = G_A$ is defined by the vertex set $V(G) = \{1, \ldots, r\}$ and $A_{I,J}$ distinct edges starting at I and ter-

minated at J. We clearly have $A = A(G_A)$

Definition: Let $G = (V, \epsilon)$ be a graph and A its adjacency matrix. The edge shift X_G or X_A is the shift space of the alphabet $\mathcal{A} = \epsilon$ defined by

$$X_G = X_A = \{ \xi = (\xi_i)_i \in \epsilon^{\mathbb{Z}} : t(\xi_i) = i(\xi_{i+1}) \}$$

The shift map on X_G or X_A is called the edge shift map and is denoted by σ_A or σ_G .

 X_G is given by the bi-infinite paths on the graph G.

Proposition: Let G be a graph with adjacency matrix A. Then the associated edge shift $X_G = X_A$ is a one-step subshift of finite type.

4.6 Sofic Shifts

Definition: A labeled graph \mathcal{G} is a pair (G, L) where G is a graph with edge set ϵ and $L: \epsilon \to \mathcal{A}$ is a function that assigns to each edge e a label L(e) in a finite alphabet \mathcal{A}

Suppose $\mathcal{G} = (V, G, L)$ is a labeled graph. If $\xi = \cdots e_{-2}e_{-1}e_0e_1e_1\cdots$ is a bi-infinite path in $G \iff \xi \in X_G$

We define $L_{\infty}(\xi) = \cdots L(e_{-2})L(e_{-1})L(e_0)L(e_1)L(e_2)\cdots$

We define $X_{\mathcal{G}} = \{x \in \mathcal{A}^{\mathbb{Z}} : x = L_{\infty}(\xi) \text{ for some } \xi \in X_G\}$

A subshift $\mathcal{A}^{\mathbb{Z}}$ is called a **sofic shift** if $X = X_{\mathcal{G}}$ for some labeled graph $\mathcal{G} = (G, L)$. \mathcal{G} is called a representation of X.

Corollary: Every subshift of finite type is sofic.

Theorem: A shift space $Y \subset \mathcal{A}^{\mathbb{Z}}$ is sofic if and only if it is a factor of some subshift of finite type X

Definition: We say a non-zero transition matrix A is irreducible if for all $i, j \in \{0, ..., d-1\}$, there exists $n \in \mathbb{N}$ such that $(A^n)_{i,j} > 0$

Fact: A is irreducible if and only if X_A is topologically transitive.

Theorem: Let $A \neq 0$ be a transition matrix and further assume that A is irreducible. Then A has a positive eigenvector v_A with positive eigenvalue λ_A . Further, λ_A is algebraically and geometrically simple. If μ is any other eigenvalue of A then $|\mu| \leq \lambda_A$. Any positive eigenvector is a positive multiple of v_A .

Corollary: Let A be a transition matrix of a topologically transitive subshift of finite type X_A . Then $h(X_A) = \log \lambda_A$, where λ_A is the eigenvalue of A described above.