ECE 606, Fall 2019, Assignment 1

Zhijie Wang, Student ID number: 20856733

zhijie.wang@uwaterloo.ca

September 8, 2019

- 1. (a) Suppose n is a natural number whose digits, in order of most- to least-significant, are $n_{k-1}n_{k-2}\ldots,n_0$, where each n_i is one of $0,\ldots,9$. If n is divisible by 3, then the sum of the digits of n, $S_n = \sum_{i=0}^{k-1} n_i$, is divisible by 3.
 - (b) *Proof.* Base case: k = 1. Then $n = n_0 = S_n$, i.e., n has only one digit. Then for n to be divisible by 3, n must be one of 3, 6 or 9. In each case $n = S_n$, so the S_n is also divisible by 3.

Step: We assume that given any n that has k = 1, ..., i-1 digits, for some $i \ge 2$, if n is divisible by 3, then so is S_n . And now we need to prove that given some n of i digits, if n is divisible by 3, then so is S_n . Here we use the notation ()₁₀ to indicate when we write a number in base-10, i.e., its digits from most- to least-significant.

We have $n = (n_{i-1}n_{i-2} \dots n_0)_{10}$. Therefore, $n = 10^{i-1}n_{i-1} + 10^{i-2}n_{i-2} + \dots + 10^0n_0 = 10^{i-1}n_{i-1} + (n_{i-2} \dots n_0)_{10}$. Here we appeal often to the **Claim 1**: given three natural numbers x, y, z such that x + y = z and any two are divisible by 3, then so is the third.

- Suppose $(n_{i-2} ldots n_0)_{10}$ is divisible by 3. Therefore, for n is divisible by 3, $10^{i-1}n_{i-1}$ must be divisible by 3 by Claim 1, then n_{i-1} must be divisible by 3, too. That is, $n_{i-1} = 3a$ for some natural number a. Then, $S_n = n_{i-1} + \sum_{j=0}^{i-2} n_j$. As $(n_{i-2} ldots n_0)_{10}$ is divisible by 3, by the induction assumption that $\sum_{j=0}^{i-2} n_j$ is divisible by 3. Therefore, by the Claim 1, $S_n = n_{i-1} + \sum_{j=0}^{i-2} n_j$ is divisible by 3.
- Suppose $(n_{i-2} \dots n_0)_{10}$ is not divisible by 3. Then, $(n_{i-2} \dots n_0)_{10} = 3a + b$, for some natural numbers a, and for b either 1 or 2. Here we do a case analysis of those two cases for b.
 - if b = 1, then $n_{i-1} = 3a' + 2$ for some natural numbers a', to ensure that n is divisible by 3. Therefore, we have:

$$S_n = 3a' + 2 + \sum_{j=0}^{i-2} n_j$$

- * if $n_0 \leq 7$, then, we have $(n_{i-2} \dots (n_0+2))_{10}$. Therefore, $2 + \sum_{j=0}^{i-2} n_j$ is divisible by 3 by the induction assumption because $(n_{i-2} \dots (n_0+2))_{10} = 3a+1+2=3(a+1)$. Now, 3a' and $(2 + \sum_{j=0}^{i-2} n_j)$ are both divisible by 3, S_n is divisible by 3 by Claim 1.
- * if $n_0 > 7$, then, we have $(n_{i-2} \dots (n_1+1)(n_0-8))_{10}$. Therefore, $2 + \sum_{j=0}^{i-2} n_j$ is divisible by 3 by the induction assumption because $(n_{i-2} \dots (n_1+1)(n_0-8))_{10} = 3a+1+10-8 = 3(a+1)$. Now, 3a' and $(2 + \sum_{j=0}^{i-2} n_j)$ are both divisible by 3, S_n is divisible by 3 by Claim 1.
- if b = 2, then $n_{i-1} = 3a' + 1$ for some natural numbers a', to ensure that n is divisible by 3. Therefore, we have:

$$S_n = 3a' + 1 + \sum_{i=0}^{i-2} n_i$$

- * if $n_0 \leq 8$, then, we have $(n_{i-2} \dots (n_0+1))_{10}$. Therefore, $1 + \sum_{j=0}^{i-2} n_j$ is divisible by 3 by the induction assumption because $(n_{i-2} \dots (n_0+1))_{10} = 3a+2+1 = 3(a+1)$. Now, 3a' and $(1 + \sum_{j=0}^{i-2} n_j)$ are both divisible by 3, S_n is divisible by 3 by Claim 1.
- * if $n_0 > 8$, then, we have $(n_{i-2} \dots (n_1+1)(n_0-9))_{10}$. Therefore, $1 + \sum_{j=0}^{i-2} n_j$ is divisible by 3 by the induction assumption because $(n_{i-2} \dots (n_1+1)(n_0-9))_{10} = 3a+2+10-9 = 3(a+1)$. Now, 3a' and $(1 + \sum_{j=0}^{i-2} n_j)$ are both divisible by 3, S_n is divisible by 3 by Claim 1.
- 2. It's TRUE about the statement: suppose $n, m \in \mathbb{N}$, and n pigeons fly in to m pigeon holes, there is a hole with at least $\lceil n/m \rceil$ pigeons.

Proof. Assume, for the purpose of contradiction, that every hole has a number of pigeons less than $\lceil n/m \rceil$. Then, let the number of pigeons in each hole denotes to $l_1, \ldots l_m$. Therefore, $\sum\limits_{i=1}^m l_i < m \lceil n/m \rceil$. Then, $\sum\limits_{i=1}^m l_i < m (n/m) = n$. This contradicts our assumption because $\sum\limits_{i=1}^m l_i = n$.

- 3. (a) Proof. Suppose $|\mathcal{U}|=n$. \mathcal{F} is the set of all possible functions with domain \mathcal{U} and codomain $\{0,1,\ldots,m-1\}$, so $|\mathcal{F}|=m^n$. Then, for each $i\in\mathcal{U}$, we have $m^{(n-1)}$ possible $f(i)=j,j\in\{0,1,\ldots,m-1\}$. So, when we pick the function f from \mathcal{F} uniformly, $Pr\{f(i)=j\}=1/m$. Therefore, f is a random function.
 - (b) a1p1.py