# Topic 4 - Firewalls and network security

Eric Casanovas

Universitat d'Andorra

20<sup>th</sup> April, 2022





- Introduction
- 2 Firewalls
- Network Access Control
- 4 Network Segmentation
- **6** VPN
- **6** Bonus



2 / 58

2 Firewalls

Introduction

•0

Network Access Control

Firewalls

- **6** VPN

#### Introduction

Introduction

- Network security is really important to protect against attackers
- It provides an "external security" to our machines
- Network security goes from WANs to LANs
- We will focus on LANs
- We will consider 5 main securizations:
  - Firewalls
  - Network Access Control
  - Network Segmentation
  - VPNs
  - IDS/IPS
- But we will cover more topics during this topic



- 2 Firewalls
- Network Access Control
- **6** VPN

#### What are firewalls I

- Is a system or group of systems used to control the access between two networks using pre-configured rules and filters
- Used to implement and enforce a security policy between networks
- Examines all packets and decides what to do with the given rules
- So, it provides perimetral security to our network



6 / 58

Network Segmentation

Firewalls





## Why are firewalls necessary

Firewalls

- To protect information from those who don't have access to
- Protect network from malicious users
- Protect from attacks as DDoS



8 / 58

## Types of firewall I

Introduction

- We can divide it in physical or software firewalls:
  - Hardware firewalls
  - Software firewalls
- But we can also divide it depending the layer:
  - Packet filtering (Netwrok Layer)
  - Stateful Inspection (Transport Layer)
  - Application Based Firewall (Application Layer)



## Types of firewall II

#### Hardware Firewalls:

- Physical device
- Usually placed between router and computer
- Protects the entire network But...
- Hard to configure and expensive
- CISCO, Fortinet, Netgear...



10 / 58

## Types of firewall III

Introduction

#### Software Firewalls:

- Software application
- Installed in the device that you wish to protect
- Protects a single computer
- Easier to configure and cheaper
- PfSense, OPNsense, Untangle firewall...

Network Segmentation

## Types of firewall IV

Firewalls

| Parameters                       | Software Firewall                                                                        | Hardware Firewall                                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Broad vs. Granular<br>Protection | Provides granular protection for all individual devices within the network               | Protects the network as a whole.                                                                                                 |
| Complex vs.<br>Simplicity        | Simpler to set up, change, and maintain                                                  | Requires skilled staff, and physical proximity to the data center.                                                               |
| High Cost vs. Low<br>Cost        | Cost little to deploy and maintain                                                       | High initial investment in hardware, and a continued investment in skilled staff.                                                |
| Inconvenient vs.<br>Convenience  | Software firewall is difficult to bypass, and has very little effect on user experience. | Hardware firewall is often bypassed by employees seeking faster, more reliable connection or access to certain restricted sites. |
| Expertise vs.<br>Usability       | Software firewall is easy to use and designed to be easily managed by anyone.            | Hardware firewall require advanced IT knowledge to install and manage                                                            |



Introduction

# Packet filtering:

- Simplest firewall (inbound and outbound rules)
- Filters packets based on specific criteria (IP addresses, subnets, ports...)
- Does not read the packet payload, just the header (reduces overhead)
- Vulnerable to IP spoofing (modification of IP header packets)
- Works at network layer
- Advantages:
  - Simple
- Disadvantages:
  - Can be compromised by many attacks as source spoofing



## Types of firewall VI

Introduction

### Stateful Inspection:

- Addition to packet inspection
- Validates packets for multi-packet flows
- Keeps track of connection state (TCP streams, active connections...)
- Advantages:
  - Adds state to packet filter and keeps track of ongoing connection
- Disadvantages:
  - Slower (increases overhead)



## Types of firewall VII

Introduction

### Application based firewall:

Allows data into/out of a process based on that process' type

Network Access Control

- Can act on single computer or at network layer
- Examines incoming app data and verifies that data is safe before passing it to the system.
- Advantages:
  - Filter bad data (malware)
  - Complete view of packet
- Disadvantages:
  - Slower as it inspects the whole packet payload



## Firewall Components

- DMZs
- Bastion Host
- IDS/IPS

Universitat d'Andorra

### DMZ I

Introduction

- Subnetwork that exposes an organization's external-facing services to a larger and untrusted network
- The term refers to an area between nation states in which military operation is not permitted (e.g. The good and the bad Korea)
- Adds an additional layer of security



Network Segmentation

Firewalls





Network Segmentation

Firewalls

#### DMZ III



Firewalls

#### Bastion Host

- A bastion host is a specialized computer that is deliberately exposed on a public network
- Typically placed in the DMZ

- Very prone to attack
- It is like the hall of a building, Outsiders may not be able to go upstairs but they can walk freely there
- Usually it is a proxy server or load balancer



Firewalls





## IDS/IPS I

Introduction

- IDS: Intrusion Detection System
  - Analyze and monitor network traffic for signs that indicate attackers are using a known cyberthreat to infiltrate or steal data from your network
- IPS: Intrusion Protection System
  - IPS proactively deny network traffic based on a security profile if that packet represents a known security threat.
- Both are highly related with firewalls as they also inspect packets
- Interesting Machine learning techniques



Firewalls





Universitat d'Andorra

## IDS/IPS III

Introduction

#### Advantages/Disadvanatges

- Response: An IDS is passive (you must take action after the alert), while an IPS is an active control system.
- Protection: IDS offers less help when under threat. An IPS tries to protect you actively.
- False positives: If an IDS gives you an alert about something that isn't troublesome -> no problem. However IPS shuts down traffic and many people could be impacted.

## IDS/IPS IV

Introduction

#### Examples:

- Snort.
  - Free open source network intrusion detection system created in 1998 and today owned by CISCO
- Suricata
  - open source-based intrusion detection system and intrusion prevention system. It was developed by the Open Information Security Foundation in 2010







### Advantages

- Increases security of the network (anti malware, attackers...)
- Isolation
- Traffic monitoring



#### Downsides

• They should be properly configured to avoid being bypassed by users or malicious actors

Network Access Control

Increses overhead of network



- 2 Firewalls
- Network Access Control

#### Network Access Control I

Firewalls

- Is the act of keeping unauthorized users and devices out of a private network
- Requires users to meet some requirements, for example:
  - Minimum security requirements (i. e. antivirus)
  - Authentication
  - System updates
  - Configurations

29 / 58

00000

## Network Access Control II





## Advantages

- Mitigation of zero-day attacks
- Identity and access management
- Authorization and Authentication of network connections

#### Downsides

Unauthorizxed accesses

Firewalls

- An attacker can have access to the network if he is able to get credentials
- Difficult to detect this attacks.



2 Firewalls

Network Access Control

4 Network Segmentation

**6** VPN

## Network Segmentation I

- Is a technique that divides a network into smaller, distinct sub-networks
- Each sub-networks has its own security controls and services
- Isolates each sub-network from the others
- VLANs



Network Segmentation

00000

Firewalls





## Advantages

- Reduced congestion
- Improved security
- Isolation of active attacks before they spread across the network



- Bottleneck between segments of network
- Reduces productivity



VPN

- 1 Introduction
- 2 Firewalls
- Network Access Control
- **6** VPN

#### VPN I

- Extends a private network across a public network
- Enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network
- Usually communications are encrypted, but it is not necessary
- The connections are established point-to-point
- Extremely useful in non-trusted networks to encrypt communications





### VPN III

- VPNs are build using tunnels and cryptography
  - Cryptography: for encryption and authentication
  - Tunneling:
    - The tunneling protocol encapsulates the data
    - Encapsulated packets are routed between tunnel endpoints



Network Access Control

#### Use Cases

- Encrypt communications
- Security on public wi-Fi
- Access to any content in any place
- Security when working remotely

43 / 58

VPN

- Improve security and privacy
- Connect to private networks from public networks

Network Access Control

Flexibility and scalability

- VPNs don't provide anonimity\*
- Lower bandwidth

Network Access Control

## **VPN** Protocols

- There are many VPN protocols today:
  - IPSec
  - IKEv2/IPSec
  - OpenVPN
  - Wireward
  - PPTP



#### IPSec I





#### IPSec II

Introduction

- According to wikipedia: Is a secure network protocol suite that authenticates and encrypts the packets of data to provide secure encrypted communication between two computers over an Internet Protocol network
- IPsec uses the following protocols to perform various functions:
  - IKE (Internet Key Exchange): IP peer authentication and negotiation of security parameters (generation of Security Associations)
  - AH (Authentication Header Protocol): Data authentication
  - ESP (Encapsulation Security Protocol): Authentication and confidenciality



48 / 58

#### IPSec III

- Two modes of operation:
  - Tunnel mode:
    - Typically for site-to-site VPNs
    - The entire IP packet is encrypted and authenticated
    - It is then encapsulated into a new IP packet with a new IP header
  - Transport mode
    - Typically for remote access
    - Only the payload of the IP packet is usually encrypted or authenticated
    - IP header is neither modified nor encrypted



#### IPSec IV



Universitat d'Andorra

• Further read here

- 1 Introduction
- 2 Firewalls
- Network Access Control
- **6** VPN
- **6** Bonus

#### NAT I

- Problem: Not enough IPv4 addresses 4,294,967,296 (2<sup>32</sup>)
- Solution: Private IPs -> Available address blocks:
  - A class: 10.0.0.0/8
  - B class range: 172.16.0.0/16-172.31.0.0/16
  - C class range: 192.168.0.0/16
- Problem2: private IPs cannot be used in internet



#### NAT II

- Mechanism that translates IP addresses.
- Allows to connect public and private networks and to save public IP addressing
- When using NAT, two address translations are performed:
  - One translation when the packet departs the NAT router
  - The reverse translation when the packet returns to the NAT router





### NAT IV

- However the limitation is the bottleneck in the NAT router.
- Also there is a limitation in the number of public IPv4
- Switch to IPv6 :)



# NAT V



# The END!

Universitat d'Andorra