

Simulation-Based Optimization using the Particle Swarm Optimization Algorithm

(Aprendiendo magia negra con Python, optimización estocástica y simuladores)

Juan Javaloyes & Francisco Navarro

- Introduction
- Mathematical Programming (optimization)

Contents

 Particle Swarm Optimization Algorithm

Standard PSO Algorithm

Implementation

Case Studies

Conventional Distillation Column Optimization

Divided Wall Column Optimization

Vapor Recompression Cycle Optimization

Optimization (background and motivation)

Case Studies

Optimization Problems

$$\min \quad f_0(x)$$

$$s.t$$
 $f_i(x) \leq b_i$ $i = 1, ..., m$.

← Objective Function

$$=1,\ldots,m$$
. \leftarrow Constraints

$$x \in \mathbb{R}^n$$

$$f_0(x): \mathbb{R}^n \to \mathbb{R}, f_i(x): \mathbb{R}^n \to \mathbb{R}$$

$$f_i(\alpha x_1 + \beta x_2) = \alpha f_i(x_1) + \beta f(x_2) \quad x_1, x_2 \in \mathbb{R}^n$$

← Linear Program

$$\alpha,\beta\in\mathbb{R}$$

$$f_i(\alpha x_1 + \beta x_2) \neq \alpha f_i(x_1) + \beta f(x_2) \quad x_1, x_2 \in \mathbb{R}^n$$
$$\alpha, \beta \in \mathbb{R}$$

← Nonlinear Program

$$f_i(\alpha x_1 + \beta x_2) \le \alpha f_i(x_1) + \beta f(x_2)$$
 $x_1, x_2 \in \mathbb{R}^n$

← Convex Optimization Problem

$$\alpha, \beta \in R \text{ with } \alpha + \beta = 1, \quad \alpha, \beta \ge 0$$

Application of Mathematical Programming in Chemical Engineering

Process Design

Process Synthesis/Integration

Production Planning

Process Scheduling

Supply Chain Management

Process Control

Parameter-tuning

Slide adapted from

Recent Developments in the Application of Mathematical Programming to Process Integration. Grossmann (2013)

Mixed-integer nonlinear programming

[Most general and most common optimization problem in Process System Engineering (PSE)]

min
$$f(x, y)$$

← Objective Function

s.t
$$h_i(x,y) = 0$$
 $i = 1,...,m$. \leftarrow Process equations

$$i = 1, ..., m$$

$$g_i(x,y) \leq 0$$

$$j=1,\ldots,q$$

 $g_i(x,y) \le 0$ j=1,...,q. Process specifications

$$x \in \mathbb{R}^n$$
, $y \in \{0,1\}^q$

$$f(x,y): R^n \to R, h_i(x,y): R^n \to R, g_j(x,y): R^n \to R$$

Juan Javaloyes & Francisco Navarro

Solvers

min
$$f(x,y)$$

 st $h_i(x,y) = 0$ $i = 1,..., m$.
 $g_j(x,y) \le 0$ $j = 1,..., q$.
 $x \in \mathbb{R}^n$, $y \in \{0,1\}^q$

Branch and Bound

Ravindran & Gupta 1985; Leyffer & Fletcher 2001 Branch & Cut: Stuubs & Mehrota 1999

Generalized Benders Decomposition Geofrion, 1972

Outer Approximation

Duran & Grossmann 1986; Yuan et al 1988; Fletcher & Leyffer 1994

LP/NLP Based Branch and Bound Quesada & Grossmann 1992

Extended Cutting Plane
Westerlund & Petersen 1995

Derivative Free Optimization Algorithms

Derivative Free Optimization Algorithms

"... if you can obtain clean derivatives (even if it requires considerable effort) and the functions defining your problem are smooth and free of noise you should not use derivative-free methods."

Introduction to Derivative-Free Optimization Andrew R. Conn, 2009

 Simulated Annealing, Genetic Algorithms etc are usually for the ignorant or the desperate or both.

Andrew R. Conn – IBM T. J. Watson Research Center MINLP Workshop 2014, Pittsburgh (link)

PSO Overview

The original particle swarm optimization algorithm

(Kennedy & Eberhart, 1995)

PSO is a robust stochastic method for solving global optimization problems, inspired by the flocking and schooling patterns of birds and fish

Each particle is represented by

- Its current position (x^i, y^i)
- Its current velocity
- Its personal best position p^{i}

PSO Overview

The original particle swarm optimization algorithm (Kennedy & Eberhart, 1995)

PSO is a robust stochastic method for

Initialize Swarm (random position and velocity vectors) Evaluate objective function for all the particles

 $f(x_k^i, y_k^i)$

PSO parameters

Update velocity for all particles

$$v_{k+1}^{i} = \omega_{k} v_{k}^{i} + c_{1} r_{1} \left(p_{k}^{i} - x_{k}^{i} \right) + c_{2} r_{2} \left(p_{k}^{global} - x_{k}^{i} \right)$$

: Inertia weight ω

r1,r2: uniform random vectors [0,1]

c1,c2: positive acceleration coefficients

(cognitive and social)

Yes

Each particle is represented by

- Its current position
- (x^i, y^i)

- Its current velocity
- Its personal best position

No

Stopping criteria satisfied?

Ouput Results

Chemical engineering in a nutshell:

Case Studies

Flowsheeting

Flowsheeting is a systemic description of material and energy streams in a process plant by means of computer simulation with the scope of designing a new plant or improving the performance of an existing plant. Flowsheeting can be used as aid to implement a plantwide control strategy, as well as to manage the plant operation.

Alexander C. Dimian (2003)

Main challenges in Simulation-Based Optimization

[Sequential-Modular approach]

- [# 1] Derivatives are not directly available for many SM flowsheeting programs.
- [# 2] Although derivatives can be calculated by numerical differentiation. They can be very expensive to compute and most of the process units introduce numerical noise.
- [# 3] As simulations become more complex, the robustness (in terms of convergence) decreases, and the simulations become prone to convergence failures.

Main challenges in Simulation-Based Optimization

[Sequential-Modular approach]

Contents

Consider the following numerical experiment

- Converge the Distillation Column using fix values of RR and BR and read heat load in reboiler
- 2. Randomly select new values for RR and BR and converge the column again.
- 3. Repeat step 1. The heat load should be the same that in step 1, but...

Main challenges in Simulation-Based Optimization

[Sequential-Modular approach]

Main challenges in Simulation-Based Optimization

[Sequential-Modular approach]

Contents Background PSO Implementation Case Studies

Economic Optimization of Distillation Columns

Conventional Distillation Column

Conventional Distillation Column

Conventional **Distillation Column** Objective Function

min
$$TAC = f(NT, DC, AC) + CSQR + CWQC$$

Overall constraints

$$F_i = D_i + B_i \\ D_i \geq \xi_i F_i \\ y_n^i \geq \tau_i \end{cases} i \in C \qquad \begin{tabular}{l} \begin{tabul$$

 $NT = \sum_{n} STG_n$ • Number of stages

$$\begin{split} DC &\geq g \Big(T_{_{n}}^{^{V}}, P_{_{n}}, VAP_{_{n}}\Big) & n \in TC \quad \text{\longleftarrow Column diamete} \\ AR &= QR \Big/ U^{^{R}} \left(T^{^{S}} - T_{_{1}}^{^{L}}\right) & \text{\longleftarrow Reboiler area} \end{split}$$

$$AC = QC/U^{\circ}\left(T_{_{N}}^{\scriptscriptstyle{V}}-T^{\scriptscriptstyle{ew}}
ight)$$

← Column mass balance

← Reboiler area

← Condenser area

Yeomans & Grossmann (2000)

Conventional Distillation Column

Conventional Distillation Column

Fixed tray Feed Tray $F_n^i + L_{n+1}^i + V_{n-1}^i - L_n^i - V_n^i = 0$ ← Component MB $F^i = FT x^i$ $L_n^i = LIQ_n x_n^i$ $V_n^i = VAP_n y_n^i$ $\sum_{i \in \mathcal{C}} \begin{pmatrix} F_n^i h F_i h + L_{n+1}^i h L_{n+1}^i + V_{n-1}^i h V_{n-1}^i \\ -L_n^i h L_n^i - V_n^i h V_n^i \end{pmatrix} = 0$ Energy Balance $hL_n^i = f(T_n^L)$ $hV_n^i = f(T_n^V)$ $hF_{i} = f(T_{n}^{L})$
$$\begin{split} \sum_{i \in \mathcal{O}} x_{\scriptscriptstyle n}^i &= 1 \qquad \sum_{i \in \mathcal{O}} y_{\scriptscriptstyle n}^i = 1 \\ f_{i,\scriptscriptstyle n}^L &= f\Big(T_{\scriptscriptstyle n}^L, P_{\scriptscriptstyle n}, x_{\scriptscriptstyle n}^{}\Big) \end{split}$$
 Summation of mole fractions ← Equilibrium equations $f_{i,n}^V = f\left(T_n^V, P_n, y_n\right)$ $f_{i,n}^L = f_{i,n}^V$ Lig-Vap equilibrium condition $T_{n}^{L}=T_{n}^{V}$ Yeomans & Grossmann (2000) $STG_{r}=1$

* Condenser

Conventional Distillation Column

$$\begin{array}{l} V_{n}^{i} - L_{n+1}^{i} - D_{i} = 0 \\ D_{i} = DIS \; y_{n}^{i} \\ D_{i} = R \; L_{n}^{i} \\ L_{n}^{i} = LIQ_{n} \; x_{n}^{i} \\ V_{n}^{i} = VAP_{n} \; y_{n}^{i} \\ \sum_{i \in C} \left(V_{n}^{i} \; h V_{n}^{i} - L_{n+1}^{i} \; h L_{n+1}^{i} - D_{i} \; h D_{i} \right) = QC \\ h L_{n}^{i} = f \left(T_{n}^{L} \right) \\ h V_{n}^{i} = f \left(T_{n}^{L} \right) \\ h D_{i} = f \left(T_{n}^{L} \right) \\ \sum_{i \in C} x_{n}^{i} = 1 \qquad \sum_{i \in C} y_{n}^{i} = 1 \\ f_{i,n}^{L} = f \left(T_{n}^{L}, P_{n}, x_{n} \right) \\ f_{i,n}^{V} = f \left(T_{n}^{V}, P_{n}, y_{n} \right) \\ f_{i,n}^{L} = f_{i,n}^{V} \\ T_{n}^{L} = T_{n}^{V} \\ STG = 1 \end{array} \qquad \text{Yeomans \& Grossmann (2000)}$$

Conventional Distillation Column

* Reboiler
$$\begin{split} & L_{n+1}^{i} - B_{i} - V_{n}^{i} = 0 \\ & B_{i} = BOT \ x_{n}^{i} \\ & L_{n}^{i} = LIQ_{n} \ x_{n}^{i} \\ & V_{n}^{i} = VAP_{n} \ y_{n}^{i} \\ & \sum_{i \in \mathcal{C}} \left(L_{n+1}^{i} \ h L_{n+1}^{i} - V_{n}^{i} \ h V_{n}^{i} - B_{i} \ h B_{i} \right) = QR \\ & h L_{n}^{i} = f \left(T_{n}^{L} \right) \\ & h V_{n}^{i} = f \left(T_{n}^{L} \right) \\ & h B_{i} = f \left(T_{n}^{L} \right) \\ & \sum_{i \in \mathcal{C}} x_{n}^{i} = 1 \qquad \sum_{i \in \mathcal{C}} y_{n}^{i} = 1 \\ & f_{i,n}^{L} = f \left(T_{n}^{L}, P_{n}, x_{n} \right) \\ & f_{i,n}^{V} = f \left(T_{n}^{V}, P_{n}, y_{n} \right) \\ & f_{i,n}^{L} = f_{i,n}^{V} \\ & T_{n}^{L} = T_{n}^{V} \\ & STG_{i} = 1 \end{split}$$

Conventional Distillation Column

Conventional Distillation Column

MESH equations for the intermediate trays excluding the equations related to the VLS

$$\begin{split} L_{n+1}^{i} + V_{n-1}^{i} - L_{n}^{i} - V_{n}^{i} &= 0 \\ LIQ_{n} &= \sum_{i \in C} L_{n}^{i} \\ VAP_{n} &= \sum_{i \in C} V_{n}^{i} \\ \sum_{i \in C} \begin{pmatrix} L_{n+1}^{i} h L_{n+1}^{i} + V_{n-1}^{i} h V_{n-1}^{i} \\ -L_{n}^{i} h L_{n}^{i} - V_{n}^{i} h V_{n}^{i} \end{pmatrix} = 0 \\ hL_{n}^{i} &= f \left(T_{n}^{L} \right) \\ hV_{n}^{i} &= f \left(T_{n}^{V} \right) \\ \sum_{i \in C} x_{n}^{i} &= 1 \qquad \sum_{i \in C} y_{n}^{i} = 1 \\ \sum_{i \in C} x_{n}^{i} &= 1 \end{split}$$
 Yeomans & Grossmann (2000)

Conventional Distillation Column

Constraints associated with the discret

choice of enforcing VLE in a tray or not

Conventional **Distillation Column**

$$\begin{bmatrix} Z_n \\ f_{i,n}^L = f\left(T_n^L, P_n, x_n\right) \\ f_{i,n}^V = f\left(T_n^V, P_n, y_n\right) \\ f_{i,n}^L = f_{i,n}^V \\ T_n^L = T_n^V \\ STG_n = 1 \\ L_n^i = LIQ_n x_i \\ V_n^i = VAP_n y_n^i \end{bmatrix} \overset{\neg Z_n}{X_n^i} \\ \begin{bmatrix} x_n^i = x_{n+1}^i \\ y_n^i = y_{n+1}^i \\ Y_n^i = V_{n+1}^i \\ T_n^L = T_{n+1}^L \\ T_n^V = T_{n+1}^V \\ f_{i,n}^L = 0 \\ f_{i,n}^V = 0 \end{bmatrix}$$

Yeomans & Grossmann (2000)

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} x_n^i &= x_{n+1}^i \ y_n^i &= y_{n+1}^i \ L_n^i &= L_{n+1}^i \ V_n^i &= V_{n+1}^i \ T_n^L &= T_{n+1}^L \ T_n^V &= T_{n+1}^V \ f_{i,n}^L &= 0 \ f_{i,n}^V &= 0 \ STG_n &= 0 \end{aligned}$$

 $n \in TM$

Contents

Background

PSO

Economic Optimization of Distillation Columns

Algorithm Flowchart

*/hyinterface.py

```
1# -*- coding: utf-8 -*-
 3 import os
 4 import win32com.client as win32
6 11 11 11
30 def hy_Dist_Col_Object(Problem, *varargin):
31
32
      hy filename
                             = Problem.hy filename
      hy best model filename = Problem.hy_best_model_filename
      hy visible
                             = Problem.hy visible
34
36 # 01 Full path to Aspen Hysys File & Best Solution Hysys File
37
      hyFilePath = os.path.abspath(hy filename)
38
      hy beswt solution FilePath = os.path.abspath(hy best model filename)
41 # 02 Initialize Aspen Hysys application
      print(' # Connecting to the Aspen Hysys App ...')
      HvApp = win32.Dispatch('HYSYS.Application')
43
45 # 03 Open Aspen Hysys File
      HyCase = HyApp.SimulationCases.Open(hyFilePath)
```


Contents Background PSO Implementation Case Studies

Economic Optimization of Distillation Columns

Contents Background PSO Implementation Case Studies

Economic Optimization of Distillation Columns

Economic Optimization of Divided Wall Columns

Divided Wall Column (DWC)

Permanent Trays

Conditional Trays

 $\min TAC = C_{op} + FC_{cap}$

Design Constraints

Fixed trays

MESH $_{Equations}$

Conditional trays

Equations

$$\begin{bmatrix} Y_n \\ VLE \end{bmatrix} \stackrel{\vee}{=} \begin{bmatrix} \neg Y_n \\ Not VLE \text{ (bypass)} \end{bmatrix}$$

Vapor Compression Cycle

Conventional Distillation Column Equipped with a Closed Vapor

Compression Cycle

Vapor Compression Cycle

Vapor Compression Cycle Superstructure

Vapor Compression Cycle

$$\min_{m_{WF}, r_0, r_i, \lambda_i, Y_i} TAC_{Comp \ 0} + \sum_{i}^{I} TAC_{CompBlock \ i}$$

s.t.
$$\left[W_{Comp\ 0}, W_{Comp\ i}, Q_{Cooler\ i}, Q_{VRC\ Condenser}, Q_{VRC\ Evaporator}\right] = f_{VRC}\left(m_{WF}, r_0, r_i, \lambda_i\right)$$

$$Q_{\text{Reb}} := g_{1 \, VRC} \left(m_{WF}, r_0, r_i, \lambda_i \right) \ge \underline{Q_{Reb}}$$

$$T_{\text{Reb}} := g_{2 VRC} \left(m_{WF}, r_0, r_i, \lambda_i \right) \ge T_{Reb}$$

$$T_{CompBlock\ I} := g_{3\ VRC}\left(m_{WF}, r_0, r_i, \lambda_i\right) \le \overline{T_{max}}$$

$$\begin{bmatrix} Yi \\ r^{lo} \leq r_i \leq r^{up} \\ \lambda^{lo} \leq \lambda_i \leq \lambda^{up} \end{bmatrix} \underline{\vee} \begin{bmatrix} \neg Yi \\ r_i = 1 \\ \lambda_i = 0 \end{bmatrix} \qquad \forall i \in I$$

Generalized Disjunctive Programming (GDP) Formulation

- Continuous Variables: m_{WF} , r_0 , r_i , λ_i
- Binary Variables: $y_i \forall i \in I, I = \{1, 2, 3\}$

$$Y_i \Rightarrow Y_{i-1} \quad \forall i \in I > 1$$

 $Y_i \in \{True, False\}$

Conclusions

- PSO Advantages/disadvantages over GA (as stochastic algorithms)
 - Simpler algorithm and concept
 - Easily programmable and tuneable¹
 - Faster in convergence²: less number of function of evaluations thus computationally more efficient (inertial term and particle's memory benefits)
 - Better for continuous variables (or parameters), whereas GA excels in combinatorial problems
- Take-home message
 - PSO can provide 'good enough' (optimal) solutions for a minimum effort and knowledge of your problem*

(*)Unfortunately, it won't scale for problems where the computational cost of the objective function is too high

[1] A locally convergent rotationally invariant particle swarm optimization algorithm (Bonyadi et al. 2014)

[2] A Comparison of Particle Swarm Optimization and the Genetic Algorithm (R. Hassan et al. 2005)

Simulation-Based Optimization using the Particle Swarm Optimization Algorithm

(Aprendiendo magia negra con Python, optimización estocástica y simuladores)

Juan Javaloyes & Francisco Navarro

