Definitions used in Brezis' Functional Analysis, Sobolev Spaces and Partial Differential Equations (first edition)

Gustaf Bjurstam bjurstam@kth.se

Preliminaries – not in the book

Definition 0.1. Let E be a vector space over \mathbb{R} . A functional is a function $f: A \to \mathbb{R}$ where A is some subspace of E.

1 The Hahn-Banach Theorems. Introduction to Conjugate Convex Functions

Definition 1.1. Let E be a vector space over \mathbb{R} . A *Minkowski functional* is a function $p: E \to \mathbb{R}$ satisfying

$$p(\lambda x) = \lambda p(x),$$
 $\forall x \in E \text{ and } \lambda > 0.$ (1)

$$p(x+y) \le p(x) + p(y), \qquad \forall x, y \in E.$$
 (2)

Definition 1.2. Let P be a set with a (partial) order relation \leq . A subset $Q \subseteq P$ is *totally ordered* if for any pair (a, b) in Q at least one of $a \leq b$ and $b \leq a$ holds.

Definition 1.3. Let P be a set with a partial order relation \leq , and let $Q \subset P$. We say that $c \in P$ is an *upper bound* for Q if $a \leq c$ for all $a \in Q$. We say that $m \in P$ is a maximal element of P if there is no element $x \in P \setminus \{m\}$ such that $m \leq x$. If every totally ordered subset Q of P has an upper bound, we call P inductive.

Definition 1.4. Let E be a real normed vector space. We denote by E^* the dual space of E, that is, the set of all continuous linear functionals on E. The dual norm is defined by

$$||f||_{E^*} = \sup_{\substack{x \in E \\ ||x|| \le 1}} f(x).$$

Given $f \in E^*$ and $x \in E$ we may write $\langle f, x \rangle$ instead of f(x); we say that \langle , \rangle is the scalar product for the duality E^*, E .

Definition 1.5. Let E be a normed vector space over \mathbb{R} . For every $x_0 \in E$, we set

$$F(x_0) = \left\{ f_0 \in E^* : ||f_0|| = ||x_0|| \text{ and } \langle f_0, x_0 \rangle = ||x_0||^2 \right\}.$$

The map $x_0 \mapsto F(x_0)$ is called the duality map of E into E^* .

Definition 1.6. Let E be a real vector space. An *affine hyperplane* is a subset H of E of the form $H = \{x \in E : f(x) = \alpha\}$ where f is a linear functional not necessarily in E^* , and $\alpha \in \mathbb{R}$ is a given constant. We write $H = [f = \alpha]$ and say that $f = \alpha$ is the equation of H.