Automatic Generation of Data-Oriented Exploits

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, Zhenkai Liang

National University of Singapore

USENIX Security Symposium 2015, Washington, D.C., USA

- State-of-the-art exploits
 - Code injection
 - heap spray / JIT spray

- State-of-the-art exploits
 - Code injection
 - heap spray / JIT spray

- Code reuse
 - ret2libc, ROP

- State-of-the-art exploits
 Defenses
 - Code injection
 - heap spray / JIT spray
- Data ExecutionPrevention

- Code reuse
 - ret2libc, ROP

- State-of-the-art exploits
 Defenses
 - Code injection
 - heap spray / JIT spray

- Code reuse
 - ret2libc, ROP

Data ExecutionPrevention

Control FlowIntegrity

- State-of-the-art exploits
 Defenses
 - Code injection
 - heap spray / JIT spray

- Code reuse
 - ret2libc, ROP

Data Execution

Prevention

Control FlowIntegrity

control-flow bending

CONTROL PLANE

DATA PLANE

Stat-of

Defenses

— Block control flow hijacking in principle

— Block control flow hijacking in principle

CONTROL PLANE

- State-of-the-art: Corrupt security-critical data
 - leave control flow as the same
 - Exhibit "significant" damage

- State-of-the-art: Corrupt security-critical data
 - leave control flow as the same
 - Exhibit "significant" damage

```
// set root privilege
seteuid(0);
.....
// set normal_user privilege
seteuid(pw->pw_uid);
// execute user's command
```

Wu-ftpd setuid operation*

^{*} Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-Control-Data Attacks Are Realistic Threats. In USENIX 2005.

- State-of-the-art: Corrupt security-critical data
 - leave control flow as the same
 - Exhibit "significant" damage

```
// set root privilege
seteuid(0);
.....
// set normal user privilege
seteuid(pw->pw_uid);
// execute user's command
```

Wu-ftpd setuid operation*

IE SafeMode Bypass⁺

^{*} Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-Control-Data Attacks Are Realistic Threats. In USENIX 2005.

⁺ Yang Yu. Write Once, Pwn Anywhere. In Black Hat USA 2014

- State-of-the-art: Corrupt security-critical data
 - leave control flow as the same
 - Exhibit "significant" damage

- New class of Data-Oriented Exploits
 - Reuses existing data flows in normal execution
 - Agnostic to CFI, DEP and often ASLR

- New class of Data-Oriented Exploits
 - Reuses existing data flows in normal execution
 - Agnostic to CFI, DEP and often ASLR

- New class of Data-Oriented Exploits
 - Reuses existing data flows in normal execution
 - Agnostic to CFI, DEP and often ASLR

- New class of Data-Oriented Exploits
 - Reuses existing data flows in normal execution
 - Agnostic to CFI, DEP and often ASLR
- Data Flow Stitching
 - Systematic search for data-oriented exploits
 - Works on binary directly

- New class of Data-Oriented Exploits
 - Reuses existing data flows in normal execution
 - Agnostic to CFI, DEP and often ASLR
- Data Flow Stitching
 - Systematic search for data-oriented exploits
 - Works on binary directly
- Results
 - Concrete exploits on real web/file servers
 - 19 exploits (16 new) from 8 vulnerabilities

```
int server() {
     char *userInput, *fileName;
     char *privKey, *result, output[BUFSIZE];
     char fullPath[BUFSIZE]="/path/to/root/";
4
 5
6
     privKey=loadPrivKey("/path/to/privKey");
    GetConnection(privKey, ...);
8
     userInput = read socket();
9
     if (checkInput(userInput)) {
      fileName = getFileName(userInput);
10
11
      strcat(fullPath, fileName);
      result = retrieve(fullPath);
12
13
      sprintf(output, "%s:%s", fileName, result);
      sendOut(output);
14
15
16
```

PsVNXi...

privKev

```
int server() {
     char *userInput, *fileName;
     char *privKey, *result, output[BUFSIZE];
                                                   PsVNXi...
     char fullPath[BUFSIZE]="/path/to/root/";
 4
 5
 6
     privKey=loadPrivKey("/path/to/privKey");
     GetConnection(privKey, ...);
 8
     userInput = read socket();
 9
     if (checkInput(userInput)) {
      fileName = getFileName(userInput);
10
11
      strcat(fullPath, fileName);
      result = retrieve(fullPath);
12
      sprintf(output, "%s:%s", fileName, result);
13
      sendOut(output);
14
15
16
```

```
int server() {
    char *userInput, *fileName;
    char *privKey, *result, output[BUFSIZE];
    char fullPath[BUFSIZE]="/path/to/root/";
6
    privKey=loadPrivKey("/path/to/privKey");
    GetConnection(privKey, ...);
    userInput = read socket();
9
    if (checkInput(userInput)) {
      fileName = getFileName(userInput);
10
      strcat(fullPath, fileName);
11
      result = retrieve(fullPath);
13
      sprintf(output, "%s:%s", fileName, result);
14
      sendOut(output);
15
16
```



```
int server() {
    char *userInput, *fileName
    char *privKey, *result, output[BUFSIZE];
    char fullPath[BUFSIZE]="/path/to/root/";
6
    privKey=loadPrivKey("/path/to/privKey");
    GetConnection(privKey, ...);
    userInput = read socket();
9
    if (checkInput(userInput)) {
      fileName = getFileName(userInput);
10
      strcat(fullPath, fileName);
11
      result = retrieve(fullPath);
13
      sprintf(output, "%s:%s", fileName, result);
14
      sendOut(output);
15
16
```



```
int server() {
    char *userInput, (*fileName)
     char *privKey, *result, output[BUFSIZE];
     char fullPath[BUFSIZE]="/path/to/root/";
 6
     privKey=loadPrivKey("/path/to/privKey");
    GetConnection(privKey, ...);
     userInput = read socket();
 9
     if (checkInput(userInput)) {
      fileName = getFileName(userInput);
10
      strcat(fullPath, fileName);
11
      result = retrieve(fullPath);
13
      sprintf(output, "%s:%s", fileName, result);
14
      sendOut(output);
15
16
```


Data-Flow Stitching

- Manipulate data flows for exploits
- Enables systematic way to search for exploits
 - Input: binary & error-exhibiting input
 - Output: data-oriented exploits
- Goal:
 - Information Leakage (e.g., password, keys)
 - Privilege Escalation (e.g., setuid, access priv. files)
- Constraints:
 - Keep the control-flow same
 Prevent abrupt termination
 - No knowledge of randomized values (CFI tags, ASLR addresses)

Challenges

- Time-consuming search
 - The search-space: Cartesian product | SrcFlow | X | TgtFlow |
 - Heavy analysis for each candidate

- Our solution:
 - Filter out candidates with memory error influence
 - Use an SMT solver to verify candidates

```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```

Corrupt data vertex

2D-DFG

```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
 5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```



```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
 5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```



```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
 5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```



```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
 5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```



```
1 struct passwd {uid_t pw_uid; ... } pw;
 3 int uid = getuid();
4 pw->pw uid = uid;
 5 printf(...); //format string error
7 seteuid(0); //set root uid
9 seteuid(pw->pw uid); //set normal uid
10 ...
```


- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Corrupt pointers to connect data flows
 - Pointers decide data movement direction

- Pointer Stitch corrupts pointer vp
 - *(vp) ---> target / source vertex

Pointer Stitch corrupts pointer vp

More Ways of Stitches

• 2-level stitch corrupts pointer *vp*₂

```
- *(*(vp_2)) ---> *(vp) ---> target / source vertex
```

More Ways of Stitches

- 2-level stitch corrupts pointer vp₂
 - $*(*(vp_2)) ---> *(vp) ---> target / source vertex$
- N-level stitch corrupts pointer vp_N
 - $-*(*(...(vp_N)...)) ---> target / source vertex$
 - Recursively invoke pointer stitch N times
 - Stitch Alignment
 - $vp_N ---> vp_N'$ so that *(*(...(vp_N')...)) is the source / target vertex

More Ways of Stitches

- 2-level stitch corrupts pointer vp₂
 ((vp₂)) ---> *(vp) ---> target / source vertex
- N-level stitch corrupts pointer vp_N
 - $-*(*(...(vp_N)...)) ---> target / source vertex$
 - Recursively invoke pointer stitch N times
 - Stitch Alignment
 - $vp_N ---> vp_N'$ so that *(*(...(vp_N')...)) is the source / target vertex
- Multi-flow stitching
 - Intermediate data flows
 - Source flow -> flow 1 -> flow 2 -> ... -> Target flow

```
//attackers control %eax
mov (%esi,%eax,4), %ebx
mov %ecx, (%edi,%eax,4)
```

```
//attackers control %eax
mov (%esi,%eax,4), %ebx
mov %ecx, (%edi,%eax,4)
```

- Complete reuse:
 - randomized address in memory

```
//attacker controls %eax
mov (%esi, %eax, 4), %ebx
mov %ecx, (%ebx)
mov (%ebx), %ecx
```

```
//attackers control %eax
mov (%esi,%eax,4), %ebx
mov %ecx, (%edi,%eax,4)
```

- Complete reuse:
 - randomized address in memory

```
//attacker controls %eax
mov (%esi, %eax, 4), %ebx
mov %ecx, (%ebx)
mov (%ebx), %ecx
```



```
//attackers control %eax
mov (%esi,%eax,4), %ebx
mov %ecx, (%edi,%eax,4)
```

- Complete reuse:
 - randomized address in memory

```
//attacker controls %eax
mov (%esi, %eax, 4), %ebx
mov %ecx, (%ebx)
mov (%ebx), %ecx
```



```
//attackers control %eax
mov (%esi,%eax,4), %ebx
mov %ecx, (%edi,%eax,4)
```

- Complete reuse:
 - randomized address in memory

```
//attacker controls %eax
mov (%esi, %eax, 4), %ebx
mov %ecx, (%ebx)
mov (%ebx), %ecx
```


Stitch with ASLR

- Target deterministic addresses
 - non-PIE binaries on Linux

Stitch with ASLR

- Target deterministic addresses
 - non-PIE binaries on Linux

msvcr71.dll, hxds.dll on Windows

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR
CVE-2013-2028	nginx	Stack bof	L ₀ : private key	
			M ₀ : http root dir	
CVE-2012-0809	sudo	Format string	M ₀ : user id	\checkmark
		Format string	L ₀ : admin's passwd	\checkmark
			M ₀ : admin;s passwd	✓
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	\checkmark
			M ₂ : anon.'s root dir	\checkmark
			M ₃ : CGI root dir	\checkmark
bugtraq ID:	orzhttpd	Format string	L ₀ : randomized addr	\checkmark
41956	orznitpu		M ₀ : http root dir	\checkmark
CVE-2002-1496 *	nullhttnd	Heap overflow	M ₀ : http root dir	
CVL-2002-1490	Παιιπιτρα		M ₁ : CGI root dir	
CVE-2001-0820 *	ghttpd	Stack bof	M ₀ : CGI root dir	
CVE-2001-0144 *	SSHD	integer overflow	L ₀ : root passwd hash	
			M ₀ : user id	
			M ₁ : authenticated flag	
CVE-2000-0573 *	wu-ftpd	Format string	L ₀ : env variables	
			M ₀ : user id (single-edge)	\checkmark
			M ₁ : user id (pointer stitch)	\checkmark

^{*} CVEs discussed in Shuo Chen's work [1]

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR
CVE-2013-2028	nginx	Stack bof	L ₀ : private key	
CVL-2013-2020			M ₀ : http root dir	
CVE-2012-0809	sudo	Format string	M ₀ : user id	\checkmark
		Format string	L ₀ : admin's passwd	\checkmark
			M ₀ : admin;s passwd	\checkmark
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	\checkmark
			M ₂ : anon.'s root dir	\checkmark
			M ₃ : CGI root dir	\checkmark
bugtraq ID:	orzhttnd	Format string	L ₀ : randomized addr	\checkmark
41956	Orznitha		M ₀ : http root dir	\checkmark
CVE-2002-1496 *	nullhttpd	Heap overflow	M ₀ : http root dir	
CVL-2002-1490	Пиппири		M ₁ : CGI root dir	
CVE-2001-0820 *	ghttpd	Stack bof	M ₀ : CGI root dir	
CVE-2001-0144 *	SSHD	integer overflow	L ₀ : root passwd hash	
			M ₀ : user id	
			M ₁ : authenticated flag	
CVE-2000-0573 *	wu-ftpd	Format string	L ₀ : env variables	
			M ₀ : user id (single-edge)	\checkmark
			M ₁ : user id (pointer stitch)	\checkmark

• 19 exploits

^{*} CVEs discussed in Shuo Chen's work [1]

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR
CVE-2013-2028	nginx	Stack bof	L ₀ : private key	
CVL 2013 2020	IIBIIIX	Stack bol	M ₀ : http root dir	
CVE-2012-0809	sudo	Format string	M _o : user id	\checkmark
		Format string	L ₀ : admin's passwd	\checkmark
			M ₀ : admin;s passwd	✓
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	\checkmark
			M ₂ : anon.'s root dir	\checkmark
			M₃: CGI root dir	\checkmark
bugtraq ID:	orzhttnd	Format string	L ₀ : randomized addr	\checkmark
41956	Orznitipu	roilliat Strillg	M ₀ : http root dir	\checkmark
CVE-2002-1496 *	nullhttpd	Heap overflow	M ₀ : http root dir	
CVL-2002-1490	Παππττρα		M ₁ : CGI root dir	
CVE-2001-0820 *	ghttpd	Stack bof	M₀: CGI root dir	
CVE-2001-0144 *	SSHD	integer overflow	L ₀ : root passwd hash	
			M ₀ : user id	
			M₁: authenticated flag	
CVE-2000-0573 *	wu-ftpd	Format string	L ₀ : env variables	
			M ₀ : user id (single-edge)	\checkmark
			M ₁ : user id (pointer stitch)	\checkmark

• 19 exploits

^{*} CVEs discussed in Shuo Chen's work [1]

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR	
CVE-2013-2028	nginx	Stack bof	L ₀ : private key M ₀ : http root dir		
CVE-2012-0809	sudo	Format string	M _o : user id	\checkmark	İ
		Format string	L ₀ : admin's passwd	✓	
			M ₀ : admin;s passwd	✓	
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	✓	
			M ₂ : anon.'s root dir	\checkmark	
			M₃: CGI root dir	\checkmark	
bugtraq ID:	orzhttnd	Format string	L ₀ : randomized addr	\checkmark	
41956	отептера		M ₀ : http root dir	\checkmark	
CVE-2002-1496 *	nullhttpd	d Heap overflow	M ₀ : http root dir		ı
		·	M ₁ : CGI root dir		
CVE-2001-0820 *	ghttpd	Stack bof	M₀: CGI root dir		
CVE-2001-0144 *	SSHD	overflow	L ₀ : root passwd hash		
			M ₀ : user id		
			M₁: authenticated flag		
CVE-2000-0573 *	wu-ftpd Form		L ₀ : env variables		
		Format string	M ₀ : user id (single-edge)	√	
			M ₁ : user id (pointer stitch)	✓	

- 19 exploits
- 16 prev. unknown

^{*} CVEs discussed in Shuo Chen's work [1]

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR
CVE-2013-2028	nginx	Stack bof	L ₀ : private key	
CVL 2013 2020	Hightix	Stack Sol	M ₀ : http root dir	
CVE-2012-0809	sudo	Format string	M₀: user id	\checkmark
		Format string	L ₀ : admin's passwd	\checkmark
			M ₀ : admin;s passwd	\checkmark
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	\checkmark
			M ₂ : anon.'s root dir	\checkmark
			M₃: CGI root dir	\checkmark
bugtraq ID:	orzhttpd	Format string	L ₀ : randomized addr	\checkmark
41956	Orznitha	i Orinat String	M ₀ : http root dir	\checkmark
CVE-2002-1496 *	nullhttnd	Heap overflow	M _o : http root dir	
CVE-2002-1490	пиштири	пеар overnow	M ₁ : CGI root dir	
CVE-2001-0820 *	ghttpd	Stack bof	M₀: CGI root dir	
	SSHD	integer overflow	L ₀ : root passwd hash	
CVE-2001-0144 *			M ₀ : user id	
			M₁: authenticated flag	
CVE-2000-0573 *	wu-ftpd	Format string	L ₀ : env variables	
			M ₀ : user id (single-edge)	\checkmark
			M ₁ : user id (pointer stitch)	\checkmark

- 19 exploits
- 16 prev. unknown
- 7 advanced stitch
 - 2-level stitch

^{*} CVEs discussed in Shuo Chen's work [1]

ID	Vul. bin	Vulnerability	Data-Oriented Exploits	ASLR
CVE-2013-2028	nginx	Stack bof	L ₀ : private key	
CVL 2013 2020		Stack Sol	M _o : http root dir	
CVE-2012-0809	sudo	Format string	M₀: user id	\checkmark
		Format string	L ₀ : admin's passwd	✓
			M ₀ : admin;s passwd	\checkmark
CVE-2009-4769	httpdx		M ₁ : anon.'s permission	\checkmark
			M ₂ : anon.'s root dir	\checkmark
			M ₃ : CGI root dir	\checkmark
bugtraq ID:	orzhttnd	Format string	L ₀ : randomized addr	\checkmark
41956	Orznitipu	i oi illat strillg	M ₀ : http root dir	\checkmark
CVE-2002-1496 *	nullhttnd	Heap overflow	M ₀ : http root dir	
CVL-2002-1490	Παππιτρα		M ₁ : CGI root dir	
CVE-2001-0820 *	ghttpd	Stack bof	M _o : CGI root dir	
	SSHD	overflow	L ₀ : root passwd hash	
CVE-2001-0144 *			M ₀ : user id	
			M₁: authenticated flag	
CVE-2000-0573 *	wu-ftpd	Format string	L ₀ : env variables	
			M ₀ : user id (single-edge)	\checkmark
			M ₁ : user id (pointer stitch)	\checkmark

- 19 exploits
- 16 prev. unknown
- 7 advanced stitch
 - 2-level stitch
- 10 bypass ASLR
 - 8 fixed addresses
 - 2 address reuse

^{*} CVEs discussed in Shuo Chen's work [1]

Evaluation --- Performance

- 6.5 min/exploit
- Slice takes long
 - faster version is available (binary version)

Case Study – 2-Level Stitch

• *ghttpd* web server: stack buffer overflow

```
Assembly of log(...) Assembly of line 3:
   //serveconnection():
   char *ptr; //URL pointer
                                push %ebp
   //esi is allocated for it
                                push %esi
                                                     push %esi
1: if(strstr(ptr,"/.."))
                                // stack overflow
      reject the request;
                                pop %esi
                                                     call <exec@plt>
2: log(...);
                                pop %ebp
3: exec(ptr);
                                ret
```

- Previous exploit^[1]
 - Corrupt pointer ptr: *(ptr) -> url

Case Study – 2-Level Stitch

• *ghttpd* web server: stack buffer overflow

```
//serveconnection():
                              Assembly of log(...) Assembly of line 3:
   char *ptr; //URL pointer
                                push %ebp
                                                     mov -0xc(\%ebp), %esi
   //esi is allocated for it
                               push %esi
                                                     push %esi
1: if(strstr(ptr,"/.."))
                               // stack overflow
     reject the request;
                               pop %esi
                                                     call <exec@plt>
2: log(...);
                                pop %ebp
3: exec(ptr);
                                ret
```

- Previous exploit^[1] does not work any more
 - Corrupt pointer ptr: *(ptr) -> url

Case Study – 2-Level Stitch

ghttpd web server: stack buffer overflow

```
Assembly of log(...) Assembly of line 3:
   //serveconnection():
   char *ptr; //URL pointer
                                push %ebp
                                                     mov -0xc(\%ebp), %esi
   //esi is allocated for it
                               push %esi
                                                     push %esi
1: if(strstr(ptr,"/.."))
                               // stack overflow
     reject the request;
                               pop %esi
                                                     call <exec@plt>
2: log(...);
                                pop %ebp
3: exec(ptr);
                                ret
```

- Previous exploit^[1] does not work any more
 - Corrupt pointer ptr: *(ptr) -> url
- We build a 2-level stitch
 - Corrupt pointer saved ebp: *(*(saved ebp)) -> *ptr -> url

- *SSHD* hashed key info leak
- getspnam() in glibc gets hashed key (heap copy)

SSHD copies hashed key to local stack (stack copy)

- *SSHD* hashed key info leak
- getspnam() in glibc gets hashed key (heap copy)

SSHD copies hashed key to local stack (stack copy)

Overwritten by later usage

- SSHD hashed key info leak
- getspnam() in glibc gets hashed key (heap copy)

- endspent() in glibc releases memory, not clears it!
- Still alive for stitching
- SSHD copies hashed key to local stack (stack copy)

Overwritten by later usage

- SSHD hashed key info leak
- getspnam() in glibc gets hashed key (heap copy)

- endspent() in glibc releases memory, not clears it!
- Still alive for stitching
- SSHD copies hashed key to local stack (stack copy)

- Overwritten by later usage
- Challenging to make lifespan correct!

Conclusion

- Rich Category: Data-Oriented Exploits
 - Single-edge stitch, Pointer stitch
 - N-level stitch, Multi-flow stitch

- Data Flow Stitching
 - Systematic way to generate data-oriented exploits
 - Agnostic to CFI, DEP and often ASLR

Automatic construction is feasible

Thanks!

Hong Hu

huhong@comp.nus.edu.sg

http://www.comp.nus.edu.sg/~huhong/