A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Sieci wymiany danych
Data ćwiczenia:	2019-04-03
Czas ćwiczenia:	09:30 - 11:00
Zespół realizujący ćwiczenie:	 Sonia Wittek Anna Gęca Barbara Kaczorowska Małgorzata Śliwińska

B. Sformułowanie problemu

Celem zajęć było zamodelowanie w MATLABIE Simulinku poniższego układu równań opisującego zespół silnik elektryczny – samochód.

$$\begin{split} &(L_a + L_{field}) \frac{di}{dt} &= u - (R_a + R_f) i - L_{af} i \omega \\ &\left(J + m \frac{r^2}{G^2}\right) \frac{d\omega}{dt} &= L_{af} i^2 - B\omega - \frac{r}{G} \left(\mu_{rr} mg \operatorname{sign}(v) + \frac{1}{2} \rho A C_d v^2 + mg \operatorname{sin}(\phi)\right) \\ &T_L = F \frac{r}{G} \qquad F = \mu_{rr} mg \operatorname{sign}(v) + \frac{1}{2} \rho A C_d v^2 + mg \operatorname{sin}(\phi) + m \frac{dv}{dt} \end{split}$$

gdzie T₁ – moment jaki ma zostać wyprodukowany przez silnik

Model samochodu był podsystemem o dwóch wejściach: u – napięcie sterowania [V], ϕ - kąt wzniosu drogi [rad] i czterech wyjściach: i – prąd silnika [A], ω – prędkość obrotowa silnika [rad/s], v – prędkość postępowa samochodu [m/s], T_L - moment obciążenia [Nm]. Dodatkowo należało dodać do układu regulator PID i dobrać jego parametry tak, aby stabilizował prędkość v na zadanym poziomie przy zmiennym kącie nachylenia drogi.

C. Sposób rozwiązania problemu

Zamodelowano powyższy układ (najpierw silnik, a potem cały model) w programie MATLAB Simulink. Następnie dobrano parametry regulatora PID za pomocą funkcji autotuningu. W tym celu dokonano linearyzacji układu. Czas linearyzacji określono na podstawie wstępnej symulacji działania układu (wykres poniżej).

D. Wyniki

Dzięki odpowiednim dopasowaniu parametrów regulatora PID poprzez tuning oraz linearyzacji obiektu uzyskano wykres zmiennych obiektu regulacji, na którym widać, że prędkość v (żółta linia, na wykresie zakryta przez fioletowa) nie ma charakterystyki oscylacyjnej, a jej uchyb ustalony jest równy 0.

E. Wnioski

W trakcie zajęć udało nam się zamodelować wymagany układ w Simulinku oraz przeprowadzić odpowiednie charakterystyki. Dzięki ćwiczeniu pogłębiłyśmy swoją znajomość środowiska MATLAB oraz nauczyłyśmy się dobierać parametry regulatora PID za pomocą tego narzędzia. Ponadto przećwiczyłyśmy swoją wcześniej nabytą wiedzę w zakresie modelowania układów w Simulinku. Zapoznałyśmy się także z równaniami opisującymi zespół silnik elektryczny - samochód oraz charakterystykami opisującymi ten zespół.