Задача 1. Пусть две пересекающиеся окружности заданы обычными квадратичными уравнениями f(x,y)=0 и g(x,y)=0. Докажите, что **a)** уравнение прямой, проходящей через точки пересечения этих окружностей, можно записать в виде $\alpha f(x,y)-\beta g(x,y)=0$, подобрав числа α и β . **6)** $f(x_0,y_0)g(x,y)=g(x_0,y_0)f(x,y)$ — уравнение окружности (или прямой), проходящей через точку $(x_0;y_0)$ и точки пересечения этих окружностей.

Задача 2. Найдите уравнение прямой, проходящей через точки пересечения окружностей

a) $x^2 + y^2 + 6x + 4y = 12 \text{ m } x^2 + y^2 - 6x - 2y = 0$; 6) $x^2 + y^2 + 12x - 4y = 9 \text{ m } x^2 + y^2 - 4x - 16y = -60$.

Определение 1. Ствень точки относительно данной окружности радиуса r — это число $d^2 - r^2$, где d — расстояние от этой точки до центра этой окружности. $Pa\partial u$ кальная ось двух окружностей — это множество точек, каждая из которых имеет равные степени относительно этих окружностей.

Задача 3. а) Выразите уравнение радикальной оси двух окружностей через их обычные уравнения. **б**) Всегда ли это прямая? в) Что можно сказать о попарных радикальных осях трёх окружностей?

Задача 4°. Докажите, что точки пересечения кривых $x^2 + 4xy + 3y^2 = 3$ и $4x^2 - 2xy + 3y^2 = 11$ лежат на одной окружности.

Задача 5. Даны две параболы на плоскости (не обязательно равные), оси симметрии которых взаимно перпендикулярны, пересекающиеся в четырех точках. Докажите, что эти точки лежат на одной окружности (выразите уравнение этой окружности через уравнения парабол).

Задача 6°. Найдите уравнение какой-нибудь прямой, отделяющей друг от друга параболу $y=x^2+0.5$ и параболу $y=-2x^2+12x-12$.

Определение 2. Одночленом от двух переменных x и y называется выражение вида ax^my^n , где a — действительное число, m,n — целые неотрицательные. Сумма нескольких одночленов такого вида (с приведенными подобными) называется многочленом от двух переменных x и y.

Определение 3. Плоская алгебраическая кривая — это множество точек плоскости, координаты которых удовлетворяют уравнению A(x,y)=0, где A — непостоянный многочлен от двух переменных (говорят, что он $sada\"{e}m$ эту кривую).

Задача 7. Могут ли два разных многочлена задавать одну и ту же кривую?

Задача 8. Какому из уравнений соответствует каждая из кривых, изображённых на рисунке:

- a) $x^2 = x^4 + y^4$;
- 6) $xy = x^6 + y^6$;
- **B)** $x^3 = y^2 + x^4 + y^4$;
- \mathbf{r}) $x^2y + xy^2 = x^4 + y^4$.

Задача 9. Нарисуйте плоские

кривые, задающиеся многочленами: **a)** x^2-y^2 ; **б)** x^2y-xy^2+y-x ; **в)** x^2+x+y^2 ; **г)** $4x^2+9y^2-36$; **д)** x^2-y^2-1 ; **e)** y^2-x^3 ; **ж)** $y-1-x^3$; **3)** y^2-1-x^3 ; **и)** y^2-x-x^3 ; **к)** $y^2-x^2-x^3$.

Задача 10. Произведение ли это двух многочленов (не констант): **a)** x^2+y^2-1 ; **b)** y^2-x ; **в)** xy-1.

Задача 11. Задайте на плоскости многочленом: а) одну точку; б) любое конечное множество точек.

Задача 12. Докажите, что система из конечного числа уравнений вида «многочлен равен нулю» может быть задана одним уравнением вида «многочлен равен нулю».

Задача 13. а) Докажите, что если многочлен от нескольких переменных x, y, z, ... равен 0 при x = y, то он делится на x - y; б) а если он равен 0 и при x = y, и при x = z, то он делится на (x - y)(x - z).

Задача 14. а) Пусть многочлен P(x,y) равен нулю во всех точках с целыми координатами. Докажите, что это нулевой многочлен (если в его записи привести подобные, то всё сократится).

6) Решите аналогичную задачу для многочлена от нескольких переменных.

Задача 15*. Существует ли многочлен P(x,y), для которого множеством решений неравенства P(x,y) > 0 является квадрант $\{(x,y) : x > 0, y > 0\}$.

Задача 16*. Существует ли такой многочлен P(x,y), что P(x,y)>0 для любых x,y, но P принимает значения, сколь угодно близкие к 0?

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 3 & 3 & 4 \\ 6 & B & \end{array}$	5 6	7 8 8 8 a 6	8 8 в г	9 9 9 a 6 B	9 9 9 г д е	ж з и	9 10 10 10 K a 6 B	$\begin{array}{c c c c c c c c c c c c c c c c c c c $