Strategic Planning of Aircraft Trajectories MA4402 Simulación Estocástica: Teoría y Laboratorio

Fabián A. Ulloa y Catalina Lizana G.

22 diciembre 2022

Introducción

- Simulación y optimización de trayectorias de aviones
- Implementación de Simulated annealing
- Simplificaciones con respecto al caso real

Trayectorias

- Determinista sin incertidumbre.
- Consideramos de 2+1 dimensiones (2 de espacio y 1 de tiempo). El espacio es de 200×200 (en km.), y el intervalo de tiempo de despegue es de 60 (minutos).
- Velocidad de un avión: 200 km/h.
- Cada avión tiene una trayectoria asociada que consiste en una lista de n coordenadas que conecta ambos aeropuertos.
- Cada coordenada será de la forma $(x,y,t) \in [0,200]^2 \times [0,\infty]$
- Para obtener los puntos intermedios consideramos puntos "al azar por cuadrantes".

Trayectorias

Interacciones

 Se denomina interacción cuando dos puntos de dos trayectorias diferentes están lo suficientemente cerca en el espacio en un intervalo de tiempo.

Interacciones

• Se quiere minimizar:

$$\phi_{tot}(u) := \sum_{i=1}^{N} \phi_i(u) = \sum_{i=1}^{N} \sum_{k=1}^{K_i} \phi_{i,k}(u)$$

Donde u es un set de trayectorias, ϕ_i es el total de interacciones de la trayectoria i-ésima calculada como $\sum_{k=1}^{K_i} \phi_{i,k}(u)$, con $\phi_{i,k}(u)$ el número de interacciones en el punto k-ésimo y K_i es la cantidad de puntos con los que se discretiza la trayectoria del vuelo i

Algoritmo de Grilla

- Se discretiza el espacio y el tiempo formando una grilla.
- Se itera sobre cada punto de cada trayectoria.
- Cada punto se guarda es la celda que corresponda y se chequean las celdas adyacentes a ella.
- Se verifica si hay interacción o entre puntos que interactúan.

Grafo y Vecinos

- El grafo a considerar para el algoritmo SA tiene como vértices todos los posibles set de trayectorias u.
- Dos vértices son vecinos si difieren en un punto espacial de una trayectoria.
- Para efectos de esta implementación, un vecino de un vértice u se obtendrá cambiando un punto al azar, moviéndolo (también al azar) en ambas direcciones espaciales.

Grafo y Vecinos

• Ejemplo:

Consideramos un aeropuerto de salida en (0,0) y uno de llegada en (200,200). Además simulamos 20 trayectorias, de 50 puntos.

Para implementar Simulated Annealing debemos usamos una sucesión β_n :

Cuadrático:

$$\beta_n = n^2$$

• Exponencial:

$$\beta_n = 3^n$$

Lineal:

$$\beta_n = 2n$$

Consideramos un aeropuerto de salida en y múltiples aeropuertos de llegada que estarán en:

- $(x, y) \in [0, 200] \times [160, 200]$
- $(x, y) \in [160, 200]x[0, 200]$

Resultados reales

Table 3 Initial and final total interaction between trajectories for the national-size air traffic, considering different dimensions for the deterministic uncertainty set

	Uncertainty set	Initial	Final	Solved	CPU	No. of
	1					
Case	dimensions	Φ_{tot}^D	Φ_{tot}^{D}	interactions	time (minutes)	iterations
1	$R_h = 0 \text{ NM}.$	2,282,436	5,934	99.7%	1,093.8	1,083,215
	$R_v = 0$ ft.					
	$t_{\epsilon} = 180 \text{s}.$					
2	$R_h = 1 \text{ NM}.$	765,448	0	100.0%	101.1	97,400
	$R_v = 100 \text{ft.}$					
	$t_{\epsilon} = 60 \mathrm{s}.$					
3	$R_h = 1 \text{ NM}.$	1,425,384	4,314	99.7%	1,809.0	1,791,000
	$R_v = 100 \text{ft.}$					
	$t_{\epsilon} = 120 \text{s}.$					
4	$R_h = 1 \text{ NM}.$	2,821,706	37,290	98.7%	2,213.3	2,191,970
	$R_v = 100 \text{ft.}$					
	$t_{\epsilon} = 240 \text{s}.$					
5	$R_h = 2 \text{ NM}.$	5,000,430	110,021	97.9%	2,289.8	2,266,956
	$R_v = 100 \text{ft}.$]				
	$t_{\epsilon} = 240 \text{s}.$]				

Conclusiones

- Por medio de algunas simplificaciones fue posible simular el problema.
- Minimizamos la cantidad de interacciones entre trayectorias con diferentes funciones β_n .
- Se evidencia que a medida que el número de iteraciones del algoritmo aumenta, disminuyen las interacciones entre aviones.
- Mientras menor sea la discretización de las trayectorias, existirán choques que no se detecten.
- La mayor limitante al simular el problema fue la complejidad computacional del caso real.

Bibliografía

ARIANIT ISLAMI, SUPATCHA CHAIMATANAN, DANIEL DELAHAYE. Large Scale 4D Trajectory Planning. Air Traffic Management and Systems – II, 420, Springer, pp 27-47, 2016, Lecture Notes in Electrical Engineering

Strategic Planning of Aircraft Trajectories MA4402 Simulación Estocástica: Teoría y Laboratorio

Fabián A. Ulloa y Catalina Lizana G.

22 diciembre 2022

