Vizsgafeladatok Optimalizálásból (Minta1)

1. Egy üzemben négyféle terméket gyártanak. A termékeket három gép munkálja meg. Az alábbi táblázat megadja az egyes gépek heti kapacitását, a termékek egységárát, valamint azt, hogy az egyes gépek mennyi ideig munkálják meg az egyes alkatrészeket. Hány darabot kell gyártani az egyes termékekből, hogy a gépek kapacitását ne lépjük túl és maximális nyereséget érjünk el?

	T_1	T_2	T_3	T_4	kapacitás
G_1	1	1	2	1	160
G_2	1	1	1	0	100
G_3	0	1	1	1	80
egységár	2	4	3	1	

2. Oldja meg az alábbi hiperbolikus programozási feladatot:

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$\frac{2x_1 + x_2 - 2}{x_1 + x_2 + 1} \to \max$$

- 3. Oldja meg azt a hátizsák feladatot, melyben a tárgyak tömegei 10,10,20,20,20 és 40 kg, az értékek pedig rendre: 16,6,25,24,10 és 60, a hátizsák teherbírása pedig 80 kg!
- 4. Egy üzem három műhelyében (M_1,M_2,M_3) egy bizonyos terméket gyárt 14,26,20 darab/nap termelési kapacitással. A termékekkel három fogyasztó (F_1,F_2,F_3) 20,16,24 darab/nap igényét kell kielégíteni. A műhelyek és a megrendelők közötti fajlagos szállítási költségeket mutatja az alábbi táblázat:

	F_1	F_2	F_3
M_1	7	3	10
M_2	6	5	7
M_3	9	5	8

Határozza meg a minimális összköltségű szállítási tervet, figyelembe véve, hogy az F_2 megrendelő nem vesz át az M_1 műhelyben készült terméket!

- 5. Egy síkidom egy téglalapból és a téglalap egyik oldalára illesztett félkörből áll. A síkidom területe 2 m². Mennyi legyen a félkör sugara, ha azt akarjuk, hogy minimális legyen a síkidom kerülete?
 - 6. Határozza meg az alábbi NLO feladat összes KKT pontját:

$$x^{2} \le y$$
$$y \le 4$$
$$x + 2y + 4 \to \min$$

Vizsgafeladatok Optimalizálásból (Minta2)

1. Oldja meg kétfázisú szimplex módszerrel az alábbi LP feladatot:

$$x_1 + x_3 - x_4 = 30$$

$$2x_1 - 3x_2 + x_3 + 2x_4 \le 250$$

$$4x_1 + 2x_2 + 2x_3 + x_4 \ge 125$$

$$x_1, x_3, x_4 \ge 0; \ x_2 \le 0$$

$$5x_1 - 4x_2 + 8x_3 + 7x_4 \to \min$$

2. Adott az alábbi LP feladat:

$$x_1 + 2x_2 + x_3 \le 50$$

$$x_1 + x_2 = 40$$

$$x_1 + x_2 + 2x_3 \ge 20$$

$$x_1, x_2, x_3 \ge 0$$

$$5x_1 - 2x_2 + 8x_3 \rightarrow \max$$

Szimplex módszerrel történő megoldása során az alábbi optimális táblát kaptuk:

Adja meg a duális feladatot, a primál és a duál feladat optimális megoldását, valamint végezzen érzékenységvizsgálatot a primál feladat első feltételére!

3. Oldja meg az alábbi szállítási feladatot:

	$ F_1 $	F_2	készlet
$\overline{T_1}$	5	3	6
T_2	4	2	8
T_3	6	1	9
igény	10	7	

4. Egy tanár ötfős csapatot állított össze a matematikaversenyre, ahol öt feladatot kell megoldani. Az alábbi táblázat ij eleme azt mutatja, hogy hány pont várható, ha az S_i diák oldja meg a P_j problémát. Adja meg azt a hozzárendelést (minden diákhoz pontosan egy feladatot), mely összességében a legtöbb pontot eredményezi!

	P_1	P_2	P_3	P_4	P_5
$\overline{S_1}$	6	5	8	7	5
S_2	8	8	10	6	8
$\overline{S_3}$	7	7	10	8	5
$\overline{S_4}$	2	6	9	8	6
S_3	5	8	7	4	7

5. A korlátozás és szétválasztás módszerével oldja meg az alábbi egészértékű programozási feladatot:

$$\begin{aligned} 13x_1 + 8x_2 &\leq 104 \\ -x_1 + 2x_2 &\leq 10 \\ x_1, x_2 &\geq 0, \text{ egész számok} \\ 3x_1 + 2x_2 &\rightarrow \max \end{aligned}$$

6. Határozza meg az alábbi NLO feladat összes KKT pontját:

$$\begin{aligned} x_2 - x_1 &= 1 \\ x_1^2 + 4x_2^2 &\leq 17 \\ 3x_1^2 + x_2^2 + 2x_1 + x_2 + 4 &\rightarrow \min \end{aligned}$$

Pontozás és értékelés: Minden feladat 6 pontot ér.

0-17 pont: elégtelen; 18-21: elégséges; 22-26: közepes; 27-31: jó; 32-36: jeles

1) Jelölje Xi a Ti temiébből gyártandó mennyiséget (i=12,3,4). A feladet modellje:

$$X_1 + X_2 + 2X_3 + X_4 \le 160$$

 $X_1 + X_2 + X_3 \le 100$
 $X_2 + X_3 + X_4 \le 80$
 $X_{1,1} \times X_{2,1} \times X_{3,1} \times X_{4} \Rightarrow 0$
 $2X_1 + 4X_2 + 3X_3 + X_4 \rightarrow max$

Er eyg normál felodat. Mepoldjur rimpler módszersel:

1	X.	Χa	X2	χ_{μ}	16]]	U2	. X ₂	Χz	X4	16	1	U2	Uz	×3_	X4	60
	1	1	7	1	160	u	~1	0	$-\frac{3}{1}$	1	60	u	-1	0	1	1	60
u_{λ}	, ~(*1	<u> </u>	\sim	100		1	1	1	0	100	X	\ \ \ \	-1	0	-1	60 20 80
42	1	1	1	O	100	1~1	/{	ا 	'	,	8.0		1	1	1	1	100
42	0	1	1	1	80	U3	0	1	1	1	801	X2	O		_ " { 		00
-31	2	1,	2	1	10	-2		2	1	1	~200	1-7	-2	-2	-1	-1	-360
	1 Oakralis mendas: $[X_1=20: X_2=80: X_3=X_4=0: Z_{max}=360]$																

1 Ophinalis mepoldas: $[X_1=20; X_2=80; X_3=X_4=0; Z_{max}=360]$

2) A feladatot LP-feladatta transformáljuk, és megoldjuk kédfázisú

simplex modszerel:

$$y_1 + y_2 - 4t \le 0$$

 $y_1 - y_2 - 2t \le 0$
 $y_1 + y_2 + t = 1$
 $2y_1 + y_2 - 2t \rightarrow max$

ahol $y_1 = X_1 t$ $y_2 = X_2 t$

	1 4	, 9:	_z t	b	1		1/4	y2	43*	6			y1	U1_	6	\parallel
<u></u>	1	1	-4	0	TÍ	U1	5	5	4	4		y2	1	5	<u>4</u> 5	
u,	1	-1	-2	0	\parallel	U2	3	1	4 2	2		42	2	-4	6 5	
4,3	1	1	1	1		t	Λ	1	1			t	0	-45	15	
3	2	1	-2	0	7.	-2/	4	3	2	2	Γ.	-£	1	$-\frac{3}{5}$	$-\frac{2}{5}$	
2	1	1	1	11	1	2*1	0	0	-11	01		1			,	

Optimalis negoldas:

 $y_1 = \frac{3}{5}$; $y_2 = \frac{1}{5}$; $t = \frac{1}{5}$; $z = 1 \implies [x = 3; x_2 = 1; z_{max} = 1]$

A targakat igs sell indexelni, hogs az érték/törneg hányadosor szerinti csökkerő somendben lepyener. Amodell: 16 x1 +60x2 +25 x2 +24 x4 +6 x5 +10 x6 → max

 $10x_1 + 40x_2 + 20x_3 + 20x_4 + 10x_5 + 20x_6 \le 80$

Xi ∈ { 0; 13 1=1, 2, 3, 4, 5, 6.

Megoldas a rolatoras es sretvalantas modoresevel:

$$P_{1}$$

$$X_{4}=0$$

$$X_{4}=1$$

$$P_{2}$$

$$111010; z=104$$

$$P_{3}$$

$$Y_{3}=0$$

$$Y_{3}=1$$

$$P_{4}$$

$$110110; z=106$$

$$Y_{2}=10$$

$$Y_{2}=10$$

$$Y_{3}=1$$

$$Y_{4}=1$$

$$Y_{5}=10$$

$$Y_{2}=10$$

$$Y_{2}=10$$

$$Y_{3}=1$$

$$Y_{4}=1$$

$$Y_{5}=10$$

$$Y_{5}=10$$

$$Y_{1}=10$$

$$Y_{2}=10$$

$$Y_{3}=10$$

$$Y_{4}=1$$

$$Y_{5}=10$$

$$Y_{5}=10$$

$$Y_{5}=10$$

OPTIMA'LIS MEGOLDA'S: X2=X3=X4=1, X1=X5=X6=0; Zmax = 109.

4) Kerdeti megoldás ÉNY sanot módszenel:

14			14
6	16	4	26
1		20	20
20	16	24	

	J1=	7	Մչ	=6	U,	3 = B
u1=0	14	7	_	М	—	10
u2=-1	6		16	5	4	7
u3=0	-	9		5	20	8
·	U1=	7	لا 1	- 6	υį	=8

``3		<u> </u>	L	-2)
	U1:	-7	لا	- 6	J	3=8	>
U1=0	14	- 7	1-	1.4	1	10	
,		+			20	70	
U2=-1	6	6		5		7	
			16		4		
นาว 🔘	!	_				~ 1	

$$\bar{C}_{12}$$
: tiltotl
$$\bar{C}_{13} = 10 - 8 - 0 = 2$$

$$\bar{C}_{31} = 9 - 0 - 7 = 2$$

$$A \quad (3;2) \rightarrow (3;3) \rightarrow (2;3) \rightarrow (2;2) \rightarrow$$

$$\rightarrow (3;2) \text{ hunokban}$$

16 eggseget norgature.

 $\bar{c}_{13} = 2)$ $\overline{C}_{22}=1$ } mind pour hv, optimalis a szállítás. $\overline{C}_{31}=2$] A minimalis szállítási költség: $\overline{C}_{31}=2$] 14.7+6.6+20.7+16.5+4.8=386

A terület:
$$2rh + \frac{r^2\Pi}{2} = 2m^2$$

A kerület:
$$2h+2r+r\Pi \rightarrow min$$

$$L(\tau, h, \lambda) = 2h + 2\tau + \gamma \Pi + \lambda (2\tau h + \frac{\gamma^2 \Pi}{2} - 2)$$

$$L_{\gamma} = 2 + \Pi + 2\lambda h + \gamma \Pi \lambda = 0 \longrightarrow \lambda = \frac{-2 - \Pi}{2h + \gamma \Pi} \left\{ \frac{2 + \Pi}{2h + \gamma \Pi} = \frac{1}{\gamma} \right\}$$

$$L_{h} = 2 + 2\lambda \gamma = 0 \longrightarrow \lambda = -\frac{1}{\gamma} \longrightarrow \gamma = h$$

$$L_{h}^{\prime} = 2 + 2\lambda \gamma$$

$$L_{\chi}^{1} = 2rh + \frac{\gamma^{2}\pi}{2} - 2 = 0$$

$$2\gamma^2 + \frac{\gamma^2 \pi}{2} = 2$$

$$4r^2+r^2\pi=4$$

$$\gamma^2 = \frac{4}{4+\pi} \implies \gamma = \frac{2}{\sqrt{4+\pi}} \approx 0.75 m$$

$$L(x_1y_1, \mu_1, \mu_2) = x + 2y + 4 + \mu_1(x^2 - y) + \mu_2(y - 4)$$

A megoldardo sendszer:

$$(7)$$
 $\chi^2-y \leq 0$

$$x^2-y=0$$
, and $y=x^2$

Ebbor
$$x^2 = y$$
 miath $x = \pm 2$.

Tehat egyetlen KKT pont van: (- 1; 16)

X2 = 0 felsétel miat X2 helyett mindenhol - X2 - t iruns. Mivel minimum feladetrol van szó, a celfgr. (-1) szeresével számolunk. Ar = e's > feltétel miaté l'et mesternéges valtorione van suitség.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Χı	X ₂	X ₃	X4	σ_3	l-		1 U1	K X2	X ₃	Х५	U3	b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	u*	11	0	1	-1	0	30	X ₄	1	0	1	-1	O	301
u^* $ 4 - 2 2 1 - 1 125 u_3^* - 4 - 2 - 2 5 - 7 5 $	u.	2	3	1	2	0	250	142	-2	3	-1	4	0	190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* الم	4	-2	2	1	-1	125	uz*	4	-2	-2	5	-1	5
2* 5 -2 3 0 -1 155 2* -5 -2 -2 5 -1 5 1	- 7	~5	-4	-8	-7	0	0	- 2	5	-4	-3	-12	0	150
7.	7*	5	-2	3	0	-1	155	2*	-5	-2	-2	5	-1	5

	, , , , ,	× × 2	×3	U3*	<i>U</i> 3	b
$\overline{X_1}$	0,2	-0,4	0,6	0,2	~ O, Z	31
42	1,2	4,6	0,6	-0,8	0,8	186
Х _Ч	-0,8	-0,4	-0,4	0,2	0.3 -0.2 0.2	1
- 2	-4,6	-8,8	-7,8	2,4	-24	162
₹*	-1	0	0	-1	0	0

Az első fázis, es egyírtal a masodik fazis is véget ént, optimális a tábla. Ar optimalis nepoldas:

 $x_4 = 31$; $x_2 = 0$; $x_3 = 0$; $x_4 = 1$ Z min = 162

2) A dualis feladat:

$$y_1 + y_2 + y_3 \ge 5$$

$$2y_1 + y_2 + y_3 \ge -2$$

A primal feladat optimalis negololasa:

it dual feladas optimalis mapololasa:

y1≥0; y2 előjellöktlen; y3 ≤0

$$\begin{array}{ll} 50 \ y_1 + 40y_2 + 20 \ y_3 \rightarrow min \\ & 10 + \lambda \geq 0 \rightarrow \lambda \geq -10 \ \} \ \lambda \geq -10 \\ & \text{Erizeny-eigersgallet} : \ b + \lambda \mu_1 \geq 0 : 40 + 2\lambda \geq 0 \rightarrow \lambda \geq -20 \end{array}$$

tehat, ha 2=-10, allor a feladat új ophimalis mepolodása: X=40; X2=0; X3=10+2; Znax= 280+82. 3) Ar ÖDERESZLEK 6-tal több, mint ar ÖDERIGENY, erent felvesszüß a fishir F3 fogasztót, 6 iginnyel.

Kerdeti nepolda's ÉNY sarok modszenel:

	U ₄ =5	- υ ₂ =3	3 03=2
u ₁ =0	6	-	
}	5	3	
u ₁ =-1	7 4	72	0
u3=-2		3	6
١_	6	1	0

C13 alephisebl, erest an (1:3) cellat hell kötötte tenni.

4 husok: (1;3) → (3;3) → (3;2) → (2;2) → (2;1) → (1;1) → (1;3)

(coal lotolf celland lehet indust valsorsani)

A paratlan lépissanna levo totot cellakban a minimum lekotés ertele 4, erest ar inj mepoldas:

4) Horrasendelesi feladat, maximum keresésel, erent elosson a lepnagyple számból (10) kironjak a táblázatbeli összes számot:

(þ	3	þ	q	2	4 vonallal lefed-
(ק	2	0-0-0-0	3	1	heto ar összes O,
e	1	3	0	1	4	további redulció
1	\$	3	ф	þ	2	
	ļ		4	3-	-0-	E=1 - el:
	i		j	J		
					_	-01112

Most man 5 vonal kell on onces O lefedéséher. it x-gal jelölt helyer jelentik an optimális horrarendelest. A maximalis orrpoutrain: 6+8+10+8+8=40

5) A ket klitetellen szereplő epzeneses metszéspontja:

$$34x_2 = 234$$

$$x_2 = \frac{117}{17} \approx 6,88$$
 is $x_1 = 2x_2 - 10 = \frac{64}{17} \approx 3,76$

AL LP laritais negocidaisa: (3,76; 6,88)

$$P_1$$
 $(3; 6,5)$ $z=22$

$$P_2$$
 $(4; 6,5)$ $Z = 25$

$$P_3$$
 $(4,3,6)$ $z = 24,9$

X1 € 4 X1 ≥ 5

Optimalis megoldas: (4:6). Optimum: 24 P6 (5; 4,875) Z= 24,75

de nom évolemes, mest 24-től nem adhat jobb

ertiket, art meg P5-ben elevtik

6) it feladat Lagrange függerenge:

$$L(x_1, x_2, \lambda, \mu) = 3x_1^2 + x_2^2 + 2x_1 + x_2 + 4 + \lambda(x_2 - x_1 - 1) + \mu(x_1^2 + 4x_2^2 - 17)$$

(4;6) Z=24

A megoldandá rendszer:

$$0 6x + 2 - \lambda + 2\mu x = 0$$

(3)
$$\mu(\chi_1^2 + 4\chi_2^2 - 17) = 0$$

$$x_1^2 + 4x_2^2 - 17 \le 0$$

$$6x_1 + 2x_2 + 3 = 0$$

(5)
$$x_2 - x_1 = 1$$

$$6x_1+2(x_1+1)+3=0$$

$$8x_1 = -5 \rightarrow x_1 = -\frac{5}{8} = -0.625$$

$$x_2 = \frac{43}{8} = 9.345$$

(X1; X2) a @ feltitelt is teljesiti,

erent (-0,625; 0,375) KKTpont.

2. eset: $\mu > 0$; $\chi_1^2 + 4\chi_2^2 - 17 = 0$

(5) - el epstevetre set nepoldist

kapuns: (1;2) és (-2,6;-1,6) Mirdket pontot le sell helyetteséteni

as (1 is 2) egenleterbe, hop u-t neghatanormel, acomban

mindret esetten MLO adodik, ereit erer nen lehetner KKT pontok.