Chapter 11

Vectors and Vector-Valued Functions

11.1

Vectors in the Plane

DEFINITION Scalar Multiples and Parallel Vectors

Given a scalar c and a vector \mathbf{v} , the scalar multiple $c\mathbf{v}$ is a vector whose magnitude is |c| multiplied by the magnitude of \mathbf{v} . If c>0, then $c\mathbf{v}$ has the same direction as \mathbf{v} . If c<0, then $c\mathbf{v}$ and \mathbf{v} point in opposite directions. Two vectors are **parallel** if they are scalar multiples of each other.

DEFINITION Position Vectors and Vector Components

A vector \mathbf{v} with its tail at the origin and head at (v_1, v_2) is called a **position vector** (or is said to be in **standard position**) and is written $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x- and y-components of \mathbf{v} , respectively. The position vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are **equal** if and only if $u_1 = v_1$ and $u_2 = v_2$.

DEFINITION Magnitude of a Vector

Given the points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of

$$\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
, denoted $|\overrightarrow{PQ}|$, is the distance between P and Q :

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The magnitude of the position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2}$.

DEFINITION Unit Vectors and Vectors of a Specified Length

A unit vector is any vector with length 1. Given a nonzero vector \mathbf{v} , $\pm \frac{\mathbf{v}}{|\mathbf{v}|}$ are unit

vectors parallel to \mathbf{v} . For a scalar c>0, the vectors $\pm \frac{c\mathbf{v}}{|\mathbf{v}|}$ are vectors of length c parallel to \mathbf{v} .

11.2

Vectors in Three Dimensions

Sphere:
$$(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2$$

Ball:
$$(x - a)^2 + (y - b)^2 + (z - c)^2 \le r^2$$

FIGURE 11.34

 $\mathbf{u} + 2\mathbf{v}$ by the Parallelogram Rule $\mathbf{u} + 2\mathbf{v} = \langle 8, -4, -1 \rangle$ $2\mathbf{v} = \langle 6, 0, -2 \rangle$ **FIGURE 11.39**

DEFINTION Magnitude of a Vector

The **magnitude** (or **length**) of the vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ is the distance from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$:

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

