



# AUTEXTIFICATION Identificación de autoría en textos

×

X

Sobre textos de IA vs Humanos



## OBJETIVOS GENERALES





#### TAREA A

Clasificar un texto en ínglés bajo alguna de las dos etiquetas:

- Humano
- Máquina



#### TAREA B

Si un texto en inglés es generado por máquina, darle una etiqueta correspondiente al modelo que lo generó



| Source/<br>Domain  | Language   | Total<br>Human | Human  | Davinci003 |        | rallel Dat<br>Cohere |        | BLOOMz | Total   |
|--------------------|------------|----------------|--------|------------|--------|----------------------|--------|--------|---------|
| Wikipedia          | English    | 6,458,670      | 3,000  | 3,000      | 2,995  | 2,336                | 2,702  | 3,000  | 17,033  |
| Reddit ELI5        | English    | 558,669        | 3,000  | 3,000      | 3,000  | 3,000                | 3,000  | 3,000  | 18,000  |
| WikiHow            | English    | 31,102         | 3,000  | 3,000      | 3,000  | 3,000                | 3,000  | 3,000  | 18,000  |
| PeerRead           | English    | 5,798          | 5,798  | 2,344      | 2,344  | 2,344                | 2,344  | 2,344  | 17,518  |
| arXiv abstract     | English    | 2,219,423      | 3,000  | 3,000      | 3,000  | 3,000                | 3,000  | 3,000  | 18,000  |
| Baike/Web QA       | Chinese    | 113,313        | 3,000  | 3,000      | 3,000  | -                    | -      | -      | 9,000   |
| RuATD              | Russian    | 75,291         | 3,000  | 3,000      | 3,000  | -                    | -      | -      | 9,000   |
| Urdu-news          | Urdu       | 107,881        | 3,000  | -          | 3,000  | -                    | -      | -      | 9,000   |
| id_newspapers_2018 | Indonesian | 499,164        | 3,000  | -          | 3,000  | -                    | -      | -      | 6,000   |
| Arabic-Wikipedia   | Arabic     | 1,209,042      | 3,000  | -          | 3,000  | -                    | -      | -      | 6,000   |
| True & Fake News   | Bulgarian  | 94,000         | 3,000  | 3,000      | 3,000  | -                    | -      | -      | 9,000   |
| Total              |            |                | 35,798 | 23,344     | 32,339 | 13,680               | 14,046 | 14,344 | 133,551 |
|                    |            |                |        |            |        |                      |        |        |         |





## **HERRAMIENTAS**

Se posee un conjunto de textos en inglés con sus respectivas etiquetas de autor





## FASES RELEVANTES



X

#### PREPARACIÓN

Se aplicarán técnicas para extraer, limpiar y pre-procesar los textos de entrenamiento



#### **MODELOS**

Se implementarán Modelos de clasificación basados en Supervisión



×

#### EVALUACIÓN

Se calificará bajo distintas métricas la capacidad de predicción de los Modelos elegidos



Aplicada sobre los datos de ejemplo









## SEPARACIÓN

×

 Identificar los archivos del dataset con textos en inglés y separarlos conservando las etiquetas correspondientes a su autoría

- 2. Haciendo una exploración de cada archivo, identificar el formato en que se almacena el texto objetivo y separarlo
- 3. Se almacenará el texto individual anexado a un archivo *TXT* global que contendrá en cada línea cada uno de los textos
- 4. Se creará un archivo *TXT* para cada *"autor"*, cuyo nombre de archivo reflejará el nombre del modelo generador o bien de simplemente *"humando"*

### LIMPIEZA

×

1. Para cada archivo *TXT* generado, se almacenará en *RAM* y se someterá a una eliminación de detalles irrelevantes:

×

- 1. Eliminación de caractéres especiales [\n, \t, \r, \&u..., ...]
- 2. Eliminación de símbolos de puntuación [, . ; ...]

×

3. Eliminación de stopwords ["a", "the", "is", "are", ...]

# ESTRUCTURACIÓN

X

- Para cada archivo texto almacenado en RAM para el paso de LIMPIEZA, se almacenará en una estructura de datos que contenga la lista de textos junto a la etiqueta correspondiente a su autor
- 2. Se almacenarán todos los textos limpiados sobre un archivo tabular CSV que contenga en cada línea la etiqueta con el autor
- 3. Se tokenizarán los textos para identificar vocabulario completo de cada autor

# ADAPTACIÓN

X

×



- 1. Embeddings: Alternativas (tentativamente sólo uno):
  - 1. CBOW

- 2. Word2Vec
- 3. Fine-Tunning con GoogleWord2Vec
- 2. N-Gramas: Alternativas:
  - 1. Trigramas de palabras
  - 2. Bigramas de frases



# \*CLASIFICACIÓN BINARIA



Regresión Logística

Red Neuronal Recurrente LSTM

×

Algoritmo XGBoost



## CŁASIFICACIÓN MULTICLASE

Tarea B

Random Forest

Red Neuronal Recurrente LSTM

X

Algoritmo XGBoost





## MÉTRICAS RELEVANTES



Para cada clase (sin considerar desbalance en las etiquetas)



×

RECALL

Para cada clase



F1-Score

Para la clasificación general del Modelo



