Introduction to Virtual Reality

가상현실 기초 개념

목 차

- ◆ Concepts of Virtual Reality
- ♦ Key Elements for Virtual Reality
- ◆ Technologies for Virtual Reality
- Virtual Reality Applications & Markets

VR 1-3

TECHNOLOGIES FOR VIRTUAL REALITY

◆ 선행 연구의 가상현실 유관 기술 Pool

	KISDI (정보통신정책연구원)	인간-컴퓨터 상호작용 햅틱 기술 3D 디스플레이 실시간 상호작용 컴퓨터 그래픽스	TTA (한국정보통신기술협회)	컴퓨터 그래픽스 3D 디스플레이 입체 음향 인간-컴퓨터 상호작용(HCI) 시뮬레이션
	10-010 12 12 1	동작 추적&인식 3D 인터페이스 3D 음향	KOCCA (한국콘텐츠진흥원)	3차원 디스플레이 Haptic 인터페이스 동작 캡쳐
	KIET (<u>사업연구원</u>)	사용자 인식 프로세스 제어 사용자 인식 상호작용 및 피드백 데이터 획득 및 저작 콘텐츠 운영 시청각 인터페이스 체감 인터페이스	위키피디아	컴퓨터 그래픽스 HCI 로보틱스
			과학기술정보통신부	혼합현실 실감형 인터랙션 몰입형 가시화 가상 시뮬레이션 엔진 바이오 피드백
	KISTEP	실사 정보 파악 및 객체 인식 객체 트랙킹 가상·증강현실 모델링 및 가시화 가상·증강현실 상호작용 및 인터페이스 -영상 정합 및 합성 위치 정보 인식 실시간 증강TTA현실 정보 검색	KOCCA (한국콘텐츠진흥원) 게임백서	3차원 디스플레이 3차원 상호작용 가상환경 관리 공유 가상환경
	(한국과학기술기획평가원)		NIPA (정보통신산업진흥원)	사용자 위치, 방향, 움직임 추적 가상 영상 제작 실사·가상영상 합성 사용자 상호작용 처리

◆ 분류 기준에 따른 가상현실 기술 범위

분류기준	포함범위		
제시방식에 따라 (Presentation)	- 가상의 세계를 사용자에게 제시하는 원격현전(Tele-existence) 또는 원거리 로보틱스 (Tele-robotics) - 사용자가 직접 지각 할 수 있는 현실의 대상물에 대해서 컴퓨터가 더 많은 정보를 부가, 제시하는 경우인 증강 현실(Augmented Reality; AR) 및 복합 현실(Mixed Reality; MR)		
시스템 환경에 따라 (System Environment)	- 몰입형 가상현실(immersive VR) - 원거리 로보틱스(tele-robotics) - 데스크톱 가상현실(desktop VR) - 삼인칭 가상현실(third person VR) 등		
구현 형태에 따라 (Implementation)	- 데스크탑형(Desktop Type) - 투사형(Projected Type) - 몰입형 (Immersive Type) - CAVE형(Computer-Assisted Virtual Environment Type) - 원격조작형(Telepresence Type) - 증강형(Augmented Type)		

◆ 분류 기준에 따른 가상현실 기술 범위

분류기준	포함범위
응용기술에 따라 (Application Technologies)	- 콘텐츠 제작 및 가시화 등 체험형 모바일 혼합현실 기술 - 공간을 기반으로 한 다중 실감공간 구현기술 - 부품공정 및 가상설계 등 산업 적용형 가상현실 기술 등
시스템 유형에 따라 (System Type)	- 컴퓨터에 의해 만들어진 3차원 환경에 HMD 등의 장비를 착용하여 현실과 완전히 차단되어 가상 환경만을 보는 몰입형 VR(Immersive VR System) - 모니터 화면에 나타난 영상을 보며 VR 을 체험하는 비몰입형 VR(Non-immersive VR System)
목적에 따라 (Purpose)	- 표현기술(시청각 인터페이스 기술 등) - 상호작용기술(동작정보, 심볼(symbol)정보, 생체정보 이용 등) - 저작기술(가상공간 요소 생 성·구축·관리·상호작용 기술 등)

◆ 분류 기준에 따른 가상현실 기술 설명

기술 분류	기술 설명		
입력 인터페이스 (Input Interface)	- 사용자 동작을 인식하여 사용자 의도를 전달하기 위한 제스쳐 동작 인식 HW 기술 - 음성으로 사용자 의도를 전달하는 음성 인식 기술 - 생체신호를 이용하여 사용자의 의도와 상태를 인식하기 위한 인식 기술 - 몰입감 향상을 위해 주변 환경을 자율적/지능적으로 인식하는 상황 인식 기술		
출력 인터페이스 (Output Interface)	- VR을 표현하고 상호작용하기 위한 CG 기술과 HMD 및 Display 기술 - 공간 내 이동과 상호 작용에 따른 입체음향 표현과 음향을 출력하기 위한 HW 기술 - 촉각/후각 등 감각요소 별 표현기술 및 감각 유형 별 디바이스 기술 - 6 DOF 지원 모션 축의 자유로운 움직임을 지원하는 모션 플랫폼 및 모션 HW 기술		
저작도구 (Authoring Tool)	- HW와 SW를 통합하여 VR 환경 구성과 Application을 개발하는 도구 기술		
컨텐츠 서비스 (Contents Service)	- 실세계 및 자연 규칙이 가상 객체에도 적용되는 물리 시뮬레이션 기술 - 원격지 사용자가 가상에서 컨텐츠를 공유하고 인지할 수 있는 NW 기반 기술 - 온라인에서 가상현실 컨텐츠를 유통하고 서비스하는 플랫폼 기술		

- ◆ 관련 학문의 총체적 집합 가상 호선은 100% 된 백성에 구천은 어접다
 - 인간을 둘러싸고 있는 모든 물체와 환경의 속성에 대한 완벽한 분석 및 정보가 필요
 - 인간에 대한 연구와 경험을 종합하여 인간의 만족을 추구
 - 학문의 예: 생체공학, 인지과학, 의학 등도 망라
- ◆관련과학기술의집적 방생은 성고있다, 만든 개설이 필인
 - 컴퓨터 Hardware 기술
 - 컴퓨터 Graphics를 비롯한 Software 기술
 - 인공 지능 등을 바탕으로 한 Human Interface
 - Simulator
 - Robotics 및 원격시스템

VR & Related Technologies 나보고 인데...

村空を 男生ないる

◆ 가상·증강현실기술 최고기술보유국 대비 주요국 기술수준 및 격차 (정성)

□ 주요국 기술수준, 연구단계 역량 및 연구개발 활동경향

	기술수준			연구단	연구개발	
국가	수준(%)	격차(년)	그룹 (점수*)	기초 (점수**)	응용개발 (점수**)	활동경향 (점수***)
한국	82.0	2.0	추격 (2.89)	보통 (3.20)	우수 (3.70)	상승 (2.90)
ठ्ठे	80.0	1.5	추격 (3.00)	우수 (3.50)	우수 (3.50)	상승 (3.30)
일본	80.0	1.5	추격 (3.11)	우수 (4.20)	우수 (3.50)	유지 (2.40)
EU	85.0	1.0	추격 (3.33)	<mark>우수</mark> (4.40)	우수 (3.90)	상승 (2.80)
미국	100.0	0.0	최고 (4.00)	탁월 (4.90)	탁월 (4.70)	상승 (2.70)

^{*} 기술수준 그룹(4그룹)을 선도/최고(4점), 추격(3점), 후발(2점), 낙후(1점)로 하여 평균값을 계산함

^{**} 연구단계별 역량 구간(5구간)을 탁월(5점), 우수(4점), 보통(3점), 미흡(2점), 부족(1점)으로 하여 평균값을 계산함

^{***} 연구개발 활동경향 구간(4구간)을 급상승(4점), 상승(3점), 유지(2점), 하강(1점)으로 하여 평균값을 계산함

◆ 가상·증강현실기술 최고기술보유국 대비 주요국 기술수준 및 격차 (정량)

□ 국가별 활동력 및 기술력

구분	지표	한국	중국	일본	EU	미국
	논문 점유율	6.1%	21.0%	7.9%	36.6%	28.4%
	논문 증가율	38.5%	12.0%	9.0%	32.8%	6.3%
활동력	특허 점유율	24.3%	39.0%	8.9%	4.9%	22.9%
	특허 증가율	127.0%	1110.3%	108.0%	170.2%	366.5%
	해외출원도	1.7	1.3	2.2	3.9	4.1
	논문 영향력	4.7	2.8	5.1	9.5	11.6
	특허 영향력	9.2	4.6	15.7	13.2	19.6
	중요논문 비율	4.4%	7.0%	4.6%	45.0%	39.1%
기술력	중요특허 비율	22.7%	8.8%	9.3%	7.6%	51.7%
	연구주체 다양도	0.82	0.89	0.77	0.94	0.91
	IP4 점유율	17.3%	6.0%	10.7%	9.5%	56.5%
	청구항수	11.9	8.0	13.0	16.2	20.3

IP: Intellectual Property 지적 지난구 IP4: IP Top 주요국(미국, 일본, 유럽, 중국) 청구항이란 특허출원인이 특허출원서에 자신의 발명에 대하여 보호를 받기를 원하는 사항을 기재한 것

◆ 가상·증강현실기술 최고기술보유국 대비 주요국 기술수준 및 격차 (정량)

[•	詩 출원 건수 Top 10 기관				
NO	출원인명	국적	건수	전체 점유율	특허 증가율
1	MICROSOFT	미국	269	2.9%	136.3%
2	MAGIC LEAP	미국	220	2.4%	21,900.0%
3	삼성전자	한국	196	2.1%	217.0%
4	한국전자통신연구원	한국	132	1.4%	27.6%
5	QUALCOMM	미국	118	1.3%	7.0%
6	SONY INTERACTIVE ENTERTAINMENT	일본	96	1.0%	538.5%
7	엘지전자	한국	94	1.0%	47.4%
8	NOKIA	EU	88	1.0%	138.5%
9	GOOGLE	미국	81	0.9%	812.5%
10	SONY	일본	74	0.8%	170.0%

특히	허 등록 건수 Top 10 기관				
NO	출원인명	국적	건수	등록특허 점유율	등록특허 증가율
1	MICROSOFT	미국	165	4.2%	61.9%
2	삼성전자	한국	69	1.8%	37.9%
3	QUALCOMM	미국	63	1.6%	3.2%
4	MAGIC LEAP	미국	56	1.4%	5,500.0%
5	엘지전자	한국	52	1.3%	-37.5%
6	GOOGLE	미국	45	1.1%	362.5%
7	SONY INTERACTIVE ENTERTAINMENT	일본	44	1.1%	240.0%
8	한국전자통신연구원	한국	43	1.1%	-13.0%
9	9 INTERNATIONAL BUSINESS MACHINES		36	0.9%	700.0%
10	INTEL	미국	36	0.9%	400.0%

- David Zeltzer's AIP Cube
- Autonomy (자율성): 사용자가 사건이나 자극에 반응할 수 있는가
- Interaction (조작성): 사용자가 환경이나 사물과 상호작용할 수 있는가
- Presence (현장감): 사용자가 입출력 채널을 통하여 감각적으로 몰입할 수 있는가

- Autonomy (자율성) in David Zeltzer's AIP Cube
- Ability to react to events and stimuli
- 가상세계의 물체가 실제의 물체와 유사한 물리적인 속성을 가지도록 하는 것
- (1) 자율체: 동물처럼 고유의 속성을 가지고 행동하는 Objects 2) 비자율체: 사용자를 포함한 자율체 Objects의 자극에 수동적으로 반응하는 Objects

♦ 기술의 완성도

• Autonomy (자율성) in David Zeltzer's AIP Cube

	세부기술	기술설명	VR분야 활용 예시
자율성	감성 시뮬레이션	 실제로 실행하기 어려운 실험을 간 단히 행하는 모의실험 일반적으로 컴퓨터 시뮬레이션을 뜻함 	 비행, 항해, 주행 시뮬레이터 등 군사 분야 게임, 프로모션 등 엔터테인먼트 분야 사용자의 만족도를 높이기 위해 감성 지향적 시뮬레이션으로 발전

- Interaction (조작성) in David Zeltzer's AIP Cube
- Degree of access to the parameters or variables of an object
- 사용자가 가상의 세계 안에서 실제의 세계에서와 유사한 방법으로 자유롭게 활동, 조작할 수 있도록 하는 것
- 가상 현실의 공간에 있는 물체의 상태를 얼마나 자유롭게 바꿀 수 있는 가를 보는 척도 - 가상현실의 실용성에 중요한 요소임

	세부기술	기술설명	VR분야 활용 예시
	NUX/NUI	- ICT제품, 시스템, 서비스에 대해 공급자의 관점보다 사용자의 관점에서 바라봄 - UI: 사용자의 니즈에 따른 액션의 편의성에 초점을 둠 - UX: 사용자의 감성에 좀 더 초점을 둠	- 가상현실 기술의 복합성과 활용성 증대 - 사용자와 개발자가 다양한 콘텐츠와 응용을 공유, 활용할 수 있는 생태계 조성 (예: 새로운 Interface HW 개발 등)
상호 작용	음성 및 문자 인식	- 사람의 텍스트나 음성 언어를 컴퓨터가 해석하여 데이터로 전환하는 처리 기술	- 인터랙션 기본 기술 - 사용자의 문자 및 음성 인식으로 로봇, 통신 등 동작 수행
10	햅틱 인터페이스	- 사용자의 손가락이나 팔의 관절 등의 근감각을 통해 힘을 느낄 수 있게 하거나 촉감을 전달하는 장치	- 접촉이나 조작을 시뮬레이션 하도록 가상환 경에 적용하여 현실감 증대
	모션캡쳐 및 트래킹	- 실세계의 생물 및 무생물의 움직임을 디지털로 변환	- 사용자의 움직임이 갖는 사실감을 가상 세계로 끌어들여 Application에 응용
	대용량 데이 터 처리기술	- 일반적으로 현존하는 기술 수준 대비 처리하기 힘든 규모의 사이즈의 데이터를 처리·분석	- 가상현실 환경에 있어 사용자로 인해 입력되는 수많은 데이터를 실시간에 처리하여 반응

- Presence (현장감) in David Zeltzer's AIP Cube
- Number and fidelity of the sensory input and output channels
- 가상현실의 완성도를 높이는 요소
- 사용자가 실제와 가상 세계를 구별할 수 없을 만큼의 사실감을 느낄 수 있도록 충실한 감각적인 환경을 실현, 제공하는 정도
- 존재하는 느낌을 가지도록 하는 것 Graphics, Audio, Force Feedback 등 기술적인 요소가 중요

	세부기술	기술설명	VR분야 활용 예시
	컴퓨터 그래픽스	- 컴퓨터를 이용해 실제 세계와 유사한 새 로운 영상을 만들어내는 기술	가상현실 환경을 구현하기 위한 필수 기술실사 영상에 가상영상을 겹쳐 가상환경 및 가상 물체를 제작
현장감	몰입형 디스플레이	- 영상이 관람자를 에워싸는 스크린 형태의 디스플레이 - 단순한 평면이 아닌 돔 반구형, 360도 써클 원형, 둥근 구형, 터널형, 큐브형 스크린 등이 있음, 니까	- 디지털 체험관, 엑스포, 교육용 시뮬레이션, 패션쇼 등 교육, 엔터테인먼트 분야에서 다양하게 활용되고 있음
	몰입형 환경	- 기존의 건축물, 조형물 등 일상의 입체 환경을 스크린으로 활용하여 미디어 콘텐츠를 제작하는 환경	- 건축물이나 자동차 등 물체를 3D 스캔하여 가상환경의 기본 프레임으로 활용

Questions?

VR 1-4

VIRTUAL REALITY APPLICATIONS & MARKETS

71人长去找到 岩墨花中是从26

VR Applications

더 많은 분하나 있다

VR Markets

◆ Global 가상현실, 증강현실 시장 규모 및 인력 예상

Questions?

