CARLOS EDUARDO FERREIRA
SALA 108C TEL.: 3091 6079
E-MAIL cef@ime.usp.br
MONITOR Alexandre Freire
E-MAIL afreire@ime.usp.br
MONITOR João Miranda
E-MAIL joaomm88@gmail.com

MAC 122 – Princípios de Desenvolvimento de Algoritmos

Segundo semestre de 2009

Fractais - Entrega: 27 de setembro de 2009

Este exercício-programa trata de uma família de fractais denominada Ilhas de Koch (depois de terminar o programa você poderá entender o porquê de "ilha"). Fractal é uma estrutura geométrica recursiva que serve de referência para explicar fenômenos naturais diversos como: crescimento de folhas, acidentes geográficos, arritmias cardíacas, etc. Para maiores detalhes veja por exemplo o livro de B. B. Mandelbrot – The Fractal Geometry of Nature, Ed. Freeman, do qual retiramos alguns exemplos para esse exercício.

Em cada fractal uma figura modelo, digamos M, é repetida sobre uma outra figura base B. Em cada passo recursivo, segmentos de M são substituídos por cópias da figura M em escala reduzida. Por exemplo, considere M como mostrado na figura abaixo.

Ao repetirmos M sobre um quadrado B (a base), obtemos a seguinte figura.

Seja F_1 a figura obtida. No próximo nível de recursão, os segmentos externos são substituídos por cópias de M com a metade do tamanho. Veja a figura abaixo.

No nível seguinte, cada segmento seria substituído por cópias de metade do tamanho, e assim por diante.

Neste exercício-programa, você deve apresentar uma série de opções ao usuário, sob forma de menu, em que o usuário poderá escolher:

- 1. A figura modelo M (escolha pelo menos 4 opções entre as apresentadas a seguir);
- 2. A figura base B (opções descritas abaixo);
- 3. O nível final de recursão k.

Seu programa deve apresentar na tela a figura M repetida sobre B, colorida segundo algum critério da sua escolha (bônus para quem implementar mais de uma cor). Seu programa deve, caso tenha sido a escolha do usuário, apresentar todos os níveis de recursão até o nível k escolhido por ele. A cada nível mostrado, seu programa deve solicitar que o usuário aperte alguma tecla para prosseguir.

As opções para base das figuras devem ser, pelo menos: triângulo, quadrado, pentágono, e hexágono, todos regulares. Caso você deseje (bônus!!!), pode implementar outros polígonos ou mesmo linhas abertas e irregulares.

A seguir apresentamos algumas famílias de fractais, através dos dois primeiros níveis de recursão e o formato final. As figuras podem ser encontradas no livro (ou na versão impressa distribuída em sala de aula). Recomendamos sua leitura para mais ideias.

1. Ilha de Koch triádica (pg 43)

Essa é a figura descrita no exemplo acima. Veja o resultado de aplicar a figura sobre um triângulo (nível de recursão 3).

2. Ilha de Koch quádrica (pg 50)

Note que o segmento unitário foi dividido em 4 partes. No passo seguinte da recursão, cada pequeno segmento da figura é substituído por uma cópia da mesma com dimensão dividida por 4. Veja abaixo o resultado ao aplicarmos várias vezes sobre um quadrado (o interior da figura foi pintado de preto para facilitar a visualização).

3. Ilha de Koch quádrica (pg 54)

Semelhante ao anterior. A próxima figura mostra o efeito obtido ao aplicarmos várias vezes a recursão (base também é um quadrado).

4. Floco de neve (pg 68)

Para compreender melhor a recursão, observe que a figura acima está contida em um trapézio de base maior 3, base menor 1 (se cada segmento marcado tem tamanho 1), e o tamanho do segmento maior é $\sqrt{3}$. O ângulo formado pelo primeiro segmento e o eixo horizontal é $60^{\rm O}$, e o ângulo formado entre o maior segmento e esse eixo é de $30^{\rm O}$. Observe o belo efeito obtido ao aplicarmos a figura recursivamente várias vezes tendo por base um triângulo.

5. Curva Peano-Gosper (pg 70)

Note que as linhas mostradas estão contidas em uma malha de triângulos equiláteros, o que nos permite calcular o ângulo formado entre o eixo horizontal e o primeiro segmento mostrado. Se o tamanho de cada segmento mostrado na figura é 1, a distância entre os dois pontos destacados (que estão sobre o eixo horizontal) é $\sqrt{7}$.

Ao aplicarmos a figura recursivamente sobre um triângulo, obtemos

6. Ilha de Koch e lago (pg 46)

Neste caso há a combinação de dois fractais na mesma figura. Cada lado do hexágono externo está sendo recursivamente substituído pela figura mostrada acima, enquanto que em seu interior uma curva de Peano-Gosper é substituída recursivamente. Observe o efeito depois de alguns níveis de recursão.

