ABY³: A MIXED PROTOCOL FRAMEWORK FOR MACHINE LEARNING

Peter Rindal Payman Mohassel

Machine Learning and Privacy

- Cognitive tasks: voice, facial recognition
- **Medical:** genetic testing, disease prediction
- Financial: fraud detection, credit rating
- Inference:
 - User does not want to share their data
 - Model owner does not want to share model
- Training:
 - Requires large data sets, often from different sources

Training A better Model

Security Concerns

Our Results

- New three party MPC Protocols:
 - Efficient support for fixed-point arithmetics
 - Improved matrix multiplication
 - Efficient piece-wise polynomial evaluation
 - Conversions between Arithmetic, Boolean, and Yao secret shares
- Always encrypted machine learning training and inference:
 - Linear Regression
 - Logistic Regression
 - Neural Networks
 - Extendable to other models

Protocols and Building block

• Each party "Encrypts" their data x such that

$$x = x_1 + x_2 + x_3$$

Bank of America 🧼

• Each party "Encrypts" their data x such that

$$x = x_1 + x_2 + x_3$$

Each party "Encrypts" their data x such that

$$x = x_1 + x_2 + x_3$$

- Share Types:
 - Arithmetic: $[x]^A \Rightarrow x_1 + x_2 + x_3$
 - Boolean: $[x]^B \Rightarrow x_1 \oplus x_2 \oplus x_3$
 - Yao G.C.: $[x]^Y \Rightarrow LSB(x_1 \oplus x_2)$

• Each party "Encrypts" their data x such that

$$x = x_1 + x_2 + x_3$$

 $[x] := (x_1, x_2, x_3)$

Bank of America 🧼

• Each party "Encrypts" their data x such that

$$x = x_1 + x_2 + x_3$$

 $[x] := (x_1, x_2, x_3)$

Possible to compute any function / circuit in this format

• Say we have shared [x], [y]

 x_{1}, y_{1}

• Addition
$$[\![z]\!] = [\![x]\!] + [\![y]\!]$$
: $z_i = x_i + y_i$

 x_{2}, y_{2}

 x_3, y_3

- Multiplication $[\![z]\!] = [\![x]\!] * [\![y]\!]$:
 - $z_i \neq x_i * y_i$
 - Use "replicated secret sharing"

 x_{1}, y_{1}

 x_{2}, y_{2}

 x_3, y_3

- Multiplication $[\![z]\!] = [\![x]\!] * [\![y]\!]$:
 - $z_i \neq x_i * y_i$
 - Use "replicated secret sharing"
 - Observe:

$$xy = (x_1 + x_2 + x_3)(y_1 + y_2 + y_3)$$

$$= x_1y_1 + x_1y_2 + x_1y_3$$

$$+x_2y_1 + x_2y_2 + x_2y_3$$

$$+x_3y_1 + x_3y_2 + x_3y_3$$

Let

$$z_1 = x_1 y_1 + x_1 y_3 + x_3 y_1$$

$$z_2 = x_1 y_2 + x_2 y_2 + x_2 y_2$$

$$z_3 = x_2 y_3 + x_3 y_2 + x_3 y_3$$

$$x_1, y_1$$

 x_3, y_3

 $\begin{matrix} x_1,y_1\\x_2,y_2\end{matrix}$

- Multiplication $[\![z]\!] = [\![x]\!] * [\![y]\!]$:
 - $z_i \neq x_i * y_i$
 - Use "replicated secret sharing"
 - Observe:

$$xy = (x_1 + x_2 + x_3)(y_1 + y_2 + y_3)$$

$$= x_1y_1 + x_1y_2 + x_1y_3$$

$$+x_2y_1 + x_2y_2 + x_2y_3$$

$$+x_3y_1 + x_3y_2 + x_3y_3$$

Let

$$z_1 = x_1 y_1 + x_1 y_3 + x_3 y_1$$

$$z_2 = x_1 y_2 + x_2 y_2 + x_2 y_2$$

$$z_3 = x_2 y_3 + x_3 y_2 + x_3 y_3$$

 x_1, y_1, z_{11} $x_3, y_3,$

 $x_1, y_1, x_2, y_2, z_2z_2$

Decimal Multiplications in Integer Group

- Treat bottom bits as factional bits
- Multiplication drops top/bottom d bits

Decimal Multiplications in Integer Group

- Treat bottom bits as factional bits
- Multiplication drops top/bottom d bits

- Mohassel Zhang '17
 - Introduced secret shared version
 - Adds small rounding errors
 - Only works on 2-out-of-2 secret sharing
- We extend to any honest majority
 - Briefly switch to 2-out-of-2 sharing

Preprocess:
$$[r] \leftarrow \mathbb{Z}_{2^m}$$
, $[r'] = [r]/2^{\ell}$

1.
$$[z'] = [x] * [y]$$

2.
$$t = \text{Reveal}(\llbracket z' \rrbracket - \llbracket r \rrbracket)$$

3.
$$[z] = t/2^{\ell} + [r']$$

Decimal Multiplications in Integer Group

- Treat bottom bits as factional bits
- Multiplication drops top/bottom d bits

- Mohassel Zhang '17
 - Introduced secret shared version
 - Adds small rounding errors
 - Only works on 2-out-of-2 secret sharing
- We extend to any honest majority
 - Briefly switch to 2-out-of-2 sharing
 - Round preserving
 - Malicious secure

Preprocess:
$$[r] \leftarrow \mathbb{Z}_{2^m}$$
, $[r'] = [r]/2^{\ell}$

1.
$$[z'] = [x] * [y]$$

2.
$$t = \text{Reveal}(\llbracket z' \rrbracket - \llbracket r \rrbracket)$$

3.
$$[z] = t/2^{\ell} + [r']$$

Share #1 Share #2

Matrix Multiplication on Shared Data

• Given,
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{bmatrix}$$

- Compute $Z = X \times Y$
 - Classic "rows \times columns" algorithm. E.g. $z_i = \sum_i x_{ij} y_i$
- Each multiplication requires communication
 - Communication = nd numbers!
- Recall "half" a multiplication is done locally.
 - Do half multiplies for $z_i = \sum_i x_{ij} y_i$
 - Only send final result z_i
 - d times less communication

$$z_1 = x_1y_1 + x_1y_3 + x_3y_1$$

$$z_2 = x_1y_2 + x_2y_2 + x_2y_2$$

$$z_3 = x_2y_3 + x_3y_2 + x_3y_3$$

 x_1, y_1, z_1

$$x_1, y_1, x_2, x_2, x_2, x_2, x_2$$

$$x_1, y_1, x_2, y_2, x_3, y_3, z_{33}$$

Piece-wise Polynomial

- Let
 - $t_0 = -\infty$
 - $t_1 =$ first threshold
 - ...
 - $t_m = \infty$
- Strategy: $f([x]) = \sum_{i=0}^{m-1} ([x] > t_i \wedge [x] \le t_{i+1}) * f_i([x])$

range test

- Polynomial $f_i(\cdot)$ easy to compute
- How to compute $c_i = [x] > t_i \land [x] \le t_{i+1}$?
 - $\llbracket t_i x \rrbracket^{\mathrm{B}} = \mathsf{Convert\text{-}to\text{-}binary}(\llbracket t_i x \rrbracket)$
 - $[b_i]^B$ = Most-significant-bit $([t_i x]^B)$ // $b_i = (x > t_i)$
 - $[c_i]$ = Converty-to-arithmetic($[b_i] \land \neg [b_{i+1}]$)

Conversion

- Need to convert secret sharing of $x \in \mathbb{Z}_{2^k}$:
 - Arithmetic to binary: $[x]^A \rightarrow [\vec{x}]^B = [x_1]^B, ..., [x_k]^B$
 - Binary to Arithmetic: $[\vec{x}]^B \rightarrow [x]^A$
- Strategy:
 - $[x]^A = (x_1, x_2), (x_2, x_3), (x_3, x_1)$
 - Parties provide x_1, x_2, x_3 as input to the binary MPC protocol
 - Evaluate the circuit: $[\vec{x}]^B = [\vec{x}_1]^B + [\vec{x}_2]^B + [\vec{x}_3]^B$
- Optimizations:
 - Implement + using low depth circuit, $depth = \log k$
 - Have party 1 locally compute and input $x_1 + x_2$
- Also implement conversion to/from garbled circuits
 - · Garbled circuits allow low latency for high depth circuit

Malicious Security

- We extend our semi-honest protocol to the malicious setting
- If any one party tries to cheat, the protocol can detect it.
 - Leverage replicated secret sharing

Most operations roughly 4 times more expensive

 x_1, y_1, z_1 x_3, y_3, z_3

 x_1, y_1, z_1 x_2, y_2, z_2 x_3, y_3, z_3

Application: Machine Learning

Linear Regression on Shared Data

• Given,
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Find a linear function f s.t. $f(X_i) \approx y_i$

Linear Regression on Shared Data

• Given,
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Find a linear function f s.t. $f(X_i) \approx y_i$
- Model: $f_{\mathbf{W}}(X_i) = \sum_{j=1}^d x_{ij} w_j$
- Update function:

$$w_j = w_j - \alpha (X_i \mathbf{w} - y_i) x_{ij}$$

• Cost function: $C(w) = \frac{1}{2}(f_w(X) - y)^2$ (a.k.a. L2 norm)

Linear Regression on Shared Data

• Given,
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}$$
, $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Find a linear function f s.t. $f(X_i) \approx y_i$
- Model: $f_{\mathbf{w}}$ Rate

 | \mathbf{x}_{ij} | Error | Magnitude
 | $\mathbf{w}_{j} = \mathbf{w}_{j} \boldsymbol{\alpha}(\mathbf{X}_{i}\mathbf{w} \mathbf{y}_{i})\mathbf{x}_{ij}$

$$w_j = w_j - \alpha (X_i \mathbf{w} - y_i) x_{ij}$$

Direction $C(w) = \frac{1}{2}(f_w(X) - y)^2$ (a.k.a. L2 norm)

Batch Linear Regression on Shared Data

• Given,
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}$$
, $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Find a linear function f s.t. $f(X_i) \approx y_i$
- Update in batches:
 - For $B \subset \{1,2,\ldots,n\}$

$$\mathbf{w} = \mathbf{w} - \frac{1}{|B|} \alpha X_B^T \times (X_B \times \mathbf{w} - Y_B)$$

Must do many matrix multiplications

Logistic Regression

Instead of computing

$$\mathbf{w} = \mathbf{w} - \frac{1}{|B|} \alpha X_B^T \times (X_B \times \mathbf{w} - Y_B)$$

We compute

$$\mathbf{w} = \mathbf{w} - \frac{1}{|B|} \alpha X_B^T \times (\boldsymbol{\phi}(\mathbf{X}_B \times \mathbf{w}) - Y_B)$$

- ϕ is very expensive to compute with just +,* operations
- We build a piece-wise polynomial protocol for $\phi'(\cdot) \approx \phi(\cdot)$

$$\phi'(z) = \max\left(0, \min\left(z + \frac{1}{2}, 1\right)\right)$$

Logistic Regression

Instead of computing

$$\mathbf{w} = \mathbf{w} - \frac{1}{|B|} \alpha X_B^T \times (X_B \times \mathbf{w} - Y_B)$$

We compute

$$\mathbf{w} = \mathbf{w} - \frac{1}{|B|} \alpha X_B^T \times (\boldsymbol{\phi}(\mathbf{X}_B \times \mathbf{w}) - Y_B)$$

- ϕ is very expensive to compute with just +,* operations
- We build a piece-wise polynomial protocol for $\phi'(\cdot) \approx \phi(\cdot)$

$$\phi'(z) = \max\left(0, \min\left(z + \frac{1}{2}, 1\right)\right)$$

or higher degree approximation

Neural Network

- Generalization of logistic regression
 - Each node is a regression problem
 - Replace logistic function with ReLU.
 - Easy to implement with piecewise polynomial
 - Output nodes use soft-max:

$$\sigma_i(\vec{x}) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

- For inference/prediction, replace with arg-max.
- For training,
 - Approximate e^x
 - Approximate 1/x or use one garbled circuit

Performance – Inference

The models are for the MNIST dataset with D = 784 features.

012345	123	1234	1234	1234	1234	1234	1234	7234	1 3 34
								6	
7 8	8	8	ક	8	8	8	8	8	8

Model	Protocol	Batch Size	Running Online	Time (ms) Total	Comm. (MB)	
		1	0.1	3.8	0.002	
	This					
Linear		100	0.3	4.1	0.008	
93%	SecureML [47]	1	0.2	2.6	1.6	
75 70	SecureMB [41]	100	0.3	54.2	160	
	This	1	0.2	4.0	0.005	
Logistic* 98%	1 1115	100	6.0	9.1	0.26	
	SecureML [47]	1	0.7	3.8	1.6	
	SecureML [47]	100	4.0	56.2	161	
NINI	This	1	3	8	0.5	
NN 97%	SecureML [47]	1	193	4823	120.5	
	This*	1	6	10	5.2	
CNN	Chameleon [50]	1	1360	2700	12.9	
99%	MiniONN [43]	1	3580	9329	657.5	

Performance – Logistic Regression Training

- Measures iterations / second, larger = better
- Dimension = # of features
- Batch Size B = # examples used at each iteration
- Total running time: Up to 700 times faster
- Communication: Up to 600 times less

		Batch Size B								
Dimension	Protocol	Online				Online + Offline				
		128	256	512	1024	128	256	512	1024	
10	This	2251	2053	1666	1245	2116	1892	1441	1031	
	[47]	188	101	41	25	37	20	8.6	4.4	
100	This	1867	1375	798	375	1744	1276	727	345	
	[47]	183	93	46	24	3.6	1.9	1.1	0.6	
1000	This	349	184	95	42	328	177	93	41	
	[47]	105	51	24	13.5	0.43	0.24	0.12	0.06	

Summary – ABY³

New Protocols:

- Efficient support for fixed-point arithmetics
- Improved matrix multiplication
- Efficient piece-wise polynomial evaluation
- Conversions between Arithmetic, Boolean, and Yao secret shares

Prototype machine learning implementation:

- Linear Regression 12000 iterations / second
- Logistic Regression 2000 iterations / second
- Neural Networks 10 millisecond inference

The End, Questions?

Peter Rindal Payman Mohassel

Truncation on 2-out-of-2 Secret Shares

[MohasselZhang17]

Assumption: no overflowing

Operation: truncate top/bottom bits

- I error if **⊘**+**N** overflows

$$Pr[large\ error] = 2^{-\lambda}$$

= Probability of -1 error removing a mod 2^k wrap around $< 2^{-(number of leading zeros)} = 2^{-\lambda}$

Party 2

Truncation on 2-out-of-3 Secret Shares

Party 2

Party 3

Truncation/Multiplication on 2-out-of-3 Secret Shares

- Multiplication z = x * y:
 - Preprocess
 - [r'] = rand()
 - [r] = [r']/d
 - Let [z'] = [x] [y] (integer multiplication)

$$z'_1 = x_1 y_1 + x_1 y_3 + x_3 y_1$$

$$z'_2 = x_1 y_2 + x_2 y_2 + x_2 y_2$$

$$z'_3 = x_2 y_3 + x_3 y_2 + x_3 y_3$$

Compute

$$[\![z]\!] = \frac{reveal([\![z']\!] - [\![r']\!])}{d} + [\![r]\!]$$

VISA

$$x_1, y_1, z''_{11} - r'_1 x_3, y_3,$$

$$z'-r'$$

$$x_1, y_1, x_2, y_2, z_2'z_2' - r_2'$$
 $x_2, y_2, x_3, y_3, z_2'z_3' - r_2'$

$$x_2, y_2, x_3, y_3, z_2'z_3' - \gamma$$

Truncation/Multiplication on 2-out-of-3 Secret Shares

- Multiplication z = x * y:
 - Preprocess
 - [r'] = rand()
 - $\llbracket r \rrbracket = \llbracket r' \rrbracket / d$
 - Let [z'] = [x] [y] (integer multiplication)

$$z'_1 = x_1 y_1 + x_1 y_3 + x_3 y_1$$

$$z'_2 = x_1 y_2 + x_2 y_2 + x_2 y_2$$

$$z'_3 = x_2 y_3 + x_3 y_2 + x_3 y_3$$

Bank of America 🧇

$$x_1, y_1, z'_1 \\ x_3, y_3,$$

$$z'-r'$$

 x_1, y_1, x_2, y_2, z_2'

Compute

$$\llbracket z \rrbracket = \frac{z' - r'}{d} + \frac{\llbracket r' \rrbracket}{d}$$

Performance – Linear Regression Training

- Measures iterations / second, larger = better
- Dimension = # of features
- Batch Size B = # examples used at each iteration

	Protocol	Batch Size B								
Dimension		О	nline Thi	roughpu	t	Online + Offline Throughput				
		128	256	512	1024	128	256	512	1024	
10	This	11764	10060	7153	5042	11574	9803	6896	4125	
10	[47]	7889	7206	4350	4263	47	25	11	5.4	
100	This	5171	2738	993	447	5089	2744	1091	470	
	[47]	2612	755	325	281	3.7	2.0	1.1	0.6	
1000	This	406	208	104	46	377	200	100	46	
	[47]	131	96	45	27	0.44	0.24	0.12	0.06	