Lecture 13: Controllability II

Baboo J. Cui, Yangang Cao July 24, 2019

Contents

1	Controllability of C-T LTI Systems	2
2	Continuous-Time Reachability	2
3	Proof	2
4	Equivalent Conditions of C-T Controllability	2
5	C-T Reachability Gramian	3
6	Minimum-Energy Input for Reachability	3
7	D-T Reachability Gramian	3
8	Controllability Under Coordinate Transformations	3
9	Kalman Controllable Form	4
10	Proof of Kalman Controllable Form	4

1 Controllability of C-T LTI Systems

A continuous-time n-state m-input LTI system

$$\dot{x} = Ax + Bu, \quad x(0) = x_0 \tag{1}$$

Definition:

- The LTI system is called **controllable at time** $t_f > 0$ if for any initial state $x_0 \in \mathbb{R}^n$ and any target state $x_f \in \mathbb{R}^n$, a control u(t) exists that can steer the system from x_0 to x_f over the time interval $[0, t_f]$
- It is called **reachable** at time $t_f > 0$ if $x_0 = 0$ in the above definition
- Above two definition are equivalent
- Reachable subspace at time t_f :

$$\mathcal{R}_{t_f} = \left\{ \int_0^{t_f} e^{A(t_f - \tau)} Bu(\tau) d\tau | u : [0, t_f] \to \mathbb{R}^m \right\}$$

2 Continuous-Time Reachability

Proposition:

At any $t_f > 0$, the reachable subspace is $\mathcal{R}_{tf} = \mathcal{R} = \mathcal{R}(\mathcal{C})$, where

$$\mathcal{C} = \left[\begin{array}{ccc} B & AB & \cdots & A^{n-1}B \end{array} \right]$$

is the controllability matrix of the system (A, B)

Theorem:

The continuous-time system (A, B) is reachable/controllable (at any time t_f) if and only if its controllability matrix \mathcal{C} is onto (full rank).

3 Proof

4 Equivalent Conditions of C-T Controllability

Theorem:

The continuous-time LTI system (A, B) is controllable if and only if

- 1. The controllability matrix $C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ is full rank
- 2. **PBH Rank Test**: For any $\lambda \in \mathbb{C}$, rank $[\lambda I A \quad B] = n$
- 3. Eigenvector Test: For any left eigenvector $w \in \mathbb{C}^n$ of $A, w^T B \neq 0$
- 4. For any $t_f > 0$, the following matrix is nonsingular:

$$W_r(t_f) := \int_0^{t_f} e^{A\tau} B B^T e^{A^T \tau} d\tau$$

5 C-T Reachability Gramian

Definition (Reachability Garmian):

Given a C-T system $\dot{x} = Ax + Bu$ with A stable, its reachability (or controllability) Gramian is the matrix

$$W_r := \lim_{t_f \to \infty} W_r\left(t_f\right) = \int_0^\infty e^{A\tau} B B^T e^{A^T \tau} d\tau \in \mathbb{R}^{n \times n}$$

6 Minimum-Energy Input for Reachability

Suppose the system $\dot{x} = Ax + Bu$ is controllable

Minimun-energy input is the input u^* that steers the system from x(0) = 0 to $x(t_f) = x_d$ with minimal energy $\int_0^{t_f} \|u(\tau)\|^2 d\tau$ The minimum-energy input is given by

$$u^*(\tau) = B^T e^{A^T(t_f - \tau)} \left(\int_0^{t_f} e^{A\tau} B B^T e^{A^T \tau} d\tau \right)^{-1} x_d, \quad \tau \in [0, t_f]$$

and the minimum energy needed is

$$\mathcal{E}_{\min} = \int_{0}^{t_f} \|u^*(\tau)\|^2 d\tau = x_d^T \underbrace{\left(\int_{0}^{t_f} e^{A\tau} B B^T e^{A^T \tau} d\tau\right)^{-1}}_{W_r(t_f)} x_d$$

As $t_f \to \infty$, minimum energy required over infinite horizon is

$$\mathcal{E}_{\min}^{\infty} = x_d^T W_r^{-1} x_d$$

7 D-T Reachability Gramian

Definition (Reachability Gramian):

Given a D-T system x[k+1] = Ax[k] + Bu[k] with A stable. Its reachability (or controllability) Gramian is the matrix

$$W_r := \sum_{i=0}^{\infty} A^i B B^T \left(A^T \right)^i \in \mathbb{R}^{n \times n}$$

8 Controllability Under Coordinate Transformations

Original (continuous-time or discrete-time) system (A, B)New system (\tilde{A}, \tilde{B}) after a coordination transform $\tilde{x} = T^{-1}x$:

$$\check{A} = T^{-1}AT, \quad \tilde{B} = T^{-1}B$$

Fact:

(A, B) is controllable if and only if $(T^{-1}AT, T^{-1}B)$ is controllable

9 Kalman Controllable Form

Fact (Kalman Controllable Form):

For any C-T system $\dot{x} = Ax + Bu$, there exists a coordinate transform T such that the transformed system (\tilde{A}, \tilde{B}) is of the form:

$$\tilde{A} = T^{-1}AT = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}$$

$$\tilde{B} = T^{-1}B = \left[\begin{array}{c} \tilde{B}_1 \\ 0 \end{array} \right]$$

where $\tilde{A}_{11} \in \mathbb{R}^{r \times r}$ with $r = \text{rand}(\mathcal{C})$, and $\left(\tilde{A}_{11}, \tilde{B}_{1}\right)$ is controllable

10 Proof of Kalman Controllable Form

Fact (Kalman Controllable Form):

For any C-T system $\dot{x} = Ax + Bu$, there exists a coordinate transform T such that the transformed system (\tilde{A}, \tilde{B}) is of the form:

$$\tilde{A} = T^{-1}AT = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}$$

$$\tilde{B} = T^{-1}B = \left[\begin{array}{c} \tilde{B}_1 \\ 0 \end{array} \right]$$

where $\tilde{A}_{11} \in \mathbb{R}^{r \times r}$ with $r = \text{rank}(\mathcal{C})$, and $\left(\tilde{A}_{11}, \tilde{B}_{1}\right)$ is controllable.

11 Proof of Kalman Controllable Form