Calcul différentiel

Exercice 1 [Normes subordonnées]

1. Soit E et F des espaces de Banach. Montrer que l'espace $\mathcal{L}(E,F)$ des applications linéaires bornées de E dans F, est un espace de Banach pour la norme subordonnée définie par :

 $|||f||| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$

2. Soit $||A||_k = \sup_{x \neq 0} \frac{||Ax||_k}{||x||_k}$, pour $A \in M_{n,n}(\mathbb{R})$. Montrer pour $A \in M_n(\mathbb{R})$ que :

 $|||A|||_1 = \max_j \sum_{i=1}^n |a_{ij}|$

 $||A||_2 = \sup\{|\lambda|, \lambda \text{ valeur propre de } AA^*\}$

 $|||A|||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

(On majorera d'abord ||Ax|| pour majorer la norme subordonnée. On prendra ensuite un vecteur bien choisi pour la minorer)

3. Quelle est la norme de l'application linéaire $g:(\mathbb{R}^3,\|.\|_{\infty})\to(\mathbb{R}^2,\|.\|_{\infty})$ dont la matrice est $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix}$.

Exercice 2

Trouver la résolvante de l'équation différentielle

$$\begin{cases} x' = x + y \\ y' = 2x \end{cases}$$

et en déduire l'expression matricielle de la matrice $\exp(tA)$ pour $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$.

Exercice 3

Soit ϕ de \mathbb{R} dans $GL_n(\mathbb{R})$ une application continue telle que $\phi(s+t) = \phi(s)\phi(t)$ pour tout $(t,s) \in \mathbb{R}^2$. Montrer qu'il existe $A \in M_n(\mathbb{R})$ telle que pour tout $t \in \mathbb{R}$, $\phi(t) = e^{tA}$.

Exercice 4

Soit E un evn de dimension finie, I =]a, b[un ouvert de \mathbb{R} et f une fonction de $I \times E$ à valeur dans E continue. Pour $(t_0, x_0) \in I \times E$ on considère le système (1) suivant.

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

1. Soit (J, x) une solution de (1), telle que $\beta = \sup J < b$ et x bornée au voisinage de β , montrer que (J, x) peut être prolongé au dela de β en une solution de (1).

2. On suppose de plus que pour tout segment S de I il existe deux constantes positives C_s, A_s telle que $\forall (t, x) \in S \times E, |f(t, x)| \leq C_s|x| + A_s$. Montrer alors que toutes solution de (1) peut être prolongée en une solution globale.

Exercice 5 On se place dans le cadre de l'exercice précédent et on choisit $E = \mathbb{R}^n$. On suppose de plus qu'il existe C telle que $\forall x, y \in \mathbb{R}^n$, $\langle h(x) - h(y), x - y \rangle \geq C|x - y|^2$. On va montrer que h est un homéomorphisme.

- 1. Soit (J, x) une solution de (1) avec f(t, x) = -h(x). Montrer, en utilisant Gronwall, que $\forall t \in J$, $|x'(t)| \leq |x'(0)|e^{-Ct}$.
- 2. En déduire que (1) admet une solution x définit sur \mathbb{R}^+ , trouver sa limite en $+\infty$ ainsi que la valeur de f en ce point.
- 3. Conclure en appliquant le même raisonnement à f(t,x) = -h(x) + z pour tout z dans \mathbb{R}^n .
- 4. Rappeler une autre manière, vue en td, de démontrer ce résultat.

Topologie

Exercice 6

- 1. Combien de topologies peut-on mettre sur un ensemble à trois éléments?
- 2. Montrer qu'une seule de ces topologies est métrisable.

Exercice 7

On dit qu'un espace topologique E est séparé si pour tous $x \neq y$ dans E, il existe des ouverts V_1 , V_2 disjoints tels que $x \in V_1$ et $y \in V_2$.

- 1. Montrer que tout espace métrique est séparé.
- 2. Construire une topologie τ sur \mathbb{R}^2 (autre que la topologie grossière!) telle que (\mathbb{R}^2, τ) ne soit pas séparé.

Exercice 8 Topologie de Zariski Soit k un corps algébriquement clos et n un entier strictement positif. Pour tout $E \subset k[X_1, \ldots, X_n]$ on note

$$Z(E) = \{(x_1, \dots, x_n) \in k^n ; P(x_1, \dots, x_n) = 0 \forall P \in E\}.$$

On cherche a définir une topologie O sur k^n . Pour cela on définit les complémentaires des Z(E) comme ouvert de O.

- 1. Montrer que O définit bien une topologie sur k^n .
- 2. Montrer que tous les ouverts non-vides de cette topologie sont denses.
- 3. Montrer que pour $x,y\in k^n$ on peut trouver un ouvert contenant x mais pas y. Cette topologie est-elle séparée ?
- 4. Sur C comparer la topologie usuelle à celle de Zariski, les ouverts de l'une sont-ils ouvert de l'autre?

Exercice 9 – Espaces ℓ^p

On note ℓ^p l'ensemble des suites de nombres complexes $a=(a_n)$ telles que la série $\sum |a_n|^p$ converge, et on le munit de la norme $||a||_p = (\sum_n |a_n|^p)^{1/p}$. On note ℓ^∞ l'ensemble des suites bornées, muni de la norme $||.||_\infty$, et c_0 le sous-ensemble formé des suites qui tendent vers 0.

- 1. Montrer que ℓ^p et ℓ^∞ sont des espaces de Banach.
- 2. Montrer que $\ell^p \subset c_0$ pour tout p, que $\ell^p \subset \ell^\infty$ et que pour $1 \leq p \leq p'$, on a $\ell^p \subset \ell^{p'}$.
- 3. Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont-elles équivalentes sur ℓ^{1} ? Que dire de $\|\cdot\|_{p}$ et $\|\cdot\|_{p'}$ sur ℓ^{p} pour $1 \leq p \leq p'$?
- 4. Quelle est l'adhérence dans ℓ^{∞} des suites presque nulles?
- 5. Quelle est l'adhérence de ℓ^p dans ℓ^{∞} ?
- 6. Démontrer que c_0 est un espace de Banach séparable; que ℓ^p est séparable; que ℓ^∞ n'est pas séparable.

Exercice 10

Soit E un evn, B_r une boule ouverte de E de rayon r et x_0 un point de $E \setminus B_r$.

- 1. Montrer qu'il existe une forme linéraire continue f de E dans \mathbb{R} , telle que $\forall y \in B_r$, $f(y) < f(x_0)$. On dit alors que l'hyperplan $[f = f(x_0)]$ sépare B_r et x.
- 2. Montrer que l'on peut aussi séparer deux boules ouvertes, B_r et B_s disjointes. C'est à dire qu'il existe une forme linéaire f telle que $\forall y, z \in B_r \times B_s$, $f(y) \leq f(z)$.