

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Institut Supérieur des Technologies de l'Information et de la Communication

Classes : GLSI-2	Devoir Surveillé Matière : Théorie des Langages	Nombre de pages : 2
Enseignants : Z. Trabelsi, M. Mrabet	Date : 05/11/2021	Durée : 1h
Barème approximatif: 6+6+5+3	Documents : autorisés ☐ : non autorisés ⊠	Calculatrice : autorisée ⊠ : non autorisée □

Exercice 1 (6 points)

Soit l'automate à états finis $M = (X, Q, q_0, F, \delta)$ suivant :

- 1) Déterminez les paramètres X, Q, q_0 et F.
- 2) Donnez la table de transition de l'automate M.
- 3) L'automate M est-il déterministe ? Justifiez votre réponse.
- 4) L'automate M reconnait-il les mots « 01001 » et « 1011 » ? Justifiez votre réponse.

Exercice 2 (6 points)

- 1) Soit la grammaire $G_1 = (\{a, b\}, \{S\}, S, \{S \rightarrow aSab \mid \epsilon \}).$
 - a. Donnez deux mots qui peuvent être générés par la grammaire G_1 . Justifiez votre réponse.
 - b. Donnez une expression générale du langage L(G₁) généré par cette grammaire.
- 2) Soit la grammaire $G_2 = (\{a, b\}, \{S\}, S, \{S \rightarrow aS \mid aaSb \mid \epsilon \})$.
 - a. En se basant sur la classification de Chomsky, déterminez le type de la grammaire G₂. Justifiez votre réponse.
 - b. Donnez une expression générale du langage L(G₂) généré par cette grammaire.

Exercice 3 (5 points)

1. Soit le langage L_1 = ensemble de tous les mots de $\{a, b\}^*$ qui contiennent un seul symbole « a ».

Déterminez, en justifiant votre réponse, la grammaire permettant de générer L₁ parmi les propositions suivantes :

- a) $G_1 = (\{a, b\}, \{S,A\}, S, \{S \rightarrow AaA ; A \rightarrow bA \mid \epsilon \}).$
- b) $G_2 = (\{a, b\}, \{S,A\}, S, \{S \rightarrow AaA ; A \rightarrow aA \mid bA \mid \epsilon\}).$
- c) Aucune de ces réponses
- 2. Soit le langage L_2 = ensemble de tous les mots de $\{a, b\}^*$ qui contiennent au moins trois symboles « a ».

Déterminez, en justifiant votre réponse, la grammaire permettant de générer L₂ parmi les propositions suivantes :

- a) $G_1 = (\{a, b\}, \{S, A\}, S, \{S \rightarrow AaAaAaA ; A \rightarrow aA \mid bA \mid \epsilon\}).$
- b) $G_2 = (\{a, b\}, \{S, A\}, S, \{S \rightarrow AaAaAaA; A \rightarrow bA \mid \epsilon \}).$
- c) Aucune de ces réponses
- 3. Soit la grammaire $G = (\{a\}, \{S, A, B\}, S, \{S \rightarrow Aa; A \rightarrow B; B \rightarrow Aa\})$. Déterminez, **en justifiant votre réponse**, le langage L généré par G.

Exercice 4 (3 points)

Déterminez la/les bonne(s) réponse(s) :

- 1) La machine la plus simple pour reconnaître un langage de type 2 est :
 - a. AEF
 - b. Automate à pile
 - c. Machine de Turing
- 2) Selon Rabin-Scott, tout AEF non déterministe peut être transformé en AEF déterministe :
 - a. Vrai
 - b. Faux
- 3) La classification de Chomsky permet de classifier les grammaires en se basant sur la complexité :
 - a. des symboles terminaux
 - b. des symboles non-terminaux
 - c. des règles de production