Введение

Определение Γ рамма $mu\kappa a~G=<\Sigma>$

$$pos = init + delta * 60;$$

1. Лексический анализ

- 2. Синтаксический анализ (разложение в дерево)
- 3. Семантический анализ
- 4. Промежуточное представление

$$t_1 = delta * 60$$

$$t_2 = init + t_1$$

Иерархия Хомского

малые латинские буквы - терминалы

большие - нетерминалы

Вид грамматики	Правила	Распознаватель	Класс языков
Общего вида	$\alpha \to \beta$	MT	RecEn
(неограниченные)			
Контекстно-	$\alpha A\beta \to \alpha \gamma \beta$	Линейный ограниченный автомат (LBA)	КЗЯ
зависимые(КЗ)			
Контекстно-	$A \rightarrow \beta$	Недетерминированный автомат с	КСЯ
свободные(КС)		магазинной памятью (PDA)	
Праволинейные	$A \rightarrow \gamma B$	ДКА	Регулярные

Пример:

 $S \to ASB|\lambda$

 $AB \to BA$

 $A \to a$

 $B \to b$

Эквивалентная грамматика:

 $S \to aB|bA$

 $A \rightarrow aS|bAA$

 $B \rightarrow bS|aBB$

 $A \to a$

 $B \to b$

Значит исходная грамматика - праволинейная.

Регулярные \subset КСЯ \subset КЗЯ \subset RecC \subset RecEn

Определение Язык обладает св-м Р, если \exists грамматика со св-м Р, его порождающая

КСГ и КСЯ

Определение Упорядоченное дерево - дерево с заданным линейным порядком со св-ми:

- 1. если x сын y, то $x \ge y$
- 2. если x и y братья и $x \leq y$, то для всех сыновей z узла x: $z \leq y$

Определение Дерево вывода цепочки w в грамматике G - упорядоченное дерево со св-ми:

- 1. Узлы нетерминалы, корень акисиома, листья терминалы или λ , причем у листьев λ нет братьев
- 2. Если у узла x сыновья $y_1 \leq ... \leq y_n$, то существует правило вывода $X \to Y_1...Y_n$
- 3. Если все листья дерева имеют метки $a_1 \leq ... \leq a_n$, то $w = a_1...a_n$

Определение Вывод цепочки w $(S \to \alpha_1 \to ... \to \alpha_n = w)$ в G представлен деревом T, если существует набор стандартных поддеревьев $T_1...T_n$ такой, что упорядоченные листья T_i являются α_i

Определение T' - стандартное поддерево T, если:

- 1. Корни T и T' совпадают
- 2. если узел лежит в T', то он либо лист в T', либо все его сыновья лежат в T'

Одной цепочке могут соответствовать несколько деревьев.

Определение Грамматика однозначна, если любая цепочка имеет единственное дерево вывода. Язык однозначен, если существует порождающая его однозначная грамматика.