## CÁLCULO NUMÉRICO UERJ

## Interpolação Polinomial - Forma de Newton

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

## Sumário

- Forma de Newton
  - Operador diferenças divididas
  - Construção da tabela de diferenças divididas
- Erro de interpolação
  - Estimativa do erro para f(x) conhecido
  - Estimativa do erro para f(x) desconhecido usando Forma de Newton
- Bibliografia

# Forma de Lagrange

Vimos anteriormente que a forma de Lagrange é dada por

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x),$$

onde definimos  $y_k = f(x_k)$  e as funções base  $L_k(x)$ , para k = 0, 1, ..., n, por:

$$L_k(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)} = \prod_{i=0,i\neq k}^n \frac{x-x_i}{x_k-x_i},$$

onde

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k, \\ 1 & \text{se } i = k. \end{cases}$$

**Desvantagem:** ao adicionar novos pontos de interpolação, deveremos recalcular os polinômios  $L_k(x)$ .



## Forma de Lagrange

Vimos anteriormente que a forma de Lagrange é dada por

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x),$$

onde definimos  $y_k = f(x_k)$  e as funções base  $L_k(x)$ , para k = 0, 1, ..., n, por:

$$L_k(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)} = \prod_{i=0,i\neq k}^n \frac{x-x_i}{x_k-x_i},$$

onde

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k, \\ 1 & \text{se } i = k. \end{cases}$$

**Desvantagem:** ao adicionar novos pontos de interpolação, deveremos recalcular os polinômios  $L_k(x)$ .



#### Dada a tabela:

| X                 | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|-------------------|---|--------|--------|--------|--------|--------|
| $\overline{f(x)}$ | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Lagrange.

O exercício pede para achar uma aproximação  $f(0.2749) \approx P_2(0.2749)$ .

Devemos escolher três pontos da tabela  $x_0$ ,  $x_1$ ,  $x_2$  tais que  $x_0$  esteja mais próximo de 0.2749 e seja menor que 0.2749.

Neste exemplo,  $x_0 = 0.2$ ,  $x_1 = 0.3$ ,  $x_2 = 0.4$ .



#### Dada a tabela:

| X                 | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|-------------------|---|--------|--------|--------|--------|--------|
| $\overline{f(x)}$ | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

Obter f(0.2749) usando interpolação quadrática de Lagrange.

O exercício pede para achar uma aproximação  $f(0.2749) \approx P_2(0.2749)$ .

Devemos escolher três pontos da tabela  $x_0$ ,  $x_1$ ,  $x_2$  tais que  $x_0$  esteja mais próximo de 0.2749 e seja menor que 0.2749.

Neste exemplo,  $x_0 = 0.2$ ,  $x_1 = 0.3$ ,  $x_2 = 0.4$ .



A base de Lagrange será formada pelos seguintes polinômios de grau 2:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0.3)(x - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$\Rightarrow L_0(0.2749) = \frac{(0.2749 - 0.3)(0.2749 - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 0.2)(x - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$\Rightarrow L_1(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 0.2)(x - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$



#### Assim, obtemos:

$$P_2(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4)$$

 $P_2(0.2749) = 1.3164.$ 

Mas, e para obter, por exemplo, f(0.2749) usando **interpolação cúbica**?

Adicionamos o nó  $x_3 = 0.5$  ao conjunto de nós de interpolação e obtemos:  $x_0 = 0.2$ ,  $x_1 = 0.3$ ,  $x_2 = 0.4$ ,  $x_3 = 0.5$ .

Porém, não poderemos mais reaproveitar  $L_0(x)$ ,  $L_1(x)$ ,  $L_2(x)$  calculados na interpolação quadrática, pois são **polinômios de grau** 2.

Assim, obtemos:

$$P_2(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4)$$

 $P_2(0.2749) = 1.3164.$ 

Mas, e para obter, por exemplo, f(0.2749) usando **interpolação cúbica**?

Adicionamos o nó  $x_3 = 0.5$  ao conjunto de nós de interpolação e obtemos:  $x_0 = 0.2$ ,  $x_1 = 0.3$ ,  $x_2 = 0.4$ ,  $x_3 = 0.5$ .

Porém, não poderemos mais reaproveitar  $L_0(x)$ ,  $L_1(x)$ ,  $L_2(x)$  calculados na interpolação quadrática, pois são **polinômios de grau** 2.

Agora, deveremos recalcular os polinômios da base, que são de grau 3:

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} = \frac{(x - 0.3)(x - 0.4)(x - 0.5)}{(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)}$$

$$\Rightarrow L_0(0.2749) = \frac{(0.2749 - 0.3)(0.2749 - 0.4)(0.2749 - 0.5)}{(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} = \frac{(x - 0.2)(x - 0.4)(x - 0.5)}{(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)}$$

$$\Rightarrow L_1(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.4)(0.2749 - 0.5)}{(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)}$$

Agora, deveremos recalcular os polinômios da base, que são de **grau** 3:

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} = \frac{(x - 0.2)(x - 0.3)(x - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$\Rightarrow \textit{L}_{2}(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} = \frac{(x - 0.2)(x - 0.3)(x - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

Assim, obtemos:

$$P_3(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4) + L_3(0.2749)f(0.5) = 1.3164$$

A vantagem da próxima forma de interpolação, **Forma de Newton**, é que podemos adicionar novos pontos de dados ao polinômio interpolador sem a necessidade de recalcular todo o polinômio.

Agora, deveremos recalcular os polinômios da base, que são de **grau** 3:

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} = \frac{(x - 0.2)(x - 0.3)(x - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} = \frac{(x - 0.2)(x - 0.3)(x - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

Assim, obtemos:

$$P_3(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4) + L_3(0.2749)f(0.5) = 1.3164$$

A vantagem da próxima forma de interpolação, **Forma de Newton**, é que podemos adicionar novos pontos de dados ao polinômio interpolador sem a necessidade de recalcular todo o polinômio.

A forma de Newton para um polinômio de grau n que interpola uma função f(x) em n+1 pontos distintos  $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$  é dada por:

$$P_n(x) = d_0 N_0(x) + d_1 N_1(x) + d_2 N_2(x) + ... + d_n N_n(x),$$

onde as funções bases são dadas por:

$$N_1(x) = x - x_0;$$
 $N_2(x) = (x - x_0)(x - x_1);$ 
 $N_3(x) = (x - x_0)(x - x_1)(x - x_2);$ 
...

 $N_n(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1})$ 
e os coeficientes  $d_k$ , para  $k = 0, 1, \dots, n$ , são as

diferenças divididas de ordem k.

 $N_0(x) = 1$ ;

Os coeficientes  $d_k$  são calculados usando o operador diferenças divididas, definido por:

$$d_0 = f[x_0] = f(x_0)$$
 (Ordem zero)

$$d_1 = f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 (Ordem 1)

$$d_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$
(Ordem 2)

(Ordem 2)

$$d_3 = f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$
 (Ordem 3)

$$d_n = f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0} \text{ (Ordem n)}$$

A melhor maneira de calcular as diferenças divididas  $d_0, d_1, \dots, d_n$  é construindo a seguinte tabela:

| X                     | Ordem 0      | Ordem 1          | Ordem 2                  |     | Ordem n            |
|-----------------------|--------------|------------------|--------------------------|-----|--------------------|
| <i>x</i> <sub>0</sub> | $f[x_0]$     |                  |                          |     |                    |
|                       | <b>6</b> 5 1 | $f[x_0,x_1]$     |                          |     |                    |
| <i>X</i> <sub>1</sub> | $f[x_1]$     | <b>4</b> [       | $f[x_0,x_1,x_2]$         |     |                    |
| <i>X</i> <sub>2</sub> | $f[x_2]$     | $f[x_1,x_2]$     | $f[x_1, x_2, x_3]$       |     |                    |
| 72                    | / [^2]       | $f[x_2, x_3]$    | 7[1, 12, 13]             | ()  | $f[x_0, x_1, x_n]$ |
| <i>X</i> <sub>3</sub> | $f[x_3]$     | [ 2 / 0]         | $f[x_2, x_3, x_4]$       | ( ) | [ 0 / 1 / //]      |
|                       |              | $f[x_3,x_4]$     |                          |     |                    |
|                       |              |                  |                          |     |                    |
|                       |              |                  | $f[x_{n-2},x_{n-1},x_n]$ |     |                    |
|                       | <b>6</b> 5 3 | $f[x_{n-1},x_n]$ |                          |     |                    |
| $X_n$                 | $f[x_n]$     |                  |                          |     |                    |

| X                     | Ordem 0      | Ordem 1                           | Ordem 2                  |     | Ordem n                  |
|-----------------------|--------------|-----------------------------------|--------------------------|-----|--------------------------|
| <i>X</i> <sub>0</sub> | $f[x_0]=d_0$ |                                   |                          |     |                          |
| <i>X</i> <sub>1</sub> | $f[x_1]$     | $f[x_0, x_1] = d_1$ $f[x_1, x_2]$ | $f[x_0,x_1,x_2]=d_2$     |     |                          |
| <i>X</i> <sub>2</sub> | $f[x_2]$     | $f[x_1, x_2]$ $f[x_2, x_3]$       | $f[x_1,x_2,x_3]$         | ()  | $f[x_0, x_1, x_n] = d_n$ |
| <i>X</i> <sub>3</sub> | $f[x_3]$     | $f[x_3, x_4]$                     | $f[x_2,x_3,x_4]$         | ` ' | [ 0, 1,]                 |
|                       |              |                                   |                          |     |                          |
|                       |              | $f[x_{n-1},x_n]$                  | $f[x_{n-2},x_{n-1},x_n]$ |     |                          |
| X <sub>n</sub>        | $f[x_n]$     |                                   |                          |     |                          |

$$P_n(x) = \mathbf{d_0} + \mathbf{d_1}(x - x_0) + \mathbf{d_2}(x - x_0)(x - x_1) + \mathbf{d_3}(x - x_0)(x - x_1)(x - x_2) + \dots + \mathbf{d_n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

| X                     | Ordem 0      | Ordem 1                           | Ordem 2                  |     | Ordem n                  |
|-----------------------|--------------|-----------------------------------|--------------------------|-----|--------------------------|
| <i>X</i> <sub>0</sub> | $f[x_0]=d_0$ |                                   |                          |     |                          |
| <i>X</i> <sub>1</sub> | $f[x_1]$     | $f[x_0, x_1] = d_1$ $f[x_1, x_2]$ | $f[x_0,x_1,x_2]=d_2$     |     |                          |
| <i>X</i> <sub>2</sub> | $f[x_2]$     | $f[x_1, x_2]$ $f[x_2, x_3]$       | $f[x_1,x_2,x_3]$         | ()  | $f[x_0, x_1, x_n] = d_n$ |
| <i>X</i> <sub>3</sub> | $f[x_3]$     | $f[x_3,x_4]$                      | $f[x_2,x_3,x_4]$         | , , |                          |
|                       |              |                                   |                          |     |                          |
|                       |              |                                   | $f[x_{n-2},x_{n-1},x_n]$ | ••• |                          |
|                       |              | $f[x_{n-1},x_n]$                  |                          | ••• |                          |
| X <sub>n</sub>        | $f[x_n]$     |                                   |                          |     |                          |

$$P_n(x) = \frac{d_0}{d_1} + \frac{d_1}{d_1}(x - x_0) + \frac{d_2}{d_2}(x - x_0)(x - x_1) + \frac{d_3}{d_3}(x - x_0)(x - x_1)(x - x_2) + \dots + \frac{d_n}{d_n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas

0 1

0.1 1.1052

0.2 1.2214

0.3 1.3499

0.4 1.4918

0.5 1.6487



#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

didas:

| Vamo | s construir a | a seguinte t | abela de dif | erenças divid |
|------|---------------|--------------|--------------|---------------|
| X    | Ordem 0       | Ordem 1      | Ordem 2      | Ordem 3       |
| 0    | 1             |              |              |               |
| 0.1  | 1.1052        |              |              |               |
| 0.2  | 1.2214        |              |              |               |
| 0.3  | 1.3499        |              |              |               |

0.4 1.4918

0.5 1.6487

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

| vaiii | os constrair i | a seganite t | abela ac all | crcrigas arvia |
|-------|----------------|--------------|--------------|----------------|
| X     | Ordem 0        | Ordem 1      | Ordem 2      | Ordem 3        |
| 0     | 1              |              |              |                |
|       |                | 1.0520       |              |                |
| 0.1   | 1.1052         |              |              |                |
| 0.2   | 1.2214         |              |              |                |
|       |                |              |              |                |
| 0.3   | 1.3499         |              |              |                |
| 0.4   | 1.4918         |              |              |                |
|       |                |              |              |                |

0.5

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

| vaiii | os constituit t | a seguinte t | abcia ac an | ci ci iças aivi |
|-------|-----------------|--------------|-------------|-----------------|
| X     | Ordem 0         | Ordem 1      | Ordem 2     | Ordem 3         |
| 0     | 1               |              |             |                 |
|       |                 | 1.0520       |             |                 |
| 0.1   | 1.1052          |              |             |                 |
|       |                 | 1.1620       |             |                 |
| 0.2   | 1.2214          |              |             |                 |
|       |                 |              |             |                 |
| 0.3   | 1.3499          |              |             |                 |
|       |                 |              |             |                 |
| 0.4   | 1.4918          |              |             |                 |
|       |                 |              |             |                 |

0.5

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

|     |         | a oogamic t | a       | ororigae arri |
|-----|---------|-------------|---------|---------------|
| X   | Ordem 0 | Ordem 1     | Ordem 2 | Ordem 3       |
| 0   | 1       |             |         |               |
|     |         | 1.0520      |         |               |
| 0.1 | 1.1052  |             |         |               |
|     |         | 1.1620      |         |               |
| 0.2 | 1.2214  |             |         |               |
|     |         | 1.2850      |         |               |
| 0.3 | 1.3499  |             |         |               |
|     |         |             |         |               |
| 0.4 | 1.4918  |             |         |               |
|     |         |             |         |               |
|     |         |             |         |               |

0.5

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| 3_ |
|----|
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         |         |         |
|     |         | 1.1620  |         |         |
| 0.2 | 1.2214  | 4 0050  |         |         |
| 0.3 | 1.3499  | 1.2850  |         |         |
| 0.3 | 1.3499  | 1.4190  |         |         |
| 0.4 | 1.4918  | 1.7130  |         |         |
| ٠., |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

|     |         |         |         | 3       |
|-----|---------|---------|---------|---------|
| Χ   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         |         |
| 0.2 | 1.2214  |         |         |         |
|     |         | 1.2850  |         |         |
| 0.3 | 1.3499  |         |         |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         |         |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| Χ   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         |         |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         |         |
| 0.3 | 1.3499  |         |         |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         |         |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |



#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         |         |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         |         |
| 0.3 | 1.3499  |         | 0.6700  |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         |         |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |

#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         |         |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         |         |
| 0.3 | 1.3499  |         | 0.6700  |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         | 0.7500  |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1 6487  |         |         |         |



#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         | 0.2167  |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         |         |
| 0.3 | 1.3499  |         | 0.6700  |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         | 0.7500  |         |
| •   |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |



#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         | 0.2167  |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         | 0.1833  |
| 0.3 | 1.3499  |         | 0.6700  |         |
|     |         | 1.4190  |         |         |
| 0.4 | 1.4918  |         | 0.7500  |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1.6487  |         |         |         |



#### Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter f(0.2749) usando interpolação quadrática de Newton.

| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----|---------|---------|---------|---------|
| 0   | 1       |         |         |         |
|     |         | 1.0520  |         |         |
| 0.1 | 1.1052  |         | 0,5500  |         |
|     |         | 1.1620  |         | 0.2167  |
| 0.2 | 1.2214  |         | 0.6150  |         |
|     |         | 1.2850  |         | 0.1833  |
| 0.3 | 1.3499  |         | 0.6700  |         |
|     |         | 1.4190  |         | 0.2667  |
| 0.4 | 1.4918  |         | 0.7500  |         |
|     |         | 1.5690  |         |         |
| 0.5 | 1 6487  |         |         |         |



## Retornando ao exemplo, dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

Note que 0.2749 está entre os nós de interpolação  $x_0 = 0.2$  e  $x_1 = 0.3$ . Logo, os nós de interpolação escolhidos são:  $x_0 = 0.2$ ,  $x_1 = 0.3$ ,  $x_2 = 0.4$ .

| ordem 2 Ordem 3       |
|-----------------------|
|                       |
|                       |
| 0                     |
| 0,5500                |
| 0 0.2167              |
| 0.6150                |
| 0.1833                |
| $d_2 = 0.6700$        |
| 0 0.2667              |
| 0.7500                |
| 0                     |
| <b>オロンオタンオミンスラン</b> ラ |
|                       |

|  | For | ma | de l | <b>Newton</b> |
|--|-----|----|------|---------------|
|--|-----|----|------|---------------|

| TOTTICE GO      | / I TOTT LOTT  |                |                |         |
|-----------------|----------------|----------------|----------------|---------|
| X               | Ordem 0        | Ordem 1        | Ordem 2        | Ordem 3 |
| 0               | 1              |                |                |         |
|                 |                | 1.0520         |                |         |
| 0.1             | 1.1052         |                | 0,5500         |         |
|                 |                | 1.1620         | ,              | 0.2167  |
| $x_0 = 0.2$     | $d_0 = 1.2214$ |                | 0.6150         |         |
| → <b>0.2749</b> |                | $d_1 = 1.2850$ |                | 0.1833  |
| $x_1 = 0.3$     | 1.3499         |                | $d_2 = 0.6700$ |         |
|                 |                | 1.4190         |                | 0.2667  |
| $x_2 = 0.4$     | 1.4918         |                | 0.7500         |         |
|                 |                | 1.5690         |                |         |
| 0.5             | 1.6487         |                |                |         |

Logo, o polinômio de grau 2 na Forma de Newton é dado por:

$$P_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$$

$$\Rightarrow f(0.2749) \approx P_2(0.2749) = 1.2214 + 1.2850(0.2749 - 0.2) + 0.6700(0.2749 - 0.2)(0.2749 - 0.3)$$

$$\approx 1.3164$$

# Erro de Interpolação

## Teorema (Erro de interpolação para polinômio de grau n, $P_n(x)$ )

Sejam  $x_0 < x_1 < x_2 < ... < x_n$ , (n+1) pontos.

Seja f(x) com derivadas até ordem (n+1) para todo  $x \in [x_0, x_n]$ 

O erro em qualquer ponto  $x \in [x_0, x_n]$  é dado por

$$E_n(x) = f(x) - P_n(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!},$$

onde  $\xi_x \in (x_0, x_n)$ .



# Erro de Interpolação

# Corolário: Limitante superior para o erro de interpolação de $P_n(x)$

$$|E_n(x)| = |f(x) - P_n(x)| \le |(x - x_0)(x - x_1)(x - x_2)...(x - x_n)| \frac{M_{n+1}}{(n+1)!},$$

onde 
$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$



# Erro de Interpolação

#### Retornando ao exemplo, dada a tabela:

| X            | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|--------------|---|--------|--------|--------|--------|--------|
| $f(x) = e^x$ | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter o limitante superior do erro da aproximação

$$f(0.2749) \approx P_2(0.2749).$$

O limitante superior do erro de interpolação para um polinômio de grau 2 é dado por:

$$|E_2(x)| = |f(x) - P_2(x)| \le |(x - x_0)(x - x_1)(x - x_2)| \frac{M_3}{3!}$$

onde 
$$M_2 = \max_{x \in [x_0, x_2]} |f'''(x)|$$



# Erro de Interpolação

#### Retornando ao exemplo, dada a tabela:

| X            | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|--------------|---|--------|--------|--------|--------|--------|
| $f(x) = e^x$ | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

## Obter o limitante superior do erro da aproximação

$$f(0.2749) \approx P_2(0.2749).$$

O limitante superior do erro de interpolação para um polinômio de grau 2 é dado por:

$$|E_2(x)| = |f(x) - P_2(x)| \le |(x - x_0)(x - x_1)(x - x_2)| \frac{M_3}{3!},$$

onde 
$$M_2 = \max_{x \in [x_0, x_2]} |f'''(x)|$$



## Erro de Interpolação

#### Exemplo:

| X              | 0 | 0.1    | $x_0 = 0.2$ | ↓ 0.2749 | $x_1 = 0.3$ | $x_2 = 0.4$ | 0.5    |
|----------------|---|--------|-------------|----------|-------------|-------------|--------|
| e <sup>x</sup> | 1 | 1.1052 | 1.2214      |          | 1.3499      | 1.4918      | 1.6487 |

Logo,

$$\begin{aligned} |E_2(0.2749)| &= |f(0.2749) - P_2(0.2749)| \\ &\leq |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)| \frac{M_3}{3!}, \end{aligned}$$

onde

$$M_3 = \max_{x \in [0.2, 0.4]} |f'''(x)| = \max_{x \in [0.2, 0.4]} |e^x| = \max\{|e^{0.2}|, |e^{0.4}|\} \approx 1.4918.$$

$$\Rightarrow |E_2(0.2749)| \le |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)| \frac{1.4918}{6}$$

$$\le 5.8475 \times 10^{-5}.$$



## Erro de Interpolação - Forma de Newton

#### Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que  $f(x) = e^x$ . Como vamos calcular o erro de interpolação sem essa informação?

### Na forma de Newton, é feita a aproximação:

```
\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid
```

# Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$  máx|diferenças divididas de ordem (n+1)

## Erro de Interpolação - Forma de Newton

#### Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que  $f(x) = e^x$ . Como vamos calcular o erro de interpolação sem essa informação?

### Na forma de Newton, é feita a aproximação:

$$\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid$$

# Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$  máx|diferenças divididas de ordem (n+1)

## Erro de Interpolação - Forma de Newton

#### Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que  $f(x) = e^x$ . Como vamos calcular o erro de interpolação sem essa informação?

### Na forma de Newton, é feita a aproximação:

$$\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid$$

# Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$  máx diferenças divididas de ordem (n+1)

## Forma de Newton

#### Retornando ao exemplo:

Queremos encontrar a estimativa de erro  $E_2(0.2749)$ .

| ~~~ |         |         |         | -2(01.0) |
|-----|---------|---------|---------|----------|
| X   | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3  |
| 0   | 1       |         |         |          |
|     |         | 1.0520  |         |          |
| 0.1 | 1.1052  |         | 0,5500  |          |
|     |         | 1.1620  |         | 0.2167   |
| 0.2 | 1.2214  |         | 0.6150  |          |
|     |         | 1.2850  |         | 0.1833   |
| 0.3 | 1.3499  |         | 0.6700  |          |
|     |         | 1.4190  |         | 0.2667   |
| 0.4 | 1.4918  |         | 0.7500  |          |
|     |         | 1.5690  |         |          |
| 0.5 | 1.6487  |         |         |          |
|     |         |         |         |          |

Logo,

$$|E_2(x)| \approx |(x-x_0)(x-x_1)(x-x_2)|$$
 (máx|diferenças divididas de ordem 3|)

$$\Rightarrow |E_2(0.2749)| \approx |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)||0.2667||$$
$$\approx 6.2716 \times 10^{-5}$$

**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) \approx P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

| X    | 0 | 0.1    |        | 0.2749      |        |        | 0.5    |
|------|---|--------|--------|-------------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3164      | 1.3499 | 1.4918 | 1.6487 |
|      |   |        |        | ↑ f(0.2749) |        |        |        |

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:



**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) \approx P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

| X    | 0 | 0.1    | $x_0 = 0.2$ | 0.2749               | $x_1 = 0.3$ | $x_2 = 0.4$ | 0.5    |
|------|---|--------|-------------|----------------------|-------------|-------------|--------|
| f(x) | 1 | 1.1052 | 1.2214      | 1.3164               | 1.3499      | 1.4918      | 1.6487 |
|      |   |        |             | $\uparrow f(0.2749)$ |             |             |        |

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:

| У        | 1 | 1.1052 |     | 1.3164 |     |     |
|----------|---|--------|-----|--------|-----|-----|
| x = g(y) | 0 | 0.1    | 0.2 |        | 0.3 | 0.4 |

<□ > <□ > <□ > < 亘 > < 亘 > □ ≥ < ⊙ < ⊙ < ⊙ ○ ○

**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) \approx P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

| X    | 0 | 0.1    | $x_0 = 0.2$ | 0.2749      | $x_1 = 0.3$ | $x_2 = 0.4$ | 0.5    |
|------|---|--------|-------------|-------------|-------------|-------------|--------|
| f(x) | 1 | 1.1052 | 1.2214      | 1.3164      | 1.3499      | 1.4918      | 1.6487 |
|      |   |        |             | ↑ f(0.2749) |             |             |        |

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:

|          | 1 | 1.1052 | $y_0 = 1.2214$ | 1.3164 | $y_1 = 1.3499$ | $y_2 = 1.4918$ |
|----------|---|--------|----------------|--------|----------------|----------------|
| x = g(y) | 0 | 0.1    | 0.2            | ?      | 0.3            | 0.4            |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
| 1.1052 | 0.1     |         |         |         |
| 1.2214 | 0.2     |         |         |         |
| 1.3499 | 0.3     |         |         |         |
| 1.4918 | 0.4     |         |         |         |
| 1.6487 | 0.5     |         |         |         |

| y       | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|---------|---------|---------|---------|---------|
| 1       | 0       |         |         |         |
|         |         | 0.9506  |         |         |
| 1.1052  | 0.1     |         |         |         |
| 4 004 4 | 0.0     |         |         |         |
| 1.2214  | 0.2     |         |         |         |
| 1.3499  | 0.3     |         |         |         |
| 1.3499  | 0.3     |         |         |         |
| 1.4918  | 0.4     |         |         |         |
| 1.4310  | 0.4     |         |         |         |
| 1.6487  | 0.5     |         |         |         |

| y       | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|---------|---------|---------|---------|---------|
| 1       | 0       |         |         |         |
|         |         | 0.9506  |         |         |
| 1.1052  | 0.1     |         |         |         |
| 1 001 1 | 0.0     | 0.8606  |         |         |
| 1.2214  | 0.2     |         |         |         |
| 1.3499  | 0.3     |         |         |         |
| 1.0400  | 0.5     |         |         |         |
| 1.4918  | 0.4     |         |         |         |
|         |         |         |         |         |
| 1.6487  | 0.5     |         |         |         |

| y       | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|---------|---------|---------|---------|---------|
| 1       | 0       |         |         |         |
|         |         | 0.9506  |         |         |
| 1.1052  | 0.1     |         |         |         |
| 1 001 4 | 0.0     | 0.8606  |         |         |
| 1.2214  | 0.2     | 0.7782  |         |         |
| 1.3499  | 0.3     | 0.7702  |         |         |
| 1.0400  | 0.0     |         |         |         |
| 1.4918  | 0.4     |         |         |         |
|         |         |         |         |         |
| 1.6487  | 0.5     |         |         |         |

| Ordem 0 | Ordem 1                       | Ordem 2                                                        | Ordem 3                                                        |
|---------|-------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| 0       |                               |                                                                |                                                                |
|         | 0.9506                        |                                                                |                                                                |
| 0.1     |                               |                                                                |                                                                |
|         | 0.8606                        |                                                                |                                                                |
| 0.2     | 0.7700                        |                                                                |                                                                |
| 0.2     | 0.7782                        |                                                                |                                                                |
| 0.3     | 0.7047                        |                                                                |                                                                |
| 0.4     | 0.7047                        |                                                                |                                                                |
| 0.4     |                               |                                                                |                                                                |
| 0.5     |                               |                                                                |                                                                |
|         | 0<br>0.1<br>0.2<br>0.3<br>0.4 | 0<br>0.9506<br>0.1<br>0.8606<br>0.2<br>0.7782<br>0.3<br>0.7047 | 0<br>0.9506<br>0.1<br>0.8606<br>0.2<br>0.7782<br>0.3<br>0.7047 |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         |         |         |
|        |         | 0.8606  |         |         |
| 1.2214 | 0.2     |         |         |         |
|        |         | 0.7782  |         |         |
| 1.3499 | 0.3     |         |         |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         |         |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y         | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|-----------|---------|---------|---------|---------|
| 1         | 0       |         |         |         |
|           |         | 0.9506  |         |         |
| 1.1052    | 0.1     |         | -0.4064 |         |
|           |         | 0.8606  |         |         |
| 1.2214    | 0.2     |         |         |         |
|           |         | 0.7782  |         |         |
| 1.3499    | 0.3     | 0 -0 1- |         |         |
| 4 4040    | 0.4     | 0.7047  |         |         |
| 1.4918    | 0.4     | 0.0070  |         |         |
| 4 0 4 0 7 | 0.5     | 0.6373  |         |         |
| 1.6487    | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         |         |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         |         |
| 1.3499 | 0.3     |         |         |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         |         |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         |         |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         |         |
| 1.3499 | 0.3     |         | -0.2718 |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         |         |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         |         |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         |         |
| 1.3499 | 0.3     |         | -0.2718 |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         | -0.2255 |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         | 0.1995  |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         |         |
| 1.3499 | 0.3     |         | -0.2718 |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         | -0.2255 |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         | 0.1995  |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         | 0.1678  |
| 1.3499 | 0.3     |         | -0.2718 |         |
|        |         | 0.7047  |         |         |
| 1.4918 | 0.4     |         | -0.2255 |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| y      | Ordem 0 | Ordem 1 | Ordem 2 | Ordem 3 |
|--------|---------|---------|---------|---------|
| 1      | 0       |         |         |         |
|        |         | 0.9506  |         |         |
| 1.1052 | 0.1     |         | -0.4064 |         |
|        |         | 0.8606  |         | 0.1995  |
| 1.2214 | 0.2     |         | -0.3366 |         |
|        |         | 0.7782  |         | 0.1678  |
| 1.3499 | 0.3     |         | -0.2718 |         |
|        |         | 0.7047  |         | 0.1084  |
| 1.4918 | 0.4     |         | -0.2255 |         |
|        |         | 0.6373  |         |         |
| 1.6487 | 0.5     |         |         |         |

| <u>ii itoi poidyd</u> | O IIIVOIOC  | <u> </u>       |                 |         |
|-----------------------|-------------|----------------|-----------------|---------|
| y                     | Ordem 0     | Ordem 1        | Ordem 2         | Ordem 3 |
| 1                     | 0           |                |                 |         |
|                       |             | 0.9506         |                 |         |
| 1.1052                | 0.1         |                | -0.4064         |         |
|                       |             | 0.8606         |                 | 0.1995  |
| $y_0 = 1.2214$        | $d_0 = 0.2$ |                | -0.3366         |         |
| → 1.3164              |             | $d_1 = 0.7782$ |                 | 0.1678  |
| $y_1 = 1.3499$        | 0.3         |                | $d_2 = -0.2718$ |         |
|                       |             | 0.7047         |                 | 0.1084  |
| $y_2 = 1.4918$        | 0.4         |                | -0.2255         |         |
|                       |             | 0.6373         |                 |         |
| 1.6487                | 0.5         |                |                 |         |

Logo, o polinômio de grau 2 na Forma de Newton é dado por:

$$x \approx P_2(y) = d_0 + d_1(y - y_0) + d_2(y - y_0)(y - y_1)$$
  
 $\Rightarrow P_2(1.3164) = 0.2 + 0.7782(1.3164 - 1.2214)$   
 $-0.2718(1.3164 - 1.2214)(1.3164 - 1.3499)$   
 $\approx 0.2748$ 

| y              | Ordem 0     | Ordem 1        | Ordem 2         | Ordem 3 |
|----------------|-------------|----------------|-----------------|---------|
| 1              | 0           |                |                 |         |
|                |             | 0.9506         |                 |         |
| 1.1052         | 0.1         |                | -0.4064         |         |
|                |             | 0.8606         |                 | 0.1995  |
| $y_0 = 1.2214$ | $d_0 = 0.2$ |                | -0.3366         |         |
| → 1.3164       |             | $d_1 = 0.7782$ |                 | 0.1678  |
| $y_1 = 1.3499$ | 0.3         |                | $d_2 = -0.2718$ |         |
|                |             | 0.7047         |                 | 0.1084  |
| $y_2 = 1.4918$ | 0.4         |                | -0.2255         |         |
|                |             | 0.6373         |                 |         |
| 1.6487         | 0.5         |                |                 |         |

A estimativa de erro é dada por:

$$|E_2(1.3164)| \approx |(1.3164 - 1.2214)(1.3164 - 1.3499)(1.3164 - 1.4918)||0.1995|$$
  
  $\approx 1.1135 \times 10^{-4}$ 



### Forma de Newton

#### Exercício:

Dada a tabela:

| X    | 0 | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    |
|------|---|--------|--------|--------|--------|--------|
| f(x) | 1 | 1.1052 | 1.2214 | 1.3499 | 1.4918 | 1.6487 |

- (a) Obtenha uma aproximação para f(0.2749) usando **interpolação cúbica de Newton**. Ou seja, calcule  $P_3(0.2749)$ .
- (b) Obtenha uma estimativa para  $E_3(0.2749)$ .

## Referências I





