Пример.
$$f(x)= egin{cases} e^{-\dfrac{1}{x^2}} &, x
eq 0 \\ 0 &, x
eq 0 \end{cases}$$

$$f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}, x \neq 0$$

$$f'(0) = ?$$

Следствие из теоремы Лагранжа:

$$\lim_{x\to x_0}f'(x)=A$$
тогда $f'(x_0)=A$

$$f'(0) = \lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 0} \frac{2 \frac{e^{-\frac{1}{x^2}}}{3x^2}} = \lim_{x \to 0} \frac{4 e^{-\frac{1}{x^2}}}{x^5} = \text{ больно, не надо так}$$

$$\lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{\frac{2}{x^3}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty} \right] = \lim_{x \to 0} \frac{\frac{-6}{x^4}}{e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{\frac{3}{x}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty} \right] = \lim_{x \to 0} \frac{\frac{-3}{x^2}}{\frac{1}{x^2}} = \lim_{x \to 0} \frac{3 \frac{x}{x}}{2 e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{3 \frac{x}{x}}{2 e^{\frac{1}{x}}} = \lim_{$$

Заметим, что многочлен Тейлора этой функции при $x \to 0$ не становится точнее при увеличении числа слагаемых, т.к. они все = 0.

Будем складывать дроби неправильно:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

Это работает в неравенствах, если a, b, c, d > 0

Теорема 1. Штольца.

Это дискретная версия правила Лопиталя.

 $y_n o 0, x_n o 0$ — строго монот.

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \in \mathbb{R}$$

Тогда
$$\exists \lim \frac{x_n}{y_n} = a$$

Примечание. Аналогичное верно, если $x_n \to +\infty, y_n \to +\infty$

Доказательство.

1.
$$a > 0 \quad (a \neq +\infty)$$

$$\forall \varepsilon > 0 \ [\varepsilon < a] \ \exists N_1 \ \forall n > N_1 \ a_{\varepsilon} < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Берем $N>N_1$

$$a-\varepsilon < \frac{x_{N+1}-x_N}{y_{N+1}-y_N} < a+\varepsilon$$
 :

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

По неправильному сложению: (оно применимо, т.к. все дроби положительные)

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

$$n \to +\infty$$

$$a - \varepsilon < \frac{x_N}{y_N} < a + \varepsilon$$

- 2. $a = +\infty$ доказывается так же
- 3. a < 0 поменяем знак и докажем так же

4.
$$a=0$$
 т.к. знаки x_n-x_{n-1} и y_n-y_{n-1} фикс., $a=+0$ или $a=-0$

Для
$$a=+0\lim rac{y_n-y_{n-1}}{x_n-x_{n-1}}=+\infty$$

$$x_n = 1 + 2 + 3 + \ldots + n \underset{n \to +\infty}{\overset{?}{\sim}} y_n$$

$$\lim \frac{x_n}{y_n} = \lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to +\infty} \frac{n}{y_n - y_{n-1}} = \left[y_n := \frac{n^2}{2}\right] = \lim \frac{n}{n - \frac{1}{2}} = 1$$

$$x_n \sim \frac{n^2}{2}$$

$$x_n = 1^{\alpha} + 2\alpha + 3\alpha + \ldots + n\alpha - \frac{n^{\alpha+1}}{\alpha+1} \sim z_n$$

$$\lim \frac{x_n}{z_n} = \lim \frac{n^{\alpha} - \left(\frac{n^{\alpha+1}}{\alpha+1} - \frac{(n-1)^{\alpha+1}}{\alpha+1}\right)}{z_n - z_{n-1}}$$

$$n^{\alpha} - \frac{1}{\alpha + 1} n^{\alpha + 1} \left(1 - \left(1 - \frac{1}{n} \right)^{\alpha + 1} \right) =$$

$$= n^{\alpha} - \frac{1}{\alpha+1}n^{\alpha+1}\left((\alpha+1)\frac{1}{n} - \frac{(\alpha+1)\alpha}{2}\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) = \frac{\alpha}{2}n^{\alpha-1} + o(n^{\alpha-1}) = \frac{\alpha}{2}n^{\alpha-1} + o(n^{\alpha-1})$$

$$\lim \frac{x_n}{z_n} = \lim \frac{\frac{\alpha}{2} n^{\alpha-1}}{z_n - z_{n-1}}$$

Функциональные свойства определенного интеграла

1. $\forall \alpha, \beta \in \mathbb{R}, f, g \in C[a, b]$

$$\int_{a}^{b} \alpha f + \beta g dx = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Доказательство. По формуле Ньютона-Лейбница $f\leftrightarrow F\quad g\leftrightarrow G\quad \alpha f+\beta g\leftrightarrow \alpha F+\beta G$

2. Замена переменных: $f \in C[a,b] \varphi : \langle \alpha,\beta \rangle \to [a,b], \varphi \in C^1$

$$[p,q] \subset \langle \alpha, \beta \rangle$$

Тогда

$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)dt=\int\limits_{\varphi(p)}^{\varphi(q)}f(x)dx$$

Доказательство. $f \leftrightarrow F$ $f(\varphi(t))\varphi'(t) \leftrightarrow F(\varphi(t))$

Примечание. (a) $\varphi([p,q])$ может быть шире, чем " $[\varphi(p),\varphi(q)]$ " (b) $\varphi(p)$ может быть $> \varphi(q)$

3. Интегрирование по частям

$$f|_a^b \stackrel{\text{def}}{=} f(b) - f(a)$$
$$f, g \in C^1[a, b]$$

$$\int_{a}^{b} fg' = fg|_{a}^{b} - \int_{a}^{b} f'g$$

Доказательство.

$$(fg)' = f'g + fg'$$
$$fg' = (fg)' - f'g$$

Проинтегрируем по [a, b]

$$\int\limits_a^b fg'=fg|_a^b-\int\limits_a^b f'g$$

Пример. Неравенство Чебышева $f,g \in C[a,b]$ монот. возр. Тогда

$$\begin{split} I_f \cdot I_g &\leq I_{fg} \\ \int\limits_a^b f \int\limits_a^b g &\leq (b-a) \int\limits_a^b fg \end{split}$$

M3137y2019

Доказательство. $x,y\in [a,b]$ $(f(x)-f(y))(g(x)-g(y))\geq 0$

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \geq 0$$

Интегрируем по x по [a,b]

$$I_{fg} - f(y)I_g - g(y)I_f + f(y)g(y) \geq 0$$

Интегрируем по y по [a,b]

$$I_{fq} - I_f I_q - I_q I_f + I_{fq} \ge 0$$

Пример.

$$\begin{split} H_n &:= \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t dt := \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f g' dt \\ H_n &= \left[f' = -2n \left(\frac{\pi^2}{4} - t^2\right)^{n-1} t \quad g = \sin t\right] = \\ &= \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2\right)^n \sin t |_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} t \sin t \\ &= 0 + \frac{2}{(n-1)!} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + \sin t |_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \\ &+ \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left((2n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right) \cos t dt = \\ &= (4n-2) H_{n-1} - \pi^2 H_{n-2} \end{split}$$

Теорема 2. Число π — иррационально

Доказательство. Пусть $\pi=\frac{p}{a}; H_n$ задано выше

$$H_n=(4n-2)H_{n-1}-\pi^2H_{n-2}$$

$$H_0=2,\quad H_1=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\frac{\pi^2}{4}-t^2)\cos t=2\int\limits_{-\frac{\pi}{2}}^{\pi^2}t\sin tdt=2t(-\cos t)|\dots+2\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos t=4$$

$$H_n=\dots H_1+\dots H_0=P_n(\pi^2)-\text{ многочлен c целыми коэффициентами, степень}\leq n$$

$$q^{2n}P_n\left(\frac{p^2}{q^2}\right)=\text{ целое число }=q^{2n}H_n=q^{2n}H_n>0\Rightarrow q^{2n}H_n\geq 1$$

$$1\leq \frac{q^{2n}}{n!}\int\limits_{-\pi}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos tdt\leq \frac{q^2n4^n}{n!}\pi\to 0$$

Противоречие.

$$f \leftrightarrow F$$

$$\begin{split} \int\limits_{x_0}^x \frac{f^{(n)}(x_0)}{n!} (t-x_0)^n dt &= \frac{F^{(n+1)}(x_0)}{(n+1)!} (x-x_0)^{n+1} \\ &\frac{1}{\sqrt{1-x^2}} = 1 + \frac{1}{2} x^2 + \frac{3}{8} x^4 + o(x^4) \\ & \arcsin t = t + \frac{1}{6} t^3 + \frac{3}{40} t^5 + o(t^5) \end{split}$$

Определение. $f:[a,b]\to\mathbb{R}$, кусочно непрерывна f — непр. на [a,b] за исключением конечного числа точек, в которых разрывы I рода Пример. $f(x)=[x], x\in[0,2020]$

Определение. $F:[a,b] \to \mathbb{R}$ — почти первообразная кусочно непрерывной функции f: F — непр. и $\exists F'(x) = f(x)$ всюду, кроме конечного числа точек

Пример.
$$f = \operatorname{sign} x, x \in [-1, 1]$$
 $F := |x|$

$$f$$
 — кус. непр.
$$x_0 = a < x_1 \ldots < x_n = b$$

$$\int\limits_a^b f := \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} f$$

Утверждение: Верна формула Ньютона-Лейбница f — кус. непр. на [a,b], F — почти первообразная

$$\int\limits_{a}^{b}f=F(b)-F(a)=\sum\int\limits_{x_{k-1}}^{x_{k}}f=\sum F(t)|_{x_{k-1}}^{x_{k}}=\sum F(x_{k})-F(x_{k-1})=F(b)-F(a)$$

Пример. Дискретное неравенство Чебышева $a_1 \leq a_2 \leq ... \leq a_n, b_1 \leq b_2 \leq ... \leq b_n$

$$\frac{1}{n} \sum_{i=1}^{n} a_i \cdot \frac{1}{n} \sum b_i \le \frac{1}{n} \sum a_i b_i$$

Доказательство.

$$f(x)=a_i, x\in (i-1,i], i=1\dots n-$$
 задана на $(0,n]$
$$g(x)=\dots b_i$$

$$I_fI_g\leq I_{fg}$$

М3137у2019 Лекция 3

1 Приложение определенного интеграла

 $Segm\langle a,b \rangle$ — множество всевозм. отрезков, лежащих в $\langle a,b \rangle = \{[p,q]:[p,q]\subset \langle a,b \rangle\}$

Определение. Функция промежутка $\Phi: Segm\langle a,b \rangle
ightarrow \mathbb{R}$

Определение. Аддитивная функция промежутка: Φ — функция промежутка и

$$\forall [p,q] \in Segm\langle a,b \rangle \ \forall r: p < r < q \ \Phi([p,q]) = \Phi([p,r]) + \Phi([r,q])$$

Пример. • Цена куска колбасы от p до q.

• Цена билета от станции p до станции q. Эти две функции обычно не аддитивны.

•
$$[p,q] \rightarrow \int_p^q f$$

Определение. Плотность аддитивной функции промежутка: $f:\langle a,b\rangle\to\mathbb{R}$ — плотность $\Phi,$ если:

$$\forall \delta \in Segm \langle a,b \rangle \quad \inf_{x \in \delta} f(x) \cdot len_{\delta} \leq \Phi(\delta) \leq \sup f \cdot len_{\delta}$$

Теорема 3. О вычислении аддитивной функции промежутка по плотности

$$f:\langle a,b
angle o\mathbb{R}$$
 — непр. $\Phi:Segm\langle a,b
angle o\mathbb{R}$ f — плотность Φ

Тогда
$$\Phi([p,q])=\int\limits_{b}^{a}f,\quad [p,q]\subset\langle a,b
angle$$

Доказательство.

$$F(x) := \begin{cases} 0 &, x = a \\ \Phi([a,x]) &, x > a \end{cases} - \text{первообразная } f$$

Это утверждение ещё не доказано, но если мы его докажем, то:

$$\Phi([p,q]) = \Phi[a,q] - \Phi[a,p] = F(q) - F(p) = \int\limits_{p}^{a} f$$

Докажем утверждение:

$$\frac{F(x+h)-F(x)}{h}=\frac{\Phi[a,x+h]-\Phi[a,x]}{h}=\frac{\Phi[x,x+h]}{h}=[0\leq\Theta\leq1]=f(x+\Theta h)$$

Тут последовал пример про нахождение площади круга, но мне лень.