Dans tout le texte, d est un élément de \mathbb{N}^* . On note 0_d le d-uplet dont toutes les coordonnées valent 0, c'est-à-dire le vecteur nul de \mathbb{R}^d .

On considère une variable aléatoire X à valeurs dans \mathbb{Z}^d , $(X_k)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes suivant chacune la loi de X et définies sur un même espace probabilisé. La suite de variables aléatoires $(S_n)_{n\in\mathbb{N}}$ est définie par $S_0=0_d$ et

 $\forall n \in \mathbb{N}^*, \qquad S_n = \sum_{k=1}^n X_k.$

La suite $(S_n)_{n\in\mathbb{N}}$ est une marche aléatoire de pas X, à valeurs dans \mathbb{Z}^d .

On note R la variable aléatoire à valeurs dans $\mathbb{N}^* \cup \{+\infty\}$ définie par

$$R = \left\{ \begin{array}{cc} \min \left\{ n \in \mathbb{N}^*, \; S_n = 0_d \right\} & \text{si } \left\{ n \in \mathbb{N}^*, \; S_n = 0_d \right\} \neq \emptyset, \\ + \infty & \text{sinon.} \end{array} \right.$$

Autrement dit, R est égal à $+\infty$ si la marche aléatoire $(S_n)_{n\in\mathbb{N}}$ ne revient jamais en 0_d , au premier instant auquel cette marche aléatoire revient en 0_d sinon.

Pour n dans \mathbb{N} , soit N_n le cardinal du sous-ensemble

$${S_k, k \in \{0, \dots, n\}}$$

de \mathbb{Z}^d . Le nombre N_n est donc le nombre de points de \mathbb{Z}^d visités par la marche aléatoire $(S_n)_{n\in\mathbb{N}}$ après n pas.

Le but du problème est d'étudier asymptotiquement l'espérance $E(N_n)$ de la variable aléatoire N_n .

La partie D est indépendante des parties précédentes.

A. Préliminaires

Les cinq questions de cette partie sont indépendantes et utilisées dans les parties C et E.

1. Soit $n \in \mathbb{N}$. En utilisant la factorisation

$$(X+1)^{2n} = (X+1)^n (X+1)^n,$$

montrer que

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

 \widehat{z} . Rappeler la formule de Stirling, puis déterminer un nombre réel c>0 tel que

$$\binom{2n}{n} \underset{n \to +\infty}{\sim} c \, \frac{4^n}{\sqrt{n}}.$$

3. Si α est un élément de]0,1[, montrer, par exemple en utilisant une comparaison série-intégrale, que

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \frac{n^{1-\alpha}}{1-\alpha}.$$

Si α est un élément de]1,+ ∞ [, montrer de même que

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{(\alpha-1) n^{\alpha-1}}.$$

A. Pour $x \in [2, +\infty[$, on pose

$$I(x) = \int_2^x \frac{\mathrm{dt}}{\ln(t)}.$$

Justifier, pour $x \in [2, +\infty[$, la relation

$$I(x) = \frac{x}{\ln(x)} - \frac{2}{\ln(2)} + \int_2^x \frac{dt}{(\ln(t))^2}$$

Établir par ailleurs la relation

$$\int_2^x \frac{\mathrm{dt}}{(\ln(t))^2} \underset{x \to +\infty}{=} o(I(x)).$$

En déduire finalement un équivalent de I(x) lorsque x tend vers $+\infty$.

Pour $\alpha \in \mathbb{R}$, rappeler, sans donner de démonstration, le développement en série entière de $(1+x)^{\alpha}$ sur]-1,1[.

Justifier la formule:

$$\forall x \in]-1,1[,$$
 $\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{4^n} x^n.$

B. Marches aléatoires, récurrence

On considère les fonctions F et G définies par les formules

$$\forall x \in]-1,1[, \qquad F(x) = \sum_{n=0}^{+\infty} P(S_n = 0_d) \ x^n;$$

$$\forall x \in [-1, 1], \qquad G(x) = \sum_{n=1}^{+\infty} P(R = n) \ x^n.$$

6. Montrer que les séries entières définissant F et G ont un rayon de convergence supérieur ou égal à 1. Justifier alors que les fonctions F et G sont définies et de classe C^{∞} sur]-1,1[.

Montrer que G est définie et continue sur [-1,1] et que

$$G(1) = P(R \neq +\infty).$$

7. Si k et n sont des entiers naturels non nuls tels que $k \leq n$, montrer que

$$P((S_n = 0_d) \cap (R = k)) = P(R = k) P(S_{n-k} = 0_d).$$

En déduire que

$$\forall n \in \mathbb{N}^*, \qquad P(S_n = 0_d) = \sum_{k=1}^n P(R = k) \ P(S_{n-k} = 0_d).$$

& Montrer que

$$\forall x \in]-1,1[, F(x) = 1 + F(x) G(x).$$

Déterminer la limite de F(x) lorsque x tend vers 1^- , en discutant selon la valeur de $P(R \neq +\infty)$.

9. Soit $(c_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathbb{R}^+ telle que la série entière $\sum c_k x^k$ ait / un rayon de convergence 1 et que la série $\sum c_k$ diverge. Montrer que

$$\sum_{k=0}^{+\infty} c_k \ x^k \underset{x\to 1^-}{\longrightarrow} +\infty.$$

L'élément A de \mathbb{R}^{+*} étant fixé, on montrera qu'il existe $\alpha \in]0,1[$ tel que

$$\forall x \in]1 - \alpha, 1[, \qquad \sum_{k=0}^{+\infty} c_k x^k > A.$$

- 10. Montrer que la série $\sum P(S_n = 0_d)$ est divergente si et seulement si $P(R \neq +\infty) = 1$.
 - 11. Pour $i \in \mathbb{N}^*$, soit Y_i la variable de Bernoulli indicatrice de l'événement

$$\forall i = \bigwedge \Big(\{S_i \notin \{S_k, \ 0 \le k \le i-1\} \Big).$$

Montrer que, pour $i \in \mathbb{N}^*$:

$$P(Y_i = 1) = P(R > i).$$

En déduire que, pour $n \in \mathbb{N}^*$:

$$E(N_n) = 1 + \sum_{i=1}^n P(R > i).$$

12. Conclure que

$$\frac{E(N_n)}{n} \underset{n \to +\infty}{\longrightarrow} P(R = +\infty).$$

On pourra admettre et utiliser le théorème de Cesàro : si $(u_n)_{n\in\mathbb{N}^*}$ est une suite réelle convergeant vers le nombre réel ℓ , alors

$$\frac{1}{n} \sum_{k=1}^{n} u_k \xrightarrow[n \to +\infty]{} \ell.$$

C. Les marches de Bernoulli sur $\mathbb Z$

Dans cette question, d est égal à 1 et on note donc simplement $0_d=0$. Par ailleurs, p est un élément de]0,1[,q=1-p et la loi de X est donnée par

$$P(X = 1) = p$$
 et $P(X = -1) = q$.

13. Pour $n \in \mathbb{N}$, déterminer $P(S_{2n+1} = 0)$ et justifier l'égalité :

$$P(S_{2n} = 0) = \binom{2n}{n} (pq)^n.$$

14. Pour $x \in]-1,1[$, donner une expression simple de G(x).

Exprimer $P(R = +\infty)$ en fonction de |p - q|.

Déterminer la loi de R.

15. On suppose que

$$p=q=\frac{1}{2}\cdot$$

Donner un équivalent simple de P(R=2n) lorsque n tend vers $+\infty$. En déduire un équivalent simple de $E(N_n)$ lorsque n tend vers $+\infty$.

D. Un résultat asymptotique

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites d'éléments de \mathbb{R}^{+*} . On suppose que $(a_n)_{n\in\mathbb{N}}$ est décroissante et que

$$\forall n \in \mathbb{N}, \qquad \sum_{k=0}^{n} a_k \ b_{n-k} = 1.$$

On pose, pour $n \in \mathbb{N}$.

$$B_n = \sum_{k=0}^n b_k.$$

$$a_n \le \frac{1}{B_n}$$
 et $1 \le a_n B_{m-n} + a_0 (B_m - B_{m-n})$.

17. On suppose dans cette question qu'il existe une suite $(m_n)_{n\in\mathbb{N}}$ vérifiant $m_n > n$ pour n assez grand et

$$B_{m_n-n} \underset{n \to +\infty}{\sim} B_n$$
 et $B_{m_n} - B_{m_n-n} \underset{n \to +\infty}{\longrightarrow} 0$.

Montrer que

$$a_n \underset{n \to +\infty}{\sim} \frac{1}{B_n}$$
.

18. On suppose dans cette question qu'il existe C > 0 tel que

$$b_n \underset{n \to +\infty}{\sim} \frac{C}{n}$$
.

En utilisant la question 17 pour une suite $(m_n)_{n\in\mathbb{N}}$ bien choisie, montrer que

$$a_n \underset{n \to +\infty}{\sim} \frac{1}{C \ln(n)}$$

- E. La marche aléatoire simple sur \mathbb{Z}^2 : un théorème d'Erdös et Dvoretzky
- 19. Soit $n \in \mathbb{N}^*$. Montrer que

$$1 = \sum_{k=0}^{n} P(S_k = 0_d) \ P(R > n - k).$$

Dans les questions 20 et 21, on suppose que d=2 et que la loi de X est donnée par

$$P(X = (0,1)) = P(X = (0,-1)) = P(X = (1,0)) = P(X = (-1,0)) = \frac{1}{4}$$

20. Soit $n \in \mathbb{N}$. Établir l'égalité

$$P(S_{2n} = 0_2) = \left(\frac{\binom{2n}{n}}{4^n}\right)^2.$$

21. Donner un équivalent simple de $E(N_n)$ lorsque n tend vers $+\infty$.

FIN DU PROBLÈME