丰台区 2016 年初三统一练习(二)

数学试卷

2016. 06

生

- 1. 本试卷共8页,共三道大题,29道小题,满分120分。考试时间120分钟。
- 2. 在试卷和答题卡上准确填写学校名称、姓名和考试号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
- 5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
- 一、选择题(本题共30分,每小题3分)

下列各题均有四个选项,其中只有一个是符合题意的.

- 1. 截止到 2015 年底, 我国已实现 31 个省市志愿服务组织区域全覆盖, 志愿者总数已超 110 000 000 人. 将 110 000 000 用科学记数法表示应为
 - A. 110×10^6
- B. 11×10^7 C. 1.1×10^8
- D. 0.11×10^8
- 2. 如图,数轴上有 A, B, C, D四个点,其中表示绝对值相等的两个实数的点是

- A. 点 A与点 D B. 点 B 与点 D C. 点 B与点 C
- D. 点 C与点 D
- 3. 一枚质地均匀的正方体骰子, 六个面上分别刻有1、2、3、4、5、6 六个数字, 投掷这个骰子一次, 则 向上一面的数字大于4的概率是

- 4. 京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介. 在下面的四个京剧脸谱中,不是轴 对称图形的是

- 5. 将一副三角板按图中方式叠放,则 ∠α等于
 - A. 90°
- B. 75°
- C. 60°
- D. 45°

- 6. 如图所示,河堤横断面迎水坡 AB 的坡角是 30° ,堤高 BC=5m,则坡面 AB 的长度是
 - A. 10m
- B. $10\sqrt{3} \text{ m}$
- C. 15m
- D. $5\sqrt{3} \text{ m}$

- 7. 甲、乙、丙、丁四人进行射击测试,每人 10 次射击的平均成绩恰好都是 9.6 环,方差分别是 $S_{\tiny \parallel}^2 = 0.96$, $S_Z^2 = 1.12$, $S_B^2 = 0.56$, $S_T^2 = 1.58$. 在本次射击测试中,成绩最稳定的是
 - A. 甲

- B. Z.
- C. 丙
- D. 丁
- 8. 如图,经过刨平的木板上的 A, B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线, 一实际应用的数学知识是
 - A. 两点确定一条直线
 - B. 两点之间线段最短
 - C. 垂线段最短
 - D. 在同一平面内, 过一点有且只有一条直线与已知直线垂直
- 9. 商户小李以每件 6 元的价格购进某商品若干件到市场去销售、销售金额 y (元) 与销售量 x (件) 的 函数关系的图象如图所示,则降价后每件商品销售的价格为
 - A. 5元
- B. 10元
- C. 12.5 元
- D. 15元

10. 一个观察员要到如图 1 所示的 A, B, C, D四个观测点进行观测, 行进路线由在同一平面上的 AB, BC, CD, DA, AC, BD 组成. 为记录观察员的行进路线,在 AB 的中点 M 处放置了一台定位仪器,设观察员 行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的 图象大致如图 2 所示,则观察员的行进路线可能为

- B. $A \rightarrow B \rightarrow C \rightarrow D$ C. $A \rightarrow C \rightarrow B \rightarrow D$ D. $A \rightarrow C \rightarrow D \rightarrow B$

图 2

- 二、填空题(本题共18分,每小题3分)
- 11. 分解因式: $x^3 4x^2 + 4x =$.
- 12. 已知射线 OM. 以 O为圆心,任意长为半径画弧,与射线 OM交于点 A,再以点 A为圆心,AO长为半径 画弧,两弧交于点 B,画射线 OB,如图所示,则 $\angle AOB$ = 。.

- 13. 关于 x 的不等式 ax < b 的解集为 x > -1,写出一组满足条件的实数 a,b 的值:a = 2 , b = 2 ……
- 14. 我国明代数学家程大位的名著《直指算法统宗》

里有一道著名算题:

一百馒头一百僧,大僧三个更无争,

小僧三人分一个,大小和尚各几丁?

如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为_____.

15. 北京市 2010-2015 年机动车保有量统计如图所示. 根据统计图中提供的信息,预估 2016 年北京市 机动车的保有量约 万辆,你的预估理由是 .

16. 如图,在棋盘中建立直角坐标系 xOy,三颗棋子 A,O,B的位置分别是 (-1,1)(0,0) 和 (1,0). 如果在其他格点位置添加一颗棋子 C,使 A,O,B,C四颗棋子成为一个轴对称图形,请写出所有满足条件的棋子 C的位置的坐标:

三、解答题(本题共 72 分,第 17-26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分) 17. 计算: $(\frac{1}{2})^{-2} - 2\sin 30^{\circ} + (3.14 - \pi)^{0} + \left| -\sqrt{12} \right|$.

18. 已知 4x = 3y, 求代数式 $(x-2y)^2 - (x-y)(x+y) - 2y^2$ 的值.

- 19. 已知关于x的一元二次方程 $x^2 + 3x + 1 m = 0$ 有两个不相等的实数根.
 - (1) 求 m 的取值范围;
 - (2) 若 m 为负整数, 求此时方程的根.

20. 如图, $\triangle ABC$ 是等边三角形, $BD \perp AC$ 于点 D, E为 BC的中点, 连接 DE.

求证: DE = DC.

21. 2016年5月29日,北京园博园迎来了"挑战100,一起跑"百公里接力路跑赛事,活动里程共100公里,采用10人×10公里的方式展开接力竞赛.王刚是一名长跑爱好者,原来每天从家匀速跑步到单位,共12公里.为参加此次活动,王刚计划加强训练,速度提高到原来的1.2倍,结果提前10分钟到单位.问王刚原来每小时跑多少公里?

- 22. 如图, 菱形 ABCD 的对角线交于 O 点, DE || AC, CE || BD.
 - (1) 求证: 四边形 OCED 是矩形;
 - (2) 若 AD =5, BD =8, 计算 tan∠DCE 的值.

- 23. 已知反比例函数 $y=\frac{k}{x}$ ($k\neq 0$) 的图象经过点 A (-1, 6).
 - (1) 求 k 的值;
 - (2) 过点 A作直线 AC 与函数 $y=\frac{k}{x}$ 的图象交于点 B,与 x 轴交于点 C,且 AB=2BC,求点 B 的坐标.

- (1) 求证: AD为⊙0的切线;
- (2) 若 $\cos D = \frac{3}{5}$, AD = 6, 求 FG 的长.

25. 阅读下列材料:

日前,微信发布《2016 微信春节大数据报告》显示,2016 年除夕当日,利用微信传递春节祝福的音视频通话时长达4.2 亿分钟,是2015 年除夕的4倍,"红包不要停"成为春节期间最热门微信表情,其作者共获得124508元的"赞赏".

报告显示,除夕当日,微信红包的参与者达 4.2 亿人,收发总量达 80.8 亿个,是 2015 年除夕的 8 倍.除了通常的定额红包、拼手气红包,除夕到初一期间,微信还推出可以添加照片的拜年红包、引爆朋友圈的红包照片,以及和诸多品牌商家联合推出的摇一摇红包.其中,在除夕当日拼手气红包的收发量约为微信红包收发总量的 20%.

作为一款"国民社交平台", 微信在春节通过红包激活了用户的使用热情, 用音视频通话、朋友圈、微信群等串联起了五湖四海的情感, 实现了科技与人文的交汇, 成为"过好春节"的标配. 根据以上材料回答下列问题:

- (1) 2016 年除夕当日,拼手气红包收发量约为 亿个;
- (2) 选择统计表或统计图将 2015 年和 2016 年除夕当日微信红包收发总量和音视频的通话时长表示出来.

26. 有这样一个问题: 探究函数 $y = \frac{x^2 - 1}{r}$ 的图象与性质.

小宏根据学习函数的经验,对函数 $y = \frac{x^2 - 1}{x}$ 的图象与性质进行了探究.

下面是小宏的探究过程,请补充完整:

- (1) 函数 $y = \frac{x^2 1}{x}$ 的自变量 x 的取值范围是______;
- (2) 下表是 y与 x的几组对应值.

2	X	•••	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	•••
	У	•••	$-\frac{8}{3}$	$-\frac{3}{2}$	0	Ш	$\frac{8}{3}$	$-\frac{8}{3}$	$-\frac{3}{2}$	0	$\frac{3}{2}$	п	

求 m, n的值;

(3)如下图,在平面直角坐标系 *xOy* 中,描出了以上表中各对对应值为坐标的点。 根据描出的点,画出该函数的图象;

(4) 结合函数的图象,写出该函数的性质(一条即可):______.

27. 在平面直角坐标系 xOy 中,抛物线 $y = mx^2 - 2mx - 3(m \neq 0)$ 与 x 轴交于 A, B 两点,且点 A 的坐标为(3,0).

- (1) 求点 B的坐标及 m的值;
- (2) 当-2<x<3时,结合函数图象直接写出 y的取值范围;
- (3) 将抛物线在 x 轴上方的部分沿 x 轴翻折,抛物线的其余部分保持不变,得到一个新图象 M. 若直线 $y=kx+1(k\neq 0)$ 与图象 M 在直线 $x=\frac{1}{2}$ 左侧的部分只有一个公共点,结合图象求 k 的取值范围.

- 28. 在 \triangle ABC中,AC=BC, \angle ACB=90°. 点 D为 AC的中点. 将线段 DE 绕点 D逆时针旋转 90° 得到线段 DF,连接 EF,CF. 过点 F作 FH \bot FC ,交直线 AB 于点 H.
 - (1) 若点 E在线段 DC上,如图 1,
 - ①依题意补全图1;
 - ②判断 FH与 FC的数量关系并加以证明.
 - (2) 若 E 为线段 DC 的延长线上一点,如图 2,且 $CE=\sqrt{2}$, $\angle CFE=12^\circ$,请写出求 $\triangle FCH$ 的面积的思路. (可以不写出计算结果)

- 29. 如图,在平面直角坐标系 xOy 中,已知点 A(0,1),B(0,-1). 点 P 是平面内任意一点,直线 PA, PB 与直线 x=4 分别交于 M,N 两点.若以 MN 为直径的圆恰好经过点 C(2,0),则称此时的点 P 为 理想点.
 - (1) 请判断 $P_1(-4, 0)$, $P_2(3, 0)$ 是否为理想点;
 - (2) 若直线 x = -3 上存在理想点,求理想点的纵坐标;
 - (3) 若动直线 $x = m(m \neq 0)$ 上存在理想点,直接写出m 的取值范围.

丰台区 2016 年初三统一练习(二)

数学参考答案

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	С	С	В	Α	В	Α	С	Α	В	D

二、填空题(本题共18分,每小题3分)

11.
$$x (x-2)^2$$
. 12. 60. 13. $a = -1, b = 1$ (答案不唯一). 14. $\frac{1}{1} x + y = 100$, $\frac{1}{1} 3x + \frac{y}{3} = 100$.

- 15.预估理由需包含统计图提供的信息,且支撑预估的数据.
- **16**. $C_1(2,1)$, $C_2(-1,2)$, $C_3(-1,-1)$, $C_4(0,-1)$.
- 三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)

17. 解: 原式 =
$$4-2 \times \frac{1}{2} + 1 + 2\sqrt{3}$$
 ------4 分 = $4+2\sqrt{3}$.

18. 解: 原式 =
$$x^2 - 4xy + 4y^2 - (x^2 - y^2) - 2y^2$$

= $3y^2 - 4xy$ ------3分
= $y(3y - 4x)$

$$\therefore 4x = 3y, \quad \therefore 3y - 4x = 0.$$

19. 解:(1):原方程有两个不相等的实数根,

∴
$$\Delta = 9 - 4(1 - m) = 4m + 5 > 0$$
, $\bowtie m > -\frac{5}{4}$. -----3 $⇔$

(2) ∵ m 为负整数, ∴ m = -1.

∴方程为
$$x^2 + 3x + 2 = 0$$
,即 $(x+1)(x+2) = 0$.

解得
$$x_1 = -1, x_2 = -2$$
. ------5 分

- 20. 证明: ∵△ABC 是等边三角形, ∴∠C=60°.-----1分
 - $: BD \perp AC$ 于点 D,
 - ∴∠*BDC*=90°.
 - **∵***E* 是 *BC* 中点,

$$\therefore DE = \frac{1}{2}BC = CE. \qquad -----3 \ \%$$

21. 解:设王刚原来每小时跑x公里,

由题意,得
$$\frac{12}{x} = \frac{12}{1.2x} + \frac{1}{6}$$
.

解得
$$x=12$$
.

经检验, x=12 是所列方程的解,并且符合实际意义.

答: 王刚原来每小时跑 12 公里.

- 22. (1) : *DE*//*AC*, *CE*//*BD*
 - :. 四边形 OCED 是平行四边形. ----- 1 分
 - :: 四边形 ABCD 是菱形,
 - $\therefore AC \perp BD$.
 - $\therefore \angle DOC = 90^{\circ}$.
 - :. 平行四边形 OCED 是矩形.

(2) :: 四边形 *ABCD* 是菱形, *BD*=8,

$$\therefore OD = \frac{1}{2}BD = 4, CD = AD = 5.$$

$$\therefore CO = \sqrt{CD^2 - OD^2} = 3.$$

:: 四边形 OCED 是矩形,

$$\therefore \angle E = 90^{\circ}$$
,

∴ 在 Rt
$$\triangle$$
 DEC 中, $\tan \angle DCE = \frac{DE}{EC} = \frac{3}{4}$. ----- 5 分

- 23.解: (1) 由题意,得-k = 6.解得k = -6. ------1分
 - (2) ①当点 *B* 在第二象限时,如图 1.

过点 A 作 $AE \perp x$ 轴于 E, 过点 B 作 $BF \perp x$ 轴于 F.

 $\therefore AE//BF$.

$$\therefore AB = 2BC$$

$$\therefore \frac{CB}{CA} = \frac{1}{3}.$$

$$\therefore AE=6$$
,

$$\therefore BF = 2.$$

当
$$y=2$$
 时, $2=-\frac{6}{x}$,

解得 *x*=-3.

∴B(-3, 2).

②当点 B 在第四象限时,如图 2,同①可求点 B(1, -6).

综上所述,点 B的坐标为(-3,2)或(1,-6).

$$: AB \in \square O$$
 的直径

$$\therefore \angle ACB = 90^{\circ}$$
.

$$\therefore \angle CAB + \angle B = 90^{\circ}$$
.

 $: E \to BC$ 的中点,

$$\therefore \angle CAE = \angle EAB$$
.

$$\therefore \angle CAB = 2\angle EAB$$
.

$$\therefore \angle D = 2 \angle BAE$$

∴
$$\angle CAB = \angle D$$
. 1 \Rightarrow

$$\therefore \angle B + \angle D = 90^{\circ}$$
.

∴ $\angle DAB = 90^{\circ}$. $\square AB \perp AD$.

又:AB是直径,

∴ AD 是□ O 的切线. ----- 2 分

(2) : 在 Rt△ ACD 中,

$$\cos D = \frac{DC}{AD} = \frac{3}{5}, \quad AD = 6,$$

$$\therefore DC = \frac{18}{5}.$$

----- 3分

$$\cos D = \frac{AD}{BD} = \frac{3}{5}, \quad AD = 6,$$

$$\therefore BD = 10$$
.

$$\therefore$$
 $\angle CAF = \angle EAB$, $\angle ACB = 90^{\circ}$, $FG \perp AB$,

$$\therefore CF = FG$$
.

设CF = FG = x.

- $: FG \perp AB$,
- $\therefore \angle GFB = \angle D$.

$$\therefore \cos \angle GFB = \frac{FG}{FB} = \frac{3}{5}.$$

$$\therefore FB = \frac{5}{3}x.$$

$$\therefore DC + CF + FB = 10.$$

$$\therefore \frac{18}{5} + x + \frac{5}{3}x = 10.$$

解得
$$x = \frac{12}{5}$$
. ∴ $FG = \frac{12}{5}$.

----- 5分

25. 解: (1) 16.16;

(2) 统计表如下:

2015 年和 2016 年除夕当日微信红包收发总量

和音视频的通话时长统计表

	微信红包收发总量	音视频通话时长
2015年	10.1 亿个	1.05 亿分钟
2016年	80.8 亿个	4.2 亿分钟

5分

26. 解: (1) $x \neq 0$.

(2)
$$m = \frac{3}{2}, n = \frac{8}{3}$$
.

(3) 该函数的图象如下图所示.

(4) 该函数的性质:

- ①当x<0时,y随x的增大而增大; 当x>0时,y随x的增大而增大;
- ②函数的图象与 y 轴无交点,图象由两部分组成.
- ③关于原点成中心对称.

•••••

----- 5 分

27. (1) 将A(3,0)代入,得m=1.

----1 分

- ∴ 抛物线的表达式为 $y = x^2 2x 3$.
- $\therefore B$ 点的坐标(-1,0).
- ----2分
- (2) y 的取值范围是 $-4 \le y < 5$. -----5 分
- (3) $\stackrel{\text{def}}{=} x = \frac{1}{2}$ $\text{ iff}, y = -\frac{15}{4}$.

代入 y = kx + 1 得 $k = -\frac{19}{2}$.

当 x=-1 时,y=0,代入 y=kx+1 得 k=1.

结合图象可得, k 的取值范围是 k=1 或 $k<-\frac{19}{2}$.

----7 分

28. 解: (1) ①补全图形,如图1所示.

----1 分

②FH 与 FC 的数量关系是: FH = FC. ——2 分

证明:延长DF交AB于点G.

- $\therefore \triangle ABC +, AC=BC, \angle ACB = 90^{\circ}$
- ∴ ∠A=∠B=45°.
- $\because \angle FDE = 90^{\circ}$,
- ∴ ∠A=∠AGD=45°.
- AD=DG.
- **∵**点 *D* 为 *AC* 的中点,
- · AD=DC.
- ∴DC=DG.
- ∵DE=DF,
- ∴DC-DE=DG-DF,即 EC=FG.
- $\because \angle \textit{EDF} = 90^{\circ}$, $FH \perp FC$,
- $\therefore \angle 1 + \angle CFD = 90^{\circ}$, $\angle 2 + \angle CFD = 90^{\circ}$.
- ∴∠1 =∠2.
- $: \triangle DEF$ 等腰直角三角形,
- \therefore \(\textstyle DEF = \textstyle DFE = 45\)\(^\circ\)
- \therefore \angle CEF = \angle FGH = 135 $^{\circ}$.
- $\therefore \triangle CEF \cong \triangle FGH.$
- ∴ CF=FH.

----5分

(2)求解思路如下:

- a.画出图形,如图 3 所示.
- b.与②同理,可证 \triangle CEF \hookrightarrow \triangle FGH,可得 CF=FH;从而得出 DFCH 是等腰直角三角形;

- c. 作 $CP \perp EF \oplus P$,由 $CE = \sqrt{2}$ 可得 CP 的长;
- d.在 Rt \triangle CPF 中,由 $\sin 12$? $\frac{CP}{CF}$,可求 CF 的长,进而求出 $\mathbf{D}FCH$ 的面积. ----7 分
- **29.** (1) *P*₁(-4,0) 是理想点, *P*₂(3,0) 不是理想点. ----2 分
 - (2) 解法 1:

设MN 与x轴交于点F,设理想点的纵坐标为 y_0 ,则 $P(-3,y_0)$.

∵设*G* 是 *MN* 的中点, ∴
$$G(4, -\frac{4y_0}{3})$$
. $MG = \frac{1}{2}(y_M - y_N) = \frac{7}{3}$, $FC = 2$.

在 Rt
$$\triangle GFC$$
 中, $GC^2 = FG^2 + FC^2$,

$$\therefore (\frac{7}{3})^2 = (\frac{4y_0}{3})^2 + 4.$$

解得 $y_0 = \pm \frac{\sqrt{13}}{4}$, 即理想点的纵坐标为 $\pm \frac{\sqrt{13}}{4}$. — 6 分

解法 2:连接 PO 并延长交 MN 于点 G .

$$\therefore \frac{OA}{GM} = \frac{PO}{PG} , \quad \frac{OB}{GN} = \frac{PO}{PG} ,$$

$$\mathbb{E} \square \frac{OA}{GM} = \frac{OB}{GN} .$$

$$\therefore OA = OB$$
 , $\therefore GM = GN$, 即点 $G \neq MN$ 的中点.

设直线 x = -3 与 x 轴交于 E, MN 与 x 轴交于点 F.

$$\because \frac{OA}{GM} = \frac{PO}{PG} \; , \quad \frac{EO}{EF} = \frac{PO}{PG} \; ,$$

$$\therefore \frac{OA}{GM} = \frac{EO}{EF}, \exists \prod \frac{1}{MG} = \frac{3}{7}.$$

$$\therefore MG = \frac{7}{3}.$$

$$\therefore CG = MG = \frac{7}{3}.$$

在 Rt△*CFG* 中,*CF*=2,

由勾股定理得
$$FG = \frac{\sqrt{13}}{3}$$
.

$$\because \frac{PE}{FG} = \frac{EO}{FO} ,$$

$$\therefore PE = \frac{\sqrt{13}}{4}.$$

∴理想点的纵坐标为±
$$\frac{\sqrt{13}}{4}$$
.

(3)
$$-4 \le m < 0 \implies 0 < m \le \frac{4}{3}$$
.