HW7: Floating point and real conversions (CS220-02)

1) Show your work to calculate the binary real valued equivalent of 3.17 with 5 bits of precision in the fractional portion of the result.

2) Show your work to calculate the binary real valued equivalent of 21.9 with 5 bits of precision in the fractional portion of the result.

For problems 3 through 11, assume a generic 8 bit floating point representation with the layout shown below...

3-6) Given the floating point binary pattern, 00110101_2 , what is the decimal equivalent (fractions are preferred [e.g., $-4\frac{7}{8}$]) for each significand and exponent interpretation below?

Significand

	Denormal	Normal
ent Unbiased	+ 0.011 E -3 101 -> 010+ 1 = 011 = 3	+ 1.0011 E - 3
	+0.000011 +3/64	+0.00010011 + 19/ 256
Exponent Bias = -3	+ 0.011 E -6 +0.000000011 +3/512	+ 1.0011 E -6 +0.000000011 +3/512

7-10) Given the floating point binary representation, determine the bit pattern used to store the binary value -11.01101_2 for each of the significand and exponent representations in the table below. -11.01101 = -1.101101 = +1

11 = 3		Significand	
.01101 = 13/3	32 Denormal	Normal	
lent Unbiased	1 1101 001	1 1011 001	
Exponent Bias = -5	1 1101 110 E = exp + B 1 = exp + -5 exp = 6 = 110	1 1011 110	

11) For the floating point representation provided using a denormalized significand and unbiased exponent. **SHOW WORK (or at least show all equivalent binary scientific notation)** to determine how many ways one can represent the exact value $+1 \frac{1}{2}$.

$$1 = 1$$

 $0.5 = 50/100$

$$100 = 1100100 \rightarrow 0011011 + 1 = 0011100$$

 $50 = 110010$

00000.1 0 0 0 0

1100100 | 1 1 0 0 1 0. 0 0 0 0 0 0 1 1 0 0 1 0 0

00000

$$0.5 = .100000 =$$

$$1.5 = 1.1 E0$$

$$0 = 000 \rightarrow 111 + 1 = 1000 = (truncate) 000$$

denorm norm

unb 1 1100 000 1 1000 000

b 1 1100 1 1000

(no bias so actually only 2 ways)

: 1 1100 000 and 1 1000 000