12.0 Latent Semantic Analysis for Linguistic Processing

- **References:** 1. "Exploiting Latent Semantic Information in Statistical Language Modeling", Proceedings of the IEEE, Aug 2000
 - 2. "Special Issue on Language Modeling and Dialogue Systems", IEEE Trans. on Speech & Audio Processing, Jan 2000
 - 3. "A Multi-span Language Modeling Framework for Large Vocabulary Speech Recognition", IEEE Trans. on Speech & Audio Processing, Sept 1998
 - 4. Golub & Van Loan, "Matrix Computations", 1989

Word-Document Matrix Representation

Vocabulary V of size M and Corpus T of size N

- $-V = \{w_1, w_2, ... w_i, ... w_M\} , w_i: \text{ the i-th word }, \text{e.g. M} = 2 \times 10^4 \\ T = \{d_1, d_2, ... d_j, ... d_N\} , d_j: \text{ the j-th document }, \text{e.g. N} = 10^5 \\ -c_{ij}: \text{ number of times } w_i \text{ occurs in } d_j \\ n_j: \text{ total number of words present in } d_j \\ t_i = \sum_j c_{ij}: \text{ total number of times } w_i \text{ occurs in } T$

$$\Rightarrow \varepsilon_{i} = -\frac{1}{\log N} \sum_{j=1}^{N} (\frac{c_{ij}}{t_{i}}) \log(\frac{c_{ij}}{t_{i}}), \quad \text{normalized entropy (indexing power) of } \mathbf{w}_{i} \text{ in T}$$

$$0 \le \varepsilon_{i} \le 1 \quad , \quad \varepsilon_{i} = 0 \quad \text{if } c_{ij} = t_{i} \text{ for some } \mathbf{j} \text{ and } c_{ij} = 0 \text{ for other } \mathbf{j}$$

$$\varepsilon_{i} = 1 \quad \text{if } c_{ij} = t_{i}/N \text{ for all } \mathbf{j}$$

 $-\mathbf{w}_{ij} = (1 - \varepsilon_i) \frac{c_{ij}}{n_i}$, word frequencies in doucments, but normalized with document length and word entropy

$$W = [W_{ii}]$$

– each row of W is a N-dim "feature vector" for a word w_i with respect to all documents d_i each column of W is a M-dim "feature vector" for a document d_i with respect to all words w_i

Dimensionality Reduction

• $WW^{T} = \overline{U} \overline{S}_{1}^{2} \overline{U} T$

$$-\overline{\mathbf{U}} = [\mathbf{e}_1, \mathbf{e}_2, ... \mathbf{e}_M]$$
 , $\overline{\mathbf{S}}_1^2 = [s_i^2]_{M \times M}$, s_i^2 : eigenvalues of WWT, $s_i^2 \ge s_{i+1}^2$ (i, j) element of WWT: inner product of i - th and j - th rows of W

"similarity" between
$$w_i$$
 and w_j

$$WW^T = \sum_i s_i^2 e_i e_i^T$$
, e_i : orthonormal eigenvectors, $\overline{U}^T \overline{U} = I_M$

 s_i^2 : weights (significance of the "component matrices" e_i^T)

- dimensionality reduction: selection of R largest eigenvalues (R=800 for example)

$$W_{M\times N}W_{N\times M}^{T} \approx U_{M\times R}S_{R\times R}^{2}U_{R\times M}^{T}, U_{M\times R} = [e_{1}, e_{2}, e_{R}]$$

R "concepts" or "latent semantic concepts"

• $W^TW = \overline{V}\overline{S}_2^2 \overline{V}^T$

$$\overline{V} = [e'_1, e'_2, e'_N], \quad \overline{S}_2^2 = [s_i^2]_{N \times N}, s_i^2 : eigenvalues of W^TW, s_i^2 \ge s_{i+1}^2, s_i^2 = 0 \text{ for } i > min(M, N)$$

(i, j) element of W^T W: inner product of i-th and j-th columns of W

"similarity" between d_i and d_i

$$\mathbf{W}^{\mathrm{T}}\mathbf{W} = \sum \mathbf{s}_{i}^{2}\mathbf{e}_{i}^{\prime}\mathbf{e}_{i}^{\prime^{\mathrm{T}}}, \quad \mathbf{e}_{i}^{\prime}: \text{ orthonormal eigenvectors, } \overline{\mathbf{V}}^{\mathrm{T}}\overline{\mathbf{V}} = \mathbf{I}_{\mathrm{N}}$$

 s_i^2 : weights (significance of the "component matrices" $e_i' e_i'^T$)

- dimensionality reduction: selection of R largest eigenvalues

$$\mathbf{W}_{N\times M}^{\mathrm{T}}\mathbf{W}_{M\times N} \approx \mathbf{V}_{N\times R}\mathbf{S}_{R\times R}^2\mathbf{V}_{R\times N}^{\mathrm{T}}, \quad \mathbf{V}_{N\times R} = [e_1', e_2'...e_R']$$

R "concepts" or "latent semantic concepts"

Singular Value Decomposition (SVD)

• Singular Value Decomposition (SVD)

 $-s_i$: singular values, $s_1 \ge s_2 \dots \ge s_R$

U: left singular matrix, V: right singular matrix

• Vectors for word w_i : $u_iS = \underline{u}_i$ (a row)

- a vector with dimentionality N reduced to a vector $u_i S = \underline{u}_i$ with dimentionality R
- "discrete" dimentionality defined by N documents reduced to "continuous" dimentionality defined by R "concepts"
- the R row vectors of V^T , or column vectors of V, or eigenvectors $\{e'_1, ... e'_R\}$, are the R orthouormal basis for the "latent semantic space" with dimentionality R, with which $u_i S = \underline{u}_i$ is represented
- The Association Structure between words w_i and documents d_j is preserved with noisy information deleted, while the dimensionality is reduced to a common set of R "concepts"

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

$$\mathbf{W}_{\mathbf{M} \times \mathbf{N}} \approx \hat{W}_{\mathbf{M} \times \mathbf{N}} = U_{\mathbf{M} \times \mathbf{R}} S_{\mathbf{R} \times \mathbf{R}} V_{\mathbf{R} \times \mathbf{N}}^{T}$$

$$\mathbf{W}_{1} \quad \mathbf{W}_{2} \quad \mathbf{W}_{2} \quad \mathbf{W}_{3} \quad \mathbf{W}_{4} \quad \mathbf{W}_{5} \quad \mathbf{W}_{5} \quad \mathbf{W}_{7} \quad \mathbf$$

- $-s_i$: singular values, $s_1 \ge s_2 \dots \ge s_R$
 - U: left singular matrix, V: right singular matrix

• Vectors for document d_i : $v_i S = \underline{v}_i$ (a row, or $\underline{v}_i^T = S v_i^T$ for a column)

- a vector with dimentionality M reduced to a vector $v_i S = \underline{v_i}$ with dimentionality R
- "discrete" dimentionality defined by M words reduced to "continuous" dimentionality defined by R "concepts"
- the R columns of U, or eigenvectors $\{e_1,...e_R\}$, are the R orthonormal basis for the
- "latent semantic space" with dimensionality R, with which $v_i S = \underline{v_j}$ is represented The Association Structure between words w_i and documents d_j is preserved with noisy information deleted, while the dimensionality is reduced to a common set of R "concepts"

Example Applications in Linguistic Processing

Word Clustering

- example applications: class-based language modeling, information retrieval, etc.
- words with similar "semantic concepts" have "closer" location in the "latent semantic space"
 - they tend to appear in similar "types" of documents, although not necessarily in exactly the same documents
- each component in the reduced word vector $\mathbf{u}_{j}\mathbf{S}=\underline{\mathbf{u}}_{j}$ is the "association" of the word with the corresponding "concept"
- example similarity measure between two words:

$$sim(w_i, w_j) = \frac{\underline{u}_i \cdot \underline{u}_j}{\left|\underline{u}_i\right| \cdot \left|\underline{u}_j\right|} = \frac{u_i S^2 u_j^T}{\left|u_i S\right| \cdot \left|u_j S\right|}$$

Document Clustering

- example applications: clustered language modeling, language model adaptation, information retrieval, etc.
- documents with similar "semantic concepts" have "closer" location in the "latent semantic space"
 - they tend to include similar "types" of words, although not necessarily exactly the same words
- each component on the reduced document vector $v_j S = \underline{v}_j$ is the "association" of the document with the corresponding "concept"
- example "similarity" measure between two documents:

$$sim(d_i, d_j) = \frac{\underline{v}_i \cdot \underline{v}_j}{\left|\underline{v}_i\right| \cdot \left|\underline{v}_j\right|} = \frac{v_i S^2 v_j}{\left|v_i S\right| \cdot \left|v_j S\right|}$$

Example Applications in Linguistic Processing

Information Retrieval

- -"concept matching" vs "lexical matching": relevant documents are associated with similar "concepts", but may not include exactly the same words
- -example approach: treating the query as a new document (by "folding-in"), and evaluating its "similarity" with all possible documents

• Fold-in

- -consider a new document outside of the training corpus T, but with similar language patterns or "concepts"
- -construct a new column d_p , p>N, with respect to the M words
- -assuming U and S remain unchanged $d_p = USv_p^T$ (just as a column in $W = USV^T$) $\underline{v}_p = v_p S = d_p^T U$ as an R-dim representation of the

as an R-dim representation of the new document (i.e. obtaining the projection of d_p on the basis e_i of U by inner product)

Integration with N-gram Language Models

Language Modeling for Speech Recognition

- $-\operatorname{Prob}(\mathbf{w}_{a}|\mathbf{d}_{a-1})$
 - w_a: the q-th word in the current document to be recognized (q: sequence index)
 - d_{g-1} : the recognized history in the current document
- - H_{q-1} : history up to W_{q-1}
- $h_{q-1}^{(n)}$:< $w_{q-n+1}, w_{q-n+2},... w_{q-1}$ > N-gram gives local relationships, while d_{q-1} gives semantic concepts
- $-d_{q-1}$ emphasizes more the key content words, while N-gram counts all words similarly including function words

• $\underline{\mathbf{v}}_{q-1}$ for \mathbf{d}_{q-1} can be estimated iteratively

- assuming the q-th word in the current document is w_i

$$d_{q} = \left(\frac{q-1}{q}\right)d_{q-1} + \left(\frac{1-\varepsilon_{i}}{q}\right)\left[00...0100....0\right]^{T}$$

$$v_{q} = d_{q}^{T}U = \left(\frac{q-1}{q}\right)v_{q-1} + \left(\frac{1-\varepsilon_{i}}{q}\right)u_{i} \quad \text{, updated word - by - word}$$

 $\underline{\mathbf{v}}_{q}$ moves in the R-dim space initially, eventually settle down somewhere