EXPERIMENT: Superposition Theorem

Aim: Verification of Superposition theorem

Apparatus: Various power supply sources, resistances, breadboard, multimeter, connecting wires.

Theory: As per the superposition theorem, a linear bilateral network containing multiple voltage and current sources, the overall response at any point in the network is equal to the sum of the responses of each source considered separately with all other sources made inoperative and replaced by resistances equal to their internal resistance.

Consider the circuit shown in fig. 1 (a) consisting two voltage sources, namely, V_1 and V_2 . Let the current through the resistor R_1 due to both the sources V_1 and V_2 be I_1 . The circuit in fig. 1(b) only consists of voltage source V_1 and let the current through R_1 be I_{11} . The circuit in fig. 1(c) only consists of voltage source V_2 and let the current through R_1 be I_{12} . The mathematical equivalence of superposition theorem is given by eq. (1).

Fig. 1: (a) Circuit with two voltage sources with current direction, (b) considering voltage source V₁, (c) Considering voltage source V₂

The current I_{11} is given by eq. (2).

$$I_{11} = \frac{V_1}{R_1 + R_2 \| R_3} \tag{2}$$

The current I_{12} is given by eq. (3) and eq. (4).

$$I_{12} = \frac{-V_d}{R_1} \tag{3}$$

$$V_d = \frac{(R_1 || R_3) V_2}{R_2 + R_1 || R_3} \tag{4}$$

Observations:

S.no.	I ₁ (A) (measured)	I ₁₁ (A) (measured)	I ₁₂ (A) (measured)	$I_1=I_{11}+I_{12}$ (A)

Procedure:

- i) Connect the circuit on bread board as shown in fig.1
- ii) For verifying theorem, consider one source at a time if you have multiple sources
- iii) Connect the multimeter in series with branch.
- iv) Consider source V₁ and remove the source V₂ and reconnect the circuit.
- v) Measure "I₁₁"
- vi) Consider source V₂ and remove the source V₁ and reconnect the circuit.
- vii) Measure I₁₂

Precautions:

- (i) Do not make interconnection on the board with mains switched ON.
- (ii) As soon as mains is ON the reading in the meters must be zero. If the reading in the meters is not zero, check the meter.

Result: The net current I is the algebraic sum of I_{11} and I_{12} due to the individual voltage source taking one at a time $I=I_{11}+I_{12}$.