

Experimental Application of Stochastic Approximated MPC

Michaela Horváthová Patrik Valábek Karol Kiš Lenka Galčíková

Institute of Information Engineering Automation, and Mathematics, Slovak University of Technology in Bratislava

Abstract

This paper experimentally validates the stochastic approximated model predictive control (MPC). Specifically, the random shooting (RS)-based approximated MPC is designed to offer an exploitable and solver-free alternative to standard MPC. However, the original RS-based MPC lacks guarantees for recursive feasibility and closed-loop stability. To address this, a recursive RS-based method with a dual-mode control strategy and a support controller was implemented, ensuring feasibility and stability. A case study demonstrates successful offset-free reference tracking on a fast-dynamics system, proving the methods effective under strict computational constraints and offering a fast, solver-free alternative without compromising stability or feasibility.

Random Shooting Approximated MPC

To reduce the computational burden of traditional MPC, an RS-based approximated MPC was proposed. It generates multiple random control sequences u_1, \ldots, u_N and evaluates their feasibility under constraints $\mathcal{X}, \mathcal{U}, \mathcal{T}$, and evaluates their performance via the MPC cost function:

$$J = x_N^{\top} P x_N + \sum_{k=0}^{N-1} x_k^{\top} Q x_k + u_k^{\top} R u_k.$$

Out of $N_{\rm max}$ iterations, the feasible sequence with the lowest cost is selected. Suboptimality of this method decreases as $N_{\rm max}$ increases.

Recursive Random Shooting Approximated MPC

This method integrates RS with the recursive structure of MPC to guarantee recursive feasibility and closed-loop stability. A dual-mode control strategy improves computational efficiency: when the measured state x_0 lies within a terminal set \mathcal{T} , a Linear Quadratic controller with gain $K_{\rm LQ}$ ensures stability and performance; otherwise, the random shooting method is applied. To further guarantee recursive feasibility and stability, a support controller is designed, feasible inside the set \mathcal{X} , with control inputs $U_{\rm sup}$ and cost function $J_{\rm sup}$.

Figure 1. Flowchart of the recursive random shooting-based approximated MPC.

Tracking Problem

Incorporating reference tracking into the approach allows the system to track reference effectively. To ensure offset-free tracking, an integral action is added to the system by augmenting the states:

$$\hat{x}(k) = \left[x(k), \ \sum_{j=0}^k (y_{\mathsf{ref}}(j) - y(j))\right]^{\top}.$$

Controlled Plant

The Flexy device is a fast SISO system with a 0.1 s sampling time, the control input is a fan-actuated airflow and a sensor-based bending as the control output, modeled using the Strejc method and discretized with integral action for offset-free tracking.

Figure 2. Controlled Plant – Flexy device

Results

Three control strategies were verified on the Flexy device: RS-based approximated MPC, its recursive variant, and conventional MPC. All achieved offset-free tracking within constraints, with the recursive RS method offering the best trade-off between complexity and performance.

Figure 3. The control performance of reference tracking for the Flexy device.

While conventional MPC is optimal, it exceeds the 0.1 s sampling time of the Flexy device, limiting real-time use. In contrast, RS and recursive RS methods cut computation time by 51% and 84%, respectively. The recursive RS method achieved decisions in just 5.9 ms, well within the sampling limit. Control performance was also strong: the recursive RS method stayed within 0.4% of the optimal cost, versus 5% for standard RS. This suboptimality is tunable increasing the number of random-shoots. Although explicit MPC matched computational time, it required up to 96% more memory, demonstrating the efficiency of RS-based methods in constrained environments. These findings show RS-based control is ideal for fast, resource-limited systems.

Metric	MPC	EMPC	RS	Recursive RS
Time [ms]	36	2.5	18	5.9
Cost [$\times 10^7$]	†	2.36	2.45	2.37
Memory [kB]	0.30	7.06	0.31	0.42

Acknowledgment

