cādence®

Hardware System Verification (HSV) Vertical Solutions Engineering (VSE)

LPDDR5
Palladium Memory Model
User Guide

Document Version: 0.4

Document Date: July 2018

Copyright © 2017-2018 Cadence Design Systems, Inc. All rights reserved. Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seg. or its successor.

Contents

LIST OF FIGURES	 4
LIST OF TABLES	4
GENERAL INFORMATION	 5
1.1 RELATED PUBLICATIONS	 5
LPDDR5 MEMORY MODEL	6
1. Introduction	6
3. FEATURES	
10.8. MR7 (Read only)	 22
10.9. MR8 (Read only)	23
10.17. MR16 (Read/Write)	 24
10.18. MR17 (Write only)	 25
10.19. MR18 (Write only)	 25
10.20. MR19 (Write only)	 25
10.21. MR20 (Write only)	 25
10.22. MR21 (Read/Write)	 26
10.23. MR23 (Write only)	 26
10.24. MR25 (Write only)	 26
10.25. MR28 (Write only)	 26
10.27. MR30 (Write only)	 27
10.28. MR31 (Write only)	 27
10.29. MR32 (Write only)	 27
10.30. MR33 (Write only)	 27
10.31. MR34 (Write only)	 27
10.32. MR35 (Read only)	 27

10	0.33. MR36 (Read only)	28
10	0.34. MR37 (Write only)	28
10	0.35. MR38 (Read only)	28
10	0.36. MR39 (Read only)	28
10	0.37. MR40 (Write only)	29
11.	COMMANDS	30
12.	DBI AND DM FUNCTION	33
13.	DQ Training function	
14.	WCK2CK SYNCHRONIZATION	
15.	RDQS INTERVAL OSCILLATOR	
16.	DATA COPY LOW POWER FUNCTION	
17.	Write X	37
18.	INITIALIZATION SEQUENCE	
19.	MODEL CLOCKING	
20.	COMPILE AND EMULATION	
21.	RUNTIME	41
22.	HANDLING WCK IN PALLADIUM MEMORY MODELS	
23.	DEBUGGING	44
DEVIC	ION HISTORY	18
	of Figures	
FIGURE	1: LPDDR5 x16 MODEL PORT DIAGRAM	11
FIGURE	2: LPDDR5 x8 Model (Byte Mode) Port Diagram	12
FIGURE	3 CK AND WCK SHOULD BE IN PHASE WHEN CKR=4:1 (DEFAULT)	39
FIGURE	4 CK AND WCK SHOULD BE IN PHASE WHEN CKR=2:1	39
	5 DQ AND WCK_T WRITE TIMING RELATION IN INDUSTRY	
FIGURE	6 DQ AND WCK_T WRITE TIMING RELATION IN PALLADIUM	42
FIGURE	7 DQ AND WCK_T READ TIMING RELATION IN PALLADIUM	43
List (of Tables	
TABLE	1: MEMORY MODEL STANDARD OR DATASHEET REVISION INFO	6
	2: FEATURES LIST OF LPDDR5 MODEL	
	3: LPDDR5 OPTIONAL VERILOG DEFINES	
	4: MODEL CONFIGURATIONS	
	5: MODEL I/O SIGNALS	
	6: User Adjustable Parameters	
	7: Visible Non-User-Adjustable Localparam	
TABLE S	8: REGISTERS IMPLEMENTED IN JEDEC MODELS	19
TABLE 9	9: LPDDR5 COMMAND ENCODING	30
	10: MPC Sub-Commands	
TABLE	11: FUNCTIONAL BEHAVIOR FOR LPDDR5 DM AND DBL	33
TABLE	12: Writeable Mode Register / Configuration Register Info	46

General Information

The Cadence Memory Model Portfolio provides memory device models for the Cadence Palladium XP, Palladium XP II and Palladium Z1 series systems. Optimizing the acceleration and/or emulation flow on these platforms for MMP memory models may require information outside the scope of the MMP user guides and related MMP documentation.

1.1 Related Publications

For basic information regarding emulation and acceleration, please refer to the following documents:

For Palladium XP and Palladium XP II:

UXE User Guide
UXE Library Developer's Guide
UXE Known Problems and Solutions
UXE Command Reference Manual
Palladium XP Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in UXE

For Palladium Z1:

VXE User Guide
VXE Library Developer's Guide
VXE Known Problems and Solutions
VXE Command Reference Manual
Palladium Z1 Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in VXE

LPDDR5 Memory Model

1. Introduction

The Cadence Palladium LPDDR5 model is based on the datasheet listed below. The model supports S16 and S32 types.

Table 1: Memory Model Standard or Datasheet Revision Info

Association or Vendor	Part	Reference Datasheet	Rev.	Revision Date
JEDEC	jedec_lpddr5_*	20180207_Samsung LPDDR5 Specification Draft_R096.pdf	Rev0.96_v8	February 2018
JEDEC	jedec_lpddr5_x8_*	20180207_Samsung LPDDR5 Specification Draft R096.pdf	Rev0.96_v8	February 2018

2. Model Release Levels

All models in the Memory Model Portfolio are graded with a release level. This release level informs users of the current maturity and status of the model. All families in the library are graded at one of these levels.

The different levels give an overall indication of the amount of testing, level of quality and feature availability in the model. For details on supported features check the User Guide for that particular model family.

There are three release levels for models in the MMP release.

Release Level		Model Status	Available in Release	Listed in Catalog	Requires Beta Agreement
Mainstream Release	MR	Fully released and available in the catalog for all customers to use.	Yes	Yes	No
Emerging Release	ER	Model has successfully completed Beta engagement(s). Most, but not all features have been tested. Documentation is available.	No	Yes	Yes
Initial Release	IR	Model has completed initial development and has been released to Beta customer(s). The model may have missing features, may not be fully tested and may not have documentation. Model may contain defects.	No	Yes	Yes

Access to Initial Release and Emerging Release versions of the models will require a Beta Agreement to be signed before the model can be delivered.

3. Features

The table below lists which features are supported and which are unsupported.

Table 2: Features List of LPDDR5 Model

FEATURE	SUPPORT	NOTE
Initialization command sequence	Yes	After initialization sequence,
		init_done signal will be asserted
		'HIGH'.
Power Down Enter/Exit	Yes	
CAS command with WCK2CK-sync	Yes	
Activate command	Yes	
Precharge command	Yes	
Burst Read command (READ, READ32)	Yes	
Burst Write command (WRITE, WRITE32)	Yes	
Masked Burst Write command	Yes	
Read/Write DBI function	Yes	
Burst Length 16, 32 and BL on the fly function	Yes	
All Read/Write latencies	Yes	
Mode Register Read/Write	Yes	
FSP-WR and FSP-OP features	Yes	
RDQS Pre-amble and Post-amble features	Yes	
Refresh/self-refresh/DSM command	Yes	REF, DSM, SRE and SRX commands
		are accepted for LPDDR5 model,
		but have no effect on the core
		memory. All bank refresh is
		supported.
Command Bus Training feature	Yes	
Read/Write FIFO command	Yes	
Read DQ Calibration command	Yes	
Write Leveling feature	Yes	
MPC command and its sub commands	Yes	
Data Copy	Yes	
Write X	Yes	
RDQS Interval Oscillator	Yes	
DVFS	Yes	
ECC Link	No	
Post Package Repair	No	
ZQCal Reset function	No	
ODT feature	No	
PASR Bank and PASR Segment functions	No	
LPDDR5 x8 (Byte Mode)	Yes	

4. Verilog Macro Defines

The following table lists the optional Verilog macros which users may consider.

Table 3: LPDDR5 Optional Verilog Defines

`define Verilog Macro Purpose	Optional Verilog `define Values
RDQS Interval Oscillator feature support;	MMP_RDQSOSC
define this optional Verilog macro to	
enable RDQS Interval Oscillator. MR35,	
MR36, MR37 and MR38 will report the	
DRAM RDQS Interval Oscillator count only	
when this macro is defined.	
Support {row, bank, col} addressing mode.	MMP_RBC

5. Configurations

The following table lists the possible configurations. Not all configurations are available from all vendors. Please consult the appropriate vendor site for the detailed information on the parts they offer.

Table 4: Model Configurations

	Memory Density	2	Gb	30	āb	40	3 b	60	ib .	80	a b	12	Gb	16	Gb	24	Gb	32	Gb
Data Width	Туре	S16	S32	S16	S32	S16	S32	S16	S32	S16	S32	S16	S32	S16	S32	S16	S32	S16	S32
wiath	Bank Groups	4	0	4	0	4	0	4	0	4	0	4	0	4	0	4	0	4	0
	Banks/per Bank Group	4	8	4	8	4	8	4	8	4	8	4	8	4	8	4	8	4	8
x16	Row Address	R[1	12:0]	•	2=0 ien	R[1	3:0]	(R1 wh	4:0] 3=0 en !=1)	R[1	4:0]	(R1	5:0] 4=0 nen 5=1)	R[1	5:0]	(R1	6:0] 5=0 en 5=1)	R[1	6:0]
	Column Address	C[5:0]	C[5	5:0]	C[5	5:0]	C[5	5:0]	C[5	5:0]	C[5	5:0]	C[5	5:0]	C[5	:0]	C[5	5:0]
	Burst Length	16	32	16	32	16	32	16	32	16	32	16	32	16	32	16	32	16	32
Х8	Row Address	R[1	13:0]	(R1	4:0] 3=0 ien i=1)	R[1	4:0]	(R1 wh	5:0] 4=0 en i=1)	R[1	5:0]	(R1 wh	6:0] 5=0 nen 5=1)	R[1	6:0]	(R1 wh	7:0] 6=0 en '=1)	R[1	7:0]
	Column Address	C[5:0]	C[5	5:0]	C[5	5:0]	C[5	5:0]	C[5	:0]	C[5	5:0]	C[5	5:0]	C[5	:0]	C[5	5:0]
	Burst Length	16	32	16	32	16	32	16	32	16	32	16	32	16	32	16	32	16	32

6. Model Block Diagram

For the LPDDR5 x16 model, the width of CA bus is 7 bits; DMI is 2 bits; and DQ is 16 bits. WCK_t, WCK_c, RDQS_t and RDQS_c are 2-bit buses.

WCK2DQI_OSC_CLK and WCK2DQO_OSC_CLK are two optional clock inputs used for supporting the RDQS Interval Oscillator feature (see Table 3: LPDDR5 Optional Verilog Defines).

Figure 1: LPDDR5 x16 Model Port Diagram

For the LPDDR5 x8 model (also referred to as Byte Mode), the width of CA bus is 7 bits; DMI is 1 bit; and DQ is 8 bits. WCK_t, WCK_c RDQS_t and RDQS_c are each 1-bit.

WCK2DQI_OSC_CLK and WCK2DQO_OSC_CLK are two optional clock inputs used for supporting the RDQS Interval Oscillator feature.

Figure 2: LPDDR5 x8 Model (Byte Mode) Port Diagram

7. I/O Signal Description

The table below lists and describes the model I/O signals.*

Table 5: Model I/O Signals

NAME	TYPE	DESCRIPTION
CK_t	Input	Clock: CK_t and CK_c are differential clock inputs. All
CK_c		address, command, and control input signals are
		sampled on the crossing of the positive edge of CK_t
		and the negative edge of CK_c. AC timings for CA
		parameters are referenced to CK.)
CS	Input	Chip Select: CS is part of the command code.
CA[6:0]	Input	Command/Address Inputs: CA signals provide the
C. ([0.0]	mpat	Command and Address inputs.
DQ[15:0]	1/0	Data Input/Output: Bi-directional data bus.
DQ[13.0]	1,0	Data input/Output. Bi-un ectional data bus.
WCK_t[1:0] WCK_c[1:0]	Input	Write Clocks: WCK_t and WCK_c are differential
		clocks used for WRITE data capture and READ data
		output.
DMI[1:0]	1/0	Data Mask Inversion: DMI is a bi-directional signal
		which is driven HIGH when the data on the data bus
		is inverted, or driven LOW when the data is in its
		normal state. Data Inversion can be disabled via a
		mode register setting. Each byte of data has a DMI
		signal. This signal is also used along with the DQ
		signals to provide write data masking information to
	·	the DRAM. The DMI pin function—Data Inversion or
		Data mask—depends on Mode Register setting.
ZQ	Reference	Not supported
VDDQ,	Supply	Not supported
VDD1,		
VDD2H		
VDD2L		
VSS, VSSQ	GND	Not supported
	l	

July 2018 © 2017-2018 Document Version: 0.4 All rights reserved.

^{*} Samsung for JEDEC Solid State Technology Association. JEDEC LPDDR5 Proposed Draft Specification, revision 0.9_r2 (August 21 2017): 4-5.

NAME	TYPE	DESCRIPTION
RESET_n	Input	RESET: When asserted LOW, the RESET_n signal resets the die.
RDQS_t[1:0]	1/0	Read Data Strobe: LPDDR5 can support read data strobe with RDQS_t pad in RDQS mode. RDQS_t can be supported with RDQS_c for differential RDQS mode option. And RDQS can be supported for single-ended RDQS mode option. RDQS_t[0] is associated with DQ[7:0], RDQS_c[1]is associated with DQ[15:8]. The functionality of RDQS_t pin depends on the MR20 OP[1:0] setting.
RDQS_c[1:0]	1/0	Read Data Strobe: LPDDR5 can support read data strobe with RDQS_c pad in RDQS mode. RDQS_c can be supported with RDQS_t for differential RDQS mode option. RDQS_c[0] is associated with DQ[7:0], RDQS_c[1] is associated with DQ[15:8]. The functionality of RDQS_c pin depends on the MR20 OP[1:0] setting.
WCK2DQI_OSC_CLK	Input	RDQS Interval Oscillator for measuring WCK2DQI: WCK2DQI_OSC_CLK is a clock input acting as the RDQS Interval Oscillator for measuring WCK2DQI time interval. This clock input is optional. It is enabled and required only when defining Verilog macro "MMP_RDQSOSC".
WCK2DQO_OSC_CLK	Input	RDQS Interval Oscillator for measuring WCK2DQO: WCK2DQO_OSC_CLK is a clock input acting as the RDQS Interval Oscillator for measuring WCK2DQO time interval. This clock input is optional. It is enabled and required only when defining Verilog macro "MMP_RDQSOSC".

8. Model Parameter Descriptions

The following table provides details on the user adjustable parameters for the Palladium LPDDR5 Memory Model. These parameters may be modified when instantiating an LPDDR5 instance, if necessary, by modifying the HDL parameter declarations and default values which are exposed for access and debug visibility.

Table 6: User Adjustable Parameters

User Adjustable	Default	Description
Parameter	Value	
ROW_ADDR_WIDTH	13	Row address width.
FLAG_3G6G12G24G	0	1: if memory size is 3Gb, 6Gb, 12Gb or 24Gb.
		0: if memory size is 2Gb, 4Gb, 8Gb, 16Gb or 32Gb.
tRDQS_PRE	4(*tWCK)	tRDQS_PRE is used to set the static preamble length
		when MR10 OP[5:4], RDQS_PRE is set to 2'b11.
		Range: Min 2*tWCK and Max 4*tWCK
RDDQ_WHICH_BYTE	0	RDDQ_WHICH_BYTE is used only in Byte Mode model
		when the Read DQ Calibration command is issued. It
		indicates the byte mode DQ bus to be the upper or the
		lower byte.
		0: lower byte
		1: upper byte

The following table provides information about the exposed localparams which are NOT user adjustable. On rare occasions, users may need adjust some localparams for their configuration. If this case arises, please contact Cadence emulation or MMP support.

Table 7: Visible Non-User-Adjustable Localparam

Localparam	Default Value	Description
col_addr_width	6	column address width
bkbst_addr_width	8	bank and burst address width summation
data_bits	16 (8 for Byte Mode)	data bus width
addr_bits	7	CA bus width
byte_width	8	number of bits inside a byte
num_bytes	data_bits/byte_width	number of bytes inside a DQ
mode_reg_width	8	mode register width
total_addr_bits	ROW_ADDR_WIDTH+ col_addr_width+bkbs t_addr_width	memory capacity address width
banks_burst	(64'b1<<(bkbst_addr _width))	number of banks times number of bursts
rows	((64'b1< <row_addr _WIDTH) -</row_addr 	number of rows

Localparam	Default Value	Description
Localparam	Delauit value	Description
	(64'b1<<(ROW_ADDR	
	WIDTH-	
	2))*FLAG_3G6G12G2	
	4G)	
cols	(64'b1< <col_addr_wi< td=""><td>number of cols</td></col_addr_wi<>	number of cols
	dth)	
mem_depth	(banks_burst * rows	number of DQs
	* cols)	
dqfifo_num	5	DQ fifo depth
BL_MWR_16B	16	burst length for masked write in configuration
		of 16 Banks
BL_MWR_8B	32	burst length for masked write in configuration
		of 8 Banks
BL_MRR	16	burst length for mode register read
BL_DQFIFO	16	burst length for dq fifo read/write
BL_DQTRAIN	16	burst length for dq calibration training
Latency_mode	0 (1 for Byte Mode)	0: support x16 mode latency; 1: support Byte
		Mode latency
IO_Width	0 (1 for Byte Mode)	0: support x16 mode IO_width; 1: support Byte
MDVC	411-4	Mode IO_width
WRXS	1'b1	0: not support Write X feature; 1: support Write X feature
WDCFS	1'b1	0: not support Data Copy feature; 1: support
WDCF3	101	Data Copy feature
RDCFS	1'b1	0: not support Data Copy feature; 1: support
RECIS	101	Data Copy feature
Manu ID	8'b0000 0000	manufacture ID
Ver ID1	8'b0000 0000	Version ID A
Ver ID2	8'b0000 0000	Version ID B
MR1_default	8'b0000_0000	default value for mode register MR1
MR2_default	8'b0000_0000	default value for mode register MR2
MR3_default	8'b0000_0110	default value for mode register MR3
MR9_default	8'b0000_0000	default value for mode register MR9
MR10_default	8'b0000_0000	default value for mode register MR10
MR11_default	8'b0000_0000	default value for mode register MR11
MR12_default	8'b0100_0110	default value for mode register MR12
MR13_default	8'b0000_0000	default value for mode register MR13
MR14_default	8'b0100_0110	default value for mode register MR14
MR15_default	8'b0100_0110	default value for mode register MR15
MR16_default	8'b0000_0000	default value for mode register MR16
MR17_default	8'b0010_1000	default value for mode register MR17
MR18_default	8'b0000_0000	default value for mode register MR18
MR19_default	8'b0000_0000	default value for mode register MR19
MR20_default	8'b0000_0010	default value for mode register MR20

Localparam	Default Value	Description
MR21_default	8'b0000_0000	default value for mode register MR21
MR23_default	8'b0000_0000	default value for mode register MR23
MR25_default	8'b0000_0000	default value for mode register MR25
MR27_default	8'b0000_0000	default value for mode register MR27
MR28_default	8'b0000_0000	default value for mode register MR28
MR29_default	8'b0000_0000	default value for mode register MR29
MR30_default	8'b0000_0000	default value for mode register MR30
MR31_default	8'h55	default value for mode register MR31
MR32_default	8'h55	default value for mode register MR32
MR33_default	8'h5A	default value for mode register MR33
MR34_default	8'h3C	default value for mode register MR34
MR37_default	8'b0000_0000	default value for mode register MR37
MR40_default	8'b0000_0000	default value for mode register MR40
MR41_default	8'b0110_0000	default value for mode register MR41
MR42_default	8'b0000_0000	default value for mode register MR42

Note that there are additional exposed localparams in the model HDL that are not described here nor intended to be described here. These additional localparams are exposed for debugging purposes only and will not be described herein.

9. Address mapping

The array of the LPDDR5 model is mapped into the internal memory of the Palladium system. This array is a single two-dimensional array. The mapping of bank, row and column addresses to the internal model array is as follows:

```
ARRAY_ADDR = (BA*rows + ROW)*cols + COL;
```

(rows: the maximum number of rows per bank; cols is the maximum number of columns per row.)

This information is required if the memory needs to be preloaded with user data.

The array name in the model hierarchy is: memcore

Due to the constrained depth of the internal memory in the Palladium system, some LPDDR5 models with large memory size are implemented with several smaller memcores instead of one memcore.

When users want to load in or dump out data from memcores, the MSB of the memory address is used to choose from memcore0 (MSB=1'b0) and memcore1(MSB=1'b1).

```
32 Gb x16 LPDDR5 model consists of two 16Gb memcores. 16 Gb x 8 LPDDR5 model consists of two 8 Gb memcores.
```

When users want to load in or dump out data from memcores, the MSB and MSB-1 of the memory address are used to choose from memcore0 ([MSB:MSB-1]=2'b00), memcore1 ([MSB:MSB-1]=2'b10), AND memcore3 ([MSB:MSB-1]=2'b11).

```
32 Gb x8 LPDDR5 model consists of four 8Gb memcores. 24 Gb x8 LPDDR5 model consists of three 8Gb memcores.
```

If {row,bank,col} addressing is needed instead of the default {bank,row,col} addressing, add +define+MMP_RBC to the vlan invocation (IXCOM flow) or to the appropriate HDL-ICE synthesis (Classical flow) command. No value is required for MMP_RBC – only the compile phase define. This option is applicable when using the <model>.vp file. In MMP_RBC mode, the mapping of bank, row and column addresses to the internal model array is as follows:

ARRAY ADDR = (ROW*banks+BA)*cols + COL;

10. Register Definitions

In the LPDDR5 specification there are up to 64 registers defined. The LPDDR5 Palladium model implements the following registers.*

Table 8: Registers Implemented in JEDEC models

	Address				Fiel	ds and De	escription			
Name	MA<7:0>	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
MR0	0x00	R				Latency Mode	RFU			
				WL			CK Mode			
MR1	0x01	W		WL			CK Mode		RFU	
				WL CK Mode						
				nWR				RL and	l nRBTP	
MR2	0x02	W		nWR RL and nRBTP						
				nWR RL and nRBTP						
			DBI-WR	DBI-RD	WLS	BK/BG	BK/BG ORG PDDS			
MR3	0x03	W	DBI-WR	DBI-RD	WLS	BK/BG	ORG PDDS			
			DBI-WR	DBI-RD	WLS	BK/BC	/BG ORG PDDS			
MR4	0x04	R	TUF	ZQ Master	ZQUF			Refresh Rate	e	
MR5	0x05	R			LP	DDR5 Manuf	facturer ID			
MR6	0x06	R				Revision	ID-1			
MR7	0x07	R				Revision	ID-2			
MR8	0x08	R	IO Wi	dth		Der	nsity		Тур	е
MR9	0x09	W			Vend	dor Specific 1	Γest Register			
			RDQS	RDQS PST RDQS PRE WCK PST					RPST Mode	
MR10	0x0A	w	RDQS	RDQS PST RDQS PRE WCK PST RFU				RPST Mode		
			RDQS	RDQS PST RDQS PRE WCK PST Mc					RPST Mode	
MR11	0x0B	w	RFU CA ODT NT-ODT DQ ODT							
IVIII	ONOD	**	RFU		CA ODT		NT-ODT EN		DQ ODT	

^{*} Samsung for JEDEC, "LPDDR5 Draft Spec," rev 0.9_r2, 24-26.

	Address					Fiel	lds and De	escription	1			
Name	MA<7:0>	Access	OP7	OP6	OP		OP4	OP3	OP2	OP1	ОРО	
			RFU		CA OD	Т		NT-ODT EN		DQ ODT		
								Vref(CA)				
MR12	0x0C	R/W	VBS					Vref(CA)				
								Vref(CA)				
MR13	0x0D	W	Dual VDD2	CBT Mode	DM	D	RI	FU	VRO	Thermal	Offset	
				IVIOUE			\	Vref(DQ[7:0])			
MR14	0x0E	R/W	VDLC				\	Vref(DQ[7:0])			
							\	/ref(DQ[7:0])			
							V	ref(DQ[15:	3])			
MR15	0x0F	R/W	RFU				V	ref(DQ[15:	3])			
							V	ref(DQ[15:	3])			
MR16	0x10	R/W	CBT-PH	VRCG						WR		
					ODT CA			ODTD- CK SOC ODT				
MR17	0x11	W	x8ODTD	X8odt Lower	4		RFU	ODTD-	ODTD- CK SOC ODT			
			Upper	Lower	ODT			ODTD- SOC ODT				
					CA WC			CK				
					SYN	С	WCK ON		WCK Termination			
MR18	0x12	w	CKR	WCK2CK WCK WCK ON RFU WCK Tern				/CK Terminatio	on			
					WC SYN		WCK ON		W	/CK Terminatio	n	
								D\	/FSQ	DVF	sc	
MR19	0x13	w		R	FU			D\	/FSQ	DVF	sc	
								D\	/FSQ	DVF	sc	
			RDC DQ	RDC DMI				WCk	Mode	RDC	QS .	
MR20	0x14	W	Mode	Mode		RF	U		Mode	RDC	QS	
		241		1			T		Mode	RDC	1	
MR21	0x15	N/A	RFU	WXFE			WDCFE	RFU	WXFS	RDCFS	WDCFS	
MR22	0x16	N/A	RECO		V	/ECC			RI	U		
MR23 MR24	0x17 0x18	W N/A					PASR Segme RFU					
			DELL	DARG	CA B	JS	CA BUS			NELL		
MR25	0x19	N/A	RFU	PARC	TERI		TERM			RFU		
MR26	0x1A	N/A		RFU								
MR27	0x1B	TBD					RFU			1	ZQ	
MR28	0x1C	W	RFU	Z	Q Mode		RFU	ZC) interval	ZQ Stop	Reset	
MR29	0x1D	W		DCA f			RFU		DCA (
MR30	0x1E	W		DCA for U						ower byte ower byte		
				DCA for Upper byte DCA for Lower byte								
MR31	0x1F	W		Lower-Byte Invert Register for DQ Calibration								
MR32	0x20	W			Upper-B	∕te I	nvert Regist	er for DQ C	alibration			

N1	Address				Fie	lds and D	escription			
Name	MA<7:0>	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
MR33	0x21	W			DO	Calibration	Pattern "A"			
MR34	0x22	W		DQ Calibration Pattern "B"						
MR35	0x23	R		WCK2DQI Oscillator Count - LSB						
MR36	0x24	R		WCK2DQI Oscillator Count - MSB						
MR37	0x25	W		WCK2DQI interval timer run time setting						
MR38	0x26	R		WCK2DQO Oscillator Count - LSB						
MR39	0x27	R			WCK2I	DQO Oscillat	or Count - M	SB		
MR40	0x28	W			WCK2DQC	interval tim	er run time :	setting		
MR41	0x29	R	N	T DQ ODT T DQ ODT T DQ ODT		PRRE		PPR R	esource esource	
MR42	0x2A	R	RFU				PPR KEY Pr	rotection		
MR43	0x2B	N/A	RFU (reserved for TEST)							
MR44	0x2C	N/A	RFU (reserved for TEST)							
MR45:63	0x2C~3F	N/A		DNU (Do Not Use)						

Applied when FSP=0
Applied when FSP=1
Applied when FSP=2

10.1.MR0 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
		RFU				Latency Mode	RFU

Latency Mode is set to 1'b0 in LPDDR5 x16 model. Latency Mode is set to 1'b1 in LPDDR5 x8 model.

10.2.MR1 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
	WL			CK Mode		RFU	

CK field default is set to differential.

WL field default is set to 2.

10.3.MR2 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
	n۷	VR			RL and	nRBTP	

RL field default is set to 3 and nRBTP field default is set to 0. nWR field default is set to 3.

10.4.MR3 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
DBI-WR	DBI-RD	WLS	BK/BG	ORG		PDDS	

PDDS can be written but has no effect in the LPDDR5 model.

BK ORG field default is set to 4Bank/4Bank Group OP[4:3]=2'b00.

WLS field default is set to "set A".

DBI-RD and DBI-WR are set by default to be disabled.

DBI-RD is not supported and MR3 OP[6] is ignored in Data Copy command.

10.5.MR4 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
TUF	ZQ Master	ZQUF		F	Refresh Rat	е	

Refresh Rate MR4 OP[4:0] field default is set to 5'b01001.

ZQUF and TUF are default set to be 0.

10.6.MR5 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
			LPDDI	R5 Manufac	turer ID		

Manufacturer ID field default is set to zero.

Visible Non-User-Adjustable localparam Manu ID sets the default value.

10.7.MR6 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
			Revision	n ID-1			

Revision ID-1 field is set by default to zero.

Visible Non-User-Adjustable localparam Ver ID1 sets the default value.

10.8.MR7 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
			Revisio	n ID-2			

Revision ID-2 field is set by default to zero.

Visible Non-User-Adjustable localparam Ver_ID2 sets the default value.

10.9.MR8 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
IO W	/idth		Den	sity		Ту	ре

Type field is set by default to S16 4B/4G OP[1:0]=2'b01.

Density field is set by default to 2Gb OP[5:2]= 4'b0000.

IO width field is set by default to x16 OP[7:6]=2'b00.

IO width field is set by default to x8 OP[7:6]=2'b01.

10.10. MR9 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
			Vendor	Specific Tes	t Register		

Vendor Specific Test Register field is set by default to 8'h0.

10.11. MR10 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RDQ	S PST	RDQS	S PRE	WCK	PST	RFU	RPST Mode

RDQS PST, RDQS PRE fields are both set to a default of 2'b00.

When RDQS PRE MR10 OP[5:4] = 2'b01, User Adjustable Parameters tRDQS_PRE sets tRDQS_PRE value within the range of 2*tWCK \leq tRDQS_PRE \leq 4*tWCK.

10.12. MR11 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU		CA ODT		NT-ODT EN		DQ ODT	

CA ODT, DQ ODT and NT-ODT EN fields are set by default to disabled.

These fields can be written, but they will have no effect on the model.

10.13. MR12 (Read/Write)

	OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
Ī	VBS				VREF(CA)			

Vref(CA) is read/write. It can be changed by MRW and through Command Bus Training.

Vref(CA) default value is 7'b1000110.

VBS is write only. Its default value is 0.

When MRR, DQ[7] will read 0.

10.14. MR13 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
Dual VDD2	CBT Mode	DMD	RF	·U	VRO	Therma	l Offset

Thermal Offset field default is set to 2'b00. Thermal Offset can be written, but it will have no effect on the LPDDR5 model.

CBT Mode field default is set to 1'b0.

VRO field default is set to 0. This field can be written, but writing will have no effect on the LPDDR5 model.

DMD field default is set to 0, Data Mask operation enabled. When disabled (OP[5]=1'b1), masked write command is illegal.

Dual VDD2 field default is set to 0. When Dual VDD2 field is set to 1'b1, MR19 OP[1:0] setting is ignored and low power mode cannot be entered.

10.15. MR14 (Read/Write)

0	P[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
V	DLC			\	/ _{REF} (DQ[7:0])		

Vref DQ[7:0] field default is set to 34% of VDDQ OP[6:0]=7'b1000110. This field can be written and read. But it will have no effect on the LPDDR5 model.

VDLC field default is set to 1'b0.

VDLC can be written and read, but writing will have no effect on the LPDDR5 model.

10.16. MR15 (Read/Write)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU			V	REF(DQ[15:8	1)		

Vref DQ[15:8] field default is set to 34% of VDDQ OP[6:0]=7'b1000110. This field can be written and read, but it will have no effect on the LPDDR5 model.

10.17. MR16 (Read/Write)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
CBT-PH	VRCG	C	ВТ	FSP	-OP	FSP-WR	

CBT-PH field is set by default to 1'b0.

VRCG is set by default to 0. VRCG can be read and written, but writing will have no effect on the LPDDR5 model.

CBT field is set by default to Normal Operation OP[5:4]=2'b00.

FSP-WR and FSP-OP fields are set to a default with Frequency-Set-Point[0] at 2'b00.

10.18. MR17 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
x8ODTD	x8ODTD	ODTD-CA	RFU	ODTD-CK		SOC ODT	
Upper	Lower	ODID-CA	KFU	CK -CK		300 001	

SOC ODT, x8ODTD Upper and x8ODTD Lower fields are set to a default of 0.

ODTC-CK and ODTD-CA fields are set by default to be 1'b1.

MR17 can be written, but writing will have no effect on the LPDDR5 model.

10.19. MR18 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
CKR	WCK2CK Leveling	WCK SYNC	WCK ON	RFU	wc	K Terminat	ion

WCK Termination field is set by default to 3'b000, ODT disabled. This field can be written, but writing will have no effect on the LPDDR5 model.

WCK ON field is set by default to 0 for WCK Always On Mode disabled.

WCK SYNC field default is set to 0. It can be written, but writing will not affect the LPDDR5 model.

WCK2CK Leveling field is set by default to be 0 (disabled).

10.20. MR19 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU				DVFS	SQ	DVFSC	

DVFSQ field is set to a default value of 0. This field can be written, but writing will have no effect on the LPDDR5 model.

DVFSC field is set to a default value of 0. When MR13 OP[7]=1'b1, DVFSC field setting is ignored. Low power mode cannot be entered.

10.21. MR20 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]	
RDC DQ	RDC DMI	RFU		WCK	WCK mode		RDQS	
Mode	Mode							

RDQS field is set by default to 2'b01. RDQS_t enabled, RDQS_c disabled.

WCK mode is set by default to 2'b00, differential.

When MR20 OP[3:2]=2'b01, MR20 OP[1:0] should set to 2'b01.

When MR20 OP[3:2]=2'b10, MR20 OP[1:0] should set to 2'b11.

10.22. MR21 (Read/Write)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU	WXFE	RDCFE	WDCFE	RFU	WXFS	RDCFS	WDCFS

LPDDR5 model supports the write data copy function with MR21 OP[0]=1'b1, read-only. WDCFE field MR21 OP[4], write-only, is set to a default value of 1'b0, disabled.

LPDDR5 model supports the read data copy function with MR21 OP[1]=1'b1, read-only. RDCFE field MR21 OP[5], write-only, is set to a default value of 1'b0, disabled.

LPDDR5 model supports the write X function with MR21 OP[2]=1'b1, read-only. WXFE field MR21 OP[6], write-only, is set to a default value of 1'b0, disabled.

10.23. MR23 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
			PASR Seg	ment Mask			

MR23 field is set by default to 8'd0. This field can be written, but writing will have no effect on the LPDDR5 model.

10.24. MR25 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU	RFU	CA BUS TERM	CK BUS TERM	RFU	RFU	RFU	RFU

CK BUS TERM and CA UT TERM fields are set by default to be 0. These fields can be written, but will have no effect on the LPDDR5 model.

10.25. MR28 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RF	·U	ZQ Mode	RFU	ZQ Inte	erval	ZQ Stop	ZQ-Reset

ZQ stop and ZE-Reset and ZQ Mode fields are set by default to be 0. These fields can be written, but it will have no effect on the LPDDR5 model.

10.26. MR29 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	RFU									

10.27. MR30 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
	DCA for U	pper byte			DCA for L	ower byte	

10.28. MR31 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]		
Lower-Byte Invert Register for DQ Calibration									

MR31 field is set by default to 8'h55. DBI is not applied to RDC command.

10.29. MR32 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]				
	Upper-Byte Invert Register for DQ Calibration										

MR32 field is set by default to 8'h55. DBI is not applied to RDC command.

10.30. MR33 (Write only)

	OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]		
ſ	DQ Calibration Pattern "A"									

MR33 field is set by default to 8'h5A. DBI is not applied to RDC command.

10.31. MR34 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	DQ Calibration Pattern "B"									

MR34 field is set by default to 8'h3C. DBI is not applied to RDC command.

10.32. MR35 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	WCK2DQI Oscillator Count - LSB									

If the macro "MMP RDQSOSC" is not defined, MR35 is set to zero.

When the macro "MMP_RDQSOSC" is defined, the RDQS Internal Oscillator is enabled in the LPDDR5 model. MR35 reports the LSB bits of the DRAM RDQS Oscillator count for measuring WCK2DQI interval.

10.33. MR36 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	WCK2DQI Oscillator Count - MSB									

If the macro "MMP RDQSOSC" is not defined, MR36 is set to zero.

When the macro "MMP_RDQSOSC" is defined, the RDQS Internal Oscillator is enabled in the LPDDR5 model. MR36 reports the MSB bits of the DRAM RDQS Oscillator count for measuring WCK2DQI interval.

10.34. MR37 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	WCK2DQI interval timer run time setting									

When MR37 is OP[7:0]=8'h00, the MPC command [Stop WCK2DQI Interval Oscillator] can stop the RDQS Interval Oscillator.

When MR37 is non-zero the MPC command [Stop WCK2DQI Interval Oscillator] is considered as illegal. When MR37 is non-zero, the WCK2DQI Interval Oscillator automatically stops at the MR37*16th CK clock cycle after the MPC command [Start WCK2DQI Interval Oscillator]. The macro of "MMP_RDQSOSC" should be defined to enable the RDQS Interval Oscillator function.

10.35. MR38 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	WCK2DQO Oscillator Count - LSB									

If the macro "MMP RDQSOSC" is not defined, MR38 is set to zero.

When the macro "MMP_RDQSOSC" is defined, the RDQS Internal Oscillator is enabled in the LPDDR5 model. MR38 reports the LSB bits of the DRAM DQS Oscillator count for measuring WCK2DQO interval.

10.36. MR39 (Read only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]		
	WCK2DQO Oscillator Count - MSB								

If the macro "MMP RDQSOSC" is not defined, MR39 is set to zero.

When the macro "MMP_RDQSOSC" is defined, the RDQS Internal Oscillator is enabled in the LPDDR5 model. MR39 reports the MSB bits of the DRAM DQS Oscillator count for measuring WCK2DQO interval.

10.37. MR40 (Write only)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
	WCK2DQO interval timer run time setting									

When MR40 is OP[7:0]=8'h00, the MPC command [Stop WCK2DQO Interval Oscillator] can stop the RDQS Interval Oscillator.

When MR40 is non-zero, the MPC command [Stop WCK2DQO Interval Oscillator] is considered as illegal. When MR40 is non-zero, WCK2DQO Interval Oscillator automatically stops at the MR40*16th CK clock cycle after the MPC command [Start WCK2DQO Interval Oscillator]. The macro of "MMP_RDQSOSC" should be defined to enable the RDQS Interval Oscillator function.

11. Commands

The LPDDR5 model accepts the following commands:

- Deselect
- No operation
- Power Down Entry
- Power Down Exit
- MPC
- Mode Register Write (MRW-1 following MRW-2)
- Mode Register Read
- Activate (ACT-1 following ACT-2)
- Precharge (Per Bank, All Bank)
- Refresh (Per Bank, All Bank)
- CAS
- Read
- Write
- Read32
- Write32
- Mask Write
- Self Refresh Entry
- Self Refresh Exit
- Read FIFO
- Write FIFO
- Read DQ Calibration

The following table shows the command encoding for LPDDR5.

Table 9: LPDDR5 Command Encoding

SDRAM				DDR C	OMMAND	PINS			СК
COMMAND	CS	CA0	CA1	CA2	CA3	CA4	CA5	CA6	edge
DES	٦	Χ	X	X	Χ	Χ	Χ	Χ	R
DES	Х	Χ	X	Х	Χ	Χ	Χ	Х	F
NOP	H	L.	L	L	L	L	L	L	R
NOP	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	F
PDE	Ι	L	L	L	L	L	L	Н	R
PDE	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	F
	Η	Н	Н	Н	R14	R15	R16	R17	R
ACT-1		BA0	BA1	BG0	BG1				
ACI-1	Χ	BA0	BA1	BA2	BA3	R11	R12	R13	F
		BA0	BA1	BA2	V				
ACT 2	Η	Н	Н	L	R7	R8	R9	R10	R
ACT-2	Χ	R0	R1	R2	R3	R4	R5	R6	F
PRE	Н	L	L	L	Н	Н	Н	Н	R

SDRAM				DDR C	OMMANI	O PINS			CK
COMMAND	CS	CA0	CA1	CA2	CA3	CA4	CA5	CA6	edge
		BA0	BA1	BG0	BG1				
	Х	BA0	BA1	BA2	BA3	V	V	AB	F
		BA0	BA1	BA2	V				
	Н	L	L	L	Н	Н	Н	L	R
DEE		BA0	BA1	BG0	BG1				
REF	Х	BA0	BA1	BA2	BA3	V	V	AB	F
		BA0	BA1	BA2	V				
	Н	L	Н	Н	C0	C3	C4	C5	R
NA/D		BA0	BA1	BG0	BG1				
WR	Х	BA0	BA1	BA2	BA3	C1	C2	AP	F
		BA0	BA1	BA2	V				
	Н	L	Н	Н	L	C3	C4	C5	R
WR32	.,	BA0	BA1	BG0	BG1	0.1		4.5	_
	X	BA0	BA1	BA2	BA3	C1	C2	AP	F
	Н	L	Н	L	C0	C3	C4	C5	R
NAVA/D		BA0	BA1	BG0	BG1				
MWR	Х	BA0	BA1	BA2	BA3	C1	C2	AP	F
		BA0	BA1	BA2	V				
	Н	Н	L	L	C0	C3	C4	C5	R
DD		BA0	BA1	BG0	BG1				
RD	Х	BA0	BA1	BA2	BA3	C1	C2	AP	F
		BA0	BA1	BA2	V				
	Ŧ	Ή	L	Н	C0	C3	C4	C 5	R
RD	Х	BA0	BA1	BG0	BG1	C1	C2	AP	F
	^	BA0	BA1	BA2	BA3	CI	CZ	Ar	'
CAS	Н	L	L	Н	Н	WS_WR	WS_RD	WS_FAST	R
CAS	Χ	DC0	DC1	DC2	DC3	WRX	V	В3	F
MPC	H	L	L	L	L	Н	Н	OP7	R
WITC	X	OP0	OP1	OP2	OP3	OP4	OP5	OP6	F
SRE	Н	L	L	L	Н	L	Н	Н	R
JIL	Х	V	V	V	V	V	DSM	PD	F
SRX	Н	L	L	L	Н	L	Н	L	R
3117	Χ	V	V	V	V	V	V	V	F
MRW-1	Н	L	L	L	Н	Н	L	Н	R
1411/AA T	Χ	MA0	MA1	MA2	MA3	MA4	MA5	MA6	F
MRW-2	Н	L	L	L	Н	L	L	OP7	R
	Х	OP0	OP1	OP2	OP3	OP4	OP5	OP6	F
MRR	Н	L	L	L	Н	Н	L	L	R
141111	Χ	MA0	MA1	MA2	MA3	MA4	MA5	MA6	F
WFF	Н	L	L	L	L	L	Н	Н	R
***	Χ	L	L	L	L	L	L	L	F

SDRAM		DDR COMMAND PINS									
COMMAND	CS	CA0	CA1	CA2	CA3	CA4	CA5	CA6	edge		
DEE	Н	L	L	L	L	L	Н	L	R		
RFF	Χ	L	L	L	L	L	L	L	F		
DDC	Н	L	L	L	L	Н	L	Н	R		
RDC	Χ	L	L	L	L	L	L	L	F		

MPC sub-commands:

Table 10: MPC Sub-Commands

Function	Operand	Data
Training Modes	OP[7:0]	10000001B: Start WCK2DQI Interval Oscillator 10000010B: Stop WCK2DQI Interval Oscillator 10000011B: Start WCK2DQO Interval Oscillator 10000100B: Stop WCK2DQO Interval Oscillator 10000101B: ZQ Cal Start 10000110B: ZQ Cal Latch
		All Others Reserved.

12. DBI and DM function

The LPDDR5 Model supports the Data Mask function for Write operations and the Data Bus Inversion (DBI) function for Write and Read operations. LPDDR5 supports DBI function with a byte granularity. MR3 OP7 and OP6 define DBI-WR and DBI-RD enable bits, and MR13 OP5 defines DMD bit. There are eight possible combinations for the LPDDR5 model with handling of the DM and DBI functions. The Mask Write command only supports BL16 for configuration of 16 Banks/4B4G and BL32 for configuration of 8 Banks.

The below table describes the functional behavior for all combinations.*

Table 11: Functional Behavior for LPDDR5 DM and DBI

DM Function	Write DBI Function	Read DBI Function	DMI Signal during Write Command	DMI Signal during Masked Write Command	DMI Signal During Read Command
Disable	Disable	Disable	Note:1	Note:1,3	Note:2
Disable	Enable	Disable	Note:4	Note:3	Note:2
Disable	Disable	Enable	Note:1	Note:3	Note:5
Disable	Enable	Enable	Note:4	Note:3	Note:5
Enable	Disable	Disable	Note:6	Note:7	Note:2
Enable	Enable	Disable	Note:4	Note:8	Note:2
Enable	Disable	Enable	Note:6	Note:7	Note:5
Enable	Enable	Enable	Note:4	Note:8	Note:5

Notes:

- 1) DMI input signal is a don't care. DMI input receivers are turned OFF.
- 2) DMI output drivers are turned OFF.
- 3) Masked Write Command is not allowed and is considered an illegal command as DM function is disabled.
- 4) DMI signal is treated as DBI signal and it indicates whether DRAM needs to invert the Write data received on DQs within a byte. The LPDDR5 device inverts Write data received on the DQ inputs in case DMI was sampled HIGH, or leaves the Write data non-inverted in case DMI was sampled LOW.
- 5) The LPDDR5 DRAM inverts Read data on its DQ outputs associated within a byte and drives DMI signal HIGH when the number of '1' data bits within a given byte lane is greater than four; otherwise the DRAM does not invert the read data and drives DMI signal LOW.
- 6) The LPDDR5 DRAM does not perform any mask operation when it receives Write command. During the Write burst associated with Write command, DMI signal is a don't care and ignored by DRAM.
- 7) The LPDDR5 DRAM requires an explicit Masked Write command for all masked write operations. DMI signal is treated as DM signal and it indicates which bit time within the burst is to be masked. When DMI signal is HIGH,

^{*} Samsung for JEDEC, "LPDDR5 Draft Spec," rev 0.96_v8, 150-151.

DRAM masks that bit time across all DQs associated within a byte. All DQ input signals within a byte are don't care (either HIGH or LOW) when DMI signal is HIGH. When DMI signal is LOW, the LPDDR5 DRAM does not perform mask operation and data received on DQ input is written to the array.

8) The LPDDR5 DRAM requires an explicit Masked Write command for all masked write operations. The LPDDR5 device masks the Write data received on the DQ inputs if the total count of '1' data bits on DQ[2:7] or DQ[10:15] (for Lower Byte or Upper Byte respectively) is equal to or greater than five, and DMI signal is LOW. Otherwise the LPDDR5 DRAM does not perform mask operation and treats it as a legal DBI pattern; DMI signal is treated as DBI signal and data received on DQ input is written to the array.

13. DQ Training function

Up to 5 consecutive Write DQ FIFO (WFF) commands with user defined patterns may be issued to the SDRAM to store up to 80 values (BL16*5) per pin that can be read back via the Read DQ FIFO (RFF) command.

Read DQ FIFO is non-destructive to the data captured in the FIFO, so data may be read continuously until it is disturbed by another command to the SDRAM. The Read DQ FIFO pointer is reset internally to FIFO[0] in the DRAM anytime a command other than Read DQ FIFO is received. The Write DQ FIFO pointer is reset internally to FIFO[0] only when SRE command or reset issued.

14. WCK2CK Synchronization

The LPDDR5 model is required to be in WCK2CK synchronization state before the memory controller starts a read DQ burst. The LPDDR5 WCK2CK synchronization process is initiated by a CAS command with the related bit enabled. The CAS command with WCK2CK synchronization should be issued before the write, mask write, read, mode register read, read FIFO, write FIFO and read DQ calibration commands. When there is no ongoing DQ burst, the WCK2CK sync state will be lost. The write X command cannot extend the WCK2CK synchronization. The LPDDR5 model requires a new WCK2CK Sync sequence before starting DQ operation, except for write X command.

During Power Down, the WCK2CK sync state is lost. As the WCK2CK synchronization information is lost with power down entry, the DRAM controller must perform a WCK2CK synchronization sequence after power down exit before DQ operation.

The LPDDR5 model supports WCK free running mode. WCK free running mode is enabled by setting MR18 OP[4] = 1. The WCK2CK synchronization state keeps being turned on until the LPDDR5 model receives a power down, self-refresh power-down or deep-sleep commands or reset. The DRAM controller must keep WCK toggling at its full rate after WCK2CK synchronization regardless of DQ operation.

15. RDQS Interval Oscillator

The LPDDR5 model supports the RDQS Interval Oscillator feature (optional). It can be enabled by defining the Verilog macro "MMP_RDQSOSC" during the compiling phase. It is expected that defining "MMP_RDQSOSC" will slow down the emulation if it is modeled accurately.

The RDQS Interval Oscillator is started by issuing a MPC [Start WCK2DQI/WCK2DQO Interval Oscillator] command with OP[7:0] set as described in the Table 10: MPC Sub-Commands table.

The RDQS Interval Oscillator may be stopped by receiving a MPC [Stop WCK2DQI/WCK2DQO Interval Oscillator] command with OP[7:0] set as described in the Table 10: MPC Sub-Commands. The oscillator may also be stopped after the SDRAM counts to a specific number of CK clocks instructed by the controller (see MR37 and MR40 for more information). If MR37 or MR40 is set to none-zero to automatically stop the RDQS Oscillator, then MPC stop RDQS Interval Oscillator command should not be used (illegal).

When the RDQS Interval Oscillator for measuring WCK2DQI is stopped by either method, the result of the oscillator counter is automatically stored in MR35 and MR36.

When the RDQS Interval Oscillator for measuring WCK2DQO is stopped by either method, the result of the oscillator counter is automatically stored in MR38 and MR39.

The LPDDR5 model requires the user to provide two external dedicated independent clocks as the RDQS Interval Oscillators for measuring the time interval WCK2DQI and WCK2DQO in the LPDDR5 model through the ports of WCK2DQI_OSC_CLK and WCK2DQO_OSC_CLK.

The valid frequency for WCK2DQI_OSC_CLK should be higher than 714MHz (= 1/(2*tWCK2DQImax)=1/(2*700ps)).

The valid frequency for WCK2DQO_OSC_CLK should be higher than 333MHz (= 1/(2*tWCK2DQOmax)=1/(2*1500ps)).

16. Data Copy Low Power Function

LPDDR5 model supports the Data Copy Low Power function. Data Copy Low Power function is an optional feature. It is added on normal Write, Mask Write and/or Read operations with the same latencies. DBI-RD is not supported when Read Data Copy is enabled.

LPDDR5 model supports the write data copy function, users may enable the write data copy function by programming MR21 at runtime (MR21 OP[4]=1'b1, WDCFE, Write Data Copy Function Enable).

LPDDR5 model supports the read data copy function, users may enable the read data copy function by MR21 programming at runtime (MR21 OP[5]=1'b1, RDCFE, Read Data Copy Function Enable).

LPDDR5 Write data copy function is applied to each 8 Byte data granularity per DQ byte. Whenever any data pattern is repeated over 8Byte data, only the reference data is transferred through one DQ link (DQ0 for a lower DQ byte, DQ8 for an upper DQ byte) per DQ byte from a host to a LPDDR5 device. The LPDDR5 device recovers the original 8Byte data by copying the reference data to other 7 DQ data during LPDDR5 device's internal Write operation.

The CAS command delivers Write data copy hit or miss information to LPDDR5 devices with 4bit operands DC0-DC3 (DC0 and DC1 only for BL=16).

LPDDR5 read data copy function is applied to each 8 Byte data granularity per DQ byte. LPDDR5 model includes an internal data comparator logic to determine any data pattern repeatability per 8Byte read data during Read operations. If any data pattern repeatability over 8Byte read data is found, LPDDR5 model returns a reference data DQ link (DQ0 for a lower DQ byte, DQ8 for an upper DQ byte) per DQ byte and a Read data copy hit or miss flag bit through the DMI pin (DM0 for a lower DQ byte, DM1 for an upper DQ byte).

17. Write X

The MMP LPDDR5 model supports the Write X function. The Write X function is an optional feature in the LPDDR5 model.

Users may enable the Write X function by programming MR21 at runtime (MR21 OP[6]=1'b1, WXFE, Write X Function Enable).

A Write X command consists of a CAS command with WRX=1. The Write X enable bit is a sticky bit. After a CAS command with Write X enabled is issued, the subsequent write commands perform Write X operations until a CAS command with Write X disable is issued. When a Write X command is issued, the model will write zeros to the specified address.

Write X function does not utilize WCK or DQ during its operation. Therefore, Write X can be performed to an activated bank without WCK clock or WCK2CK sync operation. Unlike the normal write command, the Write X command does not extend WCK2CK sync state.

18. Initialization Sequence

The LPDDR5 model requires that the memory controller follows the initialization sequence as documented in the specification. The sequence includes the following steps:

- 1. RESET_n asserted, RESET_n de-asserted
- 2. Init_State0: Power Down Exit command
- 3. Init State1: MRR or MRW command to set some parameters
- 4. Init State2: MPC ZQCal start command
- 5. Init State3: MPC ZQCal latch command
- 6. Init State4: MRW MR16 CBT mode enter and exit
- 7. Init_State5: Write leveling enter and exit
- 8. Init_State6: Write FIFO(WFF), Read FIFO(RFF) and Read DQ Calibration(RDC)
- 9. Init State7: MRW to set some parameters.

These steps should be performed in the correct sequence to complete initialization and the init_done signal will be asserted.

19. Model Clocking

The LPDDR5 model has two external clock inputs CK_t/CK_c and WCK_t/WCK_c. The two input clock signals should be in phase with each other.

Figure 3 CK and WCK should be in phase when CKR=4:1 (default)

Figure 4 CK and WCK should be in phase when CKR=2:1

20. Compile and Emulation

The model is provided as a protected RTL file(s) (*.vp). The file(s) need to be synthesized prior to the back-end Palladium compilation. An example of the command for compilation (including synthesis) and run of this model in the IXCOM flow is shown below.

```
ixcom -64 +sv -ua +dut+jedec_lpddr5_4Gb \
    ./jedec_lpddr5_4Gb.vp \
    -incdir ../../utils/cdn_mmp_utils/sv \
    ../.../utils/cdn_mmp_utils/sv/cdn_mmp_utils.sv \
    ......

xeDebug -64 --ncsim \
    -sv_lib ../../utils/cdn_mmp_utils/lib/64bit/libMMP_utils.so -- \
    -input auto xedebug.tcl
```

The script below shows two examples for Palladium classic ICE synthesis:

```
1)
hdlInputFile jedec_lpddr5_4Gb.vp
hdlImport -full -2001 -l qtref
hdlOutputFile -add -f verilog jedec_lpddr5_4Gb.vg
hdlSynthesize -memory -keepVhdlCase -keepRtlSymbol -keepAllFlipFlop
jedec_lpddr5_4Gb
.....

2)
vavlog jedec_lpddr5_4Gb.vp

vaelab -keepRtlSymbol -keepAllFlipFlop -outputVlog jedec_lpddr5_4Gb.vg
jedec_lpddr5_4Gb
.....
```

NOTE: It is common for Palladium flows to require –keepallFlipFlop since it removes optimizations which are in place by default. For example, without –keepAllFlipFlop, HDL-ICE can remove flops with constant inputs and merge equivalent FF. The picture above is modified a bit when ICE ATB mode (–atb) is used since then a constant input FF is only optimized out when there is no initial value for it or the initial value is the same as the constant input value.

It is also common for Palladium flows to require –keepRtlSymbol. This option enables the HDL Compiler to keep original VHDL RTL symbols, such as ".", whenever possible. In other words, it maps VHDL RTL signal name a.b to the netlist entry, \a.b. Without this modifier, the signal name would otherwise be converted to a_b in the netlist.

If the recommended compile script includes the aforementioned options, the user must include them to avoid affecting functionality of the design.

21. Runtime

If the user wishes to preload the memory array, the path to model instance can be found in the Palladium working directory in dbFiles/*mpart.

Example paths for 2/3/4/6/8/12/16/24Gb x16 models and 2/3/4/6/8/12Gb x8 models:

stb.dut.memcore

Example paths for 32Gb x16 model:

stb.dut.memcore0 stb.dut.memcore1

Example paths for 32Gb x8 model:

stb.dut.memcore0 stb.dut.memcore1 stb.dut.memcore2 stb.dut.memcore3

Preloading example:

memory -load %readmemh stb.dut.memcore -file mem.dat

22. Handling WCK in Palladium Memory Models

For writes to a DDR memory, industry datasheets show each WCK edge centered within the corresponding valid period (v0, v1, v2, etc.) of DQ, as in the following diagram.

Figure 5 DQ and WCK_t write timing relation in industry

For DDR models provided by Cadence for Palladium, if the design drives DQ and WCK signals with the above timing, the DDR memory will behave correctly. However, to obtain this timing in Palladium, the fastest design clock must toggle twice as frequently as the WCK signal. If this faster clock is not needed for any other reason, the presence of the faster clock will usually cause an unnecessary 2X slowdown in emulation speed. To eliminate the need for a faster clock, you can have the design generate each WCK edge at the end of the corresponding DQ valid period (rather than the middle), as in the following diagram:

Figure 6 DQ and WCK_t write timing relation in Palladium

Note that the first WCK edge is at the *end* of first valid DQ, not at the beginning.

For reads from the DDR model, the DDR model will drive DQ with the first WCK edge at the *beginning* of the first valid data, not at the end:

Figure 7 DQ and WCK_t read timing relation in Palladium

The DDR model behaves this way to conform to industry datasheets for DDR memories. The design reading the data from the DDR model must delay the WCK signal, and use the delayed-WCK signal to sample the DQ. A delay of one Q_FDP0B should work fine, even in CAKE 1X mode. If you are using CAKE 1X mode and the DDR clock is the fastest design clock, the DQ signal will change twice per FCLK, and the Q_FDP0B delaying DQS will provide one-half FCLK delay, so that each delayed-DQS edge is at the end of the corresponding data valid period.

To delay the WCK signal, a commonly used approach is to create a special pad cell for WCK that has a Q_FDP0B delay cell inserted on the path that leads from the DDR memory into the design.

The user may insert delays into pad cells (or elsewhere in the design) using the below code example which leverages ixc_pulse, an internal primitive that can be used to access FCLK and to create controlled delay, for IXCOM flow and leverages the Q_FDP0B primitive for delay generation in the Classic ICE flow. For more detailed information about ixc_pulse please reference the *UXE User Guide* section called *Generating Pulses*. There is no need for the user to define IXCOM_UXE for the Verilog macro; it is predefined for the user in IXCOM flow. Note that in UXE 13.1.0 and prior the equivalent pulse generating function was named axis pulse.

```
// Flow independent delay cell
module pxp_fclk_delay (in, out_delay);
input in;
output out_delay;

reg out_delay;

`ifdef IXCOM_UXE
  wire VCC=1'b1;
  ixc_pulse #(1)(Fclk, VCC);
  always @(posedge Fclk)
   out_delay <= in;
`else
  Q_FDP0B fclk_dly (.D(in), .Q(out_delay));
`endif</pre>
```

23. Debugging

This model has some debugging options, techniques and tips which may assist users with isolating problems.

 For issues which are not model specific, please review the Memory Model Portfolio FAQ for All Models User Guide.

Debug Signals:

The following signals can be monitored to examine command sequence:

o init_done: asserted when initialization sequence is finished

init_STATE: indicates the initialization sequence state
 wck2ck sync: indicates the wck2ck synchronization state

o cmd: indicates the received command

o mem dout: memcore output

o mem_dout_addr: memcore output address

mem_din_r: memcore input at WCK_t rising edgemem_din_f: memcore input at WCK_t falling edge

mem_din_addr_r: memcore input address at WCK_t rising edge
 mem din addr f: memcore input address at WCK_t falling edge

o mrr_dq_out_window: mode register read out window

rd_dq_out_window:wr_dq_out_window:DQ data read out windowDQ data write in window

mwr_dq_out_window:
 rdc_dq_out_window:
 rff_dq_out_window:
 wff dq out window:
 mwr_dq_out_window:
 read DQ calibration window
 read DQ FIFO window
 write DQ FIFO window

cbt_dq_out_window: command bus training DQ output windowBK_ORG: indicates LPDDR5 model bank configuration

BL: burst lengthWL: burst write latencyRL: burst read latency

- **Golden waveform:** A package with a reference waveform is available. The waveform is the running result of the following command sequence(s):
 - (1) Initialization sequence:

PDX

MRW WCK_ON=1

CAS

MRR

MPC ZQ Calibration Start

MPC ZQ Calibration Latch MRW CBT Enter

MRW CBT Exit

MRW Write Leveling On

MRW Write Leveling OFF

WFF

RFF RDC MRW (2) Other included commands: ACT **MWR** WR RD **WR32** RD32 **PRE** REF SRE **DSM** PDE PDX SRX

 Debug Display: This MMP memory model has available a built-in debug methodology called MMP Debug Display that is based on the Verilog system task \$display. Please see the *Palladium Memory Model Debug Display User Guide* in the release docs directory for additional information.

Manual Configuring of this MMP Model Family

This MMP model supports manual configuration by accompanying the model mode register or configuration register declarations with synthesis directives, such as keep_net directives, that instruct the compiler to ensure that the relevant nets remain available for runtime forcing. For a general description of this support please see the user guide in the MMP release with path and filename <code>docs/MMP_FAQ_for_All_Models.pdf</code>.

While MMP strongly recommends following protocol-based commands to configure MMP models, MMP recognizes that the design test environment may desire to trade off the risks inherent in streamlining or circumventing the initialization sequence part of the protocol in order to better support some testing environments.

The following table lists the internal register path and naming along with the specification or datasheet naming for model mode registers or configuration registers that are accompanied by keep_net synthesis directives in support of such manual configuration. ONLY writeable configuration registers or fields are supported thusly. Please read the relevant datasheet for details about individual register behavior and mapping to fields.

Table 12: Writeable Mode Register / Configuration Register Info

Hierarchical RTL Naming for	Specification or Vendor	Access
Writeable Configuration	Datasheet Naming for	
Related	Configuration Related Registers	
Registers & Signals		
<pre><model_name>.MR1_0_reg</model_name></pre>	MR1 (Set point 0)	W
<model name="">.MR1 1 reg</model>	MR1 (Set point 1)	W
<model name="">.MR1 2 reg</model>	MR1 (Set point 2)	W
<model_name>.MR2_0_reg</model_name>	MR2 (Set point 0)	W
<model_name>.MR2_1_reg</model_name>	MR2 (Set point 1)	W
<model name="">.MR2 2 reg</model>	MR2 (Set point 2)	W
<model name="">.MR3 0 reg</model>	MR3 (Set point 0)	W
<model_name>.MR3_1_reg</model_name>	MR3 (Set point 1)	W
<model name="">.MR3 2 reg</model>	MR3 (Set point 2)	W
<model_name>.MR9_reg</model_name>	MR9	W
<model_name>.MR10_0_reg</model_name>	MR10 (Set point 0)	W
<model_name>.MR10_1_reg</model_name>	MR10 (Set point 1)	W
<model_name>.MR10_2_reg</model_name>	MR10 (Set point 2)	W
<model_name>.MR11_0_reg</model_name>	MR11 (Set point 0)	W
<model_name>.MR11_1_reg</model_name>	MR11 (Set point 1)	W
<model_name>.MR11_2_reg</model_name>	MR11 (Set point 2)	W
<model_name>.MR12_0_reg</model_name>	MR12 (Set point 0)	R/W
<model_name>.MR12_1_reg</model_name>	MR12 (Set point 1)	R/W
<model_name>.MR12_2_reg</model_name>	MR12 (Set point 2)	R/W
<model_name>.MR13_reg</model_name>	MR13	W
<model_name>.MR14_0_reg</model_name>	MR14 (Set point 0)	R/W
<model_name>.MR14_1_reg</model_name>	MR14 (Set point 1)	R/W
<model_name>.MR14_2_reg</model_name>	MR14 (Set point 2)	R/W
<model_name>.MR15_0_reg</model_name>	MR15 (Set point 0)	R/W
<model_name>.MR15_1_reg</model_name>	MR15 (Set point 1)	R/W
<model_name>.MR15_2_reg</model_name>	MR15 (Set point 2)	R/W
<model_name>.MR16_reg</model_name>	MR16	R/W
<model_name>.MR17_0_reg</model_name>	MR17 (Set point 0)	W
<model_name>.MR17_1_reg</model_name>	MR17 (Set point 1)	W
<model_name>.MR17_2_reg</model_name>	MR17 (Set point 2)	W
<model_name>.MR18_0_reg</model_name>	MR18 (Set point 0)	W
<model_name>.MR18_1_reg</model_name>	MR18 (Set point 1)	W
<model_name>.MR18_2_reg</model_name>	MR18 (Set point 2)	W
<model_name>.MR19_0_reg</model_name>	MR19 (Set point 0)	W
<model_name>.MR19_1_reg</model_name>	MR19 (Set point 1)	W
<model_name>.MR19_2_reg</model_name>	MR19 (Set point 2)	W
<model_name>.MR20_0_reg</model_name>	MR20 (Set point 0)	W
<model_name>.MR20_1_reg</model_name>	MR20 (Set point 1)	W
<model_name>.MR20_2_reg</model_name>	MR20 (Set point 2)	W
<model_name>.MR21_reg</model_name>	MR21	W
<model_name>.MR23_reg</model_name>	MR23	W
<model_name>.MR25_reg</model_name>	MR25	W
<model_name>.MR27_reg</model_name>	MR27	W
<model_name>.MR28_reg</model_name>	MR28	W
<model_name>.MR29_reg</model_name>	MR29	W

<model_name>.MR30_reg</model_name>	MR30	W
<model_name>.MR31_reg</model_name>	MR32	W
<model_name>.MR32_reg</model_name>	MR32	W
<model_name>.MR33_reg</model_name>	MR33	W
<model_name>.MR34_reg</model_name>	MR34	W
<model_name>.MR37_reg</model_name>	MR37	W
<model_name>.MR40_reg</model_name>	MR40	W
<model_name>.init_done</model_name>	[Not Applicable]	1'b1 indicates
		initialization is complete

Revision History

The following table shows the revision history for this document

Date	Version	Revision
December 2017	0.1	Initial release
January 2018	0.2	Modify header and footer
June 2018	0.3	Add section for Manual configuration
July 2018	0.4	Update for new utility library
		Update to Spec R096v8

