1 Section 2.3, Problem 17

Using the Secant method, we will find the depth, h of water in a trough to within 0.01 ft using:

$$V = L[0.5\pi r^2 - r^2 \arcsin\frac{h}{r} - h(r^2 - h^2)^{\frac{1}{2}}]$$

with V = 12.4, L = 10, and r = 1.

2 Source Code

The following C code can be used to an accurate value:

```
#include <stdlib.h>
#include <math.h>
#define PI 3.14159265359
double f(double x);
void secant_method(double a, double b);
int main()
{
   secant_method(-0.999999, .999999);
   return 0;
}
double f(double x)
  return -12.4 + 10 * (0.5 * PI - asin(x) - x * sqrt(1 - x * x));
}
void secant_method(double a, double b)
   double x[100];
   unsigned int k = 1;
   x[0] = a;
   x[1] = b;
   printf("%d \t %5.20f \t %5.20f \n", 0, x[0], f(x[0]) + 12.4);
   printf("%d \t %5.20f \t %5.20f \n", 1, x[1], f(x[1]) + 12.4);
```

3 Results

	h	V
0	-0.999998999999997124	31.41592651704278438274
1	0.999998999999997124	0.0000001885721268025
2	0.21059127192558094177	11.52747976399420615223
3	0.15084063844519182696	12.70263007019520884455
4	0.16622789427873235768	12.39878001375298310904
5	0.16616611301492065222	12.39999845465657912769
6	0.16616603465800625083	12.4000000000817159673
7	0.16616603465842058607	12.4000000000000213163
8	0.16616603465842066933	12.399999999999857891
9	0.16616603465842061382	12.4000000000000035527
10	0.16616603465842061382	12.4000000000000035527

4 Summary

It is clearly shown that h converges to approximately 0.16616603465842061382.