# An Integrated trust and reputation model for open multi-agent systems

A paper by Trung Dong Huynh, Nicholas R. Jennings & Nigel R. Shadbolt (2006)

Jaspreet Singh & Daniël Stekelenburg

#### Overview

- 1. Terminology
- 2. The FIRE Model
- 3. Results
- 4. Conclusions

#### .. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

#### .. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

#### This causes some uncertainties:

- 1. Agents tend to be self-interested and may be unreliable
- 2. No agent can know everything about the environment
- 3. No central authority can control everything

# Sources of trust/reputation

| Source                                                                                | Туре                                                                       |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Direct experience<br>Witness experience<br>Role-bases rules<br>Third-party references | Interaction trust Witness reputation Role-based trust Certified reputation |

#### **FIRE**

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

#### **FIRE**

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

So... we do not consider the problem of lying and inaccuracy.

# How to quantify trust/reputation? - The old way

Just take the average of all the ratings.



## How to quantify trust/reputation? - The old way

Just take the average of all the ratings.

However... these ratings are not equally relevant:

- Older ratings might not be as relevant as new ones
- Some ratings are more credible than other depending on the source

So in what other way can we quantify trust?

# How to quantify trust? - The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value  $v \in [-1, +1]$  is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.



## How to quantify trust? - The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value  $v \in [-1, +1]$  is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.

Since ratings become outdated over time, an agent only stores the latest  ${\cal H}$  transactions it gave to other agents.



# How to quantify trust? - Trust value $\mathcal{T}_K$

Use a rating weight function (reliability function)  $\omega_K$  for every type of trust, where  $K \in \{I, R, W, C\}$ .

# How to quantify trust? - Trust value $\mathcal{T}_K$

Use a rating weight function (reliability function)  $\omega_K$  for every type of trust, where  $K \in \{I, R, W, C\}$ .

This gives us:

$$\mathcal{T}_K(a,b,c) = \frac{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i) \cdot v_i}{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)}$$
(1)

- ▶  $\mathcal{T}_K(a,b,c)$  is the trust value of agent a towards agent b on topic  $c_i$  regarding K.
- $ightharpoonup \mathcal{R}_K(a,b,c)$  are the ratings collected on K.
- ▶  $\mathcal{T}_K(a,b,c) \in [-1,+1]$

# How to quantify trust? - Reliability

- ightharpoonup We now have a trust value  $\mathcal{T}_K$
- ▶ How reliable is  $\mathcal{T}_K$ ?

# How to quantify trust? - Reliability

- lacktriangle We now have a trust value  $\mathcal{T}_K$
- ▶ How reliable is  $\mathcal{T}_K$ ?
- ightharpoonup We need a value to express how reliable the calculated trust value  $\mathcal{T}_K$  is!

## How to express reliability?

- lacktriangle We know how to calculate how reliable each individual rating is:  $\omega_K$
- We use this to express:
  - ightharpoonup Rating reliability  $ho_{RK}$ : The total reliability of the individual ratings.
  - ▶ Deviation reliability  $\rho_{DK}$ : The higher the variability in the ratings is, the more volatile the agent is likely to fulfilling its agreements.

## How to express reliability? - Rating reliability

The total reliability of the individual ratings. → The sum of reliability of the individual ratings.

$$\rho_{RK}(a,b,c) = 1 - exp\left(-\gamma_K\left(\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)\right)\right) \quad \text{(2)}$$





Figure 1: Rating reliability function [Faculty of Science Universiteit Utrecht]

Figure 1: Rating reliability function [Faculty of Sciences]

Sciences]

## How to express reliability? - Deviation reliability

- ► The higher the variability in the ratings is, the more volatile the agent is likely to fulfilling its agreements.
- ➤ The higher the variability in the ratings the lower the deviation reliability is.

$$\rho_{DK}(a,b,c) = 1 - \frac{1}{2} \cdot \frac{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i) \cdot |v_i - \mathcal{T}_K(a,b,c)|}{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)}$$
(3)

## How to express reliability?

- Now we know how to calculate both the rating reliability  $\rho_{RK}$  and deviation reliability  $\rho_{DK}$ .
- $\blacktriangleright$  We combine both values and get a single value for the reliability of  $\mathcal{T}$ :

$$\rho_K(a, b, c) = \rho_{RK}(a, b, c) \cdot \rho_{DK}(a, b, c) \tag{4}$$

#### Interaction trust

- Is built from the direct experiences of an agent and models the direct interactions between two agents.
- ▶ The reliability  $\omega_I(r_i)$  of a single interaction is determined by its recency:

$$\omega_I(r_i) = exp\left(-\frac{\Delta t(r_i)}{\lambda}\right)$$
 (5)

- $ightharpoonup \Delta t(r_i)$  is the difference in time between now and the time when  $r_i$  was recorded.
- $ightharpoonup \lambda$  is the recency scaling factor.

#### Interaction trust



Figure 2: Behavior of the weight function  $\omega_I(r_i)$ .

#### Role-based trust

- ▶ Models trust resulting from role-based relations.
- ► For example: provider-consumer relationship.
- ▶ The reliability  $\omega_R(r_i)$  of a single interaction is determined by a set of rules:

$$rule = (role_a, role_b, c, e, v)$$
 (6)

- ightharpoonup v is the expected performance.
- ightharpoonup e is the amount of influence this rule has on the total value.
- $\blacktriangleright \ \omega_R(r_i) = e_i$



### Witness reputation

- Is built on observations on the agents behavior by other agents.
- lacktriangle Need to find other agents that have interacted with b.
- ► This might be problematic in large environment:
  - Limited resources available;
  - ▶ Need to find these witnesses in reasonable time.
- Once all the ratings have been collected, the weight is determined by  $\omega_W(ri) = omega_W(ri)$ .
- ▶ Based on the idea of referrals.

## Witness reputation





Universiteit Utrecht

Information and Computing Sciences

Figure 3: How to find witnesses

## Certified reputation

- ▶ Is built from ratings from certified references given by referees.
- Stored by the agent itself and chooses which ratings to present.

## Certified reputation

- ► Is built from ratings from certified references given by referees.
- Stored by the agent itself and chooses which ratings to present.
- After every transaction, b asks a to give a certified rating.
- When a contacts b, it asks b for the te certified references.
- Since the ratings are from direct interactions,  $\omega_C(r_i) = \omega_I(r_i)$ .

# Putting it all together

- ▶ We weigh every  $\mathcal{T}_K$  with  $W_K$  to indicate its relevance and get the global trust value.
- ▶ We get  $w_k$  from every given weight  $W_K$ :  $w_k = W_K \cdot \rho_K(a,b,c)$ , from this we get:

$$\mathcal{T}(a,b,c) = \frac{\sum_{K \in \{I,R,C,W\}} w_K \cdot \mathcal{T}_K(a,b,c)}{\sum_{K \in \{I,R,C,W\}} w_K}$$
(7)

▶ Then the overall reliability becomes:

$$\rho_{\mathcal{T}}(a, b, c) = \frac{\sum_{K \in \{I, R, C, W\}} w_K}{\sum_{K \in \{I, R, C, W\}} W_K}$$
(8)



#### Now lets test this model...

- Providers: agents which provide a service
  - Four different types of performance: good, ordinary, bad, and intermittent
- Consumers: agents which ask a provider for a service (selection process)
- Act in rounds, not a continuous stream of actions

#### How to make the environment dynamic:

- 1. Change the population: add/remove x providers and y consumers randomly
- 2. Change relationships between agents: change its location in the world
- 3. Change the behavior of providers: change average performance by a certain amount each round sculty of Science Information and Computing Universiteit Utrecht

Sciences

#### Questions we want answers on...

- 1. How does FIRE perform in a static world?
  - Typical situation with 50% good and 50% bad providers
  - Situations with only good or bad providers
- 2. How does each component of FIRE perform?
- 3. How does FIRE perform in a dynamic world?

## Typical provider population

- Consisting of 50% profitable providers (i.e. yielding positive UG) and 50% exploiting providers (yielding negative UG)
- Static environment



FIGURE 5.1: Overall performance of FIRE in the typical provider population.

# Performance of FIRE (100% good providers)



Figure 5.2: Overall performance of FIRE – 100% good providers.





# Performance of FIRE (100% ordinary providers)



FIGURE 5.3: Overall performance of FIRE – 100% ordinary providers.

Figure 6: Performance ordinary providers



# Performance of FIRE (100% bad providers)



FIGURE 5.4: Overall performance of FIRE – 100% bad providers.







## Performance of FIRE's novel components (WR)

Since the IT components are mostly reused from Regret, we only look at the novel components; WR and CR.



Figure 5.12: Performance of the WR component.



# Performance of FIRE's novel components (CR)

Since the IT components are mostly reused from Regret, we only look at the novel components; WR and CR.



FIGURE 5.13: Performance of the CR component.



# Performance of FIRE in a dynamic environment

#### Several conditions tested, such as...

- ► The provider population changes at maximum 2% every round
- ► The consumer population changes at maximum 5% every round
- ► A provider may switch into a different (performance) profile with a probability of 2% every round And more...

## Performance of FIRE in a dynamic environment



FIGURE 5.11: Experiment 7: Performance of FIRE in an environment where all dynamic factors are in effect.





#### What have we seen?

- FIRE introduces a generic framework which combines multiple sources of trust information to provide a collective and precise trust measure.
- Using FIRE, agents are in general better in selecting the best partner, resulting in a better UG.
- ► FIRE can handle various types of changes in an open MAS very well.
- Specifically, the WR and CR components contribute highly to FIRE's performance.

#### Are we done?

"Agents are honest in exchanging information with one another."

Isn't this in contradiction with what we want to achieve here?

# Without this assumption...

Third-party information can of course be innacurate:

- One person can see 'on-time good delivery' as an excellent service, but someone else can see this as 'satisfactory'.
- 2. You can deliberately provide false information about someone, to serve your own interests.

To fix this, they have extended the model :)

# The Credibility Model

- Computes the credibility of a witness or a referee, based on the IT components in FIRE
- These measures are called the witness credibility and referee credibility
- ➤ The procedures of computing these measures are (almost) the same, I'll show you witness credibility

# Witness Credibility

After having an interaction of agent a with b...

- 1. a records its rating about b's performance:  $r_a = (a, b, i_a, c, v_a)$
- 2. When a previously received a witness rating from w about b:  $r_k = (w, b, i_k, c, v_k)$
- 3. ...it rates the credibility  $v_w$  of w:

$$v_w = \begin{cases} 1 - |v_k - v_a| & \text{if } |v_k - v_a| < l \\ -1 & \text{if } |v_k - v_a| \ge l \end{cases}$$
 (9)

# How to compute the witness credibility?

$$T_{WCr}(a, w) = \begin{cases} T_I(a, w, term_{WCr}) & \text{if } \mathcal{R}_I(a, w, term_{WCr}) \neq \emptyset \\ T_{WCr} & otherwise \end{cases}$$
(10)

$$\omega_W(r_i) = \begin{cases} 0 & \text{if } T_{WCr}(a, w) \le 0 \\ T_{WCr}(a, w) \cdot \omega_I(r_i) & otherwise \end{cases}$$
 (11)

Computing a referee's credibility has the same approach.



# Testing witness inaccuracy level



FIGURE 6.1: The proportions of witness types at various levels of witness inaccuracy.



# Testing witness inaccuracy level



FIGURE 6.3: Performance of NoTrust, SPORAS, and WR at various levels of inaccuracy.





