Redes de Computadores 2

Parte 07 – camada de enlace – comutação de circuito virtual

Prof. Kleber Vieira Cardoso

Tópicos

- Comutação de circuito virtual
 - Fundamentos
 - MPLS (MultiProtocol Label Switching)
 - VLANs?

Fundamentos

- Interconexão entre equipamentos
 - Comutação de circuitos
 - Exemplo: rede telefônica
 - Comutação de pacotes
 - Exemplo: IP
 - Comutação de circuitos virtuais
 - Exemplo: X.25, Frame Relay, ATM

- Fases da comutação de circuitos
 - Estabelecimento do circuito
 - Transferência de dados
 - Encerramento do circuito

- Comutação de pacotes
 - Na origem, os dados são divididos em unidades (pacotes, quadros, datagramas...) com cabeçalho e enviados
 - A rede pode entregá-los em qualquer ordem por qualquer caminho, usando as informações do cabeçalho
 - No destino, as unidades são reagrupadas

- Comutação de circuitos virtuais funciona sobre uma rede de pacotes
 - Pode ser vista apenas como uma abordagem para encaminhamento de pacotes
 - No entanto, pode oferecer recursos similares aos encontrados na comutação de circuitos convencional: rota pré-estabelecida, reserva de banda, controle de admissão, etc.

Comparação entre as técnicas de comutação

Comutação de circuitos	Comutação de pacotes	Comutação de circuitos virtuais
Caminho de transmissão dedicado	Não há caminho dedicado	Ambos são possíveis
Transmissão contínua dos dados; não há cabeçalhos	Transmissão de pacotes; há cabeçalho em cada pacote	Transmissão de pacotes; há cabeçalho em cada pacote
Não há armazenamento intermediário	Há armazenamento intermediário	Há armazenamento intermediário
Atraso para criar circuito; atraso de transmissão negligenciável	Atraso de transmissão do pacote	Atraso para criar circuito; atraso de transmissão do pacote
Controle de admissão	Não há controle de admissão; controle de congestionamento é importante	Controle de admissão
Banda reservada	Uso dinâmico da banda	Ambos são possíveis

Circuitos virtuais

Motivação

- Possibilidade de oferecer serviços que a comutação de pacotes não oferece: qualidade de serviço, banda garantida, engenharia de tráfego, etc.
- Atualmente, muitas redes oferecem redes híbridas, i.e. comutação da pacotes + comutação de circuitos virtuais dinâmicos
 - Exemplos: ESnet, Internet 2, GÉANT, RNP
 - Circuitos são criados através de software especializado (e.g.: UCLP, AutoBAHN, DRAGON, OSCARS), usando tecnologias como MPLS e VLANs

Circuitos virtuais (cont.)

Fases:

- Estabelecimento do circuito pode ser manual ou automático através de sinalização entre os equipamentos
- Envio dos dados
- Encerramento do circuito pode ser opcional, sendo usado o conceito de softstate
- Encaminhamento é baseado em tabela de circuito virtuais que contém:
 - Identificador do circuito virtual de entrada
 - Identificador do circuito virtual de saída
 - Interface de entrada
 - Interface de saída

Circuitos virtuais (cont.)

Exemplo: tabela de um comutador de circuitos

MultiProtocol Label Switching (MPLS)

- Comutação de rótulos multiprotocolo
 - Abordagem de circuitos virtuais
 - Porém, os pacotes ainda mantêm o endereço IP!
- Objetivo inicial: acelerar o encaminhamento IP através do uso de rótulo de comprimento fixo (ao invés de endereço IP)
- Principais aplicações atuais:
 - Habilitar capacidade de encaminhamento IP em equipamentos que não a possuem nativamente
 - Escolher rotas para encaminhamento IP que sejam diferentes da computada pelo protocolo padrão – engenharia de tráfego
 - Suportar determinados tipos de serviço de VPN por exemplo, segurança

MPLS (cont.)

- Novo cabeçalho é adicionado antes do IP
 - Rótulo identifica o circuito virtual no enlace
 - QoS classes de serviço
 - S stack ou empilhamento de rótulos
 - TTL uso semelhante ao do cabeçalho IP

MPLS (cont.)

- A qual camada pertence?
 - Não exatamente à de enlace, pois encaminha entre múltiplas redes
 - Não exatamente à de rede, pois depende dos endereços da camada de rede (ex.: IP) para configurar os rótulos
- Principal consequência:
 - É possível desenvolver comutadores/roteadores que encaminham tanto pacotes IP quanto não-IP
 - IP compatibilidade com a Internet convencional
 - Não-IP possibilidade de explorar funcionalidades não disponíveis no IP (ex.: múltiplos caminhos, qualidade de serviço)

Alguns elementos do MPLS

- LSR (Label-Switched Router) roteador de comutação de rótulos
 - Encaminha os pacotes para a interface de saída com base apenas no valor do rótulo (não inspeciona o endereço IP)
 - A tabela de repasse do MPLS é distinta da tabela de repasse do IP
- LER (Label Edge Router) roteador que interage com equipamentos que não suportam MPLS
 - Realiza a inclusão inicial ou remoção final dos rótulos nas bordas da rede MPLS
- É necessário protocolo de sinalização para criar as rotas ou LSPs (Label Switched Paths)
 - LSP pode obedecer regras diferentes do roteamento IP convencional: múltiplos caminhos, roteamento pela origem, engenharia de tráfego, etc.

Alguns elementos do MPLS (cont.)

Exemplo

Rótulos e pilha MPLS

- MPLS suporta diferentes regras de agregação do tráfego
 - É possível criar um rótulo para um fluxo específico, para uma rede ou conjunto de redes
 - É possível agrupar caminhos distintos com diferentes extremidades, deixando o restante do encaminhamento para a camada de rede – esse recurso não é comum em circuitos virtuais convencionais
 - Adicionalmente, um rótulo pode estar associado a outros tipos agrupamento, por exemplo, por prioridade (QoS)
 - Os fluxos agrupados em um mesmo rótulo pertencem à mesma FEC (Forwarding Equivalence Class)
- MPLS suporta empilhamento múltiplo
 - É possível colocar rótulos adicionais nos pacotes, criando uma pilha e ampliando a flexibilidade do encaminhamento

Rótulos e pilha MPLS (cont.)

Exemplo

Tabelas de encaminhamento MPLS

- Protocolos de manutenção das tabelas são separados das decisões de encaminhamento
 - Há diferentes protocolos para criar as tabelas de encaminhamento (ex.: LDP, CR-LDP, RSVP, RSVP-TE) e diferentes políticas de encaminhamento podem ser definidas (ex.: por destino, balanceando a carga na rede, com reserva de banda, etc.)
- Criação do circuito virtual (ou LSP) pode ser totalmente transparente para o usuário
 - Facilita compatibilidade com a Internet convencional

Tabelas de encaminhamento MPLS (cont.)

- Exemplo: rótulos associados a redes IP
 - Ao ser iniciado, roteador MPLS verifica a quais redes está ligado através da configuração das interfaces
 - Cria FECs para as redes e aloca um rótulo para cada rede
 - Envia os rótulos para os roteadores MPLS vizinhos
 - Ao receber os rótulos, os vizinhos atualizam as tabelas, geram novos rótulos para aqueles caminhos e propagam para outros vizinhos
 - O processo se repete até todos os roteadores MPLS serem informados dos caminhos da rede

VLANs?

- VLANs podem ser vistas como circuitos virtuais
 - Encaminhamento baseado em rótulo (VLAN ID)
 - Pode oferecer: separação de tráfego, banda reservada, encaminhamento alternativo ao roteamento padrão, etc.
- Abordagens para atribuição de rótulos
 - Rótulo único fim-a-fim comumente disponível
 - Empilhamento normalmente, em 2 níveis e em equipamentos para MAN – Q-in-Q
 - Rótulo diferente a cada enlace VLAN stitching

VLANs? (cont.)

• Exemplo: VLAN stitching

- ① urn:publicid:IDN+emulab.net+interface+pg45:eth1, VLAN 0
- ② urn:publicid:IDN+emulab.net+interface+procurve-pgeni-salt:10:ion, VLAN 764
- ③ urn:publicid:IDN+ion.internet2.edu+interface+rtr.salt:ge-7/1/2:protogeni, VLAN 764
- urn:publicid:IDN+ion.internet2.edu+interface+rtr.newy:xe-0/0/3:*, VLAN 3020
- ⑤ urn:publicid:IDN+dragon.maxgigapop.net+interface+clpk:1/2/3:*, VLAN 3020
- ⑤ urn:publicid:IDN+dragon.maxgigapop.net+interface+planetlab2:eth1, VLAN 3020