MAXIMA VEROSIMILITUD

- 1. Considere la distribución de Poisson. Halle el EMV para λ , con base en una muestra aleatoria de tamaño n.
- 2. Sea $X_1, X_2, ..., X_n$ una muestra aleatoria de una población con distribución de probabilidad dada por:

$$f(x) = \lambda e^{-\lambda(x-\theta)}$$
, $x \ge \theta$,

con $\lambda > 0$. Si θ es conocido, ¿Cuál es el estimador máximo verosímil para λ ?

3. Sea $X_1, X_2, ..., X_n$ una muestra aleatoria de una población con distribución de probabilidad dada por:

$$f(x) = (\alpha + 1)x^{\alpha}, \quad 0 < x < 1,$$

con $\alpha > 0$. Sea $\theta = P\left(X_i < \frac{1}{2}\right)$. ¿Cuál es el estimador máximo verosímil para θ ?

- 4. Sea $X_1 = 2$, $X_2 = 3$, $X_3 = 7$, $X_4 = 6$ una muestra aleatoria de una distribución Poisson con parámetro λ desconocido. Sea $\beta = P(X = 0)$. ¿Cuál es el EMV para β ?
- 5. Se sabe que una muestra que consta de los valores 12, 11.2, 13.5, 12.3, 13.8, 11.9 proviene de una población con la siguiente función de densidad.

$$f(x;\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1\\ 0, & en cualquier caso \end{cases}$$

Donde $\theta > 0$. Calcule la estimación de máxima verosimilitud de θ .