Module 04: Surface Water Hydraulics

Unit 05: Steady Channel Flow: Channel Network without Reverse Flow

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1

Learning Objective

 To solve steady channel flow for channel network problem without reverse flow using implicit method.

Dr. Anirban Dhar

Problem Definition to Solution

Dr. Anirban Dhar NPTEL Computational Hydraulics

Trapezoidal Cross-section

where P = wetted perimeter.

 $T = B + (m_1 + m_2)y$

 $R = \frac{A}{P}$

Problem Statement Channel Data

Channel	length width		Side Slope		reach(m)		C-	Connectivity	
Chaimei	(m)	(m)	$\overline{m_1}$	m_2	reach(III)	n	S_0	JN_1	JN_2
1	100	50	2	2	25	0.012	0.0005	0	3
2	1500	30	2	2	75	0.0125	0.0004	3	2
3	500	20	2	2	25	0.013	0.0012	3	2
4	100	20	2	2	25	0.0135	0.0005	2	1

Problem Statement Channel Data

Channel	length	width	Side Slope		reach(m)		C-	Connectivity	
Chaimei	(m)	(m)	$\overline{m_1}$	m_2	reach(III)	n	S_0	JN_1	JN_2
1	100	50	2	2	25	0.012	0.0005	0	3
2	1500	30	2	2	75	0.0125	0.0004	3	2
3	500	20	2	2	25	0.013	0.0012	3	2
4	100	20	2	2	25	0.0135	0.0005	2	1

Junction	Depth	Discharge		
Number	(m)	(m^{3}/s)		
1	3	-250		
2	-99999	-99999		
3	-99999	-99999		

Problem Statement Channel Data

Channel	length	width	Side Slope		reach(m)		C-	Connectivity	
Chaimei	(m)	(m)	$\overline{m_1}$	m_2	reach(III)	n	\mathcal{S}_0	JN_1	JN_2
1	100	50	2	2	25	0.012	0.0005	0	3
2	1500	30	2	2	75	0.0125	0.0004	3	2
3	500	20	2	2	25	0.013	0.0012	3	2
4	100	20	2	2	25	0.0135	0.0005	2	1

Junction	Depth	Discharge	
Number	(m)	(m^{3}/s)	
1	3	-250	
2	-99999	-99999	
3	-99999	-99999	

Required

Estimate the flow depth and discharge across the channels.

Problem Definition

Governing Equation for Channel Flow can be written as,

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Problem Definition

Governing Equation for Channel Flow can be written as,

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Momentum Equation:

$$\frac{d\mathbb{E}}{dx} = -S_f$$

with

$$\mathbb{E} = y + z + \frac{\alpha Q^2}{2gA^2}$$

Boundary Value Problem

Continuity Equation:

$$\frac{dQ}{dx} = 0$$

Momentum Equation:

$$\frac{d\mathbb{E}}{dx} = -S_f$$

with

$$\mathbb{E} = y + z + \frac{\alpha Q^2}{2gA^2}$$

where

y= depth of flow

$$S_f = \text{friction slope} \left(= \frac{n^2 Q^2}{R^{4/3} A^2} \right)$$

A = cross-sectional area

R= hydraulic radius

z= elevation of the channel bottom w.r.t. datum

x = coordinate direction

 $\alpha =$ momentum correction factor

Q = discharge

g= acceleration due to gravity

Channel Flow

Algebraic Form Continuity Equation

Discretized form of continuity equation

$$C_{l,i} = Q_{l,i+1} - Q_{l,i} = 0, \forall i \in \{1, \dots, N_l\}$$

Algebraic Form **Continuity Equation**

Discretized form of continuity equation

$$C_{l,i} = Q_{l,i+1} - Q_{l,i} = 0, \forall i \in \{1, \dots, N_l\}$$

$$\frac{\partial C_{l,i}}{\partial y_{l,i}} = 0$$

$$\frac{\partial C_{l,i}}{\partial Q_{l,i}} = -1$$

$$\frac{\partial C_{l,i}}{\partial y_{l,i+1}} = 0$$

$$\frac{\partial C_{l,i}}{\partial Q_{l,i+1}} = 1$$

Discretization Momentum Equation

In discretized form of momentum equation for i^{th} segment of the l^{th} channel reach,

$$M_{l,i} = (y_{l,i+1} - y_{l,i}) + (z_{l,i+1} - z_{l,i}) + \frac{\alpha_l}{2g} \left(\frac{Q_{l,i+1}^2}{A_{l,i+1}^2} - \frac{Q_{l,i}^2}{A_{l,i}^2} \right)$$

$$+ \frac{n_l^2 \Delta x_l}{2} \left[\frac{Q_{l,i+1}^2}{R_{l,i+1}^{4/3} A_{l,i+1}^2} + \frac{Q_{l,i}^2}{R_{l,i}^{4/3} A_{l,i}^2} \right], \quad \forall i \in \{1, \dots, N_l\}$$

 $2N_l$ non-linear equations with $2(N_l+1)$ unknowns (discharge + flow-depth)

Algebraic Form Momentum Equation

$$\begin{split} \frac{\partial M_{l,i}}{\partial y_{l,i}} &= -1 + D_1 \frac{2Q_{l,i}^2}{A_{l,i}^3} \frac{dA}{dy} \Big|_{l,i} - D_2 \left[\frac{2Q_{l,i}^2}{A_{l,i}^3 R_{l,i}^4} \frac{dA}{dy} \Big|_{l,i} + \frac{4Q_{l,i}^2}{3A_{l,i}^2 R_{l,i}^7} \frac{dR}{dy} \Big|_{l,i} \right] \\ \frac{\partial M_{l,i}}{\partial Q_{l,i}} &= -D_1 \frac{2Q_{l,i}}{A_{l,i}^3} + D_2 \frac{2Q_{l,i}}{A_{l,i}^2 R_{l,i}^4} \\ \frac{\partial M_{l,i}}{\partial y_{l,i+1}} &= 1 - D_1 \frac{2Q_{l,i+1}^2}{A_{l,i+1}^3} \frac{dA}{dy} \Big|_{l,i+1} - D_2 \left[\frac{2Q_{l,i+1}^2}{A_{l,i+1}^3 R_{l,i+1}^4} \frac{dA}{dy} \Big|_{l,i+1} + \frac{4Q_{l,i+1}^2}{3A_{l,i+1}^2 R_{l,i+1}^7} \frac{dR}{dy} \Big|_{l,i+1} \right] \\ \frac{\partial M_{l,i}}{\partial Q_{l,i+1}} &= D_1 \frac{2Q_{l,i+1}}{A_{l,i+1}^3} + D_2 \frac{2Q_{l,i+1}}{A_{l,i+1}^2 R_{l,i+1}^3} \\ \frac{\partial M_{l,i}}{\partial Q_{l,i+1}} &= D_1 \frac{2Q_{l,i+1}}{A_{l,i+1}^3} + D_2 \frac{2Q_{l,i+1}}{A_{l,i+1}^2 R_{l,i+1}^3} \end{aligned}$$

with

$$D_1 = \frac{\alpha_l}{2g} \quad \text{and} \quad D_2 = \frac{1}{2} n_l^2 \Delta x_l$$

Trapezoidal Section

For trapezoidal channel cross-section,

$$\frac{dA}{dy} = B + (m_1 + m_2)y$$

Trapezoidal Section

For trapezoidal channel cross-section,

$$\frac{dA}{dy} = B + (m_1 + m_2)y$$

$$\frac{dR}{dy} = \frac{T}{P} - \frac{R}{P} \frac{dP}{dy}$$

with

$$T = B + (m_1 + m_2)y$$

$$P = B + \left(\sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}\right)y$$

$$R = \frac{A}{P}$$

$$\frac{dP}{dy} = \left(\sqrt{1 + m_1^2} + \sqrt{1 + m_2^2}\right)$$

For downstream flow-depth condition at junction 1,

$$y_{4,N_4+1} = y_d$$

$$DBy_{4,N_4+1} = y_{4,N_4+1} - y_d = 0$$

For downstream flow-depth condition at junction 1,

$$y_{4,N_4+1} = y_d$$

$$DBy_{4,N_4+1} = y_{4,N_4+1} - y_d = 0$$

Elements of Jacobian Matrix can be written as,

$$\begin{aligned} \frac{\partial DBy_{4,N_4+1}}{\partial y_{4,N_4}} &= 0\\ \frac{\partial DBy_{4,N_4+1}}{\partial Q_{4,N_4}} &= 0\\ \frac{\partial DBy_{4,N_4+1}}{\partial y_{4,N_4+1}} &= 1\\ \frac{\partial DBy_{4,N_4+1}}{\partial Q_{4,N_4+1}} &= 0 \end{aligned}$$

For downstream discharge condition at junction 1,

$$\begin{aligned} Q_{4,N_4+1} + Q_d &= 0 \\ DBQ_{4,N_4+1} &= Q_{4,N_4+1} + Q_d &= 0 \end{aligned}$$

For downstream discharge condition at junction 1,

$$\begin{aligned} Q_{4,N_4+1} + Q_d &= 0 \\ DBQ_{4,N_4+1} &= Q_{4,N_4+1} + Q_d &= 0 \end{aligned}$$

Elements of Jacobian Matrix can be written as,

$$\begin{split} \frac{\partial DBQ_{4,N_4+1}}{\partial y_{4,N_4}} &= 0\\ \frac{\partial DBQ_{4,N_4+1}}{\partial Q_{4,N_4}} &= 0\\ \frac{\partial DBQ_{4,N_4+1}}{\partial y_{4,N_4+1}} &= 0\\ \frac{\partial DBQ_{4,N_4+1}}{\partial Q_{4,N_4+1}} &= 1 \end{split}$$

Internal Boundary condition

Junction 2

$$\begin{split} JC_{JN_2,1} &= Q_{2,N_2+1} + Q_{3,N_3+1} - Q_{4,1} = 0 \\ JC_{JN_2,2} &= y_{4,1} - y_{2,N_2+1} + z_{4,1} - z_{2,N_2+1} = 0 \\ JC_{JN_2,3} &= y_{4,1} - y_{3,N_3+1} + z_{4,1} - z_{3,N_3+1} = 0 \end{split}$$

Internal Boundary condition

Junction 2

$$\begin{split} JC_{JN_2,1} &= Q_{2,N_2+1} + Q_{3,N_3+1} - Q_{4,1} = 0 \\ JC_{JN_2,2} &= y_{4,1} - y_{2,N_2+1} + z_{4,1} - z_{2,N_2+1} = 0 \\ JC_{JN_2,3} &= y_{4,1} - y_{3,N_3+1} + z_{4,1} - z_{3,N_3+1} = 0 \end{split}$$

Elements of Jacobian Matrix can be written as.

$$\begin{split} \frac{\partial JC_{JN_2,1}}{\partial Q_{2,N_2+1}} &= 1 \quad \frac{\partial JC_{JN_2,1}}{\partial Q_{3,N_3+1}} = 1 \quad \frac{\partial JC_{JN_2,1}}{\partial Q_{4,1}} = -1 \\ \frac{\partial JC_{JN_2,2}}{\partial y_{2,N_2+1}} &= -1 \quad \frac{\partial JC_{JN_2,2}}{\partial y_{4,1}} = 1 \\ \frac{\partial JC_{JN_2,3}}{\partial y_{3,N_3+1}} &= -1 \quad \frac{\partial JC_{JN_2,3}}{\partial y_{4,1}} = 1 \end{split}$$

Internal Boundary condition

Junction 3

$$JC_{JN_3,1} = Q_{1,N_1+1} - Q_{2,1} - Q_{3,1} = 0$$

$$JC_{JN_3,2} = y_{1,N_1+1} - y_{2,1} + z_{l,N_1+1} - z_{2,1} = 0$$

$$JC_{JN_3,3} = y_{1,N_1+1} - y_{3,1} + z_{l,N_1+1} - z_{3,1} = 0$$

Internal Boundary condition

Junction 3

$$JC_{JN_3,1} = Q_{1,N_1+1} - Q_{2,1} - Q_{3,1} = 0$$

$$JC_{JN_3,2} = y_{1,N_1+1} - y_{2,1} + z_{l,N_1+1} - z_{2,1} = 0$$

$$JC_{JN_3,3} = y_{1,N_1+1} - y_{3,1} + z_{l,N_1+1} - z_{3,1} = 0$$

Elements of Jacobian Matrix can be written as.

$$\begin{aligned} \frac{\partial JC_{JN_3,1}}{\partial Q_{1,N_1+1}} &= 1 & \frac{\partial JC_{JN_3,1}}{\partial Q_{2,1}} &= -1 & \frac{\partial JC_{JN_3,1}}{\partial Q_{3,1}} &= -1 \\ \frac{\partial JC_{JN_3,2}}{\partial y_{1,N_1+1}} &= 1 & \frac{\partial JC_{JN_3,2}}{\partial y_{2,1}} &= -1 \\ \frac{\partial JC_{JN_3,3}}{\partial y_{l,N_1+1}} &= 1 & \frac{\partial JC_{JN_3,3}}{\partial y_{3,1}} &= -1 \end{aligned}$$

In general form, continuity and momentum equations can be written as,

$$\begin{split} &\frac{\partial C_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial C_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial C_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial C_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -C_{l,i} \\ &\frac{\partial M_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial M_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial M_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial M_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -M_{l,i}, \\ &\forall i \in \{1,\dots,N_l\} \end{split}$$

In general form, continuity and momentum equations can be written as,

$$\begin{split} &\frac{\partial C_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial C_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial C_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial C_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -C_{l,i} \\ &\frac{\partial M_{l,i}}{\partial y_{l,i}} \Delta y_{l,i} + \frac{\partial M_{l,i}}{\partial Q_{l,i}} \Delta Q_{l,i} + \frac{\partial M_{l,i}}{\partial y_{l,i+1}} \Delta y_{l,i+1} + \frac{\partial M_{l,i}}{\partial Q_{l,i+1}} \Delta Q_{l,i+1} = -M_{l,i}, \\ &\forall i \in \{1,\dots,N_l\} \end{split}$$

At junction 1 (Downstream Boundary),

$$\begin{split} \frac{\partial DBy_{4,N_4+1}}{\partial y_{4,N_4+1}} \Delta y_{4,N_4+1} &= -DBy_{4,N_4+1} \\ \frac{\partial DBQ_{4,N_4+1}}{\partial Q_{4,N_4+1}} \Delta Q_{4,N_4+1} &= -DBQ_{4,N_4+1} \end{split}$$

At junction 2 (Internal Boundary),

$$\begin{split} &\frac{\partial JC_{JN_2,1}}{\partial Q_{2,N_2+1}} \Delta Q_{2,N_2+1} + \frac{\partial JC_{JN_2,1}}{\partial Q_{3,N_3+1}} \Delta Q_{3,N_3+1} + \frac{\partial JC_{JN_2,1}}{\partial Q_{4,1}} \Delta Q_{4,1} = -JC_{JN_2,1} \\ &\frac{\partial JC_{JN_2,2}}{\partial y_{2,N_2+1}} \Delta y_{2,N_2+1} + \frac{\partial JC_{JN_2,2}}{\partial y_{4,1}} \Delta y_{4,1} = -JC_{JN_2,2} \\ &\frac{\partial JC_{JN_2,3}}{\partial y_{3,N_3+1}} \Delta y_{3,N_3+1} + \frac{\partial JC_{JN_2,3}}{\partial y_{4,1}} \Delta y_{4,1} = -JC_{JN_2,3} \end{split}$$

At junction 2 (Internal Boundary),

$$\begin{split} &\frac{\partial JC_{JN_2,1}}{\partial Q_{2,N_2+1}} \Delta Q_{2,N_2+1} + \frac{\partial JC_{JN_2,1}}{\partial Q_{3,N_3+1}} \Delta Q_{3,N_3+1} + \frac{\partial JC_{JN_2,1}}{\partial Q_{4,1}} \Delta Q_{4,1} = -JC_{JN_2,1} \\ &\frac{\partial JC_{JN_2,2}}{\partial y_{2,N_2+1}} \Delta y_{2,N_2+1} + \frac{\partial JC_{JN_2,2}}{\partial y_{4,1}} \Delta y_{4,1} = -JC_{JN_2,2} \\ &\frac{\partial JC_{JN_2,3}}{\partial y_{3,N_3+1}} \Delta y_{3,N_3+1} + \frac{\partial JC_{JN_2,3}}{\partial y_{4,1}} \Delta y_{4,1} = -JC_{JN_2,3} \end{split}$$

At junction 3,

$$\begin{split} &\frac{\partial JC_{JN_3,1}}{\partial Q_{1,N_1+1}} \Delta Q_{1,N_1+1} + \frac{\partial JC_{JN_3,1}}{\partial Q_{2,1}} \Delta Q_{2,1} + \frac{\partial JC_{JN_3,1}}{\partial Q_{3,1}} \Delta Q_{3,1} = -JC_{JN_3,1} \\ &\frac{\partial JC_{JN_3,2}}{\partial y_{1,N_1+1}} \Delta y_{1,N_1+1} + \frac{\partial JC_{JN_3,2}}{\partial y_{2,1}} \Delta y_{2,1} = -JC_{JN_3,2} \\ &\frac{\partial JC_{JN_3,3}}{\partial y_{l,N_1+1}} \Delta y_{1,N_1+1} + \frac{\partial JC_{JN_3,3}}{\partial y_{3,1}} \Delta y_{3,1} = -JC_{JN_3,3} \end{split}$$

Program Implementation

$$\mathsf{chl_inf} = \begin{bmatrix} 1 & 100 & 50 & 2 & 2 & 25 & 0.0120 & 0.0005 & 0 & 3 \\ 2 & 1500 & 30 & 2 & 2 & 75 & 0.0125 & 0.0004 & 3 & 2 \\ 3 & 500 & 20 & 2 & 2 & 25 & 0.0130 & 0.0012 & 3 & 2 \\ 4 & 100 & 40 & 2 & 2 & 25 & 0.0135 & 0.0005 & 2 & 1 \end{bmatrix}$$

Program Implementation

$$\mbox{chl_inf} = \begin{bmatrix} 1 & 100 & 50 & 2 & 2 & 25 & 0.0120 & 0.0005 & 0 & 3 \\ 2 & 1500 & 30 & 2 & 2 & 75 & 0.0125 & 0.0004 & 3 & 2 \\ 3 & 500 & 20 & 2 & 2 & 25 & 0.0130 & 0.0012 & 3 & 2 \\ 4 & 100 & 40 & 2 & 2 & 25 & 0.0135 & 0.0005 & 2 & 1 \end{bmatrix} \\ \mbox{jun_inf} = \begin{bmatrix} 3 & -250 \\ -99999 & -99999 \\ -99999 & -99999 \end{bmatrix}$$

Program Implementation

$$\mbox{chl_inf} = \begin{bmatrix} 1 & 100 & 50 & 2 & 2 & 25 & 0.0120 & 0.0005 & 0 & 3 \\ 2 & 1500 & 30 & 2 & 2 & 75 & 0.0125 & 0.0004 & 3 & 2 \\ 3 & 500 & 20 & 2 & 2 & 25 & 0.0130 & 0.0012 & 3 & 2 \\ 4 & 100 & 40 & 2 & 2 & 25 & 0.0135 & 0.0005 & 2 & 1 \end{bmatrix} \\ \mbox{jun_inf} = \begin{bmatrix} 3 & -250 \\ -99999 & -99999 \\ -99999 & -99999 \end{bmatrix} \\ \mbox{jun_con} = \begin{bmatrix} 1 & -4 & 0 & 0 \\ 3 & 4 & -3 & -2 \\ 3 & -1 & 2 & 3 \end{bmatrix}$$

Source Code

Channel Flow

- Channels network
 - steady_1D_channel_network_without_reverse.sci

Thank You