Chapter 2

Fundamental concepts

2.1 Norms

In this course we will consider numerical methods that produce approximations of the solution(s) of various problems. Typically, we will be considering some problem (e.g. a system of equations) with an unknown true solution \boldsymbol{x} belonging to a certain vector space¹. We will typically be interested in a numerical method that produces a sequence of approximations \boldsymbol{x}_n , $n \in \mathbb{N}$, belonging to the same vector space. The index n is usually related to the amount of computational effort (e.g. number of calculations) invested in calculating \boldsymbol{x}_n . Our goal will be to prove precise statements about the performance of the method, for instance by proving the convergence of \boldsymbol{x}_n to \boldsymbol{x} as $n \to \infty$.

To measure the size of elements of a vector space, for instance to quantify the size of the error in the approximation, we use a norm.

Definition 2.1.1 (Norms and normed vector spaces). Let V be a vector space over \mathbb{R} .

A function $\|\cdot\|: V \to \mathbb{R}$ is a norm on V if

- 1. (i) $\|\mathbf{v}\| \ge 0$, $\forall \mathbf{v} \in V$ and (ii) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$;
- 2. $\|\alpha \boldsymbol{v}\| = |\alpha| \|\boldsymbol{v}\| \ \forall \alpha \in \mathbb{R} \ and \ \forall \boldsymbol{v} \in V \ ;$
- 3. $\|v + w\| \le \|v\| + \|w\|, \forall v, w \in V.$

We then say that $(V, \|\cdot\|)$ is a normed vector space.

The standard norm on \mathbb{R} is the absolute value function, i.e. ||x|| = |x| for $x \in \mathbb{R}$.

¹Common examples include finite-dimensional vector spaces such as \mathbb{R} or \mathbb{R}^n $(n \geq 2)$, and infinite-dimensional function spaces such as C([a,b]), the space of all continuous functions $f:[a,b] \to \mathbb{R}$. For simplicity we consider only real vector spaces in this course. But the concepts we consider generalise easily to complex vector spaces, with only minor modifications.

Examples of norms on \mathbb{R}^n are given by the *p*-norm

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \text{ for } 1 \leq p < \infty,$$
 (2.1)

where x_i denotes the *i*th component of the vector $\boldsymbol{x} \in \mathbb{R}^n$. Taking p = 2 in (2.1) leads to the classical Euclidean norm

$$\|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{(\boldsymbol{x}, \boldsymbol{x})},$$

where² the inner product $(\boldsymbol{x}, \boldsymbol{y})$ is defined by $(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{y} = \boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^n x_i y_i$. In this case the Cauchy-Schwarz inequality holds:

$$|(\boldsymbol{x}, \boldsymbol{y})| \le ||\boldsymbol{x}||_2 ||\boldsymbol{y}||_2.$$

Observe that $p = \infty$ is excluded in the definition of the p-norm above. The *infinity-norm* or max-norm is defined separately by

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Each of the above norms measures the "length" of a vector $\boldsymbol{x} \in \mathbb{R}^n$ in a different way. (Exercise: sketch the unit ball $\{\boldsymbol{x} \in \mathbb{R}^2 : \|\boldsymbol{x}\| < 1\}$ for the cases $\|\cdot\|_1, \|\cdot\|_2$ and $\|\cdot\|_{\infty}$.)

One can define norms on the infinite-dimensional space C([a,b]) in an analogous way. For instance, the *infinity-norm* or *max-norm* is defined for $f \in C([a,b])$ by

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|.$$

Here the maximum is well-defined because a continuous function on a bounded interval is bounded and attains its bounds.

Definition 2.1.2 (Norm equivalence). Two norms $\|\cdot\|$ and $\|\cdot\|'$ on a vector space V are said to be equivalent if there exist constants 0 < c < C such that

$$c||\boldsymbol{v}|| \le ||\boldsymbol{v}||' \le C||\boldsymbol{v}|| \qquad \forall \boldsymbol{v} \in V.$$
 \blacksquare

On a finite-dimensional vector space (such as \mathbb{R}^n) all norms are equivalent. But this result does not in general extend to infinite-dimensional spaces such as C([a,b]).

²It is a general result that whenever one has an inner product (\cdot,\cdot) defined on vector space V, one can generate a norm on V by the formula $||v|| = \sqrt{(v,v)}$, and that the Cauchy-Schwarz inequality holds.

2.2 Errors and convergence

If $\tilde{\boldsymbol{x}} \in V$ is an approximation to $\boldsymbol{x} \in V$ we can consider the absolute error

$$E_{\text{abs}} = \|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|$$

and the relative error (provided that $x \neq 0$)

$$E_{\rm rel} = \frac{\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|}.$$

Note that if $V = \mathbb{R}$ then $-\log_{10}(E_{\text{rel}})$ indicates to how many decimal digits the approximate and exact solutions agree.

Convergence of sequences and series in a normed vector space is defined in the obvious way. For instance, we say a sequence $\{x_n\}_{n=1}^{\infty} \subset V$ converges to $x \in V$ with respect to the norm $\|\cdot\|$ if $\|x_n - x\| \to 0$ as $n \to \infty$ (as a sequence of real numbers)³. Note that if a sequence converges with respect to a given norm, then it also converges with respect to any equivalent norm.

To determine whether a numerical method is likely to be useful in a practical application, it is important to know how fast \boldsymbol{x}_n converges to \boldsymbol{x} as $n \to \infty$.

Definition 2.2.1. For a sequence (x_n) that converges to x as $n \to \infty$, we say that the convergence is linear if there exists a constant 0 < C < 1 such that, for n sufficiently large,

$$\|x_{n+1} - x\| \le C\|x_n - x\|.$$

We say that the convergence is quadratic if there exists a constant C > 0 such that, for n sufficiently large,

$$\|x_{n+1} - x\| \le C \|x_n - x\|^2$$
.

In general, we say the convergence is of order p > 1 (not necessarily an integer) if there exists a constant C > 0 such that, for n sufficiently large,

$$\|\boldsymbol{x}_{n+1} - \boldsymbol{x}\| \le C \|\boldsymbol{x}_n - \boldsymbol{x}\|^p.$$

(Exercise: Explain why the condition C < 1 is only needed for the case p = 1.)

If a positive quantity E(n) depending on a parameter $n \in \mathbb{N}$ (for example the error $\|\boldsymbol{x}_n - \boldsymbol{x}\|$ in a numerical approximation) behaves like $E(n) \approx Cn^{\alpha}$ for some $\alpha \in \mathbb{R}$, then

$$\log E(n) \approx \log C + \alpha \log n,$$

³Recall that a sequence $(c_n)_{n=1}^{\infty} \subset \mathbb{R}$ converges to $c \in \mathbb{R}$ as $n \to \infty$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that n > N implies $|c_n - c| < \epsilon$.

so plotting $\log E(n)$ against $\log n$ (e.g. using Matlab's loglog command) will produce a straight line with slope α . If E(n) behaves like $E(n) \approx Ca^n$ for some a > 0, then

$$\log E(n) \approx \log C + n \log a,$$

so plotting $\log E(n)$ against n (e.g. using Matlab's **semilogy** command) will produce a straight line with slope $\log a$.

2.3 Asymptotic notation

We will often need to compare the growth or decay of different functions as their arguments tend to a certain limit. The following notation is very useful in this regard.

Definition 2.3.1 ("Big O" notation). Let f and g be two functions defined on \mathbb{R} , and let $x_0 \in \mathbb{R}$. We write

$$f(x) = O(g(x))$$
 as $x \to x_0$

if there exist constants $\delta > 0$ and C > 0 such that

$$|f(x)| \le C|g(x)|$$
 for $|x - x_0| < \delta$.

Definition 2.3.2 ("Little o" notation). Let f and g be two functions defined on \mathbb{R} , and let $x_0 \in \mathbb{R}$. We write

$$f(x) = o(g(x))$$
 as $x \to x_0$

if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x)| \le \varepsilon |g(x)|$$
 for $|x - x_0| < \delta$.

Notice that in the big O notation, we require that there is at least one constant C for which the statement holds, whereas for the little o notation, we require that the statement holds for all positive constants ε . Therefore f(x) = o(g(x)) as $x \to x_0$ implies f(x) = O(g(x)) as $x \to x_0$.

If $g(x) \neq 0$ for all x in a neighbourhood of x_0 , then the condition in the little o notation is equivalent to

$$\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|} = 0.$$

Note that the above definitions can be generalised in an obvious way to the case where $x \to \pm \infty$.

2.4 The mean value theorem and Taylor expansions

A fundamental tool in our analysis of numerical methods will be Taylor expansion. The starting point is the mean value theorem for differentiable functions⁴.

Theorem 2.4.1 (Mean value theorem). Let $a, b \in \mathbb{R}$ with a < b, and let $f : (a, b) \to \mathbb{R}$ be differentiable on (a, b). Then, given $x, x_0 \in (a, b)$ with $x \neq x_0$,

$$f(x) = f(x_0) + f'(\xi)(x - x_0),$$
 (2.3)

for some ξ between x_0 and x.

This result generalises to higher orders of differentiability as part of Taylor's Theorem.⁵

Theorem 2.4.2 (Taylor's theorem). Let $a, b \in \mathbb{R}$ with a < b, and let $f : (a, b) \to \mathbb{R}$ be k-times differentiable on (a, b), for some $k \in \mathbb{N}$. Then, given $x, x_0 \in (a, b)$ with $x \neq x_0$,

$$f(x) = \sum_{j=0}^{k} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + R_k(x; x_0),$$
 (2.4)

where the remainder satisfies

$$R_k(x; x_0) = o(|x - x_0|^k)$$
 as $x \to x_0$.

If f is k+1-times differentiable on (a,b) then the remainder can be expressed as

$$R_k(x;x_0) = \frac{f^{k+1}(\xi)}{(k+1)!}(x-x_0)^{k+1},$$
(2.5)

for some ξ between x_0 and x.

Notice that if a function f is k+1 times differentiable, and if $|f^{k+1}(\xi)| \leq M$ for some uniform constant M for all arguments ξ in some neighbourhood of x_0 , then (2.5) implies that

$$R_k(x; x_0) = O(|x - x_0|^{k+1})$$
 as $x \to x_0$.

⁴Recall that $f:(a,b) \to \mathbb{R}$ is differentiable at a point $x_* \in (a,b)$ if the limit $\lim_{h\to 0} (f(x_*+h)-f(x_*))/h$ exists and is finite; this limit is then defined to be the derivative $f'(x_*)$. Differentiability on (a,b) means differentiability at every point $x_* \in (a,b)$. The standard example of a non-differentiable function is the absolute value |x|, which is not differentiable at $x_* = 0$ (we get a different limit for positive and negative h).

⁵A function $f:(a,b)\to\mathbb{R}$ is twice differentiable if f is differentiable (in the sense of the previous footnote) and the derivative f' is also differentiable. We then define the second derivative f'':=(f')'. Analogously, f is k-times differentiable for some $k\in\mathbb{N}$ if the derivatives f', f'':=(f')', f''':=(f'')', ... $f^{(k)}:=(f^{(k-1)})'$ all exist.