Linear Algebra Homework 9

Aidan Mokalla

Due March 18, 2024

5.1:

• 15. For any square matrix A, prove that A and A^t have the same characteristic polynomial (and hence the same eigenvalues). Visit goo.gl/7Qss2u for a solution.

The characteristic polynomial of a matrix A is defined by $p(\lambda) = \det(\lambda I - A)$. For any matrix B, $\det(B) = \det(B^T)$. Applying this property to the characteristic polynomial, we have:

$$p(\lambda) = \det(\lambda I - A) = \det((\lambda I - A)^T) = \det(\lambda I - A^T).$$

So, the characteristic polynomial of A is $\det(\lambda I - A)$ and that of A^T is $\det(\lambda I - A^T)$. Since these are equal, A and A^T have the same characteristic polynomial. Thus, A and A^T have the same eigenvalues, as these are determined by the roots of the characteristic polynomial. \Box

- 17. Let T be a linear operator on a finite-dimensional vector space V, and let c be any scalar.
 - (a) Determine the relationship between the eigenvalues and eigenvectors of T (if any) and the eigenvalues and eigenvectors of U = T cI. Justify your answers.

Given v as an eigenvector of T, then $T(v) = \lambda v$. Applying U to v:

$$U(v) = (T - cI)(v) = T(v) - cI(v) = \lambda v - cv = (\lambda - c)v.$$

Therefore, v is also an eigenvector of U with the eigenvalue $\lambda - c$. The eigenvectors of T and U remain the same. Each eigenvalue λ of T corresponds to the eigenvalue $\lambda - c$ of U. This means every eigenvalue of T is scaled by -c in U, while the eigenvectors are unchanged. \square

- (b) Prove that T is diagonalizable if and only if U is diagonalizable.
 - 1. (\Rightarrow) T is diagonalizable. Since T is diagonalizable, there exists a basis of V consisting of eigenvectors of T. These same vectors are eigenvectors of U with eigenvalues λc , where λ are eigenvalues of T. Hence, U is also diagonalizable.
 - 2. (\Leftarrow) U is diagonalizable. Similarly, if U is diagonalizable with a basis of eigenvectors corresponding to eigenvalues λc , these eigenvectors are also eigenvectors of T with eigenvalues λ . Thus, T is diagonalizable. \square
- 20. Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

Prove that $f(0) = a_0 = \det(A)$. Deduce that A is invertible if and only if $a_0 \neq 0$.

We can rewrite out polynomial as

$$f(t) = \det(tI - A)$$

And, at t = 0,

$$f(0) = \det(-A) = (-1)^n \det(A)$$

Since f(0) is the constant term a_0 of f(t), it follows that

$$f(0) = (-1)^n \det(A) = a_0$$

Thus,

$$\det(A) = a_0.$$

A matrix A is invertible if and only if:

$$det(A) \neq 0$$

So, given $det(A) = a_0$, A is invertible if and only if:

$$a_0 \neq 0_{\square}$$

5.2:

- 3. For each of the following linear operators T on a vector space V, test T for diagonalizability, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
 - (b) $V = P_2(\mathbb{R})$ and T is defined by $T(a_2x^2 + bx + c) = cx^2 + bx + a$.

Consider the standard basis $\beta = \{1, x, x^2\}$. So,

$$T(1) = 1$$
, $T(x) = x$, $T(x^2) = x^2$

Each element of β is an eigenvector with eigenvalue $\lambda = 1$ since T acts as the identity operator on these elements. Since all basis elements are eigenvectors with the same eigenvalue, T is diagonalizable. So,

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The basis $\beta = \{1, x, x^2\}$ confirms T's diagonalization, without any change of basis yet needed. \Box

• 8. Suppose that $A \in M_{n \times n}(\mathbb{F})$ has two distinct eigenvalues, λ_1 and λ_2 , and that $\dim(E_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.

Vectors in E_{λ_2} are linearly independent of those in E_{λ_1} due to a different eigenvalue ($\lambda_2 \neq \lambda_1$). The sum of the dimensions of E_{λ_1} and E_{λ_2} is n (since $\dim(E_{\lambda_1}) = n - 1$ and $\dim(E_{\lambda_2}) = 1$).

Because A has n linearly independent eigenvectors that span \mathbb{F}^n , it forms a complete basis, making A diagonalizable:

$$\dim(E_{\lambda_1}) + \dim(E_{\lambda_2}) = n$$

Thus, A is diagonalizable as there exists a basis for \mathbb{F}^n consisting entirely of eigenvectors of A, making it possible to express A diagonalizedly. \square

- 14. Let $A \in M_{n \times n}(\mathbb{F})$. Recall from Exercise 15 of Section 5.1 that A and A^t have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_{λ} and E'_{λ} denote the corresponding eigenspaces for A and A^t , respectively.
 - (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.

Consider the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

The characteristic polynomial for both A and A^t is:

$$\chi(\lambda) = \lambda^2,$$

So eigenvalue $\lambda = 0$ with algebraic multiplicity 2.

For A, solving
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 gives:

$$y = 0$$
,

so E_0 is spanned by $\binom{1}{0}$.

For
$$A^t$$
, solving $A^t \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ gives:

$$x = 0$$
,

so
$$E_0'$$
 is spanned by $\binom{0}{1}$.

Even though A and A^t share the same eigenvalues, their eigenspaces corresponding to these eigenvalues are different:

$$-E_0$$
 for $A:\begin{pmatrix}1\\0\end{pmatrix}$

$$- E'_0 \text{ for } A^t : \begin{pmatrix} 0 \\ 1 \end{pmatrix} \square$$

(c) Prove that if A is diagonalizable, then A^t is also diagonalizable.

A matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that:

$$A = PDP^{-1}$$

Recall our transformation properties of matrices:

$$- (AB)^t = B^t A^t$$

– For a diagonal matrix $D, D^t = D$

Starting with the diagonalizability of A:

$$A = PDP^{-1}$$

Taking the transposition of t on both sides:

$$A^t = (PDP^{-1})^t = (P^{-1})^t DP^t$$

Since $D^t = D$ and $(P^{-1})^t = (P^t)^{-1}$, we simplify to:

$$A^t = (P^t)^{-1}DP^t$$

This shows $A^t = (P^t)^{-1}DP^t$ represents A^t in a diagonalized form where P^t is the invertible matrix of eigenvectors and D remains the diagonal matrix of eigenvalues. Thus, A^t is diagonalizable. \Box