21-301A Combinatorics, 2013 Fall Homework 2

- The due is on Friday, Sep 20, at beginning of the class.
- Collaboration is permitted, however all the writing must be done individually.
- 1. Find the value of $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{n}{r-i}$ for all integers r, n satisfying $0 \le r \le 2n$.
- **2.** Let $a_n = \frac{n(n+1)}{2}$ for all integers $n \ge 0$. Find the generating function f(x) of the infinity sequence a_0, a_1, a_2, \ldots and express it without summation.
- **3.** Prove that for any integer $n \ge 1$, $n! \le e\sqrt{n} \left(\frac{n}{e}\right)^n$.
- 4. Prove that
 - (a) $1 + x \le e^x$ holds for any real number x. (Calculus is allowed to use)
- (b) $n! \ge e\left(\frac{n}{e}\right)^n$ by induction on n.
- **5.** Let $\pi(n)$ be the number of primes in $\{1, 2, ..., n\}$.
 - (a) Prove that the product of all primes p satisfying $m is at most <math>\binom{2m}{m}$, where $m \ge 1$ is any integer.
 - (b) Use (a) to prove the lower bound of the Prime Number Theorem, that is $\pi(n) \leq \frac{Cn}{\log n}$ for any integer $n \geq 2$ and some absolute constant C. (Hint: by induction)
- **6.** How many integer solutions (x_1, x_2, x_3, x_4) to

$$x_1 + x_2 + x_3 + x_4 = 20$$

satisfy that for each $i, x_i \ge 0$ but $x_i \ne 6$?

7. How many ways are there to seat n couples at a round table with 2n chairs in such a way that none of the couples sit next to each other? If one seating plan can be obtained from other plan by a rotation, then we will view them as one plan.

Hint: let A_i be the event such that the couple i sit next to each other and use inclusion-exclusion principle.

8. Let D(n) be the number of permutations π of [n] such that $\pi(i) \neq i$ for any $i \in [n]$ (see Section 3.8). Prove that D(n+1) = n[D(n-1) + D(n)] for all $n \geq 2$.

Note: A proof by plugging in the precise formula of D(n) is not accepted.