1. Исходные данные

Исходные данные приведены в таблице 1.

Таблица 1 - Исходные данные

Наименование параметра	Значение
Подача Q, M^3/Ψ	650
Напор Н, м	92
Давление на входе в насос Р, МПа	0,03
Температура натрия на входе в насос T , 0 С	450
Плотность натрия при данной температуре 450 °С ρ , кг/м ³	844
Давление насыщенных паров натрия $P_{\scriptscriptstyle HR}$, Па	164,4

2. Определим располагаемый кавитационный запас:

Располагаемый кавитационный запас определяется по формуле

$$\Delta hpac = \frac{P_c}{\rho \cdot q} + \frac{v^2}{2 \cdot q} - \frac{P_{HR}}{\rho \cdot q}$$

где: $P_c = P + P_a$ – абсолютное статическое давление на входе в насос, Па

Р нп – давление насыщенных паров, Па

V – скорость среды на входе в насос, м/с

$$\frac{P_c}{\rho \cdot g} + \frac{v^2}{2 \cdot g}$$
 - полная удельная энергия потока ($E_{\text{вх}}$) на входе в насос.

Т.к. на начальном этапе значение скоростей неизвестно, то опустим это слагаемое, в конечном итоге это допущение только лишь увеличит располагаемый кавитационный запас. Таким образом:

$$\Delta h_{pac} = \frac{P_c - P \, \text{H} n}{\rho \cdot g} = \frac{0.13 \cdot 10^6 - 164.4}{844 \cdot 9.81} = 15,681 \, \text{M}$$

Тогда Δh_{pac} =15,7 м. Расчет уточненного значения располагаемого кавитационного запаса будет проведен после расчета геометрии рабочего колеса насоса.

3. Выбор частоты вращения ротора

Расчет выполняется следующим образом.

3.1 Задаемся частотой вращения ротора.

$$n = n_{\sin} \cdot \left(1 - \frac{3}{100}\right) = 3000 \cdot \left(1 - \frac{3}{100}\right) = 2910 \frac{o6}{MUH}$$
, где $s = 3\%$ – скольжение.

3.2 Определяем коэффициент быстроходности.

$$n_s = \frac{3,65 \cdot n \cdot \sqrt{Q}}{H^{0,75}} = \frac{3,65 \cdot 2910 \cdot \sqrt{0,181/2}}{92^{0,75}} = 107$$

Тип рабочего колеса - центробежное тихоходное.

3.3 Определяем кавитационный коэффициент быстроходности.

Кавитационный коэффициент быстроходности определяем по рис. 3.1 [1, стр.35].

$$C_{\kappa p} = 772$$

3.4 Определяем критический кавитационный запас.

$$\Delta h_{\kappa p} = 10 \cdot \left[\frac{n \cdot \sqrt{Q}}{C \kappa p} \right]^{\frac{4}{3}} = 10 \cdot \left[\frac{3000 \cdot \sqrt{0,181/2}}{772} \right]^{\frac{4}{3}} = 11,8 \text{ M}$$

3.5 Определяем критический кавитационный запас.

$$\Delta h_{\partial on} = 1,2 \cdot h\kappa p = 14,2$$
 M

Результаты расчетов приведены в таблице 2.

Таблица 2 - Результаты расчетов

Наименование параметра	Значение		
Частота вращения ротора синхронная n_{\sin} , об/мин	3000	1500	1000
Частота вращения ротора n, об/мин	2910	1455	970
Коэффициент быстроходности n_s	107	54	36
Кавитационный коэффициент быстроходности Скр	772	686	657
Располагаемый кавитационный запас Δ hpac, м	15,7	15,7	15,7
Критический кавитационный запас $\Delta h \kappa p$, м	11,8	5,5	3,4
Допускаемый кавитационный запас $\Delta h \partial o n = 1,2 \Delta h_{\kappa p}$, м	14,2	6,6	4,1

Кавитация отсутствует при условии Δ hpac > Δ hдоп. Это условие выполняется при частоте вращения ротора 3000, 1500, 1000 об/мин. С целью упрощения изготовление рабочего колеса для дальнейших расчетов принимаем частоту вращения n_s = **3000 об/мин.**

4. Определение размеров рабочего колеса с помощью диаграмм

Для выбранного варианта определяются размеры рабочего колеса насоса с помощью диаграмм на рис. 3.3 [1, стр.37]. По диаграмме выбираем коэффициенты в зависимости от коэффициента быстроходности. Согласно данным диаграммы все определяемые параметры являются функцией быстроходности насоса и могут быть рассчитаны по формуле:

$$X = K_X \cdot \frac{\sqrt{H}}{n}$$

где: Х – определяемый параметр;

 K_{X} – соответствующий параметру коэффициент на диаграмме;

Н – напор насоса;

n – частота вращения ротора насоса.

Тогда

$$D_0 = K_{D_0} \cdot \frac{\sqrt{H}}{n} = 28 \cdot \frac{\sqrt{92}}{3000} = 184,6 \text{ mm};$$
 $b_1 = K_{b_1} \cdot \frac{\sqrt{H}}{n} = 6,1 \cdot \frac{\sqrt{92}}{3000} = 40,2 \text{ mm};$
 $D_2 = K_{D_2} \cdot \frac{\sqrt{H}}{n} = 84,7 \cdot \frac{\sqrt{92}}{3000} = 558,1 \text{ mm};$

$$b_2 = K_{b_1} \cdot \frac{\sqrt{H}}{n} = 2.4 \cdot \frac{\sqrt{92}}{3000} = 15.8 \text{ MM};$$

Полученные результаты приведены в таблице 3

Таблица 3 - Результаты расчетов по диаграммам

Значение	$KD_0 = 44,7$	$Kb_1 = 13,8$	$KD_2 = 87,6$	$Kb_2 = 6,1$
коэффициента				
Размер колеса, мм	$D_0 = 147,4$	$b_1 = 45,5$	$D_2 = 288,8$	$b_2 = 20,1$

5. Расчет мощности приточной части насоса

Мощность проточной части насоса определяется по формуле:

$$N = \frac{\rho \cdot Q \cdot H}{102 \cdot \eta} = \frac{844 \cdot 0,181/2 \cdot 92}{102 \cdot 0,85} = 161,7 \,\kappa Bm$$

где $\eta \approx 0.85$ – КПД одноступенчатого насоса при n_s =107 и подаче Q = 181 л/с, значение определено по графику на рис. 3.2 [1, стр.36].

Снимок экрана из программы Mathcad – расчет габаритов колеса

Исходные данные:

Подача, м3/ч Q ≡ 650 Напор, м $H \equiv 92$ Расп. кав. запас, м ΔH_ras ≡ 15.681

ρ ≡ 844

n_sin ≡ 3000

Принимаем:

Плотность, кг/м3

Количество ступеней Zst ≡ 1 Количество потоков Zpot ≡ 2 Скольжение, % S ≡ 3 Синхронная частота, об/мин

Коэфф. Скр (= 0, при расчете f(ns)) Скг ≡ 0

Результаты расчета

Частота вращения, об/мин n - 2910 Коэффициент быстроходности ns = 107 одной ступени и одного потока КПД проточной части $\eta = 0.807$ Мощность проточной части, кВт N - 170.4 Кавитационный коэффициет Скр Скг = 772 Критический кав. запас, м $\Delta H_k r = 11.81$ Допускаемый кав. запас, м $\Delta H_{dop} = 14.2$ ΔH_ras Отношение -1.3 $\Delta H_k r$

6. Профилирование лопатки рабочего колеса

ПРОФИЛИРОВАНИЕ ЛОПАСТИ РАБОЧЕГО КОЛЕСА

 $R0 := 0.5 \cdot 0.1649$

b1 :=
$$0.0383$$
 β 1 := 23

$$\delta 1 := 0.00481$$

dvt = 55.4

$$Q := \frac{650}{3600}$$

b1 = 45.5

$$\eta_{ob} := 0.971$$
 $n := 2910$

i := 0.. N

b2 = 20.1

$$R_vt := 0.5 \cdot 0.0764$$

R1 kor lop := 1.0

$$\beta 2 := 23$$

$$\delta 2 := 0.00481$$

$$Z1 := 8$$

$$k_Z := 1$$
 $Z2 := k_Z \cdot Z1$
($k_Z = 1$ - коротких лопаток нет)

N := 100

$\theta_1_i, \theta_1_rab_i, \theta_1_tyl_i, \theta_2_{ii}, \theta_2_rab_{ii}, \theta_2_tyl_{ii}, \theta_3_i, \theta_3_rab_i, \theta_3_tyl_i, \varphi_j, \varphi_rab_j, \varphi_tyl_j$

$$\begin{split} R_sr &\coloneqq 1000 \cdot R_sr \quad R_rab \coloneqq 1000 \cdot R_rab \qquad R_tyl \coloneqq 1000 \cdot R_tyl \\ & \hat{\texttt{E}}\hat{\texttt{1}}\hat{\texttt{0}} \\ & \hat{\texttt{0}}\hat{\texttt{0}} \\ & \hat{\texttt{0}} \\ & \hat{\texttt{0}}$$

Êîîðäèíàòû ïîêðûâíîãî äèñêà

$\phi_{rab_j} =$	$R_{rab_j} =$	$\phi_{tyl_j} =$	$R_{tyl_j} =$
0	80.964	0	75.61
10	87.09	10	81.662
20	93.675	20	88.045
30	100.742	30	94.935
40	108.311	40	102.385
50	116.401	50	110.459
60	125.052	60	119.227
70	134.322	70	128.738
80	144.249	80	139.026
78.17	142.4	83.12	142.4

$R_{sr_j} =$	(1000b_r_) _j
78.35	38.3
84.375	36.085
90.863	33.795
97.85	31.542
105.375	29.373
113.478	27.288
122.204	25.267
131.602	23.272
141.722	21.235
142.4	21.1