Teoria delle interazioni fondamentali

Matteo Abis

23 novembre 2011

1 Teorie di gauge

Definizione (Teoria di gauge). una teoria quantistica di campi invariante sotto trasformazioni locali di un gruppo di Lie, detto gruppo di gauge. Le trasformazioni sono locali se i parametri dipendono dal punto dello spazio-tempo.

1.1 Prototipo: l'elettrodinamica quantistica

campi: un campo spinoriale $\psi(x)$, un campo vettoriale $A^{\mu}(x)$;

trasformazioni di gauge: sotto l'azione degli elementi del gruppo di gauge U(1) i campi trasformano come

$$\psi'(x) = e^{-ie\alpha(x)}\psi(x)$$

$$A^{\mu'}(x) = A^{\mu}(x) + \partial_{\mu}\alpha(x);$$

rinormalizzabilità: compaiono nella lagrangiana soltanto termini con dimensione $d \leq 4$.

La lagrangiana più generale compatibile con questi requisiti è dunque:

$$\mathscr{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\gamma^{\mu} (\partial_{\mu} + ieA_{\mu})\psi - m\bar{\psi}\psi$$

1.2 Teorie di gauge non abeliane

Discutiamo nel dettaglio la costruzione di una generica teoria di gauge, seguendo gli stessi passi che ci hanno portato alla formulazione dell'elettrodinamica quantistica. È necessario innanzitutto identificare i componenti fondamentali della teoria.

gruppo di gauge G: deve essere un

- gruppo di Lie. Sia n la sua dimensione;
- compatto, perché le rappresentazioni siano unitarie;
- semplice, ovvero senza sottogruppi invarianti non banali. Questa richiesta non è fondamentale e sarà eliminata in seguito.

campi di spin 1/2 e spin 0: genericamente indicati con il multipletto φ .

proprietà di trasformazione dei campi: il multipletto dei campi deve trasformare come una rappresentazione R del gruppo G. Detti t_R^a $(a=1,\ldots,n)$ i generatori del gruppo in tale rappresentazione, e α_a i parametri della trasformazione

$$\varphi'(x) = \Omega \varphi = e^{-i\alpha_a t_R^a} \varphi(x).$$

È talvolta utile considerare trasformazioni infinitesime

$$\delta\varphi = -i\alpha_a t_B^a \varphi.$$

Introduciamo infine le costanti di struttura dell'algebra di Lie f_c^{ab}

$$[t^a, t^b] = i f_c^{ab} t^c$$

Una volta specificati gli ingredienti, la teoria segue immediatamente dall'applicazione di una procedura quasi meccanica:

- 1. determinazione della lagrangiana $\mathcal{L}(\varphi, \partial_{\mu}\varphi)$ più generale invariante per il gruppo G sotto trasformazioni globali, ovvero indipendenti dal punto dello spazio-tempo;
- 2. promozione delle trasformazioni globali in trasformazioni locali. A questo punto i termini con le derivate non trasformano più come i campi e la lagrangiana non è più invariante:

$$(\partial_{\mu}\varphi)' = (\partial_{\mu}\Omega)\varphi + \Omega(\partial_{\mu}\varphi) \neq \Omega(\partial_{\mu}\varphi). \tag{1}$$

Si introduce dunque una derivata covariante, che trasforma come i campi, D_{μ}

$$D_{\mu}\varphi = (\partial_{\mu} + iA_{a\mu}t^{a})\varphi$$

dove abbiamo introdotto un campo vettoriale reale di gauge $A_{\mu}=iA_{a\mu}t^{a}$, che è un elemento dell'algebra di Lie del gruppo G. Vogliamo infatti che questo termine cancelli il primo addendo della (1), che è un elemento dell'algebra di Lie. Imponendo quindi la legge di trasformazione già valida per i campi

$$(D_{\mu}\varphi)' = \Omega D_{\mu}\varphi$$
$$(\partial_{\mu} + A'_{\mu})\Omega\varphi = (\partial_{\mu}\Omega)\varphi + \Omega(\partial_{\mu}\varphi) + A'_{\mu}\Omega\varphi = \Omega(\partial_{\mu}\varphi) + \Omega A_{\mu}\varphi$$
$$(A'_{\mu}\Omega - \Omega A_{\mu} + \partial_{\mu}\Omega)\varphi = 0$$

otteniamo la legge di trasformazione per i campi di gauge, moltiplicando a destra per Ω^{-1} :

$$A'_{\mu} = \Omega A_{\mu} \Omega^{-1} - (\partial_{\mu} \Omega) \Omega^{-1}. \tag{2}$$

La (2) si può capire meglio in termini dei campi $A_{a\mu}$ scrivendola per trasformazioni infinitesime:

$$iA'_{a\mu}t^{a} = (1 - i\alpha_{b}t^{b})A_{c\mu}t^{c}(1 + i\alpha_{b}t^{b}) - [\partial_{\mu}(1 - i\alpha_{a}t^{a})(1 + \cdots)]$$

$$= iA_{a\mu}t^{a} + \alpha_{a}A_{c\mu}[t^{b}, t^{c}] + i\partial_{\mu}\alpha_{a}t^{a}$$

$$= i(A_{a\mu} + \partial_{\mu}\alpha_{a})t^{a} + if_{a}^{bc}t^{a}$$

$$A'_{a\mu} = A_{a\mu} + \partial_{\mu}\alpha_{a} + f_{a}^{bc}\alpha_{b}A_{c\mu}.$$
(3)

Vediamo dunque che, rispetto al caso abeliano dell'elettrodinamica quantistica, si introduce un nuovo termine nella trasformazione dei campi di gauge di teorie non abeliane. Tecnicamente, i campi di gauge trasformano nella rappresentazione aggiunta di G, i cui generatori sono i $(t_A^b)_a^c=if_a^{bc}$.

$$\delta \varphi = -i(t_R^a) \alpha_a \varphi$$
 campi di materia
$$\delta A_{a\mu} = -i(t_A^b)_a^c \alpha_b A_{c\mu}$$
 campi di gauge.

Poiché i campi di gauge trasformano in modo non banale sotto l'azione del gruppo, essi trasportano una carica. La lagrangiana così ottenuta $\mathcal{L}(\varphi, D_{\mu}\varphi)$ è ora invariante per trasformazioni locali.

3. si completa la lagrangiana con un termine cinetico per i campi di gauge, analogamente al termine $F_{\mu\nu}F^{\mu\nu}$ in QED.

Nel caso non abeliano:

$$\begin{split} ([D_{\mu}, D_{\nu}]\varphi)' &= \Omega[D_{\mu}, D_{\nu}]\varphi = \Omega[D_{\mu}, D_{\nu}]\Omega^{-1}\varphi' \\ [D_{\mu}, D_{\nu}]\varphi &= (\partial_{\mu} + A_{\mu})(\partial_{\nu} + A_{\nu})\varphi - (\mu \leftrightarrow \nu) \\ &= \underbrace{\partial_{\mu}\partial_{\nu}\varphi + A_{\nu}(\partial_{\mu}\varphi) + A_{\mu}(\partial_{\nu}\varphi)}_{\text{simmetrico, si cancella}} + \underbrace{\{(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) + [A_{\mu}, A_{\nu}]\}}_{:=F_{\mu\nu}} \varphi \end{split}$$

$$F'_{\mu\nu} = \Omega F_{\mu\nu} \Omega^{-1}$$

O, in termini dei campi A_{au}

$$F_{a\mu\nu} = \partial_{\mu}A_{a\nu} - \partial_{\nu}A_{a\mu} - f_{a}^{bc}A_{b\mu}A_{c\nu}. \tag{4}$$

Possiamo ora inserire un termine cinetico invariante di gauge e definito positivo. Questo perché vogliamo che l'hamiltoniana abbia un minimo. Tale termine sarà proporzionale, con una costante k alla traccia

$$k\operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) = -kF_{a\mu\nu}F_b^{\mu\nu}\operatorname{tr}(t^at^b)$$

Per un generico gruppo compatto $K^{ab}=\operatorname{tr}(t_R^at_R^b)$ è definita positiva. Infatti $K^{ab}u_au_b=\operatorname{tr}((t_R^au_a)^2)\geq 0$ perché i generatori sono hermitiani.

Scegliamo allora la base in cui $K^{ab}=C\delta^{ab}$ è diagonale e multiplo dell'identità. Infine, per analogia con la QED, fissiamo la costante k=1/4C.

$$-kF_{a\mu\nu}F_b^{\mu\nu}\operatorname{tr}(t^at^b) = -kCF_{a\mu\nu}F^{a\mu\nu}$$

$$= -\frac{1}{4}\{(\partial_{\mu}A_{a\nu} - \partial_{\nu}A_{a\mu})(\partial_{\mu}A^{a\nu} - \partial_{\nu}A^{a\mu}) + \underbrace{\cdots}_{\text{parte non abeliana}}\}$$

Siamo pronti per scrivere la lagrangiana più generale per una teoria di gauge, ora che abbiamo una parte invariante locale sotto il gruppo G e un termine cinetico per i nuovi campi vettoriali. Possiamo ancora fissare il peso relativo g^2 di questi due termini.

$$\mathscr{L} = \mathscr{L}(\varphi, D_{\mu}\varphi) - \frac{1}{4a^2} F_{a\mu\nu} F^{a\mu\nu}$$

Questo peso relativo ha il significato di costante di accoppiamento tra i campi φ a spin 0 e $^{1}/_{2}$ e i campi vettoriali. Infatti ridefinendo i campi A_{μ} :

$$A_{a\mu} \longrightarrow gA_{a\mu}$$

$$\mathcal{L} \longrightarrow \mathcal{L}(\varphi, D'_{\mu}\varphi) - \frac{1}{4}F'_{a\mu\nu}F'^{\mu\nu}$$

$$dove$$

$$D'_{\mu}\varphi = (\partial_{\mu} + igA_{a\mu}t^{a})\varphi$$

$$F'_{a\mu\nu} = \partial_{\mu}A_{a\nu} - \partial_{\nu}A_{a\mu} - gf^{bc}_{a}A_{b\mu}A_{c\nu}$$

Quest'ultimo termine mette anche in evidenza il fatto che, in una teoria non abeliana, compaiono dei termini di interazione tra bosoni di gauge.

Figura 1: Interazioni a tre e quattro bosoni, che derivano dai nuovi termini nella lagrangiana per teorie non abeliane.

1.3 Esempio: la cromodinamica quantistica

gruppo: G = SU(3)

campi e trasformazioni: spinori di Dirac q che trasformano con la rappresentazione fondamentale 3 di SU(3). Quindi q è un oggetto di dimensione 3 e possiamo scrivere esplicitamente l'indice di colore c = 1, 2, 3.

$$q_c' = e^{-i\alpha_a \lambda^a} q_c.$$

I generatori λ_a sono le otto matrici di Gell-Mann.

Con la procedura ora descritta si ricava subito la lagrangiana della QCD:

1. scriviamo la lagrangiana più generale con invarianza globale

$$\mathscr{L} = i\bar{q_{\alpha}}\gamma^{\mu}\partial_{\mu}q_{\alpha} - m\bar{q_{\alpha}}q_{\alpha};$$

2. rendiamo l'invarianza locale introducendo la derivata covariante e i campi di gauge $G_{a\mu}$:

$$D_{\mu}q = (\partial_{\mu} + ig_s G_{a\mu}\lambda^a)q$$

3. completando con i termini cinetici:

$$\mathcal{L} = -\frac{1}{4}G_{a\mu\nu}G^{a\mu\nu} + i\bar{q}\gamma^{\mu}(\partial_{\mu} + ig_sG_{a\mu}\lambda^a)q - m\bar{q}q$$

4. resta solo da estendere al caso di sei sapori di quark $f=u,\,d,\ldots,t.$

$$\mathcal{L}_{QCD} = -\frac{1}{4}G_{a\mu\nu}G^{a\mu\nu} + \sum_{f} [i\bar{q}_{f}\gamma^{\mu}(\partial_{\mu} + ig_{s}G_{a\mu}\lambda^{a})q_{f} - m\bar{q}_{f}q_{f}]$$

2 Rottura spontanea di simmetria

2.1 Il teorema di Goldstone

Con la rottura spontanea di una simmetria globale in una teoria quantistica di campi, compaiono particelle di spin 0 e massa nulla, detti bosoni di Goldstone.

Esempio: campo scalare complesso

La lagrangiana per il campo scalare complesso, con una simmetria globale U(1) è:

$$\mathcal{L} = (\partial_{\mu}\varphi)^{\dagger}(\partial^{\mu}\varphi) - V(|\varphi|^{2})$$
$$= (\partial_{\mu}\varphi)^{\dagger}(\partial^{\mu}\varphi) - m^{2}\varphi^{\dagger}\varphi - \lambda(\varphi^{\dagger}\varphi)^{2}$$

Dove $\lambda > 0$ perché l'energia abbia un minimo. Ora, con $m^2 > 0$ otteniamo la solita teoria del campo scalare complesso, mentre il caso $m^2 < 0$ è più interessante.

Consideriamo infatti il caso $m^2 < 0$. Scriviamo il campo con le sue componenti reali. In termini di queste componenti, la simmetria U(1) diventa una simmetria per rotazioni SO(2).

$$\varphi = \frac{1}{\sqrt{2}}(\varphi_1 + i\varphi_2)$$
$$\begin{pmatrix} \varphi_1' \\ \varphi_2' \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$$

Cerchiamo i minimi dell'hamiltoniana $\mathcal{H} = |\dot{\varphi}|^2 + |\nabla \varphi|^2 + V(|\varphi|^2)$. La parte con le derivate si annulla per φ costante, cerchiamo quindi i minimi del potenziale.

$$\begin{split} V &= \frac{1}{2}(\varphi_1^2 + \varphi_2^2) + \frac{\lambda}{4}(\varphi_1^2 + \varphi_2^2)^2 \\ \frac{\partial V}{\partial \varphi_i} &= m^2 \varphi_i^2 + \lambda(\varphi_1^2 + \varphi_2^2) \varphi_i \\ &= \varphi_i(m^2 + \lambda(\varphi_1^2 + \varphi_2^2)). \end{split}$$

Quindi le derivate si annullano per

1.
$$\varphi_1 = \varphi_2 = 0$$

2.
$$\varphi_1^2 + \varphi_2^2 = -\frac{m^2}{\lambda} = :v$$

Calcolando la matrice delle derivate seconde si verifica facilmente che solo la seconda possibilità corrisponde a un minimo, e che gli autovalori in questo caso sono 0 e 1. Inoltre, parametrizziamo i campi attorno al minimo

$$v_1 = v\cos\theta$$
$$v_2 = v\sin\theta.$$

Scegliendo un minimo abbiamo una rottura spontanea di simmetria. Espandiamo la lagrangiana intorno a questo minimo:

$$V = V(2.) + \underbrace{\frac{\partial V}{\partial \varphi_1}|_{2.}(\varphi_1 - v_1) + \frac{\partial V}{\partial \varphi_2}|_{2.}(\varphi_2 - v_2)}_{=0 \text{ nel minimo}} + \underbrace{\frac{1}{2}\frac{\partial^2 V}{\partial \varphi_i \partial \varphi_j}|_{2.}\underbrace{(\varphi_i - v_i)}_{=:\varphi_i'}\underbrace{(\varphi_j - v_j)}_{=:\varphi_j'}$$

Con le ridefinizioni dei campi φ_i' possiamo scrivere la lagrangiana come

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} \varphi_{1}' \partial^{\mu} \varphi_{1}' + \frac{1}{2} \partial_{\mu} \varphi_{2}' \partial^{\mu} \varphi_{2}' + \frac{1}{2} 2 \lambda v^{2} \left(\varphi_{1}' \quad \varphi_{2}' \right) \begin{pmatrix} \cos^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^{2} \theta \end{pmatrix} \begin{pmatrix} \varphi_{1}' \\ \varphi_{2}' \end{pmatrix} \\ &= \frac{1}{2} \partial_{\mu} \varphi_{1}' \partial^{\mu} \varphi_{1}' + \frac{1}{2} \partial_{\mu} \varphi_{2}' \partial^{\mu} \varphi_{2}' + \lambda v^{2} (\cos \theta \varphi_{1}' + \sin \theta \varphi_{2}')^{2} \end{split}$$

Con un cambio di variabili finale possiamo ridefinire i campi e la lagrangiana con

$$\begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \varphi_1' \\ \varphi_2' \end{pmatrix}$$
$$\mathcal{L} = \frac{1}{2} (\partial_\mu \varphi_1 \partial^\mu \varphi_1 + \partial_\mu \varphi_2 \partial^\mu \varphi_2) - \lambda v^2 \varphi_1^2$$

In questi termini, la lagrangiana descrive due campi scalari: φ_1 con massa $m_1 = 2\lambda v^2$ e φ_2 con massa nulla, detto bosone di Goldstone. Possiamo ora enunciare il teorema in generale.

Teorema (di Goldstone).

- Sia $\mathcal{L}(\varphi,\chi)$ una lagrangiana con campi reali di spin 0φ e campi di spin $1/2 \chi$;
- \mathscr{L} invariante globale sotto l'azione di un gruppo G.
- ullet $\varphi_i = v_i$ configurazione costante che minimizza l'energia;
- infine diciamo H < G la simmetria residua, ovvero il sottogruppo di G che lascia invariata la configurazione di equilibrio.

Allora la matrice delle derivate seconde di V ha esattamente $\dim(G) - \dim(H)$ autovalori nulli, che corrispondono a particelle di massa nulla e spin 0 (bosoni di Goldstone).

Dimostrazione. La lagrangiana è:

$$\mathscr{L} = \frac{1}{2} \partial_{\mu} \varphi_i \partial^{\mu} \varphi_i - V(\varphi) + \underbrace{\cdots}_{\text{dipendenza da } \chi}$$

e, nella configurazione di minimo vale:

$$0 = \delta V = \frac{\partial V}{\partial \varphi_i} \delta \varphi_i = \frac{\partial V}{\partial \varphi_i} (-i\alpha_a t_{ij}^a \varphi_j) \quad \forall \alpha_a$$

e deve essere anche nulla l'espressione:

$$\frac{\partial V}{\partial \varphi_i} t^a_{ij} \varphi_j = 0.$$

Derivando rispetto a φ_k

$$\frac{\partial^{2} V}{\partial \varphi_{i} \partial \varphi_{k}} t_{ij}^{a} \varphi_{j} + \underbrace{\frac{\partial V}{\partial \varphi_{i}}}_{=0 \text{ nel minimo}} t_{ik}^{a} = 0$$

Quindi rimane:

$$\frac{\partial^2 V}{\partial \varphi_i \partial \varphi_k} t^a_{ij} v_j = 0$$

da cui si legge che $t^a_{ij}v_j$ è un autovettore relativo all'autovalore 0. Contiamo correttamente quanti di questi autovettori abbiamo. Ordiniamo i generatori mettendo prima i generatori del gruppo H: $t^a_{ij} = \{t^1, \dots, t^{\dim(H)}, \dots t^{\dim(G)}\}.$

<++>

All

2.2 Il meccanismo di Higgs

3 La lagrangiana della teoria elettrodebole