Lec 10: Minimum Spanning Arborescence

Minimum Spanning Arborescence

[Chu-Liu 1965] [Edmonds 1967]

- G = (V, E; w): an edge-weighted directed graph
- r: a root vertex in V
- find a spanning r-arborescence T with minimum weight w(T).

Optimality-Preserving local weight-resetting

Local subtraction at $v \neq r$: subtract the weights of all edges entering v by the same amount.

 \triangleright Optimality-preserving: exactly one edge entering v in any SA

Basic weight-resetting at $v \neq r$: find the lightest edge entering v, and subtract its weight from all edges entering v.

- \triangleright at least one 0-edge entering v
- \triangleright all edges entering v have non-negative weights.

Linear-time preprocessing

In O(m) time,

- f remove all edges entering r
- perform basic weight-resetting at every $v \neq r$

Now, all edges have non-negative weights, and each vertex $v \neq r$ has a 0-edge entering it.

- \rightarrow if there is a 0-SA composed of 0-edges, then it is an MSA;
- otherwise, there must be a 0-circuit. //backtracking

In O(m) time, we can find either a 0-SA T, or a 0-circuit C.

Contract & Conquer

Theorem. Let T' be an MSA of G/C. Then the SA of G obtained by adding to T' all the edges of C except one, is an MSA of G.

Contract & Conquer

Theorem. Let T' be an MSA of G/C. Then the SA of G obtained by adding to T' all the edges of C except one, is an MSA of G.

Single-entrance to O-Circuit

Lemma. There is a MSA that contains only one edge that enters \mathcal{C} , at some vertex v, and all the edges of \mathcal{C} , except the one that enters v.

Parent replacement

T: a SA rooted at r, and $(u, v) \in T$.

Let $(u', v) \notin T$, where v is not an ancestor of u'.

Then, $T' = T \setminus \{(u, v)\} \cup \{(u', v)\},$ is also a SA. Suppose *T* is an MSA enters *C* with fewest times but still more than once.

A path of T from r first enters C at v_0 .

Let $v_0, v_1, \dots, v_{k-1}, v_k = v_0$ be the vertices of C,

 (v_{i-1}, v_i) be the *first* edge on C not in T, where i < k.

Let (u, v_i) be the edge of T entering v_i .

 v_i is *not* an ancestor of v_{i-1} in T.

Hence,
$$T' = T \setminus \{(u, v_i)\} \cup \{(v_{i-1}, v_i)\}$$
 is a SA,

and $w(T') \leq w(T)$.

Contract & Conquer Algorithm

[Chin and Liu 1965] [Edmonds 1967] [Bock 1971]

```
initialize G' by the basic weight resetting;
```

```
while G' has no 0-SA
find a 0-circuit C and contract it;
perform the basic weight resetting at C;
```

expand the 0-SA into an MSA in G.

Analysis: number of iterations is at most n. Simple implementation in O(mn) time.

All edges end up with weight 0.

But, not every SA is an MSA.

A SA is an MSA iff it enters both circuits only once.

Minimum total weight

Thm. Suppose $C_1, C_2, ..., C_k$ is the sequence of circuits contracted by the algorithm, and $w_1, w_2, ..., w_k$ are the weights of the *lightest* edges entering them. Then, the weight of the MSA is $\sum_{i=1}^k w_i$.

No need for expansion/lift if only the MSA weight is needed!