

# Tartalomjegyzék

| 1. | Bev                                                                              | rezetés                                                                              | 1 |  |  |  |
|----|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|--|--|--|
| 1. | fela                                                                             | adat: Historikus Value at Risk (VaR) modell két ETF-re                               | 1 |  |  |  |
|    | 1.1.                                                                             | A VaR modellről                                                                      | 1 |  |  |  |
|    | 1.2.                                                                             | Kapott eredmények                                                                    | 1 |  |  |  |
| 2. | feladat: Jövőbeli árfolyamokra becsült VaR modell, különböző korrelációs értékek |                                                                                      |   |  |  |  |
|    | mel                                                                              | lett                                                                                 | 3 |  |  |  |
|    | 2.1.                                                                             | Eredmények                                                                           | 3 |  |  |  |
| 3. | fela                                                                             | dat: Volatilitás becslése exponentially weighted moving average módszerrel           | 4 |  |  |  |
|    | 3.1.                                                                             | Volatilitás becslése                                                                 | 4 |  |  |  |
|    | 3.2.                                                                             | Kapott eredmények                                                                    | 5 |  |  |  |
| 4. | fela                                                                             | dat: Kockázat becslése machine learning módszerrel                                   | 6 |  |  |  |
|    | 4.1.                                                                             | Kapott eredmények                                                                    | 6 |  |  |  |
| 5. | Kor                                                                              | nklúzió                                                                              | 7 |  |  |  |
| 6. | Git                                                                              | hub replikáló kód                                                                    | 7 |  |  |  |
| Á  | brá                                                                              | k jegyzéke                                                                           |   |  |  |  |
|    | 1.                                                                               | Különböző súlyok melletti portfólió-hozamok                                          | 2 |  |  |  |
|    | 2.                                                                               | Különböző súlyok melletti VaR értékek                                                | 2 |  |  |  |
|    | 3.                                                                               | Különböző korreláció melletti VaR értékek                                            | 3 |  |  |  |
|    | 4.                                                                               | Különböző korreláció mellett szimulált jövőbeli hozamok                              | 4 |  |  |  |
|    | 5.                                                                               | Az exponential weighted moving average decay factor súlyai                           | 5 |  |  |  |
|    | 6.                                                                               | Előrejelzett és ex-post volatilitás $\lambda=0,94$ és $0,97$ értékek mellett         | 6 |  |  |  |
|    | 7.                                                                               | A hozam variancia előrejelzésének átlagos négyzetes hibái a késleltetés függvényében | 6 |  |  |  |

### 1. Bevezetés

A beadandó feladathoz két ETF eszközt választottunk, amelyeket az 1. táblázat mutat be. A Vanguard S&P 500 ETF az S&P500 indexet követi, míg az IEI a 3-tól 7 éves lejáratra kibocsátott amerikai államkötvények hozamát követi le. A két eszközből készített portfóliót 2011 január és 2021 decemeber között vizsgáltuk.

| Eszközosztály | ETF neve                       | Ticker | Átlagos hozam (éves) | Szórás (éves) |
|---------------|--------------------------------|--------|----------------------|---------------|
| fixed income  | iShares 3-7 Year Treasury Bond | IEI    | 2,42%                | 3,02%         |
| equity        | Vanguard S&P 500               | VOO    | $15,\!45\%$          | 17,03%        |

### 1. feladat: Historikus Value at Risk (VaR) modell két ETF-re

Az első feladatban két kiválasztott ETF historikus adataiból kellett napi hozamokat kiszámítani, majd ezeket különböző súlyokkal egy portfólióba rendezni a diverzifikálás szemléltetésének érdekében. Ezután a historikus adatok alapján historikus VaR értékeket kellett számítani a különböző súlyokra.

#### 1.1. A VaR modellről

A historikus VaR modell célja, hogy meghatározzuk, egy adott konfidencia-szint mellett várhatóan legfeljebb mennyit csökkenhet a befektetésünk értéke a múltbeli adatok alapján. A modellben így az általunk választott portfólió múltbeli hozamai alapján becsüljük meg a várható legkisebb napi hozamot, egy megadott  $\alpha$  által meghatározott valószínűség szerint:

$$Var_{\alpha} = \inf(l \in \mathbb{R}) : \mathbb{P}(L > l) \le (1 - \alpha) \iff \inf(l \in \mathbb{R} : F_l(l) \ge \alpha$$
 (1)

A VaR érték meghatározásához a megadott eszközök hozamát alapul véve, a megfelelő súlyokkal kiszámítjuk a portfólió hozamát. Ezután a hozam szerinti növekvő sorrendbe rendezve választjuk ki a VaR értéket a megadott  $\alpha$  alapján (a feladatban adott  $\alpha = 5\%$  esetén a felső 95%-nyi napi hozamn értékek minimumát fogjuk kapni).

#### 1.2. Kapott eredmények

A modell alapjául a fent ismertetett Vanguard S&P 500 (VOO) és az iShares 3-7 Year Treasury Bond (IEI) ETF-eket választottuk. A portfólió értékeléséhez a loghozamokat beolvasó és az effektív hozamokat adott súllyal súlozó függvényt adtuk meg. Az 1 ábrán látható a portfólió loghozama különböző súlyok mellett:



1. ábra. Különböző súlyok melletti portfólió-hozamok.

Az első komponens az IEI, míg a második a VOO ETF súlya.

A fenti ábrán is látható, hogy a VOO-nak adott nagyobb súly mellett erősebb a portfólió volatilitása, hiszen ez az S&P 500 indexet követi, míg az IEI államkötvényeket. A historikus VaR értékek meghatározásához készített  $calc\_historical\_var$  függvény bemeneti paramétere az  $\alpha$  valószínűség és a már kiszámított portfólió napi hozamai voltak. Különböző súlyokra futtatva a függvényt látható, hogy a VOO nagyobb súlya mellett nagyobb lesz a VaR, hiszen a nagyobb volatilitás mellett a VOO vesztesége is jobban megjelenik a portfólióban.



2. ábra. Különböző súlyok melletti VaR értékek.

A görbe bal végpontja egy tisztán VOO, míg a jobb egy tisztán IEI ETF-et tartalmazó portfólió VaR értéke,  $\alpha=0,95$  mellett.

A lehetséges súlyozásokat figyelembe véve azonban látható (2 ábra), hogy érdemes diverzifikálni:

kisebb VaR értéket érhetünk el egy 90% IEI és 10% VOO tartalmú portfólióval, mintha csak az egyik ETF-be fektetnénk.

# 2. feladat: Jövőbeli árfolyamokra becsült VaR modell, különböző korrelációs értékek mellett

A feladatban az előzőhöz hasonlóan a VOO és az IEI ETF-eket használtuk fel. A portfóliónak egy fix, a két eszköz volatilitásával fordítottan arányos súlyt kellett meghatározni. Ehhez először az IEI és a VOO loghozamainak szórását határoztuk meg, majd ezeknek a segítségével a  $w = \sigma(VOO)/(\sigma(IEI) + \sigma(IEI)) \text{ képlettel adtuk meg a VOO, és az } 1-w \text{ segítségével az IEI súlyát.}$  A jövőbeli hozamok szimulálásához emellett felhasználtunk egy, a kovarianciamátrixot előálllító calculate\_covariance\_matrix  $^1$ , illetve az eszközök hozamát szimuláló calc\_asset\_returns  $^2$  függvényekt.

### 2.1. Eredmények

A különböző korrelációs értékek mellett ábrázolt VaR értékek alapján egy egyre volatilisebb, azonban csökkenő görbe rajzolódik ki:



3. ábra. Különböző korreláció melletti VaR értékek.

A görbe bal végpontja egy -1-es, míg a jobb egy 1-es  $\rho$  érték melletti VaR érték a szimulált jövőbeli hozamokra.

A két eszközből álló portfólió különböző korreláció melletti VaR értékének szimulálása mellett ábrázoltuk a historikus adatok alapján 100 napra szimulált jövőbeli hozamokat is, hat különböző korrelációt kiemelve (a 4 ábra illusztrálja a kapott eredményeket). A szimulált portfólióhozamok alapján próbáltunk oksági kapcsolatot keresni a korreláció és a kapott hozamok között, azonban a

<sup>&</sup>lt;sup>1</sup>A függvény paraméterei a szórások és a historikus hozamok közötti korrelációs együttható voltak.

<sup>&</sup>lt;sup>2</sup>A függvény bemeneti bemeneti adatai a kovariancia mátrix, a historikus középértékek és a szimulált hozampontok számát megadó paraméter voltak.

korreláció mértéke és előjele sem változtatta jelentősen a szimulált hozamokat. <sup>3</sup>



4. ábra. Különböző korreláció mellett szimulált jövőbeli hozamok.

# 3. feladat: Volatilitás becslése exponentially weighted moving average módszerrel

A harmadik feladatban az exponentially weighted moving average módszerrel kellett egy eszköz volatilitását előrejelezni. Mivel az IEI volatilitása a vizsgált időszakban alacsony volt, így a Vanguard S&P500 ETF volatilitását próbáltuk előrejelezni a feladatban.

### 3.1. Volatilitás becslése

A volatilitás előrejelzése a pénzügyi piacokon egy kulcsfonotsságú kérdés. Az előrejelzéseket általában a hozamok előrejelzéséhez vagy a hozamok eloszlásának becsléséhez is alkalmazzák. A kockázatkezelés szempontjából tudni akarjuk mi a valószínűsége, hogy a portfólió értéke csökken. Opciós trader-ek szempontjából az opció futamidejére számolt volatilitás kulcsfontosságú a termék áraház. Egy árjegyzőként pedig a bid-ask spread változtatása miatt fontos előrejelezni a volatilitást.

 $<sup>^3\</sup>mathrm{Az}$ empirikus korreláció a vizsgált időszakban -0,3 volt a két ETF hozamai között.

A volatilitás legfontosabb (megfigyelt) stilizált tényei: volatilitás klasztereződés, átlaghoz visszahúzás és a leverage hatás.

A volatilitás modellezését két modellcsalád segítsével szokták elvégezni. Az egyik a feltételes volatilitás (conditional volatility) modellek, amely csoportba tartoznak az ARCH/GARCH modellek. A másik csoport a sztochasztikus volatilitás modellek. Minazonáltal, az egyszerűbb modellek segítségével is gyakran jó előrejelzést lehet elérni. Ebben a feladatban az exponentially weighted moving average segítségévl próbáljuk meg a volatilitást előrejelzni.

### 3.2. Kapott eredmények

A modellnek két paramétere van: az előrejelzéshez használt historikus ablak (m) és az exponenciális faktor súlya  $(\lambda)$ . Az ablak definiálja, a korábbi megfigyelések számát, amit az előrejelzéshez használunk:  $(r_{t-m+1}, r_{t-m}, \dots, r_t)$ . Mindegyik korábbi adat súlya:

$$\lambda^{m-\tau} \cdot \frac{1-\lambda}{1-\lambda^m},\tag{2}$$

ahol  $\tau=1,2,3,\ldots,m$ . Jól látható a képlet alapján, hogy a távolabbi megfigyelések (volatilitások) súlyai exponenciálisan csökkenek. A 5. ábrán is ugyanez figyelhető meg  $\lambda=0,94$  és 0,97. Súlyok esetén.



5. ábra. Az exponential weighted moving average decay factor súlyai.

A feladat során a Vanguard S&P500 ETF volatilitását jeleztük előre  $\lambda=0,94$  és 0,97 értékekkel m=100 ablakmérettel. A 6. ábra mutatja az előrejelzéseket és a valós, aznapi volatilitását az ETF-nek.

Első ránézésre a két előrejelzés nagyon hasonlónak tűnik. A  $\lambda=0.97$ -es decay factor-ral azonban pontosabban előrejelezhetőek a kiugró volatilitás értékek.



6. ábra. Előrejelzett és ex-post volatilitás  $\lambda=0,94$  és 0,97 értékek mellett.

## 4. feladat: Kockázat becslése machine learning módszerrel

A feladat során a Vanguard S&P500 eszköz loghozamainak varianciáját próbáltuk előrejelezni AR(p) modell segítségével, ahol  $p=1,2,3,\ldots 20$ . A megfelelő p, késletetett tagok számának kiválasztásához keresztvalidásciót alkalmaztunk és a legjobb modellt az átlagos négyzetes hiba (MSE) alapján értékeltük.

### 4.1. Kapott eredmények

A keresztvalidációhoz az idősorunkat öt egyenlő részre osztottuk a TimeSeriesSplit függvény segítségével, így az egymást követő megfigyelések mindenképpen egy csoportba kerülnek. A legjobb késleltetés meghatározásához az MSE értéket végtelenre állítottuk, majd 1-től 20-ig terjedő késleltetésekre illesztettük a lineáris regressziós modellt. A 7 illusztrálja, hogy a p=2 késletetett variancia értéket felhasználva kaptuk a legjobb becslést.



7. ábra. A hozam variancia előrejelzésének átlagos négyzetes hibái a késleltetés függvényében.

### 5. Konklúzió

A feladatok során a Vanguard S&P500 és az iShares 3-7 Year Treasury Bond ETF-ból létrehozott portfóliót vizsgáltuk. Az első feladat során láttuk, hogy a portfólió diverzifikálásával csökkenthető a Value at Risk érték, és a Vanguard S&P500 ETF-et felülsúlyozva növekszik a portfólió VaR értéke. A VaR értékre készített előrejelzéseink alapján a részvényeikből álló ETF növeli a VaR előrejelzések varianciáját.

A harmadik és negyedik feladatrészben a Vanguard S&P500 volailitását jeleztük előre, mivel a portfólióban az eszköz varianciája meghatározó. A exponentiall weighted moving average módszert  $\lambda=0,97$  és  $\lambda=0,94$  decay fator-ral alkalmazva hasonló eredményeket kaptunk. A negyedik feladatban egy AR(p) modell segítségével jeleztük előre a varianciát. A p késleltetések számának értékét az átalgos négyzetes hiba alapján kettőnek határoztuk meg. A kapott eredmény is jól személélteti, hogy egy EWMA modellben is a magasabb (0.9 feletti) decay factor jobb előrejelzést biztosíthat a Vanguard S&P500 esetén.

# 6. Github replikáló kód

A feladatok elkészítéséhez használt replikáló megtalálható az alábbi Github repository-n: https://github.com/JankovitsA/hitelek\_beadando