Solution

of the vertex by using $m=-\frac{b}{2a}=-\frac{5}{2}=-\frac{5}{4}$ Now that we have the m-coordinate, we can find the e-coordinate

Ouadratic function: is a function that can be written in the form: $e(m) = am^2 + bm + c$ where a, b, and c are real numbers and $a \neq 0$ we have $e(m) = -2m^2 - 5m + 16$. note: $-2m^2 - 5m + 16$ is in me-plane

of the vertex by finding $e(-\frac{5}{4}) = -2(-\frac{5}{4})^2 - 5(-\frac{5}{4}) + 16 = -\frac{25}{6} + \frac{25}{4} + 16 = \frac{153}{6}$ Maximum = $\frac{153}{6}$

Here, we know that a=-2, b=-5, c=16

Since a<0 ,we know that the e-coordinate of the vertex is a maximum.However,to find the e-coordinate of our vertex we first need to find the m-coordinate