Web Science: Clustering Algorithms

(Part 1 - Intro to Clustering and Preparing the Data)

CS 432/532

Old Dominion University

Permission has been granted to use these slides from Frank McCown, Michael L. Nelson, Alexander Nwala, Michael C. Weigle

Main reference:

Ch 3 from <u>Programming Collective</u> <u>Intelligence</u> by Toby Segaran

(abbreviated as PCI)

Ch 3 GitHub repo

From Similarity to Clusters...

- Ch 2 compute similarity between pairs of items
- Ch 3 discover and group (cluster) things that are similar
- We want to cluster our information because we want to:
 - find unknown groups or patterns
 - visualize our results

Supervised vs. Unsupervised Learning

- Clustering is an example of unsupervised learning
 - we don't know what the correct answer is before we start
- Supervised learning is based on first being provided a set of inputs and known outputs
 - supervised learning examples in later chapters

First Things First...

- Items to be clustered need numerical scores that "describe" the items
- Some examples:
 - customers can be described by the amount of purchases they make each month
 - movies can be described by the ratings given to them by critics
 - documents (and webpages) can be described by the number of times they use certain words

Finding Similar Webpages

- Given N webpages, how would we cluster them?
 - documents (and webpages) can be described by the number of times they use certain words
- Extract terms
 - break each string by whitespace
 - convert to lowercase
 - remove HTML tags (boilerplate removal)
- Find frequency of each term in each document
 - remove common terms (i.e., stop words, high TF) and very unique terms (i.e., high IDF)

Grabbing Blog Feeds

- Humans read blogs, newsfeeds, etc. in HTML, but machines read blogs in the XML-based syndication formats RSS or Atom
 - RSS (Wikipedia)
 - Atom (Web standard) (Wikipedia)

 These feeds contain a number of blog posts and include the blog post title and often the full text of each blog post

Creating a Blog-Term Matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

Table 3-1 from *PCI* - Subset of blog word frequencies

Code for Creating a Blog-Term Matrix

 Code on pp. 31-32 for grabbing feeds, getting terms from title and summary (RSS) or description (Atom)

- Sample feed URIs in chapter3/feedlist.txt
- Sample blog-term matrix in chapter3/blogdata.txt

Ch 3 GitHub repo

Beginning of generatefeedvector.py

```
# Returns title and dictionary of
# word counts for an RSS feed
def getwordcounts(url):
  # Parse the feed
  d=feedparser.parse(url)
 wc = \{ \}
  # Loop over all the entries
  # description==RSS; summary==Atom
  for e in d.entries:
    if 'summary' in e: summary=e.summary
    else: summary=e.description
    # Extract a list of words
    words=getwords(e.title+' '+summary)
    for word in words:
      wc.setdefault(word,0)
      wc[word]+=1
```

return d.feed.title,wc

PCI Code "Fakes" Stopwords, TF-IDF

Stop word (Wikipedia)

- Stopwords most common words in a language
 - "the", "and", "in", ...
- Can be approximated with words that have high TF
- Very unique words may only appear in a single blog
- Can be approximated with words that have high IDF
 - low IDF means that it appears in many docs

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

$$idf_i = \log \frac{|D|}{|\{d_j : t_i \in d_j\}|}$$

- Intuition
 - term that appears in many documents will get a low IDF; that term is not what the document is "about"
 - term that appears in just one or a few documents is a good discriminator and will get a high IDF; if appears in that document a lot, it will also get a high TF and the resulting high TF-IDF means that term captures the "aboutness" of the document

PCI Code "Fakes" Stopwords, TF-IDF

```
wordlist=[]
for w,bc in apcount.items():
    frac=float(bc)/len(feedlist)
    if frac>0.1 and frac<0.5:
        wordlist.append(w)</pre>
```

- apcount is an array that indicates how many blogs each word appears in
- w is the word
- bc is the blog count
- frac is the percentage of blogs that the word appears in
- wordlist is the final list of words

Creating a Blog-Term Matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

Table 3-1 from PCI - Subset of blog word frequencies

Web Science: Clustering Algorithms

(Part 2 - Hierarchical Clustering and Dendrogram)

CS 432/532

Old Dominion University

Permission has been granted to use these slides from Michele C. Weigle

Hierarchical Clustering

These slides assume you have already watched the assigned 365 Data Science video on <u>"Flat and Hierarchical Clustering | The Dendrogram Explained"</u>

Main reference:

Ch 3 from <u>Programming Collective</u> <u>Intelligence</u> by Toby Segaran

(abbreviated as PCI)

Ch 3 GitHub repo

Remember the Blog-Term Matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

Table 3-1 from PCI - Subset of blog word frequencies

Working Towards a Dendrogram

General Functions

- required imports
- readfile(filename) returns arrays of rownames, colnames, data
- pearson(v1, v2) returns Pearson correlation between two vectors of numbers
- rotatematrix(data) returns rotated matrix (rows become columns and columns become rows)

Hierarchical Clustering

- class bicluster data structure to hold the clustering information
- hcluster(rows, distance=pearson) does the hierarchical clustering, default distance function is pearson()
- printclust(clust, labels=None, n=0) traverses the cluster and prints an ASCII text representation

Example 1 (pg. 37)

Generate hierarchical cluster, print ASCII clusters

```
blognames, words, data = readfile("blogdata.txt")

clust = hcluster(data)

printclust(clust, labels=blognames)
```

```
Lifehacker
 Quick Online Tips
    Publishing 2.0
      Micro Persuasion
        A Consuming Experience (full feed)
          John Battelle's Searchblog
            Search Engine Watch Blog
              Read/WriteWeb
                Official Google Blog
                  Search Engine Roundtable
                    Google Operating System
                    Google Blogoscoped
```

Drawing the Dendrogram

- getheight(clust) returns the total height of a given cluster
- getdepth(clust) returns the error depth of the cluster, the maximum possible error from each branch
- drawdendrogram(clust, labels, jpeg='clusters.jpg') creates a dendrogram image with the default name of clusters.jpg
- drawnode(draw, clust, x, y, scaling, labels) takes and cluster and its location, calculates where the child nodes should be, and draws lines to them

Original code: Ch 3 GitHub repo

Example 2 (pg. 40)

Draw dendrogram

Original code: Ch 3 GitHub repo

Generate a Term-Blog Matrix

Rotate the matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

	Gothamist	GigaOM	Quick Online Tips
"china"	0	6	0
"kids"	3	0	2
"music"	3	0	2
"yahoo"	0	2	22

Example 3 (pg. 40)

 Rotate the matrix, cluster, draw dendrogram of words

Python Libraries for Dendrograms

- Plotly <u>Dendrograms | Python</u>
- SciPy scipy.cluster.hierarchy.dendrogram
- SciPy dendrogram tutorial/examples
 - #400 Basic Dendrogram
 - #401 Customised dendrogram
- SciPy and sklearn <u>Plot Hierarchical Clustering Dendrogram</u>

Web Science: Clustering Algorithms

(Part 3 - k-Means Clustering)

CS 432/532
Old Dominion University

Permission has been granted to use these slides from Michele C. Weigle

k-Means Clustering

These slides assume you have already watched up to time 4:44 of the assigned 365 Data Science video on <u>"K Means Clustering: Pros and Cons of K Means Clustering"</u>

Main reference:

Ch 3 from <u>Programming Collective</u> <u>Intelligence</u> by Toby Segaran

(abbreviated as PCI)

Ch 3 GitHub repo

k-Means Review

- 1. Select *k* (e.g. 2) random points as cluster centers called *centroids*
- Assign each data point to the closest cluster by calculating its distance with respect to each centroid
- 3. Determine the new cluster center by computing the average (*mean*) of the assigned points
- Repeat steps 2 and 3 until none of the cluster assignments change

Remember the Blog-Term Matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

Table 3-1 from PCI - Subset of blog word frequencies

blogdata.txt

k-Means Clustering

 kcluster(rows, distance=pearson, k=4) - does the k-means clustering algorithm, default distance function is pearson(), default k is 4

kcluster() - Step 1

i - 0-700 (number of columns in the first row of data, or number of words)

j - 0-3 (assume k=4)

ranges[] - minimum and maximum values for each row

kcluster() - Step 2


```
# Find which centroid is the closest for each row
for j in range(len(rows)):
    row = rows[j]
    bestmatch = 0
    for i in range(k):
        d = distance(clusters[i], row)
        if d < distance(clusters[bestmatch], row):
            bestmatch = i
    bestmatches[bestmatch].append(j)</pre>
```

j - current row

i - current cluster

distance(clusters[bestmatch], row) - distance between centroid and row
bestmatches[i] - list of row ids in cluster i

kcluster()-Step 3

```
# Move the centroids to the average of their members
    for i in range(k):
        avgs = [0.0] * len(rows[0])
        if len(bestmatches[i]) > 0:
            for rowid in bestmatches[i]:
                for m in range(len(rows[rowid])):
                     avgs[m] += rows[rowid][m]
            for j in range(len(avgs)):
                      avgs[j] /= len(bestmatches[i])
                      clusters[i] = avgs
```

j - current row

i - current cluster

avgs - average of each column over all rows in the cluster bestmatches[i] - list of row ids in cluster i

Original code: Ch 3 GitHub repo

kcluster() - Step 4


```
for t in range(100):
       print ('Iteration %d' % t)
       bestmatches = [[] for i in range(k)]
    [\ldots]
# If the results are the same as last time, this is complete
       if bestmatches == lastmatches:
           break
       lastmatches = bestmatches
```

Example (pg. 44)

Run k-means with 10 clusters on blogdata

```
kclust = kcluster(data, k=10)
```

```
Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
```

Note that because we start with randomly-placed centroids, we may get different clusters each time we run the algorithm.

sklearn Python Library for k-Means

- Reference
 - sklearn.cluster.KMeans

- Examples
 - In Depth: k-Means Clustering | Python Data Science
 Handbook
 - K-Means Clustering

Web Science: Clustering Algorithms

(Part 4 - Multidimensional Scaling)

CS 432/532

Old Dominion University

Permission has been granted to use these slides from Frank McCown, Michael L. Nelson, Alexander Nwala, Michael C. Weigle

Main reference:

Ch 3 from <u>Programming Collective</u> <u>Intelligence</u> by Toby Segaran

(abbreviated as PCI)

Ch 3 GitHub repo

Remember the Blog-Term Matrix

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
GigaOM	6	0	0	2
Quick Online Tips	0	2	2	22

Table 3-1 from PCI - Subset of blog word frequencies

blogdata.txt

Multidimensional Scaling (MDS)

- Allows us to visualize N-dimensional data in 2 or 3 dimensions
- Not a perfect representation of data, but allows us to visualize it without our heads exploding

Start with item-item distance matrix (note: 1-similarity)

	A	В	C	D
A	0.0	0.2	0.8	0.7
В	0.2	0.0	0.9	0.8
C	0.8	0.9	0.0	0.1
D	0.7	0.8	0.1	0.0

PCI

MDS Overview

- 1. Randomly drop items in 2d graph
- 2. Measure all inter-item distances
- 3. Compare with actual item-item distance for 1 item
- 4. Move item in 2D space (ex. A moves closer to B (good), further from C (good), closer to D (bad))
- 5. Repeat steps 2-4 for all items until no more changes can be made without increasing the error

4

Multidimensional Scaling - Python

scaledown(data, distance=pearson, rate=0.01) performs the MDS algorithm, returns a vector with the x,y
coordinates of each item, learning rate (how much to move
items) is default 0.01

 draw2d(data, labels, jpeg="mds2d.jpg") - function to display the labels in 2d space

```
A D
```

n - number of rows

realdist - compute actual distance (with pearson) between every pair of items loc - will hold the 2d x,y locations, initialize to random points fakedist - will hold chart distance between every pair of items

fakedist[i][j] - Euclidean distance between position of row i and
position of row j on the graph


```
for k in range(n):
    for j in range(n):
        if j == k:
             continue

# The error is percent difference between the distances
        errorterm = (fakedist[j][k] - realdist[j][k]) / realdist[j][k]

[...]

# Keep track of the total error
        totalerror += abs(errorterm)
```

errorterm - percent difference between the distances (real distance and graph distance)


```
# Each point needs to be moved away from or towards the other
    # point in proportion to how much error it has
            grad[k][0] += (loc[k][0] - loc[j][0]) / fakedist[j][k] * errorterm
            grad[k][1] += (loc[k][1] - loc[j][1]) / fakedist[j][k] * errorterm
 [\ldots]
# Move each of the points by the learning rate times the gradient
    for k in range(n):
        loc[k][0] -= rate * grad[k][0]
        loc[k][1] -= rate * grad[k][1]
```

```
# If the answer got worse by moving the points, we are done
   if lasterror and lasterror < totalerror:
        break
   lasterror = totalerror</pre>
```

Example (pg. 52)

Run MDS on blogdata

```
coords = scaledown(data)
draw2d(coords, blognames, jpeg='blogs2d.jpg')
```

```
| Marie | Mari
```


Objectives

- Distinguish between unsupervised learning and supervised learning.
- Differentiate between agglomerative and divisive clustering.
- Explain how a dendrogram is constructed.
- Explain the main steps in k-means clustering.
- Describe the purpose of multidimensional scaling (MDS).
- Explain the steps of multidimensional scaling.