Distributed Computing

A-08. Erasure Coding

Problem Statement

- I have data to save
 - E.g., 100GB
- I can store data on N different servers
 - Say I pay storage per GB
- I want to be able to recover my data even if M servers fail and lose my data
- How to minimize the cost?

Trivial Solution: Replication

- To safeguard myself against M server failures, I put a copy of all my data on M+1 servers
- Of course, I'm safe if M servers die
- Redundancy—i.e., the ratio between amount of data
 I store and the amount of original data is M+1
 - E.g., for M=2 and 100GB of data, I need 300GB
 - Redundancy: 3

N=3, M=1: Parity

- I split my data in 2 blocks B₀ and B₁
 - E.g., N=2 blocks of 50GB each
- I create a parity redundant block B_R
 - $B_R = B_0 XOR B_1$
- If I lose one of the blocks B_i, I can recover it as
 - $B_i = B_R XOR B_{1-i}$
 - This is because x XOR (x XOR y) = (x XOR x) XOR y = y
- Redundancy: 1.5
 - E.g., for 100GB, I need 150GB storage
 - Only 100GB to recover all the original data

M=1, Any N

- I split my data in K=N-1 **blocks** of the same size
 - E.g., N=6, 100GB: 5 blocks B_0 , ..., B_{K-1} of 20GB each
- I create a parity redundant block B_R
 - $B_R = B_1 XOR B_2 XOR ... XOR B_N$
- If I lose one of the blocks B, I can recover it as
 - $B_i = B_1 XOR B_2 ... XOR B_{i-1} XOR B_{i+1} ... XOR B_{K-1} XOR B_R$
 - This is because $x \times XOR (x \times XOR y) = y$
 - Here $y=B_1XOR B_2 ... XOR B_{i-1}XOR B_{i+1}... XOR B_{K-1}XOR B_R$
- Redundancy: N/K=N/(N-1)
 - Say N=6, 100GB: redundancy 6/5=1.2, I need 120GB
 - Again, only 100GB to recover all original data

Erasure Coding Magic: Any N & M

- I **encode** my data in N blocks, each of size 1/Kth of the original data, where K=N-M
 - E.g., M=2, N=6: 6 blocks of size 25GB
- I can decode any K of those blocks to recover my original data
 - E.g., any 4 of the N=6 blocks in the example
 - Once again, I just need any blocks totaling 100GB to recover my original data
- Redundancy: N/(N-M)
 - 1.5 in the example, 150GB total

A Trip Into Erasure Coding

Any N, M=N-2: Linear Oversampling

- A single straight line connects any two distinct points
- Hence, we can compute a and b
 with any two (x,y) pairs
 - If values of x_i are predetermined, no need to send those

- Message: *a, b*
 - e.g., a=3, b=2
- f(x)=ax+b
- Encoded message: $y_0 = f(x_0), y_1 = f(x_1), ..., y_{n-1} = f(x_{n-1})$
 - With $x_i = i$: (2, 5, 8, ...)
- With any two distinct (x_i, y_i) pairs, a system of two linear equations and 2 variables:
 - E.g., With $y_2 = 8$ and $y_5 = 17$:
 - $ax_2 + b = 8 \rightarrow 2a + b = 8$
 - $ax_5 + b = 17 \rightarrow 5a + b = 17$
 - From here, it's trivial to compute the message
- If message and all x_i are all integers, all y_i will be too: **no need to handle non-integer math**!

Any N&M: Polynomial Oversampling

- Any K=N-M distinct points identify a single polynomial of degree K-1
- Hence, we can find the message with any $K(x_i, y_i)$ pairs
 - Again, we can agree beforehand what all x_i values are
- Could sound familiar if you have seen secret sharing in cryptography

- Message: c_0 , ..., c_{K-1}
- Encoded message: $f(x_0)$, $f(x_1)$, ..., $f(x_{N-1})$
- With any *n* distinct (x_i,y_i)
 pairs, a system of *n* linear equations and *n* variables
 - $c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{k-1} x_i^{k-1} = y_i$
 - The nonlinear part disappears because all x, values are known

Polynomial Oversampling: Example

- N=7, M=3, K=4
- Sampling points x_0 , ..., x_6 = 0, ..., 6
- Message: $(c_0, ..., c_3)$; $f(x)=c_0+c_1x+c_2x^2+c_3x^3$
- Suppose we lose the other values and remain with $y_0 = f(x_0) = f(0) = 4$, $y_2 = 40$, $y_3 = 100$, $y_5 = 364$. We get the equations
 - $-c_0=4$
 - $c_0+2c_1+4c_2+8c_3=40$
 - $c_0+3c_1+9c_2+27c_3=100$
 - $c_0 + 5c_1 + 25c_2 + 125c_3 = 364$
- We can obtain the original message by solving the equations (e.g., by substitution)
 - Solution: $(c_0, ..., c_3) = (4, 2, 4, 2)$
 - Function $f(x)=4+2x+4x^2+2x^3$
 - = Encoded message y_{α} ..., y_{6} = 4, 12, 40, 100, 204, 364, 592
- **Problem**: numbers grow in size! If we encode them as bits, numbers in the encoded message will be **bigger** than those in the original one
- Is there a magic way to make sure numbers don't become bigger as we multiply them by powers of x?
 - Yes there is! They're called $\Rightarrow \Rightarrow \Rightarrow$ finite fields $\Rightarrow \Rightarrow \Rightarrow \Rightarrow$ (or Galois fields)

It's OK If You Don't Remember Fields

- Informally: a field is a set in which addition, substraction, multiplication and division are defined and behave "as in" real and rational numbers
- Disclaimer: in this and the following slides, **bold red** symbols +, -, *, /, 0, 1 and -1 refer to operation on the field, and not on the numbers we're used to
- Properties:
 - Associativity
 - (a+b)+c=a+(b+c) and (a*b)*c=a*(b*c)
 - Commutativity
 - a+b=b+a and a*b=b*a
 - Additive & Multiplicative identity
 - a**+0**=a, a***1**=a
 - Distributivity
 - a*(b+c)=(a*b)+(a*c)
 - Additive and multiplicative inverses
 - a+(-a)=0, a*(a-1)=1 (the multiplicative inverse is not defined for 0)
- It's useful in our case because we can solve our linear equations in a field
 - If you think about it, to solve them you do substitutions and or add/multiply/divide the same number from both sides of an equation

Finite Fields (Galois Fields)

- Fields that have just a finite number of elements
- Discovered (invented?) by Évariste Galois (1811-1832)
- They're cool, because we can give a number to each element of the field, and encode those numbers using log₂(n) bits for a field of size n, and do everything as before!

Integers Modulo A Prime Number Are A Finite Field

- Elements of the set: 0, 1, ..., p-1
- Obvious definition of 0, 1, multiplication, addition and additive inverse
 - **0**=0, **1**=1, -a=-a mod p
 - $-a+b=a+b \mod p$
 - a*b=ab mod p
 - What about the multiplicative inverse? We'll see later
- Most properties are easy to prove (please try at home)...
 But what about the multiplicative inverse?

Multiplication Table Modulo m

1	2	3	4	5	6
1	2	3	4	5	6
2	4	6	1	3	5
3	6	2	5	1	4
4	1	5	2	6	3
5	3	1	6	4	2
6	5	4	3	2	1
	1 2 3 4 5	1 2 2 4 3 6 4 1 5 3	1 2 3 2 4 6 3 6 2 4 1 5 5 3 1	1 2 3 4 2 4 6 1 3 6 2 5 4 1 5 2 5 3 1 6	1 2 3 4 5 2 4 6 1 3 3 6 2 5 1 4 1 5 2 6 5 3 1 6 4

- *m*=7 (*prime*)
- There's exactly one 1 in every row and column
- In the "modulo 7" field, $5^{-1}=3$ and $2^{-1}=4$

- m=9, non-prime
- Not every value has an inverse
- Not a field

Proof: There's Exactly One Multiplicative Inverse In Modulo p

- Consider a*b=ab mod p, with a, b in {0, 1, ..., p-1}
 - It can be zero only if one of a or b is 0, because:
 - p is a prime, so ab mod p=0 only if one of a and b is a multiple of p
 - but they can't be multiples of p because they're smaller than p.
- Consider a in [1,p-1] and a*i for all i in [1,p-1]
 - For all i in 1, 2, ..., p-1, $a*i \neq 0$, neither a nor i are 0
 - For all $i \neq j$ in 1, 2, ..., p-1, $a^*i \neq a^*j$, because:
 - a*i=a*j would mean a(i-j)=0 (distributive property)
 - a $\neq 0$ by hypothesis, i-j $\neq 0$ because $i \neq j$
 - Conclusion: all the p-1 a^*i values are different, and they can assume only the p-1 values in [1,p-1]
 - Each value will be represented exactly once, hence there will be a single unique value of i such that a*i=1
 - Hence, that will be the multiplicative inverse a⁻¹

Our Example, Modulo p

- N=7, M=3, K=4 (as before), **p=7** (we need $p \ge N$)
- Function $f(x)=c_0+(c_1*x)+(c_2*x^2)+(c_3*x^3)=c_0+c_1x+c_2x^2+c_3x^3$ mod 7
- Sampling points $x_0, ..., x_6 = 0, ..., 6$
 - we're using all of them now, to add more we need to change p
- Suppose we lose the others and remain with $y_0 = f(0) = 3$, $y_2 = 1$, $y_3 = 5$, $y_5 = 3$. We get the equations
 - $-c_0=3$
 - $-c_0+2*c_1+4*c_2+c_3=1$
 - $-c_0+3*c_1+2*c_2+6*c_3=5$
 - $-c_0+5*c_1+4*c_2+6*c_3=3$
- Let's now solve this! It's not so hard, you convert every number with its value modulo 7
 - E.g. -2 becomes 5 and 22 becomes 1
 - Inverses: 1⁻¹=1, 2⁻¹=4, 3⁻¹=5, 4⁻¹=2, 5⁻¹=3, 6⁻¹=6
 - To divide by x, you multiply by x^1 left and right

We Stop Here With Theory

- Almost-practical usage:
 - N is the number of machines that will store your data
 - M is the number of failures you want to tolerate
 - Choose p not smaller than N
 - Divide your data in K=N-M blocks of the same size
 - Encode it as a series of values smaller than p
 - (find a way, e.g. padding, to make their number a multiple of K)
 - All elements of the first (original) block will be c_o coefficients, second block c_o and so on
 - Encode and put all the y_0 coefficients in the first encoded block, the y_1 coefficients in the second block, and so on

There's A Lot More In Coding Theory

- There are finite fields having p^m elements, any $m \ge 1$
 - But they're harder to explain
 - Of course, computer people in practice use 2^m
- You can use coding to do error correction in addition to handle erasures
- They're implemented in hardware
- Found everywhere: telecommunications, QR codes, even CD readers from the '90s!
- If you want to play with them, look for a Reed-Solomon library in your favorite programming language

More Coding Magic

- Approaches that "waste" a bit of space compared to the "perfect" result but give you great properties
 - I.e., to recover 100 GB of data you'll need a bit more than 100 GB
- Fountain codes: you don't need to choose N to start with
 - Generate as many redundant blocks as you want, as a stream
 - You need a bit more than the amount of the original data to reconstruct it
 - Current standard: RaptorQ, IEEE RFC 6330
- Regenerating codes (Dimakis et al. 2010): if you lose one or a few blocks you don't need the original plain-text to recreate them—just download a few encoded blocks and work from them