Application au Théorème d'Arnold

Sacha Ben-Arous, Mathis Bordet

On s'intéresse dans cette section au cas suivant : g difféomorphisme du cercle régulier (au moins C^2), préservant les angles et ayant un angle de rotation α irrationnel. On a automatiquement par le Théorème de Danjoys (ref) qu'il est conjugué à la rotation d'angle α . Le théorème d'Arnold s'intéresse à la régularité de la conjugaison lorsque g est "très proche" de la rotation r_{α} .

I Description du problème

On choisit de réécrire g comme une perturbation de la rotation soit : $g = f + r_{\alpha}$ avec f "assez petit" (nous définirons ce que cela veut dire dans la suite). On cherche alors naturellement la conjugaison que l'on note η sous la forme d'une perturbation de l'identité soit $\eta = id + u$.

L'équation à résoudre est alors :

$$\eta(x+\alpha) = \eta(x) + \alpha + f \cdot \eta(x) \tag{1.1}$$

Pour plus de généralité on introduit ici un paramètre réel λ et en utilisant les notations de η avec u, l'équation 1.1 devient :

$$\Delta_{\alpha} u = f \cdot (id + u) - \lambda \text{ avec } \Delta_{\alpha} u(x) = u(x + \alpha) - u(x)$$
(1.2)

d'inconnue u.

Pour illustrer le problème de régularité que va poser ce type d'équation, intéressons-nous d'abord à l'équation 1.2 linéarisée :

$$\mu + \Delta_{\alpha} v = h \tag{1.3}$$

avec $\mu = \text{Avg } h$.

En utilisant les séries de Fourier, on obtient la solution suivante :

$$\hat{v}(k) = \frac{\hat{h}(k)}{exp(ik\alpha) - 1}$$

Cependant, le facteur $exp(ik\alpha) - 1$ peut gêner la convergence de la série de Fourier puisque celui-ci peut arbitrairement s'approcher de zéro en fonction des k du fait que α soit irrationnel.

On doit alors ici préciser la nature de notre irrationnel α . On supposera en effet dans toute la suite de notre développement que α vérifie la condition diophantienne suivante :

 $\exists \gamma > 0, \sigma > 1 \text{ telle que } \forall p, q \in \mathbb{Z}^2$:

$$\left|\frac{q\alpha}{\pi} - p\right| \ge \frac{1}{\gamma q^{\sigma}} \tag{1.4}$$

Ce qui induit en notant la solution v de 1.2 que si $f \in H^{s+\sigma}$ alors $\Delta_{\alpha}^{-1}h \in H^s$. Plus précisément, que l'opération Δ_{α}^{-1} induit une perte de régularité de l'ordre de σ et que :

$$\|\Delta_{\alpha}^{-1}h\|_{H^s} \le C_{\gamma}\|f\|_{H^{s+\sigma}} \tag{1.5}$$

Ce problème de perte de régularité nous empêche d'utiliser les théorèmes de point fixe ou les méthodes itératives traditionnelles pour résoudre cette équation. Face à cela, deux approches s'offrent à nous; la première est l'utilisation d'un schéma de Nash-Moser dont le fonctionnement est détaillé dans la section (??). La deuxième et celle qu'on va développer dans la suite est d'utiliser de la paralinéarisation pour régulariser cette équation 1.2.

II Résolution par la para-linéarisation

On choisit les notations suivantes :

$$\mathbf{F}(f, U) = \Delta_{\alpha} u - f \cdot (id + u) + \lambda$$

On s'intéresse alors à :

$$\mathbf{F}(f, U) = 0$$

avec $U=(u,\lambda)$. On suppose que $f\in H^{s+\sigma+\epsilon}\cap C^{N_s}$ avec $s>\sigma+1.5+\epsilon$. On cherche a priori u dans H^s (et par injection de Sobolev dans C^r_* où r=s-0.5>1). En utilisant la propriété ("de paralinéarisation") :

$$\mathbf{F}(f,U) = \Delta_{\alpha} u - f - T_{f'(id+u)} u + R_{pl}(f(x+\cdot), u) + \lambda \tag{2.1}$$

Or on a l'égalité suivante :

$$f'(id+u) = \frac{\Delta_{\alpha}u}{1+u'} - \frac{\mathbf{F}(f,U)'}{1+u'}$$

En réinjectant dans 2.1 on obtient :

$$\mathbf{F}(f,U) = \Delta_{\alpha} u - f - T_{\frac{\Delta_{\alpha} u}{1+u'}} u - T_{\frac{\mathbf{F}(f,U)'}{1+u'}} u + R_{pl}(f(x+\cdot), u) + \lambda \tag{2.2}$$

De plus en utilisant l'identité suivante :

$$\begin{split} \Delta_{\alpha} u - T_{\frac{\Delta_{\alpha} u}{1+u'}} u &= u \cdot \tau_{\alpha} + T_{\frac{1+u'}{1+u'}} u - T_{\frac{\Delta_{\alpha} u}{1+u'}} u \\ &= u \cdot \tau_{\alpha} - T_{\frac{1+u' \cdot \tau_{\alpha}}{1+u'}} u \\ &= u \cdot \tau_{\alpha} - T_{1+u' \cdot \tau_{\alpha}} T_{\frac{1}{1+u'}} u + R_1 (1 + u' \cdot \tau_{\alpha}, \frac{1}{1+u'}) \end{split}$$

en utilisant "paralinéarisation produit"

$$= T_{1+u'\cdot\tau_{\alpha}} \left(T_{\frac{1}{1+u'\cdot\tau_{\alpha}}} u \cdot \tau_{\alpha} - T_{\frac{1}{1+u'}} u \right) + R_{1} \left(1 + u' \cdot \tau_{\alpha}, \frac{1}{1+u'} \right) + R'_{1} \left(1 + u' \cdot \tau_{\alpha}, \frac{1}{1+u'\cdot\tau_{\alpha}} \right)$$

en utilisant "paralinéarisation produit"

$$= T_{1+u'\cdot\tau_{\alpha}} \Delta_{\alpha} T_{\frac{1}{1+u'}} u + \tilde{R}$$

En réinjectant cela, on obtient finalement :

$$\mathbf{F}(f,U) = T_{1+u'\cdot\tau_{\alpha}}\Delta_{\alpha}T_{\frac{1}{1+u'}}u + \tilde{R} - f - T_{\frac{\mathbf{F}(f,U)'}{1+u'}}u + R_{pl}(f(x+\cdot),u) + \lambda$$
(2.3)

LEMME II-1. — Il existe $\delta > 0$ tel que si $\|u'\|_{L^{\infty}} \leq \delta$ alors les opérateurs $T_{\frac{1}{1+u'}}$ et $T_{1+u'\cdot\tau_{\alpha}}$ sont inversibles de H^s dans lui-même (ou de $H^{s+\sigma+\epsilon}$).

PREUVE. Par le théorème ("de paralinéarisation et des produits") on a que en posant $a = \frac{1}{1+u'}$:

$$T_a \cdot T_{a^{-1}} - T_1 = R(a, a^{-1})$$

avec $||R(a, a^{-1})||_{\mathbb{L}(H^s, H^{s+r})} \le_{s,r} ||a||_{C_*^r} ||a^{-1}||_{C_*^r}$. On a que R est continu et donc avec R(1, 1) = 0. On a que $\lim_{u' \to 0} R(a, a^{-1}) = 0$.

Donc on peut choisir $||u'||_{L^{\infty}} \leq \delta$ pour que $||R(a, a^{-1})||_{\mathbb{L}(H^s, H^{s+r})} < 1$ et utiliser une série de Neumann pour avoir l'inversibilité de T_a .

La preuve est identique pour $T_{1+u'\cdot \tau_{\alpha}}$ et pour $H^{s+\sigma+\epsilon}$.

REMARQUE. Par injection de Sobolev et par le fait que $u \in C_*^r$ où r = s - 0.5 > 1 on peut choisir $u \in H^s$ tel que $||u||_{H^s}$ soit assez petit pour que la condition $||u'||_{L^{\infty}} \le \delta$ soit satisfaite. On cherchera dans la suite un u avec une telle norme.

On cherche à résoudre pour le moment une version modifiée de l'équation II:

$$\mathbf{F}(f,U) - T_{\frac{\mathbf{F}(f,U)'}{1+u'}} u = 0 \tag{2.4}$$

Équation qu'on peut réécrire avec $Lemme\ II-1$ et l'expression 2.3 :

$$u = T_{1+u'\cdot\tau_{\alpha}}^{-1} \Delta_{\alpha}^{-1} T_{\frac{1}{1+u'}}^{-1} (\tilde{R} - f + R_{pl}(f(x+\cdot), u) + \lambda)$$
 (2.5)

La valeur de λ est alors déterminée dans cette équation puisqu'elle est réglée pour pouvoir appliquer Δ_{α}^{-1} (voir condition 1.3). Considérons le membre de gauche comme une fonction de u et montrons qu'elle envoie H^s dans lui-même. En effet d'une part avec $\tilde{R}=R_1(1+u'\cdot\tau_{\alpha},\frac{1}{1+u'})u+R'_1(1+u'\cdot\tau_{\alpha},\frac{1}{1+u'\cdot\tau_{\alpha}})u$ avec les notations du "théorème de paralinéarisation produit". On a que $\tilde{R}(u):H^s\to H^{s+r-1}\subset H^{s+\sigma+\epsilon}$. De plus par "le théorème de paralinéarisation 1" $R_{pl}(f(x+\cdot),u):H^s\to H^{s+r}\subset H^{s+\sigma+\epsilon}$.

Malgré la perte de régularité imposée par Δ_{α}^{-1} , le membre de gauche de 2.5 envoie donc H^s dans lui-même (de manière continue).

D'autre part, on a le contrôle suivant sur les normes :

Par le "théorème de paralinéarisation" :

$$||R_{pl}(f(x+\cdot),u)||_{H^s} \le C_s ||f||_{C_*^r} (1+||u||_{H^s})$$

De plus l'une des conséquences de la preuve du $Lemme\ II-1$ est que $\tilde{R}(u)$ converge quadratiquement vers 0 lorsque u tend vers 0 dans H^s . En prenant donc $||u||_{H^s} \leq \rho$ on a que la norme H^s du membre de gauche 2.5 est majorée par :

$$C(s,\sigma)(\|f\|_{H^{s+\sigma+\epsilon}} + \|f\|_{C_*^r}(1+\rho) + \rho^2)$$
(2.6)

Puisqu'on peut prendre $||f||_{H^{s+\sigma+\epsilon}}$ et $||f||_{C_*^r}$ aussi petits qu'on veut, il existe un ρ tel que le membre de gauche 2.5 envoie B_{ρ} dans elle-même. En utilisant le point fixe de Schauder on a que l'équation 2.5 a une solution u dans H^s dans $B_{\rho'}$ pour tout $\rho' \leq \rho$.

Enfin pour résoudre l'équation 2.4 on remarque par "la proposition 2.1":

$$||T_{\underline{\mathbf{F}}(f,U)'}_{\underline{1+u'}}u||_{H^s} \le ||\mathbf{F}(f,U)||_{C^1}||u||_{H^s}$$
(2.7)

En utilisant une nouvelle fois l'argument de la série de Neumann on a bien que u est également solution de :

$$\mathbf{F}(f, U) = 0 \tag{2.8}$$