

# 1<sup>ère</sup>Olympiade Nord-Africaine d'Informatique 2025

# Target Rotation

Limite de temps: 1.5 secondes Limite de mémoire: 256 MB

Dans la ville de **Djelfa**, **Ahmad Karawita** et **Hamoud Habibi Hamoud** adorents jouer à un puzzle qui consiste en plusieurs **disques circulaires concentriques**. Il y a n disques, étiquetés  $d_1, d_2, \ldots, d_n$ , où  $d_i$  représente le disque de rayon i. Chaque disque  $d_i$  contient les chiffres  $0, 1, \ldots, 9$  ordonnés et écrits dans **le sens inverse des aiguilles d'une montre**, en partant du point le plus à droite du disque. le nombre d'apparitions de chaque chiffre j sur le disque  $d_i$  est noté  $a_{j,i}$ , et le nombre total de chiffres sur chaque chacun des disques est pair.

Les disques sont empilés de manière concentrique, avec  $d_1$  au sommet et  $d_n$  en bas. Les joueurs peuvent tourner chaque d'une position, de manière indépendante dans le sens **des aiguilles** d'une montre ou dans le sens **inverse** autant de fois que nécessaire.

Le **but** est d'aligner les chiffres sur la ligne centrale horizontale, comme sur la figure. La ligne centrale horizontale est composée d'exactement 2n chiffres: un chiffre de chacun des deux côtés de chaque disque.



#### **Tâche**

Soient  $x_1, x_2, \ldots, x_q$  q codes cibles, chacun de longueur 2n, déterminer le **nombre minimum de rotations nécessaires** pour aligner la ligne centrale horizontale de manière à correspondre à exactement chaque code cible. Si cela est **impossible**, afficher -1. Les requêtes sont indépendantes les

unes des autres, en d'autres termes, pour chaque requête, on commence par la même configuration initiale décrite dans la première partie de l'énoncé.

#### Entrées

- 1. Un entier n ( $1 \le n \le 10^5$ ): le nombre de disques.
- 2. Une grille de  $10 \times n$  entiers positifs, où  $a_{j,i} \leq 10^9$  ( $0 \leq j \leq 9, 1 \leq i \leq n$ ) spécifie le nombre de fois où le chiffre j apparaît sur le disque  $d_i$ . Notez que chaque disque contient un nombre pair de chiffres.
- 3. Un entier q ( $1 \le q \le 2 \times 10^6$ ): le nombre de codes.
- 4. q codes  $x_1, x_2, \ldots, x_q$ , chacun de longueur 2n: les codes cibles.
- Il est certain que  $nq \le 7 \times 10^6$

#### **Sorties**

Pour chaque code cible  $x_k$   $(1 \le k \le q)$ , afficher:

- Sur la première ligne, afficher POSSIBLE s'il est possible d'aligner les disques pour obtenir le code  $x_k$ .
- Sur la deuxième ligne, le **nombre minimum de rotations** nécessaires afin d'obtenir le code  $x_k$ , si c'est impossible afficher -1.

Si la première ligne de sortie est correcte tandis que la deuxième ne l'est pas, la moitié de la note est donnée.

#### **Contraintes**

- $1 \le n \le 10^5$
- $0 \le a_{j,i} \le 10^9$
- $1 \le q \le 2 \times 10^6$
- $nq \le 7 \times 10^6$

#### Sous-tâches

| Sous-tâche | Score | Contraintes                                     |
|------------|-------|-------------------------------------------------|
| 1          | 6     | n = q = 1                                       |
| 2          | 6     | Chaque disque contient un unique chiffre        |
| 3          | 10    | Pour tout $i$ , $\sum_{j=0}^{9} a_{j,i} \leq 2$ |
| 4          | 8     | n = 1                                           |
| 5          | 20    | Pour tout $i, j, x, y : a_{i,j} = a_{x,y}$      |
| 6          | 30    | $nq \le 10^5$                                   |
| 7          | 20    | Aucune contrainte supplémentaire                |

# Exemples

### Entrée

```
4
0 3 1 2 0 0 0 0 0 0
0 0 0 0 4 2 3 0 1 0
0 2 0 0 4 1 3 1 0 1
0 2 0 0 4 1 3 1 0 5
4
65521411
65521419
75521414
75521410
```

Note: Ceci est l'exemple dessiné sur la page 1.

# Sortie

```
POSSIBLE
0
POSSIBLE
1
POSSIBLE
2
IMPOSSIBLE
-1
```

# Entrée

```
1
4 3 2 3 1 1 4 3 9 2
1
71
```

# Sortie

```
POSSIBLE
4
```