SZÁMÍTÓGÉPES SZIMULÁCIÓK

Ingák

JEGYZŐKÖNYV

Jakobi Ádám 2021.03.08.

Tartalomjegyzék

1. Bevezető				2
2.	Elméleti bevezetés			2
	2.1.	Maten	natikai inga, csillapítás, gerjesztés	2
	2.2.	Inga enrgiája		
	2.3.	Fizikai inga		
	2.4.	Numerikus módszerek		5
		2.4.1.	Euler algoritmus	5
		2.4.2.	Euler-Cromer módszer	5
		2.4.3.	Negyedrendű Runge-Kutta módszer (RK4)	6
		2.4.4.	Adaptív negyedrendű Runge-Kutta módszer (ARK4) $\ \ldots \ \ldots \ \ldots$	6
3.	Kiértékelés			7
	3.1.	Egyszerű inga		7
		3.1.1.	Matematikai inga grafikonok	8
		3.1.2.	Csillapított inga grafikonok	9
		3.1.3.	Gerjesztett inga grafikonok	10
		3.1.4.	Csillapított és gerjesztett inga grafikonok	11
		3.1.5.	Futási idők	12
		3.1.6.	Eredmények részletezése	12
	3.2.	Kettős	s inga	13
4.	Disz	zkusszi	ó	14

1. Bevezető

A második beadandó során célunk az ingamodellek különböző közelítéseinek (matematikai, csillapított, gerjesztett és fizikai) mozgásának vizsgálata különböző numerikus differenciálegyenlet megoldó módszerek segítségével, melyek az Euler algoritmus, az Euler-Cromer-módszer, az egyszerű negyedrendű Runge-Kutta-módszer, illetve a lépéshossz-váltó (adaptív) negyedrendű Runge-Kutta-módszer. További cél a matematikai kettős inga szimulációja, trajektóriájának, fázisterének és átbillenési jelenségeinek vizsgálata és vizualizációja.

A feladat során rendelkezésre álló c++ forrásfájl átírásával, mely eredetileg az egyszerű ingát szimulálta az adaptív negyedrendű Runge-Kutta módszer segítségével, a különböző numerikus módszerek vizsgálata is lehetővé válik.

2. Elméleti bevezetés

2.1. Matematikai inga, csillapítás, gerjesztés

A matematikai inga mozgásegyenlete levezehető a Newton-törvényekből:

$$F = ma$$

Inga esetén (merev, tömeg nélküli rúd végén tömegpont) az eredő erő mindig tangenciális irányú, képlettel kifejezve:

$$F = m(-q\sin(\Theta))$$

Ebből m-el osztva kapjuk:

$$a = -q\sin(\Theta)$$

polárkoordinátákra történő átállás során definiálnunk kell az ívhosszt:

$$s = l\Theta$$

ahol s az ívhossz, l a rúd hossza és Θ az elfordulás szöge a függőlegeshez képest (ahol a függőleges a gravitációs gradiens iránya). Innen idő szerinti deriválásokból kapjuk, hogy:

$$\frac{d^2s}{dt^2} = l\frac{d^2\Theta}{dt^2} = -g\sin(\Theta)$$

Így a matematikai inga mozgásegyenlete:

$$\ddot{\Theta} = -\frac{g}{I}\sin(\Theta)$$

A fenti kifejezést kibővítve megkaphatjuk a csillapított és gerjesztett inga mozgásegyenletét:

$$\ddot{\Theta} = -\frac{g}{l}\sin(\Theta) - q\frac{d\Theta}{dt} + F_D\sin(\Omega_D t)$$

ahol q a súrlódási együttható, F_D a külső periodikus gerjesztő erő amplitúdója, Ω_D a gerjesztő erő szögfrekvenciája, $\Omega = \sqrt{\frac{g}{l}}$ pedig az inga saját frekvenciája.

Kritikus csillapításról beszélünk, ha $\Omega=\frac{q}{2}$ és túlcsillapításról, ha $\Omega<\frac{q}{2}$. A csillapítás hatására a következő tranziens viselkedés áll fenn:

$$\Omega(t) = \Omega_0 e^{-\frac{qt}{2}} \sin(\sqrt{\Omega^2 - \frac{q^2}{4}}t + \Phi)$$

A tranziens lecsengése után a gerjesztő erő vezérli a rendszert. Kis kitérésekre (lineáris közelítés) a modell analitikusan megoldható:

$$\Omega(t) = \frac{F_D \sin(\Omega_D t + \Phi)}{\sqrt{\Omega^2 - \Omega_D^2)^2 + (q\Omega_D)^2}}$$

(A kis kitérésekre használható lineáris közelítéstől a későbbiekben eltekintek.)

2.2. Inga enrgiája

Az inga energiáját megkaphatjuk annak mozgási és helyzetienergiájából (tömegpont esetében, ahol nem kell foglalkoznunk az ingatest forgási energiájával), így az energiára vonatkozó egyenlet:

$$E = mgL(1 - \cos\theta) + \frac{1}{2}m(L\omega)^2$$

A későbbiekben a tömeget egységnyinek (m = 1) vettem.

2.3. Fizikai inga

A fizikai inga egy M tömegű kiterjedt test, melyet egy pontján rögzítenek úgy, hogy a rögzítési pont körül szabadon elforoghasson. F legyen a felfüggesztési pont és S pedig a test súlypontja. Egyensúly esetén ($\Theta = 0$) az \overline{FS} egyenes párhuzamos a gravitációs mező skalárpotenciáljával ($\nabla \Phi$), vagyis a földre merőleges. Ezekkel a feltételekkel a fizikai inga mozgásegyenlete felírható a következőléppen:

$$I_P \ddot{\Theta} = \tau_F$$

ahol τ_F az F pontban lévő forgatónyomaték, I_P pedig az ingatest skalár tehetetlenségi nyomatéka a P pontban. Tegyük fel, hogy a fizikai inga tömege a tömegközéppontjában koncentrálódik. Ekkor:

$$\tau_F = Mgd\sin(\Theta)$$

ahol d a felfüggesztés és a súlypont távolsága. Így:

$$\ddot{\Theta} = -\frac{Mgd}{I_P}\sin(\Theta)$$

Bevezetve az $l_{eff} = \frac{I_P}{Md}$ redukált hosszt:

$$\ddot{\Theta} = -\frac{g}{l_{eff}}\sin(\Theta)$$

A következtetés tehát, hogy a fizikai ingát a matematikai ingához hasonlóan tudjuk szimulálni egy redukált hossz bevezetésének segítségével, így a későbbiekben a fizikai ingához kapcsolódó számolásoktól eltekintek.

A kettős inga mozgásegyenletének kiszámításához szükségünk van a rendszer Lagrangefüggvényére. Ennek segítségével a mozgásegyenlet kifejezhető a variációs módszer és az Euler-Lagrange-egyenlet kifejtésének segítségével.

$$\ddot{\theta_1} = \frac{m_2 L_1 \omega_1^2 \sin(2d\theta) + 2m_2 L_2 \omega_2^2 \sin(d\theta) + 2g m_2 \cos(\theta_2) \sin(d\theta) + 2g m_1 \sin(\theta_1) + \gamma_1}{-2L_1 \left(m_1 + m_2 \sin^2(d\theta)\right)} \tag{1}$$

$$\ddot{\theta}_{2} = \frac{m_{2}L_{2}\omega_{2}^{2}\sin(2d\theta) + 2(m_{1} + m_{2})L_{1}\omega_{1}^{2}\sin(d\theta) + 2g(m_{1} + m_{2})\cos(\theta_{1})\sin(d\theta) + \gamma_{2}}{2L_{2}(m_{1} + m_{2}\sin^{2}(d\theta))}$$
(2)

m, L, θ és ω megfelelő indexekkel ellátott mennyiségek rendre az adott inga tömegét, kötélhosszát, kitérésének szögét, valamint szögsebességét jelölik. Az 1-es index közvetlenül a felfüggesztéshez, míg a 2-es az alsó, magához az elsőhöz rögzített ingát jelöli. A g mennyiség a gravitációs gyorsulás.

Többek között még a mozgásegyenletekben szereplő γ_1 és γ_2 mennyiségek az alábbiakat takarják:

$$\gamma_1 = 2\alpha - 2\beta\cos\left(d\theta\right) \tag{3}$$

$$\gamma_2 = 2\alpha \cos(d\theta) - \frac{2(m_1 + m_2)}{m_2} \beta \tag{4}$$

Ahol használtuk az első testre ható

$$\alpha = q_1 \omega_1 - F_{D_1} \sin\left(\Omega_{D_1} t\right) \tag{5}$$

valamint a második testre ható

$$\beta = q_2 \omega_2 - F_{D_2} \sin\left(\Omega_{D_2} t\right) \tag{6}$$

gerjesztő-csillapító hatások jelölését. Ezekben Ω_D és F_D - a megfelelő indexekkel - a gerjesztés frekvenciáját és amplitúdóját jelöli, míg az itt és fentebb megjelenő $d\theta = \theta_1 - \theta_2$, a két inga kitérésének különbsége.

2.4. Numerikus módszerek

A fent leírt differenciálegyenletet numerikus úton oldjuk meg, vagyis az időben változó mennyiségeket egy kicsi δt időbeli lépés során frissítjük a differenciálegyenlet szerint. Inga esetében ezek a mennyiségek az idő (t), a kitérési szög (θ) , a szögsebesség $(\omega = \dot{\theta})$ és a szöggyorsulás $(\beta = \ddot{\theta})$. A szöggyorsulást egy adott pontban, ismerve a t, θ és ω mennyiségeket egzakt ki tudjuk számolni. A t mennyiség léptetése mindig az aktuálisan választott lépéshossz, a θ és ω mennyiségeket pedig a hozzájuk tartozó deriváltak segítségével tudjuk frissíteni. A frissítés mikéntje algoritmusonként változik, mi a következőkben az Euler, Euler-Cromer, negyedrendű Runge-Kutta (RK4) és adaptív negyedrendű Runge-Kutta (ARK4) algoritmusokat próbáljuk ki.

2.4.1. Euler algoritmus

Az elsőrendű, explicit Runge-Kutta módszert hívjuk Euler algoritmusnak, lokális csonkolási hibája (LTE) $\mathcal{O}(\delta t^3)$, a globális csonkolási hibája pedig $\mathcal{O}(\delta t^2)$. A feladat során használt módszerek közül az Euler algoritmus numerikusan a legkevésbé stabil. Az algoritmus az inga esetére nézve a következőképpen írható fel:

$$t_{n+1} = t_n + \delta t$$

$$\theta_{n+1} = \theta_n + \omega_n \delta t$$

$$\omega_{n+1} = \omega_n + \beta_n \delta t$$

$$\beta_n = -\frac{g}{I} \sin(\theta) - q\omega + F_D \sin(\omega_D t)$$

2.4.2. Euler-Cromer módszer

Az Euler-Cromer módszer egy szemi implicit elsőrendű Runge-Kutta módszer, explicit verziójától (Euler algoritmus) csak abban tér el, hogy a kitérést egy lépésben nem a hozzátartozó szögsebesség, hanem a már léptetett szögsebesség segítségével frissíti:

$$t_{n+1} = t_n + \delta t$$

$$\omega_{n+1} = \omega_n + \beta_n \delta t$$

$$\theta_{n+1} = \theta_n + \omega_{n+1} \delta t$$

$$\beta_n = -\frac{g}{I} \sin(\theta) - q\omega + F_D \sin(\omega_D t)$$

Az Euler-Cromer módszer már numerikusan stabil az Euler algoritmussal szemben.

2.4.3. Negyedrendű Runge-Kutta módszer (RK4)

A negyedrendű Runge-Kutta módszer explicit Runge-Kutta módszer, lokális csonkolási hibája (LTE) $\mathcal{O}(\delta t^5)$, a globális csonkolási hibája pedig $\mathcal{O}(\delta t^4)$, numerikusan stabil. Felépítése a következő:

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f(t_{n} + \frac{\delta t}{2}, y_{n} + \frac{k_{1}}{2})$$

$$k_{3} = f(t_{n} + \frac{\delta t}{2}, y_{n} + \frac{k_{2}}{2})$$

$$k_{4} = f(t_{n} + \delta t, y_{n} + k_{3})$$

$$y_{n+1} = y_n + \frac{\delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

,

ahol f a léptetéshez szükséges deriváltfüggvény az adott helyen és időben. Az implementáció során az idő, kitérési szög és szögsebesség mennyiségeket vektorként kezeltem, az f derivált függvény pedig az adott vektorkomponensekhez tartozó deriváltakat adja vissza a következő módon:

$$\frac{dt}{dt} = 1$$

$$\frac{d\theta}{dt} = \omega$$

$$\frac{d\omega}{dt} = \beta$$

$$\beta_n = -\frac{g}{l}\sin(\theta) - q\omega + F_D\sin(\omega_D t)$$

2.4.4. Adaptív negyedrendű Runge-Kutta módszer (ARK4)

Az adaptív negyedrendű Runge-Kutta módszer annyival tér el a nem adaptív változattól, hogy lépéshosszát a lokális hiba szerint változtatja: ha bármelyik mennyiség becsült hibája meghaladja a pontossági paramétert, a lépéshossz lecsökken, majd az adott lépést és hibáját újra számolja az algoritmus az új lépéshosszal. Ugyanez a helyzet akkor is, ha a lépéshez tartozó hiba nagyon alacsony értéket ad, csak akkor a lépéshosszt nem csökkenteni, hanem növelni fogjuk, amíg a hiba megfelelő tartományba nem kerül. A becsült hiba kiszámítási módja az, hogy minden lépést kétszer végzünk el: első verzióban, az egyszerű negyedrendű Runge-Kuttához hasonlóan kiszámolunk egy teljes lépést, a második verzióban pedig két fél lépést teszünk meg, majd megnézzük a két verzió közötti eltérést, mely megadja a becsült lokális csonkolási hibát az adott lépésre.

A mérések során használt pontossági paraméter $accuracy = 10^{-6}$ volt.

3. Kiértékelés

3.1. Egyszerű inga

Először ábrázolom a kapott eredményeket a megadott paraméterek során, utána részletezem az eredményeket. Az ábrák elkészítéséhez írtam egy python függvényt, ami használható tetszőleges $m \times n$ -es ábra elkészítéséhez. A paraméterek jelentése a következő:

- \bullet m: tömegpont tömege
- \bullet L: inga hossza
- \bullet q: súrlódási együttható
- $\bullet \ \Omega_D$: külső periodikus gerjesztő erő szögfrekvenciája
- $\bullet \ F_D$: külső periodikus gerjesztő erő amplitúdója
- $\bullet \ \theta(0)$: kiindulási szög radiánban
- $\omega(0)$: kiindulási szögfrekvencia
- T_{max} : számítási időtartam

Az ábrák fölötti címek jelentése alább látható:

- Euler : Euler módszer
- Euler-Cromer : Euler-Cromer módszer
- RK4 : negyedrendű Runge-Kutta
- ARK4 : adaptív negyedrendű Runge-Kutta

3.1.1. Matematikai inga grafikonok

Euler

t Euler-Cromer

> t RK4

× 0

-1

-2

1.5

0.0

-0.5

-1.5

1.5 1.0

0.5

1.5

1.0

0.5

× 0.0

-0.5

-1.0

Euler Euler 20.0 17.5 15.0 0.0 12.5 ш 10.0 -5.0 7.5 5.0 -10.0 2.5 -12.5 0.0 0 –5 0 v Euler-Cromer Euler-Cromer Euler-Cromer 10 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 0 V RK4 t RK4 RK4 1.5 1.0 0.5

ARK4

0 V

Matematikai inga

1. ábra. Matematikai inga grafikonjai.

0.0

-1.5

1.5

1.0

0.5

0.0

-0.5

-1.0

ARK4

10

Az inga paraméterei: L=1 ; q=0 ; $\Omega_D=0$; $F_D=0$; $\theta(0)=1.6$; $\omega(0)=0$; $T_{max}=30$.

3.1.2. Csillapított inga grafikonok

Csillapított inga

2. ábra. Csillapított inga grafikonjai.

Az inga paraméterei: L=1 ; q=0.5 ; $\Omega_D=0$; $F_D=0$; $\theta(0)=1.6$; $\omega(0)=0$; $T_{max}=30$.

3.1.3. Gerjesztett inga grafikonok

Gerjesztett inga

3. ábra. Gerjesztett inga grafikonjai.

Az inga paraméterei: L=1 ; q=0 ; $\Omega_D=3$; $F_D=8$; $\theta(0)=1.6$; $\omega(0)=0$; $T_{max}=30$.

3.1.4. Csillapított és gerjesztett inga grafikonok

Csillapított és gerjesztett inga

4. ábra. Csillapított és gerjesztett inga grafikonjai.

Az inga paraméterei: L=1 ; q=0.5 ; $\Omega_D=3$; $F_D=8$; $\theta(0)=1.6$; $\omega(0)=0$; $T_{max}=30$.

3.1.5. Futási idők

5. ábra. Futási idők ábrázolása, x tengelyen a szimuláció tervezett ideje (T_{max}) , az y tengelyen pedig az adott T_{max} -hoz tartozó futási idő.

3.1.6. Eredmények részletezése

Mint azt korábban is írtam, az Euler módszer numerikusan a legkevésbé stabil a használt algoritmusok közül, ez az ábrákból világosan látszik (egész más eredményeket ad, mint a többi verzió, az energia sem marad meg ott, ahol kéne). Az Euler-Cromer módszer többnyire stabil, de nem annyira pontos, mint a negyedrendű Runge-Kutta algoritmusok. A negyedrendű Runge-Kutta módszer majdnem mindenhol azonos eredményt adott, mint adaptív változata, de pár helyen (a gerjesztett inga esetében) a jelenleg használt 0.05-ös lépéshosszal az adaptív változata pontosabb eredménnyel tudott szolgálni.

Futási időket tekintve az Euler és Euler-Cromer meredeksége közel azonos, az eltérés elméletileg csak véletlen hiba, ugyanis az Euler és Euler-Cromer módszer lépéseinek száma azonos. Hosszú futtatásokra az Euler algoritmus futási ideje az egekbe szökik, de ez csak annak a következménye, hogy az Euler algoritmus numerikusan instabil, és a futtatásom során a változóim értékei elszállnak, ami már kezelhetetlen méretű számokat eredményez (ez növeli meg valójában a futási időt). A leglassabb a futási idők közül (legnagyobb meredekséggel) a negyedrendű Runge-Kutta, a leggyorsabb pedig az adaptív negyedrendű Runge-Kutta módszer volt (több lépésből áll, mint másodrendű társai, de ideális lépéshosszokat választva még így is le tudta őket hagyni).

3.2. Kettős inga

A kettős inga csillapítás és külső gerjesztő erő hiányában is kaotikus mozgást végez, ezért a kettős ingával végzett mérések során ezt a tulajdonságát szeretném érzékeltetni. Négy mérést végeztem, mindegyiket közel azonos paraméterekkel, az eredmények azonban teljes mértékben eltérőek lettek egymástól. A mérésekhez a negyedrendű Runge-Kutta módszert használtam $\delta t = 0.01$ -es lépéshosszal.

6. ábra. Kettős inga ábrák, a négy mérés legtöbb paramétere megegyezik ($m_1=1,\,m_2=1,\,L_1=1,\,L_2=1,\,q_1=0,\,q_2=0,\,\Omega 1_D=0,\,\Omega 2_D=0,\,F1_D=0,\,F2_D=0,\,\theta_1=2.5,\,\theta_2=2.5,\,$ $\omega_2=0,\,T_{max}=30$), a mérések egymástól csak az első tömegük kezdeti szögfrekvenciájában térnek el, értékük rendre $\omega_{11}=5,\,\omega_{12}=5.1,\,\omega_{13}=5.2,\,\omega_{14}=5.3.$

Az átbillenési jelenség szemléletesebb vizualizációja céljából elkészítettem a kettős inga animációját. Az animáció mind a négy mérést egyszerre tartalmazza, így a kaotikus viselkedés is jobban megfigyelhetővé válik.

Az animáció megtalálható a feladat mappájában (double_pendulum.avi).

4. Diszkusszió

A feladat során ingamodellek különböző közelítéseinek (matematikai, csillapított, gerjesztett és fizikai) mozgását vizsgáltam numerikus differenciálegyenlet megoldó módszerek segítségével. Összehasonlítottam egymással az Euler-módszert, az Euler-Cromer-módszert, az egyszerű negyedrendű Runge-Kutta-módszert, illetve a lépéshossz-váltó (adaptív) negyedrendű Runge-Kutta-módszert. Ezen kívül elvégeztem a matematikai kettős inga szimulációját, trajektóriájának, fázisterének és átbillenési jelenségeinek vizsgálatát és vizualizációját.

A különböző közelítéseket és módszereket c++ nyelven implementáltam a tárgy honlapján található példakód segítségével, az innen kapott adatokat Python 3 notebookkal ábrázoltam.