期末考试

姓名:陈 稼 霖 学号:SA21038052

成绩:

第 1 题 得分: _______. 某一光场的密度算符 $\rho = \sum_n \frac{\langle n \rangle^n}{(1+\langle n \rangle)^{n+1}} |n \rangle \langle n|$,求其密度算符的 Q 表示.

解: 该光场的 Q 表示为

$$Q(\alpha) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle = \frac{1}{\pi} \langle \alpha | \sum_{n} \frac{\langle n \rangle}{(1 + \langle n \rangle)^{n+1}} | n \rangle \langle n | \alpha \rangle$$

$$= \frac{1}{\pi} \sum_{n} \frac{\langle n \rangle}{(1 + \langle n \rangle)^{n+1}} | \langle n | \alpha \rangle |^{2}$$

$$= \frac{1}{\pi} \sum_{n} \frac{\langle n \rangle}{(1 + \langle n \rangle)^{n+1}} \left| e^{-|\alpha|^{2}/2} \frac{\alpha^{n}}{\sqrt{n!}} \right|^{2}$$

$$= \frac{1}{\pi} \sum_{n} \frac{\langle n \rangle}{(1 + \langle n \rangle)^{n+1}} e^{-|\alpha|^{2}} \frac{|\alpha|^{2n}}{n!}$$

$$= \frac{1}{\pi} \frac{\langle n \rangle}{1 + \langle n \rangle} \exp \left[-\frac{\langle n \rangle}{1 + \langle n \rangle} |\alpha|^{2} \right]. \tag{1}$$

第 2 题 得分: _____. 一光场处于这样的态: $|\psi\rangle = Na^{\dagger}|\alpha\rangle$.

- (1) 计算归一化常数 N.
- (2) 若 α 为正实数, 判断其取何值时有压缩现象? (提示: 计算 $(\Delta X_1)^2$ 或 $(\Delta X_2)^2$; $X_1 = (a+a^{\dagger})/2$, $X_2 = (a-a^{\dagger})/2i$).

解: (1) 由归一化条件,

$$\langle \psi | \psi \rangle = |N|^2 \langle \alpha | a a^{\dagger} | \alpha \rangle$$

$$= |N|^2 \langle \alpha | (a^{\dagger} a + 1) | \alpha \rangle$$

$$= |N|^2 \langle \alpha | (|\alpha|^2 + 1) | \alpha \rangle$$

$$= |N|^2 (|\alpha|^2 + 1)$$

$$= 1,$$
(2)

$$\Longrightarrow N = (|\alpha|^2 + 1)^{-1/2} \tag{3}$$

(2) 同 2011 年第 4 题.

第 3 题 得分: ______. 某一光场形式为 $|\psi\rangle = \frac{1}{\sqrt{6}}(|0\rangle + 2|1\rangle + |2\rangle)$, 判断其是否为亚泊松分布, 为什么?

解:该光场的二阶相关度为

$$g^{(2)}(0) = \frac{\langle a^{\dagger} a^{\dagger} a a \rangle}{\langle a^{\dagger} a \rangle^{2}} = \frac{\langle \psi | a^{\dagger} a^{\dagger} a a | \psi \rangle}{\langle \psi | a^{\dagger} a | \psi \rangle^{2}}$$

$$= 6 \frac{(\langle 0| + 2\langle 1| + \langle 2|) a^{\dagger} a^{\dagger} a a (|0\rangle + 2|1\rangle + |2\rangle)}{[(\langle 0| + 2\langle 1| + \langle 2|) a^{\dagger} a (|0\rangle + 2|1\rangle + |2\rangle)]^{2}}$$

$$= 6 \frac{(\langle 0| + 2\langle 1| + \langle 2|) (0|0\rangle + 2 \cdot 0|1\rangle + 2|2\rangle)}{[(\langle 0| + 2\langle 1| + \langle 2|) (0|0\rangle + 2 \cdot 1|1\rangle + 2|2\rangle)]^{2}}$$

$$= \frac{1}{3} < 1, \tag{4}$$

故该光场为亚泊松分布.

第 4 题 得分: . 简述:

- (1) 偶极近似的适用条件;
- (2) 旋转波近似的含义;
- (3) 马尔科夫近似下的含义:
- (4) 自发辐射由何引起, 如何抑制或增强;
- (5) 举例比较光子的一阶干涉和二阶干涉.

解: (1) 同 2004 年第 3 题 (1).

- (2) 同 2004 年第 3 题 (2).
- (3) 同 2004 年第 3 题 (3).
- (4) 自发辐射由真空中电磁场的涨落引起. 通过添加光学谐振腔或改变光学谐振腔的结构影响光场的模场结构, 进而调控自发辐射的速率.
- (5) 光子的一阶干涉是光子与其自身的干涉, 体现的是光源的频谱特征 (单色性), 例如迈克耳逊干涉实验. 光子的二阶干涉是光子与光子之间的相干, 体现的是光源的光子数分布特性, 例如 HBT 实验.

第 5 题 得分: _________. 单个二能级原子 (上下能级分别为 $|a\rangle$, $|b\rangle$) 同单模光场 (频率 $\nu=\omega_{ab}$) 共振相互作用. 考虑偶极近似和旋转波近似, 假设相互作用系数为实数.

- (1) 写出半经典理论描述的原子-光场系统的总哈密顿量.
- (2) 写出全量子理论描述的原子-光场系统的总哈密顿量.
- (3) 原子初态为 $|b\rangle$, 光场初态为 $|1\rangle$, 利用全量子理论的描述求 t 时刻的原子布局反转数 $W(t)=|c_a|^2-|c_b|^2$.

解: 同 2004 年第 4 题.

第6题 得分: _____. 二能级原子与热平衡辐射场热库相互作用, 其密度算符的运动方程为:

$$\dot{\rho} = -\frac{\Gamma}{2} [\sigma_{+}\sigma_{-}\rho + \rho\sigma_{+}\sigma_{-} - 2\sigma_{-}\rho\sigma_{+}]. \tag{5}$$

求 t 时刻原子算符 $\langle \sigma_z(t) \rangle$. 提示: $\frac{\mathrm{d} \langle \sigma_z(t) \rangle}{\mathrm{d} t} = \mathrm{Tr}[\dot{\rho}\sigma_z]$.

解:

$$\langle \sigma_z(t) \rangle = \text{Tr}[\rho \sigma_z] = \rho_{aa} - \rho_{bb} = 2\rho_{aa} - 1.$$
 (6)

一方面,

$$\Longrightarrow \frac{\mathrm{d}\langle \sigma_z(t)\rangle}{\mathrm{d}t} = 2\frac{\mathrm{d}\rho_{aa}}{\mathrm{d}t} - 1. \tag{7}$$

另一方面,

$$\begin{split} \frac{\mathrm{d} \langle \sigma_z(t) \rangle}{\mathrm{d}t} &= \mathrm{Tr}[\dot{\rho} \sigma_z] \\ &= -\frac{\Gamma}{2} \, \mathrm{Tr}[(\sigma_+ \sigma_- \rho + \rho \sigma_+ \sigma_- - 2\sigma_- \rho \sigma_+) \sigma_z] \end{split}$$

П

$$= -\frac{\Gamma}{2} \operatorname{Tr} \left[\rho \left(\sigma_z \sigma_+ \sigma_- + \sigma_+ \sigma_- \sigma_z - 2\sigma_+ \sigma_z \sigma_- \right) \right]$$

$$= -\frac{\Gamma}{2} \operatorname{Tr} \left[\rho \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - 2 \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right) \right]$$

$$= -2\Gamma \operatorname{Tr} \left[\rho \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right]$$

$$= -2\Gamma \rho_{aa}. \tag{8}$$

以上两式解联立得

$$2\frac{\mathrm{d}\rho_{aa}}{\mathrm{d}t} - 1 = -2\Gamma\rho_{aa},\tag{9}$$

解得

$$\rho_{aa} = \tag{10}$$

第7题 得分: _____. 简述激光多普勒冷却原子方法的原理.

解: