PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: WO 94/18756 (11) International Publication Number: A1 H04B 1/00 18 August 1994 (18.08.94) (43) International Publication Date: (81) Designated States: CA, JP, KR, SE. (21) International Application Number: PCT/US94/00835 24 January 1994 (24.01.94) (22) International Filing Date: Published With international search report. (30) Priority Data: 08/016,446 11 February 1993 (11.02.93) US (71) Applicant: MOTOROLA, INC. [US/US]; 1303 East Algonquin Road, Schaumburg, IL 60196 (US). (72) Inventors: REED, John, D.; 1101 Briarcliff Drive, Arlington, TX 76012 (US). ROZANSKI, Walter, J., Jr.; 408 Heather Lane, Hurst, TX 76054 (US). (74) Agents: PARMELEE, Steven, G. et al.; Motorola Inc., Intellectual Property Dept./RJW, 1303 East Algonquin Road, Schaumburg, IL 60196 (US).

(54) Title: METHOD AND APPARATUS FOR CONTROLLING A POWER LEVEL OF A SUBSCRIBER UNIT OF A WIRELESS COMMUNICATION SYSTEM

(57) Abstract

After setting a subscriber unit to a transmit power level (12) which provides a signal at a base site having a target quality level, a fading characteristic of a communication channel between the subscriber unit and a base site is measured (13). The fading characteristic is then compared with threshold values (14). The measuring (13) and comparing (14) are repeated until the fading characteristic crosses a threshold (15, 60, 62). Once the fading characteristic crosses the threshold, the target quality level is set to a new target level (16, 61, 63). A subscriber unit (70) designed to accomplish this method comprises a receiver (72) which receives an RF signal. The received signal is averaged in an averaging device (73) and compared with the original signal in a differential amplifier (74). The output of the comparison is used by a controller (75) to determine power control adjustments to a transmitter (76).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin ,	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya .	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MIN	Mongolia	VN	Viet Nam
GA	Gabon		,		

METHOD AND APPARATUS FOR CONTROLLING A POWER LEVEL OF A SUBSCRIBER UNIT OF A WIRELESS COMMUNICATION SYSTEM

Related Inventions

5

The present invention is related to the following inventions, all assigned to the assignee of the present invention:

A Method for Compensating for Capacity Overload in 10 a Spread Spectrum Communication System, having Serial No. 783,751, and filed on October 28, 1991; and

A Method for Controlling Transmission Power in a Communication System, having Serial No. 268,822, and filed on November 7, 1987.

15

Field of the Invention

The present invention relates, in general, to wireless communication systems and, more particularly, to a method and apparatus for controlling a power level of a subscriber, or remote, unit of a wireless communication system.

Background of the Invention

25

35

In Code Division Multiple Access (CDMA) environments, it is desirable to maintain the energy used per bit as compared to the noise in a given bandwidth (E_b/N_o) at a level where the signal is received sufficiently well (e.g. has sufficient quality) from the subscriber unit. However, while raising the E_b/N_o level would provide a high quality call (e.g. by causing the subscriber to increase its transmit power), it would also reduce the system capacity since the signal (E_b) of one call within the bandwidth is

interference (N_O) to other calls. Therefore, it is also desirable to keep the E_b/N_O level as low as possible while still providing a suitable quality signal. For a more detailed description of the power level/capacity trade-off, reference is made to co-pending U.S. patent application having Serial No. 783,751, identified above.

In order to accomplish this objective, present proposals use a power control loop to set the Eb/No to a desired level based on the Word Error Rate (WER). the mobile is stopped, or moving at low speeds - e.g. rates less than 10 Kilometers Per Hour (KPH) - the $E_{\rm b}/N_{\rm O}$ is gradually reduced to a level that is lower by a decibel (dB) or two than when the vehicle is moving faster. A higher $E_{\rm b}/N_{\rm o}$ is necessary in a faster moving vehicle to maintain the WER in a propagation environment The WER is measured to determine which is more hostile. power adjustments to be transmitted to the subscriber These adjustments serve to maintain a nominal In practice, the mobile transmit power is gradually reduced which results in a reduced Eb/No and increased WER. Once the WER exceeds a certain limit, the mobile transmit power is raised to a level where the WER at the base site is acceptable. The process then repeats. This process is referred to as a power control loop.

10

15

20

25

30

However, as the mobile unit begins moving in excess of the "low speed" the WER will increase at a rate beyond which the low level $E_{\rm b}/N_{\rm O}$ can be maintained. Once the WER increases past a preset point (threshold), or accelerates at a given rate, the system will gradually increase the $E_{\rm b}/N_{\rm O}$ level (i.e. by increasing the subscriber transmit power) to a higher level required at higher speeds.

However, a problem with the present system is the delay in shifting from one $E_{\rm b}/N_{\rm O}$ level to another. This

3

type of delay can result in one of two related and undesirable events which occur when the subscriber changes speed or stops. A change in speed results in a change in the required $E_{\rm b}/N_{\rm O}$; causing a degradation in the quality of the channel due to the delays in the power control loop. The first event is that, from a signal perspective, the $E_{\rm b}/N_{\rm O}$ is now less than what is considered good for the system. This causes a poorer acceptable signal quality in the channel. The other event is that, from a system perspective, the $E_{\rm b}/N_{\rm O}$ is now greater than what is required causing increased noise in the bandwidth for other subscribers.

Therefore, it would be desirable to reduce the transition time from one $E_{\rm b}/N_{\rm o}$ level to another to as short a time period as possible to avoid degrading the overall bandwidth quality and/or capacity.

10

15

Summary of the Invention

A method of controlling a power level of a 20 subscriber unit of a wireless communication system having a target quality level is provided. The method comprises, after first setting a target quality level for said subscriber unit to a first target quality level, adjusting the power level of the subscriber unit 25 to generate a signal providing the first target quality level when received at a base site. A fading characteristic of the communication channel between the subscriber unit and the base site is then measured and compared with a threshold value. The measuring and 30 comparing are repeated until the fading characteristic crosses the threshold. Once the fading characteristic crosses the threshold, the subscriber unit is set to a second target quality level.

An apparatus to accomplish the above method is provided by a subscriber unit having a receiver to receive an RF signal. The received signal is averaged in an averaging device and the average is compared with the original RF signal in a comparing device. The output data of the comparison is provided to a first control unit which uses the comparison information to provide target quality level information.

10 Brief Description of the Drawings

- FIG. 1 is a block diagram of a flow chart illustrating a process embodying the present invention;
- FIG. 2 is a power control graph illustrating one embodiment of the present invention;
 - FIG. 3 is a power control graph illustrating the operation of a prior art method;
 - FIG. 4 is another power control graph providing a comparison of the present invention with the prior art;
 - FIG. 5 is a prior art graph representing a multipath fading characteristic and variation by speeds;
 - FIG. 6 is a prior art graph representing fading characteristic probabilities as a function of speed;
- FIG. 7 is a prior art graph showing normalized level crossing rates;
 - FIG. 8 is a block diagram of a power control portion of a subscriber unit designed to operate with the method of FIG. 1; and
- FIG. 9 is a block diagram of a power control
 30 portion of a base site designed to operate with the method of FIG. 3.

5

Detailed Description of the Drawings

Referring initially to FIG. 1, a block diagram of a flow chart illustrating a process, generally designated 10, embodying the present invention is shown. 10 starts at block 11 when a call is established. established, depending on the speed of the subscriber, a first target E_b/N_o level (or first target quality level) will be selected. This will result in the subscriber unit being directed to a transmit power level which will 10 provide that first target E_b/N_o level at the base site. As shown in FIG. 2, there are several different target Eb/No levels illustrated by lines 21-24. Ideally, the target $E_{\rm b}/N_{\rm O}$ level of line 21 would be utilized at high speeds (e.g. above 45 KPH) and the target E_b/N_0 level of 15 line 24 would be utilized at lower speeds (e.g. 15 KPH or less). It should be noted that any number of target Eb/No levels can be defined in a system.

In FIG. 3, a prior art graph, generally designated 100, is depicted representing actual E_b/N_0 levels over time. As a vehicle's speed changes, the WER rate improves permitting the transmit power to be reduced, resulting in a lower E_b/N_0 . The E_b/N_0 level is gradually reduced (using a power control loop), line 98, over potentially several seconds until an unacceptable threshold word error rate (WER) is exceeded. The mobile is then given a command to raise its power level. The remote units reaction is represented by line 99. These steps are repeated continuously as shown.

20

25

30

In FIG. 4, a composite graph, generally designated 110, is illustrated showing $E_{\rm b}/N_{\rm O}$ adjustments using the prior art and the present invention. When the speed of the remote unit, represented by line 111, changes, the prior art method results in the changes to $E_{\rm b}/N_{\rm O}$

35 represented by line 112. Here, the prior art would

10

25

30

reach a nominal level (WER threshold) at point 200. The results from the present invention are illustrated by line 113. As shown, the present invention reacts faster and reaches the nominal $E_{\rm b}/N_{\rm O}$ level sooner than line 112.

Additional improvement can be found by combining the two techniques. Once the target E_b/N_0 level is set and the mobile's transmit power is adjusted accordingly, the power control loop will be used to reach the nominal E_b/N_0 level. This is illustrated by line 111. With the addition of the present invention, the same nominal E_b/N_0 level is reached at point 201. Much sooner than the prior art.

As an example, a subscriber unit starting at around 40 KPH will be used. Therefore, the first target Eb/No level will be target Eb/No level 3, represented by line 22, FIG. 2. Once process 10 has been set to the target level, the fading characteristic of the signal is measured, step 13, FIG. 1. The fading characteristic may be a multipath fading characteristic, a Rayleigh fading characteristic, a Doppler shift measurement, or some other indicator of nulls and their frequency and may be measured at the subscriber or base site.

A multipath fading characteristic is illustrated in FIG. 5, a prior art graph, generally designated 30. Solid line 31 represents a stationary subscriber unit. As shown, even while stationary, the fading characteristics would seem to indicate movement. From a practical implementation, a stationary subscriber can encounter nulls at a rate indicating movement on the order of 10 KPH. This results from the movement of other things such as vehicles, other subscribers, etc., about the present subscriber.

When the subscriber increases speed, the nulls will appear more frequently, as represented by dashed line

32, FIG. 5. Therefore, the number of fades in a given period is generally representative of the speed of the subscriber.

Returning now to FIG. 1, once the fading

characteristic is measured, it is compared to a
threshold value. This is illustrated in the prior art
graph of FIG. 6, generally designated 40, which shows a
graph of the frequency (NR) of fades as a function of
velocity (V). The fades are measured in the number of
level crossings per second (Hertz or Hz) and the
velocity in KPH. The graph of FIG. 6 is derived using
equation (1):

$$N_{R} = (f_{m})(x) \tag{1}$$

15

where:

 f_m is the Doppler shift in Hz; and x is a constant which can be obtained from the graph of FIG. 7.

The graph of FIG. 7 is a prior art graph representing normalized level crossing rates. This graph is described in detail in Jakes, "Microwave Mobile Communications", pg 35 (1974). If it is assumed that, for p=1, any fade which crosses the average value will be counted as a fade then, using the graph of FIG. 7, the value of NR/fm is 0.915. In order to determine NR, fm must first be determined using equation (2):

$$f_m = (1.5)(V)(.62)(F)$$
 (2)

30

where:

V is the velocity in KPH;

F is the frequency in GigaHertz (GHz);

the constant .62 is used to convert velocity (V) in

35 equation (2) from MPH to KPH; and

8

the constant 1.5 represents several combined constants and scale factors.

5

10

15

20

25

30

35

Using equation (2), the Doppler shift at 10 KPH for a 1 GHz signal is 9.3 Hz. Substituting this into equation (1) provides a crossing rate, NR, of 8.5 level crossings per second. As discussed above, a null crossing rate equal to 10 KPH is considered the maximum a stationary subscriber may encounter from the environment. At 15 KPH, one of the Eb/No transition levels (FIG. 2), the crossing rate is 12.8. At 30 KPH, where the Eb/No drops to level 2, the crossing rate is 25.6. These crossing rates (12.8 and 25.6) are two of the preset frequencies that act as threshold values used for comparison in step 14, FIG. 1.

If the fading characteristic crosses threshold level N (decision step 15) then the target quality level for the signal received from the subscriber unit is set to the Nth target quality level, step 16. If this measurement is made by the subscriber, then fading data is sent to the base site, step 19. Process 10 proceeds to determine if the call has been terminated, decision step 17. If the call has been terminated, process 10 ends, step 18. If the call is not terminated, then process 10 loops back to step 13.

If the fading characteristic does not cross threshold level N, then process 10 determines, decision step 60, if the fading characteristic crosses threshold level N-1. If level N-1 is crossed, then the target quality level for the signal received from the subscriber unit is set to the N-1th target quality level, step 61. Process 10 then proceeds to transmit step 19 and decision step 17.

This process of checking each of the threshold levels continues until decision step 62 is reached where process 10 determines if the measured characteristic

9

crosses threshold level 1. If level 1 is crossed, then the target quality level for the signal received from the subscriber unit is set to the 1st target quality level, step 63. Process 10 then continues with transmit step 19 and decision step 17. If level 1 is not crossed, process 10 loops back from decision step 62 to step 13.

In the prior art, the system would have continued to measure the WER while the subscriber slowly decreased its transmit power. The E_b/N_0 of the subscriber unit, as measured at the base site, would be allowed to continue to decrease until a poor WER was detected. The power of the subscriber unit is then increased until an acceptable WER was reached. During the delay between when the power of the subscriber could have been reduced and when the power was actually reduced, as shown in FIG. 4, the subscriber was using spectrum in excess of that needed. This ultimately detracts from the overall spectrum available for that bandwidth. Therefore, it is desirable to cause the transition between the target E_b/N_0 levels to occur with as little delay as possible.

10

15

20

25

35

In the present invention, once the transition has occurred, the resulting WER is again measured and the power control loop is used to adjust the transmit power of the subscriber unit to fine tune the quality.

A block diagram of one embodiment of a power control portion of a subscriber unit, generally designated 70, is provided in FIG. 8. In FIG. 8, a signal is received from a base site 79 by antenna 71 and carried to receiver 72. Receiver 72 processes the signal and forwards the result to a circuit 78 to detect the threshold crossings of the received signal.

Circuit 78 is comprised of a filter 73 for averaging the signal from receiver 72; and a differential amplifier 74 to compare the averaged signal

35

with the original signal. The differential output data from circuit 78 is provided to a controller 75. The fading information is compared in controller 75 with a plurality of threshold levels. When a threshold is crossed, controller 75 signals the base site by transmitter 75 through antenna 77. Alternatively, this fading information could be forwarded to the base site continuously as a part of the standard overhead message. The decision on whether a threshold has been exceeded could then be made the base site; or at the subscriber unit as before. It should be noted here that antenna 71 and 77 may be the same antenna if a duplexer is used in subscriber unit 70.

While the design of circuit 78 and the method of FIG. 2 provide an advantage over the prior art. 15 improvement, as shown by line 111 of FIG. 4, can be obtained from using circuit 90 illustrated in FIG. 9. Circuit 90 shows a block diagram of a base site embodying a combination of the prior art with the present invention. The output of the target power 20 controller 93 is output to a summer (or combiner) 92. The output of controller 93 is based upon the fading data received from the subscriber unit. Also input to summer 92 is the output of a nominal power controller 91. Controller 91 operates at the direction of the 25 power control loop. The sum of these controllers is then used to create an adjustment command to be transmitted to said subscriber unit by transmitter 94 through antenna 95. This results in the signal illustrated by line 111 of FIG. 4. 30

As an alternative to having the remote unit taking all of the measurements and making the various decisions, it should be understood that some of the measurements (e.g. Rayleigh fading) could be made at the base station. The base station would then direct

adjustments to the subscriber unit. Conversely, actions currently performed by the subscriber unit could be made at the base site.

Thus, it will be apparent to one skilled in the art that there has been provided in accordance with the invention, a method and apparatus for controlling a power level of a wireless communication system that fully satisfies the objects, aims, and advantages set forth above.

While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alterations, modifications, and variations in the appended claims.

Claims

- 1. A method of controlling a power level of a subscriber unit of a wireless communication system, said wireless communication system having a target quality level for a signal received at a base site from said subscriber unit, said method comprising the steps of:
- (a) setting said target quality level to a first target quality level;
- (b) adjusting said power level of said subscriber unit to generate said signal providing said first target quality level when received at said base site;
 - (c) measuring a fading characteristic of a communication channel between said subscriber unit and said base site;
 - (d) comparing said fading characteristic with a threshold value; and
- (e) setting said target quality level to a second target quality level if said fading characteristic crosses said threshold value.
 - 2. The method of claim 1 further comprising the step of repeating said steps (b) through (d) until said fading characteristic crosses said threshold.

25

10

15

20

3. The method of claim 1 further comprising the step of reducing said power level of said subscriber unit if a word error rate (WER) does not exceed a threshold WER.

30

4. The method of claim 1 wherein said wireless communication system is a Code Division Multiple Access (CDMA) system.

25

- The method of claim 1 wherein said fading characteristic is measured by said subscriber unit.
- An apparatus for controlling a power level of a subscriber unit of a wireless communication system, said apparatus comprising:

receiving means for receiving a first radio frequency (RF) signal;

averaging means for averaging said first RF signal, said averaging means providing an averaged RF signal; 10

comparing means for comparing said averaged RF signal with said RF signal, said comparing means providing a differential signal;

first control means, coupled to receive said differential signal, for generating a data representing a change in said target quality level; and

transmitter means, having an input coupled to said first control means, for transmitting said data.

- The apparatus of claim 6 further comprising: 20 7. first control means, at said base site, for providing a first power adjustment indicator based upon a change in said target quality level;
 - second control means, at said base site, for providing a second power adjustment indicator if a word error rate (WER) does not exceed a threshold WER; and

combining means, at said base site, for combining an output from each of said first and second control means and providing a combined power adjustment

indicator. 30

> A method of controlling a power level of a subscriber unit of a wireless communication system, said wireless communication system having a target quality

15

30

level for a signal received at a base site from said subscriber unit, said method comprising the steps of:

- (a) setting a target quality level to a first target quality level;
- (b) measuring a frequency at which a signal strength of a radio frequency (RF) signal received by said subscriber unit crosses an average of said signal strength of said RF signal;
- (c) comparing said frequency with a plurality of 10 preset frequencies corresponding to a plurality of desired target quality levels; and
 - (d) setting said target quality level for said signal from said subscriber unit to one of said plurality of desired quality levels if said frequency crosses one of said plurality of preset frequencies.
 - 9. A method of controlling a power level of a subscriber unit of a wireless communication system, said wireless communication system having a target quality level for a signal received at a base site from said subscriber unit, said method comprising the steps of:
 - (a) setting a transmit power level of said subscriber unit to provide said signal at said base site a first target quality level;
- 25 (b) reducing said transmit power level of said subscriber unit if a word error rate (WER) does not exceed a threshold WER;
 - (c) measuring a fading characteristic of a communication channel between said subscriber unit and said base site;
 - (d) comparing said fading characteristic with a threshold value;
 - (e) setting said transmit power level at said subscriber unit to provide said signal at said base site

15

20

25

having a second target quality level if said fading characteristic crosses said threshold; and

- (f) repeating said steps (b) through (e).
- 10. A method of controlling a power level of a subscriber unit of a wireless communication system, said wireless communication system having a target quality level for a signal received at a base site from said subscriber unit, said method comprising the steps of:
- (a) setting said target quality level for a signal received from said subscriber unit to a first target quality level;
 - (b) measuring a frequency at which a signal strength of a radio frequency (RF) signal received by said subscriber unit crosses an average of said signal strength of said RF signal;
 - (c) comparing said frequency with a preset frequency representing a threshold level;
 - (d) setting said target quality level of said signal received from said subscriber unit to a second target quality level, less than said first target quality level, if said frequency is less than said preset frequency representing said threshold level;
 - (e) sending a command to said subscriber unit to reduce said transmit power level if a word error rate (WER) does not cross a threshold value;
 - (f) sending a command to said subscriber unit to increase said transmit power level if said WER does cross said threshold value; and
- (g) repeating said steps (b) through (f) if said target quality level of said subscriber unit is not set to said second target quality level.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG.9

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

ational application No.
PCT/US94/00835

A. CLASSIFICATION OF SUBJECT MATTER							
IPC(5) :H04B 1/00							
US CL: 455769 According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols)							
U.S. : 455/52.1,52.3,65,54.1,54.2,67.1,69,70,89,88,67.6,67.4;375/76							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Documentation searched other than minimum documentation to the extent that such documents are included in the neles scattered							
Electronic d	ata base consulted during the international search (nar	ne of data base and, where practicable,	search terms used)				
	4						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	Relevant to claim No.					
X	US,A, 4,777,653 (BONNEROT ET	ALV 11 OCTOBER 1988	1-5				
^	COL. 3, LINE 68 TO COL.4, LINE 1		1-5				
	602. 0, Elite 00 10 602.4, Elite	.0, 002. 0					
A	US,A, 4,580,262 (NAYLOR ET AL) 01 APRIL 1986, FIG.1.	1-10				
Α	US, A, 4,228,538 (SCHARLA-NIEL	SEN ET AL) 14 OCTOBER	1-10				
	1980, FIG. 2.						
A D	US, A, 5,239,667 (KANAI) 24 AU	1-10					
A,P	US, A, 9,239,667 (KANAI) 24 AU	1-10					
A,P	US, A, 5,245,629 (HALL) 14 SEP	1-10					
Further documents are listed in the continuation of Box C. See patent family annex.							
Special categories of cited documents:							
,V. 90	comment defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the inv					
	riior document published on or after the international filing date	"X" document of particular relevance; the					
	cument which may throw doubts on priority claim(s) or which is and to establish the publication date of escatter citation or other	when the document is taken alone					
₩.	ecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	step when the document is				
	cument referring to an oral disclosure, use, exhibition or other	combined with one or more other suc being obvious to a person skilled in t	n documents, such combination he art				
"P" do	t family						
Date of the actual completion of the international search Date of mailing of the international search report							
09 MARCH 1994 , 25 MAR 1994							
Name and mailing address of the ISA/US Authorized offices							
Commission Box PCT	oner of Patents and Trademarks	PORIS TO					
1	a, D.C. 20231 No. (703) 305-3230	Telephone No. (703/305-4827					