Technical Review

Recommendation tool of dining places

Group Members: June Yang, Quoc Dung (Daniel) Cao, Runqiu Hu, Zichen Liu

Background

- What is a recommendation system: A recommendation system suggests relevant items to users (vice versa). Two aspects of designing a recommendation system are speed and accuracy.
- What we are doing: Build a recommendation system based on Yelp! Dataset.
 - Recommend dining places to *known* users
 - Recommend dining places to *new* users
 - (vice versa for businesses)
- Modules we are comparing:
 - LightFM
 - Scikit Learn
 - Self written module
 - Surprise

Recommendation system

surprose

LightFM: A hybrid recommendation algorithm

- A hybrid recommendation system that can use both collaborative filtering and content-based filtering for making recommendations.
- Advantages:
 - Can target known users as well as new users enabled by the hybrid algorithm
 - Uses <u>matrix factorization</u>, powerful and fast
 - Streamlined, easy to implement
- Performance of collaborative filtering using LightFM:
 - Training set AUC: 0.992; test set AUC: 0.946
 - Train precision at 1: 0.30; test precision at 1: 0.05
 - o Train recall: 0.24; test recall: 0.11
- More to be done with hybrid: add user/business features

scikit learn:

sklearn.feature_extraction.text.CountVectorizer

The **sklearn.feature_extraction.text** submodule gathers utilities to build feature vectors from text documents.

CountVectorizer package Convert a collection of text documents to a matrix of token counts.

scikit learn:

sklearn.feature_extraction.text.CountVectorizer Example:

List of words: ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']

List of sentence : [Return:
'This is the first document.',	[[0 1 1 1 0 0 1 0 1]
'This document is the second document.', 'And this is the third one.',	[0 2 0 1 0 1 1 0 1]
	[100110111]
'Is this the first document?'	[0 1 1 1 0 0 1 0 1]]
1	

scikit learn

sklearn.metrics.pairwise.COSine_similarity

The **sklearn.metrics.pairwise** submodule implements utilities to evaluate pairwise distances or affinity of sets of samples.

Cosine_similarity package compute cosine similarity between samples in X and Y.

$$k(x,y) = rac{xy^ op}{\|x\|\|y\|}$$

Customized module: Matrix Factorization with Stochastic Gradient Descent

- Implement matrix completion with Alternative Least Square algorithm.
- Advantages:
 - Transparency to understand the algorithm
 - Ability to extract the intermediate information, e.g. loss
 - Flexibility to tune hyper-parameters, e.g. learning rate, regularization

Disadvantages:

- Time consuming to implement the algorithm
- Resource consuming: RAM and CPU
- Performance may be not as stable as pre-built modules

Why we picked LightFM:

- To deal with the cold-start problem.
- scikit learn better with content-based filtering; surprise better with collaborative filtering. LightFM easy to do both.
- Nice performance.
- Less coding work...

Questions

