$\frac{\text{CSCI4150U: Data Mining}}{\text{Lab } 04}$

Syed Naqvi 100590852

October 17, 2024

Preprocessing

German Credit Data (K-NN)

This dataset contains a mixture of ordinal, nominal and numeric features. The ordinal and nominal features must be processed such that Minkowski distance provides a meaningful metric during k nearest neighbors classifications while retaining as much information as possible. We begin with the following features which have either a completely arbitrary ordering or contain only 2 unique values:

- attribute 4: Purpose
 - a list of purchases on credit
- attribute 9: Personal status and sex
 - an arbitrarily ordered list of marital status and sex
- attribute 19: Telephone
 - either have a Telephone (yes) or do not (no)
- attribute 20: Foreign worker
 - either is a foreign worker (yes) or is not (no)

We can use **one-hot encoding** for Attributes 4 and 9 as these features have multiple unique values and **label encoding** for attributes 19 and 20 as these features have only two unique values which makes ordering of label encoding irrelevant.

Figure 1: [Attributes 4 and 9 one-hot encoding]

Figure 2: [Attributes 19 and 20 label encoding]

The next set of features appear to have a clear ordinal ranking based on descriptions provided at (https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data) with least credit-worthy values on the left to most credit-worthy values on the right:

- Attribute 1: Status of existing checking account
 - A11 (< 0 DM) \to A12 (0 <= & < 200 DM) \to A13 (>= 200 DM / salary assignments for at least 1 year) \to A14 (no checking account)
- Attribute 3: Credit history
 - A34 (critical account / other credits existing) \rightarrow A33 (delay in paying off in the past) \rightarrow A32 (existing credits paid back duly till now) \rightarrow A31 (all credits at this bank paid back duly) \rightarrow A30 (no credits taken / all credits paid back duly)
- Attribute 6: Savings account / bonds
 - A61 (< 100 DM) → A62 (100 <= & < 500 DM) → A63 (500 <= & < 1000 DM) → A64 (>= 1000 DM) → A65 (unknown / no savings account)
- Attribute 7: Present employment since
 - A71 (unemployed) \rightarrow A72 (< 1 year) \rightarrow A73 (1 <= & < 4 years) \rightarrow A74 (4 <= & < 7 years) \rightarrow A75 (>= 7 years)
- Attribute 12: Property
 - A124 (unknown / no property) \rightarrow A123 (car or other, not in attribute 6) \rightarrow A122 (building society savings agreement / life insurance) \rightarrow A121 (real estate)
- Attribute 17: Job
 - A171 (unemployed / unskilled non-resident) \rightarrow A172 (unskilled resident) \rightarrow A173 (skilled employee / official) \rightarrow A174 (management / self-employed / highly qualified employee / officer)

We can visualize the value distributions of each feature for each class:

Figure 3: [Ordinal Features Visualization (Original Labeling)]

It can clearly be observed that the features do seem to closely adhere to their listed orderings and for features that do not, we can re-label them so their lexicographical order better fits the feature's observed order. This results in the following updated class distributions:

Figure 4: [Ordinal Features Visualization (Re-Labelled)]

Label encoding the above features should now result in labels that better capture feature order, allowing for more meaningful distance measures between objects during k-nearest neighbors classification.

Figure 5: [Ordinal Features Visualization (Re-Labelled)]

For the remaining qualitative features, we can use a similar plotting method as above to explore the existence of order. Based on the strength of potential orderings, we can either re-label values and then proceed with label encoding or apply one-hot encoding.

Figure 6: [Qualitative Features Visualization (Original Labeling)]

Only Attribute 10 seems to contain a useful order relation from least credit-worthy to most credit-worthy as follows:

• A102 (co-applicant) \rightarrow A101 (no debtors/guarantors) \rightarrow A103 (guarantor)

Attributes 14 and 15 do not seem to possess meaningful orderings as 2 out of 3 values for both features have an almost equal distribution across both classes. Hence, we shall re-label Attribute 10 to change its lexicographical order before applying label encoding and apply one-hot encoding to Attributes 14 and 15.

Figure 7: [Attribute 10 Visualization (Re-Labeled)]

Figure 8: [Attribute 10 Label Encoding, Attributes 14 & 15 One-Hot Encoding]

Finally, we standardize the numerical features of the dataset.

```
standard_scaler = StandardScaler()
numerical_attributes = ['Attribute2', 'Attribute5', 'Attribute8', 'Attribute1', 'Attribute13', 'Attribute16', 'Attribute18']
german_data_X_encodings[numerical_attributes] = standard_scaler.fit_transform(X=german_data_X_encodings[numerical_attributes])
german_data_X_encodings[numerical_attributes].head()
Attribute2 Attribute5 Attribute8 Attribute11 Attribute13 Attribute16 Attribute18
 -1.236478
            -0.745131
                      0.918477
                                  1.046987
                                              2.766456
                                                          1.027079
                                                                    -0.428290
  2.248194
             0.949817
                      -0.870183
                                  -0.765977
                                              -1.191404
                                                         -0.704926
                                                                    -0.428290
 -0.738668
            -0.416562
                      -0.870183
                                  0.140505
                                              1.183312
                                                         -0.704926
                                                                    2.334869
                                  1.046987
                                                                    2.334869
            1.634247 -0.870183
  1.750384
                                              0.831502
                                                         -0.704926
           0.566664
                       0.024147
                                  1.046987
                                              1.535122
                                                          1.027079
                                                                    2.334869
 0.256953
```

Figure 9: [Standardized Numerical Features]

German Credit Data (Decision Tree)

SciKit-Learn's decision tree classifier requires non-string feature values. As such, we apply label encoding to all qualitative features in the German Credit dataset.

Figure 10: [Label Encoding German Data for Decision Tree Classification]

Waveform Data

All features of the waveform dataset are numeric by default with very similar scales making this dataset highly suitable for k-NN classification. The numeric data types are also compatible with scikit-learn's decision tree classifier. Hence, no preprocessing is required.

Part I (Inference Efficiency):

K-NN (k=5) and Decision Tree (Greedy, GINI, No Max Depth)

Figure 11: [K-NN Classification for German Dataset]

Figure 13: [K-NN Classification for Waveform Dataset]

Figure 12: [Decision Tree Classification for German Dataset]

Figure 14: [Decision Tree Classification for Waveform Dataset]

Comparing Results

Figure 15: [K-NN vs Decision Tree Performance (German Dataset)]

Figure 16: [K-NN vs Decision Tree Performance (Waveform Dataset)]

We see that k-NN is generally a more accurate form of classification than decision trees but also requires more elaborate preprocessing and greater inference times.

Part II: Model Selection

Figure 17: [K-NN Classification on Waveform and German Datasets for Different k]

Based on evaluations performed on the validation sets, the best k value for classifying Waveform data instances is k=4 and the best k value for classifying German credit data instances is k=5.

Figure 18: [Decision Tree Classification on Waveform and German Datasets with Different Max Depths]

Based on evaluations performed on the validation sets, the best max depth for classifying Waveform data instances is 7 and the best max depth for classifying German credit data instances is 6.