Projekt 3

Łukasz Ruzicki Dam

Damian Schröder

Konrad Ziółkowski

Bartek Siedlikowski

maj 2021

1 Treść zadania

Zaimplementować rozwiązywanie układów równań metodą iteracji Jacobiego. Za jej pomocą dla podanego przez użytkownika $\varepsilon>0$ i punktu startowego, znaleźć przybliżone z dokładnością ε rozwiązanie ukladu rówań:

$$\begin{cases}
15x_1 + 3x_2 + 5x_3 - 6x_4 = 15 \\
4x_1 - 25x_2 + 2x_3 + 4x_4 = -16 \\
2x_1 - 5x_2 + 20x_3 + x_4 = -56 \\
x_1 + 3x_2 + 6x_3 - 12x_4 = -80
\end{cases}$$

2 Opis teoretyczny iteracyjnej metody Jacobiego

Układ równań

$$Ax = f$$
, $A = [a_{ij}]_{i,j} =_{1,...,n}$, $f = [f_1, ..., f_n]^T$,

przekształcamy do postaci wektorowego równania punktu stałego

$$x = B_j x + b_j$$
, $B_j = [b_{ij}]_{i,j} =_{1,...,n}$, $b_j = [b_1,...,bn]^T$

w następujący sposób. Rozkładamy $A = A_L + A_D + A_R$, gdzie

$$A_L = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \dots & & & \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix}$$

$$A_D = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

$$A_R = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \dots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Układ Ax = f zmieniamy do postaci

$$(A_L + A_D + A_R)x = f$$

$$A_D x = -(A_L + A_R)x + f$$

$$x = -(A_D)^{-1}(A_L + A_R)x + (A_D)^{-1}f$$

czyli otrzymamy

$$x = B_J + b_J$$
, gdzie $B_J = -(A_D)^{-1}(A_L + A_R), b_J = (A_D)^{-1}f$

Iteracje proste dla otrzymanego układu

$$x^{(k+1)} = B_I x^{(k)} + b_I, k \geqslant 0$$

z ustalonym $x^{(0)} \in R^n,$ nazywamy metodą Jacobiego dla wyjściowego układu Ax = f. [1]

2.1 Przykład obliczeń

Układ równań

$$\begin{cases}
15x_1 + 3x_2 + 5x_3 - 6x_4 = 15 \\
4x_1 - 25x_2 + 2x_3 + 4x_4 = -16 \\
2x_1 - 5x_2 + 20x_3 + x_4 = -56 \\
x_1 + 3x_2 + 6x_3 - 12x_4 = -80
\end{cases}$$

Rozkładamy $A = A_L + A_D + A_R$,

$$A_L = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 2 & -5 & 0 & 0 \\ 1 & 3 & 6 & 0 \end{bmatrix}$$

$$A_D = \begin{bmatrix} 15 & 0 & 0 & 0 \\ 0 & -25 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & -12 \end{bmatrix}$$

$$A_R = \begin{bmatrix} 0 & 3 & 5 & -6 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Przygotowujemy iteracje Jacobiego dla układu:

$$\begin{bmatrix} 15 & 3 & 5 & -6 \\ 4 & -25 & 2 & 4 \\ 2 & -5 & 20 & 1 \\ 1 & 3 & 6 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 15 \\ -16 \\ -56 \\ -80 \end{bmatrix}$$

Przeszktałcamy układ

$$\begin{bmatrix} 15 & 0 & 0 & 0 \\ 0 & -25 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 5 & -6 \\ 4 & 0 & 2 & 4 \\ 2 & -5 & 0 & 1 \\ 1 & 3 & 6 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 15 \\ -16 \\ -56 \\ -80 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{5} & \frac{1}{3} & -\frac{2}{5} \\ -\frac{4}{25} & 0 & -\frac{2}{25} & -\frac{4}{4} \\ \frac{1}{10} & -\frac{1}{4} & 0 & \frac{1}{20} \\ -\frac{1}{12} & -\frac{1}{4} & -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 1 \\ \frac{16}{25} \\ -\frac{14}{25} \\ \frac{20}{3} \end{bmatrix}$$

Iteracje Jacobiego:

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{5} & -\frac{1}{3} & \frac{2}{5} \\ \frac{4}{25} & 0 & \frac{2}{25} & \frac{4}{25} \\ -\frac{1}{10} & \frac{1}{4} & 0 & -\frac{1}{20} \\ \frac{1}{12} & \frac{1}{4} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{bmatrix} + \begin{bmatrix} 1 \\ \frac{16}{25} \\ -\frac{14}{5} \\ \frac{20}{3} \end{bmatrix}, k \geqslant 0.$$

2.2 Zakres projektu

Projekt ma na celu wyznaczenie rozwiązania układu równań

$$\begin{cases} 15x_1 + 3x_2 + 5x_3 - 6x_4 = 15 \\ 4x_1 - 25x_2 + 2x_3 + 4x_4 = -16 \\ 2x_1 - 5x_2 + 20x_3 + x_4 = -56 \\ x_1 + 3x_2 + 6x_3 - 12x_4 = -80 \end{cases}$$

z przybliżeniem ϵ oraz punktem startowym podanym przez użytkownika. Korzystając z metody iteracji Jacobiego. Program składa się z funkcji, która rozwiązuje układ równań oraz interpretacji wyników.

3 Opis implementacji

Została użyta dystrybuacja języków programowania Python i R do obliczeń naukowych, której celem jest uprszoczenie zarządzania i używania pakietów. Program został napisany w webowej aplikacji do pisania kodu - Jupyter Notebook, która umożliwia pisanie i kompilacje kodu.

3.1 Schemat blokowy

4 Instrukcja użytkowania

Program zaleca się uruchomić w webowej aplikacji JupyterLab. Program poprosi użytkownika o wprowadzenie punktów startowych i oczekiwanej dokładności rozwiązania.

Najpierw wprowadzamy ilość punktów startowych odpowiadającą liczbie niewiadomych, które powinny być od siebie oddzielone pustym znakiem.

Wprowadź punkty st	:artowe:
Następnie należy podać prz	zybliżenie jakie chcemy uzyskać.
Podaj dokładność:	

Jeśli dane zostały wprowadzone prawidłowo program wyświetli rozwiązanie.

5 Raport z demonstracji programu

Sprawdzenie poprawności działania programu dla 1 iteracji z punktem początkowym [0,0,0,0].

Obliczenia pierwszej iteracji dają wyniki dla k=0:

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{5} & -\frac{1}{3} & \frac{2}{5} \\ \frac{4}{25} & 0 & \frac{2}{25} & \frac{4}{25} \\ -\frac{1}{10} & \frac{1}{4} & 0 & -\frac{1}{20} \\ \frac{1}{12} & \frac{1}{4} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ x_4^{(k+1)} \end{bmatrix} + \begin{bmatrix} 1 \\ \frac{16}{25} \\ -\frac{14}{5} \\ \frac{20}{3} \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{16}{25} \\ -\frac{14}{5} \\ \frac{20}{3} \end{bmatrix}$$

Rozwiązanie przy pomocy programu:

Dla punktu startowego $\left[0.0, 0.0, 0.0, 0.0\right]$

Dokładność: 0.001Liczba iteracji: 9Wynik: [4, 2, -3, 6]

Iteracje:

Count	×1	x2	x3	x4
1	1.0000	0.6400	-2.8000	6.6667
2	4.4720	1.6427	-3.0733	5.5100
3	3.8999	1.9913	-3.1120	5.9133
4	4.0044	1.9612	-2.9878	5.9335
5	3.9771	1.9910	-3.0068	5.9967
6	4.0028	1.9953	-2.9998	5.9924
7	3.9979	1.9992	-3.0011	5.9992
8	4.0002	1.9994	-2.9999	5.9991
9	3.9997	1.9999	-3.0001	5.9999

Różnica odległości między szukanymi punktami x1,x2,x3,x4 a ich przybliżeniem

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego $\left[1.0, 1.0, 1.0, 1.0\right]$

Dokładność: 0.001Liczba iteracji: 9Wynik: [4, 2, -3, 6]

Iteracje:

Count	x1	x2	x3	x4
1	0.8667	1.0400	-2.7000	7.5000
2	4.6920	1.7627	-3.0017	5.6489
3	3.9076	2.0544	-3.1110	5.9975
4	4.0251	1.9759	-2.9770	5.9504
5	3.9773	1.9979	-3.0060	6.0076
6	4.0055	1.9971	-2.9986	5.9946
7	3.9980	2.0001	-3.0010	6.0004
8	4.0005	1.9997	-2.9998	5.9994
9	3.9997	2.0000	-3.0001	6.0001

Różnica odległości między szukanymi punktami x1,x2,x3,x4 a ich przybliżeniem

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego [5.0, 5.0, 5.0, 5.0]

Dokładność: 0.001Liczba iteracji: 10Wynik: [4, 2, -3, 6]

Iteracje:

Count	x1	x2	x3	x4
1	0.3333	2.6400	-2.3000	10.8333
2	5.5720	2.2427	-2.7150	6.2044
3	3.9382	2.3070	-3.1068	6.3342
4	4.1078	2.0350	-2.9338	6.0182
5	3.9782	2.0255	-3.0029	6.0509
6	4.0162	2.0044	-2.9940	6.0031
7	3.9983	2.0036	-3.0007	6.0055
8	4.0017	2.0006	-2.9992	6.0004
9	3.9998	2.0004	-3.0001	6.0007
10	4.0002	2.0001	-2.9999	6.0001

Różnica odległości między szukanymi punktami x1,x2,x3,x4 a ich przybliżeniem

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego [0.0, 0.0, 0.0, 0.0]

Dokładność: 0.000001Liczba iteracji: 21Wynik: [4, 2, -3, 6]

Iteracje:

Count	x1	x2	x3	x4
1	1.0000	0.6400	-2.8000	6.6667
2	4.4720	1.6427	-3.0733	5.5100
3	3.8999	1.9913	-3.1120	5.9133
4	4.0044	1.9612	-2.9878	5.9335
5	3.9771	1.9910	-3.0068	5.9967
6	4.0028	1.9953	-2.9998	5.9924
7	3.9979	1.9992	-3.0011	5.9992
8	4.0002	1.9994	-2.9999	5.9991
9	3.9997	1.9999	-3.0001	5.9999
10	4.0000	1.9999	-3.0000	5.9999
11	4.0000	2.0000	-3.0000	6.0000
12	4.0000	2.0000	-3.0000	6.0000
13	4.0000	2.0000	-3.0000	6.0000
14	4.0000	2.0000	-3.0000	6.0000
15	4.0000	2.0000	-3.0000	6.0000
16	4.0000	2.0000	-3.0000	6.0000

Różnica odległości między szukanymi punktami x1,x2,x3,x4 a ich przybliżeniem

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego [1000.0, 1000.0, 1000.0, 1000.0]

Dokładność: 0.000001Liczba iteracji: 21Wynik: [4, 2, -3, 6]

Count	x1	x2	x3	x4		
1	-132.33	33	400.6400	Э	97.2000	840.0000
2	224.472	Э	121.6427	7	68.5933	144.3989
3	11.5666	65.1468	-2.0565	90.0800		
4	24.6881	16.7389	7.8260	22.8890		
5	4.1991	8.8784	-2.2285	16.8218		
6	6.6959	3.8251	-1.8414	8.1219		

Różnica odległości między szukanymi punktami x1,x2,x3,x4 a ich przybliżeniem

• •

21 4.0000 2.0000 -3.0000 6.0000

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego $\left[5.0, 3.0, -2.0, 7.0\right]$

Dokładność: 0.000001Liczba iteracji: 16Wynik: [4, 2, -3, 6]

Count	x1	x2	х3	x4
1	3.8667	2.4000	-2.9000	6.8333
2	4.2200	2.1200	-2.9283	6.1389
3	4.0077	2.0632	-2.9989	6.0842
4	4.0207	2.0148	-2.9892	6.0170
5	4.0002	2.0069	-2.9992	6.0108
		• •		
12	4.0000	2.0000	-3.0000	6.0000
13	4.0000	2.0000	-3.0000	6.0000
14	4.0000	2.0000	-3.0000	6.0000
15	4.0000	2.0000	-3.0000	6.0000

Wykres pomijający pierwszych 5 iteracji:

Dla punktu startowego [-1000, -1000, -1000, -1000]

Dokładność: 0.000001 Liczba iteracji: 21

Wynik: [4,2,-3,6] Wykres różnic do 5 iteracji:

Wykres różnic od 10 iteracji:

Wykres różnic od 15 iteracji:

6 Wnioski i interpretacja wyników

Im bliższe przybliżanym punktom wartości początkowe, tym mniejsza liczba iteracji Jacobiego będzie potrzebna do wykonania programu.

Przeciwnie jest z dokładnością. Im większa wartość dokładności tym mniej iteracji potrzeba do obliczenia szukanego przybliżenia rozwiżania układu równań. Największe różnice miedzy punktem przybliżanym a uzyskanym przybliżeniem występują w pierwszych iteracjach.

7 Bibliografia

Wykłady przygotowane przez Jaruszewska-Walczak Danuta

Literatura

[1] dr Jaruszewska-Walczak Danuta. wykład nr 10: iteracyjna metoda Jacobiego i metoda Gaussa-Seidla. URL: https://mdl.ug.edu.pl/pluginfile.php/349719/mod_resource/content/1/wykl-10.pdf.

8 Kod programu

```
from matplotlib import pyplot as plt
import pandas as pd
from pprint import pprint
from numpy import array, zeros, diag, diagflat, dot
import numpy as np
x1_list = []
x2_list = []
x3_list = []
x4_list = []
def jacobi(A, b, e=0.1, x=None):
    if x is None:
        x = zeros(len(A[0]))
    D = diag(A)
    R = A - diagflat(D)
    count = 1
    condition = True
    x0 = array(x)
    print('\nCount\tx1\tx2\tx3\tx4\n')
    while condition:
        x = (b - dot(R,x)) / D
        print('\%d\t\%0.4f\t\%0.4f\t\%0.4f\t\%0.4f\n'\ \%(count,\ x[0],x[1],x[2],x[3]))
        x1_{\text{list.append}}(abs(4-x[0]))
        x2_{list.append(abs(2-x[1]))}
        x3_{list.append(abs(-3-x[2]))}
        x4_list.append(abs(6-x[3]))
        e1 = abs(x0[0]-x[0])
        e2 = abs(x0[1]-x[1])
        e3 = abs(x0[2]-x[2])
        e4 = abs(x0[3]-x[3])
        count+=1
        x0=array(x)
        condition = (e1 > e \text{ or } e2 > e \text{ or } e3 > e \text{ or } e4 > e)
    return np.round(x,2)
```

```
A = array([[15.0,3.0, 5.0, -6.0], [4.0,-25.0, 2.0, 4.0], [2.0,-5.0, 20.0, 1.0],
[1.0,3.0, 6.0, -12.0]
b = array([15.0, -16.0, -56, -80])
while True:
   try:
        print('Wprowadź punkty startowe: ')
        p1, p2, p3, p4 = [float(p) for p in input().split()]
        e = float(input('Podaj dokładność: '))
    except ValueError:
        print ('Stosuj się do zasad:/')
    else:
        guess = array([p1,p2,p3,p4])
        sol = jacobi(A,b,e,x=guess)
        break
print ("A:")
pprint(A)
print ("b:")
pprint(b)
print ("x:")
pprint(sol)
plt.plot(x1_list[5:])
plt.plot(x2_list[5:])
plt.plot(x3_list[5:])
plt.plot(x4_list[5:])
wszystkie = []
wszystkie.append(x1_list)
wszystkie.append(x2_list)
wszystkie.append(x3_list)
wszystkie.append(x4_list)
print("Różnica odległości między szua punktami x1,x2,x3,x4 a ich przybliżeniem")
```