

Introduction to

Algorithm Design and Analysis

[9] Hashing

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the last class...

- The searching problem
 - o Organization of data
- Binary search
 - o *logn* search over sorted data
- Red-black tree
 - o *logn* search over BST
 - Definition
 - Insertion, deletion

Hashing

- The searching problem
 - o The ambition of hashing
- Hashing
 - o Direct-address table
 - o Basic idea of hashing
- Collision Handling for Hashing
 - o Closed Address Hashing
 - o Open Address Hashing
- Array Doubling and Amortized Analysis

The Searching Problem

Searching vs. Selection

- o Search for "Alice" or "Bob"
 - The key itself matters
- o Select the "rank 2" student
 - The partial order relation matters

The ambition of hashing

- o Brute force case: O(n)
- o Ideal case: O(1)
- o Hashing: $O(1+\alpha)$

Searching - a Brute Force Approach

- Direct-address table
 - o Take into account the *whole universe* of keys

Direct-address Table

DIRECT-ADDRESS-SEARCH (T, k) return T[k]

DIRECT-ADDRESS-INSERT (T, x)

T[key[x]] := x

DIRECT-ADDRESS-DELETE (T, x)

T[key[x]] := NIL

Hashing: the Idea

Very large, but only a **Hash Table** (in feasible size) small part is used in an application E[0] Index distribution E[1] Collision handling χ Hash **Key Space Function** E[k]H(x)=kValue of a A calculated specific key array index for the key

E[m-1]

Collision Handling: Closed Address

Closed Address - Analysis

- Assumption simple uniform hashing
 - o For j=0,1,2,...,m-1, the average length of the list at E[j] is n/m.
- The average cost of an unsuccessful search:
 - o Any key that is not in the table is equally likely to hash to any of the *m* address.
 - o Total cost $\Theta(1+n/m)$
 - The average cost to determine that the key is not in the list E[h(k)] is the cost to search to the end of the list, which is n/m.

Closed Address - Analysis

- For successful search (assuming that x_i is the ith element inserted into the table, i=1,2,...,n)
 - o For each *i*, the probability of that x_i is searched is 1/n.
 - o For a specific x_i , the number of elements examined in a successful search is t+1, where t is the number of elements inserted into the same list as x_i , after x_i has been inserted

$$\frac{1}{n}\sum_{i=1}^{n}\left(1+t\right)$$

- How to compute t?
 - o Consider the *construction* process of the hash table

Closed Address - Analysis

- For successful search: (assuming that x_i is the i^{th} element inserted into the table, i=1,2,...,n)
 - o For each *i*, the probability of that x_i is searched is 1/n.
 - \circ For a specific x_i , the number of elements examined in a successful search is t+1, where t is the number of elements inserted into the same list as x_i after x_i has been inserted. And for any j, the probability of that x_i is inserted into the same list of x_i is 1/m. So, the cost is:

Cost for computing
$$1 + \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n/1} \frac{1}{m}\right)$$
 Expected number of elements in front of the searched one in the same linked list.

Expected number of

Closed Address: Analysis

- The average cost of a successful search:
 - o Define α=n/m as *load factor*,

The average cost of a successful search is:

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{i=1}^{n} \frac{1}{m} \right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm} \sum_{i=1}^{n-1} i$$

$$= 1 + \frac{n-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} = \Theta(1+\alpha)$$

Number of elements in front of the searched one in the same linked list

Collision Handling: Open Address

- All elements are stored in the hash table
 - No linked list is used
 - o The load factor α can not be larger than 1.
- Collision is settled by "rehashing"
 - o A function is used to get a new hashing address for each collided address
 - The hash table slots are *probed* successively, until a valid location is found.
- The probe sequence can be seen as a permutation of (0,1,2,..., *m*-1)

Commonly Used Probing

Linear probing:

Given an ordinary hash function h', which is called an auxiliary hash function, the hash function is: (clustering may occur)

$$h(k,i) = (h'(k)+i) \mod m \quad (i=0,1,...,m-1)$$

Quadratic Probing:

Given auxiliary function h' and nonzero auxiliary constant c_1 and c_2 , the hash function is: (secondary clustering may occur)

$$h(k,i) = (h'(k)+c_1i+c_2i^2) \mod m \quad (i=0,1,...,m-1)$$

Double hashing:

Given auxiliary functions h_1 and h_2 , the hash function is:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m \quad (i=0,1,...,m-1)$$

Linear Probing: An Example

Equally Likely Permutations

Assumption

o Each key is equally likely to have any of the *m*! permutations of (1,2...,*m*-1) as its probe sequence.

Note

o Both linear and quadratic probing have only *m* distinct probe sequence, as determined by the first probe.

Analysis for Open Address Hashing

- The average number of probes in an unsuccessful search is at most $1/(1-\alpha)$ ($\alpha=n/m<1$)
 - o Assuming uniform hashing

The probability of the first probed position being occupied is $\frac{n}{m}$, and that of the $j^{th}(j > 1)$ position occupied is $\frac{n-j+1}{m-j+1}$. So the probability of the number of probes no less than i will be:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdot \dots \cdot \frac{n-i+2}{m-i+2} \le (\frac{n}{m})^{i-1} = \alpha^{i-1}$$

The the average number of probe is: $\sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}$

Analysis for Open Address Hashing

• The average cost of probes in an successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ ($\alpha = n/m < 1$)

o Assuming uniform hashing

To search for the $(i+1)^{th}$ inserted element in the table, the cost is the same as that for inserting it when there are just i elements in the table.

At that time, $\alpha = \frac{i}{m}$. So the cost is $\frac{1}{1 - \frac{i}{m}} = \frac{m}{m - i}$.

So the average cost for a successful search is:

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \sum_{i=m-n+1}^{m} \frac{1}{i}$$

$$\leq \frac{1}{\alpha} \int_{-\infty}^{m} \frac{dx}{x} = \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

For your reference:

Half full: 1.387;

90% full: 2.559

Hash Function

- A good hash function satisfies the assumption of simple uniform hashing.
 - Heuristic hashing functions
 - The division method: $h(k)=k \mod m$
 - The multiplication method: $h(k) = \lfloor m(kA \mod 1) \rfloor$ (0<A<1)
 - o No single function can avoid the worst case $\Theta(n)$.
 - So, "Universal hashing" is proposed.
 - o Rich resource about hashing function
 - Gonnet and Baeza-Yates: Handbook of Algorithms and Data Structures, Addison-Wesley, 1991.

Array Doubling

- Cost for search in a hash table is $\Theta(1+\alpha)$
 - o If we can keep α constant, the cost will be $\Theta(1)$
- What if the hash table is more and more loaded?
 - Space allocation techniques such as array doubling may be needed.
- The problem of "unusually expensive" individual operation.

Looking at the Memory Allocation

- hashingInsert(HASHTABLE *H*, ITEM *x*)
- integer *size*=0, *num*=0;
- if *size*=0 then allocate a block of size 1; *size*=1;
- if *num=size* then
- allocate a block of size 2size;
- move all item into new table;
- size=2size;
- insert *x* into the table;
- *num=num+1*;

Elementary insertion: cost 1

Insertion with

expansion: cost size

return

Worst-case Analysis

- For n execution of insertion operations
 - o A bad analysis: the worst case for the insertion is the case when expansion is required, up to *n*
 - o So, the worst case cost is in $O(n^2)$.
- Note the expansion is required during the ith operation only if $i=2^k$, and the cost of the ith operation

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is exactly the power of 2} \\ 1 & otherwise \end{cases}$$

So the total cost is: $\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + 2n = 3n$

Amortized Analysis – Why?

- Unusually expensive operations
 - o E.g., Insert-with-array-doubling
- Relation between expensive and usual operations
 - Each piece of the doubling cost corresponds to some previous insert

Amortized Analysis

- Amortized equation:
 - $amortized\ cost = actual\ cost + accounting\ cost$
- Design goals for accounting cost
 - o In any legal sequence of operations, the sum of the accounting costs is nonnegative.
 - The amortized cost of each operation is fairly regular, in spite of the wide fluctuate possible for the actual cost of individual operations.

Amortized Analysis: MultiPop Stack

Amortized cost: push:2; pop, multipop: 0

Amortized Analysis: Binary Counter

0	00000000	0	
1	$0\ 0\ 0\ 0\ 0\ 0\ 1$	1	
2	00000010	3	Cost measure: bit flip
3	00000011	4	o set more on the map
4	00000100	7	
5	00000101	8	
6	00000110	10	amortized cost:
7	00000111	(11)	ant 1. 0
8	00001000	15	set 1: 2
9	00001001	16	set 0: 0
10	00001010	18	
11	00001011	19	
12	00001100	22	
13	00001101	23	
14	00001110	25	
15	00001111	26	
16	00010000	31	

Accounting Scheme for Stack Push

- Push operation with array doubling
 - o No resize triggered: 1
 - o Resize($n\rightarrow 2n$) triggered: nt+1 (t is a constant)
- Accounting scheme (specifying accounting cost)
 - o No resize triggered: 2*t*
 - o Resize($n \rightarrow 2n$) triggered: -nt+2t
- So, the amortized cost of each individual push operation is $1+2t\in\Theta(1)$

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

