Permit Number 2489A

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No	No. (1) Source Name (2) Air Contaminant Name (3		(3)	Emission Rate		
					lbs/hour	TPY (4)
MELT SHOP						
ST-B1	FAF-2	Ladle- 2 Drying and So	crap Drying Baghouse Stack	СО	1.55	3.07
	L/ (1 2,	Edule 2 Dryllig, and 30	Stap Brying Bagnouse Stack	NO _x	0.86	2.51
				РМ	0.12	0.43
				PM ₁₀	0.12	0.43
		ORAFT	PM _{2.5}	0.12	0.43	
			SO ₂	0.06	0.58	
				voc	0.11	0.25
ST-B8		EAF 2 Bagho	ouse Stack	СО	22.95	44.46
				NO _x	8.69	15.68
				РМ	0.21	0.90
				PM ₁₀	0.21	0.90
				PM _{2.5}	0.21	0.90
				SO ₂	1.14	2.65
				voc	1.66	3.87
ST-B24	EAF-3,	Ladle-4 Drying, and So	crap Drying Baghouse Stack	СО	29.33	47.53
				NO _x	8.92	61.74
				РМ	0.31	1.26
				PM ₁₀	0.31	1.26

		DN (0.01	1.00
		PM _{2.5}	0.31	1.26
		SO ₂	1.44	3.63
		VOC	2.12	4.12
FOUNDRY OPERATI	ONS			
ST-SCR2	Cold Box Core Making Scrubber Stack	voc	0.12	1.00
ST-B9	B9 Baghouse Stack	СО	17.66	-
	FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL,MBC-1, RNST, SCC, KRST,ASPF,SFC, and ESO	NO _x	0.37	-
	RNS1, SCC, RRS1,ASPF,SFC, allu ESC	РМ	0.13	0.54
		PM ₁₀	0.13	0.54
		PM _{2.5}	0.13	0.54
		SO ₂	3.86	-
	apri	VOC	26.84	-
ST-B14	B14 Baghouse Stack	СО	17.66	-
	FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL,MBC-1, RNST, SCC, KRST,ASPF,SFC, and ESO	NO _x	0.37	-
	1(101, 000, 1(101, 101 1, 01 0, und 200	РМ	0.14	0.58
		PM ₁₀	0.14	0.58
		PM _{2.5}	0.14	0.58
		SO ₂	3.86	-
		voc	26.84	-
ST-B15	B-15 Baghouse Stack	СО	17.66	-
	FINS: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL, MBC-1,	NO _x	0.37	-
	RNST, SCC, KRST,ASPF,SFC, and ESO	РМ	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		SO ₂	3.86	-

		VOC	26.84	-
ST-B18	B-18 Baghouse Stack	СО	17.66	-
	FINS: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL, MBC-1,	NO _x	0.37	-
	RNST, SCC, KRST,ASPF,SFC, and ESO	РМ	0.27	1.14
		PM ₁₀	0.27	1.14
		PM _{2.5}	0.27	1.14
		SO ₂	3.86	-
		voc	26.84	-
ST-B19	B-19 Baghouse Stack	СО	17.66	-
	FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL,MBC-1, RNST, SCC, KRST,ASPF,SFC, and ESO	NO _x	0.37	-
		РМ	0.33	1.40
	DRAFT	PM ₁₀	0.33	1.40
	OFC.	PM _{2.5}	0.33	1.40
		SO ₂	3.86	-
		voc	26.84	-
ST-B20	B-20 Baghouse Stack	СО	17.66	1
	FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL,MBC-1, RNST, SCC, KRST,ASPF,SFC, and ESO	NO _x	0.37	1
	rater, eee, rater, terr, er e, and eee	РМ	0.16	0.66
		PM ₁₀	0.16	0.66
		PM _{2.5}	0.16	0.66
		SO ₂	3.86	-
		VOC	26.84	-

ST-B21	B-21 Baghouse Stack	СО	17.66	-
	FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, MILL,MBC-1, RNST, SCC, KRST,ASPF,SFC, and ESO	NO _x	0.37	-
	RNS1, SCC, RRS1,ASFF,SFC, and ESC	РМ	0.13	0.54
		PM ₁₀	0.13	0.54
		PM _{2.5}	0.13	0.54
		SO ₂	3.86	-
		voc	26.84	-
ST-B9, ST-B14, ST-B15, ST-B18,	B-9, B14, B15,B18, B19, B20, and B21 Baghouse Stacks FINs: SFNST, SFRST, SFHSE-1, SFHSE-2, Mill, MBC-1,	СО	-	36.73
ST-B19, ST-B20, and ST-B21		NO _x	-	0.76
3		SO ₂	-	8.03
		voc	-	55.84
ST-B25	B 25 Baghouse Stack	СО	0.64	2.29
	FINs: FSH, MBC-2, RST, ASTR, RSBC	NO _x	0.56	2.03
		РМ	0.38	1.36
		PM ₁₀	0.38	1.36
		PM _{2.5}	0.38	1.36
		SO ₂	<0.005	0.02
		voc	1.03	3.70
ST-B26	B-26 Baghouse Stack FINs: NFBB, NFNST, and	РМ	0.03	0.12
	CORE-1B	PM ₁₀	0.03	0.12
		PM _{2.5}	0.03	0.12
		VOC	5.28	-

ST-B27	Air Set Mixer Baghouse Stack	PM	0.03	0.12
		PM ₁₀	0.03	0.12
		PM _{2.5}	0.03	0.12
		VOC	5.28	-
ST-B26 and ST-B27	B26 and B27 Baghouse Stacks FINs: NFBB,NFNST, CORE-1B, and Air Set Mixer	VOC	-	10.99
BLDGFUG	South Foundry Buillding Fugitives (5)	СО	0.76	1.41
	FINs: MOLD-1, MWAF-F, ASTORCH, CMW, CTORCH, CORE-1A, CORE-1D,	NO _x	0.71	1.68
	RTNK-1, and RTNK-2	РМ	0.86	1.46
		PM ₁₀	0.86	1.46
		PM _{2.5}	0.86	1.46
	SRAFT	SO ₂	0.004	0.01
	$\Diamond_{\mathbf{z}}$	voc	15.90	21.61
Target Foundry Ope	rations			
ST-B22	B22 Baghouse Stack	РМ	0.31	1.30
	FINs: DAFM-1, TFSFRST,TFSFFRS, TFSFM, TFSFHSE-1, TFSFHSE-2, TFSFMC, SOE-3, TFSFSRC,	PM ₁₀	0.31	1.30
	TFSFPO, TFSFNST, TFSFNSB, TFSFBB,	PM _{2.5}	0.31	1.30
	TFSFSD, TFSFSR, DAFM-2	СО	0.59	-
		NO _x	0.62	-
		SO ₂	<0.004	-
		VOC	9.24	-

ST-B23	B23 Baghouse Stack	РМ	0.31	1.30
	FINs: DAFM-1, TFSFRST,TFSFRS, TFSFM,	PM ₁₀	0.31	1.30
	TFSFHSE-1, TFSFHSE-2, TFSFMC, SOE-3, TFSFSRC,TFSFPO,TFSFNST,	PM _{2.5}	0.31	1.30
	TFSFNSB, TFSFBT,TFSFBB, TFSFSD, TFSFSR, DAFM-2	СО	0.59	-
		NO _x	0.62	-
		SO ₂	<0.004	-
		VOC	9.24	-
ST-B22 and ST-B23	B22 and B23 Baghouse Stacks FINs: DAFM-1, TFSFRST,TFSFRS, TFSFM,	со	-	1.07
	TFSFHSE-1, TFSFHSE-2, TFSFMC, SOE-3, TFSFSRC,TFSFPO,TFSFNST,	NOx	-	1.27
	TFSFSRC, TFSFPO, TFSFNST, TFSFNSB, TFSFBT, TFSFBB, TFSFSD, TFSFSR, DAFM-2	SO ₂	-	<0.008
		VOC	-	21.02
TFBLDGFUG	Target Feandry Building Fugitives (5)	РМ	0.08	0.18
	OK.	PM ₁₀	0.08	0.18
		PM _{2.5}	0.06	0.14
FINISHING OPERATI	IONS			
AUSTFURN1B	Austenizing Furnace 1B Stack	РМ	0.01	-
	Stack	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.13.	-
		NO _x	0.09	-
		SO ₂	<0.001	-
		VOC	0.008	-

AUSTFURN2B	Austenizing Furnace 2B	РМ	0.01	-
	Stack	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.13.	-
		NO _x	0.09	-
		SO ₂	<0.001	-
		VOC	0.008	-
AUSTFURN3B	Austenizing Furnace 3B	РМ	0.01	-
	Stack	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.13.	-
	ORAFT	NOx	0.09	-
	OR"	SO ₂	<0.001	-
		VOC	0.008	-
AUSTFURN4B	Austenizing Furnace 4B Stack	РМ	0.01	-
	Stack	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.13.	-
		NO _x	0.09	-
		SO ₂	<0.001	-
		voc	0.008	-
AUSTFURN5	Austenizing Furnace 5 Stack	РМ	0.01	0.02
	Cidon	PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		СО	0.13.	0.17

		NO _x	0.09	0.12
		SO ₂	<0.001	0.0012
		voc	0.008	0.01
TEMPFUR1B	Tempering Furnace 1B Stack	PM	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.0061	-
		со	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR2B	Tempering Furnace 2B Stack	РМ	0.006	-
	DRAFT	PM ₁₀	0.006	-
	O'R'	PM _{2.5}	0.006	-
		со	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR3B	Tempering Furnace 3B Stack	PM	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		со	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR4B	Tempering Furnace 4B Stack	РМ	0.006	-

		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR5B	Tempering Furnace 5B Stack	РМ	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-
	ORAFT	SO ₂	<0.001	-
	OR	VOC	0.004	-
TEMPFUR6B	Tempering Furnace 6B Stack	РМ	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR7B	Tempering Furnace 7B Stack	РМ	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-

		SO ₂	<0.001	_
		VOC	0.004	-
TEMPFUR8B	Tempering Furnace 8B Stack	PM	0.006	
	rempering rundes of Guten	PM ₁₀	0.006	_
		PM _{2.5}	0.006	-
		CO	0.06.	_
		NO _x	0.05	- -
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR9B	Tempering Furnace 9B Stack	PM	0.006	-
	1	PM ₁₀	0.006	-
	ORAFT	PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR10B	Tempering Furnace 10B Stack	PM	0.006	-
		PM ₁₀	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO _x	0.05	-
		SO ₂	<0.001	-
		VOC	0.004	-
TEMPFUR11B	Tempering Furnace 11B Stack	PM	0.006	-
		PM ₁₀	0.006	-

		$PM_{2.5}$	0.006	-
		СО	0.06.	-
		NO_x	0.05	-
		SO_2	<0.001	-
		VOC	0.004	-
TEMPFUR12B	Tempering Furnace12B Stack	PM	0.006	-
		PM_{10}	0.006	-
		PM _{2.5}	0.006	-
		СО	0.06.	-
		NO_x	0.05	-
		SO_2	<0.001	-
	SEAFT	VOC	0.004	-
AUSTFURN1B-4B and TEMPFUR1B-12B	Heat Treat Facility B Fins: AUSTFUR1B-4B, and	PM	-	0.15
	TEMPFUR1B-12B	PM ₁₀	-	0.15
		PM _{2.5}	-	0.15
		СО	-	1.67
		NO_x	-	1.18
		SO ₂	-	0.01
		VOC	-	0.11
DRWFURN	Draw Furnace (5)	PM	0.03	0.11
		PM_{10}	0.03	0.11
		PM _{2.5}	0.03	0.11
		СО	0.35	1.23

		NO _x	0.42	1.46
		SO ₂	<0.003	<0.009
		VOC	0.02	0.08
CT6	Heat Treat B Cooling Tower	PM	0.0042	0.02
010	rical freat B cooming fower	PM ₁₀	0.0016	<0.007
		PM _{2.5}	0.0016	<0.007
BTH-1	Spray Paint Booth	РМ	<0.008	-
		PM ₁₀	<0.008	-
		PM _{2.5}	<0.008	-
		VOC	3.78	
BTH-2	Spray Paint Booth	PM	<0.007	-
	Spray Paint Booth	PM ₁₀	<0.007	-
	Ø,	PM _{2.5}	<0.007	-
		VOC	3.18	-
BTH-1	Spray Paint Booth Stack	РМ	-	0.04
		PM ₁₀	-	0.04
		PM _{2.5}	-	0.04
		VOC	-	9.00

PBHTR1	Paint Booth Heater 1 Stack	РМ	<0.002	<0.01
		PM ₁₀	<0.002	<0.01
		PM _{2.5}	<0.002	<0.01
		СО	0.02	0.04
		NO_{x}	0.01	0.02
		SO ₂	<0.0002	<0.0003
		VOC	<0.002	<0.003
PBHTR2	Paint Booth Heater 2 Stack	PM	<0.002	<0.01
		PM_{10}	<0.002	<0.01
		PM _{2.5}	<0.002	<0.01
		СО	0.02	0.04
	ORAFT	NO_{x}	0.01	0.02
	Ο''	SO ₂	<0.0002	<0.0003
		VOC	<0.002	<0.003
PBHTR3	Paint Booth Heater 3 Stack	PM	<0.002	<0.01
		PM ₁₀	<0.002	<0.01
		$PM_{2.5}$	<0.002	<0.01
		СО	0.02	0.04
		NO_{x}	0.01	0.02
		SO ₂	<0.0002	<0.0003
		VOC	<0.002	<0.003
INSPECTFUG	Inspection Area (6)	PM	0.29	0.20
		PM_{10}	0.29	0.20
		$PM_{2.5}$	0.29	0.20
		VOC	7.52	5.19

1			T	1
STGBLDGFUG	Aerosol Can Puncturing Station	VOC	0.14	0.09
SP1	Byproduct Storage Area Pile 1 (5)	PM	0.10	0.33
	(0)	PM ₁₀	0.05	0.17
		PM _{2.5}	<0.007	0.02
SP2	Byproduct Storage Area Pile2	PM	0.02	0.08
	,	PM ₁₀	0.01	0.04
		PM _{2.5}	<0.002	<0.006
RDFUG	Road Fugitives (5)	РМ	2.03	2.84
		PM ₁₀	0.44	0.66
		PM _{2.5}	0.08	0.10
ST-B11	Baghouse B11 Stack	PM	0.42	1.50
	Bathouse B11 Stack	PM ₁₀	0.42	1.50
	◇ ′	PM _{2.5}	0.42	1.50
ST-B10	Torch Table 1 and 2 Stack	РМ	0.25	0.91
		PM ₁₀	0.25	0.91
		PM _{2.5}	0.25	0.91
ST-B16	North Arc Wash Stack	РМ	0.15	0.55
		PM ₁₀	0.15	0.55
		PM _{2.5}	0.15	0.55

CLNRM-2 FUG	Casting Cleaning FIN: Torch (5)	СО	0.25	0.89
	File. Folcii (5)	NO _x	0.30	1.06
		РМ	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		SO ₂	0.0018	0.0064
		voc	0.02	0.06
Standard				
106.320-				
OVENFUG -A	Heat Treat Oven A (5 & 8)	РМ	0.06	0.14
		PM ₁₀	0.06	0.14
	ORAFT	PM _{2.5}	0.06	0.14
	OK.	СО	0.31	0.68
		NO _x	0.41	0.90
		SO2	0.005	0.01
		VOC	0.05	0.10
OVENFUG-B	Heat Treat Oven B (5 & 8)	РМ	0.06	0.14
		PM ₁₀	0.06	0.14
		PM _{2.5}	0.06	0.14
		СО	0.31	0.68
		NO _x	0.41	0.90
		SO2	0.005	0.01
		VOC	0.05	0.10

OVENFUG- C	Heat Treat Oven C (5 & 8)	PM	0.06	0.14
	rioda rioda o tom o (o d o)	PM ₁₀	0.06	0.14
		PM _{2.5}	0.06	0.14
		СО	0.31	0.68
		NO _x	0.41	0.90
		SO2	0.005	0.01
		VOC	0.05	0.10
OVENFUG-E	Heat Treat Oven E (5)	РМ	0.06	0.14
		PM ₁₀	0.06	0.14
		PM _{2.5}	0.06	0.14
	,	СО	0.31	0.68
	ORAFT	NO _x	0.41	0.90
		SO2	0.005	0.01
		voc	0.05	0.10
AUSTFURN1	Austenizing Furnace 1	РМ	0.01	-
	J	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.01	-
		NO _x	0.16	-
		SO2	<0.001	-
		VOC	<0.01	-
AUSTFURN2	Austenizing Furnace 2	РМ	0.01	-
		PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.01	-

		NO _x	0.16	-
		SO2	<0.001	_
		voc	<0.001 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 -	-
AUSTFURN3	Austenizing Furnace 3	РМ	0.01	-
		PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		СО	0.01	-
NO _x 0.16			,	
SO2 <0.001				
	Austenizing Furnace 4	VOC	<0.01	-
AUSTFURN4	**ustenizing Furnace 4	РМ	0.01	_
	◇ `	PM ₁₀	0.01	-
		PM _{2.5}	0.01	-
		со	0.01	-
		NO _x	0.16	-
		SO2	<0.001	-
		voc	<0.01	-
TEMPFURN1	Tempering Furnace #1	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	_
		voc	0.004	-

TEMPFURN2	Tempering Furnace #2	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		voc	0.004	-
TEMPFURN3	Tempering Furnace #3	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
	ORAFT	NO _x	0.06	-
	ORI	SO2	<0.001	-
		voc	0.004	-
TEMPFURN4	Tempering Furnace #4	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM 2.5	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-

TEMPFURN5	Tempering Furnace #5	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-
TEMPFURN6	Tempering Furnace #6	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
	DRAFT	NOx	0.06	-
	Q.C.	SO2	<0.001	-
		VOC	0.004	-
TEMPFURN7	Tempering Furnace #7	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-

TEMPFURN8	Tempering Furnace #8	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-
TEMPFURN9	Tempering Furnace #9	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
	,	СО	0.06	-
	ORAFT	NO _x	0.06	-
	OR'	SO2	<0.001	-
		voc	0.004	-
TEMPFURN10	Tempering Furnace #10	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		voc	0.004	-
TEMPFURN11	Tempering Furnace #11	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-

		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-
TEMPFURN12	Tempering Furnace #12	PM	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-
AUSTFUR 1-4	Heat Treat Facility A	РМ	-	0.15
aliti	ORAFT	PM ₁₀	-	0.15
	ORI	PM _{2.5}	-	0.15
		СО	-	1.46
		NO _x	-	2.15
		SO2	-	0.01
		VOC		0.11
S E 102: Registration No.				
ST-B17	Shot Blast No. 7 Baghouse Stack	PM	0.26	1.37
		PM ₁₀	0.26	1.37
		PM _{2.5}	0.26	1.37
S.E. 40: Hand Held				
and Manuallv CLEANRM-1 (7)	Break-Off Area (5)	РМ	0.85	1.58
		PM ₁₀	0.85	1.58
		PM _{2.5}	0.26	0.47
	Stand Grinders	РМ	0.85	0.22
Project Number: 177256				

			1	
		СО	0.06	-
		NO _x	0.06	_
		SO2	<0.001	_
		VOC	0.004	_
TEMPFURN9	Tempering Furnace #9	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		voc	0.004	-
TEMPFURN10	Tempering Furnace #10	РМ	<0.006	-
	♥	PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		VOC	0.004	-
TEMPFURN11	Tempering Furnace #11	РМ	<0.006	-
		PM ₁₀	<0.006	-
		PM _{2.5}	<0.006	-
		СО	0.06	-
		NO _x	0.06	-
		SO2	<0.001	-
		voc	0.004	-

Tempering Furnace #12	PM	<0.006	-
	PM ₁₀	<0.006	-
	PM _{2.5}	<0.006	-
	СО	0.06	-
	NO _x	0.06	-
	SO2	<0.001	-
	voc	0.004	-
Heat Treat Facility A	РМ	-	0.15
FINs: Austenizing Furnaces 1-4	PM ₁₀	-	0.15
Tempering Furnaces 1-12	PM _{2.5}	-	0.15
	СО	-	1.46
	NO _x	-	2.15
OR	SO2	-	0.01
	VOC		0.11
No. 31190	1		1
Shot Blast No. 7 Baghouse Stack	РМ	0.26	1.37
	PM ₁₀	0.26	1.37
	PM _{2.5}	0.26	1.37
d Manually Operated Machines	•	•	1
Break-Off Area (5)	РМ	0.85	1.58
	PM ₁₀	0.85	1.58
	PM _{2.5}	0.26	0.47
Stand Grinders	РМ	0.85	0.22
FIN. GKIND-1	PM ₁₀	0.85	0.22
	PM _{2.5}	0.26	0.07
	FINs: Austenizing Furnaces 1-4 and Tempering Furnaces 1-12 No. 31190 Shot Blast No. 7 Baghouse Stack d Manually Operated Machines Break-Off Area (5)	PM ₁₀ PM ₂₅ CO NO _x SO2 VOC Heat Treat Facility A PM PM ₁₀ PM ₁₀ PM ₁₀ PM ₁₀ PM ₂₅ CO NO _x SO2 VOC PM PM ₁₀ PM ₂₅ CO NO _x SO2 VOC NO. 31190 PM ₂₅ PM PM ₁₀ PM ₂₅ PM PM ₁₀ PM ₂₅ PM PM ₁₀ PM ₂₅ Stand Grinders PM PM ₁₀ PM ₂₅ Stand Grinders PM PM ₁₀ PM ₂₅ PM PM ₁₀ PM ₁₀	PM ₁₀ <0.006 PM ₂₅ <0.006 PM ₂₅ <0.006 CO 0.06

	Booth Grinders FIN: GRIND -2	РМ	0.04	0.09
	22	PM ₁₀	0.04	0.09
		PM _{2.5}	0.04	0.09
Wood-2	Pattern Shop (5)	РМ	<0.002	<0.002
		PM10	<0.002	<0.002
		PM2.5	<0.002	<0.002
PBR 106.265: Hand F	leld and Manually Operated Machines	I		
FITFUG	Finishing Operations (5)	РМ	0.85	1.98
		PM10	0.85	1.98
		PM2.5	0.26	0.59
S.E. 102: Abrasive C	Cleaning		L	
ST-B3	Shot Blast No. 1	РМ	0.08	0.27
	Office.	PM10	0.08	0.27
		PM2.5	0.08	0.27
ST-B17	Shot Blast Machine N0. 7	РМ	0.38	1.37
		PM10	0.38	1.37
		PM2.5	0.38	1.37
ST-B7	Shot Blast Machine No. 4	РМ	0.02	0.06
		PM10	0.02	0.06
		PM2.5	0.02	0.06
PBR 106.183 Boilers	, Heaters, and Other Combustion Devices			
НТВОХ	Hot Box Oven (5 & 9)	РМ	<0.006	0.02
		PM10	<0.006	0.02
		PM2.5	<0.006	0.02
		СО	0.06	0.22

		NO _x	0.07	0.26
		SO ₂	<0.001	<0.0016
		VOC	0.004	0.01
PBR 106.454 Degrea	asing Unit	1,00	0.004	0.01
	-			
DEGREASER	Maintenance Shop Parts Washer (5 & 10)	VOC	0.28	0.65
PBR 106.371 Coolin	g Water Units			
CT-1	EAF Cooling Tower	РМ	0.01	0.04
		PM10	<0.004	0.02
		PM2.5	<0.004	0.02
CT-2	Target Foundry Cooling Tower	PM	0.004	0.02
		PM10	<0.002	<0.007
		PM2.5	<0.002	<0.007
CT-3	Heat Treat Cooling Tower	РМ	0.004	0.02
		PM10	<0.002	<0.007
		PM2.5	<0.002	<0.007
CT-4	EVAPCO Cooling Tower	PM	0.005	0.02
		PM10	<0.002	<0.009
		PM2.5	<0.002	<0.009
CT-5	Target EAF Cooling Tower	РМ	0.01	0.04
		PM10	<0.004	0.02
		PM2.5	<0.004	0.02

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) Exempt Solvent - Those carbon compounds or mixtures of carbon compounds used as solvents which have been excluded from the definition of volatile organic compound.

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40

Code of Federal Regulations Part 63, Subpart C

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

- (6) Some fugitives from aerosol spray cans used in the Inspection Area, EPN INSPECTFUG, may also be used and emitted through the FIT Building, EPN FITFUG.
- (7) FINs BREAKOFF, GRIND-1, and GRIND-2 emit fugitives out of the CLEANRM-1 area.
- (8) FINs OVN-A, OVN-B, and OVN-C emit fugitives out of the inspection building at EPN INSPECTFUG.
- (9) FIN HTBOX emits fugitives out of the building at EPN CLEANRM-2 FUG.
- (10) FIN DEGREASER emits fugitives out of the FIT Building at EPN FITFUG.

Date:	

