

Scanned by CamScanner

hob! Find the minimum distance of an interior point (1,1) from the curve $(x-2)^2 + y^2 = 9$ (22) (x-2) + y = q.

We have to find y = y(x) that minimizes $I[y(x)] = \begin{cases} 1 + y^2 & dx \end{cases}$. where (α_2, γ_2) lies on the circle $(\alpha-2)^2 + \gamma^2 = 9$. Then y= y(2) will satisfy .. fy - da fy = 0. (x-2)+4=9. and $\left[f + (4' - 4') t_{4'}\right]_{x=x_2} = 0$ y= 9- (x-2) Y=+ \(9-(2-2)^2 where $Y = \sqrt{9 - (x - 2)^2}$ Y = 4(4)y= y(2) f= 1+412 fy,=0. f doesn't contain y expli E-L-E becomes -citly, - f doesn't contain a explicitly, then, f-y'fy, = coust. dity1=0. VI+712 - 71. 4/ = Co y" fy'y, =0. $07, \frac{1+\sqrt{1-4/2}}{\sqrt{1+4/2}} = C_0.$ Now, by'y1 = 1. (1+412)3/2 $1 + 4'^2 = \frac{1}{6^2} = c^2$ either y"=0 or fy'y =0 but, fy \$0 $y'^2 = c^2 - 1 = a^2$ y"=0 => y'= a 63 y'= = a => == ax+l. y=ax+6.

Scanned by CamScanner

/ y=ax+l. passes through (1,1) & (12,42) i. a+b=1, and $ax_2+b=y_2 \rightarrow (2)$. (χ_2, χ_2) lies on the circle $y = \sqrt{9 - (\chi - 2)^2}$. The transversality condition is, (3)Theor. $[f + (Y'-Y')f_{Y'}]_{x=x_2}^{2}$ $f = \sqrt{1+Y'^2}$, $Y = \sqrt{9-(x-2)^2}$ $\frac{1}{2}$ $-\frac{1}{4} = \frac{-(2-2)}{\sqrt{q-(2-2)^2}}$ $\begin{cases} \sqrt{1+y'^2} + \sqrt{-\frac{x-2}{9-(x-2)^2}} - y' \sqrt{\frac{y'}{1+y'^2}} = 0. \\ \sqrt{1+y'^2} + \sqrt{1+y'^2} = 0. \end{cases}$ $07, \sqrt{1+4^{12}} - \frac{4^{2}}{\sqrt{1+4^{12}}} - \frac{(x-2)}{\sqrt{9-(x-2)^{2}}} \times \sqrt{\frac{4^{2}}{1+4^{12}}} = 0$ $07, \sqrt{1+4^{12}} - \frac{(x-2)}{\sqrt{1+4^{12}}} \times \sqrt{\frac{4^{2}}{1+4^{12}}} = 0$ $07, \sqrt{1+4^{12}} - \frac{(x-2)}{\sqrt{1+4^{12}}} \times \sqrt{\frac{4^{2}}{1+4^{12}}} = 0$ $\sqrt{1+4^{12}} - \sqrt{1+4^{12}} = 0$ or, $\sqrt{9-(n_2-2)^2} = (x_2-2) \forall 1 \longrightarrow (40)$. Y=ax+l, Y'=a. $\sqrt{q-(x_2-2)^2}=(x_2-2).a\longrightarrow (4)$

Scanned by CamScanner