Variables aléatoires entières symétriques à forte dispersion

Dans tout le sujet, on fixe un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ sur lequel toutes les variables aléatoires considérées sont définies. On utilisera systématiquement la locution « variable aléatoire » pour parler d'une variable aléatoire réelle discrète, et « variable aléatoire entière » pour parler d'une variable aléatoire à valeurs dans \mathbf{Z} . On pourra noter :

$$X(\Omega) = \{x_n, n \in I\}$$

où I est un sous-ensemble fini ou dénombrable de N et $x_n \in \mathbf{R}$ pour tout $n \in I$.

Définition 1 (Dispersion d'ordre α). On fixe un réel $\alpha > 0$. Soit $X : \Omega \to \mathbf{R}$ une variable aléatoire. On dit que X vérifie la condition (\mathcal{D}_{α}) – dite de dispersion d'ordre α – lorsque, quand n tend vers $+\infty$,

$$\mathbf{P}(|X| \geqslant n) = \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right). \tag{1}$$

Définition 2 (Variables aléatoires symétriques). On dit que X est symétrique lorsque -X suit la même loi que X, autrement dit lorsque :

$$\forall x \in X(\Omega), \quad \mathbf{P}(X=x) = \mathbf{P}(X=-x). \tag{2}$$

On admet le principe de transfert de l'égalité en loi :

Théorème 1. Étant donné deux variables aléatoires X et Y prenant leurs valeurs dans un même ensemble E, ainsi qu'une application $u: E \to F$, si X et Y suivent la même loi alors u(X) et u(Y) aussi.

Dans tout le sujet, on se donne une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires entières, mutuellement indépendantes, toutes de même loi, symétriques, et vérifiant la condition (\mathcal{D}_{α}) . On admet que sous ces conditions la variable X_{n+1} est indépendante de $X_1 + \cdots + X_n$ pour tout $n \in \mathbb{N}^*$.

On pose, pour tout $n \in \mathbf{N}^*$,

$$M_n := \frac{1}{n} \sum_{k=1}^n X_k$$

appelée n^e moyenne empirique des variables X_k . L'objectif du sujet est d'établir la convergence simple d'une suite de fonctions associées aux variables M_n .

Les trois premières parties (la 3 supprimée) du sujet sont totalement indépendantes les unes des autres.

Questions de cours

- 1. Soit X une variable aléatoire. Rappeler la définition de « X est d'espérance finie ». Montrer alors que X est d'espérance finie si et seulement si |X| est d'espérance finie.
- 2. Soit X une variable aléatoire. Montrer que si X est bornée, autrement dit s'il existe un réel $M \ge 0$ tel que $\mathbf{P}(|X| \le M) = 1$, alors X est d'espérance finie.

Généralités sur les variables aléatoires

- 3. Soit X une variable aléatoire entière vérifiant (\mathcal{D}_{α}) . Montrer que X n'est pas d'espérance finie, et que X^2 non plus.
- 4. Soient X une variable aléatoire symétrique, et $f: \mathbf{R} \to \mathbf{R}$ une fonction impaire. Montrer que f(X) est symétrique, et que si f(X) est d'espérance finie alors $\mathbf{E}(f(X)) = 0$.
- 5. Soient X et Y deux variables aléatoires symétriques indépendantes. En comparant la loi de (-X, -Y) à celle de (X, Y), démontrer que X + Y est symétrique.

On admet que:

$$\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) \quad \text{et} \quad \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} = \frac{\pi - \theta}{2}.$$

Fonction caractéristique d'une variable aléatoire symétrique

On fixe dans cette partie une variable aléatoire symétrique X. On pose :

$$\Phi_X : \left\{ \begin{array}{ccc} \mathbf{R} & \longrightarrow & \mathbf{R} \\ t & \longmapsto & \mathbf{E} \left(\cos(tX) \right), \end{array} \right.$$

appelée fonction caractéristique de X.

- 6. Montrer que Φ_X est bien définie, paire et que : $\forall t \in \mathbf{R}, |\Phi_X(t)| \leq 1$.
- 7. En utilisant le théorème du transfert, montrer que Φ_X est continue.

Dans la suite de cette partie, on suppose que X est une variable aléatoire entière symétrique vérifiant la condition (\mathcal{D}_{α}) . Pour tout $n \in \mathbb{N}$, on pose :

$$R_n := \mathbf{P}(|X| \geqslant n).$$

8. On fixe un réel $t \in]0, 2\pi[$. Montrer successivement que :

$$\Phi_X(t) = \sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt)$$

puis:

$$\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n \left[\cos(nt) - \cos((n-1)t) \right].$$

On pourra établir au préalable la convergence de la série $\sum R_n \cos(nt)$.

9. Montrer qu'il existe un nombre réel C tel que :

$$\sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int} \underset{t \to 0^+}{\longrightarrow} C,$$

et en déduire que, quand t tend vers 0^+ ,

$$\sum_{n=1}^{+\infty} R_n \cos(nt) = O(\ln(t)) \quad \text{et} \quad \sum_{n=1}^{+\infty} R_n \sin(nt) = \frac{\pi \alpha}{2} + o(1).$$

10. Conclure que, quand t tend vers 0^+ ,

$$\Phi_X(t) = 1 - \frac{\pi \alpha}{2} t + o(t).$$

La fonction Φ_X est-elle dérivable en 0?

Convergence simple de la suite des fonctions caractéristiques des variables \mathcal{M}_n

11. Soient X et Y deux variables aléatoires symétriques indépendantes. Montrer que :

$$\forall t \in \mathbf{R}, \quad \Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t).$$

12. Démontrer que pour tout entier $n \ge 1$, la variable M_n est symétrique, et :

$$\forall t \in \mathbf{R}, \quad \Phi_{M_n}(t) = (\Phi_{X_1}(t/n))^n.$$

13. En déduire que pour tout réel t,

$$\Phi_{M_n}(t) \underset{n \to +\infty}{\longrightarrow} \exp\left(-\frac{\pi\alpha|t|}{2}\right).$$

14. La convergence établie à la question précédente est-elle uniforme sur R?

À partir de là, des théorèmes d'analyse de Fourier permettraient de démontrer que la suite $(M_n)_{n\geqslant 1}$ converge en loi vers une variable de Cauchy de paramètre $\frac{\pi\alpha}{2}$, ce qui signifie que pour tout segment [a,b] de \mathbf{R} ,

$$\mathbf{P}(a \leqslant M_n \leqslant b) \underset{n \to +\infty}{\longrightarrow} \frac{\alpha}{2} \int_a^b \frac{\mathrm{d}u}{u^2 + (\pi\alpha/2)^2}.$$

FIN DU PROBLÈME