

Курс Профессия Data Science **Модуль МАТН&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Коэффициент силуэта

Коэффициент силуэта вычисляется по следующей формуле:

$$s_i = \frac{(b_i - a_i)}{\max(a_i, b_i)}$$

где:

- $ightharpoonup a_i$ среднее расстояние от данного объекта x до объектов из того же кластера;
- ightarrow b_i среднее расстояние от данного объекта x до объектов из другого ближайшего кластера.

Индекс Калински — Харабаса

Следующий коэффициент, который мы рассмотрим, — это **индекс Калински** — **Харабаса**. Он показывает отношение между разбросом значений между кластерами и разбросом значений внутри кластеров и вычисляется по следующей формуле:

$$rac{SS_B}{SS_W} imes rac{(N-K)}{(K-1)}$$

В данной формуле:

- → N общее количество объектов;
- \rightarrow K количество кластеров;
- ightarrow SS_{B} взвешенная межкластерная сумма квадратов расстояний;
- ightarrow $SS_{_W}$ внутрикластерная сумма квадратов расстояний.

Первый шаг — рассчитать взвешенную межкластерную сумму квадратов расстояний:

$$SS_B = \sum_{k=1}^K n_k imes \left\| C_k - C
ight\|^2$$

Второй шаг — рассчитать внутрикластерную сумму квадратов.

Курс Профессия Data Science **Модуль МАТН&ML-11** "Кластеризация и техники понижения размерности. Часть II"

$$\sum_{i=1}^{n_k} \left\| X_{ik} - C_k
ight\|^2$$

В данной формуле:

- → X_{ik} i-ое наблюдение в кластере k;
- ightharpoonup С _ центроид кластера k.

Такое значение мы рассчитываем для каждого кластера, а потом уже складываем их для получения значения $SS_{...}$

Индекс Дэвиса — Болдина

Перейдём к последнему из трёх наиболее важных для нас коэффициентов — **индексу Дэвиса** — **Болдина**. Рассмотрим процесс его вычисления сразу по шагам, так как он реализуется достаточно сложно.

Шаг 1

Для начала вычисляем для каждого кластера следующую меру разброса значений (в контексте этой формулы её называют компактностью) внутри него:

$$S_k = \left\{rac{1}{n_k}\sum_{i=1}^{n_k}\left|X_{ik}-C_k
ight|^q
ight\}^{rac{1}{q}}$$

В данной формуле:

- $\rightarrow n_{_{\! k}}$ количество наблюдений в кластере k;
- $ightarrow X_{ik} i$ -ое наблюдение в кластере k;
- \rightarrow C_k центроид кластера k;
- \rightarrow q обычно принимает значение 2 (в этом случае мы рассматриваем уже привычное нам евклидово расстояние).

Курс Профессия Data Science **Модуль МАТН&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Шаг 2

Далее находим расстояния между центроидами кластеров (этот показатель называют отделимостью):

$$M_{i,j} = \left\| C_i - C_j
ight\|_q$$

Шаг 3

Теперь для каждой пары кластеров вычисляем следующее отношение:

$$R_{ij} = rac{S_i + S_j}{M_{ij}}$$

Также для каждого кластера находим максимум из полученных значений:

$$R_i \equiv \mathrm{maximum}(R_{ij})$$

Шаг 4

Усредняем значения, найденные в предыдущем пункте, — это и будет итоговое значение индекса:

$$DBI = \frac{1}{N} \sum_{i=1}^{N} R_i$$

Внутрикластерное расстояние

Для того чтобы оценить качество кластеризации, можно вычислить суммарное внутрикластерное расстояние:

$$F_0 = \sum_{k=1}^K \sum_{i=1}^N [a(x_i) = k]
ho(x_i, c_k)$$

Межкластерное расстояние

Аналогично суммарному внутрикластерному расстоянию, вводится межкластерное расстояние:

$$F_1 = \sum_{i,j=1}^N [a(x_i)
eq a(x_j)]
ho(x_i,x_j)$$

Курс Профессия Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Отношение расстояний

Логичным образом из предыдущих двух метрик (внутрикластерного и межкластерного расстояний) мы получаем отношение расстояний:

$$rac{F_0}{F_1} o \min$$

ВНУТРЕННЯЯ МЕРА	ИНТЕРПРЕТАЦИЯ	ДИАПАЗОН ЗНАЧЕНИЙ	ФУНКЦИЯ В БИБЛИОТЕКЕ SKLEARN
Коэффициент силуэта	Мера того, насколько объект похож на объекты из своего собственного кластера по сравнению с объектами из других кластеров.	От -1 до 1: при качественной кластеризации значение близко к 1.	silhouette_score()
Индекс Калински — Харабаса	Показывает отношение между разбросом значений между кластерами и разбросом значений внутри кластеров. Оценка выше, когда кластеры плотные и хорошо разделены.	Любое неотрицательно е значение. Чем больше значение, тем лучше.	calinski_harabasz _score()
Индекс Дэвиса — Болдина	Показывает среднюю «схожесть» между кластерами.	Не менее 0. Чем меньше значение, тем лучше.	davies_bouldin_s core()
Внутрикластер ное расстояние	Показывает, насколько плотно расположены объекты в кластерах.	Не менее 0. Чем меньше значение, тем лучше.	Не реализовано

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Межкластерно е расстояние	Показывает, насколько далеки друг от друга	Не менее 0. Чем больше	Не реализовано
	элементы из разных	значение, тем	
	кластеров.	лучше.	

Индекс Рэнда

Индекс Рэнда вычисляется по следующей формуле:

$$ext{RI} = rac{2(a+b)}{N(N-1)}$$

где:

- → N количество объектов в выборке;
- → а число пар объектов, которые имеют одинаковые метки (т. е. в фактическом разбиении находятся в одном классе) и располагаются в одном кластере;
- \rightarrow b число пар объектов, которые имеют различные метки (т. е. в фактическом разбиении находятся в разных классах) и располагаются в разных кластерах.

Также используют скорректированный индекс Рэнда (Adjusted Rand Index):

$$ext{ARI} = rac{ ext{RI} - E[ext{RI}]}{ ext{max}(ext{RI}) - E[ext{RI}]}$$

Его преимущество перед обычным индексом Рэнда состоит в том, что при случайных кластеризациях его значение близко к нулю вне зависимости от количества кластеров и наблюдений.

Нормализованная взаимная информация

Следующая мера — NMI (Normalized Mutual Information), или нормализованная взаимная информация. Она определяется следующим образом:

Курс Специализация Data Science Модуль MATH&ML-11 "Кластеризация и техники понижения размерности. Часть II"

$$NMI(Y_{true}, Y_{pred}) = rac{2 imes I(Y_{true}; Y_{pred})}{[H(Y_{true}) + H(Y_{pred})]}$$

Здесь:

- → Y_{true} реальные значения меток кластеров для элементов;
- ightarrow Y_{pred} предсказанные значения меток кластеров для элементов;
- → *H*() функция, которая называется критерием информативности, или энтропией Шеннона:
- → I() функция взаимной информации.

Однородность

Однородность её называют **гомогенностью**. Она показывает, насколько элементы в кластере похожи между собой, и вычисляется по следующей формуле:

$$egin{aligned} ext{homogeneity} &= 1 - rac{H(Y_{ ext{true}} \mid Y_{ ext{pred}})}{H(Y_{ ext{true}})} \end{aligned}$$

Полнота

Результат кластеризации удовлетворяет требованиям полноты, если все элементы данных, принадлежащие к одному классу, оказались в одном кластере.

$$ext{completeness} \ = 1 - rac{H(Y_{ ext{pred}} \mid Y_{ ext{true}})}{H(Y_{ ext{pred}})}$$

V-мера

$$v = \frac{(1 + eta) imes ext{homogeneity} imes ext{completeness}}{(eta imes ext{homogeneity} + ext{completeness})}$$

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Напомним, что по умолчанию $\beta=1$, но это значение можно варьировать, если хочется придать разный вес разным свойствам:

- ightarrow Если однородность кластеров важнее, чем их полнота, следует указать значение eta < 1. Тогда значение $eta imes ext{homogeneity}$ в знаменателе получится небольшим и тем самым будет сильнее влиять на значение v. Чем меньше $eta imes ext{homogeneity}$. тем выше v.
- → Если однородность кластеров не особо важна, но важно, чтобы каждый кластер содержал максимальное количество похожих объектов, тогда мы регулируем значение β так, чтобы оно было больше 1.

МЕТРИКА	ИНТЕРПРЕТАЦИЯ И ПРИМЕНЕНИЕ	ДИАПАЗОН ЗНАЧЕНИЙ	ФУНКЦИЯ В МОДУЛЕ METRICS БИБЛИОТЕКИ SKLEARN
Однород ность (homogen eity score)	Показывает, насколько однородны получившиеся кластеры. Если в кластере оказались элементы из другого кластера, значение метрики уменьшается.	1 — идеально однородные кластеры; 0 — кластеры максимально разнородные.	homogeneity_ score
Полнота (complete ness score)	Показывает, насколько кластер заполнен объектами, которые в действительности должны принадлежать к этому кластеру.	1 — идеальное значение; 0 — объекты, которые должны образовывать один кластер, разделились на большее количество кластеров.	completeness_ score

Курс Специализация Data Science Модуль MATH&ML-11 "Кластеризация и техники понижения размерности. Часть II"

V-мера (V-measur e)	Комбинация метрик полноты и однородности кластеров.	1 — идеально полные и однородные кластеры; 0 — полученные кластеры неоднородные, количество кластеров слишком большое.	v_measure_sc ore
Индекс Рэнда	Показывает долю объектов датасета, которые мы правильно определили в кластер.	1 — все объекты в предсказанном кластере попали в правильные кластеры.	rand_score
Нормализ ованная взаимная информа ция	Показывает, насколько разбиение согласуется с реальными метками.	1 — максимальная согласованност ь, все объекты находятся в правильных кластерах; 0 — случайное разбиение.	normalized_m utual_info_scor e

АЛГОРИТМ РЕАЛИЗАЦИИ РСА

- 1 Стандартизировать данные.
- 2 Рассчитать ковариационную матрицу для объектов.

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

- **3** Рассчитать собственные значения и собственные векторы для ковариационной матрицы.
- **4** Отсортировать собственные значения и соответствующие им собственные векторы.
- 5 Выбрать k наибольших собственных значений и сформировать матрицу соответствующих собственных векторов.
- **6** Преобразовать исходные данные, умножив матрицу данных на матрицу отобранных собственных векторов.

SVD

Суть сингулярного разложения заключается в следующей теореме:

Любую прямоугольную матрицу A размера (n,m) можно представить в виде произведения трёх матриц:

$$A_{n imes m} = U_{n imes n} \cdot D_{n imes m} \cdot V_{m imes m}^T$$

В этой формуле:

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

- ightarrow U матрица размера (n,n). Все её столбцы ортогональны друг другу и имеют единичную длину. Такие матрицы называются **ортогональными**. Эта матрица содержит нормированные собственные векторы матрицы AA^T .
- ightharpoonup D матрица размера (n,m). На её главной диагонали стоят числа, называемые **сингулярными** числами (они являются корнями из собственных значений матриц AA^T и A^T), а вне главной диагонали стоят нули. Если мы решаем задачу снижения размерности, то элементы этой матрицы, если их возвести в квадрат, можно интерпретировать как дисперсию, которую объясняет каждая компонента.
- ightharpoonup V матрица размера (m, m). Она тоже **ортогональная** и содержит нормированные собственные векторы матрицы A^TA

t-SNE

Итак, вы уже знакомы с двумя алгоритмами для понижения размерности — PCA и SVD. Теперь давайте познакомимся с третьим — t-SNE (стохастическое вложение соседей с t-распределением). Его преимущество относительно первых двух заключается в том, что он может реализовывать уменьшение размерности и разделение для данных, которые являются линейно неразделимыми.

Первый шаг в алгоритме t-SNE включает в себя измерение расстояния от одной точки до всех остальных. Изначально эти расстояния измеряются с помощью обычного евклидова расстояния, а затем сопоставляются со значениями вероятностей.

Функция плотности для нормального распределения записывается следующим образом:

$$P(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/\left(2\sigma^2
ight)}$$

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Если мы опустим множитель перед экспонентой, заменим среднее арифметическое на другую точку и отмасштабируем полученное значение, то получим следующее выражение:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)},$$

Таким образом мы можем вычислить показатель, отражающий, насколько точка x_j близка к точке x_i при гауссовском распределении, сформированном с математическим ожиданием, равным x_i и с некоторым x_i , которое выбирается таким образом, чтобы у объектов в областях с большей плотностью была более маленькая дисперсия.

Теперь давайте рассмотрим оценки близости для точек, которые получились в результате снижения размерности. Найдём для них ровно тот же показатель:

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}.$$

Примечание. Считаем, что x переходит в y, x переходит в y и так далее.

Если между точками y и y будет такое же сходство, как и между изначальными точками x и x , то значения соответствующих условных вероятностей p и q , будут эквивалентными. Чтобы оценить, насколько $q_{j|i}$ близко к p_j , используется дивергенция (расстояние) Кульбака — Лейблера (иногда его обозначают просто как KL).

Расстояние КL — это мера различий двух распределений вероятностей.

Курс Специализация Data Science **Модуль MATH&ML-11** "Кластеризация и техники понижения размерности. Часть II"

Чем ниже значение расстояния KL, тем ближе два распределения друг к другу. Расстояние KL, равное 0, подразумевает, что два рассматриваемых распределения идентичны.

После снижения размерности расстояние между двумя точками должно быть значительно больше расстояния, которое можно получить в гауссовом распределении (потому что, например, при переходе из двухмерного пространства в одномерное, нам надо сразу учесть расстояния по двум осям на одной — для этого расстояния на одной оси должны быть достаточно большими). Эту проблему называют «проблемой скученности», и для её решения используют распределение Стьюдента.

В t-SNE используется именно распределение Стьюдента. Тогда показатель близости (вероятность) будет вычисляться следующим образом:

$$q_{i|j} = rac{\left(1 + \left\|y_i - y_j
ight\|^2
ight)^{-1}}{\sum_{k
eq l} \left(1 + \left\|y_k - y_l
ight\|^2
ight)^{-1}}$$

Градиент функции потерь, соответственно, примет следующий вид:

$$rac{\partial C}{\partial y_i} = 4 \sum_j (p_{ij} - q_{ij}) (y_i - y_j) \Big(1 + \left\| y_i - y_j
ight\|^2 \Big)^{-1}$$