

MINISTERIO

Y COMERCIO

DE INDUSTRIA, TURISMO

ES04/313

REC'D 2 4 SEP 2004 WIPO

CERTIFICADO OFICIAL

Por la presente certifico que los documentos adjuntos son copia exacta de la solicitud de PATENTE de INVENCION número 200301571, que tiene fecha de presentación en este Organismo el 4 de Julio de 2003.

Madrid, 2 de Agosto de 2004

El Director del Departamento de Patentes e Información Tecnológica.

P.D.

Mª DEL MAR BIARGE MARTÍNEZ

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

INSTANCIA DE SOLICITUD

*	r
	Oficina Española de Patentes y Marcas

NUMERO DE SOLICITUD

P200301571

	TYPMTO F	E PAGO DE	ETASAS		2005	015/	' 1	1
(1) MODALIDAD: PATENTE DE INVENCIÓN		AV LUCCURUS						
(2) TIPO DE SOLICITUD:	(art. 53 de Galowita Universitaria) (b) MODELO DE UTILIDAD (3) EXP. PRINCIPAL O DE ORIGEN MODALIDAD			*03 JUL -4 11:28 FECHA Y HORA DE PRESENTACIÓN EN LA O.E.P.M.				
ADICIÓN A LA PATENTE SOLICITUD DIVISIONAL CAMBIO DE MODALIDAD	N° SOLICITUD FECHA SOLICITUD			FECHA Y HORA PRESENTACIÓN EN LUGAR DISTINTO O.E.P.M.				
TRANSFORMACIÓN SOLICITO PCT: ENTRADA FASE NACIO		(4) LUGAR DE PRESENTACIÓN: CÓI			CÓDIO 28			
			BRE	NACIONALIDAD Española	CÓDIGO PAÍS	DNI/CIF Q1518001A	CNAE	PYME 4
	OFICINA ESPAÑOLA Dpto. SECRE			Y MARCAS		4,0,0		
(6) DATOS DEL PRIMER SOLICITANTE: DOMICILIO Edificio CACTUS — (LOCALIDAD Santiago de Compo- PROVINCIA A Coruña PAÍS RESIDENCIA España NACIONALIDAD Española		Panamá, 1	OGRAFIA - Madrid 280		B1 547077 TRÒNICO citt	fci@usc.es		
(7) INVENTOR (ES):	APELLIDOS		No	OMBRE		CIONALIDAD		ODIGO PAÍS
Granja Guillán Castedo Expósito García Fandiño			Juan Luis Rebeca		Española Española Española			ES ES
(8) EL SOLICITANTE ES EL INVENTOR			(9) MODO DE O	BTENCIÓN DEL DEREC	HO:			
EL SOLICITANTE NO ES EL INVENTOR O ÚNICO INVENTOR				: LABORAL CONTRATO SUCESIÓN				
(10) TÍTULO DE LA INVENCIÓN: Procedimiento de obtención de	taxoesteroide	es y sus precu	irsores.					
(11) EFECTUADO DEPÓSITO DE MATERIA	A BIOLÓGICA:			☐ SI	X	10		
(12) EXPOSICIONES OFICIALES: LUGAR		L conico I		MEDO	FECHA	FFOLIA		
(13) DECLARACIONES DE PRIORIDAD: PAÍS DE ORIGEN		CÓDIGO · PAÍS	NU	JMERO		FECHA		
(14) EL SOLICITANTE SE ACOGE AL APLA	ZAMIENTO DE PAG	O DE TASAS PREV	/ISTO EN EL ART.	162. LEY 11/86 DE PA	TENTES			
(15) AGENTE /REPRESENTANTANTE: NON	MBRE Y DIECCIÓN PO	STAL COMPLETA. (SI	AGENTE P.I., NOMB	REY CÓDIGO) (RELLÉN	ESE, ÚNICAMENT	E POR PROFESION	ALES)	
(16) RELACIÓN DE DOCUMENTOS QUE S DESCRIPCIÓN Nº DE PÁGINAS: 21 Nº DE REIVINDICACIONES: /0 DIBUJOS Nº DE PÁGINAS. LISTA DE SECUENCIAS Nº DE PÁGINAS: RESUMEN DOCUMENTO DE PRIORIDAD TRADUCCIÓN DEL DOCUMENTO DE PRI	DOCUM JUSTIFI HOJA D PRUEBA CUESTIC	ENTO DE REPRESEN' CANTE DEL PAGO DE E INFORMACIÓN COM IS DE LOS DIBUJOS DNARIO DE PROSPEC	TASA DE SOLICITUI IPLEMENTARIA	_		LICITANTE O REF	0	ITANTE
NOTIFICACIÓN SOBRE LA TASA DE CON Se le notifica que esta solicitud el pago de esta tasa dispone de tres mes más los diez días que establece el art. 81	se considerará reti: es a contar desde l	a publicación del a			8		•	

ILMO. SR. DIRECTOR DE LA OFICINA ESPAÑOLA DE PATENTES Y MARCAS

informacion@oepm.es www.oepm.es

NÚMERO DE SOLICITUD

P200301571

FECHA DE PRESENTACIÓN

RESUMEN Y GRÁFICO

RESUMEN (Máx. 150 palabras)

Procedimiento de obtención de taxoesteroides y sus precursores a partir de los biciclos hidrindánicos. Los compuestos poseen un sistema tetracíclico que reúne las características estructurales de los taxanos, como es el sistema biciclo[5.3.1]undecano (ciclos A y B) fusionado a un anillo de seis miembros (C), y de los esteroides, como son, el biciclo CD, el anillo A y la cadena lateral (Sc). Se describe el procedimiento de preparación de los compuestos y su aplicación como composiciones con propiedades farmacológicas de interés.

GRÁFICO

$$R^{5}$$
, R^{6} C D
 R^{2} , R^{8} B R^{9} R^{4}
 C D
 C D
 C D

Taxoesteroides ·

② SOL	ICITUD DE PATENTE DE I	NVENCIÓN	P 2 0 0 = 0 15 7 1
31) NÚMERO	DATOS DE PRIORIDAD 32) FECHA	33 PAIS	FECHA DE PRESENTACIÓN
			62) PATENTE DE LA QUE ES DIVISORIA
71) SOLICITANTE (S)			
NIVERSIDADE DE SAN	TIAGO DE COMPOSTELA		
DOMICILIO Edificio CA 15782 - San	CTUS – CITT - Campus sur Itiago de Compostela	NACIONALIDAD Esp	añola
	anja Guillén; Luis Castedo Expósito; Rebec	a García Fandiño.	
51) Int. Cl.		GRÁFICO (S	SÓLO PARA INTERPRETAR RESUMEN)
			$ \begin{array}{c c} R^{5} & R^{6} & S^{c} \\ \hline R^{4} & C & D \end{array} $
54) TÍTULO DE LA INVENCIÓN			R^3 R^8 H
rocedimiento de obtend	ción de taxoesteroides y sus precurso	res.	P9 R1 ::
			\mathbb{R}^2
		Sk	
			(1)
57) RESUMEN			
rocedimiento de obten	ción de taxoesteroides y sus precurso	res a nartir de los bició	clos hidrindánicos. Los compuestas:
piciclo[5.3.1]undecano (piciclo CD, el anillo A y l	cíclico que reúne las características es ciclos A y B) fusionado a un anillo de s la cadena lateral (Sc). Se describe el pr siciones con propiedades farmacológi	structurales de los taxa seis miembros (C), y de rocedimiento de prepa	anos, como es el sistema
			_****.
			``` '''':
			: • ;
٠			·:
			••••
			•>.•>
			• •

#### **DESCRIPCIÓN**

Procedimiento de obtención de taxoesteroides y sus precursores.

La presente invención se refiere al procedimiento de obtención de taxoesteroides, que poseen una estructura híbrida de esteroide y taxano; y la obtención de los intermedios precursores de dichos taxoesteroides. Los compuestos son preparados a partir de biciclos hidrindánicos característicos de los esteroides.

Los taxoesteroides presentan la siguiente fórmula:

5

10

15

20

25

**Taxoesteroides** 

donde R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ pueden ser hidrógeno o un grupo aciloxi, alquiloxi o alquílico con cadenas de C₁-C₁₀; Sc es la cadena lateral característica de los esteroides; y Sk es una cadena aminoacídica análoga a la de los taxanos, en la cual Ar puede ser cualquier compuesto aromático, y P un radical alquiloxi con cadenas de C₁-C₁₀.

El taxol (NSC 125973; paclitaxel; plaxicel; yewtaxan), Registry Number: [33069-62-4]; de fórmula molecular: C47 H51 N O14, y estereoquímica absoluta, Rotación (-):

Taxol

es un derivado taxano-terpénico, que se aisló en 1971 de la corteza del *Taxus brevifolia* y que desde 1992 se utiliza (aprobada por la FDA, US Food and Drug Administration) en el tratamiento de metástasis del cáncer de ovario y posteriormente para el tratamiento del cáncer de pecho (revisión sobre este tema véase *Taxol: Science and Applications*; Suffness, M., Ed.;



CRC: Boca Raton, FL, 1995. Taxane Anticancer Agents: Basic Science and Current Status; Georg, G. I., Chen, T. T., Ojima, I., Vyaqs, D. M. Eds.; ACS Symposium Series 583; American Chemical Society: Washington, DC, 1995). El mecanismo de acción se cree que implica la formación e hiperestabilización de los microtúbulos, y de esta forma no se produce la disociación de los microtúbulos, etapa esencial para completar el ciclo de la división celular. También se ha publicado que el taxol induce la expresión de citoxinas, y que afecta la actividad de las quinasas, bloqueando procesos esenciales de la metástasis mediante un mecanismo aún no determinado.

Por todo ello, el taxol ha atraído la atención de los científicos, no solo por su inusual mecanismo de acción, sino también por su actividad contra todo tipo de cánceres que se ha probado, y porque es miembro de una familia de sustancias naturales, los taxanos, que poseen en común los tres anillos básicos (ABC), diferenciándose en los diversos sustituyentes que poseen en las distintas posiciones del esqueleto carbocíclico:



15

5

10

Los análogos más interesantes de todos ellos son el taxotere y el IDN 5109.

El taxotere (docetaxel), Registry Number: [114977-28-5]; de fórmula molecular: C43 H53 N O14, y estereoquímica absoluta, presenta una mayor solubilidad y actividad.

20

25

El IDN 5109 (ortataxel), Registry Number: [186348-23-2]; de fórmula molecular: C44 H57 N O17, y estereoquímica absoluta representada anteriormente, es el primero con una buena biodisponibilidad oral y potente actividad antitumoral (Nicoletti, M. I. y col. *Cancer Research*, 2000, 60, 842). Estos compuestos son hoy en día reconocidos como una nueva clase de compuestos anticancerosos.

5

10

15

20

25

30

Un agente anticanceroso ideal tiene que ser selectivo hacia un determinado tejido, ya que reduce los efectos secundarios no deseados sobre las células normales. De esta forma son necesarios análogos con una mayor especificidad por los tejidos, ya que ello, junto con su baja solubilidad, es uno de los inconvenientes que presenta el taxol. Para remediar el problema de la baja solubilidad, el taxol se suele administrar disuelto en una mezcla que incluye cremophor, mezcla que puede causar hipersensibilidad inmunológica.

En los últimos años se han sintetizado más de 200 taxanos y estudiado su actividad anticancerosa, tanto en vivo como en vitro, aunque los estudios no han dado lugar a análogos in más potentes, selectivos, o solubles, ni con mejor índice terapéutico, no encontrándose claramente ningún patrón que permita extraer una regla sobre su actividad. En general, aquellos compuestos que presentan una mayor actividad, tienen un espectro de acción tan amplio como el del propio taxol. Por tanto, no se ha podido sacar ningún patrón que permita redecir las posiciones que se pueden modificar para mejorar su actividad.

Para revisiones sobre la química y farmacología del taxol véanse las siguientes revisiones (Kingston, D. G. I.; Jagtap, P. G.; Yuan, H.; Samala, L. Progress in the Chemistry of Organic Products 2002, 84, 53-225. Mekhail, T. M.; Markman, M. Expert Opinion on Pharmacotherapy 2002, 3, 755-766. Miller, M. L. Ojima, I. Chemical Record, 2001, 195-211. Kingston, D. G. I. Chem. Commun. 2001, 867. Nicolaou, K. C.; Guy, R. K. Angew. Chem. Int. Ed. 1995, 34, 2079. Rowinsky, E. K.; Cazenave, L. A.; Donebower, R. C. J. Natl. Cancer Inst. 1990, 82, 1247. Chabner, B. A. Princ. Prac. Oncol. 1991, 5, 1).

Recientemente, se han estudiado extensamente distintos métodos para la preparación tanto total como parcial del taxol y sus derivados, así como de otros taxanos.

Las primeras síntesis totales fueron descritas por Nicolaou (*Nature* 1994, 367, 630) y Holton (*J. Am. Chem. Soc.* 1994, 116, 1597 and 1599) de forma casi simultánea. La ruta de Nicolaou se basa en una estrategia convergente en la que se construyen por separado los anillos A y C, que posteriormente se unen por la parte inferior del esqueleto mediante una reacción de Shapiro. Posteriormente, el anillo B se completa mediante una reacción de McMurry, quedando las últimas etapas para la construcción del anillo D e introducción de la cadena aminoacídica.

10

La síntesis de Holton utiliza una estrategia lineal en la que se van construyendo paulatinamente los anillos ABCD. La sustancia de partida empleada en esta síntesis es el borneol, que se transforma en una cetona tricíclica insaturada, que posteriormente se convierte en el óxido de \( \mathbb{B}\)-patchouleno. A partir del mismo se obtiene un derivado carbocíclico insaturado que contiene un alcohol terciario. La subsiguiente epoxidación de este compuesto y el posterior tratamiento del epóxido resultante con un ácido de Lewis induce una fragmentación para generar los anillos A y B del taxol. El anillo C se introduce finalmente sobre el fragmento bicíclico anterior, empleándose una metodología muy laboriosa de tipo Robinson-Stork.

La tercera síntesis total la realizó el grupo del Prof. Danishefsky (J. Am. Chem. Soc. (1996) 118, 2843) en la que empleaba como sustancia de partida la cetona Wieland-Miescher, que tras una compleja estrategia sintética se transforma en un enol triflato que contiene el

anillo C funcionalizado adecuadamente. El anillo B del taxol se forma eficientemente mediante una ciclación de Heck. Posteriores modificaciones permiten introducir la cadena lateral aminoacídica y la dihidroxilación del anillo B.

Posteriormente aparecieron otras aproximaciones a la síntesis tanto del taxol como del esqueleto policíclico de los taxanos. Entre las numerosas estrategias (véanse, Kingston, D. G. ... I.; Jagtap, P. G.; Yuan, H.; Samala, L. Progress in the Chemistry of Organic Products 2002, .... 84, 53. Mekhail, T. M.; Markman, M. Expert Opinion on Pharmacotherapy 2002, 3, 755. Miller, M. L. Ojima, I. Chemical Record, 2001, 195-211. Kingston, D. G. I. Chem. Commun. ... 2001, 867. Nicolau, K. C.; Guy, R. K. Angew. Chem. Int. Ed. 1995, 34, 2079. Rowinsky, E. .... K.; Cazenave, L. A.; Donebower, R. C. J. Natl. Cancer Inst. 1990, 82, 1247. Chabner, B. A. Princ. Prac. Oncol. 1991, 5, 1), caben destacar la basada en una cicloadición tándem de Diels-... Alder (Jeffrey D. Winkler y otros J. Org. Chem. 1997, 62, 2957-2962), en la que se genera directamente el sistema B/C del núcleo taxánico en dos etapas, y la que incluye reacciones de .... metátesis (Prunet, J.; Bourgeois, D.; Mahuteau, J.; Pancrazi, A.; Nolan, S. P.; Synthesis 2000, .... 6, 869).

Además de estas múltiples síntesis, la forma más apropiada de acceder, tanto al taxol ..... como a sus análogos, es a través de la síntesis parcial mediante la modificación de los ..... derivados naturales más abundantes, como la baccatina III y la 10-deacetilbaccatina III (véase ..... ejemplos: Journal of Organic Chemistry: 1986, 51, 46; 1990, 55, 1957; 1991, 56, 1681; 1991, ..... 56, 6939; 1992, 57, 4320; 1992, 57, 6387; y 1993, 58, 255).

Baccatina III

10-deacetilbaccatina III (10-DAB)

5

10

15

20

La 10-deacetilbaccatina III (10-DAB) es un taxano natural que se convierte en taxol en elevado rendimiento mediante la selectiva acetilación en C-10, sililación en C-7 y posterior introducción de la cadena lateral por reacción con la correspondiente N-benzoil-β-lactama. El 10-DAB se extrae principalmente de las acículas del tejo europeo, *Taxus baccata*, y su aislamiento presenta varias ventajas respecto a la del taxol: por un lado se encuentra en concentraciones mucho más altas que el taxol en la corteza del tronco y, por otro, dado que las acículas se regeneran, a través de una recolección prudente, se pueden obtener cantidades elevadas de 10-DAB sin mermar la población del tejo. El rendimiento de 10-DAB obtenido a partir de esta fuente era aproximadamente de seis a diez veces mayor que el del taxol a partir de la corteza del *Taxus brevifolia*. Además, el aislamiento de la 10-DAB, un tetraol, era significativamente más simple y más económico que el aislamiento del taxol. La separación del taxol de un análogo estructural, la cefalomanina (cephalomannine), era difícil y, mientras que el taxol debe aislarse en una forma completamente pura para su incorporación directa al medicamento, la 10-DAB sólo debe purificarse lo suficiente para utilizarse como material de partida en la semisíntesis.

Otras sustancias naturales comparten con los taxanos el mecanismo de acción, tal como las epotilonas A y B (Hofle, G. et al. Angew. Chem. Int. Ed. Eng. 1996, 35, 1569), eleuterobina (Long, B.H. et al. Cancer Research, 1998, 58, 1111), sarcodictinas (Hamel, E. et al. Biochemistry, 1999, 38, 5490), etc. Recientemente, se han descubierto análogos esteroidales que se asemejan al paclitaxel en su habilidad para aumentar la estabilidad de los microtúbulos, tal como los dos análogos del 2-etoxiestradiol (Wang, Z. Q. et al. J. Med. Chem. 2000, 43, 2419), o el NSC12983 (Wu, J.H. et al. Anti-Cancer Drug Design 2001, 16, 129), lo que confirma que este mecanismo de acción no está restringido a compuestos con estructuras taxánicas y, por tanto, la necesidad de seguir investigando en esta área (véase revisión Jordan, M. A. Current Med. Chem: Anti-Cancer Agents 2002, 2, 1).

En la presente invención describimos una clase de compuestos, los taxoesteroides, que se caracterizan por poseer un novedoso sistema policíclico como resultado de combinar los esqueletos carbocíclicos de los esteroides y de los taxanos. Como se muestra a continuación, los taxoesteroides poseen las características estructurales de los taxanos, como son el sistema biciclo[5.3.1]-undecano (ciclos A y B) unido a un anillo de seis miembros (C), y las de los esteroides, como el biciclo CD, el anillo A y su cadena lateral. Dos posibles tipos de análogos, fórmulas (1) y (2), atendiendo a la orientación relativa entre ambos componentes (esteroidal y taxánico), son objetivos de esta invención, en los que los grupos R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ pueden ser un átomo de hidrógeno, o un grupo aciloxi, alquiloxi, ariloxi, alquiltio, ariltio o alquílico con cadenas de C₁-C₁₀.

5

10

En todos ellos, los distintos sustituyentes son radicales del tipo:

alquilo lineal o ramificado de 1-10 átomos de carbono, alquenilo de 2 a 10 átomos de carbono, alquinilo de 3 a 10 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, o bicicloalquílico de 7 a 10 átomos de carbono; estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, idénticos o diferentes, elegidos entre los átomos de halógeno y los radicales hidroxi, alcoxi que contienen de 1 a 4



10

15

20

25

30

átomos de carbono, piperidinilo, morfolinilo, piperazinilo-1 (eventualmente sustituido en -4 por un radical alquilo de 1 a 4 átomos de carbono o por un radical fenilalquilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi o alcoxicarbonilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono, o un radical fenilo, eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilo de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado que contiene 5 ó 6 miembros, eventualmente sustituidos por uno o varios radicales alquilo de 1 a 4 átomos de carbono, entendiéndose que los radicales cicloalquilo, cicloalquenilo o bicicloalquilo pueden estar eventualmente sustituidos por uno o varios radicales alquílicos que contiene de 1 a 4 átomos de carbono.

Sc es la cadena lateral característica de los esteroides o un radical alquílico lineal o ramificado de 1-12 átomos de carbono, alquenilo de 2 a 12 átomos de carbono, alquinilo de 3 :: a 12 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 ..... átomos de carbono, o bicicloalquílico de 7 a 10 átomos de carbono; estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, idénticos o diferentes, elegidos :: entre los átomos de halógeno y los radicales hidroxi, alcoxi que contienen de 1 a 4 átomos de ..... carbono, piperidinilo, morfolinilo, piperazinilo-1 (eventualmente sustituido en -4 por un radical alquilo de 1 a 4 átomos de carbono o por un radical fenilalquilo, cuya parte alquilo: contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi o alcoxicarbonilo, cuya parte alquilo :... contiene de 1 a 4 átomos de carbono, o un radical fenilo, eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilo de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado de 5 ó 6 miembros, eventualmente sustituido por uno o .... varios radicales alquilo de 1 a 4 átomos de carbono, entendiéndose que los radicales.... cicloalquilo, cicloalquenilo o bicicloalquilo pueden estar eventualmente sustituidos por uno o varios radicales alquílicos que contienen de 1 a 4 átomos de carbono.

Sk es una cadena aminoacídica análoga a la de los taxanos, en la que P representa a un grupo fenílico o un radical alcoxi con cadenas alquílicas de 1 a 10 carbonos, alquenílicas y alquinílicas de 3 a 10 carbonos, cicloalquílicas y cicloalquenílicas de 4 a 7 átomos en el anillo, un fenilo o un compuesto heterocíclico, y Ar es un compuesto aromático.

Son también objeto de la presente invención los análogos derivados de la introducción de diversos sustituyentes en el esqueleto carbocíclico mencionado, así como las propiedades

farmacéuticas de los compuestos mencionados anteriormente, incluyendo sus propiedades anticancerosas. Por último, se describe el procedimiento de obtención de dichos compuestos.

El procedimiento de obtención está basado en una reacción de ciclación de metátesis de dieninos, construidos sobre el biciclo CD de los esteroides mediante transformaciones sencillas. Las etapas fundamentales de estas transformaciones consisten en la alquilación del enolato cinético de la cetona que contiene el biciclo CD característico de los esteroides y apropiadamente funcionalizado, junto con la cadena lateral correspondiente; la alilación del carbonilo de la cetona monoalquilada obtenida en la etapa anterior, y por último, la reacción de ciclación de metátesis del resultante dienino (Kim, S.-H.; Bowden, N.; Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801-10802; Kim, S.-H.; Zuercher, W. J.; Bowden, N. B.; Grubbs, R. H. J. Org. Chem. 1996, 61, 1073-1081; Zuercher, W. J.; Scholl, M.; Grubbs, R. H. J. Org. Chem. 1998, 63, 4291-4298; Fürstner, A.; Liebl, M.; Hill, A. F.; Wilton-Ely, J. D. E. T. Chem. Commun. 1999, 601-602; Codesido, E. M.; Castedo, L.; Granja, J. R. Org. Lett. 2001, 3, 1483-1486).

20

5

10

Esta novedosa ciclación para la obtención de biciclo [5.3.1] alquenos se basa en una reacción de ciclación de metátesis catalizada por catalizadores metalcarbénicos, entre los que caben destacar como más importantes, los catalizadores de Grubbs (Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956).

La reacción se basa en una inicial reacción de metátesis entre el catalizador y la olefina menos sustituida, generando el intermedio metalcarbénico II, que posteriormente reacciona con el alquino para formar el ciclo central de 8-miembros mediante una reacción de ciclación de eninos, generando un nuevo intermedio metalcarbénico (III). El resultante intermedio III reacciona con la otra olefina mediante otra ciclación de metátesis para formar el anillo A de los taxoesteroides. Las características estructurales del grupo P permiten gobernar la regioselectividad del proceso, favoreciendo la iniciación del proceso por la olefina menos substituida, lo que a su vez favorece la inicial formación del anillo de ocho miembros. Asimismo, este grupo debe dirigir la ciclación enínica frente a la diénica que daría lugar al compuesto V.

#### EJEMPLO 1

El taxoesteroide (XIII) se preparó siguiendo la mencionada estrategia sintética, empleando como sustancias de partida la cetona derivada del diol de Inhoffen y el correspondiente iododerivado. Los agentes alquilantes se pueden preparar a partir del trietil éster del tricarboximetano mediante alquilaciones con los apropiados derivados alquenílicos y alquinílicos. Así, tras la monopropargilación del trietil éster del tricarboximetano, por tratamiento con etóxido sódico y bromopropino en THF, seguido de tratamiento con etóxido sódico en presencia del 1-bromo-4-metil-2-penteno se obtiene el diéster del malonato VII, mediante un proceso que se basa en la descarboxilación y posterior alquilación del resultante enolato del propargilmalonato con el correspondiente bromuro alílico. La posterior descarboxilación con etóxido sódico en etanol y reducción con hidruro de litio y aluminio y

transformación del alcohol resultante en un buen grupo saliente (iodo, mesilato, etc.) da lugar a los deseados agentes alquilantes.

(a) NaOEt, BrCH₂C=CH, THF, 85 %; (b) NaOEt, BrCH₂CH=CH-R, 77-85 %; (c) NaOEt, EtOH, 60-70 %; (d) LiAlH₄, THF, 70-90%; (e) I₂, PPh₃, Imidazole, 86 %;

(a) i) KHDMS, DMF, -78 °C, ii) 2-propargil-1-yodo-4-hepteno, 75 %; (b) AliIMgBr, THF, 95 %; (c) catalizador de Grubbs,  $CH_2Cl_2$ ,  $\Delta$ , 87 %.

El tratamiento del enolato cinético de la cetona de X, generado por tratamiento de :dicha cetona con KHMDS, con el ioduro IX y posterior tratamiento de la cetona con monoalquilada resultante con bromuro de alilmagnesio produce el dienino XII. La adición del catalizador de Grubbs sobre una disolución del dienino XII en diclorometano y calentamiento de la mezcla resultante da lugar al taxoesteroide XIII.

15

20

25

10

5

Una disolución de etóxido sódico (1.93 g, 28.42 mmol) en etanol (24 mL) se añadió a una disolución del trietil éster del metanotricarboxilato (6.00 g, 25.84 mmol) en éter (20 mL) enfriado en un baño de hielo/agua. La resultante sal sódica, que precipita, se recoge, lava con éter, y se seca a vacío para dar lugar 5.78g de la deseada sal que se disolvió en una mezcla de tolueno:DMF (1:1, 50 mL) y se trató con bromuro de propargilo (80 % peso en tolueno, 5.1 mL, 45.5 mmol). La mezcla resultante se calentó a 80°C durante 1.5 h, se enfrió a temperatura ambiente, se filtró y el residuo se lavó con tolueno. Los filtrados reunidos se lavaron con agua, se secaron sobre Na₂SO₄, filtraron y concentraron. El bruto resultante se destiló (97°C a 0.2 mmHg), resultando 6.03 g del trietil éster de but-3-ino-1,1,1-tricarboxilato (VI). ¹H-NMR (CDCl₃, 300 MHz, δ): 4.25 (6H, c, *J* = 7.1 Hz, 3 OCH₂-Me), 2.98 (2H, d, *J* = 2.6 Hz, H-



10

15

20

25

30

2), 2.01 (1H, t, J = 2.6, H-C^E), 1.26 (9H, t, J = 7.1 Hz, OCH₂CH₃). ¹³C-NMR (CDCl₃, 75 MHz,  $\delta$ ): 165.6 (3 CO), 78.6 (C^E), 70.6 (C^E), 64.4 (C), 62.4 (3 CH₂), 23.1 (CH₂), 13.8 (3 CH₃). EM-IQ⁺ (m/z, I): 271 (MH⁺, 100), 197 (35), 125 (24); HRMS calcd. para C₁₃H₁₉O₆ (MH⁺): 271.118164, encontrado 271.118680.

Una disolución del éster trietílico del but-3-ino-1,1,1-tricarboxilato (VI) (3.00 g, 11.10 mmol) en THF (3 mL) se añadió vía cánula a una suspensión de etóxido sódico (980 mg, 14.4 mmol) en THF (35 mL). Transcurridas 1.5 h, se añadió el metilsulfonato de (2E)-4-metil-2pentenilo (3.9 g, 22.20 mmol) y la mezcla se agitó a temperatura ambiente durante 5 h. :: Transcurrido este tiempo, la mezcla de reacción se vertió sobre una disolución saturada de .... NaCl y se extrajo con éter. Las fases orgánicas reunidas se secaron, filtraron y concentraron y el residuo se purificó mediante una cromatografía rápida (4 % EtOAc/hexanos) para dar lugar ::a 2.6 g de VII [88 %, R_f=0.5 (15% EtOAc/hexanes)] ¹H-RMN (CDCl₃, 300 MHz, δ): 5.52····. (1H, dd, J = 6.9 Hz, J = 15.2 Hz,  1 Pr-C $\underline{H}$ =CHR), 5.15 (1H, m,  1 Pr-CH=C $\underline{H}$ R), 4.17 (4H, c, J = 7.1 Hz, 2 CO₂C $\underline{H}_2$ ), 2.75 (2H, d, J = 2.6 Hz, -C $\underline{H}_2$ -C $^{\pm}$ ), 2.70 (2H, d, J = 7.5 Hz, -: ...  $C\underline{H}_2$ -C=), 2.21 (1H, m, Me₂C $\underline{H}$ ), 1.98 (1H, t, J = 2.6 Hz, H- C $^{\Xi}$ ), 1.23 (6H, t, J = 7.1 Hz,  $\cdots$ 2 CO₂CHC<u>H</u>₃), 0.92 (6H, d, J = 6.8 Hz, 2 CH₃). ¹³C-RMN (CDCl₃, 75 MHz,  $\delta$ ): 169.8 :.... (2 CO), 143.2 (CH), 119.7 (CH), 79.1 (C⁼), 71.2 (C⁼), 61.5 (2 CH₂), 57.0 (C), 35.0 · . . . (CH₂), 31.1 (CH), 22.0 (2 CH₃), 21.7 (CH₂), 14.1 (2 CH₃). EM-IQ⁺ (m/z, I): 281 (MH⁺, 58), 207 (25), 133 (17). HRMS calcd. para C₁₆H₂₅O₄ (MH⁺): 281.175285, encontrado 281.175641.

Una disolución del compuesto VII (3.2 g, 12.01 mmol) se añadió a una disolución de EtONa (1.23 g, 18.07 mmol) en etanol (50 mL). La mezcla de reacción se calentó a reflujo durante 2 días y transcurrido ese tiempo se vertió sobre NaCl (40 mL). La mezcla se acidificó con 10 % HCl (20 mL) y extrajo con éter. La fase orgánica reunida se secó con Na₂SO₄, filtró, concentró, y el residuo se purificó mediante una cromatografía rápida en gel de sílice (1 %

EtOAc/hexanos) para dar luar a 1.3 g del éster VIII [50 %,  $R_f$ =0.5 (15 % EtOAc/hexanes), aceite amarillo. ¹H-RMN (CDCl₃, 250 MHz, δ): 5.47 (1H, dd, J = 6.3 Hz, J = 15.5 Hz, H-5), 5.26 (1H, m, H-4), 4.15 (2H, c, J = 7.1 Hz, -CO₂-C $\underline{H}_2$ -), 2.56 (1H, m, H-6), 2.33 (5H, m, H-3, H-2, C $\underline{H}_2$ - C[±]), 1.98 (1H, t, J = 2.6 Hz, H- C[±]), 1.26 (3H, t, J = 7.1 Hz, -CO₂-CH₂-C $\underline{H}_3$ ), 0.94 (6H, d, J = 6.8 Hz, 2 x Me del ⁱPr); ¹³C-RMN (CDCl₃, 63 MHz, δ): 173.5 (CO), 140.7 (CH), 122.3 (CH), 81.2 (C[±]), 69.6 (C[±]), 60.1 (CH₂), 44.3 (CH), 33.8 (CH₂), 30.8 (CH), 22.2 (2 CH₃), 19.9 (CH₂), 14.0 (CH₃); EM-IQ⁺ (m/z, I): 209 (MH⁺, 29), 136 (MH⁺-CO₂Et, 2); HRMS calcd. para C₁₃H₂₁O₂ (MH⁺): 209.154155, encontrado 209.154326.

A una disolución del alcohol (1.5 g, 9.0 mmol) en THF (45 mL), enfriada a 0°C, se añadió sucesivamente trifenilfosfina (2.85 g, 10.87 mmol), imidazol (1.85 g, 27.17 mmol) y yodo (2.53 g, 9.96 mmol). La mezcla resultante se agitó a esta temperatura durante 30 min y otros 30 min a temperatura ambiente, y posteriormente se vertió sobre agua y se extrajo con



éter. Las fase orgánica reunida se secó con Na₂SO₄, filtró y concentró a presión reducida y el residuo resultante se purificó mediante una columna rápida en gel de sílice para dar luagar al yoduro IX con un rendimiento del 85 %.  $R_f$ =0.9 (10 % EtOAc/hexanes), aceite incoloro. ¹H-RMN (CDCl₃, 250 MHz, δ): 5.55 (1H, dd, J = 6.6 Hz, J = 15.3 Hz, H-7), 5.26 (1H, m, H-6), 3.36 (2H, m, -C $\underline{H}_2$ -I), 2.00 (1H, t, J = 2.6 Hz, H- C $^{\pm}$ ), 1.50 (1H, m, H-4), 0.89 (6H, d, J = 6.8 Hz, 2 x Me of ¹Pr). ¹³C-RMN (CDCl₃, 63 MHz, δ): 141.1 (CH), 122.8 (CH), 81.4 (C $^{\pm}$ ), 70.1 (C $^{\pm}$ ), 38.9 (CH), 36.5 (CH₂), 31.0 (CH), 23.3 (CH₂), 22.5 (CH₃ x 2), 13.1 (CH₂). EM-IQ⁺ (m/e, I): 277 (MH⁺, 2), 150 (MH⁺-I, 2).

10

15

20

25

5

Una disolución de la cetona X (0.5 g, 1.54 mmol) en DMF (3 mL) se adicionó lentamente sobre una disolución de KHMDS (0.5M en tolueno, 9.3 mL, 4.6 mmol) en DMF (4° mL) enfriada a -78°C. La mezcla resultante se agitó a esta temperatura durante 30 min y a continuación se adicionó una disolución del yoduro IX (1.3 mg, 4.6 mmol) en DMF (2 mL). Transcurridas 2 horas se añadió una disolución saturada de NH4Cl (4 mL) y la fase acuosa se extrajo con éter. Los extractos etéreos reunidos se lavaron con una disolución saturada de NaCl, se secaron sobre Na₂SO₄, y concentraron a presión reducida para dar lugar a un residuo que se purificó mediante una cromatografía rápida en gel de sílice (2 % EtOAc/hexanos), proporcionando el deseado producto XI con un 78 % de rendimiento. ¹H-RMN (CDCl₃, 250: MHz,  $\delta$ ): 5.41 (1H, dd, J = 6.4 Hz, J = 15.3 Hz, H-5'), 5.22 (1H, m, H-4'), 3.51 (1H, m, -CH_a-OTBS), 3.31 (1H, m, -CH_b-OTBS), 2.57 (1H, m, H-6'), 0.87 (9H, s,  ${}^{t}Bu$ ), 0.62 (3H, s, Me-18), 0.01 (6H, s, Me₂Si).  13 C-RMN (CDCI₃, 63 MHz, δ): 214.6 (CO), 140.4 (CH), 124.1 (CH), 82.2 (C=), 69.7 (C=), 67.5 (CH₂), 57.6 (CH), 53.2 (CH), 50.3 (C), 47.2 (CH), 38.5 (CH), 36.4 (CH₂), 35.7 (CH₂), 35.4 (CH₂), 34.9 (CH), 31.1 (CH), 29.3  $(CH_2)$ , 27.0  $(CH_2)$ , 25.9  $(2 \ CH_3)$ , 22.6  $(3 \ CH_3)$ , 21.3  $(CH_2)$ , 19.0  $(CH_2)$ , 18.3 (C), 17.0 (CH₃), 12.8 (CH₃), -5.4 (2 CH₃). EM-IQ⁺ (m/e, I): 473 (MH⁺, 100), 342 (MH⁺-OTBS, 6), 341 (28), 323 (12). HRMS calcd. para  $C_{30}H_{53}O_2Si$  (MH⁺): 473.381485, encontrado 473.383792.

Una disolución del bromuro de alilmagnesio (1 M en THF, 4.7 mL, 4.7 mmol) se añadió a una disolución de la cetona XI (520 mg, 1.1 mmol) en THF (10 mL) a -78°C. Transcurridas 2 h, se añadió una disolución saturada de NH4Cl (15 mL) y la fase acuosa resultante se extrajo con éter. Los extractos etéreos reunidos se lavaron con una disolución saturada de NaCl, se secó sobre Na2SO4, y concentró a presión reducida para dar lugar a un residuo que se purificó mediante una cromatografía rápida en gel de sílice (3 % EtOAc/hexanos), proporcionando el deseado producto XII con un 90 % de rendimiento.  $R_f =$ 0.37 (10 % EtOAc/hexanos).  1 H-RMN (CDCl₃, 500 MHz,  $\delta$ ): 5.98 (1H, m, H-6), 5.46, 5.29 (2H, m, H-4', H-5'), 5.15 (2H, m, H-6a), 3.56 (1H, dd, J = 3.2 Hz, J = 9.6 Hz,  $-\cdots$ CH_a-OTBS), 3.25 (1H, dd, J = 7.5 Hz J = 9.5 Hz, -CH_b-OTBS), 0.88 (9H, s, ^tBu), 0.02 (6H, s, Me₂Si).  13 C-RMN (CDCl₃, 125 MHz,  $\delta$ ): 133.6 (CH), 133.3 (CH), 126.8 (CH), 119.7 (CH₂), 82.5 (C[±]), 75.8 (C[±]), 69.8 (CH₂), 67.7 (C), 53.7 (CH), 51.2 (CH), 43.5 (CH₂), 43.3 (C), 39.8 (CH), 38.5 (CH), 34.8 (CH), 34.6 (CH₂), 32.2 (CH₂), 30.8 (CH₂), 26.7 (CH₂), 26.0 (CH₃ x 3), 21.1 (CH₂), 20.7 (CH₂), 20.4 (CH₂), 20.3 (CH₂), 18.4 (C), 16.7 (CH₃), 14.3 (CH₃), 13.5 (CH₃), -5.3 (CH₃), -5.4 (CH₃). EM-IQ⁺ (m/e, I): 501 (MH⁺, 0.05), 352 (MH⁺- OTBS-H₂O, 2). HRMS calcd. para C₃₂H₅₇O₂Si (MH⁺): 501.412785, encontrado 501.413082.

20

25

15

5

10

Una disolución del dienino XII (200 mg, 0.35 mmol) en diclorometano (80 mL) se trató con el catalizador de Grubbs (34 mg, 0.04 mmol). La mezcla resultante se calentó a 50°C durante 24 h, que tras su ennfriamiento a temperatura ambiente se concentró a presión reducida. El bruto resultante se purificó mediante una cromatografía en alúmina (3 % EtOAc/hexanos) para dar lugar al compuesto bicíclico deseado XIII, con un rendimiento del



55 %.  $R_f$  = 0.27 (10 % EtOAc/hexanos).  1 H-RMN (CDCl₃, 500 MHz, δ): 6.18 (1H, d, J = 10.1 Hz, H-4), 5.43 (1H, m, H-3), 5.34 (1H, t, J = 8.1 Hz, H-6), 3.61 (1H, dd, J = 3.5 Hz, J = 9.6 Hz, -CH_a-OTBS), 3.20 (1H, m, -CH_b-OTBS), 2.87 (1H, dd, J = 3.9 Hz, J = 11.4 Hz, H-10), 2.01 (1H, d, J = 11.4 Hz, H-10), 0.91 (9H, s,  1 Bu), 0.05 (3H, s, Me₂Si).  1 3C-RMN (CDCl₃, 125 MHz, δ): 139.7 (C), 130.5 (CH), 125.8 (CH), 119.1 (CH), 81.2 (C), 67.8 (CH₂), 53.8 (CH), 48.5 (CH), 45.2 (CH), 43.7 (C), 40.5 (CH₂), 38.6 (CH), 35.6 (CH₂), 35.1 (CH₂), 34.9 (CH), 33.3 (CH₂), 30.4 (CH₂), 29.9 (CH₂), 26.5 (CH₂), 26.0 (3 CH₃), 20.6 (CH₂), 18.4 (C), 16.4 (CH₃), 14.0 (CH₃), -5.3 (2 CH₃). EM-IQ⁺ (m/e, I): 445 (MH⁺, 4), 313 (4), 295 (83). HRMS calcd para C₂₈H₄₉O₂Si (MH⁺): 445.350185, encontrado 445.351417.

Sobre una disolución de **XIII** (80 mg, 0.16 mmol) en THF (2 mL) se añadió una disolución de FTBA en THF (1 M, 2.2 mL, 2.2 mmol) y la mezcla resultante se agitó a reflujo durante 1 h. Una vez enfriada a temperatura ambiente se trató con NH₄Cl (10 mL) y se extrajo con éter etílico (2 x 10 mL). Las fases orgánicas reunidas se secaron, filtraron y concentraron a presión reducida, y el residuo resultante se purificó mediante una cromatografía rápida en gel de sílice (25 % EtOAc/hexanos), proporcionando 48 mg de **XIV**, con un rendimiento del 95 %. R_f = 0.36 (30 % EtOAc/hexanos). ¹H-NMR (CDCl₃, 300 MHz, δ): 5.84, 5.56 (2H, m, H-6, H-5), 3.59 (1H, m, -CH_a-OH), 3.33 (1H, m, -CH_b-OH), 1.94 (1H, t, *J* = 2.6 Hz, H-C=), 1.02 (3H, d, *J* = 6.6 Hz, Me-21), 0.94 (3H, s, Me-18). ¹³C-NMR (CDCl₃, 75 MHz, δ): 131.6 (CH), 127.9 (CH), 83.6 (C=), 78.4 (C), 70.0 (C=), 68.2 (CH₂), 53.8 (CH), 52.2 (CH), 43.6 (C), 42.1 (CH), 41.0 (CH₂), 40.6 (CH), 38.6 (CH), 37.2 (CH₂), 35.5 (CH₂), 33.8 (CH₂), 30.1 (CH₂), 28.4 (CH₂), 27.1 (CH₂), 20.4 (CH₂), 16.9 (CH₃), 13.5 (CH₃). EM-IQ⁺ (m/e, I): 331 (MH⁺, 9), 313 (MH⁺-H₂O, 75), 295 (MH⁺-2H₂O, 100). HRMS calculado para C₂₂H₃₅O₂ (MH⁺): 331.263706, encontrado 331.264789.

#### EJEMPLO 2

El taxoesteroide (XVIII) se preparó de la forma siguiente:



Una disolución del éster trietílico del but-3-ino-1,1,1-tricarboxilato (VI) (5.0 g, 18.4 mmol) en THF (5 mL) se añadió vía cánula a una suspensión de etóxido sódico (1.48 g, 23.8 mmol) en THF (50 mL). Transcurridas 1.5 h, se añadió metilsulfonato de (2Z)-2-pentenilo (5.9 g, 36.80 mmol) y la mezcla se agitó a temperatura ambiente durante 5 h. Transcurrido este tiempo, la mezcla de reacción se vertió sobre una disolución saturada de NaCl y se extrajo con éter. Las fases orgánicas reunidas se secaron, filtraron y concentraron y el residuo se purificó mediante una cromatografía rápida (4 % EtOAc/hexanos) para dar lugar a 1.7 mg de VIIb [35 %, R_f=0.6 (10 % EtOAc/hexanos)]. ¹H-NMR (CDCl₃, 250 MHz, δ): 5.48 (1H, m, H-C=), 4.97 (1H, m, H-C=), 4.11 (4H, m, 2 CO₂CH₂), 2.70 (4H, m, -CH₂-C=, -CH₂-C=), 2.07 (2H, m, CH₃-CH₂-C=),1.94 (1H, t, J = 2.7 Hz, H-C=), 1.18 (6H, t, J = 7.15 Hz, 2 CO₂CH₂CH₃), 0.88 (3H, t, J = 7.5 Hz, CH₃-CH₂-C=). ¹³C-NMR (CDCl₃, 63 MHz, δ): 169.7 (2 CO), 136.4 (CH), 121.6 (CH), 78.9 (C=), 71.1 (C=), 61.4 (CH₂), 61.1 (CH₂), 56.5 (C), 29.5 (CH₂), 22.2 (CH₂), 20.5 (CH₂), 14.0 (CH₃), 13.9 (CH₃), 13.6 (CH₃); EM-IQ⁺ (m/z, I): 267 (MH⁺, 100), 194 (MH⁺-CO₂Et, 5), 121 (MH⁺-(CO₂Et)₂, 5); HRMS calculado para C₁₅H₂₃O₄ (MH⁺): 267.159634, encontrado 267.160073.

Una disolución del compuesto VIIb (1.5 g, 5.61 mmol) se añadió a una disolución de EtONa (570 mg, 8.4 mmol) en etanol (20 mL). La mezcla de reacción se calentó a reflujo durante 2 días y transcurrido ese tiempo se vertió sobre NaCl (20 mL). La mezcla se acidificó con 10 % HCl (20 mL) y extrajo con éter. La fase orgánica reunida se secó con Na₂SO₄, filtró, concentró y el residuo se purificó mediante una cromatografía rápida en gel de sílice (1 % EtOAc/hexanos), resultando 600 mg del éster VIIIb [55 %,  $R_f$ =0.6 (10 % EtOAc/hexanes), aceite amarillo]. ¹H-NMR (CDCl₃, 250 MHz,  $\delta$ ): 5.44 (1H, m, H-C=), 5.19 (1H, m, H-C=), 4.11 (2H, c, J = 7.1 Hz, -CO₂-CH₂), 2.51 (1H, m, H-2), 2.35 (4H, m, H-3, CH₂-C=), 2.01 (3H, m, H-6, H-C=), 1.21 (3H, t, J = 7.1 Hz, -CO₂-CH₂-CH₃), 0.90 (3H, t, J = 7.5 Hz, H-7). ¹³C-NMR (CDCl₃, 63 MHz,  $\delta$ ): 173.8 (CO), 134.6 (CH), 124.3 (CH), 81.4 (C=), 69.8 (C=), 60.5 (CH₂), 44.4 (CH), 28.5 (CH₂), 20.5 (CH₂), 20.3 (CH₂), 14.2



(CH₃), 14.1 (CH₃). EM-IQ⁺ (m/z, I): 195 (MH⁺, 53), 167 (27), 149 (17), 121 (100). HRMS calculado para  $C_{12}H_{19}O_2$  (MH⁺): 195.138505, encontrado 195.138842.

Una disolución del éster VIIIb (500 mg, 2.56 mmol) en éter (20 mL), enfriada a 0°C, se trató con LiAlH₄ (150 mg, 4.0 mmol). La mezcla resultante se agitó durante 1 h, se añadió a continuación 5 %  $H_2SO_4$  (10 mL) y se extrajo con éter. Las fases etéreas reunidas se secaron, filtraron, concentraron y el bruto resultante se purificó mediante una cromatografía rápida en gel de sílice (10 % EtOAc/hexanos), dando lugar a 352 mg de 2-prop-2-inil-4-hepten-1-ol [90 %,  $R_i$ =0.15 (15 % EtOAc/hexanos)].  1 H-NMR (CDCl₃, 250 MHz,  $\delta$ ): 5.45 (2H, m, H-4, H-5), 3.61 (2H, m, H-1), 2.25 (2H, m, H-6), 2.13 (4H, m,  $CH_2$ -C=, H-3), 1.96 (1H, t, J = ... 2.7 Hz, H- C=), 1.75 (1H, m, H-2), 0.93 (3H, t, J = 7.5 Hz, H-7).  13 C-NMR (CDCl₃, 63 ... MHz,  $\delta$ ): 133.9 (CH), 126.0 (CH), 82.5 (C=), 69.7 (C=), 64.7 (CH₂), 40.2 (CH), 28.0 (CH₂), 20.6 (CH₂), 19.8 (CH₂), 14.2 (CH₃). EM-IQ⁺ (m/e, I): 153 (MH⁺, 36), 135 (MH⁺- ... H₂O, 51). HRMS calculado para  $C_{10}H_{17}O$  (MH⁺): 153.127940, encontrado 153.128589.

A una disolución del alcohol (350 g, 2.3 mmol) en THF (15 mL), enfriada a 0°C, se añadió sucesivamente trifenilfosfina (725 mg, 2.76 mmol), imidazol (470 mg, 6.9 mmol) y yodo (648 g, 2.55 mmol). La mezcla resultante se agitó a esta temperatura durante 30 min y otros 30 min a temperatura ambiente, y posteriormente se vertió sobre agua y se extrajo conéter. La fase orgánica reunida se secó con Na₂SO₄, filtró y concentró a presión reducida y el residuo resultante se purificó mediante una columna rápida en gel de sílice, resultando 514 mg del yoduro IXb con un rendimiento del 85 %. R_f=0.8 (10 % EtOAc/hexanes), aceite incoloro. ¹H-NMR (CDCl₃, 250 MHz, δ): 5.49, 5.23 (2H, m, H-6, H-7), 3.34 (2H, m, CH₂-I), 2.35 (2H, m, H-8), 2.27 (2H, dd, J = 2.6 Hz, J = 6.7 Hz, H-3), 2.17 (2H, m, H-5), 2.00 (1H, t, J = 2.6 Hz, H-1), 1.55 (1H, m, H-4), 0.96 (3H, t, J = 7.5 Hz, H-9). ¹³C-NMR (CDCl₃, 63 MHz, δ): 134.7 (CH), 125.0 (CH), 81.4 (C=), 70.2 (C=), 39.3 (CH), 31.3 (CH₂), 23.5

(CH₂), 20.8 (CH₂), 14.1 (CH₃), 13.0 (CH₂). EM-IQ⁺ (m/e, I): 263 (MH⁺, 0.1), 136 (MH⁺-I, 11), 121 (15), 107 (55). HRMS calcd for  $C_{10}H_{16}$  (MH⁺-I): 136.125201, encontrado 136.124674.

Una disolución de la cetona XV (0.4 g, 1.45 mmol) en DMF (3 mL) se adicionó lentamente sobre una disolución de KHMDS (0.5 M en tolueno, 9.0 mL, 4.5 mmol) en DMF (4 mL), enfriada a -78°C. La mezcla resultante se agitó a esta temperatura durante 30 min y a continuación se adicionó una disolución del yoduro (1.2 g, 4.5 mmol) en DMF (2 mL). .:. Transcurridas 2 horas se añadió una disolución saturada de NH₄Cl (4 mL) y la fase acuosa se ::•. extrajo con éter. Los extractos etéreos reunidos se lavaron con una disolución saturada de NaCl, se secaron sobre Na₂SO₄, y concentraron a presión reducida para dar lugar a un residuo .:. que se purificó mediante una cromatografía rápida en gel de sílice (2 % EtOAc/hexanos), ... * proporcionando el deseado producto XVI con un 69 % de rendimiento. R=0.6 (10 % EtOAc/hexanes), ¹H-NMR (CDCl₃, 250 MHz, δ): 5.43, 5.19 (2H, m, H-4', H-5'), 1.14 (3H, d, J = 5.7 Hz, CH₃-21), 0.87 (6H, d, J = 6.6 Hz, CH₃-26 y 27), 0.64 (3H, s, CH₃-:...: 18). ¹³C-NMR (CDCl₃, 63 MHz, δ): 214.9 (CO), 133.9 (CH), 126.1 (CH), 82.0 (CΞ),  $\frac{1}{100}$ 69.7 (C=), 67.5 (CH₂), 57.6 (CH), 53.2 (CH), 50.2 (C), 47.6 (CH), 38.6 (CH), 36.3:... (CH₂), 35.3 (CH₂), 35.1 (CH), 31.05 (CH₂), 29.2 (CH₂), 27.0 (CH₂), 22.7 (CH₃), 22.5 (CH₃), 21.3 (CH₂), 20.6 (CH₂), 19.0 (CH₂), 17.9 (CH₃), 14.2 (CH₃), 12.8 (CH₃). EM-IQ⁺ (m/e, I): 399 (MH⁺, 80), 381 (MH⁺-H₂O, 40). HRMS calculado para C₂₈H₄₇O (MH⁺): 399.362692, encontrado 399.361999.

Una disolución del bromuro de alilmagnesio (1 M en THF, 2.2 mL, 2.2 mmol) se añadió a una disolución de la cetona XVI (200 mg, 0.5 mmol) en THF (5 mL) a -78°C.

25

5

10

15

20



Transcurridas 2 h, se añadió una disolución saturada de NH₄Cl (15 mL) y la fase acuosa resultante se extrajo con éter. Los extractos etéreos reunidos se lavaron con una disolución saturada de NaCl, se secó sobre Na₂SO₄, y concentró a presión reducida para dar lugar a un residuo que se purificó mediante una cromatografía rápida en gel de sílice (3 % EtOAc/hexanos), proporcionando el deseado producto **XVII** con un 80 % de rendimiento.  $R_f$ = 0.37 (10 % EtOAc/hexanos).  $R_f$ = 0.5 (10 % EtOAc/hexanes), aceite amarillento.  1 H-NMR (CDCl₃, 300 MHz, δ): 5.86 (1H, m, H-6), 5.45, 5.28 (2H, m, H-4', H-5'), 5.16 (2H, m, H-6a), 5.15 (2H, m, H-6a), 0.85 (6H, d, J= 6.6 Hz, Me-26, Me-27), 0.88 (3H, s, Me-18).  13 C-NMR (CDCl₃, 75 MHz, δ): 133.3 (C), 133.2 (CH), 121.1 (CH), 119.3 (CH₂), 83.5 (C=), 69.2 (C=), 69.8 (CH₂), 67.7 (C), 57.1 (CH), 51.3 (CH), 43.3 (C), 43.4 (CH₂), 39.6 (CH), 39.5 (CH₂), 35.85 (CH), 35.8 (CH₂), 35.2 (CH), 34.6 (CH₂), 33.0 (CH₂), 31.5 (CH₂), 30.25 (CH₂), 28.0 (CH), 27.2 (CH₂), 23.7 (CH₂), 22.8 (CH₃), 22.5 (CH₃), 20.4 (CH₂), 20.0 (CH₂), 18.3 (CH₃), 17.8 (CH₃), 13.4 (CH₃). EM-IQ⁺ (m/e, I): 441 (MH⁺, 44), 423 (MH⁺- H₂O, 100). HRMS calculado para  $C_{32}H_{57}O_2Si$  (MH⁺): 441.409642, encontrado 441.409447.

Una disolución del dienino XVII (100 mg, 0.23 mmol) en diclorometano (40 mL) se .... trató con el catalizador de Grubbs (17 mg, 0.02 mmol). La mezcla resultante se calentó a 50°C durante 24 h, que tras su enfriamiento a temperatura ambiente se concentró a presión reducida. El bruto resultante se purificó mediante una cromatografía en alúmina (3 % EtOAc/hexanos) para dar lugar al compuesto bicíclico deseado XVIII, con un rendimiento del 45 %. R_f = 0.50 (10 % EtOAc/hexanos). H-NMR (CDCl₃, 500 MHz, δ): 6.19 (1H, d, *J* = 9.7 Hz, H-4), .... 5.43 (1H, m, H-3), 5.34 (1H, m, H-6), 2.86 (1H, dd, *J* = 4.2 Hz, *J* = 11.5 Hz, H-10), 1.99 (1H, d, *J* = 11.5 Hz, H-10), 0.852 (6H, d, *J* = 6.6 Hz, Me-26, Me-27), 0.850 (3H, s, Me-18). EM-IQ⁺ (m/e, I): 385 (MH⁺, 5), 367 (MH⁺-H₂O, 37). HRMS calculado para C₂₇H₄₅O (MH⁺): 385.347041, encontrado 385.346825.

#### REIVINDICACIONES

1.- Compuestos de formula (1), caracterizados por:

5

10

15

20

- R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ pueden ser un átomo de hidrógeno, un grupo aciloxi, alquiloxi, ariloxi, alquiltio, ariltio o alquílico con cadenas de C1-C10, en los que el radical puede ser alquílico lineal o ramificado de 1-10 átomos de carbono, alquenilo de 2 a 10 ::átomos de carbono, alquinilo de 3 a 10 átomos de carbono, cicloalquilo de 3 a 6 átomos de .:. .. carbono, cicloalquenilo de 4 a 6 átomos de carbono o bicicloalquilico de 7 a 10 átomos de carbono, estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, :: idénticos o diferentes, elegidos entre los átomos de halógeno y los radicales hidroxi, alcoxi ..... que contienen de 1 a 4 átomos de carbono, piperidinilo, morfolinilo, piperazinilo-1 (eventualmente substituido en 4 por un radical alquilo de 1 a 4 átomos de carbono o por un : radical fenilalquilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 :.... a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi. o alcoxicarbonilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono, o un radical fenilo, .... eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilos de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado de 5 ó 6 miembros, eventualmente sustituidos por uno o varios radicales alquilos que contienen de 1 a 4 átomos de.. carbono, entendiéndose que los radicales cicloalquilos, cicloalquenilos o bicicloalquilos...: pueden estar eventualmente sustituidos por uno o varios radicales alquílicos de 1 a 4 átomos de carbono; y

25

- Sc es la cadena lateral característica de los esteroides o un radical alquílico lineal o ramificado de 1-12 átomos de carbono, alquenilo de 2 a 12 átomos de carbono, alquinilo de 3 a 12 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, cicloalquilo de 4 a 6 átomos de carbono, o bicicloalquílico de 7 a 10 átomos de carbono, estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, idénticos o diferentes, elegidos



10

15

entre los átomos de halógeno y los radicales hidroxi, alcoxi que contienen de 1 a 4 átomos de carbono, piperidinilo, morfolinilo, piperazinilo-1 (eventualmente substituido en 4 por un radical alquilo que contiene de 1 a 4 átomos de carbono o por un radical fenilalquilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi o alcoxicarbonilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono, o un radical fenilo, eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilo de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado que contiene 5 ó 6 miembros, eventualmente sustituidos por uno o varios radicales alquilo de 1 a 4 átomos de carbono, entendiéndose que los radicales cicloalquilo, cicloalquenilo o bicicloalquilo pueden estar eventualmente sustituidos por uno o varios radicales alquílicos de 1 a 4 átomos de carbono; y

- Sk es una cadena aminoacídica análoga a la de los taxanos, en la que P representa a un grupo fenílico o un radical alcoxi con cadenas alquílicas de 1 a 10 carbonos, alquenílicas y alquinílicas de 3 a 10 carbonos, cicloalquílicas y cicloalquenílicas de 4 a 7 átomos en el anillo, fenilo o un compuesto heterocíclico, y Ar es un compuesto aromático.
  - 2.- Compuestos de formula (2) caracterizados por:

20

25

- R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ pueden ser un átomo de hidrógeno, un grupo aciloxi, alquiloxi, ariloxi, alquiltio, ariltio o alquílico con cadenas de C₁-C₁₀, en los que el radical puede ser alquílico lineal o ramificado de 1-10 átomos de carbono, alquenilo de 2 a 10 átomos de carbono, alquinilo de 3 a 10 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono o bicicloalquilico de 7 a 10 átomos de carbono, estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, idénticos o diferentes, elegidos entre los átomos de halógeno y los radicales hidroxi, alcoxi que contienen de 1 a 4 átomos de carbono, piperidinilo, morfolinilo, piperazinilo-1

(eventualmente substituido en 4 por un radical alquilo de 1 a 4 átomos de carbono o por un radical fenilalquilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi o alcoxicarbonilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono, o un radical fenilo, eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilos de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado de 5 ó 6 miembros, eventualmente sustituidos por uno o varios radicales alquilos que contienen de 1 a 4 átomos de carbono, entendiéndose que los radicales cicloalquilos, cicloalquenilos o bicicloalquilos pueden estar eventualmente sustituidos por uno o varios radicales alquílicos de 1 a 4 átomos de carbono; y

5

10

15

20

25

30

- Sc es la cadena lateral característica de los esteroides o un radical alquílico lineal o ramificado de 1-12 átomos de carbono, alquenilo de 2 a 12 átomos de carbono, alquinilo de 3 a 12 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, cicloalquenilo de 4 a 6 átomos de carbono, o bicicloalquílico de 7 a 10 átomos de carbono, estando sustituidos eventualmente estos radicales por uno o varios sustituyentes, idénticos o diferentes, elegidos entre los átomos de halógeno y los radicales hidroxi, alcoxi que contienen de 1 a 4 átomos de carbono, piperidinilo, morfolinilo, piperazinilo-1 (eventualmente substituido en 4 por un radical alquilo que contiene de 1 a 4 átomos de carbono o por un radical fenilalquilo, cuya parte alquilo contiene de 1 a 4 átomos de carbono), cicloalquilo de 3 a 6 átomos de carbono,: cicloalquenilo de 4 a 6 átomos de carbono, fenilo, ciano, nitro, carboxi o alcoxicarbonilo, cuya. parte alquilo contiene de 1 a 4 átomos de carbono, o un radical fenilo, eventualmente sustituido por uno o varios radicales, idénticos o diferentes, elegidos entre los radicales alquilo de 1 a 4 átomos de carbono o alcoxi que contiene de 1 a 4 átomos de carbono, un radical heterocíclico nitrogenado saturado o insaturado que contiene 5 ó 6 miembros, eventualmente : :: sustituidos por uno o varios radicales alquilo de 1 a 4 átomos de carbono, entendiéndose que los radicales cicloalquilo, cicloalquenilo o bicicloalquilo pueden estar eventualmente sustituidos por uno o varios radicales alquílicos de 1 a 4 átomos de carbono; y
- Sk es una cadena aminoacídica análoga a la de los taxanos, en la que P representa a un grupo fenílico o un radical alcoxi con cadenas alquílicas de 1 a 10 carbonos, alquenílicas y alquinílicas de 3 a 10 carbonos, cicloalquílicas y cicloalquenílicas de 4 a 7 átomos en el anillo, fenilo o un compuesto heterocíclico, y Ar es un compuesto aromático.
- 3.- Un procedimiento para la preparación de los compuestos de formula (1), caracterizado, como transformaciones sintéticas más destacadas, por las siguientes etapas:



$$R^{5} R^{6} R^{7} Sc$$

$$R^{4} C D$$

$$R^{3} R^{8} B H$$

$$SkO R^{10}$$

$$SkO R^{10}$$

$$(1)$$

a) La alquilación del enolato cinético de las cetonas portadoras del anillo CD de los esteroides, de fórmula general (3),

con los apropiados agentes alquilantes de fórmula general (4),

10

15

5

obteniéndose como producto de reacción compuestos de fórmula general (5), en los que los grupos Sc, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ presentan las características estructurales indicadas en la reivindicación 1, el grupo X puede ser un halógeno, un grupo sulfonato, cualquier otro buen grupo saliente o un grupo carbonilo, y el grupo Y puede ser un grupo metilo, propilo, etilo o isopropilo;:

b) Alilación de los compuestos de fórmula general (5), de la anterior etapa a), en un disolvente inerte, para obtener los alcoholes correspondientes de fórmula general (6),

- en los que los grupos Sc, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ e Y tienen las características descritas anteriormente, y el grupo R¹ presenta las características estructurales indicadas en la reivindicación 1.
  - c) Reacción de ciclación de metátesis de los dieninos de fórmula general (6) de la anterior etapa b), catalizada por los catalizadores metalocarbénicos característicos para este tipo de procesos y en un disolvente adecuado, obteniéndose productos de formula general (7),

10

$$R^{5}$$
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 

en los que los grupos Sc, R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ tienen el significado dado :... anteriormente.

d) Las posteriores modificaciones de grupos funcionales, tales como, oxidaciones, reducciones, esterificaciones, alquilaciones, isomerizaciones, etc., para dar lugar a los compuestos de fórmula general (1),

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

en los que los grupos Sc, P, Ar, R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ tienen el significado dado anteriormente en la reivindicación 1.

4.- Un procedimiento para la preparación de los compuestos de formula (2), caracterizado, como transformaciones sintéticas más destacadas, por las siguientes etapas:

5

$$R^{5} \stackrel{R^{6}}{\longrightarrow} R^{7} \stackrel{Sc}{\longrightarrow} C \stackrel{D}{\longrightarrow} R^{2} \stackrel{R^{7}}{\longrightarrow} R^{8} \stackrel{R^{9}}{\longrightarrow} R^{4} \qquad SkO \qquad Sk = Ar \stackrel{NH}{\longrightarrow} OH \qquad (2)$$

a) La alquilación del enolato cinético de cetonas portadoras del anillo CD de los esteroides, de fórmula general (3),

10

con los apropiados agentes alquilantes de fórmula general (8),

15

20

obteniéndose, como producto de reacción, compuestos de fórmula general (9), en los que los grupos Sc, R¹, R⁵, R⁶, y R⁷ presentan las características estructurales indicadas en la reivindicación 2, el grupo X puede ser un halógeno, grupo sulfonato o cualquier otro buen grupo saliente.

b) Alquilación del grupo carbonilo de los compuestos de fórmula general (9), de la anterior etapa a), en un solvente inerte, con los correspondientes compuestos organometálicos de fórmula general (10),

5

10

en los que los grupos R3, R4, R8, R9 y R10 presentan las características estructurales indicadas en la reivindicación 2, M puede ser un metal de las características de Mg, Li, Na, etc., y el grupo Y puede ser un grupo metilo, propilo, etilo o isopropilo, para obtener los alcoholes correspondientes de fórmula general (11),

$$\begin{array}{c}
R^{5} \\
R^{1} \\
R^{8} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{9} \\
R^{3} \\
\end{array}$$

$$\begin{array}{c}
(11) \\
\end{array}$$

anteriormente.

en los que los grupos Sc, R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ e Y tienen el significado dado

c) Reacción de ciclación por metátesis de los dieninos de formula general (11), de la anterior etapa b), catalizada por los catalizadores metalocarbénicos característicos para este tipo de procesos y en un disolvente adecuado, obteniéndose productos de fórmula general

(12),

20

15

en los que los grupos Sc, R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ tienen el significado anterior.

d) Las posteriores modificaciones de grupos funcionales, tales como oxidaciones, reducciones, esterificaciones, alquilaciones, isomerizaciones, etc., para dar lugar a los compuestos de fórmula general (2),

5

10

15

20

25

en los que los grupos Sc, P, Ar, R¹, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ y R¹⁰ tienen el significado dado anteriormente en la reivindicación 2.

- 5.- Una composición farmacéutica, caracterizada porque contiene como ingrediente activo un compuesto de las reivindicaciones 1, 2, 3 y 4, en una mezcla con el apropiado vehículo o transportador.
- 7.- Uso de los compuestos de fórmula general 1, 2, e intermedios sintetizados en la:

  preparación de dichos compuestos, que presentan las fórmulas generales, 3, 4, 5, 6, 7, 8, 9, 10, ....

  11 y 12, en la fabricación de una composición farmacéutica antifúngica.
- 8.- Uso de los compuestos de fórmula general 1, 2, e intermedios sintetizados en la preparación de dichos compuestos, que presentan las fórmulas generales, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12, en la fabricación de una composición farmacéutica antimicrobiana
- 10.- Uso de los compuestos de fórmula general 1, 2, e intermedios sintetizados en la preparación de dichos compuestos, que presentan las fórmulas generales, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12, en la fabricación de una composición farmacéutica inmunosupresora.

PCT/ES20**04**/000**313** 

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.