SUCESIONES DE VARIABLES ALEATORIAS

Julio César Galindo López

Facultad de Ciencias

23 de abril de 2020

Consideremos una sucesión de eventos $\{A_n, n \geq 1\}$ en (Ω, \mathcal{F}) . La sucesión de eventos $\{B_n = \cup_{k \geq n} A_k, n \geq 1\}$ es decreciente, su intersección

$$A = \limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} B_n$$

es un evento en \mathcal{F} . El evento A representa al conjunto de aquellos $\omega \in \Omega$ que pertenecen a una infinidad de eventos A_n . Escribiremos,

$$\limsup_{n\to\infty}A_n=\{A_n \text{ i.o.}\}.$$

Podemos definir igualmente

$$\begin{split} & \liminf_{n \to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k \\ & = \{ \omega \in \Omega : \omega \in A_n \text{ salvo un número finito de índices } n \} \end{split}$$

EJEMPLO

Sea
$$\Omega = \mathbb{R}$$
, $\mathcal{F} = \mathcal{B}(\mathbb{R})$, $A_1 = \emptyset$, $A_2 = [-3, 3]$ y

$$A_{2k-1} = [-1, 2), \qquad A_{2k} = [-2, 1], \qquad k \ge 1.$$

Se tiene

$$\limsup_{n \to \infty} A_n = [-2, 2), \qquad \liminf_{n \to \infty} A_n = [-1, 1].$$

TEOREMA (LEMA DE BOREL-CANTELLI)

Sea $\{A_n\}_{n\geq 1}$ una sucesión de eventos.

1. Si $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, entonces

$$\mathbb{P}(A_n \text{ i.o.}) = 0.$$

2. Si $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$, y si los eventos $\{A_n\}$ son independientes (es decir, para todo n, A_1, \ldots, A_n son independientes), entonces

$$\mathbb{P}(A_n \text{ i.o.}) = 1.$$

NOTA

Usaremos la siguiente versión de la parte 1. : existe un evento \widetilde{B} con $\mathbb{P}(\widetilde{B})=1$, tal que para todo $\omega\in\widetilde{B}$, podemos encontrar $n_0=n_0(\omega)<\infty$ tal que $\omega\in A_n^c$ cuando $n\geq n_0$.

DEMOSTRACIÓN DEL LEMA DE BOREL-CANTELLI.

.

- 1. Fijemos $\varepsilon>0$. Existe un entero N tal que $\sum_{n=N}^{\infty}\mathbb{P}(A_n)<\varepsilon$, y en consecuencia $\mathbb{P}(\cup_{n>N}A_n)<\varepsilon$. Así, $\mathbb{P}(\limsup_{n\to\infty}A_n)<\varepsilon$.
- 2. Se tiene

$$\mathbb{P}\left(\bigcup_{j=k}^{m} A_j\right) = 1 - \mathbb{P}\left(\bigcap_{j=k}^{m} A_j^c\right) = 1 - \prod_{j=k}^{m} \mathbb{P}(A_j^c) \ge 1 - \exp\left[-\sum_{j=k}^{m} \mathbb{P}(A_j)\right]$$

Haciendo tender m hacia ∞ ,

$$\mathbb{P}\left(\bigcup_{j=k}^{\infty} A_j\right) \ge 1 - \exp\left[-\sum_{j=k}^{\infty} \mathbb{P}(A_j)\right] = 1.$$

Como los eventos $\bigcup_{j=k}^{\infty} A_j$ decrecen hacia $\limsup_{n\to\infty} A_n$ cuando $k\to\infty$, $\mathbb{P}(\limsup_{n\to\infty} A_n)\geq 1$.

Modos de convergencia

DEFINICIÓN (CONVERGENCIA C.S.)

Decimos que la sucesión de v.a. $\{X_n\}_{n\geq 1}$ converge casi seguramente hacia una v.a. X si existe un evento A con $\mathbb{P}(A)=1$, tal que

$$\lim_{n\to\infty}X_n(\omega)=X(\omega)\qquad\text{para todo }\omega\in A.$$

EJEMPLO

Sea (X_n) una sucesión de v.a. reales independientes que siguen la misma ley gaussiana $\mathcal{N}(0,1)$. Sea $S_n=X_1+\cdots+X_n$. Sabemos que $S_n\sim\mathcal{N}(0,n)$. De donde, por la desigualdad de Markov, para todo $\varepsilon>0$,

$$\mathbb{P}(|S_n| > n\varepsilon) = \mathbb{P}(|S_n|^3 > \varepsilon^3 n^3) \le \frac{\mathbb{E}(|S_n|^3)}{\varepsilon^3 n^3}.$$

Ya que $\sum_n \mathbb{P}(|S_n| > n \varepsilon) < \infty$, por el lema de Borel-Cantelli

$$\mathbb{P}(|S_n| > n\varepsilon, \text{ i.o.}) = 0$$

Entonces existe $\widetilde{B} \in \mathcal{F}$ con $\mathbb{P}(\widetilde{B}) = 1$ tal que

$$\forall \omega \in \widetilde{B}, \ \exists n_0 = n_0(\omega, \varepsilon) \ \text{tal que} \ |S_n(\omega)| \le n\varepsilon, \ \forall n \ge n_0.$$

A fortiori, para toda $\varepsilon > 0$,

$$\mathbb{P}\left(\omega: \limsup_{n \to \infty} \frac{|S_n(\omega)|}{n} \le \varepsilon\right) = 1.$$

EJEMPLO

Nótese que,

$$\left\{ \limsup_{n \to \infty} \frac{|S_n(\omega)|}{n} = 0 \right\} = \bigcap_{k > 1} \left\{ \limsup_{n \to \infty} \frac{|S_n(\omega)|}{n} \le \frac{1}{k} \right\}.$$

Por lo tanto

$$\mathbb{P}\left(\omega: \limsup_{n \to \infty} \frac{|S_n(\omega)|}{n} = 0\right) = 1.$$

Esto es,

$$\frac{S_n}{n} \to 0$$
 c.s.

PROPOSICIÓN

Sean X, X_1, X_2, \ldots v.a. reales tales que la serie $\sum \mathbb{P}(|X_n - X| \geq \varepsilon)$ es convergente para toda $\varepsilon > 0$, entonces $X_n \to X$ c.s.

DEMOSTRACIÓN.

Sea $\varepsilon>0$ fijo. Por el lema de Borel-Cantelli, existe $\widetilde{B}\in\mathcal{F}$ con $\mathbb{P}(\widetilde{B})=1$ tal que

$$\forall \omega \in \widetilde{B}, \ \exists n_0 = n_0(\omega) \ \text{tal que } |X_n(\omega) - X(\omega)| < \varepsilon, \ \forall n \ge n_0.$$

Así, para todo $\omega \in \widetilde{B}$, $\limsup_{n \to \infty} |X_n(\omega) - X(\omega)| \le \varepsilon$. Por lo tanto,

$$\mathbb{P}\left(\limsup_{n\to\infty}|X_n-X|\leq\varepsilon\right)=1$$

Ya que $\varepsilon > 0$ es arbitrario, deducimos que

$$\mathbb{P}\left(\lim_{n\to\infty}(X_n-X)=0\right)=1;$$

dicho de otra manera, X_n converge casi seguramente a X.

CONVERGENCIA EN PROBABILIDAD

DEFINICIÓN

Decimos que la sucesión $\{X_n\}_{n\geq 1}$ converge en probabilidad hacia una v.a. X si para todo $\varepsilon>0$

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0.$$

NOTA

Es fácil de ver que los resultados usuales sobre límites (unicidad del límite, linealidad, etc) son válidos para las convergencias c.s. y en probabilidad.

CONVERGENCIA EN PROBABILIDAD

EJEMPLO

Sea $\{X_n\}$ una sucesión de v.a. reales tales que $\mathbb{E}[X_n] \to a$ y $\mathrm{Var}[X_n] \to 0$. Entonces, por la desigualdad de Markov, para todo $\varepsilon > 0$,

$$\mathbb{P}(|X_n - a| > \varepsilon) = \mathbb{P}((X_n - a)^2 > \varepsilon^2)$$

$$\leq \frac{\mathbb{E}[(X_n - a)^2]}{\varepsilon^2}$$

$$= \frac{\text{Var}[X_n] + (a - \mathbb{E}[X_n])^2}{\varepsilon^2} \to 0$$

Por lo tanto, X_n converge en probabilidad hacia a.

CONVERGENCIA EN PROBABILIDAD

EJEMPLO

Sea $\{X_n\}$ una sucesión de v.a. reales tales que $\mathbb{E}[X_n] \to a$ y $\mathrm{Var}[X_n] \to 0$. Entonces, por la desigualdad de Markov, para todo $\varepsilon > 0$,

$$\mathbb{P}(|X_n - a| > \varepsilon) = \mathbb{P}((X_n - a)^2 > \varepsilon^2)$$

$$\leq \frac{\mathbb{E}[(X_n - a)^2]}{\varepsilon^2}$$

$$= \frac{\text{Var}[X_n] + (a - \mathbb{E}[X_n])^2}{\varepsilon^2} \to 0$$

Por lo tanto, X_n converge en probabilidad hacia a.

$c.s. \Rightarrow \mathbb{P}$

PROPOSICIÓN

Si $X_n \to X$ c.s., entonces la convergencia también se da en probabilidad.

DEMOSTRACIÓN.

Sea $\widetilde{B}\in\mathcal{F}$ tal que $\mathbb{P}(\widetilde{B})=1$ y que para todo $\omega\in\widetilde{B}$, $X_n(\omega)\to X(\omega)$, $n\to\infty$. Sea $\varepsilon>0$ fijo. Para cada entero n, consideremos el evento

$$B_n = \{ \omega \in \widetilde{B} : \sup_{k \ge n} |X_k(\omega) - X(\omega)| > \varepsilon \}.$$

La sucesión $\{B_n\}$ es decreciente y $\cap_{n\geq 1}B_n=\emptyset$. Entonces, $\lim_{n\to\infty}\mathbb{P}(B_n)=0$. Como

$$\{|X_n - X| > \varepsilon\} \subset B_n \cup \widetilde{B}^c,$$

Por lo tanto,

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0.$$

 $\mathbb{P} \not\Rightarrow \text{c.s.}$

EJEMPLO

Sea $(\Omega = [1,2], \mathcal{B}_{[1,2]}, \lambda_{[1,2]})$. Para cada entero n, denotemos por k al único entero tal que $2^k \le n < 2^{k+1}$, y tomemos

$$X_n(\omega) = \mathbf{1}_{[n2^{-k},(n+1)2^{-k}]}(\omega).$$

- ▶ $\mathbb{P}(|X_n| > \varepsilon) = 2^{-k}$. Así, $X_n \to 0$ en probabilidad.
- ▶ Para todo $\omega \in [1,2]$, existe una infinidad de enteros n para los cuales $X_n(\omega)=1$, y X_n no converge hacia 0.

 $\mathbb{P} \Rightarrow \text{SUB C.S.}$

PROPOSICIÓN

Si $X_n \to X$ en probabilidad, entonces existe una subsucesión $X_{N(n)}$ que converge a X c.s.

DEMOSTRACIÓN.

Como $\lim_{k\to\infty}\mathbb{P}(|X_k-X|>\varepsilon)=0$ para toda ε , podemos encontrar para toda $n\geq 1$ un entero N(n) tal que $\mathbb{P}(|X_{N(n)}-X|>1/n)\leq 2^{-n}$. Además, la sucesión $\{N(n)\}_{n\geq 1}$ puede escogerse de tal manera que sea creciente. La serie $\sum \mathbb{P}(|X_{N(n)}-X|>1/n)$ es convergente y de aquí se sigue el resultado.