Agustín Esteva aesteva@uchicago.edu Due Date: 04-16-2025

Problem 1

Suppose $f \in \mathcal{L}(m)$ on E and g is measurable and bounded. Then $fg \in \mathcal{L}(m)$.

SOLUTION: Since f, g are measurable then fg is measurable. Since $f \in \mathcal{L}(m)$, then $|f| \in \mathcal{L}(m)$. Since g is bounded, then $|g(E)| \leq C$ for some C > 0. Decompose fg into

$$fg = (fg)^+ - (fg)^-.$$

It suffices to show that both terms are integrable. For all $x \in E$, we have that

$$|(fg)(E)| = |f(E)||g(E)| \le C|f(E)|.$$

Thus, since $(fg)^+, (fg)^- \leq |fg|$, then by a remark proved in the previous homework, since $C|f| \in \mathcal{L}(m)$

$$(fg)^+ \le |fg| \le C|f| \implies \int_E (fg)^+ \le C \int |f| < \infty.$$

Similarly,

$$(fg)^- \le |fg| \le C|f| \implies \int_E (fg)^- \le C \int |f| < \infty.$$

Thus, $fg \in \mathcal{L}(m)$.

(Egorov) Let $E \subseteq \mathbb{R}$ be measurable with $m(E) < \infty$. Let (f_n) be measurable such that $f_n : E \to \mathbb{R}$ for all n and $f_n \to f$ pointwise to some function $f : E \to \mathbb{R}$. Then, for all $\epsilon > 0$, there exists a closed $F \subset E$ such that

$$f_n(x) \rightrightarrows f(x) \quad \forall x \in F, \quad m(E \setminus F) < \epsilon$$

(a) Show that, under these assumptions, for every $\eta > 0$ and $\delta > 0$, there is a measurable subset $A \subset E$ and $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \eta$$
 for all $x \in A$ and $n \ge N$ and $m(E \setminus A) < \delta$.

SOLUTION: Let $\delta > 0$, let $\eta = \frac{1}{k}$. For any $k \in \mathbb{N}$, define for each $N \in \mathbb{N}$:

$$A_N^{(k)} := \{ x \in E \mid |f_n(x) - f(x)| < \frac{1}{k}, \quad \forall n \ge N \}.$$

Since $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x\in E$, then f is measurable, and thus $A_N^{(k)}$ is measurable for each N and each k.

We claim that

$$\lim_{N \to \infty} m(A_N^{(k)}) = m(E) \tag{1}$$

To see this, it suffices to show that

(i) A_N^k is ascending with respect to N;

(ii)
$$\bigcup_{N=1}^{\infty} E_N^{(k)} = E$$
.

To see (i), let $x \in A_N^{(k)}$. By definition, since $N+1 \ge N$, then $|f_{N+1}(x) - f(x)| < \frac{1}{k}$. Thus, $x \in A_{N+1}^{(k)}$. One inclusion of (ii) is obvious. To see the other, let $x \in E$. Since $f_n(x) \to f(x)$, then there exists some $N_x \in \mathbb{N}$ such that if $n \ge N$, then $|f_n(x) - f(x)| < \frac{1}{k}$. Thus, $x \in E_{N_x}^k$ (and in fact, $x \in A_n^{(k)}$) for each $n \ge N_x$) and so $E \subseteq \bigcup_{N=1}^{\infty} A_N^{(k)}$.

By (i) and (ii), and the fact that each $A_N^{(k)}$ is measurable, we have (1) by a theorem in class; so for each $k \in \mathbb{N}$, there is some $N_k \in \mathbb{N}$ such that

$$m(E \setminus A_{N_k}^{(k)}) < \frac{1}{2^k}.$$

Define

$$A:=\bigcap_{k\geq K}A_{N_k}^{(k)},$$

where $K \in \mathbb{N}$ is chosen such that

$$\sum_{i=K}^{\infty} \frac{1}{2^i} < \frac{\delta}{2}.$$

Since each $A_{N_k}^{(k)}$ has already been shown to be measurable and this is a countable intersection, A is measurable. Let $\eta > 0$ and $x \in A$. There is some k > 0 such that $\frac{1}{k} < \eta$. Thus, since $x \in A$, then by definition, $x \in A_{N_k}^{(k)}$, and thus if $n \geq N_k$, we have that

$$|f_n(x) - f(x)| < \frac{1}{k} < \eta.$$

It suffices to show that $m(E \setminus A) < \delta$.

$$m(E \setminus A) = m \left(E \setminus \bigcap_{k \ge K} A_{N_k}^{(k)} \right)$$

$$= m \left(E \cap \left(\bigcap_{k \ge K} A_{N_k}^{(k)} \right)^c \right)$$

$$= m \left(E \cap \bigcup_{k \ge K} (A_{N_k}^{(k)})^c \right)$$

$$= m \left(\bigcup_{k \ge K} E \cap (A_{N_k}^{(k)})^c \right)$$

$$= m \left(\bigcup_{k \ge K} E \setminus A_{N_k}^{(k)} \right)$$

$$\leq \sum_{k \ge K} m(A_{N_k}^{(k)})$$

$$= \sum_{k \ge K} \frac{1}{2^k}$$

$$< \delta$$

(b) Prove Egorov's theorem.

SOLUTION: Let $\epsilon > 0$. By part (a), there exists some $A \subset E$ such that $f_n \rightrightarrows f$ on A and $m(E \setminus A) < \frac{\epsilon}{2}$. Since A is measurable, we have proved that there is a closed

 $F \subset A \subset E$ such that $m(A \setminus F) < \frac{\epsilon}{2}$. Thus,

$$m(E \setminus F) = m\big((E \setminus A) \cup (A \setminus F)\big) \le m(E \setminus A) + m(A \setminus F) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $F \subset A$, and the convergence on A is uniform, then the convergence on F must be uniform, since we can just use the $N \in \mathbb{N}$ from A for any $x \in F$.

(Luzin) Let $f: E \to \mathbb{R}$ be a measurable function with $E \in \mathcal{M}$ such that $m(E) < \infty$. For every $\epsilon > 0$, there exists a closed set $F \subseteq E$ with $m(E \setminus F) < \epsilon$ such that $f|_F$ is continuous.

(a) Prove this when f is a simple function on E.

SOLUTION:

Lemma 1. Let E be measurable with $m(E) < \infty$. For all $\epsilon > 0$, there exists some $K \subseteq E$ compact such that $m(E \setminus K) < \epsilon$.

Proof. Let $\epsilon > 0$. By the regularity of m, there exists a closed set $F \subseteq E$ such that $m(E \setminus F) < \frac{\epsilon}{2}$. Let $K_n = F \cap \overline{B_n(0)}$. Then since K_n is closed and bounded in \mathbb{R}^n , K_n is compact. Clearly

$$E \setminus K_n \downarrow E \setminus F \implies m(E \setminus F) = \lim_{n \to \infty} m(E \setminus K_n).$$

Thus, there exists some N large such that $m(E \setminus K_N) < \epsilon$.

Let $\epsilon > 0$. Let φ be a simple function on E, we claim there exists some $F \subseteq E$ closed with $m(E \setminus F) < \epsilon$ such that $\varphi|_F$ is continuous. Note that since E is measurable, then φ is a measurable simple function.

There exists some $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{\epsilon}{2}$. Since φ is simple on E, then we can take it, without loss of generality, to be defined as

$$\varphi = \sum_{k=1}^{N} c_k \chi_{E_k}, \quad \bigsqcup_{k=1}^{N} E_k. = E,$$

where each E_k is measurable. By the lemma above, for each E_k , there exists a compact set $X_k \subseteq E_k$ such that

$$m(E_k \setminus X_k) < \frac{1}{Nn}$$

Each X_k is measurable and since it is a subset of disjoint sets, then the X_k are pairwise disjoint. Define

$$X = \bigsqcup_{k=1}^{N} X_k.$$

Moreover, note that X is measurable since it is the countable union of measurable sets. We claim that

- (i) φ is continuous on X
- (ii) $m(E \setminus X) \le \frac{1}{n}$.

To see (i), let $x \in X$ let $\eta > 0$. Then $x \in X_k$ for some k and $\varphi(x) = c_k$. Since the X_k are compact and disjoint,

$$d(X_k, X_{k+1}) =: r_k > 0$$

is achieved and is positive for each k. Thus, we take $\delta < \min\{r_k\}_k$ If $y \in (x - \delta, x + \delta)$, then, $y \in X_k$, and so $\varphi(y) = c_k$. Thus,

$$|\varphi(y) - \varphi(x)| = 0 < \eta.$$

Thus, $\varphi|_X$ is continuous. To see (ii), consider that

$$m(E \setminus X) = m(E \setminus \bigsqcup_{k=1}^{N} X_k)$$

$$= m(\bigsqcup_{k=1}^{N} E_k \setminus \bigsqcup_{k=1}^{N} X_k)$$

$$= m(\bigsqcup_{k=1}^{N} E_k \setminus X_k)$$

$$= \sum_{k=1}^{N} m(E_k \setminus X_k)$$

$$< \sum_{k=1}^{N} \frac{1}{Nn}$$

$$= \frac{1}{n}$$

$$< \epsilon$$

Since X is the finite union of closed sets, then X is closed. We use the lemma provided in the PSET to conclude that since φ is continuous on the closed X, then φ has a continuous extension g on \mathbb{R} such that $\varphi = g$ on X.

(b) Prove Luzin's Theorem.

SOLUTION: Let f be a measurable function and let $\epsilon > 0$. By a theorem proved in the previous problem set, there exists a sequence $(\varphi_n) : E \to \mathbb{R}$ of measurable simple functions such that $\varphi_n \to f$ pointwise. By Egorov's theorem in the previous problem, there exists a closed $A \subseteq E$ such that $\varphi_n \rightrightarrows f$ on A and $m(E \setminus A) < \frac{\epsilon}{3}$. By the above problem for each n, there exists some closed $F_n \subset E$ such that $\varphi_n|_{F_n}$ is continuous and $m(E \setminus F_n) < \frac{1}{2^n}$. There exists some N > 0 such that

$$\sum_{n \ge N} \frac{1}{2^n} < \frac{\epsilon}{3}.$$

Define

$$F' := A \setminus \left(\bigcup_{n \ge N} (F_n^c \cap E) \right)$$

Since $F' \subset A$, then $\varphi_n \rightrightarrows f$ on F'. We claim that φ_n is continuous on A for any $n \geq N$. To see this, suppose not, then φ_n is discontinuous for some $x \in A$. Thus, $x \in F_n^c$ due to how the F_n s were defined in the above problem which is a contradiction. Then we see that since continuous functions uniformly converge to continuous functions, f is continuous on F'. Moreover, note that

$$m(E \setminus F') = m\left(E \setminus \left(A \setminus \left(\bigcup_{n \ge N} (F_n^c \cap E)\right)\right)\right)$$

$$= m\left(E \setminus \left(A \cap \left(\bigcup_{n \ge N} (F_n^c \cap E)\right)^c\right)\right)$$

$$= m\left(E \setminus \left(A \cap \bigcap_{n \ge N} F_n\right)\right)$$

$$= m\left(E \cap \left(A \cap \bigcap_{n \ge N} F_n\right)^c\right)$$

$$= m\left(E \cap \left(A^c \cup \bigcup_{n \ge N} F_n^c\right)\right)$$

$$= m\left((E \setminus A) \cup (E \cap \bigcup_{n \ge N} F_n^c)\right)$$

$$= m\left((E \setminus A) \cup \bigcup_{n \ge N} (F_n^c \cap E)\right)$$

$$\leq m(E \setminus A) + m\left(\bigcup_{n \ge N} F_n^c \cap E\right)$$

$$< \frac{\epsilon}{3} + \sum_{n = N}^{\infty} \frac{1}{2^n}$$

$$< \frac{2\epsilon}{3},$$

where the second to last inequality is from work on the previous part. Thus, we have found a set F' such that $m(E \setminus F') < \frac{2\epsilon}{3}$ and f is continuous on F'. There exists some closed set $F \subseteq F' \subseteq E$ such that $m(F' \setminus F) < \frac{\epsilon}{3}$. Then since $F \subseteq F'$ and f is continuous

on F', then f is continuous on F. We conclude by noting that

$$m(E \setminus F) = m\big(E \setminus F'\big) \sqcup (F' \setminus F)\big) \leq m(E \setminus F') + m(F' \setminus F) < \frac{2\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Conclude by using the lemma provided to get the continuous extension on \mathbb{R} , g such that f = g on F.

Use Fatou's Lemma to prove the Monotone Convergence Theorem.

SOLUTION: Let $E \in \mathcal{M}$, let $(f_n) : E \to \mathbb{R}$ be a sequence of non-negative measurable functions such that $f_n \uparrow f$ pointwise. We claim that

$$\lim_{n \to \infty} \int_E f_n = \int_E f.$$

Since each f_n is measurable, then $\lim_{n\to\infty} f_n = f$ is measurable. Moreover, since $\liminf_{n\to\infty} f_n = f$, and each f_n is non-negative, then Fatou's lemma states that

$$\int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_n dm \tag{2}$$

Define

$$q_n(x) := f(x) - f_n(x), \quad x \in E$$

Then $g_n \geq 0$ for each n and $g_n \rightarrow 0$ pointwise, and thus

$$\liminf_{n \to \infty} g_n = 0$$

and then it follows that g_n is measurable. By Fatou's lemma, we have that

$$\int_{E} 0dm \le \liminf_{n \to \infty} \int_{E} g_n = \liminf_{n \to \infty} \int_{E} f - f_n dm \implies \limsup_{n \to \infty} \int_{E} f_n dm \le \int_{E} f dm \qquad (3)$$

(2) and (3) prove the MCT.

Suppose that $E \subseteq \mathbb{R}^n$ is measurable. Let (f_n) be a sequence of non-negative functions such that $0 \le f_1(x)$ for almost every $x \in E$, and for $n \ge 1$, $f_n(x) \le f_{n+1}(x)$ for almost every $x \in E$. Prove that

$$\lim_{n \to \infty} \int_E f_n dm = \int_E f dm,$$

where, for every x, we have that

$$f(x) := \begin{cases} \lim_{n \to \infty} f_n(x), & \text{if the limit exists} \\ 0, & \text{else} \end{cases}$$

Solution: For every n, define

$$X_1 := \{x \in E \mid f_1(x) < 0\}, \quad X_n := \{x \in E \mid f_n(x) < f_{n+1}(x)\} \quad n > 1.$$

Let $X = \bigcup_{\mathbb{N}} X_n$, then by the assumption of the problem and sub-additivity (and the fact that each X_n is measurable since f_n is measurable),

$$m(X) \le \sum_{n=1}^{\infty} m(X_n) = 0.$$

Thus, m(X) = 0. Take

$$g_n := f_n \chi_{E \setminus X}.$$

Let $x \in E$. Either $x \in X \cap E$ or $x \in X^c \cap E$. If $x \in X \cap E$, then $g_n(x) = 0$ for any n, and thus

$$0 \leq g_1(x) \leq g_2(x) \cdots$$
.

If $x \in X^c \cap E$, then $g_n = f_n$ and thus

$$0 \leq g_1(x) \leq g_2(x) \leq \cdots$$

Either way since we are in the extended reals and the sequence is monotonic, the limit function $g(x) = \lim_{n \to \infty} g_n(x)$ exists for every $x \in E$. By the normal monotone convergence theorem, we have that

$$\lim_{n \to \infty} \int_E g_n dm = \int_E g dm.$$

Which by definition implies that

$$\lim_{n\to\infty}\int_E f_n\chi_{E\backslash X}dm=\int_E f_n\chi_{E\backslash X}dm=\int_{E\backslash X},$$

which in turn directly implies that

$$\lim_{n\to\infty}\int_{E\backslash X}f_ndm=\int_{E\backslash X}f_ndm.$$

Since $E = (E \setminus X) \sqcup X$ and m(X) = 0, we have that since the integrals are countably additive, then

$$\lim_{n \to \infty} \int_{E} f_{n} dm = \lim_{n \to \infty} \left(\int_{E \setminus X} f_{n} dm + \int_{X} f dm \right)$$

$$= \lim_{n \to \infty} \int_{E \setminus X} f_{n} dm$$

$$= \int_{E \setminus X} f dm$$

$$= \int_{E \setminus X} f dm + \int_{X} f dm$$

$$= \int_{E} f dm$$