- Normal Vector
- Flux Integrals

NORMAL VECTOR

NORMAL VECTOR

DEFINITION

The **positively oriented unit normal** in a parametrisation is

$$\overrightarrow{\mathbf{N}} = rac{\overrightarrow{\mathbf{e}}_u imes \overrightarrow{\mathbf{e}}_v}{\left|\overrightarrow{\mathbf{e}}_u imes \overrightarrow{\mathbf{e}}_v
ight|}$$

NORMAL VECTOR

 $\overrightarrow{\mathbf{N}}$ is perpendicular to S

$$\overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{e}}_u = \overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{e}}_v = 0$$

ORIENTATION

DEFINITION

Positive orientation is the right hand rule. Negative orientation is the left hand rule.

ORIENTATION EXAMPLES

• Positive:
$$(\overrightarrow{\mathbf{e}_u}, \overrightarrow{\mathbf{e}_v}, \overrightarrow{\mathbf{N}})$$
, $(\overrightarrow{\mathbf{e}_v}, \overrightarrow{\mathbf{e}_u}, -\overrightarrow{\mathbf{N}})$

• Negative:
$$(\overrightarrow{\mathbf{e}_u}, \overrightarrow{\mathbf{e}_v}, -\overrightarrow{\mathbf{N}})$$
, $(\overrightarrow{\mathbf{e}_v}, \overrightarrow{\mathbf{e}_u}, \overrightarrow{\mathbf{N}})$

ullet Sphere: $\overrightarrow{\mathbf{N}}(p)=p$

• xy-plane: $\overrightarrow{\mathbf{N}} = \overrightarrow{\mathbf{e}_3}$

ullet Cylinder: $\overrightarrow{\mathbf{N}}(x,y,z)=(x,y,0)$

ullet Graph z=f(x,y): $\overline{\mathbf{N}}=rac{\overrightarrow{\mathbf{e}}_3abla f}{\sqrt{1+|
abla f|^2}}$

DEFINITION

The **flux** of a vector field $\overrightarrow{\mathbf{F}}$ across a surface S is

$$egin{aligned} \iint_{S} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} dA &= \iint_{U} \overrightarrow{\mathbf{F}} \cdot \left. \frac{\overrightarrow{\mathbf{e}}_{u} imes \overrightarrow{\mathbf{e}}_{v}}{\left| \overrightarrow{\mathbf{e}}_{u} imes \overrightarrow{\mathbf{e}}_{v}
ight|} \left| \overrightarrow{\mathbf{e}}_{u} imes \overrightarrow{\mathbf{e}}_{v}
ight| du dv \ &= \iint_{U} \overrightarrow{\mathbf{F}} \cdot \left(\overrightarrow{\mathbf{e}}_{u} imes \overrightarrow{\mathbf{e}}_{v}
ight) du dv \end{aligned}$$

• Flux integrals are independent of parametrisation up to orientation

ullet Change of orientation $f N \mapsto -f N$ changes the **sign** of the flux integral

$$S = \{-1 < x < 1, -1 < y < 1, z = 0\}$$
 $\overrightarrow{\mathbf{F}} = (xz^2, e^y, xe^z)$

$$S=\{x^2+y^2+z^2=1\}$$
 $\overrightarrow{\mathbf{F_1}}=(x,y,z), \overrightarrow{\mathbf{F_2}}=(-y,x,0)$

$$S=\{x^2+y^2=1\}$$
 $\overrightarrow{\mathbf{F_1}}=(x,y,z), \overrightarrow{\mathbf{F_2}}=(-y,x,0)$