

Introdução

Temporizadores são estruturas de contagem utilizadas em todos os lugares.

A gama de temporizadores varia de alguns microssegundos (como os ciclos de operação de um processador) a muitas horas (como as aulas teóricas) e muitos anos (ciclo de passagem do cometa Harley).

TUDO NESTE MUNDO ESTÁ SINCRONIZADO COM O TEMPO.

Introdução

Exemplo:

- Normalmente acordamos (ou dormimos) às 6 horas da manhã.
- Devemos trabalhar durante 8 horas.
- A cada 4 horas é recomendado que bebamos água.
- O conceito de temporização não se limita às suas rotinas diárias. Cada componente eletrônico funciona em uma base de tempo.
 - Essa base de tempo ajuda a manter todo o trabalho sincronizado.
 - Sem uma base de tempo, você não teria ideia de quando realizar determinada tarefa.

Registros

Basicamente, um temporizador é um registro! Porém ele não é um registro normal. O valor deste registro aumenta / diminui automaticamente.

No AVR, há a possibilidade de se utilizar temporizadores de dois tipos: 8 e 16 bits.

O de 8 bits é capaz de contar $2^8 = 256$ etapas, de 0 a 255;

Registros

Da mesma forma, um temporizador de 16 bits é capaz de contar 2^{16} = 65536 etapas (de 0 a 65535).

Devido a esse recurso, os temporizadores também são vistos como contadores.

Quando atingem o seu limite máximo de contagem, retornam ao seu valor inicial de zero, ou seja, o temporizador / contador transborda.

O temporizador é totalmente independente da CPU. O mesmo opera em paralelo e não há intervenção da CPU, o que torna o cronômetro bastante preciso.

Além da operação normal, esses três temporizadores podem ser operados no modo **normal**, modo **CTC** ou modo **PWM**.

Antes, porém, vamos nos concentrar nos fundamentos de um temporizadonatel

Registros

No ATMEGA32, tem-se três tipos diferentes de temporizadores:

TIMERO - temporizador de 8 bits

TIMER1 - temporizador de 16 bits

TIMER2 - temporizador de 8 bits

Conceitos Básicos – Período e Frequência

Desde cedo, aprendemos a seguinte fórmula: $\tau = \frac{1}{f} [s]$

Considere que precisamos piscar um LED a cada 10 ms.

- Sua frequência então será de $\frac{1}{10}$ [ms] = 100 [Hz].
- Se tivermos um cristal externo de 4 MHz, a frequência do *clock* da CPU será de 4 MHz.
- Ao usarmos o temporizador / contador de 8 bits (que conta de 0 a 255), precisaremos de

$$\tau = \frac{1}{4 * 10^6} = 0,00025 [s]$$

para que o contador aumente uma unidade em seu estado atual.

Conceitos Básicos – Valor de Contagem

Precisamos de um delay (atraso) de 10 ms.

Este pode ser um atraso muito curto, mas para o microcontrolador que tem uma resolução de 0,00025 ms, é um atraso bastante longo!

Para ter uma ideia de quanto tempo leva, vamos calcular a contagem do temporizador a partir da seguinte fórmula:

$$Contagem = \frac{Tempo\ desejado}{Período\ de\ clock} - 1$$

Substituindo o tempo desejado e Período de clock, obtemos uma Contagem = 39999.

Conceitos Básicos – Valor de Contagem

Definitivamente, neste caso, precisaremos de um temporizador de 16 bits (que é capaz de contar até 65535) para atingir esse atraso (*delay*).

Assumindo $f_{CPU} = 4 \, [MHz]$ e um temporizador de 16 bits (MAX = 65535); substituindo na fórmula anterior, podemos obter um **delay máximo** de 16,384 ms.

Agora, e se precisarmos de um *delay* maior, por exemplo 20 ms? Estamos presos?!

Conceitos Básicos – Valor de Contagem

Suponha que se diminuirmos a f_{CPU} de 4 MHz para 0,5 MHz (ou seja, 500 kHz), o período de *clock* aumentará para 0,002 ms.

Agora, se substituirmos o delay necessário = 20 ms com o período de clock igual a 0,002 ms, teremos a contagem do temporizador = 9999.

Como podemos ver, isso pode ser facilmente alcançado usando um temporizador de 16 bits.

Nessa frequência, um *delay* máximo de 131,072 ms pode ser alcançado.

Mas quase sempre, mudar a frequência de *clock* da CPU não é uma boa ideia.

Conceitos Básicos – Prescaler

O prescaler (ou pré-escala) é um recurso que possibilita a utilização de subdivisões do *clock* da CPU sem alterá-lo.

Mas não pense que você pode usar o prescaler livremente. Isso tem um custo!

Há uma compensação entre resolução e duração

Conceitos Básicos – Prescaler

Quando reduzimos a frequência de *clock* da CPU de 4MHz para 0,5MHz, o delay máximo aumentou de 16,384 ms para 131,072 ms.

A resolução também aumentou de 0,00025 ms para 0,002 ms (tecnicamente, a resolução diminuiu). Isso significa que cada periodo de *clock* terá 0,002 ms.

Mas qual é o problema disso?

O problema é que a precisão diminuiu!

Conceitos Básicos – Prescaler

Mas qual é o problema disso?

O problema é que a precisão diminuiu!

Anteriormente podia-se gerar um *delay* de 0,1125 ms, por exemplo.

Para isto, precisaríamos que o contador do temporizador fosse configurado para 449.

(0,1125 / 0,00025 - 1 = 449) -> fórmula anterior.

(0,1125 / 0,002 - 1 = 55,25) -> nova fórmula (Impossível na prática)

Conceitos Básicos – Prescaler

Considere que você deseje gerar um delay de 184 ms (um número aleatório) e que f_{CPU} = 4 MHz.

O AVR oferece os seguintes valores de *prescaler*. 8, 64, 256 e 1024.

Um prescaler de 8 significa que a frequência de clock efetiva será f_{CPU} / 8.

Se substituirmos cada um desses valores na fórmula teremos os resultados a seguir:

Conceitos Básicos - Prescaler

Required Delay = 184 ms
$F_CPU = 4 MHz$

Prescaler	Clock Frequency	Timer Count
8	500 kHz	91999
64	62 . 5 kHz	11499
256	15.625 kHz	2874
1024	3906.25 Hz	717.75

TC0 e TC2 (Temporizadores de 8 bits)

- Contador simples (baseado no clock da CPU).
- Contador de eventos externos.
- Divisor de clock (prescaler) para o contador com até 10 bits.
- Gerador para 2 sinais PWM, cada (pinos OC0A / OC0B e OC2A / OC2B).
- Gerador de frequência (onda quadrada).
- 3 fontes independentes de interrupção (por estouro e igualdades de comparação).

TC1 (Temporizadores de 16 bits)

- Contador simples (baseado no clock da CPU).
- Contador de eventos externos.
- Divisor de clock (prescaler) para o contador com até 10 bits.
- Gerador para 2 sinais PWM (pinos OC1A e OC1B)
- Gerador de frequência (onda quadrada).
- 4 fontes independentes de interrupção (por estouro e igualdades de comparação)

Funcionamento

Um estouro do contador ocorre quando ele passa do valor máximo permitido para a contagem para o valor zero. Assim, se o TC for de 8 bits, ele contará de 0 até 255 resultando em 256 contagens; se for de 16 bits, contará de 0 até 65535, resultando em 65536 contagens. Assim, o tempo que um TC leva para estourar é dado por:

$$t_{estouro} = (TOP + 1) * \frac{prescaler}{f_{osc}}$$

Funcionamento – Modo Normal

- É o modo no qual o contador conta continuamente até atingir seu limite.
- Quanto isto ocorre, há um OVERFLOW (estouro) e então, o bit sinalizador de estouro (TOV0) é setado (colocado em 1). Se habilitada, uma interrupção é gerada.
- A contagem é feita no registrador TCNT0 e um novo valor de contagem pode ser escrito a qualquer momento, permitindo-se alterar o número de contagens via programação.

Funcionamento – Modo Comparação

- Neste modo, o valor limite do contador (TOP) pode ser alterado através do registrador OCRnA.
- Quando o valor do contador (TCNT0) atinge este valor, uma interrupção pode ser gerada.
- Isso permite um controle mais fino da frequência de operação e da resolução do temporizador.

Funcionamento – Modo Geração de Forma de Onda

- Neste modo é possível a geração de sinais quadrados nos pinos de saída de comparação (Output Compare – OCnA e OCnB).
- Para isto, o comportamento dos pinos podem mudar a cada vez que ocorre a comparação.
- Pode-se configurar o pino para inversão na comparação, para se manter ligado ou para se manter desligado nas comparações.

Funcionamento – Modo Geração de Forma de Onda

Uso de Registradores

Para a configuração do timer devem ser utilizados até 7 registradores: TCCRnA, TCCRnB, OCRnA, OCRnB, TCNTn, TIMSKn e TIFRn, sendo "n" o número do timer que será utilizado.

Uso de Registradores – TCCR0A

Bit		7	6	5	4	3	2	1	0
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escr.	'	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

Modo CTC (não PWM).

COM0A1	COM0A0	Descrição			
0	0	Operação normal do pino, OC0A desconectado.			
0	1	Mudança do estado de OC0A na igualdade de comparação.			
1	0	OC0A é limpo na igualdade de comparação.			
1	1	OC0A é ativo na igualdade de comparação.			

Uso de Registradores – TCCR0A

Bit		7	6	5	4	3	2	1	0
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escr.	·	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

Modo CTC (não PWM).

COM0B1	COM0B0	Descrição			
0	0	Operação normal do pino, OC0B desconectado.			
0	1	Mudança do estado de OC0B na igualdade de comparação.			
1	0	OC0B é limpo na igualdade de comparação.			
1	1	OC0B é ativo na igualdade de comparação.			

Uso de Registradores – TCCR0A

Bit		7	6	5	4	3	2	1	0	_
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
Lê/Escr.	•	L/E	L/E	L/E	L/E	L	L	L/E	L/E	•
Valor Inic.		0	0	0	0	0	0	0	0	

Bits para configurar o modo de operação do TCO.

Modo	WGM02	WGM01	WGM00	Modo de Operação TC	ТОР	Atualização de OCR0A no valor:	Sinalização do bit TOV0 no valor:
0	0	0	0	Normal	0xFF	Imediata	0xFF
1	0	0	1	PWM com fase corrigida	0xFF	0xFF	0x00
2	0	1	0	CTC	OCR0A	Imediata	0xFF
3	0	1	1	PWM rápido	0xFF	0x00	0xFF
4	1	0	0	Reservado	1	1	-
5	1	0	1	PWM com fase corrigida	OCR0A	OCR0A	0x00
6	1	1	0	Reservado	-	-	-
7	1	1	1	PWM rápido	OCR0A	0x00	OCR0A

Uso de Registradores – TCCR0B

Bit		7	6	5	4	3	2	1	0
	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
Lê/Escr.	•	Е	Е	L	L	L/E	L/E	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

Bits 7:6 – FOCOA:B – Force Output Compare A e B

Estes bits são ativos somente para os modos não-PWM. Quando em 1, uma comparação é forçada no módulo gerador de onda.

O efeito nas saídas dependerá da configuração dada aos bits COM0A1:0 e COM0B1:0.

Uso de Registradores – TCCR0B

Bit

Lê/Escr.

Valor Inic.

_	7	6	5	4	3	2	1	0
TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
•	Е	Е	L	L	L/E	L/E	L/E	L/E
	0	0	0	0	0	0	0	0

Seleção do *clock* para o TC0.

CS02	CS01	CS00	Descrição
0	0	0	Sem fonte de <i>clock</i> (TC0 parado).
0	0	1	clock/1 (prescaler=1) - sem prescaler.
0	1	0	clock/8 (prescaler = 8).
0	1	1	clock/64 (prescaler = 64).
1	0	0	clock/256 (prescaler = 256).
1	0	1	clock/1024 (prescaler = 1024).
1	1	0	clock externo no pino T0. Contagem na borda de descida.
1	1	1	clock externo no pino T0. Contagem na borda de subida.

Uso de Registradores – TCNT0, OCR0A e OCR0B

TCNT0 – Timer/Counter 0 Register

Registrador de 8 bits no qual é realizada a contagem do TCO. Pode ser lido ou escrito a qualquer tempo.

OCR0A – Output Compare 0 Register A

Registrador de comparação "A" de 8 bits, possui o valor que é continuamente comparado com o valor do contador (TCNTO). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCOA.

OCR0B – Output Compare 0 Register B

Registrador de comparação B de 8 bits. Possui o valor que é continuamente comparado com o valor do contador (TCNTO). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCOB.

Uso de Registradores – TIMSKO

Bit 2 – OCIEOB – Timer/Counter 0 Output Compare Match B Interrupt Enable

A escrita 1 neste bit ativa a interrupção do TCO na igualdade de comparação com o registrador OCROB. (Vetor – TIMERO_COMPB_vect)

Bit 1 – OCIEOA – Timer/Counter 0 Output Compare Match A Interrupt Enable

A escrita 1 neste bit ativa a interrupção do TCO na igualdade de comparação com o registrador OCROA. (Vetor – TIMERO_COMPA_vect)

Bit 0 – TOIE0 – *Timer/Counter* 0 *Overflow Interrupt Enable*

A escrita 1 neste bit ativa a interrupção por estouro do TCO. (Vetor – TIMERO OVF vect)

Uso de Registradores – TIFR0

Bit 2 – OCF0B – Timer/Counter 0 Output Compare B Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNTO) é igual ao valor do registrador de comparação de saída B (OCROB) do TCO.

Bit 1 – OCF0A – Timer/Counter 0 Output Compare A Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNTO) é igual ao valor do registrador de comparação de saída A (OCROA) do TCO.

Bit 0 – TOV0 – Timer/Counter 0 Overflow Flag

Este bit é colocado em 1 quando um estouro do TCO ocorre.

Prof. João Magalhães

Horário de Atendimento:

Quarta-feira: 19h30

Quinta-feira: 17h30

• Sexta-feira: 15h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

