Composing like a human:

Adapting generative networks to few-shot learning in the musical domain

Tudor Paisa | 2019551 | 315146 Tilburg University, March 21 2019

Introduction

Deep Learning as a Problem

- New ways to tackle ML problems and advance AI research
- Discover rich hierarchical models over various applications
- Most developments in discriminative models
- Input: High Dimensional Data → Output: Class label

Introduction

Recent Developments:

Generative Models

Few-Shot Learning

Generative Models

- NN that generates output similar to the input
- Learn the true data distribution to generate new data points
- Scarce developments...

Generative Models

Generative Models

the young men are playing volleyball in the ball.

a lady wearing a blue white shirt is laughing

Few-Shot Learning

Few-Shot Learning

Solving this would make DL models easier to train

Generalize like humans

Few-Shot Learning (in short):
Learning a new function from only
a few input/output pairs using
prior data from similar tasks

Few-Shot Learning

Reptile (Nichol et. al., 2018): the few-shot solution

```
Algorithm 1: Reptile (serial version)
```

```
Initialize \phi, the vector of initial parameters for iteration = 1, 2, . . . do
```

Sample task τ , corresponding to loss L_{τ} on weight vectors $\tilde{\phi}$ Compute $\tilde{\phi} = U_{\tau}^k(\phi)$, denoting k steps of SGD or Adam Update $\phi \leftarrow \phi + \epsilon(\tilde{\phi} - \phi)$

end

Few-Shot Generative Models (same story)

the young men are playing volleyball in the ball.

a lady wearing a blue white shirt is laughing

Research

Generative Models + Few-Shot Learning + Music = ???

Research Questions:

- To what extent is the music created by a few-shot generative model comparable to the music of a generative model that is trained on a larger dataset?
- To what extent is the music created by a few-shot generative model comparable to real music?

Research

Adapt 2 Generative Networks to Reptile:

- 1. C-RNN-GAN (GAN, 2 LSTM layers, 350 units; Mogren, 2016)
- 2. Performance RNN (3 LSTM layers 500 units; Oore et. al., 2018)

Baseline: 1 LSTM layer 200 hidden units trained on the whole dataset

Dataset

MAESTRO dataset (Hawthorne et. al., 2018):

- 1,184 piano expert performances recorded as MIDI
- 430 individual compositions
- 6.18 million notes
- 172 hours of playback

Evaluation

- Negative Log Likelihood (standard)
- Number of Statistically Different Bins (recommended by Richardson & Weiss, 2018)
- Domain-specific (adapted from Mogren, 2016):
 - Polyphony
 - Scale Consistency
 - Repetitions
 - Tone span

Milestones

Task	Deadline
Develop one-hot encoder/decoder for data	March 15th
Develop domain-specific evaluation tools	March 22nd
Create Keras implementation of PerformanceRNN	March 24th
Create baseline	March 24th
Create Keras implementation of C-RNN-GAN	March 29th
Augment models with Reptile	April 5th
Train Models	April 5th - 19th
Evaluate Models	April 26th
Write thesis	May 12th

References

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative Adversarial Networks. arXiv:1406.2661 [cs, stat]. arXiv: 1406.2661 [cs, Stat]

Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv:1611.09904 [cs]. arXiv: 1611.09904 [cs]

Nichol, A., Achiam, J., & Schulman, J. (2018). On First-Order Meta-Learning Algorithms. arXiv:1803.02999 [cs]. arXiv: 1803.02999 [cs]

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., . . . Eck, D. (2018). Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset. arXiv:1810.12247 [cs, eess, stat]. arXiv: 1810.12247 [cs, eess, stat]

Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2018). This Time with Feeling: Learning Expressive Musical Performance. arXiv:1808.03715 [cs, eess]. ArXiv: 1808.03715 [cs, eess]

Richardson, E., & Weiss, Y. (2018). On GANs and GMMs. arXiv:1805.12462 [cs]. ArXiv: 1805.12462 [cs]

Graves, A. (2013). Generating Sequences With Recurrent Neural Networks. ArXiv:1308.0850 [Cs]. Retrieved from http://arxiv.org/abs/1308.0850 16 / 16