

"Predict Air Quality Level"

submitted as partial fulfilment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

Name: Danish Ahmad

Roll Number: 202401100400074,

section: A

Under the supervision of

"Bikki Gupta"

1. Introduction

This project presents an Exploratory Data Analysis (EDA) approach using Python to understand and predict air quality levels. The goal is to identify patterns, correlations, and key factors influencing air pollution by analyzing historical air quality datasets. Using libraries such as Pandas, Matplotlib, Seaborn, and Scikit-learn, we explore features like PM2.5, PM10, NO₂, CO, temperature, and humidity to gain insights into their impact on the Air Quality Index (AQI). This EDA forms the foundation for building Al-driven predictive models that can forecast air quality levels, contributing to smarter environmental monitoring and decision-making.

Methodology

1. Data Collection

Acquired historical air quality datasets from reliable sources (e.g., Kaggle, government portals) containing pollutant levels and environmental features like temperature, humidity, and wind speed.

2. Data Preprocessing

Cleaned the dataset by handling missing values,

removing duplicates, converting data types, and normalizing numerical features where necessary.

3. Exploratory Data Analysis (EDA)

Used Python libraries such as Pandas, Matplotlib, and Seaborn to visualize data distributions, detect patterns, analyze correlations between features, and identify trends affecting AQI.

4. Feature Selection and Engineering

Selected important features influencing air quality and, if needed, created new derived features to enhance model performance.

5. Model Building (Optional for EDA extension)

If extended to prediction, used machine learning algorithms (e.g., Linear Regression, Random Forest) to train and evaluate models that predict AQI based on the selected features.

3. Code

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier

```
from sklearn.metrics import confusion matrix, accuracy score, precision score,
recall score, classification report
from sklearn.preprocessing import LabelEncoder
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
# Load dataset
df = pd.read_csv("/content/drive/MyDrive/synthetic_air_quality_dataset_mse2.csv")
print(df.head())
print(df.describe())
print(df['Air Quality Level'].value counts())
le = LabelEncoder()
df['Air Quality Label'] = le.fit transform(df['Air Quality Level'])
X = df[['Temperature', 'Humidity', 'PM2.5', 'NO2']]
y = df['Air_Quality_Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random state=42)
clf = RandomForestClassifier(random_state=42)
clf.fit(X train, y train)
y_pred = clf.predict(X_test)
# Confusion Matrix
conf_matrix = confusion_matrix(y_test, y_pred)
# Heatmap
plt.figure(figsize=(8,6))
```

```
sns.heatmap(conf matrix, annot=True, fmt='d', cmap='coolwarm',
       xticklabels=le.classes_, yticklabels=le.classes_)
plt.title("Confusion Matrix Heatmap")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# Metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision score(y test, y pred, average='weighted', zero division=0)
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print("\nClassification Report:\n", classification report(y test, y pred,
target names=le.classes ))
sample_preds = pd.DataFrame({
  "Actual": le.inverse_transform(y_test[:10].values),
  "Predicted": le.inverse_transform(y_pred[:10])
})
print(sample preds)
# Reduce dimensionality
pca = PCA(n components=2)
X pca = pca.fit transform(X)
# Clustering
kmeans = KMeans(n clusters=4, random state=42)
clusters = kmeans.fit_predict(X)
```

```
# Plot clusters
plt.figure(figsize=(8,6))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=clusters, palette='Set2')
plt.title("KMeans Clustering (PCA Reduced)")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.show()
```

4. Output / Results

Accuracy: 1.00 Precision: 1.00 Recall: 1.00

Classification Report:

C1433111C4C1011	precision	recall	f1-score	support
Good	1.00	1.00	1.00	46
Hazardous	1.00	1.00	1.00	111
Moderate	1.00	1.00	1.00	49
Unhealthy	1.00	1.00	1.00	94
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

	Actual	Predicted	
0	Good	Good	
1	Good	Good	
2	Unhealthy	Unhealthy	
3	Hazardous	Hazardous	
4	Moderate	Moderate	
5	Unhealthy	Unhealthy	
6	Hazardous	Hazardous	
7	Hazardous	Hazardous	
8	Unhealthy	Unhealthy	
9	Hazardous	Hazardous	

	Temperat	ure Hi	umidity		PM2.5		NO2	Air Oual	lity_Level	
0	27.483		.048955					71 _6ng.	Moderate	
1	24.308	3678 36.	. 274070	20.	649195	19.45	50557		Good	
2	28.238	3443 68 .	. 185815	41.	327469	78.21	16441		Good	
3	32.615	149 72.	. 388544	108.	269588	161.74	43836		Unhealthy	
4	23.829	233 31.	. 895169	242.	749847	89.52	27085		Hazardous	
	Temp	erature	Hui	midity		PM2.5		NO2		
со	unt 1000	.000000	1000.	000000	1000	. 000000	1000	.000000		
me	an 25	.096660	60.	218928	153	.403546	101	.181208		
st	d 4	1.896080	17.	301410	83.	. 786704	55	.709061		
mi	n 8	3.793663	30.	193096	10	.003374	5	.005990		
25	% 21	.762048	44.	831947	84.	. 391818	53	.442135		
50	% 25	.126503	60.	967562	152	. 596075	100	.454157		
75	% 28	3.239719	74.	779118	224	. 202376	148	.228615		
ma	x 44	.263657	89.	964824	299	. 368048	199	.913752		
Αi	Air_Quality_Level									
На	zardous	344								
Un	healthy	338								
Мо	derate	172								
Go	od	146								
Na	me: count	dtype:	int64							

5. References / Credits

- Dataset: Provided by user (custom dataset of Air Quality Level).
- Libraries Used:
 - pandas, numpy for data handling
 - scikit-learn for machine learning and evaluation
 - 。 matplotlib, seaborn for visualization
- Model: Random Forest Classifier (sklearn.ensemble.RandomForestClassifier)
- . Tool: Google Colab