05/02/2021

P8 Datascientist – OpenClassrooms

Etienne Lardeur

Mentor: Xavier Tizon

Evaluateur: Julien Heiduck

Solutions innovantes pour la récolte des fruits Le robot cueilleur intelligent

Développer dans un environnement Big Data, une chaîne de traitement d'images incluant preprocessing et réduction de dimension

Sommaire

Introduction 5'

Contexte, jeu de données, use case -> slides 3, 4 et 5

Dispositif proposé et rôle de chaque brique 8'

Architecture: base, dispositifs en Local ou Cloud -> slides 6 et 7

Illustration Spark UI
 -> slides 8

Chaînes de traitement 7'

Prototype, transposition Cloud, complémentarité
 -> slides 9 et 10

Conclusion, Recommandations 5'
 -> slides 11 et 12

Question-réponses

https://github.com/EtienneLardeur/P8_FruitsRecognition

Contexte

Finalité: robots cueilleurs intelligents

- Antériorité (projets Magali (1985) et Citrus (1990) :
 - O Enjeux : remédier à la pénurie de main d'œuvre (Saisonnalité & Savoir-faire XX Productivité) [1]
 - O Principaux verrous progressivement levés: performance caméras, puissance de calcul et avènement du GPS.
- O Actualité: investissements R&D, enjeux de Propriété Intellectuelle
 - O Tevel aerobotics (IsrI), Robocrops (UK), Octinion (Blg), Airsprid (Fr), ...
- Première étape: populariser Fruits! via une App mobile de reconnaissance de fruits!

- O Justifie une architecture Big Data (modèle des 3 « V » [2])
 - O Volume: f(données labellisées, variétés, stades de développement, nouvelles données)
 - o initial: 1Mo/i, pre-process: 10ko/i, soit proto en Go et usage en PétaOctet
 - O Vitesse: collecte et partage de données, puissance de calcul, latence à minimiser.
 - O Variété (sources et structures de données):
 - O environnement: imagerie, géolocalisation, capteurs...
 - O bases de données tierces : ex, bio-agresseurs et auxiliaires [3]

Les 3 "Vs"

[3] Bases de données ecophytopic.fr

Jeu de données

O Dataset Kaggle [1] riche de 131 variétés de fruit et legumes - labellisées

- O Photos "360°" extraites d'une captation spécifique :
 - rotation tri-axiale
 - opost-traitée (fond blanc reconstruit + resizing 100x100 pixel)
- O Train: 67 692 Fichiers / Test: 22 688 Fichiers

- O Intérêt : focus sur feature extraction et stratégies de classification
- O Limites: procédé initial lourd et non représentatif
 - O Diversités d'aspects, formes et couleurs f(croissance et maturité)
 - O Implique l'ajout d'un preprocessing 'conditions réelles' : cropping & background-removal, resizing

Opportunité: enrichissement des données en conditions réelles, partiellement labellisées

Use case

Architecture, base

- Fondements: ecosystem Hadoop + framework Spark
 - O Base Hadoop map/reduce + traitement "in memory"
 - Base Resilient Distributed Datasets + Spark DataFrame
 - O Assurant la **Parallélisation** des operations
 - O **Résilient** au moyen de graphes acycliques orientés (d'où la tolérance au pannes)
 - "Lazy evaluation" (Transformation vs Action)
 - Performance conditionnée par la stratégie de partitioning [1]

Input data
split1
split2
split2
Sort Group by key Merge

Cluter: worker-nodes

5

Architecture, dispositifs

- O Dispositif Local (prototype) : montée en compétence ok
 - o script pySpark sur linux: ubuntu WSL (yc "tunnelisation" ssh)

! Java 1.8

- O Dispositifs Cloud possible pour assurer la scalabilité : montée en compétence en cours
 - O Scaling Vertical versus Horizontal [1]

- + L'écosystème AWS:
- "Servitudes" d'architecture :
 - O Solutions de stockage (S3) + Gestion de permissions (IAM)
- O Alternatives calcul:
 - O Puissance de calcul (dimension "fixe") (EC2)
 - O Cluster management logique Spark workers-nodes (EMR- n EC2s)
 - Environnement de développement (ex. Jupyter Notebooks)
- O Et au delà...

- Outil de monitoring disponible sur un port en complement
- Enregistre le log (py4j)
- Instructif mais empilage des technologies mises en oeuvre déroutant

Chaine de traitement, pySpark local

- Nombreuses variantes de séquences possibles pour un même but
 - Types et Schemas des données, packages exploités (! versions, maintenance), codage optimal, ...

Chaîne de traitement Cloud

- O Gain de performance initial Spark Local: Load (image) + Store (parquet) impressionnant
- O Fonctionnalité "Spark Cloud" valide (volume, variété, vitesse):
 - O Fonctionnalité et performance Load et Store dégradée (disponibilité packages versions et faisabilité)
 - O Meilleure performance *Featurize* (tensorflow exploite la puissance de calcul, optimisable à état de l'art [1] + "pruning" cnn)
 - O Gains substantiels **Reduce**
- Poursuivre l'instanciation du meilleur assemblage
- Explorer le Streaming et recherche de réduction « incrémentale » [2]

Conclusion

- O Un feature au sein du projet, au sein de l'approche business de l'entreprise, au sein d'une mutation digitale
- O Sensibilisation aux compétences expertes requises:
 - O Projets collaboratifs aux mains d'équipes pluridisciplinaires!

Recommendations

Rerspectives techniques (industrialisation)

- Etat de l'art choix technologiques:
 - O Transfert learning avec fine tuning pour meilleur accuracy
 - O Feature map pruning pour simplification et rapidité
- O Code refactoring (selon la technologie : langage Scala)
- Scaling vertical vs horizontal: analyse technicoéconomique
- Extension cas réels logique utilisateur (preprocessing)
- O Exploitation pour le développement du Robot Cueilleur...

Perspectives orientées business :

- Contractuel & économie de la solution choisie
- Exploiter l'application pour enrichir en dynamique :
 - O Labellisation, informations additionnels
 - O Utilisateurs ou professionnels
- Augmenter le cycle de vie
 - O Cueillette et l'entretien : maturité, pathologies, conseils de taille

Partenariats – collaboration - compétences

- Accélérer la recherche (ex. partenaire universitaire)
- Optimiser la mise en oeuvre (ex. collab. acteur majeur)
- Recours à l'expertise & montée en competence
 - Ex. containerization, ML Ops, ...

Questions / réponses

Merci de votre attention!