Introduction to WRF Model framework

Torgeir Blæsterdalen

WindCoE, Department of Industrial Engineering UiT-The Arctic University of Norway

May 3, 2018

Lecture topics

- 1 WRF components and its workflow
- 2 Domain configurations and nesting
- 3 Vertical resolution and η -levels
- 4 Temporal resolution and the time step contraint
- 5 List of useful programs for Windows users

1. WRF components and its workflow

Input to preprocessing:

- Geographical data: topography, type of vegetation, albedo, lake depths, soil types, etc
- Meteorological boundary conditions: variables at pressure levels and at surface like Cloud cover, potential vorticity, humidity, temperature, wind direction and magnitude, albedo, surface pressure, sea-ice cover, soil temperature, types of vegetation, etc.

WRF preprocessing system (WPS):

- Namelist (WPS): Controls the WPS framework like core, simulation time, number of domains, size of the biggest domain and input data.
- Geogrid: Interpolates the geographical input data.
- Ungrib: Unpacks (degribs) the meteorological input data and makes it readable.
- Metgrid: Merging terrestrial and meteorological input data and horizontally interpolates them at different pressure levels.

- Namelist (WRF): Defining simulation parameters like physical, numerical and dynamical options, as well as simulation date, time and domain configurations.
- Real: Vertically interpolates the meteorological fields to the model grid. The output of Real.exe is fully interpolated 4-dimensional simulation data.
- WRF: The 4-D interpolated boundary values is simulated using WRF's dynamical solver.

Postprocessing:

The output of the WRF model is NetCDF¹ files containing more than 150 variables.

Torgeir Blæsterdalen (WindCoE) Introduction to WRF May 3, 2018 7 / 15

¹NetCDF is default, but can be changed to binary and Grib1∂ → ⟨ ≥ → ⟨ ≥ → ⟨ ≥ → ⟨ 2 →) | 2 →

2. Domain configurations and nesting

3. Vertical resolution and η -levels

The η vertical coordinate was first defined by Mesinger [1984]. The ground surface is the first η -coordinate. The subsequent coordinates are pressure based and normalized. The η -levels in the WRF model is given in Skamarock et al. [2005] as:

$$\eta = \frac{p_h - p_{ht}}{\mu_d},$$

where $\mu_d = p_{hs} - p_{ht}$. p_h is hydrostatic component of the pressure. p_{hs} and p_{ht} is pressure along the surface and the top boundary respectively.

The figure above illustrates the height coordinates in the WRF model. Image from Skamarock et al. [2008].

4. Temporal resolution and the time step contraint

The Courant-Fredrichs-Lewy (CFL) condition is a time step constraint condition for convergence of an ordinary differential equation. For the case of determining the time step constraint for a wind simulation where the horizontal wind speed is \boldsymbol{u} and the simulation domain has a spatial discrete grid spacing of Δx , the CFL condition can be expressed as

$$0 \le \frac{\boldsymbol{u}\Delta t}{\Delta x} \le 1. \tag{1}$$

The Courant number in one dimension is defined as

$$Cr = \frac{u\Delta t}{\Delta x} \tag{2}$$

according to Skamarock et al. [2008].

The maximum Courant numbers for one-dimensional linear advection is obtained from Wicker and Skamarock [2002] and tabulated below.

The extension of Eq. 2 in two and three dimensions is done by multiplying the time step by a factor $1/\sqrt{2}$ and $1/\sqrt{3}$ respectively [Wicker and Skamarock, 2002].

Time scheme		Spatial order			
	3rd	4th	5th	6th	
Leapfrog	Unstable	0.72	Unstable	0.62	
RK2	0.88	Unstable	0.30	Unstable	
RK3	1.61	1.26	1.42	1.08	

According to the maximum time step for the RK3 integration in 3-D applications, the time step should satisfy

$$\Delta t_{max} < \frac{Cr}{\sqrt{3}} \cdot \frac{\Delta x}{\boldsymbol{u}_{max}},\tag{3}$$

here Cr denotes the Courant number

For the ARW core of WRF, it is advised that the maximum time step should be approximately 6 times the grid distance of the largest domain in kilometers [Skamarock et al., 2008].

5. List of useful programs for Windows users

- Putty: For accessing and working on Stallo (or any other super-computers)
- Xming: For visualizing NetCDF variables on Stallo. Xming enables pop-up windows in the Putty environment.
- WinSCP: For copying (i.e. uploading and downloading) items between local and remote host
- MATLAB (version 2015 or newer)
- Python (if time)

For running jobs on Stallo, one need a Stallo-account. Instructions on how to get Stallo access is given in the link below:

https://hpc-uit.readthedocs.io/en/latest/account/uitquota.html

References

- F Mesinger. A blocking technique for representation of mountains in atmospheric models. *Riv. Meteor. Aeronaut.*, 44:195–202, 1984.
- William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker, Wei Wang, and Jordan G Powers. A description of the advanced research wrf version 2. Technical report, National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div, 2005.
- William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker, Wei Wang, and Jordan G Powers. A description of the advanced research wrf version 3. Technical report, DTIC Document, June 2008.
- Louis J Wicker and William C Skamarock. Time-splitting methods for elastic models using forward time schemes. *Monthly Weather Review*, 130(8):2088–2097, 2002.