Course Code	Course Name		hing Sch itact Hou		Credits Assigned			
		Theory	Tut.	Pract / Oral	Theory	Tut.	Pract/ Oral	Total
PCC2011	Data Structure	2		-	2	-	-	2

				Theor	r y		Term	Pract	Total
		Inter	nal Asso	essment	End	Exam	work	/	
Course	Course Name		Γest (IA	T)	Sem	Duration		Oral	
Code		IAT-	IAT-	IAT-I	Exam	(in Hrs)			
		I	II	+ IAT-					
				II					
				(Total)					
PCC2011	Data Structure	20	20	40	60	2			100

Course Objectives: The course aims to

- 1. Learn the purpose and significance of data structures, as well as their fundamentals.
- 2. Learn linear and nonlinear data structures, as well as how they are implemented.
- 3. Analyze the data structures, such as stacks, queues
- 4. Learn the terminologies, types and various operations in Linked list
- 5. Explore the fundamentals of Tree and learn about its operations and applications.
- 6. Explore the real time applications of various data structures

Course Outcomes: After successful completion of the course students will be able to

- 1. Classify and Apply the concepts of Linear and Non-Linear data structures in real life problem solving and apply the operations like insertion, deletion, and traversal operations on them.
- 2. Explore data structures such as Stacks, learn about their operations, and use them to solve problems in a variety of domains.
- 3. Examine Queue data structures and use them to address real-world problems.
- 4. Apply the concept of Linked list to evaluate the problems in a diverse applications
- 5. Analyze and apply the concepts of Trees and their applications in real life problem solving.
- 6. Demonstrate the ability to analyze, construct, implement, and use data structures to solve real-world problems and evaluate their effectiveness.

Prerequisite: Concepts in C Programming

DETAILED SYLLABUS:

Sr.	Name of Module	Detailed Content	Hours	CO
No.				Mapping

0	Prerequisite	Concepts of Functions, Recursion, Arrays, Pointers,		
		Structures and C programming constructs.		
I	Introduction	Introduction to Data Structures, Concept of ADT,	2	CO 1
		Types of Data Structures- Linear, Nonlinear, Static,		CO 2
		Dynamic and operations on Data Structures.		
II	Stack	Introduction to Stack, Stack as ADT, ADT	4	CO 1
		Operations on Stack, Array Implementation of Stack,		CO3
		Multiple Stacks, Evaluation of Arithmetic		
		Expressions.		
III	Queue	Introduction to Queue, ADT operations on Queue,	5	CO 1
		Array Implementation of Queue, Types of Queues:		CO 3
		Circular Queue, Priority Queue, Double Ended		
		Queue and Multiple Queues		
IV	Linked List	Concept of Linked Lists, Linked List v/s Array,	6	CO 1
		Types of Linked List- Singly linked lists, doubly		CO 4
		linked lists and circular linked lists. Insertion,		
		deletion, update and copying operations with Singly		
		linked lists, doubly linked lists. Implementation of		
		Stack and Queue using linked list. Reversing a singly		
		linked list.		
V	Tree	Introduction to Trees, Tree Terminologies, Binary	5	CO 1
		Tree, Binary Tree Representation, Types of Binary		CO 5
		Tree, Binary Tree Traversals, Binary Search Tree,		
		Insert, Delete, Search Operations on Binary Search		
		Tree.		
VI	Applications of	Stacks: Conversion of Arithmetic Expressions	4	CO 1
	Data Structures	using Infix, Prefix and Postfix Notations,		CO 6
		Reversing a String/List, Parentheses Checker.		
		Trees : Representing expressions using of Expression		
		tree and Huffman Encoding.		

Text Books:

- 1. Aaron M Tenenbaum, Yedidyah Langsam, Moshe J Augenstein, "Data Structures Using C", Pearson Publication.
- 2. Reema Thareja, "Data Structures using C", Oxford Press.
- 3. E. Balagurusamy, "Data Structure Using C", Tata McGraw-Hill Education India.
- 4. Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", 2ndEdition, CENGAGE Learning.

References:

- 1. Sahni Horowitz, Fundamentals of data structures in C, computer science press, 2008.
- 2. Jean Paul Tremblay, P. G. Sorenson, "Introduction to Data Structure and Its Applications", McGraw-Hill Higher Education
- 3. Narasimha Karumanchi, Data Structures And Algorithms, 5th Edition, Career Monk, 2016.
- 4. Robert Kruse, C. L. Tondo, Bruce Leung, "Data Structures and Program Design in C", Pearson Publication.

Online References:

Sr. No.	Website Name
7.	https://nptel.ac.in/courses/106/102/106102064/

8. <u>Data Structure using C Programming - Course (swayam2.ac.in)</u>

Assessment:

Internal Assessment (IA) for 20 marks each:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of the syllabus content must be covered in the IAT-I and the remaining 40% to 50% of the syllabus content must be covered in the IAT-II.

End Semester Theory Examination:

- > Question paper format
 - Question Paper will comprise a total of six questions each carrying 15 marks Q.1 will be compulsory and should cover the maximum contents of the syllabus
 - Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of four questions need to be answered