School of Computing and Information Systems COMP90038 Algorithms and Complexity Tutorial Week 4

13–17 August 2018

Plan

We provide more exercises than we can cover in the tutorial, so that you have more to practice on in your own time.

The exercises

- 15. For each of the following pairs f, g, determine whether $f(n) \in O(g(n))$, or $g(n) \in O(f(n))$, or both:
 - (a) $f(n) = (n^2 + 1 n^2)/2$ and g(n) = 2n (b) $f(n) = n^2 + n\sqrt{n}$ and $g(n) = n^2 + n\sqrt{n}$
 - (c) $f(n) = n \log n$ and $g(n) = \frac{n}{4} \sqrt{n}$
- (d) $f(n) = n + \log n$ and $g(n) = \sqrt{n}$
- (e) $f(n) = 4n \log n + n$ and $g(n) = (n^2 n)/2$ (f) $f(n) = (\log n)^2$ and $g(n) = 2 + \log n$
- 16. Show the steps of selection sort, when given the keys S, O, R, T, X, A, M, P, L, E.
- 17. One possible way of representing a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is as an array A of length n+1, with A[i] holding the coefficient a_i .

- (a) Design a brute-force algorithm for computing the value of p(x) at a given point x. Express this as a function PEVAL(A, n, x) where A is the array of coefficients, n is the degree of the polynomial, and x is the point for which we want the value of p.
- (b) If your algorithm is $\Theta(n^2)$, try to find a linear algorithm.
- (c) Is it possible to find an algorithm that solves the problem in sub-linear time?

- 18. Trace the brute-force string search algorithm on the following input: The path p is 'needle', and the text t is 'there_need_not_be_any'. How many comparisons (successful and unsuccessful) are made?
- 19. Assume we have a text consisting of one million zeros. For each of these patterns, determine how many character comparisons the brute-force string matching algorithm will make:
 - (a) 010001
- (b) 000101
- (c) 011101
- 20. Give an example of a text of length n and a pattern of length m, which together constitute a worst-case scenario for the brute-force string matching algorithm. How many character comparisons, as a function of n and m, will be made for the worst-case example. What is the value of m (the length of the pattern) that maximises this function? i.e. What is the worst case pattern length?
- 21. The assignment problem asks how to best assign n jobs to n contractors who have put in bids for each job. An instance of this problem is an $n \times n$ cost matrix C, with C[i,j] specifying what it will cost to have contractor i do job j. The aim is to minimise the total cost. More formally, we want to find a permutation $\langle j_1, j_2, \ldots j_n \rangle$ of $\langle 1, 2, \ldots, n \rangle$ such that $\sum_{i=1}^n C[i, j_i]$ is minimized. Use brute force to solve the following instance:

	Job 1	Job 2	Job 3	Job 4
Contractor 1	9	2	7	8
Contractor 2	6	4	3	7
Contractor 3	5	8	1	8
Contractor 4	7	6	9	4

22. Give an instance of the assignment problem for which the smallest item C[i, j] of its cost matrix is not included in its solution.