ECE 35, Fall 2019 Quiz 3 – Section A	Sequence number	
Grade	Last name	
/ 10	First + middle name(s)	
	PID	

Instructions:

- Read each problem completely and thoroughly before beginning.
- All calculations need to be done on these sheets.
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit.
- (1) (5 points) For t < 2 s, the switch is closed, and you may assume the system has reached steady state. The switch opens at time t = 2 s.
 - (a) Find $i_a(2^- s)$.

 $i_a(2^-s)$

(b) Find $i_a(t)$ for t > 2 s. Write the equation.

- (2) (2 points) The capacitor is fully discharged at t=0 s. For t<2 s, the switch is in position 1. The switch moves from position 1 to position 2 at time t=2 s. You are given the curve of the current source i_S .

 (a) Find v_c at time t=1 s. $v_c(1)$
 - (b) Find v_c at time t = 6 s. $v_c(6)$

- (3) (3 points) For t < 0 s, the switch is open, and you may assume the system has reached steady state. The switch closes at time t = 0 s. You are given the curve of the voltage v_c over the capacitor for t > 0 s.
 - (a) On the curve, we see that $v_c=1.5~{\rm V}$ at time t_1 . What is the current i_a at that same time t_1 ?

 $i_a(t_1)$

(b) What is the time constant τ of $v_c(t)$ for t > 0 s?

τ

(c) What is the time constant τ of the node voltage $V_1(t)$ for t>0 s?

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{I}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

$$sin(\pi - \alpha) = sin(\alpha)$$
 $cos(\pi - \alpha) = -cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot \left(\sin(\alpha - \beta) + \sin(\alpha + \beta)\right)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2}$$

$$\sin(\alpha)$$
: $0 \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}$ 1

$$\tan(\alpha)$$
: $0 \quad \frac{\sqrt{3}}{3} \quad 1 \quad \sqrt{3} \quad \propto$