Rita Abani 19244 Date: 27-03-2022

A few images of the experimental set-up

Rita Abani 19244 Date : 27- 03 -2022

NMOS schematic in LTSpice

For $V_{DS} = 3V$

For V_{DS} = 8V

For V_{DS} = 11V

Rita Abani 19244 Date: 27-03-2022

Output characteristics :

Rita Abani 19244 Date: 27-03-2022

LTSpice Schematic for PMOS circuit is as follows:

Transfer characteristics for PMOS:

Rita Abani 19244 Date : 27- 03 -2022

Experimental results (performed in the lab)

For NMOS:

TRANSFER CHARACTERISTICS

V _{GS} (V)	$V_{DS} = 8 V$	$V_{DS} = 11 \text{ V}$	V _{GS} (V)	$V_{DS} = 8 \text{ V}$	$V_{DS} = 11 \text{ V}$
	I_{D} (mA)	$I_{D}\left(\mathrm{mA}\right)$		$I_{D}\left(\mathrm{mA}\right)$	I_{D} (mA)
0	0.01	0.01	6	71.8	106.1
0.5	0.01	0.01	6.5	71.8	106.2
1	0.01	0.05	7	72.3	106.2
1.5	0.01	0.01	7.5	72.4	106.3
2	0.01	0.01	8	72.6	106.4
2.5	0.20	0.61	8.5	72.8	106.0
3	13.55	18.61	9	72.7	106.3
3.5	63.6	90.9	9.5	73.1	105.6
4	70.9	104.5	10	73.3	104.6
4.5	71.9	106.1	10.5	72.9	104.9
5	71.3	106.2	11	72.7	104.5
5.5	71.1	106.1			

ID vs. VGS for VDS=8V

ID vs. VGS for VDS= 11V

Rita Abani 19244 Date: 27-03-2022

OUTPUT CHARACTERSTICS

VDS (V)	$V_{GS} = 2.5 V$	$V_{GS} = 3 V$	$V_{GS} = 3.5 V$
	I_{D} (mA)	I_{D} (mA)	I_{D} (mA)
1	0.23	1.04	0.99
2	0.23	1.97	1.91
3	0.23	2.98	2.84
4	0.23	3.98	3.86
5	0.23	4.89	4.79
6	0.24	5.87	5.70
7	0.24	6.92	6.63
8	0.24	7.79	7.59
9	0.24	8.85	8.91
10	0.24	9.87	9.82
11	0.24	10.87	10.9
12	0.25	11.68	11.83
13	0.24	12.30	12.90
14	0.24	12.59	13.84
15	0.26	12.86	14.88
16	0.26	13.13	15.83
17	0.26	13.26	15.80

ID vs. VDS for VGS = 2.5V

ID vs. VDS for VGS= 3V

Rita Abani 19244 Date: 27-03-2022

- 1. Threshold voltage V_T : Gate to source voltage at which, drain current starts flowing
- 2. Transconductance g_m : Ratio of small change in drain current (Δ ID) to the corresponding change in gate to source voltage (Δ VGS) for a constant VDS.

$$g_m = \Delta I_D / \Delta V_{GS}$$
 when constant is V_{DS}

3. Output drain resistance: It is given by the relation of small change in drain to source voltage (Δ V_{DS}) to the corresponding change in Drain Current (Δ ID) for a constant VGs.

$$r_d$$
 or r_o = $\Delta V_{DS}/\Delta I_D$ at a constant V_{GS}

Rita Abani 19244 Date: 27-03-2022

RESULTS:

- 1. V_T : 0.5 V
- 2. g_m : approximately 1.75 mA/V (calculated graphically) for V_{DS} = 8V
- 1.925 mA/V (calculated graphically) for V_{DS} = 11V

Average $g_m = 1.8375 \text{ mA/V}$

3. r_o : 45.5 k ohms for V_{GS} = 2.5 V 0.8 k ohms for V_{GS} = 3 V 0.75 k ohms for V_{GS} = 3.5 V

Average $r_0 = 47.05 \text{ k ohms}$

Rita Abani 19244 Date : 27- 03 -2022

For PMOS:

TRANSFER CHARACTERISTICS

VGS (V)	$V_{DS} = 8 V$	$V_{DS} = 11 \text{ V}$
	I_{D} (mA)	I_{D} (mA)
0	0	0
0.5	0	0
1	0	0
1.5	0	0
2	0	0
2.5	0	0
3	-0.02	-0.02
3.5	-4.58	-3.78
4	-7.69	-10.30
4.5	-7.70	-10.36
5	-7.71	-10.37
5.5	-7.71	-10.38
6	-7.71	-10.36
6.5	-7.70	-10.36
7	-7.72	-10.36

ID vs. VGS for VDS= 8V

ID vs. VGS for VDS= 11V

Rita Abani 19244 Date: 27-03-2022

OUTPUT CHARACTERISTICS

V _{DS} (V)	$V_{GS} = 3 V$	$V_{GS} = 3.5$	$V_{GS} = 4 V$
		V	
	I_{D} (mA)	I_D (mA)	I_{D} (mA)
1	-0.04	-0.94	-1
2	-0.04	-1.95	-1.81
3	-0.04	-2.92	-2.73
4	-0.04	-3.82	-3.22
5	-0.04	-4.73	-3.24
6	-0.03	-5.74	-3.24
7	-0.04	-6.61	-3.22
8	-0.04	-7.67	-3.22
9	-0.05	-8.61	-3.22
10	-0.04	-9.57	-3.22
11	-0.06	-10.40	-3.22
12	-0.06	-11.28	-3.22
13	-0.05	-12.24	-3.22
14	-0.05	-13.28	-3.24
15	-0.05	-14.23	-3.24
16	-0.05	-14.24	-3.24
17	-0.05	-14.24	-3.24

ID vs. VDS for VGS = 3V

ID vs. VDS for VGS = 3.5 V

Rita Abani 19244 Date : 27- 03 -2022

- 1. Threshold voltage V_T : Gate to source voltage at which, drain current starts flowing
- 2. Transconductance g_m : Ratio of small change in drain current (Δ ID) to the corresponding change in gate to source voltage (Δ VGS) for a constant VDS.

$$g_{m} = \Delta I_{D} / \Delta V_{GS}$$
 when constant is V_{DS}

3. Output drain resistance: It is given by the relation of small change in drain to source voltage (Δ VDS) to the corresponding change in Drain Current (Δ ID) for a constant Vgs.

$$r_d$$
 or $r_o = \Delta V_{DS}/\Delta I_D$ at a constant V_{GS}

RESULTS:

- 1. V_T : 3V
- 2. g_m : approximately 0.625 mA/V (calculated graphically) for V_{DS} = 8V

Rita Abani 19244 Date: 27-03-2022

7.52 mA/V (calculated graphically) for V_{DS} = 11V

Average $g_m = 4.0725 \text{ mA/V}$

3. r_o : 95.6 k ohms for V_{GS} = 3 V 1.2 k ohms for V_{GS} = 3.5 V 1.66 k ohms for V_{GS} =4 V

Average r_0 = 32.82 k ohms

CMOS inverter:

Vinput	Voutput
0	5.06
0.5	5.06
1	5.06
1.5	5.06
1.6	5.06
1.7	4.40
1.8	0.45
1.9	0.0062
2	0.0006
2.1	0.0002
2.2	0.0004
2.3	0.0002
2.4	0.0004
2.5	0.0003
2.6	0.0003
2.7	0.0003
2.8	0.0004
2.9	0.0004
3	0.0005
3.1	0.0006

Rita Abani 19244 Date : 27- 03 -2022

Date . Zi oo Zozz	
3.2	0.0007
3.3	0.0007
3.4	0.0009
3.5	0.001
3.6	0.0012
3.7	0.0014
3.8	0.0017
3.9	0.0019
4	0.0021
4.5	0.0057
5	0.009
5.5	0.0134
6	0.0194

The voltage transfer characteristics are as follows:

Voutput vs. Vinput for the CMOS as an inverter

