

Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercices N°3

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Si $A = \{1, 2, 3\}$ et $B = \{a, b, c, d\}$, définit-on une application de A dans B avec les recettes suivantes?

- (a) $1 \mapsto a, 3 \mapsto d$;
- (c) $1 \mapsto c$, $3 \mapsto b$, $2 \mapsto a$, $1 \mapsto d$;
- (b) $1 \mapsto a, c \mapsto 2, 3 \mapsto 1$;
- (d) $1 \mapsto d$, $3 \mapsto a$, $2 \mapsto d$.

Question 2. Formaliser avec des quantificateurs les assertions suivantes portant sur une application $f: \mathbb{R} \to \mathbb{R}$:

- (a) f n'est pas injective.
- (b) L'image de f contient au moins deux éléments distincts.
- (c) L'image réciproque de $[50, +\infty[$ par f n'est pas majorée.

Question 3. Donner les bornes supérieures, inférieures, plus grand élément, plus petit élément (s'ils existent) des parties suivantes de \mathbb{R} : $[-1,0[,]-2,+\infty[,\mathbb{N},\text{ et }\left\{x\in\mathbb{R}\mid\exists n\in\mathbb{N}^*,\ x=\frac{1}{n}\right\}]$.

Question 4. Vrai ou faux?

- (a) Il y a des parties A de \mathbb{R} qui ont une borne supérieure mais ne sont pas majorées.
- (b) Si A admet une borne supérieure, alors elle a un plus grand élément.
- (c) Si A est infinie, alors elle n'a pas de borne supérieure.
- (d) Si A est bornée, alors elle est finie.

2. Travaux dirigés

Exercice 1. Soient f et g les fonctions numériques définies par $f(x) = x^2 - 3$ et $g(x) = \sqrt{x+3}$. Expliciter les domaines de définition de f et g, ainsi que les fonctions $f \circ g$ et $g \circ f$. A-t-on $f \circ g = g \circ f$?

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction défine par $f(x) = x^3 - 3x$. En utilisant les outils appris au lycée, déterminer $f([-1,1]), f(\mathbb{R}_+^*), f^{-1}(\mathbb{R}_-^*)$ et $f^{-1}(]-2, +\infty[)$. La fonction f est-elle injective? Surjective? Bijective? Justifier.

Exercice 3. Soient E, F et G trois ensembles et $f: E \to F$ et $g: F \to G$ deux applications. Montrer:

- (i) $g \circ f$ injective $\Rightarrow f$ injective
- (ii) $g \circ f$ surjective $\Rightarrow g$ surjective.

Exercice 4. Soit $f: E \to F$ une application. Démontrer les propriétés suivantes :

- (a) si A_1 et A_2 sont des parties de E, $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;
- (b) si A_1 et A_2 sont des parties de E, $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$ et on n'a pas forcément égalité;
- (c) pour $B_1, B_2 \in \mathcal{P}(F)$, $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ et $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Exercice 5. Soient A et B des parties majorées non-vides de \mathbb{R} . Montrez que $\sup(A \cup B) = \max(\sup A, \sup B)$. On suppose maintenant $A \cap B$ non vide. Que peut-on dire de $\sup(A \cap B)$?

3. Révisions et approfondissement

Exercice 6 (Contrôle continu, octobre 2015). Soit l'application $f:[0,+\infty[\to\mathbb{R}]]\to\mathbb{R}$ définie par $f(x)=x^2+1$.

- (a) Rappeler le tableau de variations et dessiner rapidement (mais de manière réaliste!) le graphe de f.
- (b) Soit $y_0 \in \mathbb{R}$, déterminer l'ensemble des antécédents de y_0 par f dans les deux cas : $y_0 \ge 1$; $y_0 < 1$.
- (c) f est-elle injective? Surjective? Bijective? (Justifier.)
- (d) Déterminer $f^{-1}(]0,1]$).

Exercice 7. Écrire 2,3434343434... sous forme d'une fraction irréductible.

Exercice 8. Donner l'écriture décimale de 13/5 et de 13/7.

Exercice 9. Peut-on construire une bijection entre l'ensemble des entiers naturels et l'ensemble des entiers relatifs?

Exercice 10. Soit f une application croissante de [0,1] dans [0,1].

a) Montrer que l'ensemble $S = \{x \in [0, 1] \mid x \le f(x)\}$ admet une borne supérieure b.

b) Prouver que f(b) = b.

Exercice 11. Soit $A = \{1, 2, 3, 4, 5, 6\}$, $F = \{2, 4, 6\}$ et $s : A^2 \to \mathbb{N}$ définie par s(x, y) = x + y pour tous $(x, y) \in A^2$. Déterminer les ensembles $s^{-1}(\{2\})$, $s^{-1}(\{1\})$ et $s(F^2)$. L'application s est-elle surjective? Injective?

Exercice 12. Montrez avec une démonstration précise que chacun des deux ensembles suivants est bien égal à un intervalle à déterminer :

$$I = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n} \, ; \, 2 + \frac{1}{n} \right] \quad \text{et} \quad J = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n} \, ; \, n \right[\, .$$

On rappelle que l'intersection (resp. l'union) d'une famille infinie d'ensembles $(E_n)_{n\in\mathbb{N}}$ est définie par $x\in\bigcap_{n=1}^{+\infty}E_n\Leftrightarrow \forall n\in\mathbb{N},\ x\in E_n$ (resp. par $x\in\bigcup_{n=1}^{+\infty}E_n\Leftrightarrow \exists n\in\mathbb{N},\ x\in E_n$).

Exercice 13. Les assertions suivantes sont-elles vraies pour toutes parties A et B non vides et majorées de \mathbb{R} ?

- (a) $A \subset B \Rightarrow \sup A \leq \sup B$;
- (b) $\sup(A) = -\inf(-A)$ (pour une partie A de \mathbb{R} , -A désigne l'ensemble $\{-a \mid a \in A\}$).

Défi. Montrer qu'il n'existe pas de surjection de \mathbb{N} dans $\mathcal{P}(\mathbb{N})$. Indication : supposer l'existence d'une telle surjection φ et considérer la partie $X = \{n \in \mathbb{N} \mid n \notin \varphi(n)\}$.