Image segmentation – part 2

Lihi Zelnik-Manor, Computer Vision

Today

- Graph theoretic segmentation
 - Normalized cuts
- Segmentation as energy minimization
 - Markov random fields

Images as graphs

- Node for every pixel
- Edge between every pair of pixels (or every pair of "sufficiently close" pixels)

▶ Each edge is weighted by the affinity or similarity of the

two nodes

Segmentation by graph partitioning

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring affinity

• Distance
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} ||x - y||^2\right\}$$

• Intensity
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} ||I(x) - I(y)||^2\right\}$$

• Color
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} dist\left(c(x), c(y)\right)^2\right\}$$

(some suitable color space distance)

• Texture
$$aff(x, y) = exp\left\{-\frac{1}{2\sigma_d^2} \left\| f(x) - f(y) \right\|^2\right\}$$
 (vectors of filter outputs)

Scale affects affinity

- \blacktriangleright Small σ : group only nearby points
- Large σ : group far-away points

Graph cut

- Set of edges whose removal makes a graph disconnected
- ▶ Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
 - What is a "good" graph cut and how do we find one?

Minimum cut

- We can segment by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Minimum cut

- We can segment by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

- The cut is defined by the block diagonal structure of the affinity matrix.
- Can this be generalized?

Minimum cut drawback

Minimum cut tends to cut off very small, isolated components

Normalized cut (Ncut)

- The drawback of mincut can be fixed by normalizing the cost by the weight of all the edges incident to the segment
- The normalized cut cost is:

$$|Ncut(A,B)| = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

 $\overline{cut(A,B)}$ = sum of weights of all edges between A and B

 $assoc(A, \mathbb{Z})$ = sum of weights of all edges in V that touch A

$$Ncut(A, B) = cut(A, B) \frac{1}{\sum_{p \in A} w_{p,q}} + \frac{1}{\sum_{q \in B} w_{p,q}}$$

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Ncut as a generalized eigenvector problem

- Let W be the adjacency matrix of the graph
- Let D be the diagonal matrix with diagonal entries $D(i, i) = \sum_{j} W(i, j)$
- Then the normalized cut cost can be written as

$$Ncut(A,B) = \frac{y^{T}(D-W)y}{y^{T}Dy}$$

$$y(p) = \begin{cases} 1 & p \in A \\ negative & otherwise \end{cases}$$

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Ncut as a generalized eigenvector problem

Problem:

Finding the exact minimum of the normalized cut cost is NP-complete (because y is discrete)

Solution:

Relax y to take on arbitrary values, then solved by a generalized eigenvalue problem

$$N(D-W)y = \lambda Dy$$

- The solution y is given by the eigenvector corresponding to the second smallest eigenvalue
- Continuous results need to be converted into discrete

Normalized cut algorithm

- I. Construct a weighted graph G = (V,E) from an image
- 2. Connect each pair of pixels, and assign weights $w(i,j) = prob(i,j \ belong \ to \ same \ region)$
- 3. Compute diagonal matrix $D(i, i) = \sum_{j} W(i, j)$
- 4. Solve $(D-W)y = \lambda Dy$ for the eigenvector with the second smallest eigenvalue
- 5. Threshold eigenvector to get a discrete cut
- Recursively partition the segmented parts, if necessary

Example results

Example results

Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

Normalized cuts: Pros and cons

Pros

- Generic framework, can be used with many different features and affinity formulations
- No model or data distribution

Cons

- High storage requirement and time complexity
- Bias towards partitioning into equal segments

Eigenvectors carry contour information

Avoiding Ncut drawback

Do not try to find regions from the eigenvectors

Avoiding Ncut drawback

- Do not try to find regions from the eigenvectors
- Key idea:
 - Reshape eigenvectors into images
 - \blacktriangleright Compute edge probability P_b on eigenvector images
 - Final edge probability is the sum of all responses

Example results

Contour detection ~2008 (color)

Today

- Graph theoretic segmentation
 - Normalized cuts
- Segmentation as energy minimization
 - Markov random fields

Segmentation as energy minimization

P(foreground | image)

Y, 01

Normalizing constant called "partition function"

Writing Likelihood as an "Energy"

$$P(\mathbf{y}; \theta, data) = \frac{1}{Z} \prod_{i=1..N} p_1(y_i; \theta, data) \prod_{i,j \in edges} p_2(y_i, y_j; \theta, data)$$

$$-\log$$

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_1(y_i; \theta, data) + \sum_{i,j \in edges} \psi_2(y_i, y_j; \theta, data)$$

$$Cost of assignment y_i$$

Cost of pairwise assignment y_i y_i

Notes on energy-based formulation

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) + \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

- Primarily used when you only care about the most likely solution (not the confidences)
- Can think of it as a general cost function
- Can have larger "cliques" than 2
 - Clique is the set of variables that go into a potential function

Markov Random Fields

 $i, j \in edges$

Markov Random Fields

Example: "label smoothing" grid

$$0: -logP(y_i = 0 \mid data)$$

$$I: -logP(y_i = I \mid data)$$

Pairwise Potential

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) + \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

Solving MRFs with graph cuts

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) + \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

Solving MRFs with graph cuts

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) + \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

GrabCut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

GrabCut

Convert MRF into source-sink graph

Minimun cost can be computed in polynomial time

Graph cuts

Boykov and Jolly (2001)

Cut: separating source and sink; Energy: collection of edges

Min Cut: Global minimal energy in polynomial time

Binary segmentation as energy minimization

- ▶ Define a labeling L as an assignment of each pixel with a 0-1 label (background or foreground)
- Problem statement: find the labeling L that minimizes

$$E(L) = E_d(L) + \lambda E_s(L)$$

$$E_d(L) = \sum_{(x,y)} C(x, y, L(x,y))$$

$$\begin{array}{c} \text{in } \tilde{L}(x,y) \\ \text{in } \tilde{L}(x,y) \\ C(x,y), L(x,y)) = \end{array}$$

$$C(x,y,L(x,y)) = \begin{cases} \int_{C'(x,y)}^{C} \tilde{L}(x,y) & \text{if } L(x,y) \neq \tilde{L}(x,y) \\ C'(x,y,L(x,y)) & \text{otherwise} \end{cases}$$

C'(x,y,0) : "distance" from pixel to background pixels ullet

C'(x,y,1) : "distance" from pixel to foreground pixels

usually computed by creating a color model from user-labeled pixels

Colour Model

Gaussian Mixture Model (typically 5-8 components)

 $E(L) = E_d(L) + \lambda E_s(L)$

C'(x,y,0)

C'(x,y,1)

$$E(L) = E_d(L) + \lambda E_s(L)$$

- Neighboring pixels should generally have the same labels
 - Unless the pixels have very different intensities

$$E_s(L) = \sum_{\text{neighbors } (p,q)} w_{pq} |L(p) - L(q)|$$

 $w_{pq}\,$: similarity in intensity of \emph{p} and \emph{q}

$$(w_{pq} = 10.0)$$

$$(2)$$

$$(2)$$

Binary segmentation as energy minimization

$$E(L) = E_d(L) + \lambda E_s(L)$$

- For this problem, we can easily find the global minimum!
- Use max flow / min cut algorithm

Graph min cut problem

- ▶ Given a weighted graph G with source and sink nodes (s and t), partition the nodes into two sets, S and T such that the sum of edge weights spanning the partition is minimized
 - ▶ and $s \in S$ and $t \in T$

- node for each pixel, link between adjacent pixels
- specify a few pixels as foreground and background
 - create an infinite cost link from each bg pixel to the t node
 - reate an infinite cost link from each fg pixel to the s node
 - create finite cost links from s and t to each other node
- compute min cut that separates s from t
 - ▶ The min-cut max-flow theorem [Ford and Fulkerson 1956]

Segmentation by min cut

- ▶ The partitions S and T formed by the min cut give the optimal foreground and background segmentation
- ▶ I.e., the resulting labels minimize

$$E(d) = E_d(d) + \lambda E_s(d)$$

GrabCut segmentation

- Define graph
 - usually 4-connected or 8-connected
 - Divide diagonal potentials by sqrt(2)
- 2. Define unary potentials
 - Color histogram or mixture of Gaussians for background and foreground $unary_potential(x) = -\log\left(\frac{P(c(x); \theta_{foreground})}{P(c(x); \theta_{background})}\right)$

3. Define pairwise potentials

edge_potential(x, y) =
$$k_1 + k_2 \exp \left\{ \frac{-\|c(x) - c(y)\|^2}{2\sigma^2} \right\}$$

- 4. Apply graph cuts
- 5. Return to 2, using current labels to compute foreground, background models

GrabCut war of photos

Grabcut [Rother et al., SIGGRAPH 2004]

GrabCut

▶ Implemented in MS office Let's try it

Reported results

Easier examples

More difficult Examples

Camouflage &

Fine structure

Harder Case

Graph cuts with multiple labels

Alpha expansion

Repeat until no change

For
$$\alpha = 1...M$$

Achieves "strong" local minimum

Alpha-beta swap

Repeat until no change

For
$$\alpha = 1..M$$
, $\beta = 1..M$ (except α)

Re-assign all pixels currently labeled as α or β to one of those two labels while keeping all other pixels fixed

Other application: synthesis

Using graph cuts for recognition

Using graph cuts for recognition

Summary: MRF and graph-cuts

Pros:

- Powerful, based on probabilistic model (MRF)
- Applicable to a wide range of problems
- Very efficient algorithms available for many problems
- Becoming a standard for segmentation

Cons

- Graph-cuts can only solve a limited class of problems:
 - Sub-modular energy functions
 - ▶ Can only capture part of the power of MRF
- Only approximate solutions available for multi-label case

Graph cuts: Pros and Cons

Pros

- Very fast inference
- Can incorporate data likelihoods and priors
- Applies to a wide range of problems (stereo, image labeling, recognition)

Cons

- Not always applicable (associative only)
- Need unary terms (not used for bottom-up segmentation, for example)
- Use whenever applicable

Further reading and resources

Graph cuts

- http://www.cs.cornell.edu/~rdz/graphcuts.html
- Classic paper: What Energy Functions can be Minimized via Graph Cuts? (Kolmogorov and Zabih, ECCV '02/PAMI '04)

Belief propagation

Yedidia, J.S.; Freeman, W.T.; Weiss, Y., "Understanding Belief Propagation and Its Generalizations", Technical Report, 2001:

http://www.merl.com/publications/TR2001-022/

CNN for affinity learning

Maire and Yu, 2015

CNN for affinity learning

Maire and Yu, 2015

End – image segmentation part 2

Now you know how it works