

Introdução à Engenharia Química e Bioquímica

Aula 12
MIEQB
ano lectivo de 2020/2021

Sumário da aula

Balanços materiais a processos com reacção

- Conversão global e por passe
- > Purga

Problema 4.8

Produz-se metanol na reacção do dióxido de carbono com hidrogénio:

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

A alimentação fresca ao processo contém hidrogénio, dióxido de carbono e 0.40% molar de inertes (I). O efluente do reactor passa para um condensador onde se remove completamente todo o metanol e água formados na reacção. Os reagentes não convertidos na reacção e o inerte são reciclados de volta ao reactor (correntes $5 \to 7 \to 2$) após purga. A alimentação ao reactor contém 28% mole CO_2 , 70% mole CO_2 , 70% mole CO_2 0 mole de inertes. A conversão por passe do hidrogénio é de 60%.

- a) Efectue o balanço material ao processo para uma base de cálculo à sua escolha;
- b) Calcule a razão de purga e a razão de reciclo;
- c) Calcule a conversão global do hidrogénio;
- d) Para uma produção de metanol de 155 kmol.h⁻¹ calcule o consumo de matéria prima requerido.

Produz-se metanol na reacção do dióxido de carbono com hidrogénio:

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

A alimentação fresca ao processo contém hidrogénio, dióxido de carbono e 0.40% molar de inertes (I). O efluente do reactor passa para um condensador onde se remove completamente todo o metanol e água formados na reacção. Os reagentes não convertidos na reacção e o inerte são reciclados de volta ao reactor (correntes $5 \rightarrow 7 \rightarrow 2$) após purga. A alimentação ao reactor contém 28% mole CO_2 , 70% mole CO_2 , 70% mole CO_2 0 mole de inertes. A conversão por passe do hidrogénio é de 60%.

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

Inertes: substâncias que <u>não</u> participam na reacção;

Ou seja, não são reagentes nem produtos de reacção.

o nº de moles de inertes que entra no reactor = nº de moles que sai Atenção não são as composições!

 $\rm N_o\text{-}$ designa o número de moles do reagente limitante inicialmente presentes $\rm N_f$ - designa o número de moles final do reagente limitante

Na análise de reactores químicos envolvendo a <u>separação dos produtos de reacção</u> e o <u>reciclo dos reagente não consumidos</u>, usam-se <u>duas</u> definições de conversão da reacção

Conversão global =
$$\frac{entrada\ de\ r.l.\ no\ processo - saída\ de\ r.l.\ do\ processo}{entrada\ de\ r.l.\ no\ processo} \times 100$$

$$Conversão global = \frac{n_{r.l.}em \ 1 - (n_{r.l.}em \ 4 \ e \ 6)}{n_{r.l.}em \ 1} \times 100$$

Conversão por passe =
$$\frac{entrada\ de\ r.l.\ no\ reactor\ - saída\ de\ r.l.\ do\ reactor}{entrada\ de\ r.l.\ no\ reactor} \times 100$$

Conversão por passe =
$$\frac{n_{r.l.}em \ 2 - n_{r.l.}em \ 3}{n_{r.l.}em \ 2} \times 100$$

Balanço material ao processo

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

	1	2	3	4	5	6	7
CO2							
H2							
inertes							
СНЗОН							
H2O							
total							

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

	1	2	3	4	5	6	7
CO2	√						
H2	\checkmark						
inertes	\checkmark						
СНЗОН	0						
H2O	0						
total							

	1	2	3	4	5	6	7
CO2	\checkmark	√					
H2	\checkmark	\checkmark					
inertes	\checkmark	✓					
СНЗОН	0	0					
H2O	0	0					
total							

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark	√				
H2	\checkmark	\checkmark	\checkmark				
inertes	\checkmark	✓	√				
СНЗОН	0	0	\checkmark				
H2O	0	0	✓				
total							

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark	\checkmark	0			
H2	\checkmark	\checkmark	\checkmark	0			
inertes	✓	✓	√	0			
СНЗОН	0	0	✓	→ ✓			
H2O	0	0	✓	√			
total							

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark		0			
H2	\checkmark	\checkmark		0	\checkmark		
inertes	\checkmark	✓		0	\checkmark		
СНЗОН	0	0	✓	√	0		
H2O	0	0	✓	√	0		
total							

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark		0		✓	✓
H2	\checkmark	\checkmark		0	\checkmark	\checkmark	\checkmark
inertes	\checkmark	✓		0	\checkmark	\checkmark	✓
СНЗОН	0	0	✓ □	→ ✓	$(\mathbf{x}_{co})_{\mathbf{x}} = ($	$(\mathbf{x}_{CO_2})_7 = (\mathbf{x}_{CO_2})_7$	<u> </u>
H2O	0	0	✓	√		$(x_{H_2})_7 = (x_{H_2})_7$	
total						$= (x_{\text{inertes}})_7$	

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark		0		\checkmark	\checkmark
H2	\checkmark	\checkmark		0	\checkmark	\checkmark	\checkmark
inertes	\checkmark	✓		0	\checkmark	\checkmark	\checkmark
СНЗОН	0	0	✓	√	0	0	0
H2O	0	0	✓	√	0	0	0
total							

	1	2	3	4	5	6	7		
co₂ Por onde começamos??? ✓ ✓									
H2	\checkmark	√		0	✓	\checkmark	\checkmark		
inertes	\checkmark	Ondo		camo	caha	se de	cálcu		
СНЗОН	0	- Onut		Callio	s a ba	se ue	Calcu		
H2O	0	0	✓	√	0	0	0		
total									

$$Conversão global = \frac{n_{H_2}em \ 1 - n_{H_2}em \ 6}{n_{H_2}em \ 1} \times 100$$

$$Conversão por passe = \frac{n_{H_2}em \ 2 - n_{H_2}em \ 3}{n_{H_2}em \ 2} \times 100$$

=> Na corrente 2!

	1	2	3	4	5	6	7
CO2	\checkmark	\checkmark	\checkmark	0	\checkmark	\checkmark	\checkmark
H2	\checkmark	\checkmark	\checkmark	0	\checkmark	\checkmark	\checkmark
inertes	\checkmark	✓	✓	0	\checkmark	✓	\checkmark
СНЗОН	0	0	\checkmark	\checkmark	0	0	0
H2O	0	0	\checkmark	\checkmark	0	0	0

E se não existisse a corrente 6?

- => O inerte ia acumular no sistema não sendo possível atingir o estado estacionário
- => Eventualmente, ou o inerte, em concentrações mais elevadas, passaria a participar na reacção; ou, aumentando desproporcionadamente a pressão, ocorreria risco de explosão!

Solução?

=> Efectuar a purga da corrente de reciclo!

Consideremos como base de cálculo a entrada de 100 kmol/h de moles totais na corrente 2.

	1	2	3	4	5	6	7
CO2				0	•		
H2				0			
inertes				0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

Consideremos como base de cálculo a entrada de 100 kmol/h de moles totais na corrente 2.

	1	2	3	4	5	6	7
CO2			_	0			
H2				0			
inertes				0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

Consideremos como base de cálculo a entrada de 100 kmol/h de moles totais na corrente 2.

2_	kmol	/h_	inertes
_		-	

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70		0			
inertes		2		0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70		0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

%Conversão por passe do hidrogénio = 60%

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70		0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

A conversão de H2 é de 60%: $(n_{H_2})_{convertidas} = 0,6*70 = 42_kmol/h$ $(n_{H_2})_3 = 70 - 42 = 28_kmol/h$

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70		0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

A conversão de H2 é de 60%: $(n_{H_2})_{convertidas} = 0,6*70 = 42_kmol/h$ $(n_{H_2})_3 = 70 - 42 = 28_kmol/h$

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70	28	0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

A conversão de H2 é de 60%:
$$(n_{H_2})_{convertidas} = 0,6*70 = 42_kmol/h$$

 $(n_{H_2})_3 = 70 - 42 = 28_kmol/h$

A conversão de CO₂ será então:

 $1mol_CO_2 \Leftrightarrow 3mol_H_2$

	1	2	3	4	5	6	7
CO2		28	_	0			
H2		70	28	0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

A conversão de H2 é de 60%: $(n_{H_2})_{convertidas} = 0,6*70 = 42_kmol/h$ $(n_{H_3})_3 = 70 - 42 = 28_kmol/h$

A conversão de CO₂ será então:

$$1mol\ CO_2 \Leftrightarrow 3mol\ H_2$$

$$(n_{CO_2})_{convertidas} = \frac{42}{3} = 14 \text{ kmol/h}$$

$$(n_{CO_2})_3 = 28 - 14 = 14_kmol/h$$

	1	2	3	4	5	6	7
CO2		28	14	0			
H2		70	28	0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

Se são convertidas 14 kmol/h de dióxido de carbono, então são gerados:

$$(n_{CH_3OH})_{geradas} = 14 _kmol / h = (n_{CH_3OH})_3$$
 $(n_{H_2O})_{geradas} = 14 _kmol / h = (n_{H_2O})_3$

	1	2	3	4	5	6	7
CO2		28	14	0			
H2		70	28	0			
inertes		2	2	0			
СНЗОН	0	0			0	0	0
H2O	0	0			0	0	0
total		100					

Se são convertidas 14 kmol/h de dióxido de carbono, então são gerados:

$$(n_{CH_3OH})_{geradas} = 14 _kmol / h = (n_{CH_3OH})_3$$
 $(n_{H_2O})_{geradas} = 14 _kmol / h = (n_{H_2O})_3$

	1	2	3	4	5	6	7
CO2		28	14 _	0			
H2		70	28	0			
inertes		2	2	0			
СНЗОН	0	0	14		0	0	0
H2O	0	0	14		0	0	0
total		100					

	1	2	3	4	5	6	7
CO2		28	14	0	14		
H2		70	28	0	28		
inertes		2	2	0	2		
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total		100	72	28	44		

Caracterização das correntes 5, 6 e 7:

NOVA SCHOOL OF

$$(x_{CO_2})_5 = (x_{CO_2})_7 = (x_{CO_2})_6 = 14/44 = 0,318$$

 $(x_{H_2})_5 = (x_{H_2})_7 = (x_{H_2})_6 = 28/44 = 0,636$
 $(x_{inertes})_5 = (x_{inertes})_7 = (x_{inertes})_6 = 2/44 = 0,046$

	1	2	3	4	5	6	7
CO2		28	14	0	14		
H2		70	28	0	28		
inertes		2	2	0	2		
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total		100	72	28	44		

Balanço material ao NÓ DE ADIÇÃO (1+7=2)

$$\begin{cases} n_1 + n_7 = n_2 = 100 \\ (x_{inertes})_1 \times n_1 + (x_{inertes})_7 \times n_7 = 0.02 \times 100 \end{cases}$$

$n_1 = 61,9$	_kmol/h
$n_7 = 38,1$	_kmol/h

	1	2	3	4	5	6	7
CO2		28	14	0	14		
H2		70	28	0	28		
inertes		2	2	0	2		
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44		38.1

• Sabendo a composição da corrente 7 e as moles totais calculam-se as parciais.

• Corrente 7
$$n_{CO2_7} = 0.318 \times 38.1 = 12.1 \text{ kmol}$$

$$n_{H2_7} = 0.636 \times 38.1 = 24.2 \text{ kmol}$$

$$n_{I_7} = 0.046 \times 38.1 = 1.8 \text{ kmol}$$

	1	2	3	4	5	6	7
CO2		28	14	0	14		12.1
H2		70	28	0	28		24.2
inertes		2	2	0	2		1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44		38.1

NOVA SCHOOL OF

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14		12.1
H2	45.8	70	28	0	28		24.2
inertes	0.2	2	2	0	2		1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44		38.1

$$n_5 = n_6 + n_7$$

 $n_6 = n_5 - n_7 = 5.9 \text{ kmol}$

$$n_{I_6} = 0.046 \times 5.9 = 0.2 \text{ kmol}$$

 $n_{H2_6} = 0.636 \times 5.9 = 3.8 \text{ kmol}$
 $n_{CO2_6} = 0.318 \times 5.9 = 1.9 \text{ kmol}$

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14		12.1
H2	45.8	70	28	0	28		24.2
inertes	0.2	2	2	0	2		1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44	5.9	38.1

a) Balanço material

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14	1.9	12.1
H2	45.8	70	28	0	28	3.8	24.2
inertes	0.2	2	2	0	2	0.2	1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44	5.9	38.1

b)
$$Raz\tilde{a}o_purga = \frac{n_6}{n_5} = \frac{5.9}{44} = 0.13$$
 $Raz\tilde{a}o_reciclo = \frac{n_7}{n_1} = \frac{38.1}{61.9} = 0.62$

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14	1.9	12.1
H2	45.8	70	28	0	28	3.8	24.2
inertes	0.2	2	2	0	2	0.2	1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44	5.9	38.1

c)

$$Conversão global = \frac{n_{H_2}em \ 1 - n_{H_2}em \ 6}{n_{H_2}em \ 1} \times 100$$

v –	$\frac{45.8-3.8}{2} \times 100$
$X_{global} =$	45.8 × 100

$$X_{
m global} = 91.7\%$$

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14	1.9	12.1
H2	45.8	70	28	0	28	3.8	24.2
inertes	0.2	2	2	0	2	0.2	1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44	5.9	38.1

d)

Para 61.9 kmol/h em 1 Produz-se 14 kmol/h de metanol em 3 e 4

Para BC 155kmol/h de metanol em 3 e 4?

155 kmol/h metanol — x

14 kmol metanol — 61.9 kmol

Consomem-se 685kmol/h de matériaprima em 1

	1	2	3	4	5	6	7
CO2	15.9	28	14	0	14	1.9	12.1
H2	45.8	70	28	0	28	3.8	24.2
inertes	0.2	2	2	0	2	0.2	1.8
СНЗОН	0	0	14	14	0	0	0
H2O	0	0	14	14	0	0	0
total	61.9	100	72	28	44	5.9	38.1