Analog Integrated Circuits Designs Single Ended Two Stage Miller Compensated OTA

Design No. 2							
Av	≥ 54 dB	PM	≥ 60°				
UGF	≥ 300 MHz	CL	1 pF				
Power Consumption	≤ 1mW	Reference Current	10 uA				

01 | Since no constrains on CMIR → Choose PMOS input devices as they gives better matching

02 | General considerations

- $\begin{array}{l} C_L = \alpha \times C_C \to Choose \, \alpha = 2 \\ C_C = \beta \times C_{GS6} \to Choose \, \beta = 5 \\ {}^{\omega_{p2}}/_{\omega_u} = \gamma \to Choose \, \gamma = 4 \to Fastest \, Settling \, time \, without \, peaking \end{array}$

$$\overbrace{03 \mid \omega_u =}^{\omega_{p2}} /_{\gamma} \approx \left(\begin{smallmatrix} g_{m6} /_{2\pi \times C_L} \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 /_{\gamma} \end{smallmatrix} \right) = \left(\begin{smallmatrix} g_{m6} /_{2\pi \times C_{GS6}} \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left(\begin{smallmatrix} 1 /_{\alpha \times \beta \times \gamma} \end{smallmatrix} \right) = f_{T6} \left($$

 $04 \mid \text{Bias M}_6 \text{ @MI} \rightarrow \text{$^{g_{m6}}$}/I_D = 16 \rightarrow L_6 = 180 \text{ nm} \rightarrow I_{D6} = 621.8 \text{ uA} \rightarrow W_6 = 60.7 \text{ um, } g_{m6} = 9.933 \text{ mS, } r_{o6} = 4.6 \text{ k}\Omega + 1.0 \text{ k}\Omega$

Sizing of Current Mirror M5

 $05 \mid$ Since no spec on CMRR \rightarrow Assume relatively long $L_5 = 500$ nm and bias it in SI $^{g_{m5}}/_{I_D} 10$ to get better mirroring

$$06 \mid :: A_{V2} = g_{m6} \times r_{o6} \parallel r_{o5} = 31 \rightarrow A_{V1} = {^{A_V}}/{_{A_{V2}}} = 16.5$$

07 |
$$: \omega_{p2}/\omega_{u} = 4 \rightarrow g_{m6}/g_{m1} = 8 \rightarrow g_{m1} = 1.241 \text{ mS}$$

08 | Choose short L = 200 nm for input device to avoid cloosed loop capacitive loading

09~|~ Baising it in WI $^{g_{m1}}\!/_{I_D}=19$ to maximize efficiency \rightarrow $I_{D1}=65.3~uA$ \rightarrow $I_{B1}=130.6~uA$

Sizing of M3, M4

$$10 \mid \text{Set L}_{3,4} = \text{L}_6 = 180 \text{ nm} \rightarrow \text{and} \frac{g_{m3,4}}{I_D} = \frac{g_{m6}}{I_D} = 16 \rightarrow W_{3,4} = 6.6 \text{ um} \rightarrow r_{o3,4} = 37.7 \text{ k}\Omega$$

11 |
$$A_{V1} = g_{m1} \times r_{o1,2} \parallel r_{o3,4} = 19 \rightarrow A_V = 589$$

Sizing of Current Mirror M7

 $12 \mid I_{D7} = 2I_{D1} = 130.6 \text{ uA} \rightarrow \text{Assume relatively long } L_5 = 500 \text{ nm and bias it in SI} \frac{g_{m7}}{I_D} 10 \text{ to get better mirroring}$

Sizing Summary

	M1	M2	M3	M4	M5	M6	M7
L	200 nm	200 nm	180 nm	180 nm	500 nm	180 nm	500 nm
W	54.3 um	54.3 um	6.6 um	6.6 um	153.5 um	60.7 um	33.1 um
gmoverID	19	19	16	16	10	16	10

Test Bench and Results

01 | Test Bench

02 | DC Operating Points

03 | CM Input Range

04 | AC Open loop

05 | Common Mood Rejection Ratio

06 | AC Closed Loop

$\underline{\text{Results Summary}}$

Spec	Required	Achieved
Av	≥ 54 dB	55.9 dB
UGF	≥ 300 MHz	326 MHz
Power Consumption	≤ 1mW	880 uW
PM	≥ 60°	70°