		opology of Bellovih Spare
	i)	Topology of X an
		X/k ~~ analytic object"
^		Non ort job Sry Nic X/Ke Kat job ~ X(C) anotherer
Ale	٧~	X/KeKatifüll ~ X(c)
		X/Q cure $(X(C))/Q$ $(X(C))/Q$ $(X(C))/Q$
		Mirror this: X a c "rive lopologue man"
	0	x on always existy - 1st explicitly desirbe
		expluity desinte
	3)	X " & "nie" houghoff for anhally
		g: X/k is prover K on 5 compart
	(۲	X° has rive homotopy 35 s.t. X°~S
	3)	A 1 h 4. h 4
		Analytifishion
)	A (good) Bebover spare i a poir (x, 0x) X by some G_{x} is a steady st. this is a LRS and (X, O_{x}) is brody gomorphic to (M, A) , G_{x})
		and (X, Ox) 4 bordly gonophic b (M,A), Gx)
		I affirm objetion
90		193

X/le's a vanely then X a good Thm If X/k is a vainety, then X a is a Berkovich spone s.t. Dy" 7 X -> X and y ZGaBS st. Z-X Z x x . ly writing X represent the funder But $Z \rightarrow H_{om_{LRS}}(z, x)$ A M(A) Copology V⊆ M(A) st. V≈ M(v) I) $G_A(v) = V^{\gamma}$ If V= () M(A;) for A: ayinord $V \text{ speint } A \qquad \mathcal{O}_{A}(V) = \text{ber}\left(\prod_{i} A_{i} \longrightarrow \prod_{c_{i} \neq i} A_{i \wedge j} \right)$ Ox (U) = lim A: - Take anyelisty! Dogst exist? What dog it book like? Llower (Zomanikt

 $X = A_k^n$ $X^n = A_k^{n,an} = \{ \text{mult. Snormy } \{ [T_i, ..., T_n] \} \}$ or (Ah) $X^{\circ} \rightarrow X$? $1-h:A \rightarrow \mathbb{R}_{>0}$ ex this is an abolytywhin S/R i aroundly s.t. 5 etypy T com open unregum Chin Ton ereigh, -x - in LRS Pros Tan: = Txs 5 T > S closed unmersion Coye 3 T; dejuis by I sharp of ideal of G dogn't To I sheep of deep of Gom a Refor a dose megión

Cose 4 If X is offer then I closed major X -> Ai for somen

By cose 3,1, x a evoly

Cose 5 For good X, take ase 4, cose 2 allows gliving

Ren Fritish based on A 1 colyoner

 A_{i}^{n} \rightarrow A_{i}^{n}

 $\{(z,\omega): \omega: K(z) \rightarrow \mathbb{R}_{\geqslant 0}\} \longrightarrow \{z \in A_{k}^{n}\}$

1.12 ←> (ker(1./2), 1.12)

Run $X^{\alpha} = \{(x, \omega) : x \in X, \omega : K(x) \rightarrow R_{30}\}$

Ren weight the norm on k,

wedge too st. IT is dy and $\forall j \in k[T, -, T_n]$ $(x, w) \longmapsto w(f(x)) ; ds.$

on X an what lopdogy do ve gre
'y x 4 ugfore, de ly, x=spec(A)
xm -> x i d and bgeA
$(x, y) \longrightarrow \omega(\S(x))$ is dy
Ym g not cyfire
x^→×i d, YU≤Xoren, Hf € Ox(U)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
X an ; the topologies space
$\{(x,u)\}: x^{an} \longrightarrow x \qquad f \qquad dy$ $(x,u) \mapsto x$
an Vucx on, Use Q(v)
$T_{1}^{-1}(U) \longrightarrow \mathbb{R}_{2,0}$ $(x,\omega) \longrightarrow U(\zeta(x)) \text{if } O_{1}^{1}.$
$X^{an} \longrightarrow X$ & surjective on a map of sety. It's mucky + ZL

Rem

What property dog it have? A 5 aring, spee(A) is belong. Thm 1: 12, # 1-1y mult. snorny on A 1-12: A > R>0 1700 35: Ifle < r < Ifly Uz:= { 1.1z: |f|z < r} U:= { 1.1z: |f|z > r} Con X on is locally heloty for any X Lemma T is holosoff top holosoff + separated

Pros. Err. (Xm -> 'Spec(k) m) X/k is virily then X^m by X^m is separated by $X^m \longrightarrow X \times X$ is closed $x \longrightarrow (2,2)$ $x^{m} \times x^{m} = (x \cdot \chi)^{m}$ Quid congrat X/k ; seporter. X -> X x. X is a closed unresign Xan (X xx X) " is a closed unrestion

X on 5 housday. Cor 9: X-> Y a morphym of h randley, Set. 's set beretusy super gan: X an -> Y an ; also surgestive T: X~ > X , y e Y , K(T(y)) => K(y) Pros $(Y^{\alpha})_{y} \cong (\pi(y) \times_{K(\pi(y))} K(y))^{\alpha \alpha}$ Conducy 9 & superie of all be fiber & non exply Files of I give up fish of I'm so they're nonempty. X/k is proper, hen X on is compact Proof Fr (Pr) on is compact Cox2 X/k is projective: X -> Ph $(\chi)^{an} \longrightarrow \mathbb{P}_{h}^{n,an} \subset \mathcal{C}_{mpowb}$ X/k is proper. Chow's bonn IX' st. X'/k is projector and X' > X & superly (and projects) $(X')^{on}$ is compated and maps suggested to $X^{on} = G$ compated

NB	5: x -> 5 : flot wramper / smooth / separated / vyeite / open were
	5: X-> 7 5 flot wronger / smoth / separated / vyeite / open were / sujecte / smile type
	then for
	Mororer, of 5 is geful type of is dominant / closed consister /proper
	y 5°° 'y
'GAGA'	90,43 , settion 3
Lenna	Every conveiled Berboniel space is acuty connected
	Xty 3 P: [a, 1] -> X s.t. 9(0) = a, 9(1) = y, & thorresmorphyn ada Though (shell push conveiled on)
Prog	(shetch, post connections)
	X i good, x EX se assure it-affiroit.
	By extending h to K X 4 strilly h-affinite XX > X is supposite
	Noether normalysts X=Ei is will polydisk
	pan web park correte
	En 5 port conneile

Assure En 5 pe TI E -> Eh $T_z \cong E_{K(z)}$ yo E E $x_0, z_i := O(\pi(y_i))$ yo -> 20 -> 2, -> y1 Beborih spany are locally contails The Behovier only prove for smooth, 93 paye paper. 1 page passes: Hrushibon - Logger toluly agreed If Xh & Just type + k has a countable + denge subject ey: $k = Q_p$, k = C(l)Then x on come n (+ Pooren) $H^{i}(|X^{m}|,Q_{i}) = H^{i}_{ec}(X,Q_{i})_{o}^{sm}$ Belower

The X/k vainety Xon S ý a finte Chr comple BSSX^m, S.I. and I xm -> S $\chi^{m}_{\chi}[0,] \rightarrow \chi^{m}$ xx {0} = U Sx {k} = U X x {B & a homotopy equation x m -> S Moreover, if G's a finte group Q X Pik 5 to be a G-Ch compler and $x^{\alpha} \times [0,] \longrightarrow x^{\alpha}$ if G - equivariant (X on) G S & non-empty olybon topology Using OC/G a model for X/k G; the try of odyes De = x De y a stait normal existency duragion [D(XF) | e gour chone for 5 4 a homiton equilop

$$\mathcal{X}_{\mathbf{F}} = \bigcup E_i$$

 $\mathcal{X}_{\mathbf{F}} = U E_i$ Ei is an irel. comp.

d simpling at given $TT_0(E_5)$

EJ = DE; J run though substry

I IJI= d+1

y . χ_{τ}

 $= \int_{\mathcal{X}} \mathcal{S}_{h}(\chi)$

 $TI(\mathcal{A}(X)) = 1$ gen. pt.