ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

¿Cómo anduvieron?

Repaso: Redes Neuronales, Preliminares

Explicación: Perceptrón

Función logística sigmoide Perceptrón con variable

Entropía cruzada

Propagation

Break

Recursos: Pair programming

Hands-On

Cierre

¿Cómo anduvieron?

Repaso: Descenso por Gradiente

Redes neuronales

Esperamos que aprendan los siguientes conceptos:

- Perceptrón, Funciones de Activación
- Forward Propagation
- Backpropagation
- Descenso por gradiente (Gradient Descent)
- Redes Neuronales Profundas
- Regularización
- Redes Neuronales Convolucionales (CNN, si hay tiempo)
- Entornos de desarrollo: Keras, Tensor Flow
- Y muchos que probablemente nos estemos olvidando.

Redes neuronales

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

Pasos

1. Calculamos el costo para ciertos valores al azar de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto. Técnicamente, derivamos o calculamos el gradiente.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto. Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Perceptrón

Objetivos de este encuentro

- Presentar el Perceptrón con un grado de detalle que permita entender lo que viene después. Para eso, vamos a trabajar sobre los conceptos más difíciles que suelen aparecer.
 - La idea es que entiendan "la cocina" del asunto lo que hay detrás.
 - No se preocupen si se pierden en los detalles matemáticos.

Presentar Keras como entorno de desarrollo para Redes Neuronales

Estamos viendo realizaciones de un fenómeno probabilístico

Perceptrón

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Activación:

- Sin la activación, es una función lineal
- Necesitamos introducir algo que sature la entrada en 0 o en 1 dependiendo del resultado de la unión sumadora

Función logística sigmoide

Función Logística / Sigmoide

$$y(z) = \frac{1}{1 + e^{-z}}$$

Función Logística / Sigmoide

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Función Logística / Sigmoide

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$y(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x$$

$$y(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Activación: Función Sigmoidea

¿Qué falta?

¡Falta encontrar los pesos w_0 y w_1 apropiados para nuestros datos!

Para eso necesitamos una función de costo

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Activación: Función Sigmoidea

¿Qué falta?

¡Falta encontrar los pesos w_0 y w_1 apropiados para nuestros datos!

Para eso necesitamos una función de costo

Entropía cruzada

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. \widehat{y}

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$
 Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$
 Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

$$J(\overline{W}) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

$$J(\overline{W}) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias

$$J(w_0, w_1) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias, caso 1D

Propagation

Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

- 1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_0 y w_1 .

 $w_0^{nuevo} = w_0^{viejo} - \alpha * \frac{dJ}{dw_0}$ $w_1^{nuevo} = w_1^{viejo} - \alpha * \frac{dJ}{dw_1}$

- 1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_0 y w_1 .

 $w_0^{nuevo} = w_0^{viejo} - \alpha * \frac{dJ}{dw_0}$ $w_1^{nuevo} = w_1^{viejo} - \alpha * \frac{dJ}{dw_1}$

1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.

- $v_0^{nuevo} = w_0^{viejo} \alpha * \frac{dJ}{dw_0}$ $v_1^{nuevo} = w_1^{viejo} \alpha * \frac{dJ}{dw_1}$
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_0 y w_4 .

1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.

- $v_0^{nuevo} = w_0^{viejo} \alpha * \frac{dJ}{dw_0}$ $v_1^{nuevo} = w_1^{viejo} \alpha * \frac{dJ}{dw_1}$
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_0 y w_4 .

1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.

- $v_0^{nuevo} = w_0^{viejo} \alpha * \frac{dJ}{dw_0}$ $v_1^{nuevo} = w_1^{viejo} \alpha * \frac{dJ}{dw_1}$
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_0 y w_4 .

- Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros wo y wa.

- 1. Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w_o y w₁.

$v_0^{nuevo} = w_0^{viejo} - \alpha * \frac{dJ}{dw_0}$ $v_1^{nuevo} = w_1^{viejo} - \alpha * \frac{dJ}{dw_1}$

- Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w₀ y w₁.

$$v_0^{nuevo} = w_0^{viejo} - \alpha * \frac{dJ}{dw_0}$$
$$v_1^{nuevo} = w_1^{viejo} - \alpha * \frac{dJ}{dw_1}$$

Calcular las derivadas y actualizar los parámetros "hacia atrás" se conoce como **Backpropagation.**

Para los que hicieron análisis matemático, ¡es la vieja y conocida Regla de la Cadena!

Pair programming (Programación en duplas)

Pair programming

Es una técnica de desarrollo de software en la que dos personas trabajan en un solo bloque de código.

Pair programming

Es una técnica de desarrollo de software en la que dos personas trabajan en un solo bloque de código.

Pair programming

¡Estos roles no son fijos!

Pair programming · Ventajas

- Hacer foco
- Mejorar el flujo de trabajo
- Reducir la frustración
- Conocimiento compartido
- Mejores soluciones
- Colaboración y trabajo en equipo

Recursos

Pair Programming Guide

¡Comencemos!

Hands-on training

Hands-on training

DS_Encuentro_30_Perceptron.ipynb

Recursos

Recursos

Videos de YouTube

- ¿Pero qué "es" una Red neuronal? | Aprendizaje profundo, Parte 1

- <u>Descenso de gradiente, es como las redes neuronales</u> <u>aprenden | Aprendizaje profundo, capítulo 2</u>

Para la próxima

- 1. Completar el Notebook de la clase de hoy
- 2. Ver los siguientes videos (muy cortos):
 - a. https://www.youtube.com/watch?v=D8iMDH5va9M
 - **b.** https://www.youtube.com/watch?v=fAKwocta2wM

ACÁMICA