Coeficientes(a)

	Modelo		Coeficientes no estandarizados		Coeficientes estandarizado s t		Sig.	Intervalo de confianza para B al 95%	
			В	Error tip.	Beta	Limite inferior	Límite superior	В	Error tip.
Ī	1	(Constante)	18,951	2,294			,000	14,087	23,814
L		Tiempo (h)	6,731	,333	,981		.000		

a Variable dependiente: Nro. de gérmenes por cm cúbico

Usando la información recuadrado puede escribirse la ecuación de la recta como:

$$y = 6,731 * x + 18,951$$

Gráficamente:

2) Para estimar la cantidad de gérmenes a las 9 horas solo bastará con reemplazar en la ecuación.

$$y = 6,731 * 9 + 18,951$$
$$y = 79,53$$

Según la ecuación de la recta de regresión habrá 79,53 gérmenes por centímetro cúbico.

ANOVA(b)

	Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.
I	1	Regresión	10155,383	1	10155,383	408,535	,000(a)
I		Residual	397,728	16	24,858		
ı		Total	10553,111	17			

a Variables predictoras: (Constante), Tiempo (h)
b Variable dependiente: Nro. de gérmenes por cm cúbico

Para completar esta tabla simplemente se resta del total el valor de la suma de cuadrado de la regresión teniendo en cuenta que:

$$SST = SSR + SSE \rightarrow SSE = SST - SSR \rightarrow SSE = 397,728$$

También se podría calcular con el producto entre los grados de libertad y la media cuadrática.

Resumen del modelo(b)

Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
1	,981(a)		,960	4,986

a Variables predictoras: (Constante), Tiempo (h)b Variable dependiente: Nro. de gérmenes por cm cúbico

ANOVA(b)

Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.
1	Regresión	10155,383	1	10155,383	408,535	,000(a)
	Residual		16	24,858		
	Total	10553,111	17			

a Variables predictoras: (Constante), Tiempo (h) b Variable dependiente: Nro. de gérmenes por cm cúbico

Para calcular el error típico de la estimación se recurre a la tabla ANOVA, donde se encuentra la media cuadrática del residuo (s²), aplicando la raíz cuadrado se puede obtener el resultado que buscamos (s). La variación del error será s²=24,858.

	Tiempo	Germenes	x^2	y^2	x*y			
	0	20	0	400	0			
	1	26	1	676	26			
	1,5	33	2,25	1089	49,5	Sx	x=	225,444444
	2	33	4	1089	66	Sy	y=	10553,1111
	3	41	9	1681	123	Sx	y=	1514,27778
	3,5	35	12,25	1225	122,5	S^:	2=	23,8703718
	4	47	16	2209	188	S=		4,88573145
	5	53	25	2809	265			
	6	59	36	3481	354	Err	ror α	-4,7721894
	6,5	59	42,25	3481	383,5	Err	or β	-0,68980491
	7	68	49	4624	476			
	7,5	70	56,25	4900	525	t:		-2,1199053
	8	72	64	5184	576	Co	nfianza:	95
	9	64	81	4096	576			
	10	89	100	7921	890	b=		6,71685559
	10,5	93	110,25	8649	976,5	a=		18,8498029
	11	95	121	9025	1045			
	11,5	101	132,25	10201	1161,5			
SUMAS	107	1058	861,5	72740	7803,5			
Promedio	5,94444444	58,7777778						
N	18							

Intervalo de 95% de confianza para β.

$$b - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} < \beta < b + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}$$

$$t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} = 2,120 * \frac{4,89}{\sqrt{225}} = 0,691$$

$$6,7169 - 0,691 < \beta < 6,7169 + 0,691$$

$$6,0259 < \beta < 7,4079$$

Prueba β >6 con 5% de significancia:

 H_0 : β=6; H_1 : β>6

$$t = \frac{b - \beta_0}{s / \sqrt{S_{xx}}} = \frac{6,72 - 6}{4,89 / \sqrt{225}} = 2,2086$$

Cola der 0,02106866

Como el valor obtenido es menor a 0,05 que es nuestra significancia, podemos rechazar la hipótesis nula y afirmar que β es mayor a 6, lo cual también es observable en el intervalo calculado anteriormente.

5) El Intervalo de confianza de 99% para la cantidad de gérmenes a las 9 horas:

t:	-2,92078162
Confianza:	99

$$\mu_{Y|x_0} \colon \widehat{y_0} \pm t_{\frac{\alpha}{2},v} * S \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

$$t_{\frac{\alpha}{2},v} * S \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 2,9207 * 4,89 * \sqrt{\frac{1}{18} + \frac{9 - 5,94}{225,44}} = 3,755$$

$$y_0 = \widehat{y}_{x=50} = 79,24$$

$$79,24 - 3,755 < \mu_{Y|x_0} < 79,24 + 3,755$$

$$75,485 < \mu_{Y|x_0} < 82,995$$

6) El intervalo de predicción de 99% para la cantidad de gérmenes a las 9 horas:

$$\widehat{y_0} \pm t_{\frac{\alpha}{2},v} * S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

$$t_{\frac{\alpha}{2},v} * S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 2,9207 * 4,89 * \sqrt{1 + \frac{1}{18} + \frac{9 - 5,94}{225,44}} = 14,77$$

$$79,24 - 14,77 < y_0 < 79,24 + 14,77$$

$$64,47 < y_0 < 94,01$$

Resumen del modelo(b)

Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
1	,981(a)	.962	,960	

a Variables predictoras: (Constante), Tiempo (h) b Variable dependiente: Nro. de gérmenes por cm cúbico

Guiándose por el coeficiente de determinación, este indica que un 96,2% de la variación del número de gérmenes esta explicado por el tiempo, el modelo resulta adecuado ya que este coeficiente es muy cercano al 1 lo que indica una fuerte relación lineal entre el tiempo y el número de gérmenes.

8) Test:

H₀: ρ =0; H₁: ρ >0

$$t = \frac{b}{s/\sqrt{S_{xx}}} = \frac{6,72}{4,89/\sqrt{225}} = 20,6135$$

Cola der	3,00124E-13
Cola izq	1

Como el p-value es prácticamente 0 y el nivel de significancia de un 10% se puede rechazar la hipótesis nula y afirmar que el coeficiente de correlación es mayor a 0 o positivo, y existe una relación lineal positiva entre las variables.

9)

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico gl Sig.			Estadístico	gl	Sig.
Unstandardized Residual	,284	18	,000	,746	18	,000

a. Corrección de significación de Lilliefors

Dado que la prueba de normalidad da un valor menor a 0,2 se puede rechazar la hipótesis nula y concluir que la distribución de los residuos no es normal, lo que deja invalido al modelo.

Gráficas:

Se observa que la recta no logra unir de manera eficiente a los puntos

Se observa que los puntos se distribuyen de manera errática.

Se observa que los datos se distribuyen simétricamente en la caja, pero que hay 2 datos por fuera y más abajo.