

泰斗微电子 T303-3双模授时定位模块 用户手册

泰斗微电子科技有限公司拟制

文档修订记录

版本	修订日期	描述
V1.0	2017-3	文档新建

免责声明

泰斗微电子科技有限公司拥有随时修改本手册的权利,内容如有更改,恕不 另行通知。泰斗微电子科技有限公司对本手册不承担任何形式的保证,包括但不 限于对产品特定用途适销性和适用性的隐含保证。泰斗微电子科技有限公司对本 手册中包含的错误或对本手册的使用所带来的偶然或继起损害不承担任何责任。

	1 功能	描述	5
	1.1	概述	5
	1.2	产品特性	5
	1.3	性能指标	6
	1.4	应用领域	7
	1.5	功能框图和典型应用	8
	1.5.1	77012	AP'
	1.5.2	? <u>典型应用</u>	8
2	模块	接口说明	9
	2.1	硬件接口	9
	2.1.1		
	2.1.2	? 天线接口	9
	2.1.3	多 复位接口	9
	2.1.4	== = = /A \$ S	
	2.1.5	5 UART接口	10
	2.2	软件接口协议	10
3	机械		11
	3.1	模块尺寸	
	3.1	管脚定义	
4		[和温度特性	
	4.1	模块直流特性	13
	4.1.1	极限工作条件	13
	4.1.2	2 推荐工作条件	14
	4.2	湿敏等级	14
	4.3	焊接温度曲线	
	4.3.1		
Þ	9 47 A	2 恒温阶段	
		3 熔锡阶段	
		(一) 冷却阶段	
	4.3.5	方 <i>推荐炉温曲线</i>	15
5	注意	(事项	16
	5.1	天线供电	16
	5.2	静电防护	16
	5.3	PCB设计建议	16
	5.4	复位接口	16
	5.5	模块软件升级	17

Rev.1.0

T303-3双模授时定位模块用户手册

	5.6	其他	1′
6	订货	6信息与标识规则	1′
	6.1	订货信息	1′
		标识规则	
7	联系	多 我们	18

1 功能描述

1.1 概述

图1 T303-3模块外观图

T303-3模块是泰斗微电子推出的一款支持BDS B1/GPS L1频点的双模授时模块。模块内部集成了泰斗微电子自主研发的BDS B1/GPS L1双模芯片,为电力系统、通信基站等授时终端产品提供了高精度、高灵敏度、低功耗、低成本的BDS B1/GPS L1双模解决方案。

T303-3模块尺寸为16.5mm x 12.2mm x2.4mm,体积小巧。采用24pin邮票孔兼容通用封装,板上可直接替换,大大节省授时定位终端产品设计时间。

T303-3支持模块软件升级等功能。

1.2 产品特性

- ✓ 24pin邮票孔封装,尺寸16.5mm x 12.2mm x2.4mm
- ✓ 支持BDS B1和GPS L1频点
- ✔ 支持以下三种工作模式
 - 1) 单BDS B1工作模式
 - 2) 单GPS L1工作模式
 - 3) BDS B1/GPS L1双模工作模式
- ✓ 内置BDS B1/GPS L1的LNA
- ✓ 支持用户在使用中对模块进行外部复位
- ✓ 平均功耗约28mA@3.3V,功耗小
- ✔ 支持软件升级,上位机可通过串口实现软件升级功能
- ✓ 支持单星授时

1.3 性能指标

表1 T303-3模块主要性能指标

				省标	Ar Na	
参数	描述	最小值	典型值	最大值	单位	备注
定位精度	水平		3		m	开阔天空
足似相反	高程		5		m	开阔天空
测速精度	速度		0.1		m/s	开阔天空
授时精度(静态)	标准差		15 (1σ)		ns	注1、2
1文印作及(計心)	RMS		15		ns	
	冷启动		30	X	S	开阔天空
首次定位时间	温启动		10		S	开阔天空
TTFF	热启动		2		S	开阔天空
	重捕获		2		S	开阔天空
灵敏度	捕获		-145		dBm	注3
火蚁及	跟踪		-160		dBm	注4
串口输出波特率		4800	9600	115200	bps	默认9600bps
粉把重软变	X	0.1	1	5	11	单模可以支持到
数据更新率	JO'	0.1	1	5	Hz	10Hz最大。
工作电压	VCC	2.8	3.3	3.6	V	
上作电压	V_BCKP	1.8	3.3	3.6	V	
亚拉叶蛙	正常工作		<30		mA	主电源VCC为3.3V
平均功耗	备份工作		<25		uA	主电源VCC关断
温度	工作	-40		85	$^{\circ}$	
皿/支	存储	-40		85	$^{\circ}$ C	注5

注1: 本栏所列之授时精度,须在信号条件好的静止条件下,方可达到。高动态或信号恶劣均会影响模块的授时精度。

注2: 授时精度测试方法。

假设时刻i被测模块输出秒脉冲(1PPS)与基准1PPS上升沿时差的绝对值为 x_i ,记录24h的 x_i 数据,计算 x_i 的平均值 \overline{X} 及其标准差 σ ,其中 $|\overline{X}\pm\sigma|$ 记为授时精度。计算公式如下:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2}$$

计算授时精度的均方根(RMS) X_{RMS}如下:

$$X_{RMS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

注3: GN双模模式捕获灵敏度优于-145dBm(含-145dBm); 信号源信号, GPS和BDS卫星分别至少有10颗, 各颗卫星信号功率一致。

注4: GN双模模式跟踪灵敏度优于-160dBm(含-160dBm); 信号源信号, GPS和BDS卫星分别至少有10颗, 各颗卫星信号功率一致。

注5:模块的存储温度仅指模块本身所能耐受的温度。批量出货时,模块包装所用之包装材料的耐受温度,不在本手册讨论之列。

1.4 应用领域

- 通信BBU、femtocell、RRU、PTN、Bits等;
- 电力时间同步系统;
- 军用时间同步系统;
- 铁路、轨道交通时间同步系统;
- 金融时间系统;

1.5 功能框图和典型应用

1.5.1 功能框图

图2 模块功能框图

T303-3模块可对外部BDS B1/GPS L1有源天线供电。外部有源天线接收空中卫星信号送给芯片,芯片内部经LNA放大、混频处理后送到中频滤波器,然后通过VGA和AGC,再经过AD转换成数字中频信号送给基带。经过捕获和跟踪、定位解算等一系列算法处理后,通过串口输出NMEA数据并给出1PPS授时信号。

1.5.2 典型应用

图3 T303-3模块典型应用图

模块接口说明

2.1 硬件接口

2.1.1 电源

模块有三个电源输入管脚(VCC、VBCKP和VANT_IN)与一个电源输出管脚(VANT OUT)。

其中VCC为模块的工作主电源; VBCKP为模块的备份输入电源,在主电源 VCC断电时给RTC电路供电,确保关键信息不丢失,模块内部设计有对备用电源 VBCKP的充电电路,推荐外接可充电的电池或大容量电容; VANT_IN是天线供电输入管脚,模块内部通过电感与RF_IN连接; VANT_OUT为模块内部输出给外部有源天线的供电脚,通过此脚给有源天线供电,模块内部可以根据此电源的电流大小,判断是否有天线接入,判断天线状态; 此管脚输出电流限流50mA。若需高于VCC的电压给天线供电,可采用外部电源通过VANT_IN给天线。外部电源通过VANT_IN给天线供电时,建议串联一个10欧姆限流电阻。注意在使用通过VANT_IN给天线供电时,要保证模组的RF_IN管脚到天线的之间的直流连通性。

2.1.2 天线接口

模块的天线接口(RF_IN管脚)可直接连接BD2 B1/GPS L1双模有源天线。 该接口内部采用 $50\,\Omega$ 阻抗匹配。

2.1.3 复位接口

模块支持外部使用nReset管脚复位(低电平有效)。

热启动功能依赖于nReset管脚悬空,使用nReset复位芯片时,将导致模块冷/温启动,而不是热启动,芯片内部存储的用于热启动的星历数据将被清除。热启动同时依赖于V BCKP电源的不间断供电。

在使用热启动功能时,必须确保nReset悬空或被置于高阻状态, 并且确保 nReset外部旁路电容总容值必须小于10nF, 否则均有几率进入冷启动。

2.1.4 1PPS 信号接口

模块第3脚1PPS为秒脉冲信号输出。

图4 1PPS秒脉冲示意图

1PPS秒脉冲信号如图4所示,脉冲宽度、脉冲周期可以设置,其上升沿默认对准UTC时间的秒边界,对齐时间轴可以设置。脉冲周期最小可设置为100μS,最大可设置为10s,周期单位为μS。脉宽设置要小于脉冲周期,最小为0,周期单位为μS。(示例:如果脉冲周期为1s,则脉宽最大设置为999999μS,最小为0)

2.1.5 UART 接口

模块设计有两组UART串口,分别为串口1(TXD1/RXD1)和串口2(TXD2/RXD2)。

串口1第一帧串口报文信息与1PPS信号的同步精度约为45ms,输出二进制协议数据和NMEA数据。上位机也可以通过该串口对模块进行配置和软件升级,同时可以接收TOD消息。模块支持的波特率范围为4800bps~115200bps,默认波特率为9600bps。数据格式为:起始位1位、数据位8位、停止位1位、无校验位。

串口2是备用串口,用以输出自定义格式的数据,也支持NMEA数据和二进制协议数据,默认无输出,必须经过串口指令配置方有输出。串口2不可用于软件升级。

2.2 软件接口协议

详见《泰斗微电子授时模块T30X-3输入输出语句格式说明V2.7.doc》。

3 机械特性

3.1 模块尺寸

图 5 T303-3 模块封装尺寸示意图

表 2 T303-3 模块封装尺寸表

标注	尺寸 (mm)
A	16.5±0.1
В	12.2±0.1
С	2.4 ± 0.2
D	1.3 ± 0.1
E	1.1 ± 0.1
F	3.0 ± 0.1
G	1.1 ± 0.1
Н	1.3 ± 0.1
K	0.8 ± 0.1
L	0.65±0.1
M	1.0±0.1
	说明:采用邮票孔封装

3.2 管脚定义

•	
1 NC	GND 24
2 NC	VCC 23
3 1PPS	V_BCKP 22
4 NC	RXD1 21
5 NC	TXD1 20
6 NC	RXD2 19
7 NC	TXD2 18
8 nRESET	NC 17
9 VANT_OUT	VANT_IN 16
10 GND	NC 15
11 RF_IN	NC 14
12 GND	GND 13

图6 T303-3模块管脚示意图

表3 T303-3模块管脚定义

管脚	信号名	方向	电压范围	描述
1	NC	_		备用管脚可悬空
2	NC			备用管脚可悬空
3	1PPS	I/O	0-3.6V	秒脉冲输出,可配为通用I/O
4	NC			备用管脚可悬空
5	NC	_		备用管脚可悬空
6	NC	_		备用管脚可悬空
7	NC			备用管脚可悬空
8	nRESET	I	0-3.6V	外部复位,低电平有效
9	VANT_OUT	О	0-VCC	VCC电压输出,可与16脚短接,由模块对天 线进行供电;若用外部电源给天线供电,此 管脚悬空。
10	GND			地
11	RF_IN	I		天线信号输入
12	GND	_		地

13	GND			地
14	NC	_		备用管脚可悬空
15	NC	_		备用管脚可悬空
16	VANT_IN	I	0-5.5V	天线供电输入端,模块内部通过电感与11脚连接,如选择模块内部给天线供电,则该管脚与9脚短接;如选择外部电源给天线供电,则将外部供电电源连接到该管脚(建议串联一个10欧姆限流电阻),如果在底板天线端直接对天线供电,此管脚可悬空。
17	NC	_		备用管脚可悬空
18	TXD2	О	0-VCC	串口2发送(预留)
19	RXD2	Ι	0-3.6V	串口2接收(预留)
20	TXD1	0	0-VCC	串口1发送: NMEA数据输出、软件版本升级、 状态输出等
21	RXD1	I	0-3.6V	串口1接收:控制命令接收、软件版本升级等
22	V_BCKP	I	1.8V-3.6V	备份电源输入,模块内部设计有充电电路, 推荐外部采用可充电电池
23	VCC	_	2.8-3.6V	主电源
24	GND	_		地

4 电气和温度特性

4.1 模块直流特性

4.1.1 极限工作条件

表4 极限工作条件(注1)

参数	符号	最小值	最大值	单位
主电源输入电压	VCC	_	5	V
备份电源输入电压	VBCKP	_	4.5	V
天线供电输入电压	VANT_IN	_	5.5	V
IO输入电压	VIO	-0.5	5	V
射频端最大输入功	W_RF_IN_MAX		-70	dBm

T303-3双模授时定位模块用户手册

率(注2)		

注1: 超过最大极限值使用可能导致模块永久损坏。

注2: 超过该值,会导致模块射频芯片的永久损坏。

4.1.2 推荐工作条件

表5 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
主电源输入电压	VCC	2.8	3.3	3.6	v
备份电源输入电压	VBCKP	1.8	3.3	3.6	V
天线供电输入电压	V_ANT	_	3.3	5.5	V
IO输入高电平	VIH	0.7*VCC	(VCC+0.3	V
IO输入低电平	VIL	-0.3		0.3*VCC	V
IO输出高电平	VOH	VCC-0.4	3.3	VCC	V
IO输出低电平	VOL	0	-	0.4	V

注:不建议超过推荐工作条件使用,长时间超出推荐工作条件使用可能会影响产品可靠性。

4.2 湿敏等级

T303-3模块按照JEDEC标准(J-STD-020,J-STD-033C, JEP113)被归类为MSL3级,拆包72小时即需要烘烤。一般要求烘烤温度125℃,烘烤时间10H,其他具体烘烤条件请参照"J-STD-033"标准要求进行烘烤。模块真空包装中含有湿敏指示标签和防潮剂,当标签指示变色超过允许范围时,表示包装可能破损或受潮,必须进行烘烤后方可使用。

维修时同样必须考虑拆包72小时的限制,超过限制时间的,必须做烘烤后方可维修。

4.3 焊接温度曲线

T303-3模块推荐的炉温曲线如图7所示,其中,T303-3模块整体可承受265℃10s的最大温度,返修时可承受340±20℃时间不小于5s。

4.3.1 预热阶段

温度上升速率: 小于3℃/s 预热结束温度: 150 - 160℃

4.3.2 恒温阶段

温度上升速率: (150℃-183℃区间)小于0.3℃/s;

(183℃-217℃区间)小于3.5℃/s

恒温时间: 60 - 120 seconds

恒温结束温度: 217°C

4.3.3 熔锡阶段

熔锡时间: 40-60 seconds

峰值温度: 245°C

4.3.4 冷却阶段

温度下降速率: 不高于4°C/s

4.3.5 推荐炉温曲线

推荐炉温曲线如下图:

图7 推荐炉温曲线

5 注意事项

5.1 天线供电

选择有源天线作为模块的信号接收前端,需要在终端上对天线进行供电。在使用内部电源给外部天线供电时,即模块的第9脚VANT_OUT接到天线供电端,模组内部对天线接入状态的判断。模天线检测和短路情况都会通过串口发出状态信息,此信息可通过命令控制是否输出。在使用外部电源对天线供电有两种方法,第一种,可采用外部电源通过VANT_IN给天线供电。外部电源通过VANT_IN给天线供电时,建议串联一个10欧姆限流电阻。注意在使用通过VANT_IN给天线供电时,要保证模组的RF_IN管脚到天线的之间的直流连通性。第二种可以在模块外部通过电感连接到天线馈线上,直接给外部天线供电。

5.2 静电防护

模块上的射频电路包含静电敏感器件,焊接、安装和运输过程中请注意静电防护,请不要用裸手直接碰触模块管脚,否则可能会导致模块损坏。

5.3 PCB 设计建议

产品应用时送给第11脚RF_IN的连接线需要进行50Ω的阻抗匹配,走线不要 走直角和锐角,尽量不要更换信号层,而且连接线下面相邻层最好有完整的地平 面,射频信号两侧的地和下面地层打两派过孔,注意单板内噪声对射频信号的干 扰,避免板内多次谐波在卫星信号频点附近,如图8所示,至少保证标识区域对应 下面一层的区域要有完整的地平面。

图8 第11脚RF IN连接线设计示意图

5.4 复位接口

为保证模块的正常工作,建议上电后等VCC电压稳定50ms,然后对模块复位,

复位信号低电平需保持1ms以上。

使用复位时,只能进入温启动或冷启动, 无法使用热启动。

需要热启动功能时,请保证复位管脚悬空。

5.5 模块软件升级

模块的软件版本升级通过串口1进行(如上位机传送升级,需要上位机系统根据升级接口协议配合开发)。串口2不支持升级。

5.6 其他

- 1)模块的VCC供电电源纹波尽量控制在50mV以内,并且避免电源上有干扰。
- 2) 请确保上位机与模块设置的波特率保持一致。
- 3) 天线建议选用有质量保证的双模有源天线,并确保对天线供电。
- 4) 模块焊接时请控制好温度与操作方式,避免模块损坏。

6 订货信息与标识规则

6.1 订货信息

表6 订货信息

1.45.11		Ak III		
模块	形式	数量	包装尺寸	货号
T303-3	卷带	按需求	按需求	待定
1303-3	散装	按需求	按需求	待定

6.2 标识规则

【第1行】模块型号

【第2行】物料代码

【第3行】模块序列号

【第4行】模块序列号对应条码

7 联系我们

泰斗微电子科技有限公司

网址: http://www.techtotop.com

广州研发中心电话: 020-32068686

广州研发中心传真: 020-32068189