Introdução ao TensorFlow para Redes Neurais

Lucas Leite

Apresentação

Lucas Gonçalves de Moura Leite

Doutorando em Ciência da Computação Computação (UFC 2017-)

Mestre em Ciência da Computação (UFC 2014-2016)

2018 - Atual

UniFametro – Professor Assistente

Instituto Atlântico – Cientista de Dados

2016 - 2018

Laboratório de Sistemas e Banco de Dados (UFC) — Pesquisador em Aprendizado de Máquina

Introdução às Redes Neurais

Funcionamento inspirado no neurônio biológico Neurônio Artificial de McCulloch-Pitts (1943)

Neurônio

10¹¹ neurônios (100 bilhões)

Layer 1: detect edges & corners

Layer 2: form feature groups

Layer 3: detect high level objects, faces, etc.

Modelo de McCulloch-Pitts

Perceptron

McCulloch Pitts Neuron (assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

Predição de um Perceptron

- x₁ É um jogo do Brasileirão?
- x₂ É um amistoso?
- x₃ Estarei em casa?
- x₄ É jogo do Ceará?

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$

$$y = f(g(\mathbf{x})) = 1$$
 if $g(\mathbf{x}) \ge \theta$
= 0 if $g(\mathbf{x}) < \theta$

Entrada (x)	Saida (y)
0,0	0
0,1	1
1,0	1
1,1	0

TensorFlow

Google Brain

Biblioteca para computação numérica

CPUs, GPUs e dispositivos móveis

Desenvolvido para Aprendizado de Máquina e Deep Learning (e não somente isso)

TensorFlow

Redes Convolucionais

Imagens são consideradas matrizes Alta dimensionalidade Grande número de pesos

Convolução

INPUT IMAGE

18	54	51	239	244	188
55	121	75	78	95	88
35	24	204	113	109	221
2	154	104	225	25	130
3	154	104	235	23	130
15	-		159	-	233

WEIGHT

1	0	1
0	1	0
1	0	1

429

Convolução

Filtros

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

MaxPooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pool with 2x2 filters and stride 2

6	8
3	4

Rectified Linear Unit - ReLU

Rectified Linear Unit - ReLU

Rectified Linear Unit - ReLU

Rede Neural Convolucional - CNN

