A novel Implementation Technique for Genetic Algorithm based Auto-Tuning PID Controller

Authors:

A. Concha; E. K. Varadharaj; N. M. Hernandez-Rivera; S. K. Gadi

Presented by Suresh Kumar Gadi

At

International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017)

On

22nd September 2017

Contents

- PID Controller
- 2 Genetic Algorithm
- 3 Simulation results
- 4 Experimental results
- 6 Conclusions

Closed loop system

PID Controller model

Theoretical model:

$$u(t) = K_P e(t) + K_I \int e(t) dt + K_D \frac{d}{dt}(e(t))$$
 (1)

$$\frac{u(s)}{e(s)} = K_P + K_I \left(\frac{1}{s}\right) + K_D s \tag{2}$$

Implementation model:

$$\frac{u(s)}{e(s)} = K_P + K_I \left(\frac{1}{s}\right) + K_D \left(\frac{Ns}{s+N}\right) \tag{3}$$

Tunable Parameters

 K_P , K_I , K_D , and N

Genetic algorithm

Genetic algorithm

Result: Obtain the optimum (fittest) individual for the environment

- 1 Start;
- 2 Generate initial population;
- 3 Identify the fittest individual;
- 4 while Need improvement do
- 5 Make a new generation;
- 6 Identify the fittest individual;
- 7 end
- 8 Stop;

Genetic algorithm GA applied to PID Tuning

Result: Obtain the optimum individual (a set of values for K_P , K_I , K_D , and N) to suit the system

- 1 Start;
- 2 Generate initial population (a set of individuals);
- 3 Identify the fittest set of values;
- 4 while Error of the fittest individual is high do
- 5 Under go the evolution to make a new generation;
- 6 Identify the fittest individual;
- 7 end
- 8 Stop;

Identification: This process involves testing each individual one after another and measuring error during its application period. The fittest is the one with minimum error.

Genetic algorithm

Problems with the present technique

The following problems may arise in the traditional GA based PID tuning.

- Estimation errors caused due to other individuals,
- Instability due to incompatible individuals, and
- A set of tuned parameters may cause inferior performance to an inconsistent operating point.

Improved genetic algorithm

Proposed algorithm for finding the fittest individual

```
Data: Population C \in \mathbb{R}^{n \times 4}; Previsous generation's fittest
           individual C_F^-
   Result: Find the fittest individual C_F
 1 for C_i \in C do
      Apply C_F^- for a certain time period;
 2
       Apply C_i for a certain time period and calculate the root
        mean square error (RMSE), E_i, during this period;
       if RMSE is in limit then
 4
          Wait till time finish;
 5
     else
 6
          Break;
      end
 8
 9 end
10 Individual with minimum RMSE is selected as C_F;
```

The proposed novel GA to tune PID parameters

```
Result: Obtain the optimum individual (a set of values for K_P,
            K_I, K_D, and N) to suit the system
 1 Start;
2 Generate initial population (a set of individuals);
3 Identify the fittest individual using the proposed algorithm;
4 while Error of the fittest individual is high do
      Under go the evolution to make a new generation;
      Identify the fittest individual using the proposed algorithm;
7 end
8 Measure moving root mean square error, M_E;
9 if M_E out of limits then
      Goto 4:
11 else
```

Goto 8:

5

6

10

12 13 end

Simulation setup

A simulation is designed to change the plant from

$$\frac{y(s)}{u(s)} = \frac{s+3}{8s^2 + 5s + 2}$$

to

$$\frac{y(s)}{u(s)} = \frac{s+1}{2s^2 + s + 3}$$

at time $t = 20 \,\mathrm{s}$.

Simulation results

Simulation results showing error and moving RMS error for closed loop system whose plant is modified at $t=20\,\mathrm{s}$.

Simulation results

Simulation results showing the values for the objective function, E_i , $i \in \{1, 2, 3, ..., 10\}$

Simulation results

Simulation results showing parameter tuning by Genetic algorithm

Experimental setup

Experimental results

Experiment results showing error and moving RMS error for a closed loop system controlling a brushless servomotor in torque mode

Experimental results

Experimental results showing the values for the objective function, E_i , $i \in \{1, 2, 3, \dots, 10\}$

Experimental results

Experiment results showing parameter tuning by Genetic algorithm

Conclusions

The following problems associated with the implementation of the standard genetic algorithm based PID tuning algorithm are identified.

- Estimation errors caused due to other chromosomes,
- Instability due to incompatible chromosomes, and
- A set of tuned parameters may cause inferior performance to an inconsistent operating point.

These are solved by implementing the following:

- Wait for a certain period of time in between the application of two chromosomes.
- 2 Put a certain allowed maximum value for the error. If the system reaches beyond this, controller uses previous stable parameters.
- **3** Controller monitors the performance continuously and implements genetic algorithm if required.

Thank you for your attention.