26 de Maio de 2017

 $\mathrm{DCC}/\mathrm{FCUP}$

Nome: _____

Nº mecanográfico: ____

 \bullet Duração: 2h + 30m tolerância.

- Este exame contém 7 questões e 4 páginas.
- Responda às questões no espaço marcado no enunciado.
- Pode usar funções auxiliares e/ou do prelúdio-padrão de Haskell.
- Nas questões 2 a 7, indique sempre o tipo da função definida.
- 1. (6 valores) Responda a cada uma das seguintes questões, indicando apenas o resultado de cada expressão.
 - (a) tail ([1,2]:[]:[[5,2]]) = _____
 - (b) take 4 [1,4..] = ____
 - (c) (length.concat) [[1,2,3,4],[5,6,7,8],[2,3,4]] = _____
- (d) filter (\x -> x'mod'3 ==0) [0..9] = _____
- (e) foldr (:) [2] [1,3..7] = _____
- (f) $[(x,y) \mid x \leftarrow [1..4], y \leftarrow [x..4], x+y == 4] =$
- (g) Sem usar explicitamente a lista dada, defina a seguinte lista:

```
[1,4,7,10,13,16,19,22,25,28,31] =
```

(h) Considere a seguinte definição em Haskell:

```
f (x:xs) = (2+x) * f xs
f [x] = 3+x
f [] = 1
```

A avaliação da expressão f [3,2,1] tem como resultado:

- (i) Indique um tipo admissível para a função f definida como f x = x!!3: ______
- (j) Indique o tipo mais geral de [(!!2),length]:
- (k) Considere as seguintes definições:

$$data N = Z | S N$$

Indique um tipo admissível para a função ntoI:

(l) Indique o tipo mais geral de ($\x -> map \(>x)$):

2. (3 valores) Nas duas alíneas seguintes, pode utilizar funções do prelúdio-padrão e/ou listas em compreensão mas não deve usar directamente recursão .
(a) Defina uma função maioresQ que, dada uma lista de valores 1 e um valor x , retorna a lista de valores de 1 , que são maiores do que x .
 (b) Defina a função tamanhoS que, dada uma lista de strings como argumento, retorna a lista dos seus comprimentos. Por exemplo, tamanhoS ["Hoje", "é", "um", "lindo", "dia"] = [4, 1, 2, 5, 3].
3. (3 valores) Considere uma representação de relações binárias como matrizes binárias, representadas como listas de listas. Note que uma relação binária R entre dois conjuntos A e B , pode representar-se como uma matriz (de 0's e 1's) M , tal que $M[i,j] = 1$ se e só se (i,j) pertence a R .
(a) Implemente uma função timesMat que dada uma matriz binária de m por n e uma matriz binária de n por r, determina a matriz binária de m por r correspondente ao produto (módulo 2) das duas matrizes.
(b) Implemente uma função transitiva, que dada a representação de uma relação como uma matriz quadrada, determina se a matriz é transitiva. Recorde que, uma relação binária R num conjunto A é transitiva sse $\forall a,b,c \in A.R(a,b) \land R(b,c) \Rightarrow R(a,c)$.

4. (1 valor) Defina uma função tabuada que leia do teclado um inteiro n e imprima no écran os primeiros dez múltiplos (positivos) de n (um por linha). Nota: Pode utilizar a função sequence :: [IO a] -> IO () para executar uma lista de ações.
5. (2 valores) Escreva uma definição em Haskell que produza a seguinte lista infinita de inteiros:
inff = [0,1,3,6,10,15,21,28,36,45,].
6. (3 valores) Considere a seguinte declaração de tipo para árvores binárias:
data Arv a = Vazia No a (Arv a) (Arv a) (a) Defina uma função listar, que dada uma árvore, devolva a lista dos elementos na árvore.
, , , , , , , , , , , , , , , , , , , ,
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os elementos aparecem em posições simétricas (em relação à raiz) à sua posição inicial.
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os
(b) Defina uma função simetrica, que dada uma árvore, devolva uma nova árvore em que os

7. (2	valo	res) Res	sponda (a	apenas) a ur	na d	las segu	$_{ m iintes}$	alíneas, u	ısando	indução	o m	atemática.
Nota:	pode	utilizar	qualquer	propried a de	que	tenha	sido	demostrate	da nas	aulas,	ou	demonstran
qualqu	er res	ultado a	dicional q	que facilite a	prov	a.						

(a)	Considerando as f	funções definidas na	questão anterior e as	s definições da	s funções rever	cse
	e ++ dadas nas au	las, mostre que para	a qualquer árvore t,			

<pre>listar t = reverse (listar (simetrica t)).</pre>								
(b) Considerando as definições das funções ++ e foldr dadas nas aulas mostre que, para qualque operador binário associativo op tal que e é o elemento neutro de op, e quaisquer listas x ys então: foldr op e (xs++ys) = op (foldr op e xs) (foldr op e ys).	uer s e							