Sistemas Operacionais

Esquemas de Paginação e Segmentação

Objetivos da Aula

- Analisar
 - Paginação
 - Segmentação

Paginação

- É um esquema de gerenciamento da memória que permite que o espaço de endereçamento físico de um processo não seja contíguo
 - Um processo pode estar distribuído em diversas "brechas" (ou páginas) na memória

- Evita a fragmentação externa
 - Evita a necessidade de compactação
- Está sujeita a fragmentação interna

Método Básico

- A memória física é dividida em blocos de tamanho fixo, chamados quadros (frames)
- A memória lógica é dividida em blocos do mesmo tamanho, chamados páginas (pages)
- Quando um processo está para ser executado, suas páginas são carregadas em quaisquer quadros de memória disponíveis
 - Para cada processo, há uma tabela de páginas que faz o mapeamento entre páginas e quadros

- O hardware define o tamanho da página e o tamanho do quadro
 - Utiliza-se potência de 2

page 3 physical memory

Endereçamento

- Cada endereço gerado pela CPU é um número binário dividido em duas partes:
 - um número de páginas (p), que é usado como índice na tabela de páginas, que contém o endereço base de cada página na memória física
 - um deslocamento de página (d), que é combinado com o endereço base para definir o endereço na memória física

Endereço Lógico

Número de página	Deslocamento de página
р	d

- p é o índice da tabela de páginas
- d é o deslocamento dentro da página

Endereçamento

- Endereços lógicos de 16 bits
 - Endereços lógicos de 0 até 2¹⁶ = 65536 = 64 K
 - Página = 1 Byte => 64 KB de memória lógica
- 32 KB de RAM física
 - \blacksquare 32 KB = 32768= 2^{15} Bytes
- Páginas e quadros de 4 KB
 - Tem-se 64 KB / 4 KB = 16 páginas, ou seja 2⁴
 - Precisa-se de 4 bits para endereçar as páginas
 - Tem-se 32 KB / 4 KB = 8 quadros, ou seja 2³
 - Precisa-se de 3 bits para endereçar os quadros

Hardware de Paginação

Paginação para uma memória de 32 bytes com páginas de 4 bytes

0	5	
1	6	
2	1	1
3	2	1

12

16

20

physical memory

Exemplos (valor na tabela x tamanho de p	página)+deslocamento interno
Endereço lógico 0 é mapeado para o endere	eço físico 20 = (5x4)+0

- •Endereço lógico 3 é mapeado para o endereço físico 23 = (5x4)+3
- •Endereço lógico 4 é mapeado para o endereço físico 24 = (6x4)+0

Deslocamento interno = Endereço lógico % tamanho da página

a página

Atividade de Fixação 1

0	a
1	a b
2	
3 4 5	c d
4	е
5	f
6	g
7	g h
8	i
9	i
10	k
11	-1
12	m
13	n
14	0
15	р

0	5
1	6
2	1
3	2

Mostre o cálculo

- •Endereço lógico 6 é mapeado para o endereço físico?
- •Endereço lógico 10 é mapeado para o endereço físico?
- •Endereço lógico 13 é mapeado para o endereço físico?

0	
4	i j k
8	m n o p
12	
16	
20	a b c d
24	e f g h
28	

Proteção

- Geralmente adiciona-se uma informação adicional (1 bit) a cada entrada da tabela de páginas, chamado bit válido - inválido
 - Quando o bit é posicionado como "válido", a página associada está no espaço de endereçamento lógico do processo e, portanto, é uma página legal (ou válida)
 - Quando o bit é posicionado como "inválido", a página não está no espaço de endereçamento lógico do processo

Segmentação

- Segmentação é um esquema de gerenciamento da memória pelo qual um espaço de endereçamento lógico é um conjunto de segmentos
- O compilador geralmente constrói segmentos para os seguintes elementos
 - O código; Variáveis globais; Heap; Pilha; Bibliotecas
- Segmentos podem crescer e diminuir independentemente, sem afetar os demais
 - Não gera fragmentação interna, mas pode gerar fragmentação externa

Suporte de Hardware

 Há uma tabela de segmentos que mapeia segmentos em endereços físicos

- Cada entrada na tabela de segmento tem
 - Base de segmento: endereço físico inicial em que o segmento reside
 - Limite de segmento: tamanho do segmento

Exemplo de Segmentação

Atividade de Fixação 2

 Dada a tabela de segmentos abaixo (com 5 segmentos), desenhe a locação dos segmentos na memória física e responda se há ou não fragmentação interna e externa na memória física

	Limite	Base
0	1000	1300
1	400	6200
2	400	4200
3	1100	3100
4	1000	4600

Referências

SILBERSCHATZ, Abraham; GALVIN, Peter B.; GAGNE, Greg. Fundamentos de sistemas operacionais: princípios básicos. Rio de Janeiro, RJ: LTC, 2013. xvi, 432 p. (Capítulo 7)

TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson Prentice Hall, 2009. xvi, 653 p. ISBN 9788576052371