Filter Summary Report: CG,TIA,simple,Z1,Z5

Generated by MacAnalog-Symbolix January 16, 2025

## Contents

1 Examined H(z) for CG TIA simple Z1 Z5:  $\frac{Z_1Z_5g_m-Z_1}{2Z_1g_m+1}$ 

$$H(z) = \frac{Z_1 Z_5 g_m - Z_1}{2Z_1 g_m + 1}$$

- 2 HP
- 3 BP
- **3.1** BP-1  $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_5, \infty\right)$

### Parameters:

Q: 
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo:  $\sqrt{\frac{1}{C_1L_1}}$  bandwidth:  $\frac{2g_m}{C_1}$  K-LP: 0 K-HP: 0 K-BP:  $\frac{R_5g_m-1}{2g_m}$  Qz: 0 Wz: None

**3.2** BP-2  $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty\right)$ 

## Parameters:

Q: 
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{2R_1g_m+1}$$
  
wo:  $\sqrt{\frac{1}{C_1L_1}}$   
bandwidth:  $\frac{2R_1g_m+1}{C_1R_1}$   
K-LP: 0  
K-HP: 0  
K-BP:  $\frac{R_1R_5g_m-R_1}{2R_1g_m+1}$   
Qz: 0  
Wz: None

- 4 LP
- 5 BS

$$H(s) = \frac{s(L_1 R_5 g_m - L_1)}{C_1 L_1 s^2 + 2L_1 g_m s + 1}$$

 $H(s) = \frac{s (L_1 R_1 R_5 g_m - L_1 R_1)}{C_1 L_1 R_1 s^2 + R_1 + s (2L_1 R_1 g_m + L_1)}$ 

**5.1** BS-1 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right)$$

#### Parameters:

Q: 
$$2L_1g_m\sqrt{\frac{1}{C_1L_1}}$$
  
wo:  $\sqrt{\frac{1}{C_1L_1}}$   
bandwidth:  $\frac{1}{2L_1g_m}$   
K-LP:  $\frac{R_5g_m-1}{2g_m}$   
K-HP:  $\frac{R_5g_m-1}{2g_m}$   
K-BP: 0  
Qz: None  
Wz:  $\sqrt{\frac{1}{C_1L_1}}$ 

**5.2** BS-2 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty\right)$$

#### Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{^{2L_{1}R_{1}g_{m}}\sqrt{\frac{1}{C_{1}L_{1}}} + L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ & \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ & \text{bandwidth:} \ \frac{R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{^{2L_{1}R_{1}g_{m}}\sqrt{\frac{1}{C_{1}L_{1}}} + L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}} \\ & \text{K-LP:} \ \frac{R_{1}R_{5}g_{m} - R_{1}}{2R_{1}g_{m} + 1} \\ & \text{K-HP:} \ \frac{R_{1}R_{5}g_{m} - R_{1}}{2R_{1}g_{m} + 1} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

## 6 **GE**

**6.1** GE-1 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

Q: 
$$C_5R_5\sqrt{\frac{1}{C_5L_5}}$$
  
wo:  $\sqrt{\frac{1}{C_5L_5}}$   
bandwidth:  $\frac{1}{C_5R_5}$   
K-LP:  $-\frac{R_1}{2R_1g_m+1}$   
K-HP:  $-\frac{R_1}{2R_1g_m+1}$   
K-BP:  $\frac{R_1R_5g_m-R_1}{2R_1g_m+1}$   
Qz:  $-\frac{C_5R_5\sqrt{\frac{1}{C_5L_5}}}{R_5g_m-1}$   
Wz:  $\sqrt{\frac{1}{C_5L_5}}$ 

$$H(s) = \frac{R_5 g_m + s^2 (C_1 L_1 R_5 g_m - C_1 L_1) - 1}{2C_1 L_1 g_m s^2 + C_1 s + 2g_m}$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^2 (C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1)}{C_1 R_1 s + 2R_1 g_m + s^2 (2C_1 L_1 R_1 g_m + C_1 L_1) + 1}$$

$$H(s) = \frac{-C_5L_5R_1R_5s^2 - R_1R_5 + s\left(L_5R_1R_5g_m - L_5R_1\right)}{2R_1R_5g_m + R_5 + s^2\left(2C_5L_5R_1R_5g_m + C_5L_5R_5\right) + s\left(2L_5R_1g_m + L_5\right)}$$

**6.2 GE-2** 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \infty\right)$$

#### Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_5\sqrt{\frac{1}{C_5L_5}}}{R_5} \\ & \text{wo:} \ \sqrt{\frac{1}{C_5L_5}} \\ & \text{bandwidth:} \ \frac{R_5}{L_5} \\ & \text{K-LP:} \ \frac{R_1R_5g_m-R_1}{2R_1g_m+1} \\ & \text{K-HP:} \ \frac{R_1R_5g_m-R_1}{2R_1g_m+1} \\ & \text{K-BP:} \ -\frac{R_1}{2R_1g_m+1} \\ & \text{Qz:} \ \frac{-L_5R_5g_m\sqrt{\frac{1}{C_5L_5}} + L_5\sqrt{\frac{1}{C_5L_5}}}{R_5} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_5L_5}} \end{aligned}$$

**6.3** GE-3 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_5, \infty\right)$$

#### Parameters:

$$\begin{aligned} &\text{Q: } \frac{2L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{2R_{1}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ &\text{bandwidth: } \frac{2R_{1}g_{m}+1}{2L_{1}g_{m}} \\ &\text{K-LP: } \frac{R_{5}g_{m}-1}{2g_{m}} \\ &\text{K-HP: } \frac{R_{5}g_{m}-1}{2g_{m}} \\ &\text{K-BP: } \frac{R_{1}R_{5}g_{m}-R_{1}}{2R_{1}g_{m}+1} \\ &\text{Qz: } \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

**6.4** GE-4 
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, R_5, \infty\right)$$

$$\begin{aligned} & \text{Q: } \frac{2C_1R_1g_m\sqrt{\frac{1}{C_1L_1}}+C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m} \\ & \text{wo: } \sqrt{\frac{1}{C_1L_1}} \\ & \text{bandwidth: } \frac{2g_m\sqrt{\frac{1}{C_1L_1}}}{2C_1R_1g_m\sqrt{\frac{1}{C_1L_1}}+C_1\sqrt{\frac{1}{C_1L_1}}} \\ & \text{K-LP: } \frac{R_1R_5g_m-R_1}{2R_1g_m+1} \\ & \text{K-HP: } \frac{R_1R_5g_m-R_1}{2R_1g_m+1} \\ & \text{K-BP: } \frac{R_5g_m-1}{2g_m} \\ & \text{Qz: } C_1R_1\sqrt{\frac{1}{C_1L_1}} \\ & \text{Wz: } \sqrt{\frac{1}{C_1L_1}} \end{aligned}$$

$$H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1 + s^2 \left( C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{2 R_1 g_m + s^2 \left( 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + s \left( 2 C_5 R_1 R_5 g_m + C_5 R_5 \right) + 1}$$

$$H(s) = \frac{R_5 g_m + s^2 \left(C_1 L_1 R_5 g_m - C_1 L_1\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1\right) - 1}{2C_1 L_1 g_m s^2 + 2g_m + s \left(2C_1 R_1 g_m + C_1\right)}$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^2 \left( C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 \right) + s \left( L_1 R_5 g_m - L_1 \right)}{2 L_1 g_m s + 2 R_1 g_m + s^2 \left( 2 C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

## 8 INVALID-NUMER

8.1 INVALID-NUMER-1  $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ 

 $H(s) = \frac{-C_5 L_1 R_5 s^2 + s \left(L_1 R_5 g_m - L_1\right)}{2C_5 L_1 R_5 g_m s^2 + s \left(C_5 R_5 + 2L_1 g_m\right) + 1}$ 

### Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}C_5L_1R_5g_m\sqrt{\frac{1}{C_5L_1R_5g_m}}}{C_5R_5+2L_1g_m} \\ \text{wo:} \ \frac{\sqrt{2}\sqrt{\frac{1}{C_5L_1R_5g_m}}}{2} \\ \text{bandwidth:} \ \frac{C_5R_5+2L_1g_m}{2C_5L_1R_5g_m} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ -\frac{1}{2g_m} \\ \text{K-BP:} \ \frac{L_1R_5g_m-L_1}{C_5R_5+2L_1g_m} \\ \text{Qz:} \ -\frac{\sqrt{2}C_5R_5\sqrt{\frac{1}{C_5L_1R_5g_m}}}{2R_5g_m-2} \\ \text{Wz:} \ \text{None} \end{array}$ 

8.2 INVALID-NUMER-2  $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ 

 $H(s) = \frac{-C_5 R_5 s + R_5 g_m - 1}{C_1 C_5 R_5 s^2 + 2g_m + s \left(C_1 + 2C_5 R_5 g_m\right)}$ 

#### Parameters:

Q:  $\frac{\sqrt{2}C_{1}C_{5}R_{5}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}}}}{C_{1}+2C_{5}R_{5}g_{m}}$  wo:  $\sqrt{2}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}}}$  bandwidth:  $\frac{C_{1}+2C_{5}R_{5}g_{m}}{C_{1}C_{5}R_{5}}$  K-LP:  $\frac{R_{5}g_{m}-1}{2g_{m}}$  K-HP: 0 K-BP:  $-\frac{C_{5}R_{5}}{C_{1}+2C_{5}R_{5}g_{m}}$  Qz: 0 Wz: None

8.3 INVALID-NUMER-3  $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_5s+1}, \infty\right)$ 

 $H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1}{C_1 C_5 R_1 R_5 s^2 + 2 R_1 g_m + s \left( C_1 R_1 + 2 C_5 R_1 R_5 g_m + C_5 R_5 \right) + 1}$ 

## Parameters:

 $\begin{aligned} &\text{Q: } \frac{C_1C_5R_1R_5\sqrt{\frac{2g_m}{C_1C_5R_5}} + \frac{1}{C_1C_5R_1R_5}}{C_1R_1 + 2C_5R_1R_5g_m + C_5R_5} \\ &\text{wo: } \sqrt{\frac{2R_1g_m + 1}{C_1C_5R_1R_5}} \\ &\text{bandwidth: } \frac{\sqrt{\frac{2R_1g_m + 1}{C_1C_5R_1R_5}}(C_1R_1 + 2C_5R_1R_5g_m + C_5R_5)}{C_1C_5R_1R_5\sqrt{\frac{2g_m}{C_1C_5R_5}} + \frac{1}{C_1C_5R_1R_5}} \\ &\text{K-LP: } \frac{R_1R_5g_m - R_1}{2R_1g_m + 1} \\ &\text{K-HP: } 0 \\ &\text{K-BP: } -\frac{C_5R_1R_5}{C_1R_1 + 2C_5R_1R_5g_m + C_5R_5} \\ &\text{Qz: } 0 \\ &\text{Wz: None} \end{aligned}$ 

## 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{-C_5 L_1 s + L_1 g_m}{C_1 C_5 L_1 s^2 + 2C_5 L_1 g_m s + C_5}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ \text{bandwidth:} \ \frac{2g_m}{C_1} \\ \text{K-LP:} \ \frac{L_1 g_m}{C_5} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ -\frac{1}{2g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.5 INVALID-NUMER-5  $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{L_1 g_m + s \left( C_5 L_1 R_5 g_m - C_5 L_1 \right)}{C_1 C_5 L_1 s^2 + 2 C_5 L_1 g_m s + C_5}$$

Parameters:

Q: 
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo:  $\sqrt{\frac{1}{C_1L_1}}$  bandwidth:  $\frac{2g_m}{C_1}$  K-LP:  $\frac{L_1g_m}{C_5}$  K-HP: 0 K-BP:  $\frac{R_5g_m-1}{2g_m}$  Qz: 0 Wz: None

**8.6** INVALID-NUMER-6  $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{-C_5 L_1 R_1 s + L_1 R_1 g_m}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2C_5 L_1 R_1 g_m + C_5 L_1\right)}$$

Parameters:

Q: 
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{2R_1g_m+1}$$
  
wo:  $\sqrt{\frac{1}{C_1L_1}}$   
bandwidth:  $\frac{2R_1g_m+1}{C_1R_1}$   
K-LP:  $\frac{L_1g_m}{C_5}$   
K-HP: 0  
K-BP:  $-\frac{R_1}{2R_1g_m+1}$   
Qz: 0  
Wz: None

8.7 INVALID-NUMER-7  $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{L_1 R_1 g_m + s \left( C_5 L_1 R_1 R_5 g_m - C_5 L_1 R_1 \right)}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left( 2 C_5 L_1 R_1 g_m + C_5 L_1 \right)}$$

Q: 
$$\frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{2R_1 g_m + 1}$$

wo: 
$$\sqrt{\frac{1}{C_1L_1}}$$

bandwidth:  $\frac{2R_1g_m+1}{C_1R_1}$ K-LP:  $\frac{L_1g_m}{C_5}$ K-HP: 0 K-BP:  $\frac{R_1R_5g_m-R_1}{2R_1g_m+1}$ 

Qz: 0 Wz: None

## INVALID-WZ

**9.1** INVALID-WZ-1 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5R_1R_5s^2 + R_5g_m + s\left(C_1R_1R_5g_m - C_1R_1 - C_5R_5\right) - 1}{2g_m + s^2\left(2C_1C_5R_1R_5g_m + C_1C_5R_5\right) + s\left(2C_1R_1g_m + C_1 + 2C_5R_5g_m\right)}$$

#### Parameters:

Q: 
$$\frac{2\sqrt{2}C_{1}C_{5}R_{1}R_{5}g_{m}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}} + \sqrt{2}C_{1}C_{5}R_{5}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}}}{2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m}}$$
wo: 
$$\sqrt{2}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}}$$
bandwidth: 
$$\frac{\sqrt{2}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}}(2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m})}{2\sqrt{2}C_{1}C_{5}R_{1}R_{5}g_{m}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}} + \sqrt{2}C_{1}C_{5}R_{5}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}}}$$
K-LP: 
$$\frac{R_{5}g_{m}-1}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}$$

 $K-LP: \frac{R_{5}g_{m}-1}{2g_{m}}$   $K-HP: -\frac{R_{1}}{2R_{1}g_{m}+1}$   $K-BP: \frac{C_{1}R_{1}R_{5}g_{m}-C_{1}R_{1}-C_{5}R_{5}}{2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m}}$   $Qz: -\frac{\sqrt{2C_{1}C_{5}R_{1}R_{5}}\sqrt{\frac{g_{m}}{2C_{1}C_{5}R_{1}R_{5}g_{m}+C_{1}C_{5}R_{5}}}}{C_{1}R_{1}R_{5}g_{m}-C_{1}R_{1}-C_{5}R_{5}}$   $Wz: \sqrt{\frac{-R_{5}g_{m}+1}{C_{1}C_{5}R_{1}R_{5}}}$ 

# **9.2** INVALID-WZ-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 - C_5 L_1 s + L_1 g_m}{C_1 C_5 L_1 s^2 + 2 C_5 L_1 g_m s + C_5}$$

#### Parameters:

Q: 
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo:  $\sqrt{\frac{1}{C_1L_1}}$  bandwidth:  $\frac{2g_m}{C_1}$  K-LP:  $\frac{L_1g_m}{C_5}$  K-HP:  $\frac{L_5g_m}{C_1}$  K-BP:  $-\frac{1}{2g_m}$ 

Qz:  $-L_5 g_m \sqrt{\frac{1}{C_1 L_1}}$ 

Wz: 
$$\sqrt{\frac{1}{C_5L_5}}$$

**9.3** INVALID-WZ-3 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 + L_1 g_m + s \left( C_5 L_1 R_5 g_m - C_5 L_1 \right)}{C_1 C_5 L_1 s^2 + 2 C_5 L_1 g_m s + C_5}$$

Q: 
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$

wo: 
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:  $\frac{2g_m}{C_5}$  K-LP:  $\frac{L_1g_m}{C_5}$  K-HP:  $\frac{L_5g_m}{C_1}$  K-BP:  $\frac{R_5g_m-1}{2g_m}$  Qz:  $\frac{L_5g_m\sqrt{\frac{1}{C_1L_1}}}{R_5g_m-1}$  Wz:  $\sqrt{\frac{1}{C_5L_5}}$ 

**9.4** INVALID-WZ-4 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 R_1 g_m s^2 - C_5 L_1 R_1 s + L_1 R_1 g_m}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2 C_5 L_1 R_1 g_m + C_5 L_1\right)}$$

#### Parameters:

Q: 
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{2R_1g_m+1}$$
  
wo:  $\sqrt{\frac{1}{C_1L_1}}$   
bandwidth:  $\frac{2R_1g_m+1}{C_1R_1}$   
K-LP:  $\frac{L_1g_m}{C_5}$   
K-HP:  $\frac{L_5g_m}{C_5}$   
K-BP:  $-\frac{R_1}{2R_1g_m+1}$   
Qz:  $-L_5g_m\sqrt{\frac{1}{C_1L_1}}$   
Wz:  $\sqrt{\frac{1}{C_5L_5}}$ 

**9.5** INVALID-WZ-5 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 R_1 g_m s^2 + L_1 R_1 g_m + s \left( C_5 L_1 R_1 R_5 g_m - C_5 L_1 R_1 \right)}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left( 2 C_5 L_1 R_1 g_m + C_5 L_1 \right)}$$

### Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{2 R_1 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{2 R_1 g_m + 1}{C_1 R_1} \\ &\text{K-LP: } \frac{L_1 g_m}{C_5} \\ &\text{K-HP: } \frac{L_5 g_m}{C_1} \\ &\text{K-BP: } \frac{R_1 R_5 g_m - R_1}{2 R_1 g_m + 1} \\ &\text{Qz: } \frac{L_5 g_m \sqrt{\frac{1}{C_1 L_1}}}{R_5 g_m - 1} \\ &\text{Wz: } \sqrt{\frac{1}{C_5 L_5}} \end{aligned}$$

### 10 INVALID-ORDER

10.1 INVALID-ORDER-1 
$$Z(s) = (R_1, \infty, \infty, \infty, R_5, \infty)$$

$$H(s) = \frac{R_1 R_5 g_m - R_1}{2R_1 g_m + 1}$$

10.2 INVALID-ORDER-2 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_5 R_1 s + R_1 g_m}{s (2C_5 R_1 g_m + C_5)}$$

10.3 INVALID-ORDER-3 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1}{2R_1 g_m + s (2C_5 R_1 R_5 g_m + C_5 R_5) + 1}$$

10.4 INVALID-ORDER-4 
$$Z(s) = \left(R_1, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{R_1 g_m + s \left( C_5 R_1 R_5 g_m - C_5 R_1 \right)}{s \left( 2C_5 R_1 g_m + C_5 \right)}$$

10.5 INVALID-ORDER-5 
$$Z(s) = \left(R_1, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 - C_5 R_1 s + R_1 g_m}{s \left(2 C_5 R_1 q_m + C_5\right)}$$

10.6 INVALID-ORDER-6 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_5 R_1 s^2 + L_5 R_1 g_m s - R_1}{2R_1 g_m + s^2 \left(2C_5 L_5 R_1 g_m + C_5 L_5\right) + 1}$$

10.7 INVALID-ORDER-7 
$$Z(s) = \left(R_1, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 + R_1 g_m + s \left( C_5 R_1 R_5 g_m - C_5 R_1 \right)}{s \left( 2C_5 R_1 q_m + C_5 \right)}$$

10.8 INVALID-ORDER-8 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{C_5L_5R_5s^2 + L_5s + R_5}{C_5L_5s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^2 \left( C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{2 R_1 g_m + s^2 \left( 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1}$$

10.9 INVALID-ORDER-9  $Z(s) = (L_1 s, \infty, \infty, \infty, R_5, \infty)$ 

$$H(s) = \frac{s(L_1 R_5 g_m - L_1)}{2L_1 g_m s + 1}$$

10.10 INVALID-ORDER-10 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 s + L_1 g_m}{2C_5 L_1 g_m s + C_5}$$

10.11 INVALID-ORDER-11 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{L_1 g_m + s \left( C_5 L_1 R_5 g_m - C_5 L_1 \right)}{2 C_5 L_1 g_m s + C_5}$$

10.12 INVALID-ORDER-12 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 - C_5 L_1 s + L_1 g_m}{2C_5 L_1 g_m s + C_5}$$

10.13 INVALID-ORDER-13 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 s^3 + L_1 L_5 g_m s^2 - L_1 s}{2C_5 L_1 L_5 g_m s^3 + C_5 L_5 s^2 + 2L_1 g_m s + 1}$$

**10.14** INVALID-ORDER-14 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 + L_1 g_m + s \left(C_5 L_1 R_5 g_m - C_5 L_1\right)}{2C_5 L_1 g_m s + C_5}$$

**10.15** INVALID-ORDER-15 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 R_5 s^3 - L_1 R_5 s + s^2 \left(L_1 L_5 R_5 g_m - L_1 L_5\right)}{2C_5 L_1 L_5 R_5 g_m s^3 + R_5 + s^2 \left(C_5 L_5 R_5 + 2L_1 L_5 g_m\right) + s \left(2L_1 R_5 g_m + L_5\right)}$$

**10.16** INVALID-ORDER-16 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_1 L_5 g_m s^2 + s^3 \left( C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5 \right) + s \left( L_1 R_5 g_m - L_1 \right)}{2 C_5 L_1 L_5 g_m s^3 + C_5 L_5 s^2 + 2 L_1 g_m s + 1}$$

10.17 INVALID-ORDER-17 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_5s^2 + s^3\left(C_5L_1L_5R_5g_m - C_5L_1L_5\right) + s\left(L_1R_5g_m - L_1\right)}{2C_5L_1L_5g_ms^3 + s^2\left(2C_5L_1R_5g_m + C_5L_5\right) + s\left(C_5R_5 + 2L_1g_m\right) + 1}$$

10.18 INVALID-ORDER-18  $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty\right)$ 

$$H(s) = \frac{R_5 g_m - 1}{C_1 s + 2 q_m}$$

10.19 INVALID-ORDER-19  $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{-C_5 s + g_m}{C_1 C_5 s^2 + 2C_5 q_m s}$$

10.20 INVALID-ORDER-20  $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{g_m + s (C_5 R_5 g_m - C_5)}{C_1 C_5 s^2 + 2C_5 g_m s}$$

10.21 INVALID-ORDER-21  $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{C_5 L_5 g_m s^2 - C_5 s + g_m}{C_1 C_5 s^2 + 2C_5 g_m s}$$

10.22 INVALID-ORDER-22 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_5 s^2 + L_5 g_m s - 1}{C_1 C_5 L_5 s^3 + C_1 s + 2C_5 L_5 g_m s^2 + 2g_m}$$

10.23 INVALID-ORDER-23 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 g_m s^2 + g_m + s \left( C_5 R_5 g_m - C_5 \right)}{C_1 C_5 s^2 + 2 C_5 g_m s}$$

**10.24** INVALID-ORDER-24 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5 L_5 R_5 s^2 - R_5 + s \left(L_5 R_5 g_m - L_5\right)}{C_1 C_5 L_5 R_5 s^3 + 2R_5 g_m + s^2 \left(C_1 L_5 + 2C_5 L_5 R_5 g_m\right) + s \left(C_1 R_5 + 2L_5 g_m\right)}$$

**10.25** INVALID-ORDER-25 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_5 g_m s + R_5 g_m + s^2 (C_5 L_5 R_5 g_m - C_5 L_5) - 1}{C_1 C_5 L_5 s^3 + C_1 s + 2 C_5 L_5 g_m s^2 + 2 g_m}$$

**10.26** INVALID-ORDER-26 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5(C_5 L_5 s^2 + 1)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 R_5 s + R_5 g_m + s^2 (C_5 L_5 R_5 g_m - C_5 L_5) - 1}{C_1 C_5 L_5 s^3 + 2 g_m + s^2 (C_1 C_5 R_5 + 2 C_5 L_5 g_m) + s (C_1 + 2 C_5 R_5 g_m)}$$

10.27 INVALID-ORDER-27  $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty\right)$ 

$$H(s) = \frac{R_1 R_5 g_m - R_1}{C_1 R_1 s + 2R_1 g_m + 1}$$

10.28 INVALID-ORDER-28  $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{-C_5 R_1 s + R_1 g_m}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

**10.29** INVALID-ORDER-29  $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{R_1 g_m + s \left( C_5 R_1 R_5 g_m - C_5 R_1 \right)}{C_1 C_5 R_1 s^2 + s \left( 2 C_5 R_1 g_m + C_5 \right)}$$

10.30 INVALID-ORDER-30  $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 - C_5 R_1 s + R_1 g_m}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

10.31 INVALID-ORDER-31  $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1}, \infty\right)$ 

$$H(s) = \frac{-C_5L_5R_1s^2 + L_5R_1g_ms - R_1}{C_1C_5L_5R_1s^3 + C_1R_1s + 2R_1g_m + s^2\left(2C_5L_5R_1g_m + C_5L_5\right) + 1}$$

**10.32** INVALID-ORDER-32 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 + R_1 g_m + s \left(C_5 R_1 R_5 g_m - C_5 R_1\right)}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

**10.33** INVALID-ORDER-33 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_5R_1R_5s^2 - R_1R_5 + s\left(L_5R_1R_5g_m - L_5R_1\right)}{C_1C_5L_5R_1R_5s^3 + 2R_1R_5g_m + R_5 + s^2\left(C_1L_5R_1 + 2C_5L_5R_1R_5g_m + C_5L_5R_5\right) + s\left(C_1R_1R_5 + 2L_5R_1g_m + L_5\right)}$$

**10.34** INVALID-ORDER-34 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^2 \left( C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^2 \left( 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1}$$

10.35 INVALID-ORDER-35 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5R_1R_5s + R_1R_5g_m - R_1 + s^2\left(C_5L_5R_1R_5g_m - C_5L_5R_1\right)}{C_1C_5L_5R_1s^3 + 2R_1g_m + s^2\left(C_1C_5R_1R_5 + 2C_5L_5R_1g_m + C_5L_5\right) + s\left(C_1R_1 + 2C_5R_1R_5g_m + C_5R_5\right) + 1}$$

10.36 INVALID-ORDER-36 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s \left(C_1 R_1 R_5 g_m - C_1 R_1\right) - 1}{2g_m + s \left(2C_1 R_1 g_m + C_1\right)}$$

10.37 INVALID-ORDER-37 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5R_1s^2 + g_m + s\left(C_1R_1g_m - C_5\right)}{2C_5q_ms + s^2\left(2C_1C_5R_1q_m + C_1C_5\right)}$$

**10.38** INVALID-ORDER-38 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{g_m + s^2 \left( C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 \right) + s \left( C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2C_5 g_m s + s^2 \left( 2C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

**10.39** INVALID-ORDER-39 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1 C_5 L_5 R_1 g_m s^3 + g_m + s^2 \left(-C_1 C_5 R_1 + C_5 L_5 g_m\right) + s \left(C_1 R_1 g_m - C_5\right)}{2 C_5 g_m s + s^2 \left(2 C_1 C_5 R_1 g_m + C_1 C_5\right)}$$

**10.40** INVALID-ORDER-40 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_5R_1s^3 + s^2\left(C_1L_5R_1g_m - C_5L_5\right) + s\left(-C_1R_1 + L_5g_m\right) - 1}{2C_5L_5g_ms^2 + 2g_m + s^3\left(2C_1C_5L_5R_1g_m + C_1C_5L_5\right) + s\left(2C_1R_1g_m + C_1\right)}$$

**10.41** INVALID-ORDER-41 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1 C_5 L_5 R_1 g_m s^3 + g_m + s^2 \left( C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 + C_5 L_5 g_m \right) + s \left( C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2 C_5 g_m s + s^2 \left( 2 C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

10.42 INVALID-ORDER-42 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_5R_1R_5s^3 - R_5 + s^2\left(C_1L_5R_1R_5g_m - C_1L_5R_1 - C_5L_5R_5\right) + s\left(-C_1R_1R_5 + L_5R_5g_m - L_5\right)}{2R_5g_m + s^3\left(2C_1C_5L_5R_1R_5g_m + C_1C_5L_5R_5\right) + s^2\left(2C_1L_5R_1g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(2C_1R_1R_5g_m + C_1R_5 + 2L_5g_m\right)}$$

**10.43** INVALID-ORDER-43 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(C_1 L_5 R_1 g_m + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 + L_5 g_m\right) - 1}{2 C_5 L_5 g_m s^2 + 2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s \left(2 C_1 R_1 g_m + C_1\right)}$$

10.44 INVALID-ORDER-44 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(-C_1 C_5 R_1 R_5 + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 - C_5 R_5\right) - 1}{2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 C_5 R_1 R_5 g_m + C_1 C_5 R_5 + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1 + 2 C_5 R_5 g_m\right)}$$

10.45 INVALID-ORDER-45 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1s^3 + C_1L_1g_ms^2 - C_5s + g_m}{2C_1C_5L_1g_ms^3 + C_1C_5s^2 + 2C_5g_ms}$$

**10.46** INVALID-ORDER-46 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 - C_5R_5s + R_5g_m + s^2\left(C_1L_1R_5g_m - C_1L_1\right) - 1}{2C_1C_5L_1R_5g_ms^3 + 2g_m + s^2\left(C_1C_5R_5 + 2C_1L_1g_m\right) + s\left(C_1 + 2C_5R_5g_m\right)}$$

**10.47** INVALID-ORDER-47  $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{C_1 L_1 g_m s^2 + g_m + s^3 \left( C_1 C_5 L_1 R_5 g_m - C_1 C_5 L_1 \right) + s \left( C_5 R_5 g_m - C_5 \right)}{2 C_1 C_5 L_1 g_m s^3 + C_1 C_5 s^2 + 2 C_5 g_m s}$$

10.48 INVALID-ORDER-48  $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$ 

$$H(s) = \frac{C_1 C_5 L_1 L_5 g_m s^4 - C_1 C_5 L_1 s^3 - C_5 s + g_m + s^2 \left( C_1 L_1 g_m + C_5 L_5 g_m \right)}{2 C_1 C_5 L_1 g_m s^3 + C_1 C_5 s^2 + 2 C_5 g_m s}$$

**10.49** INVALID-ORDER-49  $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$ 

$$H(s) = \frac{-C_1C_5L_1L_5s^4 + C_1L_1L_5g_ms^3 + L_5g_ms + s^2\left(-C_1L_1 - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + C_1C_5L_5s^3 + C_1s + 2g_m + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right)}$$

**10.50** INVALID-ORDER-50 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(C_1C_5L_1R_5g_m - C_1C_5L_1\right) + s^2\left(C_1L_1g_m + C_5L_5g_m\right) + s\left(C_5R_5g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + C_1C_5s^2 + 2C_5g_ms}$$

**10.51** INVALID-ORDER-51 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_5s^4 - R_5 + s^3\left(C_1L_1L_5R_5g_m - C_1L_1L_5\right) + s^2\left(-C_1L_1R_5 - C_5L_5R_5\right) + s\left(L_5R_5g_m - L_5\right)}{2C_1C_5L_1L_5R_5g_ms^4 + 2R_5g_m + s^3\left(C_1C_5L_5R_5 + 2C_1L_1L_5g_m\right) + s^2\left(2C_1L_1R_5g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(C_1R_5 + 2L_5g_m\right)}$$

**10.52** INVALID-ORDER-52 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{C_1L_1L_5g_ms^3 + L_5g_ms + R_5g_m + s^4\left(C_1C_5L_1L_5R_5g_m - C_1C_5L_1L_5\right) + s^2\left(C_1L_1R_5g_m - C_1L_1 + C_5L_5R_5g_m - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + C_1C_5L_5s^3 + C_1s + 2g_m + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right)}$$

10.53 INVALID-ORDER-53 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 - C_5R_5s + R_5g_m + s^4\left(C_1C_5L_1L_5R_5g_m - C_1C_5L_1L_5\right) + s^2\left(C_1L_1R_5g_m - C_1L_1 + C_5L_5R_5g_m - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + 2g_m + s^3\left(2C_1C_5L_1R_5g_m + C_1C_5L_5\right) + s^2\left(C_1C_5R_5 + 2C_1L_1g_m + 2C_5L_5g_m\right) + s\left(C_1 + 2C_5R_5g_m\right)}$$

**10.54** INVALID-ORDER-54 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 R_5 s^2 + s \left(L_1 R_5 g_m - L_1\right)}{C_1 C_5 L_1 R_5 s^3 + s^2 \left(C_1 L_1 + 2C_5 L_1 R_5 g_m\right) + s \left(C_5 R_5 + 2L_1 g_m\right) + 1}$$

**10.55** INVALID-ORDER-55 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 s^3 + L_1 L_5 g_m s^2 - L_1 s}{C_1 C_5 L_1 L_5 s^4 + 2C_5 L_1 L_5 g_m s^3 + 2L_1 g_m s + s^2 (C_1 L_1 + C_5 L_5) + 1}$$

10.56 INVALID-ORDER-56 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_5s^3 - L_1R_5s + s^2\left(L_1L_5R_5g_m - L_1L_5\right)}{C_1C_5L_1L_5R_5s^4 + R_5 + s^3\left(C_1L_1L_5 + 2C_5L_1L_5R_5g_m\right) + s^2\left(C_1L_1R_5 + C_5L_5R_5 + 2L_1L_5g_m\right) + s\left(2L_1R_5g_m + L_5\right)}$$

10.57 INVALID-ORDER-57 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_1 L_5 g_m s^2 + s^3 \left( C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5 \right) + s \left( L_1 R_5 g_m - L_1 \right)}{C_1 C_5 L_1 L_5 s^4 + 2 C_5 L_1 L_5 g_m s^3 + 2 L_1 g_m s + s^2 \left( C_1 L_1 + C_5 L_5 \right) + 1}$$

10.58 INVALID-ORDER-58 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_5s^2 + s^3\left(C_5L_1L_5R_5g_m - C_5L_1L_5\right) + s\left(L_1R_5g_m - L_1\right)}{C_1C_5L_1L_5s^4 + s^3\left(C_1C_5L_1R_5 + 2C_5L_1L_5g_m\right) + s^2\left(C_1L_1 + 2C_5L_1R_5g_m + C_5L_5\right) + s\left(C_5R_5 + 2L_1g_m\right) + 1}$$

**10.59** INVALID-ORDER-59 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1s^3 + g_m + s^2\left(-C_1C_5R_1 + C_1L_1g_m\right) + s\left(C_1R_1g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

**10.60** INVALID-ORDER-60 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 + R_5g_m + s^2\left(-C_1C_5R_1R_5 + C_1L_1R_5g_m - C_1L_1\right) + s\left(C_1R_1R_5g_m - C_1R_1 - C_5R_5\right) - 1}{2C_1C_5L_1R_5g_ms^3 + 2g_m + s^2\left(2C_1C_5R_1R_5g_m + C_1C_5R_5 + 2C_1L_1g_m\right) + s\left(2C_1R_1g_m + C_1 + 2C_5R_5g_m\right)}$$

**10.61** INVALID-ORDER-61 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{g_m + s^3 \left( C_1 C_5 L_1 R_5 g_m - C_1 C_5 L_1 \right) + s^2 \left( C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 + C_1 L_1 g_m \right) + s \left( C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2 C_1 C_5 L_1 g_m s^3 + 2 C_5 g_m s + s^2 \left( 2 C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

**10.62** INVALID-ORDER-62 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(-C_1C_5L_1 + C_1C_5L_5R_1g_m\right) + s^2\left(-C_1C_5R_1 + C_1L_1g_m + C_5L_5g_m\right) + s\left(C_1R_1g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

**10.63** INVALID-ORDER-63 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5s^4 + s^3\left(-C_1C_5L_5R_1 + C_1L_1L_5g_m\right) + s^2\left(-C_1L_1 + C_1L_5R_1g_m - C_5L_5\right) + s\left(-C_1R_1 + L_5g_m\right) - 1}{2C_1C_5L_1L_5g_ms^4 + 2g_m + s^3\left(2C_1C_5L_5R_1g_m + C_1C_5L_5\right) + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right) + s\left(2C_1R_1g_m + C_1\right)}$$

**10.64** INVALID-ORDER-64 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(C_1C_5L_1R_5g_m - C_1C_5L_1 + C_1C_5L_5R_1g_m\right) + s^2\left(C_1C_5R_1R_5g_m - C_1C_5R_1 + C_1L_1g_m + C_5L_5g_m\right) + s\left(C_1R_1g_m + C_5R_5g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

**10.65** INVALID-ORDER-65 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_5s^4 - R_5 + s^3\left(-C_1C_5L_5R_1R_5 + C_1L_1L_5R_5g_m - C_1L_1L_5\right) + s^2\left(-C_1L_1R_5 + C_1L_5R_1R_5g_m - C_1L_5R_1 - C_5L_5R_5\right) + s\left(-C_1R_1R_5 + L_5R_5g_m - L_5\right)}{2C_1C_5L_1L_5R_5g_ms^4 + 2R_5g_m + s^3\left(2C_1C_5L_5R_1R_5g_m + C_1C_5L_5R_5 + 2C_1L_1L_5g_m\right) + s^2\left(2C_1L_1R_5g_m + 2C_1L_5R_1g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(2C_1R_1R_5g_m + C_1R_5 + 2C_5L_5g_m\right)}$$

**10.66** INVALID-ORDER-66 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^4 \left(C_1 C_5 L_1 L_5 R_5 g_m - C_1 C_5 L_1 L_5\right) + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1 + C_1 L_1 L_5 g_m\right) + s^2 \left(C_1 L_1 R_5 g_m - C_1 L_1 + C_1 L_5 R_1 g_m + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 + L_5 g_m\right) - 1}{2 C_1 C_5 L_1 L_5 g_m s^4 + 2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 L_1 g_m + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1\right)}$$

10.67 INVALID-ORDER-67 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^4 \left(C_1 C_5 L_1 L_5 R_5 g_m - C_1 C_5 L_1 L_5\right) + s^3 \left(-C_1 C_5 L_1 R_5 + C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(-C_1 C_5 R_1 R_5 + C_1 L_1 R_5 g_m - C_1 L_1 + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 - C_5 R_5\right) - 1}{2 C_1 C_5 L_1 L_5 g_m s^4 + 2 g_m + s^3 \left(2 C_1 C_5 L_1 R_5 g_m + C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 C_5 R_1 R_5 g_m + C_1 C_5 R_5 + 2 C_1 L_1 g_m + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1 + 2 C_5 R_5 g_m\right)}$$

**10.68** INVALID-ORDER-68 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_1R_5s^2 + s\left(L_1R_1R_5g_m - L_1R_1\right)}{C_1C_5L_1R_1R_5s^3 + R_1 + s^2\left(C_1L_1R_1 + 2C_5L_1R_1R_5g_m + C_5L_1R_5\right) + s\left(C_5R_1R_5 + 2L_1R_1g_m + L_1\right)}$$

**10.69** INVALID-ORDER-69 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_1s^3 + L_1L_5R_1g_ms^2 - L_1R_1s}{C_1C_5L_1L_5R_1s^4 + R_1 + s^3\left(2C_5L_1L_5R_1g_m + C_5L_1L_5\right) + s^2\left(C_1L_1R_1 + C_5L_5R_1\right) + s\left(2L_1R_1g_m + L_1\right)}$$

10.70 INVALID-ORDER-70 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_1R_5s^3 - L_1R_1R_5s + s^2\left(L_1L_5R_1R_5g_m - L_1L_5R_1\right)}{C_1C_5L_1L_5R_1R_5s^4 + R_1R_5 + s^3\left(C_1L_1L_5R_1 + 2C_5L_1L_5R_1R_5g_m + C_5L_1L_5R_5\right) + s^2\left(C_1L_1R_1R_5 + C_5L_5R_1R_5 + 2L_1L_5R_1g_m + L_1L_5\right) + s\left(2L_1R_1R_5g_m + L_1R_5 + L_5R_1\right)}$$

**10.71** INVALID-ORDER-71 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{L_1 L_5 R_1 g_m s^2 + s^3 \left( C_5 L_1 L_5 R_1 R_5 g_m - C_5 L_1 L_5 R_1 \right) + s \left( L_1 R_1 R_5 g_m - L_1 R_1 \right)}{C_1 C_5 L_1 L_5 R_1 s^4 + R_1 + s^3 \left( 2 C_5 L_1 L_5 R_1 g_m + C_5 L_1 L_5 \right) + s^2 \left( C_1 L_1 R_1 + C_5 L_5 R_1 \right) + s \left( 2 L_1 R_1 g_m + L_1 \right)}$$

10.72 INVALID-ORDER-72 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_1R_5s^2 + s^3\left(C_5L_1L_5R_1R_5g_m - C_5L_1L_5R_1\right) + s\left(L_1R_1R_5g_m - L_1R_1\right)}{C_1C_5L_1L_5R_1s^4 + R_1 + s^3\left(C_1C_5L_1R_1R_5 + 2C_5L_1L_5R_1g_m + C_5L_1L_5\right) + s^2\left(C_1L_1R_1 + 2C_5L_1R_1R_5g_m + C_5L_1R_5 + C_5L_5R_1\right) + s\left(C_5R_1R_5 + 2L_1R_1g_m + L_1\right)}$$

**10.73** INVALID-ORDER-73 
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1s^3 + R_1g_m + s^2\left(C_1L_1R_1g_m - C_5L_1\right) + s\left(-C_5R_1 + L_1g_m\right)}{2C_5L_1g_ms^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

**10.74** INVALID-ORDER-74 
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_5s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1R_5s^3 + R_1R_5g_m - R_1 + s^2\left(C_1L_1R_1R_5g_m - C_1L_1R_1 - C_5L_1R_5\right) + s\left(-C_5R_1R_5 + L_1R_5g_m - L_1\right)}{2R_1g_m + s^3\left(2C_1C_5L_1R_1R_5g_m + C_1C_5L_1R_5\right) + s^2\left(2C_1L_1R_1g_m + C_1L_1 + 2C_5L_1R_5g_m\right) + s\left(2C_5R_1R_5g_m + C_5R_5 + 2L_1g_m\right) + 1}$$

10.75 INVALID-ORDER-75 
$$Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{R_1 g_m + s^3 \left( C_1 C_5 L_1 R_1 R_5 g_m - C_1 C_5 L_1 R_1 \right) + s^2 \left( C_1 L_1 R_1 g_m + C_5 L_1 R_5 g_m - C_5 L_1 \right) + s \left( C_5 R_1 R_5 g_m - C_5 R_1 + L_1 g_m \right)}{2 C_5 L_1 g_m s^2 + s^3 \left( 2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 \right) + s \left( 2 C_5 R_1 g_m + C_5 \right)}$$

**10.76** INVALID-ORDER-76 
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \infty, \infty, \infty, L_5s + \frac{1}{C_5s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5R_1g_ms^4 + R_1g_m + s^3\left(-C_1C_5L_1R_1 + C_5L_1L_5g_m\right) + s^2\left(C_1L_1R_1g_m - C_5L_1 + C_5L_5R_1g_m\right) + s\left(-C_5R_1 + L_1g_m\right)}{2C_5L_1g_ms^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

$$\textbf{10.79} \quad \textbf{INVALID-ORDER-79} \ Z(s) = \left( \frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5R_5s}{C_5L_5R_5s^2 + L_5s + R_5}, \ \infty \right) \\ H(s) = \frac{-C_1C_5L_1L_5R_1R_5s^4 - R_1R_5 + s^3\left(C_1L_1L_5R_1R_5g_m - C_1L_1L_5R_1 - C_5L_1L_5R_5\right) + s^2\left(-C_1L_1R_1R_5 - C_5L_5R_1R_5 + L_1L_5R_5g_m - L_1L_5\right) + s\left(-L_1R_5 + L_5R_1R_5g_m - L_5R_1\right)}{2R_1R_5g_m + R_5 + s^4\left(2C_1C_5L_1L_5R_1R_5g_m + C_1C_5L_1L_5R_5\right) + s^3\left(2C_1L_1L_5R_1g_m + C_1L_1L_5 + 2C_5L_1L_5R_5g_m\right) + s^2\left(2C_1L_1R_1R_5g_m + C_1L_1R_5 + 2C_5L_5R_1R_5g_m + C_5L_5R_5\right) + s\left(2L_1R_5g_m + 2L_5R_1g_m + L_5\right)}$$

$$\begin{aligned} \textbf{10.80} \quad \textbf{INVALID-ORDER-80} \ \ Z(s) &= \left( \frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \ \ \infty, \ \ \infty, \ \ \infty, \ \ \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \ \ \infty \right) \\ & H(s) &= \frac{R_1 R_5 g_m - R_1 + s^4 \left( C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^3 \left( C_1 L_1 L_5 R_1 g_m + C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5 \right) + s^2 \left( C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 + L_1 L_5 g_m \right) + s \left( L_1 R_5 g_m - L_1 + L_5 R_1 g_m \right) \\ & - \frac{2C_5 L_1 L_5 g_m s^3 + 2L_1 g_m s + 2R_1 g_m + s^4 \left( 2C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^2 \left( 2C_1 L_1 R_1 g_m + C_1 L_1 + 2C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1 \end{aligned}$$

$$\textbf{10.81} \quad \textbf{INVALID-ORDER-81} \ Z(s) = \left( \frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5\left(C_5L_5s^2 + 1\right)}{C_5L_5s^2 + C_5R_5s + 1}, \ \infty \right) \\ H(s) = \frac{R_1R_5g_m - R_1 + s^4\left(C_1C_5L_1L_5R_1R_5g_m - C_1C_5L_1L_5R_1\right) + s^3\left(-C_1C_5L_1R_1R_5 + C_5L_1L_5R_5g_m - C_5L_1L_5\right) + s^2\left(C_1L_1R_1R_5g_m - C_1L_1R_1 - C_5L_1R_5 + C_5L_5R_1R_5g_m - C_5L_5R_1\right) + s\left(-C_5R_1R_5 + L_1R_5g_m - L_1\right)}{2R_1g_m + s^4\left(2C_1C_5L_1L_5R_1g_m + C_1C_5L_1L_5\right) + s^3\left(2C_1C_5L_1R_1R_5g_m + C_1C_5L_1L_5g_m\right) + s^2\left(2C_1L_1R_1g_m + C_1L_1 + 2C_5L_1R_5g_m + 2C_5L_5R_1g_m + C_5L_5\right) + s\left(2C_5R_1R_5g_m + C_5R_5 + 2L_1g_m\right) + 1} \\ \mathbf{10.81} \quad \mathbf{10.8$$

10.82 INVALID-ORDER-82 
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \frac{1}{C_5s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1s^3 + C_1L_1R_1g_ms^2 - C_5R_1s + R_1g_m}{C_1C_5R_1s^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

10.83 INVALID-ORDER-83 
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5}{C_5R_5s+1}, \ \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1R_5s^3 - C_5R_1R_5s + R_1R_5g_m - R_1 + s^2\left(C_1L_1R_1R_5g_m - C_1L_1R_1\right)}{2R_1g_m + s^3\left(2C_1C_5L_1R_1R_5g_m + C_1C_5L_1R_5\right) + s^2\left(C_1C_5R_1R_5 + 2C_1L_1R_1g_m + C_1L_1\right) + s\left(C_1R_1 + 2C_5R_1R_5g_m + C_5R_5\right) + 1}$$

10.84 INVALID-ORDER-84 
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5s}, \ \infty\right)$$

$$H(s) = \frac{C_1L_1R_1g_ms^2 + R_1g_m + s^3\left(C_1C_5L_1R_1R_5g_m - C_1C_5L_1R_1\right) + s\left(C_5R_1R_5g_m - C_5R_1\right)}{C_1C_5R_1s^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

$$\textbf{10.85} \quad \textbf{INVALID-ORDER-85} \ \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \sum c_5 s + \frac{1}{C_5 s}, \ \infty \right)$$
 
$$H(s) = \frac{C_1 C_5 L_1 L_5 R_1 g_m s^4 - C_1 C_5 L_1 R_1 s^3 - C_5 R_1 s + R_1 g_m + s^2 \left( C_1 L_1 R_1 g_m + C_5 L_5 R_1 g_m \right) }{C_1 C_5 R_1 s^2 + s^3 \left( 2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 \right) + s \left( 2 C_5 R_1 g_m + C_5 \right) }$$

$$\textbf{10.86} \quad \textbf{INVALID-ORDER-86} \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty \right) \\ H(s) = \frac{-C_1 C_5 L_1 L_5 R_1 s^4 + C_1 L_1 L_5 R_1 g_m s^3 + L_5 R_1 g_m s - R_1 + s^2 \left( -C_1 L_1 R_1 - C_5 L_5 R_1 \right)}{C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^4 \left( 2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^2 \left( 2 C_1 L_1 R_1 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1 C_5 L_5 R_1 g_m + C_5 L_5 \right) \\ H(s) = \frac{-C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^4 \left( 2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^2 \left( 2 C_1 L_1 R_1 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1 C_5 L_5 R_1 g_m + C_5 L_5 R$$

$$\textbf{10.87} \quad \textbf{INVALID-ORDER-87} \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \sum S_1 + S_2 + S_3 + S_4 + S_$$

$$\begin{aligned} \textbf{10.88} \quad \textbf{INVALID-ORDER-88} \ Z(s) &= \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5R_5s}{C_5L_5R_5s^2+L_5s+R_5}, \ \infty\right) \\ & \quad H(s) &= \frac{-C_1C_5L_1L_5R_1R_5s^4-R_1R_5+s^3\left(C_1L_1L_5R_1R_5g_m-C_1L_1L_5R_1\right)+s^2\left(-C_1L_1R_1R_5-C_5L_5R_1R_5\right)+s\left(L_5R_1R_5g_m-L_5R_1\right)}{2R_1R_5g_m+R_5+s^4\left(2C_1C_5L_1L_5R_1R_5g_m+C_1C_5L_1L_5R_1\right)+s^3\left(C_1C_5L_5R_1R_5+2C_1L_1L_5R_1g_m+C_1L_1L_5\right)+s^2\left(2C_1L_1R_1R_5g_m+C_1L_1R_5+C_1L_5R_1+2C_5L_5R_1R_5g_m+C_5L_5R_5\right)+s\left(C_1R_1R_5+2L_5R_1g_m+L_5\right)} \end{aligned}$$

$$\textbf{10.89} \quad \textbf{INVALID-ORDER-89} \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{C_5 L_5 R_5 s^2 + L_5 s + R_5}{C_5 L_5 s^2 + 1}, \ \infty \right)$$
 
$$H(s) = \frac{C_1 L_1 L_5 R_1 g_m s^3 + L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^4 \left( C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^2 \left( C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right) }{C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^4 \left( 2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^2 \left( 2 C_1 L_1 R_1 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1 }$$

$$\textbf{10.90} \quad \textbf{INVALID-ORDER-90} \ \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \ \infty, \ \ \frac{R_5 \left( C_5 L_5 s^2 + 1 \right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \ \infty \right)$$
 
$$H(s) = \frac{-C_1 C_5 L_1 R_1 R_5 s^3 - C_5 R_1 R_5 s + R_1 R_5 g_m - R_1 + s^4 \left( C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^2 \left( C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right) }{2 R_1 g_m + s^4 \left( 2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^3 \left( 2 C_1 C_5 L_1 R_1 R_5 g_m + C_1 C_5 L_1 R_5 + C_1 C_5 L_5 R_1 \right) + s^2 \left( C_1 C_5 R_1 R_5 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + s \left( C_1 R_1 R_5 g_m + C_5 R_5 \right) + 1$$

## 11 PolynomialError