Анкета участника конкурса

Наименование проекта	Опухолеассоциированная
	тканевая эозинофилия как
	новый прогностический
	маркер рака желудка и
Howard X vo = = 0.75120	толстой кишки
Научный коллектив: (заполняется на каждого участника)	
 Ф.И.О. 	Guyongu Vnactaus Mrononus
• Должность	Янкович Кристина Игоревнааспирант
• Ученая степень	• без ученой степени
• Ученое звание	• без ученого звания
 ● Количество публикаций в журналах перечня ВАК за последние 5 лет 	• 8
• Количество публикаций в журналах,	• 2
индексируемых в международных базах	
Scopus и Web of Science за последние 5 лет	
• Индекс Хирша	• 1
• Ф.И.О.	• Колобовникова Юлия
	Владимировна
• Должность	• профессор кафедры
• Ученая степень	• доктор медицинских наук
• Ученое звание	• без ученого звания
• Количество публикаций в журналах	• 27
перечня ВАК за последние 5 лет	
• Количество публикаций в журналах,	• 11
индексируемых в международных базах	
Scopus и Web of Science за последние 5 лет	
• Индекс Хирша	• 8
• Ф.И.О.	• Уразова Ольга Ивановна
• Должность	• профессор кафедры
• Ученая степень	• доктор медицинских наук
• Ученое звание	• Профессор
• Количество публикаций в журналах	• 79
перечня ВАК за последние 5 лет	
 Количество публикаций в журналах, 	• 33

индексируемых в международных базах	
Scopus и Web of Science за последние 5 лет	
• Индекс Хирша	• 16
• Ф.И.О.	• Ракитин Сергей Сергеевич
• Должность	• руководитель лаборатории
• Ученая степень	• кандидат медицинских наук
• Ученое звание	• без ученого звания
• Количество публикаций в журналах перечня ВАК за последние 5 лет	• 6
• Количество публикаций в журналах,	• 0
индексируемых в международных базах Scopus и Web of Science за последние 5 лет	
• Индекс Хирша	• 3
Научный руководитель или консультант:	
• Ф.И.О.	• Дмитриева Алла Ивановна
• Должность	• профессор кафедры
• Ученая степень	• доктор медицинских наук
• Ученое звание	• без ученого звания
 ● Количество публикаций в журналах перечня ВАК за последние 5 лет 	• 11
• Количество публикаций в журналах,	• 2
индексируемых в международных базах	
Scopus и Web of Science за последние 5 лет	
• Индекс Хирша	• 5
Контактная информация научного	телефон: 89138040906
руководителя или консультанта	e-mail.: alladmitrieva@mail.ru
Подпись научного руководителя	

Титульный лист проекта

«ЭСТАФЕТА ВУЗОВСКОЙ НАУКИ – 2017»

НАИМЕНОВАНИЕ ПРОЕКТА

«Опухолеассоциированная тканевая эозинофилия как новый прогностический маркер рака желудка и толстой кишки»

Научная платформа

«Онкология»

Научный руководитель проекта

Ф.И.О: Дмитриева Алла Ивановна

Исполнители проекта

Ф.И.О: Янкович Кристина Игоревна

Ф.И.О: Колобовникова Юлия Владимировна

Ф.И.О: Уразова Ольга Ивановна

Ф.И.О: Ракитин Сергей Сергеевич

Наименование организации

<u>Федеральное государственное бюджетное образовательное учреждение высшего</u>
<u>образования «Сибирский государственный медицинский университет»</u>

Министерства здравоохранения Российской Федерации

Сроки реализации проекта

начало: <u>«1» января 2016 г.</u>

окончание: «31» декабря 2018 г.

Содержание проекта

1. Соответствие проекта целям и задачам научной платформы

В структуре онкологической заболеваемости населения России рак желудка и толстой кишки занимают пятое и третье места соответственно [Каприн А.Д и соавт., 2015]. Злокачественные опухоли данных локализаций характеризуются широкой распространенностью, тенденцией к раннему метастазированию, неблагоприятным прогнозом и недостаточной эффективностью существующих на сегодняшний день методов лечения [Harbaun L. et al., 2015]. Рак желудка и толстой кишки по-прежнему удерживают лидирующие позиции по показателю несвоевременной диагностики. В России в 2015 г. диагноз рака желудка впервые был установлен у 25,8% пациентов только на 3-й стадии заболевания и 41,2% – на 4-й. [Каприн А.Д и соавт., 2015]. В СВЯЗИ этим продолжаются исследования ПО разработке совершенствованию существующих методов своевременной диагностики данной патологии. Перспективным направлением является изучение механизмов ответа макроорганизма на злокачественную трансформацию опухолевых клеток и возможностей использования выявленных закономерностей ДЛЯ клинических и диагностических задач. Частым явлением при онкопатологии, в том числе и при раке желудка и толстой кишки, является опухолеассоциированная эозинофилия тканей (TATE - Tumor-Associated Tissue Eosinophilia) [Воробьев А.И., 2003; Caruso R.A. et al., 2004; Ольшанская Ю.В. и соавт., 2005; Pearson E.J., Mennel R., 2013; Holub M. et al., 2013; Takeda H. et al., 2014]. Реализация предлагаемого нами проекта, направленного на изучение молекулярно-генетических механизмов формирования ТАТЕ и установление роли эозинофилов в механизмах развития желудка толстой обосновать опухоли при раке И кишки, позволит опухолеассоциированную эозинофилию нового тканевую В качестве диагностического фактора прогноза заболевания, аргументировать целесообразность коррекции данной реакции у пациентов со злокачественными заболеваниями ЖКТ.

2. Актуальность и описание проблемы, планируемой к решению в ходе реализации проекта

Рак желудка и толстой кишки весьма часто сопровождается инфильтрацией эозинофилами опухолевой ткани, что в современной литературе обозначают как опухолеассоциированная эозинофилия ткани (TATE - Tumor-Associated Tissue Eosinophilia) [Pearson E.J., Mennel R., 2013; Holub M. et al., 2013; Takeda H. et al., 2014; Spencer L. et al., 2015]. Зарубежными и отечественными исследователями установлены новые функции эозинофилов в норме и при патологии [Колобовникова Ю.В. и соавт, 2014; Akuthota P. et al., 2013; Rosenberg H.F. et al., 2013; Cao C. et al., 2014; Rosenberg H.F. et al., 2013; Ben Baruch-Morgenstern N. et al., 2014; Spencer L. et al., 2015], что обосновывает особый интерес к данным о способности эозинофильных гранулоцитов взаимодействовать с опухолевыми клетками и элементами опухолевого микроокружения.

Следует отметить, что в современной отечественной литературе проблема опухолеассоциированной эозинофилии рассматривается незаслуженно мало [Хорошко Н.Д. и соавт., 1998; Воробьев А.И., 2003; Чучалин А.Г., 2003; Комарова Л.С. и соавт., 2004; Ольшанская Ю.В. и соавт., 2005; Абдулкадыров К.М., 2006]. В

зарубежных исследованиях нередко приводятся сведения о связи ТАТЕ с опухолевым процессом [Teoh S.C.B. et al., 2000; Said M. et al., 2005; Legrand F. et al., 2010; Megha Jain et al., 2014; Harbaum L. et al., 2015], однако все они лишь констатируют факт данной реакции, не затрагивая механизмы и целесообразность ее возникновения. В литературе имеются противоречивые данные о связи эозинофилии с прогнозом течения злокачественных новообразований. Тканевую эозинофилию некоторые авторы связывают с благоприятным прогнозом, лучшей дифференцировкой опухоли, отсутствием сосудистой инвазии [Dorta R.G. et al., 2002, Harbaum L. et al., 2014]. По сведениям Y. Ohashi и соавт. (2000), аккумуляция эозинофилов в области плоскоклеточной карциномы пищевода оказалась более выраженной при отсутствии метастазов, что позволило предположить участие эозинофильных гранулоцитов в механизмах защиты от метастазирования. Исследования R.A. Caruso и соавт. (2004) подтвердили факт взаимодействия эозинофилов с клетками интестинальной карциномы желудка, следствием чего явились дегенеративные изменения опухоли. При этом предполагается, что противоопухолевая активность эозинофилов является результатом прямого цитотоксического действия. В то же время в литературе имеются сведения о связи ТАТЕ с неблагоприятным прогнозом, инвазией и ангиогенезом [Said M. et al., 2005, Megha Jain et al., 2014]. По данным О. В. Зеленовой и соавт. (2002), при активированные лимфогранулематозе эозинофилы взаимодействуют мембранными структурами клеток Рида-Березовского-Штернберга и посредством механизмов сигнальной трансдукции опосредуют запуска пролиферацию трансформированных клетокмишеней. Ю. Ю. Лорие (2000) указал на существенную роль эозинофильных гранулоцитов в процессе ангиогенеза опухоли и образовании ее микроокружения при Вклеточных неходжкинских лимфомах.

Известно, что эозинофилы — это агрессивные эффекторные клетки, которые являются продуцентами широкого спектра биологически активных веществ [Rosenberg H. F. et al., 2013; Ben Baruch-Morgenstern N. et al., 2014]. Идентифицированы новые рецепторные структуры, цитотоксические факторы, цитокины и факторы роста, вырабатываемые эозинофилами [Akuthota P. et al., 2013; Rosenberg H.F. et al., 2013; Cao C. et al., 2014; Spencer L. et al., 2015]. Это обосновывает способность этих клеток принимать участие в реализации многих защитных реакций организма, а также наличие высокого противоопухолевого потенциала. В то же время неоднозначные результаты эпидемиологических исследований и способность эозинофилов вызывать ремоделирование тканей указывают на возможное участие эозинофильных гранулоцитов в процессах роста и развития опухоли.

В целом, до настоящего момента остается неясным, является ли опухолеассоциированная эозинофилия ответной реакцией макроорганизма на опухоль или представляет собой автономный, противоопухолевый механизм. Частая встречаемость ТАТЕ и широкий спектр свойств эозинофильных гранулоцитов определяют актуальность изучения вопроса об эозинофильной инфильтрации тканей при опухолевом процессе.

3. Цели и задачи проекта

Целью настоящего проекта является установление молекулярно-генетических механизмов формирования опухолеассоциированной эозинофилии с определением

ее роли в патогенезе рака желудка и толстой кишки. В рамках поставленной цели будет изучено влияние ТАТЕ на активность опухолевого процесса на основании оценки белков-регуляторов клеточного цикла в опухоли и проведения сравнительного анализа клинического течения заболевания при раке желудка и толстой кишки с ТАТЕ.

Задачи: 1. Определить характер эозинофильной инфильтрации опухолевой ткани при раке желудка и толстой кишки. 2. Оценить экспрессию ключевых факторов роста и ангиогенеза в опухолевой ткани, а также содержание эозинофильных цитотоксических белков в клетках околоопухолевого и внутриопухолевого воспалительного инфильтрата у больных раком желудка и толстой кишки. 3. Изучить влияние ТАТЕ на активность злокачественного процесса на основании оценки экспрессии опухолевой тканью белков-регуляторов клеточного цикла у больных раком желудка и толстой кишки. 4. Исследовать аллельный полиморфизм промоторных регионов генов-регуляторов клеточного цикла p21 (A1026G) и (G369C), p53 (G72C) и p27 (T326G Val109Gly) у больных раком желудка и толстой кишки, сопровождающимся ТАТЕ. 5. Исследовать аллельный полиморфизм промоторных регионов генов эозинофилактивирующих цитокинов (IL-5 (C703T) и CCL11 (A384G)) и их рецепторов (IL-5R (G5091A) и CCR3 (T652A)) в ассоциации с уровнем рецепторной экспрессии и количеством тканевых эозинофилов при раке желудка и толстой кишки. 6. Сопоставить результаты оценки функциональной активности эозинофилов в опухолевой ткани с клинико-морфологическими показателями опухолевого процесса. 7. Оценить прогностическую значимость ТАТЕ в отношении формирования очагов метастазирования, возникновения рецидива и общей выживаемости пациентов с раком желудка и толстой кишки. 8. Обосновать ТАТЕ в качестве маркера течения и прогрессии опухолевого процесса у больных раком желудка и толстой кишки.

4. Краткая аннотация проекта

Рак желудка и толстой кишки сопровождается инфильтрацией опухолевой ткани эозинофильными гранулоцитами, что в мировой литературе принято обозначать термином «опухолеассоциированная эозинофилия ткани» - Tumor-Associated Tissue Eosinophilia (TATE). В настоящее время не сформировано единое мнение относительно роли ТАТЕ и возможности использования ee в качестве прогностического критерия заболевания. Установлено, что эозинофилы обладают значительным арсеналом факторов, позволяющим им принимать активное участие в реализации опухолевого процесса. Идентифицированы компоненты гранул, обладающие как про-, так и противоопухолевыми свойствами, показана способность эозинофилов секретировать факторы роста и ангиогенеза, а также экспрессировать рецепторы, опосредующие вовлечение этих клеток в механизм канцерогенеза. Целью настоящего проекта является установление молекулярногенетических механизмов формирования опухолеассоциированной эозинофилии с определением ее роли в патогенезе рака желудка и толстой кишки. В рамках поставленной цели будет изучено влияние ТАТЕ на активность опухолевого процесса на основании оценки белков-регуляторов клеточного цикла в опухоли и проведения сравнительного анализа клинического течения заболевания при раке желудка и толстой кишки с ТАТЕ. Реализация проекта позволит обосновать

перспективность использования ТАТЕ в качестве прогностического критерия течения и прогрессирования болезни.

5. Научная новизна

Новизна предлагаемого подхода заключается в рассмотрении эозинофила в контексте опухолевого процесса в качестве полноценного участника механизмов противоопухолевой защиты. В исследовании впервые рассмотрены молекулярные механизмы кооперативного взаимодействия эозинофильных гранулоцитов и опухолевых клеток при раке желудка и толстой кишки. Комплексное исследование способности эозинофилов секретировать широкий спектр цитотоксических белков, цитокинов и экспрессировать рецепторные структуры позволит сформировать целостное представление о возможном участии этих клеток в реализации повреждающих и защитноприспособительных реакций при раке желудка и толстой кишки. Также будет определена активность злокачественного процесса на фоне опухолеассоциированной эозинофилии путем изучения экспрессии основных регуляторов клеточного цикла и рецепторных структур опухолевых клеток. В ходе выполнения проекта планируется идентифицировать молекулярно-генетические факторы, определяющие развитие ТАТЕ при злокачественных новообразованиях желудка и толстой кишки. На основании сравнительного исследования особенностей течения опухолевого процесса в зависимости от наличия ТАТЕ будут определены значимые прогностические критерии течения и прогрессирования опухолевого процесса. Планируемое исследование позволит ответить на вопрос является ли опухолеассоциированная эозинофилия при раке желудка и толстой кишки механизмом противоопухолевого ответа или, напротив, обусловливает неблагоприятное течение болезни, что требует коррекции данной реакции.

6. Основные технологии реализации проекта

Настоящее исследование будет проводиться на образцах тканей злокачественных новообразований (рака) желудка и толстой кишки, полученных при биопсии или операционном вмешательстве у больных, находившихся на лечении и состоящих на диспансерном учете в ОГАУЗ «ТООД». Для решения поставленных задач будут сформированы несколько групп обследованных лиц в зависимости от наличия или отсутствия эозинофильной инфильтрации опухоли; от локализации патологического процесса (желудок, толстая кишка); в зависимости от наличия или отсутствия очагов метастазирования соответствии С классификацией злокачественных новообразований по системе TNM (1997 г.). Первую (основную) группу исследования составят пациенты с раком желудка и толстой сопровождающимся ТАТЕ; во вторую группу войдут больные со злокачественными новообразованиями желудка и толстой кишки без эозинофилии. Группу сравнения составят пациенты с аденомами желудка и толстой кишки, сопоставимые по полу и возрасту. Критериями исключения пациентов из исследования являются наличие в анамнезе хронических воспалительных процессов, психических заболеваний, аутоиммунных и наследственных заболеваний, аллергических реакций и глистных инвазий, а также опухолей других локализаций.

Выбор изучаемых показателей обусловлен имеющимися в литературе современными данными о структуре и функциях эозинофильных гранулоцитов и результатами ранее проведенных нами исследований, в которых установлена роль

эозинофилов при инфекционном процессе и онкогематологических заболеваниях (Медицинская паразитология и паразитарные болезни».—2006.-№3.—С.23-27; Иммунология.—2007.-№2.- С.123-127; Иммунопатология, аллергология, инфектология.—2011.-№2.-С.12-17; Иммунология.—2012.-№ 4.—С.184-188; Вестник РАМН.— 2012.- № 5.— С.58—62; Цитокины и воспаление.— 2015.— Том 14, № 1 — С. 96-100; Бюллетень экспериментальной биологии и медицины.— 2015.— Том 159, № 3.— С. 300-303).

По данным литературы, эозинофильные гранулоциты способны секретировать широкий спектр биологически активных веществ с про- и противоопухолевой активностью, а также факторов ангиогенеза [Puxeddu I. et al., 2005; Rothenberg M.E., 2007; Rosenberg H.F. et al., 2013; Cao C. et al., 2014; Spencer L. et al., 2015]. Ключевым медиатором ангиогенеза опухоли является фактор роста эндотелия сосудов VEGF (vascular endothelial growth factor), который стимулирует процесс формирования новых кровеносных сосудов из близлежащих капилляров, обеспечивая опухолевые клетки кислородом и питательными веществами [Oliveira DT et al., 2012]. VEGF играет роль также в образовании новых лимфатических сосудов, часто, представляющих собой пути метастазирования опухоли [Shamri R. et al., 2011]. Проопухолевой активностью обладает также трансформирующий фактор роста (TGF - transforming growth factor) бета. Этот цитокин способен усиливать опухолевый рост как путем непосредственного влияния на пролиферацию опухолевых клеток, так и посредством своей иммуносупрессорной активности [Rothenberg M.E., 2007]. К эффектам TGFбета относится также усиление неоангиогенеза и пролиферации фибробластов. Кроме того TGF принимает участие в ремоделировании тканей, обусловливая злокачественную трансформацию клеток [Puxeddu I. et al., 2005]. Схожими функциями обладает секретируемый эозинофилами эпидермальный фактор роста EGF (epidermal growth factor), который способен усиливать пролиферацию и дифференцировку эпителиальных тканей и, тем самым, опосредовать рост опухоли [Kita H., 2011]. Как и у большинства цитокинов, действие EGF его связыванием со специфическим рецептором EGFR (epidermal growth factor receptor) на поверхности клеток. Известно, что блокирование антителами EGFR снижает риск развития рака, это свойство положено в основу разработки некоторых противоопухолевых фармацевтических препаратов. Мощный биологический эффект оказывает также фактор некроза опухоли (TNF - tumor necrosis factor) альфа, который по данным литературы, обладает сильным провоспалительным и катаболическим действием, антимикробной и противоопухолевой активностью [Elishmereni M., 2011; Cao C. et al., 2014].

Помимо секреции цитокинов и факторов роста эозинофильные гранулоциты являются источником широкого спектра цитотоксических белков, обладающих противоопухолевой активностью [Blanchard C., Rothenberg M.E., 2009; Wechsler M.E. et al., 2012; Rosenberg H.F. et al., 2013]. Цитотоксический эффект главного основного белка может быть связан с увеличением проницаемости мембраны клетокмишеней путем изменения поверхностного заряда [Hogan S.P. et al., 2008]. Эозинофильный катионный протеин, обладающий цитотоксической, хемотаксической и рибонуклеазной активностью, индуцирует образование пор в мембранах клеток, что облегчает проникновение других цитотоксических молекул [Wechsler M.E. et al., 2012]. Пероксидаза эозинофилов катализирует окисление галогенидов, псевдогалогенидов и оксида азота с образованием активных форм

кислорода и азота, которые вызывают окислительный стресс и могут способствовать последующей гибели клеток путем апоптоза и некроза [Borelli V. et al., 2003; Wang J., Slungaard A., 2006].

Учитывая вышеизложенное, в данном проекте будет изучена экспрессия ключевых факторов роста и ангиогенеза (VEGFR, EGFR, TGFбета и TNFальфа) в опухолевой ткани, а также содержание эозинофильного катионного протеина и эозинофильной пероксидазы в клетках околоопухолевого и внутриопухолевого воспалительного инфильтрата у больных раком желудка и толстой кишки, сопровождающимся ТАТЕ.

При исследовании кооперативного взаимодействия «эозинофил – опухолевая клетка» будет проанализирован уровень экспрессии опухолевой тканью белковрегуляторов клеточного цикла р53, р21 и р27 [Желтухин А.О., Чумаков П.М., 2010]. Действуя как специфический транскрипционный фактор, р53 регулирует активность множества генов: индуцирует транскрипцию проапоптозных генов и репрессирует антиапоптозные гены. Ген р21 является одной из основных мишеней трансактивационного действия р53, который может координировать процесс репарации, либо индуцировать апоптоз [Rodriguez I. et al., 2007]. В целом p21 препятствует делению клетки, являясь супрессорным белком [Ченцов Ю.С., 2005]. Нарушение экспрессии белков р53, р21 и р27 является наиболее универсальным молекулярным изменением в различных новообразованиях [Pasquali D. et al., 2011]. На основании данных литературы, полиморфизм генов-регуляторов клеточного цикла (р53, р27 и р21) участвует в канцерогенезе. В связи с этим в проекте планируется проанализировать наиболее известные полиморфные варианты генов: p21 (A1026G) и (G369C), p53 (G72C), гена p27 (T326G Val109Gly) у больных раком желудка и толстой кишки, ассоциированным с ТАТЕ.

выполнения данного проекта будут изучены ходе также молекулярногенетические механизмы формирования ТАТЕ при раке желудка и толстой кишки. В 90% случаев формирование эозинофилии при патологии связывают с гиперпродукцией ключевых эозинофил-активирующих медиаторов интерлейкина (IL) 5 и эотаксинов, действующих путем связывания со специфическими рецепторами (IL-5R и CCR3 соответственно) [Wise E.L. et al., 2010; Endo Y. et al., 2011; Fukushima Y. et al., 2012; Zafra M.P. et al., 2012]. В связи с этим планируется оценить экспрессию соответствующих рецепторных структур (IL-5RA и CCR3) на эозинофилах, инфильтрирующих опухолевую ткань. Кроме этого, будет проведена оценка аллельного полиморфизма промоторных регионов генов цитокинов (IL-5 (C703T) и CCL11 (A384G)) и их рецепторов (IL-5R (G5091A) и CCR3 (Т652A)) с последующим анализом взаимосвязи данных полиморфных вариантов генов с уровнем экспрессии рецепторных структур и наличием ТАТЕ при раке желудка и толстой кишки.

7. Методы исследования

Реализация настоящего проекта предполагает выполнение исследования с привлечением современных методов молекулярной биологии, иммунологии и генетикостатистического анализа:

- иммуногистохимический метод (метод микроскопического исследования тканей при помощи моноклональных антител, позволяет с высокой специфичностью выявить искомое вещество). Данный метод будет использован для оценки

экспрессии: VEGFR, EGFR, TGFбета, TNFальфа, эотаксин-1 (CCL11), CCR3, p53, p21 и p27 опухолевой тканью и ее микроокружением с использованием автоматического иммуногистостейнера BondmaX.

- полимеразная цепная реакция в реальном времени (RT-PCR) (высоко специфичный метод за счет использования высокоспецифичных флуоресцентных зондов; характеризуется высокой производительностью; минимизирован риск контаминации и ошибок при анализе результатов). Данный метод будет использован для оценки полиморфных вариантов генов: p21 (A1026G) и (G369C), p53 (G72C), p27 (T326G Val109Gly), IL-5 (C703T), CCL11 (A384G), IL-5R (G5091A) и CCR3 (T652A).
- статистический анализ результатов исследования будет проводиться с использованием стандартного пакета программ Statistica 10.0. нормальности распределения количественных показателей будет проводиться с применением критерия Шапиро-Уилка W. Для нормально распределенных выборок вычисляются средневыборочные характеристики: среднее арифметическое (X), среднее квадратичное отклонение (σ), ошибка среднего (m). Для выборок, распределение которых отличается от нормального, рассчитывается медиана (М), первый (Q1) и третий (Q3) квартили. При соответствии нормальному закону распределения признака в исследуемых выборках проверка гипотезы о равенстве средних выборочных величин проводится с использованием t-критерия Стъюдента. Для оценки достоверности различий выборок, не подчиняющихся критерию нормального распределения, будет использован U-критерий Манна-Уитни для независимых групп. С целью выявления функциональных взаимосвязей между группами изучаемых количественных параметров будет применен корреляционный анализ путем вычисления коэффициента ранговой корреляции Спирмена (r). При анализе качественных признаков для каждой выборки будут вычислены W выборочные доли и Sw — средняя ошибка выборки для доли, выраженной в %. Проверка гипотезы о равенстве долей в двух исследуемых выборках будет проводиться методом угловой трансформации, основанной на ф-преобразовании Фишера с введением поправки Йейтса. Оценка взаимосвязи изучаемых качественных признаков будет проводиться с использованием бисериального коэффициента корреляции и коэффициента ассоциации. Различие сравниваемых величин будет считаться достоверным при уровне значимости р≤0,05. Распределение генотипов по исследуемым полиморфным локусам будет проверяться на соответствие равновесию Харди-Вайнберга с помощью точного теста Фишера. Для сравнения частот аллелей между различными группами будет использован критерий у2 Пирсона. Обработка результатов генетических исследований будет осуществляться с использованием критерия отношения шансов OR с расчетом для него 95 % доверительного интервала (OR). OR=1 — отсутствие связи между сравниваемыми факторами (признаками), OR<1 – отрицательная связь и, OR>1 – положительная связь признаков.

8. Планируемые результаты НИР

В ходе выполнения настоящего проекта будет изучена экспрессия на клетках околоопухолевого и внутриопухолевого воспалительного инфильтрата факторов, обусловливающих рост опухоли (факторы ангиогенеза VEGFR и EGFR) у пациентов с раком желудка и толстой кишки на фоне TATE. Интерпретация полученных

результатов позволит сделать вывод об участии эозинофильных гранулоцитов в механизмах роста новых сосудов в опухоли. Изучение экспрессии молекул с противоопухолевой активностью (ТСБбета, ТNБальфа, эозинофильный катионный протеин и эозинофильная пероксидаза), а также белков-регуляторов клеточного цикла (р53, р21, р27) с оценкой аллельного полиморфизма генов этих белков позволит подтвердить или опровергнуть наше предположение о благоприятной роли эозинофилов в ответе макроорганизма на опухолевую трансформацию клеток желудка и толстой кишки.

Известно, что эозинофильные гранулоциты являются многофункциональными клетками, которые способны мигрировать за пределы кровеносных сосудов и создавать клеточный пул в тканях. Желудочно-кишечный тракт (ЖКТ) является основным местом локализации тканевых эозинофилов. Ключевую роль в привлечении эозинофилов в ткани играет эотаксин-1 (CCL11). Изучение экспрессии CCL11 и его рецептора CCR3 в опухолевой ткани у больных раком желудка и толстой кишки позволит оценить роль этих факторов в формировании ТАТЕ при злокачественных новообразованиях ЖКТ.

По результатам предварительного анализа историй болезни пациентов с онкопатологией показано, что явление опухолеассоциированной тканевой эозинофилии характерно не для всех больных раком желудка и толстой кишки. Изучение полиморфных вариантов генов (IL5 (C703T), CCL11 (A384G), IL5R (G5091A) и CCR3 (T652A)), принимающих участие в формировании эозинофилии, позволит оценить роль наследственного фактора и существование индивидуальной предрасположенности у пациентов к развитию TATE.

В целом реализация настоящего проекта позволит сформулировать новые знания фундаментального характера о влиянии ТАТЕ на активность опухолевого процесса в ЖКТ и установить особенности межклеточной кооперации эозинофильных гранулоцитов и опухолевых клеток при раке желудка и толстой кишки. Комплексное исследование ТАТЕ позволит идентифицировать новый диагностически значимый фактор прогноза течения опухолевого процесса при раке желудка и толстой кишки, и ответить на вопрос о целесообразности коррекции данной реакции.

9. Практическая значимость проекта

К настоящему времени в современной, преимущественно зарубежной, литературе накоплены знания биологии эозинофила: широкий спектр компонентов эозинофильных гранул, особенности рецепторного аппарата, участие в реализации многих защитных реакций организма. Все это обосновывает наличие высокого противоопухолевого потенциала у этих клеток. В то же время, неоднозначные результаты эпидемиологических исследований и сведения отдельных исследователей об участии эозинофилов в процессе ремоделирования тканей указывают на способность эозинофильных гранулоцитов содействовать патогенезу опухоли.

Вместе с тем на сегодняшний день отсутствуют однозначные представления о механизмах развития опухолеассоциированной эозинофилии (ТАТЕ). До сих пор не существует четкого понимания возможности использования этого показателя в качестве положительного или отрицательного признака болезни. В отечественной и зарубежной литературе отсутствуют данные, касающиеся молекулярных механизмов межклеточной кооперации эозинофильных гранулоцитов и опухолевых

клеток, а также молекулярных путей взаимодействия, в которые могут вовлекаться продуцируемые эозинофилами факторы в процессе канцерогенеза. Отсутствие единого мнения научного сообщества о механизмах развития ТАТЕ и роли эозинофилов в канцерогенезе, а также высокий противоопухолевый потенциал гранулярного аппарата этих клеток обосновывает несомненную актуальность выполнения настоящего проекта.

Актуальность данного исследования обусловлена также значительным интересом практикующих врачей-онкологов к изучению проблемы ТАТЕ при онкопатологии. При этом специалисты затрудняются однозначно интерпретировать причины и целесообразность возникновения этой реакции при злокачественных новообразованиях ЖКТ как до лечения, так и на фоне лучевой терапии.

Таким образом, результаты предлагаемого нами проекта, касающиеся роли опухолеассоциированной эозинофилии при раке желудка и толстой кишки, вопервых, могут быть положены в основу разработки новых подходов к прогнозированию клинического течения и прогрессирования опухолевого процесса, а во-вторых, позволят оценить необходимость использования корригирующей терапии TATE при раке желудка и толстой кишки. Полученные в результате выполнения проекта данные могут открыть новые возможности для целенаправленного регулирования количества эозинофилов при онкопатологии.

10. Перспективы дальнейшего развития результатов НИР, возможности внедрения

Дальнейшее исследование, возможно, будет направлено на расширение изучаемого спектра секретируемых молекул и рецепторных структур эозинофилов, для поиска новых неизвестных путей реализации их функций в процессе целесообразным канцерогенеза. Α также представляется изучение опухолеассоциированной эозинофилии крови, которая также нередко регистрируется при опухолевой патологии, однако имеет иные предполагаемые причины развития и исходы.

Полученные знания, касающиеся молекулярно-генетических механизмов формирования эозинофилии и роли эозинофильных гранулоцитов в канцерогенезе, во-первых, могут быть положены в основу разработки новых подходов к прогнозированию клинического течения и прогрессирования опухолевого процесса, а во-вторых, позволят оценить перспективность использования корригирующей терапии эозинофильной реакции при раке желуди толстой кишки. Полученные в результате реализации проекта данные откроют новые возможности для целенаправленного и патогенетически обоснованного регулирования количества эозинофилов посредством влияния на рецепторный аппарат клетки, а также путем изменения уровня эозинофилактивирующих факторов в крови.

11. Этап (подготовительный, проектировочный, экспериментальный, аналитический, др.)

Экспериментальный.

12. Полученные предварительные результаты проекта – публикации, заявки на изобретения, рационализаторские предложения и т.д.

На данном этапе проводимых исследований у коллектива имеется достаточный задел по изучению механизмов эозинофилии, особенностей структуры и функции эозинофилов периферической крови при патологии инфекционного и неинфекционного генеза (Вестник РАМН.— 2012.- № 5.— С. 58—62; Цитокины и воспаление.— 2015.— Том 14, № 1. — С. 96-100; Бюллетень экспериментальной биологии и медицины.— 2015.— Том 159, № 3.— С. 300-303).

Получены и отражены в публикациях первые данные в рамках настоящего проекта:

- 1. Опухолеассоциированная эозинофилия / Янкович К.И., Дмитриева А.И., Уразова О.И., Колобовникова Ю.В., Новицкий В.В., Пурлик И.Л./ Вопросы онкологии. 2016. Т. 62. № 4. С. 394-400.
- 2. Роль эотаксина и его рецептора в механизмах формирования опухолеассоциированной тканевой эозинофилии у больных раком толстой кишки / Янкович К.И., Дмитриева А.И., Колобовникова Ю.В., Уразова О.И., Новицкий В.В., Пурлик И.Л. // Российский иммунологический журнал. 2016. Т. 10 (19), № 3. С. 372-374.
- 3. Ассоциация полиморфизма гена IL5 (С-703Т) с развитием тканевой эозинофилии у больных раком толстой кишки / Дмитриева А.И., Уразова О.И., Янкович К.И., Колобовникова Ю.В., Новицкий В.В., Пурлик И.Л. // Российский иммунологический журнал. 2016. Т. 10 (19), № 2(1). С. 317-318.
- 4. Значение гемической и тканевой эозинофилии при раке толстого кишечника / Дмитриева А.И., Янкович К.И., Уразова О.И., Колобовникова Ю.В., Новицкий В.В. // Гематология и трансфузиология. 2016. № 61 (Приложение 1). С. 112.

13. Календарный план реализации или этапный механизм осуществления проекта

Настоящее исследование включает два этапа. На первом этапе предполагается изучить молекулярные механизмы кооперативного взаимодействия эозинофильных гранулоцитов и опухолевых клеток для установления роли эозинофилов (компонента околоопухолевого и внутриопухолевого воспалительного инфильтрата) в канцерогенезе. Для решения поставленных задач на этом этапе будут сформированы группы обследуемых лиц: группы больных раком желудка и толстой кишки с ТАТЕ и без таковой; с наличием и отсутствием очагов метастазирования; группы сравнения — пациенты с аденомами желудка и толстой кишки. Будут отработаны методические приемы ПО проведению методов иммуногистохимического исследования и полимеразной цепной реакции в реальном времени. Непосредственное исследование кооперативного взаимодействия «эозинофил – опухолевая клетка» будет проводиться путем изучения следующих показателей:

- исследование экспрессии VEGFR, EGFR, TGFбета, TNFальфа, эозинофильного катионного протеина и эозинофильной пероксидазы в клетках околоопухолевого и внутриопухолевого воспалительного инфильтрата методом иммуногистохимии;
- изучение экспрессии белков-регуляторов клеточного цикла p53, p21 и p27 в опухолевых клетках методом иммуногистохимии;
- оценка аллельного полиморфизма генов *p21 (A1026G)* и *(G369C)*, гена *p53 (G72C)*, гена *p27 (T326G Val109Gly)* методом полимеразной цепной реакции в реальном времени (RT-PCR).

Ha втором этапе выполнения данного проекта будут изучены молекулярногенетические механизмы формирования тканевой эозинофилии при раке желудка и толстой кишки. С этой целью методом иммуногистохимии будет исследована экспрессия CCL11 и соответствующего рецептора CCR3 опухолевой тканью у больных раком желудка и толстой кишки. Также будет проведена оценка аллельного полиморфизма генов IL5 (C703T), CCL11 (A384G), IL5R (G5091A) и *CCR3 (T652A)* методом полимеразной цепной реакции в реальном времени (RT-PCR) и анализ взаимосвязи данных полиморфных вариантов генов эозинофилактивирующих факторов с наличием эозинофильной инфильтрации опухолевой ткани. В рамках второго этапа будет произведен поиск корреляционных взаимосвязей между наличием ТАТЕ и клиникоморфологическими параметрами опухолевого процесса при раке желудка и толстой кишки. Предполагается оценить прогностическую значимость эозинофилии в отношении формирования очагов метастазирования, возникновения рецидива и общей выживаемости пациентов с раком желудка и толстой кишки. Сопоставление полученных результатов позволит определить и обосновать возможность использования ТАТЕ в качестве маркера опухолевого процесса у больных раком желудка и толстой кишки.

14. Финансовые затраты, необходимые для осуществления проекта (финансовая модель, и.т.п.)

Финансовые затраты, необходимые для реализации настоящего проекта связанны в основном с применением современных высокотехнологичных методов. иммуногистохимического исследования проведения планируется приобретение моноклональных антител, а также расходных материалов, в том числе раствора Бонд для высокотемпературной демаскировки, отмывочного раствора Бонд, раствора для депарафинизации Бонд, станции для смешивания ДАБ, контейнера Бонд открытого типа, предметных стекол X-TRA с адгезивной поверхностью, покровных стекол. Для проведения RT-PCR необходимы набор реагентов для выделения ДНК, высокоточная ДНК полимераза, набор нуклеотидов, расходные соответствующие праймеры И материалы (наконечники автоматических пипеток, микроцентрифужные пробирки эппендорф).

Также запланированы расходы на поездку на конференцию по тематике проекта с целью представления результатов собственного исследования и расходы по договорам на предоставление редакционно-издательских услуг.