Linguaggi formali e compilazione Corso di Laurea in Informatica

A.A. 2012/2013

Linguaggi formali e compilazione

Analisi sintattica Grammatiche libere

Analisi sintattica
Grammatiche libere

Scopo del parsing

- L'obiettivo della fase di parsing è innanzitutto di stabilire se una sequenza di token rappresenta una "frase" corretta del linguaggio e, nel caso, descriverne la struttura.
- Sulla base di che cosa possiamo stabilire, ad esempio, che

```
while (a>0) {a=a-1}
è una frase corretta in C/C++, mentre
while (a>0) a=a-1}
è una frase sintatticamente errata?
```

- La risposta (anche se solo parziale) è che una frase è corretta se e solo se è conforme alla sintassi del linguaggio.
- Il formalismo che si è imposto per la descrizione della sintassi dei linguaggi di programmazione è quello delle grammatiche libere (da contesto), in inglese context-free grammar.

Un pezzo di grammatica del C

```
iteration statement
    : while '(' expression ')' statement
     do statement while '(' expression ')' ';'
     for '(' expression_statement expression_statement ')' statement
     for '(' expression_statement expression_statement expression ')' statement
statement
    : labeled_statement
     compound_statement
     expression_statement
     selection statement
     iteration statement
     jump statement
compound_statement
   : '{' '}'
    | '{' statement list '}'
    | '{' declaration list '}'
    | '{' declaration_list statement_list '}'
```

Analisi sintattio

- ► Come le espressioni regolari, anche le grammatiche formali (da qui in avanti semplicemente grammatiche), sono uno strumento per la descrizione di linguaggi.
- Una grammatica è un formalismo generativo perché il linguaggio da essa definito coincide con l'insieme delle stringhe che possono essere "generate" usando determinate regole che fanno parte della grammatica stessa.
- Le grammatiche possono avere diversi gradi di espressività, e dunque definire linguaggi più o meno ricchi.
- Esiste però un forte compromesso fra espressività e possibilità di riconoscimento automatico, che vedremo ben rappresentato nel caso caso dei linguaggi di programmazione.

- Diamo ora la definizione generale di grammatica (formale).
- Una grammatica G è una quadrupla di elementi:

$$G = (\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{S}),$$

dove

- ▶ N è un insieme di simboli, detti non terminali;
- ▶ \mathcal{T} è un insieme di simboli *terminali*, $\mathcal{N} \cap \mathcal{T} = \Phi$;
- ▶ \mathcal{P} è l'insieme delle *produzioni*, cioè scritture della forma $X \to Y$, dove $X, Y \in (\mathcal{N} \cup \mathcal{T})^*$;
- $S \in \mathcal{N}$ è il simbolo iniziale (o assioma).
- ▶ Conviene anche definire l'insieme $V = N \cup T$ come il *vocabolario* della grammatica.

Le produzioni

- La forma delle produzioni è ciò che caratterizza propriamente il "tipo" di grammatica, cioè la sua capacità espressiva.
- Se le produzioni sono del tipo: A → xB oppure A → x, dove x ∈ T e A, B ∈ N, la grammatica è detta lineare destra.
- Se invece le produzioni sono del tipo: A → Bx oppure A → x, dove x ∈ T e A, B ∈ N, la grammatica è detta lineare sinistra.
- Una grammatica regolare è una grammatica lineare (destra o sinistra).
- Il nome non è casuale. Infatti grammatiche regolari descrivono proprio i linguaggi regolari che già conosciamo.

Le produzioni

- Per la definizione della sintassi dei linguaggi di programmazione, hanno invece particolare importanza i cosiddetti linguaggi liberi da contesto (o più semplicemente linguaggi liberi).
- I linguaggi liberi sono generabili da grammatiche (dette anch'esse libere) in cui le produzioni hanno la seguente forma generale

$$A \rightarrow X$$

dove $A \in \mathcal{N}$ e $X \in \mathcal{V}^*$, cioè in cui la parte sinistra è un qualunque simbolo non terminale mentre la parte destra è una qualunque stringa di terminali o non terminali.

- Il meccanismo in base al quale le grammatiche "generano" linguaggi è quello delle derivazioni.
- Una derivazione è il processo mediante il quale, a partire dall'assioma ed applicando una sequenza di produzioni, si ottiene una stringa di T*, cioè una stringa composta da soli terminali.
- Le produzioni rappresentano infatti vere e proprie regole di riscrittura.
- Ad esempio, una produzione del tipo

$$E \rightarrow E + E$$

si può leggere nel seguente modo: il simbolo E può essere "riscritto" come E+E.

- L'idea è che una grammatica descriva (generi) il linguaggio costituito proprio dalle sequenze di simboli terminali derivabili a partire dall'assioma S.
- ► Consideriamo, ad esempio, la grammatica $G_5 = (\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{S})$ così definita:
 - $\blacktriangleright \mathcal{N} = \{S, A, B\};$
 - → T = {a,b};
 - ▶ S = S;
 - P contiene le seguenti produzioni:

Nel linguaggio generato da G₅ è inclusa la stringa ab perché:

$$S \Rightarrow A \Rightarrow aA \Rightarrow aB \Rightarrow ab$$
.

- La scrittura α ⇒ β (dove α, β ∈ V*) indica che β può essere ottenuta direttamente da α mediante l'applicazione di una produzione della grammatica.
- Ad esempio, con riferimento alla derivazione del lucido precedente, $aA \Rightarrow aB$ perché nella grammatica G_5 è presente la produzione $A \rightarrow B$.
- Non sarebbe stato corretto scrivere aA → aB (perché non esiste una tale produzione).
- ▶ Se α deriva β mediante l'applicazione di 0 o più produzioni si scrive $\alpha \stackrel{*}{\Rightarrow}_{\mathbf{G}} \beta$.
- ▶ Ad esempio, in G_5 , a $A \stackrel{*}{\Rightarrow}_G$ ab.

- Una grammatica può essere espressa in modo più succinto elencando le sole produzioni, qualora si convenga che le prime produzioni in elenco siano quelle relative all'assioma.
- Ad esempio, scrivendo

$$E \rightarrow E+E$$
 $E \rightarrow E*E$
 $E \rightarrow (E)$
 $E \rightarrow id$

intendiamo la grammatica $G_1 = (\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{S})$ in cui:

- N = {E};
 T = {id, +, *, (,)};
 S = E;
- e le produzioni sono ovviamente quelle indicate.

Altri esempi di derivazione

Consideriamo la grammatica G_1 appena introdotta. Allora:

- ▶ $E+E \Rightarrow_{G_1} id+E$ tramite l'applicazione della produzione $E \rightarrow id$ alla prima occorrenza di E.
- ▶ $E+E \stackrel{*}{\Rightarrow}_{G_1} id + id$ tramite l'applicazione della produzione $E \rightarrow id$ ad entrambe le occorrenze di E.
- ▶ $E \stackrel{*}{\Rightarrow}_{G_1} id + (E)$ in quanto $E \Rightarrow_{G_1} E + E \Rightarrow_{G_1} E + (E) \Rightarrow_{G_1} id + (E)$.
- ▶ $E \stackrel{*}{\Rightarrow}_{G_1} id + (id)$, in quanto $E \Rightarrow_{G_1} E + E \Rightarrow_{G_1} E + (E) \Rightarrow_{G_1} id + (E) \Rightarrow_{G_1} id + (id)$.
- ▶ Una derivazione alternativa per id + (id) è $E \Rightarrow_{G_1} E+E \Rightarrow_{G_1} id+E \Rightarrow_{G_1} id+(E) \Rightarrow_{G_1} id+(id)$.

- Possiamo economizzare ancora sulla descrizione di una grammatica "fondendo" produzioni che hanno la stessa parte sinistra.
- ▶ È consuetudine, infatti, usare la scrittura $X \to Y|Z$ al posto di $X \to Y$ e $X \to Z$.
- ► Usando anche questa convenzione, la grammatica G₅ può essere descritta nel seguente modo compatto:

$$\begin{array}{lll} \mathsf{S} & \to & \epsilon \mid \mathsf{A} \\ \mathsf{A} & \to & \mathtt{a} \mid \mathtt{a} \mathsf{A} \mid \mathsf{B} \\ \mathsf{B} & \to & \mathtt{b} \mathsf{B} \mid \mathtt{b} \end{array}$$

- Si noti come nella descrizione di una grammatica si utilizzino simboli che non sono terminali ne' non terminali, come ad esempio → e | .
- ► Tali simboli prendono il nome di metasimboli.

Sia $G = (\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{S})$ una grammatica.

- ▶ Si chiama forma di frase di G una qualunque stringa α di \mathcal{V}^* tale che $\mathcal{S} \stackrel{*}{\Rightarrow}_{\mathsf{G}} \alpha$.
- Se α ∈ T* allora si dice che α è anche una frase di G.
- Dagli esempi precedenti possiamo conlcudere (ad esempio) che:
 - ▶ le stringhe id + (E) e id + (id) sono forme di frase di G₁;
 - ▶ le stringhe abB, abbB e ab sono forme di frase di G₅;
 - id + (id) e ab sono anche frasi;
 - ▶ baA non è una forma di frase di G₅.
- ► Il linguaggio generato da G, spesso indicato con L(G), è l'insieme delle frasi di G.

- ▶ La grammatica G_5 genera il linguaggio $L_5 = \{a^n b^m | n, m \ge 0\}.$
- ▶ La grammatica G₁ genera il linguaggio delle espressioni aritmetiche composte da +, *, (,) e id.
- Le stringhe più corte in $L(G_1)$ sono id, id + id, id * id, (id).

- Per dimostrare formalmente che una data grammatica G genera un dato linguaggio L (cioè per provare che L = L(G)) si procede solitamente per induzione.
- Dapprima si formula una congettura sulla forma delle frasi di L(G), provando alcune semplici derivazioni.
- Dopodiché si dimostra separatamente che:
 - se X è generata dal linguaggio, allora X ha la particolare forma congetturata;
 - se X è una stringa con quella particolare forma, allora esiste una derivazione in grado di generarla.
- Il procedimento può essere (relativamente) complesso anche per grammatiche molto semplici.

- ▶ Dimostriamo formalmente che la grammatica G_5 genera il linguaggio $L_5 = a^*b^*$.
- Ricordiamo che G₅ è:

$$\begin{array}{lll} \mathsf{S} & \to & \epsilon \mid \mathsf{A} \\ \mathsf{A} & \to & \mathsf{a} \mid \mathsf{a} \mathsf{A} \mid \mathsf{B} \\ \mathsf{B} & \to & \mathsf{b} \mathsf{B} \mid \mathsf{b} \end{array}$$

- ▶ G_5 genera "solo" stringhe del tipo a^nb^m .
 - $S \Rightarrow \epsilon$
 - $S \Rightarrow A \stackrel{k}{\Rightarrow} a^k A \Rightarrow a^{k+1}, \qquad k \ge 0$
 - $S \Rightarrow A \stackrel{k}{\Rightarrow} a^k A \Rightarrow a^k B \stackrel{h}{\Rightarrow} a^k b^h B \Rightarrow a^k b^{h+1},$ $h, k \ge 0$
- G_5 genera "tutte" le stringhe del tipo a^nb^m .
 - Segue dall'arbitrarietà di k e h sopra.

Gerarchia di Chomsky

- La seguente tabella descrive la gerarchia di grammatiche, ad ognuna delle quali viene associato l'automa riconoscitore e la classe di linguaggi corrispondente.
- ▶ La progressione è dalla grammatica meno espressiva (tipo 3) a quella più espressiva (tipo 0).

Tipo	Grammatica	Automa	Linguaggio
3	Regolare	Automa finito	Regolare
2	Libera	Automa a pila	Libero
1	Dipendente	Automa limitato	Dipendente
	dal contesto	linearmente	dal contesto
0	Ricorsiva	Macchina di	Ricorsivamente
		Turing	enumerabile

Tipi dei linguaggi

- Si può dimostrare che se un linguaggio è generabile da una grammatica lineare (tipo 3) allora è regolare.
- Se invece un linguaggio L è generato da una grammatica G di tipo i (i = 0, .., 2), allora L è "al più" di tipo i.
- ► Infatti L potrebbe essere generabile anche da una grammatica più semplice (di tipo i + 1).
- ► Il linguaggio L₅ è regolare perché generato da una grammatica lineare, come abbiamo appena dimostrato.
- ▶ Il linguaggio *L*(*G*₁) è invece al più libero perché generabile da una grammatica libera.

Tipi dei linguaggi

 Posto Σ = {a,b,c}, Il linguaggio su Σ* costituito dalle stringhe in cui ogni a è seguita una b è al più libero perché generato da

$$S \rightarrow \epsilon \mid R$$

 $R \rightarrow b \mid c \mid ab \mid RR$

- In realtà L è regolare, in quanto definibile anche mediante l'espressione regolare (b + c + ab)*.
- ▶ Il linguaggio L_{11} su $\{a,b\}$ costituito da tutte le stringhe α palindrome (cioè tali che $\alpha^R = \alpha$) è libero in quanto generabile dalla grammatica

$$S \rightarrow aSa, S \rightarrow bSb, S \rightarrow a, S \rightarrow b, S \rightarrow \epsilon$$

Si può poi dimostrare che L_{11} non è regolare.

- Come sappiamo, le espressioni regolari sono un formalismo per definire linguaggi.
- ▶ Ad esempio, l'espressione regolare $0(0 + 1)^*$, sull'alfabeto \mathcal{B} , definisce il linguaggio delle stringhe binarie che iniziano con 0.
- Per essere "manipolabili" automaticamente (ad esempio, per passare da un'espressione regolare al corrispondente automa nondeterministico), le espressioni regolari devono essere riconosciute come ben formate.
- Ad esempio, l'espressione 0(0 +* 1 è ben formata? Potremmo procedere alla costruzione dell'automa?

- Stabilire quali sono le espressioni regolari ben formate su, ad esempio, l'alfabeto B non può essere fatto usando lo stesso formalismo delle espressioni regolari.
- Cioè non può esistere un'espressione regolare sull'alfabeto {0,1,(,),+,*,ε} che comprenda tutte e sole le espressioni regolari su B.
- Questa cosa si può fare invece usando una grammatica libera!

Un esempio più complesso: le e.r. come linguaggio libero

Grammatiche libere

► La grammatica G₂ così definita

$$E \rightarrow T \mid T+E$$

$$T \rightarrow F \mid FT$$

$$F \rightarrow (E) \mid (E)^* \mid A \mid A^*,$$

$$A \rightarrow 0 \mid 1$$

genera tutte le stringhe sull'alfabeto $\mathbf{0}, \mathbf{1}, (,), +, *, \epsilon$ che sono espressioni regolari ben formate sull'alfabeto \mathcal{B} .

Esempio (continua)

La stringa (epressione regolare) 0 (0+1)* appartiene a L(G₂) in quanto esiste la derivazione:

$$\begin{array}{lll} E & \Rightarrow_{G_2} & T \\ & \Rightarrow_{G_2} & FT & \text{Usando } T \rightarrow FT \\ & \Rightarrow_{G_2} & FF & \text{Usando } T \rightarrow F \\ & \Rightarrow_{G_2} & AF & \text{Usando } F \rightarrow A \\ & \Rightarrow_{G_2} & A(E)^* & \text{Usando } F \rightarrow (E)^* \\ & \Rightarrow_{G_2} & 0(E)^* & \text{Usando } A \rightarrow 0 \\ & \Rightarrow_{G_2} & 0(T+E)^* & \text{Usando } E \rightarrow T + E \\ & \Rightarrow_{G_2} & 0(T+T)^* & \text{Usando } E \rightarrow T \\ & \Rightarrow_{G_2} & 0(F+T)^* & \text{Usando } T \rightarrow F \\ & \Rightarrow_{G_2} & 0(F+F)^* & \text{Usando } T \rightarrow F \\ & \Rightarrow_{G_2} & 0(A+F)^* & \text{Usando } F \rightarrow A \\ & \Rightarrow_{G_2} & 0(A+A)^* & \text{Usando } F \rightarrow A \\ & \Rightarrow_{G_2} & 0(O+A)^* & \text{Usando } A \rightarrow 0 \\ & \Rightarrow_{G_2} & 0(O+1)^* & \text{Usando } A \rightarrow 1 \end{array}$$

- Nella descrizione della sintassi dei linguaggi di programmazione, i simboli non terminali, detti anche variabili sintattiche, vengono spesso rappresentati mediante un identificatore descrittivo racchiuso fra parentesi angolate.
- Esempio

```
\begin{array}{ll} \langle comando\ if \rangle & \rightarrow & if \, \langle espressione\ booleana \rangle\ then \\ & \quad \langle lista\ di\ comandi \rangle \\ & \quad endif\ | \\ & \quad if \, \langle espressione\ booleana \rangle\ then \\ & \quad \langle lista\ di\ comandi \rangle \\ & \quad else \\ & \quad \langle lista\ di\ comandi \rangle \\ & \quad endif \end{array}
```

Altri esempi

 Usando la BNF la grammatica G₁ verrebbe descritta dalle seguenti produzioni

```
Grammatiche libere
```

```
\begin{array}{lll} \langle espressione \rangle & \rightarrow & \langle espressione \rangle + \langle espressione \rangle \mid \\ \langle espressione \rangle & \rightarrow & \langle espressione \rangle * \langle espressione \rangle \mid \\ \langle espressione \rangle & \rightarrow & (\langle espressione \rangle) \mid id \end{array}
```

Una grammatica per le chiamate di procedura in Java

```
\begin{split} &\langle \text{chiamata}\rangle & \rightarrow & \text{id}\big(\langle \text{parametri-opzionali}\rangle\big) \\ &\langle \text{parametri-opzionali}\rangle & \rightarrow & \langle \text{lista-di-parametri}\rangle \mid \epsilon \\ &\langle \text{lista-di-parametri}\rangle & \rightarrow & \langle \text{lista-di-parametri}\rangle, \langle \text{parametro}\rangle \\ & & \langle \text{parametro}\rangle \end{split}
```

- Elementi opzionali possono essere inclusi fra i meta simboli [e].
- Ad esempio, potremo usare la scrittura

```
\begin{array}{ll} \langle comando \ if \rangle & \rightarrow & if \, \langle espressione \ booleana \rangle \ then \\ & \quad \langle lista \ di \ comandi \rangle \\ & \quad \left[ \ else \\ & \quad \langle lista \ di \ comandi \rangle \ \right] \\ & \quad endif \end{array}
```

- Elementi ripetitivi possono essere inclusi fra i metasimboli { e }.
- Ad esempio

```
\langle \text{list di comandi} \rangle \rightarrow \langle \text{comando} \rangle \{ ; \langle \text{comando} \rangle \}
```

Analisi sintattio Grammatiche libere

Altre convenzioni (continua)

- Più recentemente, nella BNF i simboli terminali vengono scritti in grassetto.
- In questo modo diventa possibile sopprimere l'uso delle parentesi angolate intorno alle variabili sintattiche, migliorando la leggibilità complessiva. Le variabili sintattiche continuano ad essere scritte in corsivo.
- Ad esempio, potremo scrivere

```
comando if → if espressione booleanathen

lista di comandi

[else

lista di comandi]

endif
```

Altre convenzioni (continua)

- Nel caso in cui possano sorgere ambiguità, i simboli terminali vengono racchiusi fra doppi apici.
- Un esempio è costituita dal caso di simboli terminali coincidenti con qualche metasimbolo.
- Esempio (tratto dalla sintassi del C):

```
comando\ composto \rightarrow {''}\{{''}\ \{\ dichiarazione\ \}\ \{\ comando\ \}{''}\}{''}
```

Esercizi proposti

- Fornire una grammatica libera per l'insieme delle stringhe costituite da parentesi correttamente bilanciate (ad esempio, ()(()) e (()) devono far parte del linguaggio, mentre ())(non deve farne parte).
- Fornire una grammatica libera per il linguaggio $L_{12} = \{a^n b^{2n} | n \ge 0\}$ sull'alfabeto $\{a, b\}$.
- Si consideri la seguente grammatica G_I

$$S \rightarrow I \mid A$$
 $I \rightarrow \text{ if } B \text{ then } S \mid \text{if } B \text{ then } S \text{ else } S$
 $A \rightarrow a$
 $B \rightarrow b$

e si fornisca una derivazione per la stringa if b then if b then a else a