MA 572: Homework 2

Carlos Salinas

January 28, 2016

PROBLEM 2.1 (HATCHER §2.1, Ex. 16)

- (a) Show that $H_0(X, A) = 0$ iff A meets each path-component of X.
- (b) Show that $H_1(X, A) = 0$ iff $H_1(A) \to H_1(X)$ is surjective and each path-component of X contains at most one path-component of A.

Proof. (a) Let $i: A \hookrightarrow X$ denote the inclusion map. Then, the map i can be extended to a chain map between chain complexes so, by proposition 2.9, induces a homomorphism $i_*: H_*(A) \to H_*(X)$ on homology. Similarly, the map $j_\#: C_*(X) \to C_*(X,A)$ induces a map $j_*: H_*(X) \to H_*(X,A)$ so, by theorem 2.16, we have a long exact sequence

$$\cdots \xrightarrow{\partial_*} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \xrightarrow{0} 0 \tag{1}$$

on homology. Thus, we see that $H_0(X, A) = 0$ if and only if i_* is injective which, by proposition 2.6, happens if and only if A meets each path-component of X.

(b) Let us extend to the left the long exact sequence of homology groups in (1) as follows

$$\cdots \xrightarrow{\partial_*} H_1(A) \xrightarrow{i_*} H_1(X) \xrightarrow{j_*} H_1(X,A) \xrightarrow{\partial_*} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X,A) \xrightarrow{0} 0. \tag{2}$$

Hence, $H_1(X, A) = 0$ if and only if $j_* = 0$ and $\partial_* = 0$ if and only if i_* is surjective and i_* is injective on $H_0(A) \to H_0(X)$, i.e, each path-component of X contains at most one path-component of A.

MA 572: Homework 2

PROBLEM 2.2 (HATCHER §2.1, Ex. 18)

Show that for the subspace $\mathbf{Q} \subset \mathbf{R}$, the relative homology group $H_1(\mathbf{R}, \mathbf{Q})$ is free abelian and find a basis.

Proof. Consider the long exact sequence of homology reduced groups

$$\cdots \xrightarrow{\partial_*} \widetilde{H}_1(\mathbf{Q}) \xrightarrow{i_*} \widetilde{H}_1(\mathbf{R}) \xrightarrow{j_*} \widetilde{H}_1(\mathbf{R}, \mathbf{Q}) \xrightarrow{\partial_*} \widetilde{H}_0(\mathbf{Q}) \xrightarrow{i_*} \widetilde{H}_0(\mathbf{R}) \xrightarrow{j_*} \widetilde{H}_0(\mathbf{R}, \mathbf{Q}) \xrightarrow{0} 0.$$
 (3)

Since the space **R** is contractible, $\widetilde{H}_*(\mathbf{R}) = 0$ which implies that the maps $i_* = 0$ and $j_* = 0$ on $\widetilde{H}_0(\mathbf{Q}) \to \widetilde{H}_0(\mathbf{R})$ and $\widetilde{H}_1(\mathbf{R}) \to \widetilde{H}_1(\mathbf{R}, \mathbf{Q})$, respectively. Thus, $\widetilde{H}_1(\mathbf{R}, \mathbf{Q}) \cong \widetilde{H}_0(\mathbf{Q})$, i.e., $H_0(\mathbf{Q}) = H_1(\mathbf{R}, \mathbf{Q}) \oplus \mathbf{Z}$. Since, **Q** is totally disconnected, i.e., every connected component and hence, path-component of **Q** is a singleton set, we have $H_0(\mathbf{Q}) \cong \mathbf{Z}[\mathbf{Q}]$. So, $H_1(\mathbf{R}, \mathbf{Q}) \cong H_0(\mathbf{Q})$.

MA 572: Homework 2

CARLOS SALINAS PROBLEM 2.3

Problem 2.3

Homotopy invariance of homology.

Proof. The proof of this follows immediately from corollary 2.10 for if $f: X \to Y$ and $g: Y \to X$ are maps with $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$ then by corollary 2.10 we have $(g \circ f)_* = \operatorname{id}_{H_*(Y)}$ and $(f \circ g)_* = \operatorname{id}_{H_*(X)}$, but $(f \circ g)_* = f_* \circ g_*$ and $(g \circ f)_* = g_* \circ f_*$ so $g_* = f_*^{-1}$ and we see that $H_*(X) \cong H_*(Y)$.

MA 572: Homework 2