

Amendments to the Specification:

Please replace the paragraph on page 22, lines 1-9 with the following amended paragraph:

Exemplary steps of the method 400 are shown in Fig. 4, and cross-sectional views of a substrate and layered materials during steps of the method are provided in Figs. 5A – 5G. In an initial step 402, a substrate 42 32, having an irregular upper surface 33, is mounted in a mold 71, comprising a cover plate 68, spacers 70, a mounting surface 74, and an injection port 72. An inner surface 77 of cover plate 68 is planarized to the desired tolerance and polished to the desired surface finish. Substrate 32 is mounted to mounting surface 74, for example, a wafer chuck, so that the upper surface 33 of substrate 32 is substantially parallel to the inner surface 77. The depth of the sacrificial layer 30 to be formed in mold 71 is controlled by the thickness of spacers 70.

Please replace the paragraph on page 33, lines 3-11 with the following replacement paragraph:

A similar “one-up” method may be used to form molding surfaces for spring contacts, using plunge ~~EDM~~ electrical discharge machining ("EDM"). According to a plunge EDM method, a suitable plunge EDM tool is shaped like, and replaces, the transparent stamping tooth 36 discussed above with respect to method 1700. Instead of embossing a deformable substrate, the plunge EDM tool is used to form molding surfaces in a substantially non-deformable, electrically conductive substrate. Candidates for molding surfaces include metals and polymers filled with conductive particles or fibers. The surface so formed may be used as a mold form for spring contacts, or as a multi-toothed forming tool, depending on the characteristics of the conductive substrate and the desired objective.