EEE 551 Information Theory (Spring 2022)

Chapter 8: Differential Entropy

Motivation: Gaussian Channel

Motivation: Gaussian Channel

Standard entropy cannot be used with continuous variables

$$H(Z) = \infty$$

Brief Review of Continuous Random Variables

 \blacksquare For any random variable $X\in\mathbb{R},$ its cumulative distribution function (CDF) is

$$F_X(x) = \Pr\{X \le x\}.$$

- $F_X(x)$ is non-decreasing, right-continuous, $F_X(-\infty) = 0$, $F_X(\infty) = 1$
- A random variable is **continuous** if $F_X(x)$ is a continuous function
- lacktriangle The probability density function (PDF) of X is defined by

$$f_X(x) = \frac{dF_X(x)}{dx}$$

- The PDF always satisfies $f_X(x) \ge 0$ and $\int_{-\infty}^{\infty} f_X(x) \, dx = 1$
- lacksquare For any set $A\subset\mathbb{R}$,

$$\Pr\{X \in A\} = \int_A f_X(x) \, dx$$

- $\blacksquare \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- lacktriangle As with PMFs, we often use the notation $f(x)=f_X(x)$

Definition of Differential Entropy

- \blacksquare Let $X \in \mathbb{R}$ be a continuous random variable with PDF f(x)
- The differential entropy of X is given by

$$h(X) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx$$
$$= \mathbb{E} \left[-\log f(X) \right]$$

lacksquare Sometimes written h(f)

Example 1: Uniform random variable

Let X be uniform on [0, a]

$$f(x) = \begin{cases} \frac{1}{a} & x \in [0, a] \\ 0 & \text{otherwise} \end{cases}$$

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a$$

Example 1: Uniform random variable

Let X be uniform on [0, a]

$$f(x) = \begin{cases} \frac{1}{a} & x \in [0, a] \\ 0 & \text{otherwise} \end{cases}$$

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a$$

Differential entropy is weird!

- Can be negative
 - For constant c, $h(cX) \neq h(X)$

Example 2: Gaussian random variable

■
$$X \sim \mathcal{N}(0, \sigma^2)$$
, i.e. $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$

$$h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$$

Relationship between differential and discrete entropy

Differential entropy is related to the (discrete) entropy of a quantization of the continuous variable

- Fix $\Delta > 0$
- Define quantized random variable $X^{\Delta} \in \mathbb{Z}$ as

$$X^{\Delta} = i \quad \text{if} \quad i\Delta \le X < (i+1)\Delta$$

Theorem

$$h(X) = \lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta$$

That is, for small Δ , $H(X^{\Delta}) \approx h(X) - \log \Delta$

Proof:

■ For each integer i, choose $a_i \in [i\Delta, (i+1)\Delta)$ so that

$$f(a_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x) dx$$
 (exists by mean value theorem)

$$\Pr\{X^{\Delta} = i\} = \Pr\{i\Delta \le X < (i+1)\Delta\} = \int_{i\Delta}^{(i+1)\Delta} f(x) \, dx = f(a_i)\Delta$$

$$H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(a_i) \Delta \log (f(a_i) \Delta)$$

$$= -\sum_{i=-\infty}^{\infty} f(a_i) \Delta \log f(a_i) - \sum_{i=-\infty}^{\infty} f(a_i) \Delta \log \Delta$$

$$= -\Delta \sum_{i=-\infty}^{\infty} f(a_i) \log f(a_i) - \log \Delta$$

$$\lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta = \lim_{\Delta \to 0} -\Delta \sum_{i=-\infty}^{\infty} f(a_i) \log f(a_i)$$
$$= -\int_{-\infty}^{\infty} f(x) \log f(x) dx$$
$$= h(X)$$

Examples

Let $\Delta=2^{-n}.$ Then \boldsymbol{X}^{Δ} represents \boldsymbol{X} truncated to n bits after the decimal point

- If $X \sim \mathsf{Unif}[0,1]$, then $H(X^{\Delta}) \approx h(X) \log \Delta = n$ bits
- \blacksquare If $X \sim \mathrm{Unif}[0,1/8]$, then $H(X^\Delta) \approx h(X) \log \Delta = -3 + n$ bits
- If $X \sim \mathcal{N}(0,1)$, then $H(X^{\Delta}) \approx h(X) \log \Delta = 2.047 + n$ bits

Joint and Conditional Differential Entropy

Given $(X_1, X_2, \dots, X_n) \sim f(x^n)$, the **joint differential entropy** is given by

$$h(X_1, X_2, \dots, X_n) = -\int f(x^n) \log f(x^n) dx^n$$

Given $(X,Y) \sim f(x,y)$, the conditional differential entropy is given by

$$h(X|Y) = -\int f(x,y) \log f(x|y) dx dy$$
$$= h(X,Y) - h(Y)$$

Joint Differential Entropy Example

Let X_1, X_2, \ldots, X_n have multivariate normal distribution with mean μ and covariance K, i.e. $X^n \sim \mathcal{N}(\mu, K)$

$$f(x^n) = \frac{1}{(2\pi)^{n/2} |\mathbf{K}|^{1/2}} e^{-\frac{1}{2}(x^n - \boldsymbol{\mu})^T \mathbf{K}^{-1} (x^n - \boldsymbol{\mu})}$$

$$h(X^n) = \frac{1}{2} \log \left[(2\pi e)^n |\mathbf{K}| \right]$$

Relative Entropy and Mutual Information

lacktriangle Given two densities f(x) and g(x), the **relative entropy** is given by

$$D(f||g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$
$$= \mathbb{E}_f \left[\log \frac{f(X)}{g(X)} \right]$$

■ For $(X,Y) \sim f(x,y)$, the **mutual information** is given by

$$I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dx dy$$

$$= D(f(x,y)||f(x)f(y))$$

$$= h(X) + h(Y) - h(X,Y)$$

$$= h(X) - h(X|Y)$$

$$= h(Y) - h(Y|X)$$

If X^{Δ}, Y^{Δ} are quantized version of X, Y, then

$$I(X^{\Delta}; Y^{\Delta}) = H(X^{\Delta}) - H(X^{\Delta}|Y^{\Delta})$$

$$\approx [h(X) - \log \Delta] - [h(X|Y) - \log \Delta]$$

$$= I(X; Y)$$

Mutual Information Example

Let
$$(X,Y) \sim \mathcal{N}(\mathbf{0},\mathbf{K})$$
, where $\mathbf{K} = \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix}$

$$I(X;Y) = -\frac{1}{2}\log(1-\rho^2)$$

Properties

- $D(f||g) \ge 0$ with equality iff f = g almost everywhere
- $I(X;Y) \ge 0$ with equality iff X,Y are independent
- $lacksquare h(X|Y) \leq h(X)$ with equality iff X,Y are independent

$$h(X_1, X_2, \dots, X_n) = \sum_{i=1}^n h(X_i | X_1, \dots, X_{i-1})$$

- $lacksquare h(X_1,X_2,\ldots,X_n) \leq \sum_{i=1}^n h(X_i)$ with equality iff X_1,\ldots,X_n are independent
- h(X+c) = h(X)
- For any real number a, $h(aX) = h(X) + \log |a|$ Proof: Let Y = aX. $f_Y(y) = \frac{1}{|a|} f_X(y/a)$

$$h(Y) = \mathbb{E}[-\log f_Y(Y)]$$

$$= \mathbb{E}\left[-\log \frac{1}{|a|} f_X(Y/a)\right]$$

$$= \mathbb{E}\left[-\log f_X(X)\right] + \log |a|$$

$$= h(X) + \log |a|$$

■ For square matrix **A**, $h(\mathbf{A}X^n) = h(X^n) + \log |\det(\mathbf{A})|$

Example:

$$\begin{split} I(aX;bY) &= h(aX) + h(bY) - h(aX,bY) \\ &= \left[h(X) + \log|a| \right] + \left[h(Y) + \log|b| \right] - \left[h(X,Y) + \log|a| \cdot |b| \right] \\ &= I(X;Y) \end{split}$$

Differential Entropy Maximization

If $X \in \mathbb{R}$ be a random variable with $\mathbb{E}X^2 \leq \sigma^2$, then

$$h(X) \leq \frac{1}{2} \log 2\pi e \sigma^2$$
 with equality iff $X \sim \mathcal{N}(0, \sigma^2)$

More generally, if $X^n \in \mathbb{R}^n$ is a random vector with covariance matrix \mathbf{K} , then

$$h(X^n) \le \frac{1}{2} \log(2\pi e)^n |\mathbf{K}|$$
 with equality iff $X^n \sim \mathcal{N}(0, \mathbf{K})$

Proof of scalar property

Let f(x) be the pdf of X

■ Let
$$\phi(x) = \mathcal{N}(0, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

 $0 < D(f||\phi)$

$$\begin{split} &= \int f(x) \log \frac{f(x)}{\phi(x)} dx \\ &= -h(f) - \int f(x) \log \phi(x) dx \\ &= -h(f) - \int f(x) \left[-\frac{x^2}{2\sigma^2} \log e - \log \sqrt{2\pi\sigma^2} \right] dx \\ &= -h(f) - \mathbb{E} \left[-\frac{X^2}{2\sigma^2} \log e - \log \sqrt{2\pi\sigma^2} \right] \\ &= -h(f) + \frac{\mathbb{E}[X^2]}{2\sigma^2} \log e + \frac{1}{2} \log 2\pi\sigma^2 \\ &\leq -h(f) + \frac{\sigma^2}{2\sigma^2} \log e + \frac{1}{2} \log 2\pi\sigma^2 \end{split}$$

 $=-h(f)+\frac{1}{2}\log 2\pi e\sigma^2$

Vector property follows similarly

General Definition of Mutual Information

Consider the mixed (neither discrete nor continuous) random variable

$$X = \begin{cases} 0 & \text{w.p. } 1/2\\ \mathcal{N}(0,1) & \text{w.p. } 1/2 \end{cases}$$

General Definition of Mutual Information

Consider the mixed (neither discrete nor continuous) random variable

$$X = \begin{cases} 0 & \text{w.p. } 1/2\\ \mathcal{N}(0,1) & \text{w.p. } 1/2 \end{cases}$$

X has neither a finite discrete entropy (∞) nor a differential entropy $(-\infty)$

- Let \mathcal{X} be the range of random variable X (discrete, continuous, or mixed)
- A partition $\mathcal{P} = (P_1, \dots, P_K)$ of \mathcal{X} is a finite collection of disjoint sets such that $\bigcup P_i = \mathcal{X}$
- lacktriangle The quantization of X by $\mathcal P$ is the discrete random variable $[X]_{\mathcal P}$ where

$$\Pr\{[X]_{\mathcal{P}} = i\} = \Pr\{X \in P_i\}$$

- \blacksquare Similarly define $[Y]_{\mathcal Q}$ as a quantization of Y by partition ${\mathcal Q}$ of ${\mathcal Y}$
- The mutual information is given by

$$I(X;Y) = \sup_{\mathcal{P},\mathcal{Q}} I([X]_{\mathcal{P}}; [Y]_{\mathcal{Q}})$$

AEP for Continuous Random Variables

If X_1, X_2, \ldots, X_n are i.i.d. with pdf f(x), then

$$-\frac{1}{n}\log f(X_1,X_2,\ldots,X_n) o h(X)$$
 in probability.

Proof:

$$-\frac{1}{n}\log f(X_1,\ldots,X_n) = -\frac{1}{n}\sum_{i=1}^n\log f(X_i) \to \mathbb{E}[-\log f(X)] = h(X).$$

Typical Set

Given pdf f(x) with support set S, typical set is given by

$$A_{\epsilon}^{(n)} = \left\{ (x_1, x_2, \dots, x_n) \in S^n : \left| -\frac{1}{n} \log f(x_1, \dots, x_n) - h(X) \right| \le \epsilon \right\}$$

where
$$f(x_1,\ldots,x_n)=\prod_{i=1}^n f(x_i)$$

Properties of the Continuous Typical Set

- $Pr\{X^n \in A_{\epsilon}^{(n)}\} \to 1 \text{ as } n \to \infty$
- $extbf{Vol}(A_{\epsilon}^{(n)}) < 2^{n(h(X)+\epsilon)}$
- $\operatorname{Vol}(A_{\epsilon}^{(n)}) \ge (1 \epsilon)2^{n(h(X) \epsilon)}$ for sufficiently large n

where for any set $A \subset \mathbb{R}^n$, $\operatorname{Vol}(A) = \int_A dx_1 dx_2 \cdots dx_n$

Proofs: Property 1 follows from AEP

Property 2:

$$1 \ge \Pr\{X^n \in A_{\epsilon}^{(n)}\}\$$

$$= \int_{A_{\epsilon}^{(n)}} f(x_1, \dots, x_n) dx_1 \cdots dx_n$$

$$\ge \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X)+\epsilon)} dx_1 \cdots dx_n$$

$$= 2^{-n(h(X)+\epsilon)} \operatorname{Vol}(A_{\epsilon}^{(n)})$$

Property 3 follows similarly

Joint AEP for Continuous Variables

Given joint pdf f(x, y), define the jointly typical set

$$A_{\epsilon}^{(n)} = \left\{ (x^n, y^n) : \left| -\frac{1}{n} \log f(x^n) - h(X) \right| \le \epsilon, \right.$$
$$\left| -\frac{1}{n} \log f(y^n) - h(Y) \right| \le \epsilon,$$
$$\left| -\frac{1}{n} \log f(x^n, y^n) - h(X, Y) \right| \le \epsilon \right\}$$

Properties

- $\qquad \qquad \text{If } (X^n,Y^n) \stackrel{\text{iid}}{\sim} f(x,y) \text{, then } \Pr \left\{ (X^n,Y^n) \in A_{\epsilon}^{(n)} \right\} \to 1 \text{ as } n \to \infty$
- $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X,Y)+\epsilon)}$, $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X,Y)-\epsilon)}$ for sufficiently large n
- $\blacksquare \ \text{If} \ (\tilde{X}^n, \tilde{Y}^n) \stackrel{\text{iid}}{\sim} f(x) \, f(y) \text{, then}$

$$\begin{split} &\Pr\left\{(\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}\right\} \leq 2^{-n(I(X;Y)-3\epsilon)} \\ &\Pr\left\{(\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}\right\} \geq (1-\epsilon)2^{-n(I(X;Y)+3\epsilon)} \text{ for sufficiently large } n \end{split}$$

Proof of Property 3

Let $(\tilde{X}^n, \tilde{Y}^n) \stackrel{\text{iid}}{\sim} f(x) f(y)$

$$\Pr\left\{ (\tilde{X}^{n}, \tilde{Y}^{n}) \in A_{\epsilon}^{(n)} \right\} = \int_{A_{\epsilon}^{(n)}} f(x^{n}) f(y^{n}) dx^{n} dy^{n}$$

$$\leq \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X) - \epsilon)} 2^{-n(h(Y) - \epsilon)} dx^{n} dy^{n}$$

$$= \operatorname{Vol}(A_{\epsilon}^{(n)}) 2^{-n(h(X) - \epsilon)} 2^{-n(h(Y) - \epsilon)}$$

$$\leq 2^{n(h(X, Y) + \epsilon)} 2^{-n(h(X) - \epsilon)} 2^{-n(h(Y) - \epsilon)}$$

$$= 2^{-n(I(X; Y) - 3\epsilon)}$$

Lower bound follows similarly