Lineare Algebra Determinanten

Reinhold Hübl

Wintersemester 2020/21

Ist A eine $n \times n$ -Matrix, so bezeichnet $A_{i,j}$ die $(n-1) \times (n-1)$ -Matrix, die aus A durch Streichen der i-ten Zeile und der j-ten Spalte entsteht.

Beispiel

Für

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 4 & -2 & 3 \\ -3 & 1 & 2 \end{pmatrix}$$

sind

$$A_{1,1} = \begin{pmatrix} -2 & 3 \\ 1 & 2 \end{pmatrix}, \quad A_{1,3} = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}, \quad A_{2,2} = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix}$$

Definition

Die **Determinante** det(A) von A ist definiert wie folgt:

Definition

Die **Determinante** det(A) von A ist definiert wie folgt:

• Ist n = 1, also $A = (a_{1,1})$, so ist $det(A) = a_{1,1}$.

Definition

Die **Determinante** det(A) von A ist definiert wie folgt:

- Ist n = 1, also $A = (a_{1,1})$, so ist $det(A) = a_{1,1}$.
- Ist n>1 und die Determinante für $(n-1)\times (n-1)$ -Matrizen schon erklärt, so setzen wir

$$\det(A) = a_{1,1} \cdot \det(A_{1,1}) - a_{1,2} \cdot \det(A_{1,2}) + \dots \pm a_{1,n} \cdot \det(A_{1,n})$$
$$= \sum_{l=1}^{n} (-1)^{1+l} a_{1,l} \det(A_{1,l})$$

Definition

Die **Determinante** det(A) von A ist definiert wie folgt:

- Ist n = 1, also $A = (a_{1,1})$, so ist $det(A) = a_{1,1}$.
- Ist n>1 und die Determinante für $(n-1)\times (n-1)$ -Matrizen schon erklärt, so setzen wir

$$\det(A) = a_{1,1} \cdot \det(A_{1,1}) - a_{1,2} \cdot \det(A_{1,2}) + \dots \pm a_{1,n} \cdot \det(A_{1,n})$$
$$= \sum_{l=1}^{n} (-1)^{1+l} a_{1,l} \det(A_{1,l})$$

Regel

Für eine 2×2 -Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

gilt

$$\det(A) = a \cdot d - b \cdot c$$

Beispiel

$$\det\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} = 3 \cdot 2 - 1 \cdot 2 = 4$$

Regel

Für eine 2 × 2–Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

gilt

$$\det(A) = a \cdot d - b \cdot c$$

Beispiel

$$\det\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} = 3 \cdot 2 - 1 \cdot 2 = 4$$

Übung

Berechnen Sie die Determinante von

$$A = \begin{pmatrix} 7 & -1 \\ 4 & 3 \end{pmatrix}$$

Übung

Berechnen Sie die Determinante von

$$A = \begin{pmatrix} 7 & -1 \\ 4 & 3 \end{pmatrix}$$

Lösung:

$$\det(A) = 25$$

Übung

Berechnen Sie die Determinante von

$$A = \begin{pmatrix} 7 & -1 \\ 4 & 3 \end{pmatrix}$$

Lösung:

$$\det(A) = 25$$

Regel

Die Determinante einer 3 × 3-Matrix kann mit dem Schema von Sarrus berechnet werden. Für

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

gilt

$$\det(A) = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - c \cdot e \cdot g - a \cdot f \cdot h - b \cdot d \cdot i$$

Regel

Die Determinante einer 3 × 3-Matrix kann mit dem Schema von Sarrus berechnet werden. Für

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

gilt

$$\det(A) = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - c \cdot e \cdot g - a \cdot f \cdot h - b \cdot d \cdot i$$

Übung

Berechnen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 1 \end{pmatrix}$$

Übung

Berechnen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 1 \end{pmatrix}$$

Lösung:

$$\det(A) = 0$$

Übung

Berechnen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 1 \end{pmatrix}$$

Lösung:

$$\det(A)=0$$

Determinantenformel

Bemerkung

Es gilt

$$\det\left(A\right) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

mit einer Summe über alle Permutationen $\sigma \in S_n$, also einer Summe mit n! vielen Summanden.

Da n! sehr schnell wächst, wenn n groß wird, kann man schon erkennen, dass der Rechenaufwand zur Ermittlung der Determinante mit dieser Formel sehr groß werden kann.

Determinantenformel

Bemerkung

Es gilt

$$\det\left(A\right) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

mit einer Summe über alle Permutationen $\sigma \in S_n$, also einer Summe mit n! vielen Summanden.

Da n! sehr schnell wächst, wenn n groß wird, kann man schon erkennen, dass der Rechenaufwand zur Ermittlung der Determinante mit dieser Formel sehr groß werden kann.

Regel von Laplace

Satz (Entwicklungssatz von Laplace)

① Entwicklung nach der i-ten Zeile:

Für jedes
$$i \in \{1, \ldots, n\}$$
 gilt

$$\det(A) = (-1)^{i+1} a_{i,1} \cdot \det(A_{i,1}) + (-1)^{i+2} a_{i,2} \cdot \det(A_{i,2}) + \dots + (-1)^{i+n} a_{i,n} \cdot \det(A_{i,n})$$

Regel von Laplace

Satz (Entwicklungssatz von Laplace)

• Entwicklung nach der i-ten Zeile:

Für jedes
$$i \in \{1, \ldots, n\}$$
 gilt

$$\det(A) = (-1)^{i+1} a_{i,1} \cdot \det(A_{i,1}) + (-1)^{i+2} a_{i,2} \cdot \det(A_{i,2}) + \dots + (-1)^{i+n} a_{i,n} \cdot \det(A_{i,n})$$

2 Entwicklung nach der *j*—ten Spalte

Für jedes
$$j \in \{1, \dots, n\}$$
 gilt

$$\det(A) = (-1)^{1+j} a_{1,j} \cdot \det(A_{1,j}) + (-1)^{2+j} a_{2,j} \cdot \det(A_{2,j}) + \dots + (-1)^{n+j} a_{n,j} \cdot \det(A_{n,j})$$

Regel von Laplace

Satz (Entwicklungssatz von Laplace)

• Entwicklung nach der i-ten Zeile:

Für jedes
$$i \in \{1, \ldots, n\}$$
 gilt

$$\det(A) = (-1)^{i+1} a_{i,1} \cdot \det(A_{i,1}) + (-1)^{i+2} a_{i,2} \cdot \det(A_{i,2}) + \dots + (-1)^{i+n} a_{i,n} \cdot \det(A_{i,n})$$

2 Entwicklung nach der j-ten Spalte

Für jedes
$$j \in \{1, \dots, n\}$$
 gilt

$$\det(A) = (-1)^{1+j} a_{1,j} \cdot \det(A_{1,j}) + (-1)^{2+j} a_{2,j} \cdot \det(A_{2,j}) + \dots + (-1)^{n+j} a_{n,j} \cdot \det(A_{n,j})$$

Beispiel

Für die Matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 4 & 3 & 0 & 6 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

gilt

$$\det(A) = (-1)^{2+3} \cdot 2 \cdot \det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 6 \\ 1 & 2 & 1 \end{pmatrix} = (-2) \cdot 10 = -20$$

Regel

Für das Rechnen mit Determinanten gilt:

① Für die $n \times n$ –Einheitsmatrix E_n gilt

$$\det\left(E_{n}\right)=1$$

Regel

Für das Rechnen mit Determinanten gilt:

1 Für die $n \times n$ -Einheitsmatrix E_n gilt

$$\det\left(E_{n}\right)=1$$

Regel

Für das Rechnen mit Determinanten gilt:

1 Für die $n \times n$ -Einheitsmatrix E_n gilt

$$\det\left(E_{n}\right)=1$$

- 3 Ist A eine obere oder untere Dreiecksmatrix, so gilt

$$\det\left(A\right)=a_{1,1}\cdot a_{2,2}\cdots a_{n,n}$$

Regel

Für das Rechnen mit Determinanten gilt:

 $\textbf{9} \ \textit{Für die n} \times \textit{n-Einheitsmatrix E}_{\textit{n}} \ \textit{gilt}$

$$\det\left(E_{n}\right)=1$$

- Ist A eine obere oder untere Dreiecksmatrix, so gilt

$$\det\left(A\right)=a_{1,1}\cdot a_{2,2}\cdots a_{n,n}$$

- Es gilt schon det(A) = 0, wenn
 - Eine Zeile von A die Nullzeile ist.
 - Eine Spalte von A die Nullspalte ist.
 - Eine Zeile von A ein Vielfaches der anderen Zeile ist.
 - Eine Spalte von A ein Vielfaches der anderen Spalte ist.

Regel

Für das Rechnen mit Determinanten gilt:

$$\det\left(E_{n}\right)=1$$

- Ist A eine obere oder untere Dreiecksmatrix, so gilt

$$\det\left(A\right)=a_{1,1}\cdot a_{2,2}\cdots a_{n,n}$$

- Es gilt schon det(A) = 0, wenn
 - Eine Zeile von A die Nullzeile ist.
 - Eine Spalte von A die Nullspalte ist.
 - Eine Zeile von A ein Vielfaches der anderen Zeile ist.
 - Eine Spalte von A ein Vielfaches der anderen Spalte ist.

Regel (Rechenregeln für Determinanten)

Für eine $n \times n$ -Matrix A gilt:

① Entsteht A' aus A durch Vertauschen von zwei Zeilen (oder von zwei Spalten), so gilt $\det(A') = -\det(A)$.

Regel (Rechenregeln für Determinanten)

Für eine $n \times n$ -Matrix A gilt:

- Entsteht A' aus A durch Vertauschen von zwei Zeilen (oder von zwei Spalten), so gilt $\det(A') = -\det(A)$.
- ② Entsteht A' aus A durch Multiplikation einer Zeile (oder SpalteO von A mit einer Zahl r, so gilt $\det(A') = r \cdot \det(A)$.

Regel (Rechenregeln für Determinanten)

Für eine $n \times n$ -Matrix A gilt:

- Entsteht A' aus A durch Vertauschen von zwei Zeilen (oder von zwei Spalten), so gilt $\det(A') = -\det(A)$.
- 2 Entsteht A' aus A durch Multiplikation einer Zeile (oder SpalteO von A mit einer Zahl r, so gilt $\det(A') = r \cdot \det(A)$.
- Entsteht A' aus A dadurch, dass wir ein Vielfaches einer Zeile von A zu einer anderen Zeile von A addieren, so gilt det (A') = det (A). Das Gleiche gilt, wenn A' aus A dadurch entsteht, dass wir ein Vielfaches einer Spalte von A zu einer anderen Spalte von A addieren.

Regel (Rechenregeln für Determinanten)

Für eine $n \times n$ -Matrix A gilt:

- Entsteht A' aus A durch Vertauschen von zwei Zeilen (oder von zwei Spalten), so gilt $\det(A') = -\det(A)$.
- 2 Entsteht A' aus A durch Multiplikation einer Zeile (oder SpalteO von A mit einer Zahl r, so gilt $\det(A') = r \cdot \det(A)$.
- Sentsteht A' aus A dadurch, dass wir ein Vielfaches einer Zeile von A zu einer anderen Zeile von A addieren, so gilt det (A') = det (A). Das Gleiche gilt, wenn A' aus A dadurch entsteht, dass wir ein Vielfaches einer Spalte von A zu einer anderen Spalte von A addieren.

Bemerkung

Für große n wird die Determinante einer $n \times n$ -Matrix A am effizientesten durch Überführung der Matrix in Zeilen-Stufenform berechnet. Dazu geht man vor wie folgt:

• Subtrahiere des Vielfache einer Zeile von A von einer anderen. Dadurch ändert sich die Determinante nicht.

Bemerkung

Für große n wird die Determinante einer $n \times n$ -Matrix A am effizientesten durch Überführung der Matrix in Zeilen-Stufenform berechnet. Dazu geht man vor wie folgt:

- Subtrahiere des Vielfache einer Zeile von A von einer anderen.
 Dadurch ändert sich die Determinante nicht.
- Vertausche zwei Zeilen von A. Dadurch wechselt die Determinante das Vorzeichen.

Bemerkung

Für große n wird die Determinante einer $n \times n$ -Matrix A am effizientesten durch Überführung der Matrix in Zeilen-Stufenform berechnet. Dazu geht man vor wie folgt:

- Subtrahiere des Vielfache einer Zeile von A von einer anderen.
 Dadurch ändert sich die Determinante nicht.
- Vertausche zwei Zeilen von A. Dadurch wechselt die Determinante das Vorzeichen.
- Multipliziere eine Zeile von A mit einer Zahl $r \neq 0$. Dadurch wird die Determinante mit r multipliziert.

Bemerkung

Für große n wird die Determinante einer $n \times n$ -Matrix A am effizientesten durch Überführung der Matrix in Zeilen-Stufenform berechnet. Dazu geht man vor wie folgt:

- Subtrahiere des Vielfache einer Zeile von A von einer anderen.
 Dadurch ändert sich die Determinante nicht.
- Vertausche zwei Zeilen von A. Dadurch wechselt die Determinante das Vorzeichen.
- Multipliziere eine Zeile von A mit einer Zahl $r \neq 0$. Dadurch wird die Determinante mit r multipliziert.

Beispiel

Die Matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ -3 & -1 & 4 & 0 \\ 4 & 3 & 8 & 7 \end{pmatrix}$$

kann nur durch Zeilensubtraktionen in

$$A' = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

überführt werden. Daher gilt

$$\det(A) = \det(A') = 1 \cdot 1 \cdot 3 \cdot 2 = 6$$

Determinanten

Beispiel

Die Matrix

$$A = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 2 & 2 & 4 & 2 \\ 4 & 5 & 3 & 5 \\ 5 & 6 & 3 & 9 \end{pmatrix}$$

kann durch Multiplikation der ersten Zeile mit $\frac{1}{3}$, Zeilensubtraktionen und Vertauschung von zwei Zeilen in

$$A' = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

überführt werden. Daher gilt

$$\det(A) = (-1) \cdot 3 \cdot \det(A') = (-3) \cdot 1 \cdot 1 \cdot 2 \cdot 3 = -18$$

Ist A eine $n \times n$ -Matrix und $\overrightarrow{b} \in \mathbb{R}^n$, so bezeichnen wir mit $A_k(\overrightarrow{b})$ die Matrix, die aus A dadurch entsteht, dass wir die k-te Spalte von A durch den Vektor \overrightarrow{b} ersetzen.

Satz (Cramersche Regel)

Ist A eine $n \times n$ -Matrix mit $\det(A) \neq 0$, so ist das Gleichungssystem

$$A \cdot \overrightarrow{X} = \overrightarrow{b}$$

für jedes $\overrightarrow{b} \in \mathbb{R}^n$ eindeutig lösbar, und die Lösung ist gegeben durch

$$x_k = \frac{\det\left(A_k(\overrightarrow{b})\right)}{\det\left(A\right)}$$
 für $k = 1, ..., n$

Ist A eine $n \times n$ -Matrix und $\overrightarrow{b} \in \mathbb{R}^n$, so bezeichnen wir mit $A_k(\overrightarrow{b})$ die Matrix, die aus A dadurch entsteht, dass wir die k-te Spalte von A durch den Vektor \overrightarrow{b} ersetzen.

Satz (Cramersche Regel)

Ist A eine $n \times n$ -Matrix mit $\det(A) \neq 0$, so ist das Gleichungssystem

$$A \cdot \overrightarrow{x} = \overrightarrow{b}$$

für jedes $\overrightarrow{b} \in \mathbb{R}^n$ eindeutig lösbar, und die Lösung ist gegeben durch

$$x_k = \frac{\det\left(A_k(\overrightarrow{b})\right)}{\det\left(A\right)}$$
 für $k = 1, \dots, n$

Beispiel

Für das Gleichungssystem

ist

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 4 \end{pmatrix}, \qquad \overrightarrow{b} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$

Beispiel

Es ist

$$\det(A) = 2, \qquad \det(A_1(\overrightarrow{b})) = -8,
 \det(A_2(\overrightarrow{b})) = 18, \qquad \det(A_3(\overrightarrow{b})) = -8$$

Damit hat das Gleichungssystem die eindeutige Lösung

$$x = \frac{-8}{2} = -4$$
, $y = \frac{18}{2} = 9$, $z = \frac{-8}{2} = -4$

Beispiel

Es ist

$$\det(A) = 2, \qquad \det(A_1(\overrightarrow{b})) = -8,
 \det(A_2(\overrightarrow{b})) = 18, \qquad \det(A_3(\overrightarrow{b})) = -8$$

Damit hat das Gleichungssystem die eindeutige Lösung

$$x = \frac{-8}{2} = -4$$
, $y = \frac{18}{2} = 9$, $z = \frac{-8}{2} = -4$

Für eine $n \times n$ -Matrix A setzen wir

$$\widetilde{a_{i,j}} = (-1)^{i+j} \cdot \det\left(A_{j,i}\right)$$

(beachten Sie dabei die Vertauschung der Indizes).

Definition

Die Matrix $\widetilde{A}:=(\widetilde{a_{i,j}})$ heißt die zu A komplementäre Matrix

Für eine $n \times n$ -Matrix A setzen wir

$$\widetilde{a_{i,j}} = (-1)^{i+j} \cdot \det\left(A_{j,i}\right)$$

(beachten Sie dabei die Vertauschung der Indizes).

Definition

Die Matrix $\widetilde{A} := (\widetilde{a_{i,j}})$ heißt die zu A komplementäre Matrix

Beispie

Für

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

ist

$$\widetilde{A} = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$$

Für eine $n \times n$ -Matrix A setzen wir

$$\widetilde{a_{i,j}} = (-1)^{i+j} \cdot \det\left(A_{j,i}\right)$$

(beachten Sie dabei die Vertauschung der Indizes).

Definition

Die Matrix $\widetilde{A} := (\widetilde{a_{i,i}})$ heißt die zu A komplementäre Matrix

Beispiel

Für

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

ist

$$\widetilde{A} = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$$

Regel

Für jede $n \times n$ -Matrix gilt

$$\widetilde{A} \cdot A = A \cdot \widetilde{A} = \det(A) \cdot E_n$$

(die $n \times n$ -Einheitsmatrix).

Beispiel

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

Regel

Für jede $n \times n$ -Matrix gilt

$$\widetilde{A} \cdot A = A \cdot \widetilde{A} = \det(A) \cdot E_n$$

(die $n \times n$ -Einheitsmatrix).

Beispiel

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

Regel (Produktsatz)

Für zwei $n \times n$ -Matrizen A und B gilt

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Regel

Für jede $n \times n$ -Matrix gilt

$$\widetilde{A} \cdot A = A \cdot \widetilde{A} = \det(A) \cdot E_n$$

(die $n \times n$ -Einheitsmatrix).

Beispiel

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

Regel (Produktsatz)

Für zwei n × n-Matrizen A und B gilt

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Definition

Eine $n \times n$ -Matrizen A heißt **invertierbar**, wenn es eine $n \times n$ -Matrizen B gibt mit

$$A \cdot B = E_n, \qquad B \cdot A = E_n$$

Definition

Eine $n \times n$ -Matrizen A heißt **invertierbar**, wenn es eine $n \times n$ -Matrizen B gibt mit

$$A \cdot B = E_n, \qquad B \cdot A = E_n$$

Bemerkung

Ist A invertierbar, so nennen wir die Matrix B aus der Definition die **zu** A **inverse Matrix** und bezeichnen sie mit A^{-1} .

Definition

Eine $n \times n$ -Matrizen A heißt **invertierbar**, wenn es eine $n \times n$ -Matrizen B gibt mit

$$A \cdot B = E_n, \qquad B \cdot A = E_n$$

Bemerkung

Ist A invertierbar, so nennen wir die Matrix B aus der Definition die **zu** A **inverse Matrix** und bezeichnen sie mit A^{-1} .

Beispie

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$

ist invertierbar mit inverser Matrix

$$A^{-1} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}$$

Definition

Eine $n \times n$ -Matrizen A heißt **invertierbar**, wenn es eine $n \times n$ -Matrizen B gibt mit

$$A \cdot B = E_n, \qquad B \cdot A = E_n$$

Bemerkung

Ist A invertierbar, so nennen wir die Matrix B aus der Definition die **zu** A **inverse Matrix** und bezeichnen sie mit A^{-1} .

Beispiel

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$

ist invertierbar mit inverser Matrix

$$A^{-1} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}$$

Komplementärmatrizen

Regel

Ist A eine $n \times n$ -Matrix mit Komplementärmatrix \tilde{A} , und gilt $\det(A) \neq 0$, so ist A invertierbar mit

$$A^{-1} = \frac{1}{\det\left(A\right)} \cdot \widetilde{A}$$

Beispiel

Für

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

ist $det(A) = 5 \neq 0$ und

$$\widetilde{A} = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

Komplementärmatrizen

Regel

Ist A eine $n \times n$ -Matrix mit Komplementärmatrix \tilde{A} , und gilt $\det(A) \neq 0$, so ist A invertierbar mit

$$A^{-1} = \frac{1}{\det(A)} \cdot \widetilde{A}$$

Beispiel

Für

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

ist $det(A) = 5 \neq 0$ und

$$\widetilde{A} = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

Wir betrachten eine $n \times n$ -Matrix A und bezeichnen mit $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ die Standardbasis von \mathbb{R}^n .

Satz

Genau dann existiert eine rechtsinverse Matrix B von A, wenn die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

für jedes $i=1,\ldots,n$ lösbar ist. Ist in diesem Fall $\overrightarrow{v_i}$ eine Lösung von $A \cdot \overrightarrow{X} = \overrightarrow{e_i}$ und ist B die Matrix mit den Spaltenvektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_n}$, so gilt

$$A \cdot B = E_n$$

Wir betrachten eine $n \times n$ -Matrix A und bezeichnen mit $\overrightarrow{e_1}, \ldots, \overrightarrow{e_n}$ die Standardbasis von \mathbb{R}^n .

Satz

Genau dann existiert eine rechtsinverse Matrix B von A, wenn die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

für jedes $i=1,\ldots,n$ lösbar ist. Ist in diesem Fall $\overrightarrow{v_i}$ eine Lösung von $A \cdot \overrightarrow{x} = \overrightarrow{e_i}$ und ist B die Matrix mit den Spaltenvektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_n}$, so gilt

$$A \cdot B = E_n$$

Die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

können simultan für alle i = 1, ..., n gelöst werden.

• Bilde die erweiterte augmentierte Matrix $(A|E_n)$, die die Matrix A um die Matrix E_n erweitert.

Die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

können simultan für alle i = 1, ..., n gelöst werden.

- Bilde die erweiterte augmentierte Matrix $(A|E_n)$, die die Matrix A um die Matrix E_n erweitert.
- Bringe die erweiterte augmentierte Matrix $(A|E_n)$ auf reduzierte Zeilen–Stufen–Form (A'|B), wobei nur Zeilenoperationen benutzt werden (keine Spaltenvertauschungen).

Die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

können simultan für alle i = 1, ..., n gelöst werden.

- Bilde die erweiterte augmentierte Matrix $(A|E_n)$, die die Matrix A um die Matrix E_n erweitert.
- Bringe die erweiterte augmentierte Matrix $(A|E_n)$ auf reduzierte Zeilen-Stufen-Form (A'|B), wobei nur Zeilenoperationen benutzt werden (keine Spaltenvertauschungen).
- Fall $A' = E_n$, so ist A invertierbar und $A^{-1} = B$, falls $A' \neq E_n$, so ist A nicht invertierbar.

Die Gleichungssysteme

$$A \cdot \overrightarrow{x} = \overrightarrow{e_i}$$

können simultan für alle i = 1, ..., n gelöst werden.

- Bilde die erweiterte augmentierte Matrix $(A|E_n)$, die die Matrix A um die Matrix E_n erweitert.
- Bringe die erweiterte augmentierte Matrix $(A|E_n)$ auf reduzierte Zeilen-Stufen-Form (A'|B), wobei nur Zeilenoperationen benutzt werden (keine Spaltenvertauschungen).
- Fall $A' = E_n$, so ist A invertierbar und $A^{-1} = B$, falls $A' \neq E_n$, so ist A nicht invertierbar.

Beispiel

Für die Matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 4 \end{pmatrix}$$

erhalten wir die erweiterte augmentierte Matrix

$$(A|E_3) = \left(\begin{array}{ccc|ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1 \end{array}\right)$$

Beispiel

Die reduzierte Zeilen-Stufenform dieser Matrix ist

$$(A'|B) = \left(\begin{array}{ccc|ccc|ccc} 1 & 0 & 0 & 4 & -2 & 1 \\ 0 & 1 & 0 & -4 & 3 & -2 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{array}\right)$$

also ist A invertierbar und

$$A^{-1} = \begin{pmatrix} 4 & -2 & 1 \\ -4 & 3 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -1 & 7 \\ -4 & 2 & -8 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -1 & 7 \\ -4 & 2 & -8 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Lösung

Die Matrix A ist invertierbar mit

$$A^{-1} = \begin{pmatrix} -3 & -2 & -\frac{5}{2} \\ -2 & 0 & -\frac{1}{2} \\ 1 & 1 & 1 \end{pmatrix}$$

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -1 & 7 \\ -4 & 2 & -8 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Lösung:

Die Matrix A ist invertierbar mit

$$A^{-1} = \begin{pmatrix} -3 & -2 & -\frac{5}{2} \\ -2 & 0 & -\frac{1}{2} \\ 1 & 1 & 1 \end{pmatrix}$$

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 2 & 4 & -2 \\ 3 & 1 & 2 \\ 1 & 7 & -6 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 2 & 4 & -2 \\ 3 & 1 & 2 \\ 1 & 7 & -6 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Lösung:

Die Matrix A ist nicht invertierbar.

Übung

Überprüfen Sie, ob

$$A = \begin{pmatrix} 2 & 4 & -2 \\ 3 & 1 & 2 \\ 1 & 7 & -6 \end{pmatrix}$$

invertierbar ist und bestimmen Sie gegebenenfalls die inverse Matrix.

Lösung:

Die Matrix A ist nicht invertierbar.

Satz

Für eine invertierbare Matrix A sind äquivalent

A ist invertierbar.

Satz

Für eine invertierbare Matrix A sind äquivalent

- A ist invertierbar.
- A ist regulär (dh. rg(A) = n).

Satz

Für eine invertierbare Matrix A sind äquivalent

- A ist invertierbar.
- A ist regulär (dh. rg(A) = n).
- $\det(A) \neq 0$.

Satz

Für eine invertierbare Matrix A sind äquivalent

- A ist invertierbar.
- A ist regulär (dh. rg(A) = n).
- $\det(A) \neq 0$.

Beispiel

Die Matrix

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

hat Determinante det(A) = -5, ist also invertierbar.

Satz

Für eine invertierbare Matrix A sind äquivalent

- A ist invertierbar.
- A ist regulär (dh. rg(A) = n).
- $\det(A) \neq 0$.

Beispiel

Die Matrix

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

hat Determinante $\det(A) = -5$, ist also invertierbar.

Definition

Eine $n \times n$ -Matrix A heißt **orthogonal**, wenn die Spalten von A eine Orthonormalbasis von \mathbb{R}^n bilden.

Beispiel

Die Matrizen

$$A = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}, \qquad B = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

sind orthogonal.

Definition

Eine $n \times n$ -Matrix A heißt **orthogonal**, wenn die Spalten von A eine Orthonormalbasis von \mathbb{R}^n bilden.

Beispiel

Die Matrizen

$$A = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}, \qquad B = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

sind orthogonal.

Regel

Für eine n × n-Matrix A sind äquivalent

• A ist orthogonal.

Regel

Für eine $n \times n$ -Matrix A sind äquivalent

- A ist orthogonal.
- A ist invertierbar und $A^{-1} = A^{\top}$

Regel

Für eine $n \times n$ -Matrix A sind äquivalent

- A ist orthogonal.
- A ist invertierbar und $A^{-1} = A^{\top}$
- $\langle A \cdot \overrightarrow{x}, A \cdot \overrightarrow{x} \rangle = \langle \overrightarrow{x}, \overrightarrow{x} \rangle$ für alle $x \in \mathbb{R}^n$.

Regel

Für eine $n \times n$ -Matrix A sind äquivalent

- A ist orthogonal.
- A ist invertierbar und $A^{-1} = A^{\top}$
- $\langle A \cdot \overrightarrow{x}, A \cdot \overrightarrow{x} \rangle = \langle \overrightarrow{x}, \overrightarrow{x} \rangle$ für alle $x \in \mathbb{R}^n$.

Beispiel

$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

Regel

Für eine $n \times n$ -Matrix A sind äquivalent

- A ist orthogonal.
- A ist invertierbar und $A^{-1} = A^{\top}$
- $\langle A \cdot \overrightarrow{x}, A \cdot \overrightarrow{x} \rangle = \langle \overrightarrow{x}, \overrightarrow{x} \rangle$ für alle $x \in \mathbb{R}^n$.

Beispiel

$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

Regel

Ist A eine orthogonale 2×2 -Matrix, so gibt es ein $\alpha \in [0, 2\pi[$ mit

$$A = D_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

oder

$$A = S_{\frac{\alpha}{2}} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$

Bemerkung

Die Matrix D_{α} beschreibt eine Drehung um den Winkel α , die Matrix $S_{\frac{\alpha}{2}}$ beschreibt eine Spiegelung an der Ursprungsgerade mit Winkel $\frac{\alpha}{2}$ zur x-Achse.

Regel

Ist A eine orthogonale 2×2 -Matrix, so gibt es ein $\alpha \in [0, 2\pi[$ mit

$$A = D_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

oder

$$A = S_{\frac{\alpha}{2}} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$

Bemerkung

Die Matrix D_{α} beschreibt eine Drehung um den Winkel α , die Matrix $S_{\frac{\alpha}{2}}$ beschreibt eine Spiegelung an der Ursprungsgerade mit Winkel $\frac{\alpha}{2}$ zur x-Achse.