Algorithmic Methods: Exam Simulation

Gianmaria Silvello, a.a. 2017/2018

Exercise 1

Consider the recursion tree in Figure 1.

Figure 1: Recursion tree

- 1. What recurrence relation could generate this recursion tree?
- 2. How many levels would there be in this tree, as a function on n?
- 3. How many leaves would there be in this tree, as a function of n?
- 4. Solve the recurrence to obtain an asymptotic expression for T(n) as a function of n.

Exercise 2

- For hashing by the division method, which of the following is the best value for the modulus m? Give a brief justification for your answer.
 - 1. 256
 - 2. 128
 - 3. 10
 - 4. 181
- If the hash table size is 200 and there are 120 elements in the table, what is the load factor?
- Suppose one is using hashing by the division method and the table size m is 53 and the key k is 225. Which bin will this key hash to?

Exercise 3

Consider the longest common subsequence dynamic programming algorithm discussed in class.

		b	a	a	b	c
	0	0	0	0	0	0
b	0	1\	1-	1-	1\	1-
С	0	1	1	1	1	2\
a	0	1	2\	2\	1	2
b	0	1\	1	2	3\	2
a	0	1	2\	2\	3	3-

Fill in the above table with the numbers c[i, j] and the arrows used in the LCS algorithm. Show the longest common subsequence.

Exercise 4 Answer True or False to the following questions and provide a short justification.

- 1. Depth First Search (DFS) is a linear time algorithm.
- 2. There exists a comparison sort of 5 numbers that uses at most 6 comparisons in the worst case.
- 3. Every computational problem on input size n can be solved by an algorithm with running time polynomial in n.
- 4. The following algorithm to check if the input number n is a prime number runs in polynomial time: For every integer $2 \le i \le \sqrt{n}$, check if i divides n. If so declare n to be not a prime. If no such i exists, declare n to be a prime.
- 5. Given n integers a_1, \ldots, a_n , the third smallest number amongst a_1, \ldots, a_n can be computed in O(n) time.

Exercise 5 Suppose that we have numbers between 1 and 100 in a binary search tree and want to search for the number 45. Which (possibly multiple) of the following sequences could be the sequence of nodes examined?

A. 5, 2, 1, 10, 39, 34, 77, 63.

B. 1, 2, 3, 4, 5, 6, 7, 8.

C. 9, 8, 63, 0, 4, 3, 2, 1.

D. 8, 7, 6, 5, 4, 3, 2, 1.

E. 50, 25, 26, 27, 40, 44, 42.

F. 50, 25, 26, 27, 40, 44.

Exercise 6 Consider the graph in the figure below. Give the sequence of nodes visited by the Breadth-First Search algorithm with source node "A" and draw the resulting Breadth-First tree.

Figure 2: A graph