

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO			
Disciplina:				Cóc	ligo da Disciplina:
Robótica Industrial			ECA515		
Course:					
Industrial Robotics					
Materia:					
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00	- 01 - 01
Curso/Habilitação/Ênfase:	<u> </u>	,	Série:	Período):
Engenharia de Controle e Autor	nação		6	Notur	no
Engenharia de Controle e Autor	nação		5	Diurno)
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação
Eduardo Lobo Lustosa Cabral		Engenheiro Me	cânico		Doutor
Professores:		Titulação - Graduaç	ção		Pós-Graduação
Anderson Harayashiki Moreira	Engenheiro em Controle e Automação			Doutor	
Eduardo Lobo Lustosa Cabral	Engenheiro Mecânico		Doutor		
OR IEI	IVOS Cambas	imantaa Habili	dadas a Atitud		

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos

- C1) Estrutura mecânica, eletrônica e de computação de máquinas/robôs automáticos;
- C2) Manuseio e programação de robôs industriais;
- C3) Transformação de coordenadas;
- C4) Análise cinemática de robôs industriais;
- C5) Simplificação de modelos para permitir análise;
- C6) Sólida formação em manufatura integrada por computador e automação industrial, em especial, com os seguintes conhecimentos da área de robótica:
- Transformação de coordenadas;
- Análise cinemática de robôs industriais;
- Programação de robôs;
- Estrutura mecânica, eletrônica e de computação de máquinas/robôs automáticos;
- Simplificação de modelos para permitir análise;
- C15) Conhecimentos práticos para manusear equipamentos mecânicos, eletrônicos, de informática e de controle e automação.

Habilidades:

- H3) Atuar em equipe multidisciplinares;
- H8) Comunicar eficientemente nas formas oral e escrita, no padrão formal da língua portuguesa;
- H11) Desenvolver raciocínio espacial, lógico e matemático;
- H12) Desenvolver e/ou utilizar novas ferramentas e técnicas;
- H17) Projetar e conduzir experimentos;
- H21) Interpretar resultados de experimentos e de simulações de modelos matemáticos;

2020-ECA515 página 1 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

H22) Analisar criticamente os modelos empregados no estudo de problemas de engenharia.

Atitudes:

- Al) Ter espírito de liderança e capacidade para inserir-se no trabalho em equipe;
- A4) Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;
- A5) Ter percepção do conjunto e capacidade de síntese;
- A8) Ter posição crítica com relação a conceitos de ordem de grandeza;
- A10) Ter compromisso com a segurança no trabalho.

EMENTA

Estudo e análise de manipuladores e robôs industriais. Classificação, tipos, estrutura mecânica, principias componentes, sensores e atuadores. Transformação de coordenadas. Cinemática de robôs manipuladores. Programação de robôs manipuladores industriais. Laboratório de robótica utilizando robô manipulador industrial da FANUC.

SYLLABUS

Study and analysis of industrial robots and manipulators. Classification, types, mechanical structure, main components, sensors and actuators. Coordinate transformation. Kinematics of robot manipulators. Programming of industrial robot manipulators. Laboratory using FANUC industrial robot.

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)

METODOLOGIA DIDÁTICA

Aula expositiva;

Solução e realização de exercícios em aula;

Realização de práticas experimentais em laboratório com um robô industrial e usando software de simulação de robôs;

Desenvolvimento de trabalhos usando o software Matlab e o robô industrial da FANUC;

Demonstrações em Laboratório;

Trabalhos práticos em equipe.

2020-ECA515 página 2 de 10

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Mecânica geral;

Cálculo: derivada, integral, equações diferencias;

Física: Primeira e Segunda Leis de Newton;

Projeto de máquinas; Motores elétricos;

Computação.

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina Robótica Industrial fornece uma visão dos robôs manipuladores industriais. Nessa disciplina os alunos entram em contato com robôs industriais que atualmente são equipamentos amplamente utilizados na indústria. São estudados aspectos construtivos, sensores, atuadores, programação, seleção, cinemática direta, cinemática inversa e estática de robôs manipuladores industriais.

BIBLIOGRAFIA

Bibliografia Básica:

ANGELES, Jorge. Fundamentals of robotic mechanical systems: theory, methods, and algorithms. 3. ed. New York: Springer, 2007.

CRAIG, John J. Introduction to robotics: mechanics and control. 3. ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

TSAI, Lung-Wen. Robot analysis: the mechanics of serial and parallel manipulators. New York: John Wiley, 1999.

Bibliografia Complementar:

DE SILVA, Clarence W. Mechatronics: an integrated approach. Boca Raton: CRC, 2005.

GROOVER, Mikell P. Robótica: tecnologia e programação. São Paulo, SP: McGraw-Hill, 1989.

KOREN, Yoram. Robotics for engineers. New York: McGraw-Hill, 1985.

PAZOS, Fernando. Automação de sistemas & robótica. Rio de Janeiro, RJ: Axcel Books, 2002.

ROSÁRIO, João Maurício. Princípios de mecatrônica. São Paulo, SP: Pearson Prentice Hall, 2005.

2020-ECA515 página 3 de 10

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_T)$: 0,3

-			-				
INFO	RMA	ÇÕES SOBRE P	ROV	AS E TRA	ABALHOS		
Os trabalhos consistem	na	programação	de	robôs	industriais	para	realizar
determinadas tarefas.							

2020-ECA515 página 4 de 10

OUTRAS INFORMAÇÕES

2020-ECA515 página 5 de 10

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

١)	Microsoft	Office	

- 2) Matlab
- 3) Simulink
- 4) Software de programação do robô FANUC
- 5) Software de programação do robô Mitsubishi "RT Toolbox 3"
- 6) Software de programação de robôs Yaskawa

2020-ECA515 página 6 de 10

APROVAÇÕES

2020-ECA515 página 7 de 10

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 E	Introdução à disciplina.	1% a 10%
1 L	Visita ao laboratório para visão geral de um robô industrial.	61% a 90%
2 E	Definição de robôs. Histórico da robótica.	41% a 60%
2 L	Formas de programação de robôs industriais.	61% a 90%
3 E	Classificação dos robôs industriais.	41% a 60%
3 L	Formas de programação de robôs industriais.	61% a 90%
4 E	Robôs de cadeia cinemática aberta e fechada.	41% a 60%
4 L	Métodos de programação on-line e off-line.	61% a 90%
5 E	Seleção e especificação de robôs industriais.	41% a 60%
5 L	Ligando e desligando o robô, movimentação do robô	91% a
		100%
6 E	Componentes da estrutura mecânica de robôs industriais.	41% a 60%
	Ligamentos e articulações.	
6 L	Ligando e desligando o robô, movimentação do robô.	91% a
		100%
7 E	Tipos de balanceamento da estrutura mecânica dos braços	41% a 60%
	robóticos. Balanceamento estático com contra peso.	
7 L	Planejando um programa, criando e escrevendo um programa.	91% a
		100%
8 E	Balanceamento estático com molas.	41% a 60%
8 L	Instruções de movimento, tipos de movimento, informações de	91% a
	posição, tipo de terminação.	100%
9 E	Balanceamento estático com molas.	41% a 60%
9 L	Instruções de movimento, tipos de movimento, informações de	91% a
	posição, tipo de terminação.	100%
10 E	Balanceamento estático com pistões.	41% a 60%
10 L	Instruções de movimento, tipos de movimento, informações de	91% a
	posição, tipo de terminação.	100%
11 E	Balanceamento dinâmico.	41% a 60%
11 L	Instruções de movimento, tipos de movimento, informações de	91% a
	posição, tipo de terminação.	100%
12 E	Atuadores elétricos, hidráulicos e pneumáticos.	41% a 60%
12 L	Gravação e marcação de posição e orientação.	91% a
		100%
13 E	Atuadores elétricos, hidráulicos e pneumáticos.	41% a 60%
13 L	Registradores.	91% a
14 -		100%
14 E	Sistemas de transmissão de movimento utilizados nos robôs	41% a 60%
14 -	industriais.	010
14 L	Registradores de posição e posições de referência.	91% a
15 -		100%
15 E	Sistemas de transmissão de movimento utilizados nos robôs industriais.	41% a 60%

2020-ECA515 página 8 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

15	L	Registradores de posição e posições de referência.	91% a
			100%
16	E	Redutores de velocidades usados nos robôs industriais.	41% a 60%
16	L	Instruções utilizando registradores.	91% a
			100%
17		Redutores de velocidades usados nos robôs industriais.	41% a 60%
17	L	Instruções utilizando registradores.	91% a
			100%
18		Sensores utilizados nos robôs industriais.	41% a 60%
18	L	Apresentação do primeiro trabalho.	91% a
1.0			100%
19		Sensores utilizados nos robôs industriais.	41% a 60%
19	Ш	Apresentação do primeiro trabalho.	91% a
20		Primaira avaliação	0
20		Primeira avaliação. Solução e discussão da primeira avaliação.	 1% a 10%
21		Transformação de coordenadas.	41% a 60%
21		Tipos de entradas e saídas do controlador do robô FANUC.	91% a
	_	Tipos de encrudas e sarado do concretador de roso finice.	100%
22	E	Transformação de coordenadas e matriz de rotação.	41% a 60%
22	 L	Instruções com entradas e saídas.	91% a
		,	100%
23	E	Formas de definir orientação de corpos rígidos.	41% a 60%
23	L	Instruções com entradas e saídas.	91% a
			100%
24	E	Exemplos de formas de definir orientação de corpos rígidos.	41% a 60%
24	L	Instruções de label, jump e de chamada de subrotina.	91% a
			100%
25	E	Definição de cinemática direta e inversa. Notação de	41% a 60%
		Denavit-Hartenberg.	
25	L	Instruções de label, jump e de chamada de subrotina.	91% a
			100%
26	E	Notação de Denavit-Hartenberg. Cinemática da posição e orientação	41% a 60%
		do efetuador.	
26	L	Instruções de repetição, loops de instruções.	91% a
			100%
27		Cinemática da posição e orientação do efetuador.	41% a 60%
27	L	Instruções de repetição, loops de instruções.	91% a
			100%
28	E	Cinemática da posição e orientação do efetuador. Exemplos de	41% a 60%
		cinemática da posição e orientação.	0.1.0
28	ш	Instruções de lógica: if-then	91% a
29	r	Exemplos de cinemática da posição e orientação.	100% 41% a 60%
29		Instruções de lógica: if-then e case	91% a
43	ш	INDUTAÇÕES DE TOGICA. II-CHEH E CASE	91% a 100%
30	F.	Cinemática da velocidade.	41% a 60%
30		omented du resociadae.	110 0 00%

2020-ECA515 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

30 L	Instruções de lógica: case	91% a
		100%
31 E	Cinemática da velocidade.	41% a 60%
31 L	Conectando o computador ao robô, transferindo programa do robô	91% a
	para o computador.	100%
32 E	Exemplos de cinemática da velocidade.	41% a 60%
32 L	Programação off-line, software de programação do robô FANUC.	91% a
		100%
33 E	Matriz jacobiano e posição singular.	41% a 60%
33 L	Programação off-line, software de programação do robô FANUC.	91% a
		100%
34 E	Exemplos de posição singular.	41% a 60%
34 L	Programação off-line, software de programação do robô FANUC.	91% a
		100%
35 E	Cinemática inversa da posição e orientação.	41% a 60%
35 L	Programação off-line, software de programação do robô FANUC.	91% a
		100%
36 E	Exemplos de cinemática inversa da posição e orientação.	41% a 60%
36 L	Ajustando o programa desenvolvido off-line.	91% a
		100%
37 E	Cinemática inversa da velocidade	41% a 60%
37 L	Ajustando o programa desenvolvido off-line.	91% a
		100%
38 E	Exemplos de cinemática inversa da velocidade.	41% a 60%
38 L	Apresentação do segundo trabalho.	91% a
		100%
39 E	Estática.	41% a 60%
39 L	Apresentação do segundo trabalho.	91% a
		100%
40 E	Segunda avaliação.	0
40 L	Solução e discussão da segunda avaliação.	1% a 10%
41 E	Avaliação substitutiva.	0
41 L	Solução e discussão da avaliação substitutiva.	1% a 10%
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-ECA515 página 10 de 10