SRN						

PES University, Bengaluru

(Established under Karnataka Act No. 16 of 2013)

UE20CS902

OCT 2022: END SEMESTER ASSESSMENT (ESA) M TECH DATA SCIENCE AND MACHINE LEARNING_ SEMESTER I

UE20CS902 – Statistical Methods for Decision Making

Time: 3 Hrs Answer All Questions Max Marks: 80

INSTRUCTIONS

- All questions are compulsory.
- Section A should be handwritten in the answer script provided.
- Section B and C are coding questions which have to be answered in the system.

Section A -20 Marks

					-20 Main							
1	a)	Consider the	following two	samples:					2			
		Sample 1: 10, 9, 8, 7, 8, 6, 10, 6										
		Sample 2: 10, 6, 10, 6, 8, 10, 8, 6										
		Compare the samples in terms of mean, standard deviation										
	b)	A trading con	A trading company has eight computers that it uses to trade on the New York Stock									
		Exchange (NYSE). The probability of a computer failing in a day is 0.005, and the										
		computers fail independently. Computers are repaired in the evening and each day is an										
				the probability			in a da	ay?				
	c)	Consider the	following AN	IOVA table, fil	l in the mis	ssing values			2			
						T						
		Source	Sum of	Degree of	MS	F						
			Squares	Freedom								
		Treatment	2000									
		Error		4								
		Total	2500	29								
	d)			lue of $X = 30$, w			d devi	ation is 5	2			
	e)			sampling techni					2			
2	a)							ities 0.1, 0.1, 0.2,	2			
					e event {a,	b, c}, and let	B den	ote the event {c, d,				
				g: P(A), P(B)								
	b)	Define Centra							2			
	c)			uld you prefer ı					2			
	d)			square goodnes					2			
	e)	Define Bayes	theorem and				theore	m can be applied.	2			
				SECTION	NB - 30M	ARKS						
3	a)	Fifteen adult	males betwee	n the ages of 3	5 and 50 pa	articipated in a	a study	to evaluate the	6			
								rol was measured in				
		each subject i	nitially and tl	nen three montl	ns after par	ticipating in a	n aero	bic exercise				
								file. Do the data				
		support the cl	aim that low-	fat diet and aer	obic exerci	ise are of valu	e in pr	oducing a mean				
		reduction in b	lood choleste	erol levels? Use	alpha =. 0	.05. Find the I	P-valu	e				

SDN						
SINI						

	 									1			
	i. State the null hypothesis and the alternate hypothesis. (1 mark)												
	ii. Which test is to be performed. (1 mark)												
	iii. Compute test statistics, p value. (3 marks)												
	iv. At the 0.05 significance level, can we conclude whether program has helped												
1	reduction in cholesterol levels ? (1 mark)												
(b)	The compressive strength of samples of cement can be modeled by a normal distribution												
		with a mean of 6000 kilograms per square centimeter and a standard deviation of 100											
	Kilograms pe	kilograms per square centimeter.											
	i. Wha	et is the pro	hahility th	at a sample's	atron ath	is loss th	on 6250) V a/om') () mort	.)			
				at a sample's									
		it is the pro ark)	oadiniy in	at a sample s	suchgui	15 OCTWC	CII 3600	and 570	o ixg/ciii	12			
	,	,	s exceeded	l by 95% of th	ne samnl	es (2 ma	rk)						
	iii. vviic	iii. What strength is exceeded by 95% of the samples (2 mark)											
c)	An experime	ent in whicl	shape me	asurement wa	as detern	nined for	several	differen	t nozzle	6			
				focuses prima				o determ	ine whetl	ner			
	there is diffe	rence acros	ss various 1	nozzle types i	n terms o	of shape.							
	N1-												
	Nozzle												
	1	0.78	0.8	0.81	0.75	0.7	17	0.78					
		0.85	0.85	0.92	0.86	0.8		0.83					
	$\frac{1}{3}$	0.93	0.92	0.95	0.89	0.8		0.83					
	2 3 4 5	1.14	0.97	0.98	0.88	0.8		0.83					
	5	0.97	0.86	0.78	0.76	0.7		0.75					
				21, 0									
				he test to be c									
				nape measurei									
				for each Nozz	de type v	which wo	ould you	ı say can	play a				
		ificant diffe											
(d)				to determine l						cal 6			
				s currently in									
	•			lopted, provid	_		_	•	•	L .			
				sults in the da		i table. Is	s there a	iny diffe	rence in				
		10r an α =.0 mber	US and assi	ume equal var 2	_	4	5	6	7	8			
	Catlayst1	91.50	94.18 9	2.18 95.39	3 91.79	4 89.07	94.72	6 89.21	/	8			
	•	89.19		0.46 93.39		97.04	94.72						
	Catalyst2	07.17	90.93 Y	∪. + U 93.∠1	7/.19	⊅/.U 4	91.0/	74.13					
	i. State	e the hypot	hesis and t	ype of test to	be used		(2 m	arks)					
		the hypoth		-			,	arks)					
e)				ach day by a h	ealthy a	dult follo			tribution	6			
				ole of 40 adult									
				of 0.18, now t									
	of water?			Ź		•							
		e the null h	ypothesis a	and the alterna	ate hypot	thesis. (1	mark)						
			_	med. (1 mark)		`							
	iii. Com	ipute test st	atistics, p	value. (3 marl	ks)								

SRN						
CIVI						

		iv.	At the 0.05 significance level, can we conclude that water consumption has							
			increased? (1 mark)							
	SECTION C – 30 MARKS									
4	a)	Consid	ler the purchases.csv file and answer the following questions	15						
		i.	Provide a summary statistics of all the variables, with respect to sales which							
			variables have high correlation (more than .55), moderate (.455) and low							
			correlation. (3 marks)							
		ii.	Provide a histogram for the variable sales and profit, based on histogram and							
			calculation of skewness and kurtosis what would you describe about sales and profit.							
			(4 marks)							
		iii.	Plot the histogram for variable sales, profit based on customer segments based on							
			these plotswhich segment provides more sales, profit and less sales, profit (4							
			marks).							
		iv.	Draw a scatter plot for all of the variables, what is your observation and conclusion							
			for the relationship between sales and the other numeric variables (4 marks)							
	b)	Consid	ler the purchases.csv file and answer the following questions	15						
		i.	Draw a boxplot for sales based on customer segments, what do you observe in terms							
			of outliers, and sales difference for various segments. (3 marks)							
		ii.	Conduct a hypothesis to see whether there is a difference in terms of sales for							
			customer segment of home business and corporate. What do you conclude. (4							
			marks)							
		iii.	Conduct an hypothesis to prove whether the sales from small business segment is							
			more than corporate, do you agree or not. (4 marks)							
		iv.	Conduct an ANOVA to check whether there is sales difference for products of the							
			following type Paper, Telephones and Communications, Binder and Binder							
			Accessories and Computer Peripherals. (4 marks)							