SUBVARIEDADES DE IRN+K

DEF 1. MCIRN+k es una C⁵-subvariedad de dimensión N si V a eM existe UCIRN+k abiento, a e U, y una femuo'n F: U - IR tal que F e C⁵(U) y DF(X) tiene xango k para todo X e UNM y UNM = {XEU: F(X)=0} = F⁻¹(103).

Gemplo A: M=d(x,y) \in R^2: x^2+y^2=13 es una C^2-subvariedad de dimensión 1.

Tomax $F: \mathbb{R}^2 \to \mathbb{R}$, $F(x,y) = x^2 + y^2 - 1$. Sea $U = \mathbb{R}^2$ (absorbo). Para $(x,y) \in U \cap M$ = M, DF(x,y) = (2x, 2y) there range en $U \cap M = M$ porque $(0,0) \notin M$. El entorno $U = \mathbb{R}^2$ es el mismo para todo $a \in M$.

TEOR 2. Dada MCIRN+K, son equivalentes:

- A) Mes una C⁵ Subvaried ad de dimensión N
- B) Va ∈ M existe UCRN+k abiento, a ∈ U, _ ΩCRN abiento y φ: Ω → RN+k, φ ∈ C(Ω), tal que
 - L') $\varphi(A = U \cap M \quad ic)$ range $D \varphi(x) = N \quad \forall x \in \mathbb{R}$ L'il y es un homeomorfilmo.

NOTA1. $\phi: U \subset \mathbb{R}^N \to \mathbb{R}^m$ es un homeomorfamo se'la función $\phi: U \to \phi(u)$ es continua y trene inversa continua

NOTAZ. La fumuón y del teorema 2 se dia que en dena parametrización local de M en un entorno de a EM.

EJEMPRO B M= f(x,y) EIR²: x²+y²=13 es una C° subvariedad de demonsión 1 de IR² porque cumple B del teorema 2.

Para $(x_0, y_0) \in M_1 = M \cap \{(x, y) \in \mathbb{R}^2 : x>0\}$ toman $\varphi: (-\frac{K}{2}, \frac{K}{2}) = \Omega \subset \mathbb{R} \to \mathbb{R}^2$ $\varphi(t) = (\omega st, sent)$.

Con U= (1x/y) EIR2: x>0), y(12)=UnM, y E Co(12) y Dy(H= (-xent, wort) trere

rango 1 en $(-\frac{17}{2}, \frac{17}{2}) = \Omega$ parque sent y lest no x anulan a la vez. Adema's, y en continua y $\varphi^{2}(x,y) = \operatorname{arcts} \frac{y}{x}$ es tembron continua parque si $(x,y) \in \varphi(-2)$ se tren $x \neq 0$.

Para $(x_0, y_0) \in M_2 = M \cap \{(x, y) \in \mathbb{R}^2; y > 0\}$ tomas $\psi: (0, \pi) = \Omega \subset \mathbb{R} \rightarrow \mathbb{R}^2$ $\psi(t) = (wst, sent)$

Con $V = \{(x,y) \in \mathbb{R}^2; y>0\}$, $\varphi(\Omega) = U \cap M$, $\varphi \in C^{\infty}(\Omega)$ $y \in Q(t) = (-1)$ there mange Δ . Ahorewhere the change Δ is $\varphi^{-1}(x,y) = \operatorname{arccot} \frac{x}{y}$ que as workhure paregre y>0.

Haur $M_3 = \{(x,y) \in \mathbb{R}^2 : x < 0\} \cap M$ y $M_4 = M \cap \{(x,y) : \mathbb{R}^2 : y < 0\}$ de marora sâmîlar

TEOR. 3 Dada M < R , son equivalentes:

A) M es una C = subvariedad N-dim on R N++

C) Para cada a & M existen MICIR N+12 abiento an

a & U y f: U - R N+12 defamor fismo sobx f(U)

tal que if(UNM) = f(U) 1) (R x +03)

NOTA 5. Les funciones f del teorema 3 "applastan" trozes de M en IR.

GC. $M = \{(x,y): x^2 - y^2 = 0, y \ge 0\}$ no es una subvarizdad de \mathbb{R}^2 . Si Puera una $C^{\frac{1}{2}}$ sub.

para $(0,0) \in M$ existiva $U(0,0) \in \mathbb{R}^2$ y $F: U \rightarrow \mathbb{R}$ won $F \in C^{\frac{1}{2}}(U)$ y $DF(x,y) = (\frac{DF}{OX}, \frac{DF}{OY})$ won rango 1

para todo $(x,y) \in U$.

Si $\frac{\partial F}{\partial x}(\theta,0) \neq 0$, por el TFImplitata, se puede despejan X = f(y) urca de y = 0. Pero esto es imposeble porque a cada, y le correspondem des velevers de X ya que e los pontos (X,X) y (-X,X) prestereum a M.

Si $QE(0,0) \neq 0$, por el TFImplitute, a puede desperas y=g(x) con $g\in C^1$ cerca de x=0. Pero esto es impossible porque g(x)=|x| No es diferenciable en x=0.

Como DF(x0,0) no puede tener reargo 1, M no es una sobraciedad diferenciable.

PROP. 4 Una subveniedad N-dim M de IR NHE se prede escribir, quiza tres pormuter las viociables, localmente como la grafica de una Bunción deferenciable. Convretamente, reordonando adecuadamente las variables, para cada a 619 existe UN(a) y f: VCIR > IR tales que . U. nM = {(x, f(x)): x = V}

& D. M=1(x,y) EIR2: x=y2=0} no es una subvariedad diferenciable de 12° 50 les fresa cerca de (0,0) debou a sor la gráfica de una fiención o Poro al despega y= tx o x= ty no dan funcions.

PROP 5. Sea M una subvariedad n-dim de 12 17 audqueror frommon injectiona y: V < 12" -> 12"+12 con Q(V) cM y rango Dy = n on V es una parametriza. Won local, e.d. y es un homeom arfismo.