Implementation Matters in Deep RL: A Case Study on PPO and TRPO¹²

 $^{^1\,\}mbox{{\sc ''}Implementation}$ Matters in Deep RL: A Case Study on PPO and TRPO" by Engstrom et al., ICLR 2020

²Summary: http://tiny.cc/zh0lnz

► Performance of many RL algorithms depends a lot on tricks used in implementation

- ► Performance of many RL algorithms depends a lot on tricks used in implementation
- ▶ Authors dived into PPO and found out that it is not an exception

- ► Performance of many RL algorithms depends a lot on tricks used in implementation
- ▶ Authors dived into PPO and found out that it is not an exception
- Key observation: tricks used in PPO give more boost than PPO itself

- ► Performance of many RL algorithms depends a lot on tricks used in implementation
- ▶ Authors dived into PPO and found out that it is not an exception
- Key observation: tricks used in PPO give more boost than PPO itself
- ▶ PPO+tricks works a bit better than TRPO+tricks

1. **Baseline**. A common part between TRPO and PPO is the off-policy policy gradient (with importance sampling):

$$J_{\mathsf{PG}}(\theta) = \underset{(s_t, a_t) \sim \pi}{\mathbb{E}} \left[\frac{\pi_{\theta} \left(a_t | s_t \right)}{\pi \left(a_t | s_t \right)} \hat{A}_{\pi} \left(s_t, a_t \right) \right] \tag{1}$$

1. **Baseline**. A common part between TRPO and PPO is the off-policy policy gradient (with importance sampling):

$$J_{\mathsf{PG}}(\theta) = \underset{(s_t, a_t) \sim \pi}{\mathbb{E}} \left[\frac{\pi_{\theta} \left(a_t | s_t \right)}{\pi \left(a_t | s_t \right)} \hat{A}_{\pi} \left(s_t, a_t \right) \right] \tag{1}$$

2. **TRPO**. TRPO differs from PG by constraining the optimization step:

$$\max_{\theta} J_{PG}(\theta)$$
s.t. $D_{KL}(\pi_{\theta}(\cdot|s)||\pi(\cdot|s)) \leq \delta$ (2)

1. **Baseline**. A common part between TRPO and PPO is the off-policy policy gradient (with importance sampling):

$$J_{\mathsf{PG}}(\theta) = \underset{(s_t, a_t) \sim \pi}{\mathbb{E}} \left[\frac{\pi_{\theta} \left(a_t | s_t \right)}{\pi \left(a_t | s_t \right)} \hat{A}_{\pi} \left(s_t, a_t \right) \right] \tag{1}$$

2. **TRPO**. TRPO differs from PG by constraining the optimization step:

$$\max_{\theta} J_{PG}(\theta)$$
s.t. $D_{KL}(\pi_{\theta}(\cdot|s)||\pi(\cdot|s)) \leq \delta$ (2)

3. **PPO**. PPO differs from PG by clipping the ratio inside the objective:

$$J_{\text{PPO}} = \underset{(s_t, a_t) \sim \pi}{\mathbb{E}} \left[\min \left(\text{clip} \left(\rho_t, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{\pi} \left(s_t, a_t \right), \rho_t \hat{A}_{\pi} \left(s_t, a_t \right) \right) \right]$$
(3)

where

$$\rho_t = \frac{\pi_\theta \left(a_t | s_t \right)}{\pi \left(a_t | s_t \right)}. \tag{4}$$

Authors looked at the PPO implementation by OpenAI and found a lot of tricks in it.

Authors looked at the PPO implementation by OpenAl and found a lot of tricks in it. The main ones were:

Authors looked at the PPO implementation by OpenAI and found a lot of tricks in it. The main ones were:

1. Value function clipping (during value function fitting)

Authors looked at the PPO implementation by OpenAI and found a lot of tricks in it. The main ones were:

- 1. Value function clipping (during value function fitting)
- 2. Reward scaling

Authors looked at the PPO implementation by OpenAI and found a lot of tricks in it. The main ones were:

- 1. Value function clipping (during value function fitting)
- 2. Reward scaling
- 3. Orthogonal init + layer scaling

Authors looked at the PPO implementation by OpenAI and found a lot of tricks in it. The main ones were:

- 1. Value function clipping (during value function fitting)
- 2. Reward scaling
- 3. Orthogonal init + layer scaling
- 4. Learning rate annealing

What is the main source of a good PPO performance?

Authors ran several experiments for PPO and TRPO with and without tricks and obtained the following results

WALKER2D-V2	HOPPER-V2	HUMANOID-V2
2867	2371	831
2735	2142	674
2791	2043	586
3292	2513	806
3050	2466	1030
	2867 2735 2791 3292	2867 2371 2735 2142 2791 2043 3292 2513

What is the main source of a good PPO performance?

Authors ran several experiments for PPO and TRPO with and without tricks and obtained the following results

	WALKER2D-V2	HOPPER-V2	HUMANOID-V2
PG +tricks	2867	2371	831
PG +PPO	2735	2142	674
PG +TRPO	2791	2043	586
PG +PPO +tricks	3292	2513	806
PG +TRPO+tricks	3050	2466	1030

So,

- tricks improve the performance better than PPO or TRPO
- original paper should have used tricks for TRPO as well