

CLAIMS

What is claimed is:

1 1. A method comprising:
2 forming a first interconnect structure on one side of a first wafer;
3 forming a number of vias, each of the vias extending through the first interconnect
4 structure and into the first wafer;
5 depositing an insulating material in each of the number of vias, the insulating material in
6 each via forming an insulating plug;
7 forming a second interconnect structure over the insulating plugs and the first
8 interconnect structure, wherein each of the insulating plugs extends to one of a
9 number of conductors in the second interconnect structure;
10 bonding the first wafer to a second wafer to form a wafer stack; and
11 thinning an opposing side of the first wafer to expose the insulating plug within each of
12 the vias.

1 2. The method of claim 1, further comprising performing alignment of the
2 wafer stack using the exposed insulating plugs and vias.

1 3. The method of claim 1, further comprising depositing a layer of dielectric
2 material over the opposing side of the first wafer and the exposed insulating plugs.

1 4. The method of claim 3, further comprising forming a number of other
2 vias, each of the other vias extending through the dielectric layer and one of the
3 insulating plugs, wherein each of the other vias extends to the one conductor in the
4 second interconnect structure associated with the one insulating plug.

1 5. The method of claim 4, further comprising:
2 forming a number of trenches in the dielectric layer, each trench located coincident with
3 one of the other vias; and
4 depositing a conductive material in each of the other vias and each of the trenches, the
5 conductive material in each of the trenches forming a land.

1 6. The method of claim 5, wherein the conductive material comprises a
2 copper material.

1 7. The method of claim 5, further comprising depositing a connection
2 element on each of the lands.

1 8. The method of claim 5, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the trenches.

1 9. The method of claim 4, further comprising depositing a conductive
2 material in each of the other vias.

1 10. The method of claim 9, wherein the conductive material comprises a
2 copper material.

1 11. The method of claim 9, further continuing deposition of the conductive
2 material to form connection elements proximate at least some of the other vias.

1 12. The method of claim 1, wherein the insulating material comprises an oxide
2 material.

1 13. The method of claim 12, wherein the insulating material comprises SiO₂.

1 14. The method of claim 1, wherein the insulating material comprises one of a
2 nitride material, a carbide material, and a polymer material.

1 15. The method of claim 1, further comprising cutting the wafer stack into a
2 plurality of stacked die.

1 16. The method of claim 15, further comprising packaging one of the stacked
2 die to form a packaged integrated circuit device.

1 17. The method of claim 1, further comprising forming at least one dummy
2 via extending through the first interconnect structure and into the first wafer.

1 18. A method comprising:
2 forming a first interconnect structure on one side of a first wafer;
3 forming a number of vias, each of the vias extending through the first interconnect
4 structure and into the first wafer;
5 depositing a layer of insulating material over a surface of each of the number of vias;
6 depositing a sacrificial material on the insulating layer in each of the number of vias;
7 forming a second interconnect structure over the first interconnect structure, wherein the
8 sacrificial material in each of the number of vias extends to one of a number of
9 conductors in the second interconnect structure; and
10 bonding the first wafer to a second wafer to form a wafer stack.

1 19. The method of claim 18, further comprising:
2 thinning an opposing side of the first wafer to expose the sacrificial material within each
3 of the vias.

1 20. The method of claim 19, further comprising performing alignment of the
2 wafer stack using the exposed vias and sacrificial material.

1 21. The method of claim 19, further comprising depositing a layer of dielectric
2 material over the opposing side of the first wafer and the exposed vias.

1 22. The method of claim 21, further comprising:
2 forming a number of other vias, each of the other vias extending through the dielectric
3 layer and to the sacrificial material in one of the number of vias; and
4 removing the sacrificial material from each of the number of vias, wherein each of the
5 vias extends to one of a number of conductors in the second interconnect
6 structure.

1 23. The method of claim 22, further comprising:
2 forming a number of trenches in the dielectric layer, each trench located coincident with
3 one of the other vias; and
4 depositing a conductive material in each of the vias and each of the trenches, the
5 conductive material in each of the trenches forming a land.

1 24. The method of claim 23, wherein the conductive material comprises a
2 copper material.

1 25. The method of claim 23, further comprising depositing a connection
2 element on each of the lands.

1 26. The method of claim 23, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the trenches.

1 27. The method of claim 22, further comprising depositing a conductive
2 material in each of the vias.

1 28. The method of claim 27, wherein the conductive material comprises a
2 copper material.

1 29. The method of claim 27, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the vias.

1 30. The method of claim 22, wherein the sacrificial material comprises one of
2 a glass material and a polymer material.

1 31. The method of claim 22, wherein removing the sacrificial material
2 comprises performing an etching process.

1 32. The method of claim 31, wherein the etching process is performed using a
2 solution that removes the sacrificial material at a faster rate than the dielectric material.

1 33. The method of claim 18, further comprising:
2 etching an opposing side of the first wafer to expose the layer of insulating material in
3 each of the vias.

1 34. The method of claim 33, further comprising performing alignment of the
2 wafer stack using the exposed vias and insulating material.

1 35. The method of claim 33, further comprising depositing a layer of dielectric
2 material over the opposing side of the first wafer and the exposed insulating material.

1 36. The method of claim 35, further comprising:
2 forming a number of trenches in the dielectric layer and the exposed insulating material
3 to expose the sacrificial material; and
4 removing the sacrificial material from each of the number of vias, wherein each of the
5 vias extends to one of a number of conductors in the second interconnect
6 structure.

1 37. The method of claim 36, further comprising depositing a conductive
2 material in each of the vias and each of the trenches.

1 38. The method of claim 37, wherein the conductive material in each of the
2 trenches forms a land, the method further comprising depositing a connection element on
3 each of the lands.

1 39. The method of claim 37, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the trenches.

1 40. The method of claim 18, wherein the insulating material comprises one of
2 an oxide material, a nitride material, and a carbide material.

1 41. The method of claim 40, wherein the insulating material comprises one of
2 SiO₂, Si₃N₄, and SiC.

1 42. The method of claim 18, further comprising cutting the wafer stack into a
2 plurality of stacked die.

1 43. The method of claim 42, further comprising packaging one of the stacked
2 die to form a packaged integrated circuit device.

1 44. The method of claim 18, further comprising forming at least one dummy
2 via extending through the first interconnect structure and into the first wafer.

1 45. A method comprising:
2 forming a first interconnect structure on one side of a first wafer;
3 forming a number of vias, each of the vias extending through the first interconnect
4 structure and into the first wafer;
5 depositing a layer of insulating material over a surface of each of the number of vias;
6 depositing a conductive material on the insulating layer in each of the number of vias;
7 forming a second interconnect structure over the first interconnect structure, wherein the
8 conductive material in each of the number of vias extends to one of a number of
9 conductors in the second interconnect structure; and
10 bonding the first wafer to a second wafer to form a wafer stack.

1 46. The method of claim 45, further comprising:
2 thinning an opposing side of the first wafer to expose the conductive material within each
3 of the vias.

1 47. The method of claim 46, further comprising performing alignment of the
2 wafer stack using the exposed vias and conductive material.

1 48. The method of claim 46, further comprising depositing a layer of dielectric
2 material over the opposing side of the first wafer and the exposed vias.

1 49. The method of claim 48, further comprising forming a number of other
2 vias, each of the other vias extending through the dielectric layer and to the conductive
3 material in one of the number of vias.

1 50. The method of claim 49, further comprising:
2 forming a number of trenches in the dielectric layer, each trench located coincident with
3 one of the other vias; and
4 depositing a conductive material in each of the other vias and each of the trenches, the
5 conductive material in each of the trenches forming a land.

1 51. The method of claim 50, wherein the conductive material in each of the
2 vias and the conductive material in each of the other vias comprises a copper material.

1 52. The method of claim 50, further comprising depositing a connection
2 element on each of the lands.

1 53. The method of claim 50, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the trenches.

1 54. The method of claim 49, further comprising depositing a conductive
2 material in each of the other vias.

1 55. The method of claim 54, wherein the conductive material in each of the
2 vias and the conductive material in each of the other vias comprises a copper material.

1 56. The method of claim 54, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the other
3 vias.

1 57. The method of claim 45, further comprising:
2 etching an opposing side of the first wafer to expose the layer of insulating material in
3 each of the vias.

1 58. The method of claim 57, further comprising performing alignment of the
2 wafer stack using the exposed vias and insulating material.

1 59. The method of claim 57, further comprising depositing a layer of dielectric
2 material over the opposing side of the first wafer and the exposed insulating material.

1 60. The method of claim 59, further comprising forming a number of trenches
2 in the dielectric layer and the exposed insulating material to expose the conductive
3 material in the vias.

1 61. The method of claim 60, further comprising depositing a conductive
2 material in each of the vias and each of the trenches.

1 62. The method of claim 61, wherein the conductive material in each of the
2 trenches forms a land, the method further comprising depositing a connection element on
3 each of the lands.

1 63. The method of claim 61, further comprising continuing deposition of the
2 conductive material to form connection elements proximate at least some of the trenches.

1 64. The method of claim 45, wherein the insulating material comprises one of
2 an oxide material, a nitride material, and a carbide material.

1 65. The method of claim 64, wherein the insulating material comprises one of
2 SiO₂, Si₃N₄, and SiC.

1 66. The method of claim 45, further comprising cutting the wafer stack into a
2 plurality of stacked die.

1 67. The method of claim 66, further comprising packaging one of the stacked
2 die to form a packaged integrated circuit device.

1 68. The method of claim 45, further comprising forming at least one dummy
2 via extending through the first interconnect structure and into the first wafer.