```
D2Cache[n_, k_, s_] :=
 Sum[Binomial[k, j] D2Cache[n/(m^(k-j)), j, m+1], \{m, s, n^(1/k)\}, \{j, 0, k-1\}]
D2Cache[n_{,} 1, s_{,}] := Floor[n] - s + 1; D2Cache[n_{,} 0, s_{,}] := 1
d2cache[n_{k_{1}}] := D2Cache[n, k, 2] - D2Cache[n - 1, k, 2]
D2Fast[n_, k_] :=
 Sum[D2Cache[Floor[n/j], k-1, 2], {j, Floor[n^(1/3)] + 1, Floor[n^(1/2)]}] +
  Sum[(Floor[n/j] - (Floor[n/(j+1)])) D2Cache[j, k-1, 2],
    {j, 1, n / Floor[n^(1/2)]-1}] +
  Sum[d2cache[j, k-1] (Floor[n/j]-1), {j, 2, n^(1/3)}] +
  Sum[d2cache[j,m] \ D2Cache[n \ / \ (js) \ , \ k-m-1 \ , \ 2] \ , \ \{j, \ 2, \ n^{\ }(1 \ / \ 3) \ \},
    {s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[n/j]^{(1/2)}, {m, 1, k-2}] + }
  Sum[(Sum[1, {m, Floor[n/(j(s+1))]+1, n/(js)}])
     (Sum[d2cache[j, m] D2Cache[s, k-m-1, 2], \{m, 1, k-2\}]),
    {j, 2, n^{(1/3)}}, {s, 1, Floor[n/j]/Floor[Floor[n/j]^{(1/2)]-1}}
D2Fast[n_, 1] := Floor[n] - 1
   \text{LinnikSumFast}[n_{-}] := Sum[(-1)^{(k+1)}/kD2Fast[n,k], \{k, 1, Log[2, n]\}] 
\label{eq:rimeCnt} \mbox{RiePrimeCnt}[n_{\_}] := \mbox{Sum}[\mbox{PrimePi}[n^{\mbox{$\wedge$}}(1\slash\mbox{$/$}\mbox{$j$},\slash\mbox{$1$},\slash\mbox{$Log$}[2,\slash\mbox{$n$}]\}]
Table[{n, a = LinnikSumFast[n], b = RiePrimeCnt[n], a - b}, {n, 1, 100}] // TableForm
```

```
D2Cache[n_, k_, s_] :=
   Sum[Binomial[k,j] D2Cache[n/(m^(k-j)),j,m+1], \{m,s,n^(1/k)\}, \{j,0,k-1\}]
D2Cache[n_{,1}, s_{,1}] := Floor[n] - s + 1; D2Cache[n_{,0}, s_{,1}] := 1
d2cache[n_{,k_{|}} := D2Cache[n, k, 2] - D2Cache[n-1, k, 2]
D2Fast[n_, k_] :=
   Sum[D2Cache[Floor[n / j], k - 1, 2], {j, Floor[n^{(1/3)} + 1, Floor[n^{(1/2)}]}] + 1, Floor[n^{(1/2)}] + 1, 
       Sum[(Floor[n/j] - (Floor[n/(j+1)])) D2Cache[j, k-1, 2],
           {j, 1, n / Floor[n^{(1/2)} - 1}] +
       Sum[d2cache[j, k-1] (Floor[n/j]-1), {j, 2, n^(1/3)}] +
       Sum[d2cache[j, m] D2Cache[n/(js), k-m-1, 2], {j, 2, Floor[n^(1/3)]},
           {s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[n/j]^{(1/2)}, {m, 1, k-2}] + }
       Sum[(Floor[n/(js)] - Floor[n/(j(s+1))])
               (Sum[d2cache[j, m] D2Cache[s, k-m-1, 2], \{m, 1, k-2\}]),
           \label{eq:condition} \begin{subarray}{ll} \{j,\,2,\,Floor[\,n\,^{\,\prime}\,(1\,/\,3)\,]\,\}\,,\,\{s,\,1,\,Floor[\,n\,/\,j]\,\,^{\,\prime}\,Floor[\,Floor[\,n\,/\,\,j]\,\,^{\,\prime}\,(1\,/\,2)\,]\,-\,1\}\,] \end{subarray}
D2Fast[n_{,1}] := Floor[n] - 1
LinnikSumFast[n_] := Sum[(-1)^(k+1)/kD2Fast[n,k], \{k, 1, Log[2, n]\}]
\label{eq:rimeCnt} \mbox{RiePrimeCnt}[n_{\_}] := \mbox{Sum}[\mbox{PrimePi}[n^{\mbox{$\wedge$}}(1\slash\mbox{$/$}\mbox{$j$},\slash\mbox{$1$},\slash\mbox{$Log$}[2,\slash\mbox{$n$}]\}]
Table[{n, a = LinnikSumFast[n], b = RiePrimeCnt[n], a - b}, {n, 1, 100}] // TableForm
```

```
D2Cache[n_, k_, s_] :=
   Sum[Binomial[k, j] D2Cache[n/(m^(k-j)), j, m+1], \{m, s, n^(1/k)\}, \{j, 0, k-1\}]
D2Cache[n_{,1}, s_{,1}] := Floor[n] - s + 1; D2Cache[n_{,0}, s_{,1}] := 1
d2cache[n_{,k_{|}} := D2Cache[n, k, 2] - D2Cache[n-1, k, 2]
D2Fast[n_, k_] :=
   Sum[D2Cache[Floor[n/j], k-1, 2], {j, Floor[n^(1/3)]+1, Floor[n^(1/2)]}] +
      Sum[(D2Cache[Floor[n/j], 1, 2] - D2Cache[Floor[n/(j+1)], 1, 2]) D2Cache[j, k-1, 2],
          {j, 1, n/Floor[n^{(1/2)} - 1}] +
       Sum[d2cache[j,k-1] \ D2Cache[Floor[n/j],1,2], \{j,2,n^{(1/3)}\}] + \\
       Sum[d2cache[j, m] D2Cache[Floor[n/(js)], k-m-1, 2], \{j, 2, Floor[n^(1/3)]\},
          \{s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[Floor[n/j]^{(1/2)}]\}, \{m, 1, k-2\}\} + \{s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[Floor[n/j]^{(1/2)}]\}, \{m, 1, k-2\}\} + \{s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[Floor[n/j]^{(1/2)}]\}, \{m, 1, k-2\}\} + \{s, Floor[Floor[n]] / j] + 1, Floor[Floor[n/j]] / j] + 1, Floor[floo
       Sum[(D2Cache[Floor[n/(js)], 1, 2] - D2Cache[Floor[n/(j(s+1))], 1, 2])
              (Sum[d2cache[j, m] D2Cache[s, k-m-1, 2], \{m, 1, k-2\}]),
          \{j, 2, Floor[n^{(1/3)}]\}, \{s, 1, Floor[n/j] / Floor[Floor[n/j]^{(1/2)}] - 1\}\}
D2Fast[n_{,1}] := Floor[n] - 1
LinnikSumFast[n_] := Sum[(-1)^(k+1)/kD2Fast[n,k], \{k, 1, Log[2, n]\}]
\label{eq:rimeCnt} \mbox{RiePrimeCnt}[n_{\_}] := \mbox{Sum}[\mbox{PrimePi}[n^{\mbox{$\wedge$}}(1\slash\mbox{$/$}\mbox{$j$},\slash\mbox{$1$},\slash\mbox{$Log$}[2,\slash\mbox{$n$}]\}]
Table[{n, a = LinnikSumFast[n], b = RiePrimeCnt[n], a - b}, {n, 1, 100}] // TableForm
```

```
D2Cache[n_, k_, s_] :=
   Sum[Binomial[k,j] \ D2Cache[n \ / \ (m^{\ }(k-j)) \ , \ j, \ m+1] \ , \ \{m, \ s, \ n^{\ }(1 \ / \ k) \ \}, \ \{j, \ 0, \ k-1\}]
\label{eq:decomposition} {\tt D2Cache}\left[n_{-},\,1,\,s_{-}\right] := {\tt Floor}\left[n\right] - s + 1; \, {\tt D2Cache}\left[n_{-},\,0,\,s_{-}\right] := 1
d2cache[n_{,k_{|}} := D2Cache[n, k, 2] - D2Cache[n-1, k, 2]
D2Cache[n_, k_] := D2Cache[n, k, 2]
D2Fast[n_, k_] :=
   Sum[d2cache[j, 1] D2Cache[Floor[n/j], k-1], {j, Floor[n^(1/3)]+1, Floor[n^(1/2)]}] +
      Sum[(D2Cache[Floor[n/(r+1)], 1] - D2Cache[Floor[n/(r+1)], 1]) D2Cache[r, k-1],
         {r, 1, n/Floor[n^{(1/2)} - 1}] +
      Sum[d2cache[j, k-1] \ D2Cache[Floor[n/j], 1], \{j, 2, n^{(1/3)}\}] + \\
      Sum[d2cache[j, m] D2Cache[Floor[n/(js)], k-m-1], \{j, 2, Floor[n^(1/3)]\},
         \{s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[Floor[n/j]^{(1/2)}]\}, \{m, 1, k-2\}\} + \{s, Floor[Floor[n^{(1/3)}] / j] + 1, Floor[Floor[n/j]^{(1/2)}]\}
      Sum[(D2Cache[Floor[n/(js)], 1] - D2Cache[Floor[n/(j(s+1))], 1])
             (Sum[d2cache[j, m] D2Cache[s, k-m-1], \{m, 1, k-2\}]),
         {j, 2, Floor[n^(1/3)]}, {s, 1, Floor[n/j]/Floor[Floor[n/j]^(1/2)]-1}]
D2Fast[n_{,1}] := Floor[n] - 1
RiePrimeCnt[n_] := Sum[PrimePi[n^(1/j)]/j, \{j, 1, Log[2, n]\}]
 \label{lem:table and table are table and table and table are table and table are table and table are table and table are table are table and table are table and table are ta
1
                  0
                                      0
                                                          0
2
                  1
                                      1
                                                          0
3
                   2
                                       2
                                                          0
4
5
6
                                                          0
                   9 2
7
                                                          0
                   29
                                       29
8
                                                          0
9
                                                          0
                    3
                                       3
                   16
3
10
                                                          0
                   19
3
                                       19
3
11
                                                          0
                                       19
3
                   19
3
12
                                                          0
                   22
                                       22
13
                    3
                                       3
                   22
                                       22
14
                                                          0
                   22
3
                                       22
15
                                                          0
                                       3
                                       91
16
                                                          0
                   12
                                       12
                    103
                                       103
17
                                                          0
```

18	103	103	0
19	115	115	0
20	115	115	0
21	115	115	0
22	115	115	0
23	$\frac{127}{12}$	127	0
24	$\frac{127}{12}$	$\frac{127}{12}$	0
25	133	133	0
26	133	133	0
27	137	137	0
28	137	137	0
29	149	149	0
30	149	149	0
31	161 12	161 12	0
32	817	817	0
33	817	817	0
34	817 60	817	0
35	817 60	817	0
36	817 60	817 60	0
37	877 60	877 60	0
38	877 60	877 60	0
39	877 60	877 60	0
40	877 60	877 60	0
41	937	937	0
42	937	937	0
43	997 60	997 60	0
44	997 60	997 60	0
45	997 60	997 60	0
46	997 60	997 60	0
47	1057 60	1057 60	0
48	1057 60	1057 60	0
49	1087 60	1087 60	0
50	1087 60	1087 60	0
51	1087 60	1087 60	0
52	1087	1087	0
53	1147 60	1147 60	0
54	1147 60	1147 60	0
55	1147 60	1147 60	0
56	1147 60	1147 60	0

57	1147 60	1147 60	0
58	1147	1147	0
59	60 1207	60 1207	0
60	60 1207	60 1207	0
	60 1267	60 1267	
61	60 1267	60 1267	0
62	60 1267	60 1267	0
63	60	60	0
64	$\frac{1277}{60}$	$\frac{1277}{60}$	0
65	1277 60	1277 60	0
66	$\frac{1277}{60}$	1277 60	0
67	1337 60	1337 60	0
68	1337 60	1337	0
69	1337	1337	0
70	60 1337	60 1337	0
71	60 1397	60 1397	0
	60 1397	60 1397	
72	60 1457	60 1457	0
73	60	60	0
74	60	60	0
75	$\frac{1457}{60}$	$\frac{1457}{60}$	0
76	1457 60	1457 60	0
77	$\frac{1457}{60}$	1457 60	0
78	1457 60	1457 60	0
79	1517	1517	0
80	60 1517	60 1517	0
81	60 383	60 383	0
82	15 383	15 383	0
	15 398	15 398	
83	15 398	15 398	0
84	15 398	15 398	0
85	15	15	0
86	398 15	398 15	0
87	398 15	398 15	0
88	398 15	398 15	0
89	413 15	413 15	0
90	413	413	0
91	15 413	15 413	0
92	15 413	15 413	0
93	15 413	15 413	0
	15 413	15 413	
94	15 413	15 413	0
95	15	15	0

96	413 15	413 15	0
97	428 15	428 15	0
98	428 15	428 15	0
99	428 15	428 15	0
100	428 15	428 15	0