CATCH-U-DNA

Rafael Delgado-Buscalioni

Soft Matter Group, IFIMAC Universidad Autónoma de Madrid, UAM

FETOPEN MEETING at Tours

Outline

- Objectives
 - Linker
 - DNA-strands
 - Liposomes
- Achievements
 - Theory
 - Computational models
 - Preliminary results
- Deviations
 - Accuracy
 - Computation times
- Future plans
 - Impedance analysis

Objectives

- M20. Molecular dynamics simulations of linker and DNA strands under GHz oscillatory shear flow
- M30. Hydrodynamic code resolving coarse-grained molecular description of liposomes in oscillatory flow

Objectives

- A: Fluid drag on the liposome
- B: Mass and inertia of the liposome
- C: Stiffness of the anchor (DNA)
- D: Stiffness of the linker in contact with resonator
- E: Hydrodynamics: flow distortion due to liposomes
- F. Liposome flexibility

Achievements

Achievements: theory

Theory

- Simple spring model
- Fluid
- Liposome (rigid) + Fluid
- Improvements (future plans)

QCM simple model

$$\begin{split} M_R \frac{d^2 x_R}{dt^2} &= -\kappa_R x_R - \xi_R \frac{dx_R}{dt} + \kappa_P (x_P - x_R) + \xi_P (\frac{dx_P}{dt} - \frac{dx_R}{dt}), \\ M_P \frac{d^2 x_P}{dt^2} &= -\kappa_P (x_P - x_R) - \xi_P (\frac{dx_P}{dt} - \frac{dx_R}{dt}). \end{split}$$

In the frequency domain:

$$\begin{split} &-\tilde{\omega}^2 M_R \hat{x}_R = -\kappa_R \hat{x}_R - \mathrm{i} \omega \xi_R \hat{x}_R + \kappa_P (\hat{x}_P - \hat{x}_R) + \mathrm{i} \omega \xi_P (\hat{x}_P - \hat{x}_R), \\ &-\tilde{\omega}^2 M_P \hat{x}_P = -\kappa_P (\hat{x}_P - \hat{x}_R) - \mathrm{i} \omega \xi_P (\hat{x}_P - \hat{x}_R). \end{split}$$

QCM frequency shift

Defining
$$\tilde{\omega}_R^2 = \frac{1}{M_R} (\kappa_R + \mathrm{i}\omega \xi_R)$$
, $\tilde{\omega}_P^2 = \frac{1}{M_P} (\kappa_P + \mathrm{i}\omega \xi_P)$, and assuming that
$$|\tilde{\omega} - \tilde{\omega}_R| \ll |\tilde{\omega}_R| \text{ and } \left| \frac{\kappa_P + \mathrm{i}\omega \xi_P}{\kappa_R + \mathrm{i}\omega \xi_R} \right| \ll 1,$$

we arrive at

$$\Delta \tilde{f} = \frac{1}{4\pi M_R} \tilde{\kappa}_P \frac{\tilde{\omega}_R}{\tilde{\omega}_R^2 - \tilde{\omega}_P^2}.$$

QCM limiting cases

• Inertial loading $(\operatorname{Re}(\omega_P) >> \operatorname{Re}(\omega_R))$

$$\Delta \tilde{f} \approx -\frac{\tilde{\omega}_R M_P}{4\pi M_R}.$$

• Elastic coupling $(\operatorname{Re}(\omega_P) \ll \operatorname{Re}(\omega_R))$

$$\Delta \tilde{f} \approx \frac{\tilde{\kappa}_P}{4\pi M_R \tilde{\omega}_R}.$$

• Zero crossing $(\operatorname{Re}(\omega_P) \approx \operatorname{Re}(\omega_R),$

$$\Delta \tilde{f} \approx \frac{M_P \tilde{\omega}_P}{8\pi M_R (\tilde{\omega}_R - \tilde{\omega}_P)}.$$

Theory: QCM in fluids

$$\rho \frac{\partial u(z, t)}{\partial t} = \eta \frac{\partial^2 u(z, t)}{\partial z^2}, \tag{fluid}$$

$$\ddot{X} = -\omega_0^2 X + \frac{\eta}{m_W} \left. \frac{\partial u(z, t)}{\partial z} \right|_{z=0}, \tag{wall}$$

$$\ddot{X} = -\omega_0^2 X + \frac{\eta}{m_W} \left. \frac{\partial u(z, t)}{\partial z} \right|_{z=0},$$
 (wall)

Theory: QCM in fluids

Theory: ring-down with a Newtonian fluid

$$u(z, t) = U_0 e^{\hat{\omega}t + \kappa z}$$
, with $\kappa = \sqrt{\frac{\hat{\omega}\rho}{\eta}}$.
$$X(t) = \frac{U_0}{\hat{\omega}} e^{\hat{\omega}t}.$$

One gets a condition for $\Lambda = \frac{\hat{\omega}}{\omega_0}$,

$$\Lambda^2 + 1 = C\Lambda^{3/2},$$

governed by the adimensional parameter

$$C = \sqrt{\frac{\eta \rho}{\omega_0 m_w}}$$

.

$$\begin{split} \frac{\Delta\omega}{\omega_0} &= \frac{C}{2^{3/2}} \sim 10^{-5}! & \text{(frequency shift)} \\ \frac{\Gamma}{\omega_0} &= \frac{C}{2^{3/2}} \sim 10^{-5} & \text{(dissipation)} \\ C &= \sqrt{\frac{\eta\rho}{2^{3/2}}} & \text{(Inverse number of oscillations to decay)} \end{split}$$

Theory: QCM fluid+ rigid liposome

$$(m_R+m_P)\frac{d^2X}{dt^2}=-m_R\omega_0^2X+\frac{\eta}{\sigma}\left(\frac{\partial v}{\partial z}\right)_{z=0}-\gamma\left(\frac{dX}{dt}-v(z_p,t)\right) \label{eq:mass}$$
 (wall and particle)

$$v(0,t) = \frac{dX}{dt}$$
 and $v(\infty,t) = 0$

- ◆ロト ◆団 ト ◆差 ト ◆差 ト ・差 ・ 夕久(^)

Analytical solution

$$\begin{split} \frac{\Delta\omega}{\omega_0} &= -\frac{m_P}{2m_R} - 3\,c\,e^{-z}\sin(z)\frac{\phi(R)}{R} & \qquad \text{(freq. shift over fluid)} \\ \frac{\Delta\Gamma}{\omega_0} &= \frac{3\,c\,\phi(R)}{R}\left(1 - e^{-z}\cos(z)\right) & \qquad \text{(Damp shift over fluid)} \end{split}$$

- z and R in units of $\delta = (2\nu/\omega_0)^{1/2}$
- Fraction area of liposomes $\phi(R) = \pi R^2 N/A$
- C-parameter: $c=[\eta\rho/(2\omega_0\sigma^2)]^{1/2}\sim 2\times 10^{-5}$
- Mass ratio $m_P/m_R = \phi(\sigma_P/\sigma_R) \sim \phi(\rho_P/\rho_R)(R/d_R) \sim 10^{-[4-5]}$

Acoustic ratio

$$\mathrm{AR} = \frac{\Delta \Gamma}{\Delta \omega} = \frac{6c \left(e^z - \cos(z)\right)}{e^z mR + 6c \sin(z)}$$

$Liposomes\ (Theory)$

Achievements: Computational methods

- Continuum-particle models
 - BD: One-way coupling, Brownian dynamics for particles
 - Langevin: One-way coupling, Langevin dynamics for particles
 - FLUAM-i: Incompressible fluid + Immersed boundary (IB)
 - FLUAM-c: Compressible fluid + Immersed boundary (IB)
 - LB: Lattice Boltzmann with bounce-back coupling for particles (collab. Juan Aragonés UAM)
- Particle based models
 - MD: Molecular Dynamics: all-atom molecular dynamics (GROMACS) (collab. Ivan Korotin Queen Mary Univ., London)
 - CG-MD Coarse-grained molecular Dynamics (UAMMD)
 - DPD Dissipative particle dynamics (UAMMD)

Achievements: Methods

Scheme	Coupling	Aprox.	Cost-per-run		
Langevin	One-way	No-hydro	10 minutes		
BD	One-way	No inertia	hours		
FLUAM-i	Two-way	Incompressible	30 mins (impedance)		
FLUAM-c	Two-way	Compressible	2-3 days		
LB	Two-way	compressible	?		
MD	Two-way	All-Atom	1-2 days		
DPD	Two-way	Coarse-grained	20 minutes?		

Immersed Boundary method: CFD-particle solver

$FLUAM ext{-}Compressible$

FLUAM-compressible is working.

Fluid :
$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right] = -\nabla p(\rho) + \eta \nabla^2 \mathbf{v} - \sum_i \mathbf{F}_i^{(fl)} S(\mathbf{q}_i - \mathbf{r})$$

DNA beads :
$$m_e^{(i)} \frac{d^2 \mathbf{q}_i}{dt^2} = \mathbf{F}_i^{(fl)} + \mathbf{F}_{springs}$$

Quarzt wall:
$$m\ddot{x} = k_w x - \eta A \left. \frac{\partial v_x(z,t)}{\partial z} \right|_{z=0} - K_0 (x - X_0)$$
 (1)

- Explicit solution of wall dynamics: x(t)
- Rigid boundary to the fluid with velocity $v_x(z=0,t)=dx/dt$
- Drag evaluated numerically: POTENTIAL ERRORS!

Langevin for particles: one-way coupling

Langevin: The inertia of the particle is resolved

Quarzt wall

$$m\ddot{x} + k_w x - \eta A \left. \frac{\partial v_x(z,t)}{\partial z} \right|_{z=0} - K \left(\mathbf{R}_0 - \mathbf{r}_w \right) \cdot \hat{\mathbf{x}} = 0.$$

Fluid not affected by the particle: One-way coupling

$$\rho_f \frac{\partial v_x}{\partial t} = \eta \frac{\partial^2 v_x}{\partial z^2}$$

Polymer, Langevin dynamics

$$m_p \frac{d\mathbf{R}^2}{dt} = -\chi \left(\dot{\mathbf{R}} - v_x(Z_i; t)\right) \hat{\mathbf{x}} + \mathbf{F}_s(\mathbf{R}) - K \left(|\mathbf{R}_0 - \mathbf{X}_w|\right) \hat{\mathbf{R}}_{0w} + d\tilde{R}_i$$

Molecular dynamics of QCM ring-down simulations All-atom molecular dynamics of streptavidin in QCM

	Pure SPC water, 1 GHz		Water + Protein, 1 GHz		Water + Protein, 10 GHz	
	value	fit error	value	fit error	value	fit error
Γ, ps ⁻¹	1.97E-05	+/- 3.9E-08	2.89E-05	+/- 9.3E-08	1.23E-04	+/- 6.38E-08
ω, ps ⁻¹	0.0062625	+/- 4.0E-08	0.0062283	+/- 9.2E-08	0.062667	+/- 6.41E-08
ω_0 , ps^{-1}	0.0062832		0.0062832		0.062832	
$\omega_0 - \omega_* ps^{-1}$	2.07E-05	+/- 4.0E-08	5.49E-05	+/- 9.2E-08	1.65E-04	+/- 6.41E-08
$2\Gamma/(\omega_0 - \omega)$	1.90	< 0.5%	1.05	< 0.5%	1.49	< 0.1%
Γ _{analytical} , ps ⁻¹	2.22E-05		2.22E-05		2.22E-04	