#### 東芝CMOSデジタル集積回路 シリコン モノリシック

# TC74HC4066AP,TC74HC4066AF,TC74HC4066AFT

#### **Quad Bilateral Switch**

TC74HC4066Aは、シリコンゲートCMOS技術を用いた高速CMOSアナログスイッチです。CMOSの特長である低い消費電流で、アナログあるいはデジタル信号の高速スイッチングが可能です。コントロール入力 C が "H" レベルの場合、スイッチは導通し、"L" レベルの場合、非導通となります。

### 特長

高速スイッチング : tpd = 7 ns (標準) (VCC = 5 V)
低消費電流 : I<sub>CC</sub> = 1 μA (最大) (Ta = 25°C)
高雑音余裕度 : V<sub>NIH</sub> = V<sub>NIL</sub> = 28% V<sub>CC</sub> (最小)
低オン抵抗 : R<sub>ON</sub> = 50 Ω (標準) (V<sub>CC</sub> = 9 V)
低歪率 : THD = 0.05% (標準) (V<sub>CC</sub> = 5 V)

• Bシリーズ CMOS4066B と同一ピン接続、同一ファンクション



質量

DIP14-P-300-2.54 : 0.96 g (標準) SOP14-P-300-1.27A : 0.18 g (標準) TSSOP14-P-0044-0.65A : 0.06 g (標準)

# ピン接続図



### 論理図



### 真理値表

| Control | Switch Function |
|---------|-----------------|
| Н       | On              |
| L       | Off             |

### システム図 (1回路)



### 絶対最大定格 (注 1)

| 項目              | 記号               | 定格                              | 単位 |
|-----------------|------------------|---------------------------------|----|
| 電 源 電 圧         | $V_{CC}$         | -0.5~13                         | V  |
| コントロール入力電圧      | $V_{IN}$         | -0.5~V <sub>CC</sub> + 0.5      | V  |
| スイッチ入出力電圧       | V <sub>I/O</sub> | -0.5~V <sub>CC</sub> + 0.5      | V  |
| C I N 保護ダイオード電流 | I <sub>CK</sub>  | ±20                             | mA |
| I / O 寄生ダイオード電流 | l <sub>IOK</sub> | ±20                             | mA |
| スイッチ・スルー電流      | I <sub>T</sub>   | ±25                             | mA |
| 電 源 / G N D 電 流 | Icc              | ±50                             | mA |
| 許 容 損 失         | PD               | 500 (DIP) (注 2)/180 (SOP/TSSOP) | mW |
| 保 存 温 度         | T <sub>stg</sub> | -65~150                         | °C |

注 1: 絶対最大定格は、瞬時たりとも超えてはならない値であり、1 つの項目も超えてはなりません。

本製品の使用条件 (使用温度/電流/電圧等) が絶対最大定格/動作範囲以内での使用においても、高負荷 (高温および大電流/高電圧印加、多大な温度変化等) で連続して使用される場合は、信頼性が著しく低下するおそれがあります。

弊社半導体信頼性ハンドブック (取り扱い上のご注意とお願いおよびディレーティングの考え方と方法) および個別信頼性情報 (信頼性試験レポート、推定故障率等) をご確認の上、適切な信頼性設計をお願いします。

注 2: Ta =  $-40\sim65$ °C まで、500 mW。 Ta =  $65\sim85$ °C の範囲では-10 mW/°C で、300 mW までディレーティングしてください。

### 動作範囲 (注)

|   | 項                       | 目       |                                 | 記号                              | 定格                               | 単位 |
|---|-------------------------|---------|---------------------------------|---------------------------------|----------------------------------|----|
| 電 | 源                       | 電       | 圧                               | V <sub>CC</sub>                 | 2~12                             | V  |
| П | ントロ・                    | ール入力    | 電 圧                             | $V_{IN}$                        | 0~V <sub>CC</sub>                | ٧  |
| ス | イッチ                     | 入出力     | 電 圧                             | V <sub>I/O</sub>                | 0~V <sub>CC</sub>                | ٧  |
| 動 | 作                       | 温       | 度                               | T <sub>opr</sub>                | -40~85                           | °C |
|   |                         |         |                                 |                                 | 0~1000 (V <sub>CC</sub> = 2.0 V) |    |
| 入 | , + L =                 | 上昇、下降時間 | <b>井 </b>                       | + +-                            | 0~500 (V <sub>CC</sub> = 4.5 V)  | ns |
|   | л <u>т</u> <del>т</del> |         | t <sub>r</sub> , t <sub>f</sub> | 0~400 (V <sub>CC</sub> = 6.0 V) | 115                              |    |
|   |                         |         |                                 |                                 | 0~250 (V <sub>CC</sub> = 10.0 V) |    |

注: 動作範囲は動作を保証するための条件です。

使用していないコントロール入力は VCC、もしくは GND に接続してください。

# 電気的特性

# DC特性

|                 |                  | 測定条件                                     | -                   | Га = 25°( |     | Ta = -40~85°C |      |       |    |  |
|-----------------|------------------|------------------------------------------|---------------------|-----------|-----|---------------|------|-------|----|--|
| 項目              | 記号               |                                          | V <sub>CC</sub> (V) | 最小        | 標準  | 最大            | 最小   | 最大    | 単位 |  |
| 高 レ ベ ル         |                  |                                          | 2.0                 | 1.50      | _   | _             | 1.50 | _     |    |  |
|                 | V                |                                          | 4.5                 | 3.15      | _   | _             | 3.15 | _     | V  |  |
|                 | $V_{IHC}$        | _                                        | 9.0                 | 6.30      | _   | _             | 6.30 | _     |    |  |
| 入力電圧            |                  |                                          | 12.0                | 8.40      | _   | _             | 8.40 | _     |    |  |
| 低レベル            |                  |                                          | 2.0                 | _         | _   | 0.50          | _    | 0.50  |    |  |
|                 | \/u              |                                          | 4.5                 | _         | _   | 1.35          | _    | 1.35  | V  |  |
|                 | $V_{ILC}$        | _                                        | 9.0                 | _         | _   | 2.70          | _    | 2.70  | V  |  |
| 入 力 電 圧         |                  |                                          | 12.0                | _         | _   | 3.60          | _    | 3.60  |    |  |
|                 |                  | V <sub>IN</sub> = V <sub>IHC</sub>       | 4.5                 | _         | 96  | 170           | _    | 200   |    |  |
|                 |                  | $V_{I/O} = V_{CC}$ to GND                | 9.0                 | _         | 55  | 85            | _    | 100   |    |  |
|                 |                  | I <sub>I/O</sub> ≤ 1 mA                  | 12.0                | _         | 45  | 80            | _    | 90    |    |  |
| オ ン 抵 抗         | R <sub>ON</sub>  |                                          | 2.0                 | _         | 160 | _             | _    | _     | Ω  |  |
|                 |                  | V <sub>IN</sub> = V <sub>IHC</sub>       | 4.5                 | _         | 70  | 100           | _    | 130   |    |  |
|                 |                  | $V_{I/O} = V_{CC}$ or GND                |                     | _         | 50  | 75            | _    | 95    |    |  |
|                 |                  | I <sub>I/O</sub> ≤ 1 mA                  |                     |           | 45  | 70            | _    | 90    |    |  |
|                 |                  | V <sub>IN</sub> = V <sub>IHC</sub>       | 4.5                 | _         | 10  | _             | _    | _     |    |  |
| オ ン 抵 抗 差       | $\Delta R_{ON}$  | $V_{I/O} = V_{CC}$ to GND                | 9.0                 | _         | 5   | _             | _    | _     | Ω  |  |
|                 |                  | I <sub>I/O</sub> ≤ 1 mA                  |                     | _         | 5   | _             | _    | _     |    |  |
| スイッチ入出力         |                  | V <sub>OS</sub> = V <sub>CC</sub> or GND |                     |           |     |               |      |       |    |  |
| リーク電流           | l <sub>OFF</sub> | V <sub>IS</sub> = GND or V <sub>CC</sub> | 12.0                | _         | _   | ±100          | _    | ±1000 | nA |  |
| (switch off)    |                  | V <sub>IN</sub> = V <sub>ILC</sub>       |                     |           |     |               |      |       |    |  |
| スイッチ入力          |                  | V V == 01/5                              |                     |           |     |               |      |       |    |  |
| リーク電流           | $I_{IZ}$         | V <sub>OS</sub> =V <sub>CC</sub> or GND  | 12.0                | _         | _   | ±100          | _    | ±1000 | nA |  |
| (sw on、出力 open) |                  | V <sub>IN</sub> = V <sub>IHC</sub>       |                     |           |     |               |      |       |    |  |
| コントロール          |                  |                                          | 4.5.                |           |     |               |      |       |    |  |
| 入 力 電 流         | I <sub>IN</sub>  | V <sub>IN</sub> = V <sub>CC</sub> or GND | 12.0                | _         | _   | ±100          | _    | ±1000 | nA |  |
|                 |                  |                                          | 6.0                 | _         | _   | 1.0           | _    | 10.0  | μА |  |
| 静的消費電流          | Icc              | V <sub>IN</sub> = V <sub>CC</sub> or GND | 9.0                 | _         | _   | 4.0           | _    | 40.0  |    |  |
|                 |                  |                                          | 12.0                | _         | _   | 8.0           | _    | 80.0  |    |  |



AC特性 ( $C_L = 50$  pF, input:  $t_r = t_f = 6$  ns)

| 項目          | 記号               | 測 定 条 件                |                     | Ta = 25°C |     |     | Ta = −40~85°C |     | 単位    |
|-------------|------------------|------------------------|---------------------|-----------|-----|-----|---------------|-----|-------|
| 以 日<br>     | 記 写              |                        | V <sub>CC</sub> (V) | 最小        | 標準  | 最大  | 最小            | 最大  | 中位    |
|             |                  | 2.0                    | _                   | 10        | 50  | _   | 65            |     |       |
| スイッチ入出力     | (0)              |                        | 4.5                 | _         | 4   | 10  | _             | 13  | ns    |
| 位 相 差       | ФІ-О             | _                      | 9.0                 | _         | 3   | 8   | _             | 10  |       |
|             |                  |                        | 12.0                | _         | 3   | 7   | _             | 9   |       |
|             |                  |                        | 2.0                 | _         | 18  | 100 | _             | 125 |       |
| 出カイネーブル時間   | t <sub>pZL</sub> | R <sub>L</sub> = 1 kΩ  | 4.5                 | _         | 8   | 20  | _             | 25  | ns    |
| 山ガイネーブル時間   | t <sub>pZH</sub> | K[ = 1 K22             | 9.0                 | _         | 6   | 12  | _             | 22  |       |
|             |                  |                        | 12.0                | _         | 6   | 12  | _             | 18  |       |
|             |                  |                        | 2.0                 | _         | 20  | 115 | _             | 145 | ns    |
| 出カディセーブル    | t <sub>pLZ</sub> | B. = 1 kO              | 4.5                 | _         | 10  | 23  | _             | 29  |       |
| 時 間         | t <sub>pHZ</sub> | $R_L = 1 k\Omega$      | 9.0                 | _         | 8   | 20  | _             | 25  |       |
|             |                  |                        | 12.0                | _         | 8   | 18  | _             | 22  |       |
|             |                  | R <sub>L</sub> = 1 kΩ  | 2.0                 | _         | 30  | _   | _             | -   |       |
| 最大コントロール    |                  | $C_L = 50 \text{ pF}$  | 4.5                 | _         | 30  | _   | _             | _   | MHz   |
| 入 力 周 波 数   |                  |                        | 9.0                 | _         | 30  | _   | _             | _   | IVITZ |
|             |                  | $V_{OUT} = 1/2 V_{CC}$ | 12.0                | -         | 30  | _   | _             | _   |       |
| コントロール      | Civi             |                        |                     |           | 5   | 10  |               | 10  | pF    |
| 入 力 容 量     | C <sub>IN</sub>  | _                      |                     |           | Ü   | 10  | _             | 10  | рг    |
| スイッチ端子容量    | C <sub>I/O</sub> | _                      |                     | _         | 6   | _   | _             | _   | pF    |
| フィードスルー容量   | C <sub>IOS</sub> | _                      |                     | _         | 0.5 | _   | _             | _   | pF    |
| 等 価 内 部 容 量 | C <sub>PD</sub>  |                        | (注)                 | _         | 15  | _   | _             | _   | pF    |

注: CPD は、無負荷時の動作消費電流より計算した IC 内部の等価容量です。

無負荷時の平均動作消費電流は、次式により求められます。

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 (スイッチ当たり)$ 



# アナログスイッチ特性 (GND = 0 V, Ta = 25°C)

|                |                    |                  | 測 定 条 件                                                                                                                                                                                                                        |                     |              |     |
|----------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----|
| 項              | 目                  | 記号               |                                                                                                                                                                                                                                | V <sub>CC</sub> (V) | 標準           | 単位  |
|                | 歪 み 率<br>H.D)      |                  | $f_{\text{IN}}$ = 1 kHz, $V_{\text{IN}}$ = 4 $V_{\text{p-p}}$ , ( $V_{\text{CC}}$ = 4.5 V 時)<br>$R_{\text{L}}$ = 10 k $\Omega$ , $V_{\text{IN}}$ = 8 $V_{\text{p-p}}$ , ( $V_{\text{CC}}$ = 9.0 V 時)<br>$C_{\text{L}}$ = 50 pF | 4.5<br>9.0          | 0.05<br>0.04 | %   |
|                | 達 周 波 数<br>チ オ ン ) | f <sub>max</sub> | 出力が 0dBm になるように $V_{\text{IN}}$ を調整し、出力が-3dB 低下したときの周波数を測定する。 $R_{\text{L}}=50~\Omega,~C_{\text{L}}=10~\text{pF}$ $f_{\text{IN}}=1~\text{MHz},~$ 正弦波                                                                           | 4.5<br>9.0          | 200<br>200   | MHz |
|                | ド ス ル ー<br>チ オ フ ) |                  | 入力を $0dBm$ に調整 (振幅の中心値は $(V_{CC}/2)$ したときの漏れ電圧を測定する。 $R_L = 600 \ \Omega, \ C_L = 50 \ pF$ $f_{IN} = 1 \ MHz, \ 正弦波$                                                                                                           | 4.5<br>9.0          | -60<br>-60   | dB  |
|                | ト ー ク              |                  | $R_L$ = 600 $\Omega$ , $C_L$ = 50 pF $f_{ N}$ = 1 MHz, 方形波 ( $t_f$ = $t_f$ = 6 ns)                                                                                                                                             | 4.5<br>9.0          | 60<br>100    | mV  |
| ク ロ ス<br>( ス イ | ト ー クッ チ 間 )       |                  | 入力が 0dBm になるように $V_{\text{IN}}$ を調整したときの漏れ電圧を測定する。 $R_{\text{L}} = 600~\Omega,~C_{\text{L}} = 50~\text{pF}$ $f_{\text{IN}}$ = 1 MHz, 正弦波                                                                                       | 4.5<br>9.0          | -60<br>-60   | dB  |

### AC電気的特性測定回路

#### 1. $t_{pLZ}$ , $t_{pHZ}$ , $t_{pZL}$ , $t_{pZH}$



2. クロストーク (コントロール入力-スイッチ出力)  $f_{\text{IN}}$  = 1 MHz duty = 50%  $t_r$  =  $t_f$  = 6 ns



3. フィードスルー





4. CIOS, CI/O



5. クロストーク (スイッチ間)





# 6. 最大伝達周波数



### 外形図

DIP14-P-300-2.54 Unit: mm



9

質量: 0.96 g (標準)

### 外形図

SOP14-P-300-1.27A Unit: mm



質量: 0.18 g (標準)

# 外形図

TSSOP14-P-0044-0.65A

Unit: mm







質量: 0.06 g (標準)

#### 製品取り扱い上のお願い

- ◆ 本資料に掲載されているハードウェア、ソフトウェアおよびシステム(以下、本製品という)に関する情報等、本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。
- 文書による当社の事前の承諾なしに本資料の転載複製を禁じます。また、文書による当社の事前の承諾を 得て本資料を転載複製する場合でも、記載内容に一切変更を加えたり、削除したりしないでください。
- 当社は品質、信頼性の向上に努めていますが、半導体製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により生命・身体・財産が侵害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いします。なお、設計および使用に際しては、本製品に関する最新の情報(本資料、仕様書、データシート、アプリケーションノート、半導体信頼性ハンドブックなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認の上、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、単独およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。当社は、適用可否に対する責任は負いません。
- 本製品は、一般的電子機器(コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など)または本資料に個別に記載されている用途に使用されることが意図されています。本製品は、特別に高い品質・信頼性が要求され、またはその故障や誤作動が生命・身体に危害を及ぼす恐れ、膨大な財産損害を引き起こす恐れ、もしくは社会に深刻な影響を及ぼす恐れのある機器(以下"特定用途"という)に使用されることは意図されていませんし、保証もされていません。特定用途には原子力関連機器、航空・宇宙機器、医療機器、車載・輸送機器、列車・船舶機器、交通信号機器、燃焼・爆発制御機器、各種安全関連機器、昇降機器、電力機器、金融関連機器などが含まれます。本資料に個別に記載されている場合を除き、本製品を特定用途に使用しないでください。
- 本製品を分解、解析、リバースエンジニアリング、改造、改変、翻案、複製等しないでください。
- ◆ 本製品を、国内外の法令、規則及び命令により、製造、使用、販売を禁止されている製品に使用することはできません。
- ◆ 本資料に掲載してある技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して 当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。
- 別途書面による契約がない限り、当社は、本製品および技術情報に関して、明示的にも黙示的にも一切の 保証(機能動作の保証、商品性の保証、特定目的への合致の保証、情報の正確性の保証、第三者の権利の 非侵害保証を含むがこれに限らない。)をせず、また当社は、本製品および技術情報に関する一切の損害(間 接損害、結果的損害、特別損害、付随的損害、逸失利益、機会損失、休業損、データ喪失等を含むがこれ に限らない。)につき一切の責任を負いません。
- 本製品、または本資料に掲載されている技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替及び外国貿易法」、「米国輸出管理規則」等、適用ある輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 本製品の RoHS 適合性など、詳細につきましては製品個別に必ず弊社営業窓口までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用ある環境関連法令を十分調査の上、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切の責任を負いかねます。