Plan

- Model relacyjny
- Algebra relacji
- Normalizacja
- Mapowanie modelu koncepcyjnego ER na relacyjny
- Mapowanie modelu koncepcyjnego EER na model relacyjny

Model relacyjny

- Podstawowe pojęcia
- Formalne definicje
- Rodzaje kluczy
- Organiczenia relacyjne (więzy integralności)

- Model relacyjny po raz pierwszy sformalizowany przez Edgara F. Codda w 1970 roku
 - E.F. Codd, A relational model of data for large shared data banks. Communications of the ACM (1970)
- Formalny model danych z solidnymi podstawami matematycznymi, oparty o teorię zbiorów i logikę predykatów pierwszego rzędu
- Brak reprezentacji graficznej
- Powszechnie stosowany do budowy zarówno logicznych, jak i wewnętrznych modeli danych Microsoft SQL Server, IBM DB2, Oracle

- Baza danych jest reprezentowana jako zbiór relacji
- Relację definiuje się jako zbiór krotek, z których każda reprezentuje podobną encję świata rzeczywistego
- Krotka to uporządkowana lista wartości atrybutów, z których każda opisuje aspekt encji

SUPPLIER

SUPNR	SUPNAME	SUPADDRESS	SUPCITY	SUPSTATUS
21	Deliwines	240, Avenue of the Americas	New York	20
32	Best Wines	660, Market Street	San Francisco	90
37	Ad Fundum	82, Wacker Drive	Chicago	95
52	Spirits & co.	928, Strip	Las Vegas	NULL
68	The Wine Depot	132, Montgomery Street	San Francisco	10
69	Vinos del Mundo	4, Collins Avenue	Miami	92

Model ER	Model relacyjny
Typ encji	Relacja
Encja	Krotka
Typ atrybutu	Nazwa kolumny
Atrybut	Komórka

```
Student (Studentnr, Name, HomePhone, Address)
Professor (SSN, Name, HomePhone, OfficePhone, E-mail)
Course (CourseNo, CourseName)
```

- Dziedzina określa zakres dopuszczalnych wartości dla typu atrybutu
 - np.: dziedzina dla płci, dziedzina dla czasu
- Każdy typ atrybutu jest zdefiniowany przy użyciu odpowiedniej dziedziny
- Dziedzina może być używana wielokrotnie w relacji BillOfMaterial

MAJORPRODNR	MINORPRODNR	QUANTITY
5	10	2
10	15	30

- Relacja R(A₁, A₂, A₃,... A_n) może być formalnie zdefiniowana jako zbiór m krotek $r = \{t_1, t_2, t_3,... t_m\}$ gdzie każda krotka t jest uporządkowaną listą n wartości $t = \langle v_1, v_2, v_3,... v_n \rangle$ odpowiadającą określonej encji
 - każda wartość v_i jest elementem odpowiedniej dziedziny, dom (A_i) , lub jest specjalną wartością NULL
 - Wartość NULL oznacza, że brakuje wartości, jest ona nieistotna lub nie dotyczy

Student(100, Michael Johnson, 123 456 789, 532 Seventh Avenue)

Professor(50, Bart Baesens, NULL, 876 543 210, Bart.Baesens@kuleuven.be)

Course(10, Principles of Database Management)

- Relacja zasadniczo reprezentuje zbiór (bez porządkowania + bez duplikatów)
- Ograniczenie dziedziny stanowi, że wartość każdego typu atrybutu A musi być niepodzielną i pojedynczą wartością z dziedziny dom(A)
- np.: COURSE(coursenr, coursename, study points)

```
(10, Principles of Database Management, 6)
```

```
(10, {Principles of Database Management, Database
Modeling}, 6) → BŁĄD
```

Relacja R stopnia n na dziedzinach dom(A₁), dom(A₂), dom(A₃), ..., dom(A_n) może być również alternatywnie zdefiniowana jako podzbiór iloczynu kartezjańskiego dziedzin, które definiują każdy z typów atrybutów

Domain Product ID
001
002
003

	Domain Product Color		
	Blue		
X	Red		
	Black		

Domain Product Category		
A		
В		
С		

ProductID	Product Color	Product Category
001	Blue	A
001	Blue	В
001	Blue	С
001	Red	A
001	Red	В
001	Red	С

Rodzaje kluczy

- Nadklucze (superklucze) i klucze
- Klucze kandydujące, klucze główne, klucze alternatywne
- Klucze obce

Nadklucze i klucze

- Nadklucz jest zdefiniowany jako podzbiór typów atrybutów relacji R z właściwością, że żadne dwie krotki w jakimkolwiek stanie relacji nie powinny mieć tej samej kombinacji wartości dla tych typów atrybutów
- Nadklucz określa ograniczenie unikalności
- Nadklucz może mieć nadmiarowe typy atrybutów
- np.: (Studentnr, Name, HomePhone)

Nadklucze i klucze

- Klucz K schematu relacji R jest nadkluczem R z dodatkową właściowością, że usunięcie dowolnego typu atrybutu z K pozostawia zestaw typów atrybutów, które nie są kluczem R
- Klucz nie ma żadnych nadmiarowych typów atrybutów (minimalny nadklucz)
- np.: Studentnr
- Ograniczenie klucza stanowi, że każda relacja musi mieć co najmniej 1 klucz, który pozwala jednoznacznie zidentyfikować jej krotki

Klucze kandydujące, klucze główne i klucze alternatywne

- Relacja może mieć więcej niż jeden klucz (klucze kandydujące)
 - PRODUCT: product numer i product name
- Klucz główny (primary key) służy do identyfikowania krotek w relacji, ustalania połączeń z innymi relacjami oraz do celów przechowywania
 - Ograniczenie integralności encji: typy atrybutów, które tworzą klucz główny, powinny zawsze spełniać ograniczenie NOT NULL
- Inne klucze kandydujące są wtedy nazywane kluczami alternatywnymi

- Zbiór typów atrybutów FK w relacji R₁ jest kluczem obcym R₁ jeżeli spełnione są dwa warunki (ograniczenie integralności referencyjnej referential integrity constraint)
 - typy atrybutów w FK mają te same dziedziny, co typy atrybutów klucza głównego PK relacji R₂
 - wartość FK w krotce t₁ w bieżącym stanie r₁ albo występuje jako wartość PK dla pewnej krotki t₂ w bieżącym stanie r₂ albo jest NULL

SUPPLIER

SUPNR	SUPNAME	SUPADDRESS	SUPCITY	SUPSTATUS
37	Ad Fundum	82, Wacker Drive	Chicago	95
94	The Wine Crate	330, McKinney Avenue	Dallas	75
•••				

PURCHASE_ORDER

PONR	PODATE	SUPNR
1511	2015-03-24	37
1512	2015-04-10	94

SUPPLIER

SUPNR	SUPNAME	SUPADDRESS	SUPCITY	SUPSTATUS
21	Deliwines	240, Avenue of the Americas	New York	20
32	Best Wines	660, Market Street	San Francisco	90
•••				

PRODUCT

PRODNR	PRODNAME	PRODTYPE	AVAILABLE_QUANTITY	
0119	Chateau Miraval, Cotes de	roso	126	
0119	Provence Rose, 2015	rose	120	
0154	Chateau Haut Brion, 2008	red	111	
		red	5	

SUPPLIES

<u>SUPNR</u>	<u>PRODNR</u>	PURCHASE_PRICE	DELIV_PERIOD
68	0327	56.99	4
•••			
21	0289	17.99	1
21	0327	56.00	6
21	0347	16.00	2
•••			
69	0347	18.00	4
84	0347	18.00	4

Ograniczenia relacyjne

Ograniczenie dziedziny	Wartość każdego typu atrybutu A musi być niepodzielną i		
	pojedynczą wartością z dziedziny dom(A).		
Ograniczenie klucza	Każda relacja ma klucz, który pozwala jednoznacznie zidentyfikować		
	jej krotki.		
Ograniczenie	Typy atrybutów, które tworzą klucz główny, powinny zawsze		
integralności encji	spełniać ograniczenie NOT NULL.		
Ograniczenie	Klucz obcy FK ma tę samą dziedzinę, co typ(y) atrybutu PK klucza		
integralności	głównego, do którego się odwołuje i występuje jako wartość PK lub		
referencyjnej	NULL.		

Przykład modelu relacyjnego

SUPPLIER(<u>SUPNR</u>, SUPNAME, SUPADDRESS, SUPCITY, SUPSTATUS)

PRODUCT(PRODNR, PRODNAME, PRODTYPE, AVAILABLE QUANTITY)
SUPPLIES(SUPNR, PRODNR, PURCHASE PRICE, DELIV PERIOD)

PURCHASE_ORDER(PONR, PODATE, SUPNR)

PO_LINE(PONR, PRODNR, QUANTITY)

Przykład modelu relacyjnego

Supplier

SUPNR	SUPNAME	SUPADDRESS	SUPCITY	SUPSTATUS
21	Deliwines	240, Avenue of the Americas	New York	20
32	Best Wines	660, Market Street	San Francisco	90

Product

PRODNR	PRODNAME	PRODTYPE	AVAILABLE_QUANTITY
0119	Chateau Miraval, Cotes de Provence Rose, 2015	rose	126
0384	Dominio de Pingus, Ribera del Duero, Tempranillo, 2006	red	38

Supplies

SUPNR	PRODNR	PURCHASE_PRICE	DELIV_PERIOD
21	0119	15.99	1
21	0384	55.00	2

Purchase_Order

PONR	PODATE	SUPNR
1511	2015-03-24	37
1512	2015-04-10	94

PO_Line

PONR	PRODNR	QUANTITY
1511	0212	2
1511	0345	4