

PVsyst - Simulation report

Grid-Connected System

Project: Sim00

Variant: BIFACIAL_Row2

Unlimited Trackers with backtracking

System power: 51.9 kWp

NREL BEST Field - United States

PVsyst research

PVsyst research

Author

National renewable energy laboratory (United states)

Variant: BIFACIAL_Row2

PVsyst V7.3.4

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

National renewable energy laboratory (United states)

Project summary

Geographical Site Situation Meteo data

NREL BEST Field

Latitude 39.74 °N

DENVER/CENTENNIAL [GOLDEN - NREL]

United States

Longitude -105.17 °W

NREL BEST Field - TMY

Altitude 1765 m Time zone UTC-7

Monthly albedo values

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Albedo	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.20	0.20

System summary

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation Near Shadings

Orientation Tracking algorithm No Shadings

Tracking horizontal axis

Astronomic calculation
Backtracking activated

System information

PV Array Inverters

Nb. of modules144 unitsNb. of units3 unitsPnom total51.9 kWpPnom total72.0 kWac

Pnom ratio 0.720

User's needs
Unlimited load (grid)

Results summary

Produced Energy 105082 kWh/year Specific production 2026 kWh/kWp/year Perf. Ratio PR 85.75 %

Table of contents

Project and results summary	2				
General parameters, PV Array Characteristics, System losses					
Main results	5				
Loss diagram	6				
Predef. graphs	7				

Variant: BIFACIAL Row2

PVsyst V7.3.4

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

National renewable energy laboratory (United states)

General parameters

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation

Orientation Tracking algorithm **Backtracking array** Tracking horizontal axis Astronomic calculation Nb. of trackers

Backtracking activated Unlimited trackers

Sizes

Tracker Spacing 5.70 m 2.00 m Collector width Ground Cov. Ratio (GCR) 35.1 % Left inactive band 0.02 m Right inactive band 0.02 m Phi min / max. -/+ 50.0 °

10 units

Backtracking strategy

Phi limits for BT -/+ 68.9 ° Backtracking pitch 5.70 m Backtracking width 2.00 m

Models used

Transposition Perez Diffuse Imported Circumsolar with diffuse

Near Shadings User's needs Horizon Free Horizon No Shadings Unlimited load (grid)

Bifacial system

PV module

2D Calculation Model unlimited trackers

Bifacial model definitions Bifacial model geometry

Tracker Spacing 5.70 m Ground albedo 0.20 Tracker width 2.04 m Bifaciality factor 69 % 35.8 % 5.0 % **GCR** Rear shading factor 10.0 % Axis height above ground 1.50 m Rear mismatch loss Shed transparent fraction 0.0 %

PV Array Characteristics

Inverter

Manufacturer Prism Solar Technologies Manufacturer Fronius USA Model Prism Bi72-457BSTC Model Symo Advanced 24.0-3 480 (Original PVsyst database) (Custom parameters definition) Unit Nom. Power 360.2 Wp Unit Nom. Power 24.0 kWac Number of PV modules 144 units Number of inverters 3 * MPPT 0.57 3 units

Nominal (STC) 51.9 kWp Total power 72.0 kWac Modules 9 Strings x 16 In series Operating voltage 200-800 V At operating cond. (50°C) Pnom ratio (DC:AC) 0.72

46.8 kWp **Pmpp** 559 V U mpp I mpp 84 A

Total PV power Total inverter power

Nominal (STC) 52 kWp Total power 72 kWac 3 units 144 modules Number of inverters Total Module area 285 m² Pnom ratio 0.72

Cell area 246 m²

PVsyst V7.3.4

Project: Sim00 Variant: BIFACIAL_Row2

National renewable energy laboratory (United states)

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

Array losses

Thermal Loss factor DC wiring losses

112 mΩ Global array res.

LID - Light Induced Degradation Loss Fraction 1.5 %

20.0 W/m²K Uc (const)

Module temperature according to irradiance

Uv (wind) 0.0 W/m2K/m/s

1.5 % at STC Loss Fraction

Module Quality Loss

Module mismatch losses

Strings Mismatch loss

Loss Fraction -0.8 % Loss Fraction 2.0 % at MPP Loss Fraction 0.2 %

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

Variant: BIFACIAL_Row2

PVsyst V7.3.4

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

National renewable energy laboratory (United states)

Main results

System Production

Produced Energy

105082 kWh/year

Specific production Perf. Ratio PR 2026 kWh/kWp/year

Page 5/7

85.75 %

Normalized productions (per installed kWp)

Balances and main results

0.0

Jan

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	81.2	28.03	1.69	113.6	107.0	5593	5426	0.920
February	108.6	32.46	-0.42	150.1	143.5	7396	7191	0.923
March	142.7	55.33	5.08	184.2	176.5	8814	8556	0.896
April	197.1	56.45	9.87	264.6	256.4	12230	11875	0.865
May	195.2	72.55	13.83	247.6	238.7	11188	10845	0.845
June	209.8	67.86	21.86	269.0	260.2	11794	11428	0.819
July	211.3	68.72	24.14	267.7	259.0	11656	11292	0.813
August	194.5	68.72	23.50	251.5	242.6	11090	10746	0.824
September	155.8	43.00	20.31	211.5	204.4	9412	9125	0.832
October	126.1	30.14	12.96	177.1	170.4	8255	8010	0.872
November	84.5	25.42	9.39	119.9	113.5	5741	5567	0.895
December	74.1	23.40	5.14	105.9	99.1	5180	5022	0.914
Year	1781.0	572.09	12.35	2362.6	2271.2	108350	105082	0.857

Legends

06/16/23

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid PR Performance Ratio

PVsyst V7.3.4

Project: Sim00 Variant: BIFACIAL Row2

National renewable energy laboratory (United states)

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

Variant: BIFACIAL_Row2

National renewable energy laboratory (United states)

VC1, Simulation date: 06/16/23 09:19 with v7.3.4

