TRANSFORMER ARCHITECTURES FOR FINE-GRAINED SENTIMENT ANALYSIS

Advanced topics in Computer science Project

Michele Bortone

Task

- Sentiment analysis:
 - Classification task
 - Given an input text, we want to predict the sentiment
 label
- Two different versions:
 - Binary (Positive, Negative)
 - Fine-grained (more than two labels)

FOCUS ON FINE-GRAINED SENTIMENT ANALYSIS but the text is organized with tree structure

Totally one of the greatest movie titles ever

made. Everything was great, filming, acting,

story. Nothing to complain about.

Dataset

- Stanford Sentiment Treebank (SST-5)
 - Movie review sentences labelled with 5 classes
 - Each sentence is represented in a parse tree
 - Each node represents a phrase and is labelled
 - The **root** node represent the entire sentence
 - We can exploit context information by the tree structure

Dataset

- Yelp-5
 - Reviews and number of stars assigned by the reviewer
 - NO tree structure
 - Reviews can be very long

SST-5 is the main dataset. Yelp-5 is a similar dataset in order to do some experiments increasing the size of SST-5

Related work

- Published works:
 - RNTN: Recursive deep models for semantic compositionality over a sentiment treebank. 2013.
 - BERT: Fine-grained sentiment classification using bert, 2019.
 - RoBERTa: Self-explaining structures improve nlp models, 2020.
- In the last years transfer learning (pretraining and finetuning) and Transformer architectures has improved performances.
- My approach
 - BERT: based on Transformer Encoders
 - GPT2: based on Transformer Decoders

Transformer

- Original architecture for machine translation
- Stack of Encoders and then a stack of Decoders

Attention

- Attention mechanism forces model to focus on specific tokens in order to capture the context information
- There are different implementations of Attention for different models
- Attention layers are followed by a feedforward layer that produces the output for the stack

BERT and GPT2

- Language models with the same base but different approaches
- The main difference is the way in which they perform Attention: GPT2 hides tokens at the right of the current step

Classifier

(0,1,2,3,4)

Text classification:

- Preprocessing: Starting from the tree, compute all subsentences represented by a node
- Embedding: Text tokenization, padding, special tokens addition and embedding with GPT2 or BERT
- Dropout: Addition of dropout layer to avoid overfitting
- Classifier: Softmax to score each class
- The main difference of data preprocessing is the addition of padding to the left fort BERT and to the right for GPT2

Experiments

- Target of the experiments:
 - Which model has the best performance
 - How performance changes in relation to the number of parameters
 - How performance changes if we combine more datasets

Results

- Models tested in 4 different tasks:
 - SST-5 all nodes
 - SST-5 root node
 - SST-2 all nodes
 - SST-2 root node
- Models size:

o LARGE: 340M

o BASE or SMALL: 110M

o DISTILLED: 70M

Model	SST-5		SST-2	
	All	Root	All	Root
RNTN	80.7	45.7	87.6	85.4
$BERT_{BASE}$	83.9	53.2	94.0	91.2
BERT_{LARGE}	84.2	55.5	94.7	93.1
$RoBERTa_{LARGE}$	-	59.1	-	653
myBERT_{BASE}	83.6	55.5	87.3	92.7
$myGPT2_{SMALL}$	83.1	56.2	85.1	93.2
$myGPT2_{SMALL}(yelp)$	82.5	56.7	85.7	92.9
myDistilBERT	82.3	53.8	84.4	91.1
myDistilGPT2	82.2	54.2	84.8	90.5

Red: Best performance Orange: 2nd performance

Yellow: 3rd performance

Considerations

- Roberta is the state of the art in SST-5 for the root nodes. Probably it is for the other tasks as well because is the hardest task, but we don't have results
- GPT2 is the best alternative with less than 70% of weights
- BERT outperforms GPT2 is we consider all nodes
- Distilled versions are very close to base versions.
- Yelp-5 improved performances about 0.5%, so it's not so useful

Conclusion

- All Transformer architectures tested outperformed RNTN
- Attention mechanism make difference in sentiment analysis
- If we don't care about the model size, increasing the number of Transformer blocks can increase performance.
- Distilled version offers good tradeoff between size and performance