纳什均衡

(占优策略, 占优策略) (占优策略, 最佳应对) (最佳应对, 最佳应对)

"三客户"博弈的解

• 策略组(A, A)中的两个策略互为最佳应对

纳什均衡: 互为最佳应对的策略组

协调博弈

- 有两个纳什均衡(北门,北门)和(南门,南门)
- 如何预测协调博弈中参与人的行为?

鹰鸽博弈的推理

- 两个均衡,不能推断到底哪个均衡会出现
- 一般来说,纳什均衡概念能有助于缩小预测范围,但它并不一定能给出唯一的预测

- 占优策略,严格占优策略
- 最佳应对,严格最佳应对
- 互为最佳应对策略组 > 纳什均衡
- 具有多个纳什均衡的博弈

如果不存在纳什均衡,该怎么办?

一个不存在纳什均衡的博弈

- 硬币配对一"零和博弈"(zero sum game)
 - 你和他各持一枚硬币,分别决定出手中硬币的某一面。若你们硬币的 朝向相同,他将赢得你的硬币。反之,你将赢得他的硬币。

		他	
		正面H	反面T
你	正面H	-1, +1	+1, -1
NV	反面T	+1, -1	-1, +1

此时,不存在一组互为最佳应对策略

混合策略的引入

- 引入随机性,考虑参与人将以一定的概率在不同策略间进行 选择,一个概率对应一个"策略"(称为混合策略)。此 时,选择策略就是选择概率,而博弈矩阵中给出的选项称为 纯策略
 - 一般地,混合策略是一个概率分布,双策略情形等价为一个概率
- 通常,在有两个纯策略H和T的情形,我们说
 - 你的策略是概率 p,是指你以概率 p执行H;以概率 1-p 执行T
 - 他的策略是概率 q,是指他以概率 q执行H,以概率 1-q 执行T

作为博弈,三要素齐了没有?

	Н	T
Н	-1, +1	+1, -1
Т	+1, -1	-1, +1

参与人

策略(概率)

• 回报

1

?

此时的策略是在两种固定(纯)策略上选择的概率,每一组 纯策略是对应有固定收益的。因而,从概率意义出发,此时 的收益应该体现一种在两种纯策略上的"平均"(期望)。

		他	
		,	T(0.7)
你	H(0.6)	-1, +1 +1, -1	+1, -1
	T(0.4)	+1, -1	-1, +1

你的回报 = 0.6*0.4 + 0.4* (-0.4) = 0.08

你的回报 = 0.6*你选H的回报 + 0.4*你选T的回报

你选H的回报 = 0.3*他选H时你选H的回报 + 0.7*他选T时你选H的回报 = 0.3*(-1) + 0.7*(1) = 0.4

你选T的回报 = 0.3*他选H时你选T的回报 + 0.7*他选T时你选T的回报 = 0.3*(1) + 0.7*(-1) = -0.4

但是,在研究一个混合策略博弈的时 候,我们一般并不关心在每个策略下的 具体回报情况,而是关心是否能达到均 衡? 在什么混合策略组下达到均衡? 哪 两个概率是互为最佳应对?

硬币匹配博弈中的混合策略均衡求解

		他	
		正面H(q)	反面T(1-q)
你	正面H(p)	-1, +1	+1, -1
	反面T(1-p)	+1, -1	-1, +1

他出H的回报: p*1+(1-p)*(-1)=2p-1 他出T的回报: p*(-1)+(1-p)*1=-2p+1 2p-1=-2p+1 p=0.5

(0.5,0.5) 是这个硬币配对博弈的混合策略纳什均衡 (符合直觉)

持球抛球博弈的混合策略均衡

		防守方	
		防守抛球(q)	防守持球(1-q)
进攻方	抛球(p)	0, 0	10, -10
	持球(1-p)	5, -5	0, 0

(p, q) = (1/3,2/3) 是互为最佳应对的概率策略

进一步的问题

- 是不是,如果一个博弈没有纯策略意义下的均衡,就一定 有混合策略均衡?
- 一个博弈,如果有纯策略意义下的均衡,还可能有混合策略均衡吗?

纳什的奠基性贡献:证明了具有有限参与者和有限纯策略集的博弈一定存在纳什均衡(包括混合策略均衡)

兼具纯策略和混合策略均衡的博弈

		你的搭档	
	,	PPT(q)	Keynote
你	PPT(p)	1, 1	0, 0
	Keynote	0, 0	2, 2

- 两个纯策略均衡(PPT, PPT)和(Keynote, Keynote)
- 试求混合策略均衡: q=2(1-q), q=2/3; p=2(1-p), p=2/3