K-means ou clustering

Aprendizado não supervisionado

K-means (k-médias)

Método de classificação que distribui os objetos em um número k preestabelecido de classes

Método de agregação em torno dos centróides móveis

Centroides

Centroide: Ponto médio em relação a um determinado grupo de pontos.

Casos para agrupamento

320	Vari	iáveis	Ponto			
Caso	X_1	X_2	$\mathbf{x}_{i} = (\mathbf{X}_{1}; \mathbf{X}_{i2})$			
1	1	1	(1;1)			
2	2	1	(2;1)			
3	3	2	(3;2)			
4	2	4,5 5	(2; 4,5)			
5	1	5	(1;5)			
6	3	7	(3;7)			
7	6	5	(6;5)			

Objetos a serem agrupados no plano cartesiano

Centroides

Casos para agrupamento

	Vari	áveis	Ponto			
Caso	X_1	X_2	$\mathbf{x}_{i} = (\mathbf{X}_{1}; \mathbf{X}_{i2})$			
1	1	1	(1;1)			
2	2	1	(2;1)			
3	3	2	(3; 2)			
4	2	4,5 5	(2; 4,5)			
5	1	5	(1;5)			
6	3	7	(3;7)			
7	6	5	(6;5)			

Objetos a serem agrupados no plano cartesiano

$$C_1 = (x_1 = 2, x_2 = 1,33)$$

Centroides

Casos para agrupamento

	Vari	áveis	Ponto			
Caso	X_1	X_2	$\mathbf{x}_{i} = (\mathbf{X}_{1}; \mathbf{X}_{i2})$			
1	1	1	(1;1)			
2	2	1	(2; 1)			
3	3	2	(3; 2)			
4	2	4,5	(2; 4,5)			
5	1	5	(1;5)			
6	3	7	(3;7)			
7	6	5	(6;5)			

Objetos a serem agrupados no plano cartesiano $C_2 = (x_1 = 2,75, x_2 = 5,37)$

$$C_1 = (x_1 = 2, x_2 = 1,33)$$

Distância Euclidiana

Permite calcular a distância entre dois pontos em um espaço multi-dimensional.

$$P=(p_1,p_2,\ldots,p_n)$$
 e $Q=(q_1,q_2,\ldots,q_n)$

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$$

Distância euclidiana

$$P=(p_1,p_2,\ldots,p_n)$$
 e $Q=(q_1,q_2,\ldots,q_n)$

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$$

	Vari	áveis	Ponto			
Caso	X_1	X_2	$\mathbf{x}_{\mathbf{i}} = (\mathbf{X}_{1}; \mathbf{X}_{\mathbf{i}2})$			
1	1	1	(1;1)			
2	2	1	(2;1)			
3	3	2	(3;2)			
4	2	4,5	(2; 4,5)			
5	1	5	(1;5)			
6	3	7	(3;7)			
7	6	5	(6;5)			

	X1	X2				
P3	3	2				
P7	6	5				
/ /	(3 - 6)^2	(2 - 5)^2				
/ /	9	9				
	sum(9 + 9) = 18 sqrt(18)					
	4,242640687					

- Padronize os dados (opcional);
- Selecione aleatoriamente k objetos de observação como centroides iniciais (ou escolha os centroides iniciais de alguma forma);
- 3. Forme **k** classes colocando cada objeto a seu centroide mais próximo, de acordo com a medida de distância adotada;
- 4. Calcule o centroide de cada classe;
- 5. Repita os passos 3 e 4 até que os centroides não apresentem mais mudanças.

Coordenadas dos casos		Iteração 1		Iteração 2		Iteração 3		Iteração 4						
		S	$\overline{C}_1 = (1;1)$	$\overline{C}_2 = (3;2)$		$\overline{C}_1 = (1,5;1)$	$\overline{C}_2 = (3; 4,7)$		$\overline{C}_1 = (2; 1,3)$	$\overline{C}_2 = (3; 5, 375)$		$\overline{C}_1 = (2; 1,3)$	$\overline{C}_2 = (3; 5,375)$	20
X	\mathbf{X}_1	X ₂	$d(x_i, \overline{C}_1)$	$d(x_i, \overline{C}_2)$	classe	$d(x_{i}, \overline{C}_{1})$	$d(x_1, \overline{C}_2)$	classe	$d(x_i, \overline{C}_1)$	$d(x_1, \overline{C}_2)$	classe	$d(x_i, \overline{C}_1)$	$d(x_i, \overline{C}_2)$	classe
1	1	1	0,000	2,236	1	0,500	4,206	1	1,044	4,810	1	Não há variação nos centroides		ntroides
2	2	1	1,000	1,414	1	0,500	3,833	1	0,300	4,488	1			
3	3	2	2,236	0,000	2	1,803	2,700	1	1,221	3,375	1			37
4	2	4,5	3,640	2,693	2	3,536	1,020	2	3,200	1,329	2			
5	1	5	4,000	3,606	2	4,031	2,022	2	3,833	2,035	2			
6	3	7	6,325	5,000	2	6,185	2,300	2	5,787	1,625	2			
7	6	5	6,403	4,243	2	6,021	3,015	2	5,449	3,023	2			102

Cálculo dos centroides

$$C_2 = (x_1 = 3, x_2 = 5,375)$$

$$C_1 = (x_1 = 2, x_2 = 1,3)$$

Implementação em Java.