Angewandte Mathematik Differentialgleichungen und ihre Anwendung

Jahrgang 4 - Semester 1 - SA 2

Markus Reichl

15. Januar 2017

Inhaltsverzeichnis

1		ührung	2
	1.1	Definition	2
	1.2	Nomenklatur	2
2	Rich	ntungsfelder	3
3	Bere	echnung	4
	3.1	Trennung der Variablen	4
	3.2	Einsetzen von Nebenbedingungen	5
	3.3	Anwendung in Maxima	5
4	Anw	vendung von DGL 1. Ordnung	6
	4.1	Wachstumsmodelle	6
		4.1.1 Lineares Wachstum	6
		4.1.2 Exponentielles Wachstum	7
		4.1.3 Beschränktes Wachstum	8
		4.1.4 Logistisches Wachstum	9
		4.1.5 Andere Auffassungen	10
	4.2		11
5	Line	eare DGL 1. Ordnung mit konstanten Koeffizienten	12

1 Einführung

1.1 Definition

Eine Differentialgleichung liegt vor, wenn eine gesuchte Größe in mindestens einer Ableitung einer Gleichung vorkommt.

$$y' = 3x + 1$$
$$y = x^2 + x + C$$

Das Ergebnis einer Differentialgleichung ist eine Funktionenschar welche **Allgemeine Lösung** genannt wird. Diese kommt aufgrund der Vieldeutigkeit (Integrationskonstante C) der Integration zustande und können durch eine Nebenbedingung begrenzt werden. Das Resultat nennt man **Partielle Lösung**.

$$y' = 3x + 1$$
 mit $y(0) = 1$
 $y = \frac{3x^2}{2} + x + C$
 $1 = \frac{3*0}{2} + 0 + C \rightarrow C = 1$
 $y = \frac{3x^2}{2} + x + 1$

Wird die Integrationskonstante durch eine Anfangsbedingung festgelegt, nennt man diese eine Anfangswertaufgabe. Sind diese an verschiedenen Stellen festgelegt spricht man von einer Randwertaufgabe.

1.2 Nomenklatur

DGLs beschreiben die Änderung einer gesuchten Größe.

y' = dy/dx 'Ableitung nach dem Ort x (Ortsangabe)

 $y^{\circ} = dy/dt$ ° Ableitung nach der Zeit t (Zeitangabe)

Ordnung Die Ordnung einer DGL gibt die höchste auftretende Ableitung an.

Bsp.: $y'' \rightarrow DGL 2$. Ordnung

Grad Der Grad einer DGL gibt die höchste auftretende Potenz an, einschließlich ihrer Ableitungen.

Bsp.: $y'' * 2^3 \rightarrow DGL 3$. Grades

Ist der 1. der höchste vorkommende Grad handelt es sich um eine lineare Differentialgleichung.

2 Richtungsfelder

Fässt man y' als Funktion in 2 Variablen auf, kann zu jedem (x, y) Paar ein Funktionswert der Richtung ermittelt werden.

$$y' = f(x,y)$$

$$y' = 1 - 2y$$

$$\downarrow$$

$$f(0,1) = -1 \quad f(1,1) = -1 \quad f(2,1) = -1$$

$$f(0,0) = 1 \quad f(1,0) = 1 \quad f(2,0) = 1$$

$$f(0,2) = -3 \quad f(1,2) = -3 \quad f(2,2) = -3$$

3 Berechnung

3.1 Trennung der Variablen

Separierbare Differentialgleichungen 1. Ordnung lassen sich durch die Methode "Trennung der Variablen" lösen. Das Vorgehen ist dabei klar und einfach anzuwenden. Als Beispiel wird die Gleichung y'+2*y=1 mit der Nebenbedingung y(0)=3 verwendet.

1. Isolieren von y' Die Ableitung y' muss zur Auflösung auf eine Seite gebracht werden.

$$y' = 1 - 2 * y$$

2. Ersetzung y' muss nun durch die Schreibweise $\frac{dy}{dx}$ ersetzt werden.

$$\frac{dy}{dx} = 1 - 2 * y$$

3. Trennung Nun muss die Gleichung so aufgeteilt werden, dass sich dy auf einer und dx auf der anderen Seite befinden. dx sollte dabei alleine stehen.

$$\frac{dy}{(1-2y)} = dx$$

4. Integration Nun müssen beide Seiten einzeln integriert werden:

$$\int \frac{1}{1 - 2y} dy = \int dx$$

$$-\frac{1}{2}\log 1 - 2*y = x + \%c$$

5. Berechnung Jetzt kann nach y aufgelöst werden und man erhält die *Allgemeine Lösung*:

$$y_a = \frac{1}{2} * (1 - C * e^{-2x})$$

3.2 Einsetzen von Nebenbedingungen

Wenn eine Nebenbedingung angegeben ist, kann diese in die Allgemeine Lösung eingesetzt werden. Dadurch erhält man einen bestimmten Wert für die Integrationskonstante %c.

$$y(0) = 3 \rightarrow \%c = -5$$

Diese eingesetzt ergibt sich die Partielle Lösung:

$$y_p = \frac{1}{2} * (1 + 5 * e^{-2x})$$

3.3 Anwendung in Maxima

Die Ableitung y' wird in Maxima unter der Schreibweise $\frac{dy}{dx}$ benötigt, welche man mittels 'diff(y, x) erhält:

dgl01: 'diff(y, x) + 3*y*cos(x) = 0;
$$\frac{d}{dx}y + 3\cos x y = 0$$

Mittels der Funktion ode2(equation, var, params) kann nun nach y aufgelöst werden, wodurch man die allgemeine Lösung erhält:

Durch Einsetzen der Nebenbedingung in die allgemeine Lösung erhält man einen Wert für die Konstante C:

y01nb: solve(1 = subst(0, x, rhs(y01a)));
$$[\%c = 1]$$

Setzt man diesen ein erhält man die spezielle Lösung:

$$y = e^{-3\sin x}$$

In Maxima nutzt man für dieses Vorgehen folgende Funktion:

$$ic1(y01a, x=0, y=1);$$

$$y = e^{-3\sin x}$$

4 Anwendung von DGL 1. Ordnung

4.1 Wachstumsmodelle

4.1.1 Lineares Wachstum

Beschreibt ein unbeschränktes Wachstum um einen konstanten Faktor. Die Differentialgleichung lautet:

$$y^{\circ} = k$$

In Maxima kann diese Gleichung mittels ode2 aufgelöst werden:

$$y(t) = kt + \%c$$

Die lineare Wachstumsfunktion kann auch explizit dargestellt werden indem man %c anhand von y(0) bestimmt.

$$y(0) = %c$$

In die Gleichung eingesetzt erhält man dadurch die explizite Darstellung:

$$y(t) = y(0) + kt$$

Grafische Darstellung

4.1.2 Exponentielles Wachstum

Beschreibt ein unbeschränktes Wachstum um eine konstante Wachstumsrate. Die Differentialgleichung lautet:

$$y^{\circ} = k * y$$

In Maxima kann diese Gleichung mittels ode2 aufgelöst werden:

$$y = \%c e^{kt}$$

Die exponentielle Wachstumsfunktion kann auch explizit dargestellt werden indem man %c bestimmt. y(O) ergibt genau den Wert der konstante, da die Exponentialfunktion von t abhängt und wegfällt.

$$y(0) = %c$$

Nun kann man %c einsetzen, womit man auf die explizite Darstellung kommt:

$$y(t) = y(0) * e^{kt}$$

Grafische Darstellung

4.1.3 Beschränktes Wachstum

Beschreibt ein beschränktes Wachstum um eine konstante Wachstumsrate. Hierzu gibt es verschiedene Auffassungen, die Differentialgleichung aus dem Unterricht lautet:

$$y^{\circ} = k * (1 - \frac{y}{K})$$

[k ... Wachstumsrate, K ... Beschränkung]

In Maxima kann diese Gleichung mittels ode2 aufgelöst werden:

$$y = \%c \, e^{-\frac{kt}{K}} + K$$

Die exponentielle Wachstumsfunktion kann auch explizit dargestellt werden indem man %c bestimmt. Durch die Berechnung von y(O) erkennt man, dass %c gleich y(0)-K ist.

Nun kann man %c einsetzen, womit man auf die explizite Darstellung kommt:

$$y = e^{-\frac{kt}{K}} \left(y_0 - K \right) + K$$

Grafische Darstellung

4.1.4 Logistisches Wachstum

Beschreibt ein beschränktes Wachstum um eine konstante Wachstumsrate, auf Basis der Population. Die Differentialgleichung lautet:

$$y^{\circ} = k (K - y) y$$

[k ... Wachstumsrate, K ... Beschränkung]

In Maxima kann diese Gleichung mittels ode2 aufgelöst werden:

$$\log\left(\frac{y}{y-K}\right) = Kk \ (t + \%c)$$

Die logistische Wachstumsfunktion kann auch explizit dargestellt werden indem man %c über y(0) bestimmt:

$$\%c = \frac{\log\left(-\frac{y_0}{K - y_0}\right)}{K k}$$

Nun kann man %c einsetzen, womit man auf die explizite Darstellung kommt:

$$y = \frac{K y\theta}{\%e^{-Kkt} (K - y\theta) - y\theta}$$

Ein schöneres Ergebnis erhält man durch eine händische Variablentrennung:

$$y = \frac{K}{e^{-Kkt} \left(\frac{K}{y_0} - 1\right) + 1}$$

Grafische Darstellung

4.1.5 Andere Auffassungen

Beschränktes Wachstum

Quasi identische Ergebnisse erhält man mit folgender Differentialgleichung:

$$y^{\circ} = k * (K - y)$$

Bei gleichem Vorgehen kommt man auf eine Lösung von:

$$y = \%c e^{-kt} + K$$

Sowie eine explizite Darstellung von:

$$y = e^{-kt} (y_0 - K) + K$$

4.2 Physik

Kräfte in der Physik können häufig durch Differentialgleichungen beschrieben werden, hier nur ein paar Beispiele:

$$v = \frac{d}{dt}s \to s = \int v * dt$$
$$a = \frac{d}{dt}v \to v = \int a * dt$$
$$F = m * a = m * \left(\frac{d}{dt}v\right)$$

5 Lineare Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten

Die Lösung einer linearen DGL 1. Ordnung mit konstantem Koeffizienten p (y' + p * y = s(x)) kann immer aus der allgemeinen Lösung der homogenen DGL (y_M) addiert zur speziellen Lösung der partikulären DGL (y_P) berechnet werden.

Aufstellen der Homogenen DGL

Dazu setzt man (willkürlich) die Störfunktion s(x) = 0, woraus folgt:

$$y' + p * y = 0$$

Diese Gleichung ist durch das Verfahren "Trennung der Variablen" immer lösbar.

Lösen der Partikulären DGL

Je nach Gestalt der Störfunktion s(x) wird ein anderer Lösungsansatz gewählt. Der Lösungsansatz y_a wird in die inhomogene DGL eingesetzt und daraus die unbekannten Koeffizienten a,b,c,... berechnet.

Lösungsansatz

s(x)	Lösungsansatz
$A_n * x^n + \ldots + A_0 * x^0$	$a_n * x^n + + a_n * x^n$
$A * \sin wx$	$a * \sin wx + b * \cos wx$
$B*\sin wx$	$a * \sin wx + b * \cos wx$
$A * \sin wx + B * \cos wx$	$a * \sin wx + b * \cos wx$
$A * e^{b*x}$	$a * e^{b*x}$ wenn $b = -p$
	$a*x*e^{b*x}$ wenn $b=p$

Finden der Gesamtlösung

Die Gesamtlösung y ergibt sich durch die Partikuläre Lösung y_P + der allgemeinen Lösung y_M .