HANDIN 1

WORKSHUP 2- SI725018 - NLA - WRENZO STIGLIANO

EXERCISE 1

i) Write an algorithm called algorithm OP met computes me to called outer product $\vec{x}, \vec{y} \in \mathbb{R}^{n \times n}$ of vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$

Algorithm OP; outer product Input: \vec{z} , \vec{y} t Rh Owput: $A = \vec{x} \vec{y}^T$

1. for i,..., n do:

2. for j,..., n do:

3. Aij = xiy;

4. end for

5. end for

6. return A

ii) The cost of algorithm op is $C(n, n) = \mathbb{Z} \mathbb{Z} \mathbb{Z} = \mathbb{Z}$

iii) (I- iii) x for u, 2 +R"

= $(Ix^2 - uu^2x^2)$ $\leftarrow Ix = x$ with compute cost = $x^2 - uu^2x^2$ $= x^2 - xu^2x^2$ $= x^2 - xu^2$ $= x^2 - xu^2$ commute cost for dot

and compute cost for dot product is O(n)

each value by I and take away

So as a result our compute cost is:

we first re-write our copression as Ix - uu x C(1)Then we calculate dot product in at cost in

Then we calculate Ix^2 again at cost in

Then we are left with $x^2 - u$ where miltiplying by scalar and substanting x^2 from u is

at a cost in

so cost of algorithm = n+n+n=3n=O(n) \square .

EXERCISE 3

11x1, = 2 1x11 = 4+1+3+3+1=12

$$1 \times 11_{2} = \left(\sum_{i=1}^{N} \sqrt{\frac{x_{i}^{2}}{x_{i}^{2}}}\right)^{\frac{1}{2}} = \left(4^{2} + 1^{2} + 3^{2} + 3^{2} + 1^{2}\right)^{\frac{1}{2}} = \boxed{6}$$

11 XV0 = max 1xil = 4

(ii)
$$A = \begin{bmatrix} 3 & -5 & 0 \\ 2 & 3 & 2 \\ 6 & -7 & 8 \end{bmatrix}$$
 NAII, and IIAhou

By Monum 1.5 HAM, = max Z laijl, max colum rom.