Monte Carlo Methods

MATH 565
Git website and repository
Canvas

Generating Random Vectors

Owen, Chapters 3 & 4

Assignment?

MATH 565 Monte Carlo Methods, Fred Hickernell, Fall 2025

Where do random variables come from?

Where do random variables come from?

 Algorithms generate (typically uniform) pseudo-random numbers

Where do random variables come from?

- Algorithms generate (typically uniform) pseudo-random numbers
- Pseudo-random number generators are tested to ensure that their output looks IID random in every way possible

- Care must be taken when working on multiple processors
- For a drastic failure see RANDU
- Physical random number generators may be random, but cannot be guaranteed to be IID random of the desired distribution

Quantile function gives non-uniform random numbers

- Most random number generators output U_1, U_2, \ldots that mimic IID $\mathcal{U}[0,1]$.
- To get X_1, X_2, \dots IID with cumulative distribution function F, we use the quantile function, Q, where $Q(u) := \inf\{x \in \mathcal{X} : F(x) \ge u\}$. Note that

$$Q(u) \le x \iff u \le F(x)$$

• Letting X := Q(U), it follows that

$$\mathbb{P}(X \le x) = \mathbb{P}(Q(U) \le x) = \mathbb{P}(U \le F(x)) = F(x)$$

and so $X \sim F$, and

$$X_1 := Q(U_1), X_2 := Q(U_2), \dots \stackrel{\text{IID}}{\sim} F$$

Suppose $X \sim \text{Binomial}(3,0.6)$

Suppose $X \sim \text{Binomial}(3,0.6)$

$x \in$	[0, 1)	[1, 2)	[2,3)	$[3,\infty)$
$\varrho(x)$	0.4^{3}	$2(0.6)(0.4^2)$	$2(0.6^2)(0.4)$	0.6^{3}
$\varrho(x)$	0.064	0.288	0.432	0.216
F(x)	0.064	0.352	0.784	1
$u \in$	(0, 0.064]	(0.064, 0.352]	(0.352, 0.784]	(0.784, 1]
Q(u)	0	1	2	3

Suppose $X \sim \text{Binomial}(3,0.6)$

So
$$U_1 = 0.63$$
, $U_2 = 0.02$, $U_3 = 0.47$ produces $X_1 = 2$, $X_2 = 0$, $X_3 = 2$

Suppose $X \sim \text{Binomial}(3,0.6)$

So
$$U_1 = 0.63$$
, $U_2 = 0.02$, $U_3 = 0.47$ produces $X_1 = 2$, $X_2 = 0$, $X_3 = 2$

Note that F is right-continuous and Q is left-continuous

Explorations in generating random vectors

Generating Random Vectors

Zero-inflated exponential

Suppose that X is a non-negative random variable with probability p_0 of being zero and otherwise an exponential distribution

$$F(x) = \begin{cases} 0 & -\infty < x < 0 \\ p_0 + (1 - p_0) \exp(-\lambda x) & 0 \le x < \infty \end{cases}$$

To generate $X_1, X_2, \ldots \stackrel{\text{IID}}{\sim} F$ from $U_1, U_2, \ldots \stackrel{\text{IID}}{\sim} \mathcal{U}[0,1]$, we need the quantile function

Quantile function for zero-inflated exponential

$$F(x) = \begin{cases} 0 & -\infty < x < 0 \\ p_0 + (1 - p_0) \exp(-\lambda x) & 0 \le x < \infty \end{cases}$$

$$u = F(x) \implies \begin{cases} x = 0, & 0 < u \le p_0 \\ u = p_0 + (1 - p_0) \exp(-\lambda x), & p_0 \le u < 1 \end{cases}$$

$$\iff \begin{cases} x = 0, & 0 < u \le p_0 \\ \frac{u - p_0}{1 - p_0} = \exp(-\lambda x), & p_0 \le u < 1 \end{cases}$$

$$\iff x = Q(u) = \begin{cases} 0, & 0 < u \le p_0 \\ \lambda \log\left(\frac{1 - p_0}{u - p_0}\right), & p_0 \le u < 1 \end{cases}$$

Random vectors with independent marginals

Suppose that $X = (X_1, ..., X_d)$ is a random vector with independent marginals. Then

$$X = (Q_1(U_1), ..., Q_d(U_d)), U \sim \mathcal{U}[0,1]^d$$

has the desired distribution, provided that $Q_1, ..., Q_d$ are the corresponding quantile functions.

We express n samples of X as an $n \times d$ matrix or array,

$$\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1d} \\ \vdots & \vdots & & \vdots \\ X_{11} & X_{12} & \cdots & X_{1d} \end{pmatrix} \text{ where } X_{ij} \text{ is the } j^{\text{th}} \text{ component of the } i^{\text{th}} \text{ sample}$$

Multivariate normal distribution

If $Z \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$, i.e., a d-dimensional standard normal random variable, then $X = \mathsf{A}Z + b$ (thinking of Z as a column vector) has

$$\mu = \mathbb{E}(X) = b$$

$$\Sigma = \text{cov}(X) = \mathbb{E}[(X - \mu)(X - \mu)^{\top}]$$

$$= \mathbb{E}[AZZ^{T}A^{T}] = AA^{\top}$$

So $X \sim \mathcal{N}(b, \Sigma)$, where Σ is symmetric and positive-definite. So, give a desired μ and Σ , one needs only to find A with $\Sigma = \mathsf{A}\mathsf{A}^{\mathsf{T}}$, and then

$$X = AZ + \mu \sim \mathcal{N}(\mu, \Sigma)$$

Note that there are multiple ways to decompose $\Sigma = AA^{T}$.

Low discrepancy sampling

Acceptance-rejection sampling

Let me know your degree program?

- Go to menti.com
- Use code 6222 6078

Bias-variance decomposition