ÁLGEBRA 1

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 6

- **6.1.** Determinar las unidades y los divisores de cero de los anillos \mathbb{Z}_5 y \mathbb{Z}_8 .
- **6.2.** ¿Es el anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$ con las operaciones (a, a') + (b, b') = (a + b, a' + b') y (a, a')(b, b') = (ab, ab' + a'b) un Dominio de Integridad?
- **6.3.** Estudiar si los siguientes anillos son, o no, Dominios de Integridad:

$$\mathbb{Z}_8$$
, $\mathbb{Z}[\sqrt{2}]$, \mathbb{Z}_3 , $\mathbb{Z}_6[X]$, $\mathbb{Z}[i]$, $\mathbb{Z}_5[X]$.

- **6.4.** En un anillo R un elemento a es idempotente si $a^2 = a$. Demuestra que en un dominio de integridad los únicos idempotentes son 0 y 1. Dar un ejemplo de un anillo que tenga otros idempotentes.
- **6.5.** ¿Es 3-2i un divisor de 8-i en el anillo $\mathbb{Z}[i]$? ¿Cuáles son los divisores de 5 en $\mathbb{Z}[i]$?
- **6.6.** Argumentar la veracidad o falsedad de las siguientes proposiciones referidas a elementos de un Dominio de Integridad
 - 1. $a \mid b \land a \nmid c \Rightarrow a \nmid b + c$.
 - 2. $a \nmid b \land a \nmid c \Rightarrow a \nmid b + c$.
- **6.7.** Denotemos por $\mathbb{Q}(x)$ el cuerpo de fracciones de $\mathbb{Z}[X]$. Describir los elementos de $\mathbb{Q}(x)$ y sus operaciones. Probar que $\mathbb{Q}(x)$ es también el cuerpo de fracciones de $\mathbb{Q}[x]$
- **6.8.** Dado el conjunto $A=\{\frac{m}{2^k}\mid m\in\mathbb{Z}, k\geq 0\}$, probar que A es un subanillo de \mathbb{Q} que no contiene a \mathbb{Z} y que el cuerpo de fracciones de A es \mathbb{Q} .