CHALMERS EXAMINATION/TENTAMEN

Course code/kurskod	Co			
DIT 023	Mathematical Software			
Anonymous code Anonym kod		Examination date Tentamensdatum	Number of pages Antal blad	Grade Betyg
1367		26.40.2021	12	

^{*} I confirm that I've no mobile or other similar electronic equipment available during the examination. Jag intygar att jag inte har mobiltelefon eller annan liknande elektronisk utrustning tillgänglig under eximinationen.

Solved task Behandlade uppgift No/nr	Points per task Poäng på uppgiften	Observe: Areas with bold contour are to completed by the teacher. Anmärkning: Rutor inom bred kontur ifylles av lärare.
1	5	
2 $\sqrt{}$	Was V)
3 /	, 20	
4 ,	6	
5 🗸	WAR 8	
6 V	19	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
Bonus poäng		
Total examination points Summa poäng	91	

CHALMERS Anonymous code				s for ques		Consecutive page no. 3					
		Ar	nonym kod 1367				ig på uppg iv lärare)	giften	Questic Uppgift		3
Q3	3_										
3.1)			4 77 0							17	1.
P	9	r	p179	79	7 7	rvp	1r	Tra	-> 7ρ 1		((7r-77P)
000000111	00110011	1 0	000011	1 0	1 1	101			0	0 0	
0	1	1	0	011	100		0101		0	0	
1	1	1 0 1	0	0 0	0 0	1 1 1	0		1 0	0	
1	7	91	1	(0	1	1		
P	q	٢	(page) -> ((rup)	400 A (1	Y 67	(P))			
0	00170011	0	11								
0	1 1 0	1				80)					
1	0	1				J.					
1	1	1	1 1								
ρ			ession								
		1									
3.2)	(c)	-	ax Jy (()	(+ y n	V (x)	1 V(y) 1	Vz (V(z) -	-7 (2=	×VZ	= 4)))
			× andy not the sa	*	,	× and y	are	,	if a gr	oup mel	nber
	(P)	are	not the sa	me perso	N p	oth veg	an	15 V thu	there	is x are n Juns.	or y, o other
3.3)	0	/ Э	× (D(×)) -	-> ∀y	(sty) ->	7E (y	,×))			
	/							A			
	4	the	re would be omeday		that	every st	udent	does	not i	need t	o attenu
							0		- (a w	.,	
					no	studer	nt att	end5			

CHALMERS	Anonymous code	Points for question (to be filled in by teacher)	Consecutive page no. Löpande sid nr 5
	Anonym kod	Poäng på uppgiften (ifylles av lärare)	Question no. Uppgift nr
	1367		
Qy			
u1) 11	$2++n = \frac{3n^2+3n}{6}$ for	n > 0	
۷, ()	6	11 > 10	
Mathema	tical Induction:		
base st	(p) $n=1$		
	$1 = \frac{3 \cdot 1^2 + 3 \cdot 1}{6}$	/	
	0		
	$1 = \frac{3+3}{6}$	(L)	
	1 = 1		
	hypothesis)		
P(k) -> p(k+1)		
p(k):	$1+2++k = \frac{3k^2+3k}{6}$	for k=n	bl)
inductiv	e step)	$(144)^2$	
p(k+-	1) = $1+2++k+(k+1) = \frac{3!}{1!}$	6 FF1) + 3(k+1)	Missola
			unsory cree 14
<u>*</u>	$\frac{k^2 + 3k}{62} + (k+1) = \frac{3(k+1)}{6}$	+3(k+1)	1-11.
-	$\frac{k^2+k}{2}+(k+1)=\frac{(k+1)^2}{2}$	$\frac{1}{2} + (k+1) / 2$	
	$k^2 + k + 2k + 2 = k^2 + 2k$		
	$k^2 + 3k + 2 = k^2 + 3$		
	K + SK + Z - K + S	0K +Z V	
		(14	
nswer only one q	uestion on this page. Do not write on the back	of this paper	

CHALM	Anonym I		Points for question (to be filled in by teacher) Poäng på uppgiften (ifylles av lärare)	Consecutive page no. 10 Löpande sid nr Question no. Uppgift nr
6.3)	$p = \frac{1}{5}$ $n = 10$	p (x=5)=	$\binom{n}{x} \cdot p^{x} \cdot q^{n-x}$	Good'
N	BUNN IN		$\binom{10}{5}$ $\sqrt[8]{0}, 2^5$ $0, 0^5$	700
F	may in		252 · 0,00032 · 0,32 · 0,32 · 0,02642 ~ 2,642	
6.4)	2) Null	hunothoxis, th	o mean Volues are 6	equal for the groups
The state of the s	2) 1 1 1 1 1		$\frac{1}{X_1} = \frac{1}{X_2} = \frac{1}{X_3}$	equal to the groups
	Alter	native hyppothesis	s: the mean values are $\overline{X}_1 \neq \overline{X}_2 \neq \overline{X}_3$	2 NOT equal for the groups
	3) 5572		90,6723482782-3853, 52,89 2-7734,495	249
	MSE	$R = \frac{1}{\sqrt{3}}$ $= \frac{55W}{(kn-k)} = \frac{3}{3}$	90,6	
	MS	$TR = \frac{SSB}{k-1} = -$	390,6 = 195,3	
	Ms	$E = \frac{65W}{(kn-k)} =$	3462,89 = 39	,803
	F:	$= \frac{MSTR}{MSE} = \frac{19}{30}$	$\frac{5,3}{9,803} = 4,906 \approx 4$	<u>,91</u>
		cal value Fz, itical value =	87 for d = 1%:	1991 Max.
	5) 4,9	1 > 4,86 ->	reject null hyp	othesis

Poäng på uppgiften

Uppgift nr

Anonym kod 1367

6.5) The = 7,25 individual lines

 x^2 ... 1 main line d=0,05 (5x)

1) null hypothesis = a single line of the food delivery service causes lower variation among maiting times alternative hypothesis = a single line of the food delivery service does NOT cause lower variation among waiting times

2) $x^2 = \frac{(n-1)5^2}{6\pi^2}$

$$\chi^2 = \frac{142,0899}{7,25^2}$$

 $x^2 = 2,7032 \approx 2,703$

 $(n-1) S^2 = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$ $=584,49-\frac{63,1^2}{9}$

(n-1) $5^2 = 142,08089$

critical value = 15,507

4) 2,403 × 15,507, we accept the null hypothesis

very good Spt