Poverty Mapping in Off-Census Years

Paul Corral, Heath Henderson, and Sandra Segovia

World Bank Summer University 2024

June 1, 2024

Introduction

- ▶ Recent developments in poverty mapping in off-census years have departed from standard practice in important ways.
- ▶ In brief, standard practice consists of two basic steps:
 - 1. Fit a parametric statistical model by regressing a survey-based welfare measure on some area-level covariates, typically census aggregates.
 - 2. Predict the welfare measure for all geographic entities using the census aggregates.
- ▶ In contrast to this "traditional" approach, the "modern" approach:
 - 1. Relies on non-parametric, machine-learning methods rather than parametric models
 - 2. Uses non-traditional, remotely-sensed covariates in the estimation and prediction stage
- ▶ In what follows, we'll discuss this modern approach in more detail and work through a simple application.

An Example

An Example

An Example

- ▶ Machine learning plays a critical role in the modern approach to poverty mapping.
- ► The goal of machine learning is to develop high-performance algorithms for prediction, classification, and clustering/grouping tasks.
- ▶ Broadly speaking, machine-learning methods can be divided into two basic types:
 - 1. Unsupervised learning: Seeks to identify clusters of observations that are similar
 - 2. Supervised learning: Uses a set of features to predict some outcome of interest
- ▶ Supervised learning can be further divided into regression and classification tasks:
 - 1. Regression: Concerned with predicting continuous outcomes
 - 2. Classification: Focuses on predicting categorical outcomes

- ► There are many machine-learning methods for regression and classification (e.g., random forests, support vector machines, or Bayesian additive regression trees).
- ► To fix ideas, we'll focus on one method that's been especially popular for poverty mapping: gradient boosting.
- ► Gradient boosting machines combine a large number of weak "learners" to form a stronger "ensemble" prediction:
 - Models are added to the ensemble sequentially by fitting new learners to the negative gradient of the loss function.
 - ▶ With a squared-error loss function, this amounts to sequentially fitting new models to the current residuals of the ensemble.
- ▶ Extreme gradient boosting (XGBoost) is a particularly popular implementation that uses classification and regression trees as the base models.

► For any given observation, the ensemble prediction used by XGBoost is the sum of that observation's predictions across all trees in the ensemble:

$$y_i^p = \sum_t f_t(x_i)$$

► To build the trees in the ensemble, XGBoost minimizes the following objective function:

$$\sum_{i} I(y_i^d, y_i^p) + \sum_{t} r(f_t)$$

▶ XGBoost uses the following specification for the regularization term:

$$r(f_t) = \gamma M_t + \frac{1}{2} \lambda \sum_i m_{tj}^2$$

- ► To minimize the objective function, the model is trained in a sequential manner, building one tree at a time.
- ▶ Ideally, one would select trees by enumerating all possible structures and then using the one that minimizes the objective function, but this is often intractable.
- ► XGBoost instead seeks to minimize the objective function by greedily optimizing one level of the tree at a time:
 - 1. For a given node, calculate the reduction in the objective function for every possible split rule for every available covariate.
 - Split the node using the covariate and split rule that maximally reduces the objective function.
- ► XGBoost continues splitting nodes until some user-specified stopping rule is met.

- ▶ Like many machine-learning models, XGBoost relies on various hyperparameters that must be selected by the user:
 - ▶ The regularization term (i.e., γ and λ)
 - Maximum tree depth and number of trees
 - Feature subsampling
 - ► The learning rate
- ▶ There are several different ways one might approach hyperparameter selection:
 - Use the default hyperparameters
 - Grid search
 - Bayesian hyperparameter optimization

- ▶ Poverty maps in off-census years are generally produced with two types of data:
 - Direct poverty estimates for a subset of areas
 - A list of covariates or predictors for all areas
- ► For a simple application, we'll use the 2015 Mexican Intercensal Survey (MIS) for both data sources:
 - ▶ The sample consists of 5.9 million households
 - ▶ Representative at the national, state, and municipality level
 - ► Gathered information on household income, location, demographics, etc.
- ▶ We'll treat the MIS as if it were a real census and use it to simulate the data used for poverty maps in off-census years:
 - Sample households from the MIS to obtain direct poverty estimates for a subset of municipalities.
 - Collapse the micro-data to the municipality level to obtain area-level covariates.

municipality	direct	true	hhsize	age_hh	male_hh	piped_water	ю_piped_wate	no_sewage	sewage_pub
1011001	0.0731939	0.0792447	-0.392702	-0.656265	-0.327982	0.713719	-0.703915	-0.776471	1.31692
1011002	0.311203	0.262542	1.16187	-0.751027	0.693776	0.687339	-0.683918	-0.444965	0.983853
1011003	0.231818	0.243805	0.249574	0.0228985	0.326906	0.709911	-0.698422	-0.764816	1.19186
1011004	0.182292	0.246614	1.39054	-0.284892	1.05251	0.760751	-0.762797	-0.701359	1.32361
1011005	0.0783132	0.0922531	0.223972	-1.61063	0.866597	0.695103	-0.689421	-0.769329	1.22863
1011006	0.145161	0.142484	0.767608	-0.98952	-0.0114516	0.678938	-0.670958	-0.72303	1.24327
1011007	0.365188	0.239514	1.35238	-0.888183	0.294417	0.675333	-0.678623	-0.667009	1.23939
1011008	0.212766	0.207656	0.977491	-1.11958	-0.69844	0.636178	-0.624729	-0.560338	1.19124
1011009	0.224299	0.228771	0.798937	-0.761821	1.27636	0.705323	-0.693837	-0.660832	1.18033
1011010	0.230769	0.236398	0.740872	-0.791986	1.41223	0.565258	-0.553847	-0.424855	0.884507
1011011	0.08	0.107069	-0.297989	-2.6176	0.715367	0.717107	-0.705614	-0.783883	1.35315
1021001	0.0316456	0.0720229	-1.41713	-1.37729	-1.40387	-0.0613733	0.0676727	-0.166492	0.0262108
1021002	0.127098	0.0514764	-1.53969	-1.3291	-0.777536	0.598097	-0.591137	-0.548799	0.956378
1021003	0.0377359	0.053013	-1.19462	-1.31876	-1.1787	0.135678	-0.137525	-0.644508	0.553619
1021004	0.0105125	0.0438967	-1.35347	-1.54744	-1.15381	0.54075	-0.534839	-0.663636	1.10457
1021005	nan	0.0627038	-1.09161	-1.20586	-1.1212	-0.0864749	0.06466	-0.66397	0.0944137
1031001	0.0664452	0.0982665	-1.55223	-0.407757	-0.48133	0.333902	-0.339917	-0.438449	0.33179

```
# Import libraries
import xgboost as xgb
import pandas as pd
# Set directory
path = '/Users/hendersonhl/Desktop/Summer University/Application/'
# Import data
data = pd.read_csv(path + 'data.csv', header = 0)
sample = data.dropna()
v = sample['direct']
X = sample.drop(columns = ['municipality', 'direct', 'true'])
# Implement XGBoost
model = xqb.XGBRegressor(objective='reg:squarederror', n estimators=100.
        max depth=6. eta=0.3)
model.fit(X, v)
# Generate poverty estimates
X_all = data.drop(columns = ['municipality', 'direct', 'true'])
v pred = model.predict(X all)
```

```
# Import additional functions
from sklearn.model selection import train test split
from sklearn.metrics import r2 score
# Create empty lists
r2 direct = []
r2true = []
# Run loop
for i in range(100):
    # Split data and fit model
    X train, X test, y train, y test = train_test_split(X, y, test_size=0.5)
    model.fit(X_train, y_train)
    # Get predicted and true values
    y_pred = model.predict(X_test)
    v true = [sample['poor'][i] for i in v test.index]
    # Save R-squared results
    r2_direct.append(r2_score(y_test, y_pred))
    r2 true.append(r2_score(y_true, y_pred))
```


Resources

- ► Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29(5): 1189–1232.
- Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794.
- ▶ Natekin, A. and Kroll, A. (2013). Gradient boosting machines, a tutorial. *Frontiers in Neurorobotics*, 7(21): 1–21.
- ▶ Corral, P., Henderson, H., and Segovia, S. (2023). Poverty mapping in the age of machine learning. World Bank Policy Research Working Paper No. 10429.