

IIC1253 — Matemáticas Discretas — 1' 2020

TAREA 7

Publicación: Viernes 26 de junio.

Entrega: Jueves 2 de julio hasta las 23:59 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si esta en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Dado $n \in \mathbb{N}$, existe una regla de divisibilidad por 3 basada en $(n)_2$. Esta es sumar los dígitos en las posiciones pares y restarle la suma de los dígitos en las posiciones impares. Por ejemplo el número 1203 es divisible por 3 ya que su representación en binario es $(1203)_2 = 10010110011$ y (1+0+0+1+0+1) - (0+1+1+0+1) = 3-3=0 que es divisible por 3. Notar que $|(1203)_2|=11$ pero la numeración de los coeficientes comienza desde 0. Demuestre esta regla de divisibilidad.

Pregunta 2

Se define el conjunto \mathcal{T} de árboles ordenados recursivamente de la siguiente manera: $\bullet \in \mathcal{T}$ y, para todo $k \geq 1$, si $t_1, \ldots, t_k \in \mathcal{T}$ entonces $\bullet(t_1, \ldots, t_k) \in \mathcal{T}$. Por ejemplo, si tenemos que $t_1 = \bullet(\bullet, \bullet)$, $t_2 = \bullet$ y $t_3 = \bullet(\bullet)$, entonces $\bullet(t_1, t_2, t_3) = \bullet(\bullet(\bullet, \bullet), \bullet, \bullet(\bullet)) \in \mathcal{T}$. Gráficamente:

Notar que $t_1, \ldots, t_k \in \mathcal{T}$ no son necesariamente todos distintos y algunos pueden ser iguales.

Para todo árbol $t \in \mathcal{T}$ se define la función #nodes : $\mathcal{T} \to \mathbb{N}$ que cuenta el número de nodos recursivamente como #nodes(\bullet) = 1 y, para todo $k \ge 1$ y $t = \bullet(t_1, \ldots, t_k) \in \mathcal{T}$, entonces #nodes(t) = $t + \sum_{i=1}^k \text{#nodes}(t_i)$.

También, se define la función depth : $\mathcal{T} \to \mathbb{N}$ que define la altura de un árbol como depth(\bullet) = 0 y, para todo $k \ge 1$ y $t = \bullet(t_1, \dots, t_k) \in \mathcal{T}$, entonces depth($t_1, \dots, t_k \in \mathcal{T}$).

Por último, se define la siguiente secuencia de árboles recursivamente: $T_0 = \bullet$ y para todo $i \in \mathbb{N}$ con $i \geq 0$, si $T_i = \bullet(t_1, \dots, t_k)$, entonces $T_{i+1} = \bullet(T_i, t_1, \dots t_k)$. Por ejemplo:

- 1. Demuestre que $\# \text{nodes}(T_i) = 2^i$ para todo $i \in \mathbb{N}$.
- 2. Demuestre que depth $(T_i) = i$ para todo $i \in \mathbb{N}$.
- 3. Demuestre que, para todo $i \in \mathbb{N}$, si $T_i = \bullet(t_1, \ldots, t_k)$, entonces $t_j = T_{k-j}$ para todo $j \leq k$.
- 4. Demuestre que, para todo $i \in \mathbb{N}$, si $T_i = \bullet(t_1, \ldots, t_k)$, entonces $k = \log_2(\# \operatorname{nodes}(T_i))$.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.