Linearna algebra - 13. auditorne vježbe

1. Odredite udaljenost i kut među vektorima

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$$

u \mathcal{M}_2 sa skalarnim produktom

$$\langle \mathbf{A} \mid \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}\mathbf{B}^{\top}).$$

- 2. Neka je $L = [\{(1,0,0), (0,-1,1), (5,-2,2)\}]$ potprostor od \mathbb{R}^3 i $\mathbf{x} = (1,1,1)$. Odredite ortogonalnu projekciju vektora \mathbf{x} na potprostor L te udaljenost vektora \mathbf{x} od L.
- 3. U unitarnom prostoru \mathbb{R}^3 sa standardnim skalarnim produktom dani su vektori $\mathbf{a}_1 = (1, 2, 2)$, $\mathbf{a}_2 = (1, -2, 0)$ i $\mathbf{a}_3 = (-1, 0, 1)$. Ispitajte jesu li ti vektori linearno nezavisni te ih ortonormirajte.
- 4. (Parsevalova jednakost) Neka su \mathbf{x} i \mathbf{y} ortonormirani vektori iz unitarnog prostora U nad \mathbb{R} . Dokažite da za sve $\alpha, \beta \in \mathbb{R}$ vrijedi

$$\|\alpha \mathbf{x} + \beta \mathbf{y}\|^2 = \alpha^2 + \beta^2.$$

5. Nađite ortonormiranu bazu u kojoj je matrica

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

dijagonalna.

- **6**. Neka je **v** jedinični vektor u \mathbf{R}^3 . Tada je $\mathbf{v}^{\top}\mathbf{v} = 1$. Neka je zadana i matrica $\mathbf{H} = \mathbf{I} 2\mathbf{v}\mathbf{v}^{\top}$.
 - (a) Dokažite da vrijedi $\mathbf{H}^2 = \mathbf{I}$.
 - (b) Dokažite da je matrica ${\bf H}$ simetrična.
 - (c) Dokažite da je matrica H ortogonalna.