ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPARTC REQUIREMENT

OF

Wireless Color Video Doorphone System

MODEL No.: 8A2181

FCC ID: ZES8A2181

REPORT NO: ES110105013F

ISSUE DATE: April 15, 2011

Prepared for SHENZHEN FORSAFE SYSTEM TECHNOLOGY CO., LTD.

A Block, Forsafe Technology Building, No.13, GaoXin Ave.1.S., Hi-Tech Industrial Park, NanShan, ShenZhen, China

Prepared by SHENZHEN EMTEK CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

VERIFICATION OF COMPLIANCE

	9 9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Applicant:	SHENZHEN FORSAFE SYSTEM TECHNOLOGY CO., LTD.	
	A Block, Forsafe Technology Building, No.13, GaoXin Ave.1.S., Hi-Tech	
	Industrial Park, NanShan, ShenZhen, China	
Manufacturer:	SHENZHEN FORSAFE SYSTEM TECHNOLOGY CO., LTD.	
	A Block, Forsafe Technology Building, No.13, GaoXin Ave.1.S., Hi-Tech	
	Industrial Park, NanShan, ShenZhen, China	
Product Description:	Wireless Color Video Doorphone System	
Model Number:	8A2181	
Serial Number:	N/A	
File Number:	ES110105013F	
Date of Test:	March 29, 2011 to April 14, 2011	

We hereby certify that:

The above equipment was tested by SHENZHEN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Date of Test:	March 29, 2011 to April 14, 2011		
Prepared by :	Moira		
	(Engineer)		
Reviewer :	Linds		
_	(Quality Manager)		
Approve & Authorized Signer:	Dist Le		
_	(Manager)		

Table of Contents

1. (GENERAL INFORMATION	5
1.1	PRODUCT DESCRIPTION	5
1.2	RELATED SUBMITTAL(S) / GRANT (S)	5
1.3	TEST METHODOLOGY	
1.4	SPECIAL ACCESSORIES	5
1.5	EQUIPMENT MODIFICATIONS	5
1.6	TEST FACILITY	6
2. S	SYSTEM TEST CONFIGURATION	7
2.1	EUT CONFIGURATION	7
2.2	EUT Exercise	7
2.3	TEST PROCEDURE	7
2.4	LIMITATION	8
2.5	CONFIGURATION OF TESTED SYSTEM	10
2.6	EQUIPMENT USED IN TESTED SYSTEM	11
2.7	DESCRIPTION OF TEST MODES	11
3. S	SUMMARY OF TEST RESULTS	12
4. (CONDUCTED EMISSIONS TEST	13
4.1	MEASUREMENT PROCEDURE	13
4.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
4.3	MEASUREMENT EQUIPMENT USED	13
4.4		
4.5	MEASUREMENT RESULT	14
4.6	CONDUCTED MEASUREMENT PHOTOS	15
5. F	RADIATED EMISSION TEST	16
5.1	MEASUREMENT PROCEDURE	16
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	16
5.3	MEASUREMENT EQUIPMENT USED	17
5.4	MEASUREMENT RESULT	18
5.5	RADIATED MEASUREMENT PHOTOS	21
6. (CHANNEL SEPARATION TEST	22
6.1	MEASUREMENT PROCEDURE	22
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3	MEASUREMENT EQUIPMENT USED	22
64	MEASUREMENT RESULTS	22

7. I	BANDWIDTH TEST	25
7.1	MEASUREMENT PROCEDURE	25
7.2	2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	25
7.3	MEASUREMENT EQUIPMENT USED	25
7.4	MEASUREMENT RESULTS	25
8. (QUANTITY OF HOPPING CHANNEL TEST	28
8.1	MEASUREMENT PROCEDURE	28
8.2	2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	28
8.3	MEASUREMENT EQUIPMENT USED	28
8.4	MEASUREMENT RESULTS	28
9.	TIME OF OCCUPANCY (DWELL TIME) TEST	29
9.1	MEASUREMENT PROCEDURE	29
9.2	2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	29
9.3	MEASUREMENT EQUIPMENT USED	29
9.4	MEASUREMENT RESULTS	29
10. N	MAXIMUM PEAK OUTPUT POWER TEST	32
10.	.1 Measurement Procedure	32
10.2	.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	32
10.3	.3 MEASUREMENT EQUIPMENT USED	32
10.4	.4 Measurement Results	32
11. I	BAND EDGE TEST	33
11.	.1 Measurement Procedure	33
11.2	.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	33
11.3	.3 MEASUREMENT EQUIPMENT USED	33
11.4	.4 MEASUREMENT RESULTS	33
12. A	ANTENNA PORT EMISSION	34
12.	.1 Test Equipment	34
12.2	.2 MEASURING INSTRUMENTS AND SETTING	34
12.3	.3 TEST PROCEDURES	34
12.4	.4 BLOCK DIAGRAM OF TEST SETUP	34
12.5	.5 TEST RESULT	34
13. <i>A</i>	ANTENNA APPLICATION	37
13.	.1 Antenna requirement	37
13 ′	2 Result	37

1. General Information

1.1 Product Description

The SHENZHEN FORSAFE SYSTEM TECHNOLOGY CO., LTD.

Model: 8A2181 (referred to as the EUT in this report) The EUT is an short range, lower power, Wireless Color Video Doorphone System designed as an Device. It is designed by way of utilizing the AFH modulation achieves the system operating.

A major technical descriptions of EUT is described as following:

A). Operation Frequency: 2402-2480MHz

B). Modulation: GFSK C). Number of Channel: 79 D). Channel space: 1MHz

E). Rated RF Output Power: 16.79dBm

F). Antenna Gain: 3dBi

G). Adapter: Model: DSA-30PFA-15 US 150200 Input: AC 100-240V, 50/60Hz, 0.9A Output: DC 15V, 2A

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: ZES8A2181 filing to comply with Section 15.247 of the FCC Part 15 Subpart C Rules.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2009). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

DATE: 04/15/2011

1.6 Test Facility

Site Description EMC Lab.

Accredited by CNAS, 2010.10.29

The certificate is valid until 2013.10.28

The Laboratory has been assessed and proved to be in compliance

with CNAS/CL01:2006(identical to ISO/IEC17025: 2005)

The Certificate Registration Number is L2291

Accredited by TUV Rheinland Shenzhen 2010.5.25

The Laboratory has been assessed according to the requirements

ISO/IEC 17025

Accredited by FCC, October 28, 2010

The Certificate Registration Number is 406365.

Accredited by Industry Canada, March 5, 2010 The Certificate Registration Number is 46405-4480.

Name of Firm Site Location

SHENZHEN EMTEK CO., LTD Bldg 69, Majialong Industry Zone,

Nanshan District, Shenzhen, Guangdong, China

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-2009 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4-2009.

2.4 Limitation

(1) Channel Separation Test

FCC Part 15, Subpart C Section 15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB Bandwidth of the hopping channel, whichever is greater.

Frequency Range (MHz)	Limit(kHz)
902-928	>25kHz
2400-2483.5	>25kHz
5725-5850	>25kHz

(2) 20dB Bandwidth

Frequency	Limit(kHz)				
Range(MHz)	Quantity of Hopping Channel	50	25	15	75
	902-928	<250	>250	NA	NA
	2400-2483.5	NA	NA	>1000	<1000

(3) Quantity of Hopping Channel

FCC Part 15, Subpart C Section 15.247

	Limit(Quantity of Hopping Channel)			
Frequency	20dB	20dB	20dB	20dB
Range (MHz)	bandwidth	bandwidth	bandwidth	bandwidth
	<250kHz	>250kHz	<1MHz	>1MHz
902-928	50	25	NA	NA
2400-2483.5	NA	NA	75	15
5725-5850	NA	NA	75	NA

(4) Time of Occupancy(Dwell Time)

FCC Part 15, Subpart C Section 15.247

Ewaguanay Danga		LIMIT(rms)	
Frequency Range (MHz)	20aB banawiath	20dB bandwidth >250kHz(25Channel)	20dB bandwidth
	<250KHZ(50CHallilel)	>250KHZ(25CHailliei)	<1WITIZ(/3Channel)
902-928	400(20S)	400(10S)	NA
2400-2483.5	NA	NA	400(30S)
5725-5850	NA	NA	400(30S)

Note: The "()" is all channel's average time of occupancy.

(5) Maximum Peak Output Power

FCC Part 15, Subpart C Section 15.247

		LIMIT(W)		
Frequency Quantity Range (MHz) Hopping Channel	g 50	25	15	75
902-928	1(30dBm)	0.125(21dBm)	NA	NA
2400-2483.5	NA	NA	0.125(21dBm)	1(30dBm)
5725-5850	NA	NA	NA	1(30dBm)

(6) Band edge

FCC Part15, Subpart C Section 15.247, In any 100kHz bandwidth outside the frequency band in with the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Operating	Courious omission	Limit		
Frequency Range(MHz) Spurious emission frequency		Peak power ration to emission(dBc)	Emission level(dBuV/m)	
902-928	<902	>20	NA	
	>928	>20	NA	
	960-1240	NA	54	
2400-2483.5	<2400	>20	NA	
	>2483.5-2500	NA	54	
5725-5850	<5350-5460	NA	54	
	< 5725	>20	NA	
	>5850	>20	NA	

(7) Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

(8) Radiated Emission

FCC Part 15, Subpart C Section 15.209 limit of radiated emission for frequency below 1000GHz. The emissions from an intentional radiator shall not exceed the field strength level specified in the following table:

Frequency (MHz)	Field strength µV/m	Distance(m)	Field strength at 3m dBµV/m
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

FCC Part 15, Section 15.35(b) limit of radiated emission for frequency above 1000MHz

Frequency(MHz)	Class $A(dB\mu V/m)(at 3m)$		Class B(dBµV/m)(at 3m	
	PEAK	AVERAGE	PEAK	AVERAGE
Above 1000	80.0	60.0	74.0	54.0

FCC Part 15, Subpart C Section 15.249 The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency(MHz)		Filed Strength of		rength of
	Fundame	Fundamental(at 3m)		ics(at 3m)
	PEAK	AVERAGE	PEAK	AVERAGE
902-928	114	94	74.0	54.0
2400-2483.5	114	94	74.0	54.0
5725-5875	114	94	74.0	54.0
24000-24250	128	108	88.0	68.0

2.5 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

2.6 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
1.	Wireless Color Video Doorphone System	Forsafe	8A2181	ZES8A2181	N/A	EUT

Note:

(1) Unless otherwise denoted as EUT in [Remark] column, device(s) used in tested system is a support equipment.

2.7 Description of Test Modes

The EUT (Wireless Color Video Doorphone System) has been tested under normal operating condition.

This EUT is a FHSS system, we use blue test to control the EUT with parallel port, Let EUT hopping on and transmit at every channel with highest power, Only output power use conducted method, others are using radiated method. After sirfdemo330R1 send the command to EUT, it can be removed, and the EUT keep hopping. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for best.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

3. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(b)	Max Peak Output Power Test	Compliant
§15.247(d)	Band Edge Test	Compliant
§15.207	AC Power Conducted Emission	Compliant
§15.247(d),§15.209	Radiated Emission	Compliant
§15.203	Antenna Requirement	Compliant
§15.109	Receiver Spurious Emissions	Compliant

4. Conducted Emissions Test

4.1 Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

4.2 Test SET-UP (Block Diagram of Configuration)

4.3 Measurement Equipment Used

Conducted Emission Test Site							
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.		
TYPE		NUMBER	NUMBER	CAL.			
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2010	05/29/2011		
L.I.S.N	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2010	05/29/2011		
L.I.S.N	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2010	05/29/2011		
50ΩCoaxial Switch	Anritsu	MP59B	M20531	05/29/2010	05/29/2011		

4.4 Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.5 Measurement Result

Date of Test: 03/30/2011 Temperature: 22° C

Frequency Detector: 0.15~30MHz Humidity: 50%

Test Result: PASS Test Mode: Tx Mode

Test Line	Frequency MHz	Emission Level QP dB(µV)	Emission Level AV dB(μV)	Limits QP dB(µV)	Limits AV dB(μV)	Over QP dB(µV)	Over AV dB(µV)
	0.49	49.37	32.17	56.17	46.17	-6.80	-14.00
	0.60	49.05	28.80	56.00	46.00	-6.95	-17.20
Line	0.81	49.55	27.69	56.00	46.00	-6.45	-18.31
Line	0.90	48.77	29.65	56.00	46.00	-7.23	-16.35
	1.11	47.23	25.69	56.00	46.00	-8.77	-20.31
	3.22	44.13	22.93	56.00	46.00	-11.87	-23.07
	0.60	48.46	32.15	56.00	46.00	-7.54	-13.85
	0.70	48.46	29.50	56.00	46.00	-7.54	-16.50
Neutral	0.98	48.66	29.27	56.00	46.00	-7.34	-16.73
Neutrai	1.20	48.81	26.29	56.00	46.00	-7.19	-19.71
	1.51	48.72	29.46	56.00	46.00	-7.28	-16.54
	2.00	48.07	27.34	56.00	46.00	-7.93	-18.66

4.6 Conducted Measurement Photos

5. Radiated Emission Test

5.1 Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured was complete.

5.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

5.3 Measurement Equipment Used

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSP7	839511/010	05/29/2010	05/29/2011
Spectrum Analyzer	HP	E4407B	839840481	05/29/2010	05/29/2011
EMI Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2010	05/29/2011
Pre-Amplifier	HP	8447D	2944A07999	05/29/2010	05/29/2011
Bilog Antenna	Schwarzbeck	VULB9163	142	05/29/2010	05/29/2011
Loop Antenna	ARA	PLA-1030/B	1029	05/29/2010	05/29/2011
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	05/29/2010	05/29/2011
Horn Antenna	Schwarzbeck	BBHA 9120	D143	05/29/2010	05/29/2011

5.4 Measurement Result

TX mode:

(1)30MHz-1GHz

Operation Mode: Test Date: 03/30/2011 2402MHz Frequency Range: 30~1000MHz Temperature: 28 °C Test Result: **PASS** Humidity: 65 % Measured Distance: Test By: 3mKL

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over	Note
(MHz)	H/V	(dBuV)	(dBuV/m)	(dB)	
143.32	V	23.11	43.5	-20.39	PK
208.21	V	27.34	43.5	-16.16	PK
349.44	V	27.12	46	-18.88	PK
392.83	V	31.43	46	-14.57	PK
442.93	V	28.39	46	-17.61	PK
665.31	V	28.42	46	-17.58	PK
191.55	Н	28.35	43.5	-15.15	PK
208.19	Н	33.54	43.5	-9.96	PK
212.89	Н	28.77	43.5	-14.73	PK
373.04	Н	32.27	46	-13.73	PK
392.42	Н	34.62	46	-11.38	PK
442.86	Н	32.12	46	-13.88	PK

Operation Mode: 2441MHz Test Date: 03/30/2011 Frequency Range: 30~1000MHz Temperature: 28 °C Test Result: **PASS** Humidity: 65 % Test By: Measured Distance: 3mKL

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over	Note
(MHz)	H/V	(dBuV)	(dBuV/m)	(dB)	
191.27	V	24.22	43.5	-19.28	PK
207.01	V	26.97	43.5	-16.53	PK
390.56	V	28.08	46	-17.92	PK
441.96	V	26.85	46	-19.15	PK
598.82	V	26.57	46	-19.43	PK
661.61	V	27.22	46	-18.78	PK
168.28	Н	30.31	43.5	-13.19	PK
207.09	Н	29.47	43.5	-14.03	PK
371.77	Н	32.61	43.5	-10.89	PK
390.95	Н	35.39	46	-10.61	PK
415.88	Н	33.98	46	-12.02	PK
441.65	Н	32.14	46	-13.86	PK

Operation Mode: 2480MHz Test Date: 03/30/2011 Frequency Range: 30~1000MHz Temperature: 28 ℃ Test Result: **PASS** Humidity: 65 % Measured Distance: Test By: KL 3m

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over	Note
(MHz)	H/V	(dBuV)	(dBuV/m)	(dB)	
190.16	V	24.12	43.5	-19.38	PK
208.32	V	27.27	43.5	-16.23	PK
391.11	V	29.19	46	-16.81	PK
440.27	V	27.49	46	-18.51	PK
598.91	V	26.31	46	-19.69	PK
662.04	V	27.24	46	-18.76	PK
169.28	Н	30.66	43.5	-12.84	PK
209.92	Н	30.82	43.5	-12.68	PK
372.66	Н	32.55	43.5	-10.95	PK
390.82	Н	35.37	46	-10.63	PK
415.92	Н	33.88	46	-12.12	PK
441.62	Н	33.68	46	-12.32	PK

Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) All the x/y/z orientation has been investigated, and only worst case is presented in this report.

(2)1G-25GHz

Operation Mode: CH1: 2402MHz Test Date: 03/30/2011 Frequency Range: Temperature: 1-25GHz 28 ℃ Test Result: Humidity: 65 % **PASS** Test By: Measured Distance: 3m Andy

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
9882.23	V	53.33	41.24	74	54	-20.67	-12.76
11118.88	V	55.54	41.23	74	54	-18.46	-12.77
9883.53	Н	57.71	41.93	74	54	-16.29	-12.07
10286.59	Н	56.69	42.81	74	54	-17.31	-11.19

Andy

Test Date: Operation Mode: CH40: 2441MHz 03/30/2011 Frequency Range: 1-25GHz Temperature: 28 ℃ Test Result: 65 % **PASS** Humidity: Measured Distance: Test By:

3m

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
9801.42	V	52.12	41.24	74	54	-21.88	-12.76
10852.23	V	54.43	41.76	74	54	-19.57	-12.24
11702.22	V	56.45	42.67	74	54	-17.55	-11.33
7703.44	Н	49.13	39.33	74	54	-24.87	-14.67
9781.64	Н	52.34	41.36	74	54	-21.66	-12.64

Operation Mode: CH79: 2480MHz Test Date: 03/30/2011 Frequency Range: 1-25GHz Temperature: 28 ℃ Test Result: **PASS** Humidity: 65 % Measured Distance: Test By: 3mAndy

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
5230.04	V	56.21	48.27	74	54	-17.79	-5.73
9855.55	V	56.65	47.13	74	54	-17.35	-6.87
10797.8	V	52.65	44.23	74	54	-21.35	-9.77
5168.16	Н	59.11	48.39	74	54	-14.89	-5.61
7168.33	Н	57.23	47.35	74	54	-16.77	-6.65

(1) All Readings are Peak Value and AV. Note:

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) All the x/y/z orientation has been investigated, and only worst case is presented in this report.

DATE: 04/15/2011

5.5 Radiated Measurement Photos

FCC ID: ZES8A2181

DATE: 04/15/2011

6. Channel Separation Test

6.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used

Same as 5.3 Radiated Emission Measurement.

6.4 Measurement Results

Refer to attached data chart.

Spectrum Detector:PKTest Date :03/30/2011Test By:AndyTemperature : $28 \, ^{\circ}$ CTest Result:PASSHumidity : $65 \, ^{\circ}$ %

Channel number	Channel frequency	Separation Read	Separation Limit
	(MHz)	Value (kHz)	2/3 20dB Down BW(kHz)
1	2402	1000.00	>887 kHz
40	2441	1000.00	>853 kHz
79	2480	1000.00	>953 kHz

NOTE: For two-third of the 20dB bandwidth (page 27) is greater than 25kHz. So the limit of Separation Limit is just as the above table.

7. Bandwidth Test

7.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Equipment Used

Same as 5.3 Radiated Emission Measurement.

7.4 Measurement Results

20dB Bandwidth test data Chart:

Refer to attached data chart.

Channel number	Channel frequency	20dB Down BW(kHz)
	(MHz)	
1	2402	1330
40	2441	1280
79	2480	1430

8. Quantity of Hopping Channel Test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

8.3 Measurement Equipment Used

Same as 5.3 Radiated Emission Measurement.

8.4 Measurement Results

Refer to attached data chart.

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel
2403-2482	79	79

9. Time of Occupancy (Dwell Time) Test

9.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used

Same as 5.3 Radiated Emission Measurement.

9.4 Measurement Results

Refer to attached data chart.

Test	Number of transmission in a	Length of	Result	Limit
Mode	31.6(79 Hopping*0.4)	transmissions	(msec)	(msec)
		time(msec)		
DH1	51(times/5 sec)*6.32=322.32 times	0.29	93.4728	400
DH3	26(times/5 sec)*6.32=164.32 times	0.63	103.5216	400
DH5	15(times/5 sec)*6.32=94.80 times	1.52	144.0690	400

DH5

10. Maximum Peak Output Power Test

10.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

10.2 Test SET-UP (Block Diagram of Configuration)

10.3 Measurement Equipment Used

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSP7	839511/010	05/29/2010	05/29/2011
Power meter	Boonton	4232A	29001	05/29/2010	05/29/2011
Power sensor	Boonton	51011-EMC	31184	05/29/2010	05/29/2011

10.4 Measurement Results

Refer to attached data chart.

Spectrum Detector:PKTest Date :03/30/2011Test By:AndyTemperature : $28 \, ^{\circ}\mathbb{C}$ Test Result:PASSHumidity : $65 \, ^{\circ}\mathbb{M}$

Channel	Channel	Peak Power	Peak Power	Peak Power	Pass/Fail
number	Frequency	output(dBm)	output(mW)	Limit(mW)	
	(MHz)				
1	2402	15.64	36.64	125	PASS
40	2441	15.89	38.82	125	PASS
79	2480	16.79	47.75	125	PASS

11. Band Edge Test

11.1 Measurement Procedure

- 1. The EUT was Operating in hopping mode or could be controlled its channel. Printed out test result from the spectrum by hard copy function.
- 2. The EUT was placed on a turn table which is 0.8m above ground plane.
- 3. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until all frequency measured were complete.

11.2 Test SET-UP (Block Diagram of Configuration)

As 5.2 Test set up (B) and (C)

11.3 Measurement Equipment Used

Same as 5.3 Radiated Emission Measurement.

11.4 Measurement Results

Frequency	Polarity	Level		Limited	
(MHz)		(dBuV/m)		(dBuV/m)	
		PK	AV	PK	AV
2389.00	Н	59.57	47.22	74	54
2400.00	V	60.95	48.17	74	54

Spectrum Detector:PK/AVTest Date :03/30/2011Test By:AndyTemperature : $28 \, ^{\circ}\mathbb{C}$ Test channel:79Humidity : $65 \, ^{\circ}\%$

Frequency (MHz)	Polarity	Level (dBuV/m)				
		PK	AV	PK	AV	
2483.50	Н	63.15	50.57	74	54	
2489.00	V	64.38	48.55	74	54	

12. Antenna Port Emission

12.1 Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/29/2010	05/29/2011

12.2 Measuring Instruments and setting

The following table is the setting of spectrum analyzer.

The following there is the setting of spectrum unaryzer.	
Spectrum analyzer	Setting
Attenuation	Auto
RB	100kHz
VB	300kHz
Detector	Peak
Trace	Max hold

12.3 Test Procedures

The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels, The limit was determined by attenuation 20dB of the RF peak power output.

12.4 Block Diagram of Test setup

12.5 Test Result

PASS.

13. Antenna Application

13.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.240.

FCC part 15C section 15.247 requirements:

Systems operating in the 2403-2482MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

13.2 Result

The antenna's gain is 3dBi and meets the requirement.