

STAT-I 529 Customer Churn Analysis Using Bayesian and Frequentist Approaches

Problem Statement

Objective:

To predict customer churn and analyze the factors contributing to it using both Bayesian and frequentist methods, providing insights into uncertainty quantification and the impact of various features.

Data Description

- Dataset used: Telco Customer Churn
- Dataset Source- Kaggle
- 7,032 customers, 20 features
- **Customer Demographics-** Includes details like gender, senior citizen status, and whether the customer has a partner or dependents.
- Account Information Covers the tenure with the company, contract type, billing method (paperless or not), and payment method.
- **Services Subscribed-** Details whether the customer has phone service, multiple lines, internet service, and additional services like online security, backup, device protection, tech support, streaming TV, and movies.
- Charges- Includes monthly charges and total charges incurred by the customer.
- Churn- Indicates whether the customer has churned (binary).
- Dataset is imbalanced. We have 73% non-churned samples and 27 % churned samples.

More About The Data

- customerID: Unique identifier for each customer (not used in modeling).
- gender: Gender of the customer (categorical).
- SeniorCitizen: Indicates if the customer is a senior citizen (binary).
- Partner: Indicates if the customer has a partner (binary).
- Dependents: Indicates if the customer has dependents (binary).
- tenure: Number of months the customer has been with the company (continuous).
- PhoneService: Indicates if the customer has phone service (binary).
- MultipleLines: Indicates if the customer has multiple lines (binary).
- InternetService: Type of internet service (categorical).
- OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV,
- StreamingMovies: Indicates various services the customer subscribes to (binary).
- Contract: Type of contract the customer is under (categorical).
- PaperlessBilling: Indicates if the customer has paperless billing (binary).
- PaymentMethod: Payment method used by the customer (categorical).
- MonthlyCharges: Monthly charges for the customer (continuous).
- TotalCharges: Total charges incurred by the customer (continuous).
- Churn: Target variable indicating whether the customer has churned (binary).

Data Preprocessing

- Handling Missing Values: Check for missing values and impute or remove them.
- Encoding Categorical Variables: Used label encoding for categorical/binary variables.
- Feature Scaling: Standardize continuous variables.

Exploratory Data Analysis (EDA)

- Strong correlations between: Tenure and total charges Monthly. Charges and total charges
- High churn rates observed for: Fiber optic internet service, customers without online security/backup, customers without device protection/tech support

Statistical Testing Results

- Significant association between contract type and churn- Used chi-square test.
- Monthly charges differ significantly between churned and nonchurned customers- Independent Samples t-Test (Welch's)
- Proportion of customers with online security differs between churned and non-churned- Proportion Z-Test
- Strong correlation between total charges and tenure- Pearson correlation test.

Variable Selection

- Used all predictors for Bayesian modelling.
- We can later comment on if we need to drop some features as part of backward feature selection.

Bayesian Framework

Choosing Priors

- Priors represent initial beliefs about parameters before oberving data.
- Normal priors were chosen for all predictors because they are:
 - Symmetric and unbounded, making them versatile for regression coefficients.
 - Non-restrictive, allowing data to shape the posterior effectively.
- A mean of 0 and a moderate standard deviation provide a reasonable starting point given the lack of strong prior knowledge.
- Priors can be adjusted based on posterior analysis as needed.
- Sampling: Metropolis-Hastings algorithm
- 2,000 tuning steps, 2,000 draws, 4 chains

Logistic Regression Likelihood Calculation

Likelihood of logistic regression is calculated as:

$$L(oldsymbol{eta}) = \prod_{i=1}^n \left[\pi_i^{y_i} (1-\pi_i)^{1-y_i}
ight].$$

Where:

- $\pi_i = P(y_i = 1 | \mathbf{x}_i, oldsymbol{eta}) = rac{1}{1 + e^{-\mathbf{x}_i^{ op} oldsymbol{eta}}}$: The logistic function.
- \mathbf{x}_i : The feature vector for the i-th observation.
- β : The parameter vector (coefficients of the model).
- y_i : The observed binary outcome for the i-th observation.

Posterior Calculation

Uses the formula to compute the posterior.

$$P(heta|\mathbf{X}) = rac{P(\mathbf{X}| heta)P(heta)}{P(\mathbf{X})}$$

Posterior Summary Analysis For Normal Priors

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
beta_dependents	-0.298	0.103	-0.498	-0.127	0.008	0.005	187.0	304.0	1.01
beta_device_protection	-0.175	0.093	-0.347	0.006	0.023	0.017	17.0	106.0	1.10
beta_gender	-0.032	0.070	-0.156	0.101	0.014	0.010	24.0	46.0	1.09
beta_is_dsl	0.026	0.229	-0.363	0.390	0.137	0.109	3.0	87.0	1.74
beta_is_fiber_optic	0.634	0.377	0.058	1.149	0.247	0.203	3.0	16.0	1.83
beta_monthly_charges	0.421	0.210	0.074	0.715	0.135	0.110	3.0	10.0	1.86
beta_multiple_lines	0.233	0.098	0.049	0.389	0.018	0.015	27.0	35.0	1.09
beta_online_backup	-0.197	0.097	-0.382	-0.055	0.015	0.011	41.0	134.0	1.04
beta_online_security	-0.623	0.097	-0.783	-0.448	0.024	0.018	18.0	175.0	1.11
beta_paperless_billing	0.348	0.077	0.225	0.504	0.011	0.008	53.0	67.0	1.05
beta_partner	0.069	0.084	-0.097	0.190	0.008	0.006	102.0	108.0	1.01
beta_phone_service	-0.986	0.186	-1.355	-0.663	0.096	0.074	4.0	53.0	1.55
beta_senior_citizen	0.354	0.094	0.190	0.537	0.008	0.005	156.0	175.0	1.01
beta_streaming_movies	0.107	0.114	-0.119	0.303	0.045	0.033	7.0	82.0	1.27
beta_streaming_tv	0.085	0.112	-0.130	0.278	0.042	0.031	7.0	53.0	1.25
beta_tech_support	-0.642	0.102	-0.884	-0.491	0.010	0.007	99.0	219.0	1.04
beta_tenure	-1.704	0.154	-1.976	-1.449	0.073	0.055	5.0	19.0	1.39
beta_total_charges	0.649	0.184	0.370	1.005	0.079	0.059	6.0	25.0	1.33
intercept	-0.758	0.453	-1.392	-0.120	0.309	0.258	3.0	21.0	1.96

- 1. Convergence Issues (R-hat > 1.1)- Poor convergence for beta_is_dsl, beta_is_fiber_optic, beta_monthly_charges, beta_tenure, and intercept. Likely due to insufficient iterations or poorly chosen priors.
- **2.** Low Effective Sample Size (ESS)- High autocorrelation for beta_phone_service, beta_streaming_movies, beta_streaming_tv, and intercept. Chains are mixing poorly; more iterations needed.
- **3. Wide HDI Intervals-** High uncertainty for **beta_is_fiber_optic** ([0.058, 1.149]) and **beta_tenure** ([-1.976, -1.449]). Indicates vague priors or insufficient data.
- **4. High Monte Carlo Standard Error (MCSE)** Requires additional sampling for **beta_is_dsl**, **beta_fiber_optic**, and **beta_monthly_charges**.

5. Positive Coefficients (Strong Influence)

- **beta_is_fiber_optic**: Strong (+0.680), but wide HDI and poor convergence.
- beta_paperless_billing: Reliable (+0.365, low R-hat).
- **beta_senior_citizen**: Consistent positive effect.

6. Negative Coefficients (Strong Influence)

- **beta tenure**: Strong negative (-1.692, well-defined posterior).
- **beta online security**: Substantial negative (-0.619, reliable).
- **beta phone service**: Negative (-0.871), but poor convergence.

7. Unclear Influence (HDI Includes Zero)

• beta device protection, beta gender, beta streaming movies: No significant effect.

8. Key Actions

- Adjust Priors: Tighten priors for parameters with wide HDIs.
- Increase Sampling: Resolve convergence issues (high R-hat, low ESS).

Proposing New Priors

- **Updated Priors**: Cauchy prior selected for parameters like beta_is_dsl, beta_is_fiber_optic, beta_monthly_charges, and beta_total_charges.
- Remaining Priors: Unchanged.
- Reason: Cauchy has heavy tails, making it more robust to outliers and extreme values. Context: Logistic regression often involves uncertain predictors, and the Normal prior might be too restrictive.
- Effectiveness: The Cauchy prior allows the model to explore a wider range of parameter values, ensuring flexibility for features with potential heavy-tailed distributions (like total_charges or monthly_charges).

Posterior Summary Analysis For Updated Priors

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
beta_dependents	-0.298	0.101	-0.492	-0.122	0.004	0.003	528.0	794.0	1.01
beta_device_protection	-0.115	0.116	-0.333	0.100	0.037	0.027	10.0	44.0	1.30
beta_gender	-0.031	0.075	-0.182	0.102	0.003	0.002	509.0	714.0	1.01
beta_is_dsl	0.350	0.483	-0.666	1.019	0.229	0.174	5.0	13.0	2.70
beta_is_fiber_optic	1.205	0.876	-0.650	2.336	0.422	0.321	4.0	12.0	3.15
beta_monthly_charges	0.282	0.966	-1.055	2.296	0.463	0.352	5.0	12.0	2.94
beta_multiple_lines	0.262	0.119	0.044	0.500	0.039	0.029	9.0	59.0	1.36
beta_online_backup	-0.147	0.111	-0.369	0.053	0.032	0.023	12.0	70.0	1.25
beta_online_security	-0.571	0.114	-0.772	-0.355	0.035	0.026	11.0	88.0	1.29
beta_paperless_billing	0.342	0.082	0.185	0.490	0.004	0.003	341.0	660.0	1.02
beta_partner	0.061	0.086	-0.091	0.231	0.004	0.003	441.0	820.0	1.01
beta_phone_service	-0.707	0.326	-1.324	-0.214	0.149	0.113	5.0	18.0	2.13
beta_senior_citizen	0.357	0.094	0.185	0.533	0.004	0.003	691.0	1215.0	1.00
beta_streaming_movies	0.206	0.186	-0.141	0.509	0.079	0.059	6.0	21.0	1.77
beta_streaming_tv	0.192	0.178	-0.124	0.512	0.074	0.056	6.0	20.0	1.74
beta_tech_support	-0.602	0.124	-0.860	-0.396	0.038	0.028	11.0	92.0	1.31
beta_tenure	-3.068	0.260	-3.544	-2.566	0.027	0.019	92.0	150.0	1.04
beta_total_charges	0.969	0.285	0.475	1.551	0.031	0.022	84.0	157.0	1.04
intercept	-1.499	1.073	-2.901	0.681	0.521	0.397	4.0	12.0	3.38

Priors Comparison: New vs. Earlier Priors

1. Convergence (R-hat)

- New Priors: Most parameters have R-hat close to 1.00, but the intercept (3.38) indicates potential convergence issues.
- Earlier Priors: All R-hat values are close to 1.00, indicating stable convergence.

2. Effective Sample Size (ESS)

- New Priors: High ESS for most parameters, though some like beta_is_dsl and beta_is_fiber_optic have lower ESS, indicating less effective sampling.
- Earlier Priors: Lower ESS values across parameters, especially for beta_is_fiber_optic and beta_is_dsl.

3. Parameter Means

- New Priors: Means are reasonable; e.g., beta_monthly_charges (0.282), beta is fiber optic (1.205).
- Earlier Priors: Means are similar but slightly higher for some parameters like beta_monthly_charges (0.421).

4. HDI (Highest Density Interval)

- New Priors: Narrow HDIs, indicating good precision (e.g., beta_senior_citizen 0.185– 0.533).
- Earlier Priors: Similar narrow HDIs.

5. MCSE (Monte Carlo Standard Error)

- New Priors: Most MCSE values are small, but higher for beta_is_fiber_optic and beta phone service, indicating some variability.
- Earlier Priors: Similar MCSE values, with some larger values.

6. Implications

- New Priors: Provide more stable estimates and better sampling, though some parameters need further optimization.
- Earlier Priors: Stable convergence but lower ESS, suggesting less effective exploration of the parameter space.
- Conclusion: Choosing normal priors as the difference is insignificant.

Further Posterior Analysis:

Convergence Issues:

The trace plots for parameters like the intercept and beta_total_charges show irregular patterns, indicating
potential convergence issues. These parameters might require more iterations or refined priors to ensure
better mixing and more reliable estimates.

Well-Defined Parameters:

• Parameters such as beta_is_fiber_optic and beta_monthly_charges exhibit clear, unimodal posterior distributions with good mixing in the trace plots. These parameters show strong posterior certainty, indicating they are reliable predictors in the model.

Multimodal Distributions:

• The density plots for parameters like beta_dependents and beta_device_protection suggest multimodal distributions, which could be caused by insufficient sampling or model misspecification. These parameters should be closely examined to ensure proper model specification and sampling.

Autocorrelation:

• Some trace plots (e.g., for beta_total_charges) show high autocorrelation, which implies that the sampler may not be efficiently exploring the parameter space. This could be mitigated by increasing the number of iterations or adjusting the priors.

Action Items:

- **Increase Iterations**: For parameters like intercept and beta_total_charges, run the sampler for more iterations to improve convergence and ensure stable mixing.
- **Refine Priors**: Adjust priors for parameters with high uncertainty or poor convergence (e.g., intercept), potentially using more robust priors like Cauchy or adjusting scale parameters.
- **Posterior Predictive Checks**: Validate the model fit by comparing posterior predictions with observed data to ensure the model generalizes well.
- **Use Diagnostics**: Employ R-hat and Effective Sample Size (ESS) to quantitatively assess convergence and identify potential sampling inefficiencies.

1. Strongly Influential Parameters:

- 1. beta_tenure (mean \approx -1.7): Strong negative effect with high certainty (narrow HDI).
- 2. beta_total_charges (mean \approx 0.65): Strong positive effect with clear posterior definition.

2. High Certainty Parameters:

1. beta_gender, beta_multiple_lines, and beta_online_backup have narrow HDI ranges, reflecting strong certainty.

3. Multimodality in Posteriors:

 Parameters like beta_is_fiber_optic and beta_paperless_billing exhibit multimodal distributions, indicating potential interactions or insufficient data.

4. Wide Uncertainty:

1. beta_tech_support and beta_senior_citizen show broader HDI ranges, reflecting greater uncertainty.

5. Intercept:

1. Mean \approx -0.76 with moderate uncertainty, indicating its effect is not as well-defined.

6. Recommendations:

- 1. Investigate multimodal parameters further to address potential issues.
- 2. Leverage high-certainty coefficients for actionable insights.

- The observed mean is consistent with the predictions from the model's posterior distribution.
- This suggests the model is capable of capturing the central tendency of the data.

Odds Ratio

1. Strong Predictors:

- beta_is_fiber_optic and beta_total_charges are the strongest predictors with high mean values and large effect sizes.
- 2. Policies or actions focusing on these variables could have the most substantial impact on the outcome.

2. Moderate Predictors:

- Variables like beta_monthly_charges, beta_senior_citizen, and beta_multiple_lines show moderate influence on the outcome.
- 2. These should also be considered in decision-making as they provide significant contributions.

3. Weak Predictors:

 Predictors such as beta_tenure and beta_phone_service have relatively minor effects and may not be critical to focus on for optimization.

4. Uncertainty in Estimates:

- Variables with wider 95% HDI intervals, such as beta_is_fiber_optic, indicate higher uncertainty in their effect sizes.
- 2. This warrants further analysis or additional data collection to improve the reliability of these estimates.

Positive Effects:

- 1. All variables exhibit positive effects, as their 95% HDI intervals do not cross zero.
- 2. This suggests that all predictors positively contribute to the outcome to varying degrees.

	mean	median	2.5%	97.5%	
beta_dependents	0.746321	0.735960	0.618600	0.937789	
beta device protection	0.843440	0.837170	0.706459	1.024223	
beta gender	0.971120	0.964913	0.846217	1.108469	
beta_is_dsl	1.053784	1.027664	0.681319	1.486079	
beta is fiber optic	2.020480	1.985811	1.073966	3.484501	
beta_monthly_charges	1.557498	1.503962	1.076758	2.097223	
beta_multiple_lines	1.268699	1.273198	1.053791	1.531558	
beta online backup	0.824668	0.815193	0.687010	1.012538	
beta_online_security	0.538980	0.534543	0.454742	0.641938	
beta_paperless_billing	1.419787	1.409279	1.221447	1.647958	
beta_partner	1.075621	1.080851	0.909142	1.238848	
beta_phone_service	0.379629	0.379375	0.256068	0.516975	
beta_senior_citizen	1.431373	1.419643	1.187269	1.737385	
beta_streaming_movies	1.120043	1.111795	0.895691	1.388494	
beta_streaming_tv	1.095130	1.083552	0.846072	1.331336	
beta_tech_support	0.529023	0.526585	0.416743	0.641940	
beta_tenure	0.184116	0.179577	0.138545	0.239933	
beta_total_charges	1.945797	1.962414	1.403960	2.698041	

Evaluation: Bayesian Model

Evaluation is done on an 80:20 train-test split.

Model	Model Evaluation Metrics:							
	Accuracy	Precision	Recall	F1 Score	ROC AUC			
Train	0.806044	0.667774	0.537793	0.595776	0.842860			
Test	0.786780	0.626712	0.489305	0.549550	0.824007			

Frequentist Approach

- Train a logistic regression model for churn prediction.
- Weight initialization- Fixed single point estimates.

Evaluation Frequentist Model

Model	Evaluation Metrics:							
	Accuracy	Precision	Recall	F1 Score	ROC AUC			
Train	0.806222	0.659574	0.559866	0.605644	0.851260			
Test	0.786780	0.619355	0.513369	0.561404	0.831828			

Conclusions and Next Steps

- Bayesian approach provides insights into uncertainty
- Model identifies key factors influencing churn
- Improvements needed:Refine priors for problematic parameters
- Increase sampling iterations
- Consider alternative model structures