Author: Namita Rana

Project Name

Time Series Analysis on Monthly Crime Rates in Seattle.

Data Understanding:

Dataset Details

Dataset Name: SPD Crime Data: 2008-Present

- Source: [https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5] (https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5%5D)
- Steps to retrieve dataset:
- Step1: Click on the link provided.
- Step2: Click on export, the file can be save as csv.
- Step3: Read the csv with pandas.
- The data were collected from Seattle Police Department. The data covered the reported offenses and offense categorization coded to simulate the standard reported to the FBI under the National Incident Based Reporting System (NIBRS) in Seattle from February 2010 to February, 2020. In its original form, it had detailed variables including offense ID, sector,offense Parent Group,Precinct, Sector,Offense, and so on. Each row contains the record of a unique event where at least one criminal offense was reported by a member of the community or detected by an officer in the field.

What's in this Dataset?:

• Total: 962145 rows × 17 columns

Columns:

- Column Name : Description
- Report Number: Primary key/UID for the overall report. One report can contain multiple offenses, as denoted by the Offense ID.
- Offense ID: Distinct identifier to denote when there are multiple offenses associated with a single report.
- Offense Start DateTime: Start date and time the offense(s) occurred.
- Offense End DateTime: End date and time the offense(s) occurred, when applicable.
- Report DateTime: Date and time the offense(s) was reported. (Can differ from date of occurrence)
- Group A B: Corresponding offense group.
- Crime Against Category: Corresponding offense crime against category.
- Offense Parent Group: Offense_Parent_Group
- Offense: Corresponding offense.
- Offense Code: Corresponding offense code.
- Precinct: Designated police precinct boundary where offense(s) occurred.
- Sector: Designated police sector boundary where offense(s) occurred.
- Beat: Designated police sector boundary where offense(s) occurred.
- MCPP: Designated Micro-Community Policing Plans (MCPP) boundary where offense(s) occurred.
- 100 Block Address: Offense(s) address location blurred to the one hundred block.
- Longitude: Offense(s) spatial coordinate blurred to the one hundred block.
- Latitude: Offense(s) spatial coordinate blurred to the one hundred block.

Business Understanding

Business Problem:

The goal of this modelling is to forecast the crime rates, to figure out which crimes are more frequent, and to make predictions for the number of monthly violent crimes that will occur in future months.

Stakeholder: Seattle Police Department.

Questions that we want to understand.

- Question1: Does the monthly crimes in Seattle from 2008 to 2020 has an increasing trend?
- Question2: Does the monthly crimes in Seattle from 2008 to 2020 has any time-related patterns that could be explained by ARIMA or SARIMA models?

Background:

Seattle is the home place of grunge music, a tech hub and a city that prides itself in progress and innovation. It is a beautiful city that is surrounded by lush landscapes and deserves a place on your itinerary.

According to the most recent data from the FBI, the total crime rate in Seattle is 5,081.0 per 100,000 people. That's 105.15% higher than the national rate of 2,476.7 per 100,000 people and 70.75% higher than the Washington total crime rate of 2,975.8 per 100,000 people.

Seattle saw substantial spikes in the number of aggravated assaults and robberies last year, which were largely responsible for the 20% overall increase in violent crime the city experienced in 2021, according to the Seattle Police Department's year-end crime report.

That report, said the number of aggravated assaults that occurred in Seattle last year — 3,925 — is the most the city has seen in 10 years. It also represents a 24% increase over 2020 totals.

Methods

Cleaning and Feature Engineering

This project uses data cleaning and feature engineering to also addressed the non-stationarity, trend, seasonality in the time series.

Since, the time series was nonstationary which means the status of a time series whose statistical properties are changing through time. We used Statistical test like: Augmented Dickey-Fuller test to check if our series is stationary or not.

Also, we tried to make time series stationary by Differencing.

Models Development

We have implemented ARIMA, SARIMAX model's with different parameters, with automated parameters generated using auto_arima to see how results varies with each change in the parameters. Also performed a gridSeach to find the best parameters with low AIC scores.

We are focussed on finding the best model for our time series in terms of lowest Mean Absolute Percentage as it is unit-free and is safe to use for comparing performances of time series forecast values with different units.

Metrics used:

MAPE(Mean Absolute Percentage Error) MAE(Mean Absolute Error)

Import Packages and Functions We'll make use of the following packages:

numpy and pandas, sklearn is what we'll use to manipulate our data.

matplotlib.pyplot and seaborn will be used to produce plots for visualization.

util will provide the locally defined utility functions that have been provided for this assignment.

Run the next cell to import all the necessary packages.

```
In [788]: #Importing the generic libraries.
          import pandas as pd
          import seaborn as sns
          from scipy import stats
          import numpy as np
          from numpy import sqrt
          %matplotlib inline
          import matplotlib.pyplot as plt
          from datetime import datetime
          import warnings
          warnings.filterwarnings('ignore')
In [789]: #Import modelling libraries
          import statsmodels.api as sm
          from statsmodels.graphics.tsaplots import plot acf, plot pacf
          from statsmodels.tsa.arima model import ARIMA
          from statsmodels.tsa.statespace.sarimax import SARIMAX
          from sklearn.metrics import mean squared error
          import matplotlib.dates as mdates
          from datetime import timedelta
          from pmdarima import auto arima
          from sklearn.metrics import mean absolute error, mean absolute percent
```

Loading the dataset.

In [790]: #obtain the data and read the file.
df = pd.read_csv('SPD_Crime_Data__2008-Present.csv', index_col= False)
df

Out[790]:

	Report Number	Offense ID	Offense Start DateTime	Offense End DateTime	Report DateTime	Group A B	Crime Against Category	
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	NaN	02/05/2020 11:24:31 AM	Α	SOCIETY	
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/04/2020 08:00:00 AM	02/05/2020 10:06:28 AM	Α	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/02/2020 09:30:00 PM	02/05/2020 09:39:33 AM	А	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 02:21:00 AM	02/05/2020 03:30:55 AM	Α	PROPERTY	DESTF
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	NaN	02/05/2020 12:51:31 AM	В	SOCIETY	DF
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	NaN	07/13/2013 06:37:00 AM	А	PROPERTY	
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 06:30:00 AM	06/29/2013 09:43:00 AM	А	PROPERTY	
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	NaN	02/14/2012 03:04:00 PM	А	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	NaN	09/19/2010 04:59:00 PM	Α	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:30:00 AM	02/26/2010 07:54:00 AM	Α	PROPERTY	

962145 rows × 17 columns

In [791]: #information about the data df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 962145 entries, 0 to 962144 Data columns (total 17 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	Report Number	962145 non-null	object
1	Offense ID	962145 non-null	int64
2	Offense Start DateTime	961188 non-null	object
3	Offense End DateTime	530966 non-null	object
4	Report DateTime	962145 non-null	object
5	Group A B	962145 non-null	object
6	Crime Against Category	962145 non-null	object
7	Offense Parent Group	962145 non-null	object
8	Offense	962145 non-null	object
9	Offense Code	962145 non-null	object
10	Precinct	962141 non-null	object
11	Sector	962143 non-null	object
12	Beat	962143 non-null	object
13	MCPP	962142 non-null	object
14	100 Block Address	924111 non-null	object
15	Longitude	962145 non-null	float64
16	Latitude	962145 non-null	float64
dtyp	es: float64(2), int64(1)	, object(14)	

memory usage: 124.8+ MB

In [792]: #describe the data

df.describe()

Out[792]:

	Offense ID	Longitude	Latitude
count	9.621450e+05	962145.000000	962145.000000
mean	9.973092e+09	-117.492657	45.739128
std	5.590633e+09	23.842952	9.282055
min	7.624429e+09	-122.432252	0.000000
25%	7.652601e+09	-122.347561	47.581983
50%	7.679801e+09	-122.329059	47.614163
75%	7.698945e+09	-122.310168	47.663654
max	3.172592e+10	0.000000	47.774843

Exploratory Data Analysis:

We will look at the time series data in terms of what information is unnique, grouping hte data to get some relevant information.

```
In [793]: #looking at unique values in offensecode
          df['Offense Code'].unique()
Out[793]: array(['35A', '23G', '120', '290', '90D', '23C', '23F', '26E', '23D'
                 '100', '250', '23H', '370', '210', '240', '11B', '280', '26A'
                 '26B', '270', '26F', '26C', '520', '11D', '26G', '35B', '200'
                 '64A', '90G', '90A', '23A', '11A', '11C', '40C', '23B', '90F'
                 '23E', '90B', '720', '09A', '40A', '26D', '90H', '40B', '90E'
                 '09C', '36A', '36B', '510', '39B', '39A', '09B', '39C', '90J'
                 '13B', '13A', '13C', '220', '64B'], dtype=object)
In [794]: |df['Precinct'].unique()
Out[794]: array(['W', 'N', 'SW', 'E', 'S', 'UNKNOWN', 'OOJ', nan, '<Null>'],
                dtype=object)
In [795]: |df['Sector'].unique()
Out[795]: array(['Q', 'J', 'U', 'B', 'M', 'F', 'L', 'E', 'R', 'O', 'K', 'C', '
          Ν',
                 'G', 'W', 'D', 'S', '99', 'UNKNOWN', '9512', 'SE', 'W2', 'OOJ
                 nan, '<Null>', '6804', '1700'], dtype=object)
In [796]: df['Beat'].unique()
Out[796]: array(['Q1', 'J3', 'U3', 'B2', 'M1', 'F2', 'L2', 'E2', 'U2', 'R3', '
          R1',
                 'E1', 'O3', 'Q3', 'O2', 'K2', 'Q2', 'C3', 'N2', 'G2', 'W2', '
          K1',
                 'B3', 'M3', 'W3', 'W1', 'D2', 'K3', 'D3', 'G1', 'R2', 'E3', '
          F3',
                 'N1', 'D1', 'U1', 'F1', 'G3', 'B1', 'N3', 'M2', 'C2', 'S3', '
          L1',
                 'S1', 'J1', 'J2', 'S2', 'L3', 'C1', 'O1', '99', 'UNKNOWN', 'O
          OJ',
                 nan, '<Null>'], dtype=object)
```

```
In [797]: df['Offense ID'].unique()
Out[797]: array([12605873663, 12605598696, 12605567653, ..., 7672915592,
                   7692227482, 7686420892])
In [798]: df.isna().sum()
                                          0
Out[798]: Report Number
                                          0
          Offense ID
          Offense Start DateTime
                                        957
          Offense End DateTime
                                     431179
          Report DateTime
                                          0
                                          0
          Group A B
                                          0
          Crime Against Category
                                          0
          Offense Parent Group
          Offense
                                          0
          Offense Code
                                          0
          Precinct
                                          4
                                          2
          Sector
          Beat
                                          2
          MCPP
                                          3
          100 Block Address
                                      38034
          Longitude
                                          0
          Latitude
                                          0
          dtype: int64
In [799]: |df['Group A B'].unique()
Out[799]: array(['A', 'B'], dtype=object)
```

```
In [800]: df['Sector'].value_counts()
Out[800]: U
                        75417
                        69518
           Μ
                        68592
           K
                        67472
           Е
                        67455
           D
                        63797
                        61666
           Q
                        59704
           R
                        58680
           L
           Ν
                        54654
           J
                        50850
           W
                        49162
           S
                        48900
           F
                        46860
           С
                        42899
           G
                        40146
           0
                        29862
                         6404
           UNKNOWN
           99
                           91
                            7
           OOJ
           1700
                            2
           6804
                            1
           9512
                            1
           <Null>
                            1
           W2
                            1
           Name: Sector, dtype: int64
```

In [801]: df.head()

Out[801]:

	Report Number	Offense ID	Offense Start DateTime	Offense End DateTime	Report DateTime	Group A B	Crime Against Category	
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	NaN	02/05/2020 11:24:31 AM	А	SOCIETY	DRU
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/04/2020 08:00:00 AM	02/05/2020 10:06:28 AM	А	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/02/2020 09:30:00 PM	02/05/2020 09:39:33 AM	А	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 02:21:00 AM	02/05/2020 03:30:55 AM	Α	PROPERTY	DESTRUCTION
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	NaN	02/05/2020 12:51:31 AM	В	SOCIETY	DRIVING

```
In [802]: #convert to datetime
    df["date"] = pd.to_datetime(df["Offense Start DateTime"])
    df["year"] = df["date"].dt.year
    df["month"] = df["date"].dt.month
    df["day_of_week"] = df["date"].dt.day_name()
    df["hour"] = df["date"].dt.hour
    df["Date"] = df["date"].dt.date
    df = df.drop("date", axis=1)
    df
```

Out[802]:

	Report Number	Offense ID	Offense Start DateTime	Offense End DateTime	Report DateTime	Group A B	Crime Against Category	
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	NaN	02/05/2020 11:24:31 AM	Α	SOCIETY	
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/04/2020 08:00:00 AM	02/05/2020 10:06:28 AM	Α	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/02/2020 09:30:00 PM	02/05/2020 09:39:33 AM	Α	PROPERTY	

3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 02:21:00 AM	02/05/2020 03:30:55 AM	Α	PROPERTY	DESTF
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	NaN	02/05/2020 12:51:31 AM	В	SOCIETY	DF
		•••						
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	NaN	07/13/2013 06:37:00 AM	Α	PROPERTY	
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 06:30:00 AM	06/29/2013 09:43:00 AM	Α	PROPERTY	
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	NaN	02/14/2012 03:04:00 PM	Α	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	NaN	09/19/2010 04:59:00 PM	Α	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:30:00 AM	02/26/2010 07:54:00 AM	А	PROPERTY	

962145 rows × 22 columns

```
In [803]: # Map day values to proper strings
dmap1 = {1.0:'January',2.0:'February',3.0:'March',4.0:'April',5.0:'May
df['month'] = df['month'].map(dmap1)
df
```

Out[803]:

	Report Number	Offense ID	Offense Start DateTime	Offense End DateTime	Report DateTime	Group A B	Crime Against Category	
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	NaN	02/05/2020 11:24:31 AM	Α	SOCIETY	
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/04/2020 08:00:00 AM	02/05/2020 10:06:28 AM	А	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/02/2020 09:30:00 PM	02/05/2020 09:39:33 AM	А	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 02:21:00 AM	02/05/2020 03:30:55 AM	А	PROPERTY	DESTF
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	NaN	02/05/2020 12:51:31 AM	В	SOCIETY	DF
•••								
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	NaN	07/13/2013 06:37:00 AM	А	PROPERTY	
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 06:30:00 AM	06/29/2013 09:43:00 AM	Α	PROPERTY	
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	NaN	02/14/2012 03:04:00 PM	Α	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	NaN	09/19/2010 04:59:00 PM	А	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:30:00 AM	02/26/2010 07:54:00 AM	А	PROPERTY	

962145 rows × 22 columns

In [804]: #Dropping unncessary columns: # Will be keeping offence Parent Group and droping offense, offense en df_new = df.drop(columns =['Offense End DateTime','Offense','100 Block df_new

Out[804]:

	Report Number	Offense ID	Offense Start DateTime	Report DateTime	Group A B	Crime Against Category	Offe
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	02/05/2020 11:24:31 AM	А	SOCIETY	DRUG/NAR
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/05/2020 10:06:28 AM	Α	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/05/2020 09:39:33 AM	Α	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 03:30:55 AM	А	PROPERTY	DESTRUCTION/DAN
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	02/05/2020 12:51:31 AM	В	SOCIETY	DRIVING UNDEF
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	07/13/2013 06:37:00 AM	А	PROPERTY	МОТО
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 09:43:00 AM	А	PROPERTY	МОТО
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	02/14/2012 03:04:00 PM	А	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	09/19/2010 04:59:00 PM	Α	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:54:00 AM	Α	PROPERTY	МОТО

962145 rows × 19 columns

```
In [805]: df_new['Date'].value_counts()
Out[805]: 2020-05-18
                         764
          2020-05-15
                         667
          2020-03-08
                         658
          2020-05-14
                         621
          2020-05-20
                         584
          2005-09-13
                           1
          2007-01-07
                           1
          2006-01-25
                           1
          1989-05-14
          1997-11-01
                           1
          Name: Date, Length: 5865, dtype: int64
In [806]: df_new['dt_Year'] = pd.to_datetime(df_new.Date,format='%Y',exact=False
```

In [472]: df_new

Out[472]:

	Report Number	Offense ID	Offense Start DateTime	Report DateTime	Group A B	Crime Against Category	Offe
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	02/05/2020 11:24:31 AM	Α	SOCIETY	DRUG/NAR
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/05/2020 10:06:28 AM	Α	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/05/2020 09:39:33 AM	Α	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 03:30:55 AM	Α	PROPERTY	DESTRUCTION/DAN
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	02/05/2020 12:51:31 AM	В	SOCIETY	DRIVING UNDEF
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	07/13/2013 06:37:00 AM	Α	PROPERTY	МОТО
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 09:43:00 AM	Α	PROPERTY	МОТО
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	02/14/2012 03:04:00 PM	Α	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	09/19/2010 04:59:00 PM	Α	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:54:00 AM	Α	PROPERTY	МОТО

962145 rows × 20 columns

```
In [473]: df_new.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 962145 entries, 0 to 962144 Data columns (total 20 columns):

#	Column	Non-Null Count	
0	Report Number	962145 non-null	object
1	Offense ID	962145 non-null	int64
2	Offense Start DateTime	961188 non-null	object
3	Report DateTime	962145 non-null	object
4	Group A B	962145 non-null	object
5	Crime Against Category	962145 non-null	object
6	Offense Parent Group		object
7	Offense Code	962145 non-null	object
8	Precinct	962141 non-null	object
9	Sector	962143 non-null	object
10	Beat	962143 non-null	object
11	MCPP	962142 non-null	object
12	Longitude	962145 non-null	float64
13	Latitude	962145 non-null	float64
14	year	961188 non-null	float64
15	month	961188 non-null	object
16	day_of_week	961188 non-null	object
17	hour	961188 non-null	float64
18	Date	961188 non-null	object
19	dt_Year	961188 non-null	datetime64[ns]
dtyp	es: datetime64[ns](1), f	loat64(4), int64(1), object(14)

dtypes: datetime64[ns](1), float64(4), int64(1), object(14)

memory usage: 146.8+ MB

In [807]: #Restting the index of the dataframe

df new.reset index(drop=True, inplace=True) df new

Out[807]:

	Report Number	Offense ID	Offense Start DateTime	Report DateTime	Group A B	Crime Against Category	Offe
0	2020- 044620	12605873663	02/05/2020 10:10:00 AM	02/05/2020 11:24:31 AM	А	SOCIETY	DRUG/NAR
1	2020- 044452	12605598696	02/03/2020 08:00:00 AM	02/05/2020 10:06:28 AM	Α	PROPERTY	
2	2020- 044465	12605567653	02/02/2020 08:30:00 PM	02/05/2020 09:39:33 AM	Α	PROPERTY	
3	2020- 044225	12605174036	02/05/2020 01:17:00 AM	02/05/2020 03:30:55 AM	Α	PROPERTY	DESTRUCTION/DAN
4	2020- 044076	12605081469	02/05/2020 12:51:21 AM	02/05/2020 12:51:31 AM	В	SOCIETY	DRIVING UNDE
		•••					
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	07/13/2013 06:37:00 AM	Α	PROPERTY	МОТО
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 09:43:00 AM	А	PROPERTY	МОТО
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	02/14/2012 03:04:00 PM	А	PROPERTY	
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	09/19/2010 04:59:00 PM	А	PROPERTY	
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:54:00 AM	А	PROPERTY	МОТО

962145 rows × 20 columns

Visualizations to understand the data.

LEt's visualize the data to understand it better.

```
In [808]: #Different categories of crime:
    plt.rcParams['figure.figsize'] = (15, 7)
    plt.style.use('fivethirtyeight')

sns.countplot(df_new['Offense Parent Group'].sort_index(ascending=False)
    plt.title('Major Category of Crimes in seattle', fontweight = 30, fonts)
    plt.xticks(rotation = 90)
    plt.show()
```


In [809]: #Top MCPP:

```
#Top MCPP:
plt.rcParams['figure.figsize'] = (15, 7)
plt.style.use('fivethirtyeight')
color = plt.cm.ocean(np.linspace(0, 1, 15))
sns.countplot(df_new['MCPP'].sort_index(ascending=False), palette = 'p
plt.title('Top MCPP in Seattle.', fontweight = 30, fontsize = 20,color
plt.xticks(rotation = 90)
plt.show()
```



```
In [810]: #Frequency of offense code::
          plt.rcParams['figure.figsize'] = (15, 7)
          plt.style.use('fivethirtyeight')
          color = plt.cm.ocean(np.linspace(0, 1, 15))
          sns.countplot(df new['Offense Code'].sort index(ascending=True), palet
          plt.title('Frequency of offense code in Seattle.', fontweight = 30, f
          plt.xticks(rotation = 90)
          plt.show()
```



```
In [811]: #crime by Groups:
    plt.rcParams['figure.figsize'] = (8, 5)
    plt.style.use('fivethirtyeight')
    color = plt.cm.spring(np.linspace(0, 1, 5))
    df_new['Group A B'].value_counts().plot.bar()

    plt.title('Crime by groups',fontsize =15,color ='Black')
    plt.xticks(rotation = 360)
    plt.savefig('Crime by groups.png')
    plt.show()
```



```
In [812]: #plt.rcParams['figure.figsize'] = (8, 5)
plt.style.use('fivethirtyeight')

color = plt.cm.spring(np.linspace(0, 1, 5))
df_new['Crime Against Category'].value_counts().plot.bar()

plt.title('Crime Against Category',fontsize =15,color ='Black')
plt.xticks(rotation = 360)
plt.show()
```



```
In [813]: #Crime count by weekdays:
    plt.style.use('seaborn')

    color = plt.cm.cool(np.linspace(0, 1, 15))
    df_new['day_of_week'].value_counts().head(15).plot.bar(figsize = (10, plt.xlabel("Days of the Week", fontsize=20)
    plt.title('Crime count on each day', fontsize = 20)
    plt.xticks(rotation = 90)
    plt.show()
```



```
In [814]: #Crime count by Month:
    plt.style.use('seaborn')

    color = plt.cm.cool(np.linspace(0, 1, 15))
    df_new['month'].value_counts().sort_index(ascending=False).sort_values
    plt.xlabel("Months",fontsize=20)
    plt.title('Crime count by Months',fontsize = 20)
    plt.xticks(rotation = 90)
    plt.show()
```


In [816]: #Lets plot a line plot to plot crimes according to date plt.figure(figsize=(10,5)) df_new.groupby('Date').count()['Offense Parent Group'].plot(); plt.title('Crime according to Year', fontsize=20) plt.tight_layout()


```
In [817]: #Lets create a table with the highest no of crimes in Seattle.
    crime_dates = df_new[df_new["year"] == 2020]
    top_10_days = pd.DataFrame(crime_dates["dt_Year"].value_counts().head(
        top_10_days.reset_index(inplace=True)
        top_10_days.columns=['Date','Count']
        top_10_days.head(10)
```

Out[817]:

Date Count

0 2020-01-01 76060


```
In [819]: #counts by month:
    crime_by_month = df_new[df_new["year"] ==2020]
    top_10_counts =pd.DataFrame(crime_by_month["month"].value_counts().hea
    top_10_counts.reset_index(inplace=True)
    top_10_counts.columns = ['Month','Count']
    top_10_counts.head(20)
```

Out[819]:

	Month	Count
0	May	11673
1	March	6607
2	Ocotober	6519
3	April	6161
4	September	6036
5	August	6017
6	December	5962
7	January	5854
8	November	5608
9	July	5507


```
In [821]: #Plot crimes according to days in 2021
crime_rate = df_new[df_new["year"] == 2021]

plt.figure(figsize=(10,5))
crime_rate.groupby('month').count()['Offense Parent Group'].plot();
plt.title("Line Graph of crime by Month in 2021",fontsize=20)
plt.tight_layout()
```


In [822]: df_new.tail()

Out[822]:

	Report Number	Offense ID	Offense Start DateTime	Report DateTime	Group A B	Crime Against Category	Offense Parent Group	Offense Code
962140	2013- 247888	7687554356	07/13/2013 01:00:00 AM	07/13/2013 06:37:00 AM	Α	PROPERTY	MOTOR VEHICLE THEFT	240
962141	2013- 227022	7682354808	06/26/2013 11:00:00 AM	06/29/2013 09:43:00 AM	Α	PROPERTY	MOTOR VEHICLE THEFT	240
962142	2012- 045494	7672915592	02/14/2012 03:04:00 PM	02/14/2012 03:04:00 PM	Α	PROPERTY	LARCENY- THEFT	23C
962143	2010- 328592	7692227482	09/19/2010 04:59:00 PM	09/19/2010 04:59:00 PM	Α	PROPERTY	LARCENY- THEFT	23C
962144	2010- 064656	7686420892	02/25/2010 06:00:00 PM	02/26/2010 07:54:00 AM	Α	PROPERTY	MOTOR VEHICLE THEFT	240

```
In [823]: eep only the cloumns we need:
```

= df_new.drop(columns =['Report Number','Crime Against Category','Bea

Out[823]:

	Offense Parent Group	year	month	day_of_week	Date	dt_Year
0	DRUG/NARCOTIC OFFENSES	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
1	LARCENY-THEFT	2020.0	February	Monday	2020- 02-03	2020- 01-01
2	ROBBERY	2020.0	February	Sunday	2020- 02-02	2020- 01-01
3	DESTRUCTION/DAMAGE/VANDALISM OF PROPERTY	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
4	DRIVING UNDER THE INFLUENCE	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
962140	MOTOR VEHICLE THEFT	2013.0	July	Saturday	2013- 07-13	2013- 01-01
962141	MOTOR VEHICLE THEFT	2013.0	June	Wednesday	2013- 06-26	2013- 01-01
962142	LARCENY-THEFT	2012.0	February	Tuesday	2012- 02-14	2012- 01-01
962143	LARCENY-THEFT	2010.0	September	Sunday	2010- 09-19	2010- 01-01
962144	MOTOR VEHICLE THEFT	2010.0	February	Thursday	2010- 02-25	2010- 01-01

962145 rows × 6 columns

```
In [826]: #checking the nulls.
df_crime.isna().sum()
```

```
Out[826]: Offense Parent Group
year
month
day_of_week
Date
dt_Year
dtype: int64
```

```
In [827]: df_crime= df_crime.dropna(axis=0, how='any')
    df_crime
```

Out[827]:

	Offense Parent Group	year	month	day_of_week	Date	dt_Year
0	DRUG/NARCOTIC OFFENSES	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
1	LARCENY-THEFT	2020.0	February	Monday	2020- 02-03	2020- 01-01
2	ROBBERY	2020.0	February	Sunday	2020- 02-02	2020- 01-01
3	DESTRUCTION/DAMAGE/VANDALISM OF PROPERTY	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
4	DRIVING UNDER THE INFLUENCE	2020.0	February	Wednesday	2020- 02-05	2020- 01-01
962140	MOTOR VEHICLE THEFT	2013.0	July	Saturday	2013- 07-13	2013- 01-01
962141	MOTOR VEHICLE THEFT	2013.0	June	Wednesday	2013- 06-26	2013- 01-01
962142	LARCENY-THEFT	2012.0	February	Tuesday	2012- 02-14	2012- 01-01
962143	LARCENY-THEFT	2010.0	September	Sunday	2010- 09-19	2010- 01-01
962144	MOTOR VEHICLE THEFT	2010.0	February	Thursday	2010- 02-25	2010- 01-01

961188 rows × 6 columns

```
In [829]: #Converting float year to int:
    df_crime.year = df_crime.year.astype(int)
```

```
In [831]: df_crime['offense_counts'] = df_crime['Offense Parent Group']
```

In [832]: crime_rate

Out[832]:

	Report Number	Offense ID	Offense Start DateTime	Report DateTime	Group A B	Crime Against Category	Offe
855961	2021- 002024	19260363069	01/03/2021 07:50:00 PM	01/03/2021 09:17:54 PM	А	PROPERTY	STOLEN PROI
857680	2021- 032356	20409706356	02/07/2021 06:38:00 PM	02/07/2021 07:37:11 PM	Α	PROPERTY	DESTRUCTION/DAN
857826	2021- 045588	21421289970	02/15/2021 11:59:00 PM	02/23/2021 05:27:31 PM	А	PROPERTY	МОТО
858055	2021- 039062	20881878784	02/16/2021 07:46:00 AM	02/16/2021 09:54:58 AM	А	PROPERTY	STOLEN PROI
858273	2021- 054304	21681081028	03/05/2021 04:16:00 AM	03/05/2021 05:05:24 AM	А	PROPERTY	STOLEN PROI
		•••					
962123	2021- 210204	26937951561	08/13/2021 08:28:00 PM	08/13/2021 09:12:43 PM	Α	PROPERTY	DESTRUCTION/DAN
962124	2021- 210204	26938167902	08/13/2021 08:28:00 PM	08/13/2021 09:12:43 PM	Α	SOCIETY	WEAPON
962125	2021- 209603	31723041119	08/13/2021 09:11:00 AM	08/13/2021 10:23:44 AM	Α	PERSON	AS
962126	2021- 206747	31721990307	08/10/2021 03:05:00 PM	08/10/2021 06:24:31 PM	А	PROPERTY	DESTRUCTION/DAN
962127	2021- 206747	31722010130	08/10/2021 03:05:00 PM	08/10/2021 06:24:31 PM	А	PERSON	AS

70553 rows × 20 columns

```
In [834]: #grouping by Date
          crime_rate.groupby('Date').count()['Offense Parent Group']
Out[834]: Date
          2021-01-01
                         238
          2021-01-02
                         164
          2021-01-03
                         179
          2021-01-04
                         203
          2021-01-05
                         158
          2021-12-27
                         134
          2021-12-28
                         139
          2021-12-29
                         162
          2021-12-30
                         178
          2021-12-31
                         190
          Name: Offense Parent Group, Length: 365, dtype: int64
          crime_rate.groupby('Date').count()['Offense Parent Group']
In [835]:
Out[835]: Date
          2021-01-01
                         238
                         164
          2021-01-02
          2021-01-03
                         179
          2021-01-04
                         203
          2021-01-05
                         158
          2021-12-27
                         134
          2021-12-28
                         139
          2021-12-29
                         162
          2021-12-30
                         178
          2021-12-31
                         190
          Name: Offense Parent Group, Length: 365, dtype: int64
In [836]: df_crime_new =df_crime.groupby('Date').count()['Offense Parent Group']
```

In [837]: df_crime_new

Out[837]:

	Date	count
0	1908-12-13	1
1	1915-12-14	1
2	1920-09-23	1
3	1929-06-06	1
4	1953-04-20	1
5860	2022-02-23	162
5861	2022-02-24	145
5862	2022-02-25	145
5863	2022-02-26	111
5864	2022-02-27	51

5865 rows × 2 columns

Feature Engineering

Prepping our data for modelling.

```
year
              month count
0
     2010
               April
                       5199
1
    2010
              August
                       5292
2
     2010
           December
                       4992
3
    2010
          February
                      4680
4
     2010
                       6059
           January
     . . .
                       . . .
139 2021
                       5338
               March
140 2021
                 May
                       5795
141 2021
            November
                       6416
142 2021
            Ocotober
                       6845
143 2021 September
                       6331
```

[144 rows x 3 columns]

In [839]: #Our finaldataframe

finalDataFrame

Out[839]:

	year	month	count
0	2010	April	5199
1	2010	August	5292
2	2010	December	4992
3	2010	February	4680
4	2010	January	6059
139	2021	March	5338
140	2021	May	5795
141	2021	November	6416
142	2021	Ocotober	6845
143	2021	September	6331

144 rows × 3 columns

In [840]: #max value in finalDataFrame

finalDataFrame.max()

Out[840]: year

2021 September month count 11673

dtype: object

Out[842]:

	year	month	count	yearMonth
0	2010	April	5199	2010-04-01
1	2010	August	5292	2010-08-01
2	2010	December	4992	2010-12-01
3	2010	February	4680	2010-02-01
4	2010	January	6059	2010-01-01
139	2021	March	5338	2021-03-01
140	2021	May	5795	2021-05-01
141	2021	November	6416	2021-11-01
142	2021	Ocotober	6845	2021-10-01
143	2021	September	6331	2021-09-01

144 rows × 4 columns

In [843]: #Creating our final Dtataframe and set_index as Year/Month. finalDataFrame['Year/Month'] = pd.to_datetime(finalDataFrame['yearMontfinalDataFrame.set_index('Year/Month', inplace=True) finalDataFrame = finalDataFrame.drop(columns=['year', 'month', 'yearMontfinalDataFrame)

Out[843]:

	count
Year/Month	
2010-04-01	5199
2010-08-01	5292
2010-12-01	4992
2010-02-01	4680
2010-01-01	6059
2021-03-01	5338
2021-05-01	5795
2021-11-01	6416
2021-10-01	6845
2021-09-01	6331

144 rows × 1 columns

```
In [844]: #our final dataframe:
           finalDataFrame finalDataFrame.sort values(by="Year/Month")
           finalDataFrame
            2010-01-01
                       6059
            2010-02-01
                       4680
            2010-03-01
                       5116
            2010-04-01
                       5199
            2010-05-01
                       5526
            2021-08-01
                       6194
            2021-09-01
                       6331
            2021-10-01
                       6845
            2021-11-01
                       6416
            2021-12-01
                       6093
           144 rows × 1 columns
           finalDataFrame_monthly = finalDataFrame.resample('Q')
In [845]:
           month mean= finalDataFrame monthly.mean()
In [846]: month_mean.head()
Out[846]:
                            count
            Year/Month
             2010-03-31 5285.000000
```

 2010-03-31
 5285.000000

 2010-06-30
 5386.6666667

 2010-09-30
 5258.333333

 2010-12-31
 5152.666667

 2011-03-31
 4658.3333333

```
In [847]: # Create a time series line plot for finalDataFrame
finalDataFrame.plot(figsize = (10,5))
for year in range(2012,2021):
    plt.axvline(datetime(year,1,1),linestyle='--',color ='k',alpha= 0.
plt.title("Crime counts By Year")
plt.show()
```


Grouping and Visualizing time series data

```
In [848]: #let's group the data by year and create a line plot for each year for
year_groups = finalDataFrame.groupby(pd.Grouper(freq ='A'))
```


In [851]: # Generate a box and whiskers plot for finalDataFrame
 crime_annual.boxplot(figsize = (12,5))
 plt.show()

Step 1: Visualizing the time series:

Seasonal Decomposition

Trends - What is the overall trend in the data?

Seasonality - How does crimes fluctuate between seasons?

Residuals - When removing trends and seasonality what does the data look like?

Time Series Decomposition

Time series decomposition is a mathematical procedure that transforms a time series into multiple different time series. The original time series is often split into three component series:

- Seasonal:
- Trend:
- Random:

Since the time series doesn't seems to have a linear trend we will used model as 'Multiplicable.

By visualization, if the time series is having exponential growth or decrement with time then the time series can be considered as the multiplicative time series.

Source: [https://towardsdatascience.com/time-series-from-scratch-decomposing-time-series-data-7b7ad0c30fe7] (https://towardsdatascience.com/time-series-from-scratch-decomposing-time-series-data-7b7ad0c30fe7%5D)

Trends - An almost linear incline in the number of monthly violent crimes, with declining rate for some months.

Seasonality - It looks like there correlation with seasons with a peak in the summer months and a trough in the winter months

Residuals - This mostly looks like noise, however we can improve on this,

Create a stationarity check function:

· Augmented Dickey-Fuller (ADF) Test

ADF test is used to determine the presence of unit root in the series, and hence helps in understanding if the series is stationary or not. The null and alternate hypothesis of this test are:

Null Hypothesis(Ho): The series has a unit root, meaning it is non-stationary. It has some time dependent structure.

Alternate Hypothesis(HA): The series has no unit root, meaning it is stationary. It does not have time-dependent structure.

Source: [https://machinelearningmastery.com/time-series-data-stationary-python/] (https://machinelearningmastery.com/time-series-data-stationary-python/%5D)

In [854]: # Create a function to check for the stationarity of a given time seri #When the test statistic is lower than the critical value shown, you i def stationarity check(series): # Calculate rolling statistics roll mean = series.rolling(window=8, center=False).mean() roll std = series.rolling(window=8, center=False).std() # Perform the Dickey Fuller Test dftest = adfuller(series, autolag='AIC') # Plot rolling statistics: fig = plt.figure(figsize=(10,5)) plt.xlabel("Years/Month") plt.ylabel("Count of Crimes") plt.plot(series, color='blue', label='Original') plt.plot(roll mean, color='red', label='Rolling Mean') plt.plot(roll std, color='black', label = 'Rolling Std') plt.legend(loc='best') plt.title('Rolling Mean & Standard Deviation') plt.show(block=False) # Print Dickey-Fuller test results print('Results of Dickey-Fuller Test: \n') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-valu'] '#Lags Used', 'Number of for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value #print(dfoutput) return dfoutput

In [855]: stationarity_check(finalDataFrame)

Results of Dickey-Fuller Test:

Out[855]:	Test Statistic	-2.529663
	p-value	0.108423
	#Lags Used	4.000000
	Number of Observations Used	139.000000
	Critical Value (1%)	-3.478294
	Critical Value (5%)	-2.882568
	Critical Value (10%)	-2.577983
	dtype: float64	

Unsurprisingly the data fails the augmenteed Dickey-Fuller Test as T-statisticis greater than Critical value, hence not being able to reject the null hypothesis(T-Statistic > Critical value 1%), which concludes:

• series is non-stationary.

Step 2: Make Time Series stationary.

```
In [856]: #Let's try to normalise data by getting average and standard deviation
avg, dev = finalDataFrame.mean() ,finalDataFrame.std()
In [857]: finalDataFrame1 =(finalDataFrame - avg)/dev
```

```
In [858]: #plotting the DataFrame1:
    finalDataFrame1.plot(figsize = (10,3))
    for year in range(2012,2021):
        plt.axvline(datetime(year,1,1),linestyle='--',color ='k',alpha= 0.
    plt.show()
```


In [863]: finalDataFrame1.head()

Out[863]:

count

Year/Month					
2010-01-01	0.502006				
2010-02-01	-1.333264				
2010-03-01	-0.753004				
2010-04-01	-0.642542				
2010-05-01	-0.207348				

This doesn't show any change compared tot he original plot.Let's try another method.

```
In [864]: #Let's try grouping
#groupby_index = finalDataFrame.groupby(finalDataFrame.index.year).stc
```

```
In [865]: #groupby_index
```

In [866]: stationarity_check(groupby_index['count'])

Results of Dickey-Fuller Test:

Out[866]:	Test Statistic	-4.087169
	p-value	0.001017
	#Lags Used	4.000000
	Number of Observations Used	7.000000
	Critical Value (1%)	-4.938690
	Critical Value (5%)	-3.477583
	Critical Value (10%)	-2.843868
	dtype: float64	

T-statistic > Critical Value, hence unable to reject the null hypothesis. Fails ADF test. Hence, is non-stationary.

Method 2:

A very common way to make a time series stationary is differencing: from each value in our time series, we subtract the previous value.

In [868]: difference test(finalDataFrame['count'],3)

Results of Dickey-Fuller Test:

2010 2012 2014 2016 2018 2020 2022 Years/Month

Results of Dickey-Fuller Test:

Results of Dickey-Fuller Test:

Out[868]:

	diff	p-value	series_stationary
0	0	1.084228e-01	False
1	1	3.569738e-17	True
2	2	1.457723e-09	True

In [869]: #Lets see the results of dickey fuller test of differencing by 1:
 stationarity_check(finalDataFrame['count'].diff().dropna())

Results of Dickey-Fuller Test:

Out[869]:	Test Statistic p-value #Lags Used Number of Observations Used Critical Value (1%) Critical Value (5%)	-9.890444e+00 3.569738e-17 3.000000e+00 1.390000e+02 -3.478294e+00 -2.882568e+00
	Critical Value (5%) Critical Value (10%)	-2.882568e+00 -2.577983e+00
	dtype: float64	2.3773030100

Above results of differencing once shows p-value <0.05, and Tstatistics < Critical Value, which rejects the null hypothesis and confirms our alternate hypothesis that time series is stationary.

Results: Differencing by 1& 2 makes our time series stationary.

```
In [870]: # Create figure
fig, (ax1, ax2) = plt.subplots(2,1, figsize=(10,8))

# Plot the ACF of df_store_2_item_28_timeon ax1
plot_acf(finalDataFrame,lags=14, zero=False, ax=ax1)

# Plot the PACF of df_store_2_item_28_timeon ax2
plot_pacf(finalDataFrame,lags=14, zero=False, ax=ax2)

plt.show()
```


Estimating p,q: From the above ACF and PACF plot we can identify p=1,q=1.

```
In [872]: #Fitting our Arima model: with d=1
model = ARIMA(finalDataFrame, order=(1,1,1))
results = model.fit()
# statistics of the model
results.summary()
```

Out[872]:

ARIMA Model Results

Dep. Variable: D.count No. Observations: 143 Model: ARIMA(1, 1, 1) Log Likelihood -1128.678 Method: css-mle S.D. of innovations 643.720 **Date:** Wed. 09 Mar 2022 AIC 2265.357 Time: 14:11:03 BIC 2277,208 Sample: 02-01-2010 **HQIC** 2270.172 - 12-01-2021 coef std err z P>|z| [0.025 0.975] **const** 7.4761 4.749 1.574 0.115 -1.831 16.783 ar.L1.D.count 0.0038 0.099 0.039 0.969 -0.190 0.198 ma.L1.D.count -0.9230 0.057 -16.057 0.000 -1.036 -0.810

Roots

Real Imaginary Modulus Frequency

AR.1 261.0163 +0.0000j 261.0163 0.0000 **MA.1** 1.0835 +0.0000j 1.0835 0.0000

Let's find best P,q for our model with help of aic,bic scores.

```
In [876]: # Construct DataFrame from order aic bic
```

Out[876]:

	р	q	AIC	ВІС
1	0	1	2260.800696	2266.726385
15	2	1	2261.666461	2273.517839
3	0	3	2261.725954	2273.577332
18	2	4	2262.512984	2283.252897
8	1	1	2262.767814	2271.656348
2	0	2	2262.776367	2271.664901
22	3	1	2263.662483	2278.476706
25	3	4	2263.678209	2287.380966
19	2	5	2263.692639	2287.395396
10	1	3	2263.694717	2278.508940
4	0	4	2263.705925	2278.520148
31	4	3	2263.711047	2287.413804
23	3	2	2264.121811	2281.898879
9	1	2	2264.126725	2275.978104
16	2	2	2264.427459	2279.241683
33	4	5	2265.367790	2294.996237
5	0	5	2265.531073	2283.308140
29	4	1	2265.633663	2283.410731
38	5	3	2265.644302	2292.309903
17	2	3	2265.653613	2283.430680
26	3	5	2265.676233	2292.341835
11	1	4	2265.692388	2283.469456
32	4	4	2265.966256	2292.631858
30	4	2	2266.035147	2286.775060
39	5	4	2266.207207	2295.835653
20	2	6	2266.332617	2292.998219
12	1	5	2266.676326	2287.416239
6	0	6	2267.047021	2287.786933

```
36 5 1 2267.132957 2287.872869
   5 5 2267.590901 2300.182192
     1 2267.783704 2291.486461
   6 4 2268.225890 2300.817181
   5 2 2268.383197 2292.085954
37
13
   1 6 2268.512486 2292.215243
   3 3 2268.760084 2289.499996
24
   6 2 2268.892401 2295.558003
44
   6 5 2270.199111 2305.753247
   6 3 2270.408993 2300.037439
   4 6 2270.716276 2303.307567
   3 6 2271.792971 2301.421418
   5 6 2272.219767 2307.773903
   6 6 2272.378713 2310.895693
28
   4 0 2273.108173 2287.922396
     0 2274.228506 2294.968419
35 5 0 2274.890913 2292.667980
   3 0 2277.765076 2289.616454
14 2 0 2281.007221 2289.895755
 7 1 0 2289.316139 2295.241828
 0 0 0 2344.701215 2347.664060
```

In [877]: # Print order_df in order of increasing BIC order_df.sort_values('BIC')

Out[877]:

_		р	q	AIC	BIC
-	1	0	1	2260.800696	2266.726385
	8	1	1	2262.767814	2271.656348
	2	0	2	2262.776367	2271.664901
	15	2	1	2261.666461	2273.517839
	3	0	3	2261.725954	2273.577332
	9	1	2	2264.126725	2275.978104
	22	3	1	2263.662483	2278.476706
	10	1	3	2263.694717	2278.508940
	4	0	4	2263.705925	2278.520148

16	2	2	2264.427459	2279.241683
23	3	2	2264.121811	2281.898879
18	2	4	2262.512984	2283.252897
5	0	5	2265.531073	2283.308140
29	4	1	2265.633663	2283.410731
17	2	3	2265.653613	2283.430680
11	1	4	2265.692388	2283.469456
30	4	2	2266.035147	2286.775060
25	3	4	2263.678209	2287.380966
19	2	5	2263.692639	2287.395396
31	4	3	2263.711047	2287.413804
12	1	5	2266.676326	2287.416239
6	0	6	2267.047021	2287.786933
36	5	1	2267.132957	2287.872869
28	4	0	2273.108173	2287.922396
24	3	3	2268.760084	2289.499996
21	3	0	2277.765076	2289.616454
14	2	0	2281.007221	2289.895755
43	6	1	2267.783704	2291.486461
37	5	2	2268.383197	2292.085954
13	1	6	2268.512486	2292.215243
38	5	3	2265.644302	2292.309903
26	3	5	2265.676233	2292.341835
32	4	4	2265.966256	2292.631858
35	5	0	2274.890913	2292.667980
20	2	6	2266.332617	2292.998219
42	6	0	2274.228506	2294.968419
33	4	5	2265.367790	2294.996237
7	1	0	2289.316139	2295.241828
44	6	2	2268.892401	2295.558003
39	5	4	2266.207207	2295.835653
45	6	3	2270.408993	2300.037439
40	5	5	2267.590901	2300.182192
46	6	4	2268.225890	2300.817181

```
27 3 6 2271.792971 2301.421418
34 4 6 2270.716276 2303.307567
47 6 5 2270.199111 2305.753247
41 5 6 2272.219767 2307.773903
48 6 6 2272.378713 2310.895693
0 0 0 2344.701215 2347.664060
```

Both AIC and BIC agree that the best model in this case should be ARIMA(0,1,1).

Step 3: Implementing Models:

BaseLine Model:

- For our baseline Model we will be implementing ARIMA:
- Find optimal parameters for ARIMA

About ARIMA model

- ARIMA stands for Autoregressive Integreted Moving Average
- ARIMA models are denoted with the notation ARIMA(p, d, q)

These three parameters account for seasonality, trend, and noise in data ARIMA Model ARIMA as a feature:

 Autoregressive Integrated Moving Average (ARIMA) — This was one of the most popular techniques for predicting future values of time series data (in the pre-neural networks ages). Let's add it and see if it comes off as an important predictive feature.

ARIMA is a technique for predicting time series data. We will show how to use it, and all though ARIMA will not serve as our final prediction, we will use it as a technique to denoise the stock a little and to (possibly) extract some new patters or features.

ARIMA is an acronym. This acronym is descriptive, capturing the key aspects of the model itself. Briefly, they are:

AR: Autoregression. A model that uses the dependent relationship between an observation and some number of lagged observations.

I: Integrated. The use of differencing of raw observations (e.g. subtracting an observation from an observation at the previous time step) in order to make the time series stationary.

MA: Moving Average. A model that uses the dependency between an observation and a residual error from a moving average model applied to lagged observations.

The parameters of the ARIMA model are defined as follows:

- p: The number of lag observations included in the model, also called the lag order.
- d: The number of times that the raw observations are differenced, also called the degree of differencing.
- q: The size of the moving average window, also called the orde r of moving average.

STEPS FOR ARIMA

- 1. Define the model by calling ARIMA() and passing in the p, d, and q parameters.
- 2. The model is prepared on the training data by calling the fit() function.
- 3. Predictions can be made by calling the predict() function and specifying the index of the time or times to be predicted.

Metrics Choosen to compare Models:

- MAPE(Mean ABsolute Percentage Error)
- MAE(Mean Absolute Error)

Auto Regressive Model

- The autocorrelation function is a function that represents autocorrelation of a time series as a function of the time lag.
- Creating an autocorrelation function for our "finalDataFrame", we have the lag on the x-axis and the correlation value for each respective lag value on the y-axis.

```
In [880]: #Baseline Model.
    arima_model_01 = ARIMA(finalDataFrame, order=(0,1,1))
# fit model
    arima_results = arima_model_01.fit()

# Calculate the mean absolute error from residuals
    mae = np.mean(np.abs(arima_results.resid))

# Print mean absolute error
    print('MAE: %.3f' % mae)

#Print results summary
    arima_results.summary()
```

MAE: 360.750

Out[880]:

ARIMA Model Results

Dep. Variable:		D.count	No. Observations:			143		
Model:	ARIM	A(0, 1, 1)	Log	Log Likelihood			-1128.679	
Method:		css-mle	S.D. of i	S.D. of innovations			643.740	
Date:	Wed, 09 N	Mar 2022		AIC			2263.358	
Time:		14:13:37	BIC			22	272.247	
Sample:	02-	-01-2010		HQIC 226			266.970	
	- 12-	-01-2021						
	coef	std err	z	P> z	[0.0]	25	0.975]	
const	7.4514	4.746	1.570	0.116	-1.8	50	16.753	
ma.L1.D.count	-0.9218	0.049	-18.685	0.000	-1.0	18	-0.825	

Roots

 Real
 Imaginary
 Modulus
 Frequency

 MA.1
 1.0848
 +0.0000j
 1.0848
 0.0000

```
In [881]: #Baseline Model without differencing.
    arima_model_01 = ARIMA(finalDataFrame, order=(0,0,1))
    # fit model
    arima_results = arima_model_01.fit()

# Calculate the mean absolute error from residuals
    mae = np.mean(np.abs(arima_results.resid))

# Print mean absolute error
    print('MAE: %.3f' % mae)

#Print results summary
    arima_results.summary()
```

MAE: 456.760

Out[881]:

ARMA Model Results

Dep. Variable: No. Observations: count 144 Model: ARMA(0, 1) Log Likelihood -1152.701 Method: css-mle S.D. of innovations 724.719 Date: Wed, 09 Mar 2022 AIC 2311.401 BIC 2320.311 Time: 14:13:39 Sample: 01-01-2010 HQIC 2315.021 - 12-01-2021

 const
 5683.1083
 72.426
 78.468
 0.000
 5541.157
 5825.060

 ma.L1.count
 0.2006
 0.065
 3.095
 0.002
 0.074
 0.328

Roots

 Real
 Imaginary
 Modulus
 Frequency

 MA.1
 -4.9850
 +0.0000j
 4.9850
 0.5000

```
In [882]: finalDataFrame.describe()
```

Out[882]:

	count
count	144.000000
mean	5681.798611
std	751.388203
min	4187.000000
25%	5195.750000
50%	5691.500000
75%	6068.000000
max	11673.000000

Autocorrelation plots:

Are a commonly-used tool for checking randomness in a data set. This randomness is ascertained by computing autocorrelations for data values at varying time lags. If random, such autocorrelations should be near zero for any and all time-lag separations. If non-random, then one or more of the autocorrelations will be significantly non-zero. Source [https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm] (https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm%5D)

```
In [884]: #plotting the autocorelation_plot
    #from pandas.tools.plotting import autocorrelation_plot
    plt.figure(figsize=(12,5))
    pd.plotting.autocorrelation_plot(finalDataFrame['count']);
```



```
In [885]: finalDataFrame.head()
```

Out[885]:

count

Year/Month	
2010-01-01	6059
2010-02-01	4680
2010-03-01	5116
2010-04-01	5199
2010-05-01	5526

```
In [887]: #Functions to implement ARIMA
          from statsmodels.tsa.arima model import ARIMA
          from statsmodels.graphics.tsaplots import plot acf, plot pacf
          import matplotlib.pyplot as plt
          from sklearn.metrics import mean squared error
          import matplotlib.dates as mdates
          from datetime import timedelta
          from numpy import sqrt
          def evaluate arima models(data, order, forecast periods):
              """ This function evaluates arima models.
              Args:
                  data: timseries
                  order: order of the model
                  forecast periods = number of periods
              Return:
                  returns summary of evaluated model, and MAE, MAPE.
              #preparing training dataset
              val = int(len(data) * 0.1)
              size = int(len(data) * 0.7)
              validation set = data[0:val]
              train,test = data[val:size],data[size:len(data)]
              data series =[x for x in train]
              #making predictions
              arima results =[]
              predictions = []
              for i in range(len(test)):
                  model = ARIMA(data series, order = order)
                  arima results = model.fit(dis=0)
                  yhat = arima results.forecast()[0]
                  predictions.append(yhat)
                  data series.append(test[i])
              #Calculating future forecast.
```

```
future forecast = model fit.forecast(forecast periods)[0]
future dates = [\text{test.index}[-1] + \text{timedelta}(i*365/12)] for i in rand
test dates = test.index
# creates pandas series with datetime index for the predictions ar
forecast = pd.Series(future forecast, index=future dates)
predictions = pd.Series(predictions, index=test dates)
# Plotting predictions with test data:
fig = plt.figure(figsize=(10,5))
plt.plot(test, label='Test')
plt.plot(predictions ,linestyle="--" ,label = 'Predicted')
plt.legend(loc='best')
plt.show()
#plotting predicted with forecast
fig = plt.figure(figsize=(10,5))
plt.plot(test , label = 'Test')
plt.plot(forecast,linestyle="--", label='Forecast')
plt.legend(loc='best')
plt.show()
print("-----")
print("Values for test", test[:10])
print("-----")
print("Values for Predictions",predictions[:10])
print("-----")
#calculate the mean absolute error from residuals
mae = np.mean(np.abs(arima results.resid))
print('The Mean absolute Error of our forecasts is {}'.format(round
MAPE= mean absolute percentage error(test, predictions)
print('The Mean absolute Percentage Error of our forecasts is {}'.
# calculate out of sample error
rmse = sqrt(mean squared error(test, predictions))
#Normalized rmse values
norm rmse = rmse/(data.max()-data.min())
print('The Normalized RMSE value is {}'.format(round(norm rmse, 4)
return arima results
```

```
Values for test Year/Month
               6650
2018-05-01
2018-06-01
               6376
2018-07-01
               6618
2018-08-01
               6504
2018-09-01
               6312
2018-10-01
               6342
2018-11-01
               6164
2018-12-01
               6350
               6305
2019-01-01
2019-02-01
               4670
```

Name: count, dtype: int64

Values for Predictions Year/Month [6083.172686061763] 2018-05-01 2018-06-01 [6254.36869765279] 2018-07-01 [6303.997666549675] [6411.791518938847] 2018-08-01 2018-09-01 [6457.853159051223] 2018-10-01 [6431.940019241249] [6423.823310875957] 2018-11-01 [6369.230409781989] 2018-12-01 2019-01-01 [6380.059268233501] 2019-02-01 [6375.32347926553]

dtype: object

The Mean absolute Error of our forecasts is 361.786 The Mean absolute Percentage Error of our forecasts is 0.0983 The Normalized RMSE value is 0.1565 ARIMA Model Results _____ ======== D.y No. Observations: Dep. Variable: 128 Model: ARIMA(0, 1, 1) Log Likelihood -1013.615 css-mle S.D. of innovations Method: 659.896 Date: Wed, 09 Mar 2022 AIC 2033.230 Time: 14:23:39 BIC 2041.786 1 HQIC Sample: 2036.706 _____ coef std err z P>|z| [0.025] 0.9751 _____ 9.8638 4.561 2.163 0.031 0.925 const 18.803 ma.L1.D.y -0.9305 0.041 -22.852 0.000 -1.010 -0.851Roots ______ ======= Imaginary Real Modulus Frequency _____ MA.1 +0.0000j 1.0747 1.0747 0.0000

GridSearch ARIMA hyperparamters.

```
In [889]:
          # evaluate combinations of p, d and q values for an ARIMA model
          def evaluate models(dataset, p values, d values, q values):
              dataset = dataset.astype('float32')
              best score, best cfg = float("inf"), None
              for p in p values:
                  for d in d values:
                       for q in q values:
                           order = (p,d,q)
                           try:
                               mse = evaluate arima models(dataset, order, periods
                               if mse < best score:</pre>
                                   best_score, best_cfg = mse, order
                               print('ARIMA%s MSE=%.3f' % (order,mse))
                           except:
                               continue
              print('Best ARIMA%s MSE=%.3f' % (best cfg, best score))
```

Since, this is doing a gridSearch it takes a little longer time to execute.

```
In [890]: #p_values = [0, 1, 2, 4, 6, 8, 10]
#d_values = range(0, 3)
#q_values = range(0, 3)
#evaluate_models(finalDataFrame.values, p_values, d_values, q_values)
```

Fitting ARIMA using combinations of p,d,q is a tedious task. To reduce this time we will make use of an open source Python library: PMDArima

Automated Model Selection:

PMDArima is an open-source Python library that is used for time series forecasting and also helps in creating time series plots. It is easy to use and generates time-series forecast on the ARIMA model.

Installing required libraries We will start by installing a PMDArima library by using pip.

Diagnostic Plots:

The diagnostic plots show residuals in four different ways Source:

[https://data.library.virginia.edu/diagnostic-plots/] (https://data.library.virginia.edu/diagnostic-plots/%5D)

```
In [891]: #pip install pmdarima
```

```
In [893]: results = arimamodel(finalDataFrame['count'])
    results.plot_diagnostics()
    plt.show()
```

Performing stepwise search to minimize aic ARIMA(2,1,1)(1,0,1)[12] intercept : AIC=inf, Time=1.13 sec ARIMA(0,1,0)(0,0,0)[12] intercept : AIC=2346.698, Time=0.01 sec ARIMA(1,1,0)(1,0,0)[12] intercept : AIC=2291.961, Time=0.08 sec : AIC=2261.794, Time=0.47 sec ARIMA(0,1,1)(0,0,1)[12] intercept : AIC=2344.701, Time=0.01 sec ARIMA(0,1,0)(0,0,0)[12] ARIMA(0,1,1)(0,0,0)[12] intercept : AIC=2260.542, Time=0.12 sec ARIMA(0,1,1)(1,0,0)[12] intercept : AIC=2261.581, Time=0.40 sec : AIC=inf, Time=0.49 sec ARIMA(0,1,1)(1,0,1)[12] intercept : AIC=2262.511, Time=0.58 sec ARIMA(1,1,1)(0,0,0)[12] intercept : AIC=2262.520, Time=0.42 sec ARIMA(0,1,2)(0,0,0)[12] intercept : AIC=2291.279, Time=0.06 sec ARIMA(1,1,0)(0,0,0)[12] intercept ARIMA(1,1,2)(0,0,0)[12] intercept : AIC=inf, Time=0.45 sec : AIC=2260.801, Time=0.07 sec ARIMA(0,1,1)(0,0,0)[12]

Best model: ARIMA(0,1,1)(0,0,0)[12] intercept Total fit time: 4.325 seconds

Above Q-Q plots show no boious patterns in the residuals, normal distribution of the residuals. ACF plot are all inside the blue are which means lag greater than 1 should not be significant. Overall seems a good model.

```
In [894]: mae = np.mean(np.abs(model_fit.resid))
print('Mae: %.3f' % mae)
```

Mae: 360.750

Implementing SARIMA:

Seasonal Autoregressive Integrated Moving Average, SARIMA or Seasonal ARIMA, is an extension of ARIMA that explicitly supports univariate time series data with a seasonal component.

It adds three new hyperparameters to specify the autoregression (AR), differencing (I) and moving average (MA) for the seasonal component of the series, as well as an additional parameter for the period of the seasonality.

```
In [896]: Functions to implement SARIMA
         mport statsmodels.api as sm
         rom statsmodels.tsa.statespace.sarimax import SARIMAX
          ef evaluate sarima(data,order,seasonal order,forecast periods):
             #preparing training dataset
             val = int(len(data) * 0.1)
             size = int(len(data) * 0.7)
             validation set = data[0:val]
             train, test = data[val:size], data[size:len(data)]
             #print(validation set)
             data series =[x for x in train]
             #making predictions
             sarimax results = []
             predictions = []
             for i in range(len(test)):
                model = SARIMAX(data_series, order = order)
                 sarimax results = model.fit(dis=0)
                 yhat = sarimax results.forecast()[0]
                 predictions.append(yhat)
                 data_series.append(test[i])
             #Calculating future forecast.
             future forecast = model fit.forecast(forecast periods)[0]
             future dates = [test.index[-1] + timedelta(i*365/12) for i in range
             test dates = test.index
             # creates mandas series with datetime index for the predictions and
```

```
" CICACCO PANAD DELICO WITH GALECTIME INGEN FOR THE PICATOLICIES AND
forecast = pd.Series(future forecast, index=future dates)
predictions = pd.Series(predictions, index=test dates)
# Plotting predictions with test data:
fig = plt.figure(figsize=(10,5))
plt.plot(test, label='Test')
plt.plot(predictions ,linestyle="--" ,label = 'Predicted')
plt.legend(loc='best')
plt.show()
#plotting predicted with forecast
fig = plt.figure(figsize=(10,5))
plt.plot(test , label = 'Test')
plt.plot(forecast,linestyle="--", label='Forecast')
plt.legend(loc='best')
plt.show()
print("-----")
print("Values for test", test[:10])
print("-----")
print("Values for Predictions",predictions[:10])
print("-----")
#calculate the mean absolute error from residuals
mae = np.mean(np.abs(sarimax results.resid))
print('The Mean absolute Error of our forecasts is {}'.format(round
MAPE= mean absolute percentage error(test, predictions)
print('The Mean absolute Percentage Error of our predictions is {}'
# calculate out of sample error
rmse = sqrt(mean_squared_error(test, predictions))
#Normalized rmse values
norm rmse = rmse/(data.max()-data.min())
print('The Normalized RMSE value is {}'.format(round(norm rmse, 4))
return sarimax results
```

```
In [897]: # Create the figure
fig, (ax1, ax2) = plt.subplots(2,1,figsize=(8,6))

# Plot the ACF on ax1
plot_acf(finalDataFrame['count'], lags=14, zero=False, ax=ax1)

# Plot the PACF on ax2
plot_pacf(finalDataFrame['count'], lags=14, zero=False, ax=ax2)

plt.show()
```



```
In [898]: # Take the first and seasonal differences (S=7) and drop NaNs
finalDataFrame_diff = finalDataFrame['count'].diff(1).dropna()
```

```
In [899]: # Create the figure
fig, (ax1, ax2) = plt.subplots(2,1,figsize=(8,6))

# Plot the ACF on ax1
plot_acf(finalDataFrame_diff, lags=14, zero=False, ax=ax1)

# Plot the PACF on ax2
plot_pacf(finalDataFrame_diff, lags=14, zero=False, ax=ax2)

plt.show()
```



```
Values for test Year/Month
2018-05-01
               6650
2018-06-01
               6376
2018-07-01
               6618
2018-08-01
               6504
2018-09-01
               6312
2018-10-01
               6342
2018-11-01
               6164
2018-12-01
               6350
2019-01-01
               6305
2019-02-01
               4670
Name: count, dtype: int64
```

Values for Predictions Year/Month 2018-05-01 6037.697179 2018-06-01 6227.130885 2018-07-01 6456.807168 2018-08-01 6474.898062 6547.275631 2018-09-01 2018-10-01 6452.623667 2018-11-01 6355.897607 2018-12-01 6287.062466 2019-01-01 6253.675126 2019-02-01 6312.341274 dtype: float64

The Mean absolute Error of our forecasts is 418.2909

The Mean absolute Percentage Error of our predictions is 0.1097 The Normalized RMSE value is 0.1779

In [905]: #for order of p,d,q
#SARIMAX(3) for order of 1,1,1
order=(1,1,1)
seasonal_order =(1,1,1,6)
periods=5
Sarimax_results2 = evaluate_sarima(finalDataFrame['count'],order,seasc
Sarimax_results2.summary()

Values for test Year/Month 2018-05-01 6650 2018-06-01 6376 2018-07-01 6618 2018-08-01 6504 2018-09-01 6312 2018-10-01 6342 2018-11-01 6164 2018-12-01 6350 2019-01-01 6305 2019-02-01 4670 Name: count, dtype: int64

Values for Predictions Year/Month 2018-05-01 6037.697179 6227.130885 2018-06-01 2018-07-01 6456.807168 2018-08-01 6474.898062 2018-09-01 6547.275631 2018-10-01 6452.623667 2018-11-01 6355.897607 2018-12-01 6287.062466 2019-01-01 6253.675126 2019-02-01 6312.341274 dtype: float64

The Mean absolute Error of our forecasts is 418.2909
The Mean absolute Percentage Error of our predictions is 0.1097
The Normalized RMSE value is 0.1779

Out[905]:

SARIMAX Results

Dep. Variable: y **No. Observations:** 129

Model: SARIMAX(1, 1, 1) Log Likelihood -1017.168

0040 000

	Date:	Wed, 09 Mar	2022		AIC	2040.336
	Time:	14:	:34:55		BIC	2048.892
	Sample:		0		HQIC	2043.812
			- 129			
Covaria	nce Type:		opg			
	coe	f std err	z	P> z	[0.025	0.975]
ar.L1	-0.004	5 0.071	-0.064	0.949	-0.143	0.134
ma.L1	-0.873	7 0.065	-13.526	0.000	-1.000	-0.747

sigma2 4.464e+05 1.26e+04 35.427 0.000 4.22e+05 4.71e+05

Nata 00 May 0000

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 6987.35

Prob(Q): 0.80 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.19 Skew: 4.04

Prob(H) (two-sided): 0.00 Kurtosis: 38.28

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

lets' try automated paramter selection for SARIMA.

```
In [906]: #Automated parameter selection fot SARIMA.
          Sarimax model = auto arima(finalDataFrame['count'],
                                  start P=1,
                                  start q=1,
                                  max p=6,
                                  max q=6,
                                  m=12,
                                  seasonal=True,
                                  d=1,
                                  D=1,
                                  trace=True,
                                  information criterion='aic',
                                  error action='ignore',
                                  suppress warnings=True,
                                  stepwise=True)
          Sarimax model.summary()
```

```
Performing stepwise search to minimize aic

ARIMA(2,1,1)(1,1,1)[12] : AIC=2078.068, Time=1.42 sec

ARIMA(0,1,0)(0,1,0)[12] : AIC=2217.220, Time=0.02 sec

ARIMA(1,1,0)(1,1,0)[12] : AIC=2116.398, Time=0.36 sec

ARIMA(0,1,1)(0,1,1)[12] : AIC=2077.858, Time=0.94 sec
```

```
ARIMA(0,1,1)(0,1,0)[12]
                                     : AIC=inf, Time=0.08 sec
ARIMA(0,1,1)(1,1,1)[12]
                                     : AIC=2074.372, Time=1.74 sec
                                     : AIC=2086.656, Time=0.53 sec
ARIMA(0,1,1)(1,1,0)[12]
                                     : AIC=2076.304, Time=1.89 sec
ARIMA(0,1,1)(2,1,1)[12]
                                     : AIC=inf, Time=3.14 sec
ARIMA(0,1,1)(1,1,2)[12]
                                     : AIC=inf, Time=1.19 sec
ARIMA(0,1,1)(0,1,2)[12]
ARIMA(0,1,1)(2,1,0)[12]
                                     : AIC=inf, Time=1.13 sec
                                     : AIC=inf, Time=4.61 sec
ARIMA(0,1,1)(2,1,2)[12]
                                     : AIC=2144.433, Time=0.53 sec
ARIMA(0,1,0)(1,1,1)[12]
ARIMA(1,1,1)(1,1,1)[12]
                                     : AIC=2076.395, Time=1.66 sec
                                     : AIC=2076.363, Time=1.21 sec
ARIMA(0,1,2)(1,1,1)[12]
                                     : AIC=2107.226, Time=1.37 sec
ARIMA(1,1,0)(1,1,1)[12]
ARIMA(1,1,2)(1,1,1)[12]
                                     : AIC=inf, Time=2.01 sec
ARIMA(0,1,1)(1,1,1)[12] intercept : AIC=2076.262, Time=1.45 sec
```

Best model: ARIMA(0,1,1)(1,1,1)[12]

Total fit time: 25.323 seconds

Out[906]:

SARIMAX Results

Dep. Va	ariable:				у	No. Observ	vations:	144
	Model:	SAF	RIMAX(0,	1, 1)x(1, 1,	1, 12)	Log Lik	elihood	-1033.186
	Date:		W	ed, 09 Mai	2022		AIC	2074.372
	Time:			14:	:35:31		BIC	2085.872
s	ample:				0		HQIC	2079.045
					- 144			
Covarianc	е Туре:				opg			
	С	oef	std err	z	P> z	[0.025	0.975	5]
ma.L1	-0.87	708	0.038	-22.944	0.000	-0.945	-0.79	6
ar.S.L12	-0.32	210	0.225	-1.427	0.154	-0.762	0.120	0
ma.S.L12	-0.6	518	0.268	-2.433	0.015	-1.177	-0.12	7
sigma2	3.731e-	+05	1.8e+04	20.766	0.000	3.38e+05	4.08e+0	5
Ljung-	·Box (L1)) (Q):	0.01	Jarque-Be	ra (JB):	8445.71		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Prob(JB):

Kurtosis:

Skew:

0.00

4.26

41.40

In [914]: #for order of p,d,q

Heteroskedasticity (H): 5.44

Prob(H) (two-sided): 0.00

Prob(Q): 0.90

```
#SARIMAX(2) for order of 1,1,1
order=(1,1,1)
seasonal_order =(1,1,1,2)
periods=5
Sarimax_results2 = evaluate_sarima(finalDataFrame['count'],order,seasc
Sarimax_results2.summary()
```

Values for test Year/Month 2018-05-01 6650 2018-06-01 6376 2018-07-01 6618 2018-08-01 6504 2018-09-01 6312 2018-10-01 6342 2018-11-01 6164 2018-12-01 6350 2019-01-01 6305 2019-02-01 4670 Name: count, dtype: int64

Values for Predictions Year/Month 2018-05-01 6037.697179 2018-06-01 6227.130885 2018-07-01 6456.807168 2018-08-01 6474.898062 2018-09-01 6547.275631 2018-10-01 6452.623667 2018-11-01 6355.897607 2018-12-01 6287.062466

2019-02-01 dtype: float64

2019-01-01

The Mean absolute Error of our forecasts is 418.2909 The Mean absolute Percentage Error of our predictions is 0.1097

The Normalized RMSE value is 0.1779

6253.675126 6312.341274

Out[914]:

SARIMAX Results

Dep. Variable:	у	No. Observations:	129
Model:	SARIMAX(1, 1, 1)	Log Likelihood	-1017.168
Date:	Wed, 09 Mar 2022	AIC	2040.336
Time:	15:00:45	BIC	2048.892
Sample:	0	HQIC	2043.812

- 129

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.0045	0.071	-0.064	0.949	-0.143	0.134
ma.L1	-0.8737	0.065	-13.526	0.000	-1.000	-0.747
sigma2	4.464e+05	1.26e+04	35.427	0.000	4.22e+05	4.71e+05

Ljung-Box (L1) (Q): 0.07 **Jarque-Bera (JB):** 6987.35

Prob(Q): 0.80 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.19 Skew: 4.04

Prob(H) (two-sided): 0.00 Kurtosis: 38.28

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [908]: #Let's plot 4 diagnostic plots to see residuals in 4 different ways.
Sarimax_results2.plot_diagnostics()
plt.show()

Forecasting ARIMA & SARIMA results:

SARIMA vs ARIMA forecasts:

We compared our 3 SARIMA models to our Baseline ARIMA model and picked up the best 2.

* Forecasting in Sample

To see how good the models are doing we will take 10% of the data as validation data.

Metrics Used to Compare Models: The models choosen here will be evaluated using MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error). These are popular metrics when evaluating forecasting models. When comparing forecast methods applied to a single time series, or to several time series with the same units, MAE is popular as it is easy to both understand and compute. Percentage errors measures such as MAPE have the advantage of being unit-free, and so are frequently used to compare forecast performances between data sets. Source:

[https://sailajakarra.medium.com/time-series-predictions-using-arima-sarimax-e6724844cae0] (https://sailajakarra.medium.com/time-series-predictions-using-arima-sarimax-e6724844cae0%5D)

```
In [909]:
```

arima results1.summary()

Out[909]:

ARIMA Model Results

```
Dep. Variable:
                            D.v
                                  No. Observations:
                                                           128
      Model:
                  ARIMA(0, 1, 1)
                                     Log Likelihood -1013.615
     Method:
                        css-mle S.D. of innovations
                                                       659.896
        Date: Wed, 09 Mar 2022
                                                AIC
                                                      2033.230
        Time:
                        14:35:36
                                                BIC
                                                      2041.786
     Sample:
                                              HQIC
                                                      2036.706
                              1
```

	coef	std err	Z	P> z	[0.025	0.975]
const	9.8638	4.561	2.163	0.031	0.925	18.803
ma.L1.D.y	-0.9305	0.041	-22.852	0.000	-1.010	-0.851

Roots

	Real	Imaginary	Modulus	Frequency
MA.1	1.0747	+0.0000j	1.0747	0.0000

In [615]: sarimax_results1.summary()

Out[615]:

SARIMAX Results

Dep.	Variable:		У	No. Obs	ervations:	129
	Model:	SARIMAX(1	, 1, 1)	Log l	ikelihood	-1017.168
	Date:	Wed, 09 Mar	2022		AIC	2040.336
	Time:	09:	24:57		BIC	2048.892
	Sample:		0		HQIC	2043.812
			- 129			
Covaria	nce Type:		opg			
	coe	ef std err		z P> z	[0.025	0.975]
ar.L1	-0.004	5 0.071	-0.06	64 0.949	-0.143	0.134
ma.L1	-0.873	7 0.065	-13.52	26 0.000	-1.000	-0.747

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 6987.35

Prob(Q): 0.80 **Prob(JB):** 0.00

sigma2 4.464e+05 1.26e+04 35.427 0.000 4.22e+05 4.71e+05

Heteroskedasticity (H): 5.19 Skew: 4.04

Prob(H) (two-sided): 0.00 Kurtosis: 38.28

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Forecasting with our Out of Sample set:

We will be sampling with our Arima01(0,1,1) and SARIMAX(1,1,1)(1,1,1,2) with a period od 24 and see how the models perform.

```
In [747]: arima_model = ARIMA(finalDataFrame, order=(1,1,1))
# fit model
arima_results = arima_model.fit()

# Calculate the mean absolute error from residuals
mae = np.mean(np.abs(arima_results.resid))

# Print mean absolute error
print('MAE: %.3f' % mae)
```

MAE: 360.475

```
In [749]: finalDataFrame['count'].plot(figsize=(10,5),legend=True,color='r')
forecast_arima.plot(legend=True)
```


For sarima

```
In [772]: sarima_model = SARIMAX(finalDataFrame, order=(1,1,1),seasonal_order =(
    # fit model
    sarima_results = sarima_model.fit()
    # Calculate the mean absolute error from residuals
    mae = np.mean(np.abs(sarima_results.resid))
# Print mean absolute error
print('MAE: %.3f' % mae)
```

MAE: 386.576

In [774]: finalDataFrame['count'].plot(figsize=(10,5),legend=True,color='r')
forecast_arima.plot(legend=True)

Out[774]: <AxesSubplot:xlabel='Year/Month'>


```
In [776]: #ploting the forecast results for arima and sarima:
    dates = finalDataFrame.index
    finalDataFrame['count'].plot(figsize=(10,5),legend=True)
    forecast_arima.plot(legend=True,color='red')
    forecast_sarima.plot(legend=True,color='black')
    plt.title("Comparison of forecast of the selected models")
    plt.show()
```


Out[915]:

	metrics	ARIMA(0,1,1)	SARIMA(1,1,1)(1,1,1)12		
0	MAE	360.47	386.0		

Our Sarima model follows the time series better. Arima model completely ignored the seasonal information, is not a good representation for the forecast.

Saving the model:

```
In [782]: # Import pickle
import pickle

# Set model name
filename = "../finalDataFrame.pkl"

# Pickle it
with open('filename.txt','wb') as fh:
    pickle.dump(sarima_model,fh)
```

```
In [787]: pickle_off = open("filename.txt","rb")
loaded_model = pickle.load(pickle_off)
loaded_model.fit().summary()
```

Out[787]:

SARIMAX Results

Dep. Variable:	count No. Ob	oservations: 144
----------------	--------------	------------------

Model: SARIMAX(1, 1, 1)x(1, 1, 1, 12) **Log Likelihood** -1033.198

Date: Wed, 09 Mar 2022 **AIC** 2076.395

Time: 13:42:40 BIC 2090.771

Sample: 01-01-2010 **HQIC** 2082.237

- 12-01-2021

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.0574	0.001	-44.538	0.000	-0.060	-0.055
ma.L1	-0.6523	0.000	-3303.519	0.000	-0.653	-0.652
ar.S.L12	-0.8826	0.000	-6046.620	0.000	-0.883	-0.882
ma.S.L12	-0.0359	0.001	-27.870	0.000	-0.038	-0.033
sigma2	8.738e+05	1.47e-10	5.93e+15	0.000	8.74e+05	8.74e+05

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 8473.34

Prob(Q): 0.80 **Prob(JB):** 0.00

Heteroskedasticity (H): 5.49 Skew: 4.24

Prob(H) (two-sided): 0.00 **Kurtosis:** 41.48

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.12e+30. Standard errors may be unstable.

Conclusions:

We used ARIMA models and its variants: Seasonal ARIMA (SARIMA) and ARIMAX which uses external data (exogenous inputs) to improve the performance of the ARIMA model. We followed the Box-Jenkins method to find the best model considering a part of our dataset (time series of sales of product 28 of Walmart's store 2). As first step we've identified important characteristics of our time series such as stationarity and seasonality. Then, we also used graphical and statistical methods such as follows to find the best fit model:

- Augmented Dickey-Fuller test,
- · ACF and PACF plots analysis,
- Exploring model summary statistics,
- Analyze plots obtained using the statsmodel method plot_diagnostics.

We chose Arima(0,1,1) & Sarima(1,1,1)(1,1,1,12) as our best one's. The MAPE & MAE on both the models were least. Out of these two SARIMAX performed better on the forecast hence we choose this as our final model

Limitations:

Model seems to performing well for forecasting but might be overfitting the data. It can be explored more to understand the time series btter.

Future Work:

Would like to see how the time series iwll perform with more advanced time series models like prophet.

In []:]:		
---------	----	--	--