第4章 Stata 简介

4.1 为什么使用 Stata

Stata 是目前在欧美最流行的计量软件,操作简单、功能强大。

使用 Stata 的用户很多,对于最新计量方法,常可下载由用户写的 Stata 命令程序(user-written Stata commands),十分方便。

官方的 Stata 版本也经常更新,以适应计量经济学的迅猛发展。

Stata 13 已于 2013 年 6 月发布,但由于在中国普遍使用的仍是 Stata 12 或更低版本,故本书主要介绍 Stata 12。

1

4.2 Stata 的窗口

安装 Stata 后,点击电脑桌面上的 Stata 图标,即可打开 Stata。

此时可以看到,在最上方有一排菜单,即"File Edit Data Graphics Statistics User Window Help"。

在菜单之下,则为一系列图标,起着快捷键的作用。

在图标之下,有五个窗口,分别为(如图 4.1)

图 4.1 Stata 12 的主要窗口

- 左上"Review"(历史窗口): 记录着自启动 Stata 以来的命令。
- 中上"Results"(结果窗口):显示执行Stata命令后的输出结果。
- 中下 "Command" (命令窗口): 在此窗口输入 Stata 命令。
- 右上 "Variables" (变量窗口): 记录着 Stata 内存的所有变量。
- 右下 "Properties" (性质窗口): 显示当前数据文件与变量的性质。

为了使屏幕分割更美观实用,可用鼠标将以上窗口拉到任意大小与位置。

然后点击菜单 "Edit" → "Preferences" → "General Preferences" → "Windowing" → "Lock splitter",锁定当前画面。

在以后重启 Stata 时,将自动显示这个画面设置。

4.3 Stata 操作实例

以 Nerlove(1963)对电力行业规模报酬的经典研究来介绍 Stata 的实际操作。该数据集 nerlove.xls(Excel 文件)包括了 1955 年美国 145 家电力企业的横截面数据。

1. 将数据导入 Stata

打开 Stata 软件后,点击 Data Editor (Edit)图标 (也可点击菜单 "Window"→"Data Editor"),即可打开类似 Excel 的空白表格。

用 Excel 打开文件 "nerlove.xls",复制所有数据,粘贴到 Data Editor 中。

Stata 会问你"第一行为数据还是变量名"(Is the first row data or variable names?),点击相应的选择即可(对于此数据集,应选"Treat first row as variable names")。

导入数据的另一方法是(特别在数据量很大的情况下),点击菜单 "File"→"Import",然后导入各种格式的数据。但不如直接从 Excel 表中粘贴数据方便直观。

关闭 Data Editor (Edit)后,即会看到右上方的"Variables"窗口出现了 5 个变量,分别为 tc(total cost,总成本),q(total output,总产量),pl(price of labor,小时工资率),pf(price of fuel,燃料价格),与pk(user cost of capital,资本的租赁价格)。

点击 Save 图标 (也可点击菜单 "File" → "Save"),将数据存为 Stata 格式的文件(扩展名为 dta),比如 nerlove.dta。以后就可用 Stata 直接打开此数据集。

打开的方式有两种。方法一,点击 Open 图标 (也可点击菜单 "File"→"Open"),寻找要打开的 dta 文件位置。

方法二,在命令窗口输入以下命令(假设文件在 E 盘的根目录) 并回车(按 Enter 键):

. use E:\nerlove.dta,clear

其中, 逗号","之后的"clear"为"选择项"(option), 表示可替代内存中的已有数据。

如要关闭一个数据集,以便使用另外一个数据集,可输入命令

. clear

内存中数据将被清空,可再打开另外一个数据集。

- 2. 日期数据的导入(可暂时跳过此部分)
- 3. 变量的标签

在变量窗口,变量的"名字"(Name)旁边显示其"标签"(label)。

目前的标签过于简略,缺乏变量的解释信息。

点击倒数第 3 个图标,即可打开变量管理器(Variables Manager) (或点击菜单"Data"→"Variables Manager"), 然后编辑变量名、

标签以及变量的存储格式。

例: 把 tc, q, pl, pf 与 pk 的标签分别改为 "total cost", "total output", "price of labor", "price of fuel"与 "user cost of capital"。

Stata 严格区分大小写字母(case sensitive),建议对于变量名使用小写字母。

4. 审视数据

想看数据集中的变量名单、标签等,可输入命令

. <u>d</u>escribe

其中,"describe"的下划线表示,可将该命令简写为"d"。

给数据集加一个标签,说明来自"Nerlove 1963 paper":

. <u>la</u>bel data "Nerlove 1963 paper"

再次运行命令"describe",就会看到数据集的标签"Nerlove 1963 paper"。

Contains data					
obs:	145			Nerlove 1963 paper	
vars:	5				
size:	2,320				
	storage	display	value		
variable name	type	format	label	variable label	
tc	float	%8.0g		total cost	
đ	int	%8.0g		total output	
pl	float	%8.0g		price of labor	
pf	float	%8.0g		price of fuel	
pk	int	%8.0g		user cost of capital	
Garata da la					
Sorted by:					
Note: da	ataset ha	s changed	since last s	saved	

如果想看变量 tc 与 q 的具体数据,可使用命令:

. list tc q

如想中途停止该命令的执行,可点击 Break 图标,或直接在键盘上同时按"Ctrl + Break"。

	tc	đ
1.	.082	2
2.	.661	3
3.	.99	4
4.	.315	4
5.	.197	5
6.	.098	9
7.	.949	11
8.	.675	13
9.	.525	13
10.	.501	22
	1 101	
11.	1.194	25
12.	.67	25
13.	.349	35
14.	.423	39
15.	.501	43
16.	.55	63

---Break---

<u>r(1);</u>

如改变主意,仍希望显示变量 tc 与 q 的全部数据:

把光标放在命令窗口,并按键盘上的"Page Up"键即可调用上一命令

使用"Page Down"键可调用下一命令。

另一简便方法是,在左上角的历史窗口点击任何曾用过的命令:

如果用鼠标单击旧命令,则会把旧命令重新调入命令窗口,按 回车后即执行,或将旧命令进行编辑后再执行;

如果用鼠标双击旧命令,则将马上自动执行。

只对数据集的一部分执行命令,比如只看 tc 与 q 的前 5 个数据:

. list tc q in 1/5

	tc	q
1.	.082	2
2.	.661	3
3.	.99	4
4.	.315	4
5.	.197	5

如要罗列从第 32-36 个观测值,可输入命令:

. list to q in 32/36

	tc	đ
32.	3.154	214
33.	2.599	220
34.	3.298	234
35.	2.441	235
36.	2.031	253

也可通过逻辑关系来定义数据集的子集。如要列出所有满足条件" $q \ge 10000$ "的变量 tc 与 q 的数据,可使用以下命令

. list tc q if $q \ge 10000$

	tc	đ
142.	67.12	11477
143.	73.05	11796
144.	139.422	14359
145.	119.939	16719

其中, ">="表示"大于等于"。其他表示关系的逻辑符号为"=="(等于), ">"(大于), "<"(小于), "<="(小于等于), "~="(不等于)。

查看具体数据的直接方法是,点击 Data Editor (Edit)图标,或者点击该图标右边的 Data Editor (Browse)图标。

如要删除满足" $q \ge 10000$ "条件的观测值,输入命令

. drop if q > = 10000

如只想保留满足" $q \ge 10000$ "条件的观测值,可使用命令

. keep if q > = 10000

5. 考察变量的统计特征

如果看变量q的统计特征,可输入命令

. summarize q

Variable	Obs	Mean	Std. Dev.	Min	Max
đ	145	2133.083	2931.942	2	16719

显示变量q的样本容量、平均值、标准差、最小值与最大值。

如计算满足条件 " $q \ge 10000$ " 的子样本的统计指标,使用命令

. su q if q > = 10000

Variable	0bs	Mean	Std. Dev.	Min	Max
ď	4	13587.75	2453.921	11477	16719

如想看更多的统计指标, 使用命令

. su q,detail

		total outpu	ut			
	Percentiles	Smallest				
1%	3	2				
5%	13	3				
10%	43	4	Obs	145		
25%	279	4	Sum of Wgt.	145		
50%	1109		Mean	2133.083		
		Largest	Std. Dev.	2931.942		
75%	2507	11477				
90%	5819	11796	Variance	8596285		
95%	8642	14359	Skewness	2.398202		
99%	14359	16719	Kurtosis	9.474916		

新增的统计指标有百分位数(percentiles),方差(variance),偏度 (skewness)与峰度(kurtosis)。

如果不指明变量,将显示数据集中所有变量的统计指标。

. su

Variable	0bs	Mean	Std. Dev.	Min	Max
tc	145	12.9761	19.79458	.082	139.422
q	145	2133.083	2931.942	2	16719
pl	145	1.976552	.2300404	1.5	2.3
pf	145	26.17655	7.876071	10.3	42.8
pk	145	174.4966	18.20948	138	233

如果要显示变量 pl 的经验累积分布函数(empirical cumulative distribution function),可使用命令

. <u>ta</u>bulate pl

price of				
labor	Fre	eq. 	Percent	Cum.
1.5	;	7	4.83	4.83
1.6	;	4	2.76	7.59
1.7	'	15	10.34	17.93
1.8	;	26	17.93	35.86
1.9	1	12	8.28	44.14
2	!	12	8.28	52.41
2.1		32	22.07	74.48
2.2	!	17	11.72	86.21
2.3		20	13.79	100.00
Total	. 1	L45	100.00	

如要显示内存中3个价格变量之间的相关系数,输入命令. pwcorr pl pf pk,sig star(.05)

选择项"sig"表示显示相关系数的显著性水平(即p值,列在相关系数的下方),选择项"star(.05)"表示给所有显著性水平小于或等于 5%的相关系数打上星号。

如果 pwcorr 之后没有指定变量,则显示所有变量的相关系数。

	pl	pf	pk
pl	1.0000		
pf	0.3310* 1. 0.0000	0000	
pk		1254 1328	1.0000

pf 与 pl 的相关系数为 0.331, 在 5%水平上显著(p 值为 0.0000);

pk 与 pl 的相关系数为-0.1845,在 5%水平上显著(p 值为 0.0263);

pk 与 pf 的相关系数为 0.1254, 在 5%水平上不显著(p 值为 0.1328)。

6. 画图

画变量 q 的直方图(假定组宽为 1000),输入命令

. <u>histogram</u> q, width(1000) frequency 逗号","之后的"width(1000)"与"frequency"为"选择项"(options),分别表示将组宽设为1000,将纵坐标定为频数。

直方图不连续。如看连续的经验分布图(核密度图),使用命令:

. kdensity q

如画 tc 与 q 之间的散点图,输入命令:

. scatter tc q

在上页的散点图中,无法知道每个点分别对应哪个观测值。

为此,首先定义一个新变量"n"来表示第 n 个观测值。

 \cdot gen n=_n

其中,"_n"即表示第n个观测值。输入命令:

. scatter tc q,mlabel(n) mlabpos(6)

选择项 "mlabel(n)"表示以变量 "n"作为 "mark label"(标签);选择项 "mlabpos(6)" (mark label position)表示将此标签 放在散点正下方(6点钟的位置),默认位置为散点的右边(3点钟)。

如想在散点图上同时画出回归直线,使用命令:

. twoway (scatter tc q)(lfit tc q) 其中, "lfit"表示"linear fit"(线性拟合)。

将此散点图存为文件名为"scatter1"的图像文件,以便调用。

. graph save scatter1
(file scatter1.gph saved)

如想在散点图上同时画出二次回归曲线,使用命令:

. twoway (scatter tc q)(qfit tc q)

其中, "qfit"表示"quadratic fit"(二次拟合)。

将此散点图存为文件名为"scatter2"的图像文件。
. graph save scatter2
(file scatter2.gph saved)

将上述两个图并列排放在一张图上。

. graph combine scatter1.gph scatter2.gph

更多作图方法,参见菜单"Graphics"。对于任何命令,只要输入"help command"(比如,help histogram),即可看到详细说明。

7. 生成新变量

Nerlove (1963)假设企业 *i* 的生产函数为 Cobb-Douglas 函数:

$$Q_i = A_i L_i^{\alpha_1} K_i^{\alpha_2} F_i^{\alpha_3}$$

A, L, K, F分别为生产率、劳动力、资本与燃料。记 $r = \alpha_1 + \alpha_2 + \alpha_3$ 为规模效应(degree of returns to scale)。r = 1,规模报酬不变; r > 1,规模报酬递增; r < 1,规模报酬递减。

假设企业追求成本最小化,则成本函数为 Cobb-Douglas 函数:

$$TC_i = \delta_i Q_i^{1/r} (P_L)_i^{\alpha_1/r} (P_K)_i^{\alpha_2/r} (P_F)_i^{\alpha_3/r}$$

其中, δ_i 是 A_i , α_1 , α_2 , α_3 的函数。取对数后得到,

$$\ln TC_i = \beta_1 + \frac{1}{r} \ln Q_i + \frac{\alpha_1}{r} \ln P_{L,i} + \frac{\alpha_2}{r} \ln P_{K,i} + \frac{\alpha_3}{r} \ln P_{F,i} + \varepsilon_i$$

在Stata 中取对数,使用命令 generate。

- . g lntc=log(tc)
- . g lnq=log(q)
- . g lnpl=log(pl)
- . g lnpf=log(pf)
- . g lnpk=log(pk)

如需要q的非线性平方项,使用命令

$$g_{q2=q^2}$$

如要生成 lnpl 与 lnpk 的互动项(interaction term),使用命令

定义" $q \ge 10000$ "为大企业,并使用"虚拟变量"(dummy variable, 哑变量)large 来表示,

large
$$\equiv$$

$$\begin{cases} 1, & \text{如果} \quad q \ge 10000 \\ 0, & \text{其他} \end{cases}$$

可使用命令

. g larg=(q>=10000)

括弧"()"表示对括弧中的表达式"q>=10000"进行逻辑评估:如果为真,则取值为1;如果为假,则取值为0。

在上面命令中,不慎把 large 打成 larg 了。将变量重新命名:

. <u>ren</u>ame larg large 变量 larg 被重新命名为 large (也可使用变量管理器重新命名)。 假设想改变大企业的定义为" $q \ge 6000$ ", 仍用 large 作为变量名。

方法一, 先去掉现有变量 large, 然后再定义一次:

- . drop large
- . g large=(q>=6000)

方法二, 更简洁的命令:

replace large=(q>=6000)将原变量(q≥10000)直接替换为新变量(q≥6000)。

某些变量名可能很长,一一输入变量名较费事。

方法一,直接在左下角的变量窗口单击需要的变量,该变量名就会显现在命令窗口。

方法二,如有以下变量 lnq1, lnq2, …, lnq30,而只想使用其中的前 15 个变量,可用 lnq1—lnq15 来简略地表示这 15 个变量。

方法三,用 "*"号来节省变量名的书写。假设想将内存中所有以 "ln"开头的变量都去掉,可输入命令

. drop ln*

这将去掉内存中的 Intc, Inq, Inpl, Inpf, Inpk 变量。

如果你后悔删除, Stata 并没有类似 Word 的"undo"命令, 无法撤销此命令。

唯一的弥补方法是,重新使用命令 generate,再去生成这些变量。

8. Stata 的计算器功能

Stata 可作为计算器使用,命令格式"display expression"。

计算ln2:

- . display log(2)
- .69314718

计算标准正态变量小于 1.96 的概率:

- . di normal(1.96)
- .9750021

"normal"表示标准正态的累积分布函数。常见概率分布的累积分布函数、密度函数等,参见"help density function"。

9. 线性回归分析

使用 OLS 估计上述方程:

. regress lntc lnq lnpl lnpk lnpf

= 145	Number of obs		MS	df	SS	Source
= 437.90	F(4, 140)					
= 0.0000	Prob > F		811819	4 67.3	269.524728	Model
= 0.9260	R-squared		872113	140 .153	21.5420958	Residual
= 0.9239	Adj R-squared		 			
= .39227	Root MSE		129738	144 2.02	291.066823	Total
<pre>Interval]</pre>	[95% Conf.	P> t	t	Std. Err.	Coef.	lntc
.7553808	[95% Conf.	P> t 0.000	t 41.35	Std. Err.	Coef. .7209135	lntc lnq
.7553808	.6864462	0.000	41.35	.0174337	.7209135	lnq
.7553808	.6864462 1367602	0.000	41.35	.0174337	.7209135	lnq lnpl

"_cons"表示常数项,"R-squared"显示 R^2 =0.9260,"Adj R-squared"显示 \bar{R}^2 =0.9239。

检验整个方程显著性的 F 统计量之 p 值(Prob > F)为 0.0000,显示这个回归方程是高度显著的。

但 lnpl 与 lnpk 这两个变量均不显著,其p 值(P>|t|)分别为 0.131 与 0.528。

变量 lnpk 的系数(Coef.)符号为负,与经济理论的预测相反。 Nerlove(1963)认为,这是由于"资本使用成本"的数据不可靠。

表上方的回归结果显示,残差平方和 $\sum_{i=1}^{n} e_i^2 = 21.542$,方程的标准误差(Root MSE)为s = 0.392。

如果要显示估计系数的协方差矩阵,输入命令

. vce

Covariance mat	ovariance matrix of coefficients of regress model									
e(V)	lnq	lnpl	lnpk	lnpf	_cons					
lnq	.00030393									
lnpl	00035938	.08988127								
lnpk	.00034967	.02497537	.11548412							
lnpf	.00030089	01124831	00669535	.01006447						
_cons	00451909	15095534	59317676	.00784373	3.1662023					

其中, "vce"表示"variance covariance matrix estimated"。

如果不要常数项,可以加上选择项"noconstant"。

- . reg lntc lnq lnpl lnpk lnpf,noc 如果只对"大企业"这个子样本进行回归,可输入命令
- . reg lntc lnq lnpl lnpk lnpf if q>=6000 或者使用虚拟变量 large:
- . reg lntc lnq lnpl lnpk lnpf if large 即只对"large=1"的子样本进行回归。

如想对"小企业"(除了"大企业"以外的所有企业)进行回归:

- . reg lntc lnq lnpl lnpk lnpf if large==0 或者输入命令
- . reg lntc lnq lnpl lnpk lnpf if ~large 其中, "~"表示逻辑的"否"(not)运算。

计算被解释变量的拟合值(\hat{y}),并将其记为 Intchat:

. predict lntchat

计算"残差"(residual),并将其记为el:

. predict el, residual

选择项" \underline{r} esidual"表示预测残差。如果没有选择项,"默认值"(default)计算拟合值 \hat{y} 。

由于 lnq 的系数为1/r,即规模报酬的倒数,估计规模报酬为

- . display 1/_b[lnq]
- 1.387129

其中, "_b[lnq]"表示"lnq"的OLS系数估计值。

由于 $\hat{r}=1.387129>1$,故可能存在规模报酬递增。

检验规模报酬不变的原假设 " $H_0: r=1$ ":

. test lnq=1

此命令检验的原假设为,变量 lnq 的系数等于 1。

```
(1) lnq = 1

F(1, 140) = 256.27

Prob > F = 0.0000
```

以很小的 p 值拒绝原假设, 故认为存在规模报酬递增。

方程(4.3)显示,变量 lnpl, lnpk 与 lnpf 的系数之和等于 1。

. test (lnq=1)(lnpl+lnpk+lnpf=1)

```
(1) lnq = 1
(2) lnpl + lnpk + lnpf = 1
F(2, 140) = 128.15
Prob > F = 0.0000
```

p 值 = 0.0000, 强烈拒绝此联合假设。

由于 Inpl 与 Inpk 均不显著,对二者的显著性进行联合检验:

. <u>te</u>st lnpl lnpk

```
(1) lnpl = 0
(2) lnpk = 0
F(2, 140) = 1.69
Prob > F = 0.1874
```

p 值很大(0.19),可以接受二者的系数皆为 0 的联合假设。

Stata 也可检验"非线性假设"(参见第5章附录)。

例: 检验变量 lnpl 的系数是 lnq 的系数的平方:

. testnl $_b[lnpl]=_b[lnq]^2$

```
(1) _b[lnpl] = _b[lnq]^2

F(1, 140) = 0.04
Prob > F = 0.8334
```

由于p 值很大(0.8334),无法拒绝这个原假设。

10. 约束回归

经济理论要求 lnpl, lnpk 与 lnpl 的系数之和为 1, 在此约束下重新估计原方程。

首先定义"约束条件1":

. constraint def 1 lnpl+lnpk+lnpf=1

进行有约束的 OLS 估计:

. cnsreg lntc lnq lnpl lnpk lnpf, c(1)

其中, "cnsreg"表示 "constrained regression"。

onstrained li	near regress	Lon		Numbe Root	145 0.3915	
(1) lnpl +	lnpk + lnpf =	= 1				
lntc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnq	.7213365	.0173912	41.48	0.000	.6869553	.7557176
lnpl	.6064693	.207239	2.93	0.004	.196772	1.016167
lnpk	0208375	.1933394	-0.11	0.914	4030563	.3613813
lnpf	.4143682	.0987832	4.19	0.000	.2190805	.6096559
cons	-4.636069	.8949922	-5.18	0.000	-6.405408	-2.866731

变量 lnpk 的系数估计值从无约束 OLS 的"-0.22"变为约束 OLS 的"-0.021",相对合理,但仍为负数,也依然不显著(p 值为 0.914)。

如果希望加上约束条件 " $H_0: r=1$ ",可定义 "约束条件 2":

. cons def 2 lnq=1

在同时满足约束条件1,2的情况下进行回归:

. cnsreg lntc lnq lnpl lnpk lnpf, c(1-2)

nstrained li	near regress	ion		Numbe	er of obs =	145
				Root	MSE =	0.6553
1) lnpl +	lnpk + lnpf	= 1				
2) lnq = 1						
lntc	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
				· '		
lnq	1	(constraine	d)			
lnpl	.1558956	.3436328	0.45	0.651	5234015	.8351927
lnpk	.1443526	.3231175	0.45	0.656	4943898	.7830949
lnpf	.6997518	.1626168	4.30	0.000	.3782892	1.021214
11121			-5.44	0.000	-10.80893	-5.044905

加上两个约束条件后,变量 lnpk 的系数估计值符号终于变为正 (0.1443526),但依然不显著(p 值为 0.656);

另一方面,变量 lnpl 变得不显著性(p 值上升为 0.651)。

11. Stata 的日志

如果希望在每次使用 Stata 时,储存其运行结果,可点击菜单 "File"→"Log"→"Begin",然后输入日志(log)的文件名,并存储在指定的位置。

在 Stata 中的所有操作及结果,都将记录日志中,直至选择退出。

如要暂时关闭目志(不再记录输出结果),输入命令"log off"。

如果要恢复使用日志,可输入命令"log on"。

如果要彻底退出日志,只要输入命令"log close"即可。

如要查看日志文件的内容,点击存储位置上的日志文件图标。

12. Stata 命令运行结果的存储与调用

Stata 命令可以分为两种,即 e-类命令(e-class commands)与 r-类命令(r-class commands)。

e-类命令为"估计命令"(estimation commands), 比如"regress";

所有其他命令为 r-类命令,比如,"summarize"。

r-类命令的运行结果存储在"r()",可通过"return list"显示

. summarize q

V	ariable	Obs	Mean	Std. Dev.	Min	Max
	đ	145	2133.083	2931.942	2	16719

. return list

```
scalars:
    r(N) = 145
    r(sum_w) = 145
    r(mean) = 2133.08275862069
    r(Var) = 8596284.659770114
        r(sd) = 2931.942131040467
        r(min) = 2
        r(max) = 16719
        r(sum) = 309297
```

上表列出了在运行命令"summarize q"之后,Stata 所存储的结果,包括未显示的"r(Var)"(方差)、"r(sum)"(求和)等。

可调用这些结果作进一步的计算。比如,计算"变异系数" (coefficient of variation,即标准差除以平均值):

- . display r(sd)/r(mean)
- 1.3745093

写得更漂亮些,可用命令:

. display "The coefficient of variation is 'r(sd)/r(mean)

The coefficient of variation is 1.3745093

e-类命令的运行结果存储在"e()",输入"ereturn list"来显示

. reg tc q

Source	SS	df	MS		Number of obs	= 145	
					F(1, 143)	= 1399.00	
Model	51190.3707	1	51190.3707		Prob > F	= 0.0000	
Residual	5232.46776	143	36.5906836		R-squared	= 0.9073	
					Adj R-squared	= 0.9066	
Total	56422.8385	144	391.825267		Root MSE	= 6.049	
tc	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]	
q	.0064307	.00017	719 37.40	0.000	.0060908	.0067705	
_cons	741095	.62196	599 -1.19	0.235	-1.970538	.4883481	

. ereturn list

```
scalars:
                  e(N) = 145
              e(df_m) = 1
              e(df_r) = 143
                  e(F) = 1399.000119377508
                e(r2) = .9072633016022542
               e(rmse) = 6.049023360142635
                e(mss) = 51190.37074066489
               e(rss) = 5232.467756451834
              e(r2 a) = .9066147932218505
                e(11) = -465.7241671687837
              e(11\ 0) = -638.1285147616334
              e(rank) = 2
macros:
           e(cmdline) : "regress tc q"
             e(title) : "Linear regression"
         e(marginsok) : "XB default"
               e(vce) : "ols"
             e(depvar) : "tc"
                e(cmd) : "regress"
        e(properties) : "b V"
           e(predict) : "regres_p"
             e(model) : "ols"
         e(estat cmd) : "regress estat"
matrices:
                 e(b) : 1 \times 2
                 e(V): 2 x 2
functions:
             e(sample)
```

上表列出了运行命令 reg 后 Stata 存储的结果,包括:

标量 (scalars)

宏 (macros)

矩阵 (matrices, 即系数矩阵 e(b)与协方差矩阵 e(V))

函数 (functions)。

4.4 Stata 命令库的更新

由于 Stata 版本不同(即使同为 Stata 12),如果你发现本书中极少数命令无法运行,可在命令窗口输入,

. update all

这将更新你的 Stata 命令库(Stata"ado"文件与其他可执行文件)。

Stata 用户还写了大量的外部命令或非官方命令(user-written software),可直接下载到 Stata 中使用。

最流行的 Stata 非官方命令下载平台为"统计软件成分" (Statistical Software Components, SSC), 由 Boston College 维护, 网址为 http://ideas.repec.org/s/boc/bocode.html。

相关命令:

- . ssc new (罗列 SSC 的最新非官方 Stata 命令及简介)
- . ssc hot (罗列 SSC 提供的最流行非官方 Stata 命令)
- . ssc install newcommand (安装 SSC 非官方命令 "newcommand")
 - . help ssc (有关 SSC 的帮助信息)

如使用"ssc install newcommand"下载非官方程序,所有下载与安装过程将自动完成(包括新命令的帮助文件)。

如果要使用某种估计方法,但不知道它是否存在,可搜索

- . search keyword (搜索帮助文件、FAQs、例子、Stata Journal (SJ), Stata Technical Bulletin (STB)等)
- . findit keyword (搜索以上内容,以及 Stata 的网络资源)

命令 findit 的搜索范围比命令 search 更广些。

"findit"等价于"search,all"。

命令 search 的搜索结果较少,直接在 Stata 结果窗口显示

命令 findit 的搜索结果较多,将打开另一页面显示。

非官方命令的安装:

发现非官方命令后,如果不来自 SSC,一般需自行安装。

需要将所有相关文件下载到指定的 Stata 文件夹中(通常是ado\plus\)。

如果不清楚应把文件复制到哪个文件夹,输入以下命令,以显示 Stata 的系统路径(system directories):

. sysdir

你会看到类似于以下的结果(取决于 Stata 的安装位置),

STATA: D:\Stata12\

UPDATES: D:\Stata12\ado\updates\
 BASE: D:\Stata12\ado\base\
 SITE: D:\Stata12\ado\site\

PLUS: c:\ado\plus\

PERSONAL: c:\ado\personal\

OLDPLACE: c:\ado\

将下载的新命令文件复制到 PLUS 所指示的那个文件夹即可(此处为"c:\ado\plus\")。

4.5 进一步学习 Stata 的资源

更多 Stata 知识,将在本书以后章节中逐步介绍。

Stata 英文参考书: Baum (2006), Cameron and Trivedi (2009), 以及 Stata 出版社(Stata Press)出版的系列书籍。

加州大学洛杉矶分校(UCLA)网站(http://www.ats.ucla.edu/stat/stata/)有大量Stata的资源及实例(搜索"Stata UCLA"即可找到此网站)。

中文参考书包括陈传波《Stata 十八讲》, 胡咏梅(2010), 兰草(2012), 劳伦斯·汉密尔顿(2008), 李春涛、张璇(2009), 王群勇(2007, 2008), 王天夫、李博柏(2008), 杨菊华(2012), 张鹏伟、李嫣怡(2011)等。

Stata 本身的"帮助"(Help)菜单包含了详细的信息,比如,"help reg"。

更进一步的学习,可查看 Stata 手册(Stata manuals)。

在 Stata 11 中,每个命令的帮助页面(比如"help reg")底部均有相应的 Stata 手册链接。