with a C_2 to C_{25} acid <u>optionally</u> having at least one free hydroxyl group or a triglyceride comprising C_{10} to C_{25} fatty acids <u>optionally</u> having at least one free hydroxyl group under conditions effective to produce a trialkanolamine mono-, di- or trifatty acid ester and then reacting said trialkanolamine fatty acid ester with a C_4 to C_{24} diisocyanate to produce a polyurethane trialkanolamine fatty acid ester.

2. (Amended) The composition according to claim 1 having the chemical formula I:

Formula I

wherein R^1 is a C_2 to C_{12} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon group which is either unsubstituted or substituted with a pendant hydroxyl group, but is preferably unsubstituted;

 R^2 is a C_1 to C_{24} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon

group wherein said hydrocarbon group may be a phenyl or benzyl group or substituted phenyl or benzyl group, an alkylphenyl, alkylbenzyl or a substituted alkylphenyl or alkylbenzyl group; R^3 is a C_2 through C_{22} linear, cyclic or branch-chained saturated or unsaturated hydrocarbon group which is substituted or unsubstituted, an aromatic group, including a phenyl or benzyl group or substituted phenyl or benzyl group, an alkylphenyl, alkylbenzyl or substituted alkylphenyl or alkylbenzyl group; and

n is an integer from 2 to 5,000.

14. (Amended) A polymeric composition for use in personal care products produced by

the process of:

a. reacting a trialkanolamine according to the general structure:

R¹-OH | HO-R¹-N-R¹-OH

with a C_2 to C_{25} acid <u>optionally</u> having at least one free hydroxyl group or a triglyceride comprising C_{10} to C_{25} fatty acids <u>optionally</u> having at least one free hydroxyl group under conditions effective to produce a trialkanolamine mono-, di- or trifatty acid ester;

- b. reacting said trialkanolamine fatty acid ester according to step a with a C_4 to C_{24} diisocyanate under conditions effective to cause polymerization of said ester with said diisiocyanate to produce a polyurethane trialkanolamine fatty acid ester; and
- c. reacting said polyurethane trialkanolamine fatty acid ester according to step b with a quaternizing agent to produce a polyurethane trialkanolamine fatty acid ester quat.
- 30. (Amended) The composition according to claim $\frac{29}{57}$ wherein R¹ is an unsubstituted hydrocarbon group.
- 31. (Amended) The composition according to claim $\frac{29}{57}$ wherein R² is a C₉ to C₂₄ hydrocarbon group.
- 32. (Amended) The composition according to claim $\frac{29}{57}$ wherein R³ is a C₆ to C₁₂ hydrocarbon group.
- 38. (Amended) The composition according to claim 37 58 wherein R⁴ is selected from the group consisting of methyl, ethyl, propyl, benzyl, phenyl, alkyl benzyl, ethyl, propyl, benzyl, phenyl, alkyl benzyl, allyl methyl and allyl.
- 39. (Amended) The composition according to claim 37 58 wherein R⁵ is selected from the group consisting of anionic chloride, bromide, iodide, fluoride, carboxylate, mono- or dianionic sulfate and mono-, di- and tri-anionic phosphate.

- 41. (Amended) The composition according to claim 37 58 wherein R¹ is an unsubstituted hydrocarbon group.
- 42. (Amended) The composition according to claim $\frac{37}{58}$ wherein R^2 is a C_9 to C_{24} hydrocarbon group.
- 43. (Amended) The composition according to claim $\frac{37}{58}$ wherein R³ is a C₆ to C₁₂ hydrocarbon group.
- 44. (Amended) The composition according to claim 37 58 wherein R³ is an isophorone group.

Please add the following new claims 57 and 58.

57. (New) A composition having the chemical formula I:

Formula I

wherein R^1 is a C_2 to C_{12} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon group which is either unsubstituted or substituted with a pendant hydroxyl group; R^2 is a C_1 to C_{24} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon

group wherein said hydrocarbon group may be a phenyl or benzyl group or substituted phenyl

or benzyl group, an alkylphenyl, alkylbenzyl or a substituted alkylphenyl or alkylbenzyl group; R³ is a C₂ through C₂₂ linear, cyclic or branch-chained saturated or unsaturated hydrocarbon group which is substituted or unsubstituted, an aromatic group, including a phenyl or benzyl group or substituted phenyl or benzyl group, an alkylphenyl, alkylbenzyl or substituted alkylphenyl or alkylbenzyl group; and n is an integer from 2 to 5,000.

58. A composition having the chemical formula II:

Formula II

wherein R^1 is a C_2 to C_{12} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon group which is either unsubstituted or substituted with a pendant hydroxyl group, R^2 is a C_1 to C_{24} saturated or unsaturated, linear, branch-chained, cyclic or aromatic hydrocarbon group wherein said hydrocarbon group may be a phenyl or benzyl group or a substituted phenyl or benzyl group, an alkylphenyl, alkylbenzyl or a substituted alkylphenyl or alkylbenzyl group;

 R^3 is a C_2 through C_{22} (preferably, C_6 through C_{12}) linear, cyclic or branch-chained saturated or unsaturated hydrocarbon group which is substituted or unsubstituted, an aromatic group, including a phenyl or benzyl group or substituted phenyl or benzyl group, an alkylphenyl, alkylbenzyl or substituted alkylphenyl or alkylbenzyl group;

R⁴ is a quaternizing group;

R⁵ is a counterion to the quaternizing group; and