Nona Lista de Exercícios de Análise Real: Integral de Riemann

- 1. Seja $f:[a,b]\to\mathbb{R}$ limitada. Demonstre que $\left|\overline{\int_a^b}f(x)dx\right|\leq\overline{\int_a^b}|f(x)dx|$
- 2. Seja $f:[a,b]\to\mathbb{R}$ integrável. As seguintes afirmações são equivalentes:
 - (a) $\int_{a}^{b} |f(x)| dx = 0$;
 - (b) Se f é contínua no ponto c, então f(c) = 0;
 - (c) $X = \{x \in [a, b]; f(x) \neq 0\}$ tem interior vazio.
- 3. Seja $f:[a,b]\to\mathbb{R}$ definida pondo f(x)=0 se x é irracional e f(x)=1/q se x=p/q é uma fração irredutível e q>0 (ponha f(0)=1 caso $0\in[a,b]$). Demonstre que f é contínua apenas nos pontos irracionais de [a,b], que é integrável e que $\int_a^b f(x)dx=0$.
- 4. Seja $f:[a,b]\to\mathbb{R}$ uma função integrável, com $f(x)\geq 0$, com $f(x)\geq 0$ para todo $x\in[a,b]$. Se f é contínua no ponto $c\in[a,b]$ e f(c)>0, prove que $\int_a^b f(x)dx>0$.
- 5. Sejam $f, g : [a, b] \to \mathbb{R}$ contínuas, com $f(x) \le g(x)$ para todo $x \in [a, b]$. Defina $\varphi : [a, b] \to \mathbb{R}$ pondo $\varphi(x) = f(x)$ se x for racional e $\varphi(x) = g(x)$ para x irracional. Prove que

$$\underline{\int_a^b} \varphi(x) dx = \int_a^b f(x) dx \qquad \text{e} \qquad \overline{\int_a^b} \varphi(x) dx = \int_a^b g(x) dx.$$

Conclua que φ é integrável se, e somente se, f = g.

- 6. Seja $f:[a,b]\to\mathbb{R}$ uma função integrável. Prove que a função $F:[a,b]\to\mathbb{R}$, definida por $F(x)=\int_a^x f(t)dt$, é lipschitziana.
- 7. Prove que se $f,g:[a,b]\to\mathbb{R}$ são contínuas, então

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f(x)^2 dx \cdot \int_a^b g(x)^2 dx.$$

- 8. Seja D o conjunto de pontos de descontinuidade de uma função limitada $f:[a,b] \to \mathbb{R}$. Se D' é enumerável, prove que f é integrável.
- 9. Seja $f:[a,b] \to \mathbb{R}$ uma função integrável, que se anula fora de um conjunto de medida nula. Prove que sua integral é igual a zero.
- 10. Diz-se que um conjunto $X \subset \mathbb{R}$ tem conteúdo nulo quando, para todo $\varepsilon > 0$ dado, existe uma cobertura $X \subset I_1 \cup \cdots I_k$, com $\sum_{j=1}^k |I_j| < \varepsilon$. Demonstre:
 - (a) Se X tem conteúdo nulo, o mesmo ocorre com seu fecho \overline{X} .
 - (b) Um conjunto compacto tem medida nula se, e somente se, tem conteúdo nulo.
 - (c) Se uma função limitada $g:[a,b] \to \mathbb{R}$ coincide com uma função integrável $f:[a,b] \to \mathbb{R}$ exceto num conjunto de conteúdo nulo, prove que g é integrável e sua integral é igual à de f.
- 11. Se um conjunto $X \subset [a,b]$ não tem medida nula, então existe $\varepsilon > 0$ tal que, para toda partição P de [a,b], a soma dos comprimentos dos intervalos de P que contém pontos de X em seu interior é maior do que ε .
- 12. Seja $p:[a,b] \to \mathbb{R}$ integrável, com $p(x) \geq 0$ para todo $x \in [a,b]$. Prove que se $\int_a^b p(x)dx = 0$, então o conjunto dos pontos $x \in [a,b]$ tais que p(x) = 0 é denso em [a,b]. Se $f:[a,b] \to \mathbb{R}$ é qualquer função integrável que se anula num conjunto denso de pontos em [a,b], prove que $\int_a^b f(x)dx = 0$.
- 13. Seja $f:[a,b] \to \mathbb{R}$ uma função integrável, contínua à direita no ponto $x_0 \in [a,b)$. Prove que $F:[a,b] \to \mathbb{R}$, definida por $F(x) = \int_a^x f(t)dt$, é derivável à direita no ponto x_0 , com $F'_+(x_0) = f(x_0)$.
- 14. Seja $f:[a,b]\to\mathbb{R}$ derivável, com f' integrável. Prove que, para quaisquer $x,c\in[a,b]$, tem-se $f(x)=f(c)+\int_c^x f'(t)dt$. Conclua no enunciado da Fórmula de Taylor com resto integral I, vale "integrável" em vez de "contínua".
- 15. Seja $f:[a,b] \to \mathbb{R}$ derivável, com $f'(x) \ge 0$ para todo $x \in [a,b]$. Se $\{x \in [a,b]: f'(x) = 0\}$ tem conteúdo nulo, prove que f é crescente.

- 16. Sejam $f:[a,b] \to \mathbb{R}$ contínua e $\alpha, \beta: I \to [a,b]$ deriváveis. Defina $\varphi: I \to \mathbb{R}$ pondo $\varphi(x) = \int_{\alpha(x)}^{\beta(x)} f(t) dt$, para todo $x \in I$. Demonstre que φ é derivável e $\varphi'(x) = f(\beta(x)) \cdot \beta'(x) f(\alpha(x)) \cdot \alpha'(x)$.
- 17. Sejam $f, p : [a, b] \to \mathbb{R}$ tais que f é contínua, p é integrável e p(x) > 0 para todo $x \in [a, b]$. Demonstre que se

$$\int_{a}^{b} f(x)p(x)dx = f(a)\int_{a}^{b} p(x)dx,$$

então existe $c \in (a, b)$ tal que f(a) = f(c).

- 18. Dada $f:[a,b]\to\mathbb{R}$ limitada ou não, faz sentido considerar a soma de Riemann $\sum (f;P^*)$, para toda partição pontilhada P^* . Demonstre que se existe $\lim_{|P|\to 0} \sum (f;P^*)$, então f é uma função limitada.
- 19. Sejam $f, g : [a, b] \to \mathbb{R}$ integráveis. Para toda partição $P = \{t_0, \dots, t_n\}$ de [a, b], sejam $P^* = (P, \xi)$ e $P^\# = (P, \eta)$ pontilhamentos de P. Demonstre que

$$\lim_{|P| \to 0} \sum f(\xi_i) g(\eta_i) (t_i - t_{i-1}) = \int_a^b f(x) g(x) dx.$$

20. Dadas $f, g: [a, b] \to \mathbb{R}$, para cada partição pontilhada P^* de [a, b], define-se a soma de Riemann-Stieltjes

$$\lim_{|P|\to 0} \sum (f, g; P^*) = \sum f(\xi_i) [g(t_1) - g(t_{i-1})].$$

Prove que se f é integrável e g possui derivada integrável, então

$$\lim_{|P| \to 0} \sum (f, g; P^*) = \int_a^b f(x)g'(x)dx.$$

- 21. Se $f:[a,b]\to\mathbb{R}$ é convexa, demonstre que $f((a+b)/2)\leq \frac{1}{b-a}\int_a^b f(x)dx$.
- 22. Seja $f:[a,+\infty)\to\mathbb{R}$ contínua, positiva, monótona não-crescente. Prove que se $\int_a^\infty f(x)dx$ converge, então $\lim_{x\to+\infty}xf(x)=0$.

23. Seja $f:[a,+\infty)\to\mathbb{R}$ integrável em cada intervalo limitado [a,x]. Demonstre que a integral imprópria

$$\int_{a}^{\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

existe se, e somente se, para todo $\varepsilon>0$ dado, existe A>0 tal que A< x< y implica $|\int_x^y f(t)dt|<\varepsilon.$