ภาคเรียนที่ 1 ปีการศึกษา 2559 มหาวิทยาลัยธรรมศาสตร์ โดย คณาจารย์วิชา คพ.300

แพริตี (Parity)

เทคนิคตรวจจับข้อผิดพลาดที่เรียบง่ายที่สุดใช้แพริตีบิต (parity bit) จำนวน 1 บิต สำหรับตรวจสอบข้อผิดพลาดที่อาจเกิด ขึ้นกับข้อมูลจำนวน x บิต โดยแพริตีบิตแบ่งออกเป็น 2 ชนิด ได้แก่ แพริตีบิตคู่ (even parity bit) และ แพริตีบิตคี่ (odd parity bit) เทคนิคแพริตีบิตคู่จะต้องมีจำนวนบิต '1' ในกลุ่มบิตข้อมูลและแพริตีบิตรวมกันเป็นเลขคู่ ในทางตรงกันข้าม เทคนิคแพริตีบิตคี่จะต้องมีจำนวนบิต '1' ในกลุ่มบิตข้อมูลและแพริตีบิตรวมกันเป็นเลขคี่

แพริตีบิตถูกนำมาประยุกต์ใช้เป็นแพริตีแบบ 2 มิติ (2-dimensional parity) เพื่อเพิ่มประสิทธิภาพในการจัดการกับ ข้อผิดพลาด (errors) กล่าวคือ ให้ผู้รับสามารถแก้ไขข้อผิดพลาดได้ด้วยตนเอง (error correcting codes) ในเทคนิคนี้ มีการจัดข้อมูล เป็นกลุ่มๆ ละ d บิต จากนั้นคำนวณแพริตีบิตของกลุ่มข้อมูลทั้งในแนวนอน (horizontal) และ แนวตั้ง (vertical) ผู้รับสามารถใช้ชุด ของแพริตีบิตที่คำนวณได้ในการแก้ไขข้อผิดพลาดที่อาจเกิดขึ้นกับข้อมูล

กำหนดให้ ผู้ส่งส่งข้อมูลจำนวน x บิต ไปยังผู้รับ ใช้เทคนิคแพริตีแบบ 2 มิติ เป็นรหัสสำหรับแก้ไขข้อผิดพลาด (error correcting codes) ที่ฝั่งผู้รับ โดยข้อมูลที่ต้องการจัดส่งจะถูกแบ่งเป็นกลุ่มๆ ละ d บิต

ยกตัวอย่างเช่น ข้อมูลจำนว[ั]น 32 บิต (x) ในรูปแบบเลขฐานสิบหกเป็นดังนี้ A1D5C8BF กำหนดให้ใช้เทคนิคแพริตีบิตคี่ (odd parity bit) และ ขนาดของกลุ่มข้อมูล (d) เป็น 8 บิต สามารถคำนวณแพริตีแบบ 2 มิติ (2-dimensional parity) ได้ดังนี้

ข้อมูล (ฐานสิบหก)				ข้อมูล	Odd Parity					
A1	1	0	1	0	0	0	0	1	0	กลุ่มของแพริตีบิตคี่
D5	1	1	0	1	0	1	0	1	О	ซึ่งคำนวณตามแนวนอน (horizontal parity)
C8	1	1	0	0	1	0	o	0	0	
BF	1	0	1	1	1	1	1	1	О	
Odd Parity	1	1	1	1	1	1	0	0	1	
	/									

กลุ่มข้องแพริตีบิตคี่ซึ่งคำนวณตามแนวตั้ง (vertical parity)

Horizontal parity = 00001 Vertical parity = 111111001

ยกตัวอย่างเช่น ข้อมูลจำนวน 32 บิต (x) ในรูปแบบเลขฐานสิบหกเป็นดังนี้ A1D5C8BF กำหนดให้ใช้เทคนิคแพริตีบิตคู่ (even parity bit) และ ขนาดของกลุ่มข้อมูล (d) เป็น 8 บิต สามารถคำนวณแพริตีแบบ 2 มิติ (2-dimensional parity) ได้ดังนี้

ข้อมูล (ฐานสิบหก)				ข้อมูล	Even Parity					
A1	1	o	1	0	0	o	0	1	1	
D5	1	1	0	1	0	1	0	1	1	ชึ่งคำนวณตามแนวนอน (horizontal parity)
C8	1	1	0	0	1	0	0	0	1	
BF	1	0	1	1	1	1	1	1	1	
]
Even Parity	0	0	0	0	0	0	1	1	0	
	_ <i>[</i> —								-]

กลุ่มข้องแพริตีบิตคู่ซึ่งคำนวณตามแนวตั้ง (vertical parity)

Horizontal parity = 11110

Vertical parity = 000000110

ยกตัวอย่างเช่น ข้อมูลจำนวน 32 บิต (x) ในรูปแบบเลขฐานสิบหกเป็นดังนี้ A1D5C8BF กำหนดให้ใช้เทคนิคแพริตีบิตคี่ (odd parity bit) และ ขนาดของกลุ่มข้อมูล (d) เป็น 4 บิต สามารถคำนวณแพริตีแบบ 2 มิติ (2-dimensional parity) ได้ดังนี้

ข้อมูล (ฐานสิบหก)	,	ข้อมูล (รู	ฐานสอง	1)	Odd	l Pa	arity	
A	1	0	1	0		1		กลุ่มของแพริตีบิตคี่
1	0	0	0	1		0		ซึ่งคำนวณตามแนวนอน (horizontal parity)
D	1	1	0	1		0		
5	0	1	0	1		1		
С	1	1	0	0		1		
8	1	0	0	0		0		
В	1	0	1	1		0		
F	1	1	1	1		1		
Odd Parity	1	1	0	0		1		

กลุ่มของแพริตีบิตคี่ซึ่งคำนวณตามแนวตั้ง (vertical parity)

Horizontal parity = 100110011

Vertical parity = 11001

ยกตัวอย่างเช่น ข้อมูลจำนวน 32 บิต (x) ในรูปแบบเลขฐานสิบหกเป็นดังนี้ A1D5C8BF กำหนดให้ใช้เทคนิคแพริตีบิตคู่ (even parity bit) และ ขนาดของกลุ่มข้อมูล (d) เป็น 4 บิต สามารถคำนวณแพริตีแบบ 2 มิติ (2-dimensional parity) ได้ดังนี้

ข้อมูล (ฐานสิบหก)		ข้อมูล (รู	ฐานสอง	1)	Ever	n Pa	arit	у	
A	1	0	1	0		0	4		— กลุ่มของแพริตีบิตคู่
1	0	0	0	1		1	П		ซึ่งคำนวณตามแนวนอน (horizontal parity)
D	1	1	0	1		1			
5	0	1	0	1		0			
С	1	1	0	0		0			
8	1	0	0	0		1			
В	1	0	1	1		1			
F	1	1	1	1		0			
Even Parity	0	0	1	1		0			

กลุ่มของแพริตีบิตคู่ซึ่งคำนวณตามแนวตั้ง (vertical parity)

Horizontal parity = 011001100

Vertical parity = 00110

ข้อมูลเข้า

ข้อมูลเข้ามี 3 บรรทัด

- 1. ้บรรทัดแรก ประกอบด้วยสายของตัวอักขระ (string of characters) แทนข้อมูลทั้งหมดจำนวน x บิตในรูปแบบเลขฐานสิบหกที่ ต้องการส่งไปยังผู้รับ ตัวเลขฐานสิบหกแต่ละตัวเขียนติดกันไม่มีช่องว่างคั่น โดยกำหนดให้ $4 \le x \le 1,024$
- 2. บรรทัดที่สอง เป็นตัวเลขจำนวนเต็ม 0 หรือ 1 แทนเทคนิคแพริตีบิตคี่ (odd parity) และเทคนิคแพริตีบิตคู่ (even parity) ตามลำดับ
- 3. บรรทัดสุดท้าย เป็นเลขจำนวนเต็ม d แทนขนาดของแต่ละกลุ่มข้อมูลในหน่วยบิต ซึ่งแต่ละกลุ่มข้อมูลจะถูกนำมาคำนวณแพริตี แบบ 2 มิติ โดยกำหนดให้ x และ d มีความสัมพันธ์กัน คือ $1 \le d \le x$ และ x สามารถหารด้วย d ได้ลงตัว

<u>หมายเหตุ</u>

กำหนดให้ข้อมูลเข้าทุกตัวมีค่าถูกต้องตามรูปแบบ ขอบเขต และเซ็ตของค่าที่เป็นไปได้เสมอ นักศึกษาไม่จำเป็นต้อง ตรวจสอบ (validate) ข้อมูลเข้า

ข้อมูลส่งออก

ข้อมูลส่งออกมี 2 บรรทัด

- 1. บรรทัดแรก เป็นรายการเลขฐานสอง แทนกลุ่มของแพริตีบิตที่คำนวณได้ตามแนวนอน (horizontal parity)
- 2. บรรทัดที่สอง เป็นรายการเลขฐานสอง แทนกลุ่มของแพริตีบิตที่คำนวณได้ตามแนวนอน (vertical parity) เลขฐานสองแต่ละตัวเขียนติดกันไม่มีช่องว่างคั่น

ตัวอย่างที่ 1

ข้อมูลเข้า	ข้อมูลส่งออก
A1D5C8BF	00001
0	111111001
8	

ตัวอย่างที่ 2

ข้อมูลเข้า	ข้อมูลส่งออก
A1D5C8BF	11110
1	000000110
8	

ตัวอย่างที่ 3

ข้อมูลเข้า	ข้อมูลส่งออก
A1D5C8BF	100110011
0	11001
4	

ตัวอย่างที่ 4

ข้อมูลเข้า	ข้อมูลส่งออก
A1D5C8BF	011001100
1	00110
4	

ข้อกำหนด

หัวข้อ	เงื่อนไข
การรับข้อมูลเข้า	ข้อมูลเข้ารับจากคีย์บอร์ด
การแสดงผลลัพธ์	ผลลัพธ์แสดงออกมาที่จอภาพ เคอร์เซอร์อยู่ที่จุดเริ่มต้นของบรรทัดว่าง เปล่า ซึ่งเป็นบรรทัดต่อจากผลลัพธ์สุดท้าย
เงื่อนไขในการให้คะแนน	โปรแกรมจะต้องประมวลผลชุดข้อมูลทดสอบที่ผู้ตรวจเตรียมไว้ได้ถูกต้อง

ข้อมูลและคำสั่งเพิ่มเติม

นักศึกษาจะต้องระบุภาษาโปรแกรมและคอมไพเลอร์ที่ส่วนหัวของโปรแกรมดังนี้

ภาษา C และ MinGW 4.4.1	ภาษา C++ และ MinGW 4.4.1
(Code::Blocks บนวินโดวส์)	(Code::Blocks บนวินโดวส์)
/*	/*
LANG: C	LANG: C++
COMPILER: WCB	COMPILER: WCB
*/	*/
ภาษา C และ MinGW 3.4.2	ภาษา C++ และ MinGW 3.4.2
(Dev-C++ บนวินโดวส์)	(Dev-C++ บนวินโดวส์)
/*	/*
LANG: C	LANG: C++
COMPILER: WDC	COMPILER: WDC
*/	*/
ภาษาจาวา และ jdk1.7.0_71	
/*	สำหรับภาษาจาวาให้ตั้งชื่อคลาสเป็น
LANG: JAVA	ชื่อเดียวกับโจทย์ และไม่มีการสร้าง
COMPILER: JAVA	แพคเกจย่อย
*/	ทุกภาษาให้ส่งไฟล์ต้นฉบับ .c, .cpp
	หรือ .java