Universidade Federal de Ouro Preto Campus João Monlevade

CSI 488 – ALGORITMOS E ESTRUTURAS DE DADOS I

Ordenação - QuickSort

Prof. Mateus Ferreira Satler

Índice

Introdução

Algoritmo QuickSort

Funcionamento

Análise

Referências

1. Introdução

- Anteriormente, introduziu-se a ideia de uso da recursão nos algoritmos de ordenação.
 - A recursão parte do princípio que é mais fácil resolver problemas menores.
 - Abordagem Dividir-para-Conquistar.
- O algoritmo QuickSort baseia-se no fato de que as permutações devem ser preferencialmente empregadas para pares de elementos que guardem entre si distâncias grandes, com a finalidade de se conseguir uma maior eficiência.

- Proposto por Hoare em 1960 e publicado em 1962.
 - Também conhecido como ordenação por partição.
- É o algoritmo de ordenação interna mais rápido que se conhece para uma ampla variedade de situações.
 - Provavelmente um dos mais utilizados.

- A ideia básica é dividir o problema de ordenar um conjunto com n itens em dois problemas menores.
 - Os problemas menores são ordenados independentemente.
 - Os resultados são combinados para produzir a solução final.
 - Mesma ideia do algoritmo MergeSort.

- A parte mais delicada do método é o processo de partição.
 - O vetor v[esq..dir] é rearranjado por meio da escolha arbitrária de um pivô x.
 - O vetor v é particionado em duas partes:
 - Parte esquerda: chaves ≤ x.
 - Parte direita: chaves ≥ x.

- Idealmente, o **pivô** x deveria ser selecionado de modo que aproximadamente metade dos elementos ficassem a esquerda do **pivô** e a outra metade do lado direito do **pivô**.
- Considere o caso onde o menor ou o maior elemento é escolhido como pivô.
 - Nesse caso um conjunto da esquerda ficaria vazio e o outro da direita com n-1 elementos.

- A escolha do pivô depende da implementação.
 - Usar o primeiro elemento do vetor:
 - Aceitável se a entrada é aleatória.
 - Se a entrada for pré-ordenada ou estiver na ordem inversa é uma péssima escolha.
 - Escolha aleatória:
 - Estratégia segura de um modo geral.
 - A geração de números aleatórios não implica em um desempenho melhor no restante do algoritmo.
 - Média das entradas:
 - Difícil de calcular.
 - Prejudicaria o desempenho.
 - Pegar 3 elementos e calcular a média.

Funcionamento:

- Um elemento é escolhido como pivô.
- Valores menores do que o pivô são colocados antes dele e os maiores, depois.
 - Supondo o pivô na posição p, esse processo cria duas partições: [0,...,p-1] e [p+1,...,n-1].
- Aplicar recursivamente a cada partição.
 - Até que cada partição contenha um único elemento.

Implementação: quicksort

```
void quicksort (Item *v, int inicio, int fim) {
   if (inicio < fim) {
     int pivo = partition (v, inicio, fim);
     quicksort (v, inicio, pivo-1);
     quicksort (v, pivo+1, fim);
   }
}</pre>
```

Implementação: partition

```
int partition(Item* v, int inicio,
               int fim) {
  int esq, dir;
  Item pivo, aux;
  esq = inicio;
  dir = fim;
  pivo = v[inicio];
  while (esq < dir) {</pre>
    while (esq <= fim &&</pre>
          v[esq].chave <= pivo.chave)</pre>
      esq++;
    while (dir >= inicio &&
          v[dir].chave > pivo.chave)
      dir--:
```

```
if (esq < dir) {
   aux = v[esq];
   v[esq] = v[dir];
   v[dir] = aux;
   } //Fim if
} //Fim while
v[inicio] = v[dir];
v[dir] = pivo;
return dir;</pre>
```

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	8	2	7	6	3	5	1	9	10
n = 10										

Posição	0	1	2	3	4	5	6	7	8	9					
Chave	4	8	2	7	6	3	5	1	9	10					
n = 10	esq									dir					
inicio =	0														
fim =	9														
pivô =	1														
ptvo –	7	<pre>int partition (Item* V, int inicio, int rim) { int esq, dir;</pre>													
ptvo =	7			•		•	-11 V	,		,					
ρινο =	7		ir	nt es		г;	-11 V	,		,					
ρινο =	7		ir It	n t ese	q, di	r; aux;		,		,					
ρινο -	7		ir It es	n t ese	q, di ivo, inici	r; aux;		,		,					

	Posição	0	1	2	3	4	5	6	7	8	9	
	Chave	4	8	2	7	6	3	5	1	9	10	
	n = 10	esq									dir	
inicio = 0 fim = 9 pivô = 4												
whi	le (esq < 0	dir)	{									
→ w	hile (esq <	<= fi	m &&	v[esc	լ].cha	ave <	= piv	o.cha	ave)			
⇒ esq++;												
<pre>while (dir >= inicio && v[dir].chave > pivo.chave)</pre>												
	dir;											

	Posição	0	1	2	3	4	5	6	7	8	9		
	Chave	4	4 8 2 7 6 3 5 1 9										
	n = 10		esq								dir		
inicio = 0 fim = 9 pivô = 4													
whi	le (esq < 0	dir)	{										
<pre>while (esq <= fim && v[esq].chave <= pivo.chave) esq++;</pre>													
<pre>→ while (dir >= inicio && v[dir].chave > pivo.chave)</pre> → dir;													

	Posição	0	1	2	3	4	5	6	7	8	9			
	Chave	4	8	2	7	6	3	5	1	9	10			
	n = 10		esq							dir				
	inicio = 0													
	fim = 9													
	pivô = 4													
whi	le (esq < d	dir)	{											
w	hile (esq <	<= fi	m &&	v[esq].cha	eve <	= piv	o.cha	ave)					
	esq++;													
→ wl	→ while (dir >= inicio && v[dir].chave > pivo.chave)													
\rightarrow	→ dir;													

	Posição	0	1	2	3	4	5	6	7	8	9		
	Chave	4	8	2	7	6	3	5	1	9	10		
	n = 10		esq						dir				
	inicio = 0 fim = 9 pivô = 4												
whi	le (esq < 0	dir)	{										
wl	<pre>while (esq <= fim && v[esq].chave <= pivo.chave) esq++;</pre>												
wl	<pre>while (dir >= inicio && v[dir].chave > pivo.chave) dir;</pre>												

Funcionamento da função partition

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	8	2	7	6	3	5	1	9	10
n = 10		esq						dir		

```
fim = 9
pivô = 4

if (esq < dir) {
  aux = v[esq];
  v[esq] = v[dir];
  v[dir] = aux; }</pre>
```

inicio = 0

Funcionamento da função partition

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	1	2	7	6	3	5	8	9	10
n = 10		esq						dir		

```
fim = 9
pivô = 4

if (esq < dir) {
  aux = v[esq];
  v[esq] = v[dir];
  v[dir] = aux; }</pre>
```

inicio = 0

	Posição	0	1	2	3	4	5	6	7	8	9		
	Chave	4	1	2	7	6	3	5	8	9	10		
	n = 10		esq dir										
	inicio = 0 fim = 9 pivô = 4												
i	le (esq < 0	dir)	{										
W	while (esq <= fim && v[esq].chave <= pivo.chave)												
	esq++;												
W	hile (dir :	>= in	icio	&& v[dir]	.chav	e > p	ivo.	chave)			
	dir;												

	Posição	0	1	2	3	4	5	6	7	8	9			
	Chave	4	1	2	7	6	3	5	8	9	10			
	n = 10			esq					dir					
ir	inicio = 0 fim = 9 pivô = 4													
	while (esq < dir) { → while (esq <= fim && v[esq].chave <= pivo.chave)													
	<pre>esq++; while (dir >= inicio && v[dir].chave > pivo.chave)</pre>													

	Posição	0	1	2	3	4	5	6	7	8	9		
	Chave	4	1	2	7	6	3	5	8	9	10		
	n = 10				esq				dir				
	inicio = 0 fim = 9 pivô = 4												
whi	le (esq < 0	dir)	{										
wl	<pre>while (esq <= fim && v[esq].chave <= pivo.chave)</pre>												
	esq++;												
	<pre>→ while (dir >= inicio && v[dir].chave > pivo.chave)</pre> → dir;												

	Posição	0	1	2	3	4	5	6	7	8	9		
	Chave	4	4 1 2 7 6 3 5 8 9										
	n = 10				esq			dir					
	inicio = 0 fim = 9 pivô = 4												
whi	le (esq < 0	dir)	{										
W	<pre>while (esq <= fim && v[esq].chave <= pivo.chave)</pre>												
	esq++;												
	<pre>→ while (dir >= inicio && v[dir].chave > pivo.chave)</pre> → dir;												

	Posição	0	1	2	3	4	5	6	7	8	9			
	Chave	4	1	2	7	6	3	5	8	9	10			
	n = 10				esq		dir							
	inicio = 0 fim = 9 pivô = 4													
whi	le (esq < 0	dir)	{											
W	hile (esq <	<= fi	m &&	v[esc	η].cha	eve <	= piv	o.cha	ave)					
	esq++;			_	_					_				
W	hile (dir > dir;	>= in	icio	&& ∨[[dir]	.chav	e > p	ivo.c	:have))				

Funcionamento da função partition

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	1	2	7	6	3	5	8	9	10
n = 10				esq		dir				

```
fim = 9
pivô = 4

if (esq < dir) {
  aux = v[esq];
  v[esq] = v[dir];
  v[dir] = aux; }</pre>
```

inicio = 0

Funcionamento da função partition

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	1	2	3	6	7	5	8	9	10
n = 10				esq		dir				

```
fim = 9
pivô = 4

if (esq < dir) {
  aux = v[esq];
  v[esq] = v[dir];
  v[dir] = aux; }</pre>
```

inicio = 0

	Posição	0	1	2	3	4	5	6	7	8	9
	Chave	4	1	2	3	6	7	5	8	9	10
	n = 10				esq		dir				
	inicio = fim = pivô =	9									
i	le (esq < 0	dir)	{								
W	hile (esq <	<= fi	m &&	v[esc	η].cha	ave <	= piv	o.cha	ave)		
-	esq++;										
W	h ile (dir >	>= in	icio	&& v[[dir]	.chav	e > p	ivo.	chave)	
	dir;										

	Posição	0	1	2	3	4	5	6	7	8	9			
	Chave	4	1	2	3	6	7	5	8	9	10			
	n = 10					esq	dir							
	inicio = 0													
	fim = 9													
	pivô =	4												
whi	le (esq < 0	dir)	{											
W	hile (esq <	<= fi	ո &&	v[esq].cha	ave <	= piv	o.cha	ave)					
	esq++;													
→ w	h ile (dir :	>= in	icio	&& v[dir]	.chav	e > p	ivo.	chave)				
\rightarrow	dir;													

	Posição	0	1	2	3	4	5	6	7	8	9			
	Chave	4	ī	2	3	6	7	5	8	9	10			
	n = 10					esq dir								
	inicio = 0 fim = 9 pivô = 4													
whi	le (esq < 0	dir)	{											
W	hile (esq <	<= fi	m &&	v[esc	լ].cha	ave <	= piv	o.cha	ıve)					
	esq++;			_		_			_					
	h ile (dir :	>= in	icio	&& ∨[dir]	.chav	e > p	ivo.c	:have j)				
	dir;													

	Posição	Θ	1	2	3	4	5	6	7	8	9			
	Chave	4	1	2	3	6	7	5	8	9	10			
	n = 10				dir	esq								
	<pre>inicio = 0 fim = 9 pivô = 4</pre>													
whi	le (esq < 0	dir)	{											
wl	hile (esq <	<= fi	m &&	v[esq].cha	ave <	= piv	o.cha	ave)					
wl	esq++; hile (dir >	>= in [·]	icio	&& ∨[dir]	. chav	e > p	ivo.c	chave)				
	dir;				_		·							

Posição	0	1	2	3	4	5	6	7	8	9		
Chave	4	1	2	3	6	7	5	8	9	10		
n = 10				dir	esq							
inicio =	inicio = 0											

```
fim = 9
pivô = 4

if (esq < dir) {
  aux = v[esq];
  v[esq] = v[dir];
  v[dir] = aux; }</pre>
```

Posição	0	1	2	3	4	5	6	7	8	9
Chave	4	1	2	3	6	7	5	8	9	10
n = 10				dir	esq					

```
inicio = 0
    fim = 9
    pivô = 4

v[inicio] = v[dir];
v[dir] = pivo;
return dir;
```

Posição	0	1	2	3	4	5	6	7	8	9
Chave	3	Ī	2	3	6	7	5	8	9	10
n = 10				dir	esq					

```
inicio = 0
fim = 9
pivô = 4
```

```
v[inicio] = v[dir];
v[dir] = pivo;
return dir;
```

Posição	0	1	2	3	4	5	6	7	8	9
Chave	3	1	2	4	6	7	5	8	9	10
n = 10				dir	esq					

```
inicio = 0
    fim = 9
    pivô = 4

v[inicio] = v[dir];
v[dir] = pivo;
return dir;
```


Funcionamento do QuickSort

4 8 2 7 6 3 5 1 9 10

Funcionamento do QuickSort

3 1 2 4 6 7 5 8 9 10

4. Análise

- Seja C(n) a função que conta o número de comparações.
 - Pior caso: $C(n) = O(n^2)$
 - O pior caso ocorre quando, sistematicamente, o pivô é escolhido como sendo um dos extremos de um arquivo já ordenado.
 - Isto faz com que o procedimento Ordena seja chamado recursivamente n vezes, eliminando apenas um item em cada chamada.
 - O pior caso pode ser evitado empregando pequenas modificações no algoritmo.
 - Para isso basta escolher três itens quaisquer do vetor e usar a mediana dos três como pivô.

4. Análise

- Seja C(n) a função que conta o número de comparações.
 - Melhor caso:
 - $C(n) = 2C(n/2) + n = n \log n$
 - Esta situação ocorre quando cada partição divide o arquivo em duas partes iguais.
 - Caso médio de acordo com Sedgewick e Flajolet (1996, p. 17):
 - $C(n) \approx 1,386n \log n 0,846n$,
 - Isso significa que em média o tempo de execução do quicksort é O(n log n).

4. Análise

Vantagens:

- É extremamente eficiente para ordenar arquivos de dados.
- Necessita de apenas uma pequena pilha como memória auxiliar.
- Requer cerca de n log n comparações em média para ordenar n itens.

Desvantagens:

- Tem um pior caso O(n²) comparações.
- Sua implementação é muito delicada e difícil:
 - Um pequeno engano pode levar a efeitos inesperados para algumas entradas de dados.
- O método não é estável.

5. Referências

- Material de aula dos Profs. Luiz Chaimowicz e Raquel O. Prates, da UFMG: https://homepages.dcc.ufmg.br/~glpappa/aeds2/AEDS2.1%20Conceitos%20Basicos%20TAD.pdf
- Horowitz, E. & Sahni, S.; Fundamentos de Estruturas de Dados, Editora Campus, 1984.
- Wirth, N.; Algoritmos e Estruturas de Dados, Prentice/Hall do Brasil, 1989.
- Material de aula do Prof. José Augusto Baranauskas, da USP: https://dcm.ffclrp.usp.br/~augusto/teaching.htm
- Material de aula do Prof. Rafael C. S. Schouery, da Unicamp: https://www.ic.unicamp.br/~rafael/cursos/2s2019/mc202/in dex.html