Finding the Relationship of Data with the Label Attribute

ข้อที่ 1

บทน้ำ

ตัวแปรที่นำมาทดสอบสมมติฐาน Test of Two Means : Independent Sample คือ เพศ (Gender) กับ จำนวนธุรกรรมที่จ่าย (Total_Trans_Ct)

เหตุผลที่เลือก 2 ตัวแปรนี้เกิดจากการตั้งข้อสังเกตหรือปัญหาที่ว่า ค่าเฉลี่ย ประชากรของจำนวนธุรกรรมที่จ่ายระหว่างเพศหญิงและเพศชาย มีค่าเท่ากันหรือไม่ และทั้ง 2 ตัวแปรนั้นเป็นอิสระต่อกันทำให้เหมาะสมต่อการนำมาทดสอบสมมติฐาน แบบดังที่กล่าวไปข้างต้น

ผลการวิเคราะห์

1. ตั้งสมมติฐานหลักและสมมติฐานรองคังนี้

Ho: ค่าเฉลี่ยประชากรของจำนวนธุรกรรมที่จ่ายเพศหญิง = ค่าเฉลี่ย ประชากรของจำนวนธุรกรรมที่จ่ายเพศชาย

Ha: ค่าเฉลี่ยประชากรของจำนวนธุรกรรมที่จ่ายเพศหญิง ≠ ค่าเฉลี่ย ประชากรของจำนวนธุรกรรมที่จ่ายเพศชาย

2. คำสั่งที่ใช้ในโปรแกรม R Studio

มีการประกาศตัวแปร เพื่อเก็บข้อมูลในแต่ละคอลัมน์ และใช้ Function t.test() ในการประมวลผล เพื่อดูความแตกต่างของค่าเฉลี่ยประชากร

gender <- Final\$Gender
total_trans <- Final\$Total_Trans_Ct
t.test(total_trans ~ gender, var.equal=TRUE)</pre>

รูปภาพที่ 1 : แสดงคำสั่งที่ใช้ในการประมวลผล

3. ผลที่ใค้จากโปรแกรม R Studio

จากการประมวลผล ได้ผลลัพธ์ที่แสดงค่า p-value = 0.8291 ที่ระดับ นัยสำคัญ 0.05 นอกจากนั้น มีการแสดงค่าเฉลี่ยประชากรของเพศหญิง เท่ากับ 69.79730 และค่าเฉลี่ยประชากรของเพศชายเท่ากับ 69.27451

Two Sample t-test

รูปภาพที่ 2 : แสดงผลลัพธ์ที่ได้จากการประมวลผล

4. ข้อสรุปของการทดสอบสมมติฐาน จากผลลัพธ์ที่ได้คือค่า p-value ที่มีค่า 0.8291 นั้นมีค่ามากกว่า ระดับ นัยสำคัญที่ 0.05 แสดงว่าไม่สามารถปฏิเสธสมมติฐานหลักได้

บทสรุป

จากการตั้งข้อสังเกตที่ว่า ค่าเฉลี่ยประชากรของจำนวนธุรกรรมที่จ่ายเพศหญิง และเพศชาย มีค่าเท่ากันหรือไม่ พบว่า ค่าเฉลี่ยประชากรของจำนวนธุรกรรมที่จ่าย ทั้ง 2 เพศนั้นมีค่าเท่ากันที่ระดับนัยสำคัญ เท่ากับ 0.05

ข้อที่ 2

บทนำ (แบบจำลองที่ 1)

การพยากรณ์สถานะของลูกค้ำ (Attrition_Flag) ตัวแปรอิสระคือ มูลค่ารวมของ
ทุกรายการที่จ่าย (Total_Trans_Amt) กับจำนวนธุรกรรมที่ใช้จ่าย (Total_Trans_Ct)
เหตุผลที่เลือก 2 ตัวแปรนี้ เพราะตั้งขอสังเกตว่าน่าจะมีความสัมพันธ์กับสถานะของ
ลูกค้า และจะทำให้การพยากรณ์ออกมาได้มีความแม่นยำสูง นอกจากนั้นได้มองว่าตัว
แปรอื่นมีค่า 0 เยอะเกินไป หรืออาจจะไม่เกี่ยวข้องกับสถานะลูกค้าจากการวิเคราะห์

ผลการวิเคราะห์ (แบบจำลองที่ 1)

1. ตั้งสมมติฐานหลักและสมมติฐานรองคังนี้

กำหนดให้ $oldsymbol{eta}_1$ แทนค่า Slope ของตัวแปรจำนวนธุรกรรมที่จ่าย

Ho: $\beta_1 = 0$

Ha: $\beta 1 \neq 0$

ແຄະ

กำหนดให้ eta_2 แทนค่า Slope ของตัวแปรมูลค่ารวมของทุกรายการที่จ่าย

Ho: $\beta_2 = 0$

Ha: $\beta 2 \neq 0$

2. คำสั่งที่ใช้ในโปรแกรม R Studio

มีการประกาศตัวแปร เพื่อเก็บข้อมูลในแต่ละคอลัมน์ และแปลงสถานะ ลูกค้าให้เป็นเลขโดย Attrited Customer เป็นเลข 0 และ Existing Customer เป็นเลข 1 เพื่อเป็นการเตรียมข้อมูลก่อนการประมวลผล และประมวลผล ด้วย Function glm() รวมถึงแสดงผลลัพธ์จากการประมวลผล

นอกจากนั้นยังใค้สร้าง Confusion Matrix เพื่อหาความแม่นยำในการ พยากรณ์สถานะของลูกค้า จากตัวแปรอิสระทั้ง 2 ตัว โดยกำหนดจุด cutoff ที่ 0.5

รูปภาพที่ 3 : แสดงคำสั่งที่ใช้ในการประมวลผล

3. ผลที่ใค้จากโปรแกรม R Studio

จากการประมวลผลได้ค่า p-value ของตัวแปรจำนวนธุรกรรมที่จ่าย เท่ากับ 0.251512 และ ตัวแปรมูลค่ารวมของทุกรายการที่จ่าย เท่ากับ 0.014925 ที่ระดับนัยสำคัญ 0.05

และ ได้ค่าจากการพยากรณ์สถานะของลูกค้า ได้แก่ True Positive เท่ากับ 160 และ False Positive เท่ากับ 38

```
Coefficients:
                Estimate Std. Error z value
(Intercept)
              -21.049769
                           5.757662 -3.656
                                     1.147
total_trans_ct
               0.110148
                           0.096058
total_trans_amt
                           0.002033 2.434
                0.004949
               Pr(>|z|)
              0.000256 ***
(Intercept)
total_trans_ct 0.251512
total_trans_amt 0.014925 *
```

รูปภาพที่ 4 : แสดงผลลัพธ์ที่แสดงความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

```
attrition_flag
0 1
FALSE 38 1
TRUE 0 160
```

รูปภาพที่ 5 : แสดงผลลัพธ์ตาราง Confusion Matrix

4. ความสัมพันธ์ระหว่างตัวแปรอิสระกับตัวแปรตาม

จากผลลัพธ์ค่า p-value ของตัวแปรอิสระจำนวนธุรกรรมที่จ่ายนั้นมีค่า เท่ากับ 0.251512 ซึ่งมีมากกว่าระดับนัยสำคัญที่ 0.05 แสดงว่าไม่สามารถ ปฏิเสธสมมติฐานหลักได้ และสรุปผลได้ว่า ตัวแปรจำนวนธุรกรรมที่จ่าย ไม่มีความสัมพันธ์กับ สถานะของลูกค้า ที่ระดับนัยสำคัญ 0.05

ค่า p-value ของตัวแปรอิสระมูลค่ารวมของทุกรายการที่จ่ายนั้นมีค่า เท่ากับ 0.014925 ซึ่งมีน้อยกว่าระดับนัยสำคัญที่ 0.05 แสดงว่าสามารถ ปฏิเสธสมมติฐานหลักได้ และสรุปผลได้ว่า ตัวแปรมูลค่ารวมของทุก รายการที่จ่าย มีความสัมพันธ์กับ สถานะของลูกค้า ที่ระดับนัยสำคัญ 0.05

5. คำนวณความแม่นยำของการพยากรณ์

จากตาราง Confusion Matrix พบว่ามีการพยากรณ์ค่าได้ True Positive กับ False Positive รวมกันได้ 198 จากจำนวนตัวอย่าง 199 แสดงว่า มีค่า ความแม่นยำของการพยาการณ์สถานะลูกค้าอยู่ที่ 99.50%

บทน้ำ (แบบจำลองที่ 2)

การพยากรณ์สถานะของลูกค้า (Attrition_Flag) ตัวแปรอิสระคือ วงเงินรวม (Credit_Limit) กับจำนวนเดือนที่ใช้บริการ (Months_on_book) เหตุผลที่เลือก 2 ตัว แปรนี้ เพราะตั้งขอสังเกตว่าน่าจะมีความสัมพันธ์กับสถานะของลูกค้า และจะทำให้ การพยากรณ์ออกมาได้มีความแม่นยำสูง นอกจากนั้นได้มองว่าตัวแปรอื่นมีค่า 0 เยอะ เกินไป หรืออาจจะไม่เกี่ยวข้องกับสถานะลูกค้าจากการวิเคราะห์

ผลการวิเคราะห์ (แบบจำลองที่ 2)

1. ตั้งสมมติฐานหลักและสมมติฐานรองคังนี้

กำหนดให้ $oldsymbol{eta}_1$ แทนค่า Slope ของตัวแปรวงเงินรวม

Ho:
$$\beta_1 = 0$$

Ha:
$$\beta 1 \neq 0$$

ແຄະ

กำหนดให้ $oldsymbol{eta}_2$ แทนค่า Slope ของตัวแปรจำนวนเดือนที่ใช้บริการ

Ho:
$$\beta_2 = 0$$

Ha:
$$\beta_2 \neq 0$$

2. คำสั่งที่ใช้ในโปรแกรม R Studio

มีการประกาศตัวแปร เพื่อเก็บข้อมูลในแต่ละคอลัมน์ และแปลงสถานะ ลูกค้าให้เป็นเลขโดย Attrited Customer เป็นเลข 0 และ Existing Customer เป็นเลข 1 เพื่อเป็นการเตรียมข้อมูลก่อนการประมวลผล และประมวลผล ด้วย Function glm() รวมถึงแสดงผลลัพธ์จากการประมวลผล

นอกจากนั้นยังได้สร้าง Confusion Matrix เพื่อหาความแม่นยำในการ พยากรณ์สถานะของลูกค้า จากตัวแปรอิสระทั้ง 2 ตัว โดยกำหนดจุด cutoff ที่ 0.5

รูปภาพที่ 6 : แสดงคำสั่งที่ใช้ในการประมวลผล

3. ผลที่ใค้จากโปรแกรม R Studio

จากการประมวลผล ได้ค่า p-value ของตัวแปรวงเงินรวม เท่ากับ 0.239 และ ตัวแปรจำนวนเดือนที่ใช้บริการ เท่ากับ 0.455 ที่ระดับนัยสำคัญ 0.05 และ ได้ค่าจากการพยากรณ์สถานะของลูกค้า ได้แก่ True Positive เท่ากับ 161 และ False Positive เท่ากับ 38

Coefficients:

	Estimate	Std. Error
(Intercept)	4.615e-01	1.007e+00
${\tt months_on_book}$	2.071e-02	2.771e-02
credit_limit	6.018e-05	5.112e-05
	z value Pr	'(> z)
(Intercept)	0.458	0.647
${\tt months_on_book}$	0.747	0.455
credit_limit	1.177	0.239

รูปภาพที่ 7 : แสดงผลลัพธ์ที่แสดงความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

attrition_flag 0 1 TRUE 38 161

รูปภาพที่ 8 : แสดงผลลัพธ์ตาราง Confusion Matrix

4. ความสัมพันธ์ระหว่างตัวแปรอิสระกับตัวแปรตาม

จากผลลัพธ์ค่า p-value ของตัวแปรอิสระวงเงินรวม มีค่าเท่ากับ 0.239 ซึ่ง มีมากกว่าระดับนัยสำคัญที่ 0.05 แสดงว่า ไม่สามารถปฏิเสธสมมติฐานหลัก ได้ และสรุปผลได้ว่า ตัวแปรวงเงินรวม ไม่มีความสัมพันธ์กับ สถานะของ ลูกค้า ที่ระดับนัยสำคัญ 0.05

ค่า p-value ของตัวแปรอิสระจำนวนเดือนที่ใช้บริการ มีค่าเท่ากับ 0.455 ซึ่งมีมากกว่าระดับนัยสำคัญที่ 0.05 แสดงว่าไม่สามารถปฏิเสธสมมติฐาน หลักได้ และสรุปผลได้ว่า ตัวแปรจำนวนเดือนที่ใช้บริการ ไม่มี ความสัมพันธ์กับ สถานะของลูกค้า ที่ระดับนัยสำคัญ 0.05

5. คำนวณความแม่นยำของการพยากรณ์

จากตาราง Confusion Matrix พบว่ามีการพยากรณ์ค่าได้ True Positive กับ False Positive รวมกันได้ 199 จากจำนวนตัวอย่าง 199 แสดงว่า มีค่า ความแม่นยำของการพยาการณ์สถานะถูกค้าอยู่ที่ 100%

บทสรุป

จากการสร้างแบบจำลองพยากรณ์ สถานะของลูกค้า นั้นมีค่าความแม่นยำของ
ทั้ง 2 แบบจำลองนั้นสูง แต่เมื่อแสดงผลความสัมพันธ์ของตัวแปร พบว่า ส่วนใหญ่ตัว
แปรอิสระนั้นจะไม่มีความสัมพันธ์กับ สถานะของลูกค้า ซึ่งอาจจะมองได้ว่าอาจจะเกิด
จากการที่ จำนวนข้อมูลที่ใช้ในการสร้างแบบจำลองนั้นน้อยเกินไป ทำให้เกิดความ
ผิดพลาดของการแสดงผล เพราะความจริงแล้วการพยากรณ์ที่ดี ควรขึ้นอยู่กับการมี
ความสัมพันธ์ต่อกันระหว่างตัวแปรอิสระกับตัวแปรตาม

ข้อที่ 3

บทนำ

Dataset ที่เลือกใช้เกี่ยวกับราคาบ้านกับองค์ประกอบของบ้านต่างๆ โดยต้องการ หาความสัมพันธ์ระหว่างราคาบ้าน กับองค์ประกอบอื่นๆที่เกี่ยวข้องกับบ้าน ว่ามี ความสัมพันธ์ต่อกันหรือไม่ โดยใช้หลักการ Multiple Linear Regression

ตัวแปรตามได้แก่ ราคาบ้าน (Price) ส่วนตัวแปรอิสระได้แก่ พื้นที่ของบ้าน (Area), จำนวนห้องนอน (Bedrooms), จำนวนห้องน้ำ (Bathrooms), จำนวนชั้นของ บ้าน (Stories) และจำนวนรถที่จอดได้ (Parking) โดยเหตุผลที่เลือกตัวแปรอิสระดังที่ กล่าวมา เพราะตั้งข้อสังเกตว่าตัวแปรดังกล่าวนั้นจะมีความสัมพันธ์ต่อราคาของบ้าน

ผลการวิเคราะห์

1. ตั้งสมมติฐานหลักและสมมติฐานรองคังนี้

แบบ Significance of Slope

กำหนดให้ β1 แทนค่า Slope ของตัวแปรพื้นที่ของบ้าน

Ho: $\beta_1 = 0$

Ha: $\beta 1 \neq 0$

กำหนดให้ $oldsymbol{eta}_2$ แทนค่า Slope ของตัวแปรจำนวนห้องนอน

Ho: $\beta_2 = 0$

Ha: $\beta_2 \neq 0$

กำหนดให้ β3 แทนค่า Slope ตัวแปรจำนวนห้องน้ำ

Ho: $\beta 3 = 0$

Ha: β 3 \neq 0

กำหนดให้ β4 แทนค่า Slope ตัวแปรจำนวนชั้นของบ้าน

Ho: $\beta 4 = 0$

Ha: $\beta 4 \neq 0$

กำหนดให้ β5 แทนค่า Slope ตัวแปรจำนวนรถที่จอดได้

Ho: $\beta 5 = 0$

Ha: β 5 \neq 0

แบบ Overall Significance

Ho: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$

Ha : มี eta อย่างน้อย 1 ตัว eq 0

2. คำสั่งที่ใช้ในโปรแกรม R Studio

มีการประกาศตัวแปร เพื่อเก็บข้อมูลในแต่ละคอลัมน์ และทำการ ประมวลผลด้วย Function lm() และแสดงผลลัพธ์จากการประมวลผล

price <- Housing\$price
area <- Housing\$area
bedrooms <- Housing\$bedrooms
bathrooms <- Housing\$bathrooms
stories <- Housing\$stories
parking <- Housing\$parking
result <- lm(price ~ area + bedrooms + bathrooms + stories + parking)
summary(result)</pre>

รูปภาพที่ 9 : แสดงคำสั่งที่ใช้ในการประมวลผล

3. ผลที่ใค้จากโปรแกรม R Studio

จากการประมวลผล ได้ค่า p-value ของตัวแปรอิสระแต่ละตัว ได้แก่ ตัว แปรพื้นที่ของบ้าน น้อยกว่า 2e-16 ตัวแปรจำนวนห้องนอน เท่ากับ 0.0435 ตัวแปรจำนวนห้องน้ำ น้อยกว่า 2e-16 ตัวแปรจำนวนชั้นของบ้าน เท่ากับ 1.07e-14 ตัวแปรจำนวนรถที่จอดได้ เท่ากับ 2.57e-08

นอกจากนั้นยังแสดงค่า Adjusted R-squared มีค่าเท่ากับ 0.5575 ซึ่งยิ่งมี ค่ามาก ยิ่งอธิบาย Explained Variation ได้ดี รวมถึงแสดง p-value โดยรวม น้อยกว่า 2.2e-16

	t value	Pr(> t)
(Intercept)	-0.591	0.5548
area	12.448	< 2e-16
bedrooms	2.023	0.0435
bathrooms	9.541	< 2e-16
stories	7.953	1.07e-14
parking	5.652	2.57e-08

รูปภาพที่ 10 : แสดงผลลัพธ์ที่แสดงความสัมพันธ์ระหว่างตัวแปรตามกับตัวแปรอิสระ

Residual standard error: 1244000 on 539 degrees of freedom Multiple R-squared: 0.5616, Adjusted R-squared: 0.5575 F-statistic: 138.1 on 5 and 539 DF, p-value: < 2.2e-16

รูปภาพที่ 11 : แสดงผลลัพธ์อื่นๆจากการประมวลผล

4. ข้อสรุปของการทคสอบสมมติฐาน

แบบ Significance of Slope

จากผลลัพธ์ค่า p-value ของตัวแปรพื้นที่บ้าน น้อยกว่า 2e-16 ซึ่งมีค่าน้อย กว่าระคับนัยสำคัญที่ 0.05 แสดงว่าสามารถปฏิเสธสมมติฐานหลักได้ และ สรุปผลได้ว่า ตัวแปรพื้นที่บ้าน มีความสัมพันธ์กับ ราคาบ้าน ที่ระดับ นัยสำคัญ 0.05

ค่า p-value ของตัวแปรจำนวนห้องนอน เท่ากับ 0.0435 ซึ่งมีค่าน้อยกว่า ระดับนัยสำคัญที่ 0.05 แสดงว่าสามารถปฏิเสธสมมติฐานหลักได้ และ สรุปผลได้ว่า ตัวแปรจำนวนห้องนอน มีความสัมพันธ์กับ ราคาบ้าน ที่ระดับ นัยสำคัญ 0.05

ค่า p-value ของตัวแปรจำนวนห้องน้ำ น้อยกว่า 2e-16 ซึ่งมีค่าน้อยกว่า ระคับนัยสำคัญที่ 0.05 แสคงว่าสามารถปฏิเสธสมมติฐานหลักได้ และ สรุปผลได้ว่า ตัวแปรจำนวนห้องน้ำ มีความสัมพันธ์กับ ราคาบ้าน ที่ระคับ นัยสำคัญ 0.05

ค่า p-value ของตัวแปรจำนวนชั้นของบ้าน เท่ากับ 1.07e-14 ซึ่งมีค่าน้อย กว่าระดับนัยสำคัญที่ 0.05 แสดงว่าสามารถปฏิเสธสมมติฐานหลักได้ และ สรุปผลได้ว่า ตัวแปรจำนวนชั้นของบ้าน มีความสัมพันธ์กับ ราคาบ้าน ที่ ระดับนัยสำคัญ 0.05

ค่า p-value ของตัวแปรจำนวนรถที่จอดได้ เท่ากับ 2.57e-08 ซึ่งมีค่าน้อย กว่าระดับนัยสำคัญที่ 0.05 แสดงว่าสามารถปฏิเสธสมมติฐานหลักได้ และ สรุปผลได้ว่า ตัวแปรจำนวนรถที่จอดได้ มีความสัมพันธ์กับ ราคาบ้าน ที่ ระดับนัยสำคัญ 0.05

แบบ Overall Significance

ค่า p-value แต่ละตัวนั้นบ่งบอกว่า มีอย่างน้อย 1 ตัวแปรที่มีค่าน้อยกว่า ระดับนัยสำคัญที่ 0.05 แสดงว่าสามารถปฏิเสธสมมติฐานได้ และสรุปโดย ภาพรวมได้ว่าตัวแปรอิสระนั้น มีความสัมพันธ์กับ ราคาบ้าน

บทสรุป

จากการตั้งข้อสังเกตที่ว่าตัวแปรอิสระทั้ง 5 ตัวนั้น มีความสัมพันธ์กับตัวแปร ตามที่เป็นราคาบ้านหรือไม่ พบว่า ตัวแปรอิสระทุกตัว มีความสัมพันธ์กับราคาบ้าน จากการอ้างอิงตัวเลขที่ได้จากการประมวลผล