Théorèmes: Séries de fonctions

Types de convergences

Soit $(f_n)_{n\geq n_0}$ une suite de fonctions de D vers \mathbb{K} .

<u>Définition</u>: (Série de fonctions)

On appelle <u>série</u> de fonctions de terme général f_n la suite de fonctions $(S_n)_{n\geq n_0}$ où

$$\forall n \ge n_0, S_n = \sum_{k=n_0}^n f_k$$

On la note $\sum\limits_{n\geq n_0}f_n$ et pour $n\geq n_0$, S_n est appelée somme partielle d'ordre n de la série de fonctions.

Convergence simple et absolue

Soit $\sum f_n$ une série de fonctions de D vers \mathbb{K} .

<u>Définition</u>: (Convergence simple)

On dit que $\sum f_n$ CVS sur $A \subset D$ s'il existe une fonction $S : A \to \mathbb{K}$ telle que $(S_n)_{n \in \mathbb{N}}$ CVS vers S sur A.

Cette fonction S est appelée la somme de la série $\sum f_n$ sur A et notée :

$$S = \sum_{n=0}^{+\infty} f_n$$

Théorème:

On a équivalence entre :

- (i)
- $\sum f_n$ CVS sur A $\forall x \in A, \sum f_n(x)$ CV (ii)

Dans ce cas,

$$\forall x \in A, \left(\sum_{n=0}^{+\infty} f_n\right)(x) = \sum_{n=0}^{+\infty} f_n(x)$$

<u>Définition</u>: (Domaine de convergence simple)

On appelle domaine de CVS de $\sum f_n$ la plus grande partie de D sur laquelle $\sum f_n$ CVS.

Propriété:

Si la série de fonction $\sum f_n$ CVS sur $A \subset D$ alors la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ CVS sur A vers la fonction nulle.

<u>Définition</u>: (Reste d'ordre n)

Si $\sum f_n$ CVS sur $A \subset D$, on peut définir pour $n \in \mathbb{N}$, le reste d'ordre n, R_n la série de fonctions :

$$R_n: A \to \mathbb{K}$$

$$x \mapsto \sum_{k=n+1}^{+\infty} f_k(x)$$

<u>Propriété</u>: Si $\sum f_n$ CVS sur $A \subset D$ alors $S \coloneqq \sum_{n=0}^{+\infty} f_n$ (sur A) vérifie:

$$\forall n \in \mathbb{N}, S = S_n + R_n$$

Et $(R_n)_{n\in\mathbb{N}}$ CVS sur A vers la fonction nulle.

<u>Définition</u>: (Convergence absolue simple)

On dit que $\sum f_n$ CVAS sur $A \subset D$ si $\sum |f_n|$ CVS sur A ssi $\sum |f_n(x)|$ CV.

Théorème:

Si $\sum f_n$ CVAS sur $A \subset D$, alors $\sum f_n$ CVS sur A.

Convergence uniforme

<u>Définition</u>: (Convergence uniforme)

On dit que la série de fonctions $\sum f_n$ CVU sur $A \subset D$ si la suite de fonctions $(S_n)_{n \in \mathbb{N}}$ CVU sur A.

<u>Propriété</u>: Si $\sum f_n$ CVU sur A alors $\sum f_n$ CVS sur A.

<u>Propriété</u>: Si $\sum f_n$ CVU sur A, alors $(f_n)_n$ CVU sur A vers la fonction nulle.

Propriété : Soit $A \subset D$. On a équivalence entre :

- (i) $\sum f_n$ CVU sur A
- (ii) $\sum f_n$ CVS sur A et $(R_n)_{n\in\mathbb{N}}$ CVU sur A vers la fonction nulle.

Convergence normale

<u>Définition</u>: Soit $\sum f_n$ une série de fonctions de D vers \mathbb{K} .

On dit que $\sum f_n$ CVN sur $A \subset D$ si :

- (i) $\forall n \in \mathbb{N}$, la fonction f_n est bornée sur A.
- (ii) $\sum ||f_n||_{\infty,A}$ converge

Théorème : **★**

Si $\sum f_n$ CVN sur A, alors :

- (i) $\sum f_n$ CVAS sur A.
- (ii) $\sum f_n$ CVU sur A.

Continuité et limites

Continuité

<u>Théorème</u>: Soit $\sum f_n$ une série de fonctions de D vers \mathbb{K} et $A \subset D$. Supposons que :

- (i) $\forall n \in \mathbb{N}$, la fonction f_n est continue sur A
- (ii) $\sum f_n$ CVU sur A

Alors
$$S := \sum_{n=0}^{+\infty} f_n$$
 est continue sur A

<u>Corollaire</u>: Soit I un <u>intervalle</u> inclus dans D. Si:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I$
- (ii) $\sum f_n$ CVU sut tout segment inclus dans I

Théorème : (d'interversion lim/∑ ou de la double limite)

Soit $\sum f_n$ une série de fonctions de D vers \mathbb{K} et $A \subset D$

Soit $a \in \overline{A}$ (ou $a = +\infty$ (resp. $-\infty$) si A est non majoré (resp. non minoré)

On suppose que:

- (i) $\forall n \in \mathbb{N}, f_n \text{ admet une limite finie en } a \text{ notée } l_n$
- (ii) $\sum f_n$ CVU sur A

Alors $\sum\limits_{n\in\mathbb{N}}l_n$ CV, $S\coloneqq\sum_{n=0}^{+\infty}f_n$ admet une limite finie en a et $S(x)\underset{x\to a}{\longrightarrow}\sum_{n=0}^{+\infty}l_n$, ie :

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

Remarque : à partir de maintenant, les fonctions sont uniquement à valeurs réelles

Séries de fonctions & intégrales

I est un intervalle de $\mathbb R$ et $\sum\limits_{n\in\mathbb N}f_n$ une série de fonctions de I vers $\mathbb K$

Intégration sur un segment

Théorème : (d'interversion lim/\int)

Soient $a, b \in \mathbb{R}$, a < b, et $\sum f_n$ une série de fonctions de [a; b] vers \mathbb{K}

On suppose que:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } [a; b]$
- (ii) $\sum f_n$ CVU sur [a; b]

Alors $S \coloneqq \sum_{n=0}^{+\infty} f_n$ est continue sur [a;b], et la série numérique $\sum_{n\in\mathbb{N}} \int_a^b f_n(t)dt$ converge vers $\int_a^b S(t)\,dt$

$$\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t)dt$$

Intégration sur un intervalle quelconque

Théorème d'intégration terme à terme :

Soit I un intervalle de $\mathbb R$ et $\sum f_n$ une série de fonctions de I vers $\mathbb K$. On suppose que :

- (i) $\forall n \in \mathbb{N}, f_n \text{ est c.p.m sur } I \text{ et } \underline{\text{intégrable}} \text{ sur } I.$
- (ii) $\sum f_n$ CVS sur I et $S \coloneqq \sum_{n=0}^{+\infty} f_n$ est c.p.m sur I
- (iii) La série numérique $\sum\limits_{n\in\mathbb{N}}\int_{I}|f_{n}(t)|dt$ converge

Alors S est intégrable sur I et :

$$\sum_{n=0}^{+\infty} \int_{I} f_n(t)dt = \int_{I} \left(\sum_{n=0}^{+\infty} f_n(t)dt \right)$$

Séries de fonctions et dérivation

Fonctions de classe C^1

<u>Théorème</u>: Soit I un intervalle de \mathbb{R} et $\sum f_n$ une suite de fonctions de I vers \mathbb{K} . On suppose que :

- (i) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^1 \text{ sur } I$
- (ii) $\sum f_n$ CVS en un point $a \in I$
- (iii) $\sum f_n'$ CVU sur tout segment inclus dans I

Alors $\sum f_n$ CVU sur tout segment inclus dans I, sa fonction somme $S\coloneqq\sum_{n=0}^{+\infty}f_n$ est de classe C^1 sur I, et $S'=\sum_{n=0}^{+\infty}f_n'$

Exemple : Existence et calcul de $\sum_{n=0}^{+\infty} ne^{-nx}$ pour x>0

Posons $\forall n \in \mathbb{N}, f_n : \mathbb{R}_+ \to \mathbb{R}, x \mapsto e^{-nx}$

- $\forall n, f_n \text{ est de classe } C^1 \text{ sur } \mathbb{R}_+ \text{ et } \forall x \geq 0, f_n'(x) = -ne^{-nx}$
- Soit x>0 (fixé) La série numérique $\sum f_n(x)=\sum (e^{-x})^n$ est une série géométrique de raison e^{-x} avec $|e^{-x}|<1$ puisque x>0 donc $\sum f_n(x)$ CV.

Ainsi $\sum f_n$ CVS sur \mathbb{R}_+^*

- Soit $n \in \mathbb{N}$,

 $\forall x > 0, |f_n'(x)| = ne^{-nx}$ donc $|f_n'|$ est décroissante sur $]0; +\infty[$ et $\lim_{x\to 0} |f_n'(x)| = n$, donc la fonction f_n' est bornée sur \mathbb{R}_+^* et $||f_n'||_{\infty,\mathbb{R}_+^*} = \lim_{x\to 0} |f_n'(x)| = n$ qui ne tend pas vers 0 quand n tend vers $+\infty$.

Donc $\sum \|f_n'\|_{\infty,\mathbb{R}_+^*}$ DVG. Ainsi $\sum f_n'$ ne converge pas normalement sur \mathbb{R}_+^* .

Soit
$$[a, b] \subset \mathbb{R}_+^*$$
, $(0 < a < b)$

La fonction f_n' est bornée sur le segment [a,b] et

$$||f'_n||_{\infty,[a,b]} = |f'_n(a)| = ne^{-na} = \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)$$

Donc par comparaison de SATP, $\sum \|f_n'\|_{\infty,[a,b]}$ CV, donc $\sum f_n'$ CVN sur [a,b] donc CVU sur [a,b] Donc par le théorème de dérivation, la fonction somme $S=\sum_{n=0}^{+\infty}f_n$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , et pour tout x>0,

$$S'(x) = \sum_{n=0}^{+\infty} f'_n(x) = -\sum_{n=0}^{+\infty} ne^{-nx} = -T(x)$$

Donc $\forall x > 0, T(x) = -S'(x)$, or par sommation géométrique,

$$S(x) = \frac{1}{1 - e^{-x}}$$

D'où
$$T(x) = \frac{e^{-x}}{(1 - e^{-x})^2}$$

Dérivées d'ordres supérieurs

<u>Théorème</u>: Soient $p \in \mathbb{N}^*$, I un intervalle de \mathbb{R} et $\sum f_n$ une série de fonctions de I vers \mathbb{K}

On suppose que:

- (i) $\forall n \in \mathbb{N}$, la fonction f_n est de classe C^p sur I.
- (ii) $\forall k \in [0, p-1], \sum f_n^{(k)}$ CVS sur I
- (iii) $\sum f_n^{(p)}$ CVU sur tout segment inclus dans I

Alors la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^p sur I et $\forall k \in [0,p]$, $S^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$

Démonstration : Notons $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n f_k$

- (i) $\forall n, S_n \text{ est de classe } C^p \text{ sur } I.$
- (ii) $\forall k \in [0, p-1], \left(S_n^{(k)}\right)_n$ CVS sur I par linéarité de la dérivation.
- (iii) $\left(S_n^{(p)}\right)_n$ CVU sur tout segment inclus dans I

Donc on peut appliquer le théorème de dérivation à la suite de fonction $(S_n)_n$

Remarque : la démo donne aussi que $\forall k \in [\![0,p]\!], \sum f_n^{(k)}$ CVU sur tout segment inclus dans I