We consider serie:
$$\sum_{n=1}^{\infty} (n(1+\frac{1}{n}))$$

$$\sum_{n=1}^{\infty} \ln (1 + \frac{1}{n}) = \sum_{n=1}^{\infty} \ln \frac{n+1}{n} = \sum_{n=1}^{\infty} \ln (n+1) - \ln n$$

$$=(\ln 2 - \ln 1) + (\ln 3 - \ln 2) + --- + (\ln(i+1) - \ln i)$$

=
$$\ln \infty - 0 \longrightarrow \infty$$
, therefore $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ diverge $\sin \alpha = 1$ \sin

2. Proof:

$$a \qquad \frac{3}{2} \qquad b$$
 $p_0 = a \quad f(p_0) < 0 \quad -1 \quad 0^{\frac{1}{2}} \quad 1$
 $p_1 = \frac{a+b}{2} \quad \text{if} \quad a+b < 2 \Rightarrow \frac{1}{2} < \frac{1}{2} < 1$

then $f(p_1) > 0 \Rightarrow \text{set} \quad b = p_1 \Rightarrow p_1 \text{ will converge to } 0$

if $a+b>2 \Rightarrow | < P_1 < \frac{3}{2}$ then $f(P_1) < 0 \Rightarrow set \ a = P_1$ $\Rightarrow P_1 \text{ will converge } to 1$ if $a+b=2 \Rightarrow P_1 = 1 \Rightarrow f(P_1) = 0$ then P_1 is the zero point.

3. (a) proof: $W(x) = \frac{20}{11}(x-i) = (x-1)(x-2) \cdots (x-20)$ i=1

 $\therefore \mathcal{N}'(x) = \sum_{i=1}^{20} \frac{\mathcal{N}(x)}{(x-i)} \implies x=16 \text{ is the root of wa}$

therefore: $W'(16) = \frac{(16-1)(16-2)---(14-16)---(16-20)}{(16-16)} + 0$

 $= |f| \cdot (-1) \cdot (-2) \cdot (-3) (-4)$ $= |f| \cdot 4|$

(b) note for every i & [1,20]:

$$W'(\hat{\nu}) = \frac{(x-1)\cdots(x-\hat{\nu})\cdots(x-\hat{\nu})}{(x-\hat{\nu})} + D = \frac{W(x)}{x-\hat{\nu}}$$

$$= (\chi - 1) \cdot (\chi - 1) \cdot (\chi - 1) \cdot (\chi - 20)$$

4. Proof: the fixed point iteration is the Scheme: $p_n = g(p_{n-1})$ By assumption, g(p) = p and |g(p)| < 1,

so there exists a S where: $|g'(x)| \le k \quad \forall x \in [p-S, p+S]$ here k is in (0,1).

If $x \in [p-8, p+8]$, the mean value theorem implies that for some $\frac{3}{5}$ between x and $\frac{1}{5}$, so that: $|g(x) - g(p)| = |g'(\frac{1}{5})| \cdot |x-p|$.

therefore: $|g(x) - g(p)| = |g(x) - p| = |g'(\xi)| \cdot |x - p|$ $\leq k |x - p| < |x - p|$ Since $x \in [p - S, p + S]$, $|x - p| < S \Rightarrow |g(x) - p| < S$ Hence $g(x) \in (p - S, p + S)$ when $x \in (p - S, p + S)$. In other word, in interval [p - S, p + S], g maps into itself and $|g'(x)| \leq k$.

According to fixed-point theorem, to coverges to ?.