Assignment 2: Coding Basics

Rachel Williams

OVERVIEW

This exercise accompanies the lessons/labs in Environmental Data Analytics on coding basics.

Directions

- 1. Rename this file <FirstLast>_A02_CodingBasics.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. After Knitting, submit the completed exercise (PDF file) to Canvas.

Basics, Part 1

- 1. Generate a sequence of numbers from one to 55, increasing by fives. Assign this sequence a name.
- 2. Compute the mean and median of this sequence.
- 3. Ask R to determine whether the mean is greater than the median.
- 4. Insert comments in your code to describe what you are doing.

```
#1. Labelled a sequence that counts by 5 starting from 5 to 55
fiveseq <- seq(from=5, to=55, by=5)
#2. These commands find the mean and median of the fiveseq sequence
mean(fiveseq)</pre>
```

[1] 30

```
median(fiveseq)
```

[1] 30

```
#3. I used this to see if mean being greater than the median is a true statement mean(fiveseq)>median(fiveseq)
```

[1] FALSE

Basics, Part 2

- 5. Create three vectors, each with four components, consisting of (a) student names, (b) test scores, and (c) whether they are on scholarship or not (TRUE or FALSE).
- 6. Label each vector with a comment on what type of vector it is.
- 7. Combine each of the vectors into a data frame. Assign the data frame an informative name.
- 8. Label the columns of your data frame with informative titles.

```
vector1 <- c("Amy","Brad","Chris","Dana") #Character vector
vector2 <- c(89,68,90,75) #Numeric vector
vector3 <- c(TRUE,FALSE,FALSE,TRUE) #Logical vector
student_status<- (data.frame("Name"=vector1, "Grade"=vector2, "Scholarship"=vector3))</pre>
```

9. QUESTION: How is this data frame different from a matrix?

Answer: This is different than a matrix because it can combine different types of vector data. Matrices can only hold one type of data at a time (ex. only numeric, only logical, etc.).

- 10. Create a function with one input. In this function, use if...else to evaluate the value of the input: if it is greater than 50, print the word "Pass"; otherwise print the word "Fail".
- 11. Create a second function that does the exact same thing as the previous one but uses ifelse() instead if if...else.
- 12. Run both functions using the value 52.5 as the input
- 13. Run both functions using the **vector** of student test scores you created as the input. (Only one will work properly...)

```
#10. Create a function using if...else
function1 <- function(x){
   if(x>50) {print("Pass")}
   else {print("Fail")}
}

#11. Create a function using ifelse()
function2 <- function(x){ifelse(x>50,print("Pass"),print("Fail"))}
#12a. Run the first function with the value 52.5
function1(52.5)
## [1] "Pass"
```

```
#12b. Run the second function with the value 52.5 function2(52.5)
```

```
## [1] "Pass"
## [1] "Pass"
```

```
#13a. Run the first function with the vector of test scores
#function1(vector2)
#13b. Run the second function with the vector of test scores
function2(vector2)
```

```
## [1] "Pass" "Pass" "Pass" "Pass" "Pass"
```

14. QUESTION: Which option of if...else vs. ifelse worked? Why? (Hint: search the web for "R vectorization")

Answer: The 'ifelse' function worked becasue 'if... else' is not vectorized. This means it will not operate on all elements of a vector without needing to loop and act on elements seperately. 'ifelse' is able to see if the function is true through each number in the vector.

NOTE Before knitting, you'll need to comment out the call to the function in Q13 that does not work. (A document can't knit if the code it contains causes an error!)