Suppose  $T\in\mathcal{L}(V)$  and  $\lambda\in\mathbb{F}$ . Prove that  $\lambda$  is an eigenvalue of T iff  $\overline{\lambda}$  is an eigenvalue of  $T^*$ .

Given  $\lambda$  is an eigenvalue of T, show that  $\overline{\lambda}$  is an eigenvalue of  $T^*$ . This will imply both directions, since  $\lambda=\overline{\overline{\lambda}}$  and  $T=T^{*^*}$ 

Suppose  $\mathcal{M}(T)$  is the matrix of T wrt some orthonormal basis. Then, the matrix  $\mathcal{M}(T^*)$  of  $T^*$  wrt the same orthonormal basis will equal the conjugate transpose of  $\mathcal{M}(T)$ .

Eigenvalues lie on the diagonal of a matrix, so the conjugate transpose will have the effect of conjugating each eigenvalue. Thus, the eigenvalues of  $\mathcal{M}(T)$  are conjugates of the eigenvalues of  $\mathcal{M}(T^*)$ .