Mini-problème.

Les fonctions absolument monotones sont sommes de leur série de Taylor.

1. (a) La fonction exponentielle est de classe C^{∞} sur tout intervalle de \mathbb{R} et pour tout entier naturel n, on a $\exp^{(n)} = \exp$.

La fonction exponentielle est une fonction AM sur tout intervalle de \mathbb{R} .

(b) La fonction $x \mapsto 1 - x$ est de classe C^{∞} sur [0, 1[, à valeurs dans \mathbb{R}_+^* et $-\ln$ est de classe C^{∞} sur \mathbb{R}_+^* .

Par composition $u: x \mapsto -\ln(1-x)$ est de classe \mathcal{C}^{∞} sur [0,1[. Pour $x \in [0,1[$, on a $u'(x)=(1-x)^{-1}, u''(x)=(1-x)^{-2}, u^{(3)}(x)=2(1-x)^{-3}.$ On conjecture que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1[u^{(n)}(x)=(n-1)!(1-x)^{-n}.$ Ceci se prouve facilement par récurrence. Et puisqu'on trouve des dérivées successives strictement positives sur [0,1[(c'est aussi le cas pour celle d'ordre 0) on a prouvé que $x \mapsto -\ln(1-x)$ est AM sur [0,1[].

2. (a) Puisque f est de classe \mathcal{C}^{n+1} sur I, la formule de Taylor avec reste intégrale donne pour $x \in [0, b[$

$$R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

- (b) Pour $x \in [0, b[$ fixé, puisque f est AM sur [0, b[, $f^{(n+1)}$ y est positive, et la fonction $t \mapsto \frac{(x-t)^n}{n!} f^{(n+1)}(t)$ est continue et positive sur [0, x] (avec $0 \le x$). Par positivité de l'intégrale, le nombre $R_n(x)$ est positif.
- (c) Montrer que $x \mapsto \frac{R_n(x)}{x^n}$ est croissante sur [0, b[et préciser $\lim_{x\to 0} \frac{R_n(x)}{x^n}$.

Soient x et y tels que $0 < x \le y < b$. Pour $t \in [0, x]$, on a

$$\frac{(1-\frac{t}{x})^n}{n!}f^{(n+1)}(t) \le \frac{(1-\frac{t}{y})^n}{n!}f^{(n+1)}(t).$$

Par croissance de l'intégrale $(0 \le x)$

$$\frac{R_n(x)}{x^n} = \int_0^x \frac{(1 - \frac{t}{x})^n}{n!} f^{(n+1)}(t) dt \le \int_0^x \frac{(1 - \frac{t}{y})^n}{n!} f^{(n+1)}(t) dt$$

Or, par relation de Chasles,

$$\int_0^x \frac{(1 - \frac{t}{y})^n}{n!} f^{(n+1)}(t) dt = \underbrace{\int_0^y \frac{(1 - \frac{t}{y})^n}{n!} f^{(n+1)}(t) dt}_{=\frac{R_n(y)}{n}} - \underbrace{\int_x^y \frac{(1 - \frac{t}{y})^n}{n!} f^{(n+1)}(t) dt}_{\geq 0}$$

Par transitivité, on en déduit que $\frac{R_n(x)}{x^n} \leq \frac{R_n(y)}{y^n}$

Pour la limite de $\frac{R_n(x)}{x^n}$ en 0, on peut revenir à la définition de $R_n(x)$. En effet, puisque c'est la différence d'une fonction f de classe \mathcal{C}^n sur [0, b[, la formule de Taylor-Young nous assure que $R_n(x) = o(x^n)$. On a donc

$$\lim_{x \to 0} \frac{R_n(x)}{x^n} = 0$$

(d) Le réel x a été fixé dans [0, b[.

Puisque la fonction f est AM sur [0, b[, la série $\sum \frac{f^{(n)}(0)}{n!}x^n$ est à <u>termes positifs</u>. La positivité du reste établie en 2-(a) nous donne que pour $n \in \mathbb{N}$ on a

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \le f(x).$$

Puisque la somme partielle de la série à terme positifs est majorée,

$$\sum \frac{f^{(n)}(0)}{n!} x^n \text{ converge}$$

(e) En utilisant 2-(c), on obtient pour 0 < x < y < b

$$0 \le R_n(x) \le \left(\frac{x}{y}\right)^n R_n(y) \le \left(\frac{x}{y}\right)^n f(y).$$

Puisque $\left|\frac{x}{y}\right|<1,$ ceci donne que $R_n(x)\underset{n\to+\infty}{\longrightarrow}0,$ et prouve que

$$S(x) = f(x)$$
 pour tout $x \in [0, b[$.

Exercice facultatif(*)

• Analyse.

Notons f la permutation (123)(456) et considérons $\sigma \in S_6$ telle que $\sigma \circ f = f \circ \sigma$. On a donc

$$\sigma \circ f \circ \sigma^{-1} = f$$

 soit

$$\sigma \circ (123) \circ (456) \circ \sigma^{-1} = (123) \circ (456)$$

ou encore

$$\left(\sigma \circ (123) \circ \sigma^{-1}\right) \left(\sigma \circ (456) \circ \sigma^{-1}\right) = (123) \circ (456)$$

Nous savons calculer le "conjugué" d'un cycle. En l'espèce,

$$\sigma \circ (123) \circ \sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3))$$
 et $\sigma \circ (455) \circ \sigma^{-1} = (\sigma(4) \ \sigma(5) \ \sigma(6))$

On a donc

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) \circ (\sigma(4) \ \sigma(5) \ \sigma(6)) = (123) \circ (456)$$

L'unicité de la décomposition de f en produit de cycles amène que

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) = (123)$$
 ou bien $(\sigma(1) \ \sigma(2) \ \sigma(3)) = (456)$,

même chose pour $(\sigma(4) \ \sigma(5) \ \sigma(6))$.

 \bullet Synthèse. On souhaite construire une permutation σ telle que

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) = (123)$$
 et $(\sigma(4) \ \sigma(5) \ \sigma(6)) = (456)$,

ou bien

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) = (456)$$
 et $(\sigma(4) \ \sigma(5) \ \sigma(6)) = (123)$.

Dans le premier cas, il suffit de choisir $\sigma(1)$ et $\sigma(4)$ pour fixer la permutation $(3 \times 3$ choix).

Dans le second cas, on a 9 choix aussi.

Bien sûr, si σ est ainsi choisie, elle commute avec f car on a alors $\sigma \circ f \circ \sigma^{-1} = f$.

• Conclusion. Il y a 18 permutations qui commutent avec ce produit de 3-cycles