Міністерство освіти і науки України Національний університет «Запорізька Політехніка»

Кафедра програмних засобів

3BIT

з лабораторної роботи №3

з дисципліни «Моделювання та Аналіз Програмного Забезпечення» на тему:

«Моделювання системи масового обслуговування зі зворотнім зв'язком. Моделювання багатоканальної системи масового обслуговування»

\mathbf{r}							
B	TA	ľ	n	ш	a	D	٠

Студент групи КНТ-122

О. А. Онищенко

Прийняли:

Викладач:

Ж. К. Камінська

МОДЕЛЮВАННЯ СИСТЕМИ МАСОВОГО ОБСЛУГОВУВАННЯ ЗІ ЗВОРОТНІМ ЗВ'ЯЗКОМ. МОДЕЛЮВАННЯ БАГАТОКАНАЛЬНОЇ СИСТЕМИ МАСОВОГО ОБСЛУГОВУВАННЯ

Мета роботи

Метою роботи ϵ вивчення методів моделювання СМО зі зворотнім зв'язком та багатоканальних СМО на основі використання SIMC

Результати виконання

Код програми

```
#include "../simc/simc.h"
#include <iostream>
using namespace std;
void one() {
  auto Modeling_Hours=40;
  auto Total_Modeling_Time=Modeling_Hours*60;
  auto Assembly_Delay=30;
  auto Firing_Delay=8;
  auto Worker_Hourly_Salary=50;
  auto Firing_Daily_Price=200;
  auto Material_Price=2;
  auto Product_Price=7;
  auto Workers_Min=4;
  auto Workers_Max=6;
  auto Best_Result=0;
  auto Best_Count=0;
  pqueue Assembly_Queue;
  pstorage Assembly_Facility;
  pqueue Firing_Queue;
  pfacility Firing_Facility;
  initlist(Total_Modeling_Time);
  initcreate(1, 0);
```

```
newgueue(Assembly_Queue, "\"Assembly Queue\"");
  newqueue(Firing_Queue, "\"Firing Queue\"");
  newfac(Firing_Facility, "\"Firing Facility\"");
  for (auto
Workers_Count=Workers_Min;Workers_Count<=Workers_Max;Workers_Count++) {</pre>
    for (auto j=Workers_Min;j<=Workers_Count;j++) initcreate(1,0);</pre>
    newstorage(Assembly_Facility, "\"Assembly Facility\"", 3);
    auto Parts_Assembled=0;
    while (systime<Total_Modeling_Time) {</pre>
      plan();
      switch (sysevent) {
        case 1: inqueue(Assembly_Queue); break;
        case 2: enter(Assembly_Facility, 1); break;
        case 3: outqueue(Assembly_Queue); break;
        case 4: delayt(Assembly_Delay); break;
        case 5: leave(Assembly_Facility, 1); break;
        case 6: inqueue(Firing_Queue); break;
        case 7: seize(Firing_Facility); break;
        case 8: outqueue(Firing_Queue); break;
        case 9: delayt(Firing_Delay); break;
        case 10: outfac(Firing_Facility); Parts_Assembled+=1; break;
        case 11: next(1); break;
      }
    }
    auto
Workers_Salary=Worker_Hourly_Salary*Modeling_Hours*Workers_Count;
    auto Firing_Facility_Cost=Firing_Daily_Price/8*Modeling_Hours;
    auto Materials_Cost=Parts_Assembled*Material_Price;
    auto Parts_Cost=Parts_Assembled*Product_Price;
Total_Expenses=Workers_Salary+Firing_Facility_Cost+Materials_Cost;
    auto Profit=Parts_Cost-Total_Expenses;
    if (abs(Profit)>abs(Best_Result)) { Best_Result=Profit;
Best_Count=Workers_Count; }
    cout << "Workers: " << Workers_Count << " Profit: " << Profit <<</pre>
endl;
 }
  cout << "\nBest Count: " << Best_Count << " Best Result: " <<</pre>
Best_Result << endl << endl;</pre>
 printall();
}
void two() {
  auto Interval=115;
```

```
auto First_Delay=335;
  auto Second_Delay=110;
  auto Modeling_Hours=1;
  auto Total_Modeling_Time=Modeling_Hours*60*60;
  pqueue First_Queue;
  pqueue Second_Queue;
  pfacility First_Facility;
  pfacility Second_Facility;
  initlist(Total_Modeling_Time);
  initcreate(1, 0);
  newqueue(First_Queue, "\"First Queue\"");
  newqueue(Second_Queue, "\"Second Queue\"");
  newfac(First_Facility, "\"First Facility\"");
  newfac(Second_Facility, "\"Second Facility\"");
  while (systime<Total_Modeling_Time) {</pre>
    plan();
    switch (sysevent) {
      case 1: create(Interval); break;
      case 2: cout << "First Queue Length: " << First_Queue->lq << endl;</pre>
if (Second_Queue->status == queue::empty) next(8); else
inqueue(First_Queue); break;
      case 3: seize(First_Facility); break;
      case 4: outqueue(First_Queue); break;
      case 5: delayt(First_Delay); break;
      case 6: outfac(First_Facility); break;
      case 7: destroy(); break;
      case 8: create(Interval); break;
      case 9: cout << "Second Queue Length: " << Second_Queue->lq <<</pre>
endl; Second_Queue->mq=1; inqueue(Second_Queue); break;
      case 10: seize(Second_Facility); break;
      case 11: outqueue(Second_Queue); break;
      case 12: delayt(Second_Delay); break;
      case 13: outfac(Second_Facility); break;
      case 14: destroy(); break;
   }
  }
  cout << "\nFirst Queue Max Length: " << First_Queue->mq << " Average</pre>
Length: " << First_Queue->lm << endl << endl;</pre>
  printall();
}
```

```
void three() {
  auto First_Interval=1;
  auto First_Delay=1;
  auto Second_Interval=4;
  auto Second_Delay=5;
  auto Total_Modeling_Time=300;
  // first t can be served only if second facility is seized
  pfacility First_Facility;
  pfacility Second_Facility;
  initlist(Total_Modeling_Time);
  initcreate(1, 0);
  newfac(First_Facility, "\"First Facility\"");
  newfac(Second_Facility, "\"Second Facility\"");
  while (systime<Total_Modeling_Time) {</pre>
    plan();
    switch (sysevent) {
      case 1: create(First_Interval); break;
      case 2: if (Second_Facility->status == facility::seized)
seize(First_Facility); else next(7); break;
      case 3: delayt(First_Delay); break;
      case 4: outfac(First_Facility); break;
      case 6: destroy(); break;
      case 7: create(Second_Interval); break;
      case 8: seize(Second_Facility); break;
      case 9: delayt(Second_Delay); break;
      case 10: outfac(Second_Facility); break;
      case 11: destroy(); break;
    }
  }
  cout << "Modeling finished, praise Jesus Christ our Holy Lord GOD</pre>
Almighty" << endl << endl;
  printall();
}
int main()
  one();
  two();
```

```
three();
return 0;
}
```

Виконання програми

					CIM-CI++ v1.2					НУ"3П"	2024
				Ж.	К. Камінська						
				C	М. Сердюк						
3ar	альні параметри с	редовища:									
Поточний час		2424.000									
Поточна подія	5	5									
Поточний транзакт	1										
Усього подій 761.000											
Час моделювання 0.00 сек.											
Середній час виконання події 0.00000 сек/подія											
подія	1	2	3	4	5	6			8	9	10
УСЬОГО	64	64	64	64	64	63	6.	3	63	63	63
ПОДІЯ УСЬОГО	11 63	12 63	13	14	15	16	1	7	18	19	20
УСБОГО	0.3	0.5									
				Черги							
Черга	Кількість входжень		Макс. довжина		Середній час очікування			Середня довжина		% входжень у порожню чергу	
лерга	3 нульовим часом очікування		Поточна довжина		Без урахування нульових входжень		джень	середы дозмини		ло влоджень у порожню чергу	
"Assembly Queue"	64 64		0		0.000			0.000		100.000	
h	63		1		0.000		-	0.000		100.000	
"Firing Queue"	63		0		0.000						
				Накопичув	ачі						
Накопичувач	€мність	Завантаженість	Середній час перебування				Вміст Макс.			Кількість входжень	
"Assembly Storage"	3	0.264	30.000		0		1			64	
"Firing Facility"	1	0.211	8.0	8.000			1		0.21	6	3

Рисунок 1.1 – Загальне завдання – браузер

Enter a name for the Report HTML file: gen

Workers: 4 Profit: -8370 Workers: 5 Profit: -11000 Workers: 6 Profit: -13000

Best Count: 6 Best Result: -13000

```
Enter a name for the Report HTML file: gen
First Queue Length: 0
Second Queue Length: 0
First Queue Length: 0
Second Queue Length: 0
Second Queue Length: 0
First Queue Length: 0
Second Queue Length: 0
Second Queue Length: 1
Second Queue Length: 2
First Queue Length: 0
Second Queue Length: 2
Second Queue Length: 3
Second Queue Length: 4
First Queue Length: 0
Second Queue Length: 4
Second Queue Length: 5
Second Queue Length: 6
First Queue Length: 1
Second Queue Length: 6
Second Queue Length: 7
Second Queue Length: 8
First Queue Length: 1
Second Oueue Length: 8
Second Queue Length: 9
Second Queue Length: 10
First Oueue Length: 2
Second Queue Length: 10
Second Queue Length: 11
Second Oueue Length: 12
First Queue Length: 3
Second Queue Length: 12
Second Queue Length: 13
Second Queue Length: 14
First Queue Length: 3
Second Queue Length: 14
Second Queue Length: 15
Second Queue Length: 16
First Queue Length: 4
Second Queue Length: 16
Second Queue Length: 17
Second Oueue Length: 18
First Queue Length: 5
Second Queue Length: 18
Second Oueue Length: 19
Second Queue Length: 20
First Queue Length: 5
```

```
Second Queue Length: 20
Second Queue Length: 21
Second Queue Length: 22
First Queue Length: 6
Second Queue Length: 22
Second Queue Length: 23
Second Queue Length: 24
First Queue Length: 7
Second Queue Length: 24
Second Queue Length: 25
Second Queue Length: 26
First Queue Length: 7
Second Queue Length: 26
Second Queue Length: 27
Second Queue Length: 28
First Queue Length: 8
Second Queue Length: 28
Second Queue Length: 29
Second Queue Length: 30
First Queue Length: 9
Second Queue Length: 30
Second Queue Length: 31
Second Queue Length: 32
First Queue Length: 9
Second Queue Length: 32
Second Queue Length: 33
Second Queue Length: 34
First Queue Length: 10
Second Queue Length: 34
Second Queue Length: 35
Second Queue Length: 36
First Queue Length: 11
Second Queue Length: 36
Second Queue Length: 37
Second Queue Length: 38
First Queue Length: 11
Second Queue Length: 38
Second Queue Length: 39
Second Queue Length: 40
First Queue Length: 12
Second Queue Length: 40
Second Queue Length: 41
Second Queue Length: 42
First Queue Length: 13
Second Queue Length: 42
Second Queue Length: 43
Second Queue Length: 44
First Queue Length: 13
Second Queue Length: 43
Second Queue Length: 44
Second Queue Length: 45
First Queue Length: 14
Second Queue Length: 45
Second Queue Length: 46
Second Queue Length: 47
First Queue Length: 15
Second Queue Length: 47
Second Queue Length: 48
Second Queue Length: 49
First Queue Length: 15
Second Queue Length: 49
Second Queue Length: 50
Second Queue Length: 51
First Queue Length: 16
Second Queue Length: 51
Second Queue Length: 52
Second Queue Length: 53
First Queue Length: 17
Second Queue Length: 53
Second Queue Length: 54
Second Queue Length: 55
First Queue Length: 17
Second Queue Length: 55
Second Queue Length: 56
Second Queue Length: 57
First Queue Length: 18
Second Queue Length: 57
Second Queue Length: 58
Second Queue Length: 59
First Queue Max Length: 19 Average Length: 7.72768
```

Enter a name for the Report HTML file: gen
Modeling finished, praise Jesus Christ our Holy Lord GOD Almighty

Рисунок 1.2 – Загальне завдання – консолька †

Висновки

Таким чином, ми вивчили методи моделювання СМО зі зворотнім зв'язком, а також багатоканальні СМО на основі використання SIMC

Контрольні питання

Багатоканальні прилади. Множинні типи даних "НАКОПИЧУВАЧ" (багатоканальний прилад)

Накопичувач то ϵ багатоканальний прилад де сам накопичувач може бути звільнений не тим транзактом, яким був зайнятий. То ϵ динамічний об'єкт для моделювання декілької пристроїв.

Процедури створення – знищення накопичувача

Створення накопичувачів виконується функцією newstorage, а знищення виконується функцією destrs.

Блокування транзактів

Блокування транзактів здійснюється функцією void wait(event e) де е то ϵ номер очікуваної події.