

Available online at www.sciencedirect.com

ScienceDirect

Full Length Article

Generalized fuzzy b-closed and generalized *-fuzzy b-closed sets in double fuzzy topological spaces

Fatimah M. Mohammed a,*,1, M.S.M. Noorani a, A. Ghareeb b

- ^a School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- ^b Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

ARTICLE INFO

Article history:
Received 28 July 2015
Received in revised form 2
September 2015
Accepted 2 September 2015
Available online 25 September 2015

Keywords:

Double fuzzy topology (r, s)-generalized fuzzy b-closed sets (r, s)-generalized *-fuzzy b-closed sets

Mathematics subject classification:

54A40

45D05

03E72

ABSTRACT

The purpose of this paper is to introduce and study a new class of fuzzy sets called (r, s)-generalized fuzzy b-closed sets and (r, s)-generalized \star -fuzzy b-closed sets in double fuzzy topological spaces. Furthermore, the relationships between the new concepts are introduced and established with some interesting examples.

© 2015 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

A progressive development of fuzzy sets [1] has been made to discover the fuzzy analogues of the crisp sets theory. On the other hand, the idea of intuitionistic fuzzy sets was first introduced by Atanassov [2]. Later on, Çoker [3] presented the

notion of intuitionistic fuzzy topology. Samanta and Mondal [4], introduced and characterized the intuitionistic gradation of openness of fuzzy sets which is a generalization of smooth topology and the topology of intuitionistic fuzzy sets. The name "intuitionistic" is discontinued in mathematics and applications. Garcia and Rodabaugh [5] concluded that they work under the name "double".

^{*} Corresponding author. Tel.: +20 1014725551.

E-mail address: nafea_y2011@yahoo.com (F.M. Mohammed).

¹ Permanent Address: College of Education, Tikrit University, Iraq. http://dx.doi.org/10.1016/j.ejbas.2015.09.001

In 2009, Omari and Noorani [6] introduced generalized b-closed sets (briefly, gb-closed) in general topology. As a generalization of the results in References 6 and 7, we introduce and study (r, s)-generalized fuzzy b-closed sets in double fuzzy topological spaces, then a new class of fuzzy sets between an (r, s)-fuzzy b-closed sets and an (r, s)-generalized fuzzy b-closed sets namely (r, s)-generalized \star -fuzzy b-closed sets is introduced and investigated. Finally, the relationships between (r, s)-generalized fuzzy b-closed sets are introduced and established with some interesting counter examples.

2. Preliminaries

Throughout this paper, X will be a non-empty set, I = [0, 1], $I_0 = (0, 1]$ and $I_1 = [0, 1)$. A fuzzy set λ is quasi-coincident with a fuzzy set μ (denoted by, $\lambda q \mu$) iff there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$ and they are not quasi-coincident otherwise (denoted by, $\lambda \bar{q} \mu$). The family of all fuzzy sets on X is denoted by I^X . By $\underline{0}$ and $\underline{1}$, we denote the smallest and the greatest fuzzy sets on X. For a fuzzy set $\lambda \in I^X$, $\underline{1} - \lambda$ denotes its complement. All other notations are standard notations of fuzzy set theory.

Now, we recall the following definitions which are useful in the sequel.

Definition 2.1. (see [4]) A double fuzzy topology (τ, τ^*) on X is a pair of maps $\tau, \tau^* : I^X \to I$, which satisfies the following properties:

- (O1) $\tau(\lambda) \leq \underline{1} \tau^*(\lambda)$ for each $\lambda \in I^X$.
- (O2) $\tau(\lambda_1 \wedge \lambda_2) \ge \tau(\lambda_1) \wedge \tau(\lambda_2)$ and $\tau^*(\lambda_1 \wedge \lambda_2) \le \tau^*(\lambda_1) \vee \tau^*(\lambda_2)$ for each λ_1 , $\lambda_2 \in I^X$.
- $(\text{O3}) \quad \tau(\vee_{i\in\Gamma}\lambda_i) \geq \wedge_{i\in\Gamma}\tau(\lambda_i) \text{ and } \tau^*(\vee_{i\in\Gamma}\lambda_i) \leq \vee_{i\in\Gamma}\tau^*(\lambda_i) \text{ for each } \lambda_i \in I^X, i \in \Gamma.$

The triplet (X, τ, τ^*) is called a double fuzzy topological space (briefly, dfts). A fuzzy set λ is called an (r, s)-fuzzy open (briefly, (r, s)-fo) if $\tau(\lambda) \ge r$ and $\tau^*(\lambda) \le s$. A fuzzy set λ is called an (r, s)-fuzzy closed (briefly, (r, s)-fc) set iff $\underline{1} - \lambda$ is an (r, s)-fo set.

Theorem 2.1. (see [8]) Let (X, τ, τ^*) be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $\lambda \in I^X$ are defined by

$$C_{\tau,\tau^*}(\lambda, r, s) = \bigwedge \{ \mu \in I^X | \lambda \le \mu, \tau(\underline{1} - \mu) \ge r, \tau^*(\underline{1} - \mu) \le s \},$$

$$I_{\tau,\tau^*}(\lambda, r, s) = \vee \{\mu \in I^X | \mu \le \lambda, \tau(\mu) \ge r, \tau^*(\mu) \le s\}.$$

Where $r \in I_0$ and $s \in I_1$ such that $r + s \le 1$.

Definition 2.2. Let (X, τ, τ^*) be a dfts. For each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$. A fuzzy set λ is called:

- 1. An (r, s)-fuzzy semiopen (see [9]) (briefly, (r, s)-fso) if $\lambda \leq C_{r,r^*}(I_{r,r^*}(\lambda, r, s), r, s)$. λ is called an (r, s)-fuzzy semi closed (briefly, (r, s)-fso) iff $\underline{1} \lambda$ is an (r, s)-fso set.
- 2. An (r, s)-generalized fuzzy closed (see [10]) (briefly, (r, s)-gfc) if $C_{\tau, \tau}(\lambda, r, s) \le \mu$, $\lambda \le \mu$, $\tau(\mu) \ge r$ and $\tau^*(\mu) \le s$. λ is called an

(r, s)-generalized fuzzy open (briefly, (r, s)-gfo) iff $\underline{1} - \lambda$ is (r, s)-gfc set.

Definition 2.3. (see [11,12]) Let (X, τ, τ^*) be a dfts. For each λ , $\mu \in I^X$ and $r \in I_0$, $s \in I_1$. Then, a fuzzy set λ is said to be (r, s)-fuzzy generalized $\psi \rho$ -closed (briefly, (r, s)-fg $\psi \rho$ -closed) if $\psi C_{\tau,\tau^*}(\lambda, r, s) \leq \mu$ such that $\lambda \leq \mu$ and μ is (r, s)-fuzzy ρ -open set. λ is called (r, s)-fuzzy generalized $\psi \rho$ -open (briefly, (r, s)-fg $\psi \rho$ -open) iff $1 - \lambda$ is (r, s)-fg $\psi \rho$ -closed set.

3. (r, s)-generalized fuzzy b-closed sets

In this section, we introduce and study some basic properties of a new class of fuzzy sets called an (r, s)-fuzzy b-closed sets and an (r, s)-generalized fuzzy b-closed.

Definition 3.1. Let (X, τ, τ^*) be a dfts. For each $\lambda \in I^X, r \in I_0$ and $s \in I_1$. A fuzzy set λ is called:

1. An (r, s)-fuzzy b-closed (briefly, (r, s)-fbc) if

$$\lambda \geq (I_{\tau,\tau^*}(C_{\tau,\tau^*}(\lambda,r,s),r,s)) \wedge (C_{\tau,\tau^*}(I_{\tau,\tau^*}(\lambda,r,s),r,s)).$$

 λ is called an (r, s)-fuzzy b-open (briefly, (r, s)-fbo) iff $\underline{1} - \lambda$ is (r, s)-fbc set.

2. An (r, s)-generalized fuzzy b-closed (briefly, (r, s)-gfbc) if $bC_{\tau,\tau'}(\lambda, r, s) \le \mu$, $\lambda \le \mu$, $\tau(\mu) \ge r$ and $\tau^*(\mu) \le s$. λ is called an (r, s)-generalized fuzzy b-open (briefly, (r, s)-gfbo) iff $\underline{1} - \lambda$ is (r, s)-gfbc set.

Definition 3.2. Let (X, τ, τ^s) be a dfts. Then double fuzzy b-closure operator and double fuzzy b-interior operator of $\lambda \in I^X$ are defined by

$$bC_{\tau,\tau^*}(\lambda, r, s) = \bigwedge \{ \mu \in I^X | \lambda \le \mu \text{ and } \mu \text{ is } (r, s) \text{-fbc} \},$$

$$bI_{\tau,\tau^*}(\lambda, r, s) = \vee \{\mu \in I^X | \mu \le \lambda \text{ and } \mu \text{ is } (r, s)\text{-fbo}\}.$$

Where $r \in I_0$ and $s \in I_1$ such that $r + s \le 1$.

Remark 3.1. Every (r, s)-fbc set is an (r, s)-gfbc set.

The converse of the above remark may be not true as shown by the following example.

Example 3.1. Let $X = \{a, b\}$. Defined μ , α and β by:

$$\mu(a) = 0.3$$
, $\mu(b) = 0.4$,

$$\alpha(a) = 0.4$$
, $\alpha(b) = 0.5$,

$$\beta(a) = 0.3, \quad \beta(b) = 0.7,$$

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 1, & \text{otherwise.} \end{cases}$$

Then β is an $(\frac{1}{2}, \frac{1}{2})$ -gfbc set but not an $(\frac{1}{2}, \frac{1}{2})$ -fbc set.

Definition 3.3. Let (X, τ, τ^*) be a dfts, $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$. λ is called an (r, s)-fuzzy b-Q-neighborhood of $x_t \in P_t(X)$ if there exists an (r, s)-fbo set $\mu \in I^X$ such that $x_t q \mu$ and $\mu \le \lambda$.

The family of all (r, s)-fuzzy b-Q-neighborhood of x_t denoted by b-Q (x_t, r, s) .

Theorem 3.1. Let (X, τ, τ^*) be a dfts. Then for each $\lambda, \mu \in I^X, r \in I_0$ and $s \in I_1$, the operator bC_{τ,τ^*} satisfies the following statements:

(C1)	$bC_{r,r^*}(\underline{0},r,s) = \underline{0}, \ bC_{r,r^*}(\underline{1},r,s) = \underline{1},$
(C2)	$\lambda \leq bC_{\tau,\tau'}(\lambda,r,s)$,
(C3)	If $\lambda \leq \mu$, then $bC_{\tau,\tau^*}(\lambda, r, s) \leq bC_{\tau,\tau^*}(\mu, r, s)$,
(C4)	If λ is an (r, s) -fbc, then $\lambda = bC_{r,r}(\lambda, r, s)$,
(C5)	If μ is an (r, s) -fbo, then $\mu q \lambda$ iff $\mu q b C_{r,r}(\lambda, r, s)$,
(C6)	$bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda,r,s),r,s) = bC_{\tau,\tau^*}(\lambda,r,s),$
(C7)	$bC_{\tau,\tau^*}(\lambda,r,s) \vee bC_{\tau,\tau^*}(\mu,r,s) \leq bC_{\tau,\tau^*}(\lambda \vee \mu,r,s)$,
(C8)	$bC_{\tau,\tau^*}(\lambda,r,s) \wedge bC_{\tau,\tau^*}(\mu,r,s) \ge bC_{\tau,\tau^*}(\lambda \wedge \mu,r,s)$,

Proof. (1), (2), (3), and (4) are proved easily.

(5) Let $\mu \bar{q} \lambda$ and μ is an (r, s)-fbo set, then $\lambda \leq \underline{1} - \mu$. But we have, $\mu q \lambda$ iff $\mu q b C_{\tau,r^*}(\lambda, r, s)$ and

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq bC_{\tau,\tau^*}(\underline{1} - \mu, r, s) = \underline{1} - \mu,$$

so $\mu \bar{q}bC_{\tau,\tau}(\lambda,r,s)$, which is contradiction. Then $\mu q\lambda$ iff $\mu qbC_{\tau,\tau}(\lambda,r,s)$.

(6) Let x_t be a fuzzy point such that $x_t \nleq bC_{r,r^*}(\lambda, r, s)$. Then there is an (r, s)-fuzzy b-Q neighborhood μ of x_t such that $\mu \overline{q} \lambda$. But by (5), we have an (r, s)-fuzzy b-Q-neighborhood μ of x_t such that

 $\mu \overline{q} b C_{\tau,\tau^*}(\lambda, r, s)$

Also,

 $x_t \not\leq bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda, r, s), r, s).$

Then

 $bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda,r,s),r,s) \leq bC_{\tau,\tau^*}(\lambda,r,s).$

But we have,

 $bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda,r,s),r,s) \geq bC_{\tau,\tau^*}(\lambda,r,s).$

Therefore

 $bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda,r,s),r,s) = bC_{\tau,\tau^*}(\lambda,r,s).$

(7) and (8) are obvious.

Theorem 3.2. Let (X, τ, τ^*) be a dfts. Then for each λ , $\mu \in I^X$, $r \in I_0$ and $s \in I_1$, the operator bI_{τ,τ^*} satisfies the following statements:

- 1. $bI_{\tau,\tau^*}(\underline{1}-\lambda,r,s) = \underline{1}-bC_{\tau,\tau^*}(\lambda,r,s), \quad bC_{\tau,\tau^*}(\underline{1}-\lambda,r,s) = \underline{1}-bI_{\tau,\tau^*}(\lambda,r,s),$
- 2. $bI_{\tau,\tau^*}(\underline{0},r,s) = \underline{0}, bI_{\tau,\tau^*}(\underline{1},r,s) = \underline{1},$
- 3. $bI_{\tau,\tau^*}(\lambda, r, s) \leq \lambda$,
- 4. If λ is an (r, s)-fbo, then $\lambda = bI_{\tau,\tau^*}(\lambda, r, s)$,
- 5. If $\lambda \leq \mu$, then $bI_{\tau,\tau^*}(\lambda, r, s) \leq bI_{\tau,\tau^*}(\mu, r, s)$,
- 6. $bI_{\tau,\tau^*}(bI_{\tau,\tau^*}(\lambda, r, s), r, s) = bI_{\tau,\tau^*}(\lambda, r, s),$
- 7. $bI_{\tau,\tau^*}(\lambda \vee \mu, r, s) \geq bI_{\tau,\tau^*}(\lambda, r, s) \vee bI_{\tau,\tau^*}(\mu, r, s)$,
- 8. $bI_{\tau,\tau^*}(\lambda \wedge \mu, r, s) \leq bI_{\tau,\tau^*}(\lambda, r, s) \wedge bI_{\tau,\tau^*}(\mu, r, s)$.

Proof. It is similar to Theorem 3.1.

Theorem 3.3. Let (X, τ, τ^*) be a dfts. $\lambda \in I^X$ is (r, s)-gfbo set, $r \in I_0$ and $s \in I_1$ if and only if $\mu \le bI_{\tau,\tau^*}(\lambda, r, s)$ whenever $\mu \le \lambda$, $\tau(\underline{1} - \mu) \ge r$ and $\tau^*(\underline{1} - \mu) \le s$.

Proof. Suppose that λ is an (r, s)-gfbo set in I^X , and let $\tau(\underline{1} - \mu) \ge r$ and $\tau^*(\underline{1} - \mu) \le s$ such that $\mu \le \lambda$. By the definition, $\underline{1} - \lambda$ is an (r, s)-gfbc set in I^X . So,

$$bC_{\tau,\tau^*}(\underline{1}-\lambda,r,s) \leq \underline{1}-\mu$$

Also,

$$\underline{1} - bI_{\tau,\tau^*}(\lambda, r, s) \leq \underline{1} - \mu.$$

And then,

$$\mu \leq bI_{\tau,\tau^*}(\lambda, r, s).$$

Conversely, let $\mu \le \lambda$, $\tau(\underline{1} - \mu) \ge r$ and $\tau^*(\underline{1} - \mu) \le s$, $r \in I_0$ and $s \in I_1$ such that $\mu \le bI_{t,\tau^*}(\lambda, r, s)$. Now

$$\underline{1} - bI_{\tau,\tau^*}(\lambda, r, s) \leq \underline{1} - \mu,$$

Thus

$$bC_{\tau,\tau^*}(\underline{1}-\lambda,r,s) \leq \underline{1}-\mu.$$

That is, $1 - \lambda$ is an (r, s)-gfbc set, then λ is an (r, s)-gfbo set.

Theorem 3.4. Let (X, τ, τ^*) be a dfts, $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$. If λ is an (r, s)-gfbc set, then

- 1. $bC_{r,r'}(\lambda,r,s)-\lambda$ does not contain any non-zero (r,s)-fc
- 2. λ is an (r, s)-fbc iff $bC_{\tau,\tau^*}(\lambda, r, s) \lambda$ is (r, s)-fc.
- 3. μ is (r, s)-gfbc set for each set $\mu \in I^X$ such that $\lambda \le \mu \le bC_{r,r'}(\lambda, r, s)$.
- 4. For each (r, s)-fo set $\mu \in I^X$ such that $\mu \le \lambda$, μ is an (r, s)-gfbc relative to λ if and only if μ is an (r, s)-gfbc in I^X .
- 5. For each an (r, s)-fbo set $\mu \in I^X$ such that $bC_{\tau,r}(\lambda, r, s)\overline{q}\mu$ iff $\lambda \overline{q}\mu$.

Proof. (1) Suppose that $\tau(\underline{1}-\mu) \ge r$ and $\tau^*(\underline{1}-\mu) \le s$, $r \in I_0$ and $s \in I_1$ such that $\mu \le bC_{\tau,\tau^*}(\lambda,r,s) - \lambda$ whenever $\lambda \in I^X$ is an (r,s)-gfbc set. Since $\underline{1}-\mu$ is an (r,s)-fo set,

$$\begin{split} \lambda \leq & (\underline{1} - \mu) \Rightarrow bC_{\tau,\tau^*}(\lambda, r, s) \leq (\underline{1} - \mu) \\ \Rightarrow & \mu \leq (\underline{1} - bC_{\tau,\tau^*}(\lambda, r, s)) \\ \Rightarrow & \mu \leq (\underline{1} - bC_{\tau,\tau^*}(\lambda, r, s)) \wedge (bC_{\tau,\tau^*}(\lambda, r, s) - \lambda) \\ &= 0 \end{split}$$

and hence $\mu = \underline{0}$ which is a contradiction. Then $bC_{\tau,\tau}(\lambda, r, s) - \lambda$ does not contain any non-zero (r, s)-fc sets.

(2) Let λ be an (r, s)-gfbc set. So, for each $r \in I_0$ and $s \in I_1$ if λ is an (r, s)-fbc set then,

$$bC_{\tau,\tau^*}(\lambda, r, s) - \lambda = \underline{0}$$

which is an (r, s)-fc set.

Conversely, suppose that $bC_{r,r^*}(\lambda, r, s) - \lambda$ is an (r, s)-fc set. Then by (1), $bC_{r,r^*}(\lambda, r, s) - \lambda$ does not contain any non-zero an (r, s)-fc set. But $bC_{r,r^*}(\lambda, r, s) - \lambda$ is an (r, s)-fc set, then

$$bC_{\tau,\tau^*}(\lambda, r, s) - \lambda = \underline{0} \Rightarrow \lambda = bC_{\tau,\tau^*}(\lambda, r, s).$$

So, λ is an (r, s)-fbc set.

(3) Suppose that $\tau(\alpha) \ge r$ and $\tau^*(\alpha) \le s$ where $r \in I_0$ and $s \in I_1$ such that $\mu \le \alpha$ and let λ be an (r, s)-gfbc set such that $\lambda \le \alpha$. Then

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq \alpha$$
.

So,

$$bC_{\tau,\tau^*}(\lambda, r, s) = bC_{\tau,\tau^*}(\mu, r, s),$$

Therefore

$$bC_{\tau,\tau^*}(\mu, r, s) \leq \alpha.$$

So, μ is an (r, s)-gfbc set.

(4) Let λ be an (r, s)-gfbc and $\tau(\lambda) \ge r$ and $\tau^*(\lambda) \le s$, where $r \in I_0$ and $s \in I_1$. Then $bC_{\tau,\tau^*}(\lambda, r, s) \le \lambda$. But, $\mu \le \lambda$ so,

$$bC_{\tau,\tau^*}(\mu, r, s) \leq bC_{\tau,\tau^*}(\lambda, r, s) \leq \lambda.$$

Also, since μ is an (r, s)-gfbc relative to λ , then

$$\lambda \wedge bC_{\tau,\tau^*(\lambda)}(\mu,r,s) = bC_{\tau,\tau^*}(\mu,r,s),$$

SC

$$bC_{\tau,\tau^*}(\mu, r, s) = bC_{\tau,\tau^*(\lambda)}(\mu, r, s) \leq \lambda.$$

Now, if μ is an (r, s)-gfbc relative to λ and $\tau(\alpha) \ge r$ and $\tau^*(\alpha) \le s$ where $r \in I_0$ and $s \in I_1$ such that $\mu \le \alpha$, then for each an (r, s)-fo set $\alpha \wedge \lambda$, $\mu = \mu \wedge \lambda \le \alpha \wedge \lambda$. Hence μ is an (r, s)-gfbc relative to λ ,

$$bC_{\tau,\tau^*}(\mu, r, s) = bC_{\tau,\tau^*(\lambda)}(\mu, r, s) \le (\alpha \wedge \lambda) \le \alpha.$$

Therefore, μ is an (r, s)-gfbc in I^{X} .

Conversely, let μ be an (r, s)-gfbc set in I^X and $\tau(\alpha) \ge r$ and $\tau^*(\alpha) \le s$ whenever $\alpha \le \lambda$ such that $\mu \le \alpha$, $r \in I_0$ and $s \in I_1$. Then for each an (r, s)-fo set $\beta \in I^X$, $\alpha = \beta \land \lambda$. But we have, μ is an (r, s)-gfbc set in I^X such that $\mu \le \beta$,

$$bC_{\tau,\tau^*}(\mu, r, s) \leq \beta \Rightarrow bC_{\tau,\tau^*(\lambda)}(\mu, r, s) = bC_{\tau,\tau^*}(\mu, r, s) \land \lambda \leq \beta \land \lambda = \alpha.$$

That is, μ is an (r, s)-gfbc relative to λ .

(5) Suppose μ is an (r, s)-fbo and $\lambda \overline{q} \mu$, $r \in I_0$ and $s \in I_1$. Then $\lambda \le (\underline{1} - \mu)$. Since $(\underline{1} - \mu)$ is an (r, s)-fbc set of I^X and λ is an (r, s)-gfbc set, then

$$bC_{\tau,\tau^*}(\lambda,r,s)\overline{q}\mu$$
.

Conversely, let μ be an (r, s)-fbc set of I^X such that $\lambda \le \mu, r \in I_0$ and $s \in I_1$. Then

$$\lambda \overline{q}(\underline{1} - \mu).$$

Rut

$$bC_{\tau,\tau^*}(\lambda, r, s)\overline{q}(\underline{1} - \mu) \Rightarrow bC_{\tau,\tau^*}(\lambda, r, s) \leq \mu.$$

Hence λ is an (r, s)-gfbc.

Proposition 3.1. Let (X, τ, τ^*) be a dfts, $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$.

- 1. If λ is an (r, s)-gfbc and an (r, s)-fbo set, then λ is an (r, s)-fbc set.
- 2. If λ is an (r, s)-fo and an (r, s)-gfbc, then $\lambda \wedge \mu$ is an (r, s)-gfbc set whenever $\mu \leq bC_{r,t^*}(\lambda, r, s)$.

Proof. (1) Suppose λ is an (r, s)-gfbc and an (r, s)-fbo set such that $\lambda \leq \lambda$, $r \in I_0$ and $s \in I_1$. Then

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq \lambda$$
.

But we have,

$$\lambda \leq bC_{\tau,\tau^*}(\lambda, r, s).$$

Then,

$$\lambda = bC_{\tau,\tau^*}(\lambda, r, s).$$

Therefore, λ is an (r, s)-fbc set.

(2) Suppose that λ is an (r, s)-fo and an (r, s)-gfbc set, $r \in I_0$ and $s \in I_1$. Then

$$bC_{r,r}$$
 $(\lambda, r, s) \le \lambda \Rightarrow \lambda$ is an (r, s) -fbc set
 $\Rightarrow \lambda \wedge \mu$ is an (r, s) -fbc
 $\Rightarrow \lambda \wedge \mu$ is an (r, s) -gfbc.

4. (r, s)-generalized ⋆-fuzzy b-closed sets

In this section, we introduce and study some properties of a new class of fuzzy sets called an (r, s)-generalized \star -fuzzy closed sets and an (r, s)-generalized \star -fuzzy b-closed sets

Definition 4.1. Let (X, τ, τ^*) be a dfts. For each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$. A fuzzy set λ is called:

- 1. An (r, s)-generalized \star -fuzzy closed (briefly, (r, s)-g * fc) if $C_{r,r^*}(\lambda, r, s) \le \mu$ whenever $\lambda \le \mu$ and μ is an (r, s)-gfo set in I^X . λ is called an (r, s)-generalized \star -fuzzy open (briefly, (r, s)-g * fo) iff $\underline{1} \lambda$ is (r, s)-g * fc set.
- 2. An (r, s)-generalized \star -fuzzy b-closed (briefly, (r, s)-g * fbc) if $bC_{r,r}(\lambda, r, s) \leq \mu$ whenever $\lambda \leq \mu$ and μ is an (r, s)-gfo set in I^{\times} . λ is called an (r, s)-generalized \star -fuzzy b-open (briefly, (r, s)-g * fbo) iff $\underline{1} \lambda$ is (r, s)-g * fbc set.

Theorem 4.1. Let (X, τ, τ^*) be a dfts. $\lambda \in I^X$ is an (r, s)-g *fbo set if and only if $\mu \leq bI_{\tau,\tau^*}(\lambda, r, s)$ whenever μ is an (r, s)-gfc, $r \in I_0$ and $s \in I_1$.

Proof. Suppose that λ is an (r, s)-g \star fbo set in I^X , and let μ is an (r, s)-gfc set such that $\mu \leq \lambda, r \in I_0$ and $s \in I_1$. So by the definition, we have $\underline{1} - \lambda$ is an (r, s)-gfo set in I^X and $\underline{1} - \lambda \leq \underline{1} - \mu$. But $\underline{1} - \lambda$ is an (r, s)-g \star fbc set, then $bC_{r,r}$ · $(\underline{1} - \lambda, r, s) \leq \underline{1} - \mu$. But

$$bC_{\tau,\tau^*}(\underline{1}-\lambda,r,s)=\underline{1}-bI_{\tau,\tau^*}(\lambda,r,s)\leq\underline{1}-\mu.$$

Therefore,

$$\mu \leq bI_{\tau,\tau^*}(\lambda, r, s).$$

Conversely, suppose that $\mu \le bI_{r,r}(\lambda, r, s)$ whenever $\mu \le \lambda$ and μ is an (r, s)-gfc set, $r \in I_0$ and $s \in I_1$. Now

$$\underline{1} - bI_{\tau,\tau^*}(\lambda, r, s) \leq \underline{1} - \mu,$$

Thus

$$bC_{\tau,\tau^*}(\underline{1}-\lambda,r,s) \leq \underline{1}-\mu.$$

Therefore, $\underline{1} - \lambda$ is an (r, s)-gfbc set and λ is an (r, s)-gfbo set.

Proposition 4.1. Let (X, τ, τ^*) be dfts's. For each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$

- 1. If a fuzzy set λ is an (r, s)-g *fbc, then $bC_{r,r}$ - $(\lambda, r, s) \lambda$ contains no non-zero (r, s)-gfc set.
- 2. If a fuzzy set λ is an (r, s)-g *fbc, then $bC_{\tau,r}(\lambda, r, s) \lambda$ is an (r, s)-g *fbo.
- 3. An (r, s)-g \star fbc set λ is an (r, s)-fbc iff $bC_{\tau, r'}(\lambda, r, s) \lambda$ is an (r, s)-fbc set.
- 4. If a fuzzy set λ is an (r, s)-g \star fbc, then $\mu = \underline{1}$, whenever μ is an (r, s)-gfo set and $bI_{r,r}(\lambda, r, s) \vee (\underline{1} \lambda) \leq \mu$.

Proof. (1) Suppose that λ is an (r, s)-g \star fbc set and μ is an (r, s)-gfc set of I^x , $r \in I_0$ and $s \in I_1$ such that

$$\mu \leq bC_{\tau,\tau^*}(\lambda, r, s)$$

And

$$\lambda \leq \underline{1} - \mu$$
.

But λ is an (r, s)-g \star fbc set and $\underline{1} - \mu$ is an (r, s)-gfo set, then

$$bC_{\tau,\tau^*}(\lambda,r,s) \leq \underline{1} - \mu \Rightarrow \mu \leq bC_{\tau,\tau^*}(\lambda,r,s) \wedge (\underline{1} - bC_{\tau,\tau^*}(\lambda,r,s)) = \underline{0}.$$

Therefore $bC_{r,r^*}(\lambda, r, s) - \lambda$ contains no non-zero (r, s)-gfc set. (2) Let λ be an (r, s)-g \star fbc set, $r \in I_0$ and $s \in I_1$. Then by (1) we have, $bC_{r,r^*}(\lambda, r, s) - \lambda$ contains no non-zero (r, s)-gfc set. So, $bC_{r,r^*}(\lambda, r, s) - \lambda$ is an (r, s)-g \star fbo set.

(3) Let λ be an (r, s)-g \star fbc set. If λ is an (r, s)-fbc, $r \in I_0$ and $s \in I_1$, then

$$bC_{\tau,\tau^*}(\lambda, r, s) - \lambda = 0.$$

Conversely, let $bC_{r,r}(\lambda, r, s) - \lambda$ is an (r, s)-fbc set in I^X and λ is an (r, s)-g \star fbc, $r \in I_0$ and $s \in I_1$, then by (1) we have, $bC_{r,r}(\lambda, r, s) - \lambda$ contains no non-zero (r, s)-gfc set. Then,

$$bC_{\tau,\tau^*}(\lambda,r,s) - \lambda = 0$$

that is

$$bC_{\tau,\tau^*}(\lambda, r, s) = \lambda.$$

Hence λ is an (r, s)-fbc set.

(4) Let μ be an (r, s)-gfc set and $bI_{r,r}(\lambda, r, s) \lor (\underline{1} - \lambda) \le \mu, r \in I_0$ and $s \in I_1$. Hence

$$\underline{1} - \mu \leq bC_{\tau,\tau^*}(\underline{1} - \lambda, r, s) \wedge \lambda = bC_{\tau,\tau^*}(\underline{1} - \lambda, r, s) - (\underline{1} - \lambda).$$

But $(\underline{1} - \mu)$ is an (r, s)-gfc and $\underline{1} - \lambda$ is an (r, s)-g \star fbc by (1), $1 - \mu = 0$ and hence $\mu = 1$.

Proposition 4.2. Let (X, τ, τ^*) be dfts's. For each λ and $\mu \in I^X$, $r \in I_0$ and $s \in I_1$.

If λ and μ are (r, s)-g \star fbc, then $\lambda \wedge \mu$ is an (r, s)-g \star fbc. 1. 2. If λ is an (r, s)-g \star fbc and $\tau(\mu) \geq r$, $\tau^*(\mu) \leq s$, then $\lambda \wedge \mu$ is an (r, s)-g \star fbc.

Proof. (1) Suppose that λ and μ are (r, s)-g \star fbc sets in I^X such that $\lambda \wedge \mu \leq v$ for each an (r, s)-gfo set $v \in I^X$, $r \in I_0$ and $s \in I_1$. Since λ is an (r, s)-g \star fbc,

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq v$$

for each an (r, s)-gfo set $v \in I^X$ and $\lambda \le v$. Also, μ is an (r, s)-g \star fbc,

$$bC_{\tau,\tau^*}(\mu, r, s) \leq v$$

for each an (r, s)-gfo set $v \in I^X$ and $\mu \le v$. Then we have,

$$bC_{\tau,\tau^*}(\lambda,r,s) \wedge bC_{\tau,\tau^*}(\mu,r,s) \leq v$$

whenever $\lambda \wedge \mu \leq v$, Therefore, $\lambda \wedge \mu$ is an (r, s)-g \star fbc.

(2) Since every an (r, s)-fc set is an (r, s)-g *fbc and from (1) we get the proof.

Proposition 4.3. Let (X, τ, τ^*) be dfts's. For each λ and $\mu \in I^X$, $r \in I_0$ and $s \in I_1$.

If λ is both an (r, s)-gfo and an (r, s)-g \star fbc, then λ is an 1(r, s)-fbc set.

2. If λ is an (r, s)-g \star fbc and $\lambda \le \mu \le bC_{\tau,\tau}$ · (λ, r, s) , then μ is an (r, s)-g \star fbc.

Proof. (1) Suppose that λ is an (r, s)-gfo and an (r, s)-g \star fbc in I^X such that $bC_{\tau,\tau}(\lambda, r, s) \le \mu$, $r \in I_0$ and $s \in I_1$. But

$$\lambda \leq bC_{\tau,\tau^*}(\lambda, r, s).$$

Therefore

$$\lambda = bC_{\tau,\tau^*}(\lambda, r, s).$$

Hence λ is an (r, s)-fbc set.

(2) Suppose that λ is an (r, s)-g \star fbc and v is an (r, s)-gfo set in I^X such that $\mu \le v$ for each $\mu \in I^X$, $r \in I_0$ and $s \in I_1$. So $\lambda \le v$. But we have, λ is an (r, s)-g \star fbc, then

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq v$$
.

Now

$$bC_{\tau,\tau^*}(\mu, r, s) \leq bC_{\tau,\tau^*}(bC_{\tau,\tau^*}(\lambda, r, s), r, s) = bC_{\tau,\tau^*}(\lambda, r, s) \leq v.$$

Therefore μ is an (r, s)-g \star fbc set.

Theorem 4.2. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be dfts's. If $\lambda \leq \underline{1}_Y \leq \underline{1}_X$ such that λ is an (r, s)-g \star fbc in I^X , $r \in I_0$ and $s \in I_1$, then λ is an (r, s)-g \star fbc relative to Y.

Proof. Suppose that (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) are dfts's such that $\lambda \leq \underline{1}_Y \leq \underline{1}_X$, $r \in I_0$, $s \in I_1$ and λ is an (r, s)-g \star fbc in I^X . Now, let $\lambda \leq \underline{1}_Y \wedge \mu$ such that μ is an (r, s)-gfo set in I^X . But we have, λ is an (r, s)-g \star fbc in I^X ,

$$\lambda \leq \mu \Rightarrow bC_{\tau,\tau^*}(\lambda, r, s) \leq \mu.$$

So that

$$\underline{1}_{Y} \wedge bC_{\tau,\tau^*}(\lambda, r, s) \leq \underline{1}_{Y} \wedge \mu.$$

Hence λ is an (r, s)-g \star fbc relative to Y.

Theorem 4.3. Let (X, τ_1, τ_1^*) be adfts. For each λ and $\mu \in I^X$, $r \in I_0$ and $s \in I_1$ with $\mu \le \lambda$. If μ is an (r, s)-g \star fbc relative to λ such that λ is both an (r, s)-gfo and (r, s)-g \star fbc of I^X , then μ is an (r, s)-g \star fbc relative to X.

Proof. Suppose that μ is an (r, s)-g \star fbc and $\tau(v) \ge r$ and $\tau^*(v) \le s$ such that $\mu \le v$, $r \in I_0$, $s \in I_1$. But we have, $\mu \le \lambda \le \underline{1}$, therefore $\mu \le \lambda$ and $\mu \le v$. So

$$\mu \leq \lambda \wedge \nu$$
.

Also we have, μ is an (r, s)-g \star fbc relative to λ ,

$$\lambda \wedge bC_{\tau,\tau^*}(\mu, r, s) \leq \lambda \wedge v \Rightarrow \lambda \wedge bC_{\tau,\tau^*}(\mu, r, s) \leq v.$$

Thus

$$\begin{split} &(\lambda \wedge bC_{\tau,\tau^*}(\mu,r,s)) \vee (\underline{1} - bC_{\tau,\tau^*}(\mu,r,s)) \leq v \vee (\underline{1} - bC_{\tau,\tau^*}(\mu,r,s)). \\ &\Rightarrow \lambda \vee (\underline{1} - bC_{\tau,\tau^*}(\mu,r,s)) \leq v \vee (\underline{1} - bC_{\tau,\tau^*}(\mu,r,s)). \end{split}$$

Since λ is an (r, s)-g \star fbc, then

$$bC_{\tau,\tau^*}(\lambda, r, s) \leq v \vee (\underline{1} - \mu).$$

Also,

$$\mu \leq \lambda \Rightarrow bC_{\tau,\tau^*}(\mu, r, s) \leq bC_{\tau,\tau^*}(\lambda, r, s).$$

Thus

$$bC_{\tau,\tau^*}(\mu, r, s) \le bC_{\tau,\tau^*}(\lambda, r, s) \le v \vee (\underline{1} - bC_{\tau,\tau^*}(\mu, r, s)).$$

Therefore $bC_{r,r^*}(\mu, r, s) \le v$, but $bC_{r,r^*}(\mu, r, s)$ is not contained in $(\underline{1} - bC_{r,r^*}(\mu, r, s))$. That is, μ is an (r, s)-g \star fbc relative to X.

5. Interrelations

The following implication illustrates the relationships between different fuzzy sets:

None of these implications is reversible where $A \to B$ represents A implies B, as shown by the following examples. But at this stage we do not have information regarding the relationship between an (r, s)-gfbc and (r, s)-g \star fc sets.

Example 5.1. (1) Let $X = \{a, b, c\}$ and let μ and α are fuzzy sets defined by:

$$\mu(a) = 1.0$$
, $\mu(b) = 0.5$, $\mu(c) = 0.0$,

$$\alpha(a) = 0.0$$
, $\alpha(b) = 0.4$, $\alpha(c) = 1.0$.

Define (τ, τ^*) on X as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 1, & \text{otherwise.} \end{cases}$$

Then α is an $(\frac{1}{2}, \frac{1}{2})$ -gfbc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -g \star fbc set.

(2) Take $X = \{a, b\}$ in (1) and define μ , α and β by:

$$\mu(a) = 0.6$$
, $\mu(b) = 0.6$,

$$\alpha(a) = 0.3, \quad \alpha(b) = 0.2,$$

$$\beta(a) = 0.4$$
, $\beta(b) = 0.5$.

Then β is an $(\frac{1}{2}, \frac{1}{2})$ -g \star fbc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -fbc set. (3) Let $X = \{a, b, c\}$. Define μ , ν and γ by:

$$\mu(a) = 1.0$$
, $\mu(b) = 0.5$, $\mu(c) = 0.3$,

$$v(a) = 1.0$$
, $v(b) = 0.6$, $v(c) = 0.0$,

$$\gamma(a) = 0.0$$
, $\gamma(b) = 0.6$, $\gamma(c) = 0.0$.

Define (τ, τ^*) as in (1). Then ν is an $(\frac{1}{2}, \frac{1}{2})$ -g \star fbc set but not an $(\frac{1}{2}, \frac{1}{2})$ -fc set and not an $(\frac{1}{2}, \frac{1}{2})$ -gfc. And γ is an $(\frac{1}{2}, \frac{1}{2})$ -g \star fbc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -fsc set.

(4) Take (3) and defined μ and ν by:

$$\mu(a) = 1.0$$
, $\mu(b) = 1.0$, $\mu(c) = 0.6$,

$$v(a) = 0.3$$
, $v(b) = 0.5$, $v(c) = 0.5$.

Define (τ, τ^*) as in (1). Then v is an $(\frac{1}{2}, \frac{1}{2})$ -g \star fbc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -g \star fc set.

- (5) See Example 3.1. Clearly β is an $(\frac{1}{2}, \frac{1}{2})$ -gfbc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -gfc set.
 - (6) Let $X = \{a, b\}$. Define μ , ν and γ as follows:

$$\mu(a) = 0.7$$
, $\mu(b) = 0.6$,

$$v(a) = 0.3$$
, $v(b) = 0.2$,

$$\gamma(a) = 0.4$$
, $\gamma(b) = 0.5$.

Define (τ, τ^*) as in (1). Then v is an $(\frac{1}{2}, \frac{1}{2})$ -fbc set but not an $(\frac{1}{2}, \frac{1}{2})$ -fsc set, also not an $(\frac{1}{2}, \frac{1}{2})$ -gfc.

(7) Let $X = \{a, b, c\}$ and let μ and α as fuzzy sets defined by:

$$\mu(a) = 0.9$$
, $\mu(b) = 0.8$, $\mu(c) = 0.3$,

$$\alpha(a) = 0.1$$
, $\alpha(b) = 0.8$, $\alpha(c) = 0.3$.

Define (τ, τ^*) on X by:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ 0.6, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ 0.3, & \text{if } \lambda = \mu, \\ 1, & \text{otherwise.} \end{cases}$$

Then α is an (0.6, 0.3)-fsc set, but not an (0.6, 0.3)-fc set.

(8) Let $X = \{a, b\}$ and let μ and α as fuzzy sets defined by:

$$\mu(a) = 0.9$$
, $\mu(b) = 0.4$,

$$\alpha(a) = 0.1$$
, $\alpha(b) = 0.8$.

Define (τ, τ^*) on X by:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 1, & \text{otherwise.} \end{cases}$$

Then μ is an $(\frac{1}{2}, \frac{1}{2})$ -g \star fc set, but not an $(\frac{1}{2}, \frac{1}{2})$ -fc set.

Acknowledgments

The authors would like to acknowledge the following: UKM Grant DIP-2014-034 and Ministry of Education, Malaysia grant FRGS/1/2014/ST06/UKM/01/1 for financial support.

REFERENCES

- [1] Zadeh LA. Fuzzy sets. Inf Control 1965;8:338-53.
- [2] Atanassov K. New operators defined over the intuitionistic fuzzy sets. Fuzzy Set Syst 1993;61: 131–42.
- [3] Çoker D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Set Syst 1997;88:81–9.
- [4] Samanta SK, Mondal TK. On intuitionistic gradation of openness. Fuzzy Set Syst 2002;131:323–36.
- [5] Gutiérrez Garcia J, Rodabaugh SE. Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued; intuitionistic sets, intuitionistic fuzzy sets and topologies. Fuzzy Set Syst 2005;156:445–84.
- [6] Omari AA, Noorani MSM. On generalized b-closed sets. Bull Malays Math Sci Soc 2009;32:19–30.
- [7] Mohammed FM, Noorani MSM, Ghareeb A. Several types of totally continuous functions in double fuzzy topological spaces. Adv Fuzzy Syst 2014;2014:Article ID 361398, 9 pages.
- [8] Lee EP, Im YB. Mated fuzzy topological spaces. J Fuzzy Log Int Sys 2001;11:161–5.
- [9] Kim YC, Abbas SE. Several types of fuzzy regular spaces. Indian J Pure Appl Math 2004;35:481–500.
- [10] Abbas SE, El-Sanousy E. Several types of double fuzzy semiclosed sets. J Fuzzy Math 2012;20:89–102.
- [11] Mohammed FM, Noorani MSM, Ghareeb A. Generalized ψρoperations on double fuzzy topological spaces. AIP Conf Proc 2013;1571:943–8.
- [12] Mohammed FM, Noorani MSM, Ghareeb A. Generalized ψρ-closed sets and generalized ψρ-open sets in double fuzzy topological spaces. AIP Conf Proc 2014;1602: 909–17.