# Out-of-order Floating Point Coprocessor for RISC-V ISA

Presentation by Claire Charron

- 1. Out-of-order execution
- 2. Floating point
- 3. Coprocessor
- 4. RISC-VISA

- 1. Out-of-order execution
- 2. Floating point
- 3. Coprocessor
- 4. RISC-VISA

- 1. Out-of-order execution
  - 2.RISC-VISA
- 3. Floating point
- 4. Coprocessor

- 1. Why? Part 1
- 2. RISC-VISA
- 3. Floating point
- 4. Coprocessor
  - 5.Why? Part 2

# Why? Embedded systems.

# Why? Robots.

#### RISC-V ISA

- RISC, obviously
- Completely open, documents viewable online
- Designed for hardware, not academia
  - Instruction formats reduce number of multiplexers
- Avoids preference for certain implementations
  - No branch delay slots
  - 32-bit (RV32) or 64-bit (RV64)

#### RV32G

- RV32I: Integer base (required)
  - RV32M: Multiplication, division, modulus
  - RV32A: Atomic operations
  - **RV32F**: Single-precision floating-point
  - **RV32D**: Double-precision floating-point
  - RV32G: RV32IMAFD

#### R32FD

- 32 registers (double size for FD)
- IEEE floating-point standard
  - Sign bit, mantissa, exponent (scientific notation)
  - Conversion between single/double can be done with truncation

#### Instructions supported

- Add, subtract, multiply, divide
  - Min, max
  - Square root
  - Fused multiply and accumulate (±a±bc)
  - Conversion to integers
  - $\circ$  Comparisons (<, =, ≥)
  - Classification (±0, ±NaN, ±∞, etc.)

#### Processor

- Around 25, 100, or 180 MFLOPS depending on attached CPU
- Tested in hardware!



Fig. 1. Top Level Architecture For RISC V Processor

#### Coprocessor



Fig. 2. Architecture of Out-of-order FPU Co-Processor



Fig. 4. Floating Point ALU Architecture

#### Preprocessing (in every pipeline)

- Decoding parts of float
  - Sign bit, mantissa, exponent
- Normalisation
  - e.g. 8×2¹ becomes 1×2⁴

#### Postprocessing (again, every pipeline)

- Normalisation (again)
- Rounding
  - We usually leave extra bits at end of result to avoid rounding error
  - Very complicated

# Pipeline breakdowns

- 1. How many stages (clock cycles)?
- 2. How many bits of rounding?
- 3. What do we do?

#### Addition

(5 stages, 3-bit buffer for rounding)

- 1. Swap the operands so that LHS is smaller.
- 2.Left-shift LHS so that its exponent is the same as RHS
- 3.Add/subtract the two mantissas depending on signs



#### Multiplication

(9 stages, 1-bit buffer for rounding)

- 1.XOR signs
- 2.Add exponents
- 3. Multiply mantissas as if they were integers
  - a. Split operands into N-bit chunks
  - b. Have an N×N multiplication table
  - c. Standard pen-and-paper algorithm in base-2<sup>N</sup>



#### Division

(31 stages, 1-bit buffer for rounding)

- 1.XOR signs
- 2. Subtract exponents
- 3. Divide mantissas as if they were integers
  - a. Non-restoring binary division
  - b. Done with repeated subtraction and left-shifts; look it up



#### Square root

(31 stages, 1-bit buffer for rounding)

- 1. Divide exponent by two
  - a. If exponent is odd, also have to modify mantissa
- 2. Find leading first bit, do a bunch of bit shifts
  - a. Non-restoring square root
  - b. Very similar to division
  - c. Again, look it up



#### Fused multiply/accumulate (FMA)

(10 stages, 3-bit buffer for rounding)

- 1. Very similar to multiplication and addition together
- 2. Extra adding is done in one extra stage



#### Other instructions

Compare, classify, convert all happen in a single stage



Fig. 10. Architecture For Comparator

#### Why? Part 2

- RISC-V is good for embedded systems because it's open, RISC, doesn't enforce hardware designs
- Floating-point math, although it takes a lot of hardware, happens in fewer cycles than integer emulation and saves power overall
- With FMA, addition is basically free

# Questions?

- Patil, Vinayak et al. "Out Of Order Floating Point Coprocessor For RISC V ISA." International Symposium on VLSI Design and Test 19 (2015): n. pag. Web. 02 Mar 2016.
- "The RISC-V Instruction Set Manual." RISC-V Foundation. RISC-V Foundation, 6 May 2014. Web. 18 Apr 2016.
  <a href="http://riscv.org/specifications">http://riscv.org/specifications</a>>