

Límits de funcions

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

Funcions

Una funció relaciona cada entrada amb una única sortida

□ En aquest curs, només tractem funcions en què l'entrada és un nombre real i la sortida també és un nombre real → Funcions reals de variable real

Idea intuïtiva de límit

Suposem que la funció f està definida a prop de x = a (però no necessàriament a x = a). Diem que f(x) s'acosta al límit L, per tot x tendint a a, si f(x) és arbitràriament proper a L per a tots els x prou propers a a. Ho expressem així:

$$\lim_{x \to a} f(x) = L$$

□ Exemples

$$\lim_{x \to 2} x^2 = 4$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

Definició formal de límit

- □ Siguin $a, L \in \mathbb{R}$ i un interval obert I amb $a \in I$. Sigui f una funció definida a I excepte possiblement al punt a.
- \square El *límit* de f(x) quan x s'apropa a a és L sii

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

Definició formal de límit

- □ Siguin $a, L \in \mathbb{R}$ i un interval obert I amb $a \in I$. Sigui f una funció definida a I excepte possiblement al punt a.
- \square El *límit* de f(x) quan x s'apropa a a és L sii

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

□ Alternativament

$$\lim_{x \to a} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

$$\lim_{x \to a} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in (a - \delta, a + \delta) \setminus \{a\} \Longrightarrow |f(x) - L| \leqslant \epsilon$$

Definició formal de límit

$$\lim_{x \to a} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

□ Donada f(x) = x, demostrar, utilitzant la definició de límit, que $\lim_{x \to 1} x = 1$

□ Solució:

- Donada $\epsilon > 0$ volem que es compleixi $|f(x) 1| < \epsilon$
- Com f(x) = x, aleshores $|f(x) 1| < \epsilon \iff |x 1| < \epsilon$
- Per tant, selectionant $\delta = \epsilon$, es compleix que $0 < |x-1| < \delta \implies |f(x)-1| = |x-1| < \delta = \epsilon$

□ Demostrar, utilitzant la definició de límit, que

$$\lim_{x\to 2} x^2 = 4$$

□ Solució:

- Donada $\epsilon > 0$ volem que es compleixi $|x^2 4| < \epsilon$
- Sabem $|x^2 4| = |x 2| |x + 2|$
- Suposem que tenim una $\delta > 0$ petita, i $|x 2| < \delta$
- Per tant

$$|x-2| < \delta \Leftrightarrow 2 - \delta < x < 2 + \delta \Leftrightarrow 4 - \delta < x + 2 < 4 + \delta$$

- Com δ ha de ser petita, podem suposar que $\delta \le 1$, i queda $|x-2| < \delta \Leftrightarrow 4-\delta < x+2 < 4+\delta \Rightarrow 3 < x+2 < 5$
- Tenim $|x 2| < \delta$ i també x + 2 = |x + 2| < 5
- Aleshores, podem prendre $\delta = \min(1, \epsilon/5)$, de manera que

$$|x-2| < \delta \Longrightarrow |x^2-4| = |x-2| |x+2| < \frac{\epsilon}{5} \cdot 5 = \epsilon$$

□ Demostrar, utilitzant la definició de límit, que no existeix

$$\lim_{x\to 0}\frac{|x|}{x}$$

- □ Solució:
 - Suposem que el límit existeix i val L, i seleccionem $\epsilon = 1/2$
 - Segons la definició de límit, existeix un $\delta > 0$ tal que

$$0 < x < \delta \Longrightarrow |f(x) - L| = |1 - L| < \epsilon = 1/2$$

 $-\delta < x < 0 \Longrightarrow |f(x) - L| = |-1 - L| = |1 + L| < \epsilon = 1/2$

Observa que en la primera x > 0 i en la segona x < 0

Aleshores

$$2 = |(1+L) + (1-L)| \le |1+L| + |1-L| < \frac{1}{2} + \frac{1}{2} = 1 \parallel \parallel$$

 Com això és impossible, la hipòtesi d'existència del límit queda descartada

 \square Considereu f(x) una funció definida per parts

$$\lim_{x \to -2} f(x) = 2$$

$$\lim_{x \to -1} f(x) = 3$$

$$\lim_{x \to 0} f(x) = 3$$

$$\nexists \lim_{x \to 1} f(x)$$

$$\lim_{x \to 2} f(x) = 3$$

$$\exists \lim_{x \to 4} f(x)$$

$$\lim_{x \to 6} f(x) = 2$$

- Definició de límits a l'infinit
 - □ Sigui f una funció definida a l'interval $(c, +\infty)$
 - \square Definim el límit de f(x) quan x s'apropa a $+\infty$

$$\lim_{x \to +\infty} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists M > c : \forall x > M \implies |f(x) - L| < \epsilon$$

- Definició de límits a l'infinit
 - \square Sigui f una funció definida a l'interval $(c, +\infty)$
 - \square Definim el límit de f(x) quan x s'apropa a $+\infty$

$$\lim_{x \to +\infty} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists M > c : \forall x > M \implies |f(x) - L| < \epsilon$$

- \square Sigui f una funció definida a l'interval $(-\infty, d)$
- \square Definim el límit de f(x) quan x s'apropa a $-\infty$

$$\lim_{x \to -\infty} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists M < d : \forall x < M \implies |f(x) - L| < \epsilon$$

- Exemple
 - □ Demostrar, utilitzant la definició de límit, que

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

- □ Solució:
 - Donada $\epsilon > 0$ volem que es compleixi

$$\left| \frac{1}{x} - 0 \right| < \epsilon \iff \frac{1}{|x|} < \epsilon \iff |x| > \frac{1}{\epsilon}$$

Prenent $M = 1/\epsilon$ tenim

$$x > M \implies |x| > M = \frac{1}{\epsilon} \iff \left| \frac{1}{x} - 0 \right| < \epsilon$$

- Definició de *límits laterals*
 - □ Siguin $a, L \in \mathbb{R}$ i f una funció definida a l'interval (c, d)
 - \square Límit lateral de f(x) quan x s'apropa a a per la dreta

$$\lim_{x \to a^{+}} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in (a, a + \delta) \implies |f(x) - L| < \epsilon$$

- Definició de *límits laterals*
 - □ Siguin $a, L \in \mathbb{R}$ i f una funció definida a l'interval (c, d)
 - \square Límit lateral de f(x) quan x s'apropa a a per la dreta

$$\lim_{x \to a^{+}} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in (a, a + \delta) \implies |f(x) - L| < \epsilon$$

 \square Límit lateral de f(x) quan x s'apropa a a per l'esquerra

$$\lim_{x \to a^{-}} f(x) = L \iff \\ \forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in (a - \delta, a) \implies |f(x) - L| < \epsilon$$

Definició de *límits infinits*

$$\lim_{x \to a} f(x) = +\infty \iff$$

$$\forall P > 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies f(x) > P$$

$$\lim_{x \to a} f(x) = -\infty \iff$$

$$\forall P < 0 \ \exists \delta > 0 : \forall x, 0 < |x - a| < \delta \implies f(x) < P$$

Definició de límits laterals infinits

$$\lim_{x \to a^{+}} f(x) = +\infty \iff$$

$$\forall P > 0 \ \exists \delta > 0 : \forall x \in (a, a + \delta) \implies f(x) > P$$

$$\lim_{x \to a^{-}} f(x) = +\infty \iff$$

$$\forall P > 0 \ \exists \delta > 0 : \forall x \in (a - \delta, a) \implies f(x) > P$$

$$\lim_{x \to a^{+}} f(x) = -\infty \iff$$

$$\forall P < 0 \ \exists \delta > 0 : \forall x \in (a, a + \delta) \implies f(x) < P$$

$$\lim_{x \to a^{-}} f(x) = -\infty \iff$$

$$\forall P < 0 \ \exists \delta > 0 : \forall x \in (a - \delta, a) \implies f(x) < P$$

Definició de límits infinits a l'infinit

$$\lim_{x \to +\infty} f(x) = +\infty \iff$$

$$\forall P > 0 \ \exists M > 0 : \forall x > M \implies f(x) > P$$

$$\lim_{x \to -\infty} f(x) = +\infty \iff$$

$$\forall P > 0 \ \exists M < 0 : \forall x < M \implies f(x) > P$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff$$

$$\forall P < 0 \ \exists M > 0 : \forall x > M \implies f(x) < P$$

$$\lim_{x \to +\infty} f(x) = -\infty \iff$$

$$\forall P < 0 \ \exists M < 0 : \forall x < M \implies f(x) < P$$

Propietats dels límits

- □ Unicitat
 - El límit d'una funció, si existeix, és únic
- □ Igualtat de límits laterals

$$\lim_{x \to a} f(x) = L \quad \Longleftrightarrow \quad \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

Això també és cert si el límit és infinit

Propietats dels límits

□ Aritmètiques

Siguin

$$\lim_{x \to a} f(x) = L_1, \qquad \lim_{x \to a} g(x) = L_2$$

Aleshores

$$\lim_{x \to a} (\lambda f(x)) = \lambda L_1, \qquad \lambda \in \mathbb{R}$$

$$\lim_{x \to a} (f(x) \pm g(x)) = L_1 \pm L_2$$

$$\lim_{x \to a} (f(x)g(x)) = L_1 L_2$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}, \qquad L_2 \neq 0$$

Propietats dels límits

□ Comparació

Siguin

$$\lim_{x \to a} f(x) = L_1, \qquad \lim_{x \to a} g(x) = L_2$$

Es compleix

$$f(x) \le g(x), \forall x \in I \setminus \{a\} \implies L_1 \le L_2$$

- Propietats dels límits
 - □ Compressió o del sandvitx
 - Si

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$$
$$f(x) \le h(x) \le g(x), \forall x \in I \setminus \{a\}$$

aleshores

$$\lim_{x \to a} h(x) = L$$

- Propietats dels límits
 - □ Altres
 - Si

$$\lim_{x \to a} f(x) = 0$$

$$g(x) \text{ funció fitada}$$

aleshores

$$\lim_{x \to a} (f(x)g(x)) = 0$$

- Propietats dels límits
 - □ Relació entre límits de funcions i de successions
 - Es compleix $\lim_{x\to a} f(x) = L$ sii $\forall \{a_n\}: \lim_{n\to\infty} a_n = a \implies \lim_{n\to\infty} f(a_n) = L$
 - Observació: Aquest teorema és útil per a demostrar que el límit de la funció no existeix, de dues maneres diferents
 - $\ \square$ Trobant una successió a_n que tendeix a a on el límit de $f(a_n)$ no existeix
 - \square Trobant dues successions a_n i b_n que tendeixen a a on els límits $f(a_n)$ i $f(b_n)$ valen diferent

Fites de funcions

- □ Una funció f és *fitada per dalt* si existeix $M \in \mathbb{R}$ tal que $f(x) \leq M$, per tot x del domini de la funció
- □ Una funció f és *fitada per baix* si existeix $M \in \mathbb{R}$ tal que $f(x) \ge M$, per tot x del domini de la funció
- □ Una funció f és *fitada* si existeix $M \in \mathbb{R}$ tal que $|f(x)| \le M$, per tot x del domini de la funció

- Creixement i monotonia de funcions
 - □ Sigui *f* una funció de domini *D*
 - $\Box f \text{ \'es } \textbf{\textit{creixent}} \text{ si}$ $\forall x, y \in D, x \leq y \implies f(x) \leq g(x)$
 - $\Box f \text{ \'es } \textbf{decreixent} \text{ si}$ $\forall x, y \in D, x \leq y \implies f(x) \geq g(x)$
 - □ f és estrictament creixent si $\forall x, y \in D, x < y \implies f(x) < g(x)$
 - □ f és estrictament decreixent si $\forall x, y \in D, x < y \implies f(x) > g(x)$
 - □ f és monòtona si és creixent o decreixent
 - ☐ f és estrictament monòtona si és estrictament creixent o estrictament decreixent