Lesson 31: Practice Problems - Repeated Eigenvalues and Jordan Forms

ODE 1 - Prof. Adi Ditkowski

Part A: Identifying Defective Eigenvalues

- 1. Determine the algebraic and geometric multiplicities of each eigenvalue for: $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$
- 2. Find the defect of each eigenvalue for: $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
- 3. Show that $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ is defective and find its Jordan form.
- 4. Determine which of these matrices are diagonalizable: a) $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- 5. For $A = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$, find the size of the largest Jordan block.

Part B: Finding Generalized Eigenvectors

- 6. Find all eigenvectors and generalized eigenvectors for: $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$
- 7. Construct a complete Jordan chain for: $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
- 8. Find the Jordan basis for: $A = \begin{pmatrix} 5 & 4 \\ -1 & 1 \end{pmatrix}$
- 9. Determine all generalized eigenvectors for: $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

10. Find a matrix P such that $P^{-1}AP$ is in Jordan form for: $A = \begin{pmatrix} 4 & 1 \\ -4 & 0 \end{pmatrix}$

Part C: $2 \times 2Systems with Repeated Eigenvalues$

11. Solve:
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \mathbf{x}$$

12. Solve the IVP:
$$\mathbf{x}' = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

13. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \mathbf{x}$$

14. Solve:
$$\mathbf{x}' = \begin{pmatrix} 4 & 2 \\ -2 & 0 \end{pmatrix} \mathbf{x}$$
 with $\mathbf{x}(0) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

15. Find all solutions that remain bounded as $t \to \infty$ for: $\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix} \mathbf{x}$

Part D: $3 \times 3 Systems with Jordan Blocks$

16. Solve:
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{x}$$

17. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$$

18. Solve the IVP:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

19. Find the solution:
$$\mathbf{x}' = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$$
 with $x_1(0) = 1, x_2(0) = 0, x_3(0) = 0$

20. Determine the Jordan form and solve:
$$\mathbf{x}' = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$

Part E: Mixed Eigenvalue Problems

21. Solve:
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$
 (repeated and distinct eigenvalues)

22. Find the general solution:
$$\mathbf{x}' = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \mathbf{x}$$

23. Solve:
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \mathbf{x} \text{ with } \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

24. Analyze stability for:
$$\mathbf{x}' = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix} \mathbf{x}$$

25. Find the fundamental matrix:
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{x}$$

Part F: Theory and Applications

- 26. Prove that if λ is a repeated eigenvalue with full defect n-1, then the solutions contain terms up to $t^{n-1}e^{\lambda}$ t.
- 27. Show that for a $2 \times 2 matrix with repeated eigenvalue \lambda$, the trace equals 2λ and the determinant equals λ^2 .
- 28. A coupled system has matrix $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. Find the time when the solution with $\mathbf{x}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ reaches its maximum norm.
- 29. For the radioactive decay chain with matrix $A = \begin{pmatrix} -k & 0 & 0 \\ k & -k & 0 \\ 0 & k & -k \end{pmatrix}$, solve for the amounts of each isotope over time.
- 30. Challenge: Prove that e^{Jt} for a Jordan block J can be computed as: $e^{Jt} = e^{\lambda} t \sum_{k=0}^{n-1} t^k \frac{1}{k!N} where N$ = J λI .

Solutions and Hints

Problem 1: Algebraic multiplicity = 2, geometric multiplicity = 1, defect = 1.

Problem 6: Eigenvector: $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, Generalized: $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Problem 11: $\mathbf{x}(t) = e^{2t} \left[c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \left(t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \right]$

Problem 16: Use the standard basis vectors as the Jordan chain.

Problem 24: All solutions decay to zero since $\lambda = -2 < 0$ despite the t and t^2 terms.

Problem 28: Maximum occurs at t = 1 (derivative of te^{-t} equalszero).

Key Strategy: Always check the defect first! If geometric multiplicity equals algebraic multiplicity, use standard eigenvector methods. Otherwise, build Jordan chains systematically.

Verification: For generalized eigenvector \mathbf{v}_2 satisfying $(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$, verify that $\mathbf{x}(t) = e^{\lambda} t(t\mathbf{v}_1 + \mathbf{v}_2)$ satisfies $\mathbf{x}' = A\mathbf{x}$.