ВЛИЯНИЕ ДЛИТЕЛЬНОГО ПРЕБЫВАНИЯ В ОРГАНИЗМЕ КЛЕЩЕЙ ORNITHODOROS TARTAKOVSKYI (ARGASIDAE) НА СВОЙСТВА ВОЗБУДИТЕЛЯ ЧУМЫ

3. А. Билялов, Г. Г. Свиридов, Л. С. Ершова, Г. С. Новиков, Х. М. Тлеугабылов

Среднеазиатский научно-исследовательский противочумный институт, Талды-Курганская противочумная станция, Алма-Ата, Талды-Курган

Установлено, что длительное сохранение (1138 суток) в организме клещей не влияет на жизнеспособность возбудителя чумы и не оказывает существенного влияния на его основные свойства.

Клещи неоднократно привлекали внимание исследователей как возможные хранители и переносчики возбудителя чумы. Кондрашкина с соавторами (1959) получили в эксперименте хранение чумного микроба в организме Rhipicephalus schulzei в течение 43 дней. При работе с клещами O. tartakovskyi Бурлаченко (1958) было отмечено, что чумной микроб может оставаться жизнеспособным в их организме, сохраняя вирулентность, в течение 171 суток (срок наблюдения). Более длительные сроки определила Афанасьева с соавторами (1961) в эксперименте с Ixodes crenulatus (827 суток). Проанализировав результаты изучения эпизоотологического значения клещей, Афанасьева и Микулин (1957) пришли к выводу, что иксодовые и аргасовые клещи не могут играть существенной роли в развитии эпизоотии чумы. В то же время авторы не отрицали возможности участия клещей в сохранении возбудителя чумы в течение длительных межэпизоотических периодов, указывая при этом на необходимость полтверждения этого предположения фактическим материалом.

Нерешенность проблемы межэпизоотических периодов побудила вернуться к изучению клещей, как наиболее выраженных долгожителей в биоценозе природного очага чумы, в качестве возможных хранителей бактерий чумы в неэпизоотические годы.

Материал и методика. Заражение клещей проводили на биомембране, в качестве которой применяли отмездрованную шкурку белой мыши. Суточную культуру чумного микроба, выращенную при температуре 28°, суспензировали в дефибринированной крови большой песчанки до концентрации 10° м. к. (микробных клеток) в 1.0 мл. После подсаживания клещей на биомембрану аппарат помещали в термостат при температуре 37°. После насыщения клещей зараженной кровью их помещали во флаконы с песком, которые содержали в подвальном помещении при температуре 10—18° и относительной влажности 75—80%. За весь период хранения клещи дополнительной подкормки не получали.

Всего было произведено три заражения: первое — 3 августа 1978 г., второе и третье — 19 июля 1980 г. штаммами чумного микроба, выделенным от большой песчанки. 12 сентября 1981 г. клещи были исследованы индивидуально бактериологическим методом с применением агара Хоттингера и плотной среды из триптического перевара бычьих сердец, а также в системе серологических реакций РПГА и РНАт на обнаружение капсульного антигена бактерий чумы.

Результаты и обсуждения. Для изучения результатов первого заражения было исследовано 45 клещей, из которых 4 было мертвых. Основная масса клещей давала положительные результаты на фракцию I в РПГА и РНАт в титрах от 1:40 до 1:640. Это, по-видимому, объясняется тем, что клещи в отличие от блох в десятки и сотни раз больше напиваются крови и фракция I, попавшая в клеща в больших количествах, длительное время в нем сохраняется. Через 1138 суток после заражения были выделены две культуры микроба чумы, которые росли одинаково хорошо на обеих питательных средах. Рост на этих средах в большинстве случаев был типичным для возбудителя чумы. Однако при изучении морфологических особенностей субкультуры отмечены два типа колоний: первый — колонии пирамидальной формы, без периферической зоны, темного цвета, бугристость не выражена; второй — колонии с широкой нежной периферической зоной, ярко выраженной бугристостью.

В результате исследования 97 клещей через 398—400 суток после заражения в 25 случаях (25.8%) был обнаружен рост бактерий чумы, причем культуры примерно в полтора раза чаще выделяли на среде из триптического перевара бычьих сердец. Разница в высеваемости объясняется, по-видимому, большей питательной ценностью второй среды. По морфологиче-

ским признакам колонии на этих двух средах отличались друг от друга. На среде из триптического перевара бычьих сердец поверхность колоний серого цвета, мелко-зернистая, небугристая, края ровные, периферическая зона отсутствует. При серологическом исследовании капсульный антиген не обнаружен.

При изучении свойств отмечено, что на среде с гемином отмечен рост пигментированных колоний в 97—98%; субкультуры, полученные после второго заражения, когда применяли штамм чумного микроба на среде Джексона-Берроуза в 100% давали непигментированные колонии. Большинство субкультур было представлено кальцийзависимыми клетками (94-100%), в трех случаях их содержание снижалось до 55, 48 и 6%, а одна субкультура полностью состояда из кальцийнезависимых клеток. Все изученные субкультуры обладали способностью синтезировать фракцию І, лизировались чумным и псевдотуберкулезным диагностическими фагами. Для изучения вирулентных свойста были отобраны 7 субкультур, критериями подобного отбора явились наиболее отдаленные сроки сохранения возбудителя чумы в клещах, морфологические отличия колоний, а также преобладание в клеточной популяции субкультур кальцийнезависимых клеток. В результате проведенного заражения белых мышей установлено, что вирулентность исследованных 5 субкультур, выраженная в Π_{50} , колебалась от 31 до 316 м. к., а у двух — снизилась до 1000 и 3162 м. к.

При исследовании 64 клещей третьего заражения через 400 суток после заражающего кормления в 24 случаях (37.5%) был выделен возбудитель чумы. Изолированные культуры сохраняли все основные свойства исходного штамма, но в первых генерациях их колонии отличались отсутствием периферической зоны, более темной окраской и выраженной бугристостью. Вирулентные свойства выделенных субкультур изменений не претерпели. У 8 особей была обнаружена фракция I в диагностических титрах.

На основании проведенных исследований можно сделать следующие выводы.

- 1. Установлено сохранение жизнеспособности чумного микроба в организме клещей O. tartakovsky і в течение 1138 суток (срок наблюдения).
- 2. Длительное пребывание чумного микроба в клещах O. tartakovskyi не приводит к существенному изменению биологических свойств возбудителя.
- 3. В проведенных экспериментах высеваемость возбудителя чумы на среде из триптического перевара бычьих сердец была большей, чем на агаре Хоттингера.
- 4. При плановом эпизоотологическом обследовании природных очагов чумы целесообразно проводить серологическое исследование норовых клещей на обнаружение фракции I чумного микроба.

Литература

- Афанасьева О. В., Ершова Л. С. К вопросу о эпизоотологической роли клещей Ixodes crenulatus в Горном очаге чумы. — В кн.: Матер. расширенной конфер., посвященной 40-летию КазССР. Алма-Ата, 1961, с. 12—13.
- А фанасьева О. В., Микулин М. А. Современное состояние вопроса роли клещей надсемейства Ixodoidea в природной очаговости и эпизоотологии чумы. — В кн.: Матер. науч. конфер. по природной очаговости и эпидемиологии особо опасных инфекц. заболеваний. Саратов, 1957, с. 23—27.
- Бурлаченко Т. А. К возможной роли клещей Ornithodoros tartakovskyi Olen. в эпизо-
- отологии чумы. Тр. Туркмен. противочумной станции, 1958, т. 1, с. 59—73. Кондрашкина К. И., Мерлин В. А., Обухова З. А. Охранении и передаче чумной инфекции клещами Rhipicephalus schulzei Ol. Тр. ин-та «Микроб», 1959, вып. 3, с. 305—314.

THE EFFECT OF A LONG STAY IN THE TICK ORNITHODORES TARTAKOVSKYI (ARGASIDAE) UPON THE PLAGUE AGENT

Z. A. Biljalov, G. G. Sviridov, L. S. Ershova, G. S. Novikov, Kh. M. Tleugabylov

SUMMARY

It has been established that a long stay in ticks during 1138 days does not affect the viability of the plague microbe and its biological properties.