Galois Theory: GAL #10

Due on May 6, 2022 at 11:59pm

Prof Matyas Domokos Section 12 & 15

Xianzhi

2023

HW10

Exercise 12.4.12

Exercise 12.4.13

Exercise 15.1.2

Problem 1

Exercise 12.4.12 Prove that $X^4 - 10X^2 + 1$ is irreducible over \mathbb{Q} , but it is reducible in $(\mathbb{Z}/p\mathbb{Z})[X]$ for any prime p.

Soln:

Part A

Proof. We claim the minimum polynomial is $M_{\mathbb{Q}}(\sqrt{2}+\sqrt{3})=X^4-10X^2+1$. Observe that

$$(\sqrt{2} + \sqrt{3})^4 - 10(\sqrt{2} + \sqrt{3})^2 + 1 \tag{1}$$

$$= (5 + 2\sqrt{6})^2 - 10(5 + 2\sqrt{6}) + 1 \tag{2}$$

$$=0 (3)$$

Thus, $(\sqrt{2}+\sqrt{3})$ is a root of X^4-10X^2+1 . Claim: $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3})$, and it is a degree 4 extension over \mathbb{Q} , so X^4-10X^2+1 is the minimal polynomial over \mathbb{Q} , hence irreducible.

Now we show the claim. $\mathbb{Q}(\sqrt{2}+\sqrt{3})\supset\mathbb{Q}(\sqrt{2},\sqrt{3})$ because

$$5 + 2\sqrt{6} = (\sqrt{2} + \sqrt{3})^2 \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \tag{4}$$

$$\implies \sqrt{6}(\sqrt{2} + \sqrt{3}) \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \tag{5}$$

$$\implies \sqrt{2} = \sqrt{6}(\sqrt{2} + \sqrt{3}) - 2(\sqrt{2} + \sqrt{3}) \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \tag{6}$$

$$\implies \sqrt{3} = \sqrt{2} + \sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \tag{7}$$

(8)

 $\mathbb{Q}(\sqrt{2}+\sqrt{3})\subset\mathbb{Q}(\sqrt{2},\sqrt{3})$ because $\sqrt{2}+\sqrt{3}\in\mathbb{Q}(\sqrt{2},\sqrt{3})$. Hence, we showed X^4-10X^2+1 is irreducible over \mathbb{Q} .

Part B

Proof. Now, observe

$$X^4 - 10X^2 + 1 = (X^2 - 5)^2 - 2^2 \cdot 6 \tag{9}$$

$$= (X^2 - 1)^2 - (2X)^2 \cdot 2 \tag{10}$$

$$= (X^2 + 1)^2 - (2X)^2 \cdot 3 \tag{11}$$

Thus, in $(\mathbb{Z}/p\mathbb{Z})$, as long as at least one of 6, 2, 3 is a square, then $X^4 - 10X^2 + 1$ factors in $\mathbb{Z}/p\mathbb{Z}[X]$ use formula $a^2 - b^2 = (a+b)(a-b)$.

For any prime p, $\mathbb{Z}/p\mathbb{Z}^{\times} = \mathbb{F}_p^{\times} = \mathbb{F}_p \setminus \{0\}$ is cyclic, (multiplicative group of any finite field is cyclic), \exists generator g, thus

$$\{1, g, g^2, g^3, g^4, \cdots, g^{p-2}\} = \mathbb{F}_p^{\times}$$
 (12)

Those with even power are squares.

Assume for contradiction that all 2, 3, 6 are not squares in \mathbb{F}_p .

 $\implies 2 = g^j, \ 3 = g^i \text{ for some } j, i \text{ odd.}$

But $6 = g^{j+i}$ has even power j + i, so 6 should be square in \mathbb{F}_p . We have a contradiction.

Thus, \exists at least 1 square among 2, 3, 6. And we are done.

2

Problem 2

Exercise 12.4.13 Let K be a field of characteristic p (where p is a prime), and suppose that $f = X^p - X - a \in K[X]$ is irreducible. Show that f is separable, and determine the Galois group of f. Warning: K is not assumed to be finite.)

Soln:

Proof. Let α be a root of $f = X^p - X - a \in K[X]$.

Claim: the p roots of f are $\alpha + \beta$ for $\beta \in \mathbb{F}_p = \{0, 1, \dots, p-1\}$. We have $\alpha^p - \alpha - a = 0$. Let $\beta \in \mathbb{F}_p$.

$$(\alpha + \beta)^p - (\alpha + \beta) - a \tag{13}$$

$$=\alpha^p + \beta^p - \alpha - \beta - a \text{ because } charK = p$$
 (14)

$$=\beta^p - \beta \mod p \tag{15}$$

$$=0 (16)$$

where the last step is due to Fermat's little theorem, which states, for integer z, prime p, we have

$$z^p = z \mod p$$
.

Thus, $\alpha + \beta$ is a root of f.

Since f has p roots, letting $\beta \in \mathbb{F}_p$ gives exactly the p roots $\alpha + 0$, $\alpha + 1$, \cdots , $\alpha + p - 1$, and they are distinct. Thus, f is separable. $Gal_k(f) = \Gamma(L:K)$ where L is the splitting field of f over K. We see that $L = K(\alpha)$ for a root α of f, since once we adjoin α , other roots can be obtained by $\alpha + \beta$, with $\beta \in \mathbb{F}_p \subset K$. (K certainly contains it's prime subfield that is isomorphic to \mathbb{F}_p .) Since f is irreducible,

$$|\Gamma(L:K)| = |[L:K]| = |[K(\alpha):K]| = p \tag{17}$$

and this extension is Galois because it is a splitting field of a separable polynomial.

Thus, $\Gamma(L:K)$ is cyclic. All groups of prime order are cyclic.

Problem 3

Exercise 15.1.2 Let p be a prime and n a positive integer. For $d \in \mathbb{N}$ denote by $\overline{\Phi}_d \in (\mathbb{Z}/p\mathbb{Z})[X]$ the modulo p reduction of the cyclotomic polynomial $\Phi_d \in \mathbb{Z}[X]$. Show that the splitting field of $\overline{\Phi}_{p^n-1}$ over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field \mathbb{F}_{p^n} .

Soln:

We have

$$\prod_{d|p^n-1} \Phi_d = X^{p^n-1} - 1 \tag{18}$$

reduce modulo p, we get

$$\prod_{d|p^n-1} \overline{\Phi}_d = X^{p^n-1} - 1 \tag{19}$$

Let L be the splitting field of $\overline{\Phi}_{p^n-1}$ over \mathbb{F}_p .

Then $L \subset \mathbb{F}_{p^n}$, since roots of $\overline{\Phi}_{p^n-1}$ are roots of $X^{p^n-1}-1$ and roots of $X^{p^n-1}-1$ are precisely the elements of $\mathbb{F}_{p^n}^{\times}$. (\Longrightarrow roots of $\overline{\Phi}_{p^n-1} \subset \mathbb{F}_{p^n}^{\times}$).

To show $L \supset \mathbb{F}_{p^n}$, we want the generators of $\mathbb{F}_{p^n}^{\times}$ as a cyclic group to be roots of $\overline{\Phi}_{p^n-1}$. We show any generator g of $\mathbb{F}_{p^n}^{\times}$ cannot be a root of $\overline{\Phi}_d$ where $d < p^n - 1$. For $d < p^n - 1$, we have

$$\prod_{e|d} \Phi_e = X^d - 1 \tag{20}$$

reduce mod p,

$$\prod_{e|d} \overline{\Phi}_e = X^d - 1 \tag{21}$$

Then any root α of $\overline{\Phi}_d$ is also a root of $X^d - 1$, so $\alpha^d = 1$, which implies $|\alpha|$ divide d, which implies $|\alpha| \le d$. Hence, roots of $\overline{\Phi}_d$ with $d < p^n - 1$ has order $\le d < p^n - 1$,

so, roots of $\overline{\Phi}_d$ with $d < p^n - 1$ cannot be generators.

Since generators of $\mathbb{F}_{p^n}^{\times}$ are roots of $X^{p^n-1}-1$, so they are roots of

$$\prod_{d|p^n-1} \overline{\Phi}_d,\tag{22}$$

and they have order $= p^n - 1$, so they can only be roots of $\overline{\Phi}_{p^n - 1}$.

Thus, the splitting field of $\overline{\Phi}_{p^n-1}$, L over \mathbb{F}_p contains the generators of $\mathbb{F}_{p^n}^{\times}$, thus, $L \supset \mathbb{F}_{p^n}$.

Thus, $L = \mathbb{F}_{p^n}$.