VİTMO

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

По дисциплине "Линейные системы автоматического управления"

"Точностные свойства системы, астатизмы и регуляторы"

Вариант 17

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2024

Содержание

1.	Идє	еальное дифференцирующее звено	4
	1.1.	Анализ устойчивости	4
	1.2.	Моделирование системы	5
	1.3.	Вывод	5
2.	Pea	льное дифференцирующее звено	8
	2.1.	Моделирование системы	8
	2.2.	Вывод	9
3.	Аст	атизм нулевого порядка	11
	3.1.	Статическая система	11
	3.2.	Система с линейно возрастающим входным воздействием	14
	3.3.	Вывод	16
4.	Аст	атизм первого порядка. I регулятор	16
	4.1.	Статическая система	17
	4.2.	Система с линейно возрастающим входным воздействием	17
	4.3.	Квадратичное входное воздействие	19
	4.4.	Вывод	23
5.	Аст	атизм первого порядка. PI регулятор	23
	5.1.	Система с линейно возрастающим входным воздействием	24
	5.2.	Слежение за гармоническим воздействием	29
	5.3.	Вывод	30
6.	Спе	ециальный регулятор	33

6.1.	Вывод	 	•	 	35							
7. Вы	вод											36

1. Идеальное дифференцирующее звено

Рассмотрим объект управления, заданный дифференциальным уравнением:

$$a_2\ddot{y} + a_1\dot{y} + a_0y = u \tag{1}$$

Подберем коэффициенты так, чтобы объект содержал один неустойчивый полюс:

$$\lambda_1 = 2, \quad \lambda_2 = -1 \quad \Rightarrow \quad a_2 = 1, \quad a_1 = -1, \quad a_0 = -2$$
 (2)

Кроме того, зададим начальные условия:

$$y(0) = 2, \quad \dot{y}(0) = 3 \tag{3}$$

Рассмотрим регулятор вида:

$$u = k_0 y + k_1 \dot{y} \tag{4}$$

Результат моделирования свободного движения системы представлен на рисунке 1.

1.1. Анализ устойчивости

Запишем уравнение замкнутой системы:

$$a_2\ddot{y} + a_1\dot{y} + a_0y = k_0y + k_1\dot{y} \tag{5}$$

Таким образом, можно рассматривать свободное движение системы:

$$a_2\ddot{y} + (a_1 - k_1)\dot{y} + (a_0 - k_0)y = 0 \tag{6}$$

Воспользуемся следствием из критерия Гурвица для системы второго порядка для определения границы устойчивости системы. Система будет асимптотически устойчива, если выполнено условие:

$$\begin{cases} a_1 - k_1 > 0 \\ a_0 - k_0 > 0 \end{cases} \Rightarrow \begin{cases} k_1 < a_1 \\ k_0 < a_0 \end{cases}$$
 (7)

Рис. 1: Свободное движение системы

1.2. Моделирование системы

Проведем моделирование системы при $k_0 = -3, k_1 = -3.$

Схема моделирования системы представлена на рисунке 2.

Результат моделирования замкнутой системы представлен на рисунке 3 и 4.

Сопоставление результатов моделирования движения свободного движения и замкнутой системы показано на рисунке 5.

1.3. Вывод

По результатам моделирования видно, что управление смогло удержать систему в устойчивом состоянии.

Рис. 2: Схема моделирования системы

Рис. 3: Выход замкнутой системы

Рис. 4: Управление замкнутой системы

Рис. 5: Сравнение свободного движения и замкнутой системы

2. Реальное дифференцирующее звено

В регуляторе (4) заменим идеальное дифференцирующее звено на реальное дифференцирующее звено – передаточную функцию вида:

$$W(s) = \frac{s}{Ts+1} \tag{8}$$

И найдем его передаточную функцию:

$$W_{y\to u}(s) = \frac{k_0(Ts+1) + k_1s}{Ts+1} = \frac{(k_0T+k_1)s + k_0}{Ts+1}$$
(9)

Запишем передаточную функцию разомкнутой системы:

$$W_s(s) = \frac{1}{a_2 s^2 + a_1 s + a_0} \tag{10}$$

Теперь найдем передаточную функцию замкнутой системы:

$$W_{u\to y}(s) = \frac{W_s(s)}{1 - W_s(s)W_{y\to u}(s)} = \frac{\frac{1}{a_2s^2 + a_1s + a_0}}{1 - \frac{1}{a_2s^2 + a_1s + a_0} \cdot \frac{(k_0T + k_1)s + k_0}{Ts + 1}} = \frac{1}{a_2s^2 + a_1s + a_0 - \frac{(k_0T + k_1)s + k_0}{Ts + 1}} = \frac{Ts + 1}{(a_2s^2 + a_1s + a_0)(Ts + 1) - (k_0T + k_1)s - k_0} = \frac{Ts + 1}{a_2Ts^3 + (a_2 + a_1T)s^2 + (a_1 + a_0T - k_0T - k_1)s + (a_0 - k_0)}$$
(11)

Снова воспользуемся критерием Гурвица для определения границы устойчивости системы.

$$\begin{cases}
\frac{a_2 + a_1 T}{a_2 T} > 0 \\
\frac{a_1 + a_0 T - k_0 T - k_1}{a_2 T} > 0 \\
\frac{a_0 - k_0}{a_2 T} > 0 \\
\frac{a_2 + a_1 T}{a_2 T} \cdot \frac{a_1 + a_0 T - k_0 T - k_1}{a_2 T} > \frac{a_0 - k_0}{a_2 T}
\end{cases} \Rightarrow
\begin{cases}
\frac{1 - T}{T} > 0 \\
\frac{-1 - 2T + 3T + 3}{T} > 0 \\
\frac{-2 + 3}{T} > 0 \\
\frac{1 - T}{T} \cdot \frac{-1 - 2T + 3T + 3}{T} > \frac{-2 + 3}{T}
\end{cases} \Rightarrow
\begin{cases}
T \in (0, 1) \\
T \in (0, \infty) \\
T \in (0, \infty)
\end{cases}$$

$$T \in (0, \infty)$$

$$T \in (0, \sqrt{3} - 1) \tag{13}$$

2.1. Моделирование системы

Промоделируем систему, заменив производную на передаточную функцию (см. рис. 6).

Рис. 6: Схема моделирования системы

Выберем значения $T = \{0.73, 0.74, 0.001\}$. В первом случае система будет устойчива и близка к границе устойчивости, во втором случае система будет неустойчива, а в третьем случае система будет устойчива, но менее колебательна. Результаты моделирования приведены на рис. 7, 8.

2.2. Вывод

В данном разделе было проведено моделирование системы с реальным дифференцирующим звеном. Система оказалась устойчивой при $T\in(0,\sqrt{3}-1)$, что подтверждает теоретические расчеты. При уменьшении значения T система становится менее колебательной, так как передаточна функция дифференцирующего звена приближается к идеальному дифференцирующему звену.

Рис. 7: Графики выходного сигнала

Рис. 8: Графики ошибки

3. Астатизм нулевого порядка

Рассмотрим замкнутую системы с объектом управления, описываемым передаточной функцией:

$$W(s) = \frac{3}{s^2 + 7.5s + 2} \tag{14}$$

И регулятором, описываемым передаточной функцией:

$$H(s) = k \tag{15}$$

Запишем передаточную функцию замкнутой системы:

$$W_{u\to y}(s) = \frac{W(s)H(s)}{1 + W(s)H(s)} = \frac{3k}{s^2 + 7.5s + 2 + 3k}$$
(16)

Согласно следствию из критерия Гурвица для систем второго порядка, система будет устойчива при:

$$\begin{cases} 7.5 > 0 \\ 2 + 3k > 0 \end{cases} \Rightarrow k > -\frac{2}{3}$$
 (17)

Найдем передаточную функцию по ошибке:

$$W_{u\to e}(s) = \frac{1}{1 + W(s)H(s)} = \frac{s^2 + 7.5s + 2}{s^2 + 7.5s + 2 + 3k}$$
(18)

3.1. Статическая система

Найдем образ Лапласа входного воздействия:

$$L\{A\} = \frac{A}{s} \tag{19}$$

Теперь найдем образ Лапласа выходного сигнала:

$$Y = W_{u \to y}(s)L\{A\} = \frac{3k}{s^2 + 7.5s + 2 + 3k} \frac{A}{s} = \frac{3kA}{s(s^2 + 7.5s + 2 + 3k)}$$
(20)

k	$e_{ m set}$	$e_{ m fact}$
-0.1	2.35	2.31
0.1	1.73	1.75
1	0.8	0.8
10	0.125	0.125

Таблица 1: Сравнение теоретического и фактического установившегося значения ошибки

sY не имеет положительных полюсов, следовательно, система устойчива. Теперь найдем установившееся значение ошибки, согласное теореме о конечном значении:

$$E = W_{u \to e}(s)L\{A\} = \frac{s^2 + 7.5s + 2}{s^2 + 7.5s + 2 + 3k} \frac{A}{s}$$
(21)

$$e_{\text{set}} = \lim_{s \to 0} sY = \lim_{s \to 0} \frac{A(s^2 + 7.5s + 2)}{s^2 + 7.5s + 2 + 3k} = \frac{2A}{2 + 3k}$$
 (22)

Промоделируем систему, представленную на рис. 9.

Рис. 9: Схема моделирования системы

Результаты моделирования приведены на рис. 10, 11.

Во всех случаях фактическое значение установившегося значения ошибки совпадает с теоретическим, что подтверждает правильность выводов о стабильности системы и установившемся значении ошибки.

Рис. 10: Моделирование системы с Р регулятором (u(t)=A)

Рис. 11: График ошибки системы с Р регулятором (u(t)=A)

3.2. Система с линейно возрастающим входным воздействием

Рассмотрим систему с линейно возрастающим входным воздействием:

$$u(t) = Vt (23)$$

Найдем образ Лапласа входного воздействия:

$$L\{u\} = \frac{V}{s^2} \tag{24}$$

Найдем образ Лапласа выходного сигнала:

$$Y = W_{u \to y}(s)L\{u\} = \frac{3k}{s^2 + 7.5s + 2 + 3k} \frac{V}{s^2} = \frac{3kV}{s^2(s^2 + 7.5s + 2 + 3k)}$$
(25)

Значение sY имеет нулевые полюса, следовательно, теорема о конечном значении не применима.

Проведем моделирование системы с линейно возрастающим входным воздействием. При тех же значениях k (см. рис. 12, 13).

Видно, что при линейно возрастающем входном воздействии система не приходит к установившемуся значению, что подтверждает то, что система является астатической нулевого порядка.

Рис. 12: Моделирование системы с Р регулятором (u(t)=Vt)

Рис. 13: График ошибки системы с Р регулятором (u(t)=Vt)

3.3. Вывод

В данном пункте была рассмотрена система с астатизмом нулевого порядка и P регулятором, влияние коэффициента k на систему. Была найдена область устойчивости системы и установившееся значение ошибки или показано, что система не будет приходить к установившемуся значению при линейно возрастающем входном воздействии.

4. Астатизм первого порядка. І регулятор

Рассмотрим замкнутую системы с объектом управления, описываемым передаточной функцией:

$$W(s) = \frac{3}{s^2 + 7.5s + 2} \tag{26}$$

И регулятором, описываемым передаточной функцией:

$$H(s) = \frac{k}{s} \tag{27}$$

Найдем передаточную функцию замкнутой системы:

$$W_{u\to y}(s) = \frac{W(s)H(s)}{1 + W(s)H(s)} = \frac{3k}{s(s^2 + 7.5s + 2) + 3k}$$
(28)

Согласно следствию из критерия Гурвица для систем третьего порядка, система будет устойчива при:

$$\begin{cases} 7.5 > 0 \\ 2 > 0 \\ 3k > 0 \\ 7.5 \cdot 2 > 3k \end{cases} \Rightarrow k < 5$$
 (29)

Найдем передаточную функцию по ошибке:

$$W_{u\to e}(s) = \frac{1}{1+W(s)H(s)} = \frac{s(s^2+7.5s+2)}{s(s^2+7.5s+2)+3k}$$
(30)

k	$e_{ m set}$	$e_{ m fact}$
0.1	0	0.0
0.3	0	0.0
0.5	0	0.0

Таблица 2: Сравнение теоретического и фактического установившегося значения ошибки

4.1. Статическая система

Найдем образ Лапласа входного воздействия:

$$L\{A\} = \frac{A}{s} \tag{31}$$

Теперь найдем образ Лапласа ошибки:

$$E = W_{u \to e}(s)L\{A\} = \frac{s(s^2 + 7.5s + 2)}{s(s^2 + 7.5s + 2) + 3k} \frac{A}{s} = \frac{A(s^2 + 7.5s + 2)}{s^2 + 7.5s + 2 + 3k}$$
(32)

Согласно теореме о конечном значении, установившееся значение ошибки равно:

$$e_{\text{set}} = \lim_{s \to 0} sE = \lim_{s \to 0} \frac{A(s^2 + 7.5s + 2)}{s^2 + 7.5s + 2 + 3k} = \frac{2sA}{3k} = 0$$
(33)

Проведем моделирование системы с линейно возрастающим входным воздействием при значениях $k = \{0.1, 0.3, 0.5\}$. Результаты моделирования приведены на рис. 14, 15.

Видно, что во всех трех случаях система устойчива и ошибки стремятся к нулю, что соответствует теоретическим расчетам.

4.2. Система с линейно возрастающим входным воздействием

Рассмотрим систему с линейно возрастающим входным воздействием:

$$u(t) = Vt (34)$$

Найдем образ Лапласа входного воздействия:

$$L\{u\} = \frac{V}{s^2} \tag{35}$$

Рис. 14: Моделирование системы с I регулятором (u(t) = Vt)

Найдем образ Лапласа ошибки:

$$E = W_{u \to e}(s)L\{u\} = \frac{s(s^2 + 7.5s + 2)}{s(s^2 + 7.5s + 2) + 3k} \frac{V}{s^2} = \frac{V(s^2 + 7.5s + 2)}{s(s(s^2 + 7.5s + 2) + 3k)}$$
(36)

Согласно теореме о конечном значении, установившееся значение ошибки равно:

$$e_{\text{set}} = \lim_{s \to 0} sE = \lim_{s \to 0} \frac{V(s^2 + 7.5s + 2)}{s(s^2 + 7.5s + 2) + 3k} = \frac{2V}{3k}$$
(37)

Проведем моделирование системы с линейно возрастающим входным воздействием при значениях $k = \{0.1, 0.3, 0.5\}$. Результаты моделирования приведены на рис. 16, 17.

k	$e_{ m set}$	$e_{ m fact}$
0.1	6.67	6.67
0.3	2.22	2.22
0.5	1.33	1.33

Таблица 3: Сравнение теоретического и фактического установившегося значения ошибки

Видно, что во всех трех случаях система устойчива и ошибки стремятся к теоретическим значениям.

Рис. 15: График ошибки системы с I регулятором (u(t) = Vt)

4.3. Квадратичное входное воздействие

Рассмотрим систему с квадратичным входным воздействием:

$$u(t) = \frac{at^2}{2} \tag{38}$$

Найдем образ Лапласа входного воздействия:

$$L\{u\} = \frac{a}{s^3} \tag{39}$$

Найдем образ Лапласа ошибки:

$$E = W_{u \to e}(s)L\{u\} = \frac{s(s^2 + 7.5s + 2)}{s(s^2 + 7.5s + 2) + 3k} \frac{a}{s^3} = \frac{a(s^2 + 7.5s + 2)}{s^2(s(s^2 + 7.5s + 2) + 3k)}$$
(40)

Значение sE имеет нулевые полюса, следовательно, теорема о конечном значении не применима.

Рис. 16: Моделирование системы с I регулятором (u(t) = Vt)

Проведем моделирование системы с квадратичным входным воздействием при значениях $k = \{0.1, 0.3, 0.5\}$. Результаты моделирования приведены на рис. 18, 19.

Видно, что во во всех случая ошибка нарастает, что подтверждает то, что система является астатической первого порядка.

Рис. 17: График ошибки системы с I регулятором (u(t)=Vt)

Рис. 18: Моделирование системы с I регулятором $(u(t) = \frac{at^2}{2})$

Рис. 19: График ошибки системы с I регулятором $(u(t) = \frac{at^2}{2})$

4.4. Вывод

В данном пункте была рассмотрена система с І регулятором, который позволяет получить систему с астатизмом первого порядка. Было найдено теоретическое значение установившегося значения ошибки, которое совпало с фактическим значением. Для квадратичного выходного воздействия было показано, что ошибка не сходится к значению, что подтверждает астатизм первого порядка.

5. Астатизм первого порядка. РІ регулятор

Рассмотрим замкнутую системы с объектом управления, описываемым передаточной функцией:

$$W(s) = \frac{3}{s^2 + 7.5s + 2} \tag{41}$$

И регулятором, описываемым передаточной функцией:

$$H(s) = k_p + \frac{k_i}{s} \tag{42}$$

Запишем передаточную функцию замкнутой системы:

$$W_{u\to y}(s) = \frac{W(s)H(s)}{1 + W(s)H(s)} = \frac{3(k_p + \frac{k_i}{s})}{s^2 + 7.5s + 2 + 3(k_p + \frac{k_i}{s})} = \frac{3k_p s + 3k_i}{s^3 + 7.5s^2 + (2 + 3k_p)s + 3k_i}$$
(43)

Согласно следствию из критерия Гурвица для систем третьего порядка, система будет устойчива при:

$$\begin{cases}
7.5 > 0 \\
2 + 3k_p > 0 \\
3k_i > 0 \\
7.5 \cdot 2 > 3k_i
\end{cases}
\Rightarrow
\begin{cases}
k_p > -\frac{2}{3} \\
k_i > 0 \\
k_i < 5
\end{cases}$$
(44)

Найдем передаточную функцию по ошибке:

$$W_{u\to e}(s) = \frac{1}{1+W(s)H(s)} = \frac{1}{1+\frac{3}{s^2+7.5s+2}(k_p+\frac{k_i}{s})} = \frac{s^3+7.5s^2+2s}{s^3+7.5s^2+(2+3k_p)s+3k_i}$$
(45)

5.1. Система с линейно возрастающим входным воздействием

Рассмотрим систему с линейно возрастающим входным воздействием:

$$u(t) = Vt \tag{46}$$

Найдем образ Лапласа входного воздействия:

$$L\{u\} = \frac{V}{s^2} \tag{47}$$

Найдем образ Лапласа выходного сигнала:

$$Y = W_{u \to y}(s)L\{u\} = \frac{3k_p s + 3k_i}{s^3 + 7.5s^2 + (2 + 3k_p)s + 3k_i} \frac{V}{s^2}$$
(48)

И образ Лапласа ошибки:

$$E = W_{u \to e}(s)L\{u\} = \frac{s^3 + 7.5s^2 + 2s}{s^3 + 7.5s^2 + (2 + 3k_p)s + 3k_i} \frac{V}{s^2}$$
(49)

Согласно теореме о конечном значении, установившееся значение ошибки равно:

$$e_{\text{set}} = \lim_{s \to 0} sE = \lim_{s \to 0} \frac{V(s^2 + 7.5s + 2)}{s^3 + 7.5s^2 + (2 + 3k_p)s + 3k_i} = \frac{2V}{3k_i}$$
 (50)

В качестве значений коэффициентов возьмем:

k_p	k_i
1	0.1
5	0.3
10	0.5

Таблица 4: Значения коэффициентов для PI регулятора

Для всех возможных комбинаций коэффициентов промоделируем систему.

При $k_p=1$ графики выходного сигнала и ошибки приведены на рис. 20 и 21 соответственно.

При $k_p=5$ графики выходного сигнала и ошибки приведены на рис. 22 и 23 соответственно.

Рис. 20: График выходного сигнала при $k_p=1$

При $k_p=10$ графики выходного сигнала и ошибки приведены на рис. 24 и 25 соответственно.

Во всех случаях система сходится к заданному значению с постоянной ошибкой, равной теоретическому значению. Коэффициенты k_p и k_i влияют на скорость сходимости системы и на величину ошибки. При увеличении коэффициента k_p система быстрее сходится к установившемуся значению, при увеличении коэффициента k_i уменьшается ошибка.

Рис. 21: График ошибки при $k_p=1$

Рис. 22: График выходного сигнала при $k_p=5$

Рис. 23: График ошибки при $k_p=5$

Рис. 24: График выходного сигнала при $k_p=10$

Рис. 25: График ошибки при $k_p = 10$

5.2. Слежение за гармоническим воздействием

Рассмотрим систему с гармоническим входным воздействием:

$$u(t) = A\sin(\omega t) \tag{51}$$

При $k_p=1$ графики выходного сигнала и ошибки приведены на рис. 26 и 27 соответственно.

Рис. 26: График выходного сигнала при $k_p=1$

При $k_p=5$ графики выходного сигнала и ошибки приведены на рис. 28 и 29 соответственно.

При $k_p=10$ графики выходного сигнала и ошибки приведены на рис. 30 и 31 соответственно.

Видно, что при увеличении коэффициента k_p уменьшается ошибка по фазе, при увеличении коэффициента k_i уменьшается ошибка по амплитуде.

Рис. 27: График ошибки при $k_p=1$

5.3. Вывод

В данном разделе была рассмотрена система с астатизмом первого порядка и РІ регулятором, влияние коэффициентов k_p и k_i на систему. Можно сделать вывод, что коэффициенты k_p и k_i влияют на скорость сходимости системы и на величину ошибки. Конкретный характер влияния зависит от вида входного воздействия, но в целом можно сказать, что при увеличении коэффициента k_p система быстрее сходится к установившемуся значению, при увеличении коэффициента k_i уменьшается статическая ошибка.

Рис. 28: График выходного сигнала при $k_p=5$

Рис. 29: График ошибки при $k_p=5$

Рис. 30: График выходного сигнала при $k_p=10$

Рис. 31: График ошибки при $k_p=10$

6. Специальный регулятор

Рассмотрим замкнутую системы с объектом управления, описываемым передаточной функцией:

$$W(s) = \frac{3}{s^2 + 7.5s + 2} \tag{52}$$

И регулятором, описываемым передаточной функцией:

$$H(s) = \frac{\sum_{k=0}^{m} (b_k s^k)}{\sum_{k=0}^{n} (a_k s^k)}$$
 (53)

Найдем образ Лапласа входного сигнала:

$$U(s) = L\{4\sin(0.25t)\} = \frac{1}{s^2 + 0.25^2}$$
(54)

Исходя из числителя образа Лапласа входного сигнала, можно предположить, что передаточная функция регулятора будет иметь вид:

$$H(s) = \frac{k_2 s^2 + k_1 s + k_0}{s^2 + 0.25^2} \tag{55}$$

Найдем образ ошибки согласно формуле:

$$E = \frac{D_w D_h}{D_w D_h + N_w N_h} \cdot \frac{N_u}{D_u} = \frac{(s^2 + 7.5s + 2)(s^2 + 0.25^2)}{(s^2 + 7.5s + 2)(s^2 + 0.25^2) + 3(k_2 s^2 + k_1 s + k_0)} \cdot \frac{1}{s^2 + 0.25^2} = \frac{(s^2 + 7.5s + 2)}{(s^2 + 7.5s + 2)(s^2 + 0.25^2) + 3(k_2 s^2 + k_1 s + k_0)} = \frac{s^2 + 7.5s + 2}{s^4 + 7.5s^3 + (3k_2 + 0.25^2 + 2)s^2 + (7.5 \cdot 0.25^2 + 3k_1)s + 2 \cdot 0.25^2 + 3k_0}$$
(56)

Подходящими значениями коэффициентов регулятора будут:

$$k_2 = 2, k_1 = 2, k_0 = 1 (57)$$

при них система будет устойчива, согласно критерию Гурвица для система 4 порядка. Промоделируем систему, представленную на рис. 32.

Теоретическое значение установившегося значения ошибки равно:

$$e_{\text{set}} = \lim_{s \to 0} sE = \frac{0}{2 + 0.25^2 + 3k_0} = 0 \tag{58}$$

Результаты моделирования приведены на рис. 33 и 34. Видно, что система в точности

Рис. 32: Схема моделирования системы

Рис. 33: График выходного сигнала

повторяет входной сигнал после некоторого времени, ошибка стремится к нулю, что соответствует теоретическим расчетам.

Рис. 34: График ошибки

6.1. Вывод

В данном пункте была рассмотрена система со специальным регулятором, который позволяет получить систему с нулевой установившейся ошибкой.

7. Вывод

В ходе выполнения лабораторной работы были изучены методы анализа и синтеза систем управления с различными регуляторами и входными воздействиями. На практике было показано, что теорема о конечном значении ошибки корректно описывает поведение системы при различных входных воздействиях и регуляторах.