INSTALLATION RESTORATION PROGRAM (IRP) ADDENDUM SITE INVESTIGATION REPORT FOR IRP SITE NO.1

VOLUME II APPENDICES A-E

101st AIR CONTROL SQUADRON AND MASSACHUSETTS AIR NATIONAL GUARD WORCESTER AIR NATIONAL GUARD STATION WORCESTER, MASSACHUSETTS

FEBRUARY 1996

Prepared For HQ ANG/CEVR ANDREWS AFB, MARYLAND

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burgen for this collection of information is estimated to average. Hour per response, including the time for reviewing instructions, searning as sting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Peports, 1215 Jefferson collection of information and Peports and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 1907 (2053).

Davis Highway, Suite 1204, Arlington, 74, 22202-4302.	and to the Office of Management and Bud		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE February 1996	3. REPORT TYPE AN Site Inspection	D DATES COVERED
A TITLE AND SUBTITLE Addendum Site Investigation Re Squadron, Massachusetts Air N Guard Station, Worcester, Mass	ational Guard, Worcester	Air National	5. FUNDING NUMBERS
6. AUTHOR(S)			
NA			
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Operational Technologies Corpo Suite 230, 4100 N.W. Loop 410 San Antonio, Texas 78229-4253			
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ANGRC/CEVR 3500 Fetchet Avenue Andrews AFB MD 20762-5157			
11. SUPPLEMENTARY NOTES			
			:
12a. DISTRIBUTION/AVAILABILITY STAT	TEMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited			
	•		
13. ABSTRACT (Maximum 200 words)			
Addendum Site Investigation Re National Guard, Worcester Air I Appendices A-E. This is the sec	National Guard Station, V	Vorcester, Massach	usetts - Volume II -

Addendum Site Investigation Report for IRP Site No. 1, 101st Air Control Squadron, Massachusetts Air National Guard, Worcester Air National Guard Station, Worcester, Massachusetts - Volume II - Appendices A-E. This is the second volume of a two volume site investigation report. IRP Site No. 1 was investigated under the Installation Restoration Program. This was an addendum to the original Site Investigation due to the discovery of a possible source area. Soil samples were collected and analyzed. Low level contamination of fuel-related compounds and metals were detected. Further action was recommended under RCRA Subtitle I and the Massachusetts Contigency Plan.

14. SUBJECT TERMS Installation Restoration Pro	gram; Comprehensive Envir		15. NUMBER OF PAGES 462
Compensation and Liability Investigation, Massachusett	Act (CERCLA); Air Nationa	l Guard; Addendum Site	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified		20. LIMITATION OF ABSTRACT None

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- **Block 2.** Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit
Element Accession No.

- **Block 6.** Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- Block 7. <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.
- Block 8. <u>Performing Organization Report</u>
 <u>Number</u>. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. <u>Sponsoring/Monitoring Agency</u> <u>Report Number</u>. (If known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement.</u>
Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. <u>Distribution Code</u>.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

- Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
- **Block 14.** Subject Terms. Keywords or phrases identifying major subjects in the report.
- **Block 15.** <u>Number of Pages</u>. Enter the total number of pages.
- **Block 16.** <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

INSTALLATION RESTORATION PROGRAM (IRP) ADDENDUM SITE INVESTIGATION REPORT FOR IRP SITE NO.1

VOLUME II APPENDICES A-E

101st AIR CONTROL SQUADRON AND MASSACHUSETTS AIR NATIONAL GUARD WORCESTER AIR NATIONAL GUARD STATION WORCESTER, MASSACHUSETTS

FEBRUARY 1996

Prepared For

HQ ANG/CEVR ANDREWS AFB, MARYLAND

Prepared By

Operational Technologies Corporation P.O. Box 960, 8 Otis Park Drive Pocasset, MA 02559 (508) 759-6989 APPENDIX A
BORING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

KEY TO BORING LOG SYMBOLS

	UNIFIED S	OIL CLASSIFICAT	rion	SYS	TEM - ASTM D2487
	MAJOR DIV	ISIONS		BOL/ PHIC	DESCRIPTIONS
	GRAVELS	Clean gravels with	G₩	3,000	Well-Graded Gravels, Gravel - Sand Mixtures
S. eve)	(FKAVELA)	little or no fines	GP		Poorly Graded Gravels, Gravels — Sand Mixtures
SOIL 00 Sid	(More than 50% of coarse fraction is	Gravels with over	GM		Silty Gravels, Poorly Graded Gravel- Sand-Clay Mixtures
COARSE-GRAINED SOILS 0% Smaller Than #200 Sieve)	larger than the #4 sieve size.)	12% fines	GC		Clayey Gravels, Poorly Graded Gravel- Sand-Clay Mixtures
COARSE-GRAINE (>50% Smaller Than	SANDS	Clean sands with	SW		Well-Graded Sands, Gravelly Sands
ARSE	SAINUS	little or no fines	SP		Poorly Graded Sands, Gravelly Sands
CO ₂	(More than 50% of coarse	Sands with over	SM		Silty Sands, Poorly Graded Sand-Silt Mixtures
	fraction is smaller than the #4 sieve size.)	12% fines	sc		Clayey Sands, Poorly Graded Sand- Clay Mixtures
(eve)			ML		Inorganic Silts and Very Fine Sands, Silty or Clayey Fine Sands
SOILS #200 Sieve)		ID CLAYS t less than 50)	CL		Inorganic Clays of Low to Medium Plasticity: Gravelly, Sandy or Silty Clays: Lean Clays
1	(Elquis IIIII	• • • • • • • • • • • • • • • • • • • •	OL		Organic Clays and Organic Silty Clays of Low Plasticity
FINE-GRAINED % Smaller Than	CILTE AN	ND CLAYS	мн		Inorganic Silts, Micaceous or Diatomacious Fine Sandy or Silty Soils, Elastic Silts
INE-(greater than 50)	СН		Inorganic Clays of High Plasticity Fat Clays
F1]	(,	он		Organic Clays of Medium to High Plasticity, Organic Silts
	HIGHLY ORG	ANIC SOILS	Pt		Peat and Other Highly Organic Soils

Sample retained for on-site screening.

Sample prepared for laboratory analysis.

______ Water Table Level.

PID Photo-Ionization Detector readings (ppm).

ND Parameter Not Detected

NA Measurement Not Applicable, Groundwater Not Detected

- No Measurement Performed

NR No Sample Recovery

FIGURE B.1

FORMS\KEYLOGZ

KEY TO BORING LOG SYMBOLS Massachusetts Air National Guard Worcester, Massachusetts

JUNE 1995

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 01-016BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/04/95

Sampling Method:

California-Style Sampler

Depth Drilled:

10.0 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

764.5 ft. BLS

	ng Me			4/04/93 [ollow-St	tem Auger	Surface Elevation: 70	4.5 II. DI			
<u></u>	=_	ery	S	ບ			FI	ELD SCF	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	АТНА		
De	8	%	S	G			(ppm)	(ppm)	And probability	
	10 18 50	100			Asphalt. Brown to dark gray, very po coarse sand, little silt, loose, material).	orly sorted sand and slightly moist (fill	3.0	13.0		
	-						-	-	·	
5 - -	-						-	-		
	23 28 31	65			Brown to dark gray, medium slightly cohesive, silty sand, odor.	to coarse sand, loose to slightly moist, petroleum	230	-		
	-		X				-	-		
10					Boring Terminated	at 10.0 ft. BLS.				

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 01-018BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/04/95

Sampling Method:

California-Style Sampler

Depth Drilled:

6.0 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

767.5 ft. BLS

Drilli	ing Me	thod:	H	lollow-St	em Auger	·,-			
.)	=	ıry		ى ا		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА		
Dep	Ble	% R	Sa	ਹ ਹ		(ppm)	(ppm)		
	21 41	75			Asphalt. Brown to dark brown coarse sand, sand and gravel fill material, some silty sand, loose to slightly cohesive and slightly moist.	7.8	14.9		
_	50				and slightly moist.				
	-						-		
5 —	- 11 50 -	80			Daving Transitioned at (0 th DV S	13.5	13.7		
					Boring Terminated at 6.0 ft. BLS.				
_									
10 —									
10 _									
 									
	•				•				
									-
,									

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 01-017BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/04/95

04/04/95

Sampling Method:

California-Style Sampler

Depth Drilled:

7.0 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

768.9 ft. BLS

	ng Me			ollow-St	em Auger					
							FI	ELD SCI	REENING	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS	(ppm)	ATHA (ppm)		
	19 30 44	90			Asphalt. Gray to brown fill material, black charcoal fill in upper p cohesive, slightly moist, gray	coarse to medium sand, part, loose to slightly welly.	6.2	14.7		
							-			
5 - - -	5 6 50	65			Brown to dark brown sand a and gravel and silt, slightly of Boring Terminate	cohesive and moist.	6.8	14.7		
10 -										
-										
-						·				

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 01-019BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/05/95

rilling Method: Hollow-Stem Auger

Sampling Method:

California-Style Sampler

Depth Drilled:

3.3 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

769.7 ft. BLS

Drilli	ing Me	thod:	H	ollow-St	em Auger				
						FI	ELD SCI	REENIN	G
ון (נ	,9/s^	cove	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА		
Depth (ft.)	Blows/6"	% Recovery	San	Gra		(ppm)	(ppm)		
					Asphalt.				
	23	70			Brown coarse sand fill material, some silty sand and gravel, loose to slightly cohesive, slightly moist.	4.5	10.0		1
1 -	38 31				graver, loose to sugnity conesive, sugnity moist.				
						4.5			
	20 21	60				4.5	-		
_	50								
					Boring Terminated at 3.5 ft. BLS.				
5 —									
-									
-									
10 –	-								
-									
	-								
. -	+								
. [)		
11			1						

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 01-020BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

Drilling Method

04/04/95

Sampling Method:

California-Style Sampler

Depth Drilled:

3.0 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

769.3 ft. BLS

(ft.)	9/	very	es	nic		FI	ELD S	CREEN	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID (ppm)	ATHA (ppm)		
					Asphalt.				
	10 18 24	80			Brown to dark brown coarse sand and gravel fill material, loose to slightly cohesive, many angular cobbles and gravel, slightly moist.	5.8	11.3		
						-	-		
					Boring Terminated at 3.0 ft. BLS.				
4									
5 —	-								
4									
-									
\downarrow	-								
4		ļ						i	
							•		
4							ļ		

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 01-021BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/04/95

Sampling Method:

California-Style Sampler

Not Encountered

Depth Drilled:

1.0 ft. BLS

Depth To Water: Date Measured:

NA

Surface Elevation:

769.1 ft. BLS

Drilli Drilli	ing Me	thod:	H	ollow-Ste	em Auger				
						FI	ELD SCR	EENING	3
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА		
epth	Slow	Rec	Sam	Gra	pederal front of heren	(ppm)	(ppm)		
Ğ		%				(ppin)	(ppin)		
					Asphalt.	7.3	11.9		
	18 50	60			Asphalt. Brown to dark brown coarse sand and gravel fill material, cobbles and angular gravel fragments, loose, slightly moist.	7.5			
•	-				Slightly moist. Boring Terminated at 1.0 ft. BLS.			a.	
_					Botting Terminated at 1.0 to Bes.				
1									
-									
] -	1								
				-					
j ⁵ -									
_									
Ī									
! -									
i I									
-	1								
10 -									
	-								
'									
'					•				
.	-								
. 1					•				-
H			ļ						

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 01-022BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/05/95

Sampling Method:

California-Style Sampler

Depth Drilled:

2.5 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

770.2 ft. BLS

Drill	ing M	ethod:	H	Iollow-St	tem Auger			
(tr.)	9.	/ery	es	iic		FI	ELD SO	CREENING
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	
<u>ă</u> _		26	03			(ppm)	(ppm)	
	28	80			Asphalt. Brown coarse sand and gravel fill, silty sand near	<i>-</i> 0	4.6	
	47 62				Brown coarse sand and gravel fill, silty sand near bottom, coarse sand is loose, slightly moist, silty sand is hard, slightly cohesive, and dry.	5.8	4.6	
	50				·			
	-				Boring Terminated at 2.5 ft. BLS.	-	-	
-	İ							
5								
	•							
+								
-								
10 +	_							
			į					;
-								
						-		

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 01-023BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Date Drilled:

04/05/95

Peter Newsham

Sampling Method:

California-Style Sampler

Depth Drilled: 1.5 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

769.9 ft. BLS

Drilli	ing Me	thod:	H	ollow-St	em Auger					
£.	#.C	ery	S	ين			FI	ELD SC	REENING	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PTD	АТНА		
Del	E	%	Š	9			(ppm)	(ppm)		İ
				•.•.•.•.	Asphalt.	sand and gravel fill	2.0	<i>c</i> 1		
_	30 31	100			Brown to dark brown coarse material, loose, dry, little silt	and silty sand at bottom.	2.0	6.1		
	50				Boring Terminated	at 1.5 ft. BLS.				
_										
_										
5 —										
) -	·									
_										ĺ
_										
10 -	_			į						
								i.		
								;		
. –										
_	,					•				
1						·				
·I			1							

OPERATIONAL TECHNOLOGIES

CORPORATION

LOG OF BORING 01-024BH

Project No.:

1315-199

Logged By:

Earl E. Parker II

Drilling Co.:

Technical Drilling Services (TDS)

Driller:

Peter Newsham

Date Drilled:

04/05/95

Sampling Method:

California-Style Sampler

Depth Drilled:

2.0 ft. BLS

Depth To Water:

Not Encountered

Date Measured:

NA

Surface Elevation:

775.7 ft. BLS

Drillin	ig Method:	H	ollow-St	em Auger	FI	ELD SCH	REENING	<u> </u>
Depth (ft.)	Blows/6" % Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID (ppm)	ATHA (ppm)		
5 -	6 90 5 50			Asphalt. Light brown sand and coarse sand, well sorted coarse sand with few gravel, bottom of sample was silty sand, slightly cohesive and moist. Boring Terminated at 2.0 ft. BLS.	2.4	1.9		

APPENDIX B FIELD GC SCREENING RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

Table B.1 Addendum SI Field GC Screening Results Worcester Air National Guard Station, Worcester, Massachusetts

				Field GC Data			77. 4.1
Drillíng Locations/Intervals	Sample Weight (gr)	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	m,p-Xylene (ppb)	o-Xylene (ppb)	Total BTEX (ppb)
01-016BH 0.5 - 2.0 7.5 - 9.0	10 10	1 O/R	4 O/R	4 O/R	8 O/R	3 O/R	20 N/A
01-017BH 0.5 - 2.0 5.5 - 7.0	10 10	4 5	1 1	ND 5	ND 4	ND ND	5 15
01-018BH 0.5 - 2.0 5.0 - 6.0	10 10	ND 6	ND 1	ND ND	ND ND	ND ND	ND 7
01-019BH 0.5 - 2.0 2.0 - 3.5	10 10	3 4	3 1	2 1	10 3	9 ND	27 9
01-020BH 0.5 - 2.0	10	ND	1	2	10	ND	13
01-021BH 0.5 - 1.0	10	9	1	ND	ND	ND	10
<u>01-022BH</u> 0.5 - 2.0	10	4	9	9	56	28	106
01-023BH 0.5 - 1.5	10	9	2	3	9	6	29
01-024BH 0.5 - 1.5	10	3	2	2	11	6	24

gr - grams.

ppb - parts per billion.

ND - Not Detected.

O/R - Analyte Peaks outside the calibration range of the GC. Peak concentrations not available.

N/A - Information is not available.

THIS PAGE INTENTIONALLY LEFT BLANK

FIELD GC DATA SUMMARY

SITE: WOREDSEPR ANGS
GAIN: 1000
CARRIER GAS FLOW: 12 al / min

INJECTION VOLUME: 100 LD
GC OVEN TEMP: 40°2
ANALYSIS TIME: 500 sec

		Sample				() () () () () () () () () ()	Concentratio	ons (ppb)			
Analysis		Interval (ft.	Sample Mass			Ethyl-	ш,р-		Add	itional An	alytes
No.	Boring	BLS	(grams)	Benzene	Toluene	benzene	Xylene	o-Xylene	BIEX		
19	100 PPB	\sim	\times	86	77	81	161	63	468	$\geq \leq$	\geq
	$\overline{}$	<u>-</u> -							<u> </u>		
	-/	$\overline{}$									
		/ :								<u> </u>	
		<i>j</i>									
	/			1							
	/				/						
			, ·			11	,	-)			
	. (/		1	-		20				
				4//							
				1//	//)			
	·			<()				/ 			
							1	/			:
							7			7	
							7				
										(-	
-											

						Aa	alytes		. A
Calibra	tion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene			
	Retention Time		·						
0.1 ppm	Response							·	
	Retention Time				•				
l ppm	Response								
10	Retention Time								
10 ppm	Response								

OPERATOR: 4Byrl JR

DATE: 4 Opr 195

FIELD GC DATA SUMMARY

SITE: Wordester FNGS
GAIN: 1,000
CARRIER GAS FLOW: 12 ut /min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 500 sect

		Sample				C	oncentratio	ons (ppb)			
Analysis		Interval (ft.	Sample Mass			Ethyl-	ш,р-		Addi	tional Ana	lytes
No.	Boring	BLS)	(grams)	Benzene	Toluene	benzene	Xylene	o-Xylene	BTEX		
i	100 178		$\geq \leq$	100	100	100	200	100	600	\geq	\geq
2	1 PPM	$\geq \leq$	$\geq \leq$	1,000	1,000	1,000	3,000	1,000	6,00	\geq	\geq
3	w PPM	$\geq \leq$	$\geq \leq$	10,000	10,000	10,000	70,000	10 000	60,000	\geq	\geq
4	AIR BLANK		$\geq \leq$	6	ND	子	12	7	32	$\geq \leq$	\geq
5	01-022 34	2.0	107	4	9_	9	56	28	106		
6	01-023 BH	2,0	100	9	2	3	9	6	29		
7	01-023 BH 01-022 BH	2,0	100	3	6	3	50	22	84		
8	01-019 BH	0,5- 2,0 2.5-	104	3	3	2	10	9	17		
9	01-019 311	4,0	104	4	Ì	}	3	ND	9		
10	100 883	$\geq \leq$		92	93	78	153	76	482	><	\searrow
	RECAL	>><		100	100	100	200	100	600	><	\times
11	AIR BLANK	><		とか	1	4	11	9	75	\geq	><
12	01-02434	0,5-	10 g	3	2	2	11	6	24		
1:3	100 FFB	><		93	100	93	201	101	593	$\geq \leq$	\geq
,											
				\Box		1		1	1		
							11	00/1		0	: -
							7	100			
				(1				
											· ,

						Ana	ilytes		
Calibrati	ion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene			
	Retention Time	59,6	119. Ÿ	247.2	266.	314.6			
0.1	Response	213.7	184,1	137.2	103.8	41.1			
1	Retention Time	60,3	120.2	247.7.	266.9	315.4			
l ppm	Response	3261	2665	2390	1388	925			
	Retention Time	61.2	121.7	251.2	269,6	317.8			
10 ррт	Response	21,631	21,529	20,947	16,359	5765			

OPERATOR: youl J.

DATE: 5 april 95

FIELD GC DATA SUMMARY

SITE: Wercester ANGS

GAIN: 1,000

CARRIER GAS FLOW: 12gl/min

GC OVEN TEMP: 40°C ANALYSIS TIME: 500 sec.

						C	oncentration	15. (ppb)			
		Sample Interval	Sample	31.43					Addi	tional Anal	ytes
Analysis No.	Boring	(ft. BLS)	Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	TOTAL BYEX		
j	100 PPB	> <	>	100	100	100	200	100	600	\approx	\rightleftharpoons
2	1 PPM	><	><	i, 000	1,000	1,000	2,000	1,000	6,000	\Longrightarrow	$ \geq $
3	10 PPM	\times	><	10,000	10,000	10,000	20,000	10,000	60,000		\geq
4	AIR BLANK	\searrow	\setminus	2	1	3	7	20	1.3	\geq	\geq
5	01-016BH	0.5 - 2.0	10 g	1	4	4	8	3	20		
6	01-016 BH	7.5 - 4.0	109	Two ma	אנישת ענו	s. GC	OVER A	DAD	125"	PeaKs	
7	01-016 BH	1,5- 9,0	104	AOAIN	Tuo 1	MANY	peaks	, <u></u>		2X	
8	1		X	78	73	70	142	58	421	\geq	\geq
-9-	100 PPB RECHL			100	100	100	200	100	600	$\geq \leq$	\geq
9	AIR BLHINK			AN AN	ND	ND	5	ND	5	\geq	\geq
iC		0.5-	109	4	1	ND	20	ND	5		
	01-017BIt	5.5-	109	5	1	5	4	~0	15		
	01-01784	4.0 0.5-	104	ND	ND	dN	GN	ND	GN		
12	01-018BH	5.0		6	1	ΔN	ND	NA	7		<u> </u>
;3		0.5 - 2.0	109	ND	1	2	10	ND	13		
14	101 - 020 BH			94	93	84	167	72	510	X	\geq
15	100 PPB			100	100	100	200	100	600	\searrow	\searrow
	RECAL			ND	NO_	70	ND	ND	ND	X	1><
16:	AIR BLANK	0.5-	109		1	ND	25	ND	26		
17	01-020 BHDH	2.0 0.5- 2.0	109	ND 9	 	ND	ND	ND	10		٠,

						Ans	llytes		ż
Calibrat	ion Information	Benzene	Toluese	Ethyl- benzene	m,p- Xylene	o-Xylene			
	Retention Time	59,5	118,8	245.8	264.5	313,3			
0-1 ppm	Response	214.2	170,4	136.3	106	42.79			
	Retention Time	60,4	120.2	247.4.	266,4	314,6			
l ppm	Response	3232	2762	2512	1974	1005			
	Retention Time	61.2	120,9	249.0	267,2	315,4			
10 ppm	Response	18920	20,283	27 894	19,463	6871		<u> </u>	<u> </u>

OPERATOR: Joynella

DATE: 4 Carl 95

Analysis #1 10		ON ANALYSIS REPORT
0 2 4 6 (x	8 10 10 MV)	TIME PRINTED: APR 4,95 09:47 SAMPLE TIME: APR 4,95 09:38
35/ 2 71- 4	 5	METHOD SLAPE UP 0.500 MV/SEP SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS BELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107		AUX FLOW 0 ML/MIN 0 OVEN TEMP 40 C
<u>6</u>		AMB TEMP 30 C MAX GAIN 1000
<u>1</u> 42	_	AMALYSIS TIME 500.0 SEC PEAK PEPORT
178	1 2 3	K COMPOUND NAME AREA/CONC R.T. UNKNOWN 27.78 MVS 16.8 UNKNOWN 142.4 MVS 18.6 UNKNOWN 0.621 MVS 51.3 UNKNOWN 1.909 MVS 52.5
214	5 6 7 3	UNKNOWN 170.4 MVS 118.8 mVS UNKNOWN 136.3 MVS 245.8 mVS UNKNOWN 106.0 MVS 264.3 mVS
250)		
96 2 3 5		
321 9		
557		
227		
392		NOTES JOE BYRD, JR.
428		WORGESTER ADD 13/5-199 100 PPB BTEX

responded.		· Eu Fanctio - Marchiel - Danc Free	
	4 4		
	# # # # # # # # # # # # # # # # # # #		
		4	

.

ANALYSIS #2	10S+ GC F	FUNCTION ANALYSIS REPORT
0 2 4	6 8 (x 100 m	10 TIME PRINTED: APR 4,95 10:09 MV) SAMPLE TIME: APR 4,95 10:01 METHOD
35 2		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV
107 5		4 ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
142		MAX GAIN 1000 Analysis Time 500.0 sec
178 214 7 250 8 285 9 285		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 27.14 MVS 17.0 2 UNKNOWN 156.4 MVS 18.7 3 UNKNOWN 2.338 MVS 52.2 4 BENZENE 1.508 PPM 60.4 5 UNKNOWN 0.912 MVS 94.2 6 TOLUENE 1.620 PPM 120.2 7 UNKNOWN 1.846 MVS 216.6 8 ETHYLBENZENE 1.843 PPM 247.4 9 M,P-XYLENE 3.721 PPM 266.4 10 0-XYLENE 2.349 PPM 314.6
392		NOTES JOE BYRD, JR. 57 WORCESTER ADD 1315 1127 PPE BTEX

	ilo Xelog Analysis n S Mame	l Artor	e 120 Aund - Run ac Concrene:			
	Unkapa Jakadah Benzede Garadah Jakada Bangadah Bangadah Bangadah Bangadah	<u>-</u>				i l il -
		##. # # . * .			<u>a</u> lfolio,	
	_		\$ 10 mm	· · · · · · · · · · · · · · · · · · ·	:.	÷
-1			7. 1	in the state of th		

ANALYSIS A	‡ 3	10S-	+ GC	FUNC	TION ANALYSIS REPORT
0 2 31	4	6 (x	8 100	10 mV)	TIME PRINTED: APR 4,95 10:27 SAMPLE TIME: APR 4,95 10:19 METHOD
35 2 -3 -71				4	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107 5				6	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 7		. ,			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 27.37 MVS 17.0 2 UNKNOWN 174.8 MVS 18.8 3 UNKNOWN 2.165 MVS 52.0 4 BENZENE 5.678 PPM 61.2
214 8 250				·	5 UNKNOWN 8.906 MVS 94.2 6 TOLUENE 7.083 PPM 120.9 7 UNKNOWN 4.139 MVS 171.0 8 UNKNOWN 11.02 MVS 214.0 9 ETHYLBENZENE 8.719 PPM 249.0 10 M,P-XYLENE 18.85 PPM 267.2
285				9 10	11 O-XYLENE 6.485 PPM 315.4
321 357	;11				
392 428					NOTES JOE BYRD, JR. WORCESTER ADD 131 -199 10 PPM BTEX

.

•

.

•

ANAL	YSIS :	# 4	105-	+ GC	Func	TION ANALYSIS REPORT				
0	2 	4	6 (x :	8 1000	10 uY)			PR 4,95 10	0:45 0:36	
107 107	3 4 6	2		1			METH SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT DET FLOW B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME	0.500 MV, 1.500 MV, 0.100 MV 0.100 MV 0.0 SEC 10.0 % 12 ML, 12 ML, 40 C 32 C	C /MIN /MIN /MIN	
174								500.0 sec Report		
178 214 250 8						PK 123456789	COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN BENZENE TOLUENE ETHYLBENZENE M, P-XYLENE	AREA/CONC 10.97 MVS 21.42 MVS 4.871 MVS 16.86 MVS 5.244 MVS 1.878 PPB 1.283 PPB 3.142 PPB 6.685 PPB	17.2 19.0 24.5 26.5 52.7 60.1 119.8 248.0	
285									;	
321						1				
357										
392						: !	NOT JOE BYRD, JR. WORCESTER ADD 315 AIR BLANK	FES 5-199		

AMOR	VOIO	#5	_189+	99	FHNP	TIAN	AMALVOTO REDAD	<u> </u>	
	1	2	3 (x	4 10	5 MV)			PR 4,95 11:	
35, 2 7, 2	3	- 1					METH SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY MINDOW PERCENT DET FLOW B/F FLOW	0.500 MV/S 1.500 MV/S 0.100 MVSE 0.100 MV 0.0 SEC 10.0 % 12 ML/M	EC C
107 107 142	5						B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME	12 ML/M 2 ML/M 40 C 31 C 1000 500.0 SEC	
178						1 1 2 1 3 1	Compound Name Unknown Unknown Benzene Toluene	REPORT AREA/CONC 100.6 MVS 8.795 MVS 0.659 PPB 3.790 PPB	R.T. 17.2 52.1 60.1 120.4
214 250 7						6 7 8	Unknown Unknown Ethylbenzene m,p-Xylene o-Xylene	3.596 PPB	131.0 224.4 249.6 268.0 318.1
8 285 321									
357									
392 392 428						W	No oe Byrd, Jr. orcester Add 13 1-016BH 0.5-2		:

Analysis #6	10S+ GC Func	TION ANALYSIS REPORT
0 1 2	3 4 5 (x 100 MV)	TIME PRINTED: APR 4,95 11:24 SAMPLE TIME: APR 4,95 11:16 METHOD SLOPE UP 0.500 MV/SEC
71_		SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC
107-		WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
142		OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
214		
250		
285		
321		
357		
392 393		NOTES JOE BYRD, JR. WORCESTER ADD 135-199
428		01-016BH 0-3-2-0 10G 7.5-9.0

!

~ **,**

Analysis #7 10	S+ GC FUNCTION	ANALYSIS REPORT	
0 1 2 3 (x		TIME PRINTED: APR 4,9 SAMPLE TIME: APR 4,9 METHOD	· · · · · · · · · · · · · · · · · · ·
35		SLOPE UP 0.500 SLOPE DOWN 1.500	MV/SEC
7.71	:	MIN AREA 0.100 MIN HEIGHT 0.100 ANALYSIS DELAY 0.0	MV
		WINDOW PERCENT 10.0 DET FLOW 12	% ML/MIN
103		B/F FLOW 12 AUX FLOW 0 OVEN TEMP 40	ML/MIN
		AMB TEMP 31 MAX GAIN 1000	. C
142	Du	ANALYSIS TIME 500.0 PEAK REPORT	
170	. РК	COMPOUND NAME AREA/	CONC R.T.
178			
214			
			: :
250 (- : :
 285			: : :
321			
757			
357			
	-	NOTES	
	1	JOE BYRD, JR. Morcester ANGS	:
1		01-016BH 7.5-9.0 1 0g Reshot 2X [)[LUTION

ANALYSIS #8	10S+ GC	FUNCT	TION ANALYSIS REPORT
0 2 4	6 8 (x 10	10 MV)	TIME PRINTED: APR 4,95 12:07 SAMPLE TIME: APR 4,95 11:58 METHOD
35 71 —————	 3		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107 142			B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
178			1 UNKNOWN 135.0 MVS 18.3 2 UNKNOWN 4.552 MVS 51.6 3 BENZENE 77.62 PPB 62.8
			4 TOLUENE 72.67 PPB 123.8 5 UNKNOWN 3.881 MVS 226.8
214			6 ETHYLBENZENE 69.75 PPB 254.1 7 M,P-XYLENE 141.5 PPB 273.3
5 250 - 26			8 0-XYLENE 57.67 PPB 322.4
285 7			
321			
357			
70.3			NOTES
392			JOE BYRD, JR. WORCESTER ANGS 100 PPB BTEX

ANALYS	is #	9	109	S+ GC	FUNCT	FION	ANALYSIS REPO	RT	
0	2	4	6 .(x	8 1000	10 uY)			APR 4,95 APR 4,95	
35 71		3			2		SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT DET FLOW B/F FLOW	0.500 1.500 0.100 0.100 0.0	MV/SEC MV/SEC MVSEC MV SEC % ML/MIN ML/MIN
107 142							AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME	0 40 31 1000 500.0	ML/MIN C C SEC
178			,			PK 1 2 3 4 5	PEAK COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN UNKNOWN M,P-XYLENE	REPORT AREA/0 8.437 80.91 0.320 4.000 5.332	MVS 17.6 MVS 19.4 MVS 25.0 MVS 51.4
214							M) F - X (CENC	J.JJ.	
250									! !
5 285									: :
321				•					
357								Notes	
392							JOE BYRD, JR. Worcester ANGS Air Blank	NOTES	

<u>.</u>	Gris kaady Amaiysti M O Name		e- 60 Fur To Aun : Conc Ar	nctico at - 1 ea	Apr 4 4,95 Alarm	135 1: 11:5: Ket.F:	24 1 3 3 - 1 m =
		14-244 #		######################################			

	etestes 8	===ks				19 5 :	
	etectel 8	· essks.	:		Ĺ	595 <u>.</u> 1989 9	ent control of the co
• ::		2 + 5 K 5					EE-Cl

•

.

ANALYSIS #10	10S+ GC Func	TION ANALYSIS REPORT
0 1 2	3 4 5 (x 10 MY)	TIME PRINTED: APR 4,95 12:37 SAMPLE TIME: APR 4,95 12:29 METHOD
35 2 33 71 4		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107 107 6 142		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 214		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 27.71 MVS 18.1 2 UNKNOWN 90.29 MVS 20.2 3 UNKNOWN 10.23 MVS 51.3 4 BENZENE 4.159 PPB 62.0 5 UNKNOWN 2.496 MVS 77.6 6 TOLUENE 0.554 PPB 123.0
250		
285 321		
357		
428		MOTES DOE BYRO. JO. MORCESTER ANGS 01-017BH 0.5-2.0 10g

:

ANALYSIS #11	10S+ GC	FUNC	TION ANALYSIS REPORT
0 1 2	3 4 (x 10	5 MV)	TIME PRINTED: APR 4,95 12:50 SAMPLE TIME: APR 4,95 12:41 METHOD
35 2 37 4 71 4 5 107 16 142			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 214 7 250			PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 29.62 MVS 18.8 2 UNKNOWN 110.3 MVS 21.2 3 UNKNOWN 12.48 MVS 51.2 4 BENZENE 5.112 PPB 62.8 5 UNKNOWN 2.313 MVS 78.8 6 TOLUENE 1.265 PPB 124.5 7 ETHYLBENZENE 4.787 PPB 228.8 8 M,P-XYLENE 4.266 PPB 273.3
285 8			
321			
357	. •		
392 428			NOTES JOE BYRD, JR. WORCESTER ANGS 01-017BH 5.5-7.0 10G

LH

1 SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.100 MV/SEC MIN AREA 0.100 MV/SEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN 0 OVEN TEMP 40 C AMB TEMP 31 C AMA GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 23.00 MVS 18.4 178 2 UNKNOWN 74.20 MVS 20.2 2 3 UNKNOWN 3.148 MVS 52.0 4 TOLUENE 0.387 PPB 125.2	0 4 8 12 16 20 (x 1000 UY)	TION ANALYSIS REPORT TIME PRINTED: APR 4,95 13:16 SAMPLE TIME: APR 4,95 13:08
ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 23.00 MVS 18.4 2 UNKNOWN 74.20 MVS 20.2 3 UNKNOWN 3.148 MVS 52.0 4 TOLUENE 0.387 PPB 125.2 214 2250	35 2 1 371	METHOD SLOPE UP 1.000 MV/SEC SLOPE DOWN 3.000 MV/SEC MIN AREA 0.100 MV ANALYSIS DELAY 0.00 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 23.00 MVS 18.4 2 UNKNOWN 74.20 MVS 20.2 3 UNKNOWN 3.148 MVS 52.0 4 TOLUENE 0.387 PPB 125.2 214 285	- ¹ 4 L42	MAX GAIN 1000 Analysis Time 500.0 sec
285		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 23.00 MVS 18.4 2 UNKNOWN 74.20 MVS 20.2 3 UNKNOWN 3.148 MVS 52.0
321	250	
	285	
· 357	5 <u>2</u> 1	
	357	
JOE BYRD, JR. WORCESTER ANGS 01-018BH 0.5-2.0	392 :	JOE BYRD, JR. Worcester ANGS

ANAL	212Y	#13	109	S+ GC	FUNC	CTION ANALYSIS REPORT
0	т́	8	12 (x	16 1000 1	20 uY)	TIME PRINTED: APR 4,95 13:47 SAMPLE TIME: APR 4,95 13:39 METHOD
35 71 77 107 18 142	3 6		2	Ī		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
9 178 214 250						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T 1 UNKNOWN 22.26 MVS 18.4 2 UNKNOWN 88.32 MVS 20.8 3 UNKNOWN 0.108 MVS 26.2 4 UNKNOWN 5.129 MVS 45.8 5 UNKNOWN 11.17 MVS 51.2 6 BENZENE 6.164 PPB 63.4 7 UNKNOWN 6.636 MVS 76.8 8 TOLUENE 1.486 PPB 124.8 9 UNKNOWN 0.845 MVS 148.4
285						
357	•					•
392 426						NOTES JOE BYRD, JR. WORCESTER ANGS 01-018BH 0.5-2.0 50-6.0

ANALYSIS #14	10S+ GC FUNCTION ANALYSIS REPORT	
0 1 2	5 4 5 TIME PRINTED: APR 4,95 14:22 (x 10 mV) SAMPLE TIME: APR 4,95 14:14 METHOD	
35 2 107 107 14 142 178 214 5 250 7 285	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 25.36 MVS 17.2 2 UNKNOWN 129.6 MVS 18.7 3 UNKNOWN 20.82 MVS 51.4 4 TOLUENE 1.354 PPB 120.9 5 UNKNOWN 1.801 MVS 221.0 6 ETHYLBENZENE 1.714 PPB 248.5 7 M,P-XYLENE 9.774 PPB 267.7	
357		
392 428	NOTES JOE BYRD, JR. WORCESTER ANGS 01-020BH 0.5-2.0 10g	

Analysis #15	10S+ GC FUNC	TION ANALYSIS REPORT
ANALYSTS #15 0 2 4 35 2 71 3 107	6 8 10 (X 10 MY)	TIME PRINTED: APR 4,95 14:35 SAMPLE TIME: APR 4,95 14:27 METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142		ANALYSIS TIME 500.0 SEC
178 214 8 250 285 10 321 11		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.036 MVS 16.6 2 UNKNOWN 102.1 MVS 18.5 3 UNKNOWN 0.849 MVS 26.4 4 UNKNOWN 0.789 MVS 51.2 5 UNKNOWN 3.312 MVS 52.0 6 BENZENE 94.36 PPB 63.2 7 TOLUENE 92.98 PPB 124.4 8 UNKNOWN 5.560 MVS 228.2 9 ETHYLBENZENE 83.80 PPB 254.9 10 M,P-XYLENE 166.9 PPB 274.4 11 O-XYLENE 72.46 PPB 323.7
357		- -
392		NOTES JOE BYRD, JR. WORCESTER ANGS
428		100 PPB BTEX

ANALY	SIS	#16		105+	GC	FUNC	TI	ION ANALYSIS REPORT
0	2	4		6 (x 1	8 300	10 uY)		TIME PRINTED: APR 4,95 14:50 SAMPLE TIME: APR 4,95 14:42 METHOD
35 <u>4</u> 71 /		3	2	- 1				SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
142								OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178							P 1 2 3 4	2 UNKNOWN 21.38 MVS 18.8 3 UNKNOWN 27.69 MVS 24.4
250								
285						·		
321							÷	
357 =								
392 428								NOTES JOE BYRD, JR. WORCESTER ANG AIR BLANK

ANAL	_YSIS #	17	109	S+ GC	Func	TION ANALYSIS REPORT
0	4	8	12 (x	16 1000 1	20 uY)	TIME PRINTED: APR 4,95 15:11 SAMPLE TIME: APR 4,95 15:02
35 71	3		2			METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MVSEC MIN HEIGHT 0.100 MV ANALYSIS DELAY 0.0 SEC
107						WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
5 142						MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 20.74 MVS 17.6 2 UNKNOWN 43.99 MVS 19.3 3 UNKNOWN 41.18 MVS 25.0
214					·	4 UNKNOWN 3.500 MVS 52.2 5 TOLUENE 1.153 PPB 122.1 6 UNKNOWN 11.75 MVS 222.4 7 M,P-XYLENE 24.87 PPB 267.7
250					·	
7 285					-	
321		·			***************************************	
357						
392 428				•		NOTES JOE BYRD, JR. WORCESTER ANG 01-020BH DUP 0.5-2.0 10g

i

Analysis #18	10S+ GC FUNCT	ION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: APR 4,95 15:23 SAMPLE TIME: APR 4,95 15:15 METHOD
35 35 37 71 5 107 16 142	2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.100 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 19.39 MVS 17.2 2 UNKNOWN 128.2 MVS 18.9 3 UNKNOWN 1.276 MVS 24.4 4 UNKNOWN 9.777 MVS 51.2 5 BENZENE 8.964 PPB 60.1 6 TOLUENE 1.342 PPB 120.0
250 285 321		
357 .	·	· :
392 392		JOE BYRD, JR. WORCESTER ANGS
428		: 01-021 : 0.5-2.0 10G

ANAL	YSIS	#19	105+	GC	FUNC	TIO	N ANALYSIS REPO)PT	
ij	2	\(\frac{1}{4} \)	6 (X	3 10	10 MV)		TIME PRINTED:		
	- 1		()	10	1577	:	SAMPLE TIME:	APR 4,95	5 15:27
35	2						SLOPE UP	0.500	MV/SEC
						i	SLOPE DOWN	1.500	MV/SEC
						i	MIN AREA MIN HEIGHT	0.100	MVSEC
71-			- 4				ANALYSIS DELAY	0.100	MV SEC :
							WINDOW PERCENT		%
						•	DET FLOW	12	ML/MIN
1.57							B/F FLOW	12	ML/MIN
107							AUX FLOW	0	ML/MIN
· · · · · · · · · · · · · · · · · · ·							OVEN TEMP AMB TEMP	40 32	C :
<u>}</u>	= 5					1	MAX GAIN	1000	·
142							ANALYSIS TIME	500.0	SEC :
				,			PEAK	REPORT	
				,		1 .	COMPOUND NAME	AREA/C	
178						1 2	Unknown Unknown	22.20 111.3	
710			· ·			3	UNKNOWN		MVS 21.2 MVS 52.0
						4	BENZENE		PPB 64.9
		*				5	TOLUENE		PPB 126.8
214			•			6	UNKNOWN		MVS 231.0
						7 8	ETHYLBENZENE		PPB 258.9
6						9	M,P-XYLENE O-XYLENE	160.5 62.84	PPB 278.1 PPB 326.9
250							o meene	02.04	110 220.0 ;
\ <u>\</u> _				•		:			•
$\pm 1/7$:			
285	8								
70			٠						
1_1.						:			•
321						•			
g						:			f
3									
357									:
									• •
;									· •
392								OTES	-
							JOE BYRD, JR.		:
							Norcester ANGS LOO PPB BTEX		:
428						· -	LUU FFB DIEA		

ANALYSIS #1 10S+ GC FUN	NCTION ANALYSIS REPORT
0 2 4 6 8 10 (x 10 mV)) - SAMPLE TIME: APR 5,95 09:51
35 2	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
3	Min Height 0.000 mV
71,————	Analysis Delay 0.0 sec 5 Window Percent 10.0 %
5	DET FLOW 12 ML/MIN
:	B/F FLOW 12 ML/MIN
107	AUX FLOW 0 ML/MIN
· · · · · · · · · · · · · · · · · · ·	OVEN TEMP 40 C AMB TEMP 31 C
6	MAX GAIN 1000
142	ANALYSIS TIME 500.0 SEC
	PEAK REPORT
	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 44.01 MVS 17.0
- - 178	1 UNKNOWN 44.01 MVS 17.0 2 UNKNOWN 0.792 MVS 24.1 3 UNKNOWN 3.430 MVS 52.1
	3 UNKNOWN 3.430 MVS 52.1
•	4 UNKNOWN 213.7 MVS 59.6
	4 UNKNOWN 213.7 MVS 59.6 5 UNKNOWN 0.961 MVS 74.5 6 UNKNOWN 184.1 MVS 119.4 7 UNKNOWN 5.241 MVS 220.4
214	6 UNKNOWN 184.1 MVS 119.4 7 UNKNOWN 5.241 MVS 220.4
7	8 UNKNOWN 137.2 MVS 247.2
	3 NUKNOWN 108.8 WA2 500.1
250	10 UNKNOWN 41.14 MVS 314.6
	· · · · · · · · · · · · · · · · · · ·
· . · .g	
285	
	: -
321 10	•
i	
· 7:7	·
357	
1	
1	:
392	NOTES
•	JOE BYRD, JR. Worcester ANGS
	100 PPB BTEX
- 428	
	•

AMALVOIC #2 10S+ GC	FUNC	TION ANALYSIS REPORT
0 2 4 6 8 (x 100	10 mY)	SAMPLE TIME: APR 5,95 10:11
35 2 3 4 71	5	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 17.84 MVS 17.0
214 8 250 9 10 285		1 UNKNOWN 17.84 MVS 17.0 18.8 24.3 UNKNOWN 0.810 MVS 24.3 4 UNKNOWN 6.668 MVS 51.9 60.3 60.3 10.041 MV3 94.0 10.447 PPM 120.2 8 UNKNOWN 2.178 MVS 219.8 1.742 PPM 247.7 10 M,P-XYLENE 1.742 PPM 266.9 11 0-XYLENE 2.247 PPM 315.4 12 UNKNOWN 1.149 MVS 360.3
321 11 357 12		
392 428		NOTES JOE BYRD, JR. WORCESTER ANGS 1 PPM BTEX

ANALY	cic	#3	105	+ GC	FUNC	101	ANALVSIS REPO	DAT		
0	2	4	6	8	10		TIME PRINTED:		•	0:36
			(X	100	му)		SAMPLE TIME:		,95 1	0:27
71 35_	2						SLOPE UP	THOD 0.5	00 MV	/SEC
3	2						SLOPE DOWN	1.5		/SEC
/1 							MIN AREA	0.0		SEC
<u>4</u> _ <u>5</u>							MIN HEIGHT	0.0		
	6 _						ANALYSIS DELAY	<i>(</i> 0	.0 SE	C
. ,		-,			7		WINDOW PERCENT		.0 %	
							DET FLOW			/MIN
							B/F FLOW			/MIN
107	8						AUX FLOW			/MIN
`- <u></u>							OVEN TEMP		40 C 32 C	
					g	:	AMB TEMP Max Gain	1 0	32 U 00	
142					3	:	ANALYSIS TIME	500		c
142 A							PEAK			
1 Z		•				: : Рк			A/CONC	R.T.
						1	UNKNOWN	14.	13 MVS	17.0
178	10					2	UNKHOWN	123		
						. 3	UNKNOWN	0.9		
						- 4	UNKNOWN	39 .		
01/						567	UNKNOWN	0.2 1.7		
214						; 0	UNKNOWN Benzene	1.7 6.4		
11						/ 8	UNKNOWN UNKNOWN	7.3		
						g	TOLUENE	7.8		
250				<u> </u>		10	UNKNOWN	3.2		172.0
. 					12	11	UNKNOWN	9.5	92 MVS	
· -							ETHYLBENZENE	8.4		
					13		M, P-XYLENE	16.		
285						14	O-XYLENE	5.9	129 PPM	317.8
						:				
321	·									
- 741 - E	۱ مماسسست	14								
, portante		-								
.*										
357										
700								05 7 65		
392								MOTES		
							JOE BYRD, JR. Wordester ANGS			
							10 PPM BTEX			
4 2 8										
74J										
i										
								•		

0 1 2	3 4 5 (x 1000 uV)		TIME PRINTED: SAMPLE TIME:	APR 5,95 APR 5,95	
35 -4 71 5 6	2			0.500 1.500 0.000 0.000 0.000	MV/SEC MV/SEC MVSEC MV SEC % ML/MIN ML/MIN ML/MIN C C
			MAX GAIN ANALYSIS TIME	1000 500.0	SEC
178 214 7 250 8 .9 285		PK 12345676910	PEAR COMPOUND NAME UNKNOWN UNKNOWN UNKNOWN BENZENE UNKNOWN UNKNOWN ETHYLBENZENE M,P-XYLENE O-XYLENE	REPORT AREA/0 4.446 40.779 5.545 2.800 11.350 7.350	
392		, 	IOE Ryon In	NOTES	
428		:	Joe Byrd, Jr. Worcester ANGS Air Blank	8	

ANALYSIS #5	10S+ GC F	FUNCT	ion Analysis Report
0 1 2	3 4 (x 10 N	5 4V)	TIME PRINTED: APR 5,95 11:05 SAMPLE TIME: APR 5,95 10:57 METHOD
35 4 15 71 6 2 8 107	2		SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 mL/MIN B/F FLOW 12 mL/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
178 214 10 250 11			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 17.33 MVS 17.0 2 UNKNOWN 221.8 MVS 18.8 3 UNKNOWN 1.240 MVS 24.3 4 UNKNOWN 1.580 MVS 36.8 5 UNKNOWN 4.600 MVS 52.9 6 BENZENE 4.357 PPB 59.7 7 UNKNOWN 2.307 MVS 66.9 8 UNKNOWN 9.856 MVS 75.3 9 TOLUENE 8.617 PPB 120.2 10 UNKNOWN 15.51 MVS 222.0 11 ETHYLBENZENE 8.826 PPB 248.5 12 M,P-XYLENE 55.65 PPB 267.4 13 O-XYLENE 28.00 PPB 316.5
321 357 357			NOTES JOE BYRD, JR. WORCESTER ANGS
428			01-022BH 0.5-2.0 10g

ANALYSIS #6	163+ GC FUNCT	ION ANALYSIS REPORT	
9 1 2	5 4 5 (x 10 MV)	TIME PRINTED: APP SAMPLE TIME: APP	5,95 11:09
35 2 3 3 71 5		METHO SLOPE UP SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY HINDOW PERCENT	0.500 MV/SEC 1.500 MV/SEC 0.000 MVSEC 0.000 MV 0.00 SEC 10.0 3
6		DET FLOW 3/F FLOW	12 ML/MIN 12 ML/MIN
1 07		AUX FLOW Oven Temp Amb Temp Max Gain	0 ML/MIN 40 C 32 C 1000
7 1.42	•	AMALYSIS TIME	500.0 SEC
_		PEAR R	EPOPT -Area/Conc - R.T. :
173 173		1 GAKNOWN 2 UNKNOWN 3 GAKNOWN 4 UNKNOWN 5 BENZEHE	25.30 M/S 17.2 87.94 M/S 18.61 149.2 M/S 24.4 20.28 M/S 51.41 8.600 PPB 60.2
214		6 UNKNOWN 7 Toluene	9,924 MVS - 75.3 2,404 PPB - 120.6
— <u> </u>		8 UNKNOWN 9 ETHYLBENJENE	10.14 MVS 221.3 - 3.080 PPB 250.9
250 19 %		10 M,P-KYLENE 11 O-KYLENE	9.433 FPB 269.8 6.471 PPB 314.4
; 10 285	·		
321 11			
357			
392 <u>.</u>		JOE BYRD, UR. Wordester ANGS 01-023BH	TES
■ 428 ■		01-025en 0.5-2.0 10g	:

ANALYSIS #7	199+ 80 Fb	NOTION ANALYSIS REPORT	
) 1 2	7 4 (x 10 MV		B 5,95 11:22
5 71 5 31 4 5 71 5		METH SLOPE UP SLOPE DOWN MIN HEIGHT ANALYSIS DELLY WINDOW PERCENT DET FLOW BUT FLOW BUT FLOW TO TEMP	0.500 MV/SEC 1.500 MV/SEC 0.000 MVSEC 0.000 MV 0.0 SEC 10.0 % 12 ML/MIN 12 ML/MIN 13 C
<u>11</u>		अवस् पुरस्य	1000
142		ANALYSIS TIME	500.0 SEC
178		PEAK PEAK PEAK PEAK PEAK PEAK PEAK PEAK	REPORT AREA/CONC R.T. 0.091 MVS 15.8 8.722 MVS 17.1 139.2 MVS 19.0 0.974 MVS 24.4
214 12 250 13 .		5 UNKNOWN 6 UNKNOWN 7 BENCENE 8 UNKNOWN 9 UNKNOWN 10 UNKNOWN 11 TOLUENE	1.734 MVS 37.0] 5.535 MVS 53.2] 2.736 PPB 60.2 2.665 MVS 68.0 7.116 MVS 76.2 0.134 MVS 93.8 6.277 PPB 120.6
14 285		12 UNKNOWN 13 ETHYLBENZENE 14 M,P-KyLENE 15 O-KyLENE	23.87 MVS 223.2 3.397 PPB 251.2 50.27 PPB 269.3 22.14 PPB 318.4;
321 - :15 - :			:
357			·
392		JOE BYRD, JR. Worcester ANGS 01-022BH DUP	TES
428		0.5-2.0 10g	:

ANALYSIS #8	198+ GC FUNCT 6 8 10 (x 1000 UV)	TIME PRINTED: APR 5,95 11:48 SAMPLE TIME: APR 5,95 11:40
353 71 43 107	2 (X 1000 0V) 2 .	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV/SEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
5 142		AMB TEMP 33 C MAK GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178		FK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 12.54 MVS 17.0 2 UNKNOWN 75.92 MVS 13.9 3 UNKNOWN 7.086 MVS 51.6 4 BENIENE 2.874 PPB 60.0
214 - 7 - 250 - 6		5 UNKNOWN 16.02 M/S 75.7 6 TOLUENE 2.345 PPB 121.7 7 UNKNOWN 9.371 M/S 224.3 8 ETHYLBENZENE 2.432 PPB 252.5 9 M,P-XYLENE 9.724 PPB 270.9 10 0-XYLENE 8.524 PPB 311.2
285 9		
321 10		
357		·
39 ² 428		NOTES JOE BYRD, JR. WORCESTER ANGS 01-019BH 0.5-2.0 10G

AMAL + 315 #9	105+ GC FUNCT	TION AMALYSIS REPORT	
ŷ 4 g	12 16 20 (x 1000 dV)		9 5,95 12:01 9 5,95 11:53
23 71 4	2	SLOPE UP SLOPE DOWN MIN APEA MIN HEIGHT ANALYSIS DELAY	0.500 MV/SEC 1.500 MV/SEC 0.000 MVSEC 0.000 MV 0.0 SEC
5		MINDOW PERCENT Bet Flow B/F Flow	10.0 % 12 ML/MIN 12 ML/MIN
107 6		AUR FLOW Oven Temp Amb Temp Max Gain	0 ML/MIN 40 C 33 C 1000
1+2		AMALYSIS TIME	500.0 sec
173		PEAK F PK COMPOUND NAME 1 UNKNOWN 2 UNKNOWN 3 UNKNOWN 4 BENZEME	
214		5 UNKNOWN 6 TOLUENE 7 UNKNOWN 8 UNKNOWN	5.687 MVS 75.8 1.315 PPB 120.5 1.181 MVS 218.2 9.051 MVS 224.0
3 250 9		9 ETHYLBENZENE 10 M,P-Kylene	1.079 PPB 251.4 2.746 PPB 272.0
235 10			
321			:
357 			: : :
39 <u>2</u>		JOE BYFR, JR. WORDESTER ANGS	TES.
428		01-019BH 2.5-4.0 10g	:

ANACYSIS #10	108+ GC FUNC	TION ANALYSIS REPORT	
0 2 4	6 8 10 (x 10 mV)	SAMPLE TIME: 40	R 5,95 12:13 R 5,95 12:05
77 1 35 2		METH Slope Up Slope Down Min Area	0.500 MV/SEC 1.500 MV/SEC 0.000 MV/SEC
3	<u> </u>	MIN HEIGHT Analysis Delay Window Fercent	0.000 MV 0.0 SEC
5		DÉT FLOM B/F FLOM	12 ML/MIN 12 ML/MIN 0 ML/MIN
107	•	AUX FLOW OVEN TEMP AMB TEMP	40 C 33 C
142			1000 500.0 SEC :: REPORT :: 7 T
176		PK COMPOUND NAME 1 UNKNOWN 2 UNKNOWN 4 BENIENE	AREA/CONC R.T. 16.77 MVS 17.4 95.74 MVS 19.0 7.337 MVS 51.6 92.47 PPB 60.5 3.146 MVS 75.8
214		5 UNKNOWN 6 TOULENE 7 UNKNOWN 8 ETHYLBENZENE	82.50 PPB 121.2 - 3.778 MVS 225.6 77.65 PPB 250.9
250 3		9 M, PHXYLEME 10 CHXYLEME	133.2 PPB 270.4 ; 75.91 PPB 319.7
.d 285			
321 .10			
357			
392		JOE BYRD, JR. Worcester ANGS 100 ppb BTEX	TES .
		INC BAR DIEV	

ANALYSIS #11 105+ 30 FUNCT	TON ANALYSIS REPORT
0 1 2 3 4 5 (x 1000 UV)	Time PRINTED: APR 5,95 12:29 SAMPLE TIME: APR 5,95 12:21 METHOD
35 2 3 4 71 6 7	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 33 C
6	MAX BAIN 1000 F Analysis Time 500.0 SEC
1+2	FEAK REPORT
178	PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 3.126 MVS 17.4 2 UNKNOWN 33.77 MVS 19.0 3 UNKNOWN 0.068 MVS 24.3 4 UNKNOWN 0.190 MVS 29.0 5 UNKNOWN 3.071 MVS 52.5 6 Benzene 0.200 PPB 59.8 7 UNKNOWN 4.680 MVS 75.6
214 g - 2 34 10	6 BENZENE 0.200 PPB 59.8 7 UNKNOWN 4.680 MVS 75.6 8 TOLUENE 1.332 PPB 121.3 9 UNKNOWN 6.247 MVS 223.8 10 ETHYLBENZENE 4.433 PPB 248.0 11 M,=-Xylene 11.01 PPB 271.4 12 0-Xylene 9.318 PPB 308.8
285 11	
321 12	
357	
392	NOTES JOE BYRD, JR. WORCESTER ANGS JOO BRE RIEY.
428	AIR BLANK

ANALYSIS #12 105+ 60 FUNC	TION ANALYSIS REPORT
9 4 8 12 16 20 (x 1000 eV)	TIME PRINTED: APR 5,35 12:44 SAMPLE TIME: APR 5,95 12:36 METHOD
35 2	SLOPE UP 0.500 MV/SEC Slope Down 1.500 MV/Sec Min Per 1.500 MV/Sec
5	HINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
<u>10</u> 7	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN Oven Temp 40 C AMB Temp 33 C
6 142	MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178	PK Compound Name AREA/Conc R.T. 1 Unknown 13.87 MVS 17.0 ° 2 Unknown 102.0 MVS 18.8 3 Unknown 8.887 MVS 51.6 ° 4 Benzene 3.427 PPB 60.3 ° 5 Unknown 60.3 °
214 7 · · · · · · · · · · · · · · · · · · ·	4 BENZENE 3.427 PPB 60.3 1 5 UNKNOWN 6.955 MVS 75.3 1 6 TOLUENE 1.872 PPB 120.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
250 6 9 285	10 o-Xylene 6.114 PPB 313.3
321 10	
	•
	. : : :
392	NOTES JOE BYRD, JR. WORCESTER ANGS 01-024BH
428	0.5-2.0 10g

ANAC (318 #13 103+ 60 FUNCT	ION ANALYSIS REPORT
0 2 4 5 8 10 (x 10 MV)	TIME PRINTED: APR 5,95 12:59 Sample Time: APR 5,95 12:51
35: 2 	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MV SEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN BYF FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 33 C MAY GAIN 1000
142	ANALYSIS TIME 300.0 SEC
178 214 250 8 9 235	PEAK REPORT PK COMPOUND NAME
321 	
392	NOTES JOE BYRD, JR. WORCESTER ANGS 100 PPB BTEX

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

FIELD NOTES, FIELD FORMS, AND LAND SURVEY PLATS THIS PAGE INTENTIONALLY LEFT BLANK

WORCESTER AIR NATIONAL GEARD Station

ADDENDUM SITE INVESTIGATION

April 3-7, 1995 Feb-Ex #

Phone Numbers:

Cp Tech 1-800-677-8072 John (H) (210) 698-0388 MAH (H) (210) 679-6247 ANGRC: (301) 836-890Y (6:11 Loddo.) 1-800-237-9744 (301) 836-8121 FAX Barnes: (413) 568-9151 ext 710 John Richardson, (413) 572-1565 (FAX)

Worrenker: (508) 799-6963 ext. 5529 Pele Helimins (508) 751-5210 (FAX)

NEI - 60 SEAVIEW BLVD. Post Wathinghas NY 11050-4618 (516) GZS - 5500

BLANK

PARE

Emergency Rook to the Hospital.

Proposed Borry Cocahons At the Station.

EAWK STANK

OBOO Mest we the Milinnis for at whoshing corews. Reinhodice ourselves must inhold corews. WAIK the site to over everyone to everything look at men old dilling locations look at men ASTs and spot underground willihies. AsTs and spot underground willihies shop to see about decon mess that who would be seen about decon mess that

- In the same contractions

4/5/75

ARRIVE At Wordsky ANGS

0750

Secure our equipment sent up to the station. Proporting to daily Achuiber.

JAFETY BRIEFING

ENI PAKEL

Jon Williams ' Optech

Joe Byd

Deck Granusk

Desty Greenuny Lemp: 35. H:: 50.s.

Weather: Suny and suild. Temp: 35. H:: 50.s.

Suny and Breezy out at the west.

Shadd to a great day.

Discussed daily achieves of locathus And
Approving boung locathous, equipment

checks and proporting to drilling bounding looks good So far.

Garnel And preparing for operations. The Romer him of the Opily Shibs CAll Bill Codder Al ANGRE And let him know one Are on the Republic to will be getting.

CAll Optich and chick in we Russell

Earl, Deshy, (Gon go out to stalk locations to soil bosings. Joe Bryd charks equipment for field GC operations. Complete staking out bosing locations. Go to GC Area to Assit Joe Byid in propring th GC equipment.

Fird tele M'Ginnis And walk the voing locations to insur All

ENEVELLA lucations Are noway from known or suspected subsurface objects or harmals. Obtained Apparal of All mine boing locations from Station representative. Jucalians

1120 FEO-Ex Arrives At the Station to delive cental orguitment.

1130 Depuil Station to return to tok! to Social Lie Class From Malyhal 1 Aborn tong.

ice closts. Check the contents of the ice closts and insure All items Are present, All bottles And Forms were present. Acrive At the hotel And secons the

Repart Hotel Fac lunch. Drive by rocke to Hospital to see emorgency

to check out rentral equipment. Checking And calibrating PIO and GC to Return From Lunch. Go to 6C AMA check operations.

4/3/96 9 Pak Milinnis has updated diamings of all new tank installations and wants to confirm locations of 9 few soil basings.

Rela M'Ginnis and wyself go nut and wassen out and wassen out All borings to insure All me in Stafe Areas According to his drawings.
All borings check out as fine.

Go back to GC And when Joe Byll continues to organize his GC Man, Jour And Desty And Childrahy the .

HNW Model PI 101 Photosominhon Delector and the Photovai Microtip PID. Chrik operation at the TMX 410 Multi-Gas Monitor.

Go out al Destry and Jon and set up a decon station and elecon SO bass sleeves, 160 end exps And 40 int VGA vints to soil sampling. With in Alconox wash, line with denting

water, inse wy ASTM Type II de-tonized water and spray with Methanol. Allow to Allow Allow Allow All steams needed to our and so and about to he dow.

1610 Camplete decorning and winging All the symposium. Byin to broad down decon seen and sours the site how the night.

1645 All Finished securing for the night.
Departing the Shation Going to stone
to purchase some final supplier
required for sampling.

1730 Daparting Store After purchasing free exhaquisher and ofter Mise supplies. Going to Itale!

1805 Arrive At Hotel.

Special Approx. 3 hours proparing sampling Life to tomornius sampling.

48/75 Face Juh I 40,0 hs

TUESDAY

TUESDAY

O750 Avonus At the Station.

Orillers Are here. Meet with

Pete Newstran and Brian Millard

of Technist Dilling Services. Walk

the site wy drillers. Pete was the

3810 SAFETY MEETING

End Proker Jon Williams & Optack
Joe Byrd Desty Greenway & Optack
Roth Nowsham Brian - 705

WEATHER: Cloudy, Breezy, Denzele.
Cool, Breezy and driedle today. Temp: 45°
14, war 60, but unds out of ward

Review sik horards, previous findings and daily drilling objectives, emergency procedures.

Propose to lorgin duilling. Orillers proposing decen Arros, Orshy & Jon calibrate equipment And set up sample prop and decen table. To solup and calibrate field GC. Enel phones

4:0,15
Orillers set up over 01-016 BH to begin drilling. And 14'14 1D Augers.

00 Orillers begin to don'll At 01-016BH
01-016 BH Int 1
0.5-2.0' BLS
SPT 10 0.5-1.0' BLS
18 1.0-1.5' BLS
18 1.0-1.5' BLS

cliviller on this project last firm and

We review Optoch pricedurs.

PID: 3.0 ppm. 100% Record ATHA: 13.0 pm

Fill. Very poorly sorted sand and coarse sand, some cobesine sitt. Very loose sand. Slightly moist. Brown to dark say.

0.5-2.0' BLS

SAME lithology Sample oblined from the side of the hole.
Drillers drilling At 01-016 BH to

S.O' BCS.
Park Stry very lose soud and signed
fill. Very poorly souted. Ginnel And
cobbles. Rounded to subminded gionific
cobbles (fill), Loose, shightly moist.
Slight ador (petroleum). Pid redate up to
380 pour int the hole. Brenthing zour
is vion-defect.

And FAXES daily progress reports from yesterdays Achuities from at 1814 003

1020 01-016 BH Infanol 2 7.5'- 9.0' 825

75-80' 815 8.0-8.5" Bes 8.5-9.0' &SS SPT 73 3

P.10 : 230 ppin 65% Recovery. ATHA: SPF: No soil to Analysis.

loose to slightly colusive. Fill makind. SAND AND JIANA! Micdium to coasse smal, Slightly mast. Abinate Jeholoum dor. DESCRIPTION: Simil to doubgray consist Will doill to find brinch to see it 4 And bodiesk. 7.5-5.0' BLS will be Total depth of hole is 10.0' BLS to Anthor sample needs to be collected. 11. tenul 2 sample.

And will mave to 01-017 BH. Dillers inoung off 01-016 BH

BEgin to drill At 01-01784

01-017 BH ILA!

SPT: 19 0.5-1.0'1315 0.5-2.0 ' 815

10-1.5' 815 44 1.5.2.0' BLS

PID: 6.2 PPM

ATHA: I'V. 7 PPM

90% Recovery

2011. loose to slightly cohosine. Slightly maint. to madien sand wy subsequed to Angulia Description: Gray to bown Fill makin! Conse No octur.

OI-017 BH INT I MS

0.5-2.0' 865

i.o - 1.5' BLS I.S - 2.0' BLS 0.5 - 1.0' BLS SPT: 51

Obscription: Same As Above Fill motorial 80% Roeman. And grand. P10: 5.8

OI-017 BH Int I MSD 0h]]

1.0 - 2.5' 1365

1.5'- 2.0' BLI 1.0' - 1.5' BLS SPT: 40

16 2.0'- 2.5' 845

75 % Reaven P10 . 6.3

Description: Show As Albane, Spoon was set At 1.0' BLS AND druven in 18".

56/4/4

5 mg H8 L10-10 OSII

\$ 5.0 - 7.0 BLS

SPT: S 5.5-6.0 BLS 6 6.0-8.5 BLS

15* 6.5-7.0' BLS (* 4.50)

ATHA: 14.7 pm 65% Recovery

Description: Brown to dark brown sand

And silly sand. Conse sand and Jimal nt top Vecomming silty sand and unoist at the bodock. Bedrock encountered at 7.0 and confirmed by HSA MESSAI AND SPT.

1210 BREAK to Lunch.

1245 Moving to 01-018 BH.

1 1NI HS 810-10 0.5- 2.0' 365 SPT: 21 0.5-1.0 BUS

1.0 - 1.5' BUS

1.5-7.0.1815

75% Rocoury PIO: 7.8 111 ATHA: 14.1 PPM

S. 18, 18, 18

En Elata

silly sand, slightly colvering and slightly mart. COMESO SHILL, SAND And SIANT. Rounded Cubbbs 1980 Description: Bown to dark bown and ging, look of Granib (Fill makind), Some sAnd And

01-018 BH Int 2 1340

SPT: 11 - 5.0.5.5 ' BLS

 $14^* - 5.5 \cdot 6.0$ BLS (* Jahal)- - 6.0 - 7.5 BLS

80 % Record A EATH : 13.7 ppm

Deceriphon: Some As Intervel 1 somple

1350 Complete drilling At 01-018 BH. Mounny to 01-020 bil.

1910 Begin to doill At 01-020 BH. 31-020 BH Internal 1

578, 0.2 - 5.0

SPT:10.0,5-1,0 BUS

18--1,0-1,5065

P10: 5.8 pm. ATHA: 11.3 pm

SO To Recoung.

Pesciplin: Bown to dail trown conso stud and grownol. loose, slightly moist fill winderial. Many cobbles and longe grows

Les Efects

Bedrack encountered when pushing spoon to 2.5 to 3.0 BCS.

[4),11 not be Able to abham An interval 2 sample from this location the the depth to 10-021 BH once doilles steam clean theres.

36911 to Chill 21 01-021 B14.

61-021 BH Int 1

0.5-2.0' BLS

507: 18 t - 0.5-1.0' (* Bedrack)

- 1.0-1.5' BLS

PIO: 7.3 PPM ATHA: 11.7 PPM

Description: Brown to clark bound to Mr. Same Sind And tradity coller Anyla

granile Fragments to bedrock at only 1,0° BLS. Slightly whoist, loose, no ador. U.II mut be able to collect an Internal 2 sample from this location due to dopt to bedrock.

1445 Dillers complete drilling for the day.
Moung over the decon men to sham clean Augers And growt All the booreholes.

End, Orshy and Jon complete cleconning spoons and perpense to collect A Field Blenk and An An Equipment blank to be poured thrush anth brass sleeves and sand catcher.

End And Deshy collect a Field Block for All parameters on the analysis program. Desgnahed as Field Brank#1

1520 Drillers complete grading holes. Rain and wind begin. Drillers departing the site for the day pilor socuring equipment.

Eng Etalli

Eryment Blank. Cossgnaked Astenophens Brank # 1. Rain falling very hard. Thurder, End, Doshy And Jun collect Usthing and very stang winds prosent. Complete collecting Equipment Blank#1. Assisting in the packaging of samples for the cleliury to the lab. Jue Byrd Arnuas After completing All field Get Achushes For the day. Proparing Chain at Custely Forms for Simple Shippingt.

tape w/ Strapping tape And scene with Custady Seals. Pet ico clost EAL COUNDARY COC FORMS. SECUM. Spring ico chasts wy ico, (alis in von for dolivery to FED-EX.

All Decon Waler in Decon Waler Begin to clean up Area. Dump

slowes and soiled sleeves were rinced and discorded in the trust bays. Rince water was placed in decon water days and clisposed in Drum in the sterm cleaning mea.
Digarize all equipment. All field GC
and pio readings indicated isolated
confirmination in a few samples. All th general notice contained

All AroAs Aro Secure And Optich prisonnal clopast the Station for the day. Go to FED-EX to ship samples. Samples taken to FED-EX'shahm new Jones Lacesto. Police Shahun And deposit samples to FED-EX.

Return to Hotel. Call John Morris At Officeh and leave worsings of daily Activities.

4/4/85 S SC/14 (9.5hz

WEAKESUMY DIE TO THE TO 1800 Herve At the Station, Dillar Arive

Safety Brishing

Sul Parts Less, Greenery & Stark
Son Williams De Brid
Red Newhom Pinn Willand & TOS
Weather: Clear to Partly Clouds, wounds one

very cold white Are 70-40 mph out of the west Tomp: MIG 20's. It hadry is low 30's. (Krommin, windy med sutty

UARRAGI And discoss daily doilling objections. Review UARANI ASSOCIATED Review emergency proceedures, site with cold weather.

SAMPLE prop Area. Calibrate MD. Sor Byld ques to set yo had of Colluste. Dallers propare 1999 to delling. Peshy And Jon set of draw And

Progress Report to ALBRC-PM. More Optoch Ent physics ANGOC and FAKO Mily for Maily Shates.

0920 BEEN to dill At 01-623BH. 01-073 BH INTERNAL / 0.5-2,0'865

(* Bolock) 5PT: 30 0.5-1.0' BLS 31* 1.0-1.5' BLS - 1.5-2.0 BLS

Posserphin I from the dark brown consersand fill myland with gravel Requests and simila cobbles. Loose, day, with some silt And sond silt Rill. No oder. PID: 2.0 ppm ATHA: 6.1 PpM 106% Recovery

Yedwork encountend at 1.5 AS. No Internal 2 SAMILE will be obtained from this location. Maring h C1-022BH.

0950 Begin to drill At 01-62284

01-072BH Int 1 0.5-2.0' 1365

85% Reaveng. 578 - 0.5 - 1.0' 865 27 - 1.0 - 1.5' 605 62 - 1.5 - 2.0' 365

Recovery 80% ATHA: 4.6 PPM PID: S.8 ppm

Salland

Description: Boun comse start And gravel fill malerial us dark boarn 5/14 stud. 605e, 5/15/14 moist. 5/14 smd is hand, 5/15/14 colosive and day. No colos.

5.5-0.5 02 :792 3.0.3.5 2.5-3.0 5147 HASSO-10 2.0-3.5,315

this tering. Dilloss moving to obtain a deplicate No Soil for Internal 2 SAmple. Only UN SAmple will be submitted from Bedrock encountered At 2.5.815. Internal 1 sample.

PID: 4.6 pm. Description - Soil is signe as before. Symple abbrind 8" from original 01-022 6H Internal 1 Opplishe 0.5.2.0' 815 spmple.

Za O Edul & 1025 Drillers MONIMY to 01-01984.

Orillers begin to drill At 01-01984. 01-01984, IN+1 SPT: 23 0.5-1.0'815 1.0-1.5' BLS 1.5- 2.0' BLS

70% recovery MAY 0.01 : AKTE

Uscenphon: Bown coAsse SAND Fill maleisel

ud sone silty sand, gimel And gibnik cobble fill. loose to slightly colosius, slightly moist. No odoc. No sigh of beclock, will attempt Another inknot.

1050 01-019 BH, Int 2

275 20 - 2.0-2.5 815 5'8 - 0'2

21 2.5-3.0' BLS 23* 3.0-35' BLS (#1Sedmk)

ATHA: No soil ANAILABLE PIO 4.5 pm

60 % Report

Pescriphon: Brown to dark brown corres stand And sandy silt. loose to slightly colorine, semi woist to moist at bottom. No ador

Bedrut At 3,3" BLS

Millers whowing to 01-024 OM.

Differs how been growing holes
As they go. No negers how
been used med no cuttings how
been yoduced during closiffing.

Dillors begin dilling At 01-024/214 01-024 Bit IAt! 0.5-7.0' BLS 577: 6 0.5-1.0' BLS 5 1.0-1.5' BLS 8 1.5-2.0' BLS (+ Bdat)

PID: 2.4 ppm Reaky: 70%
ATIM: 1.9 ppm Reaky: 70%
Conse smel fill unhern. Well Sorled
Conse smel fill unhern. Well Sorled
Conse sand with few sinel. Bothom
is silty sand, dark Grown and wish
[10 oclor. Reduck at 20'BIS.

Complete dvilling At All borny locahons.

Differ more to decon men to locar wiers

and born decon water. Will stare cottings and
decon water downs adjacent to Haradows Makaals

string man on the nothwest such of dely 07.

1150 Errat for limit. Jon and Asslar go to lunch.

Soc Exist continuos to finish up with the
field GC. End worter on drilling
summany for drilling.

1720 End And Pot Marsham (Dila) go over had bothges, spoon count, drum count, And count, should thus for drillers. Doster and Jon return toon lunch.

O Dillow depost whorsher ANGS & He completing

EAN, Desh med Jon go at the larging to broad to break down decon, sample propant collect field and equipment blenk.

Do Bogin to Armyo bottle sets And Islail bottles for Equipment And Field Wenter.

Begin to collect Equipment Blenk #2. Pour water supplied by Ale How A bottle to bottle franks of water which was pound that a California-style

Zuge/W/A

sounder we was bross sleeves this kind Fill bottles for all Analytical posturactors

End med Son collect Freen Gent #2.
Par by a battle to bottle transker
for All Analysist promoters.
Desty cleme has spoons and propres
to be packet.

cleaning And Organizing in prophing to pack supplies for shippound back to SAn Autonio. Very mer samples her shippwant. Verity, Jon, and Joo begin genoral EAL prepares Chain-of-(wholm And

packed And Awaifing FED-Ex to frince at the site to pick up supplies. Symples and all weaked openpowers is

Pele M'Ginnis roguest the attenieting to take place formerous at 9:10 Am We will comply with this wognest. Contine to clean up sik.

Dostry And Ion domped All decontainst water in decen water drum and down water contents with contents work, class, (bearing locations) of soil cuttings), Optech And phones normber, Took phoregraphs of drums and the site in general. Earl July

1630 FED-EX Arrives At the site And takes control of samples. Ship All rental excuperant back also.

Equipment back also.

WAlk the site once were to mism All is close And socur.

1640 apart the site for the day.

1800 Arnue At Hokel.

Contine to cienn up six.

HURSIANT VALY TO COMMING THE SHEWITH AND SON HOUSEN ANGES. ANGES. ANGES. ANGES. ANGES. ANGES. ANGES. ANGES. ANGES. ANGES. TANDOUS TRYON AND EVERTH FOUND SUNDY OF WARP TRYON TO SHOW SUNDY OF WARP NEEDED TO SHOW SUNDY OF WARP.

Ogis Conduct outbrooking with Ctc. Jop Dellino, 2124 Els Conimmader with Pele Michinis And Optich crew.

Introduce crow. Discuss purpose of the Addendum SI, discuss our par. what we did. Ascuss our birutly field screening, findings, field screening, what was cliscomed during drilling. Discussed 1000 about to expect 3s to when the Wast Arabable.

FAXED Daily foguess Report to
Bill Lockler on yoskedays Achushes
And phond him Left wessage
on his recording as to what was
clistowed during yesterdays Achiers

Mound Russ (Ason Amy gard him Frinal scillimany report on the Wordsher MUSS Achuibrs. Joe And Jon world the site one final time. Couclet Final check prior to departure from the the Shahon.

1030 (onduct final clack of with Re MiGiunis. He is saherhood with All of our clean-up And deviabilization Achuitics. Clack with surreyors And they me happy with All Arthregments And power no Grossians.

1100 DEPART WORCESTER ANGS. COMPLETED APPENDUM SI

Joe Bykd, JR.

Project Scienkist
4100 NW Loop 410, #230
5An Antonia, JX 78229
(210) 731-0000 1-800-677-8072

Worcester 1315-199
Pete MeGINNIS
50 Skyline Drive
Worcester ANGS
Worcester, MA 01605
(508) 799-6963 ed. 5529

FEDEX 1342-6486-1 (1-800-238-635) AIR PROJUCTS 1-800-224-2724 (76504) HAZCO 1-800-332-0435

0+# 210 7310001 019280 7834 1-800 - 141-908-1

1-800 - 532 - 7474 ENVIRO. INSTRY. SERV.

Burling LOW EX (210) 402-1212 # 531444410

021 to ANA CHUND DONA A 120 78230 (210) 523-2020 OPTECH XTAS

110 Sammed 5t. HAMPED HOECL

EP, DG, JW, JB, SW, RC 0830 ogics Premob mtg. FRIDAY 31 MAR 95

bet Procedures for GC.

ALL GAS Chromptograph operating, procedures are histed in Appendix
A at the eds back of this
field book. All Proferences in the
daily hay Anthres ears be that
neter to ac. ear be found in CALIBRATION, And MAINTENANCE this Appendix.

(est) Similary 2 April 1985 0630 Letre hime 247 TRAVEL

(FY) W Note L

1.00 1.80 1.80

1133 heave base Goto hotel.
[115] At hotel, OALL EIT

1130 FEDEX from FITS yet here.

NO GC ACCESSORIES.

1156 EIS will check And let know
They shoped (5) parcels And
we only recieved (4).
1344 3Ack on base
1344 3Ack on base
1350 CALL EIS. No word on
55 package
FEDEX delivered package
Set-up G.C. Check All

 \mathcal{S}

1 mm / 1

systems.

1519 ALL systems check out.

600 held others decon

600 held others decon

1710 Legue base 60to store to

get supplies.

1800 At hotel.

S an Inda

Tuesony 4 April 1995

of 30 Leave for base Breakfart 3

ATHR ON BAKE

set up GC. Ge ID#:000138 0808 Salety meeting

· BRIAM, DRILLER, ET, 58, JU, DG.

· RAID, Thumber/Light wing.

, no ent/daink/smoke

· Eye wash, First Aid, Fine ext.

0870 Return to GOC Room (Mess HALL (MH)), Continue GC set-up.

CALL FEBEX for pickup. 0060

ORHAS9 - P.U. Number.

schoduled 4:00-5:30

GC PARAMETER GAIN 8060

12 pl / min 0001 · CARRIER GAS Flue

· GC OVEN TEMP . Injection Vol.

10001

500 360

Build 10 frm, 1 frm, \$ 100 pp ANALYSis Time Brex stas

0939 100 PPB BTEX STD.

100 pp 100 pop m, p-XYLene E-Benzone o-Kylone Benzene Toluene

PPM BTEX STD 1001

D benzeme

PPM

F-Benzene • Tolsene

m.p - Xylene

8889

0-Xylene

W10 01 1019 10 PPM BTEX STD

Danzene

· Toluene

ndd ol xo ppm

wdd oi

m,p-Xylene

D E-Benzene

1037 AIR BLANK 0-Xylene

benzene

E. Denzenc o Tokuene

m, p-Xylene

1050 60 to drilling Rig to get samples 1102 01-016 8H 0.5-2.0' 104

Benzene

D Tolyene

F-Benzent

4 ppb 4 ppb 8 ppb 3 ppb

myp-xylone

O-Xykene

75-9.0 H8910-10 9111

DOVER 25 peaks. GC overhond

01-016 BH 7.5'-9.0' 10g Roslot

- Compare chromatograph with DUER 25 PEAKS. GC OVERLOAD 2x dilution

chromatograph of 10 pm 57D. None of the peaks ARE

compatable.

1148 60to kig to get mare sampler. 1158 100 ppb BTEX STD CAL

100 pp 200 001 200 100 100 66 70 m, p- Xy Lane E-Benzene Tolucue benzene

0-Xylene

2 ppb 1320 60 out to get samples. ALL NON-DETECTS 1256 60 act ho get symples 1352 Go at to get samples 0.5-2.0 01-01884 0.5-2.0 0.5-2.0 om, p- Xy Lewe mulb- Xylene m, p-Xylene AIR BLANK 1219 01-017 BH O E-benzene 1339 01-018BH 1414 01-020 BH 1241 01-017BH Benzene E-Benzent Benzene Taluene Tolyene Benzeme. · Tolnene Toluene 1308 1217

(2)

L WIN Y

1427 100 PPB ATEX STD

CAL		900 001	900 001	900 001	200 116	901 001	
	-	god	_	yat		_	
		4 6	93	18	167	72	
		Benzene	2 man 101	E-Benzeme	m, p-Kylene	o-Xylene	

IN 42 AIR BLANK

ALL NON - DETECTS

1502 01-020 BH-04P 0.5'-20 l pob • Tohuewe

m, p-Xykene

25-20,005-20 18120-10 SISI Benzene

Tolueve

1527 100 PPB BTEX STD

m,p-xylene G-BENZANC 0-Xylame Benzene Tolyene

 \otimes

1540 SHUT DOWN G.C.
AIR W/ EQ. BK & BREAdow
1452 Lanve base
At FEDEX
1705 Lene FEDEX
1716

9.8 JR

(F)

5 APRIL 1995 WEDNESDAY

opus neque hatch pur Bankhar

0801 on 8AJE

TWEN ON GC. Begin sety 0815 Good for Softy Mtg.

0825 . JB, JW, EP, BG, Peter & Skiper - worlder, windy + cold + fill 30°F wind 30mph

- be careful of chills.

0830 Return to moss wall

continue setup.

0951 100 PPB BTEX STD

- GC PARAMETERS

· GAin

1200 Janin 0001 · CARRIOR GAS Flow

· Injection 106

3200 526 100 mg 70.04 · GCOWN Tamp

· Analysis Time

I POM BTEX STD

· Set LibrARY

1027 10 form BTEX STA SCA LIBRARY

1044 AIR BLANK Bentone

0,5-2,0 50 pb 0.5-2.0 7 996 1296 1796 1996 4 ppb 9 ppb 9 ppb 56 ppb 28 ppb 0.5-2.0 ... AIR BLANK (CONT.) 01-022 bup om,p-xylove oo-kylone M,e -Xylene H9 610-10 011 M,p-Kykene o-Xylene → 01-0238H E-benzene 01-02284 E-Bon Teme E-Benzene Do-Kylene m, -xylene O-Xylene ● E-Bentone Benzene 1109 Benzene D Benzena Tolyene · Benzenc Tohuene Tolaene D Toluture

	S AP	5 APRIL 95	
•	0.1-3.0 HB P10-10	(Hues) 401 0.	
	● E-Benzene	2 ppb	
	om, p-Xykene	10 666	
	· O- Xy Lene	9116	
1153	18 PIO-10	2.5-4.0	801
	• Benzene	400	•
	Toluene	901	
	● E-Benzeme	1 606	
	Myp-XYLent	3 ppb	
1205		EX STD	0.01.
-			
	Benzene		
	Toluene	83 pp4	1100 161
-	E-Benzene	78 pph	100 66
-	m,p-xyleuc		900 001
	0-xylene	76 pp	7 48 a01

					90	ı	
-	ا مهم ا	4 pob	1100	dog 8	0.5-2.0	3 pp b	2 pp b
1221 AIR BLANK	• Tokuene	• E- Benteme	om, p-xy heme	· o - Xy Lene	01-014BH	• Benzene	OTolyene
1221					1236		

··· 01-024 8H (LON'T)

7 1,81 Z

D E-Benzene

M.p-XYLene

o-Kylene

1251 100 PPB BTEX STD

900	901	10) X	90	qd)
9 d d	9 d d	9 d d	d d	Prob
93	100	48	201	101
Benzene	Tolucur	E-benzene	n,p-xyhene	O-Ky Lant

1307 CALL FEDEX for pickup of SAmples & EQUIPMENT. [ORHIGG]
1312 CALL AIR PRODUCES to pick up AIR bottle.

1315 CALL Burlinghow Express to fick up equipment for shipment to shipment to shipment to shipment to shipment

320 Begin brenking down and packing ALL equipment for shipment.

1600 Dowe packing. Waiting on FEDEK,

1430 FEDEX ARRIVES

. !!! 1652 tepue hose 1705 At hotel 6 ATRIL 95 THURSON

0845 hear for 6950 0900 At BASE

225 McChehun HWY (617) 581-5250 A RAMASA

0905 CALL RAMADA to Chock ON

check in hims

0916 Meet with BASE Commonder

for debriefing. Done check site for Inst

大元と

Air Products here to ret 0001

AIR bottle. WALK 512-

Depart, 40.50 1.10

1200 At Rampala.

TRAVEL CURY

(5)

£57 ,0830

0891

GC_SETUP_FROCEDURE

Location

Place the GC upwind from the drilling locations and any other nearby engine exhaust sources. The GC should also be within reach of a 110 VAC power source. Refer to Figure 1 for setting up the GC.

Figure 1 10S + Top Panel.

Fower & Software Loading

Connect AC line power to the 10S+ GC at the DC IN port on the upper left corner of the GC, and then turn the unit on by pressing the ON button on the computer keyboard. The 10S+ SYSTEM FUNCTION screen will be showing, with a message that a RAM card is not present. At this time, the APPLICATIONS CARD their with red dots should be Incerted into the lower right side of the computer. In order to load the GC software which is used for headspire analyses. Using the LOAD command, load the file GC FUNCTION (see Figure 2).

While still in the 10S + SYSTEM FUNCTION, use the TIME/SETUP command to set the correct time and date, as shown in Figure 3. After this is correctly set, switch to the GC operation software by pressing the FCN button. The serven which appears is

S October 11, 1994

Photovac 105 + GC SOP

referred to as the results screen, and is titled 10S+ GC FUNCTION. This screen shows current GC operation, and the chromatogram and detected peaks of the last analysis (see Figure 4.

Filentee (12a Sydree Function	PERSONALIZATION OF THE STATE OF		

Figure 1 Loading GC Software.

Figure 3 Setting Time and Date.

		- 7.1
2 .	000000000000000000000000000000000000000	3
		5
77	11414	
ço	gen egre e e e e e	
		·===
3		
2		lf.
1		2 :
1	33255	
- 6		

Figure 4 105 + GC Function.

Photoviic 105 + GC SOP

October 11, 1994

ALPENDIX H

STANDARD OFFRATING PROCEDURES FOR PHOTOVAC 10S+ GAS CHROMATOGRAPH (FIELD SCREENING FOR NATIONAL GUARD FIELD WORK)

OPERATIONAL TECHNOLOGIES CORPORATION ENVIRONMENTAL SERVICES DIVISION

OCTOBER 7, 1994

SUMMARY OF GC ANALYSIS FROCEDURE

Callbradon Prepare 100 ppb, 1-ppm, and 10-ppm working standards fresh each day according to the GC CALJBRATION section. Create a 3-point calibration with these three standards, according to the GC CALJBRATION and GC ANALYSIS sections. Be sure that correct standard concentration values are used for peaks representing more than one component, as recognized by the GC (e.g., 2 ppm for m.p.xylene peak).

Sample Prepare and analyze headspace from soil and water samples according to SOII, AND Analyste WATER SAMPLE PREPARATION. All samples will be consistently warmed in the water both before headspace injection. If sample results are significantly greater than the 10 rem strandard 6 g., greater than 60 ppm for total BTEX), then the sample must be reanalyzed with dilution as needed to helpg it into range of the standard used. Diluted samples are achieved either by injecting smaller gas volumes onto the GC or using less roil in preparing the headspace sample, as detailed in the GC ANALYSIS section. After analysis of every five samples (or after a lapse in GC operation of more than 2 hours), a QA/QC check must be performed, consisting of a calibration check and an air blank thesi

Perform a calibration check by analyzing an appropriate working standard again. If, after shooting a working standard, correct identification of all standard compounds and concentrations within the range of 80-120% of the specified calibration concentration is not achieved, then restore the standard compounds, peak numbers, and calibration concentrations in the library as detailed in GC CALJBRATION CHECK.

QA/QC Chack Perform an air blank check by injecting an open air sample into the GC. If the results are not 'clean' (close to or less than 10 ppb for all analytes), then perform more stringent decontamination procedures on the syringe used for sample injection or evaluate whether there are significant volatiles present in the ambient air. Once a successful QAQC check has been completed, proceed with analysis of samples again.

All injections, including successful and unsuccessful QA/QC checks, must be reported on the FIELD GC DATA SUMMARY. Changes in flowrate and other GC operating parameters must also be recorded as analyses progress. All concentrations reported on the SUMMARY should be recorded with no more than three significant digits, with the last digit reported being the prob singles digit (e.g., record 3.673 ppb as 3.5070 ppb, and record 2.4.856 ppb as 3.5070 ppb, and

Reporting

GC PROGRAMMING FOR ANALASIS

Before carrying out analyses, certain specating parameters must be set for their values checked) for proper and efficient operation of the GC to occur. The important parameters, their suggested values, and the command under which they are accessed are given in Table 1

GC Operating Parameter Values

Command	Farameter	Value
STATUS	Normalized Chroinatogram	Yes (checked)
METHOD SETUP	Detector Flow	10-15 mL min (metation only)
METHOD:SETUP	13/1: 1 low	10-15 ml. min (notation only)
METHOD/SETUP	Oven Set	30.50° C
METHOD/SETUP	()ain	1,000
METHOD	Lung it Sytinge	Syringe (checked)
METHOD/TIMING	Inject Volume	0.100 mL
METHOD/TIMING	Analysis Time	400 600 tecs
METHOD/INTEGRATION METHOD	Integration	Auto (checked)
NOTES	Novepad Entry	I'nter standard information, such as GC operator name. ANG Base/Station, and sample ID.

- injection injection volume, analysis time, and integration method. If auto integration is is selected, enter a window value of 10% under METHOD-INTEGRATION METHOD. When refected, the window and minimum area parameters do not need to be set. If manual integration the GAIN is set to 1000 and the Normalized Chromatogram is selected, the computer will Use the commands specified in Table 1 to set the required values, including gain, syringe autematically select the best pain value for the current chromatogram
- ther supplied data can be enough or record perposes using the NOTES command. This will be used to keep track of samples on N.O field projects. Simply enter the desired information using the keyboard on the computer. The following information should be entered
- Change of National Guard Base or Station >
- s montoring well or barehale designation, depth of sample interval (feet)

October 11, 1994

Physica 105 + GC SOP

These data lines must be filled out correctly for each sample and standard analyzed for record purposes. As shown in Figure 7, there is a large area available for further The last line of information will be changed appropriately for each soil or water sample information in this NOTEPAD analyzed

ie ifte mettige tiet attag bei 25.2. 195.

Flgure 7 GC Notepad.

The state of the s

ı. ·

GC ANALYSIS OF SAMPLES OR STANDARDS

- and concentration of BIFX or other companieds of interest. Before injecting headspace from a sample or working standard into the GC, the working standard VOA vial must be warmed to room temperature. This will be accomplished by placing the VOA vial containing the standard of the water in this hath will be kept constant, at anywhere from 25° to 30° C, using the small Headspace from camples or working standards are analyzed on the OC to determine the presence or sample in the water bath for 15 minutes prior to vapor sample injection. The temperature aquarium heater and a thermometer.
- or 500 µL sample syringe and draw in 100 µL of clean air. Insert the needle through the septa To perform a GC analysis or GC run, push RUN AUTO and select SAMPLE. Take a 100-µL in the vist and repeatedly purge and draw 100 µL (0.100 mL.) of headspace into the syringe 10.15 times. Then draw exactly 100 µl, of headspace into the syringe
- inger it into the INJECTION PORT 1. Let the needle go down until you feel the resistance of OFTICKLY Inject the contents of the syringe into the OC and pull the syringe out of the injection Puch ENTER on the GC. Now quickly extract the syringe from the working standard vial and the septa in the injection port. Once the alarm begins to sound, push the syringe through the wepin and all the way down frite the hijection part. [MAREDIA FREY after the alarm greet off.]
- will appear representing the compaunds in the sample. To stop the run before it is complete reg. if an obvious error has been made), press the RUN AUTO button. After a run is complete, the compounds detected and their concentrations will be printed in a table format in seconds, which was entered for ANALYSIS TIME during the GC programming steps. Peaks The GC will now analyze the sample or standard. The duration of the analysis will be that time. above the chromatogram on the video screen

Phytoxac 105 + GC 50P

2

October 11, 1994

Pilnier

Counset the dot matrix printer to the CKT using the sexual output cable. The cable connects to the GC at the upper right corner of the video series. Connect AC power to the printer, but it on and be sure if it on-line. Communication between the GC and the printer, can be retrief by using the PRINT SCRN key to print out a copy of the current whose series display.

Gas Cylinder

The carrier gas for the GC is provided by continuous supply through direct connection to the air cylinder. The connection of gas to the GC follows this procedure (see pages 4-6 to 4-7):

DIRECT CONNECTION TO AIR CYLINDER: Attach regulator with two preventer gruges to the air cylinder, using teflon tape on the cylinder adapter threads to insure a good seal. Attach the quick connect coupling to the CARRIER IN port on the GC Open the valve on the cylinder several full turns, and then adjust the large valve on the regulator so that the second pressure gauge reads 40 pti. Open the small onfolf valve on the regulator to strain to supply air to the GC.

Gm Flow

The carrier gas flowrate through the GC column affects the retention time of peaks and thus the correct chemical identification of those peaks. Therefore, the accurate setting and close mentioning of the flowrate is of utmost limportance. Once set, the flowrate must never be altered ouring a GC run. If the flowrate is altered in the midth of a series of analyses, then a recalibration must be performed to correctly reset the retention times of the components in the standard.

The carrier gas flowrate is adjusted with the use of a flowmeter provided with the instrument. The flowmeter may be either a digital bubble flowmeter (requires a difute soap solution in the pipette bulb) or dual rotameters. Use the following procedure (refer to page 4-7):

With the dual rotameter, attach the left flowmeter to the DET OUT and the right flowmeter to the BK FLUSH OUT using the 1/8 Swagelok fittings and lines provided (see Figure 1 for location of fittings). If the digital hubble flowmeter is used, then switching the line between DET OUT and BK FLUSH OUT is required. With gas flowing to the GC, observe the flowrate readings on both of these lines. Both of three adjustment is made using two valves, the CARRIER CONTROL and the BK FLUSH CONTROL. These valves interact with each other, so adjustments will have to be made iteratively. Once the flowrates are set, they should not have to be changed. The DET OUT flowrates should be checked regularly during operation. After checking the flowrates, be sure the sample loop connector is reattached between the BK FLUSH OUT and SAMPLE IN powers. Completely invalid chromatograms will be obtained if this loop connector is not in place.

PID Lamp

E O

7

Photovac 105 + GC SOP

IME UNIT. Turn on the tamp and oven by selecting and checking GC DETECTOR ON

under the STATUS command (see Figure 5). Once this is done, lamp status will change

The final step in setup of the 10S+ is to turn on the PID lamp and the oven MEVER

FURN ON THE PID LAMP BEFORE BEING SURE AIR IS FLOWING THROUGH

2-rober 11, 1994

in \$1ARTHIF AND TUNING for several milmins. If the lamp done not come on after approximately 10 minutes, then it may be overheating. Turn the whole unit off, allow to cool for 15.20 minutes, and then turn it on and try again. Once the lamp is tuned and tready, successful gas chromatograms will be obtained only if OFFSET LEVEL is less than 100 mV and DRIFCTOR VOLTAGE is greater than 300 V (under STATUS constraint).

- I	:	7.1			
1 12 12 12 1	:		 	· · · · ·	
1	-	-		-	١,
TITLE TELEVISION	ditte of freeting	7 (** ** ** ** ** * * * * * * * * * * *	 <u>:</u>	2	1

Figure 5 PID Lamp Status.

Selecting QC DETECTOR ON under the STATUS command also turns on the GC oven. The oven temperature is set by selecting the OVEN SET parameter (see Figure 6) under the METHOD/SETUP commands and entering an appropriate temperature (see page 4-2). The difference between the AMB TEMP and the oven temperature setting can be no greater than 25 °C. 40 °C is a suitable oven temperature to select, as long as the ambient temperature is not below 15 °C (59 °F). It will take about 20 minutes to linear the oven has constant temperature. The GC oven warmup can be monitored by yelwing the OVEN TEMP versus OVEN SET values under the METHOD/SETUP command.

Figure 6 Setting GC Oven.

Photovac 105 + GC SUP

October 11, 1994

• . <u>^</u>.

established as follows: (a) analyze standards comaining each analyte separately, and compare retention times to those obtained for the BTEX standard, (b) compare the order of analytes established in (a) to the order (as given by relative retention times) given in Table 3.

Table 3 Characteristic Retention Times

	Reten	ntion Times (No	Retention Times (Normalized to Benzene)	(rme)
Compound	Amblent 20° C	≫. ເ	⊃ .0 ¥	J .03
Vinyl Chloride	0.288	9010	0 361	0 411
Freon 11	591 0	0 179	0 428	277 0
Methylene Chloride	0.475	0 489	0.539	0.585
trans-1,2-Dichloroethylene	0.517	0 529	0 563	0.580
1.1-Dichloroethune	0.550	0 557	0 611	0 660
Chloroform	0 715	0 7 2 0	0 742	0 752
1.2-Dichloroethane	0 1840	0.851	0 868	0.872
1.1.1-Trichloroethane	0.948	0 9 50	0 959	
Benzene	000	1.000	000	00
Carbon Tetrachloride	1.095	030 1	1.048	086
1.2-Dichloropropane	1.266	1.254	1.214	1 192
Trichloroethy lene	1.413	13%	1.342	191
2-Chloroethyl Vinyl Ether	7997	49	1.551	013 1
1.1.2-Trichloroethane	2 293	2.211	1.976	098
Toluene	2.693	2.621	2.358	2 339
Tetrachloroethylene	3 985	3.853	3.314	3 272
Chlorobenzene	5.153	4.962	4 148	4 076
Ethyl Benzene ,	6.223	5.985	4 882	4.743
Bromoform	6.282	5.261	4.713	4.351
m-xylene	6.767	6.490	5 247	5.071
o-xylene	8.145	7.826	6 234	\$ 979
1.1.2.2-Tetrachloroethane	8.311	7.190	5.943	5 345

The ANALYSIS TIME, DRV3, and DRV4 times can be adjusted to obtain a suitable chromatogram of the working standard, if one like that in Figure 8 is not initially obtained. If the chromatogram does not show any of the last peaks (xylenes or ethylbentene), the following adjustments should be made in order. After each adjustment, reinject a headtone sample of the working standard and watch for the latter peaks to appear on the new chromatogram.

As an alternative,	5 mL/min.
ise ANALYSIS TIME, to 600 or 700 seconds.	Illy adjust the carrier gas flowrate upwards to I
Adjustment I. Increase	garen

Adjustment II Adjust the DRV3 and DRV4 off times funder METHOD/HMING. CONFIG command) to the formula 5 + A/6 (A represents the analysis time)

Physique 10S + GC SOP 14

October 11, 1994

RESULTS WINDOW. The 100 ppb standard is entered as Conc.1 (as 0.1 ppm), the 1.0-ppm standard as Conc. 2, and the 10 ppm standard as Conc. 3, as each standard is analyzed. Also, Alarm I and 2 values should be set to 50 ppm. After the correct concentration is entered for process is performed as follows: select METHOD/LIBRARY, select STORE, press ENTER for each compound you wish to store, then fill in the appropriate entries in the LIBRARY THIS PROCESS CAN BE SUCCESSFULLY COMPLETED ONLY AFTER THE CHROMATOGRAPHIC ANALYSIS OF A WORKING STANDARD APPEARS IN THE the current analysis, press ENTER. At this time, the GC calculates and stores the correct response factor and retention time for that peak. Repeat this process for each peak or analyte in the current standard, then move on to the analysis and library storing of the next higher standard. Figure 9 shows the library information for benzene after all calibrations are complete The 3 point calibration is initially created by analyzing the three standards in succession, starting the lowest concentration, and storing the calibration information (using STORE WINDOW (peak #, compound name, and Conc.) for each compound (see Figure 9). METHOD/LIBRARY/STORE) for each analyte after each chromatogram is obtained. while Figure 10 shows the 3-point calibration which has been created.

Figure 9 Library Store Window.

After all compound peak numbers and standard concentrations have been entered in the library, select METHOD and REINTEGRATE to reanalyze the last chromatogram and set all compounds to the specified concentrations. Finally, to obtain a hard copy, print out the standard chromatogram by selecting the PRIMT/ANALYSIS command.

GC CALIBRATION CHECK

- The calibration must be checked after analysis of every five samples. Only one of the three standards is used to check the calibration, namely that standard whose nominal concentration is closest to but greater than the concentrations of recent sample results (see ranges shown on calibration curve of Figure 10). For example, if most sample results are running around 300 to 700 ppb, then the 1-ppm standard (medium range) would be used for the calibration check.
- 2 A calibration check includes performing a repeated analysis of the chosen working standard headspace and reviewing the results printed out. If the compounds are not correctly identified and/or if the concentrations are not close to the nominal standard concentration (80-120% of

Photovac 105 + GC SOP

~

October 11, 1994

During a GC analysis information identifying the sample should be entered in the moter. This is done by simply typing information in the screen using the NOTES command. When an analysis is complete, he sure to always prim out a hard copy of it for project records by using the PRINT/ANALYSIS command. If any keyboard keys are his during the time that the Analysis Report is printing, the primer is supped, and the princess will have to be started over Ore method for dilution of samples for analysis is to intext a smaller volume of gas onto the GC column. For example, if the standard insection volume is 100 µL, then the injection of only 20. ult on sample headquice represents a dilution of 1 to 5 - A vecond method of dilution is to use a mass of soil less than ten grams in preparation of the headspace sample. This, issing a Lyram cample would represent a dilution of 1 to 10.

ø

The 500 µL, average is decontaminated after each sample and standard injection by temosing the plunger and putting the ascenge harret onto the plastic bose coming from the tee of the air supply Slightly own the valve on the tre line to allow air to strip BTEX and other compounds out of the syrie, chaired for several monitor

of sampling activities and results in the field. For each injection tall samples, standards, and The FTELD GC DATA SUMMARY form tattached to this SOP) should be used to keep track air blanks), the following information should be entered on the form

- concentations should be reported in 1996, and with no more than three significant digits GC results recoverifications of all individual analytes and of total BLEX (ppb) The depth of the cost sample in feet, or suprimptiate identification of the injection that digit reported is single pph digits
 - Actual weight of the soil determined by difference capproximately 10 gramso
 - Any dilution of the sample required for analysis

Additionally, important GC operating parameters should be recorded on the form, both initial values used and any changes made during analyses, including

- Temperature of GC oven
- Analysis time and gain settings
 - Carrier pas flowrate
 - Injection volume

Finally, once the entire. I point calibration has been initially established for the day, the response factor values tunder LIBRARY STORF WININGW tee Figure (1) and retention times tunder METHODY IMRARY) for each analyte should be recorded in the bottom table of the Field GC

GC CALIBRATION WITH HEADSPACE STANDARDS

Daily working standards are prepared in a clean 40 ind. glass VOA call with tethon septa following the formula below

Photorac 105 - 66 Scap

their II part

=

SVI × SC

7.75

(- Working standard concentration (ppm),

5V - Volume of stock wildton (in microliters);

W.V. - Volume of desonized water (in microfiters) - 10.000 µL typical (10 mL); and

SC - Stock solution concentration (ppm)

in a 40 ml. VOA vial, and then adding the required anymon of concentrated standard from the Three conducts will be prepared and used each day (O.L. (100) pph), 1.0. and 10.0 ppm standardet in create a 3 posted calibration. A standard is prepared by putfing 10 mil. of DI water stock solution. Preparation of the 100 pph standard is performed by taking liquid (not headspace) from the 1 ppm calibration standard and diluting it with 10 ml. of water in a second to ml VOA vist. Table? outlines the volumes and final concentrations for these three standards (as calculated by the above formula)

Working Standards Preparation

Working Standard Concentration	Stock Solution	Volume Taken from Stock
10 րրա	2000 ppm stock solution	30 μL
լ իրո	2000 ppm stock solution	5 µl.
100 թբի	I ppm working standard	1000 µl. (1.0 ml.)

Always use the appropriate syringe for dispensing very small volumes accurately (e.g., use 500 µL, syringe to dispense 500 µL, use 10 µL syringe to dispense 5 µL or less). Shake the vial reported to mix after adding all components. Both the stock solution and working standards must always be stored inverted in a refrigerator or an ice chest. New working mandards MUST he made fresh dally. If other components are to be analyzed in addition to BTEX (such as trichloroethylene), then the 10 or 1 ppm standards are prepared by adding the specified volume (50 or 5 µL) from each separate stock sulution. Vever mix any separate 2000-ppm stock solutions directly together.

- Analyze standants as described in the GC ANALYSIS section. An example chromatogram of a BTEX working standard is shown in Figure 8, including typical peaks for all of the components. Note that m.p. sylene is actually two components represented by one peak. If this is a 1 ppin standard, then this particular peak represents 2 ppin of those components
- If additional analytes stricklionethylene etc.) are being employed, the peaks are identified amongst the recognitable DTEX peaks and the order of analytes on the chromatogram

Photon, 105 - GC SOP

2

Oktober 11, 1994

ACTOR STORY

Operational Technologies Corporation

Optoch SITE SPECIFIC HEALTH AND SAFETY PLANS Site Health and Safety Briefings Form

Project No. Start Time: Completed:	Site Location: Type of Work (General):	SIIE SAFETY ISSUES	Tasks (This Shift/Day):	Protective Equipment/Clothing:	al Mazards:	il Herarde:	Methods:	Special Equipment/Techniques:	Neerest Telephone: Hospital Name/Address:	Expected Wasther:	Special Topics (Incidents, actions taken, etc.):	
lob Name:	Type of Work		asks (This Sh	rotective fau	Chemical Hazards:	Physical Herards:	Control Methods:	Special Equipr	Nearest Telep Hospital Mam	Expected Wa	Special Topic	

LAKE CORPORATE

ATTENDEES

Plantation Street

Skyline Drive

Univ of Mass Medical Center

Worcester ANGS

SIGNATURE		to be the second of the second			The second of th		The same of the sa	
PRINT NAME		processing and the second seco				The second secon	A THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1 AND THE PERSON NAM	

FIGURE 1A

ROUTE TO UNIV MASS HOSPITAL Morcester Air National Guard Station Massachusetts Air National Guard Morcester, Massachusetts

CONTOUR INTERVAL A METERS

THE WASHINGTON Belmont Street

000
これるエ
_;=≃
a s
<u> </u>

Page 2 of 2

Saptember 1, 199

EMERGENCY CONTACTS AND AIR MONITORING ACTION LEVELS

EMFRGENCY CONTACTS

In the event of any utuation or unplanned excurrence requiring austrance, the appropriations, excit of any utuation be from the first be maneconsected will be maneconsected will be set with the Site Manager (SM), who will notify emergency personnel, and then contact the appropriate response teams. This emergency contacts but must be kept in an easily accessible keation at the site.

Cimiaci	Phone Fumber
11 Cal. Joe Bellino	\$409 6057808
Wincener Fire Dept	110
Waigewer Police Dept	115
Massachusetts Flectric Co	1188 167/808
(Janes)	Phone
	Number
Hospital Treventity of Max	1131 330000
Medical Center	11
Ambulance Service	110

Route to Hospital. From the main gate of the station, turn right (south) on Skyline Drive, approximately 0.5 of a mile, then turn left (east) on Bi, mont Street. Go approximately 0.8 a mile to the second set of lights, and turn left (north). If Plantation Street. Go approximate 0.2 of a mile, the Hospital entrance is on the right, tollow, the signs to the EMERGEN ROOM.

Travel time from rife (10 minutes - Map to hospital on following page

Figure 10 3-Point Calibration.

specified value), then a recalibration is necessary. This is done by storing again the peak numbers and cohecentrations of the chosen standard in the LIBRARY STORE WINDOW under and use Finally, REINTEGRATE PRINT/ANALYSIS to provide a hard copy record of the updated calibration. METHOD/LIBRARY/STORE command.

SOIL AND WATER SAMPLE PREPARATION AND ANALYSIS

Collection and preparation of all soil samples should follow exact and consistent procedures in order to obtain meaningful Consistency is very important in the preparation of soil samples. results.

- The soil samples are collected in glass jars and placed in a cooler of ice which should be maintained at 4° C (± 2° C). Dispense 10 mL of DI water to each 40 mL VOA vial by use of a 10 mL pipet and an aspirator bulb. Approximately 10 grams of soil is collected from the glass jar and added to the 10 mL of DI water already in the 40 mL VOA vial. The weight of - water wt. = soil wt.). The sample is capped with a teflon cap and is shaken for 30 seconds to mix and volatilize the BTEX or similar compounds. All samples must be warmed in the the soil added is determined by difference using the small electronic balance (water plus soil wt. water bath for 15 minutes before injection of headspace onto the GC
- Water samples are prepared by simply dispensing 10 mL of aqueous sample, using a 10-mL, piper and an aspirator bulb, into a 40-mL VOA wat, and shaking for 30 seconds to volatilize the components present. All samples must be warmed in the water bath for 15 minutes before injection of headspace onto the GC.

October 11, 1994 2

Photovac 10S + GC SOP

STAR VILLED WINDING PARTY

.. for outdoors willing propie therefore withing products

GC ANALYSIS section. Be careful not to inject any liquid water into the GC, as it will SEVERELY DAMAGE the column and render the instrument unusable. Remember to update the NOTEPAD with sample ID information. This can be done while the GC is Analyze headspace from prepared soil or water samples according to the procedures given in the performing an analysis. Once the peak and concentration information is obtained from the analysis printout, the concentration of the compounds in the soil can be calculated using the formula below:

Where:

PR = Piotter reading (In ppm); WV = Welght of delonized water solution (in grama); and Contaminant concentration in soil sample (in ppm); SS - Exact weight of soil sample (in grams).

SS should be as close to 10 grams as possible WV = 10 mL or 10 grams. 1 ppm = 1 µg/mL. Note:

If the soil sample is exactly 10 grams, then X - PR and no calculation is required

SHUTDOWN

- This will rum off the PID lamp and the GC oven. Then select REMOVE FUNCTION under the STATUS command in order to clear out the GC for the next analysis session. The computer Shut down the 10S + GC by first selecting GC DETECTOR OFP under the STATUS command. will prompt "Data will be lost," to which you can answer "Yes." _:
- Press OFF. Replace the Injection port septum every day or every other day (see page 8-7). Be sure the Teflon face of the septum is down and that the septum retainer is not over tightened upon replacement.

WILL MISSIONED

SH JUNG HUMAN

TALE CHERON

1 1017 Physics

(210) 731-0000 Exx 169 4100 N.W. Logo 410

Base Norcester National Guard
Base Norcester, MA
Massachusettes National Guar
J. 6# 1315-199

Required Clothingi Zovo Hood, Coveralls, (Figurestru) Rein Cont Insulated of Water Proof Boots, & Ensulated Coveralls,

Predited Weather - Tempizo 04050 of Light Rain (Some freezhytalu)

Flight Our Out at: 8:00 A.M.

Monday will be In- Briefing

Important Contacts:

The lete Mc Girnis - Facility Employer

Copyrelinator

(August 5529

FAX#(508)

Mr. John Richardson-Environ, Coordhather Those # (413) 568-9151 FAX # (413) 572-1565 Items (Spatial) For log i Dacon Colibration Tail bute Meather (e.g. Wind Breather) & Daily Log of events.

Date: 4/3/95
Weather: Low-28 High-50
357. Humidity 108303 to 60. High
Tuesslay Forecast-1870005 340 High

Arrivel Time: 7:59 Briefing (McGimir) 8:00-8:30 Safety Meeting 8:30-8:40 Start Be-Stakeout Bring
Locations - 9:25
Locations - 9:25
10:50 Walk-thru With Melini
11:30 Luarity Go Hotel 12:20
12:30 Samples (Jee Cleaps & Cult.)
Linearity to Left Hotel of 12:30
1:45 Arrived at Base & Wirk.

1:45 Arrived at Base & Wirk.

5:00 Decor Vills (Trunel Sylior
6:00 Arrive at A.tel

you the line

1) action would thoughty - 6.8 - 7.2 pm. for Hiller Hole Houling 11:15 - 4.2 pm Hole Reading 11:30 - 5.2 ym Sumple Roading 6.5 pm Drilling Hola 17 - 11:00 f.m Keadity on Sample - 8,3 ppm. 1 . Ky 2 Hole - 5.2 pm at 3.5'

Sumple - 6.0 your

13:25 - 6' Hole Keading - 5.2 ppm Sample Kending 7.0 Jan Sumple - 11.5 your Hole - 9.2 year A+ 7' ut 11:43-Hole # 18, 12:50 17:00 time?" 1346 4145 11;61 Weather Low 35 1416-55 (48 M) Jossible - Rain & Thunday Shinors Breakfast i 7:00 Stading - 8:15
Reading on hole - 5,2 pp h
Reading on Scyle - 5,3 pp h
Buckground - 2,5 pp h
Time of Reading - 2,5 pp h
Second sample of 5:00
Reading on hole - 36 pm
Reading on hole - 36 pm
Reading on sample - 38 pm 01016-13ppm 01017-2-14,7gpm Areho Buse 7:30 Calibration Microtip(NID)-8:00 Day 2 2007 have at 6407 -Thirds ample at 6407 -Teading on hole - 10,6/11m Reading on Sample - 102911m 92 Athin Sufety, Meeting 8:10

(7:00 17:17 Hole - 3,2 grin. After Sumple 43 grin. Sample - 3,3 mm 14.00 Hit selvock at 3 at 14:00 Hole at 14:10 - 5,2 yron. Hole 20 - 13:30 Setup 1, 4.7, 2 Date 1/4/11

Hole II at 14:23 - 3,2 ym.

Simple - 5,9 ym Assign

Simple - 5,9 ym Assign

Volutiles Liles

01020 — 11,3 ym 01021 — 11,9 ym 14:52 Peroving Equipment for 4-5-95 Seeld Blanks 15:00 Take Field Blanks 15:25 Rield Blanks 15:30 Take Field Blanks 15:30 Take Field Blanks 16:00 Equip. 15 lanks Complete

yor William

Hite 16:12 Oncking Lump Co. 16:42. Vacking Lump Co. 16:42. Vacking Lump Co. 16:45. Valley Sump Kes. 17:17 Buck La Kekely Sump Kes. 17:17 Buck La Kekely Sump Kes.

4/5/95 Weather - Batin Lew 23°F Worcoster - Bosta High 34°F Worcoster - Lond - 12+015°F

Ebrica Timo - 6:10

Safek Meding - 8:25

Lalibeko 1741 - 8:40

Book Hole 4123 - 19:3 9:20

Hole Koalling - 2:0/pm

Hole - 22 - 9:45 Hole Reading at 9:55 - 44 yrn 5-ple Roading at 9:55 - 6. 4 jrn 3' - 10:10 1-15/e Neading - 2,7 jrn 5ample Reading - 5,1 jrn 5ample Reading - 5,1 jrn

415/55
Hole + 9 - 10:30
Hole + 9 - 10:30

Fole + Cealling - 2.2 pm

Sample + Cealling - 4. gpm

10:52 - 2 20 (Sample)

10:52 - 2 20 (Sample)

To you may (22-12,540 clo)

Sample + Cealling - 5:9pm

Volgyilo (Amb) - (1:00

01023 - 4.6 pm 01023 - 6.1/1911 1-101024 - 11:05 Sample - 11:12 1-1011 Reading - 2.2 pm ut 11:20 Sample Reading - 2.4 pm ut 11:20 Volatiles (Amb.)

61024-1.2 mm Lurch-11:55 12:30 Update Paper Month

La Interna

1. Jay X 4. K. 4/9/6 Equipment Blank

Field Blank

13. ums + cabelling

Racking + Cleaning

Finishing (1,00) has this Accional Hotel 15:30 13:20 16:30

4:00 Arrive of at Bore 4:05 halk. Through horisons h 9:45 Finishool Meeting Brings 11:00 Weffer Yures

Destry Greenway 4100 NW Loop 410 Str. 230 Sa, Antonio, TX 78229 210-731-0000

Worcester Addendum 1315-199

3 Decon procedures 4-8 Chronology of events

0830 - Pre-mobilization meeting 0915 - Meeting over

Friday 3-31-95

```
Left motel to eat breakfas
Arrive at base, Begin setting
                                                                                               Too lunch
from lunch
                                                                                                                                   decon 01-018 BH
complete 01-018 BH
decon 01-030 BH
                                          Safety briefing with Jon
Williams, OI. OIK BH
                                                                     Begin decon 01-016 BH
Decon complete 01-016 BH
Begin decon 01-017 BH
                                                                                                                                                                                                                           Decen compiliants

Take field blank complete

Take equipment blank
                                                                                                                                                                      complete 01-02
                                                                                                                                                                                                                   complete
                                                                                                                                                                                                         Spoons Tor
                                                                                                                                                                                Begin decon 01
Decon complete 0
                                                                                                                                                                                                                   day
                                                                                                                                                                                                        Decon
(next o
                                                                                                                                                          Bein Decon
                                                  01:30
                                                                                                                                                                                                                          14:55
15:00
15:35
15:36
                                                                                                                               Left hotel for lunch break
Arrived at base. Set up rewip.
for charging. Calibrated PIDs,
Set up GC.
                                                                                                                                                                                                                  base to go to store, store to store, store (bought fire extinguishmen
                                                                                                                                                                                             Begin decon of sperses and caps.
                                  at base to become familiar
                                                                       Unlabad more equip.
Begin staking boring locations
Begin working on GC
                                                                                                                                                                                                                                                                      No Further
Monday 4-3-95
                                                                                                                                                                                                                         Leave store in etc. for job)
                                                                                                                                                                                                         Vecon complete
                      eft mote
                                                                                                                                                                                                                       L Gave
                                Arove
Walked
                      0730
0750
0800
                                                               0840
                                                                                               0408
1020
1050
                                                                                                                                                                                              500
1650
1710
1745
                                                                                                                                         130
1230
1345
```

Tuesday 4-4-95

are 3 spens, no attempt vill boring from another one boring from another on decon Break for lunch
Return from lunch
Take equip. blank sample
Decon 3 spoons for shipment
to San Autonio. Begin packing
and cleaning up.
Leave base
Arrive at motel Leave motel to eat breakfast.
Arrivo at base
Satoty briefing given by Jon
Williams Set up decon for sample spoons
(Since there will be only lor Decon complete on spoons for Wednesday 4.5-95 TIMES. borings 0/80 0830 2580 825 1130 1155 1230 1330 1700 1340 Equip. blank complete. Seal and prepare ice chests for shipment Wrop spoons in foil Arrive at mote Arrive a) 17:05

OBOO Leave motel for breakfist
0850
Arrive at base
0915
0ut priefing with LTC. Joseph
Belline base

a tuit of entries

PROJECT NAME: Woccester Addendum Site Investigation	Addendu	in Site fin	ives ilgail	110	I	ā	RILLING A	DRILLING METHOD: Hallow Stem Auger	A inais wollo	üğet		1	SAMPLING METHOD: California Style Split Spoon Sampler	
PROJECT LOCATION: Waggeler ANGS, Worgeler, Massachusells	PIEC AN	SS, Wor	Cester, A.	assachus.	SII:	á	ORING/WL	TT NOVIBE)-10 :	BORING/WELL NUMBER: OI-OIG BH		1	DEPTH DRULLED: 10.0' BLS	
PROJECT NO.: DAILASO 91-D-0005/0039 1315-199	00/5000	1315	<u>\$</u>		ļ	×	IG: Acker	RIG: Acker AD 2 Drill Rig and 4.25" (UD) Augers	K and 4.25" (ID) Augers		i	DEPTH TO WATER: No Wase Encountered	
LOGGER: Earl E. Parker II					}	=	EATHER:	Co.1. Br	wer Di	WEATHER Col, Breezy, Diele Tree 49°F	1.64	1	DATE MEASURED: NA Applicable	
DRILLING CO.: Technical Drilling Services (TDS)	Illing Ser	vices (TT	ışı		***	a	ATE DRILI	DATE DRILLED: 4 April 1995	1995			1	TOC ELEVATION: No Applicable	
DRILLER: Peter Newsham					1	55	URFACE E.	SURFACE ELEVATION:		764.5 '		ı	PAGE OF	
							FIELD &C	FIELD SCREENING			tat	DEPTH	DESCRIPTION	
GAMPLE DEPTH	* 3	BLOW COUNTS		* 2	LAB SAMPLE INTERVAL	(धन्तु) (धन्तु)	AŢIJĄ (ppn)	FAIR		ASTM Sull Classification Codes	FROM	O.L	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, OWAR	
0.5 - 2.0	9	81	50	00	INT 1 -0.530	3,0	13.0			MS	0.5	7.0	Brown to dark gray, very poorly sorted sand coarse sand, little silt. Louse, slightly movered, fell material	
2.0 - 5.0	,	1	,	1	1		•			SW	2.0	5.0	n	
5.0 - 7.5	1	1	ı	,		•	1			MS.	2.0	5.0		
7.5-9.0	23	87	31 (65	Iur 2	730	Hol Observed			ΝS	7.5	9,0	Bran to Dark Gray con , sand and gra 1. madium to consis sand, lous. to sti utt. cohesis, selfy sand Stightly moist. Pet styrm oder (Fill mathix)	اءٍ.
9.01-0.9	ı	ı	1	,	l	ŧ	ı			N	9.0	0.01	= .	
		-												
OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	C Su 7822	H iite 2. 29-42	23	NOTES: Come Asphy	28: F.111 ~d.t. phair ?]	ATHA	24 / 2 24 / 2	COACO Inte Saml	5.7 2 ple f. 0.5	rud b Samp om 7.	10+ 1 110. 5-9.0	9/6/6 5/115/6 1. 1865	OOTES: Fill, losse, correggrained. Alot Able to collect enough sample to conduct ATHA or Interval 2 sample. Stight petroloum ador At 7.5 BLS. Octain Interval 2 sample from 7.5-9.0 BLS. Bedrack encourtered At 10.0 BLS. Asphalt from Suitace to 0.5 35.5.	

PROJECT NAME: Wacceler Addendum Site Investigation PROJECT LOCATION: Wacceler ANGS, Wacceler, Massachusetts	Addend	IGS, Was	mappan in under	tion Massachu	34(15	a a	HEING M	DRILLING METHOD: Holow Stein Auker Boringiwell, number; OI - O18 BH	O - IO	118 BH		1	SAMPLING METHOD: <u>Chilórnia Siya Spáit Spood Spuipler</u> DEPTH DRILLED: 6, 0 ' RLS
PROJECT NO.: DAILASO 93 D-000550039 1315-199	19-0003/00	. 66	8			ž	G: Acher A	RIG: Acker AD-2 Drill Rig and 4.25" (ID) Augers	d 4.25" (ID)	Augers]	Z
LOGGER: Eacl E. Parker II						X	EATHER:	WEATHER: Cod, Breezy, Cloudy: Temp 55°F	23, Cls	oudy: Te	mp 55	الما	DATE MEASURED: Na Applicable
DRILLING CO.: Technical Incilling Services (TDS)	rilling Se	rvkes (I	Su		E	Υď	TE DRILL	DATE DRILLED: 4 April 1995	2	,	•	1	TOC ELEVATION: No Applicable
DRILLER: Peter Newsham					Ì	S	HEACE EL	SURFACE ELEVATION:	767.5	5		ı	PAGE 3 OF 9
							FIELD SCREENING	KENING			ber	PEPTH	DESCRIPTION
SAMPLE BEPTH	<u> </u>	BLOW	1	# 23 # 23 # 34	LAB SAMPLE INTERVAL	(uidd) Oid	ATIIA (ppm)		J .	ASTM Sul Classification Clades	МОИ	10	COMPOSITION, STRUCTURR, CONSISTENCY, COLOR, DEGREE OF MOISTURK, ONXR
0.5-2.0	12	Ē	50	75	® In⊤ (7.8	14.9			SK	0.5	2.0	Bown to Dark bown coasse sand, sand, And gravel fill material. Some silly sind,
2.0 - 5.0	ì	1	ι	ı	١	ı	1			SW	2.0	5.0	loose to slightly cohesive and slightly unvist
50 - 6.0	=	50	1	80	Int 2	13.5	13.7		• ,	SW	5.0	0.9	
						7000							
OPTE	CH	H		NOTES:		٤)	krial	, Uni	Born	<u> </u>	Atra	4	Fill makeral, uniform in nature to badrock. Bodrock encounted
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	10, Sı	uite 2 29-42	30	At 45	At 6.0' BLS. Asphall from	365.	No Such	No water encountered, surface to C.S. Bus.	enco.	intered,	' Λ' .	~opo	No water enroundind, No odor detected. Urbace to C.S. Bus.

l

l

H

PROJECT NAME: Woccester Addendum Site Investigation	Addendu	um Site Ji	nvestigati cester, M	on assachus	rite	30 B	RILLING MI	ETHOD: II	DRITLING AETHOD <u>: Hollow Stein Auget</u> Boring/Well, Number: 01 - 0	DRILLING METHOD: Hollow Stein Auger BORING/WELL NUMBER: OI-020BH		1 1	SAMITLING METHOD: California Style Spili Spoon Sampler DEPTH DRIFLED: 3.0' BLS
PRUJECT NO.: <u>DAIIA90-91-D-0005/0039</u> 1315-199	0.0003/00	99 1315	86			X ;	3: Acker A	Cool	RIG: Acker AD-2 Drill Rig and 4.25" (1D) Augers	RIG: Acher AD.2 Drill Rig and 4.25" (10) Augers	Tomo 55	ا د	DEPTH TO WATER: No Water Encountered DATE AREASURED: Not Applicable
LOGGER: Ent E. Parker II		1	154		1	š	ATHERE -	DATE DRILLED: 4 April 1993	1985	1 1		a! !	TOC ELEVATION: Not Applicable
DRILLING CO.: Technikal Drilling Services (T.D.) DRILLER: Peter Newsham		NICES II	9			ns.	RFACE EL	SURFACE ELEVATION:		764.3'			PAGE 4 OF 9
							FIELD SCF	SCREENING			DEI	DEPTH	DESCRIPTION
SAMPLE DEPTH	- ō	BLOW		* REC	LAB SAMPLE INTERVAL	Grad)	ATHA (ppm)			ASTM Soll Clessification Codes	FROM	10	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, OINOR
0.5-2.0	9	<u>@</u>	7.2	8	0.5-2.0	5.8	11.3	-		38	0.5	2.0	Bown to dark bown contre sand and gravel fill makeral. love to slightly columns.
2.0-3.0	ı	,	ı	ı		ı	ı			NS MS		ı	Many Angoler wobler And grazer signing moist.
													,
													-
OPTECH		H		NOTES:	[- ww	Reinly	2	3	Fill makind, No water or ador	ador		encountered. Bedrock 1+ 825.865
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	410, 5 18 78.	uite (229-4	230	Asp	Asphalt from surface to 0.5 'Bus	om S	whe	4	0.1	Bes			

•

ı

•

PROJECT NAME: Waccester Addendum Site Investigation PROJECT LOCATION: Waccester ANGS, Waccester, Massachusetta PROJECT NO: DAIIA99-93-D-0005/0039 1315-199	Addem ester A	NGS, Wa	Investigati coster, h	Massechus	1111	BG BK	II.LING ME RING/WEI. 3. <u>Acket Al</u>	DRILLING METHOD: Hollow Stein Auger BORING/WELL NUMBER: 01-021 P	01-021 BH	21 BH		1 1 1		SAMPLING METHOD: California Style Spile Spoon Sampler DEPTH DRILLED: 1, O' BLS DEPTH TO WATER: No Water Encountered
LOCICER: Earl E. Purker II DRILLING CO.: Technical Drilling Services (TDS) DRILLER: Peter Newsham	a dilli	Services [1	(Sr)			WI DA	EATHER: (TE DRILLA RFACE ELI	WEATHER: Cool, Oceas, DATE DRILLED: 4 April 1995 SURFACE ELEVATION: 7	1 1	C louds		1 1		DATE MEASURED: Not Applicable TOC ELEVATION: Not Applicable PAGE 5 OF 9
							PIELD SCREENING	EENING			реги	H		DESCRIPTION
SAMPLE BAMPLE		BLOW		# NEC	LAB SAMPLE INTERVAL	(III)	ATIIA (ppm)		5	ASTM Soli Ctassification Codes	FROM	10		COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR
	8_	S		09	Int 1	7.3	1.9			35	0.5	0.1	Brown	for dark brown coars say and fill makenal. Cobbler and angular
													9, Au	gianal Fraymonds. Louse, slightly moist.
														•
OPTECH		H,		NOTES:		1 × ×	300	Vey shallow soil horizon.	Noi	٠ ٧٩٦	Bedrock	ock	۴ 4	1.0' BCS.
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	410.	Suite 8229-4		As(Aschalt For	Few.	li li	0.0 to 0.5' BCS.	1.5.	36.5.				

PROJECT NAME: Worcester Addendum Site Investigation PROJECT LOCATION: Worcester ANGS, Worcester, Massachusetts PROJECT NO.: DAILA90-93-D-4005/0039 1315-199 LOGGER: Ent E. Parker II DRILLER: Peter Newsham	Investigati MCESTET, A S-199	les sechus] =		DRILLING METIIOD: IIA BORING/WELL NUMBER RIG: ACACTAD.2 DLIII RIJ WEATHER: VC/Y CO NATE DRILLED: <u>5 April</u> SURFACE ELEVATION:	BORING/WELL NUMBER: O1-02 SBH BORING/WELL NUMBER: O1-02 SBH RIG: Acket AD 2 Drill Rig and 4.35" (10) Aukets WEATHER: Very Cold, windy, Parll, Cloudy DATE DRILLED: SApril 1995 SURFACE ELEVATION: 769.9"	(1) - (1) (1)	1-02 \$ BH 5-(11) AURES 1-04, PACH.	Cloudy		SAMITING METHOD: California Style Split Spoon Sampler DEPTH DRITLED: 1, S' BLS DEPTH TO WATER: No Water Encountered DATE MEASURED: Not Applicable TOC ELEVATION: Not Applicable PAGE 6 OF 9
					FIELD SCREENING	REENING	_		DEPTH	. 1	DESCRIPTION
SANFLE BLOW DEPTH COUNTS		₽ REC	LAB SANIPLE INTERVAL	P1() (ppm)	ATHA (ppm)		J	ASTM Soll Classification Codes	FROM	10	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, OWOR
0.5 - 1.5 30 31	50	8	Int 1	0.5	6.1			ΣW	2.0	1.5	Brown to dark brown conce sand And gravel fill material. Loose, dry. little
											silt and silty sand at bottom.
OPTECH		NOT	NOTES: Using shallow soil horizon.	~S	wille	Lios	Nous	٥٧.	Bod	vo ck	Boduck encountered At I.S' BLS.
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	230 1253	Asp	Asphalt from surface to 0.5 BLS	× 5	ny) of	7.5'B	57;			

PRCJECT NAME: Worcester Addendum Sile Investigation	dendum Sit	e Investi	gallon		ā	PRILLING N	DRILLING METHOD: Hollow Stem Auger	Stein Auger				<u>ä</u> '
PROJECT LOCATION: Worcester ANGS, Worcester, Massachusetts	er ANGS, 1	Vorceste	, Massach	usetts	Ř	RING/WEI	BORING/WELL NUMBER: 01-022 BH	01-02	F 814			DEPTH DRILLED C, 2 CC3
PROJECT NO: DAHA90-93-D-0005/0039 1315-199	1 6600/50	315-199			æ	G: Acker A	RIG: Acker AD-2 Drill Rig and 4.25" (ID) Augers	14.25" (ID) Au	S S S S S S S S S S S S S S S S S S S			DEPTH TO WATER: No Water Encountered
(OCCER: End E. Parker !!					*	EATHER:	WEATHER: Very Cold,	thundy Cloudy	Cloud	<u></u>		DATE MEASURED: Not Applicable
Manual Comments	1	945		Į	à	TE DRILL	DATE DRILLED: \$ April 1999					TOC ELEVATION: Not Applicable
DRILLING CO: Technical Drilling Services (1927) DRILLER: Peter Newshaid	BY LEE	2			. ઝ	RFACE EL	SURFACE ELEVATION:	170.2	. 2 .			PAGE 7 OF 9
						FIELD SCREENING	REENING			DEPTH	=	DESCRIPTION
SAMPLE DEPTH	BLOW	* S	# MEC	LAB SAMPLE INTERVAL	PID (ppm)	ATHA (ppm)		Cless O	ASTM Soll Classification Codes	FROM	10	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR
0.5-2.0	Lh 82	79 Lh	08	Int 1	5.8	4.6		S	3	0.5	2.0	Brown conse sand and grant till. Sill sind wear bottom. Coarse sand is
	30 -	1	,		•	ı		Š	MS	2.0	2.5	loose, slightly moist. Silly sind is hard, slightly cohesive, and dry.
	,							-				
		<u> </u>										
		-										-
OPTECH	E		2 2	TES: U.	کے ہے	سااد	v	Moreon	:		Sample	ple interval obtinad.
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	0, Suite 78229	230 4253		Ashalf from surface to 0.5 BCS.	R. C.	Surk	th by	2.5° 0.5°B	, BLS			

PRWECT NAME: Worcester Addendum Site Investigation	dendum Si	ite Inves	tigation		<u> </u>	RILLINGA	IETHOD: 1	DRILLING METHOD: Hollow Stein Auger	L UKer		1	SANFLING METHOD: California Style Spill Spoon Samplet
PROJECT LOCATION: Worcester ANGS, Worcester, Massachusetts	er ANGS,	Worcest	ter, Massa	chusetts	•	ORING/WE	LL NUMBE	0	BORING/WELL NUMBER: 01-019 BH		ı	DEPTH DRILLED: 3,3' BLS
PROJECT NO.: DAIIA90-93-D-0005/0039 1315-199	002/0039	1315-199		!	×	IG: Acker	AD-2 Dilli R	RIG: Acker AD-2 Dill Rig and 4.25" (ID) Augers	(ID) Augers		1	DEPTH TO WATER: No Water Encountered
LOGGER: Earl E. Parker II					*	YEATHER	Very C	ald, win	WEATHER: Very Cold, Windy, Clurdy		ı	DATE MEASURED: No Applicabe
DRILLING CO.: Technical Dilling Services (TDS)	ng Service	s (TDS)			2	ATE DRIL	DATE DRILLED: 5 April 1995	1 1995			1	TOC ELEVATION: Not Applicable
DRILLER: Peter Newsham					s	URFACE E	SURFACE ELEVATION:		769.7'		ı	PAGE 8 OF 9
						FIELD SC	FIELD SCREENING			DEPTH	=	DESCRIPTION
SAMPLE DRPTH	BLOW	w iTS	# REC	LAB SAMPLE INTERVAL	P10 (ppm)	ATHA (ppm)			ASTM Soil Classification Codes	FROM	10	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, OWOR
0.5 - 2.0	23 38	3	92	Int 1	4.5	10.0			MS	0.5	2'6	Brown coarse soul though fill makenal, some Silly soud and gravel. Toose to slightly
2.0 - 3.5	12 0	25	0.9	Jr.4 2	2.5	Nut Oblaine			M	2.0	3.5	cobasine, slightly unoist:
			ļ									
												-
OPTECH	CH		ž	NOTES: Reduck	bock	6MC	avva	pa	At 3.	3, 8	٠٤.	encountered At 3.3' BLS. Was Able to obtain two
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253), Suite 78229-	4253		Interest samples Aphalt Rum sur	Ample.	J. G	~ ~ ~	th:, 0.5	sortes from this borns.			

PROJECT NAME: Worcester Addendum Site Investigation PROJECT LOCATION: Worcester ANGS, Worcester, Massachusetts PROJECT NO.: DAILANG 93-D-WOOS/0039 1315-199 LOGGER: Earl E. Pai ker II DRILLING CO.: Technical Drilling Services (TDS)	dendum S er ANGS, 005/0039	Worces 1315-19	stigation ster, Mas	sachuset!			ULLING M DRING/WEI G: Acker / CATHER: [TE DRILL	BORILLING METHOD: Hollow Stem Auger BORING/WELL NUMBER: O1 · O2 4 [RIG: Acker AD2 Dalli Rig and 4.15" (IU) Augers WEATHER: Uky Cold, Winds, Clo DATE DRILLED: SApril 1995 SURFACE ELEVATION: 775.	110 Stem A 12 OI - 12 OI - 13 WIND 15 WIND	BORILLING METHOD: Hollow Stem Auger BORING/WELL NUMBER: O1 - O2 4 B.H RIG: Acker AD-2 Dull Rig and 4.15" (ID) Augers WEATHER: Und Cold, Winds, Cloudy DATE DRILLED: 5 April 1995 SURFACE ELEVATION: 775.7		1 1 1 1 1	SAMITING METHOD: California Style Spin Spoon Sampler DEPTH DRILLED: 7.0' BLS DEPTH TO WATER: No Water Encountered DATE MEASURED: Not Applicable TOC ELEVATION: Not Applicable PAGE 0 P 9
							FIELD SC	SCREENING			DEPTH	E.	DESCRIPTION
SANPLE DEPTH	BLOW	WC NTS		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LAB SAMPLE INTERVAL	P10 (ppm)	ATHA (ppm)			ASTM Soll Classification Codes	FROM	19	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR
0.5-2.0	<u>ي</u> ق	5	500 3	90	INT (4.2	6.1			SW	0.5	2.0	
													slightly cuterious and moist.
		-											
	<u> </u>												
							,						
		-	-	 									
		 											
OPTECH	CL		-	NOTE	NOTES: Ven shallow	shr	<u> [</u>	1:05	soil houzen.	ļ	Bedruck		enceuntered At 2.0' BCS.
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	0, Sui 78229	te 23 9-425		Asph	Asphalt from surface to 0.5 BCS	- N	ny,	£ 0.	5 'BC.	ς,			

: : : farmer ferwell foretien **** ***** **** * **** * The Press of the Control fiat on Brighdare TEGEND Partitor gr the major of the Section of the major of the section of the sectio AATIONAL GRAND ARD STATION Sky Line Drive c : Ξ. /; :: 7.0 ., Miles in the contract of : ----US 49 41 along 11 Trib Cirk : • • • - 6 E You all * L ... > District 5 - PREPERSONN TANK CARACITY (
INCLUDING A CALLONS) Constitution ANILL SAME Puilding CD1

OPTECE STATES Optech SITE OPERATIONS Field Health and Safety Audit Checklist (Concluded)

Operational Technologies Corporation

Operational Technologies Corporation

OpTech SITE OPENATIONS Field Health and Safety Audit Checklist

September 1 1992

DAILY FIELD REPORT

WORCESTER AIR NATIONAL GUARD STATION SI Addendum Field Work DAHA90-93-D-0005/0039

Earl Parker, OpTech Site Manager

Bill Lodder, ANGRC/CEVR Project Manager

Date 04/03/95

TO:

FROM:

Page _ of _

Site Telephone Num OpTech Field Team :	ber: Worcester AN Earl Parker Jon Williams Joe Byrd Destry Greenway	NGS - (508) 799-6963 ext 5529, POC - Pete McGinnis. Site Manager Health and Safety Monitor Field GC Operator Field Technician	
Work Completed:_	Arrived At V	Worcester ANGS. Met with Mr. Pete	
McGinnis. Word	ester ANGS POC	Sr John Richaldson, ENU Coold of Barrie Alder	
Some Send Mass	grants. No fo	formal interioring was requested there are Mr.	
M'Ginnis was br	refed to reprosen	int Warrents LNGS. Borney locations were	
		E rouses of utility diagrams by station	
		s were indued slightly due to obstructions	
		s on hard And drilling / SAmpling will begin tom	oraw
Deviations from th	e Work Plan:	NoNE - Some boring lorations were includ	
slightly due to	obstructions Al	at the site. The former dre well location	
		west of the location deficted in the work	
• •		bank the driwell (All except 01-01684 and	
`		sordinally.	
Site Visitors:	·	may visit tomorrow	

DAILY FIELD REPORT

WORCESTER AIR NATIONAL GUARD STATION SI Addendum Field Work DAHA90-93-D-0005/0039

Date 4 14 195	• —		Page of
TO:	Bill Lodder, AN	IGRC/CEVR Project Manag	er
FROM:	Earl Parker, Op	Tech Site Manager	
Site Telephone Num OpTech Field Team :	lber: Worcester ANG Earl Parker Jon Williams Joe Byrd Destry Greenway	GS - (508) 799-6963 ext 5529, POC - Site Manager Health and Safety Monitor Field GC Operator Field Technician	Pete McGinnis.
	BEGAN drilling	and soil sanding at the A	
Collected SAMates	for 01-01/2 2H	<u> ११-वार इस अर-वार्ड इस वा-वटव इ</u>	it and
01-021 BH. Sh	ould be able is	complete soil sampling tou	MONYOU
		indicated no BTEX in excess	
PID readings wen	a also minor. Bo	in. 01-01684 did have a person	oleum oclus
		About All the excitement we	
		And At 01-021 EH (bedrock At	
		colombal for analytical	,
		•	
			
Site Visitors:			

DAILY FIELD REPORT

WORCESTER AIR NATIONAL GUARD STATION SI Addendum Field Work DAHA90-93-D-0005/0039

Date 4 1 5 1.95	2		Page / of /
TO:	·	NGRC/CEVR Project M	anager
FROM:	Earl Parker, C	OpTech Site Manager	
Site Telephone Num OpTech Field Team:	ber: Worcester AN Earl Parker Jon Williams Joe Byrd Destry Greenway	IGS - (508) 799-6963 ext 5529, Site Manager Health and Safety Monitor Field GC Operator Field Technician	POC - Pete McGinnis.
Work Completed:_	Completed de	rilling, And Sampling A	of Whoser ANGS.
Collected sample	es from 01-0	1984, 01-0228H, 01-02	384 And 01-024811.
		of the bestock at the	
culy one so	sil sample we	as obtained for analy	heal Analysis
		al 01-02425. Field scre	
PID and field	GC indicated	no BTEX in exuss of	100 ppb. Will
		nobilization / clean-up ton	
Deviations from th	ne Work Plan:	Only one soil sample	from 3 borings
were obtained	for analytic	21 Analysis As outline	d About.
·	•		
Site Visitors:			
NONE			

DAILY FIELD REPORT

WORCESTER AIR NATIONAL GUARD STATION SI Addendum Field Work DAHA90-93-D-0005/0039

Date 4 1 6 1 9	<u>5</u>				Pag	ge <u> </u> of <u> </u>
TO:	Bill Lodder, ANGRC/CEVR Project Manager Earl Parker, OpTech Site Manager					
FROM:						
Site Telephone Num	ıber: Worcester	: ANGS - (508)	799-6963 e	xt 5529,]	POC - Pe	te McGinnis.
OpTech Field Team :	Earl Parker Jon Williams Joe Byrd		ager nd Safety Mor Operator	nitor		
	Destry Greenway		-			
Work Completed:_	Conducted	outbrie fing	with	Stat	ion Co	mmanclor
to brief him	n on 51	Activitie: c	conductd	AND	field =	(reo win a
results. Wal		_				
Oversaw fin						
and clean-u	p Activiti	PE. DE	PARTED	Work	ester	ANGS
uzon compl	ation of	Addandum S	1 Activit	ies.		
Deviations from th	e Work Plan:	NONE				
	-					
Site Visitors:						
NONE						

OPERATIONAL TECHNOLOGIES CORPORATION

DEVIATION FROM WORK PLAN DURING FIELD WORK at the

Worcester Air National Guard Station DAHA90-93-D-0005/0039

Originator/Date: Earl E. Parker II, Site Manag	ger, (Date): 5 April 1995
Work Plan Topic: Two soil sample	
boring location.	
Deviation in Field Work: Only one	soil sample was collected
from five soil bornes. 01-02	084 01-071BA, 01-022BA,
01-023 BH and 01-024 CH had	one soil sample collected And
01-053 RH 971 01-054 F1 100	
submitted for analytical analys	· · · <u>· · · · · · · · · · · · · · · · </u>
Reason for Deviation: Depth of 50	il was insufficient to collect
two soil samples. One sample	respectful the surface and
100 2011 SHWD143: CINE SHWD16	1920 2000
too of the bedrock sample.	
	•
	•
ANGRC/CEVR Project Manager Approval:	
-	Bill Lodder ANGRC Project Manager

WORCESTER AIR NATIONAL GUARD STATION SI ADDENDUM FIELD WORK DAHA90-93-D-0005/0039 OpTech # 1315-199

Calibration Log Photoionization Detector

Date/Time	Equipment Serial Number	Calibration Standard	Cal Gas Lot Number	Calibrated by:
	AFDD 202	181	40111	
4/4/958:05	86-61-0	25 % LEL		Joa Williams
4/5/958:40	AF00 202	Isobutyland 160 ppm	4011	Jon Willham
		,,		
	•			

WORCESTER ANGS ADDENDUM SITE INVESTIGATION Sampling Plan

Collected	Sample
29 4/4 09xc	01-016BH INT 1
ED YM 1030	01-016BH INT 2
ef 4/4 0955	01-016BH DUPLICATE
EP 4/4 1120	01-017BH INT 1
4 4/4 1150	01-017BH INT 2
E) 4/1/25	01-017BH MS
4 4/4 1135	01-017BH MSD
274/4 1310	01-018BH INT 1
E14/4 1345	01-018BH INT 2
B 4/5/95 1045	01-019BH INT 1
EP 1/5/95 1100	01-019BH INT 2
QP 4/4 140T	01-020BH INT 1
NONE	01-020BH INT 2
E2 4/4 1430	01-021BH INT 1
NONE	01-021BH INT 2
9/1/5/9 1015	01-92-BH DUPLICATE
\$ 4/5/95 1000	01-022BH INT 1
KONE	01-022BH INT 2
32 /s/ CAYO	01-023BH INT 1
Vere	01-023BH INT 2
Work 1/25	01-024BH INT 1
NUNE	01-024BH INT 2

Operational Technologies Corporation

OpTech SITE SPECIFIC HEALTH AND SAFETY PLANS Site Health and Safety Briefings Form

Job Name: Worcester N. G. Buse Project No. 1315-199
Date: 4-4-95 Start Time: 8:10 Completed: 8:27 1,1m
Date: 4-4-95 Start Time: 8:10 Completed: 8:27 1,m Site Location: IRP- 5:4e # / Warrenter National Guard Base
Type of Work (General): Bore Hole Sampling
SITE SAFETY ISSUES
<u> </u>
Tasks (This Shift/Day): Bone Hole, 9 Split Par Saugling
Protective Equipment/Clothing: Fred To and Shoes, Gloras, Hand blets,
Wann Clothing & I charge Visto - Rose of and of
Chemical Hazards: /Waste O: 11 (+ ONA's), cryanic sulvents xylene PD-650, 51'-4
JP-5 diesel Pyrene land chloricaled solvents, gasolina #2 Feel Oil + H
Physical Hazards: Physical Hazards: 12 th the transfer of the
Control Methods: 8PF (So feto elecses/Soft to book withile along Hund of)
Special Equipment/Techniques: 1) ove Hole (Drilling Tracedures & Loogian)
Cilibration of dir monitoring againment, Arage- Tube Use
Nearest Telephone:
Hospital Name/Address:
Expected Weather: 35 7550 F with Light Race & Possible Thanker Some
/
Special Topics (Incidents, actions taken, etc.): Emergency, Contigery flows,
Fire Geruntions,
=======================================
<u>ATTENDEES</u>
PEINT NAME SIEVATURE
Pete Dewsken / www.
Brian Milliand Bui Mell
Joe Williams Gon William
Destry breenway Derty Breen
Ju typed Ja
FARL E PARKER II Fail Edding
<u> </u>

Operational Technologies Corporation

OpTech SITE SPECIFIC HEALTH AND SAFETY PLANS Site Health and Safety Briefings Form

Job Name: Worge See W. C. Base Project No 13/5-197
Date: 4-5-75 Start Time: 8:25 Completed: 8:35
Site Location: 4 APF(/ Worrestan Nice Base
Type of Work (Général): Boxe Hole Sampling
SITE SAFETY ISSUES
Tasks (This Shift/Day): Bare Hole Sumpling (Split Spann
Brokenius Surian and Charling Co. 1 7 1 Cl
Protective Equipment/Clothing: Steel Toel Shoes Gloves Hard Hetry
Warm Clothing Safety Vest and respirators (it reeded)
TP-4 JP-5 diesel syrene lead charinated solvents their Fuch
Control Methods: PPE (se fely/glasses, hard holes etc.) Air Monitorine
using PIO, LEL meter, and Drigon Type (bornes) & Good Work Practices
Special Equipment/Techniques: Bore Hald Spoit Snoon Sompler, Calibrate
monitoring equip + frequency of air sampling.
Nearest Telephone: Le handquartes of Not. Gund Office
Hospital Name/Address: University of Mass, Hospital on Flowfatton St. off Bolant St.
Expected Weather: 15 to 20° Lb + 25° to 30° K/bh with hinds
Special Topics (Incidents, actions taken, etc.): Special Cold Weather measures,
ATTENDEES
PRINT NAME SIGNATURE
Ju Burd, JR Burde
Tete Dewsham
Brian Milli
Je Williams Con William
Distry Godoway
Engl Parter
Land Change

SAFETY PLAN COMPLIANCE AGREEMENT

I have received a copy of the Health and Safety Plan for the Project. I have reviewed the plan,

understand it, and agree to comi	ply with all of its provisions.	I understand that I could be
prohibited from working on the p	roject for violating any of the h	ealth and safery requirements
specified in the plan.		•
Pete Dewsman	/ <u></u>	4-5-945
Name	Signature	Date
Brian Millians Name	Signature	<u>4-4-4+5</u> Date
Destry Greenway Name	Dosty Dreamy Signature	4-4- 95 Date
Name	Signature O	24-4-95 Date
EARL E PARKER Name	Zal Etento	4-4-95
Name	Signature	Date
Name -	Signature	Date
Name .	Signature	Date
Name	Signature	Date
Name	Signature	Date

APPENDIX D

INVESTIGATION DERIVED WASTES DISPOSITION

THIS PAGE INTENTIONALLY LEFT BLANK

Worcester Air National Guard Station SI ADDENDUM FIELD WORK DAHA90-93-D-0005/0039 OpTech # 1315-199

INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Non-Potable Water / Soil Cuttings)	Date Collected	% Full
	SOIL CUTTINGS	4,5 Ape 95	
2	WATER (DECON Water only)	4,5 Apr 95	60 %

Location of Drums: Adjacent	to Northwest	corner of Bldg	<i>0</i> 07.
			Earl Parker I
Date Moved to Final Location:	4/0/13	inspected by:_	Caa

Site Manager : Earl E. Parker Π

THIS PAGE INTENTIONALLY LEFT BLANK

Recommended Disposition of Inspection Derived Wastes 101st ACS, Worcester ANGS, Worcester Massachusetts

Drum Number/ Material	Origin	Recommended Disposition	Rationale
1/Soil	01-016BH, 01-017BH, 01-018BH, 01-019BH, 01-020BH, and 01-021BH	Dispose as a hazardous waste.	Soil analysis results indicated SVOCs, TPH, arsenic and beryllium exceeded Massachusetts Reportable Concentrations.
2/Water	Decontamination Wastewater	Obtain approval from Worcester County sewer service for disposal through oil/water separator at Worcester ANGS.	Analytes washed from sampling equipment are significantly diluted by the total volume of decontamination water.

Site Inspection Derived Waste Drum Containing Cuttings from Boreholes 01-016BH, 01-017BH, 01-018BH, 01-019BH, 01-020BH, and 01-021BH. 101st ACS, Worcester ANGS, Worcester, Massachusetts

, and the second			
Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration	
SVOCs			
Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	4,500 μg/kg 5,600 μg/kg 4,200 μg/kg 3,000 μg/kg 3,900 μg/kg	700 μg/kg 700 μg/kg 700 μg/kg 700 μg/kg 700 μg/kg	
ТРН	6,300 mg/kg	2,500 mg/kg	
Metals Arsenic Beryllium	59.4 mg/kg 0.88 mg/kg	30 mg/kg 0.8 mg/kg	

μg/kg - micrograms per kilogram.

mg/kg - milligrams per kilogram.

SVOCs - Semivolatile organic compounds.

TPH - Total petroleum hydrocarbons.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

ANALYTICAL RESULTS, DATA VALIDATION,
QUALITY ASSURANCE/QUALITY CONTROL, AND
CHAIN-OF-CUSTODY FORMS

THIS PAGE INTENTIONALLY LEFT BLANK

TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT

April 26, 1995

Operational Technologies Corp. 4100 N. West Loop 410, Suite 230 San Antonio, TX 78229

ATTN: Earl Parker

Nytest is pleased to submit our Project No. _ ___ on your sample(s) received: 4/04,05Login No 23490,23505

Test sample(s) associated with this project will be retained for a period of thirty (30) days, unless otherwise instructed.

My staff is available to answer any questions concerning our report and we look forward to serving your future analytical needs.

Very truly yours, Nytest, Environmental Inc.

Remo/Gigante

Executive Vice President

Encl:

2 bound reports

Shipped Via:

Fedex

TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT

9521649

Log in No.: 23490, 23505

P.O. No. :

Pending

:April 26, 1995

ANALYTICAL DATA REPORT PACKAGE FOR

Operational Technologies Corp.

4100 N. West Loop 410, Suite 230

San Antonio, TX 78229

ATTN:

Earl Parker

REF: Worcester-ANGS, Proj. #1315-199

LABORATORY

NUMBER

SAMPLE

IDENTIFICATION

TYPE OF

SAMPLE

SEE NEXT PAGE

WE CERTIFY THAT THIS REPORT IS A TRUE REPORT OF RESULTS OBTAINED FROM OUR TESTS OF THIS MATERIAL.

NYS Lab ID. #10195 NJ Cert. #73469

mar

RESPECTFULLY SUBMITTED, EST ENVIRONMENTAL INC.

PRESIDENT

Report on sar ple(s) furnished by client applies to sample(s). Repoin sample(s) obtained by us applies only to lot sampled information contained here it is not to be used for reproduction except by special processing mission. Sample(s) will be retained for thirty days maximum after date of report unless specifically requested otherwise by client. In the event that there are portions or parts of sample(s) remaining after Nytest has completed the required tests, Nytest shall have the option of returning such sample(s) to the client at the client's expense

NYTEST ENVIRONMENTAL Inc.

LABORATORY NUMBER	SAMPLE IDENTIFICATION	SAMPLE
2349001 2345002 2349003 2349004 2349005 2349006 2349007 2349008 2349009 2349010 2349011 2349012 2349013 2349014 2349015	1-16-1 1-16-D 1-16-2 1-17-1 1-17-1MS 1-17-2 1-18-1 1-18-2 1-20-1 1-21-1 FLDBK1 EQPBK1 TRIP-1 TRIP-2	Soil Soil Soil Soil Soil Soil Soil Water Water Water

: A.N

5.

100

NYTEST ENVIRONMENTAL Inc.

ार् ु

Kilk kikas

Kil-stelling

LABORATORY	SAMPLE	TYPE OF
NUMBER	IDENTIFICATION	SAMPLE
2350501 2350502 2350503 2350504 2350505 2350506 2350507 2350508 2350509 2350510	1-23-1 7 1-22-1 1-22-1D 1-19-1 1-19-2 1-24-1 EQPBK2 FLDBK2 TRIP-3 TRIP-4	Soil Soil Soil Soil Soil Water Water Water Water

Table of Contents

Log in No.: 23490, 23505

	Page
I. Sample Analysis Request Form	n a
II. Chain of Custody	1 - 3
III. Laboratory Deliverable Checklist	4
IV. GC/MS Analysis Conformance/Non-Conformance Summary Format	5
V. Laboratory Chronicle	6
VI. Hon-Conformance Summary (Case Harrative)	7 - 10
VII. Methodology Summary	11 - 15
VIII. Data Reporting Comment Page	16 - 17
IX. Volatile Data	1 - 86
X. Semivolatile Data	1 - 94
XI. PCB Data	1 - 89
XII. Metala Data	1 - 26
XIII. Water Chemistry Data	1 - 5

3

Inth this shipsman 4196169854 23470 Date Shipped: 414/15 TRIP BRANK # FED - EX Comments Port Washington N.Y. 11050 Listed on Coc ice chast Maki Nytest Environmental Inc. Attn.: Sample Control page#: 60 Scaview Blvd Lab Use Only NEI QT #: Air Bill #: Cooler #: C of C #: ctler Login#: SDG#: Carrier: Ship to: Sample Res's in Good Condition? Chain of Custody Record Sample Temperatur COMMENTS: INSPECTED BY Custody Scala: Bin#'s In/Out (For Lab Use Only) Analysis Requested HOTHINE 1191 Date / Ilme Date / Time Varios 8 7 اخ H286719614 /# NOC "INCY ILLIPED EXPRESS MI NET No. of Containers 2 7 CI-OITBH INT I MS/MSD AS PER CONTRAKT Deliverables AS PER CONTRAKT OI-OIGBH INTI DUP 4/4/93 H30 O1- 0218H Int Sow And Contract 01 - 018 BH Int 2 Cerperation 01-0208H Int 1/4/45 0410 01-016 BH INF 1 01-018BH IN1 1 Received by. 8000-121-0008 OI-OIT BH INt Print Name A118 8.11 Location Sample Received by Lab Sult 230 H8 [10-10 Received by Print Name 101-016811 Print Name nytest environment 78229 FAX: (516) 625-1274 1610 Technologies Date / Ilme Date / Ilme Date / Ilme 1345 1030 0711 414193 1405 D 4/4/95 0955 015 FAX 195 1133 1310 0511 35/11/1 Thre Serpled 47143 ANGS 4/4Ps 1199 156/11/11 0000-126 (012) PARKER Semples Both 4100 NW LOUP PARKER PS PS Antonio (516) 625-5500 1315-199 Ħ d Operational Wor cester AMALYSIS VARLER Maximum of 6 Characters) SPR1 CVArd و و SAM EAR! Special Instructions ___ ļ ı 2 A Herrs EARL Analytical Protocol Project Manager Project Number (Lab lise Only) Project Name Relinquished by Relinquished by Relinquished by Client Name Sampled By Print Name Print Nume Print Nume Address 000001 P.O. #

7

MINES]

5.00

TANK!

Transfer I

Control of

Marris 4

IOIAI ANAIYIKAI SERNCES FOR A SAFE ENVRONMENĪ

4196169854 Date Shipped: 4/4195 Comments 23490 Port Washington N.Y. 11050 FED GX MORI Nytest Environmental Inc. Atin.: Sample Control 60 Seaview Blvd Lab Use Only NEI QT #: Air Bill #: Cooler #: C of C #: SDG#: Carrier. Sample Best in Great Condition? Chain of Custody Record Sample Temperaturg INSPECTED BY COMMENTS: In / Out (For Lab Use Only) Analysis Requested Zwoll of P60 610 Date / Inne Tlm• 2829 1.814 4 419616 9854 OLZBMS - JONS ھ 101/100 NEI OH28MS-JON EXPross No. of Containers ∞ ∞ Tris Blant # 2 (other in ch) 1 CITENT RETAINS VELLOW COFY ONLY Deliverables As per Con Las CENERAL Received by Laboratory Edulament Blank H Print Nume 3116 And Conbac 8000-181(012) Trip Blank # Field Blank " 1 Sample Location Curpora han Received by Received by Print Num of the on the sale 30 FAX: (516) 625-1274 1610 Date / Ime Date / Ime Date / Ime SOE 78229 Technologies 1530 (Spo FAX Turz Sanplod 25 est enviror 4/4/5 14/4/68 35/1-/-14/195 Sampled Special Instructions: Hyalysic 18 100 (516) 625-5500 As pri Contract (210) 731-0000 Jan Park SAM AMPOILE Enrl Parker Openahunal Ħ ı · HS wigh 1315-199 (Maximum of 6 Characters) PARKIR 8 3 ۵ 14401 3 \propto Line? Analytical Protocol Print Nume: 721 Project Manager Project Number (Lab Use Only) Relinquished by Relinquished by Relinquished by. Project Name Sampled By Client Name Print Name Print Name 000002 Address P.O. #

Air Bill #: 47642323 Date Shipped: 4/5/95 13505 Ice (host " Rusk Comments Port Washington N.Y. 11050 Ice (host # 021 Nytest Environmental Inc. WOK Attn.: Sample Control 60 Seaview Blvd Ice Chast Tie Chail = NEI QT # Carrier: Cooler #: C of C # SDG#: Login# Sample Rec's in Good Condition? Chain of Custody Record Sample Temperature: 2 INSPECTED BY COMMENTS Custody Seals: In / Out (For Lab Use Only) Anafysis Requested 1 (230) 610 Date / Ime 1,814 - 49T SX) my Control with DET his Woork 476402323 ONZEMS - DOM EXPRESS No. of Containers 2 ∞ CY- CZZ BH Int I Duplich * Received by FEIXER,94 Deliverables As pr. Constact COAPURATION 2 Print Name AIRBILL EGUIPHENT BLANK # 01-019BH Int 2 8000-121/012) C1-0216H Int 1 01-6228H Int FIELD BRANK # 2 Rink # 4 TRIP BLANK # 3 Location ci-c1584 In1 Sample Received by Received by Print Name C1-C236H Print Name FAX: (516) 625-1274 4100 NW LCOP 41C, SwITE 230 TEC HNOL. C 6-15 5 TRIP 115 1610 Date / Time Date / Ilme Date / Ilme 27170 1100 1125 FAX 000/ 1015 1045 132c 4/5/15 135C ANGS 1/5/45 15/95 4/5/55 1/5/15 115/95 Se para 0000-18L (012) EARL PARKER A: per Chiston SAN ANTURIO OPERATION AL WURLESTER 1315-199 (Maximum of 6 Characters) Sample 1D 121/1 Specjal Instructions: ///// LAil Aualytical Protocol Project Manager Project Number 0 90 S o O G (Lab Use Only) Project Name 30 6 Relinquished by r Client Nance Sampled By Relinquished by Relinquished by Print Name Print Name Print Nurse Address Phone 000003

page#:

....

State of

では

Laction

4.00

1

7

IOIAI ANALYTICAL SERVICES FOR A SAFE ENVIRONM

nytest environment

Laboratory Deliverable Check List

Check if Complete

I.	Cover Page, Format, and Laboratory Certification (Include Cross Reference Table of Field I.D. # and Laboratory I.D. #)	
II.	Chain of Custody	-10-
III.	Summary Sheets Listing Analytical Results Including QA Data Information	NH
IV.	Laboratory Chronicle and Methodology Summary including Sampling Holding Time Check	
	Initial Calibration and Continuing Calibration (Time & Date Summary)	
VI.	Tune Summary (MS)	
VII.	Blanks (Method, Field, Trip)	
VIII.	Surrogate Recovery Summary	
ıx.	Chromatographs Labeled / Compound Identification	
х.	Non-conformance Summary 403	1/17
- 1	Laboratony Manager	/ DETE

	No Yes
	a. BFB passed b. DFTPP passed
	GC/MS Tuning Frequency - Performed every 12 hours
3.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis
4.	a. Calibration Check Compounds b. System Performance Check Compounds
5.	Blank Contamination - List compounds for each fraction
	a. VOA Fraction Methylane Chlaride b. B/H Fraction c. Acid Fraction
6.	Surrogate Recoveries Meet Criteria (If not met; list those compounds and their recoveries which fall outside the acceptable range)
	b. B/N Fraction F6P(40,25) TPH(147,152) c. Acid Fraction PHL(6) 7FP(6) 2CP(13)
7.	Extraction Holding Time Mat
	Commuts:
٤.	Amelysis Holding Time Ket
	Coments:
	Additional Coments:
	@ 30 days utilized for in-house purposes.
	The Method does not dictate the frequency of initial calibration providing ccc and spec calibration
ŢJ	Shoratory Managar Data: 5/1/9/9
	000005

(Alternation)

Little Line

4.665.4

Client Name: Operational Technologies Corporation

Data Received: 04/05/95, 04/06/95 Sample ID: As per chains of custody Log In No.: 23490 23505

Organics Extraction:		
******************	1. Acids04/05/95, 04/06/95, 04/07/95	
	2. Base/Neutrals	
	3. Pesticides/PCBs	
	4. Dioxin	
Analysis:	04/05/95, 04/06/95, 04/07/95	
	1. Volatiles 04/06/95, 04/12/95, 04/13/95	
	2. Acids	
	3. Base/Neutrals	
	4. Pesticides/PCBs	
	5. Dioxin	
	Section Supervisor	
	Review & Approval	
Inorganics:	Analysis - 04/13/95, 04/14/95, 04/17/95, 04/18/95, 04/20/95, 04	i/24/95
*****	1. Metals	
•	Mercury Digestion & Analysis - 04/12/95, 04/17/95	
	TPHC - 04/07/95, 04/11/95	
Other Analysis:	TPHC - U4/U//93, U4/II/93	
	1	
	N ¹	
	Section Supervisor	
	Review & Approval	
	Quality Control Supervisor	

If fractions are re-extracted and re-analyzed include dates for both.

Review & Approval_

NARRATIVE DISCUSSION VOLATILES - 23490, 23505

SDG NO. WOR1

INTRODUCTION

This narrative covers the analysis of twenty three (23) samples in accordance with protocols based on SW-846 Method 8240.

HOLDING TIMES

The analytical holding time for this analysis was met.

CALIBRATIONS

All required minimum RRFs and maximum %RSD initial calibration requirements have been met in accordance with the method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the method.

METHOD BLANKS

The method blanks associated with these samples met all method requirements.

SURROGATES

All surrogate recoveries met QC criteria.

MATRIX SPIKES

Sample 1-17-1 was utilized in the MS/MSD series. All spike recoveries and RPD values fell within the advisory QC limits.

INTERNAL STANDARDS

Although internal standard area response/retention time summaries are not required, all samples yielded area responses and retention times which fell within an acceptable range.

SAMPLE COMMENTS

The concentration of Xylenes exceeded the highest calibration standard in sample 1-16-2. Reanalysis was performed at a dilution. Both sets of data are included. The concentration of this compound should be taken from the diluted analysis.

No other analytical problems were encountered.

NARRATIVE DISCUSSION SEMIVOLATILES - 23490, 23505

SDG NO. WOR1

INTRODUCTION

This narrative covers the analysis of four (4) aqueous samples and fifteen (15) soil samples in accordance with protocols based on SW-846 Method 8270.

HOLDING TIMES

The extraction and analytical holding times for this analysis were met.

CALIBRATIONS

Required minimum RRFs and maximum %RSD initial calibration requirements have been met in accordance with the method.

Required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the method.

METHOD BLANKS

The method blanks associated with these samples met all method requirements.

SURROGATES

Samples met surrogate QC criteria, with the exception of EQPBK1 which showed low recoveries. Reextraction is being performed and results will follow under a separate cover.

MATRIX SPIKES

Sample 1-17-1 was utilized in the low soil MS/MSD series. Nineteen (19) of twenty two (22) spike recoveries and eight (8) of eleven (11) RPD values fell within advisory QC limits.

Note, the MSD showed inconsistent results from the unspiked sample and the MS. Due to sample extract viscosity, the MSD was concentrated to a 10ml final volume. Analysis, of the MSD, showed high concentrations of target and non-target analytes which were not present in the unspiked and matrix spike analyses.

INTERNAL STANDARDS

Although internal standard area response/retention time summaries are not required, all area responses and retention times fell within an acceptable range.

SAMPLE COMMENTS

Due to the viscous nature of the sample extracts, 1-16-2, 1-18-1 and 1-18-2 were concentrated to 10ml final volumes.

Due to sample extract viscosity, 1-18-2, 1-22-1D, 1-19-1 and 1-19-2 required (additional) dilutions for analysis.

Although no target analytes were detected in sample 1-18-2, a more concentrated analysis could not be performed.

No other analytical problems were encountered.

NARRATIVE DISCUSSION PCBs - 23490, 23505

Surrogates

The recovery of TCX was slightly below the advisory QC limits for sample 1-17-2 and 1-20-1 (57% and 55% respectively). All other recoveries met QC criteria.

Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Sample 1-17-1 was utilized for the MS/MSD. All spike recoveries and RPD values were within QC limits.

Method Blanks

No target compounds were detected in the method blanks.

Calibrations

The initial and continuing calibrations passed QC criteria.

Samples

All samples were analyzed as per SW-846 Method 8080. No further analytical problems were encountered.

c:\wp51\cns\ac

AQUEOUS METHODOLOGIES:	REF 1	REF 2	REF 3	REF 5
DNA Posticidos (DCD) a Dubrostica				
BNA, Pesticides/PCB's Extraction AA/ICP Sample Preparation	200 7	3510/3520		
Furnace Sample Preparation	200.7			
Mercury Sample Preparation	200.0			
Hexavalent Chromium Sample Preparation	245. ₁ 218.5			
Clean-Up	210.3	3630/3630/3630/		
Crean-up		3610/3620/3630/ 3640/3660		
Organochlorine Pesticide and PCB's				
by Gas Chromatography			608	505
Herbicides by Gas Chromatography			362	515.1
Purgeable Organics by GC/MS			624	524.2
Base/Neutral, Acids by GC/MS			625	525
2,3,7,8-TCDD by GC/MS			613/625	
BTEX			602	502.2
EDB/DBCP by Microextraction				504.1
BNA, Pesticides/PCB's Extraction AA/ICP Sample Preparation Furnace Sample Preparation Mercury Sample Preparation Clean-Up		3550 3050 3020/3030/3050 7471 3610/3620/3630/ 3640/3660		
GC, Gas Chromatography/Mass Spectrometry	·:			
Purgeable Organics		8240/8021		
Base/Neutral and Acid Extractables		8270		
Organophosphomis Pesticides		8140		
Organochlorine Pesticide and PCB's				
by Gas Chromatography		8080		
BTEX		8020		
Halogenated Purgeable Organics		8010		

INDUCTIVELY COUPLED PLASMA (ICP):	REFERENCE 1	REFERENCE 2
		-
Aluminum	200.7	6010
Antimony	200.7	6010
Barium -	200.7	6010
Beryllium	200.7	6010
Cadmium	200.7	6010
Calcium	200.7	6010
Chromium	200.7	6010
Cobalt ·	200.7	6010
Copper	200.7	6010
iron	200.7	6010
.ead	200.7	6010
Magnesium Company Comp	200.7	6010
langanese	200.7	6010
olybdenum	200.7	6010
lickel	200.7	6010
Potassium	200.7	6010
ilver	200.7	6010
odium	200.7	6010
in	200.7	6010
itanium	200.7	6010
anadium	200.7	6010
inc	200.7	6010
URNACE AA:		
ntimony	204.1	7041
rsenic	206.2	7060
ead .	239.2	7421
elenium	270.2	7740
'hallium	279.2	7841
in	282.2	
anadium	286.2	7911
ercury	245.1	7470/7471
CAP:		
		
Priority Pollutants	200.7	6010/7060/ 7470/7740
CAL Metals	200.7	6010/7060/
AL RECAIR	200.7	7470/7749
OCDA Vetale	200.7	6010/7060
RCRA Metals	. 200.7	7470/774

ADDITIONAL INORGANIC PARAMETERS:	REFERENCE 1	REFERENCE 2
Biochemical Oxygen Demand	405.1	
Bromide	320.1	
Color	110.2	
Conductance	120.1	
Conductance		9050
Odor	140.1	3030
pB	150.1	
₽₽	23312	9045/9040/9041
TDS	160.1	3010,3011
TSS	160.2	
TS	160.3	
Hardness :	130.1	
Temperature	170.1	
Turbidity	180.1	
Acidity	305.1	
Alkalinity	310.1	
Ammonia	350.2/350.3	
Chloride	325.3	
Chloride	323.3	9252
Residual Chlorine	330.2	7432
COD	410.3/410.4	
Cyanide (Total & Amenable)	335.3/335.1	9010/9012
Oil & Grease	413.1/413.2	3020/3022
Oil & Grease	-,	9070/9071
Fluoride	340.2	
TKN	351.2	
NO2/NO3	353.2	9200
D.O	360.2	
Petroleum Hydrocarbons (Reference 4)	418.1	9066
Phenol	420.2	
Phosphorus	365.1	
Settleable Solids	160.5	
Silica	370.1	
Sulfate	375.2/375.4	9038
Sulfide	376.1	9030
Surfactants	425.1	
TOC		
	415.1	9060
TOX	415.1	9060 9020
TOX MISCELLANEOUS ANALYSIS:	415.1	
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity	415.1	9020
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability	415.1	9020 1310
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability Corrosivity	415.1	9020 1310 1010
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability Corrosivity Reactivity	415.1	9020 1310 1010 1110
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability Corrosivity Reactivity Paint Filter Liquid Test	415.1	9020 1310 1010 1110 Chapter 8.3
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability Corrosivity Reactivity Paint Filter Liquid Test Toxicity Characteristic Leaching	415.1	9020 1310 1010 1110
MISCELLANEOUS ANALYSIS: Extraction Procedure Toxicity Ignitability Corrosivity Reactivity Paint Filter Liquid Test	415.1	9020 1310 1010 1110 Chapter 8.3

	REFERENCE 6	5
		-
Total Coliform	909A	
Fecal Coliform	9096	
Fecal Streptococcus Coliform	910B	
Standard Plate Count	907	
Hexavalent Chromium	3128	
Carbonaceous BOD	507	

REFERENCES:

- (1) USEPA-600/4-79-020, Methods for Chemical Analysis of Water and Waste
- (2) USEPA SW 846, Test Methods for Evaluating Solid Waste, Third Edition
- (3) Federal Register 40 CFR Part 136, Vol.49, No.209 Test Parameters for the Analysis of Pollutants
- (4) Federal Register Vol.51, No.216 Friday, 11/7/86, pp.40643-40652
- (5) Method for the Determination of Organic Compounds in Drinking Water, EPA 500/4-88/039, Dec. 1988
 - (6) Standard Method for Examination of Water and Wastewater, 15 Edition 1980

nytest environmental...

Method Qualifiers for Organic Non-CLP Methodologies

Q Qualifier - Specified entries and their meanings as follows:

- Indicates compound was analyzed for but was not detected. The sample quantitation limit is corrected for dilutions and for the moisture content for soil samples. If a sample extract can not be concentrated to the protocol specific volume, this fact is also accounted for in reporting the sample quantitation limit. The number is the minimum detected limits for the sample.
- J Indicates an estimated volume. The flag is used either when estimating concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- B This flag is used when the analyte is found in the analyte is found in the associated blank as well as the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag is used for a TIC as well as for a positively identified target compound.
- This flag identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- This flag indicates that a TIC is a suspected aldol condensation product.

nytest environmental...

Method Qualifiers for Inorqunics

- C (Concentration) qualifier -- Enter "B" if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" must be entered.
- * Q qualifier -- Specified entries and their meanings are as follows:
 - E The reported value is estimated because of the presence of interference.
 - M Duplicate precision not met (CV > 20%).
 - N Spiked sample recovery not within control limits.
 - S The reported value was determined by Method of Standard Addition (MSA).
 - W Post-digestion spike for Furnace AA analysis is out of control limits (85 115%), while sample absorbance is less than 50% of spike absorbance.
 - * Duplicate analysis not within control limits.
 - + Correlation Coefficient for the MSA is less than 0.995. Entering "S", "W" or "+" is mutually exclusive.
- * M (Method) qualifier enter:
 - "P" for ICP
 - "A" for Flame AA
 - "F" for Furnace AA
 - "CV" for Cold Vapor AA
 - "AV" for Automated Cold Vapor AA
 - "AS" for Semi-Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - "T" for Titrimetric
 - "NR" if the analyte is not required to be analyzed.

1-16-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349001

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4179.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 5 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

	(43, 2 34 43,		
74-87-3	Chloromethane	10	U
	Bromomethane	10	1
	Vinyl Chloride	10	
	Chloroethane	10	i i
	Methylene Chloride	4	!
67-64-1		7	J
	Carbon Disulfide	10	
	1,1-Dichloroethene	10	
	1,1-Dichloroethane	10	
	1,2-Dichloroethene (total)	10	
67-66-3		10	
	1,2-Dichloroethane	10	1
78-93-3		10	
	1,1,1-Trichloroethane	10	
56-23-5	Carbon Tetrachloride	10	1
	Bromodichloromethane	10	
	1,2-Dichloropropane	10	1
	cis-1,3-Dichloropropene	10	1
	Trichloroethene	10	1
	Dibromochloromethane	10	1
	1,1,2-Trichloroethane	10	
71-43-2		10	
	trans-1,3-Dichloropropene	10	t t
75-25-2		10	l l
	4-Methyl-2-Pentanone	10	
591-78-6		10	1
	Tetrachloroethene	10	
	1,1,2,2-Tetrachloroethane	10	1
108-88-3		10	1
	Chlorobenzene	10	•
	Ethylbenzene	10	1
100-42-5		10	1
	Xylene (total)	10	ı
	Vinyl Acetate	10	_
			-

Quantitation Report

Data File : C:\HPCHEM\1\DATA\0405\P4179.D Vial: 100 Acq On : 5 Apr 95 17:02 pm Operator: SC Sample : 2349001,1-16-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-5-95, : HPP Inst Multiplr: 1.00

Quant Time: Apr 5 17:30 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

Quantitation Report

Data File : C:\HPCHEM\1\DATA\0405\P4179.D Vial: 100 Acq On : 5 Apr 95 17:02 pm Operator: SC Sample : 2349001,1-16-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-5-95, Inst : HPP Multiplr: 1.00

Quant Time: Apr 5 17:30 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	402894 1839988 1364981	50.00 ug/l 0.00 50.00 ug/l 0.00 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.26 12.78 18.72	65 98 95	629768 1644255 1107067	%Recovery 50.72 ug/l 101.43% 50.23 ug/l 100.46% 48.86 ug/l 97.73%
Target Compounds 6) C030 Methylene Chloride 7) C035 Acetone	5.96 5.15	84 43	44882 24696	Qvalue 3.79 ug/l 99 6.33 ug/l 78

000004

1-16-D

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349002

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4180.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 4 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAD 110.			
74-83-9 75-01-4 75-09-2 75-09-2 75-15-0 75-35-4 75-34-3 75-34-3 67-66-3 107-06-2 78-93-3 75-27-4 78-87-5 79-01-6	Carbon Disulfide1,1-Dichloroethene1,1-Dichloroethane1,2-Dichloroethene (total)Chloroform1,2-Dichloroethane2-Butanone1,1-TrichloroethaneCarbon TetrachlorideBromodichloromethane1,2-Dichloropropanecis-1,3-DichloropropeneTrichloroetheneDibromochloromethane1,1,2-TrichloroethaneBenzenetrans-1,3-DichloropropeneBromoform4-Methyl-2-Pentanone2-HexanoneTetrachloroethene1,1,2,2-Tetrachloroethane	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ט ט ט
124-48-1 79-00-5 71-43-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 79-34-5	Dibromochloromethane1,1,2-TrichloroethaneBenzenetrans-1,3-DichloropropeneBromoform4-Methyl-2-Pentanone2-HexanoneTetrachloroethene1,1,2,2-Tetrachloroethane	10 10 10 10 10 10 10 10	ממממממממ
100-41-4 100-42-5 1330-20-7	Chlorobenzene Ethylbenzene	10 10 10 10 10	ם מ מ

Quantitation Report

Data File : C:\HPCHEM\1\DATA\0405\P4180.D Vial: 100 : 5 Apr 95 17:35 pm Operator: SC : 2349002,1-16-D, Sample Inst : HPP Misc : 1,,4,,5,5,LOW,SOIL,R4-5-95, Quant Time: Apr 5 18:03 1995 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

: VOA Standards for 5 point calibration Title

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

000006

Quantitation Report

Data File : C:\HPCHEM\1\DATA\0405\P4180.D Vial: 100 Acq On : 5 Apr 95 17:35 pm Sample : 2349002,1-16-D, Misc : 1,,4,,5,5,LOW,SOIL,R4-5-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 5 18:03 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	394488 1827096 1333098	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.00 0.00 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.25 12.77 18.72	65 98 95	608028 1616390 1067511	%F 50.01 ug/l 50.56 ug/l 48.24 ug/l	Recovery 100.02% 101.12% 96.49%
Target Compounds 6) C030 Methylene Chloride 7) C035 Acetone	5.97 5.16	84 43	41114 15217	3.54 ug/l 3.98 ug/l	Qvalue 97 78

1-16-2

SDG No.: WOR1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

Matrix: (soil/water) SOIL Lab Sample ID: 2349003

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4181.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 9 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

74-87-3-----Chloromethane 74-83-9-----Bromomethane 11 U 75-01-4-----Vinyl Chloride 11 U 75-00-3-----Chloroethane 11 U 75-09-2-----Methylene Chloride 4 JB 67-64-1-----Acetone 16 Ū 75-15-0-----Carbon Disulfide 11 75-35-4-----1,1-Dichloroethene 11 U 75-34-3-----1,1-Dichloroethane 11 U 540-59-0----1,2-Dichloroethene (total) 11 Ŭ 67-66-3-----Chloroform 11 U 107-06-2----1, 2-Dichloroethane 11 U 78-93-3----2-Butanone 11 U 71-55-6----1,1,1-Trichloroethane 11 U 56-23-5-----Carbon Tetrachloride 11 U 75-27-4-----Bromodichloromethane 11 U 78-87-5----1,2-Dichloropropane 11 U 10061-01-5----cis-1,3-Dichloropropene 11 U 79-01-6-----Trichloroethene 11 U 124-48-1-----Dibromochloromethane 11 U 79-00-5-----1,1,2-Trichloroethane 11 U 2 71-43-2----Benzene J 10061-02-6----trans-1,3-Dichloropropene 11 U 75-25-2-----Bromoform 11 U U 108-10-1-----4-Methyl-2-Pentanone 11 11 U 591-78-6----2-Hexanone 127-18-4-----Tetrachloroethene U 11 79-34-5----1,1,2,2-Tetrachloroethane 11 U 7 J 108-88-3-----Toluene 108-90-7-----Chlorobenzene 11 U 100-41-4-----Ethylbenzene 130 Ū 100-42-5-----Styrene 11 1330-20-7-----Xylene (total) 870 Ε 108-05-4------Vinyl Acetate___ 11 U

Quantitation Report

Vial: 100 Data File : C:\HPCHEM\1\DATA\0405\P4181.D Operator: SC Acq On : 5 Apr 95 18:07 pm : HPP : 2349003,1-16-2, Inst Sample Misc : 1,,9,,5,5,LOW,SOIL,R4-5-95, Quant Time: Apr 6 8:17 1995 Multiplr: 1.00

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

000009

Quantitation Report

Quant Time: Apr 6 8:17 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.88 15.97	128 114 117	364445 1609336 1066131	50.00 ug/ 50.00 ug/ 50.00 ug/	1 0.00
System Monitoring Compounds					%Recovery
13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8	9.27 12.78	65 98	580832 1405171	51.71 ug/	'l 103.42% 'l 109.92%
47) CS10 4-Bromofluorobenzene	18.74		967186	54.66 ug/	
Target Compounds					Qvalue
6) C030 Methylene Chloride	5.97	84	39639	3.70 ug/	'l 91
7) C035 Acetone	5.14	43	52498	14.87 ug/	'l 84
31) C165 Benzene	9.47	78	43920	1.71 ug/	
	12.94	91	169794	6.63 ug/	'l 98
46) C240 Ethylbenzene	16.18	106	1133612	122.04 ug/	'l 96
49) C250 M-P, Xylene	16.35	106		526.97 ug/	
50) C255 O-Xylene	17.33	106	3008177	267.83 ug/	'l 98

000010

1-16-2DL

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349003

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4199.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 9 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

74-83-9 75-01-4 75-00-3 75-09-2 67-64-1	ChloromethaneBromomethaneVinyl ChlorideChloroethaneMethylene ChlorideAcetoneCarbon Disulfide	55 55 55 55 14 55 55	U U U U U U U U U U U U U U U U U U U
75-34-3 540-59-0 67-66-3 107-06-2 78-93-3	1,1-Dichloroethene1,1-Dichloroethane1,2-Dichloroethene (total)Chloroform1,2-Dichloroethane2-Butanone1,1,1-Trichloroethane	55 55 55 55 55 55 55	ממממממ
56-23-5 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1	Carbon TetrachlorideBromodichloromethane1,2-Dichloropropanecis-1,3-DichloropropeneTrichloroetheneDibromochloromethane1,1,2-Trichloroethane	55 55 55 55 55 55 55	מממממממ
71-43-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4		55 55 55 55 55 55	מממממ
108-88-3 108-90-7 100-41-4 100-42-5 1330-20-7	Toluene Chlorobenzene Ethylbenzene	10 55 160 55 1100 55	ממטממ

Quant Time: Apr 6 14:11 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4199.D Vial: 100 Operator: SC Acq On : 6 Apr 95 13:30 pm Inst : HPP : 2349003,1-16-2DL, Sample Sample : 2349003,1-16-201, Misc : 5,,9,,1,5,LOW,SOIL,R4-3-95, Quant Time: Apr 6 14:11 1995 Multiplr: 1.00

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5		128 114 117	315880 1642655 1277850	50.00 ug/l 0.08 50.00 ug/l 0.06 50.00 ug/l 0.03
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.32 12.80 18.74	65 98 95	509630 1518805 1194078	%Recovery 56.33 ug/l 112.67% 50.45 ug/l 100.90% 57.24 ug/l 114.48%
Target Compounds 6) C030 Methylene Chloride 44) C230 Toluene 46) C240 Ethylbenzene 49) C250 M-P, Xylene 50) C255 O-Xylene	6.02 12.97 16.18 16.35 17.33	84 91 106 106	25465 53357 311831 1724585 945481	Qvalue 2.61 ug/l # 86 1.81 ug/l 99 28.60 ug/l 95 133.41 ug/l 99 73.14 ug/l 100

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-17-1

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Matrix: (soil/water) SOIL

Lab Sample ID: 2349004

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4196.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 3

Data Analyzed: 04/06/95

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	·/Kg) UG/KG	Q
	Chloromethane	10	Ü
	Bromomethane	10	U
	Vinyl Chloride	10	Ū
	Chloroethane	10	U_U
	Methylene Chloride	10	JB
67-64-1	Acetone	10	ע
75-15-0	Carbon Disulfide	10	U
	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	U
540-59-0	1,2-Dichloroethene (total)	10	U
	Chloroform	1	J
107-06-2	1,2-Dichloroethane	10	
	2-Butanone	10	
71-55-6	1,1,1-Trichloroethane	10	
56-23-5	Carbon Tetrachloride		1
75-27-4	Bromodichloromethane	10	
78-87-5	1,2-Dichloropropane	10	
10061-01-5	cis-1,3-Dichloropropene	10	
	Trichloroethene	10	
124-48-1	Dibromochloromethane	10	
	1,1,2-Trichloroethane	10	1
	Benzene	- 10	
10061-02-6	trans-1,3-Dichloropropene	10	
75-25-2	Bromoform	10	
108-10-1	4-Methyl-2-Pentanone	10	1
591-78-6	2-Hexanone	_ 10	
127-18-4	Tetrachloroethene	10	
	1,1,2,2-Tetrachloroethane	10	
108-88-3	Toluene	- 4	J
	Chlorobenzene	10	
	Ethylbenzene	10	
	Styrene	- 10	
	Xylene (total)	- 10) U
	Vinyl Acetate	10	ט (כ
100 00 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	
		_ 1	

Data File : C:\HPCHEM\1\DATA\0406\P4196.D Vial: 100 Operator: SC Acq On : 6 Apr 95 11:53 am Sample : 2349004,1-17-1, Misc : 1,,3,,5,5,LOW,SOIL,R4-3-95, Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 12:24 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4196.D Vial: 100 Operator: SC Acq On : 6 Apr 95 11:53 am

: 2349004,1-17-1, Sample Inst : HPP Misc : 1,,3,,5,5,LOW,SOIL,R4-3-95, Multiplr: 1.00

Quant Time: Apr 6 12:24 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.38 9.88 15.96	128 114 117	316172 1409968 904414	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.24 12.76 18.71	65 98 95	449502 1190714 639162	%F 49.64 ug/l 55.89 ug/l 43.29 ug/l	
Target Compounds 6) C030 Methylene Chloride 12) C060 Chloroform 25) C120 Carbon Tetrachloride 44) C230 Toluene	5.96 8.10 9.18 12.93	84 83 117 91	100553 19284 21150 76294	10.28 ug/l 1.14 ug/l 1.61 ug/l 3.66 ug/l	

1-17-2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349007

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4185.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		11	U
74-87-3	Chloromethane	11	Ū
74-83-9	Bromomethane	11	Ū
75-01-4	Vinyl Chloride	11	U
75-00-3	Chloroethane	l i	க
75-09-2	Methylene Chloride	4	ום
67-64-1	Acetone	11	اق
	Carbon Disulfide	11	Ü
	1,1-Dichloroethene	11	- 1
75-34-3	1,1-Dichloroethane	11	Ū
540-59-0	1,2-Dichloroethene (total)	11	Ū
67-66-3	Chloroform	2	J
107-06-2	1,2-Dichloroethane	11	U
78-93-3	2-Butanone	11	U
71-55-0	1,1,1-Trichloroethane	11	U
56-23-5	Carbon Tetrachloride	11	Ū
75-27-4	Bromodichloromethane	11	Ū
78-87-5	1,2-Dichloropropane	11	ט
10061-01-5	cis-1,3-Dichloropropene	11	ט
79-01-6	Trichloroethene	11	Ü
124-48-1	Dibromochloromethane		U
79-00-5	1,1,2-Trichloroethane	11	U
71-43-2	Benzene	11	ע
10061-02-6	trans-1,3-Dichloropropene	11	U
75-25-2	Bromoform	11	U
108-10-1	4-Methyl-2-Pentanone		
591-78-6	2-Hexanone	- 11	
127-18-4	Tetrachloroethene	11	
79-34-5	1,1,2,2-Tetrachloroethane	11	
108-88-3	Toluene] 3	
108-90-7	Chlorobenzene	11	
	Ethylbenzene	4	
100-42-5		- 11	. · U
1330-20-7	Xylene (total)	16	
108-05-4	Vinyl Acetate	- 11	<u> </u>
100-02-4	Villy I Tioccuco	-	
		_	

Data File : C:\HPCHEM\1\DATA\0405\P4185.D Vial: 100 : 5 Apr 95 20:17 pm Operator: SC : 2349007,1-17-2, Sample Inst : HPP : 1,,8,,5,5,LOW,SOIL,R4-5-95, Multiplr: 1.00

Quant Time: Apr 6 8:23 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

: VOA Standards for 5 point calibration Title

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0405\P4185.D Vial: 100 Acq On : 5 Apr 95 20:17 pm Sample : 2349007,1-17-2, Misc : 1,,8,,5,5,LOW,SOIL,R4-5-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 8:23 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point cali : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.38 9.88 15.96	128 114 117	278369 1114061 710006	50.00 ug/l 0.00 50.00 ug/l 0.00 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.25 12.77 18.72	65 98 95	420612 932114 516226	%Recovery 49.03 ug/l 98.05% 54.75 ug/l 109.49% 43.80 ug/l 87.61%
Target Compounds 6) C030 Methylene Chloride 12) C060 Chloroform 44) C230 Toluene 46) C240 Ethylbenzene 49) C250 M-P, Xylene	5.96 8.11 12.93 16.15 16.33	84 83 91 106 106	32268 23023 51797 20672 113046	Qvalue 3.94 ug/l 95 1.41 ug/l 91 3.04 ug/l 95 3.34 ug/l 94 15.11 ug/l 99

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-18-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349008

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4186.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 5 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

QD 1.0.	(45, 2 61	45/145/ 00/140		~
74 07 2	Chloromethane		10	U
	Bromomethane		10	ש
			1	1
	Vinyl Chloride		10	U
	Chloroethane		10	U
75-09-2	Methylene Chloride		4	JB)
67-64-1			10	Ū
	Carbon Disulfide		10	ע
	1,1-Dichloroethene		10	U
	1,1-Dichloroethane		10	U
	1,2-Dichloroethene (total)		10	U
	Chloroform		10	Ū
	1,2-Dichloroethane		10	ַ
	2-Butanone		10	ַ
	1,1,1-Trichloroethane		10	U
	Carbon Tetrachloride		10	ט
	Bromodichloromethane		10	U
	1,2-Dichloropropane		10	U
	cis-1,3-Dichloropropene		10	U
	Trichloroethene		2	J
	Dibromochloromethane		10	U
	1,1,2-Trichloroethane		10	U
71-43-2			10	U
10061-02-6	trans-1,3-Dichloropropene		10	U
	Bromoform		10	Ŭ
108-10-1	4-Methyl-2-Pentanone		10	Ū
591-78-6	2-Hexanone		10	U
127-18-4	Tetrachloroethene		10	Ū
79-34-5	1,1,2,2-Tetrachloroethane		10	U
108-88-3	Toluene		10	Ŭ
	Chlorobenzene		10	U
100-41-4	Ethylbenzene		10	U
100-42-5			10	U
	Xylene (total)	·	10	Ū
	Vinyl Acetate		10	U

Data File : C:\HPCHEM\1\DATA\0405\P4186.D Vial: 100 Acq On : 5 Apr 95 20:50 pm Sample : 2349008,1-18-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-5-95, Operator: SC Inst : HPP

Multiplr: 1.00

Quant Time: Apr 6 8:24 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

: VOA Standards for 5 point calibration Title

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0405\P4186.D Vial: 100 Acq On : 5 Apr 95 20:50 pm Operator: SC Sample : 2349008,1-18-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-5-95, Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 8:24 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Title : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.38 9.88 15.96	128 114 117	356190 1480389 890212	50.00 ug/l 0.00 50.00 ug/l 0.00 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.25 12.77 18.72	65 98 95	524654 1182610 608658	%Recovery 47.79 ug/l 95.58 55.40 ug/l 110.79 41.19 ug/l 82.38%
Target Compounds 6) C030 Methylene Chloride 30) C150 Trichloroethene	5.96 10.51	84 130	37073 20857	Qvalue 3.54 ug/l 97 1.93 ug/l 88

EPA SAMPLE NO.

1-18-2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349009

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4187.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

Data File : C:\HPCHEM\1\DATA\0405\P4187.D Vial: 100 Acq On : 5 Apr 95 21:22 pm Operator: SC Sample Misc : 2349009,1-18-2, : HPP Inst : 1,,8,,5,5,LOW,SOIL,R4-5-95, Multiplr: 1.00

Quant Time: Apr 5 21:50 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Title : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0405\P4187.D Vial: 100 Acq On : 5 Apr 95 21:22 pm Sample : 2349009,1-18-2, Misc : 1,,8,,5,5,LOW,SOIL,R4-5-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 5 21:50 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point cali : VOA Standards for 5 point calibration

Last Update : Wed Apr 05 10:31:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0405\P4167.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.38 9.87 15.95	128 114 117	358362 1474715 854648	50.00 ug/l 50.00 ug/l 50.00 ug/l	
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.24 12.76 18.72	65 98 95	513720 1147866 565532	%1 46.51 ug/l 56.01 ug/l 39.87 ug/l	112.01%
Target Compounds 6) C030 Methylene Chloride 7) C035 Acetone 15) C110 2-Butanone 16) C055 Cis, 1,2-dichloroethe 30) C150 Trichloroethene 44) C230 Toluene	5.96 5.13 7.52 7.87 10.51 12.93	96 130	41698 98882 45028 14391 20897 58815	3.96 ug/l 28.48 ug/l 9.43 ug/l 1.31 ug/l 1.95 ug/l 2.86 ug/l	# 91 92 93

1-20-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Matrix: (soil/water) SOIL Lab Sample ID: 2349010

Sample wt/vol: 5.0 (g/mL) GLab File ID: P4197.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 10 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

			~
74-87-3	Chloromethane	11	U
	Bromomethane	11	Ū
	Vinyl Chloride	11	Ŭ
75-00-3	Chloroethane	11	Ŭ
	Methylene Chloride	8	JB
67-64-1	Acetone	11	บ
	Carbon Disulfide	11	Ŭ
75-35-4	1,1-Dichloroethene	11	Ū
75-34-3	1,1-Dichloroethane	11	Ū
540-59-0	1,2-Dichloroethene (total)	11	Ū
67-66-3	Chloroform	11	Ū
	1,2-Dichloroethane	11	Ū
	2-Butanone	11	Ū
	1,1,1-Trichloroethane	11	Ū
56-23-5	Carbon Tetrachloride	11	ָ ָּט
75-27-4	Bromodichloromethane	11	Ü
78-87-5	1,2-Dichloropropane	11	Ü
10061-01-5	cis-1,3-Dichloropropene	11	Ü
79-01-6	Trichloroethene	11	ט
124-48-1	Dibromochloromethane	11	Ü
79-00-5	1,1,2-Trichloroethane	11	Ü
71-43-2		11	ט
10061-02-6	trans-1,3-Dichloropropene	11	ט
75-25-2	Bromoform	11	Ū
108-10-1	4-Methyl-2-Pentanone	11	U
	2-Hexanone	11	U
127-18-4	Tetrachloroethene	11	ט
79-34-5	1,1,2,2-Tetrachloroethane	11	ט
108-88-3		11	l u
108-90-7	Chlorobenzene	11	U
100-41-4	Ethylbenzene	11	ד
100-42-5		11	7
1330-20-7	Xylene (total)	11	ľ
108-05-4	Vinyl Acetate	1 11	ī
		-	
		.	ī

Data File : C:\HPCHEM\1\DATA\0406\P4197.D Vial: 100 Acq On : 6 Apr 95 12:25 pm Sample : 2349010,1-20-1, Misc : 1,,10,,5,5,LOW,SOIL,R4-3-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 12:53 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 09:11:16 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4197.D Vial: 100 Acq On : 6 Apr 95 12:25 pm Operator: SC Sample : 2349010,1-20-1, Misc : 1,,10,,5,5,LOW,SOIL,R4-3-95, Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 12:53 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.38 9.88 15.96	128 114 117	339739 1592314 1217264	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.00 0.00 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.24 12.77 18.72	65 98 95	480232 1427795 969843	%R 49.36 ug/l 49.79 ug/l 48.80 ug/l	
Target Compounds 6) C030 Methylene Chloride	5.96	84	74022	7.04 ug/l	Qvalue 91

1-21-1

Q

Contract: 9521649 Lab Name: NYTEST ENV INC

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Lab Sample ID: 2349011 Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4198.D

Date Received: 04/05/95 Level: (low/med) LOW

Data Analyzed: 04/06/95 % Moisture: not dec. 3

Dilution Factor: 1.0 Column: (pack/cap) CAP

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO. COMPOUND 10 74-87-3-----Chloromethane U 10 74-83-9-----Bromomethane U 10 75-01-4-----Vinyl Chloride U 10 75-00-3-----Chloroethane JB 5 75-09-2-----Methylene Chloride____ U 10 67-64-1-----Acetone U 10 75-15-0-----Carbon Disulfide U 10 75-35-4-----1,1-Dichloroethene_____ U 10 75-34-3-----1,1-Dichloroethane U 540-59-0-----1,2-Dichloroethene (total) 10 U 10 67-66-3-----Chloroform U 10 107-06-2-----1,2-Dichloroethane___ U 10 78-93-3----2-Butanone U 10 71-55-6-----1,1,1-Trichloroethane U 10 56-23-5-----Carbon Tetrachloride U 10 75-27-4-----Bromodichloromethane U 10 78-87-5-----1,2-Dichloropropane____ U 10 10061-01-5----cis-1,3-Dichloropropene U 101 79-01-6-----Trichloroethene 124-48-1-----Dibromochloromethane U 101 10 U 79-00-5-----1,1,2-Trichloroethane U 10 71-43-2----Benzene U 10 10061-02-6----trans-1,3-Dichloropropene 10 U 75-25-2-----Bromoform U 10 108-10-1----4-Methyl-2-Pentanone U 10 591-78-6----2-Hexanone U 10 127-18-4-----Tetrachloroethene U 10 79-34-5----1,1,2,2-Tetrachloroethane U 10 108-88-3-----Toluene U 10 108-90-7-----Chlorobenzene U 10 100-41-4-----Ethylbenzene U 100-42-5-----Styrene 1330-20-7-----Xylene (total) 10

108-05-4-----Vinyl Acetate___

10 10 U

Quant Time: Apr 6 13:26 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4198.D Vial: 100 Acq On : 6 Apr 95 12:58 pm Sample : 2349011,1-21-1, Misc : 1,,3,,5,5,LOW,SOIL,R4-3-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 13:26 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T. Q	Ion Resp	onse Conc	Units I	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	9.88	128 341 114 1626 117 1236	5772 50.00	ug/l ug/l ug/l	0.00 0.00 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.25 12.77 18.72	65 478 98 1476 95 97	5088 50.69	ug/1	97.88% 97.88% 101.37% 96.86%
Target Compounds 6) C030 Methylene Chloride	5.96	84 53	3654 5.08	3 ug/l	Qvalue 91

Data File : C:\HPCHEM\1\DATA\APR0695\N1679.D

Acq Time : 6 Apr 95 11:06 am Operator: STM Sample : 2349012, FLDBK1, Inst : HPN Misc : 1,0,,,5,5,L,WATER,R04-05-95 Multiplr: 1.00

Quant Time: Apr 6 11:35 1995

: C:\HPCHEM\1\METHODS\H200316.M Method

Title : VOA Standards for 5 point calibration Last Update : Thu Apr 06 10:08:49 1995

Response via : Single Level Calibration

EQPBK1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2349013

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1680.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. _____ Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

Q (ug/L or ug/Kg) UG/L CAS NO. COMPOUND 74-87-3------Bromomethane 10 U 10 74-83-9-----Bromomethane U 10 75-01-4-----Vinyl Chloride U 10 75-00-3-----Chloroethane JB 8 75-09-2-----Methylene Chloride 10 U 67-64-1-----Acetone 75-15-0-----Carbon Disulfide_____ Ū 10 U 10 75-35-4-----1,1-Dichloroethene_____ U 10 75-34-3-----1,1-Dichloroethane_ /3-34-3-----1,1-Dichloroethane (total)___ U 10 U 10 67-66-3-----Chloroform U 10 107-06-2----1,2-Dichloroethane U 10 78-93-3----2-Butanone U 10 71-55-6-----1,1,1-Trichloroethane U 10 56-23-5-----Carbon Tetrachloride U 10 75-27-4-----Bromodichloromethane U 10 78-87-5-----1,2-Dichloropropane____ U 10 10061-01-5----cis-1,3-Dichloropropene____ U 10 79-01-6-----Trichloroethene_ U 124-48-1-----Dibromochloromethane 10 U 10 79-00-5-----1,1,2-Trichloroethane____ U 71-43-2-----Benzene 10061-02-6-----trans-1,3-Dichloropropene 10 Ŭ 10 U 10 75-25-2-----Bromoform U 108-10-1-----4-Methyl-2-Pentanone 10 U 10 591-78-6----2-Hexanone 127-18-4-----Tetrachloroethene U 10 U 10 79-34-5----1,1,2,2-Tetrachloroethane___ 10 Ū 108-88-3-----Toluene U 10 108-90-7-----Chlorobenzene U 10 100-41-4-----Ethylbenzene U 10 100-42-5-----Styrene 10 U 1330-20-7-----Xylene (total)_____ 10 U 108-05-4-----Vinyl Acetate_____

Data File : C:\HPCHEM\1\DATA\APR0695\N1680.D

Acq Time : 6 Apr 95 11:40 am Operator: STM Sample : 2349013, EQPBK1, Inst : HPN Misc : 1,0,,5,5,L,WATER,R04-05-95 Multiplr: 1.00

Quant Time: Apr 6 15:54 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 10:08:49 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1677.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.88 17.32 21.86	128 114 117	110287 625180 477975	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.00 0.00 -0.01
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.76 19.68 23.52	65 98 95	211469 639780 445819	%R 47.15 ug/l 54.17 ug/l 56.35 ug/l	Recovery 94.31% 108.33% 112.70%
Target Compounds 6) C030 Methylene Chloride	12.59	84.	50307	7.65 ug/l	Qvalue 97

TRIP-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2349014

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1681.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. _____ Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L C

74-87-3	Chloromethane	10	Ū
	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	ט
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	- *8	JB
67-64-1	Acetone	10	ט
	Carbon Disulfide	10	Ü
75-35-4	1,1-Dichloroethene	10	ָ ע
75-34-3	1,1-Dichloroethane	10	Ŭ
540-59-0	1,2-Dichloroethene (total)	1 10	บี
67-66-3	Chloroform	10	Ū
	1,2-Dichloroethane	10	Ū
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	บ
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	บั
124-48-1	Dibromochloromethane	10	Ū
	1,1,2-Trichloroethane	10	ָ ָ
71-43-2		10	ָ ט
10061-02-6	trans-1,3-Dichloropropene	10	ט
75-25-2	Bromoform	- 10	Ū
	4-Methyl-2-Pentanone	10	ט
	2-Hexanone	10	υ
	Tetrachloroethene	10	Ü
	1,1,2,2-Tetrachloroethane	10	บ
108-88-3		10	Ū
	Chlorobenzene	10	Ū
	Ethylbenzene	10	Ü
100-42-5		10	ט
	Xylene (total)	10	ט
	Vinyl Acetate	- 10	71
700 03 4	vinyi Acecace	-	
		.	l

Data File : C:\HPCHEM\1\DATA\APR0695\N1681.D

Acq Time : 6 Apr 95 12:15 pm

Sample : 2349014, TRIP-1, Misc : 1,0...557 M3 Operator: STM Inst : HPN : 1,0,,,5,5,L,WATER,R04-05-95 Multiplr: 1.00

Quant Time: Apr 6 12:45 1995

: C:\HPCHEM\1\METHODS\H200316.M Method

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 10:08:49 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1681.D

Acq Time : 6 Apr 95 12:15 pm Operator: STM Sample : 2349014, TRIP-1, Inst : HPN Misc : 1,0,,,5,5,L,WATER,R04-05-95 Multiplr: 1.00

Quant Time: Apr 6 12:45 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 10:08:49 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1677.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.86 17.30 21.85	128 114 117	110923 636112 493883	50.00 ug/l 50.00 ug/l 50.00 ug/l	-0.03 -0.03 -0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.74 19.68 23.51	65 98 95	213141 662416 462696	%F 47.25 ug/l 54.28 ug/l 56.60 ug/l	108.55%
Target Compounds 6) C030 Methylene Chloride	12.55	84	55397	8.38 ug/l	Qvalue 94

000040

HPN

TRIP-2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Sample ID: 2349015 Matrix: (soil/water) WATER

Lab File ID: N1697.D Sample wt/vol: 5.0 (g/mL) ML

Date Received: 04/05/95 Level: (lcw/med) LOW

Data Analyzed: 04/06/95 % Moisture: not dec. _____

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q CAS NO. COMPOUND

CAS NO.			
74 97 3	Chloromethane	10	U
74-87-3	Bromomethane	10	บี
		16	Ū
75-01-4	Vinyl Chloride	10	Ü
75-00-3	Chloroethane	5	JВ
	Methylene Chloride	10	וט
67-64-1	Acetone	1	ŭ
	Carbon Disulfide	10	
	1,1-Dichloroethene	10	U
	1,1-Dichloroethane	10	U
	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	ַ
	1,2-Dichloroethane	10	Ū
78-93-3	2-Butanone	10	Ŭ
71-55-3	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10	Ŭ
75-27-4	Bromodichloromethane	10	U
	1,2-Dichloropropane	10	U
	cis-1,3-Dichloropropene	10	U
	Trichloroethene	10	IJ
1 124 - 48 - 1	Dibromochloromethane	101	U
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2		10	U
10061 02-6	trans-1,3-Dichloropropene_	10	U
75 25 2	Bromoform	10	U
100 10 1	4-Methyl-2-Pentanone	10	Ū
108-10-1	2-Hexanone	10	บั
		10	Ū
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	ט י
108-88-3		1	<u>.</u>
	Chlorobenzene	10	ט
	Ethylbenzene	10	1
100-42-5		10	U
	Xylene (total)	· 10	U
108-05-4	Vinyl Acetate	_ 10	U
·			

Data File : C:\HPCHEM\1\DATA\APR0695\N1697.D

Acq Time : 6 Apr 95 21:46 pm Operator: L.SINGH

: 2349015, TRIP-2, Sample Inst : HPN : 1,0,,,5,5,L,WATER,R04-05-95 Multiplr: 1.00

Quant Time: Apr 6 22:16 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 21:39:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1697.D

Quant Time: Apr 6 22:16 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 21:39:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1694.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.87 17.32 21.88	128 114 117	131417 716545 552719	50.00 ug/l -0.02 50.00 ug/l -0.01 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.76 19.69 23.53	65 98 95	240432 756585 512463	%Recovery 46.99 ug/l 93.98% 45.83 ug/l 91.66% 45.23 ug/l 90.47%
Target Compounds 6) C030 Methylene Chloride	12.58	84	32254	Qvalue 5.48 ug/l 91

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-23-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350501

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4204.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	CCMPOUND	(ug/L or ug	g/Kg)	UG/KG		Q
74-83-9	Chloromethane_		_		10	מ
	Vinyl Chloride Chloroethane				10	. U
	Methylene Chlo	<u> </u>	-		10	Ü
67-64-1		r rae	-		10	JB U
	Carbon Disulfic	de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la			10	Ū
1	1,1-Dichloroet		-		10	Ū
75-34-3	1,1-Dichloroet	nane	-		10	Ü
540-59-0	1,2-Dichloroet	nene (total)	-		10	Ū
	Chloroform		-		10	Ū
	1,2-Dichloroet	nane	-		10	Ü
78-93-3	2-Butanone		-		10	Ü
	1,1,1-Trichloro	oethane	-		10	Ū
56-23-5	Carbon Tetrach	loride ——	-		10	Ū
75-27-4	Bromodichlorome	ethane	-		10	Ŭ
78-87-5	1,2-Dichloropro	pane	_		10	U
10061-01-5	cis-1,3-Dichlo	copropene			10	U
	Trichloroethene		_		10	Ŭ
	Dibromochlorome				10	Ŭ
	1,1,2-Trichlore	oethane	_		10	Ų
71-43-2					10	U
	trans-1,3-Dich	loropropene			10	U
1	Bromoform				10	U
	4-Methyl-2-Pent	canone	_		10	U
	2-Hexanone		_		10	Ū
	Tetrachloroethe		_		10	U
	1,1,2,2-Tetracl	nloroethane	_		10	Ŭ
108-88-3			_		10	U
	Chlorobenzene_		_		10	U
	Ethylbenzene		_		10	Ŭ
100-42-5			_		10	Ū
1330-20-7	Xylene (total)	•	_		10	Ū
108-05-4	Vinyl Acetate_		_		10	U

Data File : C:\HPCHEM\1\DATA\0406\P4204.D

Vial: 100 Acq On : 6 Apr 95 17:08 pm Sample : 2350501,1-23-1, Misc : 1,,4,,5,5,LOW,SOIL,R4-6-95, Quant Time: Apr 10 8:07 1995 Operator: SC Inst : HPP Multiplr: 1.00

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Quant Time: Apr 10 8:07 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	318559 1689350 1315969	50.00 ug/l 50.00 ug/l 50.00 ug/l	
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.26 12.78 18.73	65 98 95	439091 1559533 1021849	%48.13 ug/l 50.30 ug/l 47.56 ug/l	100.61%
Target Compounds 6) C030 Methylene Chloride	5.97	84	47799	4.85 ug/l	Qvalue # 88

1 A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

1-22-1

Contract: 9521649 Lab Name: NYTEST ENV INC

Lab Sample ID: 2350502

Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4205.D Date Received: 04/06/95 Level: (low/med) LOW

Data Analyzed: 04/06/95 % Moisture: not dec. 5

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND

10 U 74-87-3-----Chloromethane 10 U 74-83-9-----Bromomethane U 10 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane JB 75-09-2-----Methylene Chloride 4 U 10 67-64-1------Acetone U 75-15-0-----Carbon Disulfide 10 U 10 75-35-4-----1,1-Dichloroethene . U 75-34-3-----1,1-Dichloroethane 10 U 10 540-59-0-----1,2-Dichloroethene (total) U 10 67-66-3------Chloroform U 10 107-06-2----1, 2-Dichloroethane U 10 78-93-3----2-Butanone U 71-55-6-----1,1,1-Trichloroethane 10 U 10 56-23-5-----Carbon Tetrachloride U 10 75-27-4-----Bromodichloromethane U 10 78-87-5-----1,2-Dichloropropane__ U 10 10061-01-5----cis-1,3-Dichloropropene U 10 79-01-6-----Trichloroethene U 10 124-48-1-----Dibromochloromethane U 10 79-00-5-----1,1,2-Trichloroethane U 10 71-43-2-----Benzene U 10061-02-6----trans-1,3-Dichloropropene 10 U 10 75-25-2-----Bromoform U 10 108-10-1----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone 10 U 127-18-4-----Tetrachloroethene 10 U 79-34-5-----1,1,2,2-Tetrachloroethane U 10 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene U 10 100-41-4-----Ethylbenzene U 10 100-42-5----Styrene U 10 1330-20-7-----Xylene (total)_____ 10 U 108-05-4------Vinyl Acetate

Data File : C:\HPCHEM\1\DATA\0406\P4205.D Vial: 100 Acq On : 6 Apr 95 17:41 pm Sample : 2350502,1-22-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-6-95, Operator: SC Inst : HPP

Multiplr: 1.00

Quant Time: Apr 6 18:09 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Method Title : VOA Standards for 5 point calibration

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4205.D Vial: 100 Acq On : 6 Apr 95 17:41 pm Sample : 2350502,1-22-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-6-95, Quant Time: Apr 6 18:09 1995 Operator: SC Inst : HPP Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\SOIL0317.M
Title : VOA Standards for 5 point cali : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	341065 1690206 1317405	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.02 0.02 0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.25 12.77 18.73	65 98 95	471676 1573148 1033057	%R 48.29 ug/l 50.69 ug/l '48.03 ug/l	
Target Compounds 6) C030 Methylene Chloride	5.97	84	42902	4.06 ug/l	Qvalue 97

1-22-1D

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350503

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4203.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 6 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

74-87-3-----Chloromethane 11 74-83-9-----Bromomethane 11 U 75-01-4-----Vinyl Chloride 11 U 75-00-3-----Chloroethane 11 U 75-09-2-----Methylene Chloride 7 JB 67-64-1------Acetone 11 U 75-15-0-----Carbon Disulfide 11 U 75-35-4-----1,1-Dichloroethene 11 U 75-34-3-----1,1-Dichloroethane 111 U 540-59-0----1, 2-Dichloroethene (total) U 11 67-66-3-----Chloroform U 11 107-06-2----1, 2-Dichloroethane 11 U 78-93-3----2-Butanone 11 U 71-55-6----1,1,1-Trichloroethane U 11 56-23-5-----Carbon Tetrachloride 11 U 75-27-4-----Bromodichloromethane 11 U 78-87-5-----1,2-Dichloropropane_ U 11 10061-01-5----cis-1,3-Dichloropropene 11 U 79-01-6----Trichloroethene 11 U 124-48-1-----Dibromochloromethane 11 U 79-00-5----1,1,2-Trichloroethane 11 Ū 71-43-2-----Benzene 11 U 10061-02-6----trans-1,3-Dichloropropene 11 U 75-25-2-----Bromoform 11 Ū 108-10-1-----4-Methyl-2-Pentanone 11 U 591-78-6----2-Hexanone 11 U 127-18-4-----Tetrachloroethene 11 U 79-34-5----1,1,2,2-Tetrachloroethane U 11 108-88-3-----Toluene 2 J 108-90-7-----Chlorobenzene U 11 100-41-4-----Ethylbenzene J 1 100-42-5-----Styrene 1.1 1330-20-7-----Xylene (total) 14 108-05-4------Vinyl Acetate 11

Data File : C:\HPCHEM\1\DATA\0406\P4203.D Vial: 100 Operator: SC Acq On : 6 Apr 95 16:36 pm

Inst : HPP : 2350503,1-22-1D, Sample Misc : 1,,6,,5,5,LOW,SOIL,R4-6-95, Multiplr: 1.00

Quant Time: Apr 6 17:04 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

: VOA Standards for 5 point calibration Title

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4203.D Vial: 100 Operator: SC Acq On : 6 Apr 95 16:36 pm Sample : 2350503,1-22-1D, Misc : 1,,6,,5,5,LOW,SOIL,R4-6-95, Quant Time: Apr 6 17:04 1995 Inst : HPP Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	260102 1502224 1053421	50.00 ug/l 0.02 50.00 ug/l 0.02 50.00 ug/l 0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.26 12.78 18.73	65 98 95	347496 1345510 741416	%Recovery 46.65 ug/l 93.30% 54.22 ug/l 108.44% 43.11 ug/l 86.22%
Target Compounds 6) C030 Methylene Chloride 44) C230 Toluene 46) C240 Ethylbenzene 49) C250 M-P, Xylene 50) C255 O-Xylene	5.98 12.95 16.17 16.34 17.33	84 91 106 106	52129 48218 10986 87361 49039	Qvalue 6.48 ug/l 92 1.99 ug/l 95 1.22 ug/l # 84 8.20 ug/l 98 4.60 ug/l 86

EPA SAMPLE NO.

1-19-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Matrix: (soil/water) SOIL Lab Sample ID: 2350504

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4206.D

Level: (lcw/med) LOW Date Received: 04/06/95

% Moisture: not dec. 5 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q CAS NO. COMPOUND 10 U 74-87-3-----Chloromethane 74-83-9-----Bromomethane 10 U 10 U 75-01-4------Vinyl Chloride 10 U 75-00-3-----Chloroethane 4 JB 75-09-2-----Methylene Chloride 10 U 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 10 10 U 75-35-4-----1,1-Dichloroethene 10 U 75-34-3----1,1-Dichloroethane_ 540-59-0----1, 2-Dichloroethene (total) 10 U U 10 67-66-3-----Chloroform U 10 107-06-2----1, 2-Dichloroethane U 10 78-93-3----2-Butanone U 71-55-6----1,1,1-Trichloroethane 10 10 U 56-23-5-----Carbon Tetrachloride__ U 10 75-27-4-----Bromodichloromethane____ U 10 78-87-5-----1,2-Dichloropropane_ U 10 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene 10 U 124-48-1-----Dibromochloromethane U 10 79-00-5-----1,1,2-Trichloroethane U 71-43-2-----Benzene 10061-02-6-----trans-1,3-Dichloropropene 10 U 10 U 10 75-25-2-----Bromoform U 108-10-1----4-Methyl-2-Pentanone 10 U 10 591-78-6----2-Hexanone 127-18-4-----Tetrachloroethene 10 U U 79-34-5-----1,1,2,2-Tetrachloroethane 10 U 10 108-88-3-----Toluene U 10 108-90-7-----Chlorobenzene 10 U 100-41-4-----Ethylbenzene U 10 100-42-5-----Styrene U 10 1330-20-7-----Xylene (total)_____ 10 108-05-4-----Vinyl Acetate

Data File : C:\HPCHEM\1\DATA\0406\P4206.D Vial: 100 Acq On : 6 Apr 95 18:13 pm Sample : 2350504,1-19-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-6-95, Operator: SC Inst : HPP

Multiplr: 1.00

Quant Time: Apr 6 18:41 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

: VOA Standards for 5 point calibration Title

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4206.D Vial: 100 Acq On : 6 Apr 95 18:13 pm Sample : 2350504,1-19-1, Misc : 1,,5,,5,5,LOW,SOIL,R4-6-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 18:41 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Title : VOA Standards for 5 point calibration
Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97	128 114 117	348286 1749931 1323901	50.00 ug/l 0.02 50.00 ug/l 0.02 50.00 ug/l 0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.26 12.78 18.73	65 98 95	480964 1601087 1013662	%Recovery 48.22 ug/l 96.44% 51.34 ug/l 102.67% 46.90 ug/l 93.80%
Target Compounds 6) C030 Methylene Chloride	5.98	84	45028	Qvalue 4.18 ug/l 98

1-19-2

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST

Case No.: 23490 SAS No.:

SDG No.: WOR1

Matrix: (soil/water) SOIL

Lab Sample ID: 2350505

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: P4207.D

Level: (low/med) LOW

74-87-3-----Chloromethane

Date Received: 04/06/95

% Moisture: not dec. 6

Data Analyzed: 04/06/95

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.

COMPOUND

11 U 11 U 11 11 3 11

108-05-4-----Vinyl Acetate____

11

U

Vial: 100 Data File : C:\HPCHEM\1\DATA\0406\P4207.D Acq On : 6 Apr 95 18:46 pm Operator: SC Sample : 2350505,1-19-2, Misc : 1,,6,,5,5,LOW,SOIL,R4-6-95, Inst : HPP Multiplr: 1.00

Ouant Time: Apr 10 8:08 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M

Method : VOA Standards for 5 point calibration Title

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\0406\P4207.D Vial: 100 Acq On : 6 Apr 95 18:46 pm Operator: SC Sample : 2350505,1-19-2, Misc : 1,,6,,5,5,LOW,SOIL,R4-6-95, Quant Time: Apr 10 8:08 1995 Inst : HPP Multiplr: 1.00

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.39 9.89 15.97		350179 1560462 1068801	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.02 0.02 0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.26 12.78 18.73		490540 1343683 765931	%F 48.91 ug/l 53.36 ug/l 43.90 ug/l	106.73%
Target Compounds 6) C030 Methylene Chloride 44) C230 Toluene	5.97 12.95		34932 26730	3.22 ug/l 1.09 ug/l	

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350506

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4208.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

74-87-3Chloromethane	10	יט
74-83-9Bromomethane	10	<u></u>
75-01-4Vinyl Chloride	10	บี
75-00-3Chloroethane	10	Ü
75-09-2Methylene Chloride	4	JB
67-64-1Acetone	10	ש
	10	Ü
75-15-0Carbon Disulfide	10	Ü
75-35-41,1-Dichloroethene	10	ט
75-34-31,1-Dichloroethane	10	Ü
540-59-01,2-Dichloroethene (total)	1	ប
67-66-3Chloroform	10	ָ ט
107-06-21,2-Dichloroethane	10	
78-93-32-Butanone	10	U
71-55-61,1,1-Trichloroethane	10	Ū,
56-23-5Carbon Tetrachloride	10	Ŭ
75-27-4Bromodichloromethane	10	Ŭ
78-87-51,2-Dichloropropane	10	Ū
10061-01-5cis-1,3-Dichloropropene	10	Ŭ
79-01-6Trichloroethene	10	U
124-48-1Dibromochloromethane	10	Ū
79-00-51,1,2-Trichloroethane	10	Ŭ
71-43-2Benzene	10	U
10061-02-6trans-1,3-Dichloropropene	10	Ŭ
75-25-2Bromoform	10	U
108-10-14-Methyl-2-Pentanone	10	U
591-78-62-Hexanone	10	Ū
127-18-4Tetrachloroethene	10	U
79-34-51,1,2,2-Tetrachloroethane	10	U
108-88-3Toluene	10	U
108-90-7Chlorobenzene	10	U
100-41-4Ethylbenzene	10	Ū
100-42-5Styrene	10	Ŭ
	10	U
1330-20-7Xylene (total)	10	· u
108-05-4Vinyl Acetate		
	.	1

Quant Time: Apr 6 19:46 1995

Method : C:\HPCHEM\1\METHODS\SOIL0317.M

Title : VOA Standards for 5 point calibration

Last Update : Sat Apr 08 12:24:42 1995 Response via : Single Level Calibration

Vial: 100 Data File : C:\HPCHEM\1\DATA\0406\P4208.D Acq On : 6 Apr 95 19:18 pm Sample : 2350506,1-24-1, Misc : 1,,4,,5,5,LOW,SOIL,R4-6-95, Operator: SC Inst : HPP Multiplr: 1.00

Quant Time: Apr 6 19:46 1995

: C:\HPCHEM\1\METHODS\SOIL0317.M Method

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 09:11:16 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\P4191.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) CI01 Bromochloromethane 23) CI10 1,4-Difluorobenzene 38) CI20 Chlorobenzene-d5	8.40 9.90 15.99	128 114 117	339522 1624935 1229840	50.00 ug/l 50.00 ug/l 50.00 ug/l	0.03 0.03 0.04
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 43) CS05 Toluene-d8 47) CS10 4-Bromofluorobenzene	9.27 12.79 18.74	65 98 95	477273 1466677 954479	%R 49.08 ug/l 50.62 ug/l 47.54 ug/l	
Target Compounds 6) C030 Methylene Chloride	5.97	84	37037	3.53 ug/l	Qvalue 93

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

EQPBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2350507

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1701.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. _____ Data Analyzed: 04/07/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug,		Q
	74-87-3 74-83-9 75-01-4 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1 19-00-5 124-48-1 10061-02-6 75-25-2 108-10-1 127-18-4 108-88-3 108-88-3 108-88-3 108-88-3 108-88-3 108-90-7 100-42-5 1330-20-7	ChloromethaneBromomethaneVinyl ChlorideChloroethaneMethylene ChlorideAcetoneCarbon Disulfid1,1-Dichloroethele1,2-Dichloroethele2-Butanone1,1-Trichlorom1,2-DichlorometheleBromodichlorome1,2-Dichloroprecis-1,3-Dichlorome1,2-Trichlorome1,2-Trichlorome1,1,2-Trichlorome1,1,2-Trichlorome1,1,2-Trichlorome1,1,2-Trichlorome	ride de_ hene hane hene (total)_ hane oethane loride ethane opane ropropene e ethane loropropene tanone ene hloroethane	10 10 10 10 10 10 10 10 10 10 10 10 10 1	מממממממממממממממממממממ
1				!	1

Data File : C:\HPCHEM\1\DATA\APR0695\N1701.D

Operator: L.SINGH

Acq Time : 7 Apr 95 00:07 am

Sample : 2350507, EQPBK2,

Misc : 1,1,,,5,5,L,WATER, R4-6-95

Quant Time: Apr 7 9:24 1995 Inst : HPN Multiplr: 1.00

: C:\HPCHEM\1\METHODS\H200316.M Method

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 21:39:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1701.D

Acq Time : 7 Apr 95 00:07 am Operator: L.SINGH

Sample : 2350507, EQPBK2, Inst : HPN Misc : 1,1,,,5,5,L, WATER, R4-6-95 Multiplr: 1.00

Quant Time: Apr 7 9:24 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 21:39:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1694.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.88 17.31 21.87	128 114 117	130842 722034 564256	50.00 ug/l 0.00 50.00 ug/l -0.02 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.75 19.68 23.52	65 98 95	241650 782089 525806	%Recovery 47.43 ug/l 94.87% 46.40 ug/l 92.81% 45.46 ug/l 90.93%
Target Compounds 6) C030 Methylene Chloride	12.59	84	29213	Qvalue 4.99 ug/l m 94

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FLDBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2350508

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1702.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. _____ Data Analyzed: 04/07/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q COMPOUND CAS NO. 10 U 74-87-3------Chloromethane 10 U 74-83-9-----Bromomethane 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 4 JB 75-09-2-----Methylene Chloride 10 U 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 10 10 U 75-35-4-----1,1-Dichloroethene__ Ŭ 10 75-34-3-----1,1-Dichloroethane 540-59-0-----1,2-Dichloroethene (total) 10 U 10 U 67-66-3-----Chloroform 10 U 107-06-2----1,2-Dichloroethane 10 U 78-93-3----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane 10 U 56-23-5-----Carbon Tetrachloride_ 10 U 75-27-4-----Bromodichloromethane 10 U 78-87-5-----1,2-Dichloropropane___ 10 U 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene_ 10 U 124-48-1-----Dibromochloromethane Ū 10 79-00-5-----1,1,2-Trichloroethane 10 U 10 U 10 U 75-25-2-----Bromoform 10 U 108-10-1-----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone_ 10 U 127-18-4-----Tetrachloroethene 10 U 79-34-5----1,1,2,2-Tetrachloroethane 10| U 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene U 10 100-41-4-----Ethylbenzene U 10 100-42-5-----Styrene U 10 1330-20-7-----Xylene (total) 10 108-05-4------Vinyl Acetate

Data File : C:\HPCHEM\1\DATA\APR0695\N1702.D

Acq Time : 7 Apr 95 00:42 am Operator: L.SINGH

Sample : 2350508, FLDBK2, Misc : 1,1,,,5,5,L, WATER, R4-6-95 Inst : HPN Multiplr: 1.00

Quant Time: Apr 7 1:12 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 21:39:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1702.D

Operator: L.SINGH

Acq Time : 7 Apr 95 00:42 am Sample : 2350508, FLDBK2, Misc : 1,1,,,5,5,L,WATER,R4-6-95 Inst : HPN Multiplr: 1.00

Quant Time: Apr 7 1:12 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 21:39:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1694.D

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.87 17.31 21.86	128 114 117	132832 726202 563008	50.00 ug	g/l -0.02
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.75 19.68 23.52	65 98 95	246195 777759 528759	47.60 ug 46.25 ug 45.82 ug	g/l 92.50%
Target Compounds 6) C030 Methylene Chloride	12.57	84	24558	4.13 u	Qvalue g/l 90

TRIP-3

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2350509

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1703.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. _____ Data Analyzed: 04/07/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	;/Kg) UG/L	Q
74-87-3	Chloromethane	10	ט
	Bromomethane	10	Ū
	Vinyl Chloride	10	Ū
75-00-3	Chloroethane	10	Ü
	Methylene Chloride	10	В
67-64-1	Acetone	10	<u></u>
	Carbon Disulfide	10	Ü
	1,1-Dichloroethene	10	Ü
75-34-3	1,1-Dichloroethane	10	וט
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	Ū
	1,2-Dichloroethane	10	Ū
	2-Butanone	10	Ū
	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ü
	Bromodichloromethane	10	<u></u>
	1,2-Dichloropropane	10	Ü
	cis-1,3-Dichloropropene	10	Ü
79-01-6	Trichloroethene	10	Ü
	Dibromochloromethane	10	Ü
	1,1,2-Trichloroethane	- 10	ات
71 - 43 - 2	Benzene	10	ט
	trans-1,3-Dichloropropene	- 10	ال
75-25-2	Bromoform	10	נט
	4-Methyl-2-Pentanone	10	ט
591-78-6	2-Hexanone	- 10	Ü
	Tetrachloroethene	10	ָט
79-34-5	1,1,2,2-Tetrachloroethane	10	ט
	Toluene	_ 1	ן ט
	Chlorobenzene	10	ש
	Ethylbenzene	_ 1	
	Styrene .	10	U
		10	U
	Xylene (total).	10	Ū
108-05-4	Vinyl Acetate	10	Ŭ
		_	

Data File : C:\HPCHEM\1\DATA\APR0695\N1703.D

Acq Time : 7 Apr 95 1:18 am Operator: L.SINGH

Sample : 2350509, TRIP-3, Misc : 1,1,,,5,5,L, WATER, R4-6-95 Inst : HPN Multiplr: 1.00

Quant Time: Apr 7 9:25 1995

: C:\HPCHEM\1\METHODS\H200316.M Method

Title : VOA Standards for 5 point calibration Last Update : Thu Apr 06 21:39:23 1995

Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1703.D

Acq Time : 7 Apr 95 1:18 am Operator: L.SINGH

Sample : 2350509, TRIP-3, Inst : HPN Misc : 1,1,,,5,5,L, WATER, R4-6-95 Multiplr: 1.00

Quant Time: Apr 7 9:25 1995

Method : C:\HPCHEM\1\METHODS\H200316.M

Title : VOA Standards for 5 point calibration

Last Update : Thu Apr 06 21:39:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1694.D

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.87 17.31 21.87	128 114 117	131256 720120 559195	50.00 ug/l -0.03 50.00 ug/l -0.02 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.75 19.68 23.52	65 98 95	242588 773179 521559	%Recovery 47.47 ug/l 94.93% 46.29 ug/l 92.58% 45.50 ug/l 91.01%
Target Compounds 6) C030 Methylene Chloride	12.57	84	57523	Qvalue : 9.79 ug/l m 98 5/4 c4-10-16

TRIP-4

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Matrix: (soil/water) WATER Lab Sample ID: 2350510

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1704.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. _____ Data Analyzed: 04/07/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		,
	10	ט
74-87-3Chloromethane	10	ש
74-83-9Bromomethane	10	וט
75-01-4Vinyl Chloride		ט
75-00-3Chloroethane	10 12	В
75-09-2Methylene Chloride		Ü
67-64-1Acetone	10	- 1
75-15-0Carbon Disulfide	10	U
75-35-41,1-Dichloroethene	10	Ū
75-34-31,1-Dichloroethane	10	Ū
540-59-01,2-Dichloroethene (total)	10	Ū
67-66-3Chloroform	10	Ū
107-06-21,2-Dichloroethane	10	Ū
78-93-32-Butanone	10	Ū
71-55-61,1,1-Trichloroethane	10	Ŭ
56-23-5Carbon Tetrachloride	10	Ŭ
75-27-4Bromodichloromethane	10	U
78-87-51,2-Dichloropropane	10	ָּע
10061-01-5cis-1,3-Dichloropropene	10	U
79-01-6Trichloroethene	10	U
12:-48-1Dibromochloromethane	10	U
79-00-51,1,2-Trichloroethane	10	ע
71-43-2Benzene	10	Ū
10061-02-6trans-1,3-Dichloropropene	10	U
75-25-2Bromoform	10	U
108-10-14-Methyl-2-Pentanone	10	U
591-78-62-Hexanone	10	U
127-18-4Tetrachloroethene	10	U
79-34-51,1,2,2-Tetrachloroethane	10	U
108-88-3Toluene	10	U
108-90-7Chlorobenzene	10	U
100-41-4Ethylbenzene	10	U
100-42-5Styrene	10	U
1330-20-7Xylene (total)	10	i i
108-05-4Vinyl Acetate	10	
TOO-03-4VIIIYI ACCCACC		
		.

Data File : C:\HPCHEM\1\DATA\APR0695\N1704.D

Acq Time : 7 Apr 95 1:53 am Operator: L.SINGH

: 2350510,TRIP-4, Sample Inst : HPN Misc : 1,1,,,5,5,L,WATER,R4-6-95 Multiplr: 1.00

Quant Time: Apr 7 9:26 1995

: C:\HPCHEM\1\METHODS\H200316.M Method

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 21:39:23 1995 Response via : Single Level Calibration

Data File : C:\HPCHEM\1\DATA\APR0695\N1704.D

Acq Time : 7 Apr 95 1:53 am Operator: L.SINGH

Sample : 2350510,TRIP-4,
Misc : 1,1,,,5,5,L,WATER,R4-6-95
Quant Time: Apr 7 9:26 1995 Inst : HPN Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\H200316.M

: VOA Standards for 5 point calibration Title

Last Update : Thu Apr 06 21:39:23 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\APR0695\N1694.D

Internal Standards	R.T. (QIon	Response	Conc Units Dev(Min)
1) CI01 Bromochloromethane 35) CI10 1,4-Difluorobenzene 53) CI20 Chlorobenzene-d5	15.86 17.31 21.87	128 114 117	132185 739934 576813	50.00 ug/l -0.03 50.00 ug/l -0.02 50.00 ug/l 0.00
System Monitoring Compounds 13) CS15 1,2-Dichloroethane-d4 58) CS05 Toluene-d8 62) CS10 4-Bromofluorobenzene	16.75 19.68 23.52	65 98 95	246922 793867 540272	%Recovery 47.98 ug/l 95.95% 46.08 ug/l 92.15% 45.70 ug/l 91.39%
Target Compounds 6) C030 Methylene Chloride	12.58	84	68452	Qvalue 11.57 ug/l m 97 5MCY-10-95

VBLKN02

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: VBLKN02

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1695.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. _____ Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/Kg) UG/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	- 4	J
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	Ŭ
75-35-4	1,1-Dichloroethene	10	Ŭ
75-34-3	1,1-Dichloroethane	- 10	U
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	U
	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
	cis-1,3-Dichloropropene	_ 10	U
	Trichloroethene	10	U
	Dibromochloromethane	10	Ū
	1,1,2-Trichloroethane	10	Ü
71-43-2		10	Ü
	trans-1,3-Dichloropropene	10	U
75-25-2	Bromoform	10	Ü
	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	Ü
79-34-5	1,1,2,2-Tetrachloroethane	10	Ü
108-88-3	Toluene	10	υ
108-90-7	Chlorobenzene	10	Ü
	Ethylbenzene	10	U
100-42-5		10	U
	Xylene (total)	10	Ū
	Vinyl Acetate	10	U
	-	-1	

EPA SAMPLE NO.

VBLKNI

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: VBLKN1

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: N1678.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. ____ Data Analyzed: 04/06/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L		Q
	Chloromethane		10	Ū
	Bromomethane	,	10	ַ
	Vinyl Chloride_		10	Ū
	Chloroethane		10	ñ
	Methylene Chlor	ide	6	J
67-64-1			10	ט
	Carbon Disulfid		10	U
	1,1-Dichloroeth		10	Ū
	1,1-Dichloroeth		10	ַ
	1,2-Dichloroeth	ene (total)	10	Ü
	Chloroform_		10	ַ
107-06-2	1,2-Dichloroeth	ane	10	ַ
	2-Butanone		10	Ū
	1,1,1-Trichloro		10	Ū
	Carbon Tetrachl		10	U
	Bromodichlorome		10	Ŭ
	1,2-Dichloropro		10	Ū
	cis-1,3-Dichlor		10	U
	Trichloroethene		10	Ŭ
	Dibromochlorome		10	U
	1,1,2-Trichloro	ethane	10	U
71-43-2	Benzene		10	U
10061-02-6	trans-1,3-Dichl	oropropene	10	U
75-25-2	Bromoform_		10	U
108-10-1	4-Methyl-2-Pent	anone	10	U
591-78-6	2-Hexanone		10	U
	Tetrachloroethe		10	Ŭ
79-34-5	1,1,2,2-Tetrach	loroethane	10	U
108-88-3	Toluene	,	10	U
	Chlorobenzene		10	U
	Ethylbenzene		10	Ū
100-42-5		•	10	U
	Xylene (total)	•	10	Ŭ
	Vinyl Acetate		10	U
1 2 3 3 3 1			-	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKP14

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: VBLKP14

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P4168.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 Data Analyzed: 04/05/95

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	CONFOUND (dd) II OI di	9/119/06/116	~
74-87-3	Chloromethane	10	U
	Bromomethane	10	Ū
	Vinyl Chloride	- 10	Ū
	Chloroethane	- 10	Ŭ
	Methylene Chloride	- 3	J
67-64-1		10	Ū
	Carbon Disulfide	- 10	บี
	1,1-Dichloroethene		Ü
	1,1-Dichloroethane	- 10	Ū
	1,2-Dichloroethene (total)	- 10	Ŭ
	Chloroform	10	Ū
	1,2-Dichloroethane	- 10	Ū
	2-Butanone	- 10	Ū
	1,1,1-Trichloroethane	10	Ū
	Carbon Tetrachloride	_ 10	Ū
	Bromodichloromethane	10	U
	1,2-Dichloropropane	_ 10	U
	cis-1,3-Dichloropropene	_ 10	U
79-01-6	Trichloroethene	_ 10	Ū
	Dibromochloromethane	_ 10	U
	1,1,2-Trichloroethane	10	U
71-43-2		10	Ū
	trans-1,3-Dichloropropene	10	Ū
	Bromoform	- 10	Ū
	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	- 10 10 10 I	Ū
	Tetrachloroethene	10	Ū
	1,1,2,2-Tetrachloroethane	- 10	Ū
108-88-3		- 10	Ŭ
	Chlorobenzene	- 10	Ū
	Ethylbenzene	- 10	Ŭ
	Styrene .	- 10	Ŭ
	Xylene (total)	$ \begin{vmatrix} 10 \\ 10 \end{vmatrix}$	Ŭ
100-06-4-	Vinyl Acetate	- 10	Ŭ
100-03-4	vinyi Acecace	- -	O

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WCR1

	1					
	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL)#	(BFB)#	(DCE)#	1	OUT
	=========	=====	=====	======	=====	===
01	VBLKN1	108	114	92	ļ	0
02	FLDBK1	109	110	94		0
03	EQPBK1	108	113	94		0
04	TRIP-1	108	113	94		0 0
05	VBLKN02	93	91	94		0 0
06	TRIP-2	92	90	94		
07	EQPBK2	93	91	95		0
80	FLDBK2	92	92	95		0
09	TRIP-3	92	91	95 95		0
10	TRIP-4	92	91			0
11	11(11 1	34	91	96		0
12						
13						
14						
15						
16						
17						
18						
19						
20						
21					<u>-</u>	
						<u>·</u>
22						
23						
24						
25						
26						
27						
28						
29						
30						
•	 1.			!		

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (75-114)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

Data File : c:\hpchem\1\data\0412\r3738.d

Vial: 49 Acq On : 13 Apr 95 1:36 am Operator: Francisco

Sample : 2349001,1-16-1,

Inst : HPR Misc : 1,,,05-APR-95,30,1,T8270, SOIL Multiplr: 1.00

Quant Time: Apr 13 11:53 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Data File : c:\hpchem\1\data\0412\r3738.d

Acq On : 13 Apr 95 1:36 am

Sample : 2349001,1-16-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:53 1995

: C:\HPCHEM\1\METHODS\8270R.M Method

: 390/ASP/SW846 Title

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	18.23	136 164 188 240	525920	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 -0.02 -0.02 -0.02
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.68 7.88 8.10 8.69 9.37 13.10 16.61 22.16	112 99 132 150 82 172 330 244	627308 707235 663162 513825 427371 877679 209142 811806	%F 36.62 ug/L 38.92 ug/L 37.83 ug/L 27.47 ug/L 30.14 ug/L 31.16 ug/L 38.03 ug/L 36.24 ug/L	Recovery 48.83 51.89° 50.44 54.94 60.27° 62.31 50.71 72.48°
Target Compounds 71) Bis(2-ethylhexyl)phthalate	24.82	149	96273	2.96 ug/L	Qvalue 99

000005

Vial: 49

Multiplr: 1.00

Inst

Operator: Francisc

: HPR

EPA SAMPLE NO.

1-16-D

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349002

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3739.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 4 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2	Phenol		350	
111-44-4	bis(2-Chloroethyl)E	ther	350	Ū
95-57-8	Z-Chlorophenol		350	Ū
541-73-1	1,3-Dichlorobenzene		350	Ŭ
106-46-7	1,4-Dichlorobenzene		350	Ū
95-50-1	1,2-Dichlorobenzene		350	Ū
95-48-7	2-Methylphenol		350	Ŭ
108-60-1	2,2'-oxybis(1-Chlor	opropane)	350	Ū
106-44-5	4-Methylphenol	-pp	350	Ū
	N-Nitroso-di-n-prop	vlamine	350	Ū
67-72-1	Hexachloroethane	·	350	Ŭ
98-95-3	Nitrobenzene		350	Ū
78-59-1			350	Ū
88-75-5	2-Nitrophenol		350	Ū
	2,4-Dimethylphenol		350	Ū
120-83-2	2,4-Dichlorophenol		350	U
120-82-1	1,2,4-Trichlorobenz	ene	350	Ū
91-20-3	Naphthalene		350	U
	4-Chloroaniline		350	Ū
	Hexachlorobutadiene		350	. U
111-91-1	bis(2-Chloroethoxy)	methane	350	Ū
59-50-7	4-Chloro-3-Methylph	enol —	350	U
91-57-6	2-Methylnaphthalene		350	Ū
77-47-4	Hexachlorocyclopent	adiene	350	U
88-06-2	2,4,6-Trichlorophen	ol	350	IJ
95-95-4	2,4,5-Trichlorophen	ol	1700	Ü
91-58-7	2-Chloronaphthalene		350	U
88-74-4	2-Nitroaniline		1700	U
	Dimethylphthalate		350	U
	Acenaphthylene		350	U
606-20-2	2,6-Dinitrotoluene		350	Ŭ
	3-Nitroaniline		1700	Ŭ
83-32-9	Acenaphthene		350	Ū

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9521649

1-16-D

Matrix: (soil/water) SOIL Lab Sample ID: 2349002

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3739.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 4 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		agyn or (ug/kg)	UG/KG	Q
132-64-9	2,4-Dinitrophenol_ 4-Nitrophenol_ Dibenzofuran_ 2,4-Dinitrotoluene			1700 1700 350 350	ט נ
7005-72-3 86-73-7 100-01-6 534-52-1	Diethylphthalate4-Chlorophenyl-pherFluorene4-Nitroaniline	ylether_		350 350 350 1700 1700	ט ט ט
118-74-1 87-86-5 85-01-8 120-12-7	N-Nitrosodiphenylam4-Bromophenyl-phenyHexachlorobenzenePentachlorophenolPhenanthrene	nine (1) vlether		.350 350 350 1700 350	ם ט ט
86-74-8 84-74-2 206-44-0 129-00-0 85-68-7	Carbazole Di-n-butylphthalate Fluoranthene Pyrene		 	350 350 350 350	ם ח
56-55-3 218-01-9 117-81-7 117-84-0	3,3'-Dichlorobenzid Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)ph	ine thalate_		350 690 350 350	Ū
207-08-9 50-32-8 193-39-5 53-70-3	Benzo (b) fluoranthen Benzo (k) fluoranthen Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene	e e ene	- - - -	350 350 350 350 350	ממממט
191-24-2	Benzo(g,h,i)perylene	9	-	350	ָם

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\r3739.d

Acq On : 13 Apr 95 2:24 am

Sample : 2349002,1-16-D, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:54 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

: 390/ASP/SW846 Title

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 50

Inst : HPR Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3739.d

Vial: 50 Operator: Francis

Acq On : 13 Apr 95 2:24 am Sample : 2349002,1-16-D, Misc : 1,,,05-APR-95,30,1,T8270, SOIL Inst : HPR Multiplr: 1.00

Quant Time: Apr 13 11:54 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Mir
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.38 10.73 14.70 18.23 24.77 28.49	152 136 164 188 240 264	261158 908012 490014 750653 534242 650396	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.68 7.88 8.11 8.70 9.38 13.10 16.63 22.18	112 99 132 150 82 172 330 244	751585 859312 809634 619324 520895 1066544 270723 927477	%R 40.99 ug/L 44.18 ug/L 43.15 ug/L 30.94 ug/L 35.07 ug/L 35.28 ug/L 45.88 ug/L 40.76 ug/L	54.66 58.90° 57.56 61.8 70.1 70.57 61.1

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integrationr3739.d 8270R.M Thu Apr 13 14:36:13 1995 HPPC

1-16-2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2349003

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3740.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 9 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG (

CAS NO.	COMPOUND (dg/L or dg/l	kg) UG/KG	Q ———
108-95-2	Phenol	3700	U
111-44-4	bis(2-Chloroethyl)Ether	3700	U
	2-Chlorophenol	3700	Ü
541-73-1	1,3-Dichlorobenzene	3700	Ū
106-46-7	1,4-Dichlorobenzene	3700	Ū
95-50-1	1, 2-Dichlorobenzene	3700	Ū
	2-Methylphenol	3700	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	3700	Ū
106-44-5	4-Methylphenol	3700	Ū
621-64-7	N-Nitroso-di-n-propylamine	3700	Ū
67-72-1	Hexachloroethane	3700	Ū
	Nitrobenzene	3700	Ū
78-59-1	Isophorone	3700	U
88-75-5	2-Nitrophenol	3700	U
105-67-9	2,4-Dimethylphenol	3700	U
	2,4-Dichlorophenol	3700	U
120-82-1	1,2,4-Trichlorobenzene	3700	U
	Naphthalene	370	J
106-47-8	4-Chloroaniline	3700	U
	Hexachlorobutadiene	3700	U
111-91-1	bis(2-Chloroethoxy) methane	3700	U
59-50-7	4-Chloro-3-Methylphenol	3700	U
91-57-6	2-Methylnaphthalene	720	J
77-47-4	Hexachlorocyclopentadiene	3700	U
	2,4,6-Trichlorophenol	3700	U
95-95-4	2,4,5-Trichlorophenol	18000	U
91-58-7	2-Chloronaphthalene	3700	U
	2-Nitroaniline	18000	U
131-11-3	Dimethylphthalate	3700	U
	Acenaphthylene	3700	U
	2,6-Dinitrotoluene	3700	U
	3-Nitroaniline	18000	Ŭ
<u>)</u>	Acenaphthene	3700	U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

1-16-2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2349003

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R3740.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 9 dec.

Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 10.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

		~5/ 1/5/		~
51-28-5	2,4-Dinitrophenol		18000	U
100-02-7	4-Nitrophenol		18000	1 77
132-64-9	Dibenzofuran		3700	
	2,4-Dinitrotoluene		3700	ט ד
84-66-2	Diethylphthalate		3700	Ŭ
7005-72-3	4-Chlorophenyl-phenylether	-	3700	Ü
86-73-7	Fluorene	·—	3700	Ū
100-01-6	4-Nitroaniline		18000	Ŭ
534-52-1	4,6-Dinitro-2-methylphenol		18000	บั
86-30-6	N-Nitrosodiphenylamine (1)	·—	3700	Ŭ
101-55-3	4-Bromophenyl-phenylether	-	3700	ָ ט
118-74-1	Hexachlorobenzene		3700	ט
87-86-5	Pentachlorophenol		18000	Ū
85-01-8	Phenanthrene		800	J
120-12-7	Anthracene -		3700	Ū
86-74-8	Carbazole		3700	Ü
84-74-2	Di-n-butylphthalate		3700	Ŭ
206-44-0	Fluoranthene		1500	J
129-00-0	Pyrene		1500	J
85-68-7	Butylbenzylphthalate		3700	Ū
91-94-1	3,3'-Dichlorobenzidine		7300	Ū
56-55-3	Benzo(a) anthracene		840	J
218-01-9	Chrysene		1000	J
117-81-7	bis(2-Ethylhexyl)phthalate	<u>-</u>	3700	Ū
117-84-0	Di-n-octylphthalate	_	3700	Ü
205-99-2	Benzo(b) fluoranthene		790	J
207-08-9	Benzo(k) fluoranthene		580	J
50-32-8	Benzo (a) pyrene		740	J
193-39-5	Indeno (1, 2, 3-cd) pyrene		3700	U
53-70-3	Dibenz(a,h) anthracene	—	3700	ט
191-24-2	Benzo(g,h,i)perylene		420	J
			120	

Data File : c:\hpchem\1\data\0412\r3740.d

Acq On : 13 Apr 95 3:11 am

Sample : 2349003,1-16-2, Misc : 10,,,05-APR-95,30,10,T8270, SOIL

Quant Time: Apr 13 11:55 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 51

Inst : HPR Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3740.d

: 13 Apr 95 3:11 am

Sample : 2349003,1-16-2, Misc : 10,,,05-APR-95,30,10,T8270, SOIL

Quant Time- Apr 13 11:55 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Mi
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.40 10.73 14.70 18.25 24.77 28.51	164 188 240	945107 510423 803325 583189	20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	8.71 9.39	99 132 150 82 172 330	95442 63689 48598 128792 21469	4.04 ug/L 4.14 ug/L 4.73 ug/L	6.30 5.91 6.29 8.18 4.66
Target Compounds 27) Naphthalene 31) 2-Methylnaphthalene 60) Phenanthrene 64) Fluoranthene 66) Pyrene 69) Benzo(a) anthracene 70) Chrysene 75) Benzo(b) fluoranthene 76) Benzo(k) fluoranthene 77) Benzo(a) pyrene 80) Benzo(g,h,i) perylene	27.36/ 27.41/ 28.30	142 178 202 202 228 228 252 252	61533 95923 164221 153102 71217 69666 76935 46277	1.01 ug/L 1.96 ug/L 2.17 ug/L 4.04 ug/L 4.08 ug/L 2.30 ug/L 2.87 ug/L 2.15 ug/L 1.59 ug/L 2.02 ug/L	Qvalue 98 97 98 83 78 99 98 98

Vial: 51

Inst : HPR Multiplr: 1.00

Operator: Francis

^{(#) =} qualifier out of range (m) = manual integrationr3740.d 8270R.M Thu Apr 13 14:38:05 1995

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9521649 1-17-1

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2349004

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R3747.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 3 dec.

Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		*
108-95-2Phenol	340	
111-44-4bis(2-Chloroethyl)Ether	340	1
33-37-82-Chiorophenol	340	
541-73-11 3-Dichlorobenzone		
106-46-71.4-Dichlorohenzene	340	
95-50-11.2-Dichlorohenzene	340	
95-48-/2-Methylphenol	340	_
108-60-12.2'-0xyhis(1-Chloropropage)	340	ט
106-44-54-Methylphenol	340	ט
621-64-7N-Nitroso-di-n-propylamine	340	U
67-72-1Hexachloroethane	. 340	U
98-95-3Nitrobenzene	340	U
78-59-1Isophorone	340	U
88-75-52-Nitrophenol	340	U
105-67-92,4-Dimethylphenol	340	U
120-83-22,4-Dichlorophenol	340	
120-83-1 1 2 4 mai ala	340	U
120-82-11,2,4-Trichlorobenzene 91-20-3Naphthalene	340	U
106 47 0	340	U
106-47-84-Chloroaniline	340	Ū
87-68-3Hexachlorobutadiene	340	U
111-91-1bis(2-Chloroethoxy) methane	340	U
59-50-74-Chloro-3-Methylphenol	340	U
91-57-62-Methylnaphthalene	340	U
77-47-4Hexachlorocyclopentadiene	340	Ū
88-96-2 4 6-Trichlorophonol	340	Ū
95-95-42.4.5-Trichlorophenol	1700	Ū
91-58-/2-Chloronaphthalene	340	Ū
88-74-42-Nitroaniline	1700	Ū
131-11-3Dimethylphthalate	340	Ū
208-96-8Acenaphthylene	. 340	ט
606-20-22.6-Dinitroroluene	340	ָּט
99-09-23-Nitroaniline	1700	ם
83-32-9Acenaphthene	340	TJ.
	340	U
	1	

⁴-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

1-17-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349004

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3747.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 3 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-5	2,4-Dinitrophenol	1700	U
100-02-7	4-Nitrophenol	1700	U
132-64-9	Dibenzofuran	340	U
121-14-2	2,4-Dinitrotoluene	340	U
84-66-2	Diethylphthalate	340	U
7005-72-3	4-Chlorophenyl-phenylether	340	U
86-73-7	Fluorene	340	U
	4-Nitroaniline	1700	U
534-52-1	4,6-Dinitro-2-methylphenol	1700	U
86-30-6	N-Nitrosodiphenylamine (1)	340	U
101-55-3	4-Bromophenyl-phenylether	340	U
118-74-1	Hexachlorobenzene	340	U
	Pentachlorophenol	1700	U
85-01-8	Phenanthrene	340	U
120-12-7	Anthracene	340	U
	Carbazole	340	Ū
	Di-n-butylphthalate	340	U
	Fluoranthene	340	U
129-00-0		340	Ŭ
85-68-7	Butylbenzylphthalate	340	Ŭ
91-94-1	3,3'-Dichlorobenzidine	690	Ū
56-55-3	Benzo(a) anthracene	340	Ŭ
218-01-9	Chrysene	340	Ü
117-81-7	bis(2-Ethylhexyl)phthalate	43	J
	Di-n-octylphthalate	340	U
	Benzo(b)fluoranthene	340	U
	Benzo(k)fluoranthene	340	U
50-32-8	Benzo(a) pyrene	340	U U
193-39-5	Indeno (1, 2, 3-cd) pyrene	340	U
53-70-3	Dibenz(a,h)anthracene	340	U
191-24-2	Benzo(g,h,i)perylene	340	U

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SW846 METHOD 827

Data File : c:\hpchem\1\data\0412\r3747.d

Acq On : 13 Apr 95 8:42 am

Sample : 2349004,1-17-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 12:01 1995

Method : C:\HPCHEM\1\METHODS\ANILINE.M

Title : 390/ASP/SW846

Last Update : Thu Apr 13 14:54:03 1995 Response via : Single Level Calibration

Vial: 58

Inst : HPR Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3747.d

Acq On : 13 Apr 95 8:42 am

Sample : 2349004,1-17-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL Inst : HPR Multiplr: 1.00

Quant Time: Apr 13 12:01 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min,
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.40 10.73 14.70 18.25 24.77 28.49	136 164 188 240	255519 874994 466655 720841 544915 604887	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.70 7.88 8.11 8.71 9.39 13.10 16.63 22.18	132 150 82 172	630171 726632 689258 505349 417244 884690 211907 850301	35.13 ug/L 38.18 ug/L 37.55 ug/L 25.80 ug/L 29.15 ug/L 30.73 ug/L 37.71 ug/L 36.63 ug/L	50.91% 50.06 51. 53. 61.46 50.28
Target Compounds 71) Bis(2-ethylhexyl)phthalate	24.82	149	42156	1.25 ug/L	Qvalue 96

Vial: 58

Operator: Francisc

^{(#) =} qualifier out of range (m) = manual integrationr3747.d ANILINE.M Thu Apr 13 15:48:33 1995

1-17-2

SDG No.: WORLA

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349007

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3741.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2-----Phenol 3601 IJ 111-44-4-----bis(2-Chloroethyl)Ether 360 U 95-57-8-----2-Chlorophenol 360 Ũ 541-73-1----1,3-Dichlorobenzene 360 U 106-46-7-----1, 4-Dichlorobenzene 360 U 95-50-1-----1,2-Dichlorobenzene 360 U 95-48-7----2-Methylphenol 360 U 108-60-1----2,2'-oxybis(1-Chloropropane) 360 U 106-44-5----4-Methylphenol 360 U 621-64-7----N-Nitroso-di-n-propylamine__ 360 Ŭ 67-72-1------Hexachloroethane__ U 360 98-95-3----Nitrobenzene 360 U 78-59-1-----Isophorone 360 U 88-75-5----2-Nitrophenol 360 U 105-67-9-----2,4-Dimethylphenol U 360 120-83-2----2,4-Dichlorophenol 360 U 120-82-1----1, 2, 4-Trichlorobenzene 360 U 91-20-3-----Naphthalene 360 U 106-47-8-----4-Chloroaniline U 3601 87-68-3------Hexachlorobutadiene 360 U 111-91-1-----bis(2-Chloroethoxy)methane 360 U 59-50-7----4-Chloro-3-Methylphenol 360 U 91-57-6----2-Methylnaphthalene 360 U 77-47-4-----Hexachlorocyclopentadiene___ 360 Ũ 88-06-2----2,4,6-Trichlorophenol_ 360 U 95-95-4----2,4,5-Trichlorophenol 1800 U 91-58-7-----2-Chloronaphthalene U 360 88-74-4----2-Nitroaniline 1800 U 131-11-3-----Dimethylphthalate 360 U 208-96-8-----Acenaphthylene 360 U 606-20-2----2,6-Dinitrotoluene 360 U 99-09-2----3-Nitroaniline_____ 1800 U 83-32-9-----Acenaphthene 360 U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

1-17-2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349007

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3741.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
51-28-5	2,4-Dinitrophen	ol		1800	U
100-02-7	4-Nitrophenol			1800	
132-64-9	Dibenzofuran	· · · · · · · · · · · · · · · · · · ·		360	ט
121-14-2	2,4-Dinitrotolu	ane		360	ט
84-66-2	Diethvlphthalar			360	<u>.</u>
7005-72-3	4-Chlorophenyl-	ohenvlerher		360	ט
86-73-7	Fluorene	orierly recircing	 ∤	360	ט
100-01-6	4-Nitroaniline	· · · · · · · · · · · · · · · · · · ·		1800	ט
534-52-1	4,6-Dinitro-2-m	ethylphenol		1800	ט
86-30-6	N-Nitrosodiphen	vlamine (1)		360	ט
101-55-3	4-Bromophenvl-p	henvlether i		360	ŭ
1118-74-1	Hexachlorobenze	re –		360	ט
87-86-5	Pentachlorophen	51		1800	ט
85-01-8	Phenanthrene			360	ט
120-12-7	Anthracene	· · · · · · · · · · · · · · · · · · ·		360	שט
86-74-8	Carbazole			360	ט
84-74-2	Di-n-butylphtha	late		360	ם
1 200-44-0	Fluoranthene			360	Ū
129-00-0	Pyrene		-	360	Ū
85-68-7	Butvlbenzylphtha	alate		360	Ü
91-94-1	3,3'-Dichlorobe	nzidine		720	Ū
56-55-3	Benzo(a)anthrace	ene		360	Ŭ
218-01-9	Chrysene		_	360	Ū
117-81-7	bis(2-Et $\overline{\text{hylhexy}}$)phthalate		40	J
117-84-0	Di-n-octvlphthal	ate		360	Ū
205-99-2	Benzo(b) fluorant	hene		360	Ü
207-08-9	Benzo(k)fluorant	hene		360	ָּט
50-32-8	Benzo(a) pyrene			360	ם
193-39-5	Indeno(1,2,3-cd)	nyrana	—	360	ŭ
53-70-3	Dibenz(a,h)anth	racene		360	Ŭ
191-24-2	Benzo(g,h,i)per	dene			U
	======================================	, Terre		360	Ú

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SW846 METHOD 827

Data File : c:\hpchem\1\data\0412\r3741.d

Acq On : 13 Apr 95 3:59 am

Sample : 2349007,1-17-2,

Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:56 1995

Method : C:\HPCHEM\1\METHODS\8270R.M
Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 52

Inst : HPR

Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3741.d

Vial: 52 Operator: Francisc

Acq On : 13 Apr 95 3:59 am Sample : 2349007,1-17-2, Misc : 1,,,05-APR-95,30,1,T8270, SOIL Inst : HPR Multiplr: 1.00

Quant Time: Apr 13 11:56 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.38 10.73 14.70 18.24 24.77 28.49	152 136 164 188 240 264	290495 992650 523814 797277 545023 671478	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.69 7.89 8.10 8.71 9.39 13.10 16.63 22.18	112 99 132 150 82 172 330 244	798317 942012 948943 691528 556318 1147751 264180 1000194	%F 39.15 ug/L 43.54 ug/L 45.47 ug/L 31.05 ug/L 34.26 ug/L 35.52 ug/L 41.88 ug/L 43.08 ug/L	60.63 62.11 68.52 71.04° 55.84
Target Compounds 71) Bis(2-ethylhexyl)phthalate	24.82	149	37539	1.11 ug/L	Qvalue 99

^{(#) =} qualifier out of range (m) = manual integration r3741.d 8270R.M Thu Apr 13 15:17:49 1995 HPPC

1-18-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2349008

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3742.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 5 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	3500	ָּט.
111-44-4bis(2-Chloroethyl)Ether	3500	- 1
95-57-82-Chlorophenol	3500	Ü
541-73-11,3-Dichlorobenzene	3500	
106-46-71,4-Dichlorobenzene	3500	
95-50-11,2-Dichlorobenzene	3500	Ū
95-48-72-Methylphenol	. 3500	Ū
108-60-12,2'-oxybis(1-Chloropropane)	3500	ט
106-44-54-Methylphenol	3500	Ū
621-64-7N-Nitroso-di-n-propylamine	3500	ָט
67-72-1Hexachloroethane	3500	ָּט
98-95-3Nitrobenzene	3500	Ū
78-59-1Isophorone	3500	ប
88-75-52-Nitrophenol	3500	U
105-67-92,4-Dimethylphenol	3500	U
120-83-22,4-Dichlorophenol	3500	IJ
120-82-11,2,4-Trichlorobenzene	3500	ָ ָ ע
91-20-3Naphthalene	3500	Ŭ
106-47-84-Chloroaniline	3500	Ū
87-68-3Hexachlorobutadiene	3500	i
111-91-1bis(2-Chloroethoxy)methane	3500	ָ ט
59-50-74-Chloro-3-Methylphenol	3500	U
91-57-62-Methylnaphthalene	3500	U
77-47-4Hexachlorocyclopentadiene	3500	Ŭ
88-06-22,4,6-Trichlorophenol	3500	U
95-95-42,4,5-Trichlorophenol	18000	U
91-58-72-Chloronaphthalene	3500	U
88-74-42-Nitroaniline	18000	U
131-11-3Dimethylphthalate	3500	Ŭ
208-96-8Acenaphthylene	3500	Ū
606-20-22,6-Dinitrotoluene	3500	Ū
99-09-23-Nitroaniline	18000	U
83-32-9Acenaphthene_	390	J

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

Lab Name: NYTEST ENV INC Contract: 9521649

1-18-1

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2349008

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R3742.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 5 dec.

Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 10.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		¥
51-28-52,4-Dinitrophenol	18000	
100-02-74-Nitrophenol		1
132-64-9Dibenzofuran	18000	U
121-14-22.4-Dinitrotoluene	3500	Ū
84-66-2Diethylphthalare	3500	Ü
7005-72-34-Chlorophenyl-phenylether	3500	U
86-73-7Fluorene	3500	U
100-01-64-Nitroaniline	470	J
534-52-14,6-Dinitro-2-methylphenol	18000	U
86-30-6N-Nitrosodiphenylamine (1)	18000	U
101-55-34-Bromophenyl-phenylether	3500	U
118-74-1Hexachlorobenzene	3500	U
87-86-5Pentachlorophenol	3500	ט
85-01-8Phenanthrene	18000	U
120-12-7Anthracene	5300	
86-74-8Carbazole	1300	J
84-74-2Di-n-butylphthalate	3500	Ū
200-44-0Fluoranthene	3500	Ū
129-00-0Pyrene	7400	
95-60 7 Dis-1b	7700	
85-68-7Butylbenzylphthalate	3500	Ū
91-94-13,3'-Dichlorobenzidine	7000	Ū
56-55-3Benzo(a)anthracene	4500	
117-91-7 hig/2 Rh	5600	
117-81-7bis(2-Ethylhexyl)phthalate	3500	Ū
117-84-0Di-n-octylphthalate	3500	Ū
205-99-2Benzo(b) fluoranthene	3300	J
50-32-8Benzo(a) pyrene	3200	J
193-39-5 Indone/1	3500	J
193-39-5Indeno(1,2,3-cd)pyrene	1600	J
53-70-3Dibenz(a,h)anthracene	3500	Ü
191-24-2Benzo(g,h,i)perylene	1600	J
		ŀ

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SW846 METHOD 8270.

Data File : c:\hpchem\1\data\0412\r3742.d

Acq On : 13 Apr 95 4:46 am Sample : 2349008,1-18-1, Misc : 10,,,05-APR-95,30,10,T8270, SOIL

Quant Time: Apr 13 14:13 1995

Method : c:\HPCHEM\1\METHODS\8270R.M

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 53

Inst : HPR Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3742.d Vial: 53

Acq On : 13 Apr 95 4:46 am Operator: Francisc

Sample : 2349008,1-18-1, Misc : 10,,,05-APR-95,30,10,T8270, SOIL Inst : HPR Multiplr: 1.00

Quant Time: Apr 13 14:13 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Mir
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.40 10.73 14.70 18.25 24.77 28.51	136 164 188 240	784159 545888	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	8.72 9.39 13.10	172 330	74673 36797 28647 135772 36967	2.51 ug/L 3.60 ug/L 3.70 ug/L 1.71 ug/L 1.85 ug/L 4.36 ug/L	4.93 3.41 3.71 8.72 8.11
Target Compounds 43) Acenaphthene 50) Fluorene 60) Phenanthrene 61) Anthracene 64) Fluoranthene 66) Pyrene 69) Benzo(a) anthracene 70) Chrysene 75) Benzo(b) fluoranthene 76) Benzo(k) fluoranthene 77) Benzo(a) pyrene 78) Indeno(1,2,3-cd) pyrene 80) Benzo(g,h,i) perylene	18.30 18.40 21.24 21.78 24.72 24.82 27.38 27.43 28.32 32.53	166 178 178 202 202 228 228 252 252	38568 656562 156564 832416 772356 369069 360993 317173 249075 303908	1.10 ug/L 1.33 ug/L 15.25 ug/L 3.83 ug/L 21.00 ug/L 22.01 ug/L 12.73 ug/L 15.86 ug/L 9.30 ug/L 9.00 ug/L 9.94 ug/L 4.57 ug/L 4.56 ug/L	Qvalue 99 99 99 97 83 87 98 98 96 98

^(#) = qualifier out of range (m) = manual integration r3742.d 8270R.M Thu Apr 13 15:19:32 1995 HPPC

1-18-2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: . SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2349009

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3743.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 20.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
108-95-2				7200	Ū
111-44-4	bis(2-Chloroethy	/l)Ether		7200	Ŭ
95-57-8	2-Chlorophenol			7200	Ü
541-73-1	1,3-Dichlorobenz	ene	_	7200	Ū
106-46-7	1,4-Dichlorobenz	ene		7200	Ū
95-50-1	1,2-Dichlorobenz	ene		7200	Ü
95-48-7	2-Methylphenol			7200	Ü
108-60-1	2,2'-oxybis(1- C r	loropropar	ie)	7200	Ū
106-44-5	4-Methylphenol		i	7200	บ
621-64-7	N-Nitroso-di-n - p	ropylamine	3	7200	Ū
67-72-1	Hexachloroethane	:	—	7200	Ü
98-95-3	Nitrobenzene			7200	IJ
78-59-1	Isophorone			7200	Ū
88 - 75-5	2-Nitrophenol			7200	U
105-67-9	2,4-Dimethylpher	iol		7200	U
120-83-2	2,4-Dichloropher	ıol		7200	U
120-82-1	1,2,4-Trichlorob	enzene		7200	Ū
91-20-3	Naphthalene			7200	U
106-47-8	4-Chloroaniline			7200	U
87-68-3	Hexachlorobutadī	.ene		7200	Ū
111-91-1	bis(2-Chloroetho	xy) methane	3	7200	U
59-50-7	4-Chloro-3-Methy	lphenol		7200	U
91-57-6	2-Methylnaphthal	.ene		7200	U
77-47-4	Hexachlorocyclor	entadiene		7200	Ū
88-06-2	2,4,6-Trichloror	henol		7200	U
95-95-4	2,4,5-Trichlorop	henol		36000	U
91-58-7	2-Chloronaphthal	.ene		7200	U
	2-Nitroaniline			36000	U
131-11-3	Dimethylphthalat	.e		7200	U
208-96-8	Acenaphthylene			7200	U
606-20-2	2,6-Dinitrotol $\overline{\mathrm{ue}}$	ne		7200	U
	3-Nitroaniline			36000	Ū
83-32-9	Acenaphthene			7200	Ū
	-				

 $4 ext{-Methylphenol}$ is being reported as the combination of $3 ext{ + }4 ext{ Methylphenol}$

Lab Name: NYTEST ENV INC Contract: 9521649

1-18-2

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WOR1A

Matrix: (soil/water) SOIL Lab Sample ID: 2349009

Sample wt/vol: 30.0 (g/mL) GLab File ID: R3743.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 8 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 20.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

J, =	, 113, 00, 110	¥
51-28-52,4-Dinitrophenol	36000	U
100-02-74-Nitrophenol	36000	[
132-64-9Dibenzofuran	7200	ָ ָ 'U
121-14-22,4-Dinitrotoluene	7200	ם ט
84-66-2Diethylphthalate	7200	ם
7005-72-34-Chlorophenyl-phenylether	7200	ט ט
86-73-7Fluorene	7200	U U
100-01-64-Nitroaniline	36000	ָ ֖֖֓
534-52-14,6-Dinitro-2-methylphenol	36000	Ü
86-30-6N-Nitrosodiphenvlamine (1)	7200	Ū
101-55-34-Bromophenyl-phenylether	7200	Ū
118-74-1Hexachlorobenzene	7200	Ū
87-86-5Pentachlorophenol	36000	Ū
85-01-8Phenanthrene	7200	Ū
120-12-7Anthracene	7200	Ū
86-74-8Carbazole	7200	U
84-74-2Di-n-butylphthalate	7200	IJ
206-44-0Fluoranthene	7200	. ט
129-00-0Pyrene	7200	U
85-68-7Butylbenzylphthalate	7200	ַ
91-94-13,3'-Dichlorobenzidine	14000	ן ט
56-55-3Benzo (a) anthracene	7200	ט
218-01-9Chrysene	7200	U
117-81-7bis(2-Ethylhexyl)phthalate	7200	U
117-84-0Di-n-octylphthalate	7200	וט
205-99-2Benzo(b) fluoranthene	7200	U
207-08-9Benzo(k) fluoranthene	7200	Ū
50-32-8Benzo (a) pyrene	7200	U
193-39-5Indeno(1,2,3-cd)pyrene	7200	ַ
53-70-3Dibenz(a,h)anthracene	7200	Ū
191-24-2Benzo(g,h,i)perylene	7200	Ū
	· — — — — — — — — — — — — — — — — — — —	

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\r3743.d

Acq On : 13 Apr 95 5:33 am

Sample : 2349009,1-18-2,

Misc : 20,,,05-APR-95,30,10,T8270, SOIL

Quant Time: Apr 13 11:57 1995

Method : C:\HPCHEM\1\METHODS\8270R.M
Title : 390/ASP/SW04C

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 54

Inst : HPR

Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3743.d Vial: 54

: 13 Apr 95 5:33 am Acq On Operator: Francisc

Sample : 2349009,1-18-2, Misc : 20,,,05-APR-95,30,10,T8270, SOIL Inst : HPR Multiplr: 1.00

Quant Time: Apr 13 11:57 1995

Method : C:\HPCHEM\1\METHODS\8270R.M

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T. QIO	n Response	Conc Units	Dev(Min
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.40 15 10.73 13 14.70 16 18.24 18 24.77 24 28.51 26	6 834335 4 428215 8 672241 0 518720	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.75 11 7.96 9 8.14 13 8.71 15 9.43 8: 13.11 17; 16.64 33; 22.16 24.	9 2248 2 7794 0 6070 2 2462 2 12215 0 1856	% 0.29 ug/L 0.13 ug/L 0.47 ug/L 0.34 ug/L 0.18 ug/L 0.46 ug/L 0.36 ug/L 0.62 ug/L	0.17 0.63 0.68 0.36 0.92 0.48

Target Compounds Qvalue

^(#) = qualifier out of range (m) = manual integration r3743.d 8270R.M Thu Apr 13 15:23:42 1995 HPPC

1-20-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349010

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3744.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 10 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/kg) UG/kG Q

		g/ 11g/ 00/ 11G	Q
108-95-2	Phenol	370	U
	bis(2-Chloroethyl)Ether	370	Ū
95-57-8	·2-Chlorophenol	370	Ū
	·1,3-Dichlorobenzene	370	Ū
106-46-7	1,4-Dichlorobenzene	370	U
95-50-1	1,2-Dichlorobenzene	370	U
95-48-7	2-Methylphenol	370	Ŭ
	2,2'-oxybis(1-Chloropropane)	370	Ŭ
106-44-5	4-Methylphenol	370	Ū
621-64-7	N-Nitroso-di-n-propylamine	370	U U
67-72-1	Hexachloroethane	- I	Ŭ
98-95-3	Nitrobenzene	370	Ŭ
	Isophorone	370 370	ŭ
	2-Nitrophenol	- i	Ü
	2,4-Dimethylphenol	370	_
100-07-3	2,4-Dimethylphenol	370	Ŭ
120-03-2	1,2,4-Trichlorobenzene	370	Ŭ
120-02-1	Naphthalene	370	U
106-47-9	4-Chloroaniline	. 370	Ŭ U
	Hexachlorobutadiene	370	
111 01 1	hig (2. Chi annulus and a section and a sect	370	U
TTT-3T-T	bis(2-Chloroethoxy)methane	370	U
03 57 6	4-Chloro-3-Methylphenol	370	Ţ
71-5/-6	2-Methylnaphthalene	370	U
//-4/-4	Hexachlorocyclopentadiene	370	Ũ
88-06-2	2,4,6-Trichlorophenol	370	U
95-95-4	2,4,5-Trichlorophenol	_ 1800	U
	2-Chloronaphthalene	_ 370	U
	2-Nitroaniline	1800	U
131-11-3	Dimethylphthalate	370	Ŭ
	Acenaphthylene	370	U
606-20-2	2,6-Dinitrotoluene	370	Ŭ
	3-Nitroaniline	1800	U
83-32-9	Acenaphthene	370	U
		-	
		- · 	

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

1-20-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2349010

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R3744.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 10 dec.

Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SCNC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

10.		g/kg) UG/kG	Q
51-28-5	2,4-Dinitrophenol	1800	U
100-02-7	4-Nitrophenol	1800	U
132-64-9	Dibenzofuran	- 370	Ü
121-14-2	2.4-Dinitrotoluene	- 370 370	
84-66-2	Diethylphthalate	 ;	
7005-72-3	4-Chlorophenyl-phenylether	370	_
86-73-7	Fluorene	370	Ū
100-01-6	4-Nitroaniline	370	ū
534-52-1	4,6-Dinitro-2-methylphenol	1800	ū
86-30-6	N-Nitrosodiphenylamine (1)	1800	
101-55-3	4-Bromophenyl-phenylether	370	
118-74-1	Hexachlorobenzene	370	ū
87-86-5	Pentachlorophenol	370	_
85-01-8	Phenanthrene	1800	Ū
120-12-7	Anthracene	_ 370	, -
86-74-8	Carbazole	370	_
84-74-2	Di-n-butylphthalate	_ 370	1 -
/ Jun = 44 = 0 = = = = =	Fluoranthene	370	Ū
129-00-0	Propo	370	Ŭ
85-69-7	Pyterib	_ 370	Ŭ
01 04 1	Butylbenzylphthalate	370	Ū
21-24-1	3,3'-Dichlorobenzidine	_ 740	Ū
010 01 0	Benzo(a) anthracene	370	U
218-01-9	Chrysene	370	Ŭ
117-81-7	bis(2-Ethylhexyl)phthalate	42	J
117-84-0	Di-n-octylphthalate	⁻ 370	Ū
205-99-2	Benzo(b) fluoranthene	370	Ū
207-08-9	Benzo(k) fluoranthene	370	Ū
50-32-8	Benzo (a) pyrene	370	Ū
193-39-5	Indeno (1.2.3-cd) pyrene	370	Ū
53-70-3	Dibenz(a,h)anthracene	370	Ü
191-24-2	Benzo(g,h,i)perylene	370	וז
	.5,,,,	-	U
		_	

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SW846 METHOD 82

Data File : c:\hpchem\1\data\0412\r3744.d

Acq On : 13 Apr 95 6:20 am

Sample : 2349010,1-20-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:58 1995

Method : c:\HPCHEM\1\METHODS\8270R.M

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 55

Inst : HPR Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3744.d

Acq On : 13 Apr 95 6:20 am

Sample : 2349010,1-20-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:58 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Mir
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12		136 164 188 240	881657 454739 699068 536361	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.70 7.90 8.12 8.71 9.39 13.12 16.63 22.18	112 99 132 150 82 172 330 244	544865 637244 636326 419968 337683 774300 235459 874629	31.20 ug/L 34.40 ug/L 35.61 ug/L 22.03 ug/L 23.41 ug/L 27.60 ug/L 43.00 ug/L 38.28 ug/L	47.48 44.05 46.83 55.20 57.33
Target Compounds 71) Bis(2-ethylhexyl)phthalate	24.84	149	37238	1.12 ug/L	Qvalue

Vial: 55

Multiplr: 1.00

Inst

Operator: Francisc

: HPR

^{(#) =} qualifier out of range (m) = manual integrationr3744.d 8270R.M Thu Apr 13 15:25:09 1995

1-21-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349011

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3745.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 3 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/kg) UG/kG Q

108-95-2Phenol	340	U
111-44-4bis(2-Chloroethyl)Ether	340	Ū
95-57-82-Chlorophenol	340	Ū
541-73-11,3-Dichlorobenzene	340	Ū
106-46-71,4-Dichlorobenzene	- 340	Ŭ
95-50-11,2-Dichlorobenzene	340	Ü
95-48-72-Methylphenol	340	Ŭ
108-60-12,2'-oxybis(1-Chloropropane)	340	Ū
106-44-54-Methylphenol	340	Ŭ
621-64-7N-Nitroso-di-n-propylamine	340	Ū
67-72-1Hexachloroethane	340	Ū
98-95-3Nitrobenzene	340	Ü
78-59-1Isophorone	340	Ū
88-75-52-Nitrophenol	340	Ū
105-67-92,4-Dimethylphenol	340	ם
120-83-22,4-Dichlorophenol	340	ט
120-82-11,2,4-Trichlorobenzene	340	Ŭ
91-20-3Naphthalene	340	Ü
106-47-84-Chloroaniline	340	Ū
87-68-3Hexachlorobutadiene	340	Ū
111-91-1bis(2-Chloroethoxy) methane	340	Ū
59-50-74-Chloro-3-Methylphenol	340	Ū
91-57-62-Methylnaphthalene	340	ָ ָ 'ני
77-47-4Hexachlorocyclopentadiene	340	Ū
88-06-22,4,6-Trichlorophenol	340	Ū
95-95-42,4,5-Trichlorophenol	1700	U
91-58-72-Chloronaphthalene	340	ש
88-74-42-Nitroaniline	1700	Ü
131-11-3Dimethylphthalate	340	ט
208-96-8Acenaphthylene	340	ט
606-20-22,6-Dinitrotoluene	340	U
99-09-23-Nitroaniline	1700	U
83-32-9Acenaphthene	340	TI TI
03-32-9ACEIIapiiciieiie	340	
		l

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270A

1-21-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2349011

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3745.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 3 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

1			ug/kg/	UG/ RG	Q
51-28-5	2,4-Dinitrophenol			1700	
100-02-7	4-Nitrophenol	· · · · · · · · · · · · · · · · · · ·		1700	U
132-64-9	Dibenzofuran				
121-14-2	2.4-Dinitrotoluene			340	מ
84-66-2	Diethylphthalate_			340	U
7005-72-3	4-Chlorophenyl-phe	nulathor		340	ū
86-73-7	Fluorene	riArecijei.		340	U
100-01-6	4-Nitroaniline			340	ט
534-52-1	4,6-Dinitro-2-meth	vlphonol	— [1700	U
86-30-6	N-Nitrosodiphenyla	wipo (1)		1700	U
101-55-3	4-Bromophenyl-phen	MITTLE (I)		340	U
118-74-1	Hexachlorobenzene	Arecher_		340	U
87-86-5	Pentachlorophenol			340	U
85-01-8	Phenanthrene			1700	Ū
120-12-7	Anthracene			340 340	ָט
86-74-8	Carbazole			340	מ
84-74-2	Di-n-butvlphthalar		-	340	ט
200-44-0	Fluoranthene	<u> </u>	-	340	ט
129-00-0	Pvrene			340	ט
85-68-7	Butvlbenzylphthala	te -		340	ט
91-94-1	3.3'-Dichlorobenzi	di ne		690	U
56-55-3	Benzo(a) anthraceno		-	340	ט
218-01-9	Chrysene			340	מ
117-81-7	bis(2-Ethylhexyl)p	hthalate		340	1 1
117-84-0	Di-n-octylphthalat	- 			Ū
205-99-2	Benzo(b) fluoranthe			340	ַ
207-08-9	Benzo(k) fluoranthe			340	Ū
50-32-8	Benzo (a) pyrene	.re		340	ַ
193-39-5	Indeno (1, 2, 3 - cd) py:	rene		340	ם
53-70-3	Dibenz(a,h)anthrace	. erie		340	Ū
191-24-2	Benzo(g,h,i)peryler	=:16		340	Ū
	Delizo (g, ii, i) perytei	1e		340	U
			I		

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\r3745.d

Acq On : 13 Apr 95 7:08 am

Sample : 2349011,1-21-1,

Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:59 1995

Method : c:\HPCHEM\1\METHODS\8270R.M
Title : 390/ASP/SW846

Last Update : Thu Apr 13 11:51:55 1995 Response via : Single Level Calibration

Vial: 56

Inst : HPR

Multiplr: 1.00

Operator: Francisco

Data File : c:\hpchem\1\data\0412\r3745.d

Acq On : 13 Apr 95 7:08 am

Sample : 2349011,1-21-1, Misc : 1,,,05-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 11:59 1995

: c:\HPCHEM\1\METHODS\8270R.M

: 390/ASP/SW846 Title

Last Update : Thu Apr 13 11:51:55 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\r3737.d

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Mir
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.40 10.75 14.70 18.25 24.77 28.51	152 136 164 188 240 264	259038 912244 474894 729987 539712 593787	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.02 0.02 0.00 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.70 7.90 8.12 8.71 9.39 13.12 16.63 22.18	112 99 132 150 82 172 330 244	650998 789996 726463 562659 462499 971251 194947 907554	%Re 35.80 ug/L 40.94 ug/L 39.04 ug/L 28.34 ug/L 30.99 ug/L 33.15 ug/L 34.09 ug/L 39.48 ug/L	COVERY 47.73 54.59 52.05 56.67 61.99 66.31° 45.45

Target Compounds

Qvalue

Vial: 56

Inst : HPR Multiplr: 1.00

Operator: Francisc

(#) = qualifier out of range (m) = manual integrationr3745.d 8270R.M Thu Apr 13 15:27:10 1995 HPPC

Page 1

FLDBK1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2349012

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3647.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene	10 10 10	ם
106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-12,2'-oxybis(1-Chloropropane) 106-44-54-Methylphenol 621-64-7N-Nitroso-di-n-propylamine	10 10 10 10 10 10	ממממממ
67-72-1	10 10 10 10 10 10	ממממטט
91-20-3Naphthalene 106-47-84-Chloroaniline 87-68-3Hexachlorobutadiene 111-91-1bis(2-Chloroethoxy)methane 59-50-74-Chloro-3-Methylphenol 91-57-62-Methylnaphthalene	10 10 10 10 10	מממממ
77-47-4	10 10 50 10 50	ממממט
208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline 83-32-9Acenaphthene	10 10 50 10	מממ

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 82707

EPA SAMPLE NO.

FLDBK1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) WATER Lab Sample ID: 2349012

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3647.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

> CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) UG/L

Q

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SW846 METHOD 827d

Data File : c:\hpchem\1\data\0406\r3647.d

Acq On : 6 Apr 95 20:38 pm Sample : 2349012, FLDBK1, Misc : 1,5,,05-APR-95,1000,1,T8270, WATER

Quant Time: Apr 6 21:19 1995

Method : c:\HPCHEM\1\METHODS\8270R.M

Title : 390/ASP/SW846

Last Update : Wed Apr 12 10:02:10 1995 Response via : Single Level Calibration

Vial: 12

Inst : HPR Multiplr: 1.00

Operator: Francisco

VBLKP15

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WOR1

Matrix: (soil/water) SOIL

Lab Sample ID: VBLKP15

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: P4193.D

Level: (lcw/med) LOW

Date Received: 00/00/00

% Moisture: not dec. 0

Data Analyzed: 04/06/95

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ua/L or ua/Kg) UG/KG

78-93-32-Butanone 10 U 71-55-51,1,1-Trichloroethane 10 U 56-23-5Carbon Tetrachloride 10 U 75-27-4Bromodichloromethane 10 U	CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
74-83-9	74-87-3	Chloromethane		10	гт
75-01-4	74-83-9	Bromomethane			_
75-00-3	75-01-4	Vinyl Chloride		1	_
75-09-2	75-00-3	Chloroethane		1	
67-64-1	75-09-2	Methylene Chloride	2		
75-15-0	67-64-1	Acetone		-	
75-35-4	75-15-0	Carbon Disulfide		i i	
75-34-3	75-35-4	1.1-Dichloroethen	=	1	
540-59-01, 2-Dichloroethene 10 67-66-3Chloroform 10 107-06-21, 2-Dichloroethane 10 78-93-32-Butanone 10 71-55-61, 1, 1-Trichloroethane 10 56-23-5Carbon Tetrachloride 10 75-27-4Bromodichloromethane 10 78-87-51, 2-Dichloropropane 10 10061-01-5cis-1, 3-Dichloropropene 10 79-01-6Trichloroethane 10 124-48-1Dibromochloromethane 10 79-00-51, 1, 2-Trichloroethane 10 104-43-2Benzene 10 1061-02-6trans-1, 3-Dichloropropene 10 75-25-2Bromoform 10 108-10-1	75-34-3	1.1-Dichloroethan		1	
67-66-3	540-59-0	1,2-Dichloroethene	e (total)	1	
107-06-21,2-Dichloroethane 10 U 78-93-32-Butanone 10 U 71-55-51,1,1-Trichloroethane 10 U 56-23-5Carbon Tetrachloride 10 U 75-27-4Bromodichloromethane 10 U 78-87-51,2-Dichloropropane 10 U 10061-01-5cis-1,3-Dichloropropene 10 U 79-01-6Trichloroethane 10 U 124-48-1Dibromochloromethane 10 U 79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-1	67-66-3	Chloroform			
78-93-3	107-06-2	1,2-Dichlorcethane	3	,	บ
71-55-5	78-93-3	2-Butanone			Ū
75-27-4Bromodichloromethane 78-87-51,2-Dichloropropane 10061-01-5cis-1,3-Dichloropropene 79-01-6Trichloroethene 10 U 124-48-1Dibromochloromethane 79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 127-18-4Tetrachloroethene 10 U 127-18-4Tetrachloroethene 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 1330-20-7	71-55-5	1,1,1-Trichloroeth	nane	10	Ū
75-27-4Bromodichloromethane 78-87-51,2-Dichloropropane 10 0061-01-5cis-1,3-Dichloropropene 79-01-6Trichloroethene 10 U 124-48-1Dibromochloromethane 79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 1061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 127-18-4Tetrachloroethene 10 U 127-18-4Tetrachloroethene 10 U 108-88-3	56-23-5	Carbon Tetrachlor:	ide	10	Ū
78-87-51, 2-Dichloropropane 10 U 10061-01-5cis-1, 3-Dichloropropene 10 U 79-01-6Trichloroethene 10 U 124-48-1Dibromochloromethane 10 U 79-00-51, 1, 2-Trichloroethane 10 U 71-43-2Benzene 10 U 1061-02-6trans-1, 3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51, 1, 2, 2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5	75-27-4	Bromodichlorometha	ene	10	
10061-01-5cis-1,3-Dichloropropene 10 U 79-01-6Trichloroethene 10 U 124-48-1Dibromochloromethane 10 U 79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5	78-87-5	1,2-Dichloropropar	ne	1	Ū
79-01-6Trichloroethene 10 U 124-48-1Dibromochloromethane 10 U 79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-1	10061-01-5	cis-1,3-Dichloropa	copene	10	
124-48-1	79-01-6	Trichloroethene		1	
79-00-51,1,2-Trichloroethane 10 U 71-43-2Benzene 10 U 10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 1330-20-7	124-48-1	Dibromochlorometha	ine		
71-43-2	79-00-5	1,1,2-Trichloroeth	nane		
10061-02-6trans-1,3-Dichloropropene 10 U 75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5	71-43-2	Benzene	-		
75-25-2Bromoform 10 U 108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7Xylene (total) 10 U	10061-02-6	trans-1,3-Dichloro	propene	1	
108-10-14-Methyl-2-Pentanone 10 U 591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5	75-25-2	Bromoform			
591-78-62-Hexanone 10 U 127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7Xylene (total) U	108-10-1	4-Methyl-2-Pentano	one		
127-18-4Tetrachloroethene 10 U 79-34-51,1,2,2-Tetrachloroethane 10 U 108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7Xylene (total) U	591-78-6	2-Hexanone		1	_
79-34-51,1,2,2-Tetrachloroethane 108-88-3Toluene 108-90-7Chlorobenzene 100-41-4Ethylbenzene 100-42-5Styrene 1330-20-7Xylene (total) 100-45	127-18-4	Tetrachloroethene	7	1	
108-88-3Toluene 10 U 108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7	79-34-5	1,1,2,2-Tetrachlo	coethane		
108-90-7Chlorobenzene 10 U 100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7	108-88-3	Toluene			
100-41-4Ethylbenzene 10 U 100-42-5Styrene 10 U 1330-20-7Xylene (total) 10 U	108-90-7	Chlorobenzene			
100-42-5Styrene 10 U 1330-20-7Xylene (total) 10 U	100-41-4	Ethylbenzene	****	1	
1330-20-7Xylene (total) 10 U	100-42-5	Styrene			-
100 00 4 77' 1	1330-20-7	Xylene (total)	*		-
	108-05-4	Vinyl Acetate			_
		4			

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

		T				
	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL)#	(BFB)#	(DCE)#	1	OUT
	=========	======	=====	=====	======	===
01	VBLKN1	108	114	92		0
02	FLDBK1	109	110	94		0
03	EQPBK1	108	113	94		0
04	TRIP-1	108	113	94		0
05	VBLKN02	93	91	94		0
06	TRIP-2	92	90	94		0
07	EQPBK2	93	91	95		0
80	FLDBK2	92	92	95		0
09	TRIP-3	92	91	95		0
10	TRIP-4	92	91	96		0
11						
12 13						
14						
15						
16						
17						
18						
19						
20						
21					·	
22						
23						
24						
25						
26						
27						
28						
29						
30						
,						

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (75-114)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

Level: (low/med) LOW

	EPA	SMC1	SMC2	CNOS	Tames	Tener I
	SAMPLE NO.	(TOL)#	(BFB)#	SMC3 (DCE)#	OTHER	TOT
	=========	======	(515)#	(DCE)#	i	1 1
01	VBLKP14	101	100	101	=====	===
02	1-16-1	100	98	101		0
03	1-16-D	101	96			0
04	1-16-2	110		100		0
05	1-17-1MS	99	109	103		0
06	1-17-1MSD		98	99		0
07	1-17-11.50	114	82	99		0
08	ı	109	88	98		0
	1-18-1	111	82	96		0
09	1-18-2	112	80	93		0
10	VBLKP15	99	100	100		0
11	1-17-1	112	86	99		0
12	1-20-1	100	98	99		0
13	1-21-1	101	97	98		0
14	1-16-2DL	101	114	113		0
15	1-22-1D	108	86	93		0
16	1-23-1	101	95	96		0
17	1-22-1	101	96	96		0
18	1-19-1	103	94	96		0
19	1-19-2	107	88	98		0
20	1-24-1	101	95	98		0
21						
22						
24						
25						
26						
27						
28						
29						
- 1						
30						

SMC1 (TOL) = Toluene-d8 (81-117) SMC2 (BFB) = Bromofluorobenzene (74-121) SMC3 (DCE) = 1,2-Dichloroethane-d4 (70-121)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1

Matrix Spike - EPA Sample No.: 1-17-1 Level(low/med) LOW

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	52 52 52 52 52 52	0 0 0 4	48 59 59 62 64	92 113 113 112 123	59-172 62-137 66-142 59-139 60-133

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	% RPD #	QC L: RPD	IMITS REC.
1,1-Dichloroethene	52	45	86	7	22	59-172
Trichloroethene Benzene	52 52	52 59	100 113	12	24 21	62-137 66-142
Toluene Chlorobenzene	52 52	72 63	131 121	16 2	21 21	59-139 60-133

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 5 outside limits
Spike Recovery: 0 out of 10 outside limits

COMMENTS:	

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: N1415.D BFB Injection Date: 03/16/95

Instrument ID: HPN BFB Injection Time: 1628

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	17.3 43.3 100.0 6.8 0.0 (0.0)1 62.4 4.2 (6.7)1 60.4 (96.8)1 4.0 (6.7)2
	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

				,	
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD^10N		=========	========	========
02	VSTD020N	VSTD010N	N1416.D	03/16/95	1642
03	VSTD050N	VSTD020N	N1417.D	03/16/95	1717
04	VSTD100N	VSTD050N	N1418.D	03/16/95	1752
05	VSTD100N VSTD200N	VSTD100N	N1419.D	03/16/95	1827
06	VSIDZUUN	VSTD200N	N1420.D	03/16/95	1902
07					
08					
09					
10					
11					
12	,,				
13					
14					
15					
16					
17					
18					
19					
20					·
21					
22					

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: NYTEST ENV INC Contract: 9521649

BFB Injection Date: 04/06/95 Lab File ID: N1676.D

BFB Injection Time: 0856 Instrument ID: HPN

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	17.3 43.9 100.0 6.6 0.0 (0.0)1 67.0 4.6 (6.9)1 65.3 (97.5)1 4.1 (6.2)2
· ———	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	======================================	======================================	======================================	04/06/95	0913
02 03	VBLKN1 FLDBK1	VBLKN1 2349012	N1678.D N1679.D	04/06/95 04/06/95	1011
04	EQPBK1	2349013	N1680.D	04/06/95	1140
05 06	TRIP-1	2349014	N1681.D	04/06/95	1215
07 08					
09 10					
11 12					
13					
14					
16 17					
18 19					
20 21					
22					

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: N1693.D BFB Injection Date: 04/06/95

Instrument ID: HPN BFB Injection Time: 1943

Matrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.7 43.1 100.0 6.7 0.0 (0.0)1 66.7 5.1 (7.6)1 63.8 (95.6)1 4.3 (6.8)2
	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DAGE	(IIII)
	SAMPLE NO.	SAMPLE ID		DATE	TIME
	DAME BE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD050N8	VSTD050N8	33 CO4 D	=======================================	========
02	VBLKN02		N1694.D	04/06/95	2001
	į.	VBLKN02	N1695.D	04/06/95	2036
03	TRIP-2	2349015	N1697.D	04/06/95	2146
04	EQPBK2	2350507	N1701.D	04/07/95	0007
05	FLDBK2	2350508	N1702.D	04/07/95	0042
06	TRIP-3	2350509	N1703.D	04/07/95	0118
57	TRIP-4	2350510	N1704.D	04/07/95	0153
80					
09					
10					
11					
12					
13					
14					
15					
16	,				
17					
18					
19	•				
20					•
21					
22					
	!				

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: P3830.D BFB Injection Date: 03/17/95

Instrument ID: HPP BFB Injection Time: 0800

Matrix: (soil/water) SOIL Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	17.0 41.6 100.0 6.9 0.0 (0.0)1 79.4 5.9 (7.4)1 77.4 (97.5)1 4.9 (6.4)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 9 10 11 12 13 14 11 12 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19			l		l l
20 21 22					

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: P4166.D BFB Injection Date: 04/05/95

Instrument ID: HPP BFB Injection Time: 0922

Matrix:(soil/water) SOIL Level:(low/med) LOW Column:(pack/cap) CAP

50	m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
	75 95 96 173 174 175 176	30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174	41.9 100.0 6.7 0.0 (0.0)1 62.0 4.2 (6.7)1 60.8 (98.1)1

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	==========	=========	=======	========
01	VSTD050P9	VSTD050P9	P4167.D	04/05/95	0934
02	VBLKP14	VBLKP14	P4168.D		
03	1-16-1		· · · · · · · · · · · · · · · · · · ·	04/05/95	1034
		2349001	P4179.D	04/05/95	1702
04	1-16-D	2349002	P4180.D	04/05/95	1735
05	1-16-2	2349003	P4181.D	04/05/95	1807
06	1-17-1MS	2349005	P4183.D	04/05/95	1912
07	1-17-1MSD	2349006	P4184.D	04/05/95	1945
80	1-17-2	2349007	P4185.D	04/05/95	2017
09	1-18-1	2349008	P4186.D	04/05/95	2050
10	1-18-2	2349009	P4187.D	04/05/95	2122
11	- 10 -	2313003	14107.0	04/05/35	2122
12					·
13					
14					
15					
16					
17					
18					
19		-			
20					
21					
22					
1					

000085

NYTEST ENVIRONMENTAL, INC.

REPORT OF ANALYSIS

We find as follows :

Log In No : 23490

Results in mg/Kg(dry basis) :

Parameter(s)

Sample	Identi	fication
--------	--------	----------

Total Petroleum Hydrocarbons

Wate:	r Method	i Blank	
Wate:	r Method	d Detection	ı Limit
Soil	Method	Blank	
Soil	Method	Detection	Limit

1 1 10 10	U	mg/L

LAB ID	CLIENT ID
2349001	1-16-1
2349002	1-16-D
2349003	1-16-2
2349004	1-17-1
2349005	1-17-1MS
2349007	1-17-2
2349008	1-18-1
2349009	1-18-2
2349010	1-20-1
2349011	1-21-1
2349012	FLDBK1
2349013	EQPBK1

140 120 1300 95 100 110 130 6300 190 140	ממ	mg/L mg/L

U : Below method blank / method reporting limit

THIS PAGE INTENTIONALLY LEFT BLANK

1-16-1

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2349001

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R3738.D

Level: (low/med) LOW

Date Received: 04/05/95

% Moisture: not dec. 5 dec.

Date Extracted: 04/05/95

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q

108-95-2		350	Ū
111-44-4	bis(2-Chloroethyl)Ether	350	Ū
95-57-8	2-Chlorophenol	350	U
541-73-1	1,3-Dichlorobenzene	350	U
106-46-7	1,4-Dichlorobenzene	350	Ū
95-50-1	1,2-Dichlorobenzene	350	U
95-48-7	2-Methylphenol	. 350	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	350	U
106-44-5	4-Methylphenol	350	Ū
621-64-7	N-Nitroso-di-n-propylamine	350	Ū
67-72-1	Hexachloroethane	. 350	Ü
98-95-3	Nitrobenzene	350	ט
78-59-1	Isophorone	350	ש
.0 35 ± 88-75-5	2-Nitrophenol	350	ט
	2,4-Dimethylphenol	350	ט
120-83-2	2,4-Dichlorophenol	350	מ
120 03 2 120-82-1	1,2,4-Trichlorobenzene	350	ט
91-20-3	Naphthalene		U U
	4-Chloroaniline	350	_
	Hexachlorobutadiene	350	Ū
	bis(2-Chloroethoxy) methane	350	ָד
TTT-2T-T	4 Chloro 2 Mathe 12	350	U
	4-Chloro-3-Methylphenol	350	U
91-5/-6	2-Methylnaphthalene	350	U
//-4/-4	Hexachlorocyclopentadiene	350	Ū
88-06-2	2,4,6-Trichlorophenol	350	Ū
95-95-4	2,4,5-Trichlorophenol	1800	U
	2-Chloronaphthalene	350	U
	2-Nitroaniline	1800	U
	Dimethylphthalate	350	U
	Acenaphthylene	350	U
	2,6-Dinitrotoluene	350	Ū
	3-Nitroaniline	1800	Ū
	Acenaphthene	350	Ī

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

EPA SAMPLE NO.

1-16-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2349001

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3738.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 5 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

G10 110.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
51-28-5	2,4-Dinitropheno	7		1800	
100-02-7	4-Nitrophenol	-			
132-64-9	Dibenzofuran			1800	i .
121-14-2	2.4-Dinitrotolue	ne		350	1
84-66-2	Diethvlphthalate			350 350	
7005-72-3	4-Chlorophenyl-p	henvlether		350	-
86-73-7	Fluorene	ricity reciter.		350	ָ
100-01-6	4-Nitroaniline	······································		1800	7
534-52-1	4,6-Dinitro-2-me	thylphenol		1800	
86-30-6	N-Nitrosodinhenv	Tamina (1)		350	ט
101-55-3	4-Bromophenyl-ph	envlether i		350	ט
118-74-1	Hexachlorobenzen	_		350	ט
87-86-5	Pentachloropheno	1		1800	บ
85-01-8	Phenanthrene			350	ט
120-12-7	Anthracene			350	ט ו
86-74-8	Carbazole			350	ט
84-74-2	Di-n-butylphthal	ate		350	ט
206-44-0	Fluoranthene			350	
129-00-0	Pvrene			350	U
85-68-7	Butylbenzylphtha	lato		350	U
91-94-1	3,3'-Dichloroben	zidina		700	Ü
56-55-3	Benzo(a) anthrace	27 GTHE		350	Ü
218-01-9	Chrysene	.10		350	Ū
117-81-7	·bis(2-Ethylhexyl	phthalata		100	ָט
117-84-0	Di-n-octylphthal:	pilcilatace		350	J
205-99-2	·Benzo(b) fluorant	nene			ט
207-08-9	Benzo(k) fluorant	2020		350	ט
50-32-8	Benzo(a) pyrene	·rerre		350	ט
193-39-5	Indeno(1,2,3-cd)	21 72 72		350	ט
53-70-3	Dibenz(a,h)anthra	hArene		350	U
191-24-2	Benzo(g,h,i)pery	icene		350	Ü
171-24-2	benzo(g,n,1)pery	rene		350	Ū

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0406\r3647.d

Operator: Francisco

Acq On : 6 Apr 95 20:38 pm Sample : 2349012, FLDBK1, Misc : 1,5,,05-APR-95,1000,1,T8270,WATER Inst : HPR Multiplr: 1.00

Quant Time: Apr 6 21:19 1995

Method : C:\HPCHEM\1\METHODS\8270R.M
Title : 390/ASP/SW846

Last Update : Thu Apr 06 17:35:33 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\R3638.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4	9.66	152	1036921	20.00 ug/L	0.00
18) Naphthalene-D8	12.51	136	2569039	20.00 ug/L	0.00
33) Acenaphthene-d10	16.76	164	2010125	20.00 ug/L	-0.02
54) Phenanthrene-D10	20.37	188	2446636	20.00 ug/L	0.00
65) Chrysene-D12	26.93	240	1094919	20.00 ug/L	-0.02
73) Perylene-D12	32.12	264	1254625	20.00 ug/L	-0.02
System Monitoring Compounds				% R	lecovery
14) 2-Fluorophenol	7.29	112	648292	17.39 ug/L	23.18%
15) Phenol-d5	9.03	99	525060	10.66 ug/L	14.21%
16) 2-Chlorophenol-d4	9.29	132	1588901	31.92 ug/L	42.56%
17) 1,2-Dichlorobenzene-d4	10.06	150	1165844	13.76 ug/L	27.51%
32) Nitrobenzene-d5		82	1114463	24.83 ug/L	49.65%
52) 2-Fluorobiphenyl	15.10	172	2733366	20.22 ug/L	40.44%
53) 2,4,6-Tribromophenol	18.74	330	356143	36.18 ug/L	48.24%
72) Terphenyl-d14	24.32	244	3257936	68.94 ug/L	137.88%
Target Compounds					Qvalue
71) Bis(2-ethylhexyl)phthalate	26.98	149	660856	3.52 ug/L	98

Vial: 12

^{(#) =} qualifier out of range (m) = manual integration Wed Apr 12 12:48:09 1995 HPPC r3647.d 8270R.M

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

EQPBK1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2349013

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3648.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

COMPOUND Q CAS NO. (ug/L or ug/Kg) UG/L 108-95-2----Phenol 10 U 111-44-4-----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol U 10 10 541-73-1----1,3-Dichlorobenzene U 106-46-7----1, 4-Dichlorobenzene U 10 95-50-1----1, 2-Dichlorobenzene 10 U U 95-48-7----2-Methylphenol 10 108-60-1----2,2'-oxybis(1-Chloropropane) U 10 106-44-5----4-Methylphenol 10 U U 621-64-7----N-Nitroso-di-n-propylamine 10 67-72-1-----Hexachloroethane 10 U 98-95-3-----Nitrobenzene 10 U 78-59-1-----Isophorone 10 U 10 U 88-75-5----2-Nitrophenol 10 U 105-67-9-----2,4-Dimethylphenol 120-83-2-----2,4-Dichlorophenol_ 10 Ū 120-82-1----1,2,4-Trichlorobenzene 10 U 91-20-3-----Naphthalene U 10 10 IJ 106-47-8-----4-Chloroaniline U 87-68-3-----Hexachlorobutadiene 10 U 111-91-1-----bis (2-Chloroethoxy) methane 10 59-50-7----4-Chloro-3-Methylphenol___ 10 U 10 U 91-57-6----2-Methylnaphthalene U 77-47-4-----Hexachlorocyclopentadiene 10 88-06-2----2,4,6-Trichlorophenol 10 U 95-95-4-----2,4,5-Trichlorophenol 50 U 10 U 91-58-7----2-Chloronaphthalene 50 U 88-74-4----2-Nitroaniline 10 U 131-11-3-----Dimethylphthalate 208-96-8-----Acenaphthylene 10 U 606-20-2----2,6-Dinitrotoluene 10 U 50 U 99-09-2----3-Nitroaniline 83-32-9-----Acenaphthene_ 10 U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 827

EPA SAMPLE NO.

EQPBK1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2349013

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3648.D

Level: (low/med) LOW Date Received: 04/05/95

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 20-44-0Fluoranthene 129-00-0	50 50 10 10 10 10 10 10 10 10 10 10 10 10 10	ממממממממממממממממממממממ
207-08-9Benzo(k) fluoranthene 50-32-8Benzo(a) pyrene	10	Ū

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0406\r3648.d

Acq On : 6 Apr 95 21:28 pm Sample : 2349013, EQPBK1, Apr 05 Misc : 1,5,,05-APR-95,1000,1,T8270,WATER

Quant Time: Apr 6 22:09 1995

: c:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Wed Apr 12 10:02:10 1995 Response via : Single Level Calibration

Vial: 13

Operator: Francisco Inst : HPR Multiplr: 1.00

Data File : c:\hpchem\1\data\0406\r3648.d

Operator: Francisco

Inst : HPR Multiplr: 1.00

Quant Time: Apr 6 22:09 1995

: C:\HPCHEM\1\METHODS\8270R.M Method

Title : 390/ASP/SW846

Last Update : Thu Apr 06 17:35:33 1995

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\0406\R3638.D

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	9.66 12.51 16.77 20.37 26.93 32.11	152 136 164 188 240 264	1101747 2783981 2163533 2636422 1178081 1371825	20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L 20.00 ug/L	0.00 0.00 0.00 0.00 -0.02
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	9.29 10.06	112 99 132 150 82 172 330 244	171731 225726 518620 807397 909917 1816103 84112 2582350	%R 4.33 ug/L 4.31 ug/L 9.81 ug/L 8.97 ug/L 18.71 ug/L 12.48 ug/L 7.94 ug/L 50.79 ug/L	.ecovery 5.78% 5.75% 13.07% 17.93% 37.41% 24.96% 10.58%
Target Compounds 71) Bis(2-ethylhexyl)phthalate	26.98	149	375228	1.86 ug/L	Qvalue 99

Vial: 13

^{(#) =} qualifier out of range (m) = manual integration HPPC r3648.d 8270R.M Wed Apr 12 12:49:40 1995

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9521649

The Common of the common of th

Matrix: (soil/water) SOIL Lab Sample ID: 2350501

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3824.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (ug/L or ug/	/Kg) UG/KG	Q
108-95-2		350	U
111-44-4	bis(2-Chloroethyl)Ether	350	ָ ָ ט
95-57-8	2-Chlorophenol	350	Ū
541-73-1	1.3-Dichlorobenzene	350	Ū
106-46-7	1,4-Dichlorobenzene	350	ָ ט
95-50-1	1,2-Dichlorobenzene	350	Ü
95-48-7	2-Methylphenol	350	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	350	Ū
106-44-5	4-Methylphenol	350	Ū
621-64-7	N-Nitroso-di-n-propylamine	350	Ü
67-72-1	Hexachloroethane	350	Ū
98-95-3	Nitrobenzene	350	Ū
78-59-1	Isophorone	350	ָ <u>֖</u>
88-75-5	2-Nitrophenol	350	Ū
105-67-9	2,4-Dimethylphenol	350	Ū
120-83-2	2,4-Dichlorophenol	350	Ū
120-82-1	1,2,4-Trichlorobenzene	350	Ū
91-20-3	Naphthalene	350	Ū
	4-Chloroaniline	350	ע
87-68-3	Hexachlorobutadiene	350	Ū
111-91-1	bis(2-Chloroethoxy)methane	350	U
59-50-7	4-Chloro-3-Methylphenol	350	Ū
91-57-6	2-Methylnaphthalene	350	Ū
77-47-4	Hexachlorocyclopentadiene	350	Ū
88-06-2	2,4,6-Trichlorophenol	350	ָּט
95-95-4	2,4,5-Trichlorophenol	1700	Ū
91-58-7	2-Chloronaphthalene	350	ָּט
88-74-4	2-Nitroaniline	1700	Ū
131-11-3	Dimethylphthalate	350	Ū
208-96-8	Act ophthylene	350	Ū
606-20-2	2, c initrotoluene	350	Ū
99-09-2	3-N_troaniline	1700	ָּט
83-32-9	Acenaphthene	350	Ū
	-		

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270

EPA SAMPLE NO.

1-23-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350501

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3824.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-5	2,4-Dinitrophenol	1700	וֹט
100-02-7	4-Nitrophenol	1700	<u>"</u>
132-64-9	Dibenzofuran	350	וֹט
	2,4-Dinitrotoluene	350	<u>י</u>
	Diethylphthalate	350	Ū
7005 72 3	4-Chlorophenyl-phenylether	350	Ū
86-73-7		350	Ū
	4-Nitroaniline	1700	Ū
	4,6-Dinitro-2-methylphenol	1700	Ū
534-52-1	N-Nitrosodiphenylamine_(1)	350	บี
86-30-6	4 December of phone of the	350	ָּט
101-55-3	4-Bromophenyl-phenylether	350	<u></u>
	Hexachlorobenzene	1700	ט
	Pentachlorophenol	350	מ
	Phenanthrene	350	וט
	Anthracene	350	Ü
	Carbazole	350	
84-74-2	Di-n-butylphthalate		U
	Fluoranthene	350	U
129-00-0		350	U
85-68-7	Butylbenzylphthalate	350	ū
	3,3'-Dichlorobenzidine	690	Ū
	Benzo(a) anthracene	350	<u>ַ</u>
218-01-9	Chrysene	350	ַ
117-81-7	bis(2-Ethylhexyl)phthalate	61	J
117-84-0	Di-n-octylphthalate	350	U
205-99-2	Benzo(b) fluoranthene	350	U
207-08-9	Benzo(k) fluoranthene	350	Ŭ
	Benzo(a) pyrene	350	U
	Indeno (1, 2, 3-cd) pyrene	350	Ū
	Dibenz(a,h) anthracene	350	U
	Benzo(q,h,i)perylene	350	U
		- 1	

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\s3824.d

Acq On : 12 Apr 95 18:06 pm

Sample : 2350501,1-23-1, Misc : 1,,4,06-APR-95,30,1,T8270, SOIL

Quant Time: Apr 12 18:41 1995

: c:\HPCHEM\1\METHODS\8270S.M Method

: 390/ASP/8270 Title

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 44

Operator: jr Inst : HPS

Multiplr: 1.00

Quant Time: Apr 12 18:41 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T. Sca	n Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 13 8.66 26 12.61 49 16.15 70 22.70 107 26.40 129	8 97176 6 56465 0 101717 8 110571	20.00 20.00 20.00 20.00 20.00 20.00	0.01 0.00 0.01 0.00 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	4.75 4 5.86 10 6.10 12 6.67 15 7.33 19 11.00 40 14.54 60 20.08 92	6 74821 0 99347 3 57795 1 63840 3 143349 7 65963	%E 62.87 ug/L 45.94 ug/L 50.21 ug/L 23.09 ug/L 27.94 ug/L 30.98 ug/L 48.64 ug/L 49.24 ug/L	61.26% 66.95% 46.17% 55.89% 61.97% 64.85%
Target Compounds 71) Bis(2-ethylhexyl)phthalate	22.73 108	0 11183	1.77 ug/L	Qvalue 85

(#) = qualifier out of range (m) = manual integration s3824.d 8270S.M Thu Apr 13 12:29:11 1995 HPPC 0.0049 Page 1

1-22-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2350502

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3825.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 5 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

COMPOUND CAS NO. (ug/L or ug/Kg) UG/KG 108-95-2----Phenol 350 U 111-44-4-----bis(2-Chloroethyl)Ether U 350 95-57-8-----2-Chlorophenol 350 U 541-73-1----1,3-Dichlorobenzene 350 Ũ 106-46-7-----1,4-Dichlorobenzene 350 U 95-50-1----1,2-Dichlorobenzene U 350 95-48-7----2-Methylphenol 350 U 108-60-1----2,2'-oxybis(1-Chloropropane) 350 Ū 106-44-5-----4-Methylphenol 350 U 621-64-7----N-Nitroso-di-n-propylamine 350 U 67-72-1-----Hexachloroethane 350 U 350 U 98-95-3-----Nitrobenzene 78-59-1-----Isophorone 350 U 88-75-5----2-Nitrophenol 350 U 105-67-9-----2,4-Dimethylphenol 350 U 120-83-2----2,4-Dichlorophenol 350 U 120-82-1----1,2,4-Trichlorobenzene 350 U 91-20-3-----Naphthalene 350 U 106-47-8-----4-Chloroaniline U 350 87-68-3------Hexachlorobutadiene 350 U 111-91-1-----bis (2-Chloroethoxy) methane 350 U 59-50-7-----4-Chloro-3-Methylphenol 350 U 91-57-6----2-Methylnaphthalene 350 U 77-47-4-----Hexachlorocyclopentadiene 350 Ū 88-06-2----2,4,6-Trichlorophenol 350 U 95-95-4-----2,4,5-Trichlorophenol 1800 Ũ 91-58-7-----2-Chloronaphthalene___ 350 U 88-74-4----2-Nitroaniline 1800 U 131-11-3-----Dimethylphthalate 350 U 208-96-8-----Acenaphthylene 3501 U 606-20-2----2,6-Dinitrotoluene 350 U 99-09-2-----3-Nitroaniline 1800 U 83-32-9-----Acenaphthene 350

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

1-22-1

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350502

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3825.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 5 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

	T	
51-28-52,4-Dinitrophenol	1800	ט
100-02-74-Nitrophenol	1800	Ū
132-64-9Dibenzofuran	350	וֹט
121-14-22,4-Dinitrotoluene	350	Ü
84-66-2Diethylphthalate	350	Ū
7005-72-34-Chlorophenyl-phenylether	350	ָ ע
86-73-7Fluorene	350	ט
100-01-64-Nitroaniline	1800	ט
534-52-14,6-Dinitro-2-methylphenol	1800	וט
	1	ָ ט
86-30-6N-Nitrosodiphenylamine (1)	350	
101-55-34-Bromophenyl-phenylether	350	U
118-74-1Hexachlorobenzene	350	U
87-86-5Pentachlorophenol	1800	U
85-01-8Phenanthrene	350	U
120-12-7Anthracene	350	U
86-74-8Carbazole	350	U
84-74-2Di-n-butylphthalate	350	U
206-44-0Fluoranthene	350	U
129-00-0Pyrene	350	U
85-68-7Butylbenzylphthalate	350	U
91-94-13,3'-Dichlorobenzidine	700	Ū
56-55-3Benzo (a) anthracene	350	U
218-01-9Chrysene	350	U
117-81-7bis(2-Ethylhexyl)phthalate	50	J
117-84-0Di-n-octylphthalate	350	U
205-99-2Benzo (b) fluoranthene	350	U
207-08-9Benzo(k) fluoranthene	350	U
50-32-8Benzo (a) pyrene	350	U
193-39-5Indeno(1,2,3-cd)pyrene	350	Ū
53-70-3Dibenz (a, h) anthracene	350	U
191-24-2Benzo(g,h,i)perylene	350	Ü
231 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	·	!

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\s3825.d

Acq On : 12 Apr 95 18:48 pm Sample : 2350502,1-22-1, Misc : 1,,5,06-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 12:05 1995

Method : c:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 45

: HPS

Operator: jr

Multiplr: 1.00

Inst

Quant Time: Apr 13 12:05 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T. 9	Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 8.66 12.61 16.17 22.70 26.42	701 1078	36171 107617 64055 114234 123933 125832	20.00 20.00 20.00 20.00 20.00 20.00	0.01 0.00 0.01 0.01 0.00 0.03
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14		107 120 153 191 404	110174 122888 165952 88544 93372 203066 107641 370897	%R 82.61 ug/L 62.38 ug/L 69.33 ug/L 29.24 ug/L 36.90 ug/L 38.69 ug/L 69.96 ug/L 67.11 ug/L	
Target Compounds 71) Bis(2-ethylhexyl)phthalate	22.73	1080	10197	1.44 ug/L	Qvalue 88

^{(#) =} qualifier out of range (m) = manual integration s3825.d 8270S.M Thu Apr 13 12:30:33 1995 H

1-22-1D

Lab Name: NYTEST ENV INC

Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WORLA

Matrix: (soil/water) SOIL

Lab Sample ID: 2350503

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: S3826.D

Level: (low/med) LOW

Date Received: 04/06/95

% Moisture: not dec. 6 dec.

Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 4.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

111-44-4			
95-57-82-Chlorophenol 1400	108-95-2Phenol	1400	U
95-57-82-Chlorophenol 1400	111-44-4bis(2-Chloroethyl)Ether	1400	ט
541-73-11, 3-Dichlorobenzene 1400 106-46-71, 4-Dichlorobenzene 1400 195-50-11, 2-Dichlorobenzene 1400 108-60-11, 2-Dichlorobenzene 1400 100 108-60-12, 2'-oxybis(1-Chloropropane) 1400 100 100 100 1400 100<		1400	U
95-50-1		1400	ע
95-50-1	106-46-71,4-Dichlorobenzene	1400	U
108-60-12, 2'-oxybis(1-Chloropropane) 1400 106-44-54-Methylphenol 1400 621-64-7N-Nitroso-di-n-propylamine 1400 67-72-1Hexachloroethane 1400 98-95-3Nitrobenzene 1400 78-59-1Isophorone 1400 88-75-52-Nitrophenol 1400 105-67-92, 4-Dimethylphenol 1400 120-83-22, 4-Dichlorophenol 1400 120-82-11, 2, 4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-8			ָד
108-60-12, 2'-oxybis(1-Chloropropane) 1400 106-44-54-Methylphenol 1400 621-64-7N-Nitroso-di-n-propylamine 1400 67-72-1Hexachloroethane 1400 98-95-3Nitrobenzene 1400 78-59-1Isophorone 1400 88-75-52-Nitrophenol 1400 105-67-92, 4-Dimethylphenol 1400 120-83-22, 4-Dichlorophenol 1400 120-82-11, 2, 4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-8	95-48-72-Methylphenol	1400	U
106-44-54-Methylphenol 1400 621-64-7N-Nitroso-di-n-propylamine 1400 67-72-1Hexachloroethane 1400 98-95-3Nitrobenzene 1400 78-59-1Isophorone 1400 88-75-52-Nitrophenol 1400 105-67-92, 4-Dimethylphenol 1400 120-83-22, 4-Dichlorophenol 1400 120-82-11, 2, 4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-8		1	U
621-64-7N-Nitroso-di-n-propylamine 1400 67-72-1		1400	U
67-72-1	621-64-7N-Nitroso-di-n-propylamine		ַ
98-95-3Nitrobenzene 1400 78-59-1Isophorone 1400 88-75-52-Nitrophenol 1400 105-67-92,4-Dimethylphenol 1400 120-83-22,4-Dichlorophenol 1400 120-82-11,2,4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-8Naphthalene 1400 11-91-1	67-72-1Hexachloroethane	1	Ū
78-59-1		1	Ū
88-75-52-Nitrophenol 1400 105-67-92,4-Dimethylphenol 1400 120-83-22,4-Dichlorophenol 1400 120-82-11,2,4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis(2-Chloroethoxy)methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 88-06-22,4,6-Trichlorophenol 1400 95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-4			Ü
105-67-92,4-Dimethylphenol 1400 120-83-22,4-Dichlorophenol 1400 120-82-11,2,4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis(2-Chloroethoxy) methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 88-06-22,4,6-Trichlorophenol 1400 95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-23-Nitroaniline 7100			ָ ָּט
120-83-22, 4-Dichlorophenol 1400 120-82-11, 2, 4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis (2-Chloroethoxy) methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 88-06-22, 4, 6-Trichlorophenol 1400 95-95-42, 4, 5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-23-Nitroaniline 7100			Ü
120-82-11, 2, 4-Trichlorobenzene 1400 91-20-3Naphthalene 1400 106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis (2-Chloroethoxy) methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 88-06-22-Methylnaphthalene 1400 88-06-22, 4, 6-Trichlorophenol 1400 95-95-42, 4, 5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-23-Nitroaniline 7100			Ü
91-20-3Naphthalene 1400 106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis (2-Chloroethoxy) methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 77-47-4Hexachlorocyclopentadiene 1400 88-06-22,4,6-Trichlorophenol 1400 95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-23-Nitroaniline 7100	120-83-11 2 4-Trichlorobenzene		ם
106-47-84-Chloroaniline 1400 87-68-3Hexachlorobutadiene 1400 111-91-1bis (2-Chloroethoxy) methane 1400 59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 77-47-4Hexachlorocyclopentadiene 1400 88-06-22,4,6-Trichlorophenol 1400 95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-23-Nitroaniline 7100	91-20-3Nanhthalana		ם
87-68-3			ם
111-91-1			ָ ל
59-50-74-Chloro-3-Methylphenol 1400 91-57-62-Methylnaphthalene 1400 77-47-4			-
91-57-62-Methylnaphthalene 1400 77-47-4Hexachlorocyclopentadiene 1400 88-06-22,4,6-Trichlorophenol 1400 95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-22,6-Dinitrotoluene 1400 99-09-23-Nitroaniline 7100	111-91-1DIS (2-Chloroethoxy) methane		U U
77-47-4	59-50-/4-Chioro-3-Methylphenoi		
88-06-22,4,6-Trichlorophenol 1400 1400 95-95-42,4,5-Trichlorophenol 7100 1700 91-58-72-Chloronaphthalene 1400 1400 88-74-42-Nitroaniline 7100 1700 131-11-3Dimethylphthalate 1400 1700 208-96-8Acenaphthylene 1400 1700 606-20-22,6-Dinitrotoluene 1400 1700 99-09-23-Nitroaniline 7100 1700	91-57-62-Methylhaphthalene		Ŭ
95-95-42,4,5-Trichlorophenol 7100 91-58-72-Chloronaphthalene 1400 88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-22,6-Dinitrotoluene 1400 99-09-23-Nitroaniline 7100		l i	Ŭ
91-58-7:2-Chloronaphthalene 1400 0 88-74-42-Nitroaniline 7100 0 131-11-3Dimethylphthalate 1400 0 208-96-8Acenaphthylene 1400 0 606-20-22,6-Dinitrotoluene 1400 0 99-09-23-Nitroaniline 7100 0			Ŭ
88-74-42-Nitroaniline 7100 131-11-3Dimethylphthalate 1400 208-96-8Acenaphthylene 1400 606-20-22,6-Dinitrotoluene 1400 99-09-23-Nitroaniline 7100		l .	Ū
131-11-3Dimethylphthalate 1400 0 208-96-8Acenaphthylene 1400 0 606-20-22,6-Dinitrotoluene 1400 0 99-09-23-Nitroaniline 7100 0			Ū
208-96-8Acenaphthylene 1400 0 606-20-22,6-Dinitrotoluene 1400 0 99-09-23-Nitroaniline 7100 0			ט
606-20-22,6-Dinitrotoluene 1400 0 99-09-23-Nitroaniline 7100		1	Ū
99-09-23-Nitroaniline			. Մ
			U
83-32-9Acenaphthene 1400	99-09-23-Nitroaniline	7100	Ū
	83-32-9Acenaphthene	1400	U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

Q

1-22-1D

Contract: 9521649 Lab Name: NYTEST ENV INC

COMPOUND

CAS NO.

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1A

Lab Sample ID: 2350503 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) GLab File ID: S3826.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 6 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 4.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

51-28-5-----2,4-Dinitrophenol 7100 U 7100 U 100-02-7----4-Nitrophenol 132-64-9-----Dibenzofuran 1400 U 121-14-2----2,4-Dinitrotoluene 1400 U 84-66-2-----Diethylphthalace 1400 U 7005-72-3----4-Chlorophenyl-phenylether U 1400 U 86-73-7-----Fluorene 1400 100-01-6----4-Nitroaniline U 7100 U 534-52-1----4,6-Dinitro-2-methylphenol 7100 Ŭ 86-30-6----N-Nitrosodiphenylamine (1) 1400 U 101-55-3----4-Bromophenyl-phenylether 1400 U 1400 118-74-1-----Hexachlorobenzene U 87-86-5-----Pentachlorophenol 7100 U 85-01-8-----Phenanthrene 1400 1400 U 120-12-7-----Anthracene U 1400 86-74-8-----Carbazole U 84-74-2-----Di-n-butylphthalate . 1400 J 200-44-0-----Fluoranthene 270 J 180 129-00-0-----Pyrene U 85-68-7-----Butylbenzylphthalate 1400 U 91-94-1-----3,3'-Dichlorobenzidine 2800 U 56-55-3-----Benzo(a)anthracene 1400 U 218-01-9-----Chrysene 1400 U 117-81-7-----bis(2-Ethylhexyl)phthalate 1400 U 117-84-0-----Di-n-octylphthalate 1400 U 205-99-2----Benzo(b) fluoranthene 1400 U 1400 207-08-9-----Benzo(k) fluoranthene U 1400 50-32-8-----Benzo(a)pyrene Ū 193-39-5----Indeno(1,2,3-cd)pyrene 1400 U 1400 53-70-3-----Dibenz (a, h) anthracene_____ U 1400

(1) - Cannot be separated from Diphenylamine

191-24-2----Benzo(g,h,i)perylene

Data File : c:\hpchem\1\data\0412\s3826.d

Acq On : 12 Apr 95 19:31 pm

Sample : 2350503,1-22-1D, Misc : 4,,6,06-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 12:03 1995

: c:\HPCHEM\1\METHODS\8270S.M Method

Title : 390/ASP/8270 Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 46

: HPS

Operator: jr

Multiplr: 1.00

Inst

Quant Time: Apr 13 12:03 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T. Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 136 8.67 268 12.62 496 16.17 701 22.70 1078 26.42 1293	146203 89283 149464 152252		0.02 0.00 0.02 0.02 0.00 0.03
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	4.75 42 5.86 106 6.10 120 6.67 153 7.33 191 11.01 403 14.54 607 20.08 927	22880 25602 19486 21353 41728 14276	9.37 ug/L 9.51 ug/L 8.75 ug/L 5.27 ug/L 6.21 ug/L 5.70 ug/L	12.67% 11.67% 10.53% 12.42% 11.41%
Target Compounds 64) Fluoranthene 66) Pyrene	19.15 873 19.70 905		1.89 ug/L 1.28 ug/L	Qvalue 88 94

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-19-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2350504

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3827.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 5 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 108-95-2----Phenol 1800 111-44-4-----bis(2-Chloroethyl)Ether 1800 U 95-57-8-----2-Chlorophenol 1800 541-73-1-----1, 3-Dichlorobenzene U 1800 106-46-7-----1,4-Dichlorobenzene U 1800 95-50-1----1, 2-Dichlorobenzene U 1800 95-48-7----2-Methylphenol U 1800 108-60-1----2,2'-oxybis(1-Chloropropane) U 1800 106-44-5----4-Methylphenol U 1800 621-64-7-----N-Nitroso-di-n-propylamine U 1800 67-72-1-----Hexachloroethane____ U 1800 98-95-3-----Nitrobenzene U 1800 78-59-1-----Isophorone U 1800 88-75-5----2-Nitrophenol U 1800 105-67-9-----2,4-Dimethylphenol___ U 1800 120-83-2----2,4-Dichlorophenol U 1800 120-82-1----1, 2, 4-Trichlorobenzene U 1800 U 91-20-3-----Naphthalene 1800 106-47-8-----4-Chloroaniline U 1800 87-68-3-----Hexachlorobutadiene U 1800 111-91-1-----bis (2-Chloroethoxy) methane 1800 U 59-50-7----4-Chloro-3-Methylphenol 1800 U 91-57-6----2-Methylnaphthalene 1800 U 77-47-4-----Hexachlorocyclopentadiene 1800 U 88-06-2----2,4,6-Trichlorophenol U 1800 95-95-4----2,4,5-Trichlorophenol 8800 U 91-58-7----2-Chloronaphthalene Ū 1800 88-74-4----2-Nitroaniline U 8800 131-11-3-----Dimethylphthalate 1800 U 208-96-8-----Acenaphthylene 1800 U 606-20-2----2,6-Dinitrotoluene U 1800 99-09-2----3-Nitroaniline -U 8800 83-32-9-----Acenaphthene 1800 U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-19-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL . Lab Sample ID: 2350504

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3827.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 5 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

Q2			
		2200	TT
51-28-5	2,4-Dinitrophenol	8800	U
100-02-7	4-Nitrophenol	8800	U
	Dibenzofuran	1800	ū
121-14-2	2,4-Dinitrotoluene	1800	U
84-66-2	Diethylphthalate	1800	Ŭ
	4-Chlorophenyl-phenylether_	1800	U
86-73-7	Fluorene	1800	U
100-01-6	4-Nitroaniline	8800	U
534-52-1	4,6-Dinitro-2-methylphenol	8800	U
86-30-6	N-Nitrosodiphenylamine (1)	1800	U.
101-55-3	4-Bromophenyl-phenylether	1800	ŭ
118-74-1	Hexachlorobenzene	1800	Ū
87-86-5	Pentachlorophenol	8800	U
85-01-8	Phenanthrene	950	J
	Anthracene	340	J
	Carbazole	290	
	Di-n-butylphthalate	1800	U
206-44-0		1100	J
129-00-0		780	J
85-68-7	Butylbenzylphthalate	1800	U
91-94-1	3,3,-Dichlorobenzidine	3500	ָ ד
56-55-3	Benzo (a) anthracene	520	J
	Chrysene	550	J
117-81-7	bis(2-Ethylhexyl)phthalate	1800	U
	Di-n-octylphthalate	1800	U
	Benzo(b) fluoranthene	430	J
	Benzo(k) fluoranthene	430	J
50-32-8	Benzo(a) pyrene	540	J
	Indeno (1, 2, 3-cd) pyrene	210	J
	Dibenz (a, h) anthracene	1800	
	Benzo(g,h,i)perylene	210	J
171-24-2		-	
		. 1	

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\s3827.d

Acq On : 12 Apr 95 20:14 pm Sample : 2350504,1-19-1,

Misc : 5,,5,06-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 12:13 1995

Method : c:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 47

: HPS

Operator: jr

Multiplr: 1.00

Inst

Quant Time: Apr 13 12:13 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T.	Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	8.67 12.62 16.17 22.70	268	81386 146875 144646	20.00 20.00 20.00 20.00	0.02 0.00 0.02 0.02 0.00 0.03
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	5.86 6.10 6.68 7.33 11.01	120 153 191 403 607	14350 28308	%R 6.63 ug/L 6.94 ug/L 6.74 ug/L 3.40 ug/L 4.22 ug/L 4.25 ug/L 7.92 ug/L 5.86 ug/L	9.25% 8.99% 6.80% 8.44% 8.49%
Target Compounds 60) Phenanthrene 61) Anthracene 62) Carbazole 64) Fluoranthene 66) Pyrene 69) Benzo(a) anthracene 70) Chrysene 75) Benzo(b) fluoranthene 76) Benzo(k) fluoranthene 77) Benzo(a) pyrene 78) Indeno(1,2,3-cd) pyrene 80) Benzo(g,h,i) perylene	16.76 19.15 19.70 22.65 22.75 25.30 25.35 26.23	710 735 873 905 1075 1081 1228 1231 1282 1525	13427 6687 57846 47728 25114 24327 19801 18066 20946	5.44 ug/L 1.93 ug/L 1.66 ug/L 6.52 ug/L 4.48 ug/L 2.97 ug/L 3.12 ug/L 2.46 ug/L 2.44 ug/L 3.10 ug/L 1.22 ug/L	m/L 94 94 79 89

000061

Tamfift globs

1-19-2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WOR1A

Matrix: (soil/water) SOIL Lab Sample ID: 2350505

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3828.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 6 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2		1800	τ
111-44-4	bis(2-Chlorcethyl)Ether	1800	Ţ
95-57-8	2-Chlorophenol	1800	Ţ
	1,3-Dichlorobenzene	1800	ī
106-46-7	1,4-Dichlorobenzene	1800	Ţ
	1,2-Dichlorobenzene	1800	Ţ
95-48-7	2-Methylphenol	1800	1
108-60-1	2,2'-oxybis(1-Chloropropane)	1800	1
	4-Methylphenol	1800	,
621-64-7	N-Nitroso-di-n-propylamine	1800	
	Hexachloroethane	1800	
	Nitrobenzene	1800	
	Isophorone_	1800	
	2-Nitrophenol	1800	
	2,4-Dimethylphenol	1800	
120-83-2	2,4-Dichlorophenol	1800	
120-82-1	1,2,4-Trichlorobenzene	1800	
91-20-3	Naphthalene	1800	
	4-Chloroaniline	1800	
87-68-3	Hexachlorobutadiene	1800	
111-91-1	bis(2-Chloroethoxy)methane	1800	
59-50-7	4-Chloro-3-Methylphenol	1800	
	2-Methylnaphthalene	1800	
77-47-4	Hexachlorocyclopentadiene	1800	
	2,4,6-Trichlorophenol	1800	
95 - 95 -4	2,4,5-Trichlorophenol	8900	
	2-Chloronaphthalene	1800	
88-74-4	2-Nitroaniline	8900	
131-11-3	Dimethylphthalate	1800	
	Acenaphthylene	. 1800	
606-20-2	2,6-Dinitrotoluene	1800	
99-09-2	3-Nitroaniline	8900	
	Acenaphthene	300	
	-		

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

1-19-2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: 2350505

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3828.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 6 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

8900 51-28-5-----2,4-Dinitrophenol____ 8900 U 100-02-7-----4-Nitrophenol U 1800 132-64-9-----Dibenzofuran 1800 U 121-14-2----2,4-Dinitrotoluene U 1800 84-66-2-----Diethylphthalate U 7005-72-3----4-Chlorophenyl-phenylether 1800 J 220 86-73-7-----Fluorene U 100-01-6-----4-Nitroaniline 8900 534-52-1-----4,6-Dinitro-2-methylphenol U 8900 U 1800 86-30-6----N-Nitrosodiphenylamine_(1)___ U 1800 101-55-3----4-Bromophenyl-phenylether____ 1800 U 118-74-1-----Hexachlorobenzene 8900 U 87-86-5-----Pentachlorophenol 2800 85-01-8-----Phenanthrene 880 J 120-12-7-----Anthracene 490 J 86-74-8------Carbazole 84-74-2----Di-n-butylphthalate_ 1800 U 6600 206-44-0-----Fluoranthene 4800 129-00-0-----Pyrene 1800 85-68-7-----Butylbenzylphthalate 3500 U 91-94-1----3,3'-Dichlorobenzidine____ 3800 56-55-3-----Benzo(a)anthracene 4000 218-01-9-----Chrysene Ū 117-81-7-----bis(2-Ethylhexyl)phthalate___ 1800 U 1800 117-84-0-----Di-n-octylphthalate_ 4200 205-99-2----Benzo (b) fluoranthene 3000 207-08-9-----Benzo(k) fluoranthene____ 3900 50-32-8-----Benzo(a)pyrene 193-39-5-----Indeno(1,2,3-cd)pyrene 1100 J

(1) - Cannot be separated from Diphenylamine

53-70-3-----Dibenz(a,h)anthracene

191-24-2----Benzo(g,h,i)perylene

U

J

1800

1000

Data File : c:\hpchem\1\data\0412\s3828.d

Acq On : 12 Apr 95 20:57 pm Sample : 2350505,1-19-2, Misc : 5,,6,06-APR-95,30,1,T8270, SOIL

Quant Time: Apr 13 12:18 1995

Method : c:\HPCHEM\1\METHODS\8270S.M

: 390/ASP/8270 Title

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 48

: HPS

Operator: jr

Multiplr: 1.00

Inst

Quant Time: Apr 13 12:18 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T.	Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4	6.38	136	44874	20.00	0.01
18) Naphthalene-D8	8.66	268	141990	20.00	0.00
33) Acenaphthene-d10	12.61	496	87951	20.00	0.01
54) Phenanthrene-D10	16.17	701	142072	20.00	0.01
65) Chrysene-D12	22.71	1079	162855	20.00	0.01
73) Perylene-D12	26.44	1294	142445	20.00	0.05
System Monitoring Compounds					Recovery
14) 2-Fluorophenol	4.75	42	10823	6.54 ug/L	
15) Phenol-d5	5.86	106	16999	6.96 ug/L	
16) 2-Chlorophenol-d4	6.10	120	19484	6.56 ug/L	
17) 1,2-Dichlorobenzene-d4	6.69	154		3.47 ug/L	6.94%
32) Nitrobenzene-d5	7.35	192	16136	4.83 ug/L	9.67%
52) 2-Fluorobiphenyl		404		4.71 ug/L	
53) 2,4,6-Tribromophenol	14.54	607		7.54 ug/L	
72) Terphenyl-d14	20.08	927	45267	6.23 ug/L	12.47%
Target Compounds					Qvalue
43) Acenaph-hene	12.68		9409		
50) Fluorene	13.88		9448	1.24 ug/L	, # 93
60) Phenanthrene	16.22	704	132394	15.93 ug/L	
61) Anthracene	16.32		33436	4.96 ug/L	
62) Carbazole			10742	2.75 ug/L	
64) Fluoranthene	19.16		318845	37.16 ug/L	
66) Pyrene	19.72	906	328798	27.39 ug/I	
69) Benzo(a)anthracene	22.66		203991	21.39 ug/I	
70) Chrysene	22.77		197983	22.52 ug/I	. 98
75) Benzo(b) fluoranthene	25.31				m 🧗 97
76) Benzo(k)fluoranthene	25.37			16.91 ug/I	ı m J⁄. 97
77) Benzo(a)pyrene	26.27			22.15 ug/I	
78) Indeno(1,2,3-cd)pyrene	30.46			6.02 ug/I	
80) Benzo(g,h,i)perylene	31.67	1596	39744	5.83 ug/I	. m.∦/. 80

000065

The Way

1-24-1

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: 2350506

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3829.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 108-95-2----Phenol 350 111-44-4-----bis(2-Chloroethyl)Ether 350 Ū 95-57-8----2-Chlorophenol 350 U 541-73-1----1,3-Dichlorobenzene 350 U 106-46-7-----1,4-Dichlorobenzene U 350 95-50-1----1,2-Dichlorobenzene U 350 95-48-7----2-Methylphenol U 350 108-60-1----2,2'-oxybis(1-Chloropropane) U 350 106-44-5----4-Methylphenol U 350 621-64-7----N-Nitroso-di-n-propylamine U 350 67-72-1-----Hexachloroethane____ U 350 98-95-3-----Nitrobenzene U 350 78-59-1-----Isophorone 350 U 88-75-5----2-Nitrophenol 350 U 105-67-9-----2,4-Dimethylphenol 350 U 120-83-2----2,4-Dichlorophenol Ū 350 120-82-1----1,2,4-Trichlorobenzene U 350 91-20-3-----Naphthalene U 350 106-47-8----4-Chloroaniline 350 U 87-68-3-----Hexachlorobutadiene 350 U 111-91-1-----bis(2-Chloroethoxy)methane 350 U 59-50-7----4-Chloro-3-Methylphenol 350 U 91-57-6----2-Methylnaphthalene 350 U 77-47-4-----Hexachlorocyclopentadiene U 350 88-06-2----2,4,6-Trichlorophenol U 350 95-95-4-----2,4,5-Trichlorophenol 1700 U 91-58-7-----2-Chloronaphthalene -U 350 88-74-4----2-Nitroaniline U 1700 131-11-3-----Dimethylphthalate U 350 208-96-8-----Acenaphthylene 350 U 606-20-2----2,6-Dinitrotoluene U 350 99-09-2----3-Nitroaniline U 1700 83-32-9-----Acenaphthene 350

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9521649

1-24-1

Matrix: (soil/water) SOIL Lab Sample ID: 2350506

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3829.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 4 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	1700	Ū
100-02-74-Nitrophenol	1700	Ŭ
132-64-9Dibenzofuran	350	Ū
121-14-22,4-Dinitrotoluene	350	Ū
84-66-2Diethylphthalate	350	Ū
7005-72-34-Chlorophenyl-phenylether	350	Ū
86-73-7Fluorene	350	Ū
100-01-64-Nitroaniline	1700	Ū
534-52-14,6-Dinitro-2-methylphenol	1700	Ū
86-30-6N-Nitrosodiphenylamine (1)	350	Ŭ
101-55-34-Bromophenyl-phenylether	350	Ŭ
118-74-1Hexachlorobenzene	350	บ
87-86-5Pentachlorophenol	1700	Ū
85-01-8Phenanthrene	350	Ū
120-12-7Anthracene	350	Ū
86-74-8Carbazole	350	Ü
	350	Ū
84-74-2Di-n-butylphthalate	350	ָ ע
206-44-0Fluoranthene	350	ט
129-00-0Pyrene	- - · .	ט
85-68-7Butylbenzylphthalate	350	
91-94-13,3'-Dichlorobenzidine	690	Ŭ
56-55-3Benzo (a) anthracene	350	Ū
218-01-9Chrysene	350	Ū
117-81-7bis(2-Ethylhexyl)phthalate	63	J
117-84-0Di-n-octylphthalate	350	Ŭ
205-99-2Benzo(b) fluoranthene	350	Ŭ
207-08-9Benzo(k)fluoranthene	350	Ŭ
50-32-8Benzo(a)pyrene	350	Ū
193-39-5Indeno(1,2,3-cd)pyrene	350	Ū
53-70-3Dibenz (a,h) anthracene	350	Ŭ
191-24-2Benzo(g,h,i)perylene	350	U
		l

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\0412\s3829.d

Acq On : 12 Apr 95 21:40 pm (3)
Sample : 2350506,1-24-2/\(\Delta\) (1) (1)
Misc : 1,,4,06-APR-95,30,1,T8270, SOIL

Operator: jr Inst : HPS Multiplr: 1.00

Vial: 49

Quant Time: Apr 12 22:15 1995

Method : c:\HPCHEM\1\METHODS\8270S.M
Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Quant Time: Apr 12 22:15 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T. Sca	an Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 13 8.66 26 12.61 49 16.17 70 22.70 10 26.40 129	58 103176 66 68963 01 119565 78 105601	20.00 20.00 20.00 20.00 20.00 20.00	0.01 0.00 0.01 0.01 0.00
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	6.10 12 6.69 15 7.35 15 11.02 40 14.56 60	111546 20 148697 54 81043 92 85631	74.48 ug/L 63.18 ug/L 69.32 ug/L 29.86 ug/L 35.30 ug/L 38.60 ug/L 70.74 ug/L 76.05 ug/L	84.23% 92.42% 59.72% 70.60% 77.20% 94.32%
Target Compounds 71) Bis(2-ethylhexyl)phthalate	22.73 108	30 11045	1.83 ug/L	Qvalue 87

000069

John (i)h

EQPBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 S'S No.: SDG No.: WORLA

Matrix: (soil/water) WATER Lab Sample ID: 2350507

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3831.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 0 dec. Date Extracted: 04/07/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

> CONCENTRATION UNITS: CAS NO. COMPOUND

108-95-2----Phenol 10 111-44-4-----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol 10 U 541-73-1----1,3-Dichlorobenzene 10 U 106-46-7-----1,4-Dichlorobenzene 10 U 95-50-1----1, 2-Dichlorobenzene 10 U 95-48-7----2-Methylphenol 10 U 108-60-1-----2,2'-oxybis(1-Chloropropane) 10 U 106-44-5----4-Methylphenol 10 U 621-64-7----N-Nitroso-di-n-propylamine 10 U 67-72-1-----Hexachloroethane 10 U 98-95-3-----Nitrobenzene U 10 78-59-1-----Isophorone 10 U 88-75-5----2-Nitrophenol 10 U 105-67-9-----2,4-Dimethylphenol 10 U 120-83-2----2,4-Dichlorophenol 10 U 120-82-1----1,2,4-Trichlorobenzene 10 U 91-20-3-----Naphthalene 10 U 106-47-8-----4-Chloroaniline 101 U 87-68-3------Hexachlorobutadiene

(ug/L or ug/Kg) UG/L

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

111-91-1-----bis (2-Chloroethoxy) methane

59-50-7----4-Chloro-3-Methylphenol

77-47-4------Hexachlorocyclopentadiene

606-20-2----2,6-Dinitrotoluene

91-57-6----2-Methylnaphthalene

88-06-2----2,4,6-Trichlorophenol

95-95-4-----2,4,5-Trichlorophenol_

91-58-7:----2-Chloronaphthalene

131-11-3-----Dimethylphthalate

88-74-4----2-Nitroaniline

208-96-8-----Acenaphthylene

99-09-2----3-Nitroaniline

83-32-9-----Acenaphthene

10

10

10

10

10

10

50

10

50

10

10

10

50

10

U

U

U

U

U

U

U

U

U

U

U

U

U

U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

EQPBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2350507

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3831.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 0 dec. Date Extracted:04/07/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol	50 50	ע
132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline	10 10 10 10 10 50	ממממממ
534-52-14,6-Dinitro-2-methylphenol_ 86-30-6N-Nitrosodiphenylamine_(1)_ 101-55-34-Bromophenyl-phenylether_ 118-74-1Hexachlorobenzene_ 87-86-5Pentachlorophenol_ 85-01-8Phenanthrene_ 120-12-7Anthracene	50 10 10 10 50 10	ם ם ם ם ם ם
86-74-8Carbazole 84-74-2	10 10 10 10 10 20	ממממם
56-55-3Benzo(a) anthracene 218-01-9Chrysene 117-81-7bis(2-Ethylhexyl) phthalate 117-84-0Benzo(b) fluoranthene	10 10 10 10 10	מממממ
207-08-9Benzo(k) fluoranthene	10 10 10 10	ת ת ת

(1) - Cannot be separated from Diphenylamine

Quantitation Report

Data File : c:\hpchem\1\data\0412\s3831.d

Acq On : 12 Apr 95 23:06 pm

Sample : 2350507, EQPBK2, Misc : 1,,,07-APR-95,1000,1,T8270, WATER

Quant Time: Apr 12 23:41 1995

Method : c:\HPCHEM\1\METHODS\8270S.M
Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 51

Operator: jr Inst : HPS

Multiplr: 1.00

Quantitation Report

Ouant Time: Apr 12 23:41 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T.	Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 8.66 12.61 16.17 22.70 26.42	701 1078	39636 120212 82523 151789 155721 133271	20.00 20.00 20.00 20.00 20.00 20.00	0.01 0.00 0.01 0.01 0.00 0.03
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	4.75 5.88 6.10 6.69 7.35 11.02 14.55 20.10	42 107 120 154 192 404 608 928	65514 47516 148551 95777 109498 244673 125162 509833	%R 44.84 ug/L 22.01 ug/L 56.64 ug/L 28.86 ug/L 38.74 ug/L 36.19 ug/L 63.15 ug/L 73.41 ug/L	ecovery 59.79% 29.35% 75.52% 57.72% 77.49% 72.37% 84.19% 146.83%
Target Compounds					Qvalue

000073

John M.

(#) = qualifier out of range (m) = manual integration s3831.d 8270S.M Thu Apr 13 12:43:40 1995 HPPC

Page 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FLDBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.:

SDG No.: WOR1A

Matrix: (soil/water) WATER

Lab Sample ID: 2350508

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3832.D

Level: (low/med) LOW

Date Received: 04/06/95

% Moisture: not dec. 0 dec.

Date Extracted:04/07/95

Extraction: (SepF/Cont/Sonc) SEPF

Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0

Ca-10 140 .	COME COME	/ Ng / OG / H	Q
108-95-2	Phenol	10	U
111-44-4	bis(2-Chloroethyl)Ether	10	Ū
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	บ
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1, 2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
	Isophorone	10	Ū
	2-Nitrophenol	10	Ū
	2,4-Dimethylphenol	10	Ü
120-83-2	2,4-Dichlorophenol	10	Ü
120-82-1	1,2,4-Trichlorobenzene	10	บ
	Naphthalene	10	ָ ָ ע
106-47-8	4-Chloroaniline	10	Ū
	Hexachlorobutadiene	10	Ū
	bis(2-Chloroethoxy) methane	10	Ū
E0-E0-7	4-Chloro-3-Methylphenol	10	Ü
01 57 6	2-Methylnaphthalene	1	ŭ
77 47 4	2-Methylmaphthalene	10	
7/-4/-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	50	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	50	Ŭ
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	50	U
83-32-9	Acenaphthene	10	Ū

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 827UA

EPA SAMPLE NO.

FLDBK2

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: 2350508

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3832.D

Level: (low/med) LOW Date Received: 04/06/95

% Moisture: not dec. 0 dec. Date Extracted:04/07/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	, 	
51-28-52,4-Dinitrophenol	50	U
100-02-74-Nitrophenol	50	U
132-64-9Dibenzofuran	10	U
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	U
7005-72-34-Chlorophenyl-phenylether	10	U
86-73-7Fluorene	10	U
100-01-64-Nitroaniline	50	ט
534-52-14,6-Dinitro-2-methylphenol	50	וֹט
86-30-6Nitrosodiphenylamine (1)	10	ָד
101-55-34-Bromophenyl-phenylether	10	υl
118-74-1Hexachlorobenzene	10	Ū
87-86-5Pentachlorophenol	50	Ū
85-01-8Phenanthrene	10	Ū
120-12-7Anthracene	10	ប
86-74-8Carbazole	10	Ŭ
84-74-2Di-n-butylphthalate	10	Ŭ
84-74-2	10	Ŭ
	10	Ū
129-00-0Pyrene	10	บ
85-68-7Butylbenzylphthalate	20	Ü
91-94-13,3'-Dichlorobenzidine	L L	ט
56-55-3Benzo(a)anthracene	10	
218-01-9Chrysene	10	Ŭ
117-81-7bis(2-Ethylhexyl)phthalate	10	U
117-84-0Di-n-octylphthalate	10	Ŭ
205-99-2Benzo(b) fluoranthene	10	Ü
207-08-9Benzo(k)fluoranthene	10	U
50-32-8Benzo(a)pyrene	10	U
193-39-5Indeno(1,2,3-cd)pyrene	10	U
53-70-3Dibenz(a,h)anthracene	. 10	U
191-24-2Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

Quantitation Report

Data File : c:\hpchem\1\data\0412\s3832.d

Acq On : 12 Apr 95 23:49 pm Sample : 2350508, FLDBK2, Misc : 1,,,07-APR-95,1000,1,T8270, WATER Quant Time: Apr 13 0:24 1995

Method : c:\HPCHEM\1\METHODS\8270S.M
Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995 Response via : Single Level Calibration

Vial: 52

Operator: jr Inst : HPS Multiplr: 1.00

Quantitation Report

Quant Time: Apr 13 0:24 1995

Method : C:\HPCHEM\1\METHODS\8270S.M

Title : 390/ASP/8270

Last Update : Wed Apr 12 14:28:15 1995

Response via : Continuing Cal File: c:\hpchem\1\data\0412\s3818.d

Internal Standards	R.T. S	Scan	Response	Conc Units	Dev(Min)
1) 1,4-Dichlorobenzene-D4 18) Naphthalene-D8 33) Acenaphthene-d10 54) Phenanthrene-D10 65) Chrysene-D12 73) Perylene-D12	6.38 8.67 12.62 16.17 22.70 1 26.42 1	268 496 701 1078	34077 110705 77319 140540 141692 132932	20.00 20.00 20.00 20.00 20.00 20.00	0.02 0.00 0.02 0.02 0.00 0.03
System Monitoring Compounds 14) 2-Fluorophenol 15) Phenol-d5 16) 2-Chlorophenol-d4 17) 1,2-Dichlorobenzene-d4 32) Nitrobenzene-d5 52) 2-Fluorobiphenyl 53) 2,4,6-Tribromophenol 72) Terphenyl-d14	5.88 6.12 6.69 7.35		38985 40591 107578 94073 98686 243559 55388 412277	%R. 31.04 ug/L 21.87 ug/L 47.71 ug/L 32.97 ug/L 37.92 ug/L 38.45 ug/L 29.82 ug/L 65.24 ug/L	63.61%
Target Compounds					Qvalue

000077

Join hit 4/3/3

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK47

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: SWB0405A

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3643.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	lg) UG/L	Q
108-95-2	Phenol bis(2-Chloroeth	(1) 2-hor	10	ū
95-57-8	2-Chlorophenol	/1/ = Cire!	10 10	ָ ע
541-73-1	1,3-Dichloroben	zene	10	ال
	1,4-Dichloroben		10	Ü
	1,2-Dichloroben		10	الق
95-48-7	2-Methylphenol		10	الق
108-60-1	$2,2'-oxybis(1-\overline{C})$	loropropagel	10	ال
	4-Methylphenol	izoropropane,	10	<u></u>
	N-Nitroso-di-n-	propylamine	10	ן ט
67-72-1	Hexachloroethan		10	Ü
98-95-3	Nitrobenzene		10	الن
	Isophorone		10	Ü
	2-Nitrophenol		10	ט
105-67-9	2,4-Dimethylpher	201	10	מ
120-83-2	2,4-Dimethylpher	101	10	
120-83-1	1,2,4-Trichloro	207,7070	10	ע
91-20-3	Naphthalene	Del12e11e		ש
106-47-8	4-Chloroaniline		10	וט
	Hexachlorobutad	iono	10	Ü
	bis(2-Chloroeth		10	Ü
59-50-7	4-Chloro-3-Meth	zlaborol	10	ש
91-57-6	2-Methylnaphtha	Table Hot	10	Ü
77-47-4	Hexachlorocyclo	contadiono	10	a c
88-06-2	2,4,6-Trichloro	pentadiene	10	U
	2,4,5-Trichloro		50	ש
	2-Chloronaphtha		10	מ
	2-Nitroaniline	rerie		
	Dimethylphthala		50	U
121-11-2	Dimetry ipitinata	-e	10	U
200-30-0	Acenaphthylene		10	.U
606-20-2	2,6-Dinitrotolue	ene	10	U
99-09-2	3-Nitroaniline_		50	ש
83-34-9	Acenaphthene		10	ט
1		1		1

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

FORM I SV-1

SW846 METHOD 8270.

0

SBLK47

Lab Name: NYTEST ENV INC Contract: 9521649

COMPOUND

CAS NO.

Matrix: (soil/water) WATER Lab Sample ID: SWB0405A

Sample wt/vol: 1000 (g/mL) ML Lab File ID: R3643.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/06/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

50 51-28-5-----2,4-Dinitrophenol_____ Ū 50 U 100-02-7----4-Nitrophenol 10 U 132-64-9-----Dibenzofuran U 10 121-14-2----2,4-Dinitrotoluene U 10 84-66-2-----Diethylphthalate U 10 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene U 50 100-01-6-----4-Nitroaniline_ 50 U 534-52-1----4,6-Dinitro-2-methylphenol 10 U 86-30-6-----N-Nitrosodiphenylamine_(1)___ 10 Ũ 101-55-3-----4-Bromophenyl-phenylether U 10 118-74-1-----Hexachlorobenzene U 50 87-86-5-----Pentachlorophenol 10 U 85-01-8-----Phenanthrene U 10 120-12-7-----Anthracene U 10 86-74-8-----Carbazole U 10 84-74-2-----Di-n-butylphthalate U 10 206-44-0-----Fluoranthene U 10 129-00-0-----Pyrene_ 10 U 85-68-7-----Butylbenzylphthalate U 91-94-1----3,3'-Dichlorobenzidine 20 U 10 56-55-3-----Benzo(a)anthracene 10 U 218-01-9-----Chrysene U 10 117-81-7-----bis(2-Ethylhexyl)phthalate U 10 117-84-0-----Di-n-octylphthalate 10 U 205-99-2-----Benzo(b) fluoranthene 10 Ŭ 207-08-9-----Benzo(k) fluoranthene___ 10 U 50-32-8-----Benzo (a) pyrene 10 U 193-39-5-----Indeno(1,2,3-cd)pyrene_

191-24-2-----Benzo(g,h,i)perylene____

53-70-3-----Dibenz(a,h)anthracene_____

U

U

10

10

^{(1) -} Cannot be separated from Diphenylamine

SBLK54

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL

Lab Sample ID: WB0405B

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R3732.D

Level: (low/med) LOW

Date Received: 00/00/00

% Moisture: not dec. 0 dec.

Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG O

<u> </u>	composite (ag/ii or ag/ii	ng) og) ng	Q
108-95-2	Phenol	330	U
111-44-4	bis(2-Chloroethyl)Ether	330	Ū
95-57-8	2-Chlorophenol	330	Ū
541-73-1	1,3-Dichlorobenzene	330	Ū
106-46-7	1,4-Dichlorobenzene	330	Ū
95-50-1	1,2-Dichlorobenzene	330	U
95-48-7	2-Methylphenol	330	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	330	U
106-44-5	4-Methylphenol	330	U
621-64-7	N-Nitroso-di-n-propylamine	330	U
	Hexachloroethane	330	Ŭ
	Nitrobenzene	330	Ŭ
	Isophorone	330	Ŭ
	2-Nitrophenol	330	U
105-67-9	2,4-Dimethylphenol	330	Ū
120-83-2	2,4-Dichlorophenol	330	ប
120-82-1	1,2,4-Trichlorobenzene	330	Ū
91-20-3	Naphthalene	330	Ū
106-47-8	4-Chloroaniline	330	Ū
	Hexachlorobutadiene	330	Ŭ
111-91-1	bis(2-Chloroethoxy) methane	330	บิ
59-50-7	4-Chloro-3-Methylphenol	330	Ū
91-57-6	2-Methylnaphthalene	330	Ū
77-47-4	Hexachlorocyclopentadiene	330	Ū
88-06-2	2,4,6-Trichlorophenol	330	Ū
	2,4,5-Trichlorophenol	1700	Ū
91-58-7	2-Chloronaphthalene	330	Ū
88-74-4	2-Nitroaniline	1700	Ū
	Dimethylphthalate	330	Ū
· 208-96-8	Acenaphthylene	330	Ü
606-20-2	2,6-Dinitrotoluene	330	Ü
99-09-2	3-Nitroaniline	1700	Ü
	Acenaphthene	330	11
		330	0

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK54

330

330

670

330

3301

330

330

330

330

330

330

330

330

U

U

U

U

U

U

U

U

U

U

U

U

Lab Name: NYTEST ENV INC Contract: 9521649

COMPOUND

CAS NO.

129-00-0-----Pyrene

218-01-9-----Chrysene

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Matrix: (soil/water) SOIL Lab Sample ID: WB0405B

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R3732.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/05/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

51-28-5-----2,4-Dinitrophenol_____ 1700 100-02-7----4-Nitrophenol____ 1700 U 330 U 132-64-9-----Dibenzofuran 121-14-2----2,4-Dinitrotoluene____ 330 U 84-66-2-----Diethylphthalate_ 330 U 7005-72-3----4-Chlorophenyl-phenylether 330 U 330 Ū 86-73-7-----Fluorene 100-01-6-----4-Nitroaniline 1700 U 534-52-1-----4,6-Dinitro-2-methylphenol_ 1700 U 86-30-6-----N-Nitrosodiphenylamine_(1)___ U 330 101-55-3-----4-Bromophenyl-phenylether 330 U U 118-74-1-----Hexachlorobenzene 330 U 87-86-5-----Pentachlorophenol 1700 85-01-8-----Phenanthrene 330 U U 330 120-12-7-----Anthracene 330 U 86-74-8-----Carbazole 330 U 84-74-2-----Di-n-butylphthalate 330 U 206-44-0-----Fluoranthene

(1) - Cannot be separated from Diphenylamine

85-68-7-----Butylbenzylphthalate

91-94-1----3,3'-Dichlorobenzidine

56-55-3-----Benzo (a) anthracene

117-84-0-----Di-n-octylphthalate

193-39-5-----Indeno(1,2,3-cd)pyrene

53-70-3-----Dibenz(a,h)anthracene

207-08-9-----Benzo(k)fluoranthene

191-24-2-----Benzo(g,h,i)perylene

50-32-8-----Benzo(a)pyrene

117-81-7-----bis(2-Ethylhexyl)phthalate

205-99-2----Benzo (b) fluoranthene

SBLK91

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: SB0406A

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3823.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

		/ Rg / UG / RG	Q
108-95-2		330	U
111-44-4	bis(2-Chloroethyl)Ether	330	Ü
95-57-8	2-Chlorophenol	330	Ü
541-73-1	1,3-Dichlorobenzene	330	Ū
106-46-7	1,4-Dichlorobenzene	330	Ū
95-50-1	1,2-Dichlorobenzene	330	Ū
95-48-7	2-Methylphenol	330	ָד
108-60-1	2,2'-oxybis(1-Chloropropane)	330	U
106-44-5	4-Methylphenol	330	U
621-64-7	N-Nitroso-di-n-propylamine	330	U
67-72-1	Hexachloroethane	330	U
98-95-3	Nitrobenzene	330	U
78-59-1	Isophorone	330	U
88-75-5	2-Nitrophenol	330	U
105-67-9	2,4-Dimethylphenol_	330	U
120-83-2	2,4-Dichlorophenol	330	[ט
120-82-1	1,2,4-Trichlorobenzene	330	U
91-20-3	Naphthalene	330	ַ
	4-Chloroaniline	330	U
87-68-3	Hexachlorobutadiene	330	U
111-91-1	bis(2-Chloroethoxy) methane_	330	U
59-50-7	4-Chloro-3-Methylphenol	330	U
91-57-6	2-Methylnaphthalene	330	Ū
77-47-4	Hexachlorocyclopentadiene	330	U
88-06-2	2,4,6-Trichlorophenol	330	U
95-95-4	2,4,5-Trichlorophenol	1700	U
91-58-7	2-Chloronaphthalene	330	U
88-74-4	2-Nitroaniline	1700	U
131-11-3	Dimethylphthalate	330	U
208-96-8	Acenaphthylene	330	Ū
606-20-2	2,6-Dinitrotoluene	330	Ū
99-09-2	3-Nitroaniline	1700	U
83-32-9	Acenaphthene	330	U

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK91

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) SOIL Lab Sample ID: SB0406A

Sample wt/vol: 30.0 (g/mL) G Lab File ID: S3823.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/06/95

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 04/12/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	1700	Ū
100-02-74-Nitrophenol	1700	Ū
132-64-9Dibenzofuran	330	Ū
121-14-22,4-Dinitrotoluene	330	Ū
84-66-2Diethylphthalate	330	Ū
	330	Ü
7005-72-34-Chlorophenyl-phenylether	330	Ŭ
86-73-7Fluorene	1700	ŭ
100-01-64-Nitroaniline	i i	U
534-52-14,6-Dinitro-2-methylphenol	1700	_
86-30-6N-Nitrosodiphenylamine_(1)	330	Ŭ
101-55-34-Bromophenyl-phenylether	330	Ŭ
118-74-1Hexachlorobenzene	330	Ŭ
87-86-5Pentachlorophenol	1700	Ŭ
85-01-8Phenanthrene	330	U
120-12-7Anthracene	330	U
86-74-8Carbazole	330	U
84-74-2Di-n-butylphthalate	330	U
206-44-0Fluoranthene	330	U
129-00-0Pyrene	330	U
85-68-7Butylbenzylphthalate	330	Ū
91-94-13,3'-Dichlorobenzidine	670	U
56-55-3Benzo(a) anthracene	330	U
218-01-9Chrysene	330	Ū
117-81-7bis(2-Ethylhexyl)phthalate	330	Ū
II/-8I-/DIS(Z-EUNYTHEXYI/phicharace	330	Ū
117-84-0Di-n-octylphthalate	330	Ü
205-99-2Benzo(b) fluoranthene	330	U
207-08-9Benzo(k) fluoranthene	-	Ū
50-32-8Benzo(a) pyrene	330	ט
193-39-5Indeno (1, 2, 3-cd) pyrene	330	l .
53-70-3Dibenz(a,h)anthracene	330	Ü
191-24-2Benzo(g,h,i)perylene	330	U
		l

(1) - Cannot be separated from Diphenylamine

SBLK92

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: WB0407A

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3843.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/07/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-12,2'-oxybis(1-Chloropropane) 106-44-54-Methylphenol 621-64-7N-Nitroso-di-n-propylamine 67-72-1Hexachloroethane 98-95-3Nitrobenzene 78-59-1Isophorone 88-75-52-Nitrophenol 105-67-92,4-Dichlorophenol 120-83-22,4-Dichlorophenol 120-82-11,2,4-Trichlorobenzene 91-20-3Naphthalene 106-47-8Naphthalene 106-47-8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	זממממממממממממממממ
88-75-52-Nitrophenol 105-67-92,4-Dimethylphenol 120-83-22,4-Dichlorophenol 120-82-11,2,4-Trichlorobenzene 91-20-3Naphthalene 106-47-84-Chloroaniline 87-68-3Hexachlorobutadiene 111-91-1bis (2-Chloroethoxy) methane	10 10 10 10 10 10	บ บ บ บ
91-57-62-Methylnaphthalene 77-47-4Hexachlorocyclopentadiene 88-06-22,4,6-Trichlorophenol 95-95-42,4,5-Trichlorophenol 91-58-72-Chloronaphthalene 88-74-42-Nitroaniline	10 10 10 50 10	ט ט ט ט
131-11-3Dimethylphthalate 208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline 83-32-9Acenaphthene	10 10 10 50 10	ט ט ט ט

4-Methylphenol is being reported as the combination of 3 + 4 Methylphenol

SW846 METHOD 8270A

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLK92

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix: (soil/water) WATER Lab Sample ID: WB0407A

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3843.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 dec. Date Extracted:04/07/95

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 04/13/95

GPC Cleanup: (Y/N) N pH: 5.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

		
51-28-52,4-Dinitrophenol	50	U
100-02-74-Nitrophenol	50	Ū
132-64-9Dibenzofuran	10	וט
121-14-22,4-Dinitrotoluene	10	Ū
84-66-2Diethylphthalate	10	וֹט
7005-72-34-Chlorophenyl-phenylether	10	ַ ד
86-73-7Fluorene	10	Ū
100-01-64-Nitroaniline	50	Ū
534-52-14,6-Dinitro-2-methylphenol	50	Ū
86-30-6Nitrosodiphenylamine (1)	10	Ū
101-55-34-Bromophenyl-phenylether	10	Ū
118-74-1Hexachlorobenzene	10	Ü
87-86-5Pentachlorophenol	50	Ū
85-01-8Phenanthrene	10	ָ ט
120-12-7Anthracene	10	Ū
86-74-8Carbazole	10	Ū
84-74-2Di-n-butylphthalate	10	Ū
206-44-0Fluoranthene	10	Ū
	10	Ū
129-00-0Pyrene	10	Ū
85-68-7Butylbenzylphthalate	20	U
91-94-13,3'-Dichlorobenzidine	10	Ū
56-55-3Benzo(a) anthracene	10	Ü
218-01-9Chrysene	10	ט ט
117-81-7bis(2-Ethylhexyl)phthalate	10	ם ו
117-84-0Di-n-octylphthalate	10	ŭ
205-99-2Benzo(b) fluoranthene	10	1
207-08-9Benzo(k) fluoranthene		1
50-32-8Benzo (a) pyrene	10	l .
193-39-5Indeno (1, 2, 3-cd) pyrene	10	· ·
53-70-3Dibenz(a,h)anthracene	10	Ū.
191-24-2Benzo(g,h,i)perylene	10	

(1) - Cannot be separated from Dirhenylamine

2C WATER SEMIVOLATILE SÜRROGATE RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

	EPA SAMPLE NO.	S1 (NBZ)#	S2 (FBP)#	S3 (TPH)#	S4 (PHL)#	S5 (2FP)#	S6 (TBP)#	S7 (2CP)#	S8 (DCB)#	TOT
01234567890123456						S5 (2FP) # ====== 71 23 6* 60 41 70		S7 (2CP) # ====== 70 42 13* 76 64 80		
27 28 29 30										

```
QC LIMITS
S1 (NBZ) = Nitrobenzene-d5
                                  (35-114)
S2 (FBP) = 2-Fluorobiphenyl
                                  (43-116)
S3 (TPH) = Terphenyl-d14
                                  (33-141)
S4 (PHL) = Phenol-d5
                                  (10 - 94)
S5 (2FP) = 2-Fluorophenol
                                  (21-100)
S6 (TBP) = 2,4,6-Tribromophenol
                                  (10-123) ·
S7 (2CP) = 2-Chlorophenol-d4
                                  (33-110) (advisory)
S8 (DCB) = 1,2-Dichlorobenzene-d4 (16-110)
```

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogate diluted out

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

Level: (low/med) LOW

			- 60		S4	S5	S6	S7	S8	TOT
	EPA	S1	S2 (77.7) "	S3 (mptt) #	(PHL)#	(2FP)#	(TBP)#	(2CP)#	(DCB)#	OUT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#		(255)#	(152/#	(201) π	======	===
	========	=====	=====	=====	======	61	49	53	39	0
01	SBLK91	45	46	89	50	84	65	67	46	0
02	1-23-1	56	62	98	61		93	92	58	0
03	1-22-1	74	77	134	83	110	36D	47D	42D	0
04	1-22-1D	50D	46D	62D	51D	50D	53D	47D 45D	34D	ő
05	1-19-1	42D	42D	58D	46D	44D	50D	44D	35D	0
06	1-19-2	48D	47D	62D	46D	44D	50D 64	63	64	0
07	SBLK54	76	72	84	63	54	94	92	60	1
08	1-24-1	71	77	152*	84	99		50	55	0
09	1-16-1	60	62	72	52	49	51 61	58	62	0
10	1-16-D	70	70	82	59	55 54D	46D	63D	59D	0
11	1-16-2	63D	82D	121D	55D	54D	56	61	62	0
12	1-17-2	68	71	86	58	52 33D	81D	49D	34D	0
13	1-18-1	37D	87D	149D	48D	33D 8D	10D	12D	14D	0
14	1-18-2	7D	18D	25D	4D	42	57	47	44	0
15	1-20-1	47	55	76	46	42	45	52	57	o l
16	1-21-1	62	66	79	54	40	50	50	52	0
17	1-17-1	58	61	73	51	60	56	57	68	0
18	1-17-1MS	70	71	83	56	69D	72D	83D	71D	0
19	1-17-1MSD	72D	105D	142D	72D	930	/25	000	, 12	
20									<u> </u>	
21					<u> </u>	ļ ———				
22										
23		<u> </u>						<u> </u>		
24									l	·
25				İ						
26 27										
	1						l	·		
28				·						-
29								.		-
30	<u> </u> l	.1	.	.	-!

	LIMITS
	-120)
S2 (FBP) = 2-Fluorobiphenyl (30)	-115)
S3 (TPH) = Terphenyl-d14 (18	-137)
S4 (PHL) = Phenol-d5 (24)	-113)
S5 (2FP) = 2-Fluorophenol (25)	-121)
S6.(TBP) = 2,4,6-Tribromophenol (19	-122)
S7 (2CP) = 2-Chlorophenol-d4 (20	-130) (advisory)
S8 (DCB) = 1,2-Dichlorobenzene-d4 (20	-130) (advisory)

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogate diluted out

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: NYTEST ENV INC Contract: 9521649

Matrix Spike - EPA Sample No.: 1-17-1 Level(low/med) LOW

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-Methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	2600 2600 1700 1700 1700 2600 1700 2600 1700 2600 1700	000000000000000000000000000000000000000	1600 1400 1100 1300 1200 1800 1200 1800 1200 330 1400	====== 62 54 65 76 70 69 70 69 70 13*	26- 90 25-102 28-104 41-126 38-107 26-103 31-137 11-114 28- 89 17-109 35-142

COMPOUND	ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	% REC #	% RPD #	QC L: RPD	IMITS REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-Methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	2600 2600 1700 1700 1700 2600 1700 2600 1700 2600	2000 2100 1200 1400 1500 2000 3000 2200 1300 1500 63000	77 81 70 82 88 77 176* 85 76 58	22 40 7 8 23 11 86* 21 8127* 191*	35 50 27 38 23 33 19 50 47 47 36	26-90 25-102 28-104 41-126 38-107 26-103 31-137 11-114 28-89 17-109 35-142

⁽¹⁾ N-Nitroso-di-n-propylamine

#	Column	to be used	i to	flag	recovery	and	RPD	values	with	an	asterisk
4	77-7		= 00	- 7 · · . · . · . ·							GC CCT TO!!

* Values outside of QC limits

RPD:	_					-
H 1) •	4	out	\sim \sim	1 1	outside	1 7 m 7 + ~
- · ·	_	$-\alpha$	\sim \sim		Outside	T T 1111 T 1.55

Spike Recovery: 3 out of 22 outside limits

COMMENTS:		

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

DFTPP Injection Date: 04/06/95 Lab File ID: R3635.D

DFTPP Injection Time: 1104 Instrument ID: HPR

m/e	ION ABUNDANCE CRITERIA	% RELA ABUNI	
=====		50.3	======
51	30.0 - 60.0% of mass 198	0.0 (0.0)1
68	Less than 2.0% of mass 69		0.0/1
69	Mass 69 relative abundance	53.5	
70	Less than 2.0% of mass 69	0.1 (0.1)1
127	40.0 - 60.0% of mass 198	56.3	
197	Less than 1.0% of mass 198	0.0	
198	Base peak, 100% relative abundance	100.0	
199	5.0 to 9.0% of mass 198	6.5	
275	10.0 - 30.0% of mass 198	13.9	
365	Greater than 1.00% of mass 198	2.54	
441	Present, but less than mass 443	6.9	
442	Greater than 40.0% of mass 198	46.5	
443	17.0 - 23.0% of mass 442	8.9 (19.2)2
,			

1-Value is % mass 69 2-Value is % mass 442

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	===========	==========	========	========
01	SSTD020	SSTD020	R3637.D	04/06/95	1214
02	SSTD050	SSTD050	R3638.D	04/06/95	1304
03	SSTD080	SSTD080	R3639.D	04/06/95	1353
04	SSTD120	SSTD120	R3640.D	04/06/95	1443
05	SSTD160	SSTD160	R3641.D	04/06/95	1534
06	SBLK47	SWB0405A	R3643.D	04/06/95	1717
07	FLDBK1	2349012	R3647.D	04/06/95	2038
80	EQPBK1	2349013	R3648.D	04/06/95	2128
09	~				
10					
11					
12					
13					
14					
15					
16					<u> </u>
17					
18					
19					
20					
21					
22				1	

5P

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: R3720.D DFTPP Injection Date: 04/12/95

Instrument ID: HPR DFTPP Injection Time: 1133

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	35.2
	Less than 2.0% of mass 69	0.0 (0.0)1
70	Less than 2.0% of mass 69	0.2 (0.5)1
	40.0 - 60.0% of mass 198	46.7
i i	Less than 1.0% of mass 198	0.0
	Base peak, 100% relative abundance	100.0
	5.0 to 9.0% of mass 198	6.6
l	10.0 - 30.0% of mass 198	17.3
	Greater than 1.00% of mass 198	1.68
	Present, but less than mass 443	6.0
1	Greater than 40.0% of mass 198	40.5
443	17.0 - 23.0% of mass 442	7.8 (19.2)2
	1-Value is % mass 69 2-Value is % mass 69	ass 442

1				
1	LAB .	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=========	=========		========	========
SSTD020	SSTD020	R3721 D	04/12/95	1213
				1300
)	1	•		
1	3		04/12/95	1347
,	1		04/12/95	1434
	ī		04/12/95	1522
SBLK54	WB0405B	R3732.D	04/12/95	2129
			·	
				
				
	EPA SAMPLE NO. SSTD020 SSTD050 SSTD080 SSTD120 SSTD160 SBLK54	SAMPLE NO. SAMPLE ID	SAMPLE NO. SAMPLE ID FILE ID SSTD020 R3721.D SSTD050 R3722.D SSTD080 R3723.D SSTD120 R3724.D SSTD160 R3725.D	SAMPLE NO. SAMPLE ID FILE ID ANALYZED SSTD020 R3721.D 04/12/95 SSTD050 R3722.D 04/12/95 SSTD080 R3723.D 04/12/95 SSTD120 R3724.D 04/12/95 SSTD160 R3725.D 04/12/95

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: R3736.D DFTPP Injection Date: 04/13/95

Instrument ID: HPR DFTPP Injection Time: 0034

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198	30.2 0.0 (0.0)1 37.6 0.2 (0.7)1 43.9 0.0
441	Base peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.00% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	100.0 6.7 17.9 1.73 6.0 40.3 7.9 (19.7)2
	1-Value is % mass 69 2-Value is % mass 69	 ass 442

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
06 07	SSTD050 1-16-1 1-16-D 1-16-2 1-17-2 1-18-1 1-18-2	SSTD050 2349001 2349002 2349003 2349007 2349008 2349009	R3737.D R3738.D R3739.D R3740.D R3741.D R3742.D R3743.D	04/13/95 04/13/95 04/13/95 04/13/95 04/13/95 04/13/95 04/13/95	0049 0136 0224 0311 0359 0446 0533
	1-20-1	2349010	R3744.D	04/13/95	0620
	1-21-1	2349011	R3745.D	04/13/95	0708
	1-17-1	2349004	R3747.D	04/13/95	0842
	1-17-1MS	2349005	R3748.D	04/13/95	0930
	1-17-1MSD	2349006	R3749.D	04/13/95	1018
16 17 18 19 20 21 22					

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: S3069.D DFTPP Injection Date: 02/22/95

Instrument ID: HPS DFTPP Injection Time: 1427

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	Base peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.00% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	37.1 0.6 (1.0)1 55.6 0.3 (0.5)1 51.6 0.0 100.0 6.7 21.3 2.92 6.9 46.0 8.8 (19.2)2
	1-Value is % mass 69 2-Value is % ma	ss 442

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	==========	=======================================		1
01	SSTD020	SSTD020	G2 0 71 D	========	======
02	SSTD050	SSTD050	S3071.D	02/22/95	1529
03	SSTD080	4	S3072.D	02/22/95	1613
	1	SSTD080	S3073.D	02/22/95	1703
04	SSTD120	SSTD120	S3074.D	02/22/95	1746
05	SSTD160	SSTD160	S3075.D	02/22/95	
06		ļ	250,5.5	02/22/95	1832
07					
08					
09					
10	· · · · · ·				
11					
12					
13					
14					
15					
16					
17					
18					
		·			
19					
20					
21					
22					
١.					

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab Code: NYTEST Case No.: 23490 SAS No.: SDG No.: WORLA

Lab File ID: S3817.D DFTPP Injection Date: 04/12/95

DFTPP Injection Time: 1327 Instrument ID: HPS

m/e	ION ABUNDANCE CRITERIA	% REI ABUN	ATIVE DANCE
51	30.0 - 60.0% of mass 198	59.5	=====
	Less than 2.0% of mass 69	0.0 (0.0)1
	Mass 69 relative abundance	52.2	0.0/1
	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	47.5	, _
197	Less than 1.0% of mass 198	0.0	
198	Base peak, 100% relative abundance	100.0	
199	5.0 to 9.0% of mass 198	6.9	
	10.0 - 30.0% of mass 198	25 8	
	Greater than 1.00% of mass 198	5.38	
	Present, but less than mass 443	10.2	
	Greater than 40.0% of mass 198	62.9	
443	17.0 - 23.0% of mass 442	11.8 (18.8)2
	1-Value is % mass 69 2-Value is % mass 69	ass 442	

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	=========	=========	=======	=======
01	SSTD050	SSTD050	S3818.D	04/12/95	1341
02	SBLK91	SB0406A	S3823.D	04/12/95	1724
03	1-23-1	2350501	S3824.D	04/12/95	1806
04	1-22-1	2350502	S3825.D	04/12/95	1848
05	1-22-1D	2350503	S3826.D	04/12/95	1931
06	1-19-1	2350504	S3827.D	04/12/95	2014
07	1-19-2	2350505	S3828.D	04/12/95	2057
	1-24-1	2350506	S3829.D	04/12/95	2140
09	EQPBK2	2350507	S3831.D	04/12/95	2306
10	FLDBK2 ,	2350508	S3832.D	04/12/95	2349
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NYTEST ENV INC Contract: 9521649

Lab File ID: S3840.D DFTPP Injection Date: 04/13/95

Instrument ID: HPS DFTPP Injection Time: 1153

m/e	ION ABUNDANCE CRITERIA		LATIVE NDANCE	
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.00% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	56.3 0.0 52.8 0.0 45.0 0.0 100.0 6.6 24.9 4.44 8.0 54.9	,) 1
	1-Value is 2 mass 60			

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 90 11 11 11 11 11 11 11 11 12 12 12 12 12	SSTD050 SBLK92	SSTD050 WB0407A	S3842.D S3843.D	04/13/95 04/13/95	ANALYZED ====================================
22					

NYTEST ENVIRONMENTAL, INC.

REPORT OF ANALYSIS

We find as follows: Log In No : 23505

Results in mg/Kg(dry basis) :

Parameter(s)

a .1- +3	<i>Girahia</i>	
Sample Identi	rication	Total Petroleum Hydrocarbons
Soil Method B	Detection Limit	1 U mg/L 1 mg/L 10 U 10
LAB ID	CLIENT ID	
2350501 2350502 2350503 2350504 2350505 2350506 2350507 2350508	1-23-1 1-22-1 1-22-1D 1-19-1 1-19-2 1-24-1 EQPBK2 FLDBK2	80 110 730 340 230 20 1 mg/L 1 U mg/L

U : Below method blank / method reporting limit

QC/QA REPORT

CLIENT: Operational Te

Log In Number: 23490

PARAMETER		Duplicate Sample Result	% RPD	Sample Result for spike	Spike Added	Spike + Sample : Result	% Spike Recovered	Sample for QC from same sample? (dup/spike)
Total Petroleum Hydrocarbons, mg/Kg	92.4	97.5	5.4	92.4	369.0	491.2	108.1	YES/YES
Total Petroleum Hydrocarbons, mg/L	4.55	4.52	0.7	1 U	4.105	4.55	110.8	NO/NO

NC: Non-calcu able

NA: Non-Available

E : Above me od limit

U : Below meunod reporting limit

CLIENT: Operational Te

Log In Number: 23505

PARAMETER	•	Duplicate Sample Result	% RPO	Sample Result for spike	Spike Added	Spike + Sample Result	% Spike Recovered	Sample for QC from same sample? (dup/spike)
Total Petroleum Hydrocarbons, mg/Kg	77.0	76.5	0.7	77.0	386.0	531.0	117.6	YES/YES
Total Petroleum Hydrocarbons, mg/L	4.55	4.52	0.7	1 U	4.105	4.55	110.8	NO/NO

NC: Non-calculable

NA: Non-Available

E : Above method limit

 ${\tt U}$: Below method reporting limit

THIS PAGE INTENTIONALLY LEFT BLANK

8000PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHERT

	SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-16-1
	CONC. LEVEL:	LOW	LAB SAMPLE ID:	2349001
	EXTRACTION DATE:	04/06/95	DIL FACTOR:	1.00
	ANALYSIS DATE:	04/12/95	* MOISTURE:	5
			UG/1	KG
CMPD #	CAS Number	PCB COMPOUND	(DR	Y BASIS)
				·
1	12674-11-2	Aroclor-1016	ı	84 U
2	11104-28-2	Aroclor-1221		84 U
3	11141-16-5	Aroclor-1232	i	84 U
4	53469-21-9	Aroclor-1242	i	84 U
5	12672-29-6	Aroclor-1248	1	84 U
6	11097-69-1	Aroclor-1254	i	84 U
7	11096-82-5	Aroclor-1260	,	84 U
1	1		1	54 0 1

HP4-B DB-1701 0.53mm

ample Name : 2349001

: c:\2700\data4\423B032.raw FileName

ethod : hp4.ins tart Time : 0.00 min

End Time : 35.00 min Plot Offset: 13 mV cale Factor: -1

Sample #: 1-16-1
Date: 4/12/95 10:24
Time of Injection: 4/12/95 09:50

Low Point : 13.12 mV Plot Scale: 30 mV

High Point : 43.12 mV

Page 1 of 1

Software Version: 3.2 <16C20>

Sample Name : 2349001 Time : 4/12/95 Study

: 4-6-95 Sample Number: 1-16-1

: PATRICK Operator

Channel : B A/D mV Range : 1000 Instrument: 970-4:HP-4

AutoSampler : HP 7673A

: 0/0 Rack/Vial

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 09:50

Delay Time : 0.00 min. : 35.00 min. End Time

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B032.raw Result File : c:\2700\data4\423B032.rst

Instrument File: c:\2700\data\hp4.ins

Process File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

fnj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

IP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

eak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments	
1 2 8 9 11 12	6.77 8.09 23.65 23.99 27.83 28.49	54602 242095 75557 239602 9401 405517	13709 61424 4168 45747 607 52517	BB BV VB	1000000 7158473 1000000 6073794 1000000 9385506	0.0546 0.0338 0.0756 0.0395 0.0094 0.0432	0.000 22.547 0.000 26.3.0 0.000 28.806	D	CX 689c IBUTYLCHLORENDA CB 8670	TE 4070	INV
		1026773	178172			0.2560	77.654				

IC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY Y LY 17/97 REVIEWED BY . . .

8030PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

			SAMP	LE M	ATRIX:	SOIL		SAMPLE	ID:	1-16-D		
			CO	NC.	raner:	LOW	LAB	SAMPLE	ID:	2349002		
			EXTRAC	TION	DATE:	04/06/95		DIL FACT	TOR:	1.00		
			ANAL	YSIS	DATE:	04/12/95		MOIST	URE:	4		
								UG/KG				
CMPD	#		CAS Nu	mber		PCB COMPOUN	ED CE		(DR	(BASIS)		
		_										
	1		12674-	11-2	1	Aroclor-1016			ı	83	U	_1
	2	1	11104-	28-2	1	Aroclor-1221			İ	83	U	1
	3	1	11141-	16-5	1	Aroclor-1232			1	83	U	1
	4	l	53469-	21-9	1	Aroclor-1242			i	83	U	i
	5		12672-2	29-6	1	Aroclor-1248			ĺ	83	U	i
	6	1	11097-6	69-1	1	Aroclor-125			ĺ	83	U	i
	7	ļ	11096-8	82-5	1	Aroclor-1260			i	83	U	i
												Ċ

Sample Name : 2349002

: c:\2700\data4\423B043.raw PileName

: hp4.ins

Start Time : 0.00 min Scale Factor: -1

Method

End Time : 35.00 min Plot Offset: 13 mV

Sample #: 1-16-D Date : 4/12/95 18:35

Time of Injection: 4/12/95 18:00 Low Point: 12.48 mV High Plot Scale: 30 mV

High Point : 42.48 mV

Page 1 of 1

1.0ul inj/column Response[mV]

Software Version: 3.2 <16C2O>

Sample Name : 2349002 Time : 4/12/95 18:35

Sample Number: 1-16-D Study : 4-6-95

Operator : PATRICK

Instrument : 970-4:HP-4 Channel : B A/D mV Range : 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial #: 0187572363 Data Acquisition Time: 4/12/95 18:00

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

law Data File : c:\2700\data4\423B043.raw Result File : c:\2700\data4\423B043.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\402.prc Sample File : c:\2700\data\423BN-60.smp

requence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 nj. Volume : 1 ul Sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

P4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

ajc #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL.	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
2	6.75	21970	5711	BB	1000000	0.0220	0.000				
3	8.06	265025	68113	вв	7158474	0.0370	24.683	To	= 7 UU		
7	22.91	9041	295	BB	1000000	0.0090	0.000	•	/ /o		
3	23.62	39306	3962	BV	1000000	0.0393	0.000		,	1.61	rul
,	23.96	379246	70180	VB	6073794	0.0624	41.629	ום	IBUTYLCHLORENDAT	= 62°/0	600
1.2	28.44	442699	58908	AB	9385506	0.0472	31.447	סמ		, -	
		1157287	207169			0.2170	97 769				

=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY.. 小中中 REVIEWED BY. 介

808)PCB - PORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

			SAMPLE MA	ATRIX:	SOIL		SAMPL	ID	:	1-16-2		
			CONC. I	EVEL:	LOW	LAB	SAMPL	ID		2349003		
			EXTRACTION	DATE:	04/06/95		IL FAC	TOR	:	1.00		
			ANALYSIS	DATE:	04/12/95	,	MOIST	URE	:	9		
									UG/K	G		
CMPD	#		CAS Number		PCB COMPOUND				(DRY	BASIS)		

	1		12674-11-2	ł	Aroclor-1016					88	ŭ	
	2	1	11104-28-2	-	Aroclor-1221					88	u	i
	3	1	11141-16-5	1	Aroclor-1232					88		,
	4	ļ	53469-21-9	1	Aroclor-1242					88		1
	5	1	12672-29-6	1	Aroclor-1248			, 1		88		
	6		11097-69-1	1	Aroclor-1254			1		88		1
	7	1	11096-82-5	1	Aroclor-1260			i		52	-	1
		1_		_				1			-	1

Sample Name : 2349003 PileName

Start Time : 0.00 min

Scale Factor: -1

Method

: c:\2700\data4\423B044.raw : hp4.ins

End Time : 35.00 min Plot Offset: 12 mV

Sample #: 1-16-2 Date : 4/12/95 19:19

Page 1 of 1 Time of Injection: 4/12/95 18:45

Low Point : 12.16 mV

High Point : 42.16 mV

Plot Scale: 30 mV

Software Version: 3.2 <16C20>

Sample Name : 2349003 Time : 4/12/95 19:19 Sample Number: 1-16-2 Study : 4-6-95

Operator : PATRICK

: 970-4:HP-4 Channel : B A/D mV Range : 1000 Instrument

AutoSampler : HP 7673A

Rack/Vial : 0/0

31864

57

59

29.97

33.47

3588 RR

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 18:45

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B044.raw Result File : c:\2700\data4\423B044.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\402.prc

Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30...)00 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

1000000

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
7	6.74	16311	3436	VB.	1000000	0.0163	0.000			
9	8.06	349367	89083	BV	7158474	0.0488	32.538		~ 0.17	
14	12.25	7916	1251	BB	1000000	0.0079	0.000	TCX	98%	
15	12.63	8954	393	BB	1000000	0.0090	0.000		176	
19	16.50	9367	2004	38	1000000	0.0094	0.000		•	
21	17.14	9250	2307	88	1000000	0.0093	0.000			
22	17.41	8103	1505	BB	1000000	0.0081	0.000			
23	17.64	13719	802	BV	1000000	0.0137	0.000			
24	18.03	15349	1377	VV	1000000	0.0154	0.000			
25	18.32	9543	1444	VV	1000000	0.0095	0.000			
26	18.43	9970	1765	VV	1000000	0.0100	0.000			
27	18.68	26682	5213	VV	1000000	0.0267	0.000			
28	18.90	10433	1152	VV	1000000	0.0104	0.000			
29	19.18	32059	6341	VB	1000000	0.0321	0.000			
32	19.96	39318	8107	BB	1000000	0.0393	0.000			
33	20.39	21581	2473	BV	1000000	0.0216	0.000			
34	20.55	13123	2872	VB	1000000	0.0131	0.000			
35	20.94	5603	1250	BV	1000000	0.0056	0.000			
36	21.13	125104	24733		1000000	0.1251	0.000			
37	21.25	25108	5522	VV	1000000	0.0251	0.000			
38	21.40	15869	2815	vv	1000000	0.0159	0.000			
39	21.69	8894	1958	VB	1000000	0.0089	0.000			
42	22.30	26345	5230	BV	1000000	0.0264	0.000			
43	22.46	11529	2447	VV	1000000	0.0115	0.000		•	•
44	22.60	5111	1110	VB	1000000	0.0051	0.000			
45	23.01	9078	1344	BB	1000000	0.0091	0.000			
46	23.25	53853	10049	BV	1000000	0.0539	0.000			
47	23.61	33459	3867	VV	1000000	0.0335	. 0.000			
48	23.96	375440	68750	vv	6073794	0.0618	41.211	****	JTYLCHLORENDA:	616
49	24.22	11786	2520	vv	1000000	0.0118	0.000	DIB	JITLCHLORENDA:	re of / D
50	24.41	36339	5728	VB.	1000000	0.0363	0.000			/ "
1	25.64	9238	:106	BB	1000000	0.0092	2.000			•
54	26.63	12494	2193		1000000	0.0125	2.000			
55	27.76	9816	1072		1000000	0.0098	0.000			000010
56	28.43	452764	60700	VB	9385506	0.0482	32.162	500	OLUS	0.000

255 BB 1000000 0.0064 0.000 1867126 337760 105.911

0.000

0.0319

Sample #: 1-16-2 Page 1 of 1 Date: 4/12/95 19:19
Time of Injection: 4/12/95 18:45
Low Point: 17.90 mV High:
Plot Scale: 30 mV rileName : c:\2700\data4\423A044.raw : hp4.in= End Time : 35.00 min art Time : 0.00 min High Point : 47.90 mV Plot Offset: 18 mV ale Factor: -1 1.0ul inj/column Response[mV] 20 25 35 112884 <u>18.87</u> 18.50 -19.13 -19.44 -19.95 ---22.79 23.76 24.40 -25.53 --25.026.15 -27.73 -28.44 ---29.37 -30.71 000011 -33.91

Software Version: 3.2 <16C20>

Sample Name : 2349003 Time : 4/12/95 19:19

Sample Number: 1-16-2 Study : 4-6-95

: PATRICK Operator

Instrument : 970-4:HP-4 Channel : A A/D mV Range : 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 18:45

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423A044.raw Result File : c:\2700\data4\423A044.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\401.prc

Sample File : $c:\2700\data\423AN-60.smp$

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 6000.00 Sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-608

HP4-A DB608 30M X 0.53 MM ID 150 C TO 275 C

'eak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
1	5.27	12760	1194		1000000	0.0128		(pp,		MC/COM/ <dl< td=""></dl<>
2	5.49	10945			1000000	0.0128	0.000			
3	5.69	8080	1160		1000000	0.0110	0.000			
6	6.25	6066	886		1000000		0.000			
11	7.50	422340	97483		8548369	0.0061	0.000		٦	
17	12.04	12912	1630		1000000	0.0494	32.939	ı,	rex	
18	12.86	51803	775		1000000	0.0129	0.000		. , 0	
21	14.19	11378	806		1000000	0.0518	0.000		/	
22	15.00	21985	1066		1000000	0.0114	0.000			
26	16.44	13225	2261			0.0220	0.000			
27	16.67	19234	2552		1000000	0.0132	0.000			
29	17.61	24826	1492		1000000	0.0192	0.000			
30	17.94	21528			, 1000000	0.0248	0.000			
32	18.50	27248	1598		1000000	0.0215	0.000			
33	18.87	272 48 53576	5136		1000000	0.0273	0.000			
34			3413		1000000	0.0536	0.000			
35	19.13	53688	7320		1000000	0.0537	0.000			
36	19.44	64808	8860		1000000	0.0648	0.000			
36	19.95	105704	18398,		1000000	0.1057	0.000			
	20.15	18918	3055		1000000	0.0189	0.000			
38	20.43	10596	1049		1000000	0.0106	0.000			
39	20.61	31214	4558		1000000	0.0312	0.000			
40	20.78	18474	3203		1000000	0.0185	0.000			
41	20.97	46469	7420		. 1000000	0.0465	0.000			
42	21.08	28086	5393		1000000	0.0281	0.000			
43	21.31	16553	2726		1000000	0.0166	0.000			
46	22.02	6939	1369		1000000	0.0069	0.000			
47	22.34	21922	4115		1000000	0.0219	0.000			
48	. 22.48	6198	1102		1000000	0.0062	0.000			
49	22.62	13507	2560	vv	1000000	0.0135	0.000			
50	22.79	435905	80745	VB.	12933000	0.0337	22.471	5.	IBUTYLCHLORENDAT) wit
5.2	24.11	18089	2588	BV	1000000	0.0181	0.000	דת	.BUTYLCHLORENDA:	18 クナブー
3	24.28	7579	660		1000000	0.0076				- /0
34	24.40	22963	4744		1000000	0.0230	.000			·
57	26.15	14155	2270		1000000	0.0142	0.000			
58	27.73	6546	958 1		1000000	0.0066	0.000			
60	29.37	446425	52605		8791037		0.000		21/	0.00010
61	30.71	28934	2710		1000000	0.0508	33.856	סכ	= 102 /v	000012
62	33.91	13168	2710 E			0.0289	0.000		' ' / '	~
				30	1000000	0.0132	0.000		(
		2154745	342168	•		0.9840	89.266	************		A. I. =

oftware Version: 3.2 <16C20>

hate: 4/13/95 13:19

Sample Name : 2349003

Data File : c:\2700\data4\423B044.raw Date: 4/12/95 18:45 equence File: c:\2700\data4\423.seq Cycle: 44 Channel: B Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK Sample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET DB-1701

HP4B DB1701 30M X 0.53 MM ID 150 C,275 C

# #	Ret Time	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Component Name	
- 9 13	8.06 10.17	349367 1134	89083 222	6686064 161010	0.0523	34.8	TCX ARCCLOR 1016	***************************************
18	15.15	3283 26682	303 5213	312547 301904	0.0105	7.0 58.9	AROCLOR 1016-5	X= 48813
9	19.18	32059 39318	6341 8107	468975 554281	0.0684	45.6.	AROCLOR-1260 AROCLOR-1260-2	= = = = = = = = = = = = = = = = = = = =
36	21.13	125104	24733	699411	0.1789	47.3 · 119.3	AROCLOR-1260-3	= 52 PPB (PRy)
16	23.25	53853 375440	10049 68750	778075 5649153	0.0692	46.1 . 44.3	AROCLOR-1260-5 DIBUTYLCHLORENDATE	y, .
;	24.41	36339 452764	5728 60700	602415 9004643	0.0603 0.0503	40.2 · 33.5	Aroclor1260-6 DCB	
		1495344	279228		0.7226	481.8		

PREPARED BY. /s 4/149) REVIEWED BY. #.

Software Version: 3.2 <16C20>

Date: 4/13/95 13:19 Sample Name : 2349003

Data File : c:\2700\data4\423A044.raw Date: 4/12/95 18:45 Sequence File: c:\2700\data4\423.seq Cycle: 44 Channel: A Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK

Sample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET

DB-608

HP4A DB608 30M X 0.53 MM ID 150 C,275 C

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name
11 19 22 32 34 35 39 41 50 54	7.50 13.27 15.00 18.50 19.13 19.44 20.61 20.97 22.79 24.40 29.37	422340 4337 21985 27248 53688 64808 31214 46469 435905 22963 446425	97483 326 1066 5136 7320 8860 4558 7420 80745 4744 52605	8090921 277217 279871 319055 572189 582291 378134 526463 12287000 423843 8378933	0.0522 0.0157 0.0786 0.0854 0.0938 0.1113 0.0826 0.0883 0.0355 0.0542	34.8 10.4 52.4 56.9 62.6 74.2 55.0 58.9 23.7 36.1 35.5	TCX ARCCLOR-1016-4 ARCCLOR-1260-5 ARCCLOR-1260-1 ARCCLOR-1260-4 ARCCLOR-1260-5 DIBUTYLCHLORSMDATE ARCCLOR-1260-6 DCB
		1577381	270262		0.7507	500.5	•

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

	SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-17-1
	CONC. LEVEL:	LOW	LAB SAMPLE ID:	2349004
	EXTRACTION DATE:	04/06/95	DIL FACTOR:	1.00
	ANALYSIS DATE:	04/12/95	* MOISTURE:	3
			UG/K	(G
CMPD #	CAS Number	PCB COMPOUND	(DRY	BASIS)
1	12674-11-2	Aroclor-1016		82 U
2	11104-28-2	Aroclor-1221	İ	82 U
3	11141-16-5	Aroclor-1232	ĺ	82 U
4	53469-21-9	Aroclor-1242		82 U
5	12672-29-6	Aroclor-1248		82 U
6	11097-69-1	Aroclor-1254		82 U
. 7	11096-82-5	Aroclor-1260	I	82 U
i	1		1	1

Sample Name : 2349004 FileName : c:\2700\data4\423B045.raw : hp4.ins Method

Start Time : 0.00 min

Scale Factor: -1

End Time : 35.00 min Plot Offset: 12 mV

Sampla #: 1-17-1 Date : 4/12/95 20:04

Page 1 of 1 Time of Injection: 4/12/95 19:29

Low Point : 12.44 mV Plot Scale: 30 mV

High Point : 42.44 mV

1.0ul inj/column Response[mV]

Software Version: 3.2 <16C20>

Sample Name : 2349004 Time Time : 4/12/95 20:04 Study : 4-6-95

Sample Number: 1-17-1

Dperator : PATRICK

Channel : B A/D mV Range : 1000 Instrument : 970-4:HP-4

AutoSampler : HP 7673A Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 19:29

pelay Time : 0.00 min. : 35.00 min. Ind Time

Sampling Rate : 2.1739 pts/sec

law Data File : c:\2700\data4\423B045.raw Result File : c:\2700\data4\423B045.rst

Instrument File: c:\2700\data\hp4.ins

rocess File : c:\2700\data\402.prc | ample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

nj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

P4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

ak ‡	Ret Time [min]	Area [uV-sec]	Height [uV]	BL.	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
2	6.74	13991	3738	88	1000000	0.0140	0.000			
3	8.05	295922	77593	BB	7158474	0.0413	27.561	TC	× 8357	
4	9.58	5844	1292	BB	1000000	0.0058	0.000		57/0	
5	12.25	5179	897	BB	1000000	0.0052	0.000			/ .
,	21.13	7501	1244	BB	1000000	0.0075	0.000			int
	22.79	14694	706	BB	1000000	0.0147	0.000			
12	23.61	33114	3369	BV	100000	0.0331	0.000			_ 66/0
3	23.95	401144	59233	VB	6073794	0.0660	44.032	DI	BUTYLCHLORENDA	ATB GO / D
; 	28.43	449868	60182	va 	9385506	0.0479	31.956	DC		
		1227255	208254			0.2356	103.549		7	

I=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. √↓ γ | 3/0 REVIEWED BY. √.

80 10 PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHBBT

			SAMPLE MI	ATRIX:	SOIL		SAMPLE	ID:	1-17-2	:	
			CONC.	TEART:	LOW	LAB	SAMPLE	ID:	2349007		
			EXTRACTION	DATE:	04/06/95	:	DIL FAC	TOR:	1.00	ı	
			ANALYSIS	DATE:	04/12/95		MOIST	JRE:	8		
								UG/	KG		
CMPD	#		CAS Number		PCB COMPOUND			(DR	Y BASIS)		
											
	1	1	12674-11-2	1	Aroclor-1016			1	87	U	_,
	2	1	11104-28-2	1	Aroclor-1221			i	87		i
	3	1	11141-16-5	1	Aroclor-1232			1	87		1
	4	1	53469-21-9	1	Aroclor-1242			1	87		1
	5	l	12672-29-6	1	Aroclor-1248			1			1
	€		11097-69-1	Ĺ	Aroclor-1254				87		!
	7	l	11096-82-5	-	Aroclor-1260				87		- 1
		1		i	1100			1	87	ŭ	1

Sample #: 1-17-2 Date : 4/12/95 22:17 ple Name : 2349007 Page 1 of 1 : c:\2700\data4\423B048.raw _leName Time of Injection: 4/12/95 21:42 Low Point: 13:13 mV High Method : hp4.ins art Time : 0.00 min End Time : 35.00 min High Point : 43.13 mV le Factor: -1 Plot Offset: 13 mV Plot Scale: 30 mV 1.0ul inj/column Response[mV] <u>7</u> -6.40 -9.59 12.25 -15.13 20.51 22.10 .22.79 23.61 **-23.95** 27.06 __28.43 -28.92 31.59 32.75 000019 -33.68

Software Version: 3.2 <16C20>

Sample Name : 2349007

Sample Number: 1-17-2

: PATRICK Operator

Time : 4/12/95 22:17 Study

: 4-6-95

Instrument : 970-4:HP-4 AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 21:42

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B048.raw
Result File : c:\2700\data4\423B048.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\402.prc

Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Sample Amount : 30.0000

Area Reject : 5000.00

Channel : B A/D mV Range : 1000

Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL.	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wec)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
2 5 6 7 8	8.05 15.13 20.51 22.10 22.79 23.61	205364 7490 45250 12660 87405	53897 1657 1083 562 4293	BB BB BV VB	7158474 1000000 1000000 1000000 1000000	0.0287 0.0075 0.0453 0.0127 0.0874	19.127 0.000 0.000 0.000 0.000	то	× 57,0	
10 11 12 13 14 16	23.95 27.06 28.43 28.92 31.59 33.68	21471 683929 25195 378542 16672 24581 15460	2924 69100 1585 48124 707 976 597	VB BB BB BB	1000000 6073794 1000000 9385506 1000000 1000000	0.0215 0.1126 0.0252 0.0403 0.0167 0.0246 0.0155	0.000 75.073 0.000 26.890 0.000 0.000		BUTYLCHLORENDA	TE (137)
		1524020	185504			0.4378	121.089			

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY ... REVIEWED BY ...

8090PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

		SAMPLE MAT	RIX: SOIL	SAMPLE ID:	1-18-1
		CONC. LE	VEL: LOW	LAB SAMPLE ID:	2349008
		EXTRACTION D	ATE: 04/06/95	DIL FACTOR:	1.00
		ANALYSIS D	ATE: 04/12/95	* MOISTURE:	5
				UG/	KG
CMPD	#	CAS Number	PCB COMPOUND	(DR	Y BASIS)
				······································	
	1	12674-11-2	Aroclor-1016	1	84 U
	2	11104-28-2	Aroclor-1221	1	84 U
	3	11141-16-5	Aroclor-1232	1	84 U
	4	53469-21-9	Aroclor-1242	1	8'4 U
	5	12672-29-6	Aroclor-1248	1	84 U
	6	11097-69-1	Aroclor-125	1	์ 84 "ปี
	7	11096-82-5	Aroclor-1260	1	84 U
		[1	1	1

Sample Name : 2349008 : c:\2700\data4\423B049.raw PileName Method : hp4.ins Start Time : 0.00 min End Time : 35.00 min Scale Factor: -1 Plot Offset: 13 mV 5.46 -6.74 .9.89.59

Page 1 of 1

Sample #: 1-18-1

Date: 4/12/95 23:02

Time of Injection: 4/12/95 22:27

Low Point: 12.64 mV High

Plot Scale: 30 mV High Point : 42.64 mV

1.0ul inj/column Response[mV]

oftware Version: 3.2 <16C20>

ample Name : 2349008 Time : 4/12/95 23:02

Sample Number: 1-18-1 Study : 4-6-95

perator : PATRICK

Channel : B A/D mV Range : 1000 Instrument : 970-4:HP-4

AutoSampler : HP 7673A

ack/Vial : 0/0

Interface Serial #: 0187572363 Data Acquisition Time: 4/12/95 22:27

elay Time : 0.00 min. nd Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

aw Data File : c:\2700\data4\423B049.raw ..esult File : c:\2700\data4\423B049.rst

instrument File: c:\2700\data\hp4.ins rocess File : c:\2700\data\402.prc ample File : c:\2700\data\423BN-60.smp Sequence File : C:\2700\DATA4\423.seq

nj. Volume : 1 ul Area Reject : 5000.00 sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

j.k	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <di< th=""><th>i.</th></di<>	i.
-	6.74	19807	5185	BB	1000000	0.0198	0.000	• • • • • • • • • • • • • • • • • • • •			
3	8.05	347968	90066	BB	7158474	0.0486	32.408	т	37 <i>0</i> 7		
	9.59	5823	1349	BB	1000000	0.0058	0.000	*	× 17%		
	12.25	5041	1005	BB	1000000	0.0050	0.000		/		
	23.60	47346	4655	VV	1000000	0.0474	0.000				1 1
	23.95	450020	83992	VB	6073794	0.0741	49.397	n	IBUTYLCHLORENDA:	TR フレレブ	10
15	26.05	127815	2261	BB	1000000	0.1278	0.000	_	TROTTECHEN	** (T/O	2010
	27.76	19505	623	BB	1000000	0.0195	0.000			/	
	28.43	469753	64480	BB	9385506	0.0501	33.369	n	a way		
	29.96	6980	904	BB	100000	0.0070	0.000	-	CB (ICL)		
T	32.40	19252	566	вv	1000000	0.0193	0.000				
20	33.47	50927	939	VV	1000000	0.0509	0.000		•		
21	34.26	42752	1146	VB	1000000	0.0428	0.000				
		1612988	257171			0.5180	115.174				

=NOT CONFIRMED; PREPARED BY 火火 中的 REVIEWED BY.

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX: SOIL SAMPLE ID: 1-18-2 CONC. LEVEL: LOW LAB SAMPLE ID 2349009 EXTRACTION DATE: 04/06/95 DIL FACTOR: 1.00 ANALYSIS DATE: 04/13/95 * MOISTURE: 8 UG/KG CMPD # CAS Number PCB COMPOUND (DRY BASIS) 1 12674-11-2	CONC. LEVEL: LOW LAB SAMPLE ID 2349009 EXTRACTION DATE: 04/06/95 DIL FACTOR: 1.00 ANALYSIS DATE: 04/13/95 ** MOISTURE: 8 UG/KG CMPD ** CAS Number PCB COMPOUND (DRY BASIS) 1 12674-11-2 Aroclor-1016 87 U 2 11104-28-2 Aroclor-1221 87 U 3 11141-16-5 Aroclor-1232 87 U 4 53469-21-9 Aroclor-1242 87 U 5 12672-29-6 Aroclor-1248 87 U 6 11097-69-1 Aroclor-1254					
CMPD # CAS Number PCS COMPOUND (DRY BASIS) 1 12674-11-2	CMPD # CAS Number PCS COMPOUND CMY BASIS)	CONC. EXTRACTIO	LEVEL: LOW ON DATE: 04/06/95	LAB SAMPLE ID DIL FACTOR:	1.00	
2 11104-28-2 Aroclor-1221 87 U 3 11141-16-5 Aroclor-1232 87 U 4 53469-21-9 Aroclor-1242 87 U 5 12672-29-6 Aroclor-1248 87 U 6 11097-69-1 Aroclor-1254 87 U	2 11104-28-2 Aroclor-1221 87 U 3 11141-16-5 Aroclor-1232 87 U 4 53469-21-9 Aroclor-1242 87 U 5 12672-29-6 Aroclor-1248 87 U 6 11097-69-1 Aroclor-1254 87 U 7 11096-82-5 Aroclor-1260 85 J	CMPD # CAS Numbe	F PCB COMPOUND	UG/K	G	
7 11096-82-5 Aroclor-1260 85 J		2 11104-28- 3 11141-16- 4 53469-21- 5 12672-29- 6 11097-69-	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	. ; 	87 U 87 U 87 U 87 U 87 U	

33.47 -33.96 000025

Software Version: 3.2 <16C20>

Sample Name : 2349009 Time : 4/13/95 14:45 Sample Number: 1-18-2 Study : 4-6-95

Operator

Channel : B A/D mV Range : 1000 Instrument : 970-4:HP-4 AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/13/95 14:09

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\424B002.raw Result File : c:\2700\data4\424B002.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\402.prc Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\424.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30..000

Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

#	[min]	[uV-sec]	Height [uV]		Area/NG CAL FACT.	Amount ng/ul	ppb (Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
2	5.84	21911	3416		1000000	0.0219	0.000			
6	8.05	300157	78952		7158474	0.0419	27.955	T	4419	
12	12.24	7476	1106		1000000	0.0075	0.000	* ~~v	CY/12	
17	14.26	10272	1032		1000000	0.0103	0.000		7 5	
18	15.14	9947	1247		1000000	0.0100	0.000			
19	15.47	10043	1271		1000000	0.0100	9.000			
21	16.50	12034	2890		1000000	0.0120	0.000			
23	17.13	12436	3072		1000000	0.0124	0.000			
2.4	17.40	5234	1125		1000000	0.0052	0.000			
2.5	18.02	8526	1613		1000000	0.0085	0.000			
6	18.42	23555	2647		1000000	0.0236	0.000			
27	18.68	45972	7625	BE	, 1000000	0.0460	0.000			
28	18.89	8116	1513		1000000	0.0081	0.000			
29	19.17	51240	10142	VV	1000000	0.0512	0.000			
30	19.52	15700	1816		1000000	0.0157	0.000			
1	19.72	8649	1749		1000000	0.0087	0.000			
2	19.95	60591	12412		1000000	0.0606	0.000			
3	20.29	21944	3791		1000000	0.0219	0.000			
4	20.37	13588	3224	Δ Δ	1000000	0.0136	0.000			
5	20.54	23220	4634	VV	1000000	0.0232	0.000			
8	21.03	30008	4340	vv	1000000	0.0300	0.000			
9	21.12	52145	10661	VV	1000000	0.0522	0.000			
0	21.24	49153	10202	VV	1000000	0.0492	0.000			
1	21.40	23698	5020	VB	1000000	0.0237	0.000			•
2	21.90	11787	1714	38	1000000	0.0118	0.000			
3	22.29	49678	9395	BV	1000000	0.0497				
4	22.45	21656	4647		1000000	0.0217	0.000			
5	22.60	8497	1894		1000000	0.0085	0.000			
6	23.00	9148	1812		1000000	0.0085	0.000			
7	23.24	109433	20152		1000000	0.1094	0.000			
8	23.95	299603	51632		6073794	0.0493	0.000			
3	24.21	25247	398		1000000		32.886	DIBU	TYLCHLORENDAT	TB 490/_
0	24.40	70377	11240		1000000	0.0253	. 500			10
3	25.63	14319	2208		1000000	0.0704	000			
4	26.62	27003	4756		1000000	0.0143 0.0270	0.000			
5	27.75	10268	1516		1000000		0.000			00000
5	28.42	358556	48413		9385506	0.0103	0.000		-i 15	000026
•	29.96	20139	1890		1000000	0.0382	25.470	DCB	76.67	0000 20
9	33.47	6265	228		1000000	0.0201 0.0063	0.000		15	

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. VIC - 13/1/2 REVIEWED BY.

Sample Name : 2349009 Sample #: 1-18-2 Date : 4/13/95 14:45 Page 1 of 1 PileName : c:\2700\data4\424A002.raw Method : hp4.ins Time of Injection: 4/13/95 14:09
Low Point: 18.45 mV High Start Time : 0.00 min End Time : 35.00 min High Point : 48.45 mV Plot Offset: 18 mV Scale Pactor: -1 Plot Scale: 30 mV 1.0ul inj/column Response[mV] 20-25 35 Ú 1'5 2'0 Retention Time [min] -11.33 -11.82 -12.23 -12.67 13.25 1341.99 15.43 165121 18.49 <u>-19.12</u> 19.44 <u>83.2</u>6.14 -2<u>0.60</u> -2<u>0.9</u>51.07 $\frac{-2}{22}$ 1078 22.33 23.76 24.11 24.39 ²/₄ .⁷/₉5 25,00 -26.14 27.72 -30.69 000028 Software Version: 3.2 <16C20>

Sample Name : 2349009

Time : 4/13/95 14:44 Study : 4-6-95 Sample Number: 1-18-2

Operator

Channel : A A/D mV Range : 1000 Instrument : 970-4:HP-4

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/13/95 14:09

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : $c:\2700\data4\424A002.raw$ Result File : $c:\2700\data4\424A002.rst$

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\401.prc Sample File : c:\2700\data\423AN-60.smp

Sequence File : C:\2700\DATA4\424.seq

Area Reject : 6000.00 Dilution Factor : 1.00 Inj. Volume : 1 ul Sample Amount : 30.0000

PEST-PCB REPORT DB-608

HP4-A DB608 30M X 0.53 MM ID 150 C TO 275 C

eak	Ret Time	Area	Height	BL	Area/NG	Amount	Amount	Amount	Component	Comments
#	[min]	[uV-sec]	[uV]		CAL FACT.	ng/ul	ppb (Wet)	(ppb Dry)	Name	NC/CON/ <dl< th=""></dl<>
4	7.49	354812	83737	88	8548369	0.0415	27.672		יטי D מיני	
- 6	8.86	7838	1194		1000000	0.0078	0.000	•	xx 8357,	
15	13.82	6973	1511		1000000	0.0070	0.000		1/6	
17	14.11	8712	993		1000000	0.0087	0.000		,	
19	14.99	13692	1298		1000000	0.0137	0.000			
21	15.43	9428	1424		1000000	0.0094	0.000			
23	15.91	8860	1506		1000000	0.0089	0.000			
25	16.43	17052	3156	BV	1000000	0.0171	0.000			
26	16.66	25084	3455		1000000	0.0251	0.000			
27	16.93	16628	1504	vv	1000000	0.0166	0.000			
28	17.14	11863	1375	VB	1000000	0.0119	0.000			
29	17.61	9763	782		. 1000000	0.0098	0.000			
31	18.33	9370	1135	BV	1000000	0.0094	0.000			
32	18.49	36418	6734	VB	1000000	0.0364	0.000			
33	18.78	25390	2453	BV	1000000	0.0254	0.000			
34	18.93	9920	1857	W	1000000	0.0099	0.000			
35	19.12	62197	10332	VV	1000000	0.0622	0.000			
36	19.44	64548	11787	VV	1000000	0.0646	0.000			
37	19.82	8514	1264	,ΛΛ	1000000	0.0085	0.000			
38	19.94	13066	2435	VV	100000	0.0131	0.000			
39	20.14	18326	3421	VV	1000000	0.0183	0.000			
41	20.60	40075	6146	VV	1000000	0.0401	0.000			
42	20.77	19178	3698	VV	1000000	0.0192 -	0.000			
13	20.95	47495	7596	VV	1000000	0.0475	0.000			
14	21.07	45957	9080	VB	1000000	0.0460	0.000			
45	21.30	19025	4091	BB	1000000	0.0190	0.000			
46	21.78	7042	1349		1000000	0.0070	0.000			
48	22.33	42733	7414	VV	1000000	0.0427	0.000			
19	22.61	34547	4709	VV	1000000	0.0346	0.000			•
30	22.79	366515	63909	VB	12933000	0.0283	18.894	Σ	DIBUTYLCHLORENDA	TR 787
1 ذ	23.76	6820	782	BV	1000000	0.0068	0.000	_		20 / p
52	24.11	32483	5001	VV	1000000	0.0325	0.000			/ •
53	24.27	16035	3233		1000000	0.0160	0.000			
14	24.39	42936	8570		1000000	0.0429	0.000			
17	26.00	9453	1692		1000000	0.0095	0.000			0.0000
	26.14	25966	4563		1000000	0.0260	0.000			000029
59	27.72	9721	1307		1000000	0.0097	0.000		- 150	
60	29.35	324140	38989		8791037	0.0369	24.582	г	ن الم	
1	30.69	10500	1143		1000000	0.0105	0.000	~	, .	
	,,				1000000	0.0103	5.000		ν	

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY NOT REVIEWED BY S

oftware Version: 3.2 <16C20>

Date: 4/13/95 15:12 ample Name : 2349009

ata File : c:\2700\data4\424B002.raw Date: 4/13/95 14:09 equence File: C:\2700\DATA4\424.seq Cycle: 2 Channel: B

nstrument : 970-4:HP-4 Rack/Vial: 0/0 Operator:

ample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET DB-1701

P4B DB1701 30M X 0.53 MM ID 150 C,275 C 24B DB1701 30M X 0.53 MM ID 150 C,275 C

ak #	Ret Time	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name	
6	8.05	300157	78952	6686064	0.0449	29.9	TCX	***************************************
0	10.16	4820	980	161010	0.0299	20.0	AROCCOR-1016	V = 50 21702
1	11.48	1733	404	356531	0.0049	3.2	AROCLOR-1016-2	X=78 Pres
4	13.10	3859	819	618283	0.0062	4.2	AROCLOR-1016-3	(,0)
8	15.14	9947	1247	312547	0.0318	21.2	AROCLOR-1016-5	- 0 - 200 - 1
27	18.68	45972	7625	301904	0.1523	101.5	AROCLOR-1260	-85 PPB (PRy)
9	19.17	51240	10142	468975	0.1093	72.8	AROCLOR-1260-2	(1)
2	19.95	60591	12412	554281	0.1093	72.9	AROCLOR-1260-3	\mathcal{J}'
Э,	21.12	52145	10661	699411	0.0746	49.7	AROCLOR-1260-4	
━,	23.24	109433	20152	778075	0.1407	93.8	AROCLOR-1260-5	\rightarrow \rightarrow \rightarrow \rightarrow
48	23.95	299603	51632	5649152	0.0530	35.4	DIBUTYLCHLORENDATE	very law invertibilities. I
-50	24.40	70377	11240	602415	0.1168	77.9	AROCLOR1260-6	· ·
5	28.42	358556	48413	9004643	0.0398	26.6	DCB	12 12 4 g
		1368434	254678		0.9135	609.0		*************************

PREPARED BY // 4/13/ay

Software Version: 3.2 <16C20>

Date: 4/13/95 15:12 Sample Name : 2349009

Data File : c:\2700\data4\424A002.raw Date: 4/13/95 14:09 Sequence File: C:\2700\DATA4\424.seq Cycle: 2 Channel: A

Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator:

Sample Amount : 30.0000 Dilution Factor

PCB WORKSHEET DB-608

HP4A DB608 30M X 0.53 MM ID 150 C,275 C

Peak :	Ret Time [min]	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name
4	7.49	354812	83737	8090921	0.0439	29.2	TCX
10 13	11.33	2954	443	442818	0.0067	4.5	AROCLOR—1-316'-2
	12.67	3458	501	704973	0.0049	3.3	AROCLdR-1016-3
14	13.25	3495	413	277217	0.0126	8.4	AROCLOR-1016-4
19	14.99	13692	1298	279871	0.0489	32.6	AROCIOR 1016 5
32	18.49	36418	6734	319055	0.1141	76.1	AROCLOR-1260)
35	19.12	62197	10332	572189	0.1087	72.5	1000000 1010 I
36	19.44	64548	11787	582291	0.1109	73.9	AROCLOR-1260-2 (U/t/-
41	20.60	40075	6146	378134	0.1060	70.7	AROCLOR-1260-4
43	20.95	47495	7596	526463	0.0902	60.2	AROCLOR-1260-5
50	22.79	366515	63909	12287000	0.0298	19.9	DIBUTYLCHLORENDATE
54	24.39	42936	8570	423843	0.1013	67.5	AROCLOR-1260-6
60	29.35	324140	38989	8378933	0.0387	25.8	DC3
		1362734	240456		0.8167	544.5	

PREPARED BY . . . / (> 4/13/4)

REVIEWED BY.

8080PCB - PORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

			SAMPLE MATRI	K: SOIL	SAMPLE ID:	1-20-1		
			CONC. LEVE	L: LOW	LAB SAMPLE ID:	2349010		
			EXTRACTION DATE	3: 04/06/95	DIL FACTOR:	1.00		
			ANALYSIS DATE	3: 04/13/95	* MOISTURE:	10		
					UG	/KG		
CMPD	#		CAS Number	PCB COMPOUND	(DRY BASIS)			
	1	1	12674-11-2	Aroclor-1016	1	89 U		
	,	į	11104-28-2	Aroclor-1221	!	•		
		•		•	1	89 Մ		
	3	l	11141-16-5	Aroclor-1232	1	89 U		
	4	1	53469-21-9	Aroclor-1242	1	89 U		
	5	1	12672-29-6	Aroclor-1248	1	89 U		
	6	1	11097-69-1	Aroclor-12	Ì	ag rr i		

7 | 11096-82-5 | Aroclor-1260

Sample Name : 2349010 FileName : c:\2700 : c:\2700\data4\424B003.raw

Method : hp4.ins

Start Time : 0.00 min Scale Factor: -1

End Time : 35.00 min Plot Offset: 13 mV

Sample #: 1-20-1 Date: 4/13/95 15:56 Time of Injection: 4/13/95 15:20 Low Point : 12.63 mV

High Point : 42.63 mV

Page 1 of 1

Plot Scale: 30 mV

Software Version: 3.2 <16C2O>

Sample Name : 2349010 Time : 4/13/95 15:56

Sample Number: 1-20-1 Study : 4-6-95

Operator

Instrument : 970-4:HP-4 AutoSampler : HP 7673A Channel : B A/D mV Range : 1000

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/13/95 15:20

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

law Data File : c:\2700\data4\424B003.raw Result File : c:\2700\data4\424B003.rst

Instrument File: c:\2700\data\hp4.ins rocess File : c:\2700\data\402.prc

Jample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\424.seq

Area Reject : 5000.00 nj. Volume : 1 ul Sample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

P4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	k Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
1	6.73 8.05	14207 196686	3761 51270		1000000 7158474	0.0142	0.000		~~ ~:~€7		
5	23.65	30183	2940	BV	1000000	0.0302	0.000		TCX = 70	47	1al
,	23.95 28.43	281241 381418	50888 50959		607379 4 9385506	0.0463 0.0406	30.871		DIBUTYLCHLORENDATE DCB 2/07	4/0	2710
10	33.70	15907	362	BB	1000000	0.0159	0.000		3/0		
		919642	160180			0.1747	76.283				

C=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. VEVICUED BY.

8000PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

	SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-21-1				
	CONC. LEVEL:	LOW	LAB SAMPLE IF.	2349011				
	EXTRACTION DATE:	04/06/95	DIL FACTOR:	1.00				
	ANALYSIS DATE:	04/13/95	MOISTURE:	3				
			UG/K	UG/KG				
CMPD #	CAS Number	PCB COMPOUND	(DRY	BASIS)				
		· · · · · · · · · · · · · · · · · · ·						
1	12674-11-2	Aroclor-1016		82 U				
2	11104-28-2	Aroclor-1221	· 	82 U				
3	11141-16-5	Aroclor-1232		82 U				
4	53469-21-9	Aroclor-1242		82 U				
5	12672-29-6	Aroclor-1248	· · · · · · · · · · · · · · · · · · ·	82 U				
6	11097-69-1	Aroclor-1254	1	82 0				
7	11096-82-5	Aroclor-1260	1	82 U				
1	i			62 U				

Sample Name : 2349011

FileName : c:\2700\data4\424B004.raw

: hp4.ins Method Start Time : 0.00 min

Scale Factor: -1

End Time : 35.00 min Plot Offset: 12 mV

Sample #: 1-21-1 Date : 4/13/95 16:41

Time of Injection: 4/13/95 16:05
Low Point: 11.54 mV High

High Point : 41.54 my

Page 1 of 1

Software Version: 3.2 <16C20>

Sample Name : 2349011 Time : 4/13/95 16:41

Sample Number: 1-21-1 Study : 4-6-95

Operator :

Instrument : 970-4:HP-4 Channel : B A/D mV Range : 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/13/95 16:05

Delay Time : 0.00 min. End Time : 35.00 min.

992557 184373

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\424B004.raw Result File : c:\2700\data4\424B004.rst

Instrument File: c:\2700\data\hp4.ins
Process File : c:\2700\data\402.prc

Sample File : $c:\2700\data\423BN-60.smp$

Sequence File : C:\2700\DATA4\424.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30.000 Dilution Factor : 1.00

Dideion Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

Peak Ret Time Height BL Area/NG Area Amount Amount Amount Component Comments [min] [uV-sec] [uv] CAL FACT. ng/ul ppb (Wet) (ppb Dry) Name NC/CON/<DL . - - - - - - - - ------5 309665 79973 BB 8.04 7158474 0.0433 28.841 TCX 371/0 984 BB 8 12.24 5600 1000000 0.0056 J.000 10 17.13 8112 405 BB 1000000 0.0081 0.000 17.59 5474 297 BB 1000000 0.0055 0.000 16 23.59 31066 2933 VV 1000000 0.0311 17 23.94 275130 51726 VB 6073794 0.0453 30.200 DIBUTYLCHLORENDATE 0.0374 21 28.41 350555 47892 BB 9385506 24.902 DCB 757 22 34.33 6955 163 BB 1000000 0.000 -----

83.942

000038

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

		SAMPLE MATRI	X: WATER	SAMPLE ID:	FLDBK1
		CONC. LEVE	IL: LOW	LAB SAMPLE ID:	2349012
		EXTRACTION DAT	TE: 04/05/95	DIL FACTOR:	1.00
		ANALYSIS DAT	TB: 04/11/95	* MOISTURE: NA	
				UG	/L
CMPD #	ŧ	CAS Number	PCB COMPO	DIND	
1	.	12674-11-2	Aroclor-101	6	0.50 U
2	1	11104-28-2	Aroclor-122	1	ס.50 ט
3	- 1	11141-16-5	Aroclor-123	2.	0.50 U
4	-	53469-21-9	Aroclor-124	2	0.50 U
5	- 1	12672-29-6	Aroclor-124	8	0.50 U
6	1	11097-69-1	Aroclor-125	4	0.50 U
7	1	11096-82-5	Aroclor-126	0	0.50 U

Sample Name : 2349012

: c:\2700\data4\423B019.raw FileName

Method : hp4.ins

Start Time : 0.00 min Scale Factor: -1

End Time : 35.00 min Plot Offset: 14 mV

Sample #: FLDBK1
Date : 4/11/95 21:52
Time of Injection: 4/11/95 21:09 Low Point : 13.76 mV

Plot Scale: 30 mV

High Point : 43.76 mV

Page 1 of 1

ftware Version: 3.2 <16C20>

Tample Name : 2349012

mple Number: FLDBK1 erator : PATRICK

: 4/11/95 21:52 Time

: 4-5-95 Study

Channel: B A/D mV Range: 1000 strument : 970-4:HP-4 toSampler : HP 7673A

: 0/0 R ck/Vial

terface Serial # : 0187572363 Data Acquisition Time: 4/11/95 21:09

Day Time : 0.00 min. End Time : 35.00 min.

mpling Rate : 2.1739 pts/sec

R w Data File : c:\2700\data4\423B019.raw sult File : c:\2700\data4\423B019.rst

strument File: c:\2700\data\hp4.ins Pocess File : c:\2700\data\402.prc

ample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 I..j. Volume : 1 ul Dilution Factor : 1.00 mple Amount : 1000.0000

PEST-PCB REPORT DB-1701

1-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
,	6.76	11264	2940	BB	1000000	0.0113	0.000		A 763		
î	l 8.07	311497	78535		7158474	0.0435	0.435	T	∝ 87%		
	13.09	6861	1564		1000000	0.0069	0.000		- /-		6.16
4	22.06	8058	1654		1000000	0.0081	0.000			_	211
-	23.64	74427	6803		1000000	0.0744	0.000		IBUTYLCHLOREND	1: 40/2	
- 5	23.98	635788	115656		6073794	0.1047	1.047	۵	IBUTYLCHLOREND	ATE //) / U	
ï	27.79	5183	554	BV	1000000	0.0052	0.000				
	28.47	486225	64268	VB	9385506	0.0518	0.518	D	C3 /640/0		
-		1539303	271974			0.3058	2.000				

=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. / REVIEWED BY. 六.

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

	SAMPLE MATE	IX: WATER	SAMPLE ID:	EQPBK1
	CONC. LEV	EL: LOW	LAB SAMPLE ID:	2349013
	EXTRACTION DA	TE: 04/05/95	DIL FACTOR:	1.00
	ANALYSIS DA	TB: 04/11/95	* MOISTURE: NA	
			UG/	L
CMPD #	CAS Number	PCB COMPOUND		
1	12674-11-2	Aroclor-1016	1	0.50 U
2	11104-28-2	Aroclor-1221	1	0.50 U
3	11141-16-5	Aroclor-1232		0.50 U
4	53469-21-9	Aroclor-1242	İ	0.50 U
s	12672-29-6	Aroclor-1248	1	0.50 U
6	11097-69-1	Aroclor-1254	1	0.50 U
7	11096-82-5	Aroclor-1260		0.50 U

HP4-B DB-1701 0.53mm Sample #: EQPBK1 Date: 4/11/95 22:36 Time of Injection: 4/11/95 21:54 Page 1 of 1 S: ple Name : 2349013 .leName : c:\2700\data4\423B020.raw : hp4.ins hod Low Point: 13.49 mV Plot Scale: 30 mV High Point : 43.49 mV End Time : 35.00 min t Time : 0.00 min Plot Offset: 14 mV .e Factor: -1 1. Oul inj/column Response[mV] -6.76 -8.07 9.17 -9.61 -12.27 -13.50 15.24 15.98 -16.46 -23.69 27.80 -28.47

000043

Software Version: 3.2 <16C20>

Sample Name : 2349013 Time : 4/11/95

Sample Number: EQPBK1 Study : 4-5-95

Operator : PATRICK

Instrument: 970-4:HP-4 Channel: B A/D mV Range: 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/11/95 21:54

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B020.raw Result File : c:\2700\data4\423B020.rst

Instrument File: c:\2700\data\hp4.ins Process File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 1000.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
1	6.76	9905	2617	вв	1000000	0.0099	0.000		11167		 -
2	8.07	228369	57776	BB	7158474	0.0319	0.319	TC	x 6490		_
8	15.98	7042	762	88	1000000	0.0070	0.000		/ -		
9	16.46	12021	433	38	1000000	0.0120	0.000				. i /
10	22.07	8825	1801	BB	1000000	0.0088	0.000				146
11	23.69	87879	8326	BV	1000000	0.0879	0.000			0.27	-
12	23.98	486802	91754	VΒ	6073794	0.0802	0.802	DI	BUTYLCHLORENDA	ATE 80/0	
13	27.80	5817	502	BV	1000000	0.0058	0.000		04:1	' / '	1
14	28.47	398586	\$2258	VB	9385506	0.0425	0.425	DC	B Stile	•	
		1245245	216229			0.2860	1.545		7		

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. 사보니네 REVIEWED BY....

TCL PCB ORGANICS ANALYSIS DATA SHEET

			SAMPLE MATRIX	: SOIL	SAMPLE ID:	1-23-1
			CONC. LEVEL	: LOW	LAB SAMPLE ID:	2350501
			EXTRACTION DATE	: 04/07/95	DIL FACTOR:	1.00
			ANALYSIS DATE	: 04/12/95	* MOISTURE:	4
					UG/K	G
CMPD	#		CAS Number	PCB COMPOUND	(DRY	BASIS)
	1	ŀ	12674-11-2	Aroclor-1016	†	83 U
	2	t	11104-28-2	Aroclor-1221	1	83 U
	3	ı	11141-16-5	Aroclor-1232	1	83 U
	4	ł	53469-21-9	Aroclor-1242	1	B3 U
	5	ı	12672-29-6	Aroclor-1248		83 U
	6	Ī	11097-69-1	Aroclor-125-	1	49 J
	7	ı	11096-82-5	Aroclor-1260		83 U
		ı		1	1	1

Sample #: 1-23-1
Date : 4/12/95 06:04
Time of Injection: 4/12/95 05:18
Low Point : 12.91 mV High
Plot Scale: 30 mV Sample Name : 2350501 Page 1 of 1 10 FileName : c:\2700\data4\423B030.raw Method : hp4.ins End Time : 35.00 min Plot Offset: 13 mV High Point : 42.91 mV Start Time : 0.00 min Scale Factor: -1 1.0ul inj/column Response[mV] 25 S 5.48 7.58 9.99.62 -10.25 10.60 lention Time [min] -12.28 13.28 13.83 -14.30 · <u>4.94</u>15.17 ——15.58 16.31 -16.54 · . 70 17. 157. 26 17. 17 . 18.71 . 19.21 -19.98 39.41.71 -21.16 ' 22.34 -23.63 -24.43 24.92 25.48 26.66 -27.80 000046

ftware Version: 3.2 <16C20>

Time : 4/12/95 06:03 Study : 4-7-95 imple Name : 2350501

Sample Number: 1-23-1

perator : PATRICK

Channel : B A/D mV Range : 1000 Instrument : 970-4:HP-4

AutoSampler : HP 7673A

ck/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 05:18

elay Time : 0.00 min.

Sampling Rate : 2.1739 pts/sec

w Data File : c:\2700\data4\423B030.raw cesult File : c:\2700\data4\423B030.rst

Instrument File: c:\2700\data\hp4.ins

Focess File : c:\2700\data\402.prc

Imple File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 nj. Volume : 1 ul Dilution Factor : 1.00 Sample Amount : 30.0000

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

'eak	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
-	8.08	383751	97369	BB	7158474	0.0536	35.740	TCX	10770	
4	9.62	5616	1412		1000000	0.0056	0.000		/0	
7	10.60	11250	2379		1000000	0.0113	0.000			
	12.28	18240	3466		1000000	0.0182	0.000			
	13.28	6768	1390		1000000	0.0068	0.000			
	14.30	20597	2869		1000000	0.0206	0.000			
14	15.17	12133	2212		1000000	0.0121	0.000			
15	15.58	13238	1882		1000000	0.0132	0.000			
1 3	16.31	10966	1498		1000000	0.0110	0.000			
.	16.54	34501	5255		1000000	0.0345	0.000			
	17.17	25579	5209		1000000	0.0256	0.000			
20	17.26	14380	3235		1000000	0.0144	0.000			
21	17.45	9219	1860		1000000	0.0092	0.000			
	18.05	11321	2304		1000000	0.0113	0.000			
	18.35	15644	3187		1000000	0.0156	0.000			
	18.44	10235	2214	VB	1000000	0.0102	0.000			
25	18.71	32519	6909	BB	1000000	0.0325	0.000			
26	19.21	13668	2622		1000000	0.0137	0.000			
·	19.56	28638	5782		1000000	0.0286	0.000			
,	19.98	17594	3702		1000000	0.0176	0.000			
ĺ	20.41	10901	1912		1000000	0.0109	0.000			
32	20.71	16289	3224		1000000	0.0163	0.000			
33	21.16	38295	5522		1000000	0.0383	0.000			
	22.34	8429	1770		1000000	0.0084	0.000			
	23.28	6155	1035		1000000	0.0062	0.000			•
	23.28	87094	8177		1000000	0.0871	0.000			, , , 0)
		842152	153769		6073794	0.1387	92.440	DI	BUTYLCHLOREN	DATE 139%
40	23.98			BV	1000000	0.0079	0.000			/ •
4.5	27.80	7943	87276		9385506	0.0705	46.987	DC	B 14170	
	28.47	661455	8/2/	, v.5					/.0.	
•		2374570	420294	1		0.7500	175.167		•	

I=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY VEY/149) REVIEWED BY.

 \mathcal{O} Sample #: 1-23-1
Date: 4/12/95 05:58
Time of Injection: 4/12/95 05:18
Low Point: 19.47 mV High Sample Name : 2350501 Page 1 of 1 : c:\2700\data4\423A030.raw FileName Method · : hp4.ins End Time : 35.00 min Plot Offset: 20 mV Start Time : 0.00 min High Point : 49.47 mV Plot Scale: 30 mV Scale Factor: -1 1.0ul inj/column Response[mV] 20 25 35 45 8.07 _8.90 .9.81 07.2<mark>-10.2</mark> 1'5 2'0 Retention Time [min] $\frac{112889}{12.0}$ 12.26 <u>-16.4</u>6.69 18.54 -18.97 20.17 20.80.627 -20.99 22.04 22.49 23.98 24.43 -27.7Ġ 28.46 000048

ftware Version: 3.2 <16C20>

: 4/12/95 05:57 : 4-7-95 Time nple Name : 2350501

Study mple Number: 1-23-1

erator : PATRICK

Channel: A A/D mV Range: 1000 nstrument : 970-4:HP-4

toSampler : HP 7673A

■ck/Vial : 0/0

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 05:18

lay Time : 0.00 min. : 35.00 min. E d Time

ampling Rate : 2.1739 pts/sec

Rw Data File : c:\2700\data4\423A030.raw Tesult File : c:\2700\data4\423A030.rst

Docess File : c:\2700\data\401.prc
S_mple File : c:\2700\data\423AN-60.smp

equence File : C:\2700\DATA4\423.seq

Area Reject : 6000.00 I j. Volume : 1 ul Dilution Factor : 1.00 ample Amount : 30.0000

PEST-PCB REPORT DB-608

4-A DB608 30M X 0.53 MM ID 150 C TO 275 C

	. Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
	7.52	456508	101221	BB	8548369	0.0534	35.604	т	CX (2707)	
	8.90	7341	1270		1000000	0.0073	0.000		, 0	
1	10.07	9747	1762		1000000	0.0098	0.000			
Т	12.26	11675	2215		1000000	0.0117	0.000			
	12.20	8375	951		1000000	0.0084	0.000			
•.2		10350	2228		1000000	0.0104	0.000			
.5		8510	1635		1000000	0.0085	0.000			
	15.19	6385	1114		1000000	0.0064	0.000			
	15.49	12872	1905		1000000	0.0129	0.000			
	15.97	11955	2231		1000000	0.0120	0.000			
7.4		21050	3952		1000000	0.0211	0.000			
22		34290	5026		1000000	0.0343	0.000			
	16.96	16063	2836		1000000	0.0161	0.000			
-	17.64	8584	1508		1000000	0.0086	0.000			•
	17.93	13275	2017		1000000	0.0133	0.000			
- - 7, ,	•	16636		VV 🚤	1000000	0.0166	0.000			
2.8		7865	1502		1000000	0.0079	0.000			
-	18.54	35034	6691		1000000	0.0350	0.000			
	18.78	6586		' vv	1000000	0.0066	0.000			
	18.97	27492	5223		1000000	0.0275	0.000			
	19.15	15349	2497	' VV	1000000	0.0154	0.000			
12		20436	3316	ve :	1000000	0.0204	0.000			
	20.47	13255	2586	BV .	1000000	0.0133	0.000			
- 1	20.62	13926	2274	. VV	1000000	0.0139	0:000			
	20.80	7825	1266	· vv	1000000	0.0078 -	0.000			
- 3	20.99	29371	4698	VB	1000000	0.0294	0.000			. 1. 47
		13302	2642		1000000	0.0133	0.000			66%
	22.81	858143	159851	. VB	12933000	0.0664	44.238		DIBUTYLCHLOREND	ATE /
	29.40	671899	77500	BB	8791037	0.0764	50.956	1	DCB 15207;	
-		2374098	405718			0.5837	130.797		1	

=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY LING REVIEWED BY. Software Version: 3.2 <16C20>

Date: 4/13/95 10:23 Sample Name : 2350501

Data File : c:\2700\data4\423B030.raw Date: 4/12/95 05:18 Sequence File: C:\2700\DATA4\423.seq Cycle: 30 Channel: B Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK

Sample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET DB-1701

HP4B DB1701 30M X 0.53 MM ID 150 C,275 C

111=462

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Component Name	
3	8.08	383751	97369	6439013	0.0596	39.7	TCX	7 17,4,2
12	14.30	20597	2869	277148	0.0743	49.6	AR1254-A	T=47/1B
17	16.54	34501	5255	570821	0.0604	40.3	AR1254-B	
19	17.17	25579	5209	258561	0.0989	66.0	AR1254-C	= 41 [1213 (1224)
25	18.71	32519	6909	602318	0.0540	36.0	AR1254-D	- 1110000011
27	19.56	28638	5782	418490	0.0684	45.6	AR1254-B	()/
33	21.16	38295	5522	597984	0.0640	42.7	AR1254-F	• ,
40	23.98	842152	153769	5705570	0.1476	98.4	DIBUTYLCHLORENDATE	
46	28.47	661455	87276	9045258	0.0731	48.8	DC3	
		2067488	369959		0.7005	467.0		

oftware Version: 3.2 <16C2O>

ate: 4/13/95 10:23

Sample Name : 2350501

ata File : c:\2700\data4\423A030.raw Date: 4/12/95 05:18 equence File: C:\2700\DATA4\423.seq Cycle: 30 Channel : A Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK

Dilution Factor : 1.00 ample Amount : 30.0000

> DB-608 WORKSHEET PCB

P4A DB608 30M X 0.53 MM ID 150 C,275 C

ak #	Ret Time	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name	
1	7.52	456508	101221	7821952	0.0584	38.9	TCX	
12	13.86	10350	2228	239438	0.0432	28.8	AR1254-A)	
	16.46	21050	3952	443123	0.0475	31.7	AR1254-B 7 1.0/V.	
	16.69	34290	5026	534361	0.0642	42.8	AR1254-C (/V	
	18.54	35034	6691	669103	0.0524	34.9	AR1254-D	
-1	18.97	27492	5223	451140	0.0609	40.6	AR1254-B	
33	19.47	20436	3316	377982	0.0541	36.1	AR1254-F	
	20.99	29371	4698	515204	0.0570	38.0	AR1254-G	
	22.81	858143	159851	6704691	0.1280	85.3	DIBUTYLCHLORENDATE	
	29.40	671899	77500	9133466	0.0736	49.1	DCB '	
		2164574	369706		0.6392	426.2		

______ PREPARED BY. S. W. HAS REVIEWED BY. A.

TCL PCB ORGANICS ANALYSIS DATA SHEET

		SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-22-1
		CONC. LEVEL:	LOW	LAB SAMPLE IL.	2350502
		EXTRACTION DATE:	04/07/95	DIL FACTOR:	1.00
		ANALYSIS DATE:	04/12/95	* MOISTURE:	5
				UG/K	G
CMPD	#	CAS Number	DUDON MOD EDG	(DRY	BASIS)
	1	12674-11-2	Aroclor-1016		84 U
	2	11104-28-2	Aroclor-1221	1	84 ೮
	3	11141-16-5	Aroclor-1232		84 U
	4	53469-21-9	Aroclor-1242	1	84 U
	s	12672-29-6	Aroclor-1248	1	84 U
	6	11097-69-1	Aroclor-1254	1	84 U
	7	11096-82-5	Aroclor-1260	1	84 U
	1	1		1	1

Software Version: 3.2 <16C20>

Sample Name : 2350502 Time : 4/12/95 06:48

Sample Number: 1-22-1 Study : 4-7-95

Operator : PATRICK

Instrument : 970-4:HP-4 Channel : B A/D mV Range : 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial #: 0187572363 Data Acquisition Time: 4/12/95 06:02

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B031.raw
Result File : c:\2700\data4\423B031.rst

Instrument File: c:\2700\data\hp4.ins
Process File : c:\2700\data\402.prc

Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 30..000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

Peak Ret Time Height BL Area/NG Area Amount Amount Amount Component Comments # [min] [uV-sec] [uV] CAL FACT. ng/ul ppb (Wet) NC/CON/<DL (ppb Dry) Name 8.07 418645 107372 BB 7158474 0.0585 38.990 1000000 0.0061 6074 1510 BB 0.000 1000000 0.0055 10.60 1182 BB 0.000 1993 BB 1000000 12.27 10393 0.0104 0.000 1182 VB 1000000 0.0076 16.54 7548 0.000 18.05 685 BB 1000000 0.0052 5168 0.000 18.70 7586 1571 BB 1000000 0.0076 0.000 19.17 11998 1716 BB 1000000 0.0120 0.000 20L 19.98 5011 1067 BB 1000000 0.0050 0.000 837 BB 20.35 7697 1000000 0.0077 0.000

21.16 6089 1160 BV 1000000 0.0061 0.000 22.32 5635 1135 BB 1000000 0.0056 0.000 23.28 8623 1535 BV 1000000 0.0086 0.000 23.64 75830 8023 VV 1000000 0.0758 0.000 23.98 845750 155855 VV 6073794 0.1393 DIBUTYLCHLORENDATE /39/12 92.835 24.42 6246 988 VB_ 1000000 0.0063 0.000 27.79 8508 871 VV 1000000 0.0085 0.000 641888 83185 VB 9385506 45.597 0.0684 13769 179 BB 1000000 0.0138 0.000

2097924 372046 0.4578 177.422

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY / 12/4/ REVIEWED BY.

TCL PCB ORGANICS ANALYSIS DATA SHEET

			SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-22-1D
			CONC. LEVEL:	LOW	LAB SAMPLE ID:	2350503
			EXTRACTION DATE:	04/07/95	DIL FACTOR:	1.00
			ANALYSIS DATE:	04/12/95	* MOISTURE:	6
					UG/K	G
CMPD	#		CAS Number	PCB COMPOUND	(DRY	BASIS)
	1	ı	12674-11-2	Aroclor-1016	1	85 U
	2	I	11104-28-2	Aroclor-1221	1	85 U
	3	ı	11141-16-5	Aroclor-1232	1	85 U
	4	1	53469-21-9	Aroclor-1242	1	85 U
	s	1	12672-29-6	Aroclor-1248	1	85 U
	6	I	11097-69-1	Aroclor-1254	1	85 U
	7	1	11096-82-5	Aroclor-1260	1	85 U
						1

Sample Name : 2350503
FileName : C:\2700\DATA4\423B033.raw PileName

: hp4.ins Method

Start Time : 0.00 min Scale Factor: -1

End Time : 35.00 min Plot Offset: 11 mV

Sample #: 1-22-1D
Date: 4/13/95 10:55
Time of Injection: 4/12/95 10:34
Low Point: 11.13 mV High
Plot Scale: 30 mV

High Point : 41.13 mV

Page 1 of 1

ftware Version: 3.2 <16C20>

Time : 4/12/95 11:09 Study : 4-7-95 Sample Name : 2350503

mple Number: 1-22-1D

erator : PATRICK

Channel: B A/D mV Range: 1000 nstrument : 970-4:HP-4

toSampler : HP 7673A

terface Serial #: 0187572363 Data Acquisition Time: 4/12/95 10:34

■lay Time : 0.00 min. : 35.00 min. End Time

mpling Rate : 2.1739 pts/sec

x w Data File : c:\2700\data4\423B033.raw <u>le</u>sult File : c:\2700\data4\423B033.rst

strument File: c:\2700\data\hp4.ins Docess File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 I.j. Volume : 1 ul ample Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
	6.69	6035	1474	BB	1000000	0.0060	0.000		10 00	very for uncertastin
-	8.08	314923	81448		7158474	0.0440	29.330	,	TCX SS	, 1
	9.60	7334	1517		1000000	0.0073	0.000		9 / 0	Ÿ
	10.20	8263	1081		1000000	0.0083	0.000			A ARISTO
	10.60	10258	1890		1000000	0.0103	0.000			ARIJUC
18	12.28	14049	2603		1000000	0.0141	0.000			1
34	15.16	12154	772		1000000	0.0122	0.000			
	15.58	6170		88	1000000	0.0062	0.000			
	16.53	5805	1150		1000000	0.0058	0.000			
-	17.56	5460	1266		1000000	0.0055	0.000			
31	18.45	5520	1206		1000000	0.0055	0.000			1
32	18.71	7205	1664		1000000	0.0072	0.000			inl
	19.20	9844	1844		1000000	0.0098	0.000			\mathcal{M}
	19.98	14046	2325		1000000	0.0141	0.000			L
	20.33	7554		BV	1000000	0.0076	0.000			
39	21.16	12850		VV	1000000	0.0129	0.000			
40	21.27	10468	2188		1000000	0.0105	0.000			
	22.32	8542	1807		1000000	0.0085	0.000			
	23.06	17975	2667		1000000	0.0180	0.000			
	23.28	20750	3911		1000000	0.0208	0.000			
48	23.49	8640	1909		1000000	0.0086	0.000			
49	23.63	49906	501.		1000000	0.0499	0.000			1747
	23.98	526655	97906		6073794	0.0867	57.809		DIBUTYLCHLOREN	DATE &
	24.24	5812	1179		100000	0.0058	0.000			10
	24.43	15255	2254		1000000	0.0153	0.000			
53	25.34	8296	103		1000000	0.0083	0.000			
55	26.65	5373		l BB	1000000	0.0054	0.000			
Ĭ	27.80	5651		7 BV	1000000	0.0057	0.000		بخر ہ	
	28.47	425629			9385506	0.0454	30.235		DC3 '/'	
	30.01	115660			1000000	0.1157	0.000		DC3 9' 70	
64	34.37	7802		9 88	1000000	0.0078	0.000			
		1679883	29395	0		0.5887	117.374		_	0000 57

TCL PCB ORGANICS ANALYSIS DATA SHEET

SOIL	SAMPLE ID:	1-19-1
LOW	LAB SAMPLE ID:	2350504
04/07/95	DIL FACTOR:	1.00
04/12/95	* MOISTURE:	S
	UG/K	G
PCB COMPOUND	(DRY	BASIS)
Aroclor-1016	1	84 U
Aroclor-1221	ļ	84 U
Aroclor-1232	1	84 U
Aroclor-1242		84 U
Aroclor-1248		84 U
Aroclor-1254	1	84 U
Aroclor-1260	1	39 J
	SOIL LOW 04/07/95 04/12/95 PCB COMPOUND Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	LOW LAB SAMPLE ID: 04/07/95 DIL FACTOR: 04/12/95 * MOISTURE: UG/K PCB COMPOUND (DRY Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254

ftware Version: 3.2 <16C20>

Sample Name : 2350504

imple Number: 1-19-1

erator : PATRICK

nstrument : 970-4-HP-4 toSampler : HP 7673A

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 11:19

lay Time : 0.00 min. End Time : 35.00 min.

2138163 359543

ampling Rate : 2.1739 pts/sec

R_w Data File : c:\2700\data4\423B034.raw Pesult File : c:\2700\data4\423B034.rst

strument File: c:\2700\data\hp4.ins ocess File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 Inj. Volume : 1 ul Dilution Factor : 1.00 ample Amount : 30.0000

PEST-PCB REPORT DB-1701

Time : 4/12/95 12:44 Study : 4-7-95

Channel: B A/D mV Range: 1000

4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	: Ret Time [min]	Area	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
			1715		1000000	0.0059	0.000			
_1	5.11	5929	1252		1000000	0.0052	0.000			
2	6.69	5178 358867	91835		7158474	0.0501	33.423	т	cx 10070	
	8.07	6554	1424		1000000	0.0066	0.000		() 0	
_	9.60	13245	3156		1000000	0.0132	0.000			
10	10.19 12.27	9188	1759		1000000	0.0092	0.000			
10	14.29	8146	1089		1000000	0.0082	0.000			
*	15.16	5678	994		1000000	0.0057	0.000			
	15.16	6229	787		1000000	0.0062	0.000			
_	16.53	19194	3048		1000000	0.0192	0.000			
20	17.16	7176	1905		1000000	0.0072	0.000			
20	17.44	5286	1108		1000000	0.0053	0.000			
-	18.05	5918	962		1000000	0.0059	0.000			
	18.44	23262	3304		1000000	0.0233	0.000			
-	18.70	20268	4374		1000000	0.0203	0.000			
25	19.20	15898		BB 🖚	1000000	0.0159	0.000			
-25	19.55	15616	2612		1000000	0.0156	0.000			
9	19.97	38981	8126		1000000	0.0390	0.000			
	20.40	14407	2007		1000000	0.0144	0.000			
	20.57	7907	1479		1000000	0.0079	0.000			
31	20.71	10423	1694		1000000	0.0104	0.000			
-22	21.16	54555	7976		1000000	0.0546	0.000			
1 1°	21.27	17259	3205		1000000	0.0173	0.000			
	21.42	13557	1595		1000000	0.0136	0.000		•	
	21.71	108520	24243		1000000	0.1085	0.000			
37	22.32	13242	2597		1000000	0.0132	0.000			
40	23.03	32535	1979		1000000	0.0325	0.000			
•	23.27	23291	4171		1000000	0.0233	0.000			
	23.63	41373	4753		1000000	0.0414	0.000			2762
	23.98	586647	99197		6073794	0.0966	64.394		DIBUTYLCHLOREND	PATE $4/\sqrt{p}$
44	24.21	171252	9862		1000000	0.1713	0.000			, -
45	25.46	5929		BB	1000000	0.0059	0.000		0-11	
1 2 3	28.46	435260	59163		9385506	0.0464	30.919		DCB 936/0	
	30.01	16726	1676		1000000	0.0167	0.000		′ ′ / Ū	0000 61
	31.96	5232		3 3B	1000000	0.0052	0.000		•	0.000
51		9437		7 BB	1000000	0.0094	0.000			
2.7	34.93	3437	3.5	, 55	2000000					

0.9505 128.736

Vic Willes

Sample #: 1-19-1 Date : 4/12/95 12:43 Page 1 of 1 Sample Name : 2350504 FileName : c:\2700\data4\423A034.raw FileName Time of Injection: 4/12/95 11:19 : hp4.ins Method High Point : 47.48 mV Start Time : 0.00 min End Time : 35.00 min Low Point : 17.48 mV Plot Offset: 18 mV Plot Scale: 30 mV Scale Factor: -1 1. Oul inj/column Response[mV] 25 35 45 6.26 6.98 ---8.90 -9.35 9.64 10.05 10.93 1'5 2'0 Retention Time [min] 13.28 -18.53 -19.97 24.<u>14</u>.42 25 25.17 -26.16 27.01 27.76 -30.75 000062

Software Version: 3.2 <16C20>

Sample Name : 2350504 Time : 4/12/95 12:42

Sample Number: 1-19-1 Study : 4-7-95

Operator : PATRICK

Instrument : 970-4+HP-4 Channel : A A/D mV Range : 1000

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 11:19

Delay Time : 0.00 min. End Time : 35.00 min.

1993144 320338

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423A034.raw
Result File : c:\2700\data4\423A034.rst

Instrument File: c:\2700\data\hp4.ins
Process File : c:\2700\data\401.prc

Sample File : c:\2700\data\423AN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 6000.00 Sample Amount : 30.0000 Dilution Factor : 1.00

•

PEST-PCB REPORT DB-608

HP4-A DB608 30M X 0.53 MM ID 150 C TO 275 C

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
3	7.52	412512	94738	BB	8548369	0.0483	32.172	т	a 9790		
4	8.90	6839	1191	BB	1000000	0.0068	0.000	-	U . /m		
6	9.64	13937	3201	BB	1000000	0.0139	0.000		<i>j</i> U		
17	15.47	6105	913	BB	1000000	0.0061	0.000		•		
19	15.95	6574	1135	vv	1000000	0.0066	0.000				
21	16.45	16204	2635	VV	1000000	0.0162	0.000				
22	16.69	17439	2387	VV	1000000	0.0174	0.000				
23	16.95	8103	1183	VB	1000000	0.0081	0.000				
24	17.63	9568	970	BV	1000000	0.0096	0.000				
25	17.97	20733	2774	vv	1000000	0.0207	0.000				
26	18.14	9178	1466	VV	1000000	0.0092	0.000				
28	18.53	21833	4176	VB.	1000000	0.0218	0.000				
29	18.96	22860	2598	BV	1000000	0.0229	0.000				
30	19.15	17640	3097	VB.	1000000	0.0176	0.000				
31	19.46	16848	3149	88	1000000	0.0169	0.000				
32	19.97	40846	7406	BE	1000000	0.0409	0.000				
33	20.16	7293	1210	EV	1000000	0.0073	0.000				
35	20.62	14056	2180	vv	1000000	0.0141	0.000				
36	20.80	8428	1488	`vv	1000000	0.0084	0.000				
37	21.01	156313	29198	VB	1000000	0.1563	0.000				
40	22.36	6540	1240	VV	1000000	0.0065	0.000			_ 1	
43	22.81	466774	90091	VB	12933000	0.0361	24.062	מ	IBUTYLCHLORENDA	ATE 26	
45	24.42	7748	1711	33	1000000	0.0078	0.000				
47	26.16	35643	1756	BV	1000000	0.0356	0.000				
48	27.01	220323	9029	VE	1000000	0.2203	0.000				
49	27.76	10551	849	EB	1000000	0.0106	0.000		- 1 6 7		
50	29.40	401921	47514	BB	8791037	0.0457	30.481	ם	a 91%.		
51	30.75	10333	1056	BB	1000000	0.0103	0.000	_	/0.		

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY . 4 13/45 REVIEWED BY . 4.

0.8420

86.716

oftware Version: 3.2 <16C20>

Late: 4/13/95 10:56 ample Name : 2350504

ata File : c:\2700\data4\423BC34.raw Date: 4/12/95 11:19 equence File: C:\2700\DATA4\423.seq Cycle: 34 Channel: B Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK

ample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET DB-1701

............ P4B DB1701 30M X 0.53 MM ID 150 C,275 C

P4B DB1701 30M X 0.53 MM ID 150 C,275 C

ak #	Ret Time [min]	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name	
	8.07	358867	91835	6686064	0.0537	35.8	TCX	<u> </u>
8	10.19	13245	3156	161010	0.0823	54.8	ARCCLOR-1016	REATING
1	13.13	1345	231	618283	0.0022	1.5	AROCTOR-1016-3	λ^{-1}
5	15.16	5678	994	312547	0.0182	12.1	ARACTOR 1016 5	. 1
— 7	18.70	20268	4374	301904	0.0671	44.8	AROCLOR-1260	= 34 PPB (VRY)
25	19.20	15898	3260	468975	0.0339	22.6	AROCLOR-1260-2	- 31/1/2 . * * *///
a	19.97	38981	8126	554281	0.0703	46.9	AROCLOR-1260-3	\mathcal{U}
1 1	21.16	54555	7976	699411	0.0780	52.0	AROCLOR-1260-4	
1	23.27	23291	4171	778075	0.0299	20.0	AROCLOR-1260-5	
3	23.98	586647	99197	5649152	0.1039	69.2	DIBUTYLCHLORENDATE	
48	28.46	435260	59163	9004643	0.0483	32.2	DC3	
		1554036	282483		0.5878	391.9		

PREPARED BY. 1/12/07 REVIEWED BY. 1/2. PREPARED BY. YUL V/13/95.

1522497 276913

Date: 4/13/95 10:24 Sample Name : 2350504

Data File : c:\2700\data4\423A034.raw Date: 4/12/95 11:19 Sequence File: C:\2700\DATA4\423.seq Cycle: 34 Channel: A Instrument : 970-4:HP-4 Rack/Vial: 0/0 Operator: PATRICK Sample Amount : 30.0000 Dilution Factor : 1.00

Sample Amount : 30.0000 Dilution Factor : 1.00

PCB WORKSHEET DB-608

HP4A DB608 30M X 0.53 MM ID 150 C,275 C

Peak #	Ret Time	Area [uV-sec]	Height [uV]	Area/NG CAL FACT.	Amount ng/ul	Amount ppb (Wet)	Component Name
3	7.52	412512	94738	8090921	0.0510	34.0	TCX
12	13.28	4215	479	277217	0.0152	10.1	AROCEOR IU16-4
16	15.01	2636	581	279871	0.0094	6.3	AROCEOR LOIS -
28	18.53	21833	4176	319055	0.3684	45.6	AROCLOR-1260
30	19.15	17640	3097	572189	0.0308	20.6	AROCLOR-1260-2
31	19.46	16848	3149	582291	0.0289	19 3	AROCLOR-1260-3
35	20.62	14056	2180	378134	0.0372	24.8	AROCLOR-1260-4
37	21.01	156313	29198	526463	0.2969	198.0	AROCLOR-1260-5
43	22.81	466774	90091	12287000	0.0380	25.3	DIBUTYLCHLORENDA
45	24.42	7748	1711	423843	0.0183	12.2	AROCLOR-1260-6
50	29.40	401921	47514	8378933	0.0480	32.0	DCB '

428.1

PREPARED BY... & ♥ 17/11 REVIEWED BY...

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE ID: 1-19-2 SAMPLE MATRIX: SOIL CONC. LEVEL: LOW LAB SAMPLE ID: 2350505 EXTRACTION DATE: 04/07/95 DIL FACTOR: 1.00 ANALYSIS DATE: 04/12/95 * MOISTURE: UG/KG (DRY BASIS) PCB COMPOUND CMPD # CAS Number 85 U | 1 | 12674-11-2 | Aroclor-1016 1 2 | 11104-28-2 | Aroclor-1221 1

Sample #: 1-19-2 Date : 4/13/95 10:56 Time of Injection: 4/12/95 Sample Name : 2350505 Page 1 of 1 : C:\2700\DATA4\423B035.raw FileName : hp4.ins Method 12:03 Start Time : 35.00 min Low Point : 11.39 mV High Point : 41.39 mV Plot Offset: 11 mV Scale Factor: -1 Plot Scale: 30 mV 1.0ul inj/column Response[mV] 35 76075 7.58 8.79 -9.61 15 20 Retention Time [min] 12.55 13³53⁷ 18,05 8.45 8.45 8.86 8.70 23.06 23.63 25 -28.46 30.60 -31.16 31.64 000068

ftware Version: 3.2 <16C20>

: 4/12/95 12:46 Time Sample Name : 2350505 : 4-7-95 Study

Imple Number: 1-19-2

: PATRICK erator

Channel: B A/D mV Range: 1000 nstrument : 970-4:HP-4

toSampler : HP 7673A

ck/Vial : 0/0

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 12:03

lay Time : 0.00 min. : 35.00 min. End Time

ampling Rate : 2.1739 pts/sec

I w Data File : c:\2700\data4\423B035.raw Result File : c:\2700\data4\423B035.rst

strument File: c:\2700\data\hp4.ins ☐ ocess File : c:\2700\data\402.prc

Sample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 Inj. Volume : 1 ul Dilution Factor : 1.00 ample Amount : 30.0000

DB-1701 PEST-PCB REPORT

P4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	k Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
- 2	6.75	5143	693	BB	100000	0.0051	0.000		21:-7	very lav concentra
	8.07	361321	93437	BB	7158474	0.0505	33.651		TCX 10127	Van Cove ancervan
	9.61	5265	1296	88	1000000	0.0053	0.000		, 0	. /
	10.59	11300	2316	VB	1000000	0.0113	0.000			\mathcal{J}
_	12.27	16257	2908	BB	1000000	0.0163	0.000			61 AR 1760
18		19651	1035	VΒ	1000000	0.0197	0.000			, 3. • •
-	15.57	6814	739	BB	1000000	0.0068	0.000			•
	16.52	6770	1057	VB	1000000	0.0068	0.000			
	17.55	6728	1515		1000000	0.0067	0.000			
	18.45	5919	581	vv	1000000	0.0059	0.000			
29		13272	2321		1000000	0.0133	0.000			
مت	18.86	10900		vv	1000000	0.0109	0.000			
	19.20	18372	2561		1000000	0.0184	0.000			· 1 /
	19.55	6836		VV	1000000	0.0068	0.000			In
	19.86	12067	1605	VV	1000000	0.0121	0.000			/ V.
34		11880	2156		1000000	0.0119	0.000			L
35		12135	1170		1000000	0.0121	0.000			
	21.15	11328	1585	VV	1000000	0.0113	0.000			
	21.27	15242	3099	vv'	1000000	0.0152	0.000			
	21.42	5982	1259		1000000	0.0060	0.000			
43		11202	2397		1000000	0.0112	0.000			
44		5339	1099		1000000	0.0053	0.000			
	23.06	61262	8848	3 VV	1000000	0.0613	0.000			
2	23.27	35076	5692	vB	1000000	0.0351	0.000			
8	23.63	48220	5219	BV	1000000	0.0482	0.000			au to
4.9		569693	102966	VE	6073794	0.0938	62.533		DIBUTYLCHLOREN	DATE U
50		22462	3280	EV	1000000	0.0225	0.000			, 0
	24.42	29116	3806		1000000	0.0291	0.000			, -
	25.37	13630	1656		1000000	0.0136	0.000			
	26.46	5536		S BV	1000000	0.0055	0.000			
55		8296	143		1000000	0.0083	0.000			
56		7252		BV	1000600	0.0073	0.000			
	27.80	13995	139		1000000	0.014(0.000			
	28.10	26911		s vv	1000000	0.0269	0.000		17.7	
	28.46	457058	6108		9385506	0.0487	32,467		DCB 4 / U/	0.000
		7970		7 EB	1000000	0.0080	0.000		DCB 47.07	0000 69
51		497001	5338		1000000	0.4970	0.000		<i>[</i> U	
9.3	. 30.00	43100T	2220		200000					

0.0207

0.0083

0.0129

1000000

1000000

1000000

20655

12888

8280

2393 BB

788 BV

1124 VB

0.000

0.000

0.000

65 66 67 68	32.92 33.22 33.50 34.14	65774 30704 25441 11548	1874 BV 2072 VV 1933 VV 1000 VB	1000000 1000000 1000000	0.0658 0.0307 0.0254 0.0116	0.000 0.000 0.000 0.000	
		2558531	389614		1.3634	128.652	

NC=NOT CONFIRMED; CON≘CONFIRMED; PREPARED BY ... REVIEWED BY ...

TCL PCB ORGANICS ANALYSIS DATA SHEET

		SAMPLE MATRIX:	SOIL	SAMPLE ID:	1-24-1
		CONC. LEVEL:	LOW	LAB SAMPLE ID:	2350506
		EXTRACTION DATE:	04/07/95	DIL FACTOR:	1.00
		ANALYSIS DATE:	04/12/95	* MOISTURE:	4
				UG/K	3
CMPD	#	CAS Number	PCB COMPOUND	(DRY	BASIS)
	1	12674-11-2	Aroclor-1016	1	83 U
	2	11104-28-2	Aroclor-1221	1	83 U
	3	11141-16-5	Aroclor-1232	1	83 U
	4	53469-21-9	Aroclor-1242	1	83 U
	5	12672-29-6	Aroclor-1248	I	83 U
	6	11097-69-1	Aroclor-1254	1	83 U
	7	11096-82-5	Aroclor-1260		83 U

Sample Name : 2350506 FileName : C:\2700 : c:\2700\data4\423B036.raw

Method : hp4.ins

Start Time : 0.00 min Scale Factor: -1

End Time : 35.00 min Plot Offset: 13 mV

Page 1 of 1

Sample #: 1-24-1
Date : 4/12/95 13:23
Time of Injection: 4/12/95 12:48
Low Point : 12.58 mV High
Plot Scale: 30 mV

High Point : 42.58 mV

5)ftware Version: 3.2 <16C20>

Time : 4/12/95 13:23 Study : 4-7-95 ample Name : 2350506

mple Number: 1-24-1

erator : PATRICK

Channel: B A/D mV Range: 1000 hstrument : 970-4THP-4

itoSampler : HP 7673A

kack/Vial : 0/0

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 12:48

I lay Time : 0.00 min. End Time : 35.00 min.

hmpling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B036.raw
Pesult File : c:\2700\data4\423B036.rst

strument File: c:\2700\data\hp4.ins I_ocess File : c:\2700\data\402.prc Cample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 Inj. Volume : 1 ul mple Amount : 30.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""></dl<>
	5.11	12142	3557	98	1000000	0.0121	0.000			
	6.69	13527	3370	BB	1000000	0.0135	0.000			
	8.07	423557	108494	BB	7158474	0.0592	39.448	7	11890	
_	9.59	12234	2512	BB	1000000	0.0122	0.000		/ 5	
8	12.27	6164	1204	88	1000000	0.0062	0.000			
100	13.50	5011	1078	BB	1000000	0.0050	0.000			
	14.21	5085	1022	BB	1000000	0.0051	0.000			
	17.64	5596	728	BB	1000000	0.0056	0.000			
	18.44	35800	7564	88	1000000	0.0358	0.000			
19	19.97	6329	1306	VV	1000000	0.0063	0.000			
-20	20.35	8743	914	VB	1000000	0.0087	0.000			1/
	21.15	10184	2307	BB	1000000	0.0102	0.000			/ n C
	21.71	19165	4141	BB	1000000	0.0192	0.000			۲ ،
	22.31	16301	1122	BV	1000000	0.0163	0.000			•
26	22.90	226323	9498	VB.	1000000	0.2263	0.000			_
-27	23.69	137876	10554	BV	1000000	0.1379	0.000			1.10
	23.98	1200174	197685		6073794	0.1976	131.739		DIBUTYLCHLOREN	DATE THE IT SUIT
	24.15	1313558	78291	VE	1000000	1.3136	0.000			
	24.81	10679	1434		1000000	0.0107	0.000			/
16	26.29	37756	4628	BB	1000000	0.0378	0.000			
_32	27.38	5817		BV	1000000	0.0058	0.000			
1	27.79	24509	1986		1000000	0.0245	0.000			
	28.11	65325	3099	VV	1000000	0.0653	0.000		DCB 1424	
•	28.46	664608	86838	VE	9385506	0.0708	47.211		DCB / 4 4 7	0
20	28.83	9863	886	EV	1000000	0.0099	0.000		16	/
37	29.04	12394	958	VB	1000000	0.0124	0.000		, -	
	29.99	7284	921	ВВ	1000000	0.0073	0.000			
	30.58	24180	1326		1000000	0.0242	0.000			
	31.70	60389	2356		1000000	0.0604	0.000			
4.1	32.38	5427		VV	1000000	0.0054	0.000			
42	33.50	71790	1425		1000000	0.0718	0.000			
		4457789	54195	7		2.4970	218.397			0000 7 3

ftware Version: 3.2 <16C20>

Time Sample Name : 2350506 : 4/13/95 12:21

Study ample Number: 1-24-1 : 4-7-95

erator : PATRICK

Channel: A A/D mV Range: 1000 nstrument : 970-4:HP-4

toSampler : HP 7673A

F.ck/Vial : 0/0

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 12:48

ampling Rate : 2.1739 pts/sec

F._w Data File : c:\2700\data4\423A036.raw esult File : c:\2700\data4\423A036.rst

strument File: c:\2700\data\hp4.ins Focess File : C:\2700\data\401.prc
Sample File : C:\2700\data\423AN-60.smp

equence File : C:\2700\DATA4\423.seq

Area Reject : 6000.00 .Inj. Volume : 1 ul Dilution Factor : 1.00 mmple Amount : 30.0000

PEST-PCB REPORT DB-608

4-A DB608 30M X 0.53 MM ID 150 C TO 275 C ______

7.52 5070 9.35 99 10.91 161 17.54 183 17.97 501 18.52 7. 18.89 84 19.22 77 18.52 77 18.99 10 20.40 8. 20.75 11 21.01 29 21.01 29 22.63 63 22.80 813 23.02 63 22.80 813 23.02 63 23.02 23 26.03 173 26.03 1511 29.40 606	12362			CAL FACT.	ng/ul	ppb(Wet)	(ppb Dry)	Name	NC/CON/ <dl< th=""></dl<>
9.35 99 10.91 161 17.54 183 5 17.97 501 6 18.27 99 18.52 7- 18.89 81 19.22 77 20.40 8- 20.75 11 21.01 29 21.04 21: 22.63 63 22.80 813 23.02 63 22.80 813 23.02 63 25.22 23 26.02 173 26.93 1511 29.94 606 30.12 99		3056	вв	1000000	0.0124	0.000			
10.91 163 17.54 18.5 17.97 501 18.27 99 18.52 76 18.89 81 19.22 75 0 19.53 81 19.97 10 20.40 88 20.75 11 21.01 29 5 21.84 26 6 22.04 21 22.63 66 22.80 813 23.02 66 22.80 813 23.02 66 25.22 23 4 26.02 173 26.93 1511 29.40 606 30.12 95	507046	115099	BB	8548369	0.0593	39.545	T	CX.	
17.54 18: 5 17.97 50: 18.27 90: 18.52 7. 18.89 81: 19.22 7: 19.53 81: 19.97 10: 20.40 8- 20.75 11: 21.01 29: 5 21.84 26: 6 22.04 21: 22.63 6: 22.80 813: 23.02 6: 23.02 6: 25.22 23: 26.02 173. 26.93 1511: 29.40 606: 30.12	9906	1940	88	1000000	0.0099	0.000			
5 17.97 500 18.27 99 18.52 74 18.89 81 19.22 77 19.53 84 19.97 107 20.40 84 20.75 111 21.01 299 21.84 260 22.04 217 22.63 67 22.80 8130 23.02 67 23.02 67 24.02 173 25.22 230 26.02 173 26.93 1511 29.40 6060 30.12 99	16888	879	BB	1000000	0.0169	0.000			
18.27 96 18.27 77 18.52 77 18.89 81 19.22 77 19.53 81 19.97 10 20.40 82 20.75 11 21.01 29 21.84 26 22.04 21 22.63 65 22.80 813 23.02 66 23.02 173 26.02 173 26.93 1511 29.40 606 30.12 99	18201	962	BV	1000000	0.0182	0.000			
18.52 7- 18.89 81 19.22 7: 19.97 10: 20.40 8- 20.75 11! 21.01 29: 5 21.84 26: 5 22.04 21: 22.63 6: 22.80 813: 23.02 6: 23.02 23: 4 26.02 173- 26.93 1511 29.40 606: 30.12 9:	50822	8461	AR	1000000	0.0508	0.000			
18.89 81 19.22 7: 19.53 81 19.97 10: 20.40 8- 20.75 11: 21.01 29: 5 21.84 26: 6 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 4 26.02 173- 26.93 1511: 29.40 606: 30.12 9:	9046	853	BA	1000000	0.0091	0.000			
19.22 7: 19.53 8: 19.97 10: 20.40 8- 20.75 11: 21.01 29: 21.84 26: 22.04 21: 22.63 6: 22.80 813: 23.02 6: 23.02 6: 25.22 23: 26.02 173: 26.93 1511 29.40 606: 30.12 9:	7432	931	VB	1000000	0.0074	7.405			
19.53 81 19.97 10: 20.40 84 20.75 11: 21.01 29: 5 21.84 26: 5 22.04 21: 22.63 6: 22.80 813: 23.02 6: 23.02 6: 25.22 23: 4 26.02 173: 26.93 15:11: 29.40 606: 30.12 9:	8885	451	B₹	1000000	0.0089	13.131			
19.97 10: 20.40 8. 20.75 11! 21.01 29: 21.84 26: 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 26.02 173: 26.93 1511! 29.40 606: 30.12 9:	7104	606	vv	1000000	0.0071	8.278			
20.40 8- 20.75 11: 21.01 29: 5 21.84 26: 5 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 4 26.02 173: 26.93 1511 29.40 606: 30.12 9:	8866	782	VB	1000000	0.0089	15.638			
20.75 11: 21.01 29: 21.84 26: 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 26.02 173: 26.03 1511: 29.40 606: 30.12 9:	10137	2002	BB	1000000	0.0101	0.000			
21.01 29 21.84 26 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 26.02 173: 26.93 1511: 29.40 606: 30.12 9:	8430	1312	BV	1000000	0.0084	0.000			
21.84 26 22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 26.02 173: 26.93 1511: 29.40 606: 30.12 9:	11575	1026	vv	1000000	0.0116	0.000	•		
22.04 21: 22.63 6: 22.80 813: 23.02 6: 25.22 23: 26.02 173: 26.93 1511: 29.40 606:	29592	4719	VB	1000000	0.0296	38.293			
22.63 6: 22.80 813 23.02 6: 25.22 23 26.02 173 26.93 1511 29.40 606: 30.12 9:	26087	3831	BV 🚤	1000000	0.0261	0.000			
22.80 813 23.02 6: 25.22 23 26.02 173 26.93 1511 29.40 606: 30.12 9:	21215	2722	VB	1000000	0.0212	0.000			1 . 0
22.80 813 23.02 6: 25.22 23: 26.02 173 26.93 1511 29.40 606: 30.12 9:	6329	1235	BV	1000000	0.0063	0.000			10/19/
25.22 23 26.02 173 26.93 1511 29.40 606 30.12 9	813019	157512		12933001	0.0629	41.911	ם	IBUTYLCHLOREND	ATE : 26% /
26.02 173 26.93 1511 29.40 606 30.12 9	6322	1297	VB	1000000	0.0063	0.000			101
26.02 173 26.93 1511 29.40 606 30.12 9	23896	1819	BB	1000000	0.0239	0.000			•
26.93 1511 29.40 606 30.12 9	173416	7271		1000000	0.1734	0.000			
29,40 606 30,12 9	1511936	67638	BB	1000000	1.5119	0.000			
30.12 9:	606264	70232		8791037	0.0690	45:978		CB	
	9978	451		1000000	0.0100	0.000			
	11105	704		1000000	0.0111	0.000			
32.63 6	6255	428		1000000	0.0063	6.000			
	24020	763		1000000	0.0240	0.000			

_______ =NOT CONFIRMED; CON=CONFIRMED; PREPARED BYUYIHUY

TCL PCB ORGANICS ANALYSIS DATA SHEET

	SAMPLE MATRIX:	WATER	SAMPLE ID:	EQPBK2
	CONC. LEVEL:	LOW	LAB SAMPLE ID-	2350507
	EXTRACTION DATE:	04/07/95	DIL FACTOR:	1.00
	ANALYSIS DATE:	04/12/95	* MOISTURE: NA	
			UG/1	
CM 2D #	CAS Number	PCB COMPOUND		
1	12674-11-2	Aroclor-1016	. 1	0.50 U
2	11104-28-2	Aroclor-1221	1	0.50 U
3	11141-16-5	Aroclor-1232		0.50 0
4	53469-21-9	Aroclor-1242	1	0.50 U
5	12672-29-6	Aroclor-1248	1	0.50 U
6	11097-69-1	Aroclor-1254	1	0.50 0
7	11096-82-5	Aroclor-1260	1	0.50 U

HP4-B DB-1701 0.53mm Sample #: EQPB K2
Date: 4/12/95 17:06
Time of Injection: 4/12/95 16:31
Low Point: 13.07 mV High
Plot Scale: 30 mV Page 1 of 1 Sample Name : 2350507 : c:\2700\data4\423B041.raw ileName : hp4.ins t Time : 0.00 min e Factor: -1 End Time : 35.00 min High Point : 43.07 mV Plot Offset: 13 mV 1.0ul inj/column Response[mV] <u>ب</u> -6.75 -8.07 .9.16 ---9.61 -12.26 -13.09 -15.23 22.06 -23.97 -28.46 29.34 000077

Software Version: 3.2 <16C20>

Sample Name : 2350507 Time : 4/12/95 17:06 : 4-7-95

Study

Operator : PATRICK

Channel: B A/D mV Range: 1000 Instrument: 970-4-HP-4

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial # : 0187572363 Data Acquisition Time: 4/12/95 16:31

Delay Time : 0.00 min. End Time : 35.00 min.

Sampling Rate : 2.1739 pts/sec

Raw Data File : c:\2700\data4\423B041.raw Result File : c:\2700\data4\423B041.rst

Instrument File: c:\2700\data\hp4.ins

Process File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

Sequence File : C:\2700\DATA4\423.seq

Inj. Volume : 1 ul Area Reject : 5000.00 Sample Amount : 100, 0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

HP4-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C

.

Peak #	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <di< th=""><th>4</th></di<>	4
1	6.75	8474	2216	ВВ	1000000	0.0085	0.000		7		
2	8.07	215575	55721	вв	7158474	0.0301	2.301	т	ex Goto		
11	23.69	55291	5172	BV	1000000	0.0553	0.000		~ /		,
12	23.97	454948	85532	VΒ	6073794	0.0749	0.749		IBUTYLCHLORENDATE	200	111
13	28.46	446742	37983	BE	9385506	0.0476	0.476		CB 91-67	7/0	2 "
14	29.34	213666	2816	EB	1000000	0.2137	0.000	_	- 45.6/		
15	3383	53593	455	BB	1000000	0.0536	0.000		j O		
		1448289	189894			0.4836	1.526				

NC=NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. (1.4)() REVIEWED BY. (1.1)

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX: WATER SAMPLE ID: FLDBK2
CONC. LEVEL: LOW LAB SAMPLE ID: 2350508
EXTRACTION DATE: 04/07/95 DIL FACTOR: 1.00

ANALYSIS DATE: 04/12/95 * MOISTURE:NA

UG/L

CMPD	#	CAS Number	PCB COMPOUND		
	1	12674-11-2	Aroclor-1016		0.50 U
	2	11104-28-2	Aroclor-1221	1	0.50 U
	3]	11141-16-5	Aroclor-1232	1	0.50 0
•	4	53469-21-9	Aroclor-1242	1	0.50 0
	5	12672-29-6	Aroclor-1248	1	0.50 U
	6	11097-69-1	Aroclor-1254	ı	0.50 U
	7]	11096-82-5	Aroclor-1260		0.50 U
	i				

HP4-B DB-1701 0.53mm Sample #: FLDBK2 Date : 4/12/95 17:50 Time of Injection: 4/12/95 17:16 Sample Name : 2350508 Page 1 of 1 : c:\2700\daca4\423B042.raw FileName Method : hp4.ins End Time : 35.00 min Plot Offset: 13 mV Start Time : 0.00 min Low Point : 13.02 mV High Point : 43.02 mV Scale Factor: -1 Plot Scale: 30 mV 1.0ul inj/column Response[mV] 25 Ų -6.75 1'5 2'0 Retention Time [min] 12.26 -13.09 13.75 14.20 22.06 23.65

000080

27.79

ftware Version: 3.2 <16C20>

Sample Name : 2350508 mple Number: FLDBK2

Time : 4/12/95 17:50 : 4-7-95 Study

erator : PATRICK

strument : 970-4:HP-4 Channel: B A/D mV Range: 1000

toSampler : HP 7673A

R ck/Vial : 0/0

terface Serial # : 0187572363 Data Acquisition Time: 4/12/95 17:16

□ lay Time : 0.00 min. End Time : 35.00 min.

apling Rate : 2.1739 pts/sec

R w Data File : c:\2700\data4\423B042.raw Pasult File : c:\2700\data4\423B042.rst

strument File: c:\2700\data\hp4.ins rocess File : c:\2700\data\402.prc
Sample File : c:\2700\data\423BN-60.smp

quence File : C:\2700\DATA4\423.seq

Area Reject : 5000.00 : 1 ul I..j. Volume mple Amount : 1000.0000 Dilution Factor : 1.00

PEST-PCB REPORT DB-1701

1-B DB-1701 30M X 0.53 MM ID 150 C, TO 275 C _______

1	Ret Time [min]	Area [uV-sec]	Height [uV]	BL	Area/NG CAL FACT.	Amount ng/ul	Amount ppb(Wet)	Amount (ppb Dry)	Component Name	Comments NC/CON/ <dl< th=""><th></th></dl<>	
	6.75	7473	2004	BB	1000000	0.0075	0.000		1717		
	8.07	248221	64480	BB	7158474	0.0347	0.347	T	x 6770		
1	13.09	5527	1246	BB	1000000	0.0055	0.000		/ •		<i>i </i>
1	23.65	46743	5146	BV	1000000	0.0467	0.000			2/27	110
1:	_ :::::	520785	96251	VB	6073794	0.0857	0.857	D:	BUTYLCHLORENDA:	re 86%	,
٠,		8307	554	BV	1000000	0.0083	0.000			1	
•	28.46	386218	49123	VΒ	9385506	0.0412	0.412	Do	= 8,207,		
							1 (16				

:NOT CONFIRMED; CON=CONFIRMED; PREPARED BY. 小山山 REVIEWED BY. 九

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE	MATRIX:	WATER		SAMPLE	ID:	PBLK11
CONC	LEVEL:	LOW	LAB	SAMPLE	ID:	PWB0405B
EXTRACTIO	N DATE:	04/05/95	I	OIL PAC	OR:	1.00

UG/I

CMPD				0G/ L				
CMPD	#	CAS Number	PCB COMPOUND					
	1	12674-11-2	Aroclor-1016		0.50	U	-	
	2	11104-28-2	Aroclor-1221	1	0.50	σ	1	
	3	11141-16-5	Aroclor-1232	•	0.50	U	1	
	4	53469-21-9	Aroclor-1242	[0.50	ŭ	l	
	5	12672-29-6	Aroclor-1248	[0.50	U	1	
	6 !	11097-69-1	Aroclor-1254	I	0.50	Ü	1	
	7	11096-82-5	Aroclor-1260	ļ	0.50	U	-	
	١.						_!	

80802CB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX: SOIL SAMPLE ID: PBLK12
CONC. LEVEL: LOW LAB SAMPLE ID: PSB0406A
EXTRACTION DATE: 04/06/95 DIL FACTOR: 1.00

ANALYSIS DATE: 04/11/95

MOISTURE: NA UG/KG

						= = /				
CMPD	#		CAS Number		PCB COMPOUND		(DRY	BASIS)		
	1	· 	12674-11-2	1	Aroclor-1016			80	U	-1
	2	Ì	11104-28-2	1	Aroclor-1221	!		80	U	ļ
	3	I	11141-16-5	1	Aroclor-1232			80	ŭ	1
	4	I	53469-21-9	1	Aroclor-1242			80	U	1
	5	ı	12672-29-6	- 1	Aroclor-1248			8.0	U	ı
	6	i	11097-69-1	1	Aroclor-1254			80	U	1
	7	l	11096-82-5	1	Aroclor-1260	ļ		80	U	1
		i		1.		80 to 80 t		_1		

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX:	SOIL	SAMPLE ID:	PBLK13
CONC. LEVEL:	LOW	LAB SAMPLE ID:	PSB0407B
EXTRACTION DATE:	04/07/95	DIL FACTOR:	1.00

UG/KG

		12674-11-2 Aroclor-1016 11104-28-2 Aroclor-1221 11141-16-5 Aroclor-1232	00/10				
CMPD #	CAS Number	PCB COMPOUND	(DRY BASIS)				
1	12674-11-2	Aroclor-1016	80 U				
2	11104-28-2	Aroclor-1221	U 08	1			
3	11141-16-5	Aroclor-1232	U 08	1			
4	53469-21-9	Aroclor-1242	1 08	i			
5	12672-29-6	Aroclor-1248	U 08	1			
6	11097-69-1	Aroclor-1254	1 08				
7	11096-82-5	Aroclor-1260	t 08				
	1	1	ı	1			

8080PCB - FORM 1 NYTEST ENVIRONMENTAL INC.

TCL PCB ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX: WATER SAMPLE ID: PBLK14 LAB SAMPLE ID: PWB0407B CONC. LEVEL: LOW DIL FACTOR: EXTRACTION DATE: 04/07/95 * MOISTURE: NA

ANALYSIS DATE: 04/12/95

UG/L

CMPD	#	CAS Number	PC3 COMPOUND				
	1	12674-11-2	Aroclor-1016	1 0	. 50	U	-
	2	11104-28-2	Aroclor-1221	0	. 50	U	1
	3	11141-16-5	Aroclor-1232	1 0	.50	U	1
	4	53469-21-9	Aroclor-1242	} 0	.50	U	1
	5	12672-29-6	Aroclor-1248	† a	. 50	U	1
	6	11097-69-1	Aroclor-12	j o	. 50	U	1
	7	11096-82-5	Aroclor-1260	1 0	. 50	U	1
	ĺ.						_1

NYTEST ENVIRONMENTAL INC. PCB SURROGATE RECOVERY

LOGIN # : 23490, 23505

MATRIX :

WATER

	1			
	TCX	DBC	-	SURR.
SAMPLE ID	* RECOVERY			
***********		************	**********	
01 PLDBK1	87 OK	•		
^2 BQPBK1	64 OK	•		
03 EQPBK2	60 OK			
04 FLDBK2	69 OK		'	
05 PBLK11 06 PBLK14	98 OK		'	
07	92 OK	99 OK	96 OK	0
08	1] [:	i	
09	1)]		
10		! !		
11		' !		
12	ŀ	· [1	
13	1	· i		
14	İ			
15	i			
16	1	l		
17	1	l		
18	1			
19	1	l l	į	!
20	1	l I	1	
21	1		!	
22	1	l 1	1	
23	1	l !	!	
24	1	l I	İ	
25	1		1	
26	l j		!	
27	l	l i	İ	
28	!	l i	1	
29	1	l I	!	1
	1	1	1	

			LIMI	TS	
Tetrach	loroxylene	(ICX)	60	-	150
Dibutylo	chlorendate	(DBC)	24	-	154
Decachlo	probiphenyl	(DCB)	60	_	150

^{*} RECOVERY OUTSIDE ADVISORY QC LIMITS

I MATRIX INTERPERENCE

NYTEST ENVIRONMENTAL INC. PCB SURROGATE RECOVERY

LOGIN # : 23490, 23505

MATRIX :

SOIL

[TCX	DBC	DC3	SURR.
SAMPLE ID	* RECOVERY	* RECOVERY	* RECOVER	X OUT
**********			-	
01 1-16-1	68 OK	40 0	K 86	OK 0
02 1-16-D	74 OK	62 0	K 94	OK 0
03 1-16-2	98 OK	62 0	K 96	οκ 0
04 1-17-1	1 83 OK	66 0	K 96	OK 0
05 1-17-2	57 *	113 0	K 81	OK 1
06 1-18-1	97 OK	74 0	K 100	OK 0
07 1-18-2	84 OK	4.9 0	K 76	OK 0
08 1-20-1	55 ▼	46 0	K 81	OK 1
09 1-21-1	87 OK	45 0	κ 75	OK 0
10 1-23-1	107 OK	139 0	K 141	OK 0
11 1-22-1	117 OK	139 0	K 137	OK 0
12 1-22-1D	88 OK	87 0	K 91	OK 0
13 1-19-1	100 OK	97 0	K 93	OK 0
14 1-19-2	101 OK	94 0	K 97	OK 0
15 1-24-1	118 OK	126 0	K 142	0
16 1-17-1MS	[63 OK	69 0	K 99	ok 0
17 1-17-1MSD	89 OK	58 0	K 88	OK 0
18 PBLK12	61 OK	74 0	K 74	OK 0
19 PBLK13	91 OK	58 0	K 102	OK 0
20	1	!	l	
21	1	[l	
22	1	-	1	1 1
23	1	1	1	1
24	t	1	1	1 1
25	1	1	1	1 1
26	1	1	1	1 1
27	1	1	1	1
28	1	1	1	1
29	1	1	1	1 1
		.1	[

		LIMI	TS	
Tetrachloroxylene	(TCX)	60	-	150
Dibutylchlorendate	(DBC)	20	-	150
Decachlorobiphenyl	(DCB)	60	-	150

^{*} RECOVERY OUTSIDE ADVISORY QC LIMITS

I MATRIX INTERPERENCE

PCB - FORM 3 NYTEST ENVIRONMENTAL INC.

PCB MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

LOGIN # : 23490, 23505

MATRIX: SOIL

	CONC SPIKE	1			I	1 1		QC	LIMITS
I	ADDED	SAMPLE	CONC	+	CONC	1	RPD		
COMPOUND	(ppb)	RESULT	MS	RECOVERY	MSD	RECOVERY	·	RPD	RECOVER
		.				.[]			_
SAMPLE ID	1				1	1 1	1	Į	1
1-17-1 PCB 1016	344	0	360	105 OK	373	108 OK	4 OK	23	10 - 230
NYTEST ID	1			1	1		ı		1
2349005 PCB 1260	344	0 1	411	119 OK	438	127 OK	6 OK	. 28	10 - 199
2349006	1	1 1			1	1 1			1
	i			1	, 	1 1	1		!

OF PCB % REC OUTSIDE 0 OF 4
ADVISORY QC LIMITS:

OF PCB RPD VALUES OUTSIDE 0 OF 2
ADVISORY QC LIMITS:

PEST-PCB-HERB 2,4-DCPAA / DBC RT, SEQUENCE SUMMARY

TEST ENVIRONMENTAL CONTRACT: gerational zich TYTEST ENVIRONMENTAL

INSTRUMENT ID: HILL

GC COLUMN ID: p13-1701:13mm

İ

ATES of ANALYSIS:

4/6/95 TO 4/13/45

							חומות	YLCHLOREND	מדע
				a1-	D-n- 0#	Time Of		*	~1.D
File Na	me	Sample	Name	Sample Number	Date Of	Injection		D	•
				Number	rulection	injaction			
B019.rs		AR1660-1		AR1660-1	4/6/95	04:34	23.98		
B020.rs		AR1660-2		AR1660-2	4/6/95	05:19	23.99	- 42	
4 B021.rs		AR1660-3		AR1660-3	4/6/95	06:03	23.98	Q.	
422B022.rs		AR1660-4		AR1660-4	4/6/95	06:48	23.98	v	
B024.rs		AR1660-6		AR1660-6	4/6/95	08:17	23.98	<u></u>	
B025.rs		AR1221-3		AR1221-3	4/6/95	09:02	23.97	· .42	
8026.rs		AR1232-3		AR1232-3	4/6/95	09:46	23.97	2003	
4 B027.rs		AR1242-3		AR1242-3	4/6/95	10:53	23.95	- 12	
4228028.rs		AR1248-3		AR1248-3	4/6/95	11:37	23.94	. ij	
B029.rs		AR1254-3		AR1254-3	4/6/95	12:22	23.94	617	
B012.rs		AR 1660-	2	AK4234 3	4/11/95	11:48	23.92	كُنْمُ مُّ	
		PWB0405B	•	· PBLK11	4/11/95	20:25	23.98	ره. ا	
b018.rs		2349012		FLDBK1	4/11/95	21:09	23.98		
4 5019.rs		2349013		EQPBK1	4/11/95	21:54	23.98		
4235020.rs				. PBLK12	4/11/95	22:38	23.98	; ;	
b021.rs		PSB0406A	•/	A-HSB	4/11/95	23-22	23.98 -	ر ر.	_
1022 - 20			— <i>/</i> √ /	AR1660-3	4/12/95	01:35	23.98	070	
1025.rs		AR1660-3		AR1242-3	4/12/95	02:20	23.98	Ī	
41 3026.rs		AR1242-3		AR1242-3 AR1248-3	4/12/95	03:04	23.98	O	
4230027.rs		AR1248-3				03:49	23.98		
b028.rs		AR1254-3		AR1254-3	4/12/95				
5029.rs		PSB0407B		· PBLK13	4/12/95	04:33 05:18	23.98	Č	
1030.rs		2350501		1-23-1	4/12/95		23.98	بن	
42 :031.rs		2350502		1-22-1	4/12/95	06:02	23.98	: 1+	7
032.28د42		2349001		1-16-1	4/12/95	09:50	23.99	ساين د	-
123b033.rs		2350503		1-22-1D		10:34	23.98	0	
b034.rs		2350504		1-19-1	4/12/95	11:19	23.98	ر م	. 7
1035.rs		2350505		1-19-2	4/12/95	12:03	23.97	. 0 4	2
47 036.rs		2350506		1-24-1	4/12/95	12:48	23.98	ر ت	
42039.rs		AR1660-3		AR1660-3	4/12/95	15:02	23.97	V + + 2	
423b040.rs		PWB0407B		• PBLK14	4/12/95	15:46	23.97	7 142	?
0041.rs		2350507		EQPELK2	4/12/95	16:31	23.97	(باز نو	_
042.rs		2350508		FLDBK2	4/12/95	17:16	23.97	ر مواد ال	2
043.rs		2349002		1-16-D	4/12/95	18:00	23.96	= +4	-
42 044.rs		2349003		1-16-2	4/12/95	18:45	23.96	3 6	+
423b045.rs		2349004		1-17-1	4/12/95	19:29	23.95	<i>5)</i>	•
0046.rs		2349005		1-17-1MS	4/12/95	20:14	23.95	ر ق · د	ž
047.18		2349006		1-17-1MSD		20:58	23.96	6.5%	1
. 048.rs		2349007		1-17-2	4/12/95	21:42	23.95	ر ء -	
42 049.rs		2349008		1-18-1	4/12/95	22:27	23.95	٠ (ا	5
423b052.rs		AR1660-03		AR1660-3	4/13/95	12:40	23.95	٠,	3
b001.rs		AR 1660-3	5	AR 1660-3		13:25	23.97	. ;	42
002.rs		2349009		1-18-2	4/13/95	14:09	23.95	، ت	3
003.rs		2349010		1-20-1	4/13/95	15:20	23.95	۲-	3
42 004.75	T.	2349011		1-21-1	4/13/95	16:05	23.94	e -	17
424b014.rs		AR 1660-3		AR 1660-3	4/13/95	23:30	23.98	_	· /

Values outside of QC limits (2.0 for packed columns, 0.3% for capillary columns, 1.5% for wide bore capillary.)

THIS PAGE INTENTIONALLY LEFT BLANK

					1.16.1
			Contract: 9	521649	1-16-1
Lab Code: NYT	EST Log	Jin No.: 23	490_	QC Report	No.23490_
.fatrix (soil/ Level (low/hid 'ercent Solid	gh) : LOW s : _95.	0	/L or mg/kg dr	Date Rece	e ID: 349001_ ived: 04/05/95 MG/KG
	CAS No.	Analyte	Concentration	C Q I	4
not detecte	7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6 F: GFAA; in the "C" d in this sa	(Concentra	0.10 11.4 18.7 4.7 0.11 12.4 0.49 0.57 0.49 21.7	B	ctrophotometric he analyte was han Instrument t Required.

b Name: NYTE	ST_ENV_INC.		Contract: 9	521649	1-16-D
b Code: NYTE	ST Log	in No.: 23	490_	QC Report	No.23490_
atrix (soil/w evel (low/hig rcent Solids	h) : LOW	_		Lab Sample Date Rece	e ID: 349002 ived: 04/05/95
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q I	1
Note: A "U" not detected	i in this sa	(Concentra umple; "B"	tion) column :	Tomated Specindicates to greater to the content of	ectrophotometric he analyte was than Instrument Required.

INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

Lab Name: NYTEST_ENV_INC.____ Contract: 9521649___

Lab Code: NYTEST Login No.: 23490_ QC Report No.23490_

1-16-2

<pre>.latrix (soil/water): SOI Level (low/high) : LOW 'ercent Solids : _91</pre>			Lab Sample ID: 349003 Date Received: 04/05/95
Concentration	n Units (ug	/L or mg/kg dry	y weight): MG/KG
CAS No.	Analyte	Concentration	C Q M
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1	Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead	6.1 6.1 0.88 0.24 16.7 38.7	N P P F P P P P P P P P P P P P P P P P
7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc	0.58	N*FCVP UNP UNPFP
Detection Limit, but 1 Comments:	ess than re	tion) column i = Sample value porting limit;	omated Spectrophotometric ndicates the analyte was greater than Instrument "NR" = Not Required.
1-16-2			

ab Name: NYTES	T FNV INC		Contract	9521640	1-17-1
b Code: NYTES			490_	QC Report	No.23490_
Latrix (soil/wa Lavel (low/high Larcent Solids) : LOW				e ID: 349004 ived: 04/05/95
Con	centration	Units (ug,	/L or mg/kg d:	ry weight):	MG/KG
	CAS No.	Analyte	Concentration	n C Q I	м
DES: P: ICP; F Note: A "U" not detected	7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6 : GFAA; in the "C" in this sa	(Concentra ample; "B"	32.8 0.22 0.09 20.0 20.0 20.0 5.2 0.12 26.7 0.47 37.6	atomated Speindicates are greater	P_F_F_P_F_P_F_F_P_F_P_P_CTOPhotometric ectrophotometric the analyte was than Instrument ot Required.

INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

Lab Name: NYTEST_ENV_INC.____ Contract: 9521649

. 1-17-2

Lab Code: NYTE	ST Log	in No.: 23	490_	QC Report No.23490_
Matrix (soil/w Level (low/hig Percent Solids	h) : LOW	_		Lab Sample ID: 349007 Date Received: 04/05/95
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight): MG/KG
	CAS No.	Analyte	Concentration	C Q M
	7440-36-0	Antimony	4.7	$\left \frac{1}{B} \right = N$
	1	Arsenic	33.0	$\begin{bmatrix} D \\ - * \end{bmatrix} \begin{bmatrix} P \\ F \end{bmatrix}$
	7440-41-7	Beryllium	0.61	
		Cadmium	0.10	
		Chromium	14.7	
	7440-50-8	Copper	10.9	
·	7439-92-1	Lead	9.3	
	7439-97-6	Mercury	0.12	F CV
	7440-02-0	Nickel	10.2	
	7782-49-2	Selenium	0.54	P _ F
	7440-22-4	Silver -	0.60	
	7440-28-0	Thallium	0.51	
	7440-66-6	Zinc	31.3	P P
•				
	<u>-</u>			
CODES:	 1			
	' • GFAA•	CV. Cold V	'anama 30 3 1	
Note: A "U"	in the "c"	(Concentra	apor; AS: Aut	omated Spectrophotometric ndicates the analyte was
not detected	in this sa	mple: "B"	cion) column i	ndicates the analyte was greater than Instrument
Detection Ti	mit but le	mpre, b	- sample value	"NR" = Not Required.
omments:	mic, but le	.33 Chan le	borging limit;	"NR" = Not Required.
1-17-2				
<u></u>				

ab Name: NYTE	CT FNU THO	,	Contract	2521640	1-18-1
	- -			9521649	
ab Code: NYTE	ST Log	in No.: 23	490_	QC Report	No.23490_
atrix (soil/w Level (low/hig ercent Solids	h) : LOW	_		Lab Sample Date Rece	e ID: 349008ived: 04/05/95
Co	ncentration	Units (ug,	/L or mg/kg di	ry weight):	MG/KG
•	,	7		.,	
	CAS No.	Analyte	Concentration		4
1	7440-36-0	Antimony_	3.8	$\frac{1}{2} \left \frac{1}{2} \right = \frac{1}{2}$, -
	7440-38-2	Arsenic_	13.8	3 _ *]	?_
	7440-41-7 7440-43-9		0.27		2_
	7440-43-9	. :	0.13 15.1		7
	7440-50-8	Copper Copper			5-
•	7439-92-1	Lead	6.3		<u>-</u>
	7439-97-6	Mercury	0.11		
	7440-02-0	Nickel	17.7		
	7782-49-2	Selenium_	0.46		·_
	7440-22-4		0.60		P_
	7440-28-0		0.46		<u>-</u>
	7440-66-6	Zinc	28.3		P_
				- -	
				- - -	
				- - -	-
				- -	_
				- -	
				. _ _	
	·			- -	
				- - -	_
ODES:				- -	
	: GFAA;	CV: Cold V	apor: AS: Au	tomated Spe	ctrophotometric
Note: A "U"	in the "C"	(Concentra	tion) column	indicates t	the analyte was
not detected	l in this sa	ample; "B"	= Sample valu	le greater t	han Instrument
Detection Li	mit, but le	ess than re	porting limit	:; "NR" = No	ot Required.
omments:			•		-
1-18-1					
				•	
					

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

Lab Name: NYTEST_ENV_INC.		Contract: 9	521649	1-18-2
Lab Code: NYTEST Log	rin No.: 234	90_	QC Report	No.23490_
Matrix (soil/water): SOIL Level (low/high) : LOW Percent Solids : _92.	_		Lab Sampl Date Rece	e ID: 349009ived: 04/05/95
Concentration	Units (ug/	L or mg/kg dr	y weight):	MG/KG
CAS No.	Analyte	Concentration	C Q	M
7782-49-2 7440-22-4	Antimony_Arsenic_Beryllium Cadmium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	7.5 19.3 0.24 0.13 15.5 52.2 20.6 0.11 19.0 0.52 0.63 0.52 57.0	B	

CODES :

not detected in this s	CV: Cold Vapor; AS: Automated Spectrophotometric (Concentration) column indicates the analyte was sample; "B" = Sample value greater than Instrument ess than reporting limit; "NR" = Not Required.

_					
ah Name: NVMT	EST ENV INC		Contract: 9	50.445	1-20-1
MET NOME: NITE		·	. contract: 9	521649	
ab Code: NYTE	EST Log	in No.: 23	490_	QC Report	No.23490_
atrix (soil/w		<u>_</u>		Lab Sampl	e ID: 349010
evel (low/hig ercent Solids		0		Date Rece	ived: 04/05/95
crcenc borids		J			
-					
Co	ncentration	Unite (ne	/T /3		
	incentration	onics (ug,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q I	M
-	7440-36-0	Antimony	5.6	$\left \frac{1}{B} \right = \frac{1}{N}$	<u> </u>
	7440-38-2	Arsenic	58.0		-
	7440-41-7	Beryllium	0.40		5-1
_	7440-43-9	Cadmium_	0.11	ו	7_
	7440-47-3 7440-50-8	Chromium_	47.5	_ _* I	P_
	7439-92-1	Copper	24.9		2_
_	7439-97-6	Mercury_	10.1		7-
	7440-02-0	Nickel	0.11	" "	
	7782-49-2	Selenium	0.54		-
_	I _	Silver	0.63		5-
	7440-28-0	Thallium	0.54		
	7440-66-6	Zinc	41.5		,-
_					_
				- -	
				- -	
				- -	
				- -	
				- -	-
ODES :					
		CT - 0-1-1 **			
	in the UCU	(Concontra	apor; As: Aut	omated Spe	ctrophotometric
not detected	l in this sa	"R" : alami	croul corumn i	indicates t	the analyte was than Instrument
Detection Li	mit, but le	ess than re	porting limit;	greater t	nan Instrument
muleiles.	,		-E-remark timer	MK - NC	c redutted.
1-20-1					
J				·····	

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

1-21-1

			Contract: 9			.	
ab Code: NY	TEST Log	gin No.: 23	490_	QC	Repor	t No	.23490_
evel (low/h	./water): SOII .igh) : LOW .ds : _97.			Lab Dat	Samp e Rec	le II eive	0: 349011_ d: 04/05/9
crocit borr	_97,	. 0					
	Concentration	units (ug	/L or mg/kg dr	y we	ight)	: MG/	′KG
					-	 1	
	CAS No.	Analyte	Concentration	c	Q	M	
	7440-36-0	Antimony_	3.9		N	P_	
	7440-38-2	Arsenic	59.4	-	*	F	
	7440-41-7	Beryllium	0.22	B _		P	
	7440-43-9	Cadmium_	0.17			F_	
	7440-47-3	Chromium_	16.5		_*	P	
•	7440-50-8	Copper	30.9		_N*	P_	
	7439-92-1 7439-97-6	Lead	22.7		_N*	F_	
	7440-02-0	Mercury_	0.10	[] [CV	
	7782-49-2	Nickel	21.1	_ _		P_F	
	7440-22-4	Selenium_ Silver	0.51		_N	F_	
	7440-28-0		0.60	·	_N	P_	
	7440-28-0	Thallium_ Zinc	0.51	_ שׁו		F_	
	7440-00-0	21nc	39.1	_ _		P_	
				_ _			
				_ _			
				_ _			
							
		l		_ _			
				_ _			
							
				_ _			
				_ _			
DDES :	l ————————————————————————————————————			_ _			
P: ICP;	F · GFAA·	CV - Cold 1	·				
Note: A "T	" in the "C"	(Concort	apor; As: Aut	oma.	ted Sr	pectr	ophotomet
not detect	ed in this s	מומוו יסומשו	tion) column i = Sample value	nai	cates	the	analyte w
Detection	Timit but 14	ambie, .p.	<pre>= sample value porting limit;</pre>	gr	eater	than	Instrume:
ments:	min, but it	ess chan re	borring rimit;	"N]	R'' = 1	iot R	equired.
1-21-1							
- 							

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

_ub Name: NYTE	ST_ENV_INC.		Contract: 9	521649	FLDBK1
tb Code: NYTE	ST Log	in No.: 23	490_	QC Report	No.23490_
Matrix (soil/w evel (low/hig rcent Solids	ater): WATE	R	,	Lab Sampl	e ID: 349012ived: 04/05/95
	ncentration	Units (ug,	/L or mg/kg dr	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q I	M
note: A "U" not detected	7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Arsenic Beryllium Cadmium_ Chromium_ Copper Lead Mercury_ Nickel Selenium_ Silver Thallium_ Zinc CV: Cold V (Concentral ample: "B"	1.0 5.0 4.0 3.0 0.20 27.0 5.0 7.7 5.0 5.0	U * U * U * U * U * U * U * U * U * U *	P

INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

Lab Name: NYTEST_ENV_INC.____ Contract: 9521649___

EQPBK1

Lab Code: NYTE	ST Log	490_	QC Report No.23490_				
Matrix (soil/w Level (low/hig		R		Lab Sample ID: 349013			
Percent Solids	:o.	0		Date Received: 04/05/95			
			·				
Co.	ncentration	Units (ug,	/L or mg/kg dry	y weight): UG/L_			
	CAS No.	Analyte	Concentration	C Q M			
	7440-36-0	Antimony	47.8	$\left \frac{1}{B} \right = N \left \frac{1}{P} \right $			
	7440-38-2	Arsenic	5.0	U* F_			
	7440-41-7	Beryllium	1.0	 			
	7440-43-9	Cadmium					
	7440-47-3	Chromium_	5.0				
	7440-50-8	Copper	4.0				
	7439-92-1	Lead	3.0	U N* F			
	7439-97-6	Mercury_	0.20	U CV			
		Nickel	27.0				
		Selenium_	5.0				
		Silver Thallium	6.0				
	7440-66-6	Zinc	5.0				
	7440-00-0	Z111C	5.0	U P			
				-			
CODES :							
	<u></u> -		•				
Noto: 3 Hith	GFAA;	CV: Cold V	apor; AS: Aut	omated Spectrophotometri			
omments:	mit, but le	ss than re	porting limit;	"NR" = Not Required.			
EQPBK1				_			
-X+ -1/4							
							

Lab Name: NYTE	EST_ENV_INC.		Contract: 9	521649	1-23-1
			505_		No.23505
fatrix (soil/w Level (low/hig Percent Solids	water): SOIL yh) : LOW :: _96.	0		Lab Sample Date Rece	- = ID: 350501 ived: 04/06/95
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q N	r
not detected	in the "C" in this sa	CV: Cold V (Concentra	tion) column :	B	ctrophotometric he analyte was

Lab Name: NYTE	ST_ENV_INC.		Contract: 9	Contract: 9521649				
Lab Code: NYTE	ST Log	rin No.: 23	505_	QC Repor	t No.23505_			
.Tatrix (soil/w Level (low/hig Percent Solids	h) : LOW : _95.	0	/L or mg/kg dry	Date Rec	eived: 04/06/95			
	CAS No.		Concentration		M M			
CODES : P: ICP; F	7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	Nickel Selenium Silver Thallium Zinc	3.7 12.6 0.24 0.12 14.6 19.6 7.2 0.11 12.6 0.50 3.4 0.50 30.0	B B	P			
not detected	in this sa	mple: "B"		ndicates	the analyte was			

ab Name: NYT	b Name: NYTEST_ENV_INC			Contract: 9521649				
ab Code: NYT	EST Log	in No.: 23	505_	QC Report	No.23505_			
Matrix (soil/wevel (low/highercent Solids	gh) : LOW s : _94.	0	/L or mg/kg dr	Date Rece	e ID: 350503_ived: 04/06/95			
	CAS No.	Analyte						
ODES: P: ICP;	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-66-6	Arsenic_Beryllium Cadmium_Chromium_Chromium_Copper_Lead Mercury_Nickel_Selenium_Silver_Thallium_Zinc	0.14 19.2 36.1 13.3 0.11 19.3 0.45 0.61 0.45 45.0	B	5_			
note: A "U"	in the "C" in this sa	(Concentra umple: "B"	ition) column i	indicates t	he analyte was			

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

ab Name: NYTEST_ENV_INC.				1-19-1
Lab Code: NYTEST Log	jin No.: 23	505_	QC Report	No.23505_
<pre>(atrix (soil/water): SOII Level (low/high) : LOW Percent Solids : _95.</pre>	_		Lab Sample Date Recei	ID: 350504ived: 04/06/95
_		/L or mg/kg dry	y weight):	MG/KG
7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-66-6	Antimony_Arsenic_Beryllium Cadmium_Chromium_Copper Lead Mercury_Nickel_Selenium_Silver Thallium_Zinc	3.8 42.7 0.24 0.44 18.2 16.9 8.9 0.11 26.4 0.48 0.60 0.48 43.3	U FF F F F F F F F F F F F F F F F F F	ctrophotometric he analyte was

Lab Name: NYTEST_ENV_INC Lab Code: NYTEST				05_ QC Report			1-19-2 No.23505_	
evel (low/hi ercent Solid	gh) : LOW	-		Lab Dat	Samp e Rec	le ID: eived:	350505 04/06/95	
C	oncentration	u Units (ug	/L or mg/kg dr	y we	ight)	: MG/K	G	
	CAS No.	Analyte	Concentration	С	Q	M		
	7440-36-0	Antimony	3.8	- -		P		
	7440-38-2	Arsenic	50.8			F-		
	1	Beryllium	0.70			P_		
	7440-43-9	Cadmium_	0.12			F-		
	7440-47-3		12.0	—		P		
		Copper	18.5			P_		
	7439-92-1	Lead	14.1			F		
		Mercury_	0.11			CV		
		Nickel	15.8			P_		
		Selenium_	0.47			F_		
	ł .	Silver	0.60			P_		
	,	Thallium_	0.47	_ ש		F_		
	7440-66-6	Zinc	47.2	_ _		P_		
				_ _				
				- -				
				- -		<u> </u>		
	·							
								
				- -				
				- -				
				- -				
ODES :	_					· ·		
P: ICP;	F : GFAA;	CV: Cold V	apor; AS: Aut	omat	ted Sp	pectrop	photometi	
HOCE. A	TH CHE "C"	Luncentra	ו משווותם ומסודו	mdi.	~~+~~	+ > ~ ~ ~		
THOSE WELECTE	u in this sa	amole: "K"	= Sample walue	~~~	~~+~~	 -	F	
mments:	THIE, DUT 16	ess than re	porting limit;	"NI	3" = 1	Not Red	quired.	
1-19-2								

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

	EST Logwater): SOII gh) : LOW	gin No.: 23	Contract: 9	QC Repor	1-24-1 t No.23505_ le ID: 350506_ eived: 04/06/95
Co	oncentration	Units (ug	/L or mg/kg dr	y weight):	: MG/KG
	CAS No.	Analyte	Concentration	C Q	М
not detected	7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	nnle: "Ell	0.12 24.8 20.7 16.6 0.13 11.5 0.47 0.57 0.47 51.5	B	P_F_P_P_F_CV P_F_P_F_P_P_F_P_P_P_F_P_P_P_P_P_P_P_P_P

ab Name: Nymr	EST ENV INC		Contract: 9	EQPBK2	
Lab Code: NYTE	EST Log	in No.: 23	505_	QC Report	No.23505_
atrix (soil/w Level (low/hig ercent Solids	jh) : LOW			Lab Sampl Date Rece	e ID: 350507 ived: 04/06/95
Co	ncentration	Units (ug	/L or mg/kg dr	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q 1	M
-	7440-36-0	Antimony	38.0	- - -	p_
	7440-38-2	Arsenic	5.0		-
	7440-41-7		1.0		<u>-</u>
	1	Cadmium_	1.0	[U] [1	₹
		Chromium_	5.0	U I	-
	1 .	Copper Lead	4.0		P_
_		Mercury_	3.0		
	į.	Nickel	0.20		$\overline{\mathbf{v}}$
	7782-49-2		27.0		<u></u>
	7440-22-4		5.0 6.8	 	<u>[</u>
	7440-28-0		5.0		<u></u>
		Zinc	5.0		5-
				- -	-
				- -	
					_
				_ _	_
					_
					_
ODES:					_!
P: ICP; F	': GFAA;	CV: Cold V	anore Ase Aut	compand Con-	ctrophotometric
	mit, but le	ss than re	porting limit;	"NR" = NO	t Required
					- wodarren.
EQPBK2	· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

ab Name: NYT	b Name: NYTEST_ENV_INC			Contract: 9521649				
ab Code: NYT	EST Log	in No.: 23	505_	QC Report	t No.23505_			
atrix (soil/vevel (low/hidercent Soliderce	gh) : LOW			Lab Samplo	e ID: 350508 ived: 04/06/95			
Co	oncentration	Units (ug,	/L or mg/kg dr	y weight):	UG/L_			
	CAS No.	Analyte	Concentration	C Q I	M			
	7440-36-0	Antimony	38.0	77 7	P_			
	7440-38-2	Arsenic	5.0		F_			
	7440-41-7	Beryllium			P_			
	7440-43-9	Cadmium	1.0	ן טו	F			
	7440-47-3	Chromium_	5.0	ן ט	P_			
	7440-50-8	Copper	4.0	נ נ	P_ P_			
	7439-92-1	Lead	3.0	ַן טו	F_			
	7439-97-6	Mercury_	0.20		c⊽			
		Nickel	27.0		P_			
		Selenium_	5.0	נ	P_ F_			
		Silver	6.8	В	₽			
	7440-28-0	Thallium_	5.0	ן ט	F_			
	7440-66-6	Zinc	5.0	נ ט	P_			
,								
				_ _	_			
				_				
				_ .				
				_				
				_ .				
				_ .				
				_				
				_ .				
				_ .	-			
				_ -				
20077	·			l_ll.				
CODES :								
P: ICP;	f : GFAA;	CV: Cold V	Vapor; AS: Aut	tomated Spe	ectrophotometr:			
Note: A "U"	'in the "C"	(Concentra	ation) column :	indicates	the analyte was			
not detecte	a in this s	ampie; "B"	= Sample value	e greater '	than Instrument			
Detection I	limit, but l	ess than re	eporting limit	; "NR" = Nc	ot Required.			
mments:								
FLDBK2								

ANALYTICAL AND METHOD BLANK SUMMARY

Lab	Name:	NYTEST_	ENV	_INC	Contract:	9521649

ab Code: NYTEST Login No.: 23505_ QC Rep

QC Report No.: 23505___

reparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

			 		_				
Analyte	Initial Calib. Blank (ug/L)	С	nı B.	uing Calib lank (ug/L 2	ra) C	tion 3	С	Prepa- ration Blank C	1
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Gercury Selenium ilver hallium Zinc							-	3.800 U P 0.500 U F 0.100 U F 0.100 U F 0.500 U P 0.869 B P 0.300 U F 0.100 U CV 2.700 U P 0.500 U F 0.600 U P 0.500 U F	_

NR = Analyte Not Requested

ANALYTICAL AND METHOD BLANK SUMMARY

Lab N	Tame:	NYTEST_	_ENV	_INC		Contract:	9521649	
-------	-------	---------	------	------	--	-----------	---------	--

Lab Code: NYTEST Login No.: 23505_

QC Report No.: 23505_

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

Initial Calib. Blank (ug/L) ntimony rsenic eryllium admium hromium opper ead ercury ickel elenium ilver nallium inc	Continuing Calibration Blank (ug/L) 1 C 2 C 3	Preparation Blank C M 38.000 U P 5.000 U P 1.000 U P 1.000 U P 9.930 B 3.000 U F 0.200 U CV 27.000 U P 5.000 U P 5.000 U P 5.000 U P 5.000 U P
--	---	---

NR = Analyte Not Requested

ANALYTICAL AND METHOD BLANK SUMMARY

Lab Name:	NYTEST_1	ENV_INC	Contract:	9521649		
Lab Code:	NYTEST	Login No.: 23490_		QC Report	No.:	23490
reparation	on Blank	Matrix (soil/water): WA	TER			
Preparatio	on Blank	Concentration Units (ug	/L or mg/kg)	: UG/L_		

							, , .
Analyte	Initial Calib. Blank (ug/L) C]	nuing Calib Blank (ug/L) C 2	ration) C 3	С	Prepa- ration Blank C	M
Antimony_ Arsenic_ Beryllium Cadmium_ Chromium Copper_ Lead fercury_ Aickel_ Selenium Silver_ Thallium Zinc						38.000 U 5.000 U 1.000 U 1.000 U 5.000 U 4.000 U 3.000 U 0.200 U 27.000 U 5.000 U -7.530 B 5.000 U	F P P C P P F P F P F P F P F P F P F P

MR = Analyte Not Requested

ANALYTICAL AND METHOD BLANK SUMMARY

Lab Name: NYTEST_ENV_INC Contract: 9521649	YTESI	Name:	Lab
--	-------	-------	-----

Login No.: 23490_ Lab Code: NYTEST

QC Report No.: 23490_

reparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte Antimony Arsenic Beryllium Cadmium	Initial Calib. Blank (ug/L)	C	in B C	uing Calib lank (ug/L	ra) C	C	Prepa- ration Blank C M -5.578 B 0.500 U F 0.100 U P
Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc							0.100 U F 0.500 U P 0.400 U P 0.300 U F 0.100 U CV 2.700 U P 0.500 U F 0.600 U P 0.500 U F -0.596 B P
						- - - - - -	

NR = Analyte Not Requested

	MATRIX SPIKE	RECOVERY DAT	A SHEET	
 :-				1-17-1MSD
tb Name: NYTEST_ENV_INC		Contract:	9521649	

b Code: NYTEST Login No.: 23490_ QC Report No.: 23490_

1atrix (soil/water): SOIL______
Level (low/med): Low______

Solids for Sample: _97.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

8					· · · · · · · · · · · · · · · · · · ·			
Analyte Intimony_ rsenic_ eryllium Cadmium_ hromium_ opper_ Lead_ ercury interpretable	75-125_ 75-125_ 75-125_ 75-125_ 75-125_	Spiked Sample Result (SSR) 0 27.0040 31.6523 4.9888 0.5294 35.6584 53.8691 20.3399 0.7036	5.0776 32.8397 0.2062 0.0937 19.9972 20.0418 5.2484 0.1304	_	Spike Added (SA) 44.823.724.480.4617.9322.411.860.52	%R 31.9106.8115.187.3150.9811.4110.2	O IN - N I O -	MPFPFPFC
elenium	75-125_ 75-125	61.4415	26.7261 0.4686	ਹ	44.82	77.5 64.9	\overline{N}	P_ F
filver	75-125_ 75-125_ 75-125_ 75-125_	1.5769 3.6965 92.0350	0.5573 0.4686 37.6140	ם מם כ	4.48 4.64 4.82	35.2 —79.7 —121.4	и -	PFP
				_			- -	
				_			_	
			-	_			_	
				_			_	
				-			-	-
				-			-	_
				_			_	_

mments: 1-17-1MSD_			
	 -	 	

NR : Analyte Not Required

SAMPLE NO.

DUPLICATES

SAMPLE NO.

Lab Name: NYTEST_ENV_INC	Contract: 9521649	1-17-1MS

Lab Code: NYTEST Login No.: 23490_

QC Report No.: 23490

fatrix (soil/water): SOIL_

Level (low/med): _Low__

% Solids for Sample: _97.0

% Solids for Duplicate: __94.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

 $\ensuremath{\text{NR}}$: Analyte Not Requested