Verification and Validation Report: Software Engineering

Team 15, ASLingo Andrew Kil Cassidy Baldin Edward Zhuang Jeremy Langner Stanley Chan

April 4, 2024

1 Revision History

Date	Contributors	Notes
Feb 29, 2024	Cassidy	Initial draft and formatting
Mar 4, 2024	Andrew	Filled out table for learning progression
Mar 4, 2024	Stanley	Added test results for performance requirements
Mar 4, 2024	Cassidy	Added test results for tables 2,4,5 and 6
Mar 5, 2024	Stanley	Added test to modules traceability matrix
Mar 6, 2024	Andrew	Added automated testing information
Mar 6, 2024	Cassidy	Added reflection, fixed table 6, added to automated testing section
Apr 4, 2024	Jeremy and Cassidy	Updated system test results and tables according to VnVPlan

2 Symbols, Abbreviations and Acronyms

Table 1: Naming Conventions and Terminology

Term, Abbreviation, or Acronym	Description
A	Shorthand for Assumption
ASL	Shorthand for American Sign Lan-
	guage. It is a form of sign language
	primarily used in the US and in parts
	of Canada
ASLingo	The commercial name for the project
CV	Refers to Computer Vision, the field of
	technology that involves processing vi-
	sual input to achieve various means.
CR	Shorthand for 'Cultural Requirements',
	a subsection of Non-Functional Re-
	quirements.
HSR	Shorthand for 'Health and Safety Re-
	quirements', a subsection of Non-
	Functional Requirements.
FR	Shorthand for Functional Require-
	ments
LR	Shorthand for 'Legal Requirements', a
	subsection of Non-Functional Require-
	ments.
LFR	Shorthand for 'Look and Feel Require-
	ments', a subsection of Non-Functional
	Requirements.
MSR	Shorthand for 'Maintainability and
	Support Requirements', a subsection of
	Non-Functional Requirements.
OER	Shorthand for 'Operational and Envi-
	ronmental Requirements', a subsection
	of Non-Functional Requirements.

OpenCV	Refers to the Open Computer Vision				
	Library library available for free to de-				
	velopers in order to develop Compute				
	Vision applications.				
PR	Shorthand for 'Performance Require-				
	ments', a subsection of Non-Functional				
	Requirements.				
SR	Shorthand for 'Security Requirements',				
	a subsection of Non-Functional Re-				
	quirements.				
UHR	Shorthand for 'Usability and Human-				
	ity Requirements', a subsection of Non-				
	Functional Requirements.				

Contents

1	Revision History	j
2	Symbols, Abbreviations and Acronyms	ii
3	General Information3.1 Summary3.2 Objectives3.3 Relevant Documentation	1 1 1 1
4	Functional Requirements Evaluation 4.1 System Tests for ASL Learning Progression 4.2 System Tests for Web Application	2 2 3 3
5	Nonfunctional Requirements Evaluation 5.1 System Tests for Usability	5 5 9
6	Unit Testing	11
7	Changes Due to Testing	11
8	Automated Testing	11
9	Trace to Requirements	12
10	Trace to Modules	13
11	Appendix 11.1 Usability Survey Questions	14 14 15
${f L}{f i}$	ist of Tables	
	 Naming Conventions and Terminology System Tests for ASL Learning Progression	

3	System Tests for Web Application	3
4	System Tests for Hardware	3
5	System Tests for Usability	8
6	System Tests for Performance	9

3 General Information

3.1 Summary

As a machine learning-based image recognition web app, ASLingo has many areas to be tested. The overall software will be broken down into modules. There will be a front-end, a back-end, a database, and a machine learning model which all need to be separately tested, along with physical hardware and compatibility. This document serves as a report of the testing done to ensure that this system has been properly and thoroughly tested to meet the requirements set by the Software Requirements Specification.

3.2 Objectives

This document aims to outline the testing plan for ASLingo in order to create a functional and reliable product for users that aligns with the specified requirements. The team seeks to build confidence in stakeholders and users that the software is correct and meets or exceeds the initial intended goals, resulting in an overall satisfactory user experience.

3.3 Relevant Documentation

Below is a list of the relevant documentation referenced within the Verification and Validation Plan.

The Development Plan outlines the roles of each team member and the areas that each member will focus on. This breakdown of team responsibilities allows the team to assign testing roles accordingly. This document also contains the tools that the team plans on using for testing.

The VnV Plan outlines the testing plan for the system, as well as outlining the test cases that the team will perform to ensure the project has been properly and thoroughly tested. This document also contains the tools that the team plans on using for testing.

The Software Requirements Specification lists the functional and non-functional requirements which will aid in testing by formulating a testing plan to meet each requirement. Non-functional requirements should be tested such that

the fit criteria are met.

The Hazard Analysis identifies failure modes to determine the implementation strategies to mitigate them. These will be used as a part of the testing plan to ensure that the failures are covered.

The Module Guide divides the software into modules. The team will build the testing plan around the modules.

The Module Interface Specification further decomposes the software's modules into specific access routines. The team will build the testing plan such that each function and routine works as intended.

4 Functional Requirements Evaluation

4.1 System Tests for ASL Learning Progression

Many of the learning progression tests are redundant, as the development team and some participating users tested multiple ASL signs using the applications 'Quiz' and 'Practice' sections. All letters of the alphabet were tested to ensure correctness of the system, and all quiz levels were tested to ensure their functionality.

Table 2: System Tests for ASL Learning Progression

Test	Description	Input	Expected Out-	Actual	Result	Req
ID			put	Output		ID
FRT1-	User per-	Alphabetical	The letters 'a',	The let-	Pass	FR1,
LP1	forms ASL	signs 'a', 'b', 'c'	'b', 'c' are cor-	ters 'a',		FR2,
	signs		rect from user	'b', 'c' are		FR4
				shown by		
				user		
FRT1-	Complete	User goes to quiz	System starts	Quiz is	Pass	FR5,
LP2	quiz	page	diagnostic quiz	started		FR6,
			until user com-	and com-		FR7
			pletes it	pleted by		
				user		

FRT1-	Get live	User signs letter	Systems outputs	System	Pass	FR1,
LP3	feedback	'a'	letter 'A'	shows		FR2,
	from user			user		FR3
	signs			letter 'A'		

4.2 System Tests for Web Application

Table 3: System Tests for Web Application

Test	Description	Input	Expected	Actual	Result	Req
ID			Output	put Output		ID
FRT3-	User can ac-	User	User is	User is	Pass	FR1
U1	cess the web	opens web	able to	able to		
	application	browser	access	access		
		with the	all pages	all pages		
		ASLingo	of the	of the		
		application	application	application		

4.3 System Tests for Hardware

Table 4: System Tests for Hardware

Test	Description	Input	Expected	Actual	Result	Req
ID			Output	Output		ID
FRT4-	User is able	User goes	System is	System is	Pass	FR1
HW1	to access the	to quiz	able to rec-	able to rec-		
	web camera	page and	ognize user	ognize user		
		starts a	signs from	signs from		
		quiz	their cam-	their cam-		
			era	era		

FRT4-	Monitor	User go	es	User i	is	User is	Pass	FR1
HW2	web camera	to qu	iz	notified	if	notified if		
	usability	page ar	ad	their cam	n-	their cam-		
		starts	a	era is no	ot	era is not		
		quiz		working		working		
				correctly		correctly		

5 Nonfunctional Requirements Evaluation

5.1 System Tests for Usability

We will be testing our usability requirements using a survey for a group of testers to fill out after using the application for 15 minutes. The group of users will have an interest in learning ASL, and will be willing to fill out this questionnaire to give some perspective on the usability of our application. The list of survey questions and the link to the survey can be found in the Appendix 11.1.

5.2 Usability Testing Results

Results from the Usability Survey conducted in partnership with the Mc-Master Sign Language Club. Participants had a mid to low range of skill levels, aka our target demographic.

It was very easy to get right into a testing session with little to no hassle 13 responses

The User Interface is very friendly and it is easy to identify where everything is. 13 responses

During a Quiz, its very easy to understand what to do and how to complete it 13 responses

While signing, it is very easy to see what sign I am making and whether to make adjustments or not

13 responses

After completing a Quiz, I receive useful feedback

13 responses

At my current level of ASL knowledge, it is easy to use the application

13 responses

On a scale of 1 to 10, how would you rate your experience with ASLingo? 13 responses

Table 5: System Tests for Usability

Test	Description	Input	Expe	Expected Actual		al	Result	Req ID
ID			Outp	ut	Outp	ut		
NFRT1-	User is able to	User opens	User	is	User	is	Pass	UHR1
UT1	start applica-	web appli-	able	to	able	to		
	tion with no	cation	use	ap-	use	ap-		
	training		plicati	on,	plication,			
			comple	completes		s of		
			questi	on 2,	questi	.on		
			3 of su	ırvey	2, 3	3 of		
			with	posi-	survey	y sow		
			tive re	sult	most	par-		
					ticipa	nts		
					Agree	or		
					Strong	gly		
					Agree			

NFRT1-	User is able	User opens	User is	User is	Pass	UHR1
UT2	to complete a	quiz page	able to	able to		
	quiz with no	and starts	complete	complete		
	training	a quiz	a quiz,	a quiz,		
			completes	results of		
			question 4,	question		
			6 of survey	4, 6 of		
			with posi-	survey sow		
			tive result	most par-		
				ticipants		
				Agree or		
				Strongly		
				Agree		
NFRT1-	User is able	User opens	User is	User is	Pass	UHR2
UT3	to use appli-	application	able to	able to		
	cation with		use ap-	use ap-		
	various hear-		plication,	plication,		
	ing abilities		completes	results of		
			question 8	question 8		
			of survey	overall was		
			with result	80% from		
			over 75%	our user		
				testing		
NFRT1-	System	User tries	System	System	Pass	UHR3
UT4	should show	to com-	prompts	prompts		
	user if input	plete quiz	user to	user to		
	needs to be	but their	fix camera	fix camera		
	adjusted	camera is	settings	settings		
		not set up				
		properly				

5.3 System Tests for Performance

Table 6: System Tests for Performance

Test	Description	Input	Expected	Actual	Result	Req
ID			Output	Output		ID
NFRT2-	The applica-	The user	The sys-	The sys-	Pass	PR1
PT1	tion should	should	tem should	tem re-		
	respond to	respond	register	sponded		
	user input	to the ap-	the user's	with the		
	within 1 sec-	plication's	input and	detected		
	ond.	prompt.	respond to	sign al-		
			the user	most		
			quickly.	instantly.		
NFRT2-	The applica-	The user	The ap-	Static	Pass	PR2
PT2	tion should	should	plication	hand signs		
	be able to	sign in	should	are recog-		
	accurately	response	register	nized with		
	determine	to the ap-	the user's	a total		
	if the user	plication's	signed	testing		
	has signed	prompt.	input and	accuracy		
	the correct		deter-	of around		
	response to		mine if	98%. Dy-		
	the prompt		they have	namic		
	95% of the		signed the	hand signs		
	time.		required	are very		
			action	consistent,		
			correctly	with the		
			with 95%	accuracy		
			overall	at around		
			accuracy.	94%.		

6 Unit Testing

Test	Description	Input	Expected	Actual Out-	Result	t Req
ID			Output	put		ID
DPM-	Tests the	[1.0, 2.0,	[0.25, 0.5, 0.75,	[0.25, 0.5, 0.75,	Pass	FR2
UT1	vector nor-	3.0, -4.0],	-1], [4.0/6.0, -	-1], [4.0/6.0, -		
	malization	[4.0, -6.0,	6.0/6.0, 3.0/6.0,	6.0/6.0, 3.0/6.0,		
	function	3.0, -1.0]	-1.0/6.0]	-1.0/6.0]		
DPM-	Tests the	[[1.0, 2.0,	[[0.0, 0.0, -2.0],	Correct	Pass	FR2
UT2	feature	5.0], [3.0,	[-2.0, -2.0, 5.0],			
	processing	4.0, -2.0],	[-4.0, -4.0, 6.0]],			
	function	[5.0, 6.0,	[[0.0, 0.0, 0.0],			
		-3.0]], [[-	[-3.0, 0.0, 3.0],			
		1.0, 1.0,	[2.0, -1.0, -1.0]			
		0.0], $[2.0$,				
		1.0, -3.0],				
		[-3.0, 2.0,				
		1.0]]				

7 Changes Due to Testing

- A change due to testing involves ensuring efficiency of sign recognition is held to a high standard from NFRT2 which outlines having a 95% accuracy of determining the user's hand sign.
- From our user testing, we also want to ensure that new and existing users of our application can get the best learning experience possible through a responsive, well designed and tested application.

8 Automated Testing

Automated testing is taken care of by the automatic linter flake8 upon every push to the repository to ensure that our python code is in line with the styling guide of flake8. We are also using a local and automatic linter eslint for our Javascript code for the front end of our application.

9 Trace to Requirements

FR Req. 3 System Test 2 4 5 6 7 1 FRT1-LP1 X X X X FRT1-LP2 X X X FRT1-LP3 X X FRT2-U1 X FRT3-HW1 X FRT3-HW2 X

Functional Requirements to System Tests

	UHR			PR		
System Test	1	2	3	1	2	
NFRT1-UT1	X					
NFRT1-UT2	X					
NFRT1-UT3		X				
NFRT1-UT4			X			
NFRT2-PT1				X		
NFRT2-PT2					X	

Non Functional Requirements to System Tests

10 Trace to Modules

Module

System Test	M1	M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12
FRT2-LP1	X	X						X				
FRT2-LP2	X							X	X		X	
FRT2-LP3	X	X	X					X		X		
FRT3-U1								X				
FRT4-HW1								X				
FRT4-HW2								X				
NFRT1-UT1									X			
NFRT1-UT2									X			
NFRT1-UT3									X			
NFRT1-UT4	X							X				
NFRT2-PT1			X		X							
NFRT2-PT2	X	X					X					

System Tests to Modules

11 Appendix

11.1 Usability Survey Questions

A link to the survey that participants will be given can be found here. Participants will be asked to rank how they felt about the following statements, with the response options being Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

- 1. Please rate your own level of ASL proficiency on a scale of 1-10 [1 = I know absolutely nothing, 10 = I sign at a high level]
- 2. From Strongly Disagree to Strongly Aggree, rate the following sentence: It was very easy to get right into a testing session with little to no hassle
- 3. From Strongly Disagree to Strongly Aggree, rate the following sentence: The User Interface is very friendly and it is easy to identify where everything is
- 4. From Strongly Disagree to Strongly Aggree, rate the following sentence: During a Quiz, its very easy to understand what to do and how to complete it
- 5. From Strongly Disagree to Strongly Aggree, rate the following sentence: While signing, it is very easy to see what sign I am making and whether to make adjustments or not
- 6. From Strongly Disagree to Strongly Aggree, rate the following sentence: After completing a Quiz, I receive useful feedback
- 7. From Strongly Disagree to Strongly Aggree, rate the following sentence: At my current level of ASL knowledge, it is easy to use the application
- 8. How would you rate your overall experience with ASLingo on a scale of 1-10

```
[1 = Terrible, 10 = Fantastic]
```

11.2 Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Reflection. Please answer the following question:

1. In what ways was the Verification and Validation (VnV) Plan different from the activities that were actually conducted for VnV? If there were differences, what changes required the modification in the plan? Why did these changes occur? Would you be able to anticipate these changes in future projects? If there weren't any differences, how was your team able to clearly predict a feasible amount of effort and the right tasks needed to build the evidence that demonstrates the required quality? (It is expected that most teams will have had to deviate from their original VnV Plan.)

The Verification and Validation (VnV) plan is different than the tests that were actually conducted for the VnV Report in many ways. One main difference was that our team wrote more tests than the tests that were in the original VnV plan, and we also performed even more tests than the ones that were written. This is because when we wrote the VnV plan in November, we only had the proof of concept version of our project completed, so the tests that were written were for an earlier version of the project, or an ideal version of our project. While working on the project for our Rev0 demo, the team was constantly testing both the front and back end to ensure that the required functionality was working according to the specifications lead out in the SRS document. This testing was in line with some of the new test cases that were added to the VnV plan, but many were redundant and are not shown in the final report or plan (such as testing each letter of the alphabet individually multiple times with different people and in different environments) to reduce the length of the report. We think that some of these changes could be anticipated in future projects if a lot more time was given to all the intricacies of what the final project would look and perform like, but some changes to things like the usability of the project you can only really know after doing testing with users and other stakeholders and are harder to predict from a glance.