Problemes de Càlcul amb Vàries Variables. Full 5

Integrals dobles i de línia

1. Determineu la longitud de les següents corbes:

(a)
$$\mathbf{c}(t) = (a\cos t, a\sin t, bt), 0 < t < 4\pi.$$

(b) $x(t) = R(t - \sin t), y(t) = R(1 - \cos t), 0 < t < 2\pi.$

- 2. Calculeu les integrals de línia de les funcions escalars $f(x,y) = x^2 + y^2$ i $g(x,y) = \sqrt{a^2 y^2}$ sobre la circumferència centrada a l'origen i de radi a.
- 3. Mostrar que la corba $\alpha(t) = (t\cos t, t\sin t, t)$ està definida sobre un con. Trobeu la longitud del camí que surt del vèrtex i dóna una volta al con.
- 4. Demostra que el camí donat per $\sigma(t) = (t \cos t, t \sin t, t^2)$ està definit sobre un paraboloide. Troba la seva longitud d'ençà que surt del vèrtex fins que arriba al punt donat per $t = 2\pi$. Representa-ho gràficament.
- 5. Fes el mateix que en el problema anterior però considerant ara l'arc d'hèlix $\alpha(t) = (\cos t, \sin t, t)$ que uneix els punts (1,0,0) i $(1,0,2\pi)$. Calculeu la integral de línia del camp $\mathbf{v} = (z,x,y)$ sobre aquesta corba.
- 6. Calculeu la integral de línia del camp vectorial $\mathbf{F}=(1/x,1/y,1/z)$ sobre la circumferència $(x-2)^2+(y-2)^2=1,\ z=1,$ començant pel punt (1,2,1) i recorrent:
 - (i) Tota la circumferència.
 - (ii) Una semicircumferència fins al punt (3, 2, 1).
- 7. Calculeu la integral de línia del camp $\mathbf{v} = (\cos(x-y), \cos(x+y), z)$ sobre la corba que intersecta el paraboloide $z = x^2 + y^2$ i el pla x = y, des del punt (-1, -1, 2) al (1, 1, 2).
- 8. Calculeu la integral de línia del camp $\mathbf{v} = (\cosh^2(1/2(y+z)), \sinh^2(1/2(y+z)), x)$ al llarg de la recta que passa (1,0,0) i (0,1,1). Integreu des del punt (6,-5,-5) fins al (-3,4,4).
- 9. Avalueu les integrals de les funcions següents en la regió indicada:

$$(a) f(x,y) = x(5-y^2); 3 \le x \le 5, 1 \le y \le 2$$

$$(b)f(x,y) = \sin[\pi(x+y)]; |x| \le 1, |y| \le 1$$

$$(c)f(x,y) = 3(x^2+y^2)$$
; Regió del pla (x,y) limitada per $y=0, y=2x, x=1$.

$$(d)f(x,y) = x+y$$
; Regió del pla (x,y) on $y \ge 0$, $0 \le x \le 2$ i $y \le x^2$.

10. Canvieu l'ordre d'integració en les integrals dobles següents:

$$\int_0^4 dx \int_{3x^2}^{12x} f(x,y) \, dy; \qquad \int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx$$

11. Mitjançant una integral doble, avalua l'àrea del paral·lògram definit pels vectors $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ i $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j}$ i comprova que és $(a_1 b_2 - b_1 a_2)$. Amb què relaciones aquesta quantitat?