

FILTROS DE K-CONSTANTE

La impedancia característica de este cuadripolo estará definida por:

$$Z_{o} = \sqrt{Z_{oC} * Z_{SH}}$$

$$Z_{o} = \sqrt{\left(\frac{Z_{1}}{2} + Z_{2}\right) * \left(\frac{Z_{1}}{2} + \frac{Z_{1}}{2} * Z_{2}\right)} = \sqrt{\frac{Z_{1}^{2}}{2} + \frac{Z_{1} * Z_{2}}{2} + \frac{Z_{1} * Z_{2}}{2}} = \sqrt{\frac{Z_{1}^{2}}{4} + Z_{1} * Z_{2}}$$

La función de propagación para el cuadripolo dado será:

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{A^2 - 1} = \cosh \gamma + \sinh \gamma = e^{\gamma}$$

Donde

$$cosh\gamma = A = \frac{Z_1}{2} + Z_2$$

 $Z_2 = 1 + \frac{Z_1}{2 * Z_2}$

Pero es mas cómoda la definición en función del senh $\gamma/2$.

$$senh\frac{\gamma}{2} = \sqrt{\frac{1}{2}(cosh\gamma - 1)}$$

$$senh\frac{\gamma}{2} = \sqrt{\frac{1}{2}(cosh\gamma - 1)}$$

$$senh\frac{\gamma}{2} = \sqrt{\frac{1}{2}\left(1 + \frac{Z_1}{2*Z_2} - 1\right)} = \sqrt{\frac{Z_1}{4*Z_2}}$$

Pero $\gamma = \alpha + j \beta$

$$senh\frac{\gamma}{2} = senh\frac{1}{2}(\alpha + j\beta) = senh\left(\frac{\alpha}{2} + \frac{j\beta}{2}\right) = senh\frac{\alpha}{2} * cos\frac{\beta}{2} + jcosh\frac{\alpha}{2} * sen\frac{\beta}{2}$$

$$senh\frac{\gamma}{2} = \sqrt{\frac{Z_1}{4 * Z_2}} = X_K$$

En los filtros de K_{CTE}
$$\rightarrow Z_1 * Z_2 = R_0^2$$
 $\frac{Z_{1K}}{4 * Z_{2K}} = \frac{Z_{K1}^2}{4 * R_0^2} = \frac{R_0^2}{4 * Z_{2K}^2}$

Por lo tanto $X_K = Z_{1K}/2 R_O$; para que esto se cumpla Z_{1K} y Z_{2K} deben ser impedancias recíprocas ($Z_{1K} = j\omega L$ y $Z_{2K} = 1/j\omega C$).

La siguiente figura muestra las curvas universales de atenuación (α) en neppers y de fase (β) en radianes para filtros de Kcte.

CASO	$\frac{\underline{Z}_1}{4Z_2}$	α	β	CARÁCTER DE ZO	BANDA
A	-1 a 0	0	$2*sin^{-1}\sqrt{ Z_1/4Z_2 }$	RESISTENCIA PURA	PASANTE
В	0 a ∞	$2*sinh^{-1}\sqrt{ Z_1/4Z_2 }$	0	REACTANCIA PURA	DETENIDA
C	-∞ a -1	$2 * \cosh^{-1} \sqrt{ Z_1/4Z_2 }$	$\pm\pi$	REACTANCIA PURA	DETENIDA