Assume bin size = 5

Polf = Brobability density function Descrete histogram

Pmt = Probability mass Function.

Visualization

- 1) Histogram
- 3 Box & whisker plot

4 column plot

(5) Pie chart

6 Scutter plot

* <u>frequency</u>
2
3
3
4
1
6
4
9
4
16

cdt = cumulative Densty function. A Covariance and correlation.

& covariance

x y age height 2 2 4 2.5

6 3

10 3.5

15 4-5

20 5.5

positive covarune

	Age	weight	hight	BMI	
	(2	3	4	
Independent				Tay	get

$$Cov(X, y) = \sum (Xi - \overline{X})(Yi - \overline{Y})$$

$$N - 1$$

limit (+ 00, - 00)

& Correlation

1) peurson's correlation coefficient 2) speeu nan Rank corr coeff.

De Pearson's correlation coefficient

$$Cov(x,y) = \frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$$

limit (-1, 1)

Disavantage -

Can't identified non-lineau relation

1 Spearman Rank Corr Coff.

$$Corp(X,Y) = \frac{cor(X,Y)}{\sigma_{RX} \cdot \sigma_{RY}}$$

2 × × 20

4 28 6 34

3 30

$$\sum (x_i - \overline{y}) (y_i - \overline{y})$$

√-∫

 $X = 3.75^{-}$

Y = 28

$$\chi_{i} - \chi$$
 $\chi_{i} - \chi$
 $\chi_{i} - \chi$
 $2 - 3.75 = -1.75$
 $20 - 28 = -8$
 $4 - 3.75 = 0.25$
 $28 - 28 = 0$
 $6 - 3.75 = 2.25$
 $34.28 = 6$
 $3 - 3.75 = -0.75$
 $30 - 28 = 2$

$$\frac{14+0+13.5-1.5}{3}$$

$$=\frac{26}{3}=\frac{8.66}{3}$$

$$\begin{array}{rcl}
(Br(X,Y) &=& (BV(X,Y)) \\
\hline
(X,Y) &=& (BV(X,Y$$

$$8.77$$
 -3
 -2
 52.9
 -3
 1.7

12