

SeerNet: Predicting Convolutional Neural Network Feature-Map Sparsity through Low-Bit Quantization

Shijie Cao, Lingxiao Ma, Wencong Xiao,

Chen Zhang, Yunxin Liu, Lintao Zhang, Shunnie Lan, Zhi Yang

Microsoft® Research 溦软亚洲研究院

Today's DNN model is huge

- 64TPUv2 , 8 P100
- 4 Days *or* 365 Days
- 1000 GB ' 1000 GB

Wavenet
Speech

- 2 P100
- 6 Days
- 16 GB

Deformable CNN

Vision

- 8 P100
- 10 Days
- 64 GB

MoE Language

- 64 K80
- 6 Days
- 1500 GB

What's next technology

that enables us to train a super large model?

Today's deep learning machine WASTED too much computation and memory because

neural networks are SPARSE

Redundancy in neural networks

1. Train Connectivity

2. Prune Connections

$$\widehat{w} \leftarrow abs(w)$$

$$if \ \widehat{w_i} \leq Threshold$$

$$w_i \leftarrow 0$$

3. Train Weights

near-zeros

Sparsity = 50%~90%

Highly unstructured sparse pattern

Fine-grained

Pros:

- High model accuracy
- High compression rate

Cons:

- Irregular pattern
- Difficult to accelerate

Cons:

- Low model accuracy
- Low compression rate

Coarse-grained

Pros:

- Regular pattern
- Easy to accelerate
- [1] Efficient and Effective Sparse LSTM on FPGA with Bank-Balanced Sparsity, FPGA '19
- [2] Balanced Sparsity for Efficient DNN Inference on GPU, AAAI'19

- Prunning
- Quantization

- MobileNet
- SqueezeNet
- Interleaved Group CNN
- Deformable CNN

Three types of sparsity

- Model compression
- Prunning
- Quantization

Structural Sparsity

- MobileNet
- SqueezeNet
- Interleaved Group CNN
- Deformable CNN

Many pixels of convolution's output are zeros

- ReLU
 - y = max(0,x)

- Max-pooling
 - $y = max(x_i | i=\{1,2,...,n\})$

Sparsity case study (Resnet-16): ReLU

- Sparsity : 45% ~ 95%
- Convolving for ReLU's zero output pixels results in computation waste

Sparsity case study (VGG16): ReLU + Max-pooling

- Sparsity: 45% ~ 95%
- Convolving for regional small values in max-pooling results in computation waste

Quantized prediction error rate

ReLU Layer#	1	2	3	4	5	6	7	8	9	10	11	12	13
Prediction	4.3%	9.5%	7.0%	4.8%	4.9%	4.1%	2.1%	2.4%	2.2%	1.0%	2.0%	1.7%	0.7%
Error Rate	4.5%	9.5%	7.0%	4.0%	4.9%	4.1%	2.1%	2.4%	2.270	1.0%	2.0%	1.7%	0.7%

Quantized prediction error rate of VGG16 on ILSVRC-2012 dataset layer-by-layer with ReLU activation.

Top-1 and Top-5 accuracy of SeerNet with 4-bit quantized prediction

Model	Baseline	SeerNet	Acc. Drop
VGG16	92.57	92.48	0.09
VGG16_BN	93.89	93.60	0.29
ResNet18	93.91	93.88	0.02
ResNet34	94.80	94.76	0.04
InceptionV1	95.12	93.82	1.30

Model	Baseline	SeerNet	Acc. Drop	
Model	(Top1/Top5)	(Top1/Top5)	(Top1/Top5)	
VGG16	71.59/90.38	71.31/90.28	0.28/0.10	
VGG16_BN	73.37/91.50	72.85/91.18	0.52/0.32	
ResNet18	69.76/89.08	69.34/88.90	0.42/0.18	
ResNet34	73.30/91.42	72.95/91.25	0.35/0.17	
InceptionV3	77.35/93.62	76.39/92.97	0.96/0.65	

CIFAR-10 ILSVCR-2012

Inference Time and Speedup.

The total computation time of the SeerNet is summed up by the computation time spent on sparse convolution and quantized prediction. So the bars are the smaller the better. The speedup is reciprocal to computation time

Comparison with previous work

		Top-1	Top-5		
Model	Method	Acc.	Acc.	Speedup	Re-train?
		Drop	Drop		
	SeerNet	0.42	0.18	30.0%	No
ResNet	LCCL[2]	3.65	2.30	20.5%	Yes
18	BWN[21]	8.50	6.20	50.0%	Yes
	XNOR[22]	18.10	16.00	98.3%	Yes
ResNet	SeerNet	0.35	0.17	22.2%	No
34	LCCL[2]	0.43	0.17	18.1%	Yes
	PFEC[16]	1.06	-	24.2%	Yes
VGG	SeerNet	0.28	0.10	40.1%	No
16	PFEC[16]	-	0.15	34.0%	Yes

Sensitivity study of quantization bits

Top-1 accuracy of VGG16, ResNet34 and InceptionV3 with different quantization bits on ILSVRC-2012.

THANKS

Thanks Questions & Comments.

Speaker: Chen Zhang

2018/05/11

Heatmap of weight matrix after pruning

Model Accuracy Comparison

