MATH 601 (DUE 11/13)

HIDENORI SHINOHARA

Contents

1 2

- Factoring Polynomials with Coefficients in Finite Fields
- 2. Galois Theory III

1. Factoring Polynomials with Coefficients in Finite Fields

Exercise. (Problem 14) For $a \in \mathbb{F}_q$, what are the possible values for $a^{(q-1)/2}$? How many different a take each value?

Proof. Let $\langle \alpha \rangle = (\mathbb{F}_q)^*$. Let $k \in \mathbb{Z}$. If k is even, then $(\alpha^k)^{(q-1)/2} = (\alpha^{k/2})^{q-1} = 1$. If k = 2l + 1for some l, then $(\alpha^k)^{(q-1)/2} = \alpha^{l(q-1)} \cdot \alpha^{(q-1)/2} = \alpha^{(q-1)/2} = -1$ because -1 has degree 2 and $\alpha^{(q-1)/2}$ is the only element in $\langle \alpha \rangle$ of degree 2. Therefore,

$$a^{(q-1)/2} = \begin{cases} 0 & (a=0) \\ 1 & (\exists l \in \mathbb{Z}, a = \alpha^{2l}) \\ -1 & (\exists l \in \mathbb{Z}, a = \alpha^{2l+1}). \end{cases}$$

This is well defined because every nonzero element in \mathbb{Z}_q is in $\langle \alpha \rangle$ and $2 \mid |\langle \alpha \rangle| = q - 1$, so the parity of the exponent does not depend on the choice of k. Hence, 1 value gives 0, (q-1)/2 values give 1, and (q-1)/2 values give -1.

Exercise. (Problem 15) Let f(x) be as in problem 13 and let $h \in \mathbb{F}_q[x]$ be a randomly chosen polynomial. What is the probability that $h^{(q^r-1)/2} = \pm 1$ in the ring $\mathbb{F}_q[x]/(f(x))$.

Proof. As shown in Problem 13 last week, there exists an isomorphism $\Phi: \mathbb{F}_q[x]/(f(x)) \to$ $\mathbb{F}_q[x]/(f_1(x)) \times \cdots \times \mathbb{F}_q[x]/(f_m(x))$ by the Chinese Remainder Theorem. For any $h \in$ $\mathbb{F}_q[x], \ \Phi(h+(f)) = (h+(f_1), \cdots, h+(f_m)). \ \text{Moreover}, \ \Phi(h^{(q-1)/2}+(f)) = (h^{(q-1)/2}+(f_1), \cdots, h^{(q-1)/2}+(f_m)). \ \text{Therefore}, \ h^{(q-1)/2}+(f) = 1 \ \text{if and only if} \ h^{(q-1)/2}+(f_1), \cdots, h^{(q-1)/2}+(f_m)$ (f_m) all equal 1.

Let $\alpha_1, \dots, \alpha_m$ be generators of $(\mathbb{F}_q[x]/(f_1(x)))^*, \dots, (\mathbb{F}_q[x]/(f_m(x)))^*$. For each $i, h^{(q-1)/2} + (f_i) = 1$ if and only if $h \in \langle \alpha_i^2 \rangle$ by Problem 14. Therefore, $h^{(q-1)/2} + (f) = 1$ if and only if $(h+(f_1),\cdots,h+(f_m))\in\langle\alpha_1^2\rangle\times\cdots\times\langle\alpha_m^2\rangle$. There are exactly $((q^r-1)/2)^m$ elements that satisfy that. Therefore,

$$\frac{\left(\frac{q^r-1}{2}\right)^m}{(q^r)^m} = \left(\frac{q^r-1}{2q^r}\right)^m = \left(\frac{1}{2} - \frac{1}{2q^r}\right)^m.$$

is the probability that $h^{(q^r-1)/2} = 1$ in $\mathbb{F}_q[x]/(f(x))$.

Using the exact same argument, we can derive that the probability that $h^{(q^r-1)/2}=-1$ is exactly the same value.

Exercise. (Problem 16) With f(x) as in problem 13, write $f(x) = g_1(x) \cdots g_m(x)$ for the factorization into irreducible factors. Express $gcd(f(x), h^{(q^r-1)/2} - 1)$ in terms of the $g_i(x)$'s.

Proof. $\gcd(f(x), h^{(q^r-1)/2}-1)$ is the product of $g_i(x)$'s that divide $h^{(q^r-1)/2}-1$. It is divisible by $g_i(x)$ if and only if $h \in \langle \alpha_i^2 \rangle$ from Problem 15.

Exercise. (Problem 17) Describe a probabilistic factoring algorithm which has a very high probability of finding the irreducible factors of a polynomial $f(x) \in \mathbb{F}_q[x]$, provided one knows ahead of time that f(x) is a product of m distinct irreducible polynomials of degree r.

Proof. Let i_0 be fixed. Given a random $h(x) \in \mathbb{F}_q[x]$, the probability that $h^{(q-1)/2} - 1 \in (f_{i_0})$ is $1/2 - 1/(2q^r)$, which is slightly smaller than 50%. Therefore, it is likely that given a random $h(x) \in \mathbb{F}_q[x]$, the probability that $h^{(q-1)/2} - 1 \in (f_i)$ for some i's is high. However, the probability that $h^{(q-1)/2} - 1 \in (f_i)$ in all i's is low.

In other words, the probability that $h^{(q-1)/2} - 1$ is a proper divisor of f is high. Therefore, we can expect to factor f(x) by

- Step 1: Generate a random polynomial $h(x) \in \mathbb{F}_q[x]/(f(x))$.
- Step 2: Calculate $h^{(q^r-1)/2} 1$. This step can be done efficiently by exponentiation by squaring.
- Step 3: Calculate $d(x) = \gcd(f(x), h^{(q^r-1)/2} 1)$. This step can be done efficiently by the Euclid algorithm.
- Step 4: If $1 \le \deg(d(x)) \le \deg(f(x))$, then factorize f(x)/d(x) and d(x) further by going back to Step 1 unless it is degree r. Otherwise, we were unlucky, so we go back to Step 1.

Exercise. (Problem 18, 19, 20)

- Problem 18: $(x^2 + x 1)^4$
- Problem 19:

• Problem 20: $(x^4 + 4x^2 + 5x + 3)(x^4 + 15x^3 - 16x^2 - 27x - 26)(x^4 - 3x^3 + 9x^2 - 23x + 1)$.

2. Galois Theory III

Exercise. (Problem 1) Prove Proposition 23 part (ii).

Proof. Clearly, $F \subset gK \subset L$ because $g \in \operatorname{Aut}(L/F)$. gK is a subfield because g preserves addition, multiplication and multiplicative inverse, so gK is closed under addition, multiplication and multiplicative inverse.

Let $\phi \in \operatorname{Aut}(L/gK)$. Then clearly, $g^{-1}\phi g \in \operatorname{Aut}(L)$. $g^{-1}\phi g$ fixes K because $\forall x \in K, (g^{-1}\phi g)(x) = g^{-1}(g(x)) = x$. Therefore, $\phi \in g \operatorname{Aut}(L/K)g^{-1}$.

Let $g\psi g^{-1} \in g \operatorname{Aut}(L/K)g^{-1}$. Then $g\psi g^{-1} \in \operatorname{Aut}(L)$. For all $g(k) \in g(K)$, $(g\psi g^{-1})(g(k)) = g(\psi(k)) = g(k)$. Therefore, $g\psi g^{-1} \in \operatorname{Aut}(L/gK)$.