

Department of Computer Science

Masterarbeit

Zeit-Effizientes Training von Convolutional Neural Networks

Jessica Bühler
11. November 2019

Supervisors:

Prof. Dr. Heinrich Müller

M.Sc. Matthias Fey

Lehrstuhl VII Informatik TU Dortmund

Inhaltsverzeichnis

1.	Einl	eitung	1
I.	Lit	eratur zum Zeit-Effizienten Training von CNNs	3
2.	Übe	rsicht über die Methoden zur Beschleunigung des Trainings	5
3.	Bes	chleunigung der Convolution	7
4.	Bes	chleunigung der Berechnung des Gradienten	9
	4.1.	Verdünnung des Aktivierungsgradienten zur Beschleunigung des Gra-	
		dienten	9
	4.2.	Beschleunigung des Trainings durch Graditenapproximation	9
5.	Verf	fahren um weniger Trainingsdaten zu verwenden	11
	5.1.	Stochastisches Pooling	11
	5.2.	Lernen von Struktur und Stärke von CNNs	11
6.	Stru	kturelle Veränderungen zur Beschleunigung des Trainings	13
	6.1.	Prune Train	13
	6.2.	Net 2 Net	13
	6.3.	Kernel rescaling	13
	6.4.	Resource Aware Layer Replacement	13
7.	Wei	tere Herangehensweisen	15
	7.1.	Tree CNN	15
	7.2.	Standardization Loss	15
	7.3	Wavelet	15

II. Praktischer Teil- Arbeitstitel	17
8. Einleitung	19
9. Durchführung	21
III. Additional information	23
List of Figures	25
List of Algorithms	27
List of Listings	29
Literaturverzeichnis	31

Mathematical Notation

Notation	Meaning
N	Set of natural numbers $1, 2, 3, \dots$
\mathbb{R}	Set of real numbers
\mathbb{R}^d	d-dimensional space
$\mathcal{M} = \{m_1, \dots, m_N\}$	Set \mathcal{M} of N elements m_i
p	Vector
\mathbf{p}_i	Element i of the vector
$\mathbf{v}_i^{(j)}$	Element i of the vector j
\mathbf{A}	Matrix

1. Einleitung

Thema dieser Arbeit ist die Frage wie man für ein gegebenes Bildklassifikationsproblem Zeit beim Trainieren des neuronalen Netzes sparen kann. Es geht dabei aber nicht nur um das direkte Einsparen während eines Trainingsdurchlaufs sondern auch darum wie man effizient ein gegebenes Netz verbessert.

Teil I.

Literatur zum Zeit-Effizienten Training von CNNs

2. Übersicht über die Methoden zur Beschleunigung des Trainings

Dies ist die Einleitung für Part A – Literatur

3. Beschleunigung der Convolution

Die Zeit, die ein Convolutional Layer braucht um berechnet zu werden hängt ab von:

Fehlt hier noch etwa

cite

- der Filtergrösse
- der Bildgrösse
- dem verwendeten Zahlenformat

Beim Verändern der Filter- oder der Bildgrösse, um Trainingszeit zu sparen, verändert sich auch die Erkennungsleistung . Dies ist beim Verändern des verwendeten Zahlenformats nicht umbedingt gegeben. Standardformat ist eine 32 Bit Gleitkommazahl. Die einfachste Methode hier Trainingszeit zu sparen ist das Halbieren der Bitanzahl auf 16 Bit. Eine weitere Methode ist das Benutzen von Dynamischen Festkommazahlen.

Quelle: [DMM+18]

4. Beschleunigung der Berechnung des Gradienten

- 4.1. Verdünnung des Aktivierungsgradienten zur Beschleunigung des Gradienten
- 4.2. Beschleunigung des Trainings durch Graditenapproximation

5. Verfahren um wenigerTrainingsdaten zu verwenden

- 5.1. Stochastisches Pooling
- 5.2. Lernen von Struktur und Stärke von CNNs

6. Strukturelle Veränderungen zur Beschleunigung des Trainings

- 6.1. Prune Train
- 6.2. Net 2 Net
- 6.3. Kernel rescaling
- 6.4. Resource Aware Layer Replacement

7. Weitere Herangehensweisen

- 7.1. Tree CNN
- 7.2. Standardization Loss
- 7.3. Wavelet

Teil II. Praktischer Teil- Arbeitstitel

8. Einleitung

Dies ist die Einleitung für Part B

9. Durchführung

- Baseline Training ab der ersten Epoche.
- Prune währenddem Training
- Training bis zu dem Zeitpunkt wo durch ein weitere Epoche nichts besser wird
- Überprüfe wieviel in den letzten Epochen gepruned wurde um zu entscheiden ob das Netz weiter odertiefersein soll

Teil III. Additional information

Abbildungsverzeichnis

List of Algorithms

List of Listings

Literaturverzeichnis

- [AS18] Menachem Adelman and Mark Silberstein. Faster neural network training with approximate tensor operations. *CoRR*, abs/1805.08079, 2018.
- [DMM⁺18] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj D. Kalamkar, Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas, Alexander Heinecke, Pradeep Dubey, Jesús Corbal, Nikita Shustrov, Roman Dubtsov, Evarist Fomenko, and Vadim O. Pirogov. Mixed precision training of convolutional neural networks using integer operations. *CoRR*, abs/1802.00930, 2018.