Содержание

1	Теорема Римана об осцилляции	2
2	Представление частичной суммы ряда Фурье интегралом с ядром Дирихле. Принцип локализации.	5
3	Достаточные условия сходимости ряда Фурье в точке	7
4	Дифференцирование и интегрирование рядов Фурье. Порядок убывания коэффициентов Фурье.	9
5	Теорема Жордана.	10
6	Равномерная сходимость сумм Фейера для непрерывной функции	12
7	Теоремы Вейерштрасса о приближении непрерывных функций тригонометрическими и алгебраическими многочленами	14

1 Теорема Римана об осцилляции

Определение 1.1. Точка x называется **точкой прикосновения** множества S, если любая окресность x содержит хотя бы одну точку множества S.

Определение 1.2. Множество всех точек прикосновения S называется **замыканием** S.

Определение 1.3. Носителем функции f(x) называется замыкание множества тех x, для которых $f(x) \neq 0$. (supp f) Функции с ограниченным носителем называются финитными.

Определение 1.4. Множество D называется всюду плотным в множестве G, если

$$\overline{D} = G$$

Утверждение 1.1. $L_1(\mathbb{R})$ – линейное нормированное пространство.

$$||f||_1 = \int_{\mathbb{D}} |f(x)| d\mu(x)$$

Лемма 1.1. Множество непрерывных финитных функций всюду плотно в $L_1(\mathbb{R})$.

Доказательство. Заменим \mathbb{R} на [a,b]. То есть докажем, что множество непрерывных на [a,b] функций всюду плотно в $L_1[a,b]$.

- Любая суммируемая функция представима в виде разности двух неотрицательных суммируемых функций, поэтому достатончо доказать утверждение для неотрицательных суммируемых функций.
- Так как интеграл неотрицательной суммируемой функции слабо отличается от интеграла её срезки $f_{[N]}(x)$ при достаточно больших N, то достаточно доказать утверждение для ограниченных неотрицательных суммиремых функций.
- Докажем для ограниченных неотрицательных. По теореме о представлении ограниченной измеримой функции пределом последовательности ступенчатых

$$\exists \{h_n\}: h_n \uparrow f$$

Теорема Леви гарантирует, что

$$\int_{a}^{b} h_{n}(x)d\mu(x) \to \int_{a}^{b} f(x)d\mu(x)$$

Значит

$$\int_{a}^{b} |f(x) - h_n(x)| d\mu(x) = \int_{a}^{b} (f(x) - h_n(x)) d\mu(x) \stackrel{n \to +\infty}{\longrightarrow} 0$$

То есть нам достаточно доказать, что любую ступенчатую можно приблизить непрерывной:

$$h_n(x) = \sum_{k=1}^{N} c_k \mathbb{I}_{E_k}(x)$$

В силу того, что $\forall k: E_k$ – измеримое, то

$$\forall \varepsilon > 0$$
: Ээлементарное M_{ε} : $\mu(E_k \triangle M_{\varepsilon}) < \varepsilon$

Значит

$$\int_{a}^{b} |\mathbb{I}_{E_{k}}(x) - \mathbb{I}_{M_{\varepsilon}}(x)| d\mu(x) = \int_{a}^{b} \mathbb{I}_{E \triangle M_{\varepsilon}}(x) d\mu(x) = \mu(E \triangle M_{\varepsilon}) < \varepsilon$$

Нам осталось научиться приблизить индикатор интервала непрерывными функциями (так как элементарное множество представимо объединением интервалов), а это сделать очень просто, используя непрерывную функцию $\varphi(x)$, которая выглядит вот так: Тогда

Рис. 1: Один из способов ввода функции φ

$$\int_{a}^{b} |\mathbb{I}_{(c,d)}(x) - \varphi(x)| d\mu(x) = \frac{2}{m} < \varepsilon$$

Возвращаемся к общему случаю: пусть $f \in L_1(\mathbb{R})$.

$$\exists N \in \mathbb{N} \int_{\mathbb{R}\setminus[-N,N]} |f(x)| d\mu(x) < \frac{\varepsilon}{3}$$

По доказанному выше:

$$f|_{[-N,N]}: \forall \varepsilon > 0 \,\exists g \in C[-N,N] \, ||f|_{[-N,N]} - g||_{L_1[-N,N]} < \frac{\varepsilon}{3}$$

Далее мы можем продлить g на всю прямую линейным образом (аналогично введению функции φ из рассуждений выше), так, чтобы

$$\int_{\mathbb{R}\backslash [-N,\,N]} |g(x)| d\mu(x) < \frac{\varepsilon}{3}$$

Тогда

$$\int_{\mathbb{R}} |f(x) - g(x)| d\mu(x) \leqslant \int_{-N}^{N} |f(x) - g(x)| d\mu(x) + \int_{\mathbb{R}\setminus [-N, N]} (|f(x)| + |g(x)|) d\mu(x) < \varepsilon$$

Лемма 1.2. Каждая суммируемая на \mathbb{R} функция f(x) непрерывна в среднем относительно сдвига, то есть

$$\lim_{t \to 0} \int_{\mathbb{R}} |f(x+t) - f(x)| d\mu(x) = 0$$

Доказательство. Докажем, что для $f \in L_1[a,b]$:

$$\lim_{\delta \to +0} \sup_{0 \le h \le \delta} \int_a^{b-h} |f(x+h) - f(x)| d\mu(x) = 0$$

По предыдущей лемме:

$$\forall \varepsilon > 0 \,\exists g \in C[a,b] : \int_a^b |f(x) - g(x)| d\mu(x) < \frac{\varepsilon}{3}$$

g – непрерывная на $[a,b] \Rightarrow$ по теореме Кантора:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in [a, b], |x - y| < \delta : |g(x) - g(y)| < \frac{\varepsilon}{3(b - a)}$$

Тогда $\forall h \ 0 \leqslant h \leqslant \delta$:

$$\int_{a}^{b-h} |f(x+h) - f(x)| d\mu(x) \leqslant \int_{a}^{b-h} |f(x+h) - g(x+h)| d\mu(x) + \int_{a}^{b-h} |f(x) - g(x)| d\mu(x) + \int_{a}^{b-h} |g(x+h) - g(x)| d\mu(x) < \varepsilon$$

Так как f суммируема на \mathbb{R} , то $\exists N \in \mathbb{N}$:

$$\int_{\mathbb{R}\setminus[-N,\,N]} |f(x)| d\mu(x) < \frac{\varepsilon}{3}$$

Тогда выберем [a,b]:=[-N-1,N+1] и введём $g:=f\mathbb{I}_{[-N,N]}\in L_1[a,b]$. Применим к этой функции доказанное выше равенство:

$$\exists \delta \in (0,1) \, \forall h, 0 \leqslant h \leqslant \delta : \int_{a}^{b-h} |g(x+h) - g(x)| d\mu(x) < \frac{\varepsilon}{3}$$

Теперь возьмём $\forall t, |t| < \delta$:

$$\int_{\mathbb{R}} |f(x+t) - f(x)| d\mu(x) = \int_{\{x, x+t\} \subseteq [a, b]} |f(x+t) - f(x)| d\mu(x) + \int_{\{x, x+y\} \not\subseteq [a, b]} |f(x+t) - f(x)| d\mu(x) < \varepsilon$$

Теорема 1.1. Римана об осцилляции.

Если $f \in L_1(I)$, где I – конечный или бесконечный промежуток, то

$$\lim_{\lambda \to \infty} \int_I f(x) \cos(\lambda x) d\mu(x) = \lim_{\lambda \to \infty} \int_I f(x) \sin(\lambda x) d\mu(x) = 0$$

Доказательство.

$$\int_{I} f(x) \cos(\lambda x) d\mu(x) \stackrel{x=t+\frac{\pi}{\lambda}}{=} - \int_{I-\frac{\pi}{\lambda}} f\left(t+\frac{\pi}{\lambda}\right) \cos(\lambda t) d\mu(t) = -\frac{1}{2} \int_{I} \left(f\left(t+\frac{\pi}{\lambda}\right) - f(t)\right) \cos(\lambda t) d\mu(t) - \frac{1}{2} \int_{(I-\frac{\pi}{\lambda}) \triangle I} f\left(t+\frac{\pi}{\lambda}\right) \cos(\lambda t) d\mu(t)$$

Заметим, что

$$\left| \int_{(I-\frac{\pi}{\lambda})\setminus I} f\left(t + \frac{\pi}{\lambda}\right) \cos(\lambda t) d\mu(t) \right| \leqslant \int_{(I-\frac{\pi}{\lambda})\triangle I} \left| f\left(t + \frac{\pi}{\lambda}\right) \right| d\mu(t) =$$

$$= \int_{I\triangle(I+\frac{\pi}{\lambda})} |f(x)| d\mu(t) \xrightarrow{\lambda \to \infty} 0$$

Последнее заключение следует из того, что $\mu\left(I\triangle(I+\frac{\pi}{\lambda})\right)\overset{\lambda\to\infty}{\to}0$ Также очевидно, что

$$\left| \int_I \left(f \left(t + \frac{\pi}{\lambda} \right) - f(t) \right) \cos(\lambda t) d\mu(t) \right| \leqslant \int_I \left| f \left(t + \frac{\pi}{\lambda} \right) - f(t) \right| d\mu(t) \overset{\text{по пред. Лемме}}{\longrightarrow} 0$$

2 Представление частичной суммы ряда Фурье интегралом с ядром Дирихле. Принцип локализации.

Определение 2.1. $f \in L_{2\pi} \Leftrightarrow f \in L_1[-\pi,\pi]$ и 2π периодическая.

Определение 2.2. Ядром Дирихле $D_n(u)$ называется выражение

$$D_n(u) = \frac{1}{2} + \sum_{k=1}^n \cos(ku) = \frac{\sin(n + \frac{1}{2})u}{2\sin(\frac{u}{2})}$$

Доказательство.

$$D_n(u) = \frac{1}{2} + \sum_{k=1}^n \cos(ku) = \frac{1}{2} + \frac{1}{2} \sum_{k=1}^n (e^{iku} + e^{-iku}) = \frac{1}{2} \sum_{k=-n}^n e^{iku} = \frac{1}{2} e^{-inu} \frac{e^{i(2n+1)u} - 1}{e^{iu} - 1} = \frac{1}{2} e^{-inu} \frac{e^{i(2n+1)\frac{u}{2}} - e^{-i(2n+1)\frac{u}{2}}}{e^{i\frac{u}{2}} - e^{-i\frac{u}{2}}} \cdot \frac{e^{i(2n+1)\frac{u}{2}}}{e^{i\frac{u}{2}}} = \frac{1}{2} \frac{\sin((n+\frac{1}{2})u)}{\sin(\frac{u}{2})}$$

Лемма 2.1. О представлении частичной суммы.

Если $f \in L_{2\pi}$, то n-я частичная сумма тригонометрического ряда Фурье

$$S_n(f, x) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx)$$

может быть представлена следующим образом:

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) d\mu(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+u) D_n(u) d\mu(u)$$

Доказательство. Подставим в S_n формулы для a_k, b_k :

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} + \sum_{k=1}^{n} (\cos(kx)\cos(kt) + \sin(kx)\sin(kt)) \right) d\mu(t) =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) d\mu(t)$$

Первая формула доказана, вторая доказывается очевидно заменой t=x+u, а также используя тот факт, что интеграл по любому отрезку длины T, T-периодичной функции одинаков.

Лемма 2.2. Пусть $f \in L_{2\pi}$, g – измеримая, 2π -периодическая, ограниченная функция. Тогда коэффициенты Фурье функции $\chi(t) = f(x+t)g(t)$ стремятся к нулю при $n \to +\infty$ равномерно по x.

Доказательство. g – ограниченная $\Rightarrow \exists M : \forall u |g(u)| \leqslant M$.

f – измеримая \Rightarrow по (1.1) мы можем её представить, как $f=f_1+f_2$, причём $f_1\in C[-\pi,\pi]$, а $\int_{-\pi}^{\pi}|f_2(t)|d\mu(t)<\frac{\varepsilon}{4M}$.

 f_1 – непрерывная на компакте $[-\pi,\pi] \Rightarrow \exists B \ \forall u: |f_1(u)| \leqslant B.$

Введём функцию, которая называется интегральный модуль непрерывности функции F:

$$\omega_1(\delta, F) := \sup_{0 \le h \le \delta} \int_{-\pi}^{\pi} |F(t+h) - F(t)| d\mu(t)$$

Рассмотрим a_n для функции χ :

$$a_n(\chi) = \frac{1}{\pi} \int_{-\pi}^{\pi} \chi(t) \cos(nt) d\mu(t) = \stackrel{t=u+\frac{\pi}{n}}{=} \frac{-1}{\pi} \int_{-\pi}^{\pi} \chi\left(u + \frac{\pi}{n}\right) \cos(nu) d\mu(u) =$$

$$= \frac{-1}{2\pi} \int_{-\pi}^{\pi} \left[\chi\left(t + \frac{\pi}{n}\right) - \chi(t)\right] \cos(nt) d\mu(t) \Rightarrow$$

$$|a_n(\chi)| \leqslant \frac{1}{2\pi} \omega_1\left(\frac{\pi}{n}, \chi\right)$$

Аналогично получим неравенство для $b_n(\chi)$:

$$|b_n(\chi)| \leqslant \frac{1}{2\pi}\omega_1\left(\frac{\pi}{n},\chi\right)$$

То есть мы свели доказательство к доказательству факта, что $\lim_{n\to+\infty} \omega_1(\frac{\pi}{n},\chi) = 0$ равномерно по x:

$$\int_{-\pi}^{\pi} |\chi(t+h) - \chi(t)| d\mu(t) = \int_{-\pi}^{\pi} |f(x+t+h)g(t+h) - f(x+t)g(t)| d\mu(t) \leqslant$$

$$\leqslant \int_{-\pi}^{\pi} |f(x+t+h) - f(x+t)| \cdot |g(t+h)| d\mu(t) + \int_{-\pi}^{\pi} |f(x+t)| \cdot |g(t+h) - g(t)| d\mu(t) \leqslant$$

$$\leqslant M \int_{-\pi}^{\pi} |f(u+h) - f(u)| d\mu(u) + \int_{-\pi}^{\pi} |f_1(x+t)| \cdot |g(t+h) - g(t)| d\mu(t) + \frac{\varepsilon}{2} \leqslant$$

$$\leqslant M \omega_1(\frac{\pi}{n}, f) + B \omega_1(\frac{\pi}{n}, g) + \frac{\varepsilon}{2}$$

Но по (1.2) мы знаем, что модуль непрерывности стремится к нулю при $\delta \to 0$. Что и требовалось доказать.

Теорема 2.1. Принцип локализации.

Если $f \in L_{2\pi}$ и тождественно равна нулю в некотором интервале $(a,b) \subset [-\pi,\pi]$, то её тригонометрический ряд Фурье сходится к нулю равномерно на любом отрезке $[a',b'] \subset (a,b)$.

$$\exists \eta > 0 \ \forall x \in [a', b'] \ \forall t, 0 \leqslant |t| < \eta : \ x + t \in (a, b)$$

Построим функцию $\lambda(t)$:

$$\lambda(t) = \begin{cases} 0, t \in (-\eta, \eta) \\ 1, t \in [-\pi, \pi] \setminus (-\eta, \eta) \end{cases}$$

Кроме того, $\lambda - 2\pi$ -периодическая.

Тогда, используя лемму о представлении частичной суммы, получим:

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) D_n(t) d\mu(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \lambda(t) D_n(t) d\mu(t)$$

Данное соотношение верно, так как когда $t \notin (-\eta, \eta)$, то $\lambda(\eta) = 1$, ничего не меняем. Если же $|t| < \eta$, то $x + t \in (a, b)$, где f = 0, поэтому получили, что подыинтегральные функции совпадают везде на $[-\pi, \pi]$.

Продолжим раскрытия данной формулы, используя тригонометрические соотношения для ядра Дирихле:

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)\lambda(t) \cot(\frac{t}{2}) \sin(nt) d\mu(t) + \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t)\lambda(t) \cos(nt) d\mu(t)$$

Взяв в качестве g из предыдущей леммы для первого слагаемого $\lambda(t) \operatorname{ctg}(\frac{t}{2})$ и $\lambda(t)$ для второго, то получим требуемое по этой же лемме.

3 Достаточные условия сходимости ряда Фурье в точке

Теорема 3.1. Признак Дини.

Если $f \in L_{2\pi}$ и $\varphi_{x_0} \in L_1(0,\delta), \delta > 0$, где

$$\varphi_{x_0}(t) := \frac{f(x_0 + t) + f(x_0 - t) - 2S(x_0)}{t}$$

то тригонометрический ряд Фурье функции f(x) сходится к $S(x_0)$.

Доказательство. Рассмотрим разность $S_n(f,x_0) - S(x_0)$, пользуясь леммой о представлении, можем записать её как

$$S_n(f, x_0) - S(x_0) = \frac{1}{\pi} \int_0^{\pi} (f(x+u) + f(x-u) - 2S(x_0)) D_n(u) d\mu(u)$$

В данном представлении мы воспользовались сразу несколькими фактами:

- ullet Подынтегральная функция чётная относительно u
- Интеграл по $[-\pi,\pi]$ от ядра Дирихле равен π
- ullet Если заменить в представлении частичной суммы t на -t, то ничего не изменится

Продолжим цепочку преобразований, раскрыв $\sin((n+\frac{1}{2})t) = \sin(nt)\cos(\frac{t}{2}) + \cos(nt)\sin(\frac{t}{2})$ в формуле ядра Дирихле:

$$S_{n}(f,x_{0}) - S(x_{0}) = \frac{1}{\pi} \int_{0}^{\delta} \frac{f(x+t) + f(x-t) - 2S(x_{0})}{t} \sin(nt) d\mu(t) + \frac{1}{\pi} \int_{0}^{\pi} (f(x+t) + f(x-t) - 2S(x_{0})) \frac{\cos(nt)}{2} d\mu(t) + \frac{1}{\pi} \int_{\delta}^{\pi} (f(x+t) + f(x-t) - 2S(x_{0})) \frac{\sin(nt) \cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} d\mu(t) + \frac{1}{\pi} \int_{0}^{\delta} (f(x+t) + f(x-t) - 2S(x_{0})) \sin(nt) \left(\frac{\cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} - \frac{1}{t}\right) d\mu(t)$$

По условию, φ_{x_0} суммируемая \Rightarrow по теореме Римана об осцилляции первое слагаемое стремится к нулю.

 $(f(x+t)+f(x-t)-2S(x_0))$ также суммируемая \Rightarrow второе слагаемое тоже стремится к нулю.

В третьем слагаемом $(f(x+t)+f(x-t)-2S(x_0))\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}\in L_1[\delta,\pi]$ и по той же причине стремится к нулю.

Для четвёртого слагаемого рассмотрим разность:

$$\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t} = \frac{1 - \frac{t^2}{8} + o(t^3)}{2(\frac{t}{2} - \frac{t^3}{48} + o(t^4))} - \frac{1}{t} = \frac{t - \frac{t^3}{8} - t + \frac{t^3}{24} + o(t^4)}{t^2 + o(t^3)} \stackrel{t \to \infty}{\to} 0$$

Значит этот множитель имеет устранимый разрыв в нуле, а значит

$$(f(x+t) + f(x-t) - 2S(x_0)) \left(\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t}\right) \in L_1[0, \delta]$$

и опять работает теорема об осцилляции.

Утверждение 3.1. Анализ доказательства признака Дини показывает, что необходимым и достаточным условием сходимости тригонометрического ряда Фурье функции $f \in L_{2\pi} \ \kappa \ S(x_0)$ в точке x_0 является равенство

$$\lim_{n \to +\infty} \int_0^{\delta} \varphi_{x_0}(t) \sin(nt) d\mu(t) = 0$$

Определение 3.1. Будем говорить, что функция f удовлетворяет условию Гёльдера порядка $\alpha \in (0,1]$ в точке x_0 , если \exists конечные односторонние пределы $f(x_0 \pm 0)$ и константы $C, \delta > 0$ такие, что

$$\forall t, 0 < t < \delta, |f(x_0 + t) - f(x_0 + 0)| \le Ct^{\alpha}, |f(x_0 - t) - f(x_0 - 0)| \le Ct^{\alpha}$$

Определение 3.2. Обобщённой односторонней производной функции f в точке x_0 называется

$$f'_{+}(x_0) = \lim_{t \to +0} \frac{f(x_0 + t) - f(x_0 + 0)}{t}, \quad f'_{-}(x_0) = \lim_{t \to +0} \frac{f(x_0 - t) - f(x_0 - 0)}{-t}$$

Теорема 3.2. Признак Липшица.

Если $f \in L_{2\pi}$ удовлетворяет условию Гёльдера порядка α в точке x_0 , то тригонометрический ряд Фурье функции f(x) сходится в точке x_0 к $\frac{f(x_0-0)+f(x_0+0)}{2}$

Доказательство. По условию теоремы

$$S(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

Значит функций $arphi_{x_0}$ из признака Дини примет вид

$$\varphi_{x_0}(t) = \frac{(f(x_0+t) - f(x_0+0)) + (f(x_0-t) - f(x_0-0))}{t}$$

 T_0 , что φ измерима – очевидно. Осталось доказать ограниченность интеграла

$$\left| \int_{0}^{\delta} \varphi_{x_{0}}(t) d\mu(t) \right| \leqslant \int_{0}^{\delta} \frac{|f(x_{0}+t) - f(x_{0}+0)|}{t} d\mu(t) + \int_{0}^{\delta} \frac{|f(x_{0}-t) - f(x_{0}-0)|}{t} d\mu(t) \leqslant 2C \int_{0}^{\delta} t^{\alpha-1} d\mu(t) = 2C \int_{0}^{\delta} t^{\alpha-1} dt = 2C \frac{\delta^{\alpha}}{\alpha}$$

Что и требовалось доказать.

4 Дифференцирование и интегрирование рядов Фурье. Порядок убывания коэффициентов Фурье.

Теорема 4.1. О почленном дифференцировании рядов Фурье.

 $Ecnu\ F-2\pi$ -периодическая абсолютно непрерывная на периоде функция, то тригонометрический ряд Фурье её производной совпадает с продифференцированным почленно тригонометрическим рядом Фурье F.

Доказательство. $f(x) := F'(x) \in L_1$. Значит f(x) раскладывается в ряд Фурье:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) d\mu(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} F'(x) \cos(nx) d\mu(x) =$$
$$= \frac{1}{\pi} F(x) \cos(nx) \Big|_{-\pi}^{\pi} + \frac{n}{\pi} \int_{-\pi}^{\pi} F(x) \sin(nx) d\mu(x) = nB_n$$

Аналогично докажем, что $b_n = -nA_n$, а также заметим, что $a_0 = 0$.

Нетрудно заметить, что мы доказали утверждение теоремы.

Следствие. Если $f, \dots, f^{(k-1)} - 2\pi$ -периодические, и $f^{(k-1)}$ – абсолютно непрерывная на периоде, то коэффициенты ряда Фурье функции f(x) удовлетворяют:

$$a_n = o\left(\frac{1}{n^k}\right)$$
 $b_n = o\left(\frac{1}{n^k}\right); n \to +\infty$

Доказательство. Пусть k=1: f – абсолютно непрерывная, значит $a_n(f)=-\frac{b_n(f')}{n}, b_n(f)=$ $\frac{a_n(f')}{n}$. По теореме об осцилляции: $a_n(f'), b_n(f') = o(1) \Rightarrow a_n(f), b_n(f) = o\left(\frac{1}{n}\right)$.

Далее применяем по индукции много-много раз. Мы имеем право так делать, потому что если производная абсолютно непрерывная, то она ограничена. А из ограниченной производной следует абсолютная непрерывность самой функции.

Теорема 4.2. Оценки коэффициентов Фурье функции ограниченной вариации.

Eсли f – функция ограниченной вариации на периоде 2π , то её коэффициенты фурье удовлетворяют:

$$a_n = O\left(\frac{1}{n}\right)$$
 $b_n = O\left(\frac{1}{n}\right); n \to +\infty$

Доказательство. Рассмотрим a_n :

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{-1}{2\pi} \int_{-\pi}^{\pi} \left[f(x + \frac{\pi}{n}) - f(x) \right] \cos(nx) dx = \dots = \frac{-1}{2\pi} \int_{-\pi}^{\pi} \left[f\left(x + \frac{k\pi}{n}\right) - f\left(x + \frac{(k-1)\pi}{n}\right) \right] \cos(nx) dx, \quad \forall k = \overline{1, n}$$

Сложив все эти n равенств, получим:

$$|na_n| \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=1}^{n} \left| f\left(x + \frac{k\pi}{n}\right) - f\left(x + \frac{(k-1)\pi}{n}\right) \right| dx \leqslant V(f)$$

Теорема 4.3. Лебега об интегрировании рядов Фурье.

Если $f \in L^1_{2\pi}$, $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ – её тригонометрический ряд Фурье, $F(x) = \int_{x_0}^x f(t) d\mu(t)$ – неопределённый интеграл Лебега для f, то $F(x) = \frac{a_0}{2}x + C + \sum_{n=1}^{\infty} \frac{-b_n \cos(nx) + a_n \sin(nx)}{n}$, где ряд равномерно сходится на \mathbb{R} .

Доказательство. F(x) – абсолютно непрерывная, $F(\pi) - F(-\pi) = \int_{-\pi}^{\pi} f(t) d\mu(t) = \pi a_0$. $\Rightarrow F(x) - \frac{a_0}{2}x$ – тоже абсолютно непрерывная на периоде и 2π -периодическая.

Значит по (4.1) ряд Фурье $\left(F(x) - \frac{a_0}{2}x\right)'$ получается почленным дифференцированием ряда Фурье для $F(x) - \frac{a_0}{2}x$. Но с другой стороны $(F(x) - \frac{a_0}{2}x)' = f(x) - \frac{a_0}{2}$.

Равномерная сходимость проинтегрированного ряда очевидно следует из признака Жордана.

Теорема Жордана. 5

Возможно тут должна быть какая-то другая теорема Жордана, но пока здесь признак Жордана – на консультации уточню.

Теорема 5.1. Признак Жордана.

Если $f \in L_{2\pi}$ и является функцией ограниченной вариации на [a,b], то тригонометрический ряд Фурье f сходится κ $f(x_0)$ в каждой точке $x_0 \in [a,b]$ непрерывности f(x) и $\kappa \xrightarrow{f(x_0+0)+f(x_0-0)}$ в каждой точке разрыва $x_0 \in [a,b].$

Если, кроме того, $f \in C[a,b]$, то тригонометрический ряд Фурье функции f сходится к ней равномерно на любом отрезке $[a',b'] \subset (a,b)$.

Доказательство. Так как f ограниченной вариации, то она представима в виде $f = f_1 - f_2$, где f_1, f_2 – неубывающие. Значит нам достаточно доказать утверждение для неубывающих функций.

По (3.1) нам надо доказать лишь

$$\lim_{n \to +\infty} \int_0^{\delta} \varphi_{x_0}(t) \sin(nt) d\mu(t) = 0$$

Будем доказывать

$$\lim_{n \to +\infty} \int_0^{\delta} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) d\mu(t) = 0$$

а для -t аналогично.

$$\forall \varepsilon > 0 \ \exists \delta_1, 0 < \delta_1 < \delta : \ 0 \leqslant f(x_0 + \delta_1) - f(x_0 + 0) < \varepsilon$$

Перейдём к интегралу Римана, так как f монотонная и используем теорему о среднем для него:

$$\exists \delta_2, 0 < \delta_2 < \delta_1 \int_0^{\delta_1} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) dt = (f(x_0 + \delta_1) - f(x_0 + 0)) \int_{\delta_2}^{\delta_1} \frac{\sin(nt)}{t} dt$$

Но мы знаем, что $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ сходится, поэтому если обзначим за $G(v) := \int_0^v \frac{\sin t}{t} dt$, то G(v) будет ограничена, т.е. $\exists C: |G(v)| \leqslant C$.

Ho теперь рассмотрим $\forall A$:

$$\left| \int_0^A \frac{\sin(nt)}{t} dt \right| \stackrel{nt=u}{=} \left| \int_0^{nA} \frac{\sin(u)}{u} du \right| \leqslant C$$

Используя эту оценку получим, что

$$\left| \int_0^{\delta_1} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) dt \right| \leqslant 2\varepsilon C$$

Таким образом, разбив исходный интеграл от 0 до δ на сумму интегралов от 0 до δ_1 и от δ_1 до δ . Получим первую часть утверждения теоремы.

Перейдём к доказательству равномерной сходимости:

Вспомним, как мы расписывали разность $S_n(f,x_0)-S(x_0)$ на четыре слагаемых, только теперь мы знаем, что $S(x_0)=f(x_0)$. Применим к каждому из трёх последих слагаемых лемму (2.2) и сведём доказательство к тому, чтобы доказать равномерность предела из прошлого пункта доказательства.

Это сделать несложно: заметим, что если f непрерывна на [a',b'], то она равномерно непрерывна на нём, а значит мы сможем найти δ_1 из текущего доказательство независимо от x_0 . Также незавимо от x_0 мы ограничиваем интеграл $\frac{\sin(nx)}{x}$, поэтому второе утверждение этой теоремы доказано.

6 Равномерная сходимость сумм Фейера для непрерывной функции

Теорема 6.1. Коровкина.

Eсли последовательность линейных положительных операторов $L_n: C[a,b] \to C[a,b]$ такова, что $L_n(e_i) \stackrel{n \to +\infty}{\Longrightarrow} e_i$ на $[a,b], e_i(x) = x^i, i = 0,1,2,$ то

$$\forall f \in C[a,b]: L_n(f) \Longrightarrow f$$

нa [a, b].

Доказательство. $f \in C[a,b] \Rightarrow f$ ограничена:

$$\exists M: -M \leqslant f(x) \leqslant M, \forall x \in [a, b]$$

 $f \in C[a,b] \Rightarrow f$ равномерно непрерывна на [a,b]:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t, x \in [a, b], |t - x| < \delta : \ -\varepsilon < f(t) - f(x) < \varepsilon$$

Заметим, что $f_1(x) \leqslant f_2(x) \ \forall x \in [a,b] \Rightarrow L_n(f_1) \leqslant L_n(f_2) \ \forall x \in [a,b]$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t, x \in [a, b] : \ -\varepsilon - \frac{2M}{\delta^2} \psi(t) < f(t) - f(x) < \varepsilon + \frac{2M}{\delta^2} \psi(t)$$

где $\psi_x(t) = (t - x)^2$.

Откуда это следует? Если $|t-x|<\delta$, то мы только ослабляем условие равномерной непрерывности, значит неравенство сохраняется. Если же $|t-x|\geqslant\delta\Rightarrow\frac{\psi(t)}{\delta^2}=\frac{(t-x)^2}{\delta^2}\geqslant1\Rightarrow$ неравенство сохраняется благодаря ограниченности f.

Зафиксировав произвольный x, применяем оператор L_n относительно переменной t. Все неравенства сохраняются:

$$-\varepsilon L_n(e_0, x) - \frac{2M}{\delta^2} L_n(\psi_x(t), x) < L_n(f, x) - f(x) L_n(e_0, x) < \varepsilon L_n(e_0, x) + \frac{2M}{\delta^2} L_n(\psi_x(t), x)$$

Заметим, что

$$L_n(\psi_x, x) = L_n((t-x)^2, x) = L_n(t^2 - 2tx + x^2, x) = L_n(e_2, x) - 2xL_n(e_1, x) + x^2L_n(e_0, x) \Rightarrow e_2(x) - 2xe_1(x) + x^2e_0(x) = x^2 - 2x \cdot x + x^2 \cdot 1 = 0$$

Значит

$$\exists N_1 \, \forall n > N \, \forall x \in [a, b] : |L_n(\psi_x, x)| \leqslant \frac{\varepsilon \delta^2}{4M}$$

A из того, что $L_n(e_0) \rightrightarrows e_0$:

$$\exists N_2 \, \forall n > N_2 \, \forall x \in [a, b] : |L_n(e_0, x)| < \frac{3}{2}$$

Также не забываем, что:

$$|L_n(f,x) - f(x)L_n(e_0,x)| \leqslant \varepsilon L_n(e_0,x) + \frac{2M}{\delta^2} L_n(\psi_x,x)$$

Объединяя эти три условия, получим, что

$$\forall n > \max(N_1, N_2) : |L_n(f, x) - f(x)L_n(e_0, x)| \leq 2\varepsilon$$

Снова используем тот факт, что $L_n(e_0) \implies e_0$:

$$\exists N_3 \, \forall n > N_3 \, \forall x \in [a, b] : |L_n(e_0, x) - 1| < \frac{\varepsilon}{M}$$

Значит

$$|f(x)L_n(e_0,x)-f(x)| \leq |f(x)| \cdot |L_n(e_0,x)-1| \leq \varepsilon$$

Объединяя ВСЕ неравенства, получим:

$$\forall n > \max(N_1, N_2, N_3) \ \forall x \in [a, b] : |L_n(f, x) - f(x)| \leq 3\varepsilon$$

Теорема 6.2. Коровкина

Eсли последовательность линейных положительных операторов $L_n: C_{2\pi} \to C_{2\pi}$ такова, что $L_n(e_i) \stackrel{n \to +\infty}{\Longrightarrow} e_i$ на $\mathbb{R}, e_0(x) = 1, e_1(x) = \cos(x), e_2(x) = \sin(x),$ то

$$\forall f \in C_{2\pi} : L_n(f) \rightrightarrows f$$

 $\mu a \mathbb{R}$.

Доказательство. Аналогично немодифицированной теореме, только вместо функции ψ_x введём

$$\varphi_x(t) = \sin^2(\frac{t-x}{2}) = \frac{1-\cos(t-x)}{2} = \frac{1}{2} - \frac{1}{2}\cos(t)\cos(x) - \frac{1}{2}\sin(t)\sin(x) = \frac{1}{2}e_0(t) - \frac{1}{2}\cos(x)e_1(t) - \frac{1}{2}\sin(x)e_2(t)$$

Тогда

$$L_n(\varphi_x, x) = \frac{1}{2} L_n(e_0, x) - \frac{1}{2} \cos(x) L_n(e_1, x) - \frac{1}{2} \sin(x) L_n(e_2, x) \Longrightarrow \frac{1}{2} - \frac{1}{2} \cos^2(x) - \frac{1}{2} \sin^2(x) = 0$$

Теорема 6.3. Фейера.

Для любой непрерывной 2π -периодической функции последовательность средних арифеметических частичных сумм её тригонометрического ряда Фурье равномерно на \mathbb{R} сходится к ней.

Доказательство. Распишем среднее арифметическое частичных сумм:

$$\sigma_{n}(f,x) := \frac{S_{0}(f,x) + S_{1}(f,x) + \dots + S_{n}(f,x)}{n+1} = \frac{1}{(n+1)\pi} \int_{-\pi}^{\pi} f(x+t) \sum_{k=0}^{n} D_{k}(t)dt = \frac{1}{(n+1)\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin(\frac{t}{2})} \sum_{k=0}^{n} \sin((k+\frac{1}{2})t)dt = \frac{1}{(n+1)\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin^{2}(\frac{t}{2})} \sum_{k=0}^{n} \sin((k+\frac{1}{2})t)\sin(\frac{t}{2})dt = \frac{1}{(n+1)\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{4\sin^{2}(\frac{t}{2})} \sum_{k=0}^{n} (\cos(kt) - \cos((k+1)t))dt = \frac{1}{(n+1)\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{4\sin^{2}(\frac{t}{2})} (1 - \cos((n+1)t)) = \frac{1}{(n+1)2\pi} \int_{-\pi}^{\pi} f(x+t) \cdot \frac{\sin^{2}(\frac{(n+1)t}{2})}{\sin^{2}(\frac{t}{2})}dt$$

Получается, $\sigma_n: C_{2\pi} \to C_{2\pi}$ образует последовательность линейных положительных операторов. Это значит, что нам нужно проверить сходимость лишь на трёх функциях: $e_0:=1, e_1:=\sin(x), e_2:=\cos(x).$

$$\sigma_n(e_0) = e_0, \forall n \in \mathbb{N} \cup \{0\}$$
 $\sigma_n(e_1) = e_1 \cdot \frac{n}{n+1}, \sigma_n(e_2) = e_2 \cdot \frac{n}{n+1}, \forall n \in \mathbb{N}$

Тогда, по теореме Коровкина, получаем, что $\forall f \in C_{2\pi}: \sigma_n(f) \rightrightarrows f$

7 Теоремы Вейерштрасса о приближении непрерывных функций тригонометрическими и алгебраическими мно-гочленами

Теорема 7.1. Вейерштрасса о приближении алгебраическими многочленами.

Любая непрерывная на отрезке [a,b] функция f(x) может быть с любой степенью точности равномерно приближена алгебраическими многочленами, то есть

$$\forall f \in C[a, b] \ \forall \varepsilon > 0 \ \exists P_n \ \forall x \in [a, b] : \ |f(x) - P_n(x)| < \varepsilon$$

Доказательство. Рассмотрим отрезок [0,1].

Введём многочлены Берштейна:

$$B_n(f,x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}$$

Мы можем рассматривать их, как операторы $B_n: C[0,1] \to C[0,1]$. Очевидно, что они линейные и положительные, поэтому достаточно проверить сходимость трёх функций: $1, x, x^2$.

$$B_n(e_0, x) = \sum_{k=0}^n C_n^k x^k (1 - x)^{n-k} = (x + (1 - x))^n = 1 = e_0(x)$$

Рассмотрим $g(t):=(tx+(1-x))^n=\sum_{k=0}^n C_n^k t^k x^k (1-x)^{n-k}$. Тогда

$$g'(t) = nx(tx + (1-x))^{n-1} = \sum_{k=1}^{n} kC_n^k t^{k-1} x^k (1-x)^{n-k}$$

Используя g'(1) получим равенство:

$$nx = \sum_{k=0}^{n} kC_n^k x^k (1-x)^{n-k} \Rightarrow B_n(e_1, x) = \sum_{k=0}^{n} \frac{k}{n} C_n^k x^k (1-x)^{n-k} = x = e_1(x)$$

Взяв вторую производную от g, получим:

$$n(n-1)x^{2}(tx+(1-x))^{n-2} = \sum_{k=2}^{n} k(k-1)C_{n}^{k}t^{k-2}x^{k}(1-x)^{n-k}$$

Используя g''(1) получим равенство:

$$n(n-1)x^{2} = \sum_{k=0}^{n} (k^{2} - k)C_{n}^{k}x^{k}(1-x)^{n-k} = \sum_{k=0}^{n} k^{2}C_{n}^{k}x^{k}(1-x)^{n-k} - nx \Rightarrow$$

$$B_{n}(e_{2}, x) = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}}C_{n}^{k}x^{k}(1-x)^{n-k} = \frac{n-1}{n}x^{2} + \frac{x}{n} \stackrel{n \to +\infty}{\Rightarrow} e_{2}(x)$$

Получили, что для оператора B_n справедлива теорема Коровкина и утверждение доказано.

Для завершения доказательства перейдём к произвольному отрезку [a,b]: для $f\in C[a,b]$ введём $F(x)=f(x(b-a)+a)\in C[0,1]$. Тогда

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in [0,1] : \ |B_n(F,x) - F(x)| < \varepsilon$$

Осталось заметить, что если в многочлен Бернштейна подставить какую-то линейную функцию, то получится какой-то многочлен:

$$\Rightarrow |B(F, \frac{t-a}{b-a}) - f(t)| < \varepsilon$$

Следствие. Из данной теоремы и теормы Коровкина' следует теорема Вейшерштрасса о приближении непрерывной 2π -периодической функции тригонометрическими многочленами:

$$\forall f \in C_{2\pi} \, \forall \varepsilon > 0 \, \exists T_n := \frac{a_0}{2} + \sum_{k=1}^n \alpha_k \cos(kx) + \beta_k \sin(kx) : \, |f(x) - T_n(x)| < \varepsilon, \forall x \in \mathbb{R}$$