# Engineering Rank and Select Queries on Wavelet Trees

#### Roland Larsen Pedersen

Datalogi, Aarhus Universitet

Thesis defence

June 25, 2015

### Overview

- What is a Wavelet Tree?
  - Definitions
  - Constructing the Wavelet Tree
- Queries
  - Rank
  - Select
- Applications
  - Information Retrieval
  - Compression
    - Run-length encoding
    - Burrows-Wheeler Transform
    - Huffman Shaped Wavelet tree
- Experiments and Results
  - Popcount
  - Pre-compute binary rank values in blocks
  - Concatenated Bitmaps and/or page-aligned blocks
  - Cumulative Sum of precomputed rank values

### Wavelet Tree

What is a wavelet tree?

### Wavelet Tree: Definitions

- In its basic form, the wavelet tree is a balanced binary tree.
- It stores a sequence  $S[1, n] = c_1 c_2 c_3 \dots c_n$  of symbols  $c_i \in \Sigma$ , where  $\Sigma = [1 \dots \sigma]$  is the alphabet of S.
- The tree has height  $h = \lceil \log \sigma \rceil$ , and  $2\sigma 1$  nodes, with  $\sigma$  of those as leaf nodes and  $\sigma 1$  as internal nodes.

# Constructing the Wavelet Tree

- The wavelet tree is constructed recursively, starting at the root node and moving down the tree, with each node in the tree receiving a string constructed by its parent, except the root node that receives the full input string.
- Each node calculates the middle character of  $\Sigma$  and uses it to set the bits in the bitmap and split S in two substrings  $S_{left}$  and  $S_{right}$ .

### Wavelet Tree Example



$$S = \mathsf{adsfadaadsfaads}, \Sigma = \mathsf{adfs}$$

# Construction time and memory usage

- Construction time:  $O(n \cdot h) = O(n \log \sigma)$ 
  - The Wavelet Tree can theoretically be constructed in  $O(n \cdot h) = O(n \log \sigma)$  time as the sum of the lengths of the strings being processed at any single layer of the tree is the length of the input string to the tree.
- Memory usage:  $O(n \log \sigma + \sigma \cdot ws)$  bits
  - At each level in the tree at most n bits are stored in the bitmaps in total, making  $n \cdot h = n \cdot \log \sigma$  an upper bound to the total number of bits that a wavelet tree stores in its bitmaps.
  - In addition to this, each node takes some constant amount of machine words of space, and there are  $2\sigma-1$  nodes in the tree. ws is the size of our machine words. This makes the total memory consumption  $O(n\log\sigma+\sigma\cdot ws)$  bits.

### Wavelet Tree

# Queries

### Wavelet Tree: Queries

- The wavelet tree supports three queries:
  - Access(p): Return the character c at position p in sequence S.
    - Running time:  $O(n \log \sigma)$ .
    - We have not implemented Access because it resembles Rank.
  - Rank(c, p): Return the number of occurrences of character c in S up to position p.
    - Running time:  $O(n \log \sigma)$ .
  - Select(c, o): Return the position of the oth occurrence of character c in S.
    - Running time:  $O(n \log \sigma)$

### Rank on a Wavelet Tree



### Select on a Wavelet Tree



### Wavelet Tree: Applications

# **Applications**

# Information Retrieval: Applications

- Information Retrieval
  - Positional inverted index
  - Document retrieval
  - Range Quantile Query: Return the kth smallest number within a subsequence of a given sequence of elements.
  - FM-count: Return number of occurrences of a pattern p in S.

### Compression: Applications

#### Compression

- Zero-order entropy compression  $(H_0)$  using a RLE Wavelet Tree or a Huffman Shaped Wavelet Tree.
- Higher-order entropy compression  $(H_k)$  using Burrows-Wheeler transformation and a RLE wavelet tree.
- $H_k <= H_0 <= \log \sigma$ .

# Compression: Run-length encoding

- Run-length encoding counts the number of consecutive occurrences of a symbol and substitutes the consecutive occurrences with the symbol followed by its number of occurrences.
- Example: *RLE*(aaaaabbbaacccccaaaaa) = a5,b3,a2,c5,a5.
- Binary example: RLE(0000000001111100000) = 10, 5, 5
  - We can avoid specifying the symbol by assuming that 0 is always the first symbol.
  - If the binary number begins with a 1 we just add a 0 to the beginning of the result.
- Query by reversing RLE. It takes linear time O(n) to reverse. Rank and select query time becomes  $O(2n\log\sigma) = O(n\log\sigma)$
- Achieves space complexity within H<sub>0</sub>

# RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$



(a) Wavelet Tree on string bananahat with alphabet  $\Sigma = abhnt$ 

(b) RLE Wavelet Tree on string bananahat with alphabet  $\Sigma = abhnt$ 

### Compression: Burrows-Wheeler transform

- BWT permutes the order of the characters. If the original string had several substrings that occurred often, then the transformed string will have several places where a single character is repeated multiple times in a row.
- As a result it groups symbols more which improves the effect of Run-length encoding
- BWT is reversible
- Combined with RLE Wavelet Tree it achieves  $H_k$  compression.

# BWT example

S = bananahat.

bananahat#<sup>†</sup> ananahat#b nanahat#ba anahat#ban nahat#bana ahat#banan hat#banana at#bananah t#bananaha #bananahat  $\lceil \# \mathit{bananaha} \mathbf{t} 
ceil$ ahat#banan anahat#ban ananahat#**b** at#bananah bananahat# hat#banana nahat#bana nanahat#ba t#bananah**a** 

BWT(S) = tnnbhaaaa.

# Burrows-Wheeler reverse transform example

$$S = dca$$

$$M = \begin{bmatrix} dca\#\\ ca\#d\\ a\#dc\\ \#dca \end{bmatrix} \Rightarrow M' = \begin{bmatrix} \#dc\mathbf{a}\\ a\#d\mathbf{c}\\ ca\#\mathbf{d}\\ dca\# \end{bmatrix}$$

BWT(S) = acd

Reverse BWT:

| Add 1 | Sort 1 | Add 2 | Sort 2 | Add 3 | Sort 3 | Add 4 | Sort 4 |
|-------|--------|-------|--------|-------|--------|-------|--------|
| а     | #      | a#    | #d     | a#d   | #dc    | a#dc  | #dca   |
| С     | a      | ca    | a#     | ca#   | a#d    | ca#d  | a#dc   |
| d     | С      | dc    | са     | dca   | ca#    | dca#  | ca#d   |
| #     | d      | #d    | dc     | #dc   | dca    | #dca  | dca#   |

<sup>\*# =</sup> end of line character

# RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$



(a) RLE Wavelet Tree on string bananahat with alphabet  $\Sigma = abhnt$ 

(b) BWT RLE Wavelet Tree on string tnnbhaaaa with alphabet  $\Sigma = abhnt$ 

# Huffman shaped wavelet tree

- Use Huffman codes of symbols to shape the tree
- A Huffman code is a binary value assigned to each symbol. The symbol with the highest frequency gets the lowest value.
- Shaping the tree based on Huffman codes places the most frequent symbols at the top of the tree and least frequent symbols at the bottom of the tree.
- Huffman shaping only makes sense on non-uniformly distributed data like a natural language text.

### Huffman Shaped Wavelet Tree: Example



(a) Balanced Wavelet tree: 39 bits



(b) Huffman-shaped wavelet tree: 22 bits

# Huffman Shaped WT: Space complexity

- Balanced version:  $n \log \sigma + o(n \log \sigma) + O(\sigma \log n)$  bits
- Huffman-shaped:  $n(H_0(S)+1)+o(n(H_0(S)+1))+O(\sigma \log n)$  bits. [Efficient Compressed Wavelet Trees over Large Alphabets by Navarro et al.]
- Huffman-shaped + Compressed Bitmap (RLE):  $nH_0(S) + o(n(H_0(S) + 1)) + O(\sigma \log n)$  bits.

### **Experiments and Results**

# Experiments and Results

### Focus of experiments

- Focus on optimizing and observing the effect of hardware penalties.
  - Cache Misses.
  - Branch Mispredictions.
  - Translation Lookaside Buffer (TLB) Misses.

### Experiments

- 1. Calculate binary rank and select using popcount
- 2. Pre-compute binary rank values in blocks
- 3. Block size dependence on input n
- 4. Pre-compute cumulative sums of rank values
- 5. Branchless select query
- 6. Queries on skewed cumulative sum wavelet tree

### Calculate binary rank and select using popcount



Figure: Rank and select queries using simple binary rank and select vs. rank and select queries using binary rank and select using the popcount instruction. Y-Axis is index 100 of the simple queries, that is, every value is percent of the value for the simple query.

### Pre-compute binary rank values in blocks

 Pre-compute binary rank values in blocks to reduce amount of popcount calls.



Figure : Comparison of wall time of rank and select queries between SimpleNaive not using precomputed values and UnalignedNaive using precomputed values.

# Concatenated Bitmaps and/or page-aligned blocks

### Concatenated bitmaps

- Save all bitmaps as one large bitmap to reduce memory usage by removing pointers to individual bitmaps.
- Access using an offset (ulong) and a size for the bitmap (uint).
- This uses 64 + 32 = 96 bits per node vs. individual bitmaps with pointers taking up  $3 \times 64 = 192$  bits per node.
- Individual bitmaps for each node are word-aligned, and the bits between the last used bit and the end of the last used word are wasted.
- Page-aligned blocks
  - To reduce TLB misses
  - If the blocks are not aligned with the memory pages a block can be partly in one page and partly in another.
  - Page-aligning makes sure that blocks does not span page boarders.

# The various precomputed versions

| Name                  | Concatenated Bitmaps | Page-aligned Blocks |
|-----------------------|----------------------|---------------------|
| Preallocated          | yes                  | yes                 |
| UnalignedPreallocated | yes                  | no                  |
| Naive                 | no                   | yes                 |
| UnalignedNaive        | no                   | no                  |

### Rank and select TLB misses





(a) Rank: TLB Misses

- (b) Select: TLB Misses
- Naive does reduce TLB misses because of page alignment.
- Concatenated bitmaps reduces TLB misses, but page-aligning does not have much effect.

### Running time: Pre-compute binary rank values in blocks





(a) Rank: Running Time

(b) Select: Running Time

Best Block size:  $\frac{1}{2}$  page size  $= \frac{1}{2} * 4096$  bytes = 2048 bytes.

### Memory usage: Pre-compute binary rank values in blocks



# Block size dependence on input size n

- When using lookups of precomputed values It costs  $O(\frac{n}{b} + b)$  to calculate the binary rank.
- It costs  $O(\frac{n}{b})$  to scan the blocks, and O(b) to calculate the rank within a single block using popcount. The optimal block size should be one that minimizes this.
- The derivative of  $\frac{n}{b} + b$  is  $1 \frac{n}{b^2}$  and its root is  $n = b^2$  making the optimal block size  $b = \sqrt{n}$ .
- This is only the optimal block size for a single bitmap, and a wavelet tree has many bitmaps of varying sizes n that are lower near the leaves.

# Experiment: Block size dependence on input size n for Rank







Roland Larsen Pedersen (Datalogi) Wavelet Tree June 25, 2015

### Cumulative sum



# The End