材料科學与工程學院

第19次课(续)

中茶回 主讲:

材料科学与工程学院

金属权

高 Rain Classroom

Topic1 高温服役条件下材料的力学行为

1、"高温"的界定 对于不同材料, "高温"定义不同,对于一种材料是高温, 对另一种材料是高温, 不上高温。

$$\frac{I(K)}{T_{m}(K)} > 0.5$$

-材料的力学性能发生变化 2、时间效应

材料的组织结构发生变化

因此,与室温条件相比,材料在高温下的力学行得更为复杂,涉及到外部因素作用影响及材料内织结构变化,必须要考虑温度与时间两个因素的 为变得更为复杂, 部组织结构变化, 影响。

3、蠕变现象和规律

一材料在恒定载荷持续作用下缓慢产生塑性变形的现象 ·由蠕变变形导致的材料断裂

蠕变过程的三个阶段:

(1) 减速蠕变阶段 $\varepsilon = At^{\frac{1}{3}}$

(3) 加速蠕变阶段

$$\varepsilon = B + C\exp(\gamma t)$$

- 5/20页 -

蠕变曲线示意图

材料的蠕变行为与应力水平、使用温度及晶体学取向密切

相关。

3 量变函

图6-5 应力和温度对蠕变曲线的影响

9

温度变化 (T₄>T₃>T₂>T₁) (b) 恒定应力下, 恒定温度下,应力变化($\sigma_4 > \sigma_3 > \sigma_2 > \sigma_1$); (**a**)

图6-3 单晶镍基高温合金PWA1480的典型蠕变曲线

图6-6 钴基高温合金GH605棒材在不同应力下的蠕变曲线(815°C)

高 Rain Classroom

高温力学性能指标

(1)蠕变试验

形量随时间的变化规律。 应力恒定条件下蠕变变 一测定试样在温度和

蠕变持久试验机

蠕变极限

高温长期载荷作用下材料的塑变抗力指标

在给定温度下, 使试 样产生规定稳态蠕变 速率的应力值

$$\sigma_{0.0001\%/h}^{700}$$

内, 使试样产生规定蠕 在给定温度和规定时间 变伸长率的应力值

$$\sigma_{\mathcal{S}/\mathrm{t}}^{\mathrm{T}}$$
 $\sigma_{1\%/1}^{700}$

 $\sigma_{1\%/10000h}^{700}$

(2) 持久试验

采用高温拉伸试验机测定试样在规定温度和应力作用下 的断裂时间。

•持久强度

-材料在高温长期载荷作用下断裂抗力指标

在给定温度下,蠕变断裂寿命达到预定值所允许承受的最大应力

 $\sigma_{1000}^{700} = 300 \mathrm{MPa}$

-7000°C下持久寿命为1000小时的 最大应力许用应力为300MPa

而课堂 Rain Classroom

大量试验结果表明, 持久试验时外加应力σ和断裂时间t之 间的关系为

$$t = K\sigma^{-n}$$

$$\lg t = \lg K - n \lg \sigma$$

式中, K和n取决于试验温度及材料组织状态

图6-23 铸造镍基高温合金K438的持久强度一寿命曲线

• 持久塑性

-通过高温持久试验,测量试样断后伸长率及断面收缩率

• 持久寿命(t)

-在给定温度和应力下试样断裂的时间

试验表明, 材料的持 人寿命与稳态蠕变速率之 间存在一定的关系

测定试样的持久寿命需要很长时间,但是,利用上述关系, 在试验进入稳态蠕变阶段后, 即可根据稳态蠕变速率来预测持 久寿命。

5、应力松弛与松弛稳定性

依靠弹性变形获得紧固力, 随着时间延 弹性变形逐渐转变为塑性变 在总变形量不变的条件下, 从而使工作应力逐渐降低。 在高温下工作,

•应力松弛 ——在规定温度条件下,金属材料中的应力随时间增加而减小

-金属材料抵抗应力松弛的性能 -在一定温度T和初始应力σ₀下, 经规定时间t后的剩余应 松弛稳定性及衡量指标 力osh的大小。

图6-28 热处理工艺对20Cr₁Mo₁V₁钢应力松弛曲线的影响 I—1000°C正火, 700°C回火 II—1000°C油淬, 700°C回火

蠕变变形和断裂的微观机理 6

(1) 蠕变变形机理

位错蠕变机制

图6-7 位错运动阻力作用机制示意图

蠕变过程与能垒大小、温度高低及障碍密度等密切相关 并随时间而发展变化。

3

在蠕变过程中, 材料内部两种过程相互竞争

——形变引起的加工硬化,使 材料的变形抗力越来越大 ——热激活促进变形晶体产生回复、再结晶及其它扩散过程,消除应变强化的效果,削弱材料的变形抗力料的变形抗力

两个过程相互消长,形成了蠕变行为的不同阶段:

I-减速蠕变阶段 II-恒速蠕变阶段 III-加速蠕变阶段

热激活对位错运动的影响方式

◆ 位错运动方向

0000

超过固定位错与弥散质点 在新滑移面上运动 (a)

(b) 与邻近滑移面上异号位错相消

(c) 形成小角度晶界

(d) 消失于大角度晶界

解脱 位错的运动、受阻、 蠕变过程中强化与软化同时发生, 的行为就是形变、强化又软化的过程。

帮助 与外加应力协同作用, 温度的作用是提供热激活能量, 位错越过障碍, 使之产生持续变形。

研究表明, 在温度较低, 应力水平较高的情况下, 位错滑移 机制起主导作用。

B. 扩散蠕变机制

发生在蠕变温度相当高、蠕变速率又比较低的场合

是高温外力作用下大量原子和空位定向移动的结果

在不受外力的情况下,多晶体材料中原子和空位的移动 无方向性, 宏观上不显示塑性变形。

在高温+应力作用下,多晶体内产生不均匀应力场

——承受拉应力部(如A、B晶界)位

空位浓度增加

——承受压应力部位 (如C、D晶界) 空位浓度降低

——由于不同区域的空位浓度不同, 空位,从拉应力区向压应力区扩散 (实线),原子则反向扩散(虚线),导致材料沿应力方向伸长。

➤ Nabarro-Herring机制——晶内途径

其中, D_v为晶内自扩散系数, α为应力, d为晶粒尺寸 k为玻尔兹曼常数, T为温度, Ω为原子体积

晶界作为空位和原子的扩散通道 ▼Coble机制—

$$\dot{arepsilon}_{\mathrm{C}} = \frac{D_{B} \sigma \Omega \delta}{\pi d^{3} k T}$$

其中, D_B为晶界扩散系数, 8为晶界厚度。

两者的共同点——蠕变速率与应力及自扩散系数成正比

在高温时通常为Nabarro-Herring机制,而温度较低时为Coble 机制。在一定条件下两种机制可以同时发生。

$$\dot{\varepsilon} = \frac{D_{\nu} \sigma \Omega}{kT d^2} \left| 1 + \delta \frac{D_B}{\pi d D_{\nu}} \right|$$

C. 晶界滑动

在高温下,受力后晶界易产生滑动,也会促进蠕变进行,但晶界滑动对蠕变的贡献并不大,其主要作用在于协调晶内变形。

晶界滑动可由外加应力直接引起, 也可由相邻晶粒蠕变变形差异所引起的沿晶界的应力梯度造成。

注意: 晶界滑动不是独立的 蠕变机理, 因为晶界滑动一定要和晶内滑移变形配合进行, 否则就无法维持晶界的连续性, 会导致晶界萌生裂纹。

