

# TextCNN 论文分享

论文: <a href="https://arxiv.org/pdf/1408.5882.pdf">https://arxiv.org/pdf/1408.5882.pdf</a>

代码: https://github.com/649453932/Chinese-Text-Classification-Pytorch

以若

#### Convolutional Neural Networks for Sentence Classification

#### Yoon Kim

New York University yhk255@nyu.edu



- 1. Introduction
- 2. 模型架构
- 3. 训练流程
- 4. 总结
- 5. 实验结果

## 目录

### Introduction

灵感: 受启发于图像分类中,从一个预训练好的模型中学到的特征能够应用于不同分类的任务中。

主要思路:

预训练好的模型 WordtoVector Glove



## 模型架构



Figure 1: Model architecture with two channels for an example sentence.

Embedding layer卷积输出最大池化全连接层(WordToVector或者Glove的输出)结果拼接dropout

0轴:单词

1轴: 维度(固定)

### 模型架构一关键点

**CNN-rand** 

作为一个基础模型,Embedding layer所有words被随机初始化,

然后模型整体进行训练

**CNN-static** 

模型使用预训练的word2vec初始化Embedding layer,

对于那些在预训练的word2vec没有的单词,随机初始化。

然后固定Embedding layer,fine-tune整个网络

**CNN-non-static** 

训练的时候,Embedding layer跟随整个网络一起训练

**CNN-multichannel** 

两个channel,一个channel为static,一个为non-static。 然后整个网络fine-tune时只有一个channel更新参数。 两个channel都是使用预训练的word2vec初始化的

#### Word Embedding

今天"->[0,0,0,0,1]"天气"->[0,0,0,1,0]"很好"->[0,0,1,0,0]

| 今天<br>天气<br>很好 | 0 | 0 | 0 | 0 | 1 |
|----------------|---|---|---|---|---|
| 天气──           | 0 | 0 | 0 | 1 | 0 |
| 很好──           | 0 | 0 | 1 | 0 | 0 |
| ,              | 0 | 1 | 0 | 0 | 0 |
| 出来──           | 1 | 0 | 0 | 0 | 0 |
| 出来 示           | 0 | 0 | 0 | 1 | 1 |

- 每个词都可以表征成一个向量,得到一个嵌入矩阵M
- M里的每一行都是词向量。
- M可以是静态(static)的,也就是固定不变。
- M可以是非静态(non-static)的,也就是可以根据反向传播更新



Step.3

### Channel

#### channel



0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Channel 1

Static

Channel 2

No-static

- 引入channel 是希望防止过拟合--通过保证学习到的vectors 不要偏离输入太多)来在小数据集合获得比单channel更好的表现,后来发现其实直接使用正则化效果更好。
- 可以在no-static(梯度可以反向传播) 的channel 来fine tune 词向量, 让词向量更加适用于当前的训练

Pooling 池化





- 保持平移不变性
- 减少特征维度, 防止过拟合

使用softmax k分类



- 全连接层
- 正则化

# 实验结果

| Model                                 | MR<br>76.1 | SST-1<br>45.0 | SST-2<br>82.7 | Subj<br>89.6 | TREC<br>91.2 | CR<br>79.8 | MPQA<br>83.4 |
|---------------------------------------|------------|---------------|---------------|--------------|--------------|------------|--------------|
| CNN-rand                              |            |               |               |              |              |            |              |
| CNN-static                            | 81.0       | 45.5          | 86.8          | 93.0         | 92.8         | 84.7       | 89.6         |
| CNN-non-static                        | 81.5       | 48.0          | 87.2          | 93.4         | 93.6         | 84.3       | 89.5         |
| CNN-multichannel                      | 81.1       | 47.4          | 88.1          | 93.2         | 92.2         | 85.0       | 89.4         |
| RAE (Socher et al., 2011)             | 77.7       | 43.2          | 82.4          | _            | -            | -          | 86.4         |
| MV-RNN (Socher et al., 2012)          | 79.0       | 44.4          | 82.9          | _            | 100          | -          |              |
| RNTN (Socher et al., 2013)            | -          | 45.7          | 85.4          | -            | -            | -          | -            |
| DCNN (Kalchbrenner et al., 2014)      | 225        | 48.5          | 86.8          | _            | 93.0         | _          | 200          |
| Paragraph-Vec (Le and Mikolov, 2014)  | -          | 48.7          | 87.8          | -            | -            | 1          | -            |
| CCAE (Hermann and Blunsom, 2013)      | 77.8       | -             | _             | -            | _            | (40)       | 87.2         |
| Sent-Parser (Dong et al., 2014)       | 79.5       | 775           | -             | _            | -            | -          | 86.3         |
| NBSVM (Wang and Manning, 2012)        | 79.4       | 220           | -             | 93.2         | -            | 81.8       | 86.3         |
| MNB (Wang and Manning, 2012)          | 79.0       | -             | 1000          | 93.6         | -            | 80.0       | 86.3         |
| G-Dropout (Wang and Manning, 2013)    | 79.0       |               | _             | 93.4         | _            | 82.1       | 86.1         |
| F-Dropout (Wang and Manning, 2013)    | 79.1       | -             | -             | 93.6         | -            | 81.9       | 86.3         |
| Tree-CRF (Nakagawa et al., 2010)      | 77.3       | _             | _             | -            | _            | 81.4       | 86.1         |
| CRF-PR (Yang and Cardie, 2014)        | -          | 5750          | 100           | 1            | 77.1         | 82.7       | 57.1         |
| SVM <sub>S</sub> (Silva et al., 2011) | _          | -             | _             | -            | 95.0         | -          | -            |

### 总结

优势

- 1.在预训练好的基础上,提取公共特征,再根据具体任务再次学习。
- 2.最大池化可以减少特征维度,有利于更快收敛
- 3.网络结构简单,一次卷积、一次池化