<u>Trabajo Práctico Nº 5.1:</u> Estructuras Algebraicas - Teoría de Grupos.

Ejercicio 1.

Determinar cuáles de las siguientes operaciones están bien definidas sobre el conjunto A dado. Analizar las propiedades en los casos afirmativos:

(a)
$$A = \mathbb{N}, \ a*b = 3ab.$$

Esta operación está bien definida sobre el conjunto A dado, ya que, para todo a, $b \in A$, $3ab \in A$.

<u>Conmutatividad</u>: La operación * en A es conmutativa porque se cumple que, para cada a, $b \in A$, a*b=b*a. En particular, 3ab=3ba.

<u>Asociatividad</u>: La operación * en A es asociativa porque se cumple que, para cada a, b, c \in A, (a*b)*c= a*(b*c). En particular, 3 (3ab) c= 3a (3bc) $\Leftrightarrow 9abc= 9abc$.

<u>Elemento neutro:</u> No existe un elemento $e \in A$ tal que, para todo $a \in A$, se cumple que a*e=e*a=a. En particular, $3ae=3ea=a \iff 3e=1 \iff e=\frac{1}{3} \notin A$.

<u>Inversos</u>: Un elemento $a \in A$ tiene inverso si existe $a' \in A$ tal que a*a' = a'*a = e. En particular, no existe elemento neutro, por lo que no existen inversos.

(b)
$$A = \mathbb{Z}, \ a*b = \frac{a+b}{3+ab}.$$

Esta operación no está bien definida sobre el conjunto A dado, ya que, para todo a, b \in A, $\frac{a+b}{3+ab} \notin$ A.

(c)
$$A = \mathbb{R}, x^*y = x + y - xy$$
.

Esta operación está bien definida sobre el conjunto A dado, ya que, para todo $x, y \in A$, $x + y - xy \in A$.

<u>Conmutatividad</u>: La operación * en A es conmutativa porque se cumple que, para cada x, $y \in A$, x*y=y*x. En particular, x+y-xy=y+x-yx.

Asociatividad: La operación * en A es asociativa porque se cumple que, para cada x, y, z \in A, (x*y)*z=x*(y*z). En particular, (x+y-xy)+z-(x+y-xy) z=x+(y+z-yz)-x $(y+z-yz) \Leftrightarrow x+y-xy+z-xz-yz+xyz=x+y+z-yz-xy-xz+xyz$.

Elemento neutro: Existe un elemento $e \in A$ tal que, para todo $x \in A$, se cumple que $x^*x = e^*x = x$. En particular, $x + e - xe = e + x - ex = x \Leftrightarrow e - xe = 0 \Leftrightarrow e (1 - x) = 0 \Leftrightarrow e = \frac{0}{1 - x} \Leftrightarrow e = 0 \in A$.

<u>Inversos:</u> Un elemento $x \in A$ tiene inverso si existe $x' \in A$ tal que x*x' = x'*x = e. En particular, $x + x' - xx' = x' + x - x'x = 0 \Leftrightarrow x' (1 - x) = -x \Leftrightarrow x' = \frac{-x}{1-x}$, por lo que existe inverso para cada $x \in A$ distinto de 1, ya que $x' = \frac{-x}{1-x} \in A$.

(d)
$$A = \{0, 1, 2, 3\},\$$

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	1	2	0	2
3	2	3	1	1

Esta operación está bien definida sobre el conjunto A dado, ya que, para todo a, $b \in A$, $a*b \in A$.

<u>Conmutatividad</u>: La operación * en A no es conmutativa porque no se cumple que, para cada a, $b \in A$, a*b=b*a. En particular, $0*2=0 \neq 2*0=1$.

Asociatividad: La operación * en A no es asociativa porque no se cumple que, para cada a, b, c \in A, (a*b)*c= a*(b*c). En particular, para a= 2, b= 3, c= 2, $(2*3)*2= 2*2= 0 \neq 2*(3*2)= 2*1= 2$.

Elemento neutro: Existe un elemento $e \in A$ tal que, para todo $a \in A$, se cumple que $a^*e = e^*a = a$. En particular, 1 es el elemento neutro $\in A$, ya que $0^*1 = 1^*0 = 0$, $1^*1 = 1^*1 = 1$, $2^*1 = 1^*2 = 2$, $3^*1 = 1^*3 = 3$.

<u>Inversos:</u> Un elemento $a \in A$ tiene inverso si existe $a' \in A$ tal que a*a' = a'*a = e. En particular, esto sólo se cumple para 1 (cuyo inverso es $1 \in A$) y 3 (cuyo inverso es $3 \in A$), ya que 1*1=1*1=1 y 3*3=3*3=1, por lo que no existe inverso para cada $a \in A$ distinto de 1 y 3.

Ejercicio 2.

Demostrar que:

(a) Dado $M = \{m \in \mathbb{N}: m > 0\}$, (M, +) es un semigrupo pero no es un monoide.

Cerradura: Para cada a, $b \in M$, $a + b \in M$.

Asociatividad La operación + en M es asociativa porque se cumple que, para cada a, b, c \in M, (a + b) + c = a + (b + c) (por asociatividad en \mathbb{N}).

Elemento neutro: No existe un elemento $e \in M$ tal que, para todo $m \in M$, se cumple que m + e = e + m = m. En particular, 0 es el elemento neutro $\in \mathbb{N}$ pero $\notin M$.

Por lo tanto, queda demostrado que (M, +) es un semigrupo pero no es un monoide.

(b) El conjunto de un solo elemento $M = \{e\}$ con la operación definida por $e^*e = e$ es un monoide.

<u>Cerradura:</u> Para cada a, $b \in M$, $a*b \in M$. En particular, considerando que e es el único elemento posible, $e*e=e \in M$.

Asociatividad: La operación * en M es asociativa porque se cumple que, para cada a, b, $c \in M$, (a*b)*c=a*(b*c). En particular, considerando que e es el único elemento posible, $(e*e)*e=e*(e*e) \Leftrightarrow e*e=e*e \Leftrightarrow e=e$.

Elemento neutro: Existe un elemento $e \in M$ tal que, para todo $a \in M$, se cumple que $a^*e = e^*a = a$. En particular, considerando que e es el único elemento posible, e es el elemento neutro $e \in M$, ya que $e^*e = e^*e = e$.

Por lo tanto, queda demostrado que (M, *) es un monoide.

(c) Dado un conjunto no vacío A, el conjunto de las partes de A, P(A), con la operación intersección de conjuntos es un monoide conmutativo.

<u>Cerradura:</u> Para cada X, $Y \in P(A)$, $X \cap Y \in P(A)$.

Asociatividad: La operación \cap en P (A) es asociativa porque se cumple que, para cada X, Y, Z \in P (A), (X \cap Y) \cap Z= X \cap (Y \cap Z) (por asociatividad de \cap en conjuntos).

Elemento neutro: Existe un elemento $E \in P(A)$ tal que, para todo $X \in P(A)$, se cumple que $X \cap E = E \cap X = X$. En particular, A es el elemento neutro $\in P(A)$, ya que $X \cap A = A$ $\cap X = X$.

Juan Menduiña

<u>Conmutatividad</u>: La operación \cap en P (A) es conmutativa porque se cumple que, para cada X, Y \in P (A), X \cap Y= Y \cap X (por conmutatividad de \cap en conjuntos).

Por lo tanto, queda demostrado que (M, *) es un monoide conmutativo.

Ejercicio 3.

Demostrar que, si, para una operación asociativa * en A, existe un elemento neutro e y un elemento del conjunto, a, tiene inverso, entonces, éste es único.

Se supone que b y c son dos inversos de a en A, lo que significa que:

$$a*b=b*a=e$$
.
 $a*c=c*a=e$.

Se quiere probar que b = c.

Se considera el siguiente producto:

b=b*e.

Sustituyendo e por a*c, se tiene:

$$b = b*(a*c).$$

Usando la propiedad asociativa, se tiene:

$$b = (b*a)*c.$$

Usando que b es un inverso de a, se tiene:

b=e*c.

Usando la propiedad del neutro, se tiene:

b=c.

Por lo tanto, queda demostrado que, cuando la operación es asociativa y existe un elemento neutro, el inverso de a es único.

Ejercicio 4.

Sea R una relación de congruencia sobre un semigrupo (S, *), demostrar que $(S/R, \otimes)$ (el conjunto cociente y la operación inducida por * sobre las clases de equivalencia) es un semigrupo llamado Semigrupo Cociente.

Dado que R es una relación de congruencia sobre un semigrupo (S, *), se tiene que:

- R es una relación de equivalencia, es decir, es reflexiva, simétrica y transitiva; y
- Si aRb y cRd, entonces, (a*c)R(b*d).

Se define el conjunto cociente S/R como el conjunto de clases de equivalencia de S bajo la relación R como:

 $S/R = \{[a]: a \in S\}$, donde $[a] = \{x \in S: xRa\}$ es la clase de equivalencia de a bajo R.

Para cada [a], [b] \in S/R, se define la operación \otimes en S/R como:

 $[a] \otimes [b] = [a*b].$

Esto es posible porque R es una relación de congruencia y, por lo tanto, la clase de equivalencia de a*b depende sólo de las clases de equivalencia de a y b, independientemente de los representantes que se elijan en cada clase.

<u>Cerradura:</u> Para que la operación \otimes sea cerrada en S/R, se necesita que el resultado de [a] \otimes [b] sólo dependa de las clases de equivalencia de a y b, y no de los representantes específicos seleccionados de estas clases. Es decir, si se toman otros elementos $c \in [a]$ y $d \in [b]$ tales que cRa y dRb, se quiere que [a*b]=[c*d]. Dado que R es una relación de congruencia, si aRc y bRd, entonces, (a*b)R(c*d), lo que implica que [a*b]=[c*d].

Asociatividad: Como (S, *) es un semigrupo, se sabe que la operación * en S es asociativa, es decir, se cumple que, para cada a, b, $c \in S$, (a*b)*c=a*(b*c). La operación \otimes en S/R es asociativa porque se cumple que, para cada [a], [b], [c] \in S/R, ([a] \otimes [b]) \otimes [c]= [a] \otimes ([b] \otimes [c]) \Leftrightarrow [a*b] \otimes [c]= [a] \otimes [b*c] \Leftrightarrow [(a*b)*c]= [a*(b*c)] (por ser (S, *) un semigrupo).

Por lo tanto, queda demostrado que (S/R, ⊗) es un semigrupo (Semigrupo Cociente).

Ejercicio 5.

Analizar si las siguientes son estructuras de grupo:

(a) $(\mathbb{Z}, +)$, los enteros con la suma usual.

Cerradura: Para cada a, $b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

Asociatividad: La operación + en \mathbb{Z} es asociativa porque se cumple que, para cada a, b, c $\in \mathbb{Z}$, (a + b) + c = a + (b + c).

Elemento neutro: Existe un elemento $e \in \mathbb{Z}$ tal que, para todo $a \in \mathbb{Z}$, se cumple que a + e = e + a = a. En particular, 0 es el elemento neutro $e \in \mathbb{Z}$, ya que e + 0 = 0 + a = a = a.

<u>Inversos:</u> Un elemento $a \in \mathbb{Z}$ tiene inverso si existe $a' \in \mathbb{Z}$ tal que a + a' = a' + a = e. En particular, $a + (-a) = (-a) + a = 0 \iff a - a = -a + a = 0 \iff 0 = 0 = 0$, por lo que existe inverso para cada $a \in \mathbb{Z}$, ya que $-a \in \mathbb{Z}$.

Por lo tanto, $(\mathbb{Z}, +)$ es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

(b) (\mathbb{Z} , *), los enteros con el producto usual.

Cerradura: Para cada a, $b \in \mathbb{Z}$, $a*b \in \mathbb{Z}$.

<u>Asociatividad</u>: La operación * en \mathbb{Z} es asociativa porque se cumple que, para cada a, b, c $\in \mathbb{Z}$, (a*b)*c=a*(b*c).

Elemento neutro: Existe un elemento $e \in \mathbb{Z}$ tal que, para todo $a \in \mathbb{Z}$, se cumple que $a^*e = e^*a = a$. En particular, 1 es el elemento neutro $e \in \mathbb{Z}$, ya que $e^*a = a = a$.

<u>Inversos:</u> Un elemento $a \in \mathbb{Z}$ tiene inverso si existe $a' \in \mathbb{Z}$ tal que a*a' = a'*a = e. En particular, esto sólo se cumple para 1 (cuyo inverso es $1 \in \mathbb{Z}$) y -1 (cuyo inverso es $-1 \in \mathbb{Z}$), ya que 1*1=1*1=1 y (-1) (-1)= (-1) (-1)= 1, por lo que no existe inverso para cada a $\in \mathbb{Z}$ distinto de 1 y -1.

Por lo tanto, $(\mathbb{Z}, +)$ no es un grupo, ya que satisface cerradura, asociatividad y elemento neutro, pero no satisface inversos.

(c) $(\mathbb{R}^2, +)$, los pares ordenados de reales con la suma usual.

Cerradura: Para cada (a, b), (c, d) $\in \mathbb{R}^2$, (a, b) + (c, d)= (a+c, b+d) $\in \mathbb{R}^2$.

Asociatividad: La operación + en \mathbb{R}^2 es asociativa porque se cumple que, para cada (a, b), (c, d), (e, f) $\in \mathbb{R}^2$, [(a, b) + (c, d)] + (e, f)= (a, b) + [(c, d) + (e, f)]. En particular, (a+c, b+d) + (e, f)= (a, b) + (c+e, d+f) \Leftrightarrow (a+c+e, b+d+f)= (a+c+e, b+d+f).

Elemento neutro: Existe un elemento $(e_1, e_2) \in \mathbb{R}^2$ tal que, para todo $(a, b) \in \mathbb{R}^2$, se cumple que $(a, b) + (e_1, e_2) = (e_1, e_2) + (a, b) = (a, b)$. En particular, (0, 0) es el elemento neutro $\in \mathbb{R}^2$, ya que $(a, b) + (0, 0) = (0, 0) + (a, b) = (a, b) \Leftrightarrow (a+0, b+0) = (0+a, 0+b) = (a, b) \Leftrightarrow (a, b) = (a, b) = (a, b)$.

Inversos: Un elemento $(a, b) \in \mathbb{R}^2$ tiene inverso si existe $(a', b') \in \mathbb{R}^2$ tal que $(a, b) + (a', b') = (a', b') + (a, b) = (e_1, e_2)$. En particular, $(a, b) + (-a, -b) = (-a, -b) + (a, b) = (0, 0) \Leftrightarrow$ $(a-b, b-b) = (-a+a, -b+b) = (0, 0) \Leftrightarrow (0, 0) = (0, 0) = (0, 0)$, por lo que existe inverso para cada $(a, b) \in \mathbb{R}^2$, ya que $(-a, -b) \in \mathbb{R}^2$.

Por lo tanto, $(\mathbb{R}^2, +)$ es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

(d) $(M_{2x2}, +)$, las matrices de 2x2 con la suma usual de matrices.

Elemento neutro: Existe un elemento $\mathbf{E} \in M_{2x2}$ tal que, para todo $\mathbf{A} \in M_{2x2}$, se cumple que $\mathbf{A} + \mathbf{E} = \mathbf{E} + \mathbf{A} = \mathbf{A}$. En particular, $\mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ es el elemento neutro $\mathbf{E} \in M_{2x2}$, ya que, para $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_{2x2}$, con cualesquiera $a_{ij} \in \mathbb{R}$, i, j= 1, 2, $\mathbf{A} + \mathbf{O} = \mathbf{O} + \mathbf{A} = \mathbf{A} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Leftrightarrow$

$$\begin{pmatrix} a_{11} + 0 & a_{12} + 0 \\ a_{21} + 0 & a_{22} + 0 \end{pmatrix} = \begin{pmatrix} 0 + a_{11} & 0 + a_{12} \\ 0 + a_{21} & 0 + a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Leftrightarrow$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Inversos: Un elemento $A \in M_{2x2}$ tiene inverso si existe $A' \in M_{2x2}$ tal que A + A' = A' + A = E. En particular, para $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_{2x2}$, con cualesquiera $a_{ij} \in \mathbb{R}$, i, j= 1, 2,

$$\begin{array}{lll} A+(-A)=(-A)+A=0 & \Longleftrightarrow \\ \binom{a_{11}}{a_{21}} & a_{12} \\ \binom{a_{21}}{a_{21}} & a_{22} \\ \end{pmatrix} + \binom{-a_{11}}{-a_{21}} & -a_{22} \\ -a_{21} & -a_{22} \\ \end{pmatrix} = \binom{-a_{11}}{-a_{21}} & -a_{22} \\ -a_{21} & -a_{22} \\ \end{pmatrix} + \binom{a_{11}}{a_{21}} & a_{22} \\ = \binom{0}{0} & 0 \\ -a_{21} + a_{21} & -a_{22} + a_{22} \\ \end{pmatrix} = \binom{0}{0} & 0 \\ \otimes & 0 \\ \end{array} \Rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \end{pmatrix} = \binom{0}{0} & 0 \\ 0 & 0 \\ \end{pmatrix} = \binom{0}{0} & 0 \\ 0 & 0 \\ \end{pmatrix} = \binom{0}{0} & 0 \\ 0 & 0 \\ \end{pmatrix}, \text{ por lo que existe inverso para cada } A \in M_{2x2}, \text{ ya que -} A \in M_{2x2}. \end{array}$$

Por lo tanto, $(\mathbb{R}^2, +)$ es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

(e) $(P(A), \cup)$, A cualquier conjunto y(P(A)) indica el conjunto de partes de A.

Cerradura: Para cada X, $Y \in P(A)$, $X \cup Y \in P(A)$.

<u>Asociatividad</u>: La operación \cup en P (A) es asociativa porque se cumple que, para cada X, Y, Z \in P (A), (X \cup Y) \cup Z= X \cup (Y \cup Z) (por asociatividad de \cup en conjuntos).

Elemento neutro: Existe un elemento $E \in P(A)$ tal que, para todo $X \in P(A)$, se cumple que $X \cup E = E \cup X = X$. En particular, \emptyset es el elemento neutro $\in P(A)$, ya que $X \cup \emptyset = \emptyset$ $\cup X = X \iff X = X = X$.

<u>Inversos:</u> Un elemento $X \in P(A)$ tiene inverso si existe $X' \in P(A)$ tal que $X \cup X' = X' \cup X = E$. En particular, esto sólo se cumple para \emptyset (cuyo inverso es $\emptyset \in P(A)$), ya que $\emptyset \cup \emptyset = \emptyset \cup \emptyset = \emptyset$, por lo que no existe inverso para cada $X \in P(A)$ distinto de \emptyset .

Por lo tanto, (P (A), U) es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

Ejercicio 6.

Probar que, en todo grupo, el único elemento idempotente es el neutro.

Dado un grupo G con una operación *, se dice que un elemento $e \in G$ es idempotente si cumple que:

$$e^*e=e$$
.

Se quiere probar que el único elemento idempotente es el elemento neutro.

Sea G un grupo con elemento neutro e, es decir, $e \in G$ tal que, para todo $a \in G$, se cumple que $a^*e = e^*a = a$.

Se supone que $a \in G$ es un elemento idempotente, es decir, cumple que:

$$a*a=a$$
.

Se quiere probar que a= e, el elemento neutro.

Pre-multiplicando a ambos lados de la ecuación anterior por el inverso de a (en un grupo, cada elemento tiene inverso), se tiene:

$$a'*(a*a)=a'*a.$$

Usando la propiedad asociativa (en un grupo, la operación es asociativa), se tiene:

$$(a'*a)*a=a'*a.$$

Usando la propiedad de inversos (en un grupo, cada elemento tiene inverso), se tiene:

$$e*a=e$$
.

Usando la propiedad del elemento neutro (en un grupo, existe elemento neutro para la operación), se tiene:

$$a=e$$
.

Por lo tanto, queda demostrado que, en todo grupo, el único elemento idempotente es el neutro.

Ejercicio 7.

Mostrar que, en todo grupo, vale la propiedad cancelativa.

Dado un grupo G con una operación *, la propiedad cancelativa establece que:

- Por la izquierda: Si a*b=a*c, entonces, b=c, para cada a, b, $c \in G$.
- Por la derecha: Si b*a=c*a, entonces, b=c, para cada a, b, $c \in G$.

Por la izquierda:

Se supone que, en el grupo G, se cumple que:

a*b=a*c, para algunos a, b, $c \in G$.

Se quiere probar que b = c.

Pre-multiplicando a ambos lados de la ecuación anterior por el inverso de a (en un grupo, cada elemento tiene inverso), se tiene:

$$a'*(a*b) = a'*(a*c).$$

Usando la propiedad asociativa (en un grupo, la operación es asociativa), se tiene:

$$(a'*a)*b=(a'*a)*c.$$

Usando la propiedad de inversos (en un grupo, cada elemento tiene inverso), se tiene:

$$e^*b = e^*c$$
.

Usando la propiedad del elemento neutro (en un grupo, existe elemento neutro para la operación), se tiene:

b=c.

Por lo tanto, queda demostrado que, si a*b=a*c, entonces, b=c, para cada a, b, $c \in G$.

Por la derecha:

Se supone que, en el grupo G, se cumple que:

b*a=c*a, para algunos a, b, $c \in G$.

Se quiere probar que b = c.

Post-multiplicando a ambos lados de la ecuación anterior por el inverso de a (en un grupo, cada elemento tiene su inverso), se tiene:

$$(b*a)*a'=(c*a)*a'.$$

Usando la propiedad asociativa (en un grupo, la operación es asociativa), se tiene:

$$b*(a*a')=c*(a*a').$$

Usando la propiedad de inversos (en un grupo, cada elemento tiene inverso), se tiene:

$$b*e=c*e$$
.

Usando la propiedad del elemento neutro (en un grupo, existe elemento neutro para la operación), se tiene:

$$b=c$$
.

Por lo tanto, queda demostrado que, si b*a=c*a, entonces, b=c, para cada a, b, $c \in G$.

Por lo tanto, queda demostrado que, en todo grupo, vale la propiedad cancelativa.

Ejercicio 8.

Sea (G, *) un grupo tal que todo elemento es su propio inverso, probar que G es abeliano.

Dado que, en (G, *), todo elemento es su propio inverso, para todo $a \in G$, se cumple que:

$$a*a=e$$
.

Se quiere probar que la operación * en G es conmutativa, es decir, que se cumple que, para cada $a, b \in G$, a*b=b*a.

Se considera el siguiente producto:

$$(a*b)*(a*b).$$

Usando que todo elemento en (G, *) es su propio inverso, se tiene:

$$(a*b)*(a*b)=e$$
.

Usando la propiedad asociativa (en un grupo, la operación es asociativa), se tiene:

$$a*(b*a)*b=e$$
.

Pre-multiplicando por el inverso de a (a´= a) y post-multiplicando por el inverso de b (b´= b) a ambos lados de la ecuación (en un grupo, cada elemento tiene su inverso), se tiene:

$$a*a*(b*a)*b*b=a*e*b.$$

Usando la propiedad de inversos (en un grupo, cada elemento tiene inverso), se tiene:

$$e^*(b^*a)^*e = a^*e^*b$$
.

Usando la propiedad del elemento neutro (en un grupo, existe elemento neutro para la operación), se tiene:

$$b*a = a*b$$
.

Por lo tanto, queda demostrado que, dado (G, *) un grupo tal que todo elemento es su propio inverso, G es abeliano.

Ejercicio 9.

Dado un grupo (G, *), probar que G es abeliano si y sólo si, para cualquier x, y en G, vale que $(x * y)^2 = x^2 * y^2$.

Dado un grupo (G, *), si G es abeliano, entonces, para cada $x, y \in G$, x*y=y*x, lo que implica que $(x*y)^2=(x*y)*(x*y)=x*(y*x)*y$ (por asociatividad)= x*(x*y)*y (por conmutatividad)= (x*x)*(y*y) (por asociatividad)= x^2*y^2 . Por lo tanto, dado un grupo (G, *), si G es abeliano, entonces, para cada $x, y \in G$, $(x*y)^2=x^2*y^2$.

Dado un grupo (G, *), si, para cada x, y \in G, $(x*y)^2 = x^2*y^2$, entonces, $(x*y)*(x*y) = x^2*y^2$, lo que implica que x'*(x*y)*(x*y)*y' = x'*(x*x)*(y*y)*y' (pre-multiplicando por x' y post-multiplicando por y') \iff (x'*x)*(y*x)*(y*y') = (x'*x)*(x*y)*(y*y') (por asociatividad) \iff e*(y*x)*e= e*(x*y)*e (por inversos) \iff y*x= x*y (por elemento neutro). Por lo tanto, dado un grupo (G, *), si, para cada x, $y \in$ G, $(x*y)^2 = x^2*y^2$, entonces, G es abeliano.

Por lo tanto, queda demostrado que, dado un grupo (G, *), G es abeliano si y sólo si, para cada $x, y \in G$, $(x * y)^2 = x^2 * y^2$.

Ejercicio 10.

Dados los grupos (G, *) y (F, \sqcap) , se define, en el conjunto GxF, la ley \circ tal que $(x, y) \circ (z, t) = (x*z, y\sqcap t)$. Probar que (GxF, \circ) es Grupo (Grupo Producto).

<u>Cerradura:</u> Para cada (x, y), $(z, t) \in GxF$, $(x*z, y \sqcap t) \in GxF$, ya que $x*z \in G$ y y $\sqcap t \in F$ (por (G, *) y (F, \sqcap) grupos).

Asociatividad: La operación \circ en GxF es asociativa porque se cumple que, para cada (x, y), (z, t), (u, v) \in GxF, ((x, y) \circ (z, t)) \circ (u, v)= (x, y) \circ ((z, t) \circ (u, v)). En particular, (x*z, y \sqcap t) \circ (u, v)= (x, y) \circ (z*u, t \sqcap v) \Leftrightarrow ((x*z)*u, (y \sqcap t) \sqcap v)= (x*(z*u), y \sqcap (t \sqcap v)) (por * y \sqcap asociativas en G y F, respectivamente).

Elemento neutro: Existe un elemento $(e_1, e_2) \in GxF$ tal que, para todo $(x, y) \in GxF$, se cumple que $(x, y) \circ (e_1, e_2) = (e_1, e_2) \circ (x, y) = (x, y)$. En particular, (e_G, e_F) es el elemento neutro $\in GxF$ $(e_G \ y \ e_F$ elementos neutros de G y F, respectivamente), ya que $(x^*e_G, y \sqcap e_F) = (e_G^*x, e_F \sqcap y) = (x, y) \Leftrightarrow (x, y) = (x, y)$.

<u>Inversos:</u> Un elemento $(x, y) \in GxF$ tiene inverso si existe $(x', y') \in GxF$ tal que $(x, y) \circ (x', y') = (x', y') \circ (x, y) = (e_1, e_2)$. En particular, dado que existe inverso $x' \in G$ $(y' \in F)$ para cada $x \in G$ $(y \in F)$ (por (G, *) y (F, \sqcap) grupos), $(x, y) \circ (x', y') = (x', y') \circ (x, y) = (e_G, e_F) \Leftrightarrow (x*x', y \sqcap y') = (x'*x, y' \sqcap y) = (e_G, e_F) \Leftrightarrow (e_G, e_F) = (e_G, e_F) = (e_G, e_F)$, por lo que existe inverso para cada $(x, y) \in GxF$, ya que $(x', y') \in GxF$.

Por lo tanto, queda demostrado que (GxF, °) es un grupo (Grupo Producto), ya que satisface cerradura, asociatividad, elemento neutro e inversos.

Ejercicio 11.

Estudiar si son subgrupos de los grupos indicados:

(a) Los enteros pares de $(\mathbb{Z}, +)$.

$$\mathbb{Z}_2 = \{ x \in \mathbb{Z} : x = 2k, k \in \mathbb{Z} \}.$$

 $\mathbb{Z}_2 \subset \mathbb{Z}.$

<u>Cerradura:</u> Para cada a, $b \in \mathbb{Z}_2$, $a + b \in \mathbb{Z}_2$. En particular, para a = 2m y b = 2n, con cualesquiera m, $n \in \mathbb{Z}$, a + b = 2m + 2n = 2(m + n), con $m + n \in \mathbb{Z}$, por lo que $a + b \in \mathbb{Z}_2$.

Asociatividad: La operación + en \mathbb{Z}_2 es asociativa porque se hereda del grupo original (\mathbb{Z} , +).

Elemento neutro: El elemento neutro de + en \mathbb{Z} también existe en \mathbb{Z}_2 . En particular, $0 \in \mathbb{Z}_2$, ya que 0=2*0, con $k=0 \in \mathbb{Z}$.

Inversos: Un elemento $a \in \mathbb{Z}_2$ tiene inverso si existe $a' \in \mathbb{Z}_2$ tal que a + a' = a' + a = e. En particular, para $a = 2k \in \mathbb{Z}_2$, con cualquier $k \in \mathbb{Z}$, su inverso en \mathbb{Z} es a' = -a = -2k = 2 (-k), con -k $\in \mathbb{Z}$, por lo que existe inverso para cada $a \in \mathbb{Z}_2$, ya que $a' \in \mathbb{Z}_2$.

Por lo tanto, $(\mathbb{Z}_2, +)$ es un subgrupo del grupo $(\mathbb{Z}, +)$, ya que satisface cerradura, elemento neutro e inversos.

(b) *Las matrices simétricas de 2x2.*

$$S_{2x2} = \{ \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} : a_{ij} \in \mathbb{R}, i, j = 1, 2 \}.$$

$$S_{2x2} \subset M_{2x2}.$$

Cerradura: Para cada A, B $\in S_{2x2}$, A + B $\in S_{2x2}$. En particular, para A= $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \in S_{2x2}$ y B= $\begin{pmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{pmatrix} \in S_{2x2}$, con cualesquiera a_{ij} , $b_{ij} \in \mathbb{R}$, i, j= 1, 2, A + B= $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{12} + b_{12} & a_{22} + b_{22} \end{pmatrix}$, por lo que A + B $\in S_{2x2}$.

Asociatividad: La operación + en S_{2x2} es asociativa porque se hereda del grupo original $(M_{2x2}, +)$.

Elemento neutro: El elemento neutro de + en M_{2x2} también existe en S_{2x2} . En particular, $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S_{2x2}$, ya que $a_{12} = a_{21} = 0$.

Inversos: Un elemento $A \in S_{2x2}$ tiene inverso si existe $A' \in S_{2x2}$ tal que A + A' = A' + A = E. En particular, para $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \in S_{2x2}$, con cualesquiera $a_{ij} \in \mathbb{R}$, i, j= 1, 2, su

Juan Menduiña

inverso en M_{2x2} es A'= -A= $\begin{pmatrix} -a_{11} & -a_{12} \\ -a_{12} & -a_{22} \end{pmatrix}$, por lo que existe inverso para cada A \in S_{2x2} , ya que A' \in S_{2x2} .

Por lo tanto, $(S_{2x2}, +)$ es un subgrupo del grupo $(M_{2x2}, +)$, ya que satisface cerradura, elemento neutro e inversos.

Ejercicio 12.

Demostrar que, si H y K son subgrupos de (G, *), entonces, $H \cap K$ es un subgrupo de (G, *).

 $H \cap K = \{a \in G: a \in H \land a \in K\}.$ $H \cap K \subset G.$

<u>Cerradura:</u> Para cada a, $b \in H \cap K$, $a*b \in H \cap K$, ya que a, $b \in H$, a, $b \in K$ y $a*b \in H$, $a*b \in K$ (por (H, *) y (K, *) subgrupos).

<u>Asociatividad</u>: La operación * en $H \cap K$ es asociativa porque se hereda del grupo original (G, *).

Elemento neutro: El elemento neutro de * en G también existe en $H \cap K$. En particular, e $\in H \cap K$, ya que $e \in H$ y $e \in K$ (por (H, *) y (K, *) subgrupos de G, con elemento neutro e).

<u>Inversos:</u> Un elemento $a \in H \cap K$ tiene inverso si existe $a' \in H \cap K$ tal que a*a' = a'*a = e. En particular, para cada $a \in H \cap K$, $a \in H$ y $a \in K$ y, además, $a' \in H$ y $a' \in K$ (por (H, *) y (K, *) subgrupos), por lo que existe inverso para cada $a \in H \cap K$, ya que $a' \in H \cap K$.

Por lo tanto, queda demostrado que $(H \cap K, *)$ es un subgrupo del grupo (G, *), ya que satisface cerradura, elemento neutro e inversos.

Ejercicio 13.

Sea (G, *) un grupo, sea $a \in G$ y sea H un subgrupo de G. Demostrar que el conjunto $aHa^{+1} = \{a*h*a^{-1}: h \in H\}$ es un subgrupo de G.

$$aHa^{+1} = \{a*h*a^{-1}: h \in H\}.$$

 $aHa^{+1} \subset G.$

Elemento neutro: El elemento neutro de * en G también existe en aH a^{+1} . En particular, $e \in aHa^{+1}$, ya que $e \in H$ (por (H, *) subgrupo de G, con elemento neutro e), lo que implica que $aea^{-1} = aa^{-1}$ (por (G, *) grupo)= e (por (G, *) grupo).

Asociatividad: La operación * en a Ha^{+1} es asociativa porque se hereda del grupo original (G, *).

<u>Cerradura:</u> Para cada x, y \in aH a^{+1} , x*y \in aH a^{+1} . En particular, para x= a $h_1a^{-1} \in$ aH a^{+1} e y= a $h_2a^{-1} \in$ aH a^{+1} , con cualesquiera h_1 , $h_2 \in$ H, x*y= (a h_1a^{-1})*(a h_2a^{-1})= a $h_1(a^{-1}a)h_2a^{-1}$ (por asociatividad)= a $h_1eh_2a^{-1}$ (por (G, *) grupo)= a $h_1h_2a^{-1}$ (por elemento neutro), con $h_1*h_2 \in$ H (por (H, *) subgrupo), por lo que x*y \in aH a^{+1} .

<u>Inversos:</u> Un elemento $x \in aHa^{+1}$ tiene inverso si existe $x' \in aHa^{+1}$ tal que x*x' = x'*x = e. En particular, para $x = aha^{-1} \in aHa^{+1}$, con cualquier $h \in H$, su inverso en G es $x' = (aha^{-1})^{-1} = (a^{-1})^{-1}h^{-1}a^{-1} = ah^{-1}a^{-1}$ (por (G, *) grupo), con $h^{-1} \in H$ (por (H, *) subgrupo), por lo que existe inverso para cada $x \in aHa^{+1}$, ya que $x' \in aHa^{+1}$.

Por lo tanto, queda demostrado que el conjunto $aHa^{+1} = \{a*h*a^{-1}: h \in H\}$ es un subgrupo de G, ya que satisface cerradura, elemento neutro e inversos.

Ejercicio 14.

Probar que todo grupo cíclico es abeliano.

Sea (G, *) un grupo cíclico con generador $g \in G$, es decir:

$$G=\langle g\rangle=\{g^n:n\in\mathbb{Z}\}.$$

Esto significa que cualquier elemento de G se puede expresar como una potencia de g.

Se quiere probar que la operación * en G es conmutativa, es decir, que se cumple que, para cada $a, b \in G$, a*b=b*a.

Sean a, b ∈ G. Dado que G es cíclico, se tiene:

$$a=g^n$$
, con $n \in \mathbb{Z}$.
 $b=g^m$, con $m \in \mathbb{Z}$.

Considerando las operaciones a*b y b*a, se tiene:

$$a*b=g^n*g^m=g^{n+m}.$$

 $b*a=g^m*g^n=g^{m+n}.$

Dado que $g^{n+m} = g^{m+n}$, se tiene:

$$a*b=b*a$$
.

Por lo tanto, queda demostrado que todo grupo cíclico es abeliano.

Ejercicio 15.

Sea G un grupo cíclico de orden n, si m es divisor de n, entonces, el elemento a^m y sus potencias generan un subgrupo.

Sea G un grupo cíclico de orden n con generador a ∈ G, es decir:

$$G = \langle a \rangle = \{ a^x : x \in \mathbb{Z}, 0 \le x < n \} = \{ e, a, a^2, \dots, a^{n-1} \}.$$

Esto implica que a^n = e, donde e es el elemento neutro.

Se supone que m es divisor de n, lo cual implica que existe un entero k tal que n= mk.

Se quiere probar que el elemento a^m y sus potencias generan un subgrupo de G.

Sea H el conjunto que contiene todas las potencias de a^m , es decir:

$$H=\langle a^m\rangle = \{(a^m)^y \colon y \in \mathbb{Z}\}\$$

$$H=\langle a^m\rangle = \{a^{my} \colon y \in \mathbb{Z}\}.$$

Si a^{my} = e para algún y $\in \mathbb{Z}$, entonces, a^{my} = a^n = e, lo que implica que my es múltiplo de n y, como mk también lo es, se tiene:

$$my = mk$$

 $y = k$.

Esto muestra que el menor entero positivo y para el cual a^{my} e es y= k, por lo que el orden de a^m es k.

Entonces, H tiene, exactamente, $k = \frac{n}{m} (< n)$ elementos:

$$H=\langle a^m\rangle = \{a^{my} \colon y \in \mathbb{Z}, 0 \le y < k = \frac{n}{m} < n\}.$$

$$H \subset G.$$

<u>Cerradura:</u> Para cada a, $b \in H$, $a*b \in H$. En particular, para $a = a^{mx} \in H$ y $b = a^{my} \in H$, con cualesquiera x, $y \in \mathbb{Z}$, $a*b = a^{mx}*a^{my} = a^{mx+my} = a^{m(x+y)}$, con $x + y \in \mathbb{Z}$, por lo que $a*b \in H$.

<u>Asociatividad:</u> La operación * en H es asociativa porque se hereda del grupo original (G, *).

Elemento neutro: El elemento neutro de * en G también existe en H. En particular, e \in H, ya que $a^{m*0} = a^0 = e$, con y= $0 \in \mathbb{Z}$.

<u>Inversos:</u> Un elemento $a \in H$ tiene inverso si existe $a' \in H$ tal que a*a'= a'*a= e. En particular, para $a=a^{my} \in H$, con cualquier $y \in \mathbb{Z}$, su inverso en G es $a'=(a^{my})^{-1}=a^{-my}=a^{m(-y)}$, con -y $\in \mathbb{Z}$, por lo que existe inverso para cada $a \in H$, ya que $a' \in H$.

Juan Menduiña

Por lo tanto, queda demostrado que, dado un grupo cíclico G de orden n, si m es divisor de n, entonces, el elemento a^m y sus potencias generan un subgrupo de G, ya que el conjunto formado por estos elementos (H) satisface cerradura, elemento neutro e inversos.

Ejercicio 16.

Sea (G, *) un grupo, sea $a \in G$ y sea H un subgrupo de G. Si $a, b \in G$, probar que la relación dada por $a \equiv b \pmod{H}$ si $a * b^{-1} \in H$ es una relación de equivalencia.

 \equiv_H es reflexiva porque se cumple que, para todo $a \in G$, $(a, a) \in \equiv_H$. En particular, $aa^{-1} = e \in H$ (por (H, *) subgrupo de G, con elemento neutro e), lo que implica que $(a, a) \in \equiv_H$.

 \equiv_H es simétrica porque se cumple que, para cada a, $b \in G$, si $(a, b) \in \equiv_H$, entonces, $(b, a) \in \equiv_H$. En particular, si $ab^{-1} \in H$, entonces, $(ab^{-1})^{-1} \in H$ (por (H, *) subgrupo) y es igual a $(b^{-1})^{-1}a^{-1} = ba^{-1}$, lo que implica que, si $(a, b) \in \equiv_H$, entonces, $(b, a) \in \equiv_H$.

 \equiv_H es transitiva porque se cumple que, para cada a, b, c \in G, si (a, b) $\in \equiv_H$ y (b, c) $\in \equiv_H$, entonces, (a, c) $\in \equiv_H$. En particular, si $ab^{-1} \in H$ y $bc^{-1} \in H$, entonces, $(ab^{-1})^*(bc^{-1}) \in H$ (por cerradura) y es igual a $a(b^{-1}b)$ c^{-1} (por asociatividad)= aec^{-1} (por inversos)= ac^{-1} (por elemento neutro), lo que implica que, si (a, b) $\in \equiv_H$ y (b, c) $\in \equiv_H$, entonces, (a, c) $\in \equiv_H$.

Por lo tanto, queda demostrado que la relación dada por $a \equiv b \pmod{H}$ si $a * b^{-1} \in H$ es una relación de equivalencia, ya que es reflexiva, simétrica y transitiva.