CSCI 210: Computer Architecture Lecture 19: State Elements

Stephen Checkoway

Oberlin College

Nov. 15, 2021

Slides from Cynthia Taylor

Announcements

Problem Set 6 due Friday

Lab 5 due Sunday

Office Hours Tuesday 13:30 – 14:30

Last Class

Adding Conditional Branching

Want to be able to support beq, bne, etc

Need to be able to check equality

• If a = b, then a - b = 0

Detect 0 in Multi-bit ALU

• Subtract a – b

Take output from each 1-bit ALU

We know Result0-31 are 0 if we perform a ____ operation on Result0 though Result31, and it outputs ____

- A. AND, 0
- B. OR, 0
- C. NAND, 1
- D. XOR, 0
- E. None of the above

Detect 0 in Multi-bit ALU

Subtract a – b

Take output from each 1-bit ALU

- OR outputs together
 - If any output is 1, result will be 1, else 0
- Negate the result

Multi-bit ALU with zero check

Symbol for Multi-bit ALU

Logic Gates and Timing

Which of the following most closely maps to Y (the output of the inverter)?

E None of the above.

Select the correct output for Y

E None of the above

AND gate waveforms

- Inputs
 - Yellow
 - Blue
- Output
 - Pink

Two Types of Logic Components

State Elements

Output depends on input, AND a value saved inside the element

Have memory

Set-Reset (S-R) Latch

Output depends on S, R, AND previous value of Q

• Stores 1 bit of state

S-R Latch: S = 1, R = 0

	Q
Α	0
В	1
С	Q from before
D	Q from before
E	None of the above

S-R Latch: S = 0, R = 1

	Q
Α	0
В	1
С	Q from before
D	Q from before
Е	None of the above

S-R Latch: S = 0, R = 0

	Q
Α	0
В	1
С	Q from before
D	Q from before
Е	None of the above

S-R Latch: S = 1, R = 1

	Q
Α	0
В	1
С	Q from before
D	Q from before
Е	None of the above

S-R Latch

- Set: $Q_i = 1$
- Reset: $Q_i = 0$
- Otherwise, $Q_i = Q_{i-1}$

Terminology

- The S-R latch is a bistable multivibrator
 - Bistable: two stable states—set Q = 1, \overline{Q} = 0 and reset Q = 0, \overline{Q} = 1
 - Monostable: one stable state, one unstable state; the circuit returns to the stable state after a short time in the unstable state
 - Astable: two unstable states and the circuit switches between them
 - Multivibrator: a digital circuit that uses feedback
 - The name comes from the first such circuit that produced a square wave which had many harmonics, hence multivibrateur

Clock

Oscillates between 1 and 0 at a set rate

Used with elements that have memory

Clocked SR Latch

Figure 3-23. A clocked SR latch.

Only changes state when the clock is asserted

Reading

Next lecture: Clocks, Latches and Flip flops

-3.7

Problem Set 6 due Friday

Lab 5 due Sunday