ME46002 Assignment 1

Imran Ali Adnan 17062111D

$\mathbf{Q}\mathbf{1}$

Question:

Find the root(s) of the equations f(x)=0

$$f(x) \; = \; \frac{\sin(x)}{x} + \frac{x}{1 + \tan(x)} - 1.2 = 0$$

by using the bisection method with a=0.1 and b=1.0

The percentage relative error of the solutions should be less than 2%.

Iteration	a	b	c (root)	f(a)	f(c)	f(a) * f(c)	error
1	0.1	1.0	0.55	- 0.11078439 3	0.091297717 5	- 0.01011436 22	81.81818 18
2	0.1	0.55	0.325	- 0.11078439 3	0.025579596 6	- 0.00283382 009	69.23076 92
3	0.1	0.325	0.2125	- 0.11078439 3	- 0.032720909 1	0.00362496 606	52.94117 65

4	0.212	0.325	0.26875	- 0.03272090 91	- 0.001278280 98	4.18265157 e-5	20.93023 26
5	0.268 75	0.325	0.296875	- 0.00127828 098	0.012706406 3	- 1.62423575 e-5	9.473684 2
6	0.268 75	0.296875	0.282812 5	- 0.00127828 098	0.005854982 88	- 7.48431325 e-6	4.972375 68
7	0.268 75	0.282812 5	0.275781 25	- 0.00127828 098	0.002323844 24	- 2.97052589 e-6	2.549575 07
8	0.268 75	0.275781 25	0.272265 625	- 0.00127828 098	0.000531688 915	- 6.79647826 e-7	1.291248 2

 $\mathbf{c} = \mathbf{0.272265625}$ where the error < 2%

$\mathbf{Q2}$

Question:

Determine the root of the following equation

$$f(x) \; = \; \sin^2(x) \; + \; \frac{x-1}{\cos(x)} = 0$$

using bisection method with two initial guesses of a=0 and b=1. Perform the computation until the percentage relative error is less than 2%.

Iteratio n	a	b	c (root)	f(a)	f(c)	f(a) * f(c)	error
1	0.0	1.0	0.5	-1.0	- 0.339898117	0.339898117	100.0
2	0.5	1.0	0.75	- 0.339898117	0.122956118	- 0.0417925529	33.33333 33
3	0.5	0.75	0.625	- 0.339898117	- 0.120074318	0.0408130345	20.0
4	0.625	0.75	0.6875	0.120074318	- 0.001629274 98	0.0001956340 82	9.090909 09
5	0.687 5	0.75	0.71875	- 0.001629274 98	0.059859121	-9.75269682e- 5	4.347826 09
6	0.687	0.71875	0.703125	- 0.001629274 98	0.028919356 4	-4.71175838e- 5	2.222222 22
7	0.687 5	0.70312 5	0.695312 5	- 0.001629274 98	0.013596749 8	-2.21528443e- 5	1.123595 51

 $[\]mathbf{c} = \mathbf{0.6953125}$ where the error < 2%

$\mathbf{Q3}$

Solution:

$$f(x) = \mathrm{e^x} + \ \cos(x) - 2 = 0$$

$$f'(x) = e^{x} - \sin(x)$$

Iteration	xi	f(x)	dF(x)	x	error
1	2	5.805202935477 79	4.6345841051 2678	1.30043918742 921	53.7941965555 289
2	1.30043918742	1.403832910321	4.6345841051	0.99753543630	30.3652121111
	921	24	2678	981	539
3	0.99753543630	0.169216176822	3.5517275196	0.94989209208	5.01565858114
	981	879	4363	1687	605
4	0.94989209208	0.003659795771	3.3987833876	0.94881529625	0.11348845577
	1687	7972	652	378	8316
5	0.94881529625	1.835799425808	3.3953739852	0.94881475557	5.69844266283
	378	91e-6	2268	7132	453e-5

 $\mathbf{x} = \mathbf{0.948814755577132}$ where the error < 0.1%

$\mathbf{Q4i}$

$$f(x) = x^3 - x - 3 = 0$$

$$f'(x) = 3x^2 - 1$$

Iterat n	tio	xi	f(x)	dF(x)	x	error
1	0.5		-3.375	506.0	-13.0	103.8461538461 54
2	-13.	.0	-2187.0	506.0	- 8.67786561264 822	49.8064222728 31
3	- 8.67 22	77865612648	- 647.8118554088 59	224.916054773 548	- 5.79762722299 171	49.67960648167
4	- 5.79 71	97627222991	- 192.0750100712 03	99.8374442503 237	- 3.87374974882 87	49.66447496368 95
5	- 3.87 7	73749748828	- 57.25549538734 76	44.0178113496 512	- 2.57301503186 278	50.55293890079 71
6	- 2.57 78	73015031862	- 17.46139003451 27	18.8612190625 755	- 1.64723234641 804	56.20231338085 88
7	- 1.64 04	47232346418	- 5.822325738287 77	7.14012320925 765	- 0.83179463369 9199	98.03353853010 39

8	- 0.831794633699 199	- 2.743709361115 12	1.07564693795 236	1.71895809408 539	148.3894654884 98
9	1.718958094085	0.360248382940	7.86445078766	1.67315090517	2.737779884236
	39	782	507	071	25
10	1.673150905170	0.010724544702	7.39830185442	1.67170130972	0.086713783208
	71	9332	074	111	1673

 $\mathbf{x} = \mathbf{1.67170130972111}$ where the error < 0.1%

Q4ii

$$f(x) = x^3 - x - 3 = 0$$

$$f'(x) = 3x^2 - 1$$

Iteration	xi	f(x)	dF(x)	x	error
1	0.0	-3.0	26.0	-3.0	100.0
2	-3.0	-27.0	26.0	- 1.961538461538 46	52.94117647 05882
3	- 1.961538461538 46	- 8.585741920 80109	10.542899408 284	- 1.147175961403 55	70.98845578 48091

4	- 1.147175961403 55	- 3.362522157 36205	2.9480380592 6645	- 0.006579371480 71208	17335.95060 35885
5	- 0.006579371480 71208	- 2.993420913 32797	- 0.9998701356 12756	- 3.000389074071 23	99.78071605 65418
6	- 3.000389074071 23	- 27.01011728 83186	26.007003787 4181	- 1.961818175666 32	52.93920258 70166
7	- 1.961818175666 32	- 8.588691379 14838	10.546191663 1242	- 1.147430228481 6	70.97494269 97757
8	- 1.147430228481 6	- 3.363271968 90261	2.9497883877 0003	- 0.007256247552 42338	15712.99728 5331
9	- 0.007256247552 42338	- 2.992744134 51171	- 0.9998420406 14374	- 3.000473188773 22	99.75816322 64013

Cannot find solution with initial guess = $\mathbf{0}$ because the second derivative of f(x) at 0 is 0, thus the point where x = 0 is an inflection point causing the subsequent calculations to diverge.