Aufgabe 1 (10 Punkte)

Ganze Zahlen sollen als FOlgen von Ziffern aus dem Alphabet $A = \{M, N, P\}$ mit der lexikographischen Ordnung M < N < P vermöge folgender Abbildungen dargestellt werden:

$$wert_z = A \rightarrow \mathbb{Z} \text{ mit } wert_z(M) = -1, wert_z(N) = 0, wert_z(P) = +1$$

 $wert_f = A^n \rightarrow \mathbb{Z} \text{ mit } wert_f(z_{n-1}, \dots, z_1, z_0) = wert_z(z_{n-1}) \cdot 3^{n-1} + \dots + wert_z(z_1) \cdot 3^1 + wert_z(z_0) \cdot 3^0$

- a) Geben Sie die Anzahl der Elemente von A^4 an!
- b) Geben Sie die kleinste und größte Zahl an, die mit vier Ziffern dargestellt werden kann, sowie die entsprechenden Ziffernfolgen!
- c) Geben Sie für die dreistelligen Ziffernfolge NNN die drei lexikographischen nächstkleineren sowie die drei lexikographisch nächstgrößeren Ziffernfolgen und die jeweils dargestellten Werte an!

Aufgabe 2 (10 Punkte)

a) Berechnen Sie für die zehn im dreistelligen Hexadezimalsystem dargestellten Zahlen gemäß untenstehender Tabelle die fünf Summen als dreistellige Hexadezimalziffernfolgen und geben Sie jeweils an, ob ein Carry und/oder ein Overflow auftritt!

b) Interpretieren Sie die zehn dreistelligen Hexadezimalziffernfolgen der Tabelle aus Aufgabenteil a) als Zahlen in **16er-Komplementdarstellung** und ordnen Sie sie ihrem Wert nach aufsteigend!

Aufgabe 3 (10 Punkte)

In einem 32-bit Wort w sind drei Bitfelder a, b und c folgendermaßen definiert:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
X	X	a_6	a_5	a_4	a_3	a_2	a_1	a_0	X	х	X	X	b_8	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0	X	х	c_4	c_3	c_2	c_1	c_0	х	X	x

- a) Geben Sie die Wertebereiche (dezimal) für ganze Zahlen an, die in a, b, c i) vorzeichenlos und ii) als Zweierkomplemente dargestellt werden können!
- b) In Hexadezimaldarstellung sei w = E0A86780. Geben Sie die Dezimaldarstellung der Zahlen in den Bitfeldern a, b und c an, wenn sie i) vorzeichenlos und ii) als Zweierkomplemente interpretiert werden!
- c) Geben Sie das 32-bit Wort w in Hexadezimaldarstellung an, wenn in den Bitfeldern die Werte a:25, b:-1 und c=-4 als Zweierkomplemente dargestellt sind und die übrigen Bits 0 sind!

Aufgabe 4 (10 Punkte)

- a) Geben sie für die Zahlen i) 50.0 und ii) 0.05 jeweils die binäre Gleitkommadarstellung an (b ... b, b ...) mit b ∈ {0, 1} ggf. unter Kennzeichnung der Periode, sowie in normalisierter Form (1, bbb · 2^e, gerundet auf drei Nachkommastellen!
- b) Geben Sie die Zahl $z=(2^{24}+3)$ in vorzeichenloser Binärdarstellung mit der mindestens benötigten Anzahl von Stellen an, sowie in normalisierter binärer Gleitkommadarstellung mit 23 Nachkommastellen (mathematische Rundung) und außerdem im IEEE 32-bit Format (binär und hexadezimal):

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VZ	VZ LADOIIGITO OATI								Mantisse ohne "Hiden Bit"																						

VZ = 0: positiv, VZ = 1: negativ

Aufgabe 5 (10 Punkte)

Es soll eine binäre Schaltung mit vier Eingängen x_3, x_2, x_1, x_0 und einem Ausgang y konstruiert werden. Die Eingänge sollen als vierstellige Binärdarstellung einer vorzeichenlosen Zahl x interpretiert werden. Wenn x ohne Rest durch sieben teilbar ist, soll der Ausgang y = 1 liefern, andernfalls y = 0.

- a) Geben Sie die Schaltfunktionen als Urbild der Eins $y^{-1}(1)$ an!
- b) Geben Sie die disjunktive Normalform für die Schaltfunktion an!
- c) Zeichnen Sie den entsprechenden Schaltplan!

Aufgabe 6 (10 Punkte)

Gegeben sei eine Boolesche Algebra $(B, +, \cdot)$ mit $B = \{0, 1\}$ und die Abbildungen.

$$f: B^6 \to B$$
 definiert durch den Ausdruck $f(a,b,c,d,e,f) = ((a+b')\cdot(a'+e))' + ((c+e')'\cdot d\cdot f')'$
 $g: B^6 \to B$ definiert durch den Ausdruck $g(a,b,c,d,e,f) = ((a'+b)'\cdot c')' + ((e'+f)'\cdot d)'$

a) Überführen Sie die f und g definierenden Ausdrücke durch Anwendung der Rechenregeln für Boolesche Algebren jeweils in eine Form, so dass keine Komplemente bei "geklammerten" Ausdrücke vorkommen!