UNIVERSITATEA BABEȘ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

CONCURS MATE-INFO aprilie 2015 INFORMATICĂ VARIANTA 1

Subjectul I (30 puncte)

- a) Să se scrie o funcție care are ca parametru un număr real ε și calculează numărul real e cu precizia ε dată. Se va aplica formula $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$. Considerăm că aproximația numărului e cu precizia ε este valoarea x_{n+1} având proprietatea că $|x_{n+1} x_n| < \varepsilon$.
- b) Să se scrie un subalgoritm care are ca parametri un număr natural n, un şir X de numere naturale cu n elemente ($1 \le n \le 100$, $1 \le X_i \le 5000$) și modifică șirul X astfel: rearanjează, în ordine descrescătoare după suma cifrelor, doar elementele pare ale șirului (în cazul în care două elemente pare au aceeași sumă a cifrelor, se va păstra ordinea lor în șirul inițial). Elementele impare ale șirului vor rămâne pe aceleași poziții. Nu se vor folosi tablouri auxiliare. Spre exemplu, pentru n=5 și X=(123,2244,5282,4679,548) șirul X modificat va fi X=(123,5282,548,4679,2244).
- c) Să se scrie două variante de implementare pentru o funcție care are ca parametri un număr natural n_i un șir de numere reale $a_0, a_1, ..., a_n$ și o valoare reală y și care returnează valoarea polinomului $P(x) = a_0 x^n + a_1 x^{n-1} + + a_{n-1} x + a_n$ în punctul y.
 - cl. Soluție iterativă (nerecursivă).
 - c2. Soluție recursivă.

Subjectul II (25 puncte)

Se dă următoarea funcție care are ca parametri două numere naturale n și m ($m \le n$) și returnează o valoare naturală.

Funcția F(n, m) este

Dacă (m=0) sau (m=n) atunci
returnează 1;
altfel
returnează F(n-1, m-1)+F(n-1, m);
SfDacă
SfFuncție

Se cere:

- a) Care va fi valoarea F(15,13)? Justificați răspunsul.
- b) Precizați câte o valoare pentru n și m astfel încât valoarea F(n, m) să fie 243. Justificați alegerea.
- c) Precizati care este efectul funcției.

Subjectul III (35 puncte)

O matrice A(n,m) cu elemente numere întregi se numește rară dacă majoritatea elementelor sale sunt egale cu zero. O matrice rară A(n,m), având k elemente nenule, poate fi memorată folosind un șir X conținând k triplete de forma (linie, coloană, valoare) corespunzătoare valorilor nenule ale matricei – fără a folosi un tablou bidimensional. Elementele șirului X se memorează în ordine lexicografică (crescătoare) după (linie, coloană).

De exemplu, pentru n=m=3, matricea A

se va memora sub forma șirului X conținând $\mathbf{5}$ triplete X = ((1,2,5),(1,3,2),(2,2,2),(3,1,2),(3,3,3)).

Să se scrie un program care citește de la tastatură valorile n, m și două matrice rare A(n,m) și B(n,m), calculează sub forma unei matrice rare suma C(n,m) a celor două matrice A și B și afișează sub forma unui tablou bidimensional matricea C(n,m).

Citirea unei matrice se va face prin citirea numărului *n* de linii, numărului *m* de coloane și prin citirea repetată a unor triplete (*linie*, coloană, valoare) -corespunzătoare valorilor nenule din matrice- până la citirea tripletului (-1, -1, -1). În cazul în care se citesc mai multe triplete având aceeași *linie* și coloană, se va lua în considerare doar primul triplet citit.

Notă (i1, j1) se consideră a fi "mai mic lexicografic" decât (i2, j2) dacă (i1 < i2) sau (i1 = i2 si j1 < j2)

Se vor scrie subprograme pentru:

- a) verificarea dacă perechea (i1,j1) este "mai mică lexicografic" decât perechea (i2,j2)
- b). inserarea unui triplet (linie, coloană, valoare) în sirul \bar{X} asociat unei matrice rare A(n,m).
- c). determinarea elementului de pe linia i și coloana j a unei matrice rare A(n, m) reprezentate sub forma unui șir X.
- d). citirea unei matrice rare A(n, m) conform descrierii anterioare
- e). determinarea matricei rare C(n, m) suma matricelor rare A(n, m) și B(n, m)
- f). tipărirea unei matrice rare A(n,m) (sub forma unui tablou bidimensional)

<u>Indicație</u> O matrice rară A(n, m) poate fi memorată sub forma unei înregistrări conținând numărul n de linii, numărul m de coloane și șirul X de triplete având lungimea k.

```
Exemplu Dacă se citesc de la tastatură
```

```
3 3 - număr de linii, respectiv coloane ale matricei A
```

2 2 2 - se citesc tripletele ale matricei A

3 3 3

125

3 1 2

1 3 5

-1 -1 -1

3 2 4 - se citesc tripletele ale matricei B

12-5

221

-1 -1 -1

se va afișa matricea

Programul se poate scrie într-unul dintre limbajele studiate la liceu (Pascal, C++). Folosiți comentarii pentru a ușura înțelegerea soluției date (explicarea semnificației identificatorilor folosiți, descrierea detaliilor de implementare etc).

Notă: Toate subiectele sunt obligatorii. Rezolvările trebuie scrise detaliat pe foile de concurs (ciornele nu se iau în considerare). Se acordă 10 puncte din oficiu. Țimpul efectiv de lucru este de 3 ore.

UNIVERSITATEA BABEȘ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

CONCURS MATE-INFO aprilie 2015 INFORMATICĂ

BAREM VARIANTA 1

SUBIECT I

a). 8p	
 signatura corectă 	1 p
- implementare	7p
b) 11p	
 signatura corectă 	1 p
- implementare	10p
c) 11p	
 signatura corectă 	1p
- implementarea cl	5p
- implementarea c2	5p
-	_

SUBIECT II

a) - Se returnează valoarea 105.	4p
- Justificare	4 p
b) – de ex. $n=243 m=1$	6р
- Justificare	6р
c) – Efect -combinări de n elemente luate câte m	5p

SUBIECT III

Subprograme: a) b). c).	verificarea dacă perechea (i1,j1) este "mai mică lexicografic" decât perechea (i2,j2) inserarea unui triplet (<i>linie</i> , coloană, valoare) în șirul X asociat unei matrice rare determinarea elementului de pe linia i și coloana j a unei matrice rare reprezentate sub	28p 1p 9p 5p
d).	forma unui şir X citirea unei matrice rare $A(n, m)$ - conform descrierii din enunț	5p
e).	determinarea matricei rare $C(n, m)$ suma matricelor rare $A(n, m)$ și $B(n, m)$	5p
f).	tipărirea unei matrice rare $A(n, m)$ (sub forma unui tablou bidimensional)	3p
Program princ Stil	cipal	2p 5p

 comentarii, indentare, folosirea subprogramelor, apelul corect al subprogramelor, comunicarea între subprograme și programul apelant prin parametri.

Comisia de concurs