# nderstanding

Alice Zheng, Dato September 9, 2015

### My journey so far



Applied machine learning (Data science)



**Build ML tools** 



### Why machine learning?





### The machine learning pipeline

### Raw data



Feature = numeric representation of raw data



### Representing natural text





### Representing natural text





### Representing images

millions of RGB triplets,

one for each pixel



Image source: "Recognizing and learning object categories," Li Fei-Fei, Rob Fergus, Anthony Torralba, ICCV 2005—2009.



### Representing images



### Feature space in machine learning

- Raw data → high dimensional vectors
- Collection of data points → point cloud in feature space
- Model = geometric summary of point cloud
- Feature engineering = creating features of the appropriate granularity for the task



Crudely speaking, mathematicians fall into two categories: the algebraists, who find it easiest to reduce all problems to sets of numbers and variables, and the geometers, who understand the world through shapes.

-- Masha Gessen, "Perfect Rigor"



### Algebra vs. Geometry





# Visualizing a sphere in 2D



Pythagorean theorem:



# Visualizing a sphere in 3D





### Visualizing a sphere in 4D





# Why are we looking at spheres?





### The power of higher dimensions

- A sphere in 4D can model the birth and death process of physical objects
- Point clouds = approximate geometric shapes
- High dimensional features can model many things



### Visualizing Feature Space



## The challenge of high dimension geometry

- Feature space can have hundreds to millions of dimensions
- In high dimensions, our geometric imagination is limited
  - Algebra comes to our aid



## Visualizing bag-of-words

I have a puppy and it is extremely cute









## Visualizing bag-of-words





# Document point cloud





### What is a model?

- Model = mathematical "summary" of data
- What's a summary?
  - A geometric shape



### Classification model





# Clustering model





# Regression model





### Visualizing Feature Engineering



### When does bag-of-words fail?



### Improving on bag-of-words

- Idea: "normalize" word counts so that popular words are discounted
- Term frequency (tf) = Number of times a terms appears in a document
- Inverse document frequency of word (idf) =

$$\log\left(\frac{N}{\#\operatorname{docs\ containing\ word\ }w}\right)$$

- N = total number of documents
- Tf-idf count = tf x idf



### From BOW to tf-idf





### From BOW to tf-idf



### Entry points of feature engineering

- Start from data and task
  - What's the best text representation for classification?
- Start from modeling method
  - What kind of features does k-means assume?
  - What does linear regression assume about the data?



### That's not all, folks!

- There's a lot more to feature engineering:
  - Feature normalization
  - Feature transformations
  - "Regularizing" models
  - Learning the right features

Dato is hiring! jobs@dato.com





