MATH 322 – Graph Theory Fall Term 2021

Notes for Lecture 8

Tuesday, September 28

A detour: 'Forbidden' subgraphs

Many important results in Graph Theory are stated as follows: a graph G has a certain property if and only if we cannot find some 'not so nice' graphs $H_1, H_2, \ldots, H_n, \ldots$ among the **subgraphs** of G, or, even more 'strictly' sometimes, if we cannot find some given graphs $H_1, H_2, \ldots, H_n, \ldots$ among the **induced subgraphs** of G. (we'll see some initial examples in the next two slides)

A detour: 'Forbidden' subgraphs

Many important results in Graph Theory are stated as follows: a graph G has a certain property if and only if we cannot find some 'not so nice' graphs $H_1, H_2, \ldots, H_n, \ldots$ among the <u>subgraphs</u> of G, or, even more 'strictly' sometimes, if we cannot find some given graphs $H_1, H_2, \ldots, H_n, \ldots$ among the <u>induced subgraphs</u> of G. (we'll see some initial examples in the next two slides)

Special Terminology. We call a graph H a <u>forbidden subgraph</u> for a property P of graphs if the following holds true: given any graph G, property P holds true for G **if and only if** G does not contain H as an induced subgraph(in other words, if H is not isomorphic to an induced subgraph of G).

Some examples

• A graph G is a tree or a forest if and only if G does not contain any cycles.

Some examples

- A graph G is a tree or a forest if and only if G does not contain any cycles.
- A criterion for bipartite graphs:

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

Some examples

- A graph G is a tree or a forest if and only if G does not contain any cycles.
- A criterion for bipartite graphs:

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

No odd cycles; can view this as a subgraph of $\mathcal{K}_{6,6}$ (how?)

Given a bipartite graph $K_{m,n}$, we will call any of its subgraphs a bipartite graph too.

Given a bipartite graph $K_{m,n}$, we will call any of its subgraphs a bipartite graph too. Moreover, most of the time we will call $K_{m,n}$ a complete bipartite graph to distinguish from the rest of its subgraphs.

Given a bipartite graph $K_{m,n}$, we will call any of its subgraphs a bipartite graph too. Moreover, most of the time we will call $K_{m,n}$ a complete bipartite graph to distinguish from the rest of its subgraphs.

Bipartite Graph; Subgraph of $K_{10,7}$

Given a bipartite graph $K_{m,n}$, we will call any of its subgraphs a bipartite graph too. Moreover, most of the time we will call $K_{m,n}$ a complete bipartite graph to distinguish from the rest of its subgraphs.

Graph K_{6,4}

Bipartite Graph; Subgraph of $K_{10,7}$

No odd cycles; viewed as a subgraph of $K_{6,6}$

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

Justification. We can directly check (say, by induction on the number k of vertices of a cycle that we consider each time) that a complete bipartite graph does NOT contain any odd cycles, so each of its subgraphs will also not contain any odd cycles.

(In other words, first check that any $K_{m,n}$ does not contain 3-cycles, and then that it cannot contain 5-cycles and so on; this is because the parts of $K_{m,n}$ that the vertices of a cycle belong to have to be alternating, that is, if we start from a vertex in, say, the 'upper' part of $K_{m,n}$, we then have to move to a vertex in the 'lower' part, and so on.)

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

 $\it Justification.$ To show the converse, consider a graph $\it G$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

 $\it Justification.$ To show the converse, consider a graph $\it G$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

Fix a vertex v_0 of G, and 'colour' it blue. Since G is connected, if we consider another vertex w of G, we can find at least one $v_0 - w$ path in G.

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

 $\it Justification.$ To show the converse, consider a graph $\it G$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

Fix a vertex v_0 of G, and 'colour' it blue. Since G is connected, if we consider another vertex w of G, we can find at least one $v_0 - w$ path in G.

Idea: For each vertex w of G, choose a $v_0 - w$ path in G which has the shortest possible length. Denote this length by ℓ_w .

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

 $\it Justification.$ To show the converse, consider a graph $\it G$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

Fix a vertex v_0 of G, and 'colour' it blue. Since G is connected, if we consider another vertex w of G, we can find at least one $v_0 - w$ path in G.

Idea: For each vertex w of G, choose a $v_0 - w$ path in G which has the shortest possible length. Denote this length by ℓ_w .

• If ℓ_w is an even integer, then 'colour' the vertex w blue.

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

 $\it Justification.$ To show the converse, consider a graph $\it G$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

Fix a vertex v_0 of G, and 'colour' it blue. Since G is connected, if we consider another vertex w of G, we can find at least one $v_0 - w$ path in G.

Idea: For each vertex w of G, choose a $v_0 - w$ path in G which has the shortest possible length. Denote this length by ℓ_w .

- If ℓ_w is an even integer, then 'colour' the vertex w blue.
- If ℓ_w is an odd integer, then 'colour' the vertex w red.

A graph G is (a subgraph of) a bipartite graph if and only if G does not contain any odd cycles (that is, if and only if none of the subgraphs of G is an odd cycle).

Justification. To show the converse, consider a graph ${\it G}$ that does NOT contain any odd cycles.

- Note that it suffices to show that each connected component of G is a bipartite graph (attention: not necessarily complete), therefore we can assume that G is connected (because otherwise we focus our attention on one connected component of G at a time).

Fix a vertex v_0 of G, and 'colour' it blue. Since G is connected, if we consider another vertex w of G, we can find at least one $v_0 - w$ path in G.

Idea: For each vertex w of G, choose a $v_0 - w$ path in G which has the shortest possible length. Denote this length by ℓ_w .

- If ℓ_w is an even integer, then 'colour' the vertex w blue.
- If ℓ_w is an odd integer, then 'colour' the vertex w red.

Claim. The blue vertices of G form one part, and the red vertices another part. There is NO edge in G joining two blue vertices, and also NO edge joining two red vertices, so G can be viewed as a bipartite graph.

Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2} = 1$, and thus w_2 would have been 'coloured' red.

Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2}=1$, and thus w_2 would have been 'coloured' red.

Find a $v_0 - w_1$ path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a $v_0 - w_2$ path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and

 ℓ_{w_2} are even.

Proof of the claim. Suppose that two (different) blue vertices w_1, w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1),

because then we would have that $\ell_{w_2}=1$, and thus w_2 would have been 'coloured' red.

Find a $v_0 - w_1$ path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a $v_0 - w_2$ path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_3} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . **Proof of the claim.** Suppose that two (different) blue vertices w_1, w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2}=1$, and thus w_2 would have been 'coloured' red.

Find a $v_0 - w_1$ path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a $v_0 - w_2$ path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . **Important Observation.** Let Q_1 be the $v_0 - z_0$ subpath of P_1 , and let Q_2 be the $v_0 - z_0$ subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to

 ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $> \ell_{z_0}$, then we could replace Q_1 by a $\nu_0 - z_0$ path which has shortest possible length, and this would give us a shorter $v_0 - w_1$ path than P_1 , contradicting our choice of P_1).

Proof of the claim. Suppose that two (different) blue vertices w_1, w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2} = 1$, and thus w_2 would have been 'coloured' red.

Find a v_0-w_1 path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a v_0-w_2 path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . Important Observation. Let Q_1 be the v_0-z_0 subpath of P_1 , and let Q_2 be the v_0-z_0 subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $>\ell_{z_0}$, then we could replace Q_1 by a v_0-z_0 path which has shortest possible length, and this would give us a shorter v_0-w_1 path than P_1 , contradicting our choice of P_1).

Thus, if we set Q_1' to be the z_0-w_1 subpath of P_1 (that is, the remaining part of P_1 after 'deleting' Q_1 except for the vertex z_0), then Q_1' has length $\ell_{w_1}-\ell_{z_0}$. Similarly, if we set Q_2' to be the z_0-w_2 subpath of P_2 , then Q_2' has length $\ell_{w_2}-\ell_{z_0}$.

ullet Note that either both $\ell_{w_1}-\ell_{z_0}$ and $\ell_{w_2}-\ell_{z_0}$ are even, or both of them are odd.

Proof of the claim. Suppose that two (different) blue vertices w_1, w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2}=1$, and thus w_2 would have been 'coloured' red.

Find a $v_0 - w_1$ path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a $v_0 - w_2$ path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . **Important Observation.** Let Q_1 be the $v_0 - z_0$ subpath of P_1 , and let Q_2 be the $v_0 - z_0$ subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $> \ell_{z_0}$, then we could replace Q_1 by a $\nu_0 - z_0$ path which has shortest possible length, and this would give us a shorter $v_0 - w_1$ path than P_1 , contradicting our choice of P_1).

Thus, if we set Q_1' to be the $z_0 - w_1$ subpath of P_1 (that is, the remaining part of P_1 after 'deleting' Q_1 except for the vertex z_0), then Q_1' has length $\ell_{w_1}-\ell_{z_0}$. Similarly, if we set Q_2' to be the $z_0 - w_2$ subpath of P_2 , then Q_2' has length $\ell_{w_2} - \ell_{z_0}$.

ullet Note that either both $\ell_{w_1}-\ell_{z_0}$ and $\ell_{w_2}-\ell_{z_0}$ are even, or both of them are odd.

- Moreover, Q'_1 and Q'_2 don't have any common vertices anymore, except for their
- initial vertex z_0 .

Proof of the claim. Suppose that two (different) blue vertices w_1 , w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2} = 1$, and thus w_2 would have been 'coloured' red.

Find a v_0-w_1 path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a v_0-w_2 path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . **Important Observation**. Let Q_1 be the $v_0 - z_0$ subpath of P_1 , and let Q_2 be the

 v_0-z_0 subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $>\ell_{z_0}$, then we could replace Q_1 by a v_0-z_0 path which has shortest possible length, and this would give us a shorter v_0-w_1 path than P_1 , contradicting our choice of P_1).

Thus, if we set Q_1' to be the z_0-w_1 subpath of P_1 (that is, the remaining part of P_1 after 'deleting' Q_1 except for the vertex z_0), then Q_1' has length $\ell_{w_1}-\ell_{z_0}$. Similarly, if we set Q_2' to be the z_0-w_2 subpath of P_2 , then Q_2' has length $\ell_{w_2}-\ell_{z_0}$.

- Note that either both $\ell_{w_1} \ell_{z_0}$ and $\ell_{w_2} \ell_{z_0}$ are even, or both of them are odd.
- ullet Moreover, Q_1' and Q_2' don't have any common vertices anymore, except for their initial vertex z_0 .

We can thus form a cycle C_0 in G by traversing Q'_1 , then the edge w_1w_2 , and then Q'_2 in the reverse direction (that is, going from w_2 to z_0).

Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1), because then we would have that $\ell_{w_2}=1$, and thus w_2 would have been 'coloured' red.

Find a v_0-w_1 path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a v_0-w_2 path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 .

Important Observation. Let Q_1 be the v_0-z_0 subpath of P_1 , and let Q_2 be the v_0-z_0 subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $>\ell_{z_0}$, then we could replace Q_1 by a v_0-z_0 path which has shortest possible length, and this would give us a shorter v_0-w_1 path than P_1 , contradicting our choice of P_1).

Thus, if we set Q_1' to be the z_0-w_1 subpath of P_1 (that is, the remaining part of P_1 after 'deleting' Q_1 except for the vertex z_0), then Q_1' has length $\ell_{w_1}-\ell_{z_0}$. Similarly, if we set Q_2' to be the z_0-w_2 subpath of P_2 , then Q_2' has length $\ell_{w_2}-\ell_{z_0}$.

- Note that either both $\ell_{w_1} \ell_{z_0}$ and $\ell_{w_2} \ell_{z_0}$ are even, or both of them are odd.
- Moreover, Q_1' and Q_2' don't have any common vertices anymore, except for their initial vertex z_0 .

We can thus form a cycle C_0 in G by traversing Q_1' , then the edge w_1w_2 , and then Q_2' in the reverse direction (that is, going from w_2 to z_0). C_0 has size (that is, number of edges) equal to $\ell_{w_1} - \ell_{z_0} + 1 + \ell_{w_2} - \ell_{z_0}.$

This is an odd number, contradicting the assumption that G contains NO odd cycles. Thus the 'blue' vertices w_1 , w_2 cannot be joined by an edge.

Proof of the claim. Suppose that two (different) blue vertices w_1, w_2 in G were joined. Note first of all that v_0 cannot be any of these vertices (say, it cannot be vertex w_1),

because then we would have that $\ell_{w_2} = 1$, and thus w_2 would have been 'coloured' red. Find a $v_0 - w_1$ path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a $v_0 - w_2$ path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_2} and

similarly find a v_0-w_1 path P_1 in G which has length ℓ_{w_1} (that is, the smallest possible), and similarly find a v_0-w_2 path P_2 in G which has length ℓ_{w_2} . Recall that both ℓ_{w_1} and ℓ_{w_2} are even.

Clearly, P_1 and P_2 have common vertices (definitely the vertex v_0). Let z_0 be the 'last' vertex of P_1 which also appears in P_2 , that is, the one that is closest to w_1 . Important Observation. Let Q_1 be the v_0-z_0 subpath of P_1 , and let Q_2 be the v_0-z_0 subpath of P_2 . Then both Q_1 and Q_2 have the same length, which is equal to ℓ_{z_0} (indeed, these are v_0-z_0 paths in G, so they cannot have length $<\ell_{z_0}$; also, if e.g. Q_1 had length $>\ell_{z_0}$, then we could replace Q_1 by a v_0-z_0 path which has

contradicting our choice of P_1). Thus, if we set Q_1' to be the z_0-w_1 subpath of P_1 (that is, the remaining part of P_1 after 'deleting' Q_1 except for the vertex z_0), then Q_1' has length $\ell_{w_1}-\ell_{z_0}$. Similarly, if

we set Q_2' to be the z_0-w_2 subpath of P_2 , then Q_2^{r} has length $\ell_{w_2}-\ell_{z_0}$.

shortest possible length, and this would give us a shorter $v_0 - w_1$ path than P_1 ,

• Note that either both $\ell_{w_1} - \ell_{z_0}$ and $\ell_{w_2} - \ell_{z_0}$ are even, or both of them are odd.

ullet Moreover, Q_1' and Q_2' don't have any common vertices anymore, except for their initial vertex z_0 .

We can thus form a cycle C_0 in G by traversing Q_1' , then the edge w_1w_2 , and then Q_2' in the reverse direction (that is, going from w_2 to z_0). C_0 has size (that is, number of edges) equal to $\ell_{w_1} - \ell_{z_0} + 1 + \ell_{w_2} - \ell_{z_0}.$

This is an odd number, contradicting the assumption that G contains NO odd cycles. Thus the 'blue' vertices w_1 , w_2 cannot be joined by an edge. Similarly, we can show that two 'red' vertices cannot be joined.

A criterion for line graphs

A criterion for line graphs

Theorem (Beineke, 1968)

A graph G is the line graph of some other graph H if and only if the following 9 graphs are forbidden subgraphs for G (in other words, if and only if none of the following graphs is an induced subgraph of G).

from the Balakrishnan-Ranganathan book

Back to Connectivity

Connectivity

Definitions

Let G be a connected graph.

1 A vertex v of G is called a <u>cutvertex</u> of G if we have that

G - v

is no longer connected.

2 An edge e in G is called a **bridge** (or a **cutedge**) of G if we have that

G-e

is no longer connected.

Connectivity

Definitions

Let G be a connected graph.

1 A vertex v of G is called a <u>cutvertex</u> of G if we have that

$$G - v$$

is no longer connected.

2 An edge e in G is called a bridge (or a cutedge) of G if we have that

$$G - e$$

is no longer connected.

Definition again, more generally formulated

If we start with a graph H which is not necessarily connected, then

- 1 a vertex \tilde{v} of H is called a <u>cutvertex</u> of H if, by deleting \tilde{v} (and of course all the edges \tilde{v} is incident with), we <u>increase the number of connected</u> components of H.
- 2 an edge \tilde{e} in H is called a <u>bridge</u> of H if, by deleting \tilde{e} , we <u>increase the</u> number of connected components of H.

Connectivity (cont.)

Definitions

Let G = (V, E) be a connected graph.

1 A subset V' of the vertex set V of G is called a <u>vertex cut</u> if we have that

$$G - V'$$

is disconnected. We call it a $\frac{k-vertex\ cut}{}$ if the cardinality |V'| of V' is equal to k (that is, if V' contains k vertices of G).

V' is also called a *separating set of vertices* of G.

Connectivity (cont.)

Definitions

Let G = (V, E) be a connected graph.

1 A subset V' of the vertex set V of G is called a <u>vertex cut</u> if we have that

$$G-V'$$

is disconnected. We call it a $\frac{k\text{-}vertex\ cut}{}$ if the cardinality |V'| of V' is equal to k (that is, if V' contains k vertices of G).

V' is also called a *separating set of vertices* of G.

2 A subset E' of the edge set E of G is called an $\underline{edge\ cut}$ if we have that

$$G-E'$$

is disconnected. We call it a k-edge cut if |E'| = k.

E' is also called a *separating set of edges* of G.

Vertex and Edge Connectivity

The parameters of

The parameters of Vertex and Edge Connectivity

Edge Connectivity

The parameter $\lambda(G)$

Let G be a connected graph of order $\geqslant 2$. We define the <u>edge connectivity</u> $\lambda(G)$ of G to be <u>the minimum cardinality of</u> an edge cut of G.

Testing our understanding on examples

Question. What is $\lambda(G)$ for each of the following graphs G?

A "flower" graph

Part of an important theorem we will state shortly

Let G be a connected graph of order $\geqslant 2$ (which implies that G has at least one edge).

We have that:
$$\lambda(G) \leqslant \delta(G)$$
.

Part of an important theorem we will state shortly

Let G be a connected graph of order $\geqslant 2$ (which implies that G has at least one edge).

We have that:
$$\lambda(G) \leqslant \delta(G)$$
.

Justification. Let v_0 be a vertex in G which has minimum degree, that is, $\deg_G(v_0) = \delta(G)$. Denote this degree by d_0 .

Part of an important theorem we will state shortly

Let G be a connected graph of order $\geqslant 2$ (which implies that G has at least one edge).

We have that:

$$\lambda(G) \leqslant \delta(G)$$
.

Justification. Let v_0 be a vertex in G which has minimum degree, that is, $\deg_G(v_0) = \delta(G)$. Denote this degree by d_0 .

Then v_0 has d_0 neighbours in G, say the vertices $w_1, w_2, \ldots, w_{d_0}$, and is incident with exactly d_0 edges of G, the edges

$$e_1 = v_0 w_1, \ e_2 = v_0 w_2, \ldots, \ e_{d_0} = v_0 w_{d_0}.$$

Part of an important theorem we will state shortly

Let G be a connected graph of order $\geqslant 2$ (which implies that G has at least one edge).

We have that:

$$\lambda(G) \leqslant \delta(G)$$
.

Justification. Let v_0 be a vertex in G which has minimum degree, that is, $\deg_G(v_0) = \delta(G)$. Denote this degree by d_0 .

Then v_0 has d_0 neighbours in G, say the vertices $w_1, w_2, \ldots, w_{d_0}$, and is incident with exactly d_0 edges of G, the edges

$$e_1 = v_0 w_1, \ e_2 = v_0 w_2, \ldots, \ e_{d_0} = v_0 w_{d_0}.$$

If we delete the edges e_1,e_2,\ldots,e_{d_0} , then v_0 is an isolated vertex in the resulting subgraph $G-\{e_1,e_2,\ldots,e_{d_0}\}$ (which still has all the other vertices too), and thus $G-\{e_1,e_2,\ldots,e_{d_0}\}$ is disconnected.

This shows that $\{e_1, e_2, \dots, e_{d_0}\}$ is an edge cut of G, and since it has cardinality $d_0 = \delta(G)$, we must have

 $\lambda(G) := \text{minimum cardinality of an edge cut of } G \leqslant \delta(G).$

Examples (cont.)

Question. What is the edge connectivity of a complete graph? That is, what is $\lambda(K_n)$?

Complete graph on vertices $\{1, 2, 3, 4, 5, 6, 7\}$

An equivalent way of thinking about the last question

Given that every graph on n vertices is a subgraph of the complete graph K_n , and given that we are asking for the minimum number of edges that we would have to remove from K_n in order to get a disconnected graph, we could ask this question in a 'complementary' way too:

What is the maximum size (that is, largest number of edges) of a disconnected subgraph of K_n which contains all n vertices?

Or more simply, what is the maximum size of a disconnected graph on n vertices?

An equivalent way of thinking about the last question

Given that every graph on n vertices is a subgraph of the complete graph K_n , and given that we are asking for the minimum number of edges that we would have to remove from K_n in order to get a disconnected graph, we could ask this question in a 'complementary' way too:

What is the maximum size (that is, largest number of edges) of a disconnected subgraph of K_n which contains all n vertices?

Or more simply, what is the maximum size of a disconnected graph on n vertices?

How does the answer to the above question relate to $\lambda(K_n)$?

An equivalent way of thinking about the last question

Given that every graph on n vertices is a subgraph of the complete graph K_n , and given that we are asking for the minimum number of edges that we would have to remove from K_n in order to get a disconnected graph, we could ask this question in a 'complementary' way too:

What is the maximum size (that is, largest number of edges) of a disconnected subgraph of K_n which contains all n vertices?

Or more simply, what is the maximum size of a disconnected graph on n vertices?

How does the answer to the above question relate to $\lambda(K_n)$?

It's worth comparing this question with the 'opposite' question we discussed in the last lectures, about what the minimum size of a connected graph H on n vertices is. Recall that we have found this minimum size to be n-1 (because any graph with size < n-1 will be disconnected, whereas paths (or any other trees) on n vertices are connected (by definition) and have precisely n-1 edges as we showed).

Answer to our two 'complementary' questions

What is the maximum size (that is, largest number of edges) of a disconnected subgraph of K_n which contains all n vertices?

Or more simply, what is the maximum size of a disconnected graph on n vertices?

Also, how does the answer to the above question relate to $\lambda(K_n)$?

Answer to our two 'complementary' questions

What is the maximum size (that is, largest number of edges) of a disconnected subgraph of K_n which contains all n vertices?

Or more simply, what is the maximum size of a disconnected graph on n vertices?

Also, how does the answer to the above question relate to $\lambda(K_n)$?

Answer. We know that the size $e(K_n)$ of K_n is

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

(since the edge set of K_n contains all 2-element subsets of the vertex set of K_n); if e_{\max} is the maximum size of a disconnected subgraph of K_n which contains all n vertices, then

$$\lambda(K_n) = \binom{n}{2} - e_{\max}.$$

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

• G must have **exactly two** connected components.

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

• G must have exactly two connected components. Indeed, if G had at least three connected components, and say G₁, G₂, G₃ were three of these components, then no vertices from G₂ would be joined with vertices from G₃; however if we started adding edges which join such vertices, we would increase the number of edges in G, while G would still be disconnected (since none of the vertices in G₁ would be joined with a vertex in G₂ or G₃); but we have assumed that G has the maximum possible number of edges among disconnected graphs, so we shouldn't be able to add any more edges to it without it becoming connected.

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

- G must have exactly two connected components. Indeed, if G had at least three connected components, and say G₁, G₂, G₃ were three of these components, then no vertices from G₂ would be joined with vertices from G₃; however if we started adding edges which join such vertices, we would increase the number of edges in G, while G would still be disconnected (since none of the vertices in G₁ would be joined with a vertex in G₂ or G₃); but we have assumed that G has the maximum possible number of edges among disconnected graphs, so we shouldn't be able to add any more edges to it without it becoming connected.
- If G₁ and G₂ are the two connected components of G, then every vertex in G₁
 has to be joined with every other vertex in G₁, and similarly for the vertices in G₂.

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

- G must have exactly two connected components. Indeed, if G had at least three connected components, and say G₁, G₂, G₃ were three of these components, then no vertices from G₂ would be joined with vertices from G₃; however if we started adding edges which join such vertices, we would increase the number of edges in G, while G would still be disconnected (since none of the vertices in G₁ would be joined with a vertex in G₂ or G₃); but we have assumed that G has the maximum possible number of edges among disconnected graphs, so we shouldn't be able to add any more edges to it without it becoming connected.
- If G_1 and G_2 are the two connected components of G, then every vertex in G_1 has to be joined with every other vertex in G_1 , and similarly for the vertices in G_2 . Indeed, if we could find two vertices in G_1 (or two vertices in G_2) which are not joined already by an edge, we could add that edge and hence increase the number of edges in G, without ending up with a connected graph; again this would contradict the assumption that G has the maximum possible number of edges among disconnected graphs.

Consider a graph G of order n which is disconnected and has the maximum possible number of edges. We can make the following observations:

- *G* must have exactly two connected components. Indeed, if *G* had at least three connected components, and say G_1 , G_2 , G_3 were three of these components, then no vertices from G_2 would be joined with vertices from G_3 ; however if we started adding edges which join such vertices, we would increase the number of edges in *G*, while *G* would still be disconnected (since none of the vertices in G_1 would be joined with a vertex in G_2 or G_3); but we have assumed that *G* has the maximum possible number of edges among disconnected graphs, so we shouldn't be able to add any more edges to it without it becoming connected.
- If G₁ and G₂ are the two connected components of G, then every vertex in G₁ has to be joined with every other vertex in G₁, and similarly for the vertices in G₂. Indeed, if we could find two vertices in G₁ (or two vertices in G₂) which are not joined already by an edge, we could add that edge and hence increase the number of edges in G, without ending up with a connected graph; again this would contradict the assumption that G has the maximum possible number of edges among disconnected graphs.

Based on these, we see that G is the disjoint union of two complete graphs:

$$G = K_k \oplus K_{n-k}$$

for some $1 \leqslant k \leqslant n-1$.

We have already confirmed that

$$G = K_k \oplus K_{n-k}$$

for some $1 \leqslant k \leqslant n-1$.

We have already confirmed that

$$G = K_k \oplus K_{n-k}$$

for some $1 \leqslant k \leqslant n-1$.

But then

$$e(G) = \binom{k}{2} + \binom{n-k}{2} = \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2}$$
.

We have already confirmed that

$$G = K_k \oplus K_{n-k}$$

for some $1 \le k \le n-1$.

But then

$$e(G) = {k \choose 2} + {n-k \choose 2} = \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2}.$$

It remains to check that, when we only consider $k \in \{1, 2, \dots, n-2, n-1\}$, this expression for e(G) takes its maximum value when k=1 or k=n-1 (in fact, the function $k \mapsto \binom{k}{2} + \binom{n-k}{2}$ is decreasing for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, and then it becomes increasing).

We have already confirmed that

$$G = K_k \oplus K_{n-k}$$

for some $1 \leqslant k \leqslant n-1$.

But then

$$e(G) = {k \choose 2} + {n-k \choose 2} = \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2}.$$

It remains to check that, when we only consider $k \in \{1, 2, \dots, n-2, n-1\}$, this expression for e(G) takes its maximum value when k=1 or k=n-1 (in fact, the function $k \mapsto \binom{k}{2} + \binom{n-k}{2}$) is decreasing for $1 \leqslant k \leqslant \lfloor \frac{n}{2} \rfloor$, and then it becomes increasing).

Plugging k = n - 1 above, we obtain that

$$e(G) = \binom{n-1}{2}$$

is the maximum possible size of a disconnected graph on n vertices. In fact, we have also found that such a graph should be the disjoint union of a complete graph on n-1 vertices and an isolated vertex.

We have already confirmed that

$$G = K_{k} \oplus K_{n-k}$$

for some $1 \le k \le n-1$.

But then

$$e(G) = \binom{k}{2} + \binom{n-k}{2} = \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2}$$
.

It remains to check that, when we only consider $k \in \{1, 2, \dots, n-2, n-1\}$, this expression for e(G) takes its maximum value when k=1 or k=n-1 (in fact, the function $k \mapsto {k \choose 2} + {n-k \choose 2}$ is decreasing for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, and then it becomes increasing).

Plugging k = n - 1 above, we obtain that

$$e(G) = \binom{n-1}{2}$$

is the maximum possible size of a disconnected graph on n vertices. In fact, we have also found that such a graph should be the disjoint union of a complete graph on n-1 vertices and an isolated vertex.

We also conclude that $\lambda(K_n) = e(K_n) - \binom{n-1}{2} = \binom{n}{2} - \binom{n-1}{2} = n-1$.

• The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size?

• The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.

- The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.
- The minimum size of a connected graph on n vertices is n-1. Question 2. Which connected graphs of order n have this size?

- The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.
- The minimum size of a connected graph on n vertices is n-1. Question 2. Which connected graphs of order n have this size? We have seen that only trees on n vertices have this size.

- The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.
- The minimum size of a connected graph on n vertices is n-1. Question 2. Which connected graphs of order n have this size? We have seen that only trees on n vertices have this size.
- The maximum size of a disconnected graph on n vertices is $\binom{n}{2} (n-1) = \binom{n-1}{2}$.

- The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.
- The minimum size of a connected graph on n vertices is n-1. Question 2. Which connected graphs of order n have this size? We have seen that only trees on n vertices have this size.
- The maximum size of a disconnected graph on n vertices is $\binom{n}{2}-(n-1)=\binom{n-1}{2}$.
- The minimum size of a disconnected graph on n vertices is 0 (and the only example here is the Null Graph N_n).

- The maximum size of a connected graph on n vertices is $\binom{n}{2}$. Question 1. Which connected graphs of order n have this size? Only the complete graph K_n has this size.
- The minimum size of a connected graph on n vertices is n-1. Question 2. Which connected graphs of order n have this size? We have seen that only trees on n vertices have this size.
- The maximum size of a disconnected graph on n vertices is $\binom{n}{2} (n-1) = \binom{n-1}{2}$.
- The minimum size of a disconnected graph on n vertices is 0 (and the only example here is the Null Graph N_n).

More generally, we can show...

Theorem

Let G be a graph of order n which has exactly k connected components (where $1 \le k \le n$).

Then the maximum possible size of G is $\binom{n-k+1}{2}$, and the minimum possible size is n-k.

See video lecture 5.2 (Edge estimates) from Dr. Seidon Alsaody's list.

Let G be a connected graph of order n that is different from K_n .

Let G be a connected graph of order n that is different from K_n .

Then $\lambda(G) < n-1$ (why?).

Let G be a connected graph of order n that is different from K_n . Then $\lambda(G) < n-1$ (why?).

We can reach this conclusion by relying on the useful observation

we stated earlier: we have that

— if G is not the complete graph on n vertices, then G has at least one vertex which is not connected to every other vertex, and hence $\delta(G) < n-1$.

Let G be a connected graph of order n that is different from K_n .

Then
$$\lambda(G) < n-1$$
 (why?).

We can reach this conclusion by relying on the useful observation we stated earlier: we have that

- if G is not the complete graph on n vertices, then G has at least one vertex which is not connected to every other vertex, and hence $\delta(G) < n-1$.
- By the observation, we get that λ(G) ≤ δ(G) < n − 1.

The other extreme

Question. Consider a tree T on n vertices. What is $\lambda(T)$? Does it depend on which tree on n vertices we start with?

Trees of order 6 or less; from the Harris-Hirst-Mossinghoff book

The other extreme

Question. Consider a tree T on n vertices. What is $\lambda(T)$? Does it depend on which tree on n vertices we start with?

Trees of order 6 or less; from the Harris-Hirst-Mossinghoff book

We always have $\lambda(T)=1$ for any tree T with at least two vertices. Moreover, we have that every edge of T is a bridge (or equivalently, a cutedge).

The other extreme

Question. Consider a tree T on n vertices. What is $\lambda(T)$? Does it depend on which tree on n vertices we start with?

Trees of order 6 or less; from the Harris-Hirst-Mossinghoff book

We always have $\lambda(T)=1$ for any tree T with at least two vertices. Moreover, we have that every edge of T is a bridge (or equivalently, a cutedge). (this is because, by deleting an arbitrary edge e from T, we are left with a subgraph T-e on n vertices which has n-2 edges)

What about Vertex Connectivity?

What about Vertex Connectivity?

Completely analogously to edge connectivity, we would like to define the parameter of 'vertex connectivity' of a connected graph G to be the minimum cardinality of a vertex cut of G.

But... complete graphs don't have vertex cuts

But... complete graphs don't have vertex cuts

Important Remark. Given $n \ge 2$, we have that, for every (proper) subset V' of the vertex set V of K_n , the graph $K_n - V'$ is again a complete graph (on the vertices $V \setminus V'$ now), and hence it cannot be disconnected.

→ a complete graph does not have any vertex cuts.

In all other cases however...

Any connected graph of order $\geqslant 2$ which is not a complete graph will have vertex cuts. (For each of the examples below, find a vertex cut; if possible, try to find one with smallest possible cardinality.)

Graph G₂

How do we reconcile these two facts, in order to give a useful definition?

How do we reconcile these two facts, in order to give a useful definition?

to be discussed next time