1 Preliminaries

1.1 Set and Collections

Definition 1.1.1 *Let* \mathcal{D} *be a collection of sets. The union of* \mathcal{C} *, denoted by* $\bigcup \mathcal{C}$ *, is the set defined by*

$$\bigcup \mathcal{C} = \{x | x \in S \text{ for some } S \in \mathcal{C}\}.$$

If C is a non-empty collection, its intersection is the set $\bigcap C$ given by

$$\bigcap \mathcal{C} = \{x | x \in S \text{ for every } S \in \mathcal{C}\}.$$

Here, the generalized union and generalized intersection of sets simply involve performing the union or intersection operation on each element within the set.

Note that if \mathcal{C} and \mathcal{D} are two collections such that $\mathcal{C} \subseteq \mathcal{D}$, then

$$\bigcup \mathcal{C} \subseteq \bigcup \mathcal{D} \text{ and } \bigcap \mathcal{D} \subseteq \bigcap \mathcal{C}$$

Within the framework of collections of subsets of a given set S, we extend the previous definition by taking $\bigcap \emptyset = S$ for the empty collection of subsets of S.

This is consistent with the fact that $\emptyset \subseteq \mathcal{C}$ implies $\bigcap \mathcal{C} \subseteq \mathcal{S}$.

Definition 1.1.2 The symmetric difference of sets denoted by \oplus is defined by $U \oplus V = (U - V) \cup (V - U)$ for all sets U, V.

The symmetric difference operation is easily shown to satisfy symmetry and associativity, and also $U \oplus U = \emptyset$. Next, we will prove the associativity.

Proof 1.1.1

$$\begin{aligned} \textit{LEFT} &= ((U - V) \cup (V - U)) \oplus T \\ &= (((U - V) \cup (V - U)) - T) \cup (T - ((U - V) \cup (V - U))) \\ &= ((U\bar{V} \cup V\bar{U}) \cap \bar{T}) \cup (T \cap (\bar{U}\bar{V} \cup UV)) \\ &= \sum_{i=1,2,4,7} m_i \end{aligned}$$

$$RIGHT = LEFT$$

However, the above method is rather cumbersome. We can instead adopt the characteristic function approach for the proof. Here, we first supplement the relevant concepts of characteristic functions.

Definition 1.1.3 For any set A, the function

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A \end{cases}$$

is called the characteristic function of the set A.

The characteristic function has the following properties:

- 1. The necessary and sufficient condition for A=X is $\chi_A(x)\equiv 1$, and the necessary and sufficient condition for $A=\varnothing$ is $\chi_A(x)\equiv 0$;
- 2. The necessary and sufficient condition for $A \subset B$ is

$$\chi_A(x) \leqslant \chi_B(x), (\forall x \in X);$$

- 3. $\chi_{\bar{P}}(x) = 1 \chi_{P}(x)$.
- 4. $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$.
- 5. $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$;
- 6.

$$\chi_{\bigcup_{\alpha \in \Lambda} A_{\alpha}}(x) = \max_{\alpha \in \Lambda} \chi_{A_{\alpha}}(x)$$

$$\chi_{\bigcap_{\alpha \in \Lambda} A_{\alpha}}(x) = \min_{\alpha \in \Lambda} \chi_{A_{\alpha}}(x)$$

7. Let $\{A_k\}$ be an arbitrary sequence of sets, then

$$\chi_{\overline{\lim}_{k\to\infty}A_k}(x) = \overline{\lim}_{k\to\infty}\chi_{A_k}(x)$$

$$\chi_{\underline{\lim}_{k\to\infty}A_k}(x) = \underline{\lim}_{k\to\infty}\chi_{A_k}(x);$$

8. The necessary and sufficient condition for $\lim_{k\to\infty} A_k$ to exist is that $\lim_{k\to\infty} \chi_{A_k}(x)$ exists $(\forall x\in X)$, and when the limit exists, we have

$$\chi_{\lim_{k\to\infty} A_k}(x) = \lim_{k\to\infty} \chi_{A_k}(x) \quad (x\in X).$$

$$\overline{\lim}_{k \to \infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

The limit superior of a sequence of sets reflects the collection of elements that "repeatedly appear" in the sequence of sets.

$$\overline{\lim}_{k\to\infty}A_k=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k$$

The limit inferior of a sequence of sets reflects the collection of elements that exhibit "stable membership" within the sequence of sets.

$$\varlimsup_{k\to\infty}\chi_{A_k}(x)=\lim_{n\to\infty}(\sup_{k\geqslant n}\chi_{A_k(x)})$$

$$\underline{\lim}_{k\to\infty}\chi_{A_k}(x) = \lim_{n\to\infty} (\inf_{k\geqslant n}\chi_{A_k(x)})$$

Next, we will employ the method of characteristic functions to complete the proof of the associativity of the symmetric difference operation.

Proof 1.1.2

$$\chi_{A \oplus B}(x) = \chi_{(A-B) \cup (B-A)}(x)$$

$$= \chi_{A-B}(x) + \chi_{B-A}(x)$$

$$= \chi_{A}(x) \cdot \chi_{\bar{B}}(x) + \chi_{\bar{A}}(x) \cdot \chi_{B}(x)$$

$$= \chi_{A}(x) + \chi_{B}(x) - 2\chi_{A \cap B}(x)$$

$$LEFT = \chi_{(U \oplus V) \oplus T}(x)$$

$$= \chi_{U}(x) + \chi_{V}(x) + \chi_{T}(x) - 2\chi_{U \cap V}(x) - 2\chi_{V \cap T}(x) - 2\chi_{U \cap T}(x) + 4\chi_{U \cap V \cap T}(x)$$

$$= RIGHT$$

Definition 1.1.4 Below are several concepts pertaining to sets.

- 1. An ordered pair is a collection of sets $\{\{x,y\},\{x\}\}$. It can be readily verified that x and y are determined uniquely.
- 2. Let $\{\{x,y\},\{x\}\}$ be an ordered pair. Then x is the first component of p and y is the second component of p.
- 3. Let X, Y be two sets. Their product is the set $X \times Y$ that consists of all pairs of the form (x, y) where $x \in X$ and $y \in Y$.
- 4. Let C and D be two collections of sets such that $\bigcup C = \bigcup D$. D is a **refinement** of C if, for every $D \in D$, there exists $C \in C$ such that $D \subseteq C$. This is denoted by $C \subseteq D$.
- 5. A collection of sets C is **hereditary** if $U \in C$ and $W \subseteq U$ implies $W \in C$.
- 6. The set of subsets of S that contain k elements is denoted by $\mathcal{P}_k(S)$. Clearly, for every set S, we have $\mathcal{P}_0(S) = \{\emptyset\}$. The set of all finite subsets of a set S is denoted by $\mathcal{P}_{fin}(S) = \bigcup_{k \in \mathcal{N}} \mathcal{P}_k(S)$.
- 7. Let C be a collection of sets and let U be a set. The **trace** of the collection C on the set U is the collection $C_U = \{U \cap C | C \in C\}$.

Definition 1.1.5 *Let* C *and* D *be two collections of sets.*

- 1. $C \vee D = \{C \cup D | C \in C \text{ and } D \in D\},\$
- 2. $C \wedge D = \{C \cap D | C \in C \text{ and } D \in D\},\$
- 3. $C D = \{C D | C \in C \text{ and } D \in D\}.$

Attention, unlike \cup and cap, the operations \vee and \wedge between collections of sets are not idempotent. Indeed, we have, for example,

$$\mathcal{D} \vee \mathcal{D} = \{\{y\}, \{x, y\}, \{u, y, z\}, \{u, x, y, z\}\} \neq \mathcal{D}.$$

Definition 1.1.6 A partition of a non-empty subsets of S that are pairwise disjoint and whose union equals S. The members of π are referred to as the blocks of the partition π . The collection of partitions of a set S is denoted by PART(S). A partition is finite if it has a finite number of blocks. The set of finite partitions of S is denoted by $PART_{fin}(S)$.

If $\pi \in PART(S)$ then a subset T of S is π -saturated if it is a union of blocks of π .

1.2 Relations and Functions

Definition 1.2.1 *Let* X, Y *be two sets.* A relation on X, Y is a subset ρ of the set product $X \times Y$. If X = Y = S, we refer to ρ as a relation on S. The relation ρ on S is:

- reflexive if $(x, x) \in \rho$ for every $x \in S$;
- irreflexive if $(x, x) \notin \rho$ for every $x \in S$;

- symmetric if $(x, y) \in \rho$ implies $(y, x) \in \rho$ for all $x, y \in S$;
- antisymmetric if $(x, y) \in \rho$ and $(y, x) \in \rho$ imply x = y for all $x, y \in S$;
- transitive if $(x, y) \in \rho$ and $(y, z) \in \rho$ imply $(x, z) \in \rho$ for all $x, y, z \in S$.

A **partial order** on S is a relation ρ that belongs to $\text{REFL}(S) \cap \text{ANTISYMM}(S) \cap \text{TRAN}(S)$, that is, a relation that is reflexive, symmetric and transitive.

In current mathematical practice, we often write $x\rho y$ instead on $(x,y) \in \rho$, where ρ is a relation of S and $x,y \in S$. This alternative way to denote the fact that (x,y) belongs to ρ is known as the infix notation.

Definition 1.2.2 Let X, Y be two sets. A function(or a mapping) from X to Y is a relation f on X, Y such that $(x,y),(x,y') \in f$ implies y=y'.

Let X, Y be two sets and let $f: X \to Y$.

The domain of f is the set

$$Dom(f) = \{x \in X | y = f(x) \text{ for some } y \in Y\}.$$

The range of f is the set

$$Ran(f) = \{ y \in Y | y = f(x) \text{ for some } x \in X \}.$$

Definition 1.2.3 Let X be a set, $Y = \{0,1\}$ and let L be a subset of S. The characteristic function is discussed above. The indicator function of L is the function $I_L: S \to \mathcal{R} \cup \infty$ defined by

$$I_L(x) = \begin{cases} 1 & \text{if } x \in L. \\ \infty & \text{otherwise} \end{cases}$$

for $x \in S$.

Definition 1.2.4 A function $f: X \to Y$ is:

- 1. injective or one-to-one if $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for $x_1, x_2 \in Dom(f)$;
- 2. surjective or onto if Ran(f) = Y;
- 3. total if Dom(f) = X.

If f both injective and surjective, then it is a bijective function.

Theorem 1.2.1 A function $f: X \to Y$ is injective if and only if there exists a function $g: Y \to X$ such that g(f(x)) = x for every $x \in \mathbf{Dom}(f)$.

A function $f: X \to Y$ is surjective if and only if there exists a function $h: X \to Y$ such that f(h(y)) = y for every $y \in Y$.

Here we provide the proof for the latter theorem.

Proof 1.2.1 Suppose that f is a surjective function. The collection $\{f^{-1}(y)|y\in Y\}$ indexed by Y consists of non-empty sets. By the Axiom of Choice there exists a choice function for this collection, that is a function $h:Y\to\bigcup_{y\in Y}f^{-1}(y)$ such that $h(y)\in f^{-1}(y)$, or f(h(y))=y for $y\in Y$.

Conversely, suppose that there exists a function $h: X \to Y$ such that f(h(y)) = y for every $y \in Y$. Then, f(x) = y for y = h(y), which shows that f is surjective.

The Axiom of Choice: Let $C = \{C_i | i \in I\}$ be a collection of non-empty sets indexed by a set I. There exists a function $\phi : I \to \bigcup C$ (known as a choice function) such that $\phi(i) \in C_i$ for each $i \in I$.

Theorem 1.2.2 There is a bijection $\Psi: \mathcal{P}(S) \to (S \to \{0,1\})$ between the set of subsets of S and the set of characteristic functions defined on S.

Definition 1.2.5 A set S is indexed be a set I if there exists a surjection $f:I\to S$. In this case we refer to I as an index set.

If S is indexed by the function $f: I \to S$ we write the element f(i) just as s_i , if there is no risk of confusion.