Relatório do Laboratório 12: Aprendizado por Reforço Livre de Modelo

Isabelle Ferreira de Oliveira

CT-213 - Engenharia da Computação 2020 Instituto Tecnológico de Aeronáutica (ITA) São José dos Campos, Brasil isabelle.ferreira3000@gmail.com

Resumo—Esse relatório documenta a implementação de algoritmos de Aprendizado por Reforço (RL) Livre de Modelo, a saber Sarsa e Q-Learning, e utilizá-los para resolver o problema do robô seguidor de linha.

Index Terms-Aprendizado por reforço, Sarsa, Q-Learning

I. IMPLEMENTAÇÃO

A. Implementação dos algoritmos de RL

- 1) Função epsilon_greedy_action: A política epsilon-greedy foi implementada da seguinte maneira: gerou-se um número aleatório entre 0 e 1 e, caso esse valor aleatório seja menor que epsilon, então uma ação aleatória é escolhida; caso contrário, é escolhida a ação gulosa, através da chamada de greedy action.
- 2) Função greedy_action: Conforme sugerido na seção Dicas do roteiro [1], foi pegue o índice do máximo elemento do array q[state], que é a tabela action-value para o estado naquele momento.
- 3) Função get_greedy_action para algoritmo Sarsa: Retorna a função epsilon_greedy_action, aplicada na tabela action-value q, no estado em questão e com o episolon especificado.
 - 4) Função learn para algoritmo Sarsa:
- 5) Função get_greedy_action para algoritmo Q-Learning: Retorna a função greedy_action, aplicada na tabela actionvalue q e no estado em questão.
- 6) Função learn para algoritmo Q-learning: Essa parte do laboratório se tratava da implementação da função policy_evaluation(), presente no arquivo dynamic_programming.py, fornecido pelo código base do professor.

De maneira simples, essa função consiste em codificar a equação: $v_{k+1}\left(s\right) = \sum_{a \in A} \pi\left(a|s\right) r\left(s,a\right) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi\left(a|s\right) p\left(s'|s,a\right) v_{k}\left(s'\right)$, apresentada de forma bem semelhante no roteiro do laboratório [1].

Para implementá-la, os estados s se tornaram tuplas (i,j), que foram iteradas por todo o grid world. Foram feitos loops também para iterar pelas ações a e pelos possíveis próximos estados s', e os resultados da equação acima foram somados ao valor associado ao estado s em que se estava.

- 1) $\pi(a|s)$ era encontrado em *policy*;
- 2) r(s,a) era encontrado em $grid_world.reward()$;

- 3) p(s'|s,a) era encontrado em grid world.transition probability();
- 4) $v_k(s')$ era a *policy* para um próximo estado s', encontrado iterando-se sobre $grid_world.get_valid_sucessors()$.

Vale ressaltar que, após um número definido previamente de iterações, ou após a convergência dos valores de $v_{k+1}(s)$, o loop era interrompido.

B. Aprendizado da política do robô seguidor de linha

Já essa parte tratava-se da implementação da função *value_iteration()*, também presente no arquivo *dynamic_programming.py*, fornecido pelo código base do professor.

Análogo a função anterior, essa função consiste na codificação da equação: $v_{k+1}(s) = \max_{a \in A} \left(r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) \, v_k(s') \right)$, também presente no roteiro do laboratório [1].

A implementação também se tornou bastante semelhante à função de Avaliação de Política, com os estados s sendo tuplas (i,j), que foram iteradas por todo o grid world, e loops para iterar pelas ações a e pelos possíveis próximos estados s', dessa vez buscando os valores máximos dos resultados da equação, para serem considerados como valor associado ao estado s em que se estava nessa situação.

- 1) r(s,a) estava em grid world.reward();
- 2) p(s'|s,a) estava em grid_world.transition_probability();
- 3) $v_k(s')$ era a *policy* para um próximo estado s', encontrado iterando-se sobre *grid world.get valid sucessors()*.

Vale ressaltar novamente que, após um número definido previamente de iterações, ou após a convergência dos valores de $v_{k+1}(s)$, o loop também era interrompido.

II. RESULTADOS E CONCLUSÕES

A. Primeiro Grid World

Foram gerados os resultados para os parâmetros de Grid World abaixo:

- 1) CORRECT ACTION PROB = 1.0
- 2) GAMMA = 1.0

Primeiro comparando-se os resultados apresentados nas Figuras 2 e 3, é possível notar que eles são idênticos, o que é esperado, uma vez que ambas as técnicas levam a convergência dos valores corretos de *policy* e *value*.

Sobre a Figura 1, a tendência observada é o *value* calculado ser maior em módulo para estados mais distantes do estado objetivo.

Nos três resultados é possível notar o *value* 0.0 para o estado objetivo, o que também condiz com o esperado.

```
Value function:
[ -384.09, -382.73, -381.19, * , -339.93, -339.93]
[ -384.49, -377.91, -374.65, * , -334.92, -334.93]
[ -374.34, -368.82, -359.85, -344.88, -324.92, -324.93]
[ -368.76, -358.18, -346.03, * , -289.95, -309.94]
[ * , -344.12, -315.05, -250.02, -229.99, * ]
[ -359.12, -354.12, * , -200.01, -145.00, 0.00]
Policy:
[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
[ SURDL , S
```

Figura 1. Resultado observado para o teste da *policy_evaluation()*, para a primeira opção de Grid World.

Value iteration:												
Value function:												
[-:	10.00		-9.00	θ,	-8.00),			-6.00	9,	-7.00	9]
[-	-9.00		-8.00	θ,	-7.00),			-5.00	9,	-6.00	9]
[-	-8.00		-7.00	9,	-6.00),	-5.00	θ,	-4.00	9,	-5.00	9]
[-	-7.00		-6.00),	-5.00),			-3.00	9,	-4.00	9]
[,			-5.00	θ,	-4.00),	-3.00),	-2.00	9,]
[-7.00		-6.00	θ,			-2.00),	-1.00	9,	0.0	9]
Policy	Policy:											
[[RD		RD								DL]
[F	RD		RD								DL]
[F	RD		RD		RD						DL]
[F			RD]
[,							RD]
[F											SURD]

Figura 2. Resultado observado para o teste da *value_iteration()*, para a primeira opção de Grid World.

Policy iteration: Value function:								
					1			
[-10.00,	-9.00,	-8.00,		-6.00,	-7.00]			
[-9.00,	-8.00,	-7.00,		-5.00,	-6.00]			
[-8.00,	-7.00,	-6.00,	-5.00,	-4.00,	-5.00]			
[-7.00,	-6.00,	-5.00,		-3.00,	-4.00]			
[* ,	-5.00,	-4.00,	-3.00,	-2.00,	*]			
[-7.00,	-6.00,		-2.00,	-1.00,	0.00]			
Policy:								
[RD ,	RD ,				DL]			
[RD ,	RD ,				DL]			
[RD ,	RD ,	RD ,			DL]			
[R ,	RD ,				L]			
[* ,			RD ,		*]			
[R ,					SURD]			

Figura 3. Resultado observado para o teste da *policy_iteration()*, para a primeira opção de Grid World.

B. Segundo Grid World

Foram gerados os resultados para os parâmetros de Grid World abaixo:

- 1) CORRECT ACTION PROB = 0.8
- 2) GAMMA = 0.98

Primeiro comparando-se os resultados apresentados nas Figuras 5 e 6, também é possível notar que eles são idênticos, o que é novamente esperado, uma vez que ambas as técnicas levam a convergência dos valores corretos de *policy* e *value*.

Sobre a Figura 4, a mesma tendência que no primeiro Grid World é observada, ou seja, o *value* calculado é maior em módulo para estados mais distantes do estado objetivo.

Nos três resultados também é possível notar o *value* 0.0 para o estado objetivo, o que também condiz com o esperado.

Value function:								
[-47.19,	-47.11,	-47.01,		-45.13,	-45.15]			
[-46.97,	-46.81,	-46.60,		-44.58,	-44.65]			
[-46.58,	-46.21,	-45.62,	-44.79,	-43.40,	-43.63]			
[-46.20,	-45.41,	-44.42,		-39.87,	-42.17]			
[* ,	-44.31,	-41.64,	-35.28,	-32.96,	*]			
[-45.73,	-45.28,		-29.68,	-21.88,	0.00]			
Policy:								
[SURDL ,	SURDL ,	SURDL ,		SURDL ,	SURDL]			
[SURDL ,	SURDL ,	SURDL ,		SURDL ,	SURDL]			
[SURDL ,	SURDL ,	SURDL ,	SURDL ,	SURDL ,	SURDL]			
[SURDL ,	SURDL ,	SURDL ,		SURDL ,	SURDL]			
[* ,	SURDL ,	SURDL ,	SURDL ,	SURDL ,	*]			
[SURDL ,	SURDL ,		SURDL ,	SURDL ,	S]			

Figura 4. Resultado observado para o teste da *policy_evaluation()*, para a segunda opção de Grid World.

Value iteration:									
Value function:									
[-11.65,	-10.78,	-9.86,		-7.79,	-8.53]				
[-10.72,	-9.78,	-8.78,		-6.67,	-7.52]				
[-9.72,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]				
[-8.70,	-7.58,	-6.43,		-4.09,	-5.30]				
[* ,	-6.43,	-5.17,	-3.87,	-2.76,	*]				
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]				
Policy:									
[D ,					D]				
[D ,					D]				
[RD ,					D]				
[R ,	RD ,				L]				
[* ,					*]				
[R ,					S]				

Figura 5. Resultado observado para o teste da *value_iteration()*, para a segunda opção de Grid World.

Policy iteration: Value function:									
[-11.65,		-9.86,		-7.79,	-8.53]				
[-10.72,		-8.78,		-6.67,					
[-9.72,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]				
[-9.72, [-8.70, [* ,	-7.58,	-6.43,		-4.09,	-5.30]				
	-6.43,	-5.17,			*]				
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]				
Policy:	Policy:								
[D ,	D,	D,		D,	D]				
[D ,					D]				
[R ,					D]				
[R ,					L]				
[* ,					*]				
[R ,					S]				

Figura 6. Resultado observado para o teste da *policy_iteration()*, para a segunda opção de Grid World.

Por fim, comparando-se as duas situações de Grid World, é possível notar que, com a adição do desconto *GAMMA*, e agora com a probabilidade de o agente executar uma ação diferente da escolhida para cada estado, tem-se que os *value* referentes a cada estado são maiores em módulo do que os calculados na primeira situação.

Isso se justifica e condiz com o esperado, uma vez que não se sabendo deterministicamente a ação tomada em cada estado, a função valor entende esse estado como "pior"quando comparado a situação na qual *CORRECT_ACTION_PROB* = 1. Além disso, o fator *GAMMA* adiciona mais imediatismo à recompensa das ações do agente, o que também diminui a medida de quão "bom"é determinado estado em comparação a situação no qual todas as recompensas até o objetivo são igualmente contabilizadas.

REFERÊNCIAS

 M. Maximo, "Roteiro: Laboratório 11 - Programação Dinâmica". Instituto Tecnológico de Aeronáutica, Departamento de Computação. CT-213, 2019