Tree models

- A Decision Tree is a tree contains a root, internal nodes, leaf nodes, connected by directed edges.
 - Each non-leaf node partitions the data by some features.
- ullet e.g. For linear models $f(x) = \mathrm{sign}(w^Tx + b)$
 - Decision logic:
 - $\bullet \ \text{ if } w^Tx+b \geq 0 \quad \Rightarrow \quad +1 \\$
 - $\bullet \ \ \text{if} \ w^Tx + b < 0 \quad \Rightarrow \quad -1 \\$
- e.g. $y \in \{-1, +1\}$ represents a bad/good scientist
 - $\circ \ x^{(1)} = 1$: hard-working
 - $\circ \ x^{(2)} = 1$: has a good vision
 - $\circ x^{(3)} = 1$: likes banana
- How to select a good feature for partition?
 - 。 Purity: 简单来说就是越早分出叶节点越好,这样决策树高度会更小
 - from Purity to Entropy

Entropy

• For a random variable X, entropy H(x) is:

$$H(x) = \sum_{X} p(x) \log \frac{1}{p(x)}$$

$$= -\sum_{X} p(x) \log p(x)$$

$$= E_X \log \frac{1}{p(x)}$$

- \circ For an event X=x, the smaller p(x) is, the more "information" it contains
 - ullet x:= "sun rises from the east", then p(x)=1, contains zero information
 - x:= "roll a dice 3 times, get 666", then $p(x)=\frac{1}{6^3}$, contains a lot of information
- $\circ \log rac{1}{p(x)}$ measures the "information" of x
 - here $\log x = \log_2 x$, not $\ln x$
- Entropy is the expectation of "information" of all events in a system.
- $\circ \ H(x) \geq 0$, takes "=" if and only if $\exists x, \ p(x) = 1$
- $\circ \ H(x) = \sum_X p(x) \log rac{1}{p(x)} \leq \log \sum_X p(x) rac{1}{p(x)} = \log n$, takes "=" if and only if $orall x, \ p(x) = rac{1}{n}$
 - lacksquare n is # of events
 - log function is convex, so we can use Jensen's inequality
 - when all events in a system have **equal probability**, entropy H(x) maximizes
- H(x) measures the disorder, randomness, uncertainty of a system.
- Cross Entropy $H(p,q) = -\sum_X p(x) \log q(x)$
 - $\circ \ q(y_i=1) = \sigma(w^Tx_i+b)$
 - $\circ \ q(y_i=0) = 1 \sigma(w^Tx_i+b)$
 - $\circ \ p(y_i)$ measures the observed data, is a data distribution

$$egin{aligned} E(x_i, y_i) &= -\sum_{y_i \in \{0,1\}} p(y_i) \log q(y_i) \ &= -ig[y_i \log(\sigma(w^T x_i + b)) + (1 - y_i) \log(1 - \sigma(w^T x_i + b))ig] \end{aligned}$$

• We have 4 entropy scores can measure the entropy of a decision tree.

Information Gain

- g(D, A) := H(D) H(D|A)
 - $\circ \ D$ is training set
 - $\circ~A$ is a feature/attribute. $A \in \{a_1, \ldots, a_m\}$ has m discrete values.
 - lacksquare If A is continuous
 - Sort training data's A values: $lpha_1,\ldots,lpha_n$
 - lacksquare Take $rac{lpha_i+lpha_{i+1}}{2}$ as n-1 thresholds

- Transform a continuous A into discrete
- \circ Suppose $y \in \{1, 2, \ldots, K\}$
- $\circ H(D)$

$$H(D) := -\sum_{k=1}^K rac{|C_k|}{|D|} \log rac{|C_k|}{|D|}$$

- ullet $|C_k|$ is the set of training data whose y=k
- $\begin{array}{l} & \frac{|C_k|}{|D|} \text{ approximates } P(y=k) \\ & H(D) \text{ approximates } -\sum_{k=1}^K P(y=k) \log P(y=k) = H(y) \end{array}$
- $\circ H(D|A)$

$$egin{aligned} H(D|A) := \sum_{i=1}^m rac{|D_i|}{|D|} \cdot H(D|A=a_i) \ &= \sum_{i=1}^m rac{|D_i|}{|D|} igl[-\sum_{k=1}^K rac{|D_i igcap C_k|}{|D_i|} \log rac{|D_i igcap C_k|}{|D_i|} igr] \end{aligned}$$

- D_i is the set of training data whose feature $A=a_i$
- $lacksquare rac{|D_i igcap C_k|}{|D_i|}$ approximates $P(y=k|A=a_i)$

$$egin{split} H(D|A=a_i) &pprox -\sum_{k=1}^K P(y=k|A=a_i) \log P(y=k|A=a_i) \ &= H(y|A=a_i) \end{split}$$

- $\circ H(D|A) \searrow \Rightarrow g(D,A) \nearrow \Rightarrow \text{Purity } \nearrow$
 - Select A that maximizes g(D, A)
- e.g. Suppose 2 features A, B, A has 2 discrete values with same probability and B has 10 discrete values with same probability. Class $y \in A$ $\{1,\ldots,10\}$ is pure in each $B=b_i$, that is, $P(y=i|B=b_i)=1$.

$$P(y = i | A = a_1) = \frac{1}{5}, \forall i = 1, ..., 5$$

 $P(y = i | A = a_2) = \frac{1}{5}, \forall i = 6, ..., 10$

$$P(y=i|A=a_2)=\frac{1}{5}, \forall i=6,\ldots,10$$

- $\circ H(D) = \log 10$
- $\circ \ H(D|A) = \log 5 \quad H(D|B) = 0$
- g(D, A) = 1 $g(D, B) = \log 10$
- $\circ \ B$ has better purity but may have lower generalization ability.

Information Gain Ratio

• $g_R(D,A)$

$$g_R(D,A) = rac{g(D,A)}{H_A(D)}$$

 $\circ H_A(D)$

$$H_A(D):=-\sum_{i=1}^mrac{|D_i|}{|D|}\lograc{|D_i|}{|D|}$$

- $lacksquare rac{|D_i|}{|D|}$ approximates $P(A=a_i)$
- not entropy of y but A
- When each $A=a_i$ has equal probability, $H_A(D)=\log m$, penalizes A with large m
- e.g. $g_R(D,A) = 1$ $g_R(D,B) = 1$

Gini Index

• Gini(D)

$$egin{split} ext{Gini}(D) := & \sum_{k=1}^{K} rac{|C_k|}{|D|} (1 - rac{|C_k|}{|D|}) \ &= 1 - \sum_{k=1}^{K} (rac{|C_k|}{|D|})^2 \ &\leq 1 - rac{1}{k} \end{split}$$

 \circ approximates $\sum_{k=1}^K P(y=k) ig(1-P(y=k)ig)$

• Gini(D|A)

$$\operatorname{Gini}(D|A) := \sum_{i=1}^m rac{|D_i|}{|D|} \operatorname{Gini}(D_i)$$

- $\arg\min_{A} \operatorname{Gini}(D, A)$
- · don't need to normalize

L2 loss

• For regression we just use L2 loss to measure purity

$$ar{y}_{D_i} = rac{1}{|D_i|} \sum_{j \in D_i} y_j$$

• L(D,A)

$$L(D,A) = \sum_{i=1}^m igl[\sum_{i\in D_i} (y_i - ar{y}_{D_i})^2igr]$$

• $\arg\min_{A} L(D, A)$

Build a Tree

Global Optimum

- ullet d features, every feature has m values
- $f(d) = d(f(d-1))^m$
- This is a NP-hard problem!

Greedy Algorithm

- Given D, feature set F, choose a feature A according to some purity scores, partition D into D_1,\dots,D_m
- Recursively build a tree for each D_i , with $F=F-\{A\}$
- When $F=\emptyset$ or D_i only contains a single class(pure), then stop and create a leaf node
 - o with its majority label as prediction
 - $\circ~$ with mean $ar{y}_{D_i}$ as prediction for regression
- Regularization (early stop)
 - o reach a maximize height
 - \circ information gain $\leq \epsilon$
 - validation accuracy no longer increases
- Tree models: low bias, high variance