OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

- **Ejercicio 1** (a) Demostrar que si x^* es un mínimo local estricto no singular de una función $f: \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable, entonces x^* es un punto estacionario aislado; es decir, existe una bola centrada en x^* tal que x^* es el único punto estacionario de f dentro de esa bola.
 - (b) Utilizar la siguiente función de ejemplo $f: \mathbb{R} \to \mathbb{R}$ para demostrar que esto no tiene por qué ser cierto si x^* es un mínimo local estricto singular:

$$f(x) = \begin{cases} x^2 \left(\sqrt{2} - \sin\left(\frac{4\pi}{3} - \sqrt{3}\ln(x^2)\right) \right) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

En particular, demuostrar que $x^* = 0$ es el único mínimo global (singular), mientras que la secuencia $\{x^k\}$ de mínimos locales no singulares, donde

$$x^k = e^{\frac{(1-8k)\pi}{8\sqrt{3}}},$$

converge a x^* .

Ejercicio 2 (*Ejercicio 11 (a) de la guía 1*) Un mínimo local sin restricciones x^* de una función f se dice *localmente estable* si existe $\delta > 0$ tal que cualquier sucesión $\{x^k\}$ con

$$f(x^k) \to f(x^*), \quad ||x^k - x^*|| < \delta, \quad \forall k \ge 0$$

converge a x^* .

(a) Muestre que x^* es localmente estable si y solo si x^* es un mínimo local estricto, es decir, si existe un entorno U de x^* tal que para todo $x \in U$, con $x \neq x^*$, se tiene $f(x^*) < f(x)$.