Test status

tkLayout developers meeting

Stefano MARTINA

stefano.martina@cern.ch

European Organization for Nuclear Research

Testing algorithm

- 1. Build test case with controlled amount of material
- 2. Get elements coordinates
 - → from tklayout run
- 3. Build model with expected material in each element
- 4. Identify areas in η with same effect
 - \rightarrow where same object are superimposed in η
- 5. Calculate weight in radiation length
- 6. Correlate tklayout output with expected calculation

Compute expected material for g/m unit

Cylinder, L g/mm of material M

$$\frac{X_0}{X_{0M}} = \frac{L}{2\pi r \cdot X_{0M}} \cdot \frac{e^{\eta} + e^{-\eta}}{2}$$

Disk, L g/mm of material M

$$\frac{X_0}{X_{0M}} = \frac{L}{\pi(r_1 + r_2) \cdot X_{0M}} \cdot \frac{e^{2\eta} + 1}{e^{2\eta} - 1}$$

- √ For layers rods, L is:
 - \rightarrow the set material multiplied by the number of rods
- √ For disks "rods", L is:
 - ightarrow the set material multiplied by the number of modules of the first ring

Compute expected material for mm unit

Cylinder, *L* mm of material M

$$\frac{X_0}{X_{0M}} = \frac{L \cdot \rho_M}{X_{0M}} \cdot \frac{e^{\eta} + e^{-\eta}}{2}$$

Disk, *L mm* of material M

$$\frac{X_0}{X_{0M}} = \frac{L \cdot \rho_M}{X_{0M}} \cdot \frac{e^{2\eta} + 1}{e^{2\eta} - 1}$$

- ✓ For layers and disks rods, *L* is:
 - → the set material (not replicated for rod or modules)
 - ! new discovered bug, corrected but still need to rerun tests
 - before, each mm definition where replicated by rods

Compute expected material for g unit

Cylinder, *L g* of material M

$$\frac{X_0}{X_{0M}} = \frac{L}{2\pi r(z_2 - z_1) \cdot X_{0M}} \cdot \frac{e^{\eta} + e^{-\eta}}{2}$$

Disk, L g of material M

$$\frac{X_0}{X_{0M}} = \frac{L}{\pi (r_2^2 - r_1^2) \cdot X_{0M}} \cdot \frac{e^{2\eta} + 1}{e^{2\eta} - 1}$$

✓ Unit g can't be used for rods in layers and disks

Test1a

100g/m of Cu in the rods of the first layer of the pixel barrel

- √ 12 rods
- \checkmark L = 1200 for every element

Test1b

100g/m of Cu in the rods of the second layer of the pixel barrel

- ✓ 24 rods
- \checkmark L = 2400 for every element

Test1c

100g/m of Cu in the rods of the third layer of the pixel barrel

- √ 36 rods
- $\sqrt{L} = 3600$ for every element

Test1d

100g/m of Cu in the rods of the fourth layer of the pixel barrel

- √ 52 rods
- \checkmark L = 5200 for every element

100g/m of Cu in the rods of all the layers of the pixel barrel

$$\checkmark$$
 L = rods * 100 for layers

$$\checkmark$$
 $L = L_{attachedlayer} + L_{attacheddisk}$ for disks and last cylinder

Test3 WILL CHANGE WITH BUGFIX

0.1mm of Cu in the rods of all the layers of the pixel barrel

$$✓$$
 L = *rods* * 0.1 for layers

$$\checkmark$$
 $L = L_{attachedlayer} + L_{attacheddisk}$ for disks and last cylinder

100g/m of Cu exiting from modules of the first layer of the pixel barrel

 \checkmark L = (rods * 100) + Lpreviouscylinder for cylinders

100g/m of Cu exiting from modules and 150g/m in the rods

$$\checkmark$$
 L = (rods * 100) + Lpreviouscylinder for cylinders

 $\checkmark L = (rods * 150)$ in layer

100g/m of Cu in the first disk of pixel endcap

- √ 24 modules on first ring of disk
- $\sqrt{L} = (24 * 100)$ in every element

100g/m of $\it Cu$ in the fourth layer and conversion $1g/m \to 0.1g$ locally

$$\checkmark$$
 L = (rods * 100) in layer

$$\checkmark L = (rods * 100 * 0.1)$$
 in flange

100g/m of $\it Cu$ in the fourth layer and conversion $1g/m \to 1.5g/m$ exiting

$$\checkmark$$
 $L = (rods * 100)$ in layer

 \checkmark L = (rods * 150) in second cylinder

- √ Is the testing procedure right?
- ✓ More kinds of tests?
- √ Bug with materials defined in mm
 - where replicated for each rod in barrel and each module of the first ring in endcaps
 - → corrected but need to be tested
- ✓ Some supports where defined in g/m in endcap
 - maybe cause of difference new-old material model?
 - → corrected converting them in mm, need to be validated