### **Screenshot of results form SamIam**





# **Explanation of the result**

|                                                                 | Constraint to satisfy Pr(D   T) >= 0.3         |
|-----------------------------------------------------------------|------------------------------------------------|
| Prior probability of having the disease (current value = 0.001) | Pr(Disease = yes) >= 0.008942                  |
| False positive (current value = 0.02)                           | Pr(Test = positive   Disease = no) <= 0.002219 |

The sensitivity analysis does not give any information about the false negative of the result, therefore it does not really affect the Pr  $(D \mid T)$ .

Problem 2

Part (a) Here are the set of variables and the their values

| Variables         | Values          |
|-------------------|-----------------|
| ExpectingGuests   | Yes, No, N/A    |
| FamilyHome        | Yes, No, N/A    |
| SoundSensor       | On, Off, N/A    |
| LightSensor       | On, Off, N/A    |
| HearableBarking   | Yes, No, N/A    |
| Battery           | Ok, Dead, N/A   |
| SoundSensorHealth | Ok, Broken, N/A |
| LightSensorHealth | Ok, Broken, N/A |
| DogBarking        | Yes, No, N/A    |
| DogOutside        | Yes, No, N/A    |
| OutdoorLight      | On, Off, N/A    |
| DogBowelTrouble   | Yes, No, N/A    |

### Part (b) The causal structure



### Part (c) Learn the network CPTs using the EM algorithm and the data file (sambot.net)

Question: First instantiation of all variables given that Sambot has sensed the lights to be on, but has sensed no bark. (Given: LightSensor = On; SoundSensor = Off)

### **Screenshot (Overall Graph)**



**Screenshot (MPE Computation)** 



### **Screenshot (MAP Computation)**



| Variable          | Value |
|-------------------|-------|
| Battery           | OK    |
| DogBarking        | No    |
| DogBowelTrouble   | Yes   |
| DogOutside        | Yes   |
| ExpectingGuests   | No    |
| FamilyHome        | No    |
| HearableBarking   | No    |
| LightSensorHealth | OK    |
| OutdoorLight      | On    |
| SoundSensorHealth | OK    |
| LightSensor       | On    |
| SoundSensor       | Off   |

### **Explanation of the procedure of how to get the answers**

After constructing the Baynesian network diagram, I click the EM button on the top to input the sambot.dat file to learn. Then, it pops up a separate window that says EM\_sambot.net. I first set the LightSensor = On and SoundSensor = Off. I click the button to turn on the Query Mode and then I click the MPE computation to get the result window above. After screenshot the MPE data, I click the MAP button and select the 10 MAP variables and get the result as above. MPE result is the same as MAP result.

## Part (c) Learn the network CPTs using the EM algorithm and the data file (sambot.net)

Question: Second instantiation of the sensors given that family is home and no guests are expected. (Given: ExpectingGuests = No; FamilyHome = Yes)

# **Screenshot (Overall Graph)**



### **Screenshot (MPE Computation)**



### **Screenshot (MAP Computation)**



| Variable    | Value |
|-------------|-------|
| LightSensor | Off   |
| SoundSensor | Off   |

# Explanation of the procedure of how to get the answers

After constructing the Baynesian network diagram, I click the EM button on the top to input the sambot.dat file to learn. Then, it pops up a separate window that says EM\_sambot.net. I first set the ExpectingGuests = No and FamilyHome = Yes. I click the button to turn on the Query Mode and then I click the MPE computation to get the result window above. After screenshot the MPE data, I click the MAP button and select the 2 MAP variables and get the result as above. MPE result is the same as MAP result.

Question: The smallest set of variables Z in your network such that the two sensors are independent given Z. Justify your answers based on d-separation.

The smallest set of variables Z in the network could be {Battery, DogBarking}.

Path 1 : SoundSensor -> Battery -> LightSensor (blocked because of included Battery in Z)

Path 2 : LightSensor -> Battery -> SoundSensor (blocked because of included Battery in Z)

Path 3 : SoundSensor -> HearableBarking -> DogBarking -> DogOutside -> FamilyHome -> OutdoorLight -> LightSensor (blocked because of included DogBarking in Z)

Path 4: LightSensor -> OutdoorLight -> FamilyHome -> DogOutside -> DogBarking -> HearableBarking -> SoundSensor (blocked because of included DogBarking in Z)

Path 5 : SoundSensor -> HearableBarking -> DogBarking -> DogOutside -> FamilyHome -> ExpectingGuests -> OutdoorLight -> LightSensor (blocked because of included DogBarking in Z)

Path 6: LightSensor -> OutdoorLight -> ExpectingGuests -> FamilyHome -> DogOutside -> DogBarking -> HearableBarking -> SoundSensor (blocked because of included DogBarking in Z)

All the paths between LightSensor and SoundSenor are blocked, so the two sensors are d\_separated and thus independent.

#### Problem 2

Question: The type of network you constructed: tree, polytree, multiply-connected network

The type of network I have constructed is a multiply-connected network. It is impossible to be a tree since there are nodes that have more than one parent node. It is also impossible to be a polytree (singly-connected network) because the network will not be acyclic if all the directed edges are changed to be undirected edges.