

MAX School on Advanced Materials and Molecular Modelling with QUANTUM ESPRESSO

QE-2021: Hands-on session - Day-1

QE-2021: Hands-on session - Day-1

Topics of Day-1 hands-on session:

- 1. Installation/compilation of Quantum ESPRESSO (example0.QE-compilation)
- 2. How to run basic PWscf (pw.x) calculations
- 3. How to run post-processing calculations to plot molecular-orbitals and charge-density (pp.x), DOS (dos.x), and band-structure (bands.x)
- 4. How to calculate low-dimensional systems (example1.benzene and example2.graphene)

About Quantum ESPRESSO

More info about Quantum ESPRESSO can be found in:

- https://www.quantum-espresso.org/
- Quantum ESPRESSO (QE) documentation:
 - on-line manuals at www.quantum-espresso.org/resources/users-manual
 - Doc/ sub-directories in the QUANTUM ESPRESSO distribution
 - input data description: most programs contained in QE have their own input file description in the form of hyperlinked INPUT_***.html files (where *** stands for the name of the program)

QE-2021: MaX School on Advanced Materials and Molecular Modelling

Hands-on material

Hands-on material for each day is contained within its own directory:

- Day-1/ hands-on exercises for Day-1
- Day-2/, Day-3/ ... Day-10/ hands-on exercises for Day-2 to Day-10

Please go to the Day-1/ directory and execute: git pull this will update the hands-on exercises to the latest version from the GitLab.

- All directories contain a README.md file with instructions how to run exercise(s)
- Naming of files is described in README-filenames.md (in Day-1/).
- To help recognizing for which program a given input file is intended, the filename starts with the name of the program, i.e.:
 - pw.*.in input file for pw.x program
 - pp.*.in input file for pp.x program
 - etc.

Disclaimer: many examples use lousy convergence thresholds to speed-up calculations

0. Compilation of Quantum ESPRESSO

Please go to the Day-1/ directory, then execute:

```
$ cd example0.QE-compilation/
$ tar zxvf qe-6.7-ReleasePack.tgz
$ cd qe-6.7/
```

Now read the INSTALL.md file therein. It contains installation (compilation) instructions. In essence, compilation consists of:

```
$ ./configure [options]
$ make target
```

(remark: make alone prints a list of acceptable targets)

Today we will only compile pw.x program (for the sake of time constraint), hence:

```
$ ./configure
$ make pw
```

... and wait for a while as compilation takes some time. If all went OK, the compiled pw.x program (along with some other executables) is now located in bin/ directory.

Preparation of Quantum ESPRESSO input files

A few tools are available that aid at editing Quantum ESPRESSO input files:

- PWgui a QE input file builder GUI (pwgui)
- QE-emacs-modes makes editing of input files easier with emacs editor. It provides syntax highlighting, basic auto-indentation, and several utility commands; its manual is available in the QE sub-directory GUI/QE-modes/Doc/user_guide.pdf


```
~ A X
                emacs@catalyst.ijs.si
File Edit Options Buffers Tools Help
   calculation = 'scf'
              = 'silicon'
   outdir
              = '/temp/tone/pw/Si'
   tstress
   tprnfor
               = .true.
   ibrv = 2 ! mistyped variable is not highlighted
   A = 5.43
   nat = 2
   ntyp = 1
   ecutwfc = 18
&ELECTRONS
  conv_thr = 1.0d-8
ATOMIC SPECIES
  Si 28.086 Si.pz-vbc.UPF
ATOMIC POSITIONS alat
          0.00 0.00
0.25 0.25
K POINTS automatic
  444 111
-:--- scf.Si.in
```

About QE-emacs-modes

QE-emacs-modes package provides syntax highlighting, auto-indentation, and several utility commands, in particular:

- Alt-x prog-insert-template inserts a respective input file template
- Alt-x prog-NAMELIST inserts a blank namelist named NAMELIST
- Alt-x prog-CARD inserts a blank namelist named CARD
- Alt-x prog-variable inserts a namelist variable named variable
- Alt-x prog-mode toggles the respective mode
- Alt-x indent-region indents region

where

- prog is one of qe, pw, neb, cp, ph, ld1, or pp (these stands for pw.x, neb.x, ... Quantum ESPRESSO (QE) programs)
- NAMELIST is the uppercase name for a given QE namelist
- CARD is the uppercase name for a given QE card
- variable is the lowercase name for a given namelist variable

1. How to describe a molecule with Quantum ESPRESSO

With Quantum ESPRESSO we can describe a molecule by putting it in a big box.

- move to Day-1/example1.benzene/ directory
- look at the input file pw.benzene.scf.in. It is composed of three "namelists" &CONTROL (note that calculation ='scf' is the default value), &SYSTEM, &ELECTRONS, followed by three "cards" ATOMIC_SPECIES, ATOMIC_POSITIONS, K_POINTS
- instructions for how to run the example are in README.md

Disclaimer: the box used in this example is very small as to speed-up calculations

QE-2021: MaX School on Advanced Materials and Molecular Modelling

1. How to calculate and plot molecular orbitals

Here are the two needed input files for calculation of molecular orbitals of benzene (actually, $sign(\psi(\mathbf{r}))|\psi(\mathbf{r})|^2$), opened with emacs using QE-emacs-modes:

```
emacs@cl
File Edit Options Buffers Tools Help
&CONTROL
   prefix='benzene',
 &SYSTEM
   ibrav = 6
   A = 11.0
   C = 7.0
   nat = 12,
   ntyp = 2,
   nbnd = 16
   ecutwfc = 20.0.
   ecutrho = 200.0,
   assume isolated = 'martyna-tuckerman',
 &ELECTRONS
ATOMIC SPECIES
   C 1.0 C.pbe-rrkjus.UPF
  H 1.0 H.pbe-rrkjus.UPF
ATOMIC POSITIONS angstrom
  H 5.5000000 7.98563953
      5.5000000
                6.89520922
      6.7089386 6.19812524
     7.6529918
                6.74309454
                4.80187470
     6.7089386
                4.25690561
      7.6529918
     5.5000000
                4.10479062
  H 5.5000000 3.01436043
      4.2910612 4.80187468
  H 3.3470081 4.25690556
    4.2910613 6.19812528
  H 3.3470082
                6.74309458
K_POINTS gamma
-:--- pw.benzene.scf.in All (18,2)
                                        (QE-pw.x)
Beginning of buffer
```

```
(v) (A) (X
                    emacs@cl
File Edit Options Buffers Tools Help
&INPUTPP
    prefix
             = 'benzene',
   filplot = 'psi2.benzene',
   plot num = 7,
    kpoint = 1,
   kband(1) = 1,
   kband(2) = 16,
   lsign = .true.,
&PL0T
   fileout
                 = '.xsf',
   iflag
   nfile
   output format = 5,
   weight(1) = 1.0,
-:--- pp.benzene.psi2.in All (1,0)
                                         (QE-pp.x)
```

1. How to calculate and plot molecular orbitals

To plot molecular orbitals (actually the signed square modulus, $sign(\psi(\mathbf{r}))|\psi(\mathbf{r})|^2$), we need to:

- calculate Kohn-Sham states with pw.x (i.e. make an SCF calculation)
- instruct pp.x to write them in a suitable format to specified files
- plot orbitals with xcrysden

See README.md for detailed instructions.

1. How to plot molecular orbitals with xcrysden

• Execute in the terminal:

```
$ pw.x < pw.benzene.scf.in > pw.benzene.scf.out
$ pp.x < pp.benzene.scf.in > pp.benzene.scf.out
```

The resulting molecular orbitals (i.e., $sign(\psi(r))|\psi(r)|^2$) are written to psi2.benzene_*.xsf

• Plot one of the generated XSF files with xcrysden, e.g.:

```
$ xcrysden --xsf psi2.benzene_K001_B006.xsf
```

and follow these instructions:

- use the menu Tools-->Data Grid; a new window opens, press [OK]
- an isosurface-control window appear; specify the Isovalue, say 0.005 and press [Submit]
- click the Render +/- isovalue radiobutton and again press [Submit]
- rotate and zoom the structure according to your preference
- save the displayed state via the menu File-->Save Current State (e.g., save to my-display.xcrysden)
- try this with other orbitals, e.g.:

```
$ xcrysden --xsf psi2.benzene_K001_B005.xsf --script my-display.xcrysden
```

• To plot all orbitals, execute: ./plot-psi2.sh

QE-2021: MaX School on Advanced Materials and Molecular Modelling

2. How to calculate a 2D-periodic system: graphene

A 2D-periodic system (e.g., a graphene sheet) is modelled by adding a vacuum layer in the 3rd direction.

- move to Day-1/example2.graphene/ directory
- look at the input file pw.graphene.scf.in; graphene has a 2-atom hexagonal unit cell in the xy plane: ibrav=4, celldm(1)=4.654, celldm(3)= $some\ suitably\ large\ value,\ e.g.\ 3.0;$

(remember: celldm(1) in Bohr radii, celldm(3)=c/a; alternatively: A=2.463, C=7.388 in Å)

• atomic positions:

ATOMIC_POSITIONS (alat)
C 0.000000 0.000000 0.000000
C 0.000000 0.5773503 0.000000

or, equivalently:

ATOMIC_POSITIONS (crystal)

C 0.000000 0.000000 0.000000

C 0.333333 0.666667 0.000000

 \bullet k-points: use a dense grid in the xy plane only, e.g.

K_POINTS (automatic)

9 9 1 0 0 0

(a uniform $9\times9\times1$ grid, centered on $\mathbf{k}=(0,0,0)$)

2. Graphene: DOS and bands (spaghetti)

- DOS is typically calculated by a pw.x SCF calculation followed by a pw.x non-SCF calculation (calculation = 'nscf') with a denser k-point grid, and finally using dos.x post-processing code.
- to calculate the bands (spaghetti plot), the pw.x SCF calculation is followed by a pw.x "bands"-type non-SCF calculation (calculation = 'bands'), for which we need a suitable path of k-points. The most difficult (?) part is to figure out a suitable path of k-points.

You may either use the "k-path selection" tool of xcrysden or the SeeK-path web site at http://materialscloud.org/tools/seekpath.

instructions for how to calculate DOS and bands are in README.md

K-path selection tool of xcrysden

(important: to save k-path in Quantum ESPRESSO format, explicitly specify the *.pwscf extension)

SeeK-path @ http://materialscloud.org/tools/seekpath

