Penjadwalan Proses

- Penjadwalan: pemilihan proses selanjutnya yg akan dieksekusi
- Melakukan multiplexing CPU
- Kapan dilakukan penjadwalan?
 - Proses baru dibuat
 - Proses selesai dieksekusi
 - Proses yg sdg dieksekusi diblokir
 - Terjadi I/O interrupt (mis. proses yg diblokir siap utk dieksekusi kembali)
 - Terjadi clock interrupt (mis. sekali 40 mdet)

STEI-ITB/HY/Agustus 2008 <u> IF3055 – Penjadwalan Proses</u> Page 1

Tujuan Penjadwalan

- Adil
- Prioritas
- Efisiensi
- Mendukung beban yg berat
- Beradaptasi dgn beragam lingkungan (interaktif, real-time, multimedia)

Kriteria Performansi

- Keadilan
- · Efisiensi: optimalisasi penggunaan sumberdaya
- Throughput: # proses yg selesai dalam satuan waktu tertentu
- Waktu Turnaround (aka: elapse time): waktu yg diperlukan utk menyelesaikan eksekusi sejak proses tsb masuk
- Waktu Tunggu: waktu yg diperlukan proses utk menunggu di antrian ready
- Waktu Respon: jangka waktu sejak proses di-submit hingga memperoleh respon pertama
- Penerapan Kebijakan: sesuai dgn kebijakan yg telah ditetapkan
- · Proporsionalitas: memenuhi keinginan user
- Memenuhi Tenggat

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 3

Fokus Penjadwalan pd Berbagai Sistem

- Untuk semua:
 - keadilan, penerapan kebijakan, pemerataan beban
- Sistem Batch
 - maks. troughput, min waktu turnaround, maks penggunaan CPU
- · Sistem Interaktif
 - min. waktu respon, proporsionalitas
- Sistem Real-Time
 - dpt diprediksi, memenuhi tenggat

Perilaku Program yg Dipertimbangkan dalam Penjadwalan

- CPU burst pendek/panjang
- Lingkungan (batch, interaktif)
- Prioritas, tingkat kepentingan (urgency)
- Frekuensi terjadinya page fault, preemption
- Waktu eksekusi yg dibutuhkan dan yg telah digunakan

Penjadwalan Preemptive vs Non-preemptive

- Penjadwalan Non-preemptive
 - Proses yg sdg dieksekusi menggunakan CPU hingga proses tsb menyerahkannya secara sukarela
- Penjadwalan Preemptive
 - Proses yg sdg dieksekusi dpt diinterupsi dan dipaksa utk menyerahkan CPU

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 7

Algoritma Penjadwalan Prosesor Tunggal

- Sistem Batch
 - First Come First Serve (FCFS)
 - Shortest Job First (SJF)
- Sistem Interaktif
 - Round Robin
 - Penjadwalan Prioritas
 - Multi Queue dan Multi Level Feedback
 - Shortest Process Time
 - Guaranteed Scheduling
 - Lottery Scheduling
 - Fair Sharing Scheduling

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

First Come First Serve (FCFS)

- Proses yg meminta CPU duluan yg dialokasikan CPU duluan
- Disebut juga FIFO
- Non-preemptive
- Digunakan pada sistem batch
- Analogi dunia nyata: restoran cepat saji
- Implementasi: antrian FIFO
 - Proses baru memasuki belakang antrian
 - Scheduler memilih dari depan antrian
- Metrik performansi: waktu tunggu rata-rata
- Parameter:
 - Burst time (dlm ms), waktu dan urutan kedatangan

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 9

FCFS: Contoh (1)

Proses	Waktu	Urutan	Kedatangan
P1	24	1	0
P2	3	2	0
P3	4	3	0

Penjadwalan:

Waktu tunggu: P1=0, P2=24, P3=27

Waktu tunggu rata-rata: (0 + 24 + 27)/3 = 17

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

FCFS: Contoh (2)

• Jika proses datang dengan urutan P2, P3, dan P1

Penjadwalan:

Waktu tunggu: P1=7, P2=0,P3=3

Waktu tunggu rata-rata: (7 + 0 + 3)/3=3.3

• Jauh lebih baik dari contoh(1)

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 11

FCFS: Masalah

- Non-preemptive
- AWT tidak optimal
- Tidak bisa menggunakan sumberdaya secara paralel:
 - Asumsi: 1 proses CPU-bounded dan banyak proses I/O-bounded
 - Hasil: Convoy effect, utilisasi CPU dan perangkat I/O sangat rendah

Shortest Job First (SJF)

- Dahulukan job dengan waktu eksekusi tersingkat
- Digunakan pada sistem batch
- Ada 2 tipe:
 - Non-preemptive
 - Preemptive
- Kebutuhan: waktu eksekusi harus diketahui terlebih dahulu
- Optimal jika semua job tersedia pada waktu yg sama
- Memberikan waktu tunggu rata-rata terbaik

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 13

Non-preemptive SJF: Contoh(1)

Proses	Waktu	Urutan	Kedatangan
P1	6	1	0
P2	8	2	0
P3	7	3	0
P4	3	4	0

- Waktu tunggu rata-rata= 28/4 = 7
- Total waktu eksekusi = 24

Non-preemptive SJF: Contoh(2)

• Bagaimana jika kedatangan proses tidak serentak?

Proses	Waktu	Urutan	Kedatangan
P1	10	1	0
P2	2	2	2

- Waktu tunggu: P1=0, P2=8
- Waktu tunggu rata-rata: 8/2=4
- SJF tidak selalu optimal!

STEI-ITB/HY/Agustus 2008 IF3055 — Penjadwalan Proses Page 15

Preemptive SJF

- Disebut juga Shortest Remaining Time First (SRTF)
 - Jadwalkan dulu job dengan sisa waktu eksekusi yg paling singkat
- Kebutuhan: waktu eksekusi yg telah terpakai (*elapse time*) harus diketahui

Preemptive SJF: Contoh

Proses	Waktu	Urutan	Kedatangan
P1	10	1	0
P2	2	2	2

• Waktu tunggu: P1=0+(4-2)=2, P2=0

• Waktu tungu rata-rata: (2+0)/2=2

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 17

Masalah pada SJF

Starvation

- Pada kondisi tertentu, suatu job mungkin tidak pernah menyelesaikan eksekusinya
- Contoh:

Proses A dgn elapse time 1 jam tiba pd waktu 0. Namun, pd waktu yg sama dan setiap 1 menit berikutnya tiba proses singkat dgn elapse time 2 menit.

Hasilnya: A tidak pernah mendapat jatah eksekusi

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Page 18

2

Δ

Algoritma Penjadwalan Interaktif

- Biasanya preemptive
 - Waktu eksekusi dibagi dalam kuantum (interval waktu)
 - Keputusan penjadwalan dibuat pd awal tiap kuantum
- Kriteria performansi
 - Waktu respon minimum
 - Proporsional terbaik
- Algoritma
 - Berbasis prioritas
 - Round-robin
 - Multi Oueue & Multi-level Feedback
 - Shortest process time
 - Guaranteed Scheduling
 - Lottery Scheduling
 - Fair Sharing Scheduling

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 19

Penjadwalan Prioritas

- Tiap proses diberi prioritas
- Penjadwalan FCFS within each priority level.
- Proses dgn prioritas lebih tinggi dijadwalkan duluan
 - Preemptive
 - Non-preemptive
- Masalah:
 - Mungkin tidak menghasilkan waktu tunggu rata-rata yg baik
 - Dpt menyebabkan infinite blocking atau starvation pd proses dgn prioritas rendah

Penjadwalan Prioritas: Penentuan Prioritas

- Ada 2 pendekatan:
 - Statis (untuk sistem dgn perilaku aplikasi yg teratur dan telah diketahui)
 - Dinamis (sebaliknya)
- Prioritas dpt ditentukan berdasarkan:
 - Biaya terhadap user
 - Tingkat kepentingan user
 - Umur proses (aging)
 - % waktu CPU yg telah digunakan pd x jam terakhir

STEI-ITB/HY/Agustus 2008 IF3055 — Penjadwalan Proses Page 21

Penjadwalan Prioritas: Contoh

Proses	Waktu	Prioritas	Kedatangan
P1	6	4	0
P2	8	1	0
P3	7	3	0
P4	3	2	0

• Waktu tunggu rata-rata: (18+0+11+8)/4=9.25 (lebih jelek dari Non-preemptive SJF)

Round Robin

- Tiap proses memperoleh alokasi waktu CPU dlm kuantum waktu, biasanya 10-100 ms
- Setelah kuantum waktu lewat, proses di-preempted dan dimasukkan ke belakang antrian ready
- Jika ada n proses pd antrian ready dan kuantum waktu=q, maka:
 - Pada gilirannya tiap proses memperoleh 1/n waktu CPU selama g
 - Tidak ada proses yg menunuggu lebih dari (n-1)q unit waktu
- Performansi:
 - $q besar \rightarrow FIFO$
 - q kecil → overhead utk context switch sangat besar

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 23

Round Robin: Contoh

Proses	Durasi	Urutan	Kedatangan
P1	3	1	0
P2	4	2	0
P3	3	3	0

Asumsi: kuantum waktu=1 unit; P1, P2, & P3 tidak pernah diblokir

Waktu tunggu:

P1=0+2+2=4, P2=1+2+2+1=6 P3=2+2+2=6

• Waktu tunggu rata-rata: (4+6+6)/3=5.33

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Multilevel-Queue (1)

- Antrian ready queue dibagi menjadi beberapa antrian terpisah :
 - foreground (interaktif)
 - background (batch)
- Tiap antrian memiliki algoritma penjadwalan tersendiri:
 - foreground RR
 - background FCFS
- Penjadwalan harus dilakukan antar antrian
 - Fixed prioritas: melayani semua proses foreground, kemudian background → kemungkinan starvation
 - Slot waktu: tiap antrian memperoleh alokasi waktu CPU tertentu yg digunakan untuk menjadwalkan proses2 pd antrian tsb (mis. 80% utk foreground, 20% utk background)

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Multilevel Feedback (1)

- Proses dapat berpindah antar berbagai antrian; mis. Implementasi aging
- Scheduler multilevel-feedback-queue didefinisikan oleh parameter berikut:
 - Banyaknya antrian
 - Algoritma penjadwalan pd tiap antrian
 - Metode utk menentukan kapan proses dinaikkan atau diturunkan prioritasnya
 - Metode utk menentukan antrian mana yg akan dimasuki proses ketika proses tsb membutuhkan layanan

STEI-ITB/HY/Agustus 2008 IF3055 — Penjadwalan Proses

Multilevel Feedback: Contoh (2)

- 3 antrian:
 - − Q₀ − kuantum waktu 8 ms
 - Q₁ kuantum waktu 16 ms
 - $-Q_2$ FCFS
- Penjadwalan
 - Proses baru masuk antrian Q_0 . Ketika mendapat giliran CPU, proses ini memperoleh jatah waktu 8ms. Jika tidak selesai dalam 8 ms, proses dipindahkan ke antrian Q_1
 - Pada Q_1 proses dilayani kembali oleh FCFS dan memperoleh tambahan 16 ms. Jika masih belum selesai, proses ini di-preempted dan dipindahkan ke antrian Q_2

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Page 29

Shortest Process Time

- Berdasarkan SJF, yg diubah utk sistem interaktif
 - Mempertimbangkan waktu respon rata-rata utk tiap input/command user
 - Estimasi dibuat berdasarkan respon sebelumnya
 - Waktu rata-rata sebelumnnya: T0, T1, T2, T3
 - Waktu rata-rata berikutnya diperkirakan:
 T0 /8 + T1 /8 + T2 /4 + T3 /2
 - Apa masalahnya?

Guaranteed Scheduling (QoS)

- Memberikan jaminan performansi bagi user
- Contoh:
 - Dgn n proses running, scheduler memastikan bahwa tiap proses memperoleh 1/n siklus CPU
- Penjadwalan:
 - Hitung rasio pemakaian waktu CPU sebenarnya dan waktu CPU ya dijatahkan
 - Pilih proses dan rasio terendah
 - Dapat menyebabkan starvation?

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 31

Lottery Scheduling

- · Lebih umum digunakan
- Berdasarkan probabilitas:
 - Tiap proses diberikan tiket undian
 - Pd saat penjadwalan, salah satu tiket dipilih secara acak, dan proses yg memiliki tiket akan dialokasikan CPU
 - Proses dgn prioritas lebih tinggi memiliki lebih banyak tiket
- Keuntungan:
 - sederhana
 - Sangat responsif
 - Dapat mendukung kerjasama antar proses
 - Mudah utk mendukung kebutuhan prioritas dan proporsionalitas

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Fair-share Scheduling

- Apakah Round-robin cukup adil?
 - Ya (dari sudut pandang proses)
 - Mungkin tidak (dari sudut pandang user)
- fair share scheduling berbasis user
 - Tiap user memperoleh jatah secara adil
- Contoh:
 - Ani memiliki 4 proses: A1, A2, A3, A4
 - Budi memiliki 1 proses: B1
 - A1, A2, A3, dan A4 berempat berhak atas 50% waktu CPU
 - B1 sendiri berhak atas 50% waktu CPU

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses Page 33

Multiprosesor Scheduling

- · Lebih kompleks jika terdapat beberapa CPU
- Pilihan penjadwalan:
 - Self-Scheduled (symmetric): tiap CPU menjalankan proses dari antrian ready sesuai dgn skema penjadwalannya
 - Master-Slave
 - 1 CPU menjadwalkan CPU lainnya
 - Asymmetric
 - 1 CPU menjalankan kernel dan yg lainnya menjalankan aplikasi user
 - 1 CPU menangani jaringan dan yg lainnya menangani aplikasi

Real-time Scheduling

- Sistem Hard real-time
 perlu jaminan menyelesaikan task kritis dlm waktu tertentu
- Komputasi Soft real-time
 proses kritis memperoleh prioritas lebih tinggi dari proses lainnya

STEI-ITB/HY/Agustus 2008 IF3055 – Penjadwalan Proses

Dispatch Latency (2)

- Tujuan: menjaga dispatch latency
- Masalah: system call
 - OS sederhana dpt memaksa proses utk menunggu selesainya system call atau berlangsungnya I/O block
- Solusi: perlu system calls yg dpt di-preempted
 - Sisipkan titik preemption (dpt ditempatkan pd lokasi dimana struktur data kernel tdk dimodifikasi)
 - Membuat kernel dpt di-preempted (semua struktur kernel harus diproteksi melalui berbagai mekanisme sinkronisasi)

STEI-ITB/HY/Agustus 2008 IF3055 — Penjadwalan Proses