Monty Hall Paradox

Alexander Shen

LIRMM / CNRS & University of Montpellier

Outline

Three "convincing" argument

Our Position

Monty Hall Problem in Wikipedia

In search of a new car, the player picks a door, say 1. The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player pick door 2 instead of door 1.

• TV show with a host and a guest

- TV show with a host and a guest
- there are three identical doors

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen
- the guest guesses the door with a prize

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen
- the guest guesses the door with a prize
- then host opens the other door with no prize

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen
- the guest guesses the door with a prize
- then host opens the other door with no prize
- (always exists; randomly chosen if two)

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen
- the guest guesses the door with a prize
- then host opens the other door with no prize
- (always exists; randomly chosen if two)
- guest can keep the guess or change it

- TV show with a host and a guest
- there are three identical doors
- a prize behind one of them
- randomly chosen
- the guest guesses the door with a prize
- then host opens the other door with no prize
- (always exists; randomly chosen if two)
- guest can keep the guess or change it
- door opens and prize is given (if the final guess is correct)

why to keep the guess:

why to keep the guess:
 the opening of the other door does not prove anything since an empty door always exists — so why to change the guess?

- why to keep the guess:
 the opening of the other door does not prove anything since an empty door always exists so why to change the guess?
- why to make a new random guess among two doors:

- why to keep the guess:
 the opening of the other door does not prove anything since an empty door always exists so why to change the guess?
- why to make a new random guess among two doors: now there are two doors where the prize can be; we do not know where it is, so we can only make a random guess

- why to keep the guess:
 the opening of the other door does not prove anything since an empty door always exists so why to change the guess?
- why to make a new random guess among two doors: now there are two doors where the prize can be; we do not know where it is, so we can only make a random guess
- why to change the door:

- why to keep the guess:
 the opening of the other door does not prove anything since an empty door always exists so why to change the guess?
- why to make a new random guess among two doors: now there are two doors where the prize can be; we do not know where it is, so we can only make a random guess
- why to change the door: the first door has the prize with probability 1/3. so the other one has it with better probability 2/3

Which argument convinces you more?

First Argument?

First Argument?

the opening of the other door does not prove anything since an empty door always exists so why to change the guess?

First Argument?

the opening of the other door does not prove anything since an empty door always exists so why to change the guess?

You do not need to *prove* something to influence the probabilities; the information may be indecisive, but still valuable.

Second Argument?

Second Argument?

now there are two doors where the prize can be; we do not know where it is, so we can only make a random guess

Second Argument?

now there are two doors where the prize can be; we do not know where it is, so we can only make a random guess

There are several wrong assumptions in this argument. In fact, if you want to guess the result of a random process with known probability, you should *not* imitate this process. If you have a coin that gives 'head' in 70% of cases, you should always bet on 'head'.

Third Argument?

Third Argument?

the first door has the prize with probability 1/3. so the other one has it with better probability 2/3

Third Argument?

the first door has the prize with probability 1/3. so the other one has it with better probability 2/3

When we speak about the probability, we have in mind some experiment. Opening the empty door changes the experiment — why does not it change the probabilities?

Spoiler Follows: Stop Here!

We strongly encourage you to stop here before we explain the correct answer (or 'our position on what is the correct answer').

Outline

Three "convincing" argument

Our Position

What Do We Think

What Do We Think

 The short (wikipedia) setting is not a correct setting

What Do We Think

- The short (wikipedia) setting is not a correct setting
- In our elaborated setting the third solution is correct: changing the door increases the chances of winning by factor 2

How To Deal With Paradoxes

How To Deal With Paradoxes

• "think about repetitive experiment"

- "think about repetitive experiment"
- not possible ⇒ the question is bad

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases
- the first guess is correct in 1/3 of cases (independence)

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases
- the first guess is correct in 1/3 of cases (independence)
- if so, the 'keep' strategy wins (in 1/3 of cases)

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases
- the first guess is correct in 1/3 of cases (independence)
- if so, the 'keep' strategy wins (in 1/3 of cases)
- if not, the 'change' strategy is sure to win

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases
- the first guess is correct in 1/3 of cases (independence)
- if so, the 'keep' strategy wins (in 1/3 of cases)
- if not, the 'change' strategy is sure to win
- hence, 'change' wins in 2/3 cases!

- "think about repetitive experiment"
- not possible ⇒ the question is bad
- our case: TV show each day
- prize is behind 1, 2, 3 in 1/3 of cases
- the first guess is correct in 1/3 of cases (independence)
- if so, the 'keep' strategy wins (in 1/3 of cases)
- if not, the 'change' strategy is sure to win
- hence, 'change' wins in 2/3 cases!
- 'choose random' wins in 1/2 cases

"In search of a new car, the player picks a door, say
 The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player pick door 2 instead of door 1."

- "In search of a new car, the player picks a door, say
 The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player pick door 2 instead of door 1."
- a sequence of events described

- "In search of a new car, the player picks a door, say
 The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player pick door 2 instead of door 1."
- a sequence of events described
- consistent with the following instruction for the host: "if player makes a false guess the first time, just open this door; if she makes a correct guess, open another empty door and suggest to change the guess"

- "In search of a new car, the player picks a door, say
 The game host then opens one of the other doors, say 3, to reveal a goat and offers to let the player pick door 2 instead of door 1."
- a sequence of events described
- consistent with the following instruction for the host: "if player makes a false guess the first time, just open this door; if she makes a correct guess, open another empty door and suggest to change the guess"
- obviously in this setting the suggestion to change the guess indicates that it was correct: keep it!