

Zestaw próbny Olimpiady Matematycznej

Czas trwania: 5h

Krosno, 29 grudnia 2020 (dzień pierwszy)

Zadanie 1

Znajdź wszystkie liczby $a \in \mathbb{N}_+$ takie, że istnieje dokładnie jedna funkcja $f: \mathbb{N}_+ \to \mathbb{N}_+$ taka, że f(1) = a i zachodzi:

$$f(n) = f(f(n)) - 1 \quad \forall n \in \mathbb{N}_+.$$

Zadanie 2

Każdy punkt kraty całkowitej (czyli zbioru punktów o obu współrzędnych całkowitych) pomalowano na biało lub czarno. Udowodnij, że istnieje nieskończony, jednokolorowy podzbiór tej kraty posiadający środek symetrii.

Zadanie 3

W trójkącie ostrokątnym ABC punkt O jest środkiem okręgu opisanego, zaś punkt H jest punktem przecięcia wysokości. Prosta AH przecina okrąg opisany na trójkącie ABC w punkcie K różnym od A. Proste OK i BC przecinają się w punkcie P. Punkt Q jest symetryczny do punktu P względem środka odcinka OH. Proste AQ i BC przecinają się w punkcie R. Dowieść, że BP = CR.

Zestaw próbny Olimpiady Matematycznej

Czas trwania: 5h

Krosno, 29 grudnia 2020 (dzień pierwszy)

Zadanie 1

Znajdź wszystkie liczby $a \in \mathbb{N}_+$ takie, że istnieje dokładnie jedna funkcja $f : \mathbb{N}_+ \to \mathbb{N}_+$ taka, że f(1) = a i zachodzi:

$$f(n) = f(f(n)) - 1 \quad \forall n \in \mathbb{N}_+.$$

Zadanie 2

Każdy punkt kraty całkowitej (czyli zbioru punktów o obu współrzędnych całkowitych) pomalowano na biało lub czarno. Udowodnij, że istnieje nieskończony, jednokolorowy podzbiór tej kraty posiadający środek symetrii.

Zadanie 3

W trójkącie ostrokątnym ABC punkt O jest środkiem okręgu opisanego, zaś punkt H jest punktem przecięcia wysokości. Prosta AH przecina okrąg opisany na trójkącie ABC w punkcie K różnym od A. Proste OK i BC przecinają się w punkcie P. Punkt Q jest symetryczny do punktu P względem środka odcinka OH. Proste AQ i BC przecinają się w punkcie R. Dowieść, że BP = CR.