Advanced Topics in Control 2020: Large-Scale Convex Optimization

Solution to Exercise 1

Goran Banjac, Mathias Hudoba de Badyn, Andrea Iannelli, Angeliki Kamoutsi, Ilnura Usmanova

March 11, 2020

1 Convex Sets

(a) It is a convex set since it can be written as an intersection of two halfspaces. Indeed,

$$\{x \in \mathbb{R}^n : a_1^\top x \le b_1, \ a_2^\top x \le b_2\} = \bigcap_{i=1}^2 \{x \in \mathbb{R}^n : a_i^\top x \le b_i\}.$$

(b) We will show convexity by using the definition. Let $x, x' \in B(x_0, r)$ and let $\theta \in [0, 1]$. We then have

$$\|(\theta x + (1 - \theta)x') - x_0\| = \|\theta(x - x_0) + (1 - \theta)(x' - x_0)\|$$

$$\leq \|\theta(x - x_0)\| + \|(1 - \theta)(x' - x_0)\|$$

$$\leq \theta\|(x - x_0)\| + (1 - \theta)\|(x' - x_0)\|$$

$$\leq \theta r + (1 - \theta)r = r,$$

where we used the triangle inequality, the homogeneity property of norms and that $x, x' \in B(x_0, r)$ in the last three lines, respectively.

(c) We have $\{x \in \mathbb{R}^n : \|x - x_0\|_2 \le \|x - y\|_2$ for all $y \in S\} = \bigcap_{y \in S} C_y$, where $C_y := \{x \in \mathbb{R}^n : \|x - x_0\|_2 \le \|x - y\|_2\}$. We will show that $\{C_y\}_{y \in S}$ is a family of halfspaces and thus $\bigcap_{y \in S} C_y$ is a convex set. Indeed, for a fixed $y \in S$, we have

$$||x - x_0||_2 \le ||x - y||_2 \Leftrightarrow ||x - x_0||_2^2 \le ||x - y||_2^2$$

$$\Leftrightarrow (x - x_0)^\top (x - x_0) \le (x - y)^\top (x - y)$$

$$\Leftrightarrow 2x^\top (y - x_0) \le y^\top y - x_0^\top x_0.$$

Therefore, $C_y = \{x \in \mathbb{R}^n : s_y^\top x \le r_y\}$, where $s_y := 2(y - x_0) \in \mathbb{R}^n$ and $r_y := y^\top y - x_0^\top x_0 \in \mathbb{R}$.

2 Convex Combinations and Convex Hulls

(a) The condition is sufficient, since convex combinations of two elements $x, x' \in C$ just make up the line segment joining them, i.e., the set $[x, x'] = \{\theta x + (1-\theta)x' : \theta \in [0, 1]\}$. To prove necessity, let $x_1, \ldots, x_k \in C$ and let $a = (a_1, \ldots, a_k) \in \mathbb{R}_+$ with $\sum_{i=1}^k a_i = 1$. We want to show that if C is convex, then $\sum_{i=1}^k a_i x_i \in C$. To this end, we will use mathematical

induction on the number of elements k. The claim holds trivially for k=1,2 by the definition of convexity. Assume that it holds for k-1. One at least of the a_i 's is positive, say $a_1 > 0$. Then, we can write

$$\sum_{i=1}^{k} a_i x_i = \left(\sum_{i=1}^{k-1} a_i\right) \underbrace{\sum_{i=1}^{k-1} a_i x_i}_{=:y_{k-1}} + a_k x_k.$$

By the induction hypothesis we get $y_{k-1} \in C$ and so by the convexity of C, we conclude that $\sum_{i=1}^{k} a_i x_i \in C$.

- (b) Let $A:=\bigcap\{C: C \text{ is convex and }S\subset C\}$ and $B:=\{\sum_{i=1}^k a_ix_i: k\in \mathbb{N}, \{a_i\}_{i=1}^k\subset [0,\infty), \{x_i\}_{i=1}^k\subset S, \sum_{i=1}^k a_i=1\}$. We will show that A=B. It is direct that B is convex. Moreover, $S\subset B$. Since A is the smallest convex set containing S, we get $A\subset B$. For the inverse inclusion, let $x_1,\ldots,x_k\in S$ and $a_1,\ldots,a_k\geq 0$ with $\sum_{i=1}^k a_i=1$. Since $S\subset A$, we have in particular that $\{x_i\}_{i=1}^k\subset A$. Therefore, by question (2a) and the convexity of A, we get $\sum_{i=1}^k a_ix_i\in A$. This proves that $B\subset A$.
- (c) We have that conv $S = \{\sum_{i=1}^k a_i x_i : k \in \mathbb{N}, \{a_i\}_{i=1}^k \subset [0, \infty), \{x_i\}_{i=1}^k \subset S, \sum_{i=1}^k a_i = 1\}$. Consider a convex combination $\sum_{i=1}^k a_i x_i$. It may happen that several of the x_i 's belong to the same C_j . To simplify notation suppose that $x_{k-1}, x_k \in C_1$; assume also $a_k > 0$. Then set $(\beta_i, y_i) = (a_i, x_i)$, for $i = 1, \ldots, k-2$ and

$$\beta_{k-1} := a_{k-1} + a_k, \qquad y_{k-1} = \frac{1}{\beta_{k-1}} (a_{k-1} x_{k-1} + a_k x_k) \in C_1,$$

so that $\sum_{i=1}^{k} a_i x_i = \sum_{i=1}^{k-1} \beta_i y_i$. That is, our initial convex combination can also be found among those with k-1 elements.

3 Polar Cone and Separation of Convex Sets

- (a) Let $s \in K^{\circ}$. Then, $s^{\top}x \leq 0$, for all $x \in K$. In particular, since $x_i \in K$, we get $s^{\top}x_i \leq 0$, for all i = 1, ..., m. Thus, $K^{\circ} \subset \{s \in \mathbb{R}^n : s^{\top}x_j \leq 0 \text{ for } j = 1, ..., m\}$. On the other hand, if $s^{\top}x_i \leq 0$, for all i = 1, ..., m, then $s^{\top}(\sum_{i=1}^m a_i x_i) \leq 0$, for all $a_i \geq 0$, proving that $s \in K^{\circ}$.
- (b) One can see that $K \subset K^{\circ \circ}$. Indeed, if $x \in K$, then $x^{\top} s \leq 0$, for all $s \in K^{\circ}$. Thus, $x \in K^{\circ \circ}$. Moreover. since $K^{\circ \circ}$ is closed (a polar cone is always closed), we get $\operatorname{cl} K \subset K^{\circ \circ}$.

We will now show the inverse inclusion $K^{\circ\circ} \subset \operatorname{cl} K$. Equivalently, if $x \notin \operatorname{cl} K$, then $x \notin K^{\circ\circ}$. Let $x \notin \operatorname{cl} K$. Since $\operatorname{cl} K$ is closed and convex, there exists a separating hyperplane associated to a nonzero vector $s \in \mathbb{R}^n$ and a scalar $r \in \mathbb{R}$, such that

$$s^{\top}k < r < s^{\top}x$$
, for all $k \in \operatorname{cl} K$.

Since $0 \in \operatorname{cl} K$, we get r > 0. Moreover, $s^{\top}(\lambda k) < r$, for all $\lambda \in \mathbb{N}$ and $k \in K$. Therefore $s^{\top}k < \frac{r}{\lambda} \to 0$, as $\lambda \to \infty$. Thus, $s^{\top}k \leq 0$, for all $k \in K$ and so $s \in K^{\circ}$. Since, $s^{\top}x > r \geq 0$, we get $x \notin K^{\circ \circ}$.

(c) We have that $K = \{\sum_{j=1}^m a_j x_j : a_j \ge 0 \text{ for } j = 1, \dots, m\}$ is closed. Therefore, by (a) and (b) the polar of $\{s \in \mathbb{R}^n : s^\top x_j \le 0 \text{ for } j = 1, \dots, m\}$ is the bipolar $K^{\circ \circ} = K$.

4 Normal Cone and Tangent Cone

- (a) The result follows since $N_C(x)$ can be written as an intersection of closed halfspaces. Indeed, we have $N_C(x) = \bigcap_{y \in C} \{s \in \mathbb{R}^n : s^\top(y-x) \leq 0\}$, where each halfspace is a closed convex set. In addition, one can see easily that $N_C(x)$ is a cone.
- (b) For every $x \in C$ we have $N_C(x) = \text{cone}\{s_i : i \in I(x)\} = \{\sum_{i \in I(x)} a_i s_i : a_i \geq 0\}$, where $I(x) = \{i = 1, \dots, m : s_i^\top x = r_i\}$ is the index set of active constraints at $x \in C$. Moreover, $T_C(x) = N_C(x)^\circ = \{y \in \mathbb{R}^n : s_i^\top y \leq 0, \text{ for } i \in I(x)\}$, where we used results from Task 3. In particular, for any interior point x of C, we have $N_C(x) = \{0\}$ and $T_C(x) = \mathbb{R}^n$.