1) a)
$$\Sigma(i = 4 \rightarrow n^2) O (i \log I)$$

b)
$$\Sigma(i = 4 \rightarrow [n \land 3/20]) O(i^2)$$

$$\Theta([n \land 3/20]^3) = \Theta(n^9/20)$$

 $\Theta(n^2 \log n^2) = \Theta(n^2 \log n)$

c)
$$\Sigma(i = [n/5] \rightarrow n) O(n - i)$$

$$\Theta((n - [n/5] + 1)^2) = \Theta(n^2)$$

d)
$$\Sigma(i = n \rightarrow 2n^2) O(1)$$

$$\Theta(n^2)$$

e)
$$\text{Outer loop - }\Theta(n^3)$$

$$\text{Middle loop - }\Theta(n) \to \Theta(n^7)$$

$$\text{Inner Loop - }\Theta(n^4)$$

$$\text{Total - }\Theta(n^3) * \Theta(n^7) * \Theta(n^4) = \Theta(n^{14})$$

2)

$$fa(n) = sum of Gp = \frac{3}{4} + \frac{3}{4} \cdot \frac{2}{2} + \dots + \frac{3}{4} \cdot \frac{n}{2}$$

 $= (\frac{3}{4} * (\frac{3}{4} n^2 - 1)) | (\frac{3}{4} - 1)$
 $fa(n) = O((\frac{3}{4}) n^2)$

b)
$$\log 4(17) = O(1), 1 << \log 4(n)$$

$$fb(n) = O(\log(n))$$

c)
$$sum of Ap = 2 * n/2 * (2 * 1 + (2 * 1 + (2n + 1 - 1) * 4) - 1$$

$$= n * (2 + 8n) - 1$$

$$hence n << n^2$$

$$fc(n) = \mathbf{O(n^2)}$$

d)
$$6^13 = O(1)$$
 $fd(n) = O(1)$

e)
$$n^0.6 << n^0.7$$
 $fe(n) = \mathbf{O(n^0.7)}$

f)
$$\sqrt{(n)} << \sqrt{(n^2)} << \sqrt{(n^3)}$$

$$ff(n) = \mathbf{O}(\sqrt{(n^3)})$$

g)
$$log3(n) << nlog3(n)$$

$$fg(n) = \mathbf{O(nlog3(n))}$$