You must justify your answers to receive full credit.

1. Let A be the matrix

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 1 & 0 \\ 1 & 3 & 4 \\ 2 & -2 & -3 \end{bmatrix},$$

and T be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.

- a) What is the domain of T?
- b) What is the codomain of T?
- c) Find the kernel of T.
- d) Is T one-to-one?
- e) Find the image of $\mathbf{e_1} + \mathbf{e_2}$ under T.
- f) Let T^* be the linear transformation $T^*(\mathbf{x}) = A^T \mathbf{x}$. What is the domain of T^* ?

2. Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation satisfying

$$F\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}5\\2\\8\end{bmatrix}, \quad F\left(\begin{bmatrix}3\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\4\\12\end{bmatrix}.$$

- a) Find the standard matrix of F.
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection through the x_2 -axis. Find the standard matrix of the composition $F \circ T$.

3. Let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}.$$

Calculate the following quantities, or explain why they are not defined.

a) AB

b) BAB^T

c) $B + I_3$ g) A^{301}

d) $x^T B$

e) B^3

f) A^3

h) $\det B$

4. Let

$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & -2 & 3 & 5 \\ 1 & p & 1 & 3 \end{bmatrix}.$$

- a) Find all values of p such that A is invertible
- b) Find the inverse of A when p=0.

5. Suppose

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$$

Find the following determinants, and explain your answers:

a)
$$\begin{vmatrix} a & b & c \\ 5d & 5e & 5f \\ g & h & i \end{vmatrix}$$
c) $\begin{vmatrix} a & b & c \\ d & e & f \\ g+3a & h+3b & i+3c \end{vmatrix}$

- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If A is a $n \times n$ matrix and **b** is a vector in \mathbb{R}^n such that $A\mathbf{x} = \mathbf{b}$ has more than one solution, then the columns of A span \mathbb{R}^n .
 - b) If A is a square matrix with linearly independent columns, then $A^2\mathbf{x} = \mathbf{b}$ has a solution for all b.
 - c) If A is a square matrix, then $(A^2)^T = (A^T)^2$.
 - d) Each column of the matrix product AB is a linear combination of the columns of B.
 - e) The determinant of a square matrix is the product of its diagonal entries.
 - f) If A is a square matrix, then det(-A) = -det(A).
- 7. **Optional Problem**: Consider a group of 5 students. Student 1 is friends on Facebook with each of the other four students. Also, Student 4 is Facebook friends with Student 3 and Student 5. There are no other Facebook friendships among the 5 students.

Let A be a 5×5 matrix, where the entry in row i and column j is 1 if Student i and Student j are Facebook friends, and 0 if Student i and Student j are not Facebook friends. So A is a symmetric matrix. (We assume Facebook does not allow a student to be friends with himself or herself, so all diagonal entries of A are zero.)

- a) Write down the matrix A.
- b) Let u be the vector $\begin{bmatrix} 1 \end{bmatrix}$. Calculate $A\mathbf{u}$. What is the meaning of the ith entry of $A\mathbf{u}$?
- c) Calculate A^2 . What is the meaning of the (i, j)-entry of A^2 , when $i \neq j$? This is the beginnings of the subject of "algebraic graph theory".