Dupervised Tearning Percepton network. Archixecture: cheight fixed Dimred op. 010012 gando m (1) n Response Asso siator unix

```
Initialize weight and bias
Sex & (0 x0 1)
     FOR
    ean
                                                  y = k khen
 Ackivake i/p uniks
                                             wi(new) = w wold) + x + ni
                                              benew) = bloid) + ax
 calculate net 1/p
                                            Implement AND function uning percepton networ
      Yin
                                            for bipolar i/p's and kargets.
  Apply activation obtain Y= f (Yin)
       Y != 1
   mi(new) = mi(old)+
    x+xi
      benew) = b(old) + ax
                       (ui (new) = cui cold)
                        benew) = bloid)
      weight
        Changes
```

	$\Delta w_1 = \alpha k \pi_1 \qquad w_1(nw) = w_1(oid) + \alpha k \pi_1$ $\Delta w_2 = \alpha k \pi_2 \qquad w_2(new) = w_2(oid) + \alpha k \pi_2$ $\Delta b = \alpha k \qquad b(new) = b(oid) + \alpha k .$ $y = fin = \begin{cases} 1 & \text{if } yin \geq 0 \\ 0 & \text{if } yin = 0 \end{cases}$ $y = fin = \begin{cases} 1 & \text{if } yin \geq 0 \\ -1 & \text{if } yin \leq 0 \end{cases}$ $y = fin = b + \pi_1 w_1 + \pi_2 w_2 .$ $AND \text{funckion } uning \text{preceptron neuron}$											Target 7 calmented top output. Epoch!! -1 -1 1 -1 -3 -1 -1 1 -1 2 2 21 22 1 Target Net calment Dw, Dw2 Db wiw (A) YEA EPOCH 2 21 22 0/p Dw1 Dw2 Db cw1 1 1 1 1										-trus-		
A CONTRACTOR OF THE CONTRACTOR	21	input		Tang (k)	ek Net i	IP)	Calcula Olp (4)	d Weigh Change		phs cueighing so will will will will will will will wil		0"	•	-1 1	1	-1 -1	ß<-	-()				9	
		1	1		0	8.	0		9	ī	The contract of the contract of	Y.	1	-1 965 = 2	-1	۱ × ۵	1	1 × 2,)- (= <u> </u> }	12 1	.2-2		-6	2
	ı	-1	1	-1	I	1-	1-	1	-1	1	-1	0	1 1	7 =	t		1 × 1			10	of which	150-	włx -	
	-1	1	1	-1	2		J		+1	-1	1	1	1-	Δw	2 =	1 %	1 × 5'				9			
•	-1	-1		-1	-3		-1		0	0	0	1	1 -	Yin				- 10	- 20 ⁰⁰	Nº V		* 3		
				POC	HT-	1	1 1 4 2 7 7 6	1 mod													-	lan water		

Preceson

Olp layers has mare than one nodes with meight for each.

fig: hingle classification of perception neuron.

Racception kaaining Algorikum for Single class

Skep 4:
$$yin = b + \sum_{i=1}^{h} x_i w_i$$

$$y = f(in) = \begin{cases} 1 & \text{if } yin > 0 \\ 0 & \text{if } -0 \le yin \le 0. \end{cases}$$


```
Initial weights are [V11 V21 V01] = [06,-0.1,0.3]
           V_{12} V_{22} V_{02}] = \begin{bmatrix} -0.3 & 0.4 & 0.5 \end{bmatrix}
           [\omega_1 \ \omega_2 \ \omega_0] = [0.4, 0.1, -0.2]
      Q= 0.25
    Fin = 1 +e-12 hiplan higmordal functo
   [x_1x_2] = [0,1], t=1
    PDF Neuro fuzzy hybrid
         Genezic Newson
         Genezic Fuzzy
    1. Necro fuzzy
     I companison:
                                FUZZY
     Newal Paversing
   makhimaki cal model
       not necessary
                               No
         algorithins
                             Simple
  Black bon behaviour
I Characterisia.
I Classification
```

Hidden layers & Inv 18 18 18 18 Zin 1 = Yo1 + 91411 + 22421 = 0.3+0*0.6+1*-0.1 = 0.3 - 0.1 = 0.2 Zin2=0.5+0X-0.3+1X0.4 = 0.5 + 0.4 = 0.9 21 - (Czint) Applying activation to calculate the ofp, are obtain. Z1 = f(Zinl) = 22 = Calculate the nex 1/p entering the ofp inner. FOR y layer. Vin= Wo + Z1 W1 + Z2 W2 = -0.2+0.5498X0.4+0.7109X0/ = 6.09101.

Applying activations to calculate the output, we obtain $Y = f(Y_{in}) = \frac{1}{1 + e^{-Y_{in}}} = \frac{1}{1 + e^{-Y_{in}}}$

