EE 044252: Digital Systems and Computer Structure Spring 2018

Lecture 6: More Finite State Machines

EE 044252: Digital Systems and Computer Structure

Topic	wk	Lectures	Tutorials	Workshop	Simulation
Arch	1	Intro. RISC-V architecture	Numbers. Codes		
Comb	2	Switching algebra & functions	Assembly programming		
	3	Combinational logic	Logic minimization	Combinational	
	4	Arithmetic. Memory	Gates		Combinational
Seq	5	Finite state machines	Logic		
	6	Sync FSM	Flip flops, FSM timing	Sequential	Sequential
	7	FSM equiv, scan, pipeline	FSM synthesis		
	8	Serial comm, memory instructions	Serial comm, pipeline		
μArch	9	Function call, single cycle RISC-V	Function call		
	10	Multi-cycle RISC-V	Single cycle RISC-V		Multi-cycle
	11	Interrupts, pipeline RISC-V	Multi-cycle RISC-V		
	12	Dependencies in pipeline RISC-V	Microcode, interrupts		
	13		Depend. in pipeline RISC-V		

Agenda

- FSM timing
- Clock skew
- FSM limitations

- מערכת עקיבה ממומשת עייי מכונת מצבים סופית (Finite State-Machine, FSM) המוגדרת באמצעות מרכיביה
 - עייי אוניעג K מצבים אויי אונית אונית אונית אריים אחד מהם נקבע כמצב ההתחלתי. ניתן לייצג אונית אונית אונית אריים אחד מהם נקבע כמצב ההתחלתי. ניתן לייצג אונית אונ
 - $X=\{x_1,x_2,\ldots,x_L\}$ קבוצה סופית של כניסות בינאריות -
 - $Z=\{z_1,z_2,\ldots,z_M\}$ קבוצה סופית של יציאות בינאריות -
- את המצב הבא $x_1,x_2,...,x_L$ את המצב הבא וערכי הכניסות אירוף של אירוף של מצב נוכחי וערכי הכניסות $\lambda(S \times 2^X oldsymbol{ oldsymbol{ oldsymbol{s}}} \lambda(S \times 2^X oldsymbol{ oldsymbol{ oldsymbol{s}}} S_i^*$
 - את $x_1,x_2,...,x_L$ את וערכי הכניסות s_i וערכי אירוף של מצב נוכחי אירוה חמגדירה חמגדירה $\Omega_{\mathrm{MEALY}}(S\times 2^{\mathrm{X}} o 2^{\mathrm{Z}})$ את ערכי היציאות ערכי היציאות בי,ב,ב,
 - $t_{\mathrm{cC-Q}},\,t_{\mathrm{pC-Q}}$ תזמוני כניסה $t_{\mathrm{S}},\,t_{\mathrm{H}}$ ותיזמוני יציאה
 - Mealy מכונת מצבים כזו קרויה עיש •
 - י לעומתה, במכונת Moore שונה פונקצית היציאה והיא תלויה במצב הנוכחי בלבד $\Omega_{ ext{MOORE}}(S oup 2^Z)$

?Mealy או Moore – מכונת מצבים

- לתיאור תיאורטי Mealy •
- המכונה מוגבלת לגילוי מלים השייכות לשפה
- לא נשתמש לבניית מערכות ספרתיות המורכבות ממספר מכונות
- הסיבה תובהר בהמשך (קושי בהגבלת האורך של מסלולים צירופיים)
 - Moore לבניית מערכות מורכבות
 - נמנע מסלול צירופי מכניסה ליציאה

תזמון במכונת מצבים: זמן המחזור

תזמון במכונת מצבים: זמן SETUP

כללי התזמון

- ישנם ארבעה מסלולים, שניים שראינו : שעון \leftarrow שעון, שעון \leftarrow קלט, ושניים נוספים : פלט \leftarrow קלט, פלט \leftarrow שעון
 - בכדי להבטיח פעולה תקינה של מערכת עקיבה יש להקפיד על שני כללים לכל מסלול. נרשום חלק מהם:
 - :T משך מחזור השעון –

$$T \ge t_{pC-Q} + t_{pd}(C.Logic) + t_{S}$$

- $t_s(input)$ במשך: $t_s(input)$ במשך: $t_s(input) \geq t_{pd}(C.Logic) + t_s$
 - של הזיכרונות t $_{H}$ של ארוך מאשר להיות ארוך להיות במערכת הצירופית במערכת t_{cd} (C.Logic) + t $_{c-Q}$ –
- th(input) הכניסות למערכת הצירופית צריכות להיות תקפות בערכים הנכונים במשך th(input) הכניסות למערכת הצירופית בריכות להיות הקפות בערכים הנכונים במשך th(input) \geq th- tcd(C.Logic) המקיים

c Min d D a a Max b D a c

Setup Time Constraint

$$t_{cy} > t_{dCQ} + t_{dMax} + t_s$$

Propagation Delay and Contamination Delay

Propagation Delay – Time from last input change until last output change. (Input at steady state to output at steady state.)

Contamination Delay – Time from first input change until first output change. (Input contaminated to output contaminated)

Hold Time Constraint

$$t_h < t_{cCQ} + t_{cMin}$$

Unsafe at any speed

 t_{cXY} – contamination delay t_{dXY} – propagation delay

Technion EE 044252 Spring 2018 Lecture 6

Example

$$t_{dCQ} = t_{cCQ} = t_{s} = 150ps$$

 $t_{h} = 250ps$
 $t_{dMax} = 850ps$
 $t_{cMin} = 100ps$

Is hold time constraint met?

What is the minimum cycle time?

Clock Skew

clk

C

d

clkd

$$t_{ ext{cy}} > t_{ ext{dCQ}} + t_{ ext{dMax}} + t_{ ext{s}} + t_{ ext{k}}$$
 $t_{ ext{h}} < t_{ ext{cCQ}} + t_{ ext{cMin}} - t_{ ext{k}}$

Clock Skew--Example

clk

C

d

clkd

$$\begin{aligned} &t_{\text{cy}} > t_{\text{dCQ}} + t_{\text{dMax}} + t_{\text{s}} + t_{\text{k}} \\ &t_{\text{h}} < t_{\text{cCQ}} + t_{\text{cMin}} - t_{\text{k}} \end{aligned}$$

t_{cCQ}

t_{ccd}

t_k

Is hold time constraint met? What is the minimum cycle time?

There is also jitter...

Technion EE 044252 Spring 2018 Lecture 6

שלבי התכנון של מערכת עקיבה

- 1. למד את התיאור המילולי של המערכת הנדרשת
- הבנת הדרישות: מספר כניסות, יציאות, מצבי זיכרון
 - 2. בנה טבלת מצבים או דיאגרמת מצבים
 - (צמצם את טבלת המצבים נלמד בהמשך) 3
 - 4. בחר הקצאת מצבים ובחר רכיבי זיכרון
 - D-FF מסוג
 - 5. רשום את טבלת המעברים ואת טבלת היציאה
 - 6. מצא את פונקציות המעבר ופונקציות היציאה
 - 7. שרטט את המעגל המממש את המערכת

תכונות ומגבלות של מערכות עקיבה

- מערכות העקיבה מומשו עד כה באמצעות זיכרון סופי, ולכן מספר המצבים הוא סופי. מכונות כאלו קרויות (Finite State Machine (FSM
 - האם ניתן לחשב באמצעות מכונה כזו כל חישוב שהוא? האם ניתן לממש באמצעותה כל טרנספורמציה רצויה על הקלט?
 - התשובה כמובן שלילית: מספר המצבים הסופי מטיל מגבלה על יכולת החישוב
 - עם קריאת הקלט המכונה n מצבים, והקלט הוא סדרה של 1–ים, ארוכה מ-n. עם קריאת הקלט המכונה תעבור על סדרת מצבים

$$S_{t(0)} \xrightarrow{1} S_{t(1)} \xrightarrow{1} S_{t(2)} \xrightarrow{1} \dots \xrightarrow{1} S_{t(i)} \xrightarrow{1} \dots \xrightarrow{1} S_{t(j)} \dots \xrightarrow{1} S_{t(n-1)} \xrightarrow{1} S_{t(n)} \xrightarrow{1} \dots$$

- נקבל, לראשונה, $S_{t(i)} = S_{t(i)}$ עבור $0 \le i < j \le n$ עבור $S_{t(i)} = S_{t(i)}$ שהיה הבדל ביניהם •
- י מובן שהמכונה תמשיך מ- $S_{t(i)}$ ומ- $S_{t(j)}$ באותה סדרת מצבים (הרי הקלט הוא אותו קלט בשני $S_{t(i)}$ -ים)
 - באותו אופן, המכונה גם תייצר אותו פלט בשני המקרים
 - במילים אחרות, אנו מקבלים פלט מחזורי!

דוגמה: מכונה להשוואת אורכי מחרוזות

-1ים שווה למספר האפסים. למשל: z=1 אםz=1 אםz=1 נתכנן מכונה המוציאה

• ננסה לצייר דיאגרמת מצבים

דוגמה: מכונה להשוואת אורכי מחרוזות

z=1 אםz=1 אםz=1 אם שווה למספר האפסים. למשל

- נניח שקיימת מכונה עם n מצבים המבצעת את הנדרש. נספק לה את הקלט n+1 פעמים הספרה n+1 ואחר כך n+1 פעמים הספרה n+1
- על המכונה להוציא 1 לראשונה רק עם תום קריאת הקלט. אולם, כיוון שאורך סדרת האפסים n+1 הוא n+1, המכונה נכנסה למחזור, ולכן תוציא n+1

משפט המחזוריות של מכונת מצבים סופית

- משפט: מכונה בעלת מספר מצבים סופי מפיקה יציאה מחזורית תחת קלט מחזורי, למעט "זמן-מעבר" סופי
- הוכחה: נניח שלמכונה n מצבים ואורך המחזור של סדרת הקלט הוא k סיביות. נבדוק מהו מצב המכונה בכל פעם שמחזור הקלט מתחיל מחדש (כלומר בכל k סיביות קלט). לאחר k מחזורי קלט לכל היותר, לפחות שני מצבים יהיו זהים:

$$S_{t(0)} \xrightarrow{1} S_{t(1)} \xrightarrow{1} S_{t(2)} \xrightarrow{1} \dots \xrightarrow{1} S_{t(i)} \xrightarrow{1} \dots \xrightarrow{1} S_{t(j)} \dots \xrightarrow{1} S_{t(n-1)} \xrightarrow{1} S_{t(n)} \xrightarrow{1} \dots$$

- מאחר ששני המצבים זהים וסדרת הקלט זהה, גם סדרת הפלט תהייה זהה. לכן גם סדרת הפלט מחזורית. מ.ש.ל.
 - מסקנה: חישובים מסוימים אינם ניתנים למימוש באמצעות מכונה סופית.
 - למשל השוואת אורכי מחרוזות (אורך המחזור היה 1).

מכונה לזיהוי ריבועים

- (...,16,9,4,1) אםיים מספר ה- 1-ים בכניסה הוא ריבוע שלם z=1 אםיים מספר ה- 1-ים בכניסה הוא ריבוע שלם
- המכונה צריכה להוציא את הסדרה הבאה כאשר נתונה סדרת-קלט המכילה רק את הספרה

סדרת הפלט איננה מחזורית : עבור כל מספר n , המועמד להיות מחזור, קיים k>0 כך שעבור k>0. k≥k0

$$k^2 - (k-1)^2 > n$$

- \bullet כלומר יהיו רצפים של יותר מ-n אפסים, למרות שהסדרה איננה זהותית \bullet
 - מסקנה: המכונה איננה ניתנת למימוש במספר סופי של מצבים

מכונה לחישוב השארית

- ערית ב-1 אחיים המספר הבינרי המתקבל באופן טורי בקלט מתחלק ב-z=1 אחיים המספר הבינרי המתקבל באופן טורי בקלט מתחלק ב-msb (ה-msb
 - יש לזכור רק את השארית בחלוקה ב-5 של המספר שנקרא באופן טורי עד כה
 - נניח שהמספר שהתקבל עד כה הוא $\mathbf x$ והשארית היא $\mathbf 0$, וכעת מגיעה הסיבית הבאה ullet
- המספר החדש שווה בערכו ל-2x (כי x הוזז שמאלה בסיבית אחת) ועוד 0 (אם הסיבית החדשה היא 0) או ועוד 1 (אם הסיבית החדשה היא 1) הסיבית החדשה היא 1)
 - השארית החדשה היא 0 או 1, בהתאמה.
 - במקרה הראשון היציאה צ"ל 1, לפי הגדרת המכונה
 - רוכעת מגיעה הסיבית הבאה $\mathbf x$ והשארית היא $\mathbf t$, וכעת מגיעה הסיבית הבאה $\mathbf t$
- ר כמו לעיל, המספר החדש שווה בערכו ל-2x (כי x הוזז שמאלה בסיבית אחת) ועוד 0 (אם הסיבית החדשה היא 0) או ועוד 1 (אם הסיבית החדשה היא 1)
 - השארית של חלוקת 2x ב-5 היא 2 (מדוע! דוגמה!)
 - השארית של חלוקת 2x+1 ב-5 היא -
 - וכן הלאה, במקרים של שארית 2,3,4

מכונה לחישוב השארית

- אזהרה: זו מכונת מילי...
- י אתגר: נניח ש-lsb נכנס ראשון. האם עדיין ניתן לממש כמכונת מצבים סופית?

Summary

- FSM timing Setup, hold, cycle time / clock frequency
- Clock skew extending the cycle
- FSM limitations it's finite