ساختار و زبان کامپیوتر

فصل نهم سازمان مافظه

Copyright Notice

Parts (text & figures) of this lecture are adopted from:

- D. Patterson & J. Hennessey, "Computer Organization & Design, The Hardware/Software Interface", 5th Ed., MK publishing, 2014
- © W. Stallings, "Computer Organization and Architecture, Designing for Performance", 10th Ed., Pearson
- Morris Mano and Michael Ciletti, "Digital design: with an introduction to the Verilog HDL", 5th Edition, Pearson, 2013

Outlines

- Characteristics of Memory Systems
- Internal Memory Classification
- Memory Hierarchy

Memory

- A collection of cells capable of storing binary information
- Contains electronic circuits for storing and retrieving the information
- Used in many different parts of a computer, providing temporary or permanent storage for substantial amounts of binary information

Key Characteristics

Location

Internal (e.g., processor registers, cache, main

memory)

External (e.g., optical disks, magnetic

disks, tapes)

Capacity

Number of words

Number of bytes

Unit of Transfer

Word

Block

Access Method

Sequential

Direct

Random

Associative

Performance

Access time

Cycle time

Transfer rate

Physical Type

Semiconductor

Magnetic

Optical

Magneto-optical

Physical Characteristics

Volatile/nonvolatile

Erasable/nonerasable

Organization

Memory modules

Activate Windo

Go to Settings to a

Internal vs. External Memory

- Internal
 - Semiconductor memories
 - Register, Cache, Main Memory
- External
 - Magnetic/ Optical/ Semiconductor
 - Hard disks, Optical disks, SSD

Semiconductor Memory

- Content Addressable Memory (CAM)
- Sequential Access Memory (SAM)
- Random Access Memory (RAM)

Content Addressable Memory (CAM)

Copyright © 2007 ENTS689L: Packet Processing and Switching Content Addressable Memory (CAM)

CAM: Closer View

K. Pagiamtzis, A. Sheikholeslami, "Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey," *IEEE J. of Solid-state circuits. March* 2006

Sequential Access Memory (SAM)

Shift Registers

- SISO (Serial-in-Serial-out)
- SIPO (Serial-in-Parallel-out)
- PISO (Parallel-in-Serial-out)

O Queues

- FIFO (First-in-First-out)
- LIFO (Last-in-First-out)

Random Access Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-Write Memory (RWM)	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-Only Memory (ROM)	Not possible	Masks	
Programmable ROM (PROM)			Nonvo	Nonvolatile
Erasable PROM (EPROM)	Read-Mostly Memory (RMM)	UV light, chip- level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

Semiconductor Memory

o RAM

- Misnamed as all semiconductor memory is random access
- Read/Write
- Volatile
- Temporary storage
- Static or dynamic

Dynamic RAM (DRAM)

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- o Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue
 - Level of charge determines value

Dynamic RAM Structure

Static RAM (SRAM)

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Faster
- o Cache
- Digital
 - Uses flip-flops

Static RAM Structure

SRAM v DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Larger memory units
- o Static
 - Faster

Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program

Read Mostly Memory (RMM)

- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - · Erase blocks of memory electrically

Memory Cell Operation

Communication with CPU

Memory, CPU & 1/0 devices communicate via BUS

What is a Bus?

- Single set of wires used to connect multiple subsystems
- Shared communication link with multiple drivers

Disadvantage of Buses

- Creates a communication bottleneck
 - Bus bandwidth limits maximum I/O throughput
- Maximum bus speed is largely limited by:
 - Length of bus
 - Number of devices on bus
 - Slowest device on bus

23

General Organization of Buses

- Control Lines
 - Signal requests and acknowledgments
 - Indicate what type of information is on data lines
- Data Lines
 - Carry information between source and destination
 - Data and Addresses
 - Complex commands

Memory Unit Access

Memory Contents

Memory address

Binary	Decimal	Memory content
0000000000	0	101101010101110
0000000001	1	101010111000100
0000000010	2	000011010100011
	•	•
1111111101	1021	100111010001010
1111111110	1022	000011010001111
1111111111	1023	110111100010010

Memory Chips

Memory Write Cycle

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

Memory Read Cycle

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

22×1 bits Memory

22×4 bits Memory

Building Memory Blocks

We have a 64K×8 bit Memory Chip

- We want to build:
 - a 256K×8 bit memory block
 - a 64K×16 bit memory block

256K×8 bits ADRS17—ADRS16—

Address Range

11 1111 1111 1111 1111 (0x3ffff)
to
11 0000 0000 0000 0000 (0x30000)

10 1111 1111 1111 1111 (0x2ffff)
to
10 0000 0000 0000 0000 (0x20000)

01 1111 1111 1111 1111 (0x1ffff)
to
01 0000 0000 0000 0000 (0x10000)

00 1111 1111 1111 1111 (0x0ffff)
to
00 0000 0000 0000 0000 (0x00000)

64K×16 bits

Exploiting Memory Hierarchy

Ideally one would desire an indefinitely large memory capacity such that any particular ... word would be immediately available. ... We are ... forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann

Preliminary Discussion of the Logical Design of an Electronic Computing Instrument, 1946

Principle of Locality

- Programs access a small proportion of their address space at any time
- Temporal locality
 - Items accessed recently are likely to be accessed again soon
 - e.g., instructions in a loop, induction variables
- Spatial locality
 - Items near those accessed recently are likely to be accessed soon
 - e.g., sequential instruction access, array data

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items
 from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

The basic structure of a memory hierarchy. By implementing the memory system as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers.

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
 - If accessed data is absent
 - Miss: block copied from lower level
 - o Time taken: Miss penalty
 - Miss ratio: misses/accesses= 1 hit ratio
 - Then accessed data supplied from upper level

Structure of a Memory Hierarchy

- Fast memories are small, large memories are slow
 - We really want fast, large memories
 - Memory hierarchy gives this illusion ©

All-in-One

