PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-202845

(43) Date of publication of application: 04.09.1991

(51)Int.CI.

G03B 33/12 G02B 27/10 G09F 9/00

(21)Application number: 01-344844

(71)Applicant: CANON INC

(22)Date of filing:

28.12.1989

(72)Inventor: KUREMATSU KATSUMI

OSHIMA SHIGERU MINOURA NOBUO

(54) COLOR SYNTHESIZING OPTICAL SYSTEM FOR PROJECTOR

(57)Abstract:

PURPOSE: To shorten a back focus and to prevent the degradation of contrast by joining 3 prisms of the triangle pole which are section of right angled triangle of prescribed interior angles and the same shape in a prescribed manner via required dichroic mirrors.

CONSTITUTION: The red light by a 1st liquid crystal device 5 is made incident on the base of the 1st prism 1 of the triangle pole which is section of right angled triangle of 30°, 60° interior angles and is made incident through the 1st dichroic mirror 8 to the 3rd prism 3 of the same shape as the shape of the 2nd prism 2, the slope of which is joined by the mirror 8. This light is synthesized with the green light which is made incident from a 2nd liquid crystal device 6 and is reflected by the mirror 8. Red light is similarly synthesized by the prism 3 of the same shape as the shape of the prisms 1,2, the rectangular surfaces of which are joined by the dichroic mirror 9, by which the

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

平3-202845 四公開特許公報(A)

@Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)9月4日

G 03 B 33/12 G 02 B G 09 F 27/10

360

7811-2H 7036-2H 6957-5C

審査請求 未請求 請求項の数 2 (全5頁)

60発明の名称

明

@発

プロジエクタ用色合成光学系

願 平1-344844 ②特

茂

願 平1(1989)12月28日 20出

松 72)発 明一者 老

E 克

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 神奈川県川崎市中原区今井上町53番地 キャノン株式会社

小杉事業所内

信 夫 浦 @発 明 者 箕

島

大

キャノン株式会社 頣 人 の出

弁理士 若 林 個代 理 人

東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号。

1. 発明の名称

プロジェクタ用色合成光学系

2. 特許請求の範囲

赤、緑、青の各色光像がそれぞれ入射さ れて該各色光像を合成する第1ないし第3のプリ ズムを備えたプロジェクタ用色合成光学系であっ τ.

前記第1ないし第3のブリズムは、それぞれ、 内角30°の第1の頂点と内角60°の第2の頂 点を有する、同一の直角三角形断面の三角柱型で あり、

前記第1ないし第3のプリズムは、それぞれの 第1の頂点同志が隣接されて、第1のブリズムと 第2のプリズムとがそれぞれの、直角三角形断面 の斜辺に対応する側面尚志で接合され、さらに、 故事2のブリズムと第3のブリズムとがそれぞれ の、第2の頂点に対向する側面同志で接合されて おり.

また、前記第1ないし第3のプリズムは、それ

ぞれの、第1の頂点に対向する側面が、前記各色 光像が垂直に入射する入射部であり、

さらに、前記第1のプリズムと第2のプリズム との接合面に、第1のプリズムの入射部から入射 した色光像のみ透過する第1のダイクロイックミ ラーが形成され、前記第2のプリズムと第3のプ リズムとの投合面に、第3のプリズムの入射郎か **ら入射した色光像のみ反射する第2のダイクロ** イックミラーが形成されていることを特徴とする プロジェクタ用色合成光学系。

2. 第1のプリズムの第1の頂点の内角を 30.以上としたことを特徴とする請求項1記載 のブロジェクタ用色合成光学系。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は赤、緑、青の三原色別の光像を色合成 するプロジェクタ用色合成光学系に関するもので ある。

[従来の技術]

従来、この種の色合成光学系は特開昭51-52233

号公報等に記載されているように、板状ダイクロイックミラーにて構成されるか、または特別昭 62-59919号公報等に記載されているようにクロスダイクロキューブにて構成されていた。

[発明が解決しようとしている課題]

しかしながら、上記従来の技術において、ダイクロイックミラーによる色合成光学系では投 では 対するバックフォーカスが長くないは 横のロスボイスを使用した場合、 その縦ある いは 横のロス とする 2・2 程度となる。)、また、 クロキューブによるものではクロス スクロ で発生したフレアー光が表示デバイス の 仮に向う ため、その表示画像のコントラストを低下させるという欠点がある。

本 代明は、上記従来の技術の有する欠点に鑑みてなされたもので、バックフォーカスが短かく、かつ、コントラストの低下を防止したプロジェクタ用色合成光学系を提供することを目的とする。

[課題を解決するための手段]

した色光像のみ透過する第1のダイクロイックミラーが形成され、前記第2のブリズムと第3のブリズムと第3のブリズムとの接合面に、第3のブリズムの入射部から入射した色光像のみ反射する第2のダイクロイックミラーが形成されたものであり、

前記第1のプリズムの第1の頂点の内角を 30°以上としてもよい。

[作用]

 本発明は、赤、緑、青の各色光像がそれぞれ入 射されて該各色光像を合成する第1ないし第3の プリズムを備えたプロジェクタ用色合成光学系で あって、

前記第1ないし第3のプリズムは、それぞれ、 内角30°の第1の頂点と内角60°の第2の頂点を有する、同一の直角三角形断面の三角柱型であり、

前記第1ないし第3のプリズムは、それぞれの 第1の頂点同志が隣接されて、第1のプリズムと 第2のプリズムとがそれぞれの、直角三角形断面 の斜辺に対応する側面同志で接合され、さらに、 該第2のプリズムと第3のプリズムとがそれぞれ の、第2の頂点に対向する側面で接合されてお

また、前記第1ないし第3のプリズムは、それ ぞれの、第1の頂点に対向する側面が、前記各色 光像が垂直に入射する入射部であり、

さらに、前記第1のブリズムと第2のブリズム との接合面に、第1のブリズムの入射部から入射

[実施例]

本発明の実施例について図面を参照して説明する。

第1図は本発明のプロジェクタ用色合成光学系の一実施例を示す図である。

本実施例は、それぞれ内角が30°、60°、

90 の、同一形状の直角三角形を断面とする三角柱型の第1ないし第3の3つのブリズム1.2.3.を接合し、第1のブリズム1と第2のグリズム2との接合界面に第1のダイクロイックミラー8を設け、また、第2のブリズム2と第3のブリズム3との接合界面に第2のダイクロイックミラー9を設けて、色合成光学系10を形成したものであり、該色合成光学系10で合成された合成像は投写レンズ4を通して不図示のスクリーンへ拡大投写される。

この色合成光学系10は、第1ないし第3の各プリズム1、2、3の断面において、内角30°の各項点を中心として、第1および第2のブリズム1、2については内角90°の頂点に対する名斜辺に対応する側面同志で接合され、また、第1ないし第3の各プリズム1、2、3において内角30°の頂点に対向する側面が赤、緑、脊の各色光の入射郎となっており、モ

また、第1のダイクロイックミラー8は赤色光、 すなわち第1のブリズムの入射部から入射した色 光を透過、緑色光および青色光を反射する特性を 有し、第2のダイクロイックミラー9は赤色光お よび緑色光を透過、青色光、すなわち第3のブリ ズム3の入射部から入射した色光を反射する特性 を有している。

 れぞれ、第1の液晶デバイス(以下、「LCD」 と称す。) 5、第2のLCD 6、第3のLCD 7 が取付けられている。

これらの第1ないし第3のLCD5、6、7 は、それぞれ赤色画像用、緑色画像用、青色画像 用の遺通型のものであり、各色画像用の原色映像 信号により画素毎に照明光の変調を行なう。この 変調は、入射光に対して出射光の偏光面を90 回転させるものである。この第1ないし第3の各 LCD5、6、7へは、後述する色分離光学系で 分離された各色光が、それぞれの入射面に対して 垂直に入射する構成となっており、特に第1の LCD5に関る入射光軸は前記投写レンズ4の投 写光路に連続するものとなっている。さらに、 前述の第1ないし第3のブリズム1、2、3の接 合関係から、第1のプリズム1における色光の入 射面と第3のブリズムのエア界面とは平行となる ため、この色合成光学系10における合成像の出 射部となる第3のブリズム3のエアー界面は前記 投写レンズ4の投写光路に対して90°となる。

光像と合成されたのち、第3のプリズム3のエアー界面を透過して、投写レンズ4に向う。そしてこのようにして、色合成された合成像は投写レンズ4により不凶示のスクリーンへ拡大投映される。

第2図は、本色合成光学系10におけるフレア 光の様子を表わすものであり、図中点線矢印がそ の光線を示している。これから判かるようにブリ ズム接合界面、すなわち第1および第2のダイクロイックミラー8,9で緑色光あるいは青色光が反射する際に発生する各フレア光は、本色合成光学系10においては、第1ないし第3のLCD5。6,7側へ向うことは無く、第1のブリズム1のエアー界面に向う。したがって、第1のブリズム1のエアー界面に光吸収部材を施すことにより、フレア光によるコントラスト低下を防止することが可能となる。

この第1のブリズム1のエアー界面は、本実施例では前述の役写レンズ4の役写光路に対して平行となっているが、このエアー界面は、必ずしも平行である必要はなく、フレア光を役写光路外にそらすために、傾けることも効果的である。この場合、第1のブリズム1は第1のLCD5が明けられる面を光軸に垂直とするために、第1のブリズム1において、三角形断面の1つの内角を60°とする必要があるが、他の2つの内角については一方を30°以上とすることで任意に決めることができる。

射されて第1のLCD5の照明光となる。一方、第3のダイクロイックミラー12で反射される緑色光および青色光は、つづいて第4のダイクロイックミラー14に入射して、緑色光および青色光とに分離される。この第4のダイクロイックミラーにおいて、反射する緑色光は、第2のLCD6の照明光となり、該第4のダイクロイックミラー14を透過する青色光は、透過後、全反射ミラー15で反射されて第3のLCD7の照明光となる。

このように、第1ないし第3のLCD5、6、7の照明光となった赤、緑、青の各色光は、該第1ないし第3のLCD5、6、7でそれぞれ画楽毎に変異を受け各色光像として出射し、その後、前述のように、色合成光学系10で合成されて投写レンズ4を適して不図示のスクリーンへ拡大投写される。

ところで、上述の色合成光学系10において は、第1、第2の各ダイクロイックミラー8、9 に対して、透過光となる赤色光はP偏光光とし、

次に、第3図を参照して、色分離光学系を備えた場合について説明する。

第3図は、前述の第1図に示した色合成光学系10に、色分離光学系を付加したもので、この色分離光学系は、第3および第4の2つのダイクロイックミラー12、14と全反射ミラー13、15とで構成されており、白色光源11から出射するテレセントリックな白色光を、赤、緑、青の各色光に分離して、前述の第1ないし第3のLCD5、6、7の照明光とする。

上述の第3のダイクロイックミラー12は赤色 光透過、緑色光および青色光反射の特性を有し、 第4のダイクロイックミラー14は緑色光反射、赤色光および青色光透過の特性を有するもの である。

第3図において、白色光源11から発せられた 白色光は、まず、第3のダイクロイックミラー 12により、赤色光と緑色光および寄色光とに分 雌され、該第3のダイクロイックミラー12を透 過する赤色光は、透過後、全反射ミラー13で反

反射光となる緑色光および青色光はS偏光光とすることが、ダイクロイックミラーの特性上好ましいことは言うまでもない。

また、本実施例では、画像形成用の表示デバイスとして液晶デバイスを用いたが、CRT等他の表示デバイスを用いることも可能である。さらに、各プリズムの界面に形成される各ダイクロイックミラーの波長特性を変更することにより、赤色光、緑色光、青色光の入射位置を変更することも可能である。

[発明の効果]

以上説明したように本発明によれば、ダイクロイックミラー面で生じるフレア光を、第1のブリズムのエアー界面から出射させて投写光路から外させるので、該フレア光によるコントラスト低下を防止することが可能となり、また3つの各プリズムを同一形状で形成するので構成が簡単になって容易に製造ができるとともに、バックフェーカス長も従来に比較して、より短かくすることができるという効果がある。

特別平3-202845(5)

4. 図面の簡単な説明

第1図は本発明のプロジェクタ用色合成光学系の一実施例を示す図、第2図は第1図に示した実施例におけるフレア光の光路を示す図、第3図は色分離光学系の一例を備えた、プロジェクタ用色合成光学系を示す図である。

- 1. 2. 3 -- プリズム、4 -- 投写レンズ、
- .5,6.7…被晶デバイス、
- 8. 9. 12. 14 ダイクロイックミラー、
- 10 -- 色合成光学系、 11 -- 白色光源、
- 13.15…全反射ミラー。

特許出願人 キヤノン株式会社 代 理 人 若 林 忠

第 2 図

第 3 図

THIS PAGE BLANK (USPTO)