Problem 1

Construct a truth table for each of the following predicates. Which of them are logically equivalent?

- (a) $Q \Leftrightarrow (P \vee Q)$.
- (b) $P \vee \neg Q$.
- (c) $Q \Rightarrow P$.
- (d) $(P \vee \neg P) \wedge (Q \Leftrightarrow (Q \wedge \neg Q)).$

Problem 2

Show that the polynomial

$$p(x) = 4x^5 - 3x^3 + x^2 + 1$$

has no rational roots. Hint: See example 3.6.3 in the Course Notes.

Problem 3

Let $S = {\emptyset, {\emptyset}, {\emptyset}, {\emptyset}, {\emptyset}}$.

- 1. List all subsets of S. (How many subsets are there?)
- 2. Determine which of the following statements are true.
 - $\emptyset \subseteq S$.
 - $\emptyset \in S$.
 - $\emptyset \subseteq \{S\}$.
 - $\emptyset \in \{S\}$.

- $\{\emptyset\} \subseteq S$.
- $\{\emptyset\} \in S$.
- $\{\{\emptyset\}\}\subseteq S$.
- $\{\{\emptyset\}\}\} \in S$.

Problem 4

Prove that $3^{2^n}-1$ is divisible by 10 for all $n\in\mathbb{N}, n\geq 2$.