

<u>Course</u> > <u>Unit 3:</u> ... > <u>6 Deco</u>... > 3. Gen...

3. General solution to inhomogeneous systems Introduction to inhomogeneous system

4:02 / 4:22

▶ 2.0x

) X

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

Download Text (.txt) file

Recall that an **inhomogeneous** first order n imes n linear system of ODEs is

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{r}(t)$$

where ${\bf A}$ is an $n \times n$ matrix, ${\bf r}(t)$ is a vector in n-dimensional space, and they both depend only on the independent variable t.

The general solution to such an inhomogeneous system is

$$\mathbf{x}(t) = \underbrace{\mathbf{x}_h(t)}_{\text{homogeneous}} + \underbrace{\mathbf{x}_p(t)}_{\text{particular}},$$

where \mathbf{x}_h is the general solution to the associated homogeneous system:

$$\dot{\mathbf{x}}_h = \mathbf{A}\mathbf{x}_h,$$

and \mathbf{x}_p is one particular solution satisfying the full inhomogeneous equation:

$$\dot{\mathbf{x}}_p = \mathbf{A}\mathbf{x}_p + \mathbf{r}.$$

This is due to the linearity of the system and the superposition principle.

As before in this course, we will restrict ourselves to the case when $\bf A$ is **constant**.

Review: companion system

2/2 points (graded)

For the second order single ODE

$$\ddot{x} + x = \tan(t),$$

5/4/2018

find the companion system with new variable $y = \dot{x}$:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{r} \quad \text{where } \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix},$$

by entering the companion matrix ${f A}$ and the vector ${f r}$ below

(Enter [a,b;c,d] for the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. That is, use commas to separate entries within the same row and **semicolon** to separate rows, and **square bracket** the entire matrix. Similarly for larger matrices.)

Solution:

Let $y = \dot{x}$, then the companion system is

$$egin{array}{lll} \dot{x} &=& y \ \dot{y} &=& -x + an(t). \end{array}$$

In matrix form, this is

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{r}$$
 where $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$,
 $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
 $\mathbf{r}(t) = \begin{pmatrix} 0 \\ \tan(t) \end{pmatrix}$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

3. General solution to inhomogeneous systems

Hide Discussion

Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 3. General solution to inhomogeneous systems

Add a Post

			Add a Fost
Show all posts	▼		by recent activity ▼
There are no pos	ts in this to	pic yet.	
×			
		Learn About Verified Certificates	0.411.71.17
			© All Rights Reserved