Inventarios forestales a través del procesamiento de imágenes

José Angel Ramírez Cantú

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

9 de noviembre de 2020

José Angel Ramírez Cantú Defensa de Tesis 1/31

Índice

- Introducción
 - Motivación
 - Hipótesis
 - Objetivos
 - Antecedentes
- Estado del Arte
 - Áreas de oportunidad
- Solución propuesta

- 4 Experimentación y resultados
 - Exp1
 - Exp2
 - Exp3
 - Exp4
- Conclusiones y trabajo futuro
 - Conclusiones
 - Trabajo futuro

Motivación Hipótesis Objetivos Antecedentes

Introducción

Poner zonas que se clasificaron

Motivación Hipótesis Objetivos Antecedentes

Motivación

Motivación

Aplicar técnicas avanzadas de inteligencia artificial y la visión computacional en problemas forestales.

Motivación Hipótesis Objetivos Antecedentes

Hipótesis

Hipótesis

El procesamiento de imágenes automatiza procesos y reduce tiempos.

Motivación Hipótesis Objetivos Antecedente

Objetivos

Objetivo general

Generar un inventario forestal mediante el procesamiento de imágenes.

Objetivo específico

Automatizar procesos de las técnicas tradicionales para realizar inventarios forestales.

Antecedentes históricos

Inicios del aprendizaje máquina

Figura 1: Sector financiero, año 1900

Antecedentes históricos

Inicios de visión computacional

Figura 2: Primeros experimentos utilizando la visión computacional, 1960

¿Existe una diferencia?

Figura 3: Encino y Cerezo

Figura 4: Característica de color

Figura 5: Característica de forma

Figura 6: Característica de textura

Motivación Hipótesis Objetivos Antecedentes

Uso de características locales

Objetivo

Describir los puntos de interés de un sector de o una imagen.

Escalamiento: Transforma los datos de las características en rangos

específicos de cero a uno.

Normalización: Desplaza y re-escala valores para alcanzar un rango entre cero

y uno.

Escala invariante (SIFT): Extrae la información y adecua en comparaciones.

Acelarado robusto (SURF): Toma un vecino al rededor del punto seleccionado en la imagen y es dividido en sub-regiones para cada sub-región.

Independientes Binarias robustas (BRIEF): Orientación y menor numero de diferencias a su alrededor.

ORB* Rotada y orientada rápida: Determina estos puntos clave de una imágen.

Estado del Arte

Tabla 1: Estado del Arte en el área de trabajo

Trabajo	Inventarios forestales	Visión computacional	Detección de objetos
Pelz [1]	✓	✓	\checkmark
Yahya and Ismail [2]	✓	✓	×

Áreas de oportunidad

Áreas de oportunidad

blabla

Solución propuesta

Solución propuesta

La solución propuesta se compone de cinco fases compuestas: recolección de muestras, procesamiento de muestras, entrenamiento, detección y combinación.

José Angel Ramírez Cantú Defensa de Tesis 17/31

Fase blabla

Fase blabla

4

José Angel Ramírez Cantú

Fase blabla

Fase blabla

Fase blabla

Experimentación y resultados

Presente los experimentos y resultados relevantes del trabajo.

- Enriquezcalo con gráficas.
- No olvide colocar las unidades de las medidas de evaluación utilizadas.

Exp1

Exp1

Exp1 Exp2 Exp3 Exp4

Exp1

Exp1 Exp2 Exp3 Exp4

Exp1

Conclusiones y trabajo futuro

Conclusiones

Describa las principales conclusiones derivadas de su trabajo en forma de puntos.

Conclusiones y trabajo futuro

Trabajo futuro

Describa algunos de los pendientes o tendencias que su trabajo puede seguir en forma de puntos.

Referencias I

- No olvide citar las principales referencias usadas en la presentación.
- Dieter R Pelz. Simulation models of forest resource management. Technical report, Institute of Electrical and Electronics Engineers (IEEE), 1977.
- [2] Yasmin Yahya and Roslan Ismail. Computer simulation of tree mapping approach to project the future growth of forest. In *Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication*, pages 1–7, 2017.

José Angel Ramírez Cantú Defensa de Tesis 30/31

¡Gracias por su atención!

¿Dudas y comentarios?

José Angel Ramírez Cantú Defensa de Tesis 31/31