SUPPORT VECTOR MACHINES (SVM)

Introduction

- SVM is one of the most efficient machine learning algorithms
- A method used for regression (SVR) and classification (SVC)
 - mostly used in classification problems
- SVM is fundamentally a binary classifier, but can be extended for multiclass problems
- Classification performed by learning a linear separator of the data

Linear Separability

linearly separable

not linearly separable

Given training data $\{(x_i, y_i), 0 \le i \le n \text{ and } x_i \in \mathbb{R}^d\}$ and $y_i \in \{-1, 1\}$, learn a classifier f(x) such that

$$f(x_i) = \begin{cases} \ge 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

A linear classifier has the form (hyperplan)

$$f(x) = w^T x + b$$

• w is the vector of weights and b is the bias

The goal is to find the vector of weights w that satisfies $y_i(w^Tx_i + b) \ge 1$

• There exists an infinite number of linear separators which one is optimal?

• There exists an infinite number of linear separators which one is optimal?

 f_2 too close to training data

• There exists an infinite number of linear separators which one is optimal?

• There exists an infinite number of linear separators which one is optimal?

Larger margin is preferred for generalization

margin

Support Vector Machines

- Find the optimal hyperplane that maximize the margin
- Distance from any point x_i to the hyperplane f is $d=\frac{|f(x_i)|}{||w||}$ (orthogonal projection)
- Width of the margin: $\gamma = \frac{2}{||w||}$
- For all x_i , $y_i f(x_i) = y_i (w^T x_i + b) \ge 1$

Learning SVM

• Formulated as an optimization problem:

$$\max_{w} \frac{2}{||w||} \quad subject \ to \quad y_i(w^T x_i + b) \ge 1$$

Equivalent to

$$\min_{w} \frac{1}{2} ||w||^2 \quad subject \ to \quad y_i(w^T x_i + b) \ge 1$$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

Solving SVM

• **Primal problem:** for $w \in \mathbb{R}^d$ (d is the dimension of the feature vector x)

$$\begin{split} & \min_{w} \frac{1}{2} ||w||^2 \quad subject \ to \quad y_i(w^T x_i + b) \geq 1 \\ & L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i (y_i(w^T x_i + b) - 1) \\ & (\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i} \alpha_i y_i = 0 \ , \ \frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{i} \alpha_i y_i x_i) \end{split}$$

• **Dual problem** (lagrangien dual): for $\alpha \in \mathbb{R}^n$ (n is the number of training points)

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j} \quad subject \ to \quad \sum_{i} \alpha_{i} y_{i} = 0 \quad , \alpha_{i} \geq 0$$

Solving SVM

- The optimization problem is solved
 - for w in primal formulation
 - for α in dual formulation
- If $N \ll d$ then more efficient to solve for α than w
- Dual form only involves $(x_i x_j)$, which is very useful when working with kernels.

Linear separability

What about mislabelled data and outliers?

Linearly separable but narrow margin

A large margin may be preffered even though some points are misclassified (the constraint is not satisfied)

Solution: Loosen some of the constraints by introducing slack variables (soft margin)

Soft-margin classification

• Slack variable $\xi_i \geq 0$ for each datapoint i

$$y_i(w^Tx_i + b) - (1 - \xi_i) \ge 0$$

- Errors occur if $\xi_i \ge 1$
 - $0 < \xi_i \le 1$: point i is between margin and correct side of hyperplane. This is a margin violation
 - $\xi_i > 1$: point i is misclassified

Soft-margin classification

- Introduce a penalty for the errors
 - Primal form

$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
subject to $y_i(w^T x_i + b) - (1 - \xi_i) \ge 0$

• Dual form

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$subject \ to \quad \sum_{i} \alpha_{i} y_{i} = 0 \quad , C \geq \alpha_{i} \geq 0$$

The hyperparameter C

• C is the penality parameter

- Small margins for higher values of C: better classification but may overfit
- Large margins for lower values of C: makes some prediction error but generalize well

Nonlinear problems

- Transform the data to a higher dimensional space where it can be separated by a linear hyperplane
- Learn a linear classifier for the new space : $f(x) = w^T \varphi(x) + b$

Nonlinear problems

Add a feature $x_2=(x_1)^2$ to make the dataset linearly separable

The kernel trick

- Learning classifiers in high dimensions is very expensive
- Dual classifier in the transformed feature space:

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i}) \varphi(x_{j}) \quad subject \ to \ \sum_{i} \alpha_{i} y_{i} = 0 \ , \qquad C \geq \alpha_{i} \geq 0$$

- $\varphi(x)$ only occurs as a product $\varphi(x_i)\varphi(x_j)$
- Classifier can be learnt without explicitly computing $\varphi(x)$
- Write $K(x_i, x_i) = \varphi(x_i)\varphi(x_i)$. This is known as a Kernel

Common kernels

Linear kernels

$$k(x, x_0) = x^T x_0$$

• Polynomial kernels

$$k(x, x_0) = (x^T x_0 + 1)^d \text{ for any } d > 0$$

Gaussian kernels

$$k(x,x_0) = \exp\left(-\frac{||x - x_0||^2}{2\sigma^2}\right) for \sigma > 0$$

Multiclass Classification

One against all SVM

- Train one binary SVM by class
- For prediction, evaluate $w^Tx + b$ and pick the largest.

$$y = \operatorname*{argmax}_{j} w_{j}^{T} x + b$$

Multiclass Classification

Multiclass SVM

$$\min_{w_j \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} \frac{1}{2} \sum_{j=1}^L ||w_j||^2 + C \sum_{1}^n \xi_i$$

$$subject \ to \ w_{y_i} x_i + b_{y_i} + \xi_i \ge w_j x_i + b_j + 1 \quad \forall i \in \{1, ..., n\}, \forall j \ne y_i$$

$$\xi_i \ge 0$$

Key idea: suppose that point i belongs to class y_i . Then, for all $j \neq y_i$ we should make sure that $w_{y_i}x_i + b_{y_i}$ (the classifier for class y_i) is greater than $w_jx_i + b_j$ (the classifier for class j) by the largest margin

SVM regression

ullet Fit data points inside the margin. The width of the margin is controlled by arepsilon

$$\min_{w} \frac{1}{2} ||w||^2$$

subject to
$$|y_i - w^T x_i| \le \varepsilon$$

Conclusions

- Two key points of SVM:
 - Maximize the margin between classes using actual data points
 - Project the data into a higher dimensional space in which the data is linearly separable
- Hard margin vs soft margin
 - Soft margin makes SVM more robust to outliers
- SVM is model for classification and for regression
 - In classification, find an hyperplan that separate the classes with the largest margin
 - In regression, find an hyperplan that fit the data within a margin of a given width
- SVM is inherently a two class model but can be extended for multiclass problems
 - one vs all
 - Multiclass SVM