	Course 2: Supervised Learning: Regression Topic: Concrete Strength regression
	1. Introduction Concrete is the most important material in civil engineering. The strength of concrete will affect the durability and safety of building. We would like to predict the compressive strength of concrete from the mixture ingredients. There are 9 columns in this dataset. The first 7 column is the amount of ingredient and the 8th column is how long has the ingredient been mixed. The last column is the target variable. The dataset can be found in kaggle: https://www.kaggle.com/maajdl/yeh-concret-data
[115]:	<pre>## import the library and dataset import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline</pre>
[116]:	data=pd.read_csv("data/Concrete_Data.csv") 2.1 The datatype of each column
t[116]: [117]:	## There are 1030 rows and 9 columns (1030, 9)
[118]: c[118]:	age csMPa float64 float64 dtype: object ## First few rows data.head() cement slag flyash water superplasticizer coarseaggregate fineaggregate age csMPa 0 540.0 0.0 0.0 162.0 2.5 1040.0 676.0 28 79.99 1 540.0 0.0 0.0 162.0 2.5 1055.0 676.0 28 61.89
[119]:	2 332.5 142.5 0.0 228.0 0.0 932.0 594.0 270 40.27 3 332.5 142.5 0.0 228.0 0.0 932.0 594.0 365 41.05 4 198.6 132.4 0.0 192.0 0.0 978.4 825.5 360 44.30 data.info() ## There is not missing value
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 1030 entries, 0 to 1029 Data columns (total 9 columns): # Column</class></pre>
	<pre>data.csMPa.hist() </pre> <pre> <a h<="" td=""></pre>
	<pre>## It does look normal. Let's verify statistically from scipy.stats import normaltest # D'Agostino K^2 Test normaltest(data.csMPa) NormaltestResult(statistic=33.64775006912804, pvalue=4.937236241653123e-08)</pre>
[122]:	The p-value is very low which means the distribution is not normal, We try use different data transformations. 2.3 Transformation of target ## log transformation log_csMPa=np.log(data.csMPa)
[122]:	<pre>log_csMPa.hist() <matplotlib.axessubplots.axessubplot 0xbe73470="" at=""> 300 250 200 150 100 150 200 200 200 200 200 200 200 200 200 2</matplotlib.axessubplots.axessubplot></pre>
:[123]:	Normaltest(log_csMPa) NormaltestResult(statistic=116.49011367635413, pvalue=5.0639944034032195e-26) The normality after logarithm transformation becomes worse. This transformation won't be used.
	## square root transformation sqrt_csMPa=np.sqrt(data.csMPa) sqrt_csMPa.hist() <matplotlib.axessubplots.axessubplot 0xbef00b8="" at=""> 200 150 150 50</matplotlib.axessubplots.axessubplot>
t[125]:	normaltest(sqrt_csMPa) NormaltestResult(statistic=16.805694309514372, pvalue=0.00022422800266260203)
[126]: t[126]:	<pre>## boxcox transformation from scipy.stats import boxcox bc_csMPa=boxcox(data.csMPa) lam=bc_csMPa[1] plt.hist(bc_csMPa[0]) normaltest(bc_csMPa[0])</pre> NormaltestResult(statistic=16.991190824768964, pvalue=0.00020436653985295058)
	200 - 150 - 100 - 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
	Even though the data after square root and cobox are still not normal, the shape become much better. We will compare the model performance before and after transformation 2.4 Testing regression after transformation
	<pre>## create train test split from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score X=data.iloc[:,:-1] y=data.csMPa X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, random_state=345) y_train_sqrt=np.sqrt(y_train) y_train_bc, lam=boxcox(y_train) ## Build three model use original target variable, squared root target variable and ## box-cox transformed target variable lr_origin=LinearRegression().fit(X_train, y_train) lr_sqrt=LinearRegression().fit(X_train, y_train_sqrt) lr_bc=LinearRegression().fit(X_train, y_train_bc)</pre>
t[154]:	<pre>## model performance ## lr_origin performance y_pred_origin=(lr_origin.predict(X_test)) r2_score(y_pred_origin, y_test) 0.3958357096077 ## lr_sqrt performance</pre>
	<pre>y_pred_sqrt=(lr_sqrt.predict(X_test))**2 r2_score(y_pred_sqrt, y_test) 0.44840374471025446 ## lr_bc performance from scipy.special import inv_boxcox y_pred_bc=inv_boxcox(lr_bc.predict(X_test), lam)</pre>
z[156]:	0.43688157875317046 The result has shown that the model performace increases after target variable transformation. We will use square root transformation of target varible for future analysis 3. Transform the independent variable We will continue to transform the independent variables
	<pre>3.1 create polynomial features from sklearn.preprocessing import (StandardScaler,</pre>
[133]:	3.2 create train test split from sklearn.model_selection import train_test_split X_pf_train, X_pf_test, y_train, y_test=train_test_split(X_pf, y, test_size=0.3, random_state=345)
[134]:	<pre>3.3 Standard Scale X s=StandardScaler() X_pf_train_s=s.fit_transform(X_pf_train) X_pf_test_s=s.transform(X_pf_test)</pre>
[135]:	<pre>3.4 Linear model on original X, polynomial X and standard scaled X ## Build three models on original X, polynomial X and scaled polynomial X lr_origin=LinearRegression().fit(X_train, y_train_sqrt) lr pf=LinearRegression().fit(X pf train, y train_sqrt)</pre>
[136]:	<pre>lr_pf_s=LinearRegression().fit(X_pf_train_s, y_train_sqrt) ## model performance of original X y_pred=(lr_origin.predict(X_test))**2 r2_score(y_pred, y_test)</pre>
[137]:	<pre>0.44840374471025446 ## model performance of polynomial X y_pred_pf=lr_pf.predict(X_pf_test)**2 r2_score(y_pred_pf, y_test) 0.7245110645321935</pre>
[138]:	<pre>## model performance of scaled polynomial X y_pred_pf_s=lr_pf_s.predict(X_pf_test_s)**2 r2_score(y_pred_pf_s, y_test) 0.7245110645279285</pre>
	As we see above, adding polynomial features significantly increase the r^2 score. While scaled does change the score for linear regression. It may have different effect on regularization before and after scaling. In the following section, we will only build model on the data after polynomial features. 4 Linear Regression with regularization
[139]:	<pre>4.1 Pipeline and cross_val_predict from sklearn.model_selection import KFold, cross_val_predict from sklearn.linear_model import LinearRegression, Lasso, Ridge from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV estimator=Pipeline([("polynomial_features", PolynomialFeatures()),</pre>
	<pre>'polynomial_featuresdegree': [1, 2, 3]} ## create k-fold split kf=KFold(shuffle=True, random_state=72018, n_splits=3) grid = GridSearchCV(estimator, params, cv=kf) grid.fit(X_train,y_train_sqrt)</pre>
	<pre>GridSearchCV(cv=KFold(n_splits=3, random_state=72018, shuffle=True), error_score='raise-deprecating', estimator=Pipeline(memory=None, steps=[('polynomial_features', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('Scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('regression', LinearFegression(copy_X=True, fit_intercept=True, n_jobs=None,</pre>
[142]:	<pre>(0.7159810786141326, {'polynomial_featuresdegree': 3}) y_predict = grid.predict(X_test) r2_score(y_test, y_predict**2) 0.7979886673001146</pre>
[144]:	<pre>4.2 Pipeline with Lasso Regression estimator=Pipeline([("polynomial_features", PolynomialFeatures()),</pre>
	<pre>GridSearchCV(cv=KFold(n_splits=3, random_state=72018, shuffle=True),</pre>
t[145]: [146]: t[146]:	<pre>(0.8549284748177066, {'lasso_regressionalpha': 0.001, 'polynomial_featuresdegree': 3}) y_predict = grid.predict(X_test) r2_score(y_test, y_predict**2) 0.8172137493885941 4.3 Pipeline with Ridge Regression estimator=Pipeline([("polynomial_features", PolynomialFeatures()),</pre>
[148]:	
t[148]:	<pre>GridSearchCV(cv=KFold(n_splits=3, random_state=72018, shuffle=True), error_score='raise-deprecating', estimator=Pipeline(memory=None, steps=[('polynomial_features', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('Scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('ridge_regression', Fidge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001))]), fit_params=None, iid='warn', n_jobs=None, param_grid={'polynomial_featuresdegree': [1, 2, 3], 'ridge_regressionalpha': array([1. 1.10883, 1.22949, 1.36329, 1.51165, 1.67616,</pre>
	3.45428, 3.83019, 4.24701, 4.70919, 5.22167, 5.78992, 6.42001, 7.11867, 7.89336, 8.75236, 9.70484, 10.76097, 11.93203, 13.23054, 14.67036, 16.26686, 18.03711, 20.])}, pre_dispatch='2*n_jobs', refit=True, return_train_score='warn', scoring=None, verbose=0)