RECEIVED

DEC 2 2 1996

PATENT EXTENSION A/C PATENTS

Exhibit B

U.S. Patent 5,712,155 and Pending Reissue Application for Patent Based Thereon

United States Patent [19]

Smith et al.

[11] Patent Number:

5,712,155

[45] Date of Patent:

*Jan. 27, 1998

[54] DNA ENCODING TUMOR NECROSIS FACTOR-α AND -β RECEPTORS

[75] Inventors: Craig A. Smith; Raymond G. Goodwin, both of Seattle; M. Patricia Beckmann. Poulsbo, all of Wash.

[73] Assignee: Immunex Corporation, Seattle, Wash.

[*] Notice: The portion of the term of this patent subsequent to Mar. 7, 2012, has been disclaimed.

[21] Appl. No.: 346,555

[22] Filed: Nov. 29, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 523,635, May 10, 1990, Pat. No. 5,395,760, which is a continuation-ta-part of Ser. No. 421, 417, Oct. 13, 1989, shandoned, which is a continuation-ta-part of Ser. No. 405,370, Sep. 11, 1989, shandoned, which is a continuation-ta-part of Ser. No. 403,241, Sep. 5, 1989, shandoned.

[52] U.S. Cl. 435/320.1; 435/69.3; 435/69.5; 424/85.1; 530/351; 530/388.23; 530/389.2; 536/23.1; 935/12

Primary Examiner—Stephen Walsh
Assistant Examiner—Daryl A. Basham

Astorney, Agent, or Firm-Stephen L. Malaska; Christopher L. Wight

[57] ABSTRACT

Tumor necrosis factor receptor DNAs and expression vectors encoding TNF receptors, and processes for producing TNF receptors as products of recombinant cell culture, are disclosed.

17 Claims, 6 Drawing Sheets

Figure 1

Figure 2A

Č	
GCGAGGCAGCCTGGAGAGAAGAGGCG	28
CTGGGCTGCGAGGGCGCGAGGGCGCGAGGGCAACCGGACCCCGCCCCCATCC	87
	132
ATG GCG CCC GTC GCC GTC TGG GCC GCG GTG GCC GGA CTG GAG Het Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu	-8
	177
CTC TGG GCT GCG GCG CAC GCC TTG CCC GCC CAG GTG GCA TTT ACA	8
Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr	_
TAC ACT ACT ACT ACT ACT ACT ACT ACT ACT	222
CCC TAC GCC CCG GAG CCC GGG AGC ACA TGC CGG CTC AGA GAN TAC Pro Tyr Als Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr	23
TAT GAC CAG ACA GCT CAG ATG TGC TGC AGC AAA TGC TCG CCG GGC Tyr Asp Gln Thr Ala Gln Het Cys Cys Ser Lys Cys Ser Pro Gly	267
THE GAC CAS ACA GC: CAS Met Cus Cus Ser Lus Cus Ser Pro Gly	38
CAA CAT GCA AAA GTC TTC TGT ACC AAG ACC TCG GAC ACC GTG TGT Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys	312
Cla Was als the Val Phe Cus Thr Lvs Thr Ser Asp Thr Val Cys	53
GAC TCC TGT GAG GAC AGC ACA TAC ACC CAG CTC TGG AAC TGG GTT Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val	357
Asp Ser Cvs Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val	62
CCC GAG TGC TTG AGC TGT GGC TCC CGC TGT AGC TCT GAC CAG GTG Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val	402
Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val	83
	447
GAA ACT CAA GCC TGC ACT CGG GAA CAG AAC CGC ATC TGC ACC TGC Glu Thr Gln Als Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys	98
Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg 11e Cys Thr Cys	,,
	492
AGG CCC GGC TGG TAC TGC GCG CTG AGC AAG CAG GAG GGG TGC CGG Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg	113
Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gin Gid Gly Cys Arg	
one	537
CTG TGC GCG CCG CTG CGC AMG TGC CGC CCG GGC TTC GGC GTG GCC Leu Cys Als Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala	129
AGA CCA GGA ACT GAA ACA TCA GAC GTG GTG TGC AAG CCC TGT GCC Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala	582 143
AGA CCA GGA ACT GAN ACA TON GAS Val Val Cvs Lys Pro Cys Ala	143
Ard big gra and are the one unb top the	
CCG GGG ACG TTC TCC AAC ACG ACT TCA TCC ACG GAT ATT TGC AGG	627
Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg	158
	672
CCC CAC CAG ATC TGT AAC GTG GTG GCC ATC CCT GGG AAT GCA AGC Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser	173
Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser	1,3
	717
ATG GAT GCA GTC TGC ACG TCC ACG TCC CCC ACC CGG AGT ATG GCC	188
Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala	
CCA GGG GCA GTA CAC TTA CCC CAG CCA GTG TCC ACA CGA TCC CAA Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln	762
CCA GGG GCA GIA CAC IIA CCC CAS CAL Val Ser Thr Arg Ser Gla	203
CAC ACE CAG CCA ACT CCA GAA CCC AGC ACT GCT CCA AGC ACC TCC	807
CAC ACG CAG CCA ACT CCA GAA CCC AGC ACT GCT CCA AGC ACC ACC ACC ACC ACC ACC ACC ACC	218
TTC CTG CTC CCA ATG GGC CCC AGC CCC CCA GCT GAA GGG AGC ACT	852
TTC CTG CTC CCA ATG GGC CCC AGC CCC CCA GCT GAA GGG AGC ACT Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr	233
	897
GGC GAC TTC GCT CTT CCA GTT GGA CTG ATT GTG GGT GTG ACA GCC	248
GGC GAC TTC GCT CTT CCA GTT GGA CTG ATT GTG GGT GTG ACA GCC Gly Asp Phe Ala Leu Pro Val Gly Leu Tle Val Gly Val Thr Ala	270
100 200 200 200 200 200 200 200	942
TTG GGT CTA CTA ATA ATA GGA GTG GTG AAC TGT GTC ATC ATG ACC	263
Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr	

Figure 2B

			987
CAG GTG ANA ANG ANG	CCC TTG TGC CTG	CAG AGA GAA GCC AAG GTG	
Cho 010 /001 /010 /010	Dec Leu Cue Leu	Gln Arg Glu Ala Lys Val	278
GIN VAL LYS LYS LYS	, Flo Dea Cys Dec		
			1032
CCT CAC TTG CCT GCC	CGAT AAG GCC CGG	GGT ACA CAG GGC CCC GAG	
Pro His Leu Pro Ale	a Asp Lys Ala Arg	Gly Thr Gln Gly Pro Glu	293
CAR CAR CAR CTG CTG	ATC ACA GCG CCG	AGC TCC AGC AGC AGC TCC	1077
CAG CAG CAC CIG CI	Tie The Bla Pro	Ser Ser Ser Ser Ser Ser	308
Clu Clu HIS Den Des	, 116 INT NIG 110	30. 00. 00.	
		AND AND FOR FOR ACT COS	1122
CTG GAG AGC TCG GCG	AGT GCG TTG GAC	AGA AGG GCG CCC ACT CGG	
Leu Glu Ser Ser Ala	a Ser Ala Leu Asp	Arg Arg Ala Pro Thr Arg	323
ANC CAG CCA CAG GC	A CCA GGC GTG GAG	GCC AGT GGG GCC GGG GAG	1167
han Cla Bra Gla Al	Bro Gly Val Glu	Ala Ser Gly Ala Gly Glu	338
ASH GIR FIG GIR AL			
			1212
GCC CGG GCC AGC AC	C GGG AGC TCA GAT	TCT TCC CCT GGT GGC CAT	
Ala Arg Ala Ser Th	r Gly Ser Ser Asp	Ser Ser Pro Gly Gly His	
GGG ACC CAG GTC AA	F GTC ACC TGC ATC	GTG AAC GTC TGT AGC AGC	1257
Clu The Cla Val Ass	Wal The Cvs Ile	Val Asn Val Cys Ser Ser	368
GIY IIII GIII VAI NO.			
		CAA GCC AGC TCC ACA ATG	1302
TCT GAC CAC AGC TC	A CAG TGC TCC TCC	CAA GCC AGC TCC ACA MAC	
Ser Asp His Ser Se	r Gln Cys Ser Sei	Gln Ala Ser Ser Thr Met	500
			1347
GGA GAC ACA GAT TO	C AGC CCC TCG GAG	TCC CCG AAG GAC GAG CAG	
Glu Asp The Asp Se	r Ser Pro Ser Glu	Ser Pro Lys Asp Glu Gln	398
ory was the was ac		·	
		TIT CGG TCA CAG CTG GAG	1392
GTC CCC TTC TCC AA	G GAG GAA 101 GCG	The bee for Gin Leu Gir	413
Val Pro Phe Ser Ly	s Gin Gin Cas wis	Phe Arg Ser Gln Leu Glu	
			1437
ACG CCA GAG ACC CT	G CTG GGG AGC ACC	GAA GAG AAG CCC CTG CCC	
The Pro Glu The Le	u Leu Gly Ser Thi	: Glu Glu Lys Pro Leu Pro	428
	· · · • · · ·		
CTT GGA GTG CCT GA	n cen cec 176 11	CCC AGT	1470
CTT GGA GTG CCT GA	1 GCI GGG AIG AAG	Pro Ser	439
Leu Gly Val Pro As	b was granger rate	, LTO 901	

TAACCAGGCCGGTGTGGGCTGTGTCGTAGCCAAGGTGGGCTGAGCCCTGGCAGGATGAC

CCTGCGAAGGGGCCCTGGTCCTTCCAGGCCCCCACCACTAGGACTCTGAGGCTCTTTCT

	23
CGCAGCTGAGGCACTAGAGCTCC	23
AGGCACAAGGGCGGGAGCCACCGCTGCCCCT ATG GCG CCC GCC GCC CTC TGG	75
Met Ala Pro Ala Ala Leu Trp	-16
	120
GTC GCG CTG GTC TTC GAA CTG CAG CTG TGG GCC ACC GGG CAC ACA	-1
Val Ala Leu Val Phe Glu Leu Gin Leu Trp ala int dig mis	_
GTG CCC GCC CAG GTT GTC TTG ACA CCC TAC ANA CCG GAA CCT GGG	165
Val Pro Ala Gin Val Val Leu Thr Pro Tyr Lys Pro Glu Pro Gly	15
	210
TAC GAG TGC CAG ATC TCA CAG GAA TAC TAT GAC AGG AAG GCT CAG	30
Tyr Glu Cys Gln ile ser Gin Gld tyr tyr nop mry op	
ATG TGC TGT GCT AAG TGT CCT CCT GGC CAA TAT GTG AAA CAT TTC	255
ATG TGC TGT GCT AAG TGT CCT CCT GGC GAR TAT WELL LYS His Phe Met Cys Cys Ale Lys Cys Pro Pro Gly Gln Tyr Vel Lys His Phe	45
	300
TGC AAC AAG ACC TCG GAC ACC GTG TGT GCG GAC TGT GAG GCA AGC Cys Asn Lys Thr Ser Asp Thr Val Cys Ala Asp Cys Glu Ala Ser	60
ATG TAT ACC CAG GTC TGG AAC CAG TTT CGT ACA TGT TTG AGC TGC	345 75
ATG TAT ACC CAG GTC 1GG AAC CAG III on the Arg Thr Cys Leu Ser Cys Met Tyr Thr Gln Vel Trp Asn Gln Phe Arg Thr Cys Leu Ser Cys	,,
THE SECOND COLUMN CASE OF SECOND COLUMN COLU	390
AGT TCT TCC TGT ACC ACT GAC CAG GIG GAG ATC CAG SIG SEC SET SET Cys Thr Thr Asp Gln Val Glu Ile Arg Ala Cys Thr	90
Set set set cha the the the	435
AAA CAG CAG AAC CGA GTG TGT GCT TGC GAA GCT GGC AGG TAC TGC	105
Lys Gln Gln Asn Arg val Cys Ale Cys Gld Ale Gly 1009 11- 12	
GCC TTG ARA ACC CAT TCT GGC AGC TGT CGA CAG TGC ATG AGG CTG	480
Ale Leu Lys Thr His Ser Gly Ser Cys Arg Gln Cys Het Arg Leu	120
	525
AGC AAG TGC GGC CCT GGC TTC GGA GTG GCC AGT TCA AGA GCC CCA Ser Lys Cys Gly Pro Gly Phe Gly Val Ala Ser Ser Arg Ala Pro	135
AAT GGA AAT GTG CTA TGC AAG GCC TGT GCC CCA GGG ACG TTC TCT	570 150
ANT GGA ANT GTG CTA TGC ANG GCC 161 GCC CG1 The Phe Ser Asn Gly Asn Val Leu Cys Lys Ala Cys Ala Pro Gly Thr Phe Ser	130
THE THE THE THE CASE CASE CASE CASE CASE CASE CASE THE	615
ASP Thr Thr Ser Ser Thr Asp Val Cys Arg Pro His Arg Ile Cys	165
	660
AGC ATC CTG GCT ATT CCC GGA NAT GCA AGC ACA GAT GCA GTC TGT	180
Ser Ile Leu Ala Ile Pro Gly Ash Ala Ser Int Map 1125	
GCG CCC GAG TCC CCA ACT CTA AGT GCC ATC CCA AGG ACA CTC TAC	705
Ala Pro Glu Ser Pro Thr Leu Ser Ala Ile Pro Arg Thr Leu Tyr	195
	750
GTA TOT CAG CCA GAG CCC ACA AGA TOC CAA CCC CTG GAT CAA GAG Val Ser Gin Pro Glu Pro Thr Arg Ser Gin Pro Leu Asp Gin Glu	210
Val Ser Gin Pro Glu Pro Int Mig Ser was see See	
CCA GGG CCC AGC CAA ACT CCA AGC ATC CTT ACA TCG TTG GGT TCA	795 225
Pro Gly Pro Ser Gln Thr Pro Ser Ile Leu Thr Ser Leu Gly Ser	
THE THE PART AND AND GOT GOT ATC TOT CTT CCA	840
The Pro Ile Ile Glu Gln Ser The Lya Gly Gly Ile Ser Leu Pro	240
	885
ATT GGT CTG ATT GTT GGA GTG ACA TCA CTG GGT CTG CTG ATG TTA	255
TIA CIN IAN IIA VAI GIV VAI THE SEE LED GIV IND DEL PRE LED	

Figure 3B

				TGC			CTG	GTG	CAG	AGG	222	AAG	AAG	CCC	930
GGA	CTG	GTG	AAC	Cys	ATC	TIL	Leu	Val	Gln	Arg	Lys	Lys	Lys	Pro	270
C1A	Leu	VAL	ASD.	·VA	115					-	-				
***	TCC	CTA	CAA	λGλ	GAT	GCC	AAG	GTG	CCT	CAT	GTG	CCT	GAT	GAG	975 285
Ser	Cva	Leu	Gln	λGλ	Asp	Ala	Lys	Val	Pro	His	Ael	Pro	Asp	GIU	203
	-,-			-						CAG	-2-	CTG	TTG	ACC	1020
AAA	TCC	CAG	GAT	GCA Ala	GTA	GGC	CTT	GAG	GIR	GID	Ris	Leu	Leu	The	300
Ly s	Ser	G1n	Asp	YIS	ANT	GTÅ	Ten.	GIU	•	••••					
	ac.	~~	AGT	TCC	AGC	AGC	AGC	TCC	CTA	GAG	AGC	TCA	GCC	AGC	1065 315
Thr	Ala	Pro	Ser	Ser	Ser	Ser	Ser	Ser	Leu	G1 u	Ser	Ser	Ala	Ser	313
				AGG						CAT	ccc	CAA	GCA	AGA	1110
GCT	GGG	GAC	CGA	AGG	GCG	CCC	BEA	GUU	Glv	His	Pro	Gln	Ala	Arg	330
Y) a	CIA	Asp	Arg	Arg	VIO			,							
		ccc	GAG	GCC	CAA	GGG	TTT	CAG	GAG	GCC	CGT	GCC	AGC	TCC	1155 345
Ual	Met	Ala	Glu	Ala	Gln	Gly	Phe	Gln	Glu	YTS	λrg	YTE	Ser	Ser	343
										~~~	200	cac	GTC	AAC	1200
AGG	ATT	TCA	GAT	TCT	TCC	CAC	GGA	AGC	CAC	Glv	Thr	Ris	Val	Asn	360
Arg	He	Ser	yab	Ser	Ser	úτο	GLY	241		,					
	***	TGC	ATC	GTG	AAC	GTC	TGT	AGC	AGC	TCT	GAC	CAC	AGT	TCT	1245 375
Val	Thr	Cvs	Ile	Val	Asn	Val	Cys	Ser	Ser	Ser	Asp	His	Ser	5er	3/3
											GNC	CCA	GAT	GCC	1290
CAG	TGC	TCT	TCC	CAA	GCC	: AGC	GCC	ACA	. GIG	Glu	Age	Pro	Asp	Ale	390
Gln	Cys	Ser	5e 2	GIL	VIE	341	, ALG	• • • • •		,			-		
			ccc	* ***	· cca	AAG	GAT	GAG	CAG	GTC	ccc	TTC	TCI	CAG Gln	1335
Lvs	Pro	Se	Al	Ser	Pro	Lys	Asp	Glu	Glr	val	Pro	Phe	Sez	Gln	405
-, -		-										GAG		CTG	1380
GAG	GAG	TG	CCC	TCI	CAG	TCC	: 000	TGI	GAG	, AL	Th:	Gl	The	Leu	420
Glu	Glu	Cy	Pro	5 e i	GIT	1 26:	PIC	, cy							
			r GN	2 330	ccc	TT	s ccc	CTI	GG1	GTO	; ccc	GA!	. ATC	GGC	1425
GID	Set	Ri	Gl	LV	Pro	Le	Pro	Leu	. Gly	y Val	Pro	) As	Met	Gly	435
<b>U</b> I	-												GT(		1470
ATG	AAC	CC	C AG	CA	A GC	r GG	TGC	3 TT	r GA	r CA	, Al.	a Al	Va	Lys	450
Met	Ly	Pr	o Se	r Gl	u YI	9 GT	7 111	PH		<b>J G</b> 1.				•	
	GC	_													1476 452
	Al														432
***	••••														
								ooca.	~~~	CCAG	ACCC	TGAN	CCCA	TGGAAC AGGTCA	1536
TGJ	/ccc	CTGA	CAGG	GGTA	MCAC	TTTC	CCTT	AGTG	GCTT	CCAG	AGCC	CCAG	TTGC	AGGTCA GCAGTC	1596
III	CATG	acrt	CAGA	CAGC	TAGA	GTGG	TCAA	AAAC	TGCC	ATGG	TGTT	TEAT	GGGG	GCAGTC ATTCTT	1656 1716
CC	AGGA	AGTT	GTTG	CTCT	TCCA	TGAC	CCCT	CTGG	ATCT	CCTG	GGCT	CITG	CCTG	ATTCTT TGAATA	1776
GC	TICT	GAGA	GGCC	CCAG	TATT	TITI	CCTT	CTAA	GGAG	CTAN	CATC	ARCT	FGCY 1 CCN	TGAATA GCAAGT	1836
CC	ACAG	CTCI	TCAG	CCTG	AATG	CTO		COMM	ACTO	CTAR	ACTO	TTAG	GAAG	TACCCT	1896
GG	rGGC	CTGG	TAGG	GCAC	AGAG	TTG	TGCA	AGAA	TCAG	AGGC	CCCA	TCAG	GCAG	AGTTGC	1956
CI.	CCA)	ATA	SATE	GTAG	GGCT	GTA	CTCA	gTGG	TCCA	gTGI	CCTT	TTAG	CATG	CACAGO	2016
GT	TTG)	TCC	CAG	AAC	CATG	CAN	ACGI	AAGI	AGAC	AGC	GACA	GCAG	ACAG	CACAGA	2136
CA	GCCC	CCT	<b>STGT</b> (	MLL 1	CCA	JU I			~~~	~~~	CCC	.vcc	CTTC	CTTCAC	2196
GG	CTGG	AGC	CCT	CTC	TUNC	CTT		~~~	MC NO	CAL	CTG	CTC	TCCT	ACCTC	2256
GG	AATC	TCM	<b>GGA</b> (	TGI/	IGNG 1	rrcu			~~~	CTC	ACT	CT	TGAC	CCCAA	2316
GC	CTGC	MGC	CCC	STTA	GCA:	TGN	AGT	GGN	CAGO	Tch!	rGACI	TCGC	TIG	AAGGC	2376
GI.	CCC	CAN	ACAG	CTAM	CCA	CTC	1777	CCN	LAGGI	ATTC	TGC	CGGT	TTC	AATCA	2496
α	TGC	rccc	TAGC	ATTG	CTG	GAAG	SYYYS	GGT	CAG	SAGA!	TOC	2440	TGG	AAGTT	2556
AG	TCT	CAGG	TGCT	TGGA!	rgcci	atgc	CYC	GAT	CCA	فافات		-		AGAGG	

## Figure 3C

A CONTROL OF CONTROL & TO A GRATACTGGACA	2616
GCCTAGTTGTTGCCATGGAGACTTAAAGAGCTCAGCACTCTGGAATCAAGATACTGGACA	2676
GCCTAGTTGTTGCCATGGAGACTTAAAGACTCAGACTGTAGAGGGGAAGGAA	2736
	2796
	2856
	2916
TIGITITIGIACACTORGCCIGGCTGTCTCCCACTTGTAGCCTGTGGATGCTGAGGAA ACGCCACTCTTGCATGAGAACCTGGCTGTCTCCCACTTGTAGCCTGTGGATGCTTCCTC	2976
ACGCCACTCTTGCATGAGAACCTGGCTGTGTCTCCTGCTATGAGTCTGGCCTCCTC	3036
ACGCCACTCTTGCATGAGACCCAGGCTTgCCCCTATCTCCTGCTaTGAGTCTggCCTCCTCACACCCAGCCAAGTAGACTCCAGGCTTgCCCCTATCTCCTGCTaTGAGTCTGTGCATGTGA	3096
	3156
	3216
	3276
	3336
	3396
	3456
ACTIGATICAGGATCICIGICIOCCIAGAGATCTGAATTCTGGTCCTCACACTTGTATAC ACCTGCCCGACATTTACATGAATACTAGAGATCTGAATTCTGGTCCTCACACTTGTATAC	3516
ACCTGCCCGACATTTACATGAATAC TAGACTCCCCAAGGGCTCCCCCTTCCTATTTAATAAGTTAG	3576
CTGCATTTTATCCACTAGACATCTCTCCCCACACACACAC	3636
CTGCATTTTATCCACTAGGCAACATCTCTCCCAAGGCAGTTTGCGGACAAACCTGATGACCTG TTTTGAACTGGCAAGATGGCTCAGTGGGTAAGGCAGTTTGCGGACAAACCTGATGACCTG	3696
TTTTGAXCTGGCAMGATGGCTCATGAXGAAGAGACCTGATTCCTGCAAGTTGTCCTCTGACCA AGTTGGATCCCTGACCATAAGGTAGAAGAGACCTGATTCCTGCAAGTTGTCCTCTGACCA	3756
THE COLUMN CARCETTE TECT TATGTGCACACATCACATTCTTCTCACACTCTCTCTCTCT	3813
CCACCCCATACATOCTTCTCCCCTTTTAAATAAATTGATTTTATCTTTTAAAAAAAA	

## DNA ENCODING TUMOR NECROSIS FACTOR-α AND -β RECEPTORS

CROSS-REPERENCE TO RELATED APPLICATION
This application is a continuation of U.S. application Ser. 5
No. 07/923_635. filed May 10. 1990, now U.S. Pat. No.
5.395_760, which is a continuation-in-part of U.S. application Ser. No. 07/421_417, filed Oct. 13, 1989, abandoned,
which is a continuation-in-part of U.S. application Ser. No.
07/405_270, filed Sep. 11, 1989. now abandoned, which is a
continuation-in-part of U.S. application Ser. No. 07/403,
21, filed Sep. 5, 1989, now abandoned.

### BACKGROUND OF THE INVENTION

The present invention relates generally to cytokine receptors and more specifically to tumor necrosis factor receptors.

Tumor necrosis factor-α (TNFα, also known as cachectal) and tumor necrosis factor-β (TNFβ, also known as a lymphotoxin) are homologous mammalian endogenous socretory proteins capable of inducing a wide variety of effects on a large number of cell types. The great similarities in the structural and functional characteristics of these two cytokines have resulted in their collective description as "TNF". Complementary cDNA clones encoding TNFα 25 (Pennica et al., Nature 312:721, 1984) have been isolated, permitting further structural and biological characterization of TNF.

TNF proteins initiate their biological effect on cells by binding to specific TNF receptor (TNF-R) proteins 30 expressed on the plasma membrane of a TNF-responsive cell. TNFc; and TNF-8 were first shown to bind to a common receptor on the human cervical carcinoma cell line ME-180 (Aggarwal et al., Nature 318:665, 1985). Estimates of the size of the TNF-R determined by affinity labeling studies 35 ranged from 54 to 175 kDa (Creasey et al. Proc. Natl. Acad. Sci. USA 84:3293, 1987; Stauber et al., J. Biol. Chem. 263:19098, 1988; Hohmann et al., J. Biol. Chem. 264:14927, 1989). Although the relationship between these TNF-Rs of different molecular mass is unclear, Hohmann et 40 al. (J. Biol. Chem. 264:14927, 1989) reported that at least two different cell surface receptors for TNF exist on different cell types. These receptors have an apparent molecular mass of about 80 kDa and about 55-60 kDa, respectively. None of the above publications, however, reported the purification to 45 homogeneity of cell surface TNF receptors.

In addition to cell surface receptors for TNF, soluble proteins from human urine capable of binding TNF have also been identified (Peetre et al., Eur. J. Haematol. 41:414, 1988; Seckinger et al., J. Exp. Med. 167:1511, 1988; Seck- 50 inger et al., J. Biol. Chem. 264:11966, 1989; UK Patent Application, Publ. No. 2 218 101 A to Seckinger et al.; Engelmann et al., J. Biol. Chem. 264:11974, 1989). The soluble urinary TNF binding protein disclosed by UK 2 218 101 A has a partial N-terminal amino acid sequence of 55 Asp-Ser-Val-Cys-Pro-, which corresponds to the partial sequence disclosed later by Engelmann et al. (1989). The relationship of the above soluble urinary binding proteins was further elucidated after original parent application (U.S. Ser. No. 07/403,241) of the present application was filed, 60 when Engelmann et al. reported the identification and purification of a second distinct soluble urinary TNF binding protein having an N-terminal amino acid sequence of Val-Ala-Phe-Thr-Pro- (J. Blol. Chem. 265:1531, 1990). The two urinary proteins disclosed by the UK 2 218 101 A and the 65 Engelmann et al. publications were shown to be immunochemically related to two apparently distinct cell surface

proteins by the ability of antiserum against the binding proteins to inhibit TNF binding to certain cells.

More recently, two separate groups reported the molecular cloning and expression of a human 55 k ba TNF-R (Lostscher et al., Cell 61:351, 1990; Schall et al., Cell 61:361, 1990; De TNP-R of both groups has an N-terminal amino acid sequence which corresponds to the partial amino acid sequence of the unitary binding protein discossed by UK 2.218 101 A, Engelmann et al. (1989) and Engletmann et al. (1989).

et al. (1990). In order to elucidate the relationship of the multiple forms of TNF-R and soluble urinary TNF binding proteins, or to study the structural and biological characteristics of TNF-Rs and the role played by TNF-Rs in the responses of various cell populations to TNF or other cytokine stimulation, or to use TNF-Rs effectively in therapy, diagnosis, or assay. purified compositions of TNF-R are needed. Such compositions, however, are obtainable in practical yields only by cloning and expressing genes encoding the receptors using recombinant DNA technology. Efforst to purify the TNF-R molecule for use in biochemical analysis or to clone and express mammalian genes encoding TNF-R, however, have been impeded by lack of a suitable source of receptor protein or mRNA. Prior to the present invention, no cell lines were known to express high levels of TNF-R constitutively and continuously, which precluded purification of receptor for sequencing or construction of genetic libraries for cDNA cloning.

#### SUMMARY OF THE INVENTION

The present invention provides isolated TNF receptors and DNA sequences encoding mammalian numer accrosis factor receptors (TNF-R), in particular, human TNF-Rs. Such DNA sequences include (a) cDNA closes baving nucleotide sequence derived from the coding region of a native TNF-R gene; (b) DNA sequences which are capable of hybridization to the cDNA clones of (a) under moderately stringent conditions and which encode biologically active TNF-R molecules; or (c) DNA sequences which are degenerate as a result of the genetic code to the DNA sequence certain of the DNA sequences which are degenerate as a result of the genetic code to the DNA sequence funded in (a) and (b) and which encode biologically active TNF-R molecules. In particular, the present investion provides DNA sequences which each of solide TNP receptors.

The present invention also provides recombinant expression vectors comprising the DNA sequences defined above, recombinant TNF-R molecules produced using the recombinant expression vectors, and processes for producing the recombinant TNF-R molecules using the expression vectors.

The present invention also provides isolated or purified protein compositions comprising TNF-R, and, in particular, soluble forms of TNF-R.

The present invention also provides compositions for use interapy, diagnosis, assay of TNF-R, or in raising anti-bodies to TNF-R, comprising effective quantities of soluble native or recombinant receptor proteins prepared according to the foregoing processes.

Because of the shifty of TNF to specifically blind TNF recoptors (TNF-R), purified TNF-R compositions will be useful in diagnostic assays for TNF, as well as in raising authodies to TNF receptor for use in diagnost and therapy. In addition, purified TNF receptor compositions may be used directly in therapy to bind or seavenge TNF, thereby providing a means for regulating the immune activities of this crotistice.

These and other aspects of the present invention will become evident upon reference to the following detailed description.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of the coding region of various cDNAs encoding human and murine TNP-Rs. The leader sequence is hatched and the transmembrane region is solid.

FIGS. 2A-2B depict the partial cDNA sequence and derived amino acid sequence of the human TNF R close 1. Nucleotides are numbered from the beginning of the 5' untranslated region. Amino acids are numbered from the beginning of the signal peptide sequence. The putative signal peptide sequence is represented by the amino acids 22 to -1. The N-terminal leavine of the matter TNF-R protein is underlined at position 1. The predicted transmentranse region from amino acids 25 to 25 is also underlined. The C-termini of various soluble TNF-Rs are marked with an arrow (f).

FIGS. 3A-3C depict the cDNA sequence and derived amino acid sequence of manine TNP-R close 11. The putative signal peptide sequence is represented by amino 20 acids -22 to -1. The N-terminal valine of the mature TNP-R protein is underlined at position 1. The predicted transmentrane region from amino acids 234 to 265 is also underlined.

## DETAILED DESCRIPTION OF THE

#### Definitions

As used herein, the terms "TNF receptor" and "TNF-R" refer to proteins having amino acid sequences which are 30 substantially similar to the native mammalian TNF receptor amino acid sequences, and which are biologically active, as defined below, in that they are capable of binding TNF molecules or transducing a biological signal initiated by a TNF molecule binding to a cell, or cross-reacting with 35 anti-TNF-R antibodies raised against TNF-R from natural (i.e., nonrecombinant) sources. The mature full-length human TNP-R is a glycoprotein having a molecular weight of about 80 kilodaltons (kDa). As used throughout the specification, the term "mature" means a protein expressed 40 in a form lacking a leader sequence as may be present in full-length transcripts of a native gene. Experiments using COS cells transfected with a cDNA encoding full-length human TNF-R showed that TNF-R bound 125 I-TNF a with parent K_n of about 5×10°M⁻¹, and that TNF-R bound 1251-TNFB with an apparent K, of about 2×10°M-1. The terms "TNF receptor" or "TNF-R" include, but are not limited to, analogs or subunits of native proteins having at least 20 amino acids and which exhibit at least some biological activity in common with TNF-R, for example, 50 soluble TNF-R constructs which are devoid of a transmembrane region (and are secreted from the cell) but retain the ability to bind TNF. Various bioequivalent protein and amino acid analogs are described in detail below.

The nomenclature for TNF-R analogs as used herein 55 follows the convention of naming the protein (e.g., TNIP-R) preceded by either hu (for human) or mu (for marine) and followed by a £ (to designate a deletion) and the number of the C-terminal animo scid. For example, hrTNF-RA235 refers to human TNF-R having asp²³ as the C-terminal os amino acid (i.e., a polypeptide having the sequence of amino acids (i.e., a polypeptide having the sequence of amino acids 1-235 of FIG. 2A.) In the absence of any human or murine species designation. TNF-R refer signation the designation for deletion mutants, the term TNF-R means all a forms of TNF-R, including mutants and analogs which possess TNF-R, biological activity.

4

"Soluble TNF-R" or "sTNF-R" as used in the context of the present invention refer to proteins, or substantially equivalent analogs, having an amino acid sequence corresponding to all or part of the extracellular region of a native TNF-R, for example, huTNF-RA235, huTNF-RA185 and huTNF-RΔ163, or amino acid sequences substantially similar to the sequences of amino acids 1-163, amino acids 1-185, or amino acids 1-235 of FIG. 2A, and which are biologically active in that they bind to TNF ligand. Equivalent soluble TNF-Rs include polypeptides which vary from these sequences by one or more substitutions, deletions, or additions, and which retain the ability to bind TNF or inhibit TNF signal transduction activity via cell surface bound TNF receptor proteins, for example htTNF-RAx, wherein x is selected from the group consisting of any one of amino acids 163-235 of FIG. 2A. Analogous deletions may be made to muTNF-R. Inhibition of TNF signal transduction activity can be determined by transfecting cells with recombinant TNF-R DNAs to obtain recombinant receptor expression. The cells are then contacted with TNF and the resulting metabolic effects examined. If an effect results which is attributable to the action of the ligand, then the recombinant receptor has signal transduction activity. Exemplary procedures for determining whether a polypeptide has signal transduction activity are disclosed by Idzerda et al., J. Exp. Med. 171:861 (1990); Curtis et al., Proc. Natl. Acad. Sci. USA 86:3045 (1989); Prywes et al., EMBO J. 5:2179 (1986) and Chou et al., J. Biol. Chem. 262:1842 (1987). Alternatively, primary cells or cell lines which express an endogenous TNF receptor and have a detectable biological response to TNF could also be utilized.

response to INY cours also be utuary.

The term "isolated" or "purified", as used in the context of this specification to define the purity of TNP-R protein or protein compositions, means that the protein or protein as composition is substantially free of other proteins of natural or endogenous origin and contains less than about 1% by mass of protein contaminants residual of production processes. Such compositions, however, can contain other processes. Such compositions, however, can contain other processes and the substantial processes are contain other processes. Such compositions, however, can contain other processes after the processes of protein contain and the processes of protein contain and the processes of proteins and contain and the processes.

The term "substantially similar," when used to define either amino acid or nucleic acid sequences, means that a particular subject sequence, for example, a mutant sequence, varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which is to retain biological activity of the TNF-R protein as may be determined, for example, in one of the TNF-R binding assays set forth in Example 1 below. Alternatively, nucleic acid subunits and analogs are "substantially similar" to the specific DNA sequences disclosed herein if: (a) the DNA sequence is derived from the coding region of a native mammalian TNF-R gene; (b) the DNA sequence is capable of hybridization to DNA sequences of (a) under moderately stringent conditions (50° C., 2× SSC) and which encode biologically active TNF-R molecules; or DNA sequences which are degenerate as a result of the genetic code to the DNA sequences defined in (a) or (b) and which encode biologically active TNF-R molecules.

"Recombinant," as used herein, means that a protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant proteins made in bacterial or fungal (e.g., yeast) expression 5 yestems. As a product, "recombinant microbial" defines a protein produced in a microbial expression system which is essentially free of native endogenous substances. Frotein expressed in most bacterial cultures, e.g., E coli, will be free of glycan. Protein expressed in yeast may have a glycosylation pattern different from that expressed in mammalian cells.

"Biologically active," as used throughout the specification 5 as a characteristic of TNP recoptors, means that a particular molecule shares sufficient amino acid sequence similarity with the embodiments of the present invention disclosed beartin to be capable of binding detectable quantifies of TNP, ranamitting a TNP stimulus to a cell, for example, as a 10 component of a hybrid receptor construct, or cross-reacting with anti-TNP.R antibodies raised against TNP-R from antural (i.e., nonrecombinant) sources. Preferably, biologically active TNP receptors within the scope of the present invention are capable of binding greater than 0.1 amoles 15 TNP per amole receptor, and most preferably, greater than 0.5 mnole TNP per mole receptor, and most preferably, greater than 0.5 mnole TNP per mole receptor, and most preferably, greater than 0.5 mnole TNP per mole receptor, and most preferably, greater than so.5 mnole TNP per mole receptor in standard binding assays (see below).

"Isolated DNA sequence" refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the sequence and its component nucleotide sequences 25 by standard biochemical methods, for example, using a cloning vector. Such sequences are preferably provided in the form of an open reading frame uninterrupted by internal nontranslated sequences, or introns, which are typically present in eukaryotic genes. Genomic DNA containing the relevant sequences could also be used as a source of coding sequences. Sequences of nontranslated DNA may be present 5' or 3' from the open reading frame, where the same do not interfere with manipulation or expression of the coding

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. DNA sequences encoding the proteins provided by this invention can be assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit.

#### Isolation of cDNAs Encoding TNF-R

The coding sequence of TNF-R is obtained by isolating a complementary DNA (cDNA) sequence encoding TNF-R from a recombinant cDNA or genomic DNA library. A cDNA library is preferably constructed by obtaining polyadenylated mRNA from a particular cell line which so expresses a mammalian TNF-R, for example, the human fibroblast cell line WI-26 VA4 (ATCC CCL 95.1) and using the mRNA as a template for synthesizing double stranded cDNA. The double stranded cDNA is then packaged into a recombinant vector, which is introduced into an appropriate 55 E. coli strain and propagated. Murine or other mammalian cell lines which express TNF-R may also be used. TNF-R sequences contained in the cDNA library can be readily identified by screening the library with an appropriate nucleic acid probe which is capable of hybridizing with 60 TNF-R cDNA. Alternatively, DNAs encoding TNF-R proteins can be assembled by ligation of synthetic oligonucleotide subunits corresponding to all or part of the sequence of FIGS. 2-3 or FIGS. 4-6 to provide a complete coding sequence.

The human TNF receptor cDNAs of the present invention were isolated by the method of direct expression cloning. A

cDNA library was constructed by first isolating cytoplasmic mRNA from the human fibroblast cell line WI-26 VA4. Polyadenylated RNA was isolated and used to prepare double-stranded cDNA. Purified cDNA fragments were then ligated into pCAV/NOT vector DNA which uses regulatory sequences derived from pDC201 (a derivative of pMLSV. previously described by Cosman et al., Nature 312:768. 1984), SV40 and cytomegalovirus DNA, described in detail below in Example 2. pCAV/NOT has been deposited with 10 the American Type Culture Collection under accession No. ATCC 68014. The pCAV/NOT vectors containing the WI26-VA4 cDNA fragments were transformed into E. coli strain DH5α. Transformants were plated to provide approximately 800 colonies per plate. The resulting colonies were harvested and each pool used to prepare plasmid DNA for transfection into COS-7 cells essentially as described by Cosman et al. (Nature 312:768, 1984) and Luthman et al. (Nucl. Acid Res. 11:1295, 1983). Transformants expressing biologically active cell surface TNF receptors were identified by screening for their ability to bind 1231-TNF. In this screening approach, transfected COS-7 cells were incubated with medium containing 125 I-TNF, the cells washed to remove unbound labeled TNF, and the cell monolayers contacted with X-ray film to detect concentrations of TNF binding, as disclosed by Sims et al. Science 241:585 (1988). Transfectants detected in this manner appear as dark foci against a relatively light background.

Using this approach, approximately 240,000 cDNAs were screened in poots of approximately 800 cDNAs until assay of one transfectant pool indicated positive foct for Thy Inding, A frozen stock of bacteria from this positive pool was grown in culture and plated to provide individual colonies, which were screened until a single cione (clone II) was identified which was capable of directing synthesis of a surface protein with detectable ThF binding activity. The sequence of cDNA clone II isolated by the above method is decircted in FRGS. 4-6.

Additional dDNA clones can be included from cDNA ilbraries of other mammalian species by cross-species hybridization. For use in hybridization, DNA encoding TNF-R may be covalently labeled with a detreatile substance such as a fluorescent group, a radioactive atom or a chemilumizeneous group by methods well known to those skilled in the art. Such probes could also be used for in vitro diagnosis of particular conditions.

Like most mammalian gees, mammalian TNF receptors are presumably encoded by multi-exon gees. Alternative mRNA constructs which can be attributed to different mRNA splicing events following transcription, and which have large regions of identity or similarity with the cDNAs claimed herein, are considered to be within the scope of the present invention.

Other mammalian TNF-R cDNAs are isolated by using an appropriate human TNF-R DNA sequence as a probe for screening a particular mammalian cDNA library by cross-species hybridization.

#### Proteins and Analogs

The present invention provides isolated recombinant mammalian TPAR polyperpicts. Indicated TPAR polyperpicts of this invention are substantially free of other commining meterials of natural or endogenous origin and contrals less than about 1% by mass of protein contaminant residual of production processes. The native human TMF-R molecules are recovered from cell lysates as glycoproteins bring an apparent molecular weight by SDS-PAGE of

about 80 kilodaltons (kDa). The TNF-R polypeptides of this invention are optionally without associated native-pattern glycosylation.

Mammalian TNF-R of the present invention includes, by way of example, primate, human, murine, canine, feline, bovine, ovine, equine and porcine TNF-R. Mammalian TNF-Rs can be obtained by cross species hybridization, using a single stranded cDNA derived from the human TNF-R DNA sequence as a hybridization probe to isolate TNF-R cDNAs from mammalian cDNA libraries.

Derivatives of TNF-R within the scope of the invention also include various structural forms of the primary protein which retain biological activity. Due to the presence of ionizable amino and carboxyl groups, for example, a TNF-R protein may be in the form of acidic or basic salts, or may be in neutral form. Individual amino acid residues may also be modified by exidation or reduction.

The primary amino acid structure may be modified by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like, or by creating amino acid sequence mutants. Covalent derivatives are prepared by linking particular functional groups to TNF-R amino acid side chains or at the N- or C-termini. Other derivatives of 25 TNF-R within the scope of this invention include covalent or aggregative conjugates of TNF-R or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugated peptide may be a a signal (or 30 leader) polypeptide sequence at the N-terminal region of the protein which co-translationally or post-translationally directs transfer of the protein from its site of synthesis to its site of function inside or outside of the cell membrane or can comprise peptides added to facilitate purification or identification of TNF-R (e.g., poly-His). The amino acid sequence of TNF receptor can also be linked to the peptide Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (DYKDDDDK) (Hopp et al., Bio/Technology 6:1204, 1988.) The latter 40 sequence is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody, enabling rapid assay and facile purification of expressed recombinant protein. This sequence is also specifically cleaved by bovine mucosal enterokinase at the residue immediately following 45 the Asp-Lys pairing. Pusion proteins capped with this peptide may also be resistant to intracellular degradation in E.

TNF-R derivatives may also be used as immunogens, reagents in receptor-based immunoassays, or as binding 50 agents for affinity purification procedures of TNF or other binding ligands. TNF-R derivatives may also be obtained by cross-linking agents, such as M-maleimidobenzoyl succinimide ester and N-hydroxysuccinimide, at cysteine and tysine residues. TNF-R proteins may also be covalently 55 bound through reactive side groups to various insoluble substrates, such as cyanogen bromide-activated, bisoxiraneactivated, carbonyldiimidazole-activated or tosyl-activated agarose structures, or by adsorbing to polyolefin surfaces (with or without glutaraldehyde cross-linking). Once bound 60 to a substrate, TNF-R may be used to selectively bind (for purposes of assay or purification) anti-TNF-R antibodies or

The present invention also includes TNF-R with or without associated native-pattern glycosylation. TNF-R 65 expressed in yeast or mammalian expression systems, e.g., COS-7 cells, may be similar or slightly different in molecu-

lar weight and glycosylation pattern than the native molecules, depending upon the expression system. Expression of TNF-R DNAs in bacteria such as E. coli provides non-glycosylated molecules. Functional mutant analogs of mammalian TNF-R having inactivated N-glycosylation sites can be produced by oligonucleotide synthesis and ligation or by site-specific mutagenesis techniques. These analog proteins can be produced in a homogeneous, reducedcarbohydrate form in good yield using yeast expression systems. N-glycosylation sites in eukaryotic proteins are characterized by the amino acid triplet Asn-A,-Z, where

A, is any amino acid except Pro, and Z is Ser or Thr. In this sequence, asparagine provides a side chain amino group for covalent attachment of carbohydrate. Such a site can be eliminated by substituting another amino acid for Asn or for residue Z, deleting Asn or Z, or inserting a non-Z amino acid between A, and Z, or an amino acid other than Asn between Asn and A.

TNF-R derivatives may also be obtained by mutations of 20 TNF-R or its subunits. A TNF-R mutant, as referred to herein, is a polypeptide homologous to TNF-R but which has an amino acid sequence different from native TNF-R because of a deletion, insertion or substitution. Bioequivalent analogs of TNF-R proteins may be con-

structed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues can be deleted (e.g., Cys 178) or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. Other approaches to mutagenesis involve modification of adjacent dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present. Generally, substitutions should be wall (e.g., the yeast ct-factor leader). TNF-R protein fusions 35 made conservatively; i.e., the most preferred substitute amino acids are those having physiochemical characteristics resembling those of the residue to be replaced. Similarly, when a deletion or insertion strategy is adopted, the potential effect of the deletion or insertion on biological activity should be considered. Substantially similar polypeptide sequences, as defined above, generally comprise a like number of amino acids sequences, although C-terminal truncations for the purpose of constructing soluble TNF-Rs will contain fewer amino acid sequences. In order to preserve the biological activity of TNF-Rs, deletions and substitutions will preferably result in homologous or conservatively substituted sequences, meaning that a given residue is replaced by a biologically similar residue. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another. such as between Lys and Arg; Glu and Asp; or Gln and Asn. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known. Moreover, particular amino acid differences between human, murine and other mammalian TNF-Rs is suggestive of additional conservative substitutions that may be made without altering the essential biological characteristics of TNF-R.

Subunits of TNF-R may be constructed by deleting terminal or internal residues or sequences. Particularly preferred sequences include those in which the transmembrane region and intracellular domain of TNF-R are deleted or substituted with hydrophilic residues to facilitate secretion of the receptor into the cell culture medium. The resulting protein is referred to as a soluble TNF-R molecule which retains its ability to bind TNF. A particularly preferred

Secret:

soluble TNF-R construct is TNF-RA235 (the sequence of amino acids 1-235 of FIG. 2A), which comprises the entire extracellular region of TNF-R, terminating with Asp immediately adjacent the transmembrane region. Additional amino acids may be deleted from the transmembrane region while retaining TNF binding activity. For example, huTNF-R∆183 which comprises the sequence of amino acids 1-183 of FIG. 2A, and TNF-RA163 which comprises the sequence of amino acids 1-163 of FIG. 2A, retain the ability to bind TNF ligand as determined using the binding assays described below in Example 1. TNF-RΔ142, however, does not retain the ability to bind TNF ligand. This suggests that one or both of Cys¹⁵⁷ and Cys¹⁶³ is required for formation of an intramolecular disulfide bridge for the proper folding of TNF-R. Cys178, which was deleted without any apparent adverse effect on the ability of the soluble TNF-R to bind TNF, does not appear to be essential for proper folding of TNF-R. Thus, any deletion C-terminal to Cys 163 would be expected to result in a biologically active soluble TNF-R. The present invention contemplates such soluble TNF-R constructs corresponding to all or part of the extracellular region of TNF-R terminating with any amino acid after Cys169. Other C-terminal deletions, such as TNF-FA157, may be made as a matter of convenience by cutting TNF-R cDNA with appropriate restriction enzymes and, if necessary, reconstructing specific sequences with synthetic oligonucleotide linkers. The resulting soluble TNF-R constructs are then inserted and expressed in appropriate expression vectors and assayed for the ability to bind TNF, as described in Example 1. Biologically active soluble TNF-Rs resulting from such constructions are also contemplated to be within the scope of the present invention.

Mutations in nucleotide sequences constructed for expression of analog TNF-R must, of course, preserve the reading frame phase of the coding sequences and preferably will not 35 create complementary regions that could hybridize to produce secondary mRNA structures such as loops or hairpins which would adversely affect translation of the receptor mRNA. Although a mutation site may be predetermined, it is not necessary that the nature of the mutation per se be 40 predetermined. For example, in order to select for optimum characteristics of mutants at a given site, random mutagenesis may be conducted at the target codon and the expressed TNF-R mutants screened for the desired activity.

encodes TNF-R will be expressed in the final product, for example, nucleotide substitutions may be made to enhance expression, primarily to avoid secondary structure loops in the transcribed mRNA (see EPA 75,444A, incorporated readily translated by the selected host, e.g., the well-known E. coli preference codons for E. coli expression.

Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of 55 the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.

Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an 60 altered gene having particular codons altered according to the substitution, deletion, or insertion required. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 65 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and U.S. Pat. Nos. 4,518,584

and 4,737,462 disclose suitable techniques, and are incorporated by reference herein.

Both monovalent forms and polyvalent forms of TNF-R are useful in the compositions and methods of this invention. Polyvalent forms possess multiple TNF-R binding sites for TNF ligand. For example, a bivalent soluble TNF-R may consist of two tandern repeats of amino acids 1-235 of FIG. 2A, separated by a linker region. Alternate polyvalent forms may also be constructed, for example, by chemically coupling TNP-R to any clinically acceptable carrier molecule, a polymer selected from the group consisting of Ficoll, polyethylene glycol or dextran using conventional coupling techniques. Alternatively, TNF-R may be chemically coupled to biotin, and the biotin-TNF-R conjugate then allowed to bind to avidin, resulting in tetravalent avidin/ biotin/TNF-R molecules. TNF-R may also be covalently coupled to dinitrophenol (DNP) or trinitrophenol (TNP) and the resulting conjugate precipitated with anti-DNP or anti-TNP-IgM, to form decameric conjugates with a valency of 20 10 for TNP-R binding sites.

A recombinant chimeric antibody molecule may also be produced having TNF-R sequences substituted for the variable domains of either or both of the immunoglubulin molecule heavy and light chains and having unmodified constant region domains. For example, chimeric TNF-R/ IgG, may be produced from two chimeric genes-a TNF-R/human K light chain chimera (TNF-R/C,) and a TNF-R/ human γ₁ heavy chain chimera (TNF-R/C_{p-1}). Following transcription and translation of the two chimeric genes, the gene products assemble into a single chimeric antibody molecule having TNP-R displayed bivalently. Such polyvalent forms of TNF-R may have enhanced binding affinity for TNF ligand. Additional details relating to the construction of such chimeric antibody molecules are disclosed in WO 89/09622 and EP 315062.

## Expression of Recombinant TNF-R

The present invention provides recombinant expression vectors to amplify or express DNA encoding TNF-R. Recombinant expression vectors are replicable DNA constructs which have synthetic or cDNA-derived DNA fragments encoding mammalian TNF-R or bioequivalent analogs operably linked to suitable transcriptional or translational regulatory elements derived from mammalian. Not all mutations in the nucleotide sequence which 45 microbial, vital or insect genes. A transcriptional unit generally comprises an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, transcriptional promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA herein by reference), or to provide codons that are more so and translated into protein, and (3) appropriate transcription and translation initiation and termination sequences, as described in detail below. Such regulatory elements may include an operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites. The ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants may additionally be incorporated. DNA regions are operably linked when they are functionally related to each other. For example, DNA for a signal peptide (secretory leader) is operably linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation. Generally, operably linked means contiguous and, in the case of secretory leaders, contiguous and in reading frame. Structural elements intended for use in yeast expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may optionally be subsequently cleaved from the expressed recombinant protein to provide a final product.

DNA sequences encoding mammalian TNF receptors which are to be expressed in a microorganism will preferably contain no introns that could prematurely terminate transcription of DNA into mRNA; however, premature termination of transcription may be desirable, for example, where it would result in mutants having advantageous C-terminal truncations, for example, deletion of a transmembrane region to yield a soluble receptor not bound to the cell membrane. Due to code degeneracy, there can be considerable variation in nucleotide sequences encoding the same amino acid sequence. Other embodiments include sequences capable of hybridizing to the sequences of the provided 20 cDNA under moderately stringent conditions (50° C., 2× SSC) and other sequences hybridizing or degenerate to those which encode biologically active TNF receptor polypeptides.

Recombinant TNF-R DNA is expressed or amplified in a 25 recombinant expression system comprising a substantially homogeneous monoculture of suitable host microorganisms. for example, bacteria such as E. coli or yeast such as S. cerevisiae, which have stably integrated (by transformation or transfection) a recombinant transcriptional unit into chro- 30 mosomal DNA or carry the recombinant transcriptional unit as a component of a resident plasmid. Generally, cells constituting the system are the progeny of a single ancestral transformant. Recombinant expression systems as defined the regulatory elements linked to the DNA sequence or synthetic gene to be expressed.

Transformed host cells are cells which have been transformed or transfected with TNF-R vectors constructed using recombinant DNA techniques. Transformed host cells ordi- 40 narily express TNF-R, but host cells transformed for purposes of cloning or amplifying TNF-R DNA do not need to express TNF-R. Expressed TNF-R will be deposited in the cell membrane or secreted into the culture supernatant, depending on the TNF-R DNA selected. Suitable host cells 45 for expression of mammalian TNF-R include prokaryotes, yeast or higher eukaryotic cells under the control of appropriate promoters. Prokaryotes include gram negative or gram positive organisms, for example E. coli or bacilli. Higher eukaryotic cells include established cell lines of 50 mammalian origin as described below. Cell-free translation systems could also be employed to produce mammalian TNF-R using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian 55 cellular hosts are described by Pouwels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., 1985), the relevant disclosure of which is hereby incorporated by

Prokaryotic expression hosts may be used for expression 60 of TNF-R that do not require extensive proteolytic and disulfide processing. Prokaryotic expression vectors generally comprise one or more phenotypic selectable markers, for example a gene encoding proteins conferring antibiotic resistance or supplying an autotrophic requirement, and an 65 origin of replication recognized by the host to ensure amplification within the host. Suitable prokaryotic hosts for trans-

formation include E. coli, Bacillus subtilis, Salmonella typhimurium, and various species within the genera Pseudomonas, Streptomyces, and Staphyolococcus, although others may also be employed as a matter of choice.

Useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega Biotec, Madison, Wis., USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E. coli species (Bolivar et al., Gene 2:95, 1977). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells

Promoters commonly used in recombinant microbial expression vectors include the β-lactamase (penicillinase) and lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), the tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EPA 36,776) and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p. 412, 1982). A particularly useful bacterial expression system employs the phage  $\lambda P_L$ promoter and cl857ts thermolabile repressor. Plasmid vectors available from the American Type Culture Collection which incorporate derivatives of the  $\lambda$  P_L promoter include plasmid pHUB2, resident in E. coli strain JMB9 (ATCC 37092) and pPLc28, resident in E. coli RR1 (ATCC 53082).

Recombinant TNF-R proteins may also be expressed in herein will express heterologous protein upon induction of 35 yeast hosts, preferably from the Saccharomyces species, such as S. cerevisiae. Yeast of other genera, such as Pichia or Kluyveromyces may also be employed. Yeast vectors will generally contain an origin of replication from the 2µ yeast plasmid or an autonomously replicating sequence (ARS), promoter, DNA encoding TNF-R, sequences for polyadenylation and transcription termination and a selection gene. Preferably, yeast vectors will include an origin of replication and selectable marker permitting transformation of both yeast and E. coli, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 or URA3 gene, which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, and a promoter derived from a highly expressed yeast gene to induce transcription of a structural sequence downstream. The presence of the TRP1 or URA3 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan or uracil.

Suitable promoter sequences in yeast vectors include the promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Blol. Chem. 255:2073, 1980) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enclase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., EPA 73,657.

Preferred yeast vectors can be assembled using DNA sequences from pUC18 for selection and replication in E. coli (Amp' gene and origin of replication) and yeast DNA 18 34

sequences including a glucose-repressible ADHZ promoter and to-factor secretion leader. The ADHZ promoter has been described by Russell et al. (J. Bol. Chem. 258.2674, 1982) and Beier et al. (Nature 300:774, 1982). The yeast co-factor leader, which directs secretion of beterologous proteins, can 5 to inserted between the promoter and the structural gene to be expressed. Soc. eg. Kurjan et al., ACH 30:933, 1982, and Bilter et al., Proc. Natl. Acad. Sci. USA 81:330, 1984. The leader sequence may be modified to contain, near in 3° and, one or more useful restriction sites to facilitate fusion of the leader sequence to foreign genes.

Suitable yeast transformation protocols are known to those of skill in the art; an exemplary technique is described by Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929, 1978, selecting for Trp' runsformants in a selective medium 15 consisting of 0.67% yeast nirrogen base, 0.5% exasmino acids. 2% glucose, 10 µg/ml adenine and 20 µg/ml uracil or URA+ transformants in medium consisting of 0.67% YNB. with amino acids and bases as described by Sherman et al., Laboratory Caurse Manual for Methods in Peart Genetics, 2018 Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 2018

Host strains transformed by vectors compaining the ADIZ promoter may be grown for expression in a rich medium consisting of 1% yeast extract, 2% peptone, and 1% or 4% glucose supplemented with 80 gyrlm adenine and 80 µg/ml uracil. Derepression of the ADIZ promoter occurs upon achusation of medium glucose. Curde yeast supernatants are harvested by filtration and held at 4° C. prior to further purification.

Various mammalian or insect cell culture systems are also advantageously employed to express recombinant protein, Expression of recombinant proteins in mammalian cells is particularly preferred because such proteins are generally correctly folded, appropriately modified and completely 35 functional Examples of suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells, described by Giuzman (Cell 23:175, 1981), and other cell lines capable of expressing an appropriate vector including, for example, L cells, C127, 3T3, Chinese hamster ovary (CHO), HeLa and RHK cell lines. Mammalian expression vectors may comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and other 5 or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated sequences, such 45 as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988).

The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. For example, commonly used promoters and enhancers are derived from Polyoma, Adenovirus 2, Simian Virus 40 (SV40), and 55 human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide the other genetic elements required for expression of a heterologous DNA sequence. The early and 60 late promoters are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 vital origin of replication (Fiers et al., Nature 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp 65 sequence extending from the Hind 3 site toward the Bgl1 site located in the vital origin of replication is included. Purther,

mammaliam genomic ThF-R promoter, control and/or signal sequences may be utilized, provided such control sequences are compatible with the host cell chosen. Additional details regarding the use of a mammalian high expression vector to produce a recombinant mammalian TNF receptor are provided in Bxamplace 2 and 7 below. Exemplary vectors can be constructed as disclosed by Oknyama and Berg (Mol. Cell. Rul 3-280, 1983).

A useful system for stable high level expression of mammalian receptor cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986).

In preferred aspects of the present invention, recombinant expression vectors comprising TNF-R cDNAs are stably integrated into a host cell's DNA. Elevated levels of expression product is achieved by selecting for cell lines having amplified numbers of vector DNA. Cell lines having amplified numbers of vector DNA are selected, for example transforming a host cell with a vector comprising a DNA sequence which encodes an enzyme which is inhibited by a known drug. The vector may also comprise a DNA sequence which encodes a desired protein. Alternatively, the host cell may be co-transformed with a second vector which comprises the DNA sequence which encodes the desired protein. The transformed or co-transformed host cells are then cultured in increasing concentrations of the known drug, thereby selecting for drug-resistant cells. Such drug-resistant cells survive in increased concentrations of the toxic drug by overproduction of the enzyme which is inhibited by the drug, frequently as a result of amplification of the gene encoding the enzyme. Where drug resistance is caused by an increase in the copy number of the vector DNA encoding the inhibitable enzyme, there is a concomitant co-amplification of the vector DNA encoding the desired protein (TNF-R) in the host cell's DNA.

A performed system for such co-amplification uses the gene for dispersionless reduces (PHFR), which can be instituted by the drug methotrexate (MTX). To achieve co-amiliation, a box cell which lacks an active gene comparise DNA acquence conding DHFR is either transformed with a vector which comparises DNA acquence conding DHFR and a desired provide of the contract of the contract

A particularly preferred co-amplification system uses the gene for glutamine synthetase (CS), which is responsible for the synthesis of glutamate and ammonia using the hydrolysis of ATP to ADP and phosphate to drive the reaction. GS is subject to inhibition by a variety of inhibitors, for example methionine sulphoximine (MSX). Thus, TNF-R can be expressed in high concentrations by co-amplifying cells transformed with a vector comprising the DNA sequence for GS and a desired protein, or co-transformed with a vector comprising a DNA sequence encoding GS and a vector comprising a DNA sequence encoding the desired protein, culturing the host cells in media containing increasing levels of MSX and selecting for surviving cells. The GS co-amplification system, appropriate recombinant expression vectors and cells lines, are described in the following PCT applications: WO 87/04462, WO 89/01036, WO 89/10404 and WO 86/05807.

Recombinant proteins are preferably expressed by co-amplification of DHFR or GS in a mammalian host cell. A preferred eukaryotic vector for expression of TNF-R DNA is disclosed below in Example 2. This vector, referred to as pCAVNOT. was derived from the mammalian high expression vector pDC201 and contains regulatory sequences from SV40, adenovirus-2, and human cytomegalovirus.

## Purification of Recombinant TNF-R

Purified mammalian TNF receptors or analogs are prepared by culturing suitable host/vector systems to express is the recombinant translation products of the DNAs of the present invention, which are then purified from culture media or cell extracts.

For example, supernatants from systems which secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a suitable purification matrix. For example, a suitable affinity matrix can comprise a TNF or lectin or antibody molecule bound to a suitable support. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred.

Finally, one or more reversed-phase high performance injust chromatography (RP-HPLC) steps employing hydrophotic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify a TNF-R composition. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant protein.

Recombinant protein produced in bacterial culture is usually leotated by initial extraction from cell pellets, followed by one or more concentration, satisfay-out, aqueous 45 ion exchange or size exclusion chromatography (HPLC).

Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps Microbial cells employed in expression of recombinant mammalian TNF-R can be dirupted by any convenient method, including 50 freeze-thaw cycling, sonication, mechanical disruption, or use of cell lyting agents.

Fermentation of yeast which express mammalian TNF-R
as a screeted protein greatly simplifies purification. Secreted
recombinant protein resulting from a large-scale ferments—35
tion can be purified by methods analogous to those disclosed
by Urdal et al. (J. Chromatog. 296:171. 1994). This reference describes two sequential, reversed-phase HPLC steps
for purification of recombinant human GM-CSF on a prepartity HPLC column.

Human TNF-R synthesized in recombinant culture is characterized by the presence of non-human cell components, including proteins, in amounts and of a character which depend upon the purification steps taken to recover human THF-R from the culture. These components of ordinarily will be of yeast, prokuryotic or non-human higher eukaryotic critin and preferably are present in innocuous 16

contaminant quantities, on the order of less than about I percent by weight Purther, recombinant cell culture enables the production of TNF-R free of proteins which may be normally associated with TNF-R as it is found in nature in its species of origin, e.g. in cells, cell exudates or body distile.

## Therapeutic Administration of Recombinant Soluble

The present invention provides methods of using therapeutic compositions comprising an effective amount of soluble TNFR proteins and a suitable diluent and carrier, and methods for suppressing TNF-dependent inflammatory responses in humans comprising administering an effective mount of soluble TNFR. Protein.

amount of soluble TNF-R protein. For therapeutic use, purified soluble TNF-R protein is administered to a patient, preferably a human, for treatment in a manner appropriate to the indication. Thus, for example, soluble TNF-R protein compositions can be administered by bolus injection, continuous infusion, sustained release from implants, or other suitable technique. Typically, a soluble TNF-R therapeutic agent will be administered in the form of a composition comprising purified protein in conjunction with physiologically acceptable carriers, excipients or diluents. Such carders will be nontoxic to recipients at the dosages and concentrations employed. Ordinarily, the preparation of such compositions entails combining the TNF-R with buffers, antioxidants such as ascorbic acid, low molecular weight (less than about 10 residues) polypeptides, proteins, amino acids, carbohydrates including glucose, sucrose or dextrins, chelating agents such as EDTA, glutathione and other stabilizers and excipients. Neutral buffered saline or saline mixed with conspecific serum albumin are exemplary appropriate diluents. Preferably, product is formulated as a lyophilizate using appropriate exciplent solutions (e.g., sucrose) as diluents. Appropriate dosages can be determined in trials. The amount and frequency of administration will depend, of course, on such factors as the nature and severity of the indication being treated, the desired response, the condition of the patient, and so forth.

desired response, the condition of the patient, and so forth.

Soluble TNFR, proteins are administered for the purpose
of inhibiting TNF-dependent responses. A variety of discases or conditions are believed to be caused by TNFs such
as eacheria and septic shock. In addition, other key cytokines (IL-I, IL-2 and other colony stimulating factors) can
also induce significant host production of TNF. Soluble
TNF-R compositions may therefore be used, for example, to
treat cacheria or septic shock or to treat side effects associated with cytokine therapy. Because of the primary roles
IL-1 and IL-2 play in the production of TNF combination
brapy using both IL-1 receptors or IL-2 recordors may be
preferred in the treatment of TNF-associated clinical indiexisting.

The following examples are offered by way of illustration, and not by way of limitation.

#### EXAMPLES

#### Example 1

#### Binding Assays

A. Radiolabeling of TNFo: and TNFp. Recombinant human TNFo: in the form of a fusion protein containing a hydrophilic octapeptide at the N-terminus, was expressed in yeast as a secreted protein and purified by affinity chromatography (Hopp et al., Bio/Technology 6:1204, 1988). Purified recombinant human TNFB was purchased from R&D Systems (Minneapolis, Minn.). Both proteins were radiolabeled using the commercially available solid phase agent, IODO-GEN (Pierce). In this procedure, 5 µg of IODO-GEN were plated at the bottom of a 10×75 mm glass tube and 5 incubated for 20 minutes at 4° C. with 75 µl of 0.1M sodium phosphate, pH 7.4 and 20 µl (2 mCl) Na 125L This solution was then transferred to a second glass tube containing 5 µg TNFa (or TNFB) in 45 µl PBS for 20 minutes at 4° C. The reaction mixture was fractionated by gel filtration on a 2 ml 10 bed volume of Sephadex G-25 (Sigma) equilibrated in Roswell Park Memorial Institute (RPMI) 1640 medium containing 2.5% (w/v) bovine serum albumin (BSA), 0.2% (w/v) sodium azide and 20 mM Hepes pH 7.4 (binding medium). The final pool of 1251-TNF was diluted to a 15 working stock solution of 1×10⁻⁷M in binding medium and stored for up to one month at 4° C. without detectable loss of recentor binding activity. The specific activity is routinely 1×106 cpm/mmole TNF.

B. Binding to Intact Cells. Binding assays with intact cells 20 were performed by two methods. In the first method, cells were first grown either in suspension (e.g., U 937) or by adherence on tissue culture plates (e.g., WI26-VA4, COS cells expressing the recombinant TNF receptor). Adherent cells were subsequently removed by treatment with 5 mM HDTA treatment for ten minutes at 37 degrees centigrade. Binding assays were then performed by a pthalate oil separation method (Dower et al., J. Immunol. 132:751, 1984) essentially as described by Park et al. (J. Biol. Chem. 261:4177, 1986). Non-specific binding of ¹²⁵I-TNF was ³⁰ measured in the presence of a 200-fold or greater molar excess of unlabeled TNF. Sodium azide (0.2%) was included in a binding assay to inhibit internalization of 1251-TNF by on the surface, were tested for the ability to bind 1251-TNF by the plate binding assay described by Sims et al. (Science 241:585, 1988).

C. Solid Phase Binding Assays. The ability of TNF-R to be stably adsorbed to nitrocellulose from detergent extracts of human cells yet retain TNF-binding activity provided a means of detecting TNF-R. Cell extracts were prepared by mixing a cell pellet with a 2× volume of PBS containing 1% Triton X-100 and a cocktail of protease inhibitors (2 mM phenylmethyl sulfonyl fluoride, 10 µM pepstatin, 10 µM 45 leupeptin, 2 mM o-phenanthroline and 2 mM EGTA) by vigorous vortexing. The mixture was incubated on ice for 30 minutes after which it was centrifuged at 12,000× g for 15 BA85/21 nitrocellulose membranes (Schleicher and Schuell, Keene, N.H.) and allowed to dry. The membranes were incubated in tissue culture dishes for 30 minutes in Tris (0.05M) buffered saline (0.15M) pH 7.5 containing 3% w/v BSA to block nonspecific binding sites. The membrane was then covered with 5×10⁻¹¹M ¹²⁵I-TNF in PBS+3% BSA and incubated for 2 hr at 4° C, with shaking. At the end of this time, the membranes were washed 3 times in PBS, dried and placed on Kodak X-Omat AR film for 18 hr at -70° C.

#### Example 2

Isolation of Human TNF-R cDNA by Direct Expression of Active Protein in COS-7 Cells

Various human cell lines were screened for expression of 65 TNF-R based on their ability to bind 1251-labeled TNF. The human fibroblast cell line WI-26 VA4 was found to express

a reasonable number of receptors per cell. Equilibrium binding studies showed that the cell line exhibited biphasic binding of 125 I-TNF with approximately 4,000 high affinity sites (K =1×1010M-1) and 15,00 low affinity sites (K =1× 10°M⁻¹) per cell.

An unsized cDNA library was constructed by reverse transcription of polyadenylated mRNA isolated from total RNA extracted from human fibroblast WI-26 VA4 cells grown in the presence of pokeweed mitogen using standard techniques (Gubler, et al., Gene 25:263, 1983; Ausubel et al., eds., Current Protocols in Molecular Biology, Vol. 1, 1987). The cells were harvested by lysing the cells in a guanidine hydrochloride solution and total RNA isolated as previously described (March et al., Nature 315:641, 1985).

Poly A+ RNA was isolated by oligo dT cellulose chromatography and double-stranded cDNA was prepared by a method similar to that of Gubler and Hoffman (Gene 25:263. 1983). Briefly, the poly A* RNA was converted to an RNA-cDNA hybrid by reverse transcriptase using oligo dT as a primer. The RNA-cDNA hybrid was then converted into double-stranded cDNA using RNAase H in combination with DNA polymerase L The resulting double stranded cDNA was blunt-ended with T4 DNA polymerase. To the blunt-ended cDNA is added EcoRI linker-adapters (having internal Not1 sites) which were phosphorylated on only one end (Invitrogen). The linker-adaptered cDNA was treated with T4 polynucleotide kinase to phosphorylate the 5' overhanging region of the linker-adapter and unligated linkers were removed by running the cDNA over a Sepharose CLAB column. The linker-adaptered cDNA was ligated to an equimolar concentration of EcoR1 cut and dephosphorylated arms of bacteriophage Agt10 (Huynh et al., DNA Cloning: A Practical Approach, Glover, ed., IRL Press, pp. 49-78). The ligated DNA was packaged into phage particles TNF-R-containing plasmid, and expressing TNF receptors 35 using a commercially available kit to generate a library of recombinants (Stratagene Cloning Systems, San Diego, Calif., USA). Recombinants were further amplified by plating phage on a bacterial lawn of E. coli strain c600(hfi).

Phage DNA was purified from the resulting Agt10 cDNA library and the cDNA inserts excised by digestion with the restriction enzyme Not1. Following electrophoresis of the digest through an agarose gel, cDNAs greater than 2,000 bp were isolated.

The resulting cDNAs were ligated into the eukaryotic expression vector pCAV/NOT, which was designed to express cDNA sequences inserted at its multiple cloning site when transfected into mammalian cells. pCAV/NOT was assembled from pDC201 (a derivative of pMLSV, previously described by Cosman et al., Nature 312:768, 1984). microliter aliquots of cell extracts were placed on dry so SV40 and cytomegalovirus DNA and comprises, in sequence with the direction of transcription from the origin of replication: (1) SV40 sequences from coordinates 5171-270 including the origin of replication, enhancer sequences and early and late promoters; (2) cytomegalovirus sequences including the promoter and enhancer regions (nucleotides 671 to +63 from the sequence published by Boechart et al. (Cell 41:521, 1985); (3) adenovirus-2 sequences containing the first exon and part of the intron between the first and second exons of the tripartite leader, the second exon and part of the third exon of the tripartite leader and a multiple cloning site (MCS) containing sites for Xho1, Kpn1, Sma1, Not1 and Bgl1; (4) SV40 sequences from coordinates 4127-4100 and 2770-2533 that include the polyadenylation and termination signals for early transcription; (5) sequences derived from pBR322 and virusassociated sequences VAI and VAII of pDC201, with adenovirus sequences 10532-11156 containing the VAI and VAII genes, followed by pBR322 sequences from 4363-2486 and 1094-375 containing the ampicillin resistance gene and origin of replication.

The resulting WI-26 VA4 cDNA library in pCAV/NOT was used to transform E. coli strain DH50, and recombi- 5 nants were plated to provide approximately 800 colonies per plate and sufficient plates to provide approximately 50,000 total colonies per screen. Colonies were scraped from each plate, pooled, and plasmid DNA prepared from each pool. The pooled DNA was then used to transfect a sub-confluent 10 layer of monkey COS-7 cells using DEAE-dextran followed by chloroquine treatment, as described by Luthman et al. (Nucl. Acids Res. 11:1295, 1983) and McCutchan et al. (J. Natl. Cancer Inst. 41:351, 1986). The cells were then grown in culture for three days to permit transient expression of the 15 inserted sequences. After three days, cell culture supernatants were discarded and the cell monolayers in each plate assayed for TNF binding as follows. Three ml of binding medium containing 1.2×10⁻¹¹M ¹²⁵I-labeled FLAG®-TNF was added to each plate and the plates incubated at 4° C. for 20 120 minutes. This medium was then discarded, and each plate was washed once with cold binding medium (containing no labeled TNF) and twice with cold PBS. The edges of each plate were then broken off, leaving a flat disk which was contacted with X-ray film for 72 hours at -70° C. 25 using an intensifying screen. TNF binding activity was visualized on the exposed films as a dark focus against a relatively uniform background.

After approximately 240,000 recombinants from the library had been screened in this manner, one transfectant 30 pool was observed to provide TNF binding foci which were clearly apparent against the background exposure.

A frozen stock of bacteria from the positive pool was then used to obtain plates of approximately 150 colonies. Replicas of these plates were made on nirrocallulose filters, and 35 the plates were then scraped and plasmid DNA prepared and transfected as described above to identify a positive plate. Bacteria from individual colonies from the nirrocallulose

within the TNF-R coding region 20 nucleotides 5 of the transmembrane region. In order to reconstruct the 3 end of the TNF-R sequences, two oligonucleotides were synthesized and annealed to create the following oligonucleotide linker:

Pvu2 BemH1 Bg12 CTGAAGGGAGCACTGGCGACTAAGGATCCA GACTTCCCTCGTGACCGCTGATTCCTAGGTCTAG

AlaGluGlySerThrGlyAspEnd

This oligonuclootide linker has terminal PvuZ and BgiZ restriction sites, regenerates 20 nucleotides of the TNF-R, followed by a termination coden (undertined) and a BamHI restriction site (for convenience in isolating the enteuble TNF-R by NotI/BrmHI digestion). This oligonucleotide was then ligated with the 340 by NotI/BrmHZ TNF-R insert into BgiZ/NotI or tip ZAM/NOT to yield polhufTNF-RAZ35/CAVNOTI, which was transfected into COS-7 cells as described above. This expression vector included expression of soluble human TNF-R which was capable of binding TNF.

#### Example 4

#### Construction of cDNAs Encoding Soluble huTNF-RA185

A cDNA encoding a soluble huTnF-Ral85 (having the sequence of amino acids 1-185 of FIG. 2A) was constructed by excising a 640 by fragment from pCANNOT-INF-R with the restriction enzymes Notl and 8g2. Notl cuts at the 35 multiple cloning site of pCANNO-TNF-R and 8g2 cut within the TnF-R coding region at nucleotide 637, which is 237 nucleotides 5' of the transmembrane region. The followine oil/sounce/codife infares were synthesized.

Bg12
5'-GATCTGTAACGTGGTGGCCATCCCTGGGAATGCAAGCATGGATGC-3'
ACATTGCACCACCGGTAGGGACCCTTACGTTCG
IbcTyAam\tiVi\AlalieProTiyAmAlsSerbistAspAla

5'- AGTCTGCACGTCCACGTCCCCCCCGGTGAGC -3
TACCTACGTCAGACGTGCAGGGGGGGGGGGCCACTCGCCGG

replica of this plate were grown in 0.2 mt cultures, which were used to obtain plasmid IDNA, which was transfected for the control of the con

#### Example 3

#### Construction of cDNAs Encoding Soluble hwTNF-RA235

A cDNA encoding a soluble huTNF-RA235 (having the sequence of amino acids 1-235 of FtG. 2A) was constructed by excising an 840 by fragment from pCAV/NOT-TNF-R so with the restriction enzymes Not1 and Pvu2. Not1 cuts at the multiple cloning site of pCAV/NOT-TNF-R and Pvu2 cuts

The show oligonucleotide linkers reconstruct the 3' end of the receptor molecule up to nucleotide 708, followed by a termination codon (underlined). These oligonucleotides were then ligated with the 640 by Not1 TNF-R insert into Not1 cut pCA/NOT to yield the expression vector psotThFRA185/CA/NOT, which was transfected into COS-7 cells as described above. This expression vector induced expression of soluble human TNF-R which was canable of hinding TNF.

#### Example 5

#### Construction of cDNAs Encoding Soluble huTNF-RA163

A cDNA encoding a soluble huTNF-RA163 (having the s sequence of amino acids 1-163 of FIG. 2A) was constructed by excising a 640 bp fragment from from pCAV/NOT-TNF-R with the restriction enzymes Not1 and BgIZ as 21

described in Example 4. The following oligonucleotide linkers were synthesized:

5-GATCTGTTGAGC -3

This above oligonucleotide linker reconstructs the 3' end of the receptor molecule up to nucleotide 642 (amino acid 163), followed by a termination codon (underlined). This oligo- 10 nucleotide was then ligated with the 640 bp Not1 TNF-R insert into Not1 cut pCAV/NOT to yield the expression vector psoITNFRA163/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector induced expression of soluble human TNF-R which was 15 capable of binding TNF in the binding assay described in Example 1.

#### Example 6

Construction of cDNAs Encoding Soluble huTNF-**RA142** 

A cDNA encoding a soluble huTNF-R∆142 (having the sequence of amino acids 1-142 of FIG. 2A) was constructed by excising a 550 bp fragment from from pCAV/NOT- 25 TNF-R with the restriction enzymes Not1 and AlwN1. AlwN1 cuts within the TNF-R coding region at nucleotide 549. The following oligonucleotide linker was synthesized:

5'-CTGAAACATCAGACGTGGTGTGCAAGCCCTGTTAAA-3'
CTTGACTTTGTAGTCTGCACCACACGTTCGGGACATTTCTAGA

This above oligonucleotide linker reconstructs the 3' end of the receptor molecule up to nucleotide 579 (amino acid 142), 35 followed by a termination codon (underlined). This oligonucleotide was then ligated with the 550 bp Not1/AlwN1 TNF-R insert into Not1/Bgt2 cut pCAV/NOT to yield the expression vector psofTNFRA142/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector did not induced expression of soluble human TNF-R which was capable of binding TNF. It is believed that this particular construct failed to express biologically active TNP-R because one or more essential cysteine residue (e.g., Cys157 or Cys163) required for 45 intramolecular bonding (for formation of the proper tertiary structure of the TNF-R molecule) was eliminated.

#### Example 7

Expression of Soluble TNF Receptors in CHO Cells

Soluble TNF receptor was expressed in Chinese Hamster Ovary (CHO) cells using the glutamine-synthetase (GS) gene amplification system, substantially as described in PCT 55 expressed biologically active soluble TNF-R. patent application Nos. WO87/04462 and WO89/01036. Briefly, CHO cells are transfected with an expression vector containing genes for both TNF-R and GS. CHO cells are selected for GS gene expression based on the ability of the transfected DNA to confer resistance to low levels of methionine sulphoximine (MSX). GS sequence amplification events in such cells are selected using elevated MSX concentrations. In this way, contiguous TNF-R sequences are also amplified and enhanced TNF-R expression is achieved.

The vector used in the GS expression system was psofTNFR/P6/PSVLGS, which was constructed as follows. 22

First, the vector pSVLGS.1 (described in PCT Application Nos. WO87/04462 and WO89/01036, and available from Celltech, Ltd., Berkshire, UK) was cut with the BamH1 restriction enzyme and dephosphorylated with calf intestinal alkaline phosphatase (CIAP) to prevent the vector from religating to itself. The BamH1 cut pSVLGS.1 fragment was then ligated to a 2.4 kb BamH1 to Bgi2 fragment of pEB6hCMV (described in PCT Application No. WO89/ 01036, also available from Celltech) which was cut with Bgl2, BamH1 and Fsp1 to avoid two fragments of similar size, to yield an 11.2 kb vector designated p6/PSVLGS.1. pSVLGS.1 contains the glutamine synthetase selectable marker gene under control of the SV40 later promoter. The BamH1 to Bg12 fragment of pEE6hCMV contains the human cytomegalovirus major immediate early promoter (hCMV), a polylinker, and the SV40 early polyadenylation signal. The coding sequences for soluble TNF-R were added to p6/PSVLGS.1 by excising a Not1 to BamH1 fragment from the expression vector psoITNFR/CAVNOT (made according to Example 3 above), blunt ending with Klenow and ligating with Small cut dephosphorylated p6/PSVLGS.1, thereby placing the sofTNF-R coding sequences under the control of the hCMV promoter. This resulted in a single plasmid vector in which the SV40/GS and hCMB/sofTNF-R transcription units are transcribed in opposite directions. This vector was designated psolTNFR/P6/PSVLGS.

psofTNFR/P6/PSVLGS was used to transfect CHO-K1 cells (available from ATCC, Rockville, Md., under accession number CCL 61) as follows. A monolayer of CHO-K1 cells 30 were grown to subconfluency in Minimum Essential Medium (MEM) 10X (Gibco: 330-1581AJ) without glutamine and supplemented with 10% dialysed fetal bovine serum (Gibco: 220-6300AJ), 1 mM sodium pyruvate (Sigma), MEM non-essential amino acids (Gibco: 320-1140AG), 500 µM asparagine and glutamate (Sigma) and nucleosides (30 µM adenosine, guanosine, cytidine and uridine and 10 uM thymidine)(Sigma).

Approximately 1×106 cells per 10 cm petri dish were transfected with 10 ug of psoffNFR/P6/PSVLGS by standard calcium phosphate precipitation, substantially as described by Graham & van der Eb, Virology 52:456 (1983). Cells were subjected to glycerol shock (15% glycerol in serum-free culture medium for approximately 1.5 minutes) approximately 4 hours after transfection, substantially as described by Prost & Williams, Virology 91:39 (1978), and then washed with scrum-free medium. One day later, transfected cells were fed with fresh selective medium containing MSX at a final concentration of 25 uM. Colonies of MSXresistant surviving cells were visible within 3-4 weeks. 50 Surviving colonies were transferred to 24-well plates and allowed to grow to confluency in selective medium. Conditioned medium from confluent wells were then assayed for soluble TNP-R activity using the binding assay described in Example 1 above. These assays indicated that the colonies

In order to select for GS gene amplification, several MSX-resistant cell lines are transfected with psoITNFR/P6/ PSVLGS and grown in various concentrations of MSX. For each cell line, approximately 1×10⁶ cells are plated in gradually increasing concentrations of 100 uM, 250 uM, 500 uM and 1 mM MSX and incubated for 10-14 days. After 12 days, colonies resistant to the higher levels of MSX appear. The surviving colonies are assayed for TNF-R activity using the binding assay described above in Example 1. Each of these highly resistant cell lines contains cells which arise from multiple independent amplification events. From these cells lines, one or more of the most highly resistant cells lines are isolated. The amplified cells with high production rates are then cloned by limiting dilution cloning. Mass cell cultures of the transfectants secrete active soluble TNF-R.

#### Example 8

#### Expression of Soluble Human TNF-R in Yeast

Soluble human TNF-R was expressed in yeast with the expression vector pIXY432, which was derived from the yeast expression vector pIXY120 and plasmid pYEP352. pIXY120 is identical to pYcHuGM (ATCC 53157), except that it contains no cDNA insert and includes a polyliaker/ multiple cloning site with a Nool restriction site.

A DNA fragment encoding TNF receptor and suitable for cloning into the yeast expression vector pIXY120 was first generated by polymerase chain reaction (PCA) and pillcation of the extracellular portion of the full length receptor from pCAV/NOT-TNF-R (ATCC 66988). The following primers were used in this PCR amplification:

### 5 End Primer

5-TTCCGGTACCTTTGGATAAAAGAGACTACAAGGAC Aap718->ProLeunapLyaArgAapTyrLyaAap

#### 3'End Primer (entisense)

5-CCCGGGATCCTTAGTCGCCAGTGCTCCCTTCAGCTGGG-3'

The 5' end oligonucleotide primer used in the amplification included an Asp718 restriction site at its 5' end, followed by nucleotides encoding the 3' end of the yeast or-factor leader sequence (Pro-Leu-Asp-Lys-Arg) and those encoding the 8 acids of the FLAGO peptide 35 (AspTyrLysAspAspAspAspLys) fused to sequence encoding the 5' end of the mature receptor. The FLAG® peptide (Hopp et al., Bio/Technology 6:1204, 1988) is a highly antigenic sequence which reversibly binds the monoclonal antibody M1 (ATCC HB 9259). The oligonucleotide used to 40 generate the 3' end of the PCR-derived fragment is the antisense strand of DNA encoding sequences which terminate the open reading frame of the receptor after nucleotide 704 of the mature coding region (following the Asp residue preceding the transmembrane domain) by introducing a 45 TAA stop codon (underlined). The stop codon is then followed by a BamH1 restriction site. The DNA sequences encoding TNF-R are then amplified by PCR, substantially as described by Innis et al., eds., PCR Protocols: A Guide to Methods and Applications (Academic Press, 1990).

The PCR-derived DNA fragment encoding soluble human Thr-R-R was subclosed into the yeast expression vector pDXV120 by dipesting the PCR-derived DNA fragment with BanaH1 and Asp718 retriction enzymes, digesting pDXY120 with BanaH1 and Asp718, and ligating the PCR 55 fragment into the cut vector in vitroe with 14 DNA ligates into the cut vector in vitroe with 14 DNA ligates in the resulting construction (pDXY424) fused the open reading frame of the PLAG-soluble TNF receptor in-frame to the complete or-factor leader sequence and placed expression in yeast under the segio of the regulated yeast alcohol delayfrogenase ADHZ promoter. Identify of the nucleotide sequence of the soluble TNF receptor carried in pDXY424 with those in CDNA clone 1 were verified by DNA sequencing using the dideoxymiceotide chain termination method.

Soluble human TNF receptor was also expressed and secreted in yeast in a second vector. This second vector was

generated by recovering the pDX/42A plasmid from E. coll and digesting with EooR1 and BamBI restriction enzymes to isolate the fragment spanning the region encoding the ADHZ promoter, the cr-factor leader, the FLAGOS-soluble 5 TMF receptor and the stop codon. This fragment was ligated in vitro into EooR1 and BamBI cut plasmid ptPPS25 (Hill et al., Year 2:163 (1986)), to yield the expression plasmid ptXY432, which was transformed into E. coll strain RR1.

To assess secretion of the soluble human TNF receptor of from yeast, pXY424 was purified and introduced into a diploid yeast strain of S. cerevidae (XY218) by electroperation and selection for ecquinition of the plasmid-borne yeast TRP1* gene on media lacking tryptoptam. To assess secretion of the receptor directed by pDX'432, the plasmid was introduced into the yeast stain pE 1849-60 by electroperation followed by selection for the plasmid-borne URA3* gene with growth on media lacking purel. Overnight cultures were grown at 30° C. in the appropriate selective media. The PB149-60-pDX'434 transformants were diluted into VEP-148 glucose media and grown at 30° C. for 38-40 hours. Supernatants were prepared by removal of cells by centrifugation, and filtration of supernatants through 0.45 g filters.

The level of secreted receptor in the supernatants was 2s determined by immodotholt. Briefly, 11 of supernatants, and dilutions of the supernatants, were spotted onto nitrocellulose filters and allowed to sty. After blocking nonspecific protein binding with a 3% BSA solution, the filters were incubated with diluted MI anti-FLAG® antibody occess antibody was removed by washing and then dilutions of horseradish peroxidase conjugated anti-mouse IgG antibodies were incubated with the filters. After removal of excess secondary antibodies, peroxidase substrates were added and color development was allowed to proceed for 3s approximately 10 minutes prior to removal of the substrate solution.

The anti-FLAGO reactive material found in the supernants demonstrated that significant levels of receptor were secreted by both expression systems. Comparisons demonstrated that the pLKY432 system secreted approximately 8–16 times more soluble human TNF receptor than the DKY424 system. The supernatus were assayed for soluble TNF-R activity, as described in Example 1, by their ability to bind 12³⁵-TNF-R and block TNF-R binding. The pLKY432 supernatants were found to contain significant levels of active soluble TNF-R.

#### Example 9

#### Isolation of Murine TNF-R cDNAs

Murine TNFR cDNAs were isolated from a cDNA Murine TNFR cDNAs were isolated from a cDNA community made from marine 789 cells, an antigen-dependent helper T cell line derived from CS781/6 mice, by cross-species hybridization with a human TNFR probe. The CDNA library was constructed in ZAZP (Strategen, San Diego), substantially as described above in Example 2, by isolating polyadonylated RNA from the 789 cells.

A double-stranded human TNF-R cDNA probe was produced by excising an approximately 3.5 kb Not1 fragment of the human TNF-R clone 1 and ³²P-labeling the cDNA using random orimers (Bochringer-Mannheim).

The murine cDNA library was amplified once and a total of 900,000 plaques were screened, substantially as described in Example 2, with the human TNF-R cDNA probe. Approximately 21 positive plaques were purified, and the Bluescript plasmids containing EcoR1-linkered inserts were excised (Stratagene, San Diego). Nucleic acid sequencing of

a portion of murine TNF-R clone 11 indicated that the coding sequence of the murine TNF-R was approximately 88% homologous to the corresponding nucleotide sequence of human TNF-R. A partial nucleotide sequence of murine TNF-R cDNA clone 11 is set forth in FIGS. 3A-3B.

#### Example 10

Preparation of Monoclonal Antibodies to TNF-R

Preparations of purified recombinant TNF-R, for canapie, human TNF-R, or transfered COS cells expressing high levels of TNF-R are employed to generate monoclonal antibodies against TNF-R using conventional techniques, for example, those disclosed in U.S. Pat. No. 4411.993. Such antibodies are likely to be useful in later-is reing with TNF binding to TNF receptors, for example, in Samiltonian good or or their undesired effects of TNF-or as components of diagnostic or research assays for TNF or subther TNF receptors.

To immunize mice, TNF-R immunogen is emulsified in 20 complete Preund's adjuvant and injected in amounts ranging from 10-100 µg subcutaneously into Balb/c mice. Ten to twelve days later, the immunized animals are boosted with additional immunogen emulsified in incomplete Freund's adjuvant and periodically boosted thereafter on a weekly to biweekly immunization schedule. Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision for testing by dot-blot assay (antibody sandwich) or HLISA (enzyme-linked immunosorbent assay). Other assay procedures are also suitable. Following detection of an appropriate antibody liter, positive animals are given an intravenous injection of antigen in saline. Three to four days later, the animals are sacrificed, splenocytes harvested, and fused to the murine myeloma cell line NS1. Hybridoma cell lines generated by this procedure are plated in multiple microtiter plates in a HAT selective medium (hypoxanthine, aminopterin, and thymidine) to inhibit proliferation of nonfused cells, myeloma hybrids, and spleen cell hybrids.

Hybridoma closes thus generated can be screened by ELISA for reactivity with TNF-R, for example, by designs—and times of the techniques disclosed by Engwall et al., Immunoschem. 8:871 (1971) and in U.S. Pat. No. 4,703,004. Positive closes are then injected into the perincesal cavities of syngencic Balb's mice to produce asches containing high concentrations (-1 mg/ml) of anti-TNF-R monoclonal anti-ty-monoclonal mg/ml). The resulting monoclonal anti-ty-monoclonal mg/ml and mg/mg/ml and mg/ml and mg/ml and mg/ml and mg/ml and mg/ml and mg/ml

What is claimed is:

1. An isolated DNA sequence selected from the group consisting of:

- (a) a DNA sequence that encoded a polypeptide having the amino acid sequence selected from the group consisting of amino acids I to X of FIG. 2A and amino acid I to 235 and FIG. 3A, wherein X is an amino acid from 163 (a) a DNA a amino acid mino acid mino acid mino acid from 163 (a) a DNA a amino acid from 164 (b) a mino acid from 165 (a) a DNA a amino acid from 165 (a) a DNA a cid fro
- (b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under moderately stringent conditions (50° C., zx SSC), and which to encodes a polypeptide that is capable of binding to TNF and which is at least 88% identical to a polypeptide encoded by the DNA of (a).
- An isolated DNA sequence selected from the group ensisting off
- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting

- of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under modcrately stringent conditions (50°C., 2×SSC) and which encodes TNF-R protein that is capable of binding greater than 0.1 numbes TNF per armole TNF-R and which is at least 88% ideatical to a polypeptide encoded by the DNA of (a).
- An isolated DNA sequence selected from the group consisting of:
  - (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to X of SIG. 2A and amino acids 1 to 203 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
  - (b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under modcrately stringent conditions (30°C., 2×SSC) and which encodes TNP-R protein that is capable of binding greater than 0.5 nundes TNP per annote TNP-R and which is at least 88% identical to a polypeptide encoded by the DNA of (a).
- 4. A recombinant expression vector comprising the DNA sequence according to claim 1.
- 5. A recombinant expression vector comprising the DNA sequence according to claim 2.
- A recombinant expression vector comprising the DNA sequence according to claim 3.
   A host cell transformed or transfected with the vector.
- according to claim 4.

  8. A host cell transformed or transfected with the vector
- A host cell transformed or transfected with the vector

   A host cell transformed or transfected with the vector
- according to claim 6.

  10. An isolated DNA sequence selected from the group consisting of:
  - (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 23 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
  - (b) a DNA sequence that encodes a polypeptide identical to the polypeptide encoded by the DNA of (a) except for modification(s) to the amino acid sequence selected from the group consisting of: (i) inactivated N-linked glycosylation attes; (ii) altered AERZ2 protease cleavage sites; (iii) conservative amino acid substitutions; (iv) substitution or deletion of cysteine residues; and (iv) combinations of modifications (i)-(iv); wherein such polypeptide is capable of binding TNF.
  - 11. An isolated DNA sequence selected from the group asisting of:
  - (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group constitution of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
  - (b) a DNA sequence that encodes a polypeptide identical to the polypeptide encoded by the DNA of (a) except for modification(i) to the amino acid sequence selected from the group consisting of: (i) inactivated N-linked glycosylation intes: (ii) altered EEXZ processe cleavage sites; (ii) conservative amino acid substitutions; (iv) substitution or deletion of cytetion residuces; and (v)

combinations of modifications (i)—(iv); which encoded polypeptide is capable of binding greater than 0.1 moles TNF per nmole of such polypeptide.

12. An isolated DNA sequence selected from the group consisting of:

- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence that encodes a polypeptide identical to the polypeptide encoded by the DNA of (a) except for modification(e) to the amino acid sequence selected from the group consisting of: (i) inactivated N-linked glycosylation sites; (ii) altered KENZ protease cleavage istes; (ii) conservative amino acid substitutions; (iv) substitution or deletion of cysteine residues; and (v) combinations of modifications (iv) (vii) which encoded polypeptide is capable of binding greater than 0.5 moies TNP per numbe of such polypeptide.

 A recombinant expression vector comprising the DNA according to any of claims 10, 11 or 12.

14. A host cell transformed or transfected with the vector according to claim 13.

3 15. A DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group constitution of (a) amino acids 1-235 of FIG. 2A; and (b) a DNA sequence capable of hybridization to the DNA sequence capable of hybridization to the DNA sequence of (a) under moderately stringent conditions (50° C., 2× SSC) and which encodes a polypeptide that is capable of binding to TNF and which is at least 83% identical to a polypeptide encoded by the DNA of (a).

16. A recombinant expression vector comprising the DNA sequence according to claim 15.

 A host cell transformed or transfected with the vector according to claim 16. LAW OFFICES

## SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC

2100 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20037-3202 TELEPHONE (202) 293-7060 FACSIMILE (202) 293-7860

CALIFORNIA OFFICE

1010 EL CAMINO REAL
MENLO PARK, CA 94025
TELEPHONE (650) 325-5800
FACSIMILE (650) 325-6606

JAPAN OFFICE

TOEI NISHI SHIMBASHI BLDG. 4F 13-5 NISHI SHIMBASHI 1-CHOME MINATO-KU, TOKYO 105, JAPAN TELEPHONE (03) 3503-3760 FACSIMILE (03) 3503-3766

August 31, 1998

BOX PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

Re: Reissue Application of
Craig A. SMITH, Raymond G. GOODWIN
and M. Patricia BECKMANN entitled
"DNA ENCODING TUMOR NECROSIS
FACTOR-AND -5 RECEPTORS"
Our Ref: A-7210

Dear Sir:

This is a request for filing a Reissue Application of U.S. Patent No. 5,712,155, which issued on January 27, 1998, by Craig A. SMITH, Raymond G. GOODWIN and M. Patricia BECKMANN entitled "DNA ENCODING TUMOR NECROSIS FACTOR- $\alpha$  AND  $-\beta$  RECEPTORS". J

This application is being filed under 37 C.F.R. § 1.171. Enclosed is the specification, claims, Abstract pursuant to 37 C.F.R. § 1.173, six (6) sheets of drawings, an executed Reissue Declaration and Power of Attorney and an Information Disclosure Statement.

Consent of the Assignee to Reissue Pursuant to 37 C.F.R. \$ 1.172(a), and Offer to Surrender Letters Patent Pursuant to 37 C.F.R. \$ 1.178, are also submitted herewith.

 $^{^{\}underline{1}'}$  A Certificate of Correction for U.S. Patent 5,712,155 was issued August 18, 1998, to correct minor printing errors.

## SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC

Assistant Commissioner of Patents

August 31, 1998 Page 2

The application underlying U.S. Patent No. 5,712,155 was assigned to Examiner Daryl Basham in Group Art Unit 1646.

The Government filing fee is calculated as follows:

Total Claims <u>271</u> - 20 = <u>251</u> x \$22 =	\$5,522.00
Independent Claims $17 - 3 = 14 \times $82 =$	
Base Fee	\$ 790.00
Multiple Dependent Fee (\$ 270.00)	
TOTAL FILING FEE	\$7,730.00

The Assistant Commissioner is hereby authorized to charge Applicants' Deposit Account No. 19-4880 in the amount of \$ 7,730.00 for the government fee.

The Assistant Commissioner is also hereby directed and authorized to charge or credit any difference or overpayment to Deposit Account No. 19-4880.

The Assistant Commissioner is also hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 and 1.17, and any petitions for extension of time under 37 C.F.R. § 1.136, which may be required during the entire pendency of the application to Deposit Account No. 19-4880. A duplicate copy of this transmittal letter is attached.

Respectfully submitted,

SUGHRUE MION, ZINN, MACPEAR & SEAS, PLLC

Gordon Kit Registration No. 30,764

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue Application of:

CRAIG A. SMITH et al

Reissue Application of: U.S. Patent 5,712,155 Group Art Unit: 1646

Examiner: Basham, D.

Issued: January 27, 1998

Reissue Application Filed: August 31, 1998

For: DNA ENCODING TUMOR NECROSIS FACTOR- $\alpha$  AND - $\beta$  RECEPTORS

## CONSENT OF THE ASSIGNEE TO REISSUE PURSUANT TO 37 C.F.R. § 1.171(a)

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Immunex Corporation is the assignee, i.e., owner, of the entire right, title and interest of the technology disclosed and claimed in Smith et al, U.S. Patent 5,712,155, which issued on January 27, 1998, as evidenced by the Assignment recorded in Parent U.S. Patent Application Serial No. 07/523,635, at Reel 5325, Frame 0315.

Immunex Corporation hereby certifies that the above-mentioned Assignment has been reviewed and to the best of Immunex Corporation's knowledge and belief, title is in Immunex Corporation which is seeking to take this action.

Immunex Corporation hereby consents to the filing of a reissue application of Smith et al, U.S. Patent 5,712,155.

CONSENT OF THE ASSIGNEE TO REISSUE PURSUANT TO 37 C.F.R. § 1.171(a) U.S. Patent No. 5,712,155

By virtue of my position at Immunex Corporation, I am authorized to sign this written consent on behalf of the assignee, i.e., Immunex Corporation, of Smith et al, U.S. Patent 5,712,155.

Scott G. Hallquist Senior Vice President General Counsel Immunex Corporation

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue Application of:

CRAIG A. SMITH et al

Reissue Application of: U.S. Patent 5,712,155 Group Art Unit: 1646

Examiner: Basham, D.

Issued: January 27, 1998

Reissue Application Filed : August 31, 1998

For: DNA ENCODING TUMOR NECROSIS FACTOR- $\alpha$  AND - $\beta$  RECEPTORS

# OFFER TO SURRENDER LETTERS PATENT PURSUANT TO 37 C.F.R. § 1.178

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Immunex Corporation is the assignees, i.e., owner, of the entire right, title and interest of the technology disclosed and claimed in Smith et al, U.S. Patent 5,712,155, which issued on January 27, 1998, as evidenced by the Assignments recorded in Parent U.S. Patent Application Serial No. 07/523,635, on at Reel 5325, Frame 0315.

Immunex Corporation hereby certifies that the above-mentioned Assignment has been reviewed and to the best of Immunex Corporation's knowledge and belief, title is in Immunex Corporation which is seeking to take this action.

OFFER TO SURRENDER LETTERS PATENT PURSUANT TO 37 C.F.R. § 1.178 U.S. Patent 5,712,155

Immunex Corporation hereby offers to surrender the original Letters Patent U.S. Patent 5,712,155 to the United States Patent and Trademark Office.

By virtue of my position at Immunex Corporation, I am authorized to sign this offer to surrender on behalf of the assignee, i.e., Immunex Corporation, of Smith et al, U.S. Patent 5,712,155.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of U.S. Patent 5,712,155.

> Scott G. Hallquist Senior Vice President General Counsel

Immunex Corporation

SQLE/IQINT

## REISSUE DECLARATION AND POWER OF ATTORNEY

As below named inventors, we hereby declare that our residence, post office address and citizenship are as stated below next to our name: that we verily believe we are the original, first and joint inventors of the subject matter which is described and claimed in U.S. Patent 5,712,155, granted January 27, 1998, and for which a reissue patent is sought on the intention entitled:

### DNA ENCODING TUMOR NECROSIS FACTOR-α AND -Β RECEPTORS

the specification of which is attached hereto.

We have reviewed and understand the contents of the show-identified specification, including the claims; that we acknowledge our duty to disclose information of which we are aware which is material to the patentability of this application under 37 C.F.R. 1.55. We verify believe the original patent to be wholly or partially inoperative or invalid by reason of the patentees claiming less than we had a right to claim, i.e., due to our Attorney's failure to appreciate the full scope of our invention, we did not initially claim a process for producing the protein capable of binding TNF (now sought in Reissue Claims 28-31, 42-45, 56-59, 70-73 and 48-87), and we did not claim the varied scope of DNA molecules, vectors and host cells (now sought in Reissue Claims 18-27, 32-41, 46-55, 60-69 and 74-83).

We hereby claim priority benefits under Title 35, United States Code §119. §172 or §365 of any provisional application or foreign application(s) for pattent or inventor's certificate lined below and have also identified on said list any foreign application for pattent or inventor's certificate on this invention having a filing date before that of any foreign application on which priority is claimed:

r unventor's cerulicate on this invention having a filing date before that of any foreign application on which priority is claimed

Application Number Country Filing Date Priority Claimed

(ves or no)

We hereby claim the benefit of Title 35. United States Code \$120 of any United States application(s) listed below and, insofar as twiject matter of each of the claims of this application is not disclosed in a listed prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$112, We acknowledge our duty to disclose any information material to the patentability of this application under 37 C.F.R. 1.56 which occurred between the filling date of the prior application and the national or PCT international filling date of this application:

Application Script No. Filing Date Status 07/403.241 September 5, 1989 Ahandoned 07/405,370 September 11, 1989 Abandoned 07/421,417 October 13, 1989 07/523,635 May 10, 1990 Patented (U.S. Patent 5,395,760) 08/346,555 November 29, 1994 Patented (U.S. Patent 5,712,155)

All errors corrected in this reissue application arose without any deception intention on the part of applicants.

We hereby appoint John H. Mion, Reg. No. 18.879; Thomas J. Mappeak, Reg. No. 19,292; Robert J. Seas, Jr., Reg. No. 21,092; Darryl Mexic, Reg. No. 23,063; Robert V. Sloan, Reg. No. 22,757; Peter D. Olevy, Reg. No. 24,513; J. Frank Osha, Reg. No. 24,625; Waddell A. Biggart, Reg. No. 24,861; Louis Gubinsky, Reg. No. 24,835; Neil B. Siegel, Reg. No. 25,200; David J. Cushing, Reg. No. 28,703; John R. Inge, Reg. No. 29,916; Joseph J. Ruch, Jr., Reg. No. 26,577; Sheidon I. Landsman, Reg. No. 25,407; Richard C. Turner, Reg. No. 29,710; Howard L. Bernstein, Reg. No. 25,665; Alan J. Kasper, Reg. No. 25,426; Kenneth J. Burchfiel, Reg. No. 31,333; Gordon Kit, Reg. No. 30,764; Susan J. Mack, Reg. No. 30,951; Frank L. Bernstein, Reg. No. 31,484; Mark Boland, Reg. No. 32,197; William H. Mamdir, Reg. No. 32,155; Scott M. Dolleis, Reg. No. 32,562; Brian W. Hannon, Reg. No. 32,778; Abraham J. Rosner, Reg. No. 33,276; Bruce B. Kramer, Reg. No. 33,725; Paul F. Neils, Reg. No. 33,102; Brian W. Hannon, Reg. No. 32,763; Abraham J. Rosner, Reg. No. 33,026; Dolleis S. Rey No. 34,002; Brian W. Hannon, Reg. No. 32,763; Abraham J. Rosner, Reg. No. 37,026; Bruce B. Kramer, Reg. No. 37,725; Paul F. Neils, Reg. No. 33,102; Brian W. Hannon Reg. No. 32,765; Abraham J. Rosner, Reg. No. 37,028; No. 35,603, my stitorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, and request that all correspondence about the application be addressed to SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC, 2100 Pennsylvania Avenue, N.W., Washington, D.C. 20037-3202.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false nataments may jeopardize the validity of the application or any patent issuing thereon.

Date	First Inventor_	Craig First Name	A. Middle Initial	SMITH Lau Name
Residence Seattle, WASHINGTON	Signature	han	1s. S	1th
Post Office Address: 2405 5th West, Seattle	. WASHINGTO	N 98119		
Citizenship U.S.A.				
Date8/28/98	Second Invento	Raymond First Name	G.	GOODWIN Last Name
Residence Seattle, WASHINGTON	Signature A	ugneons		Goods.
Post Office Address:3322 8th Avenue Wes	I. Scattle, WAS	<u>HÍNGTON 98119</u>		
Citizenship U.S.A.				
			***************************************	***************************************
Date 8/28/98	Third Inventor	M. First Name	Patricia Middle british	BECKMANN Latt Name
Residence Poulsbo, WASHINGTON	Signature (	Y patucii	polem	4
esidence Seattle, WASHINGTON Signature				

Citizenship U.S.A

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reissue Application of:

CRAIG A. SMITH et al

Reissue Application of: U.S. Patent 5,712,155

Issued: January 27, 1998 Examiner: Basham, D.

Group Art Unit: 1646

Reissue Application Filed: August 31, 1998

For: DNA ENCODING TUMOR NECROSIS FACTOR- $\alpha$  AND  $-\beta$  RECEPTORS

INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. §§ 1.97 and 1.98

Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

In accordance with the duty of disclosure under 37 C.F.R. § 1.56, Applicants hereby notify the U.S. Patent and Trademark Office of the documents which are listed on the attached Form PTO-1449 which the Examiner may deem relevant to the patentability of the claims of the above-identified application.

The listed documents were either cited by the Examiner or brought to the Examiner's attention by Applicants in Parent U.S. Patent No. 5,712,155; Grandparent U.S. Application Serial No. 07/523,635 (now U.S. Patent 5,395,760); Great Grandparent U.S. Application Serial No. 07/421,417; Great-Great Grandparent U.S. Application Serial No. 07/405,370; and Great-Great-Great Grandparent U.S. Application Serial No. 07/403,241.

Also, several additional references have been cited in related U.S. Application Serial No. 08/038,765, filed March 19, 1993; U.S.

INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. §§ 1.97 and 1.98 Reissue of U.S. Patent No. 5,712,155

Application Serial No. 08/555,629, filed November 9, 1995; and U.S. Application Serial No. 08/953,268, filed October 17, 1997, which may be considered to be relevant to patentability of the claims of the above-identified application. Hence, no references are being provided herewith.

The present Information Disclosure Statement is being filed no later than three months from the application's reissue filing date and before the mailing date of the first Office Action on the merits, and therefore no certification under 37 C.F.R. § 1.97(e) or fee under 37 C.F.R. § 1.17(p) is required.

The submission of the listed documents is not intended as an admission that any such document constitutes prior art against the claims of the present application. Applicants do not waive any right to take any action that would be appropriate to antedate or otherwise remove any listed document as a competent reference against the claims of the present application.

Respectually submitted,

Gordon Wit / Registration No. 30,764

SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC 2100 Pennsylvania Avenue, N.W. Washington, D.C. 20037-3202 (202) 293-7060

Date: August 31, 1998

Sheet 1 of 3

GROUP 1646

SERIAL NO. Reissue of USP 5,715,155

KAMINER NITIAL		D	ocu	MENT	r N	UMB	ER		DATE	NAME	CLASS	SUBCLASS	FILING IF APPRO		
		5	4	7	7	8	5	1	09/05/95	Beutler et al					
		5	6	1	0	2	7	9	03/11/97	Brockhaus et al					
		5	1	1	6	9	6	4	05/26/92	Capon et al					
		5	6	0	5	6	9	٥	02/25/97	Jacobs et al					
		5	1	5	5	۰	2	7	10/13/93	Sledziewski et al					
									P	DREIGN PATENT DOCUMENTS					
								TRANSI	ATION						
		×	DOCUMENT NUMBER				DATE	COUNTRY	CLASS	SUBCLASS	YES	NO			
		Г	4	6	4	5	3	3	06/22/91	Europe					
			4	1	7	5	6	3	03/20/91	Europe					
	WO	8	9	٥	2	9	2	2	04/06/89	PCT					
	WO	9	1	٥	8	2	9	8	06/13/91	PCT					
		٥	3	9	4	8	2	7	04/19/90	Euorpe					
			3	2	5	2	2	4	07/26/89	Europe					
				_	_	ОТ	HER	DO	CUMENTS (1	ncluding Author, Title, Date, Per	rtinent	Pages, etc.	.)		
			Ashkenazi et al, Proc. Natl. Acad. Sci., USA, 88:10535-10539 (1991)												
		П	Capon et al, Nature, 337:525-530 (1989)												
			Evans et al, J. Exp. Med., 180:2173-2179 (1994)												
			Ie	Na mu	ra	et	al,	J.	Immunol.,	139:2989-2992 (1987)					
			Ishikura et al, Blood, 73:419-424 (1989)												
			Jones et al, Nature, 338:225-228 (1989)												
			L	nge	r e	t e	1,	In:	New Adva	nces on Cytokines, Eds. Romagnan	i et al,	Raven Pres	ss, New Yor	k,	
			pages 349-354 (1992)												
			Le	581	aue	re	t a	1,	Bur. J. Im	munol., 21:2883-2886 (1991)					
			L	ets	che	re	t a	1,	J. Biol. C	hem., <u>266(2)</u> :18324-18329 (1991)					
			М	hle	r e	t a	1,	J.	Immunol.,	<u>151</u> :1548-1561 (1993)					
			Pe	ppe	1 e	t a	1,	J.	Cell. Bioc	hem. Supp., O(15 Part F):118 (19	91)	-			
			Pe	ppe	1 e	t a	1,	J.	Exp. Med.,	174:1483-1489 (1991)					
			Ru	tka	et	al	, 1	nt.	J. Cancer	Res., 41:573-582 (1988)					
			Sn	ith	et	al	, ,	. в	iol. Chem.	, <u>262</u> :6951-6954 (1987)			-		
		$\neg$	Sn	ith	et	al	, s	cíe	nce, <u>248</u> :1	019-1023 (1990)					
CAMINER		_			_		_			DATE CONSID	ERED				

ATTY. DOCKET NO. A-7210

APPLICANT CRAIG SMITH et al FILING DATE August 31, 1998

U.S. PATENT DOCUMENTS

PORM PTO-1449 U.S. DEPARTMENT OF COMMERCE (Rev. 2-32) PATENT AND TRADEMARK OFFICE

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(Use several sheets if necessary)

Sheet 2 of 3

SERIAL NO. Reissue of USP 5,712,155

INFORMATION DISCLOSURE STATEMENT BY APPLICANT						CRAIG SMITH et al												
(Use several sheets if necessary)						saa	(Y:		FILING DATE August 31, 1998	GROUP 1646								
										U.S. PATENT DOCUMENT	rs							
EXAMINER INITIAL		D	ocui	1E3/1	r M	лав	SR.		DATE	NAME		CLASS	SUBCLASS	FILING IF APPRO		_		
		5	3	9	5	7	6	۰	03/07/95	Smith et al								
		5	4	7	8	9	2	5	12/26/95	Wallach et al								
		4	9	3	5	2	3	3	06/19/90	Bell et al								
		5	7	1	2	1	5	5	01/27/98	Smith et al								
		5	6	9	5	9	5	3	12/09/97	Wallach et al						_		
		5	5	1	2	5	4	4	04/30/96	Wallach et al								
		4	6	7	5	2	8	5	06/23/87	Clark et al						*		
		_	_	_				_	P	OREIGN PATENT DOCUMENTS								
		Г												TRANS	LATION			
		D	ocui	MEN	r M	UMBI	ER		DATE	COUNTRY		CLASS	SUBCLASS	YES	NO	_		
		Г	4	1	8	٥	1	4	03/20/91	Europe								
		2	2	1	8	1	0	1	11/08/89	United Kingdom								
		61	2	9	3	9	2	4	12/24/86	Japan				Yes				
	WO	-	9	0	3	5	7	5	11/15/90	PCT								
		-	_		_	OT	HER	DC	CUMENTS (1	ncluding Author, Title, Da	te, Pert	inent	Pages, etc	.)				
		Г	D	emb	ic	et 4	1,	cy	tokine, 2:	231-237 (1990)						_		
		-	_	_				_		Acad. Sci., USA, 87:8331-8335 (1990)								
	_	┢	L	oet	sch	er e	et e	1,	Cell, 61:	351-359 (1990)								
		Т	N	Nophar et al, EMBO J., 9:3269-3278 (1990)														
	_	t	P	enn	ica	et	al	, N	ature, 312	:724 (1984)						<del>*</del>		
	<del>                                     </del>	T	0	ray	et	al.	, м	n tu	re, <u>312</u> :72	(1984)						_*		
		┢	В	agl	ion	i et		1,	J. Biol. C	Dem., <u>260</u> :13395 (1985)								
	$\vdash$	$\vdash$	λ	gga	rwa	1 e		1,	Nature, 31	8:665 (1985)								
		T	Y	Oshie et al. J. Biochem., 100:531 (1986)														
	<b>—</b>	Г	1	STA	el	et a	<b>a</b> l,	Im	munology L	etters, <u>12</u> :217 (1986)						_,		
	<b>-</b>	T	c	rea	81e	y e	t a	1,	Proc. Natl	. Acad. Sci., USA, 84:3293	(1987)					+		
		T	s	tau	ber	et	al	, ,	. Biol. Ch	em., <u>263(35)</u> :19098-19104 (	1988)					₩		
		t	A	gga	rva	1 e	t a	1,	J. Biol. C	hem., 262:10000 (1987)						*		
		T	T	suj	imo	to	et	a1,	J. Immun.	, <u>136</u> :2441 (1987)						_,		
	T	T	н	olt	man	n e	t a	1,	J. Immunol	., <u>139</u> :1161 (1987)						<u> </u>		
		Τ	s	hal	aby	et	al	, ,	. Leukocyt	e Biol., 41:196 (1987)						;		
EXAMINER		-	•	_	_	_	_			DATE	CONSIDE	RED						

ATTY. DOCKET NO. A-7210

PORM PTO-1449 U.S. DEPARTMENT OF COMMERCE (Rev. 2-32) PATENT AND TRADEMARK OFFICE

Sheet 3 of 3 FORM PTO-1449 U.S. DEPARTMENT OF COMMERCE (Rev. 2-32) PATENT AND TRADEMARK OFFICE ATTY. DOCKET NO. SERIAL NO. Reissue of USP 5,712,155 INFORMATION DISCLOSURE APPLICANT STATEMENT BY APPLICANT CRAIG SMITH et al GROUP (Use several sheets if necessary) FILING DATE 1646 August 31, 1998 U.S. PATENT DOCUMENTS FXAMINER FILING DATE DOCUMENT NUMBER DATE CLASS SUBCLASS IF APPROPRIATE INITIAL. FOREIGN PATENT DOCUMENTS TRANSLATION YES NO DOCUMENT NUMBER DATE COUNTRY CLASS SUBCLASS 2 3 9 07/17/90 0 3 Europe 8 3 7 8 03/22/89 Europe 8 3 3 9 2 OTHER DOCUMENTS (including Author, Title, Date, Pertinent Pages, etc.) Unglaub et al, J. Exp. Med., 166:1788 (1987) Yonehara et al, J. Exp. Med., 167:1511 (1988) Peetre et al, Bur. J. Haematol., 41:414 (1988) Englemann et al, J. Biol. Chem., 264:11974 (1989) Okayama et al, Mol. Cell. Biol., 2:161 (1982) Okayama et al, Mol. Cell. Biol., 3:280 (1983) Aruffo et al, Proc. Natl. Acad. Sci., USA, 84:8573 Yamasaki et al, Science, 241:825 (1988) Sims et al, Science, 241:585 (1988) Tsujimoto et al, Arch. Biochem. and Biophys.; pages 563-568 (1986) Suggs et al, PNAS, 78:6613-6617 (1981) Kull et al, PNAS, 82:5756-5760 (1985) Goodman, J. in Basic and Clinical Immunology, pages 24-25, Lange Medical Publications, Los Altos, California (1982) Goodman, J. in Basic and Clinical Immunology, pages 101-108, 7th ed., (Sites et al, eds.),

Examiner: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

(Form PTO-1449 (6-41)

DATE CONSIDERED

Appleton & Lange, Norwalk, CONN. (1991)

EXAMINER

#### TITLE

DNA Encoding Tumor Necrosis Factor-α and -β Receptors

## CROSS-REFERENCE TO RELATED APPLICATION

This application is a Reissue of U.S. Patent No. 5.712.155, which issued from U.S. Application Serial No. 08/346.555, filed November 29, 1994; which is a Continuation of U.S. Application Serial No. 07/523,635, filed May 10, 1990, now U.S. Patent 5,395,760, which is a Continuation-In-Part of U.S. Application Serial No. 07/421,417, filed October 13, 1989[.]; now abandoned, which is a Continuation-In-Part of U.S. Application Serial No. 07/405,370, filed September 11, 1989, now abandoned, which is a Continuation-In-Part of U.S. Application Serial No. 07/403,241, filed September 5, 1989, now abandoned.

## BACKGROUND OF THE INVENTION

The present invention relates generally to cytokine receptors and more specifically to tumor necrosis factor receptors.

Tumor necrosis factor-α (TNFα, also known as cachectin) and tumor necrosis factor-β (TNFβ, also known as lymphotoxin) are homologous mammalian endogenous secretory proteins capable of inducing a wide variety of effects on a large number of cell types. The great similarities in the structural and functional characteristics of these two cytokines have resulted in their collective description as "TNF." Complementary cDNA clones encoding TNFα (Pennica et al., Nature 312:724, 1984) and TNFβ (Gray et al., Nature 312:721, 1984) have been isolated, permitting further structural and biological characterization of TNF.

TNF proteins initiate their biological effect on cells by binding to specific TNF receptor (TNF-R) proteins expressed on the plasma membrane of a TNF-responsive cell. TNF $\alpha$  and TNF $\beta$  were first shown to bind to a common receptor on the human cervical carcinoma cell line ME-180 (Aggarwal et al., *Nature 318*:665, 1985). Estimates of the size

25

5

10

15

20

of the TNF-R determined by affinity labeling studies ranged from 54 to 175 kDa (Creasey et al, Proc. Natl. Acad. Sci. USA 84:3293, 1987; Stauber et al., J. Biol. Chem. 263:19098, 1988; Hohmann et al., J. Biol. Chem. 264:14927, 1989). Although the relationship between these TNF-Rs of different molecular mass is unclear, Hohmann et al. (J. Biol. Chem. 264:14927, 1989) reported that at least two different cell surface receptors for TNF exist on different cell types. These receptors have an apparent molecular mass of about 80 kDa and about 55-60 kDa, respectively. None of the above publications, however, reported the purification to homogeneity of cell surface TNF receptors.

10

15

20

5

In addition to cell surface receptors for TNF, soluble proteins from human urine capable of binding TNF have also been identified (Peetre et al., Eur. J. Haematol. 41:414, 1988; Seckinger et al., J. Exp. Med. 167:1511, 1988; Seckinger et al., J. Biol. Chem. 264:11966, 1989; UK Patent Application, Publ. No. 2 218 101 A to Seckinger et al.; Engelmann et al., J. Biol. Chem. 264:11974, 1989). The soluble urinary TNF binding protein disclosed by UK 2 218 101 A has a partial N-terminal amino acid sequence of Asp-Ser-Val-Cys-Pro-, which corresponds to the partial sequence disclosed later by Engelmann et al. (1989). The relationship of the above soluble urinary binding proteins was further elucidated after original parent application (U.S. Serial No. 07/403.241) of the present application was filed, when Engelmann et al. reported the identification and purification of a second distinct soluble urinary TNF binding protein having an N-terminal amino acid sequence of Val-Ala-Phe-Thr-Pro- (J. Biol. Chem. 265:1531, 1990). The two urinary proteins disclosed by the UK 2 218 101 A and the Engelmann et al. publications were shown to be immunochemically related to two apparently distinct cell surface proteins by the ability of antiserum against the binding proteins to inhibit TNF binding to certain cells.

25

More recently, two separate groups reported the molecular cloning and expression of a human 55 kDa TNF-R (Loetscher et al., Cell 61:351, 1990; Schall et al., Cell 61:361, 1990). The TNF-R of both groups has an N-terminal amino acid sequence which corresponds to the partial amino acid sequence of the urinary binding protein disclosed by UK 2 218 101 A, Engelmann et al. (1989) and Englelmann et al. (1990).

10

15

20

25

In order to elucidate the relationship of the multiple forms of TNF-R and soluble urinary TNF binding proteins, or to study the structural and biological characteristics of TNF-Rs and the role played by TNF-Rs in the responses of various cell populations to TNF or other cytokine stimulation, or to use TNF-Rs effectively in therapy, diagnosis, or assay, purified compositions of TNF-R are needed. Such compositions, however, are obtainable in practical yields only by cloning and expressing genes encoding the receptors using recombinant DNA technology. [Efforst] Efforts to purify the TNF-R molecule for use in biochemical analysis or to clone and express mammalian genes encoding TNF-R, however, have been impeded by lack of a suitable source of receptor protein or mRNA. Prior to the present invention, no cell lines were known to express high levels of TNF-R constitutively and continuously, which precluded purification of receptor for sequencing or construction of genetic libraries for cDNA cloning.

#### SUMMARY OF THE INVENTION

The present invention provides isolated TNF receptors and DNA sequences encoding mammalian tumor necrosis factor receptors (TNF-R), in particular, human TNF-Rs. Such DNA sequences include (a) cDNA clones having a nucleotide sequence derived from the coding region of a native TNF-R gene; (b) DNA sequences which are capable of hybridization to the cDNA clones of (a) under moderately stringent conditions and which encode biologically active TNF-R molecules; or (c) DNA sequences which are degenerate as a result of the genetic code to the DNA sequences defined in (a) and (b) and which encode biologically active TNF-R molecules. In particular, the present invention provides DNA sequences which encode soluble TNF receptors.

The present invention also provides recombinant expression vectors comprising the DNA sequences defined above, recombinant TNF-R molecules produced using the recombinant expression vectors, and processes for producing the recombinant TNF-R molecules using the expression vectors.

The present invention also provides isolated or purified protein compositions comprising TNF-R, and, in particular, soluble forms of TNF-R.

The present invention also provides compositions for use in therapy, diagnosis, assay of TNF-R, or in raising antibodies to TNF-R, comprising effective quantities of soluble native or recombinant receptor proteins prepared according to the foregoing processes.

Because of the ability of TNF to specifically bind TNF receptors (TNF-Rs), purified TNF-R compositions will be useful in diagnostic assays for TNF, as well as in raising antibodies to TNF receptor for use in diagnosis and therapy. In addition, purified TNF receptor compositions may be used directly in therapy to bind or scavenge TNF, thereby providing a means for regulating the immune activities of this cytokine.

These and other aspects of the present invention will become evident upon reference to the following detailed description.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the coding region of various cDNAs encoding human and murine TNF-Rs. The leader sequence is hatched and the transmembrane region is solid.

Figures 2A-2B depict the partial cDNA sequence and derived amino acid sequence of the human TNF-R clone 1. Nucleotides are numbered from the beginning of the 5' untranslated region. Amino acids are numbered from the beginning of the signal peptide sequence. The putative signal peptide sequence is represented by the amino acids -22 to -1. The N-terminal leucine of the mature TNF-R protein is underlined at position 1. The predicted transmembrane region from amino acids 236 to 265 is also underlined. The C-termini of various soluble TNF-Rs are marked with an arrow (1).

Figures 3A-3C depict the cDNA sequence and derived amino acid sequence of murine TNF-R clone 11. The putative signal peptide sequence is represented by amino acids -22 to -1. The N-terminal valine of the mature TNF-R protein is underlined at position 1. The predicted transmembrane region from amino acids 234 to 265 is also underlined.

~ ~ ~

5

10

15

#### DETAILED DESCRIPTION OF THE INVENTION

#### Definitions

5

10

15

20

25

As used herein, the terms "TNF receptor" and "TNF-R" refer to proteins having amino acid sequences which are substantially similar to the native mammalian TNF receptor amino acid sequences, and which are biologically active, as defined below, in that they are capable of binding TNF molecules or transducing a biological signal initiated by a TNF molecule binding to a cell, or cross-reacting with anti-TNF-R antibodies raised against TNF-R from natural (i.e., nonrecombinant) sources. The mature full-length human TNF-R is a glycoprotein having a molecular weight of about 80 kilodaltons (kDa). As used throughout the specification, the term "mature" means a protein expressed in a form lacking a leader sequence as may be present in full-length transcripts of a native gene. Experiments using COS cells transfected with a cDNA encoding full-length human TNF-R showed that TNF-R bound 125I-TNFα with an apparent K, of about 5 x 10° M1, and that TNF-R bound ¹²³I-TNFβ with an apparent K, of about 2 x 10° M⁻¹. The terms "TNF receptor" or "TNF-R" include, but are not limited to, analogs or subunits of native proteins having at least 20 amino acids and which exhibit at least some biological activity in common with TNF-R, for example, soluble TNF-R constructs which are devoid of a transmembrane region (and are secreted from the cell) but retain the ability to bind TNF. Various bioequivalent protein and amino acid analogs are described in detail below.

The nomenclature for TNF-R analogs as used herein follows the convention of naming the protein (e.g., TNF-R) preceded by either hu (for human) or mu (for murine) and followed by a Δ (to designate a deletion) and the number of the C-terminal amino acid. For example, huTNF-RΔ235 refers to human TNF-R having Asp¹³ as the C-terminal amino acid (i.e., a polypeptide having the sequence of amino acids 1-235 of Figure 2A). In the absence of any human or murine species designation, TNF-R refers generically to mammalian TNF-R. Similarly, in the absence of any specific designation for deletion mutants, the term TNF-R means all forms of TNF-R, including mutants and analogs which possess TNF-R biological activity.

10

15

20

25

"Soluble TNF-R" or "sTNF-R" as used in the context of the present invention refer to proteins, or substantially equivalent analogs, having an amino acid sequence corresponding to all or part of the extracellular region of a native TNF-R, for example, huTNF-R∆235, huTNF-R∆185 and huTNF-R∆163, or amino acid sequences substantially similar to the sequences of amino acids 1-163, amino acids 1-185, or amino acids 1-235 of Figure-2A, and which are biologically active in that they bind to TNF ligand. Equivalent soluble TNF-Rs include polypeptides which vary from these sequences by one or more substitutions, deletions, or additions, and which retain the ability to bind TNF or inhibit TNF signal transduction activity via cell surface bound TNF receptor proteins, for example huTNF-RAx, wherein x is selected from the group consisting of any one of amino acids 163-235 of Figure 2A. Analogous deletions may be made to muTNF-R. Inhibition of TNF signal transduction activity can be determined by transfecting cells with recombinant TNF-R DNAs to obtain recombinant receptor expression. The cells are then contacted with TNF and the resulting metabolic effects examined. If an effect results which is attributable to the action of the ligand, then the recombinant receptor has signal transduction activity. Exemplary procedures for determining whether a polypeptide has signal transduction activity are disclosed by Idzerda et al., J. Exp. Med. 171:861 (1990); Curtis et al., Proc. Natl. Acad. Sci. USA 86:3045 (1989); Prywes et al., EMBO J. 5:2179 (1986) and Chou et al., J. Biol. Chem. 262:1842 (1987). Alternatively, primary cells or cell lines which express an endogenous TNF receptor and have a detectable biological response to TNF could also be utilized.

The term "isolated" or "purified", as used in the context of this specification to define the purity of TNF-R protein or protein compositions, means that the protein or protein composition is substantially free of other proteins of natural or endogenous origin and contains less than about 1% by mass of protein contaminants residual of production processes. Such compositions, however, can contain other proteins added as stabilizers, carriers, excipients or co-therapeutics. TNF-R is isolated if it is detectable as a single protein band in a polyacrylamide gel by silver staining.

The term "substantially similar," when used to define either amino acid or nucleic

10

15

20

25

acid sequences, means that a particular subject sequence, for example, a mutant sequence, varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which is to retain biological activity of the TNF-R protein as may be determined, for example, in one of the TNF-R binding assays set forth in Example 1 below. Alternatively, nucleic acid subunits and analogs are "substantially similar" to the specific DNA sequences disclosed herein if: (a) the DNA sequence is derived from the coding region of a native mammalian TNF-R gene; (b) the DNA sequence is capable of hybridization to DNA sequences of (a) under moderately stringent conditions (50°C, 2x SSC) and which encode biologically active TNF-R molecules; or DNA sequences which are degenerate as a result of the genetic code to the DNA sequences defined in (a) or (b) and which encode biologically active TNF-R molecules.

"Recombinant," as used herein, means that a protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a protein produced in a microbial expression system which is essentially free of native endogenous substances. Protein expressed in most bacterial cultures, e.g., E. coli, will be free of glycan. Protein expressed in yeast may have a glycosylation pattern different from that expressed in mammalian cells.

"Biologically active," as used throughout the specification as a characteristic of TNF receptors, means that a particular molecule shares sufficient amino acid sequence similarity with the embodiments of the present invention disclosed herein to be capable of binding detectable quantities of TNF, transmitting a TNF stimulus to a cell, for example, as a component of a hybrid receptor construct, or cross-reacting with anti-TNF-R antibodies raised against TNF-R from natural (i.e., nonrecombinant) sources. Preferably, biologically active TNF receptors within the scope of the present invention are capable of binding greater than 0.1 nmoles TNF per nmole receptor, and most preferably, greater than 0.5 nmole TNF per nmole receptor in standard binding assays (see below).

"Isolated DNA sequence" refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA

10

15

20

25

isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the sequence and its component nucleotide sequences by standard biochemical methods, for example, using a cloning vector. Such sequences are preferably provided in the form of an open reading frame uninterrupted by internal nontranslated sequences, or introns, which are typically present in eukaryotic genes. Genomic DNA containing the relevant sequences could also be used as a source of coding sequences. Sequences of non-translated DNA may be present 5' or 3' from the open reading frame, where the same do not interfere with manipulation or expression of the coding regions.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. DNA sequences encoding the proteins provided by this invention can be assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit.

## Isolation of cDNAs Encoding TNF-R

The coding sequence of TNF-R is obtained by isolating a complementary DNA (cDNA) sequence encoding TNF-R from a recombinant cDNA or genomic DNA library. A cDNA library is preferably constructed by obtaining polyadenylated mRNA from a particular cell line which expresses a mammalian TNF-R, for example, the human fibroblast cell line WI-26 VA4 (ATCC CCL 95.1) and using the mRNA as a template for synthesizing double stranded cDNA. The double stranded cDNA is then packaged into a recombinant vector, which is introduced into an appropriate *E. coli* strain and propagated. Murine or other mammalian cell lines which express TNF-R may also be used. TNF-R sequences contained in the cDNA library can be readily identified by screening the library with an appropriate nucleic acid probe which is capable of hybridizing with TNF-R cDNA. Alternatively, DNAs encoding TNF-R proteins can be assembled by ligation of synthetic oligonucleotide subunits corresponding to all or part of the sequence of Figures 2-3-or Figures 4-6 to provide a complete coding sequence.

The human TNF receptor cDNAs of the present invention were isolated by the

purification) anti-TNF-R antibodies or TNF.

The present invention also includes TNF-R with or without associated native-pattern glycosylation. TNF-R expressed in yeast or mammalian expression systems, e.g., COS-7 cells, may be similar or slightly different in molecular weight and glycosylation pattern than the native molecules, depending upon the expression system. Expression of TNF-R DNAs in bacteria such as *E. coli* provides non-glycosylated molecules. Functional mutant analogs of mammalian TNF-R having inactivated N-glycosylation sites can be produced by oligonucleotide synthesis and ligation or by site-specific mutagenesis techniques. These analog proteins can be produced in a homogeneous, reduced-carbohydrate form in good yield using yeast expression systems. N-glycosylation sites in eukaryotic proteins are characterized by the amino acid triplet Asn-A₁-Z, where A₁ is any amino acid except Pro, and Z is Ser or Thr. In this sequence, asparagine provides a side chain amino group for covalent attachment of carbohydrate. Such a site can be eliminated by substituting another amino acid for Asn or for residue Z, deleting Asn or Z, or inserting a non-Z amino acid between A₁ and Z, or an amino acid other than Asn between Asn and A₁.

TNF-R derivatives may also be obtained by mutations of TNF-R or its subunits. A TNF-R mutant, as referred to herein, is a polypeptide homologous to TNF-R but which has an amino acid sequence different from native TNF-R because of a deletion, insertion or substitution.

Bioequivalent analogs of TNF-R proteins may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues can be deleted (e.g., Cys'") or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. Other approaches to mutagenesis involve modification of adjacent dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present. Generally, substitutions should be made conservatively; i.e., the most preferred substitute amino acids are those having physiochemical characteristics resembling those of the residue to be replaced. Similarly, when a deletion or insertion strategy is adopted, the potential

20

25

5

10

10

15

20

25

effect of the deletion or insertion on biological activity should be considered. Substantially similar polypeptide sequences, as defined above, generally comprise a like number of amino acids sequences, although C-terminal truncations for the purpose of constructing soluble TNF-Rs will contain fewer amino acid sequences. In order to preserve the biological activity of TNF-Rs, deletions and substitutions will preferably result in homologous or conservatively substituted sequences, meaning that a given residue is replaced by a biologically similar residue. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known. Moreover, particular amino acid differences between human, murine and other mammalian TNF-Rs is suggestive of additional conservative substitutions that may be made without altering the essential biological characteristics of TNF-R.

sequences. Particularly preferred sequences include those in which the transmembrane region and intracellular domain of TNF-R are deleted or substituted with hydrophilic residues to facilitate secretion of the receptor into the cell culture medium. The resulting protein is referred to as a soluble TNF-R molecule which retains its ability to bind TNF. A particularly preferred soluble TNF-R construct is TNF-RA235 (the sequence of amino acids 1-235 of Figure-2A), which comprises the entire extracellular region of TNF-R, terminating with Asp³¹³ immediately adjacent the transmembrane region. Additional amino acids may be deleted from the transmembrane region while retaining TNF binding activity. For example, huTNF-RA183 which comprises the sequence of amino acids 1-183 of Figure-2A, and TNF-RA163 which comprises the sequence of amino acids 1-163 of Figure-2A, retain the ability to bind TNF ligand as determined using the binding assays described below in Example 1. TNF-RA142, however, does not retain the ability to bind TNF ligand. This suggests that one or both of Cys¹⁵⁷ and Cys¹⁶⁷ is required for formation

of an intramolecular disulfide bridge for the proper folding of TNF-R. Cys¹⁷, which was

Subunits of TNF-R may be constructed by deleting terminal or internal residues or

10

15

20

25

deleted without any apparent adverse effect on the ability of the soluble TNF-R to bind TNF, does not appear to be essential for proper folding of TNF-R. Thus, any deletion C-terminal to Cys¹⁶³ would be expected to result in a biologically active soluble TNF-R. The present invention contemplates such soluble TNF-R constructs corresponding to all or part of the extracellular region of TNF-R terminating with any amino acid after Cys¹⁶³. Other C-terminal deletions, such as TNF-FΔ157, may be made as a matter of convenience by cutting TNF-R cDNA with appropriate restriction enzymes and, if necessary, reconstructing specific sequences with synthetic oligonucleotide linkers. The resulting soluble TNF-R constructs are then inserted and expressed in appropriate expression vectors and assayed for the ability to bind TNF, as described in Example 1. Biologically active soluble TNF-Rs resulting from such constructions are also contemplated to be within the scope of the present invention.

Mutations in nucleotide sequences constructed for expression of analog TNF-R must, of course, preserve the reading frame phase of the coding sequences and preferably will not create complementary regions that could hybridize to produce secondary mRNA structures such as loops or hairpins which would adversely affect translation of the receptor mRNA. Although a mutation site may be predetermined, it is not necessary that the nature of the mutation per se be predetermined. For example, in order to select for optimum characteristics of mutants at a given site, random mutagenesis may be conducted at the target codon and the expressed TNF-R mutants screened for the desired activity.

Not all mutations in the nucleotide sequence which encodes TNF-R will be expressed in the final product, for example, nucleotide substitutions may be made to enhance expression, primarily to avoid secondary structure loops in the transcribed mRNA (see EPA 75,444A, incorporated herein by reference), or to provide codons that are more readily translated by the selected host, e.g., the well-known *E. coli* preference codons for *E. coli* expression.

Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.

Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene having particular codons altered according to the substitution, deletion, or insertion required. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and U.S. Patent Nos. 4,518,584 and 4,737,462 disclose suitable techniques, and are incorporated by reference herein.

Both monovalent forms and polyvalent forms of TNF-R are useful in the compositions and methods of this invention. Polyvalent forms possess multiple TNF-R binding sites for TNF ligand. For example, a bivalent soluble TNF-R may consist of two tandem repeats of amino acids 1-235 of Figure 2A, separated by a linker region. Alternate polyvalent forms may also be constructed, for example, by chemically coupling TNF-R to any clinically acceptable carrier molecule, a polymer selected from the group consisting of Ficoll, polyethylene glycol or dextran using conventional coupling techniques. Alternatively, TNF-R may be chemically coupled to biotin, and the biotin-TNF-R conjugate then allowed to bind to avidin, resulting in tetravalent avidin/biotin/TNF-R molecules. TNF-R may also be covalently coupled to dinitrophenol (DNP) or trinitrophenol (TNP) and the resulting conjugate precipitated with anti-DNP or anti-TNP-IgM, to form decameric conjugates with a valency of 10 for TNF-R binding sites.

A recombinant chimeric antibody molecule may also be produced having TNF-R sequences substituted for the variable domains of either or both of the [immunoglubulin] immunoglubulin molecule heavy and light chains and having unmodified constant region domains. For example, chimeric TNF-R/IgG, may be produced from two chimeric genes -- a TNF-R/human k light chain chimera (TNF-R/C_v) and a TNF-R/human  $\gamma$ , heavy chain chimera (TNF-R/C_v). Following transcription and translation of the two chimeric genes, the gene products assemble into a single chimeric antibody molecule having TNF-R displayed bivalently. Such polyvalent forms of TNF-R may have enhanced binding affinity

25

5

10

15

for TNF ligand. Additional details relating to the construction of such chimeric antibody molecules are disclosed in WO 89/09622 and EP 315062.

express DNA encoding TNF-R. Recombinant expression vectors are replicable DNA

The present invention provides recombinant expression vectors to amplify or

#### Expression of Recombinant TNF-R

5

10

15

20

25

constructs which have synthetic or cDNA-derived DNA fragments encoding mammalian TNF-R or bioequivalent analogs operably linked to suitable transcriptional or translational regulatory elements derived from mammalian, microbial, viral or insect genes. A transcriptional unit generally comprises an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, transcriptional promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription and translation initiation and termination sequences, as described in detail below. Such regulatory elements may include an operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites. The ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants may additionally be incorporated. DNA regions are operably linked when they are functionally related to each other. For example, DNA for a signal peptide (secretory leader) is operably linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation. Generally, operably linked means contiguous and, in the case of secretory leaders, contiguous and in reading frame.

Structural elements intended for use in yeast expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may optionally be subsequently

cleaved from the expressed recombinant protein to provide a final product.

10

15

20

25

DNA sequences encoding mammalian TNF receptors which are to be expressed in a microorganism will preferably contain no introns that could prematurely terminate transcription of DNA into mRNA; however, premature termination of transcription may be desirable, for example, where it would result in mutants having advantageous C-terminal truncations, for example, deletion of a transmembrane region to yield a soluble receptor not bound to the cell membrane. Due to code degeneracy, there can be considerable variation in nucleotide sequences encoding the same amino acid sequence. Other embodiments include sequences capable of hybridizing to the sequences of the provided cDNA under moderately stringent conditions (50°C, 2x SSC) and other sequences hybridizing or degenerate to those which encode biologically active TNF receptor polypeptides.

Recombinant TNF-R DNA is expressed or amplified in a recombinant expression system comprising a substantially homogeneous monoculture of suitable host microorganisms, for example, bacteria such as E. coli or yeast such as S. cerevisiae, which have stably integrated (by transformation or transfection) a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit as a component of a resident plasmid. Generally, cells constituting the system are the progeny of a single ancestral transformant. Recombinant expression systems as defined herein will express heterologous protein upon induction of the regulatory elements linked to the DNA sequence or synthetic gene to be expressed.

Transformed host cells are cells which have been transformed or transfected with TNF-R vectors constructed using recombinant DNA techniques. Transformed host cells ordinarily express TNF-R, but host cells transformed for purposes of cloning or amplifying TNF-R DNA do not need to express TNF-R. Expressed TNF-R will be deposited in the cell membrane or secreted into the culture supernatant, depending on the TNF-R DNA selected. Suitable host cells for expression of mammalian TNF-R include prokaryotes, yeast or higher eukaryotic cells under the control of appropriate promoters. Prokaryotes include gram negative or gram positive organisms, for example E. coli or bacilli. Higher eukaryotic cells include established cell lines of mammalian origin as described below.

Cell-free translation systems could also be employed to produce mammalian TNF-R using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described by Pouwels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, New York, 1985), the relevant disclosure of which is hereby incorporated by reference.

Prokaryotic expression hosts may be used for expression of TNF-R that do not require extensive proteolytic and disulfide processing. Prokaryotic expression vectors generally comprise one or more phenotypic selectable markers, for example a gene encoding proteins conferring antibiotic resistance or supplying an autotrophic requirement, and an origin of replication recognized by the host to ensure amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium, and various species within the genera Pseudomonas, Streptomyces, and [Staphyolococcus] Staphylococcus, although others may also be employed as a matter of choice.

Useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E. coli species (Bolivar et al., Gene 2:95, 1977). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells.

Promoters commonly used in recombinant microbial expression vectors include the β-lactamase (penicillinase) and lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), the tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EPA 36,776) and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory,

25

5

10

15

10

15

20

25

p. 412, 1982). A particularly useful bacterial expression system employs the phage  $\lambda$  P_L promoter and cI857ts thermolabile repressor. Plasmid vectors available from the American Type Culture Collection which incorporate derivatives of the  $\lambda$  P_L promoter include plasmid pHUB2, resident in *E. coli* strain JMB9 (ATCC 37092) and pPLc28, resident in *E. coli* RR1 (ATCC 53082).

Recombinant TNF-R proteins may also be expressed in yeast hosts, preferably from the Saccharomyces species, such as S. cerevisiae. Yeast of other genera, such as Pichia or Kluyveromyces may also be employed. Yeast vectors will generally contain an origin of replication from the  $2\mu$  yeast plasmid or an autonomously replicating sequence (ARS), promoter, DNA encoding TNF-R, sequences for polyadenylation and transcription termination and a selection gene. Preferably, yeast vectors will include an origin of replication and selectable marker permitting transformation of both yeast and E. coli, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 or URA3 gene, which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, and a promoter derived from a highly expressed yeast gene to induce transcription of a structural sequence downstream. The presence of the TRP1 or URA3 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan or uracil.

Suitable promoter sequences in yeast vectors include the promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., EPA 73,657.

Preferred yeast vectors can be assembled using DNA sequences from pUC18 for selection and replication in E. coli (Amp' gene and origin of replication) and yeast DNA

10

15

20

25

sequences including a glucose-repressible ADH2 promoter and  $\alpha$ -factor secretion leader. The ADH2 promoter has been described by Russell et al. (*J. Biol. Chem. 258*:2674, 1982) and Beier et al. (*Nature 300*:724, 1982). The yeast  $\alpha$ -factor leader, which directs secretion of heterologous proteins, can be inserted between the promoter and the structural gene to be expressed. See, e.g., Kurjan et al., Cell 30:933, 1982; and Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984. The leader sequence may be modified to contain, near its 3' end, one or more useful restriction sites to facilitate fusion of the leader sequence to foreign genes.

Suitable yeast transformation protocols are known to those of skill in the art; an exemplary technique is described by Hinnen et al., *Proc. Natl. Acad. Sci. USA 75*:1929, 1978, selecting for Trp* transformants in a selective medium consisting of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 mg/ml adenine and 20 mg/ml uracil or URA+ transformants in medium consisting of 0.67% YNB, with amino acids and bases as described by Sherman et al., *Laboratory Course Manual for Methods in Yeast Genetics*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986.

Host strains transformed by vectors comprising the ADH2 promoter may be grown for expression in a rich medium consisting of 1% yeast extract, 2% peptone, and 1% or 4% glucose supplemented with 80 mg/ml adenine and 80 mg/ml uracil. Derepression of the ADH2 promoter occurs upon exhaustion of medium glucose. Crude yeast supernatants are harvested by filtration and held at 4°C prior to further purification.

Various mammalian or insect cell culture systems are also advantageously employed to express recombinant protein. Expression of recombinant proteins in mammalian cells is particularly preferred because such proteins are generally correctly folded, appropriately modified and completely functional. Examples of suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells, described by Gluzman (Cell 23:175, 1981), and other cell lines capable of expressing an appropriate vector including, for example, L cells, C127, 3T3, Chinese hamster ovary (CHO), HeLa and BHK cell lines. Mammalian expression vectors may comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and

10

15

20

25

other 5' or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated sequences, such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, BioTechnology 6:47 (1988).

The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. For example, commonly used promoters and enhancers are derived from Polyoma. Adenovirus 2. Simian Virus 40 (SV40), and human cytomegalovirus. DNA seguences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide the other genetic elements required for expression of a heterologous DNA sequence. The early and late promoters are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication (Fiers et al., Nature 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the Hind 3 site toward the Bgl1 site located in the viral origin of replication is included. Further, mammalian genomic TNF-R promoter, control and/or signal sequences may be utilized, provided such control sequences are compatible with the host cell chosen. Additional details regarding the use of a mammalian high expression vector to produce a recombinant mammalian TNF receptor are provided in Examples 2 and 7 below. Exemplary vectors can be constructed as disclosed by Okayama and Berg (Mol. Cell. Biol. 3:280, 1983).

A useful system for stable high level expression of mammalian receptor cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986).

In preferred aspects of the present invention, recombinant expression vectors comprising TNF-R cDNAs are stably integrated into a host cell's DNA. Elevated levels of expression product is achieved by selecting for cell lines having amplified numbers of vector DNA. Cell lines having amplified numbers of vector DNA are selected, for

10

15

20

25

example, by transforming a host cell with a vector comprising a DNA sequence which encodes an enzyme which is inhibited by a known drug. The vector may also comprise a DNA sequence which encodes a desired protein. Alternatively, the host cell may be co-transformed with a second vector which comprises the DNA sequence which encodes the desired protein. The transformed or co-transformed host cells are then cultured in increasing concentrations of the known drug, thereby selecting for drug-resistant cells. Such drug-resistant cells survive in increased concentrations of the toxic drug by over-production of the enzyme which is inhibited by the drug, frequently as a result of amplification of the gene encoding the enzyme. Where drug resistance is caused by an increase in the copy number of the vector DNA encoding the inhibitable enzyme, there is a concomitant co-amplification of the vector DNA encoding the desired protein (TNF-R) in the host cell's DNA.

A preferred system for such co-amplification uses the gene for dihydrofolate reductase (DHFR), which can be inhibited by the drug methotrexate (MTX). To achieve co-amplification, a host cell which lacks an active gene encoding DHFR is either transformed with a vector which comprises DNA sequence encoding DHFR and a desired protein, or is co-transformed with a vector comprising a DNA sequence encoding DHFR and a vector comprising a DNA sequence encoding the desired protein. The transformed or co-transformed host cells are cultured in media containing increasing levels of MTX, and those cells lines which survive are selected.

A particularly preferred co-amplification system uses the gene for glutamine synthetase (GS), which is responsible for the synthesis of glutamate and ammonia using the hydrolysis of ATP to ADP and phosphate to drive the reaction. GS is subject to inhibition by a variety of inhibitors, for example methionine sulphoximine (MSX). Thus, TNF-R can be expressed in high concentrations by co-amplifying cells transformed with a vector comprising the DNA sequence for GS and a desired protein, or co-transformed with a vector comprising a DNA sequence encoding GS and a vector comprising a DNA sequence encoding the desired protein, culturing the host cells in media containing increasing levels of MSX and selecting for surviving cells. The GS co-amplification

system, appropriate recombinant expression vectors and cells lines, are described in the following PCT applications: WO 87/04462, WO 89/01036, WO 89/10404 and WO 86/05807.

Recombinant proteins are preferably expressed by co-amplification of DHFR or GS in a mammalian host cell, such as Chinese Hamster Ovary (CHO) cells, or alternatively in a murine myeloma cell line, such as SP2/0-Ag14 or NS0 or a rat myeloma cell line, such as YB2/3.0-Ag20, disclosed in PCT applications WO/89/10404 and WO 86/05807.

A preferred eukaryotic vector for expression of TNF-R DNA is disclosed below in Example 2. This vector, referred to as pCAV/NOT, was derived from the mammalian high expression vector pDC201 and contains regulatory sequences from SV40, adenovirus-2, and human cytomegalovirus.

## Purification of Recombinant TNF-R

Purified mammalian TNF receptors or analogs are prepared by culturing suitable host/vector systems to express the recombinant translation products of the DNAs of the present invention, which are then purified from culture media or cell extracts.

For example, supernatants from systems which secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a suitable purification matrix. For example, a suitable affinity matrix can comprise a TNF or lectin or antibody molecule bound to a suitable support. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred.

Finally, one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant

10

5

15

20

methyl or other aliphatic groups, can be employed to further purify a TNF-R composition.

Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant protein.

Recombinant protein produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion exchange or size exclusion chromatography steps. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of recombinant mammalian TNF-R can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Fermentation of yeast which express mammalian TNF-R as a secreted protein greatly simplifies purification. Secreted recombinant protein resulting from a large-scale fermentation can be purified by methods analogous to those disclosed by Urdal et al. (J. Chromatog. 296:171, 1984). This reference describes two sequential, reversed-phase HPLC steps for purification of recombinant human GM-CSF on a preparative HPLC column.

Human TNF-R synthesized in recombinant culture is characterized by the presence of non-human cell components, including proteins, in amounts and of a character which depend upon the purification steps taken to recover human TNF-R from the culture. These components ordinarily will be of yeast, prokaryotic or non-human higher eukaryotic origin and preferably are present in innocuous contaminant quantities, on the order of less than about 1 percent by weight. Further, recombinant cell culture enables the production of TNF-R free of proteins which may be normally associated with TNF-R as it is found in nature in its species of origin, e.g. in cells, cell exudates or body fluids.

## Therapeutic Administration of Recombinant Soluble TNF-R

The present invention provides methods of using therapeutic compositions comprising an effective amount of soluble TNF-R proteins and a suitable diluent and carrier, and methods for suppressing TNF-dependent inflammatory responses in humans

25

5

10

15

10

15

20

25

comprising administering an effective amount of soluble TNF-R protein.

For therapeutic use, purified soluble TNF-R protein is administered to a patient, preferably a human, for treatment in a manner appropriate to the indication. Thus, for example, soluble TNF-R protein compositions can be administered by bolus injection, continuous infusion, sustained release from implants, or other suitable technique. Typically, a soluble TNF-R therapeutic agent will be administered in the form of a composition comprising purified protein in conjunction with physiologically acceptable carriers, excipients or diluents. Such carriers will be nontoxic to recipients at the dosages and concentrations employed. Ordinarily, the preparation of such compositions entails combining the TNF-R with buffers, antioxidants such as ascorbic acid, low molecular weight (less than about 10 residues) polypeptides, proteins, amino acids, carbohydrates including glucose, sucrose or dextrins, chelating agents such as EDTA, glutathione and other stabilizers and excipients. Neutral buffered saline or saline mixed with conspecific serum albumin are exemplary appropriate diluents. Preferably, product is formulated as a lyophilizate using appropriate excipient solutions (e.g., sucrose) as diluents. Appropriate dosages can be determined in trials. The amount and frequency of administration will depend, of course, on such factors as the nature and severity of the indication being treated, the desired response, the condition of the patient, and so forth.

Soluble TNF-R proteins are administered for the purpose of inhibiting TNF-dependent responses. A variety of diseases or conditions are believed to be caused by TNF, such as cachexia and septic shock. In addition, other key cytokines (IL-1, IL-2 and other colony stimulating factors) can also induce significant host production of TNF. Soluble TNF-R compositions may therefore be used, for example, to treat cachexia or septic shock or to treat side effects associated with cytokine therapy. Because of the primary roles IL-1 and IL-2 play in the production of TNF, combination therapy using both IL-1 receptors or IL-2 receptors may be preferred in the treatment of TNF-associated clinical indications.

The following examples are offered by way of illustration, and not by way of

limitation.

5

10

15

20

25

#### **EXAMPLES**

## Example 1

### Binding Assays

A. Radiolabeling of TNFα and TNFβ. Recombinant human TNFα, in the form of a fusion protein containing a hydrophilic octapeptide at the N-terminus, was expressed in yeast as a secreted protein and purified by affinity chromatography (Hopp et al., Bio/Technology 6:1204, 1988). Purified recombinant human TNFβ was purchased from R&D Systems (Minneapolis, MN). Both proteins were radiolabeled using the commercially available solid phase agent, IODO-GEN (Pierce). In this procedure, 5 µg of IODO-GEN were plated at the bottom of a 10 x 75 mm glass tube and incubated for 20 minutes at 4°C with 75 ul of 0.1 M sodium phosphate, pH 7.4 and 20 ul (2 mCi) Na 125I. This solution was then transferred to a second glass tube containing 5 μg TNFα (or TNFβ) in 45 μl PBS for 20 minutes at 4°C. The reaction mixture was fractionated by gel filtration on a 2 ml bed volume of Sephadex G-25 (Sigma) equilibrated in Roswell Park Memorial Institute (RPMI) 1640 medium containing 2.5% (w/v) bovine serum albumin (BSA), 0.2% (w/v) sodium azide and 20 mM Hepes pH 7.4 (binding medium). The final pool of 125I-TNF was diluted to a working stock solution of 1 x 107 M in binding medium and stored for up to one month at 4°C without detectable loss of receptor binding activity. The specific activity is routinely 1 x 10° cpm/mmole TNF.

B. Binding to Intact Cells. Binding assays with intact cells were performed by two methods. In the first method, cells were first grown either in suspension (e.g., U 937) or by adherence on tissue culture plates (e.g., WI26-VA4, COS cells expressing the recombinant TNF receptor). Adherent cells were subsequently removed by treatment with 5mM EDTA treatment for ten minutes at 37 degrees centigrade. Binding assays were then performed by a [pthalate] <a href="mailto:phthalate">phthalate</a> oil separation method (Dower et al., J. Immunol. 132:751, 1984) essentially as described by Park et al. (J. Biol. Chem. 261:4177, 1986). Non-specific binding of 121-TNF was measured in the presence of a 200-fold or greater

molar excess of unlabeled TNF. Sodium azide (0.2%) was included in a binding assay to inhibit internalization of ¹²⁴I-TNF by cells. In the second method, COS cells transfected with the TNF-R-containing plasmid, and expressing TNF receptors on the surface, were tested for the ability to bind ¹²³I-TNF by the plate binding assay described by Sims et al. (Science 241:585, 1988).

C. Solid Phase Binding Assays. The ability of TNF-R to be stably adsorbed to nitrocellulose from detergent extracts of human cells yet retain TNF-binding activity provided a means of detecting TNF-R. Cell extracts were prepared by mixing a cell pellet with a 2 x volume of PBS containing 1% Triton X-100 and a cocktail of protease inhibitors (2 mM phenylmethyl sulfonyl fluoride, 10 µM pepstatin, 10 µM leupeptin, 2 mM o-phenanthroline and 2 mM EGTA) by vigorous vortexing. The mixture was incubated on ice for 30 minutes after which it was centrifuged at 12,000x g for 15 minutes at 8°C to remove nuclei and other debris. Two microliter aliquots of cell extracts were placed on dry BA85/21 nitrocellulose membranes (Schleicher and Schuell, Keene, NH) and allowed to dry. The membranes were incubated in tissue culture dishes for 30 minutes in Tris (0.05 M) buffered saline (0.15 M) pH 7.5 containing 3% w/v BSA to block nonspecific binding sites. The membrane was then covered with 5 x 10¹¹ M ¹²I-TNF in PBS + 3% BSA and incubated for 2 hr at 4°C with shaking. At the end of this time, the membranes were washed 3 times in PBS, dried and placed on Kodak X-Omat AR film for 18 hr at -70°C.

### Example 2

# Isolation of Human TNF-R cDNA by Direct Expression of Active Protein in COS-7 Cells

25

5

10

15

20

Various human cell lines were screened for expression of TNF-R based on their ability to bind ¹²³I-labeled TNF. The human fibroblast cell line WI-26 VA4 was found to express a reasonable number of receptors per cell. Equilibrium binding studies showed that the cell line exhibited biphasic binding of ¹²³I-TNF with approximately 4,000 high affinity

10

15

20

25

sites  $(K_a = 1 \times 10^{10} \text{ M}^{-1})$  and 15,00 low affinity sites  $(K_a = 1 \times 10^{10} \text{ M}^{-1})$  per cell.

An unsized cDNA library was constructed by reverse transcription of polyadenylated mRNA isolated from total RNA extracted from human fibroblast WI-26 VA4 cells grown in the presence of pokeweed mitogen using standard techniques (Gubler, et al., Gene 25:263, 1983; Ausubel et al., eds., Current Protocols in Molecular Biology, Vol. 1, 1987). The cells were harvested by lysing the cells in a guanidine hydrochloride solution and total RNA isolated as previously described (March et al., Nature 315:641, 1985).

Poly A+ RNA was isolated by oligo dT cellulose chromatography and double-stranded cDNA was prepared by a method similar to that of Gubler and Hoffman (Gene 25:263, 1983). Briefly, the poly A+ RNA was converted to an RNA-cDNA hybrid by reverse transcriptase using oligo dT as a primer. The RNA-cDNA hybrid was then converted into double-stranded cDNA using RNAase H in combination with DNA polymerase I. The resulting double stranded cDNA was blunt-ended with T4 DNA polymerase. To the blunt-ended cDNA is added EcoRI linker-adapters (having internal Not1 sites) which were phosphorylated on only one end (Invitrogen). The linker-adaptered cDNA was treated with T4 polynucleotide kinase to phosphorylate the 5' overhanging region of the linker-adapter and unligated linkers were removed by running the cDNA over a Sepharose CL4B column. The linker-adaptered cDNA was ligated to an equimolar concentration of EcoR1 cut and dephosphorylated arms of bacteriophage \( \lambda gt10 \) (Huynh et al. DNA Cloning: A Practical Approach, Glover, ed., IRL Press, pp. 49-78). The ligated DNA was packaged into phage particles using a commercially available kit to generate a library of recombinants (Stratagene Cloning Systems, San Diego, CA, USA). Recombinants were further amplified by plating phage on a bacterial lawn of E. coli strain c600(hfl⁻).

Phage DNA was purified from the resulting \(\lambda t10\) cDNA library and the cDNA inserts excised by digestion with the restriction enzyme \(Not\)1. Following electrophoresis of the digest through an agarose gel, cDNAs greater than 2,000 bp were isolated.

The resulting cDNAs were ligated into the eukaryotic expression vector

10

15

20

25

pCAV/NOT, which was designed to express cDNA sequences inserted at its multiple cloning site when transfected into mammalian cells. pCAV/NOT was assembled from pDC201 (a derivative of pMLSV, previously described by Cosman et al., Nature 312: 768, 1984), SV40 and cytomegalovirus DNA and comprises, in sequence with the direction of transcription from the origin of replication: (1) SV40 sequences from coordinates 5171-270 including the origin of replication, enhancer sequences and early and late promoters; (2) cytomegalovirus sequences including the promoter and enhancer regions (nucleotides 671 to +63 from the sequence published by Boechart et al. (Cell 41:521, 1985); (3) adenovirus-2 sequences containing the first exon and part of the intron between the first and second exons of the tripartite leader, the second exon and part of the third exon of the tripartite leader and a multiple cloning site (MCS) containing sites for Xho1, Kpn1, Sma1, Not1 and Bgl1; (4) SV40 sequences from coordinates 4127-4100 and 2770-2533 that include the polyadenylation and termination signals for early transcription; (5) sequences derived from pBR322 and virus-associated sequences VAI and VAII of pDC201, with adenovirus sequences 10532-11156 containing the VAI and VAII genes, followed by pBR322 sequences from 4363-2486 and 1094-375 containing the ampicillin resistance gene and origin of replication.

The resulting WI-26 VA4 cDNA library in pCAV/NOT was used to transform E. coli strain DH5\(\alpha\), and recombinants were plated to provide approximately 800 colonies per plate and sufficient plates to provide approximately 50,000 total colonies per screen. Colonies were scraped from each plate, pooled, and plasmid DNA prepared from each pool. The pooled DNA was then used to transfect a sub-confluent layer of monkey COS-7 cells using DEAE-dextran followed by chloroquine treatment, as described by Luthman et al. (Nucl. Acids Res. 11:1295, 1983) and McCutchan et al. (J. Natl. Cancer Inst. 41:351, 1986). The cells were then grown in culture for three days to permit transient expression of the inserted sequences. After three days, cell culture supernatants were discarded and the cell monolayers in each plate assayed for TNF binding as follows. Three ml of binding medium containing 1.2 x 10¹¹ M ¹³I-labeled FLAG®-TNF was added to each plate and the plates incubated at 4°C for 120 minutes. This medium was then discarded, and each plate

was washed once with cold binding medium (containing no labeled TNF) and twice with cold PBS. The edges of each plate were then broken off, leaving a flat disk which was contacted with X-ray film for 72 hours at -70°C using an intensifying screen. TNF binding activity was visualized on the exposed films as a dark focus against a relatively uniform background.

After approximately 240,000 recombinants from the library had been screened in this manner, one transfectant pool was observed to provide TNF binding foci which were clearly apparent against the background exposure.

A frozen stock of bacteria from the positive pool was then used to obtain plates of approximately 150 colonies. Replicas of these plates were made on nitrocellulose filters, and the plates were then scraped and plasmid DNA prepared and transfected as described above to identify a positive plate. Bacteria from individual colonies from the nitrocellulose replica of this plate were grown in 0.2 ml cultures, which were used to obtain plasmid DNA, which was transfected into COS-7 cells as described above. In this manner, a single clone, clone 1, was isolated which was capable of inducing expression of human TNF-R in COS cells. The expression vector pCAV/NOT containing the TNF-R cDNA clone 1 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852, USA (Accession No. 68088) under the name pCAV/NOT-TNF-R.

20

25

5

10

15

# Example 3 Construction of cDNAs Encoding Soluble huTNF-RA235

A cDNA encoding a soluble huTNF-RA235 (having the sequence of amino acids 1-235 of Figure 2A) was constructed by excising an 840 bp fragment from pCAV/NOT-TNF-R with the restriction enzymes Not1 and Pvu2. Not1 cuts at the multiple cloning site of pCAV/NOT-TNF-R and Pvu2 cuts within the TNF-R coding region 20 nucleotides 5' of the transmembrane region. In order to reconstruct the 3' end of the TNF-R sequences, two oligonucleotides were synthesized and annealed to create the following oligonucleotide linker:

Pvu2

BamHl Bql2

CTGAAGGGAGCACTGGCGACTAAGGATCCA GACTTCCCTCGTGACCGCTGATTCCTAGGTCTAG AlaGluGlySerThrGlyAspEnd

5

10

This oligonucleotide linker has terminal Pvu2 and Bgl2 restriction sites, regenerates 20 nucleotides of the TNF-R, followed by a termination codon (underlined) and a BamH1 restriction site (for convenience in isolating the entire soluble TNF-R by Not1/BamH1 digestion). This oligonucleotide was then ligated with the 840 bp Not1/Pvu2 TNF-R insert into Bgl2/Not1 cut pCAV/NOT to yield psolhuTNF-RA235/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector induced expression of soluble human TNF-R which was capable of binding TNF.

## Example 4

15

## Construction of cDNAs Encoding Soluble huTNF-R∆185

A cDNA encoding a soluble huTNF-R\(\Delta\)185 (having the sequence of amino acids 1-185 of Figure 2A) was constructed by excising a 640 bp fragment from pCAV/NOT-TNF-R with the restriction enzymes Not1 and Bgl2. Not1 cuts at the multiple cloning site of pCAV/NO-TNF-R and Bgl2 cuts within the TNF-R coding region at nucleotide 637, which is 237 nucleotides 5' of the transmembrane region. The following oligonucleotide linkers were synthesized:

25

20

Bgl2 5'-GATCTGTAACGTGGTGGCCATCCCTGGGAATGCAAGCATGGATGC-3' ACATTGCACCACCGGTAGGGACCCTTACGTTCG IleCvsAsnValValAlaIleProGlyAsnAlaSerMetAspAla

30

Not1

'- AGTCTGCACGTCCACGTCCCCCACCCGG<u>TGA</u>GC -3'

TACCTACGTCAGACGTGCAGGTGCAGGGGGTGGGCCACTCGCCGG

ValCysThrSerThrSerProThrArgEnd

35

The above oligonucleotide linkers reconstruct the 3' end of the receptor molecule up to nucleotide 708, followed by a termination codon (underlined). These oligonucleotides were then ligated with the 640 bp Not1 TNF-R insert into Not1 cut pCAV/NOT to yield the expression vector psoITNFRA185/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector induced expression of soluble human TNF-R which was capable of binding TNF.

#### Example 5

### Construction of cDNAs Encoding Soluble huTNF-RA163

A cDNA encoding a soluble huTNF-R $\Delta$ 163 (having the sequence of amino acids 1-163 of Figure -2A) was constructed by excising a 640 bp fragment from pCAV/NOT-TNF-R with the restriction enzymes Not1 and Bgl2 as described in Example 4. The following oligonucleotide linkers were synthesized:

Bgl2 Not1 5'-GATCTGTTGAGC -3' ACAACTCGCCGG IleCysEnd

This above oligonucleotide linker reconstructs the 3' end of the receptor molecule up to nucleotide 642 (amino acid 163), followed by a termination codon (underlined). This oligonucleotide was then ligated with the 640 bp Not1 TNF-R insert into Not1 cut pCAV/NOT to yield the expression vector psoITNFRΔ163/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector induced expression of soluble human TNF-R which was capable of binding TNF in the binding assay described in Example 1.

## Example 6

## Construction of cDNAs Encoding Soluble huTNF-R∆142

A cDNA encoding a soluble huTNF-R\(\Delta\)142 (having the sequence of amino acids

1-142 of Figure 2A)- was constructed by excising a 550 bp fragment from

25

5

10

15

20

. 30

10

15

20

25

30

pCAV/NOT-TNF-R with the restriction enzymes Not1 and AlwN1. AlwN1 cuts within the TNF-R coding region at nucleotide 549. The following oligonucleotide linker was synthesized:

> Bgl2 Not1 5'-CTGAAACATCAGACGTGGTGTGCAAGCCCTGT<u>TAA</u>A-3' CTTGACTTTGTAGTCTGCACCACACGTTCGGGAACAATTTCTAGA

This above oligonucleotide linker reconstructs the 3' end of the receptor molecule up to nucleotide 579 (amino acid 142), followed by a termination codon (underlined). This oligonucleotide was then ligated with the 550 bp Not1/AlwN1 TNF-R insert into Not1/Bgl2 cut pCAV/NOT to yield the expression vector psolTNFRA142/CAVNOT, which was transfected into COS-7 cells as described above. This expression vector did not induced expression of soluble human TNF-R which was capable of binding TNF. It is believed that this particular construct failed to express biologically active TNF-R because one or more essential cysteine residue (e.g., Cys¹⁵⁷ or Cys¹⁶⁵) required for intramolecular bonding (for formation of the proper tertiary structure of the TNF-R molecule) was eliminated.

Example 7

## Expression of Soluble TNF Receptors in CHO Cells

Soluble TNF receptor was expressed in Chinese Hamster Ovary (CHO) cells using the glutamine-synthetase (GS) gene amplification system, substantially as described in PCT patent application Nos. WO87/04462 and WO89/01036. Briefly, CHO cells are transfected with an expression vector containing genes for both TNF-R and GS. CHO cells are selected for GS gene expression based on the ability of the transfected DNA to confer resistance to low levels of methionine sulphoximine (MSX). GS sequence amplification events in such cells are selected using elevated MSX concentrations. In this way, contiguous TNF-R sequences are also amplified and enhanced TNF-R expression is achieved.

The vector used in the GS expression system was psolTNFR/P6/PSVLGS, which

10

15

20

25

was constructed as follows. First, the vector pSVLGS.1 (described in PCT Application Nos. WO87/04462 and WO89/01036, and available from Celltech, Ltd., Berkshire, UK) was cut with the BamH1 restriction enzyme and dephosphorylated with calf intestinal alkaline phosphatase (CIAP) to prevent the vector from religating to itself. The BamH1 cut pSVLGS.1 fragment was then ligated to a 2.4 kb BamH1 to Bgl2 fragment of pEE6hCMV (described in PCT Application No. WO89/01036, also available from Celltech) which was cut with Bgl2, BamH1 and Fsp1 to avoid two fragments of similar size, to yield an 11.2 kb vector designated p6/PSVLGS.1. pSVLGS.1 contains the glutamine synthetase selectable marker gene under control of the SV40 later promoter. The BamH1 to Bgl2 fragment of pEE6hCMV contains the human cytomegalovirus major immediate early promoter (hCMV), a polylinker, and the SV40 early polyadenylation signal. The coding sequences for soluble TNF-R were added to p6/PSVLGS.1 by excising a Not1 to BamH1 fragment from the expression vector psolTNFR/CAVNOT (made according to Example 3) above), blunt ending with Klenow and ligating with SmaI cut dephosphorylated p6/PSVLGS.1, thereby placing the solTNF-R coding sequences under the control of the hCMV promoter. This resulted in a single plasmid vector in which the SV40/GS and hCMB/solTNF-R transcription units are transcribed in opposite directions. This vector was designated psolTNFR/P6/PSVLGS.

psolTNFR/P6/PSVLGS was used to transfect CHO-K1 cells (available from ATCC, Rochville, MD, under accession number CCL 61) as follows. A monolayer of CHO-K1 cells were grown to subconfluency in Minimum Essential Medium (MEM) 10X (Gibco: 330-1581AJ) without glutamine and supplemented with 10% dialysed fetal bovine serum (Gibco: 220-6300AJ), 1 mM sodium pyruvate (Sigma), MEM non-essential amino acids (Gibco: 320-1140AG), 500 µM asparagine and glutamate (Sigma) and nucleosides (30 µM adenosine, guanosine, cytidine and uridine and 10 µM thymidine)(Sigma).

Approximately 1 x 10° cells per 10 cm petri dish were transfected with 10 µg of psoITNFR/P6/PSVLGS by standard calcium phosphate precipitation, substantially as described by Graham & van der Eb, Virology 52:456 (1983). Cells were subjected to glycerol shock (15% glycerol in serum-free culture medium for approximately 1.5 minutes)

10

15

20

25

approximately 4 hours after transfection, substantially as described by Frost & Williams, Virology 91:39 (1978), and then washed with serum-free medium. One day later, transfected cells were fed with fresh selective medium containing MSX at a final concentration of 25 [uM] <u>uM</u>. Colonies of MSX-resistant surviving cells were visible within 3-4 weeks. Surviving colonies were transferred to 24-well plates and allowed to grow to confluency in selective medium. Conditioned medium from confluent wells were then assayed for soluble TNF-R activity using the binding assay described in Example 1 above. These assays indicated that the colonies expressed biologically active soluble TNF-R.

In order to select for GS gene amplification, several MSX-resistant cell lines are transfected with psolTNFR/P6/PSVLGS and grown in various concentrations of MSX. For each cell line, approximately 1x10° cells are plated in gradually increasing concentrations of 100 [uM] µM, 250 [uM] µM, 500 [uM] µM and 1 mM MSX and incubated for 10-14 days. After 12 days, colonies resistant to the higher levels of MSX appear. The surviving colonies are assayed for TNF-R activity using the binding assay described above in Example 1. Each of these highly resistant cell lines contains cells which arise from multiple independent amplification events. From these cells lines, one or more of the most highly resistant cells lines are isolated. The amplified cells with high production rates are then cloned by limiting dilution cloning. Mass cell cultures of the transfectants secrete active soluble TNF-R.

## Example 8

## Expression of Soluble Human TNF-R in Yeast

Soluble human TNF-R was expressed in yeast with the expression vector pLXY432, which was derived from the yeast expression vector pLXY120 and plasmid pYEP352. pLXY120 is identical to pYαHuGM (ATCC 53157), except that it contains no cDNA insert and includes a polylinker/multiple cloning site with a Nco1 restriction site.

A DNA fragment encoding TNF receptor and suitable for cloning into the yeast expression vector pIXY120 was first generated by polymerase chain reaction (PCR)

amplification of the extracellular portion of the full length receptor from pCAV/NOT-TNF-R (ATCC 68088). The following primers were used in this PCR amplification:

5' End Primer

3' End Primer (antisense)

The 5' end oligonucleotide primer used in the amplification included an Asp718 restriction site at its 5' end, followed by nucleotides encoding the 3' end of the yeast a-factor leader sequence (Pro-Leu-Asp-Lys-Arg) and those encoding the 8 amino acids of the FLAG® peptide (AspTyrLysAspAspAspAspLys) fused to sequence encoding the 5' end of the mature receptor. The FLAG® peptide (Hopp et al., Bio/Technology 6:1204, 1988) is a highly antigenic sequence which reversibly binds the monoclonal antibody M1 (ATCC HB 9259). The oligonucleotide used to generate the 3' end of the PCR-derived fragment is the antisense strand of DNA encoding sequences which terminate the open reading frame of the receptor after nucleotide 704 of the mature coding region (following the Asp residue preceding the transmembrane domain) by introducing a TAA stop codon (underlined). The stop codon is then followed by a BamH1 restriction site. The DNA sequences encoding TNF-R are then amplified by PCR, substantially as described by Innis et al., eds., PCR Protocols: A Guide to Methods and Applications (Academic Press, 1990).

The PCR-derived DNA fragment encoding soluble human TNF-R was subcloned into the yeast expression vector pIXY120 by digesting the PCR-derived DNA fragment with BamH1 and Asp718 restriction enzymes, digesting pIXY120 with BamH1 and Asp718, and ligating the PCR fragment into the cut vector *in vitro* with T4 DNA ligase. The resulting construction (pIXY424) fused the open reading frame of the FLAG®-soluble

30

5

10

15

20

10

15

20

25

TNF receptor in-frame to the complete a-factor leader sequence and placed expression in yeast under the aegis of the regulated yeast alcohol dehydrogenase (ADH2) promoter. Identity of the nucleotide sequence of the soluble TNF receptor carried in pIXY424 with those in cDNA clone 1 were verified by DNA sequencing using the dideoxynucleotide chain termination method. pIXY424 was then transformed into E. coli strain RR1.

Soluble human TNF receptor was also expressed and secreted in yeast in a second vector. This second vector was generated by recovering the pIXY424 plasmid from E. coli and digesting with EcoR1 and BamH1 restriction enzymes to isolate the fragment spanning the region encoding the ADH2 promoter, the α-factor leader, the FLAG®-soluble TNF receptor and the stop codon. This fragment was ligated in vitro into EcoR1 and BamH1 cut plasmid pYEP352 (Hill et al., Yeast 2:163 (1986)), to yield the expression plasmid pIXY432, which was transformed into E.coli strain RR1.

To assess secretion of the soluble human TNF receptor from yeast, pIXY424 was purified and introduced into a diploid yeast strain of S. cerevisiae (XV2181) by electroporation and selection for acquisition of the plasmid-borne yeast TRP1* gene on media lacking tryptophan. To assess secretion of the receptor directed by pIXY432, the plasmid was introduced into the yeast strain PB149-6b by electroporation followed by selection for the plasmid-borne URA3* gene with growth on media lacking uracil. Overnight cultures were grown at 30°C in the appropriate selective media. The PB149-6b/pIXY434 transformants were diluted into YEP-1% glucose media and grown at 30°C for 38-40 hours. Supernatants were prepared by removal of cells by centrifugation, and filtration of supernatants through 0.45µ filters.

The level of secreted receptor in the supernatants was determined by immuno-dotblot. Briefly, 1 ul of supernatants, and dilutions of the supernatants, were spotted onto nitrocellulose filters and allowed to dry. After blocking non-specific protein binding with a 3% BSA solution, the filters were incubated with diluted M1 anti-FLAG® antibody, excess antibody was removed by washing and then dilutions of horseradish peroxidase conjugated anti-mouse IgG antibodies were incubated with the filters. After removal of excess secondary antibodies, peroxidase substrates were added and color

development was allowed to proceed for approximately 10 minutes prior to removal of the substrate solution.

The anti-FLAG® reactive material found in the supernatants demonstrated that significant levels of receptor were secreted by both expression systems. Comparisons demonstrated that the pIXY432 system secreted approximately 8-16 times more soluble human TNF receptor than the pIXY424 system. The supernatants were assayed for soluble TNF-R activity, as described in Example 1, by their ability to bind  12 I-TNF $\alpha$  and block TNF $\alpha$  binding. The pIXY432 supernatants were found to contain significant levels of active soluble TNF-R.

10

15

20

25

5

# Example 9 Isolation of Murine TNF-R cDNAs

Murine TNF-R cDNAs were isolated from a cDNA library made from murine 7B9 cells, an antigen-dependent helper T cell line derived from C57BL/6 mice, by cross-species hybridization with a human TNF-R probe. The cDNA library was constructed in  $\lambda$ ZAP (Stratagene, San Diego), substantially as described above in Example 2, by isolating polyadenylated RNA from the 7B9 cells.

A double-stranded human TNF-R cDNA probe was produced by excising an approximately 3.5 kb Not1 fragment of the human TNF-R clone 1 and "P-labeling the cDNA using random primers (Boehringer-Mannheim).

The murine cDNA library was amplified once and a total of 900,000 plaques were screened, substantially as described in Example 2, with the human TNF-R cDNA probe. Approximately 21 positive plaques were purified, and the Bluescript plasmids containing EcoR1-linkered inserts were excised (Stratagene, San Diego). Nucleic acid sequencing of a portion of murine TNF-R clone 11 indicated that the coding sequence of the murine TNF-R was approximately 88% homologous to the corresponding nucleotide sequence of human TNF-R. A partial nucleotide sequence of murine TNF-R cDNA clone 11 is set forth in Figures 3A-3B.

#### Example 10

## Preparation of Monoclonal Antibodies to TNF-R

Preparations of purified recombinant TNF-R, for example, human TNF-R, or transfected COS cells expressing high levels of TNF-R are employed to generate monoclonal antibodies against TNF-R using conventional techniques, for example, those disclosed in U.S. Patent 4,411,993. Such antibodies are likely to be useful in interfering with TNF binding to TNF receptors, for example, in ameliorating toxic or other undesired effects of TNF, or as components of diagnostic or research assays for TNF or soluble TNF receptor.

To immunize mice, TNF-R immunogen is emulsified in complete Freund's adjuvant and injected in amounts ranging from 10-100 µg subcutaneously into Balb/c mice. Ten to twelve days later, the immunized animals are boosted with additional immunogen emulsified in incomplete Freund's adjuvant and periodically boosted thereafter on a weekly to biweekly immunization schedule. Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision for testing by dot-blot assay (antibody sandwich) or ELISA (enzyme-linked immunosorbent assay). Other assay procedures are also suitable. Following detection of an appropriate antibody titer, positive animals are given an intravenous injection of antigen in saline. Three to four days later, the animals are sacrificed, splenocytes harvested, and fused to the murine myeloma cell line NS1. Hybridoma cell lines generated by this procedure are plated in multiple microtiter plates in a HAT selective medium (hypoxanthine, aminopterin, and thymidine) to inhibit proliferation of non-fused cells. myeloma hybrids.

Hybridoma clones thus generated can be screened by ELISA for reactivity with TNF-R, for example, by adaptations of the techniques disclosed by Engvall et al., Immunochem. 8:871 (1971) and in U.S. Patent 4,703,004. Positive clones are then injected into the peritoneal cavities of syngeneic Balb/c mice to produce ascites containing high concentrations (>1 mg/ml) of anti-TNF-R monoclonal antibody. The resulting monoclonal antibody can be purified by ammonium sulfate precipitation followed by gel exclusion

10

5

15

20

chromatography, and/or affinity chromatography based on binding of antibody to Protein A of Staphylococcus aureus.

#### What is claimed is:

- Claim 1. An isolated DNA sequence selected from the group consisting of:
- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under moderately stringent conditions (50°C., 2x SSC) and which encodes a polypeptide that is capable of binding to TNF and which is at least 88% identical to a polypeptide encoded by the DNA of (a).
- Claim 2. An isolated DNA sequence selected from the group consisting of:
- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under moderately stringent conditions (50°C., 2x SSC) and which encodes TNF-R protein that is capable of binding greater than 0.1 moles TNF per nmole TNF-R and which is at least 88% identical to a polypeptide encoded by the DNA of (a).
- Claim 3. An isolated DNA sequence selected from the group consisting of:
- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and

(b) a DNA sequence capable of hybridization to the complement of the DNA sequence of (a) under moderately stringent conditions (50°C., 2x SSC) and which encodes TNF-R protein that is capable of binding greater than 0.5 nmoles TNF per nmole TNF-R and which is at least 88% identical to a polypeptide encoded by the DNA of (a).

Claim 4. A recombinant expression vector comprising the DNA sequence according to claim 1.

Claim 5. A recombinant expression vector comprising the DNA sequence according to claim 2.

Claim 6. A recombinant expression vector comprising the DNA sequence according to claim 3.

Claim 7. A host cell transformed or transfected with the vector according to claim 4.

Claim 8. A host cell transformed or transfected with the vector according to claim 5.

Claim 9. A host cell transformed or transfected with the vector according to claim 6.

Claim 10. An isolated DNA sequence selected from the group consisting of:

- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence that encodes a polypeptide identical to the
  polypeptide encoded by the DNA of (a) except for modification(s)
  to the amino acid sequence selected from the group consisting of:
  (i) inactivated N-linked glycosylation sites; (ii) altered KEX2
  protease cleavage sites; (iii) conservative amino acid substitutions;
  (iv) substitution or deletion of cysteine residues; and

(v) combinations of modifications (i)-(iv); which such polypeptide is capable of binding TNF.

Claim 11. An isolated DNA sequence selected from the group consisting of:

- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235; and
- (b) a DNA sequence that encodes a polypeptide identical to the polypeptide encoded by the DNA of (a) except for modification(s) to the amino acid sequence selected from the group consisting of:

   (i) inactivated N-linked glycosylation sites;
   (ii) altered KEX2 protease cleavage sites;
   (iii) conservative amino acid substitutions;
   (iv) substitution or deletion of cysteine residues; and
   (v) combinations of modifications (i)-(iv); which encoded polypeptide is capable of binding greater than 0.1 moles TNF per

Claim 12. An isolated DNA sequence selected from the group consisting of:

- (a) a DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of amino acids 1 to X of FIG. 2A and amino acids 1 to 233 of FIG. 3A, wherein X is an amino acid from 163 to 235, and
- (b) a DNA sequence that encodes a polypeptide identical to the polypeptide encoded by the DNA of (a) except for modification(s) to the amino acid sequence selected from the group consisting of:

   (i) inactivated N-linked glycosylation sites;
   (ii) altered KEX2 protease cleavage sites;
   (iii) conservative amino acid substitutions;
  - (iv) substitution or deletion of cysteine residues; and
  - (v) combinations of modifications (i)-(iv); which encoded

nmole of such polypeptide.

2501-E - REISSUE

polypeptide is capable of binding greater than 0.5 moles TNF per nmole of such polypeptide.

Claim 13. A recombinant expression vector comprising the DNA according to any one of claims 10, 11 or 12.

Claim 14. A host cell transformed or transfected with the vector according to claim 13.

Claim 15. A DNA sequence that encodes a polypeptide having the amino acid sequence selected from the group consisting of (a) amino acids 1-235 of FIG. 2A; and (b) a DNA sequence capable of hybridization to the DNA sequence of (a) under moderately stringent conditions (50°C., 2x SSC) and which encodes a polypeptide that is capable of binding to TNF and which is at least 88% identical to a polypeptide encoded by the DNA of (a).

Claim 16. A recombinant expression vector comprising the DNA sequence according to claim 15.

Claim 17. A host cell transformed or transfected with the vector according to claim 16.

Claim 18. An isolated DNA molecule encoding a protein comprising a sequence of amino acids selected from the group consisting of amino acids 1-163 of FIG. 2A and amino acids 1-233 of FIG. 3A, wherein said protein is capable of binding TNF.

Claim 19. The isolated DNA molecule according to Claim 18, wherein said protein comprises amino acids 1-163 of FIG. 2A.

Claim 20. The isolated DNA molecule according to Claim 18, wherein said protein comprises amino acids 1-185 of FIG. 2A.

Claim 21. The isolated DNA molecule according to Claim 18, wherein said protein comprises amino acids 1-235 of FIG. 2A.

Claim 22. An isolated DNA molecule encoding a protein selected from the group consisting of:

 (a) a polypeptide having a sequence of amino acids comprising amino acids 1-163 of FIG. 2A;

2501-E - REISSUE

- a polypeptide having a sequence of amino acids comprising amino acids 1-233 of FIG. 3A; and
- (c) a polypeptide identical to the polypeptides of (a) or (b) except for one or more modification(s) to the sequence of amino acids selected from the group consisting of: (i) inactivated N-linked glycosylation sites; (ii) altered KEX2 protease cleavage sites; and (iii) substitution or deletion of cysteine residues.

wherein said protein is capable of binding TNF.

Claim 23. A recombinant expression vector comprising the DNA molecule according to Claim 18, 19, 20, 21 or 22.

Claim 24. A host cell transformed or transfected with the recombinant expression vector according to Claim 23.

Claim 25. The host cell of Claim 24, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 26. The host cell of Claim 25, wherein said mammalian cell is selected from the group consisting of L cells. C127 cells, 373 cells. CHO cells. BHK cells and COS-7 cells.

Claim 27. The host cell of Claim 26, wherein said mammalian cell is CHO cells.

Claim 28. A process for producing a protein capable of binding TNF, said process comprising culturing a host cell of Claim 24 under conditions suitable to effect expression of said protein.

Claim 29. The process of Claim 28, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 30. The process of Claim 29, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

Claim 31. The process of Claim 30, wherein said mammalian cell is CHO cells.

2501-E - REISSUE

Claim 32. An isolated DNA molecule encoding a soluble TNF receptor protein comprising a sequence of amino acids selected from the group consisting of from about amino acid 1 to about amino acid 163 of FIG. 2A and from about amino acid 1 to about amino acid 233 of FIG. 3A, wherein said soluble TNF receptor protein is capable of binding TNF protein.

Claim 33. The isolated DNA molecule according to Claim 32, wherein said soluble TNF receptor protein comprises from about amino acid 1 to about amino acid 163 of FIG. 2A.

Claim 34. The isolated DNA molecule according to Claim 32, wherein said soluble TNF receptor protein comprises from about amino acid 1 to about amino acid 185 of FIG. 2A.

Claim 35. The isolated DNA molecule according to Claim 32, wherein said TNF soluble receptor protein comprises from about amino acid 1 to about amino acid 235 of FIG. 2A.

Claim 36. An isolated DNA molecule encoding a soluble TNF receptor protein selected from the group consisting of:

- (a) a TNF receptor polypeptide having a sequence of amino acids comprising from about amino acid 1 to about amino acid 163 of FIG. 2A;
- (b) a TNF receptor polypeptide having a sequence of amino acids somprising from about amino acid 1 to about amino acid 233 of FIG. 3A; and
- (c) a TNF receptor polypeptide identical to the TNF receptor polypeptides of (a) or (b) except for one or more modification(s) to the sequence of amino acids selected from the group consisting of; (i) inactivated N-linked glycosylation sites; (ii) altered KEX2 protease cleavage sites; and (iii) substitution or deletion of cysteine residues.

wherein said soluble TNF receptor protein is capable of binding TNF.

2501-E - REISSUE

Claim 37. A recombinant expression vector comprising the DNA molecule according to Claim 32, 33, 34, 35 or 36.

Claim 38. A host cell transformed or transfected with the recombinant expression vector according to Claim 37.

Claim 39. The host cell of Claim 38, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 40. The host cell of Claim 39, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

Claim 41. The host cell of Claim 40, wherein said mammalian cell is CHO cells.

Claim 42. A process for producing a protein capable of binding TNF, said process comprising culturing a host cell of Claim 38 under conditions suitable to effect expression of said protein.

Claim 43. The process of Claim 42, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 44. The process of Claim 43, wherein said mammalian cell is selected from the group consisting of L cells. C127 cells. 3T3 cells. CHO cells. BHK cells and COS-7 cells.

Claim 45. The process of Claim 44, wherein said mammalian cell is CHQ cells.

Claim 46. An isolated DNA molecule encoding a soluble TNF receptor protein comprising a sequence of amino acids selected from the group consisting of from amino acid 1 to amino acid 163 of FIG. 2A and from amino acid 1 to amino acid 233 of FIG. 3A, wherein said soluble TNF receptor protein is capable of binding TNF protein.

Claim 47. The isolated DNA molecule according to Claim 46, wherein said soluble TNF receptor protein comprises from amino acid 1 to amino acid 163 of FIG. 2A.

2501-E - REISSUE

Claim 48. The isolated DNA molecule according to Claim 46, wherein said soluble TNF receptor protein comprises from amino acid 1 to amino acid 185 of FIG. 2A.

Claim 49. The isolated DNA molecule according to Claim 46, wherein said soluble TNF receptor protein comprises from amino acid 1 to amino acid 235 of FIG. 2A.

Claim 50. An isolated DNA molecule encoding a soluble TNF receptor protein selected from the group consisting of:

- (a) a TNF receptor polypeptide having a sequence of amino acids comprising from amino acid 1 to amino acid 163 of FIG. 2A;
- a TNF receptor polypeptide having a sequence of amino acids comprising from amino acid 1 to amino acid 233 of FIG. 3A; and
- (c) a TNF receptor polypeptide identical to the TNF receptor polypeptides of (a) or (b) except for one or more modification(s) to the sequence of amino acids selected from the group consisting of: (i) inactivated N-linked glycosylation sites; (ii) altered KEX2 protease cleavage sites; and (iii) substitution or deletion of cysteine residues.
- wherein said soluble TNF receptor protein is capable of binding TNF.

Claim 21. A recombinant expression vector comprising the DNA molecule according to Claim 46, 47, 48, 49 or 50.

Claim 52. A host cell transformed or transfected with the recombinant expression vector according to Claim 51.

Claim 53. The host cell of Claim 52, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 54. The host cell of Claim 53, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

2501-E - REISSUE

Claim 55. The host cell of Claim 54, wherein said mammalian cell is CHO cells.

Claim 56. A process for producing a protein capable of binding TNF, said process comprising culturing a host cell of Claim 52 under conditions suitable to effect expression of said protein.

Claim 57. The process of Claim 56, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 58. The process of Claim 57, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

Claim 59. The process of Claim 58, wherein said mammalian cell is CHO cells.

Claim 60. An isolated DNA molecule encoding a protein comprising a sequence of amino acids selected from the group consisting of amino acids 1-163 of FIG. 2A and amino acids 1-233 of FIG. 3A, wherein said protein lacks amino acids 236-265 of FIG. 2A and amino acids 234-265 of FIG. 3A, respectively, and wherein said protein is capable of binding TNF.

Claim 61. The isolated DNA molecule according to Claim 60, wherein said protein comprises amino acids 1-163 of FIG. 2A.

Claim 62. The isolated DNA molecule according to Claim 60, wherein said protein comprises amino acids 1-185 of FIG. 2A.

Claim 63. The isolated DNA molecule according to Claim 60, wherein said protein comprises amino acids 1-235 of FIG. 2A.

Claim 64. An isolated DNA molecule encoding a protein selected from the group consisting of:

- (a) a TNF receptor polypeptide having a sequence of amino acids comprising amino acids 1-163 of FIG. 2A. wherein said polypeptide lacks amino acids 236-265 of FIG. 2A:
- (b) a TNF receptor polypeptide having a sequence of amino acids comprising amino acids 1-233 of FIG. 3A, wherein said

2501-E - REISSUE

polypeptide lacks amino acids 234-265 of FIG. 3A; and

(c) a TNF receptor polypeptide identical to the TNF receptor polypeptides of (a) or (b) except for one or more modification(s) to the sequence of amino acids selected from the group consisting of: (i) inactivated N-linked glycosylation sites; (ii) altered KEX2 protease cleavage sites; and

wherein said protein is capable of binding TNF.

Claim 65. A recombinant expression vector comprising the DNA molecule according to Claim 60, 61, 62, 63 or 64.

Claim 66, A host cell transformed or transfected with the recombinant expression vector according to Claim 65.

(iii) substitution or deletion of cysteine residues,

Claim 67. The host cell of Claim 66, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 68. The host cell of Claim 67, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 373 cells, CHO cells, BHK cells and COS-7 cells.

Claim 69. The host cell of Claim 68, wherein said mammalian cell is CHO cells.

Claim 70. A process for producing a protein capable of binding TNF, said process comprising culturing a host cell of Claim 67 under conditions suitable to effect expression of said protein.

Claim 71. The process of Claim 70. wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 72. The process of Claim 71, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

Claim 73. The process of Claim 72, wherein said mammalian cell is CHO cells.

2501-E - REISSUF

Claim 74. An isolated DNA molecule encoding a protein comprising a sequence of amino acids selected from the group consisting of amino acids 1-163 of FIG. 2A and amino acids 1-233 of FIG. 3A, wherein said protein lacks a functional transmembrane region, and wherein said protein is capable of binding TNF.

Claim 75. The isolated DNA molecule according to Claim 74, wherein said protein comprises amino acids 1-163 of FIG. 2A.

Claim 76. The isolated DNA molecule according to Claim 74, wherein said protein comprises amino acids 1-185 of FIG. 2A.

Claim 77. The isolated DNA molecule according to Claim 74. wherein said protein comprises amino acids 1-235 of FIG. 2A.

Claim 78. An isolated DNA molecule encoding a protein selected from the group consisting of:

- a TNF receptor polypeptide having a sequence of amino acids comprising amino acids 1-163 of FIG. 2A;
- (b) a TNF receptor polypeptide having a sequence of amino acids comprising amino acids 1-233 of FIG. 3A: and
- (c) a TNF receptor polypeptide identical to the TNF receptor polypeptides of (a) or (b) except for one or more modification(s) to the sequence of amino acids selected from the group consisting of: (ii) inactivated N-linked glycosylation sites: (iii) altered KEX2 protease cleavage sites; and
  - (iii) substitution or deletion of cysteine residues.

wherein said protein lacks a functional transmembrane region; and wherein said protein is capable of binding INF.

Claim 79. A recombinant expression vector comprising the DNA molecule according to Claim 74, 75, 76, 77 or 78.

Claim 80. A host cell transformed or transfected with the recombinant expression vector according to Claim 79.

2501-E - REISSUE

Claim 81. The host cell of Claim 80, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 82. The host cell of Claim 81, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 373 cells, CHO cells, BHK cells and COS-7 cells.

Claim 83. The host cell of Claim 82, wherein said mammalian cell is CHO cells.

Claim 84. A process for producing a protein capable of binding TNF, said process comprising culturing a host cell of Claim 80 under conditions suitable to effect expression of said protein.

Claim 85. The process of Claim 84, wherein said host cell is selected from the group consisting of a microbial cell and a mammalian cell.

Claim 86. The process of Claim 85, wherein said mammalian cell is selected from the group consisting of L cells, C127 cells, 3T3 cells, CHO cells, BHK cells and COS-7 cells.

Claim 87. The process of Claim 86, wherein said mammalian cell is CHO cells.

### ABSTRACT OF THE DISCLOSURE

Tumor necrosis factor receptor DNAs and expression vectors encoding TNF receptors, and processes for producing TNF receptors as products of recombinant cell culture, are disclosed.



# Patent and Tradamark Office

С

Address: COMMISSIONER OF PATENTS AND TRADEMARK Washington, D.C. 20231

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NO./TITLE

08/31/98

SMITH

A-7210

0242/0929 SUGHRUE MION ZINN MACPEAK & SEAS

09/144,502

NOT ASSIGNED

2100 PENNSYLVANIA AVENUE NW WASHINGTON DC 20037-3202

1646

DATE MAILED:

00.100.100

	09/29/98
	NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES
The r	ucleotide and/or amino acid sequence disclosure contained in this application does not comply with the ements for such a disclosure as set forth in 37 CFR 1.821 - 1.825 for the following reason(s):
<b>Z</b> ( 1.	This application fails to comply with the requirements of 37 CFR 1.821 - 1.825.
□ 2.	This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 CFR 1.821(c).
3.	A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 CFR 1.821(e).
□ 4.	A copy of the "Sequence Listing" in computer readable form has been submitted. The content of the computer readable form, however, does not comply with the requirements of 37 CFR 1.822 and/or 1.832, as indicated on the attacked marked-up copy of the "Raw Sequence Listing".
□ 5.	The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A substitute computer readable form mus be submitted as required by 37 CFR 1.282(D).
□ 6.	The paper copy of the "Sequence Listing" is not the same as the computer readable form of the "Sequence Listing" as required by 37 CFR 1.821(e).
7.	OTHER:
APPL	ICANT MUST PROVIDE:
100	An initial or substitute computer readable form (CRIF) copy of the "Sequence Listing."  An initial or substitute paper copy of the "Sequence Listing," as well as an amendment directing its entry into the specification.
ļΧ	A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 CFR 1.821(e), 1.821(f), 1.821(g), 1.825(b) or 1.825(d).
FOR (	QUESTIONS REGARDING COMPLIANCE WITH THESE REQUIREMENTS, PLEASE CONTACT:
	For Fules Interpretation, call (709) 308-1123. For CRF submission help, call (703) 308-4212. For Patentin software help, call (703) 308-6856.

Customer Service Center Initial Patent Examination Division (703) 308-1202

Figure 1

HuTNF-R
HuTNF-R∆235
HuTNF-R∆185
HuTNF-R∆163
HuTNF-R∆142
MuTNF-R

# Figure 2A

							(	CGA	GCA	GCA(	CCT	3GAG	AGAA(	GCG	:	28
CTG	GCT	GCGA	SGGC	CGA	GGC	CGA	GGC	AGGGG	GCA.	ACCG	SACCO	CCGCC	CGCI	ATCC		87
ATG	ATG GCG CCC GTC GCC GTC TGG GCC GCG CTG GCC GTC GGA CTG GAG Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu															32
Met	Ala	Pro	Val	Ala	Val	Trp	Ala	λla	Leu	λla	Val	Gly	Leu	Glu		- 8
CTC	TGG	GCT	GCG	GCG	CAC	GCC	TTG	CCC	GCC	CAG	GTG	GCλ	TTT	λCλ		77
Leu	Trp	λla	λla	Ala	His	Ala	Leu	Pro	Ala	Gln	Val	λla	Phe	Thr		8
ccc	TAC	GCC	CCG	GAG	ccc	GGG	AGC	ACA	TGC	CGG	CTC	AGA	GλA	TλC		22
	-				Pro											23
TAT	GAC	CAG	λСλ	GCT	CAG	ATG	TGC	TGC	AGC	λλλ	TGC	TCG	CCG	GGC	. 2	
Tyr	Asp	Gln	Thr	Ala	Gln	Met	Cys	Cys	Ser	Lys	Cys	Ser	Pro	GIA		38
					TTC											12
Gln	His	λla	Lys	Val	Phe	Cys	Thr	Lys	Thr	Ser	Asp	Thr	Val	Cys		53
GAC	TCC	TGT	GAG	GAC	AGC	λСλ	TAC	ACC	CAG	CTC	TGG	AAC	ŢGG	GTT		57
Asp	Ser	Cys	Glu	Asp	Ser	Thr	Tyr	Thr	Gln	Leu	Trp	Asn	Trp	Val		68
					TGT											02
Pro	Glu	Cys	Leu	Ser	Cys	Gly	Ser	Arg	Cys	Ser	Ser	Asp	Gln	Val		83
					ACT											47
Glu	Thr	Gln	λla	Cys	Thr	λrg	Glu	Gln	Asn	λrg	Ile	Cys	Thr	Cys		98
AGG	ccc	GGC	TGG	TAC	TGC	GCG	CTG	AGC	λλG	CAG	GAG	GGG	TGC	CGG		92
Arg	Pro	Gly	Τ <del>τ</del> ρ	Tyr	Cys	Ala	Leu	Ser	Lys	Gln	Glu	Gly	Cys	λrg	1	13
					CGC											37
Leu	Cys	Ala	Pro	Leu	Arg	Lys	Cys	Arg	Pro	Gly	Phe	Gly	Val	Ala	1	29
					λCλ											82
Arg	Pro	Gly	The	Glu	Thr	Ser	Asp	Val	Val	Cys	Lys	Pro	Cys	λla		43
CCG	GGG	ACG	TTC	TCC	AAC	ACG	ACT	TCA	TCC	ACG	GAT	ATT	TGC	AGG		27
Pro	Gly	Thr	Phe	Ser	Asn	Thr	Thr	Ser	Ser	Thr	Asp	Ile	Cys	Arg		58
ccc	CAC	CAG	ATC	TGT	AAC	GTG	GTG	GCC	ATC	CCT	GGG	AAT	GCA	λGC		72
Pro	His	Gln	Ile	Cys	Asn †	Val	Val	Ala	Ile	Pro	Gly	λsn	Ala	Ser		73
ATG	GAT	GCA	GIC	TGC	ACG	TCC	λCG	TCC	ccc	ACC	CGG	AGT	ATG	GCC		17
Met	Asp	Мlа	Val	Cys	Thr	Ser	Thr	Ser	Pro	Thr	λrg	Ser t	Met	Ala	1	88
					TTA											62
Pro	Gly	Ala	Val	His	Leu	Pro	Gln	Pro	Val	Ser	Thr	λrg	Ser	Gln	2	03
					CCA											07
His	Thr	Gln	Pro	Thr	Pro	Glu	Pro	Ser	Thr	λla	Pro	Ser	Thr	Ser		18
TTC	CTG	CTC	CCY	ATG	GGC	$\infty$	λGC	ccc	CCY	GCT	GAA	GGG	AGC	ACT		52
Phe	Leu	Leu	Pro	Met	Gly	Pro	Ser	Pro	Pro	λla	Glu	Gly	Ser	Thr	2	33
GGC	GAC	TTC	GCT	CTT	CCY	GTT	GGλ	CTG	ATT	GTG	GGT	GTG	ACA	GCC	8	97
Gly	λsp	Phe.	Ala	Leu	Pro	Ve)	Gly	Leu	Ile	Val	Gly	Val	Thr	Ala	2	48
					ATA											42
Leu	Glv	Leu	Leu	Ile	Ile	Glv	Val	Val	Asn	Cvs	Val	Ile	Met	Thr	2	63

### Figure 2B

CAG	GTG	AAA	AAG	λAG	CCC	TTG	TGC	CTG	CAG	AGA	GAA	GCC	λAG	GTG	987
Gln	Val	Lys	Lys	Lys	Pro	Leu	Cys	Leu	Gln	λrg	Glu	Ala	Lys	Val	278
							-			-			•		
CCT	CAC	TTG	CCT	GCC	GAT	λλG	GCC	CGG	GGT	ACA	CAG	GGC	CCC	GAG	1032
Pro	His	Leu	Pro	λla	Asp	Lys	Ala	λrg	Gly	Thr	Gln	Gly	Pro	Glu	293
					-	-		-	-			-			
														TCC	
Gln	Gln	His	Leu	Leu	Ile	Thr	Ala	Pro	Ser	Ser	Ser	Ser	Ser	Ser	308
														CGG	
Leu	Glu	Ser	Ser	Ala	Ser	Ala	Leu	λsp	λrg	λrg	Ala	Pro	Thr	Arg	323
	~~~														
														GAG	
ASII	GIR	PFO	GIN	VT 9	PIO	GIA	ANT	GIU	YIS	Ser	Gly	Ala	Gly	Glu	338
ccc	ccc	ccc	100	100										CAT	1212
Ala	1-0	31.	Sor	Th-	Clu	AGC.	ICA	GAI	For	TCC Co-	CCT	GGT	GGC	His	353
	nry	710	361	1111	GIY	361	3er	vab	ser	ser	PFO	GIY	GIA	urz	353
ccc	ACC	CAG	GTC	227	GTC.	ACC.	TCC	ATC	GTC	***	CEC	-	100	AGC	1257
Glv	Thr	GID	Val	Asn	Val	The	0.0	TIA	V-1	Anc	221	101	Sor	Ser	
,				••••			٠,5		***	non	***	Cys	361	367	300
TCT	GλC	CAC	AGC	TCA	CAG	TGC	TCC	TCC	CAA	GCC	AGC.	TCC	ACA	ATG	1302
Ser	Asp	His	Ser	Ser	Gln	Cvs	Ser	Ser	Gln	Ala	Ser	Ser	Thr	Met	383
	•														
GGλ	GAC	ACA	GAT	TCC	AGC	CCC	TCG	GAG	TCC	CCG	AAG	GAC	GAG	CAG	1347
Gly	Asp	Thr	Asp	Ser	Ser	Pro	Ser	Glu	Ser	Pro	Lys	Asp	Glu	Gln	398
											-				
GTC	CCC	TTC	TCC	AAG	GAG	GAA	TGT	GCC	TTT	CGG	TCA	CAG	CTG	GAG	1392
Val	Pro	Phe	Ser	Lys	Glu	Glu	Cys	Ala	Phe	Arg	Ser	Gln	Leu	Glu	413
ACG	CCA	GAG	ACC	CTG	CTG	GGG	AGC	ACC	GAA	GAG	AAG	ccc	CTG	CCC	1437
Thr	Pro	Glu	The	Leu	Leu	Gly	Ser	Thr	Glu	Glu	Lys	Pro	Leu	Pro	428
		CBC													
	GGA														1470
ren	Gly	val	rro	A3P	VT9	GIA	met	Lys	Pro	Ser					439

Figure 3A

CGCAGCTGAGGCACTAGAGCTCC

23

	CGCAGCTGAGGCACTAGAGCTCC	23
AGGCACAAGGGCGGGAGCCACCGCTGCCCCT	* ***	75
AGGCACAAGGGCGGGAGCCACCGCTGCCCCI	Met Ala Pro Ala Ala Leu Trp -1	
GTC GCG CTG GTC TTC GAA CTG CAG	CTG TGG GCC ACC GGG CAC ACA 12	
Val Ala Leu Val Phe Glu Leu Glm	Leu Trp Ala Thr Gly His Thr	-1
	CCC TAC ANA CCG GAA CCT GGG 16	
GTG CCC GCC CAG GTT GTC TTG ACA		15
VAL PRO ALE GIR VEL VEL DEG INI	1 110 191 293 110 010 110 027	
TAC GAG TGC CAG ATC TCA CAG GAA	TAC TAT GAC AGG AAG GCT CAG 21	
Tyr Glu Cys Gln Ile Ser Gln Glu	Tyr Tyr Asp Arg Lys Ala Gln	30
ATG TGC TGT GCT AAG TGT CCT CCT	GGC CAA TAT GTG AAA CAT TTC 2	33 45
Met Cys Cys Ala Lys Cys Pro Pro	Gly Gin Tyr val Lys His Phe	13
TGC AAC AAG ACC TCG GAC ACC GTG	TGT GCG GAC TGT GAG GCA AGC 30	00
Cys Asn Lys Thr Ser Asp Thr Val	Cvs Ala Asp Cys Glu Ala Ser	60
	-	
ATG TAT ACC CAG GTC TGG AAC CAG		45
Met Tyr Thr Gln Val Trp Asn Glr	n Phe Arg Thr Cys Leu Ser Cys	75
AGT TCT TCC TGT ACC ACT GAC CAG	- cmc cac ame cec ece mec act 3	90
Ser Ser Ser Cys Thr Thr Asp Glr		90
ser ser ser eys in in nop er.	. 102 020 020 110, 1100 0,0	
AAA CAG CAG AAC CGA GTG TGT GCT		35
Lys Gln Gln Asn Arg Val Cys Ala	Cys Glu Ala Gly Arg Tyr Cys 10	05
	Al	80
GCC TTG AAA ACC CAT TCT GGC AGC		20
Ala Leu Lys In: Als Sel Gly Sel	cys ary orn cys nec ary see	
AGC AAG TGC GGC CCT GGC TTC GGA		25
Ser Lys Cys Gly Pro Gly Phe Gly	Val Ala Ser Ser Arg Ala Pro 1:	35
		70
AAT GGA AAT GTG CTA TGC AAG GCC Asn Gly Asn Val Leu Cys Lys Ala		50
Ash Gly Ash val Led Cys Lys Ala	Cys Ala Pro Gly Int Phe Set 1	-
GAC ACC ACA TCA TCC ACT GAT GTG	TGC AGG CCC CAC CGC ATC TGT 6:	15
Asp Thr Thr Ser Ser Thr Asp Val		65
•		
AGC ATC CTG GCT ATT CCC GGA AAT		60 80
Ser Ile Leu Ala Ile Pro Gly Asr	n Ala Ser Thr Asp Ala val Cys	80
GCG CCC GAG TCC CCA ACT CTA AGT	T GCC ATC CCA AGG ACA CTC TAC 7	05
Ala Pro Glu Ser Pro Thr Leu Ser		95
GTA TCT CAG CCA GAG CCC ACA AGA	A TCC CAA CCC CTG GAT CAA GAG 7	50
Val Ser Gln Pro Glu Pro Thr Arq	g Ser Gln Pro Leu Asp Gln Glu 2	10
CCA GGG CCC AGC CAA ACT CCA AGG	TATE CTT ACA TEG TTG GGT TCA 7	95
Pro Gly Pro Ser Gln Thr Pro Ser	ALC CIT NOT ICO III COL III	25
,		
ACC CCC ATT ATT GAA CAA AGT ACC	and don doe mid her dir der	40
Thr Pro Ile Ile Glu Gln Ser Thi	r Lys Gly Gly Ile Ser Leu Pro 2	40
		85
ATT GGT CTG ATT GTT GGA GTG ACI	1 101 010 001 010 010 110	55
THE WIN DER THE ART GIA ART THE	. No. and the real field and the little and the lit	

Figure 3B

						ATC		CTG	CAG	AGG	AAA	AAG	λAG	CCC	930
GGA	CTG	GTG	AAC	CVS	TIE	Ile_	Leu	Val	Gln	λrg	Lys	Lys	Lys	Pro	270
TCC	TGC	СТА	CAA	λGλ	GAT	GCC	λλG	GTG	CCT	CAT	GTG	CCT	GAT	GAG	975 285
Ser	Cvs	Leu	Gln	λrg	λsp	Ala	Lys	Val	Pro	His	Val	Pro	ASP	GT n	203
										CAG	CAC	CTG	TTG	ACC	1020
AAA	TCC	CAG	GAT	GCA	GTA	GGC	CTT	GAG	Gln	Gln	His	Leu	Leu	Thr	300
Lys	Ser	Gln	ASP	VIS	ANT	GIY	Den	014	·					•	
20	GC A	ccc	AGT	TCC	AGC	AGC	λGC	TCC	CTA	GAG	AGC	TCA	GCC	AGC	1065 315
Thr	la	Pro	Ser	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Ser	Ser	Yla	Ser	315
															1110
GCT	GGG	GAC	CGA	λGG	GCG	CCC Pro	CCT	GGG	GGC	His	Pro	Gln	Ala	λrg	330
GTC	ATG	ccc	GAG	GCC	CAA	GGG	TTT	CAG	GAG	GCC	CGT	GCC	λGC	TCC	1155
Val	Met	Ala	Glu	Ala	Gln	Gly	Phe	Gln	Glu	Ala	λrg	Ala	Ser	Ser	345
															1200
AGG	ATT	TCA	GAT	TCT	TCC	CAC	GGA	AGC	CAC	GGG	Thr	His	Val	AAC Asn	360
C.T.C	***	TCC	ATC	GTG	AAC	GTC	TGT	AGC	AGC	TCT	GAC	CAC	AGT	TCT	1245
Ua1	Thr	CVS	Ile	Val	Asn	Val	Cys	Ser	Ser	Ser	λsp	His	Ser	Ser	375
															1290
CAG	TGC	TCT	TCC	CAA	GCC	AGC	GCC	YCY	GTG	GGA	GAC	Dro	ART	GCC	390
Gln	Cys	Ser	Ser	Gln	Ala	Ser	Ala	Thi	VAI	GIY	ASI	, ,,	Yob	Ala	
						AAG	GAT	GAG	CAG	GTC	ccc	TTC	TCI	CAG	1335
AAG	Pro	Set	Ala	Ser	Pro	Lvs	Asp	G1	Gln	Val	Pro	Phe	Ser	Gln	405
															1380
GAG	GAG	TGT	. ccc	TCI	. CYG	TCC	CCG	TGT	GAG	ACT	ACA	CAC	Th	CTG	420
														Leu	
							ccc	CT	GGI	GTG	cco	GA:	ATO	GGC Glv	1425
CAU	Set	- His	Gli	LVS	Pro	Leu	Pro	Lei	Gly	Val	l Pro	Asp	Met	Gly	435
															1470
ATC	AA C	CCC	AG(CA	GC:	r GGC	TGG	TT	GA1	CAC	5 AT	וגבי	Va	LVS	450
Met	Lys	Pro	Se:	c Gli) Al	a Gly	TI	Pne	s AS	, 61,				l Lys	
	GCC														1476
	L Ala														452
										CAC	NCCC	TGAL	CCC*	TGGAAC	1536
TG	ACCC	CTGA	CAGG	GGTA	ACAC	TTTC	-AAA	ACTG ACTG	GCTT	CCAG	AGCC	CCAG	TTGC	AGGTCA	
				CCAC	ጥአጥጥ	ጥጥጥጥ	$\neg \neg \neg \neg$	СТАА	GGAG	CTAA	CAIC		,,,,,,,,,,	TOWNER	
GC	ACAG	CTCT	TCAG	CCTG	AATG	CTGA	CACT	GCAG	GGCG	CTTC	LAGC ACTC	TTAG	GAAG	GCAAGT TACCCI	
		A COT	COMO	CTCC	TEAC	CTTC	TAAT	GAGC	CCIT			~~~	~		
GG	AATC	TCAG	GGAC	TGTA	GAGT	TCCC	AGGC	CC1	CCTA	CTGT	ACT	GCTO	TGAC	CCCAAC	
AG	TCTC	AGG1	GCTT	GGA1	GCCI	TGCT	CYCC	GATT	CCYC	TGGA	TAT	AAC!	TGG	CAGAGG	. 2336

Figure 3C

GCCTAGTTGTTGCCATGGAGACTTAAAGAGCTCAGCACTCTGGAATCAAGATACTGGACA	2616
CTTGGGGCCGACTTGTTAAGGCTCTGCAGCATCAGACTGTAGAGGGGAAGGAA	2676
GCCCCCTGGTGGCCCGTCCTGGGAtGACCTCGGGCCtCCTAGGCAACAAAAGAATGAATT	2736
GGAAAGGATGTTCCTGGGTGTGGCCTAGCTCCTGTGCTTGTGTGGATCCCTAAAGGGTGT	2796
GCTAAGGAGCAATTGCACTGTGTGCTGGACAGAATTCCTGCTTATAAATGCTTTTTGTTG	2856
TTGTTTTGTACACTGAGCCCTGGCTGAGCCACCCCACCC	2916
ACGCCACTCTTGCATGAGAACCTGGCTGTCTCCCACTTGTAGCCTGTGGATGCTGAGGAA	2976
ACACCCAGCCAAGTAGACTCCAGGCTTGCCCCTATCTCCTGCTaTGAGTCTGGCCTCCTC	3036
At ToTGTTGTGGGAAGGAGACGGGLTCTGTCATCTCGGAACGCCCACACCGTGGATGTGA	3096
ACANTGGCTGTACTAGCTTAGACCAGCTTAGGGCTCTGCATATCACAGGAGGGGGAGCAG	3156
GGAACAATTTGAGTGCTGACCTATAACACAGTTCCTAAAGGATCGGGCAGTCCAGAATCT	3216
CCTCCTTCAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	3276
TGCATGTATGTGTGTGCCAGTGTGTGGAGGCCCGAGGTTGGCTTTGGGTGTGTTTGATCA	3336
CTCTCCAGTTACTGAGGCGGGCTCTCATCTGTACCCAGAGCTTGCACATTTTCTAGTCTA	3396
ACTTGATTCAGGGATCTCTGTCTGCCTATGGAGGTGCTCAGGTTACAGGCAGG	3456
ACCTGCCCGACATTTACATGAATACTAGAGATCTGAATTCTGGTCCTCACACTTGTATAC	3516
CTGCATTTTATCCACTAAGACATCTCTCCAAGGGCTCCCCCTTCCTATTTAATAAGTTAG	3576
TTTTGAACTGGCAAGATGGCTCAGTGGGTAAGGCAGTTTGCGGACAAACCTGATGACCTG	3636
AGTTGGATCCCTGACCATAAGGTAGAAGAGACCTGATTCCTGCAAGTTGTCCTCTGACCA	3696
CCACCCCATACATGCTTCTGCATATGTGCACACATCACATTCTTGCACACACA	3756
accatalateratabatttttaaataaattgattttattttaaaaaa	3813

FILING RECEIPT

UNITED STATES D (RTMENT OF COMMERCE Patent and Trademark Office ASSISTANT SECRETARY AND COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

APPLICATION NUMBER	FILING DATE	GRP ART UNIT	FIL FEE REC'D	ATTORNEY DOCKET NO.	DRWGS	TOT CL	IND CL
09/144,502	08/31/98	1646	\$3,084.00	A-7210	6	87	17

SUGHRUE MION ZINN MACPEAK & SEAS 2100 PENNSYLVANIA AVENUE NW WASHINGTON DC 20037-3202

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICATION NUMBER, FILING DATE, NAME OF APPLICATI, and TITLE OF NUMBER OF APPLICATION NUMBER, FILING DATE, NAME OF APPLICATION, THE OF APPLICATION OF APPLICATION

Applicant(s)

CRAIG A. SMITH, SEATTLE, WA; RAYMOND G. GOODWIN, SEATTLE, WA; M. PATRICIA BECKMANN, POULSBO, WA.

CONTINUING DATA AS CLAIMED BY APPLICANT-

THIS APPLN IS A RE OF 08/346,555 11/29/94 PAT 5,712,155
WHICH IS A CON OF 07/523,635 05/10/90 PAT 5,395,760
WHICH IS A CIP OF 07/421,417 10/13/89 ABN
WHICH IS A CIP OF 07/403,241 09/05/89 ABN
WHICH IS A CIP OF 07/403,241 09/05/89 ABN

FOREIGN FILING LICENSE GRANTED 09/24/98

DNA ENCODING TUMOR NECROSIS FACTOR-ALPHA AND -BETA RECEPTORS

PRELIMINARY CLASS: 435

PLEASE DATE STAMP AND RETURN TO US - BOX 235X

In re Application of:

CRAIG A. SMITH et al

Appln. No.: 09/144,502

Group Art Unit: 1646

Filed: August 31, 1998

Examiner: Fitzgerald, D.

For: DNA ENCODING TUMOR NECROSIS

FACTOR- α AND - β RECEPTORS

PAPERS ENTITLED:

- (1) NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SECUENCE DISCLOSURES:
- (2) PRELIMINARY AMENDMENT: and
- (3) STATEMENT IN SUPPORT OF SUBMISSION (accompanied by Sequence Listing and DOS Version diskette con same).

SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC 2100 Pennsylvania Avenue, N.W. Washington, D.C. 20037-3202 (202) 293-7060

Date: October q , 1998

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

CRAIG A. SMITH et al

Appln. No.: 09/144,502

Group Art Unit: 1646

Filed: August 31, 1998

Examiner: Fitzgerald, D.

For: DNA ENCODING TUMOR NECROSIS FACTOR- α AND $-\beta$ RECEPTORS

FILED OCT 0 9 1998

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examining the above-identified reissue application, please amend the application as follows.

PRELIMINARY AMENDMENT

IN THE SPECIFICATION:

Please amend the specification as follows:

Page 4, lines 17-28, delete in their entirety.

Page 5, line 25, change "Figure 2A" to -- SEQ ID NO:1 --.

Page 6, line 6, change "Figure 2A" to -- SEQ ID NO:1 --; and line 11, change "Figure 2A" to -- SEQ ID NO:1 --.

Page 8, lines 27-28, change "Figures 2-3 or Figures 4-6" to -- SEO ID NO:1 or SEO ID NO:3 --.

Page 9, line 23, change "clone 11" to -- clone 1 --; line 25, change "clone 11" to -- clone 1 --; and

Page 13, line 21, change "Figure 2A" to -- SEQ ID NO:1 --;

line 26, change "Figures 4-6" to -- SEQ ID NO:1 --.

line 23, change "transmembrane" to

-- extracellular --;

line 25, change "Figure 2A" to -- SEQ ID NO:1 --; and line 26, change "Figure 2A" to -- SEQ ID NO:1 --.

Page 15, line 13, change "Figure 2A" to -- SEQ ID NO:1 --.

Page 30, line 24, change "Figure 2A" to -- SEQ ID NO:1 --; and line 28, after "oligonucleotides", insert -- (encoding amino acids corresponding to Ala²²⁹-Asp²³⁵ of SEQ ID NO:1) --.

Page 31, line 18, change "Figure 2A" to -- SEQ ID NO:1 --; and line 22, after "linkers", insert -- (encoding amino acids corresponding to Ile162-Ala176 and Val177-Arg185 of SEQ ID NO:1) --.

Page 32, line 10, change "Figure 2A" to -- SEQ ID NO:1 --;
line 12, after "linkers", insert -- (encoding amino acids corresponding to Ile¹⁶²-Cys¹⁶³ of SEQ ID NO:1) --; and
line 32, change "Figure 2A" to -- SEQ ID NO:1 --.

Page 33, line 2, after "linker", insert -- (encoding amino acids corresponding to Thr132-Cys142 of SEQ ID NO:1) --.

Page 36, line 2, after "primers", insert -- (encoding amino acids corresponding in part to amino acids Leu¹-Thr⁸ and Pro²²⁵-Asp²³⁵ of SEQ ID NO:1) --.

Page 38, line 29, change "Figures 3A-3B" to -- SEQ ID NO:3 and SEO ID NO:4 --.

Page 40, after line 2, insert

DETAILED DESCRIPTION OF THE SEQUENCE LISTING

SEQ ID NO:1 and SEQ ID NO:2 show the partial cDNA sequence and derived amino acid sequence of the human TNF-R clone 1. Nucleotides are numbered from the beginning of the 5' untranslated region. Amino acids are numbered from the beginning of the signal peptide sequence. The putative signal sequence is represented by amino acid -22 to -1. The N-terminus of the mature TNF-R begins with amino acid 1. The predicted transmembrane region extends from amino acids 236-265.

SEQ ID NO:3 and SEQ ID NO:4 show the cDNA sequence and derived amino acid sequence of murine TNF-R clone 11. The putative signal peptide sequence is represented by amino acids -22 to -1. The N-terminus of the mature TNF-R protein begins with amino acid 1. The predicted transmembrane region extends from amino acids 234 to 265. --

Pages 41-53, please renumber as new pages 54-66, respectively.

IN THE SEQUENCE LISTING:

Please insert the Sequence Listing (i.e., new pages 41-53) being filed simultaneously herewith.

IN THE DRAWINGS:

Please delete Figures 2A-2B and 3A-3C (in their entirety).

REMARKS

The amendments to the specification were made in order for the present application to be consistent with Parent Application Serial No. 07/523,635, filed November 29, 1994 (now U.S. Patent No. 5,395,760)^{1/}; and to correct obvious typographical errors therein.

The Sequence Listing, filed simultaneously herewith, is being submitted and the specification is also being amended to be consistent with the amendments made in related Application Serial No. 08/650,000, filed June 9, 1998 (now allowed).

Also, the deletion of Figures 2-3 (in their entirety) and insertion of SEQ ID NOs:1-4 therein is made in order for the Sequence Listing and drawings to be consistent with related Application Serial No. 08/650,000, filed June 9, 1998 (now allowed).

Hence, the amendments to the specification, the insertion of the Sequence Listing and deletion of Figures 2-3 do not constitute new matter, and thus entry is requested.

Note, due to a printing error, column 6, line 55, of U.S. Patent 5,395,760 refers to "Figures 2A-2C", rather than "Figures 2A-2B".

The Examiner is invited to contact the undersigned at his Washington telephone number on any questions which might arise.

Respectfully submitted,

Gordon Kit Registration No. 30,764

SUGHRUE, MION, ZINN,
MACPEAK & SEAS, PLLC
2100 Pennsylvania Avenue, N.W.
Washington, D.C. 20037-3202
(202) 293-7060

Date: October 9, 1998

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

CRAIG A. SMITH et al

Appln. No.: 09/144,502 Group Art Unit: 1646

Filed: August 31, 1998 Examiner: Fitzgerald, D.

For: DNA ENCODING TUMOR NECROSIS

FACTOR- α AND - β RECEPTORS

FILED

STATEMENT IN SUPPORT OF SUBMISSION IN ACCORDANCE WITH FORMER 37 C.F.R. §§ 1.821-1.825

Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

The following statement is provided to meet the requirements of Former 37 C.F.R. §§ 1.821-1.825.

I hereby state that the content of the computer readable copy of the Sequence Listing submitted in accordance with Former 37 C.F.R. §§ 1.821-1.825, respectively, is the same as the Sequence Listing filed simultaneously herewith.

The Examiner is requested to note that the Sequence Listing being filed herewith is submitted under Former 37 C.F.R. §§ 1.821-1.825, as the present application is a reissue application of U.S. Patent No. 5,712,155 which issued January 27, 1998, based on U.S. Patent Application No. 08/346,555, filed November 29, 1994, i.e., prior to the effective new rules dated of July 1, 1998 (see 63 Federal Register 29620).

STATEMENT IN SUPPORT OF SUBMISSION IN ACCORDANCE WITH FORMER 37 C.F.R. §§ 1.821-1.825 U.S. ADDLI. No. 09/144,502

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge and that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

/º/9/7 \$/ Date

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: SMITH, Craig A.

 GOODWIN, Raymond G.
 BECKMANN, M. Patricia
- (ii) TITLE OF INVENTION: DNA ENCODING TUMOR NECROSIS FACTOR- α AND - β RECEPTORS
- (iii) NUMBER OF SEQUENCES: 4
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: IMMUNEX CORPORATION
 - (B) STREET: 51 University Street
 - (C) CITY: Seattle
 - (D) STATE: WASHINGTON
 - (E) COUNTRY: U.S.A. (F) ZIP: 98101

 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/144,502
 - (B) FILING DATE: 31-AUG-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/346,555
 - (B) FILING DATE: 29-NOV-1994
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/523.635
 - (B) FILING DATE: 10-MAY-1990
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/421,417
 - (B) FILING DATE: 13-OCT-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/405.370
 - (B) FILING DATE: 11-SEPT-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/403,241
 - (B) FILING DATE: 05-SEPT-1989

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: KIT, Gordon
- (B) REGISTRATION NUMBER: 30,764
- (C) REFERENCE/DOCKET NUMBER: A-7210

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (202) 293-7060
- (B) TELEFAX: (202) 293-7860

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1641 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (G) CELL TYPE: Fibroblast
 - (H) CELL LINE: WI-26 VA4

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: WI-26 VA4
- (B) CLONE: 1
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 88..1473
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 154..1470
- (ix) FEATURE:
 - (A) NAME/KEY: sig_peptide
 - (B) LOCATION: 88..153
- (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Smith, Craig A.
 Davis, Terri
 Anderson, Dirk
 Solam, Lisabeth
 Beckmann, M. P.
 Jerzy, Rita
 Dower, Steven K.
 Cosman, David

Goodwin, Raymond G.

(B) TITLE: A Receptor for Tumor Necrosis Factor Defines an Unusual Family of Cellular and Viral Proteins (C) JOURNAL: Science																	
		((c) J(OURN				ar ar	v.	LLUI	110.		•				
					3: 24												
	(F) PAGES: 1019-1023 (G) DATE: 25-MAY-1990																
	(xi)	SEÇ	QUEN	CE DI	ESCRI	[PTIC	ON: S	SEQ .	LD NO):1:							
GCGI	AGGC	AGG (CAGC	CTGG	AG AG	GAAG	GCGC1	r GG(CTG	CGAG	GGC	GCGA	GGG (CGCGI	AGGGCA		60
GGGG	GCA	ACC (GAC	CCCG	cc co	CAT	CC AT	et Al	la Pı	CC GT	rc go	CC GT La Va	rc ro	G GC	La		111
								-							-		
GCG	CTG	GCC	GTC	GGA	CTG	GAG	CTC	TGG	GCT	GCG	GCG	CAC	GCC	TTG	CCC		159
АТА	Leu	Ala	vai	-10	Leu	GIU	ьеu	пр	-5	нта	нта	пть	AIa	1	FIC		
												~~~			maa		
					ACA Thr												207
	0111	5					10					15			-2-		
CGG	CTC	AGA	AAD	тас	TAT	GAC	CAG	ACA	GCT	CAG	ATG	TGC	TGC	AGC	AAA		255
Arg	Leu	Arg	Glu	Tyr	Tyr	Asp	Gln	Thr	Ala	Gln	Met	Cys	Сув	Ser	Lys		
	20					25					30						
TGC	TCG	CCG	GGC	CAA	CAT	GCA	AAA	GTC	TTC	TGT	ACC	AAG	ACC	TCG	GAC		303
	Ser	Pro	Gly	Gln	His	Ala	Lys	Val	Phe	Cys 45	Thr	Lys	Thr	Ser	Asp 50		
35					40					45					50		
					TGT												351
Thr	Val	Cys	Asp	Ser 55	Cys	GIu	Asp	Ser	Thr 60	Tyr	Thr	GIN	Leu	65	ASI		
											_						
					TTG Leu												399
шр	vai	110	70	Cyb	Deu	001	CJD	75	001		0,2		80				
GTG	CVV	λСТ	CAA	GCC	TGC	ΔСТ	CGG	GAA	CAG	244	CGC	АТС	TGC	ACC	TGC		447
					Cys							Ile					
		85					90					95					
AGG	CCC	GGC	TGG	TAC	TGC	GCG	CTG	AGC	AAG	CAG	GAG	GGG	TGC	CGG	CTG		495
Arg		Gly	${\tt Trp}$	Tyr	Cys		Leu	Ser	Lys	Gln		Gly	Cys	Arg	Leu		
	100					105					110						
TGC	GCG	CCG	CTG	CGC	AAG	TGC	CGC	CCG	GGC	TTC	GGC	GTG	GCC	AGA	CCA		543
Cys	Ala	Pro	Leu	Arg	Lys	Cys	Arg	Pro	GIY	rne	GIA	val	Ата	arg	PTO		

125

140

591

145

GGA ACT GAA ACA TCA GAC GTG GTG TGC AAG CCC TGT GCC CCG GGG ACG

Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr

120

135

115

	Thr	TCA Ser		Asp			His		639
 	 150	 	 	155	 	 	160	 	
		ATC Ile							687
		ACC Thr							735
		ACA Thr 200							783
		AGC Ser							831
		AGC Ser							879
		GCC Ala							927
		CAG Gln							975
		CAC His 280							1023
		CAC His							1071
		TCG Ser							1119
		GCA Ala							1167
		GGG Gly							1215
		ACC Thr 360							1263

														GAC Asp 385		1311
														TTC Phe		1359
														ACC Thr		1407
														GAT Asp	GCT Ala	1455
			CCC Pro		TAA0	CCAGO	GCC (	GTGT	GGGG	T GT	rgtco	STAGO	C CA	AGGTO	GGC	1510
TGAG	CCCI	GG (	CAGGA	TGA	C CI	rgcgz	AAGGC	GC(	CTGC	TCC	TTC	CAGG	ccc o	CCAC	CACTAG	1570
GACI	CTGA	AGG (	CTCTI	TCT	G G	CAAC	TTCC	TC	AGTO	CCC	TCC	ACAGO	CCG (	CAGC	CTCCCT	1630
CTG	CCT	CA C	3													1641

#### (2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 461 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu -22
 Pro Val Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 10

 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 25

 Thr Ala Gln Met 30
 Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 40

 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 50

 Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 65

3ly 75	Ser	Arg	Cys	Ser	Ser 80	Asp	Gln	Val	Glu	Thr 85	Gln	Ala	Cys	Thr	Arg 90
3lu	Gln	Asn	Arg	Ile 95	Cys	Thr	Cys	Arg	Pro 100	Gly	Trp	Tyr	Cys	Ala 105	Leu
Ser	Lys	Gln	Glu 110	Gly	Cys	Arg	Leu	Cys 115	Ala	Pro	Leu	Arg	Lys 120	Cys	Arg
Pro	Gly	Phe 125	Gly	Val	Ala	Arg	Pro 130	Gly	Thr	Glu	Thr	Ser 135	Asp	Val	Val
Cys	Lys 140	Pro	Cys	Ala	Pro	Gly 145	Thr	Phe	Ser	Asn	Thr 150	Thr	Ser	Ser	Thr
Asp 155	Ile	Cys	Arg	Pro	His 160	Gln	Ile	Cys	Asn	Val 165	Val	Ala	Ile	Pro	Gly 170
Asn	Ala	Ser	Met	Asp 175	Ala	Val	Cys	Thr	Ser 180	Thr	Ser	Pro	Thr	Arg 185	Ser
Met	Ala	Pro	Gly 190	Ala	Val	His	Leu	Pro 195	Gln	Pro	Val	Ser	Thr 200	Arg	Ser
3ln	His	Thr 205	Gln	Pro	Thr	Pro	Glu 210	Pro	Ser	Thr	Ala	Pro 215	Ser	Thr	Ser
Phe	Leu 220	Leu	Pro	Met	Gly	Pro 225	Ser	Pro	Pro	Ala	Glu 230	Gly	Ser	Thr	Gly
Asp 235	Phe	Ala	Leu	Pro	Val 240	Gly	Leu	Ile	Val	Gly 245	Val	Thr	Ala	Leu	Gly 250
Leu	Leu	Ile	Ile	Gly 255	Val	Val	Asn	Сув	Val 260	Ile	Met	Thr	Gln	Val 265	Lys
Lys	Lys	Pro	Leu 270	Cys	Leu	Gln	Arg	Glu 275	Ala	Lys	Val	Pro	His 280	Leu	Pro
Ala	Asp	Lys 285	Ala	Arg	Gly	Thr	Gln 290	Gly	Pro	Glu	Gln	Gln 295	His	Leu	Leu
[le	Thr 300	Ala	Pro	Ser	Ser	Ser 305	Ser	Ser	Ser	Leu	Glu 310	Ser	Ser	Ala	Ser
Ala 315	Leu	Asp	Arg	Arg	Ala 320	Pro	Thr	Arg	Asn	Gln 325	Pro	Gln	Ala	Pro	Gly 330
Val	Glu	Ala	Ser	Gly 335	Ala	Gly	Glu	Ala	Arg 340	Ala	Ser	Thr	Gly	Ser 345	Ser
Asp	Ser	Ser	Pro	Gly	Gly	His	Gly	Thr	Gln	Val	Asn	Val	Thr	Cys	Ile

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 365 370 375

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 380 385 390

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 395 400 405 410

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 415 420 425

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 430 435

#### (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3813 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: mouse
  - (B) STRAIN: C57BL/6
  - (G) CELL TYPE: T-helper cell
  - (H) CELL LINE: 7B9
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 55..1479
- (ix) FEATURE:
  - (A) NAME/KEY: mat peptide
  - (B) LOCATION: 121..1476
- (ix) FEATURE:
  - (A) NAME/KEY: sig_peptide
  - (B) LOCATION: 55..120

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGC	AGCT	GAG (	GCAC'	raga(	GC T	CCAG	GCAC	A AG	GGCG	GGAG	CCA	CCGC'	rgc (	CCT	ATG Met -22	57
				CTC Leu												105
				ACA Thr												153
				TAC Tyr												201
				TGC Cys												249
				AAG Lys												297
				CAG Gln												345
				ACC Thr 80												393
				GTG Val												441
				GGC Gly												489
				GGA Gly												537
				TGT Cys												585
				AGG Arg 160												633

													CCA Pro 185			681
													CCC Pro			729
													CCA Pro			777
													ACC Thr			825
													TCA Ser			873
CTG Leu	CTG Leu	ATG Met	TTA Leu 255	GGA Gly	CTG Leu	GTG Val	AAC Asn	TGC Cys 260	ATC Ile	ATC Ile	CTG Leu	GTG Val	CAG Gln 265	AGG Arg	AAA Lys	921
													CAT His			969
													CAC His			1017
													TCA Ser			1065
													GCA Ala			1113
													TCC Ser 345			1161
													GTC Val			1209
													TGC Cys			1257
													TCA Ser			1305

Copied from 08346555 on 08/12/2008

			GAG TGT CCG TCT CAG Glu Cys Pro Ser Gln 410	1353
			CAT GAG AAG CCC TTG His Glu Lys Pro Leu 425	1401
			AGC CAA GCT GGC TGG Ser Gln Ala Gly Trp 440	1449
TTT GAT CAG ATT GCA Phe Asp Gln Ile Ala 445			rga caggggtaac	1496
ACCCTGCAAA GGGACCCC	CG AGACCCTGA	CCCATGGAAC	TTCATGACTT TTGCTGGATC	1556
CATTTCCCTT AGTGGCTT	CC AGAGCCCCA	TTGCAGGTCA	AGTGAGGGCT GAGACAGCTA	1616
GAGTGGTCAA AAACTGCC	AT GGTGTTTTA	GGGGGCAGTC	CCAGGAAGTT GTTGCTCTTC	1676
CATGACCCCT CTGGATCT	CC TGGGCTCTT	CCTGATTCTT	GCTTCTGAGA GGCCCCAGTA	1736
TTTTTCCTT CTAAGGAG	CT AACATCCTC	TCCATGAATA	GCACAGCTCT TCAGCCTGAA	1796
TGCTGACACT GCAGGGCG	GT TCCAGCAAG	r AGGAGCAAGT	GGTGGCCTGG TAGGGCACAG	1856
AGGCCCTTCA GGTTAGTG	CT AAACTCTTAG	GAAGTACCCT	CTCCAAGCCC ACCGAAATTC	1916
TTTTGATGCA AGAATCAG	AG GCCCCATCA	GCAGAGTTGC	TCTGTTATAG GATGGTAGGG	1976
CTGTAACTCA GTGGTCCA	GT GTGCTTTTA	CATGCCCTGG	GTTTGATCCT CAGCAACACA	2036
TGCAAAACGT AAGTAGAC	AG CAGACAGCA	ACAGCACAGC	CAGCCCCCTG TGTGGTTTGC	2096
AGCCTCTGCC TTTGACTT	IT ACTCTGGTG	G GCACACAGAG	GGCTGGAGCT CCTCCTCCTG	2156
ACCTTCTAAT GAGCCCTT	CC AAGGCCACG	CTTCCTTCAG	GGAATCTCAG GGACTGTAGA	2216
GTTCCCAGGC CCCTGCAG	CC ACCTGTCTC	TCCTACCTCA	GCCTGGAGCA CTCCCTCTAA	2276
CTCCCCAACG GCTTGGTA	CT GTACTTGCT	TGACCCCAAC	GTGCATTGTC CGGGTTAGGC	2336
ACTGTGAGTT GGAACAGC	TC ATGACATCG	TTGAAAGGCC	CACCCGGAAA CAGCTAAGCC	2396
AGCTCTTTTG CCAAAGGA	TT CATGCCGGT	TTCTAATCAA	CCTGCTCCCT AGCATTGCCT	2456
GGAAGGAAAG GGTTCAGG	AG ACTCCTCAA	AAGCAAGTTC	AGTCTCAGGT GCTTGGATGC	2516
CATGCTCACC GATTCCAC	TG GATATGAAC	T TGGCAGAGGA	GCCTAGTTGT TGCCATGGAG	2576
ACTTAAAGAG CTCAGCAC	TC TGGAATCAA	G ATACTGGACA	CTTGGGGCCG ACTTGTTAAG	2636
GCTCTGCAGC ATCAGACT	GT AGAGGGGAA	G GAACACGTCT	GCCCCTGGT GGCCCGTCCT	2696

Copied from 08346555 on 08/12/2008

GGGATGACCT	CGGGCCTCCT	AGGCAACAAA	AGAATGAATT	GGAAAGGATG	TICCIGGIG	2756
TGGCCTAGCT	CCTGTGCTTG	TGTGGATCCC	TAAAGGGTGT	GCTAAGGAGC	AATTGCACTG	2816
TGTGCTGGA	AGAATTCCTG	CTTATAAATG	CTTTTTGTTG	TTGTTTTGTA	CACTGAGCCC	2876
TGGCTGAGCC	ACCCCACCCC	ACCTCCCATC	CCACCTTTAC	ACGCCACTCT	TGCATGAGAA	2936
CCTGGCTGTC	TCCCACTTGT	AGCCTGTGGA	TGCTGAGGAA	ACACCCAGCC	AAGTAGACTC	2996
CAGGCTTGCC	CCTATCTCCT	GCTATGAGTC	TGGCCTCCTC	ATTGTGTTGT	GGGAAGGAGA	3056
CGGGTTCTGT	CATCTCGGAA	CGCCCACACC	GTGGATGTGA	ACAATGGCTG	TACTAGCTTA	3116
GACCAGCTTA	GGGCTCTGCA	TATCACAGGA	GGGGGAGCAG	GGAACAATTT	GAGTGCTGAC	3176
CTATAACACA	GTTCCTAAAG	GATCGGGCAG	TCCAGAATCT	CCTCCTTCAG	TGTGTGTGTG	3236
TGTGTGTGTG	TGTGTGTGTG	TGTGTGTGTG	TGTCCATGTT	TGCATGTATG	TGTGTGCCAG	3296
TGTGTGGAGG	CCCGAGGTTG	GCTTTGGGTG	TGTTTGATCA	CTCTCCAGTT	ACTGAGGCGG	3356
GCTCTCATCT	GTACCCAGAG	CTTGCACATT	TTCTAGTCTA	ACTTGATTCA	GGGATCTCTG	3416
TCTGCCTATG	GAGGTGCTCA	GGTTACAGGC	AGGCTGCCAT	ACCTGCCCGA	CATTTACATG	3476
AATACTAGAG	ATCTGAATTC	TGGTCCTCAC	ACTTGTATAC	CTGCATTTTA	TCCACTAAGA	3536
CATCTCTCCA	AGGGCTCCCC	CTTCCTATTT	AATAAGTTAG	TTTTGAACTG	GCAAGATGGC	3596
TCAGTGGGTA	AGGCAGTTTG	CGGACAAACC	TGATGACCTG	AGTTGGATCC	CTGACCATAA	3656
GGTAGAAGAG	ACCTGATTCC	TGCAAGTTGT	CCTCTGACCA	CCACCCCATA	CATGCTTCTG	3716
CATATGTGCA	CACATCACAT	TCTTGCACAC	ACACTCACAT	ACCATAAATG	TAATAAATTT	3776
mmmm x x mx x	A mmora mmmma	TOTOTOTO A A A A	*****			2012

#### (2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 474 amino acids
  - (B) TYPE: amino acid
    (D) TOPOLOGY: linear
  - (b) forobodi. Timear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Pro Ala Ala Leu Trp Val Ala Leu Val Phe Glu Leu Gln Leu -22 -20 -15.

Trp Ala Thr Gly His Thr Val Pro Ala Gln Val Val Leu Thr Pro Tyr
-5 1 5 10

Lys Pro Glu Pro Gly Tyr Glu Cys Gln Ile Ser Gln Glu Tyr Tyr Asp Arg Lys Ala Gln Met Cys Cys Ala Lys Cys Pro Pro Gly Gln Tyr Val Lys His Phe Cys Asn Lys Thr Ser Asp Thr Val Cys Ala Asp Cys Glu Ala Ser Met Tyr Thr Gln Val Trp Asn Gln Phe Arg Thr Cys Leu Ser 65 Cys Ser Ser Ser Cys Thr Thr Asp Gln Val Glu Ile Arg Ala Cys Thr Lys Gln Gln Asn Arg Val Cys Ala Cys Glu Ala Gly Arg Tyr Cys Ala Leu Lys Thr His Ser Gly Ser Cys Arg Gln Cys Met Arg Leu Ser Lys 110 Cys Gly Pro Gly Phe Gly Val Ala Ser Ser Arg Ala Pro Asn Gly Asn 130 Val Leu Cys Lys Ala Cys Ala Pro Gly Thr Phe Ser Asp Thr Thr Ser Ser Thr Asp Val Cys Arg Pro His Arg Ile Cys Ser Ile Leu Ala Ile 165 155 160 170 Pro Gly Asn Ala Ser Thr Asp Ala Val Cys Ala Pro Glu Ser Pro Thr 180 175 Leu Ser Ala Ile Pro Arg Thr Leu Tyr Val Ser Gln Pro Glu Pro Thr Arg Ser Gln Pro Leu Asp Gln Glu Pro Gly Pro Ser Gln Thr Pro Ser Ile Leu Thr Ser Leu Gly Ser Thr Pro Ile Ile Glu Gln Ser Thr Lys 220 230 Gly Gly Ile Ser Leu Pro Ile Gly Leu Ile Val Gly Val Thr Ser Leu 235 240 Gly Leu Leu Met Leu Gly Leu Val Asn Cys Ile Ile Leu Val Gln Arg 260 Lys Lys Lys Pro Ser Cys Leu Gln Arg Asp Ala Lys Val Pro His Val 270 275 280 Pro Asp Glu Lys Ser Gln Asp Ala Val Gly Leu Glu Gln Gln His Leu 285 290 295

Leu Thr Thr Ala Pro Ser Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala

Ser Ala Gly Asp Arg Arg Ala Pro Pro Gly Gly His Pro Gln Ala Arg 315 320 325 330

Val Met Ala Glu Ala Gln Gly Phe Gln Glu Ala Arg Ala Ser Ser Arg 335 340 345

Ile Ser Asp Ser Ser His Gly Ser His Gly Thr His Val Asn Val Thr 350 355 360

Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser

Ser Gln Ala Ser Ala Thr Val Gly Asp Pro Asp Ala Lys Pro Ser Ala 380 385

Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Gln Glu Glu Cys Pro Ser 395 400 405 405

Gln Ser Pro Cys Glu Thr Thr Glu Thr Leu Gln Ser His Glu Lys Pro 415 420 425

Leu Pro Leu Gly Val Pro Asp Met Gly Met Lys Pro Ser Gln Ala Gly 430  $\phantom{\bigg|}430$ 

Trp Phe Asp Gln Ile Ala Val Lys Val Ala 445 450

method of direct expression cloning. A cDNA library was constructed by first isolating cytoplasmic mRNA from the human fibroblast cell line WI-26 VA4. Polyadenylated RNA was isolated and used to prepare double-stranded cDNA. Purified cDNA fragments were then ligated into pCAV/NOT vector DNA which uses regulatory sequences derived from pDC201 (a derivative of pMLSV, previously described by Cosman et al., Nature 312:768, 1984), SV40 and cytomegalovirus DNA, described in detail below in Example 2. pCAV/NOT has been deposited with the American Type Culture Collection under accession No. ATCC 68014. The pCAV/NOT vectors containing the WI26-VA4 cDNA fragments were transformed into E. coli strain DH5a. Transformants were plated to provide approximately 800 colonies per plate. The resulting colonies were harvested and each pool used to prepare plasmid DNA for transfection into COS-7 cells essentially as described by Cosman et al. (Nature 312:768, 1984) and Luthman et al. (Nucl. Acid Res. 11:1295, 1983). Transformants expressing biologically active cell surface TNF receptors were identified by screening for their ability to bind 125I-TNF. In this screening approach. transfected COS-7 cells were incubated with medium containing 125I-TNF, the cells washed to remove unbound labeled TNF, and the cell monolayers contacted with X-ray film to detect concentrations of TNF binding, as disclosed by Sims et al, Science 241:585 (1988). Transfectants detected in this manner appear as dark foci against a relatively light background.

20

25

5

10

15

Using this approach, approximately 240,000 cDNAs were screened in pools of approximately 800 cDNAs until assay of one transfectant pool indicated positive foci for TNF binding. A frozen stock of bacteria from this positive pool was grown in culture and plated to provide individual colonies, which were screened until a single clone (clone 11) was identified which was capable of directing synthesis of a surface protein with detectable TNF binding activity. The sequence of cDNA clone 11 isolated by the above method is depicted in Figures 4-6.

Additional cDNA clones can be isolated from cDNA libraries of other mammalian species by cross-species hybridization. For use in hybridization, DNA encoding TNF-R may be covalently labeled with a detectable substance such as a fluorescent group, a

radioactive atom or a chemiluminescent group by methods well known to those skilled in the art. Such probes could also be used for in vitro diagnosis of particular conditions.

Like most mammalian genes, mammalian TNF receptors are presumably encoded by multi-exon genes. Alternative mRNA constructs which can be attributed to different mRNA splicing events following transcription, and which share large regions of identity or similarity with the cDNAs claimed herein, are considered to be within the scope of the present invention.

Other mammalian TNF-R cDNAs are isolated by using an appropriate human TNF-R DNA sequence as a probe for screening a particular mammalian cDNA library by cross-species hybridization.

#### Proteins and Analogs

The present invention provides isolated recombinant mammalian TNF-R polypeptides. Isolated TNF-R polypeptides of this invention are substantially free of other contaminating materials of natural or endogenous origin and contain less than about 1% by mass of protein contaminants residual of production processes. The native human TNF-R molecules are recovered from cell lysates as glycoproteins having an apparent molecular weight by SDS-PAGE of about 80 kilodaltons (kDa). The TNF-R polypeptides of this invention are optionally without associated native-pattern glycosylation.

Mammalian TNF-R of the present invention includes, by way of example, primate, human, murine, canine, feline, bovine, ovine, equine and porcine TNF-R. Mammalian TNF-Rs can be obtained by cross species hybridization, using a single stranded cDNA derived from the human TNF-R DNA sequence as a hybridization probe to isolate TNF-R cDNAs from mammalian cDNA libraries.

Derivatives of TNF-R within the scope of the invention also include various structural forms of the primary protein which retain biological activity. Due to the presence of ionizable amino and carboxyl groups, for example, a TNF-R protein may be in the form of acidic or basic salts, or may be in neutral form. Individual amino acid residues may also be modified by oxidation or reduction.

25

5

10

15

20

5

10

15

20

25

The primary amino acid structure may be modified by forming covalent or aggregative conjugates with other chemical mojeties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like, or by creating amino acid sequence mutants. Covalent derivatives are prepared by linking particular functional groups to TNF-R amino acid side chains or at the N- or C-termini. Other derivatives of TNF-R within the scope of this invention include covalent or aggregative conjugates of TNF-R or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugated peptide may be a signal (or leader) polypeptide sequence at the N-terminal region of the protein which co-translationally or post-translationally directs transfer of the protein from its site of synthesis to its site of function inside or outside of the cell membrane or wall (e.g., the yeast  $\alpha$ -factor leader). TNF-R protein fusions can comprise peptides added to facilitate purification or identification of TNF-R (e.g., poly-His). The amino acid sequence of TNF receptor can also be linked to the peptide Asp-Tyr-Lys-Asp-Asp-Asp-Lys (DYKDDDDK) (Hopp et al., Bio/Technology 6:1204, 1988.) The latter sequence is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody, enabling rapid assay and facile purification of expressed recombinant protein. This sequence is also specifically cleaved by bovine mucosal enterokinase at the residue immediately following the Asp-Lys pairing. Fusion proteins capped with this peptide may also be resistant to intracellular degradation in E. coli.

TNF-R derivatives may also be used as immunogens, reagents in receptor-based immunoassays, or as binding agents for affinity purification procedures of TNF or other binding ligands. TNF-R derivatives may also be obtained by cross-linking agents, such as M-maleimidobenzoyl succinimide ester and N-hydroxysuccinimide, at cysteine and lysine residues. TNF-R proteins may also be covalently bound through reactive side groups to various insoluble substrates, such as cyanogen bromide-activated, bisoxirane-activated, carbonyldiimidazole-activated or tosyl-activated agarose structures, or by adsorbing to polyolefin surfaces (with or without glutaraldehyde cross-linking). Once bound to a substrate, TNF-R may be used to selectively bind (for purposes of assay or

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
$\square$ image cut off at top, bottom or sides	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
$\square$ reference(s) or exhibit(s) submitted are poor quality	
□ OTHER:	

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.