Automata dan Teori Bahasa

Pertemuan 2.3 Formal Language

Formal Language

 Adalah sekumpulan kata, yaitu string simbol terbatas yang diambil dari alfabet untuk mendefinisikan bahasa.

Jika

- $\Sigma_1 = \{ 0, 1 \}$
- $\Sigma_2 = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$
- $\Sigma_3 = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F \}$
- $\Sigma_4 = \{ a, b, c, \ldots, z \}$

Maka

- $1010 \in \Sigma_1$
- $123 \in \Sigma_2$
- hello $\in \Sigma_4$

Notasi

- ε : empty string
- v, w, x, y, z, : denote strings

Panjang

- |w | adalah panjang dari w
 - |a| = 1
 - |125| = 3
 - $|\mathbf{s}| = 0$

k-th power

- $\Sigma^k = \{a_1 \cdot \cdot \cdot a_k \mid a_1, \ldots, a_k \in \Sigma\}$
 - $\Sigma^0 = \{\varepsilon\}$ for any Σ
 - $\Sigma_1^1 = \{0, 1\}$
 - $\Sigma_1^2 = \{00, 01, 10, 11\}$

Kleene closures

$$\Sigma^* \stackrel{\text{def}}{=} \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots = \bigcup_{i=0}^{\infty} \Sigma^i$$

$$\Sigma^+ \stackrel{\text{def}}{=} \Sigma^* \setminus \{\varepsilon\} = \bigcup_{i=1}^{\infty} \Sigma^i$$

String operations

- Concatenation → dibagi menjadi
- Substring → bagian dari
- Prefix → berada di awal
- Suffix → berada di akhir

Operasi pada Language

- $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$
- $\overline{L_1} = \{ w \in \Sigma_1^* \mid w \not\in L_1 \}$
- $L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$
- $L_1^* = \{\varepsilon\} \cup L_1 \cup L_1^2 \cup \cdots$
- $L_1 \cap L_2 = \{ w \mid w \in L_1 \land w \in L_2 \}$

Grammar

- Rule : Subject → Verb → Object
 - Subject : Saya, Dia, Mereka
 - Verb : Makan, Membeli, Menjual
 - Object : Jeruk, Semangka

Grammar dalam Tuple

- Tuple G = (V , T , S, P)
 - V is a finite, non-empty set of symbols called variables (or non-terminals or syntactic categories)
 - T is an alphabet of symbols called terminals
 - $-S \in V$ is the start (or initial) symbol of the grammar
 - P is a finite set of productions α → β where α ∈ (V ∪T) + and β ∈ (V ∪ T) +

- V = {Sentence, Subject, Verb, Object},
- T = {I, You, Eat, Buy, Pen, Apple},
- S = {Sentence},
- P = {Sentence → Subject Verb Object, Subject → I | You, Verb → Eat | Buy, Object → Pen | Apple}

Notasi

- A, B, C, ... $\in V$ represent non-terminal symbols
- $a, b, c, \ldots \in T$ represent terminal symbols
- $X, Y, Z, \ldots \in V \cup T$ represent generic symbols
- $u, v, w, x, \ldots \in T^*$ are strings over T
- α , β , γ , δ , ... \in $(V \cup T)^*$ are strings over $V \cup T$

- Grammar G1 ({S, A, B}, {a, b}, S, {S \rightarrow AB, A
 - \rightarrow a, B \rightarrow b})
 - S, A, and B are Non-terminal symbols;
 - a and b are Terminal symbols
 - S is the Start symbol, $S \in V$
 - Productions, P: S → AB, A → a, B → b

- Grammar G2 (({S, A}, {a, b}, S,{S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow ϵ })
 - S and A are Non-terminal symbols.
 - a and b are Terminal symbols.
 - ε is an empty string.
 - S is the Start symbol, $S \in N$
 - Production P : S → aAb, aA → aaAb, A → ε

Derivations

- String dapat diturunkan dari string lain menggunakan produksi dalam Grammar.
- Jika grammar G memiliki production α → β, kita dapat mengatakan bahwa x α y menurunkan x β y dalam G.
- $x \alpha y \Rightarrow G \times \beta y$

- G2 = ({S, A}, {a, b}, S, {S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow ϵ })
 - S ⇒ aAb using production S → aAb
 - ⇒ aaAbb using production aA → aAb
 - \Rightarrow aaaAbbb using production aA \rightarrow aAb
 - ⇒ aaabbb using production A → ε

Klasifikasi Grammar

General no restrictions

Monotone $\alpha \to \beta \Rightarrow |\alpha| \le |\beta|$

Context-dependent $\gamma A \delta \rightarrow \gamma \beta \delta$

Context-free $A \rightarrow \beta$

Linear $A \rightarrow uBv$

Right-Linear $A \rightarrow wB$

Left-Linear $A \rightarrow Bw$

Derived Grammar

 Bahasa yang dihasilkan oleh Grammar G adalah subset yang ditentukan secara formal oleh :

```
- L(G)={W|W ∈ \Sigma^*, S ⇒G W}
```

- G: N = {S, A, B} T = {a, b} P = {S \rightarrow AB, A \rightarrow a, B \rightarrow b}
- Here S produces AB, and we can replace A by a, and B by b. Here, the only accepted string is ab,
- $L(G) = {ab}$

- G: N = {S, A, B} T = {a, b} P = {S \rightarrow AB, A \rightarrow aA|a, B \rightarrow bB|b}
- $L(G) = \{ab, a^2b, ab^2, a^2b^2, \dots \}$
 - $= \{a^m b^n \mid m \ge 1 \text{ and } n \ge 1\}$

- S \rightarrow aS, S \rightarrow B, B \rightarrow b and B \rightarrow bB
- S → B → b (Accepted)
- S → B → bB → bb (Accepted)
- S → aS → aB → ab (Accepted)
- S \rightarrow aS \rightarrow aaS \rightarrow aaB \rightarrow aab(Accepted)
- S \rightarrow aS \rightarrow aB \rightarrow abB \rightarrow abb (Accepted)

Klasifikasi Chomsky

Chomsky	Grammars	Automata	Languages
Type-0	unrestricted	Turing	L ₀ : recursively enumerable ^a
Type-1	context-	linear-	L_1 : context-sensitive $^c(a^nb^nc^n)$
	sensitive	bounded b	
Type-2	context-free	pushdown	L_2 : context-free ^d (a^nb^n)
Type-3	r./Ilinear	finite-state	L_3 : regular ^e $(a^n b^m)$

$$L_3 \subset L_2 \subset L_1 \subset L_0 \subset \wp(T^*)^f$$