

Andres Diaz-Pinto on behalf of MONAI Label Team (NVIDIA & KCL)
June 2021

Outline:

- What is MONAI Label?
- Why use MONAI Label?
- How to create a MONAI Label App?
- Demo Only training, only Inference, and both

What is MONAl Label?

- An intelligent open source image labeling and learning tool that enables users to create annotated datasets and build AI annotation models for clinical evaluation
- Framework for developing and deploying MONAILabel Apps to train and infer AI models
- Compositional & portable APIs for ease of integration in existing workflows
- Customizable design for varying user expertise
- 3D slicer support

MONAI Label Infrastructure

Why use MONAI Label?

- Researcher Perspective: MONAI Label allows researchers to
 - create new annotation methods
 - involve active learning techniques
 - verify their effectiveness in real-world scenarios
 - make incremental improvements
 - readily deploy labeling apps to wider audiences
- Clinician Perspective: MONAI Label reduces the time and effort of annotating new datasets
 - Ready-to-use 3DSlicer plugin

How to create a MONAI Label App?

- Define the spatial/intensity transforms to preprocess images for training and inference
- Define the active learning technique use in the labeling app
- Define neural network architecture
- Preprocess points, ROI, closed curve, or any input sent to the MONAI Label server through the REST API

Researchers can also use <u>sample apps</u> (i.e. DeepGrow, DeepEdit and UNet) to jumpstart the development of their own custom labeling apps

For more details check out <u>our tutorial</u>

```
✓ ■ deepedit_brain_tumor

✓ □ lib

⑤ __init__.py
⑥ activelearning.py
⑥ infer.py
⑥ train.py
⑥ transforms.py

➤ model
⑤ info.yaml
⑥ main.py
⑥ requirements.txt
⑥ test.py
```

Demo - Brain Tumor

Demo - Left Atrium

Demo - Spleen

Demo - Vertebra

If needed, create custom Slicer Module to interact with the MONAI Label App.

How does MONAI Label help clinicians to save time on image annotation? - Using Spleen MSD dataset

ANNOTATION TIME COMPARISON

	Total Volumes Annotated	Equivalent Manual Annotation Time (Basic: Paint Brush)	Equivalent Manual Annotation Time (Advanced: Contour based)	Manual + Al Annotation Time per 3D volume spent by User	Total Annotation Time Spent by User	Training Time (DeepGrow 2D + 3D)	Validation Dice Score DeepgGrow 2D	Validation Dice Score DeepgGrow 3D
Stage 1	11	275 mins	137.5 mins	~25 mins	275 mins	90 mins	0.891	0.730
Stage 2	16	400 mins	200 mins	~6 - 7.5 mins	305 mins	135 mins	0.924	0.873
Stage 3	26	650 mins	325 mins	~3.5 - 5 mins	340 mins	250 mins	0.948	0.945
Stage 4	36	900 mins	450 mins	~1 - 2.5 mins	350 mins	360 mins	0.967	0.959

^{**} Please note that all Dice Scores are reported on a fixed validation split which has 6 3D volumes. The 6 volumes are included in 'Total Volumes Annotated'

^{**} Basic: A single paint-brush annotation takes ~25 mins per 3D CT Volume for Spleen

^{**} Advanced: A single paint-brush annotation takes ~12.5 mins per 3D CT Volume for Spleen

Further work:

- Multilabel support
- Multimodality support
- Multiple apps under single server
- Modality agnostic App using heuristic fingerprint algorithm
- Few-shot and self-supervised learning

Thanks!