Congruences, arithmétique modulaire

1. Activité d'introduction

On prend un médicament toutes les 5 heures. On commence à midi.

- Donner la liste des prochains horaires auxquels il faut prendre le médicament.
- Finira-t-on par prendre le médicament à toutes les heures du jour et de la nuit ?
- Mêmes questions si on prend le médicament toutes les 3 heures.

2. La théorie

2.1. Définition

Soit *n* un entier supérieur ou égal à 2 et *a* et *b* deux entiers relatifs.

On dit que a et b sont congrus modulo n si a et b ont le même reste dans la division euclidienne par n. On note : a = b[n] ou parfois $a = b \pmod{n}$

La définition est équivalente à l'une de ces phrases :

- a-b est un multiple de n
- Il existe un entier relatif k tel que a-b=kn.

2.2. Exemples

Les deux premiers exemples sont fondamentaux.

21≡21[5] (un nombre est toujours congru à lui-même)

21≡1[5] (un nombre est toujours congru à son reste)

21≡6[5] mais aussi à 11, 16... de 5 en 5 (tjrs le même reste, seul q change)

2.3. Remarques

- La notation [n] ou (mod n) ne correspond pas à une opération :
 il ne faut pas confondre « modulo » et « modulo » !
 La confusion vient du fait que le reste de la division euclidienne de x
 par y est donnée dans certains langages de programmation par l'écriture
 x % y et se lit « x modulo y ».
- S'il n'y a pas ambiguïté sur le n, on peut omettre le « [n] ».

$$n=0[2] <=> n \text{ est } ... ; n=1[2] <=> n \text{ est } ... ; a=0[p] <=> a \text{ est} ...$$

2.4. Deux exercices classiques

- 1) Montrer que 12≡166[7].
- 2) Donner le plus petit entier positif congru à 183 modulo 6.

2.5. Propriétés

Les propriétés sont données modulo n.

2.5.1. Symétrie : Si a = b, alors b = a.

2.5.2. Transitivité : Si $a \equiv b$ et $b \equiv c$, alors $a \equiv c$.

2.5.3. Règles de réduction, ou de compatibilité

Si a, a', b et b' sont des entiers tels que $a \equiv a'$ et $b \equiv b'$, alors on a :

$$a+b\equiv a'+b'$$
 $a-b\equiv a'-b'$ $a\times b\equiv a'\times b'$ $a^k\equiv a'^k$ pour k entier

2.5.4. Finalement

La congruence peut être considérée comme une sorte d'égalité, mais plus faible que celle que l'on connaît. On peut dire qu'on cache dans \equiv les multiples de n.