Kvantni algebrajski učinki

Luna Strah

9. 9. 2022

mentor: doc. dr. Matija Pretnar

Motivacija

Motivacija

Kvantno programiranje

Enakost programov

Motivacija

Kvantno programiranje

- Enakost programov
- · Novi problemi za teorijo programskih jezikov

Pregled

- 1. Kvantno računalništvo
- 2. Interpretacije operacij
- 3. Polnost

Kvantni vektorji

Definicija (Binarni vektorji)

Binarni vektorji so elementi množice $\mathbf{B}_n \coloneqq \{0,1\}^n$ in jih pišemo kot nize.

Primer: $\mathbf{B}_2 = \{\mathbf{00}, \mathbf{01}, \mathbf{10}, \mathbf{11}\}.$

Kvantni vektorji

Definicija (Binarni vektorji)

Binarni vektorji so elementi množice $\mathbf{B}_n \coloneqq \{0,1\}^n$ in jih pišemo kot nize.

Primer: $\mathbf{B}_2 = \{\mathbf{00}, \mathbf{01}, \mathbf{10}, \mathbf{11}\}.$

Definicija (Kvantni prostor)

Kvantni vektorji (nadaljnje vektorji) so elementi prostora

 $\mathbf{H}_n := \mathbb{C}^{2^n}$. Kubiti so elementi $\mathbf{H} := \mathbf{H}_1$. Če je $\{e_i\}$ standardna baza \mathbf{H}_n pišemo $|j\rangle := e_j$.

Očitno je $\mathbf{H}_n = \mathcal{L}_{\mathbb{C}}(\{|j\rangle \mid j \in \mathbf{B}_n\}).$

Primer (n = 1)

$$a = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = a_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a_0 |\mathbf{0}\rangle + a_1 |\mathbf{1}\rangle.$$

Primer (n=1)

$$a = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = a_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a_0 |\mathbf{0}\rangle + a_1 |\mathbf{1}\rangle.$$

Primer (n=2)

$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} = a_{00} |\mathbf{00}\rangle + a_{01} |\mathbf{01}\rangle + a_{10} |\mathbf{10}\rangle + a_{11} |\mathbf{11}\rangle.$$

Primer (n=1)

$$a = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = a_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a_0 |\mathbf{0}\rangle + a_1 |\mathbf{1}\rangle.$$

Primer (n=2)

$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a \end{bmatrix} = \begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a \end{bmatrix} = a_{00} |\mathbf{00}\rangle + a_{01} |\mathbf{01}\rangle + a_{10} |\mathbf{10}\rangle + a_{11} |\mathbf{11}\rangle.$$

Primer

$$\mathbf{h} \coloneqq \rho \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \rho \left(|\mathbf{0}\rangle + |\mathbf{1}\rangle \right), \quad \mathbf{h}_n \coloneqq \rho^n \sum_{j \in \mathbf{B}_n} |j\rangle \,, \quad \rho \coloneqq \frac{1}{\sqrt{2}}.$$

Tenzorski produkt

Definicija (Tenzorski produkt)

Tenzorski produkt prostorov \mathbf{H}_m in \mathbf{H}_n je enak \mathbf{H}_{m+n} .

 $\check{\mathsf{Ce}} \; \mathsf{sta} \; a \in \mathbf{H}_m \; \mathsf{in} \; b \in \mathbf{H}_n \; \mathsf{je} \; a \otimes b \in \mathbf{H}_m \otimes \mathbf{H}_n = \mathbf{H}_{m+n}.$

Tenzorski produkt

Definicija (Tenzorski produkt)

Tenzorski produkt prostorov \mathbf{H}_m in \mathbf{H}_n je enak \mathbf{H}_{m+n} . Če sta $a \in \mathbf{H}_m$ in $b \in \mathbf{H}_n$ je $a \otimes b \in \mathbf{H}_m \otimes \mathbf{H}_n = \mathbf{H}_{m+n}$.

Primer (n = m = 1)

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{bmatrix}$$

Posledica

$$\left|j\right\rangle \otimes \left|k\right\rangle = \left|j\right\rangle \left|k\right\rangle = \left|jk\right\rangle, \quad a \otimes b = \sum_{\substack{j \in \mathbf{B}_n, \\ k \in \mathbf{B}_m}} a_j b_k \left|jk\right\rangle$$

Unitarna vrata

Definicija (Unitarna vrata)

Unitarna vrata reda n so unitarne matrike dimenzije 2^n .

Unitarna vrata

Definicija (Unitarna vrata)

Unitarna vrata reda n so unitarne matrike dimenzije 2^n . Tenzorski produkt $U \otimes V = [u_{jk}V]_{j,k}$ uporabljen na $a \otimes b$ je enak $Ua \otimes Vb$.

Primer (Tenzorski produkt unitarnih vrat)

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \otimes B = \begin{bmatrix} a_{00}B & a_{01}B \\ a_{10}B & a_{11}B \end{bmatrix}.$$

Blochova sfera

Kubit a predstavimo kot točko v \mathbb{S}^2 z identifikacijo:

$$a = \cos \frac{\theta}{2} |\mathbf{0}\rangle + e^{i\varphi} \sin \frac{\theta}{2} |\mathbf{1}\rangle$$

Primer (Paulijeve matrike)

To so matrike rotacije okrog osi na Blochovi sferi:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Velja $X^2 = Y^2 = Z^2 = I_2$.

Primer (Paulijeve matrike)

To so matrike rotacije okrog osi na Blochovi sferi:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Velja
$$X^2 = Y^2 = Z^2 = I_2$$
.

Primer (Paulijeve matrike)

Kvantna meritev

Definicija (Kvantna meritev)

Meritev kubita $a=a_0\,|{\bf 0}\rangle+a_1\,|{\bf 1}\rangle$ označimo M(a) in je 0 z verjetnostjo $|a_0|^2$ in 1 z verjetnostjo $|a_1|^2$. To "uniči" kubit a.

Kvantna meritev

Definicija (Kvantna meritev)

Meritev kubita $a=a_0\,|{\bf 0}\rangle+a_1\,|{\bf 1}\rangle$ označimo M(a) in je 0 z verjetnostjo $|a_0|^2$ in 1 z verjetnostjo $|a_1|^2$. To "uniči" kubit a.

Primer (Pogojna uporaba vrat)

if measure(a) = 0 then Ub else Vb

Kvantna kontrola

Definicija

Kontrola "na ena".

$$C_{r,s}(U) \left| j \right\rangle = \begin{cases} \left| j \right\rangle &; \quad j_r = 0 \\ \left| j_1 \dots \right\rangle \left| U j_s \right\rangle \left| \dots j_n \right\rangle &; \quad j_r = 1 \end{cases}$$

Posebej za $U \in U_2$ označimo $\mathbf{c}U \coloneqq C_{1,2}(U) = D(\mathbf{I}_2, \mathbf{U}).$

Primer (Pogojna uporaba vrat)

if $\underline{\mathsf{measure}}(a) = 0$ then (a, Ub) else (a, Vb)

Opazljivke

Definicija

Opazljivka je sebi-adjungiran operator na prostoru \mathbf{H}_n oziroma $2^n \times 2^n$ hermitska matrika.

Opazljivke

Definicija

Opazljivka je sebi-adjungiran operator na prostoru \mathbf{H}_n oziroma $2^n \times 2^n$ hermitska matrika.

Definicija

Rezultati meritve opazljivke v stanju u je ena od lastnih vrednosti λ_j z verjetnostjo $|P_{\lambda_j}u|^2$, stanje u se pa po meritvi spremeni v izmerjeno stanje, torej $P_{\lambda_j}u$.

Jezik

Definicija

 $\label{eq:constraint} \mbox{\'elenost je oblike } (p \mid m_1,...,m_k) \mbox{, kjer so } p,m_i \in \mathbb{N}.$

Neformalno členost pove, da operacija $\mathbf{0}$ sprejme p parametrov in k računskih spremenljivk, kjer i-ta sprejme m_i parametrov. Pišemo $\mathbf{0}:(p\mid m_1,...,m_k)$.

Jezik

Definicija

 $\label{eq:continuous} \mbox{\'Clenost je oblike } (p \mid m_1,...,m_k) \mbox{, kjer so } p,m_i \in \mathbb{N}.$

Neformalno členost pove, da operacija $\mathbf{0}$ sprejme p parametrov in k računskih spremenljivk, kjer i-ta sprejme m_i parametrov. Pišemo $\mathbf{0}:(p\mid m_1,...,m_k)$.

Definicija

Interpretacija operacije s členostjo $(p \mid m_1,...,m_k)$ je preslikava oblike $\mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}$.

C^* -algebre

Definicija

Množica A je C^* -algebra, če:

- (a) je Banachova ℂ-algebra z enoto,
- (b) ima involucijo $(-)^*$,
- (c) za vsak $a \in A$ velja $||a||^2 = ||a^*a||$.

Primer

Množice $\mathbf{M}_n \coloneqq M_n(\mathbb{C})$ so C^* -algebre.

Definicija

Preslikava $f:A\to B$ je *-homomorfizem, če je linearna in ohranja množenje, enoto, ter involucijo.

Osnovne operacije

Definicija

Meritev in uporabo vrat interpretiramo z *-homomorfizmoma measure : $\mathbf{M}_1 \oplus \mathbf{M}_1 \to \mathbf{M}_2$ in apply $_{\mathbf{U}}: \mathbf{M}_{2^p} \to \mathbf{M}_{2^p}$, s predpisoma

$$\mathsf{measure}(\alpha,\beta) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \qquad \mathsf{apply}_{\mathsf{U}}(A) = U^*AU.$$

Polnost

Izrek (Polnost v posebnem)

- 1. Za vsak *-homomorfizem $f: \mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}$ obstaja izraz v algebrajski teoriji, ki ne vsebuje operacije new, tako da je $x_1: m_1, ..., x_k: m_k \mid a_1, ..., a_p \vdash t$ in $[\![t]\!] = f$.
- 2. Če $\Gamma \mid \Delta \vdash t, u$ ne vsebujeta \mathbf{new} in $[\![t]\!] = [\![u]\!]$ lahko izpeljemo $\Gamma \mid \Delta \vdash t = u$.

Dodeljevanje novih kubitov

Definicija

Dodeljevanje novih kubitov interpretiramo kot linearno preslikavo new : $\mathbf{M}_2 \to \mathbf{M}_1$, s predpisom

$$\operatorname{new}\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \alpha_{11}.$$

Dodeljevanje novih kubitov

Definicija

Dodeljevanje novih kubitov interpretiramo kot linearno preslikavo new : $\mathbf{M}_2 \to \mathbf{M}_1$, s predpisom

$$\operatorname{new}\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \alpha_{11}.$$

Definicija

Element x C^* -algebre je pozitiven, če obstaja kak element y, da je $x=y^*y$.

Definicija

Preslikava f je popolnoma pozitivna, če za vsak $k \in \mathbb{N}$ preslikava $M_k(f)$ ohranja pozitivnost elementov.

Polnost 2: Electric boogaloo

Izrek (Polnost v splošnem)

- 1. Za vsako linearno preslikavo $f: \mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}$, ki je popolnoma pozitivna in enotska, obstaja izraz v algebrajski teoriji, tako da je $t: (p \mid m_1, ..., m_k)$ in $[\![t]\!] = f$.
- 2. Če $\Gamma \mid \Delta \vdash t, u$ in $[\![t]\!] = [\![u]\!]$ lahko izpeljemo $\Gamma \mid \Delta \vdash t = u$.

Dokaz

Izrek (Stinespringov izrek o dilaciji)

Naj bo $f:\mathcal{A}\to\mathbf{M}_p$ popolnoma pozitivna in naj ohranja enoto. Tedaj obstaja $q\geq p$ in *-homomorfizem $g:\mathcal{A}\to\mathbf{M}_q$, tako da je $f(A)=g(A)|_p$.

Aksiomi

(A) Kvantna negacija pred meritvijo je negacija po meritvi.

(B) Kvantna kontrola je po meritvi kot klasična kontrola.

- (C) Kvantna vrata uporabljena na zavrženih kubitih so odveč.
- (D) Novi kubiti so $|0\rangle$ glede na meritev.

(E) Novi kubiti so $|0\rangle$ glede na kontrolo.

(...) Plus še sedem manj zanimivih akisomov.

Uporaba

$$\begin{array}{lll} (\nu a. \, x(a)) \, ?_b \, (\nu a. \, \mathsf{X}_a(x(a))) \\ = & \nu a. \, x(a) \, ?_b \, \mathsf{X}_a(x(a)) & \text{komutativnost} \\ = & \nu a. \, \mathsf{CX}_{b,a}(x(a) \, ?_b \, x(a)) & (2) \\ = & \nu a. \, \mathsf{CX}_{b,a}(\mathsf{disc}_b(x(a))) & \\ = & \nu a. \, \mathsf{CX}_{a,b}(\mathsf{CX}_{b,a}(\mathsf{disc}_a(x(b)))) & \\ = & \nu a. \, \mathsf{CX}_{b,a}(\mathsf{disc}_a(x(b))) & (5) \\ = & \nu a. \, \mathsf{Had}_a(\mathsf{CZ}_{a,b}(\mathsf{Had}_a(\mathsf{disc}_a(x(b))))) & \\ = & \nu a. \, \mathsf{Had}_a(\mathsf{CZ}_{a,b}(\mathsf{disc}_a(x(b)))) & (3) \\ = & \nu a. \, \mathsf{Had}_a(x(b) \, ?_a \, \mathsf{Z}_b(x(b))) & (2) \\ \end{array}$$