

QUAD 3-STATE BUFFERS

TRUTH TABLES

LS125A

INP	UTS	
Е	D	OUTPUT
L	L	L
L	Н	Н
Н	Х	(Z)

LS126A

INPUTS		
Е	D	OUTPUT
Н	L	L
Н	Н	Н
L	Х	(Z)

L = LOW Voltage Level H = HIGH Voltage Level X = Don't Care

(Z) = High Impedance (off)

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	54 74			12 24	mA

SN54/74LS125A SN54/74LS126A

QUAD 3-STATE BUFFERS LOW POWER SCHOTTKY

SN54/74LS125A • SN54/74LS126A

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits							
Symbol	Parameter		Min Typ Max		Unit	Test Conditions			
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/	Input LOW Voltage	54			0.7	٧	Guaranteed In	put LOW Voltage for	
VIL	Input LOW Voltage	74			0.8	1 '	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _I	N = -18 mA	
V	0 ((111011)/ 15		2.4			V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = \		
VOH	Output HIGH Voltage	74	2.4			V	or V _{IL} per Truth Table		
Va	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 12 \text{ mA}$ $V_{CC} = V_{CC} \text{ M}$	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOW Voltage	74		0.35	0.5	V		per Truth Table	
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, \	/ _{OUT} = 2.4 V	
lozL	Output Off Current LOW				-20	μΑ	V _{CC} = MAX, \	/ _{OUT} = 0.4 V	
l	Innut IIICI I Current				20	μΑ	V _{CC} = MAX, \	/ _{IN} = 2.7 V	
lΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, \	/ _{IN} = 7.0 V	
IIL	Input LOW Current				-0.4	mA	V _{CC} = MAX, \	/ _{IN} = 0.4 V	
los	Short Circuit Current (Note	1)	-40		-225	mA	V _{CC} = MAX		
1	Dawer Cumby Cument	LS125A			20		V MAY	V _{IN} = 0 V, V _E = 4.5 V	
lcc	Power Supply Current LS126A				22	mA	$V_{CC} = MAX$ $V_{IN} = 0 \text{ V}, V_{E} = 4.5 \text{ V}$ $V_{IN} = 0 \text{ V}, V_{E} = 0 \text{ V}$		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

	Parameter			Limits				
Symbol			Min	Тур	Max	Unit	Test Conditions	
tPLH		LS125A		9.0	15			V _{CC} = 5.0 V C _L = 45 pF R _L = 667 Ω
tPLH	Propagation Delay,	LS126A		9.0	15]	Figure 2	
t _{PHL}	Data to Output	LS125A		7.0	18	ns		
t _{PHL}		LS126A		8.0	18]		
4	Output Enable Time	LS125A		12	20	ns	Figures 4, 5	
^t PZH	to HIGH Level	LS126A		16	25			
	Output Enable Time	LS125A		15	25		ns Figures 3, 5	
^t PZL	to LOW Level	LS126A		21	35	ns		
	Output Disable Time	LS125A			20		Figures 4, 5	V _{CC} = 5.0 V C _L = 5.0 pF R _L = 667 Ω
^t PHZ	from HIGH Level	LS126A			25	ns		
	Output Disable Time	LS125A			20	ns		
^t PLZ	from LOW Level	LS126A			25		Figures 3, 5	

SN54/74LS125A • SN54/74LS126A

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

SWITCH POSITIONS

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
tPLZ	Closed	Closed
^t PHZ	Closed	Closed

Case 751A-02 D Suffix 14-Pin Plastic **SO-14**

NOTES:

- DIMENSIONS "A" AND "B" ARE DATUMS AND
 "T" IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD
- PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- 751A-01 IS OBSOLETE, NEW STANDARD 751A-02.

	MILLIM	ETERS	INC	HES	
DIM	MIN MAX		MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Case 632-08 J Suffix 14-Pin Ceramic Dual In-Line

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14-5M, 1982.

 C CONTROLLING DIMENSION: INCH.

 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

 5. 632-01 THRU-07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.94	0.750	0.785	
В	6.23	7.11	0.245	0.280	
С	3.94	5.08	0.155	0.200	
D	0.39	0.50	0.015	0.020	
F	1.40	1.65	0.055	0.065	
G	2.54	BSC	0.100 BSC		
J	0.21	0.38	0.008	0.015	
K	3.18	4.31	0.125	0.170	
L	7.62 BSC		0.300 BSC		
M	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

Case 646-06 N Suffix 14-Pin Plastic

- NOTES:
 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE TO STATE OF THE ST
- FLASH
- ROUNDED CORNERS OPTIONAL. 646-05 OBSOLETE, NEW STANDARD 646-06.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	18.16	19.56	0.715	0.770	
В	6.10	6.60	0.240	0.260	
С	3.69	4.69	0.145	0.185	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
М	0°	10°	0°	10°	
N	0.39	1.01	0.015	0.039	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.