Yuanchao Xu

★ https://yuanchaoxu6.github.io/ | □(+1)919-884-0400 | ■ yxu47@ncsu.edu

Education _

North Carolina State University

Ph.D. in Computer Science; Advisors: Dr. Xipeng Shen and Dr. Yan Solihin

Tsinghua University

M.E. in Computer Science; Advisor: Dr. Wei Xue

Jilin University

B.E. in Software Engineering; Ranking: 3/332

Raleigh, North Carolina, USA
Aug. 2018 - Present
Beijing, China
Aug. 2015 - Jul. 2018
Changchun, Jilin, China
Aug. 2011 - Jul. 2015

Research Experience _

Computer Science Department, North Carolina State University

Raleigh, NC, USA

Research Assistant; Advisors: Dr. Xipeng Shen and Dr. Yan Solihin

Aug. 2018 - Present

• Memory Exposure Reduction and Randomization for Persistent Memory Objects (ASPLOS 2020)

- Proposed a new approach to reduce memory disclosure/corruption vulnerabilities by reducing memory exposure time using attachment and detachment of a persistent memory object (PMO).
- Designed a novel hardware support to efficiently attach/detach by embedding a page table subtree into a PMO.
- Designed an architecture support for providing process-specific PMO-wide permission.

• Hardware Domain Virtualization for Intra-process Isolation of Persistent Memory Objects (ISCA 2020)

- Proposed to improve security of PMOs from memory attacks by assigning each attached PMO to a protection domain, providing intra-process isolation of PMOs
- Designed an architecture support for efficient memory protection key (MPK) virtualization, which supports a large number of domains sharing a limited number of protection keys.
- Designed an architecture support for domain virtualization, which manages per-thread permission directly on domains, completely removing the mapping of domains to a limited number of keys.

• Temporal Exposure Reduction-Based Protection for Persistent Memory (HPCA 2022)

- Explored and formalizing semantics of temporal exposure reduction protection (TERP).
- Designed compiler and runtime system support to reduce TERP adoption difficulty

• User-transparent Legacy Code Support for Persistent Memory (ISCA 2021)

- Designed the sound persistent reference analysis, providing accurate analysis on various pointer manipulations.
- Designed simple and efficient architecture support to assist pointer distinguishing and manipulation.

• Hardware-Based Address-Centric Acceleration of Key-Value Store (HPCA 2021)

- Designed an address-centric accelerator with hardware and software support to reduce address translation overhead in key-value store systems.
- Leveraged the opportunities on the new tradeoffs between hashing complexities and overhead.

Google Sunnyvale, CA, USA

Research Intern & Student Researcher; Mentors: Dr. David E. Culler and Dr. Ravi Rajwar

May. 2021 - Present

Persistent Memory Enabling Transformative System Sesign Simplification

- Designed efficient execution environment to fully utilize low latency durability from persistent memory.
- Abstracted interfaces from various application durable models to simply port applications by using our execution environment.

Future Technologies Group, Oak Ridge National Laboratory

Oak Ridge, TN, USA May. 2019 - Aug. 2019

Research Assistant; Mentor: Dr. Mehmet E. Belviranli

• Hardware-Centric co-location Performance Modeling on Heterogeneous System-on-chip (MICRO 2021)

- Designed a novel processor-centric performance modeling methodology and a new three region interference-conscious performance model
- Provided memory-interference-aware hardware design space exploration
- Reduced average prediction errors of the state-of-art model from 24.8% to 8.7% on GPU, and from 13.0% to 3.3% on CPU, demonstrating much improved efficacy in guiding SoC designs.

OCTOBER 28, 2021 YUANCHAO XU · CURRICULUM VITAE

Computer Science Department, North Carolina State University

Research Assistant; Advisors: Dr. Xipeng Shen and Dr. Işil Dillig

Raleigh, NC, USA April. 2020 - April. 2021

- Translating UDFs to SQL through Lazy Inductive Synthesis (OOPSLA 2021)
 - Achieved a good trade-off between expressiveness and scalability using a technique that we dub lazy inductive synthesis
 - Implemented our method in a tool and evaluated it on real-world SOL queries with UDFs targeting the Spark system. This tool is effective at translating UDFs to SQL expressions and significantly improves performance.

Department of Computer Science, Tsinghua University

Beijing, China

Research Assistant: Dr. Wei Xue

Aug. 2015 - Jul. 2018

- Performance Modeling and Optimization on the Heterogeneous Many-core Processor (IPDPS 2018, SC 16)
 - Built a purely static performance model of SW26010, the heterogeneous many-core processor that powers Sunway TaihuLight. This model achieves an average accuracy as high as 95% on 17 benchmarks from Rodinia.
 - Designed a static compiler auto-tuning tool based on the performance model. This tool reduces 97% tuning time and achieves nearly optimal optimization (1.6X-3.7X speedup).

Computer Science Department, ETH Zurich

Zurich, Switzerland Apr. 2017 - Sep. 2017

Research Assistant; Mentors: Prof. Torsten Hoefler and Dr. Tobias Grosser

Performance Model Generator

Developed a Domain-specific Language based on polyhedral model to generate performance models

Publication _

Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin; "Temporal Exposure Reduction Protection for **HPCA 2022** Persistent Memory"; The 28th IEEE International Symposium on High-Performance Computer Architecture, February 2022. Accepted, to appear

Yuanchao Xu, Mehmet Esat Belviranili, Xipeng Shen and Jeffrey Vetter; "PCCS: Processor-Centric **MICRO 2021** Contention Slowdown Model for Heterogeneous System-on-chips"; The 54th IEEE/ACM International

Symposium on Microarchitecture, Online, October 2021. [Paper][Slides]

Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işil Dillig; "UDF to SQL Translation through Compositional Lazy Inductive Synthesis"; The ACM SIGPLAN Object Oriented Programming Languages, Systems and

OOPSLA 2021 Applications, Chicago, Illinois, October 2021. [Paper]

ChenCheng Ye, Yuanchao Xu, Xipeng Shen, Xiaofei Liao, Hai Jin and Yan Solihin; "Supporting Legacy ISCA 2021 Libraries on Non-Volatile Memory: A User-Transparent Approach"; The 48th ACM/IEEE International

Symposium on Computer Architecture, Online, June 2021. [Paper]

ChenCheng Ye, Yuanchao Xu, Xipeng Shen, Xiaofei Liao, Hai Jin and Yan Solihin; "Hardware-Based

Address-Centric Acceleration of Key-Value Store"; The 27th IEEE International Symposium on **HPCA 2021** High-Performance Computer Architecture, Seoul, South Korea, February 2021. [Paper]

Yuanchao Xu, ChenCheng Ye, Yan Solihin, Xipeng Shen; "Hardware-Based Domain Virtualization for Intra-Process Isolation of Persistent Memory Objects"; The 47th ACM/IEEE International Symposium on

Computer Architecture, Valencia, Spain, June 2020. [Paper][Slides] Yuanchao Xu, Yan Solihin, Xipeng Shen; "MERR: Improving Security of Persistent Memory Objects via

Efficient Memory Exposure Reduction and Randomization"; The 25th ACM International Conference on **ASPLOS 2020** Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, March 2020. [Paper][Slides]

> Shizhen Xu, Yuanchao Xu, Wei Xue, Xipeng Shen, Xiaomeng Huang, Guangwen Yang; "Taming the "Monster": Overcoming Program Optimization Challenges on SW26010 Through Precise Performance Modeling"; The 32nd IEEE International Parallel and Distributed Processing Symposium, Vancouver,

Canada, May 2018. [Paper]

Honors & Awards _

IPDPS 2018

ISCA 2020

NCSU Computer Science Outstanding Research Award

China

US

National Scholarships of China (highest scholarship for Chinese undergraduate)

Silver Medal, ACM-ICPC Asia Regional Programming Contest

China

Skills_

Programming Languages: C, C++, Rust, FORTRAN, JAVA, MATLAB

HPC Programming Models:OpenMP, MPI, CUDA, OpenACCFrameworks:TensorRT, LLVM, Spark, HadoopSimulator:Sniper, Gem5, Ramulator