林电

 课程名称
 线性代数A
 考试学期
 17-18-3
 得分

 适用专业
 非电类专业
 考试形式
 闭卷
 考试时间长度
 120分钟

 题号
 一
 二
 三
 四
 五
 六
 七

 得分
 十
 十
 十
 十
 十

- 一. (30%) 填空题
- 1. 设方阵 A 满足 $A^2 + 2A + 2E = O$, 则 A + 3E 的逆矩阵 $(A + 3E)^{-1} =$ ______.
- 2. 设 3 阶方阵 A 的特征值为 2, 1, -1, A^{\bullet} 是 A 的伴随矩阵,则矩阵 $A^{\bullet} A^{-1}$ 的行列式 $\left|A^{\bullet} A^{-1}\right| = \underline{\qquad}$
- 3. 设向量空间 R^2 中两组基 $\alpha_1 = (3, 4)^T, \alpha_2 = (2, 3)^T; \beta_1 = (1, 1)^T, \beta_2 = (0, 1)^T$,已 知 R^2 中向量 α 在基 α_1, α_2 下坐标是 $(1, 1)^T,$ 则 α 在基 β_1, β_2 下坐标是 _____.
- 4. 设n阶方阵A的元素都是k(≠0),则A的特征多项式是_____
- 5. 设矩阵 $\begin{pmatrix} 2 & x & 0 \\ x & 1 & x \\ 0 & x & 0 \end{pmatrix}$ 与 $\begin{pmatrix} y & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ 相似,则 (x, y) =______.
- 6. 设 3 阶可逆矩阵 $A = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$, $B = \begin{pmatrix} 2\alpha + \beta + 3\gamma \\ -\alpha + \beta + 2\gamma \\ \alpha \beta 3\gamma \end{pmatrix}$, 则行列式 $|AB^{-1}| = \underline{\qquad}$
- 8. 如果实二次型 $f(x_1, x_2, x_3) = \lambda x_1^2 + (\lambda + 1)x_2^2 + x_3^2 + 2\lambda x_1 x_3$ 是正定二次型,则 参数 λ 满足条件______
- 9. 设 $a(\neq 0)$ 是 3 阶实对称矩阵 A 的二重特征值, $\alpha_1 = (1, 1, 1)^T$ 与 $\alpha_2 = (1, 0, -1)^T$ 是 A 的对应特征值 a 的特征向量。如果 A 不可逆,则 A 的另一个特征值是 ,相应的特征向量为

二. (12%) 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ p \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ q \end{pmatrix}$ 的秩为 2,

- 1. 求参数 p, q 的值;
- 2. 求该向量组的一个极大线性无关组,并且将向量组中的其余向量用极大线性无关组表示出来。

三 (12%) 线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + 5x_2 + px_3 = 5 \\ 3x_1 + px_2 + 3x_3 = 2 \end{cases}$$

讨论参数 p 取何值时,线性方程组 (1) 有唯一解:(2) 无解:(3) 有无穷多解,在有无穷多解时,求其通解。

四 (12%) 设矩阵
$$A = \begin{pmatrix} 3 & -5 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,

如果 $AXA^* = 6E + AX$, 求矩阵X.

五 (10%) 设向量
$$\eta = \begin{pmatrix} 3 \\ -6 \\ 20 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & x & 0 \\ 4 & y & -2 \end{pmatrix}$ 的一个特征向量,

- 1. 求参数 x, y 的值;
- 2. 问:矩阵 A.是否相似于对角矩阵?说明理由。

六 (14%) 设 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$

- 1. 写出 $f(x_1, x_2, x_3)$ 的矩阵;
- 2. 求正交变换 X = QY, 将二次型 $f(x_1, x_2, x_3)$ 化为标准形。

七(10%)证明题:

1. 设 η_1, η_2 是n维列向量,A是 $s \times n$ 矩阵,A的秩为n-2,若齐次线性方程组AX=0的每个解向量都可由 η_1, η_2 线性表示,证明 η_1, η_2 是AX=0的一个基础解系。

2. 设n阶实矩阵A满足 $A^2 = A$,证明存在n阶对称矩阵P,Q,使得A = PQ.