

M. Dollo M. 23-CR 67/10 P-128

RoMPS Concept Review Automatic Control of Space Robot

NASA Goddard Space Flight Center

Prepared under NASA Grant NAG-5-1517

Environmental Research Institute of Michigan Space Automation & Robotics Center P.O.Box 134001 Ann Arbor, Michigan 48113-4001

May 16, 1991

(MASA-CO-TEREDE) ROMPS CONCEPT RIVING (SRIE)
AUTOMATIC CONTROL OF SPACE REGION (SRIE)
170 P

N92-16551

Unclas 69/63 005**711**0

RoMPS Electrical & Software Systems Drawing Index Rev: 5/14/91

Page	No.	Date	Title
0.1			Drawing Index, 1/n
0.2			Drawing Index, 2/n
0.3			Drawing Index, 3/n
4.0			Dal ADC Concept
1.0			RoMPS Concept
1.1			Carrier Options
1.2			System Block Diagram AEMS Software Block Diagram
1.3.1			Zymate Software Block Diagram
1.3.2			Schedule Examples 1/6
1.4.1			Schedule Examples 2/6
1.4.2			Schedule Examples 3/6
1.4.3			Schedule Examples 4/6
1.4.5			Schedule Examples 5/6
1.4.6			Schedule Examples 6/6
1.5.1			Experiment Examples 1/3
1.5.2			Experiment Examples 2/3
1.5.3			Experiment Examples 3/3
2.0 2.1			Hitchhiker Interface Requirements Summary Operations Timeline
2.2.1			Telemetry Formats 1/3
2.2.1			Telemetry Formats 2/3
2.2.1			Telemetry Formats 3/3 Command Format
2.3 2.4			Power Budget
2.4			Weight Budget
2.5			Wolfin Duago.
3.0			Robot Mechanism Axis Block Diagram
3.1.1			PMC Inc. Motion Controller System
3.1.2			PMC Inc. Command Summary
3.1.3			PMC Inc. MC200 Servo Controller Block Diagram
3.1.4			NEC uPD7831xA 16-bit microcontroller
3.2.1			NEC uPD7831xA 16-bit microcontroller LM628629 Motion Controller IC (MC100 system)
3.2.2			LM628 Spec Summary
3.2.3			LM628 Analog Application
3.2.4			LM629 PWM Application
3.3			LM621 Brushless Motor Drive IC
3.4			AMC Inc. Servo Amplifier

RoMPS Electrical & Software Systems Drawing Index Rev: 5/14/91

Page No. Date	Title
4.0	Theta Axis
5.0	Z Axis
6.0	Radial Axis
7.0	Grip Axis
8.0 8.0.1 8.0.2 8.1	Force Sensing Block Diagram Specification Interface Summary Force Sensing Amplifier - Typical
9.0 9.0.1 9.0.2	Autonomous Experiment System Manager Block Diagram Specification Interface Summary
10.0 10.1 10.1.0 10.1.2 10.1.4 10.1.6 10.1.10 10.1.11	Autonomous Experiment System Manager Data Flow Diagrams Top Level Level 0 Process Command Packet Process System Directive Format Telemetry Packet Get Experiment Data Process Experiment Directive
10.2 10.3 10.4 10.9.1 10.9.2	EasyLab Command Structure EasyLab Implementation Options VRTX Multi-Tasking Real-Time System VRTX Multi-Tasking Real-Time Kernel
11.0 11.0.1 11.0.2	Zymate Robot Controller Block Diagram Specification Interface Summary
12.0 12.1 12.1.0 12.2.0 12.2.1	Zymate Robot Controller Data Flow Diagrams Top Level Level 0 Main Control Peripheral Control
13.0 13.1 13.2	SC-4 Spacecraft Computer Specification Block Diagram

RoMPS Electrical & Software Systems Drawing Index Rev: 5/14/91

Page No. Date	Title
14.0 14.0.1 14.0.2	Pyrometer Block Diagram Specification Interface Summary
15.0 15.0.1 15.0.2	Oven Control Block Diagram Specification Interface Summary Typical Approach PWM Controller Interface
16.0 16.0.1 16.0.2 16.1	Signal Conditioning Block Diagram Specification Interface Summary Robot Thermistor Location YSI Linearized Calibration Curve
17.0 17.0.1 17.0.2 17.1	Power Distribution Block Diagram Specification Interface Summary Grounding Diagram DC Current Monitor
18.0 15.0.1 15.0.2	Survival Heaters Block Diagram Specification Interface Summary Typical Circuit
19.0	Harness Block Diagram_
20.0	SPRL Electronics Packaging Baseplate Assembly Stack Assembly Electronics Module Frame Stitchwire Board 2 Sided PCB
21.0 21.1 21.2	Performance Assurance Program Verification Plan Component Qualification Plan

System Concept

EVAPORATOR W/PATTERN MASK ROTATION/ELEVATION MOTOR GRIPPER MOTOR GAS CAN CONCEPT LAYOUT ASSEMBLY TOP ROTATION PLATE ELEVATOR PLATFORM ANNEALING UNIT ASSEMBLY BOTTOM ROTATION PLATE PALETTE HOLDER GRIPPER PALETTE GAS CAN

PE1921121989

CARRIER OPTIONS

process_method_a.zy Page May 12 19:48 1991

- EasyLabsyLab program PROCESS METHOD A
- This procedure processes a samples START.SAMPLE to END.SAMPLE, using annealing oven a and the processing parameters contained in ANNEALER.TEMPS and ANNEALER.TIMES.
- NOTE : WORKING.SAMPLE IS A LOCAL TYPE VARIABLE THE START.SAMPLE IS ASSUMED TO BE SET BY THE CALLING
 - MODULE, THIS METHOD OF PARAMETER PASSING IS USED
 - THROUGHOUT THIS PROGRAM
 - = START.SAMPLE WORKING.SAMPLE
- Get the sample to be processed
 NOTE SAMPLE.RACK.1.INDEX IS USED BY THE ROBOT MODULE
 TO DETERMINE THE SAMPLE WITHIN A RACK TO GET
 - - SAMPLE.RACK.1.INDEX = WORKING.SAMPLE
 - GET. FROM. SAMPLE. RACK. 1
- put the sample in the annealer PUT.INTO.ANNEALER.A
- Set the temperature and time for the oven
 - and anneal the sample
- ANNEALER.A.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE)
 - ANNEALER. A. TIME = ANNEALER. TIMES (WORKING. SAMPLE)
 - ANNEALER. A. TIMED. RUN
- Get the sample from the annealer
 - GET. FROM. ANNEALER. A
- Put the sample into the inspection station
 - PUT. INTO. INSPECTER
- Measure the sample
 - OBTAIN. SAMPLE. PROPERTIES
- Put Sample back into rack PUT. INTO. SAMPLE. RACK. 1
- Determine if we have processed all the samples WORKING.SAMPLE = WORKING.SAMPLE.1 IF WORKING.SAMPLE <= END.SAMPLE THEN 10

process_method_b.zy Page May 12 19:48 1991

EasýLabsyLab program PROCESS METHOD A This procedure processes a samples START.SAMPLE to END.SAMPLE,

using annealing oven b and the processing parameters contained in - ANNEALER. TEMPS and ANNEALER. TIMES.

WORKING.SAMPLE = START.SAMPLE

- Get the sample to be processed SAMPLE.RACK.1.INDEX = WORKING.SAMPLE

GET. FROM. SAMPLE. RACK. 1

- put the sample in the annealer PUT.INTO.ANNEALER.B

- Set the temperature and time for the oven

- and anneal the sample

ANNEALER.B.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE) ANNEALER. B. TIME = ANNEALER. TIMES (WORKING. SAMPLE) ANNEALER. B. TIMED. RUN

- Get the sample from the annealer GET.FROM.ANNEALER.B

- Put the sample into the inspection station

PUT. INTO. INSPECTER

Measure the sample

OBTAIN. SAMPLE. PROPERTIES

Put Sample back into rack

PUT. INTO. SAMPLE. RACK. 1

- Determine if we have processed all the samples

WORKING.SAMPLE = WORKING.SAMPLE.1 IF WORKING.SAMPLE <= END.SAMPLE THEN 10

process_method_c.zy Page 1 May 12 19:43 1991

- EpsyLabsyLab program PROCESS_WETHOD_C This procedure processes a samples START.SAMPLE to END.SAMPLE,
- using annealing oven a and the processing parameters contained in
- ANNEALER. TEMPS and ANNEALER. TIMES. It processes the sample a second
 - time using the same processing parameters but using oven b.

- This start the processing at the desired sample WORKING.SAMPLE = START.SAMPLE

- Get the sample to be processed SAMPLE. RACK. 1. INDEX = WORKING SAMPLE GET. FROM. SAMPLE. RACK. 1 - put the sample in the annealer PUT.INTO.ANNEALER.A

- Set the temperature and time for the oven

- and anneal the sample ANNEALER.A.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE) ANNEALER.A.TIME = ANNEALER.TIMES(WORKING.SAMPLE) ANNEALER. A. TIMED. RUN

- Get the sample from the annealer

GET. FROM. ANNEALER. A

Put the sample into the inspection station PUT. INTO. INSPECTER

- Measure the sample OBTAIN. SAMPLE. PROPERTIES . - put the sample in the annealer PUT.INTO.ANNEALER.B

- Set the temperature and time for the oven - and anneal the sample

ANNEALER.B.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE) ANNEALER.B.TIME = ANNEALER.TIMES(WORKING.SAMPLE) ANNEALER.B.TIMED.RUN

May 12 19:43 1991 process_method_c.zy Page 2

- Get the sample from the annealer GET.FROM.ANNEALER.B

- Put the sample into the inspection station PUT.INTO.INSPECTER

- Measure the sample OBTAIN.SAMPLE.PROPERTIES

- Put Sample back into rack PUT.INTO.SAMPLE.RACK.1

- Determine if we have processed all the samples WCRKING.SAMPLE.1
IF WORKING.SAMPLE <= END.SAMPLE THEN 10

Hitchhiker Interface Requirements

Penen Tim yiel's Dynamics with 15112 coment sis

Link can be marriaged form for strong sees

2 Could be pointed to unit days insteed

Could be pointed to unit environment by

I chartel to unit environment by

Limit was's symport

Could to dell to delphi

Hitchiker Avionics Interface Requirements Summary

Bilevel Commands (+28V) bus A/B select oven enable processor restart system halt Serial Command NONE Asyncronous Uplink (RD) 1200 baud (1 start, 8 data, no parity, 1 stop) customer message - basic functions operating system commands experiment commands volume TBD Bytes/Hour mission elapsed time (asyncronous or syncronous) Asyncronous Downlink (SD) 1200 baud (1 start, 8 data, no parity, 1 stop) customer data - basic content operating system status experiment status volume TBD Bytes/Hour Medium Rate Downlink NONE PCM Telemetry NONE **Analog Data Experiment Total Current** Temperature Data SEA Baseplate GAS Structure GAS Heatsink **IRIG-B MET** None

1 Minute Pulse None

Hitchiker Avionics Interface Requirements Telemetry Format 1 Second Frame

Mnemonic	Description	Type	Len	Range
SYNC SYNC SYNC ID	sync sync sync frame identification	byte byte byte byte	8 8 8	
SEC MIN HOUR UDAY TDAY	sec min hour 1's day 10's day	byte byte byte byte byte	8 8 8 8	0-59 0-59 0-11 0-9 0-3
SLINE EXPID ELINE SAMP	Manufacturing Control schedule line number experiment id experiment line number sample number	byte byte byte byte	8 8 8	0-255 0-255 0-255 0-255
	Manufacturing Process pyrometer output sample temp lamp intensity lamp current lamp voltage	intg real real real real	16 16 16 16 16	
	Manufacturing Data characterization output 1 characterization output 2 characterization output 3 characterization output 4	real real real real	16 16 16 16	
	Robot Status Z position Theta position Radial position Gripper position Radial force Gripper force	intg intg intg intg real real	16 16 16 16 16	

Total Bytes

Hitchiker Avionics Interface Requirements Telemetry Format 1 Minute Frame

Mnemonic	Description	Туре	Len	Range
SYNC	sync	byte	8	
SYNC	sync	byte	8	
SYNC	sync	byte	8	
ID	frame identification	byte	8	
	Manufacturing Calibration			
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	pyrometri canoradon	mre	10	
	Operating System			
OPSTAT	processor status	byte	16	
OSSTAT	software status	byte	16	
	D 1 . G . H			
ODOM A M	Robot Controller		16	
CPSTAT	processor status	byte	16	
CSSTAT	software status	byte	16	
	Current Monitors			
ZMIMON	Z motor	real	8	0-tbd amp
TMIMON	Theta motor	real	8	0-tbd
RMIMON	Radial motor	real	8	0-tbd
GMIMON	Gripper motor	real	8	0-tbd
CPU1IMON	processor 1	real	8	0-1
CPU2IMON	processor 2	real	8	0-1
	F			
	Temperature Monitors - Support Electro	nics Assem	ıbly	
PWRTMP	power distribution	real	8	-20 +60 °C
CPU1TMP	processor 1	real	8	-20 +60
CPU2TMP	processor 2	real	8	-20 +60
	Temperature Monitors - Get Away Speci			
BPTMP	baseplate	real	8	-20 +60
RADTMP	radiator	real	8	-20 +60
OVITMP	lamp 1	real	8	-20 +60
OV2TMP	lamp 2	real	8	-20 +60
ROBTMP	robot	real	8	-20 +60

Total Bytes

Hitchiker Avionics Interface Requirements Telemetry Format Alternate 1 Second Frame

Mnemonic	Description	Type	Len Range
SYNC	sync	byte	8
SYNC	sync	byte	8
SYNC	sync	byte	8
ID	frame identification	byte	8
OPSTAT	Operating System processor status software status	byte	16
OSSTAT		byte	16
CPSTAT	Robot Controller processor status software status	byte	16
CSSTAT		byte	16
	Data Field	byte	16

Total Bytes

Hitchiker Avionics Interface Requirements Asyncronous Command RD Customer Message

• RoMPS payload command blocks will require one or more customer message packets.

Embedded within the HH specified customer message format will be a customer specified, generated and on-orbit processed command block protocol.

• Contents of customer data in customer messages:

customer protocol bytes ASCII Strings (high level experiment language) or Binary Data (processor load) terminator

PRELIMINARY

• User Interface Examples:

The schedule might look like this DAY GMT EXP

27.11	01.11	
1	1300	01
1	1320	02
1	1900	05
2	2000	04

The contents of Experiment 01 might look like this:

WHILE

N>10 .and. N<=20

 ∞

MOVE.SAMPLE.N.OVEN PROCESS.N.OVEN.NORMAL

END ENDWHILE

However, for engineering purposes the language supports the following:

MOVE.AXIS.name.position STEP.axis.dir.distance.rate

Robot Axis Control Concepts

could not to single opelunty - this innous s.

Anocel de find en plecher

reg's system design consideration ? La primiente change cilile retaining.

TE for SQD (agrence do pour)

Register Command

Accumulator Add

Complement, blt wise Accumulator AC

Accumulator logical Exclusive or with n, bit wise AE

Accumulator load Indirect AI

Load with constant n Accumulator AL

Accumulator logical aNd with n, bit wise AN

Accumulator logical Or with n, bit wise

copy Accumulator to Register n

Accumulator Subtract

Read Byte

Read Long at absolute memory location n into accumulator AO AR AS RB RL

Read Word at absolute memory location n into accumulator RW

Shift Left -accumulator n bits

Shlft Right accumulator n bits

Tell contents of Register n

Tell contents of accumulator (register O)

Write accumulator low Byte to absolute memory location WB

Write accumulator Long to absolute memory location n WL

Write accumulator low Word to absolute memory location n W W

Learn Mode Commands

Adjust Position

Learn position Incrementing LI

Position Learn LP LT

Learn Target

Move to point, Incrementing MI

Move to Point

SpARC 051491/ME1.0

Contouring Mode Commands
Reporting Commands

Contouring Mode

 $\frac{\mathbb{Z}}{2}$

Current Count	Check Sum	HEIP
8	හ	出

converter	
o digital (qain
Tell Analog to	Derivative
Tell	Tell
TA	£

Miscellaneous Commands				BreaK	Decimal Mode	Hexidecimal Mode	No Operation		Select Bank
,	M		. !	番	DM	HM	2	2 8	SB
	Tell Derivative gain	Tell Following error			Tell Initial miles rate of stenner			Tell Position	Tell Status
4 7 7	9	TF	13	Ţ	•	Ę	ן ו	I.P	Y.

IVO OF	stepper	1					
n of DC se	Initial pulse rate of stepper	Limit					
Tell Integral gain of DC servo or	Initial puls	Integration Limit	Position	Status	Target	Velocity	VErsion
Tell	Tell	Tell	Tell	Tell	Tell	Tell	Tell

Macro Commands

Execute Macro	Macro Command	Macro Definition	Reset Macros	Tell Macros
EM	MC	M M	RM	TM

- a Complete single chip microcomputer - 16-bit ALU
 - 8K ROM (uPD78312A only)
 - - 1-bit and 8-bit logic - 256 bytes RAM
- a Instruction prefetch queue
- o 16-bit unsigned multiply and divide
- a String instructions
- a Memory expansion
- 8085A bus compatible
- Total 64K address space
- a Large I/O capacity; up to 32 I/O port lines
 - O Extensive timer/counter system
 - Two 16-bit up/down counters
 - Quadrature counting - Two 16-bit timers
- Free running counter with two 16-bit capture registers
 - Pulse-width modulated outputs
 - Timebase counter
- a Four-channel 8-bit A/D converter
 - □ Two 4-bit real-time output ports
- D Two nonmaskable interrupts
- o Eight hardware priority interrupt levels
- Macroservice facility for interrupts gives the effect of eight DMA channels
- Bidirectional serial port
- Either UART or interface mode - Dedicated band rate generator
- Watchdog timer
- a Refresh cutput for pseudostatic RAM

- o Programmable HALT and STOP modes
 - a One-byte call instruction
- a On-chip clack generator
- a Ct.10S silicon gate technology
- a +5-volt power supply

NEC μPD7831xA 16-Bit Single-chip Microcomputer for Real-Time Control	The control of the co
NEC Sin for	Block Diagram Pog-0, 1 Ten 6.81 Pog-0, 1 Ten 6.81
	BIOCK POG-03 POG-04

ENGINEER ME Dobbs	DRAFTSHAN X X XXXXXXX	XX/XX/XX
	NEC uP07831xA 16-bit microcontrolletxx/xx/xx/	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER Robot Mechanism Axis Block Diagram XX/XX/XX	Robot Mechanism Axis Block Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MILENDES	Romps	05/14/91
ANN ARBOR, MI	XXXXXXXXXXX	DATE

FIGURE 1. Typical System Block Diagram

Features

- 32-bit position, velocity, and acceleration registers
- Programmable digital PID filter with 16-bit coefficients
 - Programmable derivative sampling interval
 - 8- or 12-bit DAC output data (LM628)
- 8-bit sign-magnitude PWM output data (LM629)
 - Internal trapezoidal velocity profile generator
- Velocity, target position, and filter parameters may be changed during motion
 - Position and velocity modes of operation
 - I Real-time programmable host interrupts
- 8-bit parallel asynchronous host interface
- Quadrature incremental encoder interface with index pulse input

ENGINEER ME DODDS	DRAFTSMAN X. X. XXXXXXX	XX/XX/XX
	L'628629 Potion Controller IC (PC100 system) XX/XX/XX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER Robot Mechanism Axis Block Diagram XX/XX/XX	Robot Mechanism Axis Block Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MI ROMPS	ROMPS	05/14/91
ANN ARBOR, MI	XXXXXXXXXX	DATE

	TABLE I. System Specifications Summary
Position Range	-1,073,741,824 to 1,073,741,823 counts
Velocity Range	0 to 1,073,741,823/216 counts/sample; ie, 0 to 16,383 counts/sample, with a resolution of 1/216 counts/sample
Acceleration Range	0 to 1,073,741,823/2 ¹⁶ counts/sample/sample; ie, 0 to 16,383 counts/sample/sample, with a resolution of 1/2 ¹⁶ counts/sample/sample
Motor Drive Output	LM628: 8-bit parallel output to DAC, or 12-bit multiplexed output to DAC LM629: 8-bit PWM sign/magnitude signals
Operating Modes	Position and Velocity
Feedback Device	Incremental Encoder (quadrature signals; support for index pulse)
Control Algorithm	Proportional Integral Derivative (PID) (plus programmable integration limit)
Sample Intervals	Derivative Term: Programmable from 2048/f _{CLK} to (2048 * 256)/f _{CLK} in steps of 2048/f _{CLK} (256 to 65,536 µs for an 8.0 MHz clock). Proportional and Integral: 2048/f _{CLK}

ENGINEER MEDADAS	DRAFTSMAN X. X. XXXXXXX		XX/XX/XX
	LM628 Spec Summary		XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ROBOT Mechanism Axis Block Diagram	Robot Mechanism Axis Bi	lock Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MI ROMPS	RoMPS		05/14/91
ANN ARBOR, MI	XXXXXXXXX		DATE

FIGURE 14. Interfacing a 12-Bit DAC and LM628

ENGINEER ME Dobbs	DRAFTSMAN X. X. XXXXXXX	XX/XX/XX
	LM628 Analog Application	xx/xx/xx
SPACE AUTOMATION & ROBOTICS CENTER	Robot Mechanism Axis Block Diagram	
ENVIRONMENTAL RESEARCH INSTITUTE OF MI ROMPS	Romps	05/14/91
ANN ARBOR, MI	XXXXXXXXX	DATE

FIGURE 17. PWM Drive for Brushless Motors

ENGINEER ME Dobbs	DRAFTSMAN	DRAFTSMAN X. X. XXXXXXX	XX/XX/XX
	LM629 PWM Application	Application	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	Robot Mechai	Robot Mechanism Axis Block Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MIROMPS	ROMPS		05/14/91
ANN ARBOR, MI	XXXXXXXXXX	×	DATE

Very Linear, low noise strain gauge circuit.

connection between the bridge network and amplifier A3 virtually eliminates the offset errors in A1 and A2. Positive feedback through Rx makes the effective input impedance of A3 greater than IMB. The high impedance is used to reduce amplifier loading effects on the bridge circuit. The effects of both input offset and positive feedback resistance are described by the formulas below. The four strain gauge elements (R) and the amplifiers Al and A2 form a bridge network. The differential

-R Without Rx	Effect of HX: Vo=+1/2 # RZ/RI * AR/R * Vref(1-Ra/2RI) , Ra = [AR Using Rx = R2	Effect of Vio. Vo*+1/2 * R2/R1 * AR/R * [Vref + Vio(A1) + Vio(A2)] -[1+R2/R1] Vio(A3)
	· Ra	VIo(A2)
۲	Ra/2R1)	VIo(A1) +
	· Vreľ(!-	* [Vref •
	* AR/R	* AR/R
	* R2/R1	* R2/R1
!	Vo=+1/2	Vo=+1/2
	ETTECT OF RX:	Effect of Vio.

CNOINCEM LT. LOMKO	DRAF I STAN X X XXXXXX	XX/XX/XX
	Force Sensing Amplifter-Typical	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	Force Sensing Block Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MIL ROMPS	Romps	05/14/91
ANN ARBOR, MI	XXXXXXXXXXX	DATE

Autonomous Experiment Managment System

Zymate Robot Controller

Southwest SC-4 Computer

Det destil in France to Serent regle

in Aprilal speccept and System courts.

(Harm- we away to sprove)

4 CATA real lent for of afraid today + tenum

10.1.0

IMPLEMENTATION OPTIONS FOR THE ROBOT MOVEMENT EasyLabTM Language Interface.

PUT.INTO.ANNEALER

MOVE.IN.SAFE MOVE.ANNEALER MOVE.BELOW.ANNEALER MOVE.UP.INTO.ANNEALER

S:ALL.SPEED = 1.0
S:THETA= SAFE.RADIAL
S:RADIAL = ANNEALER.RADIAL
S:Z= ANNEALER.HEIGHT
S:THETA = S:THETA +
ANNEALER.THETA
S:HEIGHT = UP.TO.ALLEALER

S:ALL.SPEED = 1.0
S:THETA= SAFE
MOVE.THETA
S:RADIAL = ANNEALER.RADIAL
S:Z= ANNEALER.HEIGHT
MOVE.ALL
S:THETA = S:THETA +
ANNEALER.THETA
MOVE.THETA
S:HEIGHT = UP.TO.ANNEALER
MOVE.HEIGHT

MOVE "THETA", ALL.SPEED,
SAFE.THETA
MOVE "RADIAL", ALL.SPEED,
ANNEALER.RADIAL
MOVE "Z", ALL.SPEED,
ANNEALER.HEIGHT
MOVE.REL "THETA", ALL.SPEED
BELOW.ANNEALER
MOVE.REL "THETA", ALL.SPEED,
UP.ANNEALER

This implementation uses a set of "learned" absolute and relative positions. This method is supported and available in the current EasyLab™.

NOTE: As these positions are stored in the system data dictionary their values can be modified.

This implementation uses EasyLabTM Command Variables. Assignment to these variables causes the variable state to change and an action to occur. Again, this is still a method used and supported by EasyLabTM.

This implementation uses command variables in a different manner than the current EasyLabTM robot movement language.

Command variables do not cause the robot movement to occur.

Instead, movement is initiated by a simple command which uses the previously set variable states as its inputs. This implementation would be easy to accomplish with the current EasyLabTM interpreter.

This implementation uses a currently unavailable zymate interpreter ability, parameter passing. There are no plans for this to be implemented in the port to the SC-4 system.

Preliminary Specification SC-4 Single Board Spacecraft Computer

Central Processor

80C186/80C187 16 Bit

Clock Frequency

10 MHz

Operating System

MS-DOS and VRTX Compatible

Onboard Memory

RAM

512K Bytes w/EDC

EEPROM UVPROM

256K Bytes 64K Bytes

Hardware Vectored Interrupts

16 User Configurable

Timer/Event Counters

6, Software Configurable, 120 ns Granularity

Input/Output Capability

Parallel I/O

16 Input, 16 Output

Analog Input

32 Differen

solution,

Analog Output

4 Channels

RS-422 Serial I/O

2 Channels

SCSI Interface

1 Port

Mass Storage

24M Bytes, F

Jatile

ector

Expansion

Internal Daug

Size

7 X 12 X 2.25 in

Weight

5 Lb (Approximate)

Power

28v @ 5w (Approximate)

Oven Control Housekeeping Data

PRECEDING PAGE BLANK NOT FILMED

OFFICE PLOE IS OF FOOR QUALITY

SpARC 051491/ME1.0

SPACE PHYSICS RESEARCH LABORATORY TEMPERATURE CALIBRATION CURVE COLLEGE OF ENGINEERING HROI UARS ANN ARBOR MICHIGAN B-E8204 CONTROLLED
--

LAST USED R

N. M. 1153 2/46 1149/

HAG. JOS

Power Distribution

- Profiminary

- 1550es

Pur servo's off +28 Bos

W 15-Withour by apro on Fet extres

TODO
STATE POINT GIRD LEASIUM

OF POOR QUALITY

Space Physics Research Laboratory Packaging Conventions

From Showing from - FULLY ASTONS

(Nexpensus politile

Gate - minimum expensus effort

Interim Design Review

NASA Goddard Space Flight Center Robotic Material Processing System Program Automation Systems

18 October 1991

prepared by

Environmental Research Institute of Michigan Space Automation and Robotics Center P.O. Box 134001 Ann Arbor, Michigan 48113-4001

RoMPS General Mission Requirements

Rapid Thermal Annealing (RTA) in Microgravity
Microgravity material processing
High temperature annealing furnace
Automated RTA processing and sample change

STS Hitchkiker Payload
GAS canister and HH avionics mounting plate
Class D payload classification
Serial command and telemetry

Mission Characteristics
Operates during STS disturbance free "quiet" periods
Operational changes expected
reschedule operations to meet STS constraints
modification of RTA processing parameters

بر

Office of Commercial Programs Requirements

Infrastructure - Enable Low Cost Space Manufacturing new technology - patents, license, product sales reduced cost-per-pound reduce non-recurring engineering cost use industrial practices and products carrier independent systems experiment independent systems

· Closely Related OCP Infrastructure CCDS Flight Programs at SpARC

system architecture for manufacturing facility

Autonomous Rendezvous & Docking

Autonomous Experiment Mangement System (AEMS)

Wake Shield Facility

Autonomous Experiment Mangement System (AEMS)

Robotic Substrate Servicing System

Satellite Servicing System

EPOP Control and Data System (AEMS)

IARG

Autonomous Experiment Mangement System (AEMS) Material Handling Automation

Automation Management System

Schedule Scripts
 STS operational timeline changes
 Investigator sample priority changes

Processing Scripts
 process methodology changes
 process parameter changes

attempt transparent environment from laboratory to flight High Level Language User Interface put PI in the drivers seat industry proven

Automatic Control
automatic sample change
automatic process control
rule based error detection and resolution

1.2.2

Spacecraft Command Language

SCL Scripts

- SCL scripts are similar to tasks or other stand alone programs.
- Scripts can be executed immediately by command directive.
- Scripts can also be scheduled for deferred execution. SCL supports:
- Absolute execution times.
- Relative execution times.
- Scripts can be scheduled for cyclic execution (repetitive execution).

Experiment Spreadsheet

Page 1

Г	A	В	၁	D	Ξ	F	9	Н	-
-	Run	Sample	Rack	Rack Index	Temperature 1	Time 1	Temperature 2	Time 2	Processed
7	-	-	-	-	410	06	410	06	z
ဗ	2	2	-	2	410	06	410	06	Z
4	က	က	-	3	410	06	410	06	Z
S	4	4	-	4	410	06	410	06	z
9	ည	5	-	5	410	06	410	06	Z
7	မ	9	-	9	410	06	410	06	Z
8	7	7	-	7	350	06	350	06	Z
6		:	:	:	•	:	•	•	:
10		:	:		•	:	•	••	••
11						:	•	•	:
12				••	:	:	:	•	::
13	141	141	9	S	400	30	400	30	Z
14	142	142	9	9	200	30	200	30	Z
15	143	143	9	7	400	2	400	5	Z
16	144	144	9	8	400	15	400	15	z

```
-- SCL Scenario Script
  Function Defines processing scenario for do_processing
   script.
      experiment scenario
script
                        = 1
run
gSample[run]
                        = 1
                        = 1
gRack[run]
gRack_Index[run]
                        = 1
gTemperature1[run]
                        =410
                        = 90
gTime1[run]
gTemperature2[run]
                        = 410
                        = 90
gTime2[run]
                        = 2
run
                        = 2
gSample[run]
                        = 1
gRack[run]
gRack Index[run]
                        = 2
gTemperature1[run]
                        = 410
                        = 90
gTime1[run]
                        =410
gTemperature2[run]
                        = 90
gTime2[run]
                        = 144
run
gSample[run]
                        = 144
gRack[run]
                        = 6
gRack_Index[run]
                        = 8
gTemperature1[run]
                        = 200
                        = 30
gTime1[run]
```

end experiment scenario

gTemperature2[run]

gTime2[run]

= 200= 30

SCL Software Components

- The SCL software system is divided into 3 major components:
- provides tools for developing and maintaining scripts and rules and for controlling the operation of the system The Development Environment. The development environment
- The Real-Time Database. The database defines the SCL software's operating environment.
- The Real-Time Engine (RTE). Executes the SCL scripts, rules, and command directives.

SCL Real-Time Engine

- The Real-Time Engine (RTE) executes SCL scripts, rules and command directives.
- The RTE is portable:
- Written in C and Ada
- Application specific I/O and system service calls have been isolated and "abstracted" out the SCL software.
- The RTE is generic/reusable. SCL scripts and rules are used to tailor the system to a specific application.
- The RTE is dynamic. Scripts and rules can be added or deleted without changing the RTE and its underlying interface routines.

RoMPS EasyLab Command & Variable Summary for Rack Stations

RACK.INDEX

EasyLab variable used by RoMPS PyTechnology to determine the current sample for robot to manipulate. Initial Value is 1.

GET.FROM.RACK

Get sample RACK.INDEX from its home rack and

PUT.INTO.RACK

Move the currently held sample into the home rack and slot of RACK.INDEX.

& Variable Module Command Annealer RoMPS EasyLab Summary for

ANNEALER.TEMPERATURE

Output Command Variable used to set the target temperature for the next annealing initiated by ANNEALER.ON and ANNEALER.TIMED.RUN. Initial Value TBD.

ANNEALER.TIME

Output Command Variable used to set the annealing time for the next annealing initiated by ANNEALER.TIMED.RUN. Initial Value TBD.

ANNEALER.RATE

Output Command Variable used to set the heating rate for the next annealing initiated by ANNEALER.ON and ANNEALER.TIMED.RUN. Initial Value TBD.

ANNEALER.ACTIVE.OVEN

EasyLab variable used by the Annealer robot movent commands, to determine position to put and get samples.

MOVE.UNDER.ANNEALER

Move Robot Gripper Under Sample, Lined up to allow pallet to be inserted into annealer.

PUT.INTO.ANNEALER

Move sample up into Annealer After a MOVE.UNDER.ANNEALER command. Initiate an untimed run of the Annealer.

ANNEALER.OFF

ANNEALER.ON

Terminate an untimed run of the Annealer.

ANNEALER.TIMED.RUN

Initiate a timed run of the Annealer.

Automation Management System

• Architecture Demonstrated at SpARC on 4 October 1991

SC4 #1 with SCL implements generic - scheduler specific - carrier i/o SC4 #2 with EASYLAB implements generic - sample handling, processing specific - robot geometry

Electronics
generic - servos, housekeeping
specific - interfaces

Status
MOU's in place
License agreements outlined
DFD's prepared
Elements to be designed have models to work from

Long Term Architecture
 Multiple robot and process space manufacturing facility

Industrial development, support, maintenance and documentation Minimize Lifecycle Costs

RoMPS Electronics Assemblies

Support Electronics Assembly

Mounted to Hitchhiker Adapter Plate
Integrated assembly with common support plate and cover
Connector Bracket
Power Distribution
SwRI SC4 Computer #1
SwRI SC4 Computer #2
Navtrol DDSC Master

GAS Electronics Assembly

Mounted inside 5" GAS Extension
Integrated assembly with common support plate
Connector Brackets
Power Distribution
Navtrol DDSC Slave #1
Navtrol DDSC Slave #2
Navtrol DDSC Slave #3
Thermocouple Signal Conditioning
Data Acquisition

SUPPORT ELECTRONICS ASSEMBLY

10/09/91 DATE

ELECT RONICS ASSEMBLY

LAYOUT SUPPORT POPTER

SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE OF MI ANN ARBOR, MI

ENGINEER R.E. OUADA

DRAFISMAN SJ. CARR

かりましょうい

...

-

RoMPS Elec Weight & Power

	4	В	ပ	a	Ш	ட	9	I
-	RoMPS Weight & Power	nt & Power						
2	Assembly	Subassembly Mfgr	Mfgr	Size LWH in	Mass ibs	Avg Pwr	Peak Pwr	Comments
3								
4	Support Elect	Electmount plate	GSFC		tbd			
2	λ	over	GSFC		tbd			
ဖ		SC-4	SwRI	7.25×12.25×2.	3.7		5 5	
^		SC-4	SwRI	7.25×12.25×2.	3.7		5 5	
8		O/I HH	ERIM	$7 \times 7 \times 0.75$	-		-	
6		HHPWR	ERIM	7 x 7 x 1.25	-		0	
10		DDSC Master	Navtrol	4.5x5.1x1	2	3.7	7 3.7	
-		connec. brack	w		tbd			
12		harness	ERIM		tbd			
13		hardware			tbd			
14								
15		SUBTOTAL			11.6	14.	7	
16								
17	GAS Eectroni mount	imount plate	SSTC STC	17.5 dia	tbd			
18	Assembly	2800	Navtrol	4.5x5.1x1	2	က	7	269 9.6a worst ca
19		2800	Navtrol	4.5x5.1x1		2	3.7	one axis only
20		2800	Navtrol	4.5x5.1x1	2	က	.7	one axis only
21		Housekeeping	ш	7×7×0.75	+-		3	5 logic
22		Housekeeping	ERIM	7×7×0.75	1.1			1
23		Power Dist		7x7x1.25	2.2	2	2	2 converter los
24		connec.bracke ERIM	ERIM		tbd			
25		harness	ERIM		tbd			
26		hardware			tbd			
27								
28		SUBTOTAL			10.4	18.	-	
29								
30		TOTAL			22	32.8	8.	

NAVTROL . BUS

Hitchhiker Interface Subsystem

Flight Hardware power switching and bus protection serial interface receivers and drivers HH command packet protocol processing telemetry packet generation health and safety monitors

Ground Support Equipment & Operations Console customer ground support equipment command generation script development process development telemetry processing archiving engineering unit conversion parameter limit checking investigator operations console

L

17.0.1

SCL Uplink Packet Definition

_
ge
Ба
_

	•	α	C	۵	ш
-	RoMPS Telemetry	١.			
	_ =	Description	Length	Rate	Comment
	ŕ				
4	Frame Header sync	sync	2	-	
2		sync/id	2	-	
9					
7	RTE Packet	id, etc	2	-	
8		rte state	2	-	
6		agenda status	2	,-	
0		script status	10	▼	
11		script status	10	-	
12					
13	DUMP Packet	id/len	4	T	
14		sample id	2	•	
15		process id	2	-	
9.1		sample temp	2	•	
17		lamp intensit	7	T-	
18		lamp intensit	1	•	
19		lamp intensit	2		
20		lamp intensit	1		
21	:	lamp current	2	-	
22		elevation	2		
23		theta	2		
24		radial	2		
25		grip	2	1	
26		force	2		
27		exp. current	2		
			Z	2	
29		error reports	-	0	5 maximum
30		housekeeping	-	9	8 maximum
31					
32	TOTAL		06	0	
33	BUDGET		120	C	1200 band

92/

=======================================	010-132
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE OF MI	ANN ARBOR, MI
	- 1

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 1.2.2-1

Preliminary Specification SC-4 Single Board Spacecraft Computer

Central Processor 80C186/80C187 16 Bit

Clock Frequency 10 MHz

Operating System MS-DOS and VRTX Compatible

Onboard Memory

RAM 512K Bytes w/EDC EEPROM 256K Bytes w/EDC UVPROM 640K Bytes w/EDC

Hardware Vectored Interrupts 16 User Configurable

Timer/Event Counters 8, Software Configurable, 120 ns

Granularity

Input/Output Capability

Parallel I/O

Analog Input

Analog Output

RS-422 Serial I/O

16 Input, 16 Output

32 Channels, 12-bit Resolution

4 Channels, 12-bit Resolution

2 Channels

SCSI Interface 1 Port
Software Controlled Power Switch 4 Each

Mass Storage 24M Bytes, Read/Write Non-volatile with

Additional Battery

Expansion Internal Daughterboard Connector

Size 7.25 X 12 X 2.25 in

Weight 3.7 Lb (Approximate)

Power 28v @ 5w (Approximate)

Figure 3.2-1 SC-4 Single Board Spacecraft Computer Block Diagram

RoMPS AMS Software Summary

MODULE	VENDOR	FUNCTION	LANGUAGE
VRTX-32	Ready Systems	Real Time Executive	"C", Assembler
RTL/86 VRTX-32	Ready Systems	"C" Reentrent Run Time Library Interface	"C", Assembler
RT-SCOPE	Ready Systems	System Monitor, Debugger	"C", Assembler
RTL/86 RT-SCOPE	Ready Systems	"C" Language Interface to RT-SCOPE	"C", Assembler
SC-4 Board Support Package	ICS/SpARC	Interface Between VRTX and SC-4 Devices	"C", Assembler
Command	SpARC	Get Command Packets from HH Avionics	្ន
Zymate Interface	SpARC	SCL to Zymate Interface	.
Telemetry Acquistion	SpARC	Acquire the Data of the Telemetry Items and forward to Telemetry Reduction	
Telemetry Output	SpARC	Format and send telemetry	ייט.

RoMPS AMS Software Summary

MODULE SCL RTE	VENDOR ICS	EUNCTION SCL Command Interpreter and Rules evaluation	LANGUAGE "C"
Telemetry Reduction	S	Monitor Telemetry and post detected changes	ב
Processing Scheduler	SpARC	Scheduled execution of scripts initiating EasyLab processing programs	SCL
Initiate Sample Processing	SpARC	Sends the EasyLab commands initiating sample processing	SCL
Initialize / Shutdown EasyLab	SpARC	Sends the EasyLab commands initiating/shutting down EasyLab	SCL
Send EasyLab Commnad	SpARC	Send an EasyLab Command	SCL

AMS Memory Map

Boot ROM, IVT 64K VRTX 32 Components 89K Board Support 16K SCL RTE and TM Acquisition 64k SpARC AEMS Code 17K	EFFFF	64K BOOTSTRAP PROM 256K EEPROM
Unused 70K	AFFFF 8FFFF	128K PERIPHERALS 64K MASS MEMORY PAGE 256K USER RAM
VRTX managed user Memory 236K	3FFFF 00000	256K USER RAM

RoMPS SC-4 EasyLab Software Summary

MODULE	VENDOR	FUNCTION	LANGUAGE
ZYOS	Zymark	Zymate Operating System	"C", PLM 86
Boot ROM	Zymark	Operating System Initialization	"C", PLM 86
Robot Module	SpARC	High level robot controller and servo interface	ູ້ບ
Annealer Module	SpARC	Oven controller interface	<u>.</u>
Annealer PyTechnology	SpARC	Annealer control variables and navigation routines	EasyLab
Rack Pytechnology	SpARC	Rack navigation routines and variables	EasyLab
Robot PyTechnology	SpARC	Robot control and navigation variables	EasyLab

SC-4 EasyLab System Memory Map

Boot ROM,IVT	FFFFF	64K BOOTSTRAP PROM
Unused 32K	EFFFF	
ZYOS 158K		
RoMPS Module Code 59 K		256K EEPROM
Unused 39K		
Memory Mapped Device Space	AFFFF 8FFFF	128K PERIPHERALS
Unused 64K		64K MASS MEMORY
Data Dictonary, Pytechnology ROM Copy, 18K	7FFFF	PAGE
		256K EEPROM
Unused 238K		
Data Dictonary, Pytechnology RAM Copy, 18K	3FFFF	
Unused 38K		
ZYOS Workspace 200K		256K USER RAM
	00000	

Processor Utilization

time
annealing
by
limited
thruput
sample
RoMPS
•

	300 lines/second
	300
 Spacecraft Command Language 	Compiled script

10 lines/second	37 %
 EasyLab Interpreted procedure 	 Memory Margin

Robot Control Subsystems

4 Degree-Of-Freedom Material Processing Robot elevation, azimuth, reach, gripper axis brushless dc motors hall effect commutation normally-on electrical brakes quadrature output incremental position encoders end-of-travel fiducials current or force limited compliant gripper sequential operation

Digital Servo Position Control
 positioning accuracy +- 0.025 inch
 velocity range 0.1 to 2.0 inches/sec
 force limiting +- 1 lbf
 Proportional-Integral-Deriviative algorithm
 <5 msec control loop cycle time

chassis isolated output stage 32 volt maximum phase voltage 10 amp maximum phase current fold-back current limiting over-temperature protection output inhibit

7

Servo Axis Control Logic Suppliers

custom custom 1.6 ms 5 ms 2 6 no, ucode rom'd yes no 32020 80186 no yes no no pot,incr pot+incr yes/yes yes/no no yes	pid 5 ms 1 yes no several yes no incr. yes/yes	pid 5ms 1 yes no NEC yes no incr. yes/no
4)		
4)		
4)		yes no NEC yes no incr. yes/no
		no NEC yes no incr. yes/no yes
		NEC yes no incr. yes/no yes/no
		yes no incr. yes/no
		no incr. yes/no yes
		incr. yes/no ves
		yes/no yes
		ves
		•
	yes	yes
	rs422	parallel
	dip	smc
		industrial
no	ou	no
yes	no	ou
1800		yes
ou gu	0 u	о́и
tbd	2.5k	0.25k
	na	na
c >50k?	na	na
=	ria	ial units

Servo Axis Control Logic Suppliers

Industrial uC	workmanshi separate	p current	amplifier		
Zymark	10amp	power	drivers		
Navtrol	rom'd code,	interface	library of	standard	functions
Functional Characteristic	minimum modifications required rom'd code,				

Subsystem Oven Control Annealing

Interfaces

serial interface

Feedback Control

conditioned thermcouple output quartz halogen filament lamp

Protection Output

filament inrush protection

Power Requirements

Voltage

Current

24 volt rated lamp

amp maximum 10

Temperature Set Point

Range

350°C to 1500°C

+- 2% of setpoint (6 bits) +- 2% of setpoint (6 bits)

Repeatability Resolution

Time Set Point

3 to 7200 seconds

+- 1 second (software controlled)

Resolution

Range

Response Time

limited by thermal coupling to sample

Time Profile

2 step time-temperature profile

1) preheat, 2) melt

15.0B

Experiment Data Acquisition Subsystem

RTA process monitor
 thermocouple lamp flux monitors

Oven Status
 lamp current

• Robot Status
4 axis position
1 axis force
EOT fiducials
overtemp, current limit indicators

Computer Status executive status script status rule evalutation

 Health and Safety Monitors radiator oven robot electronics stacks power supplies

RoMPS Data Acquisition List

1 engineering Comment ш 1 process 1 robot Rate 30 Description Length flux intensity radiator temp flux intensity flux intensity flux intensity sample temp lamp current exp. current robot temp RoMPS Data Acquisition eot status oven temp oven temp elec temp elec temp 0 force Function 24 TOTAL 15 18 19 20 22 12 13 14 9 0 17 21 8 6 ~ 4 S ဖ က

