International Islamic University Chittagong Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE Semester End Exam, Spring 2023

Course Code: MATH 1107

Course Title: Mathematics I

Full Marks: 50

Time: 2 hours 30 minutes

(i) The figures in the right-hand margin indicate full marks

(ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

Course Outcomes (COs), Program Outcomes (POs) and Bloom's Levels (BL) of the Questions						
CO	CO Statements	PO	BL			
CO1	For engineering problems, it is essential to get Knowledge of the limit, continuity, and differentiability, power series, Rolle's Theorem, Mean value theorem, Taylor, and McLaurin series.		C2			
CO2	By applying the method of partial differential (PD) to recognize the optimal value of the model equations.		C3			
СОЗ	Implementing the mathematical problems by applying the definite and indefinite along with the surface and volume integration expresses engineering problems.	POa	C3,C5			

	Bloom's Level	s (BL) of the	Question	S		
Letter Symbols	C1	C2	C3	C4	C5	C6
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create

Part A

[Answer the questions from the followings]

1.	a)	State and Prove Euler's theorem. If $u = \log(x^3 + y^3 + z^3 - 3xyz)$	then	CO2	C3	3+3
		show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$				

1. b) Evaluate the maximum and minimum values of $f(x) = (x-1)^4 \cdot (x-2)^3$ by CO2 C3 using first time derivative.

2. a) Evaluate
$$\int e^{ax} \sin bx \ dx$$
. CO3 C5 3
2. b) Evaluate (i). $\int \frac{x^2}{(x+1)(x+2)} dx$, (ii). $\int e^{ax} \cos bx \ dx$ CO3 C5 2×3.5

2. a) Evaluate the following integrals: (i)
$$\int \frac{3x+5}{(x+1)^2(3x-2)} dx$$
 (ii) $\int \sqrt{a^2-x^2} dx$ CO3 C5 4+3

2. b) Evaluate
$$\int \sin^4 x dx$$
. CO3 C5 3

Part B

[Answer the questions from the followings]

3. a) Show that
$$\int_0^{\pi/2} \sin^p \theta \cos^q \theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2\Gamma(\frac{p+q+2}{2})}$$
 and $\int_a^b f(x)dx = -\int_b^a f(x)dx$ CO3 C3 5

3. b) Establish a reduction formulae for
$$\int tan^n x dx$$
 and compute $\int_a^b x dx$ as the limit CO3 C3 of a sum.

4. a) Evaluate (i).
$$\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$$
 (ii). $\int_0^1 \int_0^1 \int_0^1 (x^2+y^2+z^2)dzdydx$. CO3 C2 3+3

4. b) Find the area of the surface
$$z^2 = 2xy$$
 included between the planes $x = 0$, $x = 0$.

Or

- 5. a) Find the volume and area of the curved surface of the paraboloid of revolution CO3 C3 formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bound the section $x = x_1$.
- 5. b) Find the volume of the part of the parabola $y^2 = 4x$ bounded by the latus CO3 C3 4 rectum revolves about the tangent at the vertex.