

Trabajo Práctico Integrador

Pronósticos Deportivos

Introducción

Nos han solicitado el desarrollo de un programa de Pronósticos Deportivos.

Un pronóstico deportivo consta de un posible resultado de un partido (que un equipo gane, pierda o empate), propuesto por una persona que está participando de una competencia contra otras.

Cada partido tendrá un resultado. Este resultado se utilizará para otorgar puntos a los participantes de la competencia según el acierto de sus pronósticos.

Finalmente, quien gane la competencia será aquella persona que sume mayor cantidad de puntos.

Consigna

La propuesta del trabajo práctico consiste en implementar un programa de consola que dada la información de resultados de partidos e información de pronósticos, ordene por puntaje obtenido a los participantes.

Alcance

En este trabajo práctico nos limitaremos a pronosticar los resultados de los partidos, sin importar los goles ni la estructura del torneo (si es grupo, eliminatoria u otro); simplemente se sumarán puntos y se obtendrá un listado final.

A continuación, se propone un diagrama de clases inicial que puede ser modificado en cualquier momento.

Metodología

Luego de la presentación, se proponen entregas incrementales a lo largo del curso. El calendario definitivo será definido por cada docente.

Calendario tentativo:

Hito	Nro. de Clase
Presentación TP	10
Entrega 1	12
Entrega 2	14
Entrega 3	16
Presentación Final	18

Entrega 1

A partir del esquema original propuesto, desarrollar un programa que lea un archivo de partidos y otro de resultados, el primero correspondiente a **una ronda** y el otro que contenga

los pronósticos de **una persona**¹. Cada ronda debe tener una cantidad fija de partidos, por ejemplo 2. El programa debe:

- Estar subido en un repositorio de GIT
- Utilizar dos archivos con los datos de entrada.
- Al leer las líneas de los archivos debe instanciar objetos de las clases propuestas
- Debe imprimir por pantalla el puntaje de la persona

Importante

Se debe considerar la forma de identificar los partidos de forma unívoca para su correcto procesamiento. Está permitido modificar la estructura del archivo si así lo considera.

Ejemplo

Archivo resultados.csv

Equipo 1	Cant. goles 1	Cant. goles 2	Equipo 2
Argentina	1	2	Arabia Saudita
Polonia	0	0	México

Archivo pronostico.csv

Equipo 1	Gana 1	Empata	Gana 2	Equipo 2
Argentina	X			Arabia Saudita
Polonia		Х		México

Leyendo los 2 (dos) archivos, y suponiendo que cada resultado acertado suma 1 (un) punto, la salida del programa debe ser: Puntaje = 1

Entrega 2

En esta entrega se debe poder soportar que los archivos contengan información de muchas rondas y de muchas personas (para eso hay que agregar los datos de ronda y persona en los archivos correspondientes).

Cada ronda puede tener cualquier cantidad de partidos.

Al finalizar el programa, se debe imprimir un listado de los puntajes de cada persona que participa.

¹ Se considera *una única ronda y un único participante* en esta entrega

El programa debe:

- Imprimir por pantalla el nombre de cada persona, el puntaje total y la cantidad de pronósticos acertados.
- Implementar un test (al menos uno, pero se recomienda hacer más) que calcule el puntaje de una persona en 2 (dos) rondas consecutivas.

<u>Ejemplo</u>

Archivo resultados.csv

Ronda	Equipo 1	Cant. goles 1	Cant. goles 2	Equipo 2
1	Argentina	1	2	Arabia Saudita
1	Polonia	0	0	México
1	Argentina	2	0	México
1	Arabia Saudita	0	2	Polonia

Archivo **pronosticos.csv**

Participante	Equipo 1	Gana 1	Empata	Gana 2	Equipo 2
Mariana	Argentina	X			Arabia Saudita
Mariana	Polonia		Х		México
Mariana	Argentina	Х			México
Mariana	Arabia Saudita			Х	Polonia
Pedro	Argentina	Х			Arabia Saudita
Pedro	Polonia			Х	México
Pedro	Argentina	Х			México
Pedro	Arabia Saudita		Х		Polonia

Leyendo los 2 (dos) archivos, y suponiendo que cada resultado acertado suma 1 (un) punto, la salida del programa debe ser:

Mariana: 2

Pedro: 1

Entrega 3

En esta entrega se deben poder leer los pronósticos desde una base de datos MySQL.

En esta entrega, el programa debe:

- Estar actualizado en el repositorio de Git.
- Recibir como argumento un archivo con los resultados y otro con configuración, por ejemplo: conexión a la DB, puntaje por partido ganado, puntos extra, etc.