本节内容

控制器设计

硬布线控制器

本章总览

根据指令操作码、目前的机器周期、节 拍信号、机器状态条件,即可确定现在 这个节拍下应该发出哪些"微命令"

内容回顾

CU发出一个微命令,可完成对应微操作。 如: 微命令1 使得 PC_{out}、MAR_{in} 有效。 完成对应的微操作1 (PC)→MAR

T₀: 微操作1、微操作2

T₁: 微操作3 T₂: 微操作4 一个节拍内可以并行完成 多个"相容的"微操作

To: 微操作5、微操作2

T₁: 微操作6 T₂: 微操作7 同一个微操作可能在不同指令的不同阶段被使用

 ---- 节拍数各不相

 ---- 化设计,选择

| T₁: 微操作8 | T₂: 微操作9、微操作6 不同指令的执行周期所需 节拍数各不相同。为了简 化设计,选择定长的机器 周期,以可能出现的最大 节拍数为准(通常以访存 所需节拍数作为参考)

CLK $1 \rightarrow FE$ $1 \rightarrow IND$ $1 \rightarrow EX$ $1 \rightarrow INT$

 T_0 :

 T_0 :

T₁: 微操作10 T₂: 微操作11 若实际所需节拍数较少, 可将微操作安排在机器周 期末尾几个节拍上进行

王道考研/CSKAOYAN.COM

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

颤抖吧! 感受恐惧!

注:一般不考电路,莫慌~

M (MAR) →MDR 微操作命令的逻辑表达式:

 $FE \cdot T_1 + IND \cdot T_1(ADD + STA + LDA + JMP + BAN) + EX \cdot T_1(ADD + LDA)$

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

硬布线控制器的设计

设计步骤:

确定哪些指令在什么阶段、在什么 条件下会使用到的微操作

- 1. 分析每个阶段的微操作序列(取值、间址、执行、中断四个阶段)
- 2. 选择CPU的控制方式

采用定长机器周期还是不定长机器周期?每个机器周期安排几个节拍?

3. 安排微操作时序

如何用3个节拍完成整个机器周期内的所有微操作?

4. 电路设计

假设采用同步控制方式(定长机器周期), 一个机器周期内安排3 个节拍。

安排,必须安排

注:中断周期内的微操作序列就不分析了,原理类似

分析每个阶段的微操作序列

取指周期(所有指令都一样)

 $PC \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow IR$

OP (IR) \rightarrow ID

 $(PC) + 1 \rightarrow PC$

间址周期(所有指令都一样)

 $Ad(IR) \rightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow Ad(IR)$

注: ID 是指令译码器 Instruction Decoder

罗列出<mark>所有</mark>指令在各个阶段的微操作序列,就可以知道 在什么情况下需要使用这个微操作

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

执行周期(各不相同)

注:很多地方把 ACC简写为AC

CLA

 $0 \rightarrow AC$

clear ACC 指令 ACC清零

LDA X

取数指令,

把X所指内容取到ACC

Ad (IR) \rightarrow MAR

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow AC$

JMP X 无条件转移 $Ad(IR) \rightarrow PC$

负数符号位为1

BAN X

 $A_0 \bullet Ad (IR) + \overline{A_0} \bullet (PC) \rightarrow PC$

Branch ACC Negative 条件转移,当ACC为负时转移

安排微操作时序的原则

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

安排微操作时序-取指周期

微操作的 先后顺序不得 随意 更改 原则一

原则二 被控对象不同 的微操作

尽量安排在 一个节拍 内完成

占用 时间较短 的微操作 原则三

尽量 安排在 一个节拍 内完成

并允许有先后顺序

- (1) PC \rightarrow MAR
- (2) 1 \rightarrow R
- 在(1)之后 (3) M (MAR) \rightarrow MDR
- (4) MDR \rightarrow IR
- (5) OP (IR) \rightarrow ID
- (6) (PC) + 1 \rightarrow PC

存储器空闲即可

在(3)之后

在(4)之后

在(1)之后

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

 T_0 (1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

T₁ (6) (PC) + 1 → PC 在(1)之后

T₂ (4) MDR → IR 在(3)之后

(5) OP (IR) → ID 在(4)之后

两个微操作占用时 间较短,根据原则 三安排在一个节拍

M(MAR)→MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP (IR) → ID。也就是可以一次同时发出两个微命令。

存储器空闲即可

安排微操作时序-间址周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

- T_0 (1) Ad(IR) \rightarrow MAR
- T_0 (2) 1 \rightarrow R
- T_1 (3) M (MAR) \rightarrow MDR
- T_2 (4) MDR \rightarrow Ad(IR)

安排微操作时序-执行周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

```
① CLA
                     \mathsf{T}_0
clear
                            0 \rightarrow AC
ACC清零
2 COM
                     \mathsf{T}_0
complement T<sub>1</sub>
                            \overline{AC} \rightarrow AC
                     T_2
ACC取反
③ SHR
                     \mathsf{T}_0
                     \mathsf{T}_1
shift
                            L(AC) \rightarrow R(AC)
算术右移
                            AC_0 \rightarrow AC_0
4 CSL
                     \mathsf{T}_0
                     \mathsf{T}_1
cyclic shift
                           R(AC) \rightarrow L(AC), AC_0 \rightarrow AC_n
循环左移
⑤ STP
                     \mathsf{T}_0
                     \mathsf{T}_1
stop
                           0 \rightarrow G
停机
```

安排微操作时序-执行周期

(1) 非访存指令

- ① CLA T_0 clear T_1 T_2 $0 \rightarrow$ AC
- \bigcirc COM T_0 complement T_1
- ACC取反 T_2 $\overline{AC} \rightarrow AC$
- 3 SHR T_0 Shift T_1
- 算术右移 T_2 L(AC) → R(AC)
 - $T_2 AC_0 \rightarrow AC_0$
- 4 CSL T_0 cyclic shift T_1
- 循环左移 T_2 R(AC) \rightarrow L(AC), AC₀ \rightarrow AC_n
- $\begin{array}{ccc} \boxed{5} \text{ STP} & T_0 \\ \text{stop} & T_1 \end{array}$
- 停机 $T_2 \rightarrow G$

(2) 访存指令

- ⑥ ADD X T_0 Ad (IR) → MAR, 1 → R
- 加法指令 T₁ M(MAR)→MDR
- 隐含ACC T_2 (AC)+(MDR) \rightarrow AC
- \bigcirc STA X $_{10}$ Ad (IR) → MAR, 1 → W
- 存数指令 T₁ AC → MDR
- 隐含ACC T_2 MDR → M (MAR)
- 8 LDA X T_0 Ad (IR) → MAR, 1 → R
- 取数指令 T₁ M (MAR) → MDR
- 隐含ACC T₂ MDR → AC

(3) 转移指令

- ⑨ JMP X T₀ T₁ T₁ Ad (IR) → PC
- ① BAN X To Branch ACC To Negative To

条件转移

 $\frac{\mathsf{T}_1}{\mathsf{T}_2}$ $\mathsf{A}_0 \bullet \mathsf{Ad} (\mathsf{IR}) + \overline{\mathsf{A}_0} \bullet (\mathsf{PC}) \to \mathsf{PC}$

安排微操作时序-中断周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计

 $\sqrt{1}$ (1) a \rightarrow MAR

 Γ_0 (2) 1 \rightarrow W 存储器空闲即可

T₀ (3) 0 → EINT 硬件关中断

T₁ (4) (PC) → MDR 内部数据通路空闲即可

T₂ (5) MDR → M(MAR) 在(3)之后

T₂ (6) 向量地址 → PC 在(3)之后

这些操作由中断隐指令完成

注:中断隐指令不是一条指令,而是指一条指令的中断周期由硬件完成的一系列操作

中断周期的三个任务:

- 1. 保存断点
- 2. 形成中断服务程序的入口地址
- 3. 关中断

组合逻辑设计

设计步骤:

1. 列出操作时间表

列出在取指、间址、执行、中断周期,T0、T1、T2 节拍内有可能用到的所有微操作

- 2. 写出微操作命令的最简表达式
- 3. 画出逻辑图

组合逻辑设计

设计步骤:

1. 列出操作时间表

非访存指令

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	Т		PC → MAR	1	1	1	1	1	1	1	1	1	1
	T_0		$1 \longrightarrow R$	1	1	1	1	1	1	1	1	1	1
	T		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
FE	T_1		$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1	1	1	1	1
取指	T ₂	o file	$MDR \rightarrow IR$	1	1	1	1	1	1	1	1	1	1
		1 1 1 2 2 7 CO.	$OP(IR) \rightarrow ID$	1	1	1(3)	1	1	1	1	1	1	1
		I	1→ IND		ji)	gh a			1	1	1	1	1
		/ T	$1 \longrightarrow EX$	1	1	1	1	1	1	1	1	1	1

组合逻辑设计

设计步骤:

1. 列出操作时间表

非访存指令

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T_0		$Ad(IR) \rightarrow MAR$						1	1	1	1	1
IND			$1 \longrightarrow R$					60	1	1	1	1	1
间址	T_1		$M(MAR) \rightarrow MDR$						1	1	1	1	1
	T_2		$MDR \longrightarrow Ad (IR)$					* 2 	1	1	1	1	1
		IND	$1 \longrightarrow EX$						1	1	1	1	1

间址周期标志

设计步骤:

组合逻辑设计

- 1. 列出操作时间表
- 2. 写出微 操作命令的 最简表达式

	工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP	BAN
`				$Ad(IR) \rightarrow MAR$			1	1	1	A C	7
		T_0		$1 \longrightarrow R$			1		1		
				$1 \longrightarrow W$				1			
		J		$M(MAR) \rightarrow MDR$			1	A Clark	1		
	EX 执行	T_1	-16X	$AC \longrightarrow MDR$				1			
	17(1)	(0		(AC)+(MDR)→AC			1	off.			
			<i>2)</i>	$MDR \longrightarrow M(MAR)$				1			
	A	A CONTRACTOR		MDR→AC			. A		1		
		T_2		0→AC	1						
	A A A			$\overline{AC} \rightarrow AC$		° 1					
	9)			$Ad(IR) \rightarrow PC$	120404					1	
			A_0	$Ad(IR) \rightarrow PC$. ·						1

微操作信号综合

节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
Т		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
10		$1 \rightarrow R$	1	1	1	1	1	1	1	1	1	1
Т		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
1]		1	 					20	<u>.</u>	_	.	ا ا ÷
T_1		$M(MAR) \rightarrow MDR$						1	1	1	1	1
间址											1	
执行				1 → W					1			
				$M(MAR) \longrightarrow MDR$				1		1		
	T ₀	T ₀ 条件	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 条件	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	条件 が採作的マ信号 CEA COM SHR CSL SHR T ₀ PC → MAR 1 1 1 1 1 1 1 1 1	条件 根操作的 引	条件 機操作的 受信 CLA COM SHK CSL SH ADD SIA T_0 $PC \rightarrow MAR$ 1 1 1 1 1 1 1 1 1	App 条件 一次採作的マーロタ CLA COM SHK CSL SH ADD SIA LDA T ₀	条件 税保行間 マ 信 与 CLA COM STR CSL STI ADD STA LDA JMF T_0 PC → MAR 1 1 1 1 1 1 1 1 1

M(MAR)→MDR微操作命令的逻辑表达式:
FE·T₁+IND·T₁(ADD+STA+LDA+JMP+BAN)+EX·T₁(ADD+LDA)
=T₁{FE+IND(ADD+STA+LDA+JMP+BAN)+EX(ADD+LDA)}

画出逻辑图

M (MAR) → MDR微操作命令的逻辑表达式: FE·T₁ + IND·T₁(ADD+STA+LDA+JMP+BAN) + EX·T₁(ADD+LDA) =T₁{FE+IND(ADD+STA+LDA+JMP+BAN)+EX(ADD+LDA)}

根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令"

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统) 如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。 由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研