FORM PTO-1449/A and B (Modified)

1

Sheet

SPPLICATION NO.: 09/777,725 CONFIRMATION NO.: 6084

ATTY. DOCKET NO.: \\00925/7008(

INFORMATION DISCLOSURE TRANSSTATEMENT BY APPLICANT

FILING DATE: February 5, 2001

APPLICANT: Timothy M. Swager

GROUP ART UNIT:

1711

XAMINER: Unassen

Unassigned

U.S. PATENT DOCUMENTS

Examiner's Initials#	Cite No.	U.S. Patent Document Number	Name of Patentee or Applicant of Cited Document	Date of Publication or of issue of Cited Document MM-D-YYYY	
M	1	4,839,112	Wynne et al.	06/13/89	
ĺ	2	4,957,615	Ushizawa et al.	09/18/90	
	3	4,992,244	Grate .	02/12/91	
	4	5,091,502	Narang et al.	02/12/91	
	5	5,250,439	Musho et al.	10/05/93	
	6	5,312,896	Bhardwaj et al.	02/25/92 10/05/93 05/17/94	
	7	5,387,462	Debe	02/07/95	
	8	5,493,017	Therien et al.	02/20/96	
	9	5,549,851	Fukushima et al.	08/27/96	
	10	5,675,001	Hoffman et al.	10/07/97	
	11	5,323,309	Taylor et al.	06/21/94	
	12	6,020,426	Yamaguchi et al.	02/01/2000	
MV	13	6,323,309	Swager et al.	11/27/01	

FOREIGN PATENT DOCUMENTS

Examiner's Initials#	Cite No.	Foreign Patent Document		ument	Name of Patentee or Applicant of Cited	Date of Publication of	Translation
		Office/ Country	Number	Kind Code	Document (not necessary)	Cited Document MM-DD-YYYY	(Y/N)
M	14	wo	99/57222	Ai	Massachusetts Institute of Technology	11/11/1999	
(kr	15	wo	00/05774	Al	Massachusetts Institute of Technology	02/03/2000	
	16	wo	95/16681	Al	Trustees of University of Pennsylvania	06/22/1995	

OTHER ART — NON PATENT LITERATURE DOCUMENTS

Examiner's Initials#	Cite No	Include name of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, relevant page(s), volume-issue number(s), publisher, city and/or country where published.			
a	17	T. Swager, "The Molecular Wire Approach to Sensory Signal Application," Acc. Chem. Res., Vol. 31, pp. 201-207, 1998			
M	18	P. Audebert et al, "Synthesis and Characteristics of New Redox Polymers Based on Copper Containing Units; Evidence for the Participation of Copper in the Electron Transfer Mechanism", New Journal of Chemistry, Vol. 15, No. 4, pp. 235-237, 1991			
M	19	K.A. Goldsby et al., "Oxidation of Nickel(II) Bis(salicylaldimine) Complexes: Solvent Control of the Ultimate Redox Site", Polyhedron, Vol. 8, No. 1, pp. 113-115, 1989			
M	20	L.A. Hoferkamp and K.A. Goldsby, "Surface-Modified Electrodes Based on Nickel(II)and Copper(II) Bis(salicylaldimine) Complexes", Chemistry of Materials Vol. 1, No. 3, pp. 348-352, 1989			
Ja	21	M.Vilas-Boas et al., "New Insights into the Structure and Properties of Electroactive Polymer Films Derived from [Ni(salen)]", Inorganic Chemistry, Vol. 36, No. 22, pp. 4919-4929, 1997			
m	22	C.P. Horwitz and R.W. Murray, "Oxidative Electropolymerization of Metal Schiff-Base Complexes", Mol.Cryst.Liq.Cryst., Vol. 160, pp. 389-404, 1988			

Serial No. 09/777,725 Conf. No. 6084

PEZZ	
JIN 2	Page 2 of 3
Cite production in the internal in the internal	

M	23	J.L. Reddinger and Taribo ynolds, "Tunable Redox and Optical Properties Using Transition Metal-Complexed Polythiophenes". Macromolecules, Vol. 30, No. 3 pp. 673-675, 1997					
M	24	J.L. Reddinger and J.R. Reynolds, "Electroactive π-Conjugated Polymers Based of Pransition Metal-Containing Thiophenes Capable of Sensing Ionic and Neutral Species", ACS Polym. Prepr. pp. 3213222, 1997					
Z	25	J.L. Reddinger and J.R. Reynolds, "Electroactive, π-Conjugated Polymers based on Transition Metal- Containing Thiophenes", Synthetic Metals 84, pp. 225-226, 1997					
U	26	P. Audebert et al., "Redox and Conducting Polymers Based on Salen-Type Metal Units; Electrochemical Study and Some Characteristics", New Journal of Chemistry, Vol. 16, No. 6, pp. 697-703, 1992					
U	27	F. Bedioui et al., "Electrooxidative polymerization of cobalt, nickel and manganese salen complexes in actionity solution", J. Electroanal. Chem. 301, pp. 267-274, 1991					
U	28	C.E. Dahm and D.G. Peters, "Catalytic Reduction of Iodoethane and 2-Iodopropane at Carbon Electrodes Coated with Anodically Polymerized Films of Nickel(II) Salen", Analytical Chemistry, Vol. 66, No. 19, pp. 3117-3123, 1994					
M	29	K.A. Goldsby, "Symmetric and Unsymmetric Nickel(II) Schiff Base Complexes; Metal-Localized Versus Ligand-Localized Oxidation", J.Coord.Chem., Vol. 19, pp. 83-90, 1988					
A	30	H. Segawa et al., "Approaches to conducting polymer devices with nano-structure: Electrochemical construction of one-dimensional and two-dimensional prophyrin-oligothiophene co-polymers", Synthetic Metals 71, pp. 2151-2154, 1995					
M	31	T. Shimidzu et al., "Approaches to conducting polymer devices with nanostructures: photoelectrochemical function of one-dimensional and two-dimensional porphyrin polymers with oligothienyl molecular wire", Journal of Photochemistry and Photobiology A: Chemistry 99, Article 4168, pp. 1-7, 1995					
(4	32	C. Armengaud et al., "Electrochemistry of conducting polypyrrole films containing cobalt porphyrin", J. Electroanal. Chem., 277, pp. 197-211, 1990					
W	33	P. Moisy et al., "Epoxidation of cis-cyclooctene by Molecular Oxygen Electrocatalysed by Polypyrrole-Manganese Porphyrin Film Modified Electrodes", J. Electroanal. Chem. 250, pp. 191-199, 1988					
M	34	F. Bedioui et al., "Poly(Pyrrole-Manganese Tetraphenylporphyrin) film Electrodes in Acetonitrile Solution", J. Electroanal. Chem. 239, pp. 433-439, 1988					
M	35	A. Bettelheim et al., "Electrochemical Polymerization of Amino-, Pyrrole-, and Hydroxy-Substituted Tetraphenylporphyrins", Inorganic Chemistry, Vol. 26, No. 7, pp. 1009-1017, 1987					
14	36	P. Audebert et al., "Description of New Redox and Conducting Polymers Based on Copper Containing Units; Emphasis on the Role of Copper in the Electron Transfer Mechanism", Synthetic Metals 41-43, pp. 3049-3052, 1991					
M	37	S.S. Zhu et al., "Conducting Polymetallorotaxanes: A Supramolecular Approach to Transition Metal Ion Sensors", Journal of the American Chemical Society, Vol. 118, No. 36, pp. 8713-8714, 1996					
M	38	S.S. Zhu and T.M. Swager, "Design of Conducting Redox Polymers: A Polythiophene-Ru(bipy) ₃ Hybrid Material**", Advanced Materials, Vol. 8, No. 6, pp. 497-500, 1996					
M	39	G. Zotti et al., "Conductivity In Redox Modified Conducting Polymers. 2. Enhanced Redox Conductivity in Ferrocene-Substituted Polypyrroles and Polythiophenes", Chem. Mater. Vol. 7, No. 12, pp.2309-2315, 1995					
M	40	C.G. Cameron and P.G. Pickup, "A conjugated polymer/redox polymer hybrid with electronic communication between metal centres", Chem. Commun., pp. 303-304, 1997					
U	41	F. Bedioui et al., "Electrochemistry of conducting polypyrrole films containing cobalt porphyrin, Part 2." New Developments and inclusion of metallic aggregates in the coordination polymer, "J. Electroanal. Chem., Vol. 297, pp. 257-269, 1991					
n							

Mailed 06/______/02

EXAMINER	M	U'	DATE CONSIDERED	6/24/04

#EXAMINER: Initial of reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.