wazy Logic UNII: V

It to an approach based on degree of truth rolls. Than true or false

In Traditional logic is predicale & proposition ing Every street has a Treath value ise True or False

Traditional Logic

Fuzzy set,

A regular set to ming but collection of related items. Es: -fullt= {apple, bunana, Brange } there apple, bonous, drange me the elements of serficills fuzzy set is a collection of membership and its digree of truth.

membership ning but elements in a furty set Here membership-liding slightly belongs to set A

membership at lighty belongs to set a membership cycle extremnly belongs to set A Languistic Variable

Linguistic Unitable is a Dallable which store woods are called Maguillasse castables.

Ex Age = fchild, Young Old }

The formal definition of a languageto variable to (1,700,0,0,4)

1 : Valiable Name

T(1): set of values a takes

U: NII value a valable can take

6 : Syntaetle reles M: Sentanfle reles

Ez: Age - of Child, Young, Old }

a child yours

T(1): child, Young . Old

U: Set of Ages of All people

M: Give meaning to each term

Mobild (8): (2 =15)

Myoung(x): (15 67 655)

Muld (1): (50 £7 £ 100)

way propositions

Stmt: Ramis a boy

7 (stmt) = 0.8

: Ram is not a bog

 $\tau(stmt) = 1-0.8$

Fuzza proposition is notifing but a proposition with truth value we can modify the given proposition and we can combine the given proposition

Ex: 0: Ram %s Intelligent

T(0)=0.6

and new proposition is significant and 0

ic Strat and 0 (strat A0)

Ram %s boy and Ram %s intelligence

T (strat A0) = min (T(0), T(0))

= min (0.8, 0.6)

Fritzey set Eperations
Ohere are two sets 8,8 82

Union, Intersection, difference, complement

$$B_{1} \cup B_{2} = Max \left[M_{A}(x), M_{B}(x) \right]$$
Ex: $B_{1} : \left[\frac{1}{10} + \frac{0.45}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{0.0} \right]$

$$B_{2} : \left[\frac{1}{10} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \right]$$

$$B_{1} \cup B_{2} : \left[\frac{1}{1.0} + \frac{0.45}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \right]$$

Intersection

amplement,

$$\vec{B}\vec{J} = \left\{ \frac{0}{1.0} + \frac{0.25}{1.5} + \frac{0.7}{2.0} + \frac{0.85}{2.0} + \frac{1}{3.0} \right\}$$

Ofference

$$\widetilde{B}_{1} = \left\{ \frac{0}{1\cdot 0} + \frac{0\cdot 9}{1\cdot 5} + \frac{0\cdot 9}{2\cdot 0} + \frac{0\cdot 9}{2\cdot 5} + \frac{1}{3\cdot 0} \right\}$$

Bagison Bazjeslan Bellef Network

the same probabilistic graphical model deposts the undistonal deposter des of a variable to a devocted acyclic graph

DOWNSON DATE:

Ex: From the given graph find out the propability of grace

probability of getting wet P(w) - P(w/R) *P(E)+P(b|E)+I(E)
= 6.9 * P(E)+0.05+P(E)

 $P(E) = P(E/\omega, c) + P(\omega nc) + P(E/\omega c) + P(T\omega nc) + P(E/\omega c) + P(\omega nc) + (E/\omega c) + P(T\omega nc)$

Note - P(was = P(w) + P(c)

P(P) = 2.95 + 0.001 + 0.002 + 0.29 + (1-0.001) + 0.002 10.95 + 0.001 + (1-0.002) + 0.002 10.001 + (1-0.002) + (1-0.002)

P(R) = P(E/NC) + P(WAC) | P(E/NC) + P(WAC) + P(R/NC) !
P(WAC) + P(E/NC) # P(WAC)

4014

= 0.774 99

: P(10) = 0.94 ().00252+0.05+0.997449 = 0.0521

Dempster Shafer Theory

In this concept we use a term called 'plazisability' undicated by 'O' and 'probability density' undicated by 'O' and 'probability density' undicated by 'm'

EI O contains elements alleasy, The cold represented as below

0 = { Allergy, - flee, cold}

to diagnose the person has fever elements needed as

 $m = \int f \ln r \, \epsilon \sigma l \, d f$

Z- M=0-6

-urre probability of 0 = 1 probability of m=0.6

there we have not use all the elements in the room D. Empoter Sharfer Theory gives the probability of unnecessary elements

-from ex: wastage = 1-0.6 = 0.4

Ex: For the deagnalis of running nose

m = { Allergy, thu, cold }

m=0-8

: wastage = 1-08 = 0.2

Certainsty Factor

It gives the probability of given somement is two.
To calculate certificity Factor we have two things

THE STATE OF THE STATE OF

- I Measure of belief
- 2. Measure of Ashelles
- 1 Measure of belief

H = Hypatheds

25 1/11

M8 [11,1]=0

This states that for provided evidence the hypothesis

MB[H,E]=1

1888 states that for provided evidence the hypothesis

2. Memoure of Stabellef

MDITLE 7=0

This states what for provided evidence the hypothesis

MD[11,E]=1

This somes that for provided endence the happethers

Mentiple coldences Simple trapporthesis

ME[II.E. and E.] = MB[M. E.] + MB[H. E.] + [I.ME(H.E.]

MD[II.E. and E.] = MD[N.E.] + MD[H. E.] + (I.MD(II.E.))

CE[II.E. and E.] = MB(II.E. and E.) - MD[II.E. and E.]

Calcutate - the certaintry factor for having the values & from

MB[H, E]= 0.4, MO[H, E,] =0.1.
MB[H, E]= 0.5, MO[H, E,] =0.1.

Types of Membership functions

1 Trangle:

when we plot the membership

A Fuzzy set consists of membership with truth values When we plot till the truth values an a graph, If it represents as the graph drawn above then we call a fuzzy set of membership type blangle.

). Trapt zudtal

A Fuzzy set consists of membership with truth values when we plot all the troth values on a graph, if it represents as the graph shown above then we call a fuzzy set of member type trapizoidial.

3. Sangleton

A farry set consists of membership with truth whites when we plot not the truth values in a graph, if it represents as the graph shown above then we call a furry set of member type singleton.

1

A fuzzy set consists of membership with hoth values of the solon we plot all the truth waites for a graph. If the represents as the graph shown whose then we call a fuzzy set of memberlape Gaussian.

5 Piece Wise Miner

A fuzzy set consests of membership with truth values when noe plot all the truth values in a graph, the struth values in a graph. If it represents as the graph shown above then soe all a fuzzy set of member type fleee wise linear

Expert System Architecture

1 knowledge base

throwledge base to nothing but database of the expent system It is of two types.

1, Static DB

presontien programs or danses are stored here
ii, Regnamic as

While solveng the problem the finter meditary results stored in departme DB

2 Interence Engine

It has two components

J. Inference

Bangang data from secondary to parmary memory

Responsibility of -Apply ing the rules to solve the particular problem

3 knowledge Acquilation and learning Modele

Acquisition means addition so add the knowledge in the system, roe have to make the system learn

4- Opecial Interfaces Lelivory of the solution without complete Information

5 - Case - History

Statements converted in form of cases to stored here

& Uger Interface

This module helps the communication between machine and tumant.

Ex: U: #f

This Madule Explains the user why "I comes
to conclusion

M. Are spot depressed U.: Why mic spot asking? M: Your looks were depressed!

97 4

the transfer of the second

M. Bej seeing your looks, conclude that you are depressed.

in the second

1.76 7.9