Задание 2

Для соответствующих законов распределения рассчитать дивергенцию Кульбака-Лейблера $D_{f_X||g_Y}$ (в непрерывном и дискретном случае). Проверить справедливость тождества:

$$D_{f_X||g_Y} = H(X,Y) - H(X),$$

неравенства (следствие теоремы Крафта-Макмиллана):

$$D_{f_X||g_Y} \geq 0$$
, где $D_{f_X||g_Y} = 0$ только в случае $f_X = g_Y$

и свойства несимметричности:

$$D_{f_X||g_Y} \neq D_{g_Y||f_X}$$
.

Pасчет дивергенции Кульбака-Лейблера для дискретной случайной величины сравнить с встроенной функцией scipy.special.rel entr.

Вариант №1.

Нормальное распределение с параметрами $\mu=0$ и $\sigma=1$ и гамма-распределение с параметрами k=2.99 и $\theta=2.0$ в промежутке]0;10]. Распределения Пуассона с параметрами интенсивности $\lambda=4$ и $\lambda=10$ при $k=\overline{0,20}.$

Вариант №2.

Нормальное распределение с параметрами $\mu=0.5$ и $\sigma=0.2$ и бета-распределение с параметрами $\alpha=2$, $\beta=2$ в промежутке]0;1]. Гипергеометрические распределения с параметрами M=40, n=7, N=12 и M=40, n=15, N=20 соответственно при $k=\overline{0,20}$.

Вариант №3.

Хи-квадрат распределение с числом степеней свободы k=3 и распределение Рэлея с параметром $\sigma^2=2.0$ в промежутке]0;5]. Геометрическое распределение с параметром p=0.2 и распределение Юла-Саймона с параметром $\alpha=5$ при $k=\overline{0,19}$.

Вариант №4.

Экспоненциальное распределение с параметром $\lambda=0.5$ и нормальное распределение с параметрами $\mu=-5$ и $\sigma=3$ в промежутке]0;5]. Распределения Бернулли с параметрами p=0.2 и p=0.3 соответственно при k=0,1.

Вариант №5.

Гамма-распределения с параметрами $k=2.99,~\theta=5$ и $k=0.99,~\theta=5$ соответственно в промежутке]0;25]. Распределение Пуассона с параметром интенсивности $\lambda=1$ и распределение Бернулли с параметром p=0.9 при k=0,1.

Вариант №6.

Распределения Гумбеля с параметрами $\mu=3$, $\beta=4$ и $\mu=0.5$, $\beta=2$ соответственно в промежутке [-5;20]. Гипергеометрическое распределение с параметрами M=40, n=7, N=12 и распределение Пуассона с параметром интенсивности $\lambda=10$ при $k=\overline{0,10}$.

Вариант №7.

Распределение Лапласа с параметрами $\alpha=0.5$ и $\beta=1$ и равномерное распределение с a=-4, b=4 в промежутке [-4;4]. Распределения Пуассона с параметрами интенсивности $\lambda=4$ и $\lambda=10$ при $k=\overline{0,20}$.

Вариант №8.

Логистическое распределение с параметрами $\mu=2$ и s=1 и распределение Лапласа с параметрами $\alpha=1$ и $\beta=2$ в промежутке [-10;10]. Гипергеометрические распределения с параметрами M=40, n=7, N=12 и M=40, n=15, N=20 соответственно при $k=\overline{0,20}$.

Вариант №9.

Логнормальное распределение с параметрами $\mu=0$ и $\sigma=0.3$ и нормальное распределение с параметрами $\mu=2$ и $\sigma=0.3$ в промежутке [-4;8]. Геометрическое распределение с параметром p=0.2 и распределение Юла-Саймона с параметром $\alpha=5$ при $k=\overline{0,19}$.

Вариант №10.

Распределение Парето с параметрами $x_m=1$ и k=2.68 и распределение Лапласа с параметрами $\alpha=0.33$ и $\beta=1$ в промежутке [1;8]. Распределения Бернулли с параметрами p=0.2 и p=0.3 соответственно при k=0,1.

Вариант №11.

Распределение Рэлея с параметром $\sigma^2=7.5$ и гамма-распределение с параметрами k=2.99 и $\theta=5$ в промежутке]0;20]. Распределение Пуассона с параметром интенсивности $\lambda=1$ и распределение Бернулли с параметром p=0.9 при k=0,1.

Вариант №12.

Распределение Коши с параметрами $x_0=-2$ и $\gamma=0.5$ и степенное распределение с параметрами a=3 и b=-2 в промежутке [-2;-1]. Гипергеометрическое распределение с параметрами M=40, n=7, N=12 и распределение Пуассона с параметром интенсивности $\lambda=10$ при $k=\overline{0,10}$.

Вариант №13.

Распределение Стьюдента с числом степеней свободы df=25 и нормальное распределение с параметрами $\mu=0$ и $\sigma=1$ в промежутке [-5;5]. Распределения Пуассона с параметрами интенсивности $\lambda=4$ и $\lambda=10$ при $k=\overline{0,20}$.

Вариант №14.

Равномерное распределение с параметрами a=-32, b=32 и нормальное распределение с параметрами $\mu=0$ и $\sigma=12$ в промежутке [-30;30]. Гипергеометрические распределения с параметрами M=40, n=7, N=12 и M=40, n=15, N=20 соответственно при $k=\overline{0,20}$.

Вариант №15.

Распределения фон Мизеса с параметрами $\mu=\pi/6$, $\kappa=0.5$ и $\mu=-\pi/6$, $\kappa=2$ в промежутке $[-\pi;\pi]$. Геометрическое распределение с параметром p=0.2 и распределение Юла-Саймона с параметром $\alpha=5$ при $k=\overline{0,19}$.

Вариант №16.

Распределение Вейбулла с параметрами c=1.95 и $\lambda=\sqrt{2}$ и распределение Рэлея с параметром $\sigma^2=1.0\,$ в промежутке $\,]0;5].$ Распределения Бернулли с параметрами $p=0.2\,$ и $p=0.3\,$ соответственно при $k=0,1.\,$