

Inteligência
Artificial e Big
Data
Aula 03

Prof. Me Daniel Vieira

Agenda

- 1- Crisp Dm
- 2- Crisp DM x KDD
- 3- Inteligência Artificial
- 4 Machine Learning
- 5 Aplicações de Machine Learning
- 6 Algoritmos utilizados em aprendizado de máquina
- 7- Análise de conglomerados, PCA
- 8 Regressão linear
- 9 Regressão múltipla
- 10 Exercícios
- 11 Código exemplo árvore de decisão

Crisp DM - Cross Industry Standard Process for Data Mining

Metodologia utilizada para mineração de dados

Entendimento do Negócio	Entendimento dos dados	Preparação dos dados	Modelagem	Avaliação
 Objetivos • do projeto Requisitos • do cliente Escopo do projeto 	Coleta de dados Análise exploratória para entender sua estrutura e qualidade	 Seleção de variáveis relevantes, tratamento de valores ausentes, transformação e limpeza dos dados 	Aplicação dos algoritmos para mineração de dados: Regressão,	 Após criar os modelos, é necessário avaliar sua eficiência Utilização de métricas para avaliação: Acurácia Precisão Recall

Crisp DM - Cross Industry Standard Process for Data Mining

Metodologia utilizada para mineração de dados

Implementação

- Implementação do modelo em produção.
- Integração em sistemas existentes, realização de treinamentos para os usuários e avaliação contínua do desempenho do modelo em ambiente real

Crisp DM

Metodologia utilizada para mineração de dados, É cíclica, ou seja, após a conclusão da fase de implantação, é possível voltar a etapas anteriores para refinar ou aprimorar o projeto

Crisp DM ou KDD?

KDD - Metodologia mais antiga, final de 1980 e início da década de 1990. É mais abrangente e envolve desde a etapa da seleção do banco de dados e de descoberta de conhecimento.

Crisp DM - Mais atual e utilizada na indústria em projetos de Mineração de dados

Inteligência Artificial

Inteligência Artificial

Qualquer técnica que capacite uma máquina a imitar a inteligência humana

Machine Learning

Métodos estatísticos que possibilitam as máquinas aprender a partir de dados

Deep Learning

Redes neurais com múltiplos camadas que assimilam tarefas e reconhecem símbolos a partir dos resultados

Machine Learning (Aprendizado de máquina)

Métodos estatísticos que possibilitam as máquinas aprender a partir de dados

Machine Learning (Aprendizado de máquina)

Regressão Linear

Utilizado em problemas onde o objetivo é prever um valor contínuo. Ele encontra a relação linear entre as variáveis de entrada e a variável de saída. Ex: Caso dos Imóveis

Regressão Linear

A regressão linear simples é definida pela função linear:

$$Y = \beta 0^*X + \beta 1 + \epsilon$$

 $\beta 0$ e $\beta 1$ são duas constantes desconhecidas que representam a inclinação da regressão, enquanto ϵ (épsilon) é o termo de erro.

Você pode usar a regressão linear simples para modelar a relação entre duas variáveis, como estas:

Precipitação e rendimento de colheitas Idade e altura em crianças Temperatura e expansão do mercúrio metálico em um termômetro

Regressão Múltipla

Regressão logística

Os cientistas de dados usam a regressão logística para medir a probabilidade de um evento ocorrer. A previsão é um valor entre 0 e 1, em que 0 indica um evento improvável de acontecer e 1 indica a probabilidade máxima de que esse evento aconteça. Equações logísticas usam funções logarítmicas para calcular a linha de regressão.

Veja alguns exemplos:

A probabilidade de uma vitória ou derrota em uma partida esportiva

A probabilidade de aprovação ou reprovação em um exame

A probabilidade de uma imagem ser uma fruta ou um animal

Regressão Múltipla

Regressão logística

Os cientistas de dados usam a regressão logística para medir a probabilidade de um evento ocorrer. A previsão é um valor entre 0 e 1, em que 0 indica um evento improvável de acontecer e 1 indica a probabilidade máxima de que esse evento aconteça. Equações logísticas usam funções logarítmicas para calcular a linha de regressão.

Veja alguns exemplos:

A probabilidade de uma vitória ou derrota em uma partida esportiva

A probabilidade de aprovação ou reprovação em um exame

A probabilidade de uma imagem ser uma fruta ou um animal

Exemplo 1 - Gasto em função da renda

^	Gasto	Renda ÷
1	3011	9714
2	1305	3728
3	1879	6062
4	2654	8845
5	2849	8378

Gasto =
$$\beta_0$$
 + β_1 Renda

Exemplo 1 - Gasto em função da renda

Exemplo 1 - Gasto em função da renda

B0 - é o valor de Y quando Xi é zero, já o B1 é o coeficiente angular e nós informa a taxa de variação e quão inclinada a reta está

Regressão Logística

Utilizado em problemas de classificação binária, onde o objetivo é prever uma classe ou categoria. Ela usa a função logística para modelar a relação entre as variáveis de entrada e a probabilidade de pertencer a uma classe

$$P(t) = \frac{KP_0e^{rt}}{K + P_0(e^{rt} - 1)}$$

$$\lim_{t \to \infty} P(t) = K$$

Árvore de decisão

É um algoritmo de aprendizado supervisionado que cria uma estrutura na forma de árvore para tomar decisões. Cada nó interno representa um teste em uma característica, cada ramo representa um resultado possível desse teste e cada folha representa uma classe ou valor de saída

Random Forest

É uma técnica de aprendizado conjunto que utiliza várias árvores de decisão. Cada árvore é treinada em uma amostra aleatória dos dados e a classificação final é determinada por votação ou média das previsões das árvores

Support Vector Machine

É uma técnica de aprendizado utilizada para problemas de classificação, onde o objetivo é encontrar um hiperplano de separação entre duas classes que maximize a margem entre elas. Ele pode mapear as amostras de entrada em um espaço de alta dimensão, usando funções de kernel.

Clusterização

São utilizados para agrupar conjuntos de dados não rotulados com base na similaridade. Algoritmos populares K-means hierárquico e DBSCAN.

Análise de conglomerados - Cluster analysis

Cluster analysis - Metodologia e ferramentas utilizadas na exploração e na extração de padrões dos dados.

É normalmente associado a aprendizagem de máquina não supervisionado e utilizado para detecção de características da população e obtenção de conjuntos de agrupamento de dados, no qual cada agrupamento é denominado cluster.

Os clusters são agrupamentos compostos por um número não fixo de objetos, definidos de acordo com medidas de similaridade.

Adaptado de LI, 2019.

PCA - Análise dos componentes principais

É uma técnica de análise multivariada que utiliza princípios da álgebra linear para transformar variáveis possivelmente relacionadas em outras variáveis chamadas de componentes principais

Objetivo dessa análise é a redução de uma massa de dados minimizando perdas de informações do conjunto original.

PCA - Análise dos componentes principais

Adaptado de SCHOLZ, 2006.

PCA - Análise dos componentes principais

Exercícios

- 1)Criar um script para prever o nível de um tanque com vazão de 10,20,30,5,35,40 m3/ min
- 2) Criar um script para prever a temperatura de um forno a partir da quantidade de calor fornecida.
- Q = [100,200,300,400,500,600,700]
- T = [30,35,40,45,60,100,150]
- 3) Prever o valor de um imovel com base na área A=[50,100,120,300]
- Valor = [180.000,300.000,375.000,600.000]
- 4) Prever os gastos dos clientes com base no salário.
- Renda = [1200,5000,8000,10000,30000]
- Gastos = [750,1500,4000,6000,18000]

Exercícios

5) Criar um script para prever a demanda de energia com base no consumo dos meses anteriores pelos clientes de 50 KW, 140KW, 30 KW, 75, KW, 123KW

Exercício 1

```
import numpy as np
from sklearn.linear_model import LinearRegression
# Dados de treinamento
vazao = np.array([10, 20, 30, 5, 35, 40]).reshape(-1, 1) # vazão de água em m3/min
nivel = np.array([50, 60, 70, 45, 80, 85]) # nível do tangue em metros
# Criar e treinar o modelo de regressão linear
modelo = LinearRegression()
modelo.fit(vazao, nivel)
# Dados de teste
#vazao_teste = np.array([15, 25, 33]).reshape(-1, 1) # vazão de água em m3/min
vazao_teste = np.array([5, 2, 7,30,50]).reshape(-1, 1) # vazão de água em m3/min
# Fazer previsões com base na vazão de água
nivel_previsto = modelo.predict(vazao_teste)
```

Exercício 1

```
# Imprimir as previsões
for i in range(len(vazao_teste)):
    print(f"Vazão: {vazao_teste[i][0]} m3/min - Nível previsto: {nivel_previsto[i]} metros")
plt.scatter(vazao, nivel, color='blue', label='Dados de Treinamento')
plt.plot(vazao_teste,nivel_previsto, color = 'red',label='Dados de teste')
plt.xlabel('Vazão de Água (m3/min)')
plt.ylabel('Nível do Tanque (metros)')
plt.title('Relação entre Vazão de Água e Nível do Tanque')
plt.legend()
plt.grid(True)
plt.show()
```

Exercício 1

import matplotlib.pyplot as plt from sklearn import datasets from sklearn import tree

iris = datasets.load_iris()

data = iris.data target = iris.target data = iris.data target data = iris.data data # Imprima as primeiras linhas dos dados print("Dados:") print(data[:5]) # Imprime as cinco primeiras linhas dos dados

Imprima as primeiras linhas do alvo print("\nAlvo:") print(target[:5]) # Imprime as cinco primeiras linhas do alvo

```
X,y = iris.data,iris.target
fig = plt.figure(figsize=(30,25))
tree.plot_tree(classificador,feature_names=iris.feature_names,
class_names=iris.target_names,filled=True)
```

```
X,y = iris.data,iris.target
classificador = tree.DecisionTreeClassifier()
classificador.fit(X,y)
fig = plt.figure(figsize=(30,25))
tree.plot_tree(classificador,feature_names=
iris.feature_names,class_names=iris.target_names,filled=True)
plt.savefig('arvore.jpg')
```



```
plt.figure(figsize=(15,10))
plt.scatter(iris.data[:,0],iris.data[:,2],c = iris.target)
plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[2])
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(15,10))
plt.scatter(iris.data[:,2],iris.data[:,3],c=iris.target)
plt.xlabel(iris.feature_names[2])
plt.ylabel(iris.feature_names[3])
```


Exercícios

- 1) Criar um script para classificar uma bebida como boa,ruim, péssima a partir das notas dos clientes
- 2) Criar um script para classificar um filme como bom, ruim, péssimo a partir das notas dos clientes

Obrigado!

Prof. Me Daniel Vieira

Email: danielvieira2006@gmail.com

Linkedin: Daniel Vieira

Instagram: Prof daniel.vieira95

