UNIVERSITY OF TORONTO

PLEASE HAND IN

The Faculty of Arts and Science

FINAL EXAMINATIONS, DECEMBER 2010

MAT240H1F Algebra 1

Duration -3 hours

Instructor: M. Gualtieri

NO AIDS ALLOWED

INSTRUCTIONS:	
INSTRUCTIONS.	
. The exam consists of 8 pages	

You may use the scratch paper but it is not to be handed in

- II. This is a closed-book exam with no materials allowed except the exam paper, the scratch paper and your writing utensil.
- III. Good luck!

Question	
1	
2	
3	
4	
5	
6	
7	
Total	

Question 1 (20 points). True or false: (no justification required, grade=2(correct) + 0(incorrect))

- i) Let \mathbb{F} be a field, and let $a \in \mathbb{F}$. Then a + a + a = 0 implies that a = 0.
- ii) Every *n*-dimensional vector space over the field \mathbb{F} is isomorphic to \mathbb{F}^n .
- iii) If $S: V \longrightarrow W$ and $T: W \longrightarrow V$ are linear maps, and $ST = \mathcal{I}_W$ (where \mathcal{I}_W is the identity map on W), then it follows that $TS = \mathcal{I}_V$ (where \mathcal{I}_V is the identity map on V).
- iv) If $T: V \longrightarrow W$ is a linear map and (v_1, \ldots, v_n) is a linearly independent list of vectors in V, then $(T(v_1), \ldots, T(v_n))$ is a linearly independent list of vectors in W.
- v) If $T: V \longrightarrow W$ is a linear map and (v_1, \ldots, v_n) is a list of vectors in V such that $(T(v_1), \ldots, T(v_n))$ is linearly independent in W, then (v_1, \ldots, v_n) is linearly independent.
- vi) A system of 438 homogeneous linear equations in 245 variables always has a solution.
- vii) If a linear operator on \mathbb{F}^n has n distinct eigenvalues, then we can find a basis of eigenvectors.
- viii) If a linear operator on \mathbb{F}^n has fewer than n distinct eigenvalues, then it is not diagonalizable.
- ix) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
- x) If c_1 and c_2 are distinct eigenvalues of the operator \mathcal{T} , then $\operatorname{null}(\mathcal{T} c_1 \mathcal{I}) \cap \operatorname{null}(\mathcal{T} c_2 \mathcal{I}) = \{0\}$.

Question 2 (16 points). Short answers, no justification required:

i) State the definition of an isomorphism from the vector space V to the vector space W.

ii) State the definition of the null space of a linear map $T:V\longrightarrow W.$

iii) State the definition of an eigenvector and eigenvalue for a linear operator $T:V\longrightarrow V$.

iv) State the definition of a generalized eigenvector for a linear operator $T:V\longrightarrow V$.

Mamaa		
maine.	 	

Student number:_____

Question 3 (16 points). Short answers, no justification required:

i) Give an example of linear operator on \mathbb{R}^4 which has no eigenvectors (Hint: give one on \mathbb{R}^2 to begin with).

ii) What is the explicit condition on $r, s, t \in \mathbb{Q}$ which implies and is implied by the linear independence of the vectors ((1, r, 1), (0, 1, s), (t, 0, 1)) in \mathbb{Q}^3 ?

iii) Find all solutions to the inhomogeneous linear system, if any exist:

$$3x_1 + 2x_2 + 3x_3 - 2x_4 = 1$$

$$x_1 + x_2 + x_3 = 3$$

$$x_1 + 2x_2 + x_3 - x_4 = 2.$$

iv) What is the inverse of the following matrix in $\mathbb{Q}^{3\times3}$: $\begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix}$.

NI	
wame:	

Student	number:_	

Question 4 (16 points). Short answers, no justification required: Consider the linear operator on $\mathcal{P}_2(\mathbb{R})$ (real polynomials of degree ≤ 2) defined by

$$T(f(x)) = f(x) + (x+1)f'(x),$$

where f'(x) is the derivative of the polynomial f(x).

i) Write the real 3×3 matrix $A \in \mathbb{R}^{3 \times 3}$ of T in the standard basis for $\mathcal{P}_2(\mathbb{R})$.

ii) What are the eigenvalues of T?

iii) Find a list of polynomials which are a basis of eigenvectors for T.

iv) Write an invertible matrix $P \in \mathbb{R}^{3\times3}$ such that PAP^{-1} is diagonal. Hint: consider the change of basis matrix.

Question 5 (16 points). Let $T:\mathbb{Q}^4\longrightarrow\mathbb{Q}^4$ be the linear operator given by

$$T(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4, x_1).$$

i) Compute T^k for k = 1, 2, ...

ii) Find the minimal polynomial of T, i.e. the monic polynomial p of least degree such that p(T) = 0.

iii) Determine the eigenvalues of T, and find an eigenvector for each eigenvalue.

iv) Repeat the above question iii), viewing \mathcal{T} as a map $\mathbb{C}^4 \longrightarrow \mathbb{C}^4$.

Name:	Student number:
-------	-----------------

Question 6 (16 points). Let $T: U \longrightarrow V$ be a linear map and let U be finite-dimensional. Prove that $\dim U = \dim \operatorname{null}(T) + \dim \operatorname{range}(T)$.

Hint: Begin by choosing a basis for null(T). You may use the fact that a basis for a subspace of U can always be extended to a basis of U.

Name:	Student number:

Question 7 (Bonus: 10 points). How many 2-dimensional *affine* subspaces are there in $(\mathbb{F}_3)^4$? An affine subspace is any subset of a vector space which can be obtained by translating a k-dimensional linear subspace by a fixed vector. In other words, it is a k-dimensional plane which does not necessarily pass through the origin.