Algorithm for Curve Sketching (so far...)

1. Check for Asymptotes and Discontinuities

i. Are there any vertical asymptotes?

Note: The graph of f(x) has a vertical asymptote x = c if any of the following is true:

ii. Is there a horizontal or oblique asymptote?

Test end behaviour by considering $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.

IF the limit exists $\left[\begin{array}{ccc} \text{i.e. } \lim_{x \to +\infty} f(x) &= L & \text{or } \lim_{x \to -\infty} f(x) &= L \end{array}\right]$,

THEN there is a horizontal asymptote at y = L.

Ex. $y = \frac{(0 \times 1)^{3} \times 1000}{x^{4} + 1}$

For rational functions $f(x) = \frac{g(x)}{h(x)}$,

there will be a horizontal asymptote at y = 0 when deg[g(x)] < deg[h(x)] -----
there will be a horizontal asymptote at y = 0 when deg[g(x)] < deg[h(x)] $y = \frac{(0x^3 + 3x^3 + 76w)}{(0x^3 + 3x^3 + 76w)}$ where and durt the coefficients of the highest degree terms of g and hrespectively
we can find this limit by factoring the highest degree terms from g and h

there will be an oblique asymptote when deg[g(x)] = deg[h(x)] + |We can find this oblique asympton.

so that $f(x) = \frac{g(x)}{h(x)} = (mx + b) + \frac{r(x)}{h(x)}$ where r(x) is the remainder. $y = \frac{10x^3 + 3x^2 + 7000}{2x^2 + 1}$ We can find this oblique asymptote by dividing by h(x) (long division or synthetic division)

iii. Are there any holes? Can you tell an asymptote from a hole in the graph?

OA @ y=5x+?

2. First Derivative Analysis

Determine when the function is increasing, decreasing, horizontal, vertical, or a cusp. Identify all local maximums and minimums.

3. Find Points and Graph

i. Find and use all critical points.

ii. Find and use intercepts if the intercepts are easy to find and/or if they're necessary.

iii. Find and use any other points if necessary.

Ex1. Sketch the graph of each function.

a.
$$f(x) = \frac{3x-1}{x+5}$$

of each function.

$$VA \in x=-5$$
 $HA \in y=3$
 $\frac{x}{3} = 0$

$$f'(x) = \frac{3(x+5) - (3x-1)(1)}{(x+5)^2}$$

$$f'(x) > 0$$

$$f'(x) = 3(x+5) + 3(x+5)$$

$$f'(x) = 3(x+5)$$

$$= \frac{16}{(x+5)^2}$$

b.
$$f(x) = \frac{x^2 + 3x - 2}{(x - 1)^2}$$

b.
$$f(x) = \frac{x^2 + 3x - 2}{(x - 1)^2}$$
 HA @ $y = 1$ $\frac{x}{(x - 1)^2}$ $\frac{x}{(x - 1)^2}$ VA @ $x = 1$ $\frac{x}{(x - 1)^2}$ $\frac{x}{(x - 1)^2}$

$$f'(x) = (2x+3)(x-1)^{2} - (x^{2}+3x-2)(2(x-1)^{2}(1))$$

$$(x-1)^{4}$$

$$= \frac{(\lambda-1)_3}{(\lambda-1)-\beta(\lambda_5+3\lambda-5)}$$

$$= \frac{x}{5x_5 + x - 3 - 5x_5 - 6x + 4}$$

$$= \frac{-5\times + |}{(\times 1)^3}$$

$$C.N.15: x = \frac{1}{5}$$

c.
$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

 $= \frac{(\chi + 3)(\chi + 2)}{(\chi + 2)(\chi + 2)}$
 $= \frac{\chi + 3}{\chi + \lambda}$, $\chi \neq 2$
HAR $\psi = 1$
 $\psi = 1$

$$f'(x) = \frac{(1)(x+a) - (x+3)(1)}{(x+a)^{2}}, x \neq 2$$

$$= \frac{-1}{(x+a)^{2}}, x \neq 3$$

$$= \frac{-$$

d.
$$f(x) = \frac{2x^2 - 3x + 2}{x - 2} = \frac{2x + 1}{x - 2} \left(+ \frac{4}{x - 2} \right)$$

$$\mathcal{F}'(x) = \frac{(4x-3)(x-2) - (2x^2-3x+2)(1)}{(x-2)^2}$$

$$= \frac{(4x-3)(x-2) - (2x^2-3x+2)(1)}{(x-2)^2}$$

$$= \frac{(\lambda-5)_{5}}{4^{\chi_{5}}-11^{\chi}+\rho-5^{\chi_{5}}+3^{\chi}-5}$$

$$= \frac{(x-5)_{5}}{5^{2}x^{5}-8^{2}x+6}$$

$$f'(x) = 0$$
 when

$$f'(x) = \frac{(x-2)^2}{(x-2)^2}$$

$$= \frac{2x^2 - 3x + 4}{(x-2)^2}$$

$$= \frac{3 \pm \sqrt{2}}{2}$$

$$\chi = \frac{4 \pm \sqrt{8}}{2}$$

χ	S	
0.6	-0.7	MAX
3.4	10.7	min
	1	

Find the equation of the Ex2.

oblique asymptote.

$$f(x) = \frac{2x^3 + x^2 + 2}{x^2 - 4} = 2x + 1 + \frac{8x + 6}{x^2 - 4}$$

$$f(x) = \frac{2x^3 + x^2 + 2}{x^2 - 4} = 2x + 1 + \frac{8x + 6}{x^2 - 4}$$

$$f(x) \Rightarrow (2x + 1)$$

$$2x + 1$$

$$2x + 1$$

$$2x^3 + 2x^2 + 2x + 2$$

$$2x^3 + 2x^2 + 2x + 2$$

$$2x^3 + 2x^2 + 2x + 2$$

$$2x^2 + 2x + 2$$

$$2x + 6$$

Homefun: Page 193 # 1, (5, 7[Ans: 7a])=3x+7], 8) (horisontal and oblique asymptote practice, if medical), (6, 10) (make a weight lie that of graph of each function), 14