Machine Learning Homework #2

Qing-Cheng Li

R01922024

1. D

Error = True Negative + False Positive = $\lambda \mu + (1 - \lambda)(1 - \mu)$ (D)

2. D

Error = $\lambda \mu + (1 - \lambda)(1 - \mu) = (2\lambda - 1)\mu + 1 - \lambda$, let $\lambda = \frac{1}{2}$, Error = $1 - \lambda$, is independent of μ . (D)

3. D

The bound is $4m_H(2N)e^{-\frac{1}{8}\varepsilon^2N}=4(2N)^2e^{-\frac{1}{8}\varepsilon^2N}$, $\varepsilon=0.05$. This bound \leq 1-95% = 0.05.

Let N be 400,000, bound = 221895, let N be 420,000, bound = 697.75, let N be 440,000, bound = 2.14484, let N be 460,000, bound = 0.006458, let N be 480,000, bound = 0.000191. N=460000 is the closet numerical approximation of the sample size that the VC generalization bound predicts.

4. D

(a)
$$\sqrt{\frac{8}{10000} \ln \frac{4(20000)^{50}}{0.05}} \simeq 0.63217$$

(b)
$$\sqrt{\frac{2 \ln 20000(10000)^{50}}{N}} + \sqrt{\frac{2}{10000} \ln \frac{1}{0.05}} + \frac{1}{10000} \simeq 0.33131$$

(c)
$$\epsilon = \sqrt{\frac{1}{10000} (2\epsilon + \ln \frac{6(20000)^{50}}{0.05})}, \epsilon \simeq 0.22370$$

(d)
$$\epsilon = \sqrt{\frac{1}{20000} \left(4\epsilon(1+\epsilon) + \ln\frac{4(10000^{50})^{50}}{0.05}\right)}, \epsilon \simeq 0.21523$$

5. C

(a)
$$\sqrt{\frac{8}{5} \ln \frac{4(10)^{50}}{\delta}} \simeq 13.82816$$

(b)
$$\sqrt{\frac{2 \ln 10(5)^{50}}{N}} + \sqrt{\frac{2}{5} \ln \frac{1}{0.05}} + \frac{1}{5} \simeq 7.04878$$

(c)
$$\epsilon = \sqrt{\frac{1}{5} (2\epsilon + \ln \frac{6(10)^{50}}{0.05})}, \epsilon \simeq 5.10136$$

(d)
$$\epsilon = \sqrt{\frac{1}{10} \left(4\epsilon (1+\epsilon) + \ln \frac{4(5^{50})^{50}}{0.05} \right)}, \epsilon \simeq 5.59313$$

6. A

Consider that we can select 0 (all the same), 1 (split data into 2 part), 2 (I and r) from N-1 intervals, and +1 or -1 in the interval that this question said, we have

$$2\sum_{i=0}^{2} {N-1 \choose i} = 2({N-1 \choose 0} + {N-1 \choose 1} + {N-1 \choose 2}) = 2(1+N-1+\frac{(N-1)(N-2)}{2}) = 2(\frac{2+2N-2+N^2-3N+2}{2}) = 2\frac{N^2-N+2}{2} = N^2-N+2$$
, so select (a)

7. A

Using N^2-N+2 , N=3, $N^2-N+2=9-3+2=8=2^3$, N=4, $N^2-N+2=16-4+2=14\leq 2^4$, N=4 is break point. $d_{vc}=k-1=4-1=3$, select (a).

8. B

Consider N point on \mathbb{R}^2 , there are N distances from (0,0) to those points. So this question can be seen as selecting 2 intervals from N+1 intervals, adding the situation that all distances are -1, not in a and b. So the $m_H(N)$ is $\binom{N+1}{2}+1$, select (b).

9. B

一個D次多項式最多可以有D個解,其函數圖形最多可以將數線分成D+1個+,-相間區間,最少可以無解(與y=0不相交)。因此這個假設集合可以造出從無解(全+1或全-1)一直到D+1個+,-相間的結果,全部(最多也是) 2^{D+1} 種組合都可以被製造出來。因此VC-Dimension就是D+1。

10. A

We have 2^d hyper-rectangular, if each can be +1 or -1,there are 2^{2^d} combinations, it at most can shatter 2^d , so the VC-dimension is 2^d , select (a).

11. C

If there are N point on \mathbb{R} , from 1st point to Nth point, i^{th} point on 4^i , For k=1 to 2^N , using $1+\frac{1}{2}\left(\frac{2k-2}{2^{N+1}}\right)<\alpha_k<1+\frac{1}{2}\left(\frac{2k-1}{2^{N+1}}\right)$, those α_k can build all $\{+1,-1\}^N$ combinations, so this triangle wave hypothesis can shatter any N, so the VC dimension is ∞ , select (c).

12. A,C,D

Let N = A + B, A!=B.

In case A and B all bigger than d_{vc} :

 $m_{\mathcal{H}}(A) \leq A^{d_{vc}}$, $m_{\mathcal{H}}(B) \leq B^{d_{vc}}$, $m_{\mathcal{H}}(A)m_{\mathcal{H}}(B)$ is bound by $(AB)^{d_{vc}}$ which is bigger than $(A+B)^{d_{vc}}$.

In case A and B all smaller than d_{vc} :

 $m_{\mathcal{H}}(A) \leq 2^A, m_{\mathcal{H}}(B) \leq 2^B, m_{\mathcal{H}}(A)m_{\mathcal{H}}(B)$ is bound by $2^{A+B}=2^N$ which is bigger than $(A+B)^{d_{vc}}$.

In case A>B, B is smaller than d_{vc} but A is not:

 $m_{\mathcal{H}}(A) \leq A^{d_{vc}}$, $m_{\mathcal{H}}(B) \leq 2^B$, $m_{\mathcal{H}}(A)m_{\mathcal{H}}(B)$ is bound by $A^{d_{vc}}2^B$ which is bigger than $(A+B)^{d_{vc}}$.

So, $m_{\mathcal{H}}(A)m_{\mathcal{H}}(B)$ can bound $m_{\mathcal{H}}(A+B)$

- (a) $\lfloor \frac{N}{2} \rfloor$ and $\lceil \frac{N}{2} \rceil$ can be seen as split N into 2 parts. $m_{\mathcal{H}}(\lfloor \frac{N}{2} \rfloor)m_{\mathcal{H}}(\lceil \frac{N}{2} \rceil)$ can bound $m_{\mathcal{H}}(N)$
- (b) $2^{d_{vc}}$ is smaller than the bound for $m_{\mathcal{H}}(N)=N^{d_{vc}}$, so is can not be the upper bound.
- (c) It can seen as the case i is smaller than d_{vc} , N-i is bigger than d_{vc} , so $m_{\mathcal{H}}(i)m_{\mathcal{H}}(N-i)$ can bound $m_{\mathcal{H}}(N)$

(d) $N^{d_{vc}}+1$ is bigger than the bound for $m_{\mathcal{H}}(N)=N^{d_{vc}}$, so it can be a upper bound.

13. A

If there is no break point, the growth function is 2^N , so select (a).

And we know that if there is a break point k, then the growth function will be bounded by N^{k-1} .

For (b), break point $k=2, 2^{\lfloor \sqrt{2} \rfloor}=2 \le 2^2=4$, but when N=25, $2^{\lfloor \sqrt{25} \rfloor}=32>25^{2-1}=25$, out of the bound, so (b) can not be a growth function.

For (c), break point $k=1, 2^{\lfloor\frac{1}{2}\rfloor}=2^0=1\leq 2^1=2$, but when N=2, $2^{\lfloor\frac{2}{2}\rfloor}=2^1=2>2^{1-1}=1$, out of the bound, so (c) can not be a growth function.

For (d), break point k=2, $1+2+\frac{2(2-1)(2-2)}{6}=3\leq 2^2=4$, but when N=3, $1+3+\frac{3(3-1)(3-2)}{6}=5>3^{2-1}=3$, out of the bound, so (d) can not be a growth function.

14. B

 $\bigcap_{k=1}^K \mathcal{H}_k \text{ must be subset of all } \mathcal{H}, \text{ the smallest subset is empty set, } d_{vc}(\emptyset) = 0, \text{ the biggest subset is smallest set in } \mathcal{H}, \text{ so } d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \geq 0, \\ d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k) \leq \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K. \text{ Select (b)}.$

15. D

Lower bound:

Any hypothesis can not help another hypothesis to shatter more data node, so the worst case of union VC dimension is $\max\{d_{vc}(\mathcal{H}_{k=1}^K)\}$.

Upper bound:

//Using the k + and k' - example which TA provide on CEIBA, we know that $d_{vc}(k+) = k$, $d_{vc}(k'-) = k'$, $d_{vc}(k+\cap k'-) > k+k'$, so there is only (d) can be select orz.

//But I do not know how to prove it Q___Q.

16.

Error = True Negative + False Positive

If
$$s = +1$$
, Error = $0.2 \frac{2 - |\theta|}{2} + 0.8 \frac{|\theta|}{2} = 0.2 + 0.3 |\theta|$,

If
$$s=-1$$
, Error = $0.2 \frac{|\theta|}{2} + 0.8 \frac{2-|\theta|}{2} = 0.8 - 0.3 |\theta|$,

Combine s = +1 and -1, Error = $0.5 + 0.3s(|\theta| - 1)$

17.

\$ python hw2_17.py

Decision stump algorithm in dsa.py

18,19,20

\$ python hw2 18.py