Exercices on Consumer Theory

20851-W2020

- 1. Two consumers have the preferences represented by $u(X,Y)=\frac{1}{4}\ln X+\frac{3}{4}\ln Y$ and $v(X,Y)=XY^3$. Do they have the same preferences? Answer: Yes, given that $v(X,Y)=f(u)=e^{4u}$.
- 2. What is the MRS for $u(X,Y)=(X-\gamma_X)^{\alpha}(Y-\gamma_Y)^{1-\alpha}$? Answer : $MRS=-\frac{\alpha}{1-\alpha}\frac{Y-\gamma_Y}{X-\gamma_X}$.
- 3. Preferences are given by $u(X,Y) = \min(X,2Y)$ and the budget constraint is $p_X X + p_Y Y \leq I$. At $(p_X,p_Y,I) = (2,1,10)$, is the allocation (X,Y) = (4,2) maximizing utility? Answer: Yes, demand for $X^* = \frac{I}{p_X + \frac{1}{2}p_Y}$. At (2,1,10), $X^* = 4$ and by budget constraint $Y^* = 2$.
- 4. If $u(X,Y) = X^{2/3}Y^{1/3}$ and $p_XX + p_YY \le I$, what is the compensation that keeps utility constant when $\Delta p_X = -1$ and $(p_X, p_Y, I) = (2, 1, 60)$? Answer: Find indirect utility. Then compensated income I^{cmp} . This yields for this price change $\Delta I^{cmp} = -22.20$.
- 5. What is the compensated price elasticity for X if utility is $u(X,Y) = \alpha \ln X + Y$ and the budget constraint is $p_X X + p_Y Y \leq I$? Answer = By Slutsky, and seeing that income elasticity is zero with quasi-linear preferences, one can show that $\eta_{cmp} = -1$.
- 6. What is the utility function that has an indirect utility function

$$V(p_X, p_Y, I) = \alpha^{\alpha} (1 - \alpha)^{1 - \alpha} \frac{I}{p_X^{\alpha} p_Y^{1 - \alpha}}$$

when $p_X X + p_Y \leq I$ is the budget constraint? Answer: Using Roy's Identity and recognizing the common Cobb-Douglas form of demand functions, we can identify $u(X,Y) = X^{\alpha}Y^{1-\alpha}$ as the utility function.