

Date	1 oct 2025
Team ID	LTVIP2025TMIDS40838
Project Name	Weather-Based Prediction of Wind Turbine Energy Output: A Next-Generation Approach to Renewable Energy
Maximum Marks	3 Marks

Phase 4: Model Optimization and Tuning (Enhanced Version)

1. Hyperparameter Tuning

Hyperparameters are model parameters that are **not learned directly from data** but significantly affect model performance. Optimizing these can drastically improve prediction accuracy.

Techniques Used:

- **Grid Search:** Exhaustive search over a predefined hyperparameter space. Example:
 - Number of trees in Random Forest
 - Learning rate in Gradient Boosting
 - Maximum depth of decision trees
- Random Search: Random combinations of hyperparameters are tested, faster than grid search for large spaces.

• **Cross-Validation:** k-fold cross-validation ensures model generalization by training and validating on multiple data splits.

Example:

For Random Forest:

- n estimators = 100, 200, 300
- max_depth = 5, 10, 15
- min samples split = 2, 5, 10

2. Feature Selection

Selecting the most relevant features reduces model complexity and improves performance.

Techniques:

- Recursive Feature Elimination (RFE)
- o Feature importance from tree-based models
- Correlation analysis to remove redundant features

• Benefits:

- Reduces overfitting
- o Improves model interpretability
- Reduces training time

3. Regularization

Regularization techniques prevent overfitting by penalizing overly complex models.

- **L1 Regularization (Lasso):** Encourages sparsity; some feature coefficients become zero.
- L2 Regularization (Ridge): Penalizes large coefficients; helps smooth predictions.
- Elastic Net: Combination of L1 and L2 for balanced regularization.

4. Model Retraining and Evaluation

After tuning hyperparameters and selecting features:

- 1. Retrain the model on the **entire training set** with optimized parameters.
- 2. Evaluate on validation and test datasets to measure:

- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- o R² Score
- 3. Compare pre- and post-optimization results to confirm improvements.

5. Deployment Readiness

The optimized model is **ready for deployment**:

- Export the trained model (e.g., using joblib or pickle)
- Integrate with the Flask web application for real-time predictions
- Ensure the system handles live weather input and returns accurate energy estimates

6. Expected Outcome

- **Improved prediction accuracy:** Optimized hyperparameters and relevant features improve model reliability.
- Reduced overfitting: Regularization and validation ensure the model generalizes

 well
- Faster inference: Reduced number of features and efficient model structure.
- **Deployment-ready model:** Fully tuned and ready to integrate into the Flask interface for user-friendly prediction.