คำสั่ง ให้นักศึกษาเติมข้อมูลจากอินพุทต่อไปนี้ โดยที่ ตัวกรองมีขนาดเป็น 5×5 ด้วยวิธีการ Zero-Padding, Replicate-Padding และ Circular-Padding

1	1	4	4	7	7
1	1	1	4	7	7
2	1	11	4	8	8
2	2	5	5	9	9
3	2	5	5	9	9
3	3	6	6	6	9

ข้อมูล

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	4	4	7	7	0	0
0	0	1	1	1	4	7	7	0	0
0	0	2	1	11	4	8	8	0	0
0	0	2	2	5	5	9	9	0	0
0	0	3	2	5	5	9	9	0	0
0	0	3	3	6	6	6	9	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Zero - Padding

1	1	1	1	4	4	7	7	7	7
1	1	1	1	4	4	7	7	7	7
1	1	1	1	4	4	7	7	7	7
1	1	1	1	1	4	7	7	7	7
2	2	2	1	11	4	8	8	8	8
2	2	2	2	5	5	9	9	9	9
3	3	3	2	5	5	9	9	9	9
3	3	3	3	6	6	6	9	9	9
3	3	3	3	6	6	6	9	9	9
3	3	3	3	6	6	6	9	9	9

9	9	3	2	5	5	9	9	3	2
6	9	3	3	6	6	6	9	3	3
7	7	1	1	4	4	7	7	1	1
7	7	1	1	1	4	7	7	1	1
8	8	2	1	11	4	8	8	2	1
9	9	2	2	5	5	9	9	2	2
9	9	3	2	5	5	9	9	3	2
6	9	3	3	6	6	6	9	3	3
7	7	1	1	4	4	7	7	1	1
7	7	1	1	1	4	7	7	1	1

Replicate - Padding

Circular - Padding

คำสั่ง ให้นักศึกษาเติมข้อมูลจากอินพุทต่อไปนี้ โดยที่ ตัวกรองมีขนาดเป็น 3×3 ด้วยวิธีการ Zero-Padding, Replicate-Padding และ Circular-Padding

1	1	4	4
1	1	1	4
2	1	11	4
2	2	5	5
3	2	5	5

0	0	0	0	0	0
0	1	1	4	4	0
0	1	1	1	4	0
0	2	1	11	4	0
0	2	2	5	5	0
0	3	2	5	5	0
0	0	0	0	0	0

1	1	1	4	4	4
1	1	1	4	4	4
1	1	1	1	4	4
2	2	1	11	4	4
2	2	2	5	5	5
3	3	2	5	5	5
3	3	2	5	5	5

3	2	5	5	3
1	1	4	4	1
1	1	1	4	1
2	1	11	4	2
2	2	5	5	2
3	2	5	5	3
1	1	4	4	1
	1 1 2 2 3	1 1 1 1 2 1 2 2 3 2 3 2	1 1 4 1 1 1 2 1 11 2 2 5 3 2 5	1 1 4 4 1 1 1 4 2 1 11 4 2 2 5 5 3 2 5 5

ข้อมูล

Zero - Padding

Replicate - Padding Circular - Padding

คำสั่ง ให้นักศึกษาหาผลลัพธ์ของการคอนโวลูชั่นจากอินพุทต่อไปนี้ โดยที่ ตัวกรองมีขนาดเป็น 3×3 และเติมข้อมูลด้วย วิธีการ Replicate-Padding

1	1	4	4	7	7
1	1	1	4	7	7
2	1	11	4	8	8
2	2	5	5	9	9
3	2	5	5	9	9
3	3	6	6	6	9

1	0	-1
1	0	-1
1	0	-1

d	,				
Ø	ว	ก	ร	9	3

0	6	9	12	9	0
-1	12	9	6	10	0
-1	12	9	7	11	0
-2	14	9	5	12	0
-1	8	9	8	11	3
-1	8	9	4	10	6

ข้อมูล

คำสั่ง ให้นักศึกษาหาผลลัพธ์ของการคอนโวลูชั่นจากอินพุทต่อไปนี้ โดยที่ ตัวกรองมีขนาดเป็น 3×3 และเติมข้อมูลด้วย วิธีการ Replicate-Padding

1	1	4	4	3	3
1	1	1	4	6	3
2	1	1	4	6	6
2	2	5	5	7	7

1	0	-1
1	0	-1
1	0	-1

0	6	9	3	-3	-3
-1	2	9	9	0	-3
-1	2	9	12	3	-3
-1	5	9	9	6	0

ข้อมูล

ตัวกรอง

คำสั่ง ให้นักศึกษาหาผลลัพธ์ของการคอนโวลูชั่นจากอินพุทต่อไปนี้ โดยที่ ตัวกรองมีขนาดเป็น 3×3 และเติมข้อมูลด้วย วิธีการ Zero-Padding

1	1	4	4
1	1	1	4
2	1	11	4
2	2	5	5
3	2	5	5

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

ตัวกรอง

4/3	3/3	13/3	13/3
7/9	23/9	31/9	28/9
9/9	26/9	34/9	30/9
12/9	33/9	40/9	35/9
9/9	19/9	24/9	20/9

ข้อมูล

คำสั่ง ให้นักศึกษาออกแบบตัวกรองขนาด 3 x 3 เพื่อใช้สำหรับการสกัดเส้นขอบแนวทะแยงดังรูป

0	1	1
-1	0	1
-1	-1	0

คำสั่ง ให้นักศึกษาเขียนโปรแกรมแสดงภาพ lenna ที่ผ่านตัวกรองค่าเฉลี่ยขนาด 3x3, 5x5, 7x7, 9x9 และ 11x11 พร้อมอธิบายภาพผลลัพธ์ที่ได้จากตัวกรองขนาดต่าง ๆ ว่ามีพฤติกรรมอย่างไร


```
1 - close all, clear all, clc
2
3 - img = imread('../../images/lenna.png');
4 - img = mat2gray(rgb2gray(img));
5
6 - count = 1;
7
8 - for i = 3:2:11
9 - filter = ones(i, i) * ( 1 / (i * i) );
result = imfilter(img, filter, 'conv', 'replicate', 'same');
11 - subplot(1, 5, count), imshow(result);
12 - title(sprintf('%d x %d', i, i));
count = count + 1;
14 - end
```

Blur ขึ้นเรื่อยๆ

คำสั่ง ให้นักศึกษาเขียนโปรแกรมแสดงภาพ lenna ที่ผ่านตัวกรอง Gaussian ขนาด 3x3, 5x5, 7x7, 9x9 และ 11x11 พร้อมอธิบายภาพผลลัพธ์ที่ได้จากตัวกรองขนาดต่าง ๆ ว่ามีพฤติกรรมอย่างไร (กำหนด sigma มีค่าเท่ากับ ขนาดตัวกรอง)


```
close all, clear all, clc

img = imread('../../images/lenna.png');
img = mat2gray(rgb2gray(img));

count = 1;

for i = 3:2:11
    gaussian_filter = fspecial('gaussian', i, i);
    gau = imfilter(img, gaussian_filter, 'conv', 'replicate', 'same');
    subplot(1, 5, count), imshow(gau);

title(sprintf('%d x %d', i, i));
    count = count + 1;
end
```

Blur ขึ้นเรื่อยๆ

คำสั่ง ให้นักศึกษาเขียนโปรแกรม<u>เพื่อสกัดเส้นขอบ</u>ของภาพ lenna โดยอาศัย<u>ตัวกรองค่าเฉลี่ยขนาด 11x11</u> เท่านั้น พร้อมอธิบายภาพผลลัพธ์ที่ได้ว่าเกิดอะไรขึ้น


```
clear all, close all, clc
       img = imread('../../images/lenna.png');
       img = mat2gray(rgb2gray(img));
       subplot(1, 3, 1), imshow(img);
       title('Original Image');
       kernal = ones(11, 11) * (1 / 121);
10
       blur = imfilter(img, kernal, 'conv', 'replicate', 'same');
12
13 -
       subplot(1, 3, 2), imshow(blur);
                                              การเบลอ = จะมีเส้นขอบหาย
       title('Average Filter 11 x 11');
15
16 -
       diff = img - blur;
                                              (เราเลยเอา original img มาลบ
17
       subplot(1, 3, 3), imshow(diff);
                                              หาความแตกต่าง จะได้ เส้นขอบ)
19 -
       title('Diff btw original and blur');
20
```