Course name: [Course Code]

[Javier Perez Tobia] Academic Year 2021–2022

Contents

1	Syllabus	3
	Newton's equations of motion 2.1 Main equations	
3	Other equation	5

1 Syllabus

- Room:
- \bullet Professor:
- \bullet Contact:
- Schedule:
- Exam dates:
- Assignment dates:
- Grading system:

2 Newton's equations of motion

2.1 Main equations

$$v_t = v_0 + at \tag{1}$$

$$s_t = s_0 + v_0 t + \frac{1}{2} a t^2 (2)$$

2.2 Derived equations

Now, solving for t in 1 we can derive the following:

$$\frac{v_t - v_0}{a} = t \tag{3}$$

Plugging into 2 we get:

$$s_t = s_0 + v_0 \frac{v_t - v_0}{a} + \frac{1}{2} a \left(\frac{v_t - v_0}{a} \right)^2$$

$$a(s_t - s_0) = v_0 v_t - v_0^2 + \frac{1}{2} (v_t^2 + v_0^2 - 2v_0 v_t)$$

$$a(s_t - s_0) = \frac{1}{2} (v_t^2 - v_0^2)$$

Finally arriving to:

$$v_t^2 = v_0^2 + 2a(s_t - s_0) (4)$$

3 Other equation