Marginal Treatment Effects: Theory

ECON 31720 Applied Microeconometrics

Francesco Ruggieri

The University of Chicago

November 4, 2020

• Framework for Marginal Treatment Effects

2 Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function

3 Target Parameters as Weighted Averages of Marginal Treatment Effects

4 Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment

Summary

Framework for Marginal Treatment Effects

- $Y \in \mathbb{R}$ is a scalar **outcome** of interest, $D \in \{0,1\}$ is a **binary treatment**
- D and Y are linked by **potential outcomes** Y(0), Y(1)
- $X \in \mathbb{R}^{d_x}$ is a vector of predetermined, **observable** characteristics with support \mathcal{X}
 - Hereafter, all arguments will be made implicitly conditioning on X
- $U \in \mathbb{R}$ is an **unobserved** and continuously distributed **latent variable**
- $Z \in \mathbb{R}$ is a scalar **instrumental variable** with support \mathcal{Z}
 - Z satisfies the **exogeneity** assumption $(Y(0), Y(1), U) \perp Z$

Framework for Marginal Treatment Effects

- $\nu\left(\cdot\right)$ is an **unknown function** of Z such that $D=\mathbb{I}\left[U\leq\nu(Z)\right]$
 - U, $\nu(Z)$ are additively separable (no interaction between policy shifters and unobservables)
 - $\nu(Z) U$ denotes the **net utility** from choosing treatment state D = 1
- Without loss, the **selection equation** can be normalized to $D = \mathbb{I}[U \le p(Z)]$
 - $p(Z) \equiv \mathbb{P}(D=1|Z)$ is the **propensity score**
 - U is a latent random variable **uniformly** distributed on [0,1]
- $MTE(u) \equiv \mathbb{E}[Y(1) Y(0)|U = u]$ is the **Marginal Treatment Effect** of D on Y
 - MTE(u) is the Average Treatment Effect of D on Y for agents with unobservables U=u
- Plotting the Marginal Treatment Effect function is informative about choice heterogeneity

- Framework for Marginal Treatment Effects
- 2 Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- 3 Target Parameters as Weighted Averages of Marginal Treatment Effects
- 4 Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment
- Summary

Unobserved Choice Heterogeneity and the MTE Function

This figure displays the estimated MTE function from Brinch, Mogstad, and Wiswall (2017)

Selection on the Gain

Selection on the gain: positive correlation between D and the return from choosing D=1

Selection on the Loss

Selection on the loss: **negative correlation** between D and the return from choosing D=1

Unobserved Homogeneity

Unobserved homogeneity: zero correlation between D and the return from choosing D=1

• Framework for Marginal Treatment Effects

- O Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- 3 Target Parameters as Weighted Averages of Marginal Treatment Effects
- 4 Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment
- Summary

Average Treatment Effect

- Target parameters can be expressed as weighted averages of marginal treatment effects
- Consider the Average Treatment Effect:

$$\begin{aligned} \text{ATE} &\equiv \mathbb{E}\left[Y(1) - Y(0)\right] = \mathbb{E}\left[\mathbb{E}\left[Y(1) - Y(0)|U\right]\right] & \text{(LIE)} \\ &= \int_0^1 \mathbb{E}\left[Y(1) - Y(0)|U = u\right] du & \text{($U \sim \mathcal{U}$}\left[0, 1\right]\right) \\ &= \int_0^1 \text{MTE}(u) du \\ &= \int_0^1 \text{MTE}(u) \times \omega_{\mathsf{ATE}} du \end{aligned}$$

where $\omega_{\mathsf{ATE}} = 1$, i.e., the ATE is a **simple average** of marginal treatment effects

Average Treatment Effect on the Treated

Consider the **Average Treatment Effect on the Treated**:

$$\begin{split} \text{ATT} &\equiv \mathbb{E}\left[Y(1) - Y(0)|D = 1\right] = \mathbb{E}\left[\mathbb{E}\left[Y(1) - Y(0)|D = 1, p(Z)\right]|D = 1\right] \qquad \text{(LIE)} \\ &= \int_0^1 \mathbb{E}\left[Y(1) - Y(0)|D = 1, p(Z) = p\right] dF_{p(Z)|D = 1}(p) \\ &= \int_0^1 \mathbb{E}\left[Y(1) - Y(0)|U \le p(Z), p(Z) = p\right] dF_{p(Z)|D = 1}(p) \qquad (D = \mathbb{E}\left[U \le p(Z)\right]) \\ &= \int_0^1 \mathbb{E}\left[Y(1) - Y(0)|U \le p\right] dF_{p(Z)|D = 1}(p) \qquad (U \perp Z) \\ &= \int_0^1 \left[\frac{1}{p} \int_0^p \mathbb{E}\left[Y(1) - Y(0)|U = u\right] du\right] dF_{p(Z)|D = 1}(p) \qquad (U \sim \mathcal{U}\left[0, 1\right]) \end{split}$$

Average Treatment Effect on the Treated

• In addition, Bayes' rule implies that

$$dF_{\rho(Z)|D=1} = \frac{\mathbb{P}(D=1|\rho(Z))}{\mathbb{P}(D=1)} dF_{\rho(Z)} = \frac{\rho(Z)}{\mathbb{P}(D=1)} dF_{\rho(Z)}$$

Thus, the Average Treatment Effect on the Treated can be expressed as

$$ATT = \int_{0}^{1} \left[\frac{1}{p} \int_{0}^{p} \mathbb{E} [Y(1) - Y(0) | U = u] du \right] \frac{p}{\mathbb{P}(D = 1)} dF_{p(Z)}(p)
= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \left[\int_{0}^{p} \mathbb{E} [Y(1) - Y(0) | U = u] du \right] dF_{p(Z)}(p)
= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \mathbb{E} [Y(1) - Y(0) | U = u] \left[\int_{0}^{1} \mathbb{I} [u \le p] dF_{p(Z)}(p) \right] du \quad (\text{Fubini's})
= \frac{1}{\mathbb{P}(D = 1)} \int_{0}^{1} \mathbb{E} [Y(1) - Y(0) | U = u] \mathbb{P}(u \le p(Z)) du \quad (\mathbb{E} [\mathbb{I} [W]] = \mathbb{P}(W = 1))$$

Average Treatment Effect on the Untreated

Rearranging terms:

$$ATT = \int_0^1 \text{MTE}(u) \times \frac{\mathbb{P}(u \le p(Z))}{\mathbb{P}(D=1)} du = \int_0^1 \text{MTE}(u) \times \omega_{\mathsf{ATT}} du$$

Analogously, the Average Treatment Effect on the Untreated can be expressed as

$$\mathrm{ATU} = \int_0^1 \mathrm{MTE}(u) \times \frac{\mathbb{P}\left(u > p(Z)\right)}{\mathbb{P}\left(D = 0\right)} du = \int_0^1 \mathrm{MTE}(u) \times \omega_{\mathsf{ATU}} \ du$$

• Intuition: the ATT (ATU) oversamples marginal treatment effects for agents who are more (less) likely to self-select into treatment state D=1

MTE Weights in a Parametric Normal Roy Model

This figure plots ATE, ATT, ATU weights from a parametric normal generalized Roy model

11

MTE Weights in Heckman and Vytlacil (2005)

Source: Heckman and Vytlacil (2005)

12

Target Parameters as Weighted Averages of Marginal Treatment Effects

Let us combine information on the MTE function and MTE weights for target parameters:

- The MTE function is monotonically decreasing
 - Agents who self-select into treatment state D=1 are more likely to gain from it
- The ATT (ATU) weighting function is monotonically decreasing (increasing)
 - The ATT oversamples MTEs for agents who are more likely to gain from D=1
 - The ATU undersamples MTEs for agents who are more likely to gain from D=1
- ullet As a consequence, **selection on the gain** implies ATT > ATU

• Framework for Marginal Treatment Effects

- 2 Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- Target Parameters as Weighted Averages of Marginal Treatment Effects
- 4 Nonparametric Roy vs. Imbens & Angrist with Multivalued Treatment
- Summary

- The analysis so far has focused on the case in which the treatment is binary
- Vytlacil (2002) shows that, when $D \in \{0, 1\}$,
 - The nonparametric Roy model implies the Imbens and Angrist model
 - The Imbens and Angrist model implies the nonparametric Roy model
- Consider the case in which treatment is multivalued.
- With $D \in \mathbb{R}$, the two models are **not nested**:
 - The nonparametric Roy model does not imply the Imbens and Angrist model
 - The Imbens and Angrist model does not imply the nonparametric Roy model

- For simplicity, consider the case in which $D \in \{0, 1, 2\}$ and $Z \in \{0, 1\}$
- The Imbens and Angrist model assumes that
 - Either $D(1) \ge D(0)$ or $D(0) \ge D(1)$ with probability one
- The nonparametric Roy model assumes that
 - There exists a continuously distributed U and unknown functions ν_1 , ν_2 of Z such that

$$D = 1 \times \mathbb{I}\left[\nu_1\left(Z\right) < U \leq \nu_2\left(Z\right)\right] + 2 \times \mathbb{I}\left[U > \nu_2\left(Z\right)\right]$$

where $\nu_1(z) < \nu_2(z)$ for z = 0, 1

- Let us assume that the Imbens and Angrist selection model holds
- Without loss, the **monotonicity assumption** is $D(1) \ge D(0)$ with probability one
- The following inequalities are consistent with the Imbens and Angrist selection model:

2
$$\mathbb{P}(D(0) = 1, D(1) = 1) > 0$$

3
$$\mathbb{P}(D(0) = 2, D(1) = 2) > 0$$

4
$$\mathbb{P}(D(0) = 0, D(1) = 1) > 0$$

6
$$\mathbb{P}(D(0) = 1, D(1) = 2) > 0$$

6
$$\mathbb{P}(D(0) = 0, D(1) = 2) > 0$$

• **Potential treatments** can be expressed in terms of *U* and $\nu_1(Z), \nu_2(Z)$:

$$D(0) = 0 \times \mathbb{I}[U \le \nu_1(0)] + 1 \times \mathbb{I}[\nu_1(0) < U \le \nu_2(0)] + 2 \times \mathbb{I}[\nu_2(0) < U]$$

$$D(1) = 0 \times \mathbb{I}[U \le \nu_1(1)] + 1 \times \mathbb{I}[\nu_1(1) < U \le \nu_2(1)] + 2 \times \mathbb{I}[\nu_2(1) < U]$$

• The following **if-and-only-if statements** are true:

$$D(0) = 0 \iff U \le \nu_1(0) \qquad D(1) = 0 \iff U \le \nu_1(1)$$

$$D(0) = 1 \iff \nu_1(0) < U \le \nu_2(0) \qquad D(1) = 1 \iff \nu_1(1) < U \le \nu_2(1)$$

$$D(0) = 2 \iff U > \nu_2(0) \qquad D(1) = 2 \iff U > \nu_2(1)$$

- The six positive probabilities consistent with the Imbens and Angrist model are:

 - **3** $\mathbb{P}(D(0) = 2, D(1) = 2) = \mathbb{P}(U > \max\{\nu_2(0), \nu_2(1)\})$

 - **6** $\mathbb{P}(D(0) = 1, D(1) = 2) = \mathbb{P}(\max\{\nu_1(0), \nu_2(1)\} < U \le \nu_2(0))$
 - **6** $\mathbb{P}(D(0) = 0, D(1) = 2) = \mathbb{P}(\nu_2(1) < U \le \nu_1(0))$
- If $\mathbb{P}(D(0) = 0, D(1) = 2) > 0$, then $\nu_1(0) > \nu_2(1)$. But then $\mathbb{P}(D(0) = 1, D(1) = 1) = 0$
 - This contradicts the strict positivity of all six probabilities
- Thus, the Imbens and Angrist model does not imply the nonparametric Roy model

- Let us assume that the nonparametric Roy selection model holds
- Suppose the **unknown functions** $\nu_1(Z)$ and $\nu_2(Z)$ take the following values:

$$\nu_1(0) = 0.4$$
 $\nu_2(0) = 0.6$

$$\nu_1(1) = 0.3$$
 $\nu_2(1) = 0.7$

which meet the condition that $\nu_1(z) < \nu_2(z)$ for z = 0, 1

• Potential treatments associated with this selection model are

$$D(0) = 0 \times \mathbb{I}[U \le 0.4] + 1 \times \mathbb{I}[0.4 < U \le 0.6] + 2 \times \mathbb{I}[0.6 < U]$$

$$D(1) = 0 \times \mathbb{I}[U \le 0.3] + 1 \times \mathbb{I}[0.3 < U \le 0.7] + 2 \times \mathbb{I}[0.7 < U]$$

ullet Suppose that the unobservable latent variable is U=0.35. Potential treatments are

$$D(0) = 0 \times \mathbb{I}[0.35 \le 0.4] + 1 \times \mathbb{I}[0.4 < 0.35 \le 0.6] + 2 \times \mathbb{I}[0.6 < 0.35] = 0$$

 $D(1) = 0 \times \mathbb{I}[0.35 \le 0.3] + 1 \times \mathbb{I}[0.3 < 0.35 \le 0.7] + 2 \times \mathbb{I}[0.7 < 0.35] = 1$

• Suppose that the unobservable latent variable is $m{U} = m{0.65}$. Potential treatments are

$$D(0) = 0 \times \mathbb{I} [0.65 \le 0.4] + 1 \times \mathbb{I} [0.4 < 0.65 \le 0.6] + 2 \times \mathbb{I} [0.6 < 0.65] = 2$$

 $D(1) = 0 \times \mathbb{I} [0.65 < 0.3] + 1 \times \mathbb{I} [0.3 < 0.65 < 0.7] + 2 \times \mathbb{I} [0.7 < 0.65] = 1$

- D(1) = 1 > 0 = D(0) if U = 0.35, but D(1) = 1 < 2 = D(0) if U = 0.65
 - This contradicts the Imbens and Angrist monotonicity assumption
- Thus, the nonparametric Roy model does not imply the Imbens and Angrist model

• Framework for Marginal Treatment Effects

- Our Unobserved Choice Heterogeneity and the Marginal Treatment Effect Function
- Target Parameters as Weighted Averages of Marginal Treatment Effects
- Monparametric Roy vs. Imbens & Angrist with Multivalued Treatment
- Summary

Summary

- The Marginal Treatment Effect function is informative about the nature and extent of unobserved choice heterogeneity (selection on the gain/loss, unobserved homogeneity)
- Target parameters are weighted averages of marginal treatment effects
 - ullet The ATT (ATU) oversamples (undersamples) MTEs for agents who more likely choose D=1
- Unlike the case in which the treatment is binary, the nonparametric Roy and Imbens & Angrist models are not nested when the treatment is multivalued