BIL 362 Mikroişlemciler

M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Konular

8086/8088 Donanım Özellikleri

- 8086/8088 Pinleri ve İşlevleri
- Clock Üreteci (8284A)
- Bus Buffering ve Demultiplexing
- Bus Timing
- Minimum ve Maksimum Mod
- Bus Denetleyici (8288)
- 8088 Bağlantıları ve Bus'lar

📙 8086/8088 Pinleri ve İşlevleri

- 8086 16-bit mikroişlemcidir ve 16-bit data bus'a sahiptir, 8088'de 16-bit mikroişlemcidir ancak 8-bit data bus'a sahiptir.
- 8086'da AD₀-AD₁₅ data bus için kullanılır, 8088'de AD₀-AD₇ data bus için kullanılır. 8086 daha etkin data transferi yapar.
- 8086 ve 8088 işlemciler +5.0V ile çalışır. 8086 360mA ve 8088 340mA maksimum kaynak akımı kullanır.
- Mikroişlemcilere yapılan bağlantılarda giriş pini için gereken akıma ve çıkış pini için gereken çıkış akımına dikkat edilmelidir.
- Aşağıda giriş ve çıkış pinleri için gerilim ve akım değerleri verilmiştir.

	Logic Level	Voltage	Current	
Giriş	0	0.8 V maximum 2.0 V minimum	$\pm 10~\mu A$ maximum $\pm 10~\mu A$ maximum	
	Logic Level	Voltage	Current	
Çıkış	0	0.45 V maximum 2.4 V minimum	2.0 μA maximum -400 μA maximum	

8086/8088 Pinleri ve İşlevleri

Pin Bağlantıları

- AD₇-AD₀, adres ve data bus için kullanılır ve en sağdaki 8 biti içerirler.
- A₁₅-A₈, 8088'de 9-16 arasındaki adres bitleri için kullanılır.
- AD₁₅-AD₈, 8086'da 9-16 bitler arasındaki adres ve data için kullanılır.
- A₁₉/S₆-A₁₆/S₃ pinleri adres ve status bitleri için (multiplex yapılarak) kullanılır.
- S₆ her zaman 0'dır, S₅ IF bayrak bitinin durumunu gösterir, S₄-S₃ ise şu andaki bus cycle'da hangi segmente ulaşıldığını gösterir.
- RD pini 0 ise data bus memory veya I/O cihazlarından data alır.
- READY pini işlemciyi hazır bekleme durumuna almak için kullanılır, 0 ise işlemci hazır duruma geçer,1 ise işlemcinin şu andaki durumunu etkilemez.

S_3	ve	S
du	ırur	n
bit	tler	i

The second second		
S_4	S_3	Function
0	0	Extra segment
0	1	Stack segment
1	0	Code or no segment
1	1	Data segment

8086/8088 Pinleri ve İşlevleri

Pin Bağlantıları - devam

- INTR, bir donanım interrupt isteği için kullanılır. IF=1 iken INTR=1 olursa çalışmakta olan komut döngüsünden sonra interrupt döngüsüne girilir.
- NMI, (non-maskable interrupt) INTR gibi çalışır ancak IF bayrak biti kontrol edilmeden interrupt döngüsüne girilir.
- RESET, işlemciyi yeniden başlatmak için kullanılır. En az 4 clock cycle boyunca 1 olursa işlemci reset edilir.
- CLK, işlemcinin zamanlama sinyalini girmek için kullanılır. Clock sinyalde en az %33 oranında duty cycle olmalıdır.
- Vcc, işlemcinin güç kaynağı girişidir ve +5.0V (%±10) olmalıdır.
- MN/MX, minimum ve maksimum mod arasında seçim yapmak için kullanılır.
 Minimum mod için doğrudan +5.0V' a bağlanmalıdır.
- BHE/S₇, (bus high enable) D15-D8 data bus bitlerini okuma ve yazma işlemlerinde aktif yapmak için kullanılır.

8086/8088 Pinleri ve İşlevleri

Pin Bağlantıları - devam - minimum mod pinleri

- IO/M veya M/IO, 8088 ve 8086 işlemcilerde memory veya I/O seçimi yapar.
- WR, 8086/8088 işlemcinin memory veya I/O cihazına data gönderdiğini gösterir. 0 ise data bus, memory veya I/O için geçerli dataya sahiptir.
- INTA, INTR giriş pininden gelen interrupt'ın algılandığını gösterir.
- ALE, (adres latch enable) 8086/8088 işlemcilerde adres/data bus seçimini yapar. 1 ise adres/data bus üzerinde adres bilgisi olduğunu gösterir.
- DT/R, (data transmit/receive) data bus'ta veri gönderildiğini(1) veya alındığını(0) gösterir.
- SSO, IO/M ve DT/R ile birlikte şimdiki bus cycle'nın fonksiyonunu çözümlemek için kullanılır (8088).

IO/\overline{M}	DT/\overline{R}	SS0	Function
0	0	0	Interrupt acknowledge
0	0	1	Memory read
0	1	0	Memory write
0	1	1	Halt
1	0	0	Opcode fetch
ио1	0	1	I/O read
1	1	0	I/O write
1	1	1	Passive

8086/8088 Pinleri ve İşlevleri

Pin Bağlantıları - devam - maksimum mod pinleri

- \$\overline{S2}\$,\$\overline{S1}\$,\$\overline{S0}\$, şimdiki bus cycle'ın fonksiyonunu gösterir. Bir bus denetleyici (8288) tarafından çözülür.
- RQ/GT1 ve RQ/GT0, maksimum modda çalışırken DMA (direct memory access) isteği için kullanılırlar. İki yönlüdürler(request ve grant yapılır.)
- QS1 ve QS0, (queue status) komut kuyruğunun durumunu gösterir.

<u>S2</u>	<u>S1</u>	<u>so</u>	Function
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive

QS ₁	QS_0	Function
0	0	Queue is idle
0	1	First byte of opcode
1	0	Queue is empty
1	1	Subsequent byte of opcode

Clock Üreteci (8284A)

- 8284A clock üreteci 8086/8088 mikroişlemciler için yardımcı elemandır.
- Temel olarak clock üretme, RESET senkronizasyonu, READY senkronizasyonu ve TTL (Transistor-Transistor Logic) seviyesinde çevre birim clock sinyali üretme fonksiyonlarını gerçekleştirir.
- Toplam 18 pine sahiptir ve özellikle 8086/8088 işlemcilerle birlikte kullanılmak için tasarlanmıştır.

Clock Üreteci (8284A)

Pin fonksiyonları

- AEN1 ve AEN2, (address enable) bus hazır sinyallerini (RDY1 ve RDY2) sağlamak için kullanılırlar.
- RDY1 ve RDY2, (bus ready) AEN1 ve AEN2 ile birlikte 8086/8088 işlemciyi bekleme durumuna almak için kullanılırlar.
- READY, çıkış pinidir ve 8086/8088 READY girişine bağlıdır.
- X1 ve X2, kristal osilatör bağlantısı için kullanılır.
- EFI, (External Frequency Input) 1 ise clock sinyalin external bir giriş tarafından üretileceğini belirler.
- F/C, (Frequency/Clock) 0 ise clock sinyalin 8284A tarafından üretileceği, 1 ise clock sinyalin EFI tarafından üretileceği seçilmiş olur.
- CLK, clock sinyal çıkışıdır ve 8086/8088 clock girişine bağlanır.
- RES, (reset input) 0 olduğunda reset işlemi başlatır.
- RESET, (reset output) 8086/8088 RESET girişine bağlıdır.

Clock Üreteci (8284A) 8284A ile 8086/8088 bağlantısı • 15MHz kristal mikroişlemciye 5MHz clock sağlamaktadır. 5 MHz CLK CLK 8086 or 8088 F/C 8284A CSYNC RESET RESET RES System reset

Bus Buffering ve Demultiplexing

- Adres/Data Bus pinleri daha az pin kullanılması için multiplex yapılır.
- Tüm bilgisayar sistemleri data bus, adres bus ve kontrol bus olmak üzere 3 tür bus'a sahiptir.
- 8086/8088 işlemciler, memory ve I/O ara yüzleriyle birlikte kullanılmadan önce demultiplex yapılmak zorundadır.
- Demultiplex için genellikle 74LS373 benzeri entegre devreler kullanılır.

Minimum ve Maksimum Mod

- 8086/8088 minimum ve maksimum olarak iki modda çalışabilmektedir.
- MN/MX seçme pini +5.0V 'a bağlanırsa minimum mod seçilmiş olur, toprağa bağlandığında ise maksimum mod seçilmiş olur.
- Maksimum mod, yardımcı işlemci kullanılan sistemler için tasarlanmıştır.
- 80286 ve üstü işlemcilerde maksimum mod yoktur.
- Minimum modda tüm kontrol işaretleri mikroişlemci tarafından üretilir ve maliyet açısından ucuzdur.
- Maksimum modda bazı kontrol işaretleri external olarak üretilir ve maliyeti daha fazladır.
- Maksimum modda external bus denetleyici kullanılır ve bus kontrol işaretlerini üretir.

Bus Denetleyici (8288)

- 8288 denetleyici girişleri ve üretilen kontrol işaretleri aşağıdaki gibidir.
- S₀, S₁ ve S₂ girişlerinin tümüde 1 olursa pasif duruma geçilmekte ve komut üretilmemektedir.

S2	S1	S0	Processor State	8288 Command
0	0	0	Interrupt acknowledge	INTA
0	0	1	Read input/output port	IORC
0	1	0	Write input/output port	IOWC, AIOWC
0	1	1	Halt	None
1	0	0	Code access	MRDC
1	0	1	Read memory	MRDC
1	1	0	Write memory	MWTC, AMWC
1	1	1	Passive	None

Bus Denetleyici (8288)

Pin fonksiyonları

- $\overline{S_0}$, $\overline{S_1}$ ve $\overline{S_2}$, durum girişleri. 8086/8088 durum çıkışlarına bağlıdır.
- CLK, clock girişi. 8284A clock üretecinin CLK çıkış pinine bağlıdır.
- ALE, (address latch enable) adres/data bus arasında demultiplex için kullanılır.
- DEN, (data bus enable) bi-directional data bus buffer'ı kontrol eder.
- DT/R, (data transmit/receive) data bus üzerinden yazma/okuma seçimi için kullanılır.
- ĀĒN, (address enable) girişiyle 8288 memory kontrol sinyallerini etkin yapar.
- CEN, (control enable) girişiyle 8288 kontrol çıkış pinleri aktif yapılır.

Bus Denetleyici (8288)

Pin fonksiyonları

- IOWC, (I/O write command) I/O cihazı için write komutu üretir.
- IORC, (I/O read command) I/O cihazı için read komutu üretir.
- MWTC, (memory write command) memory için write komutu üretir.
- MRDC, (memory read command) memory için read komutu üretir.
- INTA, (interrupt acknowledge) INTR pininden gelen interrupt'a cevap bilgisidir.
- IOB, (I/O bus mode) I/O bus mod ile system bus mod arasında seçim yapar.

