Investigating Φ

Angus Leung

2017-07-28

Overview

Integrated Information Φ

- 2 investigations:
 - Air vs isoflurane Φ
 - Φ vs Φ*

Axioms of Integrated Information Theory

- Existence
- Composition
- *Information*: out of all the experiences we can **possibly** have at any time (uncertainty), at any time we only experience **one** (reduction in uncertainty)
- *Integration*: we cannot separate an experience into parts (binding problem: we don't see red and a ball; we see a red ball)
- Exclusion

Consciousness and Integration/Information

- Loss of consciousness (e.g. NREM sleep, anaesthesia) has been associated with loss of information or integration
 - e.g. stereotyped responses to stimuli
 - e.g. reduced effective connectivity, feedback
- But what about Φ?
 - IIT: Φ is consciousness (there's a bit more to Φ)
 - Loss of consciousness <-> loss of Φ

What is Integrated Information Φ?

Integrated O

- O = exists only when considering the whole
- O = reduction due to splitting

Information |

- I = reduction in uncertainty
- Uncertainty: a neuron can be firing or not firing

What is Integrated Information Φ?

- Does a given a network state (e.g. state of all neurons in the brain) constrain the possible past and future network states?
 - Yes constrained states = reduced uncertainty = information
 - No states unconstrained = same uncertainty = no information
- Does splitting the network (e.g. brain into two hemispheres) give us the same information as not splitting the network?
 - Yes no integration
 - No integration is a vital part of the system difference in information is Φ

Data

Fly Data

- 13 fruit flies (*Drosphila melanogaster*)
- Half-brain probe: 16 electrodes
 - 15 'channels' after bipolar re-referencing
- 2 conditions:
 - 0% isoflurane (air)
 - 0.6% isoflurane (iso)
- 18s of 'spontaneous' LFP
 - 18s period after an air puff
 - 18s period split into 8 x 2.25s trials, 1kHz sampling rate (downsampled from 25kHz)

Φ Parameters

- Number of channels: 2 to 4 (all combinations)
 - 15 choose 2 = 105 sets
 - 15 choose 3 = 455 sets
 - 15 choose 4 = 1365 sets

- Time lag (τ): 4ms, 8ms, 16ms
 - TPM for 4ms: for a state at sample t, probability of sample t+4 being a specific state
 - Exclusion axiom: consciousness flows at a particular speed (where Φ is max)

Φ Calculation

Air vs Isoflurane

Investigation 1

Investigation 1: air vs isoflurane

Is Φ lower during anaesthesia?

- Simplest prediction of IIT:
 - Loss of consciousness = loss of Φ
 - If a system loses consciousness, Φ should be lower

- Here we presume that flies are conscious under air, and lose consciousness under iso
 - Movement responses to air puffs diminished under anaesthesia

Φ values for 1 fly, lag=4ms

delta = air - iso

Past finding: reduced feedback under iso

- Past finding on same dataset using Granger Causality:
 - Feedback reduced under anaesthesia, for low frequencies
 - Feedback: centre channel -> periphery channel
- GC: one signal contains information about another

$$DAI = \frac{FF - FB}{FF + FB}$$

Is feedback reduction captured in the MIP?

- The minimum information partition (MIP) is the unidirectional split which results in the least difference in information
 - No difference -> integration not vital among the split parts
 - MIP reduces the system as much as possible to independent parts
- If feedback loses importance, then cutting this connection should give a smaller difference
 - So the centre -> periphery cut might be more common under isoflurane

• 2 channel scenario:

Portion of c-/->p cuts

• 2 channels = 4 states

 Portion of samples within a trial with a feedback cut as the MIP

B: air R: iso

Ф vs Ф*

Investigation 2

Investigation 2: Φ* vs Φ

- Φ computation is resource intensive
- Φ^* can be analytically computed using the Gaussian approximation (this means faster computation)

- Φ* based on IIT 2.0
- Slight differences between IIT 2.0 and IIT 3.0
 - IIT 2.0 assesses how a state constrains a system's past; IIT 3.0 assesses also how it constrains the future (more complex)
 - Φ*: symmetry between past-present and present-future

Φ* Calculation

Comparing Φ* to Φ

Do they increase/decrease together?

Do they give equivalent MIPs?

Φ-Φ* correlations for 1 fly

o: air x: iso

Correlations for each channel set

Correlations for each fly

R: tau=4ms

G: tau=8ms

B: tau=16ms

Difference between Φ and Φ* MIPs

- IIT 3.0: MIPs are bipartitions from unidirectional cuts
 - Directional: A-/->B is different to B-/->A
 - Separated partitions can be considered appendages

- Φ* MIPs are non-directional
 - IIT 2.0 only considers the past and present (symmetrically in Φ*)
 - Cut connections leave partitions completely isolated

Φ* MIPs are not limited to bipartitions

MIP Matching

For comparison, ignore directionality of Φ MIPs

• For comparison, only consider Φ^* MIPs which are bipartitions

• Reminder: only one Φ* MIP per trial, but multiple Φ MIPs

Portion of matching MIPs

Conclusions

- Clearest prediction of IIT met
- Reduced feedback not captured by MIP cuts
 - May be due to building the TPM once per condition
- Moderate correlations between Φ and Φ*
 - Slightly stronger for larger τ
 - Likelihood of MIPs matching slightly higher than chance
- Future direction: Use TPM built across both conditions to calculate Φ
- Future direction: calculate Φ* using discretised values