

Who am I?

Bachelor

Master

PhD

UNIVERSITY OF TWENTE.

Așteptări?

- Ce vă așteptați să facem la Sisteme Tolerante la Defecte?
- Cu ce tehnologii vă aşteptați să lucrăm?
- Ce vă așteptați să învățați?
- Ce sistem/mecanism de toleranță la defecte cunoașteți?

Regulament

- Laboratoarele sunt obligatorii
- Temele se rezolvă individual și vor fi verificate anti-plagiat

Colaborare

- Laboratoare
 - OK discutat.
 - OK văzut cod unul altuia.
- Teme
 - OK discutat
 - NU văzut cod
- Examen
 - NU discutat
 - NU văzut cod
 - NU nimic

Niciodată NU este ok să transferați cod

Punctaj

- 5 puncte Teme
 - Minim 2.5 puncte pentru promovare
- 2.5 puncte Examen parțial
 - Minim 1.25 puncte pentru promovare
- 2.5 puncte Examen final
 - Minim 1.25 puncte pentru promovare

Objective

Dezvoltarea abilităților pentru:

- Proiectarea și implementarea aplicațiilor distribuite
- Depanarea unor aplicații distribuite
- Demonstrarea corectitudinii şi scalabilității unui program distribuit
- Proiectarea şi implementarea sistemelor de servicii bazate pe containere şi orchestrare
- Proiectarea și implementarea aplicațiilor Cloud
- Dezvoltarea, implementarea şi utilizarea tehnicilor pentru obţinerea consistenţei şi rezilienţei unui sistem

Cauze Defecte în calculatoare:

- Probleme software
 - Presupuneri greşite
 - Erori de design, de logică sau de programare (ex: Bug-uri)
 - Folosire neașteptată sau necorespunzătoare
- Depășirea resurselor disponibile
- Hardware
 - Rezistență limitată în timp
 - Supraîncălzire
 - Supratensiune
- Multe, multe, multe.... Multe altele.

Trebuie să:

- Acceptăm defectele
- Așteptăm defectele
- Fim îngrijorați când nu identificăm defecte
- Fim îngrijorați dacă nu am avut un defecte de prea mult timp

"A pessimist is never disappointed"

"Everything fails, All the time"

Werner Vogels –Amazon CTO

"Wear your failure as a badge of honour"

Sundar Pichai – Alphabet CEO

"Microsoft is always two years away from failure"

Bill Gates – Founder of Microsoft

Soluția?

Soluţia?
2 sisteme

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul precedent)

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul

precedent)

3 sisteme

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul precedent)

3 sisteme

Deci 5 sisteme, să fim siguri.

Deci...

Deci... Programare Distribuită

Programare distribuită

"Studierea unui neuron se numește neuroștiință. Studierea a doi neuroni se numește psihologie."

În cazul nostru, programarea distribuită reprezintă programarea a cel puțin două sisteme de calcul pentru rezolvarea unei probleme.

Calcul Paralel vs Distribuit vs Secvențial

Calcul Secvențial

Sistem calcul secvențial

Calcul Paralel

Calcul Distribuit

Instrucțiunea 1a Instrucțiunea 1b Instrucțiunea 2a Instrucțiunea 2b Instrucțiunea 3b Instrucțiunea 4b

Sistem calcul distribuit

Resurse fizice

• Procesor – multi-core – 48 core-uri (64 la AMD)

• Grid/Cloud

Supercomputers (top500.org)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646

Fugaku

Summit

Sierra

Sunway TaihuLight

JUWELS

BOINC computing power

Totals

24-hour average: 29.798 PetaFLOPS.

Active: 76,840 volunteers, 293,839 computers.

Tehnologiile pe care le vom folosi

Open MPI: Open Source High Performance Computing

MPI

Framework care facilitează

- Pornirea programelor distribuite (procese pe același sistem sau pe sisteme diferite, dar strâns conectate – ideal aceeași rețea)
- Conectarea proceselor unui program distribuit (accept, bind, connect)
- Simplificarea identificării (identificatori în loc de IP, port)
- Simplificarea comunicării (oferă funcții gen Send/Recv, Broadcast)
- Asigură comunicarea corectă pe sisteme cu arhitecturi de calcul diferite (little/big endian problems)