Math 351: Homework 8 Due Friday November 16

Jack Ellert-Beck

Invitation to Real Analysis

Section 6.1

Exercise 7: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Suppose that $f(x)\geq 0$ for all $x\in [a,b]$ and $\int_a^b f=0$. Show that f(x)=0 for all $x\in [a,b]$.

Assume that there is some $c \in [a, b]$ where f(c) > 0. Now pick any $0 < \varepsilon < f(c)$. By the continuity of f, we can find a δ such that $|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$. So, pick such a δ . Notice that $f(c - \delta) > f(x) - \varepsilon > 0$ and $f(c + \delta) > f(x) - \varepsilon > 0$. Now define the function

$$g(x) = \begin{cases} 0 & a \le x < c - \delta \\ f(c) - \varepsilon & c - \delta \le x \le c + \delta \\ 0 & c + \delta < b \end{cases}$$

We can see that $\int_a^b g = 2\delta(f(c) - \varepsilon) > 0$, and that $f(x) \geq g(x)$ for all $x \in [a,b]$. So, $\int_a^b f \geq \int_a^b g > 0$, a contradiction. Thus we conclude that $f(c) \neq 0$ for any c, so f(x) = 0 for all $x \in [a,b]$.

Section 6.2

Exercise 1: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Show that there exists $c\in(a,b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f$$

First define the function

$$g(x) = \int_{a}^{x} f(t)dt$$

and note that g is continuous on [a,b] and differentiable on (a,b). So, by the Mean Value Theorem, there exists a $c \in (a,b)$ such that $g'(c) = \frac{g(b) - g(a)}{b-a}$.

Now, by the Fundamental Theorem of Calculus, we have g'(c) = f(c), and we can rewrite the right hand side as well, giving the equation $f(c) = \frac{\int_a^b f - \int_a^a f}{b-a} = \frac{1}{b-a} (\int_a^b f - 0) = \frac{1}{b-a} \int_a^b f$ for some $c \in (a,b)$.

Section 8.2

Exercise 3: Let $f_n : A \to \mathbb{R}$, for $A \subseteq \mathbb{R}$, be uniformly continuous. Show that if (f_n) converges uniformly to the function f then f is uniformly continuous.

We wish to show that f is uniformly continuous. Let $\varepsilon > 0$. We know there exists $N \in \mathbb{N}$ such that $n \geq N \implies |f_n(x) - f(x)| < \frac{\varepsilon}{3}$ for all $x \in A$. Since f_n is uniformly continuous, there exists $\delta > 0$ so that $|f_N(y) - f_N(x)| < \frac{\varepsilon}{3}$ whenever $|x - y| < \delta$ for any choice of $x, y \in A$. Then

$$|f(y) - f(x)| = |f(y) - f_N(y) + f_N(y) - f_N(x) + f_N(x) - f(x)|$$

$$\leq |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)|$$

$$\leq 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$

whenever $|x-y| < \delta$. Therefore f is uniformly continuous on A.

Exercise 5: Let $x \in [0, \infty)$ and define

$$f_n(x) = \frac{nx}{nx+1}$$

Find the pointwise limit $f(x) = \lim_{n\to\infty} f_n(x)$ for $x \in [0,\infty)$ and prove it. prove that the convergence is uniform on $[1,\infty)$ and is not uniform on $[0,\infty)$. Is it uniform on $(0,\infty)$?

The pointwise limit is f(x) = 1. To prove it, fix $x \in [0, \infty)$. Now take any $N > \frac{1}{x\varepsilon}$. Now, if n > N, then

$$n > \frac{\frac{1}{\varepsilon} - 1}{x} \implies nx > \frac{1}{\varepsilon} - 1$$

$$\implies nx + 1 > \frac{1}{\varepsilon}$$

$$\implies \frac{1}{nx + 1} < \varepsilon$$

$$\implies \left| \frac{nx - nx - 1}{nx + 1} \right| < \varepsilon$$

$$\implies \left| \frac{nx}{nx + 1} - 1 \right| < \varepsilon$$

And thus f_n converges pointwise to f(x) = 1.

Exercise 10: Let $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ for $x \in [0, \pi/2]$ and $n \in \mathbb{N}$. Prove that f_n converges uniformly to 0 on $[0, \pi/2]$, but f'_n does not converge on $[0, \pi/2]$.

Pick any $\varepsilon > 0$ and fix it. Now take $N > \frac{1}{\varepsilon^2}$. Now we can see that

$$\frac{1}{\varepsilon^2} \implies \frac{1}{\varepsilon} \sqrt{n}$$

$$\implies 1 < \sqrt{n}\varepsilon$$

$$\implies |\sin(nx)| < \sqrt{n}\varepsilon$$

$$\implies \left|\frac{\sin(nx)}{\sqrt{n}}\right| < \varepsilon$$

for any choice of $x \in [0, \pi/2]$. So, $f_n \to f(x) = 0$ uniformly.

Now, we can see that $f_n'(x) = \sqrt{n}\cos(nx)$. We will show that f' fails to converge at x = 0. Note that, for any n, $f_n'(0) = \sqrt{n}\cos(0) = \sqrt{n}$. As $n \to \infty$, $\sqrt{n} \to \infty$ as well. So the value of $f_n'(0) \to \infty$ as $n \to \infty$, so f_n' fails to converge at x = 0.

Applied Topics