Электронная цифровая подпись (ЭЦП)

Угрозы в фокусе темы

Порвории ЭПП

Сравнение рукописных и цифровых подписей

- Отношение к документу: В случае обычной подписи есть отношения "один ко многим" между подписью и документами. В случае цифровой подписи разным документам (сообщениям) соответствуют существенно различные значения подписи
- Метод проверки: В случае обычной подписи получатель сравнивает подпись на документе с эталоном. При цифровой подписи получателю предоставляется сообщение и алгоритм проверки, но копия эталона подписи нигде не хранится

Цифровая подпись против угроз

- Защита от модификации сообщения Целостность сообщения контролируется, если криптопреобразованию подвергается все сообщение, поэтому нельзя получить ту же самую подпись, если сообщение изменено.
- [●] Защита от имитации источника сообщения установление подлинности цифровой подписи возможно, поскольку цифровая подпись создается с помощью персонального (закрытого ключа) отправителя

Цифровая подпись против угроз

Исключение отказа от авторства сообщения:

- Θ Отравитель создает подпись из своего сообщения (S_A) и передает в Центр доверия, свой идентификатор, идентификатор получателя, а также подпись.
- Центр проверяет по подписи и с помощью ключа отправителя, что источник сообщения правильный.
 Затем Центр сохраняет копию сообщения с подписью, идентификаторами отправителя и получателя, а также с меткой времени, в своем архиве.
- ullet Центр использует свой секретный ключ, чтобы создать из сообщения с подписью другую подпись (S_t). Затем Центр передает получателю сообщение, новую подпись, идентификатор отправителя и получателя.
- Получатель проверяет сообщение, используя общедоступный ключ Центра, которому он доверяет.

Виды подделок цифровой подписи

Экзистенциальная (existential forgery)

- Противник, НЕ владеющий закрытым ключом, создает пару (сообщение, подпись), которая будет принята алгоритмом проверки цифровой подписи
- Противник никак не контролирует выбор того сообщения, для которого в итоге будет подделана подпись очень вероятно, это сообщение будет бессмысленным

Селективная (selective forgery)

- Противник, НЕ владеющий закрытым ключом, выбирает осмысленное сообщение (отсюда название угрозы)
- Далее, получив открытый ключ, пытается подделать цифровую подпись для этого выбранного сообщения.

Цифровая подпись RSA

Схема цифровой подписи RSA

- № Схема цифровой подписи меняет роли закрытых и открытых ключей:
 - ullet Используются открытый (e) и закрытый (d) ключи отправителя
 - Отправитель использует свой собственный закрытый ключ (d) для подписи документа.
 - Получатель использует открытый ключ отправителя (е), чтобы проверить подпись документа

RSA генерация ключей

- Выбираются два больших простых числа р и q
- Вычисляется n=p*q
- Выбирается произвольное число e (e<n), взаимно простое с (p-1)*(q-1)
- Вычисляется закрытый ключ (расширенный алгоритм Евклида) :

$$e \times d \equiv 1 \mod((p-1)*(q-1)) \equiv 1 \mod(p-1)*(q-1)$$

Пара чисел (e, n) объявляются открытым ключом, d выбирается закрытым ключом

[●] р и q нужно уничтожить

RSA подписание и проверка

- Формирование подписи отправителем:
 - Ключ подписания (закрытый ключ)– пара чисел (d, n)
 - $S=(M^d) \mod n$
- Проверка подписи получателем:
 - Ключ проверки (открытый ключ) пара чисел (e, n)
 - $M' = (S^e) \mod n$
 - ullet Если $M' \equiv M \ mod \ n$ подпись верна

Примечание

Подписи, созданные с применением алгоритма RSA, называются
 <u>детерминированными</u>, так как для одного и того же сообщения с
 использованием одного и того же закрытого ключа каждый раз будет
 создаваться одна и та же подпись

Подделка цифровой подписи RSA

- ullet Экзистенциальная подделка. Перехватываются две пары (M_1,S_1) , (M_2,S_2) .Подписи созданы с помощью одного ключа d. Создается новое сообщение $M=M_1\times M_2$ и соответствующая подпись $S=S_1\times S_2=M_1^d\times M_2^d=(M_1\times M_2)^d=M^d$
- Селективная подделка. Целенаправленно создается $M = M_1 \times M_2$ и с помощью обмана отправителя противник получает подписи S_1 и S_2 , что позволяет ему сформировать $S = S_1 \times S_2$ (если использовался один и тот же ключ).

RSA подпись на дайджесте сообщения

- $egin{array}{ll} \underline{\mathbb{C}}_{enc} & \underline{\mathbb{C}}_{e$

Цифровая подпись Эль-Гамаля

Схема цифровой подписи Elgamal

- ullet В процессе подписания две функции f_1 и f_2 создают две части подписи
- ullet В процессе проверки выходы двух функций f_1 и f_3 сравниваются между собой
- Сообщение присутствует на входе f_2 , при подписании (отправляемое сообщение), а также часть входа к функции f_1 при подтверждении (полученное сообщение)
- ullet Вычисления в функциях f_1 и f_3 проводятся по модулю p, а функции f_2 по модулю p 1

Elgamal генерация ключей

- Генерируется случайное простое число р
- ullet Выбирается целое число e_1 такое, что $1 < e_1 < p$, и e_1 первообразный корень p
- Выбирается случайное целое число d такое, что 1 < d < p
 </p>
- ullet Вычисляется $e_2 = e_1{}^d mod \ p$
- ightharpoonup Открытым ключом объявляется тройка (e_1, e_2, p)
- Закрытым ключом назначается число d

Elgamal подписание

- Выбирается секретное случайное число *r*
- ullet Вычисляется (f_1) первая часть подписи $S_1 = e_1{}^r mod \ p$
- ullet Вычисляется (f_2) вторая часть подписи

$$S_2 = (M - d \times S_1) \times r^{-1} mod(p-1),$$
 где r^{-1} - мультипликативная инверсия r по модулю $(p-1)$

Elgamal проверка

● Проверяем:

$$0 < S_2 < p$$

$$0 < S_1 < p-1$$

● Вычисляем (f_1):

$$V_1 = e_1^M \mod p$$

● Вычисляем (f_3):

$$V_2 = e_2^{S_1} \times S_1^{S_2} \mod p$$

ullet Если $V_1 \equiv V_2 mod \ p$ подпись действительна

Обоснование критерия проверки

Ранее принято:

$$e_2 = e_1^d \mod p$$
, $S_1 = e_1^r \mod p$, $V_1 = e_1^M \mod p$, $V_2 = e_2^{S_1} \times S_1^{S_2} \mod p$

- ullet Заменим критерий $V_1 \equiv V_2 mod \ p$ на эквивалентный (подстановками)
- $e_1^M \equiv e_2^{S_1} \times S_1^{S_2} \mod p \equiv (e_1^d)^{S_1} \times (e_1^r)^{S_2} \mod p \equiv e_1^{dS_1 + rS_2} \mod p$
- ullet Поскольку e_1 первообразный корень, то можно доказать, что полученное сравнение справедливо тогда и только тогда, когда

$$M \equiv (dS_1 + rS_2) mod (p-1)$$
, поэтому $S_2 \equiv ((M-d \times S_1) \times r^{-1}) mod (p-1)$

Получен тот же результат, с которого начато подписание

Примечание

Подписи, созданные с использованием алгоритма Elgamal называются <u>рандомизированными</u>, так как для одного и того же сообщения с использованием одного и того же закрытого ключа каждый раз будут создаваться разные части подписи (S_1, S_2), поскольку будет использоваться новое значение r

Подделка цифровой подписи Elgamal

- ullet Селективная подделка. Имеется заданное сообщение M и требуется подобрать две части подписи S_1 и S_2 . Выбираем S_1 и пытаемся вычислить S_2 из $e_2^{S_1} imes S_1^{S_2} \equiv e_1^{\ M} mod \ p$. Это вычислительно трудная задача дискретного логарифмирования

$$S_2 \equiv log_{S_1} e_2^{-S_1} \times e_1^{M} mod p$$

Детализация модели протокола ЭЦП

Цифровая подпись Шнорра

Claus-Peter Schnorr

Схема цифровой подписи Schnorr

- Шнорр предложил новую схему, основанную на схеме Эль-Гамаля, но с уменьшенным размером подписи
- ullet В процессе подписания две функции (f_1 и f_2) создают две части подписи. В процессе проверки выход функции f_3 сравнивается с первой частью подписи
- ullet Схема использует два модуля: p и q. Функции f_1 и f_3 используют p, а функция f_2 использует q

Schnorr генерация ключей

- ullet Выбирается простое число p, которое обычно равно по длине 1024 битам
- ullet Выбирается другое простое число q, которое имеет тот же самый размер, что и дайджест (например, 160 битов),такое , что $(p-1)=0\ mod\ q$
- ullet Выбирается e_1 , такое, что $e_1{}^q = 1 \ mod \ p$ путем вычисления $e_1 = e_0^{\ p-1/q} \ mod \ p$, где e_0 первообразный корень p
- ullet Выбирается целое d < q и вычисляется $e_2 = e_1{}^d \mod p$
- № Объявляется открытый ключ (e_1, e_2, p, q)
- ullet Назначается закрытый ключ d

Schnorr подписание

- Выбирается случайное число r, 1 < r < q (r заново выбирается для каждого нового сообщения)
- ullet Вычисляется (f_1) первая часть подписи

$$S_1 = h(M \mid e_1^r mod p)$$

ullet Вычисляется (f_2) вторая часть подписи

$$S_2 = (r + d \times S_1) \mod q$$

Schnorr проверка

- Вычисляется (f_3):
 - $V = h(M | e_1^{S_2} \times e_2^{-S_1}) \mod p$
- ullet Если $V\equiv S_1\ mod\ p$, то подпись действительна

Подделка цифровой подписи Schnorr

- Все атаки на схему Эль-Гамаля могут быть применены к схеме Шнорра
- Однако схема Шнорра находится в лучшем положении, потому что $S_1 = h(M \mid e_1{}^r mod \ p)$ т.е. хэш-функция применяется к комбинации сообщение и $e_1{}^r$, в которой r является секретным.

Цифровая подпись DSA (Digital Signature Algorithm)

Стандарт цифровой подписи (DSS) принятый NIST в 1994 г.

Схема цифровой подписи DSA

- ullet В процессе подписания две функции f_1 и f_2 создают две части подписи. В процессе проверки выход функции f_3 сравнивается с первой частью подписи.
- ullet Эта схема использует дайджест сообщения (а не собственно сообщение), как часть входов к функциям f_1 и f_3
- Схема применяет два общедоступных модуля: p и q. Функции f_1 и f_3 используют оба модуля p и q, функция f_2 только q

DSA генерация ключей

- ullet Выбирается простое число p, длиной между 512 и 1024 битами. Число битов в p должно быть кратно 64
- ullet Выбирается другое простое число q, которое имеет тот же самый размер, что и дайджест 160 битов, такое , что $(p-1)=0\ mod\ q$
- ullet Выбирается e_1 , такое, что $e_1{}^q=1\ mod\ p$ путем вычисления $e_1=e_0{}^{p-1/q}\ mod\ p$, где $e_0\in Z_p$ (теорема Ферма)
- ullet Выбирается целое d < q и вычисляется $e_2 = e_1{}^d \mod p$
- ullet Объявляется открытый ключ (e_1, e_2, p, q)
- ullet Назначается закрытый ключ d

DSA подписание

- Выбирается случайное число r, 1 < r < q (r заново выбирается для каждого нового сообщения)
- Вычисляется первая часть подписи (f_1) :

$$S_1 = (e_1^r mod \ p) \ mod \ q$$

- ullet Вычисляется дайджест h(M)
- Вычисляется вторая часть подписи(f_2):
 $S_2 = r^{-1}(h(M) + d \times S_1) \mod q$

DSA проверка

Проверяем :

$$0 < S_2 < q$$

$$\Theta 0 < S_1 < q$$

■ Вычисляем (f₃):

$$V = \left(\left(e_1^{\frac{h(M)}{S_2}} \times e_2^{\frac{S_1}{S_2}} \right) \mod p \right) \mod q$$

ullet Если $V \equiv S_1 mod \ q$ подпись действительна

Сравнительный анализ

- Вычисление DSA подписи быстрее, чем вычисление подписей RSA,
 при использовании того же самого р
- DSA подпись короче, чем подписи в схеме Эль-Гамаля и Шнорра, потому что q меньше, чем p
- Одним из главных аргументов против DSA является использование в данной схеме частного случая задачи вычисления дискретного логарифма. Этот вариант мало изучен и, возможно, имеет существенно меньшую сложность вскрытия

Цифровая подпись ГОСТ Р 34.10-94

Российский стандарт, введенный 01.01.1995 (утратил силу в 2001)

Общие сведения о стандарте

- Определяет алгоритм, который относится к семейству алгоритмов ElGamal и аналогичен алгоритму, реализованному в стандарте DSS
- Использует хэш-функцию стандарта ГОСТ Р 34.11-94, которая создает хэш-код длиной 256 бит. Это обуславливает требования к выбираемым параметрам (простым числам р и q)
- Определяет процедуру получения простых чисел р и q

ГОСТ генерация ключей

- ullet Выбирается простое число p, $2^{509} или <math>2^{1020} битами.$
- ullet Выбирается другое простое число q, $2^{254} < q < 2^{256}$, которое соответствует размеру дайджеста 256 битов, такое , что $(p-1)=0 \ mod \ q$
- ullet Выбирается e_1 , такое, что $e_1{}^q=1\ mod\ p$ путем вычисления $e_1=e_0{}^{p-1/q}\ mod\ p$, где $e_0\in Z_p$ (теорема Ферма)
- ullet Выбирается целое d < q и вычисляется $e_2 = e_1{}^d \mod p$
- ullet Объявляется открытый ключ (e_1, e_2, p, q)
- ullet Назначается закрытый ключ d

ГОСТ подписание

- ullet Выбирается случайное число $r, 1 < r < q \ (r)$ заново выбирается для каждого нового сообщения)
- Вычисляется первая часть подписи

$$S_1 = (e_1 mod p) mod q$$

- ullet Вычисляется дайджест h(M) по ГОСТ Р 34.11-94
- Вычисляется вторая часть подписи

$$S_2 = (r \times h(M) + d \times S_1) \mod q$$

ГОСТ проверка

- Проверяем :
 - $0 < S_2 < q; 0 < S_1 < q$
- Вычисляем
 - $w = h(M)^{-1} \mod q$
 - $u_1 = w \times S_2 mod q$
 - $u_2 = (q S_1) \times w \mod q$
 - $V = ((e_1^{u_1} \times e_2^{u_2}) \bmod p) \bmod q$
- ullet Если $V \equiv S_1 mod \ q$ подпись действительна

Примечание

- Алгоритм ГОСТ Р 34.10-94 имеет существенно больший запас стойкости по сравнению с DSA, поскольку параметр q имеет размерность 256 бит, а соответствующий параметр DSA ограничены длиной в 160 бит.
- [●] Подписи, созданные с использованием алгоритмов ГОСТ Р 34.10-94 или DSS, называются рандомизированными, так как для одного и того же сообщения с использованием одного и того же закрытого ключа каждый раз будут создаваться разные подписи (S₁, S₂), поскольку каждый раз будет использоваться новое значение

Цифровая подпись ECDSA (Elliptic Curve Digital Signature Algorithm)

Стандарт цифровой подписи (ECDSS) принят ANSI в 1999 и NIST в 2000 г.

Эллиптическая криптография

- Безопасность RSA и Elgamal обеспечивается ценой использования больших ключей
- Требуется альтернативный метод, который дает тот же самый уровень безопасности, но с меньшими размерами ключей
- Одним из этих перспективных вариантов является криптосистема на основе метода эллиптических кривых (Elliptic Curve Cryptosystem — ECC)

Схема цифровой подписи ECDSA

- ullet Функция f_1 создает новую точку для секретного ключа подписывающего лица
- ullet Функция f_2 создает новую точку из двух общедоступных ключей подписывающего лица
- Каждый экстрактор Extract извлекает первые координаты соответствующей точки в модульной арифметике
- ullet В процессе подписания две функции f_1 и f_2 и экстрактор (извлекающее устройство) создают две части подписи
- ullet В процессе проверки (верификации) обрабатывают выход одной функции f_2 (после прохождения через экстрактор) и сравнивают ее с первой частью подписи

Генерация ключей ECDSA

- ullet Выбирается эллиптическая кривая $E_p(a,b)$, p- простое
- ullet Выбирается точка на кривой e_1 = (x_1, y_1)
- ullet Для дальнейших вычислений выбирается другое простое число q порядок циклической подгруппы группы точек эллиптической кривой : $q \times (x_1, y_1) = 0$
- ullet Выбирается целое число d , 1 < d < q-1 и назначается закрытым ключом
- ullet Вычисляется другая точку на кривой $oldsymbol{e_2} = d imes oldsymbol{e_1}$
- ullet Объявляется открытый ключ (a, b, p, q, e_1, e_2)

ECDSA подписание

- ullet Выбирается секретное случайное число, $r, \ 1 < r < q-1$
- $m{P}(u,v)=r imes m{e}_1$
- ullet Используем абсциссу u , чтобы вычислить первую часть подписи

$$S_1 = u \mod q$$

Используем дайджест сообщения h(M), закрытый ключ d, секретное случайное число r и S_1 , чтобы вычислить вторую часть подписи

$$S_2 = (h(M) + d \times S_1) \times r^{-1} \bmod q$$

ECDSA проверка

$$A = h(M) \times S_2^{-1} \mod q$$
$$B = S_2^{-1} \times S_1 \mod q$$

Затем восстанавливаем третью точку

$$T(x,y) = A \times e_1 + B \times e_2$$

ullet Верификатор $V=x\ mod\ q$ сравниваем с S_1

Схема протокола ECDSA

Цифровая подпись ГОСТ Р 34.10—2012

Российский стандарт, введен в действие 01.01.2013

Общие сведения о стандарте

- Определяет алгоритм, аналогичный алгоритму ECDSA
- Разработан Центром защиты информации и специальной связи ФСБ России с участием Открытого акционерного общества «Информационные технологии и коммуникационные системы» (ОАО «ИнфоТеКС»)
- Успользует хэш-функцию стандарта ГОСТ Р 34.11—2012, которая создает хэш-код длиной 256 и 512 бит
- Процесс генерации ключей (для подписи и проверки подписи) не рассмотрен.
 Характеристики и способы реализации данного процесса определяются вовлеченными в него субъектами, которые устанавливают соответствующие параметры по взаимному согласованию
- Не определяет процесс генерации параметров схемы цифровой подписи.
 Конкретный алгоритм (способ) реализации данного процесса определяется субъектами схемы цифровой подписи исходя из требований к аппаратнопрограммным средствам, реализующим электронный документооборот

Генерация ключей ГОСТ

- Выбирается эллиптическая кривая E_p(a, b): y² ≡ x³ + ax + b mod p, p > 3 − простое
- ullet Выбирается простое число q (порядок циклической подгруппы точек):
 - $^{\odot} 2^{254} < q < 2^{256}$, если длина хэш-кода 256
 - 9 $2^{508} < q < 2^{512}$, если длина хэш-кода 512
- ullet Выбирается базовая точка на кривой e_1 = (x_1, y_1), q \times e_1 =0
- ullet Выбирается целое число d, (0 < d < q) и назначается закрытым ключом
- ullet Вычисляется другая точку на кривой $oldsymbol{e_2} = d imes oldsymbol{e_1}$
- ullet Объявляется открытый ключ (a, b, p, q, e_1, e_2)

ГОСТ подписание

- Выбирается секретное случайное число, r, 1 < r < q
- ullet Выбирается третья точка на кривой, $oldsymbol{P}(u,v)=r imesoldsymbol{e}_1$
- ullet Используем абсциссу u , чтобы вычислить первую часть подписи $S_1 = u \ mod \ q$
- ullet Используем дайджест сообщения h(M), закрытый ключ d, секретное случайное число r и S_1 , чтобы вычислить вторую часть подписи

$$S_2 = (r \times h(M) + d \times S_1) \mod q$$

extstyle ex

ГОСТ проверка

- Используем M, S_1, S_2 для получения промежуточных результатов A и B:
 - $A = h(M)^{-1} \times S_2 \bmod q$
 - $P = (q S_1) \times h(M)^{-1} \mod q$
- Затем восстанавливаем третью точку

$$T(x,y) = A \times e_1 + B \times e_2$$

ullet Верификатор $V=x\ mod\ q$ сравниваем с S_1

Схема протокола ЭЦП ГОСТ

ГОСТ примечание

- У Криптостойкость цифровой подписи опирается на две компоненты на стойкость хэш-функции и на стойкость самого алгоритма шифрования
- ullet Вероятность взлома хэш-функции составляет $1.73 imes 10^{-77}$ при подборе коллизии на фиксированное сообщение и $2.94 imes 10^{-39}$ при подборе любой коллизии.
- ullet Стойкость алгоритма шифрования основывается на проблеме дискретного логарифмирования в группе точек эллиптической кривой. На данный момент нет метода решения данной проблемы лучше, чем $O\left(\sqrt{q}\right)$ битовых операций. Таким образом при использонии 256-разрядное q, обеспечивается криптостойкость 10^{38} операций

Защита гибридной криптосистемы от атаки на секретный ключ

- Создать ЭЦП клиента на шифровке ключа или цифровом конверте
- Передать открытый ключ клиента серверу
- Проверить ЭЦП клиента на стороне сервера

Защищенный гибридный (RSA) протокол шифрования

