Linear Algebra Lecture 17

Saurav Bhaumik Department of Mathematics IIT Bombay

Spring 2025

Recall: In the last lecture, we proved

Proposition (Spectral Theorem for Normal Matrices)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then \mathbf{A} is normal if and only if \mathbf{A} is unitarily diagonalizable.

We then turned to self-adjoint matrices and proved:

Lemma

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonal with all diagonal entries real if and only if it is upper triangular and self-adjoint.

Proof. Let $\mathbf{A} := \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_1, \dots, \lambda_n \in \mathbb{R}$. Then clearly \mathbf{A} is upper triangular. Also, it is self-adjoint since $\mathbf{A}^* = \operatorname{diag}(\overline{\lambda}_1, \dots, \overline{\lambda}_n) = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \mathbf{A}$.

Conversely, suppose \mathbf{A} is upper triangular and self-adjoint. Then \mathbf{A}^* is lower triangular. Since $\mathbf{A}^* = \mathbf{A}$, we see that \mathbf{A} is in fact diagonal with all diagonal entries real.

Proposition (Spectral Theorem for Self-Adjoint Matrices)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then \mathbf{A} is self-adjoint if and only if \mathbf{A} is unitarily diagonalizable and all eigenvalues of \mathbf{A} are real.

Proof. Suppose **A** is unitarily diagonalizable and all eigenvalues of **A** are real. Then $\mathbf{D} = \mathbf{U}^*\mathbf{A}\mathbf{U}$ for some unitary matrix \mathbf{U} and diagonal matrix \mathbf{D} . The diagonal entries entries of \mathbf{D} are the eigenvalues of \mathbf{A} , and so they are real. Hence $\mathbf{D}^* = \mathbf{D}$. Consequently, $\mathbf{A}^* = (\mathbf{U}\mathbf{D}\mathbf{U}^*)^* = \mathbf{U}\mathbf{D}^*\mathbf{U}^* = \mathbf{U}\mathbf{D}\mathbf{U}^* = \mathbf{A}$. Thus \mathbf{A} is self-adjoint.

Conversely, suppose $\bf A$ is self-adjoint. By Schur's theorem, $\bf B = \bf U^* A \bf U$ for some unitary matrix $\bf U$, and upper triangular matrix $\bf B$. Now $\bf B^* = (\bf U^* A \bf U)^* = \bf U^* A^* \bf U = \bf U^* A \bf U = \bf B$. So $\bf B$ is self-adjoint. Hence by the Lemma above, $\bf B$ is diagonal with all diagonal entries real. This proves that $\bf A$ is unitarily diagonalizable and all eigenvalues of $\bf A$ are real.

Our short proof of the spectral theorem for self-adjoint matrices is based on Schur's theorem. This result can also be deduced from part (ii) of the spectral theorem for normal matrices since every self-adjoint matrix in normal, provided we independently show that every eigenvalue of a self-adjoint matrix is real. The latter statement can be easily proved.

Proposition

If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is self-adjoint, then every eigenvalue of \mathbf{A} is real.

Proof. Let λ be an eigenvalue of a self-adjoint matrix $\bf A$, and let $\bf x$ be a corresponding unit eigenvector. Then

$$\lambda = \lambda \mathbf{x}^* \mathbf{x} = \mathbf{x}^* \mathbf{A} \mathbf{x} = \mathbf{x}^* \mathbf{A}^* \mathbf{x} = (\mathbf{A} \mathbf{x})^* \mathbf{x} = (\lambda \mathbf{x})^* \mathbf{x} = \overline{\lambda} \mathbf{x}^* \mathbf{x} = \overline{\lambda}.$$

Hence λ is real.

Finally, let us consider a real symmetric matrix \mathbf{A} , that is, $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$. We shall prove a spectral theorem for \mathbf{A} which involves only real scalars.

A unitary matrix with real entries is also called an **orthogonal matrix**. Thus $\mathbf{C} \in \mathbb{R}^{n \times n}$ is orthogonal if its columns form an orthonormal subset of $\mathbb{R}^{n \times 1}$. Clearly, an orthogonal matrix is invertible and its inverse is the same as its transpose.

Definition |

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called **orthogonally diagonalizable** if there is an orthogonal matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C}$.

Proposition (Spectral Theorem for Real Symmetric Matrices)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then \mathbf{A} is symmetric if and only if \mathbf{A} is orthogonally diagonalizable. In this case, \mathbf{A} has n real eigenvalues counted according to their algebraic multiplicities.

Proof of the Spectral Theorem for Real Symmetric Matrices:

Suppose **A** is orthogonally diagonalizable. Then $\mathbf{D} = \mathbf{C}^T \mathbf{A} \mathbf{C}$ for some orthogonal matrix **C** and diagonal matrix **D**. in $\mathbb{R}^{n \times n}$. Now $\mathbf{D}^T = \mathbf{D} \Longrightarrow \mathbf{A}^T = (\mathbf{C} \mathbf{D} \mathbf{C}^T)^T = \mathbf{C} \mathbf{D}^T \mathbf{C}^T = \mathbf{C} \mathbf{D} \mathbf{C}^T = \mathbf{A}$. Thus **A** is symmetric.

Conversely, suppose **A** is symmetric. By the spectral theorem for self-adjoint matrices, there is a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\mathbf{D} \in \mathbb{C}^{n \times n}$ such that $\mathbf{D} = \mathbf{U}^{-1}\mathbf{A}\mathbf{U}$, that is, $\mathbf{A}\mathbf{U} = \mathbf{U}\mathbf{D}$. Since the diagonal entries of **D** are the eigenvalues of **A**, we see that $\mathbf{D} \in \mathbb{R}^{n \times n}$.

Let λ be an eigenvalue of \mathbf{A} . Then $\lambda \in \mathbb{R}$. Using the Gauss Elimination Method, we may find the basic solutions of the homogeneous linear system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$. Their entries are real since all entries of \mathbf{A} are real and $\lambda \in \mathbb{R}$. These solutions form a basis for the eigenspace of \mathbf{A} corresponding to λ .

Further, we can use the Gram-Schmidt Orthogonalization Process for these basic solutions to obtain an orthonormal basis for the eigenspace of **A** corresponding to λ . In this process, the entries of the basis vectors remain real. Putting together the orthonormal bases for the eigenspaces of A corresponding to distinct eigenvalues, we get an orthonormal set (since eigenvectors corresponding to distinct eigenvalues of a normal matrix are orthogonal); moreover, this set contains exactly *n* vectors (since the sum of geometric multiplicities of eigenvalues of \mathbf{A} is n because \mathbf{A} is diagonalisable). So the matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ formed by these n vectors as its columns is orthogonal and moreover $C^{-1}AC$ is a diagonal matrix. This proves that **A** is orthogonally diagonalizable.

Remark: The above proof suggests a constructive method to orthogonally diagonalize a real symmetric matrix (and similarly, to unitary diagonalize a complex self-adjoint matrix), provided we know its eigenvalues. We illustrate this with an example.

Example: Let $\mathbf{A} := \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$. Clearly \mathbf{A} is real symmetric.

- 1. $p_{\mathbf{A}}(t) = \det(\mathbf{A} t\mathbf{I}) = (3 t)^2(3 + t)$. So the eigenvalues of **A** are $\mu_1 = 3$ with $m_1 = g_1 = 2$, and $\mu_2 = -3$ with $m_2 = g_2 = 1$.
- **2.** (i) (A 3I)x = 0, that is,

$$\begin{bmatrix} -2 & 2 & -2 \\ 2 & -2 & 2 \\ -2 & 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} -2 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 \iff $x_1 - x_2 + x_3 = 0$ by the Gauss Elimination Method.

Hence $\mathbf{x}_{11} := \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^\mathsf{T}$ and $\mathbf{x}_{12} := \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^\mathsf{T}$ form a basis for the null space $\mathcal{N}(\mathbf{A} - 3\mathbf{I})$.

(ii) Similarly, $\mathbf{x}_{21} := \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$ forms a basis for the null space $\mathcal{N}(\mathbf{A} + 3\mathbf{I})$.

3. Gram-Schmidt Orthogonalization Process gives

$$\mathbf{u}_{11} := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}^\mathsf{T}$$
 and

 $\mathbf{u}_{12} := \begin{bmatrix} -1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \end{bmatrix}^\mathsf{T}$, which form an orthonormal basis for $\mathcal{N}(\mathbf{A}-3\mathbf{I})$.

Also, $\mathbf{u}_{21} := \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}^\mathsf{T}$ forms an orthonormal basis for $\mathcal{N}(\mathbf{A} + 3\mathbf{I})$.

4. Let
$$\mathbf{U} := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

and $\mathbf{D} := \operatorname{diag}(3, 3, -3)$. Then $\mathbf{U}^* \mathbf{A} \mathbf{U} = \mathbf{D}$. Note that since \mathbf{U} is real (and unitary), we can also say that \mathbf{U} is orthogonal and $\mathbf{U}^T \mathbf{A} \mathbf{U} = \mathbf{D}$.

We now show that the unitary matrix \mathbf{U} and the diagonal matrix \mathbf{D} satisfying $\mathbf{U}^*\mathbf{A}\mathbf{U} = \mathbf{D}$ we have found are not unique.

For example, let us interchange the order of the columns of ${\bf U}$ and make a corresponding interchange in the diagonal entries of ${\bf D}$.

Thus
$$\mathbf{U} := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \end{bmatrix}$$

and D := diag(3, -3, 3) would also satisfy $U^*AU = D$.

Further, we could have chosen $\mathbf{x}_{11} := \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^{\mathsf{I}}$ and $\mathbf{x}_{12} := \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^{\mathsf{T}}$ as basis vectors for the null space $\mathcal{N}(\mathbf{A} - 3\mathbf{I})$, and orthonormalized them to obtain $\mathbf{u}_{11} := \begin{bmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^{\mathsf{T}}$ & $\mathbf{u}_{12} := \begin{bmatrix} -2/\sqrt{6} & -1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix}^{\mathsf{T}}$. $\begin{bmatrix} 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$

Then
$$\mathbf{U} := \begin{bmatrix} 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

and D := diag(3, 3, -3) would also satisfy $U^*AU = D$.

Final Comments

The spectral theorems proved in this lecture say the following.

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be normal. Then there is an orthonormal set of eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ of \mathbf{A} corresponding to the eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{C}$.

If $\mathbf{x} \in \mathbb{C}^{n \times 1}$, then $\mathbf{x} = \langle \mathbf{u}_1, \mathbf{x} \rangle \mathbf{u}_1 + \dots + \langle \mathbf{u}_n, \mathbf{x} \rangle \mathbf{u}_n$ since $\mathbf{u}_1, \dots, \mathbf{u}_n$ is an orthonormal basis for $\mathbb{C}^{n \times 1}$. Hence

$$\mathbf{A} \mathbf{x} = \lambda_1 \langle \mathbf{u}_1, \mathbf{x} \rangle \mathbf{u}_1 + \dots + \lambda_n \langle \mathbf{u}_n, \mathbf{x} \rangle \mathbf{u}_n \quad \text{ for all } \mathbf{x} \in \mathbb{C}^{n \times 1}.$$

In particular, if **A** is self-adjoint, then $\lambda_1, \ldots, \lambda_n$ are real. This also holds if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric (with $\mathbf{u}_1, \ldots, \mathbf{u}_n$ having all real entries).

The above formula gives a spectral representation of **A**. This is useful in evaluating the action of powers of **A** or more generally, polynomials in **A**, on column vectors.

Let $k \in \mathbb{N}$. Then $\mathbf{A}^k(\mathbf{u}_j) = \lambda_j^k \mathbf{u}_j$ for each $j = 1, \dots, n$, and so

$$\mathbf{A}^k \mathbf{x} = \sum_{j=1}^n \lambda_j^k \langle \mathbf{u}_j, \, \mathbf{x} \rangle \mathbf{u}_j$$
 for all $\mathbf{x} \in \mathbb{C}^{n \times 1}$.

More generally, if p(t) is any polynomial, then

$$p(\mathbf{A}) \mathbf{x} = \sum_{j=1}^{n} p(\lambda_j) \langle \mathbf{u}_j, \mathbf{x} \rangle \mathbf{u}_j$$
 for all $\mathbf{x} \in \mathbb{C}^{n \times 1}$.

In the example which we have just worked out, we obtain

$$\mathbf{A}^k\mathbf{x} = 3^k\langle \mathbf{u}_{11},\,\mathbf{x}\rangle\mathbf{u}_{11} + 3^k\langle \mathbf{u}_{12},\,\mathbf{x}\rangle\mathbf{u}_{12} + (-3)^k\langle \mathbf{u}_{21},\,\mathbf{x}\rangle\mathbf{u}_{21}$$

for all $\mathbf{x} \in \mathbb{K}^{3 \times 1}$ and all $k \in \mathbb{N}$, where

$$\langle \mathbf{u}_{11}, \mathbf{x} \rangle \mathbf{u}_{11} = \frac{1}{2} (x_1 + x_2) \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^\mathsf{T}$$

 $\langle \mathbf{u}_{12}, \mathbf{x} \rangle \mathbf{u}_{12} = \frac{1}{6} (-x_1 + x_2 + 2x_3) \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^\mathsf{T}$
 $\langle \mathbf{u}_{21}, \mathbf{x} \rangle \mathbf{u}_{21} = \frac{1}{3} (x_1 - x_2 + x_3) \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^\mathsf{T}$.

For instance, if $\mathbf{x} := \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^\mathsf{T}$, then

$$\mathbf{A}^{k}\mathbf{x} = 3^{k} \frac{3}{2} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}} + 3^{k} \frac{7}{6} \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^{\mathsf{T}} + (-3)^{k} \frac{2}{3} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\mathsf{T}}$$

for each $k \in \mathbb{N}$.

Real Quadratic Forms

Let $n \in \mathbb{N}$. A **real** n-ary quadratic form Q is a homogeneous polynomial of degree 2 in n variables with coefficients in \mathbb{R} . Thus

$$Q(x_1, \ldots, x_n) := \sum_{j=1}^n \sum_{k=1}^n \alpha_{jk} x_j x_k$$
$$= \sum_{j=1}^n \alpha_{jj} x_j^2 + \sum_{1 \le j < k \le n} (\alpha_{jk} + \alpha_{kj}) x_j x_k,$$

where $\alpha_{jk} \in \mathbb{R}$ for $j, k = 1, \dots, n$.

Examples Let $a, b, c, a', b', c' \in \mathbb{R}$. $n = 1 : Q(x) := ax^2$ (unary quadratic form) $n = 2 : Q(x, y) := ax^2 + by^2 + a'xy$ (binary quadratic form) $n = 3 : Q(x, y, z) := ax^2 + by^2 + cz^2 + a'xy + b'yz + c'zx$ (ternary quadratic form) For $n \in \mathbb{N}$, consider an $n \times n$ real matrix $\mathbf{A} := [a_{jk}]$.

Then for
$$\mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\mathsf{T}$$
,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \sum_{k=1}^n a_{1k} x_k \\ \vdots \\ \sum_{k=1}^n a_{nk} x_k \end{bmatrix} = \sum_{j=1}^n \left(\sum_{k=1}^n a_{jk} x_k \right) x_j$$
$$= \sum_{j=1}^n a_{jj} x_j^2 + \sum_{1 \le j < k \le n} (a_{jk} + a_{kj}) x_j x_k,$$

which is an *n*-ary quadratic form.

In fact, $Q(x_1,\ldots,x_n)=\mathbf{x}^\mathsf{T}\mathbf{A}\,\mathbf{x}$ for all $\mathbf{x}:=\begin{bmatrix}x_1&\cdots&x_n\end{bmatrix}$ in $\mathbb{R}^{n\times 1}$ if and only if

$$\alpha_{jk} + \alpha_{kj} = a_{jk} + a_{kj}$$
 for all $j, k = 1, \dots, n$.

In general, many $n \times n$ matrices induce the same quadratic form. For example, the matrices $\begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 5 \\ 5 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & -1 \\ 11 & 2 \end{bmatrix}$ induce the same binary quadratic form.

But if we require the matrix $\mathbf{A} := [a_{jk}]$ inducing the quadratic form Q to be symmetric, that is, $a_{jk} = a_{kj}$ for all j, k, then

$$a_{jk} = \frac{1}{2}(\alpha_{jk} + \alpha_{kj})$$
 for all $j, k = 1, \dots, n$.

Thus given an *n*-ary quadratic form Q, there is a unique $n \times n$ real symmetric matrix \mathbf{A} such that $Q(x_1, \dots, x_n) = \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}$ for all $\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$; in fact

$$\mathbf{A} := [a_{jk}], \quad \text{where } a_{jk} := \frac{1}{2}(\alpha_{jk} + \alpha_{kj}), \ j, k = 1, \dots, n.$$

This real symmetric matrix **A** is called the **matrix associated** with the quadratic form Q, and we write $Q = Q_{\mathbf{A}}$.

A real *n*-ary quadratic form Q is said to be a **diagonal quadratic form** if there are $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$Q(x_1,\ldots,x_n)=\lambda_1x_1^2+\cdots+\lambda_nx_n^2.$$

It is clear that a quadratic form Q is diagonal if and only if Q is associated with a diagonal matrix \mathbf{D} , that is, $Q=Q_{\mathbf{D}}$. Using the spectral theorem for real symmetric matrices, we show that every quadratic form can be orthogonally transformed to a diagonal quadratic form.

Theorem (Principle Axis Theorem)

Let Q be a real quadratic form and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the symmetric matrix associated with Q. If \mathbf{C} is an orthogonal matrix such that the matrix $\mathbf{D} := \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C}$ is diagonal, then $Q(\mathbf{x}) = Q_{\mathbf{D}}(\mathbf{y})$, where $\mathbf{y} := \mathbf{C}^{\mathsf{T}} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n \times 1}$.

Proof. Let
$$\mathbf{x} \in \mathbb{R}^{n \times 1}$$
 and $\mathbf{y} := \mathbf{C}^{\mathsf{T}} \mathbf{x} = \mathbf{C}^{-1} \mathbf{x}$. Then $\mathbf{x} = \mathbf{C} \mathbf{y}$ and $Q_{\mathsf{A}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = (\mathbf{C} \mathbf{y})^{\mathsf{T}} \mathbf{A} (\mathbf{C} \mathbf{y}) = \mathbf{y}^{\mathsf{T}} (\mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{C}) \mathbf{y} = \mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y} = Q_{\mathsf{D}}(\mathbf{y})$.

To diagonalise a real n-ary quadratic form Q, we first write down the (real symmetric) matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ associated with Q. We then find an orthonormal basis $\mathbf{u}_1, \ldots, \mathbf{u}_n$ consisting of eigenvectors of \mathbf{A} corresponding to its eigenvalues $\lambda_1, \ldots, \lambda_n$ counted according to their algebraic multiplicities. If we let

$$\mathbf{C} := \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$$
 and $\mathbf{D} := \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,

Then
$$Q(\mathbf{x}) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$
, where $\mathbf{y} := \mathbf{C}^\mathsf{T} \mathbf{x} = \begin{bmatrix} \mathbf{u}_1^\mathsf{T} \\ \vdots \\ \mathbf{u}_n^\mathsf{T} \end{bmatrix} \mathbf{x}$.

Example

Let us transform the quadratic form

$$Q(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 - 4x_3x_1$$
 to a diagonal form. Here $\mathbf{A} := \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$ is the associated matrix.

We have seen before that

$$\label{eq:C} \begin{split} \boldsymbol{C} := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix} \quad \text{and} \quad \boldsymbol{D} := \text{diag}(3,3,-3). \end{split}$$

Then $C^TAC = D$, and so $Q(x) = 3(y_1^2 + y_2^2 - y_3^2)$, where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} := \mathbf{C}^{\mathsf{T}} \mathbf{x} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$
that is, $y_1 = (y_1 + y_2)/\sqrt{2}$, $y_2 = (-y_1 + y_2 + 2y_2)/\sqrt{6}$;

that is, $y_1 = (x_1 + x_2)/\sqrt{2}$, $y_2 = (-x_1 + x_2 + 2x_3)/\sqrt{6}$ and $y_3 = (x_1 - x_2 + x_3)/\sqrt{3}$.