Compute Initial Potential

The starter code gives the functions to create the clique tree from the factors. The clique tree contains the following:

- 1. nodes The list of cliques
- 2. edges The adjancency matrix for the clique tree
- 3. factorList The factors for which the clique tree is made
- 4. card Cardinality of the union of the scope of all factors

Problem statement:

Create the cliqueList with the potentials for each clique as a product of the initial factors. i.e. allocate each factor to a clique and maintain family preservation. No checks for running intersection is made in this function.

Method:

- 1. Draw the clique tree. See page-3
 - The tree shows the cliques & their scopes.
 - The number to the top of the circle is the node id.
 - The numbers next to the edge correspond to the sepset between adjancent cliques.
 - The number underlined is the factor that is marginalized during message passing.
- 2. Starting from the leaves, allocate factors to the nodes so that all factors that contain the marginalized factor in their scope are allocated to that node.
- 3. [Optional] Allocate all factors whose scope is a subset of a leaf to the leaf. This optional line is necessary to pass the assignment, even though solutions without this step are also correct.
- 4. Remove the leaf from the tree once all factors to the leaf are allocated and proceed to step-2.

Following this leads to the list of factors shown in Page-4. The list of factors in page-4 does not include step-3.

- 5. If more than 1 factor is allocated to each node, perform a factor product over all factors and call this intermediate factor.
- 6. Note that the union of the scopes of all factors allocated to a node is only a subset of the scope of the node. This is because of the addition of fill-edges. For all variables in the scope of the node that are not present in any of the factors, create a new factor over these variables and set the potentials to unity (1.0).
- 7. Perform a factor product of the unity factor with the intermediate factor to get the initial potential for that node.

Not eliminated 2,5,7,8,9,17,18,19

Nocle	Scope	Factor	Factor #
1.	3,22	223 2	22
2	8,26	26,8	26
3	123	1,3,2	2
4	15,20,21	15,20,21	20
5	4,13,27	4,13,27	27
6	2,4,13,14	(2,4,14) [2,13,14)	\$ 14,13
7	2,4,10,13	4,19,13	10
8	7,8,15,21	[7,8,2]	21
9	2,8,23,24	[2,8,23,24]	23
10	2,7,8,24,25	[7,24,5]	24
10	67,8,15,16,17	[6,7,8] [15,6,17,16]	6,15
12	2,4,8,10,11,12	[8,12,11,10]	8
13	7,8,16,17,18,19	[16,17,18,19],	16
14	2,5,7,8,7,25	[59,25) [4.39]	25
15		134,18 [34,19], [334]	4,18,19,5,9
16	2,4,5,8,9,11,12	[12,9,5]	12
17	2,4,5,8,9,11,17	[5,9,11,17]	17
18	2,4,5,8,9,17,18,19		
19	2,5,7,8,9,17,18,19	(57,9)	7,

Unused 1,3,411