- S1. Fie sistemul de vectori $S = \{\overrightarrow{x}_1 = (-1, n 30, 0), \overrightarrow{x}_2 = (0, -1, n 35), \overrightarrow{x}_3 = (1, -n + 34, 0)\},$ unde n reprezintă numărul pe care îl aveți la catalog. Se cere:
 - a) Scrieți vectorii sistemului S.
- b) Verificați dacă S formează o bază, și, în caz afirmativ, să se calculeze coordonatele vectorului $\overrightarrow{x} = (30 - n, 0, -35 + n)$ în această bază;
 - c) Stabiliți dacă vectorii \overrightarrow{x}_1 și \overrightarrow{x}_2 sunt perpendiculari.

 - d) Stabiliţi dacă vectorii \overrightarrow{x}_1 şi \overrightarrow{x}_3 sunt coliniari. e) Stabiliţi dacă vectorii \overrightarrow{x}_1 , \overrightarrow{x}_2 şi \overrightarrow{x}_3 sunt coplanari.
- S2. Se consideră punctele A(0,1,n-35), B(30-n,2,0), C(-1,40-n,3), unde n reprezintă numărul pe care îl aveți la catalog. Să se determine:
 - a) coordonatele punctelor A, B, C.
- b) vectorul director al dreptei BC, ecuațiile carteziene și ecuațiile parametrice scalare ale dreptei ce trece prin punctele $B ext{ si } C$;
 - c) ecuația planului (P) ce conține punctele A, B, C;
 - d) distanța de la punctul D(n-30, n-20, 0) la planul P determinat la punctul c);
 - e) măsura unghiului dintre dreptele AC și BC.
- S3. Se consideră conica Γ : $x^2 4xy + y^2 + 6nx 2ny + 1 = 0$, unde n reprezintă numărul pe care îl aveți la catalog. Să se determine:
 - a) ecuația conicei
 - b) invarianții metrici ai lui Γ , precum și natura și genul conicei Γ ;
 - c) valorile și vectorii proprii corespunzători matricei A, a părții principale a lui Γ .
 - d) centrul conicei Γ ;
 - e) forma canonică a ecuației conicei Γ .