assignment02

September 27, 2018

- 1 Mathematical Foundations for Computer Vision and Machine Learning
- 2 Assignment02 Python Programming
- 2.1 Taylor Approximation
- 2.2 Name: Jinwoo Jeon
- 2.3 ## Student ID: 20143954
- 2.4 Setup

To make a python program for this assignment, you have to import 2 modules.

One is for making arrays that store the coordinates of x and ys, known as **numpy**, and the other is **matplotlib** that helps plotting the function to the screen. In this code,

2.5 Define a two dimensional differentiable function:

$$y = f(x) = x^3 - 5x^2 - 2x - 7 + e^{\frac{x+2}{2}}$$

2.6 Define the derivation of the given function:

$$f'(x) = 3x^2 - 10x - 2 + \frac{1}{2}e^{\frac{x+2}{2}}$$

The code for this part is below.

```
In [2]: # Define a two dimensional differentiable function
    def func(x): # y = f(x)
        return x**3 -5*x**2 -2*x - 7 + np.exp(0.5*x+1)

# Define the derivation of the given function
    def deri(x):
        return 3*x**2 -10*x -2 + 0.5*np.exp(0.5*x+1)
```

2.7 First Order Taylor Approximation at x = z:

$$\hat{f}(x) = f(z) + \frac{f'(z)}{1!}(x-z)$$

2.8 Define the domain of the function: x = [-5:0.05:5]

```
In [4]: diff = 0.05

# Define the domain of the function
t1 = np.arange(-5, 5, diff)
```

2.9 Pick 3 points in the domain:

$$P1 = (-2.0, f(-2.0))$$

$$P2 = (0.0, f(0.0))$$

$$P3 = (4.0, f(4.0))$$

In the code below, t2, t3, t4 are defined to plot approximated function around given points.

2.10 Plot the graph of the defined function

The function is plotted below. There are three **red dots** that represent 3 points picked above.

```
In [6]: # Plot the graph of the defined function
    plt.figure(1)
    plt.plot(t1, func(t1), label='f(x)')
    plt.plot(tap, [func(tap[0]), func(tap[1]), func(tap[2])], 'ro') # 3 points
```

```
# plot informations of the graph
plt.xlabel('x')
plt.ylabel('y')
plt.title("Assignment02 - Defined Function")
plt.legend()
plt.grid(True)
```


2.11 Plot the graph of Taylor approximation for the given function at the given points(P1)

```
In [7]: # Plot the graph of Taylor approximation for the given function at the given points
    plt.figure(2)
    plt.plot(t2, func(t2), label='f(x)')
    plt.plot(t2, taylor_apporx(t2,tap[0]), label="taylor approx at {0}".format(tap[0]))
    plt.plot(tap[0], func(tap[0]), 'ro')

# plot informations of the graph
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.title("Assignment02 - Taylor approximation at {0}".format(tap[0]))
    plt.legend()
    plt.grid(True)
```


You can check that **real function f(blue)** and **approximated function(orange)** is almost identical around x = -2.0.

2.12 Plot the graph of Taylor approximation for the given function at the given points(P2)

```
In [8]: # Plot the graph of Taylor approximation for the given function at the given points
    plt.figure(3)
    plt.plot(t3, func(t3), label='f(x)')
    plt.plot(t3, taylor_apporx(t3,tap[1]), label="taylor approx at {0}".format(tap[1]))
    plt.plot(tap[1], func(tap[1]), 'ro')

# plot informations of the graph
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.title("Assignment02 - Taylor approximation at {0}".format(tap[1]))
    plt.legend()
    plt.grid(True)
```


You can check that **real function f(blue)** and **approximated function(orange)** is almost identical around x = 0.0.

2.13 Plot the graph of Taylor approximation for the given function at the given points(P3)

```
In [9]: # Plot the graph of Taylor approximation for the given function at the given points
    plt.figure(4)
    plt.plot(t4, func(t4), label='f(x)')
    plt.plot(t4, taylor_apporx(t4,tap[2]), label="taylor approx at {0}".format(tap[2]))
    plt.plot(tap[2], func(tap[2]), 'ro')

# plot informations of the graph
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.title("Assignment02 - Taylor approximation at {0}".format(tap[2]))
    plt.legend()
    plt.grid(True)
```


You can check that **real function f(blue)** and **approximated function(orange)** is almost identical around x = 4.0.

2.14 Plot all the taylor appoximation at the given points to check that appoximation is not accurate in whole domain

```
In [10]: # Plot all the taylor appoximation at the given points to check that appoximation is
    plt.figure(5)
    plt.plot(t1, func(t1), label='f(x)')
    plt.plot(t1, taylor_apporx(t1, tap[0]), label="taylor approx at {0}".format(tap[0]))
    plt.plot(t1, taylor_apporx(t1, tap[1]), label="taylor approx at {0}".format(tap[1]))
    plt.plot(t1, taylor_apporx(t1, tap[2]), label="taylor approx at {0}".format(tap[2]))
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.title("Assignment02 - Taylor approximations")
    plt.legend()
    plt.grid(True)
```


You can see that approximated functions are not identical when it comes to original domain **t1**. They are only useful around given points and just a tangent line of given function.

2.15 Show all the graphs on the screen: