Apunte Único: Álgebra Lineal Computacional - Práctica 6

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 24/06/25 @ 23:46

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

3.

- 2. 4.
- 5.6.
- 7. 8.
- 9.10.
- 11. 12.
- 13.14.

- © Ejercicios de Parciales
 - **1**.

1.

Esta Guía 6 que tenés se actualizó por última vez: 24/06/25 @ 23:46

Escaneá el QR para bajarte (quizás) una versión más nueva:

Guía 6

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

* Ecuaciones normales:

$$A^t(Ax - b) = 0 \Leftrightarrow A^tAx = A^tb$$

Ejercicios de la guía:

Ejercicio 1. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{EX}$ \rightarrow una pull request al \bigcirc .

Ejercicio 2. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 3. Para cada uno de los conjuntos de datos, plantear las ecuaciones normales y calcular los polinomios de grado 1, 2 y 3 que mejor aproximan la tabla en el sentido de cuadrados mínimos. Graficar los datos juntos con los tres polinomios. ¿Qué se observa? ¿Qué se puede decir del polinomio de grado 3?

x	-1	0	2	3	\boldsymbol{x}	
y	-1	3	11	27	y	

Quiero hacer cuadrados mínimos en los conjuntos dados para los polinomios:

$$\begin{cases} y = ax + b \\ y = ax^2 + bx + c \\ y = ax^3 + bx^2 + cx + d \end{cases}$$

$$Ax = y \Leftrightarrow \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 11 \\ 27 \end{pmatrix} \Leftrightarrow A^t Ax = A^t y \Leftrightarrow$$

Ejercicio 4. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en LATEX→ una pull request al ③.

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 7. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. Ejercicio 9. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 10. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 11. ⊚... hay que hacerlo! ⊕

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 13. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Liercicios de parciales:

- **11.** [recu 5/12/2024] Sean $p_1 = (1,0)$ y $p_2 = (1,1)$ dos puntos en \mathbb{R}^2 .
 - (a) Hallar la recta que pasa por el origen (es decir, $y = \alpha x$) que mejor aproxima a los puntos p_1 y p_2 en el sentido de cuadrados mínimos. Calcular el error cometido en la aproximación.
 - (b) Sea $y = \tilde{\alpha}x$ la recta hallada en el ítem anterior. Probar que $y = \tilde{\alpha}x$ es la recta que pasa por el origen que mejor aproxima en el sentido de cuadrados mínimos a los puntos $p_1 = (1, -\beta/2)$ y $p_2 = (1, 1 + \beta/2)$ para cualquier $\beta \in \mathbb{R}$. ¿El error cometido es el mismo que en el ítem anterior? Justificar.
 - (a) Minimizar en el sentido de cuadrado mínimos:

$$\sum_{i=1}^{2} (y_i - \alpha x_i)^2 = \underbrace{(y_1 - \alpha x_1)^2 + (y_2 - \alpha x_2)^2}_{\|\boldsymbol{y} - \alpha \boldsymbol{x}\|_2^2} \xrightarrow{\text{minimizar} \atop \text{el sistema}} \min(\|\boldsymbol{y} - \alpha \boldsymbol{x}\|_2^2)$$

Ecuaciones normales:

$$\underbrace{\left(\begin{array}{c}1 & 1\end{array}\right)}_{A^t}\underbrace{\left(\begin{array}{c}1 \\ 1\end{array}\right)}_{A}\alpha = \underbrace{\left(\begin{array}{c}1 & 1\end{array}\right)}_{A^t}\underbrace{\left(\begin{array}{c}0 \\ 1\end{array}\right)}_{y} \Leftrightarrow 2\alpha = 1 \Leftrightarrow \alpha = \frac{1}{2}$$

La recta que pasa por el origen y que mejor aproxima es:

$$y = \frac{1}{2}$$

El error cometido al usar la recta $y = \frac{1}{2}x$ para aproximar los puntos p_1 y p_2 :

$$\varepsilon = \left\| \sum_{i=1}^{2} (y_i - \frac{1}{2} x_i)^2 \right\|_2^2 = \left\| \boldsymbol{y} - \frac{1}{2} \boldsymbol{x} \right\|_2^2 = \left\| \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_2^2 = \left\| \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \right\|_2^2 = \frac{1}{2} \Leftrightarrow \varepsilon = \frac{1}{2}$$

(b) Con los puntos $p_1 = (1, -\frac{\beta}{2}), \quad p_2 = (1, 1 + \frac{\beta}{2})$ la simetría del ejercicio sigue siendo la misma. Ecuaciones normales:

$$\underbrace{\left(\begin{array}{c}1\\1\end{array}\right)}_{A^t}\underbrace{\left(\begin{array}{c}1\\1\end{array}\right)}_{A}\alpha=\underbrace{\left(\begin{array}{c}1\\1\end{array}\right)}_{A^t}\underbrace{\left(\begin{array}{c}-\frac{\beta}{2}\\1+\frac{\beta}{2}\end{array}\right)}_{y}\Leftrightarrow 2\alpha=1\Leftrightarrow \alpha=\frac{1}{2}$$

La recta que pasa por el origen y que mejor aproxima es nuevamente:

$$y = \frac{1}{2}$$

El error cometido al usar la recta $y = \frac{1}{2}x$ para aproximar los puntos p_1 y p_2 :

$$\varepsilon = \left\| \left(\begin{array}{c} -\frac{\beta}{2} \\ 1 + \frac{\beta}{2} \end{array} \right) - \frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right\|_{2}^{2} = \left\| \left(\begin{array}{c} -\frac{1+\beta}{2} \\ \frac{1+\beta}{2} \end{array} \right) \right\|_{2}^{2} = \frac{(1+\beta)^{2}}{2} \Leftrightarrow \varepsilon = \frac{(1+\beta)^{2}}{2}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢