Package 'PerRegMod'

December 2, 2024

Maintainer Slimane Regui <slimaneregui111997@gmail.com> Title Fitting Periodic Coefficients Linear Regression Models

Type Package

Version	4.4.3
ity abl ters	plays a crucial role. It allows users to model and analyze relationships between varies that exhibit cyclical or seasonal patterns, offering functions for estimating parames and testing the periodicity of coefficients in linear regression models. For simple periodic cocient regression model see Regui et al. (2024) <doi:10.1080 03610918.2024.2314662="">.</doi:10.1080>
License	GPL
Encoding	g UTF-8
Imports	expm, readxl, sn
URL ht	tps://doi.org/10.1080/03610918.2024.2314662
NeedsCo	empilation no
Ab An Reposito	Slimane Regui [aut, cre] (https://orcid.org/0000-0002-3696-1300), delhadi Akharif [aut], hal Mellouk [aut] ry CRAN blication 2024-12-02 15:50:05 UTC
	A_x_B 2 check_periodicity 2 DELTA 4 estimate_para_adaptive_method 5 GAMMA 6 lm_per 7 lm_per_AE 8 LSE_Reg_per 9 phi_n 10 pseudo_gaussian_test 10 sd_estimation_for_each_s 11
	1

2 check_periodicity

Index 12

 A_x_B

A Kronecker product B

Description

A_x_B() function gives A Kronecker product B

Usage

$$A_x_B(A,B)$$

Arguments

A A matrix.

B A matrix.

Value

A_x_B(A, B) returns the matrix A Kronecker product B, $A \otimes B$

Examples

check_periodicity

Checking the periodicity of parameters in the regression model

Description

check_periodicity() function allows to detect the periodicity of parameters in the regression model using pseudo_gaussian_test. See $Regui\ et\ al.\ (2024)$ for periodic simple regression model. $T^{(n)}=$

$$\left(\boldsymbol{\Delta}_{1}^{\circ(n)'}, \boldsymbol{\Delta}_{2}^{\circ(n)'}, \boldsymbol{\Delta}_{3}^{\circ(n)'} \right) \left(\begin{array}{ccc} \boldsymbol{\Gamma}_{1}^{\circ} & \boldsymbol{\Gamma}_{12}^{\circ} & \mathbf{0} \\ \boldsymbol{\Gamma}_{12}^{\circ} & \boldsymbol{\Gamma}_{22}^{\circ} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \boldsymbol{\Gamma}_{33}^{\circ} \end{array} \right)^{-1} \left(\begin{array}{ccc} \boldsymbol{\Delta}_{1}^{\circ(n)} \\ \boldsymbol{\Delta}_{2}^{\circ(n)} \\ \boldsymbol{\Delta}_{3}^{\circ(n)} \end{array} \right), \text{ where } \boldsymbol{\Delta}_{1}^{\circ(n)} = n^{\frac{-1}{2}} \sum_{r=0}^{m-1} \left(\begin{array}{ccc} \widehat{\phi}(Z_{1+Sr}) - \widehat{\phi}(Z_{S+Sr}) \\ \widehat{\phi}(Z_{S-1+Sr}) - \widehat{\phi}(Z_{S+Sr}) \end{array} \right)$$

$$\boldsymbol{\Delta}_{2}^{\circ(n)} = \frac{n^{\frac{-1}{2}}}{2\widehat{\sigma}} \sum_{r=0}^{m-1} \begin{pmatrix} \widehat{\psi}(Z_{1+Sr}) - \widehat{\psi}(Z_{S+Sr}) \\ \vdots \\ \widehat{\psi}(Z_{S-1+Sr}) - \widehat{\psi}(Z_{S+Sr}) \end{pmatrix},$$

check_periodicity 3

$$\begin{split} & \boldsymbol{\Delta}_{3}^{\circ(n)} = n^{\frac{-1}{2}} \sum_{r=0}^{m-1} \begin{pmatrix} \widehat{\phi}(Z_{1+Sr}) \mathbf{K}_{1}^{(n)} \mathbf{X}_{1+Sr} - \widehat{\phi}(Z_{S+Sr}) \mathbf{K}_{S}^{(n)} \mathbf{X}_{S+Sr} \\ \vdots \\ \widehat{\phi}(Z_{S-1+Sr}) \mathbf{K}_{S-1}^{(n)} \mathbf{X}_{S-1+Sr} - \widehat{\phi}(Z_{S+Sr}) \mathbf{K}_{S}^{(n)} \mathbf{X}_{S+Sr} \end{pmatrix}, \, \boldsymbol{\Gamma}_{11}^{\circ} = \frac{\widehat{I}_{n}}{S} \boldsymbol{\Sigma}, \\ & \boldsymbol{\Gamma}_{22}^{\circ} = \frac{\widehat{I}_{n}}{4S \widehat{\sigma}^{2}} \boldsymbol{\Sigma}, \, \boldsymbol{\Gamma}_{12}^{\circ} = \frac{\widehat{N}_{n}}{2S \widehat{\sigma}} \boldsymbol{\Sigma}, \, \text{and} \, \boldsymbol{\Gamma}_{33}^{\circ} = \frac{\widehat{I}_{n}}{S} \boldsymbol{\Sigma} \otimes \mathbf{I}_{p \times p} \, \text{with} \, \widehat{I}_{n} = \frac{1}{nT} \sum_{s=1}^{S} \sum_{r=0}^{m-1} \widehat{\phi}^{2} \left(\frac{\widehat{Z}_{s+Sr}}{\widehat{\sigma}_{s}} \right), \\ & \widehat{N}_{n} = \frac{1}{nT} \sum_{s=1}^{S} \sum_{r=0}^{m-1} \widehat{\phi}^{2} \left(\frac{\widehat{Z}_{s+Sr}}{\widehat{\sigma}_{s}} \right) \frac{\widehat{Z}_{s+Sr}}{\widehat{\sigma}_{s}}, \\ & \boldsymbol{\Sigma} = \begin{bmatrix} 2 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 2 \end{bmatrix}, \, \boldsymbol{Z}_{s+Sr} = \frac{y_{s+Sr} - \widehat{\mu}_{s} - \sum_{j=1}^{p} \widehat{\beta}_{s}^{j} x_{s+Sr}^{j}}{\widehat{\sigma}_{s}}, \, \mathbf{X}_{s+Sr} = \left(x_{s+Sr}^{1}, \dots, x_{s+Sr}^{p} \right)', \\ & \boldsymbol{K}_{s}^{(n)} = \begin{bmatrix} \overline{(x_{s}^{1})^{2}} & \overline{x}_{s}^{j} x_{s}^{j} \\ \vdots & \ddots & \overline{(x_{s}^{p})^{2}} \end{bmatrix}^{\frac{-1}{2}}, \\ & \boldsymbol{X}_{s}^{j} x_{s}^{j} = \frac{1}{m} \sum_{r=0}^{m-1} x_{s+Sr}^{j} x_{s+Sr}^{j}, \, \overline{(x_{s}^{j})^{2}} = \frac{1}{m} \sum_{r=0}^{m-1} (x_{s+Sr}^{j})^{2}, \, \widehat{\psi}(x) = x \widehat{\phi}(x) - 1, \, \text{and} \\ & \widehat{\phi}(x) = \frac{1}{b_{n}^{2}} \sum_{r=0}^{S} \sum_{r=0}^{m-1} (x-Z_{s+Sr}) \exp\left(-\frac{(x-Z_{s+Sr})^{2}}{2b_{n}^{2}}\right)} \, \text{with} \, b_{n} \to 0. \end{split}$$

Usage

check_periodicity(x,y,s)

Arguments

 x A list of independent variables with dimension p.

y A response variable.

s A period of the regression model.

Value

check_periodicity()

returns the value of observed statistic, $T^{(n)}$, degrees of freedom, $(S-1)\times(p+2)$, and p-value

References

Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662

4 DELTA

Examples

```
library(expm)
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
check_periodicity(x,y,s)
```

DELTA

Calculating the component of vector DELTA

Description

DELTA() function gives the value of the component of vector DELTA Δ . See *Regui et al.* (2024) for periodic simple regression model. $\Delta = \begin{bmatrix} \Delta_1 \\ \Delta_2 \\ \Delta_3 \end{bmatrix}$, where Δ_1 is a vector of dimension S with component of vector Δ_1 is a vector of dimension Δ_2 .

ponent $\frac{n^{-\frac{1}{2}}}{\widehat{\sigma}_s} \sum_{r=0}^{m-1} \widehat{\phi}(Z_{s+Sr,t})$, Δ_2 is a vector of dimension pS with component $\frac{n^{-\frac{1}{2}}}{\widehat{\sigma}_s} \sum_{r=0}^{m-1} \widehat{\phi}(Z_{s+Sr}) K_s^{(n)} \mathbf{X}_{s+Sr}$,

 Δ_3 is a vector of dimension S with component $\frac{n^{\frac{-1}{2}}}{2\widehat{\sigma}_s^2}\sum_{r=0}^{m-1}Z_{s+Sr}\widehat{\phi}(Z_{s+Sr})-1.$

Usage

Arguments

x A list of independent variables with dimension p.

phi phi_n.

s A period of the regression model.

e The residuals vector.

sigma sd_estimation_for_each_s.

Value

DELTA() returns the values of Δ . See *Regui et al.* (2024) for simple periodic coefficients

regression model.

References

Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662

```
estimate_para_adaptive_method
```

Adaptive estimator for periodic coefficients regression model

Description

estimate_para_adaptive_method() function gives the adaptive estimation of parameters of a periodic coefficients regression model.

Usage

```
estimate\_para\_adaptive\_method(n,s,y,x)
```

Arguments

n	The length of vector y .
S	A period of the regression model.
У	A response variable.
X	A list of independent variables with dimension p .

Value

beta_ad Parameters to be estimated.

```
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
model=lm(y~x1+x2+x3+x4)
z=model$residuals
estimate_para_adaptive_method(n,s,y,x)
```

6 GAMMA

GAMMA

Calculating the component of matrix GAMMA

Description

GAMMA() function gives the value of the component of matrix GAMMA Γ . See $Regui\ et\ al.$ (2024) for periodic simple regression model. $\Gamma = \frac{1}{S}\begin{bmatrix} (\Gamma_{11})_{S\times S} & \mathbf{0} & \Gamma_{13} \\ \mathbf{0} & (\Gamma_{22})_{pS\times pS} & \mathbf{0} \\ \Gamma_{13} & \mathbf{0} & (\Gamma_{33})_{S\times S} \end{bmatrix},$ where $\Gamma_{11} = \hat{I}_n \mathrm{diag}(\frac{1}{\hat{\sigma}_1^2},...,\frac{1}{\hat{\sigma}_S^2}),\ \Gamma_{13} = \frac{\hat{N}_n}{2} \mathrm{diag}(\frac{1}{\hat{\sigma}_1^3},...,\frac{1}{\hat{\sigma}_S^3}),\ \Gamma_{22} = \hat{I}_n \mathrm{diag}(\frac{1}{\hat{\sigma}_1^2},...,\frac{1}{\hat{\sigma}_S^2}) \otimes \mathbf{I}_p,$ $\Gamma_{33} = \frac{\hat{J}_n}{4} \mathrm{diag}(\frac{1}{\hat{\sigma}_1^4},...,\frac{1}{\hat{\sigma}_S^4}),\ \hat{I}_n = \frac{1}{nT} \sum_{s=1}^S \sum_{r=0}^{m-1} \hat{\phi}^2 \left(\frac{\hat{Z}_{s+Sr}}{\hat{\sigma}_s}\right),\ \hat{N}_n = \frac{1}{nT} \sum_{s=1}^S \sum_{r=0}^{m-1} \hat{\phi}^2 \left(\frac{\hat{Z}_{s+Sr}}{\hat{\sigma}_s}\right) \frac{\hat{Z}_{s+Sr}}{\hat{\sigma}_s},$ $\hat{J}_n = \frac{1}{nT} \sum_{s=1}^S \sum_{r=0}^{m-1} \hat{\phi}^2 \left(\frac{\hat{Z}_{s+Sr}}{\hat{\sigma}_s}\right) \left(\frac{\hat{Z}_{s+Sr}}{\hat{\sigma}_s}\right)^2 - 1, \text{ and}$ $\hat{\phi}(x) = \frac{1}{b_n^2} \sum_{s=1}^S \sum_{r=0}^{m-1} (x - Z_{s+Sr}) \exp\left(-\frac{(x - Z_{s+Sr})^2}{2b_n^2}\right)$ with $b_n \to 0$.

Usage

GAMMA(x,phi,s,z,sigma)

Arguments

x A list of independent variables with dimension p.

phi phi_n.

s A period of the regression model.

z The residuals vector.

sigma sd_estimation_for_each_s.

Value

GAMMA() returns the matrix Γ . See *Regui et al.* (2024) for simple periodic coefficients

regression model.

References

Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662

lm_per 7

lm_per

Fitting periodic coefficients regression model by using LSE

Description

Im_per() function gives the least squares estimation of parameters, intercept μ_s , slope β_s , and standard deviation σ_s , of a periodic coefficients regression model using LSE_Reg_per and sd_estimation_for_each_s

functions.
$$\widehat{\boldsymbol{\vartheta}} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y} \text{ where } \boldsymbol{X} = \begin{bmatrix} \mathbf{X}_1^1 & 0 & \dots & 0 & \mathbf{X}_1^p & 0 & \dots & 0 \\ 0 & \mathbf{X}_2^1 & \dots & 0 & 0 & \mathbf{X}_2^p & \dots & 0 \\ 0 & \mathbf{X}_2^1 & \dots & 0 & 0 & \mathbf{X}_2^p & \dots & 0 \\ \mathbf{I}_S \otimes \mathbf{1}_m & 0 & 0 & \ddots & \vdots & \dots & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & \mathbf{X}_S^1 & 0 & 0 & 0 & \mathbf{X}_S^p \end{bmatrix},$$

$$\mathbf{X}_{s}^{j} = \left(x_{s}^{j},...,x_{s+(m-1)S}^{j}\right)', Y = \left(\mathbf{Y}_{1}^{'},...,\mathbf{Y}_{S}^{'}\right)', \mathbf{Y}_{s} = \left(y_{s},...,y_{(m-1)S+s}\right)', \epsilon = \left(\epsilon_{1}^{'},...,\epsilon_{S}^{'}\right)',$$

$$\epsilon_{s} = \left(\varepsilon_{s},...,\varepsilon_{(m-1)S+s}\right)', \mathbf{1}_{m} \text{ is a vector of ones of dimension } m, \mathbf{I}_{S} \text{ is the identity matrix of dimension } S, \otimes \text{ denotes the Kronecker product, and } \boldsymbol{\vartheta} = \left(\boldsymbol{\mu}^{'},\boldsymbol{\beta}^{'}\right)' \text{ with } \boldsymbol{\mu} = \left(\mu_{1},...,\mu_{S}\right)' \text{ and } \boldsymbol{\beta} = \left(\beta_{1}^{1},...,\beta_{S}^{1};...;\beta_{1}^{p},...,\beta_{S}^{p}\right)'.$$

Usage

 $lm_per(x,y,s)$

Arguments

x A list of independent variables with dimension p.

y A response variable.

s A period of the regression model.

Value

Residuals the residuals, that is response minus fitted values

Coefficients a named vector of coefficients

Root mean square error

The root mean square error

Examples

```
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
```

 $lm_per(x,y,s)$

8 lm_per_AE

lm_per_AE	Fitting periodic coefficients regression model by using Adaptive estimation method
	mutton method

Description

lm_per_AE() function gives the adaptive estimation of parameters, intercept μ_s , slope $\boldsymbol{\beta}_s$, and standard deviation σ_s , of a periodic coefficients regression model. $\hat{\boldsymbol{\theta}}_{AE} = \hat{\boldsymbol{\vartheta}}_{LSE} + \frac{1}{\sqrt{n}} \boldsymbol{\Gamma}^{-1} \boldsymbol{\Delta}$.

Usage

```
lm_per_AE(x,y,s)
```

Arguments

X	A list of independ	dent variables	with d	limension p .
---	--------------------	----------------	--------	-----------------

y A response variable.

s A period of the regression model.

Value

Residuals the residuals, that is response minus fitted values

Coefficients a named vector of coefficients

Root mean square error

The root mean square error

```
set.seed(6)
n=200
s=2
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
lm_per_AE(x,y,s)
```

LSE_Reg_per 9

LSE_Reg_per	Least squares estimator for periodic coefficients regression model

Description

LSE_Reg_per() function gives the least squares estimation of parameters of a periodic coefficients regression model.

Usage

```
LSE_Reg_per(x,y,s)
```

Arguments

x A list of independent variables with o	dimension p .
--	-----------------

y A response variable.

s A period of the regression model.

Value

beta	Parameters to be estimated.
Χ	Matrix of predictors.
Υ	The response vector.

```
set.seed(6)

n=400

s=4

x1=rnorm(n,0,1.5)

x2=rnorm(n,0,0.9)

x3=rnorm(n,0,2)

x4=rnorm(n,0,1.9)

y=rnorm(n,0,2.5)

x=list(x1,x2,x3,x4)

LSE_Reg_per(x,y,s)
```

10 pseudo_gaussian_test

phi_n

Calculating the value of ϕ function

Description

Usage

phi_n(x)

Arguments

Χ

A numeric value.

Value

returns the value of $\widehat{\phi}(x)$

Description

pseudo_gaussian_test() function gives the value of the statistic test, $T^{(n)}$, for detecting periodicity of parameters in the regression model. See check_periodicity function.

Usage

```
pseudo_gaussian_test(x,z,s)
```

Arguments

- A list of independent variables with dimension p. Х
- The residuals vector. z
- A period of the regression model. s

Value

returns the value of the statistic test, $T^{(n)}$.

```
sd_estimation_for_each_s
```

Estimating periodic variances in a periodic coefficients regression model

Description

```
sd_estimation_for_each_s() function gives the estimation of variances, \hat{\sigma}_s^2 = \frac{1}{m-p-1} \sum_{r=0}^{m-1} \hat{\varepsilon}_{s+Sr}^2 for all s=1,...,S,in a periodic coefficients regression model.
```

Usage

```
sd_estimation_for_each_s(x,y,s,beta_hat)
```

Arguments

x A list of independent variables with dimension p.

y A response variable.

s A period of the regression model.

beta_hat The least squares estimation using LSE_Reg_per.

Value

returns the value of $\widehat{\sigma}_s^2$.

```
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
beta_hat=LSE_Reg_per(x,y,s)$beta
sd_estimation_for_each_s(x,y,s,beta_hat)
```

Index

```
A_x_B, 2

check_periodicity, 2, 10

DELTA, 4

estimate_para_adaptive_method, 5

GAMMA, 6

lm_per, 7

lm_per_AE, 8

LSE_Reg_per, 7, 9, 11

phi_n, 4, 6, 10

pseudo_gaussian_test, 2, 10

sd_estimation_for_each_s, 4, 6, 7, 11
```