1 Relations for the Reflection Quotient

Represent the (3, n)-Torus knot as the closure of the braid word $(\sigma_1 \sigma_2)^n$. Consider the generating set $S = \{a, b, c\}$ where a, b, c are as in Figure 1.

Figure 1: The generators of the reflection quotient

Proposition 1.1. The generating relations for a (3, n)-Torus link are

T(3,3k)	T(3,3k+1)	T(3,3k+2)
$ (cba)^{k-1}cbabc(abc)^{k-1}a $ $ (cba)^{k-1}cbc(abc)^{k-1}aba $	$(cba)^{k-1}cbababc(abc)^{k-1}a$ $(cba)^{k}bcb(abc)^{k}aba$	$ (cba)^k c(abc)^k a (cba)^k bab(abc)^k aba $

Proof. Use the twist relations from Figure 2.

Figure 2: The relations induced by a twist

Example 1.2. For the (3,4)-Torus knot, the above relations are *cbababca* and *cbabcbabcaba*, so |ab| = |bc| = 3 and |ac| = 2 yields a Coxeter quotient.

Conjecture 1.3. The (n, n+1)-Torus Knot has a Coxeter quotient isomorphic to S_n . More generally, so does the (n, m(n+1))-Torus Knot for all $m \ge 1$.