

第二十章 ABS 系统

电气原理图	1
注意事项	
初步检查	4
ABS 9 系统介绍	6
故障诊断流程	9
无故障码故障维修	11
偶发故障维修	12
故障码列表	13
终端诊断	14
全面诊断流程	16
供电电压高、低	16
电磁阀与阀组继电器故障	17
泵马达故障	19
轮速传感器线路故障	21
轮速传感器线路故障	22
ECU 故障	24
七本	25

电气原理图

- ABS 是涉及到安全的部件。因此对它进行维修诊断时,除 遵守一般的安全和预防措施外,还必须遵守下列诊断注意 事项
- 1. ABS 系统必须由经过专业培训并掌握维修技能的技师进行 维修,并只许使用原厂零部件进行更换。

- 2. 在对 ABS 系统进行诊断前,如果基础制动系统存在故障, 必须首先排除,如:
 - 制动系统噪音。
 - 制动踏板过硬。
 - 常规制动时,制动踏板或车辆震动。
 - 车辆制动跑偏。
 - 驻车制动系统故障。
- 3. ABS 总成(指 ABS 电子控制单元与液压调节器总成,不包括制动管路、传感器等附属装置)只能整体更换,不能进行拆检或部分更换/互换。博世公司不提供单独的备件,并且对经过分解后的 ABS 总成不保修,对拆检或部分更换/互换 ABS 液压调节器后所造成的不良后果不负任何责任。
- 4. 以下两种情况说明 ABS 系统检测到故障:
 - 打开点火开关,系统自检完毕,警告灯保持点亮。
 - 行车过程中警告灯保持常亮。

此时驾驶员可以进行常规制动,但应尽可能减小施加的制动力,以防止车轮抱死。警告灯点亮后需小心驾驶并立即 到特约服务站进行检修,以防止更多的故障发生,从而导致交通事故。

- 5. 接插 ABS 传感器线束需要注意以下几点:
 - 拔下 ABS 线束、传感器线束前,必须断开点火开关。
 - 确保接插件的干燥和清洁,避免有任何异物进入。

ABS 线束的接插必须在水平方向和垂直方向安装到位,以免损坏接插件。

BYD Lt亚迪 沒车 BYD AUTO

- 6. 连接 ABS 制动管路时,必须确保正确连接。ABS ECU 不能判断制动管路是否正确连接。错误连接可能导致严重事故。连接制动管路时,必须遵照 ABS 总成上的标记:
 - MC1: 连接制动主缸的制动管路 1;
 - MC2: 连接制动主缸的制动管路 2;
 - FL: 连接左前轮制动轮缸的制动管路;
 - FR: 连接右前轮制动轮缸的制动管路;
 - RL: 连接左后轮制动轮缸的制动管路;
 - RR: 连接右后轮制动轮缸的制动管路。
- 7. ABS 在以下情况会产生噪音:
 - 车辆上电或启动发动机后,会产生短暂的"嗡"的声音,这是 ABS 进行自检的声音,属正常现象。另外车辆在加速到约 15km/h 也会产生短暂的"嗡"的声音,这是 ABS 进行动态自检的声音,属正常现象。
 - ABS 正常工作时会有声音,主要体现在以下方面:
 - 1) ABS 液压单元内电机、电磁阀及回流泵动作的声音。
 - 2)制动踏板反弹引起的声音。
 - 3) 因紧急制动而引起悬架与车身的撞击声。

初步检查

对 ABS 系统进行诊断前,应首先检查可能导致 ABS 系统故障并且容易接触的部件,目视检查和外观检查程序能快速确定故障,从而无需再做进一步的诊断。

1. 确保车辆上只安装推荐尺寸的轮胎和轮毂。同轴轮胎的花纹样式和深度必须一样。具体轮胎型号请参照车辆使用手册。

- 2. 检查 ABS 液压调节器、制动管路及连接处是否有泄漏。
- 3. 检查 ABS 系统的保险丝,确保保险丝没有烧毁并且型号正确。ABS 系统有三个保险丝,分别是:
 - 泵电机保险丝(40A)
 - 电磁阀保险丝 (25A)
 - 电子控制单元保险丝(5A)
- 4. 检查蓄电池电压,检查蓄电池接线柱是否腐蚀或松动。ABS系统的正常工作电压范围是 9.3V 16.8V。
- 5. 检查 ABS 接地线的搭铁点是否松动, 搭铁位置是否被改变。
- 6. ABS 接地线必须具有良好的密封性,以避免水、湿气在毛细(虹吸)效应作用下,经由线束中的孔道渗入 ABS ECU的接头,由此引起功能失效。

采取措施:线束的裸露端涂上密封胶,并采用了热缩管封套。

- 7. 对下列电气部件进行视检和外观检查:
 - ABS 系统相关部件的线束和接插件是否正确连接、是 否被夹伤或割伤。
 - 线束布线是否过于靠近高压或大电流装置,如高压电或部件、发电机和电机、售后加装的立体声放大器。 注意:高压或大电流装置可能会使电路产生感应噪声,

G6 轿车维修手册

从而干扰电路的正常工作。

ABS 部件对电磁干扰(EMI)很敏感。如果怀疑有间歇性故障,检查售后加装的防盗装置、灯或移动电话是否安装不正确。

8. ABS 是一种主动安全系统。它的主要作用是最大限度的利用地面附着,保持汽车的可操纵性和行驶的稳定性。但是,当超过物理极限或在湿滑路面上高速行车时,ABS 也不能完全防止汽车发生滑移。

- 9. 如果 ABS 噪音过大,可能由以下原因导致:
 - ABS 总成与 ABS 支架的固定松动。
 - ABS 支架与车身的固定松动。
 - ABS 支架上的塑料垫圈缺失或损坏。

ABS 9 系统介绍

ABS 9 系统组成

如下图所示,ABS 9 由带电控单元的液压模块和轮速传感器组成。

- ① 轮速传感器
- ② 带电控单元的 ABS 液压调节模块

注意: 此图仅供参考,元件具体位置请参照车辆维修手册

BOSCH ABS 9X型布置液压图

图中英文简写含义如下:

MC1	制动主缸第一回路	RR	右后轮
MC2	制动主缸第二回路	FLEV	左前轮进油阀
M	马达	FLAV	左前轮出油阀
RP1	回流泵 1	FREV	右前轮进油阀
RP2	回流泵 2	FRAV	右前轮出油阀
A1	蓄能器 1	RLEV	左后轮进油阀
A2	蓄能器 2	RLAV	左后轮出油阀
FL	左前轮	RREV	右后轮进油阀
FR	右前轮	RRAV	右后轮出油阀
RL	左后轮		

BYD ABS 9 ECU 接口电路

故障诊断流程

1 把车辆开入维修车间

用户所述故障分析: 向用户询问车辆状况和故障产生时的环境。

下一步

2 检查蓄电池电压

标准电压:

11 至 14V

如果电压低于 11V, 在转至下一步前对蓄电池充电或更换蓄电池。

下一步

3 客户问题分析

下一步

4 读取故障码

结果	进行
有故障码	Α
无故障码	В

В

跳转至第7步

Α _

5 记录故障码,然后清除故障记忆

(a) 清除诊断仪读取的故障码

下一步

6 证实和再现故障

(a) 车辆重新点火启动,加速到 15km/h,再次读取故障码

结果		进行		
	有故障码	跳转至第8步		
	无故障码	跳转至第9步		

下一步

7 无故障码故障维修,然后跳转至第10步

下一步

8 根据故障码表进行故障排除,然后跳转至第10步

下一步

9 偶发故障维修,然后跳转至第 10 步

下一步

10 确认已经排除故障

下一步

11 预防故障再发生

下一步

12 | 结束

无故障码故障维修

如果制动系统存在故障,但 ABS 没有存储故障码,此类故障称为无故障码故障。无故障码故障一般由基础制动系统故障所致。 比如:

- 制动液泄漏(可能引起制动偏软,制动踏板行程过长,严重的可能引起制动失效)
- 使用劣质的制动液(使用劣质的制动液会腐蚀制动管路和 ABS 液压调节模块内部元件,严重的还会导致制动失效)
- 制动管路有空气(可能引起制动偏软,甚至制动失效)
- 制动管路堵塞(可能引起制动偏硬,甚至制动失效)
- 制动盘过度磨损(可能引起制动偏软,制动踏板行程过长)
- 助力器故障(可能引起制动偏硬或偏软,制动踏板行程过长,严重的还会导致制动失效)
- 制动管路连接错误(可能引起 ABS 性能下降,出现摆尾, 刹车距离长等现象。正确安装方法请参照 ABS 液压调节模 块上油孔附近标示: MC1 表示 1 号主缸油管; MC2 表示 2 号主缸油管; FL 代表左前轮缸油管; FR 代表右前轮缸油管; RL 代表左后轮缸油管; RR 代表右后轮缸油管)

注意: ABS 无供电或供电异常中断会导致 ABS 警告灯常亮,但没有故障码显示。

故障排除建议:针对故障现象检查相应部件,并根据车辆维修 手册进行故障排除。

偶发故障维修

在电子系统中,在电气回路和输入输出信号的地方可能出现瞬时接触不良问题,从而导致偶发性故障。有的时候故障发生的原因会自行消失,所以不容易查出问题所在。当遇到偶发故障时,首先用诊断仪读取历史故障码,根据故障码进行相关检查,然后再按下列方式模拟故障,检查故障是否再现。

序号	故障可能原因	模拟故障	备注
1	当震动可能是主 要原因时	● 将 ABS ECU 接插件 轻轻地上下左右摇动 将 ABS 线束轻轻地上下左右摇动 将传感器轻轻地上下左右摇动 ● 松开并重新紧固轮速传感器 ● 将其它运动部件(如车轮轴承)轻轻摇动	如或而更在速随上短因线实果因断换车传着下暂此束柱,件运器架动开查必时下统,外运器架动开查必时,外运器架动开查必识计。 计系统形路感进验
2	当温度可能是主 要原因时	● 用吹风机加热被认为可能有故障的零件 ● 用冷喷雾剂检查是否 有冷焊现象	
3	当用电负载过高 可能是主要原因 时	● 打开所有电器开关, 打开大灯和雨刮器 等,使车辆电源高负 载工作	

如果此时故障没有再现,就必须等到下次故障再现时才能诊断维修。一般来说,偶发性故障会逐渐演变为可再现故障,不会自行消失。

故障码列表

故障	故障代码(DTC)	故障描述
供电电压高、低	C1101	供电电压高
	C1102	供电电压低
轮速传感器线路故障	C1200	左前轮速传感器短路、开路
	C1203	右前轮速传感器短路、开路
	C1206	左后轮速传感器短路、开路
	C1209	右后轮速传感器短路、开路
轮速传感器信号故障	C1202	左前轮速传感器信号故障
	C1205	右前轮速传感器信号故障
	C1208	左后轮速传感器信号故障
	C1211	右后轮速传感器信号故障
	C1213	轮速传感器频率故障(各车轮之间轮速差异很大)
	C1201	左前轮速传感器性能、范围故障
	C1204	右前轮速传感器性能、范围故障
	C1207	左后轮速传感器性能、范围故障
	C1210	右后轮速传感器性能、范围故障
电磁阀与阀组继电器故障	C2308	左前轮进油阀故障
	C2312	左前轮出油阀故障
	C2316	右前轮进油阀故障
	C2320	右前轮出油阀故障
	C2324	左后轮进油阀故障
	C2328	左后轮出油阀故障
	C2332	右后轮进油阀故障
	C2336	右后轮出油阀故障
	C2112	电磁阀继电器故障
泵马达故障	C2402	泵马达故障
ECU 故障	C1604	ECU 故障

终端诊断

1. 检查 ABS 系统 ECU 端子(板端接插件)

(a) 从 ABS ECU 连接器后端引线,检查各端子电压或电阻。

\u00e4	1	(a) 从 ABS ECU 连		
端子编号	线色	端子描述	测试条件	正常值
1		电源(+12V,过 40A 保险)		
2		右前轮速信号输出(FR)		
3		接仪表 EBD 指示灯		
4		WS FR(右前轮速传感器信号线)		
5		空脚		
6		诊断信号(K 线诊断口)		
7		空脚		
8		WS FL(左前轮速传感器信号线)		
9		空脚		
10		空脚		
11		空脚		
12		空脚		
13		接地		
14		CAN L		
15		空脚		
16		WP FR(右前轮速传感器电压线)		
17		WP RR(右后轮速传感器电压线)		
18		空脚		
19	_	WP FL(左前轮速传感器电压线)		
20		空脚		

21	 空脚	
22	 空脚	
23	 空脚	
24	 空脚	
25	 空脚	
26	 空脚	
27	 连 ABS 故障 试制扥	
28	 电源(Ignition,过 10A 保险)	
29	 WS RR(右后轮速传感器信号线)	
30	 接 BLS(制动踏板开关)信号	
31	 WP RL(左后轮速传感器电压线)	
32	 空脚	
33	 车速信号输出(VSO)	
34	 空脚	
35	 空脚	
36	 空脚	
37	 空脚	
38	 接地	

全面诊断流程

供电电压高、低

故障代码:

C1101 供电电压高

C1102 供电电压低

当 ECU 的供电电压满足下列条件之一,则产生此故障:

- 1. 车辆刚开始上电时电压低于 4.5V。
- 2. ON 档电时, 电压低于 7.7V 或高于 16.8V。
- 3. 车速高于 6km/h, 电压处于 7.7V 至 9.2V 之间。

可能原因:

蓄电池电压过高或过低、ECU 损坏。

检查步骤

1 初步检查

(a) 是否进行了初步检查

否

进行初步检查

是

2 测量蓄电池电压

(a) 是否发现故障并排除

是

跳转至第4步

否

3 检查 ABS ECU

(a) 清除故障码;更换新的 ABS ECU,故障是否重现。

否

ABS ECU 损坏,更换 ECU

、是

4 重新诊断

(a) 故障是否再现。

是

按步骤重新诊断

否

5 诊断完毕

电磁阀与阀组继电器故障

故障代码:

C2308 左前轮进油阀故障

C2312 左前轮出油阀故障

C2316 右前轮进油阀故障

C2320 右前轮出油阀故障

C2324 左后轮进油阀故障

C2328 左后轮出油阀故障

C2332 右后轮进油阀故障

C2336 右后轮出油阀故障

C2112 电磁阀继电器故障

故障设置条件:

- 1. 阀供电故障。(电源对地短路或地线开路)
- 2. 电磁阀温度过高。(过热保护)
- 3. 5个以上电磁阀短路。(保险丝)
- 4. 动作相应的电磁阀但没有反馈。
- 5. 电磁阀自身故障。
- 6. 阀组继电器故障。

可能原因:

- 1. 电磁阀对电源或地短路、线路开路。
- 2. 保险丝故障
- 3. 系统过热保护
- 4. ABS 损坏

检查步骤

1 车上检查

(a) 冷车5分钟,检查故障是否排除

是

故障排除, 结束检查

否

2 初步检查

下一步

3

检查针脚电压、保险及线束

(a) 测量接插件中电磁阀供电针脚电压,检查保险丝、外部继电器、接插件、线束及接地线。是否发现故障并排除

是

跳转至第5步

否

4 检查 ABS

(a) 更换新的 ABS,故障是否再现

否

ABS 损坏,更换 ABS

是

5 行驶检查

(a) 将车辆加速到 15km/h 后停车,再次诊断,确认故障是否再现。

是

重新诊断

否

6 诊断完毕

泵马达故障

故障代码:

C2402 泵马达故障

故障设置条件:

- 1. 泵马达超负荷工作,温度过高。(过热保护)
- 2. 回流泵电机继电器工作 60ms 后,回流泵监控仍检测不到电压信号。
- 3. 回流泵电机继电器没有工作,回流泵监控检测到电压超过 2.5s。
- 4. 回流泵电机继电器停止工作,回流泵监控检测到电压没有下降。

可能原因:

- 1. 泵马达接地不良。
- 2. 系统过热保护。
- 3. 泵马达供电不正常。(保险丝、外部继电器)
- 4. 泵马达继电器故障。
- 5. 泵马达故障。

检查步骤

1 车上检查

(b) 冷车 5 分钟, 检查故障是否排除

是

故障排除, 结束检查

否

2 初步检查

下一步

3 检查针脚电压、保险及线束

(b) 测量接插件中电磁阀供电针脚电压,检查保险丝、外部继电器、接插件、线束及接地线。是否发现故障并排除

是

跳转至第5步

否

4 检查 ABS

(b) 更换新的 ABS, 故障是否再现

否

ABS 损坏,更换 ABS

是

5 行驶检查

G6 轿车维修手册

(b) 将车辆加速到 15km/h 后停车,再次诊断,确认故障是否再现。

	•
8	•
元	3
~_	

重新诊断

否

6 诊断完毕

轮速传感器线路故障

故障代码:

C1200 左前轮速传感器短路、开路

C1203 右前轮速传感器短路、开路

C1206 左后轮速传感器短路、开路

C1209 右后轮速传感器短路、开路

故障设置条件:

- 1. ECU 检测到轮速传感器信号线对地短路
- 2. 轮速传感器线路断路

故障可能原因:

- 1. 轮速传感器线路断开,接插松动、断裂。
- 2. 轮速传感器信号线与电源线接反
- 3. 信号线对地短路

检查步骤

1 初步检查

下一步

2 检查线束

(a) 检查轮速传感器的接插是否完好,检查线束中轮速传感器 线路是否开路、短路,发现故障并排除。(针脚定义参见具 体项目电路图)

是

跳转至第4步

否

3 检查 ABS

(a) 更换新的 ABS, 故障是否再现

否

ABS 损坏,更换 ABS

是

4 行驶检查

(a) 将车辆加速到 15km/h 后停车,再次诊断,确认故障是否再现。

是

重新诊断

否

5 诊断完毕

轮速传感器线路故障

故障代码:

- C1201 左前轮速传感器性能、范围故障
- C1202 左前轮速传感器信号故障
- C1204 右前轮速传感器性能、范围故障
- C1205 右前轮速传感器信号故障
- C1207 左后轮速传感器性能、范围故障
- C1208 左后轮速传感器信号故障
- C1210 右后轮速传感器性能、范围故障
- C1211 右后轮速传感器信号故障
- C1213 轮速传感器频率故障(各车轮之间轮速差异过大)

故障设置条件:

- 1. ECU 检测到轮速传感器信号线对电源短路。
- 2. ECU 检测到轮速传感器电源线对地短路。
- 3. 轮速传感器信号异常

故障可能原因:

- 1. 轮速传感器线路断开,接插松动、断裂。
- 2. 轮速传感器信号线对电源短路。
- 3. 轮速传感器电源线对地短路。
- 4. 齿圈未安装、缺齿、齿圈脏有异物、退磁、齿圈偏心。
- 5. 传感器与齿圈之间的气隙过大。
- 6. 轮速传感器受到外界磁场干扰。(车轮或车轴未退磁)
- 7. 轮速传感器本体故障。
- 8. 齿圈齿数错误。
- 9. 轮胎尺寸不合规范。
- 10. ECU 损坏。

检查步骤

1 进行初步检查

下一步

2 检查线束

(a) 检查所有轮速传感器的接插是否完好,检查线束中轮速传感器线路是否开路、短路,发现故障并排除。(针脚定义参见具体项目电路图)

是

跳转至第7步

否

3 检查齿圈

(a) 检查轮速传感器与齿圈气隙,检查齿圈是否脏、有异物、 缺齿,检查齿圈齿数是否正确。是否发现故障并排除

是

跳转至第7步

否

4 读取数据流

(a) 用举升机将车辆升起,转动车轮,通过诊断仪数据流观测 轮速传感器信号输出是否符合规范。是否发现故障。

否

跳转至第6步

是

5 检查电流

(a) 断开轮速传感器接插件,在轮速传感器的接插件两针脚间接入 12V 电源并串联电流表,电源正极连接供电针脚,电源负极连接信号针脚。慢慢转动车轮观察电流表示数是否在约 7mA 和 14mA 附近波动。

是

跳转至第2步

否

6 更换轮速传感器,检查 ABS

(a) 对 ABS 做交叉验证;如确认 ECU 损坏,更换 ABS。故障是否排除。

是

ABS 故障, 更换 ABS

否

7 行驶检查

(a) 将车辆加速到 15km/h 后停车,再次诊断,确认故障是否再现。

是

重新诊断

否

5 诊断完毕

注意:对于轮速传感器信号故障,故障排除后,必须将车辆启动并加速到约 15km/h,ABS 警告灯才熄灭。不要测量轮速传感器到 ECU 的供电电压,轮速传感器回路中只要存在开路 ECU 就自动停止供电,直到下一次点火自检之后才会恢复供电。

ECU 故障

故障代码:

C1604 ECU 故障

故障设置条件:

- 1. **ECU** 供电故障
- 2. ECU 损坏

故障可能原因:

1. ECU 故障

检查步骤

1 进行初步检查

下一步

2 检查 ABS

(a) 对 ABS 做交叉验证,如确认 ECU 损坏,更换 ABS.故障是 否排除

是

更换 ABS

否

3 重新诊断

(a) 再次诊断,确认故障是否再现。

是

重新诊断

否

4 诊断完毕

拆装

ABS 总成的拆卸

- 1. 车辆退电至 OFF 档, 断开蓄电池负极。
- 2. 从 ABS 总成上拆下线束。
- 3. 制动踏板踩到底,并用踏板支撑架固定住,以避免制动管路从制动主缸上取下后,制动液流出。
- 4. 拆下制动管路,并用塞子将 ABS 总成上的螺纹孔和制动管路的油孔堵住,以免杂质进入。
- 5. 将 ABS 从固定支架上取下。

安装 ABS 总成

- 1. 安装 ABS 总成。
 - (a) 将 ABS 总成安装到支架上, 拧紧力矩为 8±2Nm。
 - (b) 取下 ABS 螺纹孔和制动管路上的塞子,将制动管路接入 ABS 总成,拧紧力矩为 16±2Nm。
- 2. 向储液罐加注制动液至 Max 位置,并按规定方法排气。
- 3. 使用故障诊断仪清除故障代码。
- 4. 检查 ABS 警告灯指示是否正常。
- 5. 实车行驶确认 ABS 的功能

交叉验证

- 1. 将 ABS 拆下来装到另外一台相同型号,没有故障的车上 (可以不装油管只接 ECU 插头,但一定要保证插头在汽车 行驶时不会松动)。
- 2. 将汽车行驶起来,并确保汽车速度不低于 20km/h, 让 ABS 进行动态自检。

排气说明

液压单元可以被人工排气,维修时可以选用以下三种程序之一:

- 1. 用加注单元排气(排气压力 2bar)
- 2. 用人工踏板排气
- 3. 人工踏板和加注单元联合排气

注意:

- 客户在更换制动系统部件(如更换制动液、制动管路、液压单元)后,或制动踏板偏软时,必须进行排气。
- 客户更换的液压单元必须是已注油的带 ECU 的 ABS 液压调节器。
- 排气时必须保证制动系统结构完整,所有的高压液压单元已经连接好。
- 在排气前需拉起驻车制动。
- 制动液有腐蚀性,如不小心沾到皮肤上,须清洗干净。

用排气/加注单元排气(排气压力 2bar)

- 1. 连接排气/加注单元的储液器,确认制动液足够打开开关,设置压力到 2bar。
- 2. 在轮缸处打开放气螺钉,直到气泡排空。 顺序:左后、左前、右前、右后
- 3. 检查踏板行程。
- 4. 如果不成功,重复排气在每个轮子。
- 5. 检查制动液液面,确保其位于最大和最小值之间。

人工踏板排气

- 1. 加满储液器(加到过滤器颈处)。
- 2. 在每个轮缸重复下面的程序排气 顺序: 左后、左前、右前、右后
- 3. 打开排气螺钉。
- 4. 往复踩制动踏板。
- 5. 关闭排气螺钉。
- 6. 松开制动踏板。
- 7. 检查踏板行程。
- 8. 如果不成功,则重复排气。
- 9. 检查制动液,确保其在最大和最小标志之间。

人工踏板排气和 2bar 排气组合

- 1. 连接排气/加注单元的储液器,确认制动液足够打开开关,设置压力到 2bar。
- 2. 在轮缸处打开放气螺钉,直到气泡排空。 顺序:左后、左前、右前、右后
- 3. 执行往复踩踏板。
- 4. 检查踏板行程。
- 5. 如果不成功,重复排气在每个轮子。
- 6. 检查制动液液面,确保其位于最大和最小值之间。

备注:

- X型回路推荐的顺序:左后、左前、右前、右后。
- 在整个排气过程中, 蓄液器内的制动液不能低于最低标志。

维修技术参数

车型	F0	F3	F6	M6	S6	5A
制动液型号	DOT4 DOT4+ Super DOT4+ DOT5.1					
前轴齿圈 齿数	48	48	48	48	48	未知
后轴齿圈 齿数	40	48	48	48	48	未知
轮胎型号	165/60 R14	195/60 R15	205/65 R15	215/55 R17	225/65 R17	205/55 R16

◆ 5A 车型未采用博世轮速传感器因此无法提供相关参数