CORRIGÉ DU DM N°4

PROBLÈME I : Approximation uniforme par les polynômes de Bernstein.

(extrait de Centrale PC 2012)

Partie A:

1) La formule du binôme donne $\sum_{k=0}^{n} P_{n,k}(x) = \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} = (x+1-x)^{n} = 1$.

2) Pour
$$k \geqslant 1$$
, $k \binom{n}{k} = \frac{n!}{(k-1)!(n-k)!} = n \binom{n-1}{k-1}$ (l'énoncé suppose $n \geqslant 1$).

Done

$$\sum_{k=0}^{n} k P_{n,k}(x) = \sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=1}^{n} k \binom{n}{k} x^k (1-x)^{n-k} \quad \text{(le terme pour } k = 0 \text{ est nul!)}$$

$$= nx \sum_{k=1}^{n} \binom{n-1}{k-1} x^{k-1} (1-x)^{n-k} = nx (x+1-x)^{n-1} = nx.$$

3) Pour
$$k \ge 2$$
 et $n \ge 2$, $k(k-1) \binom{n}{k} = \frac{n!}{(k-2)!(n-k)!} = n(n-1) \binom{n-2}{k-2}$.

$$\sum_{k=0}^{n} k(k-1)P_{n,k}(x) = \sum_{k=0}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=2}^{n} k(k-1) \binom{n}{k} x^k (1-x)^{n-k} \quad \text{(les termes pour } k = 0, 1 \text{ sont nuls } k = n(n-1)x^2 \sum_{k=2}^{n} \binom{n-2}{k-2} x^{k-2} (1-x)^{n-k} = n(n-1)x^2 (x+1-x)^{n-2} = n(n-1)x^2,$$

et on vérifie directement que la formule reste valable dans le cas n=2.

4)
$$\left(x - \frac{k}{n}\right)^2 = x^2 - 2x\frac{k}{n} + \frac{k^2 - k}{n^2} + \frac{k}{n^2}$$
 donne avec 1), 2) et 3):

$$\sum_{k=0}^{n} \left(x - \frac{k}{n}\right)^2 P_{n,k}(x) = x^2 - 2x^2 + \frac{n(n-1)x^2}{n^2} + \frac{x}{n} = \frac{x(1-x)}{n}.$$

Partie B:

1) a)
$$S_V(x) = \sum_{k \in V} \left| x - \frac{k}{n} \right| P_{n,k}(x) \leqslant \frac{1}{\sqrt{n}} \sum_{k \in V} P_{n,k}(x) \leqslant \frac{1}{\sqrt{n}} \sum_{k=0}^n P_{n,k}(x) = \frac{1}{\sqrt{n}}$$
.

b) Pour
$$k \in W$$
 on a: $\sqrt{n} \left| x - \frac{k}{n} \right| > 1$ donc $\sqrt{n} \left| x - \frac{k}{n} \right| < n \left(x - \frac{k}{n} \right)^2$.

Par suite, $\sqrt{n} S_W(x) = \sum_{k \in W} \sqrt{n} \left| x - \frac{k}{n} \right| P_{n,k}(x) < n \sum_{k=0}^n \left(x - \frac{k}{n} \right)^2 P_{n,k}(x)$ par A.4

D'où $S_W(x) \leqslant \frac{x(1-x)}{\sqrt{n}}$.

c)
$$f(x) = x(1-x)$$
 a un maximum égal à $\frac{1}{4}$ (obtenu pour $x = \frac{1}{2}$).
Donc $S_W(x) \leqslant \frac{1}{4\sqrt{n}}$ et $S(x) = S_V(x) + S_W(x) \leqslant \frac{1}{\sqrt{n}} + \frac{1}{4\sqrt{n}} = \frac{5}{4\sqrt{n}}$

2) a) L'inégalité de Cauchy-Schwarz dans l'espace \mathbb{R}^{n+1} muni de son produit scalaire canoniques'écrit :

$$\forall (a_k), (b_k) \in \mathbb{R}^{n+1}, \left| \sum_{k=0}^n a_k b_k \right| \leqslant \sqrt{\sum_{k=0}^n a_k^2} \sqrt{\sum_{k=0}^n b_k^2}.$$

b) Pour
$$a_k = \left| x - \frac{k}{n} \right| \sqrt{P_{n,k}(x)}$$
 et $b_k = \sqrt{P_{n,k}(x)}$ on obtient :
$$S(x) \leqslant \sqrt{\frac{x(1-x)}{n}} \qquad \text{(en utilisant A.1 et A.4)}.$$

De $x(1-x) \leqslant \frac{1}{4}$ on déduit ensuite : $S(x) \leqslant \frac{1}{2\sqrt{n}}$.

Partie C:

1) Pour $f(x) = x^2$ on calcule en écrivant $k^2 = k(k-1) + k$ et en utilisant les A.2 et A.3 :

$$B_n(f)(x) = \sum_{k=0}^{n} \frac{k^2}{n^2} P_{n,k}(x) = \frac{1}{n^2} (n(n-1)x^2 + nx) = \frac{(n-1)x^2 + x}{n}.$$

Par suite, $B_n(f)(x) - x^2 = \frac{x(1-x)}{n}$ d'où $||B_n(f) - f||_{\infty} = \frac{1}{4n}$ puisque $0 \le x(1-x) \le \frac{1}{4}$, le maximum étant atteint pour $x = \frac{1}{2}$.

- 2) Immédiat avec le A.1.
- 3) a) Si f est δ -lipschitzienne, $\left| f\left(\frac{k}{n}\right) f(x) \right| \leq \delta \left| \frac{k}{n} x \right|$ d'où $|B_n(f)(x) f(x)| \leq \delta S(x) \leq \delta \frac{1}{2\sqrt{n}}$ avec le I.B.2. Cela étant vrai pour tout $x \in [0,1]$ donc $||B_n(f) - f||_{\infty} \leq \frac{\delta}{2\sqrt{n}}$.
 - b) Si f est de classe \mathscr{C}^1 , elle est δ -lipschitzienne sur [0,1] par l'inégalité des accroissements finis (avec $\delta = ||f'||_{\infty}$). On peut donc lui appliquer le a) et $c = \frac{\delta}{2}$.
 - c) L'inégalité des accroissements finis s'applique plus généralement à une fonction continue et de classe \mathscr{C}^1 par morceaux sur un segment : f est donc δ -lipschitzienne sur [0,1] avec $\delta = ||f'||_{\infty}$ et le résultat du b) est encore valable.
- 4) L'inégalité de Taylor-Lagrange implique, pour tout $x \in [0,1]$:

$$\left| f\left(\frac{k}{n}\right) - f(x) - \left(\frac{k}{n} - x\right) f'(x) \right| \leqslant \frac{1}{2} \left(\frac{k}{n} - x\right)^2 M_2(f) \quad (*)$$

D'autre part, en utilisant A.1 et A.2

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right) P_{n,k}(x) = 0$$

d'où

$$\sum_{k=0}^{n} \left(f\left(\frac{k}{n}\right) - f(x) - \left(\frac{k}{n} - x\right) f'(x) \right) P_{n,k}(x) = B_n(f)(x) - f(x)$$

puis en utilisant l'inégalité triangulaire, l'inégalité (*) et A.4 :

$$|B_n(f)(x) - f(x)| \le \frac{1}{2} M_2(f) \sum_{k=0}^n \left(\frac{k}{n} - x\right)^2 P_{n,k}(x) = \frac{1}{2} M_2(f) \frac{x(1-x)}{n}$$

Compte tenu de $x(1-x) \leq \frac{1}{4}$ pour tout $x \in [0,1]$, on en déduit

$$\|B_n(f) - f\|_{\infty} \leqslant \frac{M_2(f)}{8n}$$

et cette majoration est la meilleure possible puisque l'on a vu en B.1 qu'il y avait égalité lorsque $f(x) = x^2$.