Satisfiability Checking Interval Constraint Propagation

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

Non-linear real arithmetic

We consider input formulae φ from the theory of quantifier-free nonlinear real arithmetic (QFNRA):

```
\begin{array}{ll} p & := const \mid x \mid (p+p) \mid (p-p) \mid (p \cdot p) & \text{polynomials} \\ c & := p < 0 \mid p = 0 & \text{(polynomial) constraints} \\ \varphi & := c \mid (\varphi \wedge \varphi) \mid \neg \varphi & \text{QFNRA formulas} \end{array}
```

where constants *const* and variables x take real values from \mathbb{R} .

- lacktriangle Best known methods for checking the satisfiability of QFNRA formulas have exponential complexity ightarrow hard to solve
- Approaches we learn for solving QFNRA:
 - Interval constraint propagation (ICP) incomplete
 - Virtual substitution (VS) incomplete
 - Cylindrical algebraic decomposition (CAD) complete

Interval constraint propagation (ICP) in SMT

We first use interval constraint propagation (ICP) in a theory solver module:

- Incomplete: ICP always terminates but it might return "unknown" \rightarrow we extend it with a backend implementing a complete procedure.
- Relatively cheap reduction of the search space: Even if the answer is "unknown", ICP might still be helpful because it returns a smaller search space (a set of subsets of the original search space) without loosing any solution.

Intervals

In the following we consider closed intervals only ($\mathbb R$ denotes the real numbers).

Definition (Interval)

An interval $A = [\underline{A}, \overline{A}] = \{v \in \mathbb{R} \mid \underline{A} \leq v \leq \overline{A}\}$ is a closed and connected subset of \mathbb{R} , defined by its

- lower bound $\underline{A} \in \mathbb{R} \cup \{-\infty\}$ and its
- upper bound $\overline{A} \in \mathbb{R} \cup \{+\infty\}$,

where $-\infty \le \nu \le +\infty$ for all real numbers $\nu \in \mathbb{R}$.

We call A bounded if both of its bounds are real-valued ($\underline{A} \neq -\infty$ and $\overline{A} \neq +\infty$), and unbounded otherwise. Let \mathbb{I} be the set of all intervals.

For point intervals $[v, v] = \{v\}$ for some $v \in \mathbb{R}$ we also write v.

Intervals and boxes

Definition (Interval diameter)

The width/diameter D_A of an interval $A = [\underline{A}, \overline{A}] \in \mathbb{I}$ is $D_A = +\infty$ if A is unbounded and $D_A = \overline{A} - \underline{A}$ otherwise.

Q: What is the width of a point interval?

A: 0

Q: If we know the width of an interval, how can we determine whether the interval is empty?

A: An interval is empty iff its width is negative.

Definition (Interval box)

An *n*-dimensional box is a cross product $B = B_1 \times ... \times B_n \in \mathbb{I}^n$ of *n* intervals.

Interval arithmetic

First we extend real arithmetic operations to intervals. Besides the interval-adaptations $+,-,\cdot:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ of the QFNRA operators $+,-,\cdot:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$, we will also need division $\div:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ as the inverse of the multiplication, and square and square root operations $^2,\pm\sqrt{}:\mathbb{I}\to\mathbb{I}$ (we will see later why).

- Constants and variables are now interval-valued
- Interval operations are conservatively over-approximating with respect to their real-valued counterparts, i.e.,

op
$$A \supseteq \{ op a \mid a \in A \}$$

for
$$\ op \ \in \{\ ^2, \pm \sqrt{\ }\}$$
, and

$$A op B \supseteq \{a op b \mid a \in A \land b \in B\}$$

for
$$op \in \{+, -, \times, \div\}$$
.

■ The approach introduced in this lecture can be naturally extended to further operators like *sin*, *cos*, *exp*,....

Computing with infinity

We first partially extend the operations $+,-,\cdot,\div:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ from \mathbb{R} to $\mathbb{R}\cup\{-\infty,+\infty\}$ as follows. Let $a,b\in\mathbb{R}$. The following tables define the extensions, where rows constain the first and columns the second operands.

Addition	$-\infty$	Ь	$+\infty$	9	Subtr	action	$-\infty$	Ь	$+\infty$
$-\infty$	$-\infty$	$-\infty$			_	∞		$-\infty$	$-\infty$
a	$-\infty$	a + b	$+\infty$			a	$+\infty$	a - b	$-\infty$
$+\infty$		$+\infty$	$+\infty$	$+\infty$		$+\infty$	$+\infty$		
	Multip	olication	$-\infty$	<i>b</i> < 0	0	<i>b</i> > 0	$+\infty$		
	_	-∞	$+\infty$	$+\infty$	0	$-\infty$	$-\infty$		
	a < 0 0		$+\infty$	$a \cdot b$	0	$a \cdot b$	$-\infty$		
			0	0	0	0	0		
	а	> 0	$-\infty$	$a \cdot b$	0	$a \cdot b$	$+\infty$		
	+	$-\infty$	$-\infty$	$-\infty$	0	$+\infty$	$+\infty$		
		_	Division	$-\infty$ $+\infty$					
		_	а	0 0					

Note: The above tables define the arithmetic operations only partially (e.g., division $A \div B$ is not defined for $A \in \{-\infty, +\infty\}$). It is important to mention that the undefined cases (for which a meaningful definition cannot be given) will not be needed.

Interval arithmetic: Addition

Example (Interval addition)

$$[-1; 5] + [1; 4] = [0; 9]$$

 $[-2; 3] + 4 = [-2; 3] + [4; 4] = [2; 7]$

Definition (Interval addition)

We define $A + B = [\underline{A} + \underline{B}; \overline{A} + \overline{B}]$ for all non-empty $A = [\underline{A}, \overline{A}] \in \mathbb{I}$ and $B = [\underline{B}, \overline{B}] \in \mathbb{I}$, and $A + B = \emptyset$ otherwise (if either A or B is empty).

Interval arithmetic: Subtraction

Example (Interval subtraction)

$$[-1; 5] - [1; 4] = [-5; 4]$$

 $[-2; 3] - 4 = [-2; 3] + [4; 4] = [-6; -1]$

Definition (Interval subtraction)

We define $A - B = [A - \overline{B}; \overline{A} - B]$ for all non-empty $A = [A, \overline{A}] \in \mathbb{I}$ and $B = [B, \overline{B}] \in \mathbb{I}$, and $A - B = \emptyset$ otherwise.

We can also define unary minus as syntactic sugar:

Definition (Unary interval minus)

We define $-A = 0 - A = [-\overline{A}; -A]$ for all $A = [A, \overline{A}] \in \mathbb{I}$.

WS 16/17

Interval arithmetic: Multiplication

Example (Interval multiplication)

$$[-1; 5] \cdot [1; 4] = [-4; 20]$$

 $[-2; 3] \cdot 4 = [-2; 3] + [4; 4] = [-8; 12]$

Definition (Interval multiplication)

We define $A \cdot B =$ $[min(A \cdot B, A \cdot \overline{B}, \overline{A} \cdot B, \overline{A} \cdot \overline{B}); max(A \cdot B, A \cdot \overline{B}, \overline{A} \cdot B, \overline{A} \cdot \overline{B})]$ for all non-empty $A = [A, \overline{A}] \in \mathbb{I}$ and $B = [B, \overline{B}] \in \mathbb{I}$, and $A \cdot B = \emptyset$ if either A or B is empty.

Interval arithmetic: Multiplication

Example (Interval square)

Special case: Squaring an interval can only result in positive values. $[-1;5]^2 = [0;25]$

Definition (Interval square)

We define $A^2 = (A \cdot A) \cap [0; +\infty)$ for all $A = [\underline{A}, \overline{A}] \in \mathbb{I}$.

Example (Interval square root)

$$\pm \sqrt{[0;4]} = [-2;2] \qquad \pm \sqrt{[-4;4]} = [-2;2] \qquad \pm \sqrt{[1;4]} = [-2;-1] \cup [1;2]$$

Definition (Interval square root)

For all $A = [\underline{A}, \overline{A}] \in \mathbb{I}$ we define $[v_1, v_2] = A \cap [0, +\infty]$ and

$$\pm \sqrt{A} = \left\{ \begin{array}{ll} \emptyset & \text{if } v_2 < v_1 \\ \left[-\sqrt{v_2}, +\sqrt{v_2} \right] & \text{if } v_1 = 0 \text{ (with } \sqrt{+\infty} = +\infty \text{)} \\ \left[-\sqrt{v_2}, -\sqrt{v_1} \right] \cup \left[\sqrt{v_1}, \sqrt{v_2} \right] & \text{else.} \end{array} \right.$$

This can be generalised to arbitrary powers A^k and roots $\sqrt[k]{A}$. Satisfiability Checking — Prof. Dr. Erika Ábrahám (RWTH Aachen University)

Interval arithmetic: Division

Example (Interval division for $0 \notin B$)

$$[2;3] \div [4;5] = [2;3] \cdot \frac{1}{[4;5]} = [2;3] \cdot [\frac{1}{5};\frac{1}{4}] = [\frac{2}{5};\frac{3}{4}]$$

Definition (Interval division for $0 \notin B$)

We define $A \div B = A \cdot \frac{1}{B} = A \cdot \left[\frac{1}{B}; \frac{1}{B}\right]$ for all $A = [\underline{A}, \overline{A}] \in \mathbb{I}$ and

$$B = [\underline{B}, \overline{B}] \in \mathbb{I} \text{ with } 0 \notin \underline{B}.$$

Interval arithmetic: Division

Problem: B may contain 0, but division by 0 is not defined

Example (Interval division for $0 \in B$)

If $0 \in B$ then the previous definition does not work correctly:

$$\frac{1}{[-2;3]} = [\frac{1}{3}; -\frac{1}{2}] \stackrel{\cdot}{\rightarrow} \text{invalid bounds}$$

How should $\frac{1}{[-2;3]}$ be defined?

We observe: $\frac{1}{[-2:3]} = [-\infty; -\frac{1}{2}] \cup [\frac{1}{3}; +\infty]!$

Note: Resulting interval may contain a gap!

Interval arithmetic: Division

Definition (Interval division $A \div B$ for $0 \in B$)

The following table defines the result of $A \div B$ for $0 \in B$; rows define case distinctions on A, columns on B:

$A \div B$	B = [0,0]	$\underline{B} < \overline{B} = 0$	$\underline{B} < 0 < \overline{B}$	$0=\underline{B}<\overline{B}$
0 ∈ <i>A</i>	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty,+\infty)$	$(-\infty, +\infty)$
$\overline{A} < 0$	Ø	$[\overline{A}/\underline{B}, +\infty]$	$[-\infty, \overline{A}/\overline{B}] \cup [\overline{A}/\underline{B}, +\infty]$	$[-\infty,\overline{A}/\overline{B}]$
0 < <u>A</u>	Ø	$[-\infty, \underline{A}/\underline{B}]$	$[-\infty, \underline{A}/\underline{B}] \cup [\underline{A}/\overline{B}, +\infty]$	$[\underline{A}/\overline{B},+\infty]$

How to strenthen bounds using interval arithmetic

- Now we can compute with intervals.
- Remember that the input of ICP (as a theory solver in an SMT solver) is a set C of QFNRA constraints in n ordered variables x_1, \ldots, x_n and an initial box $B = A_1 \times \ldots \times A_n$ (interval domains A_i for the variables x_i in the constraints).
- Our goal is to decide whether the initial box B contains a common satisfying solution for the constraints in C.
- Let us first have a look at how we can make the initial box B smaller without loosing any solutions.
 - This bound strengthening is done via propagation.
- We learn two different propagation methods.

Propagation I: Preprocessing

- The first propagation method requires that for each $c \in C$ and each variable x in c, we can bring c to an equivalent form $x \sim e$ with $\sim \in \{<, \leq, =, \geq, >\}$, where x does not appear in e.
- This is doable for linear constraints, and also for equations with only multiplication operators if we allow division and root operations in e.
- We need some preprocessing (done for each constraint one time, when ICP receives it) to satisfy this requirement.

Preprocessing: Example

- $1 x^2 \cdot y + z = 0 \qquad \rightarrow \qquad h + z = 0 \land h_1 = x^2 \cdot y$
- 2 Now the constraints satisfy the requirements:

Propagation I: Preprocessing

- Set C' := C and $C := \emptyset$.
- \blacksquare Repeat as long as C' is not empty:
 - Take a constraint $e_1 \sim e_2$, $\sim \in \{<, \leq, =, \geq, >\}$, from C'.
 - Bring $e_1 \sim e_2$ to the normal form $r_1 \cdot m_1 + \ldots + r_k \cdot m_k \sim 0$, where $r_i \in \mathbb{R}$ and m_i are monomials (either 1 or a product of variables) for each $i = 1, \ldots, k$.
 - Replace each non-linear monomial m_i in $r_1 \cdot m_1 + \ldots + r_k \cdot m_k \sim 0$ by a fresh variable h_i and add the result to C.
 - For each newly added variable h_i replacing m_i in the previous step, add an equation $h_i m_i = 0$ to C, and initialize the bounds of h_i to the interval we get when we substitute the variable bounds in m_i and evaluate the result using interval arithmetic (note: the result will always be a single interval because there is no division or square root in m_i).

Propagation I: Method

- Choose a constraint $c \in C$ and a variable x appearing in c. We call such a pair (c,x) a contraction candidate (CC).
- Bring c to a form $x \sim e$, $\sim \in \{<, \le, =, \ge, >\}$, where e does not contain x. (Note: due to preprocessing, if c is non-linear then it is of the form h m = 0 with h a variable and m a monomial.)
- Replace all variables in *e* by their current bounds.
- Apply interval arithmetic to evaluate the right-hand-side (*e* with the variables substituted by their bounds) to a union of intervals.
- Make a case distinction for each interval *B* in that union.
- For each case, derive from the current bound A for x and the computed bound B for e a new bound on x, depending on the type of \sim , as follows:

$$\begin{array}{lll} x < e & \text{if } \underline{A} \geq \overline{B} \text{ then } \emptyset \text{ else} & [\underline{A}, \min\{\overline{A}, \overline{B}\}] \\ x \leq e & [\underline{A}, \min\{\overline{A}, \overline{B}\}] \\ x = e & [\max\{\underline{A}, \underline{B}\}, \min\{\overline{A}, \overline{B}\}] \\ x \geq e & [\max\{\underline{A}, \underline{B}\}, \overline{A}] \\ x > e & \text{if } \overline{A} \leq B \text{ then } \emptyset \text{ else} & [\max\{A, B\}, \overline{A}] \end{array}$$

Propagation I: Method

Example (Propagation)

$$\begin{array}{l} x \in [1;3], y \in [1;2], c_1 : y = x, c_2 : y = x^2 \\ c_2, x : x = \pm \sqrt{y} \to x = \pm \sqrt{[1;2]} = [-\sqrt{2};-1]] \cup [1;\sqrt{2}] \to \\ x \in [1;3] \cap ([-\sqrt{2};-1] \cup [1;\sqrt{2}]) = [1;\sqrt{2}] \\ c_1, y : y = x \to y = [1;\sqrt{2}] \to y \in [1;2] \cap [1;\sqrt{2}] = [1;\sqrt{2}] \end{array}$$

Propagation II: Preprocessing

- Now we look at an alternative method for propagation.
- This method is called the interval Newton method.
- Also this second propagation method needs some lightweight preprocessing:
 - Transform each constraint $e_1 \sim e_2$ in C to $e_1 e_2 \sim 0$.
 - For each inequation $p \sim 0$ with $\infty \in \{<, \le, \ge, >\}$ in C, replace p by a fresh variable h, add an equation h p = 0 to C, and initialize the bounds of h to the interval we get when we substitute the variable bounds in p and evaluate the result using interval arithmetic (note: the result will always be a single interval because there is no division or square root in p).
- After this preprocessing, the constraint set contains equations p=0 stating that a polynomial equals to zero, and inequations of the form $x \sim 0$ with x a variable and $\sim \in \{<, \le, \ge, >\}$.
- Assume in the following a constraint $c \in C$ and a variable x in c as a contraction candidate.
- Next we see how we can reduce the domain of x using c via the interval Newton method.

Propagation II: Method

Due to the preprocessing, if the constraint c is an inequation then it has the form $x \sim 0$ (where x is a variable). In this case we propagate similarly as with the first method, assuming that the current interval for x is A:

$$\begin{array}{lll} x < 0 & \textit{if } \underline{A} \geq 0 \textit{ then } \emptyset \textit{ else } & [\underline{A}, \min\{\overline{A}, 0\}] \\ x \leq 0 & [\underline{A}, \min\{\overline{A}, 0\}] \\ x \geq 0 & [\max\{\underline{A}, 0\}, \overline{A}] \\ x > 0 & \textit{if } \overline{A} \leq 0 \textit{ then } \emptyset \textit{ else } & [\max\{A, 0\}, \overline{A}] \end{array}$$

Propagation II: Method

Assume now that the constraint c is f(x)=0, where $f(x):\mathbb{R}\to\mathbb{R}$ is an univariate polynomial in x, and let $f'(x):\mathbb{R}\to\mathbb{R}$ be the first derivative of f(x). Reminder for Newton method for root finding (univariate case): Compute a sequence of real values s_0, s_1, \ldots such that $s_0 \in \mathbb{R}$ is an initial guess, and $s_{i+1}=s_i-\frac{f(s_i)}{f'(s_i)}$ for all $i\geq 0$.

For a "good enough" initial guess s_0 , the sequence converges to a zero $r \in \mathbb{R}$ of f(x), i.e., to a value r for which f(r) = 0. If it converges then it does so quadratically. Unfortunately, this procedure can be unstable near a horizontal asymptote or a local extremum.

$$f(x) = x^{3} - 2x^{2} + 1$$

$$f'(x) = 3x^{2} - 4x$$

$$s_{0} = 0.3$$

$$s_{1} = s_{0} - \frac{f(s_{0})}{f'(s_{0})}$$

$$= 0.3 - \frac{f(0.3)}{f'(0.3)}$$

$$= 0.3 - \frac{0.847}{-0.93}$$

$$\approx 1.2107$$

Propagation II: Taylor's Theorem

The interval Newton method is an extension of the Newton method. It takes a function $f: \mathbb{R} \to \mathbb{R}$ which is continuously differentiable on an interval A (polynomials satisfy this condition) and a sample point $s \in A$, and uses information about f(s) and the range of f' on A to contract the set of possible zeros of f within A.

We make use of the first-order version of Taylor's theorem which states that

$$\forall s, x \in A.\exists \xi \in A.f(x) = f(s) + (x - s)f'(\xi).$$

That means, if we take an arbitrary point $s \in A$ then for any $x \in A$ with f(x) = 0, the gradient of the line connecting the points (s, f(s)) and (x, 0) is in the interval f'(I).

Propagation II: Interval Newton method

Interval extension of Newton's method:

Function:
$$f(x) = x^3 - 2x^2 + 1$$
, $f'(x) = 3x^2 - 4x$

Starting interval: A = [0; 1]

Sample point: s = 0.1

Derivatives in A: $f'(A) = 3 \cdot [0; 1]^2 - 4 \cdot [0; 1] = [-4; 3]$

Possible zeros in A at: $s - \frac{f(s)}{f'(A)} = [-\infty; -0.227] \cup [0.34525; +\infty]$

New interval: $A = [0; 1] \cap ([-\infty; -0.227] \cup [0.34525; +\infty]) = [0.34525; 1]$

Propagation II: Componentwise multivariate interval Newton

Reminder: Componentwise Multivariate Newton

Variables
$$x = (x_1, ..., x_n)$$
, function $f(x)$, sample $s_i = (s_{i,1}, ..., s_{i,n})$

$$s_{i+1} = N_{cmp}(s, f(x), x_j) = s_i - \frac{f(s_i)}{\frac{\partial f}{\partial x_j}(s_i)}$$

Componentwise multivariate interval Newton:

interval $A = A_1 \times \dots A_n$

$$s_{i+1} = N_{cmp}(A, s_i, \overbrace{f(x), x_j}^{CC}) := s_i - \frac{f(A_1, \dots, A_{j-1}, s_i, A_{j+1}, \dots, A_n)}{\frac{\partial f}{\partial x_j}(A_1, \dots, A_n)}$$

The operator N_{cmp} has two important properties:

- If $f(x^*) = 0$ and $x^* \in A$, then $x^* \in N_{cmp}(A, f(x), x_j)$.
- If $A \cap N_{cmp}(A, f(x), x_j) = \emptyset$ then $f(x) \neq 0$ for all $x \in A$.
- \rightarrow Advantage: No diverging behavior like the original Newton method due to interval arithmetic.
- \rightarrow We can drop boxes when they contract to empty.

The global ICP algorithm

- Now we know how to reduce the bounds of a variable based on a constraint in which it appears.
- Next we look how to use these reduction methods iteratively in an algorithm, which can be used as a theory solver for QFNRA constraint sets in an SMT solver.

Algorithm

Input: Set of QFNRA constraints, non-empty initial box B_0 Box diameter threshold D, contraction condition for boxes (fix later)

Algorithm

Compute a set of boxes B whose union contains all solutions from B_0 (if any) by iteratively executing one of the following steps:

- **1** Set $B := \{B_0\}$.
- 2 If B is empty then return unsatisfiable. Otherwise choose a box $B_i \in B$ and remove it from B.
- If the diameter of B_i is at most D then pass on B_i to a complete procedure for satisfiability check; if B_i contains a solution then return SAT otherwise go to ??.
- If the contraction condition for B_i holds then try to reduce this box, add the resulting box(es) to B, and go to $\ref{B_i}$. Note: Due to interval division or square root propagation may result in two boxes.
- 5 Otherwise split the box into two halves, add them to B, and go to ??.

Algorithm

Algorithm

Further algorithmic aspects:

- Heuristics to choose CCs (constraints and variables)
- Assure termination
- ICP does not behave well on linear constraints
- ICP needs to return an explanation for unsatisfiable problems

Heuristics to choose CCs

General approach: Contract via interval constraint propagation. Problems:

- Contraction gain is in general not predictable
- Contraction may stop before target diameter reached
- Contraction may cause a split (heteronomous split)

Example (Contraction candidate choice)

Consider $\{c_1: y=x, c_2: y=x^2\}$ with initial intervals $I_x:=[1;3]$ and $I_y:=[1;2]$ At each step we can consider 4 contractions:

$$I_{x} \stackrel{c_{2},x}{\rightarrow} [1;\sqrt{2}] \qquad (gain_{rel}: 0.793)$$

$$I_y \stackrel{c_2,y}{\to} [1;2] \qquad (gain_{rel}:0)$$

$$egin{aligned} extit{gain}_{ extit{rel}} &= rac{D_{old} - D_{new}}{D_{old}} \ &= 1 - rac{D_{new}}{D_{old}} \end{aligned}$$

 \rightarrow Contraction gain varies.

Heuristics to choose CCs

We can improve the choice of CCs by heuristics:

- The algorithm selects the next contraction candidate with the highest weight $W_k^{(ij)} \in [0; 1]$.
- Afterwards the weight is updated (according to the relative contraction $r_{k+1}^{(ij)} \in [0; 1]$).

Weight updating:

$$W_{k+1}^{(ij)} = W_k^{(ij)} + \alpha (r_{k+1}^{(ij)} - W_k^{(ij)})$$

The factor $\alpha \in [0; 1]$ decides how the importance of the events is rated:

- Large α (e.g. 0.9) \rightarrow The last recent event is most important
- Small α (e.g. 0.1) \rightarrow The initial weight is most important

CCs with a weight less than some threshold ε are not considered for contraction.

Assure termination

Example (Propagation)

$$\begin{aligned} x &\in [1;3], y \in [1;2], c_1 : y = x, c_2 : y = x^2 \\ c_2, x &: x = \pm \sqrt{y} \to x = \pm \sqrt{[1;2]} = [-\sqrt{2};-1]] \cup [1;\sqrt{2}] \to \\ x &\in [1;3] \cap ([-\sqrt{2};-1] \cup [1;\sqrt{2}]) = [1;\sqrt{2}] \\ c_1, y &: y = x \to y = [1;\sqrt{2}] \to y \in [1;2] \cap [1;\sqrt{2}] = [1;\sqrt{2}] \end{aligned}$$

Contraction sequence:

$$\begin{array}{l} x: [1;3] \overset{c_2,\times}{\hookrightarrow} [1;\sqrt{2}] \overset{c_2,\times}{\hookrightarrow} [1;\sqrt[4]{2}] \overset{c_2,\times}{\hookrightarrow} [1;\sqrt[8]{2}] \overset{c_2,\times}{\hookrightarrow} \ldots \leadsto [1;1] \\ y: [1;2] \overset{c_1,y}{\hookrightarrow} [1;\sqrt{2}] \overset{c_1,y}{\hookrightarrow} [1;\sqrt[4]{2}] \overset{c_1,y}{\hookrightarrow} [1;\sqrt[8]{2}] \overset{c_2,\times}{\hookrightarrow} \ldots \leadsto [1;1] \\ \rightarrow \text{Propagation might not terminate!} \end{array}$$

Assure termination

When the weight of all CCs is below the threshold we do not make progress \rightarrow split the box.

Handling linear constraints

ICP is not well-suited for linear problems (slow convergence).

Make use of linear solvers (e.g. simplex) for linear constraints:

- Pre-process to separate linear and nonlinear constraints
- Use nonlinear constraints for contraction
- Validate resulting boxes against linear feasible region (by checking the satisfiability of the linear constraints with the constraints defining the box)
- In case box is linear infeasible: Add violated linear constraint for contraction

Explanations

To keep track of current status we utilize a tree-structure, which holds solver states:

- Search box
- Applied contractions or
- Dimension of applied splitting

We can use the tree to collect infeasible subsets:

- Infeasible box → propagate reasons to parent

→ We generate a set of constraints which implies infeasibility.

If no further heuristics is applied we traverse the tree pre-order.

If you like to see a video about ICP:
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/movie_
undergraduate.mpg