Chapitre 9 – Sous-adressage IP

631-2

Segmenter des réseaux IP en sousréseaux

Chapitre 9 – Sous-adressage IP Plan

- Introduction
- Généralités
- Principe
- Découpage en sous-réseau
- Exemple
- Questions
- CIDR
- VLSM
- Surnetting

Chapitre 9 – Sous-adressage IP Introduction

- Interconnexion de réseaux
 - Subdivision d'un réseau si :
 - atteint une certaine taille
 - réparti sur plusieurs sites
 - Il y a plusieurs raisons à cela:
 - le réseau entier ne dépasse pas la taille de la classe utilisée (récupération d'adresses IP)
 - Meilleure gestion du trafic (broadcast limité)
 - Trafic local confiné dans le sous-réseau (Utilisation des Vlans)

Chapitre 9 – Sous-adressage IP Introduction

• Interconnexion de réseaux

- Plusieurs sous-réseaux sont raccordés par des nœuds de raccordement appelés :
 - Routeurs

OU

- Passerelles
- Ils appartiennent à plusieurs sous-réseaux et ont par conséquent plusieurs adresses
 IP.

Chapitre 9 – Sous-adressage IP Généralités

- Le sous-adressage est une extension du plan d'adressage initial (RFC 950)
- Il a été introduit afin de
 - limiter la consommation d'adresses IP
 - simplifier la gestion administrative des adresses IP
- Il implique
 - une taille des tables de routage grandissante
 - un nombre d'informations de routage important
 - un plus grand nombre de paquets IP à gérer
- Le découpage d'un réseau en entités plus petites est appelé :
 - Sous-réseau ou subnetting

Chapitre 9 – Sous-adressage IP Sous-réseau SR

- Adresse IP
 - 192.168.0.0
- Masque de sous-réseau
 - 255.255.255.0

1 -> ID réseau 254 hosts

1 -> IP broadcast

- Sous-adresse IP
 - 192.168.0.0
- Masque de sous-réseau
 - 255.255.255.128

2 -> ID SR 126 hosts par SR 2 -> IP broadcast

- Sous-adresse IP
 - 192.168.0.0
- Masque de sous-réseau
 - 255.255.255.192

4 -> ID SR 62 hosts par SR 4 -> IP broadcast

Chapitre 9 – Sous-adressage IP Principe

 A l'intérieur d'une entité associée à une adresse IP de classe A, B ou C :

- La partie réseau ne varie pas.
- La partie locale de l'adresse initiale est subdivisée en sous-réseau (subnet) et hôte (HostId).
- Les champs sous-réseau et hôte sont de tailles variables.
- La longueur totale des 2 champs étant toujours égale à la longueur maximale de la partie locale initiale.

- EXEMPLE : Adresse IP de classe B
 - Nombre de réseaux possible ?
 - Nombre d'hôtes possible ?

Position des bits avant le découpage en sous réseau

1 8 16 32

Réseau	Hôte
128 • 10 •	N° hôte

- Nombre de réseaux : 16384

- Nombre d'hôtes: 65534

- Le « subnetting »
 - Nombre de sous-réseaux possible ?

1	Position des	s bits pour l 16	e découpage en sous-r \overline{X}	éseau	32		
	Réseau		Sous-Réseau		Hôte		
	128 • 10	•	?	•	N° hôte		
•	0 bit : pas de subnet						
•	1 bit : 2 ¹ 2 sous-réseaux						
•	2 bits: 2 ²	4 sou	ıs-réseaux				
•	3 bits: 2 ³	8 sou	ıs-réseaux				
•	4 bits: 2 ⁴ 16 sous-réseaux						
•	etc						
•	14 bits: 2 ¹⁴	14 bits : 2 ¹⁴					

- Le « subnetting »
 - Nombre d'hôtes possible ?

	Position des 8	bits pou	ır le découpage en sou	ıs-résea X	au 32
	Réseau		Sous-Réseau		Hôte
	128 • 10	•	1	•	nbre hôte
•	16 bits : pas de sul	bnet			
•	• 15 bits : 2 ¹⁵		66 hôtes		
•	14 bits: 2 ¹⁴	1638	82 hôtes		
•	• 13 bits : 2 ¹³) hôtes		
•	12 bits: 2 ¹²	4094	4 hôtes		
•	etc				
•	2 bits: 2 ²	2 hô	tes		

- Masque de sous-réseau
 - Dans la pratique, on utilise un masque de sous-réseau ou subnet mask.
 - Masque : 4 octets scindé en 2 parties (bits contigus) :
 - 1ère partie = masque de sous-réseau par défaut
 - 2^{ème} partie = masque de sous-réseau personnalisé

Dans la pratique

Exemple pour une classe C

- Masque classe C : Nombre de bit à $1 \ge 24$
 - Toujours de type 255.255.25

		Nb de		
Nb de bit utilisé	Masque	Nb de subnet	machine par subnet	Nb Total de machines
0	255.255.255.0	0	254	254
1	255.255.255.128	2	126	252
2	255,255,255,192	4	62	248
3	255.255.255.224	8	30	240
4	255.255.255.240	16	14	224
5	255.255.255.248	32	6	192
6	255.255.255.252	64	2	128

Chapitre 9 – Sous-adressage IP Exemple

- Exemple d'interconnexion avec des réseau
 - 4 réseaux : 1016 IP (10 utilisées)

Chapitre 9 – Sous-adressage IP Exemple

- Exemple d'interconnexion avec des sous-réseau
 - 4 sous-réseaux : 248 IP (10 utilisées)

Chapitre 9 – Sous-adressage IP CIDR

CIDR: Classless Inter-Domain Routing

Principe

- Ne plus tenir compte des classes (Classfull).
- Simplification du routage.

Méthode

 Déterminer les bits en commun et réduire le masque de sous-réseau à la partie commune.

Chapitre 9 – Sous-adressage IP CIDR

Problème

- Le protocole de routage doit transporter les masques de sous-réseaux.
- Les hôtes et les routeurs doivent supporter le routage Classless.
- Le plan d'adressage doit être hiérarchique.

Notation

- **-** 192.168.0.0/26
- 26 signifie que les 26 premiers bits du masque de sous-réseau sont à 1.

Chapitre 9 – Sous-adressage IP VLSM

- VLSM: Variable Lenght Subnet Mask
 - Un réseau IP peut utiliser plusieurs masques différents.
 - Évite la rigidité du masque fixe qui impose Le nombre de sous-réseaux et le nombre de machines par sous réseau.
 - Exemple: 134.157.0.0 255.255.255.128
 - 512 réseaux de 126 adresses par sous-réseau
 - Inadapté pour des petits services
 - Inadapté pour les grands services

Optimisation de l'adressage IP à la taille de l'entité à connecter

Chapitre 9 – Sous-adressage IP VLSM

Problèmes :

- Tous les protocoles de routages ne le gère pas
- Utilisation des protocoles de routage standards (non propriétaires) RIP Version 2 ou OSPF

• Précautions :

 Vérifier qu'il n'y a pas de chevauchement entre plages dans le découpage des sous-réseaux

Notation :

- La notion de classe tend à devenir caduque (classfull)
- On parle maintenant de réseaux « Classless »
 - Ex: 192.168.32.0/26

• Coût:

 Chaque sous-réseau connecté par un routeur => plus il y a de sous-réseaux, plus il y a de routeurs.