

Priors on exchangeable directed graphs

arxiv.org/abs/1510.08440

Diana Cai¹, Nathanael Ackerman², Cameron Freer³

¹Dept. Statistics, U Chicago, ²Dept. Mathematics, Harvard, ³Gamalon Labs

Motivation and overview

- Exchangeable *undirected* graphs well-studied:
 - Aldous-Hoover theorem (graphons)
 - Many models: e.g., stochastic block model
- *Directed* exchangeable graphs have a representation via Aldous-Hoover (digraphons)
- However, models have not been traditionally built using them; instead, many often use asymmetric measurable functions, which cannot capture the complete structure
- We show how to use digraphons to model graphs that can't be modeled using asymmetric functions
- We present a new Bayesian nonparametric model using digraphons

Background

Exchangeability

distribution of graph invariant under permutations of the vertices

Graphons

symmetric measurable function W: [0,1]² —> [0,1] sampling procedure:

> $U_i \stackrel{\text{iid}}{\sim} \text{Uniform}[0,1] \text{ for } i \in \mathbb{N},$ $G_{ij} \mid U_i, U_i \stackrel{\text{ind}}{\sim} \text{Bernoulli}(W(U_i, U_i)), \text{ for } i < j,$

Asymmetric measurable functions

measurable function W_{asym} : $[0,1]^2 \longrightarrow [0,1]$, not symmetric one way of sampling directed graph:

(treats edge directions $U_i \stackrel{\text{iid}}{\sim} \text{Uniform}[0,1] \text{ for } i \in \mathbb{N},$ as independent) $G_{ij} \mid U_i, U_j \stackrel{\text{ind}}{\sim} \text{Bernoulli}(W_{\text{asym}}(U_i, U_j)), \text{ for } i \neq j$

Digraphons

5-tuple of measurable functions $\mathbf{W} = (W_{00}, W_{01}, W_{10}, W_{11}, w)$, where W_{ab} : $[0,1]^2 \longrightarrow [0,1]$, w: $[0,1] \longrightarrow \{0,1\}$ and satisfy $W_{ab}(x,y) = W_{ba}(y,x)$, where $a,b \in \{0,1\}$, $x,y \in [0,1]$

sampling procedure: $\mathbb{G}(n, \mathbf{W})$

 $U_i \stackrel{\text{iid}}{\sim} \text{Uniform}[0,1] \text{ for } i \in \mathbb{N}$ $(G_{ij}, G_{ji}) \stackrel{\text{ind}}{\sim} \text{Categorical}(\mathbf{W}_4(U_i, U_j))$ $G_{ii} = w(U_i)$ for all i

(considers edge directions *jointly*)

Sampling procedure schematic

Example of SBM digraphon, 0.7 division

Priors on digraphons

• Wasym cannot model many of types of directed graphs

Partial ordering SBM

• digraphons can capture this structure, e.g.,

Example model: di-IRM

(Infinite relational model digraphon)

- Draw partition ~ DP-Stick(α)
- Draw weights \sim Dirichlet(β) (such that symmetry requirements satisfied)

Examples of di-IRM with different parameter settings

Experiments

Synthetic data, collapsed Gibbs sampling

(d) True clusters (e) Inferred clusters

(c) Sampled order

