Theorem (Teorema de la función implícita)

Sea $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ y sea $F(\mathbf{x},y)\in C^1$ en una vecindad de $(\mathbf{x_0},y_0)$ tal que

- $\mathbf{0} F((\mathbf{x_0}, y_0)) = 0$

entonces existe una vecindad de (x_0, y_0) en donde existe una función ímplicita y = f(x) tal que

I.
$$f(x_0) = y_0$$

II.
$$F(x, f(x)) = 0$$

III.
$$\frac{\partial f}{\partial x_i} = -\frac{\frac{\partial F}{\partial x_i}(\mathbf{x}, f(\mathbf{x}))}{\frac{\partial F}{\partial y}(\mathbf{x}, f(\mathbf{x}))}$$

Definition (Subvariedad)

Una subvariedad k-dimensional (de clase C^{α}) $M \subset \mathbb{R}^n$ está definida por la condición de que M está dada localmente como el conjunto cero $F^{-1}(0)$ de un mapeo continuo (α -veces) diferenciable

$$U \subset \mathbb{R}^n \xrightarrow{F} \mathbb{R}^{n-k}$$

con rango máximo, es decir, $rank(J_xF|_x)=n-k$ para cada $x\in M\cap U$, donde $M\cap U=F^{-1}(0)$ se cumple para una vecindad de U, para cada punto en M.

Localmente, también podemos describir a M como la imágen de una inmersión (ver definición 4) de clase C^{∞}

$$V \subset \mathbb{R}^k \xrightarrow{f} M \subset \mathbb{R}^n$$

donde rank(Df) = k. Dicha f es la parametrización local, y f^{-1} es llamada una carta de M.

Definition (Espacio tangente a \mathbb{R}^n)

Para cada punto $x \in \mathbb{R}^n$ el espacio

$$T_x\mathbb{R}^n := \{x\} \times \mathbb{R}^n$$

es llamado el espacio tangente en el punto x (el espacio de todos los vectores tangentes en el punto x). La derivada (o diferencial) Df de un mapeo diferenciable f esta definido como

$$Df|_{x}: T_{x}\mathbb{R}^{k} \to T_{f(x)}\mathbb{R}^{n} \quad \text{con} \quad (x, v) \mapsto (f(x), J_{x}f(v)).$$

Definition

Una inmersión es un mapeo diferenciable entre subvariedades diferenciables donde su derivada es inyectiva. Explicitamente, $f: M \to N$ es una inmersión si

$$D_p f: T_p M \to T_{f(p)} N$$

es un mapeo inyectivo para toda $p \in M$. De forma equivalente, f es una inmersión si su derivada tiene rango igual a dimM:

$$rankD_{p}f = dim M.$$

Definition (Espacio tangente a una subvariedad)

Sea $M \subset \mathbb{R}^n$ una variedad k-dimensional, y sea $p \in M$. El espacio tangente a M en el punto p es el subespacio vectorial $T_pM \subset T_p\mathbb{R}^n$, el cual se define como

$$T_pM := Df_u(\{u\} \times \mathbb{R}^k) = Df_u(T_u\mathbb{R}^k)$$

para una parametrización $f:U\to M$ con f(u)=p, donde $U\subset\mathbb{R}^k$ es un conjunto abierto.