Hemoglobin Trajectories The Effect of Predicted on Dialysis Patients

By: Yingyu Cheng, Madeline McCombe, and Cameron Rangecroft

C

Content

- Introduction and Background
- Data
- Client's Questions
- How to summarize ESA Dose
- Concerns
- Group Discussion
- Our suggested approach

cc

Introduction & Background:

Background:

- Patients with end stage renal disease induced anemia
- Medicare pays flat rate per dialysis patient
- Hemoglobin fluxuates

Research:

- Track EPO dosing of patients
- Track hemoglobin concentration
- Track proteins related to anemia

The Data:

- 24 patients out of the 930 in UVA dialysis system
- From one of the eleven UVA clinics across Virginia
- Data collected over 20 months (10 pre-recommendations, 10 post)

Variables:

- Patient ID
- Month, Year, Week
- Gender, Race, Age
- Diabetic Status

- Dialysis Vintage
- IRON
- PSAT
- Ferritin

Hemoglobin

EPO_Dose

Post Intervention

New Variables:

- **Iron**: blood iron level
- **PSAT**: percent saturation of
- transferrin
- **FERITIN**: amount in blood(many missing values)

- Diabetic: 0 no, 1 yes
- **Gender**: Male or Female
- Race: White or Black
- Age: in years at start of intervention
- **Dialysis_Vintage**: how long the person has been on dialysis (in units of quarters 1 month is 3 quarters)

Correlated?

Focus on HGB -- Summary Statistics

	stat.desc.prior.HGB.	stat.c
nbr.val	232,00000000	nbr.val
nbr.null	0.0000000	nbr.null
nbr. na	0,0000000	nbr.na
min	6.7000000	U_U
max	16.00000000	max
range	9,3000000	range
Sum	2517.00000000	wns
median	10.9000000	median
nean	10.84913793	mean
SE. mean	0.09654618	SE. mean
CI. mean. 0.95	0.19022364	CI.mean.0.95
var	2.16251008	var
std.dev	1,47054754	std.dev
coef. var	0.13554511	coef.var

	stat. desc. post. HGB.
nbr.val	214.00000000
nbr.null	0,00000000
nbr. na	0.00000000
min	7.00000000
max	14.00000000
range	7.00000000
Sum	2332.80000000
median	10.9000000
mean	10.90093458
SE. mean	0.09156422
CI. mean. 0.95	0.18048809
var	1.79417753
std.dev	1.33946912
coef.var	0.12287654

Different Factors? - Percent of Time in Range

Black (13) v.s. White (10)

Different Factors? - Percent of Time in Range

Focus on EPO-dosing

	stat.desc.epo_prior.EPO_Dose.
nbr.val	2437,000000
nbr.null	0.000000
nbr. na	0.000000
min	2000.0000000
max	28000.0000000
range	26000,0000000
sum	20055000,0000000
median	6000,000000
mean	8229, 3803857
SE. mean	165.1891117
CI. mean. 0.95	323,9256558
var	66499497, 6865281
std.dev	8154.7224163
coef.var	0,9909279

in	stat.desc.epo_post.EPO_Dose.
nbr.val	2256.00000
nbr.null	0.00000
nbr. na	0.00000
min	2000,000000
max	28000,000000
range	26000.000000
sum	13206000.000000
median	3000,000000
mean	5853.723404
SE. mean	126,381695
CI. mean. 0.95	247.836594
var	36033582,582441
std.dev	6002.797896
coef.var	1.025467

Client's Main Questions:

1. Does the intervention improve patient outcomes?

- What is the percent of time the patients are in range?
- Is there a reduction in cycling?
- Does the intervention minimize the time patients spend below 10 g/dL?
- Do we see improvements on the group level/individual level?

2. Does the intervention decrease ESA usage in dialysis patients?

- Is there a decrease in the average ESA dose per treatment?
- Did the average weekly ESA dose decrease post-intervention, and if so, can that be attributed to the intervention?

How to handle ESA doses

- We now have a 'Week' column
- The combination of 'Year', 'Month', and 'Week' will let you know which ESA doses were administered to a patient in a given week.
- Not all patients receive 3 doses of ESA each week.
- He has not included 'missed' doses or 0 doses, but if there is a patient with no doses at all during a week you can count that as a 0 units of ESA administered

Instead of an average dose per treatment, he thinks it would make more sense to look at weekly total ESA dose per patient

Concerns:

- How to handle the fact that things change month-to-month
- There is not a clear trend (e.g., all hemoglobin values coming in to range)
- similar to 2011-09 despite one month being pre-intervention and one month For instance in the plot of monthly hemoglobin values, 2010-11 looks quite being post-intervention

Group Discussion

Please get into groups, we will take 20 minutes to discuss the best approach to answering the client's questions.

Groups:

Question 1:	Group 1	Group 2	Group 3	Group 4
	Haoyu Wang Sophie Youk Yuqi Lin Shawn Anand	Jeff Niznik Andrew Meyer Oliver Knocklein Ken Brunson	Leo Jiahui Liao Yanxi Lu Andrew Shao Luoyu Liang	Adam Simon Lai Zhao Xu Zhu Xingchen Zhou
Question 2:	Group 5	Group 6	Group 7	Group 8
	Max Zhai Hongxuan Lou Bo Li Shulei Yang	Yubo Jiang Shenghao Ye Zheng Chen Haotian Jiang	Yameng Zhang Yisha He Jingze Diao Zeren Miao Yishu Hu	Shuxuan Huang Shijie Xiu Haoran Zhu Ren He

Client's Main Questions:

1. Does the intervention improve patient outcomes?

- What is the percent of time the patients are in range?
- Is there a reduction in cycling?
- Does the intervention minimize the time patients spend below 10 g/dL?
- Do we see improvements on the group level/individual level?

2. Does the intervention decrease ESA usage in dialysis patients?

- Is there a decrease in the average ESA dose per treatment?
- Did the average weekly ESA dose decrease post-intervention, and if so, can that be attributed to the intervention?

Potential Analytical Methods

1. Does the intervention improve patient outcomes?

What is the percent of time the patients are in range?

- Plot percentage in range over time
- Give him a summary statistic with a confidence interval

Is there a reduction in cycling?

- Unlikely that we will be able to confirm this, given the small time window
- Cycles can have a range of 1-2 years

1. Does the intervention improve patient outcomes?

Does the intervention minimize the time patients spend below 10 g/dL?

- Develop a model that relates previous EPO dose with the time delay of Hgb
- Create a two way table analyzing patients above/below 10 g/dL and pre/post treatment

Do we see improvements on the group level/individual level?

- Can go by individual level and figure out which patients improved (basic success rate)
- By group two way table with median polish

2. Does the intervention decrease ESA usage in dialysis patients?

<u>Is there a decrease in the average</u> ESA dose per treatment?

- Summary statistic
- Decrease in average ESA dose per treatment per patient between pre/post recommendations

Did the average weekly ESA dose decrease post-intervention, and if so, can that be attributed to the intervention?

- Summary statistic
- Decrease in average <u>weekly</u> ESA doses per patient between pre/post recommendations

Cautions:

- Need to determine robustness to model assumptions
- Pay attention to subject effect
- Make sure to answer his broad questions as well as the sub-questions

Questions?