```
In [3]: #import Library
import seaborn as sns
#canvas (Baloon Bord)
sns.set(style='whitegrid')
#Load Dataset
df_titanic=sns.load_dataset('titanic')
sns.boxplot(x='class',y='fare',data=df_titanic)
```

Out[3]: <AxesSubplot:xlabel='class', ylabel='fare'>


```
In [5]: #import Library
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
```

Out[5]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [7]: #import Library
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x='day',y='tip',data=df_tip)

# The black dots are outliers
```

Out[7]: <AxesSubplot:xlabel='day', ylabel='tip'>


```
In [8]: # Boxplot with Saturation( change the value of saturation)
#import Library
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x='day',y='tip',data=df_tip,saturation=0.1)
```

Out[8]: <AxesSubplot:xlabel='day', ylabel='tip'>


```
In [11]: # To Describe our Data ( an important function to look insider to our data)
import seaborn as sns
import numpy as np
import pandas as pd
df_tip=sns.load_dataset('tips');
df_tip.describe()
```

Out[11]:

```
total_bill
                           tip
                                      size
count 244.000000 244.000000 244.000000
mean
        19.785943
                     2.998279
                                  2.569672
  std
         8.902412
                     1.383638
                                  0.951100
         3.070000
 min
                     1.000000
                                  1.000000
 25%
        13.347500
                     2.000000
                                  2.000000
 50%
        17.795000
                     2.900000
                                  2.000000
 75%
                                  3.000000
        24.127500
                     3.562500
 max
        50.810000
                    10.000000
                                  6.000000
```

```
In [ ]: # Note Numerical data are drawn mostly on y axis
# Categorical data are mostly drawn on X-axis or Hue
# Numerical data can never be define in Hue.
```

```
In [16]: # We can draw boxplot for a single variable in our data like totalbill in Trip do
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x=df_tip['total_bill'])
```

Out[16]: <AxesSubplot:xlabel='total_bill'>


```
In [17]: import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x=df_tip['size'])
```

Out[17]: <AxesSubplot:xlabel='size'>


```
In [18]: import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x="tip",y='day',data=df_tip)
```

Out[18]: <AxesSubplot:xlabel='tip', ylabel='day'>


```
In [20]: # with Hue
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x="tip",y='day',hue='smoker',data=df_tip)
```

Out[20]: <AxesSubplot:xlabel='tip', ylabel='day'>


```
In [24]: # with Palette
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x="tip",y='day',hue='smoker',data=df_tip,palette='Set2',dodge=False)
```

Out[24]: <AxesSubplot:xlabel='tip', ylabel='day'>


```
In [25]: # with dodge=False
    import seaborn as sns
#canvas
    sns.set(style='whitegrid')

#Load Dataset
    df_tip=sns.load_dataset('tips')
    df_tip
    # Boxplot
    sns.boxplot(x="tip",y='day',hue='smoker',data=df_tip,palette='Set2',dodge=False)
```

Out[25]: <AxesSubplot:xlabel='tip', ylabel='day'>


```
In [26]: # with dodge=True
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x="tip",y='day',hue='smoker',data=df_tip,palette='Set2',dodge=False)
```

Out[26]: <AxesSubplot:xlabel='tip', ylabel='day'>


```
In [28]: # with Color
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x='day',y='tip',data=df_tip,color='red')
```

Out[28]: <AxesSubplot:xlabel='day', ylabel='tip'>


```
In [29]: # with Hex-Color code
import seaborn as sns
#canvas
sns.set(style='whitegrid')

#Load Dataset
df_tip=sns.load_dataset('tips')
df_tip
# Boxplot
sns.boxplot(x='day',y='tip',data=df_tip,color='#7BF600')
```

Out[29]: <AxesSubplot:xlabel='day', ylabel='tip'>

Costomizing Plots

```
In [35]: import seaborn as sns
   import pandas as pd
   import numpy as np
   df_titanic= sns.load_dataset('titanic')
   df_titanic.head()
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	de
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	Na
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	Na
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	Na

```
In [39]: sns.boxplot(x='sex',y='age',data=df_titanic)
```

Out[39]: <AxesSubplot:xlabel='sex', ylabel='age'>


```
In [41]: # Box plot with ShowMeans
import pandas as pd
import numpy as np
    df_titanic= sns.load_dataset('titanic')
    sns.boxplot(x='sex',y='age',data=df_titanic,showmeans=True)
```

Out[41]: <AxesSubplot:xlabel='sex', ylabel='age'>


```
In [44]: # Box plot with ShowMeans, Marker, MArker Size
import pandas as pd
import numpy as np
df_titanic= sns.load_dataset('titanic')
sns.boxplot(x='sex',y='age',showmeans=True,meanprops={"marker":"*","markersize":'
```

Out[44]: <AxesSubplot:xlabel='sex', ylabel='age'>


```
In [51]: # with Custom title and labels, size , weight
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df_titanic= sns.load_dataset('titanic')
sns.boxplot(x='survived',y='age',showmeans=True,meanprops={"marker":"*","markersiplt.xlabel("How many survived",size=10),
plt.ylabel("Ages in (years)",size=10),
plt.title("How many survived and How many drowned",size="20" ,weight="bold")
```

Out[51]: Text(0.5, 1.0, 'How many survived and How many drowned')

How many survived and How many drowned

Facet Grid with Chill data

```
In [23]: #Import Libraries
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
```

```
In [25]: #Load Dataset
    sns.set_style('white')
    df_chilla=pd.read_csv(r"C:\Users\mish\Desktop\Jupyter Notebooks\challa_data_csv.c
    df_chilla
```

Out[25]:

0	Male	Pakistan	36- 40	Masters	Natural Sciences	to boost my skill set	Unemplyed
1	Male	Pakistan	26- 30	Bachelors	CS/IT	to boost my skill set	Student
2	Male	Pakistan	31- 35	Masters	Enginnering	Switch my field of study	Employed
3	Female	Pakistan	31- 35	Masters	CS/IT	to boost my skill set	Employed
4	Female	Pakistan	26- 30	Masters	Enginnering	to boost my skill set	Student
370	Male	Pakistan	26- 30	Masters	Enginnering	to boost my skill set	Employed
371	Male	Pakistan	31- 35	Bachelors	Enginnering	to boost my skill set	Employed
372	Male	Pakistan	21- 25	Bachelors	CS/IT	to boost my skill set	Employed
373	Male	Pakistan	26- 30	Masters	Enginnering	to boost my skill set	Employed
374	Female	Pakistan	31- 35	Masters	Mathematics	Switch my field of study	Unemplyed

375 rows × 23 columns

```
In [28]: g=sns.FacetGrid(df_chilla,col='Which mobile sim do you use')
g.map(sns.histplot,'Gender')
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x20ae8daa640>

In []:	
In []:	