

Inhalt

■ Zentrale Beschreibungsgrößen

- Technischer Prozess
 - "Außenwelt"
- Rechenprozess
 - "Taskset"
- Systemsoftware

■ Realzeitbedingungen

- Auslastungsbedingung
- Rechtzeitigkeitsbedingung
- Harte- und weiche Realzeit

■ Systemaspekte

- Unterbrechbarkeit
- Prioritäten

3

■ Ressourcen

Realzeitbetrieb

Lernziele

- Unterschiedliche Zeitbegriffe kennenlernen.
- Zeitliche Charakterisierung von
- Außenwelt (technische Prozesse, Anforderungen),
- Tasksets (Rechenprozesse, Lösungen) und
- ausgewähltes Rechensystems.
- Aufstellen der beiden Realzeitbedingungen.
- Harte von weichen Realzeitsystemen unterscheiden können.

2

- Voraussetzungen, die einen Realzeitbetrieb ermöglichen, kennen.
- Einsatz und Umgang mit Ressourcen (gemeinsame Betriebsmittel).

Professor Dr. Michael Mächtel

Realzeitbetrieb

Definition

Als **Realzeitsystem** wird die zentrale informationsverarbeitende Komponente (Reihe von Rechenprozessen, Taskgebilde, Steuerung) eines technischen Systems bezeichnet, welches neben den funktionalen Anforderungen auch **zeitlichen** Anforderungen genügen muss.

Professor Dr. Michael Mächtel

2

Zentrale Beschreibungsgrößen

- 1. Beschreibungsgrößen des technischen Prozesses
- 2. Beschreibungsgrößen des entworfenen Taskgebildes (der Rechenprozesse)
- 3. Beschreibungsgrößen der Systemsoftware

5

Realzeitbetrieb

Zentrale Beschreibungsgrößen

Die **informationsverarbeitende Komponente** steht in Beziehung zur **Außenwelt** (dem technischen Prozess).

- Sie nimmt die Außenwelt über **Sensoren** wahr.
- Sie beeinflusst die Außenwelt über **Aktoren**.

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- 1. Beschreibungsgrößen des technischen Prozesses
- 2. Beschreibungsgrößen des entworfenen Taskgebildes (der Rechenprozesse)
- 3. Beschreibungsgrößen der Systemsoftware

6

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Zwei Komponenten sind zu betrachten
- Der technische Prozess (Außenwelt) stellt die **zeitlichen Vorgaben**.
- Die Realisierung des Taskgebildes auf einer spezifischen Hardware reflektiert die **zeitlichen Möglichkeiten**.

Professor Dr. Michael Mächtel

Professor Dr. Michael Mächtel

7

Zentrale Beschreibungsgrößen

■ Rechenzeitanforderung (technischer Prozess)

- Der technische Prozess löst Ereignisse aus (zum Beispiel "Druck zu hoch"), die von der Steuerung verarbeitet werden sollen. Dafür wird in der Steuerung Rechenzeit benötigt.
- Rechenzeitanforderungen (Ereignisse des technischen Prozesses) werden durch Buchstaben gekennzeichnet.
- In Grafiken wird der Zeitpunkt, an dem eine Rechenzeitanforderung auftritt, in der Regel durch den entsprechenden Buchstaben gekennzeichnet.

Professor Dr. Michael Mächtel

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Prozesszeit t_{Pi}

■ Zeitliche Abstand, in dem zwei Rechenzeitanforderungen gleichen Typs auftreten.

9

- \blacksquare Jede Rechenzeitanforderung "i" hat eine Prozesszeit $t_{\text{\tiny P,i}}.$
- Prozesszeiten sind selten konstant:
 - Minimale Prozesszeit: t_{Pmin.i}
 - Maximale Prozesszeit: t_{Pmax.i}
- Die maximale Prozesszeit ist oft unendlich, belastet den Steuerungsrechner nicht und ist daher "uninteressant".
- Der Kehrwert der Prozesszeit ist die Rate

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Beispiel: Rechenzeitanforderung an einen modernen Fahrradcomputer
 - Ein Magnet in der Speiche löst jede Umdrehung eine Rechenzeitanforderung aus.
 - Kennzeichnung der Rechenzeitanforderung mit "u".
 - Eingaben über das Touchscreen lösen Rechenzeitanforderungen aus.
 - Kennzeichnung der Rechenzeitanforderung mit "s".

Professor Dr. Michael Mächtel

Realzeitbetrieb

Zentrale Beschreibungsgrößen

Prozesszeit

10

Professor Dr. Michael Mächtel

Zentrale Beschreibungsgrößen

■ Beispiel: Bestimmung der Prozesszeit

- Geschwindigkeitsanzeige Fahrradcomputer
- Umfang der Räder eines Fahrrades: 1200 mm bis 2300 mm.
- Maximal Geschwindigkeit 150 km/h
- t_{Pmax,u} = unendlich (Fahrrad wird nicht bewegt)
- $\mathbf{t}_{\mathsf{Pmin},\mathsf{u}} = ?$

Professor Dr. Michael Mächtel

Realzeitbetrieb

Zentrale Beschreibungsgrößen

13

■ Zulässige Reaktionszeit = Deadline

- Technische Prozess legt fest, ab welchem Zeitpunkt auf eine Rechenzeitanforderung reagiert werden darf (minimale Deadline, t_{Dmin.i}).
- **Beispiel zweistufiger Airbag**: Bei einem modernen, zweistufigen Airbag darf abhängig von der Unfallschwere die zweite Stufe frühestens 5 ms nach Detektion des Unfalls erfolgen.

Professor Dr. Michael Mächtel

5

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Releasetime t_{Release.i}

- Auftrittszeitpunkt einer Rechenzeitanforderung.
- Beispiel: Eine periodische Rechenzeitanforderung u mit einer Prozesszeit von t_{Pmin,u} = 200 ms tritt zu den Zeitpunkten 0 ms, 200 ms, 400 ms, 600 ms usw. auf.

14

Professor Dr. Michael Mächtel

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Zulässige Reaktionszeit = Deadline

- Technische Prozess legt fest, bis zu welchem Zeitpunkt die Reaktion auf eine Rechenzeitanforderung erfolgt sein muss (maximale Deadline, t_{Dmax.i}).
- **Beispiel Airbag**: Nach spätestens 20 ms muss der Airbag gezündet worden sein, sonst hat er keine verletzungsmindernde Wirkung.

Nach spätestens 50 ms muss die Reaktion erfolgt

Professor Dr. Michael Mächtel

Zentrale Beschreibungsgrößen

■ Zulässige Reaktionszeit = Deadline

- Physikalische Effekte sind heraus zu rechnen: Maximal zulässige Reaktionszeit ist der Zeitpunkt, zu dem der Rechner seine Werte ausgegeben hat
- **Beispiel Airbag**: Zeit zwischen Unfall und Aufschlagen auf dem Lenkrad: 50 ms. Aufblasen des Airbags: 30 ms. Maximale Reaktionszeit t_{Dmax,leicht} = 20 ms.

Professor Dr. Michael Mächtel

1

17

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Phase

- Minimaler zeitlicher Abstand zwischen einer Rechenzeitanforderung i zum Zeitpunkt 0.
- Ist die Phase = 0: Beide Ereignisse sind voneinander unabhängig (default).
- Beispiel Fahrradcomputer:
 - Rechenzeitanforderungen u (Umdrehung des Vorderrades) und s (Eingabe Touchscreen) sind voneinander unabhängig, die Phase $t_{\text{Ph.s}}=0$.

19

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Zulässige Reaktionszeit = Deadline (Fortsetzung)

- Oft: Maximale Reaktionszeit ist durch die Anforderung definiert, dass ein Ereignis vor dem Eintreffen eins nachfolgenden Ereignisses gleichen Typs bearbeitet sein muss.
- In diesem Fall entspricht die maximal zulässige Reaktionszeit der minimalen Prozesszeit: t_{Dmaxi} = t_{Pmini}

Professor Dr. Michael Mächtel

4

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Zusammenfassung Beschreibungsgrößen "Außenwelt"

- Rechenzeitanforderung i
- Prozesszeit t_{Pi}, insbesondere t_{Pmin,i} (auch Periode genannt)

20

18

- Releasetime t_{Release,i}
- Minimal zulässige Reaktionszeit t_{Dmin,i}
- Maximal zulässige Reaktionszeit t_{Dmax,i}
- Phase t_{Ph}

Professor Dr. Michael Mächtel

19

Professor Dr. Michael Mächtel

Zentrale Beschreibungsgrößen

- 1. Beschreibungsgrößen des technischen Prozesses
- Beschreibungsgrößen des entworfenen Taskgebildes (der Rechenprozesse)
- 3. Beschreibungsgrößen der Systemsoftware

21

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Ausführungszeit, Verarbeitungszeit, Executiontime t_E
 - Wird die Verarbeitungszeit t_E über der Zeit aufgetragen, erhält man die so genannte **Rechnerkernbelegung**.

Professor Dr. Michael Mächtel

23

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Ausführungszeit, Verarbeitungszeit, Executiontime t_E
- Summe der CPU-Zyklen, die zur Ausführung benötigt werden.
- Bearbeitet ein CPU nur eine Task i, dann ist die Verarbeitungszeit tei die Differenz zwischen End- und Startzeit.
- Die Verarbeitungszeit ist selten konstant. Sie schwankt zwischen einem minimalen Wert t_{Emin,i} (Best Case Execution Time, BCET) und einem maximalen Wert t_{Emax,i} (Worst Case Execution Time, WCET). Gründe für die Schwankungen sind:
 - Implementierung der verwendeten Algorithmen,
 - Caches (Daten- und Instruktionscaches, TLB, Pagecache, ...)

22

Professor Dr. Michael Mächtel

22

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Ausführungszeit, Verarbeitungszeit, Executiontime t_E
- Die **Bestimmung** der BCET und der WCET ist eine der (schwierigen) Aufgaben des Informatikers bzw. Ingenieurs.
- Statische Analyse von Quellcode und eingesetzter Hardware (in der Praxis kaum nutzbar).
- Ausmessen der BCET beziehungsweise WCET.

Professor Dr. Michael Mächtel

24

Zentrale Beschreibungsgrößen

■ Reaktionszeit

■ Zeit zwischen dem **Auftreten** einer Rechenzeitanforderung und dem **Ende** der Bearbeitung.

ACHTUNG: Nicht mit der Latenzzeit verwechseln!

25

Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Reaktionszeit

■ Ja nach Auslastung des Systems ergibt sich eine minimale Reaktionszeit t_{Rmin,i} und eine maximale Reaktionszeit t_{Rmax,i}. Realzeitbetrieb

Zentrale Beschreibungsgrößen

■ Reaktionszeit

■ Die Reaktionszeit ergibt sich unabhängig davon, ob Tasks stückchenweise oder eben "am Stück" abgearbeitet werden.

Professor Dr. Michael Mächtel

Realzeitbetrieb

Zentrale Beschreibungsgrößen

26

■ Zusammenfassung Beschreibungsgrößen "Taskset"

- Minimale Executiontime t_{Emin,i} (BCET)
- Maximale Executiontime t_{Emax,i} (WCET)
- lacktriangle Minimal zulässige Reaktionszeit $t_{\mbox{\tiny Rmin,i}}$
- Maximal zulässige Reaktionszeit t_{Rmax,i}

Professor Dr. Michael Mächtel

28

Professor Dr. Michael Mächtel

Zentrale Beschreibungsgrößen

- 1. Beschreibungsgrößen des technischen Prozesses
- 2. Beschreibungsgrößen des entworfenen Taskgebildes (der Rechenprozesse)
- 3. Beschreibungsgrößen der Systemsoftware

29

31

Realzeitbetrieb

Zentrale Beschreibungsgrößen

- Folgende Latenzzeiten werden unterschieden
 - Interrupt-Latenz t_{Lisr}
 - Task-Latenz t_{LTask}
 - Kernel-Latenz t_{LKernel}
- Preemption-Delay

Realzeitbetrieb

Zentrale Beschreibungsgrößen

Latenzzeit

- Die Systemsoftware ist maßgeblich für das Zeitverhalten des Realzeitsystems mitverantwortlich.
- Wesentliche Größe: Latenzzeit.
- Zeit zwischen dem **Auftreten** einer Rechenzeitanforderung und dem **Start** der zugehörigen Bearbeitungsfunktion.

30

ACHTUNG: Latenzzeit wird häufig mit Reaktionszeit verwechselt.

Professor Dr. Michael Mächtel

3

Realzeitbetrieb

Realzeitbedingungen

- 1. Gleichzeitigkeit und Auslastung
- 2. Rechtzeitigkeit (timeliness)
- 3. Harte und weiche Realzeit

32

Professor Dr. Michael Mächtel

Realzeitbedingungen

- 1. Gleichzeitigkeit und Auslastung
- 2. Rechtzeitigkeit (timeliness)
- 3. Harte und weiche Realzeit

33

Realzeitbetrieb

Realzeitbedingungen

- Die Codesequenz (häufig auch mit Task gleichgesetzt), die eine Rechenzeitanforderung i bearbeitet, benötigt auf einer ausgewählten Plattform die Rechenzeit t_{Ei}.
- Diese Rechenzeit fällt mit der Prozesszeit der Rechenzeitanforderung t_{Pi} an (jedesmal, wenn das zugehörige Ereignis auftritt).
- Der Quotient aus t_{E,i} und t_{P,i} entspricht der Auslastung durch die Rechenzeitanforderung auf der ausgewählten Plattform.

35

Realzeitbetrieb

Realzeitbedingungen

■ Ob eine Aufgabe in Realzeit, also schritthaltend, verarbeitet wird, lässt sich anhand zweier Bedingungen ableiten, nämlich

34

- der Auslastungsbedingung und
- der Rechtzeitigkeitsbedingung.

Professor Dr. Michael Mächtel

Realzeitbetrieb

Realzeitbedingungen

Beispiel

- \blacksquare $t_{\text{Emax,A}} = 0.8 \text{ ms}$; $t_{\text{Pmin,A}} = 2 \text{ ms}$;
- \blacksquare $t_{\text{Emax,B}} = 0.8 \text{ ms}$; $t_{\text{Pmin,A}} = 2 \text{ ms}$;
- Gesamtauslastung 80 Prozent

36

Professor Dr. Michael Mächtel

Realzeitbedingungen

- Jede CPU der ausgewählten Rechnerplattform kann nicht mit mehr als 100 Prozent ausgelastet werden.
- Daher werden die Auslastungen sämtlicher Rechenzeitanforderung aufsummiert. Die Summe darf nicht größer als die Zahl der CPU-Kerne c beziehungsweise c*100 Prozent sein. Für eine Einkernmaschine ist c=1, für ein Hexacore c=6 (bzw. 600 Prozent).

Realzeitbedingung – Auslastungsbedingung

$$\rho_{ges, max} = \sum_{j=1}^{n} \frac{t_{Emax, i}}{t_{Pmin, i}} \le C$$

Professor Dr. Michael Mächtel

37

37

Realzeitbetrieb

Realzeitbedingungen

- 1. Gleichzeitigkeit und Auslastung
- 2. Rechtzeitigkeit (timeliness)
- 3. Harte und weiche Realzeit

Realzeitbetrieb

Realzeitbedingungen

Auslastungsbedingung

■ Die Auslastungsbedingung ist eine notwendige, aber keine hinreichende Bedingung. Sie ist Grundvoraussetzung für die schritthaltende Verarbeitung.

Professor Dr. Michael Mächtel

3

Realzeitbetrieb

Realzeitbedingungen

■ Rechtzeitigkeit

■ Die Antwort auf eine Rechenzeitanforderung darf nicht zu früh und auch nicht zu spät erfolgen; sie muss pünktlich beziehungsweise rechtzeitig sein.

38

- Nicht mit Schnelligkeit verwechseln! Schnelligkeit ist eine Hilfe dabei, rechtzeitig zu reagieren, sie ist nicht das Ziel.
- Die "Außenwelt" gibt mit t_{Dmin,i} und t_{Dmax,i} die zeitlichen Randbedingungen (Zeitfenster) für eine Rechenzeitanforderung i vor.
- Innerhalb dieses Zeitfensters muss das von uns gebaute System reagieren.

Professor Dr. Michael Mächtel

40

39

Realzeitbedingungen

■ Rechtzeitigkeit

■ Für den Realzeitbetrieb (schritthaltende Verarbeitung) muss die Reaktionszeit auf eine Rechenzeitanforderung im zugehörigen Zeitfenster liegen.

Realzeitbedingung – Rechtzeitigkeitsbedingung

Für jede Rechenzeitanforderung i muss gelten:

 $t_{Dmin,i} \leq t_{Rmin,i} \leq t_{Rmax,i} \leq t_{Dmax,i}$

Professor Dr. Michael Mächtel

41

Realzeitbetrieb

Realzeitbedingungen

■ Harte und weiche Realzeit

- Weiches Realzeitsystem: Die 2. Realzeitbedingung (Rechtzeitigkeitsbedingung), "darf schon mal" verletzt werden, ohne dass das gleich "eine Katastrophe" ist.
- Hartes Realzeitsystem: Die 2. Realzeitbedingung muss unter allen Umständen und immer erfüllt werden.

Professor Dr. Michael Mächtel

43

Realzeitbetrieb

Realzeitbedingungen

- 1. Gleichzeitigkeit und Auslastung
- 2. Rechtzeitigkeit (timeliness)
- 3. Harte und weiche Realzeit

42

Realzeitbetrieb

Realzeitbedingungen

Harte und weiche Realzeit

- Der Unterschied lässt sich gut anhand der Nutzenfunktion verdeutlichen:
- Hartes Realzeitsystem
 Ein Nutzen ist nur dann gegeben, wenn innerhalb des Zeitfensters reagiert wird.
- Weiches Realzeitsystem
 Es ist auch dann ein Nutzen vorhanden, wenn die Rechtzeitigkeitsbedingung nicht grundsätzlich eingehalten wird.
- Kein Realzeitsystem
 Der Nutzen ist unabhängig von den zeitlichen Anforderungen.

den zeitlichen Anforderungen.

Realzeitbedingungen

■ Zusammenfassung Realzeitbedingungen

- Notwendige Bedingung: Auslastungsbedingung
- Hinreichende Bedingung: Rechtzeitigkeitsbedingung
- Harte Realzeit: Die Rechtzeitigkeitsbedingung muss unter allen Umständen eingehalten werden.
- Weiche Realzeit: In zu definierenden Grenzen ist das Nichteinhalten der Rechtzeitigkeitsbedingung tolerierbar.

45

Professor Dr. Michael Mächtel

Realzeitbetrieb

Systemaspekte

1. Unterbrechbarkeit

- 2. Prioritäten
- 3. Ressourcenmanagement

Realzeitbetrieb

Systemaspekte

- 1. Unterbrechbarkeit
- 2. Prioritäten
- 3. Ressourcenmanagement

46

Realzeitbetrieb

Systemaspekte

Unterbrechbarkeit

- Preemption: Eigenschaft einer Codesequenz, die Abarbeitung in mehrere Abschnitte aufteilen zu können, die dann in der korrekten Reihenfolge aber eben mit Unterbrechungen abgearbeitet werden können.
- Preemption ermöglicht den Aufbau komplexer Realzeitsysteme.

Professor Dr. Michael Mächtel

48

47

Systemaspekte

Unterbrechbarkeit

- Beispiel Messwerterfassung auf einer Singlecore-Hardware:
 - Im Abstand von 1 ms müssen kontinuierliche Messwerte erfasst werden.

49

- Jeweils 100 Messwerte werden am Stück weiterverarbeitet.
- Der ausgewählte Rechner benötigt für die Erfassung eines Messwertes 0.5 ms.
- Die Weiterverarbeitung von 100 Messwerten dauert 40 ms.
- Damit ergibt sich eine Auslastung des Rechners von 0.5 + 0.4 = 0.9 = 90 Prozent.

Professor Dr. Michael Mächtel

Realzeitbetrieb

Systemaspekte

Unterbrechbarkeit

- Mit Preemption müssen die beiden Aufgaben in separate Tasks (siehe Kapitel 3) aufgeteilt werden.
- Zwischen den beiden Tasks wird eine Interprozess-Kommunikation zur Information, dass 100 Messwerte erfasst wurden, etabliert.
- Damit ergibt sich die folgende Rechnerkernbelgung, die schritthaltende Verarbeitung ermöglicht:

51

Professor Dr. Michael Mächtel

51

Realzeitbetrieb

Systemaspekte

Unterbrechbarkeit

 Ohne Preemption ergibt sich bei sequenzieller Abarbeitung der Aufgaben die folgende Rechnerkernbelegung, die keine kontinuierliche Messwerterfassung ermöglicht:

50

Professor Dr. Michael Mächtel

Realzeitbetrieb

Systemaspekte

1. Unterbrechbarkeit

2. Prioritäten

3. Ressourcenmanagement

Systemaspekte

■ Prioritäten

- Um schritthaltenden Betrieb zu ermöglichen, muss die Systemsoftware die Möglichkeit bieten, die Abarbeitungsreihenfolge der Codesequenzen (Tasks) festzulegen.
- Hierfür werden im Realzeitumfeld vor allem Prioritäten eingesetzt (siehe Kapitel 3).
- Prioritäten werden über Zahlenwerte angegeben. Wir verwenden
 - niedrige Zahl == hohe Priorität
 - hohe Zahl == niedrige Priorität
- Der Schnittstellenstandard POSIX ordnet Zahlenwerte zu Prioritäten genau andersherum.

53

Professor Dr. Michael Mächtel

53

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Quasi- oder real-parallel laufende Codesequenzen konkurrieren um Ressourcen (Betriebsmittel):
 - Hardware-Ressourcen, z.B. CPU, Speicher, Ein-/Ausgabegeräte
 - Diese Ressourcen werden durch Hardware und Systemsoftware verteilt.
- Software-Ressourcen, z.B. globale Variablen
- Kooperation: Eine Codesequenz wartet auf eine andere.
- Konkurrenz: Codesequenzen versuchen zu beliebigen Zeitpunkten Ressourcen zu erhalten.

Realzeitbetrieb

Systemaspekte

- 1. Unterbrechbarkeit
- 2. Prioritäten
- 3. Ressourcenmanagement

54

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Beispiel "Inkonsistenz durch parallele Zugriffe" (siehe Codebeispiel)
 - Im Eingabepuffer befindet sich die Kombination "AB".
 - Thread 1 liest ein Zeichen ein (Zeile 5); in der Variablen ch befindet sich also der Wert 'A'.
 - Thread 2 arbeitet Zeile 5 ab und überschreibt den Wert 'A' mit 'B'.
 - Thread 1 führt Zeile 6 aus und gibt 'B' (anstatt 'A') aus.
 - Thread 2 führt Zeile 6 aus und gibt ebenfalls 'B' aus.

1: char ch; // Variable ist global 2:

3: void echo()

{
 ch = getchar(); // Zeichen einlesen

6: putchar(ch); // Zeichen ausgeben

7: }

Professor Dr. Michael Mächtel

56

Professor Dr. Michael Mächtel

55

Systemaspekte

■ Ressourcenmanagement

- Codesequenzen, die den Zugriff auf gemeinsam genutzte Betriebsmittel implementieren, werden mit "kritische Abschnitte" bezeichnet.
- Damit es durch die kritischen Abschnitte zu keinen Inkonsistenzen kommt, werden Schutzmechanismen benötigt: Semaphor, Mutex, Spinlocks, Interruptsperre, Monitor (siehe Kapitel 4).
- Diese realsieren meist einen "gegenseitigen Ausschluss" (mutal exclusion):
 - Zu einem Zeitpunkt darf immer nur eine Codesequenz den kritischen Abschnitt abarbeiten.
 - Es findet eine Sequenzialisierung statt.

Professor Dr. Michael Mächtel

57

57

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Die zeitliche Länge eines kritischen Abschnitts wird mit t_{CSR} bezeichnet.
- In der Abbildung sind die Längen der beiden kritischen Abschnitte
- \bullet $t_{CS,R1} = 2 \text{ ms}$
- \bullet $t_{CS,R2} = 3 \text{ ms}$

Professor Dr. Michael Mächtel

59

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Ressourcen werden mit einem Buchstaben und eventuell einem Index gekennzeichnet:
 - R (Ressource)
 - S (Semaphor)
- Der Programmierer kennzeichnet mit Funktionsaufrufen den Anfang und das Ende eines kritischen Abschnitts:

58

- L(R) Beginn des kritischen Abschnitts Lock
- U(R) Ende des kritischen Abschnitts Unlock

Professor Dr. Michael Mächtel

5

Realzeitbetrieb

Systemaspekte

Ressourcengraph: Verschiedene Tasks benutzen die gleiche Ressource

Professor Dr. Michael Mächtel

Systemaspekte

■ Ressourcenmanagement

- Komplizierter wird es, wenn Ressourcen "verschränkt" verwendet werden.
- Die Länge der "äußeren" Ressource beinhaltet die Länge der "inneren":
- $t_{CS,R1} = 10 \text{ ms}$
- \bullet $t_{CS,R2} = 5 \text{ ms}$

61

Professor Dr. Michael Mächtel

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Prioritätsinversion: Hierunter versteht man die Situation, dass eine Task warten muss, obwohl sie die höchste Priorität im System hat. Das ist beispielsweise dann der Fall, wenn sie einen kritischen Abschnitt betreten möchte, der gerade von einer Task mit niedrigerer Priorität bearbeitet wird.
- Verschärft wird die Situation durch mittelpriore Tasks, die die niedrigpriore und damit vor allem die hochpriore noch weiter verzögern.

Realzeitbetrieb

Systemaspekte

■ Ressourcenmanagement

- Der Schutz kritischer Abschnitte führt zu einem geänderten Zeitverhalten des Realzeitsystems.
- Für die notwendige, zeitliche Analyse (Realzeitnachweis) werden bei Realzeitsystemen, die auf Prioriäten beruhen, die folgenden Parameter benötigt (siehe Kapitel 8):
 - t_{CS,R}: Zeitliche Länge des kritischen Abschnitts R
 - П(R)_i: Priorität der Ressource R. Diese entspricht der höchsten Priorität der Task, die die Ressource verwenden.
 - ¬¬_s: Priorität des Gesamtsystems, diese entspricht der höchsten Priorität aller Ressourcen.

62

Professor Dr. Michael Mächtel

62

Realzeitbetrieb

Systemaspekte

■ Prioritätsinversion

- t, Task A belegt die Ressource X.
- t_a Task B (mit höherer Priorität) wird rechenbereit.
- t_o Task C (mit der höchsten Priorität) wird rechenbereit.
- Task C versucht, die Ressource X zu belegen, und wird schlafen gelegt.
 Task B hat von den rechenbereiten Prozessen die höchste Priorität.
- t₅ Nach Beendigung von B kann A weiterarbeiten.
- t₆ Task A gibt die Ressource frei, erst jetzt kann C weiterarbeiten.

Professor Dr. Michael Mächtel

64

Systemaspekte

- Zur Entschärfung der zeitlichen Verzögerungen bieten sich verschiedene Methoden an:
 - Unterbrechungssperre (NPCS)
 - Prioritätsvererbung (PIP)
 - Priority Ceiling (PCP)

Professor Dr. Michael Mächtel

Realzeitbetrieb

65

Systemaspekte

■ Prioritätsvererbung (PIP)

	t ₁	Task A belegt die Ressource X (Lock).
		Task B (mit höherer Priorität) wird rechenbereit.
	t ₃	Task C (mit der höchsten Priorität) wird rechenbereit.
	t ₄	Task C versucht, die Ressource X zu belegen, und wird schlafen gelegt.
	t ₄	Task A erbt die Priorität von Task C und wird rechenbereit.
I	t.	Task A gibt X wieder frei und bekommt die ursprüngliche Priorität.

Professor Dr. Michael Mächtel

67

Realzeitbetrieb

Systemaspekte

■ Non Preemptible Critical Sections (NPCS)

- Reduzierung der zeitlichen Verzögerungen durch eine Unterbrechungssperre (NPCS).
- Einfach zu implementieren (z.B. Interruptsperre)
- Deadlocks können nicht auftreten
- gilt für statische und dynamische Prioritäten (später mehr dazu)
- Nachteil?

Professor Dr. Michael Mächtel

Realzeitbetrieb

Beispiel: Mars Pathfinder

66

- **Z** Zustandsüberwachung des Realzeitsystems
- M Erfassung Messwerte
- **B** Datenaustausch über Softwarebus

Zugriff auf Informationsbus über Semaphore

Professor Dr. Michael Mächtel

69

71

72

Realzeitbetrieb

Systemaspekte

■ Prioritätsvererbung (PIP)

- relativ einfach zu implementieren (keine Informationen vom Programmierer nötig)
- Arten des Blockierens:
 - direkt
 - indirekt (auch für alle anderen Tasks!), aufgrund der Vererbung
- verhindert keine Deadlocks

Systemaspekte

■ Priority Ceiling (PCP)

- Bedingung: Die von den Tasks benötigten Ressourcen sind vor dem Start bekannt!
- «Priority Ceiling» ("Prioritäten Obergrenze") wird im System berechnet.
- Die Priority Ceiling einer jeden Ressource R ist die Priorität der höchstprioren Task, die diese Ressource benötigt.
- Die aktuelle Priority Ceiling Πs des Systems entspricht der höchsten Priorität der Priority Ceiling der Ressourcen, die gerade von Tasks benutzt werden.

Professor Dr. Michael Mächtel

/3

73

Realzeitbetrieb

Systemaspekte

■ Zusammenfassung Systemaspekte

- Preemption Wir fordern, dass Jobs unterbrechbar sind.
- Prioritäten Die Abarbeitungsreihenfolge kann festgelegt werden (beispielsweise über Prioritäten).
- Kritische Abschnitte werden per L(R) und U(R) geschützt.
- Der Schutz kritischer Abschnitte führt zu Zeitanomalien, welche durch den Einsatz von Protokollen deterministisch ist

75

Professor Dr. Michael Mächtel

'5

Realzeitbetrieb

Systemaspekte

■ Priority Ceiling (PCP): Zuteilungsregel

- Wenn eine Task T zur Zeit t eine Ressource anfordert, und R nicht verfügbar ist, wird die Anforderung abgelehnt und T blockiert bis R frei ist:
 - erhält T die Ressource wenn T's Priorität π(t) höher als Πs(t) ist.
- Falls T's Priorität $\pi(t)$ nicht höher als Π s(t) ist
 - erhält T die Ressource R nur, wenn T die Task ist, deren Ressourcen Zugriffe die derzeitige Πs(t) ausgelöst hat. Ansonsten wird die Ressourcen Anforderung abgelehnt und T wird blockiert.

74

■ Prioritätenvererbung an Tasks wie bei PIP

Professor Dr. Michael Mächtel

7

Realzeitbetrieb

Zusammenfassung Realzeitbetrieb

Zusammenfassung Realzeitbetrieb

- Die Außenwelt ist im Wesentlichen gekennzeichnet durch
 - Rechenzeitanforderungen
 - Minimale Prozesszeiten
 - Minimal zulässige Reaktionszeiten
 - Maximal zulässige Reaktionszeiten
- Das Taskset ist im Wesentlichen gekennzeichnet durch
 - Minimale Verarbeitungszeit
 - Maximale Verarbeitungszeit
 - Minimale Reaktionszeit
 - Maximale Reaktionszeit

Professor Dr. Michael Mächtel

77

77

Realzeitbetrieb

Zusammenfassung Realzeitbetrieb

- Harte Realzeit: Die Rechtzeitigkeitsbedingung wird unter allen Umständen eingehalten.
- Weiche Realzeit: Eine Deadline-Verletzung darf schon mal vorkommen...
- Zum Schutz kritischer Abschnitte werden Lock-Primitive (z.B. Semaphor) eingesetzt. Der Einsatz führt zu Zeitanomalien, beispielsweise zur Prioritätsinversion.

79

■ Geeignete Protokolle erlauben einen zeitlichen Determinismus beim Umgang mit Ressourcen.

Realzeitbetrieb

Zusammenfassung Realzeitbetrieb

- Wir gehen davon aus, dass das System folgendes ermöglicht
 - Preemption
 - Prioritäten (oder andere Mechanismen zur Festlegung der Abarbeitungsreihenfolge)
 - Ressourcenmanagement (zum Schutz kritischer Abschnitte)
- Für die schritthaltende Verarbeitung müssen die zwei Realzeitbedingungen erfüllt sein:
 - Die maximale Gesamtauslastung muss kleiner oder gleich der Anzahl der CPU-Kerne sein.
 - Die minimale und maximale Reaktionszeit auf eine Rechenzeitanforderung muss innerhalb des Zeitfensters liegen.

Professor Dr. Michael Mächtel

78

78

80