1

M1	d2	d8			d5		d3
M2	d6	d11			d7		
М3	d9		d4	ď	1	d10	

2

Sur cet exemple, l'application de LPT donne le résultat optimal : $T_{LPT}(I) = 1 * T_{opt}(I)$. donc le ratio d'approximation est de **1**.

3

Soit $t_{deb}(j)$ le temps auquel débute la tâche j.

Montrons d'abord que $t_{deb}(j) \leq \frac{\sum_{k \neq j} d'_k}{m}$:

Comme on affecte toujours à la première machine libre, on a forcément une surface pleine avant $t_{deb}(j)$.

Dans le cas où $t_{deb}(j) = \frac{\sum_{k \neq j} d'_k}{m}$, on a :

Dans tous les autres cas, on a par exemple:

		j	
Cette surface n'est pas complète donc $\frac{\sum_{k \neq j} d'_k}{m}$ se situe forcément plus à droite.	$t_{deb}(j)$	$\frac{\sum_{k\neq j} d^{\prime}_{k}}{m}$	T_{LPT}

On a montré que $t_{deb}(j) \leq \frac{\sum_{k \neq j} d'_k}{m}$

or,
$$\forall I$$
, $T_{LPT}(I) = t_{deb}(j) + d'_{j}$
donc $T_{LPT}(I) \leq \frac{\sum_{k \neq j} d'_{k}}{m} + d'_{j}$

4

Dans le cas où $n \le m$, chaque machine se voit affecté au plus une tâche. Dans ce cas $T_{LPT} = d'_{max}$ où d'_{max} est le temps de la tâche la plus longue. Comme les tâches sont indivisibles, T_{LPT} est forcément optimal.

5

Dans le cas où $n \ge m+1$, chaque machine se voit affecté au moins une tâche et M1 au moins deux tâches.

Illustrons le cas où la valeur de $2*d'_{m+1}$ est la plus grande possible. Pour obtenir une valeur de $2*d'_{m+1}$ maximale, il nous faut une valeur de d'_{m+1} qui soit maximale. Les tâches étant réparties par ordre décroissant de leur durée, cela implique que $d'_{max} = d'_1$. Il nous faut donc illustrer le cas où $d'_1 = d'_{m+1}$.

Supposons donc le cas où m=3 et n = 4 avec $d_1 = d_2 = d_3 = d_4 = 3$

M1	d1	d4	
M2	d2		
M3	d3		!
		T_{opt}	$2 * d'_{m+1}$

Dans ce cas, on a $T_{opt} = 2 * d'_{m+1}$

Pour que $2*d'_{m+1}$ soit supérieur à T_{opt} , il faudrait que d'_{m+1} soit supérieur à d'_1 ce qui est impossible puisque les tâches sont affectées par ordre décroissant.

donc
$$2*d'_{m+1} \leq T_{ont}(I)$$

6

Dans le cas où $n \le m$, d'après la réponse **4** on est dans le cas (a) Sinon, dans le cas où $n \ge m+1$, on a :

Soit:

 $T_{opt} = 2 * d'_{m+1}$ et dans ce cas j = m + 1 comme illustré plus haut.

Soit:

 $T_{opt}(I) > 2 * d'_{m+1}$ et dans ce cas on a j > m+1

7

Le cas (a) étant nécessairement optimal, on ne se place que dans le cadre du cas (b). On a donc d'une part :

 $j>m+1\,$ et les tâches sont affectées dans l'ordre décroissant de leur durée, donc $d'_j\, \leq d'_{m+1}\,.$

Or, d'après la réponse **5**, $2*d'_{m+1} \leq T_{opt}(I) \Leftrightarrow d'_{m+1} \leq \frac{1}{2}T_{opt}(I)$

On a donc

$$d'_j \leq d'_{m+1} \leq \frac{1}{2} T_{opt}(I) \quad | \quad \mathbf{A}$$

D'autre part,

On sait que
$$T_{LPT}(I) = t_{deb}(j) + d'_j \leq \frac{\sum_{k\neq j} d'_k}{m} + d'_j \leq T_{opt}(I) + d'_j$$

$$T_{LPT}(I) \le T_{opt}(I) + d'_j$$
 B

On déduit donc de A et B que :

$$T_{LPT}(I) \leq T_{opt}(I) + \frac{1}{2}T_{opt}(I)$$

$$\Leftrightarrow T_{LPT}(I) \leq \frac{3}{2}T_{opt}(I)$$

8