Choose t = 0. а.

When
$$t = 0$$
, $N = 10^{15} \times 10^{10} = 10^{25}$

M1, A1

b. Average rate of change =
$$\frac{N(16) - N(0)}{16 - 0}$$

M1

$$= \frac{(10^{15} - \frac{1}{3}(16)^3 + 8(16)^2)10^{10} - 10^{25}}{16}$$
$$= \frac{128}{3} \times 10^{10}$$

c.
$$\frac{dN}{dt} = (0 - t^2 + 16t) \times 10^{10} = (16t - t^2) \times 10^{10}$$

M1,A1

d.
$$\frac{dN}{dt} = t(16 - t)10^{10}$$
.

Maximum number of particles occur when $\frac{dN}{dt} = 0$. e.

$$t(16 - t)10^{10} = 0$$
 when $t = 0$ or $t = 16$

M1,A1

When t = 0, $N = 10^{25}$

$$t = 16$$
, $N = \left(10^{15} + \frac{2048}{3}\right)10^{10}$. (Maximum occurs when $t = 16$).

Al,Al

Use of sign of first derivative to show maximum is obtained when t = 16 must be shown to gain both A1 marks.

From the graph in part d., $\frac{dN}{dt}$ is a maximum when t = 8. That is, at 8 minutes. f. M1.A1

Question 2

с.

b.
$$f(x) = a + bx^2$$

$$(0,4)$$
: $4 = a + 0$, therefore $a = 4$

(3,0):
$$0 = 4 + b(3)^2$$
, therefore $b = -\frac{4}{9}$

Αl

M1

M1

Αl

$$f'(\mathbf{x}) = -\frac{8}{9} \mathbf{x}$$

$$-\frac{8}{9}x = -1$$

Therefore
$$x = \frac{9}{8}$$
 (distance from CD)

$$f(\frac{9}{8}) = \frac{55}{16}$$
 (distance from AB)

d. i.Surface area =
$$\int_{0}^{3} (4 - \frac{4}{9}x^2) dx$$
 M1

$$= \left[4x - \frac{4}{27}x^3\right]_0^3$$
 Al

ii.
$$Cost = 190 + 40 + 56(8)(0.25)$$

Question 3

a.

Graph i.

Al

Graph ii.

A1,M1

b. i.
$$n = 1$$
, $P = \frac{0.8}{1 + e^{-0.2}} = 0.4399$

i.
$$n = 10$$
, $P = \frac{0.8}{1 + e^{-2}} = 0.7046$

Al

Al

$$c.$$
 P = 0.60,

$$0.00 = \frac{1}{1 + e^{-0.2n}}$$
$$1 + e^{-0.2n} = \frac{0.8}{0.6}$$

$$-0.2n = \log_e(\frac{1}{3})$$

$$n = 5.49$$

Therefore need at least 6 trials

$$n \to \infty, P \to \frac{0.8}{1+0} = 0.8$$

Αl

d.

15.0

20.0

25.0

f. i.
$$\frac{dP}{dn}$$
 = (0.8)(-1)(-0.2e^{-0.2n})(1+e^{-0.2n})-2

ΜI

$$=\frac{0.16e^{-0.2n}}{\left(1+e^{-0.2n}\right)^2}$$

5.0

A1

ii.
$$\frac{dP}{dn} = (0.8)(-1)(-0.2e^{-0.2n})(1+e^{-0.2n})^{-2}$$

$$=\frac{(0.2)e^{-0.2n}}{0.8} \left(\frac{0.8}{(1+e^{-0.2n})}\right)^2$$

10.0

ΜI

$$= (0.2) \left(\frac{1}{P} - 1.25 \right) P^2$$

Ml

$$= 0.2P(1 - 1.25P)$$

A1

Αl

Question 4

a. i.
$$P(X=0) = {}^{20}C_0(0.07)^0(0.93)^{20} = 0.2342$$
 A1
ii. $P(X=1) = {}^{20}C_1(0.07)^1(0.93)^{19} = 0.3526$ A1

b. P(Accepting) =
$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= ${}^{20}C_0(0.07)^0(0.93)^{20} + {}^{20}C_1(0.07)^1(0.93)^{19}$ M1
= $0.2342 + 0.3526$
= 0.5868 A1

c.
$$P(X_1=2) = {}^{20}C_2(0.07)^2(0.93)^{18}$$
 M1
= 0.2521

d. P(Accepted) =
$$P(X_1 \le 1) + P(X_1 = 2)P(X_2 = 0)$$
 M1
= $0.5868 + ({}^{20}C_2(0.07)^2(0.93)^{18} \times {}^{20}C_0(0.07)^0(0.93)^{20}$ A1
= $0.5868 + (0.2521)(0.2342)$

e. Let Y = the number of batches accepted from the 100.

= 0.6459

Then $Y^{\underline{d}}Bi(100, 0.6459)$

Then, $P = \frac{Y}{100}$ is the proportion of batches accepted.

$$E(P) = \hat{p} = 0.6459$$
 A1

$$Var(P) = \frac{\hat{p}(1-\hat{p})}{n} = \frac{0.6459(0.3541)}{100} = 0.0023$$
 A1

Approx 95% C.I is given by
$$0.6459 \pm 2\sqrt{0.0023}$$
 M1,A1 0.5502 to 0.7415 A1