For periodic functions $x_1(t)$, $x_2(t)$ with periods T_1 and T_2 respectively, the period of $x_1(t) + x_2(t)$ is $LCM(T_1, T_2)$. For periodic functions $x_1[n]$, $x_2[n]$ with periods N_1 and N_2 respectively, the period of $x_1[n] + x_2[n]$ is $LCM(N_1, N_2)$.

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$
$$= \int_{t_1}^{t_2} (x_{Re}(t)^2 + x_{Im}(t)^2) dt.$$

$$E = \sum_{n=n_1}^{n_2} |x[n]|^2$$

$$= \sum_{n=n_1}^{n_2} (x_{Re}[n]^2 + x_{Im}[n]^2).$$

$$P_{avg} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt.$$

$$P_{avg} = \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2.$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

$$x(t) = x_{even}(t) + x_{odd}(t)$$

$$= \frac{x(t) + x(-t)}{2} + \frac{x(t) - x(-t)}{2}$$

$$x[n] = x_{even}[n] + x_{odd}[n]$$

$$= \frac{x[n] + x[-n]}{2} + \frac{x[n] - x[-n]}{2}$$

$$x_k(t) = e^{jk\omega_0 t}, k \in \mathbb{Z}$$

$$\omega_0 = \frac{2\pi}{T}, \text{ period T}$$

$$x_k[n] = e^{jk\omega_0 n}, k \in \mathbb{Z}$$

$$\omega_0 = \frac{2\pi}{N}, \text{ period N}$$

- A memoryless system depends only on input at time t (or n for DT systems).
- A linear system satisfies $S\{ax_1(t) + bx_2(t)\} = aS\{x_1(t)\} + bS\{x_2(t)\}.$
- A system is time invariant if a time shift $(t_0 \text{ or } n_0)$ in the input results in an identical shift in the output.
- A linear time invariant's impulse response h is found by calculating $S(\delta(t))$ (or $S(\delta[n])$). y(t) = x(t) * h(t) (or y[n] = x[n] * h[n]).
- A system is *invertible* if there exists an inverse S_2 such that $S_2(S_1(x(t))) = S_1(S_2(x(t))) = x(t)$.
- A system is *causal* if its output at time t (index n) depends only on present and past inputs.
- A system is stable if there exist constants B, M > 0 such that $|x(t)| < B \ \forall t \implies |y(t)| < M \ \forall t$.
- x(t) real $\rightarrow a_k = a_{-k}^*$
- For a memoryless system, the impulse response is the delta function times a scalar.

Property	Time Domain		Frequency Domain
Linearity	$Ax_1(t) + Bx_2(t)$	$\overset{FS}{\leftrightarrow}$	$Aa_k + Bb_k$
Even Symmetry	x(t) even	$\overset{FS}{\leftrightarrow}$	a_k even
Odd Symmetry	x(t) odd	$\overset{FS}{\leftrightarrow}$	a_k odd
Time Shifting	$x(t-t_0)$	$\overset{FS}{\leftrightarrow}$	$a_k e^{-jk\omega_0 t_0}$
Frequency Shifting	$x(t)e^{jn\omega_0t}$	$\overset{FS}{\leftrightarrow}$	a_{k-n}
Time Reversal	x(-t)	$\overset{FS}{\leftrightarrow}$	a_{-k}
Conjugation	$x^*(t)$	$\overset{FS}{\leftrightarrow}$	a_{-k}^*
Periodic Convolution	(x*y)(t)	$\overset{FS}{\leftrightarrow}$	$a_k b_k$
Multiplication	x(t)y(t)	$\overset{FS}{\leftrightarrow}$	$\sum_{n=-\infty}^{\infty} a_n b_{k-n}$
Differentiation	$\frac{d}{dt}x(t)$	$\overset{FS}{\leftrightarrow}$	$jk\omega_0 a_k$
Integration	$\int x(t)dt$	$\overset{FS}{\leftrightarrow}$	$\frac{a_k}{jk\omega_0}$ if $a_0=0$)
Parseval's Theorem	$\frac{1}{T} \int_T x(t) ^2 dt$	$\overset{FS}{\leftrightarrow}$	$\sum_{k=-\infty}^{\infty} a_k ^2$

	Property	Time Domain		Frequency Domain
6	Linearity	$A x_1[n] + B x_2[n]$	$DTFS \longleftrightarrow DTFS \longleftrightarrow DTFS \longleftrightarrow DTFS \longleftrightarrow$	$A a_k + B b_k$
	Even Symmetry	x[n] even (i.e., $x[n] = x[-n]$)		a_k even
	Odd Symmetry	x[n] odd (i.e., $x[n] = -x[-n]$)		a_k odd
	Time Shifting	$x[n-n_0]$		$a_k e^{-j\frac{2\pi}{N}kn_0}$
	Frequency Shifting	$x[n] e^{j\frac{2\pi}{N}n_0 n}$	$\overset{DTFS}{\leftrightarrow}$	$a_{(k-n_0) \bmod N}$
	Time Reversal	x[-n]	$\overset{DTFS}{\leftrightarrow}$	a_{-k} (indices mod N)
	Conjugation	$x^*[n]$	$\overset{DTFS}{\leftrightarrow}$	a_{-k}^*
	Circular Convolution	$(x \circledast y)[n]$	$DTFS \\ \longleftrightarrow \\ DTFS \\ \longleftrightarrow$	$a_k b_k$
	Multiplication	x[n]y[n]		$\frac{1}{N} \sum_{m=0}^{N-1} a_m b_{(k-m) \bmod N}$
	Difference Operator	x[n] - x[n-1]	$\overset{DTFS}{\leftrightarrow}$	$a_k \left(1 - e^{-j\frac{2\pi}{N}k} \right)$
	Parseval's Theorem	$\frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$	$\overset{DTFS}{\longleftrightarrow}$	$\sum_{k=0}^{N-1} a_k ^2$

- For causal systems, the impulse response must be 0 for values of n(t) less than 0.
- For a stable LTI system, the impulse response must be absolutely summable. That is,

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty. \tag{1}$$

Or for continuous time, absolutely integrable

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty. \tag{2}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \tag{3}$$

$$a_k = \frac{1}{T} \int_{\langle T \rangle} x(t)e^{-jk\omega_0 t} dt \tag{4}$$

$$x[n] = \sum_{k=\langle N \rangle} a_k x_k[n] \tag{5}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n},\tag{6}$$

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
 (7)

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$
(8)