

For more such worksheets visit www.edugain.com

- (1) The value of $\sin x$ increases faster than $\tan x$ as x increases ($x < 90^{\circ}$).
 - True
- False
- (2) What is the value of |a + 19|, if a is less than -19?
- (3) Find the value of the following $(-9)^{-3}$
- (4) If BC is a diameter of the circle and $\angle BAO = 40^{\circ}$. Then, the value of $\angle ADC$ is $^{\circ}$.

- (5) A rectangular playground has length and width in the ratio 9:40. If the area of the playground is 360 sq. m., then the length of a diagonal path through the playground is _____ metres
- (6) An equilateral triangle has side length 9 cm. What is the area of a region of all the points outside the equilateral triangle that are within 2 cm of the triangle?

a. $cm^266 + 4\pi$

b. $54 + 4\pi \text{ cm}^2$

c. $36 - 2\pi \text{ cm}^2$

- **d.** 51 6π cm²
- (7) The absolute value of an integer is less than the integer.
 - True
- False

(8) If $\angle OAB = 21^{\circ}$ and $\angle OCB = 56^{\circ}$, find $\angle BOC$.

a. 68°

b. 73°

c. 78°

d. 58°

(9) Find area of shaded region (All measurements are in cm).

(10) Find the value of the missing angle.

a. 54°

b. 59°

c. 44°

d. 49°

(11) If x + 3y = 6 then which of the following values of x and y will hold true?

a.
$$x = 6$$
, $y = \frac{5}{3}$

b.
$$x = 2, y = \frac{4}{4}$$

c.
$$x = 2$$
, $y = \frac{4}{3}$

d.
$$x = \frac{4}{4}$$
, $y = \frac{5}{3}$

(12) What must be subtracted from $-2y^2 + 3y + 5$ to get $y^2 - 3y + 2$?

a.
$$-3y^2 + 6y + 3$$

b.
$$-3v^2 + 6v - 3$$

c.
$$-3y^2 - 6y + 3$$

d.
$$3y^2 + 6y + 3$$

(13) Solve the following:

(14) Following shape is made of several small cubes. What fraction of cubes are visible in the picture shown below?

a.
$$\frac{51}{96}$$

b.
$$\frac{45}{96}$$

c.
$$\frac{82}{96}$$

d.
$$\frac{64}{96}$$

(15) $1^4 \times 5^2 = ?$

b. 24

d. 19

© 2018 Edugain (www.edugain.com). All Rights Reserved

Many more such worksheets can be generated at www.edugain.com

Answers

(1) False

Step 1

Let's observe this right angle triangle.

$$\sin x = \frac{BC}{AC}$$

$$\tan x = \frac{BC}{AB}$$

Step 2

Now, let's increase the angle x such that height BC remains unchanged.

Step 3

By comparing above two pictures, we can notice that decrease in AB is larger than decrease in AC.

Step 4

Now, numerator of both the fractions are unchanged, but denominator of $\tan x$ is decreasing faster than denominator of $\sin x$.

Therefore, $\tan x$ increases faster than $\sin x$, as x increases.

Step 5

Hence, given statement is False.

(2)
$$-(a + 19)$$

$$|a + 19| = a + 19$$
 if, $a + 19 >= 0$,
 $|a + 19| = -(a + 19)$ if, $a + 19 < 0$

We can write the above expression as,

$$|a + 19| = a + 19$$
 if, $a > = -19$,
 $|a + 19| = -(a + 19)$ if, $a < -19$

Step 3

Since it is given that a is less than -19,

$$|a + 19| = -(a + 19)$$

(3)
$$\frac{-1}{729}$$

Step 1

We have been asked to find the value of (-9)⁻³.

Step 2

Now,

$$(-9)^{-3} = \frac{1}{(-9)^3}$$

$$= \frac{1}{(-9) \times (-9) \times (-9)}$$

$$= \frac{-1}{729}$$

Step 3

Therefore, the value of $(-9)^{-3}$ is $\frac{-1}{729}$.

As,OA and OB are the radius of the circle, OA = OB. This means \triangle AOB is an isosceles triangle. So,

 $\angle ABO = \angle BAO = 40^{\circ}$.

Step 2

Also, ∠ABO = ∠ABC

Considering the chord AC, ∠ABC and ∠ADC are the angles subtended by the chord AC in the same segment of the circle.

We know that the angle subtended by a chord in the same segment of a circle are equal. So,

 $\angle ABC = \angle ADC$

Step 3

Therefore, $\angle ADC = \angle ABC = 40^{\circ}$.

(5) 41

Step 1

Rectangular Playground

Let us assume that ABCD is the rectangular playground. AB, BC, and BD are the length, width, and diagonal of the rectangle, respectively.

Step 2

Let us assume that *x* is the common factor of the length and the width of the rectangular playground.

According to the question, the length and the width of the rectangular playground are in the ratio 9:40.

Length of the playground = 9x

Width of the playground = 40x

Area of the playground = $9x \times 40x = 360x^2$

Step 3

According to the question, the area of the playground is 360 sq. m.

Therefore, $360x^2 = 360$

$$\Rightarrow x^2 = \frac{360}{360}$$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow x^2 = 1$$
$$\Rightarrow x^2 = (1)^2$$

$$\Rightarrow x = 1$$

Length of the playground = $9x = 9 \times 1 = 9 \text{ m}$

Width of the playground = $40x = 40 \times 1 = 40 \text{ m}$

Now, in the rectangle ABCD, $BD^2 = AB^2 + BC^2$

$$\Rightarrow BD^2 = 9^2 + 40^2$$

$$\Rightarrow BD^2 = 81 + 1600$$

$$\Rightarrow$$
 BD² = 1681

$$\Rightarrow$$
 BD² = $(41)^2$

Step 5

Thus, the length of the diagonal path through the playground is 41 m.

(6) **b.** $54 + 4\pi$ cm²

Step 1

If we look at the figure, we notice that the area of the region of all the points outside the equilateral triangle = 3(The area of the rectangle + The area of the sector of the circle)

Step 2

The area of the rectangle = $9 \times 2 = 18 \text{ cm}^2$

Step 3

Let's assume the angle and the radius of the sector of the circle be ' θ ' and 'r' respectively.

Step 4

We know that, each angle of an equilateral triangle and rectangle are 60° and 90° respectively. Therefore, $\theta = 360^{\circ} - (90^{\circ} + 90^{\circ} + 60^{\circ}) = 120^{\circ}$,

$$r = 2 cm$$

The area of the sector of the circle = $\frac{\theta}{360} \times \pi r^2$

$$= \frac{120}{360} \times \pi(2)^2$$

$$= \frac{4\pi}{3} \text{ cm}^2$$

Step 5

Now, the area of the region of all the points outside the equilateral triangle within 2 cm = 3(18 + 1)

$$\frac{4\pi}{3}$$
) = 54 + 4 π cm²

(7) False

Step 1

We know that the 'Absolute Value' is the value of the number itself without any regards to the mathematical sign placed before it. Therefore, this value is always a positive number.

- For positive numbers, the absolute value is same as the number itself. e.g. |5| = 5.
- For negative numbers, the absolute value is reverse of the number. e.g. |-5| = 5.

Step 2

We can see that the absolute value of a number is either *equal* to the number (for positive numbers), or is *larger* than the number (for negative numbers).

Hence the given statement "The absolute value of an integer is less than the integer" is false.

(8) a. 68°

```
In \triangleOCB, we see that OC = OB (radius of a circle).

\Rightarrow \angleOCB = \angleOBC (angle opposite to equal sides are equal)

Also, \angleBOC + \angleOCB + \angleOBC = 180° (angle sum property)

So, \angleBOC = 180° - (\angleOCB + \angleOBC).

\Rightarrow \angleBOC = 180° - 2 × 56° = 68°
```

(9) 1008 cm²

Step 1

The area of the shaded region = The area of the rectangle - The area of the unshaded right angled triangles

Step 2

Area of the rectangle = $36 \times 40 = 1440 \text{ cm}^2$

Step 3

Area of a right angled triangle = $\frac{1}{2}$ (Base × Height)

Therefore, the area of the unshaded right angled triangles = $\frac{1}{2}$ (22 × 24) + $\frac{1}{2}$ (14 × 24)

$$= (264 + 168) \text{ cm}^2$$

Step 4

Hence, the area of shaded region is: $1440 - (264 + 168) = 1008 \text{ cm}^2$

(10) a. 54°

Step 1

In the triangle ABC,

∠B = 53° ...(Vertically opposite angles)

Step 2

Now, in triangle ABC, $\angle A + \angle 53^{\circ} + 73^{\circ} = 180^{\circ}$...(Sum of all the angles of a triangle is equal to 180°)

$$\Rightarrow$$
 $\angle A = 54^{\circ}$

Step 3

The missing angle = $\angle A = 54^{\circ}$...(Vertically opposite angles)

Step 4

Therefore, the value of the missing angle is 54°.

(11) c.
$$x = 2$$
, $y = \frac{4}{3}$

Step 1

Here, we are given an equation with 2 variables, i.e., x + 3y = 6.

It is not possible to find the value of *x* and *y* from the given equation, as we require 2 equations to find the value of 2 variables.

Step 2

However, we can substitute the values of x and y given in the options to check the correctness of

the equations. Among the given options, we can see that only x = 2, $y = \frac{4}{3}$ satisfies the equation.

$$x + 3y = 6$$

$$\Rightarrow 2 + 3 \times \frac{4}{2} = 0$$

$$\Rightarrow 6 = 6$$

Step 3

Hence, option **c** is the correct answer.

(12) **a.**
$$-3y^2 + 6y + 3$$

If we subtract y^2 - 3y + 2 from -2 y^2 + 3y + 5, we can find out the polynomial that must be subtracted from -2 y^2 + 3y + 5 to get y^2 - 3y + 2.

Step 2

To subtract the polynomial $y^2 - 3y + 2$ from $-2y^2 + 3y + 5$, first reverse the sign (turn '+' into '-' and '-' into '+') of each term of the polynomial $y^2 - 3y + 2$, as following:

$$-(y^2 - 3y + 2) = -y^2 + 3y - 2$$

Step 3

Now, we can add the like terms of two polynomials, as shown below.

$$-2y^2 + 3y + 5$$

Step 4

Therefore, $-3y^2 + 6y + 3$ must be subtracted from $-2y^2 + 3y + 5$ to get $y^2 - 3y + 2$.

Step 5

Hence, option **a** is the correct answer.

(14) a. $\frac{51}{96}$

Step 1

Let us first count the number of cubes along the length, breadth and the height.

Step 2

Along the length, there are 6 cubes, along the breadth there are 4 cubes, and along the height there are 4 cubes.

Step 3

The total number of cubes in the given box will be $6 \times 4 \times 4 = 96$.

Step 4

Counting the number of cubes. We get,

Number of cubes visible in the given picture is equal to 51.

Step 5

The fraction of the cubes visible will be equal to $\frac{51}{96}$

(15) a. 25

Step 1

 $1^4 \times 5^2$ can be written as:

$$1^4\times 5^2=(1\times 1\times 1\times 1)\times (5\times 5)$$

$$= (1) \times (25)$$

Step 2

Hence, option **a** is the correct answer.