

What Is Claimed Is:

1 1. An apparatus that performs modular division, comprising:
2 a register *A* that is initialized with a value *X*;
3 a register *U* that is initialized with a value *Y*;
4 a register *B* that is initialized with a value *M*;
5 a register *V* that is initialized with a value 0;
6 a counter *CA* that indicates an upper bound for the most-significant non-
7 zero bit of register *A*;
8 a counter *CB* that indicates an upper bound for the most-significant non-
9 zero bit of register *B*; and
10 an updating mechanism that is configured to iteratively reduce the contents
11 of registers *A* and *B* to a value of one by applying a plurality of invariant
12 operations to registers *A*, *B*, *U* and *V*;
13 wherein updating mechanism is configured to use the counters *CA* and *CB*
14 to estimate the relative magnitudes of the values stored in registers *A* and *B*
15 instead of performing an expensive comparison operation between register *A* and
16 register *B*.

1 2. The apparatus of claim 1, further comprising:
2 a temporary register *H*; and
3 a temporary register *L*;
4 wherein updating mechanism is configured to temporarily store *A* + *B* in
5 the temporary register *H*; and
6 wherein updating mechanism is configured to temporarily store *U* + *V* in
7 the temporary register *L*.

1 3. The apparatus of claim 1, wherein the initial values in the registers
2 *A, B, U* and *V* satisfy invariant relationships.

1 4. The apparatus of claim 3, wherein the invariant relationships
2 include:

3 $A^*Y = U^*X \text{ mod } M$; and
4 $B^*Y = V^*X \text{ mod } M$.

1 5. The apparatus of claim 4, wherein the updating mechanism is
2 configured to maintain the invariant relationships between the registers *A, B, U*
3 and *V* after application of the plurality of invariant operations.

1 6. The apparatus of claim 5, wherein the plurality of invariant
2 operations comprise:

3 if *A* is even and *U* is even, then $A := SHIFT(A)$, $U := SHIFT(U)$, $CA := CA - 1$;
4 if *A* is even and *U* is odd, then $A := SHIFT(A)$, $U := SHIFT(U + M)$, $CA := CA - 1$;
5 if *B* is even and *V* is even, then $B := SHIFT(B)$, $V := SHIFT(V)$, $CB := CB - 1$;
6 if *B* is even and *V* is odd, then $B := SHIFT(B)$, $V := SHIFT(V + M)$, $CB := CB - 1$;
7 if $CA > CB$, then $A := A + B$ and $U := U + V$; and
8 if $CA \leq CB$, then $B := A + B$ and $V := U + V$;
9 wherein the *SHIFT* operation denotes a right shift by one bit of the register
10 contents.

1 7. The apparatus of claim 6,
2 wherein setting $A = A + B$ and $U = U + V$ involves first setting $H = A + B$
3 and $L = U + V$, and later setting $A = H$ and $U = L$ if $CA \geq CB$; and

4 wherein setting $B = A + B$ and $V = U + V$ involves first setting $H = A + B$
5 and $L = U + V$, and later setting $B = H$ and $V = L$ if $CA < CB$.

1 8. The apparatus of claim 7, wherein the operations of setting
2 $H = A + B$, setting $L = U + V$, and determining if $CA \geq CB$ or if $CA < CB$ take
3 place concurrently.

1 9. The apparatus of claim 1, wherein components of the updating
2 mechanism operate asynchronously, without use of a centralized clock signal.

1 10. An apparatus that performs modular division, comprising:
2 a register A that is initialized with a value X ;
3 a register U that is initialized with a value Y ;
4 a register B that is initialized with a value M ;
5 a register V that is initialized with a value 0 ;
6 wherein the initial values in the registers A , B , U and V satisfy invariant
7 relationships, including, $A^*Y = U^*X \bmod M$, and $B^*Y = V^*X \bmod M$;
8 a temporary register H ;
9 a temporary register L ;
10 a counter CA that indicates an upper bound for the most-significant non-
11 zero bit of register A ;
12 a counter CB that indicates an upper bound for the most-significant non-
13 zero bit of register B ; and
14 an updating mechanism that is configured to iteratively reduce the contents
15 of one of the counters CA and CB to a value less than zero by applying a plurality
16 of invariant operations to registers A , B , U and V ;

1 wherein the updating mechanism is configured to maintain the invariant
2 relationships between the registers A , B , U and V after application of the plurality
3 of invariant operations;

4 wherein updating mechanism is configured to temporarily store $A + B$ in
5 the temporary register H ;

6 wherein updating mechanism is configured to temporarily store $U + V$ in
7 the temporary register L ;

8 wherein the updating mechanism is configured to use the counters CA and
9 CB to estimate the relative magnitudes of the values stored in registers A and B
10 instead of performing an expensive comparison operation between register A and
11 register B .

1 11. The apparatus of claim 10, wherein the plurality of invariant
2 operations comprise:

3 if A is even and U is even, then $A:=SHIFT(A)$, $U:=SHIFT(U)$, $CA:=CA-1$;

4 if A is even and U is odd, then $A:=SHIFT(A)$, $U:=SHIFT(U+M)$, $CA:=CA-1$;

5 if B is even and V is even, then $B:=SHIFT(B)$, $V:=SHIFT(V)$, $CB:=CB-1$;

6 if B is even and V is odd, then $B:=SHIFT(B)$, $V:=SHIFT(V+M)$, $CB:=CB-1$;

7 if $CA > CB$, then $A:=A+B$ and $U:=U+V$; and

8 if $CA \leq CB$, then $B:=A+B$ and $V:=U+V$;

9 wherein the $SHIFT$ operation denotes a right shift by one bit of the register
10 contents.

1 12. The apparatus of claim 11,

2 wherein setting $A = A + B$ and $U = U + V$ involves first setting $H = A + B$
3 and $L = U + V$, and later setting $A = H$ and $U = L$ if $CA \geq CB$; and

4 wherein setting $B = A + B$ and $V = U + V$ involves first setting $H = A + B$
5 and $L = U + V$, and later setting $B = H$ and $V = L$ if $CA < CB$.

1 13. The apparatus of claim 12, wherein the operations of setting
2 $H = A + B$, setting $L = U + V$, and determining if $CA \geq CB$ or if $CA < CB$ take
3 place concurrently.

1 14. The apparatus of claim 10, wherein components of the updating
2 mechanism operate asynchronously, without use of a centralized clock signal.

1 15. A method for performing modular division, comprising:
2 initializing a register A with a value X ;
3 initializing a register U with a value Y ;
4 initializing a register B with a value M ;
5 initializing a register V with a value 0 ;
6 maintaining a counter CA that indicates an upper bound for the most-
7 significant non-zero bit of register A ;
8 maintaining a counter CB that indicates an upper bound for the most-
9 significant non-zero bit of register B ; and
10 iteratively reducing the contents of registers A and B to a value of one by
11 applying a plurality of invariant operations to registers A , B , U and V ;
12 wherein applying the plurality of invariant operations involves using the
13 counters CA and CB to estimate the relative magnitudes of the values stored in
14 registers A and B instead of performing an expensive comparison operation
15 between register A and register B .

1 16. The method of claim 15, wherein iteratively reducing the contents
2 of registers A and B involves:

3 temporarily storing $A + B$ in a temporary register H ; and
4 temporarily storing $U + V$ in a temporary register L .

1 17. The method of claim 16, wherein the initial values in the registers
2 A , B , U and V satisfy invariant relationships.

1 18. The method of claim 17, wherein the invariant relationships
2 include:

3 $A * Y = U * X \text{ mod } M$; and
4 $B * Y = V * X \text{ mod } M$.

1 19. The method of claim 18, wherein applying the plurality of invariant
2 operations involves maintaining the invariant relationships between the registers
3 A , B , U and V .

1 20. The method of claim 19, wherein the plurality of invariant
2 operations comprise:

3 if A is even and U is even, then $A := SHIFT(A)$, $U := SHIFT(U)$, $CA := CA - 1$;
4 if A is even and U is odd, then $A := SHIFT(A)$, $U := SHIFT(U + M)$, $CA := CA - 1$;
5 if B is even and V is even, then $B := SHIFT(B)$, $V := SHIFT(V)$, $CB := CB - 1$;
6 if B is even and V is odd, then $B := SHIFT(B)$, $V := SHIFT(V + M)$, $CB := CB - 1$;
7 if $CA > CB$, then $A := A + B$ and $U := U + V$; and
8 if $CA \leq CB$, then $B := A + B$ and $V := U + V$;

9 wherein the *SHIFT* operation denotes a right shift by one bit of the register
10 contents.

1 21. The method of claim 20,
2 wherein setting $A = A + B$ and $U = U + V$ involves first setting $H = A + B$
3 and $L = U + V$, and later setting $A = H$ and $U = L$ if $CA \geq CB$; and
4 wherein setting $B = A + B$ and $V = U + V$ involves first setting $H = A + B$
5 and $L = U + V$, and later setting $B = H$ and $V = L$ if $CA < CB$.

1 22. The method of claim 21, wherein the operations of setting
2 $H = A + B$, setting $L = U + V$, and determining if $CA \geq CB$ or if $CA < CB$ take
3 place concurrently.

1 23. The method of claim 15, wherein operations involved in
2 performing the method take place asynchronously, without use of a centralized
3 clock signal.