

G53FIV: Fundamentals of Information Visualization Lecture 6: Visualization with R - Fundamentals

Ke Zhou School of Computer Science Ke.Zhou@nottingham.ac.uk

https://moodle.nottingham.ac.uk/course/view.php?id=96914

Overview

R Basics

Visualization using R

R Basics

What is ?

- GNU project developed by John Chambers @ Bell Lab (https://www.r-project.org/)
- Free software environment for statistical computing and graphics
- Functional programming language written primarily in C, Fortran
- A lot of data scientists working in the company (such as Google) use R.
- IDE: R Studio (<u>www.rstudio.com</u>)

R is a tool for...

Data Manipulation

- connecting to data sources
- slicing & dicing data

Modeling & Computation

- statistical modeling
- numerical simulation

Data Visualization

- visualizing fit of models
- composing statistical graphics

CRAN

Contributed Packages

Available Packages

Currently, the CRAN package repository features 10093 available packages.

CRAN

Mirrors

What's new?

Task Views

Search

About R

R Homepage

The R Journal

Software

R Sources R Binaries

Packages

Other

Table of available packages, sorted by date of publication

Table of available packages, sorted by name

Installation of Packages

Please type help("INSTALL") or help("install.packages") in R for information on how to install packages from this repository. The manual R Installation and Administration (also contained in the R base sources)

explains the process in detail.

<u>CRAN Task Views</u> allow you to browse packages by topic and provide tools to automatically install all packages for special areas of interest.

Currently, 34 views are available.

- install a package from the command line:
 - install.packages("ggplot2", dependencies = TRUE)

http://cran.r-project.org

Getting Help with R

- Embedded "help" function in R
 - help(func), ?func
- For a topic
 - help.search(topic), ??topic
- demo(is.things)
- search.r-project.org
- Stack Overflow:
 - http://stackoverflow.com/tags/R

Bring Data into R

- Create csv file
- Name your variables well
 - Self-explanatory, unique, lowercase, short-ish, oneword name
- In R, set the working directory
 - setwd("/users/you/R/tutorial")
 - What is the working directory? getwd()
 - What is in the working directory? dir()
- Read in data
- Write data

Read and Write

Read in data

- CSV files: iris.df <- read.csv("iris.csv", header=T)
- Clipboard: read.csv("clipboard") like cutting and pasting it
- From web: read.csv(<u>http://url/1.csv</u>)
- From excel files (using the XLConnect package):
 - iris.df <- readWorksheetFromFile("iris.xlsx", sheet="Sheet1")
- From R object: load("iris.Rdata")

Write data

- To CSV: write.csv(iris.df, "iris_dataframe.csv")
- To R objects: save(iris, "iris.RData")
- To databases:
 - con <- dbConnect(dbdriver, user, password, host,dbname)
 - dbWriteTable(con, "iris", iris.df)

R Data Structures

numeric

 $x \leftarrow c(0,2:4)$

vector

Character

y <- c("alpha", "b", "c3", "4")

logical

 $z \leftarrow c(1, 0, TRUE, FALSE)$

R Data Structures

R Data Structures

	Linear	Rectangular
Homogeneous	vectors	matrices
Heterogeneous	lists	data frames*

R Data Structures: more details

Other Important R Concepts

FACTORS

Stores each distinct value only once, and the data itself is stored as a vector of integers. When a factor is first created, all of its levels are stored along with the factor.

- > weekdays=c("Monday","Tuesday","Wednesday","Thursday","Friday")
 > wf <- factor(weekdays)</pre>
- [1] Monday Tuesday Wednesday Thursday Friday Levels: Friday Monday Thursday Tuesday Wednesday Used to group and summarize data:
- WeekDaySales <- (DailySalesVector, wf, sum) # Sum daily sales figures by M,T,W,Th,F

USER-DEFINED FUNCTIONS

```
> f <- function(a) { a^2 }
> f(2)
[1] 4
```


- · Functions can be passed as arguments to other functions.
- Function behavior is defined inside the curly brackets { }.
- Functions can be nested, so that you can define a function inside another.
- The return value of a function is the last expression evaluated.

PACKAGES, FUNCTIONS, DATASETS

- > search() # Search for installed packages & datasets
- [1] ".GlobalEnv" "mtcars" "tools:rstudio"
- [4] "package:stats" "package:graphics" "package:grDevices"
- > library(ggplot2) # load package ggplot2

Attaching package: 'ggplot2'

- > data() # List available datasets
- > attach(iris) # Attach dataset "iris"

SPECIAL VALUES

- pi=3.141593. Use lowercase "pi"; "Pi" or "PI" won't work
- inf=1/0 (Infinity)
- NA=Not Available. A logical constant of length 1 that means neither TRUE nor FALSE. Causes functions to barf
 - Tell function to ignore NAs: function(args, na.rm=TRUE)
 - Check for NA values: is.na(x)
- NULL=Empty Value. Not allowed in vectors or matrixes.
 - Check for NULL values: is.null(x)
- NaN=Not a Number. Numeric data type value for undefined (e.g., 0/0).
 See this for NA vs. NULL explanation.

R Fundamental Visualization

R Graphics – 3 Main "Dialects"

base: with(airquality, plot(Temp, Ozone))

lattice: *xyplot(Ozone ~ Temp, airquality)*

ggplot2: ggplot(airquality, aes(Temp, Ozone)) + geom_point()

Our focus: ggplot2

More elegant and compact code than with base graphics

More aesthetically pleasing defaults than lattice

Very powerful for exploratory data analysis

ggplot2

- 'gg' is for 'grammar of graphics' (term by Lee Wilkinson)
- A set of terms that defines the basic components of a plot
- Used to produce figures using coherent, consistent syntax
- Easy to get started, plenty of power for complex figures

Building a Plot in ggplot2

data to visualize (a data frame)
map variables to aesthetic attributes
geometric objects – what you see (points, bars, etc)
scales map values from data to aesthetic space

faceting subsets the data to show multiple plots **stat**istical transformations – summarize data **coord**inate systems put data on plane of graphic

Data

- Must be a data frame, pulled into the ggplot() object
- Example: the iris dataset
 - A multivariate dataset introduced by Fisher (1936)

head	head(iris)							
##	Sepal.	Length	Sepal.Width	Petal.Length	Petal.Width	Species		
## '	1	5.1	3.5	1.4	0.2	setosa		
## 2	2	4.9	3.0	1.4	0.2	setosa		
## 3	3	4.7	3.2	1.3	0.2	setosa		
## 4	4	4.6	3.1	1.5	0.2	setosa		
## !	5	5.0	3.6	1.4	0.2	setosa		
## (5	5.4	3.9	1.7	0.4	setosa		

Iris setosa

Iris versicolor

Iris virginica

Aesthetics (aes)

- How your data are represented visually
 - i.e. mapping
 - Which data on the x
 - Which data on the y
 - But also: color, size, shape, transparency

```
myplot <- ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width))
summary(myplot)

## data: Sepal.Length, Sepal.Width, Petal.Length,
## Petal.Width, Species [150x5]
## mapping: x = Sepal.Length, y = Sepal.Width
## faceting: facet_null()</pre>
```


Geometry (geom)

- The geometric objects in the plot
- Points, lines, polygons, etc.
- Shortcut functions
 - geom_point()
 - geom_bar()
 - geom_line()

Building a Plot in ggplot2

data to visualize (a data frame)
map variables to aesthetic attributes
geometric objects – what you see (points, bars, etc)
scales map values from data to aesthetic space

```
ggplot(iris) + geom_point(aes(x = Sepal.Length, y = Sepal.Width))

Aesthetics map variables to scales

Data Geometric objects to display
```


An Example: Visualizing iris Data

 ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point()

Changing the Aesthetics of a geom: increase the size of points

 ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(size = 3)

Changing the aesthetics of a geom: Add some color

 ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) + geom_point(size = 3)

Changing the aesthetics of a geom: Differentiate points by shape

 ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) + geom_point(aes(shape = Species), size = 3)

Stats (stat)

- Statistical transformations and data summary
 - All geoms have associated default stats, and vice versa
 - e.g. binning for a histogram or fitting a linear model

Example: boxplots

library(MASS)
ggplot(birthwt, aes(factor(race),
bwt)) + geom_boxplot()

Facets (facet)

- Subsetting data to make lattice plots
- An example: single column, multiple rows

ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) + geom_point() + facet_grid(Species~ .)

Scales (scale)

- Control the mapping from data to aesthetics
 - Often used for adjusting color mapping
- An example: manual color scale

```
ggplot(iris,
aes(Sepal.Length,
Sepal.Width, color =
Species)) + geom_point()
+ facet_grid(Species ~.)
+
scale_color_manual(values
= c("red", "green", "blue"))
```


Coorindates (coord)

- put data on plane of graphic
 - e.g. polar coordinate plots
- Shortcut functions
 - coord_cartesian
 - coord_polar()
 - coord_map()
 - coord_trans()
- Will not cover this in detail

ggplot2 Help Topics

Help topics

Geoms

Geoms, short for geometric objects, describe the type of plot you will produce.

- geom_abitine (geom_hime, geom_viine)
 Lines herizental, vertical, and specified by slope and intercept.
- geon_bair (stat_count)
 Bars, rectangles with bases on x-axis
- geon_bin2d (stat_bin2d, stat_bin_2d)
 Add heatmap of 2d bin bounts.
- geon_blank
 Blank, draws nothing.
- geon_boxplot (stat_boxplot)
 Box and whiskers plot.
- geon_contour (stat_contour)
 Display contours of a 3d surface in 2d.
- geor_count (stat_sum)
 Count the number of observations at each leaction.
- geom_crossbar (geom_errorbar, geom_linerange, geom_cointrange)
 vertical intervals: lines, crossbars & errorbars.
- geon_density (stat_density)
 Display a smooth density estimate.
- geon_density_2d (geom_density2d, stat_density2d, stat_density_2d)
 Contours from a 2d density estimate.
- geon_dotplot
 Dot plot
- geon_enrorbanh
 Horizontal error bara
- geon_freqpoly igeom_histogram, stat_bin)
 Histograms and frequency polygons.
- geon_hex (stat_bin_hex, stat_binhex)
 Hexagon binning.

Write Functions for Day to Day Plots

 Call your function to generate a plot. It's a lot easier to fix one function that do it over and over for many plot

```
my_custom_plot <- function(df, title = "", ...) {
    ggplot(df, ...) +
    ggtitle(title) +
    whatever_geoms() +
    theme(...)
}
plot1 <- my_custom_plot(dataset1, title = "Figure 1")</pre>
```


Publication Quality Figures

If the plot is on your screen

```
ggsave(~/path/to/figure/filename.png)
```

If your plot is assigned to an object

```
ggsave(plot1, file = "~/path/to/figure/filename.png")
```

Specify a size

```
ggsave(file = "/path/to/figure/filename.png", width = 6,
height =4)
```

or any format (pdf, png, eps, svg, jpg)

```
ggsave(file = "/path/to/figure/filename.eps")
ggsave(file = "/path/to/figure/filename.jpg")
ggsave(file = "/path/to/figure/filename.pdf")
```


Basics

ggplot2 is based on the grammar of graphics, the dea that you can build every graph from the same. few components: a data set, a set of geoms-visual marks that represent data points, and a coordinate

To display data values, map variables in the data set to peathetic properties of the geom like size, color. and x and y locations.

Build a graph with **qplot()** or **ggplot()**

qplot(x = ctg, y = hwy, color = cyl, data = may, secm = "point"). Creates a complete plot with given data, geom, and maggings. Supplies many useful defaults.

gsplot(data = mog, acs(x = cty, y = hwy)).

Begins a plot that you finish by adding layers to. No. defaults, but provides more control than oplot().

ggplat(mpg, ses(hwy, cty)) + -geon_point(ses(color = cyl)) +
geon_smooth(method ="lm") + coord_cartesian() + scale_color_gradient() + theme bw()

additional

Add a new layer to a plot with a geom_*(). or stat. *O function. Each provides a zerom, a set of aesthetic mappings, and a default stat. and position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot ong" in working directory. Matches file type to file extension.

One Variable

Continuous

a <- ggolot(mpg, aes(hwyt))

a + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size.

b + geom_area(aes/y=_density_), stat = "bin"). a * geom_density(kernel = "gaussian") x, y, alpha, color, fill, linetype, size, weight

b + geom_density(aes(y = ...county..)) geom dotoloti) x, y, alpha, color, fill-

+ geom_freqpoly()

 x, y, alpha, color, linetype, size. b + geom_freepoly(ses(y = , density.));

geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight b + geom_histogram(aes(y=..density_l))

Discrete

 $b \le ggplot(mpg, aes(fl))$

b + geom_bar() x, alpha, color, fill, linetype, size, weight:

Graphical Primitives

+ geam_polygon(aes(group = group)) x, y, alpha, color, fill, linetype, size

d <- ggplot(economics, aes(date, unemploy))</p>

d - geom_path(ineend='butt'. linejoin="round", linemitre=1) x, y, alpha, color, linetype, size.

 geom_ribbon(aes(ymln=unemploy - 900), ymax=unemploy ±900() x, ymax, ymin, alpha, color, fill, linetype, size

e <- ggplot(seals, aes(x = long, y = lat));</p>

e + geom_segment(acs) xend = long + delta_long, yend = lat + delta_lat()

xmaxt long+delta_long.

x, xend, y, yend, alpha, color, linetype, size. + geom_rect(aes(xmin = long, ymin = lat,

ymax=lat+delta_lat() xmax, xmin, ymax, ymin, alpha, color, fill, Inetype, size

Two Variables

Continuous X. Continuous Y f <= ggplot(mpg, aes(cty, hwy))</pre>

Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

f + geom_blank()

geom [itteri)

geom point()

x, y, alpha, color, fill, shape, size

geom_quantile()

x, y, alpha, color, linetype, size, weight

geom_rug(sides = "bl") alpha, color, linetype, size

geom_smooth(model = lm) x, y, alpha, color, fill, linetype, size, weight.

f + geom_text(aes(label = ctyl)) x, y, label, alpha, angle, color, family, fontface, hjust, linehelght, size, viust.

Discrete X. Continuous Y g <- ggplot(mpg, aes(class, hwyt)).

g + geom_bar(stat = "identity") x, y, alpha, color, fill, linetype, size, weight

g + geom_baxplat()

lower, middle, upper, x, vmax, vmin, alpha. color, fill, linetype, shape, size, weight g + geom_dotplot(hinaxis = "\".

stackdir="center") x, y, alpha, color, fill

g + geom_violin(scale = "area"). x, y, alpha, color, fill, linetype, size, weight

Discrete X, Discrete Y h < ggolot(diamonds, acs(cut, color))

|優|| h + grom_litter()

x, y, alpha, color, fill, shape, size

Continuous Bivariate Distribution i<- ggplot(movies, aes(year, rating))</pre>

 $geom_bin2d$ (binwidth = c(5, 0.5)) amas, amin, ymas, ymin, alpha, color, fill, i Inetype, size, weight

geom_density2d() a, y, alpha, colour, linetype, size

geom_hex() a, y, alpha, colour, fill size

Continuous Function

| < ggplot/economics, ass(date, unemploy)|.</p>

|+geom_area() a, y, alpha, color, fill, linetype, size

+ seem_line() a, y, alpha, color, linetype, size.

Visualizing error

 $df \leq data.frame(grp = o(W, B), fit = 45, se = 1:2)$ k <- ggplot(dt, aes(grp, fit, ymin = fit se, ymax = fit+se))

k + geom_crossbar(fatten = 2)

x, y, ymax, ymin, alpha, color, fill, linetype,

s, ymax, ymin, alpha, color, linetype, size. width (also geom_errorbarh())

x, ymin, ymax, alpha, color, linetype, size i

k + geom_pointrange()

x, y, ymin, ymax, alpha, color, fill, linetype,

data < data.frame(murder = USArrests\$Murder, state = tolower(rownames(USAmests))) map < map_data("state") I = ggplot(data, aes(fill = murder))

I * geam_map(acs(map_id = state), map = map) * expand_limits(x=mac6long,y=mac6lat). map_id, alpha, color, fill, linetype, size.

Three Variables

see/s5z <- with(seals, sort/delta_long^2 + delta_lat^2)). m <- pepiot(seals, aesllong, lati).

m + geom_raster(ses(fill = z), hjust=0.5. vjust=0.5, interpolate=FALSE) x, y, alpha, fill

m + **geom_tile**(aestfill = zl) x, y, alpha, odlor, fill, linetype, size.

Stats - An alternative way to build a layer

Some plots visual selectronarion of the original data set. Use a stat to choose a common transformation to visualize, u.g. a #geom_bar(stat = "bin").

Each stat creates additional variables to map aesthetics. to. These variables use a common ...name...syntax.

stat functions and geom functions both combine a stat. with a geom to make a layer, i.e. stat_bin(geom="bar"). does the same as geom, ban/stat="bin").

stat function | mappings by transformation

byer specific | variable created

3 Variables

geom for layer | parameters for stat $a + stat_bin(6 \text{ nwidth} = 1, \text{ origin} = 10)$ 10 distributions x.yl .count...roount...density...indensity.

a + star bindet/binwidth = 1, binavis = 'x') X, y. | Legant Lancount. a + stat density(adjust = 1, hered = 'pansion')

A, y. L. Court, ... consity., ... scaled...

f + start_birred(dins=30, drop = TRUE) 5D distributions N w fill | county adensity. f + stat_hinhm@birs = 300

ww.fill .count....density... fix ctat_density2djecompant TRUE on 1000 N to so longiage | Lievel...

m + start_contour[sestate r]]. x v. z. order | Jevel.

m+ stat, spoke(secksolium r, angle n 20)

angle, radius, x, xand, y, yend ...x....vend...y....yend... m + ctat_cummary_hee(hes(x = 2), hins = 20, funct meer).

A.V.Z.fill] Jake.

m + ciat reammary/id/pestion of black 180, furnity and K.V.Z.fill] value

g + stat_booplet(coef=1.5) Comparisons: s.y lower, middle, appearaction.

g + star_ydensity(ac).st ii.j, keinel ii 'gaussian', scale ii 'area').

y | .density._posited._pour t__ m__wiolinvidfh__width_

financeofficially A 3 . See 25.

f + stat_quartile(b, artiles = ct0.25, 0.5, 0.75), formula = y - logb), nethed "rail"

xyl.quantle, x, y

F+stat_preedth/method = "auto".formula = y = x, se= TRUE, n = 80. A Brange mENLSE, Invelope (4)

A yill day any year option symbol

poploti) v stat_function(ersix = 3.%, General Purcese fun = dinorm, m = 100, large = Bat(ad=0.5) 바구시

stat_identity()

gaptoti) + stat_qqlasshample=1:100, datrbuton=qt, docrams - limit die ()

(+ stat_aumi) K. V. Size | 1999.

It stat summary fundates "most of best"

f + stat_unique()

Scales control how a pictimaps data values to the visual values of an easthetic. To change the mapping, add a custom scale.

goom_bar(enviil =fi)) scale fill manual(values = of skyblue", "royal blue", "blue", "navy"), limits method, "e", "p", "r"), breaks no j"d", "e", "p", "r"), name = "fuel", labels = cf"0", "E", "F", "R"))

range of values to this to use in labels to use in laperations in larger distribute larger distribute. General Purpose scales

> Use with any aesthetic alpha, color, fill, linetype, shape, size.

scale_*_continuous() - map contivalues to visualivalues. scale *_discrete() - map discrete values to visual values scale * Identity() - use data values as visual values. scale_*_manual(values = c()) - map discrete values to: manually chosen visual values

> X and Y location scales Use with convices thetics (xishown here).

scale_s_date(labels = date_format("\mathbb{\text{m}}\mathbb{\text{weeks}"), heads, = date_format("2 weeks") - heads. values as dates. See ?strotime for label formats.

scale_z_datetime() - treat x values as date times. Use same arguments as scale ix date).

scale_x_log10() - Plotx on log10 scale scale_x_reverse() - Reverse direction of x axis. scale_c_sqrt() - Plot consquare root scale

Color and fill scales Continuous

Discrete -- b - geam_ban(aneth 1 - fill scale fill brewerf palette- "Blues") For palette charge: Borary PoulorBrover

o < a + geom_dotplat(acsilit=.a.f)

scale III. graciant/ nigh = "polow"] scale fill gradiental

display browns all II scale_fill_grey(__ start = \$2, end = mayake = bed?

low = "ext", "light = "blue", mid= "white", midpoint = 256 e e scale_fill_gradientei colours = terminucolors(5-6 Nov minhow(), hear colors (topological, chicologii, ISO prorewers rewelled (

Shape scales

Manual shape values p <- f + geom_point(all over the we may 88821828 = HI 10 72 98 86 20 00 scale shape! and with such some and polici = F2(157) 90) WE 010 scale_shape_manual) 0 4 (K - 100) 10 (B - 120) 10 (C) Shapmadaro shown in 10 10 PA 00 00

Bize scales

charten (gr.

Coordinate Systems

r <- b + geom_bar()

r + coord_cartesian(xlim = o(0, 5)) alle, viim

The default cartesian coordinate system. r + coord_fixed(ratio = 1/2)

ratio, dim, vlim-

Cartesian coordinates with fixed aspect. ratio between x and y units.

r + coord_flip()

zlim, ylim.

Flipped Cartesian coordinates

r + cpord_polar(theta = "x", direction=1.) theta, start, direction Polar coordinates.

r + coord_trans(ytrans = "sort")

attrans, ytrans, lime, limy

Iransformed cartesian coordinates, Set. extras and strains to the name. of a window function. 3

z + coord map(projection = "ortho". orientation=o(41, -74, 0))

projection, prientation, xlim, wirm

Map projections from the mapproj package. (mercator (default), azequalarea, lagrange, etc.)

Facetine Facets divide a plot into subplots based on the values

of one or more discrete variables.

t + facet_grid(. ~ ft). facet into columns based on fi

t <- ggplot(mpg, ses(cty, hwy)) + geom_point().

t + facet_grid(year ~ .) facet intorrows based on year

t + facet_grid(year + fl) facet into both rows and columns. t + facet_wrap(- fl)

wrap facets into a rectangular layout

Set scales to let axis limits vary across facets.

t + facet_grid(y ~ x, scales = "free")

x and y axis limits adjust to inclividual facets.

"free_x" - x axis limits adjust.

"free_y" - y axis limits adjust.

Set labeller to adjust facet labels.

t + facet_grid(, ~ fl, labeller = label_both) tion tid tion tip t + facet, gridf, - fl. labeller = label, bounte(sipha ^ ./-))). no gal na na na

t+facet griof, - II. labeller=label parsed)

Position Adjustments

Position adjustments determine how to arrange geoms that would otherwise occupy the same space.

s <- peolot(mpg, aes(fl. fill = drv)).</p>

s + geom_bar(position = "dodge") Amange elements side by side

s + geom_bar(position = "fill") Stack elements on top of one another, normalize height

s + geom_bar/position = "stack") Stack elements on top of one another

f * geom_point(position = "jitter") Add random noise to X and Y position.

of each element to avoid overplotting. Each position adjustment can be recast as a function.

with manual width and height arguments.

s + geom_bar/position = position_dodge(width = 1))

Labels

t + extitle("New Plot Title"). Add a main title above the plot.

t + xdab("New X label")

Change the label on the X axis

t + vlab("NewY label"). Change the label on the Yakis

t + labs(title = "New title", x = "New x", y = "New y").All of the above.

Use scale functions to optiate legand labels

Legends

t + theme(legend.position = "bottom") Place legend at "bottom", "top", "left", or "right".

t + guides(color = "none")

Set legend type for each aesthetic colorbar, legend, annone (no legend)

t + scale_fill_discrete(name = "Title", labels = o(A', B', C')

Set legend title and labels with a scale function.

Themes

Grey background

default themel-

theme_classic() White background no grid i nea

theme minimal() Minimal thome:

Zooming Without olioping (preferred) - - -

t = coord_certesian($x \lim = c(0, 100), y \lim = c(0, 20)$

With clipping (removes unseen data points): t + xlim(0, 100) + ylim(10, 20)

 $t + scale \times continuous(limits = c(0, 100)) + ...$ scale v continuous(imits = ci0, 1000)

Basic Plots

Histograms and Bar Plots

x axis is	Height of bar represents	Common name			
Continuous	Count	Histogram			
Discrete	Count	Bar graph			
Continuous	Value	Bar graph			
Discrete	Value	Bar graph			

Histograms

See ?geom_histogram for list of options

```
h <- ggplot(faithful, aes(x = waiting))
h + geom_histogram(binwidth = 30, colour = "black")</pre>
```


Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Histograms

See ?geom_histogram for list of options

```
h <- ggplot(faithful, aes(x = waiting))
h + geom_histogram(binwidth = 8, fill = "steelblue",
colour = "black")</pre>
```



```
ggplot(iris, aes(Species, Sepal.Length)) +
geom_bar(stat = "identity")
```



```
df <- melt(iris, id.vars = "Species")
ggplot(df, aes(Species, value, fill = variable)) +
    geom_bar(stat = "identity")</pre>
```

id	time	¥1	x2
1	1	5	6
1	2	3	5
2	1	6	1
2	2	2	4

id	time	variable	value
1	1	x1	5
1	2	x1	3
2	1	x1	6
2	2	x1	2
1	1	x2	5
1	2	x2	5
2	1	x2	1
2	2	x2	4

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)


```
ggplot(df, aes(Species, value, fill = variable)) +
   geom_bar(stat = "identity", position = "dodge")
```



```
ggplot(df, aes(Species, value, fill = variable)) +
   geom_bar(stat = "identity", position="dodge", color="black")
```


Line Graphs

```
climate <- read.csv("data/climate.csv", header = T)
ggplot(climate, aes(Year, Anomaly10y)) +
    geom_line()</pre>
```


Line Graphs

 Plot confidence regions

```
climate <- read.csv("data/climate.csv", header = T)
ggplot(climate, aes(Year, Anomaly10y)) +
    geom_ribbon(aes(ymin = Anomaly10y - Unc10y,
        ymax = Anomaly10y + Unc10y),
    fill = "blue", alpha = .1) +
    geom_line(color = "steelblue")</pre>
```


Density Plots

ggplot(faithful, aes(waiting)) + geom_density()

Density Plots

```
ggplot(faithful, aes(waiting)) +
   geom_density(fill = "blue", alpha = 0.1)
```


Density Plots

```
ggplot(faithful, aes(waiting)) +
   geom_line(stat = "density")
```


Area Graphs

ggplot(df, aes(x=weight, fill=sex)) + geom_area(stat="bin")

Histogram with Density Curve

```
ggplot(dat, aes(x=rating)) +
geom_histogram(aes(y=..density..), binwidth=.5, colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666")
```


Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Box Plots

ggplot(dat, aes(x=cond, y=rating)) + geom_boxplot()

Box Plots

ggplot(dat, aes(x=cond, y=rating, fill=cond)) + geom_boxplot() + coord_flip()

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Scatter Plots

ggplot(dat, aes(x=xvar, y=yvar)) + geom_point()

Scatter Plots

ggplot(dat, aes(x=xvar, y=yvar)) + geom_point(shape=1) +
geom_smooth(method=lm)

Dr. Ke ∠nou (nttp://www.cs.nott.ac.uk/~pszkz/)

Scatter Plots

ggplot(dat, aes(x=xvar, y=yvar, colour=cond, shape=cond)) + geom_point(size=5) +
geom_smooth(method=lm, fullrange=TRUE)

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Pareto Chart

```
dat <- dat[order(dat$count,
decreasing=TRUE), 1
dat$defect <- factor(dat$defect,
levels=dat$defect)
Dat$cum <- cumsum(dat$count)
ggplot(dat, aes(x=defect)) +
 geom_bar(aes(y=count), fill="blue",
stat="identity") +
 geom_point(aes(y=cum)) +
 geom_path(aes(y=cum, group=1))
```


Heat Map

ggplot(dat, aes(x=xvar, y=yvar, fill=value)) + geom_tile()

Complex Plots

ggplot2 Extensions

ggplot2 extensions

A List of ggplot2 extensions

This site tracks and lists **ggplot2** extensions developed by R users in the community.

The aim is to make it easy for R users to find developed extensions.

https://www.ggplot2-exts.org/ggiraph.html

http://www.ggplot2-exts.org/gallery/

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

ggplot2 Extensions: Radar Graphs


```
ggradar star
ggradar allows you to build radar charts with
ggplot2.
author: ricardo-bion
tags: visualization, general
js libraries:
```

```
mtcars %>%
    add_rownames( var = "group" ) %>%
    mutate_each(funs(rescale), -group)
%>%
    tail(4) %>% select(1:10) -> mtcars_radar
ggradar(mtcars_radar)
```


ggplot2 Extensions: Mosaic Plots

```
ggplot(data = NHANES) +
    geom_mosaic(aes(weight = Weight, x = product(SleepHrsNight, AgeDecade), fill=factor(SleepHrsNight)),
na.rm=TRUE) +    theme(axis.text.x=element_text(angle=-25, hjust= .1)) + labs(x="Age in Decades ",
title='f(SleepHrsNight | AgeDecade) f(AgeDecade)') + guides(fill=guide_legend(title = "SleepHrsNight",
reverse = TRUE))
```


ggplot2 Extensions

Many more...

http://www.ggplot2-exts.org/geomnet.html

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Trellis Display

ggplot(tips, aes(x=total_bill, y=tip/total_bill)) + geom_point(shape=1) +
+ facet_grid(sex ~ day)

Chernoff Faces

library(aplpack)

faces(crime_filled[,2:8], labels=crime_filled\$state)

Parallel Coordinates

library(MASS)

parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])

> hood(state.x77)								
	Population	Income	1111tercey	Hife Exp	Nurder H	6 Grad	Fmst	AMED.
Alabana	3615	3624	2.1	59.6E	15.1	41.3	26	50703
Alueku	365	€315	1.5	59.31	11.3	66.7	1 5 2	566432
Arizona	2212	4E30	1.8	7a.EE	7.3	58.1	15	113417
Arkur sus	2110	3378	1.9	73.66	10.1	39.9	€Ē	51945
Jalifornia	21198	±114	1.1	/1.7/1	18.3	62.6	26	156361
Colorado	2541	4004	€.7	72.80	6.0	60.9	100	100765

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/parcoord.html

https://www.safaribooksonline.com/blog/2014/03/31/mastering-parallel-coordinate-charts-r/

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Table Lens

- ggplot2 and R may not be the best tool to achieve that.
- Detailed codes can be found in the reference

http://simondorfman.com/create-table-lens-display-with-r-and-ggplot2

Take Home Exercises

- You've just scratched the surface with R and ggplot2.
- Read the "R Graphics Cookbook"
- Practice

- Some codes on ggplot2 for iris data:
 - https://www.mailman.columbia.edu/sites/ default/files/media/fdawg_ggplot2.html
 - https://rpubs.com/karagawa/ggplot2

More Resources

- http://tutorials.iq.harvard.edu/R/Rgraphics/ Rgraphics.html
- http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html
- https://www.statmethods.net/advgraphs/ ggplot2.html
- http://r-statistics.co/ggplot2-Tutorial-With-R.html

Next Lecture

- Topic:
 - Advanced R and Visualization Tools

- Next Friday (28 Feb)
 - -13:00 15:00
 - A25, Business South,
 Jubilee Campus

Chart Typologies

Excel, Many Eyes, Google Charts

Visual Analysis Grammars VizQL, ggplot2

Visualization Grammars Protovis, D3.js

Component Architectures

Prefuse, Flare, Improvise, VTK

Graphics APIs

Processing, OpenGL, Java2D