0.1 H29 数学 A

 $\boxed{1}$ $(1)\sum\limits_{k=1}^{n}|a_n|$ は n に関する単調増加数列であり, $\sum\limits_{k=1}^{n}|a_n|\leq\sum\limits_{k=1}^{\infty}b_n$ より,有界である.よって $\sum|a_n|$ は収束する.したがって $\sum\limits_{k=1}^{n}|a_n|$ はコーシー列である.

 $S_n = \sum\limits_{k=1}^n a_n$ とすると, $n \geq m$ に対して $|S_n - S_m| = |\sum\limits_{k=m+1}^n a_n| \leq \sum\limits_{k=m+1}^n |a_n| \to 0 \quad (n,m \to \infty)$ である. よって S_n はコーシー列であるから,収束列.

 $(2)x\in (0,1)$ で |f(x)|< x より $\lim_{x\to 0}f(x)=0$ である。x=0 なら $\sum_{n=1}^{\infty}f(2^nx)=0$ である。0< x<1/2 のとき。 $2^{n_0}x\leq 1<2^{n_0+1}x$ となる正の整数 n_0 が存在する。 $\sum_{n=1}^{n_0}|f(2^nx)|\leq \sum_{n=1}^{n_0}2^nx=x(2^{n_0+1}-2)\leq 2$ である。

また $\sum\limits_{n=n_0+1}^{\infty}|f(2^nx)|\leq\sum\limits_{n=n_0+1}^{\infty}1/(2^nx)=1/(2^{n_0}x)\leq 2$ である. よって $\sum\limits_{n=1}^{\infty}|f(2^nx)|\leq 4$ であるから $\sum\limits_{n=1}^{\infty}f(2^nx)$ は収束する.

- $(3) \sup_{x \in [0,\infty)} |\sum_{n=1}^{\infty} f(2^n x)| \le 4$ である.
- 2 (1)A は正則であるから $\det A \neq 0$ である. $\det A = \det(-^t A) = (-1)^n \det A$ であるから n は偶数である.
- $(2)\mathbb{C}^n$ における標準エルミート内積を $(x,y)=x^{\overline{ty}}$ で表す.A の固有値 λ とその固有ベクトル $v\neq 0$ をとる. $\lambda(v,v)=(Av,v)=(v,{}^{\overline{t}}\!\!Av)=(v,-Av)=-\overline{\lambda}(v,v)$ である. $v\neq 0$ より $(v,v)\neq 0$ であるから $\lambda=-\overline{\lambda}$ より λ の実部は 0. よって λ は純虚数である.
- $(3)v \in W(B,\alpha)$ に対して $BAv = ABv = \alpha Av$ より $Av \in W(B,\alpha)$ である.よって $W(B,\alpha) \to W(B,\alpha); v \mapsto Av$ は $W(B,\alpha)$ 上の線形写像である.A は正則であるからこの線形写像は単射.有限次元であるから全単射であるから $AW(B,\alpha) = W(B,\alpha)$ である.
- $(4)i: W(B,\alpha) \to \mathbb{R}^n$ を包含写像とする。 $g: W(B,\alpha) \to W(B,\alpha); v \mapsto Av$ は $W(B,\alpha)$ 上の同型写像である。 \mathbb{R}^n の標準内積に関する $W(B,\alpha)$ の正規直交基底 $\{w_1,\ldots,w_k\}$ を一つ固定し,この基底に関する g の表現行列を G とする。 $v \in W(B,\alpha)$ に対して i(Gv) = Ai(v) である。

 $x=\sum a_iv_i,y=\sum b_iv_i$ に対して $\langle x,y\rangle=\sum a_ib_i$ と定めれば $W(B,\alpha)$ の内積となり, $\langle x,y\rangle=(i(x),i(y))$ である. (:: 基底が正規直交基底)

よって $\langle Gx,y\rangle=(i(Gx),i(y))=(Ai(x),i(y))=-(i(x),Ai(y))=-\langle x,Gy\rangle$ である. よって G は正則な交代行列. したがって k は偶数. B が対称行列であるから,固有空間の次元は固有値の固有方程式における重複度である. したがって全ての固有値の重複度が偶数であるから, $g_B(t)=f(t)^2$ なら f(t) が存在する.

別解

 $W=W(B,\alpha)$ の基底 $\{t_1,\ldots,t_k\}$ をとり, \mathbb{R}^{\ltimes} に延長して $\{t_1,\ldots,t_n\}$ を得る.シュミットの正規直交化法をつかって $\{\tilde{t_1},\ldots,\tilde{t_n}\}$ を得る.k 個目までは W の元である.g の $\{\tilde{t_1},\ldots,\tilde{t_k}\}$ に関する表現行列を G とする.f の $\{\tilde{t_1},\ldots,\tilde{t_n}\}$ に関する表現行列を F とする.G は F の首座小行列である. $\tilde{T}=\begin{pmatrix}\tilde{t_1}&\ldots&\tilde{t_n}\end{pmatrix}$ とすれば, $F=\tilde{T}^{-1}AT$ である.T は直交行列であるから F は交代行列.よって G は交代行列.(1) より k は偶数.

- 3 X の開集合全体を \mathcal{O} とすると、 $\mathcal{O}=2^{\mathbb{Q}}\cup\{\mathbb{R}\}$ である。実際これは位相の定義をみたす。
- $(1)A \in 2^{\mathbb{Q}}$ に対して $f^{-1}(A) = \{x \in \mathbb{R} \mid x+1 \in A \subset \mathbb{Q}\} \subset \mathbb{Q}$ である。また $f^{-1}(\mathbb{R}) = \mathbb{R}$ であるから,f は連続.
 - $(2)\sqrt{2}$ を含む開集合は \mathbb{R} のみである. $\sqrt{3}$ についても同様. よってハウスドルフでない.

- (3)X の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda, U_{\lambda}\in\mathcal{O}\}$ を任意にとる. $\sqrt{2}$ を含む開集合が S に存在する. $\sqrt{2}$ を含む開集合は \mathbb{R} のみであるから, $\mathbb{R}\in S$ である. よって有限部分被覆 $\{\mathbb{R}\}$ が存在するからコンパクト.
- $(4)f^{-1}(\{0\})=\mathbb{Q}$ である。 $\{0\}$ は R では閉集合であるから,f が連続なら \mathbb{Q} は X で閉集合である.すなわち, $\mathbb{R}\setminus\mathbb{Q}$ は X で開集合であるがこれは矛盾.よって f は連続でない.
- 4 $(1)1/(z^2+1)^{n+1}$ の z=i まわりのローラン展開を $\sum_k a_k(z-i)^k$ とする. $1/(z+i)^{n+1}=\sum_k a_k(z-i)^{k+n+1}$ であるから,k+n+1<0 なら $a_k=0$ である.両辺の n 回微分に i を代入する.左辺は $(-(n+1))(-(n+2))\dots(-(2n))(2i)^{-2n-1}=(-1)^n(2i)^{-2n-1}(2n)!/n!$ である.右辺は $a_{-1}n!$ であるから, $a_{-1}=(-1)^n(2i)^{-2n-1}(2n)!/(n!)^2$ である.これが留数.

$$\left| \int_{\Gamma_R} \frac{dz}{(z^2+1)^{n+1}} \right| = \left| \int_0^\pi \frac{Rie^{i\theta}}{(1+R^2e^{2i\theta})^{n+1}} dz \right| \leq \int_0^\pi \left| \frac{R}{(1+R^2e^{2i\theta})^{n+1}} \right| dz \leq \int_0^\pi \frac{R}{|R^2-1|^{n+1}} dz = \frac{\pi R}{|R^2-1|^{n+1}} \to 0 \quad (R \to \infty)$$

 $(3)\int_{-1}^1 1/(x^2+1)^{n+1}dx$ は有限値をとる. $\int_1^\infty 1/(x^2+1)^{n+1}dx$, $\int_{-\infty}^{-1} 1/(x^2+1)^{n+1}dx$ はそれぞれ収束する. よって $\int_{-\infty}^\infty 1/(x^2+1)^{n+1}dx$ は収束する. $\int_{-R}^R 1/(z^2+1)^{n+1}dz=\int_{C_R} 1/(z^2+1)^{n+1}dz-\int_{\Gamma_R} 1/(z^2+1)^{n+1}dz$ である. $(C_R$ は -R から R まで進み G_R 上を反時計まわりに進む経路) 留数定理と (2) より

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^{n+1}} dx = 2\pi i \frac{(-1)^n (2n)!}{(n!)^2 (2i)^{2n+1}} = \frac{(2n)!}{(n!)^2 2^{2n}} \pi = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \pi$$