

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA APLICAÇÕES INFORMÁTICAS NA BIOMEDICINA

Ficha 5

Bernardo Silva (a77230) César Ribeiro (a79014) Mariana Fernandes (a81728) Paulo Jorge (a78203) Raul Vilas Boas (a79617)

18 de Novembro de 2019

Conteúdo

1	Introdução	2
2	Jobs	2
	2.1 Job 1	
	2.2.1 Map e criação da tabela em MySQL	
	2.3 Job 3	4
3	Conclusão	5

1 Introdução

Este relatório tem como finalidade expor a proposta de resolução que o grupo realizou para responder à ficha 5.

A ficha possui em anexo um ficheiro csv denominado "mental_health" que contém informação correspondente a aspetos pessoais e profissionais, e um questionário que avalia a presença de perturbações mentais nos profissionais das áreas TI. O ficheiro possui 21 atributos definidos.

O objetivo deste trabalho é então definir, criar e executar diversas *jobs* utilizando o programa *Talend*.

2 Jobs

2.1 Job 1

No primeiro job vamos filtrar os trabalhadores que procuraram tratamento para uma doença mental. Isto é, vamos pegar nos dados fornecidos no mental_health.csv e filtrar apenas os dados dos quais na coluna respectiva ao treatment aparece a string "Yes". O output vai ser direccionado para um novo ficheiro excel com todas as informações dos trabalhadores que procuraram tratamento.,

Fig. 1: Esquema do job1 no Talend.

Na figura 2 está definido o filtro usado no tFilterRow que vai ter influenciar o resultado.

Input column	Function	Operator	Value
treatment	Match	==	"Yes"

Fig. 2: Filtro definido no tFilterRow

Na tabela 1 está representado uma pequena parte dos resultados obtidos ao correr o primeiro job. Nesta tabela conseguimos comprovar que na coluna treatment todas as linhas possuem um "Yes".

Tabela 1: Resultados parciais do job 1

Timestamp	Age	Gender	Country	State	Self Employed	Family History	Treatment
2014-08-27 11:29:31	37	Female	United States	IL	NA	No	Yes
2014-08-27 11:29:46	31	Male	United Kingdom	NA	NA	Yes	Yes
2014-08-27 11:31:50	35	Female	United States	MI	NA	Yes	Yes
2014-08-27 11:32:39	42	Female	United States	IL	NA	Yes	Yes
2014-08-27 11:32:44	31	Male	United States	OH	NA	No	Yes
2014-08-27 11:33:23	42	female	United States	CA	NA	Yes	Yes

2.2 Job 2

Para o Job 2 definimos que o objetivo era explorar a facilidade de dar baixa médica numa empresa de grandes dimensões. As colunas essenciais para este job são no_employes e leave. Primeiro começamos por criar um conexão à base de dados para posteriormente podermos inserir os dados na base de dados. De seguida usamos um tMap para inserir os dados do mental_health na base de dados. Na figura 3 está representado o esquema do job2 no Talend.

Fig. 3: Esquema do *job*2 no Talend.

Depois disto começamos a filtrar a informação. O primeiro filtro usado consistiu em filtrar apenas as empresas que tenham mais de 1000 trabalhadores e cujas idades sejam maiores que 0, devido ao facto de alguns dados terem idades inválidas. O segundo serve para filtrar apenas os trabalhadores que consideram fácil ter baixa médica para problemas de saúde mental.

Conditions	Input column	Function	Operator	Value			
	no_employees	Empty	==	"More than 1000"			
	Age	Empty	>=	0			
Conditions							
	Input column	Function	Operator	Value			
	leave	Empty	==	"Somewhat easy"			
	leave	Empty	==	"Very easy"			
	leave	Empty	==	"Yes"			

Fig. 4: Filtros definidos no tFilterRow

Por último, ordenamos por ordem crescente a idade e guardamos o resultado num ficheiro excel.

Fig. 5: Parâmetro definido no tSortRow

Na tabela 2 está representado uma pequena parte dos resultados obtidos do job2. Assim conseguimos comprovar que a idade está ordenada por ordem crescente e que as colunas no $no_employes$ e leave foram filtradas corretamente.

Tabela 2: Resultados parciais do job2

Timestamp	Age	Gender	(\ldots)	$no_employes$	(\ldots)	leave
2014-08-28 05:05:32	20	F	(\dots)	More than 1000	(\ldots)	Somewhat easy
2014-08-27 14:27:51	22	Female	(\dots)	More than 1000	(\dots)	Somewhat easy
2014-08-27 15:15:42	22	F	(\dots)	More than 1000	(\dots)	Somewhat easy
2014-08-28 01:38:53	23	female	(\dots)	More than 1000	(\dots)	Somewhat easy
2014-08-28 17:20:41	23	Female	(\dots)	More than 1000	(\dots)	Somewhat easy
2014-08-27 15:36:13	24	Female	(\dots)	More than 1000	(\dots)	Somewhat easy

2.2.1 Map e criação da tabela em MySQL

Para a criação da tabela MySQL, utilizamos um map para, a cada coluna, adaptar os dados para estar em conformidade com o MySQL.

(Segue-se a seguir uma imagem descritiva)

Fig. 6: Definições avançadas do processo tMap

Como os dados fornecidos não possuem nenhum campo que serviria como primary key, precisamos de criar a nossa própria primary key. Para isso, criamos uma nova coluna chamada "key" e seleccionamos a checkbox "Key", como podemos ver na tabela da direita, na imagem acima. A seguir, criamos uma expressão que simplesmente incrementa de 1 em 1, a partir do número 1, para cada row (observar tabela do meio da imagem acima).

2.3 Job 3

Para o Job 3 vamos verificar de um modo geral se pessoas que não se conformem com o género tem uma maior prevalência de doenças mentais na família do que em pessoas que se conformam.

Na figura 7 está representado o esquema do resultado no Talend.

Primeiro filtramos os trabalhadores que responderam como M,m,Male,F,f,Female e female ou "cis" e vamos guardar esse resultado num ficheiro. O resultado que não foi filtrado vai ser guardado noutro ficheiro

Para além disto, ordenou-se por family_history para facilitar a observação do número de pessoas que responderam 'sim' nesta coluna. Dos resultados obtidos, cerca de metade dos não conformados verificou-se problemas de doenças mentais na família. Dos conformados apenas um terço tinha familiares com problemas mentais.

Fig. 7: Esquema do *job*3 no Talend.

Fig. 8

3 Conclusão

A resolução desta ficha permitiu-nos utilizar a ferramenta Talend em paralelo com MySql, a ferramenta em si é complexa e requer experiência e por isso esta ficha foi uma mais valia para nos familiarizarmos com a mesma. Para concluir, o grupo acha que concretizou com sucesso as três jobs pedidas no enunciado.