Exercise 5 (due on December 23)

Choose 4 out of 8 problems to submit. (The problems are chronically ordered by the materials.) Let $\ell \geq 3$ be a prime number.

Problem 5.1. (Fontaine–Laffaille modules are weakly admissible) Let M be a \mathbb{Z}_{ℓ} -free Fontaine–Laffaille module, that is a tuple $(M, \operatorname{Fil}^{\bullet}M, (\Phi^{i})_{i})$, consisting of

- a finite free \mathbb{Z}_{ℓ} -module M,
- equipped with a decreasing filtration $\operatorname{Fil}^{\bullet}M$ by saturated \mathbb{Z}_{ℓ} -submodules $\operatorname{Fil}^{i}M$ (i.e. $M/\operatorname{Fil}^{i}M$ is still a free \mathbb{Z}_{ℓ} -module) such that $\operatorname{Fil}^{0}M=M$ and $\operatorname{Fil}^{\ell-1}M=0$; and
- Φ^i : $\mathrm{Fil}^i M \to M$ are \mathbb{Z}_{ℓ} -linear maps such that $\Phi^i|_{\mathrm{Fil}^{i+1}M} = \Phi^{i+1}$, and $M = \sum_i \Phi^i(\mathrm{Fil}^i M)$.

Prove the following statements:

(1) Choose a basis of M as $\{e_{0,1},\ldots,e_{0,r_0},e_{1,1},\ldots,e_{1,r_1},e_{2,1},\ldots,e_{\ell-2,r_{\ell-2}}\}$ so that

$$\operatorname{Fil}^{\ell-2}M = \mathbb{Z}_{\ell}e_{\ell-2,1} \oplus \cdots \oplus \mathbb{Z}_{\ell}e_{\ell-2,r_{\ell-2}};$$

$$\operatorname{Fil}^{\ell-3}M = \operatorname{Fil}^{\ell-2}M \oplus \mathbb{Z}_{\ell}e_{\ell-3,1} \oplus \cdots \oplus \mathbb{Z}_{\ell}e_{\ell-3,r_{\ell-3}};$$

$$\cdots \qquad \cdots$$

$$\operatorname{Fil}^{0}M = \operatorname{Fil}^{1}M \oplus \mathbb{Z}_{\ell}e_{0,1} \oplus \cdots \oplus \mathbb{Z}_{\ell}e_{0,r_{0}} = M.$$

Show that with respect to this basis, the matrix F for Φ^0 takes the form of

$$F = B \cdot \operatorname{Diag}\left(\underbrace{1, \dots, 1}_{r_0}, \underbrace{\ell, \dots, \ell}_{r_1}, \underbrace{\ell^2, \dots, \ell^2}_{r_2}, \dots, \underbrace{\ell^{\ell-2}, \dots, \ell^{\ell-2}}_{r_{\ell-2}}\right)$$

for a matrix $B \in GL(\mathbb{Z}_{\ell})$. (Note that it is not difficult to show that $B \in M(\mathbb{Z}_p)$. To see that B is invertible, one needs to use the condition $M = \sum_i \Phi^i(\operatorname{Fil}^i M)$.)

- (2) Deduce from (1) that viewing $M \otimes \mathbb{Q}_{\ell}$ as a filtered ϕ -module (with $\phi = \Phi^0$), the Newton degree of $M \otimes \mathbb{Q}_{\ell}$ is the same as the Hodge degree.
- (3) Let N be a saturated submodule of M that is stable under the Φ^i -actions. Then the filtration of M induces a filtration on N. Show that N admits similar basis as in M so that Φ^0 takes a form similar to F above except that we cannot ensure that the corresponding B is an invertible integral basis.

Using this, prove that $M \otimes \mathbb{Q}_{\ell}$ is a weakly admissible filtered φ -module.

Solution. (1) Write B_i for the matrix for which

$$\Phi^{i}(e_{i,1},\ldots,e_{i,r_{i}}) = (e_{0,1},\ldots,e_{\ell-2,r_{\ell-2}}) \cdot B_{i}.$$

Then we have

$$\Phi^0(e_{i,1},\ldots,e_{i,r_i}) = (e_{0,1},\ldots,e_{\ell-2,r_{\ell-2}}) \cdot \ell^i B_i.$$

Putting these together, we have

$$\Phi^{0}(e_{0,1}, \dots, e_{\ell-2, r_{\ell-2}}) = (e_{0,1}, \dots, e_{\ell-2, r_{\ell-2}}) (B_{0}, \ell B_{1}, \dots, \ell^{\ell-2} B_{\ell-2})$$

$$= (e_{0,1}, \dots, e_{\ell-2, r_{\ell-2}}) (B_{0}, B_{1}, \dots, B_{\ell-2}) \cdot \operatorname{Diag}(\underbrace{1, \dots, 1}_{r_{0}}, \underbrace{\ell, \dots, \ell}_{r_{1}}, \underbrace{\ell^{2}, \dots, \ell^{2}}_{r_{2}}, \dots, \underbrace{\ell^{\ell-2}, \dots, \ell^{\ell-2}}_{r_{\ell-2}})$$

Write $B = (B_0, \dots, B_{\ell-2})$. Since $\Phi^i|_{\operatorname{Fil}^{i+1}M} = \ell \Phi^{i+1}$, we have for i < j, $\Phi^i(\operatorname{Fil}^j M) \subseteq \Phi^j(\operatorname{Fil}^j M)$. Thus

$$M = \sum \Phi^{i}(\operatorname{Fil}^{i}M) = \sum \Phi^{i}(\langle e_{i,1}, \dots, e_{i,r_{i}} \rangle) = \langle (e_{1,1}, \dots, e_{\ell-2,r_{\ell-2}})B \rangle$$

It follows from this that $B \in GL(\mathbb{Z}_{\ell})$.

(2) $t_H(M \otimes \mathbb{Q}_{\ell}) = \sum i r_i$ and

$$t_N(M \otimes \mathbb{Q}_{\ell}) = v_{\ell}(\det B \cdot \operatorname{Diag}(1, \dots, \ell^{\ell-2})) = v_{\ell}(\ell^{\sum ir_i}) = \sum ir_i.$$

So $t_H(M \otimes \mathbb{Q}_{\ell}) = t_N(M \otimes \mathbb{Q}_{\ell}).$

(3) Since $N/\mathrm{Fil}^i N = N/(\mathrm{Fil}^i M \cap N)$ is a submodule of $M/\mathrm{Fil}^i M$, $N/\mathrm{Fil}^i N$ is a free \mathbb{Z}_{ℓ} -module. Hence we may provide N with a basis $\{e'_{0,1},\ldots,e'_{0,r'_0},\ldots,e'_{\ell-2,r'_{\ell-2}}\}$ with the similar property as in (1), except that the corresponding B' may not be invertible. Thus

$$t_N(N \otimes \mathbb{Q}_{\ell}) = \sum_i ir'_i + v_{\ell}(\det B') \ge \sum ir'_i = t_H(N \otimes \mathbb{Q}_{\ell}).$$

So M is weakly admissible.

Problem 5.2. (Deformation of Fontaine–Laffaille modules) Let \overline{M} denote the following Fontaine–Laffaille module: $\overline{M} = \mathbb{F}_{\ell}e_1 \oplus \mathbb{F}_{\ell}e_2$, with $\mathrm{Fil}^0\overline{M} = \overline{M} \supset \mathrm{Fil}^1\overline{M} = \mathbb{F}_{\ell}e_1 \supset \mathrm{Fil}^2\overline{M} = 0$; $\Phi^1(e_1) = e_2$ and $\Phi^0(e_2) = e_1$.

Consider the following deformation functor:

$$\mathrm{Def}_{\overline{M}}: \mathsf{CNL}_{\mathbb{Z}_\ell} \longrightarrow \mathsf{Sets}$$

$$A \longmapsto \big\{ \mathsf{Fontaine-Laffaille} \ \mathsf{module} \ M \ \mathsf{such that} \ M \otimes_A \mathbb{F}_\ell \cong \overline{M} \big\} \big/ \sim$$

(Note that this an unframed deformation.) Show that $\operatorname{Def}_{\overline{M}}$ is represented by a two-variable formal power series over \mathbb{Z}_{ℓ} . (Had we fixed the determinant, it would be only one-variable.)

Solution. For any $M \in \operatorname{Def}_{\overline{M}}(A)$, we may assume that $M = Ae_1 \oplus Ae_2$, $\operatorname{Fil}^1 M = Ae_1$, and $\Phi^1(e_1) = \alpha e_1 + \beta e_2$. Then $\beta \equiv 1 \mod \varpi$. In particular, β is a unit in A.

We may replace e_2 by $\alpha e_1 + \beta e_2$ so that $\Phi^1(e_1) = e_2$. Now, let $\Phi^0(e_2) = \gamma e_1 + \delta e_2$. By compatibility, we must have $\gamma \equiv 1 \mod \varpi$ and $\delta \equiv 0 \mod \varpi$. The corresponding Fontaine–Laffaille module is uniquely determined by $\gamma, \delta \in A$. So the deformation ring is represented by $\mathbb{Z}_{\ell}[X,Y]$.

Problem 5.3. (Some computation from Weil's conjecture) This is partially copied from Hartshorne GTM 52's Appendix C. Let X denote a projective smooth variety of dimension n over a finite field \mathbb{F}_q . Let |X| denote the set of closed points of X; and for $x \in |X|$, write $\deg(x) = [k_x : \mathbb{F}_q]$ for the degree at x. Define the zeta function of X to be

$$\zeta_X(t) := \prod_{x \in |X|} \frac{1}{1 - t^{\deg(x)}} \in \mathbb{Q}[\![t]\!].$$

Here t is a proxy of q^{-s} in the usual Riemann zeta function; but in function field, luckily, all residue fields at closed points are extensions of the *same* finite field \mathbb{F}_q .

- (1) Write $N_r := \#X(\mathbb{F}_{q^r})$. Show that $\zeta_X(t) = \exp\Big(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\Big)$.
- (2) Compute $\zeta_X(t)$ for $X = \mathbb{P}^n$ over \mathbb{F}_q .
- (3) Consider the geometric q-Frobenius ϕ_q on each of the cohomology group $H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)$. The Lefschetz trace formula says that

$$#X(\mathbb{F}_{q^r}) = \sum_{i=0}^{2n} (-1)^i \mathrm{Tr} \left(\phi_q^r; \ H_{\mathrm{et}}^i(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell) \right)$$

Show that plugging Lefschetz trace formula into the definition of $\zeta_X(t)$ gives

$$\zeta_X(t) = \frac{\prod_{i \text{ odd}} \det \left(1 - \phi_q t; \ H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)\right)}{\prod_{i \text{ even}} \det \left(1 - \phi_q t; \ H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)\right)}.$$

(In particular, $\zeta_X(t) \in \mathbb{Q}(t)$.

(4) (Optional) The Poincaré duality for étale cohomology says that there is a ϕ_q -equivariant isomorphism

$$H^i_{\mathrm{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell) \cong H^{2n-i}_{\mathrm{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)^*(-\dim X).$$

Show that this implies the following functional equation:

$$\zeta_X\left(\frac{1}{q^n t}\right) = \pm q^{nE/2} t^E \zeta_X(t),$$

where E is the Euler characteristic of X, namely, $E = \sum_{i} (-1)^{i} \dim H^{i}_{\text{et}}(X_{\mathbb{F}_{a}}, \mathbb{Q}_{\ell})$.

Solution. (1) By taking formal integrals and formal derivatives, $\zeta_X(t) = \exp\left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}\right)$ is equivalent to

$$t \cdot \frac{d}{dt} \log \zeta_X(t) = \sum_{r=1}^{\infty} N_r t^r.$$

Note that $N_r = \#X(\mathbb{F}_{q^r}) = \sum_{\substack{x \in |X| \\ \deg(x)|r}} \deg(x).$

$$t \cdot \frac{d}{dt} \log \zeta_X(t) = t \cdot \sum_{x \in |X|} \frac{d}{dt} \log \left(\left(1 - t^{\deg(x)} \right)^{-1} \right)$$

$$= \sum_{x \in |X|} \deg(x) \cdot \frac{t^{\deg(x)}}{1 - t^{\deg(x)}} = \sum_{x \in |X|} \deg(x) \cdot \sum_{k \ge 1} t^{k \cdot \deg(x)}$$

$$= \sum_{x \in |X|} \sum_{r \ge 1} \sum_{\deg(x) \mid r} \deg(x) t^r = \sum_{r \ge 1} N_r t^r.$$

(1) is proved.

(2) For
$$X = \mathbb{P}^n$$
, $\mathbb{P}^n = \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^1 \sqcup \{\text{pt}\}$. Then

$$N_r = \#\mathbb{P}^n(\mathbb{F}_{q^r}) = 1 + q^r + q^{2r} + \dots + q^{nr}.$$

So we have

$$\log \zeta_{\mathbb{P}^n}(t) = \sum_{r \ge 1} \left(1 + q^r + q^{2r} + \dots + q^{nr} \right) \cdot \frac{t^r}{r} = \log \frac{1}{1 - t} + \log \frac{1}{1 - qt} + \dots + \log \frac{1}{1 - q^n t}.$$

Thus

$$\zeta_{\mathbb{P}^n}(t) = \frac{1}{(1-t)(1-qt)\cdots(1-q^nt)}.$$

(3) By Lefschetz trace formula,

$$\log \zeta_X(t) = \sum_{i=0}^{2n} \sum_{r>1} (-1)^i \operatorname{Tr} \left(\phi_q^r; H_{\operatorname{et}}^i(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell) \right)$$

Suppose that the eigenvalues of ϕ_q acting on $H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)$ are $\alpha_{i,1}, \ldots, \alpha_{i,d_i} \in \overline{\mathbb{Q}}_\ell$ (which in fact belong to $\overline{\mathbb{Q}}$), then

$$\sum_{r\geq 1} \operatorname{Tr}\left(\phi_q^r; H_{\operatorname{et}}^i(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)\right) \frac{t^r}{r} = \sum_{r\geq 1} \left(\alpha_{i,1}^r + \dots + \alpha_{i,d_i}^r\right) \frac{t^r}{r}$$

$$= \log \frac{1}{1 - \alpha_{i,1}t} + \dots + \frac{1}{1 - \alpha_{i,d_i}t} = \log \frac{1}{\det\left(1 - \phi_q t; H_{\operatorname{et}}^i(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)\right)}.$$

Combining this with the expression of $\log \zeta_X(t)$, we deduce immediately that

$$\zeta_X(t) = \frac{\prod_{i \text{ odd}} \det \left(1 - \phi_q t; H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_l) \right)}{\prod_{i \text{ even}} \det \left(1 - \phi_q t; H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_l) \right)}.$$

In particular, $\zeta_X(t)$ is the power series expansion of a rational function of t.

(4) By Poincaré duality, $H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell) \cong H^{2n-i}_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)(-\dim X)$. So if $\alpha_{i,1}, \ldots, \alpha_{i,d_i}$ denotes the φ_q -eigenvalues on $H^i_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)$, then $q^n/\alpha_{i,1}, \ldots, q^n/\alpha_{i,d_i}$ are the φ_q -eigenvalues on $H^{2n-i}_{\text{et}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Q}_\ell)$. This implies that

$$\zeta_{X}(t)^{2} = \prod_{i=1}^{2n} \left(\det \left(1 - \phi_{q}t; \ H_{\text{et}}^{i}(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\ell}) \right) \cdot \det \left(1 - \phi_{q}t; \ H_{\text{et}}^{2n-i}(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\ell}) \right) \right)^{(-1)^{i+1}}$$

$$= \prod_{i=0}^{2n} \left(\prod_{j=1}^{d_{i}} \left(1 - \alpha_{i,j}t \right) \left(1 - \frac{q^{n}}{\alpha_{i,j}}t \right) \right)^{(-1)^{i+1}}$$

$$= \prod_{i=0}^{2n} \left(\prod_{j=1}^{d_{i}} \left(\frac{1}{\alpha_{i,j}t} - 1 \right) \alpha_{i,j}t \cdot \left(\frac{\alpha_{i,j}}{q^{n}t} - 1 \right) \frac{q^{n}}{\alpha_{i,j}}t \right)^{(-1)^{i+1}}$$

$$= \prod_{i=0}^{2n} \left(\prod_{j=1}^{d_{i}} \left(1 - \frac{q^{n}}{\alpha_{i,j}} \frac{1}{q^{n}t} \right) \left(1 - \alpha_{i,j} \frac{1}{q^{n}t} \right) \cdot q^{n}t^{2} \right)^{(-1)^{i+1}}$$

$$= q^{nE} t^{2E} \zeta_{X} (1/q^{n}t)^{2}.$$

Statement (4) follows.

Problem 5.4. (Traces of differential forms) Consider the simplest case $h: \mathbb{C} \to \mathbb{C}$ with $h(z) = w^n$. Show that the trace map of differential forms is well-defined.

Solution. The only ramification point of h is at 0; so the trace map is well defined for the restriction of h to $\mathbb{C}\setminus\{0\}\to\mathbb{C}\setminus\{0\}$. It suffices to show that Tr_h extends holomorphically from $\mathbb{C}\setminus\{0\}$ to \mathbb{C} .

Let D denote a small disk around $0 \in \mathbb{C}$. Let $\omega = f(z)dz \in H^0(D,\Omega^1)$ be a holomorphic differential form. Take any small enough disc $U \subset D\setminus\{0\}$ so that its preimage under h splits as $h^{-1}(U) = U_1 \sqcup \cdots \sqcup U_n$. The inverse map $U \to U_i$ is given by $z \mapsto \zeta_n^i z^{1/n}$ (for a fixed choice of nth root of z on U). Then by our definition,

$$\operatorname{Tr}_h(\omega)|_U = \sum_{i=1}^n (h|_{U_i}^{-1})^*(\omega_{U_i}) = \sum_{i=1}^n f(\zeta_n^i z^{\frac{1}{n}}) d(\zeta_n^i z^{\frac{1}{n}}) = \frac{1}{n} \sum_{i=1}^n f(\zeta_n^i z^{\frac{1}{n}}) \zeta_n^i z^{\frac{1-n}{n}} dz.$$

So if f(z) has Taylor expansion $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ near z = 0, using the equality $\sum_{i=1}^{n} \zeta_n^{ir} = \begin{cases} n & \text{if } n | r \\ 0 & \text{if } n \nmid r \end{cases}$, we conclude that

$$\operatorname{Tr}_h(\omega)|_U = \sum_{m=0}^{\infty} a_{(m+1)n-1} z^m dz.$$

It can be extended to 0.

Problem 5.5. (Compatibility of Abel–Jacobi map with respect to functoriality maps) For X a projective smooth curve over \mathbb{C} , let $\operatorname{Jac}_X := H^0(X, \Omega_X^1)^{\vee}/H_1(X^{\operatorname{an}}, \mathbb{Z})$ denote the associated Jacobian, and let $\operatorname{Pic}^0(X)$ denote the Picard group of X, parametrizing line bundles of degree 0. Let $h: X \to Y$ be a finite (flat) morphism of projective smooth curves over \mathbb{C} . Show that the following diagrams of functorial maps commute:

$$\begin{array}{cccc} \operatorname{Pic}^{0}(X) & \xrightarrow{\mathcal{O}_{X}(D) \mapsto \mathcal{O}_{Y}(h(D))} & \operatorname{Pic}^{0}(Y) & & \operatorname{Pic}^{0}(Y) & \xrightarrow{\mathcal{L} \mapsto h^{*}\mathcal{L}} & \operatorname{Pic}^{0}(X) \\ \operatorname{AJ} \middle \cong & & \operatorname{AJ} \middle \cong & & \operatorname{AJ} \middle \cong & & \operatorname{AJ} \middle \cong \\ \operatorname{Jac}_{X} & \xrightarrow{(h^{*})^{\vee}} & \operatorname{Jac}_{Y} & & & \operatorname{Jac}_{Y} & & & \operatorname{Jac}_{X}. \end{array}$$

Solution. Recall that the Abel–Jacobi map is given by

$$\operatorname{Pic}^{0}(X) \longrightarrow \operatorname{Jac}_{X}$$

 $\sum n_{x}[x] \longmapsto \sum n_{x} \int_{x_{0}}^{x}$

(This is independent of the choice of x_0 because $\sum n_x = 0$.)

For the left diagram, it is the following obvious commutative diagram

$$\sum n_x[x] \longmapsto \sum n_x[h(x)]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum n_x \int_{x_0}^x \longmapsto \sum n_x \int_{h(x_0)}^{h(x)}.$$

For the right diagram, we start with $D = \sum n_y[y] \in \text{Pic}^0(Y)$; in fact, as h is only ramified at finitely points; we may modify D by a principal divisor so that for all $n_y \neq 0$, $h: X \to Y$ is étale at y. Now, we want to understand

$$\sum n_{y}[y] \longmapsto \sum n_{y} \sum_{h(x)=y} [x]$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\sum n_{y} \int_{y_{0}}^{y} \longmapsto ??$$

Let d denote deg h. We may choose y_0 so that $h: X \to Y$ is étale at y_0 and let $f^{-1}(y_0) = x_0^{(1)}, \ldots, x_0^{(d)}$.

For each y such that $n_y \neq 0$, we may choose a path $\gamma_y : y_0 \rightsquigarrow y$ which only runs through unramified locus of Y; then γ_y lifts precisely to d paths connecting $x_0^{(1)} \leadsto x_y^{(1)}, \ldots, x_0^{(d)} \leadsto$

 $x_y^{(d)}$, where $f^{-1}(y) = \{x_y^{(1)}, \dots, x_y^{(d)}\}$. Then

$$\int_{y_0}^y \operatorname{Tr}_h(\omega) = \sum_{i=1}^d \int_{x_0^{(i)}}^{x_y^{(i)}} \omega$$

By definition, we have

$$(Tr_h)^{\vee} \circ \mathrm{AJ}(\sum n_y[y]) = \sum n_y \sum_{i=1}^d \int_{x_0^{(i)}}^{x_y^{(i)}} = \sum n_y \sum_{x \in f^{-1}(y)} \int_{x_0}^x = \mathrm{AJ} \circ h^*(\sum n_y[y]).$$

The second equality is zero because $\sum n_y \cdot \int_{x_0}^{x_0^{(i)}} = 0$ (as $\sum n_y = 0$).

Problem 5.6. (*L*-function for modular forms and its functional equations) Let $f = \sum_{n\geq 1} a_n q^n$ denote a cuspidal modular forms of weight k, level $\Gamma_0(N)$. Suppose that f is normalized so that $a_1 = 1$, and that f is an eigenform for all Hecke operators.

(1) Prove that

$$\int_0^\infty f(iy)y^s \frac{dy}{y} = (2\pi)^{-s} \Gamma(s) L(f,s)$$

where $L(f,s) = \sum_{n\geq 1} a_n/n^s$ is the *L*-function associated to f.

(2) Suppose for simplicity that f has level $\mathrm{SL}_2(\mathbb{Z})$. Let $L_{\infty}(f,s) := (2\pi)^{-s}\Gamma(s)$ denote the "L-factor at infinity", and write $\Lambda(f,s) := L(f,s)L_{\infty}(f,s)$ for the "complete L-function". Show that

$$\Lambda(f,s) = (-1)^{k/2} \Lambda(f,k-s).$$

(Hint: breaks up the integral above as \int_0^1 and \int_1^∞ , and use the relation $f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.)

Solution. (1) When $f = \sum_{n \leq 1} a_n q^n$ is a cuspidal form, the following integral is absolutely convergent when $\text{Re } s \gg 0$:

$$\int_{0}^{\infty} f(iy)y^{s} \frac{dy}{y} = \int_{0}^{\infty} \sum_{n \ge 1} a_{n} e^{-2\pi n y} y^{s} \frac{dy}{y} = \sum_{n \ge 1} a_{n} \int_{0}^{\infty} e^{-2\pi n y} y^{s} \frac{dy}{y}$$

$$\stackrel{w=2\pi n y}{=} \sum_{n \ge 1} \frac{a_{n}}{(2\pi n)^{s}} \int_{0}^{\infty} e^{-w} w^{s} \frac{dw}{w} = (2\pi)^{-s} \Gamma(s) \sum_{n \ge 1} \frac{a_{n}}{n^{s}} = (2\pi)^{-s} \Gamma(s) L(f, s).$$

(2) The relation $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ when $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ says that

$$f\left(-\frac{1}{z}\right) = (-z)^k f(z).$$

When z = iy, $-\frac{1}{z} = i/y$. So we have when Re $s \gg 0$,

$$\begin{split} \Lambda(f,s) &= \int_{0}^{\infty} f(iy) y^{s} \frac{dy}{y} = \int_{0}^{1} f(iy) y^{s} \frac{dy}{y} + \int_{1}^{\infty} f(iy) y^{s} \frac{dy}{y} \\ &= (-i)^{k} \int_{0}^{1} f\left(\frac{i}{y}\right) y^{s-k} \frac{dy}{y} + \int_{1}^{\infty} f(iy) y^{s} \frac{dy}{y} \\ &\stackrel{w=1/y}{=} (-1)^{k/2} \int_{1}^{\infty} f(iw) w^{k-s} \frac{dw}{w} + \int_{1}^{\infty} f(iy) y^{s} \frac{dy}{y} \\ &= \int_{1}^{\infty} f(it) \left((-1)^{k/2} t^{k-s} + t^{s-1} \right) \frac{dt}{t} \end{split}$$

Note that the end expression is absolutely convergent for all $s \in \mathbb{C}$ (giving the complex analytic continuation of $\Lambda(f,s)$). Moreover, changing s into k-s will only change the expression by a sign $(-1)^k$. So we deduce that

$$\Lambda(f,s) = (-1)^{k/2} \Lambda(f,k-s).$$

Problem 5.7. (Geometric realization of Hecke operator T_p) Recall that $Y_0(N)$ parameterizes elliptic curves together with a cyclic subgroup C_N or order N. Write \mathcal{E} for the universal elliptic curve, and $\pi: \mathcal{E} \to Y_0(N)$ for the structure map and $e: Y_0(N) \to \mathcal{E}$ the zero section. Set $\omega_{E/Y_0(N)} := e^*\Omega^1_{E/Y_0(N)}$.

To a modular form $f \in S_k(\Gamma_0(N))$ and a prime $p \nmid N$, one can associate a section

$$f(z) \otimes d\tau^{\otimes k} \in H^0(Y_0(N), \omega).$$

We define the Hecke operator T_p on $S_k(\Gamma_0(N))$ using the following diagram:

Here, we may alternatively view $Y_0(pN)$ as the moduli space of isogenies of elliptic curves $E \to E/C_p$ of degree p together with a cyclic subgroup C_N of E of order N. Let $\varphi : \pi_1^* \mathcal{E} \to \pi_2^* \mathcal{E}$ denote the universal isogeny on $Y_0(pN)$. Define

$$T_p: H^0(Y_0(N), \omega_2^{\otimes k}) \xrightarrow{\pi_2^*} H^0(Y_0(Np), \omega_2^{\otimes k}) \xrightarrow{\varphi^*} H^0(Y_0(Np), \omega_1^{\otimes k}) \xrightarrow{\frac{1}{p} \text{Tr}} H^0(Y_0(N), \omega_1^{\otimes k})$$

Here we write ω_1 and ω_2 to distinguish sheaves on the left and right $Y_0(N)$. Show that this agrees with the usual definition of T_p .

Solution. We want to express $T_p(f)(z) \otimes d\tau^{\otimes k}$ (on the π_1 -side) in terms of the form $f(z) \otimes d\tau^{\oplus k}$ (on the π_2 -side). Under the map π_1 , the preimage of the elliptic curve $(\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}z), \langle \frac{1}{N} \rangle)$ is given by

- (1) $\left(\mathbb{C}/(\mathbb{Z}\oplus\mathbb{Z}z), \langle \frac{1}{N}\rangle, \langle \frac{z+i}{p}\rangle\right)$ for $i=0,\ldots,p-1$,
- (2) $\left(\mathbb{C}/(\mathbb{Z}\oplus\mathbb{Z}z), \langle \frac{1}{N}\rangle, \langle \frac{1}{n}\rangle \right)$.

In case (1), the image of $(\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}z), \langle \frac{1}{N} \rangle, \langle \frac{z+i}{p} \rangle)$ under the map π_2 is given by quotienting out this subgroup of order p, namely we get $(\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\frac{z+i}{p}), \langle \frac{1}{N} \rangle)$. So the contribution to $T_p(f)(z) \otimes d\tau^{\oplus k}$ is given by $\frac{1}{p}f(\frac{z+i}{p}) \otimes d\tau^{\otimes k}$. If f has q-expansion $\sum_{n\geq 1} a_n q^n$, summing over i, we get

$$\frac{1}{p}\sum_{i=0}^{p-1}f\left(\frac{z+i}{p}\right)\otimes d\tau^{\otimes k} = \frac{1}{p}\sum_{i=0}^{p-1}\sum_{n\geq 1}a_n\zeta_p^{ni}q^n\otimes d\tau^{\otimes k} = \sum_{n\geq 1}a_{pn}q^n\otimes d\tau^{\otimes k}.$$

The case (2) is a bit more tricky. the image of $(\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}z), \langle \frac{1}{N} \rangle, \langle \frac{1}{p} \rangle)$ under the map π_2 is given by quotienting out this subgroup of order p, namely we get $(\mathbb{C}/(\frac{1}{p}\mathbb{Z} \oplus \mathbb{Z}z), \langle \frac{1}{N} \rangle)$. But this is not of the standard form; so we need to make an identification:

$$\mathbb{C}/(\frac{1}{p}\mathbb{Z} \oplus \mathbb{Z}z) \xrightarrow{\text{mult.}p} \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}pz)$$

$$\tau \longmapsto p\tau$$

Pulling back the form $f(pz)d\tau^{\otimes k}$ to the elliptic curve, we get $p^k f(pz) \otimes d\tau^{\oplus k}$. So the contribution to $T_p(f)(z) \otimes d\tau^{\oplus k}$ is given by $\frac{1}{p} \cdot p^k f(pz) \otimes d\tau^{\otimes k}$.

Summing up the contribution from case (1) and case (2), we obtain the usual expression for T_p , namely

$$T_p(f)(z) \otimes d\tau^{\otimes k} = \sum_{n \geq 1} a_{pn} q^n \otimes d\tau^{\otimes k} + p^{k-1} \sum_{n \geq 1} a_n q^{pn} \otimes d\tau^{\otimes k}.$$

Problem 5.8. (Monodromy of moduli space of elliptic curves at a cusp) Fix $N \geq 5$ and consider the quotient $Y_1(N) := \Gamma_1(N) \backslash \mathcal{H}$. This space parametrizes elliptic curves E over \mathbb{C} together with a point $P \in E$ of exact order N. Let $\pi : \mathcal{E} \to Y_1(N)$ be the universal elliptic curve; its fiber over $z \in Y_1(N)$ is denoted by $\mathcal{E}_z := \pi^{-1}(z)$. We study the pushforward of the sheaf $R^1\pi_*\underline{\mathbb{Z}}$, which is locally free sheaf of rank 2 over $Y_1(N)$; such that the stalk at the point z is precisely $H^1(E_z, \mathbb{Z})$. Consider the loop $\gamma : [0,1] \to Y_1(N)$ given by $\gamma(a) = a + 10i$. Looping around γ defines a homomorphism $H^1(E_{10i}, \mathbb{Z}) \to H^1(E_{10i}, \mathbb{Z})$, called the monodromy operator at $i\infty$. What is this operator in terms of 2-by-2 matrix?

Solution. It is more intuitive to consider the homology groups instead, i.e. moving $H_1(E_z, \mathbb{Z})$ as z varies. At each $z \in \mathcal{H}$, the corresponding elliptic curve \mathcal{E}_z is $\mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}z$. A natural basis of $H_1(\mathcal{E}_z, \mathbb{Z})$ is given by the loops

$$\ell_1: [0,1] \to \mathcal{E}_z; \qquad \ell_1(x) = x \in \mathcal{E}_z = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}z);$$

 $\ell_2: [0,1] \to \mathcal{E}_z; \qquad \ell_2(x) = x \cdot z \in \mathcal{E}_z = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}z).$

As the point z moves from 10i to 1+10i on the modular curve, the natural basis $\{\ell_{1@10i}, \ell_{2@10i}\}$ continuously moved continuously to $\{\ell_{1@1+10i}, \ell_{2@1+10i}\}$. Yet, in the moduli problem of $\Gamma_1(N)\backslash \mathcal{H}$, we will need to identify \mathcal{E}_{10i} with \mathcal{E}_{1+10i} by

$$\mathcal{E}_{10i} = \mathbb{C}/(\mathbb{Z} \oplus (1+10i)\mathbb{Z}) \xrightarrow{\cong} \mathcal{E}_{1+10i}/(\mathbb{Z} \oplus 10i\mathbb{Z})$$

$$\tau \longmapsto \tau.$$

Under this isomorphism, $\ell_{1@1+10i}$ is sent to $\ell_{1@10i}$, yet $\ell_{2@1+10i}$ is sent to the path that is homotopic to $\ell_{1@10i} + \ell_{2@10i}$. Thus, looping around γ , the monodromy operator acts on

 $H_1(E_{10i},\mathbb{Z})$ by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. So the induced monodromy operator on $H^1(E_z,\mathbb{Z})$ is, by transpose, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.