Exercise 11. Given $m \in \mathbb{Z}$, we say that m is even if $m/2 \in \mathbb{Z}$, and m is odd otherwise.

- (a) Show that if m is odd, m = 2n + 1 for some $n \in \mathbb{Z}$. [Hint: choose n such that n < m/2 < n + 1.]
- (b) Show that if p and q are odd, so are $p \cdot q$ and p^n , for any $n \in \mathbb{Z}_+$.
- (c) Show that if a > 0 is rational, then a = m/n for some $m, n \in \mathbb{Z}_+$ where not both m and n are even. [Hint: Let n be the smallest element of the set $\{x \mid x \in \mathbb{Z}_+ \text{ and } x \cdot a \in \mathbb{Z}_+\}$.]
- (d) Theorem: $\sqrt{2}$ is irrational.

Proof.

- (a) Let $m \in \mathbb{Z}$ be an odd number; then $m/2 \notin \mathbb{Z}$, so that by exercise 1.4.9-b) there exists a unique $n \in \mathbb{Z}$ such that n < m/2 < n+1. This implies that 2n < m < 2n+2. The only integer verifying this inequality is 2n+1, so m=2n+1.
- (b) Let $p, q \in \mathbb{Z}$ be odd numbers. From the previous point, there exist $a, b \in \mathbb{Z}$ such that p = 2a + 1 and q = 2b + 1. This gives us $p \cdot q = (2a+1)(2b+1) = 2(a(2b+1)+b)+1$, so that $p \cdot q = 2m+1$ for some $m \in \mathbb{Z}$, and thus is odd.
 - Let $A = \{n \in \mathbb{Z} \mid p^n \text{ is odd}\}$. Since p is odd, we have $1 \in A$. Suppose that $n \in \mathbb{Z}_+$ such that $n \in A$. Then p^n is odd, and $p^{n+1} = p \cdot p^n$ is the product of two odd numbers. Therefore p^{n+1} is odd, so that $n+1 \in A$ and A is inductive. We conclude that $A = \mathbb{Z}_+$, which is the expected result.
- (c) Let a>0 be a rational number and $A=\{x\in\mathbb{Z}_+\mid x\cdot a\in\mathbb{Z}_+\}$. There exist 2 integers p,q with $q\neq 0$ such that a=p/q. We have $q\cdot a=p$ and a>0, so that p and q are either both positive, or both negative. Let us further suppose that p>0 and q>0. Then $q\cdot a\in A$, so that $A\neq\varnothing$. Therefore A has a smallest element $m\in\mathbb{Z}_+$. We have $m\cdot a=n\in\mathbb{Z}_+$. If both m and n are even, then $(m/2)\cdot a=n/2\in\mathbb{Z}_+$, so that $m/2\in A$. Since m>0, this leads to m/2< m, which contradicts the fact that m is the smallest element of A. Therefore a=n/m where not both m and n are even.
- (d) Suppose that $\sqrt{2} = n/m$ with n and m not both even. Then $2m^2 = n^2$, so that n^2 is even. If n were odd, then n^2 would also be odd; so n is even, and there exists $p \in \mathbb{Z}$ such that n = 2p. From this we deduce that $4p^2 = 2m^2$, so that $2p^2 = m^2$. Therefore m^2 is even, and so is m. This is a contradiction with n and m not being both even, so $\sqrt{2}$ is irrational.