Al Assignment - Task 1: Ticket Classifier & Entity Extractor

Problem Statement

Creating a machine learning pipeline is important.

- Categories customer support tickets by the problem they have and how quickly they must be addressed
- Extracts key entities (product, date, complaint keywords)

Allows you to try predictions interactively with a built-in Gradio interface.

Modules & Workflow

- 1. Data Cleaning: Lowercasing, punctuation removal, stopwords, lemmatization (NLTK)
- 2. Feature Engineering:
 - TF-IDF (text vectorization)

How long the tickets are

- Sentiment score (TextBlob)

3. Modeling:

- Category: Random Forest Classifier

The urgency level of this case is known as Random Forest Classifier.

4. Entity Extraction:

- Product: matching tasks are set by rules.
- Dates: `dateparser`
- Using specific complaints you prepare ahead of time

5. Integration:

- `process ticket()` returns prediction + extracted entities

6. Gradio App:

- People can use single tickets or buy batches in the web application

Model Evaluation

Issue Type Classification

- Accuracy is 100%
- F1-score: 1.00
- Confusion Matrix: [Displayed in notebook]

Urgency Level Classification

Accuracy is 31%

- F1-score: 0.31
- Confusion Matrix: [Displayed in notebook]

Design Choices

We used traditional machine learning specifically for the purpose of clearer understanding.

- I put the basic entity rules in place, rather than using spaCy NER, to fit the needs of the assignment.
- A Gradio batch input option is now included as an extra for students

How to Run

- 1. In Google Colab, press New Notebook to start working
- 2. Upload the Excel dataset ("dataset.xls")
- 3. Go ahead and run every cell in the code.
- 4. As soon as you finish, the Gradio interface will show up along with a public link.
- 5. Glue the stickers and watch to see what happens.

Proposition Proposition Prop

[Al Assignment - Task 1.mkv]

1 Limitations

The extraction of products is handled based on rules and their case.

All models were built using basic ML requirements, as deep learning is not present.

Radio App Link

https://b3b02ba742c6838030.gradio.live/

