1.3 Inverse, Exponential, and Logarithmic Functions

Definition

An exponential function is a function of the form

$$f(x) = a^x$$

where a is a positive constant.

- Some graphs of exponential functions
- 1 If a > 1 then $f(x) = a^x$ is increasing.
 - 2 If 0 < a < 1 then $f(x) = a^x$ is decreasing.
- The functions $f(x) = a^x$ and $g(x) = (1/a)^x$ are symmetric about the *y*-axis.

Assume that n, m are positive integers and x, $y \in \mathbb{R}$.

- $a^n = a \cdot a \cdot \cdots \cdot a$ (*n* times)
- $a^{-n} = \frac{1}{a^n}$
- $a^{n/m} = \sqrt[m]{a^n} = (\sqrt[m]{a})^n$
- $\bullet \ a^{x+y} = a^x \ a^y$
- $\bullet \ a^{x-y} = \frac{a^x}{a^y}$
- $\bullet (a^x)^y = a^{xy}$
- $\bullet (ab)^x = a^x b^x$

2/11

Question: What is the best (or most natural) choice of a for $f(x) = a^x$?

A. a = 1 B. a = 2 C. a = 3 D. a = 10 E. None of A-D

Answer: a = e

Definition

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$
$$= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \cdots$$

- Approximately, e = 2.718281828459... It is an irrational number.
- See the graphs.

Recall the definition of a one-to-one function.

Definition

Let f be a one-to-one function. Then its inverse function f^{-1} is defined by

$$f^{-1}(b) = a \Leftrightarrow f(a) = b.$$

- See the diagram.
- **1** domain of f^{-1} = range of f
 - 2 range of f^{-1} = domain of f
- $f^{-1}(f(x)) = x$, $f(f^{-1}(x)) = x$
- Example

- How to find the inverse function

 - 2 Solve for x in terms of y so that $x = f^{-1}(y)$.
 - 3 Interchange x and y and obtain $y = f^{-1}(x)$.
- Example
- The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.
- See the graph.

5/11

Definition

Assume that a > 0 and $a \ne 1$. The logarithmic function with base a, denoted by $y = \log_a x$, is defined to be the inverse function of $y = a^x$.

- See the graphs.
- If a > 1 then $f(x) = \log_a x$ is increasing.
 - If 0 < a < 1 then $f(x) = \log_a x$ is decreasing.
- The functions $f(x) = \log_a x$ and $g(x) = \log_{1/a} x$ are symmetric about the x-axis.

• We write $\log_e x = \ln x$.

•
$$a^0 = 1$$
, $\log_a 1 = 0$

$$\log_a\left(\frac{x}{v}\right) = \log_a x - \log_a y$$

•
$$a^1 = a$$
, $\log_a a = 1$, $\ln e = \log_e e = 1$

•
$$\log_a b = \frac{\ln b}{\ln a}$$
, $\log_a b = \frac{\log_c b}{\log_c a}$

Examples

1.4 Trigonometric Functions and Their Inverses

- Table of the values
- Standard triangles

•
$$\sin^2 \theta + \cos^2 \theta = 1$$
, $1 + \tan^2 \theta = \sec \theta$, $1 + \cot^2 \theta = \csc^2 \theta$

- $\sin 2\theta = 2 \sin \theta \cos \theta$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta$

•
$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$

- Solve the trigonometric equations for $0 \le x < 2\pi$.
 - $0 2 \sin x 1 = 0$

 - 3 $2\sin^2 x = \cos x + 1$

- We define $y = \sin^{-1} x$, $y = \cos^{-1} x$ and $y = \tan^{-1} x$ to be the inverses of $y = \sin x$, $y = \cos x$ and $y = \tan x$, respectively, after restricting the domains appropriately.
- • domain of $\sin^{-1} = [-1, 1]$, range of $\sin^{-1} = [-\pi/2, \pi/2]$
 - ② domain of $\cos^{-1} = [-1, 1]$, range of $\cos^{-1} = [0, \pi]$
 - 3 domain of $tan^{-1}=(-\infty,\infty)$, range of $tan^{-1}=[-\pi/2,\pi/2]$
- See the graphs.

• Evaluate or simplify the expressions.

- 2 $\cos^{-1}(-1/\sqrt{2})$
- 3 $\tan^{-1}(-\sqrt{3})$
- \bigcirc cos(tan⁻¹ x)
- **5** $\cot(\cos^{-1}(x/4))$