In [76]:

```
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
covid=pd.read_csv('Covid Dataset.csv')
```

In [77]:

covid

Out[77]:

	Breathing Problem	Fever	Dry Cough	Sore throat	Running Nose	Asthma	Chronic Lung Disease	Headache	Heart Disease	Diabet
0	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yı
1	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	1
2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yı
3	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yı
4	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Υı
5429	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No	1
5430	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yı
5431	Yes	Yes	Yes	No	No	No	No	No	Yes	1
5432	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	1
5433	Yes	Yes	Yes	No	Yes	Yes	No	Yes	No	Yı

5434 rows × 21 columns

localhost:8888/notebooks/Covid Symptoms Analysis.ipynb#

In [78]:

covid.isnull().sum()

Out[78]:

Breathing Problem	0
Fever	0
Dry Cough	0
Sore throat	0
Running Nose	0
Asthma	0
Chronic Lung Disease	0
Headache	0
Heart Disease	0
Diabetes	0
Hyper Tension	0
Fatigue	0
Gastrointestinal	0
Abroad travel	0
Contact with COVID Patient	0
Attended Large Gathering	0
Visited Public Exposed Places	0
Family working in Public Exposed Places	0
Wearing Masks	0
Sanitization from Market	0
COVID-19	0
dtype: int64	

In [79]:

import seaborn as sns

In [80]:

sns.countplot(x='COVID-19',data=covid)

Out[80]:

<AxesSubplot:xlabel='COVID-19', ylabel='count'>

In [81]:

from sklearn.preprocessing import LabelEncoder
e=LabelEncoder()

In [82]:

```
covid['Breathing Problem']=e.fit transform(covid['Breathing Problem'])
covid['Fever']=e.fit_transform(covid['Fever'])
covid['Dry Cough']=e.fit_transform(covid['Dry Cough'])
covid['Sore throat']=e.fit transform(covid['Sore throat'])
covid['Running Nose']=e.fit_transform(covid['Running Nose'])
covid['Asthma']=e.fit_transform(covid['Asthma'])
covid['Chronic Lung Disease']=e.fit_transform(covid['Chronic Lung Disease'])
covid['Headache']=e.fit_transform(covid['Headache'])
covid['Heart Disease']=e.fit_transform(covid['Heart Disease'])
covid['Diabetes']=e.fit transform(covid['Diabetes'])
covid['Hyper Tension']=e.fit_transform(covid['Hyper Tension'])
covid['Abroad travel']=e.fit_transform(covid['Abroad travel'])
covid['Contact with COVID Patient']=e.fit_transform(covid['Contact with COVID Patient'])
covid['Attended Large Gathering']=e.fit_transform(covid['Attended Large Gathering'])
covid['Visited Public Exposed Places']=e.fit_transform(covid['Visited Public Exposed Places
covid['Family working in Public Exposed Places']=e.fit_transform(covid['Family working in P
covid['Wearing Masks']=e.fit_transform(covid['Wearing Masks'])
covid['Sanitization from Market']=e.fit_transform(covid['Sanitization from Market'])
covid['COVID-19']=e.fit_transform(covid['COVID-19'])
covid['Dry Cough']=e.fit_transform(covid['Dry Cough'])
covid['Sore throat']=e.fit_transform(covid['Sore throat'])
covid['Gastrointestinal ']=e.fit_transform(covid['Gastrointestinal '])
covid['Fatigue ']=e.fit transform(covid['Fatigue '])
covid
```

Out[82]:

	Breathing Problem	Fever	Dry Cough		Running Nose	Asthma	Chronic Lung Disease	Headache	Heart Disease	Diabet
0	1	1	1	1	1	0	0	0	0	
1	1	1	1	1	0	1	1	1	0	
2	1	1	1	1	1	1	1	1	0	
3	1	1	1	0	0	1	0	0	1	
4	1	1	1	1	1	0	1	1	1	
5429	1	1	0	1	1	1	1	0	0	
5430	1	1	1	0	1	1	0	1	0	
5431	1	1	1	0	0	0	0	0	1	
5432	1	1	1	0	1	0	0	1	1	
5433	1	1	1	0	1	1	0	1	0	

5434 rows × 21 columns

localhost:8888/notebooks/Covid Symptoms Analysis.ipynb#

In [83]:

```
import matplotlib.pyplot as plt
plt.figure(figsize=(15,15))
sns.heatmap(covid.corr(),annot=True)
```

Out[83]:

<AxesSubplot:>

In [84]:

```
from yellowbrick.features import Rank1D

X, y = covid.drop('COVID-19',axis=1),covid['COVID-19']

# Instantiate the 1D visualizer with the Sharpiro ranking algorithm
visualizer = Rank1D(algorithm='shapiro')

visualizer.fit(X, y)  # Fit the data to the visualizer
visualizer.transform(X)  # Transform the data
visualizer.show()
```


Out[84]:

<AxesSubplot:title={'center':'Shapiro Ranking of 20 Features'}>

In [85]:

```
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import accuracy_score
```

In [86]:

```
x=covid.drop('COVID-19',axis=1)
y=covid['COVID-19']
```

In [87]:

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,random_state=180)
```

Using KneighboursClassifier

```
In [88]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=20)
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
acc_knn=(y_test==y_pred).sum()/len(y_test)
print("accuracy:",acc_knn)
```

accuracy: 0.9583077866339669

Estimation of severity using Knn

```
In [89]:
```

```
c=pd.DataFrame({"predicted":y_pred,"actual:":y_test})
```

In [90]:

```
# Now checking whether it is seviour or moderate or easy
print(c)
c['status']='ok'
```

	predicted	actual:
1451	1	1
5384	1	1
827	1	1
1413	1	1
944	1	1
• • •	• • •	
3082	1	1
3084	1	1
969	1	1
5136	1	1
3731	1	1

[1631 rows x 2 columns]

```
In [91]:
```

```
for i in c.index:
    so=0

for j in covid.iloc[i, 0 : ]:
    if j==1:
        so+=1

if covid['Breathing Problem'][i]==1 and (covid['Chronic Lung Disease'][i]==1 or covid['
        c['status'][i]='seviour'

elif so>6 and covid['Fever'][i]==1:
        c['status'][i]='moderate'
    else:
        c['status'][i]='ok'
```

In [92]:

```
c['status'].value_counts()

Out[92]:
seviour 998
moderate 338
ok 295
Name: status, dtype: int64

In [93]:
c
```

Out[93]:

	predicted	actual:	status
1451	1	1	seviour
5384	1	1	seviour
827	1	1	seviour
1413	1	1	seviour
944	1	1	seviour
3082	1	1	seviour
3084	1	1	seviour
969	1	1	seviour
5136	1	1	moderate
3731	1	1	moderate

1631 rows × 3 columns

Through Decision Tree Classifier

In [94]:

```
from sklearn import tree
tree = tree.DecisionTreeClassifier()
tree.fit(x_train,y_train)
y_pre= tree.predict(x_test)
acc_decisiontree=(y_pre==y_test).sum()/len(y_pre)
print("accuracy through decision tree:",acc_decisiontree)
```

accuracy through decision tree: 0.9785407725321889

Estimation of severity using decision tree classifier

```
In [95]:
co=pd.DataFrame({"predicted":y_pred,"actual:":y_test})
co['status']='1'
```

In [96]:

```
for i in co.index:
    so=0

for j in covid.iloc[i, 0 : ]:
        if j==1:
            so+=1

if covid['Breathing Problem'][i]==1 and (covid['Chronic Lung Disease'][i]==1 or covid['
        co['status'][i]='seviour'

elif so>6 and covid['Fever'][i]==1:
        co['status'][i]='moderate'
else:
        co['status'][i]='ok'
```

In [97]:

co

Out[97]:

	predicted	actual:	status
1451	1	1	seviour
5384	1	1	seviour
827	1	1	seviour
1413	1	1	seviour
944	1	1	seviour
3082	1	1	seviour
3084	1	1	seviour
969	1	1	seviour
5136	1	1	moderate
3731	1	1	moderate

1631 rows × 3 columns

Result comparision of both models

Decision Tree report

In [98]:

from sklearn.metrics import classification_report
print(classification_report(y_test,y_pre))

	precision	recall	f1-score	support
0 1	0.91 1.00	0.98 0.98	0.95 0.99	316 1315
accuracy macro avg	0.95	0.98	0.98 0.97	1631 1631
weighted avg	0.98	0.98	0.98	1631

Knn Report

In [99]:

<pre>print(classification_report(y_test,y_pred))</pre>
Drint(Classification report(V test.V pred))

	precision	recall	f1-score	support
0	0.90 0.97	0.89 0.98	0.89 0.97	316 1315
1	0.57	0.56		
accuracy			0.96	1631
macro avg	0.94	0.93	0.93	1631
weighted avg	0.96	0.96	0.96	1631

In []: