

Lineáris leképezések

Összeállította: dr. Leitold Adrien egyetemi docens

Lineáris leképezés fogalma

Lineáris leképezés:

Az $A: \mathbb{R}^m \to \mathbb{R}^n$ típusú fv.-t lineáris leképezésnek nevezzük, ha bármely $\underline{x}, y \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$ esetén:

$$A(\underline{x} + \underline{y}) = A(\underline{x}) + A(\underline{y})$$
 additív
 $A(\lambda \underline{x}) = \lambda \cdot A(\underline{x})$ homogén

Megjegyzések:

- Ha speciálisan m = n, akkor lineáris transzformációról beszélünk.
- Ha az A leképezés $R^m \to R^n$ típusú, akkor $dom(A) = R^m$, $im(A) \subseteq R^n$.

Lineáris leképezések tulajdonságai

- Bármely lineáris leképezés nullvektorhoz nullvektort rendel .
- Ha $\underline{v}_1, \underline{v}_2, ..., \underline{v}_k \in R^m$, $\lambda_1, \lambda_2, ..., \lambda_k \in R$, akkor $A(\lambda_1 \underline{v}_1 + ... + \lambda_k \underline{v}_k) = \lambda_1 \cdot A(\underline{v}_1) + ... + \lambda_k \cdot A(\underline{v}_k)$
- Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lin. leképezés, $B = \{\underline{b}_1, ..., \underline{b}_m\}$ bázis \mathbb{R}^m -ben. Ekkor bármely $\underline{x} \in \mathbb{R}^m$ esetén az $A(\underline{x})$ képvektorra:

ha
$$\underline{x} = \lambda_1 \underline{b}_1 + ... + \lambda_m \underline{b}_m$$
, akkor $A(\underline{x}) = \lambda_1 A(\underline{b}_1) + ... + \lambda_m A(\underline{b}_m)$,

azaz a képvektort egyértelműen meghatározzák a bázisvektorok képei.

Magtér, képtér

Lineáris leképezés magtere:

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés. Az A leképezés magtere olyan \mathbb{R}^m -beli vektorokból áll, amelyekhez A az \mathbb{R}^n nullvektorát rendeli.

$$ker(A) = \{\underline{x} \in R^m | A(\underline{x}) = \underline{o} \}$$

Megjegyzés: Minden lineáris leképezés magtere tartalmazza a nullvektort.

■ Lineáris leképezés képtere: a képvektorok halmaza. $im(A) = \{ \underline{y} \in R^n | létezik\underline{x} \in R^m : A(\underline{x}) = \underline{y} \}$

Megjegyzés: Minden lineáris leképezésnél a magtér altér R^m -ben, a képtér altér R^n -ben.

Lineáris leképezés mátrixa

Lineáris leképezés mátrixa:

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés, $\underline{e}_1, \dots, \underline{e}_m$ a kanonikus bázis \mathbb{R}^m -ben. Az A lin. leképezés mátrixán azt az $n \times m$ -es mátrixot értjük, amelynek oszlopvektorai az $A(\underline{e}_1), \dots, A(\underline{e}_m)$ képvektorok.

Jel.: *M*(*A*), *A*

Megjegyzés:

Az $\underline{x} \in R^m$ vektor képe az $M(A) \cdot \underline{x}$ mátrixszorzással is megkapható, ahol \underline{x} -et oszlopvektorként írjuk fel.

Műveletek lineáris leképezésekkel

Lineáris leképezések összege:

Legyenek $A: R^m \to R^n, B: R^m \to R^n$ lineáris leképezések. Az A és B összege:

$$(A+B)(x)=A(x)+B(x)$$
, minden R^m -beli \underline{x} -re.

- Igazolhatóak az alábbiak:
 - Az A+B leképezés is lineáris.
 - M(A+B) = M(A) + M(B)

Műveletek lineáris leképezésekkel (folyt.)

Lineáris leképezés skalárszorosa:

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n, \lambda \in \mathbb{R}$

Ekkor az A leképezés λ -szorosa:

$$(\lambda \cdot A)(\underline{x}) = \lambda \cdot A(\underline{x})$$
, minden R^m -beli \underline{x} -re.

- Igazolhatóak az alábbiak:
 - A λ A leképezés is lineáris.
 - $M(\lambda \cdot A) = \lambda \cdot M(A)$

Műveletek lineáris leképezésekkel (folyt.)

■ Lineáris leképezések összetétele (kompozíciója):

Legyenek $A: R^m \to R^n$ és $B: R^\ell \to R^m$ lin. leképezések. Ekkor az $A \circ B: R^\ell \to R^n$ leképezés is lineáris.

Igazolható:

$$M(A \circ B) = M(A) \cdot M(B)$$

Megjegyzés:

A fentiek alapján lineáris leképezések és mátrixok között kölcsönösen egyértelmű, művelettartó megfeleltetés létesíthető.

Lineáris leképezések invertálhatósága

- Lin. leképezés invertálhatóságának feltétele:
- Az $A: \mathbb{R}^m \to \mathbb{R}^n$ lin. leképezés invertálható $\Leftrightarrow ker(A) = \{o\}$
- Lin. transzformációs invertálhatóságának feltétele:
 - Az $A: \mathbb{R}^n \to \mathbb{R}^n$ lin. transzformáció invertálható \Leftrightarrow az A lin. transzformáció mátrixa invertálható.
 - Az $A: R^n \to R^n$ lin. transzformáció invertálható \Leftrightarrow $det(M(A)) \neq 0$.
- Ha az $A: \mathbb{R}^n \to \mathbb{R}^n$ lin. transzformáció invertálható, akkor az inverz transzformáció mátrixa:

$$M(A^{-1}) = (M(A))^{-1}$$
.