

DS-3002: Data Systems

Overview of Data Warehouse Systems

Prof. Jon Tupitza – Spring 2022

Modern Data Platform: Solution Scenarios

Big (Unstructured and/or Poly-Schematic) Data Integration and Advanced Analytics

"We want to integrate all our data into our data warehouse"

"We're trying to predict which of our customers will churn"

"We're trying to get insights from our devices in real-time"

Modern Data Platform: Data Services Pipeline

INGEST

Data
Orchestration
& Monitoring

Data Integration

STORE

Unstructured Data Storage

Data Lake Storage

PREPARE

Data Cleansing, Transformation & Streaming

Databricks

SERVE

Data Modeling, Serving & Storing

Data Warehouse

PREDICT

Reporting, BI, Predictive Analytics & AI

Machine Learning

DELIVER

MLOps Integration: CI/CD Pipelines, Version Control, Monitoring, Test Automation, Infrastructure as Code, Containers, Microservices

DevOps

The Data Warehouse Process

How to Approach Designing and Building a Data Warehouse

The Four-Step Dimensional Design Process

A Time-Honored and Tested Methodology for Delivering Data Marts & Data Warehouses

1. Select the Business Process

2. Declare the Grain

3. Identify the Dimensions

4. Identify the Facts

- Prioritize Business
 Processes that Have
 Significant Business
 Impact, and that can
 be Easily Delivered
- Attempting to Boil-the-Ocean Increases the Risk of Project Failure

- Determine What Level of Detail Must Be Available
- Greater Atomicity
 Provides Greater
 Analytic Flexibility
- Aggregated Data Limits Access to Transaction Detail

- Categorical Values
 Describing Each
 Business Process
- Defines How
 Transactions are
 Viewed or Filtered
- Should Have the Same Meaning Across Processes

- Numeric Values that Quantify Each Business Process
- Defines How Transactions
 Are Summarized
- Facts Must Be True-to-the-Grain

Selecting Business Processes: Prioritizing Requirements

High

Potential Business Impact

Low

Quadrant Analysis for Prioritizing Requirements:

- Business Process A:
 - High Potential Business Impact
 - Extremely Difficult to Implement
- Business Process B:
 - High Potential Business Impact
 - Highly Feasible
- Business Process C:
 - Very Little Business Impact
 - Extremely Difficult to Implement
- Business Process D:
 - Little Business Impact
 - Highly Feasible

Identifying Dimensions: Data Warehouse Bus Matrix

Using the Same Dimensions Across Multiple Business Processes Enforces a Unified View of the Truth

Common (Conformed) Dimensions						
Date	Product	Store	Promotion			
0	O					
Ø	O	O				
O	O					
			Date Product Store			

Identifying Dimensions: Data Warehouse Bus Matrix

Using the Same Dimensions Across Multiple Business Processes Enforces a Unified View of the Truth

	Common (Conformed) Dimensions						
Business Processes	Date	Product	Store	Promotion			
Sales	0						
Inventory	0		O				
Deliveries	0		O				
WH Inventory	0						
WH Deliveries	0						
Purchase Orders							

Identifying Dimensions: Data Warehouse Bus Matrix

Using the Same Dimensions Across Multiple Business Processes Enforces a Unified View of the Truth

Data Integration

How to Approach Populating a Data Warehouse

Data Processing: Extract-Transform-Load (ETL)

Frequently, Data Must Be Moved from Sources to a Database and/or Data Lake

Extract

■ This is the step where sensors wait for upstream data sources to land. Once available, we transport the data from their source locations to further transformations.

Transform

■ The heart of any ETL job: apply business logic, perform actions such as filtering, grouping, and aggregation to translate raw data into analysis-ready datasets.

Load

Load the processed data and transport to a final destination.
 Can now be consumed directly by end-users or treated as yet another upstream dependency.

Data Processing: Batch versus Streaming

■ Data Motion:

- At-Rest Data: Data that has settled
- In-Motion Data: Data where new events arrive at some continuous interval

Datasets:

- Bounded Datasets: Data of a known & finite size; having a start point and endpoint
- Unbounded Datasets: Data wherein events are continuously added to the dataset

Data Processing Engines:

- Batch Processing Engines: Only capable of processing data after it has settled
- Streaming Processing Engines: Capable of processing data in-motion as it's arriving

Data Processing Paradigms: Latency Requirements

Latency & Response:

The speed at which clients require new insights determines the frequency at which new data must be processed

1. Batch

2. Continuous/Streaming

3. Real-time

100 ms 1 sec 1 hour 10 ms 1 min 1 day Micro-Batch Low-Latency Real-Time Real-Time Batch Spark batch Structured Prediction Spark-less, highly-Streaming processing available prediction server with Spark server

Data Processing Paradigms: Lambda Architecture

All Data Flows Through One of Two Paths: Hot or Cold

Data Processing Paradigms: Kappa Architecture

All Data Flows Through One of Two Paths: Hot or Cold

Paradigms: Data Storage and Retrieval

Schema on Write versus Schema on Read

Schema on Read: Applies schema only when read, data stored in its original format

ETL Processing: Incremental Extraction

Techniques for Minimizing Data Movement: Extract Only the Changes

Level of Difficulty to Implement and Maintain

Change Data Capture (CDC)

Current Record Flag

Date-Time Stamp:

Row
Comparison
(Left Outer Join)

Easy

Hard

Data Integration Patterns: Dimensional Data

Slowly Changing Dimension Update Strategies: Handling Variable Rates of Change

SCD Type 0

- Data in the Column Never Changes: Ever!
- Only for Static
 Reference Data

SCD Type 1

- No History is Maintained
- Existing Values are Overwritten by New Values
- UPDATE

SCD Type 2

- Historic Values are Maintained
- New Values are Written to a New Row
- IsCurrent Flag
- INSERT

SCD Type 3

- A New Current Value Column is Created in the Existing Record
- Original Column is Also Retained

Easier to Implement and Maintain

More Difficult to Implement and Maintain

Databricks: Delta Lake at Scale

ACID Transaction Guarantees

Atomic, Consistent, Isolated, Durable

Versioned Parquet Files

Delta transaction log keeps track of all operations

Efficient Upserts

MERGE, DELETE, UPDATE

Time Travel

Audit history, pipeline debugging, data reproducibility

Small file compaction with no interrupt to availability

OPTIMIZE and VACUUM

Z-Order partitioning with up to 100x perf

New multidimensional partitioning enables data skipping

Data Engineering... for Data Science

Design Pattern: Modern Data Warehousing

Q & A

A Survey of Data Management Systems

The Data Science: Hierarchy of Needs

LEARN / OPTIMIZE

AGGREGATE / LABEL

EXPLORE / TRANSFORM

MOVE / STORE

COLLECT

AI, Deep Learning

A/B Testing, Experimentation, Simple ML Algorithms

Analytics, Metrics, Segments, Aggregates, Features, Training Data

Cleaning, Anomaly Detection, Prep

Reliable Data Flow, Infrastructure, Pipelines, ETL, Structured & Unstructured Data Storage

Instrumentation, Logging, Sensors, External Data, User-Generated Content

Architectures: Data Lakehouse vs. Data Mesh

How to...

Considerations for Building Data Warehouses

