Санкт-Петербургский Политехнический Университет

Высшая школа прикладной математики и вычислительной физики, ФизМех

01.03.02 Прикладная математика и информатика

Лабораторная работа №3

Дисциплина "Дискретная математика"

Тема "Деревья"

Вариант "Проверка свойства древочисленности (субцикличность)"

Поставленная задача

Проверить является ли граф деревом, ацикличность, субцикличность, древочисленность.

Используемый язык программирования

Python 3.12.6

Описание проверки свойств

Граф без циклов называется ациклическим. Будем с помощью алгоритма DFS обходить граф и искать в нем цикл. В случае если цикл найдем, будем записывать любой цикл.

Проверка ацикличности:

Функция is_acyclic(graph):

- 1. Создаём пустое множество visited.
- 2. Создаём пустой словарь parent.
- 3. Для каждой вершины v от 0 до V 1:
 - 3.1. Если вершина v не была посещена:
 - Создаём стек stack и кладём в него пару (v, -1).
 - 3.2. Пока стек не пуст:
 - Извлекаем из стека пару (current, prev).
 - Если current не в visited:
 - Добавляем current в visited.
 - Записываем parent[current] = prev.
 - Для каждого соседа neighbor вершины current:
 - Если adj_matrix[current][neighbor] == 1 (есть ребро):
 - Если neighbor ещё не посещён:
 - Кладём (neighbor, current) в стек.
 - Иначе, если neighbor уже посещён и не равен prev:
 - Найден цикл. Возвращаем False.
- 4. Если цикл не найден после обхода всех вершин, возвращаем True.

Нахождение цикла в графе

Функция find cycle

- adj_matrix: Матрица смежности графа.
- V: Количество вершин графа.

Шаги выполнения:

- 1. Инициализация:
 - Создать пустое множество visited для отслеживания посещённых вершин.
 - Создать пустой словарь parent для хранения связей между вершинами.
 - Инициализировать cycle как пустой список.
- 2. Определение вспомогательной функции dfs(start):
 - Создать стек stack, содержащий кортеж (start, -1) (текущая вершина и её родитель).
 - Пока стек не пуст:
 - Извлечь вершину vertex и её родителя prev из стека.
 - Если vertex ещё не посещена:
 - Добавить vertex в visited.
 - Установить parent[vertex] = prev.
 - Для каждой вершины neighbor от 0 до V-1:
 - Если существует ребро adj_matrix[vertex][neighbor] == 1:
 - Если neighbor не посещён, добавить (neighbor, vertex) в стек.
 - Если neighbor уже посещён и neighbor != prev:
 - Вызвать функцию extract cycle(vertex, neighbor, parent) для извлечения цикла.
 - Вернуть цикл.
 - Если цикл не найден, вернуть None.
- 3. Итерация по всем вершинам графа:
 - Для каждой вершины vertex от 0 до V-1:
 - Если vertex ещё не посещена:
 - Вызвать dfs(vertex).
 - Если цикл найден, вернуть его.
- 4. Возврат результата:
 - Если после проверки всех вершин цикл не найден, вернуть None.

Вспомогательная функция: extract_cycle(start, end, parent)

- start и end: Вершины, между которыми обнаружен цикл.
- parent: Словарь связей "ребёнок-родитель".

Шаги выполнения:

- 1. Инициализировать пустой список cycle.
- 2. Построить путь от start до end:
 - Пока start не равен end:
 - Добавить start в cycle.
 - Обновить start = parent[start].
- 3. Добавить end в cycle.
- 4. Замкнуть цикл, добавив первую вершину в конец списка.
- 5. Развернуть cycle для правильного порядка.
- 6. Вернуть cycle.

Если граф G + x имеет ровно один простой цикл, z(G + x) = 1, то граф G называется субциклическим. Будем добавлять ребро в граф и проверять количество циклов в графе после добавления. В случае если не выполняется записываем ребро для которого не выполняется.

```
Проверка субцикличности:
```

Функция is_subcyclic(graph):

max cycles - общее количество циклов

- 1. Для каждой пары вершин (u, v), где u != v:
- 1.1. Если между u и v нет ребра (adj_matrix[u][v] == 0):
 - Временно добавляем ребро:

```
adj_matrix[u][v] = 1
adj_matrix[v][u] = 1
```

- Подсчитываем количество циклов в графе:

```
num_cycles = count_cycles()
max_cycles = max(max_cylces, num_cyclse)
```

- Если num_cycles > 1:
 - Удаляем добавленное ребро:

```
adj_matrix[u][v] = 0
```

 $adj_matrix[v][u] = 0$

- Возвращаем False и пару (u, v).
- Иначе:
 - Удаляем добавленное ребро:

```
adj_matrix[u][v] = 0
```

 $adj_matrix[v][u] = 0$

Псевдокод для подсчёта количества уникальных циклов в графе

Функция count_cycles

- adj_matrix: Матрица смежности графа.
- V: Количество вершин графа.
- 1. Инициализировать множество all_cycles для хранения уникальных циклов.
- 2. Для каждой вершины start от 0 до V-1:
 - Создать стек stack, содержащий кортеж (start, [start], [False] * V), где:
 - current: текущая вершина.
 - path: список, представляющий путь от начальной вершины.
 - visited: список булевых значений, отслеживающий посещение вершин.
- 3. Пока стек не пуст:
 - Извлечь кортеж (current, path, visited) из стека.
 - Установить visited[current] = True (пометить текущую вершину как посещённую).
 - Для каждой вершины neighbor от 0 до V-1:
 - Если существует ребро adj_matrix[current][neighbor] == 1:
 - Если neighbor == start и длина path больше 2:
 - Создать кортеж cycle из отсортированного path.
 - Добавить cycle в all_cycles.
 - Иначе, если neighbor не посещена (visited[neighbor] == False):
 - Добавить в стек новый кортеж (neighbor, path + [neighbor], копия visited).
- После завершения обработки текущей вершины установить visited[current] = False (снять пометку о посещении).

4. Вернуть размер множества all cycles (количество уникальных циклов).

Граф G, в котором q(G) = p(G) - 1, называется древочисленным

Проверка древочисленности:

Функция is_drevocislen(graph):

- 1. Инициализируем переменную edge_count = 0 для подсчёта количества рёбер.
- 2. Для каждой вершины u от 0 до V 1:
 - 2.1. Для каждой вершины v от u + 1 до V 1:
 - Если adj_matrix[u][v] == 1 (есть ребро между u и v):
 - Увеличиваем edge_count на 1.
- 3. После завершения подсчёта рёбер:
 - Если edge count == V 1:
 - Возвращаем True (граф древочисленный).
 - Иначе:
 - Возвращаем False (граф не древочисленный).

Подсчет циклов

- Создаем пустое множество all_cycles для хранения уникальных циклов.
- Определяем V как размерность матрицы смежности (число вершин).

Для каждой вершины start_vertex в диапазоне от 0 до V:

- Инициализируем стек stack с элементом (start_vertex, [start_vertex], [False] * V) (текущая вершина, путь до неё, массив посещённых вершин).

Пока стек не пуст:

- Извлекаем current_vertex, path, visited из стека.
- Помечаем current_vertex как посещённую: visited[current_vertex] = True.

Для каждого соседа neighbor вершины current_vertex:

- Если adj_matrix[current_vertex][neighbor] == 1 (есть ребро между вершинами):
 - Если neighbor == start_vertex и длина path > 2:
 - Найден цикл (возврат в стартовую вершину).

- Сортируем путь path и добавляем его в all_cycles.
- Иначе, если neighbor ещё не посещён:
 - Кладём (neighbor, path + [neighbor], copy(visited)) в стек.
- Сбрасываем посещённость current_vertex: visited[current_vertex] = False.
- Возвращаем размер all_cycles как количество уникальных циклов.

Проверка графа является ли оно деревом будем с помощью утверждения 7 из теоремы параграфа "Основные свойства свободных деревьев". G — ациклический и субциклический, z(G) = 0 & z(G + x) = 1. В случае положительной проверки будем записывать в файл: «Граф является деревом», иначе «Граф не является дерево»

Проверка на дерево:

- Если is_sybsiclic и is_asyclic:

Вернуть True

Иначе:

Вернуть False

Пример работы

Рассмотрим графы для примеров проверки свойств

	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2	0	1	0	0
3	0	1	0	0


```
Граф является ацикличным.
   Старт из вершины 0:
          Стек: [(0, -1)].
          Из 0 идём к 1 (ребро 0-1).
           Из 1 идём к 2 (ребро 1-2), затем возвращаемся.
           Из 1 идём к 3 (ребро 1-3), затем возвращаемся.
           Нет повторного посещения уже пройденной вершины, нет цикла.
   Старт из вершин 1, 2, 3 также не выявляет циклов.
Вывод: Граф ацикличен.
Граф является древочисленным (q = p - 1).
   Количество вершин р=4.
   Сумма всех элементов матрицы = 1+3+1+1=6. Делим на 2: q=3.
   p−1=3.
Граф является субциклическим.
   Пары несвязанных вершин: (0-2), (0-3), (2-3).
   Для пары (0-2):
          Добавляем ребро 0-2.
          Проверяем наличие циклов: один цикл (0-1-2-0).
           Количество циклов = 1, граф остаётся субциклическим.
   Для пары (0-3):
          Добавляем ребро 0-3.
           Проверяем наличие циклов: один цикл (0-1-3-0).
           Количество циклов = 1, граф остаётся субциклическим.
   Для пары (2-3):
          Добавляем ребро 2-3.
           Проверяем наличие циклов: один цикл (1-2-3-1).
```

Количество циклов = 1, граф остаётся субциклическим.

Вывод: Граф является субциклическим.

Граф является деревом.

	0	1	2	3
0	0	1	0	1
1	1	0	1	0
2	0	1	0	1
3	1	0	1	0

Граф содержит цикл: [1, 0, 3, 2, 1]

Граф не является древочисленным (q!= p-1).

Субцикличность нарушена при добавлении ребра (0, 2).

Граф не является деревом.

	0	1	2	3	4	5
0	0	1	1	0	0	0
1	1	0	1	0	0	0
2	1	1	0	0	0	0
3	0	0	0	0	1	0
4	0	0	0	1	0	0
5	0	0	0	0	0	0

Граф содержит цикл: [1, 0, 2, 1]

Граф не является древочисленным (q != p - 1).

Граф является субциклическим.

Граф не является деревом.

	0	1	2
0	0	1	0
1	1	0	0
2	0	0	0

Граф является ацикличным.

2

Граф не является древочисленным (q != p - 1).

Субцикличность нарушена при добавлении ребра Любого

Граф не является деревом.

	0	1	2	3	4
0	0	1	0	0	0
1	1	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	0
4	0	0	0	0	0

Граф содержит цикл: [2, 1, 3, 2]

Граф является древочисленным (q = p - 1).

Субцикличность нарушена при добавлении ребра (0, 2).

Граф не является деревом.

Сложность

Ацикличность. Алгоритм проверки ацикличности основывается на поиске цикла через DFS. Алгоритм обхода графа с использованием DFS посещает каждую вершину и каждое ребро один раз. Для поиска цикла используется множество посещенных вершин и структура родителя для отслеживания предков. Это имеет сложность O(V+E).

Субцикличность. Алгоритм проверки ацикличности основывается на подсчете циклов через DFS. Основной цикл проходит по всем парам вершин, а для каждой пары вызывается подсчет циклов, дающий итоговую сложность $O(V^2 (V + E))$.

Входные и выходные данные

Входные данные. Квадратная матрица $n \times n$, где n - kоличество вершин в графе. Каждая строка матрицы представляет связи (ребра) для одной вершины.

Выходные данные записываем в файл в виде

if граф ацикличный:

f.write("Граф является ацикличным.")

else:

f.write (f"Граф содержит цикл: {найденный цикл}")

```
if граф древочисленный:
    f.write ("Граф является древочисленным (q = p - 1).")

else:
    f.write ("Граф не является древочисленным (q != p - 1).")

if граф субцикличный:
    f.write ("Граф является субциклическим.")

else:
    f.write (f"Субцикличность нарушена при добавлении ребра {найденное ребро}.")

if граф дерево ():
    f.write ("Граф является деревом.")

else:
    f.write ("Граф не является деревом.")
```

Область применимости

Проверка графа на свойства и дальнейшая работа с ним особенно полезен в области сетей, алгоритмической оптимизации, системного проектирования и научных исследований.

Представление графов в программе

Для представления графа в программе я буду использовать матрицу смежности. Доступ к данным в матрице занимает O(1) что делает возможным прямую и быструю работу с каждой парой вершин. Кроме того, добавление или удаление ребра также выполняется за O(1), так как достаточно изменить один элемент матрицы.

Вывод

Данный код предоставляет универсальный инструментарий для анализа свойств графов, включая проверку их ацикличности, связности, субцикличности, древовидности и других характеристик. Он эффективно реализует алгоритмы на основе матрицы смежности, что делает его подходящим для решения задач в широком спектре областей, таких как теория графов, сетевой анализ, оптимизация маршрутов, проектирование систем и научные исследования.