Math 645: Problem Set 1

- 1. Determine whether the following sequences of functions are Cauchy sequences with respect to the uniform norm $\|\cdot\|_{\infty}$ on the given interval I. Determine the limit $f_n(x)$ if it exists.
 - (a) $f_n(x) = \sin(2\pi nx)$, I = [0, 1]
 - (b) $f_n(x) = \frac{x^n 1}{x^n + 1}$, I = [-1, 1].
 - (c) $f_n(x) = \frac{1}{n^2 + x^2}$, I = [0, 1]
 - (d) $f_n(x) = \frac{nx}{1 + (nx)^2}$, I = [0, 1]
- 2. Show that $||f||_2$ is a norm on $\mathcal{C}([0,1])$.
- 3. (a) Let $f: U \to \mathbf{R}^n$ where $U \subset \mathbf{R}^n$ is an open set and suppose that f satisfies a Lipschitz condition on U. Show that f is uniformly continuous on U.
 - (b) Let $f: E \to \mathbf{R}^n$ where $E \subset \mathbf{R}^n$ is a compact set. Suppose that f is locally Lipschitz on E, show that f satisfies a Lipschitz condition on E.
 - (c) Show that f(x) = 1/x is locally Lipschitz but that it does not satisfy a Lipschitz condition on (0,1).
 - (d) Show that $f(x) = \sqrt{|x|}$ is not locally Lipschitz.
 - (e) Does the Cauchy problem x' = 1/x, x(0) = a > 0 have a unique solution? Solve it and determine the maximal interval of existence. What is the behavior of the solution at the boundary of this interval?
- 4. (a) Derive the following *error estimate* for the method of successive approximations. Let x be a fixed point given by this method. Show that

$$||x - x_k|| \le \frac{\alpha}{1 - \alpha} ||x_k - x_{k-1}||,$$
 (1)

where α is the contraction rate.

- (b) Consider the function $f(x) = e^x/4$ on the interval [0, 1]. Show that f has a fixed point on [0, 1]. Do some iterations and estimate the error rigorously using (a).
- 5. Consider the function $f: \mathbf{R} \to \mathbf{R}$ given by

$$f(x) = \begin{cases} x + e^{-x/2} & \text{if } x \ge 0 \\ e^{x/2} & \text{if } x \le 0 \end{cases}$$
 (2)

- (a) Show that |f(x) f(y)| < |x y| for $x \neq y$.
- (b) Show that f does not have a fixed point.

Explain why this does not contradict the Banach fixed point theorem.

6. Consider the IVP

$$x' = x^3, \quad x(0) = a.$$
 (3)

(a) Apply the Picard-Lindelöf iteration to compute the first three iterations $x_1(t)$, $x_2(t)$, $x_3(t)$.

- (b) Find the exact solution and expand it in a Taylor series around t=0. Show that the first few terms agrees with the Picard iterates.
- (c) How does the number of correct terms grow with iteration?
- 7. Apply the Picard-Lindelöf iteration to the Cauchy problem

$$x'_1 = x_1 + 2x_2,$$
 $x_1(0) = 0$ (4)
 $x'_2 = t^2 + x_1,$ $x_2(0) = 0$ (5)

$$x_2' = t^2 + x_1, x_2(0) = 0 (5)$$

Compute the first five terms in the taylor series of the solution.

(a) Let $I = [t_0 - \alpha, t_0 + \alpha]$ and for a positive constant κ define

$$||x||_{\kappa} = \sup_{t \in I} ||x(t)|| e^{-\kappa |t-t_0|}.$$

Show that $\|\cdot\|_{\kappa}$ defines a norm and that the space

$$E = \{x : I \to \mathbf{R}^n, x(t) \text{ continuous and } \|\mathbf{x}\|_{\kappa} < \infty \}$$

is a Banach space.

- (b) Consider the IVP $x' = f(t, x), x(t_0) = x_1$. Give a proof of Theorem 1.3.4 in the class notes by applying the Banach fixed point theorem in the Banach space E with norm $\|\cdot\|_{\kappa}$ for a well-chosen κ .
- (c) Suppose that f(t,x) satisfy a global Lipschitz condition, i.e., there exists a positive L>0such that

$$||f(t,x) - f(t,y)|| \le L||x - y||$$
 for all $x, y \in \mathbf{R}^n$ and for all $t \in \mathbf{R}$. (6)

Show that the Cauchy problem $x' = f(t, x), x(t_0) = x_0$ has a unique solution for all $t \in \mathbf{R}$. *Hint:* Use the norm defined in (a).

9. Consider the map T given by

$$T(f)(x) = \sin(2\pi x) + \lambda \int_{-1}^{1} \frac{f(y)}{1 + (x - y)^2} dy$$

- (a) Show that if $f \in \mathcal{C}([-1,1], \mathbf{R})$ then so is T(f).
- (b) Find a λ_0 such that T is a contraction if $|\lambda| < \lambda_0$ and T is not a contraction if $|\lambda| > \lambda_0$. *Hint:* For the second part find a pair f, g such that $||T(f) - T(g)||_{\infty} > ||f - g||_{\infty}$.
- 10. Let us consider \mathbf{R}^2 with the norm $||x|| = \max\{|x_1|, |x_2|\}$. Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be given by

$$f(x_1, x_2) = \begin{pmatrix} x_1^2 + 2x_2^2 + 5\cos(x_2) \\ 4x_1x_2 + 3 \end{pmatrix}$$
 (7)

Let $K = \{(x_1, x_2), |x_1| < 1, |x_2| \le 2\}$. Find an explicit Lipschitz constant L for f on K.

11. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be of class \mathcal{C}^1 and satisfy f(0,0) = 0. Suppose that x(t) is a solution of the ODE

$$x'' = f(x, x'), \tag{8}$$

which is not identically 0. Show that x(t) has simple zeros. Examples: the harmonic oscillator x'' + x =or the mathematical pendulum $x'' + \sin(x) = 0$.