Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный технический университет им. И.И. Ползунова»

Факультет (институт) Информацион		
Кафедра Прикладная математика		
	_	
(Этчет защищен с с	опенкой
	7 10 1 000 000	Е.Г. Боровцов
(подпись	преподавателя) "	(инициалы, фамилия) " 2022 г
		
	Отчет	
по лабораторной (пр	·	
<u>«Подпрограммы и пр</u>		
(название лабораторн	ой (практической)) работы)
по дисциплине Машино-зави	исимые языки про	ограммирования
	ние дисциплины)	•
Студент группы ПИ-02 Черед	цов Р.А.	
Преполаватель Е Г Боровнов		

Задание

Реализовать алгоритм с обязательным использованием подпрограмм.

Передачу параметров реализовать исключительно через стек, для обращения к параметрам в стеке

использовать имена параметров, присвоенные через EQU. Адресация параметров относительно BP,

при этом обязательно использование стандарнтной входной и выходной последовательности.

Память под локальные переменные процедуры выделить в окне стека. Реализовать обращение к ним

относительно регистра BP с использованием имен, назначенных через директивы EQU.

В качестве индивидуального задания использовать задания из курса "Архитектура ВС", тема "подпрограммы"

Выражение:

tmp dw?

```
Y:=P(Y,X^2)-P(Y,X-1)+P(Y,X), где P(A,Z)=az^n-a^n+1;
```

```
input_buf db 06,00,5 dup(?) ; Буфер для ввода числа
     in_X db 0ah, 0dh, 'Input X :$' ; Буферы для переменных
     in_A db 0ah, 0dh, 'Input Y:$'
     in_N db 0ah, 0dh, 'Input N:$'
     answer db 7 dup(?), '$'
                                 ;ввод
     messout db 0dh, 0ah, 'Result: $';вывод
; Our executable assembly code starts here in the .code section
.code
.startup
     beg: jmp start
     include bin2str.asm ; Подключение программ для преобразования входных
     include str2bin.asm
                       ; И выходных данных
;ввод
           lea dx,in X
                           ; загрузка адреса буфера
 start:
 mov ah,09h; в АН - номер функции вывода строки
     int 21h; вызов прерывания DOS для вывода строки на экран
     lea dx,input_buf; в dx - адрес буфера ввода
     mov ah,0ah; в АН - номер функции ввода числа с клавиатуры
     int 21h; вызов прерывания ввода числа с клавиатуры
;преобразование строки в число
     mov bx,dx; перегрузить в bx адрес буфера
     inc bx; увеличить адрес на единицу
```

```
call str2bin; обратиться к подпрограмме преобразования mov X,ax; запомнить число в переменной A
```

;ввод

lea dx,in_A ; загрузка адреса буфера mov ah,09h; в АН - номер функции вывода строки int 21h; вызов прерывания DOS для вывода строки на экран lea dx,input_buf; в dx - адрес буфера ввода mov ah,0ah; в АН - номер функции ввода числа с клавиатуры int 21h; вызов прерывания ввода числа с клавиатуры; преобразование строки в число

mov bx,dx; перегрузить в bx адрес буфера

inc bx; увеличить адрес на единицу

call str2bin; обратиться к подпрограмме преобразования

то А,ах ; запомнить число в переменной А

;ввод

lea dx,in_N ; загрузка адреса буфера

mov ah,09h; в АН - номер функции вывода строки

int 21h; вызов прерывания DOS для вывода строки на экран

lea dx,input_buf; в dx - адрес буфера ввода

mov ah,0ah; в АН - номер функции ввода числа с клавиатуры

int 21h; вызов прерывания ввода числа с клавиатуры

;преобразование строки в число

mov bx,dx; перегрузить в bx адрес буфера

inc bx; увеличить адрес на единицу

call str2bin; обратиться к подпрограмме преобразования

mov N,ax; запомнить число в переменной N

;Y:= $P(Y,X^2) - P(Y,X-1) + P(Y,X)$, где $P(Z)=az^n-a^n+1$, При этом Y заносится как A, потому что не меняется параметр

то ү,0 занести в Ү 0

mov ах, X ;в регистр заносится X

imul ax ; x^2

push ax ; поместить x^2 в стек

push A; поместить в стек A

push N;поместить в стек N

call pod ;вызов подпрограммы для $a^*(x^2)^n-a^n+1$

add Y,ах ;прибавить вычисленное выражение к Y

mov ах, X ; в регистр заносится X

sub ax,1 ;X-1

push ах ;поместить x-1 в стек

push A; поместить в стек A

push N;поместить в стек N

call pod ;вызов подпрограммы для $a^*(x-1)^n-a^n+1$

sub Y,ах ;вычесть вычисленное выражение из Y

mov ах, X ; в регистр заносится X

push ax ;поместить x в стек

push A; поместить в стек A

push N;поместить в стек N

call pod ;вызов подпрограммы для a*x^n-a^n+1

add Y,ax ;прибавить вычисленное выражение к Y

то ах, У ;в регистр заносится У

том У,ах результат поместить в У

lea bx,answer; поместить в BX адрес буфера для символьного представления

```
lea dx, messout; в dx - адрес буфера вывода
  mov ah,09h; в аh - номер функции вывода на экран
      int 21h; обратиться к функции вывода через 21 прерывание
      lea dx,answer+1
      mov ah,09h
      int 21h
      int 20h
;подпрограмма для рассчета выражения P(Z)=az^n-a^n+1
pod proc near
parX equ [bp+8] ;через
parA equ [bp+6] ;дерективу EQU присвоили
parN equ [bp+4] ;имена параметрам в стеке
push bp
        ;стандартная
mov bp,sp ;входная последовательность
;start
mov cx,parN ;в регистр заносится счетчик цикла
mov ax.1
            ;в регистр заносится 1
cycl1: push сх ;поместить счетчик цикла в стек
mov bx,parX ;в регистр заносится параметр х
imul bx
рор сх ;восстановить из стека счетчик
loop cycl1;x^n in ax
mov bx,parA ;в регистр заносится параметр A
imul bx;a*x^n in ax
```

mov tmp,ax;a*x^n in tmp

mov cx,parN ;в регистр заносится счетчик цикла

mov ax,1 ;в регистр заносится 1

;a^n

cycl2: push сх ;поместить счетчик цикла в стек

mov bx,parA ;в регистр заносится параметр A

imul bx ;a^n

рор сх ;восстановить из стека счетчик

loop cycl2;aⁿ in ax

mov bx,tmp $\,$;поместить в регистр $a*x^n$

sub bx,ax;a*x^n-a^n

add bx,1 ; $a*x^n-a^n+1$

mov ax,bx ; поместить $a*x^n-a^n+1$ в регистр

;end of podprog

рор bp ;ввосстановили bp

ret 6 ;возврат с очисткой стека от 3х параметров

pod endp

End

Тесты:

X	Y(A)	N	Y
2	2	2	35

Input X :2 Input Y :2

Input N :2

esult: