

ModExtreme - Workshop Montpellier - September 10, 2015

Models of expansive growth as a function of temperature and water deficit with explicit genetic variability

Boris Parent, François Tardieu

1) Models with genetic variability

Most crop models use a single set of parameters per species

Studies on climate change and extreme events:

- # genotypes in the future
- # genotypes depending on environment and climatic scenarios
- simulating virtual genotypes in virtual scenarios

We need models with explicit genetic variability

2) A level a simplification compatible with phenotyping

Phenotyped traits ~ Model parameters

We can now measure parameter values of hundreds of genotypes

- -Not always explicitely in models
- -Some parameters impossible to measure

Adapt models to phenotyping?

Adapt phenotyping methods to crop models?

3) Coupling crop models with Ecophysiological models and genetic models

Simulating which combination of traits / alleles improves performances in which environment / climatic scenario

Parent and Tardieu, JXB, 2014

Outline

Responses of Development / Expansive growth to Temperature

- # equations in crop models
- Model proposed in this project
- Reconciling the approaches

Responses of Water transfer / Expansive growth to soil water and evaporative demand

- Update of the Tardieu and Davies model (1993)
- Simplified model of expansive growth with easily phenotyped genotypic parameters

Conclusion

Diversity of formalisms in crop models

equations

between development and growth

Diversity of formalisms in crop models

- # equations
- # between development and growth
- # between development stages
- # between day and night

even within species

The proposed model:

$$F(T) = \frac{ATe^{\left(\begin{array}{c} \Delta H_{A}^{\ddagger} \\ RT \end{array}\right)}}{1 + \left[e^{\left(\begin{array}{c} -\Delta H_{A}^{\ddagger} \\ RT \end{array}\right)}\right]^{\alpha \left(1 - \frac{T}{T_{0}}\right)}}$$

Parent and Tardieu, NewPhyt, 2012

Another one in the jungle of temperature models? Or a simplifying approach?

- -2 parameters
- -Large range of temperatures
- -Parameters with a biochemical meaning (for comparative studies)
- -No variation observed between developmental processes
- -No variation observed within species

The proposed model:

$$F(T) = \frac{ATe^{\left(\frac{-\Delta H_{A}^{\ddagger}}{RT}\right)}}{1 + \left[e^{\left(\frac{-\Delta H_{A}^{\ddagger}}{RT}\right)}\right]^{\alpha \left(1 - \frac{T}{T_{0}}\right)}}$$

Parent and Tardieu, NewPhyt, 2012

Another one in the jungle of temperature models? Or a simplifying approach?

- -2 parameters
- -Large range of temperatures
- -Parameters with a biochemical meaning (for comparative studies)
- -No variation observed between developmental processes
- -No variation observed within species
- -Parameter values in 18 species

Reconciling approaches

equations from one model to the other

between development and growth Effect of evaporative demand?

between development stages Temperature range effect?

between day and night Temperature range effect?

Min/max vs. hourly temperatures

Reconciling approaches can we go from one model to the other?

Ex: Non-linear PT12 ~ Bilinear model

Linear equations between parameters :

Reconciling approaches Effect of temperature range

Ex: temperature range effect on wheat threshold temperature
-4°C < Tbase < 5°C

Reconciling approaches Effect of temperature range

Ex: temperature range effect on wheat threshold temperature
-4°C < Thase < 5°C

Effect of evaporative demand

Complete change in overall response

Reconciling approaches Effect of temperature range

Ex: temperature range effect on wheat threshold temperature
-4°C < Thase < 5°C

Effect of evaporative demand

Complete change in overall response

Effect of timestep

A shift by 4°C in temperature responses

Reconciling approaches

equations from one model to another

between development and growth Effect of evaporative demand?

between development stages Temperature range effect?

between day and night Temperature range effect?

Min/max vs. hourly temperatures

Differences between equations / parameter values stage effects day or night

could be artefacts from modelling strategies / simplifications

When considering all these aspects, one can calculate parameter values of one model the other.

R scripts of thermal time and rate calculations

R scripts for fitting response curves

Data available in one species :

R scripts for converting

- -parameter values
- -thermal time values
- -rate values

between

- -linear / bilinear models
- -non-linear model

Data available in one species :

Parameter values of 18 species from different origins

Data available in one species :

Updating the Tardieu and Davies (1993) model

A model of stomatal conductance, transpiration and circulations of water and ABA in the plant

-Updated and extended to more complex cases and to the simulation of expansive growth

Updating the Tardieu and Davies (1993) model

- -Changes in tissue hydraulic conductance in the model
 - -Circadian Conductances
 - -Transpiration-dependant Conductances
 - -ABA-dependant Conductances
- -Leaf expansion from xylem water potential and ABA
- -Leaf has a capacitance

Updating the Tardieu and Davies (1993) model

Validated in different situations

- -Simulates the rapid decrease of leaf growth in the early morning
- -Simulates the behaviors of transgenic lines affected on ABA production

Updating the Tardieu and Davies (1993) model

Validated in different situations

- -Simulates the rapid decrease of leaf growth in the early morning
- -Simulates the behaviors of transgenic lines affected on ABA production
- -Allows to simulate the effect of the genetic variability on hydraulic traits

Updating the Tardieu and Davies (1993) model

Could it be inserted in crop models?

For research purposes?

Upscalling research outputs (ex: studies on aquaporins, interaction with other factors which are not in this model)

For simulating yield?

Simplifications are probably needed.
With less parameters

A simplified model of development and growth with easily phenotype parameters

Combining:

- -model of leaf development
- -model of growth response to environmental conditions

Problem:

- -not adapted to genotypes with # leaf number
- -still too many parameters (>20)

A simplified model of development and growth with easily phenotyped parameters

Sebastien Lacube

A simplified model of development and growth with easily phenotyped parameters

5 parameters with genotypic variations, easily measurable:

- Final number of leaves
- Phyllochron
- Thermal time for one leaf appearance
- Thermal time for one leaf ligulation
- Slope of ligulation for first leaves

+ work on leaf width Transpiration effect

Sebastien Lacube

Conclusion

Models of expansive growth as a function of temperature and water deficit with explicit genetic variability

Temperature response

- -simplifies the diversity observed in crop models
- -R scripts, parameter values

Water transfer and leaf expansion

- -diversity of stomatal control and hydraulic conductances
- -R scripts, non inserted in crop models

Leaf development and expansion

- -few parameters with a large genetic variability
- -a module, will be inserted into crop models for testing (APSIM)

Acknowledgement

Temperature:

Yves Gibon Olivier Turc François Tardieu

Water transfer:

Thierry Simonneau François Tardieu

Leaf expansion:

Sebastien Lacube

