Corso di Laurea in Informatica

FISICA GENERALE Introduzione

Gino Tosti gino.tosti@unipg.it

Slides by Stefano Germani

La science Della Natura

Scopo della Fisica è capire le leggi della natura che regolano l'intero Universo.

L'interesse della Fisica spazia dal mondo dell' infinitamente piccolo delle particelle subatomiche, alle stelle, le galassie e la vastità cosmica dello spazio e del tempo in cui l'universo si muove.

La maleria

De La materia è stata sempre uno dei principali soggetti di studio della Fisica

La Fisica parte dai concetti della vita quotidiana e ne scopre una realtà più profonda rispetto a come siamo abituati a intendere questi concetti nella realtà quotidiana.

- @ MECCANICA
- o Introduzione: Grandezze fisiche, unità di Misura, ordini di grandezza
- o Scalari e vettori: elementi di algebra vettoriale.
- Posizione e spostamento, velocità ed accelerazione; legge oraria del moto e traiettoria.
- Moto uniforme ed uniformemente accelerato, caduta libera; Moto circolare uniforme.
- Concetti di forza e di massa. Le tre leggi di Newton e le loro applicazioni. Le forze di attrito (statico e dinamico) e le loro leggi.
- « Lavoro ed energia. Energia cinetica e teorema lavoro-energia, forze

 conservative e non conservative, energia potenziale, conservazione dell'energia;

 potenza.
- © Centro di massa, quantità di moto, conservazione della quantità di moto.
 Impulso di una forza, urto in una dimensione, urti elastici ed anelastici
- Variabili rotazionali per rotazioni di un corpo rigido attorno ad un asse fisso.
 Velocità e accelerazione angolari. Esempi
- Rotazione con accelerazione angolare costante. Relazioni tra grandezze lineari e grandezze angolari. Energia cinetica di rotazione: il momento di inerzia.
- Dinamica del moto rotatorio: momento di una forza rispetto ad un asse, momento angolare, conservazione del momento angolare.

@ ELETTROMAGNETISMO

- Cariche Elettriche, Isolanti e conduttori, Legge di Coulomb, Campo elettrico e sua definizione operativa, Calcolo del campo generato da cariche puntiformi e da distribuzioni continue di carica,
- Teorema di Gauss. Alcune conseguenze notevoli: distribuzione delle cariche in un conduttore in condizioni statiche, teorema di Coulomb, campi elettrici generati da distribuzioni di cariche a simmetria piana, cilindrica e sferica.
- Potenziale elettrostatico: definizione operativa. Calcolo del potenziale per distribuzioni di carica puntiformi e continue.
- © Condensatori: capacità, calcolo nei casi di condensatore piano, sferico e cilindrico. Condensatori in serie e parallelo. Energia immagazzinata in un condensatore carico. Energia e densità di energia del campo elettrico.
- Ocrrente elettrica. Densità e intensità di corrente elettrica. Velocità di deriva. Resistenza e resistività. Legge di Ohm (in forma macroscopica e microscopica). Potenza nei circuiti elettrici e legge di Joule. Generatori: forza elettromotrice e resistenza interna.
- Campo di induzione magnetica B. Forza di Lorentz agente su una particella carica. Carica in moto circolare. Forza di Lorentz agente su un filo percorso da corrente. Momento meccanico agente su una spira percorsa da corrente. Dipolo magnetico.
- Campo magnetico generato da una corrente: la legge di Biot-Savart. Uso della legge di Biot-Savart per il calcolo di B in alcuni sistemi semplici.
- Teorema della circuitazione (di Ampère). Applicazioni, Forze agenti tra circuiti percorsi da correnti. Il solenoide, Legge di Faraday-Neumann, Legge di Lenz, Induzione e trasferimento di energia.

Testi Consigliati

Walker - Halliday-Resnick: Fondamenti di Fisica - settima edizione Serway - Jewett: Principi di Fisica (EDISES)

Esame: Orale

Orario Lezioni: Mercoledi 16-18 Venerdi 9-11

Leggi e grandezze fisiche

Le leggi della fisica sono espresse nel linguaggio della matematica attraverso delle equazioniche legano tra di loro quantità o grandezze fisiche, quali

la lunghezza, l'intervallo di tempo, la forza, l'energia, la temperatura, la corrente elettrica etc.

Leggi e grandezze fisiche

Per utilizzare il linguaggio matemetico occorre associare alle grandezze fisiche dei dati numerici che esprimano in modo oggettivo il valore che assume una certa grandezza

Dobbiamo cioe trasformare un fenomeno fisico in un insieme di dati ricavabili attraverso il processo di misura di delle grandezze fisiche.

Grandezze

- Le quantità fisiche fondamentali sono definite in base alla procedura utilizzata per misurarle.
- Le quantità unitarie o unita di misura in cui vengono misurate le grandezze fisiche fondamentali sono quindi chiamate unita fondamentali.
- o lunghezza,
- o massa,
- o tempo
- o corrente elettrica.
- Tutte le altre grandezze fisiche, come la forza e la carica elettrica, possono essere espresse come combinazioni algebriche di lunghezza, massa, tempo e corrente (ad esempio, la velocità è lunghezza divisa per il tempo), queste unita sono chiamate grandezze derivate.

Sistema Internazionale

Grandezza fisica	Simbolo	Unità di misura	Simbolo	Strumento di misura
Lunghezza	L	metro	m	metro
Intervallo di tempo	t	secondo	S	cronometro
Massa	M	kilogrammo	kg	bilancia
Intensità di corrente	i	ampere	A	amperometro
Temperatura	T	kelvin	K	termometro
Intensità luminosa	I	candela	cd	fotometro
Quantità di sostanza	m	mole	mol	

Unità di misura	Definizione	
metro	Il metro è la lunghezza del percorso della luce nel vuoto in un inter-	
	di tempo di 1/299792458 di secondo.	
secondo	Il secondo è la durata di 9192631770 periodi della radiazione emessa	
	dall'atomo di Cesio 133 nella transizione tra i due livelli iperfini (F=4,	
	M=0) e (F=3, M=0) dello stato fondamentale ² S(1/2).	
kilogrammo	Il kilogrammo è la massa del prototipo internazionale conservato al	
	Pavillon de Breteuil (Sevres, Francia)	
ampere	L'ampere è la corrente che, se mantenuta in due conduttori paralleli	
	indefinitamente lunghi e di sezione trascurabile posti a distanza di un	
	metro nel vuoto, determina tra questi due conduttori una forza uguale	
	a 2×10^{-7} newton per metro di lunghezza.	
kelvin	Il kelvin è la frazione 1/273.16 della temperatura termodinamica del	
	punto triplo dell'acqua.	
candela	La candela è l'intensità luminosa, in un'assegnata direzione, di una sor-	
	gente che emette una radiazione monocromatica di frequenza 540×10^{12}	
	Hz e la cui intensità energetica in tale direzione è 1/683 W/sr.	
mole	La mole è la quantità di sostanza che contiene tante entità elementari	
	quanti sono gli atomi in 0.012 kg di Carbonio 12. Quando si usa la mole,	
	deve essere specificata la natura delle entità elementari, che possono	
	essere atomi, molecole, ioni, elettroni, altre particelle o gruppi specificati	
	di tali particelle.	
	de our paracouror	