Visualization and Data Mining

Outline

- Graphical excellence and lie factor
- Representing data in 1-D, 2-D, and 3-D
- Representing data in 4+ dimensions
 - Parallel coordinates
 - Scatterplots
 - Stick figures

Visualization Role

- Support interactive exploration
- Help in result presentation
- Disadvantage: requires human eyes
- Can be misleading

Bad Visualization: Spreadsheet

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

What is wrong with this graph?

Bad Visualization: Spreadsheet with misleading Y —axis

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

Y-Axis scale gives WRONG impression of big change

Better Visualization

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

Axis from 0 to 2000 scale gives correct impression of small change

Lie Factor

$$Lie\ Factor = \frac{size\ of\ effect\ shown\ in\ graphic}{size\ of\ effect\ in\ data} =$$

$$=\frac{\frac{(20-10)}{10}}{\frac{(2120-2105)}{2105}} = \frac{0.5}{0.007125} = 70.18$$

Tufte requirement: 0.95<Lie Factor<1.05

Tufte's Principles of Graphical Excellence

- Give the viewer
 - the greatest number of ideas
 - in the shortest time
 - with the least ink in the smallest space.

Tell the truth about the data!

(E.R. Tufte, "The Visual Display of Quantitative Information", 2nd edition)

Visualization Methods

- Visualizing in 1-D, 2-D and 3-D
 - well-known visualization methods
- Visualizing more dimensions
 - Parallel Coordinates
 - Other ideas

1-D (Univariate) Data

Representations

2-D (Bivariate) Data

Scatter plot, ...

3-D Data (projection)

(E.R. Tufte, "The Visual Display of Quantitative Information", 2nd edition)

3-D image (requires 3-D blue and red glasses)

Taken by Mars Rover Spirit, Jan 2004

Visualizing in 4+ Dimensions

- Scatterplots
- Parallel Coordinates
- Chernoff faces
- Stick Figures

...

Multiple Views

Give each variable its own display

Problem: does not show correlations

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot (car data)

Q: Useful for what?

A: linear correlations (e.g. horsepower & weight)

Q: Misses what?

A: multivariate effects

Parallel Coordinates

- Encode variables along a horizontal row
- Vertical line specifies values

Dataset in a Cartesian coordinates

Same dataset in parallel coordinates

Invented by Alfred Inselberg while at IBM, 1985

Example: Visualizing Iris Data

Iris setosa

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
•••	•••	•••	•••
5.9	3	5.1	1.8

Iris versicolor

Iris virginica

Flower Parts

Petal, a non-reproductive part of the flower

Sepal, a non-reproductive part of the flower

Parallel Coordinates

Sepal Length

5.1 ⁽

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

Parallel Coordinates: 2 D

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

Parallel Coordinates: 4 D

Parallel Visualization of Iris data

Parallel Visualization Summary

- Each data point is a line
- Similar points correspond to similar lines
- Lines crossing over correspond to negatively correlated attributes
- Interactive exploration and clustering

■ Problems: order of axes, limit to ~20 dimensions

Chernoff Faces

Encode different variables' values in characteristics of human face

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff/

http://hesketh.com/schampeo/projects/Faces/chernoff.html

Interactive Face

Chernoff faces, example

Chernoff-Faces [Che 73, Tuf 83]

Stick Figures

- Two variables are mapped to X, Y axes
- Other variables are mapped to limb lengths and angles
- Texture patterns can show data characteristics

Stick figures, example

census data showing age, income, sex, education, etc.

Closed figures correspond to women and we can see more of them on the left.

Note also a young woman with high income

Visualization software

Free and Open-source

- R + ggplot2
- Python + vizualization libraries
- Orange

Many more - see:
www.KDnuggets.com/software/visualization.html

Visualization Summary

- Many methods
- Visualization is possible in more than 3-D
- Aim for graphical excellence
- Tell the truth about the data