Linear algebra with applications Ivan Markovsky

- Why is linear algebra useful?
- Numerical methods for matrix computations
- Applications of linear algebra in:

System and control theory

(realization and identification)

Signal processing

(array and image precessing)

• Machine learning (data compression and information retrieval)

Linear algebra with applications (L0)

Overview

1 / 11

References

- G. Strang, Linear algebra and its applications
- N. Trefethen & Bau, Numerical linear algebra
- G. Golub & Van Loan, Matrix computations
- S. Boyd, EE263: Linear dynamical systems (online)

Topics

- 1. Review of linear algebra
- 2. Numerical linear algebra: matrix factorizations
- 3. Some optimization problems with analytic solution
- 4. Applications (in estimation, control, and signal processing

Linear algebra with applications (L0)

Overview

2/11

Journals

- SIAM Journal on Matrix Analysis and Applications
- Linear Algebra and Its Applications
- Journal of Computational and Applied Mathematics
- Numerical Linear Algebra with Applications
- NA digest mailing list

Linear algebra with applications (L0) Overview 3 / 11

Linear algebra with applications (L0)

Overview

4 / 11

Some net resources

- NA digest mailing list
- Netlib repository
- Decision tree for optimization software

Linear algebra with applications (L0)

Overview

5/11

Numerical linear algebra software

Should you write numerical linear algebra code?

No, whenever possible use existing (high quality) libraries for linear algebra computation instead of writing your own implementation.

In special cases (*e.g.*, structured matrix, real-time implementation) writing linear algebra code or modifying existing one is needed.

This course teaches

- 1. how to use linear algebra and optimization (What is available?)
- 2. basic understanding of numerical methods (How does it work?)
- 3. pitfalls in using the methods (When it does not work?)

Numerical analysis

Common misconception: numerical analysis is about analysis of rounding errors

Indeed

- perturbation analysis
- · stability, cost, and convergence analysis

are important topics in numerical computing, however,

The core of numerical analysis is development of algorithms

Linear algebra with applications (L0)

Overview

6 / 11

8/11

Vectors and matrices

Data structure point of view: 1D and 2D arrays of numbers, a table

Convention: vectors are denoted by lowercase letters (e.g., v) and matrices are denoted by uppercase letters (e.g., M)

Use indexes to retrieving data from a vector/matrix:

- v_i (or v(i)) the *i*th element of v
- M_{ij} (or M(i,j)) the element in the *i*th row and the *j*th column

Dimensions of a vector/matrix: # of rows and # of columns

Slices: $v_{i_1:i_2}$ (or $v(i_1:i_2)$) and $M_{i_1:i_2,j_1:j_2}$ (or $M(i_1:i_2,j_1:j_2)$)

Linear algebra with applications (L0) Overview 7 / 11 Linear algebra with applications (L0) Overview

Example: diet design

		food ingredients		
		<i>X</i> ₁	• • •	X n
nutrients	<i>y</i> ₁	a ₁₁	• • •	a _{1n}
	:	:		:
n	Уm	a _{m1}		a_{mn}

Nutrients/food ingredients table:

$$A = [a_{ij}] \in \mathbb{R}^{m \times n}$$
, a_{ij} — amount of nutrient i in 1 unit of food j

Diet recipe: a vector $x \in \mathbb{R}^n$, with x_i being the amount of ingredient j

y = Ax — nutrients amounts resulting of recipe x

Diet design:

find a diet x that achieves desired nutrients amounts y_{spec} find the cheapest diet that achieves y_{spec} find an x achieving the closest nutrients amounts to y_{spec}

Linear algebra with applications (L0)

9/11

$$A^{2} = AA = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- $a_{i_1k}a_{ki_2}=1$ when there is an edge between i_1 and k and an edge between k and i_2 , i.e., a path with length 2 between i_1 and i_2
- $(A^2)_{i_1i_2} = \sum_{k=1}^{n} a_{i_1k} a_{ki_2} = \#$ of paths with length 2 between i_1 and i_2
- $(A^k)_{i_1i_2} = \#$ of paths with length k between i_1 and i_2

Example: adjacency matrix of a graph

Graph \mathscr{G} with n nodes and undirected edges, e.g., (1)

10 / 11

The adjacency matrix $A \in \{0,1\}^{n \times n}$ of \mathcal{G} has 1 in the (i,j)th entry, if the ith node is connected to the ith node by an edge, and 0 otherwise, e.g.,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

A completely describes \mathscr{G} and vice verse, $A \leftrightarrow \mathscr{G}$. Moreover, questions related to properties of \mathscr{G} can be answered by matrix operations on A.

For example, the entries of $A^2 = AA$ have interpretation in terms of \mathcal{G} .

Overview Linear algebra with applications (L0)