Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів» Варіант <u>28</u>

Виконав студент: ІП-15 Рибаков Дмитро Вадимович

Перевірив: Вечерковська Анастасія Сергіївна

Алгоритми та структури даних. Основи алгоритмізації

Лабораторна робота 4

Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 28

Постановка задачі

Розробити алгоритм, псевдокод та блок-схему, щоб отримати всі піфагорові трійки натуральних чисел, кожне з яких не перевищує n, тобто всі такі трійки натуральних чисел a, b, c, що $a^2 + b^2 = c^2$ ($a \le b \le c \le n$) використовуючи складний циклічний алгоритм.

Побудова математичної моделі

З мінна	Тип	Ім'я	Призначення
Задане число	цілий	n	Вхідні дані
Натуральне	цілий	а	Вихідні дані
число, частина			
піфагорової			
трійки			
Натуральне	цілий	b	Вихідні дані
число, частина			
піфагорової			
трійки			
Натуральне	цілий	С	Вихідні дані
число, частина			
піфагорової			
трійки			

У роботі використовується зовнішній арифметичний цикл зі змінною-лічильником c=1, умовою c<=0, кроком c++, внутрішні арифметичними цикли зі змінною-лічильником a=1, умовою a<=0, кроком a++ і b=a, умовою b<=0, кроком b++. У циклах c та а мають початкове значення 1, бо це натуральні числа, a b має початкове значення a, щоб уникнути повторення піфагорових трійок. Також у роботі використовуються наступні дії:

«<=» - менше або рівно;

«++» - додавання одиниці до числа;

«==» - дорівнює (умова). Також у псевдокоді використовується «,» - що означає виведення коми для відокремлювання виведених даних і «; » для перелічення результатів та пробілу між ними.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Введення натурального числа та деталізація дії отримання піфагорових трійок меньших за введене натуральне число.

Псевдокод

крок 1

початок

введення змінної п

отримання піфагорових трійок меньших за введене натуральне

<u>число</u>

кінець

крок 2

початок

ввід п

для с **від** 1 **до** п включно **повторити**

для а від 1 до п включно повторити

то вивід а «,» b «,» c «; »

для b від а до n включно повторити

то вивід а «,» b «,» c «; »

все повторити

все повторити

все повторити

кінець

Блок-схема

Випробування

Блок	Дія
	Початок
1	n = 10
2	a = 3
3	b = 4
4	c = 5
5	Вивід 3,4,5;
6	a = 6
7	b = 8
8	c = 10
9	Вивід 6,8,10;
	Кінець

Блок	Дія
	Початок
1	n = 16
2	a = 3
3	b = 4
4	c = 5
5	Вивід 3,4,5;
6	a = 6
7	b = 8
8	c = 10
9	Вивід 6,8,10;
10	a = 5
11	b = 12
12	c = 13
13	Вивід 5,12,13;
14	a = 9
15	b = 12
16	c = 15
17	Вивід 9,12,15;
	Кінець

Висновки

На цій лабораторній роботі ми дослідили особливості роботи складних циклічних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи ми отримали алгоритм виведення піфагорових трійок значення якіх не перевищують значення заданого натурального числа, при цьому розділили

виконання задачи на 2 кроки: визначення основних дій, введення натурального числа і деталізація дії отримання піфагорових трійок меньших за введене натуральне число. Розробили псевдокод та блоксхему. В процесі випробування ми розглянули два випадки: введення натурального числа 10 і виведення результату - 3,4,5; 6,8,10; та введення натурального числа 16 і виведення результату - 3,4,5; 6,8,10; 5,12,13; 9,12,15;. Алгоритм ефективен та результативен, він виводить усі піфагорові трійки які менші за задане натуральне число без повторень.