Rethinking the Usage of Batch Normalization and Dropout in the Training of Deep Neural Networks

Guangyong Chen, Pengfei Chen, Yujun Shi, Chang-Yu Hsieh, Benben Liao, Shengyu Zhang

presenter: Yaorong Xiao

Motivation

- DNNs becomes deeper and larger
- Whitening helps convergence -->batch norm(more efficient)
- Independence among neurons can increase the representations of model.
- Traditional ICA methods computational expensive.
- location of batch norm

Uncorrelated Inputs

$$\min_{A} \sum_{i=1}^{n} \|y_i - Ax_i\|_2^2, \tag{1}$$

then based on the gradient method, the optimal solution of A must satisfy

$$A\sum_{i=1}^{n} x_i x_i^T = \sum_{i=1}^{n} y x_i^T.$$
 (2)

$$A \cdot \operatorname{Cov}(x,x) = \operatorname{Cov}(y,x)$$

Goal & Contribution

Goal: Create a layer that encourages independent neuron activations

Contributions:

- Propose IC Layer = BatchNorm + Dropout
- Theoretical proof of reduced mutual info and correlation
- Improved empirical results on CIFAR10/100 and ILSVRC2012

IC Layer Design

```
from keras.layers.normalization import
BatchNormalization as BatchNorm
from keras.layers.core import Dropout
def IC(inputs,p):
x = BatchNorm(inputs) # replace ZCA
x = Dropout(p)(x) # replace Rotation
return x
```

Figure 2. Python code of the IC layer based on Keras

ICA: PCA+rotation

Mutual Information

$$I(x;y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}.$$

Theorem:

Let g_i denote a family of independent random variables generated from the Bernoulli distribution with its mean being p. Let $\hat{x}_i = g_i x_i$. Then we have

$$I(\hat{x}_i;\hat{x}_j) = p^2 I(x_i,x_j), \quad orall i
eq j, \ H(\hat{x}_i) = p H(x_i) + \epsilon_p,$$

where H denotes the Shannon entropy and ϵ_p the entropy of the Bernoulli distribution.

$$I(\hat{x}_i; \hat{x}_j) = \sum_{a_1} + \sum_{a_2} + \sum_{a_1, a_2}.$$

The first part concerns with computations when \hat{x}_j are restricted to zero

$$\sum_{a_1} = \sum_{a_1} P(\hat{x}_i = a_1, \hat{x}_j = 0) \log \frac{P(\hat{x}_i = a_1, \hat{x}_j = 0)}{P(\hat{x}_i = a_1)P(\hat{x}_j = 0)},$$

$$P(\hat{x}_i = a_1, \hat{x}_j = 0) = P(\hat{x}_i = a_1, g_j = 0)$$
$$= P(\hat{x}_i = a_1)P(g_j = 0) = P(\hat{x}_i = a_1)P(\hat{x}_j = 0).$$

$$I(\hat{x}_i; \hat{x}_j) = \sum_{a_1} + \sum_{a_2} + \sum_{a_1, a_2}.$$

$$\sum_{a_1, a_2} = \sum_{a_1, a_2} P(\hat{x}_i = a_1, \hat{x}_j = a_2) \log \frac{P(\hat{x}_i = a_1, \hat{x}_j = a_2)}{P(\hat{x}_i = a_1)P(\hat{x}_j = a_2)}$$

$$P(\hat{x}_i = a_1, \hat{x}_j = a_2) = P(x_i = a_1, x_j = a_2, g_i = g_j = 1)$$
$$= p^2 P(x_i = a_1, x_j = a_2).$$

$$P(\hat{x}_i = a_1) = pP(x_i = a_1),$$

$$\sum_{a_1,a_2} = p^2 I(x_i; x_j).$$

Entropy of Neuro

$$H(\hat{x}_i) = -\sum_a P(\hat{x}_i = a) \log P(\hat{x}_i = a)$$

$$H(\hat{x}_i) = -P(\hat{x}_i = 0) \log P(\hat{x}_i = 0) + \sum_{a \neq 0}$$
.

 \bullet For a=0:

Since $\hat{x}_i = 0$ happens when $g_i = 0$:

$$P(\hat{x}_i = 0) = P(g_i = 0) = 1 - p$$

So:

$$-P(\hat{x}_i = 0) \log P(\hat{x}_i = 0) = -(1-p) \log(1-p)$$

$$H(\hat{x}_i) = -\sum P(\hat{x}_i = a) \log P(\hat{x}_i = a)$$

$$H(\hat{x}_i) = -P(\hat{x}_i = 0) \log P(\hat{x}_i = 0) + \sum_{a \neq 0}.$$

 \bullet For $a \neq 0$:

$$P(\hat{x}_i=a)=P(x_i=a,g_i=1)=p\cdot P(x_i=a)$$

$$= -\sum_{a\neq 0} pP(x_i = a)\log pP(x_i = a)$$

$$\dot{=} - \sum_{a \neq 0} pP(x_i = a) \log p - p \sum_{a \neq 0} P(x_i = a) \log P(x_i = a)$$

$$= -p\log p + pH(x_i).$$

$$H(\hat{x}_i) = -\sum P(\hat{x}_i = a) \log P(\hat{x}_i = a)$$

$$H(\hat{x}_i) = -P(\hat{x}_i = 0) \log P(\hat{x}_i = 0) + \sum_{a \neq 0}$$
.

$$H(\hat{x}_i) = pH(x_i) + \epsilon_p,$$

where ϵ_p is the entropy of the Bernoulli g_i .

Correlation Coefficient

$$\hat{c}_{ij} = rac{1}{\sigma_i \sigma_j} \mathbb{E}(g_i x_i g_j x_j), \hspace{0.5cm} \sigma_i^2 = \mathbb{E}[g_i^2 x_i^2] = \mathbb{E}[g_i^2] \mathbb{E}[x_i^2] = p$$

$$\mathbb{E}[g_ig_jx_ix_j]=p^2\mathbb{E}[x_ix_j]$$

$$\hat{c}_{ij} = rac{1}{\sqrt{p}\sqrt{p}} \cdot p^2 \cdot \mathbb{E}[x_i x_j] = p \cdot c_{ij}$$

Then the correlation also reduced

Experiment Setup

Benchmarks:

CIFAR10, CIFAR100, ILSVRC2012

Architectures:

Based on **ResNet** designs from [He et al., 2016a/b] and [Li et al., 2018]

- Parameters:
 - IC Layer includes learnable scale & shift parameters (similar to BatchNorm)
 - Total number of learnable parameters is matched to the baseline ResNet for fair comparison

Experiments

Figure 3. (a) The classical ResNet architecture, where '+' denotes summation. (b) Three proposed ResNet architectures reformulated with the IC layer.

Depth	Layers in Residual Unit	CIFAR10	CIFAR100
110	①. 2×{ReLU-IC-Conv2D}	0.9361	0.725
	②. $2 \times \{\text{IC-Conv2D-ReLU}\}$	0.9352	0.7165
	$\textcircled{3}$. $2\times\{\text{Conv2D-ReLU-IC}\}$	0.9408	0.7174
	Baseline	0.9292	0.6893
164	①. $2 \times \{\text{ReLU-IC-Conv2D}\}$	0.9395	0.7224
	②. $2 \times \{\text{IC-Conv2D-ReLU}\}$	0.9366	0.7273
	$3.2 \times \{\text{Conv2D-ReLU-IC}\}$	0.9411	0.7237
	Baseline	0.9339	0.6981
110	①. 3×{ReLU-IC-Conv2D}	0.9448	0.7563
	②. $3 \times \{\text{IC-Conv2D-ReLU}\}$	0.9425	0.7532
	$3.3 \times \{\text{Conv2D-ReLU-IC}\}$	0.9433	0.7482
	Baseline	0.9333	0.7387
164	①. 3×{ReLU-IC-Conv2D}	0.9445	0.758
	②. $3 \times \{\text{IC-Conv2D-ReLU}\}$	0.9424	0.7616
	$3 \times \{\text{Conv2D-ReLU-IC}\}$	0.9453	0.7548
	Baseline	0.9355	0.7465
	110 164 110	110 ①. 2×{ReLU-IC-Conv2D} ②. 2×{IC-Conv2D-ReLU} ③. 2×{Conv2D-ReLU-IC} Baseline ①. 2×{ReLU-IC-Conv2D} ②. 2×{IC-Conv2D-ReLU} ③. 2×{Conv2D-ReLU} ③. 2×{Conv2D-ReLU} ③. 3×{Conv2D-ReLU-IC} Baseline ①. 3×{ReLU-IC-Conv2D} ②. 3×{IC-Conv2D-ReLU} ③. 3×{Conv2D-ReLU-IC} Baseline ①. 3×{ReLU-IC-Conv2D} ②. 3×{IC-Conv2D-ReLU-IC} 3. 3×{ReLU-IC-Conv2D} ②. 3×{IC-Conv2D-ReLU-IC} 3. 3×{Conv2D-ReLU-IC} ③. 3×{Conv2D-ReLU} ③. 3×{Conv2D-ReLU}	110 10

Key Findings

- ReLU-IC-Conv2D residual unit consistently:
 - Achieves more stable training
 - Yields faster convergence
 - Reaches a better convergence limit
- IC layer improves ResNet/ResNet-B especially on CIFAR100, indicating stronger generalization.

Figure 5. Top-1 and Top-5 (1-crop testing) error on ImageNet validation.

Benchmark: ILSVRC2012 (ImageNet)

- 1,000 classes
- 1.28M training images
- 50k validation images

BatchNorm Placement Rethink

Set ReLU output as x,

$$y = Wx$$

$$\partial_{w_j} l = \partial_{y_j} l \cdot x^T$$

- ReLU outputs non-negative values → all x components ≥ 0
- Weight updates $\partial_{w_j} l$ are **constrained**:
 - Updates must be all positive or all negative, depending on \(\partial_{y_i} l \)
- Thus, weights can't move in true gradient direction → optimization zigzags

• L(Wx) expands as:

$$\sum a_{jk}W_{jk}^2 \quad (ext{with } a_{jk} > 0)$$

- Gradient $abla_{W_{jk}}L \sim W_{jk}$
 - \Rightarrow direction aligns only if all w_j lie in same orthant (e.g., all positive)
- That's only $1/2^{n-1}$ of the whole space!
 - ⇒ SGD follows zigzag paths instead of true gradient

Trade-off

- Pros:
- Better independence
- Faster convergence

- Cons:
- Lower expected activations (px)
- May reduce information throughput

Q&A

- Thank you!
- Happy to answer questions or discuss ideas.