KEY MACHINE LEARNING CONCEPTS

Explained with Linear Regression

WHAT WILL YOU LEARN

- Reviewing the basic idea behind linear regression
- Learning how how to measure predictive quality with Mean Square Error (MSE).
- Understanding the role of parameters in a machine learning model in general and in linear regression in particular
- Calculating optimal regression parameters using OLS
- Finding optimal regression parameters by trial and error
- Distinguish between unfitted and fitted models
- Using the tidymodels package to split observations from a dataset randomly into a training and testing dataset.
- Understanding how categorical data such as the sex of a person (female/male) can be transformed into numerical dummy variable.
- Being able to distinguish between dummy encoding and one-hot

UNIVARIATE LINEAR REGRESSION - DATA TABLE AND GOAL

The Regression:

$$\hat{m{y}}_i = eta_1 x_i + eta_2$$

The Goal

Find values for β_1 and β_2 that minimize the prediction errors $(\hat{y}_i - y_i)^2$

The Data Table

Mockup Training Dataset

	У	X	
i	Grade	StudyTime	
1	65	2	
2	82	3	
3	93	7	
4	93	8	
5	83	4	

UNIVARIATE LINEAR REGRESSION - DATA DIAGRAM AND GOAL

The Regression:

$$\hat{y}_i = eta_1 x_i + eta_2$$

The Goal

Find values for β_0 and β_1 that minimize the prediction errors $(\hat{y}_i - y_i)^2$

The Data Diagram

HOW TO MEASURE PREDICTION QUALITY

$$MSE = rac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$
 \iff
 $MSE = rac{1}{N} \sum_{i=1}^{N} (\underbrace{\beta_1 x_i + \beta_2 - y_i})^2$
 $\stackrel{\text{Error } i}{}$

Note, when the data are given (i.e., x_i and y_i are given), the MSE depends only on the choice of β_1 and β_2 »

CUSTOM R FUNCTION TO CALCULATE MSE

Function Call:

▶ Code

[1] 29.8

Function Definition:»

▶ Code

HOW TO FIND OPTIMAL VALUES FOR eta_1 and eta_2

Method 1:

Calculate optimal values for the parameters (the βs) based on Ordinary Least Squares (OLS) using two formulas (**Note**, this method works only for linear regression)

Method 2:

We can use a systematic trial and error process.

METHOD 1: CALCULATE OPTIMAL PARAMETERS (ONLY FOR OLS!)

$$eta_{1,opt} = rac{N \sum_{i=1}^{N} y_i x_i - \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i
ight)^2} = 3.96$$

$$eta_{2,opt.} = rac{\sum_{i=1}^{N} y_i - eta_1 \sum_{i=1}^{N} x_i}{N} = 64.18$$

Mockup Training Dataset

	У	X	ух хх	
i	Grade	StudyTime	GradeXStudyTime	StudyTimeSquared
1	65	2	130	4
2	82	3	246	9
3	93	7	651	49
4	93	8	744	64
5	83	4	332	16

METHOD 2: USE A SYSTEMATIC TRIAL AND ERROR PROCESS (29)

- Grid Search (aka Brute Force):
 - 1. For a given range of β_1 and β_2 values, build a table with pairs of all combinations of these βs .
 - 2. Then use our custom FctMSE() command to calculate a MSEfor each β pair.
 - 3. Find the β pair with the lowest MSE
- Optimizer: Use the R build-in optimizer. Push the start values for β_1 and β_2 together with the data to the optimizer as arguments. The rest is done by the optimizer.
- See the R script in the footnote to see both algorithms in action.»

Data

- ▶ Code
- King County House Sale dataset (Kaggle 2015). House sales prices from May 2014 to May 2015 for King County in Washington State.
- ullet Several predictor variables. For now we use only Sqft
- We will only use 500 randomly chosen observations from the total of 21,613 observations.

Unfitted Model:»

$$\widehat{Price} = eta_1 Sqft + eta_2$$

Splitting in Training and Testing Datasets

▶ Code

DataTrain

```
# A tibble: 349 × 2
Price Sqft
<int><int><int><
1 265000 1400
2 242025 1400
3 280000 1700
4 207000 1980
5 226500 1560
6 295000 1230
7 265000 1010
8 260000 2390
9 175000 670
10 211000 2100
# i 339 more rows
```

DataTest

```
# A tibble: 151 × 2
Price Sqft
```

		/ L
	<int> ·</int>	<int></int>
1	1300000	4380
2	500000	2280
3	157340	90(
4	540000	1380
5	339950	2390
6	510000	2170
7	325000	1730
8	733500	2120
9	300000	93(
10	580000	2430
# i	141 more	row

Run the Analysis»

https://lange-analytics.com/AIBook/Exercises/handler.html?file=05-LinRegrExerc100.Rmd

MULTIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS — THREE PREDICTOR VARIABLES

Sqft: Living square footage of the house.

Grade Indicates the condition of houses (1 (worst) to 13 (best).

Waterfront: Is house located at the waterfront (yes or no).

▶ Code

Unfitted Model: »

$$Price = eta_1 Sqft + eta_2 Grade + eta_3 Waterfront_yes + eta_4$$

MULTIVARIATE REAL WORLD DATASET — SPLITTING

▶ Code

DataTrain

DataTest

```
# A tibble: 6,485 × 4
        Price Sqft Grade Waterfront
        <dbl> <int> <chr>
        1 1230000 5420 11 no https://ai.lange-analytics.com/book/
```

2	257500	1715	7	no
3	291850	1060	7	no
4	229500	1780	7	no
5	530000	1810	7	no
6	650000	2950	9	no
7	285000	2270	8	no
8	233000	1710	6	no
9	667000	1400	8	no
10	719000	2570	8	no
# i	6.475 mc	ore rows		

DUMMY AND ONE-HOT ENCODING

One-Hot Encoding

One-hot encoding is easier to interpret but causes problems in OLS (dummy trap) because one variable is redundant. We can calculate one variable from the other (perfect multicollinearity):

$$Water front_{yes} = 1 - Water front_{no}$$

>>

DUMMY AND ONE-HOT ENCODING

Dummy Coding

We use one variable less than we have categories. Waterfront has two categories. Therefore, we use one variable (e.g., Waterfront_yes):

Dummy Encoding Example

Note, dummy encoding can be done with step_dummy() in a tidymodels recipe.»

MULTIVARIATE ANALYSIS — BUILDING THE RECIPE

▶ Code

Here is how the recipe later on (in the workflow) transforms the data:

```
\# A tibble: 15,128 \times 4
   Sqft Grade Price Waterfront yes
  <int> <int> <dbl>
                            <dbl>
  1180
           7 221900
  770
           6 180000
  1200
        7 189000
  1250 7 230000
        7 252700
  1070
  1220
   1190
        7 228000
   2240
          7 287000
        7 204000
   1000
   1610
10
           7 215000
# i 15,118 more rows
```

MULTIVARIATE ANALYSIS — BUILDING THE MODEL DESIGN

Unfitted Model:

▶ Code

```
Linear Regression Model Specification (regression)
Computational engine: lm
>>
```

MULTIVARIATE ANALYSIS — CREATING WORKFLOW & FITTING TO THE TRAINING DATA

▶ Code

► Code

MULTIVARIATE ANALYSIS — PREDICTING TESTING DATA AND METRICS

▶ Code