

线性代数

任课教师: 陈秦波 2023.09.18

上节回顾:n 阶行列式

- (P1) 对单位矩阵 E, |E|=1.
- (P2) A 中任意两行互换, 行列式变号.
- (P3) 多重线性: 行列式对 A 的每一行都线性.
 - 由 (P1) -(P3) 可推出:
- (P4) 对角矩阵的行列式

$$\begin{vmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}$$

- (P5) 若 A 的某两行相等,则 |A| = 0
- (P6) 将某行乘以 k 加到另一行,行列式不变
- (P7) 若 A 的某一行全是 0, 则 |A| = 0
- (P8) 若 A 为三角形矩阵,则 $|A| = a_{11}a_{22}\cdots a_{nn}$.

基于逆序数的 n 阶行列式定义

为了方便,矩阵 $A=(a_{ij})_{n\times n}$ 可写成

$$A=\left(egin{array}{c} lpha_1 \ lpha_2 \ dots \ lpha_n \end{array}
ight)$$
 其中第 i 行向量 $lpha_i=(a_{i1},\cdots,a_{in})=a_{i1}\mathbf{e}_1+\cdots a_{in}\mathbf{e}_n$

这儿的 $\mathbf{e}_1=(1,0,\cdots,0), \mathbf{e}_2=(0,1,\cdots,0)\cdots, \mathbf{e}_n=(0,0,\cdots,1)$ 是 \mathbb{R}^n 中的标准单位向量。

利用多重线性 (P3) 可推出

$$|A| = \begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{vmatrix} = \sum_{j_n=1}^n \cdots \sum_{j_2=1}^n \sum_{j_1=1}^n a_{1j_1} a_{2j_2} \cdots a_{nj_n} \begin{vmatrix} \mathbf{e}_{j_1} \\ \mathbf{e}_{j_2} \\ \vdots \\ \mathbf{e}_{j_n} \end{vmatrix}$$

$$= \sum_{j_1, \cdots, j_n \not\in 1, \cdots, n \text{ in j n}, \ \not\in n! \ \not= n! \ n! \ n! \ \not= n! \ \not= n! \ \not= n! \ \not= n! \ \not=$$

其中 $\tau(j_1, j_2, \dots, j_n)$ 是<mark>逆序数</mark> (书中定义 1.2.1)。实际上, τ 是使 j_1, j_2, \dots, j_n 变成 $1, 2, \dots, n$ 最少需要的相邻交换的次数。

矩阵的转置及其行列式

定义 (转置矩阵)

对于 $m \times n$ 阶矩阵 $A = (a_{ij})_{m \times n}$,将其 <u>行与列</u> 互换后得到一个新的 $n \times m$ 矩阵,称为 A 的转置矩阵。一般用符号 A^{T} 或 A' 表示。

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

注记

- $(A^{\mathrm{T}})^{\mathrm{T}} = A.$
- ▶ n 阶方阵 $A = (a_{ij})_{n \times n}$ 是对称矩阵 $\iff A^{\mathrm{T}} = A$.
- ▶ n 阶方阵 $A = (a_{ij})_{n \times n}$ 是反对称矩阵 $\iff A^{\mathrm{T}} = -A$.

定理

对于 n 阶方阵 A, 其行列式满足

$$|\boldsymbol{A}^{\mathrm{T}}| = |\boldsymbol{A}|.$$

Proof.

利用基于逆序数的行列式定义去证明。

行列式的"行"与"列"具有等价地位

推论

行列式对"行"所具有的性质同样适用于"列"。

- ▶ A 中任意两行(列)互换,行列式变号.
- ▶ 多重线性: 行列式对 A 的每一行(列)都线性.
- ▶ 若 A 的某两行 (列) 相等,则 |A| = 0.
- ► 若将某行(列)乘以 k 加到另一行(列),则行列式不变.
- ▶ 若 A 的某一行 (列) 全是 0, 则 |A| = 0.

例题 (箭形行列式)

计算 n+1 阶行列式

$$\Delta = \begin{vmatrix} c & a_1 & a_2 & \cdots & a_n \\ b_1 & 1 & 0 & \cdots & 0 \\ b_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ b_n & 0 & 0 & \cdots & 1 \end{vmatrix}$$

例题 (反对称矩阵)

一切奇数阶的反对称矩阵,其行列式都是 0.

例题

计算 n 阶行列式

$$D_n = \left| \begin{array}{ccccc} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & x \end{array} \right|$$

例题

计算 4 阶行列式

$$D_4 = \left| \begin{array}{ccccc} a_1 & x & x & x \\ x & a_2 & x & x \\ x & x & a_3 & x \\ x & x & x & a_4 \end{array} \right|$$

其中 $x \neq a_i$, i = 1, 2, 3, 4.

余子式、行列式的展开

我们首先来看一个简单的例子。

例题

证明以下等式:

$$\begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

注记

上述 (n-1) 阶行列式

$$\begin{bmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

为 a_{11} 的余子式。用符号 M_{11} 表示。

定义 (余子式)

在 n 阶行列式

$$|A| = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1j} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i1} & \cdots & a_{i,j-1} & a_{ij} & a_{i,j+1} & \cdots & a_{in} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

中删掉 a_{ij} 所在的第 i 行和第 j 列,所剩下 $(n-1)^2$ 个元素按照原来排法构成一个 (n-1) 阶行列式,称为元素 a_{ij} 的 $_{f r}$ 子式。记为 M_{ij} 。

$$M_{ij} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

定义 (代数余子式)

aij 的代数余子式指的是

$$A_{ij} = (-1)^{i+j} M_{ij}.$$

基于代数余子式的行列式定义

对于 $A = (a_{ij})_{n \times n}$, 我们可以证明:

定理

$$|A| = a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} = \sum_{j=1}^{n} a_{1j} A_{1j}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} M_{1j}.$$

行列式的按行展开

实际上, 行列式可以按任意一行进行展开

定理(按第 i 行展开)

$$|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij} A_{ij}$$
$$= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}.$$

行列式的按列展开

因为行列式与它的转置行列式的值相等,所以不难证明

定理(按第 j 列展开)

$$|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij} A_{ij}$$
$$= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}.$$

小结: 行列式的三种等价定义

定义(公理化)

行列式由以下三条性质唯一确定

- (P1) 对单位矩阵 E, |E|=1.
- (P2) A 中任意两行互换, 行列式变号.
- (P3) 多重线性: 行列式对 A 的每一行都线性.

定义(基于逆序数)

$$|A| = \sum_{j_1, \dots, j_n} (-1)^{\tau(j_1, j_2, \dots, j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n} = \sum_{j_1, \dots, j_n} (-1)^{\tau(j_1, j_2, \dots, j_n)} a_{j_1 1} a_{j_2 2} \dots a_{j_n n}$$

其中, j_1, \dots, j_n 取遍 $1, \dots, n$ 的所有 n 元排列, 共 n! 种.

定义(基于代数余子式)

$$|A| = \sum_{j=1}^{n} a_{ij} A_{ij}$$
 (**或** $|A| = \sum_{i=1}^{n} a_{ij} A_{ij}$).