Homework 5

Description

The Auto dataset from the ISLR2 package contains information on various automobile models from the 1970s and 1980s, providing a useful context for exploring relationships between vehicle characteristics and fuel efficiency. It includes **392 observations** on **nine variables**, such as mpg (miles per gallon), horsepower, weight, acceleration, displacement, cylinders, and year. These variables are a mix of quantitative and categorical data, with the name column identifying each car model. The dataset is particularly valuable for regression analysis due to its real-world relevance and the presence of nonlinear relationships, multicollinearity, and opportunities for transformation—making it ideal for studying how predictor variables influence fuel efficiency.

```
library(here)  ## File Path Management
library(ISLR2)  ## Data Extraction
library(dplyr)  ## Data Transformation
library(tidyr)  ## Data Transformation
library(ggplot2)  ## Data Visualization
library(broom)  ## Data Analysis
source(here("R","assessment_regression.R"))
```

Question: Fit a linear regression model to predict mpg using horsepower. How well does the model fit the data, and what does the residual plot suggest about the relationship between the two variables?

Summary Statistics

```
auto_df <- Auto %>% drop_na()
# Summary statistics: mean, sd, min, max
summary_stats <- auto_df %>%
  select(mpg, horsepower) %>%
  summarise(across(everything(), list(
   mean = mean,
   sd = sd,
   min = min,
   max = max
  ), .names = "{.col}_{.fn}")) %>%
  pivot_longer(
    everything(),
    names_to = c("variable", "statistic"),
   names_sep = "_",
   values_to = "value"
summary_stats
# A tibble: 8 \times 3
  variable statistic value
46
7 horsepower min
8 horsepower max
                     230
```

The summary statistics show that `mpg` ranges from 9.0 to 46.6 with a mean of 23.4, indicating a wide spread in fuel efficiency among cars. `Horsepower` has a mean of 104 with a standard deviation of 38.5, ranging from 46 to 230, suggesting substantial variation in engine strength across the dataset.

```
# Compute correlation
cor_val <- auto_df %>%
   summarise(correlation = cor(mpg, horsepower))

cor_val
   correlation
1 -0.7784268
```

The correlation between `mpg` and `horsepower` is approximately -0.78, indicating a strong negative linear relationship: as horsepower increases, fuel efficiency tends to decrease.

Visualization

```
ggplot(auto_df, aes(x = horsepower, y = mpg)) +
    geom_point(alpha = 0.6) +
    geom_smooth(method = "lm", se = FALSE, color = "steelblue", linewidth = 1.2
) +
    labs(
        title = "Relationship Between Horsepower and MPG",
        x = "Horsepower",
        y = "Miles Per Gallon (MPG)"
) +
    theme_minimal(base_size = 14) +
    theme(plot.title = element_text(hjust = 0.5))
```

Relationship Between Horsepower and MPG

While the scatterplot initially suggests that transforming the response variable `mpg` might help, the pattern more strongly supports transforming the predictor `horsepower` to better linearize the relationship. This approach helps achieve more constant variance and a better-fitting linear model.

Analysis

Regular Model

```
model_0 <- lm(mpg ~ horsepower, data = auto_df)</pre>
summary(model 0)
Call:
lm(formula = mpg ~ horsepower, data = auto_df)
Residuals:
    Min
            1Q Median
                               3Q
                                       Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059,
                             Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
```

The intercept of approximately 39.94 suggests that a car with 0 horsepower is expected to achieve 39.94 mpg—though not realistic, this sets the baseline for interpretation. The slope of -0.158 indicates that, on average, each additional unit of horsepower is associated with a decrease of 0.158 mpg in fuel efficiency.

The scatterplot reveals a nonlinear pattern between `horsepower` and `mpg`, with diminishing drops in mpg at higher horsepower. The residual plot shows a curved pattern, indicating nonlinearity and non-constant variance—violating linear model assumptions.

Transformations

```
mod_1_auto_df <- auto_df %>%
  mutate(
    log_hp = log(horsepower),
    sqrt_hp = sqrt(horsepower)
)
```

We selected `log(horsepower)` and `sqrt(horsepower)` as ad hoc transformations based on the curvature observed in the residual plots. Although a formal power transformation like Box-Tidwell could have been applied to the predictor, we opted not to pursue it, as it is beyond the course scope.

Square Root of hp

```
# Linear model with sqrt(horsepower)
model 2 <- lm(mpg ~ sqrt hp, data = mod_1 auto_df)</pre>
summary(model 2)
Call:
lm(formula = mpg ~ sqrt_hp, data = mod_1_auto_df)
Residuals:
    Min
              1Q Median
                               3Q
                                       Max
-13.9768 -3.2239 -0.2252 2.6881 16.1411
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.705 1.349 43.52 <2e-16 ***
                        0.132 -26.54 <2e-16 ***
sqrt_hp
            -3.503
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.665 on 390 degrees of freedom
Multiple R-squared: 0.6437,
                             Adjusted R-squared: 0.6428
F-statistic: 704.6 on 1 and 390 DF, p-value: < 2.2e-16
```

With the square root transformation applied to `horsepower`, the intercept of 58.71 represents the expected `mpg` when `sqrt(horsepower)` is zero. The slope of -3.50 means that for each unit increase in the square root of horsepower, the expected fuel efficiency decreases by 3.50 mpg, on average.

After the square root transformation, the scatterplot shows a more linear trend and the residual plot reveals reduced curvature. This suggests a better fit compared to the original model, although some mild heteroscedasticity remains.

Natural Log of hp

```
# Linear model with log10(horsepower)
model_1 <- lm(mpg ~ log_hp, data = mod_1_auto_df)</pre>
summary(model 1)
Call:
lm(formula = mpg ~ log_hp, data = mod_1_auto_df)
Residuals:
                   Median
    Min
               1Q
                                 3Q
                                         Max
-14.2299 -2.7818 -0.2322
                            2.6661 15.4695
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.6997
                        3.0496
                                35.64
                                        <2e-16 ***
                                         <2e-16 ***
log hp
            -18.5822
                        0.6629 -28.03
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 4.501 on 390 degrees of freedom
Multiple R-squared: 0.6683,
                               Adjusted R-squared: 0.6675
F-statistic: 785.9 on 1 and 390 DF, p-value: < 2.2e-16
```

Applying the natural log to `horsepower`, the intercept of 108.70 indicates the expected `mpg` when `log(horsepower)` is zero. The slope of -18.58 implies that, on average, a one-unit increase in `log(horsepower)` corresponds to a decrease of 18.58 mpg in fuel efficiency.

After the square root transformation, the scatterplot shows a more linear trend and the residual plot reveals reduced curvature. This suggests a better fit compared to the original model, although some mild heteroscedasticity remains.

Interpretation of Results

Among the three models, the log-transformed model (`log_hp`) has the lowest residual standard error (4.50), highest R² (0.67), and lowest AIC/BIC values, indicating it provides the best overall fit. The transformation successfully linearizes the relationship and reduces model error, making it the preferred choice.

Box-Cox Transformation

A Box-Cox transformation should not be used here because it is only applicable to the **response variable** (y), and horsepower is the **predictor**. Applying Box-Cox to x violates its assumptions and intended use.