EE3019 - Integrated Electronics Tutorial 12

- 1. Determine the transfer function for the following filters:
 - (a) A first-order low-pass filter with a dc gain of 10 and a pole frequency at 25kHz.
 - (b) A first-order high-pass filter with a passband gain of 10 and a corner frequency at 100kHz.
 - (c) A second-order bandpass filter with a center frequency of 10⁸ rad/s, a center-frequency gain of 10, and a 3-dB bandwidth of 10⁶ rad/s.
- 2. Figure 12.1 depicts a switched capacitor integrator in which ϕ_1 and ϕ_2 are two non-overlapping clock signals. The switch is closed when the clock signal is high and opened when the clock signal is low. Assume that the initial output voltage V_{out} is 0V. Given that $C_2=2C_1$, sketch the time domain V_{out} for a dc input voltage $V_{in}=0.2V$ with reference to ϕ_1 and ϕ_2 .

3. Figure 12.2 depicts a stray-insensitive noninverting switched capacitor integrator in which ϕ_1 and ϕ_2 are two non-overlapping clock signals. The switch is closed when the clock signal is high and opened when the clock signal is low. C_{P1} and C_{P2} are the total parasitic capacitances associated with node A and node B respectively. Show that circuit performance is not affected by the presence of C_{P1} and C_{P2} .

- 4. An inverting Schmitt trigger having dependable and symmetric characteristics is shown in Figure 12.3. Design the inverting Schmitt trigger circuit based on the following:
 - Op amp LM301 has saturation limits of ±13V
 - Output voltage $V_o = \pm 5V$
 - Threshold voltage = ±1V
 - Load impedance = 10kΩ
 - Minimum Zener diode current = 2mA

Figure 12.3