Project Hardness - Homework 7 (Chapter 10)

Due date: 2022/11/09 Wed 23:59:59

You are allowed to refer to any resources, but we encourage you to try by yourself as every problem is designed to be self-contained.

If your submission scored x points, 0.1x USD will be donated to the Armed Forces of Ukraine.

- 1. (40 points) You can assume that all problems are minimization problems.
 - (a) (10 points) Assume a PTAS reduction from A to B. Prove that if $B \in PTAS$, $A \in PTAS$.
 - (b) (10 points) Assume an APX reduction from A to B. Prove that if $B \in APX$, $A \in APX$.
 - (c) (10 points) Assume $A \leq_L B$, Prove that there is an APX reduction from A to B.
 - (d) (10 points) Assume $A \leq_L B, B \leq_L C$, Prove that $A \leq_L C$.

2. (40 points)

- (a) (10 points) Prove the following: MAX-3SAT-E3 \leq_L INDEPENDENT SET-4
- (b) (10 points) Prove the following: For all $\Delta \geq 4$, INDEPENDENT SET- Δ is APX-Complete.
- (c) (10 points) Prove the following: INDEPENDENT SET-4 \leq_L MAX-2SAT
- (d) (10 points) Prove the following: MAX-2SAT \leq_L MAX-NAE-3SAT. Your resulting construction shall not have duplicated literals in clauses and 1-clauses.
- 3. (75.7 points) Given an undirected connected graph G = (V, E), the Minimum Degree Spanning Tree problem asks to find a spanning tree with the smallest possible max degree. This problem is not in PTAS: Consider the reduction to the Hamiltonian Path. On the other hand, this problem is not known to be APX-hard, being a strong candidate for APX-Intermediate problem.

Fürer and Raghavachari (1992) devised a combinatorial algorithm that computes the OPT + 1 solution, where OPT is the max degree of some optimal solution. Your task is to prove the main theorem of the aforementioned result.

Theorem 5.1. Let T be a spanning tree of max degree exactly k of a graph G. Let OPT be the max degree of some optimal solution. Let S be the set of vertices of degree k in T. Let B be an arbitrary subset of vertices of degree k-1 in T. Let $S \cup B$ be removed from the graph, breaking the tree T into a forest F. Suppose G satisfies the condition that, there are no edges between different trees in F. Then $k \leq OPT + 1$. (Hint: Find the lower bound on the number of components in F.)