



#### Plano de Ensino



- Apresentação e Revisão
- Introdução à Teoria da Computação.
- Conceitos Básicos de Teoria da Computação.
- Programas.
- Máquinas e Computações.
- Classes de Programas.
- Função Computada e Equivalência.
- Modelos Computacionais.
- Máquinas Universais.
- Tese de Church.
- Máquina de Turing.



# Livro-Texto



- Bibliografia Básica:
  - » LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elementos da Teoria da Computação. 2ª ed. Porto Alegre: Bookman, 2000.
  - » SIPSER, Michael. Introdução à Teoria da Computação. 2ª ed. São Paulo: Cengage Learning, 2011.



# 4. Classes de Programas – Conversão



 Teorema 1: seja P<sub>I</sub> um programa iterativo; então existe um programa monolítico P<sub>M</sub> tal que

$$P_M \equiv P_I$$

 Tal obtenção é feita diretamente pelo mapeamento das construções elementares do programa iterativo em sequências de construções equivalentes do programa monolítico.

| 4. Classes de Programas                     | - Conversão         | Anhanguera |
|---------------------------------------------|---------------------|------------|
| • ✓ ↓                                       | • F ↓ F ↓           |            |
| ■ F;G ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ | ■ enquanto T faça F |            |
| senão faça G                                | ■ até T faça F      |            |

## Anhanguera 4. Classes de Programas - Exemplo 1 ■ Considere P<sub>I</sub> o programa iterativo a seguir: até a\_zero ( subtrai\_a; adiciona\_b) $\,\blacksquare\,$ O mapeamento para um programa monolítico $P_M$ é feito de forma direta: Início 1: se a\_zero vá\_para 4 senão vá\_para 2 2: faça subtrai\_a vá\_para 3 3: faça adiciona\_b vá\_para 1 a\_zero $f \downarrow$ subtrai\_a adiciona\_b Fim

| 4. Classes de Programas – Exemplo 2                   | <u>Anhanguera</u> |
|-------------------------------------------------------|-------------------|
| P <sub>ITER</sub> = (<br>A; B; enquanto T (C); D<br>) |                   |
|                                                       |                   |
|                                                       |                   |
|                                                       |                   |

| 4. Classes de Programas – Conversão                                                                                                                                                                                | Anhanguera |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ■ <b>Teorema 2:</b> seja P <sub>M</sub> um programa monolítico; então existe um programa recursivo P <sub>R</sub> tal que                                                                                          | )          |
| $P_R \equiv P_M$                                                                                                                                                                                                   |            |
| <ul> <li>Suponha que L={r<sub>1</sub>, r<sub>2</sub>,, r<sub>n</sub>} é o conjunto de rótulos<br/>P<sub>M</sub>, r<sub>1</sub> sendo o rótulo inicial e r<sub>n</sub> seja o único rótulo fi<br/>Então:</li> </ul> |            |
| $P_R \in R_1$ onde $R_1$ def $E_1$ , $R_2$ def $E_2$ , $R_n$ def $\checkmark$                                                                                                                                      |            |
| ■ E $\forall k, 1 \le k \le n$ , E <sub>k</sub> é definido como:                                                                                                                                                   |            |
| <ul> <li>r<sub>k</sub>: faça F vá_para r<sub>i</sub></li> </ul>                                                                                                                                                    |            |
| $E_k = F; R_i$                                                                                                                                                                                                     |            |
| <ul> <li>r<sub>k</sub>: se T então vá_para r<sub>i</sub> senão vá_para r<sub>j</sub></li> </ul>                                                                                                                    |            |
| $E_k = (se T então R_i senão R_j)$                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                    |            |

#### 4. Classes de Programas - Exemplo 3



- Considere P<sub>M</sub> o programa monolítico abaixo:
  - 1: se a\_zero vá\_para 4 senão vá\_para 2
  - 2: faça subtrai\_a vá\_para 3
  - 3: faça adiciona\_b vá\_para 1
- O mapeamento para um programa recursivo P<sub>R</sub>, obtido por mapeamento direto é:

  - R é R<sub>1</sub> onde R<sub>1</sub> def (se a\_zero R<sub>4</sub> senão R<sub>2</sub>)
  - R<sub>2</sub> def (subtrai\_a; R<sub>3</sub>)
  - R<sub>3</sub> def (adiciona\_b; R<sub>1</sub>)
  - R₄ def ✓
  - » De forma simplificada, substituindo os termos:
  - R é R<sub>1</sub> onde
  - R₁ def (se a\_zero ✓ senão subtrai\_a; adiciona\_b; R₁)

### 4. Classes de Programas - Exemplo 4





## 4. Classes de Programas - Conversão



■ Teorema 3: seja P<sub>I</sub> um programa iterativo; então existe um programa recursivo P<sub>R</sub> tal que

$$P_R \equiv P_I$$

 Os passos para obtenção desta tradução seguem os teoremas 1 e 2 já apresentados.

