Medical Image Processing for Interventional Applications

Eight Point Algorithm

Online Course – Unit 32 Andreas Maier, Joachim Hornegger, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

The Eight Point Algorithm

Algorithm

Definitions

Fundamental Matrix

Data Balancing

Summary

Take Home Messages Further Readings

The Eight Point Algorithm

Figure 1: Eight point algorithm for *E*

Input Data

For now we ...

... have two images of a patient with one camera,

... use point features,

... assume the correspondence problem to be already solved:

$$\{(\tilde{\boldsymbol{p}}_k^i, \tilde{\boldsymbol{q}}_k^i), k=1,\ldots,N\},$$

i. e., point $\tilde{\boldsymbol{p}}_k^i$ in image 1 corresponds to point $\tilde{\boldsymbol{q}}_k^i$ in image 2 [the tilde indicates homogeneous coordinates],

... have the points given as normalized homogeneous image coordinates, i. e., the third component is set to 1,

... use perspective projection (pinhole camera).

Intrinsic Camera Parameters

- Intrinsic parameters (summarized by the matrix $\mathbf{K} \in \mathbb{R}^{3 \times 3}$) are known.
- Intrinsic parameters do not change when camera moves.
- Origin of image coordinate system does not coincide with the intersection of optical axis and image plane in general.
- Axes of the camera's CCD-Chip are not orthogonal.
- Pixels are non-quadratic.

Figure 2: Pixel coordinate system

Coordinate System

(x, y) - coordinate system:

• ideal coordinate system used so far (image coordinate system with origin o^i)

(u, v) - coordinate system:

- real system, in which pixels are addressed, (pixel coordinate system, origin o^p)
- Θ : angle between axes, skew $s = -k_X \tan \Theta$
- k_x , k_y : units of u and v axis, with respect to units in x/y system

Figure 3: Pixel coordinate system

Fundamental Matrix

If pixel coordinates are used instead of ideal image coordinates

$$\tilde{\mathbf{p}}^{\mathrm{p}} = \mathbf{K} \tilde{\mathbf{p}}^{\mathrm{i}},$$

we substitute

$$\tilde{m{p}}^{\mathrm{i}} = m{K}^{-1} \tilde{m{p}}^{\mathrm{p}}, \qquad \tilde{m{q}}^{\mathrm{i}} = m{K}^{-1} \tilde{m{q}}^{\mathrm{p}},$$

and get:

$$(\tilde{\boldsymbol{q}}^p)^T \cdot \underbrace{\left((\boldsymbol{K}^{-1})^T \cdot \boldsymbol{E} \cdot \boldsymbol{K}^{-1} \right)}_{\boldsymbol{F}} \cdot \tilde{\boldsymbol{p}}^p = 0.$$

F is called the **fundamental matrix**.

Properties of Fundamental Matrix

- **F** has rank 2.
- F encodes intrinsic and extrinsic parameters.
- \mathbf{F} maps a point $\tilde{\mathbf{p}}^p$ to its epipolar line \mathbf{I} in pixel coordinates by $\mathbf{I}^T = \mathbf{F} \cdot \tilde{\mathbf{p}}^p$:

$${m l_2}^{\sf T} = {m F} {m { ilde p}}^{
m p}, \qquad {m l_1}^{\sf T} = {m F}^{\sf T} {m { ilde q}}^{
m p}.$$

- All epipolar lines intersect in the epipole (left epipole $\tilde{\boldsymbol{e}}_{l}^{\mathcal{P}}$, right epipole $\tilde{\boldsymbol{e}}_{r}^{\mathcal{P}}$):
 - computation of the left null space:

$$(\tilde{\boldsymbol{e}}_r^p)^{\mathsf{T}} \boldsymbol{I}_1^{\mathsf{T}} = (\tilde{\boldsymbol{e}}_r^p)^{\mathsf{T}} \boldsymbol{F} \tilde{\boldsymbol{p}}^p = 0$$

implies
$$(\tilde{\boldsymbol{e}}_r^p)^{\mathsf{T}}\boldsymbol{F}=0$$
,

computation of the right null space:

$$oldsymbol{I}_2 ilde{oldsymbol{e}}_r^{oldsymbol{
ho}} = ig(ilde{oldsymbol{e}}_r^{oldsymbol{
ho}} oldsymbol{F}ig)^{\mathsf{T}} ilde{oldsymbol{q}}_r^{\mathrm{p}} = 0$$

implies $\mathbf{F}^{\mathsf{T}}\tilde{\mathbf{e}}_{l}^{p}=0$.

Eight Point Algorithm for F

Computation of **F**:

- We get N equations of the form $(\tilde{\boldsymbol{q}}_i^p)^T \cdot \boldsymbol{F} \cdot \tilde{\boldsymbol{p}}_i^p = 0$.
- This system of equations is **linear** in the components of $\mathbf{F} = [f_{ij}]_{i,j \in \{1,2,3\}}$:

$$extbf{ extit{M}} \cdot extbf{ extit{f}} = 0, \quad extbf{ extit{f}} = egin{pmatrix} f_{11} \ f_{12} \ \vdots \ f_{33} \end{pmatrix}, \quad extbf{ extit{M}} \in \mathbb{R}^{ extit{N} imes 9},$$

where rank(M) = 8.

- Solve this system using singular value decomposition.
- Make sure that $rank(\mathbf{F}) = 2$.

Eight Point Algorithm

Starting point:

- Over-determined system of equations $\mathbf{M} \cdot \mathbf{f} = 0$
- *f* lies in the null space of *M*. The null space is non-trivial, since $M \in \mathbb{R}^{N \times 9}$ and rank(M) = 8.

Eight Point Algorithm

Starting point:

- Over-determined system of equations $\mathbf{M} \cdot \mathbf{f} = 0$
- f lies in the null space of M. The null space is non-trivial, since $M \in \mathbb{R}^{N \times 9}$ and rank(M) = 8.
- 1. SVD of $\mathbf{M} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$:
 - $\sigma_9 \approx 0 \quad \Rightarrow \quad \boldsymbol{f} = \lambda \cdot \boldsymbol{v}_9$, and since $\|\boldsymbol{F}\|_F = \|\boldsymbol{f}\|_2 = 1 \quad \Rightarrow \quad \boldsymbol{f} = \boldsymbol{v}_9$
 - If $\sigma_9 > \varepsilon o$ error

Eight Point Algorithm

Starting point:

- Over-determined system of equations $\mathbf{M} \cdot \mathbf{f} = 0$
- f lies in the null space of M. The null space is non-trivial, since $M \in \mathbb{R}^{N \times 9}$ and rank(M) = 8.
- 1. SVD of $M = U\Sigma V^{\mathsf{T}}$:
 - $\sigma_9 \approx 0 \quad \Rightarrow \quad \textbf{\textit{f}} = \lambda \cdot \textbf{\textit{v}}_9$, and since $\|\textbf{\textit{F}}\|_F = \|\textbf{\textit{f}}\|_2 = 1 \quad \Rightarrow \quad \textbf{\textit{f}} = \textbf{\textit{v}}_9$
 - If $\sigma_9 > \varepsilon \to \text{error}$
- 2. Enforce rank(F) = 2 using SVD of $F = U_F \Sigma_F V_F^1$:
 - For the fundamental matrix it is: $\sigma_1 \ge \sigma_2 > 0$, $\sigma_3 = 0$.
 - If $\sigma_3 > \varepsilon \to \text{error}$
 - Set $\sigma_3 = 0$, and compute \boldsymbol{F} using Σ_F' anew:

$$m{F} = U_{m{F}} \left(egin{array}{ccc} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & 0 \end{array}
ight) V_{m{F}}^{\mathsf{T}}.$$

Numerical Instabilities

- Image coordinates are usually defined with respect to the top left corner of the image.
- Thus coordinates vary from 0 to a few hundred.
- The third (homogeneous) coordinate is usually set to 1.

Numerical Instabilities

Normalize the coordinates $\tilde{\boldsymbol{p}}_{i}^{p} = (\boldsymbol{p}_{1,i}, \boldsymbol{p}_{2,i}, 1)^{T}$ and $\tilde{\boldsymbol{q}}_{i}^{p} = (\boldsymbol{q}_{1,i}, \boldsymbol{q}_{2,i}, 1)^{T}$ such that the entries of \boldsymbol{M} are of comparable size:

- Translate the origin of the image coordinate system to the centroid of the feature points, that is:
 - to $\left(\frac{1}{N}\sum_{i}^{N}\boldsymbol{p}_{1,i},\frac{1}{N}\sum_{i}^{N}\boldsymbol{p}_{2,i},1\right)^{T}$ for the left side,
 - and $\left(\frac{1}{N}\sum_{i}^{N}\boldsymbol{q}_{1,i},\frac{1}{N}\sum_{i}^{N}\boldsymbol{q}_{2,i},1\right)^{T}$ for the right image.
- Scale the feature points such that the mean homogeneous point looks like $\frac{1}{\sqrt{2}}(1,1,1)^T$, i. e., the mean norm of a 2-D point is $\sqrt{2}$.

This is called balancing.

Topics

The Eight Point Algorithm

Algorithm

Definitions

Fundamental Matrix

Data Balancing

Summary

Take Home Messages Further Readings

Take Home Messages

- We have gone over the eight point algorithm using the fundamental matrix.
- The fundamental matrix maps a point to its epipolar line.
- The epipolar constraint is linear in components of *E* and *F*.
- Balancing can be used to make an estimation of an essential matrix numerically robust.

Further Readings

Epipolar geometry is nicely introduced in:

Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Upper Saddle River, NJ, USA: Prentice Hall, 1998

All the math regarding epipolar geometry can be found in:

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge: Cambridge University Press, 2004. DOI: 10.1017/CB09780511811685

Magnetic navigation:

Michelle P. Armacost et al. "Accurate and Reproducible Target Navigation with the Stereotaxis Niobe® Magnetic Navigation System". In: *Journal of Cardiovascular Electrophysiology* 18 (Jan. 2007), S26–S31. DOI: 10.1111/j.1540-8167.2007.00708.x