Las Positas

Las Positas College 3000 Campus Hill Drive Livermore, CA 94551-7650 (925) 424-1000 (925) 443-0742 (Fax)

Course Outline for MATH 1

CALCULUS I

Effective: Fall 2012

I. CATALOG DESCRIPTION:

MATH 1 — CALCULUS I — 5.00 units

An introduction to single-variable differential and integral calculus including: functions, limits and continuity; techniques and applications of differentiation and integration; differentiation and integration of trigonometric, exponential and logarithmic functions; the Fundamental Theorem of Calculus; areas and volumes of solids of revolution.

5.00 Units Lecture

Prerequisite

MATH 20 - Pre-Calculus Mathematics with a minimum grade of C

Grading Methods:

Letter Grade

Discipline:

MIN

Lecture Hours: 90.00 No Unit Value Lab 18.00 **Total Hours:** 108.00

- II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: 1
- III. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. MATH20

IV. MEASURABLE OBJECTIVES:

Upon completion of this course, the student should be able to:

- A. Evaluate the limit of a function at a real number;
- B. Determine whether a function is continuous at a point or an interval;
- C. Find and interpret average and instantaneous rates of change;

- C. Find and interpret average and instantaneous rates of change;
 D. State the definition of the derivative as the limit of a difference quotient and use the definition to find the derivative of a function;
 E. Interpret the derivative as the slope of a tangent line and find the equation of a tangent line to a function;
 F. Explain the definitions of velocity and acceleration and use the derivative to find the velocity and acceleration of an object in motion, given the position function for the object;
 G. State and apply the rules for differentiating algebraic, trigonometric, inverse, exponential and logarithmic functions;
 H. Utilize the chain rule when differentiating functions;
 I. Work with differentials and their applications;
 J. Use calculus-based methods to analyze functional behavior;
 K. Sketch the graphs of algebraic, rational and transcendental functions using the methods of calculus;
 L. Find all maxima. minima and points of inflection of a function:

- Find all maxima, minima and points of inflection of a function;
- M. Use implicit differentiation;
- N. Evaluate the limit of a function at infinity;
- O. Apply differentiation to solve related rate and optimization problems;
- Apply the Mean Value Theorem;
- Utilize Newton's Method;
- Evaluate a definite integral as the limit of a Riemann sum;
- Apply the Fundamental Theorem of Integral Calculus;
- Evaluate integrals by the method of substitution;
- Find areas between curves and volumes of solids of revolution;
- V. Use logarithmic differentiation.

V. CONTENT:

- A. Limits
 - Left-hand limits and right-hand limits
 - 2. Computing limits

- a. Numerically
- b. Graphically
- c. Algebraically
- 3. Limits of trigonometric functions
- 4. Limits at infinity
- B. Average and instantaneous rates of change
- C. Continuity
 - 1. Definition of continuity
 - Continuity at a real number
 Continuity on an interval
 Discontinuous functions

 - - Types of discontinuities
 Removable discontinuities
- D. Intermediate Value Theorem
- Secant and tangent lines
- G. Definition of the derivative as the limit of a difference quotient
- G. Definition of the derivative as the limit of a different H. Interpretation of the derivative

 1. Slope of a tangent line
 2. Rate of change
 3. Derivative as a function
 I. Differentiation formulas and techniques
 1. Differentiation of constant-valued function
- - Power rule
 - 3. Product rule
 - Quotient rule
 - Trigonometric functions
 - 6. Chain rule
 - Implicit derivative
 - 8. Higher-order derivatives
- J. Applications of differentiation
 - 1. Rate of change
 - 2. Related rates
 - 3. Optimization
- K. Functional analysis
 - 1. Mean Value Theorem
 - Critical numbers
 - 3. Maximum and minimum values (absolute and local)
- L. Curve sketching: algebraic, rational and trigonometric functions
 - 1. First Derivative Test
 - Second Derivative Test
 - 3. Test for Concavity and Points of Inflection
 - Extrema
 - 5. Asymptotic behavior

 - a. Limits at infinity
 b. Horizontal and vertical asymptotes
- M. Differentials and their applications
- N. Newton's Method
- O. Antiderivatives
 P. Definite integral
- Integration as area under a curve
 Defined as limit of a Riemann Sum
 Evaluation of a definite integral as the limit of a Riemann Sum
- Q. Indefinite integrals
 R. Properties of definite and indefinite integrals
 S. Fundamental Theorem of Calculus
- T. Integration
 - As antidifferentiation
 - 2. Method of substitution
- U. Applications of integration
 - 1. Area under a curve
 - 2. Area between curves
 - Volume of a solid of revolution
- V. Inverse functions
 - 1. Differentiation of inverse functions
- W. Exponential functions
 - 1. Differentiation
 - 2. Integration
- X. Logarithmic functions
 - 1. Differentiation
 - 2. Logarithmic differentiation
 - 3. Integration

VI. METHODS OF INSTRUCTION:

- A. Lecture -
- B. Discussion -
- Web- or CD-Rom-based tutorials
- D. Student presentations
- Lab Assignments
- F. Collaborative learning

VII. TYPICAL ASSIGNMENTS:

- A. Homework
 - 1. Homework should be assigned from the text and should include a sufficient number and variety of problems to develop both skill and conceptual understanding. A typical assignment should that an average student 1 to 2 hours for each hour in class.
- B. Collaborative learning
 - 1. Collaborative learning, done in small groups of 2-4 students, can be used to introduce new concepts, build skills, or teach problem solving. Students may be asked to present their results on the board.
 - 2. Example collaborative learning assignment: Have each group solve a curve-sketching problem and then present their work

to the rest of the class, explaining the process they used and their results.

C. Laboratory assignments

- Lab assignments can be used to reinforce fundamental concepts and skills or to explore certain concepts in more depth than
 is possible in-class. They may be designated for individual or group work. Lab assignments are completed in the Open Math
 Lab where students have access to assistance with the assignments.
- 2. Example lab assignment: Sketch a family of curves and comment on how changes in the constant coefficients affect (a) locations of extrema and points of inflection and (3) intervals on which the function is increasing/decreasing, concave

VIII. EVALUATION:

A. Methods

- 1. Other:
 - a. Examinations
 - b. Comprehensive final examination

 - c. Laboratory assignments
 d. Any of all of the following at the discretion of the instructor
 - e. Homework
 - Quizzes (announced or unannounced, in-class or take home)
 - Collaborative group activities
 - 3. Projects

B. Frequency

- Recommend minimum of four exams plus the final
 Homework should be assigned for each section covered
 Recommend minimum of eight laboratory assignments over the semester
- 4. Number of quizzes and collaborative activities are at the discretion of the instructor

- IX. TYPICAL TEXTS:

 Stewart, James (2012). Calculus (7th ed.). Belmont,, CA: Brooks/Cole-Cengage.
 Anton Howard, Irl Bivens and Stephen Davis (2012). Calculus: Early Transcendentals, Single and Multivariable (10th ed.). New York, NY: John Wiley & Sons, Inc.
 3. Briggs, W. and Cochran, L. (2011). *Calculus* (1st ed.). Boston, MA: Pearson-Addison Wesley.

X. OTHER MATERIALS REQUIRED OF STUDENTS:

A. Graphing calculator