The gravitational-wave damping timescale of f-modes in neutron stars Universal and approximate relations

Georgios Lioutas

GSI Helmholtzzentrum für Schwerionenforschung Supported by ERC through Starting Grant no. 759253

3rd HEL.A.S. SUMMER SCHOOL AND DAAD SCHOOL. 2018

Table of Contents

- Motivation
- 2 General setup
 - Formulation
 - Numerical Results
- Approximate relations
 - Different choices
 - Results
- 4 Conclusions

Motivation

- Perturbed neutron stars have modes which can be damped through gravitational waves (GWs).
- Main damping mechanism should be GWs.
- The f-mode (fundamental) should be the most efficient emitter.
- Relevant/promising system: Binary neutron star mergers $(t_{\text{lifetime}} > \tau_{GW})$.
- For rapidly/differentially rotating stars, only rough estimates exist.
- Based on Gen. Rel. Gravit. (2018) 50:12 (GL & Stergioulas)

General picture

Background:

- Metric: $ds^2 = -e^{2\nu}dt^2 + e^{2\lambda}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$.
- Perfect fluid: $T_{\mu\nu} = (\epsilon + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$
- TOV system to determine mass m(r), pressure p(r), relativistic energy density $\epsilon(r)$, etc.

General picture

Background:

- Metric: $ds^2 = -e^{2\nu}dt^2 + e^{2\lambda}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$.
- Perfect fluid: $T_{\mu\nu} = (\epsilon + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$
- TOV system to determine mass m(r), pressure p(r), relativistic energy density $\epsilon(r)$, etc.

Perturbations:

Expand everything in spherical harmonics e.g.

$$\delta \epsilon = r^l \delta \epsilon^{lm} \Upsilon_{lm} e^{i\omega t}.$$

- For l > 1 non radial oscillations emit gravitational waves.
- The modes are quasi-normal $\omega = \sigma + \frac{i}{\tau_{\rm GW}}$, where $\sigma = 2\pi f$.
- Note:

$$e^{i\omega t} = e^{i\sigma t}e^{-t/\tau_{\rm GW}}.$$

Perturbed Quantities - Fluid

The perturbed pressure, relativistic energy density and 4-velocity read:

$$\begin{split} \delta p(t,r,\theta,\phi) &= -r^l \left(e^{-\nu} \, \frac{\mathbf{X}^{lm}}{r} + \frac{e^{-\lambda}}{r} \, \mathbf{W}^{lm} \, \frac{\partial p}{\partial r} \right) \Upsilon_{lm} e^{i\omega t}, \\ \delta \epsilon(t,r,\theta,\phi) &= \frac{\delta p(t,r,\theta,\phi)}{v_s^2}, \\ \delta u^\mu &= i\omega e^{-\nu} (i\delta \nu/\omega, \xi^r, \xi^\theta, \xi^\phi), \end{split}$$

where

$$\begin{split} \xi_r &= e^{\lambda} r^{l-1} \; W^{lm} \; Y_{lm} e^{i\omega t}, \\ \xi_\theta &= -r^l \; V^{lm} \; \partial_\theta Y_{lm} e^{i\omega t}, \\ \xi_\phi &= -r^l \; V^{lm} \; \partial_\phi Y_{lm} e^{i\omega t}, \end{split}$$

the covariant component of the Lagrangian displacement vector.

Perturbed Quantities - Spacetime

At the same time we have the metric perturbation

$$g_{\mu\nu} = g^{BG}_{\mu\nu} + h_{\mu\nu}$$

where

$$h_{\mu\nu} = - \begin{pmatrix} e^{2\nu} r^l \frac{H_0^{lm}}{H_0^{lm}} & i\omega r^{l+1} H_1^{lm} & 0 & 0 \\ i\omega r^{l+1} \frac{H_1^{lm}}{H_0^{lm}} & e^{2\lambda} r^l \frac{H_0^{lm}}{H_0^{lm}} & 0 & 0 \\ 0 & 0 & r^2 r^l \frac{K^{lm}}{K^{lm}} & 0 \\ 0 & 0 & 0 & r^2 r^l \frac{K^{lm}}{K^{lm}} \sin^2 \theta \end{pmatrix} Y_{lm} e^{i\omega t}.$$

Perturbations - Interior

The 4th-order system was first presented by Lindblom & Detweiler(1983,1985)

$$\begin{split} H_1^{lm\prime} &= -\frac{1}{r} \left[l + 1 + \frac{2me^{2\lambda}}{r} + 4\pi r^2 e^{2\lambda} (p - \epsilon) \right] H_1^{lm} \\ &\quad + \frac{e^{2\lambda}}{r} \left[H_0^{lm} + K^{lm} - 16\pi (\epsilon + p) V^{lm} \right], \\ K^{lm\prime} &= \frac{1}{r} H_0^{lm} + \frac{l(l+1)}{2r} H_1^{lm} - \left[\frac{l+1}{r} - \nu' \right] K^{lm} - 8\pi (\epsilon + p) \frac{e^{\lambda}}{r} W^{lm}, \\ W^{lm\prime} &= -\frac{l+1}{r} W^{lm} + re^{\lambda} \left[\frac{e^{-\nu}}{v_s^2 (\epsilon + p)} X^{lm} - \frac{l(l+1)}{r^2} V^{lm} + \frac{1}{2} H_0^{lm} + K^{lm} \right], \\ X^{lm\prime} &= -\frac{l}{r} X^{lm} + \frac{(\epsilon + p)e^{\nu}}{2} \left\{ \left(\frac{1}{r} - \nu' \right) H_0^{lm} + \left(r \omega^2 e^{-2\nu} + \frac{l(l+1)}{2r} \right) H_1^{lm} \right. \\ &\quad + \left(3\nu' - \frac{1}{r} \right) K^{lm} - \frac{2l(l+1)}{r^2} \nu' V^{lm} \\ &\quad - \frac{2}{r} \left[4\pi (\epsilon + p)e^{\lambda} + \omega^2 e^{\lambda - 2\nu} - \frac{r^2}{2} \left(\frac{2e^{-\lambda}}{r^2} \nu' \right)' \right] W^{lm} \right\}, \end{split}$$

where we also defined

$$X^{lm} = \omega^2(\epsilon + p)e^{-\nu}V^{lm} - \frac{1}{r}\frac{dp}{dr}e^{\nu - \lambda}W^{lm} + \frac{e^{\nu}}{2}(\epsilon + p)H_0^{lm}.$$

Perturbations - Exterior

The exterior problem is simpler and described by the Zerilli equation (1970),

$$\frac{d^2 Z^{lm}}{dr_*^2} + [\omega^2 - V_Z(r)] Z^{lm} = 0,$$

where

$$\begin{split} Z^{lm} &= \frac{r^{l+2}}{nr+3M}(K^{lm}-e^{2\nu}H_1^{lm}), \\ V_Z &= e^{-2\lambda}\frac{2n^2(n+1)r^3+6n^2Mr^2+18nM^2r+18M^3}{r^3(nr+3M)^2}, \\ r_* &= r+2Mln(r/2M-1), \\ n &= (l-1)(l+2)/2. \end{split}$$

We adopted the approach by Andersson et al (1995) to solve this. They introduce a new variable

$$\Psi^{lm} = \left(1 - \frac{2M}{r}\right) Z^{lm},$$

and reformulate the problem.

Outcome: Purely outgoing gravitational waves result in a discrete set of ω's.

Equations Of State

We took 9 different EoS into account and investigate the (l,m)=(2,0) case.

τ_{GW} of the f-mode vs compactness M/R

Zerilli potential for BH

Zerilli potential for NS (WFF1 EoS)

Universal relation for τ_{GW} of the f-mode

The gravitational damping timescale satisfies the empirical relation

$$M/\tau_{\rm GW} = 0.112(M/R)^4 - 0.53(M/R)^5 + 0.628(M/R)^6,$$

which is accurate in the whole range 0 < M/R < 0.33.

Approximate relations

The harmonic time dependence $e^{i\omega t}$ leads to the an $e^{2i\omega t}$ time dependence for the energy of the mode. Thus

$$E = E(0)e^{-2t/\tau_{\rm GW}} \Rightarrow \frac{1}{\tau_{\rm GW}} = -\frac{dE/dt}{2E}.$$

We will employ the quadrupole formula for gravitational wave luminosity

$$\left\langle \frac{dE}{dt} \right\rangle_{\rm GW} = -\frac{4\pi}{75} \sigma^6 \left(\int_0^R r^4 \delta \rho(r) dr \right)^2.$$

Here R is the radius of the star and $\delta \rho$ the Eulerian perturbation of the rest-mass density.

Different choices can be made for E, dE/dt.

Approximate relations constituents

Choices for E:

- \bullet Relativistic: $(E^0_{
 m mode})_R=\int_V \frac{1}{2}(\epsilon+p)\delta v^i\delta v_i^*(u^t)^{-1}\sqrt{{}^3g}d^3x$
- Newtonian: $(E^0_{\mathrm{mode}})_N = \frac{1}{2} \int_V \rho \delta v^i \delta^* v_i dV$

Modifications of the standard quadrupole formula dE/dt through effective ρ :

	$ ho_{ m eff}$	$\delta ho_{ m eff}$
SQF	ho	δho
SQF1	$a^2\sqrt{\gamma}T^{tt}$	$2a\delta a\sqrt{\gamma}T^{tt} + a^2\frac{\delta\gamma}{2\sqrt{\gamma}}T^{tt} + a^2\sqrt{\gamma}\delta T^{tt}$
SQF2	$\sqrt{\gamma}W\rho$	$rac{\delta\gamma}{2\sqrt{\gamma}}W ho+\sqrt{\gamma}\delta W ho+\sqrt{\gamma}W\delta ho$
SQF3	$u^t \rho$	$u^t \delta \rho + \rho \delta u^t$
RQF	ϵ	$\delta\epsilon$

Approximate relations under investigation

We pick the following combinations to investigate.

$E_{\rm mode}^0$	$< dE/dt >_{GW}$	$ au_{ ext{GW}}$
N	SQF	N/SQF
R	SQF1	R/SQF1
R	SQF2	R/SQF2
R	SQF3	R/SQF3
R	RQF	R/RQF

Here $N \rightarrow$ Newtonian, $R \rightarrow$ relativistic and the SQF's are as before.

Damping timescales results

Damping time computed through perturbative GR and the approximate relations.

Damping timescales results

Damping time computed through perturbative GR and the approximate relations.

Damping timescales results

Damping time computed through perturbative GR and the approximate relations.

Define the relative difference as:

$$\frac{\Delta \tau}{\tau} = \left(\frac{\tau_{\rm GW}^{\rm pert} - \tau_{\rm GW}^{\rm approx}}{\tau_{\rm GW}^{\rm approx}}\right)$$

The approximate formula R/RQF yields gravitational-wave damping times that are within 10% of their exact value.

19/23

Relative difference vs Compactness

The relative difference can be described by an empirical relation in the case of R/RQF

$$\Delta au/ au \simeq 1.47 \left(rac{M}{R}
ight) - 13.3 \left(rac{M}{R}
ight)^2 + 25.3 \left(rac{M}{R}
ight)^3.$$

Correction of R/RQF

Through the relation for $\Delta \tau/\tau$, we can "correct" the R/RQF result to be closer ($\leq 3\%$) to the perturbative one as

$$\tau_{\rm GW}^{\rm pert} \simeq \tau_{\rm GW}^{\rm R/RQF} \left(1 + \Delta \tau / \, \tau \right)$$

Conclusions

- We have constructed a universal empirical relation relating τ_{GW} scaled by M^3/R^4 to the compactness M/R, which is accurate in the range 0 < M/R < 0.33.
- We constructed and investigated a number of choices for approximately computing the damping time τ_{GW} and identified the best candidate at the non-rotating regime.
- This candidate has been further improved to produce even more accurate results by the use of compactness M/R alone.

Future plans:

Extend/verify the results in the rotating case as well.

The End

Thank you for your attention!