Technical Presentation(GMAC)

CONTENTS

1 디바이스 구조

2 디바이스 기능

3 인터페이스

4 지원되는 프로토콜

5 성능지표

1. 디바이스 구조

Ethernet MAC(GMAC)이란?

- OSI 7 layer중 2계층(데이터 링크)를 담당하는 디바이스
- PHY에게 프레임을 전달하여 송신하거나, PHY로부터 프레임을 받아서 상위계층으로 넘기는 역할을 한다.

GMAC 구조도

GMAC 구조도(송신)

GMAC 구조도(수신)

2. 디바이스 기능

MAC core

MAC Tx,Rx 공통 특징

- 10, 100, 1000Mbps 데이터 전송률을 지원
- Half-duplex(반이중) 모드일 경우, CSMA/CD 프로토콜 지원
- PHY의 설정과 관리를 위한 MDIO master interface 제공

MAC Tx(송신)

- Preamble 과 SFD(start of packet data)를 삽입
- 패킷마다 자동으로 CRC와 Pad를 삽입
- 송신 MAC address 삽입 또는 치환

MAC Rx(수신)

- Preamble과 SFD 제거
- CRC와 Pad 제거
- Promiscuous 모드 지원

MTL

MTL Tx, Rx 공통 특징

- FIFO 프로토콜을 사용하여 데이터를 전송
- 각 queue(TxFIFO, RxFIFO)마다 threshold 설정가능 (큐에 저장된 데이터가 threshold를 넘어서면 PHY로 전달)

MTL Tx(송신)

- TxFIFO 크기 = 8KB
- 최대 3개까지의 Multiple queue 지원

MTL Rx(수신)

- Rx queue 크기 = 8KB
- 최대 3개까지의 Multiple queue 지원

DMA

DMA: MTL block과 system memory간 데이터 이동을 담당.

- Multi-channel engine 지원
 (최대 3개의 Transmit 채널, 최대 3개의 Receive 채널)
- DMA는 DMA descriptor를 읽고 데이터를 이동시킨다.
 (하나의 descriptor로 최대 32KB의 데이터 이동 가능)

3. 인터페이스

GMAC과 PHY간 인터페이스

*RTL8211EG-VB = PHY

MAC과 PHY는 크게 2개의 인터페이스로 연결되어있다.

- 1. PHY 관리용 인터페이스 : MDC/MDIO
- 2. 프레임 전송 인터페이스 : MII, RMII, GMII, RGMII

1.MDC/MDIO 인터페이스

GMAC은 MDC/MDIO 인터페이스를 통해 PHY의 register에 read/write를 하여 관리한다.

GPIO핀	타입	설명
MDC	Out	MDIO로 데이터를 전송할 때 동기화 클럭
MDIO	In/Out	MDIO로 management frame을 보내어 PHY를 관리

MDC/MDIO 인터페이스(management frame)

MAC은 MDIO를 통해 management frame을 보내어 PHY의 레지스터에 read/write

Table 14. Management Frame Format								
	Management Frame Fields							
	Preamble	ST	OP	PHYAD	REGAD	TA	DATA	IDLE
Read	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDDD	Z
Write	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDDD	Z

	설명
Preamble	GMAC, PHY간 동기화를 위한 필드
ST	01->STart frame(프레임의 시작을 나타내는 필드)
OP	어떤 연산?(Read : 10, Write : 01)
PHYAD	현재 GMAC에 연결된 여러 PHY중 접근할 PHY의 주소 (MAC 주소와는 다르다)
REGAD	해당 PHY에서 접근하려는 레지스터의 주소
TA(TurnAround)	Read할때(OP=10), PHY는 REGAD이후 MDIO line을 빼앗고 Data필드에 레지스터의 값을 실어보낸다. 그후 다시 GMAC에게 넘겨줌. TA는 PHY가 MDIO line을 빼앗을 시간을 충분히 주기위한 여분의 필드
DATA	Write : PHY의 레지스터에 Write할 데이터 Read : PHY로부터 Read하는 데이터
IDLE	MDIO를 사용하지 않는 구간(기본적으로 high를 유지)

MDC/MDIO 인터페이스를 통한 read 예시

• OP: 10(Read)

• PHYAD:1

• REGAD: 0x00

• Read Data: 0x1140

= 1번 PHY의 0x00번지 레지스터(BMCR)의 값을 읽겠다.

MDC/MDIO 인터페이스를 통한 read 예시

PHY는 MDIO를 뺏은 후, MAC에게 register의 데이터를 전송 (MDIO를 통해 0x1140 데이터를 실어보냄)

MDC/MDIO 인터페이스를 통한 write 예시

• OP:01(Write)

• PHYAD:1

• REGAD: 0x00

• Read Data: 0x1340

1번 PHY의 0x00번지 레지스터(BMCR)에 0x1340 값을 write. (이번엔 MAC이 계속 MDIO 점유)

프레임을 전송하는 인터페이스

MAC과 PHY는 아래의 인터페이스 중 하나를 선택하여 프레임을 주고 받는다.

- GMII
- RGMII
- MII
- RMII

프레임을 전송하는 인터페이스(이더넷 프레임)

GMII/RGMII/MII/RMII 릍 통해 PHY와 이더넷 프레임을 주고 받는다.

	설명
Preamble	송신자와 수신자간 동기화용 필드
SFD	10101011 -> frame 시작을 알리는 필드
Destination Address	현재 frame을 수신할 목적지 MAC 주소
Source Address	현재 frame을 전송할 송신지 MAC 주소
Length	Payload의 크기
MAC Client Data (Payload)	3계층에서 캡슐화된 데이터(정확하겐 3계층 아래 LLC계층)
PAD	패딩(CSMA/CD를 위해선 frame이 최소한의 크기를 만족해야함)
FCS	Checksum용 필드

프레임을 전송하는 인터페이스(GMII)

● 1Gbps 기가 비트 이더넷을 지원(100Mbps/10Mbps도 지원)

	GPIO핀	타입	설명
	MAC_RXD[7:0]	In	PHY로부터 이더넷 프레임 수신
	MAC_TXD[7:0]	Out	PHY로 이더넷 프레임 송신
	MAC_RXCLK	In	수신용 클럭
	MAC_TXCLK	Out	송신용 클럭
CAAH	MAC_TXEN	Out	PHY에게 보내는 제어 신호. 송신한 데이터가 유효하다고 알림
GMII	MAC_RXDV	In	PHY로부터 받는 제어신호. 수신한 데이터가 유효하다고 알림받음
	MAC_RXER	In	PHY로부터 수신 중 에러가 발생했다고 알림받음
	MAC_TXER	Out	PHY에게 송신 중 에러가 발생했다고 알림
	MAC_COL	In	PHY로부터 전송매체에 충돌이 발생했다고 알림받음
	MAC_CRS	In	Carrier Sense : 전송매체(송,수신)의 idle여부

프레임을 전송하는 인터페이스(RGMII)

- 1Gbps 기가 비트 이더넷을 지원(100Mbps/10Mbps도 지원)
- GMII보다 적은 핀 수

	GPIO핀	타입	설명
	MAC_RXD[3:0]	In	PHY로부터 이더넷 프레임 수신
	MAC_TXD[3:0]	Out	PHY로 이더넷 프레임 송신
	MAC_RXCLK	In	수신용 클럭
RGMII	MAC_TXCLK	Out	송신용 클럭
	MAC_TXEN	Out	PHY에게 보내는 제어 신호. 송신한 데이터가 유효하다고 알림
	MAC_RXDV	In	PHY로부터 받는 제어신호. 수신한 데이터가 유효하다고 알림받음

프레임을 전송하는 인터페이스(MII)

● 100M/10Mbps 전송 속도 지원

	GPIO핀	타입	설명
	MAC_RXD[3:0]	In	PHY로부터 이더넷 프레임 수신
	MAC_TXD[3:0]	Out	PHY로 이더넷 프레임 송신
	MAC_RXCLK	In	수신용 클럭
	MAC_TXCLK	Out	송신용 클럭
MII	MAC_TXEN	Out	PHY에게 보내는 제어 신호. 송신한 데이터가 유효하다고 알림
	MAC_RXDV	In	PHY로부터 받는 제어신호. 수신한 데이터가 유효하다고 알림받음
	MAC_RXER	In	PHY로부터 수신 중 에러가 발생했다고 알림받음
	MAC_COL	In	PHY로부터 전송매체에 충돌이 발생했다고 알림받음
	MAC_CRS	In	Carrier Sense : 전송매체(송,수신)의 idle여부

프레임을 전송하는 인터페이스(RMII)

	GPIO핀	타입	설명
	MAC_RXD[1:0]	In	PHY로부터 이더넷 프레임 수신
	MAC_TXD[1:0]	Out	PHY로 이더넷 프레임 송신
RMII	MAC_TXCLK	Out	송신용 클럭
	MAC_TXEN	Out	PHY에게 보내는 제어 신호. 송신한 데이터가 유효하다고 알림
	MAC_RXDV	In	PHY로부터 받는 제어신호. 수신한 데이터가 유효하다고 알림받음

- 100Mbps/10Mbps 전송 속도 지원
- MII보다 핀 수 적음

4. 지원 프로토콜

CSMA/CD

네트워크에서 데이터를 전송하기 전에 채널 상태를 확인하고, 충돌 발생 시 이를 감지하여 데이터를 중단하고 재전송하는 충돌 관리 프로토콜

	설명
deferring on?	네트워크가 현재 비워있는가? (비어있지 않다면 대기)
halfduplex and collisionDetect?	반 이중 통신이면서 충돌을 감지했는가?(충돌은 반이중에서만 발생)
send jam	충돌 신호를 네트워크에 연결된 host들에게 broadcast
increment attempts	전송 시도 변수 += 1
late collision and > 100Mbps?	half duplex이면서 전송속도가 100Mbps보다 큰 경우, late collision이 발생하면 전송을 중지하게 되어 있다.
too many attempts?	전송 시도 횟수가 초과됐는지?
compute backoff	대기 시간(back off)을 계산한다.
wait backoff time	대기(back off만큼의 시간이 지나면 다시 프레임을 첫 bit부터 전송한다)

ARP(Address Resolution Protocol)

IP로 MAC주소를 얻어오는 프로토콜.

- 현재 네트워크에서 송신을 위해선 최종적으로 IP가 아니라 MAC주소가 필요.
- ARP 프로토콜을 통해 해당 IP를 가진 인터페이스로부터 MAC주소를 가져온다.
- 가져온 MAC주소는 ARP table에 일정시간 caching해둔다.
 (데이터를 송신할 때마다 ARP 프로토콜을 실행할 필요가 없다.)

ARP(2. arp reply)

ARP(3. mac주소 캐싱)

5. 성능지표

성능지표

대역폭: 시간 당 보낼 수 있는 최대 데이터량.
 Ethernet GMAC은 기본적으로 10/100/1000Mbps의 속도를 지원한다.

• 처리량 : 실제 측정한 초당 데이터(bit) 전송률

대역폭이 1000Mbps이더라도 실제 처리량은 그보다 낮을 수 있다.

*bps : 초당 bit 전송률

이상입니다.