Performance Analysis

Kuan-Yu Chen (陳冠宇)

Review

 Data type determines the set of values that a data item can take and the operations that can be performed on the item

Data Type	Size in Bytes	Range	Use
char	1	-128 to 127	To store characters
int	2	-32768 to 32767	To store integer numbers
float	4	3.4E-38 to 3.4E+38	To store floating point numbers
double	8	1.7E-308 to 1.7E+308	To store big floating point numbers

- Algorithm and Program
 - Algorithms + Data Structures = Programs
- Recursion Functions
 - Direct
 - Indirect
 - Tail
 - Compared with non-recursive functions

Space and Time Complexity

- Analyzing an algorithm means determining the amount of resources (such as time and memory) needed to execute it
 - The **time complexity** of an algorithm is basically the running time of a program as a function of a given input
 - The **space complexity** of an algorithm is the amount of computer memory that is required during the program execution as a function of a given input

Space Complexity

- The space analysis can be classified into two parts
 - Fixed part
 - The instruction space, space for simple variables, space for constants, etc
 - Variable part
 - Space needed by referenced variables
 - The recursion stack space
 - Accordingly, the space requirement S(P) of a program P can be defined

$$S(P) = c + S_p$$

fixed part variable part

usually a constant depend on the task and program

• We usually concentrate on S_p

Recursion Stack Space.

• Given an Ackerman's function A(m, n), please calculate A(1,2)

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1))$$

$$A(1,1) = A(0,A(1,0))$$

$$A(1,0) = A(0,1)$$

$$A(0,1) = 2$$

Recursion Stack Space..

• Given an Ackerman's function A(m, n), please calculate A(1,2)

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1)) = A(0,3) = 4$$

$$A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

$$A(1,0) = A(0,1) = 2$$

$$A(0,1) = 2$$

Recursion Stack Space...

• Given an Ackerman's function A(m, n), please calculate A(1,2)

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1))$$

$$A(1,1) = A(0,A(1,0))$$

$$A(1,0) = A(0,1)$$

$$A(1,0) = A(0,1)$$

$$A(1,1) = 2$$

Recursion Stack Space....

• Given an Ackerman's function A(m, n), please calculate A(1,2)

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1)) = A(0,3) = 4$$

$$A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

$$A(1,0) = A(0,1) = 2$$

$$A(0,1) = 2$$

A(1,0) A(1,1) A(1,2)

Time Complexity

- The time, T(P), taken by a program P is the sum of the **compile time** and the **run (execution) time**
 - We mainly concentrate on the run time of a program

$$T(P) = c + T_p$$
compile time run time

- There are two ways to determine the run time
 - Measurement
 Execute the program
 - Record the CPU time
 - Analysis
 - Count only the number of program steps
 - Count the number of instructions

Example

How many times does the function call_fun() execute?

$$\sum_{n=1}^{n} (a^2 - a) = \sum_{n=1}^{n} a^2 - \sum_{n=1}^{n} a = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(n-1)}{3}$$

$$\sum_{a=1}^{n} a^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Expressing Time and Space Complexity

- The time and space complexities of a given function f(n), where n is a given input for the algorithm, can be expressed by some notations
 - We introduce some terminologies that will enable us to make meaningful but inexact statements about the time and space complexities of a program

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "f of n is omega of g of n") iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \square

Definition: [Theta] $f(n) = \Theta(g(n))$ (read as "f of n is theta of g of n") iff there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$. \square

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

• f(n) = O(g(n)) means that $c \times g(n)$ is an **upper bound** on the value of f(n) for all n, where $n \ge n_0$

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

• f(n) = O(g(n)) means that $c \times g(n)$ is an **upper bound** on the value of f(n) for all n, where $n \ge n_0$

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

• f(n) = O(g(n)) means that $c \times g(n)$ is an **upper bound** on the value of f(n) for all n, where $n \ge n_0$

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

• f(n) = O(g(n)) means that $c \times g(n)$ is an **upper bound** on the value of f(n) for all n, where $n \ge n_0$

Definition [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \square

• f(n) = O(g(n)) means that $c \times g(n)$ is an **upper bound** on the value of f(n) for all n, where $n \ge n_0$

- For the statement f(n) = O(g(n)) to be **informative**, g(n) should be as small a function of n as one can come up with
 - -3n + 3 = 0(n) vs. $3n + 3 = 0(n^2)$
- Fantastic names
 - O(1) mean a computing time that is a constant
 - O(n) is called linear
 - $O(n^2)$ is called quadratic
 - $O(n^3)$ is called cubic
 - $O(2^n)$ is called exponential
- Ordering
 - $0(1) < 0(\log n) < 0(n) < 0(n\log n) < 0(n^2) < 0(n^3) < 0(2^n)$

Big-Oh...

• $0(1) < 0(\log n) < 0(n) < 0(n\log n) < 0(n^2) < 0(2^n)$

Big-Oh...

• $0(1) < 0(\log n) < 0(n) < 0(n\log n) < 0(n^2) < 0(n^3) < 0(n^c) < 0(2^n) < 0(3^n) < 0(c^n) < 0(n!) < 0(n^n) < 0(n^c)$

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "f of n is omega of g of n") iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \square

• The function g(n) is a **lower bound** on f(n)

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "f of n is omega of g of n") iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \square

• The function g(n) is a lower bound on f(n)

Example 1.15: $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$ (actually the inequality holds for $n \ge 0$, but the definition of Ω requires an $n_0 > 0$). $3n + 3 = \Omega(n)$ as $3n + 3 \ge 3n$ for $n \ge 1$. $100n + 6 = \Omega(n)$ as $100n + 6 \ge 100n$ for $n \ge 1$. $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$. $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 \ge 2^n$ for $n \ge 1$. Observe also that $3n + 3 = \Omega(1)$; $10n^2 + 4n + 2 = \Omega(n)$; $10n^2 +$

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "f of n is omega of g of n") iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \square

• The function g(n) is a lower bound on f(n)

Example 1.15: $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$ (actually the inequality holds for $n \ge 0$, but the definition of Ω requires an $n_0 > 0$). $3n + 3 = \Omega(n)$ as $3n + 3 \ge 3n$ for $n \ge 1$. $100n + 6 = \Omega(n)$ as $100n + 6 \ge 100n$ for $n \ge 1$. $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$. $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 \ge 2^n$ for $n \ge 1$. Observe also that $3n + 3 = \Omega(1)$; $10n^2 + 4n + 2 = \Omega(n)$; $10n^2 +$

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "f of n is omega of g of n") iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \square

• The function g(n) is a lower bound on f(n)

Example 1.15: $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$ (actually the inequality holds for $n \ge 0$, but the definition of Ω requires an $n_0 > 0$). $3n + 3 = \Omega(n)$ as $3n + 3 \ge 3n$ for $n \ge 1$. $100n + 6 = \Omega(n)$ as $100n + 6 \ge 100n$ for $n \ge 1$. $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge n^2$ for $n \ge 1$. $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 \ge 2^n$ for $n \ge 1$. Observe also that $3n + 3 = \Omega(1)$; $10n^2 + 4n + 2 = \Omega(n)$; $10n^2 +$

- For the statement $f(n) = \Omega(g(n))$ to be informative, g(n) should be as **large** a function of n as possible
 - $-3n + 3 = \Omega(n)$ vs. $3n + 3 = \Omega(1)$
 - $-6 \times 2^{n} + n^{2} = \Omega(2^{n}) \text{ vs. } 6 \times 2^{n} + n^{2} = \Omega(1)$

Theta

Definition: [Theta] $f(n) = \Theta(g(n))$ (read as "f of n is theta of g of n") iff there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$. \square

- The theta is more **precise** than both big-oh and omega
 - g(n) is both an upper and lower bound on f(n)

Theta

Definition: [Theta] $f(n) = \Theta(g(n))$ (read as "f of n is theta of g of n") iff there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$. \square

- The theta is more precise than both big-oh and omega
 - g(n) is both an upper and lower bound on f(n)

```
Example 1.16: 3n + 2 = \Theta(n) as 3n + 2 \ge 3n for all n \ge 2, and 3n + 2 \le 4n for all n \ge 2, so c_1 = 3, c_2 = 4, and n_0 = 2. 3n + 3 = \Theta(n); 10n^2 + 4n + 2 = \Theta(n^2); 6*2^n + n^2 = \Theta(2^n); and 10*\log n + 4 = \Theta(\log n). 3n + 2 \ne \Theta(1); 3n + 3 \ne \Theta(n^2); 10n^2 + 4n + 2 \ne \Theta(n); 10n^2 + 4n + 2 \ne \Theta(1); 6*2^n + n^2 \ne \Theta(n^2); 6*2^n + n^2 \ne \Theta(n^{100}); and 6*2^n + n^2 \ne \Theta(1). \square
```

Questions?

kychen@mail.ntust.edu.tw