

CID

Circuitos Digitais

Aula 03 – Portas Lógicas

E (AND), OU (OR), INVERSORA (NOT), NÃO E (NAND), NÃO OU (NOR), OU EXCLUSIVA (XOR), NÃO OU EXCLUSIVA (XNOR)

FUNÇÕES E PORTAS LÓGICAS

- ➤ 1854 George Boole (1815 1864) apresentou um sistema matemático de análise lógica conhecido como "Álgebra de Boole";
- ➤ 1938 Claude Elwood Shannon utilizou as teorias da álgebra de Boole para solucionar problemas de circuitos de telefonia com relés.

FUNÇÕES E PORTAS LÓGICAS

- Os sistemas digitais são formados por circuitos lógicos denominados de portas lógicas que, utilizados de forma conveniente, podem implementar todas as expressões geradas pela álgebra de Boole;
- Existem três portas básicas (E, OU e NÃO) que podem ser conectadas de várias maneiras, formando sistemas que vão de simples relógios digitais aos computadores de grande porte.

FUNÇÕES LÓGICAS – CONJUNTO DE VALORES

FALSO	VERDADEIRO	RACIOCÍNIO HUMANO
DESLIGADO	LIGADO	CIRCUITOS DE CHAVEAMENTO
0	1	SISTEMA BINÁRIO
0 VOLTS	5 VOLTS	ELETRÔNICA DIGITAL

FUNÇÃO "E" ou "AND"

A função "E" ou "AND" é aquela que executa a multiplicação de 2 variáveis booleanas, ou seja:

0	"e" ou "and"	0	=	0
0	"e" ou "and"	1	=	0
1	"e" ou "and"	0	=	0
1	"e" ou "and"	1	=	1

FUNÇÃO "E" ou "AND" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "E" ou "AND"

Chave aberta		0
Chave fechada	=	1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "E" ou "AND" - FUNCIONAMENTO

Chave A	Chave B	Lâmpada
Aberta = 0	Aberta = 0	Apagada = 0
Aberta = 0	Fechada = 1	Apagada = 0
Fechada = 1	Aberta = 0	Apagada =0
Fechada = 1	Fechada = 1	Acesa = 1

FUNÇÃO "E" ou "AND" - TABELA VERDADE

$$S = A.B$$

Entr	adas	Saída
Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

FUNÇÃO "E" ou "AND" - 3 ENTRADAS

S = A.B.C

Entradas		Saída	
Α	В	U	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

FUNÇÃO "E" ou "AND" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "E" ou "AND"

FUNÇÃO "E" ou "AND" – CI 7408

FUNÇÃO "OU" ou "OR"

A função "OU" ou "OR" é aquela que executa a soma de 2 variáveis booleanas, ou seja:

0	"ou" ou "or"	0	=	0
0	"ou" ou "or"	1	=	1
1	"ou" ou "or"	0	=	1
1	"ou" ou "or"	1	=	1

FUNÇÃO "OU" ou "OR" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "OU" ou "OR"

Chave aberta	=	0
Chave fechada	=	1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "OU" ou "OR" - FUNCIONAMENTO

Chave A	Chave B	Lâmpada
Aberta = 0	Aberta = 0	Apagada = 0
Aberta = 0	Fechada = 1	Acesa = 1
Fechada = 1	Aberta = 0	Acesa = 1
Fechada = 1	Fechada = 1	Acesa = 1

FUNÇÃO "OU" ou "OR" - TABELA VERDADE

$$S = A + B$$

Entr	adas	Saída
Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

FUNÇÃO "OU" ou "OR" - 3 ENTRADAS

$$S = A + B + C$$

E	Entradas		Saída
Α	В	C	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

FUNÇÃO "OU" ou "OR" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "OU" ou "OR"

FUNÇÃO "OU" ou "OR" - CI 7432

FUNÇÃO "NÃO" ou "NOT"

A função "NÃO" ou "NOT" é aquela que executa a negação de uma variável booleana, ou seja:

"não" ou "not"	0	=	1
"não" ou "not"	1	=	0

FUNÇÃO "NÃO" ou "NOT" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "NÃO" ou "NOT"

Chave aberta	=	0
Chave fechada		1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "NÃO" ou "NOT" - FUNCIONAMENTO

Chave A	Lâmpada
Aberta = 0	Acesa = 1
Fechada = 1	Apagada = 0

FUNÇÃO "NÃO" ou "NOT" - TABELA VERDADE

$$S = \overline{A}$$

Entrada	Saída
Α	S
0	1
1	0

FUNÇÃO "NÃO" ou "NOT" - SÍMBOLOS

A = Entrada; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "NÃO" ou "NOT"

FUNÇÃO "NÃO" ou "NOT" – CI 7404

FUNÇÃO "NÃO E" ou "NAND"

A função "NÃO E" ou "NAND" como é mais conhecida é a junção da porta E com aporta NÃO, ou seja, teremos a porta E com a saída invertida.

0	"NÃO E" ou "NAND"	0	=	1
0	"NÃO E" ou "NAND"	1	=	1
1	"NÃO E" ou "NAND"	0	=	1
1	"NÃO E" ou "NAND"	1	=	0

FUNÇÃO "NÃO E" ou "NAND" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "NÃO E" ou "NAND"

Chave aberta	=	0
Chave fechada	=	1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "NÃO E" ou "NAND" - FUNCIONAMENTO

Chave A	Chave B	Lâmpada
Aberta = 0	Aberta = 0	Acesa = 1
Aberta = 0	Fechada = 1	Acesa = 1
Fechada = 1	Aberta = 0	Acesa = 1
Fechada = 1	Fechada = 1	Apagada= 0

FUNÇÃO "NÃO E" ou "NAND" - TABELA VERDADE

$$S = \overline{A.B}$$

Entradas		Saída
Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

FUNÇÃO "NÃO E" ou "NAND" - 3 ENTRADAS

$$S = \overline{A.B.C}$$

Entradas		Saída	
Α	В	C	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

FUNÇÃO "NÃO E" ou "NAND" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "NÃO E" ou "NE" "NAND"

FUNÇÃO "NÃO E" ou "NAND" - CI 7400

FUNÇÃO "NÃO OU" ou "NOR"

A função "NÃO OU" ou "NOR" como é mais conhecida é a junção da porta OU com aporta NÃO, ou seja, teremos a porta OU com a saída invertida.

0	"NÃO OU" ou "NOR"	0	=	1
0	"NÃO OU" ou "NOR"	1	=	0
1	"NÃO OU" ou "NOR"	0	=	0
1	"NÃO OU" ou "NOR"	1	=	0

FUNÇÃO "NÃO OU" ou "NOR" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "NÃO OU" ou "NOR"

Chave aberta	=	0
Chave fechada		1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "NÃO OU" ou "NOR" - FUNCIONAMENTO

Chave A	Chave B	Lâmpada
Aberta = 0	Aberta = 0	Acesa = 1
Aberta = 0	Fechada = 1	Apagada= 0
Fechada = 1	Aberta = 0	Apagada= 0
Fechada = 1	Fechada = 1	Apagada= 0

FUNÇÃO "NÃO OU" ou "NOR" - TABELA VERDADE

$$S = \overline{A + B}$$

Entradas		Saída
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

FUNÇÃO "NÃO OU" ou "NOR" - 3 ENTRADAS

$$S = \overline{A + B + C}$$

Entradas			Saída
Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

FUNÇÃO "NÃO OU" ou "NOR" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "NÃO OU" ou "NOR"

FUNÇÃO "NÃO OU" ou "NOR" - CI 7402

FUNÇÃO "XOR"

A função "OU EXCLUSIVO" ou "XOR" como é mais conhecida é a função que tem a propriedade de realizar a soma de valores binários ou ainda encontrar o que se denomina paridade.

0	"XOR"	0	=	0
0	"XOR"	1	=	1
1	"XOR"	0	=	1
1	"XOR"	1	=	0

FUNÇÃO "XOR" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "OU EXCLUSIVO" ou "XOR"

Chave aberta	=	0
Chave fechada	=	1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "XOR" - FUNCIONAMENTO

Chave A Chave B		Lâmpada
Aberta = 0 Aberta = 0		Apagada= 0
Aberta = 0	Fechada = 1	Acesa = 1
Fechada = 1 Aberta = 0		Acesa = 1
Fechada = 1	Fechada = 1	Apagada= 0

FUNÇÃO "XOR" - TABELA VERDADE

 $S = A \oplus B$

Entradas		Saída
Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

FUNÇÃO "XOR" - 3 ENTRADAS

 $S = A \oplus B \oplus C$

Entradas			Saída
Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

FUNÇÃO "XOR" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "OU EXCLUSIVO" ou "XOR"

FUNÇÃO "XOR" - CI 7486

FUNÇÃO "XNOR"

A função "XNOR" como é mais conhecida é a função que realiza a inversa da função "XOR".

0	"XNOR"	0	=	1
0	"XNOR"	1	=	0
1	"XNOR"	0	=	0
1	"XNOR"	1	=	1

FUNÇÃO "XNOR" - CIRCUITO

Exemplo de circuito que efetua a operação lógica "XNOR"

Chave aberta	=	0
Chave fechada	=	1
Lâmpada apagada	=	0
Lâmpada acesa	=	1

FUNÇÃO "XNOR" - FUNCIONAMENTO

Chave A	Chave B	Lâmpada
Aberta = 0	Aberta = 0	Acesa = 1
Aberta = 0 Fechada = 1		Apagada= 0
Fechada = 1 Aberta = 0		Apagada= 0
Fechada = 1	Fechada = 1	Acesa = 1

FUNÇÃO "XNOR" - TABELA VERDADE

Entradas		Saída
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

FUNÇÃO "XNOR" - 3 ENTRADAS

$$S = A \oplus B \oplus C$$

Entradas			Saída
Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

FUNÇÃO "XNOR" - SÍMBOLOS

A, B e C = Entradas; S e Y = Saídas.

Símbolos adotados na representação da porta lógica "XNOR"

FUNÇÃO "XNOR" – CI 74266

CID

Circuitos Digitais

Aula 03 – Portas Lógicas

E (AND), OU (OR), INVERSORA (NOT), NÃO E (NAND), NÃO OU (NOR), OU EXCLUSIVA (XOR), NÃO OU EXCLUSIVA (XNOR)