Bildbasierte Navigation mit Neuronalen Netzen: Kolloquium

Jan Robert Rösler

April 23, 2019

- Technischer Hintergrund
- 2 Idee
- 8 Entwurf
- 4 Ergebnis
- Schluss

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Deep Learning

Deep Learning

Deep Learning mit Bildern

Wie können Bilder in neuronalen Netzen verarbeitet werden?

Möglich:

Matrix zu einem einspaltigen Inputvektor umwandeln.

Problem:

- Räumliche Information geht verloren
- Hoher Rechenaufwand

Convolutional Neural Network

Convolutional Neural Network 2

Vanishing Gradient Problem

Residual Networks

- Technischer Hintergrund
- 2 Idee
- Entwurf
- 4 Ergebnis
- Schluss

DroNet

Ziel

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Bilder

Traning

Steuerung

- Technischer Hintergrund
- 2 Idee
- 3 Entwurf
- 4 Ergebnis
- Schluss

Auswertung

Training

Auswertung

Testfahrt

→ Aufnahmen

Testfahrt

Performance messen - Metrik

$$Autonomiewert = \left(1 - \frac{\text{Anzahl Fehler} \cdot 2s}{\text{Fahrzeit in Sekunden}}\right) \cdot 100 \tag{1}$$

Testfahrt

Performancemessung

Algorithmus	Fehler Runde 1	Fehler Runde 2
DroNet	16	12
Carolo-Projekt	7	11
BA-RR	3	5

Testfahrt

Performancevergleich

Algorithmus	Autonomiewert
DroNet	53 %
Carolo-Projekt	70 %
BA-RR	87 %

Auswertung

Visualisierung

Verschiedene Möglichkeiten

- Technischer Hintergrund
- 2 Idee
- Entwurf
- 4 Ergebnis
- Schluss

Bewertung

Ausblick

