Tutorial 9

1. Given a theorem: Let a and b be two integers in which at least one is non-zero then there exists x and y such that GCD(a, b) = ax + by.

Prove that if d = GCD(a, b) then $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.

- 2. Prove the following:
- (a) If $a \equiv b \pmod{m}$ then $ac \equiv bc \pmod{m}$
- (b) If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for all $k \ge 1$
- 3. Find the GCD of the following using Euclidean Algorithm:
- (a) (1475, 1200)
- (b) (766, 1235)
- 4. Find the remainder when 3^{28} is divided by 5.

(Note: Use the properties of congruence relation)

- 5. Perform the following operations in Z_n :
- (a) Add 7 to 14 in Z_{15} .
- (b) Subtract 11 from 7 in Z_{13} .
- (c) Multiply 123 by -10 in Z_{19} .

(Note: Operations in Z_n can be done in this way $-(a+b) \mod n = c$. Subtraction and Multiplication can also be done in the similar way).