assingment 5

giridharpaida1111

January 2021

1 Question

For any two statements p and q the negation of expression p \bigvee (p \bigwedge q) is:

- 1. $\sim p \wedge \sim q$
- 2. p ∧ q
- 3. $p \leftrightarrow q$
- 4. \sim p $\bigvee \sim$ q

2 Solution

The negation of p \bigwedge (\sim p \bigvee q) is \sim (p \bigwedge (\sim p \bigvee q)) \sim (p \bigwedge \sim q) \bigvee (p \bigvee q), we know that p \bigvee \sim p = True

 $\sim (T \land (p \lor q), we know that True V a=a$

 $\sim (p \bigvee q)$

 $\sim p \bigwedge \sim q$

hence proved

	\boldsymbol{p}	\boldsymbol{q}	$\sim {f p}$	$\sim {f q}$	$\sim (p ackslash q)$	\sim ($p \lor q$)	$(p \lor q))$	$\sim (\mathbf{p} \bigvee \mathbf{q})$	∼p∧ q
Г	0	0	1	1	0	1	1	1	1
İ	0	1	1	0	1	1	1	0	0
	1	0	0	1	1	1	1	0	0
	1	1	0	0	0	0	1	0	0