92586 Computational Linguistics

Lesson 11. "One" Neuron

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

28/03/2022

Table of Contents There was Life Before Deep Learning Some History The Perceptron More than One Neuron Chapter 5 of Lane et al. (2019)

reviously
► From Words to Topics

There was	s Life Befo	ore Deep Le	earning	

There Was Life Before Deep Learning

(And Many Non-NN in-Production Models Prevail)

- ► Naïve Bayes
- ► *k*-nearest neighbors
- ► Random forests
- ► Support vector machines
- ► HMM
- ► Logistic Regression
- ▶ ...

There Was Life Before Deep Learning

Random Forests

Titanic survivors

* sibsp: number of siblings or spouse of a person onboard Multiple decision trees are learned and the final class is the **mode**

https://en.wikipedia.org/wiki/Random_forest

There Was Life Before Deep Learning k-Nearest Neighbours

The class of \bullet is the same as the most frequent among its kneighbours

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

There Was Life Before Deep Learning Support Vector Machines

Kernels

- ► Linear
- ► RBF
- ► Polynomial
- ► Tree
- ► SVM^{HMM} for sequences^a
- ► SVM-Rank for ranking
- ► SVR for regression

^aAlso HMM

https://en.wikipedia.org/wiki/Support-vector_machine

There Was Life Before Deep Learning

There are many, many others

- ► Often they are SoA (or close)
- ► In general, they are *cheaper*
- ► In general, they require *less* data
- ► Some of them are *explainable*
- ▶ Representations have to be *engineered*

Some History

Opening paragraph of Rosenblatt (1957)'s **The Perceptron—a perceiving and recognizing automaton**

Since the advent of electronic computers and modern servo systems, an increasing amount of attention has been focused on the feasibility of constructing a device possessing such human-like functions as perception, recognition, concept formation, and the ability to generalize from experience. In particular, interest has centered on the idea of a machine which would be capable of conceptualizing inputs impinging directly from the physical environment of light, sound, temperature, etc.—the "phenomenal world" with which we are all familiar — rather than requiring the intervention of a human agent to digest and code the necessary information.

Some History

Al Winters

1974-1980 First major winter

1987-1993 Second major winter

1966 failure of MT

1970 abandonment of connectionism (explain mental phenomena using artificial neural networks)

1971–75 DARPA's frustration wrt CMU speech recognition research

1973 Lighthill report decreases AI research in the UK¹

1973-74 DARPA's cutbacks to academic AI research

1987 collapse of the LISP machine market

1988 cancellation of new spending on Al by the Strategic Computing Initiative

1993 resistance to expert systems deployment and maintenance

1990s end of the Fifth Generation computer project's original goals²

¹https://en.wikipedia.org/wiki/Lighthill_report

²https://en.wikipedia.org/wiki/Fifth_generation_computer

The Perceptron

Numerical Perceptron³

- ► Feature vector: $X = [x_0, x_1, \dots, x_i, \dots, x_n]$
- ► Associated weight (per feature): $W = [w_0, w_1, \dots, w_i, \dots, w_n]$
- ► Sum up: $(x_0 * w_0) + (x_1 * w_1) + ... + (x_i * w_i) + ... (x_n * w_n)$
- ► Bias: always-on input (resiliency to inputs of all zeros)
- ► Activation (step) function

The Perceptron

- ► Intended to be a machine able of recognising images
- ► Rough idea:

Input: features of an image (small subsections)

Parameters: weights for each feature (measure of

importance)

Output: Fire once all potentiometers pass a certain

threshold

Fired: positive match in the image

Did not fire: negative class

The Perceptron

Numerical Perceptron

$$\hat{y} = f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

This perceptron is a special case of **neuron** —the base unit of a neural network

Let us see

³I am intentionally dropping any biological reference

Without Bias

"The output [of a perceptron] is a linear function of the input" (Goodfellow et al., 2016, p. 105)

$$\hat{y} = w^T x \tag{2}$$

The Perceptron

Without Bias

```
import matplotlib.pyplot as plt
import numpy as np
for i in range(-5, 5, 1):
    fig, ax = plt.subplots(figsize = (5,5))
   ax.spines['left'].set_position('center')
    ax.spines['bottom'].set_position('center')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
   ax.set(title=',$y=w^Tx$')
   x = np.arange(-5.0, 5.0, 0.01)
   plt.xlim((-5,+5))
   plt.ylim((-5,+5))
   ax.set(title='$y={}x$'.format(i))
   y = i*x #1 + np.sin(2 * np.pi * x)
    ax.plot(x, y)
   fig.savefig("linear_w{}.png".format(i))
    plt.show()
```

Not the nicest way to plot

The Perceptron

Without Bias

Plotting with different values of w do you see an issue?

The Perceptron

With Bias

$$\hat{\mathbf{y}} = \mathbf{w}^\mathsf{T} \mathbf{x} + \mathbf{b} \tag{3}$$

"[\dots] the mapping from parameters to predictions is still a linear function but the mapping from features to predictions is now an affine function" (Goodfellow et al., 2016, p. 107)

(does not need to pass by the origin)

2.5 5

2.5

Without Bias

Plotting with w = 1 and different values of b

The Perceptron

Typical Learning Process (1/2)

Given an annotated dataset...

► start with a random weight initialisation from a normal distribution

$$ec{w} \sim \mathcal{N}(\mu, \sigma^2)$$
 with $\mu \sim$ 0 (but do not use 0!)

2.5 5

► feed one instance and see if the predicted class is correct

- 1: **if** the class is correct **then**
 - do nothing
- 3: **else**
- 4: adjust the weights (slightly; not until getting the class right!)

Each weight is adjusted by how much it contributed to the resulting error

The Perceptron

Typical Learning Process (2/2)

- ► All instances in the training data are fed a number of times: epoch
- ► Typical stop criteria include
 - $error < \epsilon$ (convergence)
 - ► error stabilises
 - ► max number of epochs reached

The Perceptron

Example 1: Logical OR

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	1
	0	0 1

Mr. Perceptron can learn!

This learning model is called **linear regression** (another ML alternative)

Drawback: Local vs Global Minimum

No guarantee that the model will reach the global optimal solution

Plot from M. Ryan's thesis (http://www.isni.org/isni/000000045916099X)

The Perceptron

Example 2: Logical XOR

We have learned a logical OR function . . .

Can we learn a logical XOR?

input		output
0	0	0
0	1	1
1	0	1
1	1	0

■ Let us see

Mr. Perceptron cannot learn! ...winter

Plots from (Lane et al., 2019, p. 164-165)

More than One Neuron

Neural Networks

A neural network is a combination of multiple perceptrons (and it can deal with more complex patterns)

Fully-connected neural network

Next

- ► Backpropagation (briefly)
- ► Activation functions
- ► Keras

Some Formalisms

Input $x = [x_1, x_2, x_3, \dots, x_k]$ Output $f(x)^4$ Answer y

Cost Function⁵ Quantifier of the mismatch between **actual** and **predicted** output

$$err(x) = |y - f(x)| \tag{4}$$

Training goal Minimising the cost function across all input samples

$$J(x) = \min \sum_{i=1}^{n} err(x_i)$$
 (5)

References

Goodfellow, I., Y. Bengio, and A. Courville

2016. Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island,

NY: Manning Publication Co.

Rosenblatt, F.

1957. The perceptron—a perceiving and recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory, Buffallo, NY.

⁴aka ŷ

⁵aka loss function