

OPERATING SYSTEM

Inter-Process Communication

Dr Rahul NagpalComputer Science

OPERATING SYSTEM

Inter-Process Communication

Dr. Rahul NagpalComputer Science

Basic IPC Concepts

- Processes within a system may be *independent* or *cooperating*
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience
- Cooperating processes need inter-process communication (IPC)
- Two models of IPC
 - Shared memory
 - Message passing

Communications Models

(a) Message passing. (b) shared memory.

Cooperating Processes

- Processes within a system may be *independent* or cooperating
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience

Producer-Consumer Problem

- Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
 - unbounded-buffer places no practical limit on the size of the buffer
 - bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

PES UNIVERSITY ONLINE

Shared data

```
#define BUFFER_SIZE 10
typedef struct {
    . . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

• Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer & Consumer

```
item next produced;
while (true) {
      /* produce an item in next produced */
      while (((in + 1) % BUFFER SIZE) == out)
             ; /* do nothing */
      buffer[in] = next produced;
      in = (in + 1) % BUFFER SIZE;
item next consumed;
while (true) {
      while (in == out)
             ; /* do nothing */
      next consumed = buffer[out];
      out = (out + 1) % BUFFER SIZE;
       /* consume the item in next consumed */
    Slides Adapted from Operating System Concepts 9/e © Authors
```


Inter-process Communication – Shared Memory

- An area of memory shared among the processes that wish to communicate
- The communication is under the control of the users processes not the operating system.
- Major issues is to provide mechanism that will allow the user processes to synchronize their actions when they access shared memory.
- Synchronization is discussed in great details in Chapter 5

Inter-process Communication – Message Passing

- Mechanism for processes to communicate and to synchronize their actions
- Message system processes communicate with each other without resorting to shared variables
- IPC facility provides two operations:
 - send(message)
 - receive(message)
- The *message* size is either fixed or variable

Message Passing (Cont.)

If processes *P* and *Q* wish to communicate, they need to: Establish a *communication link* between them Exchange messages via send/receive

Implementation issues:

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of

communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or variable?

Is a link unidirectional or bi-directional?

Message Passing (Cont.)

- Implementation of communication link
 - Physical:
 - Shared memory
 - Hardware bus
 - Network
 - Logical:
 - Direct or indirect
 - Synchronous or asynchronous
 - Automatic or explicit buffering

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process
 Q
- Properties of communication link
 - Links are established automatically
 - A link is associated with exactly one pair of communicating processes
 - Between each pair there exists exactly one link
 - The link may be unidirectional, but is usually bidirectional

Indirect Communication

PES UNIVERSITY

- Messages are directed and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional

Indirect Communication

- Messages are directed and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional

Indirect Communication

- Operations
 - create a new mailbox (port)
 - send and receive messages through mailbox
 - destroy a mailbox
- Primitives are defined as:

```
send(A, message) - send a message to mailbox A
receive(A, message) - receive a message from
mailbox A
```


Indirect Communication

- Mailbox sharing
 - P_1 , P_2 , and P_3 share mailbox A
 - P_1 , sends; P_2 and P_3 receive
 - Who gets the message?
- Solutions
 - Allow a link to be associated with at most two processes
 - Allow only one process at a time to execute a receive operation
 - Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was

Synchronization

- Message passing may be either blocking or non-blocking
- Blocking is considered synchronous
 - Blocking send -- the sender is blocked until the message is received
 - Blocking receive -- the receiver is blocked until a message is available
- Non-blocking is considered asynchronous
 - Non-blocking send -- the sender sends the message and continue
 - Non-blocking receive -- the receiver receives:
 - A valid message, or Null message
 - Different combinations possible
 - If both send and receive are blocking, we have a rendezvous

Synchronization (Cont.)

Producer-consumer becomes trivial

```
message next produced;
        while (true) {
             /* produce an item in next
produced */
        send(next produced);
      message next consumed;
      while (true) {
        receive (next consumed);
        /* consume the item in next consumed */
```


Buffering

- Queue of messages attached to the link.
- implemented in one of three ways
 - Zero capacity no messages are queued on a link.
 Sender must wait for receiver (rendezvous)
 - Bounded capacity finite length of n messages
 Sender must wait if link full
 - Unbounded capacity infinite length
 Sender never waits

Pipes

- Acts as a conduit allowing two processes to communicate
- Issues:
 - Is communication unidirectional or bidirectional?
 - In the case of two-way communication, is it half or fullduplex?
 - Must there exist a relationship (i.e., *parent-child*) between the communicating processes?
 - Can the pipes be used over a network?
- Ordinary pipes cannot be accessed from outside the process that created it. Typically, a parent process creates a pipe and uses it to communicate with a child process that it created.
- Named pipes can be accessed without a parent-child relationship

Ordinary Pipes

- Ordinary Pipes allow communication in standard producer-consumer style
- Producer writes to one end (the write-end of the pipe)
- Consumer reads from the other end (the read-end of the pipe)
- Ordinary pipes are therefore unidirectional
- Require parent-child relationship between communicating processes

- Windows calls these anonymous pipes
- See Unix and Windows code samples in textbook

Named Pipes

- Named Pipes are more powerful than ordinary pipes
- Communication is bidirectional
- No parent-child relationship is necessary between the communicating processes
- Several processes can use the named pipe for communication
- Provided on both UNIX and Windows systems

THANK YOU

Dr Rahul Nagpal

Computer Science

rahulnagpal@pes.edu