2. gyakorlat

Valós-valós függvény folytonossága. Elemi függvények

Emlékeztető.

- A pontbeli folytonosság fogalma. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban (jelben $f \in C\{a\}$), ha
- (*) $\forall \varepsilon > 0 \text{ számhoz } \exists \delta > 0, \text{ hogy } \forall x \in \mathcal{D}_f, |x a| < \delta \text{ pontban } |f(x) f(a)| < \varepsilon.$

Ez a fogalom a függvénynek azt a szemléletes tulajdonságát írja le, hogy "ha az x pont közel van a-hoz, akkor az f(x) függvényértékek közel vannak f(a)-hoz."

- A határérték és a folytonosság kapcsolata. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor $f \in C\{a\} \iff \exists \lim_a f \text{ \'es } \lim_a f = f(a)$. \Box
- **1.** feladat. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Tegyük fel, hogy
- $(**) \quad \exists \, \delta > 0, \ hogy \ \forall \, \varepsilon > 0 \ \text{\'es} \ \forall \, x \in \mathcal{D}_f, \ |x a| < \delta \ \text{eset\'en} \ |f(x) f(a)| < \varepsilon.$

Az f függvény milyen tulajdonságáról van szó?

Megoldás. A feladatban leírt függvénytulajdonság emlékeztet a pontbeli folytonosság (*) alatti definíciójához. Annyi változás történt "csupán", hogy az ε és a δ számokra vonatkozó feltételek sorrendjét felcseréltük.

Vegyük észre, hogy (**)-ban **minden** $\varepsilon > 0$ számra és **minden** alkalmas x-re előírtuk az $|f(x) - f(a)| < \varepsilon$ feltételt. Világos, hogy ez csak úgy teljesülhet, ha $\exists \delta > 0$, hogy $\forall x \in \mathcal{D}_f$, $|x - a| < \delta$ pontban |f(x) - f(a)| = 0, azaz f(x) = f(a). A feladatban megfogalmazott feltétel tehát pontosan azt fejezi ki, hogy az f függyény az f pont f-sugarú környezetében állandó.

2. feladat. Tegyük fel, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban és f(a) > 0. Bizonyítsuk be, hogy

$$\exists K(a), hogy f(x) > 0 \quad \forall x \in \mathcal{D}_f \cap K(a) pontban.$$

Másként fogalmazva: f(a) előjelét egy alkalmas K(a) környezetben felvett függvényértékek is megtartják.

Megoldás. Alkalmazzuk a folytonosság definícióját az $\varepsilon := f(a) > 0$ számmal. Ekkor $\exists \delta > 0$ szám, hogy

$$\forall x \in \mathcal{D}_f, |x - a| < \delta \text{ eset\'en } |f(x) - f(a)| < f(a),$$

azaz

$$-f(a) < f(x) - f(a) < f(a).$$

Ezzel bebizonyítottuk azt, hogy

$$0 < f(x) \ (< 2 f(a))$$
 ha $x \in \mathcal{D}_f$ és $|x - a| < \delta$.

1

3. feladat. $Az \ \alpha, \beta \in \mathbb{R}$ paraméterektől függően határozzuk meg az

$$f(x) := \begin{cases} \frac{x^2 + 5x + 4}{x^2 + 3x + 2}, & ha \ x \in \mathbb{R} \setminus \{-1, -2\} \\ \alpha, & ha \ x = -1 \\ \beta, & ha \ x = -2 \end{cases}$$

fügqvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait.

Megoldás.

Emlékeztető. Szakadási helyek és osztályozásuk. Ha $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $f \notin C\{a\}$, akkor azt mondjuk, hogy az a pont az f függvény szakadási helye.

1º Megszüntethető szakadási helyről beszélünk, ha

$$\exists \lim_{a} f$$
 véges határérték és $\lim_{a} f \neq f(a)$.

2º Az elsőfajú szakadási helyet így értelmezzük:

$$\exists \lim_{a \to 0} f \text{ \'es } \exists \lim_{a \to 0} f, \text{ ezek v\'egesek, } \text{ de } \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

 3^o Minden más szakadási helyet **másodfajú szakadási helynek** nevezünk. \square

Racionális törtfüggvényről van szó. Mivel $x^2+3x+2=(x+1)(x+2)$, ezért -1 és -2 a nevező zérushelyei, így a megadott tört az $\mathbb{R}\setminus\{-2,-1\}$ halmazon értelmezhető. Racionális törtfüggvény az értelmezési tartományának minden pontjában folytonos, ezért f az $\mathbb{R} \setminus \{-2, -1\}$ halmaz minden pontjában folytonos.

Az a=-1 és az a=-2 pontokban a függvény határértékét kell megyizsgálni. Ehhez először a következő átalakítást célszerű elvégezni:

(*)
$$\frac{x^2 + 5x + 4}{x^2 + 3x + 2} = \frac{(x+1)(x+4)}{(x+1)(x+2)} = \frac{x+4}{x+2} = 1 + \frac{2}{x+2} \quad (x \in \mathbb{R} \setminus \{-2, -1\}).$$

<u>Legyen a = -1</u>. A fentiek alapján ebben a pontban az f függvénynek van határértéke:

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x+4}{x+2} = 3.$$

<u>Ha $\alpha = 3$ </u>, akkor $\lim_{-1} f = f(-1) = 3$, ezért f a -1 pontban folytonos. <u>Ha $\alpha \neq 3$ valós szám</u>, akkor $\lim_{-1} f = 3 \neq f(-1) = \alpha$, ezért -1 az f függvény megszüntethető szakadási helye.

Legyen a=-2. Most a (*) átalakítás után is kritikus ($\frac{1}{0}$ típusú) határértéket kapunk. Vegyük észre azonban azt, hogy az egyoldali határértékek léteznek. Nevezetesen:

$$\lim_{x \to -2+0} f(x) = \lim_{x \to -2+0} \left(1 + \frac{2}{x+2} \right) = +\infty \text{ és}$$

$$\lim_{x \to -2-0} f(x) = \lim_{x \to -2-0} \left(1 + \frac{2}{x+2} \right) = -\infty.$$

Az egyoldali határértékek tehát léteznek, de különbözők. Mivel ezek nem végesek, ezért a -2 pont f másodfajú szakadási helye tetszőleges β paraméter esetén.

4. feladat. Mutassuk meg, hogy az

$$\ln x = e^x - 3$$

egyenletnek van megoldása az (1,2) intervallumban.

Megoldás. A Bolzano-tételt fogjuk alkalmazni.

Emlékeztető. Bolzano-tétel. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos és $f(a) \cdot f(b) < 0$. Ekkor van olyan $\xi \in (a,b)$, hogy $f(\xi) = 0$.

A tétel úgy is megfogalmazhatjuk, hogy a tett feltételek mellett az f(x) = 0 egyenletnek van megoldása az (a, b) intervallumban.

A bizonyításnál követett gondolatmenettel (az ún. Bolzano-féle felezési eljárással) az f(x) = 0 egyenlet közelítő megoldását "tetszőleges pontossággal" elő lehet állítani.

Jegyezzük meg a Bolzano-tétel alábbi kiterjesztését.

Bolzano–Darboux-tétel. Legyen $-\infty < a < b < +\infty$, és tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos. Ekkor f minden f(a) és f(b) közötti értéket felvesz, azaz ha például f(a) < f(b), akkor $\forall c \in (f(a), f(b))$ számhoz $\exists \xi \in (a,b)$, hogy $f(\xi) = c$.

A bizonyításhoz elég alkalmazni a Bolzano-tételt a g(x) := f(x) - c $(x \in [a, b])$ függvényre. \square

Legyen

$$f(x) := \ln x - e^x + 3 \quad (x \in (0, +\infty)).$$

Világos, hogy $f \in C[1, 2]$.

 $f(1) \gtrsim 0$, mert

$$f(1) = \ln 1 - e^1 + 3 = 3 - e > 0.$$

(Azt már tudjuk, hogy 2 < e < 3.)

f(2) < 0, mert

$$f(2) = \ln 2 - e^2 + 3 < \ln e - e^2 + 3 = 1 - e^2 + 3 = 2^2 - e^2 < e^2 - e^2 = 0.$$

A Bolzano-tétel szerint tehát $\exists \xi \in (1,2)$, hogy $f(\xi) = 0$, azaz $\ln \xi = e^{\xi} - 3$.

5. feladat. Lássuk be, hogy minden páratlan fokszámú, valós együtthatós polinomnak van valós gyöke. Lényeges-e a polinom fokszámára tett feltétel?

Megoldás. A Bolzano-tételt fogjuk alkalmazni. Az általánosság megszorítása nélkül tekinthetünk 1 főegyütthatójú polinomokat. Rögzítsük az $n \in \mathbb{N}$ számot, és legyen

$$P(x) := x^{2n+1} + a_{2n}x^{2n} + \dots + a_1x + a_0 \quad (x \in \mathbb{R}),$$

ahol az $a_{2n}, a_{2n-1}, \ldots, a_1, a_0$ adott $val \acute{o}s$ együtthatók.

Mivel

$$P(x) = x^{2n+1} \cdot \left(1 + \frac{a_{2n}}{x} + \dots + \frac{a_0}{x^{2n+1}}\right) \quad (x \in \mathbb{R} \setminus \{0\}),$$

továbbá

$$\lim_{x \to -\infty} x^{2n+1} = -\infty, \quad \lim_{x \to +\infty} x^{2n+1} = +\infty \quad \text{és} \quad \lim_{x \to \pm \infty} \frac{1}{x} = 0,$$

ezért

$$\lim_{x \to -\infty} P(x) = -\infty \quad \text{és} \quad \lim_{x \to +\infty} P(x) = +\infty.$$

A $(-\infty)$ -ben vett $-\infty$ határérték definícióját (például) a B=-1 számmal alkalmazva azt kapjuk, hogy a

$$B = -1$$
 számhoz $\exists x_1 < 0$, hogy $\forall x < x_1$ pontban $P(x) < -1$,

ezért (például) $P(2x_1) < -1$.

A $(+\infty)$ -ben vett $+\infty$ határérték definícióját (például) a B=1 számmal alkalmazva azt kapjuk, hogy a

$$B=1$$
 számhoz $\exists x_2>0$, hogy $\forall x>x_2$ pontban $P(x)>1$,

ezért (például) $P(2x_2) > 1$.

Mivel $P \in C[2x_1, 2x_2]$, továbbá $P(2x_1) < 0$ és $P(2x_2) > 0$, ezért a Bolzanotételből következik, hogy $\exists \xi \in (2x_1, 2x_2)$, amelyre $P(\xi) = 0$. Ezzel a feladat első állítását bebizonyítottuk.

A polinom fokszámára tett paritási feltétel *lényeges*, mert például az $x^4 + 1$ $(x \in \mathbb{R})$ polinomnak nincs valós gyöke.

6. feladat. Tegyük fel, hogy az $f: \mathbb{R} \to \mathbb{R}$ függvény folytonos, $\lim_{x \to -\infty} f = +\infty$ és $\lim_{x \to +\infty} f = +\infty$. Mutassuk meg, hogy ekkor f-nek létezik abszolút minimuma.

Megoldás. A Weierstrass-tételt fogjuk alkalmazni.

Emlékeztető. Weierstrass tétele. Egy korlátos és zárt [a,b] intervallumon értelmezett $f:[a,b] \to \mathbb{R}$ folytonos függvénynek van abszolút minimuma és abszolút maximuma.

Jegyezzük meg, hogy a tétel mindegyik feltétele **lényeges**; bármelyiket is elhagyjuk, a tétel állítása nem marad igaz.

A feladat azt illusztrálja, hogy a fenti feltételek mellett más esetekben is biztosíthatók az abszolút szélsőértékek (mindkettő nem feltétlenül). \Box

Az f függvény értelmezési tartománya a $nem\ korlátos\ \mathbb{R}$ intervallum, ezért a Weierstrass-tétel közvetlenül nem alkalmazható.

(i) Először azt látjuk be, hogy <u>az f függvény alulról korlátos \mathbb{R} -en.</u>

Az f folytonosságát, valamint a $\lim_{-\infty} f = +\infty$ definícióját a P = 1 választással alkalmazva azt kapjuk, hogy $\exists x_1 < 0$ hely, hogy $\forall x \leq x_1$ pontban $f(x) \geq 1$.

A $\lim_{t\to\infty} f=+\infty$ definíció
ja szerint, a P=1 számhoz $\exists\,x_2>0$, hogy $\forall\,x\geq x_2$ eseté
n $f(x)\geq 1$. Így

$$f(x) \ge 1 \quad (x \in (-\infty, x_1] \cup [x_2, +\infty)).$$

Mivel f folytonos a korlátos ás zárt $[x_1, x_2]$ intervallumon, ezért itt alulról (felülről is) korlátos.

Megmutattuk tehát azt, hogy f alulról korlátos \mathbb{R} -en.

(ii) Legyen $m := \inf \mathcal{R}_f = \inf_{x \in \mathbb{R}} f(x)$. A fentiek szerint $-\infty < m$; az $m < +\infty$ pedig nyilvánvaló. Az (i)-ben követett gondolatmenetet a $P:=m+1\in\mathbb{R}$ számmal alkalmazva azt kapjuk, hogy $\exists u_1 < 0 \text{ és } u_2 > 0$, hogy

$$f(x) \ge m+1 \quad (x \in (-\infty, u_1] \cup [u_2, +\infty)).$$

Mivel $f \in C[u_1, u_2]$, ezért a Weierstrass-tétel szerint $\exists \alpha \in [u_1, u_2]$, hogy

$$f(\alpha) = \min_{x \in [u_1, u_2]} f(x) = m \le f(x) \quad (x \in [u_1, u_2]).$$

Így az $f(\alpha) \le f(x)$ egyenlőtlenség minden $x \in \mathbb{R}$ pontban igaz, ezért az f függvénynek α abszolút minimumhelye és $f(\alpha)$ az abszolút minimuma.

- 7. feladat. Bizonyítsuk be az exp függvény alábbi tulajdonságait:
 - (a) exp folytonos és $\uparrow \mathbb{R}$ -en,
 - (b) $\lim_{\stackrel{+}{\longrightarrow}} \exp = +\infty$ és $\lim_{\stackrel{-}{\longrightarrow}} \exp = 0$,
 - (c) $\mathcal{R}_{\exp} = (0, +\infty).$

Megoldás.

Emlékeztető. 1° Az exp függvényt így értelmeztük:

$$\exp(x) := e^x := \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad (x \in \mathbb{R}).$$

Arról is volt szó, hogy az $e := \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ képlettel definiált e szám valós kitevőjű hatványait miért célszerű az

$$e^x := \exp(x) \quad (x \in \mathbb{R})$$

módon definiálni.

2° Az exp függvény **függvényegyenlete**:

$$e^{x+y} = e^x \cdot e^y \quad (x, y \in \mathbb{R}).$$

 3° Mivel $1 = e^{0} = e^{x + (-x)} = e^{x} \cdot e^{-x}$, ezért

$$e^{-x} = \frac{1}{e^x} \quad (x \in \mathbb{R}).$$

 4^o Hax>0,akkor $e^x>1+x>1.$ \Box

(a) Folytonosság. A hatványsor összegfüggvényének határértékére, valamint a határérték és a folytonosság kapcsolatára vonatkozó tételek közvetlen következménye.

Monotonitás. Azt kell megmutatni, hogy minden $x_1, x_2 \in \mathbb{R}, x_1 < x_2$ esetén $e^{x_1} < e^{x_2}$. Mivel $x_2 - x_1 > 0$, ezért

$$e^{x_1} < e^{x_2} \iff 1 < \frac{e^{x_2}}{e^{x_1}} = e^{x_2 - x_1},$$

így a fenti 4º állítás alapján az exp függvény valóban szigorúan monoton növekedő \mathbb{R} -en.

(b)
$$\lim_{+\infty} \exp = +\infty$$
. Mivel $x \ge 0$ esetén

(b)
$$\limsup_{\substack{+\infty \\ +\infty}} = +\infty$$
. Mivel $x \ge 0$ esetén
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \ge x$$

és
$$\lim_{x\to +\infty} x = +\infty$$
, ezért $\lim_{x\to +\infty} e^x = +\infty$.

$$\lim_{\infty} \exp = 0$$
, mert

$$\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} \frac{1}{e^{-x}} = \lim_{y \to +\infty} \frac{1}{e^y} = \frac{1}{+\infty} = 0.$$

(c)
$$\mathcal{R}_{\exp} = (0, +\infty)$$
.

Mivel az exp függvény szigorúan monoton növekedő R-en, ezért

$$\inf \mathcal{R}_{\exp} = \lim_{-\infty} \exp = 0$$
 és $\sup \mathcal{R}_{\exp} = \lim_{+\infty} \exp = +\infty$,

következésképpen $\mathcal{R}_{\exp} \subset (0, +\infty)$.

Fordítva: Ha $y \in (\inf \mathcal{R}_{exp}, \sup \mathcal{R}_{exp}) = (0, +\infty)$ tetszőleges, akkor az infimum, illetve a szuprémum definíciójából következik, hogy

$$\exists x_0 < x_1 \in \mathcal{D}_{exp} = \mathbb{R}, \quad hogy \quad f(x_0) < y < f(x_1).$$

Az exp függvény folytonos, ezért a Bolzano-Darboux-tétel szerint $\exists \xi \in [x_0, x_1]$, hogy $f(\xi) = y$, tehát $y \in \mathcal{R}_{exp}$, így $(0, +\infty) \subset \mathcal{R}_{exp}$ is teljesül. Ezzel a (c) állítást bebizonyítottuk.

Megjegyzés. A fentiek alapján az exp függvény grafikonját pontosan még nem ismerjük. Gondoljuk meg ugyanis, hogy a függvénygrafikon tartalmazhat "hullámokat". A konvexitás tárgyalása során fogjuk megmutatni, hogy ez nem lehetséges.