Assignment 4 - Q5

Rishabh Shah, Shriram SB, Anmol Mishra CS663

October 15, 2018

Exercise 5. Consider a set of N vectors $X = \{x_1, x_2, ..., x_N\}$ each in R^d with average vector \bar{x} . We have seen in class that the direction e such that $\sum_{i=1}^{N} ||x_i - \bar{x} - (e.(x_i - \bar{x}))e||^2$ is minimized, is obtained by maximizing $e^T C e$, where C is the covariance matrix of the vectors in X. This vector e is the eigenvector of matrix C with the highest eigenvalue. Prove that the direction f perpendicular to e for which $f^T C f$ is maximized, is the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues of C are distinct and that rank(C) > 2.

Proof. We try to minimize the error of approximation J:

$$\begin{split} J\left(e_{2}\right) &= \sum_{i=1}^{N} ||(x_{i} - \bar{x}) - (e_{1}.(x_{i} - \bar{x}))e_{1} - (e_{2}.(x_{i} - \bar{x}))e_{2}||^{2} \\ &= \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} + \sum_{i=1}^{N} ||a_{i}e_{1}||^{2} + \sum_{i=1}^{N} ||b_{i}e_{2}||^{2} - 2\sum_{i=1}^{N} a_{i}e_{1}^{T}(x_{i} - \bar{x}) - 2\sum_{i=1}^{N} b_{i}e_{2}^{T}(x_{i} - \bar{x}) \\ &= \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} + \sum_{i=1}^{N} a_{i}^{2} + \sum_{i=1}^{N} b_{i}^{2} - 2\sum_{i=1}^{N} a_{i}^{2} - 2\sum_{i=1}^{N} b_{i}^{2} \\ &= \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} - \sum_{i=1}^{N} a_{i}^{2} - \sum_{i=1}^{N} b_{i}^{2} \\ &= -\sum_{i=1}^{N} (e_{2}(x_{i} - \bar{x}))^{2} + \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} - \sum_{i=1}^{N} a_{i}^{2} \\ &= -\sum_{i=1}^{N} (e_{2}^{T}(x_{i} - \bar{x})^{T}(x_{i} - \bar{x})e_{2}) + \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} - \sum_{i=1}^{N} a_{i}^{2} \\ &= -e_{2}^{T} S e_{2} + \sum_{i=1}^{N} ||(x_{i} - \bar{x})||^{2} - \sum_{i=1}^{N} a_{i}^{2} \end{split}$$

Minimizing J with respect to e_2 is equivalent to maximizing $e_2^T S e_2$. We use the method of Lagrange Multipliers with the constraints, $e_2^T e_2 = 1$ and $e_2^T e_1 = 0$.

$$\tilde{J}(e_2) = e_2^T S e_2 - \lambda (e_2^T e_2 - 1) - \gamma (e_2^T e_1)$$

Taking derivative of \tilde{J} w.r.t e_2 and setting it to 0, we get $Se_2 - \lambda e_2 - \gamma e_1 = 0$

Since e_2 is a vector in the space perpendicular to e_1 , it can be expressed as $e_2 = \sum_{i=2}^{N} \mu_i v_i$ where v_i are the eigenvectors of S.

$$\sum_{i=2}^{N} \mu_{i} S v_{i} - \lambda e_{2} - \gamma e_{1} = 0$$
$$\sum_{i=2}^{N} \mu_{i} \lambda_{i} v_{i} - \lambda e_{2} - \gamma e_{1} = 0$$

Multiplying with e_1^T , we get $\gamma e_1^T e_1 = 0$.(Since $v_i^T v_j = 0 \ \forall i \neq j$) Since e_1 is not zero vector, γ is zero.

Thus, $Se_2 = \lambda e_2$, so e_2 is an eigenvector of S.

As, $e_2^T S e_2 = \lambda$ and we wish to maximize $e_2^T S e_2$ under the constraint $e_2^T e_1 = 0$, we would choose e_2 to be the eigenvector corresponding to $\mu_2 = 1$ and $\mu_i = 0 \forall i \neq 2$. Thus, e_2 is the eigenvector corresponding to the second largest eigenvalue of S. Hence proved.