A Crash Course on Data Compression

2. Integer Codes

Giulio Ermanno Pibiri

ISTI-CNR, giulio.ermanno.pibiri@isti.cnr.it

@giulio_pibiri

@jermp

Overview

- Binary and Unary
- Gamma and Delta
- Golomb-Rice
- Exponential Golomb
- Fibonacci
- Variable-Byte
- Effectiveness, Information content, Entropy, Kraft-McMillan inequality

The Static Integer Coding Problem

- Problem. We are given an integer x > 0, and we have to design an algorithm a code that represents x in as few as possible bits.
- Codeword. The bit-string representing x according to the chosen code is called the *codeword* of x, and indicated with C(x).
- A message $L = [x_1, ..., x_n]$ consisting of n integers will be coded as the concatenation of the codewords assigned to $x_1, ..., x_n$, i.e., $C(x_1) \cdots C(x_n)$.
- Static codes. The codes we study in this module are called *static* because they always assign the same codeword C(x) to the integer x, regardless the message L to be coded.

Binary

- Binary string of fixed length. We indicate with bin(x, k) the representation of $0 \le x < 2^k$ using k bits. If we just write bin(x), we assume k is equal to $\lceil \log_2(x+1) \rceil$ which is the minimum number of bits necessary to represent x.
- Binary codewords. Since we assume x > 0, we say that B(x) = bin(x-1) is the codeword assigned to x by the binary code.
- Lower bound. The size of any codeword C(x), for x > 0, is: $|C(x)| > \lceil \log_2(x) \rceil = |bin(x-1)| = |B(x)|$.

x	B(x)
1	0
2	1
3	10
4	11
5	100
6	101
7	110
8	111

A First Attempt

• Idea. Since |C(x)| > |B(x)| for any code C, given a message $L = [x_1, ..., x_n]$, let's encode L as $B(x_1) \cdots B(x_n)$.

Example. $L = [3,5,2,6,12,8] \rightarrow 10.100.1.101.101.111$

x	B(x)
1	0
2	1
3	10
4	11
5	100
6	101
7	110
8	111

A First Attempt

- Idea. Since |C(x)| > |B(x)| for any code C, given a message $L = [x_1, ..., x_n]$, let's encode L as $B(x_1) \cdots B(x_n)$.
 - Example. $L = [3,5,2,6,12,8] \rightarrow 10.100.1.101.101.111$
- Ok, now that we have the message coded as 1010011011011111, we want to decode it get L = [3,5,2,6,12,8] back.
- **Q.** How?

x	B(x)
1	0
2	1
3	10
4	11
5	100
6	101
7	110
8	111

A First Attempt (Failed)

- Idea. Since |C(x)| > |B(x)| for any code C, given a message $L = [x_1, ..., x_n]$, let's encode L as $B(x_1) \cdots B(x_n)$.
 - Example. $L = [3,5,2,6,12,8] \rightarrow 10.100.1.101.101.111$
- Ok, now that we have the message coded as 1010011011011111, we want to decode it get L=[3,5,2,6,12,8] back.
- **Q.** How?
 - A. Many possibly ways of decoding the message! Our code is *ambiguous*.

X	B(x)
1	0
2	1
3	10
4	11
5	100
6	101
7	110
8	111

Unique Decodability

- Fact. If no codeword is *prefix* of another one, we can decode without ambiguity.
- Prefix-free code. A code C is said to be prefix-free when: there are no C(x) and C(y), with $C(y) \ge C(x)$, for which C(x) = C(y)[0:|C(x)|-1].
- We are only interested in prefix-free codes.

\boldsymbol{x}	B(x)
1	0
2	1
3	10
4	11
5	100
6	10 1
7	110
8	111

The binary code is not prefix-free.

C(x)
00
01
100
101
1100
1101
11100
11101

An example prefix-free code.

Unary

- Represent x>0 as $U(x)=1^{x-1}0$, i.e., a run of (x-1) 1s plus a final 0. Therefore, |U(x)|=x.
- Trivially and uniquely decodable.

x	U(x)
1	0
2	10
3	110
4	1110
5	11110
6	111110
7	1111110
8	11111110

Unary

- Represent x > 0 as $U(x) = 1^{x-1}0$, i.e., a run of (x-1) 1s plus a final 0. Therefore, |U(x)| = x.
- Trivially and uniquely decodable.
- The code is only good for (very) small integers.

```
    x
    U(x)

    1
    0

    2
    10

    3
    110

    4
    1110

    5
    11110

    6
    111110

    7
    1111110

    8
    11111110
```

Gamma and Delta

Elias, 1975

- Gamma. Write b = |bin(x)| using Unary, followed by the b-1 least significant bits of bin(x). We have $|\gamma(x)| = 2|bin(x)| 1$ bits, roughly a factor of 2 away from the optimum.
- Q. Why the b-1 least significant bits of x and not b?

 A. Because the integers that have a minimum binary length of b bits are those in the range $[2^{b-1}, 2^b 1]$ for which the most significant bit is always 1, so it is redundant.
- Delta. Replace the Unary part of Gamma, U(b), with $\gamma(b)$ because U(b) can be very large for big integers. We have $|\delta(x)| = |\gamma(|bin(x)|)| + |bin(x)| 1$ bits, roughly a factor of (1 + o(1)) away from the optimum.

x	$\gamma(x)$	$\delta(x)$
1	0.	0.
2	10.0	100.0
3	10.1	100.1
4	110.00	101.00
5	110.01	101.01
6	110.10	101.10
7	110.11	101.11
8	1110.000	11000.000

Minimal Binary

- Suppose we have to assign binary codewords to all the integers $x \in [0,b)$ where $b \le 2^c$, for some $c \ge 0$. (We can assume $c = \lceil \log_2 b \rceil$.)
- Then $2^c b$ codewords can be made 1 bit shorter without losing unique decodability, using the following "remapping" trick.
- If $x < 2^c b$, then assign codeword bin(x, c 1). Otherwise, assign codeword $bin(x + 2^c - b, c)$.
- Decoding is simple. Always read c-1 bits as the quantity x: if $x < 2^c b$, then return x; otherwise fetch another bit y and return $x' = ((x \ll 1) | y) (2^c b)$.

Golomb-Rice

Golomb, 1966 — Rice, 1971

- The Golomb code makes use of an integer parameter b > 1.
- $G_b(x)$ consists in coding the quotient $q = \lfloor (x-1)/b \rfloor$ and the reminder $r = x q \cdot b 1$.
- The quantity q+1 is coded in Unary; r is coded as $bin(r, \lceil \log_2 b \rceil)$. (Or in Minimal Binary in the interval $\lceil 0,b \rceil$.)
- The Rice code is a Golomb code for which $b = 2^k$ for some k > 0. (Better decoding speed when b is a power of 2.)

x	$G_2(x)$
1	0.0
2	0.1
3	10.0
4	10.1
5	110.0
6	110.1
7	1110.0
8	1110.1

Exponential Golomb

Teuhola, 1978

Define a vector of "buckets":

$$B = \left[0, 2^k, \sum_{i=0}^{1} 2^{k+i}, \sum_{i=0}^{2} 2^{k+i}, \sum_{i=0}^{3} 2^{k+i}, \ldots\right], \text{ for some } k \ge 0.$$

- Encode an integer *x* as the index of bucket where it belongs to, plus an offset relative to the bucket.
- The index is an integer $h \ge 1$ such that $B[h] < x \le B[h+1]$ and is coded in Unary, whereas the offset is the quantity x B[h] 1 and coded as $bin(x B[h] 1, \log_2(B[h+1] B[h]))$.

x	$G_2(x)$	$ExpG_2(x)$
1	0.0	0.00
2	0.1	0.01
3	10.0	0.10
4	10.1	0.11
5	110.0	10.000
6	110.1	10.001
7	1110.0	10.010
8	1110.1	10.011

Fibonacci

Fraenkel and Klein, 1985 — Apostolico and Fraenkel, 1987

- Zeckendorf's Theorem. Every positive integer can be represented as the sum of some, non consecutive, Fibonacci numbers.
- Let $F_i=F_{i-1}+F_{i-2}$ be the i-th Fibonacci number for i>2, with $F_1=1$ and $F_2=2$.
- We logically define a vector $F = [F_1, F_2, F_3, \ldots] = [1, 2, 3, 5, 8, 13, \ldots].$
- If $x=F[i_1]+F[i_2]+\cdots+F[i_n]$, with $i_1< i_2<\cdots< i_n$, then the codeword for x is (i_n+1) -bit long and is:

$$0.010.010.011$$
 i_1
 i_2
 i_n

x	F(:	x)				
1	1	1				
2	0	1	1			
3	0	0	1	1		
4	1	0	1	1		
5	0	0	0	1	1	
6	1	0	0	1	1	
7	0	1	0	1	1	
8	0	0	0	0	1	1
F_i	1	2	3	5	8	13

Variable-Byte

Thiel and Heaps, 1972

- General idea. Codewords are byte-aligned rather than bit-aligned.
- Byte-aligned codewords are useful property in practice because the computer memory is allocated in chunks of bytes, not bits. Thus, working with byte-aligned codewords favours implementation simplicity and decoding speed (e.g., Single-Instruction-Multiple-Data, SIMD) — instead of compression effectiveness.
- In Variable-Byte, the binary representation of x is split in a suitable number of bytes: for each byte, 7 bits are allocated for the representation of x itself (data bits), and 1 bit (the control bit) is used to signal continuation/end of the stream of bytes.
- Variable-Byte is only effective for large integers.
- A simple variant using 4-bit payloads (3 data bits, 1 control bit) is called *nibble* coding.

```
Example for x = 67822, bin(67822,17) = 10000100011101110.
```

- (1) 100. 0010001. 1101110
- $(2) \times \times \times \times \times 100.\times 0010001.\times 1101110$
- (3) **0**0000100.**1**0010001.**1**1101110

Effectiveness

Legend.

- B: binary code (lower bound)
- γ , δ : Gamma and Delta codes
- R_1 : Rice code with k=1
- Z_2 : Zeta code (a variation of the Exponential Golomb code) with parameter k=2
- F: Fibonacci-based codes
- V: Variable-Byte

Q. Which code should I use?

Information Content

- Intuition. The effectiveness of a code depends on how the integers are distributed in the message L to be coded.
- Therefore, we are interested in knowing or, at least, estimating P(x), the probability of occurrence of x in L.

Example 1: If the probability of small integers is very high, then the unary code is good. For example, P(1) = 0.9, P(2) = 0.08, and P(x > 2) = 1 - 0.9 - 0.09 = 0.01.

Example 2: if $P(x) \approx 1/2^k \ \forall x$, for some k, then bin(x, k) is optimal.

Information Content

- Intuition. If P(x) is high, then x is very frequent in L, and it should receive a short codeword C(x) this is the so-called "golden rule" of data compression.
- So it appears that the *information content* of x is related to the its probability P(x).
- Information content. The *information content* I(x), or *self-information*, of x is defined as $\log_2(1/P(x))$ and is measured in bits.
 - The higher P(x), the lower the information content of x and vice versa.

Entropy Shannon, 1949

- Given that the symbol x has information content I(x), an optimal code T should assign a codeword C(x) such that $|C(x)| = I(x) = \log_2(1/P(x))$ bits.
- Entropy. Therefore, we can say that:

$$H(P) = \sum_{x} P(x)I(x) = \sum_{x} P(x)\log_{2}\left(\frac{1}{P(x)}\right)$$
 bits

is the expected codeword length for an optimal code T according to the distribution P.

Shannon called this quantity the *entropy of the distribution* P and it gives us a *lower bound* on the number of bits required by C(x) for any code T.

Entropy — Example

- Entropy. $H(P) = \sum_{x} P(x) \log_2(1/P(x))$ bits.
- Given a message L[1..n], then P(x) can be estimated as w(x)/n where w(x) is the number of occurrences (the *weight*) of x in L. $(P(x) \approx w(x)/n)$ is sometimes called the *self-probability* of x).
- Example for L[1..16] = [1,3,1,1,1,5,2,1,7,3,1,2,1,1,1,1]. We have $P(1) \approx 10/16$, $P(2) = P(3) \approx 2/16$, and $P(5) = P(7) \approx 1/16$. Then $H(P) = 2 \cdot 1/16 \cdot \log_2(16) + 2 \cdot 2/16 \cdot \log_2(16/2) + 10/16 \cdot \log_2(16/10) \approx 1.674$ bits. The whole message L requires, at least, $16 \cdot 1.674 = 26.784$ bits.
- In this case, the cost of the coded message is: $10 \cdot |C(0)| + 2 \cdot |C(2)| + 2 \cdot |C(3)| |C(5)| + |C(7)| = 10 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + 4 + 4 = 28$ bits, and the average codeword length is 28/16 = 1.75 bits.
- It turns out the this code is optimal.

X	C(x)
1	0
2	10
3	110
5	1110
7	1111

Prefix-free codewords

Distributions

• Since it must be $|C(x)| = I(x) = \log_2(1/P(x))$ for a code to be optimal, we can invert the relation to find the distribution P(x) for which the code is optimal, as $P(x) = 2^{-|C(x)|}$.

```
Some examples. Unary: P(x) = 1/2^x Binary: P(x) = 1/U, if each x is less than U and coded in \lceil \log_2 U \rceil bits Gamma: P(x) \approx 1/(2x^2) Delta: P(x) \approx 1/(2x(\log_2 x)^2) Fibonacci: P(x) = 1/(2x^{1/\log_2 \phi}) \approx 1/(2x^{1.44}), where \phi = (1 + \sqrt{5})/2 is the so-called golden ratio Variable-Byte: P(x) \approx \sqrt[7]{1/x^8}
```

Zero- and Minimum-Redundancy Code

- **Zero-redundancy code.** If a code assigns codeword C(x) such that |C(x)| = I(x) bits for all x, then the code is optimal (in Shannon's sense) and is said to be a *zero-redundancy* code.
- But almost never I(x) is not a whole number...

In the previous example for L=[1,3,1,1,1,5,2,1,7,3,1,2,1,1,1,1], we had $\log_2(16/10)=0.678$, but we cannot assign a codeword that is shorter than 1 bit!

• Minimum-redundancy code. Therefore, while zero-redundancy codes are impossible to achieve, we can compute a *minimum-redundancy* code that tries to minimise the overhead compared to the zero-redundancy code.

(More about this in Module 4.)

Kraft-McMillan Inequality

Kraft, 1949 — McMillan, 1956

- Q. How short can codewords be so that the code can be prefix-free, thus, uniquely-decodable?
- We require every codeword length to be a whole number.
- If $P(x_i) = 1/2^{k_i}$ for some integer $k_i \ge 0$, then $I(x_i) = k_i$ is a whole number and is the codeword length of x_i , $|C(x_i)|$.
- Since *P* is a distribution, it must hold:

$$\sum_{x_i} P(x_i) = \sum_{x_i} 2^{-k_i} = 1.$$

• Kraft noted that in such situations, it is possible to find a *prefix-free* code with codeword lengths equal to k_i .

X	C(x)
1	0
2	10
3	110
5	1110
7	1111

For this example, the sum is $1/2 + 1/4 + 1/8 + 2 \cdot 1/16 = 1$.

Kraft-McMillan Inequality

Kraft, 1949 — McMillan, 1956

Kraft-McMillan inequality. Then it can be derived that

$$K = \sum_{x_i} P(x_i) = \sum_{x_i} 2^{-|C(x_i)|} \le 1$$

must hold for the prefix-free code to exist. In other words, we say that $|C(x_i)|$ is a valid assignment of codeword lengths.

- **1.** K < 1: the code is valid but *not* optimal (at least one codeword can be shortened);
- **2.** K=1: the code is valid and optimal (no codeword can be shortened);
- **3.** K > 1: the code is invalid (at least one codeword is shorter than what it should be).
- McMillan further observed that all is needed to specify a code is a set of codeword lengths: after provision is made for a set of codeword lengths satisfying the Kraft-McMillan inequality, then it is easy to assign prefix-free codewords and the specific codewords are *irrelevant*. (More about this in Module 4.)
- However, some assignments should be preferred over others to allow better encoding/decoding speed.

X	C(x)
1	0
2	10
3	110
5	1110
7	1111

Prefix-free and *lexicographic* codewords

X	C(x)
1	1
2	00
3	011
5	0101
7	0100

Other prefix-free but *non-lexicographic* codewords

Further Readings

- Section 2 of:
 G. E. P. and Rossano Venturini. 2020. *Techniques for Inverted Index Compression*. ACM Computing Surveys. 53, 6, Article 125 (November 2021), 36 pages. https://doi.org/10.1145/3415148
- Section 2.1-2.2 and Chapter 3 of:
 Alistair Moffat and Andrew Turpin. 2002. Compression and coding algorithms.

 Springer Science & Business Media, ISBN 978-1-4615-0935-6.
- Sections 1.1-1.5, 2.4, 2.19, 2.22, 2.23 of: David Salomon. 2007. *Variable-Length Codes for Data Compression*. Springer Science & Business Media, ISBN 978-1-84628-959-0.
- Sections 2.1-2.2-2.3 of: Gonzalo Navarro. 2016. Compact Data Structures. Cambridge University Press, ISBN 978-1-107-15238-0.