요약

- 제안한 것들
 - disentangled multi-scale aggregation scheme (MS)
 - 기존 논문들은 convolution에 사용할 hop이 커질수록 물리적으로 더 멀리 떨어진 joint와 convolution이 가능하나, 사용하는 normalize function+aggregation 특성상 먼 joint보다 가까운 joint에 대해서 가중치를 높게하는 biased weighting problem 존재
 - 그런 문제가 있음에도 먼 joint의 정보를 사용하는데 모델 성능이 향상되었으니 더 가중치를 높혀주자
 - unified spatial-temporal graph convolution (G3D)
 - 모션 데이터를 시간축/공간축으로 분해해서 모델이 연산하는데 일괄적으로 계산하도록 graph convolution에 사용할 adjacency matrix를 인접 프레임의 인접성도 포함시키자
 - 위 두개를 합친 MS-G3D 기반의 모델 제안
- 그림 1)
 - a): 기존논문에서는공간축연산(빨간선) 후 시간축연산(파란선)하는 방식
 - o (b): G3D를 사용해서 시공간 연산을 동시에하기
 - (c): G3D와 MS를 섞어서 거리가 달라도
 동일한 가중치의 adjacency matrix제공

Figure 1: (a) Factorized spatial and temporal modeling on skeleton graph sequences causes *indirect* information flow. (b) In this work, we propose to capture cross-spacetime correlations with *unified* spatial-temporal graph convolutions. (c) Disentangling node features at separate spatial-temporal neighborhoods (yellow, blue, red at different distances, partially colored for clarity) is pivotal for effective multi-scale learning in the spatial-temporal domain.

Disentangled aggregation (multi-scale)

- 기존 논문들은 convolution에 사용할 hop이 커질수록 물리적으로 더 멀리 떨어진 joint와 convolution이 가능하나, 사용하는 normalize function+aggregation 특성상 먼 joint보다 가까운 joint에 대해서 가중치를 높게하는 biased weighting problem 존재 => 그림 (2) 윗줄 + 식 (2)
- 식 (2) : 기존 논문의 GCN. spatial partitioning(부모,자신,자식 joint별로 다른 label) 사용
- 식 (2)의 adjacency matrix는 다양한 normalize 기법(Laplacian, random-walk, 등) 으로 weighted feature average

- 이때 k-hop 보다 짧은 거리를 가진 joint는 먼 거리를 가진 joint 보다 여러 adjacency matrix에서 인접함이 표현되어
- 실질적으로 가까운 joint에 더 가중치가 높아지는 문제가 발생
 - 본 논문은 동일한 가중치를 주기 위해 k거리만큼 떨어진 joint에 대해서만 인접함을 표현
- => 그림 (2) 아랫줄 + 식(3)
- 같은 distance에 대해 같은 label을 적용 (distance partitioning과 유사함)
 - 최종적으로 GCN에서 기존논문의 식(2)을 식(4)로 변경
- $[\tilde{\mathbf{A}}_{(k)}]_{i,j} = \begin{cases} 1 & \text{if } d(v_i, v_j) = k, \\ 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$ (3)
- $\mathbf{X}_{t}^{(l+1)} = \sigma \left(\sum_{k=0}^{K} \tilde{\mathbf{D}}_{(k)}^{-\frac{1}{2}} \tilde{\mathbf{A}}_{(k)} \tilde{\mathbf{D}}_{(k)}^{-\frac{1}{2}} \mathbf{X}_{t}^{(l)} \Theta_{(k)}^{(l)} \right), \quad (4)$

Laplacian $\hat{\mathbf{A}} = \mathbf{L}^{\text{norm}} = \mathbf{I} - \mathbf{D}^{\frac{1}{2}} \mathbf{A} \mathbf{D}^{\frac{1}{2}};$ makes long-range modeling less effective, especially when multiple scales are aggregated. Bottom left: our proposed disentangled random-walk normalized adjacency $\hat{\mathbf{A}} = \mathbf{D}^{-1}\mathbf{A}$ aggregation models joint relationships at each neighborhood while keeping identity features. Right: Visualizing the corresponding generally $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}$ adjacency matrices. Node self-loops are omitted for visual clarity.

proposed disentangled aggregation scheme. Darker color indicates higher weighting to the central node (red). Top left: closer nodes receive higher weighting from adjacency powering, which

Unified Spatial-Temporal Modeling (G3D)

- 모션 데이터를 시간축/공간축으로 분해해서 모델이 연산하는데 일괄적으로 계산하도록 graph convolution에 사용할 adjacency matrix를 인접 프레임의 인접성도 포함시키자
- **Cross-Spacetime Skip Connections**
 - 본 논문은 공간축 GCN연산에 사용할 adjacency matrix에 시간축에 대한 정보를 끼워넣기 위해서 시간축에 대한 윈도우 사이즈 t(타우) 만큼 adjacency matrix를 붙여서 사용 => 식 (5)
 - 직관적으로 프레임에 따라 물리적인 연결이 변화하지 않으니 각 부분행렬(A~)은 동일한 값을 가짐 부분행렬이 타우x타우로 배치되어 마치 시간축에 대해서 1-hop spatial neighbor로 여겨짐
 - ex) 3개의 joint에서 1번 joint와 2번 joint가 연결되있는 인접행렬에 타우를 2로 설정할 경우 아래 그림과같음
 - 식(5)의 adjacency matrix를 활용하여 기존논문의 GCN을 식(6)으로 변경
- **Dilated Windows**
 - 멀리 떨어진 frame과의 인접성을 표현하기 위해서 dilation rate d를 추가
- Multi-Scale G3D
 - 이전의 disentangled aggregation과 G3D를 합치기 => 식 (7)

Mult-Scale의 인접행렬을 부분행렬로 하여 G3D의 인접행렬로써 연산

$$egin{align} egin{bmatrix} ilde{\mathbf{A}} & \cdots & ilde{\mathbf{A}} \end{bmatrix} & \mathbf{A} & \mathbf$$

$$[\mathbf{X}_{(\tau)}^{(l+1)}]_{t} = \sigma \left(\sum_{k=0}^{K} \tilde{\mathbf{D}}_{(\tau,k)}^{-\frac{1}{2}} \tilde{\mathbf{A}}_{(\tau,k)} \tilde{\mathbf{D}}_{(\tau,k)}^{-\frac{1}{2}} [\mathbf{X}_{(\tau)}^{(l)}]_{t} \Theta_{(k)}^{(l)} \right), \quad (7)$$

모델 구현

- 그림 3) 모델 구조.
 - (a) : STGC block (b)를 활용한 전체 모델 구조
 - 논문은 r=3, 블록별 feature size={96,192,384}를 사용
 - 첫 STGC 블록을 제외한 STGC 블록에서는 MS-G3D 내의 Sliding Temporal Window 블록에서 stride=2를 사용
 - o (b): 본논문이 제안한 기법 기반의 STGC block
 - 점선표시는 모델 사이즈 여유에 따라 다른 타우 t.d를 사용하는 MS-G3D를 추가해서 동시에 다양한 시-공간 학습을 유도
 - G3D는 인접행렬 사이즈가 타우 t에 따라 비약적으로 커져서 hop size k를 키우기 힘듦 => 지역적인 학습만 이뤄짐
 - 큰 k를 쓰기 위해서 공간축/시간축을 순차적으로 연산하는 GCN+TCN 블록을 추가
 - (c) : 시간축에 대해서도 multi-scale적용(dilation을 달리하여 Conv) + 학습이 용이하게 Residual connection추가
 - o (e): 기존 논문들이 Adjacency matrix는 학습되도록하는게성능향상됨을 증명했으니 인접행렬별로 learnable adjacency matrix를 추가

Figure 3: (Match components with colors) **Architecture Overview**. "TCN", "GCN", prefix "MS-", and suffix "-D" denotes temporal and graph convolutional blocks, and multi-scale and disentangled aggregation, respectively (Section 3.2). Each of the r STGC blocks (b) deploys a multi-pathway design to capture long-range and regional spatial-temporal dependencies simultaneously. **Dotted modules**, including extra G3D pathway, 1×1 conv, and strided temporal convolutions, are situational for model performance/complexity trade-off.

*************************************		Methods	Number of Scales			
NTU RGB+D 60 dataset으로 ablation study 진행	실험 결과	Wictious	K = 1	K = 4	K = 8	
No. No. Proposition State Sta						
대는 기 이전 논문들의 normalized adjacency matrix를 사용 -E : 이전 논문들의 normalized adjacency matrix를 사용 -D : 본 논문의 disentangled aggregation 사용 Mask : learnable adjacency matrix 주가 GCN / G3D : STGC block의 GCN/G3D 블록의 개별적인 학습 및 정확도 확인 G3D의 타 우는 5로 설정 ■ Mask를 주가랑으로써 predefined adjacency matrix에서 조절하는게 중요항을 보여하는 당한 설정 ■ 인반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는 GCN K=12, G3D K=5로 결점적으로 설정 ■ 보고 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출 : 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 항라 (Sac) 등 With MS-G3D (T = 3, d = 1) 2.7M 86.0 Baseline + MS-TCN = 교체 with MS-G3D (T = 3, d = 1) 2.7M 89.0 with MS-G3D (T = 3, d = 1) 2.7M 89.0 with MS-G3D (T = 3, d = 2) 2.7M 89.1 with MS-G3D (T = 5, d = 1) 3.2M 89.2 with MS-G3D (T = 5, d = 1) 3.2M 89.2 with MS-G3D (T = 5, d = 2) 3.2M 89.2 with MS-G3D (T = 5, d = 2) 3.2M 89.2 with MS-G3D (T = 5, d = 1) 3.2M 89.0 with MS-G3D (T = 5, d = 2) 3.2M 89.2 with MS-G3D (T = 5, d = 1) 3.2M 89.0 with MS-G3D (T = 5, d = 2) 3.2M 89.2 with MS-G3D (T = 5, d = 2) 3.2M 89.2 with MS-G3D (T = 5, d = 1) 3.2M 89.0 with MS-G3D (T = 5, d = 2) 3.2M 89.3 matrix (D Grid-like + dense self-edges 2.7M 88.7 (2) Grid-like + dense self-edges 2.7M 89.1 (2) Unite talmately added accuracy with various settings. MS-GCN and	● NTU RGB+D 60 dataset으로 ablation study 진행			0.0000000000000000000000000000000000000		
- E: 이전 논문들의 normalized adjacency matrix를 사용 - D: 본 눈문의 disentangled aggregation 사용 Mask: learnable adjacency matrix 주가 GCN / G3D : STGC block의 GCN/G3D 블록의개별적인학습 및정확도확인 G3D의 타우는 5로 설정 ■ Mask를 추가함으로써 predefined adjacency matrix에서 조절하는게 중요함을 보여됨 ● 한번으로 GCN이 (G3D 보다 K값이 클래 성능이 좋아서 이후 학습에서는 일반적으로 GCN이 (G3D 보다 K값이 클래 성능이 좋아서 이후 학습에서는 일반적으로 GCN이 (G3D 보다 K값이 클래 성능이 좋아서 이후 학습에서는 요한 문항보여 등 (GN K=12, G3D K=5로 경험적으로 설정 ■ 표 2) 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 성과 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 성공자 문항 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 성공자 문항 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 성공자 문항 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 원기 및 전출: 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 원기 및 전화적 보이는 1 및	○ 표 1) K-hop에 따른 기법별 개별 정확도 실험 => STGC Block내에 GCN/G3D의 적절한 K찾기					
-D : 본 논문의 disentangled aggregation 사용 Mask : learnable adjacency matrix 추가 GCN / G3D : STGC block의 GCN/G3D 블록의 개별적인학습 및 정확도확인 G3D-B + Mask	, ,	DESCRIPTION OF PERSONS ASSESSED.	AND DESCRIPTION OF THE PERSON	200000	18/3/10/00/0	17.77.77.7
Mask : learnable adjacency matrix 추가 GCN / G3D : STGC block의 GCN/G3D 블록의 개별적인 학습 및 정확도 확인 G3D으 다는 15로 설정 Mask를 추가함으로써 predefined adjacency matrix에서 조절하는게 중요 항을 보여 등을 반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는 GCN K=12, G3D K=5로 경험적으로 설정 표 2) 2s-AGCN에서 joint stream-AGCN 모델 / AGCN의 TCN => MS-TCN로 교체						
GCN / G3D : STGC block의 GCN/G3D 블록의개별적인확습 및정확도확인 G3D의 타우는 5로 설정 ■ Mask를 주가함으로써 predefined adjacency matrix에서 조절하는게 중요항을 보여동 및반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는 GCN K=12, G3D K=5로 경험적으로설정 ■ 보고) 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기을 제공하는 기술을 기준 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기을 제공하는 본문의 STGC block 중 MS-GCN 만 사용하기 MS-GCN을 더길게/넓게 하기 / 동일 모델 병렬로 배치하여 성능개선이 됨을 보여 첫째줄 : 본 논문의 STGC block 중 MS-GCN 만 사용하기 MS-GCN을 더길게/넓게 하기 / 동일 모델 병렬로 배치하여 성능개선이 됨을 보여 첫째줄 : MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 낮아에즈가다른 모델과 비슷하도록 feature size 조절 ■ 됐						
S3D의 타우는 5로 설정						
■ Mask를 추가함으로써 predefined adjacency matrix에서 조절하는게 중요함을 보여동 ■ 일반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는 GCN K=12, G3D K=5로 경험적으로 설정 ■ 표 2) 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출: 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 첫출: 기존 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기 ■ 동패줄: 본 논문의 STGC block 중 MS-GCN 만 사용하기 MS-GCN을 더깊게/넓게 하기 / 동일 모델 병렬로 배치하여 성능개선이 됨을 보임 ■ 셋째줄: MS-GCN + MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 셋째줄: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 셋째줄: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 셋째줄: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 정확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 장확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 장확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 장확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 장확도 변화 ■ 선택을: MS-GCN + 2x MS-G3D 구성에 모델파라미터 별 장확도 변화 ■ 선택을: MS-GSD + 3, d = 1) 2.7M 89.0 with MS-G3D (r = 3, d = 1) 2.7M 89.1 with MS-G3D (r = 3, d = 2) 2.7M 89.1 with MS-G3D (r = 5, d = 1) 3.2M 89.2 with MS-G3D (r = 5, d = 1) 3.2M 89.2 with MS-G3D Pathways 7 = (3, 3), d = (1, 2) with 2 MS-G3D Pathways 7 = (3, 3), d = (1, 2) with 2 MS-G3D Pathways 7 = (3, 5), d = (1, 1) 7 3.0M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39.4 7 3.2M 89.4 7 = (3, 5), d = (1, 1) 7 3.0H 39						
일반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는 GCN K=12, G3D K=5로 경험적으로 설정						
## 1 일반적으로 GCNN G3D RE12, G3D KE5로 경험적으로 설정 G3D의 모델파라미터찾기 등 2 29 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터찾기 등 2 32 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2						
SON NHAI, GSD Ne3도 3F3 - 1 - 1 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	■ 일반적으로 GCN이 G3D보다 K값이 클때 성능이 좋아서 이후 학습에서는			CIVOSD		2. 2.
### Age	GCN K=12, G3D K=5로 경험적으로 설정					
■	○ 표 2) 2s-AGCN에서 joint stream과 성능 비교 및 적절한 G3D의 모델파라미터 찾기					
= 둘째줄: 본논문의 STGC block 중 MS-GCN 만 사용하기 MS-GCN을 더깊게/넓게 하기 / 동일 모델 병렬로 배치하여 성능개선이 됨을 보임 ● 셋째줄: MS-GCN + MS-G3D 구성에 모델파라미터별 정확도 변화	■ 첫줄 : 기존 joint stream-AGCN 모델 / AGCN의 TCN => MS-TCN로 교체			\ O. I.	-	727 1 1 1 2 2 2 2
MS-GCN을 더깊게/넓게 하기 / 동일 모델 병렬로 배치하여 성능개선이 됨을 보임 셋째줄 : MS-GCN + MS-G3D 구성에 모델파라미터별 정확도 변화 셋째줄 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN + 2x MS-G3D 구성에 모델파라미터별 정확도 변화 및데씨를 : MS-GCN (Factorized Pathway) with MS-G3D (τ = 3, d = 1) 2.7M 89.0 with MS-G3D (τ = 3, d = 3) 2.7M 89.1 with MS-G3D (τ = 5, d = 1) 3.2M 89.2 with MS-G3D (τ = 5, d = 2) 3.2M 89.2 with MS-G3D (τ = 7, d = 1) 3.0M 89.0 with 2 MS-G3D Pathways τ = (3, 3), d = (1, 2) with 2 MS-G3D Pathways τ = (3, 5), d = (1, 1) 3.2M 89.4 Table 2: Model accuracy with various settings. MS-GCN and MS-G3D uses K ∈ {12,5} respectively. † Output channels double at the set of the pathway				y) Only		
● 셋째줄: MS-GCN + MS-G3D 구성에 모델파라미터별 정확도 변화						
● 넷째줄 : MS-GCN + 2x MS-G3D 구성 모델사이즈가다른모델과비슷하도록 feature size 조절 ● 표 3) cross-spacetime - 식(5) -이 필요한지다른 설정들과성능비교 (1) : 원래현재프레임의A를 유지한채, superdiagonal/subdiagonal 에는 단위행렬로설정 (2) : 현재프레임의A를 유지한채나머지모든원소A를 단위행렬로설정 (1) Grid-like (1) Grid-like (2) Grid-like + dense self-edges (2) Cross-spacetime edges (3) Cross-spacetime edges (4) Cross-spacetime edges (5) Cross-spacetime edges (6) With MS-G3D (τ = 3, d = 1) 2.7M 89.1 with MS-G3D (τ = 3, d = 3) 2.7M 89.1 with MS-G3D (τ = 5, d = 1) 3.2M 89.2 with MS-G3D (τ = 5, d = 2) 3.2M 89.2 with MS-G3D (τ = 7, d = 1) 3.0M 89.0 with 2 MS-G3D Pathways				way)	2.0111	00.0
## Params					2 7M	89.0
** 보기 이 전 가 다른 모델과 미 곳 아도록 feature Size 조절*** ** 표 3) cross-spacetime - 식(5) -이 필요한지 다른 설정들과 성능 비교 (1) : 원래 현재프레임의 A를 유지한채, superdiagonal/subdiagonal 에는 단위행렬로 설정 (2) : 현재프레임의 A를 유지한채 나머지 모든 원소A를 단위행렬로 설정 ** G3D Graph Connectivity ** ** Params ** ** Acc (%) ** (1) Grid-like ** (2) Grid-like + dense self-edges ** (2) Cross-spacetime edges ** (3, 3), $d = (1, 2)$ ** with MS-G3D $(\tau = 3, d = 3)$ ** with MS-G3D $(\tau = 5, d = 2)$ ** 3.2M ** 89.1 ** with MS-G3D $(\tau = 5, d = 2)$ ** with MS-G3D $(\tau = 5, d = 2)$ ** 3.2M ** 89.3 ** $\tau = (3, 3), d = (1, 2)$ ** with 2 MS-G3D Pathways $\tau = (3, 3), d = (1, 2)$ ** with 2 MS-G3D Pathways $\tau = (3, 5), d = (1, 1)$ ** Table 2: Model accuracy with various settings. MS-GCN and MS-G3D uses $K \in \{12, 5\}$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. τ Output channels double at $\tau = (3, 5)$ respectively. $\tau = $						
(1) : 원래 현재프레임의 A를 유지한채, superdiagonal/subdiagonal 에는 단위행렬로설정 (2) : 현재프레임의 A를 유지한채 나머지 모든 원소A를 단위행렬로설정 (3) 대표			- 1	-		89.1
(2) : 현재프레임의A를 유지한채 나머지 모든 원소A를 단위행렬로설정	○ 표 3) cross-spacetime - 식(5) -이 필요한지 다른 설정들과 성능 비교		-		3.2M	89.2
	(1) : 원래 현재프레임의A를 유지한채, superdiagonal/subdiagonal 에는 단위행렬로 설정	with MS-G3D	$(\tau = 5, d)$	= 2)	3.2M	89.2
	(2) : 현재프레임의A를 유지한채 나머지 모든 원소A를 단위행렬로 설정				3.0M	89.0
G3D Graph ConnectivityParamsAcc (%)(1) Grid-like2.7M88.7(2) Grid-like + dense self-edges2.7M88.6(Eq. 5) Cross-spacetime edges2.7M89.1			Service and the service of		2.8M	89.3
(1) Grid-like 2.7M 88.7 $\tau = (3,5), d = (1,1)$ 3.2M 89.4 (2) Grid-like + dense self-edges 2.7M 88.6 (Eq. 5) Cross-spacetime edges 2.7M 89.1 G3D Pathways $\tau = (3,5), d = (1,1)$ 3.2M 89.4 Table 2: Model accuracy with various settings. MS-GCN and MS-GSD Pathways $\tau = (3,5), d = (1,1)$ 3.2M 89.4 (G3D uses $\tau = (3,5), d = (1,1)$ 3.2M 89.4	G3D Graph Connectivity Params Acc (%)					
(2) Grid-like + dense self-edges 2.7M 88.6 Table 2: Model accuracy with various settings. MS-GCN and MS-GEQ. 5) Cross-spacetime edges 2.7M 89.1 G3D uses $K \in \{12, 5\}$ respectively. †Output channels double at	(1) Grid-like 2.7M 88.7	The state of the s	Carlow and Charles	•	3.2M	89.4
(Eq. 5) Cross-spacetime edges 2.7M 89.1 G3D uses $K \in \{12, 5\}$ respectively. Output channels double at				*		10531101
the collarse window layer (Fig. 3(d), (1, to (1, 1) instead of at the	(Eq. 5) Cross-spacetime edges 2.7M 89.1					
Table 3: Comparing graph connectivity settings ($\tau = 3, d = 2$). the collapse window layer (Fig. 3(d), C_{mid} to C_{out}) instead of at the graph convolution (C_{in} to C_{mid}) to maintain similar budget.	Table 3: Comparing graph connectivity settings ($\tau = 3, d = 2$)					

시티크리		Methods	NTU RGB+D 120			
실험 결과			Wethods	X-Sub (%)	X-Set (%)	
데이터셋 별 기존	돈 ㅁ데드게 서	느비교	ST-LSTM [26]	55.7	57.9	
	TU RGB+D 12		GCA-LSTM [27]	61.2	63.3	
,	TU RGB+D 60		RotClips + MTCNN [16]	62.2	61.8	
,	netics에서 비		Body Pose Evolution Map [28]	64.6	66.9	
о <u>н</u> 0) Кі	rictios of Ar ar	112	2s-AGCN [33]	82.9	84.9	
			MS-G3D Net	86.9	88.4	
			Table 4: Classification accuracy com art methods on the NTU RGB+D 120			
			Mathada	NTU RGI	NTU RGB+D 60	
			Methods	-Sub (%)	X-View (%)	
			IndRNN [23]	81.8	88.0	
			HCN [20]	86.5	91.1	
			ST-GR [18]	86.9	92.3	
			AS-GCN [21]	86.8	94.2	
Kinetics Sk		keleton 400	2s-AGCN [33]	88.5	95.1	
Methods	Top-1 (%)	Top-5 (%)	AGC-LSTM [34]	89.2	95.0	
ST-GCN [50]	30.7	52.8	DGNN [32]	89.9	96.1	
AS-GCN [21]	34.8	56.5	GR-GCN [8]	87.5	94.3	
ST-GR [18]	33.6	56.1	MS-G3D Net (Joint Only)	89.4	95.0	
2s-AGCN [33]	36.1	58.7				
DGNN [32]	36.9	59.6	MS-G3D Net (Bone Only)	90.1	95.3	
	38.0	60.9	MS-G3D Net	91.5	96.2	