Digital Signatures

Objectives

- Features of hand-written signatures in Digital World
- ► Ensure hardness of forgery

Hand-written Signatures

- Function: bind a statement/message to its authors.
- Verification is public. (against a prior authenticated one)

Hand-written Signatures

- Function: bind a statement/message to its authors.
- Verification is public. (against a prior authenticated one)
- Properties:
 - Correctness: A correct signature should always be verified true.

Hand-written Signatures

- Function: bind a statement/message to its authors.
- Verification is public. (against a prior authenticated one)
- Properties:
 - Correctness: A correct signature should always be verified true.
 - Security: Hard to forge.

 $\textbf{Signature Scheme} \; (\mathsf{Gen}, \mathsf{Sign}, \mathsf{Verify})$

(M,x)

- Correctness
- Unforgeability

Gen

 $\overline{\mathsf{Verify}_{pk}}$

(pk, sk)

Accept / Reject

Signature Scheme (Gen, Sign, Verify)

Signature Scheme (Gen, Sign, Verify)

 $Signature\ Scheme\ (\mathsf{Gen},\mathsf{Sign},\mathsf{Verify})$

Unforgeability:

Must output forgery for a message for which the attacker did not request the signature.

Unforgeability against Chosen Message Atttack

Signature Schemes Designs: RSA Full Domain Hash

- ▶ **Public Functions** A hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
- **Keygen:** Run RSA.Keygen. pk = (e, N), sk = (d, N).
- ▶ **Sign**: Input: sk, M. Output $\sigma = \mathsf{RSA.Dec}(sk, H(M)) = H(M)^d \mod N$

Correctness

Suppose $\sigma = \operatorname{Sign}(sk, M)$. This implies $\sigma = H(M)^d \mod N$. This implies

$$\sigma^e \mod N = (H(M)^d \mod N)^e \mod N = H(M)^{ed} \mod N$$

As $ed \equiv 1 \mod \phi(N)$ and H maps to \mathbb{Z}_N^* , we have

$$\sigma^e \mod N = H(M) \mod N = H(M)$$

which is the acceptance condition in the verification algorithm.

Signature Schemes Designs: RSA Full Domain Hash

- ▶ **Public Functions** A hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
- **Keygen:** Run RSA.Keygen. pk = (e, N), sk = (d, N).
- ▶ **Sign**: Input: sk, M. Output $\sigma = \mathsf{RSA.Dec}(sk, H(M)) = H(M)^d \mod N$
- ▶ **Verify**: Input: pk, M, σ . If RSA.Enc $(pk, \sigma) = H(M)$ output accept, else reject

Correctness

Suppose $\sigma = \operatorname{Sign}(sk, M)$. This implies $\sigma = H(M)^d \mod N$. This implies

$$\sigma^e \mod N = (H(M)^d \mod N)^e \mod N = H(M)^{ed} \mod N$$

As $ed \equiv 1 \mod \phi(N)$ and H maps to \mathbb{Z}_N^* , we have

$$\sigma^e \mod N = H(M) \mod N = H(M)$$

which is the acceptance condition in the verification algorithm.

Signature Schemes Designs: RSA Full Domain Hash

- ▶ **Public Functions** A hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$
- **Keygen:** Run RSA.Keygen. pk = (e, N), sk = (d, N).
- ▶ **Sign**: Input: sk, M. Output $\sigma = \mathsf{RSA.Dec}(sk, H(M)) = H(M)^d \mod N$
- ▶ **Verify**: Input: pk, M, σ . If RSA.Enc $(pk, \sigma) = H(M)$ output accept, else reject
- ▶ If $\sigma^e \mod N = H(M)$, output accept, else reject.

Correctness

Suppose $\sigma = \operatorname{Sign}(sk, M)$. This implies $\sigma = H(M)^d \mod N$. This implies

$$\sigma^e \mod N = (H(M)^d \mod N)^e \mod N = H(M)^{ed} \mod N$$

As $ed \equiv 1 \mod \phi(N)$ and H maps to \mathbb{Z}_N^* , we have

$$\sigma^e \mod N = H(M) \mod N = H(M)$$

which is the acceptance condition in the verification algorithm.

Signature Schemes Designs: Digital Signature Algorithm (DSA) 1991

DSA is adopted in standard FIPS 186-1 to FIPS 186-4 Keygen

- ▶ Choose a 2048 bit prime p, a 224 bit prime q where q divides p-1. Choose a number g < q such that $\gcd(g, p-1) = 1$
- ▶ A cryptographic hash function $H: \{0,1\}^* \to \mathbb{Z}_q$
- ▶ Choose a random $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$. Compute $y = g^x \mod p$
- $pk = (p, q, g, y, H). \ sk = x.$

Signature Schemes Designs: Digital Signature Algorithm (DSA) 1991

$$\mathsf{Sign}(sk = x, pk, M)$$

- $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- **compute** $s = (g^r \mod p) \mod q$
- compute $t = (H(M) + x \cdot s)r^{-1} \mod q$
- output $\sigma = (s, t)$

$\mathsf{Verify}(pk, M, \sigma)$

- ▶ Compute $u_1 = H(M)t^{-1} \mod q$
- ▶ Compute $u_2 = s \cdot t^{-1} \mod q$
- ▶ If $g^{u_1} \cdot y^{u_2} \mod p \mod q = s$, accept
- otherwise reject

Correctness of signature

Correctness condition

 $g^{u_1} \cdot y^{u_2} \mod p \mod q = s = (g^r \mod p) \mod q$

Derivations

 $t^{-1} = (H(M) + x \cdot s)^{-1}r \mod q \implies t^{-1}(H(M) + x \cdot s) = r \mod q$

- $y^{u_2} \mod p = (g^x)^{u_2} \mod p = g^{x \cdot u_2} \mod p = g^{xst^{-1}} \mod p$
- $p ext{ } y^{u_1} \cdot y^{u_2} \mod p = g^{u_1 + xst^{-1}} \mod p = g^{t^{-1}(H(M) + xs)} \mod p = g^r \mod p$

Schnorr Signature

Keygen

- ▶ Choose a 3072 bit prime p, a 256 bit prime q where q divides p-1. Choose a number g < q such that gcd(g, p-1) = 1.
- ▶ A cryptographic hash function $H: \{0,1\}^* \to \mathbb{Z}_q$
- ▶ Choose a random $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$. Compute $y = g^x \mod p$
- $pk = (p, q, g, y, H). \ sk = x.$

Schnorr

$$\mathsf{Sign}(sk=x,pk,M)$$

- $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- ightharpoonup compute $s = H(M||g^r)$
- ightharpoonup compute $t = (r + x \cdot s) \mod q$
- output $\sigma = (s, t)$

$$\mathsf{Verify}(pk, M, \sigma = (s, t))$$

- ▶ If $H(M||g^ty^{-s}) = s$, accept
- otherwise reject

Schnorr

$$\mathsf{Sign}(sk=x,pk,M)$$

- $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- ightharpoonup compute $s = H(M||g^r)$
- ightharpoonup compute $t = (r + x \cdot s) \mod q$
- output $\sigma = (s, t)$

$$\mathsf{Verify}(pk, M, \sigma = (s, t))$$

- ▶ If $H(M||g^ty^{-s}) = s$, accept
- otherwise reject

Correctness

$$g^t y^{-s} \mod p = g^t g^{-x \cdot s} \mod p = g^{r+x \cdot s} g^{-x \cdot s} \mod p$$

= $g^r \mod p$