Advanced Machine Learning

Likhit Nayak

It is derived from two major ideas:

1. Independent Random Variables

Given a set of random variables $\{X_1, \dots, X_n\}$,

$$P(X_1,\ldots,X_n)=P(X_1)P(X_2)\cdots P(X_n)$$

It is derived from two major ideas:

2. Conditional Probability

Let's take a joint probability table as follows:

I	S	P(I,S)	
i^0	s^0	0.665	
i^0	s^1	0.035	$P(I,S) = P(I)P(S \mid I)$
i^1	s^0	0.06	
i^1	s^1	0.24.	

It is derived from two major ideas:

2. Conditional Probability

Let's take a joint probability table as follows:

<i>i</i> 0 <i>i</i> 1	I	s^{o}	$s^{\scriptscriptstyle 1}$
$\frac{\iota}{0.7} \frac{\iota}{0.3}$	$egin{array}{c} i^0 \ i^1 \end{array}$	0.95 0.2	0.05

Conditional Independence:

Given three random variables *I*, *S*, and *G*:

$$P(S,G \mid I) = P(S \mid I)P(G \mid I)$$

$$P(I, S, G) = P(S, G \mid I)P(I)$$

$$P(I, S, G) = P(S \mid I)P(G \mid I)P(I)$$

Conditional Independence:

Given three random variables *I*, *S*, and *G*:

i^0 i^1	I	s^0	$s^{\scriptscriptstyle 1}$	I	g^1	g^2	g^3
$\frac{v}{0.7} = \frac{v}{0.3}$	$ i^0$	0.95	0.05	i^0	0.2	0.34	0.46
0.7 0.5	i^1	0.2	0.8	i^1	0.74	0.17	0.09

Conditional Independence:

Given three random variables *I*, *S*, and *G*:

$$P(C, X_1, \dots, X_n) = P(C) \prod_{i=1}^{n} P(X_i \mid C)$$

Directed Acyclic Graph (DAG)

 $P(I, D, G, S, L) = P(I)P(D)P(G \mid I, D)P(S \mid I)P(L \mid G).$

Directed Acyclic Graph (DAG)

