IFC4 COORDINATION VIEW

Definition of the project scope driven by identified process scenarios

Dr. Thomas Liebich, buildingSMART International, MSG Lead

Objectives of the "IFC4 Coordination View" Project

Content

- Definition of the successor of the very successful IFC2x3 Coordination View
- Taking into account past experiences (positive / negative)
- Be more specific to the support the BIM processes and requirements

Technical

- Definition as formal, computer interpretable mvdXML specification
- Publication as separate online documentation (view-specific)
- Publication as partial EXPRESS and XSD schema

Duration: 01.01.2014 - 31.06.2014

Project sponsor: DIBK - Norwegian Building Authority

Note:

- only MVD is funded
- IDM unfunded
- Certification rules unfunded

These parts are currently not in scope of the project

Experiences with the IFC2x3 Coordination View 2.0

A common "meeting point" of the various interests and parties

- positive :
 - great response (number of supporting software)
 - consistent certification and marketing
- challenging:
 - no differentiation between different workflows
 - expressiveness of certification for different workflows (particular on import)

Need for a general understanding

- what works / what does not work?
- which workflows are supported by the software / by certification?

Two main requirements – reference and handover

Analysis of today's established BIM / IFC workflows

Workflow A-1

- Coordination planning / clash detection
- Import of the domain specific models in a coordination model

Source: AEC3

Workflow A-2

- Referencing of domain specific models
- Each discipline builds its one model as a reference other domain specific models are linked in the background

Workflow A-3

Presentation – referencing in the city model / visualization

Source: IFC2x3 CV2.0 Certification

Source : Statsbygg Oslo

Two main requirements – reference and handover

Analysis of today's established BIM / IFC workflows

Workflow B-1

Partial native import – shared working on one partial model, e.g.
 the architect and the MEP engineer working on the space model

Workflow B-2

 Load bearing elements of the architectural model are taken over parametrically and refined from the structural application

Workflow B-3

 Handover of the parametric BIM model due to change of designer team or of chosen software in projects

Source: all AFC3

One of the most important workflows today

Coordination planning / clash detection:

- Import of the IFC domain specific models in a coordination model
- Linking / merging in the coordination model, no re-export

Source: AEC3

Reference View Requirements for IFC4 CV

IMPORTANT:

- 100% correct explicit geometry
- 100% correct attributes / properties / spatial structures
- Workflow often occurs in the project process rework can not be tolerated
- Rapid export and import times

>>> separate scenario : domain specific model referencing

Experiences with the IFC2x3 Coordination View 2.0

- Many demands (local coordinate system, Boolean operations, complex geometries) are required, but not used when referencing ("shoots beyond the mark")
- as a consequence strong computation necessaries and long loading times during export and import
- as a consequence possibilities of errors during the geometry transfer (especially on CSG geometry)

Solution: separate "IFC4 Reference View"

Another important workflow – (partial) handover

Handover of the parameterized BIM model for continuation and editing

- e.g. Handover of the spaces from the architectural model into the MEP model
- e.g. Handover of the load bearing elements from the architectural model into the structural model

Handover to be imported into the native models of the application is necessary (parametric)

Source: AEC3

Handover View Requirements for IFC4 CV

IMPORTANT:

- parametric geometry for the important model elements (edit ability)
- correct attributes / properties
- seldom in the workflow (often onetime adoption change management via reference workflow)
- some rework tolerable clear definition necessary of what is (not) parametrically transferable

>>> separate scenario : domain specific model handover (edit ability)

Experiences with the IFC2x3 Coordination View 2.0

- unclear, what can be transferred parametrically and what not
- many restrictions on the parametrics
- risk of geometry errors during import
- unclear definition for the certification, especially for import certification (native or by reference)

Solution: separate "Design Transfer View"

Summary -1-

IFC4 Reference View

- goal
 - satisfy the referencing work flow, i.e. the result of the import is a "read-only" (not modifiable)
- scenario include
 - "background" reference
 - clash detection
 - any viewer based work flow
- expected user experience
 - ownership remains with the sender
 - frequent updates
 - fast export / import times
 - 100% validity, no rework expected

IFC4 Design Transfer View

- goal
 - satisfy the handover work flow, i.e. import for further editing (import into native elements)
- scenario include
 - takeover architecture in structural
 - import spaces into MEP
 - takeover a previous design
- expected user experience
 - ownership handed over to receiver
 - low frequency, sometimes "one of"
 - longer export / import time tolerable
 - some rework accepted, if limitations are well known

Summary -2-

IFC4 Reference & Transfer Views IN SCOPE

for reference view

- precise geometric representation
- no simple parametrics (other then for file size and accuracy requirements)
- support of mapped representations

for handover view

- simple parametric representation for standard case elements
- based on profile and sweeping operation, combined with material layer or profile sets and CSG based features
- occurrence and type pairs with shared geometry, attributes and materials

IFC4 Reference & Transfer Views OUT OF SCOPE

- for both
 - no round-trip support
- for handover view
 - no complete parametric exchange, support of parametrics bound to "standard case" element definitions
 - one-time parametric exchange within these boundaries (for intelligent native import into target application)
 - specific use cases, such as thermal calculations, or structural analysis require additional add-on view support

Split Coordination View into two separate views

IFC4 Design Transfer View is superset of IFC2x3 Coordination View

upward compatible (IFC2x3 CV2.0 files can be read by IFC4 Design Transfer View importer)

IFC4 Design Transfer View is superset of IFC4 Reference View

compatible (IFC4 reference view files can be read by IFC4 Design Transfer View importer)

IFC4 Reference View is subset of IFC4 Design Transfer View

 not (upward) compatible, IFC4 Reference View importer can not read IFC4 Design Transfer View or IFC2x3 CV files – need to be clearly communication by User Interface

IFC2x3 CV and IFC4 export / import compatibility

Process of development

- 1. Define scope
- 2. Develop MVD concepts
- 3. Develop MVD
- 4. Generate draft specification
- 5. Create unit tests
- 6. Validate unit tests
- 7. Revise MVD
- 8. Finalize specification

Ongoing

- Domain user panel
- Software expert panel

Consequences for IFC4 certification process

Today for IFC2x3 CV2.0

- Database GTDS
 - Full certification workflow support
- Export certification
 - 50 well-defined test instructions (30 Architecture, 5 HVAC, 15 Structural)
 - Validation rules and checker rules based on Excel definitions
- Import certification
 - 500 well-test calibration files (about 300 Arch, 50 HVAC, 150 Structural)

Needed for IFC4

- Database GTDS
 - Improvements (loading times, UI, ...)
- Export certification
 - Improvements for test instructions (more balanced, more special, cases)
 - Rework of checker for mvdXML use develop mvdXML for IFC4 views
- Import certification
 - Needs to be redone based on new IFC export files and checking

Conclusions

IFC4 Coordination View Successor project develops

- the IFC4 Reference View
- the IFC4 Design Transfer View

For more information, see

- http://www.buildingsmart-tech.org/specifications/ifc-view-definition/ifc4-coordination-views
- https://github.com/buildingSMART/IFC4-CV

