Coursera Dong-Bang Tsai About Feedback

Probabilistic Graphical Models

Daphne Koller, Kevin Murphy Winter 2011-2012

Home

Quizzes

Theory Problems

Assignments

Assignment Questions

Video Lectures

Discussion Forums

Octave Installation

Lecture Slides

Course Schedule

Course Logistics

Course Information

Course Staff

Feedback — Structured CPDs + Week 1 Review

You achieved a score of 9.00 out of 9.00

Question 1

I-maps. Suppose $(A\perp B)\in\mathcal{I}(P)$, and G is an I-map of P. Is it necessarily true that $(A\perp B)\in\mathcal{I}(P)$

Your Answer		Score	Explanation
No	*	1.00	Since G is an I-map of P , all independencies in G are also in P . However this doesn't mean that all independencies in P are also in G . An easy was remember this is that the complete graph, which has no independencies, an I-map of all distributions.
Total		1.00	

Question 2

Template Models. Consider the plate model shown below. Assume we are given K Markets, L Products, M Consumers and N Locations. What is the total number of instances of the variable P in grounded BN?

Your Answer	Score	Explanation
	1.00	There will be one grounded instance of P for each combination of Mark Consumer, and Product. There will be $K\cdot L\cdot M$ of these combinations
Total	1.00	

Question 3

Template Models. Consider the plate model from the previous guestion. What might P represent?

Your Answer Score Explanation

 Whether a specific product PROD was consumed by consumer C in market M 	•	1.00	In the grounded model, there will be an instance of P for each combination of Product and Consumer, and there is a combinat like this for each Market. Thus, we are looking at a random variathat will say something about a specific product, market, and consumer combination. The correct answer is the only one that does this.
Total		1.00	

Question 4

Time-Series Graphs. Which of the time-series graphs satisfies the Markov assumption? You may so 1 or more options (or none of them, if you think none apply).

Your Answer		Score	Explanation
(a)	~	0.33	In (a), this fails because of the direct edges from nodes to nodes that are two time points away.
 ✓ (b)	*	0.33	(b) is a time-series graph in which all variables in each time slice are independent of all variables in time slices at least 2 time slices before, girall variables in the previous time slice ($X^{(t+1)}, Y^{(t+1)}, Z^{(t+1)} \perp X^{(t-1)}, Y^{(t-1)}, Z^{(t-1)} X^{(t)}, Y^{(t)}, Z^{(t)}$).
(c)	~	0.33	In (c), it fails because of the backwards edges, which cause time-slices t depend on both the previous and the following time-slice.
Total		1.00	

Question 5

*Unrolling DBNs. Below are 2-TBNs that could be unrolled into DBNs. Consider these unrolled DBN (note that there are no edges within the first time-point). In which of them will $(X^{(t)} \perp Z^{(t)} \mid Y^{(t)})$ ho for all t, assuming $Obs^{(t)}$ is observed for all t and $X^{(t)}$ and $Z^{(t)}$ are never observed? You may self or more options (or none of them, if you think none apply).

Hint: Unroll these 2-TBNs into DBNs that are at least 3 time steps long (i.e., involving variables from t-1,t,t+1).

Your Answer		Score	Explanation
• (a)	✓	0.33	(a) is incorrect because there is still an active path from $X^{(t)}$ to $Z^{(t)}$ through the previous time step variables $(X^{(t)} \leftarrow X^{(t-1)} \rightarrow Y^{(t-1)} \rightarrow Z^{(t-1)} \rightarrow Z)$.
⋖ (b)	✓	0.33	The independence assumption holds in this network because knowing Y blocks what was the only active trail from $X^{(t)}$ to $Z^{(t)}$.
(c)	~	0.33	(c) is incorrect because of active path $X^{(t)} o X^{(t+1)} o Y^{(t+1)} o Obs^{(t+1)} \leftarrow Z^{(t+1)} \leftarrow Z^{(t)}.$
Total		1.00	

Question 6

Causal Influence. Consider the CPD below. What is the probability that $E=e_0$ in the following graphiven an observation $A=a_1, B=b_0, C=c_0, D=d_1$? Note that, for the pairs of probabilities that make up the leaves, the probability on the left is the probability of e_0 , and the probability on the right

Tree CPD for P(E | A,B,C,D)

the probability of e_1 .

0.1

Your

Score Explanation

Answer			
0.1	✓	1.00	This is the probability that is reached when following the tree down the appropriate branches.
Total		1.00	

Question 7

Independencies with Deterministic Functions. In the following Bayesian network, the node B is a deterministic function of its parent A. Which of the following is an independence statement that holds the network? You may select 1 or more options (or none of them, if you think none apply).

Your Answer		Score	Explanation
$(C \perp D \mid A)$	*	0.25	Since B is a deterministic function of A , observing A implies that E also observed, which d-separates C and D . Therefore, $(C \perp D \mid A)$
$(A \perp D \mid B)$	~	0.25	Given B, \mbox{there} is no active trail between A and D therefore, they a conditionally independent.
$(B \perp D \mid C)$	*	0.25	B is a deterministic function of $A,{\rm not}C,$ and D is a child of $B,{\rm so}$ observing C does not make B and D independent.
$(A \perp D \mid C)$	*	0.25	Since A is an ancestor of both C and $D\!$, observing D does not ma A and C independent.
Total		1.00	

Question 8

Independencies in Bayesian Networks. For the network in the previous question, let B no longer b deterministic function of its parent A. Which of the following is an independence statement that holds the modified Bayesian network? You may select 1 or more options (or none of them, if you think non apply).

	Feed	dback	
Your Answer		Score	Explanation
$(B \perp D \mid A)$	~	0.25	Since B is the parent of D,B and D do not become independent when A is observed.
$(A \perp D \mid B)$	₩	0.25	The only active trail from A to D passes through B , and there are r V-structures between A and D , so observing B makes A and D independent.
$(A \perp D \mid C)$	~	0.25	Since C is not on the active trail from A to $D,$ observing C does no make A and D independent.
$(C \perp D \mid A)$	✓	0.25	Since A is not on the active trail from C to $D,$ observing A does no make C and D independent.
Total		1.00	

Question 9

Context-Specific Independencies in Bayesian Networks. Which of the following are context-spec independences that **do** exist in the tree CPD below? (Note: Only consider independencies in this CP ignoring other possible paths in the network that are not shown here. You may select 1 or more optic (or none of them, if you think none apply).

Tree CPD for P(E | A,B,C,D)

Your Answer		Score	Explanation
$(Eoldsymbol{oldsymbol{oldsymbol{eta}}}_{c}C b^{0},d^{0})$	✓	0.25	A variable X is independent of E given conditioning assignmer \bar{z} if all paths consistent with \bar{z} traversed in the tree CPD reach a leaf without querying X . This is not true for this option because is on a separate branch from B and D , and the initial branch is even known since it depends on A .
$ (A \bot_c D \mid B) $	✓	0.25	This option is wrong because the tree CPD represents $P(E A,B,C,D)$, so it does not give any information about whether A and D are independent.
$ \checkmark (E \bot_c D \mid b^1) $	✓	0.25	A variable X is independent of E given conditioning assignmer \bar{z} if all paths consistent with \bar{z} traversed in the tree CPD reach a leaf without querying X . This is true for this option.
$(Eoldsymbol{oldsymbol{arepsilon}}(Eoldsymbol{oldsymbol{arepsilon}}(a^{0},b^{0}))$	~	0.25	A variable X is independent of E given conditioning assignmer \bar{z} if all paths consistent with \bar{z} traversed in the tree CPD reach a leaf without querying X . This is true for this option.

Total 1.00