Datasets and Definitions

Use 2 CMIP3 GCMs: CCSM 3.0, HadGEM1

last 30 years of climate of the 20th century runs (20c3m).

2 Reanalyses: ERA-40 (1969-1999), NCEP-DOE (1979-1999).

Focus on summer:

2. Dataset Insights

Temperature Variance Errors

Plotted as

 $\frac{\text{Var}(T_{dataset})}{\text{Var}(T_{observations})}$

 $T \equiv 2$ -meter temp.

 $T_{observations}$: U. of Delaware

2. Dataset Insights 12 / 35

Temperature Variance Errors

Artificial hot spots of variability in the GCMs

2. Dataset Insights 12 / 35

Summertime mean soil moisture

×

2. Dataset Insights 13 / 35

Summertime mean soil moisture

GCMs are overall *much* dryer

2. Dataset Insights

Correlations involving Evapotranspiration (1/2)

E with F, m

(HadGEM1 data)

2. Dataset Insights 14 / 35

Correlations involving Evapotranspiration (1/2)

How can E decrease when F, m increase?

×

E with F , m

(HadGEM1 data)

2. Dataset Insights 14 / 35

Correlations involving Evapotranspiration (1/2)

How can E decrease when F, m increase?

×

×

Dry soils $(\overline{m} < \text{global mean})$

Moisture-limited (corr(E, m) > 0)

Wet soils $(\overline{m} > \text{global mean})$

Energy-limited

 $(\operatorname{corr}(E, F) > 0)$

E with F, m $\overline{m} = \text{global mean value}$ orr(E,F)

0.8

0.4

0.2 0 -0.2 -0.4 -0.6 -0.8 -1

(HadGEM1 data)

. Dataset Insights 14 / 35

corr(E,m)

Correlations involving Evapotranspiration (2/2)

× Decompose radiation forcing anomalies into non-precipitating and precipitating components:

$$F' = F'_0 - L\alpha P' \qquad (2)$$

$$A \langle F'_2, P' \rangle = 0$$

where $\langle F_0', P' \rangle \equiv 0$, $\alpha > 0$ (unitless)

(HadGEM1 data)

Correlations involving Evapotranspiration (2/2)

× Decompose radiation forcing anomalies into non-precipitating and precipitating components:

$$F' = F'_0 - L\alpha P' \qquad (2)$$

$$e \langle F'_0, P' \rangle \equiv 0,$$

where $\langle F_0', P' \rangle \equiv 0$, $\alpha > 0$ (unitless)

(HadGEM1 data)

Dataset Insights 15 / 35

Correlations involving Evapotranspiration (2/2)

Decompose radiation forcing anomalies into non-precipitating and precipitating components:

$$F' = F_0' - L\alpha P' \qquad (2)$$

where $\langle F_0', P' \rangle \equiv 0$, $\alpha > 0$ (unitless)

Over dry soils: F'>0 \iff moisture deficit

Over wet soils: m'>0 \iff energy deficit

(HadGEM1 data)

2. Dataset Insights

×