Digital Electronics Moule-II

Ajith Kumar M M
Lecturer in electronics
MVGM, Government Polytechnic , vennikulam

Logic Circuits

- ☐ Logic circuits for digital systems may be combinational or sequential.
 - A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs.
- ☐ A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.
- ☐ Sequential circuits have storage elements in addition to logic gates.
- ☐ Their outputs are a function of the inputs and the state of the storage elements.
- ☐ Because the state of the storage elements is a function of previous inputs, the outputs of a sequential circuit depend not only on present values of inputs, but also on past inputs,

Combinational Circuits

- ☐ A combinational circuit consists of an interconnection of logic gates.
- ☐ Combinational logic gates react to the values of the signals at their inputs and produce the value of the output signal.
- ☐ Transforming binary information from the given input data to a required output data.

Half Adder

☐ Half Adder circuit needs two binary inputs and two binary outputs.

☐ The output variables produce the sum and carry.

Half Adder

X	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Half Adder

X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- ☐ Addition of n-bit binary numbers requires the use of a full adder,
- ☐ The process of addition proceeds on a bit-by-bit basis, right to left, beginning with the least significant bit.
- After the least significant bit, addition at each position adds not only the respective bits of the words, but must also consider a possible carry bit from addition at the previous position

Full Adder

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xyz$$
$$S = x \oplus y \oplus z$$

$$C = xy + yz + xz$$

$$S = x \oplus y \oplus z$$

$$C = xy + yz + xz$$

Half Subtractor

Α	В	Diff	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$Difference = A \oplus B$$
$$Borrow = \bar{A}B$$

Half Subtractor

Α	В	Diff	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

 $Difference = A \oplus B$ $Borrow = \bar{A}B$

Inputs			Out	puts
Α	B Borrow _{in}		Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Inputs			Out	puts
Α	B Borrow _{in}		Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$Diff = A\bar{B}\bar{C} + \bar{A}\bar{B}C + ABC + \bar{A}B\bar{C}$$

$$Diff = A \oplus B \oplus C$$

Inputs			Out	puts
Α	B Borrow _{in}		Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Borrow =
$$\bar{A}C + BC + \bar{A}B$$

Parallel Adder

- A single full adder performs the addition of two one-bit numbers and an input carry.
- A Parallel Adder is a digital circuit capable of finding the arithmetic sum of two binary numbers that is greater than one bit in length

Four bit Parallel Adder

Multiplexer

- **Multiplexer** is a combinational circuit that has maximum of 2ⁿ data inputs, 'n' selection lines and single output line.
- ☐ One of these data inputs will be connected to the output based on the values of selection lines.
- \square Since there are 'n' selection lines, there will be 2^n possible combinations of zeros and ones. So, each combination will select only one data input.
- ☐ Multiplexer is also called as **Mux**

4x1 Multiplexer

- \Box 4x1 Multiplexer has four data inputs I_3 , I_2 , I_1 & I_0 , two selection lines s_1 & s_0 and one output Y.
- One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines.

4x1 Multiplexer

Selectio	Output	
S ₁	S ₀	Υ
0	0	I ₀
0	1	I ₁
1	0	I ₂
1	1	I ₃

$$Y = \overline{S_1} \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3$$

4x1 Multiplexer

$$Y = \overline{S_1} \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3$$

- □ **De-Multiplexer** is a combinational circuit that performs the reverse operation of Multiplexer.
- \square It has single input, 'n' selection lines and maximum of 2^n outputs.
- ☐ The input will be connected to one of these outputs based on the values of selection line.
- ☐ De-Multiplexer is also called as **De-Mux**.

Selection Inputs		Outputs			
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	I
0	1	0	0	1	0
1	0	0	I	0	0
1	1	I	0	0	0

Selection Inputs		Outputs			
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	I
0	1	0	0	ı	0
1	0	0	I	0	0
1	1	I	0	0	0

$$Y_0 = \overline{S_1} \overline{S_0} I$$

$$Y_1 = \overline{S_1} S_0 I$$

$$Y_0 = \overline{S_1} \overline{S_0} I$$

$$Y_2 = S_1 \overline{S_0} I$$

$$Y_3 = S_1 S_0 I$$

