The Random package, Defining Custom Functions

Chris Cornwell

Feb 4, 2025

Outline

Random functions in NumPy

Defining custom functions

Importing data

Outline

Random functions in NumPy

Defining custom functions

Importing data

¹The default lower end is o, to sample between o and n-1.

- Uniform discrete: to sample m numbers from the uniform distribution on the integers in range(n), use the function np.random.randint(n, size=m).
 - An optional additional integer in the arguments: give a lower bound.¹

¹The default lower end is o, to sample between o and n-1.

- Uniform discrete: to sample m numbers from the uniform distribution on the integers in range(n), use the function np.random.randint(n, size=m).
 - An optional additional integer in the arguments: give a lower bound.¹
 - If size argument not given, just one number returned. If the size=m is given, returns a NumPy array.

¹The default lower end is 0, to sample between 0 and n-1.

- Uniform discrete: to sample m numbers from the uniform distribution on the integers in range(n), use the function np.random.randint(n, size=m).
 - An optional additional integer in the arguments: give a lower bound.¹
 - If size argument not given, just one number returned. If the size=m is given, returns a NumPy array.

```
# 20 integers, each equally likely, between 1 and 10 np.random.randint(1, 11, size=20)
```

¹The default lower end is 0, to sample between 0 and n-1.

From documentation: Within NumPy is the submodule random which "implments pseudo-random number generators...with the ability to draw samples from a variety of probability distributions."

- Uniform discrete: to sample m numbers from the uniform distribution on the integers in range(n), use the function np.random.randint(n, size=m).
 - An optional additional integer in the arguments: give a lower bound.¹
 - If size argument not given, just one number returned. If the size=m is given, returns a NumPy array.

```
1 | # 20 integers, each equally likely, between 1 and 10
2 | np.random.randint(1, 11, size=20)
```

Commands above will sample with replacement.

To sample without replacement, use argument replace=False.

¹The default lower end is 0, to sample between 0 and n-1.

2. Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).

- 2. Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).
 - ► The defaults for the left & right endpoints are o and 1. This means that np.random.uniform(size=m) will sample from the unit interval.
 - ► An alternative: np.random.random(size=m). Only samples from the unit interval, but, can get samples from [a,b) by multiplying and adding (below).

- 2. Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).
 - ► The defaults for the left & right endpoints are o and 1. This means that np.random.uniform(size=m) will sample from the unit interval.
 - ► An alternative: np.random.random(size=m). Only samples from the unit interval, but, can get samples from [a,b) by multiplying and adding (below).

```
| (b-a)*np.random.random(size=m) + a
```

- Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).
- Normal distribution: to sample m floats from the normal distribution, with mean mu and standard deviation sigma, use the function np.random.normal(mu, sigma, size=m)

²Using keyword makes the argument not *positional* anymore; arguments coming after it must have keyword too.

- Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).
- Normal distribution: to sample m floats from the normal distribution, with mean mu and standard deviation sigma, use the function np.random.normal(mu, sigma, size=m)
 - The two arguments for the mean and standard deviation have default 0 and 1, respectively.
 - Not uncommon to use the *keywords* for these arguments, as in np.random.normal(loc=mu, scale=sigma, size=m)

²Using keyword makes the argument not *positional* anymore; arguments coming after it must have keyword too.

- Uniform continuous: to sample m floats in the interval [a, b), use the function np.random.uniform(a, b, size=m).
- Normal distribution: to sample m floats from the normal distribution, with mean mu and standard deviation sigma, use the function np.random.normal(mu, sigma, size=m)
 - The two arguments for the mean and standard deviation have default 0 and 1, respectively.
 - Not uncommon to use the *keywords* for these arguments,² as in np.random.normal(loc=mu, scale=sigma, size=m)

Larger the sample, the closer the distribution of that sample (i.e., normalized histogram) should be to the theoretical pdf. Can we display this in a plot?

²Using keyword makes the argument not *positional* anymore; arguments coming after it must have keyword too.

Using uniform distribution on interval [a,b): for subinterval of width δ , probability $\delta \frac{1}{b-a}$ of getting a sample in that interval.

Using uniform distribution on interval [a,b): for subinterval of width δ , probability $\delta \frac{1}{b-a}$ of getting a sample in that interval.

Consequence: plot (normalized) histogram of sample over [a, b]; close to the distribution means bars are close to height 1/(b-a).

Below: sample of size 50, from uniform(0, 5).

Using uniform distribution on interval [a,b): for subinterval of width δ , probability $\delta \frac{1}{b-a}$ of getting a sample in that interval.

Consequence: plot (normalized) histogram of sample over [a,b]; close to the distribution means bars are close to height 1/(b-a).

Below: sample of size 50, from uniform(0, 5).

A larger sample size will (on average) give a distribution that is closer to the *true* one. For example, by changing our previous code so that the sample size is 5000, we can see the sample distribution get much closer.

A larger sample size will (on average) give a distribution that is closer to the *true* one. For example, by changing our previous code so that the sample size is 5000, we can see the sample distribution get much closer.

Using the normal distribution, mean μ and std.deviation σ , the density function is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

³Doubled the sample size and the number of bins, due to greater variability in the pdf of the distribution.

Using the normal distribution, mean μ and std.deviation σ , the density function is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Below is a normalized histogram of a sample of size 100.3

 $^{^{3}}$ Doubled the sample size and the number of bins, due to greater variability in the pdf of the distribution.

Using the normal distribution, mean μ and std.deviation σ , the density function is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Below is a normalized histogram of a sample of size 100.3

 $^{^{3}}$ Doubled the sample size and the number of bins, due to greater variability in the pdf of the distribution.

Using the normal distribution, mean μ and std.deviation σ , the density function is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Below is a normalized histogram of a sample of size 100.3

³Doubled the sample size and the number of bins, due to greater variability in the pdf of the distribution.

A larger sample size gives a distribution that is closer to the bell curve.

Some miscellany about distributions in numpy.random

Many other probability distributions are implemented in numpy.random. See this link for information about them.

Some miscellany about distributions in numpy.random

- Many other probability distributions are implemented in numpy.random. See this link for information about them.
- There is a useful command to shuffle an array: randomizing the order of the entries in the array: np.random.shuffle(the_array).
 - This changes the_array in place.

Some miscellany about distributions in numpy.random

- Many other probability distributions are implemented in numpy.random. See this link for information about them.
- There is a useful command to shuffle an array: randomizing the order of the entries in the array: np.random.shuffle(the_array).
 - This changes the_array in place.
- Not just for 1d arrays; can get a matrix (or any order tensor) with entries sampled from the distribution by adjusting the size argument.

```
| | # to get 30x2 matrix, entries from normal N(0,1)
| np.random.normal(size=(30,2))
```

Outline

Random functions in NumPy

Defining custom functions

Importing data

How to define a custom function

The basic structure for a definition of a custom function has four parts: the function name, a list of arguments it takes, the "body" of the function (what happens when it is called), and what it returns.

```
Like this:
```

```
def function_name(argument1, argument2):
    # in this part is the body of the function
    return function_output
4
```

How to define a custom function

Like this:

The basic structure for a definition of a custom function has four parts: the function name, a list of arguments it takes, the "body" of the function (what happens when it is called), and what it returns.

```
def function_name(argument1, argument2):
    # in this part is the body of the function
    return function_output
4
```

Example. Here is a function that takes a 1d array as input. It makes a copy of it, but in reversed order. Then it multiplies these together entry-wise, and any negative numbers obtained are replaced with o. It then returns the resulting array of non-negative numbers.

How to define a custom function

The basic structure for a definition of a custom function has four parts: the function name, a list of arguments it takes, the "body" of the function (what happens when it is called), and what it returns.

Like this:

```
def function_name(argument1, argument2):
# in this part is the body of the function
return function_output
4
```

Example. Here is a function that takes a 1d array as input. It makes a copy of it, but in reversed order. Then it multiplies these together entry-wise, and any negative numbers obtained are replaced with o. It then returns the resulting array of non-negative numbers.

```
1  def my_function(v):
2     reverse_v = v[::-1]
3     multiplied = reverse_v * v
4     zeros = np.zeros(len(v))
5     return np.maximum(multiplied, zeros)
```

A custom function to help with a plot

Say that I have 500 points in the plane. Maybe they are selected randomly in some way, such as

```
p = np.random.uniform(-1, 1, size=(500,2))
```

A custom function to help with a plot

Say that I have 500 points in the plane. Maybe they are selected randomly in some way, such as

```
p = np.random.uniform(-1, 1, size=(500,2))
```

Now, say that I want to plot them, coloring them dark blue if their dot product with the vector (2,-2/3) is negative, and coloring them a salmon color otherwise.

An efficient way to make the array that contains the colors, ordered as the points are?

A custom function to help with a plot

Say that I have 500 points in the plane. Maybe they are selected randomly in some way, such as

```
p = np.random.uniform(-1, 1, size=(500,2))
```

Now, say that I want to plot them, coloring them dark blue if their dot product with the vector (2,-2/3) is negative, and coloring them a salmon color otherwise.

An efficient way to make the array that contains the colors, ordered as the points are?

```
def coloring(array_of_points):
    ref_vector = np.array([2,-2/3])
    dotvalues = array_of_points@ref_vector
    colors = np.array(['darkblue' if v < 0 else 'salmon' for v in dotvalues])
    return colors</pre>
```

Additional arguments, default values, keyword arguments

```
def my_function(v, *, translate=2):
    reverse_v = v[::-1]
    multiplied = reverse_v * v + translate
    zeros = np.zeros(len(v))
    return np.maximum(multiplied, zeros)
```

Outline

Random functions in NumPy

Defining custom functions

Importing data

For this first example, we'll keep working with data very simple. Assumption: data is contained in a CSV file, representing a "spreadsheet" of values in columns.

For this first example, we'll keep working with data very simple. Assumption: data is contained in a CSV file, representing a "spreadsheet" of values in columns.

- 1. Import Pandas, command: import pandas as pd.
- If file is in same folder as your Jupyter notebook, and called file1.csv, then assign

For this first example, we'll keep working with data very simple. Assumption: data is contained in a CSV file, representing a "spreadsheet" of values in columns.

- 1. Import Pandas, command: import pandas as pd.
- If file is in same folder as your Jupyter notebook, and called file1.csv, then assign

```
df = pd.read_csv('file1.csv')
```

The output, df, is a Pandas DataFrame. Assuming your CSV file had a first line with column headings ('column1', 'column2',...etc.), the values in the first column, type df ['column1'].

For this first example, we'll keep working with data very simple. Assumption: data is contained in a CSV file, representing a "spreadsheet" of values in columns.

- 1. Import Pandas, command: import pandas as pd.
- If file is in same folder as your Jupyter notebook, and called file1.csv, then assign

```
df = pd.read_csv('file1.csv')
```

The output, df, is a Pandas DataFrame. Assuming your CSV file had a first line with column headings ('column1', 'column2',...etc.), the values in the first column, type df ['column1'].

A column of a dataframe has a method, .to_numpy(), that converts it to a NumPy array.

For the data set provided, summer.csv, assign it as a dataframe, like with variable df on last slide.

 $^{^4}$ Considering x as the independent variable and y as the *response* variable.

For the data set provided, summer.csv, assign it as a dataframe, like with variable df on last slide.

Make two NumPy arrays called so2 and pm10 from columns 'SO2' and 'PM10'. These will be x-coordinates and y-coordinates. To plot the points in the plane, use the scatter function in pyplot.

⁴Considering x as the independent variable and y as the response variable.

For the data set provided, summer.csv, assign it as a dataframe, like with variable df on last slide.

Make two NumPy arrays called so2 and pm10 from columns 'SO2' and 'PM10'. These will be x-coordinates and y-coordinates. To plot the points in the plane, use the scatter function in pyplot.

```
plt.scatter(so2, pm10)
plt.show()
```

⁴Considering x as the independent variable and y as the response variable.

For the data set provided, summer.csv, assign it as a dataframe, like with variable df on last slide.

Make two NumPy arrays called so2 and pm10 from columns 'SO2' and 'PM10'. These will be x-coordinates and y-coordinates. To plot the points in the plane, use the scatter function in pyplot.

```
plt.scatter(so2, pm10)
plt.show()
```

Getting the "best fit" regression line⁴ is straightforward in NumPy.

```
1  # returns slope and intercept of best fit line
2  | np.polyfit(so2, pm10, 1)
```

 $^{^4}$ Considering x as the independent variable and y as the response variable.