Bayes Theorem

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$
posterior likelihood prior

Suppose the event E is that it rains tomorrow, and F is the event that it is cloudy today.

- Prior. Our guess for the chance of rain tomorrow, with no extra info.
- Likelihood. The probability of a cloudy day before rain.
- Posterior. Our updated probability of rain tomorrow after observing clouds today
- Evidence P(F) is the chance of a cloudy day, with no extra info.

Bayes Theorem

- If repeat an experiment many times, can think of probability of an event as being the fraction of times event occurs n(E) n
- What if we can't repeat the experiment?
 - Axioms of probability still all work fine
 - Probability as frequency doesn't work ...
 - ... interpret probability as belief
 - "Bayesian" vs "frequentist"

http://xkcd.com/1132/

Overview

- Independence
- Examples
- Conditional Independence

In English: two events E and F are independent if the order in which they occur doesn't matter. Alternatively, if observing one doesn't affect the other.

- Event E is survive parachute jump, event F is event that put a
 parachute on. We expect the order to matter: jumping and then
 putting parachute on (event E then F) is not the same as putting
 parachute on and jumping (F then E).
- Draw a ball from a bag with green balls and orange balls. Then
 draw another. For second ball there are fewer balls left in bag (since
 have taken one out), so expect chance of drawing a green ball to
 have changed.
- Toss a coin twice. We expect that the outcome of the second toss does not depend on the outcome of the first.

Definition. Two events E and F are **independent** if

$$P(E \cap F) = P(E)P(F)$$

When events E and F are independent then P(E|F) = P(E) (recall chain rule: $P(E \cap F) = P(E|F)P(F)$). Note: P(E|F) = P(E) is not used as the definition however.

• Otherwise E and F are **dependent** events

Quick Examples

- Pick a random leaving cert student are the events "applied to TCD" and "applied to UCD" independent?
- Probably not if you apply to one you're more likely to apply to the other
- Pick a random person in Ireland are the events "are a TCD student" and "have brown eyes" independent?
- Probably yes colour of eyes probably not related to whether you're at TCD or not.
- Gambler's Fallacy a run of heads when flipping a coin doesn't make you "due for a tails".

Quick Examples

Roll two 6-sided dice. Let E be the event that the first dice is 1 and F the event that the second dice is 1.

- $P(E) = \frac{1}{6}$, $P(F) = \frac{1}{6}$, $P(E \cap F) = \frac{1}{36}$
- $P(E \cap F) = P(E)P(F)$ for E and F are independent.

Let G be the event that the dice sum to 5 (outcomes are $\{(1,4),(2,3),(3,2),(4,1)\}.$

- $P(E) = \frac{1}{6}$, $P(G) = \frac{1}{9}$, $P(E \cap G) = \frac{1}{36}$
- $P(E \cap G) \neq P(E)P(G)$ for E and G are dependent.

 Three events E, F and G are independent if they are pairwise independent and triply independent

$$P(E \cap F \cap G) = P(E)P(F)P(G)$$

$$P(E \cap F) = P(E)P(F)$$

$$P(E \cap G) = P(E)P(G)$$

$$P(F \cap G) = P(F)P(G)$$

Pairwise independence is not enough.

Are three events independent if they are pairwise independent ?

- Four balls in an urn numbered 110, 101, 011, 000
- Let A_k be the event of a 1 in the kth place.
- $P(A_k) = \frac{1}{2}$, $P(A_l \cap A_k) = \frac{1}{4}$, $P(A_1 \cap A_2 \cap A_3) = 0$!

Generating Random Bits

- A computer produces a series of random bits, with probabilty p of producing a 1
- Each bit generated is an independent trial
- Event E is that the first n bits are 1s, followed by a single 0
- What is *P*(*E*) ?

$$P(first \ n \ 1's) = P(1st \ bit = 1)P(2nd \ bit = 1) \cdots P(nth \ bit = 1)$$
 $= p^n$
 $P(n+1 \ bit = 0) = (1-p)$
 $P(E) = P(first \ n \ 1's)P(n+1 \ bit = 0) = p^n(1-p)$

Coin flips

- Say a coin comes up heads with probability p (need not be $\frac{1}{2}$)
- Each coin flip is an independent trial
- $P(n \text{ heads on } n \text{ coin flips}) = p^n$
- $P(n \text{ tails on } n \text{ coin flips}) = (1-p)^n$
- $P(first \ k \ heads, \ then \ n-k \ tails) = p^k(1-p)^{n-k}$
- $P(\text{exactly } k \text{ heads on } n \text{ flips}) = \binom{n}{k} p^k (1-p)^{n-k}$

Sending Messages Through a Network

A mobile handset has both an LTE and a WiFi interface.

- The probability that the LTE interface is functioning is p₁
- The probability that the WiFi interface is functioning is p_2
- E is the event that there is at least one functioning interface.
- What is P(E) ?

$$P(E) = 1 - P(both interfaces fail) = 1 - P(LTE fails)P(WiFi fails)$$

= $1 - (1 - p_1)(1 - p_2)$

Hash Tables

- m strings are hashed (equally randomly) into a hash table with n buckets
- Each string hashed is an independent trial
- Event E is that at least one string is hashed to the first bucket
- What is P(E) ?

- Event F_i is that string i is not hashed into first bucket, $i = 1, 2, \dots, m$
- $P(F_i) = 1 \frac{1}{n} = \frac{n-1}{n}$
- Event $F_1 \cap F_2 \cap \cdots F_m$ is that no strings hashed to first bucket

$$P(E) = 1 - P(F_1 \cap F_2 \cap \cdots \cap F_m) = 1 - P(F_1)P(F_2) \cdots P(F_m)$$
$$= 1 - \left(\frac{n-1}{n}\right)^m$$

Hash Tables (again)

- m strings are hashed (unequally) into a hash table with n buckets
- Each string hashed is an independent trial with probability p_i of getting hashed into bucket i
- Event E is that at least one of buckets 1 to k has ≥ 1 string hashed to it.
- What is P(E) ?

- Event F_i is that at no string is hashed into bucket i
- $P(F_i) = (1 p_i)^m$
- Event $F_1 \cap F_2 \cap \cdots \cap F_k$ is that no strings hashed to buckets 1 to k.

$$P(E) = 1 - P(F_1 \cap F_2 \cap \cdots \cap F_m) = 1 - P(F_1)P(F_2) \cdots P(F_m)$$

= 1 - (1 - \rho_1)^m (1 - \rho_2)^m \cdots (1 - \rho_k)^m

A Word of Caution

- When we assume events E and F are independent and use the product P(E)P(F) this can be v small.
- Housing example:
 - Suppose $P(\text{one household defaults in mortgage}) = \frac{1}{100}$. If assume independent, then probability that two households default is $\frac{1}{100} \times \frac{1}{100} = \frac{1}{10,000}$. And of three households $\frac{1}{1,000,000}$ etc.
 - But what if this assumption is wrong? Then probability of joint events might be $\underline{\text{much}}$ higher. E.g. suppose large employers closes down in a small town then prob of > 3 households defaulting might be much greater than 1 in 1M.
- · Crypto example:
 - Assume random number generator produces independent samples
 - But what if not true?

Conditional Independence

Say we rolled two 6-sided dice.

- $S = \{(1,1), (1,2), (1,3), \cdots, (6,1), (6,2), \cdots\}$ (36 possibilities)
- E is the event that the first dice comes up 1
- F is the event that the second dice comes up 6
- So $E \cap F$ is the event that the first dice is 1 and the second 6
- G is the event that the dice sum to 7

Clearly E and F are independent: $P(E \cap F) = P(E)P(F) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$

- Now suppose that we have observed event G. What are the probabilities of events E, F and E ∩ F now ?
- $S \cap G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$
- $E \cap G = \{(1,6)\}, F \cap G = \{(1,6)\}$
- $P(E|G) = \frac{1}{6}$, $P(F|G) = \frac{1}{6}$
- $P(E \cap F|G) = \frac{1}{6} \neq P(E|G)P(F|G) \rightarrow \text{dependent}.$

Key takeaway: Independent events can become dependent when we condition on additional information. Also dependent events can become independent.

Conditional Independence

Two events E and F are called conditionally independent given G
 if:

$$P(E \cap F|G) = P(E|G)P(F|G)$$

It follows that $P(E|F \cap G) = P(E|G)$ (apply Bayes rule $P(E|F \cap G) = P(E \cap F|G)/P(F|G)$)

- In English, even after observing event *G* the events *E* and *F* still do not depend on one another
- If E and F are independent, does it follow that $P(E \cap F|G) = P(E|G)P(F|G)$? No.

Breaking Dependence

Take the following three events:

- Sample space $S = \{ days of week \}$
- A is that it is not a Monday, $P(A) = \frac{6}{7}$
- B is that it is a Saturday, $P(B) = \frac{1}{7}$
- C is that it is the weekend

Note that A and B are dependent events $(P(A \cap B) = \frac{1}{7} \neq P(A)P(B))$. What happens when we condition on C?

- P(A|C) = 1, $P(B|C) = \frac{1}{2}$.
- $P(A \cap B|C) = \frac{1}{2} = P(A|C)P(B|C)$
- Dependent events can become independent by conditioning on additional information.