Q. No.	Expected Answer / Value Points	Marks	Total Marks
	SECTION-A		
SET1,Q1 SET2,Q4 SET3,Q5	No work is done /		
BL13,Q3	$\mathbf{W} = \mathbf{q} \mathbf{V}_{AB} = \mathbf{q} \times 0 = 0$	1	1
SET1,Q2	A diamagnetic specimen would move towards the weaker region of the field	1	
SET2,Q1 SET3,Q3	while a paramagnetic specimen would move towards the stronger region. A diamagnetic specimen is repelled by a magnet while a paramagnetic		
	specimen moves towards the magnet./ The paramagnetic get aligned along B and the diagrammatic perpendicular to the field.		
GETT1 02			1
SET1,Q3 SET2,Q5 SET3,Q2	Transmitter, Medium or Channel and Receiver.	1	1
SET1,Q4 SET2,Q3 SET3,Q1.	It is due to least scattering of red light as it has the longest wavelength/		
	As per Rayleigh's scattering, the amount of light scattered $\propto \frac{1}{\lambda^4}$	1	1
SET1,Q5 SET2,Q2	E = 2V	1/2	
SET3,Q4	$r=2\Omega$	1/2	1
	SECTION B		
SET1,Q6	0_0.1.0.1.2		
SET2,Q9 SET3,Q8.	Definition- 1 Reason- 1/2 Role of bandpass filter- 1/2		
	Modulation index is the ratio of the amplitude of modulating signal to that of carrier wave	1	
	Alternatively $\mu = {A_m \over A_c}$		
	Reason- To avoid distortion.	1/2	
	Role- A bandpass filter rejects low and high frequencies and allows a band of frequencies to pass through.	1/2	2

1 FOURTH DRAFT 10th March/2016 4:00 PM

SET1,Q7 SET2,Q10 SET3,Q6	Path of emergent ray Naming the face Justification 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	P 30 Normal	1	
	Face-AC		
	Here $i_c = \sin^{-1}(\frac{2}{3})$ = $\sin^{-1}(0.6)$	1/2	2
	$\angle i$ on face AC is 30° which is less than $\angle i_c$. Hence the ray get replaced here.	1/2	
SET1,Q8 SET2,Q6 SET3,Q7	Formulae of Kinetic energy and deBrogliea wavelength Calculation and Result 1/2 +1/2 1/2+1/2		
	Kinetic Energy for the second state- $E_k = \frac{13.6eV}{n^2} = \frac{13.6eV}{4} = 3.4X1.6X10^{-19}J$	1/2	
	De Broglies wavelength $\lambda = \frac{h}{\sqrt{2mE_k}}$	1/2	
	$=\frac{6.63X10^{-34}}{\sqrt{2X9.1X10^{-31}X3.4X1.6X10^{-19}}}$	1/2	
	= 0.067nm	1/2	2
SET1,Q9 SET2,Q8 SET3,Q10	Definition 1 Formula 1/2 Calculation and Result 1/2		
	The minimum energy, required to free the electron from the ground state of the hydrogen atom, is known as Ionization Energy.	1	

2 FOURTH DRAFT 10th March/2016 4:00 PM

	$E_o = \frac{me^4}{8 \in_o^2 h^2} i.e, E_o \propto m$ Therefore, Ionization Energy will become 200 times OR	1/2	2
		72	2
	Formula 1 Calculation and Result 1/2+1/2		
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$ For shortest wavelength, $n = \alpha$	1	
	For shortest wavelength, if – a		
	Therefore, $\frac{1}{\lambda} = \frac{R}{4} = > \lambda = \frac{4}{R} = 4 \times 10^{-7} \text{m}$	1/2	
		1/2	2
SET1,Q10 SET2,Q7 SET3,Q9	a) Relation for terminal potential $\frac{1}{2}$ b) Justification $\frac{1}{2}$ c) Explanation (parallel and series) $\frac{1}{2} + \frac{1}{2}$ a) Effective resistance of the circuit $R_E = 6\Omega$ $\therefore I = \frac{12A}{6} = 2A$		
	Terminal potential difference across the cell, V=E-ir	1/2	
	Also p.d. across 4Ω resistor = $4X2V=8V$ Hence the volmeter gives the same reading in the two cases.	1/2	
	b) In series -current same In parallel – potential same	1/2 1/2	2
0EE1 011	SECTION C		
SET1,Q11 SET2,Q15 SET3,Q22	Definition- i.Diagram of Equipotential Surface ii.Diagram and reason 1/2 +1/2		
	Surface with a constant value of potential at all points on the surface.	1/2	

3 FOURTH DRAFT 10th March/2016 4:00 PM

		1/2	
	ii.	1/2	
	$V \propto \frac{1}{r}$	1/2	
	iii.No	1/2	
	If the field lines are tangential, work will be done in moving a charge on the surface which goes against the definition of equipotential surface.	1/2	3
SET1,Q12 SET2,Q14 SET3,Q12	Statement 1 Plotting the graph 1 Calculating value of (μ) refractive index 1 i. When the pass axis of a poloroid makes an angle θ with the plane of polarisation of polorised light of intensity I_o incident on it, then the intensity of the transmitted emergent light is given by $I=I_o\cos^2\theta$ Note: If the student writes the formula $I=I_o\cos^2\theta$ and draws the	1	

4 FOURTH DRAFT 10th March/2016 4:00 PM

SET1,Q14			
SET2,Q12 SET3,Q19	(a) Basic nuclear process 1		
SE13,Q17	(b) (i) value of x, y, z		
	(ii) value of a, b, c 1		
	a. Basic nuclear reaction	1	
	$P \rightarrow n + e^+ + \nu$		
	b.(i) $x = \beta^+/{}_1^0 e$, y = 5, z = 11 (ii) a=10, b=2, c=4	1	3
SET1,Q15			
SET2,Q11 SET3,Q21	(i) Relation for drift velocity 2 (ii) Effect of temperature 1		
5213,Q21	(a)		
	i. When a potential difference is applied across a conductor, an electric field is produced and free electrons are acted upon by an electric force (= - Ee). Due to this, electrons accelerate and keep colliding with each other and acquire a constant (average) velocity v_d :, $F_e = -Ee$	1/2	
	$\therefore, \boldsymbol{F}_{\boldsymbol{e}} = \frac{-\boldsymbol{e}\boldsymbol{V}}{l}$	1/2	
	As $a = \frac{-F}{m} = \frac{-eV}{m}$		
	as $v = u+at$		
	u=0 , $t= au$ (relaxation time)	1/2	
	$v_d = -a \tau$		
	$v_d = rac{-eV}{lm} au$	1/2	
	ii. Decreases, as time of relaxation decreases.	1/2, 1/2	3
SET1,Q16			
SET2,Q22 SET3,Q15	Proof for average power 1½ Effect on brightness ½ Explanation 1		

6 FOURTH DRAFT 10th March/2016 4:00 PM

		1	
	i) $P_{av} = I_{av} \times e_{av} \cos \emptyset$	1/2	
	For an ideal inductor, $\phi = \frac{\pi}{2}$	1/2	
	$\therefore P_{av} = l_{av} \times e_{av} \cos \frac{\pi}{2}$		
	$P_{av}=0$	1/2	
	ii) Brightness decreases	1/2	
		1/2	
	Because as iron rod is inserted inductance increases. Thus, current decreases and brightness decreases.	1/2	3
SET1,Q17			
SET2,Q21 SET3,Q16	i.Due to diffusion and drift, the electrons and holes move across the junctions, creating a final stage in which a region is created across the junction wall, which gets devoid of the mobile charge carriers. This region is called Barriers potential	1/2+1/2	
	ii		
	L	1	L

7 FOURTH DRAFT 10th March/2016 4:00 PM

	reflected back to the earth by the ionosphere.		
SET1,Q19 SET2,Q19 SET3,Q17	i. Identification 1+1 ii. Momentary deflection of galvanometer Reason 1/2 Expressions 1/2		
	i. a. Microwaves b. X-rays	1	
	ii Due to conduction current in the connecting wires and a displacement current between the plates $I_d = \epsilon_0 \frac{d\emptyset_E}{dt}$	1/2	3
SET1,Q20 SET2,Q18 SET3,Q11	i. Collection current ii. Base Current iii. Base voltage $ \frac{1}{2} + \frac{1}{2} $ $ \frac{1}{2} + \frac{1}{2} $ $ \frac{1}{2} + \frac{1}{2} $		
	i. Input signal Voltage $ AC \text{ Collector Current-} \boldsymbol{\dot{i}_c} = \frac{\boldsymbol{v_{ce}}}{\boldsymbol{R_c}} = \boldsymbol{1}.\boldsymbol{0mA} $	1/2 +1/2	
	Base Current- $\vec{l}_b = \frac{\vec{l}_c}{\beta} = \frac{1.0mA}{100} = 0.01mA$	1/2 +1/2 1/2 +1/2	
	Base signal Voltage= $i_b R = 0.01 \text{mA} \text{ x} 1 \text{k}\Omega = 10 \text{mv}$	1/2 +1/2	3

SET1,Q21 SET2,Q17 SET3,Q18	Definition- wave front 1 Statement- Huygen's Principle 1 Labelled diagram 1	1	
	i. Huygen's Principle- Each point of the wave front is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions. These travel with the same velocity as that of the original wave front.	1 1/2	
	ii. The shape and position of the wave front, after time 't', is given by the tangential envelope to the secondary wavelets.	1/2	
	Plane wavefront Transvevsc wave front	1/2 + 1/2	3
	i. Reason for no change in frequency after reflection and the refraction of light- ii. Reduction in Energy iii. Factors determining the intensity of light		

ii.No. [Energy carried by a wave depends on the amplitude of the wave, not on the speed of wave propagation].

iii. For a given frequency, intensity of light in the photon picture is

	determined by the number of photon incident normally on a crossing an unit area per unit time.	1/2 +1/2 1/2 +1/2	3
SET1,Q22 SET2,Q16 SET3,Q20	Explanation for magnetic field on the axis of current loop 2 Drawing- magnetic field lines 1 i.	1/2	
	$\overrightarrow{dB} = \frac{\mu_o \overrightarrow{dl} X \overrightarrow{r}}{4\pi r^3}$	1/2	
	$dB_{x} = \frac{\mu_{0} I dl R}{4\pi (x^{2} + R^{2})^{\frac{3}{2}}}$ $\vec{B} = B_{x} \hat{i} = \frac{\mu_{oIR}^{2}}{2(x^{2}R^{2})^{\frac{3}{2}}} \hat{i}$	1/2	
	$\overrightarrow{B} = B_x \hat{\imath} = \frac{\mu_{oIR^2}}{2(x^2R^2)^{\frac{3}{2}}} \hat{\imath}$ ii.	1/2	

11 FOURTH DRAFT 10th March/2016 4:00 PM

		1	3
	SECTION D		
SET1,Q23 SET2,Q23 SET3,Q23	 a. Principle and working b. Two values, each, displayed by i. Ram i. School teacher ii. School teacher iii. School teacher	1 1/2 +1/2	3

SET1,Q24 SET2,Q26 SET3,Q25	i. Labelled diagram Principle 1 ii. Expression for the turn ratio in terms of voltage iii. Ratio of primary and secondary currents in terms of turns 1 iv. Current drawn by primary Formula- Calculation and result i.Labelled diagram SOFT IRON CORE	1	

SET1,Q25 SET2,Q24 SET3,Q26 Q25.

i.	Derivation of $\frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R}$	11/2
	$\frac{1}{f} = \left(\frac{n_2 - n}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	11/2

ii. Formula ½

Calculation and result

1/2

11/2

Ray diagram showing real image formation as per prescription

$$\theta_1 = \alpha + \beta$$

$$\theta_2 = \beta - \gamma$$
 $\therefore \gamma = \beta - \theta$

1/2

For paraxial rays θ_1 and θ_2 are small

Therefore, $n_2 \sin \theta_2 = n_1 \sin \theta_2$ (Snells law)

Reduces to

At N
$$\frac{Sini}{Sinr} \sim \frac{i}{r} = \frac{n_2}{n_1}$$

 $\therefore n_1 = rXn_2$

$$(\alpha + \beta)n_1 = (\beta - \theta)n_2$$

$$n_1 \left(\frac{NM}{OM} + \frac{NM}{MC} \right) = \\ \left(\frac{NM}{MC} - \frac{NM}{MI} \right) n_2$$

$$n_1\left(\frac{1}{-u} + \frac{1}{+R}\right) = \left(\frac{1}{+R} - \frac{1}{u}\right)n_2$$

$$\frac{n_2}{v'} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R_1}$$

1/2

1

Appying above relations to refraction through a lens

1/2

Reason

Objective For Eyepiece B' E A A B B A	1½	
Definition-It is the ratio of the angle subtended at the eye, by the final image, to the angle which the object subtends at the lens, or the eye.	1	
b. i.Objective=.5D	1/2	
Eye lens = 10D	1/2	
This choice would give higher magnification as $M = \frac{f_o}{f_e} = \frac{P_e}{P_o}$	1/2 +1/2	
ii. High resolving power/ Brighter image / lower limit of resolution(any one)	1/2	5

SET1,Q26
SET2,Q25
SET3,Q24

i. Derivation for electric field due to infinite plane

Sheet of charge Directions of field

1/2+1/2

ii. Formula

Calculation and result

 $\frac{1/2}{11/2}$

1/2

Symmetry of situation suggests that \overrightarrow{E} is perpendicular to the plane a \Longrightarrow Gaussian surface through P like a cylinder of flat caps parallel to the plane and one cap passing through P. the plane being the plane of symmetry for the Gaussian surface.

$$\oint \vec{E} \cdot \vec{ds} = \int \vec{E} \cdot \vec{ds}$$
through caps

1/2

 $\vec{E} \perp \vec{ds}$ for all over curved surface and hence $\vec{E}.\vec{ds} = 0$

$$\int E ds = 2E\Delta s$$

caps

 Δs = area of each cap

By Gauss' law

$$\oint \overrightarrow{E.ds} = \frac{q}{\epsilon_o} = \frac{\sigma \Delta s}{\epsilon_o}$$

$$\therefore 2E\Delta s = \frac{\sigma \Delta s}{\epsilon_o}$$

$$E = \frac{\sigma}{2\varepsilon_o}$$

1/2

1/2

If σ is positive \overrightarrow{E} points normally outwards/away from the sheet

1/2

If σ is (-)ve \overrightarrow{E} points normally inwards/towards the sheet

$U_s = \frac{1}{2}C_s V_s^2$	1/2	
$U_{p} = \frac{1}{2}C_{p}V_{p}^{2}J$ $\Rightarrow \frac{V_{series}}{V_{parallel}} = \sqrt{\frac{C_{equivalent\ parallel}}{C_{equivalent\ series}}}$	1/2	
	1/2	
$= \sqrt{\frac{\frac{C_1 + C_2}{C_1 C_2}}{\frac{C_1 + C_2}{C_1 + C_2}}}$ $= \frac{C_1 + C_2}{\sqrt{C_1 C_2}} = \frac{3}{\sqrt{2}}$	1/2	
$\sqrt{c_1c_2}$ $\sqrt{2}$		
i.Deriving the expression for Field between the plate &outside $1/2 + 1/2$ Direction of electric field inside and outside $1/2 + 1/2$ Potential difference between the plates 1 Capacitance 1 ii.Direction of flow of charge $1/2 + 1/2$		
$+\sigma \qquad -\sigma$ inside $E_1 \qquad E_2 \qquad \overrightarrow{E_2} \qquad \overrightarrow{E_2}$	1/2 + 1/2	
Outside $\stackrel{ ightarrow}{E_1}$		
Plate 1 Plate 2		

20 FOURTH DRAFT 10th March/2016 4:00 PM

Inside		
$=\frac{\sigma+\sigma}{2E_0}=\frac{\sigma}{E_0}$		
Outside $ \xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow{E} E_2 - E_1 $		
$= \frac{\sigma - \sigma}{2\epsilon_0} = 0$ b. Potential difference between plates	1/2	
$V = Ed = \frac{1}{\epsilon_o} \frac{Qd}{A}$	1/2 + 1/2	
c. Capacitance $C = \frac{Q}{V} = \frac{\epsilon_0 A}{d}$	1/2 + 1/2	
ii. As potential on and inside a charged sphere is given $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{1}{4\pi\epsilon_0} \cdot \frac{4\pi r^2 \sigma}{r}$	1/2	
\therefore , $V \propto r$ Hence, the bigger sphere will be at higher potential, so charge will flow from bigger sphere to smaller sphere.	1/2	5