6.3 Kernel and Range

Definition

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the set of vectors in \mathbb{R}^n that T maps into $\mathbf{0}$ is called the kernel of T and is denoted by $\ker(T)$.

Example

Find the kernels of the following linear operators on \mathbb{R}^3 .

(a) The zero operator

(b) The identity operator

(c) The orthogonal projection onto the *xy*-plane

(d) A rotation about a line through the origin

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the kernel of T is a subspace of \mathbb{R}^n .

Theorem

If A is an $m \times n$ matrix, then the kernel of the corresponding linear transformation is the solution space of $A\mathbf{x} = \mathbf{0}$.

Definition

If A is an $m \times n$ matrix, then the solution space of the linear system $A\mathbf{x} = \mathbf{0}$, or, equivalently, the kernel of the transformation T_A , is called the null space of A and is denoted by null(A).

Example

Find the null space of
$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then T maps subspaces of \mathbb{R}^n into subspaces of \mathbb{R}^m .

Range of a linear transformation

Definition

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the range of T, denoted by $\operatorname{ran}(T)$, is the set of all vectors in \mathbb{R}^m that are images of at least one vector in \mathbb{R}^n .

Range of a linear transformation

Example

Find the ranges of the following linear operators on \mathbb{R}^3 .

(a) The zero operator

(b) The identity operator

(c) The orthogonal projection onto the xy-plane

(d) A rotation about a line through the origin

Range of a linear transformation

Theorem

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then ran(T) is a subspace of \mathbb{R}^m .

Theorem

If A is an $m \times n$ matrix, then the range of the corresponding linear transformation is the column space of A.

Existence question

Is every vector in \mathbb{R}^m the image of at least one vector in \mathbb{R}^n ?

Uniqueness question

Can two different vectors in \mathbb{R}^n have the same image in \mathbb{R}^m ?

Definition

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto if its range is the entire codomain \mathbb{R}^m .

Definition

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if T maps distinct vectors in \mathbb{R}^n into distinct vectors in \mathbb{R}^m .

Example

Chech whether the following transformations are onto or one-to-one.

(a) Rotation about the origin in \mathbb{R}^2 .

(b) Orthgonal projection on the xy-plane in \mathbb{R}^3 .

(c) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x, y, 0).

(d) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, y).

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the followings are equivalent:

- (a) T is one-to-one.
- (b) $\ker(T) = \{0\}.$

Theorem

If A is an $m \times n$ matrix, then the corresponding linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if the linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem

If A is an $m \times n$ matrix, then the corresponding linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is onto if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .

Linear operator

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator on \mathbb{R}^n , then T is one-to-one if and only if it is onto.

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.
- 9. $\det(A) \neq 0$.
- 10. T_A is one-to-one.
- 11. T_A is onto.