Random Forest Hyperparameters

Jerome Chou

May 3, 2025

Outline

Random Forest Hyperparameters

Measuring Model Complexity

Parameter Interaction Analysis

Key Random Forest Hyperparameters (1/2)

- n_estimators: Number of decision trees
 - Typical range: 50-500, depending on dataset size and complexity
 - ► Too few: underfitting; Too many: diminishing returns
- max_depth: Maximum depth of each tree
 - Controls tree complexity and prevents overfitting
 - Options: integer or None (unlimited)
 - ► Typical range: 10-100
- min_samples_split: Minimum samples required to split a node
 - ► Controls how strictly nodes are split
 - ► Options: integer or float (percentage)
 - Larger values reduce overfitting

Key Random Forest Hyperparameters (2/2)

- ▶ min_samples_leaf: Minimum samples required in leaf nodes
 - ► Ensures each leaf has certain number of samples
 - Options: integer or float (percentage)
 - ► Typical range: 1-10
- max_features: Number of features to consider for each split
 - Options: "sqrt", "log2", integer, float, None
 - Classification recommendation: "sqrt"
- criterion: Function to measure split quality
 - Classification: "gini" (default), "entropy"
 - Regression: "squared_error" (default), "absolute_error", "friedman_mse"

Additional Hyperparameters

- bootstrap: Whether to use bootstrap sampling
 - ► True: Use bootstrap samples to build trees
 - ► False: Use all data for each tree
- random_state: Random seed for reproducibility
- ▶ **oob_score**: Whether to use out-of-bag samples for evaluation
- class_weight: Weights for handling imbalanced data
 - "balanced": Weights inversely proportional to class frequencies
 - Dictionary: Manually specify weights per class
- max_samples: Number of samples to draw from training data
- warm_start: Whether to reuse previous trees when adding more

Dimensions of Model Complexity

Structural Complexity:

- Number of trees
- Tree depth
- Total node count
- ► Leaf node count

Statistical Complexity:

- ► Effective parameter count
- Model variance
- Training-validation performance gap
- Minimum Description Length (MDL)

Computational Complexity:

- ► Training/prediction time
- Model size (memory)
- ► Feature usage statistics

Hyperparameters and Complexity Relationship

Hyperparameter	Relationship	Effect on Complexity
n_estimators	Linear	\uparrow More trees \rightarrow \uparrow Complexity
max_depth	Exponential	\uparrow Deeper trees $\rightarrow \uparrow$ Complexity
min_samples_split	Inverse	\downarrow Lower threshold \rightarrow \uparrow Complexity
min_samples_leaf	Inverse	\downarrow Lower threshold \rightarrow \uparrow Complexity
max_features	Direct	\uparrow More features $\rightarrow \uparrow$ Complexity

Complexity Index Calculation

Complexity Index Formula:

$$C = n_estimators \times 2^{max_depth} \times \frac{max_features}{total_features}$$
 (1)

Intuition:

- Trees contribute linearly to complexity
- Depth has exponential impact (each level doubles potential splits)
- ► Feature ratio captures feature selection impact

Example:

► Low complexity:

$$C = 100 \times 2^{10} \times 0.3 = 100 \times 1024 \times 0.3 \approx 30,720$$

High complexity:

$$C = 500 \times 2^{20} \times 1.0 = 500 \times 1,048,576 \times 1.0 \approx 524,288,000$$

Parameter Combination Analysis

Key Insight: Interactions between parameters affect complexity more than individual settings

max_depth × min_samples_leaf relationship:

- ► These parameters have complementary effects:
 - max_depth: Limits vertical growth
 - min_samples_leaf: Limits horizontal splitting
- Their product forms a compound complexity measure
- ► Smaller product → Higher model complexity

Why? Small products allow trees to either:

- Grow very deep with few samples per leaf, or
- Create many fine-grained decisions with minimal data support

Complexity Curves

Using Complexity Curves:

- ► Fix all parameters except one (e.g., max_depth)
- Plot training and validation errors against this parameter
- Observe where validation error starts increasing
- This inflection point indicates optimal complexity balance

Practical Complexity Tuning Strategy

- 1. **Start simple:** Begin with low complexity
 - ► Fewer trees (n_estimators = 100)
 - Limited depth (max_depth = 10)
 - Conservative leaf size (min_samples_leaf = 5)
- 2. Systematic increase: Gradually increase complexity
 - Monitor training and validation performance
 - Track parameter products (max_depth × min_samples_leaf)
 - Use grid search or random search for multiple parameters
- Stop condition: When validation performance plateaus or declines
- 4. Final check: Verify with cross-validation on best candidates

Takeaways

- Random Forest complexity is multidimensional:
 - Structural (trees, depth, nodes)
 - Computational (time, memory)
 - Statistical (variance, generalization)
- Key hyperparameters affect complexity differently:
 - ▶ n_estimators: Linear relationship
 - max_depth: Exponential relationship
 - min_samples_leaf/split: Inverse relationship
- Parameter interactions matter:
 - Product of max_depth × min_samples_leaf is particularly important
 - Smaller products create more complex, potentially overfitted models
- Complexity should be systematically tuned:
 - Start simple and increase complexity gradually
 - Monitor validation performance for optimal balance