Esercizi aggiuntivi (continuità)

- (1) Studiare la continuità delle seguenti funzioni:
 - (a) $\sin(x)$;
 - (b) |x|;
 - (c) e^x ;
 - (d) $\arctan(x)$;
 - (e) $\sqrt[3]{7 + e^x}$;
 - (f) $\log(9 + e^{1-x})$;
 - (g) $\frac{1}{x-3}$;
 - (h) $\frac{x-3}{x^2-3x+2}$;

(i)
$$\Theta(x) = \begin{cases} 0 \text{ se } x < 0 \\ \frac{1}{2} \text{ se } x = 0 \\ 1 \text{ se } x > 0 \end{cases}$$

(j)
$$\begin{cases} x^2 \text{ se } x \neq 0; \\ 1 \text{ se } x = 0 \end{cases}$$

(k)
$$\begin{cases} x - 3 \text{ se } x \le 2 \\ -x^2 + 3 \text{ se } 2 < x < 5 \\ \frac{1}{x} \text{ se } x \ge 5 \end{cases}$$

(1)
$$\operatorname{sinc}(\mathbf{x}) = \begin{cases} \frac{\sin(\mathbf{x})}{\mathbf{x}} & \mathbf{se} \ x \neq 0 \\ 1 & \mathbf{se} \ x = 0 \end{cases}$$

(m)
$$\chi(\mathbf{x}) = \begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \in (\mathbb{R} - \mathbb{Q}) \end{cases}$$

(n)
$$\delta(\mathbf{x}) = \begin{cases} +\infty & \text{se } x = 0 \\ 0 & \text{se } x \neq 0 \end{cases}$$

(o)
$$\begin{cases} x + 2 \text{ se } -2 < x < 3 \\ -x - 2 \text{ se } x \le -2 \\ \sqrt[3]{x - 4} \text{ se } 3 < x \le 5 \\ 2x - 9 \text{ se } x > 5 \end{cases}$$

(p)
$$\begin{cases} \sin(\frac{1}{x}) \text{ se } x \neq 0 \\ 0 \text{ se } x = 0 \end{cases}$$

$$(q) \ \frac{e^x - 1}{x};$$

(r)
$$\begin{cases} \frac{e^x - 1}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

(2) Determinare, al variare di $\alpha \in \mathbb{R}$ e $\beta \in \mathbb{R}$, la continuità delle seguenti funzioni:

(a)
$$\begin{cases} 3x^2 + x + 2 - \alpha \text{ se } x \le 0 \\ \sqrt{x^4 + 1} \text{ se } x > 0 \end{cases}$$

(b)
$$\begin{cases} x^5 - 3\alpha \text{ se } x < 0\\ 2\alpha \cdot e^{x-1} \text{ se } x \ge 0 \end{cases}$$

(c)
$$\begin{cases} 2 - \sqrt{x} \text{ se } x \ge 0\\ 4(x + \alpha) \text{ se } x < 0 \end{cases}$$

(d)
$$\begin{cases} |x-1|^{\alpha} \left[\sin\left(\frac{1}{x-1}\right) + 2 \right] & \text{se } x \neq 1 \\ 0 & \text{se } x = 1 \end{cases}$$

(e)
$$\begin{cases} \frac{\alpha}{2-x} \text{ se } x < 1\\ \beta \text{ se } x = 1\\ \alpha x^2 + x + \beta \text{ se } x > 1 \end{cases}$$

(f)
$$\begin{cases} \alpha x^2 + \beta \text{ se } x \ge 0\\ \log(\alpha x + \beta) \text{ se } x < 0 \end{cases}$$