3. \mathcal{P} vs $\mathcal{N}\mathcal{P}$

- 1. Язык 2-COLOR состоит из кодировок всех графов, заданных матрицами смежности, вершины которых можно корректно окрасить в два цвета (никакие две смежные вершины не имеют один цвет). Верно ли, что язык 2-COLOR лежит в \mathcal{P} ? В \mathcal{NP} ? В $co \mathcal{NP}$?
- 2. Язык HP состоит из всех графов, имеющих гамильтонов путь (несамопересекающийся путь, проходящий через все вершины графа). Язык HC состоит из всех графов, имеющих гамильтонов цикл (цикл, проходящий через все вершины, в котором все вершины, кроме первой и последней, попарно различны). Постройте явные полиномиальные сводимости HC к HP и наоборот.
- **3.** Покажите, что язык всех тавтологичных 3-КНФ является полным в классе $co \mathcal{NP}$. Верно ли это для языка всех тавтологичных 2-КНФ?
- 4. Докажите следующие свойства полиномиальной сводимости:
- (i) Рефлексивность: $A \leq_p A;$ транзитивность: $A \leq_p B, B \leq_p C \implies A \leq_p C;$
- (ii) Если $B \in \mathcal{P}$ и $A \leq_p B$, то $A \in \mathcal{P}$;
- (iii) Если $B \in \mathcal{NP}$ и $A \leq_p B$, то $A \in \mathcal{NP}$.
- **5.** Докажите, что классы \mathcal{P} и \mathcal{NP} замкнуты относительно операции * звезды Клини (была в ТРЯПе). Приведите также и сертификат принадлежности слова языку L^* , где $L \in \mathcal{NP}$.
- **6** (Доп) Верно ли, что класс $co-\mathcal{NP}$ замкнут относительно операции чётной итерации

 $L^{even-*} = \{\varepsilon\} \cup L^2 \cup L^4 \cup \dots?$

7 (Доп) Замкнут ли класс ${\cal P}$ относительно взятия подслова?