

Jul 23, 2024

Neural recordings of spontaneously metastasizing melanomas and melanomas with low metastatic potential

DOI

dx.doi.org/10.17504/protocols.io.81wgbzn7ngpk/v1

Jay Shiralkar¹, Tiana Anthony¹, Grant A McCallum¹, Dominique Durand¹

¹Case Western Reserve University

SPARC Tech. support email: info@neuinfo.org

Grant A McCallum

Case Western Reserve University

DOI: dx.doi.org/10.17504/protocols.io.81wgbzn7ngpk/v1

External link: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297281

Protocol Citation: Jay Shiralkar, Tiana Anthony, Grant A McCallum, Dominique Durand 2024. Neural recordings of spontaneously metastasizing melanomas and melanomas with low metastatic potential. protocols.io

https://dx.doi.org/10.17504/protocols.io.81wgbzn7ngpk/v1

Manuscript citation:

Shiralkar J, Anthony T, McCallum GA, Durand DM (2024) Neural recordings can differentiate between spontaneously metastasizing melanomas and melanomas with low metastatic potential. PLoS ONE 19(2): e0297281. https://doi.org/10.1371/journal.pone.0297281

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: June 18, 2024

Last Modified: July 23, 2024

Protocol Integer ID: 102033

Keywords: Melanoma, tumors, sympathetic nervous system, chronic recording, metastasis, autonomic nervous system, microneurography, murine, mouse, neuroelectric activity

Funders Acknowledgement:

CDMRP - BCRP

Grant ID: W81XWH-18-1-0581

Abstract

Multiple studies report that melanomas are innervated tumors with sensory and sympathetic fibers where these neural fibers play crucial functional roles in tumor growth and metastasis with branch specificity. Yet there is no study which reports the direct neural recording and its pattern during in-vivo progression of the cancer. We performed daily neural recordings from male and female mice bearing orthotopic metastasizing-melanomas and melanomas with low metastatic poential, derived from B16-F10 and B16-F1 cancer cells, respectively. Further, to explore the origins of neural activity, 6-Hydroxidopamine mediated chemical sympathectomy was performed followed by daily microneurographic recordings. We also performed the daily bioluminescent imaging to track in vivo growth of primary tumors and distant metastasis to the cranial area. The protocols contained herein describe the methods, materials and equipment used to accomplish this research.

Materials

MATERIALS

A	В	С	D	E
Protocol	Description	Manufacturer	Part Number	RRID
A. Mouse Models				
	C57BL/6J mice	Jackson Lab oratories		RRID:IMSR_JAX:000664
	B16-F10	ATCC	CRL-6475-LU C2	RRID:CVCL_A4CJ
	B16-F1	ATCC	CRL-6323-LU C2	RRID:CVCL_A4CK
	Dulbecco's Modified Eagle's Medium (DMEM)	ATCC	30-2002	
	10% Fetal Bovine Se rum (FBS)	ATCC	30-2020	
	1% Penicillin-Strepto mycin Solution	ATCC	30- 2300	
	1X Phosphate Buffe red Saline (PBS) (diluted)	Teknova	P3195	
	4% Paraformaldehy de (PFA)	Thermo Fishe	J19943.K2	
B. Chemi cal Sympa thectomy				
	6-hydroxydopamine hyrobromide (6-OHDA)	Sigma-Aldrich	H116	
C. Neural Recording s				
	Isoflurane	Covetrus	29405	
D. Biolum inescence				

A Imaging			D	Е
	D-luciferin salt	Gold Biotech nology	LUCK-1G	
	1X Phosphate Buffe red Saline (PBS) (diluted)	Teknova	P3195	
E. Histolo gy				
	1X Phosphate Buffe red Saline (PBS) (diluted)	Teknova	P3195	
	4% Paraformaldehy de (PFA)	Thermo Fishe	J19943.K2	
	Sucrose	Sigma-Aldrich	S0389	
	Neurofilament antib ody (NF)	Thermo Fishe	2F11	RRID:AB_560286
	Tyrosine Hydroxylas e antibody (TH)	Sigma-Aldrich	AB152	RRID:AB_390204
	Antigen Unmasking S olution, Citrate-Based - pH 6.0	Vector Labs	H-3300-250	
	Peroxidazed 1 (Read y-to-Use)	BioCare Medic al	PX968G	
	Rodent Block M	BioCare Medic al	RBM961H	
	Mouse-on-Mouse HR P-Polymer	BioCare Medic al	MM620G	
	Betazoid DAB	BioCare Medic al	BDB2004H	
	CAT Hematoxylin (Re ady-to-Use)	BioCare Medic al	CATHE-L; Lot n o. 12513B	
	Rodent Decloaker, 10 X, pH 6.6	BioCare Medic al	RD913M / Lot no. 101608	
	Peroxidazed 1, Ready -to-Use	BioCare Medic al	PX968M / Lot no. no070109- 1	
	Rodent Block M: (Rea dy-to-Use)	BioCare Medic al	RMB961/ Lot n o. 091009-1 (Mouse tissue s only)	

А	В	С	D	E
	Rabbit-on-Rodent HR P Polymer: (Ready-to- Use)	BioCare Medic al	RMR622H/ Lot no. 010214	
	Betazoid DAB	BioCare Medic al	BDB2004L / Lo t no. 092509	

EQUIPMENT

A	В	С	D
Protocol	Description	Manufacturer	Part Number
A. Mouse M odels			
	Anesthesia Machine	Parkland Scien tific	SN. 1172
B. Chemical Sympathecto my			
	Insulin syringes	Carepoint Vet	12-7903
C. Neural Re cordings			
	Micromanipulator	WPI	M3301R
	Microneurography n eedle (reference)	FHC	30084
	Microneurography n eedle (active)	FHC	30080
	Neural Amplifier (Ne uro Amp EX)	AD Instrument	FE285
	Neuro Amp EX Head stage	AD Instrument	MLT185
	Signal Acquisition S ystem	AD Instrument	PowerLab 8/35
	Signal Storage and Visualization	AD Instrument	LabChart v8.1.13

A	В	С	D
	Software		
	Spike Sorting Softw are	Citation (2)	UltraMegaSort 2000
D. Biolumine scence Imagi ng			
	BLI imaging system	Perkin-Elmer	In-Vivo Imaging Syste m (IVIS)
	Insulin syringes	Carepoint Vet	12-7903
E. Histology			
	20mL syringes	Nipro	JD+20L

B16-F10-Luc2 & B16-F1-Luc2 Cell Culturing Protocol

- 1 Store the vials containing cells in liquid nitrogen vapor until they are ready for use.
- Thaw in a 37°C water bath, then decontaminate by dipping in or spraying with 70% ethanol. All of the operations from this point on will be carried out under strict aseptic conditions.
- Add vial contents to a complete culture medium, and then centrifuge at approximately 125 \times g for 5 to 7 minutes.
- 4 Add the cell pellet to the recommended complete medium. Medium: DMEM, 10% FBS, 1% Penicillin-Streptomycin
- 5 Incubate the culture at 37°C in a suitable incubator at proper CO₂ exposure: 5% CO₂
- 6 Renew medium every 2-3 days: remove and discard old medium.
- 7 Rinse cell layer with 1X PBS
- Add 2.0 to 3.0 mL of Trypsin solution to 75cm³ flask and observe cells under an inverted microscope until the cell layer is dispersed (usually within 15 minutes). Corning ® T-75 flasks (catalog #430641) are recommended for subculturing this product.
- 9 Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting
- Add appropriate aliquots of the cell suspension to new culture vessels. Cultures can be established between 2×10^4 and 4×10^4 viable cells/cm²
- 11 Incubate cultures at 37°C and 5% CO₂
- Passage cells at least twice after thawing and before inoculation, but no more than 30 times total per cell line.

Under isoflurane anesthesia (2%, 1L/min), each mouse underwent a subcutaneous injection with 5×10^5 cells to the flank area.

Chemical sympathectomy

- 14 Chemical sympathectomy solution was prepared by dissolving 6-hydroxydopamine (6-OHDA, 100 mg/kg body weight) in sterile saline along with 0.01% of ascorbate as a stabilizer. 2 mL of buffer per 5 mg vial provides a solution containing 10 mM 6-hydroxydopamine and 0.01% (w/v) ascorbic acid.
- On the fourth (Day = -4) and second day (Day = -2) before cancer cell inoculation (Day = 0), the drug was injected intraperitoneally (IP) using an insulin syringe.
- After these two initial injections, the drug was administered IP every five days to maintain the sustained effect of denervation. (i.e. Day = +5, +10, +15, etc)

Microneurography and neural recordings

- Neural recordings were performed for thirty minutes for each day under 2% isoflurane in 1 L/min oxygen, for two weeks starting from day 6 post inoculation of cancer cells.
- Microneurography needles were inserted into the primary tumor mass and a ground/reference needle was inserted on the contralateral side.
- By using a micromanipulator, the needles were inserted at the same depth (5 mm) and same distance apart (4 mm), daily, in order to record from the same location. The two recording needles were fixed to a holder and were maintained at a 4 mm separation distance. The holder was mounted on a 1µm, x-y-z resolution micromanipulator system, so that the daily insertion depth could be repeated with certainty.
- The neural data were sampled at 20 kHz and filtered from 500 Hz to 1200 Hz using a 7th order, zero-phase, digital bandpass filter.
 ADInstruments amplifier (FE285) was used for all the recordings. Recorded neural data were displayed and stored in Lab Chart files.
- 21 Lab Chart files were exported into MATLAB (RRID:SCR_001622) compatible files.
- The results were quantified in terms of number of spikes per file using UltraMegaSort2000 (UMS2000) spike sorting program (2) and neural spikes were plotted for ten minutes.

The averaged spike count per 10 minutes, was plotted as a function of days post inoculation of cancer cells.

Bioluminescence imaging

- Images were acquired using Perkin-Elmer's In-Vivo Imaging System (IVIS) Spectrum at 60s exposure.
- Under isoflurane anesthesia (2% at 1L/min), 200 μL of D-luciferin solution (12.5 mg/ml of D-luciferin in sterile phosphate buffer solution) was injected IP using an insulin syringe ten minutes before acquiring the images.
- Total flux was quantified from the primary tumor region in order to quantify the in-vivo growth, as well as from the cranial region to quantify the growth of secondary metastatic foci.
- Same sized regions of interest (ROIs) were used for the images with the same Field of View (FOVs) for a particular day of imaging.

Histology

- At day 10 post-inoculation, under isoflurane anesthesia (2%, 1L/min) the mice were perfused via intracardiac perfusion first using 20 mL of 1X Phosphate Buffered Saline (PBS) solution followed by 20 mL of 4% Paraformaldehyde (PFA) solution.
- The excised tumor tissues were then transferred to paraformaldehyde and refrigerated at 4°C for 24 to 48 hours.
- After fixing in paraformaldehyde, the samples were immersed in a 15% sucrose solution with 1X PBS for 24 hours at 4°C.
- 31 Then, they were moved to a 30% sucrose 1X PBS solution and kept at 4°C until processing
- The samples were formalin-fixed and paraffin-embedded, and 5µm thick slices were subjected to immunohistochemistry chromogenic detection using neurofilament primary antibody (NF, RRID: Thermo Fisher 2F11; TH, RRID: Sigma-Aldrich AB152) to detect the presence of nerve fibers and autonomic nerves, respectively.
 - *Tissues were fixed in 10% NBF, were embedded in paraffin, sectioned and mounted on slides, and then IHC stained.

A	В	С	D	E	F	G	Н	I
Name	RRID	Source or refere nce	Catalog number	Antibod y type	Target	Raised i n	Clonality	Dilution used
NEFL M onoclon al Antib ody (2F1 1)	RRID:AB _560286	Thermo Fisher S cientific	MA1-06 803	primary	NEFL	mouse	monocl onal	1:200
Anti-Tyr osine Hy droxylas e Antibo dy	RRID:AB _390204	Millipore	AB152	primary	Tyrosine Hydroxy lase	rabbit	polyclon al	1:500

- 33 To obtain a comprehensive pathological understanding of the tumor microenvironment, slices were obtained from various tumor areas, ranging from about 100 µm.
- 34 The neurofilament immunohistochemical (IHC) staining process was conducted as follows:

34.1 Neurofilament Protocol:

Involved in the maintenance of neuronal caliber, neurofilaments are the intermediate filament proteins found specifically in neurons, and are composed predominantly of three major proteins called NF-L, NF-M and NF-H. Like most other intermediate filament proteins (IFPs), the expression of the different neuronal IFPs is both tissue-specific and developmentally regulated. NF-L is the light or low molecular weight microfilament subunit and runs on SDS-PAGE gels at approximately 70 kDa. Neurofilament are the 10nm or intermediate filament proteins found specifically in neurons, and are composed predominantly of three major proteins called NF-L, NF-M and NF-H. NF-H is the heavy or high molecular weight microfilament subunit and runs on SDS-PAGE gels in the range 180-220 kDa, with some variation in different species.

- 34.2 Bake slides at 60°C for 75 min. (let cool for 20 min. after time elapses)
- 34.3 Deparaffinize slides in xylene, 2X for 7 min. each time
- 34.4 Rehydrate slides in graded ethanols:
 - a. 100% ethanol, 2X for 2 min. each time
 - b. 95% ethanol, 2X for 2 min. each time

- c. 70% ethanol for 2 min.
- 34.5 Rinse slides in dH₂0. for 2 min. or use squirt bottle

34.6 [10X] Antigen Unmasking Solution/ Citric Acid Based- pH 6.0/ Vector Labs/ Cat#: H-3300

Antigen retrieval:

- a. Place slides in 250 mL [1X] Antigen Unmasking Buffer
- b. Incubate in pressure cooker at 120 °C for 30 seconds
- c. Remove slides and let cool on bench top for 20 min.
- 34.7 Rinse slides in dH_2O for 2 min.

34.8 Peroxidazed 1: (Ready-to-Use) / BioCare Medical / Cat#: PX968G

Block endogenous peroxidase activity:

- a. Place Slides in Peroxidazed 1 for 8 min.
- 34.9 Rinse slides in dH20 for 2 min.

34.10 Rodent Block M: (Ready-to-Use) / BioCare Medical/ Cat#: RBM961H /

Block endogenous mouse IgG:

- a. Place slides in Rodent Block M for 30 min.
- 34.11 Rinse slides in TBST

34.12 <u>Mouse anti-Neurofilament (NEFL):Mouse Monoclonal Antibody IgG₁ /Invitrogen/ Cat#:MA1-06803/ Clone: 2F11/</u>

Apply primary antibody

- a. [1:200] = X µL Neurofilament in X µL Diluent
- b. Incubate slides at room temp. for one hour.
- 34.13 Rinse slides in TBST

34.14 Mouse-on-Mouse HRP-Polymer: (Ready-to-Use) / Biocare Medical /Cat#: MM620G

Apply Mouse on Mouse HRP-Polymer for 30 min.

34.15 Rinse slides in TBST

34.16 Betazoid DAB: BioCare Medical / Cat#: BDB2004H

Apply chromogen:

- a. 1 drop DAB in 1 mL dH₂O
- b. Incubate in Betazoid DAB for 5 min.
- 34.17 Rinse slides in dH₂O

34.18 CAT Hematoxylin: (Ready-to-Use) / BioCare Medical / Cat#: CATHE-L / Lot no. 12513B

Counterstain with CAT Hematoxylin for 1 min.

- 34.19 Rinse in running tap water for 30 seconds
- 34.20 Rinse in dH20 3X for 1 min. each time
- 34.21 Blue the nuclei with ammonia water by dipping ten times
- 34.22 Rinse in running tap water for 30 seconds
- 34.23 Coverslip with resinous medium
- 34.24 Number of events per square millimeter of tissue slices were calculated in order to quantify and compare the staining metrics.
 - The tyrosine hydroxylase (TH) immunohistochemical (IHC) staining process was conducted as follows:
- 35.1 Tyrosine Hydroxylase plays an important role in the physiology of adrenergic neurons. It is the first and rate-limiting enzyme involved in the biosynthesis of the catecholamines Dopamine and Norepinephrine from tyrosine. TH is, therefore, a useful marker for dopaminergic and noradrenergic neurons. The enzymatic activity of TH requires ferrous ions as cofactors and is

believed to be regulated by phosphorylation. At least four isoforms of human TH have been identified which result from alternative splicing.

- 35.2 Bake slides at 60°C for 75 min.
- 35.3 Deparaffinize slides in xylene, 2X for 7 min. each time
- 35.4 Rehydrate slides in graded ethanols:
 - a. 100% ethanol, 2X for 2 min. each time
 - b. 95% ethanol, 2X for 2 min. each time
 - c. 70% ethanol for 2 min.
- 35.5 Rinse slides in dH₂0

35.6 X Rodent Decloaker (pH 6.6): Biocare Medical / Cat#:RD913M / Lot no. 101608 / (To be diluted to 1 X)

Antigen retrieval:

- a. Place slides in 250 mL 1X Rodent Buffer
- b. Incubate in Steamer at ~98°C for 20 minutes
- c. Remove slides and let cool on bench top for 20 min.
- 35.7 Rinse slides in dH₂0

35.8 Peroxidazed 1: (Ready-to-Use / BioCare Medical / Cat#: PX968M / Lot no. no070109-1

Block endogenous peroxidase activity:

- a. Place Slides in Peroxidazed 1 for 8 min.
- 35.9 Rinse slides in dH₂0

35.10 Rodent Block M: (Ready-to-Use)/ BioCare Medical /Cat#: RBM961 / Lot no. 091009-1 (MOUSE TISSUES ONLY

Block endogenous mouse IgG and non-specific background staining:

- a. Place select slides in Rodent Block M for 20 min.
- 35.11 Rinse slides in TBST

~ 1	
	١

35.15

35.12	Rabbit Polyclonal Tyro	osine Hydroxylase Antibody: Millipore/ Cat#: AB152/ Lot no. JC1682878
	Apply primary antibod	ies
	a.	[1:500] = X µL of TH stock in X µL Diluent
	b.	Incubate slides overnight at 4° C.
35.13	Rinse slides in TBST	
35.14	Rabbit-on-Rodent HRI 010214	P Polymer: (Ready-to-Use)/ BioCare Medical/ Cat#:RMR622H/ Lot no.
	Apply Rabbit Polymer	HRP for 30 min.

35.16 <u>Betazoid DAB: BioCare Medical / Cat#: BDB2004L / Lot no. 092509</u>

Apply chromogen:

Rinse slides in TBST

- a. Incubate in Betazoid DAB for 5 min.
- b. 1 drop DAB in 1.0 mL dH₂O
- 35.17 Rinse slides in dH₂O

35.18 <u>CAT Hematoxylin: (Ready-to-Use) / BioCare Medical / Cat#: CATHE-L / Lot no. 12513B</u>

Counterstain with CAT Hematoxylin for 30 secs.

- 35.19 Rinse in running tap water for 30 seconds
- 35.20 Rinse in dH₂O 3X for 1 min. each time
- 35.21 Blue the nuclei with TBST wash buffer
- 35.22 Rinse in running tap water for 30 seconds
- 35.23 Air dry overnight or dehydrate to Xylene

35.24 Coverslip with resinous medium

35.25 Number of events per square millimeter of tissue slices were calculated in order to quantify and compare the staining metrics.

Protocol references

- 1. Fazakas C, Wilhelm I, Nagyoszi P, Farkas AE, Haskó J, Molnár J, et al. Transmigration of melanoma cells through the blood-brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PloS One. 2011;6(6):e20758.
- 2. Hill DN, Mehta SB, Kleinfeld D. Quality Metrics to Accompany Spike Sorting of Extracellular Signals. J Neurosci. 2011 Jun 15;31(24):8699-705.