Коллаборативная фильтрация

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- Матричные разложения в рекомендациях
 - Использование матричных разложений
 - Учёт неявных откликов

- 1 Матричные разложения в рекомендациях
 - Использование матричных разложений
 - Учёт неявных откликов

Метод матричных разложений

ullet Будем строить эмбеддинг для каждого u и i в \mathbb{R}^d , $d\sim 100$:

$$u o m{p}_u \in \mathbb{R}^d$$
 интерес пользователя к категориям $i o m{q}_i \in \mathbb{R}^d$ представленность категорий в товаре

 Прогноз - соответствие интересуемых и представленных категорий

$$\widehat{r}_{ui} = \langle \boldsymbol{p}_u, \boldsymbol{q}_i \rangle$$

• В матричной записи (p_u, q_i - строки P, Q):

$$\widehat{R} = PQ^T$$

- Прогнозирование свелось к задаче низкорангового разложения R.
 - можем использовать SVD, pLSA и др.

Метод pure SVD

Метод pure SVD использует trunkated SVD:

$$R \approx \widehat{R} = \underbrace{(U\Sigma)}_{P} \underbrace{V^{T}}_{Q}$$

• Заполнение пропусков r_u :

$$\widehat{\boldsymbol{r}}_{u} = V\left(\underbrace{\boldsymbol{V}^{T}\boldsymbol{r}_{u}}_{\boldsymbol{p}_{u}}\right)$$

- ⊖ : SVD не допускает пропуски
 - можно заполнить: 0, средним, оценкой другой моделью
 - но это вызывает смещение оценок

Метод матричных разложений

• С поправкой на средние оценки пользователя и товара

$$\hat{r}_{ui} = w_u + w_i + \langle \boldsymbol{p}_u, \boldsymbol{q}_i \rangle$$

• Функция потерь (невыпуклая):

$$\sum_{(\boldsymbol{u},\boldsymbol{i})\in\boldsymbol{R}} (w_{\boldsymbol{u}} + w_{\boldsymbol{i}} + \langle \boldsymbol{p}_{\boldsymbol{u}}, \boldsymbol{q}_{\boldsymbol{i}} \rangle - r_{\boldsymbol{u}\boldsymbol{i}})^{2} + \alpha \sum_{\boldsymbol{u}\in\boldsymbol{U}} \|\boldsymbol{p}_{\boldsymbol{u}}\|^{2} + \beta \sum_{\boldsymbol{i}\in\boldsymbol{I}} \|\boldsymbol{q}_{\boldsymbol{i}}\|^{2}$$

$$\rightarrow \min_{\boldsymbol{p}_{\boldsymbol{u}},\boldsymbol{q}_{\boldsymbol{i}},w_{\boldsymbol{u}},w_{\boldsymbol{i}}}$$

- Оценивание SGD
 - повторять до сходимости
 - сэмплируем случайную пару $(u, i) \in R$, обновляем¹:

$$\boldsymbol{p}_{u} := \boldsymbol{p}_{u} - \varepsilon \frac{\partial \mathcal{L}(u, i)}{\partial \boldsymbol{p}_{u}}; \quad \boldsymbol{q}_{i} := \boldsymbol{q}_{i} - \varepsilon \frac{\partial \mathcal{L}(u, i)}{\partial \boldsymbol{q}_{i}}; \quad \cdots$$

 $^{^{1}}$ Посчитайте аналитически.

Оценивание методов ALS

$$\sum_{(u,i)\in R} (w_u + w_i + \langle \boldsymbol{p}_u, \boldsymbol{q}_i \rangle - r_{ui})^2 + \alpha \sum_{u \in U} \|\boldsymbol{p}_u\|^2 + \beta \sum_{i \in I} \|\boldsymbol{q}_i\|^2$$

$$\rightarrow \min_{\boldsymbol{p}_u, \boldsymbol{q}_i, w_u, w_i}$$

Meтод ALS (alternating least squares):

- повторять по сходимости:
 - ullet При фикс. P, W_u найдем $w_i, q_i, i \in I$
 - При фикс. Q, W_i нахождение $w_u, p_u, u \in U$

Каждый раз - гребневая регрессия на $(u,i) \in R$

• аналит. решение, глобальный минимум

Метод матричных разложений

- ullet Рассмотрим: при фикс. Q,W_i нахождение $w_u,p_u,\ u\in U$
 - решаем для каждого и независимо
 - параллелизация
 - не нужно хранить все Р
 - удобно для нового и
 - легко учитывать всю новую информацию о и
- р_и, q_i можно использовать:
 - для прогноза
 - как признаки в content-based модели
- ullet q_i можно найти независимо как эмбеддинги i
 - удобно для новых товаров (без статистики) строим их эмбеддинги по контенту (описание, музыка, текст, видео)

Использование матричных разложений

SVD++

- SVD++: для учёта не только явных оценок $r_{u,i}$, но и неявных (напр. просмотры).
- Вводится отдельный эмбеддинг для просмотренных товаров j: \mathbf{y}_{j} .
- Прогноз:

$$\sum_{(u,i)\in R} \left(w_{u} + w_{i} + \left\langle \boldsymbol{p}_{u} + \frac{1}{\sqrt{|\text{view}(u)|}} \sum_{j\in\text{view}(u)} \boldsymbol{y}_{j}, \boldsymbol{q}_{i} \right\rangle - r_{ui} \right)^{2} + \alpha \sum_{u\in U} \|\boldsymbol{p}_{u}\|^{2} + \beta \sum_{i\in I} \|\boldsymbol{q}_{i}\|^{2} + \gamma \sum_{i\in I} \|\boldsymbol{y}_{i}\|^{2}$$

$$\rightarrow \min_{\boldsymbol{p}_{u}\cdot\boldsymbol{q}_{i},\boldsymbol{y}_{i}w_{u},w_{i}}$$

• Нормировка почему-то на $\sqrt{|\text{view}(u)|}$.

Учёт социальных связей²

- Люди часто формируют рейтинги под влиянием друзей.
- Метод Social Regularization позволяет точнее оценивать профиль u, используя информацию о его круге друзей $\mathcal{F}(u)$.
- Предлагается метод матричных разложений с социальным регуляризатором:

$$R_1 = \sum_{u \in U} \left\| p_u - \frac{1}{|\mathcal{F}(u)|} \sum_{f \in \mathcal{F}(u)} p_f \right\|^2$$

$$R_2 = \sum_{u \in U} \sum_{f \in \mathcal{F}(u)} \|p_u - p_f\|^2$$

В чём недостаток?

 $^{^{2}}$ Recommender Systems with Social Regularization

Учёт социальных связей

 Поскольку друзья могут различаться по вкусам, то правильнее их учитывать с учётом похожести:

$$R_{1} = \sum_{u \in U} \left\| p_{u} - \frac{1}{|\mathcal{F}(u)|} \frac{\sum_{f \in \mathcal{F}(u)} \operatorname{sim}(u, f) p_{f}}{\sum_{f \in \mathcal{F}(u)} \operatorname{sim}(u, f)} \right\|^{2}$$

$$R_{2} = \sum_{u \in U} \sum_{f \in \mathcal{F}(u)} \operatorname{sim}(u, f) \|p_{u} - p_{f}\|^{2}$$

• Даёт прирост качества, лучше всего работала с R_2 и похожестью=корреляции.

Факторизационные машины^{3,4}

- Факторизационные машины (FM, factorization machines) применимы для регрессии, бинарной классификации, ранжирования и рек. систем.
 - для рек. систем часто занимала топовые места на соревнованиях.
- Для рекомендаций вектор признаков x_i в виде (вариант):

28 1 0 0 0.3 0.3 0.3 0.3 1.4 1 0 0 0 1 0 0 0 1.0 0 0 0 1 0 0.3 0.3 0 1.0 0 0 0 1 0 <	m	1	0	0		<u>_</u>	0	0	0	 ature				13	6	0	0	0	\neg	5	rget y
0 1 0 1 0 0 0 1 0 0 0 0 5 0.5 5 0 0 0 0 0 4 your 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2)	1	-	-	-	0	<u> </u>	_	-		-	-		-	1	-	_	÷		II 🖃	_
90 0 1 0 0 0 0 0 1 0 0 0 5 0.5 8 0 0 1 0 5 y40 90 0 1 1 1 0 0 0 0 0.5 0 0.5 0 9 0 0 0 0 0 1 y80 90 0 1 1 0 0 1 1 0 0.5 0 0.5 0 12 1 0 0 0 1 y80 90 0 1 1 0 1 NH SW ST 1 NH SW ST 1	(3)	1	0	0		0	0	1	0	0.3	0.3	0.3	0	16	0	1	0	0		1	y ⁽²⁾
0 0 0 1 1 0 0 0 0.5 0 0.5 0 9 0 0 0 0 1 y ⁵ 1 70 0 1 1 0 0 1 1 0 0.5 0 0.5 0 12 1 0 0 0 5 y ⁶ 1 A B C TI NH SW ST TI NH SW ST TI NH SW ST 1 TI NH SW ST	(4)	0	1	0		0	0	1	0	0	0	0.5	0.5	5	0	0	0	0		4	y ⁽³⁾
71 0 0 1 1 0 0 1 0 0.5 0 0.5 0 12 1 0 0 0 5 y ⁽⁸⁾ A B C TI NH SW ST TI NH SW ST	(5)	0	1	0		0	0	0	1	0	0	0.5	0.5	8	0	0	1	0		5	y ⁽⁴⁾
A B C TI NH SW ST TI NH SW ST TI NH SW ST	(6)	0	0	1		1	0	0	0	0.5	0	0.5	0	9	0	0	0	0		1	y ⁽⁵⁾
	m	0	0	1		0	0	1	0	0.5	0	0.5	0	12	1	0	0	0		5	y ⁽⁶⁾
User Movie Other Movies rated Time Last Movie rated	I	A				TI				 TI				Time		NH ast I	SW	ST e rate	nd		

 $[\]widehat{y}(x) = \widetilde{w}_0 + \sum_{i=1} \widetilde{w}_i x^i + \sum_{i=1} \sum_{j=i+1} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$ *https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

⁴Реализация: http://www.libfm.org

Билинейная модель

- Обычная билинейная модель
 - напр. SVM+poly-kernel[d=2]

$$\widehat{y}(x) = \widetilde{w}_0 + \sum_{i=1}^D \widetilde{w}_i x^i + \sum_{i=1}^D \sum_{j=i}^D w_{ij} x_i x_j$$

- ullet Много параметров за счёт $W \in \mathbb{R}^{D imes D}$, переобучается
- Требует неразреженных данных, иначе не обучится.
- $O\left((\alpha D)^2\right)$ прогноз и обучение α доля ненулевых признаков.
- Любая $W=W^T$ допускает спектральное разложение:

$$W = P\Sigma P^{T} = P\Sigma P^{T} = P\Sigma^{1/2} \left(\Sigma^{1/2}\right)^{T} P^{T} = SS^{T}$$

Отличие факторизационных машин

В FM W приближается с помощью:

$$W \approx VV^T$$
, $V \in \mathbb{R}^{D \times K}$, $K \ll D$

Факторизационные машины (FM):

акторизационные машины (FM):
$$\widehat{y}(x) = \widetilde{w}_0 + \sum_{i=1}^D \widetilde{w}_i x^i + \sum_{i=1}^N \sum_{j=i+1}^N \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle \, x_i x_j$$
почти $\frac{1}{2} x^T V V^T x = \frac{1}{2} \langle V^T x, V^T x \rangle$

- Сложность прогноза и сложность обновления всех весов через SGD: $O(\alpha DK)$
 - ullet lpha доля ненулевых признаков.
- FM лучше учатся на разреженных данных за счёт факторизации (с малым K)

Метод матричных разложений

- $\hat{r}_{ui} = w_u + w_i + \langle \boldsymbol{p}_u, \boldsymbol{q}_i \rangle = w_u + w_i + ||\boldsymbol{p}_u|| \, ||\boldsymbol{q}_i|| \cos \phi$
 - ullet $\|oldsymbol{q}_i\|\gg 1=>$ часто $|\widehat{r}_{ui}|\gg 1$ (популярные) можно хранить только их
 - чтобы не зацикливаться на популярных, можно подмешивать товары по $(\boldsymbol{p}_u, \boldsymbol{q}_i)$
- Neural collaborative filtering: нейросетевое обобщение $\langle \boldsymbol{p}_{\mu}, \boldsymbol{q}_{i} \rangle \rightarrow F_{\theta} \left(\boldsymbol{p}_{\mu}, \boldsymbol{q}_{i} \right)$

$$\sum_{(u,i)\in R} (w_u + w_i + F_{\theta}(\boldsymbol{p}_u, \boldsymbol{q}_i) - r_{ui})^2 + \alpha \sum_{u\in U} \|\boldsymbol{p}_u\|^2 + \beta \sum_{i\in I} \|\boldsymbol{q}_i\|^2$$

$$\rightarrow \min_{\boldsymbol{p}_u, \boldsymbol{q}_i, w_u, w_i, \theta}$$

• но нейросеть вычисляется долго и не так хорошо способна выучить $\langle p_u, q_i \rangle^5$.

⁵https://arxiv.org/pdf/2005.09683.pdf

Использование матричных разложений

Модель DSSM⁶

- Модель DSSM (Deep Structured Semantic Model)
 вычисляют соответствие
 - пользователя и товара (рек. система)
 - документа и запроса (ранжирование)
 - ullet p_u,q_i можно брать content-based
 - ullet вариант: $p_u = \mathsf{mean}_{r_{ui}>0}\left\{q_i
 ight\}$
 - либо подставлять p_u и q_i из др. модели

⁶A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems.

Модель DSSM

- Используется сиамская сеть, отображающее все в общее семантическое пространство.
- cos-sim используется для оценки похожести

- 1 Матричные разложения в рекомендациях
 - Использование матричных разложений
 - Учёт неявных откликов

Модель Implicit CF

- Большинство рек. систем работают с явными оценками товаров (explicit feedback).
- Модель Implicit CF⁷ ориентирована на неявные оценки.
 - время просмотра, количество покупок, потраченные ср-ва (чем больше, тем достовернее связь)
- Прогноз интерпретируемый в виде item-based рекомендации с автонастраиваемой похожестью товаров
 - похожесть своя для каждого и

⁷Collaborative Filtering for Implicit Feedback Datasets.

Модель Implicit CF

- Пусть r_{ui} неявная вещественная оценка (напр. время просмотра видео)
- Определим

$$s_{ui} = \begin{cases} 1, & r_{ui} > 0 \\ 0 & r_{ui} = 0 \end{cases}$$

• Силу взаимодействия закодируем через вес

$$c_{iii} = 1 + \alpha r_{iii}, \quad \alpha \sim 40.$$

• Предлагается решать⁸

$$\sum_{(u,i)\in R} c_{ui} (w_u + w_i + \langle \boldsymbol{p}_u, \boldsymbol{q}_i \rangle - s_{ui})^2 + \alpha \sum_{u \in U} \|\boldsymbol{p}_u\|^2 + \beta \sum_{i \in I} \|\boldsymbol{q}_i\|^2$$

$$\rightarrow \min_{\boldsymbol{p}_{ii}, \boldsymbol{q}_i, w_{ii}, w_i}$$

⁸В оригинальной статье - без w_u , w_i и $\alpha = \beta$.

Рекомендации с помощью ранжирования

- ullet Модель BPR (Bayesian Personalized Ranking) 9 настраивается на $r_{u,i} \in \{0,1\}$ (implicit feedback)
- Используются потери из ранжирования.
- Если $r_{ui} = 1$ и $r_{uj} = 0$, то предполагаем, что для $u \; i \succ_u j$.

⁹https://arxiv.org/pdf/1205.2618.pdf

Учёт неявных откликов

Рекомендации с помощью ранжирования

$$\sum_{\{u,i,j:\ i \succ_{u}j\}} \ln \underbrace{\sigma\left(\langle \boldsymbol{p}_{u}, \boldsymbol{q}_{i} \rangle - \langle \boldsymbol{p}_{u}, \boldsymbol{q}_{i} \rangle\right)}_{P(i \succ_{u}j)} - \alpha \sum_{u \in U} \|\boldsymbol{p}_{u}\|^{2} - \beta \sum_{i \in I} \|\boldsymbol{q}_{i}\|^{2}$$

$$\rightarrow \max_{\boldsymbol{p}_{u} \cdot \boldsymbol{q}_{i}, w_{u}, w_{i}}$$

Похожий метод 10 (ранжирование через hinge):

$$\begin{split} & \sum_{\{u,i,j:\ i \succ_u j\}} \max \left\{0; 1 + \left\langle \mathbf{p}_u, \mathbf{q}_j \right\rangle - \left\langle \mathbf{p}_u, \mathbf{q}_i \right\rangle \right\} \\ & + \alpha \sum_{u \in U} \|\mathbf{p}_u\|^2 + \beta \sum_{i \in I} \|\mathbf{q}_i\|^2 \rightarrow \min_{\mathbf{p}_u.\mathbf{q}_i, \mathbf{w}_u, \mathbf{w}_i} \end{split}$$

¹⁰Improving Maximum Margin Matrix Factorization

Содержание

- 1 Матричные разложения в рекомендациях
- 2 Оценка и бизнес-особенности рекомендаций

Рекомендательные системы на практике

Рекомендательные системы на практике состоят из этапов:

ullet Отбор кандидатов ~ 3000

2 Препроцессинг кандидатов

- Переранжирование кандидатов сложной рек. моделью
- Постпроцессинг ранжирования из бизнес требований.

Рекомендательные системы на практике

Рекомендательные системы на практике состоят из этапов:

- $lue{f 0}$ Отбор кандидатов ~ 3000
 - по пользовательским предпочтениям (подпискам, просмотрам, интересам в анкете, поисковому запросу)
 - дополнения к предыдущим покупкам
 - по близости content-based эмбеддингов пользователей и товаров
 - по облегченной рекомендательной системе
 - по товарам с высоким $\| {m q}_i \|$ (потенциально популярные)
 - близкие к p_{ii} (существуют м-ды быстрого поиска похожих)
- Препроцессинг кандидатов
 - удаляем сомнительные
 - удаляем слишком похожие
 - например, кластеризуем и берём по одному из каждого кластера
- Переранжирование кандидатов сложной рек. моделью
- Постпроцессинг ранжирования из бизнес требований.

Холодный старт

Холодный старт (cold start) - проблема построения прогнозов

• для нового пользователя:

• для нового товара:

Холодный старт

Холодный старт (cold start) - проблема построения прогнозов

- для нового пользователя:
 - рекомендовать популярное (summary-based)
 - вручную модерируемые подборки
 - опросить в начале, что пользователю интересно
- для нового товара:
 - рекомендовать по тематике
 - нужно гарантировать опр. кол-во просмотров
 - exploration vs. exploitation tradeoff

Контроль качества

• Как разбивать на train/test?

Контроль качества

- Как разбивать на train/test?
 - главное: разбить по времени
 - иначе модель будет знать заранее о трендах моды и вкусов
 - можно стратифицировать по категориям товаров
- Важно в онлайне следить за качеством модели
 - донастраивать при деградации
- Все нововведения должны проверяться через А/В тест

• Кликовые метрики по top-К рекомендованным:

• Бизнес-метрики:

- Кликовые метрики по top-К рекомендованным:
 - precision@K: доля кликнутых товаров
 - hitrate@K: 1, если кликнул на что-либо, 0 иначе
 - др. метрики из ранжирования (nDCG, pFound, ...)
- Бизнес-метрики:
 - время просмотра рекомендованных товаров
 - частота покупок рекомендаций
 - прибыль от рекомендаций
 - доля вернувшихся пользователей (retention)

Что еще важно для качественных рекомендаций?

Что еще важно для качественных рекомендаций?

- Фильтровать сомнительные рекомендации
 - используя ассессоров или отзывы пользователей
- Нетривиальность рекомендаций, "способность удивлять" (serendipity)
 - рекомендовать масло к хлебу тривиально
- Обеспечивать разнообразие рекомендаций
 - повышает hitrate@K, почему?

Что еще важно для качественных рекомендаций?

- Фильтровать сомнительные рекомендации
 - используя ассессоров или отзывы пользователей
- Нетривиальность рекомендаций, "способность удивлять" (serendipity)
 - рекомендовать масло к хлебу тривиально
- Обеспечивать разнообразие рекомендаций
 - повышает hitrate@K, почему?
 - модель максимизирует для каждого i p(click on i|u)
 - a hitrate@K=p (click on any $i \in i_1, i_2, ... i_K | u$)

Комментарии

- Получается много метрик $m_1, ... m_S$
- Можно обучить веса наилучшей смеси, макс. коррелирующую с целевой бизнес-метрикой (прибыль, retention, ...)

TargetMetric
$$\approx w_0 + w_1 m_1 + ... + w_S m_S$$

- Особенность алгоритмов СF:
 - усиление моды (популярные і становятся еще популярнее)
 - усиление сегментации интересов
 - прививочники смотрят видео о пользе прививок
 - антипрививочники об их возможном вреде

Комментарии

- Важно учитывать время:
 - многие товары имеют сезонный спрос
 - со временем меняется интерфейс системы, вкусы, мода.
 - для некоторых товаров (новости), важна временная свежесть.
- В данных много шума:
 - семейные аккаунты
 - возможны атаки на систему
 - положит. комментарии на "свои" товары
 - отрицат. комментарии на "чужие" товары

Заключение

- Рекомендации могут быть основаны:
 - на характеристиках пользователя и товара (content-based)

F: (признаки пользователя, признаки товара) ightarrow соответствие

- на матрице рейтингов (collaborative filtering)
 - усредняющий алгоритм
 - memory-based алгоритмы (user/item based)
 - матричная факторизация (потери поточеные или попарные)
- Итоговые рекомендации учитывают прогноз и др. факторы
 - разнообразие, нетривиальность, приличность и др.