ECE1513-Introduction to Machine Learning

Assignment 1

Zihao Jiao (1002213428)

Date: 2020.1.22

Problem 1 Assume we collected a dataset $D = \{(Xi, Yi)\}_{i \in 1...7}$ of N = 7 points (i.e., observations) with inputs X = (1, 2, 3, 4, 5, 6, 7) and outputs Y = (6, 4, 2, 1, 3, 6, 10) for a regression problem.

1. Draw a scatter plot of the dataset on a spreadsheet software (e.g., Excel).

2. Let us use a linear regression model gw, b(x) = wx + b to model this data. Write down the analytical expression of the mean squared loss of this model on dataset D. Your loss should take the form of

$$\frac{1}{2N} \sum_{i \in A} A w^2 + Bb^2 + Cwb + Dw + Eb + F$$

where A, B, C, D, E, and F are expressed only as a function of Xi and Yi and constants. Do not fill-in any numerical values yet.

Solution:

Known $g_{w,b}(x) = wx + b$ and loss function is $L_{(y,t)} = \frac{1}{2}(y-t)^2$.

Thus,
$$\varepsilon(w,b) = \frac{1}{2N} \sum_{i \in 1.N} (y^{(i)} - Y^{(i)})^2 = \frac{1}{2N} \sum_{i=1}^N [(wx^i + b) - Y^i]^2$$

 $= \frac{1}{2N} \sum_{i=1}^N [w^2 (x^i)^2 + 2wx^i b + b^2 - 2wx^i Y^i - 2Y^i b + (Y^i)^2]$
In this case, $A = (x^i)^2$; $B = 1$; $C = 2x^i$; $D = -2x^i Y^i$; $E = -2Y^i$; $F = (Y^i)^2$

3. Derive the analytical expressions of w and b by minimizing the mean squared loss from the previous question. Your expressions for parameters w and b should only depend on A, B, C, D and E. Do not fill-in any numerical values yet.

Solution: Known the mean squared error is:

$$\varepsilon(w,b) = \frac{1}{2N} \sum_{i \in 1.N} A w^2 + Bb^2 + Cwb + Dw + Eb + F$$

in order to minimize it, we need to find $\frac{\delta \varepsilon}{\delta w} = 0$ and $\frac{\delta \varepsilon}{\delta b} = 0$.

Thus,
$$\frac{\delta \varepsilon}{\delta b} = \frac{1}{2N} \sum_{i=1}^{N} (2Bb + Cw + E) = 0$$

$$\frac{\delta \varepsilon}{\delta w} = \frac{1}{2N} \sum_{i=1}^{N} (2Aw + Cb + D) = 0$$

4. Give approximate numerical values for w and b by plugging in numerical values from the dataset D.

Solution:

substitute A, B, C, D, E, F into $\frac{\delta \varepsilon}{\delta h}$, $\frac{\delta \varepsilon}{\delta w}$ from question 3.

$$\frac{\delta \varepsilon}{\delta b} = \frac{1}{2N} \sum_{i=1}^{N} (2b + 2x^{i}w - 2Y^{i}) = \bar{x}w - \bar{Y} + b = 0$$

$$\frac{\delta \varepsilon}{\delta w} = \frac{1}{2N} \sum_{i=1}^{N} [2(x^{i})^{2}w + 2x^{i}b - 2x^{i}Y^{i}] = \bar{x}^{2}w + \bar{x}b - \bar{x}\bar{Y} = 0$$

$$\bar{x} \ from \ dataset = \frac{1+2+3+4+5+6+7}{7} = 4; \ \bar{Y} \ from \ dataset = \frac{6+4+2+1+3+6+10}{7} = 4.571;$$
 and $\bar{x}\bar{Y} = 20.714$.

Thus,
$$\begin{cases} \bar{x}w - \bar{Y} + b = 0\\ \bar{x}^2w + \bar{x}b - \bar{x}\bar{Y} = 0 \end{cases}$$
, we can get $\begin{cases} w = 0.607\\ b = 2.14 \end{cases}$.

5. Double-check your solution with the scatter plot from the question earlier: e.g., you can use Excel to find numerical values of w and b.

The answers from excel and analytical solutions are identical.

Problem 2 Let us now assume that D is a dataset with d features per input and N > 0 inputs. We have D = $\{((X_{ij})_{j \in 1...d}, Y_i)\}_{i \in 1...N}$. In other words, each Xi is a column vector with d components indexed by j such that X_{ij} is the jth component of X_i . The output Y_i remains a scalar (real value).

Let us assume for simplicity that b = 0 so we have a simplified linear regression model:

$$g_{\overrightarrow{w}}(X) = \overrightarrow{w}X$$

where \overrightarrow{w} is now a vector of dimensionality d. Each component of \sim w multiplies the corresponding feature of X, which gives the following: $g_{\overrightarrow{w}}(X_i) = \sum_{j \in 1...d} w_j X_{ij}$

We would like to train a regularized linear regression model, where the mean squared loss is augmented with an L2 regularization penalty $\frac{1}{2} ||\vec{w}||_2^2$ on the weight parameter \vec{w} :

$$L(\vec{w}, D) = \frac{1}{2N} \sum_{i \in 1, N} (Y_i - g_{\vec{w}}(X_i))^2 + \frac{\lambda}{2} ||\vec{w}||_2^2$$

where $\lambda > 0$ is a hyperparameter that controls how much importance is given to the penalty.

1. Let $A = \sum_{i \in 1...N} X_i X_i^T$. Give a simple analytical expression for the components of A. *Solution:*

Known $X \in R^{Nxd}$

$$A = \sum_{i \in 1..N} X_i X_i^T = \begin{pmatrix} X_1^2 & \cdots & X_1 X_d \\ \vdots & \ddots & \vdots \\ X_d X_1 & \cdots & X_d^2 \end{pmatrix}$$
$$A = \sum_{i=1}^N \sum_{j=1}^d X_{ij} X_{ji} = XX^T$$

2. Let us write $B = \sum_{i \in 1...N} Y_i X_i$, prove that the following holds:

$$\nabla L(\vec{w}, D) = \frac{1}{N} (A\vec{w} - B) + \lambda \vec{w}$$

Solution:

$$L(\overrightarrow{w}, D) = \frac{1}{2N} \sum_{i \in 1..N} (Y_i - g_{\overrightarrow{w}}(X_i))^2 + \frac{\lambda}{2} ||\overrightarrow{w}||_2^2$$

= $\frac{1}{2N} \sum_{i=1}^N (Y_i^2 - 2 \sum_{j=1}^d Y_i \overrightarrow{w}_j X_{ij} + (\sum_{j=1}^d \overrightarrow{w}_j X_{ij})^2) + \frac{\lambda}{2} ||\overrightarrow{w}||_2^2$

Thus,
$$\nabla L(\vec{w}, D) = \frac{\delta L}{\delta \vec{w}} = \frac{1}{N} (\vec{w} \sum_{i=1}^{N} (\sum_{j=1}^{d} X_{ij}^2)^2 - \sum_{i=1}^{N} Y_i X_i) + \lambda \vec{w}$$

So, the yellow part represents A and B respectively, our solution match it with:

$$\nabla L(\vec{w}, D) = \frac{1}{N} (A\vec{w} - B) + \lambda \vec{w}$$

3. Write down the matrix equation \vec{w}^* that should satisfy, where:

$$\vec{w}^* = \arg\min L(\vec{w}, D)$$

Your equation should only involve A, B, λ , N, and \vec{w}^* . *Solution:*

$$\vec{w}^* = \arg\min \ L(\vec{w}, D) = \frac{1}{N} (A\vec{w} - B) + \lambda \vec{w} = 0$$
$$\frac{A}{N} \vec{w} - \frac{B}{N} + \lambda \vec{w} = 0$$

$$\left(\frac{A}{N} + \lambda I\right) \overrightarrow{w} = \frac{B}{N}$$
Thus, $\overrightarrow{w}^* = \frac{\frac{B}{N}}{\frac{A}{N} + \lambda I} = \frac{B}{A + \lambda NI}$

4. Prove that all eigenvalues of A are positive.

Solution:

We know that matrix A is symmetric matrix, assume x is <u>full rank non-zero</u> vector, that we can get:

Note that: $A = [a_{ij}]$ and $X = [x_i]$

$$X^{T}AX = \lambda X^{T}X = \lambda ||X||^{2} > 0$$

$$X^{T}AX = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j} = \sum_{i=1}^{n} a_{ii}x_{i}^{2} + \sum_{i \neq j} a_{ij}x_{i}x_{j} = \sum_{i=1}^{n} a_{ii}x_{i}^{2} + 2\sum_{i \neq j} a_{ij}x_{i}x_{j}$$

Thus, A is positive definite matrix, which leads that all eigenvalues of A are positive

5. Demonstrate that matrix $A + \lambda NI$ is invertible by proving that none of its eigenvalues are zero. Here, I is the identity matrix of dimension d.

Solution:

Knowing A is positive definite matrix,

$$X^{T}(A + \lambda NI)X = X^{T}AX + X^{T}\lambda NIX$$

From Q4 we know that $X^T A X > 0$, $X^T \lambda N I X = X_1^2 \lambda N + \cdots + X_d^2 \lambda N$

Since X is full rank nonzero vector, and N>0, thus, $X^T \lambda NIX > 0$

Which leads $X^T(A + \lambda NI)X > 0$, so, $A + \lambda NI$ is positive definite matrix, all eigenvalues are not equal to zero. It is invertible.

6. Using the invertibility of matrix $A + \lambda NI$, solve the equation stated in question 3 and deduce an analytical solution for \vec{w}^* . You've obtained a linear regression model regularized with an L2 penalty.

Solution:

From question 3,
$$\vec{w}^* = \frac{B}{A + \lambda NI}$$
, and $\begin{cases} A = XX^T, \\ B = XY^T \end{cases}$

By substituting A, B, and using the invertibility of matrix $A + \lambda NI$,

$$\vec{w}^* = \frac{XY^T}{XX^T + \lambda NI} = (XX^T + \lambda NI)^{-1}XY^T$$