semestre 1

Exercices d'entraînement

Exercice 1.

On pose $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- 1. Calculer A^2 , A^3 , A^4 .
- 2. En déduire que A est inversible et déterminer A^{-1} .

Correction:

On a
$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $A^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
Comme $A^4 = I_2$, alors on a $A \times A^3 = I_2$ et donc $A^{-1} = A^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 2.

Soit a et b deux réels et $A = \begin{pmatrix} a & 1 \\ b & 2 \end{pmatrix}$

- 1. Quelle relation existe-t-il entre a et b quand A n'est pas inversible?
- 2. Déterminer a et b tels que A soit inversible et $A = A^{-1}$.

Correction:

1. A est non inversible si, et seulement si,
$$det(A) = 0$$
.
Or, $det(A) = 2a - b$.

Donc A n'est pas inversible lorsque 2a - b = 0, c'est-à-dire b = 2a.

2. Si
$$A^{-1} = A$$
, alors $A \times A^{-1} = I_2$ donne $A^2 = I_2$.
Or, $A^2 = \begin{pmatrix} a^2 + b & a + 2 \\ ab + 2b & b + 4 \end{pmatrix}$.

Or,
$$A^2 = \begin{pmatrix} a^2 + b & a+2 \\ ab + 2b & b+4 \end{pmatrix}$$
.

Ainsi,
$$\begin{cases} a+2 &= 0 \\ b+4 &= 1 \end{cases} \Leftrightarrow \begin{cases} a &= -2 \\ b &= -3 \end{cases}$$
 et on a bien $a^2+b=1$ et $ab+2b=0$ (et $b\neq 2a$).

Sous ces conditions, on a $A^2 = I_2$ et A inversible.

Exercice 3.

Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- 1. Montrer que $A^2 = 2I_3 A$.
- 2. En déduire que A est inversible et déterminer A^{-1} .

Correction:

On a, d'une part,
$$A^2=\begin{pmatrix}3&-1&-1\\-1&3&-1\\-1&-1&3\end{pmatrix}$$
 et, d'autre part :

semestre 1

$$2I_3 - A = 2 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}.$$

On a donc $A^2 = 2I_3 - A$, d'où $2I_3 = A^2 + A$ et ainsi $I_3 = \frac{1}{2}A^2 + \frac{1}{2}A = A\left(\frac{1}{2}A + \frac{1}{2}I_3\right)$.

Donc A est inversible et $A^{-1} = \frac{1}{2}A + \frac{1}{2}I_3 = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$.

Exercice 4.

Soit
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
.

1. Démontrer qu'il existe deux réels α et β tels que :

$$A^2 = \alpha A + \beta I_3.$$

- 2. En déduire que la matrice A est inversible et exprimer A^{-1} en fonction de A et I_3 .
- 3. Déterminer la matrice A^{-1} .

Correction:

1.
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
 donc $A^2 = \begin{pmatrix} 18 & 9 & 9 \\ 9 & 18 & 9 \\ 9 & 9 & 18 \end{pmatrix}$ et donc $A^2 = 9A - 18I_3$.

2. De ce qui précède on déduit $9A - A^2 = 18I_3$ puis $A \times \frac{(9I_3 - A)}{18} = I_3$. A est donc inversible et son inverse est $A^{-1} = \frac{(9I_3 - A)}{18}$.

3. Finalement, après calculs, on trouve
$$A^{-1} = \frac{1}{18} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

Exercice 5.

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

- 1. Calculer $(A I_3)^3$.
- 2. En déduire que A est inversible et préciser A^{-1} .

Correction:

1. Un calcul explicite donne
$$(A - I_3)^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
..

2. De
$$(A - I_3)^3 = 0_3$$
 on déduit $A^3 - 3A^2 - 3A - I_3 = 0_3$.
Donc $A(A^2 - 3A - 3I_3) = I_3$ et A est inversible, d'inverse $A^{-1} = A^2 - 3A - 3I_3$.