In [1]:

```
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [3]:

data.describe()

Out[3]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [4]:

data

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500
891 r	ows × 12 colu	ımns								
4										

```
In [5]:
data['Pclass'].unique()
Out[5]:
array([3, 1, 2])
In [6]:
data['Survived'].unique()
Out[6]:
array([0, 1])
In [7]:
data['SibSp'].unique()
Out[7]:
array([1, 0, 3, 4, 2, 5, 8])
In [8]:
data['Parch'].unique()
Out[8]:
array([0, 1, 2, 5, 3, 4, 6])
In [9]:
list(data)
Out[9]:
['PassengerId',
 'Survived',
 'Pclass',
 'Name',
 'Sex',
 'Age',
 'SibSp',
 'Parch',
 'Ticket',
 'Fare',
 'Cabin',
 'Embarked']
In [ ]:
In [10]:
data1=data.drop(['PassengerId','Name','SibSp',
 'Parch',
 'Ticket', 'Cabin',],axis=1)
```

In [11]:

data1

Out[11]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [12]:

```
datal.isna().sum()
```

Out[12]:

Survived 0
Pclass 0
Sex 0
Age 177
Fare 0
Embarked 2
dtype: int64

data1=pd.get_dummies(data1)

In [13]:

data1

Out[13]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [14]:

```
data1['Sex']=data1['Sex'].map({'male':1,'female':0})
```

In [15]:

```
data2=data1.fillna(data1.median())
```

In [16]:

data2

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [17]:

```
data2.isna().sum()
```

Out[17]:

Survived 0 Pclass 0 Sex 0 Age 0 Fare 0 Embarked 2 dtype: int64

In [18]:

```
data2['Pclass']=data2['Pclass'].map({1: 'F',2: 'S',3: 'third'})
```

In [19]:

data2

Out[19]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	third	0	28.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	third	1	32.0	7.7500	Q

891 rows × 6 columns

In [20]:

data2=pd.get_dummies(data2)

In [21]:

data2

Out[21]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_third	Embarked_C	Embarked_(
0	0	1	22.0	7.2500	0	0	1	0	
1	1	0	38.0	71.2833	1	0	0	1	
2	1	0	26.0	7.9250	0	0	1	0	
3	1	0	35.0	53.1000	1	0	0	0	
4	0	1	35.0	8.0500	0	0	1	0	
886	0	1	27.0	13.0000	0	1	0	0	
887	1	0	19.0	30.0000	1	0	0	0	
888	0	0	28.0	23.4500	0	0	1	0	
889	1	1	26.0	30.0000	1	0	0	1	
890	0	1	32.0	7.7500	0	0	1	0	

891 rows × 10 columns

In [22]:

4

data2.isna().sum()

Out[22]:

Survived	0
Sex	0
Age	0
Fare	0
Pclass_F	0
Pclass_S	0
Pclass_third	0
Embarked_C	0
Embarked_Q	0
Embarked_S	0
dtype: int64	

In [23]:

```
cor=data2.corr()
```

In [24]:

```
import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidth=.5,cmap='bwr')
```

Out[24]:

<Axes: >

In [25]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(data2.Age)
```

Out[25]:

<Axes: >

In [26]:

```
plt.hist(data2['Survived'])
plt.show()
```


In [27]:

```
plt.hist(data2['Sex'])
```

Out[27]:

(array([314., 0., 0., 0., 0., 0., 0., 0., 0., 577.]), array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]), <BarContainer object of 10 artists>)

In [28]:

```
plt.hist(data1['Age'])
```

Out[28]:

In [29]:

```
plt.hist(data1['Fare'])
```

Out[29]:

In []:

```
In [30]:
```

```
y=data2['Survived']
x=data2.drop('Survived',axis=1)
```

In [31]:

у

Out[31]:

Name: Survived, Length: 891, dtype: int64

In [32]:

Х

Out[32]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_third	Embarked_C	${\bf Embarked_Q}$	Embark
0	1	22.0	7.2500	0	0	1	0	0	
1	0	38.0	71.2833	1	0	0	1	0	
2	0	26.0	7.9250	0	0	1	0	0	
3	0	35.0	53.1000	1	0	0	0	0	
4	1	35.0	8.0500	0	0	1	0	0	
886	1	27.0	13.0000	0	1	0	0	0	
887	0	19.0	30.0000	1	0	0	0	0	
888	0	28.0	23.4500	0	0	1	0	0	
889	1	26.0	30.0000	1	0	0	1	0	
890	1	32.0	7.7500	0	0	1	0	1	

891 rows \times 9 columns

In []:

In [33]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [34]:

```
from sklearn.linear_model import LogisticRegression
clas=LogisticRegression()
clas.fit(x_train,y_train)
```

Out[34]:

```
LogisticRegression
LogisticRegression()
```

In [35]:

```
y_pred=clas.predict(x_test)
```

In [36]:

```
y_pred
```

Out[36]:

```
array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0,
       1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
0,
       1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
1,
       0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1,
1,
       0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0,
       1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
0,
       0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
1,
       0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,
0,
       0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,
0,
       1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0,
       0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
1,
       0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
0,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0,
       1, 0, 0, 0, 0, 0, 1, 1, 0])
```

In [37]:

x_test

Out[37]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_third	Embarked_C	Embarked_Q	Embark
709	1	28.0	15.2458	0	0	1	1	0	
439	1	31.0	10.5000	0	1	0	0	0	
840	1	20.0	7.9250	0	0	1	0	0	
720	0	6.0	33.0000	0	1	0	0	0	
39	0	14.0	11.2417	0	0	1	1	0	
715	1	19.0	7.6500	0	0	1	0	0	
525	1	40.5	7.7500	0	0	1	0	1	
381	0	1.0	15.7417	0	0	1	1	0	
140	0	28.0	15.2458	0	0	1	1	0	
173	1	21.0	7.9250	0	0	1	0	0	

295 rows × 9 columns

In []:

In [38]:

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)

Out[38]:

```
array([[154, 21], [ 37, 83]])
```

In [39]:

from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)

Out[39]:

0.8033898305084746

In []:

In []: