Self-adjoint operators

Axler7.11 self-adjoint, Hermitian def

An operator $T\in\mathcal{L}(V)$ is called self-adjoint if $T=T^*$ aka it is adjoint to itself. aka: $T\in\mathcal{L}(V)$ is self-adjoint iff

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

Because adjoint-ness is in some ways analygous to complex conjugation, a self-adjoint operator is somewhat analygous to real numbers (kinda like a number who equals its conjugates real, a map that equals its adjoint is "real")

results

Axler7.13 Eigenvalues of self-adjoint operators are real

Every eigenvalue of a self-adjoint operator is real.

Axler7.14 Over \mathbb{C} , only the 0 operator has Tv being orthogonal to v for all v

For some **complex** vector space V and $T \in \mathcal{L}(V)$, if

$$\langle Tv, v \rangle = 0$$

for all $v \in V$, then T = 0.

TODO Axler7.15 and Axler7.16??

Every self-adjoint operator is normal.