第6讲回溯与分支限界(1/2)

罗国杰

gluo@pku.edu.cn

2024年春季学期

算 P 法 K 设山 与分析 实 验

本节概要

- 回溯与剪枝 backtrack with pruning
 - ▶多米诺性质
- ► 分支限界 Branch-and-bound
 - ▶ 全局优化的分支限界例子
 - ▶<u>解更大的问题?</u> 更快地解小问题

- ▶ 分支限界应用于非凸优化
 - ▶通用的算法和收敛性
 - ▶ 非凸优化例子: 混合布尔凸规划
 - ▶混合布尔凸规划例子:最小基数问题

回溯 (backtrack)

- 回溯算法
- 分支限界
- 应用实例

回溯法: 基本概念和适用条件

- 基本概念
 - ▶搜索问题、搜索空间、搜索策略
 - ▶判定条件、结点状态、存储结构
- 必要条件
 - ▶多米诺性质

实例1: 四后 (4-Queen) 问题

解表示成一个4维向量, $\langle x_1, x_2, x_3, x_4 \rangle$ (放置列号) 搜索空间: 4叉树

实例3: 旅行商 (TSP) 问题

<*i*₁,*i*₂,...,*i*_n> 为巡回路线 搜索空间:排列树, (n-1)!片树叶

<1,2,4,3> 对应于巡回路线: 1→2 →4 →3 →1

长度: 5+2+7+9=23

回溯法的基本思想 (1/2)

- 适用问题
 - ▶求解搜索问题
- 搜索空间
 - ▶一棵树
 - ▶每个结点对应了部分解向量,
 - ▶可达的树叶对应了可行解
- 搜索过程:
 - ▶ 采用系统的方法隐式地遍历搜索树
- 搜索策略:
 - ▶深度优先,宽度优先,函数优先,宽深结合等

回溯法的基本思想 (2/2)

- 结点分支判定条件:
 - ▶满足约束条件——分支扩张解向量
 - ▶ 不满足约束条件,回溯到该结点的父结点
- 结点状态
 - ▶动态生成
 - 白结点 (尚未访问)
 - 灰结点 (正在访问该结点为根的子树)
 - 黑结点 (该结点为根的子树遍历完成)
- 存储
 - ▶当前路径

必要条件: 多米诺性质

设 $P(x_1, x_2, ..., x_i)$ 为真表示向量 $\langle x_1, x_2, ..., x_i \rangle$ 中i 个 皇后放置在彼此不能攻击的位置

$$P(x_1, x_2, \dots, x_{k+1}) \rightarrow P(x_1, x_2, \dots, x_k)$$

$$\Leftrightarrow \neg P(x_1, x_2, \dots, x_k) \rightarrow \neg P(x_1, x_2, \dots, x_{k+1})$$

$$0 < k < n$$

例4 求不等式的整数解

$$5x_1+4x_2-x_3 \le 10$$
, $1 \le x_i \le 3$, $i=1,2,3$ $P(x_1, ..., x_k)$:意味将 $x_1, x_2, ..., x_k$ 代入原不等式的相应部分使得左边小于等于 10 。不满足多米诺性质变换: 令 $x_3=3$ $-x_3$ ',

$$5x_1+4x_2+x_3' \le 13$$
, $1 \le x_1, x_2 \le 3, 0 \le x_3' \le 2$

回溯算法的设计步骤

- 定义搜索问题的解向量和每个分量的取值范围
 - ►解向量为 <*x*₁, *x*₂, ..., *x*_n>
 - ▶ 确定 x_i 的可能取值的集合为 X_i , i = 1, 2, ..., n.
- \blacksquare 当 $x_1, x_2, \ldots, x_{k-1}$ 确定以后计算 x_k 取值集合 $S_k, S_k \subseteq X_k$
- 确定结点儿子的排列规则
- ▶ 判断是否满足多米诺性质
- ▶ 搜索策略----深度优先、宽度优先等
- 确定每个结点分支约束条件
- 确定存储搜索路径的数据结构

一般的回溯算法伪代码

P: 问题实例

■ c: 部分解

■ backtrack: 隐式遍历搜索树

```
procedure backtrack(P, c) is
  if reject(P, c) then return
  if accept(P, c) then output(P, c)
  S ← expand(P, c) # 部分解c的直接扩展集合
  for s in S do
    backtrack(P,s)
```

影响算法效率的因素

- 最坏情况下的时间W(n)=(p(n)f(n))
 - ▶其中p(n)每个结点时间,f(n)结点个数
- ▶影响回朔算法效率的因素
 - ▶搜索树的结构
 - •分支情况:分支均匀否
 - ●树的深度
 - •对称程度:对称适合裁减
 - ▶解的分布
 - 在不同子树中分布多少是否均匀
 - •分布深度
 - ▶约束条件的判断: 计算简单

回溯算法的效率估算: 估计搜索树的结点数

计数搜索树中遍历的结点, Monte Carlo方法

Monte Carlo方法

- 1. 从根开始,随机选择一条路径,直到不能分支为止,即从 $x_1,x_2,...$,依次对 x_i 赋值,每个 x_i 的值是从当时的 S_i 中随机选取,直到向量不能扩张为止.
- 2. 假定搜索树的其他 $|S_i|$ –1 个分支与以上随机选出的路径一样,计数搜索树的点数.
- 3. 重复步骤 1 和 2,将结点数进行概率平均.

平均效率估算: 实例

例5 估计四后问题的效率

case1. <1,4,2>: $1+4+4\times2+4\times2=21$

case2. $<2,4,1,3>: 4\times4+1=17$

case3. $<1,3>: 1+4\times1+4\times2=13$

Case2: <2,4,1,3>

Case1: <1,4,2>

Case3: <1,3>

平均效率估算: 结点数估计

假设 4 次抽样测试:

case1:1次, case2:1次, case3:2次,

平均结点数=(21×1+17×1+13×2)/4=16

搜索空间访问的结点数为17

搜索空间

平均效率估算: 算法实现 (1/2)

平均效率估算: 算法实现 (2/2)

m为输出——本次取样结点总数,k 为层数, r_1 为本层分支数, r_2 为上层分支数,n为树的层数

算法 Estimate(n)

8. $k \leftarrow k+1$

实例2: 0-1背包 (0-1 Knapsack) 问题

 $V = \{12,11,9,8\}, W = \{8,6,4,3\}, B = 13$

结点: 向量 $\langle x_1, x_2, x_3, ..., x_k \rangle$ (子集的部分特征向量)

搜索空间:子集树,2ⁿ片树叶

<0,1,1,1>可行解: $x_1=0, x_2=1, x_3=1, x_4=1$. 重量: 13, 价值: 28

<1,0,1,0>可行解: $x_1=1, x_2=0, x_3=1, x_4=0$. 重量: 12,价值: 21

组合优化问题

- 相关概念
 - ▶目标函数 (极大化或极小化)
 - ▶约束条件
 - ▶搜索空间中满足约束条件的解称为可行解
 - ▶ 使得目标函数达到极大(或极小)的解称为最优解
- 实例: 物品无限的背包问题

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$
$$2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10$$
$$x_i \in N, i = 1, 2, 3, 4$$

分支限界技术(branch-and-bound)

■ 设立代价函数

- ▶函数值以该结点为根的搜索树中的所有可行解的目标函数值的上界 (对于最大化问题)
- ▶ 父结点的代价不小于子结点的代价

■ 设立界

- ▶代表当时已经得到的可行解的目标函数的最大值
- ▶界的设定初值可以设为0
- ▶ 可行解的目标函数值大于当时的界,进行更新

■ 搜索中停止分支的依据

▶ 不满足约束条件或者其代价函数小于当时的界

实例: 物品无限的背包问题

▶ 物品无限的背包问题形式化

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$
$$2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10$$
$$x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

■ 对变元重新排序使得

$$\frac{v_i}{w_i} \ge \frac{v_{i+1}}{w_{i+1}}$$

▶ 排序后实例

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$
$$7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10$$
$$x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

代价函数与分支策略确定

■ 结点 <x₁, x₂, ..., x_k> 的代价函数

$$\sum_{i=1}^{k} v_{i} x_{i} + (B - \sum_{i=1}^{k} w_{i} x_{i}) \frac{v_{k+1}}{w_{k+1}}$$
 若对某个 $j > k$ 有 $B - \sum_{i=1}^{k} w_{i} x_{i} \ge w_{j}$ 否则

▶ 分支策略----深度优先

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$
$$7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10, \ x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

分支限界在非凸优化的应用

- 凸优化几乎总有全局最优解的高效算法
- ▶ 对于一般的非凸问题,只能部分舍弃属性
- 局部优化方法通常很快,在不强求全局最优解时
 - ▶ (即使能得到全局最优解,也很难确认最优性)
- ▶ 全局优化方法能求解全局最优解,但需要较长或很长的求解时间

分支限界应用于非凸优化

- 非凸问题的全局优化方法
- 非启发式方法
 - ▶ 维护目标函数全局的可证明的下界和上界
 - ▶ 当能确认 ε-次优性时终止运行
- 通常非常慢,最坏情况指数时间
- 但是运气好的时候效果还不错

分支限界应用于非凸优化: 基本思路

- ▶ 根据两组过程(有效地)计算在给定区域目标最优值的上界和下界
 - ▶求上界的方法: 任取一个点求目标函数值、局部优化方法、.....
 - ▶求下界的方法: 凸松弛 (convex relaxation) 、对偶性、Lipschitz界或其他下界、.....
- 基本思路
 - ▶将可行集划分成凸的子集,每个子集分别求上/下界
 - ▶ 形成全局的下界和上界
 - ▶ 两者足够接近时终止算法:或者细化划分并重复上述过程

分支限界应用于非凸优化: 无约束的非凸最小化

■ 目标: 求解函数 $f: \mathbb{R}^m \to \mathbb{R}$ 在 m-维长方体区域 Q_{init} 的全局最小值

- 对于任意长方体区域 $Q \subseteq Q_{init}$,定义 $\Phi_{min}(Q) \subseteq inf_{x \in Q} f(x)$
- $extbf{ }$ 全局最优值为 $f^* = \Phi_{min}(Q_{init})$
- 通常只需求解使 $|f f^*| \le \varepsilon$ 的 f 值

分支限界应用于非凸优化: 下界和上界函数

■ 记下界和上界函数分别为 Φ_{lb} 和 Φ_{ub} ,对于任意长方体 $Q \subseteq Q_{init}$,满足

$$\Phi_{lb}(Q) \le \Phi_{min}(Q) \le \Phi_{ub}(Q)$$

▶ 假设当长方体区域收缩时,上下界的距离会变窄

$$\forall \varepsilon > 0, \exists \delta > 0, \forall Q \subseteq Q_{init}, \ size(Q) \leq \delta \Longrightarrow \Phi_{ub}(Q) - \Phi_{lb}(Q) \leq \varepsilon$$

- ▶其中 size(Q) 是长方体最长边的长度
- \Rightarrow 实践中,上下界函数 Φ_{lb} 和 Φ_{ub} 需要能快速计算

分支限界应用于非凸优化: 分支限界算法

- 1. 计算 f^* 的下界和上界
 - ▶ 计算 $L_1 = \Phi_{lb}(Q_{init})$ 和 $U_1 = \Phi_{ub}(Q_{init})$
 - ▶ 若 $U_1 L_1 \le \varepsilon$, 算法终止
- 2. 将 Q_{init} 划分为两个子长方体 $Q_{init} = Q_1 U Q_2$
- 3. 分别计算 $\Phi_{lb}(Q_1)$, $\Phi_{lb}(Q_2)$, $\Phi_{ub}(Q_1)$, $\Phi_{ub}(Q_2)$
- 4. 更新 f^* 的下界和上界
 - ▶ 更新下界: $L_2 = min\{ \Phi_{lb}(Q_1), \Phi_{lb}(Q_2) \}$
 - ▶ 更新上界: $U_2 = min\{ \Phi_{ub}(Q_1), \Phi_{ub}(Q_2) \}$
 - ▶ 若 $U_2 L_2 \le \varepsilon$, 算法终止
- 5. 细化划分 (继续划分 Q_1 或 Q_2) , 重复第3步和第4步

分支限界应用于非凸优化: 分支限界算法

- \blacksquare 不失一般性,可假设 $\{U_i\}$ 是非上升序列, $\{L_i\}$ 是非下降序列
- 每一步,等效于在扩展一棵二叉树;二叉树的父子节点对应长方体划分过程
- \blacksquare 二叉树的叶子节点,表示 Q_{init} 在当前划被分出的子区域
- 每一步需要以下划分规则
 - ▶划分哪个长方体?
 - ▶划分长方体的哪条边? (划分哪个变量?)
 - ▶在哪里划分? (划分边界的取值?)
- ▶ 好的划分规则:划分当前能取得最好下界的长方体、沿长边、对半划分、等等

分支限界应用于非凸优化: 示意图

■ 三次迭代后,被划分的矩形、以及对应的二叉树,如下图所示

分支限界应用于非凸优化: 分支限界

- 在二叉树中 $\Phi_{lb}(Q) > U_2$ 的长方体 Q 对应的节点,可以排除掉,或称为剪枝
 - ▶ 该长方体内每个点的目标函数值都比当前上界差
 - ▶ 该长方体内肯定不存在最优解
- 剪枝不增加算法实现难度,又能降低计算和存储需求
- 可通过以下指标评估算法的进展
 - ▶被剪掉区域的总体积
 - ▶被剪掉的二叉树节点数目

分支限界应用于非凸优化: 收敛性分析

- 记第 k 次划分后,记此时的长方体集合为 \mathcal{L}_k (包含被剪枝的长方体)
- 这些长方体的总体积为 $vol(Q_{init})$, 有

$$\min_{Q \in \mathcal{L}_k} vol(Q) \le vol(Q_{init})/k$$

- 当 k 足够大时, 至少有一个长方体体积足够小
- \blacksquare 足够小的体积意味着足够小的边长、以及足够小的上下界距离 U-L
- 因此, $U_k L_k$ 将足够小

分支限界应用于非凸优化:条件数的范围估算

- m-维长方体 $Q = [l_1, u_1] \times \cdots \times [l_m, u_m]$ 的条件数定义为 $cond(Q) = max_i(u_i l_i)/min_i(u_i l_i)$
- 如果在最长边二分长方体,对于任意长方体,都有 $cond(Q) \leq max\{cond(Q_{init}), 2\}$
- 其他规则 (例如按维度顺序轮流划分) 也能保证 cond(Q) 的上界

分支限界应用于非凸优化: 小体积意味着小边长

$$vol(Q) = \prod_{i=1}^{m} (u_i - l_i) \ge \max_{i} (u_i - l_i) \left(\min_{i} (u_i - l_i) \right)^{m-1}$$
$$= (2size(Q))^m / cond(Q)^{m-1} \ge (2size(Q) / cond(Q))^m$$

- \mathbb{U} size(Q) $\leq (1/2)vol(Q)^{1/m}cond(Q)$
- 因此,如果 cond(Q) 有界,当 vol(Q) 足够小时,size(Q) 也可以足够小

混合布尔凸优化

- $x \in R^p$ 是连续变量
- $z \in \{0,1\}^n$ 是布尔变量
- $= f_0, \dots, f_m$ 对变量 x 和 z 是凸的
- 最优值记为 p*
- 每组固定的 $z \in \{0,1\}^n$,简化的问题 (对于变量 x) 是凸的

混合布尔凸优化:解决方法

■ 暴力

- ▶ 穷举 $z \in \{0,1\}^n$ 的 2^n 种可能的取值,每次再求解简化的连续凸优化问题
- ▶ 对于 $n \le 15$ 也许可行,但解决不了 $n \ge 20$ 规模的问题

● 分支限界

- ▶最坏情况,也需要求解 2ⁿ 次凸优化问题
- ▶寄希望于分支限界对待求解的问题实例能够较快地求解

混合布尔凸优化:通过凸松弛估算下界

► 松弛凸优化

minimize
$$f_0(x, z)$$

subject to $f_i(x, z) \le 0$ $i = 1, \dots, m$
 $0 \le z_i \le 1$ $j = 1, \dots, n$

- 对于连续变量 x 和 z 是凸的,容易求解
- 松弛问题的最优值 L_1 是原问题最优值 p^* 的下界
- L_1 可以是 +∞ (意味着原问题无可行解)

lacktriangle 记松弛问题最优解的布尔变量部分为 $z^{(L_1)}$

混合布尔凸优化: 上界的估算方法

- 估算 p^* 的上界 U_1 的几种方法
- 最简单的方法:对每个松弛的布尔变量 $z_i^{(L_1)}$, 四舍五入到 0 或 1
- 稍复杂的方法:每个布尔变量取整后,重新对x求解相应的连续凸优化问题
- 随机算法
 - ▶以概率 $Prob(z_i = 1) = z_i^{(L_1)}$ 随机生成布尔部分解 $z_i \in \{0,1\}$
 - ▶ (重新求解相应关于 *x* 的连续凸优化问题)
 - ▶在多个随机布尔部分解的结果里挑目标函数值最小的
- ▶ 上界可以是 +∞ (意味着方法无法求出可行解)
- 如果 $U_1 L_1 < \varepsilon$, 算法终止

混合布尔凸优化: 分支

- ▶ 挑一个变量下标 k, 形成两个子问题
- 第一个子问题

minimize
$$f_0(x, z)$$

subject to $f_i(x, z) \le 0$ $i = 1, \dots, m$
 $z_j \in \{0,1\}$ $j = 1, \dots, n$
 $z_k = 0$

■ 第二个子问题

minimize
$$f_0(x,z)$$

subject to $f_i(x,z) \le 0$ $i=1,\cdots,m$
 $z_j \in \{0,1\}$ $j=1,\cdots,n$
 $z_k=1$

混合布尔凸优化:分支(接上页)

- 每个都是 n-1 个布尔变量的混合布尔凸优化问题
- 原问题的最优值是子问题两个最优值中的最小者
- ▶ 能够通过求解松弛凸优化子问题来估算最优值的下界和上界

利用子问题的上下界,更新原问题的上下界

- 记 \overline{U} 和 \overline{L} 为 $z_k = 0$ 时的上下界
- 记 \hat{U} 和 \hat{L} 为 $z_k = 1$ 时的上下界
- $ightharpoonup \min\{\overline{L},\widehat{L}\} \ge L_1$
- 不失一般性,假设 $\min \{\overline{U}, \widehat{U}\} \leq U_1$
- 因此, 我们得到 p* 的新上下界

$$L_2 = \min \{\overline{L}, \widehat{L}\} \le p^* \le U_2 = \min \{\overline{U}, \widehat{U}\}$$

混合布尔凸优化: 分支限界算法

- 通过变量划分、松弛、和子问题上下界的估算,持续(隐式地)扩展二叉树
- \blacksquare 收敛性证明是显然的, 在 U = L 前不会超过 2^n 步
- \blacksquare 能对 L 超出当前步 U_k 的节点剪枝
- 通常的策略是划分拥有最小 L 值的节点(长方体)
- 长方体的划分维度选择
 - ▶最"旗帜鲜明"的:选满足 $z_k^{(L)} = 0$ 或 1 (且对应的拉格朗日乘子最大) 的维度 k
 - ▶ 最"模棱两可"的: 选最小化 $|z_k^{(L)} 1/2|$ 的维度 k

混合布尔凸优化: 小例子

▶ 节点记录了某个3变量布尔线性规划问题实例的上界和下界

混合布尔凸优化的应用: 最小基数问题

■ 求满足线性不等式的最稀疏(非零元素数目最少)的 x

minimize
$$card(x)$$

subject to $Ax \le b$

● 等价于求解混合布尔线性规划问题

minimize
$$\mathbf{1}^T z$$
 subject to $L_i z_i \leq x_i \leq U_i z_i$ $i=1,\cdots,n$ $Ax \leq b$ $z_i \in \{0,1\}$ $i=1,\cdots,n$

▶其中常数 U_i 和 L_i 是 x_i 的上下界(见下页)

最小基数问题: 变量上下界的计算

minimize x_i subject to $Ax \le b$

变量 x_i 上界 U_i 是以下线性规划的最优值

maximize x_i subject to $Ax \le b$

- ▼ 求解 2n 个线性规划问题,得到所有变量的上下界
- 如果 $L_i > 0$ 或 $U_i < 0$,置 $Z_i = 1$

最小基数问题: 松弛问题

► 松弛问题

minimize
$$\mathbf{1}^T z$$

subject to $L_i z_i \leq x_i \leq U_i z_i$ $i=1,\cdots,n$
 $Ax \leq b$
 $0 \leq z_i \leq 1$ $i=1,\cdots,n$

 \blacksquare (假设 $L_i < 0$ 且 $U_i > 0$) 松弛问题等价于

minimize
$$\sum_{i=1}^{n} ((1/U_i)(x_i)_+ + (-1/L_i)(x_i)_-)$$

subject to
$$Ax \le b$$

■ 目标函数是非对称的加权 ℓ_1 范数

(细节请参考 Stanford EE364b: "L1 methods for convex-cardinality problems"; 略)

最小基数问题: 更多细节

- ▶ 松弛问题在凸集上最小化 ℓ₁ 范数,是求解稀疏问题常用的启发式方法
- 取松弛问题的最优值 ỹ 作为原问题最优值的下界
 - ▶该下界可进一步增强至 [ŷ]
 - ▶例如,若知道原问题最优值 $card(x^*) \ge \tilde{y} = 23.4$,易得 $card(x^*) \ge 24$
- 取松弛问题的最优解 \tilde{x} 部分的 card(\tilde{x}) 作为原问题最优值的上界
- 每次迭代,划分拥有最小下界的长方体,沿最模棱两可的分量的维度

最小基数问题: 小例子

- 随机实例,30个布尔变量,100个约束
- 解空间大小: 2³⁰ ≈ 10⁹
- 8次迭代即可求得全局最小基数 (19)
- ▶ 但需要花124迭代证明19是最优解
- 调用 309 次线性规划求解器(包括60次计算每个变量的上下界)

最小基数问题: 算法运行进展示意图

左上角: 3次迭代后

右上角: 5次迭代后

左下角: 10次迭代后 右下角: 124次迭代后

最小基数问题:全局的上界和下界(小例子)

最小基数问题:未被剪枝候选解的比例(小例子)

最小基数问题: 二叉树的活跃叶子数目 (小例子)

最小基数问题: 大例子

- ▶ 随机实例,50个布尔变量,100个约束
- 解空间大小: 2⁵⁰ ≈ 10¹⁵
- ▶ 消耗 3665 次迭代 (第1300次即找到最优解)
- 最小基数 31

最小基数问题:全局的上界和下界(大例子)

最小基数问题:未被剪枝候选解的比例(大例子)

最小基数问题: 二叉树的活跃叶子数目(大例子)

最小基数问题:超级大例子

- ▶ 随机实例,200个布尔变量,400个约束
- 解空间大小: 2²⁰⁰ ≈ 1.6×10⁶⁰
- ► 运行 10000 次迭代后终止(消耗50小时,带1GB内存的单处理器上)
- 只能知道最优基数在 135 至 179 之间
- 但是能够将候选解的数目降低至原来的 1/1012

最小基数问题:全局的上界和下界(超级大例子)

最小基数问题:未被剪枝候选解比例(超大例子)

最小基数问题: 二叉树活跃叶子数目 (超大例子)

本节小结

- 回溯与剪枝 backtrack with pruning
 - ▶多米诺性质
- ► 分支限界 Branch-and-bound
 - ▶全局优化的分支限界例子
 - ▶<u>解更大的问题?</u> 更快地解小问题

- ▶ 分支限界应用于非凸优化
 - ▶通用的算法和收敛性
 - ▶非凸优化例子:混合布尔凸规划
 - ▶混合布尔凸规划例子:最小基数问题