Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка клиент-серверного приложения для когерентной обработки квадратурных компонент удаленных цифровых приемников

Выполнил:

Павлов Данила Сергеевич, гр. 5304

Руководитель:

Румянцев Александр Иванович, к.т.н., с.н.с каф. ССР

Актуальность

Обеспечить высокую точность позиционирования (определения координат) источников радиоизлучений за счет использования большой базы разноса между антенноприемными модулями

Проблема:

Отсутствие эффективного решения по достижению высокой точности синхронизации до наносекунд не позволяет осуществлять совместную когерентную обработку сигналов, принятых в пространственноразнесенных точках

Цель и задачи

Цель: Разработка программного приложения, обеспечивающего высокоточную синхронизацию квадратурных компонент удаленных цифровых приемников. **Задачи**:

- 1. Изучение проблемы, связанные с синхронизацией удаленных радиоприемных устройств;
- 2. Разработка модуля, обеспечивающего съем, запись квадратурных компонент приемника WR-35DDCi.
- 3. Разработка серверного приложения, передающего информацию о квадратурных компонентах на клиентскую сторону.
- 4. Разработка клиентского приложения, синхронизирующего принимаемые отсчеты квадратурных компонент

Квадратурная обработка сигнала

$$S(t) = I(t) + iQ(t),$$

$$I(t) = A(t)\cos(\omega t),$$

$$Q(t) = A(t)\sin(\omega t).$$

где I(t), Q(t) – вещественная и мнимая части сигнала S(t), A(t)-комплексная амплитуда сигнала.

Схема DDC

Задача 1. Разность фаз РПУ

$$\psi = \frac{2\pi \cdot d \cdot \sin \varphi \cos \alpha}{\lambda}$$

$$\Delta \varphi = \frac{\Delta \psi \cdot \lambda}{2\pi \cdot d \cdot \cos \varphi \cos \alpha}$$

$$-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$$

где Ψ – измеряемая разность фаз; d – расстояние между антеннами; φ , α – пеленг и угол места; $\Delta \varphi$ – ошибка измерения пеленга; $\Delta \psi$ – погрешность измерения разности фаз; λ – длина волны;

Задача 1. Возможные способы решения проблемы

Величина задержки прерываний

•	• •	
Операционная система	Средняя задержка, мс	Максимальная задержка, мс
Windows 10	0,55	17,17
Ubuntu 16.04	0,1	3,03
QNX	0,06	0,07

Плата синхронизации. Отчеты DDC и АЦП

Плата синхронизации

Структура пакета

DDC1 Settings PPS DATA DDC1 and **ADC Counters** I/Q Data

Структурная схема взаимодействия РПУ

Используемые технологии

Задача 2. Модуль считывания

Задача 3. Серверное приложение

Задача 4. Клиентское приложение

Тестирование синхронизации RN: 21 DDC_SC: 155383 ADC_PC: 621530998 _ Q_2 RN : BN : 21 DDC_SC: 155383 ADC_PC: 621530998 -250000 -500000 -750000 22 DDC_SC: 155538 ADC_PC: 622152697 Q_2 RN : BN : 22 DDC_SC: 155538 ADC_PC: 622152697 -250000 AKTI

Тестирование синхронизации. Суммо-разностная схема

Заключение

- Был проведен анализ существующих технических решений для программной синхронизации приложений на различных ПЭВМ.
- Разработан модуль, занимающийся когерентной обработкой квадратурных компонент
- Разработано серверное приложение, передающее пакеты с квадратурными компонентами и информацией и секундных импульсах на клиентскую
- Разработано клиентское приложения, позволяющее проводить производить синхронизацию двух удаленных цифровых приемников
- В дальнейшем планируется применить дополнительные процедуры точной фазовой синхронизации, учитывающие некратность частоты настройки DDC и тактовой частоты, дробную часть задержки отсчетов DDC