Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	Assume that your obje	ective is to minimize th	ne transformation of	X as similar to Y as p	possible, what would y	ou optimize to get R? ($(XR \approx Y)$

1 / 1 point

- Minimize the distance between XR and Y
- Maximize the distance between XR and Y
- Minimize the dot product between XR and Y
- Maximize the dot product between XR and Y

This is correct.

2. When solving for ${\cal R},$ which of the following is true?

1/1 point

- Create a forloop, inside the forloop: (initialize R, compute the gradient, update the loss
- O Create a forloop, inside the forloop: (initialize R, update the loss, compute the gradient.
- Initialize R, create a forloop, inside the forloop: (compute the gradient, update the loss)
- O Initialize R, compute the gradient, create a forloop, inside the forloop: (update the loss)
 - **⊘** Correct

This is correct.

3. The Frobenius norm of A = $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ is

1 / 1 point

(Answer should be in 2 decimal places)

7.14

⊘ Correct

4. Assume $X\in R^{m imes n}, R\in R^{n imes n}, Y\in R^{m imes n}$ which of the following is the gradient of $\|XR-Y\|_F^2$?

1/1 point

- $\bigcirc \frac{2}{m}X(XR-Y)$
- $\bigcirc \frac{2}{m}(XR-Y)X$
- $\bigcirc \frac{2}{m}(XR-Y)X^T$
- **⊘** Correct

This is correct.

5. Imagine that you are visiting a city in the US. If you search for friends that are living in the US, would you be able to determine the 2 closest of ALL your friends around the world?

1/1 point

- Yes, because I am already in the country and that implies that my closest friends are also going to be in the same country.
- No
- **⊘** Correct

This is correct.

	✓ To speed up the time it takes when comparing similar vectors.						
	To not have to spend time comparing vectors with other vectors that are completely different.						
	Correct This is correct.						
	 □ To make the search for other similar vectors more accurate. □ It helps us create vectors. 						
	Given the following vectors, determine the true statements. $P\colon\begin{bmatrix}1\\1\end{bmatrix}$ $V_1\colon\begin{bmatrix}1\\1\end{bmatrix}$ $V_2\colon\begin{bmatrix}2\\2\end{bmatrix}$ $V_3\colon\begin{bmatrix}-1\\-1\end{bmatrix}$	1/1 point					
8.	We define H to be the number of planes and h_i to be 1 or 0 depending on the sign of the dot product with plane i. Which of the following is the equation used to calculate the hash for several planes.	1 / 1 point					
	$left egin{array}{ll} left \sum_i^H 2^i h_i & & & & & & & & \\ left \sum_i^H 2^i h_i^i & & & & & & & \\ left \sum_i^H 2^i h_i & & & & & & \\ left \sum_i^H 2^{h_i} i & & & & & & \\ left $						
	How can you speed up the look up for similar documents. PCA Approximate Nearest Neighbors	1/1 point					
	□ K-Means✓ Locality sensitive hashing						
	○ Correct This is correct.						
10.	. Hash tables are useful because	1/1 point					

allow us to divide vector space to regions.

CorrectThis is correct.			
speed up look up			
Correct This is correct.			
☐ classify with higher accuracy ✓ can always be reproduced			
 Correct You will always hash the same vector 	to the same bucket with the same hash functio	on.	