CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 09: Storage, Firmware, Bootloader, & Systemd

Rahmat M. Samik-Ibrahim (ed.)

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV204 06-May-2019

Operating Systems 2019-1

A (Rm 3114) [Tu/Th 10-12] — B (Rm 3114) [Tu/Th 13-15] — C (Rm 3114) [Tu/Th 16-18] — D (Rm 2401) [Tu/Th 10-12] — E (Rm 2306) [Tu/Th 13-15]

Week	Schedule	Topic	OSC10
Week 00	07 Feb - 13 Feb 2019	Overview 1, Virtualization & Scripting	Ch. 1, 2, 18.
Week 01	14 Feb - 20 Feb 2019	Overview 2, Virtualization & Scripting	Ch. 1, 2, 18.
Week 02	21 Feb - 27 Feb 2019	Security, Protection, Privacy,	Ch. 16, 17
		& C-language	
Week 03	28 Feb - 06 Mar 2019	File System & FUSE	Ch. 13, 14, 15
Week 04	12 Mar - 18 Mar 2019	Addressing, Shared Lib, & Pointer	Ch. 9
Week 05	19 Mar - 25 Mar 2019	Virtual Memory	Ch. 10
Mid-Term	Tue, 26 Mar 2019	13:00 - 15:30 — MidTerm (UTS)	
Week 06	02 Apr - 08 Apr 2019	Concurency: Processes & Threads	Ch. 3, 4
Week 07	09 Apr - 15 Apr 2019	Synchronization & Deadlock	Ch. 6, 7, 8
Week 08	16 Apr - 22 Apr 2019	Scheduling + W06/W07	Ch. 5
Week 09	23 Apr - 29 Apr 2019	Storage, Firmware, Bootloader, & Systemd	Ch. 11
Week 10	30 Apr - 06 May 2019	I/O & Programming	Ch. 12
Reserved	07 May - 17 May 2019		
Final	Tue, 21 May 2019	13:00 - 15:00 — Final (UAS)	This schedule is
Extra	27 Jun 2019	Extra assignment confirmation	subject to chang

STARTING POINT — https://os.vlsm.org/

☐ **Text Book** — Any recent/decent OS book. Eg. (**OSC10**) Silberschatz et. al.: **Operating System Concepts**, 10th Edition, 2018. See also http://codex.cs.yale.edu/avi/os-book/OS10/. Weekly Encode your **QRC** with size about 5cm \times 5cm (ca. 400 \times 400 pixels): "OS191 CLASS ID SSO-ACCOUNT Your-Full-Name" Write your Memo (with QRC) every week. See also Assignment#0: Generate your QR Code. Login to badak.cs.ui.ac.id via kawung.cs.ui.ac.id for at least 10 minutes every week. Copy all weekly demo folders into your own badak home directory. Eg.: cp -r /extra/Demos/* ~/mydemos/ Resources All In One — BADAK.cs.ui.ac.id:///extra/(FASILKOM only!). Download Slides and Demos from GitHub.com https://github.com/UI-FASILKOM-OS/SistemOperasi/ Problems — https://rms46.vlsm.org/2/: 195.pdf (W00), 196.pdf (W01), 197.pdf (W02), 198.pdf (W03), 199.pdf (W04), 200.pdf (W05), 201.pdf (W06), 202.pdf (W07), 203.pdf (W08), 204.pdf (W09), 205.pdf (W10).

Agenda

- Start
- Schedule
- Agenda
- 4 Week 09
- Storage, Firmware, Bootloader, & Systemd
- Storage Management
- RAID
- 8 Legacy BIOS
- UEFI
- Operating System (Boot) Loader
- 🔟 GRUB Map
- init (SYSV legacy)
- UpStart Ubuntu
- The All New "systemd"
- systemctl
- 16 The End

Week 09 Storage, Firmware, Bootloader, & Systemd: Topics¹

- Storage
- Storage Arrays
- BIOS
- Loader
- Systemd

¹Source: ACM IEEE CS Curricula 2013

Week 09 Storage, Firmware, Bootloader, & Systemd: Learning Outcomes¹

- Storage [Usage]
- Storage Arrays [Usage]
- BIOS [Usage]
- Loader [Usage]
- Systemd [Usage]

Storage, Firmware, Bootloader, & Systemd

- Reference: (OSC10-ch11)
 Storage Capacity (2019)¹
- - Legacy 3.5" Floppy Disk (1.4MB) obsolete?
 - SuperDisk (up to 240 MB) never took off.
 - 4.7" Compact Disc (700MB) obsolete?
 - 4.7" Digital Versatile Disc (up to 9GB) ?
 - 4.7" Blu Ray (up to 128 GB) ⇒ DVD++.
 - Tape Cartridge (up to 15TB)
 - Robotic System (up to 250 PB per unit)
 - NASA, Google, Microsoft are still using this!
 - Cheap but slow.
 - Hard Disk Drives (up to 16 TB).
 - From Perpendicular Magnetic Recording to Shingled Magnetic Recording technology (+25% – writing problems).
 - Mechanical Disk Arm Scheduling (Until When?).
 - Solid-State Disks (up to 16 TB).
 - SSD Price > HDD Price.
 - Write Speed >> Read Speed.
 - (What is a) Flash Disk?

¹Subject to change

Storage Failure Rates

- MTTDL: Mean Time To Data Loss
- MTTF: Mean Time To Failure
- BackBlaze (Cloud Backup Services)

Drives Have 3 Distinct Failure Rates General Predicted Failure Rates

Hard Drive Survival Rates - Chart 1

https://www.extremetech.com/computing/ 170748-how-long-do-hard-drives-actually-live-for

Storage Management

- Attached-Storage.
 - Host-Attached Storage: via I/O.
 - Network-Attached Storage (NAS): via distributed FileSystem.
 - Storage Area Network (SAN): dedicated Network.
- Formating
 - Low Level (Physical)
 - High Level (FileSystem)
- Boot Block
- Disk Partition
 - "MBR"-scheme
 - upto 4 primary partition
 - upto 2 TB disk
 - "GPT"-scheme
 - "unlimited" partition
 - "unlimited" disk
 - redundancy
- Swap Space Management: On Partition or FileSystem?

RAID: Redundant Array of In* Disks

- RAID 0, 1, 5, 6, 10, 100
- Note (http://www.commodore.ca/windows/raid5/raid5.htm):
 - RAID was created to enhance data performance, reliability and availability.
 - Striping, parity checking and mirroring are three primary functions of RAID systems.
 - RAID performs its functions transparent to the operating system.
 - Systems are typically defined by ranks consisting of five disks each connected to one or two Disk Array Controllers.
 - Different RAID levels provide varying degrees of speed and data protection.
- Problems with RAID
- Stable-Storage Implementation

BIOS, Boot, & Systemd

- Firmware
 - BIOS: Basic Input Output System.
 - UEFI: Unified Extensible Firmware Interface.
 - ACPI: Advanced Configuration and Power Interface.
- Operating System (Boot) Loader
 - BOOTMGT: Windows Bootmanager / Bootloader.
 - LILO: Linux Loader.
 - GRUB: GRand Unified Bootloader.
- Operating System Initialization
 - Init (legacy)
 - UpStart
 - Systemd

Legacy BIOS

- Check Settings.
- Initialize CPU & RAM.
- POST: Power-On Self-Test.
- Initialize ports, LANS, etc.
- Load a Boot Loader.
- Handover to the Boot Loader.
- Provides "Native" (obsolete) Drivers only (not loadable).
- Provides "INT" services .
- Limitation.
 - Technology of 1970s.
 - 16 bits software.
 - 20 bits address space (1 MB).
 - 31 bits disk space (2 TB).

BIOS

Figure: BIOS

UEFI

- A Firmware Specification, not an Implementation!
- No (INT) service after boot.
- HII: Human Interface Infrastructure.
- Protected Mode.
- Flexible.
 - Technology of 2000s.
 - writen in C.
 - (third party) loadable drivers and tools.
 - Emulate Legacy BIOS transition (MBR block, INT service).
 - UEFI Shell: environment shell for diagnostic (no need for DOS).
- Problems
 - Who controls the Hardware?
 - Is "Secure Boot" a good thing?
 - How about a NASTY/LOCKING/TROJAN UEFI implementation?
 - Different DRIVERS.

UEFI

Figure: UEFI

UEFI Boot

Platform Initialization (PI) Boot Phases

Figure: UEFI Boot Process¹.

Operating System (Boot) Loader

- General
 - How/Where to start the operating system?
 - What to do?
 - How many ways to boot?
 - How many types of OS?
- Disk Partition
 - MBR: Master Boot Record (1983).
 - GPT: GUID (Globally Unique Identifiers) Partition Table (2010s).
- GRUB: GRand Unified Boot system
 - Stage 1: a small boot.img inside the MBR.
 - Stage 1.5 (core.img): FileSystem drivers after MBR.
 - Stage 2: Kernel Selection: Windows, Linux, BSD, etc.
- GRUB2
 - More flexible than GRUB legacy.
 - More automated than GRUB legacy.
 - Accept MBR and GPT.
 - Stage 1.5 (core.img): generated from diskboot.img.
 - No 1024 cylinder restriction.

GRUB Map

GNU GRUB 2

Locations of boot.img, core.img and the /boot/grub directory

Example 1: an MBR-partitioned harddisc with sector size of 512 or 4096Bytes

Example 2: a GPT-partitioned harddisc with sector size of 512 or 4096Bytes

Figure: GRUB¹.

¹Source Shmuel Csaba Otto Traian 2013

init (SYSV legacy)

- File: /etc/inittab.
- Folders: /etc/rcX.d X = runlevel.
 - Seven (7) different runlevels:
 - 0 (shutdown).
 - 1 (single-user/admin).
 - 2 (multi-user non net).
 - 3 (standard).
 - 4 (N/A).
 - 5 (3+GUI).
 - 6 (reboot).
 - SXX-YYY: Start
 - KXX-YYY: Kill.
- One script at a time in order.
- dependency is set manually.

UpStart - Ubuntu

- Developer: Ubuntu.
- Folder: /etc/init/.
- Control: initctl.
 - initctl list listing all processes managed by upstart.
- better support for hotplug devices.
- cleaner service management.
- faster service management.
- asynchronous.

The All New "systemd"

- Replaces (SYSV) init and UpStart.
 - better concurrency handling: Faster!
 - better dependencies handling: No more "S(tarts)" and "K(ills)".
 - better crash handling: automatic restart option.
 - better security: group protection from anyone including superusers.
 - simpler config files: reliable and clean scripts.
 - hotplug: dynamic start/stop.
 - supports legacy systems (init).
 - overhead reducing.
 - unified management way for all distros.
 - bloated: doing more with more resources.
 - linux specific: NOT portable.

systemctl

```
for II in
   'systemctl list-unit-files | head -8; echo "(...)";
       systemctl list-unit-files| tail -8' \
   'systemd-analyze blame | wc -1; echo "===";
       systemd-analyze blame | head -15' \
   'systemctl --full | wc -1; echo "===";
       systemctl --full | head -10' \
   'systemctl list-units | wc -1; echo "===";
       systemctl list-units | head -10' \
   'systemctl list-units |grep .service|wc -l;echo "===";
       systemctl list-units|grep .service|head -10' \
   'systemctl list-units | grep ssh.service' \
   'systemctl status ssh.service' \
   'systemctl is-enabled ssh' \
   'journalctl' \
   'journalctl -b' \
dο
```

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.