Electronique Elec 1A – Cours de Monsieur Bilbault Examen de deuxième session 18/06/2018 (1 heure) Documents et calculatrices interdites – 2 exercices indépendants

- I. Dans le circuit de la Figure ci-dessous apparaissent deux générateurs parfaits de tension de forces électromotrices continues $E_1 = E_2 = \alpha$, deux résistances $R_1 = R_2 = \beta$, ainsi que deux générateurs parfaits de courants continus $I_{N1} = I_{N2} = \gamma$. On s'intéresse au seul courant I_L à travers une troisième résistance $R_L = k \beta$.
- a) En utilisant plusieurs fois les générateurs de Thévenin/Norton et en écrivant successivement plusieurs schémas équivalents, montrer que l'expression littérale du courant I_L circulant dans la résistance R_L est donnée par :

$$I_{L} = 2(\alpha + \beta \gamma)/[\beta(2k+1)].$$

- b) Vérifier l'homogénéité de ce résultat en utilisant les unités de α , β et γ .
- c) Quelle est la tension V_L aux bornes de R_L (expression littérale)?
- d) Retrouver ce résultat en utilisant le théorème de Milman au point L.
- e) En déduire la puissance consommée par cette résistance R_L (expression littérale, sans oublier les unités).
- f) Quelle énergie cette résistance dissipe-t-elle en un temps Δt (expression littérale)?
- g) Quelle valeur de k rendrait cette énergie maximale pendant le même temps ?

- II. On s'intéresse à une inductance L = 10 mH, traversée par un courant i(t). Elle présente à ses bornes une tension $u_L(t)$.
 - a) Quelle est la relation entre i(t) et $u_L(t)$?
 - b) Quelle est la puissance reçue par l'inductance ?
 - c) Quelle est l'énergie emmagasinée au bout de 5 secondes si le courant était nul au temps t = 0 et qu'il est monté à 0,1 ampères à t = 5 s?
 - d) Si le courant augmente linéairement avec le temps avec une pente de 5 mA.s⁻¹, que vaut $u_L(t)$?