Ph.D Dissertation Defense

Design of Hybrid Analog and Digital Precoding in Large-scale MIMO System

Research Advisor

Prof. Suk Chan Kim

Ph.D Candidate

Yongpan Feng

April 11, 2018

Contents

- Introduction
- Hybrid Precoding in MU-MIMO
- Double-RF Hybrid Precoding in P2P MIMO
- Conclusions of the Thesis
- Overview of the Studying in PNU

Traditional Precoding

What is precoding and why we need it?

Traditional Precoding

Problem

What will happen when antenna number greatly increases ($10^2 \sim 10^3$ order)? Array gain but also cost.

We note that conventional MIMO precoding requires a dedicated radio frequency (RF) chain for each antenna element, which is prohibitive cost and power consumption for massive MIMO.

Note: a RF chain includes digital-to-analog conversion, signal mixing and power amplifying.

To solve this problem, the hybrid analog and digital precoding is proposed [Alkhateeb13, El14, Sohrabi16].

Requirement: RF Precoder should be realized only with phase-shifter!

•
$$|V_{ij}| = const$$

•
$$|P_{ij}| = const$$

Objective

RF precoder: phase-clock array

Objective

- Find the optimal phase combination of RF precoder
- Find the optimal digital precoder

Challenges

- Large-scale array variables
- Non-convex optimization problem
- Large-scale non-linear constraints
- Inner-interference elimination
- Quantized Phase-shifter in practical implementation
- Spectral efficiency matches that of fully digital precoding

The State of the Art

High Cited Existing Works

- Liang14 proposed a low-complexity RF precoding scheme, which has a poor performance
- Alkhateeb15 developed iterative algorithms based on Macthing Pursuit (MP), which only limited a certain channel model
- Sohrabi16 raised another iterative algorithm, however it is element-wise updating method, which greatly consume time.

Overview of the Previous Defense

Overview of the Previous Defense

Overview of the Previous Defense

Contents

- Introduction
- Hybrid Precoding in MU-MIMO
- Double-RF Hybrid Precoding in P2P MIMO
- Conclusions of the Thesis
- Overview of the Studying in PNU

System Model

System Model

The combined signal at the kth MS can be expressed as

System Model

$$\tilde{\mathbf{y}}_k = \mathbf{Q}_k^H \mathbf{P}_k^H \mathbf{H}_k \mathbf{VWs} + \mathbf{Q}_k^H \mathbf{P}_k^H \mathbf{n}_k, \quad k = 1, \cdots, K,$$
 (1)

- $\mathbb{E}[\mathbf{s}\mathbf{s}^H] = \frac{P}{SK}\mathbf{I}_{SK}$
- $\mathbf{H}_k \in \mathbb{C}^{N_{MS} \times N_{BS}}$ is the channel matrix
- $\mathbf{n}_k \in \mathbb{R}^{N_{MS} imes 1}$ is i.i.d. additive complex Gaussian noise

Spectrum Efficiency

The sum spectral efficiency of the whole system can be expressed as

Spectrum Efficiency

$$R = \sum_{k=1}^{K} \log_2 \left(\left| \mathbf{I}_{S} + \frac{P}{SK} \mathbf{R}_{i}^{-1} \mathbf{Q}_{k}^{H} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H} \mathbf{Q}_{k} \right| \right), \tag{2}$$

- $\mathbf{R}_i = \frac{P}{SK} \sum_{i \neq k}^K \mathbf{Q}_k^H \bar{\mathbf{H}}_k \mathbf{W}_i \mathbf{W}_i^H \bar{\mathbf{H}}_k^H \mathbf{Q}_k + \sigma^2 \mathbf{Q}_k^H \mathbf{P}_k^H \mathbf{P}_k \mathbf{Q}_k$
- $\bullet \ \mathbf{\bar{H}} = [\mathbf{\bar{H}}_1^T, \cdots, \mathbf{\bar{H}}_K^T]^T$
- $\bar{\mathbf{H}}_k = \mathbf{P}_k^H \mathbf{H}_k \mathbf{V}, \quad k = 1, 2, \cdots, K.$

Additional Constraints

In order to eliminate inter-user interference, we imposes the constraints of

Imposed Constraints
$$\bar{\mathbf{H}}_k \mathbf{W}_i = \mathbf{0}, \quad \forall i \neq k$$
 (3)

Then, we have the optimization problem of hybrid precoding optimization problem as follows:

Optimization Problem

$$\max_{\{P_k\},\{W_k\},V} R = \sum_{k=1}^{K} R_k$$
 (4a)

$$s.t. \quad \bar{\mathbf{H}}_k \mathbf{W}_i = \mathbf{0}, \quad \forall i \neq k \tag{4b}$$

$$tr(\mathbf{VWW}^H\mathbf{V}^H) \le P,$$
 (4c)

$$|\mathbf{V}(n,m)| = 1/\sqrt{N_{BS}}, \forall n, m \tag{4d}$$

$$|\mathbf{P}_k(p,q)| = 1/\sqrt{N_{MS}}, \forall p, q. \tag{4e}$$

and \mathbf{R}_i is simplied as $\mathbf{R}_i = \sigma^2 \mathbf{Q}_k^H \mathbf{P}_k^H \mathbf{P}_k \mathbf{Q}_k$.

Consider (4) as a distributed optimization problem, we can transfer it as follows

$$\max_{\substack{\{\mathbf{P}_k\},\{\mathbf{W}_k\},\\\mathbf{V}_k\{\mathbf{V}_k\}}} \hat{R} = \sum_{k=1}^K \hat{R}_k$$
 (5a)

s.t. $\bar{\mathbf{H}}_k \mathbf{W}_i = \mathbf{0}, \forall i \neq k$

$$\bar{\mathbf{H}}_k \mathbf{W}_i = \mathbf{0}, \quad \forall i \neq k$$
 (5b)

$$tr(\mathbf{VWW}^H\mathbf{V}^H) \le P,$$
 (5c)
 $\mathbf{V}_k = \mathbf{V}, \forall k$ (5d)

$$|\mathbf{V}(n,m)| = 1/\sqrt{N_{BS}}, \forall n, m \tag{5e}$$

$$|\mathbf{P}_k(p,q)| = 1/\sqrt{N_{MS}}, \forall p, q. \tag{5f}$$

•
$$\hat{R}_k = \log_2(|\mathbf{I}_S + \mathbf{R}_i^{-1} \mathbf{Q}_i^H \mathbf{\bar{H}}_k \mathbf{W}_k \mathbf{W}_i^H \mathbf{\bar{H}}_i^H \mathbf{Q}_k|)$$

$$\bullet \ \ \bar{\mathbf{H}}_k = \mathbf{P}_k^H \mathbf{H}_k \mathbf{V}_k$$

For each kth separable sub-problem in (5), the alternating direction method of multipliers (ADMM) can be derived directly from the augmented Lagrangian method as follows

Optimization Problem

$$\min_{\substack{\mathbf{P}_k, \mathbf{W}_k, \\ \mathbf{V}, \mathbf{V}_k, \mathbf{A}_k}} L_c^k = -\hat{R}_k + \Re tr[\mathbf{A}_k(\mathbf{V}_k - \mathbf{V})] + \frac{c}{2}||\mathbf{V}_k - \mathbf{V}||_F^2$$
 (6a)

s.t.
$$\bar{\mathbf{H}}_k \mathbf{W}_i = \mathbf{0}, \quad \forall i \neq k$$
 (6b)

$$tr(\mathbf{VWW}^H\mathbf{V}^H) \le P,$$
 (6c)

$$|\mathbf{V}(n,m)| = 1/\sqrt{N_{BS}}, \forall n, m \tag{6d}$$

$$|\mathbf{P}_k(p,q)| = 1/\sqrt{N_{MS}}, \forall p, q \tag{6e}$$

where \mathbf{A}_k is Lagrange multiplier matrix, c is called the penalty parameter.

ADMM Algorithm for (6)

Require: P_k^0 , W^0 , V_k^0 , A_k^0 , V^0 , c

- 1: while not reach stopping condition do
- 2: $1.\mathbf{V}_k^{t+1} = \arg\min -\hat{R}_k(\mathbf{P}_k^t, \mathbf{W}^t, \mathbf{V}_k^t) + \Re tr(\mathbf{A}_k^t \mathbf{V}_k^t) + \frac{c}{2}||\mathbf{V}_k^t \mathbf{V}^t||_F^2$ s.t. $|\mathbf{V}_k(n, m)| = 1/\sqrt{N_{BS}}, \forall n, m$
- 3: 2. $\mathbf{V}^{t+1} = \arg\min \sum_{k=1}^{K} \Re tr(\mathbf{A}_k^t \mathbf{V}^t) + \frac{c}{2} \sum_{k=1}^{K} ||\mathbf{V}_k^{t+1} \mathbf{V}^t||_F^2$ s.t. $\mathbf{V}(n, m) = 1/\sqrt{N_{BS}}, \forall n, m$
- 4: 3. $\mathbf{P}_k^{t+1} = \arg\min -\hat{R}_k(\mathbf{P}_k^t, \mathbf{W}^t, \mathbf{V}_k^{t+1})$ s.t. $\mathbf{P}_k(p, q) = 1/\sqrt{N_{MS}}, \forall p, q$
- 5: 4. $\mathbf{A}_k^{t+1} = \mathbf{A}_k^t + c(\mathbf{V}_k^{t+1} \mathbf{V}^{t+1})$
- 6: 5. $\mathbf{W}^{t+1} = \arg\min \sum_{k=1}^{K} \hat{R}_{k}(\mathbf{P}_{k}^{t+1}, \mathbf{W}^{t}, \mathbf{V}_{k}^{t+1})$ s.t. $\bar{\mathbf{H}}_{k}\mathbf{W}_{i}^{t} = \mathbf{0}$, and $tr[\mathbf{V}^{t+1}\mathbf{W}^{t}(\mathbf{W}^{t})^{H}(\mathbf{V}^{t+1})^{H}] \leq P$, $\forall i \neq k$
- 7: end while

Update of \mathbf{V}_k

Now we revisit the first problem as follows,

Optimization of V_k

$$\min_{\mathbf{V}_k} g_k(\mathbf{V}_k) = -\hat{R}_k(\mathbf{V}_k) + \Re tr(\mathbf{A}_k \mathbf{V}_k) + \frac{c}{2}||\mathbf{V}_k - \mathbf{V}||_F^2$$
 (7a)

s.t.
$$|\mathbf{V}_k(n,m)| = 1/\sqrt{N_{BS}}$$
. (7b)

Update of \mathbf{V}_k

By the proposed matrix complex exponential learning (MCXL), we have the following update equations for (7):

Update of \mathbf{V}_k

$$\mathbf{\Phi}_k^{n+1} = \mathbf{\Phi}_k^n + \gamma_k^n \frac{\mathbf{D}_{g_k}(\mathbf{\Phi}_k^n)}{||\mathbf{D}_{g_k}(\mathbf{\Phi}_k^n)||_F},\tag{8a}$$

$$\mathbf{V}_{k}^{n+1} = \exp(i\mathbf{\Phi}_{k}^{n+1})/\sqrt{N_{BS}},\tag{8b}$$

where:

- 1) $\Phi_k \in \mathbb{R}^{N_{BS} \times M_{BS}}$ is an auxiliary matrix which represents the phase matrix of the RF precoder \mathbf{V}_k ,
- 2) $\mathbf{D}_{g_k} \equiv \mathbf{D}_{g_k}(\Phi_k)$ denotes the real part of the matrix derivative of g_k with respect to the phase matrix of \mathbf{V}_k :

$$\mathbf{D}_{g_k}(\mathbf{\Phi}_k) = -\Re\nabla_{\mathbf{\Phi}_k} g_k,\tag{9}$$

- 3) γ_{ν}^{n} is the *n*th step for the Φ_{k} ,
- 4) $i = \sqrt{-1}$.
- 5) $||\cdot||_F$ denotes Frobenius norm.

To obtain $\mathbf{D}_{g_k}(\Phi_k)$, we explore a proposition as follow

Proposition 1

Suppose $f: \mathbb{C}^{n \times m} \to \mathbb{R}$ is a function that takes as input the matrix $\mathbf{A} \in \mathbb{C}^{n \times m}$ and produces as the output $f(\mathbf{A}) \in \mathbb{R}$, while $\mathbf{A} = \exp(i\mathbf{X})$, where $\mathbf{X} \in \mathbb{R}^{n \times m}$ is a real matrix. If the derivative of $f(\mathbf{A})$ with respect to \mathbf{A} is (see Appendices)

$$\nabla_{\mathbf{A}} f = \mathbf{D},$$

then, the derivative of f with respect to X is (Appendix A)

$$\nabla_{\mathbf{X}} f = i \mathbf{D}^* \circ \mathbf{A}.$$

where \circ is the Hadamard (elementwise) product and $(\cdot)^*$ denotes conjugate.

Update of \mathbf{V}_k

According to Proposition 1, the (8) can be rewritten as

Update of \mathbf{V}_k

$$\mathbf{\Phi}_{k}^{n+1} = \mathbf{\Phi}_{k}^{n} + \gamma_{k}^{n} \frac{i \mathbf{D}_{g_{k}}(\mathbf{V}_{k}^{n})^{*} \circ \mathbf{\Phi}_{k}^{n}}{||\mathbf{D}_{g_{k}}(\mathbf{V}_{k}^{n})^{*} \circ \mathbf{\Phi}_{k}^{n}||_{F}}, \tag{10a}$$

$$\mathbf{V}_{k}^{n+1} = \exp(i\mathbf{\Phi}_{k}^{n+1})/\sqrt{N_{BS}},\tag{10b}$$

where

$$\mathbf{D}_{g_k}(\mathbf{V}_k) = -\Re\nabla_{\mathbf{V}_k} g_k. \tag{11}$$

Proposition 2

Complex Gradient Matrix: If f is a real function of a complex matrix **Z**, then the complex gradient matrix is given by (Anemuller03)

$$\nabla_{\mathbf{Z}} f(\mathbf{Z}) = 2 \frac{df(\mathbf{Z})}{d\mathbf{Z}^*}$$

$$= \frac{\partial f(\mathbf{Z})}{\partial \Re \mathbf{Z}} + i \frac{\partial f(\mathbf{Z})}{\partial \Im \mathbf{Z}}.$$
(12)

Update of V_k

After several derivations, the derivative of g_k with respect to \mathbf{V}_k can be obtained as follows (see Appendices)

$$\nabla_{\mathbf{V}_{k}}g_{k} = 2\frac{\partial g_{k}}{\partial \mathbf{V}_{k}^{*}} = \frac{\partial g_{k}}{\partial \Re \mathbf{V}_{k}} + i\frac{\partial g_{k}}{\partial \Im \mathbf{V}_{k}}$$

$$= -\frac{2}{\sigma^{2} \ln 2} \mathbf{H}_{k}^{H} \mathbf{P}_{k} (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W} \mathbf{W}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} \qquad (13)$$

$$\cdot (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W} \mathbf{W}^{H} + \mathbf{A}_{k}^{*} + c(\mathbf{V}_{k} - \mathbf{V}).$$

Derivative of g_k w.r.t \mathbf{V}_k

We repeat the the objective function as follows,

$$g_k = -\hat{R}_k + \Re tr(\mathbf{A}_k \mathbf{V}_k) + \frac{c}{2} ||\mathbf{V}_k - \mathbf{V}||_F^2, \tag{14}$$

where

$$\hat{R}_k = \log_2 |\mathbf{I} + \frac{1}{\sigma^2} (\mathbf{P}_k^H \mathbf{P}_k)^{-1} \mathbf{P}_k^H \mathbf{H}_k \mathbf{V}_k \mathbf{W}_k \mathbf{W}_k^H \mathbf{V}_k^H \mathbf{H}_k^H \mathbf{P}_k |.$$

We will find the derivative of the three terms in (14) with respect to \mathbf{V}_k in sequence.

First, we find the partial differential of \hat{R}_k with respect to V_k as

$$\begin{split} \partial \hat{R}_{k} &= \frac{1}{\sigma^{2} \ln 2} tr[(\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} \cdot \partial (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k} \mathbf{V}_{k} \mathbf{W}_{k}^{W} \mathbf{W}_{k}^{H} \mathbf{V}_{k}^{H} \mathbf{H}_{k}^{H} \mathbf{P}_{k}] \\ &= \frac{1}{\sigma^{2} \ln 2} tr[(\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k} \cdot \partial \mathbf{V}_{k} \cdot \mathbf{W}_{k} \mathbf{W}_{k}^{H} \mathbf{V}_{k}^{H} \mathbf{H}_{k}^{H} \mathbf{P}_{k} \\ &+ (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k} \mathbf{V}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \cdot \partial \mathbf{V}_{k}^{H} \cdot \mathbf{H}_{k}^{H} \mathbf{P}_{k}]. \end{split}$$
(15)

The derivative of \hat{R}_k with respect to the real part of \mathbf{V}_k can be obtained as

$$\begin{split} \frac{\partial \hat{R}_{k}}{\partial \Re \mathbf{V}_{k}} &= \frac{1}{\sigma^{2} \ln 2} [(\mathbf{W}_{k} \mathbf{W}_{k}^{H} \mathbf{V}_{k}^{H} \mathbf{H}_{k}^{H} \mathbf{P}_{k} (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k})^{T} \\ &+ \mathbf{H}_{k}^{H} \mathbf{P}_{k} (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k} \mathbf{V}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H}]. \end{split} \tag{16}$$

Derivative of g_k w.r.t \mathbf{V}_k

The derivative of \hat{R}_k with respect to the image part of V_k can be obtained as

$$\begin{split} i \frac{\partial \hat{R}_{k}}{\partial \Im \mathbf{V}_{k}} &= -\frac{1}{\sigma^{2} \ln 2} [(\mathbf{W}_{k} \mathbf{W}_{k}^{H} \mathbf{V}_{k}^{H} \mathbf{H}_{k}^{H} \mathbf{P}_{k} (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k})^{T} \\ &+ \mathbf{H}_{k}^{H} \mathbf{P}_{k} (\mathbf{I} + \frac{1}{\sigma^{2}} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \bar{\mathbf{H}}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H} \bar{\mathbf{H}}_{k}^{H})^{-1} (\mathbf{P}_{k}^{H} \mathbf{P}_{k})^{-1} \mathbf{P}_{k}^{H} \mathbf{H}_{k} \mathbf{V}_{k} \mathbf{W}_{k} \mathbf{W}_{k}^{H}]. \end{split} \tag{17}$$

Hence, the derivative of \hat{R}_k with respect to \mathbf{V}_k can be obtained as

$$\nabla_{\mathbf{V}_{k}}\hat{\mathbf{R}}_{k} = \frac{\partial\hat{\mathbf{R}}_{k}}{\partial\mathbf{W}_{k}} + i\frac{\partial\hat{\mathbf{R}}_{k}}{\partial\mathbf{W}_{k}}$$

$$= \frac{2}{\sigma^{2}\ln 2}\mathbf{H}_{k}^{H}\mathbf{P}_{k}(\mathbf{I} + \frac{1}{\sigma^{2}}(\mathbf{P}_{k}^{H}\mathbf{P}_{k})^{-1}\bar{\mathbf{H}}_{k}\mathbf{W}_{k}\mathbf{W}_{k}^{H}\bar{\mathbf{H}}_{k}^{H})^{-1}(\mathbf{P}_{k}^{H}\mathbf{P}_{k})^{-1}\mathbf{P}_{k}^{H}\mathbf{H}_{k}\mathbf{V}_{k}\mathbf{W}_{k}\mathbf{W}_{k}^{H}.$$
(18)

Then, we study the derivative of the second term in (14) with respect to V_k . The second term can be reformulated as

$$\Re tr(\mathbf{A}_k \mathbf{V}_k) = \Re tr[(\Re \mathbf{A}_k + i \Im \mathbf{A}_k)(\Re \mathbf{V}_k + i \Im \mathbf{V}_k)]$$

$$= tr[\Re \mathbf{A}_k \Re \mathbf{V}_k - \Im \mathbf{A}_k \Im \mathbf{V}_k].$$
(19)

Derivative of g_k w.r.t \mathbf{V}_k

The derivative of the second term with respect to the real part of \mathbf{V}_k can be got as

$$\frac{\partial \Re tr(\mathbf{A}_k \mathbf{V}_k)}{\partial \Re \mathbf{V}_k} = \Re \mathbf{A}_k^T. \tag{20}$$

The derivative of the second term with respect to the image part of V_k can be got as

$$i\frac{\partial \Re tr(\mathbf{A}_k \mathbf{V}_k)}{\partial \Im \mathbf{V}_k} = -\Im \mathbf{A}_k^T. \tag{21}$$

Hence, the derivative of the second term with respect to V_k can be got as

$$\nabla_{\mathbf{V}_{k}} \Re \operatorname{tr}(\mathbf{A}_{k} \mathbf{V}_{k}) = \frac{\partial \Re \operatorname{tr}(\mathbf{A}_{k} \mathbf{V}_{k})}{\partial \Im \mathbf{V}_{k}} + i \frac{\partial \Re \operatorname{tr}(\mathbf{A}_{k} \mathbf{V}_{k})}{\partial \Im \mathbf{V}_{k}}$$

$$= \mathbf{A}_{k}^{*},$$
(22)

where \mathbf{A}_{k}^{*} is the conjugate of \mathbf{A}_{k} .

Similarly, the derivative of the third term in (14) with respect to \mathbf{V}_k can be obtained as

$$\nabla_{\mathbf{V}_k} ||\mathbf{V}_k - \mathbf{V}||_F^2 = 2(\mathbf{V}_k - \mathbf{V}). \tag{23}$$

According to the above we can know the derivative of g_k with respect to \mathbf{V}_k can be obtained as

$$\nabla_{\mathbf{V}_{k}}g_{k} = -\nabla_{\mathbf{V}_{k}}\hat{R}_{k} + \nabla_{\mathbf{V}_{k}}\Re tr(\mathbf{A}_{k}\mathbf{V}_{k}) + \frac{c}{2}\nabla_{\mathbf{V}_{k}}||\mathbf{V}_{k} - \mathbf{V}||_{F}^{2}$$

$$= -\frac{2}{\sigma^{2}\ln 2}\mathbf{H}_{k}^{H}\mathbf{P}_{k}(\mathbf{I} + \frac{1}{\sigma^{2}}(\mathbf{R}_{k}^{H}\mathbf{P}_{k})^{-1}\bar{\mathbf{H}}_{k}\mathbf{W}\mathbf{W}^{H}\bar{\mathbf{H}}_{k}^{H})^{-1}$$

$$\cdot (\mathbf{P}_{k}^{H}\mathbf{P}_{k})^{-1}\bar{\mathbf{H}}_{k}\mathbf{W}\mathbf{W}^{H} + \mathbf{A}_{k}^{*} + c(\mathbf{V}_{k} - \mathbf{V}).$$
(24)

Learning Rate

To speed the iteration efficiency in (8), we should carefully choose the learning rate γ_k^n . In this study, we employ an adaptive method named backtracking line search (BLS) based on Armijo-Goldstein condition to obtain the step size [Michael10].

For simplicity, we define the normalized descent direction matrix of the \emph{n} th $\Phi_\emph{k}$ as

$$\bar{\mathbf{D}}_{g_k}(\mathbf{\Phi}_k^n) = \frac{\mathbf{D}_{g_k}(\mathbf{\Phi}_k^n)}{||\mathbf{D}_{g_k}(\mathbf{\Phi}_k^n)||_F}.$$
 (25)

Starting with a maximum candidate step size value $\gamma_k^0 > 0$, using search control parameter $\rho \in (0,1)$ and $\alpha \in (0,0.5)$, the BLS can be expressed as following process.

BLS

While the Armijo-Goldstein condition is not met as follows

$$g_k(\mathbf{\Phi}_k + \gamma \mathbf{D}_{g_k}) > g_k(\mathbf{\Phi}_k) + \gamma \alpha \Re tr(\mathbf{D}_{g_k}^T \nabla_{\mathbf{\Phi}_k} g_k),$$
 (26)

repeatedly set $\gamma=\rho\gamma$ until Armijo-Goldstein condition is fulfilled. Stopping criteria:

$$n > N_{threshold},$$
 (27a)

$$||\bar{\mathbf{D}}_{g_k}(\mathbf{\Phi}_k^n)||_F < \epsilon. \tag{27b}$$

where $N_{threshold} \in \mathbb{Z}^+$ is the number of desired threshold and $\epsilon \in \mathbb{R}^+$ is the matrix tolerance error.

Learning Rate

Consider a MU-MIMO system of a BS and K=2 MSs. Each MS in the system is supported by S=2 data streams and equipped with $N_{MS}=16$ antennas and $M_{MS}=S$ RF chains. The BS is equipped with $N_{BS}=128$ antennas and $M_{BS}=KS$ RF chains. We set parameters as: SNR=0 dB, $c=10, \mu=100, \gamma_k^0=10, \rho=0.25$.

In brief, the update of V_k, V, P_k (similar optimization problems) can be summarized as follows:

Algorithm of Update \mathbf{V}_k

11: end while

```
Require: P_{k}^{0}, W^{0}, V_{k}^{0}, A_{k}^{0}, V^{0}, \Phi_{k}^{0}, c, \gamma_{k}^{0}, \rho
  1: while n \leq N_{threshold} and ||\bar{\mathbf{D}}_{g_k}(\mathbf{\Phi}_k^n)||_F \geq \varepsilon do
               Calculate \mathbf{D}_{\sigma_k}(\mathbf{V}_k^n) = -\Re \nabla_{\mathbf{V}_k^n} g_k.
            Calculate \mathbf{D}_{\sigma_k}(\mathbf{\Phi}_k^n) = i\mathbf{D}_{\sigma_k}(\mathbf{V}_k^n)^* \circ \mathbf{\Phi}_k^n.
   3:
  4: Initialize \gamma_{k}^{n} = \gamma_{k}^{0}.
  5: while
               g_k(\mathbf{\Phi}_{\iota}^n + \gamma_{\iota}^n \mathbf{\bar{D}}_{g_{\iota}}(\mathbf{\Phi}_{\iota}^n)) > g_k(\mathbf{\Phi}_{\iota}^n) + \gamma_{\iota}^n \alpha \Re tr((\mathbf{\bar{D}}_{g_{\iota}}(\mathbf{\Phi}_{\iota}^n))^T \nabla_{\mathbf{\Phi}_{\iota}^n} g_k)
               do
               \gamma_{k}^{n} = \rho \gamma_{k}^{n}
  6:
  7:
            end while
               Update \Phi_{\nu}^{n+1} = \Phi_{\nu}^{n} + \gamma_{\nu}^{n} \bar{\mathbf{D}}_{g_{\nu}}(\Phi_{\nu}^{n}).
  8:
               Update \mathbf{V}_{k}^{n+1} = \exp(i\mathbf{\Phi}_{k}^{n+1})/\sqrt{N_{BS}}.
  9:
             Update n \leftarrow n + 1.
10:
```

39 of 75

Algorithm of Update ${f V}$

Require: $V, A^0, V^0, \gamma^0, \rho$

1: while
$$n \leq N_{threshold}$$
 and $||\bar{\mathbf{D}}_g(\Phi^n)||_F \geq \varepsilon$ do

2: Calculate
$$\mathbf{D}_g(\mathbf{V}^n) = -\Re \nabla_{\mathbf{V}^n} g$$
.

3: Calculate
$$\mathbf{D}_g(\mathbf{\Phi}^n) = i\mathbf{D}_g(\mathbf{V}^n)^* \circ \mathbf{\Phi}^n$$
.

4: Initialize
$$\gamma^n = \gamma^0$$
.

$$g(\mathbf{\Phi}^n + \gamma^n \bar{\mathbf{D}}_g(\mathbf{\Phi}^n)) > g(\mathbf{\Phi}^n) + \gamma^n \alpha \Re tr((\bar{\mathbf{D}}_g(\mathbf{\Phi}^n))^T \nabla_{\mathbf{\Phi}^n} g) d\mathbf{o}$$

6:
$$\gamma^n = \rho \gamma^n$$

8: Update
$$\mathbf{\Phi}^{n+1} = \mathbf{\Phi}^n + \gamma^n \mathbf{\bar{D}}_g(\mathbf{\Phi}^n)$$
.

9: Update
$$\mathbf{V}^{n+1} = \exp(i\Phi^{n+1})/\sqrt{N_{BS}}$$
.

10: Update
$$n \leftarrow n + 1$$
.

11: end while

Algorithm of Update P_k

Require: $\mathbf{P}_k^0, \mathbf{W}^0, \mathbf{\Psi}_k^0, \delta_k^0, \rho$

- 1: while $n \leq N_{threshold}$ and $||\bar{\mathbf{D}}_{h_k}(\mathbf{\Psi}_k^n)||_F \geq \varepsilon$ do
- 2: Calculate $\mathbf{D}_{h_k}(\mathbf{P}_k^n) = -\Re \nabla_{\mathbf{P}_k^n} h_k$.
- 3: Calculate $\mathbf{D}_{h_k}(\Psi_k^n) = i\mathbf{D}_{h_k}(\mathbf{P}_k^n)^* \circ \Psi_k^n$.
- 4: Initialize $\delta_k^n = \delta_k^0$.
- 5: while

$$h_k(\boldsymbol{\Psi}_k^n + \delta_k^n \bar{\mathbf{D}}_{h_k}(\boldsymbol{\Psi}_k^n)) > h_k(\boldsymbol{\Psi}_k^n) + \delta_k^n \alpha \Re tr((\bar{\mathbf{D}}_{h_k}(\boldsymbol{\Psi}_k^n))^T \nabla_{\boldsymbol{\Psi}_k^n} h_k)$$
do

- 6: $\delta_k^n = \rho \delta_k^n$
- 7: end while
- 8: Update $\Psi_k^{n+1} = \Psi_k^n + \delta_k^n \bar{\mathbf{D}}_{h_k}(\Psi_k^n)$.
- 9: Update $\mathbf{P}_{k}^{n+1} = \exp(i\mathbf{\Psi}_{k}^{n+1})/\sqrt{N_{MS}}$.
- 10: Update $n \leftarrow n + 1$.
- 11: end while

ADMM Algorithm for (6)

Require: P_k^0 , W^0 , V_k^0 , A_k^0 , V^0 , c

- 1: while not reach stopping condition do
- 2: $1.\mathbf{V}_k^{t+1} = \arg\min_{k} -\hat{R}_k(\mathbf{P}_k^t, \mathbf{W}^t, \mathbf{V}_k^t) + \Re tr(\mathbf{A}_k^t \mathbf{V}_k^t) + \frac{c}{2}||\mathbf{V}_k^t \mathbf{V}^t||_F^2$ s.t. $|\mathbf{V}_k(n, m)| = 1/\sqrt{N_{BS}}, \forall n, m$
- 3: 2. $\mathbf{V}^{t+1} = \arg\min \sum_{k=1}^{K} \Re tr(\mathbf{A}_k^t \mathbf{V}^t) + \frac{c}{2} \sum_{k=1}^{K} ||\mathbf{V}_k^{t+1} \mathbf{V}^t||_F^2$ s.t. $\mathbf{V}(n, m) = 1/\sqrt{N_{BS}}, \forall n, m$
- 4: 3. $\mathbf{P}_{k}^{t+1} = \arg\min -\hat{R}_{k}(\mathbf{P}_{k}^{t}, \mathbf{W}^{t}, \mathbf{V}_{k}^{t+1})$ s.t. $\mathbf{P}_{k}(p, q) = 1/\sqrt{N_{MS}}, \forall p, q$
- 5: 4. $\mathbf{A}_k^{t+1} = \mathbf{A}_k^t + c(\mathbf{V}_k^{t+1} \mathbf{V}^{t+1})$
- 6: 5. $\mathbf{W}^{t+1} = \arg\min \sum_{k=1}^{K} \hat{R}_{k}(\mathbf{P}_{k}^{t+1}, \mathbf{W}^{t}, \mathbf{V}_{k}^{t+1})$ s.t. $\bar{\mathbf{H}}_{k}\mathbf{W}_{i}^{t} = \mathbf{0}$, and $tr[\mathbf{V}^{t+1}\mathbf{W}^{t}(\mathbf{W}^{t})^{H}(\mathbf{V}^{t+1})^{H}] \leq P$, $\forall i \neq k$
- 7: end while

We repeat the optimization problem of digital precoding as follows

Optimization of W

$$\min_{\mathbf{W}} \quad \hat{R}(\mathbf{W}) = -\sum_{k=1}^{K} \hat{R}_k(\mathbf{W})$$
 (28a)

s.t.
$$\bar{\mathbf{H}}_k \mathbf{W}_i = 0, \forall i \neq k$$
 (28b)

$$tr(\mathbf{VWW}^H\mathbf{V}^H) \le P.$$
 (28c)

To remove the constraints of IUI in (28b), we first construct an incomplete equivalent channel matrix as follows

$$\tilde{\tilde{\mathbf{H}}}_{k} = [\bar{\mathbf{H}}_{1}^{T}, \cdots, \bar{\mathbf{H}}_{k-1}^{T}, \bar{\mathbf{H}}_{k+1}^{T}, \cdots, \bar{\mathbf{H}}_{K}^{T}]^{T}. \tag{29}$$

It is advantageous for \mathbf{W}_k to lie in the null space of $\bar{\mathbf{H}}_k$ so that the constraints of (28b) can be satisfied.

$$\tilde{\mathbf{H}}_k = \tilde{\mathbf{U}}_k \tilde{\mathbf{\Sigma}}_k [\tilde{\mathbf{V}}_k^{(1)}, \tilde{\mathbf{V}}_k^{(0)}]^H$$
 (30)

Hence, it is easy to know that

$$\bar{\mathbf{H}}_i \tilde{\mathbf{V}}_k^{(0)} = \mathbf{0}, \quad \forall i \neq k. \tag{31}$$

Then, the matrix of block diagonalization (BD), performed on the equivalent channel, can be defined as

Block Diagonalization Matrix

$$\bar{\mathbf{H}}_{BD} = \bar{\mathbf{H}}[\tilde{\mathbf{V}}_{1}^{(0)}, \cdots, \tilde{\mathbf{V}}_{K}^{(0)}]
= \begin{bmatrix} \bar{\mathbf{H}}_{1}\tilde{\mathbf{V}}_{1}^{(0)} & 0 \\ & \ddots & \\ 0 & \bar{\mathbf{H}}_{K}\tilde{\mathbf{V}}_{K}^{(0)} \end{bmatrix}$$
(32)

where

$$\bar{\mathbf{H}} = [\bar{\mathbf{H}}_1^T, \cdots, \bar{\mathbf{H}}_K^T]^T. \tag{33}$$

To eliminate the internal interference of each MS through a secondary SVD method, which can be expressed as

$$\check{\mathbf{H}}_{k} = \bar{\mathbf{H}}_{k} \tilde{\mathbf{V}}_{k}^{(0)} = \check{\mathbf{U}}_{k} \check{\mathbf{\Sigma}}_{k} \check{\mathbf{V}}_{k}^{H}. \tag{34}$$

Hence, without considering power allocation,

$$\bar{\mathbf{W}}_k = \tilde{\mathbf{V}}_k \check{\mathbf{V}}_k^{(S)},\tag{35}$$

has the properties of eliminating the inter and inner interference for each MS and data stream.

Then, the digital precoder at the kth MS \mathbf{Q}_k can be designed by the first S columns of $\check{\mathbf{U}}_k$, i.e., $\mathbf{Q}_k = \check{\mathbf{U}}_k$. And, the digital precoder at the BS can be obtained by

$$\mathbf{W} = \bar{\mathbf{W}} \mathbf{\Lambda}^{1/2}, \tag{36}$$

where $\bar{\mathbf{W}} = [\bar{\mathbf{W}}_1, \cdots, \bar{\mathbf{W}}_K]$ and Λ , a diagonal matrix, is used for the power allocation for all the streams of the whole system.

The Algorithm of Update Λ

Require: $\bar{\Lambda}^0, \delta^0, \rho, I$

- 1: while $n \leq N_{threshold}$ and $||\bar{\mathbf{D}}_f(\bar{\mathbf{\Lambda}}^n)||_F \geq \varepsilon$ do
- 2: Calculate $\nabla_{\bar{\Lambda}^n} f$.
- 3: Calculate $ar{\mathbf{D}}_f(ar{\mathbf{\Lambda}}^n) = -rac{
 abla_{ar{\mathbf{\Lambda}}^n}f}{||\nabla_{ar{\mathbf{\Lambda}}^n}f||_F}$.
- 4: Initialize $\delta^n = \delta^0$.
- 5: while $f(\bar{\Lambda}^n + \delta^n \bar{\mathbf{D}}_f(\bar{\Lambda}^n)) > f(\bar{\Lambda}^n) + \delta^n \alpha tr(\bar{\mathbf{D}}_f(\bar{\Lambda}^n) \nabla_{\bar{\Lambda}^n} f)$ do
- 6: $\delta^n = \rho \delta^n$
- 7: end while
- 8: Update $\bar{\mathbf{\Lambda}}^{n+1} = \bar{\mathbf{\Lambda}}^n + \delta^n \bar{\mathbf{D}}_f(\bar{\mathbf{\Lambda}}^n)$.
- 9: Update $n \leftarrow n + 1$.
- 10: end while

Simulations: SNR

Figure: Sum spectral efficiency in Figure: Sum spectral efficiency in 128×16 2-user MU-MIMO 128×32 2-user MU-MIMO system.

[23]:[Ni16]

Simulations: N_{MS}

Figure: Sum spectral efficiency achieved by different schemes in 3-user MU-MIMO system under different N_{MS} where $N_{RS} = 128$.

Figure: Sum spectral efficiency achieved by different schemes in 4-user MU-MIMO system under different N_{MS} where $N_{BS}=128$.

Figure: Sum spectral efficiency achieved by different schemes in 5-user MU-MIMO system under different N_{MS} where $N_{BS}=128$.

Constraint of the Cross Point

 $N_{BS} \approx 2KN_{MS}$.

(37)

Simulations: N_{BS}

Figure: Sum spectral efficiency achieved by different schemes in 4-user MU-MIMO system under different N_{BS} where $N_{MS}=8$.

Simulations: K, S

Figure: Sum rate achieved by different schemes in 128 × 8 4-user MU-MIMO under different number of MSs K.

Figure: Sum rate achieved by different schemes in 128 × 16 4-user MU-MIMO under different number of data streams *S*.

Summary

- Considered the system of MU-MIMO
- Generalized ZF based on BD was applied to the equivalent channel
- Algorithm of MCXL was designed to get the optimal RF precoder
- Higher spectral efficiency than the traditional hybrid precoding
- Lower computational complexity

Contents

- Introduction
- Hybrid Precoding in MU-MIMO
- Double-RF Hybrid Precoding in P2P MIMO
- Conclusions of the Thesis
- Overview of the Studying in PNU

Low Performance in Quantized Precoder

- Limited phase set
- Constant modulus constraints

Double-RF Hybrid Precoding

To break the above limitations, we proposed a new structure of hybrid precoding as follows,

Figure: Block diagram of the P2P system with the double-RF hybrid precoding architecture.

Double-RF Hybrid Precoding

The precoder design problem for the BS can be expressed as

Optimization Problem

$$\max_{\mathbf{Q},\mathbf{V},\mathbf{P},\mathbf{W}} \quad \log_2 |\mathbf{I} + \frac{1}{\sigma^2} \mathbf{Q} (\mathbf{Q}^H \mathbf{Q})^{-1} \mathbf{Q}^H \mathbf{H} \mathbf{V} \mathbf{P} \mathbf{W} \mathbf{W}^H \mathbf{P}^H \mathbf{V}^H \mathbf{H}^H | \quad (38a)$$

$$s.t. \quad |V_{n,k}| = 1, \forall n, k \tag{38b}$$

$$|P_{k,s}| = 1, \forall k, s \tag{38c}$$

$$tr(\mathbf{VPWW}^H P^H V^H) \le P,$$
 (38d)

where P is the power budget for the transmitting system.

Double-RF Hybrid Precoding

With the following algorithms discussed previously,

- matrix complex exponential learning (MCXL)
- alternating direction method of multipliers (ADMM)
- backtracking line search (BLS)
- water-filling (WF)

we directly give the algorithms of (38) as follows.

update of **V**

Require: $P_0, W_0, V_0, \Phi_0, \delta_0, \rho$

- 1: while $n \leq N_{threshold}$ and $||\bar{\mathbf{D}}_{R_{PF}}(\mathbf{\Phi}_n)||_F^2 \geq \varepsilon$ do
- 2: Calculate $\mathbf{D}_{R_{RF}}(\mathbf{V}_n) = \Re \nabla_{\mathbf{V}_n} R_{RF}$.
- 3: Calculate $\mathbf{D}_{R_{PE}}(\mathbf{\Phi}_n) = i\mathbf{D}_{R_{PE}}(\mathbf{V}_n)^* \circ \mathbf{\Phi}_n$.
- 4: Initialize $\delta_n = \delta_0$.
- 5: while $R_{RF}(\mathbf{\Phi}_n + \delta_n \bar{\mathbf{D}}_{R_{RF}}(\mathbf{\Phi}_n)) < R_{RF}(\mathbf{\Phi}_n) + \delta_n \alpha \Re tr((\bar{\mathbf{D}}_{R_{PF}}(\mathbf{\Phi}_n))^T \nabla_{\mathbf{\Phi}_n} R_{RF})$ do
- 6: $\delta_n = \rho \delta_n$
- 7: end while
- 8: Update $\Phi_{n+1} = \Phi_n + \delta_n \bar{\mathbf{D}}_{R_{PF}}(\Phi_n)$.
- 9: Update $\mathbf{V}_{n+1} = \exp(i\Phi_{n+1})$.
- 10: Update $n \leftarrow n + 1$.
- 11: end while

update of P

Require: $P_0, W_0, V, \Psi_0, \delta_0, \rho$

- 1: while $n \leq N_{threshold}$ and $||\bar{\mathbf{D}}_{R_{PF}}(\Psi_n)||_F^2 \geq \varepsilon$ do
- 2: Calculate $\mathbf{D}_{R_{PE}}(\mathbf{P}_n) = \Re \nabla_{\mathbf{P}_n} R_{RF}$.
- 3: Calculate $\mathbf{D}_{R_{RF}}(\mathbf{\Psi}_n) = i\mathbf{D}_{R_{RF}}(\mathbf{P}_n)^* \circ \mathbf{\Psi}_n$.
- 4: Initialize $\delta_n = \delta_0$.
- 5: while $R_{RF}(\Psi_n + \delta_n \bar{\mathbf{D}}_{R_{RF}}(\Psi_n)) < R_{RF}(\Psi_n) + \delta_n \alpha \Re tr((\bar{\mathbf{D}}_{R_{PF}}(\Psi_n))^T \nabla_{\Psi_n} R_{RF})$ do
- 6: $\delta_n = \rho \delta_n$
- 7: end while
- 8: Update $\Psi_{n+1} = \Psi_n + \delta_n \bar{\mathbf{D}}_{R_{RF}}(\Psi_n)$.
- 9: Update $\mathbf{P}_{n+1} = \exp(i\mathbf{\Psi}_{n+1})$.
- 10: Update $n \leftarrow n + 1$.
- 11: end while

$$\nabla_{\mathbf{P}}R_{RF} = \frac{1}{\sigma^2 \ln 2} \left(\mathbf{W}^H \mathbf{P}^H \mathbf{V}^H \mathbf{H}^H \cdot \left(\mathbf{I} + \frac{1}{\sigma^2} \mathbf{H} \mathbf{V} \mathbf{P} \mathbf{W} \mathbf{W}^H \mathbf{P}^H \mathbf{V}^H \mathbf{H}^H \right)^{-1} \mathbf{H} \mathbf{V} \mathbf{P} \right)^T$$
(40)

Define the effective channel $\tilde{\mathbf{H}}$ as

$$\tilde{\mathbf{H}} = \mathbf{HVP},$$
 (41)

The digital precoder design problem can be rewritten as follows

$$\max_{\mathbf{W}} \log_{2} |\mathbf{I} + \frac{1}{\sigma^{2}} \tilde{\mathbf{H}} \mathbf{W} \mathbf{W}^{H} \tilde{\mathbf{H}}^{H} |$$

$$s.t. \quad tr(\mathbf{V} \mathbf{P} \mathbf{W} \mathbf{W}^{H} \mathbf{P}^{H} \mathbf{V}^{H}) \leq P$$
(42)

By the waterfilling method, we have

$$\mathbf{W} = \mathbf{U}\Gamma \tag{43}$$

and \mathbf{Q} can be set as the first S left singular vectors of $\tilde{\mathbf{H}}$.

61 of 75

Simulations: SNR

Figure: Spectral efficiency in 128 \times 8 P2P MIMO with 2-bit quantized RF precoder.

[13]: [Liang14], [14]: [Sohrabi16], [19]: [Feng17]

Simulations: K

Figure: Spectral efficiency in 256 imes 8 P2P MIMO with 2-bit quantized RF precoder.

Simulations: Multiples

Figure: Spectral efficiency in 128 imes 4 P2P MIMO with 2-bit quantized RF precoder.

The performance of double-RF precoding with $k \times S$ length of the second-level RF precoder requires the conventional hybrid precoding with $k \times S$ RF cl 64 of 75

Summary

- Proposed a new structure of double-RF precoder
- Employed algorithms of MCXL, ADMM and WF
- Lower cost than the traditional hybrid precoding
- Lower computational complexity

Contents

- Introduction
- Hybrid Precoding in MU-MIMO
- Double-RF Hybrid Precoding in P2P MIMO
- Conclusions of the Thesis
- Overview of the Studying in PNU

Main Work of the Thesis

- Designed the one side hybrid precoder in P2P MIMO
- Designed the two sides hybrid precoders in P2P MIMO
- Designed an efficient algorithm of hybrid precoders in MU-MISO
- Designed an efficient algorithm for hybrid precoders in MU-MIMO
- Proposed an innovative structure of double-RF hybrid precoder

Main Algorithms in the Work

- Solved five non-convex optimization problems with large-scale nonlinear constraints
- Proposed an innovative core algorithm of MCXL
- Proposed two propositions of complex matrix derivations
- Deduced the derivative of spectral efficiency w.r.t. phase matrix of RF precoder in P2P MIMO, MU-MISO and MU-MIMO
- Designed algorithms of hybrid precoding with MCXL, ADMM, BLS, WF, ALM, BD, ZF and SVD
- Employed the distributed optimization and the alternating direction strategies

Main Performances of the Algorithms

- Higher spectral efficiency than existing works
- Lower computational complexity than existing works
- Lower cost than existing works
- Can be applied in any channel model
- High robustness in quantized phase-shifter array

Contents

- Introduction
- Hybrid Precoding in MU-MIMO
- Double-RF Hybrid Precoding in P2P MIMO
- Conclusions of the Thesis
- Overview of the Studying in PNU

Publications

Journal Papers

- [1] **Y. Feng**, and S. C. Kim, "Hybrid precoding in point-to-point massive multiple-input multiple-output systems based on normalised matrix adaptive method," *IET Communications*, vol. 11, no. 12, pp. 1882-1885, 2017. (SCI)
- [2] Y. Feng, and S. C. Kim, "Hybrid Precoding Based on Matrix-adaptive Method for Multiuser Large-scale Antenna Arrays,", *PLoS ONE*, vol. 12, no. 12, Dec, 2017. (SCI)
- [3] **Y. Feng**, and S. C. Kim, "Hybrid Analog and Digital Precoding Based on Adaptive Method in P2P Massive MIMO," *Wireless Personal Communications*, vol. 99, no. 12,
- pp. 953-964, Mar, 2018. (SCI)
- [4] **Y. Feng**, and S. C. Kim, "Hybrid Precoding Design for Multiuser MIMO Based on Matrix Complex Exponential Learning,", *IEEE Transactions on Wireless Communications*.(under reviewing)
- [5] **Y. Feng**, and S. C. Kim, "Double-RF Hybrid Precoding Design in Large-scale P2P MIMO,", *IEEE Wireless Communications Letters*.(submitted)

Publications

Conference Papers

- [1] Y. Feng, H. J. Choi, and S. C. Kim, "Elimination of Pilots Contamination Based on Power Coding,", The 26th Joint Conference on Communications and Information (JCCl2016), vol. 26, no. 81, 2016
- [2] S.Y. Yu, Y. Feng, M.K. Kim, S.C. Kim, "Performance analysis of subcarrier index modulation-OFDM in Doppler spread environments,", Intelligent Systems, Modelling and Simulation (ISMS), pp. 380-382, 2016
- [3] H. J. Choi, Y. Feng, S. Jeong, D. H. Yi, and S. C. Kim, "Bluetooth Beacon Based Cell-ID Positioning Technique using Median Filter,", The Academic Conference of Korean Communication in 2017 (KICS2017), vol. 2017, no. 1, pp. 382-383, 2017 (Best

Paper Award

[4] Y. Feng, S. Jeong, D. H. Yi, and S. C. Kim, "Analogue-to-information conversion using random sub-Nyquist sampler,", The Academic Conference of Korean Communication in 2017 (KICS2017), vol. 2017, no. 6, 2017

Lectures in PNU

472	학기	교과구분	교과목명	학전	성적등급	비교
2014	2	외국인공통	한국어초급	0	S	
2014	2	전공	수치해석및프로그래밍	3	Λ+	
2014	2	전공	응용대수학	3	AO	
2014		신청학점:	6.0 취득학점: 6.0	평균평	점: 4.25 총평국	d: 25.50
2015	1	외국인공통	한국어중급	0	S	
2015	1	건공	논문연구	3	A+	
2015	1	전공	연구윤리및연구관리	0	S	
2015	1	전공	적용신호처리	3	AO	
2015	1	전공	화물및랜덤프로세스	3	AO	
2015		신청학점:	9.0 취득학점: 9.0	평균평	점: 4.17 총평국	#: 37.50
2015	2	천공	논문연구	3	Λ+	
2015	2	전공	비선행시스템	3	B+	
2015	2	전공	웨이브렛번환이콘및응용	3	AO	

2015		신청학점:	9.0 취득학점: 9.0	평균평	점: 4 송평	g: 36.00
2016	1	전공	논문연구	3	AO	
2016	1	전공	영상처리	3	A+	
2016	1	전공	통신시스템	3	B+	
2016		신청학점:	9.0 취득학점: 9.0	평균평	점: 4 송평:	#: 36.00
2016	2	전공	기계학습	3	AO	
년도	학기	교과구분	교과목명	학점	성적등급	비고
2016		신청학점:	3.0 취득학점: 3.0	평균평	집: 4 송평:	#: 12.00
총신청학점	: 36.0 ₺	·취득학점: 36.0	충평균평점: 4.08 충충평점:	147.00	백분환산율: 95/100	전체석차: 1/1

Self-study Courses

- Compressive Sensing
- Convex Optimization
- Deep Learning
- Particl Filter

Awards in PNU

Scholarships

BK scholarship for every semester since Sep. 2014.

Start of the New Journey

```
optimization channel estimation machine analysis antenna matrix image wireless array filter precoding learning sparse field particle MIMO microwave to massive compressive compressive
```