

LangGraph: StateGraph Essentials

Course Outline

- 1 LangGraph Orientation
- 2 LangGraph Foundations
- 3 Build an Application

LangGraph Orientation

Agents and LLM applications have these challenges

Latency in the seconds vs ms

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency
- Long-Running Agents can fail, which is expensive and time consuming

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency
- Long-Running Agents can fail, which is expensive and time consuming
 - Checkpointing to reduce the cost of each retry

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency
- Long-Running Agents can fail, which is expensive and time consuming
 - Checkpointing to reduce the cost of each retry
- The non-deterministic nature of AI requires checkpoints, approvals, and testing

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency
- Long-Running Agents can fail, which is expensive and time consuming
 - Checkpointing to reduce the cost of each retry
- The non-deterministic nature of AI requires checkpoints, approvals, and testing
 - Human-in-the-loop to collaborate with the user

Agents and LLM applications have these challenges

- Latency in the seconds vs ms
 - Parallelization to save actual latency
 - Streaming to save perceived latency
- Long-Running Agents can fail, which is expensive and time consuming
 - Checkpointing to reduce the cost of each retry
- The non-deterministic nature of AI requires checkpoints, approvals, and testing
 - Human-in-the-loop to collaborate with the user
 - Tracing, Observation and Evaluation (LangSmith)

Layer Diagram

Course Outline

- 1 LangGraph Orientation
- 2 LangGraph foundations
- 3 Build an Application

Course Outline

- 1 LangGraph Orientation
- 2 LangGraph foundations
- 3 Build an Application

LangGraph: StateGraph

Components and Capabilities

State: Data

Node: Functions

Edges: Control Flow

o Serial, Parallel

Conditional

Checkpointing/Memory

Human In the Loop: Interrupts

Nodes and State

State, Nodes

State, Nodes

Edges

Edges: Control Flow

Edge Conditional Edge Serial Parallel Map-Reduce Conditional START START START START superstep END

Super Steps

Super Steps

Super Steps

Reducers

class State(TypedDict):
nlist : List[str]

Reducers

class State(TypedDict):
nlist : Annotated[list[str], operator.add]

type
reducer function

Conditional Edges

Edges: Control Flow

Conditional

- Conditional Edge
- Comman

Memory

Memory

Benefits

- Recover gracefully from failures resume without losing progress.
- **Time travel** roll back to a known good point and continue forward.

Memory / Checkpointers

Benefits

- Recover gracefully from failures resume without losing progress.
- **Time travel** roll back to a known good point and continue forward.
- **Persistent state** data is preserved even when the graph is not running.

Memory / Checkpointers

Benefits

- Recover gracefully from failures resume without losing progress.
- **Time travel** roll back to a known good point and continue forward.
- **Persistent state** data is preserved even when the graph is not running.
- **Restore state at any step** pick up execution from where you left off.

Interrupts

Human In the Loop: Interrupt

Course Outline

- 1 LangGraph Orientation
- 2 LangGraph foundations
- 3 Build an Application

Email Support Workflow

Simulate a email customer support workflow

Focus on LangGraph aspects:

- State, Nodes,
- Edges
 - Serial
 - Parallel
 - Conditional
- Memory
- Interrupt

Conclusion

Congratulations!

