Minimum Spanning Trees

1. Prim's Algorithm

Similar to Dijkstra's Algorithm?

2. Kruskal's Algorithm

Focuses on edges, rather than nodes

Definition

- A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such that
 - the subgraph spans (includes) all nodes,
 - is connected,
 - is acyclic, and
 - has minimum total edge weight

Algorithm Characteristics

- Both Prim's and Kruskal's Algorithms work with undirected graphs
- Both work with weighted and unweighted graphs but are more interesting when edges are weighted
- Both are greedy algorithms that produce optimal solutions

Why undirected?

- A spanning tree is defined only for undirected graphs because it is a subset of edges that connects all vertices without cycles, and direction does not make sense in this context.
- In a directed graph, the equivalent concept is called an arborescence* or a minimum spanning arborescence (handled by algorithms like Edmonds' algorithm), not an MST.
- In graph theory, an **arborescence** is a directed graph where there exists a vertex *r* (called the *root*) such that, for any other vertex *v*, there is exactly one directed walk from *r* to *v* (noting that the root *r* is unique).

Prim's Algorithm

 Similar(not same) to Dijkstra's Algorithm except that it records edge weights, not path lengths

• Time complexity: $O(n^2)$, n = |V|.

Algorithm Prim's

- Input: Two sets of nodes from the graph:
 - 1. in the current tree (T),
 - 2. not-yet-in the current tree (*U*).
- **Step1**: Start with any node and put it in *T*.
- Step2: At every stage pick up a node u from U such that it has the minimum distance-edge (d_v) from any node in T.
- Step3: Take it off from U, put it in T, and update min distances (direct arc from u or any node in T, not the shortest path from a source) of all nodes in U from this node u.
- Step 4: If $U = \emptyset$, stop; otherwise, go to Step2

Walk-Through

Initialize array

	T	d_v	p_v	$oldsymbol{U}$
A	F	8	_	A
В	F	8	_	В
C	F	8	_	С
D	F	8	-	D
E	F	8	_	Е
F	F	8	_	F
G	F	8	_	G
Н	F	8	_	Н

Start with any node, say D

	T	d_v	p_v	$oldsymbol{U}$
A				A
В				В
C				С
D	T	0	_	
E				Е
F				F
G				G
Н				Н

	T	d_v	p_v	$oldsymbol{U}$
A				A
В				В
C		3	D	C
D	Т	0	_	
E		25	D	Е
F		18	D	F
G		2	D	G
Н				Н

Select node with minimum distance

	T	d_v	p_v	$oldsymbol{U}$
A				A
В				В
C		3	D	С
D	Т	0	_	
E		25	D	Е
F		18	D	F
G	T	2	D	
Н				Н

	T	d_v	p_{v}	$oldsymbol{U}$
A				A
В				В
C		3	D	С
D	Т	0	_	
E		7	G	Е
F		18	D	F
G	Т	2	D	
Н	_	3	G	Н

Select node with minimum distance

	T	d_v	p_v	$oldsymbol{U}$
A				A
В				В
C	T	3	D	
D	Т	0	_	
E		7	G	Е
F		18	D	F
G	Т	2	D	
Н		3	G	Н

	T	d_v	p_v	$oldsymbol{U}$
A				A
В		4	C	В
C	Т	3	D	
D	Т	0	_	
E		7	G	Е
F		3	C	F
G	Т	2	D	
Н		3	G	Н

Select node with minimum distance

	T	d_v	p_{v}	$oldsymbol{U}$
A				A
В		4	C	В
C	Т	3	D	
D	Т	0		
E		7	G	Е
F	T	3	C	
G	Т	2	D	
Н		3	G	Н

	T	d_v	p_v	$oldsymbol{U}$
A		10	F	A
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E		2	F	Е
F	Т	3	С	
G	Т	2	D	
Н		3	G	Н

Select node with minimum distance

	T	d_v	p_v	$oldsymbol{U}$
A		10	F	A
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E	T	2	F	
F	Т	3	С	
G	Т	2	D	
Н	_	3	G	Н

	T	d_v	p_v	$oldsymbol{U}$
A		10	F	A
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E	Т	2	F	
F	Т	3	С	
G	Т	2	D	
Н		3	G	Н

Table entries unchanged

Select node with minimum distance

	T	d_v	p_{v}	$oldsymbol{U}$
A		10	F	A
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E	Т	2	F	
F	Т	3	C	
G	Т	2	D	
Н	T	3	G	

	T	d_v	p_v	$oldsymbol{U}$
A		4	Н	A
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E	Т	2	F	
F	Т	3	С	
G	Т	2	D	
Н	Т	3	G	·

Select node with minimum distance

	T	d_v	p_v	$oldsymbol{U}$
A	T	4	Н	
В		4	С	В
C	Т	3	D	
D	Т	0	_	
E	Т	2	F	
F	Т	3	С	
G	Т	2	D	
Н	Т	3	G	

	T	d_v	p_{v}	$oldsymbol{U}$
A	Т	4	Н	
В		4	С	В
C	Т	3	D	
D	Т	0	-	
E	Т	2	F	
F	Т	3	C	
G	Т	2	D	
Н	Т	3	G	

Table entries unchanged

Select node with minimum distance

	T	d_v	p_v	$oldsymbol{U}$
A	T	4	Н	
В	T	4	С	
C	Т	3	D	
D	Т	0	-	
E	Т	2	F	
F	Т	3	С	
G	Т	2	D	
Н	Т	3	G	·

Cost of Minimum Spanning Tree = $\sum d_v = 21$

	T	d_v	p_v	$oldsymbol{U}$
A	T	4	Н	
В	Т	4	С	
C	Т	3	D	
D	Т	0	-	
E	Т	2	F	
F	Т	3	C	
G	Т	2	D	
Н	Т	3	G	

Done

- Dijkstra selects as next edge the one that leads out from the tree to a node not yet chosen closest to the starting node (Then with this choice, distances are recalculated).
- Prim choses as edge the shortest one leading out of the tree constructed so far. So, both algorithms chose a "minimal edge". The main difference is the value chosen to be minimal.
- For Dijkstra it is the length of the complete path from start node to the candidate node, for Prim it is just the weight of that single edge.

- In MST case, edges (A→B), (B→C) will be on MST with total weight of 10. So cost of reaching A to C in MST is 10.
- But in Shortest Path case, shortest path between A to C is (A→C) which is 7. (A→C) was never on MST.

Kruskal's Algorithm

- Work with edges, rather than nodes
- Two steps:
 - Sort edges by increasing edge weight
 - Select the first |V| 1 edges that do not generate a cycle

Algorithm Kruskal

```
Input: graph G = (V, E).
```

- 1. E1 = sort edges in G; // or better use a heap
- 2. repeat for N-1 edges // any Spanning Tree has //exactly N-1 edges, |V|=N
- 3. pick up next shortest edge e from the ordered E1;
- 4. $E1 = E1 \{e\};$
- 5. if $(T \cup \{e\})$ does not have a cycle then

// by set matching algorithm (Union-find)

6.
$$T = T U \{e\};$$

end repeat;

7. return graph (V, T);

End algorithm.

Walk-Through

Consider an undirected, weight graph

Sort the edges by increasing edge weight

<i>E1</i>	d_v	T
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

E1	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E1	d_v	T
(D,E)	1	V
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

<i>E1</i>	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

<i>E1</i>	d_v	T
(D,E)	1	V
(D,G)	2	√
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

<i>E1</i>	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

<i>E1</i>	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

E1	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

E1	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	
(C,F)	3	
(B,C)	4	

E 1	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	
(B,C)	4	

<i>E1</i>	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	√
(C,F)	3	V
(B,C)	4	

<i>E1</i>	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	V
(C,F)	3	V
(B,C)	4	V

E1	d_v	T
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	1
(D,G)	2	1
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	1
(C,F)	3	1
(B,C)	4	1

E 1	d_v	T
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	1
(D,G)	2	1
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	1
(C,F)	3	1
(B,C)	4	1

E 1	d_v	T
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	V
(C,F)	3	V
(B,C)	4	V

E 1	d_v	T
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

E 1	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	V
(B,C)	4	V

E 1	d_v	T
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	√
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

<i>E1</i>	d_v	T
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	V
(C,F)	3	√
(B,C)	4	√

E1	d_v	T	
(B,E)	4	χ	
(B,F)	4	χ	
(B,H)	4	χ	
(A,H)	5	√	
(D,F)	6		not
(A,B)	8		not considered
(A,F)	10		J

Done

Total Cost =
$$\sum d_v = 21$$

Detecting Cycles

Use Disjoint Sets

How Disjoint Sets Help in Cycle Detection

- Initially: Each vertex is its own set (meaning no edges).
 - ***** Example: For 5 vertices {1}, {2}, {3}, {4}, {5}.
- For each edge (u, v):
 - Check whether u and v belong to the same set (using find() operation).
 - If they are in the same set, then adding (u, v) would form a cycle then skip it.
 - ❖ If they are in different sets, then no cycle will form add the edge and merge (union) the two sets.
- Repeat until V-1 edges are included (where V = number of vertices).

How Disjoint Sets Help in Cycle Detection

Example

- Suppose we have edges in increasing weight order: (1–2), (2–3), (1–3)
- Start: {1}, {2}, {3}
- Add (1–2): different sets »» union »» {1,2}, {3}
- Add (2–3): different sets »» union »» {1,2,3}
- Add (1–3): both vertices already in same set {1,2,3} »» cycle skip
- Thus DSU helps us detect the cycle efficiently

Time Compexity

- Let v be number of vertices and e the number of edges of a given graph.
- Kruskal's algorithm: O(e log e)
- Prim's algorithm: O(e log v)
- Kruskal's algorithm is preferable on sparse graphs, i.e., where e is very small compared to the total number of possible edges: C(v, 2) = v(v-1)/2.