Grundzüge der Theoretischen Informatik 19. November 2021

Markus Bläser Universität des Saarlandes

Kapitel 9: Gödelisierungen

Abzählbare Menge

onio: f(x|=f(x)=> x=x onio: by Ex: 3x Es: f(x)=y

Definition

Eine Menge S ist abzählbar, falls eine injektive Funktion von $S \to \mathbb{N}$ gibt. Falls es eine bijektive Funktion $S \to \mathbb{N}$ gibt, dann ist S abzählbar unendlich.

Bemerkung:

- Ey | 3x ES f(x)=13
- Wenn es eine injektive Funktion $f: S \to \mathbb{N}$ gibt, so dass $\inf f(f(x)) = 0$ unendlich ist, dann gibt es eine Bijektion von $S \to \mathbb{N}$.
- Wenn S abzählbar ist, dann ist S endlich oder abzählbar unendlich.

Gödelisierung

| Menge aller WHIL E-Prog
| W= U W;
| Eingabe für 16"

- ▶ WHILE-Programm U, das auf Eingabe $i, x \in \mathbb{N}$ $\phi_P(x)$ ausgibt, wobei $P = g\ddot{o}d^{-1}(i)$.

Gödelisierung

Fakt

$$\begin{array}{l} (r,m) \mapsto \langle r,m\rangle_5 := 5m + r \text{ ist eine Bijektion} \\ \{0,1,2,3,4\} \times \underline{\mathbb{N}} \to \mathbb{N}. \end{array}$$

C., . Z: 20,702,9W-N

Arî der Anweisung "Parameter" Einfache Anweisungen:

Add.

- 1. $x_i := x_i + x_k$ wird kodiert durch $\langle 0, \langle i, \langle j, k \rangle \rangle \rangle_5$.
- 2. $x_i := x_j x_k$ wird kodiert durch $\langle 1, \langle i, \langle j, k \rangle \rangle \rangle_5$.
- 3. $x_i := c$ wird kodiert durch $\langle 2, \langle i, c \rangle \rangle_5$.

While-Schleife und Konkatenation:

- 1. Falls P =while $\cancel{x_0} \neq 0$ do (P_1) od, dann ist $g\ddot{o}d(P) = \langle 3, \langle i, g\ddot{o}d(P_1) \rangle \rangle_5$.
- 2. Falls $P = [P]; P_2]$, dann ist $g\ddot{o}d(P) = \langle 4, \langle \underline{g\ddot{o}d}(P_1), \underline{g\ddot{o}d}(P_2) \rangle \rangle_5$.

Gödelisierung (2)

Lemma (9.6)

göd ist wohl-definiert.

Lemma (9.7)

göd ist injektiv.

Folgerung (9.8)

god: W->N

Die Menge der WHILE-Programme is abzählbar.

Lemma (9.9)

göd ist surjektiv.

Lemma 9.9 Ind. über nEN: Es gibt ein WHILE-Prog P mit god (P)=n 1A: n=0 0=<0,<0,<0,00,0>>>= god (xo:=xo+xo) 15: Sei nEA n=cr,m3 mit Osr & Jij,k€N: <i|<j,k>)=m n=<0, m3 = < 0, < i < j, k>>>> = god (x1:= x3+xk) r=1,2 sehr ähnlich (x, y) 2x, y r=3 31,5EA (1,57=m Jusmas => S<n => 3 Py EW: god (Py)-S 1= (3, 21, god (P)) > 75 = god (while x, +0 do P, ad)

Programmiersysteme

Alles, was wir in diesem Teil der Vorlesung beweisen, gilt allgemein:

Definition

- 1. Eine Folge $(\psi_i)_{i\in\mathbb{N}}$ heißt Programmiersystem, falls die Menge aller ψ_i gleich der Menge aller WHILE-berechenbaren Funktionen R ist.
- 2. Es ist *universell*, falls es ein <u>universelles Programm gibt</u>, d.h. es gibt ein \mathfrak{u} , so dass $\psi_{\mathfrak{u}}(\langle \mathfrak{j}, x \rangle) = \psi_{\mathfrak{j}}(x)$ für alle $\mathfrak{j}, x \in \mathbb{N}$.
- 3. Ein universelles Programmiersystem heißt *zulässig* oder *akzeptabel*, falls es ein *c* gibt, so dass $\psi_{\psi_c(\langle j,k\rangle)} = \psi_j \circ \psi_k$.

Programmiersysteme

Alles, was wir in diesem Teil der Vorlesung beweisen, gilt allgemein:

Definition

- 1. Eine Folge $(\psi_i)_{i\in\mathbb{N}}$ heißt *Programmiersystem*, falls die Menge aller ψ_i gleich der Menge aller WHILE-berechenbaren Funktionen R ist.
 - alle Java-Programme (Σ^* statt \mathbb{N})
- 2. Es ist *universell*, falls es ein universelles Programm gibt, d.h. es gibt ein u, so dass $\psi_u(\langle j,x\rangle)=\psi_j(x)$ für alle $j,x\in\mathbb{N}$. Java-Interpreter in Java geschrieben
- 3. Ein universelles Programmiersystem heißt *zulässig* oder *akzeptabel*, falls es ein *c* gibt, so dass $\psi_{\psi_c(\langle j,k\rangle)}=\psi_j\circ\psi_k$. Java-Programm, das Java-Programme "konkateniert".

Kapitel 10: Diagonalisierung

Beweis durch "Abzählen"

Die Menge aller totalen Funktionen $\mathbb{N} \to \{0,1\}$ ist nicht abzählbar.

- Zweites Cantorsches Diagonalargument
- Annahme: F ist abzählbar
- ▶ Sei $n : F \to \mathbb{N}$ Bijektion, $f_i := n^{-1}(i)$.

Beweis durch "Abzählen"

Satz (10.1)

Die Menge aller totalen Funktionen $\mathbb{N} \to \{0,1\}$ ist nicht abzählbar.

- Zweites Cantorsches Diagonalargument
- Annahme: F ist abzählbar
- ▶ Sei $n : F \to \mathbb{N}$ Bijektion, $f_i := n^{-1}(i)$.

Beweis durch "Abzählen" (2)

Folgerung (10.2) inberabzühlbu viele γ jedes Prog berednet Es gibt eine totale Funktion $\mathbb{N} \to \{0,1\}$, die nicht 1 Fkt WHILE-berechenbar ist.

Folgerung (10.3)

Es gibt eine Teilmenge von N, die nicht rekursiv ist.

Alternativer Beweis ...

Proof by Counting

Proof by Diagonalization

Alternativer Beweis durch Diagonalisierung

Folgerung (10.2)

Es gibt eine totale Funktion $\mathbb{N} \to \{0,1\}$, die nicht WHILE-berechenbar ist.

 \triangleright Definiere f_0, f_1, f_2, \dots durch

$$\label{eq:final_final} \bigvee_{\text{partie(()}} f_i(j) = \phi_{g\ddot{o}d^{-1}(i)}(j).$$

Definiere c durch

$$c(n) = \begin{cases} 1 & \text{falls } f_n(n) = 0 \text{ oder undefiniert ist} \\ 0 & \text{sonst} \end{cases}$$

=>
$$\exists P \notin W : P = C := gird(P)$$
 $C(i) = Ugird = V(i)$

oder $O := V(i) = V(i)$
 $O \notin O := V(i)$
 $O \notin O :=$

Kapitel 11: Ein universelles WHILE-Programm

Ein universelles WHILE-Programm

Eingabe: Gödelnummer g, Zahl m

Ausgabe: $\phi_{g\ddot{o}d^{-1}(g)}(\mathfrak{m})$

Variablen in U:

X: Array, das die Inhalte der Variablen von $P := g\ddot{o}d^{-1}(g)$ speichert.

S: Stack, der Teile von P speichert und den Programmfluss steuert.

cur: Teil von P, der momentan simuliert werden soll.

term: 0, falls die Simulation beendet ist, 1 sonst.

type: speichert den Typ der aktuellen Anweiung (0 bis 4)

Einfache Anweisungen

Inhalt von cur:

- $\triangleright \langle 0, \langle i, \langle j, k \rangle \rangle \rangle_{s}$ (Addition)
- $\langle 1, \langle i, \langle j, k \rangle \rangle \rangle_{5}$ (Subtraktion)
- \triangleright $\langle 2, \langle i, c \rangle \rangle_{c}$ (Zuweisung)
- $ightharpoonup \langle 3, \langle i, \operatorname{g\"{o}d}(P_1) \rangle \rangle$ (Whileschleife)
- $ightharpoonup \langle 4, \langle \operatorname{g\"{o}d}(P_1), \operatorname{g\"{o}d}(P_2) \rangle \rangle_{
 ightharpoonup} (\mathsf{Konkatenation})$

Routine für Addition

```
Input: \langle i, \langle j, k \rangle \rangle_5 gespeichert in x_2

1: x_3 := \pi_1^{6}(x_2);

2: x_4 := \pi_1(\pi_2(x_2));

3: x_5 := \pi_2(\pi_2^{6}(x_2));

4: X[x_3] := X[x_4] + X[x_5]
```

```
Input: q, m
                                            17:
                                                   if type = 3 then
                                                      i := \pi_1(\pi_2^{(5)}(cur));
Output: \varphi_P(m)
                                            18:
 1: X := 0; {Clear entries}
                                            19:
                                                       if X[i] \neq 0 then
 2: X[0] := m; {Prepare input}
                                                          push(S, cur);
                                            20:
                                                          push(S, \pi_2(\pi_2^{(s)}(cur))
 3: S := \langle 0, 0 \rangle; {Empty stack}
                                            21:
 4: term := 1:
                                            22:
                                                    fi
                                            23:
 5: cur := q;
 6: while term \neq 0 do
                                            24:
                                                    if type = 4 then
                                                       push(S, \pi_2(\pi_2^{(5)}(cur)));
     \widehat{type} := \pi_1^{(s)}(cur);
                                            25:
                                                       push(S, \pi_1(\pi_2^{(s)}(cur)))
      if type = 0 then
                                            26:
 8:
          simulate addition.
 9:
                                            27:
                                                    fi
10:
       fi
                                                    if isempty(S) = 0 then
                                            28:
                                                       cur := top(S); pop(S);
11:
       if type = 1 then
                                            29:
12:
          simulate subtraction.
                                            30:
                                                    else
       fi
13:
                                            31:
                                                       term := 0
                                                   fi
14:
       if type = 2 then
                                            32:
          simulate initialization.
15:
                                            33: od:
       fi
                                            34: x_0 := X[0]:
16:
```

Wie beweist man die Korrektheit von so etwas?

Lemma (11.1)

Sei

- ▶ T der Zustand, der dem Inhalt von X entspricht,
- σ der Inhalt des Stacks S und
- $ightharpoonup P = g\ddot{o}d^{-1}(cur)$

in Zeile 6 (Beginn der While-Schleife). Sei

- T' der Zustand, der dem Inhalt von X entspricht,
- wenn der Inhalt von S zum ersten Mal wieder σ ist

in Zeile 🍂 (Ende der While-Schleife).

Dann gilt

- $ightharpoonup T' = \Phi_P(T)$, sofern der Inhalt von S irgendwann wieder σ ist.
- Sonst ist Φ_P(T) undefiniert.

Kleenesche Normalform

Folgerung (11.3, Kleenesche Normalform)

Sei f eine WHILE-berechenbare Funktion. Dann gibt es FOR-Programme P_1 , P_2 und P_3 , so dass das Programm

$$P_1$$
; while $x_1 \neq 0$ do P_2 od; P_3

f berechnet.1

¹Formal haben wir nie die Semantik von gemischten WHILE- und FOR-Programmen definiert. Aber das sollten Sie inzwischen können.