基本概念

概率论概念

随机变量

概念:一个取决于未知事件的变量,

· 使用大写 X 来表示随机变量

如在抛硬币之前我是不知道硬币结果是什么,但是我知道事件的概率

· 使用小写 x 来表示观测值,只是表示一个数,没有随机性,如下面观测到三次抛硬币的结果

a.
$$x_1 = 0$$

b.
$$x_2 = 1$$

c.
$$x_3 = 1$$

概率密度函数

probability Density Function, PDF

概念: 意味着随机变量在某个确定的取值点附近的可能性

连续分布

如高斯分布这个连续分布

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{x-\mu}{2\sigma^2})$$

 μ 为均值, σ 为标准差。

横轴是随机变量 X 取值,纵轴是概率密度,曲线是高斯分布概率密度函数 P(X) ,说明在原点附近概率取值比较大,在原理原点附近概率取值比较小。

离散分布

离散随机变量 $X \in {1,3,7}$ 。

PDF:

$$p(1) = 0.2, p(3) = 0.5, p(7) = 0.3$$

性质

- · 随机变量 X 作用域定义为花体 \mathcal{X}
- ·如果 X 是连续的变量分布,则可对概率密度函数做定积分,值为1。

$$\int_{\mathcal{X}} p(x)dx = 1$$

·如果 X 是离散的变量分布,则可对 p(x) 做一个加和,值为1。

$$\sum_{x \in \mathcal{X}} p(x) = 1$$

期望

- ·对于作用域 χ 中的随机变量 X
- ·对于连续分布,函数 f(x) 的期望为:

$$\mathbb{E}[f(x)] = \int_{\mathcal{X}} p(x) \cdot f(x) dx$$

·对于离散分布,函数 f(x) 的期望为:

$$\mathbb{E}[f(x)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x)$$

p(x) 是概率密度函数

随机抽样

- · 假设有10个球, 2红, 5绿, 3蓝, 随机抽一个球, 会抽到哪个球。
- · 在抽之前,抽到球的颜色就是个随机变量 *X* ,有三种可能取值红绿蓝。
- · 抽出一个球,是红色,这时候就有了一个观测值。
- · 上述过程就叫随机抽样

换一个说法

- · 箱子里有很多个球,也不知道有多少个
- · 做随机抽样,抽到红色球概率是0.2,绿色球概率是0.5,蓝色球概率是0.3。
- · 抽一个球, 记录颜色, 然后放回去摇匀, 重复一百次, 这样就有统计意义。

强化学习术语

state与action

假设在玩超级玛丽

状态state s 可以表示为当前游戏这一帧的画面

观测到状态后可以做出相应动作action $a \in \{left, right, up\}$

这个例子中马里奥被称为agent,若在自动驾驶中,汽车就被称为agent。动作谁做的就被称为agent

策略policy

 $policy \pi$,指根据观测到的状态,然后做出决策,来控制agent运动。 π 是一个概率密度函数。

- ・数学定义: $\pi:(s,a)\mapsto [0,1]: \ \pi(a|s)=\mathbb{P}(A=a|S=s)$
- · 意思给定状态 s ,做出动作 a 的概率密度
- · 比如给定一个马里奥的运行状态图

 $\pi(left|s)=0.2$ 向左概率是0.2

 $\pi(right|s)=0.1$ 向右概率是0.1

 $\pi(up|s)=0.7$ 向上概率是0.7

- ·如果让策略函数自动来操作,它就会做一个随机抽样,0.2的概率向左,0.1的概率向右,0.5的概率向上。
- · 强化学习就是学习这个策略函数。
- · 给定观测到的状态state S=s , agent的action A 可以是随机的(最好是随机)

奖励reward

agent做出一个动作,游戏就会给一个奖励,奖励通常需要自己来定义。奖励定义好坏非常影响强化 学习结果。

例如在马里奥例子中:

· 马里奥吃到一个金币: R=+1。

· 赢了这场游戏: R = +10000 。

・碰到敌人goomba,game over: $_R = -10000$ 。

· 啥也没发生: R=0 。

强化学习目标就是奖励获得的总额尽量要高

状态转移 state transition

无法复制加载中的内容

当前状态下,马里奥做一个动作,游戏就会给出一个新的状态。比如马里奥跳一下,屏幕当前帧就不一样了,也就是状态变了。这个过程就叫状态转移。

- · 状态转移可以确定的也可以是随机的。
- ·状态转移的随机性来自于环境,这里环境就是游戏的程序,程序决定下一个状态是什么。
- · **状态转移函数**: $p(s'|s,a)=\mathbb{P}(S'=s'|S=s,A=a)$ 意为观测到当前状态 s 与动作 a , p 函数输出状态 s' 的概率。

如果马里奥向上跳后,goomba向左和向右的概率分别是0.8和0.2,这个状态转移函数只有环境知道,玩家是不知道的。

交互

agent environment interaction

无法复制加载中的内容

- 1. 环境告诉Agent一个状态 s_t
- 2. agent看到状态 s_t 之后,做出一个动作 a_t

无法复制加载中的内容

3. agent做出动作后,环境会更新状态为 s_{t+1} ,同时给出一个奖励 r_t 。

强化学习中的随机性

- 4. 第一个随机性是从agent动作来的,因为动作是根据 policy 函数随机抽样得来的。
- $\pi(left|s) = 0.2$
- $\pi(right|s) = 0.1$
- $\pi(up|s) = 0.7$

agent可能做其中任何一个中动作,但动作概率有大有小。

- 5. 另一个随机性来源是状态转移。
- · 假定agent做出一个动作,那么环境就要生成一个新状态 S^\prime 。
- ·环境用状态转移函数 p 算出概率,然后用概率来随机抽样来得到下一个状态

AI玩游戏

- ・观测状态 $state s_1$
- · 做出动作 $action a_1$
- · 观测获取新状态 state s_2 以及奖励 reward r_1
- ・做出动作 $action a_2$

•

・直到打赢游戏或者输掉游戏

这样可以得到一个轨迹 (state, action, reward) trajectory

$$s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_t, a_t, r_t$$

Reward与Return

回报定义

Return 回报,又被称为cumulative future reward,未来的累计奖励

 $U_t = R_t + R_{t+1} + R_{t+2} + \cdots$

把从t时刻开始的奖励全都加起来,一直加到游戏结束的最后一个奖励。

问题: R_t 和 R_{t+1} 同样重要吗

- 。 假设右两个选项
 - 立马给你一百块
 - 一年后给你一百块
- 一般会选立刻,因为未来的不确定性很大。

如果改成一年后给你两百块,这时候就会做不同选择。

所以得出以下结论:

- · 未来的奖励不如现在的奖励好,应该打一个折扣。
- · R_{t+1} 的权重要小于 R_t 。

由于未来奖励不如现在奖励值钱,所以强化学习一般采用 Discounted Return。

Discounted Return 折扣回报,又被称为cumulative discounted future reward

- · 折扣率称为 γ ,该值介于0到1之间,是一个超参数。
- $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

回报中的随机性

 $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

假如游戏已经结束了,所有的奖励都观测到了,那么奖励就都是数值,用小写 r 表示。

如果在t时刻游戏还没有结束,这些奖励就还都是随机变量,就用大写字母R来表示奖励。

回报 U 依赖于奖励 R ,所以它也是个随机变量,也要用大写字母表示。

随机性有两个来源:

- 6. 动作是随机的, $\mathbb{P}[A=a|S=s]=\pi(a|s)$
- 7. 下一个状态是随机的, $\mathbb{P}[S'=s'|S=s,A=a]=p(s'|s,a)$

对于任意时刻的 $i \geq t$,奖励 R_i 取决于 S_i 和 A_i ,而回报 U 又是未来奖励的总和。

因此,观测到 t 时刻状态 s_t ,回报 U_t 就依赖于如下随机变量

· $A_t, A_{t+1}, A_{t+2}, \cdots$ 和 S_{t+1}, S_{t+2}, \cdots

价值函数

Action-Value Function Q(s, a)

Discounted Return 折扣回报, cumulative discounted future reward

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

 U_t 是个随机变量,在 t 时刻并不知道它的值是什么,那如何评估当前形势?

可以对 U_t 求期望,把里面的随机性都给积掉,得到的就是个实数。打个比方就是抛硬币之前,不知道结果是什么,但知道正反面各有一半的概率,正面记作1,反面记作0,得到的期望就是0.5。 同样对 U_t 求期望,就可以得到一个数,记作 Q_{π}

这个期望怎么求的?

- · 把 U_t 当作未来所有动作 A 和状态 S 的一个函数,未来动作 A 和状态 S 都有一个随机性
- · 动作 A 的概率密度函数是策略函数 $\mathbb{P}(A=a|S=s)=\pi(a|s)$
- · 状态 S 的概率密度函数是状态转移函数 $\mathbb{P}(S'=s'|S=s,A=a)=p(s'|s,a)$
- ·期望就是对这些 A 和 S 求的,把这些随机变量都用积分给积掉,这样除了 S_t 与 A_t ,其余 所有的随机变量(A_{t+1},A_{t+2},\cdots 和 S_{t+1},S_{t+2},\cdots)都被积掉了。
- S_t 与 A_t 被当作被作为观测到的数值来对待,而不是随机变量,所以没有被积分积掉。
- · 求期望得到的函数就被称为动作价值函数

动作价值函数

对于策略 π ,动作价值函数定义如下

- $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$
 - a. Q_{π} 依赖于当前动作 a_t 与状态 s_t ,还依赖于策略函数 π (积分时会用到它, π 不一样,得到的 Q_{π} 就不一样)。
 - b. 直观意义: 如果用策略函数 π ,那么在 s_t 这个状态下做动作 a_t ,是好还是坏。它会给当前状态下每个动作打分,这样就知道哪个动作好那个动作差。

如何去掉 π ?

可以对 Q_{π} 关于 π 求最大化。意思就是可以有无数种策略函数 π ,但我们要采用最好的那一种策略函数,即让 Q_{π} 最大化的那个函数。

最优动作价值函数 Optimal action-value Function

$$Q^*(s_t,a_t) = \max_{\pi} Q_{\pi}(s_t,a_t)$$

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)]$$

 V_{π} 是动作价值函数 Q_{π} 的期望, Q_{π} 与策略函数 π ,状态 s_t ,动作 a_t 都有关。可以把这里的 A 作为随机变量,关于 A 求期望把 A 消掉,这样就只跟 π 与 s 有关。

其直观意义在于告诉我们当前局势好不好,比如下围棋,当前是快赢了还是快输了。

这里期望是关于随机变量 A 求的,它的概率密度函数是 $\pi(\cdot|s_t)$,根据期望定义可以写成连加或者积分的形式。比如动作是离散的,如上下左右

.
$$V_\pi(s_t) = \mathbb{E}_A[Q_\pi(s_t,A)] = \sum_a \pi(a|s_t) \cdot Q_\pi(s_t,a)$$
 这里动作是离散的。

如果动作是连续的,如方向盘角度,从正90度到负90度。

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t,a) da$$
 这里动作是连续的

总结

动作价值函数 $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$

它跟策略函数 π , 状态 s_t , 动作 a_t 有关, 是 U_t 的条件期望。

能告诉我们处于状态 s 时采用动作 a 是否明智,可以给动作 a 打分。

状态价值函数
$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t,A)]$$

它是把 Q_{π} 中把 A 用积分给去掉,这样变量就就只剩状态 s 。它跟策略函数 π ,状态 s_t 有关,跟动作 a_t 无关。

- · 能够评价当前局势是好是坏,
- · 也能评价策略函数的好坏,如果 π 越好,则 V_{π} 期望值 $\mathbb{E}_{S}[V_{\pi}(S)]$ 越大。

用强化学习打游戏

假设在马里奥游戏中,目标在于尽可能吃金币,避开敌人,通关。如何做?

- 8. 一种是学习一个策略函数 $\pi(a|s)$,这叫policy based learning <mark>策略学习</mark>,然后基于此来控制 agent做动作。
 - a. 每观测到一个状态 s_t
 - b. 把 s_t 作为 $\pi(\cdot|s)$ 函数输入, π 函数输出每一个动作的概率
 - \mathbf{c} . 随机采样获取动作 a_t
- 9. 学习最优动作价值函数 $Q^*(s,a)$,这叫value based learning <mark>价值学习</mark>,它告诉如果处于状态 s,做动作是好还是坏。

- a. 每观测到一个状态 s_t
- b. 把 s_t 作为 $Q^*(s,a)$ 函数输入,然 $Q^*(s,a)$ 对每一个动作做一个评价,得到每个动作的 Q 值。
- c. 选择输出值最大的动作, $a_t = argmax_aQ^*(s_t,a)$
- d. 因为 Q 值是对未来奖励总和的期望,<mark>如果向上动作 Q 值比其他动作 Q 值要大就说明向上跳的</mark> 动作会在未来获得更多的奖励。

