Problem	5.29	5.32	6.6	6.11	6.18	Total
Points						

Forest Kobayashi Math 147 HW 6 Solutions 03/27/2019

5.29 (The Normality Lemma). Let A and B be subsets of a topological space X and let $\{U_i\}_{i\in\mathbb{N}}$ and $\{V_i\}_{i\in\mathbb{N}}$ be two collections of open sets such that

- $(1) \ A \subset \bigcup_{i \in \mathbb{N}} U_i$
- (2) $B \subset \bigcup_{i \in \mathbb{N}} V_i$
- (3) For each $i \in \mathbb{N}$, $\overline{U_i} \cap B = \emptyset$ and $\overline{V_i} \cap A = \emptyset$.

Then there exist open sets U and V such that $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$.

Before a solution, I'll give some intuition on how we might arrive at the candidate U, V that work.

Let's think about what we're given. We have $\{U_i\}_{i\in\mathbb{N}}$, and $\{V_i\}_{i\in\mathbb{N}}$ as defined above, and we want to use them to construct U,V satisfying the given constraints. It seems like it'd be straightforward to satisfy $A\subset U$, $B\subset V$ — they look like they'll probably fall directly out of the conditions. $U\cap V=\varnothing$ is harder, since we're given no direct information about $U_i\cap V_j$. Hence, we'll pick the following as our general approach:

(1) Think about what

$$\tilde{U} = \bigcup_{i \in \mathbb{N}} U_i \qquad \qquad \tilde{V} = \bigcup_{i \in \mathbb{N}} V_i$$

look like. In particular, we'll focus on the conditions that break/make \tilde{U} and \tilde{V} not work as choices of U, V. Then,

(2) We'll see if we can find a clever way to remove the parts of U_i and V_i that cause problems. If all goes right, we'll find sequences $\{U_i'\}_{i\in\mathbb{N}}$, $\{V_i'\}_{i\in\mathbb{N}}$ whose terms can be unioned to get U, V.

Depict our two sets A, B as follows:

To make the TikZ easier, I'll draw our covers with boxes — but note, in general they could be blobby. Anyways, we now draw U_1, V_1 :

We need to be sure that in our construction of U, we don't include any of the V_i . We want to use the U_i , but as we can see, they might intersect the V_i . The fix? Remove the parts that cause problems. We define

$$U_1' = U_1 - \overline{V_1}$$

$$V_1' = V_1 - \overline{U_1}$$

which yields

Now, we consider n=2:

We already know how to rectify U_1, V_1 :

but we still have a problem now. Our addition of U_2, V_2 is complicating the situation! Namely, we have $U_2 \cap V_1' \neq \emptyset$, $U_2 \cap V_2 \neq \emptyset$. We don't want to go back and edit our definitions for U_1', V_1' — if we were to take this approach, we'd need to proceed similarly for n=2, n=3, etc. until eventually $U_1' = U_1 - \bigcup_{i \in \mathbb{N}} \overline{V_i}$, which could cause some problems.

Instead, we'll modify U_2 and V_2 , leaving U_1' and V_1' untouched. Hence, we let

$$U_2' = U_2 - (\overline{V_1} \cup \overline{V_2})$$
 $V_2' = V_2 - (\overline{U_1} \cup \overline{U_2})$

which gives us

From which we can see $(U_1' \cup U_2') \cap (V_1' \cup V_2') \neq \emptyset$. Thus, we conjecture that in the general case,

$$U'_n = U_n - \bigcup_{i=1}^n \overline{V_i}$$
 $V'_n = V_n - \bigcup_{i=1}^n \overline{U_i}$

will work.

Solution.

^aNote we could also have the analogous for $V_2 \cap U'_1$ if V_2 were a bit larger.

5.32. Suppose a space X is regular and has a countable basis. Then X is normal.

Solution. Let A,B be disjoint closed sets.

6.6. The space $2^{\mathbb{R}}$ is separable.

Solution.

$$S = \left\{ \bigcup_{i=1}^{n} (p_i, q_i) \; \middle| \; n \in \mathbb{N}, \text{ and } p_i, q_i \in \mathbb{Q} \text{ for each } i \right\}.$$

First, note that the set comprehension above yields at most countably many elements (the set of all finite subsets of a countable set is countable). Hence, S is at most countable.

Now, note that S has a countably infinite subset:

$$S' = \{(0, q) \mid q \in \mathbb{Q}\} \subset S$$

 $S'=\{(0,q)\mid q\in\mathbb{Q}\}\subset S.$ Thus S is at least countably infinite as well. So $|S|=|\mathbb{N}|.$ \(\nsigma

Now, let

$$\mathcal{F} = \left\{ f : \mathbb{R} \to \{0, 1\} \mid f^{\leftarrow}(\{1\}) \in S \right\}.$$

where $f^{\leftarrow}(\{1\})$ denotes the preimage of $\{1\}$. Also let

Let $U \in \mathcal{T}_{2^{\mathbb{R}}}$ be arbitrary. Then by definition of the product topology,

$$U = \prod_{\xi \in \mathbb{R}} X_{\xi}$$

where X_{ξ} is open in $\{0,1\}$ under the discrete topology, and $X_{\xi} = \{0,1\}$ for all but finitely many ξ . Let $\{X_{\xi_i}\}_{i=1}^n$ be this finite collection of X_{ξ} , and for each i, let $Y_i =$

6.11. Every uncountable set in a 2nd countable space has a limit point.

Solution. Let (X,\mathcal{T}) be a 2nd countable space with countable basis \mathcal{B} , and let $A\subset X$ be uncountable.

Let $a \in A$. Suppose, to obtain a contradiction, that A has no limit points. Then a is an isolated point of A, and by Theorem 3.10, there exists $U_a \in \mathcal{T}$ s.t. $U_a \cap A = \{a\}$. Then by definition of a basis, there exists $B_a \in \mathcal{B}$ such that

$$a \in B_a \subset U_a$$
,

and hence

$$B_a \cap A = \{a\}$$

as well. It follows that $\mathcal{B}' = \{B_a\}_{a \in A}$ is an uncountable subset of \mathcal{B} , a contradiction.

Thus, A has a limit point.

6.18. Suppose x is a limit point of the set A in a 1st countable space X. Then there is a sequence of points $\{a_i\}_{i\in\mathbb{N}}$ that converges to x.

 \blacksquare