NEUROBIOLOGIE FÜR BIOINFORMATIKERINNEN: PRAKTIKUM B

PROTOKOLL ZUM 5. PRAKTIKUMSTAG AM 04.02.2019

Psychophysische Experimente zum Farbsehen

GRUPPE V

Gruppenmitglieder Alia Rothkegel Mara Steiger

alia.rothkegel@fu-berlin.de mara.steiger@fu-berlin.de

Lehrveranstalter Prof. Dr. P.R. HIESINGER Dr. D. MALUN

Prof. Dr. M. WERNET

TutorInnen Lisa Peters Johannes Brüner Hammacher Claudia Haushalter

1 Einleitung

2 Material und Methoden

2.1 Material

Für diesen Versuch benötigten wir lediglich einen Computer mit den entsprechenden Programmen.

2.2 Methoden

1. Farbenkreis

Im zugehörigen Programm (farbkreis.bat) wurden 12 Farbstimuli in verschiedenen Farben vorgegeben, die nach einem gewählten Prinzip systematisch in einem Farbkreis angeordnet werden sollten.

2. Farbmischung I

Unter Verwendung des Programmes rgbmon.bat sollten die Grundfarben und zusätzlich ein mittleres Grau hergestellt werden. Die frei wählbaren Faktoren war hier die Farbmischung der Farben Rot, Grün und Blau, entsprechend den RGB-Werten (0 - 100%).

3. Farbintensität

In diesem Teilversuch wurde das Programm *ipxl.bat* mit dem Experiment *Simple colored disk* verwendet. Die Option *Follow invalid colors* wurde ausgeschaltet, außerdem wurde die Anzeige von den Koordinaten für Yxy und L*a*b* ausgewählt.

Zunächst haben wir den Weißpunkt in beiden Farbräumen gesucht und notiert. Dann haben wir die Intensitäten so weit verringert, bis im Diagramm kein Dreieck mehr angezeigt wurde.

Anschließend wurden für zwei Farbtöne jeweils Farbton, Sättigung und Helligkeit variiert und die Veränderungen dokumentiert.

Dann wurde die Intensität des Hintergrundes variiert, dies wurde für die ursprüngliche Größe des Farbstimulus getestet und für einen verkleinerten Farbstimulus.

4. Farbreihe

In diesem Teil wurde erneut das Programm *ipxl.bat* verwendet, diesmal jedoch mit dem Experiment *High intensity stairs: Contrast*.

Die erste Farbreihe wurde mit konstanter Sättigung und Helligkeit durchgeführt, indem nur der Farbton verändert wurde.

Bei der zweiten Farbreihe wurde die Helligkeit verändert und entsprechend die Sättigung und der Farbton mit konstanten Werten verwendet.

Zuletzt wurde eine Farbreihe mit systematisch variierter Helligkeit, aber konstanter Sättigung und Farbton erstellt.

5. Farbmischung II

In diesem Teil wurde das Programm *ipxl.bat* mit dem Experiment *Matching* and spatial mixture verwendet.

Hier wurden zwei Farbquadrate angezeigt. Die Farbe des linken Fenster

konnte mit einer Farbe bestimmt werden, das rechte Fenster dagegen enthielt feine Linien aus zwei verschiedenen Farbtönen.

Im Versuch sollte eine Farbe links festgelegt werden, die dann auf der rechten Seite durch das Farbpaar möglichst gut nachzumischen.

Nachdem ein Farbpaar gefunden wurde, sollte für die gleiche Grundfarbe auf der linken Seite ein weiteres Farbpaar bestimmt werden, mit dem diese Farbe nachgemischt werden kann.

6. Simultaner Farbkontrast

In diesem Teil wurde das Programm *ipxl.bat* mit dem Experiment *Simultaneos color contrast* verwendet.

Hier waren zwei große Farbquadrate nebeneinander, dessen Farbe unabhängig voneinander eingestellt werden konnte. In der Mitte beider Quadrate befanden sich zwei weitere, kleine Quadrate die beide die gleiche Farbe haben.

Es wurden für die äußeren und inneren Quadrate gesucht, sodass die Farben der inneren Flächen auf den Betrachter verschieden wirken.

7. Sukzessiver Farbkontrast

In diesem Teil wurde das Programm *ipxl.bat* mit verschiedenen Experimenten unter *Adaption effects* verwendet.

Zunächst wurde das Modul Aftereffects and Opponent Colors, wobei ein graues Quadrat angezeigt wurde, in dem vier weitere Quadrate angeordnet waren, jeweils eins in gelb, blau, grün und rot.

Die Mitte zwischen diesen Quadraten wurde vom Betrachter ca. 30 Sekunden fixiert und dann durch Klicken auf *Step* die bunten Flächen entfernt. Auftretende Nachbilder wurden bei verschiedenen Entfernungen betrachtet und notiert.

Danach wurden doch die Module *Induction*, *Desaturation by Adaptation* und *Hypersaturation* getestet und auftretende Nachbilder dokumentiert.

3 Ergebnisse

3.1 Farbenkreis

Wir haben hier die Farbstimuli nach Ähnlichkeit im Farbkreis sortiert. Ähnliche Farben sind somit nebeneinander und Komplementärfarben liegen sich gegenüber im Farbkreis.

Abbildung 1: Die Abbildung zeigt den von uns erstellten Farbkreis durch die Anordnung der Farbstimuli nach dem oben beschriebenen Prinzip.

3.2 Farbmischung I

Die erste drei Farben (Rot, Grün, Blau) sind Grundfarben und konnten einfach durch die Einstellung des entsprechenden Reglers auf 100% hergestellt werden (siehe Abbildungen 2-4).

Gelb wurde durch die Kombination von Rot (100%) und Grün (100%) hergestellt. Magenta wurde durch die Kombination von Rot (100%) und Blau (100%) hergestellt. Cyan wurde durch die Kombination von Blau (100%) und Grün (100%) hergestellt.

Die Mischung von mittlerem Grau wurde durch die Einstellung der RGB-Werte drei Farben auf 50% erreicht.

Schwarz wurde durch die Einstellung auf 0% aller RGB-Werte beobachtet.

Abbildung 2: Hier ist die Herstellung der Farbe *Rot* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 4: Hier ist die Herstellung der Farbe *Blau* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 3: Hier ist die Herstellung der Farbe *Grün* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 5: Hier ist die Herstellung der Farbe *Gelb* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 6: Hier ist die Herstellung der Farbe *Rot* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 8: Hier ist die Herstellung der Farbe *Grau* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 7: Hier ist die Herstellung der Farbe *Grün* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 9: Hier ist die Herstellung der Farbe *Schwarz* mittels Farmischung der RGB-Farben zu sehen.

3.3 Farbintentität

Der Weißpunkt hat im Yxy-Raum die Koordinaten (100,0.307,0.347) und im L*a*b*-Farbraum die Koordinaten (100,0,0) (siehe Abbildung 10).

Abbildung 10: In dem Screenshot ist zu sehen, wo der Weißpunkt im Yxy- und im Farbraum liegt.

Abbildung 11: Hier ist die Herstellung der Farbe *Grau* mittels Farmischung der RGB-Farben zu sehen.

Abbildung 12: Hier ist die Herstellung der Farbe *Schwarz* mittels Farmischung der RGB-Farben zu sehen.

- 3.4 Farbenreihe
- 3.5 Farbmischung II
- 3.6 Simultaner Farbkontrast
- 3.7 Sukzessiver Farbkontrast
- 4 Diskussion