For each of the following, indicate the class $\Theta(g(n))$ the function belongs to. Use the simplest g(n) possible. (a) $\sum_{i=1}^{3n} \log_3 i$ (b) $\ln(\pi^{en}) + \ln(n^{\pi e})$ (c) $10^{n/2} + n^3 3^n$ (d) π^e

(a)
$$\sum_{i=1}^{3n} \log_3$$

(b)
$$\ln(\pi^{en}) + \ln(n^{\pi e})$$

(c)
$$10^{n/2} + n^3 3^n$$

(d)
$$\pi'$$

a)
$$\frac{30}{21933} = \frac{1951}{1952} + \frac{1953}{1953} + \cdots + \frac{1953}{1953}$$

i=1 (12.3: 30) (301)

$$= \log_3 (1.2.3. \dots sn) = (3n!)$$

$$\frac{1}{\log(n!)} \frac{1}{1} \frac{1}{1}$$

en Int + The Inn

(enstant)
$$= O(n)$$
 $O(n)$

c)
$$10^{12} + 0.3$$

 $10^{12} + 0.3$
 $10^{12} = 0$ $e + 0.12$
 $10^{12} = 0$ $e + 0.12$

For each of the following indicate whether it is true or false

(i)
$$\log_2 n^2 + 1 \in O(n)$$
.

(ii)
$$\sqrt{n(n+1)} \in \Omega(n)$$
.

(iii)
$$(2n)! \in \Theta(n!)$$
.

(iv)
$$\log_2 \sqrt{n}$$
 and $(\log_2 n)^2$ are of the same asymptotical order.

i)
$$\log_2^{n^2+1} \in O(n)$$
 Tree $\log_2^{n^2+1} = 2\log_2^{n^2} + O(n)$

(i)
$$\sqrt{n(n+1)}$$
 True $\sqrt{n^2+n} \approx \sqrt{n^2} = n \Rightarrow O(n)$

iii)
$$(2n)! \in \Theta(n!)$$
 False $\lim_{n\to\infty} \frac{2n!}{n!} = \infty$

$$iV$$
) log_2 $(log_2^{-1})^2$ False
 $(log_2^{-1})^2$ $(log_2^{-1})^2$ $(log_2^{-1})^2$

O3 Solve the following recurrence relations using backward substitution method:

$$G(n) \neq 2G(n-1)$$
 if n is odd and $n \ge 1$;

$$G(n) = G(n-1) + G(n-2)$$
 if n is even and n>0

for n is even

$$G(n-1) = G(n-2)$$
 $G(n-2) = 2G(n-2)$
 $G(n-2) = 2G(n-2)$

$$G(n) = G(n)$$

$$=26(n-2)+6(n-2)$$

$$G(n) = 3G(n-2)$$
 $(2) = 3G(n-4)$

$$= 36(n-2)$$

$$= 3(36(n-4)) = 3(6(n-4))$$

$$= 3(36(n-6)) = 3(6(n-6))$$

$$= 3^{2}(36(n-6)) = 3$$

$$= 3^{n12} G(\alpha - n)$$

$$= 3^{2} (36(n-6)) = 3$$

$$= 3^{12} 6(n-6)) = 3$$

$$= 3^{12} 6(n-6) =$$

$$\beta \cap n = 26(n-1)$$

$$6(n) = 26(n-1)$$

$$622$$

$$010$$

$$010$$

$$010$$

$$010$$

$$010$$

$$010$$

$$G(s) = 2.3\frac{9-1}{3}$$

How many ones does the following procedure print when run with input n? Compute the best bounds you can: the exact value if possible, a big- Θ expression if you can't find the exact value, or big- Ω bounds if you can't find a big- Θ expression.

Ones (n):

if
$$n = 0$$
:

print 1

else:

for $i = 1$ to 2^n :

 $0 = 1$ for $0 = 1$ records relation

$$\begin{cases}
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for \\
for i = 1 \text{ to } 2^n : for i = 1$$

$$for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i = 1

for i = 1 \text{ to } 2^n : for i =$$

How many lines, as a function of n (in $\Theta(\cdot)$ form), does the following programs print? Write a recurrence relation and solve it.

(a)

function funct (n)

if
$$n = 1$$

else:

print line ("Ayinesi iştir kişinin lafa bakılmaz.")

for $i = 1: |n/3|$

print line ("Ayinesi iştir kişinin lafa bakılmaz.")

$$P(n) = P(n|3) + \bigcap_{n = 1}^{\infty} P(n) + \bigcap_{n = 1}^{\infty} P$$

$$P(n) = 3P(n|3) + 2n^{n} + Mayter Theorem$$

$$P(n) = 3P(n|3) + 2n^{n} + Mayter Theorem$$

$$T(n) = arT(n|5) + ten$$

$$Inner (n|3) + 2n^{n} + 3n^{n} + 3n^$$

Consider the following program.

It is known that x can get both negative and positive values (but not certainly with the same probability). Time complexities of fool (n) and fool (n) are given in the following table.

	Worst case	Best case	Average case
fool (n)	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n^2)$
foo2 (n)	$\Theta(n \log n)$	Θ(1)	$\Theta(n \log n)$

For each of the following, indicate whether it is "true", "false", or "there is no enough information". Give a short reasoning. Answers without any comments will not be graded.

- (a) Time complexity of func1 is in $\Theta(n^2)$ False, $O(n^2)$ (b) Worst case time complexity of func1 is in $O(n^2)$ True $O(n^2)$ (c) Average case time complexity of func1 is in $O(n^2)$ (d) Average case time complexity of func1 is in $O(n^2)$ False,

What is the time complexity of the following function? Indicate your answer in $\Theta(\cdot)$ form.

1. Solve the following recurrence relations using backward substitution method:

(a) T(n)=T(n-2)+n for n>1, T(1)=1, T(2)=2. for n>1, T(1)=1, T(2)=2. (Solve for both odd and even values of n.)

alues of n.)

$$T(n) = T(n-2) + n, \quad T(n) = 1 \quad T(2) = 2$$

$$= T(n-4) + n-2 + n$$

$$= T(n-6) + n-4 + n-2 + n$$

$$= T(n-(n-2)) + 4 + 6 + \cdots + n$$

$$= T(n) + n + 6 + \cdots + n$$

$$= T(n) + n + n + n$$

$$= T(n) + n$$

$$= T(n) + n + n$$

$$= T(n) + n$$

$$=$$

(b) $T(n)=4T(\lceil n/2 \rceil)+n$ for n>1, T(1)=1. (solve for $n=2^k$). T(n) = 4T(n(2) + 1), T(n) = 1 $\tau(2^k) = 4T(2^{k-1}) + 2^k$ $= 4 (47(2^{k-2}) + 2^{k-1}) + 2^{k}$ $= 4^{2} + (2^{k-2}) + 4,2^{k-1} + 2^{k}$ $= 4 + (2^{k-k}) + 4^{k-1} + 2 + 4^{k-2} + 4^{k-2} + 4^{k-1} + 2^{k}$ $= 4 + (2^{k-k}) + 4^{k-1} + 2^{k} + 4^{k-1} + 2^{k} + 4^{k-1} + 2^{k} + 4^{k-1} +$ = 4 + 4 -1.2 + 4 .2 + . - +4.2 + 2 t $= 2^{k} + 2^{(k-2)} + 2^{(k-2)} + 2^{(k-1)} + 2^{k}$ = 2k 2k-9 2k-2 = 2 + 2 + 2 + - · · + 2 $= 2^{k} \left(2^{k} + 2^{-1} + 2^{-2} + \cdots + 1 \right)$ $= 2^{k} \left(2^{k+1} - 1 \right) \qquad \frac{2^{k+1} - 1}{2^{-1}} = 2^{k+1} - 1$ $= 2^{k+1} = 2^{k} \cdot 2 - 1 = n^{-1} - 1$ $= 2^{k+1} = 2^{k} \cdot 2 - 1 = n^{-1} - 1$ $= 2.0^2 - 1$ Θ (Λ^2)

(c)
$$T(\sqrt{n})+1$$
, $T(2) = 1$. (solve for $n = 2^{2^{k}}$).
 $T(n) = T(\sqrt{n}) + 1$, $T(2) = 1$
 $T(2^{2^{k}}) = T(2^{2^{k}})^{1/2} + 1$
 $= T(2^{2^{k-1}}) + 1$
 $= T(2^{2^{k-1}}) + 1 + 1$
 $= T(2^{2^{k-1}}) + 1 + 1 + 1$
 $= T(2^{2^{k-1}}) + 1 + 1 + 1 + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{k}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}}) + 1$
 $= T(2^{2^{k}}) + 1 + \dots + 1 = T(2^{2^{k}})$