MyBERT-local-machine

July 11, 2021

```
[1]: %cd ~/content/
     %rm -rf ~/content/ActionPrediction4CA
     %rm -rf ~/content/ActionPredictionBERT
     !git clone --branch colab_exe https://github.com/jmcrav/ActionPrediction4CA.git
    /home/gian/content
    Clone in 'ActionPrediction4CA' in corso...
    remote: Enumerating objects: 290, done.
    remote: Counting objects: 100% (290/290), done.
    remote: Compressing objects: 100% (206/206), done.
    remote: Total 290 (delta 137), reused 220 (delta 77), pack-reused 0
    Ricezione degli oggetti: 100% (290/290), 42.47 MiB | 10.48 MiB/s, fatto.
    Risoluzione dei delta: 100% (137/137), fatto.
[2]: \%mkdir ~/content/ActionPredictionBERT ActionPredictionBERT/input_data_
     →ActionPredictionBERT/extr_output
     %cd ~/content/ActionPrediction4CA/tools
     %mv extract_actions_fashion.py ~/content/ActionPredictionBERT
     %mv action_evaluation.py ~/content/ActionPredictionBERT
     %cd ~/content/ActionPrediction4CA/data/simmc_fashion/
     %mv fashion_train_dials.json fashion_dev_dials.json_
      \hookrightarrow fashion_teststd_dials_public.json fashion_metadata.json_

-fashion_devtest_dials.json ~/content/ActionPredictionBERT/input_data

     %cd ~/content/
     %rm -rf ./ActionPrediction4CA/
    /home/gian/content/ActionPrediction4CA/tools
    /home/gian/content/ActionPrediction4CA/data/simmc_fashion
    /home/gian/content
[3]: %cd ~/content/ActionPredictionBERT/
     !python extract_actions_fashion.py -- json_path="./input_data/
      →fashion_train_dials.json ./input_data/fashion_dev_dials.json ./input_data/
      →fashion_devtest_dials.json" --save_root="./extr_output" --metadata_path="./

¬fashion_metadata.json"
```

/home/gian/content/ActionPredictionBERT

```
Reading: ./input_data/fashion_train_dials.json
    Dialogue task Id missing: 3406
    Dialogue task Id missing: 3969
    Dialogue task Id missing: 4847
    Dialogue task Id missing: 321
    Dialogue task Id missing: 3455
    Dialogue task Id missing: 3414
    Saving: ./extr_output/fashion_train_dials_api_calls.json
    Reading: ./input_data/fashion_dev_dials.json
    Dialogue task Id missing: 2117
    Saving: ./extr_output/fashion_dev_dials_api_calls.json
    Reading: ./input_data/fashion_devtest_dials.json
    Dialogue task Id missing: 9308
    Saving: ./extr_output/fashion_devtest_dials_api_calls.json
[4]: #!pip install markdown
     #!pip install transformers
     #!pip install pandas
     #!pip install torch
[5]: #prima parte del fashion_train_dials
     import json
     import pandas as pd
     with open ('./input_data/fashion_train_dials.json', "r") as f:
        data= json.load(f)
     result=[]
     row = \{\}
     for k in data:
      row[k] = data[k]
     #prima parte del fashion train dials
     import json
     import pandas as pd
     with open ('./input_data/fashion_train_dials.json',"r") as f:
        data= json.load(f)
     result=[]
     row = \{\}
     for k in data:
      row[k] = data[k]
     # []
     dialogue_data = pd.json_normalize(row['dialogue_data'])
     type(dialogue data)
     # dialogue = dialogue_data["dialogue"]
     # for x in dialogue.head(1):
```

```
# #dialogue.head(1)
     dialogue_data.head()
     dialogue_data = pd.json_normalize(row['dialogue_data'])
     type(dialogue_data)
     # dialogue = dialogue data["dialogue"]
     # for x in dialogue.head(1):
         display(x)
     # #dialogue.head(1)
     dialogue_data.head()
[5]:
                                                   dialogue dialogue idx
                                                                               domains
      [{'belief_state': [{'act': 'DA:ASK:CHECK:CLOTH...
                                                                    3094
                                                                          [fashion]
     1 [{'belief_state': [{'act': 'DA:INFORM:PREFER:C...
                                                                     822
                                                                          [fashion]
     2 [{'belief_state': [{'act': 'DA:REQUEST:GET:CLO...
                                                                    7411
                                                                           [fashion]
     3 [{'belief_state': [{'act': 'DA:INFORM:DISPREFE...
                                                                    7029
                                                                           [fashion]
     4 [{'belief_state': [{'act': 'DA:INFORM:DISPREFE...
                                                                    1506
                                                                          [fashion]
        dialogue task_id dialogue_coref_map.1426 dialogue_coref_map.1429 \
     0
                  1785.0
                                                0.0
                                                                          1.0
                  1720.0
                                                NaN
                                                                          NaN
     1
     2
                  2038.0
                                                NaN
                                                                          NaN
     3
                  2011.0
                                                NaN
                                                                          NaN
                  1686.0
                                                NaN
                                                                          NaN
                                 dialogue_coref_map.712 dialogue_coref_map.2401
        dialogue_coref_map.708
     0
                            NaN
                                                     NaN
                                                                                NaN
     1
                            0.0
                                                     1.0
                                                                                NaN
     2
                                                                                4.0
                            NaN
                                                     NaN
     3
                            NaN
                                                     NaN
                                                                                NaN
     4
                            NaN
                                                     NaN
                                                                                NaN
        dialogue_coref_map.2402
                                     dialogue_coref_map.2335
     0
                             NaN
                                                           NaN
     1
                             NaN
                                                           NaN
     2
                             0.0 ...
                                                           NaN
     3
                             NaN
                                                           NaN
     4
                                                           NaN
                             {\tt NaN}
        dialogue_coref_map.713
                                 dialogue_coref_map.1507
                                                           dialogue_coref_map.1509 \
     0
                            NaN
                                                      NaN
                                                                                 NaN
                                                      NaN
     1
                            NaN
                                                                                 NaN
     2
                            NaN
                                                      NaN
                                                                                 NaN
     3
                                                      NaN
                                                                                 NaN
                            NaN
```

display(x)

```
dialogue_coref_map.949
                                 dialogue_coref_map.1137
                                                          dialogue_coref_map.1872
     0
                                                     NaN
                           NaN
     1
                           NaN
                                                     NaN
                                                                               NaN
     2
                           NaN
                                                     NaN
                                                                               NaN
     3
                                                     NaN
                           NaN
                                                                               NaN
     4
                           NaN
                                                     NaN
                                                                               NaN
        dialogue_coref_map.1873
                                  dialogue_coref_map.1753
                                                            dialogue_coref_map.834
     0
                            NaN
                                                      NaN
                                                                               NaN
     1
                            NaN
                                                      NaN
                                                                               NaN
     2
                            NaN
                                                      NaN
                                                                               NaN
     3
                            NaN
                                                      NaN
                                                                               NaN
     4
                            NaN
                                                      NaN
                                                                               NaN
     [5 rows x 1648 columns]
[6]: #seconda parte del fashion_train_dials
     task_mapping = pd.json_normalize(row['task_mapping'])
     task_mapping.head()
[6]:
        task_id
                                                           image_ids focus_image \
                 [2441, 2442, 2443, 2444, 2445, 2446, 2447, 244...
           2042
                                                                           2441
                 [2431, 2432, 2433, 2434, 2435, 2436, 2437, 243...
     1
           2041
                                                                           2431
     2
           2040
                 [2421, 2422, 2423, 2424, 2425, 2426, 2427, 242...
                                                                           2421
                 [2411, 2412, 2413, 2414, 2415, 2416, 2417, 241...
     3
           2039
                                                                           2411
     4
                 [2401, 2402, 2403, 2404, 2405, 2406, 2407, 240...
                                                                           2401
             memory_images
                                                  database_images
     0 [2442, 2443, 2444]
                             [2445, 2446, 2447, 2448, 2449, 2450]
     1 [2432, 2433, 2434]
                             [2435, 2436, 2437, 2438, 2439, 2440]
     2 [2422, 2423, 2424] [2425, 2426, 2427, 2428, 2429, 2430]
     3 [2412, 2413, 2414] [2415, 2416, 2417, 2418, 2419, 2420]
     4 [2402, 2403, 2404] [2405, 2406, 2407, 2408, 2409, 2410]
[7]: import pandas as pd
     dev_dials_api = pd.read_json('./extr_output/fashion_dev_dials_api_calls.json')
     dev dials api.head()
[7]:
        dialog_id
                                                               actions \
                   [{'turn idx': 0, 'action': 'None', 'action sup...
             4146
     0
             4260
                   [{'turn_idx': 0, 'action': 'SpecifyInfo', 'act...
     1
                  [{'turn idx': 0, 'action': 'SearchDatabase', '...
     2
             8022
                  [{'turn_idx': 0, 'action': 'None', 'action_sup...
     3
             4992
             5606 [{'turn_idx': 0, 'action': 'None', 'action_sup...
```

NaN

NaN

4

NaN

```
focus_images
       [1646, 1646, 1646, 1649, 1649, 1649, 1649]
     1
                          [2161, 2161, 2161, 2161]
     2
              [1971, 1972, 1972, 1972, 1977, 1978]
     3
                    [1931, 1931, 1936, 1936, 1936]
                    [1931, 1931, 1931, 1931, 1931]
[8]: import pandas as pd
     devtest_dials_api = pd.read_json('./extr_output/fashion_devtest_dials_api_calls.
     devtest_dials_api.head()
       dialog id
                                                              actions \
[8]:
     0
             2494 [{'turn_idx': 0, 'action': 'SearchDatabase', '...
     1
             3731 [{'turn idx': 0, 'action': 'SearchDatabase', '...
             8546 [{'turn_idx': 0, 'action': 'SpecifyInfo', 'act...
             5590 [{'turn idx': 0, 'action': 'SearchDatabase', '...
     3
             5452 [{'turn_idx': 0, 'action': 'SpecifyInfo', 'act...
                          focus_images
     0 [1836, 1841, 1841, 1841, 1841]
     1 [1676, 1681, 1681, 1683, 1683]
     2 [840, 840, 840, 849, 849, 843]
     3 [1616, 1618, 1618, 1618, 1618]
     4 [2231, 2231, 2231, 2236, 2236]
[9]: import pandas as pd
     import json
     def createDataframe(json file):
       with open(json_file) as f:
         dictftdac = json.load(f)
       data = []
       for e in dictftdac:
         dialog_id = e['dialog_id']
         actions = e['actions']
         focus_images = e['focus_images']
         for a in actions:
           turn_idx = a['turn_idx']
           action = a['action']
           action supervision = a['action supervision']
           transcript = a['transcript']
           transcript_annotated = a['transcript_annotated']
```

```
system_transcript = a['system_transcript']
            system_transcript_annotated = a['system_transcript_annotated']
            row = {
                "dialog_id" : dialog_id,
                'turn_idx' : turn_idx,
                'action' : action,
                'action_supervision' : action_supervision,
                'focus_images' : focus_images,
                'transcript': transcript,
                'transcript_annotated': transcript_annotated,
                'system_transcript': system_transcript,
                'system_transcript_annotated':system_transcript_annotated,
                'previous_transcript': "",
                'previous_system_transcript': ""
            }
            if (action_supervision != None):
              if 'focus' in action_supervision:
                acsf = {'focus':action_supervision['focus']}
              else:
                acsf = {'focus':None}
              if 'attributes' in action_supervision:
                acsa = {'attributes':action_supervision['attributes']}
              else:
                acsa = {'attributes':[]}
            else:
                acsf = {'focus':None}
                acsa = {'attributes':[]}
            row.update(acsf)
            row.update(acsa)
            data.append(row)
        # Conservo id turno e risposta sistema per provare a implementare una
       \rightarrowsoluzione articolata
        df = pd.
       →DataFrame(data,columns=['dialog_id','turn_idx','transcript','action','attributes',

→ 'system_transcript', 'transcript_annotated', 'system_transcript_annotated', 'previous_transcri

        return df
[10]: df_training = createDataframe('./extr_output/fashion_train_dials_api_calls.
       print("Training: ",len(df_training)," elementi")
```

Training: 21196 elementi [11]: df_validation = createDataframe('./extr_output/fashion_dev_dials_api_calls. →json') print("Validation: ",len(df_validation)," elementi") Validation: 3513 elementi [12]: df_test = createDataframe('./extr_output/fashion_devtest_dials_api_calls.json') print("Test: ",len(df_test)," elementi") Test: 5397 elementi [13]: use_next = True [14]: #Training df_training.sort_values(by=['dialog_id', 'turn_idx']) for i in range(1,(len(df_training))): if(i<(len(df_training)) and df_training['dialog_id'][i] ==__ df_training['dialog_id'][i-1]): df_training.loc[i,'previous_transcript'] = df_training['transcript'][i-1] df_training.loc[i,'previous_system_transcript'] =__ #Validation df_validation.sort_values(by=['dialog_id', 'turn_idx']) for i in range(1,(len(df_validation))): if(i<(len(df_validation)) and df_validation['dialog_id'][i] ==__ →df_validation['dialog_id'][i-1]): df validation.loc[i,'previous transcript'] = [] df validation.loc[i, 'previous system transcript'] = [] →df_validation['system_transcript'][i-1] #Evaluation df test.sort values(by=['dialog id', 'turn idx']) for i in range(1,(len(df_test))): if(i<(len(df_test)) and df_test['dialog_id'][i] ==__</pre> →df_test['dialog_id'][i-1]): df_test.loc[i,'previous_transcript'] = df_test['transcript'][i-1] df_test.loc[i,'previous_system_transcript'] =__ →df_test['system_transcript'][i-1] [15]: from transformers import BertTokenizer # Load the BERT tokenizer. print('Loading BERT tokenizer...')

```
Loading BERT tokenizer...
[16]: transcripts_tr = df_training.transcript.values
      previous_transcript_tr = df_training.previous_transcript.values
      previous_system_transcript_tr = df_training.previous_system_transcript.values
      action_labels_tr = df_training.action.values
      attributes_labels_tr=df_training.attributes.values
      print ("TRAINING DATA:")
      # Print the original sentence.
      print(' Original: ', transcripts_tr[0])
      # Print the sentence split into tokens.
      print('Tokenized: ', tokenizer.tokenize(transcripts_tr[0]))
      # Print the sentence mapped to token ids.
      print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.
       →tokenize(transcripts_tr[0])))
     TRAINING DATA:
      Original: Is there a pattern on this one? It's hard to see in the image.
     Tokenized: ['is', 'there', 'a', 'pattern', 'on', 'this', 'one', '?', 'it', "'",
     's', 'hard', 'to', 'see', 'in', 'the', 'image', '.']
     Token IDs: [2003, 2045, 1037, 5418, 2006, 2023, 2028, 1029, 2009, 1005, 1055,
     2524, 2000, 2156, 1999, 1996, 3746, 1012]
```

```
[17]: for k in range(0,10):

print(f"T: {transcripts_tr[k]} | PT: {previous_transcript_tr[k]} | PST:

→{previous_system_transcript_tr[k]}")
```

T: Is there a pattern on this one? It's hard to see in the image. | PT: | PST: T: That's fancy. Do you have anything in warmer colors like yellow or red? | PT: Is there a pattern on this one? It's hard to see in the image. | PST: I don't have any information on the pattern, but it has pointelle embellishments. T: Yeah, that sounds good. | PT: That's fancy. Do you have anything in warmer colors like yellow or red? | PST: I have a crew neck sweater in red, would you like to see it?

T: Oh, I love that. Please tell me you have a small. | PT: Yeah, that sounds good. | PST: This is \$187 from Downtown Stylists with a 3.62 rating.

T: Yes, please! Thank you for your help with this | PT: Oh, I love that. Please tell me you have a small. | PST: It does come in small, shall I put one in your cart?

T: How nice! Does this come in other colors? | PT: | PST:

T: Oh well. Can you show me a dress that comes in red? | PT: How nice! Does this come in other colors? | PST: No, I'm sorry, It comes only in blue.

T: Cute! Do these come in Small? | PT: Oh well. Can you show me a dress that comes in red? | PST: This dress comes in many colors, including a bright red and a pinkish-red. What do you think?

T: Awesome. Would you add a red one in S to my cart please? | PT: Cute! Do these come in Small? | PST: Yes, they do!

T: That's all. Thanks! | PT: Awesome. Would you add a red one in S to my cart please? | PST: The red one is in your cart. Is there anything else I can find for you?

```
[18]: transcripts_vd = df_validation.transcript.values
      previous_transcript_vd = df_validation.previous_transcript.values
      previous_system_transcript_vd = df_validation.previous_system_transcript.values
      action_labels_vd = df_validation.action.values
      attributes_labels_vd=df_validation.attributes.values
      dialog_ids_vd = df_validation.dialog_id.values
      turn_idxs_vd = df_validation.turn_idx.values
      print ("VALIDATION DATA:")
      # Print the original sentence.
      print(' Original: ', transcripts_vd[0])
      # Print the sentence split into tokens.
      print('Tokenized: ', tokenizer.tokenize(transcripts_vd[0]))
      # Print the sentence mapped to token ids.
      print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.
       →tokenize(transcripts_vd[0])))
      # Print the dialog ids.
      print(f"Dialog IDs: {dialog_ids_vd[0:20]}")
      # Print the turn idxs.
      print(f"Turn IDs: {turn idxs vd[0:20]}")
```

VALIDATION DATA:

```
[19]: transcripts_tst = df_test.transcript.values
      previous_transcript_tst = df_test.previous_transcript.values
      previous_system_transcript_tst = df_test.previous_system_transcript.values
      action_labels_tst = df_test.action.values
      attributes_labels_tst=df_test.attributes.values
      dialog_ids_tst = df_test.dialog_id.values
      turn_idxs_tst = df_test.turn_idx.values
      print ("EVALUATION DATA:")
      # Print the original sentence.
      print(' Original: ', transcripts_tst[0])
      # Print the sentence split into tokens.
      print('Tokenized: ', tokenizer.tokenize(transcripts_tst[0]))
      # Print the sentence mapped to token ids.
      print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.
      →tokenize(transcripts_tst[0])))
      # Print the dialog ids.
      print(f"Dialog IDs: {dialog_ids_tst[0:20]}")
      # Print the turn idxs.
      print(f"Turn IDs: {turn_idxs_tst[0:20]}")
     EVALUATION DATA:
      Original: That looks a little too light for what I need, do you have something
     else with a high customer rating?
     Tokenized: ['that', 'looks', 'a', 'little', 'too', 'light', 'for', 'what', 'i',
     'need', ',', 'do', 'you', 'have', 'something', 'else', 'with', 'a', 'high',
     'customer', 'rating', '?']
     Token IDs: [2008, 3504, 1037, 2210, 2205, 2422, 2005, 2054, 1045, 2342, 1010,
     2079, 2017, 2031, 2242, 2842, 2007, 1037, 2152, 8013, 5790, 1029]
     Dialog IDs: [2494 2494 2494 2494 2494 3731 3731 3731 3731 8546 8546 8546
     8546
      8546 8546 5590 5590 5590 5590]
     Turn IDs: [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3]
[20]: \max_{t=0}^{\infty} 
      # For every sentence...
      for i in range(0,len(transcripts_tr)):
          # Tokenize the text and add `[CLS]` and `[SEP]` tokens.
          if (previous_transcript_tr[i] != "" and use_next):
```

Max transcript length for training: 177

Max transcript length for validation: 133

```
else:
    input_ids = tokenizer.encode(transcripts_tst[i], add_special_tokens=True)

# Update the maximum sentence length.
    max_len_tst = max(max_len_tst, len(input_ids))

print("Max transcript length for evaluation: ",max_len_tst)
```

Max transcript length for evaluation: 150

```
[23]: max_len = max(max_len_tr, max_len_vd, max_len_tst)

# if (max_len_tr >= max_len_vd):
# max_len = max_len_tr
# else:
# max_len = max_len_vd
# if (max_len_tst >= max_len):
# max_len = max_len_tst
print("La massima lunghezza dei token da gestire è quindi ",max_len)
```

La massima lunghezza dei token da gestire è quindi 177

```
[24]: from sklearn.preprocessing import MultiLabelBinarizer
      import numpy as np
      mlb = MultiLabelBinarizer()
      attributes_labels_all = np.concatenate((attributes_labels_tr,_
      →attributes_labels_vd,attributes_labels_tst), axis=None)
      attr yt = mlb.fit transform(attributes labels all)
      print(attr_yt[0:15])
      print(mlb.inverse_transform(attr_yt[3].reshape(1, -1)))
      print(mlb.classes_)
      print(f"Totale: {len(attr_yt)}, Training: {len(attributes_labels_tr)},__
      →Validation: {len(attributes_labels_vd)}, Evaluation: ⊔
      →{len(attributes_labels_tst)}")
      attributes_labels_tr_vect = attr_yt[0:len(attributes_labels_tr)]
      attributes_labels_vd_vect = attr_yt[len(attributes_labels_tr):
      →(len(attributes_labels_tr)+len(attributes_labels_vd))]
      attributes_labels_tst_vect =
      →attr_yt[(len(attributes_labels_tr)+len(attributes_labels_vd)):]
      print(f"Training: {len(attributes labels tr vect)}, Validation:
      →{len(attributes_labels_vd_vect)}, Evaluation:
      →{len(attributes_labels_tst_vect)}")
```

```
[('availableSizes',)]
   ['ageRange' 'amountInStock' 'availableSizes' 'brand' 'clothingCategory'
   'clothingStyle' 'color' 'customerRating' 'dressStyle' 'embellishment'
   'forGender' 'forOccasion' 'hasPart' 'hemLength' 'hemStyle' 'info'
   'jacketStyle' 'madeIn' 'material' 'necklineStyle' 'pattern' 'price'
   'sequential' 'size' 'skirtLength' 'skirtStyle' 'sleeveLength'
   'sleeveStyle' 'soldBy' 'sweaterStyle' 'waistStyle' 'warmthRating'
   'waterResistance']
   Totale: 30106, Training: 21196, Validation: 3513, Evaluation: 5397
   Training: 21196, Validation: 3513, Evaluation: 5397
[25]: import torch
   import tensorflow as tf
   torch.backends.cudnn.benchmark = True
   torch.backends.cudnn.enabled = True
[26]: # Tokenize all of the sentences and map the tokens to thier word IDs.
   #dobbiamo convertire le nostre lables da string a valori numerici, usiamo il_{\sf L}
    →metodo fornito da sklearn
   #TRAINING DATASET
   from sklearn import preprocessing
   le = preprocessing.LabelEncoder()
   action_labels_encoded_tr = le.fit_transform(action_labels_tr)
   input_ids_tr = []
   attention_masks_tr = []
   print(f"{len(df_training)} records to encode.")
   # For every sentence...
   for i in range(0,len(df_training)):
     # `encode_plus` will:
     # (1) Tokenize the sentence.
```

```
(2) Prepend the `[CLS]` token to the start.
    # (3) Append the `[SEP]` token to the end.
    # (4) Map tokens to their IDs.
    # (5) Pad or truncate the sentence to `max_length`
      (6) Create attention masks for [PAD] tokens.
 if (previous_transcript_tr[i] != "" and use_next):
    encoded_dict = tokenizer.encode_plus(
                        previous transcript tr[i]+ " " + |
 →previous_system_transcript_tr[i], # Sentence to encode.
                        transcripts_tr[i], #next sentece to encode
                        add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                        truncation = True,
                        max_length = max_len, # Pad & truncate all_
 \rightarrow sentences.
                       pad_to_max_length = True,
                       return_attention_mask = True, # Construct attn. masks.
                        return_tensors = 'pt',  # Return pytorch tensors.
                    )
 else:
    encoded_dict = tokenizer.encode_plus(
                        transcripts_tr[i], # Sentence to encode.
                        add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                        truncation = True,
                        max_length = max_len, # Pad & truncate all___
 \rightarrow sentences.
                       pad_to_max_length = True,
                        return_attention_mask = True, # Construct attn. masks.
                       return_tensors = 'pt',  # Return pytorch tensors.
                    )
  # Add the encoded sentence to the list.
 input_ids_tr.append(encoded_dict['input_ids'])
  # And its attention mask (simply differentiates padding from non-padding).
 attention_masks_tr.append(encoded_dict['attention_mask'])
# Convert the lists into tensors.
input_ids_tr = torch.cat(input_ids_tr, dim=0)
attention_masks_tr = torch.cat(attention_masks_tr, dim=0)
labels_actions_tr = torch.tensor(action_labels_encoded_tr)
labels_attributes_tr = torch.tensor(attributes_labels_tr_vect)
# Print sentence O, now as a list of IDs.
print ("TRAINING : ")
```

```
if (use_next):
    print('Original: ', transcripts_tr[0])
else:
    print('Original: ', transcripts_tr[0])
print('Token IDs:', input_ids_tr[0])
```

21196 records to encode.

/home/gian/anaconda3/envs/testcuda1/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:2126: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).

warnings.warn(

TRAINING:

Original: Is there a pattern on this one? It's hard to see in the image. Token IDs: tensor([101, 2003, 2045, 1037, 5418, 2006, 2023, 2028, 1029, 2009, 1005, 1055,

```
2524, 2000, 2156, 1999, 1996, 3746, 1012, 102,
                                                             0,
                                                                    0,
                                                                          0,
   Ο,
                                                                    Ο,
                                   Ο,
                                                                          0,
         0,
                0,
                      0,
                             0,
                                          0,
                                                0,
                                                       0,
                                                             0,
   Ο,
         Ο,
                0,
                      Ο,
                             0,
                                   Ο,
                                          0,
                                                0,
                                                       0,
                                                             0,
                                                                    0,
                                                                          0,
                                   Ο,
                                          Ο,
   0,
         0,
               Ο,
                      Ο,
                             0,
                                                                    0,
                                                                          0,
                                                0,
                                                       0,
                                                             0,
   0,
         0,
               0,
                      0,
                            0,
                                   0,
                                          0,
                                                             0,
                                                                    0,
                                                                          0,
                                                0,
                                                       0,
   0,
         Ο,
               Ο,
                      Ο,
                            Ο,
                                   Ο,
                                          Ο,
                                                             0,
                                                                    0,
                                                                          0,
                                                Ο,
                                                       Ο,
   Ο,
                                   Ο,
                                          Ο,
                                                                          0,
         0,
               0,
                      0,
                            0,
                                                             0,
                                                                    0,
                                                0,
                                                       0,
   0,
         0,
               Ο,
                      0,
                            0,
                                   0,
                                          0,
                                                0,
                                                       0,
                                                             0,
                                                                          0,
         Ο,
   0,
               0,
                      0,
                            0,
                                   0,
                                          0,
                                                0,
                                                       0,
                                                             0,
                                                                    0,
                                                                          0.
         Ο,
   0,
               Ο,
                                                                    0,
                      Ο,
                            Ο,
                                   Ο,
                                          Ο,
                                                Ο,
                                                       0,
                                                             0,
                                                                          0,
   0,
         0,
               0,
                      0,
                            0,
                                   0,
                                          0,
                                                0,
                                                       0,
                                                             0.
                                                                    0,
                                                                          0.
   Ο,
         Ο,
               Ο,
                      Ο,
                            Ο,
                                   Ο,
                                          Ο,
                                                Ο,
                                                       Ο,
                                                             Ο,
                                                                    Ο,
                                                                          Ο,
         Ο,
                             0,
                                   0,
                                                                    0,
   0,
               0,
                      Ο,
                                          0,
                                                0,
                                                       Ο,
                                                             0,
                                                                          0,
   0,
         0,
               0,
                      Ο,
                             Ο,
                                   0,
                                          Ο,
                                                0,
                                                       0])
```

```
[27]: # Tokenize all of the sentences and map the tokens to thier word IDs.
```

#dobbiamo convertire le nostre lables da string a valori numerici, usiamo il \sqcup \to metodo fornito da sklearn

#VALIDATION DATASET

from sklearn import preprocessing

le = preprocessing.LabelEncoder()
action_labels_encoded_vd = le.fit_transform(action_labels_vd)

```
input_ids_vd = []
attention_masks_vd = []
print(f"{len(df_validation)} records to encode.")
# For every sentence...
for i in range(0,len(df_validation)):
  # `encode_plus` will:
    (1) Tokenize the sentence.
  # (2) Prepend the `[CLS]` token to the start.
  # (3) Append the `[SEP]` token to the end.
  # (4) Map tokens to their IDs.
  # (5) Pad or truncate the sentence to `max length`
  # (6) Create attention masks for [PAD] tokens.
 if (previous_transcript_vd[i] != "" and use_next):
    encoded_dict = tokenizer.encode_plus(
                        previous_transcript_vd[i]+ " " +__
 ⇒previous_system_transcript_vd[i], # Sentence to encode.
                        transcripts_vd[i], #next sentece to encode
                        add special tokens = True, # Add '[CLS]' and '[SEP]'
                        truncation = True,
                        max_length = max_len,
                                                   # Pad & truncate all
\rightarrow sentences.
                        pad_to_max_length = True,
                        return_attention_mask = True, # Construct attn. masks.
                        return_tensors = 'pt',  # Return pytorch tensors.
                    )
 else:
    encoded_dict = tokenizer.encode_plus(
                        transcripts_vd[i], # Sentence to encode.
                        add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                        truncation = True,
                        max_length = max_len,
                                                      # Pad & truncate all
\rightarrow sentences.
                        pad_to_max_length = True,
                        return_attention_mask = True, # Construct attn. masks.
                        return_tensors = 'pt',  # Return pytorch tensors.
                    )
  # Add the encoded sentence to the list.
  input_ids_vd.append(encoded_dict['input_ids'])
  # And its attention mask (simply differentiates padding from non-padding).
 attention_masks_vd.append(encoded_dict['attention_mask'])
# Convert the lists into tensors.
input_ids_vd = torch.cat(input_ids_vd, dim=0)
attention_masks_vd = torch.cat(attention_masks_vd, dim=0)
```

```
labels_actions_vd = torch.tensor(action_labels_encoded_vd)
labels_attributes_vd = torch.tensor(attributes_labels_vd_vect)
# Check warning:
# /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:43: UserWarning:
 → To copy construct from a tensor, it is recommended to use sourceTensor.
 →clone().detach() or sourceTensor.clone().detach().requires_grad_(True),
 → rather than torch.tensor(sourceTensor).
dialog_ids_vd = torch.tensor(dialog_ids_vd)
turn_idxs_vd = torch.tensor(turn_idxs_vd)
# Print sentence O, now as a list of IDs.
print ("VALIDATION : ")
if (use_next):
  print('Original: ', transcripts_vd[0])
  print('Original: ', transcripts_vd[0])
print('Token IDs:', input_ids_vd[0])
print(f"Dialog IDs: {dialog_ids_vd[0:20]}")
print(f"Turn IDXs: {turn_idxs_vd[0:20]}")
3513 records to encode.
VALTDATION:
Original: What's the price of this sweater compared to the other blue and gray
Token IDs: tensor([ 101, 2054, 1005, 1055, 1996, 3976, 1997, 2023,
14329, 4102,
```

one I looked at?

2000,	1996,	2060,	2630,	1998,	3897,	2028,	1045,	2246,	2012,
1029,	102,	0,	0,	0,	0,	0,	0,	Ο,	0,
Ο,	Ο,	0,	0,	0,	0,	0,	0,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
0,	Ο,	0,	0,	0,	0,	0,	Ο,	Ο,	0,
Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	0,	Ο,	Ο,	0,
Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	0])			

Dialog IDs: tensor([4146, 4146, 4146, 4146, 4146, 4146, 4146, 4260, 4260, 4260, 4260, 8022,

```
8022, 8022, 8022, 8022, 8022, 4992, 4992])
```

Turn IDXs: tensor([0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2])

```
[28]: # Tokenize all of the sentences and map the tokens to thier word IDs.
      #dobbiamo convertire le nostre lables da string a valori numerici, usiamo il_{\sqcup}
      →metodo fornito da sklearn
      #VALIDATION DATASET
      from sklearn import preprocessing
      le = preprocessing.LabelEncoder()
      action_labels_encoded_tst = le.fit_transform(action_labels_tst)
      input_ids_tst = []
      attention_masks_tst = []
      print(f"{len(df_test)} records to encode.")
      # For every sentence...
      for i in range(0,len(df_test)):
      # for t in transcripts tst:
          # `encode_plus` will:
             (1) Tokenize the sentence.
            (2) Prepend the `[CLS]` token to the start.
          # (3) Append the `[SEP]` token to the end.
          # (4) Map tokens to their IDs.
          # (5) Pad or truncate the sentence to `max_length`
          # (6) Create attention masks for [PAD] tokens.
        #Aggiungere "and False" PER UTILIZZARE sempre la tokenizzazione senza
       \rightarrow concatenazione
        if (previous_transcript_tst[i] != "" and use_next):
          encoded_dict = tokenizer.encode_plus(
                            previous_transcript_tst[i]+ " " +__
       →previous_system_transcript_tst[i], # Sentence to encode.
                            transcripts_tst[i], #next sentece to encode
                            add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                            truncation = True,
                            max_length = max_len,
                                                           # Pad & truncate all
       \rightarrow sentences.
                            pad_to_max_length = True,
                            return_attention_mask = True, # Construct attn. masks.
                            return_tensors = 'pt',  # Return pytorch tensors.
        else:
          encoded_dict = tokenizer.encode_plus(
                            transcripts_tst[i], # Sentence to encode.
                            add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                            truncation = True,
                            max_length = max_len,
                                                            # Pad & truncate all
       \rightarrow sentences.
```

```
pad_to_max_length = True,
                      return_attention_mask = True, # Construct attn. masks.
                      return_tensors = 'pt',  # Return pytorch tensors.
                   )
  # Add the encoded sentence to the list.
  input_ids_tst.append(encoded_dict['input_ids'])
  # And its attention mask (simply differentiates padding from non-padding).
  attention_masks_tst.append(encoded_dict['attention_mask'])
# Convert the lists into tensors.
input ids tst = torch.cat(input ids tst, dim=0)
attention_masks_tst = torch.cat(attention_masks_tst, dim=0)
labels_actions_tst = torch.tensor(action_labels_encoded_tst)
labels_attributes_tst = torch.tensor(attributes_labels_tst_vect)
# Check warning:
# /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:43: UserWarning:
 → To copy construct from a tensor, it is recommended to use sourceTensor.
 →clone().detach() or sourceTensor.clone().detach().requires_grad_(True), ___
 \rightarrow rather than torch.tensor(sourceTensor).
dialog ids tst = torch.tensor(dialog ids tst)
turn_idxs_tst = torch.tensor(turn_idxs_tst)
# Print sentence O, now as a list of IDs.
print ("Evaluation : ")
if (use_next):
  print('Original: ', transcripts_tst[0])
  print('Original: ', transcripts_tst[0])
print('Token IDs:', input_ids_tst[0])
print(f"Dialog IDs: {dialog_ids_tst[0:20]}")
print(f"Turn IDXs: {turn_idxs_tst[0:20]}")
5397 records to encode.
Evaluation:
Original: That looks a little too light for what I need, do you have something
else with a high customer rating?
Token IDs: tensor([ 101, 2008, 3504, 1037, 2210, 2205, 2422, 2005, 2054, 1045,
2342, 1010,
        2079, 2017, 2031, 2242, 2842, 2007, 1037, 2152, 8013, 5790, 1029, 102,
           0,
                 Ο,
                       0,
                             Ο,
                                   0,
                                         Ο,
                                               Ο,
                                                     Ο,
                                                           0,
                                                                 0,
           Ο,
                 0,
                       0,
                             0,
                                   Ο,
                                         Ο,
                                               Ο,
                                                     0,
                                                           0,
                                                                 0,
                                                                       0,
                                                                             0.
           Ο,
                                               Ο,
                 Ο,
                      0,
                             Ο,
                                   0,
                                         0,
                                                                       0,
                                                     Ο,
                                                           0,
                                                                 0,
                                                                             0,
           0,
                 Ο,
                      Ο,
                                   Ο,
                                         0, 0,
                             0,
                                                     Ο,
                                                           0,
                                                                 Ο,
                                                                       Ο,
                                                                             0,
           Ο,
                 0,
                      Ο,
                             Ο,
                                   0,
                                         0,
                                            0,
                                                     Ο,
                                                           Ο,
                                                                 Ο,
                                                                       Ο,
                                                                             0,
```

Ο,

0,

Ο,

0,

0,

0,

0,

Ο,

Ο,

Ο,

0,

Ο,

```
Ο,
                                                  Ο,
                                                               0,
                                                                             Ο,
                                                                                          0,
                                                                                                       0,
                                                                                                                     0,
                                                                                                                                  Ο,
                                                                                                                                                Ο,
                                                                                                                                                             Ο,
                                                                                                                                                                           0,
                                                                                                                                                                                        0,
                                                                                                                                                                                        Ο,
                                    Ο,
                                                  Ο,
                                                                                                                                                                           0,
                                                               0,
                                                                            0,
                                                                                          0,
                                                                                                       0,
                                                                                                                     0,
                                                                                                                                  0,
                                                                                                                                                0,
                                                                                                                                                             0,
                                    0,
                                                  0,
                                                               Ο,
                                                                            Ο,
                                                                                          0,
                                                                                                       0,
                                                                                                                     Ο,
                                                                                                                                                             0,
                                                                                                                                                                           0,
                                                                                                                                                                                        0,
                                                                                                                                  0,
                                                                                                                                                0,
                                                                                                                                                                                        0,
                                    0,
                                                  0,
                                                               0,
                                                                            0,
                                                                                          0,
                                                                                                       0,
                                                                                                                     0,
                                                                                                                                  0,
                                                                                                                                                0,
                                                                                                                                                             0,
                                                                                                                                                                           0,
                                                                                          0,
                                    0,
                                                  0,
                                                               0,
                                                                            0,
                                                                                                       0,
                                                                                                                     0,
                                                                                                                                  0,
                                                                                                                                                0,
                                                                                                                                                                           0,
                                                                                                                                                                                        0,
                                    0,
                                                  0,
                                                               0,
                                                                             0,
                                                                                          0,
                                                                                                       0,
                                                                                                                     0,
                                                                                                                                  0,
                                                                                                                                                0])
            Dialog IDs: tensor([2494, 2494, 2494, 2494, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731, 3731
            8546, 8546,
                              8546, 8546, 8546, 8546, 5590, 5590, 5590, 5590])
            Turn IDXs: tensor([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3])
[29]: from torch.utils.data import TensorDataset, random_split
             # Combine the training inputs into a TensorDataset.
             \#labels\ tr = \{'actions':\ labels\ actions\ tr,\ 'attributes':\ labels\ attributes\ tr\}
             #labels_vd = {'actions': labels_actions_vd, 'attributes': labels_attributes_vd}
             train_dataset = TensorDataset(input_ids_tr, attention_masks_tr,_
              →labels_actions_tr, labels_attributes_tr)
             val_dataset = TensorDataset(input_ids_vd, attention_masks_vd,__
               →labels_actions_vd, labels_attributes_vd, dialog_ids_vd, turn_idxs_vd)
             tst_dataset = TensorDataset(input_ids_tst, attention_masks_tst,__
              -labels_actions_tst, labels_attributes_tst, dialog_ids_tst, turn_idxs_tst)
             print('{:>5,} training samples'.format(len(train dataset)))
             print('{:>5,} validation samples'.format(len(val_dataset)))
             print('{:>5,} evaluation samples'.format(len(tst_dataset)))
            21,196 training samples
            3,513 validation samples
            5,397 evaluation samples
[30]: # Check evaluation TensorDataset content
             tst_dataset[0:10]
[30]: (tensor([[ 101, 2008, 3504, ...,
                                                                                                                      0],
                                                                                           Ο,
                                                                                                         0,
                                  [ 101, 2008, 3504, ...,
                                                                                                                      0],
                                                                                           0,
                                                                                                         0,
                                 [ 101, 2040, 5617, ...,
                                                                                                                      0],
                                                                                           0,
                                                                                                         0,
                                 ...,
                                 [ 101, 2821, 1045, ...,
                                                                                           0,
                                                                                                         Ο,
                                                                                                                      0],
                                  [ 101, 4086, 1010, ...,
                                                                                           0,
                                                                                                         0,
                                                                                                                      0],
                                  [ 101, 1045, 2066, ...,
                                                                                                                      0]]),
                                                                                           Ο,
                                                                                                         Ο,
               tensor([[1, 1, 1, ..., 0, 0, 0],
                                 [1, 1, 1, ..., 0, 0, 0],
                                 [1, 1, 1, ..., 0, 0, 0],
                                 [1, 1, 1, ..., 0, 0, 0],
```

Ο,

Ο,

0,

Ο,

0,

0,

0,

Ο,

0,

0,

0,

0,

```
tensor([2, 4, 4, 0, 1, 2, 1, 2, 0, 1]),
   0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       Ο,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0],
       0,
       0, 0, 0, 0, 0, 0, 0, 0, 0]]),
   tensor([2494, 2494, 2494, 2494, 3731, 3731, 3731, 3731, 3731]),
   tensor([0, 1, 2, 3, 4, 0, 1, 2, 3, 4]))
[31]: # Tell PyTorch to use the GPU.
  device = torch.device("cuda")
  print('There are %d GPU(s) available.' % torch.cuda.device_count())
  print('We will use the GPU:', torch.cuda.get device name(0))
  There are 1 GPU(s) available.
```

[1, 1, 1, ..., 0, 0, 0], [1, 1, 1, ..., 0, 0, 0]]),

We will use the GPU: NVIDIA GeForce RTX 2060

```
[32]: from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
      # The DataLoader needs to know our batch size for training, so we specify it
      # here. For fine-tuning BERT on a specific task, the authors recommend a batch
      # size of 16 or 32.
      # With size 32 GeForce RTX 2060 with 6GB run out of memory
      batch size = 12
      # Create the DataLoaders for our training and validation sets.
      # We'll take training samples in random order.
      train_dataloader = DataLoader(
                  train_dataset, # The training samples.
                  sampler = RandomSampler(train_dataset), # Select batches randomly
                  batch_size = batch_size # Trains with this batch size.
              )
      # For validation the order doesn't matter, so we'll just read them sequentially.
      validation_dataloader = DataLoader(
                  val_dataset, # The validation samples.
                  sampler = SequentialSampler(val_dataset), # Pull out batches_
       \rightarrow sequentially.
                  batch_size = batch_size # Evaluate with this batch size.
              )
      #ho controllato nel colab su cui ci basiamo, anche lui usa un Sequentialu
       \rightarrowSampler per il dataset di evaluation
      evaluation dataloader = DataLoader(
                  tst_dataset, # The validation samples.
                  sampler = SequentialSampler(tst_dataset), # Pull out batches_
       \rightarrow sequentially.
                  batch_size = batch_size # Evaluate with this batch size.
              )
[33]: #DA SISTEMARE
      from transformers import BertModel
      from torch import nn
      class CustomBERTModel(nn.Module):
        def __init__(self):
          super(CustomBERTModel, self).__init__()
          self.bert = BertModel.from_pretrained("bert-base-uncased")
          ### New layers:
```

self.linear_intermedio = nn.Linear(768, 256)

```
#provare ad aggiungere ulteriori layer intermedi per ridurre le dimensioni⊔
       → fino ad arrivare all'output richiesto
          self.linear_actions = nn.Linear(256, 5)
          self.linear_attributes = nn.Linear(256, len(mlb.classes_)) #num attributi?
        def forward(self, ids, mask):
          \#controllare che l'output non rappresenti solo lo stato interno dovuto alu
       \rightarrow token CLS
          output = self.bert(ids,attention_mask=mask)
          # print(f"Type output{type(output)}")
          # for p in output:
             print(p)
          # print(type(output[p]))
          # print(output[p])
          #prendiamo il campo last_hidden_state dall'oggetto output; last hidden⊔
       \rightarrowstate rappresenta il tensore
          #in uscita dallo step di forward del BertModel
          last_hidden_state_output = output["last_hidden_state"]
          # last_hidden_state has the following shape: (batch_size, sequence_length,_
       →768)
          #stiamo passando solo il token CLS ai layer successivi
          linear_output_intermedio = self.linear_intermedio(last_hidden_state_output[:
       \rightarrow,0,:].view(-1,768))
          # linear_output_intermedio = self.linear_intermedio(pooled_output)
          linear_output_actions = self.linear_actions(linear_output_intermedio)
          # linear output actions = self.sftmx(linear output actions)
          # linear_output_actions = nn.functional.softmax(linear_output_actions)
          # Test sigmoid for increasing perplexity performance
          linear_output_actions = torch.sigmoid(linear_output_actions)
          linear_output_attributes = self.linear_attributes(linear_output_intermedio)
          # linear output attributes = self.siq(linear output attributes)
          linear_output_attributes = torch.sigmoid(linear_output_attributes)
          return {'actions': linear_output_actions, 'attributes': __
       →linear_output_attributes}
[34]: #test istanziazione del custom model
      model = CustomBERTModel()
      # model.bert.config
      model.cuda()
```

Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight',

```
'cls.predictions.transform.LayerNorm.weight',
     'cls.predictions.transform.dense.bias',
     'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias',
     'cls.seq_relationship.weight']
     - This IS expected if you are initializing BertModel from the checkpoint of a
     model trained on another task or with another architecture (e.g. initializing a
     BertForSequenceClassification model from a BertForPreTraining model).
     - This IS NOT expected if you are initializing BertModel from the checkpoint of
     a model that you expect to be exactly identical (initializing a
     BertForSequenceClassification model from a BertForSequenceClassification model).
[34]: CustomBERTModel(
        (bert): BertModel(
          (embeddings): BertEmbeddings(
            (word embeddings): Embedding(30522, 768, padding idx=0)
            (position_embeddings): Embedding(512, 768)
            (token_type_embeddings): Embedding(2, 768)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          (encoder): BertEncoder(
            (layer): ModuleList(
              (0): BertLayer(
                (attention): BertAttention(
                  (self): BertSelfAttention(
                    (query): Linear(in features=768, out features=768, bias=True)
                    (key): Linear(in_features=768, out_features=768, bias=True)
                    (value): Linear(in features=768, out features=768, bias=True)
                    (dropout): Dropout(p=0.1, inplace=False)
                  (output): BertSelfOutput(
                    (dense): Linear(in_features=768, out_features=768, bias=True)
                    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
                    (dropout): Dropout(p=0.1, inplace=False)
                  )
                (intermediate): BertIntermediate(
                  (dense): Linear(in_features=768, out_features=3072, bias=True)
                )
                (output): BertOutput(
                  (dense): Linear(in_features=3072, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              (1): BertLayer(
                (attention): BertAttention(
```

```
(self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(2): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in features=768, out features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  (output): BertOutput(
    (dense): Linear(in features=3072, out features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(3): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
```

```
(query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in features=768, out features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
(4): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in features=768, out features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in features=768, out features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in features=3072, out features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
 )
(5): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
```

```
(key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(6): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in features=768, out features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
 )
)
(7): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
```

```
(value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in features=768, out features=3072, bias=True)
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(8): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in features=768, out features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(9): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
```

```
(dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(10): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in features=768, out features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
    (output): BertSelfOutput(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
   )
  )
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=768, out_features=3072, bias=True)
  )
  (output): BertOutput(
    (dense): Linear(in_features=3072, out_features=768, bias=True)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
(11): BertLayer(
  (attention): BertAttention(
    (self): BertSelfAttention(
      (query): Linear(in_features=768, out_features=768, bias=True)
      (key): Linear(in_features=768, out_features=768, bias=True)
      (value): Linear(in_features=768, out_features=768, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
```

```
(output): BertSelfOutput(
                    (dense): Linear(in_features=768, out_features=768, bias=True)
                    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                    (dropout): Dropout(p=0.1, inplace=False)
                  )
                )
                (intermediate): BertIntermediate(
                  (dense): Linear(in features=768, out features=3072, bias=True)
                )
                (output): BertOutput(
                  (dense): Linear(in_features=3072, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
            )
          )
          (pooler): BertPooler(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (activation): Tanh()
          )
        )
        (linear_intermedio): Linear(in_features=768, out_features=256, bias=True)
        (linear_actions): Linear(in_features=256, out_features=5, bias=True)
        (linear_attributes): Linear(in_features=256, out_features=33, bias=True)
      )
[35]: # Get all of the model's parameters as a list of tuples.
      params = list(model.named_parameters())
      print('The BERT model has {:} different named parameters.\n'.
      →format(len(params)))
      print('==== Embedding Layer ====\n')
      for p in params[0:5]:
          print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
      print('\n==== First Transformer ====\n')
      for p in params[5:21]:
          print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
      print('\n==== Output Layer ====\n')
      for p in params[-4:]:
```

```
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
     The BERT model has 205 different named parameters.
     ==== Embedding Layer ====
     bert.embeddings.word_embeddings.weight
                                                               (30522, 768)
                                                                 (512, 768)
     bert.embeddings.position_embeddings.weight
                                                                   (2, 768)
     bert.embeddings.token_type_embeddings.weight
                                                                     (768,)
     bert.embeddings.LayerNorm.weight
     bert.embeddings.LayerNorm.bias
                                                                     (768,)
     ==== First Transformer ====
     bert.encoder.layer.0.attention.self.query.weight
                                                                (768, 768)
     bert.encoder.layer.0.attention.self.query.bias
                                                                     (768,)
     bert.encoder.layer.0.attention.self.key.weight
                                                                 (768, 768)
     bert.encoder.layer.0.attention.self.key.bias
                                                                     (768,)
     bert.encoder.layer.O.attention.self.value.weight
                                                                 (768, 768)
                                                                     (768,)
     bert.encoder.layer.0.attention.self.value.bias
                                                                 (768, 768)
     bert.encoder.layer.O.attention.output.dense.weight
     bert.encoder.layer.0.attention.output.dense.bias
                                                                     (768,)
     bert.encoder.layer.O.attention.output.LayerNorm.weight
                                                                     (768,)
     bert.encoder.layer.O.attention.output.LayerNorm.bias
                                                                     (768,)
     bert.encoder.layer.O.intermediate.dense.weight
                                                                (3072, 768)
     bert.encoder.layer.O.intermediate.dense.bias
                                                                    (3072,)
     bert.encoder.layer.O.output.dense.weight
                                                                (768, 3072)
     bert.encoder.layer.0.output.dense.bias
                                                                     (768,)
     bert.encoder.layer.O.output.LayerNorm.weight
                                                                     (768,)
     bert.encoder.layer.O.output.LayerNorm.bias
                                                                     (768,)
     ==== Output Layer ====
     linear_actions.weight
                                                                   (5, 256)
     linear_actions.bias
                                                                       (5,)
                                                                  (33, 256)
     linear_attributes.weight
                                                                      (33,)
     linear_attributes.bias
[36]: from transformers import AdamW
      # Note: AdamW is a class from the huggingface library (as opposed to pytorch)
      # I believe the 'W' stands for 'Weight Decay fix"
      optimizer = AdamW(model.parameters(),
                        lr = 5e-5, # args.learning_rate - default is 5e-5
```

)

eps = 1e-8 # args.adam_epsilon - default is 1e-8.

```
[37]: from transformers import get_linear_schedule_with_warmup
      # Number of training epochs. The BERT authors recommend between 2 and 4.
      # We chose to run for 4, but we'll see later that this may be over-fitting the
      # training data.
      epochs = 4
      # Total number of training steps is [number of batches] x [number of epochs].
      # (Note that this is not the same as the number of training samples).
      total_steps = len(train_dataloader) * epochs
      # Create the learning rate scheduler.
      scheduler = get_linear_schedule_with_warmup(optimizer,
                                                  num_warmup_steps = 0, # Default_
      →value in run_qlue.py
                                                  num_training_steps = total_steps)
[38]: import numpy as np
      # Function to calculate the accuracy of our predictions vs labels
      def flat_accuracy_actions(preds, labels):
          #print(f"[FA] preds: {preds} / labels: {labels}")
          #print(f"[FA-Actions] {type(preds)} {type(labels)}")
          pred_flat = np.argmax(preds, axis=1).flatten()
          labels_flat = labels.flatten()
          return {'matched': np.sum(pred_flat == labels_flat), 'counts':__
       →len(labels_flat)}
      def flat_accuracy_attributes(preds, labels):
        #print(f"[FA-Attributess] {type(preds)} {type(labels)}")
       tot_preds = preds.shape[0]
       preds_int = np.rint(preds)
       tot_eq = 0
       for i in range(tot_preds):
          comparison = preds_int[i] == labels[i]
          if comparison.all():
            tot_eq += 1
        return {'matched': tot_eq, 'counts' : tot_preds}
[39]: import time
      import datetime
      def format_time(elapsed):
          Takes a time in seconds and returns a string hh:mm:ss
```

Round to the nearest second.

```
elapsed_rounded = int(round((elapsed)))

# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
```

```
[40]: from torch import nn
# Loss function definition
def MyBERT_loss(logits, actions_labels, attributes_labels):
    actions_logits = logits['actions']
    attributes_logits = logits['attributes']
    loss_actions_fn = nn.CrossEntropyLoss()
    loss_attributes_fn = nn.BCELoss()
    loss_actions = loss_actions_fn(actions_logits, actions_labels)
    loss_attributes = loss_attributes_fn(attributes_logits, attributes_labels.
    ofloat())
    return loss_actions + loss_attributes
```

[41]: #from GPUtil import showUtilization as gpu_usage

```
[42]: import random
      import numpy as np
      import action_evaluation as evaluation
      import json
      from GPUtil import showUtilization as gpu_usage
      with open('./extr_output/fashion_dev_dials_api_calls.json') as f:
        dev_dials = json.load(f)
      # This training code is based on the `run_glue.py` script here:
      # https://github.com/huggingface/transformers/blob/
      $\sigma 5b \, fcd0485ece086ebcbed2d008813037968a9e58/examples/run \, qlue.py#L128
      # Set the seed value all over the place to make this reproducible.
      seed_val = 24
      random.seed(seed_val)
      np.random.seed(seed_val)
      torch.manual_seed(seed_val)
      torch.cuda.manual_seed_all(seed_val)
      # We'll store a number of quantities such as training and validation loss,
      # validation accuracy, and timings.
      training_stats = []
      # Measure the total training time for the whole run.
      total_t0 = time.time()
      test_batch = []
```

```
# For each epoch...
for epoch_i in range(0, epochs):
    # -----
                  Training
    # -----
   # Perform one full pass over the training set.
   print("")
   print('===== Epoch {:} / {:} ======'.format(epoch_i + 1, epochs))
   print('Training...')
   # Measure how long the training epoch takes.
   t0 = time.time()
   # Reset the total loss for this epoch.
   total_train_loss = 0
   # Put the model into training mode. Don't be mislead--the call to
   # 'train' just changes the *mode*, it doesn't *perform* the training.
   # 'dropout' and 'batchnorm' layers behave differently during training
    # vs. test (source: https://stackoverflow.com/questions/51433378/
\rightarrow what-does-model-train-do-in-pytorch)
   print("GPU before train")
   gpu_usage()
   model.train()
   print("GPU after train")
   gpu_usage()
   # For each batch of training data...
   for step, batch in enumerate(train_dataloader):
       # Progress update every 40 batches.
       if step \% 40 == 0 and not step == 0:
           # Calculate elapsed time in minutes.
           elapsed = format_time(time.time() - t0)
           # Report progress.
           print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step,__
→len(train_dataloader), elapsed))
           #DEBUG -- da levare
           #break
           if step == 40 or step \% 400 == 0:
               gpu_usage()
```

```
# Unpack this training batch from our dataloader.
       # As we unpack the batch, we'll also copy each tensor to the GPU using
\rightarrow the
       # `to` method.
       # `batch` contains three pytorch tensors:
           [0]: input ids
         [1]: attention masks
       #
           [2]: actions labels
       # [3]: attributes labels
       b_input_ids = batch[0].to(device)
       b_input_mask = batch[1].to(device)
       b_labels_actions = batch[2].to(device)
       b_labels_attributes = batch[3].to(device)
       # Always clear any previously calculated gradients before performing a
       # backward pass. PyTorch doesn't do this automatically because
       # accumulating the gradients is "convenient while training RNNs".
       # (source: https://stackoverflow.com/questions/48001598/
\rightarrow why-do-we-need-to-call-zero-grad-in-pytorch)
       model.zero_grad()
       # Perform a forward pass (evaluate the model on this training batch).
       # In PyTorch, calling `model` will in turn call the model's `forward`
       # function and pass down the arguments. The `forward` function is
       # documented here:
       # https://huggingface.co/transformers/model_doc/bert.
\rightarrow html#bertforsequenceclassification
       # The results are returned in a results object, documented here:
       # https://huggingface.co/transformers/main_classes/output.
→ html#transformers.modeling_outputs.SequenceClassifierOutput
       # Specifically, we'll get the loss (because we provided labels) and the
       # "logits"--the model outputs prior to activation.
       result = model(b_input_ids,
                      mask=b_input_mask)
       loss = MyBERT_loss(result, b_labels_actions, b_labels_attributes)
       # Accumulate the training loss over all of the batches so that we can
       # calculate the average loss at the end. `loss` is a Tensor containing a
       # single value; the `.item()` function just returns the Python value
       # from the tensor.
       total_train_loss += loss.item()
       # Perform a backward pass to calculate the gradients.
```

```
loss.backward()
      # Clip the norm of the gradients to 1.0.
      # This is to help prevent the "exploding gradients" problem.from_
→ transformers import BertModel, BertConfig
      torch.nn.utils.clip grad norm (model.parameters(), 1.0)
      # Update parameters and take a step using the computed gradient.
      # The optimizer dictates the "update rule"--how the parameters are
      # modified based on their gradients, the learning rate, etc.
      optimizer.step()
      # Update the learning rate.
      scheduler.step()
  print(f"End of epoch {epoch_i}")
  gpu_usage()
  # Calculate the average loss over all of the batches.
  avg_train_loss = total_train_loss / len(train_dataloader)
  # Measure how long this epoch took.
  training_time = format_time(time.time() - t0)
  print("")
  print(" Average training loss: {0:.2f}".format(avg_train_loss))
  print(" Training epcoh took: {:}".format(training_time))
   Validation
   # -----
   # After the completion of each training epoch, measure our performance on
  # our validation set.
  print("")
  print("Running Validation...")
  t0 = time.time()
  # Put the model in evaluation mode--the dropout layers behave differently
   # during evaluation.mlb.inverse_transform(attr_yt[3].reshape(1, -1))
  model.eval()
   # Tracking variables
  total_eval_accuracy_classification = { 'matched': 0, 'counts': 0}
  total_eval_accuracy_multilabel = { 'matched': 0, 'counts': 0}
  total eval loss = 0
```

```
nb_eval_steps = 0
batch_number = 0
# Dictionary for action_evaluation
model_actions = {}
# Evaluate data for one epoch
for batch in validation_dataloader:
   batch number += 1
    # Unpack this training batch from our dataloader.
    # As we unpack the batch, we'll also copy each tensor to the GPU using
    # the `to` method.
    # `batch` contains three pytorch tensors:
    # [0]: input ids
        [1]: attention masks
    # [2]: labels
   b_input_ids = batch[0].to(device)
   b_input_mask = batch[1].to(device)
   b_labels_actions = batch[2].to(device)
   b_labels_attributes = batch[3].to(device)
   b_dialog_ids = batch[4].to(device).detach().cpu().numpy()
   b_turn_idxs = batch[5].to(device).detach().cpu().numpy()
    # Tell pytorch not to bother with constructing the compute graph during
    # the forward pass, since this is only needed for backprop (training).
   with torch.no_grad():
        # Forward pass, calculate logit predictions.
        # token_type_ids is the same as the "segment ids", which
        # differentiates sentence 1 and 2 in 2-sentence tasks.
        result = model(b_input_ids,
                   mask=b_input_mask)
    # Get the loss and "logits" output by the model. The "logits" are the
    # output values prior to applying an activation function like the
    # softmax.
   loss = MyBERT_loss(result, b_labels_actions, b_labels_attributes)
    # Accumulate the validation loss.
    total_eval_loss += loss.item()
    # Move logits and labels to CPU
```

```
# logits = logits.detach().cpu().numpy()
       # label_ids = b_labels.to('cpu').numpy()
       actions_logits_foracc=result['actions'].detach().cpu().numpy()
       attributes_logits_foracc=result['attributes'].detach().cpu().numpy()
       actions_labels_foracc= b_labels_actions.to('cpu').numpy()
       attributes_labels_foracc =b_labels_attributes.to('cpu').numpy()
       #TODO: definire la nostra funzione di accuracy
       # Calculate the accuracy for this batch of test sentences, and
       # accumulate it over all batches.
       accuracy_classification = flat_accuracy_actions(actions_logits_foracc,_u
→actions_labels_foracc)
       accuracy_multilabel =__

¬flat_accuracy_attributes(attributes_logits_foracc, attributes_labels_foracc)

       total_eval_accuracy_classification['matched'] +=__
→accuracy_classification['matched']
       total_eval_accuracy_classification['counts'] +=__
→accuracy_classification['counts']
       total eval accuracy multilabel['matched'] += |
→accuracy_multilabel['matched']
       total_eval_accuracy_multilabel['counts'] +=__
→accuracy_multilabel['counts']
       # Salvo dati elaborazione batch per debug/analisi
       test batch.append({
           'ephoc' : epoch_i + 1,
           'batchnum' : batch_number,
           'actions_logits' : actions_logits_foracc,
           'actions_labels' : actions_labels_foracc,
           'attributes_logits' : attributes_logits_foracc,
           'attributes_labels' : attributes_labels_foracc,
           'accuracy_classification' : accuracy_classification,
           'accuracy_multilabel' : accuracy_multilabel,
       })
       # Fill dictionary for action evaluation
       for el_i in range(len(actions_logits_foracc)):
         dialog_id = b_dialog_ids[el_i]
         action_log_prob = {}
         for act i in range(len(actions logits foracc[el i])):
           #todo: controllare che la probabilità predetta sia in scala_
→ logaritmica (?? potrebbe essere fonte di errori)
```

```
action_log_prob[le.classes_[act_i]] = np.
→log(actions_logits_foracc[el_i][act_i])
         #attributes = {}
         attributes = []
         #attributes_list = np.rint(attributes_logits_foracc[el_i])
         attributes list = np.array(attributes logits foracc[el i])
         for attr in range(len(attributes list)):
           attribute = mlb.classes [attr]
           #attributes[mlb.classes_[attr]] = attributes_list[attr]
           if attributes_list[attr] >= 0.5:
             attributes.append(attribute)
         prediction = {
             'action': le.classes_[np.argmax(actions_logits_foracc[el_i])],
             'action_log_prob': action_log_prob,
             'attributes': {'attributes': attributes},
             'turn_id': b_turn_idxs[el_i]
         }
         if dialog_id in model_actions:
           model_actions[dialog_id]['predictions'].append(prediction)
         else:
           predictions = list()
           predictions.append(prediction)
           model_actions[dialog_id] = {
               'dialog_id': dialog_id,
               'predictions': predictions
           }
   # Report the final accuracy for this validation
   #avg_val_accuracy_classification = total_eval_accuracy_classification /__
\rightarrow len(validation dataloader)
   #avg_val_accuracy_multilabel = total_eval_accuracy_multilabel /_
\rightarrow len(validation dataloader)
   avg_val_accuracy_classification =__
→total_eval_accuracy_classification['matched'] /□
→total_eval_accuracy_classification['counts']
   avg_val_accuracy_multilabel = total_eval_accuracy_multilabel['matched'] / ___
→total_eval_accuracy_multilabel['counts']
   print(" Accuracy for classification (actions): {0:.4f}".
→format(avg_val_accuracy_classification))
   print(" Accuracy for multilabel-classification (attributes): {0:.4f}".
→format(avg_val_accuracy_multilabel))
   # Reference implementation: evaluation of action prediction along with
\rightarrow attributes
```

```
metrics = evaluation.evaluate_action_prediction(dev_dials, model_actions.
 →values())
    # print("model_actions passed to the evaluator:")
    # for v in model actions.values():
   # print(v)
   print("Reference evaluation metrics:")
   print(metrics)
   # Calculate the average loss over all of the batches.
   avg_val_loss = total_eval_loss / len(validation_dataloader)
   # Measure how long the validation run took.
   validation_time = format_time(time.time() - t0)
   print(" Validation Loss: {0:.4f}".format(avg_val_loss))
   print(" Validation took: {:}".format(validation_time))
   # Record all statistics from this epoch.
   training_stats.append(
       {
           'epoch': epoch_i + 1,
           'Training Loss': avg_train_loss,
           'Valid. Loss': avg_val_loss,
           'Valid. Accur. class.': avg_val_accuracy_classification,
           'Valid. Accur. mult.label': avg_val_accuracy_multilabel,
           'Training Time': training_time,
           'Validation Time': validation_time
       }
   )
print("")
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.
→time()-total_t0)))
```

```
====== Epoch 1 / 4 =======
Training...

GPU before train
| ID | GPU | MEM |
------|
| 0 | 4% | 29% |
GPU after train
| ID | GPU | MEM |
```

```
| 0 | 4% | 29% |
 Batch
           40 of 1,767.
                             Elapsed: 0:00:12.
| ID | GPU | MEM |
| 0 | 99% | 88% |
 Batch
          80
               of
                  1,767.
                             Elapsed: 0:00:23.
 Batch
                   1,767.
                             Elapsed: 0:00:34.
          120
               of
 Batch
          160
               of
                   1,767.
                             Elapsed: 0:00:46.
 Batch
          200
               of
                   1,767.
                             Elapsed: 0:00:57.
 Batch
          240
               of
                   1,767.
                             Elapsed: 0:01:08.
                   1,767.
 Batch
          280
               of
                             Elapsed: 0:01:20.
 Batch
          320
               of
                   1,767.
                             Elapsed: 0:01:31.
 Batch
          360
               of
                   1,767.
                             Elapsed: 0:01:42.
 Batch
          400
               of
                   1,767.
                             Elapsed: 0:01:54.
| ID | GPU | MEM |
 0 | 99% | 87% |
 Batch
                   1,767.
          440 of
                             Elapsed: 0:02:05.
 Batch
          480
               of
                   1,767.
                             Elapsed: 0:02:17.
          520
 Batch
               of
                   1,767.
                             Elapsed: 0:02:29.
 Batch
          560
              of
                   1,767.
                             Elapsed: 0:02:41.
 Batch
          600 of
                   1,767.
                             Elapsed: 0:02:53.
 Batch
          640 of
                   1,767.
                             Elapsed: 0:03:05.
 Batch
          680 of
                   1,767.
                             Elapsed: 0:03:16.
 Batch
                   1,767.
          720 of
                             Elapsed: 0:03:28.
 Batch
                   1,767.
          760
               of
                             Elapsed: 0:03:40.
 Batch
          800
                   1,767.
                             Elapsed: 0:03:52.
               of
| ID | GPU | MEM |
 0 | 99% | 89% |
                  1,767.
 Batch
          840
               of
                             Elapsed: 0:04:04.
 Batch
                   1,767.
                             Elapsed: 0:04:16.
          880
               of
 Batch
          920
               of
                   1,767.
                             Elapsed: 0:04:28.
 Batch
          960
                   1,767.
                             Elapsed: 0:04:40.
               of
 Batch 1,000
                   1,767.
                             Elapsed: 0:04:52.
 Batch 1,040
               of
                   1,767.
                             Elapsed: 0:05:04.
 Batch 1,080
                   1,767.
                             Elapsed: 0:05:16.
               of
 Batch 1,120
               of
                   1,767.
                             Elapsed: 0:05:28.
 Batch 1,160
               of
                   1,767.
                             Elapsed: 0:05:40.
 Batch 1,200
                   1,767.
                             Elapsed: 0:05:52.
               of
| ID | GPU | MEM |
______
| 0 | 99% | 90% |
 Batch 1,240
               of
                   1,767.
                             Elapsed: 0:06:04.
                   1,767.
 Batch 1,280
               of
                             Elapsed: 0:06:15.
 Batch 1,320
               of
                   1,767.
                             Elapsed: 0:06:27.
 Batch 1,360
                   1,767.
                             Elapsed: 0:06:38.
               of
 Batch 1,400 of
                   1,767.
                             Elapsed: 0:06:50.
```

```
Batch 1,440 of 1,767.
                           Elapsed: 0:07:02.
 Batch 1,480 of 1,767.
                           Elapsed: 0:07:13.
                           Elapsed: 0:07:25.
 Batch 1,520 of 1,767.
 Batch 1,560 of 1,767.
                           Elapsed: 0:07:37.
                           Elapsed: 0:07:48.
 Batch 1,600 of 1,767.
| ID | GPU | MEM |
| 0 | 99% | 88% |
 Batch 1,640 of 1,767.
                           Elapsed: 0:08:00.
 Batch 1,680 of 1,767.
                           Elapsed: 0:08:13.
 Batch 1,720 of 1,767.
                           Elapsed: 0:08:24.
 Batch 1,760 of 1,767.
                           Elapsed: 0:08:36.
End of epoch 0
| ID | GPU | MEM |
| 0 | 99% | 90% |
 Average training loss: 1.13
 Training epcoh took: 0:08:38
Running Validation...
  Accuracy for classification (actions): 0.8451
  Accuracy for multilabel-classification (attributes): 0.8785
#Instances evaluated API: 3513
***********
Reference evaluation metrics:
{'action_accuracy': 0.8451465983489894, 'action_perplexity': 2.061376839726222,
'attribute_accuracy': 0.6787099391419993, 'confusion_matrix': array([[4.720e+02,
4.600e+01, 7.000e+00, 1.000e+00, 1.600e+01],
      [1.000e+01, 6.530e+02, 2.600e+01, 4.000e+00, 9.000e+00],
       [1.000e+01, 1.500e+02, 5.090e+02, 4.700e+01, 1.500e+01],
      [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
       [0.000e+00, 5.900e+01, 8.200e+01, 6.200e+01, 1.335e+03]])}
 Validation Loss: 1.0664
 Validation took: 0:00:28
====== Epoch 2 / 4 ======
Training...
GPU before train
| ID | GPU | MEM |
| 0 | 98% | 89% |
GPU after train
| ID | GPU | MEM |
_____
| 0 | 98% | 89% |
 Batch
         40 of 1,767.
                           Elapsed: 0:00:12.
```

```
0 | 100% | 90% |
 Batch
          80 of 1,767.
                             Elapsed: 0:00:24.
                   1,767.
 Batch
          120
                             Elapsed: 0:00:35.
              of
 Batch
          160
               of
                   1,767.
                             Elapsed: 0:00:47.
 Batch
          200 of
                   1,767.
                             Elapsed: 0:00:59.
 Batch
                   1,767.
                             Elapsed: 0:01:11.
          240 of
 Batch
          280 of
                   1,767.
                             Elapsed: 0:01:23.
 Batch
          320 of
                   1,767.
                             Elapsed: 0:01:35.
 Batch
          360
               of
                   1,767.
                             Elapsed: 0:01:47.
                   1,767.
 Batch
          400
               of
                             Elapsed: 0:01:59.
| ID | GPU | MEM |
| 0 | 99% | 91% |
 Batch
          440
               of
                  1,767.
                             Elapsed: 0:02:11.
 Batch
          480
               of
                   1,767.
                             Elapsed: 0:02:22.
 Batch
          520
                   1,767.
               of
                             Elapsed: 0:02:34.
                   1,767.
                             Elapsed: 0:02:46.
 Batch
          560
              of
 Batch
          600
                   1,767.
                             Elapsed: 0:02:58.
               of
 Batch
          640 of
                   1,767.
                             Elapsed: 0:03:09.
 Batch
          680
              of
                   1,767.
                             Elapsed: 0:03:21.
 Batch
          720 of
                   1,767.
                             Elapsed: 0:03:32.
 Batch
          760
               of
                   1,767.
                             Elapsed: 0:03:44.
 Batch
          800
               of
                   1,767.
                             Elapsed: 0:03:55.
| ID | GPU | MEM |
 0 | 95% | 89% |
 Batch
          840
               of
                   1,767.
                              Elapsed: 0:04:07.
 Batch
          880
               of
                   1,767.
                             Elapsed: 0:04:18.
 Batch
                   1,767.
          920
               of
                             Elapsed: 0:04:30.
               of
 Batch
          960
                   1,767.
                             Elapsed: 0:04:42.
 Batch 1,000
                   1,767.
              of
                             Elapsed: 0:04:53.
 Batch 1,040
                   1,767.
                             Elapsed: 0:05:05.
               of
 Batch 1,080
                   1,767.
                             Elapsed: 0:05:16.
               of
                   1,767.
 Batch 1,120
                             Elapsed: 0:05:28.
 Batch 1,160
               of
                   1,767.
                             Elapsed: 0:05:39.
 Batch 1,200
                   1,767.
                             Elapsed: 0:05:51.
               of
| ID | GPU | MEM |
| 0 | 99% | 89% |
 Batch 1,240
               of
                   1,767.
                             Elapsed: 0:06:03.
 Batch 1,280
                   1,767.
               of
                              Elapsed: 0:06:15.
                   1,767.
 Batch 1,320
               of
                             Elapsed: 0:06:26.
 Batch 1,360
               of
                   1,767.
                             Elapsed: 0:06:38.
                   1,767.
 Batch 1,400
               of
                             Elapsed: 0:06:49.
 Batch 1,440
               of
                   1,767.
                             Elapsed: 0:07:02.
 Batch 1,480
                   1,767.
                             Elapsed: 0:07:14.
               of
 Batch 1,520 of
                   1,767.
                             Elapsed: 0:07:26.
```

```
Batch 1,560 of 1,767.
                           Elapsed: 0:07:37.
 Batch 1,600 of 1,767.
                           Elapsed: 0:07:49.
| ID | GPU | MEM |
| 0 | 100% | 90% |
 Batch 1,640 of 1,767.
                           Elapsed: 0:08:01.
 Batch 1,680 of 1,767.
                         Elapsed: 0:08:12.
 Batch 1,720 of 1,767.
                           Elapsed: 0:08:25.
 Batch 1,760 of 1,767.
                          Elapsed: 0:08:36.
End of epoch 1
| ID | GPU | MEM |
_____
| 0 | 99% | 89% |
 Average training loss: 1.06
 Training epcoh took: 0:08:38
Running Validation...
 Accuracy for classification (actions): 0.8488
 Accuracy for multilabel-classification (attributes): 0.9209
#Instances evaluated API: 3513
***********
Reference evaluation metrics:
{'action_accuracy': 0.8488471391972673, 'action_perplexity': 2.3182883517974853,
'attribute_accuracy': 0.7356263777185521, 'confusion_matrix': array([[4.680e+02,
3.600e+01, 4.000e+00, 0.000e+00, 7.000e+00],
      [1.400e+01, 6.790e+02, 3.700e+01, 1.000e+01, 1.000e+01],
      [9.000e+00, 1.370e+02, 4.840e+02, 4.100e+01, 7.000e+00],
      [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
      [1.000e+00, 5.600e+01, 9.900e+01, 6.300e+01, 1.351e+03]])}
 Validation Loss: 1.0584
 Validation took: 0:00:27
====== Epoch 3 / 4 ======
Training...
GPU before train
| ID | GPU | MEM |
_____
| 0 | 97% | 88% |
GPU after train
| ID | GPU | MEM |
_____
| 0 | 97% | 88% |
 Batch
        40 of 1,767.
                           Elapsed: 0:00:12.
| ID | GPU | MEM |
| 0 | 99% | 88% |
       80 of 1,767.
                         Elapsed: 0:00:24.
 Batch
```

```
1,767.
 Batch
          120 of
                              Elapsed: 0:00:35.
 Batch
          160
               of
                   1,767.
                              Elapsed: 0:00:47.
          200
 Batch
               of
                   1,767.
                              Elapsed: 0:00:59.
                   1,767.
 Batch
          240 of
                              Elapsed: 0:01:10.
 Batch
          280
               of
                   1,767.
                              Elapsed: 0:01:22.
 Batch
          320
               of
                   1,767.
                              Elapsed: 0:01:33.
 Batch
          360
               of
                   1,767.
                              Elapsed: 0:01:45.
 Batch
          400
               of
                   1,767.
                             Elapsed: 0:01:56.
| ID | GPU | MEM |
| 0 | 99% | 88% |
 Batch
          440
               of
                   1,767.
                              Elapsed: 0:02:08.
 Batch
          480
               of
                   1,767.
                              Elapsed: 0:02:20.
 Batch
          520
               of
                   1,767.
                              Elapsed: 0:02:31.
          560
 Batch
               of
                   1,767.
                              Elapsed: 0:02:43.
 Batch
          600
              of
                   1,767.
                              Elapsed: 0:02:54.
 Batch
          640
                   1,767.
                              Elapsed: 0:03:06.
               of
                   1,767.
 Batch
          680 of
                              Elapsed: 0:03:17.
                   1,767.
 Batch
          720
               of
                              Elapsed: 0:03:29.
                   1,767.
                              Elapsed: 0:03:40.
 Batch
          760
               of
 Batch
          800
               of
                   1,767.
                              Elapsed: 0:03:52.
| ID | GPU | MEM |
| 0 | 100% | 89% |
 Batch
               of 1,767.
                              Elapsed: 0:04:04.
          840
                   1,767.
 Batch
          880
               of
                              Elapsed: 0:04:16.
 Batch
          920
                   1,767.
                              Elapsed: 0:04:28.
               of
 Batch
          960
                   1,767.
                              Elapsed: 0:04:40.
 Batch 1,000
               of
                   1,767.
                              Elapsed: 0:04:52.
 Batch 1,040
                   1,767.
               of
                              Elapsed: 0:05:04.
 Batch 1,080
               of
                   1,767.
                              Elapsed: 0:05:15.
 Batch 1,120
                   1,767.
                              Elapsed: 0:05:27.
               of
 Batch 1,160
                   1,767.
                              Elapsed: 0:05:38.
               of
 Batch 1,200
                   1,767.
                             Elapsed: 0:05:50.
               of
| ID | GPU | MEM |
 _____
  0 | 99% | 89% |
 Batch 1,240
                  1,767.
                              Elapsed: 0:06:02.
               of
 Batch 1,280
                   1,767.
                              Elapsed: 0:06:14.
               of
 Batch 1,320
                   1,767.
               of
                             Elapsed: 0:06:25.
 Batch 1,360
               of
                   1,767.
                             Elapsed: 0:06:37.
 Batch 1,400
                   1,767.
                              Elapsed: 0:06:49.
                   1,767.
 Batch 1,440
               of
                              Elapsed: 0:07:00.
 Batch 1,480
               of
                   1,767.
                              Elapsed: 0:07:12.
                   1,767.
                              Elapsed: 0:07:24.
 Batch 1,520
               of
 Batch 1,560
               of
                   1,767.
                              Elapsed: 0:07:36.
 Batch 1,600
                   1,767.
                              Elapsed: 0:07:48.
               of
| ID | GPU | MEM |
```

```
| 0 | 99% | 89% |
 Batch 1,640 of 1,767. Elapsed: 0:07:59.
 Batch 1,680 of 1,767. Elapsed: 0:08:11.
 Batch 1,720 of 1,767. Elapsed: 0:08:23.
 Batch 1,760 of 1,767. Elapsed: 0:08:35.
End of epoch 2
| ID | GPU | MEM |
_____
| 0 | 99% | 89% |
 Average training loss: 1.04
 Training epcoh took: 0:08:37
Running Validation...
 Accuracy for classification (actions): 0.8514
 Accuracy for multilabel-classification (attributes): 0.9243
#Instances evaluated API: 3513
***********
Reference evaluation metrics:
{'action_accuracy': 0.8514090520922288, 'action_perplexity': 2.4830429491963275,
'attribute_accuracy': 0.7453504514504714, 'confusion_matrix': array([[ 468.,
       6., 0., 4.],
36.,
      [ 10., 695., 70.,
                            14., 16.],
      [ 8., 125., 483., 45., 10.],
      0., 0., 0., 0., 0.],
                          55., 1345.]])}
          6.,
               52.,
                    65.,
 Validation Loss: 1.0541
 Validation took: 0:00:27
====== Epoch 4 / 4 ======
Training...
GPU before train
| ID | GPU | MEM |
| 0 | 98% | 89% |
GPU after train
| ID | GPU | MEM |
______
| 0 | 98% | 89% |
        40 of 1,767.
                          Elapsed: 0:00:12.
 Batch
| ID | GPU | MEM |
| 0 | 99% | 89% |
 Batch 80 of 1,767.
                          Elapsed: 0:00:24.
 Batch
         120 of 1,767.
                          Elapsed: 0:00:36.
 Batch
       160 of 1,767.
                          Elapsed: 0:00:47.
 Batch
         200 of 1,767.
                          Elapsed: 0:00:59.
```

```
1,767.
 Batch
          240
               of
                              Elapsed: 0:01:11.
 Batch
          280
               of
                   1,767.
                              Elapsed: 0:01:23.
 Batch
          320
               of
                   1,767.
                              Elapsed: 0:01:35.
 Batch
          360
                   1,767.
                              Elapsed: 0:01:46.
               of
                              Elapsed: 0:01:58.
 Batch
          400
               of
                   1,767.
| ID | GPU | MEM |
| 0 | 99% | 89% |
 Batch
          440
               of
                   1,767.
                             Elapsed: 0:02:10.
 Batch
          480
               of
                   1,767.
                             Elapsed: 0:02:22.
                   1,767.
 Batch
          520
               of
                              Elapsed: 0:02:34.
 Batch
          560
               of
                   1,767.
                              Elapsed: 0:02:46.
 Batch
          600 of
                   1,767.
                              Elapsed: 0:02:57.
 Batch
          640 of
                   1,767.
                              Elapsed: 0:03:09.
 Batch
          680 of
                   1,767.
                              Elapsed: 0:03:21.
 Batch
          720 of
                   1,767.
                              Elapsed: 0:03:33.
 Batch
          760
                   1,767.
                              Elapsed: 0:03:44.
               of
                   1,767.
 Batch
          800
               of
                              Elapsed: 0:03:56.
| ID | GPU | MEM |
| 0 | 99% | 89% |
 Batch
          840
               of 1,767.
                              Elapsed: 0:04:08.
 Batch
          880
               of
                   1,767.
                             Elapsed: 0:04:20.
 Batch
          920
               of
                   1,767.
                             Elapsed: 0:04:31.
 Batch
                   1,767.
          960
              of
                              Elapsed: 0:04:43.
 Batch 1,000
                   1,767.
               of
                              Elapsed: 0:04:55.
 Batch 1,040
                   1,767.
                              Elapsed: 0:05:06.
 Batch 1,080
               of
                   1,767.
                              Elapsed: 0:05:18.
 Batch 1,120
               of
                   1,767.
                              Elapsed: 0:05:29.
 Batch 1,160
                   1,767.
                              Elapsed: 0:05:41.
               of
 Batch 1,200
               of
                   1,767.
                              Elapsed: 0:05:53.
| ID | GPU | MEM |
 0 | 99% | 89% |
 Batch 1,240
               of
                   1,767.
                              Elapsed: 0:06:04.
 Batch 1,280
               of
                   1,767.
                              Elapsed: 0:06:16.
 Batch 1,320
                   1,767.
                              Elapsed: 0:06:28.
               of
 Batch 1,360
               of
                   1,767.
                             Elapsed: 0:06:39.
 Batch 1,400
              of
                   1,767.
                             Elapsed: 0:06:51.
 Batch 1,440
                   1,767.
               of
                             Elapsed: 0:07:03.
 Batch 1,480
               of
                   1,767.
                             Elapsed: 0:07:15.
 Batch 1,520
                   1,767.
                              Elapsed: 0:07:26.
                   1,767.
 Batch 1,560
               of
                              Elapsed: 0:07:38.
 Batch 1,600
               of
                   1,767.
                              Elapsed: 0:07:50.
| ID | GPU | MEM |
| 0 | 99% | 89% |
 Batch 1,640 of 1,767.
                             Elapsed: 0:08:02.
```

```
Batch 1,680 of 1,767. Elapsed: 0:08:14.
      Batch 1,720 of 1,767.
                               Elapsed: 0:08:25.
      Batch 1,760 of 1,767.
                                Elapsed: 0:08:37.
     End of epoch 3
     | ID | GPU | MEM |
     | 0 | 99% | 89% |
      Average training loss: 1.03
      Training epcoh took: 0:08:39
     Running Validation...
       Accuracy for classification (actions): 0.8565
       Accuracy for multilabel-classification (attributes): 0.9280
     #Instances evaluated API: 3513
     ***********
     Reference evaluation metrics:
     {'action_accuracy': 0.856532877882152, 'action_perplexity': 2.810755603660233,
     'attribute_accuracy': 0.7616486252087795, 'confusion_matrix': array([[ 469.,
     33.,
            4.,
                 0.,
                         4.],
            [ 8., 696., 54.,
                                  10., 15.],
            [ 10., 133., 502., 48.,
                                         14.],
            0.,
                     0., 0., 0., 0.],
                          64., 56., 1342.]])}
            5.,
                    46.,
      Validation Loss: 1.0542
      Validation took: 0:00:27
     Training complete!
     Total training took 0:36:21 (h:mm:ss)
[43]: #Prediction on test set
     #quale modello qli viene passato? da controllare se BERT da solo riesce a_{\sqcup}
      →tenere traccia del modello che ha dato l'epoca migliore
     with open('./extr output/fashion devtest dials_api_calls.json') as f:
       devtest_dials = json.load(f)
     # Tracking variables
     total_eval_accuracy_classification = { 'matched': 0, 'counts': 0}
     total_eval_accuracy_multilabel = { 'matched': 0, 'counts': 0}
     model actions = {}
     # Put model in evaluation mode
     model.eval()
     for batch in evaluation_dataloader:
```

```
# Unpack this training batch from our dataloader.
   # As we unpack the batch, we'll also copy each tensor to the GPU using
   # the `to` method.
   # `batch` contains three pytorch tensors:
   # [O]: input ids
     Γ17: attention masks
   # [2]: labels
   b_input_ids = batch[0].to(device)
   b_input_mask = batch[1].to(device)
   b_labels_actions = batch[2].to(device)
   b_labels_attributes = batch[3].to(device)
   b_dialog_ids = batch[4].to(device).detach().cpu().numpy()
   b_turn_idxs = batch[5].to(device).detach().cpu().numpy()
   # Tell pytorch not to bother with constructing the compute graph during
   # the forward pass, since this is only needed for backprop (training).
   with torch.no_grad():
       # Forward pass, calculate logit predictions.
       # token_type_ids is the same as the "segment ids", which
       # differentiates sentence 1 and 2 in 2-sentence tasks.
       result = model(b_input_ids,mask=b_input_mask)
   actions_logits_foracc=result['actions'].detach().cpu().numpy()
   attributes_logits_foracc=result['attributes'].detach().cpu().numpy()
   actions_labels_foracc= b_labels_actions.to('cpu').numpy()
   attributes_labels_foracc =b_labels_attributes.to('cpu').numpy()
   # Calculate the accuracy for this batch of test sentences, and
   # accumulate it over all batches.
   accuracy_classification = flat_accuracy_actions(actions_logits_foracc,__
→actions_labels_foracc)
   accuracy_multilabel = flat_accuracy_attributes(attributes_logits_foracc,_u
→attributes_labels_foracc)
   total_eval_accuracy_classification['matched'] +=__
→accuracy_classification['matched']
   total_eval_accuracy_classification['counts'] +=__
→accuracy_classification['counts']
   total_eval_accuracy_multilabel['matched'] += accuracy_multilabel['matched']
   total_eval_accuracy_multilabel['counts'] += accuracy_multilabel['counts']
   # Fill dictionary for action_evaluation
```

```
for el_i in range(len(actions_logits_foracc)):
      dialog_id = b_dialog_ids[el_i]
      action_log_prob = {}
      for act_i in range(len(actions_logits_foracc[el_i])):
        #todo: controllare che la probabilità predetta sia in scala logaritmica
 → (?? potrebbe essere fonte di errori)
        action_log_prob[le.classes_[act_i]] = np.
 →log(actions logits foracc[el i][act i])
      #attributes = {}
      attributes = []
      #attributes_list = np.rint(attributes_logits_foracc[el_i])
      attributes list = np.array(attributes logits foracc[el i])
      for attr in range(len(attributes_list)):
        attribute = mlb.classes_[attr]
        #attributes[mlb.classes [attr]] = attributes list[attr]
        if attributes_list[attr] >= 0.5:
          attributes.append(attribute)
      prediction = {
          'action': le.classes_[np.argmax(actions_logits_foracc[el_i])],
          'action_log_prob': action_log_prob,
          'attributes': {'attributes': attributes},
          'turn_id': b_turn_idxs[el_i]
      }
      if dialog_id in model_actions:
        model_actions[dialog_id]['predictions'].append(prediction)
      else:
        predictions = list()
        predictions.append(prediction)
        model_actions[dialog_id] = {
            'dialog_id': dialog_id,
            'predictions': predictions
        }
# Report the final accuracy for this validation
\#avg\_val\_accuracy\_classification = total\_eval\_accuracy\_classification /_{\sqcup}
\rightarrow len(validation_dataloader)
#avg_val_accuracy_multilabel = total_eval_accuracy_multilabel /_
\rightarrow len(validation dataloader)
avg_val_accuracy_classification = total_eval_accuracy_classification['matched']__
→/ total_eval_accuracy_classification['counts']
avg_val_accuracy_multilabel = total_eval_accuracy_multilabel['matched'] /__
→total_eval_accuracy_multilabel['counts']
print(" Accuracy for classification (actions): {0:.4f}".
 →format(avg_val_accuracy_classification))
```

```
print(" Accuracy for multilabel-classification (attributes): {0:.4f}".
      →format(avg_val_accuracy_multilabel))
     # Reference implementation: evaluation of action prediction along with
      \rightarrow attributes
     metrics = evaluation.evaluate_action_prediction(devtest_dials, model_actions.
      →values())
     # print("model actions passed to the evaluator:")
     # for v in model_actions.values():
         print(v)
     print("Reference evaluation metrics:")
     print(metrics)
      Accuracy for classification (actions): 0.8425
      Accuracy for multilabel-classification (attributes): 0.9200
     #Instances evaluated API: 5397
     ***********
     Reference evaluation metrics:
     {'action_accuracy': 0.8425050954233834, 'action_perplexity': 3.1634650211610884,
     'attribute_accuracy': 0.7370522617939476, 'confusion_matrix': array([[ 747.,
                  4., 13.],
     53.,
            8.,
            [ 26., 1058., 91.,
                                         32.],
                                 15.,
           [ 12., 179., 727., 88.,
                                         28.],
                                  0.,
               0.,
                    0., 0.,
                                          0.],
               8.,
                     96., 118., 79., 2015.]])}
[44]: import pandas as pd
[45]: # Convert test data to dataframe
     df_test = pd.DataFrame(data = test_batch)
     df_test.head()
[45]:
        ephoc batchnum
                                                          actions_logits \
                     1 [[0.0004531708, 0.99980944, 0.0025453316, 0.00...
     0
            1
            1
                     2 [[0.00021071802, 0.9996798, 0.0008664634, 0.00...
     1
                     3 [[0.0007729576, 0.0009535144, 0.0010184883, 0...
     2
            1
                     4 [[0.99967086, 0.0019957258, 0.0006378222, 0.00...
     3
            1
     4
            1
                     5 [[7.279184e-05, 0.00031680457, 0.00024304114, ...
                             actions_labels \
     0 [1, 4, 2, 4, 0, 1, 1, 4, 4, 0, 1, 2]
     1 [1, 4, 2, 2, 0, 1, 2, 1, 1, 1, 1, 4]
     2 [4, 1, 1, 1, 4, 2, 1, 2, 0, 1, 1, 1]
     3 [0, 0, 1, 2, 0, 1, 4, 4, 0, 1, 1, 4]
     4 [1, 4, 2, 4, 0, 3, 1, 1, 2, 4, 1, 1]
```

```
0 [[0.00041479623, 0.0002373658, 0.001900391, 0...
     1 [[0.00058873027, 0.00036660058, 0.0032797686, ...
     2 [[0.00016869778, 0.00028577558, 0.90405023, 0...
     3 [[0.0009995383, 0.0007337396, 0.0064695496, 0...
     4 [[0.00013425016, 0.00026139984, 0.040037967, 0...
                                   attributes_labels \
     2 [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
     accuracy_classification
                                           accuracy_multilabel
     0 {'matched': 10, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 8, 'counts': 12} {'matched': 11, 'counts': 12}
       {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
[46]: # Display floats with two decimal places.
     pd.set_option('precision', 2)
     # Create a DataFrame from our training statistics.
     df stats = pd.DataFrame(data=training stats)
     # Use the 'epoch' as the row index.
     df_stats = df_stats.set_index('epoch')
     # A hack to force the column headers to wrap.
     #df = df.style.set_table_styles([dict(selector="th",props=[('max-width',_
     → '70px')])])
     # Display the table.
     df_stats
[46]:
           Training Loss Valid. Loss Valid. Accur. class. \
     epoch
                                                 0.85
     1
                   1.13
                              1.07
     2
                   1.06
                              1.06
                                                 0.85
     3
                   1.04
                              1.05
                                                 0.85
                   1.03
                              1.05
                                                 0.86
           Valid. Accur. mult.label Training Time Validation Time
     epoch
     1
                            0.88
                                      0:08:38
                                                    0:00:28
```

attributes_logits \

```
3
                                  0.92
                                                             0:00:27
                                             0:08:37
      4
                                  0.93
                                             0:08:39
                                                             0:00:27
[47]: import time
      # Objects serialization
      timestr = time.strftime("%Y%m%d-%H%M%S")
      testdata_filename = f"testdata-{timestr}"
      stats_filename = f"stats-{timestr}"
      #outtest = open(testdata filename, "wb")
      #outstats = open(stats_filename, "wb")
      #pk.dump(obj=df_test, file=outtest)
      #outtest.close()
      #pk.dump(obj=df stats, file=outstats)
      #outstats.close()
      df_test.to_pickle(testdata_filename)
      df_stats.to_pickle(stats_filename)
[48]: import pandas as pd
      # Test reimport data
      df_stats_reload = pd.read_pickle(stats_filename)
      df_test_reload = pd.read_pickle(testdata_filename)
      print(testdata filename)
      print(df_stats_reload.head())
      print(df_test_reload.head())
     testdata-20210711-100903
            Training Loss Valid. Loss Valid. Accur. class. \
     epoch
                                                          0.85
     1
                     1.13
                                   1.07
     2
                     1.06
                                   1.06
                                                          0.85
                     1.04
     3
                                   1.05
                                                          0.85
     4
                     1.03
                                   1.05
                                                          0.86
            Valid. Accur. mult.label Training Time Validation Time
     epoch
                                 0.88
                                            0:08:38
                                                             0:00:28
     1
     2
                                 0.92
                                            0:08:38
                                                             0:00:27
     3
                                 0.92
                                            0:08:37
                                                             0:00:27
                                 0.93
     4
                                            0:08:39
                                                             0:00:27
                                                              actions_logits \
        ephoc batchnum
     0
            1
                      1 [[0.0004531708, 0.99980944, 0.0025453316, 0.00...
     1
                      2 [[0.00021071802, 0.9996798, 0.0008664634, 0.00...
     2
            1
                         [[0.0007729576, 0.0009535144, 0.0010184883, 0...
```

0.92

0:08:38

0:00:27

2

```
5 [[7.279184e-05, 0.00031680457, 0.00024304114, ...
          1
                          actions_labels \
      [1, 4, 2, 4, 0, 1, 1, 4, 4, 0, 1, 2]
      [1, 4, 2, 2, 0, 1, 2, 1, 1, 1, 1, 4]
    2 [4, 1, 1, 1, 4, 2, 1, 2, 0, 1, 1, 1]
    3 [0, 0, 1, 2, 0, 1, 4, 4, 0, 1, 1, 4]
    4 [1, 4, 2, 4, 0, 3, 1, 1, 2, 4, 1, 1]
                                   attributes_logits \
       [[0.00041479623, 0.0002373658, 0.001900391, 0...
      [[0.00058873027, 0.00036660058, 0.0032797686, ...
      [[0.00016869778, 0.00028577558, 0.90405023, 0...
       [[0.0009995383, 0.0007337396, 0.0064695496, 0...
       [[0.00013425016, 0.00026139984, 0.040037967, 0...
                                   attributes_labels \
    2 [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
      accuracy_classification
                                           accuracy_multilabel
      {'matched': 10, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
    1
    2
        {'matched': 8, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
        {'matched': 9, 'counts': 12} {'matched': 11, 'counts': 12}
[52]: import matplotlib.pyplot as plt
     #% matplotlib inline
     import seaborn as sns
     # Use plot styling from seaborn.
     sns.set(style='darkgrid')
     # Increase the plot size and font size.
     sns.set(font_scale=1.5)
     plt.rcParams["figure.figsize"] = (12,6)
     # Plot the learning curve.
     plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
     plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")
```

4 [[0.99967086, 0.0019957258, 0.0006378222, 0.00...

3

```
# Label the plot.
plt.title("Training & Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.xticks([1, 2, 3, 4])
plt.show()
```


[]: