Correction sommaire de l'examen d'analyse des données - MAT3601 - 2023

11 juin 2023

- i) Aucun document autorisé Admettez le résultat de certaines questions pour passer aux suivantes.
- ii) Bien traiter quelques questions rapporte des points, les bâcler toutes n'en rapporte aucun.
- iii) Indiquez de manière lisible la question traitée.
- iv) Soulignez ou encadrez vos résultats.
- v) Écrire votre nom, prénom et numérotez vos copies.

Exercice 1: ACP

Soit $x_1, \ldots, x_n \in \mathbb{R}^d$ nos données, qu'on suppose centrées, et $X \in \mathbb{R}^{n \times d}$ la matrice dont la *i*-ème ligne contient la *i*-ème donnée.

1. Donner l'expression de S - la matrice de covariance empirique.

Nous supposons que d = 4 et que

$$S = PDP^{\top}$$
.

où $D \in \mathbb{R}^{4\times 4}$ est une matrice diagonale de diagonale (8,6,4,2) et $P \in \mathbb{R}^{4\times 4}$ est une matrice orthogonale. On notera $P = [p_1, p_2, p_3, p_4]$ (p_i est la i-ème colonne de P).

- 2. Donner les vecteurs propres et les valeurs propres associés de S.
- 3. Donner l'expression de la 3-ème composante principale.
- 4. Quelle est la part de la variance expliquée par les 2 premières composantes principales?
- 5. Quelle est la dimension de l'espace sélectionné par l'ACP pour que la part de la variance expliquée soit égale à 90%?

Correction

- 1. $S = \frac{1}{n} X^{\top} X$.
- 2. Comme $S = PDP^{\top}$ les valeurs propres sont 8, 6, 4, 2 et les vecteurs propres associés sont p_1, p_2, p_3, p_4 . On peut (par exemple) le vérifier par un calcul direct en utilisant l'orthonormalité de p_1, \ldots, p_4 .
- 3. Par définition, c'est Xp_3 la projection des données dans l'espace associé vecteur propre associé à la troisième (en ordre décroissant) valeur propre.
- 4. C'est $\frac{\lambda_1 + \lambda_2}{\sum_{i=1}^4 \lambda_i} = \frac{\lambda_1 + \lambda_2}{\operatorname{Tr}(S)} = 70\%$.
- 5. On trouver que $\frac{\lambda_1 + \lambda_2 + \lambda_3}{\sum_{i=1}^4 \lambda_i} = 90\%$. La dimension de l'espace selectionné est donc de 3.

Exercice 2: Classification binaire

Nous supposons être en possession d'une suite $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{0, 1\}$ représentant les données étiquetées. On suppose les données i.i.d. de même loi qu'une certaine variable aléatoire $(X, Y) \in \mathbb{R}^d \times \{0, 1\}$, notre but est de construire un classifieur relatif à la fonction de perte 0/1.

Nous supposons que $\mathbb{P}(Y=0)=p_0$, $\mathbb{P}(Y=1)=p_1$ et nous noterons $g_0:\mathbb{R}^d\to\mathbb{R}$ (respectivement $g_1:\mathbb{R}^d\to\mathbb{R}$) la densité conditionnelle de X|Y=0 (respectivement X|Y=1).

1. Soit $x_{n+1} \in \mathbb{R}^d$ une nouvelle donnée. À quelle condition le prédicteur de Bayes prédira 1 comme étiquette associée?

2. Que se passe-t-il quand p_0 est très proche de 1?

Nous supposons dorénavant qu'il existe $\mu_0, \mu_1 \in \mathbb{R}^d$ t.q. pour $i \in \{0, 1\}$:

$$g_i(x) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{1}{2}||x-\mu_i||^2},$$

- 3. Pour quels $x \in \mathbb{R}^d$ le prédicteur de Bayes prédira y = 1?
- 4. Pour d=2, $p_0=p_1=0.5$, $\mu_0=(0,0)$ et $\mu_1=(1,1)$, dessiner la frontière de classification.
- 5. Comment nomme-t-on ce modèle?
- 6. Donner le nom de l'autre modèle de classification binaire vu en cours. Expliquer la différence avec le modèle ci-dessus.

Correction

1. Le prédicteur de Bayes prédira 1 si $\mathbb{P}(Y=1|X=x_{n+1}) \ge \mathbb{P}(Y=0|X=x_{n+1})$. Dans le cas de l'exercice cette condition équivaut à :

$$p_1g_1(x_{n+1}) \geqslant p_0g_0(x_{n+1})$$
.

- 2. Quand $p_0 \to 1$ on a $p_1 \to 0$ et la condition précédente n'est presque jamais vérifiée. On prédira donc très souvent la valeur 0. C'est logique puisque si p_0 est proche de 1 la plupart des étiquettes seront bien égales à 0.
- 3. On développe l'expression trouvée dans la question 1 en utilisant les expression de g_0, g_1 . En passant au logarithme on trouve :

$$\frac{1}{2} \left(\|x - \mu_0\|^2 - \|x - \mu_1\|^2 \right) \geqslant \log \left(\frac{p_0}{p_1} \right).$$

En développant les normes on trouve que cette expression se simplifie :

$$\|\mu_0\|^2 - \|\mu_1\|^2 + 2\langle \mu_1 - \mu_0, x \rangle \ge 2 \log \left(\frac{p_0}{p_1}\right).$$

On trouve une expression linéaire! C'est normal, car ça correspond au cadre du cours où g_0, g_1 sont des densités de loi gaussiennes avec les matrices de covariance égales (identité ici).

4. En utilisant les valeurs données dans l'expression précédente on trouve :

$$2(x_1 + x_2) \ge 1 \Leftrightarrow x_2 \ge 1/2 - x_1$$
.

Où $x = (x_1, x_2)$, on trouve l'équation d'une droite (qu'il fallait dessinner).

- 5. La frontière est linéiare, g_0, g_1 sont des gaussiennes de covariances égales on est dans le cadre du modèle LDA linear discriminant analysis.
- 6. L'autre modèle est celui de la QDA où les matrices de covariances ne sont pas égales, on aurait trouvé une frontière quadratique.

Exercice 3 : Régression linéaire pondérée

Nous allons étudier un problème de régression linéaire pondérée. Soient $y_1, \ldots, y_n \in \mathbb{R}$ et $x_1, \ldots, x_n \in \mathbb{R}$ des données. Le but de la régression linéaire (scalaire) pondérée est de trouver les coefficients $(\hat{\alpha}, \hat{\beta}) \in \mathbb{R}^2$ t.q.

$$(\hat{\alpha}, \hat{\beta}) = \underset{\alpha, \beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} p_i (\alpha + \beta x_i - y_i)^2, \qquad (1)$$

où p_1, \ldots, p_n sont des réels positifs.

- 1. Pour quelles valeurs des p_1, \ldots, p_n , les coefficients $\hat{\alpha}, \hat{\beta}$ sont ceux trouvés par la méthode des moindres carrés ordinaire?
- 2. Dériver l'équation (1) pour trouver l'équation qui définie $\hat{\alpha}$ en fonction de $\hat{\beta}$ et $y_w = \frac{\sum_{i=1}^n p_i y_i}{\sum_{i=1}^n p_i}$, $x_w = \frac{\sum_{i=1}^n p_i x_i}{\sum_{i=1}^n p_i}$.
- 3. En mettant en évidence les étapes importantes du calcul montrer que $\hat{\beta}$ vérifie :

$$\sum_{i=1}^{n} p_i x_i \left(\hat{\beta} (x_i - x_w) - (y_i - y_w) \right) = 0 .$$

4. Montrer que pour tout $c \in \mathbb{R}$, $\sum_{i=1}^{n} p_i c(y_i - y_w) = 0$ en déduire la relation entre

$$\sum_{i=1}^{n} p_i x_i (y_i - y_w) \quad \text{ et } \quad \sum_{i=1}^{n} p_i (x_i - x_w) (y_i - y_w).$$

5. En déduire l'expression de $\hat{\beta}$ en fonction de $\sum_{i=1}^n p_i(x_i - x_w)^2$ et $\sum_{i=1}^n p_i(x_i - x_w)(y_i - y_w)$.

On peut réécrire l'équation (1) sous forme matricielle :

$$\tilde{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \left\| P(X\beta - Y) \right\|^2 \,, \tag{2}$$

où $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times d}$, $\beta \in \mathbb{R}^d$ et $P \in \mathbb{R}^{n \times n}$ est une matrice diagonale.

6. Préciser la valeur de d et le lien entre $Y,\,X,\,P,\,\tilde{\beta}$ et les paramètres initiaux du problème.

On étudie dorénavant l'équation (2).

7. Supposons que $X^{\top}PX \in \mathbb{R}^{d \times d}$ est inversible. Exprimer $\tilde{\beta}$ en fonction de P, X, Y.

Indication: on se rappellera que pour tout $z \in \mathbb{R}^d$ et $A \in \mathbb{R}^{d \times d}$ le gradient de la fonction $\theta \mapsto \frac{1}{2} \|A\theta - z\|^2$ est égal à $A^{\top}(A\theta - z)$.

On suppose de plus qu'il existe $\beta_* \in \mathbb{R}^d$ t.q.

$$Y = X\beta_* + \xi$$
.

où $\xi \in \mathbb{R}^n$ est un vecteur dont les coordonnées ξ_1, \dots, ξ_n sont i.i.d. de loi $\mathcal{N}(0, \sigma_*^2)$, pour $\sigma_* > 0$.

- 8. Quel type de loi a $\tilde{\beta}$? Quels sont les paramètres qui la caractérise?
- 9. Montrer que $\tilde{\beta}$ est un estimateur sans biais de β_* .
- 10. Calculer la matrice de covariance de $\tilde{\beta}$.
- 11. **Bonus.** Qu'est-ce qui nous a permis d'affirmer que $\tilde{\beta}$ est unique? Donner un exemple où il ne l'est pas.

Correction

1. Par exemple pour $p_1 = \ldots = p_n = 1$. Plus généralement à partir du moment où tous les p_i sont égaux et **strictement positifs**.

2. On doit annuler la dérivée par rapport à α en $(\hat{\alpha}, \hat{\beta})$. On dérive l'equation à optimiser par rapport à α et on trouve :

$$2\sum_{i=1}^{n} p_i(\hat{\alpha} + \hat{\beta}x_i - y_i) = 0.$$

En regrouppant les termes on trouve

$$\hat{\alpha} \sum_{i=1}^{n} p_i + \hat{\beta} \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i = 0.$$

Donc

$$\hat{\alpha} = y_w - \hat{\beta} x_w .$$

3. De même on dérive par rapport à β . On trouve :

$$2\sum_{i=1}^{n} p_{i}x_{i}(\hat{\alpha} + \hat{\beta}x_{i} - y_{i}) = 0.$$

On remplace par la valeur trouvée pour $\hat{\alpha}$ dans la question précédente et on trouve :

$$\sum_{i=1}^{n} p_i x_i (y_w - y_i + \hat{\beta}(x_i - x_w)) = 0.$$

4. Il suffit de remarquer que $\sum_{i=1}^{n} cp_iy_i = cy_w \sum_{i=1}^{n} p_i$ et que $\sum_{i=1}^{n} cp_iy_w = cy_w \sum_{i=1}^{n} p_i$. Pour la déduction on remarque x_w est un réel qui **ne dépend pas de** i. Donc en prenant $c = x_w$ on trouve $\sum_{i=1}^{n} p_i x_w (y_i - y_w) = 0$ et

$$\sum_{i=1}^{n} p_i x_i (y_i - y_w) = \sum_{i=1}^{n} p_i (x_i - x_w) (y_i - y_w).$$

5. En utilisant la question 3 on trouve que

$$\hat{\beta} = \frac{\sum_{i=1}^{n} p_i x_i (y_i - y_w)}{\sum_{i=1}^{n} p_i x_i (x_i - x_w)} = \frac{\sum_{i=1}^{n} p_i (x_i - x_w) (y_i - y_w)}{\sum_{i=1}^{n} p_i (x_i - x_w) (x_i - x_w)}$$

où les numérateurs sont égaux par la question précédente et les dénominateurs sont égaux car $\sum_{i=1}^{n} p_i x_w(x_i - x_w) = 0$ (de manière analogue à la question précédente).

- 6. Comme expliqué dans le cours le $\hat{\alpha}$ est caché dans $\tilde{\beta}$. On trouve d=2, $\tilde{\beta}=(\hat{\alpha},\hat{\beta})$, $Y\in\mathbb{R}^n$ est le vecteur dont la *i*-ème coordonnée est égale à y_i , $X\in\mathbb{R}^{n\times d}$ est la matrice dont la *i*-ème ligne est égale à $(1,x_i)$ et enfin (la partie difficile) P est la matrice diagonale dont la *i*-ème diagonale est égale à $\sqrt{p_i}$.
- 7. On doit minimiser $||P(X\beta Y)||^2$ et donc annuler son gradient. On trouve :

$$(PX)^{\top}(P(X\hat{\beta} - Y)) = 0 \Leftrightarrow X^{\top}P^{\top}PX\hat{\beta} = X^{\top}P^{\top}PY.$$

Comme P est diagonale on a $P^{\top} = P$. On peut donc simplifier et trouver :

$$X^{\top} P^2 X \hat{\beta} = X^{\top} P^2 Y$$
.

En admetant pour l'instant que $X^{\top}P^2X$ est inversible on trouve :

$$\hat{\beta} = (X^{\top} P^2 X)^{-1} X^{\top} P^2 Y .$$

Preuve que $X^{\top}P^2X$ est inversible.

Tout d'abord remarquoqn que $X^{\top}P^2X$ est inversible équivaut au fait que $\ker(X^{\top}P^2X) = \{0\}$ et donc fait que $\ker PX = \{0\}$. En effet, si $X^{\top}P^2Xv = 0$ alors $v^{\top}X^{\top}P^2Xv = \|PXv\|^2 = 0$ et donc $\ker(X^{\top}P^2X) \subset \ker(PX)$. De même, si PXv = 0 alors bien sûr $X^{\top}P^2Xv = 0$ et on a $\ker PX = \ker(X^{\top}P^2X)$.

Ainsi comme $X^{\top}PX$ est inversible on sait que $\ker(P^{1/2}X) = \{0\}$. Maintenant si $v \in \mathbb{R}^d$ est t.q. PXv = 0 on a, en notant y = Xv,

$$0 = PXv = \begin{pmatrix} \sqrt{p_1}y_1 \\ \sqrt{p_2}y_2 \\ \vdots \\ \sqrt{p_n}y_n \end{pmatrix} = P^{1/2} \begin{pmatrix} p_1^{1/4}y_1 \\ p_2^{1/4}y_2 \\ \vdots \\ p_n^{1/4}y_n \end{pmatrix} = P^{1/2}(P^{1/2}Xv).$$

Donc $v \in \ker(PX) \implies v \in \ker(P^1/2X) = \{0\}$. Donc $\ker(PX) = \{0\}$ et $(X^\top P^2 X)$ est bien inversible.

- 8. ξ est un vecteur gaussien, donc Y l'est aussi (comme transformée affine de ξ) et donc $\tilde{\beta}$ l'est aussi (comme transformée affine de Y). Un vecteur gaussien est determiné par sa moyenne et sa matrice de covariance.
- 9. On écrit :

$$\tilde{\beta} = (X^{\top} P^2 X)^{-1} X^{\top} P^2 Y = (X^{\top} P^2 X)^{-1} X^{\top} P^2 (X \beta_* + \xi) = \beta_* + (X^{\top} P^2 X)^{-1} X^{\top} P^2 \xi. \quad (3)$$

Comme ξ est de moyenne nulle et les autres termes de l'équation sont déterministes on trouve bien :

$$\mathbb{E}[\tilde{\beta}] = \beta_*.$$

- 10. Pour trouver la covariance on utilise la formule $\operatorname{Var}(AZ) = A \operatorname{Var}(Z) A^{\top}$ pour $Z \in \mathbb{R}^n$ un vecteur aléatoire et $A \in \mathbb{R}^{d \times n}$. Ici, en utilisant l'équation (3), on pose $Z = \xi$ et $A = (X^{\top}P^2X)^{-1}X^{\top}P^2$.
- 11. L'unicité peut être affirmée grace à l'inversibilité de $X^{\top}P^2X$ (ou celle de $X^{\top}PX$). Par exemple si X=0 alors tout vecteur $\beta \in \mathbb{R}^d$ convient.