Examen partiel du 07 mars 2022

Durée : 2h. Documents, calculatrices et smartphones interdits. Le barème est donné à titre indicatif. Il est susceptible d'être un peu modifié.

Exercice 1 (7 points). Pour tout entier $n \ge 1$, on note f_n la fonction définie sur \mathbb{R} par

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$$

- 1) a) Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- b) Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur \mathbb{R} vers cette fonction f.
- 2) a) Montrer que la suite des dérivées $(f'_n)_{n\geq 1}$ converge simplement sur \mathbb{R} vers une fonction q que l'on précisera.
 - b) Est-ce que la suite $(f'_n)_{n\geq 1}$ converge uniformément sur \mathbb{R} ? Justifier.
 - c) Montrer que $(f'_n)_{n\geq 1}$ converge uniformément sur $[1,+\infty[$.

Exercice 2 (6 points). Pour tout $n \ge 1$ entier, on note v_n la fonction définie sur $[0, +\infty[$ par

$$v_n(x) = (-1)^{n-1} \frac{x}{1 + nx^2}.$$

- 1) Montrer que la série de fonctions $\sum_{n\geq 1} v_n$ converge simplement sur $[0,+\infty[$.
- 2) a) Etudier les variations de w_n sur $[0, +\infty[$ où $w_n : x \mapsto \frac{x}{1+nx^2} = |v_n(x)|$.
 - b) Montrer que $\sum_{n>1} v_n$ ne converge pas normalement sur $[0, +\infty[$.
 - c) Montrer que, par contre, $\sum_{n\geq 1} v_n$ converge uniformément sur $[0,+\infty[$.

Exercice 3 (7 points).

Pour tout $n \ge 1$ entier, on note u_n la fonction définie sur $[0, +\infty[$ par :

$$u_n(x) = \frac{e^{-nx}}{n^2 + 1}.$$

- 1) a) Montrer que la série de fonctions $\sum_{n\geq 1} u_n$ converge normalement sur $[0,+\infty[$. On note désormais S la somme de la série de fonctions $\sum_{n\geq 1} u_n$.
 - b) Pourquoi la fonction somme S est-elle continue sur $[0, +\infty[$?
- 2) a) Soit a un réel > 0. Montrer que la série $\sum_{n\geq 1} u'_n$ converge normalement sur $[a,+\infty[$.

- b) Montrer que S est de classe C^1 sur $]0, +\infty[$ et exprimer S'(x) comme somme d'une série de fonctions pour $x \in]0, +\infty[$.
- 3) a) On rappelle le développement $\ln(1-u)=-\sum_{n=1}^{+\infty}\frac{u^n}{n}$ pour |u|<1. Montrer que, pour tout $x\in]0,+\infty[$, on a

$$S'(x) = \ln(1 - e^{-x}) + \sum_{n>1} \frac{e^{-nx}}{n(n^2 + 1)}.$$

b) Montrer que la série de fonctions $\sum_{n\geq 1} \frac{e^{-nx}}{n(n^2+1)}$ converge normalement sur $[0,+\infty[$ et en déduire $S'(x) \underset{x\to 0^+}{\sim} \ln(x)$.