Introduction to STM32MP1

Hardware Block Diagram

Power, Reset and Clock

STM32MP1 Power Architecture

PMIC Power supplies control registers

Regulator	Target	Output Voltage	Rated Current	Programming step	Description
BUCK1	SoC	0.725V - 1.5V	1500mA	25mV	Rail automatically turned on after 3ms
BUCK2	DDR	1V - 1.5V	1000mA	50mV	Rail won't be turned on automatically

PMIC Power Supplies Control Registers

Register	Address	Reset value	Description
BUCKx MAIN mode control registers	0x20 to 0x23	0bXXXXXX0X	 X depends on programmed value in NVM Used to enable or disable the buck convertors Used to configure the mode (High power mode or Low power mode) Used to set the output voltage
REFDDR MAIN mode control register	0x24	0x0000000X	 X depends on programmed value in NVM Used to enable or disable the regulator
LDO[1, 2, 5, 6] MAIN mode control registers	0x25, 0x26, 0x29, 0x2A	0b0XXXXX00	 X depends on programmed value in NVM Used to enable or disable the LDO's Used to set the output voltage
LDO3 MAIN mode control register	0x27	0bXXXXXX00	 X depends on programmed value in NVM Used to enable or disable the buck convertors Used to configure the mode (Normal mode or Bypass mode) Used to set the output voltage
LDO4 MAIN mode control register	0x28	0x0000000X	

Power controller

- There are 3 voltage rails which are available in STM32F407
 - $V_{DD} \rightarrow$ Powers everything excluding ADC
 - $V_{DDA} \rightarrow Powers ADC$
 - $V_{BAT} \rightarrow$ powers Real time clock, RTC backup registers and backup SRAM when V_{DD} is turned off
- STM32F407 needs 1.8V 3.6V as an input voltage
 - Internal linear voltage regulates input voltage into 1.2V

Power controller

- There are 3 voltage rails which are available in STM32F407
 - $V_{DD} \rightarrow$ Powers everything excluding ADC
 - $V_{DDA} \rightarrow Powers ADC$
 - $V_{BAT} \rightarrow$ powers Real time clock, RTC backup registers and backup SRAM when V_{DD} is turned off
- STM32F407 needs 1.8V 3.6V as an input voltage
 - Internal linear voltage regulates input voltage into 1.2V

DDR Subsystem

Features of DDR Subsystem

- Supports multiple SDRAM standards → DDR3, LPDDR2, LPDDR3
- Max frequency upto 533Mhz
- Interface width can be fully populated (x32) or half populated (x16)
- Memory density limited to 1GB
- Single rank only

DDRSS Introduction

- DDRSS composed of,
 - DDR Controller
 - Does AXI port arbitration
 - Converts AXI bus transactions into SDRAM commands at the DFI interface
 - Schedule SDRAM commands according to the traffic classes (QOS) for optimal DDR utilization
 - Obey SDRAM timing requirements
 - Schedule SDRAM refreshes
 - Manage power consumption and thermals
 - DDR PHY
 - Incharge of driving Command address (CA) and write data (DQ/DQS) to SDRAM according to JDEC
 - Read data from SDRAM according to JDEC
 - Supports initialization of PHY and SDRAM

DDR PHY

- DDR PHY uses a byte lane architecture for best signal delay matching
- DDR PHY uses DLL based architecture with an,
 - MDLL → Master DLL → Command address bus
 - MSDLL → Master Slave DLL → For byte lane
- DLL's are used to,
 - Delay CK/CK# signals by 180 incase of SDR, 90 incase of DDR
 - Delay output DQS/DQS# by 90
 - Delay input DQS/DQS# by 90

SDRAM Topology

Fly-by topology

Point 2 Point topology (x32)

Point 2 Point topology (x16)

Refresh

- Software Request Refresh
 - Set DDRCTLR_RFSHCTL3.dis_auto_refresh bit to 1. When this bit is set Memory controller internal refresh timers are disabled
 - Refresh command can be issued by setting DDRCTRL_DBGCMD.rank0_refresh to 1
 - We have to poll DDRCTRL_DBGSTAT.rank0_refresh_busy bit to check refresh was completed or not?
 DDRCTRL_DBGSTAT.rank0_refresh_busy == 0 means completed
- Hardware Refresh
 - Set DDRCTLR_RFSHCTL3.dis_auto_refresh bit to 0

DDRMC Registers

Register	Register Description	Offset	Reset value	Description
DDRCTRL_MSTR	DDRCTRL master register 0	0x0	0x0004 0001	DRAM memory type DRAM burst length (Minimum BL must be programmed to BL8) Enable/Disable the DLL For Lower frequency operation we can disable the DLL For Higher frequency operation we have to enable the DLL Data bus width (Full DQ, Half DQ, Quarter DQ) Use 2T timing or 1T timing Burst chop length

DDRCKMOD Control

DDRCKMOD	KERDCG	DPHYCG	Description
000	Normal	Normal	Software Self Refresh mode (SSR) MC CLK → According to clock enable bits PHY CLK → According to clock enable bits
001	Auto	Normal	Automatic Self Refresh mode (ASR1) MC CLK → MC clock enabled automatically when there is a transaction from CPU (HW Clock gating). When CPU generates a transaction through AXI bus, memory controller requests the RCC engine to enable MC clock using cactive_ddrc signal. PHY CLK → According to clock enable bits
101	Auto	Auto	Full Automatic Self Refresh mode (ASR2) MC CLK → MC clock enabled automatically when there is a transaction from CPU (HW Clock gating). When CPU generates a transaction through AXI bus, memory controller requests the RCC engine to enable MC clock using cactive_ddrc signal. PHY CLK → DDRPHYCEN must be set to 1 and DDRPHYCLPEN must be set to 0
?			Hardware Self refresh mode
?			Full Hardware Self refresh mode

MC Block Diagram

MC Block Diagram

