

COMP90042 LECTURE 7

SEQUENCE TAGGING: UNSUPERVISED HMMS

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

HMMS FOR POS TAGGING - RECAP

- Previous lecture: supervised POS tagging using HMMs
 - Assume we have a corpus with annotated POS tags (for instance, Penn Treebank)
 - Learning via MLE (counting)
 - ► At test/prediction time, uses Viterbi algorithm to find most probably sequence

HMMS FOR POS TAGGING - RECAP

- Previous lecture: supervised POS tagging using HMMs
 - Assume we have a corpus with annotated POS tags (for instance, Penn Treebank)
 - Learning via MLE (counting)
 - ► At test/prediction time, uses Viterbi algorithm to find most probably sequence
- Sometimes we do not have such a corpus
 - Different domains (Twitter, TED talks)
 - Different languages, especially low-resource ones
- Solution: unsupervised learning

UNSUPERVISED HMMS

- Suppose you have a corpus of (unannotated) tweets.
- Simple idea: start with an HMM with random parameters (emission and transition matrices)
 - Using Viterbi, tag the data using this model.
 - ▶ Pretend this is training data. Obtain counts via MLE.
 - Repeat

UNSUPERVISED HMMS

- Suppose you have a corpus of (unannotated) tweets.
- Simple idea: start with an HMM with **random** parameters (emission and transition matrices)
 - Using Viterbi, tag the data using this model.
 - Pretend this is training data. Obtain counts via MLE.
 - Repeat
- Rationale: the model will learn the actual POS distribution based on the word patterns seen in the data
 - This is a simple version of the **Expectation-Maximisation (EM)** algorithm

Janet/NNP will/MD back/VB the/DT bill/NN

- Janet/NNP will/MD back/VB the/DT bill/NN
- ▶ Janet/NNP will/MD back/RB the/DT bill/NN

$$P(back|t) = \begin{bmatrix} P(back|RB) \\ P(back|VB) \\ P(back|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{c(will,RB)}{c(RB)} \\ \frac{c(will,VB)}{c(VB)} \\ \frac{c(will,DT)}{c(DT)} \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{0}{1} \\ \frac{0}{1} \\ \vdots \end{bmatrix}$$

▶ This approach, sometimes referred as **hard EM**, can perform well depending on the setting.

- ▶ This approach, sometimes referred as **hard EM**, can perform well depending on the setting.
- ► However, it is still too naïve, as it does not take into account **distributions** on each word and each tag transition.

- ▶ This approach, sometimes referred as **hard EM**, can perform well depending on the setting.
- ► However, it is still too naïve, as it does not take into account **distributions** on each word and each tag transition.
- A better approach would be to incorporate such distributions by:
 - Obtaining emission and transition distributions for each sentence (instead of just the max, as in Viterbi).
 - Using expected counts to train via MLE.

VITERBI EXAMPLE REVISITED

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
JJ	0	0	5.1e+15	5.2e-16	0
NN	0	1.034e-10	5.4e-1 5	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12/	0

VITERBI EXAMPLE REVISITED

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
JJ	0	0	5.1e <mark>-</mark> 15	5.2e-16	0
NN	0	1.034e-10	5.4e-1 5	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12/	0

 $\hat{c}(back,RB)$

$$P(back|t) = \begin{bmatrix} P(back|RB) \\ P(back|VB) \\ P(back|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\hat{c}(back,RB)}{\hat{c}(RB)} \\ \frac{\hat{c}(back,VB)}{\hat{c}(DT)} \\ \frac{\hat{c}(back,DT)}{\hat{c}(DT)} \\ \vdots \end{bmatrix} = ?$$

$$P(back|\mathbf{t}) = \begin{bmatrix} P(back|RB) \\ P(back|VB) \\ P(back|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\hat{c}(back,RB)}{\hat{c}(RB)} \\ \frac{\hat{c}(back,VB)}{\hat{c}(VB)} \\ \frac{\hat{c}(back,DT)}{\hat{c}(DT)} \\ \vdots \end{bmatrix} = ?$$

- $\hat{c}(back, RB) = \sum_{w} \sum_{i=1; i=back}^{l_{w}} \hat{P}(t_{i} = RB|\mathbf{w})$
 - "i = back" means we iterate only when the observed word is "back"

$$P(back|\mathbf{t}) = \begin{bmatrix} P(back|RB) \\ P(back|VB) \\ P(back|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\hat{c}(back,RB)}{\hat{c}(RB)} \\ \frac{\hat{c}(back,VB)}{\hat{c}(VB)} \\ \frac{\hat{c}(back,DT)}{\hat{c}(DT)} \\ \vdots \end{bmatrix} = ?$$

- $\hat{c}(back, RB) = \sum_{w} \sum_{i=1; i=back}^{l_{w}} \hat{P}(t_{i} = RB|\mathbf{w})$
 - "i = back" means we iterate only when the observed word is "back"
- $\hat{c}(RB) = \sum_{w} \sum_{i=1}^{l_{w}} \hat{P}(t_{i} = RB|\mathbf{w})$

$$P(back|\mathbf{t}) = \begin{bmatrix} P(back|RB) \\ P(back|VB) \\ P(back|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\hat{c}(back,RB)}{\hat{c}(RB)} \\ \frac{\hat{c}(back,VB)}{\hat{c}(VB)} \\ \frac{\hat{c}(back,DT)}{\hat{c}(DT)} \\ \vdots \end{bmatrix} = ?$$

- $\hat{c}(back, RB) = \sum_{w} \sum_{i=1:i=back}^{l_w} \hat{P}(t_i = RB|\mathbf{w})$
 - "i = back" means we iterate only when the observed word is "back"

$$\hat{c}(RB) = \sum_{w} \sum_{i=1}^{l_{w}} \hat{P}(t_{i} = RB|\mathbf{w})$$

$$\hat{P}(t_i = RB|\mathbf{w}) = \frac{\hat{P}(t_i = RB, \mathbf{w})}{\hat{P}(\mathbf{w})}$$

- Key quantities for emission probabilities:
 - $\hat{P}(w)$
 - $\hat{P}(t_i = RB, \mathbf{w})$

- Key quantities for emission probabilities:
 - $\hat{P}(w)$
 - $\hat{P}(t_i = RB, \mathbf{w})$
- Let's start with $\hat{P}(w)$
 - $\hat{P}(w) = \sum_{t} \hat{P}(w, t) = \sum_{t} \hat{P}(w|t) \hat{P}(t)$
 - Exponential number of tag sequences: can we use DP again?

- Exactly like Viterbi, but summing scores instead of taking the max.
 - Also no backpointers since the goal is not prediction.

	Janet	will	back	the	bill
NNP					
MD					
VB					
JJ					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	P(Janet NNP) * P(NNP <s>)</s>				
MD	P(Janet MD) * P(MD <s>)</s>				
VB					
IJ					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	8.8544e-06				
MD	0				
VB	0				
IJ	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	P(will NNP) * P(NNP t _{Janet}) * a(t _{Janet} Janet)			
MD	0				
VB	0				
JJ	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	P(will NNP) * P(NNP t _{Janet}) * a(t _{Janet} Janet)			
MD					
VB	9		ılate this for a the sum .	II tags,	
JJ	0				
NN	0/				
RB					
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	3.004e-8			
VB	0	2.231e-13			
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	P(back VB) * P(VB t _{will}) * s(t _{will} will)		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	MD: 1.6e-11 VB: 7.5e-19 NN: 9.7e-17		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1.6e-11		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1.6e-11		
JJ	0	0	5.42e-15		
NN	0	1.034e-10	8.17e-15		
RB	0	0	5.33e-11		
DT	0	0	0		

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	4.21e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.74e-20
JJ	0	0	5.42e-15	6.53e-16	0
NN	0	1.034e-10	8.17e-15	9.76e-18	3.44e-15
RB	0	0	5.33e-11	0	0
DT	0	0	0	3.1e-12	0

		Janet	will	back	the	bill		
	NNP	8.8544e-06	0	0	4.21e-17	0		
Final probability also needs to take into account the end state								
" <end>"</end>								
• $P(\mathbf{w}) = \alpha(bill,VB) * P(\langle end \rangle VB) + \alpha(bill,NN) * P(\langle end \rangle NN)$								
	• P(w) = 1.74e-20 * 0.0004 + 3.44e-15 * 0.237							
	• P(w) = 8.15e-16							
	DT	0	0	0	3.1e-12	0		

THE FORWARD PROCEDURE

Pseudocode

```
alpha = np.zeros(M, T)
for t in range(T):
    alpha[1, t] = pi[t] * O[w[1], t]

for i in range(2, M):
    for t_i in range(T):
        for t_last in range(T):  # t_last means t_{i-1}
            s = alpha[i-1, t_last] * A[t_last, t_i] * B[w[i], t_i]
            alpha[i,t_i] += s

total = np.sum(alpha[M-1,:] * A[:,<end>])
Return total, alpha
```

We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.

- We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB, \mathbf{w}_{i+1:l_w})$

- We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB, \mathbf{w}_{i+1:l_w})$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | \mathbf{w}_{1:i}, t_i = RB)$

- We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB, \mathbf{w}_{i+1:l_w})$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | \mathbf{w}_{1:i}, t_i = RB)$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | t_i = RB)$

MLE WITH EXPECTED COUNTS

- We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB, \mathbf{w}_{i+1:l_w})$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | \mathbf{w}_{1:i}, t_i = RB)$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | t_i = RB)$
- $\hat{P}(\mathbf{w}_{1:i}, t_i = RB) = \alpha(i, RB)$
 - We got this from the forward algorithm!

MLE WITH EXPECTED COUNTS

- We got $\hat{P}(w)$ using the forward algorithm. Now we need $\hat{P}(t_i = RB, w)$.
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB, \mathbf{w}_{i+1:l_w})$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | \mathbf{w}_{1:i}, t_i = RB)$
 - $\hat{P}(t_i = RB, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = RB) \hat{P}(\mathbf{w}_{i+1:l_w} | t_i = RB)$
- $\hat{P}(\mathbf{w}_{1:i}, t_i = RB) = \alpha(i, RB)$
 - We got this from the forward algorithm!
- $\hat{P}(\mathbf{w}_{i+1:l_{\mathbf{w}}}|t_{i}=RB)=\beta(i,RB)$
 - ▶ We will get these through the **backward** algorithm.

THE BACKWARD ALGORITHM

	Janet	will	back	the	bill
NNP					
MD					
VB					
JJ					
NN					
RB					
DT					

THE BACKWARD ALGORITHM

	Janet	will	back	the		bill
NNP						1
MD						1
VB	• $\beta(i, NN)$	$(P) = \widehat{P}(\mathbf{w}_{i+1})$	$_{1:l_{w}} t_{i}=NN$	(P)		1
JJ	• $\beta(5, NNP) = \hat{P}(\mathbf{w}_{6:5} t_5 = NNP)$					1
NN	• This is a "non-event". $P(\emptyset) = 1$					1
RB						1
DT						1

THE BACKWARD ALGORITHM

	Janet	will	back		the	bill
NNP				Σ	P(bill t _{bill}) * P(NNP t _{bill}) * B(bill, t _{bill}) P(bill t _{bill}) * P(MD t _{bill}) * B(bill, t _{bill})	1
MD				Σ	P(bill t _{bill}) * P(MD t _{bill}) * B(bill,t _{bill})	1
VB						1
JJ						1
NN						1
RB						1
DT						1

THE BACKWARD PROCEDURE

Pseudocode

```
beta = np.zeros(M, T)
for t in range(T):
    beta[M, t] = 1.0  # notice we initialise the last column

for i in range(M-1, 1, -1):  # range in reverse
    for t_i in range(T):
        for t_last in range(T):  # t_last means t_{i-1}
            s = beta[i+1, t_last] * A[t_i, t_last] * B[w[i+1], t_last]
            beta[i,t_i] += s

total = np.sum(beta[1,:] * A[<start>,:] * B[w[1],:])
Return total, beta
```

OBTAINING THE PROBABILITIES

- After running forward and backward, we obtain two matrices containing α 's and β 's,
- $\hat{P}(\mathbf{w}) = \sum_{t} \alpha(l_{\mathbf{w}}, t) * \hat{P}(< end > |t)$
- $\hat{P}(t_i = RB, \mathbf{w}) = \alpha(i, RB) * \beta(i, RB)$

OBTAINING THE PROBABILITIES

- After running forward and backward, we obtain two matrices containing α 's and β 's,
- $\hat{P}(\mathbf{w}) = \sum_{t} \alpha(l_{\mathbf{w}}, t) * \hat{P}(< end > |t)$
- $\hat{P}(t_i = RB, \mathbf{w}) = \alpha(i, RB) * \beta(i, RB)$
- $\hat{c}(back, RB) = \sum_{w} \sum_{i=1; i=back}^{l_{w}} \frac{\alpha(i, RB) * \beta(i, RB)}{\sum_{t} \alpha(l_{w}, t) * \hat{P}(\langle end \rangle | t)}$
- $\hat{c}(RB) = \sum_{w} \sum_{i=1}^{l_{w}} \frac{\alpha(i,RB) * \beta(i,RB)}{\sum_{t} \alpha(l_{w},t) * \hat{P}(\langle end \rangle | t)}$
- $P(back|RB) = \frac{\hat{c}(back,RB)}{\hat{c}(RB)}$

TRANSITION PROBABILITIES

- Transition probabilities are also updated using expected counts.
 - We can use the values from forward-backward as well.

$$\xi_i(NN,DT) = \frac{\alpha(i,DT) * \alpha[DT,NN] * b(w_{i+1},NN) * \beta(i+1,NN)}{P(w)}$$

- $\hat{c}(NN, DT) = \sum_{w} \sum_{i=1}^{l_w} \xi_i(NN, DT)$
- $\hat{c}(DT) = \sum_{w} \sum_{i=1}^{l_w} \sum_{t} \xi_i(t, DT)$
- $P(NN|DT) = \frac{\hat{c}(NN,DT)}{\hat{c}(DT)}$

EM - FINAL ALGORITHM

Initialise emission and transition matrices

E-step:

▶ Run forward-backward, obtaining α 's and β 's

► M-step:

Update emission and transition matrices using the expected counts.

EM – IMPORTANT POINTS

- In our example, we initialised the parameters (matrices) at random. In practice initialisation matters so care must be taken.
 - Take values from a previous known tagger.
 - Use dictionaries to initialise some values ("the" is never a verb).

EM – IMPORTANT POINTS

- In our example, we initialised the parameters (matrices) at random. In practice initialisation matters so care must be taken.
 - Take values from a previous known tagger.
 - Use dictionaries to initialise some values ("the" is never a verb).
- ► Forward scores can be **conditional** instead of joint. Mitigates underflow.

EM – IMPORTANT POINTS

- In our example, we initialised the parameters (matrices) at random. In practice initialisation matters so care must be taken.
 - ► Take values from a previous known tagger.
 - Use dictionaries to initialise some values ("the" is never a verb).
- ► Forward scores can be **conditional** instead of joint. Mitigates underflow.
- ► How to evaluate?
 - Need some annotated data for that.

A FINAL WORD

- Unsupervised learning is key to generalise sequence tagging to other domains and languages
- ► HMMs can easily do that using EM.
- Some annotated data is always necessary for evaluation.

READINGS

- ► JM3 Ch 9.3, 9.5
- Optional] Rabiner's HMM tutorial, for more details
 - http://tinyurl.com/2hqaf8