

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-02-28

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Definition

Given

- Given
 - o a set V of locations,

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and

- Given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - \circ distances d_{ii} from location $i \in V$ to $j \in V$

- Given
 - a set V of locations.
 - $\circ p \in \mathbb{Z}$, and
 - \circ distances d_{ii} from location $i \in V$ to $j \in V$
- · we want to
 - o open p locations of V, such that

- Given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- we want to
 - open p locations of V, such that
 - the maximum distance of any location to its closest opened location is minimized.

The nesting property

Definition I

• given a set of locations *V*,

- given a set of locations *V*,
- time periods $\mathcal{H} = \{1, \dots, H\},\$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H < |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition II

 a feasible solution to the nested *p*-center problem consists of a set J^h ⊆ V

Definition I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|\mathcal{J}^h| = p^h$ for $h \in \mathcal{H}$,
 - o for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds

Definition I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for h = 1, ..., H-1and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|\mathcal{J}^h| = p^h$ for $h \in \mathcal{H}$,
 - for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds
- the goal is to find a feasible solution which minimizes $\sum_{h=1}^{H} d_h(\mathcal{J}^h)$,
 - where $d_h(\mathcal{J}) = \max_{i \in \mathcal{I}} \min_{j \in \mathcal{J}} d_{ij}$ for $h \in \mathcal{H}$.

p-center problem vs nested p-center problem

The nested p-center problem: Potential applications

2024-02-28

Decision variables $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables

 $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

z^h... maximum distance between any customer i and its nearest open facility in period h

Decision variables (nPC2) based on Gaar and Sinnl 2022 $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \end{cases}$ $0 \dots \text{ otherwise}$ $\min \qquad \sum_{h \in \mathcal{H}} z^h$ (1a) s.t. $\sum_{j \in V}^{h \in \mathcal{H}} y_j^h = p^h$ $\forall h \in \mathcal{H}$ (1b) $z^{h} \geq d_{ij} - \sum_{j':d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^{h} \qquad \forall i, j \in V, h \in \mathcal{H} \quad (1c)$ $y_{j}^{h} \geq y_{j}^{h-1} \qquad \forall j \in V, \forall h \in \mathcal{H} \setminus \{1\} \quad (1d)$ z^h... maximum distance between any customer i and its nearest open facility in period h $(y,z) \in |V| |\mathcal{H}| \times \mathbb{R}_{>0}$ (1e)

2024-02-28

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

```
y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}
```

z^h... maximum distance between any customer i and its nearest open facility in period h

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$
 $z^h \dots \text{ maximum distance between any customer } i \text{ and its nearest open facility in period } h$
 $u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in} \\ & \text{time period } h \end{cases}$
 $0 \dots \text{ otherwise}$

Decision variables

$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

$$U_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in } \\ & \text{time period } h \end{cases}$$

(nPC3) based on Ales and Elloumi 2018

$$\min \sum_{h \in \mathcal{H}} z^{h}$$
s.t.
$$\sum_{j \in V} y_{j}^{h} = p^{h} \qquad \forall h \in \mathcal{H}$$

$$D_{0} + \sum_{k=1}^{K} (D_{k} - D_{k-1}) u_{k}^{h} \leq z^{h} \ \forall h \in \mathcal{H}$$

$$u_{k}^{h} + \sum_{j:d_{ij} < D_{k}} y_{j}^{h} \geq 1 \ \forall i \in V, \forall h \in \mathcal{H}, \forall k \in S_{i} \cup \{K\}$$

$$u_{k}^{h} \geq u_{k+1}^{h} \qquad \forall h \in \mathcal{H}, \forall k \in \mathcal{K} \setminus \{K\}$$

$$y_{j}^{h} \geq y_{j}^{h-1} \qquad \forall h \in \mathcal{H} \setminus \{1\}$$

$$(u, Y, Z) \in |V| \ |K| \times |V| \ |\mathcal{H}| \times \mathbb{R}_{>0}$$

2024-02-28

Related work

2024-02-28

p-center problem

- First introduction of the *p*-center problem by Hakimi (1964)
- The standard textbook formulation of the p-center problem can be found in Daskin (2013)
- Solution approach based on the set cover problem by Contardo, Iori, and Kramer (2018)
- A compact formulation by Ales and Elloumi (2018) and Elloumi, Labbé, and Pochet (2004)
- A formulation with a projection-based branch-and-cut algorithm for the p-center problem by Gaar and Sinnl (2022)

Nested facility location problems

- First introduction of the nesting property and constraint by Roodman and Schwarz (1975)
- Extension of the nesting to a phase-in and phase-out by Roodman and Schwarz (1977)
- Reintroduction of the nesting on the example of the p-median problem by McGarvey and Thorsen (2022)
- Other work on multi-period facility locations problems mainly focus on varying demand, distances, or cost over time f.e. Calogiuri et al. (2021)

Mixed Integer Linear Programming formulations

First MILP formulation

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if customer } i \text{ is assigned to facility location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

First MILP formulation

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if customer } i \text{ is assigned to facility location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$
 $y_j^h \dots \begin{cases} 1 \dots \text{ if a facility is opened at location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$

First MILP formulation

Decision variables

$$x_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if customer } i \text{ is assigned to facility location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if a facility is opened at location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

Second MILP formulation

(nPC2) min
$$\sum_{h \in \mathcal{H}} z^h$$
s.t.
$$\sum_{j \in \mathcal{J}} y^h_j = p^h$$

$$z^h \ge d_{ij} - \sum_{j': d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y^h_{j'} \quad \forall i \in \mathcal{I}, j \in \mathcal{J}, h \in \mathcal{H}$$

$$y^h_i \ge y^{h-1}_i \quad \forall j \in \mathcal{J}, h \in \mathcal{H} \setminus \{1\}$$
(3a)

 $y_i^h \in \{0, 1\}$

$$z^h \in \mathbb{R}_{\geq 0}$$
 $\forall h \in \mathcal{H}$ (3f)

 $\forall i \in \mathcal{J}, h \in \mathcal{H}$

(3e)

Third MILP formulation

 \mathcal{D} ... set of distinct distances where $\mathcal{D}_0 < \cdots < \mathcal{D}_K$ are the values in \mathcal{D}

Third MILP formulation

 \mathcal{D} ...set of distinct distances where $\mathcal{D}_0 < \cdots < \mathcal{D}_K$ are the values in \mathcal{D}

 \mathcal{K} ... set of indices in \mathcal{D}

Third MILP formulation

 \mathcal{D} ...set of distinct distances where $D_0 < \cdots < D_K$ are the values in \mathcal{D}

 \mathcal{K} ... set of indices in \mathcal{D}

 S_i ... set of indices $k \in \mathcal{K}$ for which there exists a facility $j \in \mathcal{J}$ with $d_{ij} = D_k$

Third MILP formulation

 $\mathcal{D}\dots$ set of distinct distances where $D_0 < \dots < D_K$ are the values in \mathcal{D}

 \mathcal{K} ... set of indices in \mathcal{D}

 S_i ... set of indices $k \in \mathcal{K}$ for which there exists a facility $j \in \mathcal{J}$ with $d_{ij} = D_k$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if a facility is opened at location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Third MILP formulation

 $\mathcal{D}\dots$ set of distinct distances where $D_0 < \dots < D_K$ are the values in \mathcal{D}

 \mathcal{K} ... set of indices in \mathcal{D}

 S_i ... set of indices $k \in \mathcal{K}$ for which there exists a facility $j \in \mathcal{J}$ with $d_{ij} = D_k$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if a facility is opened at location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$
 $u_k^h \dots \begin{cases} 1 \dots \text{ if the optimal value of } z^h \text{ is greater or equal than } D_k \\ 0 \dots \text{ otherwise} \end{cases}$

Third MILP formulation

 $\mathcal{D}\dots$ set of distinct distances where $D_0 < \dots < D_K$ are the values in \mathcal{D}

 \mathcal{K} ... set of indices in \mathcal{D}

 S_i ... set of indices $k \in \mathcal{K}$ for which there exists a facility $j \in \mathcal{J}$ with $d_{ij} = D_k$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if a facility is opened at location } j \text{ in period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$u_k^h \dots \begin{cases} 1 \dots \text{ if the optimal value of } z^h \text{ is greater or equal than } D_k \\ 0 \dots \text{ otherwise} \end{cases}$$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

Third formulation

(nPC3) min
$$\sum_{h\in\mathcal{H}} z^h \qquad (4a)$$
s.t.
$$\sum_{j\in\mathcal{J}} y_j^h = p^h \qquad \forall h\in\mathcal{H} \qquad (4b)$$

$$D_0 + \sum_{k=1}^K (D_k - D_{k-1}) u_k^h \leq z^h \qquad \forall h\in\mathcal{H} \qquad (4c)$$

$$u_k^h + \sum_{j:d_{ij} < D_k} y_j^h \geq 1 \qquad \forall i\in\mathcal{I}, \forall h\in\mathcal{H}, \forall k\in\mathcal{S}_i \cup \{K\} \qquad (4d)$$

$$u_k^h \geq u_{k+1}^h \qquad \forall h\in\mathcal{H}, \forall k\in\mathcal{K} \setminus \{K\} \qquad (4e)$$

$$y_j^h \leq y_j^{h-1} \qquad \forall h\in\mathcal{H}, \forall j\in\mathcal{J} \qquad (4f)$$

$$y_j^h \in \{0,1\} \qquad \forall h\in\mathcal{H}, \forall k\in\mathcal{K} \qquad (4h)$$

$$z^h \in \mathbb{R} \qquad \forall h\in\mathcal{H} \qquad (4i)$$

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\min(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

17

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\min(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

The pCP version of formulation (nPC3) has the best known linear programming (\mathcal{LP})-bounds for the pCP, while the pCP versions of (nPC1) and (nPC2) have equally but worse \mathcal{LP} -bounds.

Reducing set K in (nPC3)

Lemma 1

Let \underline{z}^h be a valid lower bound and \overline{z}^h be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $\underline{z}^h \leq D^k \leq \overline{z}^h$ holds.

Therfore let set $S_i^h \subseteq S_i$ for $h \in \mathcal{H}$, where S_i^h contains only the indices k where $\underline{z}^h \leq D^k \leq \overline{z}^h$ holds and constraint (4d) can be replaced with

$$u_k^h + \sum_{i:d_i < D_h} y_j^h \ge 1 \qquad \forall i \in \mathcal{I}, \forall h \in \mathcal{H}, \forall k \in \mathcal{S}_i^h \cup \{K\}$$
 (5)

Depending on the bounds \underline{z}^h and \overline{z}^h the sets S_i^h can be much smaller than S_i .

Strengthening constraints (nPC2)

Lemma 2

Let LB_h be a lower bound on the decision variable z_h of (nPC2) for every $i \in \mathcal{I}$, $j \in \mathcal{I}$ $\mathcal{J}, h \in \mathcal{H}$ then

$$z^h \ge max\{LB^h, d_{ij}\} - \sum_{j': d_{ij'} < d_{ij}} (max\{LB^h, d_{ij}\} - max\{LB^h, d_{ij'}\})y_{j'}^h$$
 (nL-OPT)

is a valid inequality for (nPC2), i.e., every feasible solution of (nPC2) fulfills (nL-OPT). Theorem is based on Lemma 5 in Gaar and Sinnl (2022).

A similar strengthening can be done for (??) in fromulation (nPC1).

Obtaining bounds I

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$, then $UB = Hz'^{1*}$ is a valid upper bound on the optimal objective function value of n-pCP.

Then

$$\overline{z^h} = \frac{UB - \sum_{x=h+1}^{H} z'^{x*}}{h+1}$$

where $\overline{z^h}$ is a valid upper bound on the decision variable z^h of the n-pCP for $h \in \mathcal{H}$.

Obtaining bounds II

Lemma 4

Let z'^* be the optimal objective function value of pCP for a certain p'. Then z'^* is a valid lower bound \underline{z}^h on the decision variable z^h of n-pCP with $p^h = p'$.

Implementation and outline of the results

Implementation

- Implemented in C++ using the CPLEX API of CPLEX 20.1.0.0
- Formulation (nPC2) solved by branch-and-cut and seperation based on the customers
- Preprocessing for all formulations
 - solving the *p*CP for p^h , $h \in \mathcal{H}$ starting with h = H
 - $\circ p^h$ is a valid lower bound for the pCP with p^{h-1}
- Single core of an Intel Xeon X5570 machine
 - o 2.93 GHz
 - 48 GB RAM
 - Each run limited to 9 GB RAM and 3600 sec

Data

- data set PMED from "A note on solving large p-median problems" by Beasley (1985)
 - o set of 40 test instances
 - the sets contain between 100 and 900 nodes
 - o number of facilities to open initially ranging from 5 to 200

$$\mathcal{P} = \{p, p + 1, p + 2\}$$

Data

- data set PMED from "A note on solving large p-median problems" by Beasley (1985)
 - set of 40 test instances
 - the sets contain between 100 and 900 nodes
 - o number of facilities to open initially ranging from 5 to 200
 - $\circ \mathcal{P} = \{p, p + 1, p + 2\}$
- data set TSPLIB 2D-Euclidean distances from "TSPLIB—A Traveling Salesman Problem Library" by Reinelt (1991)
 - set of 80 test instances
 - the sets contain between 51 and 1002 nodes
 - o rounded to the nearest integer value
 - $\circ \mathcal{P} = \{4, 5, 6\}$

Preprocessing

Figure: Preprocessing

25

(nPC1)-results

(nPC2)-results

(nPC3)-results

Formulation comparison

Managerial insights

Figure: On a subset of instances: Only if the problem was solved to optimality

Conclusion

- (nPC3) had the best runtimes over all instances
- For optimality gap the results are rather mixed
- The (nPC2) outperforms the (nPC1)
- Maximal relative regret of the objective value of 15%
- Maximal relative regret of number of facilities above 140%
- min-max regret as objective function was also analysed and can be found later in the thesis

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-02-28

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Formulations with non optimal instances

References I

- [1] Zacharie Ales and Sourour Elloumi. Compact MILP Formulations for the p-Center Problem. In: Combinatorial Optimization. Ed. by Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub. Cham: Springer International Publishing, 2018, pp. 14–25. ISBN: 978-3-319-96151-4.
- [2] J.E. Beasley. A note on solving large p-median problems. In: European Journal of Operational Research 21.2 (1985), pp. 270–273. ISSN: 0377-2217. DOI: https://doi.org/10.1016/0377-2217(85)90040-2.

References II

- [3] Tobia Calogiuri et al. The multi-period p-center problem with time-dependent travel times. In: Computers & Operations Research 136 (2021), p. 105487. ISSN: 0305-0548. DOI: https://doi.org/10.1016/j.cor.2021.105487. URL: https://www.sciencedirect.com/science/article/pii/S0305054821002343.
- [4] Claudio Contardo, Manuel Iori, and Raphael Kramer. A scalable exact algorithm for the vertex p-center problem. In: Computers & Operations Research 103 (Mar. 2018). DOI: 10.1016/j.cor.2018.11.006.

References III

- Mark S. Daskin, Center Problems, In: Network and Discrete Location: Models. [5] Algorithms, and Applications, Second Edition. John Wiley & Sons, Ltd, 2013. Chap. 5, pp. 193–234. ISBN: 9781118537015. DOI: https://doi.org/10.1002/9781118537015.ch05.
- Sourour Elloumi, Martine Labbé, and Yves Pochet. A New Formulation and [6] Resolution Method for the p-Center Problem. In: INFORMS Journal on Computing 16 (Feb. 2004), pp. 83–94. DOI: 10.1287/ijoc.1030.0028.

References IV

- [7] Elisabeth Gaar and Markus Sinnl. A scaleable projection-based branch-and-cut algorithm for the p-center problem. In: European Journal of Operational Research 303.1 (2022), pp. 78–98. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2022.02.016.
- [8] S. L. Hakimi. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. In: Operations Research 12.3 (1964), pp. 450–459. DOI: 10.1287/opre.12.3.450.
- [9] Ronald McGarvey and Andreas Thorsen. Nested-Solution Facility Location Models. In: Optimization Letters 16 (Mar. 2022). DOI: 10.1007/s11590-021-01759-4.

References V

- [10] Gerhard Reinelt. TSPLIB—A Traveling Salesman Problem Library. In: ORSA Journal on Computing 3.4 (1991), pp. 376–384. DOI: 10.1287/ijoc.3.4.376.
- [11] Gary M. Roodman and Leroy B. Schwarz. Extensions of the Multi-Period Facility Phase-Out Model: New Procedures and Application to a Phase-In/Phase-Out Problem. In: A I I E Transactions 9.1 (1977), pp. 103–107. DOI: 10.1080/05695557708975128.
- [12] Gary M. Roodman and Leroy B. Schwarz. Optimal and Heuristic Facility Phase-out Strategies. In: A I I E Transactions 7.2 (1975), pp. 177–184. DOI: 10.1080/05695557508975000.

Decision variables $x_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables $X_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \end{cases}$ $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in } \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables $X_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \end{cases}$ $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$ z^h ... maximum distance between any customer i and its nearest open facility

in period h

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer i and its nearest open facility in period h

(nPC1) based on Daskin 2013

min
$$\sum z^h$$
 (6a)

s.t.
$$\sum_{j \in V} y_j^h = p^h \qquad \forall h \in \mathcal{H}$$
 (6b)

$$\sum_{j\in V} x_{ij}^h = 1 \qquad \forall i\in V, h\in \mathcal{H} \qquad (6c)$$

$$x_{ij}^h \leq y_j^h \qquad \forall i, j \in V, h \in \mathcal{H}$$
 (6d)

$$\sum_{j \in V} d_{ij} x_{ij}^h \le z^h \qquad \forall i \in V, h \in \mathcal{H} \qquad \text{(6e)}$$

$$y_j^h \ge y_j^{h-1} \quad \forall h \in \mathcal{H} \setminus \{1\}$$
 (6f)

$$(x,y,z)\in |V|^2|\mathcal{H}|\times |V||\mathcal{H}| imes \mathbb{R}_{\geq 0}$$
 (6g