ÖSTERREICHISCHES INGENIEUR-ARCHIV

HERAUSGEGEBEN VON

K. FEDERHOFER-GRAZ · P. FUNK-WIEN · W. GAUSTER-RALEIGH, USA.

K. GIRKMANN-WIEN · F. JUNG - WIEN · F. MAGYAR - WIEN

E. MELAN-WIEN · H. MELAN-WIEN

SCHRIFTLEITUNG

F. MAGYAR-WIEN

BAND XI, HEFT 3

MIT 34 TEXTABBILDUNGEN
(ABGESCHLOSSEN AM 11. NOVEMBER 1957)

WIEN SPRINGER-VERLAG 1957

Österreichische Ingenieur-Archiv

erscheint zwanglos nach Maßgabe der eingelaufenen Arbeiten in Heften von wechselndem Umfang, die in kurzer Folge zur Ausgabe gelangen. Diese Hefte werden zu Bänden von 25 bis 30 Bogen vereinigt. Der Preis eines Heftes richtet sich nach seinem Umfang und nach den entstandenen Herstellungskosten.

Die für das Österreichische Ingenieur-Archiv bestimmten Manuskripte sind

an die Schriftleitung des Österreichischen Ingenieur-Archive (Springer-Verlag)

Wien I, Mölkerbastei 5

zu senden, alle geschäftlichen Mitteilungen an

Springer-Verlag, Wien I, Mölkerbastei 5 Tel. 63 76 71, Telegrammadresse: Springerbuch Wien

Die Manuskripte können in deutscher, englischer oder französischer Sprache erscheinen. Es soll ihnen eine Zusammenfassung möglichst in diesen drei Sprachen vorangestellt werden. Eine Zusammenfassung ist auf jeden Fall vom Verfasser, und zwar in einem Höchstumfang von acht Schreibmaschinenzeilen mitzuliefern, ihre Übersetzungen werden nötigenfalls vom Verlag besorgt. Die Manuskripte sollen in klarer Ausdrucksweise und unter Weglassung jedes überflüssigen Ballastes abgefaßt sein. Die Abbildungen, deren Zahl möglichst klein gehalten werden soll, sind dem Manuskript auf gesonderten Blättern beizugeben. Autorenkorrekturen, d. h. nachträgliche Textänderungen, werden, soweit sie 10% der Satzkosten überschreiten, den Verfassern in Rechnung gestellt.

Grundsätzlich werden nur Arbeiten aufgenommen, die vorher weder im Inland noch im Ausland veröffentlicht worden sind: der Autor verpflichtet sich, diese auch nachträglich nicht anderweitig zu veröffentlichen. Mit der Annahme und Veröffentlichung des Manuskriptes geht das ausschließliche Verlagsrecht für alle Sprachen und Länder auf den Verlag über. Es ist ferner ohne ausdrückliche Genehmigung des Verlages nicht gestattet, photographische Vervielfältigungen, Mikrofilme n. ä. von Heften der Zeitschrift, einzelnen Beiträgen oder von Teilen daraus herzustellen. Die Autoren erhalten 75 Separata ihrer Arbeit kostenlos und können maximal weitere 125 Separata zum angemessenen Preis beziehen. Die Bestellung muß mit dem dem Fahnenabzug beiliegenden Bestellzettel bei der Rücksendung der korrigierten Fahnen erfolgen.

Der Verlag.

Band XI, Heft 3

Inhaltsverzeichnis

Originalarbeiten	Seite
E. Tremmel. Über die Anwendung der Plattentheorie zur Bestimmung von Wärmespannungsfeldern	
W. Eberl und G. Schneeweiß. Die Kontrolle der Druckfestigkeit von Beton durch Stichproben. 1. Teil. (Mit 10 Textabbildungen)	
G. Schumpich. Beitrag zur Kinetik und Statik ebener Stabwerke mit gekrümmten Stäben. (Mit 12 Textabbildungen)	
F. Selig und H. Fieber. Bemerkung zu: Wärmeleitprobleme mit zeitlich variabler Übergangszahl	
Helmut H. Korst. Zur theoretischen Bestimmung des Dellendruckes bei abgelöster Strömung. (Mit 9 Textabbildungen)	
E. Engel. Zur Biegungsbeanspruchung eines Seiles auf einer elastisch gefütterten Rolle. (Mit 3 Textabbildungen)	
R. Bruniak. Über die Ablösung der Grenzschicht beim Verdichtungsstoß	243
Buchbesprechungen Fuchs, O., Physikalische Chemie als Einführung in die chemische Technik (H. Nowotny-A. Maschka). — Green, H. L. und W. R. Lane, Particulate Clouds: Dusts, Smokes and Mists (F. Magyar). — Girkmann, K., Flächentragwerke. 4. Aufl. (G. Heinrich). — Hölemann, P., R. Hasselmann und Grete Dix, Die Messung von Flammen- und Detonationsgeschwindigkeiten bei der explosiven Zersetzung von Azetylen in Rohren (R. Bruniak). — Kruppa, E., Analytische und konstruktive Differentialgeometrie (W. Wunderlich)	

Über die Anwendung der Plattentheorie zur Bestimmung von Wärmespannungsfeldern

E. Tremmel, Salzburg

Zusammenfassung. Es werden die in prismatischen Körpern mit einfach zusammenhängenden Querschnitten und freien Mantelflächen von ebenen Temperaturfeldern hervorgerufenen Spannungszustände untersucht. Die den Randbedingungen genügende Airysche Spannungsfunktion entspricht der Biegefläche einer dem Querschnitt kongruenten, unverdrehbar gelagerten Platte, auf die eine der Laplace-Ableitung des Temperaturfeldes proportionale Belastung wirkt.

Für einen prismatischen oder zylinderförmigen, in der Richtung z erstreckten Körper mit einfach zusammenhängendem Querschnitt sei ein zweidimensionales instationäres Temperaturfeld $\vartheta(x,\,y,\,t)$ durch die Oberflächen- und Anfangsbedingungen sowie gegebene zeitabhängige Wärmequellenverteilungen $W(x,\,y,\,t)$ festgelegt. Aus der Lösung der Fourierschen Wärmeleitungsgleichung

$$\frac{1}{a} \frac{\partial \vartheta}{\partial t} = \Delta \vartheta + \frac{W}{\lambda},\tag{1}$$

in der mit a und λ Temperaturleitzahl bzw. Wärmeleitfähigkeit bezeichnet sind, folgt bei Berücksichtigung der mit den beliebigen Konstanten c_1 , c_2 , c_3 allgemein angeschriebenen Oberflächenbedingungen

$$c_1 \, \vartheta(s, t) + c_2 \left[\frac{\partial \vartheta(x, y, t)}{\partial n} \right]_s = c_3 \, f(s, t), \tag{2}$$

wobei s die von einem beliebigen Punkt aus gezählte Bogenlänge und n die Normale der Randkurve bedeuten, sowie der Anfangsbedingungen

$$t = 0: \vartheta = \vartheta_0(x, y) \tag{3}$$

für das gesuchte Temperaturfeld

$$\vartheta = \vartheta(x, y, t). \tag{4}$$

Zur Bestimmung des von dieser Temperaturverteilung hervorgerufenen Spannungszustandes ermitteln wir nach dem von E. Melan und H. Parkus¹ angegebenen Verfahren, das nachstehend kurz beschrieben werden soll, zunächst das thermischelastische Verschiebungspotential Φ ; seine Ableitungen nach den Koordinatenrichtungen sind Lösungen der auf Temperaturwirkungen erweiterten elastischen Grundgleichungen

$$\Delta u_i + \frac{1}{1 - 2\nu} \frac{\partial e}{\partial x_i} - \frac{2(1 + \nu)}{1 - 2\nu} \alpha \frac{\partial \theta}{\partial x_i} = 0;$$
 (5)

es gilt somit

$$\frac{\partial \Phi}{\partial x_i} = u_i,\tag{6}$$

¹ E. Melan-H. Parkus: Wärmespannungen, S. 6ff. Wien. 1953. Ingenieur-Archiv XI/3

wobei die Verschiebungskomponenten parallel zu den Achsen x_i des kartesischen Koordinatensystems in üblicher Weise mit u_i und die kubische Dilatation mit

$$e = \sum_{i=1}^{3} \frac{\partial u_i}{\partial x_i}$$

bezeichnet seien, ferner ν bzw. α Poissonsche Zahl bzw. Temperaturausdehnungskoeffizienten bedeuten. Die Einführung von (6) in (5) liefert die Differentialgleichung

$$\Delta \Phi = \frac{1+\nu}{1-\nu} \,\alpha \,\vartheta,\tag{7}$$

aus der das thermisch-elastische Verschiebungspotential bestimmt werden kann. Für die Spannungen erhält man aus (6) unter Berücksichtigung der Verzerrungs-Verschiebungsgleichungen

 $\varepsilon_{ik} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i} \right) \tag{8}$

sowie des Hookeschen Gesetzes

$$\sigma_{i\,k} = 2\,G \left[\varepsilon_{i\,k} + \left(\frac{\nu}{1 - 2\,\nu} \,e - \frac{1 + \nu}{1 - 2\,\nu} \,\alpha\,\vartheta \right) \delta_{i\,k} \right], \tag{9}$$

worin das Kronecker-Symbol mit δ_{ik} bezeichnet ist $\left(\delta_{ik} = \frac{1}{0} \begin{array}{c} i = k \\ i \neq k \end{array}\right)$, schließlich

$$\sigma_{i\,k} = +\,2\,G\Big(\frac{\partial^2\Phi}{\partial x_i\,\partial x_k} - \varDelta\Phi\,\delta_{i\,k}\Big). \tag{10}$$

Die gemäß (10) bestimmten Spannungen werden aber im allgemeinen den Randbedingungen nicht genügen. Fordern wir das Verschwinden der Normal- und Schubspannungen $\sigma_{n\,n}$ und $\sigma_{s\,n}$ an der freien Oberfläche, in unserem Falle demnach

$$\sigma_{nn}(s) = 0, \tag{11}$$

$$\sigma_{sn}(s) = 0 \tag{12}$$

längs der Randkurve s, dann haben wir eine Airysche Spannungsfunktion

$$F = 2G\Omega \tag{13}$$

mit

$$\Delta \Delta F = 0 \tag{14}$$

zu suchen, welche die zur Tilgung der aus (10) abgeleiteten Randwerte $\overline{\sigma}_{n\,n}$ und $\overline{\sigma}_{s\,n}$ erforderlichen Spannungen

$$\overline{\overline{\sigma}}_{n\,n} = -\,\overline{\sigma}_{n\,n},\tag{15}$$

$$\overline{\overline{\sigma}}_{s\,n} = -\,\overline{\sigma}_{s\,n} \tag{16}$$

liefert. Werden die aus (13) folgenden Spannungen

$$\overline{\overline{\sigma}}_{ik} = -2G \left(\frac{\partial^2 \Omega}{\partial x_i \, \partial x_k} - \Delta \, \Omega \, \delta_{ik} \right) \tag{17}$$

den aus dem thermisch-elastischen Verschiebungspotential mit (10) abgeleiteten Werten überlagert, so ist der endgültige, die Randbedingungen erfüllende Temperaturspannungszustand durch

$$\sigma_{i\,k} = \overline{\sigma}_{i\,k} + \overline{\overline{\sigma}}_{i\,k} = -2G \left[\frac{\partial^2 (\Omega - \Phi)}{\partial x_i \partial x_k} - \Delta (\Omega - \Phi) \delta_{i\,k} \right]$$
(18)

gegeben, wofür wir mit

$$\Psi = \Omega - \Phi \tag{19}$$

kürzer

$$\sigma_{ik} = -2G \left(\frac{\partial^2 \Psi}{\partial x_i \, \partial x_k} - \Delta \, \psi \, \delta_{ik} \right) \tag{20}$$

schreiben wollen. ψ ist daher eine Spannungsfunktion, die — wie aus (19) unter Beachtung von (14) sowie der aus (7) abgeleiteten Differentialgleichung

$$\Delta \Delta \Phi = \frac{1+\nu}{1-\nu} \propto \Delta \vartheta \tag{21}$$

hervorgeht — der inhomogenen Bipotentialgleichung

$$\Delta \Delta \Psi = -\frac{1+\nu}{1-\nu} \propto \Delta \vartheta \tag{22}$$

mit den längs des freien Randes geltenden (11) und (12) gleichwertigen Grenzbedingungen

$$\Psi = 0, (23)$$

$$\frac{\partial \Psi}{\partial n} = 0 \tag{24}$$

genügt.

Unter Verwendung von (1) erhält man für $\Delta\vartheta$ den Ausdruck

$$\Delta \vartheta = \frac{1}{a} \frac{\partial \vartheta}{\partial t} - \frac{W}{\lambda},\tag{25}$$

in dem die Laplacesche Ableitung des Temperaturfeldes durch den partiellen Differentialquotienten nach der Zeit sowie die Wärmequellenverteilung ausgedrückt wird, so daß (22) auch auf die Form

$$\Delta \Delta \Psi = \frac{1+\nu}{1-\nu} \alpha \left(-\frac{1}{a} \frac{\partial \theta}{\partial t} + \frac{W}{\lambda} \right) \tag{26}$$

gebracht werden kann.

Betrachten wir nun eine dünne, senkrecht zu ihrer Mittelebene belastete Platte von der gleichen Form wie der Querschnitt des hier untersuchten Körpers, die längs ihres Randes unverdrehbar gelagert ist. Nach der Kirchhoffschen Theorie besteht zwischen den auf die Breiteneinheit bezogenen Biege- und Torsionsmomenten $m_{i\,k}$ und den Verschiebungen $w(x,\,y,\,t)$ der Mittelfläche die Beziehung

$$m_{i\,k} = -N \left[\frac{\partial^2 w}{\partial x_i \, \partial x_k} (1 - v) - v \, \Delta w \, \delta_{i\,k} \right]; \tag{27}$$

 $(i=k\dots {\rm Biegemomente},\ i \neq k\dots {\rm Torsionsmomente});$ hierin bedeutet $N=\frac{E\ h^3}{12\ (1-v^2)}$ die Plattensteifigkeit. Setzen wir die Querzahl des im übrigen beliebigen Plattenmaterials, das also keineswegs mit dem Material des betrachteten Körpers übereinstimmen muß, gleich Null — über den Wert von N wird noch verfügt werden —, dann geht (27) in den einfachen Ausdruck

$$m_{i\,k} = -N \frac{\partial^2 w}{\partial x_i \, \partial x_k} \tag{28}$$

über.

Die Verschiebungen sind durch die Plattengleichung

$$\Delta \Delta w = \frac{1}{N} p(x, y, t) \tag{29}$$

— hiebei entspricht p der je Flächeneinheit wirkenden, zeitlich veränderlich angenommenen Belastung — sowie die Randbedingungen bestimmt. Zufolge der vorausgesetzten Einspannung gilt längs des Plattenumfanges s:

$$w = 0 \tag{30}$$

sowie

$$\frac{\partial w}{\partial n} = 0, \tag{31}$$

woraus mit (28) das Verschwinden der tangential an der Randkurve wirkenden Biegemomente m_{ss} und der Torsionsmomente m_{sn} folgt, mithin auch

$$m_{ss}(s) = 0 (32)$$

und

$$m_{sn}(s) = 0 \tag{33}$$

gelten muß.

Aus dem Vergleich von (22) mit (29) sowie von (23) bzw. (24) mit (30) bzw. (31) ist nun zu ersehen, daß die Differentialgleichungen der Spannungsfunktion ψ und der Biegefläche w gleichartig aufgebaut sind und die diesen Funktionen vorgeschriebenen Randbedingungen übereinstimmen.

Erstreckt sich diese Übereinstimmung auch auf die rechten Seiten der Differentialgleichungen (22) und (29), dann gehen die Funktionen ψ und w bis auf einen zur Erhaltung der Dimensionsrichtigkeit erforderlichen konstanten Faktor C ineinander über. Setzen wir also mit (22) und (29)

$$-\frac{1+\nu}{1-\nu} \propto \Delta \vartheta = \frac{C}{N} p(x, y, t), \tag{34}$$

mit anderen Worten: bringen wir auf die Platte eine fiktive, der Laplaceschen Ableitung des gegebenen Temperaturfeldes proportionale Belastung auf, dann kann die Spannungsfunktion mit

 $\Psi = C w \tag{35}$

durch die Biegefläche ausgedrückt werden. Da diese Ergebnisse offensichtlich auch für stationäre Temperaturverteilungen gelten, können wir behaupten:

Steht ein prismenförmiger Körper mit einfach zusammenhängendem Querschnitt und freier Mantelfläche unter dem Einfluß eines in der Längsrichtung unveränderlichen, sonst beliebigen stationären oder instationären Temperaturfeldes mit oder ohne Wärmequellen, dann ist der von diesem Feld hervorgerufene, den Randbedingungen genügende Spannungszustand durch die Biegefläche einer gedachten, längs des Querschnittrandes des Körpers eingespannten elastischen Platte, auf die eine der Laplaceschen Ableitung des Temperaturfeldes proportionale Belastung wirkt, vollständig bestimmt.

Zur Vereinfachung der praktischen Berechnung setzen wir für die Plattensteifigkeit N, die die Dimension eines Momentes, also Kraft \times Länge hat, unter Einführung der Konstanten C_1 , die dem Einheitsmoment entsprechen möge,

$$N = \frac{1 - \nu}{1 + \nu} \cdot \frac{1}{\alpha} C_1 \tag{36}$$

— unter v ist die Querzahl des behandelten Körpers zu verstehen — und wählen die in (35) auftretende Konstante C gleich der Längeneinheit; damit erhält man aus (34) die Größe der aufzubringenden Last dimensionsrichtig, das heißt als Kraft je Flächeneinheit, zu

$$p = -\frac{C_1}{C} \Delta \vartheta. \tag{37}$$

Mit dieser Belastung also könnte die Biegefläche w(x, y, t) bestimmt, aus ihr gemäß (35) die Spannungsfunktion $\psi(x, y, t)$ und schließlich nach (20) das Spannungsfeld berechnet werden.

Praktisch wäre mit diesem Verfahren nichts gewonnen, da das Aufsuchen einer die Randbedingungen (30) und (31) befriedigenden Lösung von (29) die gleichen Schwierigkeiten mit sich bringt, wie die Bestimmung einer Spannungsfunktion F gemäß (13), die die zur Tilgung der Randwerte $\overline{\sigma}_{nn}(s)$ und $\overline{\tau}_{sn}(s)$ erforderlichen Spannungen $\overline{\overline{\sigma}}_{nn}(s)$ und $\overline{\tau}_{sn}(s)$ liefert.

Abgesehen davon, daß das hier erörterte Plattengleichnis die experimentelle Abschätzung derartiger Temperaturspannungszustände gestattet, besteht der Vorteil seiner Anwendung vor allem in der Möglichkeit, die zahlreichen zur Berechnung querbelasteter elastischer Platten entwickelten Verfahren² und Hilfsmittel bei der Lösung ebener Wärmespannungsprobleme zu verwerten.

Die für einzelne Plattenformen, wie Rechteck, Kreis usw., berechneten Einflußfelder der wichtigsten Schnittgrößen - wir denken hier etwa an das von A. Pucher³ verfaßte Werk - erlauben die rasche Bestimmung der Momente für eine beliebige Belastung. Handelt es sich dagegen um besondere Querschnitte, für die keine gleichwertige Plattenlösung existiert, dann kann zur Ermittlung der Schnittmomente gegebenenfalls das zur Untersuchung von Gewölbestaumauern entwickelte Versuchslastverfahren (Trial load method⁴) angewandt werden. Die Platte wird hierbei durch zwei einander rechtwinkelig kreuzende Scharen lückenlos aneinander liegender, beidseitig eingespannter Träger von der Breite 1 ersetzt gedacht und die durch das Aufbringen der Belastung auf eine der beiden voneinander unabhängig angenommenen Trägerscharen gestörte Kontinuität durch passend gewählte Last- und Torsionsmomentenverteilungen wieder hergestellt. Auch hier läßt sich der Rechenaufwand bei ausreichender Genauigkeit etwa durch Verwendung von Einflußlinien gegenüber der im allgemeinen äußerst mühsamen unmittelbaren Lösung des Scheibenproblems, für das kaum Hilfsmittel zur Verfügung stehen, wesentlich verringern.

Auf die Möglichkeit, ebene Spannungsaufgaben durch Zurückführung auf Plattenprobleme zu lösen, hat A. Timpe⁵ schon vor mehr als fünfzig Jahren hingewiesen. In den von ihm und anderen Autoren, wie K. Wieghardt⁶, H. M. Westergaard⁷, H. Cranz⁸ untersuchten Fällen handelt es sich allerdings nicht um Temperaturspannungszustände, sondern um die Beanspruchung verschiedener unter äußerer Belastung stehender Querschnitte. Am belasteten Rand sind hier also die den auf die Scheibe wirkenden Normal- und Schubspannungen entsprechenden Ableitungen der Biegefläche vorgegeben, während die unbelasteten Bereiche des Plattenrandes wieder als eingespannt anzusehen sind.

So wurde z. B. der im Mittelguerschnitt des Boulderdams⁴ vom Wasserdruck bewirkte Beanspruchungszustand mit Hilfe des Plattengleichnisses unter Anwendung

des oben beschriebenen Versuchslastverfahrens berechnet.

Untersuchungen von Wärmespannungsfeldern in der hier geschilderten Art dürften dagegen bisher noch nicht vorgenommen worden sein9.

³ A. Pucher: Einflußfelder elastischer Platten. Wien. 1951.

⁷ H. M. Westergaard: Computation of Stresses... Publ. Roads 1—23 (March 1930). 8 H. Cranz: Die experimentelle Bestimmung der Airyschen Spannungsfunktion mit Hilfe

des Plattengleichnisses. Ingenieur-Arch. 10, S. 159ff. (1939).

² Vgl. K. Girkmann: Flächentragwerke, 4. Aufl., S. 159ff. Wien. 1956.

⁴ Stress studies for Boulder Dam, Boulder Canyon Project, Final reports, Denver, Coll., U. S. A. 1939, S. 119ff.

⁵ A. Timpe: Probleme der Spannungsverteilung in ebenen Systemen, S. 6. Leipzig. 1905. ⁶ K. Wieghardt: Über ein neues Verfahren... Forschungsarb. Ingenieurwes. H. 49, S. 15f.

⁹ In einer dem Verfasser erst während der Drucklegung der vorliegenden Arbeit bekanntgewordenen Abhandlung von W. Novacki, Warschau (Abhandl. IVBH, Bd. 16, Zürich 1956), wird das durch stationäre Wärmequellen in Scheiben hervorgerufene thermisch-elastische Verschiebungspotential mit den Durchbiegungen einer dünnen, frei aufliegenden Platte in Beziehung gesetzt [s. unsere Gl. (21)]. Unter der Annahme, daß längs des Randes $\vartheta=0$ gilt, verschwinden die Randnormalspannungen; zur Tilgung der Randschubspannungen Gl. (12) muß allerdings ein zusätzlicher, aus einer Airyschen Spannungsfunktion abgeleiteter Spannungszustand eingeführt werden. Während hier also der endgültige, den Randbedingungen genügende Spannungszustand aus den Momenten der unverdrehbar gelagerten Platte berechnet wird, verwendet W. Novacki die Plattenanalogie lediglich zur Bestimmung des thermisch-elastischen

Mit Hilfe der Plattenanalogie läßt sich aber auch das durch Wärmeleitungsgleichung und Randbedingungen bestimmte, in den Querschnitten eines prismatischen Körpers auftretende zweidimensionale Temperaturfeld statisch deuten: Die dem Querschnitt entsprechende, längs ihres Randes hier frei verdrehbar gelagerte Platte stellt sich unter einer der Laplaceschen Ableitung der Temperaturverteilung proportionalen Belastung sowie bestimmter von den Oberflächenbedingungen abhängiger Randmomentenverteilungen so ein, daß das skalare, von der Momentensumme gebildete Feld bis auf einen Proportionalitätsfaktor und lineare Glieder mit dem Temperaturfeld übereinstimmt. Für die als Momentensumme $m=m_{x\,x}+m_{y\,y}$ bezeichnete skalare Invariante des Momententensors gilt nach H. Marcus die Differentialgleichung

$$\Delta m = -p; \tag{a}$$

nach (34) ist aber -p der positiven Laplaceschen Ableitung des Temperaturfeldes proportional, so daß (a) bis auf einen konstanten Faktor in die Differentialgleichung der Wärmeleitung (1) übergeht; die zur Erfüllung der Randbedingungen (2) erforderlichen Randmomentenverteilungen, in denen wir m anstatt ϑ zu schreiben haben, lassen die Differentialgleichung unverändert. Differentialgleichung und Randbedingungen von ϑ und m stimmen daher überein, so daß zwischen der Momentensumme und dem Temperaturfeld die Beziehung

$$\vartheta = A m \tag{b}$$

besteht, wobei konstante und lineare Glieder außer acht bleiben.

Zur Vermeidung von Unklarheiten bei der Umrechnung der Schnittmomente m_{xx} , m_{yy} , m_{xy} auf die Scheibenspannungen σ_{xx} , σ_{yy} , τ_{xy} soll nun die aus (35) mit (20) und (28) folgende Beziehung zwischen dem Momententensor der Platte und dem Spannungstensor der Scheibe aufgestellt werden.

Wir führen hierzu (35) in (20) ein und erhalten

$$\sigma_{i\,k} = -\,2\,G\,C\,\Big(rac{\partial^2 w}{\partial x_i\,\partial x_k} - \Delta\,w\,\delta_{i\,k}\Big),$$
 (38)

während für die Schnittmomente gemäß (28)

$$m_{i\,k} = -N \frac{\partial^2 w}{\partial x_i \, \partial x_k} \tag{28a}$$

gilt. Mit Hilfe des ε-Tensors der Ebene¹⁰, der durch

$$\varepsilon_{ik} = \begin{cases} 0 & \text{für } i = k, \\ +1 & \text{für } i = 1, \ k = 2, \\ -1 & \text{für } i = 2, \ k = 1 \end{cases}$$
(39)

definiert ist, können wir die in (38) und (28a) rechts stehenden Differentialausdrücke miteinander verknüpfen, und zwar gilt — wenn wir die Indizes i und k in (28a) durch p und q ersetzen —

$$\frac{\partial^2 w}{\partial x_i \, \partial x_k} - \Delta w \, \delta_{ik} = \varepsilon_{ip} \, \varepsilon_{kq} \, \frac{\partial^2 w}{\partial x_p \, \partial x_q}, \tag{40}$$

so daß die Scheibenspannungen durch die Schnittmomente in der allgemeinen, für beliebige orthogonale Koordinatensysteme geltenden Form

$$\sigma_{ik} = \frac{2 G C}{N} \varepsilon_{ip} \varepsilon_{kq} m_{pq} \tag{41}$$

Verschiebungspotentials und erfüllt die Randbedingungen nach den üblichen Verfahren der Scheibentheorie.

¹⁰ A. Duschek-A. Hochrainer: Grundzüge der Tensorrechnung, II. Bd., S. 209. Wien. 1950. ausgedrückt werden können. Setzen wir noch für N aus (36) ein und fassen die in (41) rechts stehenden Faktoren zu einer neuen Konstanten

$$K = \frac{2GC}{N} = 2G\frac{C}{C_1} \frac{1+\nu}{1-\nu} \alpha \tag{42}$$

von der Dimension $[l^{-2}]$ zusammen, so folgt weiter

$$\sigma_{ik} = K \, \varepsilon_{ip} \, \varepsilon_{kq} \, m_{pq} \tag{43}$$

und wir gelangen nach Ausführung der Tensormultiplikationen zu den speziellen Umrechnungsformeln

$$\sigma_{xx} = + K m_{yy}, \tag{44}$$

$$\sigma_{yy} = + K m_{xx}, \tag{45}$$

$$\tau_{xy} = -K \, m_{yx} = -K \, m_{xy}. \tag{46}$$

Die Normalspannungen sind demnach proportional den in ihre Richtung fallenden Momentenvektoren, während die Schubspannungen durch die gleiche Proportionalitätskonstante mit den negativen Vektoren der Torsionsmomente verknüpft sind. Die größten Randspannungen σ_{ss} werden daher den größten Einspannmomenten proportional sein.

Betrachten wir noch kurz die durch (37) gegebene Belastungsfunktion. Wird die Laplacesche Ableitung des Temperaturfeldes mit (25) durch Zeitableitung und Wärmequellenverteilung ausgedrückt, so geht (37) über in

$$p = -\frac{C_1}{C} \left(\frac{1}{a} \frac{\partial \theta}{\partial t} - \frac{W}{\lambda} \right). \tag{37a}$$

Bei den in der Technik untersuchten thermischen Erscheinungen handelt es sich nun zumeist um Abklingungsvorgänge; das Temperaturfeld ist dann — falls eine Produktdarstellung möglich ist — etwa in der Form

$$\vartheta = \vartheta_1 * (x, y) e^{-\varkappa_1 t} + \vartheta_2 * (x, y) e^{-\varkappa_2 t}$$

gegeben, wobei die beiden Terme ϑ_1^* und ϑ_2^* im allgemeinen durch mehrfache Reihen ausgedrückt sein werden. Im Falle einer Wärmeabgabe an der Oberfläche wird die Zeitableitung des Temperaturfeldes gegen die Außenfläche zu stärker abfallen, woraus im allgemeinen auf eine Vergrößerung der Einspannmomente und damit auch der Randspannungen geschlossen werden kann. Punktförmige Wärmequellen bzw. -senken, also etwa in der Längsrichtung des prismatischen Körpers angeordnete Heiz- oder Kühlrohre, sind als Einzellasten, die auf das Flächenelement $dx \cdot dy$ der Platte wirken, aufzufassen; über endliche Bereiche wirkende Quellen oder Senken entsprechen demgemäß Lastverteilungen. Handelt es sich, wie z. B. beim Abbinden des Betons der annähernd prismatischen Baublöcke von Talsperren, um Aufheizungsvorgänge zufolge gleichmäßig über den Querschnitt verteilter Wärmequellen, dann wird die Platte neben der dem zeitlichen Temperaturgefälle $\frac{\partial \vartheta}{\partial t}$ proportionalen Lastverteilung durch eine der Quellintensität je Flächeneinheit entsprechende Belastung beansprucht. Bei stationären Aufheizungsvorgängen dieser Art ist der Spannungszustand des Querschnittes daher allein durch die Biegefläche der unter Vollast stehenden Platte bestimmt.

In diesem Zusammenhang sei noch erwähnt, daß der von E. Melan¹¹ allgemein bewiesene Satz, nach dem ein ebenes Feld bei stationärer und quellenfreier Temperaturverteilung spannungsfrei bleibt, mit Hilfe der Plattenanalogie für einfach zusammen-

¹¹ E. Melan: Temperaturverteilungen ohne Wärmespannungen. Österr. Ingenieur-Arch. 6, 1 (1951).

hängende Bereiche offensichtlich statisch gedeutet werden kann. Bei stationärem Temperaturfeld, das heißt bei $\frac{\partial \vartheta}{\partial t} = 0$ reduziert sich die durch (37a) gegebene Belastung auf $p = +\frac{C_1}{C} \cdot \frac{W}{\lambda}$; sind keine Quellen vorhanden, dann bleibt die Platte unbelastet und der Querschnitt des prismatischen Körpers somit spannungsfrei.

(Eingegangen am 2. April 1957)

Die Kontrolle der Druckfestigkeit von Beton durch Stichproben. 1. Teil

Von W. Eberl und G. Schneeweiß

Mit 10 Textabbildungen

Zusammenfassung. In dem vorliegenden 1. Teil der Arbeit wird die an Betonprobekörpern beobachtete Streuung der Druckfestigkeit mit Hilfe der Varianzanalyse in ihre auf verschiedene Ursachen zurückgehenden Streuungsanteile aufgespalten. In einem bald folgenden 2. Teil werden die hier erzielten Ergebnisse für die Entwicklung eines stichprobenweisen Prüfverfahrens von Beton nutzbar gemacht werden, das sowohl der technischen Forderung nach Sicherheit als auch dem wirtschaftlichen Verlangen nach möglichst geringen Herstellungs- und Prüfkosten in gleicher Weise Rechnung trägt. Die Ergebnisse der Arbeit sollen eine mathematisch fundierte Stellungnahme zu den bestehenden deutschen und österreichischen Normen ermöglichen.

I. Einleitung

A. Übersicht

In dieser Arbeit wird im Anschluß an 1 untersucht, auf welche Weise und mit welchem Erfolg sich die Methoden der Stochastik (Wahrscheinlichkeitsrechnung und mathematische Statistik) auf die seit langem gebräuchliche stichprobenweise Kontrolle der Druckfestigkeit von Beton nutzbar machen lassen. Die Verfasser danken dem Vorstand der Technischen Versuchs- und Forschungsanstalt der Technischen Hochschule Wien, Herrn Prof. Dr. Slattenschek, bestens für die großzügige und wohlwollende Förderung bei der Durchführung dieser Untersuchung.

Der vorliegende erste Teil behandelt die der Druckfestigkeit von Beton zugrunde liegenden Wahrscheinlichkeitsverteilungen. Er zeigt, wie man in Form einer Streuungszerlegung die an Probekörpern festgestellte Gesamtstreuung der Druckfestigkeit in ihre auf verschiedene Ursachen zurückgehenden Streuungsanteile aufspalten kann. Im demnächst erscheinenden zweiten Teil werden diese Ergebnisse für eine die technischen und wirtschaftlichen Erfordernisse in gleicher Weise berücksichtigende

Methode der stichprobenweisen Betonprüfung verwertet werden.

Vom technischen Standpunkt aus wird im strengsten Fall verlangt, daß die Druckfestigkeit des Betons an keiner Stelle bestimmte Sollwerte unterschreitet. Das wird erreicht, wenn der Mittelwert der Druckfestigkeiten so groß ist, daß trotz der Streuung der Druckfestigkeiten die Wahrscheinlichkeit einer Unterschreitung der Sollwerte mit hinreichender Sicherheit vernachlässigt werden kann. Einer großen Streuung muß in diesem Fall durch einen entsprechend hohen Mittelwert Rechnung getragen werden.

Aus wirtschaftlichen Gründen wird man hingegen versuchen, den Mittelwert der Druckfestigkeiten möglichst niedrig zu wählen. Dies ist mit den technischen Anforderungen nur dann in Einklang zu bringen, wenn man die Streuung der Druck-

¹ E. Tremmel-A. Wogrin: Mathematisch-statistische Auswertung der Güteprüfungen von Massenbeton. Bauing. 30, 28-32 (1955).

festigkeiten klein hält. Die Grenzen, bis zu denen eine solche Verringerung der Streuung getrieben werden soll, bestimmen sich wiederum durch wirtschaftliche Erwägungen.

B. Das Zahlenmaterial

Die Meßwerte in Tab. 1 sind die Druckfestigkeiten in kg/cm² von Betonwürfeln mit 20 cm Kantenlänge. Sie wurden im Rahmen der laufend durchgeführten Güteprüfungen von Beton ermittelt und sind nach Betonwerken (W_1 bis W_7) und Stichproben geordnet. Eine Stichprobe umfaßt jeweils drei Meßwerte, die an Probekörpern aus derselben Mischung gewonnen wurden. Die Numerierung der Stichproben entspricht der zeitlichen Reihenfolge der Herstellung und Prüfung der Mischungen, wobei von jedem Betonwerk etwa eine Mischung wöchentlich untersucht wurde.

Tabelle 1. Druckfestigkeiten in kg/cm² von Betonwürfeln mit 20 cm Kantenlänge von 7 Betonwerken

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Betonwerk			
2 324 307 308 265 264 177 334 260 271 378 385 404 381 340 380 226 207 213 268 268 256 3 235 228 237 193 206 240 209 215 230 389 324 334 406 400 427 405 314 300 246 278 243 4 317 346 276 292 278 276 242 292 252 254 290 309 359 298 339 118 105 113 176 176 176 5 299 284 293 281 291 321 176 164 170 204 218 201 399 363 409 315 338 358 383 359 378 6 330 376 381 290 279 232 211 198 210 252 272 258 322 335 305 215 195 206 210 229 242 7 333 389 371 361 320 398 238 268 267 362 351 360 379 333 322 256 247 257 278 294 284 8 333 343 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 453 466 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170		\overline{W}_1	W_2	W_3	W_{4}	W_5	W 6	W ₇
2 324 307 308 265 264 177 334 260 271 378 385 404 381 340 380 226 207 213 268 268 256 3 235 228 237 193 206 240 209 215 230 389 324 334 406 400 427 405 314 300 246 278 243 4 317 346 276 292 278 276 242 292 252 254 290 309 359 298 339 118 105 113 176 176 176 5 299 284 293 281 291 321 176 164 170 204 218 201 399 363 409 315 338 358 383 359 378 6 330 376 381 290 279 232 211 198 210 252 272 258 322 335 305 215 195 206 210 229 242 7 333 389 371 361 320 398 238 268 267 362 351 360 379 333 322 256 247 257 278 294 284 8 333 343 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 453 466 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170	1	259 209 269	951 919 946	909 179 919	250 956 920	900 210 216	000 000 051	070 004 070
3 235 228 237 193 206 240 209 215 230 389 324 334 406 400 427 405 314 300 246 278 243 4 317 346 276 292 278 276 242 292 252 254 290 309 359 288 339 118 105 113 176 176 178 5 299 284 293 281 291 321 176 164 170 204 218 201 399 363 409 315 338 358 383 359 378 6 330 376 381 290 279 232 211 198 210 252 272 258 322 335 305 215 195 206 210 229 242 7 333 389 371 361 320 398 238 258 267 362 351 350 379 333 322 256 247 257 278 294 284 8 333 343 64 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 489 401 209 184 177 202 180 186 322 370 324 353 307 282 256 270 251 193 204 184 10 434 554 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 257 302 320 272 252 232 189 174 190 243 255 256 281 315 36 262 224 256 320 358 344								
4 317 346 276 292 278 276 242 292 252 254 290 309 359 298 339 118 105 113 176 176 178 5 299 284 293 281 291 321 176 164 170 204 218 201 399 363 409 315 338 358 383 359 378 6 330 376 381 290 279 232 211 188 210 252 272 258 322 335 305 215 195 206 210 229 242 229 242 7 333 389 371 361 320 398 238 258 267 362 351 350 379 333 322 256 247 257 278 294 284 8 333 343 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 489 401 209 184 177 202 190 186 322 370 324 353 307 282 256 270 251 193 204 184 10 434 354 366 167 176 205 220 186 228 343 294 298 363 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 266 281 315 366 262 224 256 30 368 344								
5 299 284 293 281 291 321 176 164 170 204 218 201 399 363 409 315 388 358 383 359 378 6 330 376 381 290 279 232 211 198 210 252 272 258 322 335 305 215 195 206 210 229 242 7 333 389 371 361 320 398 238 258 267 362 351 350 379 333 322 256 247 257 278 294 284 8 333 34 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 247 27 278 294 284 10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 366 262 224 256 320 358 34 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 281 243 245 280 149 25 180 169 164<		1						
6 330 376 381 290 279 232 211 198 210 252 272 258 322 335 305 215 195 206 210 229 42 278 294 284 8 333 384 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 278 294 284 9 443 489 401 209 184 177 202 190 186 322 370 324 353 307 282 256 270 251 193 204 184 10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 125 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 336 262 224 256 320 358 344 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 366 305 35 3646 367 3740 141		1						
7 333 389 371 361 320 398 238 258 267 362 351 350 379 333 322 256 247 257 278 294 284 8 333 384 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 489 401 209 184 177 202 190 186 282 370 324 353 307 282 256 270 251 193 204 184 10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 336 262 224 256 320 358 344 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 164 132 232 215 202								
8 333 334 364 235 210 228 239 209 223 270 240 245 376 403 375 183 223 264 246 240 272 9 443 489 401 209 184 177 202 190 186 322 370 324 353 307 282 256 270 251 193 204 184 10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 135 336 262 224 256 320 358 344 13 453 458 410 206 202 208 303 345 292 268 271 278 264 249 256 201 200 201 170 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146								
9 443 489 401 209 184 177 202 190 186 322 370 324 353 307 282 256 270 251 193 204 184 10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 336 262 224 256 320 358 344 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 231 5202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 247 242 466		•						
10 434 354 366 167 176 205 220 186 228 343 294 298 336 392 391 196 239 236 135 147 152 11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 336 262 224 256 320 358 344 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 247 253 277 18 353 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21								
11 328 341 374 208 163 194 203 209 211 261 252 245 361 361 321 165 159 158 169 185 170 12 279 302 320 272 252 232 189 174 190 243 255 256 281 315 336 262 224 256 320 358 344 13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 20 239 349 315 207 167 225 264 290 279 282 277 285 472 422 466 302 320 284 23 328 302 316								
13 453 458 410 206 202 208 300 345 292 268 271 278 264 249 256 201 200 201 170 178 164 14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 366 317 410 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 23 328 302 316 204 196 203 234 214 224 250 234 221 260 256 256 24 285 285 303 264 338 261 354 362 362	11	328 341 374	208 163 194	203 209 211			165 159 158	169 185 170
14 261 279 244 265 279 262 255 259 250 318 285 288 281 243 275 180 169 164 199 214 196 15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 316 286 311 276 304 286 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 272 317 250 242 274 250 242 274 283 260 295 28 322 386	12	279 302 320	272 252 232	189 174 190	243 255 256	281 315 336	262 224 256	320 358 344
15 353 345 361 240 250 249 291 298 295 306 326 305 366 317 410 134 146 132 232 215 202 16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 272 317 250 242 274 250 242 274 297 282 290 27 246 272 317 250 242 274 250 242 274 283 260 295 353 358 382 29 378 368 353 30 419 344 355	13	453 458 410	206 202 208	300 345 292	268 271 278	264 249 256	201 200 201	170 178 164
16 301 402 379 231 239 264 167 162 163 353 350 346 410 370 313 141 164 171 138 138 146 17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 316 290 293 23 328 302 316 204 196 203 234 214 224 222 303 337 24 285 285 303 264 272 317 250 242 274 250 242 274 297 282 290 27 246 272 317 250 242 274 250 242 274 283 260 295 353 358 382 29 378 368 353 30 419 344 355 290 301 294 283 260 295	14		265 279 262	255 259 250	318 285 288	281 243 275	180 169 164	199 214 196
17 250 230 278 244 238 213 243 235 251 274 253 277 384 318 336 226 216 198 244 252 277 18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 316 290 293 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 264 338 261 354 362 362 25 314 318 355 206 239 239 244 250 244 297 282 290 27 246 272 317 250 242 274 250 242 274 283 260 295 28 322 386 328 290 301 294 283 260 295 378 368 353 30 419 344 355 363 353 353 358 382	15	353 345 361	240 250 249	291 298 295	306 326 305	366 317 410	134 146 132	232 215 202
18 335 342 300 262 281 273 226 215 225 264 293 274 307 328 321 276 304 286 19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 318 165 23 328 302 316 204 196 203 234 214 224 322 303 337 264 338 261 354 362 362 25 314 318 355 206 239 239 244 250 244 297 282 290 27 246 272 317 250 242 274 250 242 274 283 260 295 28 322 386 328 290 301 294 283 260 295 39 378 368 353 30 419 344 355	16	301 402 379	231 239 264	167 162 163	353 350 346	410 370 313	141 164 171	138 138 146
19 290 352 358 222 212 203 264 290 279 282 277 285 472 422 466 302 320 285 20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 382 336 330 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 266 239 239 354 362 362 25 314 318 355 206 239 239 244 250 244 297 282 290 27 246 272 317 250 242 274 283 260 295 28 322 386 328 290 301 294 283 260 295 29 378 368 353 30 419 344 355	17		244 238 213	243 235 251	274 253 277		226 216 198	
20 239 349 315 207 167 225 206 189 190 255 262 266 316 286 311 316 290 293 21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 382 336 330 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 354 362 362 25 314 318 355 204 196 203 244 250 244 297 282 290 27 246 272 317 250 242 274 250 242 274 283 260 295 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355 353 358 382	18	335 342 300	262 281 273	226 215 225	264 293 274	307 328 321		
21 359 397 394 287 295 265 233 264 280 250 234 221 260 256 256 22 324 336 352 236 245 239 306 295 308 382 336 330 184 183 165 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 354 362 362 366 295 308 382 306 305 321 266 239 239 236 242 274 250 242 274 250 242 274 297 282 290 283 260 295 381 361 335 283 260 295 283 260 295 353 358 382 <td< td=""><td>19</td><td>290 352 358</td><td>222 212 203</td><td>264 290 279</td><td>282 277 285</td><td></td><td></td><td></td></td<>	19	290 352 358	222 212 203	264 290 279	282 277 285			
22 324 336 352 236 245 239 306 295 308 382 336 330 184 183 165 23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 354 362 362 25 314 318 355 206 239 239 236 305 321 26 271 245 209 244 250 244 297 282 290 27 246 272 317 250 242 274 381 361 335 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355		1	207 167 225	,				
23 328 302 316 204 196 203 234 214 224 322 303 337 24 285 285 303 264 338 261 354 362 362 25 314 318 355 206 239 239 236 305 321 26 271 245 209 244 250 244 297 282 290 27 246 272 317 250 242 274 381 361 335 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355 353								
24 285 285 303 264 338 261 354 362 362 25 314 318 355 206 239 239 336 305 321 26 271 245 209 244 250 244 297 282 290 27 246 272 317 250 242 274 381 361 335 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355 353 358 382								184 183 165
25 314 318 355 206 239 239 336 305 321 26 271 245 209 244 250 244 297 282 290 27 246 272 317 250 242 274 381 361 335 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355 353 358 382				204 196 203				
26 271 245 209 27 246 272 317 28 322 386 328 29 378 368 353 30 419 344 355 244 250 244 274 282 290 250 242 274 283 361 335 290 301 294 283 260 295 353 358 382								
27 246 272 317 250 242 274 381 361 335 28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355 353 358 382								
28 322 386 328 290 301 294 283 260 295 29 378 368 353 353 358 382 30 419 344 355								
29 378 368 353 353 358 382 353 358 382 364 355 378 368 353 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368 368 378 368								
30 419 344 355					290 301 294			
						303 308 382		
31 322 347 280								
	31	322 347 280	·					

Allgemein wird die Druckfestigkeit des k-ten Probewürfels aus der j-ten Stichprobe des i-ten Betonwerkes W_i mit x_{ijk} bezeichnet. Stehen die Ergebnisse von a Betonwerken W_1, \ldots, W_a zur Verfügung, so läuft i von 1 bis a. Da nicht vorausgesetzt wird, daß von jedem Betonwerk gleichviele Stichproben vorliegen, ist $j=1,\ldots,b_i$, wo b_i die Anzahl der Stichproben von W_i bedeutet. Dagegen soll jede Stichprobe den gleichen Umfang c haben, also $k=1,\ldots,c$. In Tab. 1 ist a=7, die b_i sind der Reihe nach 31, 20, 23, 28, 29, 17 und 22, únd c=3.

C. Die Wahrscheinlichkeitsverteilungen

Es wird nun die für die Anwendbarkeit der Stochastik grundlegende Annahme gemacht, daß die Zahlen von Tab. 1 Beobachtungen von Zufallsgrößen sind. Diese haben folgende Wahrscheinlichkeitsverteilungen (Wvn):

1. Die Wvn der Druckfestigkeiten innerhalb der Mischungen, kurz Mischungsverteilungen. Für eine bestimmte Mischung besteht eine stetige Wv

Abb. 1. — Wvn der x_{ijk} in fünf Mischungen des *i*-ten Betonwerkes; ------ Wvn der μ_{ij} im *i*-ten Betonwerk; ------ Wv der μ_i

für die Druckfestigkeit eines beliebig herausgegriffenen Probekörpers. Von der stochastischen Abhängigkeit der Druckfestigkeiten innerhalb einer Stichprobe wird abgesehen, indem die Menge der Mischung als groß angenommen wird. Der Mittelwert dieser Wv heißt Mischungsmittelwert, die Streuung Mischungsstreuung. Handelt es sich um die j-te Mischung des i-ten Betonwerkes W_i , so wird dieser Mittelwert mit μ_{ij} , die Streuung mit σ_{ij}^2 bezeichnet.

- 2. Die Wvn der Mischungsmittelwerte innerhalb der Baustellen (= Betonwerke). Für jedes W_i besitzen die in 1 eingeführten Mischungsmittelwerte μ_{ij} eine stetige Wv mit dem Betonwerksmittelwert μ_i und der Streuung σ_i^2 .
- 3. Die Wv der Betonwerksmittelwerte. Die in 2 beschriebenen Betonwerksmittelwerte μ_i unterliegen einer stetigen Wv mit dem Gesamtmittelwert μ_0 und der Streuung σ_0^2 .

Die Mittelwerte und Streuungen der unter 1, 2 und 3 angeführten Wvn sind unbekannte Parameter von stetigen Wvn. Sie können mit Hilfe geeigneter Funktionen der x_{ijk} geschätzt, aber nicht berechnet werden und sind von ihren Schätzwerten begrifflich scharf zu trennen.

Abb. 1 stellt einige dieser Wvn dar: Die fünf durchgezogenen Kurven der oberen Reihe geben die Wahrscheinlichkeitsdichten der Druckfestigkeiten x_{ijk} , $j=1,\ldots,5$, für fünf Mischungen des i-ten Betonwerkes wieder. Die strichlierte Kurve rechts deutet die Wahrscheinlichkeitsdichte der Mischungsmittelwerte μ_{ij} von W_i an. In entsprechender Weise enthält die untere Reihe zu den Wahrscheinlichkeitsdichten der Mischungsmittelwerte für drei beliebige Betonwerke die strichpunktiert wiedergegebene Wahrscheinlichkeitsdichte der Betonwerksmittelwerte μ_i mit dem Gesamtmittelwert μ_0 .

 σ_{ij}^2 , σ_i^2 und σ_0^2 sind, roh gesprochen, Maße für die Breite der entsprechenden Verteilungskurven, die natürlich durchaus nicht symmetrisch sein müssen.

 σ_0^2 besitzt eine geringe technische Bedeutung.

In σ_i^2 kommen alle Unterschiede in der Art, Menge und dem Zustand der Betonkomponenten, aber auch die von Mischung zu Mischung auftretenden Ungleichmäßigkeiten in der Herstellung, Lagerung und Prüfung der Probekörper zum Ausdruck.

Durch σ_{ij}^2 werden die Schwankungen der Druckfestigkeit zwischen Probekörpern derselben Mischung gekennzeichnet. σ_{ij}^2 wird im wesentlichen von der Gleichmäßigkeit der Durchmischung abhängen.

Mit Schätzwerten für σ_i^2 und σ_{ij}^2 werden also auch Maße für die Zielsicherheit der Betonzusammensetzung und die Gleichmäßigkeit der Betondurchmischung gewonnen. Die Ermittlung dieser Schätzwerte erfolgt mit Hilfe von Streuungszerlegungen (Varianzanalysen).

D. Unabhängigkeit von der Zeit

Einer statistischen Auswertung des Zahlenmaterials von Tab. 1 muß die Untersuchung vorangehen, ob sich die in C 1 und C 2 beschriebenen Wvn nicht etwa im Zeitraum, über den sich die Messungen erstrecken, in systematischer, das heißt zeitabhängiger Weise geändert haben. Drei Beispiele sollen zeigen, wie es zu solchen Änderungen kommen kann:

- 1. Ein Betonwerk W_i hat seine veralteten Mischaggregate durch neue ersetzt und dadurch eine wesentliche Verringerung der Mischungsstreuungen σ_{i1}^2 , σ_{i2}^2 , . . . erzielt.
- 2. Infolge mehrmaliger Beanstandung von Probewürfeln wegen zu geringer Druckfestigkeit steigen die Mischungsmittelwerte μ_{i1} , μ_{i2} , . . . des Betonwerkes W_i in mehr als zufälliger Weise an.
- 3. Im Zuge eines großangelegten Planes zur strafferen Standardisierung der Betonherstellung wird die Streuung σ_0^2 zwischen den Betonwerksmittelwerten μ_1 , μ_2 , . . . wesentlich verringert.

Die Prüfung auf Zeitabhängigkeit der Wvn geschieht sehr einfach mit Hilfe von Lauftests²:

In einer beliebigen Permutation von n_1 Plus- und n_2 Minuszeichen, etwa

nennt man jede nicht weiter ausdehnbare Aufeinanderfolge gleicher Vorzeichen einen Lauf. Seine $L\ddot{a}nge$ ist die Anzahl seiner Vorzeichen. Die Laufzahl L ist die Gesamtzahl der Läufe. Im angeführten Beispiel ist $n_1=6,\ n_2=10,\ L=7$ und die Lauf-

² A. M. Mood: The Distribution Theory of Runs. Ann. Math. Stat. 11, 367-392 (1940).

und im zweiten Fall

längen sind der Reihe nach 2, 1, 3, 3, 3, 2, 2. Zu einer solchen Vorzeichenfolge gelangt man, wenn man in einer Meßreihe z_1, z_2, \ldots, z_n einer stetigen Zufallsgröße z jeden Wert durch + oder - ersetzt, je nachdem er oberhalb oder unterhalb des Medianwertes $z_{\rm med}$ der Meßwerte³ liegt. Ist n eine ungerade Zahl, so wird die dem Medianwert entsprechende Beobachtung weggelassen, so daß man auf jeden Fall gleichviele Plus- und Minuszeichen erhält. Ein aus Plus- (Minus-) Zeichen bestehender Lauf heißt Ober- (Unter-) lauf, weil die entsprechenden z-Werte oberhalb (unterhalb) von $z_{\rm med}$ liegen.

Zu einer weiteren Vorzeichenfolge gelangt man, wenn man für die Beobachtungsreihe z_1, \ldots, z_n der Reihe nach die Vorzeichen der Differenzen $z_{i+1} - z_i$ aufeinander folgender Werte $(i = 1, \ldots, n-1)$ anschreibt. Nullen, die dabei auftreten, läßt man weg. Läufe aus Plus- (Minus-) Zeichen entsprechen ansteigenden (abnehmenden)

z-Werten und heißen daher Aufwärts- (Abwärts-) läufe.

Man setzt nun voraus, daß alle Beobachtungen unabhängig voneinander aus derselben Wv oder aus solchen, die sich nur in zufälliger Weise voneinander unterscheiden, hervorgehen. Dann läßt sich mit Hilfe der Kombinatorik unter anderem die Wv der Laufzahl L ermitteln. Als Mittelwert $\mathfrak{M}\{L\}$ und Streuung $\mathfrak{S}\{L\}$ der Laufzahlen L erhält man im ersten Fall

$$\begin{split} \mathfrak{M}\left\{L_{1}\right\} &= \frac{n+2}{2},\\ \mathfrak{S}\left\{L_{1}\right\} &= \frac{n}{4}\left(1-\frac{1}{n-1}\right) \stackrel{\cdot}{=} \frac{n-1}{4},\\ \mathfrak{M}\left\{L_{2}\right\} &= \frac{2n-1}{3},\\ \mathfrak{S}\left\{L_{2}\right\} &= \frac{16n-29}{90}. \end{split}$$

Für $n \ge 20$ kann sowohl L_1 als auch L_2 mit guter Näherung als normalverteilt betrachtet und dementsprechend auf Signifikanz beurteilt werden.

Entstammen aber z_1, z_2, \ldots, z_n der Reihe nach n Wvn, deren Mittelwerte eine wachsende (fallende) Folge bilden, so werden die z-Werte im allgemeinen in mehr als zufälliger Weise zu- (ab-) nehmen. Hand in Hand damit werden längere Läufe auftreten und die Laufzahl L wird klein ausfallen. Daher darf umgekehrt ein signifikant kleines L als Anzeichen einseitiger Verschiebungen der zugrunde liegenden Wv angesehen werden.

 $x_{ij.} = \sum_{k=1}^{c} x_{ijk}/c$ ist der Durchschnitt aus den Druckfestigkeiten der j-ten Stichprobe des i-ten Betonwerkes, $w_{ij} = \max_{k} x_{ijk} - \min_{k} x_{ijk}$ (Differenz von größter und kleinster Druckfestigkeit in einer Stichprobe) die zugehörige Spannweite. Eine systematische Änderung der $\mu_{i1}, \ldots, \mu_{ib_i}$ oder der $\sigma_{i1}^2, \ldots, \sigma_{ib_i}^2$ würde eine entsprechende der x_{i1}, \ldots, x_{ib_i} bzw. der w_{i1}, \ldots, w_{ib_i} zur Folge haben. Mit Hilfe von Lauftests der x_{ij} und $w_{ij}, j = 1, \ldots, b_i$, lassen sich daher systematische Änderungen der Mischungsmittelwerte und -streuungen (Beispiele 1 und 2) und damit auch die

$$z_{
m med} = z_{(m+1)}$$
 für $n = 2 m + 1$ $z_{
m med} = rac{1}{2} (z_{(m)} + z_{(m+1)})$ für $n = 2 m$.

und

³ Die Meßreihe sei der Größe nach geordnet: $z_{(1)} < z_{(2)} < \ldots < z_{(n)}$. (Wenn man die Werte einer stetigen Zufallsgröße genau genug mißt, werden die Meßergebnisse im allgemeinen verschieden ausfallen.) Dann ist

Veränderlichkeit der Wvn C 2 und C 1 nachweisen. Für die entsprechende Prüfung der Wv C 3, auf die sich Beispiel 3 bezieht, hätte man eine größere Anzahl von Betonwerken zu untersuchen.

Tab. 2 gibt die Ergebnisse der Lauftests für die vorliegenden 7 Betonwerke wieder: nur in einem Fall liegt n knapp unter 20, sonst immer darüber, also kann die Laufzahl durchwegs als normalverteilt angesehen werden. Da alle beobachteten Laufzahlen nur um weniger als das Doppelte der Standardabweichung hinter ihrem Mittelwert zurückbleiben, liefern die Lauftests weder einen Einwand gegen den stationären Charakter der Wvn C 1, noch widerlegen sie das Vorhandensein der Wv C 2.

					22 10 12 00 2	-8-8-010		O. 2010.	
	Anzahl		Ober- und	Unterläufe			ufwärts- un	d Abwärtsläu	fe
Beton- werk	der Stich- proben		$\begin{array}{c c} \text{cobachtete} \\ \text{fzahl } L_1 \text{ von} \end{array} \qquad \begin{array}{c c} \text{Mittelwer} \\ \end{array}$		Standard- abweichung		chtete L_2 von	Mittelwert	Standard- abweichung
	b_i	x_{ij} .	$ w_{ij} $	$\mathfrak{M}\left\{L_1\right\}$	$\sqrt{\mathfrak{G}\left\{L_1 ight\}}$	x_{ij} .	w_{ij}	$\mathfrak{M}\left\{L_{2}\right\}$	$\sqrt{s\{L_2\}}$
W_{i}	31	12	16	16.5	2.7	19	17	20.3	2.3
W_2	20	10	7	11.0	2.2	11	11	13.0	1.8
$W_{\mathbf{a}}$	23	13	8	12.5	2.3	18	16	15.0	1.9
W_4	28	16	15	15.0	2.6	15	16	18.3	2.2
\overline{W}_{5}^{-}	29	20	17	15.5	2.6	19	20	19.0	2.2
$W_{\mathfrak{s}}$	17	8	13	9.5	2.0	13	15	11.0	1.6
$\overline{W_7}$	22	10	16	12.0	2.3	11	15	14.3	1.9

Tabelle 2. Prüfung der Wvn auf Abhängigkeit von der Zeit.

E. Übergang zu Logarithmen

Infolge der grundlegenden Bedeutung, die der Normal- oder Gauß-Verteilung für einen Großteil der heute üblichen statistischen Prüfverfahren zukommt, soll nun

untersucht werden, ob die in C 1, C 2, C 3 angeführten Wvn als Normalverteilungen angesehen werden können oder sich auf einfache Weise in solche transformieren lassen. Linksschiefe Wvn, die im Versuchswesen häufig auftreten, können z. B. oft durch Logarithmieren der Zufallsgröße in Normalverteilungen übergeführt werden.

a) Form der Wvn. Abb. 2 zeigt sche- Abb. 2. Beispiel einer linksschiefen Wv matisch eine (eingipfelige) linksschiefe Wv

einer Zufallsgröße z mit der Wahrscheinlichkeitsdichte f(z). Im Gegensatz zu den symmetrischen Wvn fallen Mittelwert μ , Medianwert ν und Modalwert λ nicht

zusammen. Das dritte Moment $\int_{-\infty}^{+\infty} (z-\mu)^3 f(z) dz$ ist zum Unterschied von symmetrischen Wyn von Null verschieden.

Eine Linksschiefe der Wvn C 2 kann mit Hilfe vereinfachender Annahmen plausibel gemacht werden:

Berücksichtigt man nur den Einfluß des Zement-Wasser-Wertes z/w, so bestimmt sich die Druckfestigkeit x nach der Formel von Bolomey

$$x = k_1 + k_2 z/w,$$

wobei k_1 und k_2 Konstante sind. Die Wv von x wird also im wesentlichen durch die des Quotienten z/w bestimmt.

z und w mögen unabhängig voneinander nach $G(\mu_z, \sigma_z^2)$ bzw. $G(\mu_w, \sigma_w^2)$ verteilt sein⁴. In der Praxis sind σ_z und σ_w klein gegenüber μ_z bzw. μ_w . Bezeichnet man daher die auf die Mittelwerte μ_z und μ_w bezogenen Zufallsgrößen mit Δz und Δw , also

$$\Delta z = z - \mu_z, \quad \Delta w = w - \mu_w,$$

so werden $\Delta z/\mu_z$ und $\Delta w/\mu_w$ im allgemeinen klein ausfallen.

Für den Mittelwert von z/w gilt:

$$\mathfrak{M}\left\{\frac{z}{w}\right\} = \mathfrak{M}\left\{\frac{\mu_z + z - \mu_z}{\mu_w + w - \mu_w}\right\} = \frac{\mu_z}{\mu_w} \mathfrak{M}\left\{\frac{1 + \Delta z/\mu_z}{1 + \Delta w/\mu_w}\right\}.$$

Reihenentwicklung in der geschwungenen Klammer und Vernachlässigung aller höheren Potenzen von $\Delta w/\mu_w$ als der zweiten liefert

$$\mathfrak{M}\left\{\frac{z}{w}\right\} = \frac{\mu_z}{\mu_w} \left(1 + \frac{\sigma_w^2}{\mu_w^2}\right).$$

Abb. 3. Summenhäufigkeiten der Druckfestigkeiten x_{ijk} der einzelnen Betonwerke im Wahrscheinlichkeitsnetz

Durch eine einfache Transformation eines Doppelintegrals läßt sich zeigen, daß μ_z/μ_w der Medianwert von z/w ist. Somit ist für z/w der Medianwert kleiner als der Mittelwert und dasselbe gilt für x. Ist also σ_w^2/μ_w^2 groß genug, so erhält man eine merkliche Linksschiefe der Wy von x.

Abb. 3 zeigt auf Wahrscheinlichkeitspapier und in Prozenten die aufsummierten Häufigkeiten der Druckfestigkeiten x_{ijk} für die einzelnen Betonwerke W_1 bis W_7 . Verlaufen die Streckenzüge einigermaßen geradlinig, so können die x_{ijk} für jedes W_i als Beobachtungen einer normalverteilten Zufallsgröße angesehen werden. Wie Abb. 3 zeigt, sind die Streckenzüge zum größeren Teil nach oben durchgebogen,

⁴ Eine Gauß-Verteilung mit dem Mittelwert μ und der Streuung σ^2 wird kurz mit $G(\mu, \sigma^2)$ bezeichnet. Genau genommen handelt es sich hier um beiderseitig verkürzte Gaußverteilungen, da die Wahrscheinlichkeit z. B. eines w-Wertes außerhalb von $[\varepsilon, 2 \mu_w - \varepsilon]$ exakt 0 ist, wobei ε eine kleine positive Größe ist. Dadurch rechtfertigt sich auch die folgende gliedweise Integration einer Reihe.

Tabelle 3. Die Logarithmen yijk der Druckfestigkeiten von Tabelle 1

		2.444	408	386	950	1 P	770	384	453	435	265	781	230	557	212	767	300	164	442	450	455	407	408	717									
	W7	2.453	428	444	976	N H O	000	360	468	380	310	167	7.97	554	250	333	332	140	401	483	202	462	408	202									
		2.446	428	301	946	0#7	583	322	444	391	286	130	228	505	230	299	365	140	387	441	480	500	415	002									
		2.400	328	477	620	000	554	314	410	422	400	37	199	408	303	215	121	233	297														
	We	2.360	316	407	401	120	529	290	393	348	431	378	201	350	301	228	164	215	334														
		2.358	354	100	700	0.72	498	332	408	262	408	292	217	418	303	255	127	149	354														
		2.500	680		050	530	612	484	508	574	450	592	202	526	408	439	613	496	526	202	899	493	344	519	528	559	507	462	525	470	780		
	W 6	2.502		100	700	474	560	525	522	605	487	593			396						625			526		_					554		
		9.474	1 0 2	100	609	548	601	508	579	575	548	526	558	449	422	449	563	613	584	487	674	200	398	582	208	549	526	473	581	452	548		
		9.378	808	000	524	490	303	412	544	389	511	474	389	408	444	459	484	539	442	438	455	425	447	489	350	417	378	387	438	468			
Betonwerk	Wa	9.408	H 70	000	119	462	338	435	545	380	568	468	401	407	433	455	513	544	403	467	442	418	422	470	330	529	378	398	384	479			
Ä		9.908		000	590	405	310	401	559	431	508	535	417	386	428	502	486	548	438	422	450	407	367	486	369	422	314	387	398	462			
		0.990	0000	455	362	401	230	322	427	348	270	358	324	279	465	398	470	212	400	352	446	279	423	378	307								
	Ws	0	7007	415	332	465	215	297	412	320	279	270	320	241	538	413	474	210	371	332	462	276	470	389	292								
		P.00		524	320	384	246	324	377	000	305	342	307	276	477	407	464	223	384	354	422	314.	458	373	310								
		- FOG	7.591	248	380	441	507	365	600	0000	9.48	312	288	365	318	418	396	422	328	436	307	352											
	W	000	338	422	314	444	464	446	505 505	300	265	246	212	401	305	446	398	378	377	449	326	223											
			2.400 2	423	286	465	449	469	H 70	271	390	993	318	435	314	49.3	380	364	387	418	346	316					,						
			_	489	375	441	467	200	260	561	603	2000	27.0	202	613	387	0 10	570	444	477	554	498	595	547	500	481	550	320	501	516	548	550	447
	W,			487	358	539	453	H 10	200	594	680	540	7 P	480	661	446	22.00	604	369	534	547	543	669	526	480	455	502	389	435	587	566	537	540
			7.254 7	511	371	501	476	014	500	777	878	637	516	446	656	417	278	470	308	200	462	378	7. 7. 7. 7.	2 2 2	516	455	497	433	391	508	577	622	508
CAt of course of course	Stienprobe j	,		22	က	4	1 10	۳ د	3 6	- 0	0 0	3 0	11	10	27.	7 7	H 14	91	17	30	10	06	2.7	22	23	24	25	26	27	28	29	30	31

lassen also auf schwach linksschiefe Wvn schließen. Es liegt daher die Frage nahe, ob nicht die $y_{ijk} = \log x_{ijk}$ mit mehr Berechtigung als normalverteilt betrachtet werden können.

In Tab. 3 sind die Logarithmen y_{ijk} der Druckfestigkeiten von Tab. 1 zusammengestellt.

Abb. 4 stellt die aufsummierten Häufigkeiten der y_{ijk} für die einzelnen Betonwerke dar. Ein Vergleich der Abb. 3 und 4 zeigt, daß die Streckenzüge in Abb. 4 zwar etwas geradliniger verlaufen, die Unterschiede jedoch nicht so groß sind, daß sie die

Abb. 4. Summenhäufigkeiten der logarithmierten Druckfestigkeiten y_{ijk} der einzelnen Betonwerke im Wahrscheinlichkeitsnetz

Entscheidung zwischen der Verwendung der Urwerte x_{ijk} oder deren Logarithmen y_{ijk} herbeiführen. Im folgenden wird jedoch eine Beziehung gezeigt, die diese Frage zugunsten der y_{ijk} entscheidet.

b) Vorbereitungen. Zur Vereinfachung werden Summen der x_{ijk} bzw. y_{ijk} mit den entsprechenden Großbuchstaben bezeichnet, und Zeiger, über die summiert wird, durch Punkte ersetzt. Für die zugehörigen Durchschnitte werden Kleinbuchstaben mit den Zeigern der Summen verwendet. Also:

$$X_{ij.} = \sum_{k=1}^{c} x_{ijk} \qquad x_{ij.} = \frac{X_{ij.}}{c}$$

$$X_{i..} = \sum_{j=1}^{b_i} \sum_{k=1}^{c} x_{ijk} \qquad x_{i..} = \frac{X_{i..}}{b_i c}$$

$$X_{...} = \sum_{i=1}^{a} \sum_{j=1}^{b_i} \sum_{k=1}^{c} x_{ijk} \qquad x_{...} = \frac{X_{...}}{B_1 c}$$
(1)

wo $B_1 = \sum_{i=1}^{a} b_i$. In genau entsprechender Weise gewinnt man ausgehend von den y_{ijk} die Summen $Y_{ij.}$, $Y_{i..}$, $Y_{...}$ und die Durchschnitte $y_{ij.}$, $y_{i..}$, $y_{...}$.

Im weiteren Verlauf wird sehr oft von folgenden Tatsachen Gebrauch gemacht⁵: α) z_1, \ldots, z_n seien n voneinander unabhängige Zufallsgrößen mit $\mathfrak{M}\{z_i\} = \mu_i$, $\mathfrak{S}\{z_i\} = \sigma_i^2$, $i = 1, \ldots, n$. a_1, \ldots, a_n seien n beliebige Konstante. Dann gilt

$$\mathfrak{M}\{a_1 z_1 + \ldots + a_n z_n\} = a_1 \mu_1 + \ldots + a_n \mu_n,
\mathfrak{S}\{a_1 z_1 + \ldots + a_n z_n\} = a_1^2 \sigma_1^2 + \ldots + a_n^2 \sigma_n^2.$$
(2)

 β) Durch die Spezialisierung $\mu_1 = \ldots = \mu_n = \mu$, $\sigma_1^2 = \ldots = \sigma_n^2 = \sigma^2$ und $a_1 = \ldots = a_n = 1/n$ ergibt sich, wenn man $(z_1 + \ldots + z_n)/n = \bar{z}$ setzt:

$$\mathfrak{M}\left\{\bar{z}\right\} = \mu, \quad \mathfrak{S}\left\{\bar{z}\right\} = \sigma^2/n. \tag{3}$$

In Worten: Der Durchschnitt von n voneinander unabhängigen, mit dem Mittelwert μ und der Streuung σ^2 verteilten Zufallsgrößen hat ebenfalls den Mittelwert μ , aber die kleinere Streuung σ^2/n .

 γ) Sind insbesondere z_1, \ldots, z_n unabhängig voneinander nach $G(\mu, \sigma^2)$ verteilt, so ist \bar{z} nach $G(\mu, \sigma^2/n)$ verteilt.

In 6 wird gezeigt:

- δ) Sind z_1, \ldots, z_n n voneinander unabhängige Beobachtungen einer nach $G(\mu, \sigma^2)$ verteilten Zufallsgröße z, so sind Durchschnitt \bar{z} und Spannweite w (= $\max_k z_k$ $\min_k z_k$) dieser n Werte unabhängig voneinander verteilt.
- e) Abhängigkeit von Mittelwerten und Streuungen. Für die im Abschnitt II folgende Streuungszerlegung wäre es sehr vorteilhaft, wenn die Verteilungen C 1 als Gauß-Verteilungen gleicher Streuung angenommen werden könnten. Die Erfahrung lehrt jedoch, daß die Druckfestigkeiten innerhalb einer Mischung im allgemeinen um so stärker streuen, je größer ihr Mittelwert ist, und diese Tatsache kommt auch im vorliegenden Zahlenmaterial zum Ausdruck. Hingegen weisen die logarithmierten Druckfestigkeiten y_{ijk} Gauß-Verteilungen auf, deren Streuungen für alle Mischungen als gleich angesehen werden dürfen. Das soll nun im einzelnen gezeigt werden.

Berechnet man für jede Stichprobe des *i*-ten Betonwerkes W_i sowohl den Durchschnitt x_{ij} als auch die Spannweite w_{ij} , $j=1,\ldots,b_i$, so erhält man eine Folge von b_i Zahlenpaaren

$$(x_{i1}, w_{i1}), \ldots, (x_{ib_i}, w_{ib_i}),$$
 (4)

die sich auf verschiedene Mischungen beziehen. Sie sind daher voneinander stochastisch unabhängig. Dies hat zur Folge, daß die Wahrscheinlichkeitsdichte für das gleichzeitige Auftreten der Zahlenpaare (4) gleich dem Produkt der Wahrscheinlichkeitsdichten der einzelnen Zahlenpaare ist.

Man legt nun die zu prüfende (im vorliegenden Fall: zu widerlegende) Annahme oder Nullhypothese zugrunde, daß die x_{ijk} innerhalb einer jeden Mischung von W_i mit derselben Streuung $\sigma_{i1}^2 = \sigma_{i2}^2 = \ldots = \sigma_{ib_i}^2 = \sigma_i^{*2}$ normalverteilt sind. Da nach b δ dann x_{ij} und w_{ij} unabhängig voneinander verteilt, also auch unkorreliert sind, so ist die Wahrscheinlichkeitsdichte eines jeden Zahlenpaares $(x_{ij}, w_{ij}), j = 1, \ldots, b_i$, ihrerseits gleich dem Produkt der Wahrscheinlichkeitsdichten von x_{ij} und w_{ij} .

Trifft die Nullhypothese zu, so hat jede Folge

$$(x_{i1}, w_{i1}^*), \ldots, (x_{ib_i}, w_{ib_i}^*),$$
 (5)

die aus (4) durch Permutation der w_{i1}, \ldots, w_{ib_i} hervorgeht, dieselbe Wahrscheinlich-

⁶ J. F. Daly: On the Use of Sample Range in an Analogue of Student's t-test. Ann. Math. Stat. 17, 71—74 (1946).

⁵ A. Hald: Statistical Theory with Engineering Applications & Statistical Tables and Formulas. New York: Wiley. 1952.

keitsdichte wie die Folge (4), da die Spannweite infolge der übereinstimmenden Streuungen in allen Mischungen dieselbe Dichte besitzt. Die Nullhypothese wird nun in einer ihrer Auswirkungen, nämlich der Unkorreliertheit der x_{ij} und w_{ij} getestet.

Zu jeder Folge (4) gehört ein Wert r des x-Korrelationskoeffizienten

$$r = \frac{\sum\limits_{j=1}^{b_i} (x_{ij.} - x_{i..}) \ (w_{ij} - w_{i.})}{\left[\sum\limits_{j=1}^{b_i} (x_{ij.} - x_{i..})^2 \sum\limits_{j=1}^{b_i} (w_{ij} - w_{i.})^2\right]^{1/2}}.$$

Durch Permutation der Spannweiten bekommt man insgesamt $b_i!=b_i\,(b_i-1)\dots$ 3.2.1 gleichwahrscheinliche, im allgemeinen verschiedene Werte von r. Zu einem entsprechend klein vorgegebenen α (etwa 0.05) kann man dann eine nichtnegative ganze Zahl M bestimmen, so daß die Wahrscheinlichkeit, einen der M größten oder der M kleinsten r-Werte zu erhalten, unter den getroffenen Annahmen höchstens den Wert α bekommt. Ist der (4) entsprechende r-Wert einer dieser extremen Werte, so hat man einen signifikant großen bzw. kleinen Wert erhalten und muß ihn als statistischen Einwand gegen die Annahme unkorrelierter x-Durchschnitte und x-Spannweiten und damit als statistische Widerlegung der Nullhypothese werten.

In ⁷, II, S. 131f., wird gezeigt, daß dieser Test mit guter Näherung durch den allgemein üblichen t-Test ersetzt werden darf. Danach wird als Prüfgröße der Wert

$$t = \frac{r}{\sqrt{1-r^2}} \sqrt{b_i - 2}$$

mit $b_i - 2$ Freiheitsgraden verwendet.

Die Gleichheit von Streuungen ließe sich auch mit Hilfe eines Bartlett-Tests prüfen, jedoch ist dieser in diesem besonderen Fall zu unempfindlich. Statt mit den Spannweiten hätte der Test auch mit den Streuungsschätzwerten durchgeführt werden können, es wurden aber im Hinblick auf die einfachere Berechnung die Spannweiten gewählt. Der dadurch verlorengehende Teil der Information ist nicht groß.

Tab. 4 enthält die Korrelationskoeffizienten und Prüfgrößen für die x_{ijk} und y_{ijk} . Die durchwegs positiven Vorzeichen der x-Korrelationskoeffizienten (Spalte 2) und die beiden höchst signifikanten t-Werte (Spalte 4) deuten auf eine positive Korrelation zwischen den aus den x_{ijk} abgeleiteten Durchschnitten und Spannweiten hin. Hingegen zeigt das Abwechseln der Vorzeichen bei den y-Korrelationskoeffizienten (Spalte 3) zusammen mit dem Fehlen signifikanter t-Werte (Spalte 5), daß man durch Übergang zu den Logarithmen zu unkorrelierten Durchschnitten und Spannweiten gelangt.

Tabelle 4. Korrelationskoeffizienten von Stichprobendurchschnitt und -spannweite für die Urwerte (x_{ijk}) und ihre Logarithmen (y_{ijk})

70 - 4 - m - m - m ² -	Korrelationsk	oeffizient r der	Prüfgröße t	von r der	Zahl der	
Betonwerk	x_{ijk}	y_{ijk}	x_{ijk}	y_{ijk}	Freiheitsgrad	
W_1	+ 0.254	0.014	+ 1.41	0.08	29	
W_2	+ 0.211	0.203	+ 0.92	0.88	18	
W_3	+ 0.485	+ 0.256	+ 2.54**	+ 1.21	21	
W_3	+ 0.161	0.038	+ 0.83	0.19	26	
W_{5}	+ 0.294	+ 0.071	+ 1.60	+ 0.37	27	
W_6	+ 0.595	+ 0.249	+ 2.87**	+ 0.99	15	
W_7	+ 0.387	0.078	+ 1.88	0.35	20	

 $^{^7}$ M. G. Kendall: The Advanced Theory of Statistics, 2 Bde. London: Griffin. 1948. ** Höchst signifikant. ($\alpha=0.01$).

Diese Ergebnisse bestätigen die bereits erwähnte Tatsache, daß Mischungen mit höherer mittlerer Druckfestigkeit im allgemeinen auch eine größere Streuung der Druckfestigkeit aufweisen. Für die y_{ijk} ist dies nicht der Fall. Der Streuungszerlegung werden daher die Logarithmen der Druckfestigkeiten zugrunde gelegt. Daß diese nach Abb. 4 auch eine geringere Abweichung von der Normalverteilung als die Urwerte zeigen, ist ein weiterer Vorteil.

II. Streuungszerlegung

Die folgende Streuungszerlegung hat den Zweck, die Gesamtstreuung $\tilde{\sigma}^2$ der $y_{ijk} = \log x_{ijk}$ in drei Anteile aufzuspalten:

1. Streuung σ_{ν}^2 der y_{ijk} innerhalb der Mischungen;

2. Streuung σ_{β}^2 der y-Mischungsmittelwerte $\tilde{\mu}_{ij}$ desselben Betonwerkes;

3. Streuung σ_{α}^2 der y-Betonwerksmittelwerte $\tilde{\mu}_i$.

Die y-Wvn entsprechen den in I C angeführten x-Wvn.

Die y_{ijk} sind in Tab. 3 in gleicher Weise wie die Meßwerte x_{ijk} in Tab. 1 zusammengestellt.

A. Modell

Das der Auswertung zugrunde liegende Modell besteht in der Annahme, daß sich die y_{ijk} in der Form

$$y_{ijk} = \tilde{\mu} + \alpha_i + \beta_{ij} + \gamma_{ijk} \tag{6}$$

darstellen lassen, wobei $\tilde{\mu}$ ein unbekannter Parameter ist, und die anderen drei Summanden auf der rechten Seite von (6) unabhängig voneinander nach $G(0, \sigma_{\alpha}^2)$, $G(0, \sigma_{\beta}^2)$ bzw. $G(0, \sigma_{\nu}^2)$ verteilt sind.

Die Bedeutung dieser Zerlegung ergibt sich aus folgenden Feststellungen:

Die zu einer bestimmten Mischung M_j gehörigen y_{ijk} besitzen eine Wv mit dem Mittelwert $\tilde{\mu}_{ij} = \tilde{\mu} + \alpha_i + \beta_{ij}$. Die Wv dieser y-Mischungsmittelwerte $\tilde{\mu}_{ij}$ für ein Betonwerk W_i hat den Mittelwert $\tilde{\mu}_i = \tilde{\mu} + \alpha_i$. Der Parameter $\tilde{\mu}$ ist der Mittelwert der Wv der y-Betonwerksmittelwerte $\tilde{\mu}_i$.

Man erhält daher formelmäßig die γ_{ijk} , β_{ij} und α_i , indem man die y_{ijk} , $\tilde{\mu}_{ij}$ und $\tilde{\mu}_i$ auf ihre Mittelwerte bezieht, das heißt von ihrem Mittelwert aus mißt:

$$egin{aligned} \gamma_{ijk} &= y_{ijk} - ilde{\mu}_{ij} \ eta_{ij} &= ilde{\mu}_{ij} - ilde{\mu}_{i} \ lpha_{i} &= ilde{\mu}_{i} - ilde{\mu} \end{aligned}$$

Da die α_i , β_{ij} und γ_{ijk} als voneinander unabhängig vorausgesetzt werden, gilt für die Streuung (engl. variance) $\tilde{\sigma}^2$ der y_{ijk}

$$ilde{\sigma}^2 = \sigma_{lpha}^2 + \sigma_{eta}^2 + \sigma_{\gamma}^2.$$

Daher heißen σ_{α}^2 , σ_{β}^2 und σ_{γ}^2 Varianzkomponenten.

B. Voraussetzungen

Die Annahme, daß sich die y_{ijk} als Summen eines Parameters und dreier unabhängig voneinander normalverteilter Zufallsgrößen darstellen lassen, bedarf einer Prüfung. Diese erfolgt schrittweise und wird eine Aufspaltung des Zahlenmaterials notwendig machen.

Zunächst ist es unwahrscheinlich, daß die γ_{ijk} unabhängig vom Betonwerk die gleiche Streuung σ_{γ}^2 aufweisen, da nicht alle Betonwerke W_i über gleiche Mischanlagen verfügen. Man nimmt daher, um zu einer groben Einteilung der Betonwerke in dieser Hinsicht zu gelangen, zunächst einmal probeweise an, daß die y_{ijk} innerhalb der

Mischungen aller W_i mit der gleichen Streuung σ_{γ}^2 normalverteilt sind, und berechnet für jedes W_i mit Hilfe der Stichproben einen Schätzwert $\hat{\sigma}_{\gamma}^2$ von σ_{γ}^2 :

$$s_{i\gamma}^2 = \frac{\sum\limits_{j=1}^{b_i} \sum\limits_{k=1}^{c} (y_{ijk} - y_{ij.})^2}{b_i \, (c-1)}.$$

Je zwei dieser Schätzwerte werden hierauf einem F-Test unterworfen. Das Ergebnis zeigt Tab. 5: Die ersten drei Zeilen bzw. Spalten geben der Reihe nach das Betonwerk, den mit 10^6 multiplizierten Streuungsschätzwert und die Zahl seiner Freiheitsgrade (F. g.) an. Die Felder der Tabelle enthalten die Quotienten der darüber und der linksstehenden Streuungsschätzwerte, also die zur Prüfung erforderlichen F-Werte. Signifikante F-Werte ($\alpha=0.05$) sind mit einem, höchst signifikante ($\alpha=0.01$) mit zwei Sternen versehen.

Tabelle 5. F-Werte zu den Schätzwerten für die Streuung der y_{ijk} innerhalb der Mischungen

Betonwerk					nach abn	ehmendem s²	geordnet		
Detollwerk			\overline{W}_2	W_1	W ₆	W_{5}	W_3	W_4	\overline{W}_{7}
1	106. s ²		1769	1469	1295	972	738	676	481
		F. g.	40	62	34	58	46	56	44
nach ansteigen- W_4 dem W_3 W_5 W_6 W_1 W_2	481 676 738 972 1295 1469 1769	44 56 46 58 34 62 40	3·68** 2·62** 2·40** 1·82* 1·37 1·20	3·05** 2·17** 1·99** 1·51 1·13	2·69** 1·92* 1·75* 1·33	2·02** 1·44 1·32	1·53 1·09	1.41	

Eine weitere, leicht überprüfbare Folge des in II A aufgestellten Modells betrifft die $y_{ij.}$, deren Wv für Mischungen desselben Betonwerks auf Grund von I E b γ normal sein und — bei Zutreffen der Voraussetzungen — die von Betonwerk zu Betonwerk gleiche Streuung $\sigma_{\beta}^2 + \sigma_{\gamma}^2/3$ besitzen muß. Die Verträglichkeit der entsprechenden Streuungsschätzwerte wird in Tab. 6 geprüft, die für jedes W_i den mit Hilfe der y_{ij} berechneten Schätzwert

 $s_{i\beta\gamma}^2 = \frac{\sum\limits_{j=1}^{b_i}(y_{i\beta}, \cdots y_{i,.})^2}{b_i - 1}$

von $\sigma_{\beta}^2 + \sigma_{\gamma}^2/3$ enthält und im übrigen wie Tab. 5 angelegt ist.

Tabelle 6. F-Werte zu den Schätzwerten für die Streuung der y_{ij} , zwischen den Mischungen

Betonwerk			nach abnehmendem s² geordnet										
DCOONWOIR			W_6	W_7	W_8	W_2	W ₁	W_4	W 5				
	10 ⁶ . s ²		157090	138500	60600	55801	45632	42832	38153				
		F. g.	. 16	21	22	19	30	27	28				
nach ansteigen- dem s^2 geordnet $W_{M}^{1} = W_{M}^{2}$ $W_{M}^{2} = W_{M}^{2}$	38 153 42 832 45 632 55 801 60 600 138 500 157 090	28 27 30 19 22 21 16	4·12** 3·67** 3·44** 2·82* 2·59* 1·13	3.63** 3.23** 3.04** 2.48* 2.29*	1·59 1·41 1·33 1·09	1·46 1·30 1·22	1·20 1·07	1.12					

Tab. 7 faßt die Signifikanzaussagen der Tab. 5 und 6 zusammen und gestattet eine Gruppenbildung unter den Betonwerken, so daß die Streuungsschätzwerte von Betonwerken derselben Gruppe miteinander verträglich sind, das heißt keine signifikanten F-Werte liefern. Zwar ist diese Einteilung in Gruppen nach Tab. 7 nicht in eindeutiger Weise bestimmt, doch wurde aus einer teilweisen Kenntnis der Mischaggregate heraus die folgende Gruppierung gewählt:

Gruppe I: W_1 , W_2 ;

Gruppe II: W_3 , W_4 , W_5 ;

Gruppe III: W_6 ; Gruppe IV: W_7 .

Tabelle 7. Zusammenfassung der Ergebnisse von Tabelle 5 und 6

		Nach				Betonwerk			
		Tabelle	W_1	W_2	W_8	W_4	W ₅	W_6	\overline{W}_{7}
	W_1	5 6		Amelinana Amerikan	*	** **.		**	**
	W_2	5 6		_	**	**	*	*	**
선	W_3	5 6	**	**				*	*
Betonwerk	W_4	5 6	**	**	AARRAGINA			* **	**
Ā	W_5	5 6		*				**	*
	W_{6}	5	**	*	*	*	**	_	**
	W_{7}	5	**	**	_	**	**	**	_

^{**} Höchst signifikant.

Die Gruppenbildung ist in Tab. 7 durch stark umrandete Quadrate angedeutet. Die bisher verwendeten Bezeichnungen werden auch für die Gruppen beibehalten, jedoch der Index der Gruppe $(l=I,\,II,\,III,\,IV)$ angefügt. Innerhalb einer Gruppe sind daher a_l Betonwerke W_{il} mit je b_{il} Mischungen zusammengefaßt. Ob innerhalb der einzelnen Gruppen I bis IV die für die Zulässigkeit des Modells notwendigen Voraussetzungen einer statistischen Prüfung standhalten, kann in zwei Schritten untersucht werden:

- 1. Prüfung, ob die Wvn der logarithmischen Druckfestigkeiten y_{ijk} innerhalb der einzelnen Mischungen (Stichproben) normal sind und innerhalb jeder Gruppe die gleiche Streuung $\sigma_{\gamma l}^2$, $l=1,\ldots,IV$, aufweisen. Dieser Test zerfällt in die Untersuchung der
 - a) Stichprobenstreuungen,
 - β) Stichprobenschiefen.
- 2. Nachweis, daß die Gültigkeit der anderen Voraussetzungen, auf denen das Modell beruht, aus in 1 unwiderlegt gebliebenen Annahmen folgt.

^{*} Signifikant.

⁻ Verträglich.

Durchführung: 1 α) Wenn die y-Wvn innerhalb der Mischungen der l-ten Gruppe alle die gleiche Streuung $\sigma^2_{\gamma l},\ l=1,\ldots,IV,\$ haben (1. Voraussetzung), so ist, sobald W_i zur l-ten Gruppe gehört, $s^2_{ij}=\sum_{k=1}^3(y_{ijk}-y_{ij.})^2/2$ ein Schätzwert von $\sigma^2_{\gamma l}$ mit 2 F. g. Nimmt man ferner an (2. Voraussetzung), daß alle Mischungsverteilungen

Abb. 5. Die Summenhäufigkeiten von χ² mit 2 F. g. im Wahrscheinlichkeitsnetz

Abb. 6. Die Verteilung der Stichprobenstreuungen von Gruppe I (Betonwerke W 1 und W 2)

nur näherungsweise erfüllten ersten Voraussetzung zufälliger Weise von der Geraden abweichen.

normal sind, so ist $2 s_{ij}^2/\sigma_{\gamma l}^2$ wie χ^2 mit 2 F. g. (s. Abb. 5) verteilt.

Die Richtigkeit der beiden Voraussetzungen wird nun nach ⁵, S. 293, geprüft. Man hat dazu für jede Gruppe die s_{ii}^2 in ansteigender Reihenfolge als Abszissen und die zu den aufsummierten relativen Häufigkeiten der s_{ij}^2 gehörigen Perzentile von χ^2 mit 2 F. g. als Ordinaten aufzutragen. Die so entstehende Punktreihe wird sich bei Zutreffen der Annahmen entlang einer Geraden hinziehen, die mit der Steigung $2/\sigma_{\mathcal{V}}^2$ durch den Ursprung geht. Infolge der Stichprobenschwankungen der s_{ij}^2 und der werden die Punkte jedoch in Die Abb. 6 bis 8 zeigen die den Gruppen I bis III entsprechenden Punktreihen, die mit der Annahme von Gauß-Verteilungen gleicher Streuung verträglich sind.

Abb. 7. Die Verteilung der Stichprobenstreuungen von Gruppe II (Betonwerke W 3, W 4 und W 5)

Der Verlauf der Punktreihe von Gruppe IV in Abb. 9 läßt dagegen die Voraussetzungen als nicht zutreffend erscheinen. Von einer Sonderuntersuchung dieser Gruppe wurde jedoch Abstand genommen.

 $1~\beta$) In IE a wurde festgestellt, daß das dritte Moment von symmetrischen Wvn verschwindet, während es bei schiefen Wvn von Null verschieden ist. An Stelle dieses dritten Momentes werden für die Stichproben die Zufallsgrößen

$$K_{ij} = c \sum_{k=1}^{c} (y_{ijk} - y_{ij.})^3/(c-1) (c-2)$$

Abb. 8. Die Verteilung der Stichprobenstreuungen von Gruppe III (Betonwerk W 6)

Abb. 9. Die Verteilung der Stichprobenstreuungen von Gruppe IV (Betonwerk W 7)

ermittelt. Wenn die Mischungsverteilungen normal sind und innerhalb jeder Gruppe die gemeinsame Streuung $\sigma_{\gamma l}^2$ aufweisen, $l=1,\ldots,$ IV, dann ist nach ⁸ der Mittelwert $\mathfrak{M}\{K_{ij}\}=0$ und die Streuung

$$\mathfrak{S}\{K_{ij}\} = \frac{6c}{(c-1)(c-2)} \,\sigma_{\gamma l^*}^6 \tag{7}$$

⁸ C. A. Bennett-N. L. Franklin: Statistical Analysis in Chemistry and the Chemical Industry. New York: Wiley. 1954.

Nach dem zentralen Grenzwertsatz ist der Durchschnitt \overline{K}_l aller K_{ij} der l-ten Gruppe annähernd nach $G(0, \mathfrak{S}\{K_{ij}\}/g_l)$ verteilt, wenn g_l die Gesamtzahl der Mischungen in der l-ten Gruppe ist. Die nach G(0, 1) verteilte Größe $u_l = \overline{K}_l/\sqrt{\mathfrak{S}\{K_{ij}\}/g_l}$ kann daher zur Prüfung auf Schiefe herangezogen werden und ist für alle 4 Gruppen in Tab. 8 angegeben. Die erhaltenen u-Werte ergeben für die y_{ijk} keinen Einwand gegen die Voraussetzung normaler Mischungsverteilungen.

Tabelle 8. Prüfung der	durchschnittlichen	Stichprobenschiefen für	die einzelnen
	Betonwe		

			Betonwerk										
		W_1	W ₂	W_3	\overline{W}_4	W_5	W_{6}	W_7					
	\overline{K}	8480	13980	+ 6837	+9413	-4575	+15394	+1135					
Urwerte	$\sqrt{\mathfrak{S}\{ar{K}\}}$	12971	.7460	2400	3012	8121	6699	1 203					
	u	0.65	-1.87	+2.38	+ 3.13	0.26	+ 2:30	+ 0.94					
		90 700	114000	(0.011		10455	1 2020	1 4905					
Logarith-	K	39700	114988	+8211	+20332	-18455	+3038	+4395					
mierte	$V \otimes \{\overline{K}\}$.	30 335	49 909	12544	9957	16880	33 907	6746					
Meßwerte	u	-1.31	2.30	+0.65	+ 2.04	1.09	+0.09	+0.65					

Auf Grund von 1 α und 1 β wird die Annahme, daß die Mischungsverteilungen der y_{ijk} normal sind und innerhalb einer jeden der 3 ersten Gruppen die gleiche Streuung aufweisen, den weiteren Betrachtungen zugrunde gelegt.

2. Mißt man in jeder Mischung die y_{ijk} von ihrem Mittelwert $\tilde{\mu}_{ij}$ aus, mit anderen Worten: geht man von den y_{ijk} durch

$$\gamma_{ijk} = y_{ijk} - \widetilde{\mu}_{ij}$$

zu neuen Zufallsgrößen γ_{ijk} über, so müssen diese für jede Mischung nach $G(0, \sigma^2_{\gamma l})$ verteilt sein, wenn W_i zur l-ten Gruppe gehört. Daher ist γ_{ijk} unabhängig von $\tilde{\mu}_{ij}$ verteilt.

Ein bekannter Satz von Cramér⁹ besagt: Wenn die Summe von zwei unabhängig voneinander verteilten Zufallsgrößen normalverteilt ist, dann sind es auch die Summanden.

Wie Abb. 4 zeigt, kann die Verteilung der Summenwerte $y_{ijk} = \tilde{\mu}_{ij} + \gamma_{ijk}$ als Normalverteilung angesehen werden. Nach dem angeführten Satz können infolge der Unabhängigkeit der Summanden $\tilde{\mu}_{ij}$ und γ_{ijk} diese ebenfalls als normalverteilt angenommen werden. Daß die Verteilung der Werte γ_{ijk} als normal angenommen werden darf, wurde bereits in den Abschnitten 1 α und 1 β gezeigt. Neu ist das Ergebnis, daß auch die $\tilde{\mu}_{ij}$ normalverteilt sind.

In ähnlicher Weise könnte auch die Unabhängigkeit und Normalverteilung der $\beta_{ij} = \tilde{\mu}_{ij} - \tilde{\mu}_i$ und $\alpha_i = \tilde{\mu}_i - \tilde{\mu}$ innerhalb einer jeden Gruppe erschlossen werden, doch ist dieser Nachweis wegen der geringen Anzahl von Betonwerken je Gruppe $(g_i = 2, 3, 1, 1)$ kaum notwendig.

So wie Abb. 1 die x-Wvn, stellt Abb. 10 die y-Wvn dar. Während Abb. 1 in der oberen Reihe lauter schwach linksschiefe eingipflige Kurven zeigt, die wegen der signifikant positiven Korrelation von x_{ij} und w_{ij} um so breiter sind, je höher sie

⁹ H. Cramér: Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Z. 41, 405—414 (1936).

Abb. 10. — Wvn der y_{ijk} in fünf Mischungen des *i*-ten Betonwerkes; — Wvn der $\tilde{\mu}_{ij}$ im *i*-ten Betonwerk; — Wv der $\tilde{\mu}_{i}$

liegen, sind in Abb. 10 sämtliche Glockenkurven symmetrisch und innerhalb jeder Reihe kongruent. Die untere Reihe von Abb. 10 enthält natürlich nur Wvn von Betonwerken derselben Gruppe.

C. Formeln

Für jede der vier Gruppen von Betonwerken läßt sich nun eine Streuungszerlegung durchführen, wobei man von der Identität

$$\sum_{ijk} (y_{ijk} - y_{...})^2 = \sum_{ijk} (y_{ijk} - y_{ij})^2 + c \sum_{ij} (y_{ij} - y_{i...})^2 + c \sum_{i} b_i (y_{i...} - y_{...})^2$$
(8)

ausgeht. Bezeichnet man Durchschnitte der α_i , β_{ij} , γ_{ijk} ebenso wie die der x_{ijk} und y_{ijk} , so gilt: $y_{ijk} = \tilde{\mu} + \alpha_i + \beta_{ij} + \gamma_{ijk}$

$$y_{ij.} = \tilde{\mu} + \alpha_i + \beta_{ij} + \gamma_{ij.}$$

$$y_{i..} = \tilde{\mu} + \alpha_i + \beta_{i.} + \gamma_{i..}$$

$$y_{...} = \tilde{\mu} + \alpha_i + \beta_i + \gamma_{i..}$$

$$y_{...} = \tilde{\mu} + \sum_{i} b_i \alpha_i / B_1 + \beta_{..} + \gamma_{..}$$

$$(9)$$

 $\text{mit } B_1 = \sum_{i=1}^a b_i. \text{ Der Ausdruck } \sum_i b_i \, \alpha_i / B_1 \text{ ist der mit den } b_i \text{ gewogene Durchschnitt der } \\ \alpha_i \text{ und nur im Falle } b_1 = b_2 = \ldots = b_a \text{ gleich dem Durchschnitt } \alpha_i = \sum_{i=1}^a \alpha_i / a^{10}.$

Sind z_1, \ldots, z_n n voneinander unabhängige Beobachtungen einer nach $G(\mu, \sigma^2)$ verteilten Zufallsgröße z, so ist bekanntlich 5

$$\mathfrak{M}\left\{\sum_{i=1}^{n}(z_{i}-\bar{z})^{2}\right\}=(n-1)\,\sigma^{2},$$

wenn $\bar{z} = \sum_{i=1}^{n} z_i/n$ der Durchschnitt der Beobachtungen ist. Setzt man nun die rechten Seiten von (9) in die Quadratsummen auf der rechten Seite von (8) ein, so gewinnt man daher als Mittelwerte dieser Quadratsummen der Reihe nach:

1.
$$\Re\left\{\sum_{ijk}(y_{ijk}-y_{ij.})^{2}\right\} = \sum_{ij}\Re\left\{\sum_{k}(\gamma_{ijk}-\gamma_{ij.})^{2}\right\} = B_{1}(c-1)\sigma_{\gamma}^{2}.$$
2. $\Re\left\{c\sum_{ij}(y_{ij.}-y_{i..})^{2}\right\} = c\sum_{i}\Re\left\{\sum_{j}[(\beta_{ij}-\beta_{i.})+(\gamma_{ij.}-\gamma_{i..})]^{2}\right\} = c\sum_{i}\left[\Re\left\{\sum_{j}(\beta_{ij}-\beta_{i.})^{2}\right\} + \Re\left\{\sum_{j}(\gamma_{ij.}-\gamma_{i..})^{2}\right\}\right],$

da der Mittelwert des doppelten Produktes wegen der Unabhängigkeit der β und γ und wegen $\mathfrak{M}\{\beta_{ij}-\beta_{i.}\}=\mathfrak{M}\{\gamma_{ij.}-\gamma_{i..}\}=0$ verschwindet,

$$\left\{c\sum_{ij}(y_{ij.}-y_{i..})^2
ight\} = c\sum_i\left[\left(b_i-1
ight)\sigma_{eta}^2+\left(b_i-1
ight)\sigma_{\gamma}^2/c
ight],$$

da γ_{ij} , als Durchschnitt aus c Beobachtungen mit der Streuung σ_{γ}^2 selbst die Streuung σ_{γ}^2/c besitzt.

Man erhält also endgültig

$$\begin{split} \Re\left\{c\sum_{ij}(y_{ij.}-y_{i..})^{2}\right\} &= (B_{1}-a)\,(c\,\sigma_{\beta}^{2}+\sigma_{\gamma}^{2}).\\ 3.\,\,\,\Re\left\{c\sum_{i}b_{i}\,(y_{i..}-y_{...})^{2}\right\} &= c\,\Re\left\{\sum_{i}b_{i}\left[\left(\alpha_{i}-\sum_{j}b_{j}\,\alpha_{j}/B_{1}\right)+(\beta_{i.}-\beta_{..})+\right.\right.\\ &\left.+(\gamma_{i..}-\gamma_{...})^{2}\right]\right\} &= c\sum_{i}b_{i}\left[\Re\left\{\left(\alpha_{i}-\sum_{j}b_{j}\,\alpha_{j}/B_{1}\right)^{2}\right\}+\Re\left\{(\beta_{i.}-\beta_{..})^{2}\right\}+\Re\left\{(\gamma_{i..}-\gamma_{...})^{2}\right\}\right]. \end{split}$$

Die drei Mittelwerte in der eckigen Klammer sind der Reihe nach, wenn man $\sum_{j=1}^a b_j^2 = B_2$ setzt:

$$\begin{split} \mathfrak{M}\left\{\alpha_{i}^{2}-2\;\alpha_{i}\;\sum_{j}b_{j}\;\alpha_{j}|B_{1}+\left(\sum_{j}b_{j}\;\alpha_{j}\right)^{2}|B_{1}^{2}\right\}&=\sigma_{\alpha}^{2}-2\;b_{i}\;\sigma_{\alpha}^{2}|B_{1}+B_{2}\;\sigma_{\alpha}^{2}|B_{1}^{2},\\ \mathfrak{M}\left\{(\beta_{i.}-\beta_{..})^{2}\right\}&=(a-1)\;\sigma_{\beta}^{2}|a\;b_{i},\\ \mathfrak{M}\left\{(\gamma_{i..}-\gamma_{...})^{2}\right\}&=(a-1)\;\sigma_{\gamma}^{2}|a\;b_{i}\;c. \end{split}$$

Man hat daher schließlich

$$\begin{split} \mathfrak{M}\left\{ & c \sum_{ij} (y_{i..} - y_{...})^2 \right\} = c \sum_{i} b_i \left(\sigma_{\alpha}^2 - 2 \, b_i \, \sigma_{\alpha}^2 / B_1 + B_2 \, \sigma_{\alpha}^2 / B_1^2 \right) + c \, (a-1) \, \sigma_{\beta}^2 + \\ & + (a-1) \, \sigma_{\gamma}^2 = c \, \frac{B_1^2 - B_2}{B_1} \, \sigma_{\alpha}^2 + c \, (a-1) \, \sigma_{\beta}^2 + (a-1) \, \sigma_{\gamma}^2. \end{split}$$

Diese Ergebnisse sind in Tab. 9 festgehalten. Als *mittlere Quadrate* werden dabei die Quotienten von Quadratsumme und zugehöriger Anzahl der Freiheitsgrade bezeichnet.

 $^{^{\}mathbf{10}}$ An Stelle von $a_{i\,l}$ und $b_{i\,l}$ wird kurz a_{i} und b_{i} geschrieben.

Tabelle 9.	Das	Schema	der	Varianzanalýse	einer	Gruppe	mit	mehreren	Beton-
				werken					

Anteil	Quadratsummen	F.g.	Mittlere Quadrate	Mittelwerte der mittleren Quadrate
Zwischen den Werken	$\begin{split} S_1^2 &= c \sum_i b_i (y_{i} - y_{})^2 = \\ &= \frac{1}{c} \sum_i \frac{Y_{i}}{b_i} - \frac{1}{c} \frac{Y^2}{B_1} \end{split}$	$f_1 = a - 1$	$s_1^2 = \frac{S_1^2}{f_1}$	$\begin{split} \tilde{\sigma}_{1}^{2} &= \sigma_{\gamma}^{2} + c \; \sigma_{\beta}^{2} \; + \\ &+ \frac{(B_{1}^{2} - B_{2}) \; c}{(a - 1) \; B_{1}} \; \sigma_{\alpha}^{2} \end{split}$
Zwischen den Stich- proben	$S_{2}^{2} = c \sum_{ij} (y_{ij} - y_{i})^{2} = \frac{1}{c} \sum_{ij} Y_{ij}^{2} - \frac{1}{c} \sum_{i} \frac{Y_{i}^{2}}{b_{i}}$	$f_2 = B_1 - a$	$s_2^2 = rac{S_2^2}{f_2}$	$\widetilde{\sigma}_2^2 = \sigma_\gamma^2 + c \sigma_\beta^2$
Innerhalb der Stich- proben	$S_{3}^{2} = \sum_{ijk} (y_{ijk} - y_{ij.})^{2} =$ $= \sum_{ijk} y_{ijk}^{2} - \frac{1}{c} \sum_{ij} Y_{ij.}^{2}$	$f_3 = (c-1) B_1$	$s_3^2 = rac{S_3^2}{f_3}$	$\widetilde{\sigma}_3^2 = \sigma_\gamma^2$
Summe	$S^2 = \sum_{ijk} (y_{ijk} - y_{})^2$	$f = B_1 c - 1$		

Diese mittleren Quadrate sind Schätzwerte ihrer Mittelwerte $\tilde{\sigma}_i^2$, i=1,2,3. Durch sie gelangt man zu Schätzwerten der Varianzkomponenten σ_{α}^2 , σ_{β}^2 , σ_{γ}^2 . Das Zeichen \approx bedeutet im folgenden immer "wird geschätzt durch" bzw. "ist ein Schätzwert von", je nachdem der unbekannte Parameter, z. B. die Varianzkomponente, auf der linken oder rechten Seite der Gleichung steht.

Es gilt also:

$$\tilde{\sigma}_{1}^{2} = \frac{(B_{1}^{2} - B_{2}) c}{(a - 1) B_{1}} \sigma_{\alpha}^{2} + c \sigma_{\beta}^{2} + \sigma_{\gamma}^{2} \approx s_{1}^{2},
\tilde{\sigma}_{2}^{2} = c \sigma_{\beta}^{2} + \sigma_{\gamma}^{2} \approx s_{2}^{2},
\tilde{\sigma}_{3}^{2} = \sigma_{\gamma}^{2} \approx s_{3}^{2}.$$
(10)

Auflösung von (10) nach den Varianzkomponenten liefert deren Schätzwerte:

$$\begin{split} \sigma_{\alpha}^2 &\approx \frac{(a-1)\;B_1}{(B_1^2-B_2)\;c} \left(s_1^2-s_2^2\right) = s_{\alpha}^2, \\ \sigma_{\beta}^2 &\approx \frac{s_2^2-s_3^2}{c} &= s_{\beta}^2, \\ \sigma_{\nu}^2 &\approx s_3^2 &= s_{\nu}^2. \end{split}$$

Die Streuung der für die Varianzkomponenten ermittelten Schätzwerte läßt sich auf dem Weg über die Streuung der s_i^2 , i=1,2,3, bestimmen. Bildet man mit Hilfe von Tab. 9 die $S_i^2/\tilde{\sigma}_i^2$, so sind diese Größen wie Chiquadrat mit f_i F. g. verteilt. Die Streuung eines χ^2 mit f F. g. ist bekanntlich 5 2 f, daher gilt für die Streuung von $S_i^2/\tilde{\sigma}_i^2$: $\mathfrak{S}\{S_i^2/\tilde{\sigma}_i^2\}=2\,f_i$ und für die Streuung von $s_i^2=S_i^2/f_i$: $\mathfrak{S}\{s_i^2\}=2\,\tilde{\sigma}_i^4/f_i$. Die s_i^2 sind aus voneinander unabhängigen Quadratsummen hervorgegangen und daher selbst voneinander unabhängig. Leider hängen ihre Streuungen von den unbekannten $\tilde{\sigma}_i^2$ ab, für die wir nur Schätzwerte haben. Erwartungstreue Schätzwerte der $2\,\tilde{\sigma}_i^4/f_i$ bekommt man so: Es ist $\mathfrak{M}\{s_i^2\}=\tilde{\sigma}_i^2$ und $\mathfrak{S}\{s_i^2\}=2\,\tilde{\sigma}_i^4/f_i$. Nach dem Verschiebungssatz ist $\mathfrak{M}\{s_i^4\}=\mathfrak{S}\{s_i^2\}+[\mathfrak{M}\{s_i^2\}]^2=2\,\tilde{\sigma}_i^4/f_i+\tilde{\sigma}_i^4=(2+f_i)\,\tilde{\sigma}_i^4/f_i$. Daher ist $\mathfrak{M}\{2\,s_i^4/(f_i+2)\}=2\,\tilde{\sigma}_i^4/f_i$ und somit $2\,s_i^4/(f_i+2)$ ein erwartungstreuer Schätzwert von $\mathfrak{S}\{s_i^2\}$.

Infolge der Unabhängigkeit der s_i^2 erhält man daher näherungsweise als Streuungen der Schätzwerte für die Varianzkomponenten:

$$egin{align} rac{\mathcal{E}\{s_{lpha}^2\}}{s_{lpha}^2} &= rac{2\;(a-1)^2\,B_1^2}{(B_1-B_2)^2\,c^2}\cdot \left(rac{s_1^4}{f_1+2} + rac{s^4}{f_2+2}
ight), \ &\cong \{s_{eta}^2\} &= rac{2}{c^2}\left(rac{s_2^4}{f_2+2} + rac{s_3^4}{f_3+2}
ight), \ &\cong \{s_{\gamma}\} &= rac{2\,s_3^4}{f_3+2}. \end{split}$$

Im Falle $\sigma_{\alpha}^2=0$ ist s_1^2/s_2^2 wie F mit f_1 und f_2 F. g., im Falle $\sigma_{\beta}^2=0$ ist s_2^2/s_3^2 wie F mit f_2 und f_3 F. g. verteilt. Ein zu großer Wert eines der beiden Quotienten zeigt an, daß σ_{α}^2 bzw. σ_{β}^2 signifikant von 0 verschieden ist.

D. Durchführung

Die Tab. 10 bis 13 enthalten nach dem Muster von Tab. 9 die Varianzanalysen für die Betonwerksgruppen I bis IV. Da die Gruppen III und IV jeweils nur aus einem Werk bestehen, entfällt in den Tab. 12 und 13 die Zeile "zwischen den Werken".

Tabelle 10. Die Varianzanalyse der Gruppe I

	S^2	F. g.	s^2	σ^2
Zwischen den Werken Zwischen den Proben Innerhalb der Proben	0.722150 0.728749 0.161876	1 49 102	0·722150 0·0148724 0·00158702	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
Summe	1.612775	152		

Tabelle 11. Die Varianzanalyse der Gruppe II

	S^2	F. g.	82	σ^2
Zwischen den Werken	1.066093	2	0.533047	$\sigma_{\nu}^2 + 3 \; \sigma_{\beta}^2 + 79.6125 \; \sigma_{\alpha}^2$
Zwischen den Proben	1.067386	77	0.01386216	$\sigma_{\nu}^2 + 3 \sigma_{B}^2$
Innerhalb der Proben	0.128164	160	0.000801025	σ_{γ}^2
Summe	2.261643	239		

Tabelle 12. Die Varianzanalyse der Gruppe III

	S^2	F. g.	82	G ²
Zwischen den Proben	0·760708 0·044039	16 34	0.0475443 0.0012953	$\sigma_{\gamma}^2 + 3\sigma_{\beta}^2 \ \sigma_{\gamma}^2$
Summe	0.804747	50		

Tabelle 13. Die Varianzanalyse der Gruppe IV

	S ²	F. g.	88	σ^2	
Zwischen den Proben	0·872525 0·021161	21 44	0·0415488 0·00048093	$rac{\sigma_{\gamma}^2 + 3\sigma_{eta}^2}{\sigma_{\gamma}^2}$	
Summe	0.893686	65			

C	Schätzwerte der Varianzkomponenten				
Gruppe	s _a · 10 ⁶	s ² _β · 10 ⁶	$s_{\gamma}\cdot 10^6$	Summe	
I	9697 ± 8089	4428 ± 985	1587 ± 220	0.015712	
11 1	6521 ± 4735	4354 ± 736	801 ± 89	0.011676	
III		15416 ± 5284	1295 ± 305	0.016711	
IV	-	13689 ± 4089	481 + 100	0.014170	

Tabelle 14. Ergebnisse der Varianzanalysen

Tab. 14 enthält die Schätzwerte der Varianzkomponenten mit ihren Standardabweichungen (Wurzeln aus den Streuungen.)

E. Ergebnisse

Für die Untersuchung der Streuungen wurden nicht die Druckfestigkeiten selbst, sondern deren Logarithmen herangezogen, weil diese eine Streuung zeigen, die nicht mehr von der Höhe der Druckfestigkeit abhängig ist (vgl. I E c).

In Tab. 14 sind die Schätzwerte der Varianzkomponenten und als deren Summe der Schätzwert der Streuung der y_{ijk} innerhalb der Gruppen angegeben.

Die Streuung σ_{α}^2 ist ein Maß für die Unterschiede der Betonwerksmittelwerte. Diese Streuung besitzt im vorliegenden Fall insofern eine geringere Bedeutung, als die Unterschiede der Mittelwerte der Betonwerke nicht als rein zufallsbedingt anzusprechen sind. Die Größe von σ_{α}^2 legt die Vermutung nahe, daß jedes Betonwerk seiner Betonherstellung einen seinem Sicherheitsbedürfnis entsprechenden und gegenüber der Norm erhöhten "Sollwert" zugrunde legt.

Wie bereits eingangs erwähnt, gibt die Streuung σ_{β}^2 ein Maß für die Gleichmäßigkeit der Zusammenmischung, während σ_{γ}^2 ein Maß für die Gleichmäßigkeit der Durchmischung des Betons ist. Ein Vergleich der Streuungen σ_{β}^2 und σ_{γ} zeigt, daß die großen Streuungen der Druckfestigkeiten im wesentlichen auf einer mangelhaften Kontrolle der Betonzusammenmischung beruhen.

Eine gute Durchmischung bedeutet eben noch keine gute Zusammenmischung. Die Streuungen der Gruppe IV zeigen dies deutlich.

Die in Tab. 14 angeführten Schätzwerte der Varianzkomponenten können zur Überprüfung der Arbeitsweise der bestehenden Betonwerke herangezogen werden. Dies kann überschläglich in der Weise erfolgen, daß man, ausgehend von der Beziehung

$$\mathfrak{M}\left\{c\sum_{j}\left(y_{ij.}-y_{i..}
ight)^{2}
ight\}=\left(b_{i}-1
ight)\left(c\ \sigma_{eta}^{2}+\sigma_{eta}^{2}
ight)$$

den Schätzwert

$$\frac{\sum\limits_{j}{(y_{ij},\cdots y_{i..})^2}}{b_i-1}\approx\sigma_{\beta}^2$$

unter Vernachlässigung von σ_{γ}^2 errechnet und mit den Werten s_{β}^2 in Tab. 14 vergleicht. Sicherheitshalber kann nachgeprüft werden, ob

$$\frac{\sum\limits_{jk}{(y_{ijk}-y_{ij.})^2}}{b_i\,(c-1)}\approx\sigma_{\gamma}^2$$

tatsächlich gegenüber σ_{β}^2 vernachlässigt werden kann.

Das der Untersuchung zugrunde gelegte Varianzkomponentenmodell bringt die zusammengesetzte Natur der Gesamtstreuung klar zum Ausdruck und wird die Grundlage für ein stochastisch fundiertes Prüfverfahren liefern, das auf die Überwachung sowohl des Zusammen- als auch des Durchmischens gerichtet sein wird. Die bestehenden Betonnormen tragen diesem Gesichtspunkt nicht Rechnung und sind in dieser Richtung zu erweitern¹¹. (Eingegangen am 4. April 1957)

Die folgenden beiden Bücher beschreiben Methoden, die in dieser Arbeit Verwendung finden,

während sich die beiden Abhandlungen auf denselben Gegenstand beziehen:

O. Kempthorne: The Design and Analysis of Experiments. New York: Wiley. 1952.

A. Linder: Planen und Auswerten von Versuchen. Basel-Stuttgart: Birkhäuser. 1953.

H. Rüsch: Betrachtungen zur Prüfung der Betonfestigkeit. Beton- u. Stahlbetonbau 51, 135—138 (1956).

W. Arneth: Auswertung der Güteprüfungen an Betonprobekörpern und Bohrkernen. Straße u. Autobahn 7, 424—427 (1956).

Beitrag zur Kinetik und Statik ebener Stabwerke mit gekrümmten Stäben*¹

Von G. Schumpich, Hannover

Mit 12 Textabbildungen

Zusammenfassung. Ausgehend von Differentialgleichungssystemen für freie Schwingungen eben gekrümmter Stäbe wird eine Matrizenmethode, das sog. Reduktionsverfahren, zur Berechnung der freien Schwingungen ebener Stabwerke mit gekrümmten Stäben entwickelt. Das Verfahren wird auf erzwungene Schwingungen und die Statik solcher Stabwerke ausgedehnt.

I. Einleitung

Die auf dem Gebiet der Dynamik gekrümmter Stäbe bis jetzt erzielten Fortschritte findet man in dem Buch von K. Federhofer "Dynamik des Bogenträgers und Kreisringes" [1]² zusammenfassend dargestellt. Da die exakte Lösung schon verhältnismäßig einfacher Probleme nur mit einem sehr großen Rechenaufwand erhalten werden kann, ist man gezwungen, Näherungsverfahren anzusetzen. So berechnen verschiedene Verf. Eigenfrequenzen und Eigenschwingungsformen mit Hilfe des Ritzschen Verfahrens.

In der letzten Zeit ist eine Reihe von Arbeiten erschienen, unter anderen die Arbeiten [5] bis [11], in denen verschiedene technische Probleme nach einer Matrizenmethode gelöst werden, welche jetzt als Reduktionsverfahren bezeichnet wird [6]. Grundsätzlich läßt sich das Reduktionsverfahren auf alle Probleme anwenden, die durch gewöhnliche lineare Differentialgleichungen beschrieben werden können. In der vorliegenden Arbeit wird das Reduktionsverfahren für beliebige ebene Stabwerke mit gekrümmten Stäben entwickelt.

Zur Herleitung der sog. Übertragungsmatrizen des Reduktionsverfahrens wird zuerst eine allgemeine Methode vorgeschlagen, bei der man von einem System von n linearen homogenen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten ausgeht. Dabei hat man die Vorteile, daß man sich von vornherein des Matrizenkalküls bedienen kann, und daß darüber hinaus die etwa notwendigen Grenzübergänge bei der Herleitung der Übertragungsmatrizen für Sonderfälle praktisch schon an der Koeffizientenmatrix des Differentialgleichungssystems durchgeführt werden können.

¹¹ Die Verfasser sind gerne bereit, Betonwerken, in denen solche Kontrollen von Hilfskräften durchgeführt werden, entsprechende Vordrucke zu senden.

^{*} In Verehrung Herrn Professor Dr. K. Federhofer gewidmet

¹ Gekürzte Fassung der Dissertation des Verf., Hannover 1957; Referent: Prof. Dr.-Ing. E. Pestel, Korreferent: Prof. Dr.-Ing. K. Jaeckel.

 $^{^{2}}$ Die Zahlen in eekigen Klammern verweisen auf das Schrifttumsverzeichnis am Ende der Arbeit.

II. Mathematische Grundlagen für die Herleitung der Übertragungsmatrizen

Wir betrachten das System von n linearen homogenen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten

$$\frac{dz_1}{ds} = a_{11}z_1 + \ldots + a_{1n}z_n
\dots
\frac{dz_n}{ds} = a_{n1}z_1 + \ldots + a_{nn}z_n,$$
(1a)

welches in Matrizenschreibweise wie folgt geschrieben werden kann:

$$\frac{d\mathfrak{z}}{ds} = \mathfrak{A} \cdot \mathfrak{z} \tag{1b}$$

 $\frac{d_\delta}{ds}=\mathfrak{A}\cdot\mathfrak{z} \tag{1b}$ mit den Spaltenvektoren $\mathfrak{z}(s)$ und $\frac{d_\delta(s)}{ds}$ und der quadratischen n-reihigen Koeffizienten-

Die Lösung des Systems (1) bei den Anfangsbedingungen $z_1(s_0) = z_1^0, \dots, z_n(s_0) = z_n^0$, wobei wir $s_0 = 0$ setzen wollen, ist nach [3], S. 120, gegeben durch

$$\mathfrak{z}(s) = \mathfrak{U}(s) \cdot \mathfrak{z}_0 \tag{2}$$

mit dem Anfangsvektor $\mathfrak{z}_0=\mathfrak{z}(0)$ und $\mathfrak{U}(s)=e^{\mathfrak{V} s}.$

$$\mathfrak{U}(s) = e^{\mathfrak{U} s}. \tag{3}$$

Dabei soll ${\mathfrak U}$ eine quadratische n-reihige Matrix bedeuten. Mit Hilfe der Matrix ${\mathfrak U}$ kann aus dem Vektor z_0 an der Stelle $z_0 = 0$ nach (2) der Vektor z_0 an einer beliebigen Stelle s in einfacher Weise berechnet werden. Die Matrix Il nennen wir "Übertragungsmatrix" und den Vektor 3(s) "Zustandsvektor", da er den Zustand an der Stelle s vollständig kennzeichnet.

Die durch (3) eingeführte Übertragungsmatrix ll kann aus A mit Hilfe der Definitionsgleichung

$$e^{\mathfrak{A}s} = \mathfrak{E} + \mathfrak{A}s + \frac{1}{2!} \cdot (\mathfrak{A}s)^2 + \frac{1}{3!} \cdot (\mathfrak{A}s)^3 + \dots, \tag{4}$$

also durch Aufsummierung einer unendlichen Reihe, berechnet werden. Jedoch läßt sich $e^{\mathfrak{A}s}$ auch durch einen endlichen Polynomausdruck, das sog. Ersatzpolynom (vgl. [4], S. 227) von der Gestalt

$$e^{\mathfrak{A} s} = c_0 \mathfrak{E} + c_1 \mathfrak{A} s + \ldots + c_{n-1} (\mathfrak{A} s)^{n-1} = g(\mathfrak{A} s)$$
 (5)

darstellen, so daß die Matrix U schon durch Aufsummierung von endlich vielen Matrizen gewonnen werden kann.

Die Koeffizienten c_v in (5) können nach [4], S. 227 ff., bestimmt werden. Die dort beschriebene Methode zur Berechnung der c, stützt sich auf den folgenden

Satz: Die charakteristischen Zahlen zi eines Matrizenpolynoms oder einer durch ein Polynom darstellbaren Matrizenfunktion $\mathfrak{C}=f(\mathfrak{B})$ sind mit den charakteristischen Zahlen λ_i der Matrix $\mathfrak B$ verknüpft durch die Gleichung

$$\kappa_i = f(\lambda_i). \quad ^3 \tag{6}$$

Da die gegebene Funktion $f(\mathfrak{B})$ und das Ersatzpolynom $g(\mathfrak{B})$ eine und dieselbe Matrix \mathfrak{C} darstellen, so haben beide dieselben charakteristischen Zahlen \varkappa_i , und nach dem obigen Satz folgt

 $q(\lambda_i) = f(\lambda_i).$ (7)

 $^{^3}$ In dem uns hier speziell interessierenden Fall ist $\mathfrak{B}=\mathfrak{A}\cdot s,\ f(\mathfrak{B})=e^{\mathfrak{A}\cdot s},\ \mathfrak{C}=\mathfrak{A}.$ Zu den nachfolgenden Ausführungen vgl. [4], S. 227-236, insbesondere außer dem hier zitierten Satz 1 auch den Satz 2.

Wir wollen hier noch den folgenden Zusatz beweisen, mit dessen Hilfe die Berechnung der Koeffizienten c_r des Ersatzpolynoms $g(\mathfrak{B})$ auch im Falle mehrfacher charakteristischer Zahlen von \mathfrak{B} sich einfach gestaltet.

Zusatz: Ist λ_1 eine p-fache charakteristische Zahl von \mathfrak{B} , so gilt außer

auch

$$g(\lambda_{1}) = f(\lambda_{1})$$

$$g'(\lambda_{1}) = f'(\lambda_{1}),$$

$$g''(\lambda_{1}) = f''(\lambda_{1}),$$

$$\vdots$$

$$\vdots$$

$$g^{(p-1)}(\lambda_{1}) = f^{(p-1)}(\lambda_{1}),$$
(8)

wobei Ableitungen nach dem Argument durch Striche gekennzeichnet sind. Diesen Zusatz beweisen wir mit Hilfe von Grenzübergängen, die den Grenzübergängen bei Zurmühl [4] entsprechen. Dabei gehen wir zweckmäßig von der Darstellung des Ersatzpolynoms in der Gestalt aus:

$$g(\mathfrak{B}) = b_0 \mathfrak{E} + b_1 (\mathfrak{B} - \lambda_1 \mathfrak{E}) + \ldots + b_{n-1} (\mathfrak{B} - \lambda_1 \mathfrak{E}) (\mathfrak{B} - \lambda_2 \mathfrak{E}) \ldots (\mathfrak{B} - \lambda_{n-1} \mathfrak{E}). \tag{9a}$$

Dem Ersatzpolynom entspricht dann das Interpolationspolynom

$$g(x) = b_0 + b_1(x - \lambda_1) + \ldots + b_{n-1}(x - \lambda_1)(x - \lambda_2) \ldots (x - \lambda_{n-1}).$$
 (10a)

Es mögen zunächst sämtliche charakteristischen Zahlen λ_i von \mathfrak{B} voneinander verschieden sein. Dann hat man nach (7) mit $g(\mathfrak{B})$ nach (9a) in

$$\begin{cases}
f(\lambda_{1}) = b_{0}, \\
f(\lambda_{2}) = b_{0} + b_{1}(\lambda_{2} - \lambda_{1}), \\
f(\lambda_{3}) = b_{0} + b_{1}(\lambda_{3} - \lambda_{1}) + b_{2}(\lambda_{3} - \lambda_{1}) (\lambda_{3} - \lambda_{2}), \\
\vdots \\
f(\lambda_{n}) = b_{0} + b_{1}(\lambda_{n} - \lambda_{1}) + \dots + b_{n-1}(\lambda_{n} - \lambda_{1}) (\lambda_{n} - \lambda_{2}) \dots (\lambda_{n} - \lambda_{n-1})
\end{cases}$$
(11a)

ein Gleichungssystem von n linearen Gleichungen vorliegen, aus dem sich die n unbekannten Koeffizienten b_{ν} rekursiv bestimmen lassen.

Aus der ersten Gleichung von (11a) folgt

$$b_0 = f(\lambda_1).$$

Die zweite Gleichung bringen wir auf die Gestalt

$$b_1 = \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1}.$$
 (12a)

Macht man nun den Grenzübergang $\lambda_2 \to \lambda_1$, so wird der Koeffizient $b_0 = f(\lambda_1)$ durch diesen Grenzübergang nicht beeinflußt, b_1 geht nach (12a) über in

$$b_1^1 = \lim_{\lambda_2 \to \lambda_1} b_1 = f'(\lambda_1) \tag{13a}$$

und die übrigen Koeffizienten b_r in b_r . Man erhält nach dem Grenzübergang statt (9a)

$$g(\mathfrak{B}) = f(\lambda_1) \cdot \mathfrak{E} + f'(\lambda_1) (\mathfrak{B} - \lambda_1 \mathfrak{E}) + b_2^{1} (\mathfrak{B} - \lambda_1 \mathfrak{E})^2 + \dots + b_{n-1}^{1} (\mathfrak{B} - \lambda_1 \mathfrak{E})^2 \cdot (\mathfrak{B} - \lambda_3 \mathfrak{E}) \dots (\mathfrak{B} - \lambda_{n-1} \cdot \mathfrak{E}),$$

$$(9b)$$

statt (10a)

$$g(x) = f(\lambda_1) + f'(\lambda_1) (x - \lambda_1) + b_2^1 (x - \lambda_1)^2 + \dots + b_{n-1}^1 (x - \lambda_1)^2 \cdot (x - \lambda_3) \dots (x - \lambda_{n-1})$$
(10b)

und statt (11a)

$$f(\lambda_{1}) = b_{0},$$

$$f'(\lambda_{1}) = b_{1}^{1},$$

$$f(\lambda_{3}) = b_{0} + b_{1}^{1} (\lambda_{3} - \lambda_{1}) + b_{2}^{1} (\lambda_{3} - \lambda_{1})^{2},$$

$$\vdots$$

$$\vdots$$

$$f(\lambda_{n}) = b_{0} + b_{1}^{1} (\lambda_{n} - \lambda_{1}) + b_{2}^{1} (\lambda_{n} - \lambda_{1})^{2} + \dots + b_{n-1}^{1} (\lambda_{n} - \lambda_{1})^{2} (\lambda_{n} - \lambda_{3}) \dots (\lambda_{n} - \lambda_{n-1}).$$

Column where

Aus (10b) folgt nun

$$g(\lambda_1) = f(\lambda_1),$$

 $g'(\lambda_1) = f'(\lambda_1).$

Die Behauptung ist damit für eine zweifache charakteristische Zahl richtig. Um den Satz allgemein für eine p-fache charakteristische Zahl zu beweisen, wenden wir den Induktionsschluß an. Der Satz sei richtig für eine (p-1)-fache charakteristische Zahl λ_1 . Das Gleichungssystem für die Koeffizienten des Ersatzpolynoms lautet in diesem Fall⁴

$$f(\lambda_{1}) = b_{0},$$

$$f'(\lambda_{1}) = b_{1}^{1},$$

$$f''(\lambda_{1}) = 2! b_{2}^{2},$$

$$\vdots$$

$$f^{(p-2)}(\lambda_{1}) = (p-2)! b_{p-2}^{p-2},$$

$$f(\lambda_{p}) = b_{0} + b_{1}^{1} (\lambda_{p} - \lambda_{1}) + \dots + b_{p-2}^{p-2} (\lambda_{p} - \lambda_{1})^{p-2} + b_{p-1}^{p-2} (\lambda_{p} - \lambda_{1})^{p-1},$$

$$\vdots$$

$$\vdots$$

$$f(\lambda_{n}) = b_{0} + b_{1}^{1} (\lambda_{n} - \lambda_{1}) + \dots + b_{n-1}^{p-2} (\lambda_{n} - \lambda_{1})^{p-1} \dots (\lambda_{n} - \lambda_{n-1}).$$

$$(11c)$$

Läßt man nun auch $\lambda_p \to \lambda_1$ gehen, so erhält man aus der p-ten Gleichung von (11c)

$$b_{p-1}^{p-1} = \lim_{\lambda_{p} \to \lambda_{1}} b_{p-1}^{p-2} = \lim_{\lambda_{p} \to \lambda_{1}} \frac{f(\lambda_{p}) - f(\lambda_{1}) - f'(\lambda_{1}) (\lambda_{p} - \lambda_{1}) - \dots - \frac{f^{(p-2)}(\lambda_{1})}{(p-2)!} (\lambda_{p} - \lambda_{1})^{p-2}}{(\lambda_{p} - \lambda_{1})^{p-1}} = \frac{f^{(p-1)}(\lambda_{1})}{(p-1)!}.$$
(12c)

Die Koeffizienten $b_0, b_1^1, \ldots, b_{p-2}^{p-2}$ werden durch diesen Grenzprozeß nicht beeinflußt, die übrigen Koeffizienten b_r^{p-2} gehen in b_r^{p-1} über. Nach dem Grenzübergang erhält man ein dem System (11c) entsprechendes System, welches aus diesem durch Verschiebung des Index p um eins entsteht, und somit das Interpolationspolynom

⁴ Das Bildungsgesetz des Gleichungssystems (11c) erkennt man leicht, wenn man noch in (11b) den Grenzübergang $\lambda_3 \rightarrow \lambda_1$ durchführt.

$$g(x) = f(\lambda_{1}) + f'(\lambda_{1}) (x - \lambda_{1}) + \dots + \frac{f^{(p-1)}(\lambda_{1})}{(p-1)!} (x - \lambda_{p+1}) + b_{p}^{p-1} (x - \lambda_{1})^{p} + b_{p+1}^{p-1} (x - \lambda_{1})^{p} (x - \lambda_{p+1}) + \dots + b_{n-1}^{p-1} (x - \lambda_{1})^{p} (x - \lambda_{p+1}) \dots (x - \lambda_{n-1}).$$
(10d)
Aus (10d) folgt die Behauptung
$$g(\lambda_{1}) = f(\lambda_{1}),$$
$$g'(\lambda_{1}) = f'(\lambda_{1}),$$

$$g^{(p-1)}(\lambda_1) = f^{(p-1)}(\lambda_1).$$

Wir bemerken noch, daß die Koeffizientenmatrix des Gleichungssystems (11) eine untere Dreiecksmatrix mit von Null verschiedenen Elementen in der Diagonalen ist, so daß die Koeffizientendeterminante nicht verschwindet und das Gleichungssystem für die b_r eindeutig lösbar ist.

Die Koeffizienten c, des Ersatzpolynoms in der Gestalt

$$g(\mathfrak{B}) = c_0 \mathfrak{E} + c_1 \mathfrak{B} + \ldots + c_{n-1} \mathfrak{B}^{n-1}$$

bestimmen sich nach dem vorangehenden Satz durch Lösung der Interpolationsaufgabe, dasjenige Polynom g(x) vom niedrigsten Grade zu bestimmen, welches an den Stützstellen $x_i=\lambda_i$ die vorgegebenen Funktionswerte $g(\lambda_i)=f(\lambda_i)=f_i$ und Ableitungen $g^{(j)}(\lambda_i)=f^{(j)}(\lambda_i)=f_i^{(j)}$ $(j=1,2,3,\ldots,p_i-1)$ annimmt, wobei p_i die Vielfachheit der charakteristischen Zahl λ_i ist.

III. Differentialgleichungen für die Zentrallinie gekrümmter Stäbe. Bewegungsgleichungen für freie Schwingungen

Die Zentrallinie eines im Sinne der mathematischen Elastizitätstheorie dünnen, räumlich gekrümmten Stabes sei durch

$$r = r(s)$$
, s — Bogenlänge,

gegeben. Jedem Punkt der Raumkurve r ordnen wir ein rechtwinkliges x, y, z-Koordinatensystem zu, dessen x-Achse in Richtung des Tangentenvektors t der

Abb. 2

menfallen. Die Einheitsvektoren i, j, \mathfrak{k} in Richtung der Achsen bilden ein Rechtssystem. Den Winkel zwischen der y-Achse und der Hauptnormalen \mathfrak{n} bezeichnen wir mit χ . Für $\chi=0$ geht das Hauptachsensystem i, j, \mathfrak{k} in das Hauptsystem (begleitendes Dreibein) \mathfrak{k} , \mathfrak{n} , \mathfrak{b} über.

Die Verschiebungs- und Schnittgrößen definieren wir dann als positiv, wenn ihre Vektoren am positiven Schnittufer in die Richtung positiver Koordinatenachsen weisen (Abb. 1 und 2).

Aus den bekannten Gleichgewichtsbedingungen und den Elastizitätsgesetzen für Biegung, Dehnung und Torsion (vgl. [2] und [1]) erhält man unter Benutzung des oben eingeführten x, y, z-Koordinatensystems das folgende Differentialgleichungssystem für die verformte Zentrallinie⁵:

$$u' = \frac{1}{EF} Q_x + k_z v - k_y w,$$

$$Q_{x'} = k_z Q_y - k_y Q_z - p_x,$$

$$\delta' = c M_x - k_y \varphi + k_z \psi,$$

$$M_{x'} = -k_y M_z + k_z M_y - d_x,$$

$$v' = -k_z u + \varphi + \tau w,$$

$$\varphi' = k_y \delta + a M_z - \tau \psi,$$

$$M_{z'} = k_y M_x - Q_y - \tau M_y - d_z,$$

$$Q_{y'} = -k_z Q_x + \tau Q_z - p_y,$$

$$w' = k_y u - \tau v - \psi,$$

$$\psi' = -k_z \delta + \tau \varphi + b M_y,$$

$$M_{y'} = -k_z M_x + \tau M_z + Q_z - d_y,$$

$$Q_{z'} = k_y Q_x - \tau Q_y - p_z, \qquad (' = \frac{d}{ds}).$$

$$(13)$$

Dabei gelten folgende Bezeichnungen:

Verschiebungen in der Richtung der x-, y- und z-Achse. u, v, wWinkel der Drehung des Stabelementes um die x-, y- und δ, ψ, φ z-Achse. Torsionsmoment. M_x M_y , M_z Biegemomente. Normalkraft. $Q_y, \ Q_z$ Querkräfte. Querschnittsfläche des Stabes. $rac{1}{c}=GI_D$ Torsionssteifigkeit. $rac{1}{a}=EI_z, \; rac{1}{b}=EI_y$ Biegesteifigkeiten. $rac{1}{\sigma}$ Windung der Zen $au=rac{d\chi}{ds}+rac{1}{\sigma}$ Torsionssteifigkeit. Windung der Zentrallinie. $\frac{1}{\varrho} = k$ Krümmung der Zentrallinie. $k_z = \frac{1}{\varrho}\cos\chi, \ k_y = \frac{1}{\varrho}\sin\chi$ Krümmungskomponenten. Komponenten der äußeren Kräfte (bzw. Massenkräfte) je p_x , p_y , p_z Längeneinheit der Zentrallinie. Komponenten der äußeren Momente (bzw. Massenmomente) je d_x , d_y , d_z Längeneinheit der Zentrallinie.

⁵ Im Differentialgleichungssystem (13) ist der Einfluß der Querschnittsverwölbung infolge der Torsion nicht berücksichtigt; Näheres darüber s. in [1].

Die Größen k_y , k_z und τ beziehen sich auf den unverformten Zustand der Zentrallinie.

Wirken auf den Stab während der Bewegung keine äußeren Kräfte, so wird seine Bewegung durch das Differentialgleichungssystem beschrieben, welches aus (13) folgt, wenn man in diesem für p_x , p_y , p_z , d_x , d_y , d_z die Trägheitswiderstände einsetzt, also

$$p_{x} = -\mu \, \ddot{u}, \qquad p_{y} = -\mu \, \ddot{v}, \qquad p_{z} = -\mu \, \ddot{w}, d_{x} = -\mu \, i_{x}^{2} \, \ddot{\delta}, \qquad d_{y} = -\mu \, i_{y}^{2} \, \ddot{\psi}, \qquad d_{z} = -\mu \, i_{z}^{2} \, \ddot{\varphi}.$$
(14)

Masse des Stabes je Längeneinheit der Zentrallinie.

 i_x , i_y , i_z Trägheitsradien bezüglich der x-, y-, z-Achsen.

zeit. Ableitungen nach der Zeit werden durch Punkte gekennzeichnet. Mit dem Ansatz für Eigenschwingungen

$$u(s, t) = u(s) e^{i \omega t},$$

$$Q_x(s, t) = Q_x(s) e^{i \omega t},$$

$$\delta(s, t) = \delta(s) e^{i \omega t},$$

$$\vdots$$

$$Q_z(s, t) = Q_z(s) e^{i \omega t}$$

$$Q_z(s, t) = Q_z(s) e^{i \omega t}$$
(15)

geht (13) mit p_x , p_y , ... nach (14) in ein System von zwölf gewöhnlichen linearen Differentialgleichungen 1. Ordnung für die zwölf unbekannten Funktionen u(s), $Q_x(s)$, $\delta(s)$, ..., $Q_z(s)$ über⁶, welches bei Verwendung der Matrizenschreibweise in der Form $\frac{d_3}{ds} = \mathfrak{A} \cdot \mathfrak{F}$ (16)

geschrieben werden kann mit dem Zustandsvektor⁷

0

 k_{y}

0

0

 $-k_z$

0

0

0

0

0

0

0

⁶ Für die Funktionen u(s,t), $Q_x(s,t)$, $\delta(s,t)$,... und die reinen Ortsfunktionen u(s), $Q_x(s)$, $\delta(s)$,... verwenden wir hier dieselben Funktionssymbole, was jedoch nicht zu Verwechslungen führen dürfte.

τ

0

0

0

 $\mu \omega^2$

 $\mu \omega^2 i_{y^2}$

0

1

0

⁷ Spaltenvektoren werden aus Gründen der Raumersparnis in Zeile geschrieben und durch geschweifte Klammern gekennzeichnet.

und der quadratischen Matrix $\mathfrak A$ (18). Die stark umrahmten Teilmatrizen in der Hauptdiagonalen der Matrix $\mathfrak A$ bedeuten der Reihe nach von links oben nach rechts unten die Anteile, die zu Normalschwingungen, Torsionsschwingungen, Biegeschwingungen in der y-Richtung und Biegeschwingungen in der z-Richtung gehören. Die Matrizenelemente außerhalb der eingerahmten Teilmatrizen haben die Bedeutung von Kopplungsfaktoren der verschiedenen Schwingungsarten.

Aus dem allgemeinen System (16) mit der Koeffizientenmatrix (18) lassen sich leicht Differentialgleichungssysteme für verschiedene Sonderfälle gewinnen. Für den Sonderfall der freien Schwingungen eines eben gekrümmten unverwundenen Stabes, dessen Zentrallinie in der x,y-Ebene liegt ($\chi=0,\,\frac{1}{\sigma}=0,\,\,\tau=0,\,\,k_y=0,\,\,k_z=k$), zerfällt das allgemeine Differentialgleichungssystem in zwei voneinander unabhängige Systeme:

A. Schwingungen in der Ebene der Zentrallinie. Kopplung der Normalschwingungen mit den Biegeschwingungen in der y-Richtung.

$$\begin{bmatrix} u' \\ Q_{x'} \\ v' \\ \varphi' \\ M_{z'} \\ -Q_{y'} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{EF} & k & 0 & 0 & 0 \\ -\mu \omega^{2} & 0 & 0 & 0 & -k \\ -k & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & -\mu \omega^{2} i_{z}^{2} & 0 & 1 \\ 0 & k & \mu \omega^{2} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ Q_{x} \\ v \\ \varphi \\ M_{z} \\ -Q_{y} \end{bmatrix}$$
(19)

B. Schwingungen senkrecht zur Ebene der Zentrallinie. Kopplung der Torsionsschwingungen mit den Biegeschwingungen in der z-Richtung.

$$\begin{bmatrix} \delta' \\ M_{x'} \\ -w' \\ \psi' \\ M_{y'} \\ Q_{z'} \end{bmatrix} = \begin{bmatrix} 0 & c & 0 & k & 0 & 0 \\ -\mu \omega^{2} i_{x}^{2} & 0 & 0 & k & 0 \\ 0 & 0 & 0 & k & 0 \\ 0 & 0 & 0 & k & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -k & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \\ M_{x} \\ -w \\ \psi \\ M_{y} \\ Q_{z} \end{bmatrix}$$
(20)

Diese beiden Schwingungsarten eines eben gekrümmten Stabes sollen nun im folgenden Abschnitt behandelt werden.

IV. Freie Schwingungen eben gekrümmter Stäbe

A. Herleitung von Übertragungsmatrizen

Fall A: Schwingungen in der Ebene der Zentrallinie.

Für den Fall eines homogenen Kreisbogens (k= konst., $\mu=$ konst., $EI_z=\frac{1}{a}=$ = konst.) sind die Elemente der Koeffizientenmatrix des Differentialgleichungssystems (19) konstant. Zur Aufstellung der Übertragungsmatrix für ein solches homogenes Kreisbogenstück mit dem Zentriwinkel Φ und dem Radius ϱ (Abb. 3)

können wir demnach die im Abschnitt II beschriebene Methode benutzen. Setzt man für die Bogenlänge des Kreisbogens

$$s = \frac{\Phi}{k} = \Phi \cdot \varrho \tag{21}$$

und führt die Abkürzungen ein

$$a \mu \omega^2 \varrho^4 = A; \quad \frac{EJ_z}{EF} = f,$$
 (22)

so erhält man für die Übertragungsmatrix zunächst die Darstellung

$$\mathfrak{U} = \exp \mathfrak{U} s = \exp \begin{bmatrix}
0 & a f \varrho & 1 & 0 & 0 & 0 \\
-\frac{A}{a \varrho^3} & 0 & 0 & 0 & 0 & -1 \\
\hline
-1 & 0 & 0 & \varrho & 0 & 0 \\
0 & 0 & 0 & a \varrho & 0 \\
0 & 0 & 0 & -\frac{A i_x^2}{a \varrho^3} & 0 & \varrho \\
0 & 1 & -\frac{A}{a \varrho^3} & 0 & 0 & 0
\end{bmatrix} \cdot \Phi \tag{23}$$

Wir bezeichnen die charakteristischen Zahlen der Matrix $\mathfrak{A} s = \mathfrak{A} \varrho \Phi$ mit λ_i und die der Matrix $\mathfrak{A} \varrho$ mit Λ_i . Es gilt

$$\lambda_i = \Phi \cdot \Lambda_i$$
. (24)

Die charakteristische Gleichung der Matrix $\mathfrak{A} \rho$ lautet:

$$\det \left(\mathfrak{E} A - \mathfrak{A} \varrho \right) = A^{6} + A^{4} \left[2 + A \frac{i_{z}^{2}}{\varrho^{2}} + A \frac{f}{\varrho^{2}} \right] + A^{2} \left[1 - A + 2 A \frac{i_{z}^{2}}{\varrho^{2}} - A \frac{f}{\varrho^{2}} + A^{2} \frac{i_{z}^{2} f}{\varrho^{4}} \right] + A \left[1 + \frac{i_{z}^{2}}{\varrho^{2}} - A \frac{f}{\varrho^{2}} - A \frac{i_{z}^{2} f}{\varrho^{4}} \right] = 0. \quad (25)$$

Bei Vernachlässigung des Einflusses der Rotationsträgheit der Stabelemente und der Voraussetzung dehnungsloser Deformation erhält man aus (25) mit $i_z=0$, f=0:

$$\Lambda^6 + 2\Lambda^4 + \Lambda^2(1-A) + A = 0. \tag{26}$$

Schon die Diskussion dieser einfacheren Gleichung bereitet Schwierigkeiten. Die Koeffizienten und damit auch die Wurzeln der in Λ^2 kubischen Gl. (26) sind frequenzabhängig. Man muß daher verschiedene Frequenzbereiche unterscheiden und für jeden dieser Bereiche gesondert eine Übertragungsmatrix aufstellen. Darüber hinaus würde das Arbeiten mit diesen Übertragungsmatrizen unhandlich sein, weil ihre Elemente einen komplizierten Aufbau haben. Aus diesen Gründen wollen wir auf die Aufstellung der Übertragungsmatrizen für einen homogenen Kreisbogen in dieser Allgemeinheit verzichten⁸ und beschränken uns auf die Herleitung von Übertragungsmatrizen für folgende, bei den praktischen Anwendungen wichtigen Sonderfälle:

- a) Masseloser Kreisbogen mit dem Zentriwinkel Φ und dem Radius ϱ . ($\mu = 0$).
- b) Starrer Kreisbogen mit dem Zentriwinkel Φ und dem Radius ϱ . (a=0).
- c) Einzelmasse m.
- d) Einzelelastizität e.

⁸ Benötigt man eine solche Übertragungsmatrix in einem konkreten Fall, so ist es bequemer, sie numerisch für eine feste Frequenz ω direkt aus der Reihe $\mathfrak{U} = e^{\mathfrak{U}\,\varrho\,\Phi} = \mathfrak{E} + \frac{\mathfrak{U}\,\varrho\,\Phi}{1\,!} + \frac{(\mathfrak{U}\,\varrho\,\Phi)^2}{2\,!} + \dots$ zu berechnen.

Diese gewinnen wir durch Grenzübergänge aus der Darstellung (23) der Übertragungsmatrix für einen homogenen Kreisbogen. Wegen der Stetigkeit der Exponentialfunktion gilt

$$\lim \exp \mathfrak{A} s = \exp \lim \mathfrak{A} s = \exp \mathfrak{B}. \tag{27}$$

Nachstehend sind für die oben genannten Sonderfälle die Exponentenmatrizen B, ihre charakteristischen Gleichungen und charakteristischen Zahlen zusammengestellt.

a)
$$\mathfrak{B}_{b} = \lim_{\mu \to 0} \mathfrak{A} s = \begin{bmatrix} 0 & af \, \varrho \, \Phi & \Phi & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\Phi \\ \hline -\Phi & 0 & 0 & \varrho \, \Phi & 0 & 0 \\ 0 & 0 & 0 & 0 & \varrho \, a \, \Phi & 0 \\ 0 & 0 & 0 & 0 & 0 & \varrho \, \Phi \\ 0 & \Phi & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (28a)

$$\Lambda^2 (1 + \Lambda^2)^2 = 0; \quad \lambda_1 = \lambda_2 = 0; \quad \lambda_3 = \lambda_4 = i \Phi; \quad \lambda_5 = \lambda_6 = -i \Phi$$

$$\mathfrak{A}^{2}(1+\Lambda^{2})^{2} = 0; \quad \lambda_{1} = \lambda_{2} = 0; \quad \lambda_{3} = \lambda_{4} = i\,\Phi; \quad \lambda_{5} = \lambda_{6} = -i\,\Phi.$$
b)
$$\mathfrak{B}_{\mu} = \lim_{a \to 0} \mathfrak{A} s = \begin{bmatrix}
0 & 0 & \Phi & 0 & 0 & 0 \\
-\mu\,\omega^{2}\,\varrho\,\Phi & 0 & 0 & 0 & -\Phi \\
\hline
-\Phi & 0 & 0 & 0 & \Phi & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \Phi \\
0 & \Phi & \mu\,\omega^{2}\,\varrho\,\Phi & 0 & 0 & 0
\end{bmatrix} (28b)$$

$$\Lambda^2 (1 + \Lambda^2)^2 = 0; \quad \lambda_1 = \lambda_2 = 0; \quad \lambda_3 = \lambda_4 = i \Phi; \quad \lambda_5 = \lambda_6 = -i \Phi.$$

$$\Omega^{2} (1 + \Lambda^{2})^{2} = 0; \quad \lambda_{1} = \lambda_{2} = 0; \quad \lambda_{3} = \lambda_{4} = i \Phi; \quad \lambda_{5} = \lambda_{6} = -i \Phi.$$
c)
$$\mathfrak{B}_{m} = \lim_{\substack{\phi \to 0 \\ \mu_{\varrho} \phi \to m}} \mathfrak{A} s = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
-m \omega^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -m i_{z}^{2} \omega^{2} & 0 & 0 & 0 \\
0 & 0 & m \omega^{2} & 0 & 0 & 0 & 0
\end{bmatrix} (28c)$$

$$\lambda^6 = 0$$
; $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6 = 0$.

$$\lambda^6 = 0;$$
 $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6 = 0.$

In den Sonderfällen c und d lautet das Ersatzpolynom für $e^{2\theta}$

$$g(\mathfrak{B}) = \mathfrak{E} + \mathfrak{B} + \frac{1}{2!} \mathfrak{B}^2 + \frac{1}{3!} \mathfrak{B}^3 + \frac{1}{4!} \mathfrak{B}^4 + \frac{1}{5!} \mathfrak{B}^5.$$
 (29)

Die Koeffizienten c, in den Sonderfällen a und b im Ersatzpolynom

$$g(\mathfrak{B}) = c_0 \mathfrak{E} + c_1 \mathfrak{B} + c_2 \mathfrak{B}^2 + c_3 \mathfrak{B}^3 + c_4 \mathfrak{B}^4 + c_5 \mathfrak{B}^5 \tag{30}$$

bestimmen sich aus dem folgenden Gleichungssystem (3 zweifache charakteristische Zahlen).

$$g(0) = 1, g'(0) = 1, g(i \Phi) = e^{i \Phi}, g'(i \Phi) = e^{i \Phi}, g(-i \Phi) = e^{-i \Phi}, g'(-i \Phi) = e^{-i \Phi},$$
 (31)

mit

$$g(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5,$$

$$g'(x) = c_1 + 2 c_2 x + 3 c_3 x^2 + 4 c_4 x^3 + 5 c_5 x^4.$$

Aus (31) erhält man

$$c_{0} = c_{1} = 1,$$

$$c_{2} = -\frac{1}{2 \Phi^{2}} [4 (\cos \Phi - 1) + \Phi \sin \Phi],$$

$$c_{3} = \frac{1}{2 \Phi^{3}} [\Phi (\cos \Phi - 1) - 5 (\sin \Phi - \Phi)],$$

$$c_{4} = -\frac{1}{2 \Phi^{4}} [2 (\cos \Phi - 1) + \Phi \sin \Phi],$$
Abb. 4
$$c_{5} = \frac{1}{2 \Phi^{5}} [\Phi (\cos \Phi - 1) - 3 (\sin \Phi - \Phi)].$$
(32)

Durch Einsetzen der entsprechenden Exponentenmatrizen $\mathfrak B$ in (29) und (30) mit den Koeffizienten c_r aus (32) erhält man die Übertragungsmatrizen (34a), (34b), (34c) und (34d). In (34e) ist die Übertragungsmatrix für einen masselosen starren Kreisbogen angegeben; in (34f) die Übertragungsmatrix (Eckmatrix) für den Fall, daß zwei Stäbe unter einem Winkel Φ eine Ecke bilden (Abb. 4), die etwa durch den Grenzübergang $\varrho \to 0$ aus der Übertragungsmatrix (34e) gewonnen werden kann. Die in (34a) und (34b) vorkommenden Funktionen $F_r(\Phi)$ und ihre Reihenentwicklungen sind:

$$F_{1}(\Phi) = \frac{1}{2} \left(\Phi \cos \Phi + \sin \Phi \right) = \Phi - \frac{2}{3!} \Phi^{3} + \frac{3}{5!} \Phi^{5} - \frac{4}{7!} \Phi^{7} + \dots$$

$$F_{2}(\Phi) = \Phi \sin \Phi + \cos \Phi - 1 = \frac{1}{2!} \Phi^{2} - \frac{3}{4!} \Phi^{4} + \frac{5}{6!} \Phi^{6} - \frac{7}{8!} \Phi^{8} + \dots$$

$$F_{3}(\Phi) = \frac{1}{2} \left(\sin \Phi - \Phi \cos \Phi \right) = \frac{1}{3!} \Phi^{3} - \frac{2}{5!} \Phi^{5} + \frac{3}{7!} \Phi^{7} - \frac{4}{9!} \Phi^{9} + \dots$$

$$F_{4}(\Phi) = 2 \sin \Phi - \Phi \cos \Phi - \Phi = \frac{1}{3!} \Phi^{3} - \frac{3}{5!} \Phi^{5} + \frac{5}{7!} \Phi^{7} - \frac{7}{9!} \Phi^{9} + \dots$$

$$F_{5}(\Phi) = \frac{1}{2} \left(2 - 2 \cos \Phi - \Phi \sin \Phi \right) = \frac{1}{4!} \Phi^{4} - \frac{2}{6!} \Phi^{6} + \frac{3}{8!} \Phi^{8} - \frac{4}{10!} \Phi^{10} + \dots$$

$$F_{6}(\Phi) = \frac{1}{2} \left(2 \Phi + \Phi \cos \Phi - 3 \sin \Phi \right) = \frac{1}{5!} \Phi^{5} - \frac{2}{7!} \Phi^{7} + \frac{3}{9!} \Phi^{9} + \frac{4}{11!} \Phi^{11} + \dots$$

Übertragungsmatrix \mathfrak{U}_b . Masseloser Kreisbogen.

	$\cos \Phi$	$\begin{array}{c} a f \varrho F_1(\Phi) \\ + a \varrho^3 F_6(\Phi) \\ \hline \\ \cos \Phi \end{array}$	$\sin \Phi$	$\frac{\varrho\left(1-\cos\Phi\right)}{0}$	$\frac{a\varrho^2(\Phi-\sin\Phi)}{0}$	$-rac{afarrho}{2}arPhi\sinarPhi\ +aarrho^3F_5(arPhi)\ -\sinarPhi$	
	$-\sin \Phi$	$-rac{afarrho}{2}arPhi\sinarPhi \ +aarrho^3F_5(arPhi)$	$\cos arPhi$	$arrho\sinarPhi$	$a \varrho^2 (1 - \cos \Phi)$	$(af \varrho + a \varrho^3) \cdot F_3(\Phi)$	(34a)
١	0	$a \varrho^2 (\Phi - \sin \Phi)$	0	1	$a \varrho \Phi$	$a \varrho^2 (1 - \cos \Phi)$	
	0	$\varrho (1 - \cos \Phi)$	0	0	1	$\varrho\sinarPhi$	
	0	$\sin \Phi$	0	0	0	$\cos \Phi$	

Übertragungsmatrix \mathfrak{U}_{μ} . Starrer Kreisbogen.

	$\cos arPhi$	0	$\sin \Phi$	$\varrho (1 - \cos \Phi)$	0	0 -	1
	$-\mu\omega^2\varrho\Phi\cos\Phi$	$\cos \Phi$	$-\mu \omega^2 \varrho \Phi \sin \Phi$	$=2\mu\omega^2arrho^2F_3(arPhi)$	0	$-\sin\Phi$	
ı	$-\sin\Phi$	0	$\cos arPhi$	$\varrho\sinarPhi$	0	0	
	0	0	. 0	1	0	0	(34b)
	$-2\mu\omega^2\varrho^2 F_3(\Phi)$	$\varrho \left(1-\cos \varPhi ight)$	$\mu \ \omega^2 \ arrho^2 F_2(oldsymbol{arrho})$	$-\mu\omega^2arrhoi_z{}^2{m \Phi} \ +\mu\omega^2arrho^3F_4({m \Phi})$	1	$\varrho\sinarPhi$	
	$-\mu \omega^2 \varrho \Phi \sin \Phi$	$\sin \Phi$	$\mu \omega^2 \varrho \Phi \cos \Phi$	$\mu \omega^2 \varrho^2 F_2(\Phi)$	0	$\cos \Phi$	

Übertragungsmatrix \mathfrak{U}_m . Einzelmasse.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -m\,\omega^2 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i_z{}^2 m\,\omega^2 & 1 & 0 \\ 0 & 0 & m\,\omega^2 & 0 & 0 & 1 \\ \end{bmatrix} \tag{34c}$$

Übertragungsmatrix \mathcal{U}_e . Einzelelastizität.

$$\begin{bmatrix}
1 & ef & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & e & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(34 d)

	0 0						
Ī	$\cos \Phi$	0	$\sin \Phi$	$\varrho (1 - \cos \Phi)$	0	0	
	0	$\cos \Phi$. 0	. 0	0	$-\sin\Phi$	
	$-\sin\Phi$	0	$\cos \Phi$	$\varrho\sinarPhi$	0	0	(34e)
	0 0		0	1	0	0	(3±6)
	0	$\varrho (1 - \cos \Phi)$	0	0	1	$\varrho\sinarPhi$	
						_	

Übertragungsmatrix \mathfrak{U}_0 . Starrer masseloser Kreisbogen.

 $\sin \Phi$

Übertragungsmatrix \mathfrak{U}_{Φ} . Eckmatrix.

ſ	$\cos \Phi$	0	$\sin \Phi$	0	0	0 -	
	0	$\cos \Phi$	0	0	0	$-\sin\Phi$	
	$-\sin\Phi$	0	$\cos \Phi$	0	0	0	(94f)
ı	0	0	0	1	0	0	(34f)
ı	0	0	0	0	1	0	
	0	$\sin \Phi$	0	0	0	$\cos \Phi$	

 $\cos \Phi$

Fall B: Schwingungen senkrecht zur Ebene der Zentrallinie.

Entsprechend wie in Fall A erhält man hier mit der Koeffizientenmatrix $\mathfrak A$ des Differentialgleichungssystems (20) die Übertragungsmatrix für einen homogenen Kreisbogen $\left(\frac{1}{\varrho}=k=\text{konst.},\;\mu=\text{konst.},\;b=\text{konst.},\;c=\text{konst.},\;\text{Zentriwinkel}\;\Phi\right)$ zunächst in der Form:

$$\mathfrak{U} = \exp \mathfrak{U} \cdot s = \exp \begin{bmatrix}
0 & c \varrho & 0 & 1 & 0 & 0 \\
-\frac{A}{b \varrho^3} i_x^2 & 0 & 0 & 0 & 1 & 0
\end{bmatrix} \Phi \qquad (35)$$

$$0 & 0 & \varrho & 0 & 0 \\
-1 & 0 & 0 & \varrho & 0 & 0 \\
0 & -1 & 0 & 0 & b \varrho & 0 \\
0 & 0 & \frac{A}{b \varrho^3} i_y^2 & 0 & \varrho \\
0 & 0 & \frac{A}{b \varrho^3} & 0 & 0 & 0$$

mit

$$s = \varrho \Phi = \frac{\Phi}{k}$$
 und $A = \mu \omega^2 b \varrho^4$. (36)

Die charakteristische Gleichung der Matrix $\mathfrak{A} \varrho$ ist

$$\det \left(\mathfrak{C} \Lambda - \mathfrak{A} \varrho \right) = \Lambda^6 + \Lambda^4 \left[2 + A \frac{i_y^2}{\varrho^2} + A \frac{c}{b} \frac{i_x^2}{\varrho^2} \right] + \\ + \Lambda^2 \left[1 - A - A \frac{i_x^2}{\varrho^2} - A \frac{c}{b} \frac{i_y^2}{\varrho^2} + A^2 \frac{c}{b} \frac{i_x^2}{\varrho^2} \frac{i_y^2}{\varrho^2} \right] + A \frac{c}{b} - A^2 \frac{c}{b} \frac{i_x^2}{\varrho^2} = 0.$$
 (37)

Aus den bereits im Fall A genannten Gründen verzichten wir auch hier auf die Herleitung der allgemeinen Übertragungsmatrix für den homogenen Kreisbogen. Die Übertragungsmatrizen für Sonderfälle erhält man auf dem gleichen Wege wie im Fall A durch Grenzübergänge in (35) und anschließende Umformung mit Hilfe des Ersatzpolynoms. Dabei haben die Exponentenmatrizen B in einander entsprechenden Sonderfällen dieselben charakteristischen Gleichungen und charakteristischen

Zahlen, so daß man die Koeffizienten der Ersatzpolynome nicht neu zu berechnen braucht.

Wir können uns daher hier damit begnügen, die endgültigen Übertragungsmatrizen anzugeben. Die in diesen Übertragungsmatrizen enthaltenen Funktionen $F_{\nu}(\Phi)$ sind bereits in (33) erklärt.

Die Einzelelastizitäten e_b und e_c sind auf die gleiche Weise wie die Einzelelastizität e im Fall A eingeführt. Die Übertragungsmatrix (38d) wird aus (35) durch den Grenzübergang $\varrho \Phi b \to e_b$, $\varrho \Phi c \to e_c$ mit $\Phi \to 0$ gewonnen.

Übertragungsmatrix Ub. Masseloser Kreisbogen.

$\cos arPhi$	$egin{array}{c} c \ arrho \ F_1(arPhi) \ - b \ arrho \ F_3(arPhi) \end{array}$	0	$\sin \Phi$	$\varrho \frac{b+c}{2} \Phi \sin \Phi$	$= \left[arrho^2 \left(b + c ight) F_3(arPhi) ight]$	
0	$\cos \Phi$	0	0	$\sin \Phi$	$\varrho \left(1-\cos \varPhi ight)$	
$-\varrho\left(1-\cos\Phi\right)$	$\left -arrho^2(b+c)F_3(arPhi) ight $	1	$arrho\sinoldsymbol{arrho}$	$rac{b\;arrho^2}{2}arPhi\sinarPhi onumber \ -c\;arrho^2{F_5}(arPhi)$	$b \varrho^3 F_3(\Phi) \ - c \varrho^3 F_6(\Phi)$	(38a)
$-\sin arPhi$	$-\varrho \frac{b+c}{2} \Phi \sin \Phi$	0	$\cos arPhi$	$egin{array}{c} b \ arrho \ F_1(arPhi) \ - c \ arrho \ F_3(arPhi) \end{array}$	$rac{b \; arrho^2}{2} arPhi \sin arPhi \ - c \; arrho^2 F_5(arPhi)$	
0	$-\sin \Phi$	0	0	$\cos arPhi$	$\varrho\sinarPhi$	
0	0	0	0	0	1	

Übertragungsmatrix \mathfrak{U}_{μ} . Starrer Kreisbogen.

0 (_	L.	0			
$\cos \Phi$	0	0	$\sin {m \Phi}$	0.	0	7
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\cos arPhi$	$\mu \omega^2 \varrho^2 (\varPhi - \sin \varPhi)$	$egin{aligned} &\mu\omega^2arrho^3F_{_5}(arrho) \ &-\mu\omega^2arrho\left(i_x{}^2+i_y{}^2 ight) \cdot \ &\cdotrac{1}{2}arphi\sinarphi \end{aligned}$	$\sin oldsymbol{arPhi}$	$\varrho (1 - \cos \Phi)$	
$-\varrho (1-\cos \Phi)$	0	1	$arrho\cos arPhi$	0	0	(38 b)
$-\sin\Phi$	0	0	$\cos arPhi$	0	0	(30 0)
$egin{aligned} -\mu\omega^2arrho^3F_5(oldsymbol{\Phi}) \ +\mu\omega^2arrho(i_{x}^{2}+i_{y}^{2}) \cdot \ \cdot rac{1}{2}oldsymbol{\Phi}\sinoldsymbol{\Phi} \end{aligned}$	$-\sin \Phi$	$\mu \omega^2 \varrho (1 - \cos \varPhi)$	$egin{aligned} -\mu\omega^2arrhoi_y{}^2F_1(m{\Phi}) \ +\mu\omega^2arrho(i_x{}^2+ \ +arrho^2)F_3(m{\Phi}) \end{aligned}$	$\cos arPhi$	$ ho\sin{m{arPhi}}$	
$-\mu\omega^2\varrho(\boldsymbol{\Phi}-\sin\boldsymbol{\Phi})$	0	$\mu \omega^2 \varrho \Phi$	$\mu \omega^2 \varrho (1 - \cos \Phi)$	0	1	

Übertragungsmatrix \mathcal{U}_m . Einzelmasse.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -m \omega^2 i_x^2 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 -m \omega^2 i_y^2 & 1 & 0 \\ 0 & 0 & m \omega^2 & 0 & 0 & 1 \end{bmatrix}$$

$$(38c)$$

Übertragungsmatrix U. Einzelelastizität.

Γ	1	e_c	0	0	0	0 -
	0	1	0	0	0	0
ì	0	0	1	0	0	0
ı	0	0	0	1	e_b	0
1	0	0	0	0	1	0
	0	0	0	0	0	1

Übertragungsmatrix \mathfrak{U}_0 . Starrer masseloser Kreisbogen.

$\left\lceil \frac{\cos \Phi}{0} \right\rceil$	$\frac{0}{\cos \Phi}$	0	$\frac{\sin \Phi}{0}$	$\frac{0}{\sin \Phi}$	$\frac{0}{\varrho\left(1-\cosarPhi ight)}$	
$-\varrho (1-\cos \Phi)$	0	1	$\varrho\sin arPhi$	0	0	(38e)
$-\sin\Phi$	0	0	$\cos \Phi$	0	0	(300)
0	$-\sin\Phi$	0	0	$\cos \Phi$	$\varrho\sinarPhi$	
0	0	0	0	0	1	

Übertragungsmatrix U_{ϕ} . Eckmatrix.

$\cos \Phi$	0	0	$\sin \Phi$	0	0	
0	$\cos \Phi$	0	0	$\sin \Phi$	0	
0	0	1	0	0	0	(201)
$-\sin\Phi$	0	0	$\cos \Phi$	0	0	(38f)
0	$-\sin\Phi$	0 .	0	$\cos \Phi$	0	
0	0	0	0	0	1	

B. Reziproke Übertragungsmatrizen

In den Anwendungen werden auch die Reziproken der Übertragungsmatrizen benötigt. Für die in dem vorhergehenden Abschnitt aufgestellten Matrizen können die Kehrmatrizen wegen der besonderen Bauart leicht durch nachfolgende Überlegungen hergeleitet werden.

Die reziproke Matrix der Übertragungsmatrix $\mathfrak{U}=e^{\mathfrak{A}s}=e^{\mathfrak{A}\varrho\,\Phi}$ für ein Kreisbogenstück ist

$$\mathfrak{U}^{-1} = e^{-\mathfrak{A}\varrho \, \Phi} \tag{39}$$

(s. z. B. [3], S. 120). Da in den im Abschnitt A betrachteten Fällen die Elemente der Koeffizientenmatrizen $\mathfrak A$ unabhängig von Φ sind, erhält man die reziproke Matrix in der Gestalt einer quadratischen Matrix $\mathfrak A^{-1}$ aus der zugehörigen quadratischen Übertragungsmatrix $\mathfrak A$ dadurch, daß man in dieser Φ durch — Φ ersetzt. Nun sind die Elemente der Übertragungsmatrix für ein homogenes Kreisbogenstück, wie man zeigen kann, entweder gerade oder ungerade Funktionen von Φ , die sich in den beiden betrachteten Schwingungsfällen wie folgt verteilen.

Fall A	- _g	u	u	g	u	g -	
	u	g	g	u	g	u	
	u	g	g	u	g	u	(40)
	g	u	u	g	u	g	(±0)
	u	g	g	u	g	u	
		u	u	g	u	g_{\perp}	
Fall B		u	g	u	g	_u -	
	u	g	u	g	u	g	
	g	\overline{u}	g	u	g	u	(41)
	u	g	u	g	u	g	()
	g	u	g	u	g	u	
	_ u	g	u	g	u	g _	

g Elemente der Übertragungsmatrix, die gerade Funktionen von Φ sind. u Elemente, die ungerade Funktionen von Φ sind.

Man erhält also die zugehörige reziproke Matrix aus der jeweiligen Übertragungsmatrix bereits dadurch, daß man in dieser bei denjenigen Elementen das Vorzeichen umkehrt, deren Stelle in der Matrix mit "u" gekennzeichnet ist. Diese Vorschrift und das Schema (40) bzw. (41) gelten auch für die Bildung der Kehrmatrizen in den Sonderfällen (34a bis f) bzw. (38a bis f).

C. Übertragungsmatrix für einen stückweise aus Kreisbögen zusammengesetzten Stabzug

Für das folgende beachten wir, daß wir den Zustandsvektor $\mathfrak z$ bei der Behandlung der eben gekrümmten Stäbe auf das rechtwinklige x, y, z-Koordinatensystem bezogen

haben, bei dem die positiven Richtungen der x, y, z-Achsen der Reihe nach in Richtung des Tangentenvektors, Hauptnormalenvektors und des Binormalenvektors weisen (vgl. Abschnitt III und die dort getroffenen Vereinbarungen). Dieses System nennen wir kurz das Normalsystem.

Wir beschäftigen uns zuerst mit der Aufstellung der Übertragungsmatrix für ein Stabstück, dessen Zentrallinie sich aus zwei Kreisbogenstücken zusammensetzt, das heißt wir fragen nach der Matrix, die den Zustandsvektor an einem Ende eines

solchen Stabes auf sein anderes Ende transformiert. Dabei ist bei Schwingungen in der Ebene der Zentrallinie der Zustandsvektor

$$\mathfrak{z} = \{u, Q_x, v, \varphi, M_z, -Q_y\},\tag{42}$$

bei Schwingungen senkrecht zur Ebene der Zentrallinie

$$\mathfrak{z} = \{\delta, M_x, -w, \psi, M_y, Q_z\}. \tag{43}$$

Wir betrachten zwei Fälle, die in den Abb. 5 und 6 dargestellt sind und sich dadurch unterscheiden, daß beim Überschreiten der Stelle 2 im 1. Fall (Abb. 5) der Krümmungssinn der Zentrallinie beibehalten wird, während er sich im 2. Fall (Abb. 6) umkehrt.

1. Fall (Abb. 5): Hier gelten die Beziehungen

$$\mathfrak{z}_{2,\,l} = \mathfrak{U}_{\mathfrak{I}} \cdot \mathfrak{z}_{1},\tag{44}$$

$$\mathfrak{z}_3 = \mathfrak{U}_{\mathrm{II}} \cdot \mathfrak{z}_{2,\,r} \tag{45}$$

mit den Übertragungsmatrizen $\mathfrak{U}_{\mathrm{I}}$, $\mathfrak{U}_{\mathrm{II}}$ nach A. Die Indizes "2, l" und "2, r" weisen darauf hin, daß sich der Zustandsvektor auf eine Stelle unmittelbar links bzw. unmittelbar rechts der Stelle 2 bezieht. Fordert man für die Komponenten des Zustandsvektors aus mechanischen Gründen Stetigkeit an der Stelle 2, so gilt

$$\mathfrak{z}_{2,r} = \mathfrak{C} \cdot \mathfrak{z}_{2,l} \quad (\mathfrak{C} = \text{Einheitsmatrix}).$$
 (46)

Aus den Gl. (44), (45) und (46) folgt nun durch Einsetzen

$$\mathfrak{z}_3 = \mathfrak{U}_{II} \cdot \mathfrak{E} \cdot \mathfrak{U}_I \cdot \mathfrak{z}_1 = \mathfrak{U}_{II} \cdot \mathfrak{U}_I \cdot \mathfrak{z}_1 = \mathfrak{U} \cdot \mathfrak{z}_1. \tag{47}$$

 $\mathfrak{U}=\mathfrak{U}_{II}\cdot\mathfrak{U}_{I}$ ist somit die gesuchte Matrix, die den Zustandsvektor von der Stelle 1 auf die Stelle 3 überträgt.

2. Fall (Abb. 6): Hier gelten zunächst die Beziehungen (44) und (45). Fordert man wieder Stetigkeit des Zustandsvektors an der Stelle 2, so muß bei der Aufstellung der Beziehung zwischen $\mathfrak{z}_{2,\,l}$ und $\mathfrak{z}_{2,\,r}$ berücksichtigt werden, daß sich $\mathfrak{z}_{2,\,l}$ und $\mathfrak{z}_{2,\,r}$ auf verschiedene Normalsysteme beziehen. Diese Koordinatensysteme haben an der Stelle 2 eine gemeinsame x-Achse und das eine folgt aus dem anderen durch Drehung um die x-Achse um 180° . Die Beziehung zwischen $\mathfrak{z}_{2,\,r}$ und $\mathfrak{z}_{2,\,l}$ lautet jetzt

$$\mathfrak{Z}_{2,\,r} = \mathfrak{E}^* \cdot \mathfrak{Z}_{2,\,l},\tag{48}$$

die sowohl für den Zustandsvektor (42) als (43) gilt,

$$\text{mit } \mathfrak{E}^* =
 \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & -1 & 0 & 0 & 0 \\
 0 & 0 & 0 & -1 & 0 & 0 \\
 0 & 0 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & 0 & -1
 \end{bmatrix} = \mathfrak{E}^{*-1}.
 \tag{49}$$

Aus (44), (45) und (48) folgt nun

$$\mathfrak{z}_3 = \mathfrak{U}_{II} \cdot \mathfrak{E}^* \cdot \mathfrak{U}_I \cdot \mathfrak{z}_1 = \mathfrak{U} \cdot \mathfrak{z}_1 \tag{50}$$

mit der gesuchten Übertragungsmatrix

$$\mathfrak{U}=\mathfrak{U}_{\mathfrak{I}\mathfrak{I}}\cdot\mathfrak{E}^*\cdot\mathfrak{U}_{\mathfrak{I}}.$$

Oft ist es zweckmäßiger, den Zustandsvektor auf ein von der Änderung des Krümmungssinnes unabhängiges Koordinatensystem zu beziehen (Abb. 7): die x-Achse

weist in Richtung des Tangentenvektors, die y-Achse ist beim Fortschreiten in Richtung wachsender Bogenlänge immer nach derselben Seite gerichtet (in Abb. 7 nach oben) und die z-Achse ergänzt das System zu einem Rechtssystem.

Zur Unterscheidung wollen wir auch die auf dieses System bezogenen Zustandsvektoren durch die Querstriche unten kennzeichnen. Im Abschnitt I (Abb. 7) ist dieses neue System mit dem Normalsystem identisch, so daß gilt

und

$$\underline{\mathfrak{z}}_{1} = \mathfrak{z}_{1}; \quad \underline{\mathfrak{z}}_{2}, i = \mathfrak{z}_{2}, i$$

$$\underline{\mathfrak{z}}_{2}, i = \mathfrak{U}_{1} \, \underline{\mathfrak{z}}_{1}. \tag{51}$$

Dagegen müssen wir die Zustandsvektoren im Abschnitt II auf das neue Koordinatensystem umrechnen. Es gilt

$$\begin{array}{ccc}
\mathfrak{z}_{2,\,r} = \mathfrak{G}^* \cdot \underline{\mathfrak{z}}_{2,\,r}, \\
\mathfrak{z}_{3} = \mathfrak{G}^* \cdot \mathfrak{z}_{3}
\end{array}$$
(52)

mit &* nach (49). Die Beziehung (45) rechnet sich mit Hilfe von (52) auf das neue Koordinatensystem wie folgt um

$$\begin{split} \mathfrak{E}^* \cdot \underline{\mathfrak{z}}_3 &= \mathfrak{U}_{\mathrm{II}} \cdot \mathfrak{E}^* \cdot \underline{\mathfrak{z}}_{2.\,r}, \\ \underline{\mathfrak{z}}_3 &= \mathfrak{E}^{*-1} \cdot \mathfrak{U}_{\mathrm{II}} \cdot \mathfrak{E}^* \cdot \underline{\mathfrak{z}}_{2.\,r} \end{split}$$

und wegen $\mathfrak{E}^* = \mathfrak{E}^{*-1}$ [vgl. Gl. (49)]

$$\mathfrak{z}_{\underline{3}} = \mathfrak{E}^* \cdot \mathfrak{U}_{\mathrm{II}} \cdot \mathfrak{E}^*_{\underline{1}} \, \mathfrak{z}_{2,\,r} = \mathfrak{U}_{\mathrm{II}}^*_{\underline{1}} \, \mathfrak{z}_{2,\,r} \tag{53}$$

mit der im neuen System geltenden Übertragungsmatrix

$$\mathfrak{U}_{II}{}^*=\mathfrak{E}^*\cdot\mathfrak{U}_{II}\cdot\mathfrak{E}^*.$$

Die Produktmatrix U_{II} * lautet ausführlich:

$$\mathbf{u}_{\mathbf{II}}^{*} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{bmatrix} \cdot \begin{bmatrix}
u_{11} & u_{12} & u_{13} & u_{14} & u_{15} & u_{16} \\
u_{21} & u_{22} & u_{23} & u_{24} & u_{25} & u_{26} \\
u_{31} & u_{32} & u_{33} & u_{34} & u_{35} & u_{36} \\
u_{41} & u_{42} & u_{43} & u_{44} & u_{45} & u_{46} \\
u_{51} & u_{52} & u_{53} & u_{54} & u_{55} & u_{56} \\
u_{61} & u_{62} & u_{63} & u_{64} & u_{65} & u_{66}
\end{bmatrix} \cdot \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0
\end{bmatrix} = \begin{bmatrix}
u_{11} & u_{12} & -u_{13} - u_{14} - u_{15} - u_{16} \\
-u_{21} & u_{22} & -u_{23} - u_{24} - u_{25} - u_{26} \\
-u_{31} - u_{32} & u_{33} & u_{34} & u_{35} & u_{36} \\
-u_{41} - u_{42} & u_{43} & u_{44} & u_{45} & u_{46} \\
-u_{51} - u_{52} & u_{53} & u_{54} & u_{55} & u_{56} \\
-u_{61} - u_{62} & u_{63} & u_{64} & u_{65} & u_{66}
\end{bmatrix}$$

$$(54)$$

Sie entsteht aus der Matrix \mathfrak{U}_{Π} einfach dadurch, daß man in dieser bei den Elementen, welche die Bedeutung von Kopplungsfaktoren haben, das Vorzeichen umkehrt.

Mit der Stetigkeitsforderung

$$\mathfrak{z}_{2,\,r} = \mathfrak{E} \cdot \mathfrak{z}_{2,\,t} \tag{55}$$

und den Beziehungen (51) und (53) folgt

$$\mathfrak{z}_3 = \mathfrak{U}_{\mathrm{II}}^* \cdot \mathfrak{U}_{\mathrm{I}} \cdot \mathfrak{z}_1 = \mathfrak{U} \cdot \mathfrak{z}_1. \tag{56}$$

Die gesuchte Übertragungsmatrix lautet hier

$$\mathfrak{U}=\mathfrak{U}_{\mathbf{\Pi}}^{*}\cdot\mathfrak{U}_{\mathbf{I}}.$$

Nachdem wir gezeigt haben, wie man die Übertragungsmatrix für ein Stabstück aufstellt, dessen Zentrallinie aus zwei Kreisbögen besteht, können wir nun leicht durch

schrittweises Vorgehen die Übertragungsmatrix für einen beliebigen Stabzug berechnen, dessen Zentrallinie aus Kreisbögen zusammengesetzt ist, wobei biegesteife Ecken zugelassen sind. Für den Stabzug in Abb. 8 z. B. berechnet sich die Übertragungsmatrix wie folgt:

1. Weg: Man behält das ursprüngliche Koordinatensystem

(das Normalsystem) bei und benutzt beim Übergang in das anschließende i-te Stabstück je nach Krümmungsverhalten die Beziehungen

$$\mathfrak{z}_{i,\,r} = \mathfrak{E} \cdot \mathfrak{z}_{i,\,l} \quad \text{oder} \quad \mathfrak{z}_{i,\,r} = \mathfrak{E}^* \cdot \mathfrak{z}_{i,\,l}.$$

Man erhält dann

$$\mathfrak{z}_6 = \mathfrak{U}_5 \cdot \mathfrak{E} \cdot \mathfrak{U}_4 \cdot \mathfrak{E} \cdot \mathfrak{U}_3 \cdot \mathfrak{E}^* \cdot \mathfrak{U}_2 \cdot \mathfrak{E} \cdot \mathfrak{U}_1 \cdot \mathfrak{z}_1 = \mathfrak{R} \cdot \mathfrak{z}_1.$$
 (58a)

2. Weg: Man benutzt das oben definierte, von dem Krümmungsverhalten unabhängige Koordinatensystem. Dann sind für die Stababschnitte, in denen die y-Achse in Richtung der Hauptnormalen weist, die Übertragungsmatrizen \mathfrak{U}_i zu nehmen, im anderen Falle \mathfrak{U}_i^* . Man erhält:

$$\mathfrak{z}_6 = \mathfrak{U}_5^* \cdot \mathfrak{U}_4^* \cdot \mathfrak{U}_3^* \cdot \mathfrak{U}_2 \cdot \mathfrak{U}_1 \cdot \mathfrak{z}_1 = \mathfrak{R} \cdot \mathfrak{z}_1. \tag{58b}$$

D. Durchführung des Reduktionsverfahrens bei Stabzügen ohne Zwischenbedingungen

In diesem Abschnitt beschäftigen wir uns mit der Einarbeitung der Randbedingungen und der Aufstellung der Frequenzgleichung bei den unter C näher gekennzeichneten einfachen Stabzügen. Für die Darstellung beschränken wir uns auf den Fall der freien Schwingungen in der Ebene der Zentrallinie des in Abb. 8 skizzierten Stabzuges. Die Beziehung zwischen den Zustandsvektoren an den Randstellen 1 und 6 dieses Stabzuges ist durch (58) gegeben und lautet ausführlich geschrieben:

$$\begin{bmatrix} u \\ Q_x \\ v \\ \varphi \\ M_z \\ -Q_y \end{bmatrix}_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} & r_{26} \\ r_{23} & r_{24} & r_{25} & r_{26} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} & r_{36} \\ r_{41} & r_{42} & r_{43} & r_{44} & r_{45} & r_{46} \\ r_{51} & r_{52} & r_{53} & r_{54} & r_{55} & r_{56} \\ r_{61} & r_{62} & r_{63} & r_{64} & r_{65} & r_{66} \end{bmatrix} \begin{bmatrix} u \\ Q_x \\ v \\ \varphi \\ M_z \\ -Q_y \end{bmatrix}_{1}$$

$$(59)$$

An den Randstellen 1 und 6 seien homogene Randbedingungen vorgegeben. Diese sind im allgemeinen so beschaffen, daß je drei Komponenten der Zustandsvektoren \mathfrak{F}_1 und \mathfrak{F}_6 verschwinden. Setzt man die geltenden homogenen Randbedingungen in die Beziehung (59) ein, so erhält man sechs homogene Gleichungen für die übrigen Komponenten der Zustandsvektoren an den Randstellen. Drei von diesen Gleichungen (die Nullbedingungen für drei der Komponenten von \mathfrak{F}_6) ergeben ein homogenes Gleichungssystem für drei der unbekannten Komponenten von \mathfrak{F}_1 allein. Die Bedingung, daß die Koeffizientendeterminante dieses Gleichungssystems, deren Elemente vom Parameter ω abhängen, im Falle einer nichttrivialen Lösung verschwinden muß

$$\Delta(\omega) = \begin{vmatrix} r_{im} & r_{in} & r_{ip} \\ r_{km} & r_{kn} & r_{kp} \\ r_{lm} & r_{ln} & r_{lp} \end{vmatrix} \stackrel{!}{=} 0$$
 (60)

liefert die Bestimmungsgleichung für die Eigenfrequenzen. (60) wird als Frequenzgleichung und $\Delta(\omega)$ als Frequenzdeterminante bezeichnet.

Ist etwa der Stabzug in Abb. 8 an seinem linken Ende (Stelle 1) eingespannt und an seinem anderen Ende (Stelle 6) gelenkig gelagert, so gelten bei Betrachtung der Schwingungen in der Ebene der Zentrallinie die Randbedingungen

$$\left\{
 \begin{array}{ll}
 u_1 = 0, & v_1 = 0, \\
 u_6 = 0, & v_6 = 0, \\
 \end{array}
 \left.
 \begin{array}{ll}
 \varphi_1 = 0, \\
 M_{z, 6} = 0,
 \end{array}
 \right\}$$
(61)

und die Frequenzdeterminante ist

$$\Delta(\omega) = \begin{vmatrix} r_{12} & r_{15} & r_{16} \\ r_{32} & r_{35} & r_{36} \\ r_{52} & r_{55} & r_{56} \end{vmatrix}$$
 (62)

Die praktische Durchführung des Reduktionsverfahrens zur Bestimmung von Eigenfrequenzen gerader Stäbe ist in der Literatur ausführlich beschrieben (vgl. z. B. [5], [7], [9]). Mit den im A schnitt A bereitgestellten Übertragungsmatrizen und den Ausführungen im Abschnitt C verläuft die Rechnung bei gekrümmten Stäben in genau entsprechender Weise. Nur in sehr einfachen Fällen ist es möglich, ohne erheblichen Rechenaufwand den Parameter ω in der Rechnung bis zum Schluß mitzuführen und somit $\Delta(\omega)$ geschlossen darzustellen. Im allgemeinen wird man daher die Rechnung für eine Reihe von fest angenommenen Parameterwerten ω aus dem Frequenzbereich, für den das Schwingungsverhalten des Stabzuges interessiert bzw. in dem Eigenfrequenzen zu erwarten sind, jedesmal neu durchführen (die Elemente der Übertragungsmatrizen sind dann reine Zahlen) und die zugehörigen Funktionswerte $\Delta(\omega)$ berechnen. Die Nulldurchgänge der Frequenzdeterminante findet man anschließend durch Interpolation. Die Berechnung des Matrizenproduktes in (58) erfolgt zweckmäßig in einem für Matrizenmultiplikation üblichen Schema (vgl. z. B. [9]).

Für $\omega=\omega_e$ ($\omega_e=$ Eigenfrequenz) besitzt das homogene lineare Gleichungssystem, welches zur Frequenzgleichung führte, eine nichttriviale Lösung. Durch diese sind die Zustandsvektoren an den Randstellen vollkommen bestimmt bis auf eine multiplikative willkürliche Konstante, über die man etwa so verfügen kann, daß man einer der Komponenten der Zustandsvektoren einen festen Wert erteilt, z. B. gleich "eins" setzt. Ist nun der Randvektor \mathfrak{z}_1 bekannt, so lassen sich die Zustandsvektoren an Zwischenstellen leicht berechnen, wodurch der Verlauf der Verschiebungs- und Schnittgrößen festgelegt ist.

Für das betrachtete Beispiel (Abb. 8) folgt

$$\frac{3}{2} = \mathcal{U}_{1} \cdot \underline{3}_{1},$$

$$\frac{3}{3} = \mathcal{U}_{2} \cdot \mathcal{U}_{1} \cdot \underline{3}_{1},$$

$$\vdots$$

$$\vdots$$

$$\frac{3}{6} = \mathcal{U}_{5}^{*} \cdot \mathcal{U}_{4}^{*} \cdot \mathcal{U}_{3}^{*} \cdot \mathcal{U}_{2} \cdot \mathcal{U}_{1} \cdot \underline{3}_{1}.$$
(63)

E. Elastische Lager als Rand- und Zwischenbedingungen

An einer Stelle i sei der Stabzug durch Federn und Drehfedern elastisch gelagert. Die Feder- bzw. Drehfederreaktionen lassen sich nach dem Kraft-Dehnungs-Gesetz für lineare Federn durch die zugehörigen Verschiebungsgrößen ausdrücken. Es gilt

$$egin{aligned} Q_{x,\;i} &= -c_u \cdot u_i, \ M_{z,\;i} &= -c_{arphi} \cdot arphi_i, \ Q_{y,\;i} &= -c_v \cdot v_i, \ M_{x,\;i} &= -c_{\delta} \cdot \delta_i, \ M_{y,\;i} &= -c_{\psi} \cdot \psi_i, \ Q_{x,\;i} &= -c_w \cdot w_i. \end{aligned}$$

wobei c_{Index} die entsprechenden Federkonstanten bedeuten. Die Schnitt- und Verschiebungsgrößen, die sich auf die Stelle unmittelbar links (rechts) von der Stelle i beziehen, kennzeichnen wir durch einen Index "l" ("r").

Fall A: Schwingungen in der Ebene der Zentrallinie (Abb. 9a).

Zwischen den Schnitt- und Verschiebungsgrößen an den Stellen l und r gelten hier unter Berücksichtigung von (64a) die Beziehungen

$$egin{align*} arphi_{r} &= arphi_{l}, & u_{r} &= u_{l}, \ & M_{z,\,r} &= M_{z,\,l} + c_{arphi} \cdot arphi_{l}, & Q_{x,\,r} &= Q_{x,\,l} + c_{u} \cdot u_{l}, \ & Q_{y,\,r} &= Q_{y,\,l} + c_{v} \cdot v_{l}, & v_{r} &= v_{l}. \ & \end{cases}$$

Mit dem Zustandsvektor 3 nach (42) und der Matrix

$$\mathcal{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ c_u & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & c_{\varphi} & 1 & 0 \\ 0 & 0 & 0 & -c_{v} & 0 & 0 & 1 \end{bmatrix}$$

$$(66a)$$

lassen sich die Beziehungen (65a) kurz als eine Matrizengleichung schreiben

$$\mathfrak{F}_r = \mathfrak{F} \cdot \mathfrak{F}_l. \tag{67}$$

Die Matrix & bezeichnen wir als Übertragungsmatrix für ein elastisches Lager.

Fall B: Schwingungen senkrecht zur Ebene der Zentrallinie (Abb. 9b). Hier gelten unter Berücksichtigung von (64b) die folgenden Beziehungen

$$\begin{cases} \delta_{r} = \delta_{l}, & \psi_{r} = \psi_{l}, \\ M_{x, r} = M_{x, l} + c_{\delta} \cdot \delta_{l}, & M_{y, r} = M_{y, l} + c_{\psi} \cdot \psi_{l}, \\ w_{r} = w_{l}, & Q_{z, r} = Q_{z, l} + c_{w} \cdot w_{l}. \end{cases}$$
(65 b)

Diese lassen sich wieder in der Gestalt (67) schreiben, wobei jetzt 3 nach (43) und

zu setzen ist.

Elastische Lager als Rand- und Zwischenbedingungen bringen somit für die Durchführung des Verfahrens keine Schwierigkeiten mit sich. Sie lassen sich nach den obigen Ausführungen in genau entsprechender Weise durch Übertragungsmatrizen \mathfrak{F} erfassen wie Stababschnitte mit bestimmten Massen- und Steifigkeitseigenschaften durch die Übertragungsmatrizen \mathfrak{U} .

F. Vorgehensweise bei allgemeinen inneren Bedingungen

Sind auch andere innere Bedingungen vorhanden, wie z. B. Gelenke oder feste Zwischenlager, so sind die Verhältnisse nicht mehr so einfach. An den Stellen des Stabzuges, an denen solche innere Bedingungen vorgeschrieben sind, treten neue unbekannte Größen hinzu, so z. B. bei Lagern die Lagerreaktionen. Die Anzahl der hinzukommenden Unbekannten stimmt jedoch mit der Anzahl der inneren Bedingungen überein, so daß man insgesamt ebenso viele homogene Gleichungen wie Unbekannte hat. Zur Erläuterung sind nachstehend einige Beispiele für innere Bedingungen bei Betrachtung der Stabschwingungen in der Ebene der Zentrallinie angegeben.

a) Tangential verschiebliches Lager (Abb. 10a).

Bedingung: v = 0.

Hinzukommende Unbekannte: Lagerkraft S_y .

b) Gerbergelenk (Abb. 10b).

Bedingung: $M_z = 0$.

Hinzukommende Unbekannte: Winkel a.

c) Unverschiebliches (festes) Lager (Abb. 10c).

Bedingungen: u = 0, v = 0.

Hinzukommende Unbekannte: Lagerkräfte S_x und S_y .

An einer Stelle können höchstens drei mechanisch sinnvolle Bedingungen vorgeschrieben sein. Sind an einer inneren Stelle i des Stabzuges genau drei Bedingungen vorgeschrieben (z. B. bei Einspannung an der Stelle i und Betrachtung der Schwingungen in der Ebene der Zentrallinie: $u_i = 0$, $v_i = 0$, $\varphi_i = 0$), so hat man schon bei der Rechnung bis zu dieser Stelle genügend Gleichungen zur Bestimmung der bis dahin aufgetretenen Unbekannten. Dies bedeutet, daß das Schwingungsverhalten der Teile des Stabzuges links und rechts von der Stelle i voneinander unabhängig ist und jedes der beiden Teile gesondert für sich behandelt werden kann. Von Interesse ist somit nur der Fall, daß an einer inneren Stelle eine oder zwei Bedingungen zu erfüllen sind.

Für die praktische Durchführung der Rechnung bei Stabzügen mit inneren Bedingungen bestehen grundsätzlich zwei Möglichkeiten: Entweder eliminiert man die hinzukommenden Unbekannten im Laufe der Rechnung sofort bei ihrem Auftreten, so daß man zum Schluß ein homogenes Gleichungssystem nur für die Unbekannten an den Randstellen hat, oder man nimmt sie in der Rechnung bis zum Schluß mit und erhält dann ein erweitertes homogenes Gleichungssystem für die Unbekannten an den Rand- und Zwischenstellen (vgl. [9], Abschnitt 4). In den beiden Fällen liefert die gleich Null gesetzte Koeffizientendeterminante des Gleichungssystems die Frequenzgleichung.

Bei allgemeinen (verzweigten) Stabwerken zerlegt man das Stabwerk durch Schnitte in einzelne Stabzüge und führt die Schnitt- und Verschiebungsgrößen an den Schnittstellen als Unbekannte ein. Die Stetigkeitsforderungen für die Schnitt- und Verschiebungsgrößen an den Schnittstellen liefern die zusätzlichen Gleichungen für die Bestimmung dieser Unbekannten.

Für spezielle Stabwerke, wie z. B. für einen durchlaufenden Stabzug auf festen Stützen, lassen sich zweckmäßige Rechenschemata in ähnlicher Weise aufstellen, wie es für gerade Durchlaufträger in [10] ausgeführt ist.

G. Behandlung beliebiger ebener Stabwerke. Wahl geeigneter Ersatzsysteme

Nach dem in den vorhergehenden Abschnitten entwickelten Verfahren lassen sich freie Schwingungen von beliebigen ebenen Stabwerken mit beliebiger Masse- und Steifigkeitsbelegung näherungsweise berechnen, wenn man dem wirklichen System ein Ersatzsystem zuordnet. Dieses Ersatzsystem muß so beschaffen sein, daß man bei seiner Durchrechnung mit den im Abschnitt A bereitgestellten Übertragungsmatrizen für Sonderfälle auskommt. Bei der Aufstellung eines Ersatzsystems müssen daher die Zentrallinien der einzelnen Stabzüge des Stabwerkes stückweise durch Kreisbögen angenähert und die gegebene Masse- und Steifigkeitsverteilung durch eine stückweise konstante oder diskrete ersetzt werden.

Von den verschiedenen Möglichkeiten, die Masse-Steifigkeits-Eigenschaften des gegebenen Systems zu erfassen, sind die folgenden drei die wichtigsten: Entweder zieht man die Massebelegung in diskrete Einzelmassen zusammen und nähert gleichzeitig die Steifigkeitsbelegung durch eine stückweise konstante an (M-Methode), oder umgekehrt, man ersetzt die Massebelegung durch eine stückweise konstante und die Steifigkeitsbelegung durch Einzelelastizitäten (S-Methode), schließlich kann man sowohl die Masse- als auch die Steifigkeitsbelegung durch eine diskrete annähern (MS-Methode). Die nach der M- und S-Methode gebildeten Ersatzsysteme erfassen das wirkliche System etwa mit gleicher Genauigkeit. Im allgemeinen wird man jedoch bei Schwingungsuntersuchungen die nach der M-Methode aufgestellten Ersatzsysteme bevorzugen, weil sich dabei meistens rechnerische Vorteile gegenüber den Ersatzsystemen nach der S-Methode ergeben. Das Ersatzsystem nach der MS-Methode

besteht aus Einzelmassen und Einzelelastizitäten, die durch starre masselose Kreisbogenstücke miteinander verbunden sind, und hat aus erklärlichen Gründen eine geringere Genauigkeit als die Ersatzsysteme nach den beiden anderen Methoden. Man hat aber bei der Rechnung mit einem solchen Ersatzsystem den Vorteil der besonders einfach gebauten Übertragungsmatrizen. Selbstverständlich können bei der Festlegung des Ersatzsystems auch alle drei Methoden nebeneinander verwendet werden.

Da das Ersatzsystem mit dem Reduktionsverfahren exakt erfaßt wird, liegt der Näherungscharakter des Ergebnisses begründet nur in der Ersetzung des wirklichen Systems durch ein Ersatzsystem. Die erforderliche Genauigkeit der Ergebnisse läßt sich durch eine entsprechend feine Gliederung des Ersatzsystems stets erreichen.

H. Beispiel

Wir betrachten einen kreisbogenförmigen homogenen Stab mit dem Zentriwinkel α bei verschiedenen Lagerbedingungen an seinen Enden. Für die freien Schwingungen dieses Stabes in seiner Ebene bei den jeweils geltenden noch näher

Abb. 11

festzulegenden Randbedingungen sollen die beiden niedrigsten Eigenfrequenzen ω_1 und ω_2 berechnet werden. Die gesuchten Eigenfrequenzen haben die Gestalt (vgl. z. B. [1])

 $\omega = \frac{C(\alpha, f)}{\sqrt{\mu \ a \ \varrho^4}} \, 9.$

Kennt man somit eine Eigenfrequenz ω_i für einen speziellen Stab, so können nach der obigen Beziehung die entsprechenden Eigenfrequenzen auch für Stäbe mit anderen Werten von μ , a und ϱ bei festem α und f berechnet werden.

Es sollen hier der Rechnungsgang und die Ergebnisse für das spezielle Beispiel

$$\alpha = \frac{\pi}{3} \stackrel{\triangle}{=} 60^{\circ}; \quad f = \frac{1}{400}; \quad \varrho = 1; \quad \mu = 1; \quad \alpha = 1$$

mitgeteilt werden.

Zur Durchführung des Reduktionsverfahrens wurde für den homogenen Kreisbogenstab ein Ersatzsystem nach der M-Methode (vgl. Abschnitt G) mit äquidistant angeordneten Einzelmassen m gewählt. Das Verfahren wurde für zwei solche Ersatzsysteme durchgeführt, die aus den Abb. 11a und 11b zu ersehen sind.

Beim Ersatzsystem a ist (Abb. 11a) $\Phi = \frac{\pi}{12} = 15^{\circ}$ und die Einzelmassen haben mit $\mu = 1$ die Werte $m = \frac{\pi}{12}$ an den inneren Stellen des Stabes, $m = \frac{\pi}{24}$ an den Randstellen.

⁹ Bezüglich der Bezeichnungen vgl. Abschnitt III.

Beim Ersatzsystem b ist (Abb. 11b) $\Phi = \frac{\pi}{18} \, ^{\circ} \, 10^{\circ}$, $m = \frac{\pi}{18}$ an den inneren Stellen des Stabes, $m = \frac{\pi}{36}$ an den Randstellen.

Bei der Rechnung mit dem Ersatzsystem b wurde die Rotationsträgheit der Stabelemente berücksichtigt, während sie bei a vernachlässigt wurde $(i_z = 0)$.

Mit den oben angegebenen Daten wurden die Übertragungsmatrizen \mathbb{U}_b und \mathbb{U}_m nach (34a) und (34c) bzw. die für die numerische Rechnung zweckmäßigeren Matrizen $\mathbb{M} = \mathbb{U}_m \cdot \mathbb{U}_b$ zahlenmäßig aufgestellt. Aus diesen wurden dann für sieben Parameterwerte $\omega = 20, 25, 30, 35, 40, 45, 50$ die Übertragungsmatrizen für den ganzen Stab nach Abschnitt C berechnet und anschließend die Frequenzdeterminanten für folgende Randbedingungen gebildet:

- 1. gelenkig gelagert gelenkig gelagert,
- 2. eingespannt eingespannt,
- 3. eingespannt gelenkig gelagert.

Mit Hilfe der berechneten Frequenzdeterminanten wurden dann die Frequenzkurven gezeichnet und die gesuchten Eigenfrequenzen als Nulldurchgänge der Frequenzkurven ermittelt. In der nachstehenden Tabelle sind die zahlenmäßigen Ergebnisse zusammengestellt. Sie enthält in den Fällen 1 und 2 zum Vergleich auch die mit Hilfe des Ritzschen Verfahrens erhaltenen Resultate (vgl. [1], Zahlentafeln 18 bis 20).

	1.		2.	, Allen	3.	- Indiana
	ω_1	ω_2	ω_1	΄ ω2	ω_1	ω_2
Ritzsches Verfahren	19·80 19·8 19·7	33·63 32·5 31·6	25·99 25·5 25·4	53·76 48·9 48·6	21·5 21·2	40·7 40·2

Für die Randbedingungen 1 und 2 stimmen die nach dem Reduktionsverfahren berechneten Werte für die erste Eigenfrequenz ω_1 mit denen nach dem Ritzschen Verfahren gut überein. Dagegen treten in den Ergebnissen für ω_2 in beiden Fällen Abweichungen auf, und zwar liefert das Ritzsche Verfahren die größeren Werte. Diese Abweichungen sind darauf zurückzuführen, daß bei der Bestimmung von ω_2 nach dem Ritzschen Verfahren die Dehnung der Stabachse vernachlässigt, während sie beim Reduktionsverfahren berücksichtigt ist. Eine Kontrollrechnung mit dem Ersatzsystem a für den Fall des beiderseits eingespannten Stabes, bei der in den Übertragungsmatrizen der Einfluß der Dehnung vernachlässigt wurde (f=0), ergab

$$\omega_2 = 52.4.$$

Dieser Wert stimmt mit dem Ergebnis nach dem Ritzschen Verfahren erheblich besser überein.

V. Erzwungene Schwingungen eben gekrümmter Stäbe

Wir betrachten einen Stabzug, der durch periodisch wirkende Kräfte zu erzwungenen Schwingungen angeregt wird. Wegen des Superpositionsprinzips genügt es, nur den Fall zu betrachten, daß alle Erregerkräfte bzw. Momente harmonisch sind und die gleiche Frequenz und Phasenlage besitzen, also die Gestalt $P\sin\Omega\,t$ haben.

Für den Sonderfall der eben gekrümmten Stäbe ($\chi = 0$; $\frac{1}{\sigma} = 0$; $k_z = k$; $\tau = 0$; $k_y = 0$) erhält man aus dem allgemeinen Gleichungssystem (13) mit den Trägheits-

widerständen nach (14) für die beiden Schwingungsarten folgende Bewegungsgleichungen:

Fall A: Schwingungen in der Ebene der Zentrallinie.

$$\begin{aligned} u' &= \frac{1}{E\,F}\,Q_x + k\,v,\\ Q_{x'}' &= k\,Q_y + \mu\,\ddot{u} - p_x\sin\Omega\,t,\\ v' &= -k\,u + \varphi,\\ \varphi' &= a\,M_z,\\ M_{z'}' &= -\,Q_y + \mu\,i_z^{\,2}\,\ddot{\varphi} - d_z\sin\Omega\,t,\\ Q_{y'}' &= -\,k\,Q_x + \mu\,\ddot{v} - p_y\sin\Omega\,t. \end{aligned} \right\} \tag{68a}$$

Fall B: Schwingungen senkrecht zur Ebene der Zentrallinie.

$$\delta' = c \ M_x + k \ \psi,$$

$$M_{x'} = k \ M_y + \mu \ i_{x^2}^2 \ \delta - \ddot{d}_x \sin \Omega \ t,$$

$$w' = - \psi,$$

$$\psi' = - k \ \delta + b \ M_y,$$

$$M_{y'} = - k \ M_x + Q_z + \mu \ i_y^2 \ddot{\psi} - d_y \sin \Omega \ t,$$

$$Q_{z'} = \mu \ddot{w} - p_z \sin \Omega \ t.$$
(68 b)

Mit dem Lösungsansatz

erhalten wir aus den Gl. (68) gewöhnliche Differentialgleichungssysteme, die bei Verwendung der Matrizenschreibweise lauten:

$$\begin{bmatrix} u' \\ Q_{x'} \\ v' \\ \varphi' \\ -Q_{y'} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{EF} & k & 0 & 0 & 0 \\ -\mu \Omega^{2} & 0 & 0 & 0 & -k \\ -k & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & -\mu \Omega^{2} i_{z}^{2} & 0 & 1 \\ 0 & k & \mu \Omega^{2} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ Q_{x} \\ v \\ \psi \\ M_{z} \\ -Q_{y} \end{bmatrix} + \begin{bmatrix} 0 \\ -p_{x} \\ 0 \\ 0 \\ -d_{z} \\ p_{y} \end{bmatrix}$$

$$\begin{bmatrix} \delta' \\ M_{x'} \\ -w' \end{bmatrix} \begin{bmatrix} 0 & c & 0 & k & 0 & 0 \\ -\mu \Omega^{2} i_{x}^{2} & 0 & 0 & k & 0 \\ 0 & 0 & 0 & k & 0 \end{bmatrix} \begin{bmatrix} \delta \\ M_{x} \\ -w \end{bmatrix} \begin{bmatrix} 0 \\ -d_{x} \\ 0 \end{bmatrix}$$

$$(70a)$$

$$\begin{bmatrix} \delta' \\ M_{x'} \\ -w' \\ \psi' \\ M_{y'} \\ Q_{z'} \end{bmatrix} = \begin{bmatrix} 0 & c & 0 & k & 0 & 0 \\ -\mu \Omega^{2} i_{x}^{2} & 0 & 0 & 0 & k & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -k & 0 & 0 & 0 & b & 0 \\ 0 & -k & 0 & -\mu \Omega^{2} i_{y}^{2} & 0 & 1 \\ 0 & 0 & \mu \Omega^{2} & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \delta \\ M_{x} \\ -w \\ \psi \\ M_{y} \\ Q_{z} \end{bmatrix} + \begin{bmatrix} 0 \\ -d_{x} \\ 0 \\ 0 \\ -d_{y} \\ -p_{z} \end{bmatrix}$$
(70 b)

Sie haben die Gestalt

$$\mathfrak{z}' = \mathfrak{A} \cdot \mathfrak{z} + \mathfrak{k}. \tag{71}$$

Sind die Elemente der Matrix A konstant, so ist die allgemeine Lösung von (71) gegeben durch (vgl. z. B. [3], S. 121):

$$\mathfrak{z}(s)=e^{\mathfrak{A}\,s}\,\mathfrak{z}_0+e^{\mathfrak{A}\,s}\int\limits_0^s e^{-\mathfrak{A}\,\sigma}\,\mathfrak{k}\left(\sigma
ight)\,d\sigma$$

oder

$$\mathfrak{z} = \mathfrak{U} \cdot \mathfrak{z}_0 + \mathfrak{r} \tag{72}$$

mit

$$\mathfrak{U} = e^{\mathfrak{A} s} \tag{73}$$

und

$$\mathfrak{r} = e^{\mathfrak{A} \cdot \mathfrak{s}} \int_{0}^{\mathfrak{s}} e^{-\mathfrak{A} \cdot \sigma} \, \mathfrak{f} \left(\sigma \right) \, d\sigma, \tag{74}$$

wobei $\mathfrak{U} = e^{\mathfrak{A}s}$ die von der Behandlung der freien Schwingungen her bekannte, dort als Übertragungsmatrix bezeichnete Matrix ist. Die unter dem Integralzeichen auf-

tretende Matrix $e^{-\mathfrak{A}\sigma}$ ist als Kehrmatrix zu $e^{\mathfrak{A}\sigma}$ nach Abschnitt B leicht zu bilden. Die Beziehung (72) stellt den Zusammenhang zwischen den Zustandsvektoren \mathfrak{F} an der Stelle s=0 und einer beliebigen Stelle s her. Besteht der Stabzug aus zwei aneinanderstoßenden Abschnitten, in denen jeweils verschiedene Differentialgleichungssysteme gelten (vgl. die Skizze in Abb. 12), so ergibt sich zunächst

$$\begin{array}{l}
\mathfrak{z}_2 = \mathfrak{U}_1 \cdot \mathfrak{z}_1 + \mathfrak{r}_1, \\
\mathfrak{z}_3 = \mathfrak{U}_2 \cdot \mathfrak{z}_2 + \mathfrak{r}_2.
\end{array}$$
(75)

Fordert man Stetigkeit für den Zustandsvektor an der Stelle 2, so folgt für den Zusammenhang zwischen den Zustandsvektoren an den Stellen 1 und 3 aus den Gl. (75) die Beziehung

$$\mathfrak{z}_3 = \mathfrak{U}_2 \cdot (\mathfrak{U}_1 \cdot \mathfrak{z}_1 + \mathfrak{r}_1) + \mathfrak{r}_2 = \mathfrak{U}_2 \cdot \mathfrak{U}_1 \cdot \mathfrak{z}_1 + \mathfrak{U}_2 \cdot \mathfrak{r}_1 + \mathfrak{r}_2. \tag{76}$$

Für die praktische Rechnung ist es vorteilhaft, unter Hinzunahme einer weiteren identischen Zeile der Gl. (72) die folgende Gestalt zu geben:

$$\begin{bmatrix}
\frac{3}{1} \\
\end{bmatrix} = \begin{bmatrix}
\mathbf{u} & \mathbf{r} \\
0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
\frac{30}{1} \\
\end{bmatrix}$$

$$\tilde{3} = \tilde{\mathbf{u}} \cdot \tilde{3}_{0}$$
(77)

 $\tilde{\mathbb{I}}$ soll "erweiterte Übertragungsmatrix" und $\tilde{\mathfrak{z}}$ "erweiterter Zustandsvektor" heißen. Durch Übergang zur Komponentenschreibweise überzeugt man sich leicht, daß die Gl. (72) und (77) dieselben linearen Beziehungen zwischen den Komponenten der Zustandsvektoren darstellen. Wenn man nun mit Hilfe der Darstellung (77) die Ausdrücke (75) umschreibt und die Beziehung zwischen $\tilde{\mathfrak{z}}_3$ und $\tilde{\mathfrak{z}}_1$ einfach durch Multiplikation der siebenreihigen Matrizen $\tilde{\mathfrak{I}}_1$ und $\tilde{\mathfrak{I}}_2$ erklärt, also durch

$$\tilde{\mathfrak{z}}_3 = \tilde{\mathfrak{U}}_2 \cdot \tilde{\mathfrak{U}}_1 \cdot \tilde{\mathfrak{z}}_1 = \tilde{\mathfrak{P}} \cdot \tilde{\mathfrak{z}}_1 \tag{78}$$

oder ausführlicher geschrieben

$$\begin{bmatrix}
\frac{3_3}{1} \\
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
\frac{1}{2} \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
\frac{3_1}{1} \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} \cdot 1 \\
0 \\
1
\end{bmatrix} \cdot \begin{bmatrix}
\frac{3_1}{1} \\
1
\end{bmatrix} (79)$$

so überzeugt man sich, daß in der Tat die Beziehungen (78) und (76) übereinstimmen.

Wir bemerken, daß die Produktmatrix $\tilde{\mathfrak{P}}$ dieselbe Bauart wie die Faktoren $\tilde{\mathfrak{U}}_2$ und $\tilde{\mathfrak{U}}_1$ hat.

Besteht der Stabzug aus mehr als zwei Abschnitten, so berechnet sich die Beziehung zwischen den Zustandsvektoren an seinen Enden, z. B. \tilde{i}_1 und \tilde{i}_6 beim Stabzug in Abb. 8 nach

$$\tilde{\mathfrak{z}}_6 = \tilde{\mathfrak{U}}_5 \cdot \tilde{\mathfrak{U}}_4 \cdot \tilde{\mathfrak{U}}_3 \cdot \tilde{\mathfrak{U}}_2 \cdot \tilde{\mathfrak{U}}_1 \cdot \tilde{\mathfrak{z}}_1 = \tilde{\mathfrak{R}} \cdot \tilde{\mathfrak{z}}_1, \tag{80}$$

wobei die Produktmatrix $\widetilde{\mathbb{R}}$ von gleicher Bauart wie die von $\widetilde{\mathbb{U}}_i$ ist. Greifen in einem Abschnitt keine Erregerkräfte an, so sind in der zugehörigen Übertragungsmatrix $\widetilde{\mathbb{U}}_i$ die Komponenten des Vektors \mathfrak{r}_i gleich Null zu setzen.

Bei Betrachtung der Schwingungen in der Ebene der Zentrallinie z.B. lautet die Beziehung (80) ausführlich

$$u_{6} = r_{11} u_{1} + r_{12} Q_{x,1} + r_{13} v_{1} + r_{14} \varphi_{1} + r_{15} M_{z,1} + r_{16} (-Q_{y,1}) + r_{17},$$

$$Q_{x, 6} = r_{21} u_{1} + r_{22} Q_{x, 1} + r_{23} v_{1} + r_{24} \varphi_{1} + r_{25} M_{z, 1} + r_{26} (-Q_{y, 1}) + r_{27},$$

$$v_{6} = r_{31} u_{1} + r_{32} Q_{x, 1} + r_{33} v_{1} + r_{34} \varphi_{1} + r_{35} M_{z, 1} + r_{36} (-Q_{y, 1}) + r_{37},$$

$$\varphi_{6} = r_{41} u_{1} + r_{42} Q_{x, 1} + r_{43} v_{1} + r_{44} \varphi_{1} + r_{45} M_{z, 1} + r_{46} (-Q_{y, 1}) + r_{47},$$

$$M_{z, 6} = r_{51} u_{1} + r_{52} Q_{x, 1} + r_{53} v_{1} + r_{54} \varphi_{1} + r_{55} M_{z, 1} + r_{56} (-Q_{y, 1}) + r_{57},$$

$$-Q_{y, 6} = r_{61} u_{1} + r_{62} Q_{x, 1} + r_{63} v_{1} + r_{64} \varphi_{1} + r_{65} M_{z, 1} + r_{66} (-Q_{y, 1}) + r_{67}.$$

$$1 = 1.$$

$$(81)$$

Ist der Stabzug etwa an seinem linken Ende (Stelle 1) eingespannt und an seinem anderen Ende (Stelle 6) gelenkig gelagert, so gelten die Randbedingungen

$$u_1 = 0;$$
 $v_1 = 0;$ $\varphi_1 = 0;$ $u_6 = 0;$ $w_6 = 0;$ $w_{10} = 0;$ $w_{10} = 0;$ (82)

Setzt man die Randbedingungen (82) in die Beziehungen (81) ein, so erhält man das inhomogene Gleichungssystem

$$0 = r_{12} Q_{x,1} + r_{15} M_{z,1} + r_{16} (-Q_{y,1}) + r_{17},$$

$$Q_{x,6} = r_{22} Q_{x,1} + r_{25} M_{z,1} + r_{26} (-Q_{y,1}) + r_{27},$$

$$0 = r_{32} Q_{x,1} + r_{35} M_{z,1} + r_{36} (-Q_{y,1}) + r_{37},$$

$$\varphi_{6} = r_{42} Q_{x,1} + r_{45} M_{z,1} + r_{46} (-Q_{y,1}) + r_{47},$$

$$0 = r_{52} Q_{x,1} + r_{55} M_{z,1} + r_{56} (-Q_{y,1}) + r_{57},$$

$$-Q_{y,6} = r_{62} Q_{x,1} + r_{65} M_{z,1} + r_{66} (-Q_{y,1}) + r_{67},$$

$$(83)$$

aus dem man die noch unbekannten Komponenten der Zustandsvektoren an den Randstellen bei nichtverschwindender Determinante

$$\Delta = \begin{vmatrix} r_{12} & r_{15} & r_{16} \\ r_{32} & r_{35} & r_{36} \\ r_{52} & r_{55} & r_{56} \end{vmatrix}$$
 (84)

bestimmen kann.

Mit dem nun bekannten Zustandsvektor $\tilde{\mathfrak{z}}_1$ lassen sich die Zustandsvektoren an beliebigen Zwischenstellen leicht berechnen und somit der Verlauf der Verschiebungsund Schnittgrößen ermitteln.

In der Praxis kommt oft der Fall direkt vor, daß die Erregung durch periodische Einzelkräfte eingeleitet wird. Ferner kommt man auf diesen Fall bei der Aufstellung eines Ersatzsystems, wenn man kontinuierlich verteilte Erregerkräfte durch punktförmig angreifende ersetzt, ähnlich wie man für eine kontinuierliche Masseverteilung eine Einzelmassenbelegung wählt. Die Übertragungsmatrix für den Übergang über eine Stelle, an der Einzelerregerkräfte angreifen, erhält man durch den Grenzübergang in (72) bzw. (77) mit $s \to 0$ und gleichzeitig:

$$p_x s \to P_x$$
, $d_z s \to D_z$, $p_y s \to P_y$

bei Betrachtung der Schwingungen in der Ebene der Zentrallinie, bzw.

$$d_x s \to D_x$$
, $d_y s \to D_y$, $p_z s \to P_z$

bei Betrachtung der Schwingungen senkrecht zur Ebene der Zentrallinie. Dabei bedeuten P_x, D_y, \ldots die Amplituden der Erregerkräfte.

Für die gesuchten erweiterten Übertragungsmatrizen in den beiden betrachteten Schwingungsfällen folgt durch diesen Grenzübergang

$$\widetilde{\mathfrak{U}} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & -P_x \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -D_z \\
0 & 0 & 0 & 0 & 0 & 1 & -D_z \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(85a)

bzw.

Zum Schluß bemerken wir noch, daß die resultierende erweiterte Übertragungsmatrix $\widetilde{\Re}$ in (80) den folgenden Aufbau besitzt:

$$\widetilde{\Re} = \begin{bmatrix} \underline{\mathfrak{U}}_5 \cdot \underline{\mathfrak{U}}_4 \cdot \underline{\mathfrak{U}}_3 \cdot \underline{\mathfrak{U}}_2 \cdot \underline{\mathfrak{U}}_1 & \mathbf{r} \\ 0 & 1 \end{bmatrix}$$
 (86)

mit

$$\mathbf{r} = \mathbf{U}_5 \cdot \mathbf{U}_4 \cdot \mathbf{U}_3 \cdot \mathbf{U}_2 \cdot \mathbf{r}_1 + \mathbf{U}_5 \cdot \mathbf{U}_4 \cdot \mathbf{U}_3 \cdot \mathbf{r}_2 + \mathbf{U}_5 \cdot \mathbf{U}_4 \cdot \mathbf{r}_3 + \mathbf{U}_5 \cdot \mathbf{r}_4 + \mathbf{r}_5. \tag{87}$$

Will man das Verhalten eines Stabwerkes für verschiedene Gruppen von Erregerkräften gleicher Erregerfrequenz Ω untersuchen, so braucht man die Produktenmatrix $\mathbb{I}_5 \cdot \mathbb{I}_4 \cdot \mathbb{I}_3 \cdot \mathbb{I}_2 \cdot \mathbb{I}_1$ nur einmal zu berechnen. Bei verschiedenen Erregerkräften ändern sich im Gleichungssystem (83) lediglich die rechten Seiten, so daß nur diese nach (87) jeweils neu zu berechnen sind. Ferner erkennt man dabei, daß die Determinante (84) genau die von den freien Schwingungen her bekannte Frequenzdeterminante ist. Ihr Verschwinden bedeutet, daß die Erregerfrequenz Ω mit einer Eigenfrequenz ω_e zusammenfällt und das Gleichungssystem (83) dann entweder überhaupt keine Lösung besitzt oder nicht eindeutig lösbar ist.

VI. Statik eben gekrümmter Stäbe

Da die Statik als ein Sonderfall der Dynamik aufgefaßt werden kann, können wir alle Beziehungen, die wir bei der Behandlung der erzwungenen Schwingungen aufgestellt haben, sofort auf den statischen Fall übertragen, indem wir in diesen alle Ausdrücke, die von den Trägheitswiderständen herrühren, gleich Null (rein formal also $\Omega=0$) setzen.

Die Statik der eben gekrümmten Stäbe wird durch folgende Differentialgleichungen beherrscht, die aus (13) für den Sonderfall $\chi=0$; $\frac{1}{\sigma}=0$; $k_z=k$; $\tau=0$; $k_y=0$ folgen:

Fall A: Beanspruchung in der Ebene der Zentrallinie.

$$\begin{bmatrix} u' \\ Q_{x'} \\ v' \\ \varphi' \\ M_{z'} \\ -Q_{y'} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{EF} & k & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -k \\ \hline -k & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & k & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ Q_{x} \\ v \\ \varphi \\ M_{z} \\ -Q_{y} \end{bmatrix} + \begin{bmatrix} 0 \\ -p_{x} \\ 0 \\ 0 \\ -d_{z} \\ p_{y} \end{bmatrix}$$
(88a)

Fall B: Beanspruchung senkrecht zur Ebene der Zentrallinie.

$$\begin{bmatrix} \delta' \\ M_{x'} \\ -w' \\ \psi' \\ M_{y'} \\ Q_{z'} \end{bmatrix} = \begin{bmatrix} 0 & c & 0 & k & 0 & 0 \\ 0 & 0 & 0 & k & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ -k & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \\ M_{x} \\ -w \\ \psi \\ M_{y} \\ Q_{z} \end{bmatrix} + \begin{bmatrix} 0 \\ -d_{x} \\ 0 \\ 0 \\ -d_{y} \\ -p_{z} \end{bmatrix}$$
(88b)

Diese Gleichungen haben die Form (71), und ihre allgemeine Lösung für den Fall eines Kreisbogens mit konstanten Steifigkeitsgrößen $\frac{1}{EF}$ und a bzw. b und c ist durch (72), (73) und (74) gegeben. Dabei ist die Matrix $\mathbb{I} = e^{\mathbb{I} s}$ für den Belastungsfall A in (34a) und für den Belastungsfall B in (38a) angegeben. Der Zusammenhang zwischen zwei Zustandsvektoren, die sich auf verschiedene Stellen beziehen, kann wieder in der Form (77) mit Hilfe einer erweiterten Übertragungsmatrix \mathbb{I} geschrieben werden. Für den Übergang über Stellen, an denen Einzellasten angreifen, erhält man erweiterte Übertragungsmatrizen, die rein formal mit denen in (85) übereinstimmen, nur daß jetzt P_x , D_y , . . . Einzelkräfte und Einzelmomente bedeuten. Ist ein homogenes Kreisbogenstück $\left(\frac{1}{EF} = \text{konst.}, \ a = \text{konst.} \ bzw. \ b = \text{konst.}, \ c = \text{konst.}\right)$ mit dem Zentriwinkel Φ und dem Radius ϱ durch eine beliebige kontinuierliche Belastung beansprucht, so lautet der für die Aufstellung der erweiterten Übertragungsmatrix in diesem Fall benötigte Vektor

$$q = \int_{0}^{s} e^{-\mathfrak{A} \sigma} \, \mathfrak{k}(\sigma) \, d\sigma = \varrho \int_{0}^{\Phi} e^{-\mathfrak{A} \varrho \, \zeta} \, \mathfrak{k}(\varrho \, \zeta) \, d\zeta, \tag{89}$$

$$(s = \varrho \, \Phi; \quad \sigma = \varrho \, \zeta)$$

oder ausführlich geschrieben:

Fall A: Beanspruchung in der Ebene der Zentrallinie.

$$\mathbf{q} = \begin{cases} \varrho^{2} \cdot \int_{0}^{\sigma} \left[p_{x} (a f F_{1} + a \varrho^{2} F_{6}) + d_{z} a \varrho (\zeta - \sin \zeta) - p_{y} \left(\frac{1}{2} a f \zeta \sin \zeta - a \varrho^{2} F_{5} \right) \right] d\zeta, \\ \varrho \cdot \int_{0}^{\sigma} \left[-p_{x} \cos \zeta + p_{y} \sin \zeta \right] d\zeta, \\ \varrho^{2} \cdot \int_{0}^{\sigma} \left[p_{x} \left(\frac{1}{2} a f \sin \zeta - a \varrho^{2} F_{5} \right) - d_{z} a \varrho (1 - \cos \zeta) - p_{y} (a f + a \varrho^{2}) F_{3} \right] d\zeta, \\ \varrho^{2} \cdot \int_{0}^{\sigma} \left[p_{x} a \varrho (\zeta - \sin \zeta) + d_{z} a \zeta + p_{y} a \varrho (1 - \cos \zeta) \right] d\zeta, \\ \varrho \cdot \int_{0}^{\sigma} \left[-p_{x} \varrho (1 - \cos \zeta) - d_{z} - p_{y} \varrho \sin \zeta \right] d\zeta, \\ \varrho \cdot \int_{0}^{\sigma} \left[p_{x} \sin \zeta + p_{y} \cos \zeta \right] d\zeta. \end{cases}$$

$$(90a)$$

Fall B: Beanspruchung senkrecht zur Ebene der Zentrallinie.

$$\mathbf{q} = \begin{cases} \varrho^{2} \cdot \int_{0}^{\boldsymbol{\sigma}} \left[d_{x} \left(c \, \boldsymbol{F}_{1} - b \, \boldsymbol{F}_{3} \right) - d_{y} \, \frac{1}{2} \left(b + c \right) \, \zeta \sin \zeta + p_{z} \, \varrho \left(b + c \right) \boldsymbol{F}_{3} \right] d\zeta, \\ \varrho \cdot \int_{0}^{\boldsymbol{\sigma}} \left[-d_{x} \cos \zeta + d_{y} \sin \zeta - p_{z} \, \varrho \left(1 - \cos \zeta \right) \right] d\zeta, \\ \varrho^{3} \cdot \int_{0}^{\boldsymbol{\sigma}} \left[-d_{x} \left(b + c \right) \boldsymbol{F}_{3} - d_{y} \left(\frac{1}{2} \, b \, \zeta \sin \zeta - c \, \boldsymbol{F}_{5} \right) + p_{z} \, \varrho \left(b \, \boldsymbol{F}_{3} - c \, \boldsymbol{F}_{6} \right) \right] d\zeta, \\ \varrho^{2} \cdot \int_{0}^{\boldsymbol{\sigma}} \left[d_{x} \, \frac{1}{2} \left(b + c \right) \, \zeta \sin \zeta + d_{y} \left(b \, \boldsymbol{F}_{1} - c \, \boldsymbol{F}_{3} \right) - p_{z} \, \varrho \left(\frac{1}{2} \, b \, \zeta \sin \zeta - c \, \boldsymbol{F}_{5} \right) \right] d\zeta, \\ \varrho \cdot \int_{0}^{\boldsymbol{\sigma}} \left[-d_{x} \sin \zeta - d_{y} \cos \zeta + p_{z} \, \varrho \sin \zeta \right] d\zeta, \\ -\varrho \cdot \int_{0}^{\boldsymbol{\sigma}} \left[-d_{x} \sin \zeta - d_{y} \cos \zeta + p_{z} \, \varrho \sin \zeta \right] d\zeta, \end{cases}$$

$$(90 \text{ b})$$

Die Integrale in (90a) und (90b) werden am besten nach einem numerischen oder graphischen Verfahren ausgewertet.

Die Durchführung des Reduktionsverfahrens, insbesondere das Einarbeiten der Randbedingungen, erfolgt bei den statischen Berechnungen mit den bekannten Übertragungsmatrizen $\tilde{\mathbb{U}}_i$ nun genau so wie bei der Behandlung der erzwungenen Schwingungen.

Literatur

- [1] Federhofer, K.: Dynamik des Bogenträgers und Kreisringes. Wien: Springer-Verlag. 1950.
- [2] Love, A. E. H.: Lehrbuch der Elastizität (deutsch von A. Timpe). Leipzig. 1907.
- [3] Schmeidler, W.: Vorträge über Determinanten und Matrizen mit Anwendungen in Physik und Technik. Berlin: Akademie-Verlag. 1949.
- [4] Zurmühl, R.: Matrizen. Berlin-Göttingen-Heidelberg: Springer-Verlag. 1950.

- [5] Falk, S.: Biegen, Knicken und Schwingen des mehrfeldrigen geraden Balkens. Abhandl. der Braunschw. Wissensch. Gesellschaft, Bd. VII (1955), S. 74.
- [6] Falk, S.: Die Berechnung des beliebig gestützten Durchlaufträgers nach dem Reduktionsverfahren. Ing.-Arch. 24, 216 (1956).
- [7] Fuhrke, H.: Exakte und näherungsweise Bestimmung von Stabwerksschwingungen. Diss. Darmstadt 1953; Ing.-Arch. 23, 329 (1955); 24, 27 (1956).
- [8] Marguerre, K.: Vibration and Stability Problems of Beams Treated by Matrices. J. Math. Phys. (1955).
- [9] Pestel, E.: Ein allgemeines Verfahren zur Berechnung freier und erzwungener Schwingungen von Stabwerken. Abhandl. der Braunschw. Wissensch. Gesellschaft, Bd. VI, S. 227 (1954).
- [10] Pestel, E. und Schumpich G.: Beitrag zur Schwingungsberechnung einfacher und gekoppelter Stabzüge. Schiffstechnik, Forschungshefte für Schiffbau und Schiffsmaschinenbau, 4. Band, S. 55 (1957).
- [11] Schnell, W.: Zur Berechnung der Beulwerte von längs- oder querversteiften rechteckigen Platten unter Drucklast. Z. angew. Math. Mechan. 36, 36 (1956).

(Eingegangen am 26. April 1957)

Bemerkung zu: Wärmeleitprobleme mit zeitlich variabler Übergangszahl

Von F. Selig und H. Fieber, Wien

Herr Paterson von den Imperial Chemical Industries Ltd., Stevenston, machte uns freundlicherweise darauf aufmerksam, daß in der im Titel genannten Arbeit¹ die Überführung eines Problems mit zeitlich veränderlichem Übergangskoeffizienten h(t)in ein Problem mit bewegtem Rand und konstanter Übergangszahl a durch die Transformation

$$\xi' = \frac{h[t(\tau)]}{\alpha} \xi, \quad \eta' = \frac{h[t(\tau)]}{\alpha} \eta, \quad \tau = \int_0^t h^2(\sigma) d\sigma$$

die Homogenität 2. Grades der Laméschen Koeffizienten g_i notwendigerweise voraussetzt. Diese Forderung kommt in der Gleichung

$$\overline{g_i}(\xi',\eta') = \frac{h^2(t)}{\alpha^2} g_i'(\xi,\eta,t)$$

zum Ausdruck, wurde aber nicht explizit ausgesprochen. Um eventuellen Mißverständnissen zu begegnen, erscheint es uns zweckmäßig, hierauf näher einzugehen.

Sei $x = \varphi(\xi, \eta)$ eine homogene Funktion 2. Grades, so ist es stets möglich, eine homogene Funktion 2. Grades $y = \psi(\xi, \eta)$ so zu bestimmen, daß die Schar der Kurven $\xi = \text{konst.}$ die Schar $\eta = \text{konst.}$ orthogonal schneidet. Setzen wir zunächst ψ als bekannt voraus und fassen wir

$$\left. egin{aligned} x &= arphi(\xi,\eta), \ y &= \psi(\xi,\eta) \end{aligned}
ight\}$$

als Transformation der x,y-Ebene auf die ξ,η -Ebene auf, so sind die Laméschen Koeffizienten

$$g_1=\varphi_{\xi^2}+\psi_{\xi^2},$$

$$g_2 = arphi_\eta^{-2} + arphi_\eta^{-2}$$

homogen 2. Grades und

$$g_{12}=\varphi_{\xi}\,\varphi_{\eta}+\psi_{\xi}\,\psi_{\eta}=0,$$

¹ Österr. Ing.-Arch. 11, 37 (1957), wird im folgenden mit I bezeichnet.

226 F. Selig u. H. Fieber: Bemerkung zu: Wärmeleitprobleme mit zeitlich variabler Übergangszahl

was unmittelbar einzusehen ist. Zur Bestimmung von $\psi(\xi, \eta)$ steht uns also das System

$$\xi \, \psi_{\xi} + \eta \, \psi_{\eta} = 2 \, \psi, \tag{2}$$

$$\varphi_{\varepsilon}\,\varphi_{n} + \psi_{\varepsilon}\,\psi_{n} = 0 \tag{3}$$

zur Verfügung. Ist $\lambda = \lambda(\xi, \eta)$ homogen 0. Grades, so wird (2) und (3) durch den Ansatz

$$\psi_{\xi} = \lambda \, arphi_{\eta}, \hspace{0.5cm} \psi_{\eta} = - \, rac{1}{\lambda} \, arphi_{\xi}$$

befriedigt, wenn für λ die aus der Integrabilitätsbedingung folgende Gleichung

$$\lambda_{\eta} \varphi_{\eta} + \lambda \varphi_{\eta\eta}^{\cdot} = \frac{1}{\lambda^{2}} \lambda_{\xi} \varphi_{\xi} - \frac{1}{\lambda} \varphi_{\xi\xi}$$
 (4)

erfüllt ist. Unter Berücksichtigung der Homogenitätseigenschaften

$$arphi = \xi^2 arPhi \left(rac{\eta}{\xi}
ight) \quad ext{ und } \quad oldsymbol{\lambda} = oldsymbol{\lambda} \left(rac{\eta}{\xi}
ight)$$

und der Bezeichnung $(...)' = \frac{d}{dz} (...)$ mit $z = \frac{\eta}{\xi}$ usw., ergibt sich aus (4) für $\lambda^2 = \mu$ eine Abelsche Differentialgleichung

$$\mu' \left[\mu - \frac{z^2 \Phi' - 2z \Phi}{\Phi'} \right] = -2 \left[\mu^2 \frac{\Phi''}{\Phi} + \mu \frac{2 \Phi - 2z \Phi' + z^2 \Phi''}{\Phi'} \right], \tag{5}$$

die mittels der Substitution²

$$v = \left(\mu - \frac{z^2 \Phi' - 2z \Phi}{\Phi'}\right) \Phi'^2 \tag{6}$$

auf die Form

 $vv' = \left[6\left(z\Phi - z^2\Phi'\right)\Phi'' + 2\left(2z\Phi' - \Phi\right)\Phi'\right]v + 4z\Phi'\left(\Phi' - z\Phi''\right)\left(\Phi - z\Phi'\right)\left(2\Phi - z\Phi'\right) \tag{7}$ gebracht werden kann. Hieraus folgt

$$\psi = \int \left[N(\xi, \eta) \, d\xi - \frac{\varphi_{\xi} \, \varphi_{\eta}}{N(\xi, \eta)} \, d\eta \right] \quad \text{mit} \quad N^2 = \xi^2 \, v - \frac{\eta}{\xi} \, \varphi_{\xi} \, \varphi_{\eta}. \tag{8}$$

Als elementar integrierbare Fälle ergeben sich:

a)
$$\Phi'=z\,\Phi''$$
 führt auf $\varphi=C_1\,\xi^2+rac{C_2}{2}\,\eta^2,$ $\psi=rac{\alpha}{2}\,\xi^2-rac{C_1\,C_2}{\alpha}\,\eta^2,$ b) $\Phi=z\,\Phi'$ führt auf $\varphi=C_1\,\xi\,\eta,$ $\psi=rac{\alpha}{2}\,\xi^2-rac{C_1^2}{2\,\alpha}\,\eta^2,$ c) $\Phi=z\,\Phi'$ führt auf $\varphi=C_1\,\eta^2,$ $\psi=rac{\alpha}{2}\,\xi^2,$

hierbei bedeuten α , C_1 , C_2 beliebige Konstanten.

d) Der Fall, daß der Koeffizient von v in (7) verschwindet, führt auf eine Differentialgleichung 2. Ordnung für Φ , die auf das System

$$\Phi' = \frac{\Phi}{z - F},\tag{9}$$

$$F' = \frac{1}{3} \left(\frac{z}{F} - \frac{F}{z} \right) \tag{10}$$

² Vgl. E. Kamke: Differentialgleichungen, Lösungsmethoden und Lösungen.

³ Auf eine analoge Transformation führt der Fall $\Phi' = 0$.

zurückgeführt werden kann. Die Lösung von (10) lautet:

$$F^2 = \frac{z^2}{4} + C_1 z^{-\frac{2}{3}},$$

daher ergibt sich aus (9)

$$\varPhi \doteq C_2 \exp \Big \lceil \frac{dz}{z - F}.$$

Die auftretenden Integrationen sind elementar durchführbar.

Da für die Lösung einer partiellen Differentialgleichung die Einführung separabler Koordinaten von Vorteil ist, wollen wir noch den Fall diskutieren, daß die Transformation (1) eine konforme Abbildung der x,y-Ebene auf die ξ,η -Ebene darstellt. Neben (2) und (3) müssen dann noch die Cauchy-Riemannschen Differentialgleichungen, das heißt $\lambda = 1$, gelten. Dieser Fall ist in b enthalten und führt auf die parabolischen Koordinaten $x = \xi \eta$, $y = \frac{1}{2} (\eta^2 - \xi^2)$.

Aus dem Gang der Rechnung in I ist ersichtlich, daß die Homogenität 2. Grades von φ und ψ und damit von g_i nicht wesentlich ist, sondern auch homogene g_i von n-tem Grade durch eine entsprechende Änderung der Zeitskala auf ein Ersatzproblem mit konstantem Übergangskoeffizienten führen. Als separable Koordinaten ergeben sich Real- und Imaginärteil der logarithmischen Potentiale $\xi^n = (\xi + i \eta)^n$; die zugehörigen Laméschen Koeffizienten sind homogen vom Grad 2(n-1).

Schließlich sei noch bemerkt, daß die Homogenität aller g_i unter Umständen nicht erforderlich ist, nämlich dann, wenn das Problem Symmetrieeigenschaften aufweist, wie dies am einfachsten Beispiel der Zylindersymmetrie in I gezeigt wurde.

(Eingegangen am 6. Juni 1957)

Zur theoretischen Bestimmung des Dellendruckes bei abgelöster Strömung¹

Helmut H. Korst, Urbana, Ill., U. S. A.2, dzt. Wien³

Mit 9 Textabbildungen

Zusammenfassung. Ein einfaches Strömungsmodell, das zum Studium abgelöster Strömungen entwickelt wurde, erweist sich als offenbar geeignet, bei Auftreten von hinlänglich ebenen Mischungszonen die wesentlichsten Einflußgrößen, hier Machsche Zahl und — in einer Grenzbetrachtung — die Reynoldssche Zahl, zu erfassen. Asymptotisches Verhalten bei dünnen Grenzschichtdicken vor der Ablösungsstelle wird aufgezeigt und als den niedrigsten Totwasserdrücken zugeordnet gefunden. Diese Grenzdrücke können in Fällen, wo "geschlossene Totwassergebiete" auftreten, ohne empirische Information gerechnet werden, und zwar sowohl für laminare als auch für turbulente Strahlmischung. Bei "offenem Totwasser" ist dazu eine einzige Versuchsgröße, über die einige Kenntnis vorliegt, erforderlich.

Bezeichnungen:

- G_b pro Breiteneinheit und Zeiteinheit in das Totwasser langsam eingeblasener Massenstrom.
- G_s pro Breiten- und Zeiteinheit zwischen der Ablösungsstromlinie und der Stromlinie s geführter Massenstrom.

¹ Die Forschungsarbeiten des Verfassers wurden unter teilweiser Unterstützung durch die U. S. Airforce OSR, Fluid Dynamics Division, unter Contract AF 18 (600)-392, "Transonic and Supersonic Flow of a Real Fluid at Abrupt Increase in Cross Section", durchgeführt.

² Professor of Mechanical Engineering University of Illinois.

³ Als Senior Postdoctoral Fellow der National Science Foundation, Washington D. C.

P absoluter Druck.

T absolute Temperatur.

u Geschwindigkeitskomponente in der x-Richtung.

x, y natürliche Koordinaten.

X, Y Bezugskoordinaten.

 β Integrations variable.

δ Grenzschichtdicke.

 ε (scheinbare turbulente) kinematische Zähigkeit.

 θ Stromlinienneigung.

o spezifische Masse.

Indizes kennzeichnen:

i = 1, 2, 3, 4, Strömungsquerschnitte (s. Abb. 1).

a die dem Scherströmungsbereich unmittelbar benachbarte freie Außenströmung.

d die diskriminierende Stromlinie.

j die Ablösungsstromlinie.

o Staubedingung.

R großen Wert von y, wo Scherströmung und freie Strömung sich nur mehr unwesentlich unterscheiden.

 ∞ ungestörte Anströmungsverhältnisse.

red reduzierte Anströmungsverhältnisse.

s Stromlinie, durch Gl. (16) definiert.

Dimensionslose Größen:

$$C=u/u_{ ext{max}}=\left(1+rac{2}{(k-1)\,M^2}
ight)^{-rac{1}{2}}$$
 Croccosche Zahl.

M Machsche Zahl.

 P_2/P_1 Totwasserdruckverhältnis (base pressure ratio).

Re Reynoldssche Zahl.

 $\zeta_1 = y/\delta_1$ dimensionslose y-Koordinate.

 $\zeta = y/\delta_2$ dimensions lose y-Koordinate. $\eta = \zeta \cdot \eta_P$ dimensions lose Koordinate.

 $\eta_{\rm P} = 1/(2\sqrt{\xi})$ Positionsparameter.

ξ transformierte x-Koordinate.

 φ dimensionslose Geschwindigkeit, bezogen auf die freie Außenströmung im gleichen Strömungsquerschnitt durch $\varphi_i = u_i/u_{ia}$.

 $\psi = x/\delta_2$ dimensionslose x-Koordinate.

 σ Ähnlichkeitsparameter für die homogene Koordinate y/x.

 $k = c_x/c_v$ Quotient der spezifischen Wärmen.

I. Einleitung

Die klassische Behandlung des Ablösungsproblems beruht auf der Betrachtung des Grenzschicht-Strömungsprofiles, das man unter Benützung des von der Außenströmung aufgeprägten Druckverlaufes mit Hilfe der Grenzschichtgleichungen stromabwärts verfolgt. Obwohl der Charakter der Grenzschichtgleichungen parabolisch ist, wird durch den Druckverlauf, der wahlweise entweder von der Potentialtheorie oder dem Experiment entnommen wird, dem Einfluß der Gesamtströmung Rechnung getragen. Die Ergebnisse solcher Rechnungen erweisen sich jedoch vielfach als unbefriedigend.

Demgegenüber ist in neuerer Zeit angestrebt worden, den Ablösungsvorgang aus der Wechselwirkung zwischen der nahezu schubspannungsfreien Außenströmung und der Strahlmischungszone entlang des Ablösungsgebietes unter besonderer Berücksichtigung der erforderlichen Drucksteigerung am Ende der Delle zu erklären.

Crocco und Lees⁴ haben bereits ein derartiges Konzept benützt und eine Methode zur umfassenden Behandlung solcher Probleme entwickelt, die qualitativ befriedigende Aufschlüsse für eine Reihe bedeutsamer Fälle im Überschallbereich liefert. Von größerer physikalischer Anschaulichkeit erwies sich jedoch ein Strömungsmodell, das D. R. Chapman zunächst zur halbempirischen Auswertung von Dellendruck- (base pressure) Problemen vorschlug⁵. Durch Hinzufügung von als wesentlich erkannten Verfeinerungen, die den Strahlmischungsvorgang betreffen⁶ und durch eine energiemäßig formulierte Bedingung für die Drucksteigerung am Ende der Mischungszone, wodurch die Masse im Totwasser konstant gehalten wird, wurde dieses Modell vom Autor zur quantitativen Behandlung von abgelösten Strömungen brauchbar gemacht^{7, 8} und speziell auf Fälle turbulenter Strahlmischung angewendet^{9, 10}. Unabhängig davon ist D. R. Chapman die quantitative Auswertung seines Modells für laminare Strahlmischung gelungen^{11, 12}.

Im folgenden sollen die der Ablösungstheorie zugrunde liegenden Gedanken erörtert werden, und zwar zunächst im Sinne des vom Autor vorgeschlagenen Modelles für Überschallströmung⁸.

II. Modell des Ablösungsmechanismus

- 1. Das Ablösungsmodell hat vier Strömungsgebiete (s. Abb. 1):
- a) Die Strömung stromaufwärts der Ablösung, oberhalb des Querschnittes 1.
- b) Die Strömungsablenkung an der Ablösungsstelle, zwischen 1 und 2.
- c) Die Strömung entlang des Totwassers, mit besonderer Berücksichtigung des Strahlmischungsvorganges, zwischen 2 und 3.
 - d) Das Gebiet der Drucksteigerung am Ende des Totwassers, zwischen 3 und 4.
 - 2. Der Strömungsmechanismus wird durch fünf Bedingungen formuliert:
- a) Statische Drücke im Bereiche der Scherströmung werden durch die benachbarte, nahezu gleichförmige, schubspannungsfreie Außenströmung eingeprägt.

$$P_i/P_{i_a} = 1. (1)$$

⁴ L. Crocco und L. Lees: A Mixing Theory for the Interaction Between Dissipative Flows and Nearly Isentropic Streams. Journal of the Aeronautical Sciences 19, 649—676 (1952).

⁵ D. R. Chapman: An Analysis of Base Pressures at Supersonic Velocities and Comparison With Experiment. NACA TN 2137 (1950), auch NACA Report 1051 (1951).

⁶ H. Korst: Auflösung eines ebenen Freistrahlrandes bei Berücksichtigung der ursprünglichen Grenzschichtströmung. Österr. Ingenieur-Archiv 8, 152—157 (1954).

⁷ H. H. Korst: Transonic and Supersonic Flow of a Real Fluid at Abrupt Increase in Cross Section. Contract No. U. S. Trust AF 18 (600)-392, Quarterly Progress Report A-PR-4, July 31, 1953 (ASTIA).

⁸ H. H. Korst: Comments on the Effect of Boundary Layer on Sonic Flow Through an Abrupt Cross-Sectional Area Change. Journal of the Aeronautical Sciences 21, 568—569 (1954).

⁹ H. H. Korst, R. H. Page and M. E. Childs: A Theory for Base Pressures in Transonic and Supersonic Flow. University of Illinois, ME-TN-392-2, OSR-TN-55-89, Contract No. AF 18 (600)-392, March, 1955.

¹⁰ H. H. Korst: A Theory for Base Pressures in Transonic and Supersonic Flow. Journal of Applied Mechanics 23, 593—600 (1956).

¹¹ D. R. Chapman, D. M. Kuehn and H. K. Larson: Preliminary Report on a Study of Separated Flows in Supersonic and Subsonic Streams. NACA RM A 55 L 14 (1956).

¹² D. R. Chapman, D. M. Kuehn and H. K. Larson: Analysis and Experiments on Separated Flows in Supersonic and Subsonic Streams. Paper presented at the IX International Congress for Applied Mechanics, Sept. 5—13, 1956, Brüssel, Belgien.

b) Die Ablenkung der freien Überschallströmung an der Ablösungsstelle zwischen 1 und 2 ist durch eine eindeutige Zuordnung von Druckänderung und Richtungsänderung gekennzeichnet. Dies sei in funktioneller Schreibweise dargestellt, wobei das Verhältnis der spezifischen Wärmen als Parameter nicht ausdrücklich mitgeführt wird:

$$P_2/P_1 = P_2/P_1 (M_{1_a}, \theta_{2_a} - \theta_{1_a}). \tag{2}$$

Es ist dann auch die Änderung der Machschen Zahl der freien Strömung durch die Richtungsänderung bestimmt. (Zum Beispiel wäre in Abb. 1 ein solcher Zusammenhang durch die Prandtl-Meyer-Expansion gegeben.)

$$M_{2_a} = M_{2_a} (M_{1_a}, \, \theta_{2_a} - \theta_{1_a}).$$
 (3)

Abb. 1. Strömungsmodell für ebene abgelöste Überschallströmung

Für den Bereich der Scherströmung kann man formal schreiben:

$$\varphi_2(\zeta) = \varphi_2 \left[\varphi_1(\zeta_1), M_{1-}, P_2/P_1 \right] \tag{4}$$

und

$$\delta_2/\delta_1 = \delta_2/\delta_1 \, [\varphi_1(\zeta_1), M_{1_a}, P_2/P_1]. \tag{5}$$

c) Die Strahlmischung entlang des Totwassers wird als ebenes Problem betrachtet und erfolgt bei konstantem Druck, eine Forderung, die annähernd nur dann erfüllt sein wird, wenn die Dicke der Mischungszone genügend klein bleibt gegenüber allen wesentlichen Längen, die mit dem Totwassergebiet assoziiert werden können. Unter diesen Voraussetzungen kann für turbulente zweidimensionale kompressible Strahlmischung die vom Autor entwickelte Theorie⁶ verwendet werden. Es handelt sich dabei um eine Impulsintegralmethode, die auf solche Geschwindigkeitsprofile angewendet wird, die tatsächliche Anfangs- und Randbedingungen erfüllen und aus der Integration einer weitgehend vereinfachten Bewegungsgleichung

$$\frac{\partial u}{\partial x} = \frac{\varepsilon}{u_{2a}} \frac{\partial^2 u}{\partial y^2} \tag{6}$$

gewonnen werden, in welcher die scheinbare turbulente Zähigkeit durch eine sinngemäße Erweiterung des Prandtlschen Ansatzes erfaßt wird:

$$\varepsilon = \frac{1}{2\sigma^2} \, \delta_2 \, u_{2a} \, \psi \, f(\psi). \tag{7}$$

Die zur Erfüllung des Impulsintegrals erforderliche Beweglichkeit der Lösung wird durch ihre Deutung in einem natürlichen Koordinatensystem ("intrinsic system

of coordinates") (x, y) erzielt, welches gegen das Bezugskoordinatensystem ("reference system of coordinates") (X, Y) quer zur Strömungsrichtung verschoben, aber nur unwesentlich verdreht ist:

$$X \approx x,$$

$$Y = y - y_m(x), \text{ wobei}$$

$$y_m(0) = 0.$$
(8)

Das Bezugskoordinatensystem folgt der durch die Potentiallösung bestimmten, den tatsächlichen Druckverhältnissen entsprechenden, freien Stromlinie ("boundary of the corresponding inviscid jet"). Eine Beschränkung auf ähnliche Mischungsprofile ist nicht vorausgesetzt, wodurch der Einfluß der Reynoldsschen Kennzahl nicht ausgeschlossen wird. Zufolge des turbulenten Mischungsmechanismus tritt eine derzeit nur empirisch erfaßbare Zuordnung von Strömungsprofilen zu Längenkoordinaten auf, da eine Integraltransformation, welche auf die physikalische Längenkoordinate angewendet wird,

$$\xi = \frac{1}{2\sigma^2} \int_0^{\psi} f(\psi) \, d\psi, \tag{9}$$

in ihrem Kern den Schubspannungsansatz enthält. In dimensionsloser Darstellung formuliert man dann das Mischungsproblem folgendermaßen:

$$\frac{\partial \varphi}{\partial \xi} = \frac{\partial^{3} \varphi}{\partial \zeta^{2}}.$$

$$\varphi(0, \zeta) \equiv 0 \quad \text{für} \quad -\infty < \zeta < 0,$$

$$\varphi(0, \zeta) = \varphi_{2}(\zeta) \quad \text{für} \quad 0 < \zeta < 1,$$

$$\varphi(0, \zeta) \equiv 1 \quad \text{für} \quad 1 < \zeta < +\infty,$$
(10)

und erhält als allgemeine Lösung

$$\varphi = \varphi \left[\varphi_2 \left(\zeta \right), \eta_P; \eta \right] = \frac{1}{2} \left[1 + \operatorname{erf} \left(\eta - \eta_P \right) \right] + \frac{1}{\sqrt{\pi}} \int_{\eta - \eta_P}^{\eta} \varphi_2 \left(\frac{\eta - \beta}{\eta_P} \right) e^{-\beta^2} d\beta, \tag{11}$$

worin der Positionsparameter

$$\eta_P = 1/(2\sqrt{\xi}) \tag{12}$$

und

$$\eta = \zeta \, \eta_P. \tag{13}$$

Von großer Bedeutung ist die Betrachtung der in größeren Entfernungen stromabwärts asymptotisch erreichten Lösung, $\eta_P \to 0$, welche das voll ausgebildete, turbulente Strömungsprofil in der Mischungszone darstellt. Die einer quantitativen Auswertung schwer zugänglichen, durch Gl. (4) und Gl. (5) ausgedrückten Beziehungen werden in diesem Falle gegenstandslos. Außerdem wird aber auch die in Gl. (9) enthaltene Beziehung nicht mehr benötigt.

Physikalisch entspricht dies dem Fall einer dünnen Grenzschichtdicke vor der Ablösung und kann als Grenzfall für hohe Werte der Reynoldsschen Kennzahl, bezogen auf den umströmten Körper, gedeutet werden. Für diese asymptotische Lösung erhält man

$$\varphi = \frac{1}{2} \left(1 + \operatorname{erf} \eta \right), \tag{14}$$

wobei $\eta = \sigma(y/x)$. Sodann ist für isoenergetische Mischung, wo

$$T_0/T_{0_a} = 1 (15)$$

Abb. 2. Hilfsgrößen zur Darstellung turbulenter, isoenergetischer, kompressibler, ebener Freistrahlränder (voll ausgebildet)

nach Anwendung des Impulssatzes für kompressible Strömung zufolge der Kontinuitätsgleichung, mit

$$G_{s} = \int_{y_{j}}^{y_{s}} \varrho \cdot u \cdot dy = \frac{x \varrho_{2a} u_{2a} [1 - C_{2a}^{2}]}{\sigma} \int_{\eta_{j}}^{\eta_{s}} \frac{\varphi d\eta}{1 - C_{2a}^{2} \varphi^{2}}, \tag{16}$$

$$\int_{\eta_s}^{\eta_R} \frac{\varphi \, d\eta}{1 - C_{2_a}^2 \varphi^2} + \frac{\sigma \, G_s}{x \, \varrho_{2_a} \, u_{2_a} \, (1 - C_{2_a}^2)} = \int_{-\infty}^{\eta_R} \frac{\varphi^2 \, d\eta}{1 - C_{2_a}^2 \, \varphi^2}, \tag{17}$$

worin für $\varphi = \varphi(\eta)$ nach Gl. (14) einzusetzen ist. Für die Ablösungsstromlinie (jet boundary streamline), für welche $G_s = 0$ ist, kann man schreiben:

$$\int_{\eta_{j}}^{\eta_{R}} \frac{\varphi \, d\eta}{1 - C_{2_{a}}^{2} \varphi^{2}} = \int_{-\infty}^{\eta_{R}} \frac{\varphi^{2} \, d\eta}{1 - C_{2_{a}}^{2} \varphi^{2}},\tag{18}$$

wonach sich η_i und daher nach Gl. (14) auch φ_i als von C_{2_a} abhängig bestimmen lassen. Die Ergebnisse der am ILLIAC¹³ durchgeführten Berechnungen¹⁴ sind in Abb. 2 graphisch dargestellt, insbesondere das Hilfsintegral:

$$I_1\left[\varphi(\eta),\,C_{2_a}{}^2\right] = \int\limits_{-\infty}^{\eta} \frac{\varphi\,d\eta}{1-C_{2_a}{}^2}\varphi^2\,.$$

Die Verwendung der asymptotischen Lösung für die Mischungskomponente des Ablösungsmodelles wurde vom Autor und seinen Mitarbeitern als "eingeschränkte Theorie" ("restricted theory") bezeichnet ($\eta_P = 0$). Zunächst ist es bemerkenswert, daß die mit Hilfe der eingeschränkten Theorie errechneten Totwasserdrücke eine untere Grenze für den allgemeineren Fall darstellen. Von größtem Interesse ist aber die Tatsache, daß im Rahmen der "eingeschränkten Theorie" analytische Lösungen für das Ablösungsproblem erhalten werden, die im Falle von "geschlossenen Totwassergebieten" keinerlei empirische Konstanten enthalten, so daß durch Vergleich zwischen Rechnung und Versuch eine scharfe Bewertung der Theorie möglich wird. Treten "offene Totwassergebiete" auf, das heißt liegen solche Fälle vor, in welchem Masse in das Ablösungsgebiet eingeblasen oder vom Ablösungsgebiet abgesaugt wird (,,bleeding"), so wird die theoretische Lösung von dem empirischen Faktor σ abhängig, auf deren Bedeutung als kennzeichnend für die Zunahme der Mischungszonenbreite schon vorher in der Literatur hingewiesen wurde. Es steht fest, daß σ von der Machschen Zahl der freien Strömung abhängt, doch ist das derzeit vorhandene Versuchsmaterial noch zu dürftig, um den Funktionsverlauf genau festzulegen. Es scheint jedoch, daß eine von Tripp¹⁵ neuerdings vorgeschlagene Form, $\sigma = 12 + 2.578 \, M$, befriedigende Resultate für isoenergetische Strahlränder liefert.

d) Die Drucksteigerung am Ende des Totwassers ist — in Übereinstimmung mit 2, a
 von der benachbarten freien Strömung aufgedrückt, wobei wieder eine eindeutige

¹³ Electronic Digital Computer, Engineering Research Laboratory, University of Illinois, U. S. A.

¹⁴ H. H. Korst, R. H. Page and M. E. Childs: Compressible Two-Dimensional Jet Mixing at Constant Pressure-Tables of Auxiliary Functions for Fully Developed Mixing Profiles. University of Illinois ME-TN-392-3, OSR-TN-55-99, Contract No. AF 18 (600)-392, April, 1955.

¹⁵ Wilson Tripp: Analytical and Experimental Investigation of the Base Pressure Behind a Blunt Trailing Edge for Supersonic Two-Dimensional Flow — Approaching Streams Having the Same Stagation Temperature but Dissimilar Mach Numbers and Stagnation Pressures. PhD Thesis, University of Illinois, 1956.

Zuordnung zum Ablenkungswinkel vorausgesetzt wird (z. B. durch einen schiefen Stoß)

 $P_4/P_3 = P_4/P_3 (M_{2a}, \theta_{3a} - \theta_{4a}). \tag{19}$

Hat man Fälle mit geneigten Wänden vor der Ablösung (boattailing) und (oder) nach Wiederanlegen der Strömung zu behandeln, so erlaubt die Einführung des Konzeptes von "reduzierten Mach-Zahlen" und "reduzierten Dellendrücken" ("reduced Mach number

concept") eine vereinheitlichte Darstellung von theoretischen und versuchsmäßigen Ergebnissen¹⁰, s. auch Abb. 3.

Abb. 3. Ablösung ebener Überschallströmung von einer Wandstufe. a) Geometrische Beziehungen für die Außenströmung. b) Theoretische Lösung für dünne Grenzschichtdicke vor der Ablösung, verglichen mit Egginks experimentellen Ergebnissen (ref. 11 in 10) in "reduzierter" Darstellung

e) Für das Totwasser muß die Kontinuitätsbedingung erfüllt sein: Zunächst definiert man die "diskriminierende Stromlinie" mit der Koordinate y_d (bzw. η_d) und der Geschwindigkeit φ_d derart, daß sie am Ende des Totwassers (Querschnitt 3) gerade genügend mechanische Energie (ausgedrückt durch den Ruhedruck) besitzt, um durch isentropische Umwandlung der kinetischen Energie den statischen Druck nach der Drucksteigerung am Ende des Totwassergebietes (Querschnitt 4) zu erreichen ("escape concept").

$$P_{0_{3d}}/P_3 = P_4/P_3, (20)$$

$$P_{0_{3d}}/P_3 = (1 - \varphi_d^2 \cdot C_{2a}^2)^{-k/(k-1)}. \tag{21}$$

Für ein "offenes Totwasser" ist es erforderlich, daß ein von außen zugeführter Massenstrom G_b am Ende des Totwassergebietes zwischen der Ablösungsstromlinie und der diskriminierenden Stromlinie abgeführt wird,

$$G_b + G_d = 0, (22)$$

wobei

$$G_d = \int\limits_{y_j}^{y_d} \varrho \cdot u \cdot dy$$

ist.

Bei "geschlossenem Totwasser" fallen diese beiden Stromlinien zusammen, $y_d = y_j$.

3. Die gleichzeitige Erfüllung der durch die oben angeführten Gleichungen ausgedrückten Beziehungen ergibt eine eindeutige Lösung für das Dellendruckproblem, wobei die Stabilität der Lösung an Hand des monotonen Charakters der in Abb. 7 gezeigten Kurven erläutert werden kann⁹. Im speziellen Fall, wo die Körpergeometrie und die Anströmverhältnisse gegeben sein sollen, muß diese Lösung durch Probieren mit verschiedenen Werten von P_2/P_1 gefunden werden. Für allgemeinere Betrach-

tungen, in welchen der Einfluß der Machschen Zahl untersucht werden soll, wird mit Vorteil M_{2_a} (bzw. C_{2_a}) als unabhängig Veränderliche für die Berechnung gewählt, wodurch eine direkte Auflösung des Gleichungssystems ermöglicht wird.

III. Anwendungsbeispiele

- 1. Eingeschränkte Theorie für dünne Grenzschichtdicke vor der Ablösung.
- a) Geschlossenes Totwasser. Übereinstimmung zwischen theoretischen und gemessenen Dellendrücken ist bemerkenswert gut im Hinblick auf die Tatsache, daß

Abb. 4. Vergleich von gemessenen Totwasserdrucken mit der vorliegenden Theorie. $-\cdot$ - Eingeschränkte Theorie ($\eta_P = 0$); schräffiert: Bereiche von gemessenen Mittelwerten nach K. L. Goin (ref. 12 in ¹⁰) und D. R. Chapman et al. (ref. 10 in ¹⁰); — im freien Flug gemessene Werte (ref. 3 in Goins Arbeit)

die analytische Lösung keinerlei empirische Werte enthält. Dies ist durch die Abb. 3 illustriert. Der asymptotische Charakter der "eingeschränkten Lösung" tritt in Abb. 4 zunächst nur für solche Mach-Zahlen klar hervor, die nicht schallnahe sind. Allerdings

Abb. 5. Totwasserdruck bei einer ebenen, plötzlichen Querschnittserweiterung nach einer konvergenten Düse. Flächenverhältnis 2·275. — Eindimensionale Theorie; -- theoretischer Totwasserdruck für das ebene Problem; --- theoretischer Totwasserdruck für axiale Symmetrie; ⊙ Versuchswerte für axiale Symmetrie⁹; △ interpoliert zwischen Wicks Versuchswerten für vier Flächen-

verhältnisse
$$\left(\frac{A_2}{A_1} = 1.76, 2.36, 2.95 \text{ und } 3.54\right)$$

liegt die Vermutung nahe, daß die Art der Versuchsdurchführung zu unerfaßten Interferenzerscheinungen mit der Dellenform führte. Die Theorie gibt nämlich ausgezeichnete Ergebnisse in Fällen, wo die Beeinflussung der Dellenform durch äußere Störungen theoretisch berücksichtigt werden kann, s. Abb. 5 und 6.

b) Offenes Totwasser. Die Wirkung von Masseneinblasung in das Totwassergebiet zeigt Abb. 7 in dimensionsloser Auftragung. Während die dort gezeigten theoretischen

Abb. 6. Totwasserdruck bei rotationssymmetrischer plötzlicher Querschnittserweiterung nach konvergenter Düse. — Theorie für $M_{1_a}=1$ und $\eta_P=0$; \bigcirc Versuchswerte von Cole und Mills (ref. 36 in 9); \triangle eigene Versuchswerte 9

Wahrend die dort gezeigten theoretischen Kurven auf dem für niedrige Mach-Zahlen gut bestätigten Wert von $\sigma=12$ beruhen, hat Wu¹⁶ später gezeigt, daß die Übereinstimmung von Versuch und Rechnung durch die von Tripp vorgeschlagene Beziehung für σ noch verbessert wird. Ab-

Abb. 7. Einfluß von langsamer Masseneinblasung auf den Totwasserdruck bei Ablösung von Überschallströmung von einer Wandstufe. a) Strömungsbild der Außenströmung. b) Theoretische Ergebnisse unter Zugrundelegung von $\sigma=12$ und Vergleich mit Versuchsergebnissen bei einer Mach-Zahl von 2 (Definition der dimensionslosen "bleed number", s. 10)

lösungsdellen, welche von freien Strömungen mit verschiedenen Mach-Zahlen und

Ruhedrücken, jedoch gleichen Ruhetemperaturen begrenzt werden, fallen ebenfalls in diese Gruppe und lassen sich befriedigend durch die Theorie erklären^{15,17}, s. Abb. 8 und 9. Das Einblasen von heißer Luft in das Totwassergebiet erfordert die Erweiterung des Strömungsmodelles im Sinne einer "nicht isoenergetischen, kompressiblen" Mischungs-

¹⁶ Chen-Yuan Wu: The Influence of Finite Bleed Velocities on the Effectiveness of Base Bleed in the Two-Dimensional Supersonic Base Pressure Problem. PhD Thesis, University of Illinois, February, 1957.

¹⁷ H. H. Korst and Wilson Tripp: The Pressure on a Blunt Trailing Edge Separating Two Supersonic Two-Dimensional Air Streams of Different Mach Numbers and Stagnation Pressures, but Identical Stagnation Temperatures. Paper presented at the Midwest Conference on Solid and Fluid Mechanics, University of Michigan, Ann Arbor, Michigan, April 1—2, 1957.

theorie für turbulente Strömung, die gleichfalls befriedigende Ergebnisse brachte^{18,19}. Gestützt auf die so gewonnenen Erkenntnisse ist jetzt auch die Vorausberechnung

der durch die Außenströmung unter Überschall-Flugbedingungen bedingten Einflüsse auf die in Höhenprüfständen ermittelten Eigenschaften von Strahltriebseinheiten²⁰ theoretisch möglich geworden.

Abb. 8. Einfluß des Ruhedruckverhältnisses auf den Totwasserdruck bei einer von zwei Überschallströmungen gebildeten Ablösungsdelle (hier $M_{1_a}=M_{1_a}{}'=1.98$). a) Strömungsbild der Außenströmung. b) — Theorie für $\eta_P=0$; \bigcirc Versuchswerte von W. Tripp 15

0.1

Abb. 9. Theoretische Bestimmung der Strömungsablösung von einem stark angestellten Überschallprofil, verglichen mit Versuchswerten von A. Ferri nach NACA TM 946 (1940) (Modell GU 3, $M_{\infty}=2\cdot13$, $\alpha=22^{\circ}$). a) Strömungsbild der Außenströmung. b) --- Theorie, Charakteristikenmethode; — theoretischer Totwasserdruck, $\eta_P=0$; \bigcirc Versuchswerte

2. Verhältnismäßig wenig theoretische Anhaltspunkte sind gegenwärtig für solche

Fälle verfügbar, wo die Voraussetzungen der "eingeschränkten Theorie" nicht zutreffen. Allerdings ist eine qualitative Erörterung des stabilisierenden Einflusses der Grenzschicht vor der Ablösungsstelle möglich, wodurch diese sich auch im Falle von glatten, konvex gekrümmten Wänden als festgelegt erweist⁹. Die Untersuchungen

- ¹⁸ R. H. Page: The Non-Isoenergetic Turbulent Jet Mxing of a Two-Dimensional Supersonic Jet With Consideration of Its Influence on the Base Pressure Problem. PhD Thesis, University of Illinois, February, 1955.
- ¹⁹ R. H. Page and H. H. Korst: Non-Isoenergetic Turbulent Compressible Jet Mixing With Consideration of Its Influence on the Base Pressure Problem. Transactions of the Forth Midwestern Conference on Fluid Mechanics, Purdue University, September, 1955.
- ²⁰ E. M. Cortright Jr.: Some Aerodynamic Considerations of Nozzle-Afterbody Combinations. Paper presented at the 24th Annual Meeting of the Institute of the Aeronautical Sciences, Jan. 23—26, 1956. Preprint No. 614.

238 E. Engel:

von Wu^{16, 21} über den Einfluß von endlichen Einblasegeschwindigkeiten in Totwassergebiete ergaben zwar einen überraschend engen Bereich für eine empirische Abklingfunktion von ursprünglich gestörten Mischungszonen, doch müssen erst weitere systematische Versuche durchgeführt werden, um feststellen zu können, ob brauchbare Näherungslösungen durch eine beschränkte Verallgemeinerung dieser Funktion erwartet werden können.

3. Ersetzt man die Bedingungen II, 2, b und II, 2, d durch die Annahme, daß am Ende der Delle der statische Druck der (gegebenenfalls "reduzierten") Hauptströmung erreicht werden muß, so kann für Fälle mit geschlossenem Totwasser eine besonders einfache Lösung für den Totwasserdruck gegeben werden¹¹. Diese Annahme gestattet aber auch sofort, die Berechnung von Totwasserdrücken auf den Unterschallbereich auszudehnen. D. R. Chapman und seine Mitarbeiter haben mit diesem Ansatz befriedigende Resultate in Fällen mit laminaren Mischungszonen erzielt¹¹, ¹².

(Eingegangen am 18. Juni 1957)

Zur Biegungsbeanspruchung eines Seiles auf einer elastisch gefütterten Rolle

Von E. Engel, Wien

Mitteilung aus dem Institut für Eisenbahnbau an der Techn. Hochschule Wien

Mit 3 Textabbildungen

Zusammenfassung. Es wurde eine Näherungsberechnung für den kleinsten Krümmungshalbmesser eines Seiles auf einer elastisch gefütterten Rolle gewonnen, die vom theoretischen Standpunkt als grob betrachtet werden muß. Auf die genaue Ermittlung der Druckverteilung zwischen Seil und Rolle, die eine ∞-fach statisch unbestimmte Aufgabe darstellt, wurde dabei verzichtet, und statt dessen wurde ein parabolischer Ansatz für jene verwendet. Für die Berechnung der Formänderungen der Seilkurve wurde von zusätzlichen Näherungen Gebrauch gemacht.

Wie die Zahlenbeispiele zeigen, werden die Ergebnisse um so genauer, je kleiner der Seilablenkwinkel, je größer die Biegesteifigkeit des Seiles und je härter das Rollenfutter ist. Doch in Anbetracht der großen Unsicherheit bei der Bestimmung der Biegesteifigkeit eines Seiles mit Berücksichtigung der inneren Reibung und auch im Hinblick auf die übrigen, stark idealisierten Voraussetzungen, die der vorliegenden Berechnung und auch der strengen Theorie von Czitary zugrunde liegen, können die Ergebnisse für praktische Zwecke als hinreichend brauchbar betrachtet werden. Ferner erkennt man, daß eine Vergrößerung des Rollendurchmessers die größten Biegebeanspruchungen des Seiles auf der Rolle verhältnismäßig wenig vermindert; der gleiche Gewinn könnte auch durch ein entsprechend weiches und dickes Rollenfutter erzielt werden.

I. Aufgabenstellung

Die aus der Erfahrung bekannte Tatsache, daß sich eine Fütterung der Seiltragoder Ablenkrollen mit einem weichen, elastischen Werkstoff auf die Verwendungsdauer der Drahtseile sehr günstig auswirkt, wurde theoretisch von E. Czitary¹ untersucht. Es wurde dabei eine genaue Berechnung der Krümmungsverhältnisse und
der spezifischen Pressungen im Berührungsbereich zwischen Seil und Rolle durchgeführt. Es zeigte sich, daß der kleinste Krümmungsradius auf einer elastisch ge-

²¹ C.-Y. Wu and H. H. Korst: The Influence of Finite Bleed Velocities on the Effectiveness of Base Bleed in the Two-Dimensional Supersonic Base Pressure Problem. Paper presented at the Midwest Conference on Solid and Fluid Mechanics, University of Michigan, Ann Arbor, Michigan, April 1—2, 1957.

¹ E. Czitary: Verhalten eines Drahtseiles auf einer Rolle mit elastischem Futter. Österr. Ing.-Arch. 10, H. 4 (1956).

fütterten Rolle bei geringer Seilablenkung wesentlich größer ist als auf einer nicht verformbaren Rolle.

Die praktische Ermittlung der Biegespannungen bei Zugseilen von Seilschwebebahnen, Standseilbahnen, Sesselliften usw. wird bisher stets so durchgeführt, daß als maßgebender kleinster Krümmungshalbmesser des Seiles der Halbmesser der Antriebscheibe, Seiltrommel usw. in Rechnung gestellt wird. Es besteht aber kein Zweifel, daß in manchen Fällen auf den Ablenkrollen des Zugseiles trotz der begrenzten Seilablenkung von höchstens 8 bis 10% viel kleinere Krümmungsradien und damit größere Biegungsspannungen auftreten können. Ebenso ist der Einfluß des Rollendurchmessers auf die Biegebeanspruchung des Seiles noch nicht endgültig geklärt. Die strenge Theorie von Czitary läßt eine geschlossene Darstellung der Ergebnisse, insbesondere des kleinsten Krümmungshalbmessers des Seiles nicht zu und erfordert überdies bei der Auswertung eine erhebliche Rechenarbeit. Es erscheint daher wünschenswert, eine Näherungsberechnung zu versuchen, mit dem Ziel, einen einfachen Ausdruck für den kleinsten Krümmungshalbmesser eines Seiles auf einer elastisch gefütterten Rolle zu gewinnen, der noch hinreichend brauchbare Ergebnisse liefert².

Als Vergleichsgrundlage für die Beurteilung des Fehlers, den die folgende Näherungsberechnung ergibt, soll die strenge Theorie von Czitary dienen; es werden daher dieselben Voraussetzungen gemacht, die jener zugrunde liegen:

- 1. Der Seilablenkwinkel 2 α an der Rolle sei klein, so daß tg $\alpha \ll 1$ und cos $\alpha \doteq 1$ wird.
 - 2. Die Seiloberfläche sei vollkommen glatt.
- 3. Die Biegesteifigkeit B des Seiles (analog zur Biegesteifigkeit eines geraden, homogenen Stabes, die das Produkt aus Elastizitätsmodul und Trägheitsmoment des Stabquerschnittes bedeutet) sei konstant, das heißt unabhängig von der Krümmung.
- 4. Die Rolle mit dem Halbmesser R wird im Berührungsbereich mit dem Seil durch eine quadratische Parabel ersetzt; ihre Gleichung (s. Abb. 2) lautet:

$$y_k = \frac{x^2}{2R}. (1)$$

5. Die Zusammendrückung des Rollenfutters η sei proportional dem spezifischen Anpreßdruck p je Längeneinheit:

$$\eta = c p. \tag{2}$$

Für die Konstante c erhält man entsprechend Abb. 1

$$c = \frac{3 \delta}{2 d E_G},\tag{3}$$

Abb. 1. Querschnitt durch ein Rollenfutter

wenn δ die Dicke des Rollenfutters, E_G den Zusammendrückungsmodul desselben und d den Seildurchmesser bezeichnet. (Das Rollenfutter erhält meist eine Rille, die zwei Drittel des Seildurchmessers breit ist.)

II. Die Seilkurve bei nichtverformbarer Rolle

Die geometrischen Verhältnisse eines biegesteifen Seiles auf einer nicht verformbaren Rolle wurden zuerst von Isaachsen³ untersucht und können als hinreichend geklärt betrachtet werden, so daß die ausführliche Herleitung der Ergebnisse unterbleiben darf. Der Ablenkwinkel 2 α des Seiles an der Rolle, der gleich ist jenem Winkel,

² Die Anregung hiezu verdankt der Verfasser ebenfalls Prof. E. Czitary.

³ Isaachsen: Die Beanspruchung der Tragseile. Z. Ver. dtsch. Ing. 1907, 655ff. Siehe auch Fußnote 1.

240 E. Engel:

den die Asymptoten an die Seilkurve miteinander einschließen, ist durch den Rollendruck V und durch die Seilspannkraft S bestimmt:

Abb. 2. Form des Seiles auf einer starren (strichliert) und elastisch gefütterten Rolle

Mit den Bezeichnungen der Abb. 2 erhält man die Gleichung der Biegelinie des Seiles in der Form

$$y_s = h^* e^{-\sqrt{\frac{S}{B}x}} + x \operatorname{tg} \alpha, \tag{5}$$

wobei der Abstand des Scheitels der Seilkurve vom Asymptotenschnittpunkt

$$h^* = \varrho_0^* \operatorname{tg}^2 \alpha \tag{6}$$

beträgt. Für den Krümmungsradius des Seiles ϱ_0^* an der Berührungsstelle mit der Rolle erhält man das bekannte Ergebnis

$$\frac{1}{\varrho_0^*} = \sqrt{\frac{S}{B}} \operatorname{tg} \alpha. \tag{7}$$

Dieser Wert ist vom Rollenhalbmesser R unabhängig. Dies gilt allerdings nur für $\varrho_0^* > R$, solange sich also das Seil an die Rolle nicht anschmiegt.

III. Die größte Krümmung des Seiles auf elastisch gefütterter Rolle

Besitzt die Rolle ein elastisch verformbares Futter, so wird der Rollendruck nicht punktförmig, sondern längs einer Strecke $2\,l$ auf das Seil übertragen, wobei sich das Seil in das Rollenfutter eindrückt. Man kann sich statt dessen ebensogut das Seil in jener Lage, die es auf einer starren Rolle einnimmt, festgehalten (wie in Abb. 2 strichliert dargestellt) und dafür die gefütterte Rolle in das Seil eingedrückt denken. Außerhalb des Berührungsbereiches bleibt die Seilkurve auch nach der Verformung des Rollenfutters unverändert, während sie sich im Berührungsbereich selbst wegen der veränderten Druckverteilung verflachen wird.

Voraussetzungsgemäß wird die nichtverformte Rolle im Berührungsbereich durch eine quadratische Parabel ersetzt. Ebenso kann man sich die wirklich auftretende Seilkurve in der Umgebung des Scheitels (x=0) in eine konvergente Potenzreihe entwickelt denken, von der auch wieder nur die Glieder bis zur zweiten Potenz berücksichtigt werden. Dies bedeutet noch keine Verschlechterung der Genauigkeit. Die Zusammendrückungen η sind die Differenz aus den Ordinaten der Seilkurve und denen der nicht verformten Rolle und haben infolgedessen gleichfalls einen parabolischen Verlauf längs der Berührungsstrecke mit dem Größtwert η_0 , so daß

$$\eta = \eta_0 \left(1 - \frac{x^2}{l^2} \right). \tag{8}$$

Daraus folgt dann für den Druck p zwischen Seil und Rollenfutter, der voraussetzungsgemäß der Eindrückung η proportional ist, ebenso ein parabolischer Verlauf

$$p = p_0 \left(1 - \frac{x^2}{l^2} \right) \tag{9}$$

mit dem Größtwert p_0 im Scheitel. Aus der Gleichgewichtsbedingung für die Rolle in der y-Richtung

$$V = 2 \int_{0}^{l} p \, dx = \frac{4}{3} \, p_0 \, l \tag{10}$$

ergibt sich

$$p_0 = \frac{3 V}{4 l}$$

und mit (4)

$$p_0 = \frac{3 S \lg \alpha}{2 l}. \tag{10a}$$

Die größte Eindrückung in x = 0 beträgt daher

$$\eta_0 = c \cdot p_0 = \frac{3 c S \operatorname{tg} \alpha}{2I}. \tag{11}$$

Die Berechnung des kleinsten Krümmungshalbmessers ϱ_0 des Seiles im Scheitel erfolgt aus der Gleichung der elastischen Linie

$$\frac{1}{\varrho_0} = \frac{M_0}{B}.\tag{12}$$

Dabei ist M_0 das Biegemoment im Scheitel. Aus Abb. 2 entnimmt man

$$M_0 = S \cdot h - \int_0^l p \ x \ dx. \tag{13}$$

Mit (9) und (10a) liefert die ausgeführte Integration

$$M_0 = S\left(h - \frac{3}{8}l \operatorname{tg} \alpha\right). \tag{13a}$$

Damit erhält man aus (12)

$$\frac{B}{S \cdot \varrho_0} = h - \frac{3}{8} l \operatorname{tg} \alpha. \tag{14}$$

Bei der Eindrückung der Rolle in das Seil hat sich der Abstand h^* des Scheitels der Seilkurve vom Asymptotenschnittpunkt auf h vergrößert, während der Krümmungshalbmesser von ϱ_0^* auf ϱ_0 angewachsen ist. Für die Berechnung von h und l werden folgende zwei Näherungen verwendet:

1. Wegen des linearen Zusammenhanges von h^* und ϱ_0^* gemäß (6) wird auch für die Änderung der beiden Größen der Ansatz versucht

$$h - h^* \doteq (\varrho_0 - \varrho_0^*) \operatorname{tg}^2 \alpha. \tag{15}$$

Diese Beziehung wäre nur dann exakt gültig, wenn nach der Eindrückung die Seilkurve innerhalb und auch außerhalb des Berührungsbereiches durch eine Gleichung von der Form (5) und (6), nur mit ϱ_0 anstatt ϱ_0^* , dargestellt werden könnte. Dies bedeutet aber im Hinblick auf das vorher Gesagte eine Näherung. Mit (6) und (15) erhält man dann

$$h \doteq \rho_0 \operatorname{tg}^2 \alpha. \tag{15a}$$

Diese Näherung ergibt für h stets etwas zu große Werte. Bei einer genaueren Erfassung müßte näher auf die Form der Biegelinie des Seiles eingegangen werden.

2. Die Ordinaten der Seilkurve y_s sind gemäß Abb. 2 die Summe der Ordinaten des Kreises und der Eindrückungen:

$$y_s=h-\eta_0+y_k+\eta. \tag{16}$$
 Da in $x=0$
$$y_s{''}=\frac{1}{\varrho_0}$$
 und wegen (1)
$$y_k{''}=\frac{1}{R}$$
 und wegen (8) und (11)

$$\eta'' = -\frac{2}{l^2} \eta_0 = -\frac{3 c S \operatorname{tg} \alpha}{l^3},$$

erhält man aus (16) durch zweimalige Differentiation

$$\frac{1}{\varrho_0} = \frac{1}{R} - \frac{3 c S \operatorname{tg} \alpha}{l^3}$$

$$l = \sqrt[3]{\frac{3 c S \operatorname{tg} \alpha}{\frac{1}{R} - \frac{1}{\alpha}}}.$$
(17)

oder

Die Größe der Berührungslänge ist aber für den Wert des kleinsten Krümmungshalbmessers ϱ_0 von geringerer Bedeutung⁴, und man kann in guter Näherung l so berechnen, als wäre das Seil bei der Eindrückung in die Rolle unverformt geblieben, das heißt man kann in (17) ϱ_0 durch ϱ_0^* ersetzen:

$$l \doteq \sqrt[3]{\frac{3 c S \operatorname{tg} \alpha}{\frac{1}{R} - \frac{1}{\rho_0 *}}}.$$
 (17a)

Diese Näherung liefert etwas zu große Werte für die Berührungslänge; sie wird um so genauer, je größer die Biegesteifigkeit des Seiles ist.

Die beiden Näherungen (15) und (17a), die beide etwas zu große Werte liefern, gleichen sich aber bei der Differenzbildung in (14) gegenseitig wieder teilweise aus. Man erhält mit ihnen aus (14) nach geringer Umformung

$$\varrho_0^2 - \frac{8 \text{ tg } \alpha}{3 l} \varrho_0 - \frac{B}{S \text{ tg}^2 \alpha} = 0, \tag{18}$$

also eine quadratische Bestimmungsgleichung für den kleinsten Krümmungshalbmesser ϱ_0 . Die Auflösung ergibt das angestrebte Ergebnis

$$\varrho_0 = \frac{16 \lg \alpha}{3 l} + \frac{1}{(-) \lg \alpha} \sqrt{\frac{9 l^2}{256} + \frac{B}{S}}.$$
 (18a)

Dabei ist l aus (17) bzw. (17 a) zu berechnen.

Für eine nicht verformbare Rolle (c = 0) erhält man aus (18) durch Spezialisierung

$${\varrho_0}^2 = {\varrho_0}^{*2} = \frac{B}{S \operatorname{tg}^2 \alpha},$$

und dieses Ergebnis ist identisch mit der Formel von Isaachsen. Es muß daher erwartet werden, daß die Näherungsformel (18a) um so genauere Werte für den Krümmungshalbmesser ϱ_0 liefern wird, je härter das Rollenfutter ist.

 $^{^4}$ Nach der strengen Rechnung dürfte auch die Voraussetzung 4 nicht mehr verwendet werden, denn die Ermittlung der Berührungslänge 2 l beruht auf der genauen Bestimmung eines schleifenden Schnittes zweier Kurven!

Zahlenbeispiele

1. Es werden zwei Beispiele mit verschiedener Biegesteifigkeit des Seiles gerechnet und die Ergebnisse der Näherungsrechnung denen der genauen Theorie von Czitary gegenübergestellt.

Annahmen:

Litzenseil der Bauart h + 6 (1 + 6 + 12),

Drahtdurchmesser $d_0 = 1.9 \text{ mm}$,

Seildurchmesser d = 30 mm,

Anzahl der Drähte i = 114,

Elastizitätsmodul des Drahtmaterials $E=2\,200\,000$ kg/cm²,

Seilspannkraft S = 6000 kg,

Rollenhalbmesser $R = 250 \, \text{mm}$,

Dicke des Rollenfutters $\delta = 60 \text{ mm}$,

Elastizitätsmodul des Futters $E_G=850 \ \mathrm{kg/cm^2}$,

Ablenkwinkel an der Rolle tg 2 $\alpha = 0.08$.

Damit ergeben sich folgende kleinste Krümmungshalbmesser des Seiles an der Rolle:

Abb. 3. Kleinster Krümmungshalbmesser des Seiles in Abhängigkeit vom Rollendurchmesser

Biegesteifigkeit in cm ⁴	Krümmungshalbmesser in cm			
	Rolle starr	Rolle gefüttert		Fehler %
		Näherung	genaue Werte	
$B_0 = i E \frac{d_0^4 \pi}{64} = 0.0073$	41.0	85.0	94.4	10
$B = 10 \ B_0 = 0.073$	130.0	165.6	169.0	2

2. Der Einfluß des Rollenhalbmessers auf die Biegebeanspruchung des Seiles läßt sich auf Grund der Ergebnisse (17) und (18a) beurteilen. Je größer die Biegesteifigkeit B des Seiles und je härter das Rollenfutter ist, desto unbedeutender wird die Größe des Rollenhalbmessers R. In Abb. 3 ist der kleinste Krümmungshalbmesser des Seiles für die beiden Werte der Biegesteifigkeit aus Beispiel 1 graphisch dargestellt.

(Eingegangen am 26. Juni 1957)

Über die Ablösung der Grenzschicht beim Verdichtungsstoß¹

Von R. Bruniak, Wien

In dem genannten Aufsatz wurde versucht, mit Hilfe des Impulssatzes unter gewissen Vernachlässigungen und mit der Annahme von Pohlhausen-Profilen eine Beziehung für die Ablösung der Grenzschicht beim Verdichtungsstoß zu finden. Es hat sich folgendes ergeben:

$$\int\limits_0^\delta \left(\varrho\,u\right)u\,dy - \int\limits_0^\cdot \left(\overline{\varrho}\,\overline{u}\right)\overline{u}\,dy = \left(p_2-p_1\right)\delta.$$

Das erste Integral ist an der Stelle zu nehmen, wo der Verdichtungsstoß entsteht, das zweite knapp nach der Stelle, wo die Geschwindigkeit u_2 nach dem Stoß in der freien Strömung bereits erreicht ist. δ ist die Grenzschichtdicke und wird in dem kurzen Bereich als konstant angenommen. Wenn man nun die Stromdichte ϱ $u=\overline{\varrho}$ \overline{u} auch über die Grenzschichtdicke als konstant annimmt, wie es geschehen ist, so ist dies eine gewisse Näherung.

¹ Zusatz zur gleichnamigen Originalarbeit, Österr. Ing.-Arch. 10, H 2/3, 129ff.

Setzt man $\eta = \frac{y}{\delta}$, so hat man

$$\int\limits_0^1arrho\,u^2\,\delta\,d\eta-\int\limits_0^1\overlinearrho\,\overline u^2\,\delta\,d\eta=\left(p_2-p_1
ight)\delta$$

oder

$$\int\limits_0^1arrho\,u^2\,d\eta-\int\limits_0^1\overline{arrho}\,\overline{u}^2\,d\eta=p_2-p_1.$$

Für die Geschwindigkeiten u und \overline{u} gelten die Gleichungen

$$u = \left[(2 \eta - 2 \eta^3 + \eta^4) + \frac{\lambda_1}{6} (\eta - 3 \eta^2 + 3 \eta^3 - \eta^4) \right] u_1 = \left[F(\eta) + \lambda_1 G(\eta) \right] u_1,$$

wobei

$$F(\eta) = 2\,\eta - 2\,\eta^3 + \eta^4,$$
 $G(\eta) = rac{1}{6}\,(\eta - 3\,\eta^2 + 3\,\eta^3 - \eta^4)$

ist. Ebenso

$$\overline{u} = \left[(2\,\eta - 2\,\eta^3 + \eta^4) + \frac{\lambda_3}{6} (\eta - 3\,\eta^2 + 3\,\eta^3 - \eta^4) \right] u_2 = \left[F(\eta) + \dot{\lambda_3} G(\eta) \right] u_2.$$

Wenn T_0 die Stautemperatur ist, so gelte $T_0 = \text{konst.}$ in und außerhalb der Grenzschicht. Für die turbulente Grenzschicht ist dies richtig und für die laminare sind die Abweichungen von $T_0 = \text{konst.}$ gering².

Wird keine Wärme zu- oder abgeführt, so gilt für einen Stromfaden

$$c^2 + \frac{\varkappa - 1}{2}u^2 = c_0^2,$$

wenn c_0 die Ruheschallgeschwindigkeit und c die örtliche Schallgeschwindigkeit bedeuten. Somit erhält man

$$\frac{c_0^2}{c^2} = 1 + \frac{\varkappa - 1}{2} \frac{u^2}{c^2}.$$

Nun ist aber $c^2 = \varkappa g R T$ und $\frac{u}{c} = M$, daher

$$\frac{T_0}{T} = 1 + \frac{\varkappa - 1}{2} M^2,$$

wobei M die örtliche Mach-Zahl ist. Da zwischen der örtlichen und der kritischen Mach-Zahl die Beziehung besteht

$$M^2 = \frac{x+1}{2} - \frac{M^{*2}}{2} \frac{1}{M^{*2}},$$

so hat man

$$\frac{T_0}{T} = 1 + \frac{\varkappa - 1}{2} M^2 = 1 + \frac{\varkappa - 1}{2} \cdot \frac{M^{*2}}{\frac{\varkappa + 1}{2} - \frac{\varkappa - 1}{2} M^{*2}},$$

$$rac{T_0}{T} = rac{rac{arkappa+1}{2}}{rac{arkappa+1}{2}-rac{arkappa-1}{2}M^{*2}} \quad ext{ und } \quad rac{1}{T} = rac{arkappa+1}{T_0\left[\left(arkappa+1
ight)-\left(arkappa-1
ight)M^{*2}
ight]}.$$

Nun läßt sich die Dichte ϱ nach der Gasgleichung bestimmen und man erhält

$$\varrho = \frac{p}{g\,R\,T} = \frac{p}{g\,R\,T_0} \cdot \frac{\varkappa + 1}{(\varkappa + 1) - (\varkappa - 1)}\,\underline{M^{*2}}.$$

² A. Busemann: Gasdynamik. Handbuch der Experimentalphysik von Wien-Harms, Bd. IV, 1. — E. Pohlhausen: Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z. angew. Math. Mechan. 1 (1921).

Nimmt man an, daß der Druck in und außerhalb der Grenzschicht konstant ist, so ist vor dem Stoß $p=p_1$ und nach dem Stoß $p=p_2$. Es ist daher

$$\varrho = \frac{p_1}{g \; R \; T_0} \frac{\varkappa + 1}{(\varkappa + 1) - (\varkappa - 1) \frac{u^2}{c^{*2}}} = \frac{p_1}{g \; R \; T_0} \frac{\varkappa + 1}{(\varkappa + 1) - (\varkappa - 1) \left(\frac{u}{u_1}\right)^2 M_1^{*2}}$$

und

$$\overline{\varrho} = \frac{p_2}{g\,R\,T_0} \frac{\varkappa + 1}{(\varkappa + 1) - (\varkappa - 1)\left(\frac{\overline{u}}{u_2}\right)^2 M_2^{\,*2}}.$$

Geht man nun mit diesen Werten von ϱ und $\overline{\varrho}$ in die Integrale hinein, so erhält man

$$\int\limits_0^1 rac{p_1}{g\,R\,T_0} \cdot rac{1}{1-rac{arkappa-1}{arkappa+1}\,M_1^{st 2}\,[F+\lambda_1\,G]^2} \cdot [F+\lambda_1\,G]^2\,u_1^2\,d\eta - \ -\int\limits_0^1 rac{p_2}{g\,R\,T_0} \cdot rac{1}{1-rac{arkappa-1}{arkappa+1}\,M_2^{st 2}\,[F+\lambda_3\,G]^2} \cdot [F+\lambda_3\,G]^2\,u_2^2\,d\eta = p_2-p_1.$$

Ferner

$$\begin{split} \frac{p_1 \, u_1^2}{g \, R \, T_0} \int\limits_0^1 \frac{[F + \lambda_1 \, G]^2}{1 - \frac{\varkappa - 1}{\varkappa + 1} \, M_1^{*2} \, [F + \lambda_1 \, G]^2} \, d\eta \, - \\ - \frac{p_2 \, u_2^2}{g \, R \, T_0} \int\limits_0^1 1 - \frac{[F + \lambda_3 \, G]^2}{\varkappa - 1} \, d\eta = p_2 - p_1 \end{split}$$

und

$$\begin{split} &\frac{p_1\,u_1^{\,2}}{p_2\,u_2^{\,2}}\int\limits_0^1 \frac{[F+\lambda_1\,G]^2}{1-\frac{\varkappa-1}{\varkappa+1}\,M_1^{\,*2}\,[F+\lambda_1\,G]^2}\,d\eta - \\ &-\int\limits_0^1 \frac{[F+\lambda_3\,G]^2}{1-\frac{\varkappa-1}{\varkappa+1}\,M_2^{\,*2}\,[F+\lambda_3\,G]^2}\,d\eta = \left[1-\frac{p_1}{p_2}\right]\frac{g\,R\,T_0}{u_2^{\,2}}. \end{split}$$

Ferner gelten folgende Formeln:

$$\begin{split} \frac{p_2}{p_1} &= \frac{(\varkappa + 1)}{(\varkappa + 1)} \frac{M_1^{*2} - (\varkappa - 1)}{(\varkappa - 1)M_1^{*2}}, \\ \frac{u_1^2}{u_2^2} &= \frac{c^{*4}}{u_2^4} = \frac{1}{M_2^{*4}} = M_1^{*4}, \quad M_1^* M_2^* = 1, \\ \frac{g \, R \, T_0}{u_2^2} &= \frac{c_0^2}{\varkappa \, u_2^2} = \frac{1}{\varkappa} \left(\frac{c_0}{c^*}\right)^2 M_1^{*2} = \frac{1}{\varkappa} \frac{\varkappa + 1}{2} \, M_1^{*2}. \end{split}$$

Es ist somit

$$\begin{split} \frac{p_1}{p_2} \cdot \frac{u_1^2}{u_2^2} &= \frac{(\varkappa + 1) - (\varkappa - 1)}{(\varkappa + 1)} \frac{M_1^{*2}}{M_1^{*2} - (\varkappa - 1)} \frac{M_1^{*4}}{M_1^{*4}} = \frac{6 - M_1^{*2}}{6 M_1^{*2} - 1} \frac{M_1^{*4}}{M_1^{*4}} \\ &= \frac{6 - M_1^{*2}}{6 M_1^{*2} - 1} \cdot M_1^{*4} \int\limits_0^1 \frac{1}{[F + \lambda_1 G]^2} \frac{1}{-\frac{M_1^{*2}}{6}} \, d\eta - \\ &= \frac{1}{6 M_1^{*2} - \frac{M_1^{*2}}{6}} \frac{1}{-\frac{M_1^{*2}}{6}} \frac{1}{-\frac{M_$$

und

$$-\int\limits_0^1 \frac{1}{[F+\lambda_3 G]^2} \frac{1}{-\frac{\overline{M_2}^{*2}}{6}} d\eta = \frac{7}{6} \frac{(M_1^{*2}}{M_1^{*2}} \frac{-1)}{1} \cdot \frac{6}{7} M_1^{*2}.$$

Setzt man

$$rac{1}{[F+\lambda_1G]^2}=A \quad ext{ und } \quad rac{1}{[F+\lambda_3G]^2}=B,$$

so hat man

$$\frac{(6-M_1^{*2})\ M_1^{*4}}{6\ M_1^{*2}-1}\int\limits_0^1\frac{1}{A-\frac{M_1^{*2}}{6}}\,d\eta-\int\limits_0^1\frac{1}{B-\frac{1}{6\ M_1^{*2}}}\,d\eta=\frac{6\ (M_1^{*2}-1)\ M_1^{*2}}{6\ M_1^{*2}-1}.$$

Zur weiteren Abkürzung sei noch

$$Z_1 = \frac{\left(6 - M_1^{*2}\right) \, M_1^{*4}}{6 \, M_1^{*2} - 1} \quad \text{ und } \quad Z_2 = \frac{6 \, (M_1^{*2} - 1) \, M_1^{*2}}{6 \, M_1^{*2} - 1}.$$

Es bleibt nun

$$Z_1 \int_{0}^{1} \frac{1}{A - \frac{M_1^{*2}}{6}} d\eta - \int_{0}^{1} \frac{1}{B - \frac{1}{6M_1^{*2}}} d\eta = Z_2.$$

Der Ausdruck $F + \lambda G$ wird mit λ größer und somit $\frac{1}{[F + \lambda G]^2}$ mit wachsendem λ kleiner. Man setzt nun für $\lambda_1 = +12$ und für $\lambda_3 = -12$ und findet für die A- bzw. B-Werte:

$$\lambda = +12$$
 η A $\lambda = -12$ η B 0 ∞ 0 ∞ 0.1 8.964 0.1 472.6 0.2 3.035 0.2 36.3 0.3 1.807 0.3 8.86 0.4 1.358 0.4 3.67 0.5 1.181 0.5 2.16 0.6 1.103 0.6 1.53 0.7 1.050 0.7 1.24 0.8 1.016 0.9 1.016 0.9 1.016 0.9 1.016

Es sei nun $M_1^{*2}=1$ 6. Im ersten Integral, das nach der Simpsonschen Regel ausgewertet werden soll, sei $\lambda=+12$. Im zweiten Integral sei $\lambda=-12$. Wenn

$$I_1 = \int\limits_0^1 \frac{1}{A - \frac{{M_1}^{*2}}{6}} \, d\eta \quad \text{ und } \quad I_2 = \int\limits_0^1 \frac{1}{B - \frac{1}{6\,{M_1}^{*2}}} \, d\eta,$$

so erhält man $I_1=0.895$ und $I_2=0.516$. Ferner ergibt sich $Z_1\,I_1=1.172$ und $I_2+Z_2=1.186$, somit

$$Z_1 I_1 < I_2 + Z_2$$
.

Nun sei $M_1^{*2}=1.5$. Dann erhält man auf die gleiche Weise $Z_1\,I_1>I_2+Z_2$. Will man im ersten Fall die Gleichheit herstellen, so muß man I_1 vergrößern, also auch λ . Das heißt auch bei einem Parameterwert, der in der stabilen Grenzschicht nicht auftritt, würde es zu einer Ablösung der Grenzschicht nach dem Stoß kommen. Im zweiten Fall müßte man I_1 und somit λ verkleinern, das heißt ein Parameterwert kleiner als +12 würde zu einer Ablösung führen. Aber $\lambda=+12$ muß noch keine Ablösung ergeben. Für $M_1^{*2}=1.5$ ist $M_1=1.291$.

(Eingegangen am 9. Juli 1957)

Buchbesprechungen

Physikalische Chemie als Einführung in die chemische Technik. Von O. Fuchs. (Grundlagen der chemischen Technik: Band 2.) Mit 98 Textabb., 496 S. Aarau und Frankfurt/Main: Verlag H. R. Sauerländer & Co. 1957. Geb. sfr. 37.—.

Im Hinblick auf die grundlegende Bedeutung, die der physikalischen Chemie sowohl in stofflicher wie auch in methodischer Hinsicht in der chemischen Technik und Verfahrenstechnik zukommt, ist ein Werk mit der Zielsetzung des vorliegenden Buches sehr zu begrüßen. Bei der erforderlichen Abgrenzung des Stoffes auf die wichtigsten Teilgebiete wurden vor allem der Darstellung der chemischen Gleichgewichtslehre und der chemischen Kinetik Rechnung getragen, wobei Phasengrenzflächen, Mischphasen, Reaktionen mit festen Phasen sowie elektrochemische Vorgänge eingehender besprochen werden.

Der überwiegende Teil des Inhaltes ist altbekannt, wenn auch auf gewissen Gebieten neuere Arbeiten berücksichtigt sind. In den ersten Kapiteln (Die chemischen Elemente, Praktische Stöchiometrie, Energetische Grundlagen), die zum Teil recht elementar und breit — wenigstens für die Chemiker — gehalten sind, kommt besonders zum Ausdruck, daß das Buch sich auch an den Ingenieur wendet. Ansonsten ist das Werk ähnlich wie ein Repetitorium einer Einführungsvorlesung über Physikalische Chemie, besitzt jedoch den erheblichen Vorteil, daß dem Leser vor allem die großen Zusammenhänge und grundlegenden Gesetzmäßigkeiten nahegebracht werden. Einschränkend muß man jedoch feststellen, daß Vorkenntnisse an Begriffen und Definitionen nötig sind, um das Buch mit Vorteil gebrauchen zu können, was sich schon daraus ergibt, daß auf die Begründung von Gesetzmäßigkeiten nicht eingegangen wird.

Für Studierende macht sich das Fehlen des didaktischen Momentes unangenehm bemerkbar. Es ist ein Mangel, wenn wichtige Begriffe, mit denen in dem Buch operiert wird, nicht mit den Namen bezeichnet werden, unter denen sie allgemein bekannt sind (z. B. Pauli-Prinzip, Halbwertszeit, Kirchhoffscher Satz); oder wenn Begriffe nicht genügend präzise (etwa Wärmekapazität — Molwärme — spezifische Wärme; oder in der Kinetik: Unterschied zwischen Molekularität und Ordnung) oder erst an späterer Stelle definiert werden, nachdem sie zuvor schon mehrfach verwendet werden. Die Verwendung des Diminutivzeichens "d" sowohl für exakte Differentiale wie auch für kleine Beträge von Arbeit oder Wärme ist nicht zweckmäßig. Auch sind manche Formulierungen nicht ganz geglückt bzw. unrichtig: z. B. S. 59 für die Energieäquivalente; S. 60 für die mit zunehmender Temperatur größer werdende Geschwindigkeit thermisch bewegter Teilchen; S. 94 für die Boyle-Temperatur; S. 351: statt Wasserstoff-Normalelektrode sollte es nur Wasserstoffelektrode heißen; auch die angeschriebene Reaktion macht CO₂ als Säure im Sinne Brönsteds nicht deutlich.

Als vorteilhaft darf hingegen hervorgehoben werden, daß am Ende der einzelnen Kapitel Literaturzusammenstellungen angegeben sind, die ein vertiefteres Studieren erleichtern. Bei den Zitaten im Text sollten immer die Namen der Autoren angegeben werden.

Die beispielsweise angeführten Mängel, die teils sicher auf das Einengen eines großen Stoffes auf kleinem Raum und die dadurch nötige Kürze zurückzuführen sind, beeinträchtigen den Wert des flüssig geschriebenen Buches kaum. Den größten Nutzen aus dem Werk werden vor allem Praktiker, sowohl Chemiker wie Ingenieure, ziehen.

Druck und Ausstattung sind ausgezeichnet.

H. Nowotny-A. Maschka, Wien

Particulate Clouds: Dusts, Smokes and Mists. Their physics and physical chemistry and industrial and environmental aspects. Von H. L. Green und W. R. Lane. Mit 123 Textabb., XIX, 436 S. London: E & F. N. Spon Ltd. 1957. £3.10s.0d.

Das ziemlich umfangreiche Werk ist eine ausführliche Zusammenstellung der auf verschiedenen Gebieten der Technik, Physik und Chemie in den letzten 30 Jahren entstandenen wissenschaftlichen Arbeiten über die Staubtechnik, welche die drei Hauptgebiete: Staub (dust), Rauch (smoke) und Neben (mist) umfassen. Das Buch ist in zwei Teile gegliedert: 1. Grundlagen der Physik und Physikalischen Chemie, 2. Behandlung des Problems vom industriellen Standpunkt. Die Grundlagen umfassen das Einzelverhalten von Staubteilchen bzw. einer Wolke in Gasen, physikalische und optische Eigenschaften von Staub, Rauch und Nebel, wobei der atmosphärische und der industriell entstandene getrennt behandelt wird. Ferner Staubabsetzung und Filterung (mechanische und elektrische). Im zweiten, praktischen Teil werden industrielle Erfahrungswerte, Meßverfahren zur Bestimmung der Teilchengröße besprochen und auch gesundheitliche Schädigungen. Nach jedem Abschnitt finden sich ausführliche Literaturangaben und am Schluß des Buches ein Autoren- und Sachverzeichnis. Dadurch wird das Buch besonders wertvoll für alle an den in neuerer Zeit immer mehr an Bedeutung gewinnenden Problemen der Staubtechnik interessierten Technikern.

Flächentragwerke. Einführung in die Elastostatik der Scheiben, Platten, Schalen und Faltwerke. Von K. Girkmann. Vierte, verbesserte und vermehrte Auflage. Mit 316 Textabb., XIX, 596 S. Wien: Springer-Verlag. 1956. Geb. S 396.—, DM 66.—, \$ 15.70, sfr. 67.60.

Das im Inland und Ausland bestens bekannte Werk liegt nunmehr bereits in der vierten Auflage vor. Gegenüber der vorangegangenen Auflage sind verschiedene Ergänzungen und Erweiterungen durchgeführt worden, die den Umfang des Werkes um etwa 30 Seiten vergrößerten. Die Zusätze finden sich in allen Abschnitten des Werkes und gewährleisten den Anschluß an den gegenwärtigen Stand der Forschung. Sie sollen im einzelnen nicht durchbesprochen werden.

Es erübrigt sich wohl, auf die Vorzüge dieses bekannten Standardwerkes genauer einzugehen, sie sind dem großen Leserkreis, der sich für die Statik der Flächentragwerke interessiert, wohlbekannt und dieses Werk wird sicher viele Jahre hindurch seine führende Position im Schrifttum behaupten.

G. Heinrich, Wien

Die Messung von Flammen- und Detonationsgeschwindigkeiten bei der explosiven Zersetzung von Azetylen in Rohren. Von P. Hölemann, R. Hasselmann und Grete Dix. (Forschungsberichte des Wirtschafts- und Verkehrsministeriums Nordrhein-Westfalen: Nr. 382.) Mit 7 Textabb., 26 S. Köln und Opladen: Westdeutscher Verlag. 1957. DM 8·10.

Im vorliegenden Forschungsbericht werden interessante Messungen mitgeteilt, wobei die Methode und die Versuchsanordnung sehr gut erdacht und zusammengestellt wurden. Da die Flammenfront leitend ist, kann man diese Eigenschaft dazu benützen, die Geschwindigkeit der Flamme zu bestimmen. Eilt nämlich die Flamme durch ein elektrisches Feld, so wird sich die Leitfähigkeit bemerkbar machen.

Die Verfasser haben es verstanden, nicht leicht zu machende Versuche in sehr geschickt erdachten Experimenten auszuführen und damit einen interessanten Beitrag auf diesem Gebiet zu leisten.

R. Bruniak, Wien

Analytische und konstruktive Differentialgeometrie. Von E. Kruppa. Mit 75 Textabb., VII, 191 S. Wien: Springer-Verlag. 1957. Geb. S 234—, DM 39—, \$ 9·30, sfr. 39·90.

Der Verfasser, gegenwärtig der hervorragendste Vertreter der international angesehenen "Wiener Schule" der Geometrie, die im Rahmen einer gediegenen Ausbildung von Lehramtsanwärtern für Darstellende Geometrie schon zahlreiche namhafte Mathematiker hervorgebracht hat, legt als Ernte einer dreißigjährigen Lehrtätigkeit an der Technischen Hochschule in Wien ein ausgezeichnetes, den Stempel seiner Persönlichkeit tragendes Lehrbuch der Differentialgeometrie im dreidimensionalen euklidischen Raum vor, das mathematische Strenge mit geometrischer Anschauung aufs glücklichste paart.

Die erste Hälfte des Buches legt unter Verwendung der Vektorrechnung das analytische Fundament und bringt den klassischen Bestand der Kurven- und Flächentheorie sowie die wesentlichen Tatsachen aus der Geometrie der ein-, zwei- und dreiparametrigen Strahlmannigfaltigkeiten, wobei besonders auf die vom Autor entwickelte Theorie der Regelflächen hingewiesen sei, die mit dem Sonderfall der Torsen auch die übliche Lehre von den Raumkurven umfaßt. Die zweite Hälfte des Werkes verhilft dann der anschaulichen Seite zu ihrem Recht, und zwar durch Betonung der im erweiterten Sinne des Verfassers zu verstehenden "konstruktiven" Betrachtungsweise, die nicht bloß auf dem Zeichenbrett, sondern auch unmittelbar im Raum operiert; hier finden natürlich auch alle mit der Darstellung von geometrischen Gebilden verknüpften differentialgeometrischen Fragen ihre Behandlung, überdies wird auf manche wichtigen speziellen Kurven und Flächen eingegangen. Hervorzuheben wäre noch das der Kinematik gewidmete Schlußkapitel, in dem der Verfasser — wie an vielen anderen Stellen — durchaus eigene Wege geht. Überall liegt ihm die Vermeidung des unzulässigen Jonglierens mit dem "unendlich Kleinen" am Herzen, an dessen Stelle saubere Begriffsbildungen und strenge Grenzübergänge zu treten haben.

Das gehaltvolle, äußerst klar geschriebene und mit zahlreichen Figuren geschmückte Werk ist als Lern- wie als Handbuch gleichermaßen geeignet und wird sich einen bleibenden Platz in der einschlägigen Literatur erobern.

W. Wunderlich, Wien

Die Mikrophotographie

Von

Dr. Kurt Michel

Aalen/Württemberg

Mit 550 teils farbigen Textabbildungen. XXXII, 740 Seiten. Gr.-8°. 1957 (Die wissenschaftliche und angewandte Photographie, Band X)

Ganzleinen S 840.—, DM 140.—, sfr. 143.40, \$33.30

Das Mikroskop ist schon lange nicht mehr nur das Handwerkszeug einer kleinen Gruppe von Forschern. Es ist heute in praktisch jedem Laboratorium ein unentbehrliches Hilfsmittel und in sehr vielen Fällen spielt es auch bereits in der industriellen Fertigung eine wichtige Rolle. Zum Festhalten der Beobachtungsergebnisse bedient man sich in der Regel der photographischen Verfahren. Die Kombination von Mikroskopie und Photographie, die Mikrophotographie, hat sich zu einer wichtigen Technik entwickelt, und es wurde schon lange als schwerwiegender Mangel empfunden, daß seit beinahe 20 Jahren eine zusammenfassende systematische Darstellung dieses Gebietes in deutscher Sprache fehlt. Im vorliegenden Band unternimmt es ein seit langem bekannter Fachmann, der als Leiter der Abteilung für Mikroskopie der Firma Carl Zeiss mit den Geräten besonders vertraut ist, eine solche, den neuesten Stand berücksichtigende Darstellung zu geben. Der Band gliedert sich in drei Teile. Im ersten wird ein konzentrierter Überblick über die theoretischen Grundlagen der Mikroskopie und Mikrophotographie gegeben, ohne deren Kenntnis eine Beherrschung der Praxis immer Stückwerk bleiben muß. Der zweite Teil behandelt die Geräte und der dritte schließlich die mikrophotographischen Methoden. Die Ausführungen werden durch eine große Zahl zum überwiegenden Teil für das Buch eigens neu angefertigter Abbildungen erläutert.

Induktionsmaschinen. Von Dr.-Ing. W. Schuisky, Konsultierender Ingenieur bei der Allmänna Svenska Elektriska Aktiebolaget (ASEA) in Västeras, Schweden. Mit 370 Textabbildungen. XII, 501 Seiten. Gr.-8°. 1957. Ganzleinen S 534.—, DM 89.—, sfr. 91.10, \$ 21.20

Galvanotechnik. Von Dr. phil. Jean Billiter, emer. a. o. Professor an der Universität Wien. Zweite, neubearbeitete und erweiterte Auflage. Mit 154 Textabbildungen. VIII, 441 Seiten. Gr.-8°. 1957. Ganzleinen S 396.—. DM 66.—, sfr. 67.60, \$ 15.70

Wirtschaftslehre des Bergbaues. Von Dr. rer. pol. Dipl. Ing. Paul Ippen, früher Leiter der Obersten Bergbehörde in Wien. Mit 33 Textabbildungen. VII, 229 Seiten. Gr.-8°. 1957.
Ganzleinen S 144.—, DM 24.—, sfr. 24.60, \$ 5.70

Vom Gesetzesstaat zum Richterstaat. Recht als Maß der Macht. – Gedanken über den demokratischen Rechts- und Sozialstaat. Von René Marcic. XV, 548 Seiten. Gr.-8°. 1957.

Ganzleinen S 288.—, DM 48.—, sfr. 49.10, \$ 11.45

Das Wahrheitsproblem und die Idee der Semantik. Eine Einführung in die Theorien von A. Tarski und R. Carnap. Von Wolfgang Stegmüller, Tit. a. o. Professor an der Universität Innsbruck. X, 328 Seiten. Gr.-8°. 1957. Ganzleinen S 198.—, DM 33.—, sfr. 33.80, \$7.85

Soeben erschien das erste Lehr- und Nachschlagebuch über Atomreaktoren in deutscher Sprache

Physik und Technik der Atomreaktoren

Von

Ferdinand Cap

Tit. ao. Professor an der Universität Innsbruck

Mit 100 Textabbildungen. XXIX, 487 Seiten. Gr.-8°. 1957 Ganzleinen S 384.—, DM 64.—, sfr. 65.50, \$15.25

Seit der Genfer Atomkonferenz ist das Interesse für Atomreaktoren in Kreisen der Wissenschaft und Industrie sehr stark angewachsen. Gleichzeitig wird es jedoch immer schwieriger, aus der Flut von Einzelarbeiten und aus den spärlichen Buchveröffentlichungen, die bisher in Amerika erschienen sind, ein abgerundetes Bild über Theorie, Physik und Technik der Atomreaktoren zu bekommen. Professor Cap, der wohl als einer der ersten in Europa schon im Studienjahr 1950/51 an der Universität Innsbruck Vorlesungen über Reaktorphysik gehalten hat und der in verschiedenen Reaktorzentren Europas Erfahrungen sammeln konnte, gibt mit diesem Lehrbuch, dem ersten seiner Art in deutscher Sprache, einen Überblick über den derzeitigen Stand des theoretischen, experimentellen und technischen Wissens über Atomreaktoren. Ausgehend von den kernphysikalischen Grundlagen, behandelt der Verfasser Theorie, Bau, Betrieb und Sicherheit solcher Anlagen. Ein besonderer Abschnitt bringt in übersichtlicher Darstellung eine eingehende Beschreibung der bisher entwickelten Reaktortypen. Daran schließen sich Kapitel über die Anwendung der Reaktoren, über Strahlungsschutzrecht, Organisationsfragen und Atom-Völkerrecht. Die wissenschaftliche Literatur konnte bis zum Ende des Jahres 1956 berücksichtigt werden.

Das Buch, das nicht nur als Lehrbuch, sondern auch als Handbuch und Nachschlagewerk gedacht ist, verfügt über ein sehr

Das Buch, das nicht nur als Lehrbuch, sondern auch als Handbuch und Nachschlagewerk gedacht ist, verfügt über ein sehr ausführliches Literatur- und Sachwortverzeichnis (deutsch-englisch) und gibt über alle wichtigen, bisher bekannten kernphysikalischen Daten Auskunft.

Soeben erschien:

Die Isolierstoffe der Elektrotechnik

Von

Dr. techn. Wilhelm Oburger

Dipl.-Ing., Zivilingenieur für Elektrotechnik, Wien

Mit 356 Textabbildungen und 3 Ausschlagtafeln. VII, 542 Seiten. Gr.-8°. 1957 Ganzleinen S 660.—, DM 110.—, sfr. 112.60, \$26.20

Durch ihre von den metallischen Baustoffen verschiedenen Eigenschaften begrenzen die elektrischen Isolierstoffe die Ausnützbarkeit elektrischer Maschinen und Geräte. Die Kenntnis der elektrischen, thermischen, mechanischen und chemischen Eigenschaften, ihrer Abhängigkeit von verschiedenen Parametern und ihrer Auswirkung sind für den richtigen Einsatz der Isolierstoffe von großer Bedeutung.

Der Verfasser hat sich bemüht, nach einer kurzen Darstellung des Aufbaues eine Übersicht über die erwähnten Eigenschaften zu geben und anschließend die gastörmigen, flüssigen und festen Isolierstoffe sowie die Lacke mit ihren charakteristischen Merkmalen und Eigenschaften, Verarbeitungsweisen und Verwendungsmöglichkeiten zu besprechen. Bei den festen Isolierstoffen ist ein Kapitel jenen auf der Basis von Naturprodukten, ein weiteres den Kunststoffen gewidmet. Die Schilderung der Herstellung aller Arten von Spulen schließt das Buch ab.

Da Isolierstoffe praktisch in allen elektrischen Einrichtungen vorkommen, wendet sich das Buch an den Elektromaschinen-

Da Isolierstoffe praktisch in allen elektrischen Einrichtungen vorkommen, wendet sich das Buch an den Elektromaschinenund Transformatorenbauer ebenso wie an den Konstrukteur von Hoch- und Niederspannungsschaltgeräten und Stark- und Schwachstromapparaten, zum Teil auch an den Hochfrequenztechniker.

Die Zusammenfassung aller Daten in zahlreichen übersichtlichen Tabellen, eine große Anzahl von Abbildungen, die auch in die Isolierstoffherstellung und -anwendung Einblick gewähren, ein umfangreiches Literaturverzeichnis und ein nach allgemeinen und Werkstoffbegriffen geteiltes Stichwortverzeichnis dienen der weiteren Unterrichtung des Lesers und ermöglichen ihm, rasch eine ausreichende Information über bestimmte oder seinen Zwecken entsprechende Isolierstoffe zu erhalten.