	TEOREMI	SULLE	FUNTIONI	CONTINUE	
DE FINIZI	ONE				
Data f	: A → R , ni	dice MASS	SIHO DI f il	massimo dell'i	mieme immozine di
			funcione	assine dei m	
Sidie				ieme immogin	
	min f = min	. (im f)	=> ž il mi	none dei volon	i che le f. assume
Si dice					n element × EA
tale che	f(xo)	_ max f			
				ASSOLUTO) Mu	elements × 6 E A
tale che		min f		,	
	M			M=moxf	×z = pento di massi
			/ y= f(x)	m = min of	X1= pents di minis
	m			/MU = /MUNU A	72 7000 00 7770000
		×	× ₂		
	J	1	2		

TEOREMA

Teorema di Weierstrass

Se f è una funzione continua in un intervallo chiuso e limitato [a; b], allora essa assume, in tale intervallo, il massimo assoluto e il minimo assoluto.

Se cadons le épéten de continuité o de dominis entervols cliens e limitats, la ten del terrens pur enere folso:

2) f NON DEFINITA W [a, b] (chius limitats) ma antima

$$f(a)$$
 $f: [a, +\infty) \rightarrow \mathbb{R}$ he marries

TEOREMA

Teorema dei valori intermedi

Se f è una funzione continua in un intervallo chiuso e limitato [a; b], allora essa assume, almeno una volta, tutti i valori compresi tra il massimo e il minimo.

(L'innème immagine è un intervolle)

TEOREMA

Teorema di esistenza degli zeri

Se f è una funzione continua in un intervallo chiuso e limitato [a; b] e negli estremi di tale intervallo assume valori di segno opposto, allora esiste almeno un punto $c \in]a; b[$ in cui f si annulla, ossia f(c) = 0.

Dimotrore che l'equatione ha almens una solusione nell'intervals $x^3 - e^{-x} = 0$, in [0; 2].

APPLICO IL TEOREMA DEGLI ZERI:

- Controls che f sia continua definita in [a,b] e che f(a) ed f(b) abbians segni appri

f:[0,2] -> R f(x) = x3-e = continuo (somme e composione de femisioni continue)

f(0)=0-20=-1<0
TH.2521

 $f(2) = 2^3 - e^{-2} = 8 - \frac{1}{e^2} > 0$ = 2

quindi c'é solusione dell'aquatione