

phytron

Extreme Environment Stepper Motors

Environments

Phytron offers different categories of extreme environment stepper motors:

VSS-FV, VSH-FV

Fine Vacuum to 10⁻³ hPa (10⁻³ mbar) Temperature range –20 °C to 150 °C Radiation resistance 10 J/kg

VSS-HV, VSH-HV

High Vacuum to 10⁻⁷ hPa (10⁻⁷ mbar) Temperature range –20 °C to 200 °C Radiation resistance 10² J/kg

VSS-UHV, VSH-UHV

Ultra High Vacuum to 10⁻¹¹ hPa (10⁻¹¹ mbar) Temperature range –20 °C to 300 °C Radiation resistance 10⁶ J/kg

VSS-UHVC, VSH-UHVC Cryo

Ultra High Vacuum to 10⁻¹¹ hPa (10⁻¹¹ mbar) Temperature range –270 °C to 40 °C Radiation resistance 10⁶ J/kg

VSS-Space, VSH-Space

High shock and vibration loads

Customized design

Modified versions of the type VSS/VSH stepper motors:

Climatic applications

Reduced magnetic emission

Aggressive environment operation

Clean room applications to clean room class 100

Preparing the VSS/VSH Stepper Motors

The VSS/VSH series of Phytron stepper motors are designed to be used inside vacuum chambers. This eliminates the use of motion feed throughs that generate particulates.

Since the stepper motor is relatively simple in design, it can be adapted to operate in extreme physical environments with a few modifications. Under normal conditions, only the bearings are subject to wear.

For extreme environment applications, special windings, bearings and lubricants are used, as well as special insulating material and special adhesive.

To accomodate most extreme environmental conditions, Phytron VSS/VSH stepper motors are provided in different grades. Each grade covers a vacuum rating, a temperature range and a radiation level.

Assembly, cleaning and conditioning of the Phytron VSS/VSH stepper motors results in a low outgassing rate which makes Phytron the reliable choice for all the extreme environment applications.

Optional

Double shaft

VGPL low backlash gear

KTC thermocouple to monitor winding temperature in the range of –40 °C to 300 °C

Pt100 resistor sensor to monitor winding temperature in the range of –200 °C to +300 °C

Couplings

Customized constructions

Motors with spindle

Motors with hollow shaft etc.

Technical Information

- Two-phase stepper motors
- Holding torque from 3.4 mNm to 9.9 Nm
- Diameters from 19 to 125 mm
- Standard number of steps 200
 Optional 72, 500
- Step accuracy 3% for 1.8° stepper motor and 5% for 0.72° stepper motor
- Design voltage size 19 to 57: 42 V_{DC} size 65 to 125: 200 V_{DC}
- Protection class
 IP 00 for vacuum version
 IP 40 for temperature and radiation version (not for vacuum applications)
- Standard number of leads: 4 optional 5, 6 or 8
- Outgassing holes to avoid pockets of trapped gas

VSS 1	19 – 57	Dimensions in mm														
Size	Туре	Α	B1	D	Е	F1	F2	G1 ¹⁾	G2 ¹⁾	K	L	М	N			
19	VSS 19	19	26.5	1	2	7.5	6.5	2.5	2.5	19	10	16	M2.5			
25	VSS 25	25	31	1	2.5	9.5	8.5	3	3	25	14	21.5	2.2			
32	VSS 32	32	38.5	1	3	11	10	4	4	32	18	27	2.8			
32	VSS 33	32	57.5	1	3	11	10	4	4	32	18	27	2.8			
42	VSS 42	42	54	1	3	16	15	5	4	42	22	36	3.2			
42	VSS 43	42	69	1	3	16	15	5	4	42	22	36	3.2			
52	VSS 52	52	65	1.5	3.5	17.5	16	6	4	52	28	44	4.3			
56	VSS 57	56.4	73.5	1.5	4.5	22	20.5	6.35	6.35	60	38.1	47.15	5.2			

 $^{^{1)}\}mbox{Shaft}$ diameter tolerances: VSS 19 to 26: -0.005 to -0.009, from VSS 32: g5

	Electrical Characteristics											Mechanical Characteristics							
Size	Standard Part 200 steps/rev.	Para	llel Windin (4 leads)	gs ⁶⁾	Series Windings (4 leads)			Unipolar Connection (5 or 6 leads)			4) 5)	5)		Lo	ads				
o,	200 0.000.	1) I/Ph	2) R/Ph	3) L/Ph	1) I/Ph	2) R/Ph	3) L/Ph	1) I/Ph	2) R/Ph	3) L/Ph	Holding Torque	Detent Torque	Rotor Inertia	radial	axial	Mass			
		Α	Ω	mH	Α	Ω	mH	Α	Ω	mH	mNm	mNm	kg cm²	Ν	N	kg			
19	VSS 19.200.0.3 VSS 19.200.0.6 VSS 19.200.1.2	0.3 0.6 1.2	6 2.1 0.625	2.2 0.55 0.15	0.15 0.3 0.6	24 8.4 2.5	8.8 2.2 0.6	0.21 0.42 0.84	12 4.2 1.25	2.2 0.55 0.15	3.4	0.9	0.0009	3	3	0.05			
25	VSS 25.200.0.3 VSS 25.200.0.6 VSS 25.200.1.2	0.3 0.6 1.2	12 3.25 0.95	6 1.5 0.4	0.15 0.3 0.6	48 13 3.8	24 6 1.6	0.21 0.42 0.84	24 6.5 1.9	6 1.5 0.4	12	2	0.002	5	5	0.08			
32	VSS 32.200.0.6 VSS 32.200.1.2 VSS 32.200.2.5	0.6 1.2 2.5	4.65 1.3 0.3	5.3 1.2 0.3	0.3 0.6 1.25	18.6 5.2 1.2	21.2 4.8 1.2	0.42 0.84 1.75	9.3 2.6 0.6	5.3 1.2 0.3	45	3	0.01	5	15	0.17			
32	VSS 33.200.0.6 VSS 33.200.1.2 VSS 33.200.2.5	0.6 1.2 2.5	7.5 1.75 0.47	9.3 2.2 0.6	0.3 0.6 1.25	30 7 1.88	37.2 8.8 2.4	0.42 0.84 1.75	15 3.5 0.94	9.3 2.2 0.6	68	3.3	0.018	5	15	0.39			
42	VSS 42.200.0.6 VSS 42.200.1.2 VSS 42.200.2.5	0.6 1.2 2.5	7.25 1.6 0.35	11 3 0.7	0.3 0.6 1.25	29 6.4 1.4	44 12 2.8	0.42 0.84 1.75	14.5 3.2 0.7	11 3 0.7	130	5	0.045	20	40	0.35			
42	VSS 43 .200.0.6 VSS 43.200.1.2 VSS 43.200.2.5	0.6 1.2 2.5	9.5 2.6 0.5	22.9 5.2 1.2	0.3 0.6 1.25	38 10.4 2	91.6 20.8 4.8	0.42 0.84 1.75	19 5.2 1	22.9 5.2 1.2	235	7	0.077	20	40	0.52			
52	VSS 52.200.1.2 VSS 52.200.2.5 VSS 52.200.5	1.2 2.5 5	2.65 0.6 0.165	7 1.6 0.4	0.6 1.25 2.5	10.6 2.4 0.66	28 6.4 1.6	0.84 1.75 3.5	5.3 1.2 0.33	7 1.6 0.4	405	13	0.15	25	70	0.72			
56	VSS 57.200.1.2 VSS 57.200.2.5 VSS 57.200.5.0	1.2 2.5 5	3.9 0.8 0.25	9.5 2.4 0.8	0.6 1.25 2.5	15.6 3.2 1	38 9.6 3.2	0.84 1.75 3.5	7.8 1.6 0.5	9.5 2.4 0.8	630	50	0.24	40	80	0.99			

1) I/Ph: Phase current

2) R/Ph: Phase resistance3) L/Ph: Phase inductance

4) Holding torque in bipolar mode with parallel windings, 2 phases ON at rated current

5) 7 mNm ~ 1 inoz

6) Standard wiring at delivery (if no wiring mode was given in the order)

Design voltage 42 V_{DC} (operation with SELV type supply)

Bold letters = Preferred types

Important:

All values given above were measured at room temperature of 25 °C (77 °F) and atmospheric pressure.

			Dimensions in mm													Mass (motor + gear)					
					1	2	3												1	2	3
Stepper				stages										stages							
Gear	Motor	Α	A'	B'		0		Р	Q	R	S	Т	U	V	W	Χ	Υ	Z		kg	
VGPL 22	VSS 19	19	22	29	50	57	64	3	4.5	15	22	12	4	16	2.5x4		1		0.1	0.13	0.15
VOI L ZZ	VSS 25	25	25.5	33.5	53.5	60.5	67.5	3	5	10	22	12		10	M 2		'		0.13	0.15	0.18
VGPL 32	VSS 32	32	33	40.5	69.5	78.5	87.5	4	5	5 20	32	20	6	26	M 3x5		1		0.31	0.35	0.42
VGFL 32	VSS 33	32	33	59.5	88.5	97.5	106.5	4	3 20	20	20 32	20	U	20	Σ		'	-	0.53	0.57	0.64
VGPL 42	VSS 42	42	43	58	93	105.5	118	4	7	22.5	42	2 25	8	32	M 4x8	3x3x14	1	2.25	0.63	0.7	8.0
VOI L 42	VSS 43	42	43	73	108	120.5	133	7	'	22.5	42	23	U	32	Σ		'	2.25	0.8	0.85	0.93
VGPL 52	VSS 52	52	53	68.5	109.5	124	138.5	4	6.7	24	52	32	12	40	M 5x8	4x4x16	1	2	1.2	1.4	1.5
VOI-L JZ	VSSN 57	56.4	57	78	119	133.5	148	7 24 3	JZ	32 32		40	Σ	4×4	'		1.4	1.5	1.6		

Mechanical Characteristics

Gear Stepper Motor		Stages	Gear 1) backlash	Max. torque Gear inertia		Radial load	Axial load	Efficiency	Reduction ratio							
	WOO		arc-min	Nm	kg cm²	N	N	%								
VGPL 22	VSS 19 VSS 25	1 2 3	20' 35' 50'	0.1 0.5 1.5	0.005 0.015 0.025	30	24	94 85 80	4:1 16:1 64:1	5:1 20:1 80:1	7:1 28:1 112:1	35:1 140:1	49:1 196:1			
VGPL 32	VSS 32 VSS 33	1 2 3	6' 12' 18'	0.4 2 6	0.025 0.04 0.06	80	65	94 85 80	4:1 16:1 72:1	4.5:1 18:1 100:1	5.2:1 25:1 130:1	6.25:1 32:1 200:1	8:1 50:1 256:1			
VGPL 42	VSS 42 VSS 43	1 2 3	6' 12' 18'	0.7 4 12	0.05 0.08 0.12	150	120	94 85 80	4:1 14:1 56:1	5:1 16:1 80:1	6:1 20:1 100:1	120:1	184:1			
VGPL 52	VSS 52 VSSN 57	1 2 3	6' 12' 18'	1.5 10 30	0.1 0.2 0.25	250	200	94 85 80	4:1 16:1 72:1	4.5:1 25:1 100:1	5.2:1 29:1 130:1	6.25:1 36:1 200:1	8:1 50:1 256:1			

¹⁾ no load

²⁾ center of shaft

VSH 65 – 125 / Large Stepper Motors for Extreme Environments

VSH Stepper Motors

- Large stepper motors for extreme environments
- Available for FV, HV, UHV and UHVC vacuum classes
- Diameter 65 to 125 mm (2.56" to 4.92")
- Standard step angle 1.8° (200 steps/rev.)
- Standard 4-leads motor, parallel windings
- Holding torques of 0.86 Nm (123 in-oz) to 9.9 Nm (1410 in-oz)
- Design voltage 200 V_{DC} for operation with safe/double separation to mains

VSH	65 – 125								Dimen	sions	in mn	n						
Size	Type	Α	B1		D	Е	F1	F2	G1	G2	Н	- 1	J	K	L	М		N
65	VSH 65	65	81		1.5	5.5	23.5	22	8	7	2	3	14	65	40	55	i	5.2
80	VSH 80	80	100)	2	7.5	27	25	10	9	3	2.5	20	80	50	68	3	6.4
100	VSH 100	100	125	.5	2	8	32	30	12	12	4	3	22	100	60	86	5	6.4
125	VSH 125	125	156	3	3	9.5	34	31	14	14	5	3.5	22	125	60	108	8	8.4
		Electrical Characteristics Mechanical Characteristics																
		Licourcal Offaracteristics Mechanical Offaracteristics																
	Type		C	Coil 1				Coil 2		Coil 3			4) 5)	5)		Lo	ads	
		I/P	1) Ph	R/F	2) Ph	3) L/Ph	1) I/Ph	2) R/Ph	3) L/Ph	1) I/Ph	2) R/Ph	3) L/Ph	Holding torque	Detent torque	Rotor inertia	axial	radial	Mass
		А		Ω	2	mΗ	Α	Ω	mΗ	Α	Ω	mH	Nm	Nm	kg cm²	Ν	Ν	kg
65	VSH 65	1	2	4.	.3	16.1	2.5	1.05	4	5	0.29	1.1	0.86	0.05	0.41	40	120	1.4
80	VSH 80	5	i	0.	4	2.3	7.5	0.2	2	10	0.1	0.9	2	0.12	1.24	50	180	2.8
100	VSH 100	7.	5	0.	.3	6.5	10	0.15	2.1	15	0.08	8.0	4.3	0.14	4.4	70	300	4.5
125	VSH 125	7.	5	0.	4	6	10	0.23	3	15	0.1	1.9	9.9	0.25	11.4	150	700	9.4

- 1) I/Ph: Phase current in the bipolar mode
- 2) R/Ph: Phase resistance
- 3) L/Ph: Phase inductance
- 4) Holding torque in bipolar mode with parallel windings, 2 phases ON at rated current
- 5) 7 mNm **~** 1 inoz

Bold letters = Preferred types, standard coil

Important:

All values given above were measured at room temperature of 25 °C (77 °F) and atmospheric pressure.

Torque Characteristics (T)

The curves correspond to the limit values of the drive torque as a function of the control pulses, for a motor voltage V.

The curves were plotted using a bipolar stepper motor driver in the half step mode.

Power Characteristics (P)

For each motor, the power at the motor shaft is plotted as a function of the frequency.

7 mNm ~ 1 oz-in

VSH 65 – 125 / Torque and Power Characteristics

Torque Characteristics (T)

The curves correspond to the limit values of the drive torque as a function of the control pulses, for a motor voltage V.

The curves were plotted using a bipolar stepper motor driver in the half step mode.

Power Characteristics (P)

For each motor, the power at the motor shaft is plotted as a function of the frequency.

7 mNm ~ 1 oz-in

Electrical Connection

Rated Current

The motor rating plate has the rated phase current [A] as the last digits of the motor's type number.

Example: VSS 32.200.1,2

Motor type: VSS 32 Number of steps: 200 Rated current: 1.2 A

The **rated current** is defined as the phase current at full step operation, at bipolar control mode, with parallel connected windings (standard).

According to the connection mode, the motor windings receive different currents.

Therefore, for identical power dissipation in the motor, the **allowable phase current** is determined by the connection mode (see table below).

At half-step or mini-step operation of the control unit, the rated current is the r.m.s. value. The current tables in Phytron's power stage manuals show r.m.s. values.

Ordering Information

Allowable Phase Currents for Identical Power Dissipation											
Bipolar cor Full step		Unipolar control mode Full step operation									
4-lead motor parallel windings	4-lead motor series windings	5-lead motor	6-lead motor								
rated current	50 % of rated current	70.7 % of rated current	70.7 % of rated current								