UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 2. stopnja

Žan Kastelic Random walks

Matematika z računalnikm

Mentor: prof. dr. Sergio Cabello Justo Somentor: asist. Gašper Domen Romih

1. Opis in programsko okolje

Pogledali si bomo naključne sprehode na premici, ravnini in prostoru ter različnih družinah grafov z nekaterimi parametri (d-dimenzionalna mreža, neskončna d-pravilna drevesa, 2-pravilna drevesa višine d, d-dimenzionalna hiperkocka itd.). S simulacijo naključnih sprehodov se bomo sprehajali po takšnih objektih: simulirali bomo čas pokrivanja, čas zadetkov za ralična oglišča, število obiskov oglišč, itd.

Za simulacije in izračune bom uporabil programsko okolje R.

2. Naključni sprehodi

Naj bo X slučajna spremenljivka porazdeljena kot

$$(1) X_t \sim \begin{pmatrix} -1 & 1\\ 1-p & p \end{pmatrix}$$

za $t=1,2,\ldots$, kjer je $p\in[0,1]$. Če je $p=\frac{1}{2}$, pravimo, da je naključni sprehod simetričen. Naključni sprehod sledi kumulativni vsoti teh naključnih spremevljivk, kar lahko zapišemo kot

$$(2) S_t = \sum_{k=1}^t X_k,$$

kjer je

$$S_0 = 0.$$

Poglejmo si najprej naključen sprehod po celih številih. Iz verjetnosti vemo, da naključni sprehod spada med markovske procese. Naj bosta $a, b > 0, a, b \in \mathbb{N}$. Naj bo b zgornja meja, -a pa spodnja meja. Potem velja:

(3)
$$P(S_t = b) = \begin{cases} \frac{a}{a+b} & \text{\'e je } p = \frac{1}{2}, \\ \frac{1-(\frac{q}{p})^a}{1-(\frac{q}{n})^{a+b}} & \text{\'e je } p \neq \frac{1}{2}. \end{cases}$$

oziroma

(4)
$$P(S_t = -a) = \begin{cases} \frac{b}{a+b} & \text{\'e je } p = \frac{1}{2}, \\ \frac{1-(\frac{q}{p})^b}{1-(\frac{q}{p})^{a+b}} & \text{\'e je } p \neq \frac{1}{2}. \end{cases}$$

2.1. Simetrični naključni sprehodi. Poglejmo si najprej eno simulacijo simetričnega naključnega sprehoda, torej $p = \frac{1}{2}$. Da lahko dodamo še časovno komponento zarotirajmo os tako, da bo na abcisni osi čas, na ordinatni pa vrednost slučajnega sprehoda. Za spodnjo mejo si izberemo -5, za zgornjo pa 5.

S slike 1 razberemo, da smo prej dosegli spodnjo mejo in da smo za to potrebovali 40 korakov. Simulirajmo sedaj 10.000 sprehodov z zgornjo mejo 25 in spodnjo mejo -25.

Zaradi velikega števila sprehodov so na sliki 2 sprehodi obarvani. Sprehodi, ki dosežejo zgornjo mejo, so obarvani z modro, ostali pa z oranžno. Simulacije sprehodov se med seboj razlikujejo tudi po svetlosti - tisti bolj temni prej dosežejo mejo, kot svetlejši.

Poglejmo si verjetnost, da prej dosežemo zgornjo mejo - preverimo torej, če drži formula (3).

S pomočjo slike 3 se lahko prepričamo, da zgornja formula (3) drži. Če je $p=\frac{1}{2}, -a=-25, b=25$ je verjetnost enaka 0.5. Simulirana vrednost pa znaša 0.5063.

Poglejmo si še primer, ko sta a in b različna. Naj bo -a = -17 in b = 24.

Random walk

Slika 1. Simetrični naključni sprehod.

Random walks

SLIKA 2. 10.000 naključnih simetričnih sprehodov.

S slike 4 opazimo, da je spodnja meja dosežena večkrat kot zgornja. To je povsem smiselno, saj je manj oddaljena od izhodišča. Formula nam pove (3), da je verjetnost, da prej dosežemo zgornjo mejo enaka $\frac{17}{17+24}=\frac{17}{41}\approx 0.4146341$. Simulirana vrednost znaša 0.4223, kar nam prikazuje slika 5.

2.2. Nesimetrični naključni sprehodi. Sem spadajo vsi naključni sprehodi katerih p je različen od $\frac{1}{2}$.

Poglejmo si simulacijo 10.000 naključnih sprehodov, kjer je $p=\frac{3}{4}$. Za spodnjo mejo vzemimo -4, za zgornjo pa 36.

Slika 3. Verjetnost, da prej dosežemo zgornjo mejo.

SLIKA 4. 10.000 naključnih sprehodov.

V konkretnem primeru je bila zgornja meja dosežena kar 9875-krat. Kolikokrat in v koliko korakih je bila meja dosežena, si bomo pogledali v naslednjem razdelku. Poglejmo si še verjetnost, da pri danem p-ju prej dosežemo zgornjo mejo. Formula 3 nam da

$$\frac{1 - (\frac{q}{p})^a}{1 - (\frac{q}{p})^{a+b}} = \frac{1 - (\frac{0.25}{0.75})^4}{1 - (\frac{0.25}{0.75})^{4+36}} = \frac{80}{81} \approx 0.98765.$$

S pomočjo simulacije dobimo 0.9875 kar je zelo dober približek.

SLIKA 5. Verjetnost, da prej dosežemo zgornjo mejo.

Random walks

SLIKA 6. 10.000 nesimetričnih naključnih sprehodov.

3. PRIČAKOVANO ŠTEVILO KORAKOV ZADETJA MEJE

3.1. Simetrični sprehod. Naj bo $T=T_{-a}\wedge T_b$ čas ustavljanja, kjer sta $T_{-a}=\inf\{t\geq 0|S_t=-a\}$ oziroma $T_b=\inf\{t\geq 0|S_t=b\}$. Koliko korakov bomo naredili v povprečju, preden zadanemo a oziroma b? S predavanj pri predmetih Verjetnost 2 in Finančna matematika vemo, da velja

$$E(T) = a \cdot b.$$

Slika 7. Verjetnost, da prej dosežemo zgornjo mejo.

Če se spomnimo primera, kjer je bila spodnja meja -25 in zgornja meja tudi 25, je torej E(T)=625. S pomomčjo simulacije dobimo 625.328.

število korakov: 10.000	Pričakovano št. korakov	Št. korakov v simulaciji
a = -5, b = 5	25	25.0814
a = -10, b = 10	100	100.1404
a = -7, b = 18	126	126.2341
a = -20, b = 17	340	340.3122
a = -25, b = 25	625	625.328

TABELA 1. Tabela simulacij pričakovanih vrednosti.

Iz tabele 2 je razvidno, da simulacije podajo kar dober približek.

3.2. Nesimetrični sprehod.

število korakov: 10.000	Pričakovano št.	Št. korakov
p = 0.61	korakov	v simulaciji
a = -5, b = 5	??	18.1628
a = -10, b = 10	??	44.9518
a = -7, b = 18	??	76.9416
a = -20, b = 17	??	77.1638
a = -25, b = 25	??	113.7568
a = -5, b = 25	??	98.8776

TABELA 2. Tabela simulacij pričakovanih vrednosti.

3.3. Pričakovana vrednost kumulativne vsote.

3.3.1. Simetrični sprehod. Vemo, da velja

$$E(X_i) = 0.$$

Potem je

(5)
$$E(S_n) = E(\sum_{i=1}^n X_i)$$
$$= \sum_{i=1}^n E(X_i)$$
$$= \sum_{i=1}^n (2p - 1)$$
$$= 0.$$

3.3.2. *Nesimetrični sprehod.* Izpeljimo formulo za nesimetrični sprehod: vemo, da je:

$$E(X_i) = p \cdot 1 + q \cdot (-1) = 2p - 1.$$

Računamo naprej:

(6)
$$E(S_n) = E(\sum_{i=1}^n X_i)$$
$$= \sum_{i=1}^n E(X_i)$$
$$= \sum_{i=1}^n (2p - 1)$$
$$= n(2p - 1).$$

- 4. Naključni sprehod v ravnini s celimi števili
- 4.1. **Simetrični sprehod.** Simetričen sprehod v ravnini se začne v točki (0,0) in gre z verjetnostjo p = 0.25 gor, dol, levo ali desno.

Slika 8. Naključni simetrični sprehod v ravnini.

Na sliki 9 je prikazan simetričen sprehod po 100 korakih.

- 4.2. Nesimetrični sprehod.
 - 5. NAKLJUČNI SPREHOD V PROSTORU S CELIMI ŠTEVILI
- 5.1. Simetrični sprehod.
- 5.2. Nesimetrični sprehod.

6. Naključni sprehod v geometrijskih telesih

6.1. **Kocka.** Brez škode za splošnost lahko sprehod v kocki začnemo v kateremkoli oglišču (npr. v 1). V vsako sosednje oglišče (v tem primeru 2,4 ali 5) lahko skočimo z verjetnostjo $\frac{1}{3}$ in tako naprej. Poglejmo si nek naključen sprehod po kocki

Izračunajmo pričakovani čas vrnitve. Iz verjetnosti vemo, da je pričakovani čas 8 korakov.

SLIKA 9. Predstavitev kocke v programu R.

Izračunajmo pričakovani čas vrnitve. Iz verjetnosti vemo, da je pričakovani čas 8 korakov.

Število simulacij	Pričakovano št. korakov do vrnitve
5	6.8
10	11.2
15	8.8
20	6.7
30	7.6
100	7.68
500	8.024
1000	7.918
10000	8.0252

TABELA 3. Tabela simulacij pričakovanih vrednosti vrnitve.

Iz tabele 4 lahko opazimo, da zadeva relativno hitro skonvergira in lahko verjamemo, da je pričakovan čas vrnitve v izhodišče enak 8.

Poglejmo si pričakovan čas, ko obiščemo vsa vozlišča. Spet lahko začnemo v 1:

$$1, 4, 8, 5, 8, 4, 8, 5, 6, 2, 3, 4, 8, 5, 1, 5, 8, 7.$$

Ko prvič zagledamo vsa različna oglišča nehamo šteti. Matematični izračun je kompleksen, zato verjemimo simulacijam.

Število simulacij	Pričakovano št.	
	korakov do vrnitve	
10	24.6	
100	19.36	
1000	21.495	
10000	21.2305	

Tabela simulacij pričakovanih vrednosti obsika vseh oglišč.