NORMALIZACION

BASES DE DATOS I

Giuliano Crenna

NORMALIZACIÓN

introducción

Objetivos de la Clase:

- Comprender los niveles de normalización en bases de datos.
- Identificar y aplicar las diferentes formas normales (1FN, 2FN, 3FN, BCNF).
- Entender los conceptos de normalización y desnormalización, junto con sus implicaciones prácticas en el diseño de bases de datos.

GENERALIZACIÓN Y ESPECIALIZACIÓN EN DISEÑO DE SISTEMAS

introducción

- **Generalización:** Proceso de crear una clase general a partir de clases más específicas. Reduce la redundancia al compartir atributos y métodos.
- Especialización: Proceso de crear clases más específicas a partir de una clase general, añadiendo o modificando atributos y métodos para cumplir requisitos específicos.

Beneficios:

- Reducción de código repetitivo
- Mejora de la mantenibilidad
- Facilita la extensión del sistema

GENERALIZACIÓN Y ESPECIALIZACIÓN EN DISEÑO DE SISTEMAS

introducción

Consideraciones:

- Balancear generalización y especialización para evitar complejidad excesiva
- Evaluar si una clase debería ser generalizada o especializada basándose en el contexto y requisitos del sistema

REPASO DEL MODELO RELACIONAL

introducción

Conceptos clave:

- Tablas, filas (tuplas), columnas (atributos).
- Llaves primarias y foráneas.
- Operaciones básicas: selección, proyección, unión, etc.

Objetivo: Recordar la base sobre la cual se construye la normalización.

INTRODUCCIÓN A LA NORMALIZACIÓN

Definición: Proceso para estructurar una base de datos minimizando la redundancia y asegurando la integridad de los datos.

Objetivos:

- Reducir la duplicidad de datos.
- Mejorar la consistencia y evitar anomalías.

Desventajas: Puede aumentar la complejidad de las consultas.

INTRODUCCIÓN A LA NORMALIZACIÓN

	ALUMNOS MATRICULADOS			
rut	nombre	apellido	cod_curso	descripcion
1-9	Pedro	Pérez	AE600	Algoritmos y Estructuras de datos
2-7	Juan	Jara	BD253	Bases de Datos
2-7	Juan	Jara	AE600	Algoritmos y Estructuras de datos
3-5	Diego	Díaz	BD253	Bases de Datos
4-4	Maria	Martinez	BD253	Bases de Datos

2	ALUMNO		
rut	nombre	apellido	
1-9	Pedro	Pérez	
2-7	Juan	Jara	
3-5	Diego	Díaz	
4-4	Maria	Martinez	

MATE	MATRICULA	
rut	cod_curso	
1-9	AE600	
2-7	BD253	
2-7	AE600	
3-5	BD253	
4-4	BD253	

CURSO			
cod_curso	descripcion		
AE600	Algoritmos y Estructuras de datos		
BD253	Bases de Datos		

PRIMERA FORMA NORMAL (1FN)

Definición: Todos los atributos deben contener valores atómicos (indivisibles).

Ejemplo:

- Tabla que no está en 1FN: Contiene grupos repetidos o atributos multivaluados.
- Solución: Dividir en columnas separadas.

nombre	teléfono
John Smith	45 35 45 12 35 46 78 98
Carmen Aguilar	55 25 12 45 54 36 11 28

nombre	teléfono
John Smith	45 35 45 12
John Smith	35 46 78 98
Carmen Aguilar	55 25 12 45
Carmen Aguilar	54 36 11 28

SEGUNDA FORMA NORMAL (2FN)

Definición: Una tabla está en 2FN si está en 1FN y todos los atributos no clave dependen completamente de la clave primaria.

Ejemplo:

- Tabla en 1FN con dependencias parciales.
- Solución: Eliminar las dependencias parciales y dividir en nuevas tablas.

	ALUMNOS	
DNI	Nombre	Apellido1
12121219A	Pedro	Valiente
3457775G	Ana	Fernández
5674378J	Sara	Crespo

ASISTENCIA			
DNI	Cod Curso	Nota	
12121219A	34	9	
12121219A	25	8	
3457775G	34	6	
5674378J	25	7	
5674378J	34	6	

TERCERA FORMA NORMAL (3FN)

Definición: Una tabla está en 3FN si está en 2FN y no tiene dependencias transitivas (dependencia indirecta de la clave primaria).

Ejemplo:

- Tabla en 2FN con dependencias transitivas.
- Solución: Crear nuevas tablas para eliminar las dependencias transitivas.

NORMALIZACIÓN VS. DESNORMALIZACIÓN

Normalización:

- Ventajas: Minimiza la redundancia, mejora la integridad.
- Uso: Ideal para bases de datos transaccionales.

Desnormalización:

- Ventajas: Mejora el rendimiento en consultas.
- **Uso:** Justificado en bases de datos orientadas a análisis o con necesidades de rendimiento.

HAN UTN-FRRO

GIULIANO CRENNA

giulicrenna@gmail.com

¡MUCHAS GRACIAS!