

Lesson 4: Spark Internals

4.8 Setting Up Your Own Cluster

Pseudo-distributed local cluster

Master

```
${SPARK_HOME}/bin/spark-class org.apache.spark.deploy.master.Master \
-h 127.0.0.1 \
-p 7077 \
--webui-port 8080
```

Workers (x 2)

```
${SPARK_HOME}/bin/spark-class org.apache.spark.deploy.worker.Worker \
-c 1 \
-m 1G \
spark://127.0.0.1:7077
```


Pseudo-distributed local cluster

One Master + two Workers: Run each process in separate terminal window

```
5. Master (java)
        Master (java)
                                 Worker 1 (iava)
                                                          Worker 2 (java)
jonathan$ ${SPARK_HOME}/bin/spark-class org.apache.spark.deploy.master.Master -h 127.0.0.1 -p 7077 --webui-port 8080
15/08/12 12:56:48 INFO master. Master: Registered signal handlers for [TERM, HUP, INT]
15/08/12 12:56:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/08/12 12:56:49 INFO spark. SecurityManager: Changing view acls to: jonathandinu
15/08/12 12:56:49 INFO spark.SecurityManager: Changing modify acls to: jonathandinu
15/08/12 12:56:49 INFO spark. SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(jonathandinu); users with modify permissions: Set(jonathandinu)
15/08/12 12:56:49 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/08/12 12:56:49 INFO Remoting: Starting remoting
15/08/12 12:56:49 INFO Remoting: Remoting started; listening on addresses: [akka.tcp://sparkMaster@127.0.0.1:7077]
15/08/12 12:56:49 INFO util.Utils: Successfully started service 'sparkMaster' on port 7077.
15/08/12 12:56:49 INFO server. Server: jetty-8.v.z-SNAPSHOT
15/08/12 12:56:49 INFO server.AbstractConnector: Started SelectChannelConnector@localhost:6066
15/08/12 12:56:49 INFO util.Utils: Successfully started service on port 6066.
15/08/12 12:56:49 INFO rest.StandaloneRestServer: Started REST server for submitting applications on port 6066
15/08/12 12:56:49 INFO master. Master: Starting Spark master at spark://127.0.0.1:7077
15/08/12 12:56:49 INFO master.Master: Running Spark version 1.4.1
15/08/12 12:56:49 INFO server. Server: jetty-8.v.z-SNAPSHOT
15/08/12 12:56:49 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:8080
15/08/12 12:56:49 INFO util.Utils: Successfully started service 'MasterUI' on port 8080.
15/08/12 12:56:49 INFO ui.MasterWebUI: Started MasterWebUI at http://10.3.35.20:8080
15/08/12 12:56:49 INFO master. Master: I have been elected leader! New state: ALIVE
15/08/12 12:56:59 INFO master.Master: Reaistering worker 10.3.35.20:59807 with 1 cores, 1024.0 MB RAM
15/08/12 12:56:59 INFO master.Master: Registering worker 10.3.35.20:59809 with 1 cores, 1024.0 MB RAM
```

EC2: Setup

- 1. Create AWS account: https://aws.amazon.com/account/
- 2. Get Access keys:

EC2: Setup

1. Include the following lines in your

~/.bash profile (or ~/.bashrc):

export AWS ACCESS KEY ID=xxxxxxx export AWS SECRET ACCESS KEY=xxxxxx

2. Download EC2 keypair:

AWS ~ Services v

Instances

Spot Requests

Reserved Instances

AMIs

Bundle Tasks

ELASTIC BLOCK STORE Volumes

Snapshots

■ NETWORK & SECURITY Security Groups

Elastic IPs

Placement Groups

INCLINOIR IIILEI faces

Load Balancers

Key Pairs

Resources

You are using the

Edit v

5 Running Ins

8 Volumes

4 Key Pairs 0 Placement

Create Insta

To start using Am

Launch Instar

Note: Your instances

Service Hea

EC2: Launch

1. Launch EC2 cluster with script in \$SPARK HOME/ec2:

```
./spark-ec2 -k keyname -i ~/.ssh/keyname.pem
--copy-aws-credentials
--instance-type=m1.large
-m m1.large
-s 19 launch spark
```

```
Shutting down GANGLIA gmond:
                                                           [FAILED]
Starting GANGLIA gmond:
Connection to ec2-
                               .compute-1.amazonaws.com closed.
Shutting down GANGLIA gmetad:
                                                           [FAILED]
Starting GANGLIA gmetad:
                                                            [ OK ]
Stopping httpd:
                                                           [FAILED]
Starting httpd: httpd: Syntax error on line 154 of /etc/httpd/conf/httpd.conf: Cannot load /etc/httpd/modules/mod authz core.so into server:
/etc/httpd/modules/mod authz core.so: cannot open shared object file: No such file or directory
                                                           [FAILED]
Connection to ec2
                             .compute-1.amazonaws.com closed.
Spark standalone cluster started at http://ec2
                                                          .compute-1.amazonaws.com:8080
Ganglia started at http://ec2
                                         .compute-1.amazonaws.com:5080/ganglia
```

Done!

EC2: Scripts

Login to the Master

./spark-ec2 -k keyname -i ~/.ssh/keyname.pem login spark

Terminate Cluster

./spark-ec2 destroy spark

Stop cluster

./spark-ec2 stop spark

Restart cluster (after stopped)

./spark-ec2 -k keyname -i ~/.ssh/keyname.pem start spark

Setup IPython/Jupyter

Login to the Master

```
./spark-ec2 -k keyname -i ~/.ssh/keyname.pem login spark
```

Installed needed packages (on master)

```
# Install all the necessary packages on Master
yum install -y tmux
yum install -y pssh
yum install -y python27 python27-devel
yum install -y freetype-devel libpng-devel
wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -0 - | python27
```

```
easy_install-2.7 pip
easy_install py4j
pip2.7 install ipython==2.0.0
pip2.7 install pyzmq==14.6.0
pip2.7 install jinja2==2.7.3
pip2.7 install tornado==4.2
pip2.7 install numpy
pip2.7 install matplotlib
pip2.7 install nltk
```


Setup IPython/Jupyter

Login to the Master

./spark-ec2 -k keyname -i ~/.ssh/keyname.pem login spark

Installed needed packages (on workers)

Install all the necessary packages on Workers

```
pssh -h /root/spark-ec2/slaves yum install -y python27 python27-devel
pssh -h /root/spark-ec2/slaves "wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -0 - | python27"
pssh -h /root/spark-ec2/slaves easy_install-2.7 pip
pssh -t 10000 -h /root/spark-ec2/slaves pip2.7 install numpy
pssh -h /root/spark-ec2/slaves pip2.7 install nltk
```


Allow inbound requests to enable IPython/Jupyter notebook (WARNING: this will create a security risk however)

IPython/Jupyter Profile

Login to the Master

```
./spark-ec2 -k keyname -i ~/.ssh/keyname.pem login spark
```

Set notebook password

Configure IPython/Jupyter Settings

/root/.ipython/profile_default/ipython_notebook_config.py:

```
# Configuration file for ipython-notebook.
c = get_config()

# Notebook config
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
# It is a good idea to put it on a known, fixed port
c.NotebookApp.port = 8888

PWDFILE="/root/.ipython/profile_default/nbpasswd.txt"
c.NotebookApp.password = open(PWDFILE).read().strip()
```


Configure IPython/Jupyter Settings

/root/.ipython/profile_default/startup/pyspark.py:

```
# Configure the necessary Spark environment
import os
os.environ['SPARK_HOME'] = '/root/spark/'

# And Python path
import sys
sys.path.insert(0, '/root/spark/python')

# Detect the PySpark URL
CLUSTER_URL = open('/root/spark-ec2/cluster-url').read().strip()
```


Configure IPython/Jupyter Settings

Add the following to /root/spark/conf/spark-env.sh:

export PYSPARK PYTHON=python2.7

Sync across workers:

~/spark-ec2/copy-dir /root/spark/conf

Make sure master's env is correct

source /root/spark/conf/spark-env.sh

IPython/Jupyter initialization (on master)

Start remote window manager (screen or tmux):

screen

Start notebook server:

ipython notebook

Detach from session:

Ctrl-a d

IPython/Jupyter login

On your laptop:

http://[YOUR MASTER IP/DNS HERE]:8888

IP[y]: Notebook

Password: Log in

IPython/Jupyter login

Test that it all works:

EC2: Data

HDFS (ephemeral)

/root/ephemeral-hdfs

HDFS (persistent)

/root/persistent-hdfs

Amazon S3

s3n://bucket name

Review

Local mode or cluster mode each have their benefits

Spark can be run on a variety of cluster managers

Amazon EC2 enables elastic scaling and ease of development

 By leveraging IPython/Jupyter you can get the performance of a cluster with the ease of interactive development

Next Up: Spark Performance Tuning

