COMP3121: Algorithms & Programming Techniques Summary notes - Week 5

Gerald Huang

Updated: August 13, 2020

Contents

1	Lecture 7A - Dynamic Programming		
	1.1	Introduction to dynamic programming	
	1.2	Activity selection	
	1.3	Longest increasing subsequence	
	1.4	Integer Knapsack Problem	
2	Lect	ture 7B – Dynamic Programming	
	2.1	Matrix chain multiplication	
	2.2	Longest Common Subsequence	
	2.3	Edit Distance	
	2.4	Bellman Ford algorithm	
	2.5	Floyd-Warshall algorithm	

1 Lecture 7A - Dynamic Programming

Date: August 13, 2020

1.1 Introduction to dynamic programming

- **Key point**: build an optimal solution to the problem from optimal solutions for (carefully chosen) smaller size subproblems.
- Subproblems are chosen in a way which allows *recursive* construction of optimal solutions.
- Efficiency comes from the fact that the subproblems are only solved once and the respective solution is stored in a table for later recalls.

1.2 Activity selection

(Activity selection)

- · Key points:
 - You have a list of activities a_i for $1 \le i \le n$.
 - Each item has a starting time s_i and finishing time f_i .
 - No two activities can take place simultaneously.
- Task: Find a subset of compatible activities of maximal total duration.

• Solution:

- Begin by sorting these activities based on their finishing times in non-decreasing order, so assume that $f_1 \le f_2 \le f_3 \le \cdots \le f_n$.
- For every i ≤ n, solve the subproblems.
- **Subproblem** P(i): find a subsequence σ_i of the sequence of activities $S = \langle a_1, a_2, \dots, a_i \rangle$ such that
 - 1. σ_i consists of non-overlapping activities.
 - 2. σ_i ends with activity a_i (this is to simplify recursion).
 - 3. σ_i is of maximal total duration among all subsequences of S_i which satisfy 1 and 2.
- **Pre-processing stage**: Let T(i) be the total duration of the optimal solution S(i) of the subproblem P(i).
- **Base case**: For S(1), choose a_1 and thus, $T(1) = f_1 s_1$.
- **Recursion**: Assume that we have solved subproblems for all j < i and stored them in a table. Let

$$T(i) = \max\{T(j) + f_i - s_i : j < i, f_j < s_i\}.$$

• **Optimality**: Similar argument to the greedy solution.

Let the optimal solution of subproblem P(i) be the sequence $S = \langle a_{k_1}, a_{k_2}, \dots, a_{k_{m-1}}, a_{k_m} \rangle$ where $k_m = i$. Claim that the truncated subsequence $S' = \langle a_{k_1}, a_{k_2}, \dots, a_{k_{m-1}} \rangle$ is an optimal solution to subproblem $P(k_{m-1})$ where $k_{m-1} < i$.

If there were a sequence S^* of a larger total duration than the duration of sequence S' that also ends with activity $a_{k_{m-1}}$, we obtain a sequence \hat{S} by **extending** the sequence S^* with activity a_{k_m} and obtain a solution for subproblem P(i) with a longer total duration than the total duration of sequence S, contradicting the optimality of S.

- Final solution: Let $T_{\max} = \max\{T(i) : i \le n\}$.
- Time complexity: Having sorted the activities by their finishing times in time $\mathcal{O}(n \log n)$, we need to solve n subproblems P(i) for solutions ending in a_i . For each such interval a_i , we have to find all preceding compatible intervals and their optimal solutions (via a table). Thus, the time complexity is $\mathcal{O}(n^2)$.

1.3 Longest increasing subsequence

(Longest increasing subsequence)

- Key points:
 - You are given a sequence of n real numbers A[1, ..., n].
- **Task**: Determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence are strictly increasing.

· Solution:

- For each i ≤ n, solve the following subproblems.
- **Subproblem** P(i): find a subsequence of the sequence A[1, ..., i] of maximum length in which the values are strictly increasing and which ends with A[i].
- **Recursion**: Assume we have solved all the subproblems for j < i. Look for all A[m] such that m < i and such that A[m] < A[i]. Among those, pick m which produced the longest increasing subsequence ending with A[m] and extend it with A[i] to obtain the longest increasing subsequence which ends with A[i].
- Final solution: From all such subsequences, pick the longest one.
- Time complexity: $\mathcal{O}(n^2)$.

1.4 Integer Knapsack Problem

(Integer knapsack problem, duplicate items not allowed)

- Key points:
 - You have *n* items (some of which can be identical).
 - Item I_i is of weight w_i and value v_i .
 - You also have a knapsack of capacity *C*.
- **Task**: Choose a combination of available items which all fit in the knapsack and whose value is as large as possible.

• Solution:

- Begin by filling a table of size $n \times C$, row by row.
- **Subproblem** P(i, c): Choose from items $I_1, I_2, I_3, ..., I_i$ a subset which fits in a knapsack of capacity c and is of the largest possible total value.
- Fix now i ≤ n and c ≤ C and assume we have solved the subproblems for
 - 1. All i < j and all knapsacks of capacities from 1 to C.
 - 2. For *i*, we have solved the problem for all capacities d < c.
- **Recursion**: Look at optimal solutions opt($i 1, c w_i$) and opt(i 1, c).
- If $opt(i-1, c-w_i) + v_i > opt(i-1, c)$, then $opt(i, c) = opt(i-1, c-w_i) + v_i$. Otherwise, opt(i, c) = opt(i-1, c).
- **Final solution**: Final solution will be given by opt(n, C).

2 Lecture 7B – Dynamic Programming

Date: August 13, 2020

2.1 Matrix chain multiplication

(Matrix chain multiplication)

- Key points:
 - You are given a sequence of matrices $A_1A_2...A_n$.
- **Task**: Group them in such a way as to minimise the total number of multiplications needed to find the product matrix.
- **Note**: the total number of different distributions of brackets is equal to the number of binary trees with *n* leaves
- The total number of different distributions of brackets satisfies the following recursion

$$T(n) = \sum_{i=1}^{n-1} T(i)T(n-i).$$

- We can group the matrices as $(A_1A_2A_3...A_i)(A_{i+1}...A_n)$ for each 1 ≤ i ≤ n. But this will run in exponential time!

• Solution:

- **Subproblem** P(i,j): Group matrices $A_iA_{i+1}...A_{j-1}A_j$ in such a way as to minimise the total number of multiplications needed to find the product matrix. Group such subproblems by the value of j-i and perform a recursion on the value of j-i.
- At each recursive step m, we solve all subproblems P(i, j) for which j i = m.
- **Pre-processing stage**: Let m(i, j) denote the minimal number of multiplications needed to compute the product $A_i A_{i+1} ... A_{i-1} A_i$. Also, let the size of matrix A_i be $s_{i-1} \times s_i$.
- **Recursion**: We examine all possible ways to place the (outermost) multiplication, splitting the product $(A_i ... A_k)(A_{k+1} ... A_j$.
 - * Note that both k i < j i and j (k + 1) < j i. Thus we have the solutions of the subproblems P(i, k) and P(k + 1, j) already computed and stored in slots k i and j (k + 1), respectively, which precede slot j i we are presently filling.
- **Recursion**: The recursion is

$$m(i,j) = \min\{m(i,k) + m(k+1,j) + s_{i-1}s_js_k : i \le k \le j-1\},\$$

where m(i, k) is the number of multiplications on the left matrix multiplication, m(k + 1, j) is the number of multiplications on the right matrix multiplication, and $s_{i-1}s_js_k$ is the number of multiplications to multiply both left and right matrices.

• Recursion step is a brute force but the whole algorithm is not and there are only $\mathcal{O}(n^2)$ many subproblems.

2.2 Longest Common Subsequence

- **Key points**: You are given two sequences $S = \langle a_1, a_2, ..., a_n \rangle$ and $S^* = \langle b_1, b_2, ..., b_m \rangle$.
- **Task**: Find the longest common subsequence of S, S^* .

• Solution:

- We first find the length of the longest common subsequence of S, S^* .
- For all 1 ≤ i ≤ n and all 1 ≤ j ≤ m, let c(i,j) be the length of the longest subsequence of the truncated sequences

$$S_i = \langle a_1, a_2, \dots, a_i \rangle, \quad S_i^* = \langle b_1, b_2, \dots, b_i \rangle.$$

 Recursion: Fill the table row by row, so the ordering of subproblems is the lexicographical ordering (alphabetical ordering):

$$c(i,j) = \begin{cases} 0 & i = 0, j = 0 \\ c(i-1,j-1) + 1 & i,j > 0, a_i = b_j \\ \max\{c(i-1,j), c(i,j-1)\} & i,j > 0, a_i \neq b_j \end{cases}$$

2.3 Edit Distance

- · Key points:
 - You are given two text strings *A* of length *n* and *B* of length *m*.
 - You want to transform *A* into *B*.
 - You are allowed to insert a character, delete a character and to replace a character with another
 - An insertion costs c_I , a deletion costs c_D and a replacement costs c_R .
- Task: Find the lowest total cost transformation of *A* into *B*.

• Solution:

- **Subproblem** P(i, j): Find the minimum cost C(i, j) of transforming the sequence A[1, ..., n] into the sequence B[1, ..., j] for all i ≤ n and all j ≤ m.
- **Recursion**: Fill the table of solutions C(i, j) for subproblems P(i, j) row by row (transformation can proceed from left to right, we only operate on the ends of the string):

$$C(i,j) = \min \begin{cases} c_D + C(i-1,j) \\ C(i,j-) + c_I \\ \begin{cases} C(i-1,j-1) & A[i] = B[j] \\ C(i-1,j-1) + c_R & A[i] \neq B[j] \end{cases} .$$

- Final solution: Final solution is simply min{C(i,j)} for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2.4 Bellman Ford algorithm

- **Key points**: You have a directed weighted graph G = (V, E) with weights which can be negative, but without cycles of negative total weight and a vertex $s \in V$.
- **Task**: Find the shortest path from vertex *s* to every other vertex *t*.

• Solution:

- Since there are no negative weight cycles, the shortest path cannot contain cycles.
- **Subproblem**: For every v ∈ V and every i, let opt(i, v) be the length of a shortest path from s to v which contains at most i edges.
- − Goal: find, for every vertex $t \in G$ the value of opt(n 1, t) and the path which achieves such a length.
- Denote the length of the shortest path from s to v among all paths which contain at most i edges by opt(i, v) and let pred(i, v) be the *immediate* predecessor of vertex v on such shortest path.
- Recursion:

$$\begin{aligned} & \operatorname{opt}(i,v) = \min\{\operatorname{opt}(i-1,v), \min_{p \in V}\{\operatorname{opt}(i-1,p) + w(e(p,v))\}\} \\ & \operatorname{pred}(i,v) = \begin{cases} \operatorname{pred}(i-1,v) & \min_{p \in V}\{\operatorname{opt}(i-1,p) + w(e(p,v))\} \geq \operatorname{pred}(i-1,v) \\ & \operatorname{arg\,min}_{p \in V}\{\operatorname{opt}(i-1,p) + w(e(p,v))\} \end{cases} \end{aligned}$$

- **Time complexity**: Computation of opt(i, v) runs in time $\mathcal{O}(|V| \times |E|)$.

2.5 Floyd-Warshall algorithm

- Let G = (V, E) be a directed weighted graph where $V = \{v_1, v_2, ..., v_n\}$ and where weights $w(e(v_p, v_q))$ of edges $e(v_p, v_q)$ can be negative, but there are no negative weight cycles.
- Let opt (k, v_p, v_q) be the length of the shortest path from a vertex v_p to a vertex v_q such that all intermediate vertices are among vertices $\{v_1, v_2, ..., v_k\}$ for $1 \le k \le n$.
- **Recursion**: The recursion is

$$\operatorname{opt}(k, v_p, v_q) = \min\{\operatorname{opt}(k - 1, v_p, v_q), \operatorname{opt}(k - 1, v_p, v_k) + \operatorname{opt}(k - 1, v_k, v_q)\}.$$

- We gradually *relax* the constraint that the intermediary vertices have to belong to $\{v_1, v_2, ..., v_k\}$.
- **Time complexity**: Algorithm runs in time $|V|^3$.