🍗 Thermal Decomposition Graphs – TGA & DSC (16 Marks)

1. Introduction

- Thermal Analysis is used to study how materials behave when heated.
- Two key methods:
 - TGA (Thermogravimetric Analysis): Measures weight change with temperature.
 - DSC (Differential Scanning Calorimetry): Measures heat flow during heating/cooling.

◆ 2. TGA – Thermogravimetric Analysis

📌 Principle:

- Measures mass loss of a material as temperature increases.
- Used to detect decomposition, oxidation, and evaporation.

Graph:

- X-axis: Temperature (°C or K)
- Y-axis: % Weight (mass)
- The curve shows mass decreasing with temperature.

Stages:

- 1. Initial flat region: No change stable.
- 2. **Drop region**: Sudden weight loss decomposition or evaporation.
- 3. Plateau: No further reaction residue remains.

Applications:

- Checking thermal stability.
- Studying decomposition temperature.
- Measuring moisture, volatile content, and residue.

3. DSC – Differential Scanning Calorimetry

📌 Principle:

- Measures heat flow difference between sample and reference as they are heated/cooled.
- Identifies endothermic (heat absorbed) or exothermic (heat released) events.

📊 Graph:

• X-axis: Temperature (°C)

- Y-axis: Heat Flow (mW or mJ/sec)
- · Peaks indicate thermal transitions.

Types of Peaks:

- Endothermic peak (downward): Melting, dehydration, glass transition.
- Exothermic peak (upward): Crystallization, curing, combustion.

Applications:

- Melting point, crystallization temperature.
- Studying glass transition.
- Polymer and drug analysis.

4. Diagram Description

TGA Graph:

- Straight line → Sudden drop → Flat line.
- Label: "Mass (%) vs Temperature (°C)"
- Drop = decomposition or weight loss.

OSC Graph:

- Baseline → Peak (up/down) → Return to baseline.
- Label: "Heat Flow vs Temperature"
- Downward peak = melting (endothermic)
- Upward peak = crystallization (exothermic)

5. Advantages

TGA	DSC
Simple setup	Precise heat flow measurement
Measures mass change	Identifies phase transitions
Useful for residue and moisture	Determines melting & glass points

X 6. Disadvantages

TGA	DSC
Cannot identify chemical changes	No weight change is detected
Needs inert gas for accuracy	Sensitive to sample mass & heating rate

8. Summary

- TGA shows weight loss vs temperature → used for decomposition and stability study.
- **DSC** shows **heat flow** vs temperature → used for melting, glass transition, and curing.
- Both are essential in **thermal analysis** of materials.