intro

- Since the UTD VPN gateway is not IPSec, so I decided to setup a vpn tunnel between to virtual machines.
- Then use the tcpdump to capture the traffic between the two virtual machines.
- Ping will be used to generate the payload

Network Topology

 Two virtual machines are instantiated for the purpose of simulate host to host ipsec traffic

Intro to StrongSwan

- StrongSwan is a complete OpenSource IPsecbased VPN Solution providing encryption and authentication to servers and clients.
- It runs on Linux 2.6, 3.x and 4.x kernels, Android, FreeBSD, OS X and Windows

Step to verify the IPSEC traffic

- Setup security association on VM1
- Setup security association on VM1
- Trace the I/f of vm with wireshark
- Ping VM2 from VM1
- Capture the traffic between VM1 and VM2
- End the security association

SA is down

```
🔞 🖃 🗊 vagrant@attacker: ~
vagrant@attacker:~$ sudo ipsec statusall
Status of IKE charon daemon (strongSwan 5.4.0, Linux 3.2.0-23-generic, x86 64):
  uptime: 1 second, since Apr 11 21:40:02 2016
 malloc: sbrk 270336, mmap 0, used 226000, free 44336
 worker threads: 11 of 16 idle, 5/0/0/0 working, job queue: 0/0/0/0, scheduled:
 loaded plugins: charon aes des rc2 sha2 sha1 md5 random nonce x509 revocation
constraints pubkey pkcs1 pkcs7 pkcs8 pkcs12 pgp dnskey sshkey pem fips-prf gmp x
cbc cmac hmac attr kernel-netlink resolve socket-default stroke vici updown xaut
h-generic
Listening IP addresses:
 10.0.2.15
 192.168.3.2
Connections:
red-to-blue: 192.168.3.2...192.168.3.3 IKEv1/2
red-to-blue: local: [192.168.3.2] uses pre-shared key authentication
red-to-blue: remote: [192.168.3.3] uses pre-shared key authentication
red-to-blue: child: dynamic === dynamic TRANSPORT
Routed Connections:
red-to-blue{1}: ROUTED, TRANSPORT, regid 1
 red-to-blue{1}: 192.168.3.2/32 === 192.168.3.3/32
Security Associations (0 up. 0 connecting):
  none
vagrant@attacker:~$
```

Check the established SA on VM

```
😵 🖨 💷 🛛 vagrant@attacker: ~
 uptime: 89 seconds, since Apr 11 21:40:02 2016
 malloc: sbrk 270336, mmap 0, used 226000, free 44336
 worker threads: 11 of 16 idle, 5/0/0/0 working, job queue: 0/0/0/0, scheduled: 3
 loaded plugins: charon aes des rc2 sha2 sha1 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs7 pkcs8 pkcs12 pgp dnske
y sshkey pem fips-prf gmp xcbc cmac hmac attr kernel-netlink resolve socket-default stroke vici updown xauth-generic
Listening IP addresses:
 10.0.2.15
 192.168.3.2
Connections:
red-to-blue: 192.168.3.2...192.168.3.3 IKEv1/2
red-to-blue: local: [192.168.3.2] uses pre-shared key authentication
red-to-blue: remote: [192.168.3.3] uses pre-shared key authentication
red-to-blue: child: dynamic === dynamic TRANSPORT
Routed Connections:
red-to-blue{1}: ROUTED, TRANSPORT, regid 1
red-to-blue{1}: 192.168.3.2/32 === 192.168.3.3/32
Security Associations (1 up, 0 connecting):
red-to-blue[1]: ESTABLISHED 40 seconds ago, 192.168.3.2[192.168.3.2]...192.168.3.3[192.168.3.3]
red-to-blue[1]: IKEv2 SPIs: d5457538b644641e_i* cb84ae1c2db182a1_r, pre-shared key reauthentication in 2 hours
red-to-blue[1]: IKE proposal: AES CBC 128/HMAC SHA2 256 128/PRF HMAC SHA2 256/MODP 3072
red-to-blue{2}: INSTALLED, TRANSPORT, regid 1, ESP SPIs: c6644788 i c066a4a9 o
red-to-blue{2}: AES GCM 16 128, 64 bytes i (1 pkt, 38s ago), 64 bytes o (1 pkt, 38s ago), rekeying in 42 minutes
 red-to-blue{2}: 192.168.3.2/32 === 192.168.3.3/32
vagrant@attacker:~$
```

CALL FLOW between VM

Wireshark screen capture

○ Markets: 42 · Displayed: 42 (100.0%) · Load time: 0:00.000

when the secure channel to be used by the host

- When the client wants to visit a remote network securely, then VPN connection between client and remote network is a good choice.
- The host should be able to forward his traffic to the remote network to the VPN gateway instead.
- The Gateway will authenticate the client
- All the messages between client and VPN are encrypted by either AH or ESP.

when the secure channel to be used by the VPN gateway

- The VPN receive the encrypted msg from the remote client, and then decrypted it.
- As long as VPN gateway decrypted the IP message, it could get the original information.
- Normally the VPN gateway works at the tunnel mode, which means it will forward the package inside the remote network.
- Two host could initial transparent mode inbetween.

How is the info protected by the IPSec between two VM?

- The VPN gateway will authenticate the client at the IPSec negotiation phase
- Both end send a nonce to opposite, then use their shared key to calculate a hash value as AUTH.
- After both side receive AUTH from opposite, the compare the received one with their own value to authenticate the opposite end.

Protect the integrity and credentiality

IPSec AH Header

SPI (Security Parameters Index)

Sequence Number

Authentication Data (usually MD5 or SHA-1 hash)

Reserved

AH 1en

next hdr

• AH:

encrypt the payload for confidentiality

- Authentication data for Integrity and authentication

ESP

- Encapsulating the payload to provide confidentiality
- In addition to encryption, ESP can also optionally provide authentication, with the same HMAC as found in AH

In AH transport Mode, most headers are protected by authentication data

IPSec in AH Transport Mode

The authenticati on data is hashed with secret shared by client and vpn gateway.

The IP header between client and VPN gateway are encrypted

