1. (original): A reactive dye of formula

$$\begin{array}{c} O \\ NH_2 \\ SO_3H \\ O \\ HN \\ N \\ N \\ N \\ N \\ N \\ N \\ R_1 \end{array}$$

$$\begin{array}{c} CI \\ (R_2)_n \\ Z_1 \\ Z_1 \\ R_2 \\ R_3 \end{array}$$

$$(1),$$

wherein

R₁ is optionally substituted C₁-C₄alkyl,

R₂ is halogen, C₁-C₄alkyl, C₁-C₄alkoxy or sulfo,

Z₁ is a radical of formula

$$-SO_2-Y \tag{2a},$$

$$-CO-NH-(CH_2)_k-SO_2-Y \tag{2b},$$

$$-NH-CO-CH(Hal)-CH_2-Hal \tag{2c} or$$

$$-NH-CO-C(Hal)=CH_2 \tag{2d}$$

wherein

Hal is chlorine or bromine,

Y is vinyl or a radical -CH₂CH₂-U and U is a group removable under alkaline conditions, k is the number 2, 3, 4, 5 or 6, n is the number 0, 1 or 2 and

m is the number 0 or 1.

- 2. (currently amended): A reactive dye according to claim 1, wherein R₁ is methyl or ethyl, preferably ethyl.
- 3. (currently amended): A reactive dye according to either claim 1-or claim 2, wherein Z_1 is a radical of formula (2a) wherein Y is vinyl.
- 4. (currently amended): A reactive dye according to any one of claims 1 to 3 claim 1, wherein

m is the number 1 and n is the number 0.

5. (currently amended): A process for the preparation of a reactive dye of formula (1) according to claim 1, which comprises reacting a compound of formula

$$O$$
 NH_2
 SO_3H
 O
 HN
 O
 NH_2
 NH_2
 $(HO_3S)_m$
 NH_2

and a compound of formula

with cyanuric-choride chloride, R₁, R₂, Z₁, m and n being as defined in claim 1.

6-7. (cancelled).

8. (currently amended): A process for dyeing or printing a hydroxyl-group-containing or nitrogen-containing fibre material, which comprises using contacting said material with a tinctorially effective amount of at least one reactive dye of formula

wherein

R₁ is optionally substituted C₁-C₄alkyl,

R₂ is halogen, C₁-C₄alkyl, C₁-C₄alkoxy or sulfo,

Z₁ is a radical of formula

$$-SO_2-Y \tag{2a},$$

$$-CO-NH-(CH_2)_k-SO_2-Y \tag{2b},$$

$$-NH-CO-CH(Hal)-CH_2-Hal \tag{2c} or$$

$$-NH-CO-C(Hal)=CH_2 \tag{2d}$$

wherein

Hal is chlorine or bromine,

Y is vinyl or a radical -CH2CH2-U and U is a group removable under alkaline conditions,

k is the number 2, 3, 4, 5 or 6,

n is the number 0, 1 or 2 and

m is the number 0 or 1; together with

at least one reactive dye selected from the group of formulae

$$(HO_3S)_q \xrightarrow{R_7} N = N \xrightarrow{(R_6)_{0\cdot 2}} CI \xrightarrow{(R_5)_r} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_5)_r} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_5)_r} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N \xrightarrow{(R_6)_{0\cdot 2}} N \xrightarrow{(R_6)_{0\cdot 2}} Z_2$$

$$N = N - (R_{11})_{0.2} R_8 R_9$$
(5),

$$K-N$$
 $N=N$
 $N=N$

$$\begin{array}{c|c}
O & NH_2 \\
\hline
O & NH_2 \\
SO_3H & CI \\
N & N \\
N & N \\
N & R_{16}
\end{array}$$

$$\begin{array}{c|c}
(R_{17})_v \\
\hline
Z_5 \\
R_{16}
\end{array}$$

$$\begin{array}{c|c}
(7)
\end{array}$$

wherein

 R_3 , R_4 , R_8 , R_9 , R_{12} , R_{13} and R_{16} are each independently of the others hydrogen or unsubstituted or substituted C_1 - C_4 alkyl,

 R_5 , R_{10} , R_{14} and R_{17} are each independently of the others halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or sulfo, $(R_6)_{0-2}$ and $(R_{11})_{0-2}$ are each independently of the other 0, 1 or 2 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, ureido, sulfamoyl, halogen, sulfo and carboxy, R_7 is amino or N-mono- or N,N-di- C_1 - C_4 alkylamino,

 R_{15} is C_1 - C_4 alkyl, carboxy, unsubstituted C_1 - C_4 alkoxy or C_1 - C_4 alkoxy substituted by carboxy, K is a phenyl radical, which is substituted by 0, 1, 2 or 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy, sulfamoyl, carbamoyl, halogen, sulfo and carboxy, or is a naphthyl radical substituted by 1, 2 or 3 sulfo groups,

 Z_2 , Z_3 , Z_4 and Z_5 , each independently of the others, have the definitions given for Z_1 , q is the number 0 or 1, and

r, s, t and v are each independently of the others the number 0, 1 or 2.

- 9. (original): A process according to claim 8, which comprises using at least one reactive dye of formula (1) together with a reactive dye of formula (6), wherein R₁, R₂, R₁₂, R₁₃, R₁₄, R₁₅, K, Z₁, Z₄, m, n and t are as defined in claim 8.
- 10. (currently amended): A process according to either claim 8 or claim 9, wherein a natural or synthetic polyamide fibre material, especially a synthetic polyamide fibre material, is dyed or printed.
- 11. (new): A process for dyeing or printing a hydroxyl-group-containing or nitrogen-containing fibre material, which comprises contacting said material with a tinctorially effective amount of at least one reactive dye of formula

$$\begin{array}{c} O & NH_2 \\ \hline \\ O & NH_2 \\ \hline \\ O & HN \\ \hline \\ O & HN \\ \hline \\ O & N \\ \hline \\ N & N \\ \hline \\ R_1 \\ \end{array}$$

$$(1),$$

wherein

R₁ is optionally substituted C₁-C₄alkyl,

 R_2 is halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or sulfo,

Z₁ is a radical of formula

$$-SO_2-Y \tag{2a},$$

$$-CO-NH-(CH_2)_k-SO_2-Y \tag{2b},$$

$$-NH-CO-CH(Hal)-CH_2-Hal \tag{2c} or$$

$$-NH-CO-C(Hal)=CH_2 \tag{2d}$$

wherein

Hal is chlorine or bromine,

Y is vinyl or a radical -CH₂CH₂-U and U is a group removable under alkaline conditions,

k is the number 2, 3, 4, 5 or 6,

n is the number 0, 1 or 2 and

m is the number 0 or 1.

- 12. (new): A process according to claim 11, wherein a natural or synthetic polyamide fibre material is dyed or printed.
- 13. (new): A process according to claim 11, wherein a synthetic polyamide fibre material is dyed or printed.