Inescapable Bias: The Role of Recommender Systems in Social Media Radicalization

Candidate: Caio Truzzi Lente

Advisor: Prof. Dr. Roberto Hirata Jr.

IME-USP | 2021-03-29

Motivation

- Social networks are ubiquitous: socializing, reading news, expressing ourselves
- The public wants to know what role their platforms might have in radicalizing users, specially younger ones
 - Mainly anecdotal evidence (e.g. Facebook depression experiments, YouTube's bizarre videos aimed at kids, etc.)
- Journalists and specialists alike argue that social media's algorithms are tuned to peddle conspiracy theories, extremist views, and false information
- The debate around the role of recommender systems in social media radicalization is still too recent and based in anecdotes
- More quality research is vital to inform both the public and opinion makers about if and how much recommendation algorithms influence social media users

Literature Review

- F. Ricci, L. Rokach, and B. Shapira, "Recommender Systems Handbook"
- Z. Zhao et al., "Recommending what video to watch next: a multitask ranking system"
- A. Sîrbu, D. Pedreschi, F. Giannotti, and J. Kertész, "Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model"
- A.-A. Stoica, C. Riederer, and A. Chaintreau, "Algorithmic Glass Ceiling in Social Networks: The effects of social recommendations on network diversity"
- M. H. Ribeiro, R. Ottoni, R. West, V. A. F. Almeida, and W. Meira, "Auditing radicalization pathways on YouTube"
- C. Roth, A. Mazières, and T. Menezes, "Tubes and bubbles topological confinement of YouTube recommendations"

Proposal

- How social networks recommend content to users is relevant to recent waves of political polarization and radicalization
- Most of the algorithms currently employed by social media companies are trade, and subject to constant experimentation and tuning
 - E.g., YouTube has over 2 billion monthly logged-in users, but it makes no significant effort to clarify changes made to the algorithm
 - Most of the developing world still isn't impacted by policy changes
- The goal is to understand how their algorithmic design might foster confinement dynamics in the "phase space" of recommendations
 - Do recommendation algorithms always create "filter bubbles", suggesting ever more engaging videos about a certain topic?

MovieLens

- The main dataset used for experimentation was MovieLens
 - F. M. Harper and J. A. Konstan, "The MovieLens Datasets: History and Context"
 - A well-known set of movie reviews
- 25M ratings applied to 62K movies by 162K users, enriched with information about the movies' credits, metadata, keywords, and links
 - A sample of 30,689 movies was taken in order to reduce the harware requirements of iterative experimentation

Book-Crossing

- The dataset used to validate hypotheses was Book-Crossing
 - C.-N. Ziegler, "Book-Crossing Dataset"
 - A well-known set of book reviews.
- 1.1M ratings applied by 278K users to 271K books, and information like title, author, publisher, etc.
 - A sample of 20,000 books was taken in order to reduce the harware requirements of iterative experimentation

Techniques

- Excluding user information is important because they might transfer their own biases to the model
 - Content-based recommender: able to identify similar items based on their metadata and suggest the closest items
 - Create a vector representation of each item and then use a similarity metric to recommend the most similar items to the one in question
- "Recommendation profiles": a summary of how many times an arbitrary item is recommended overall
 - The algorithm is asked to return the top-n most similar items to the input according to its internal metric, and this is repeated for every item
 - The number of times each item showed up in the top-n most similar items

Techniques (cont.)

- "Trivial model": a simple sampler that returns n movies at random when asked for a recommendation
- "Vanilla model": generated vector representations for the MovieLens dataset, without any modifications
 - Each position represented one of the words of the corpus, and each element indicated how many times that word appeared in the metadata
 - The internal metric used, by default, was cosine similarity
- "Sparse model": representations were based on fictional metadata that were comprised of words sampled at random from the full corpus
 - The sparser the vectors, the higher the odds of the recommendation curve displaying a steep left-hand side

Preliminary Results

(a) Trivial recommendations.

(b) Log-log plot.

Preliminary Results (cont.)

(a) Rec. based on movie metadata.

(b) Log-log plot.

Preliminary Results (cont.)

Discussion

- More experiments are still necessary in order to identify exactly what is the nature of the bias detected
 - What movies are the most recommended in each case and whether the subset of top-recommended movies is roughly consistent
- Using Google's newly released TensorFlow Recommenders it might be possible to gather data about what happens as users follow suggestions
 - Goal: determining if the model's dynamic increases or decreases the exponential profile of recommendations
- Showing that that these algorithms are suggesting a subset of items exponentially more than the rest could be one more piece evidence
 - Are these social networks are creating filter bubbles that radicalize users?

Schedule

2021 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Literature review Algorithm implementation Tests and experiments Writing dissertation Proofreading Dissertation submission Writing conference paper