uc3m Teoría Avanzada de la Computación

Grado en Ingeniería Informática

Curso 2020-2021

Práctica de Máquinas de Turing

Intro	oducción	2
0.	Palíndromos I	3
a.	MT Determinista de 1 cinta	3
b.	MT Determinista de 2 cintas	3
c.	MT No Determinista de 2 cintas	3
Gı	uía de Resolución Ejercicio 0.	4
1.	Suma de enteros en base UNO	8
a.	MT Determinista con una cinta.	8
b.	MT con dos cintas.	8
C.	Evaluación de la mejora obtenida con la MT de dos cintas.	8
2.	Suma de enteros en base DOS	9
a.	MT Determinista con una cinta.	9
b.	MT con dos cintas.	9
C.	Evaluación de la mejora obtenida con la MT de dos cintas.	9
3.	Comparativa de los Ejercicios 1 y 2.	10
a.	Determinar la eficiencia de cada algoritmo	10
b.	¿Por qué la diferencia de complejidades?	10
C.	6.5	
ef	iciencia?	10
4.	Palíndromos de Orden k	11
a.	Diseñar MT Multicinta Determinista	11
b.	Diseñar MT Multicinta NO Determinista	11
C.	Opcional: Diseñar MT Determinista de 1 cinta.	11
d.		
De	<mark>eterminista</mark> .	11
Entr	edas	12

Introducción

La práctica propone el uso de la herramienta Jflap para diseñar y evaluar diversas Máquinas de Turing. El objetivo es que asimiléis los conceptos impartidos en Magistral para tener un conocimiento claro sobre qué son y para qué sirven Máquinas de Turing Multicinta y No Deterministas, cómo se pueden aplicar al Análisis de Coste Computacional de Algoritmos, las implicaciones que tiene usar una u otra variante, o el uso de una base u otra relacionado con el tamaño de las instancias y la complejidad que se deriva de ellas, etc.

Leed con detenimiento el enunciado completo antes de comenzar los diseños y evaluaciones.

Responded en cada caso a las cuestiones planteadas.

Indicaciones

Las máquinas de Turing deben ser diseñadas y validadas con Jflap. Para ello usaremos el modo de *Input* — *Multiple Run (Trasducer)*. Damos por supuesto que todas las máquinas empiezan y terminan con el cabezal situado sobre el símbolo significativo más a la izquierda. De otra forma, la transducción no funcionará correctamente.

En las versiones multicinta consideraremos que la primera es la que debe contener tanto la palabra inicial como los posibles resultados.

Utilizaremos Jflap 7 para el trabajo. En Jflap 6.4 funciona la Traza (Fast Run → Trace) pero no facilita contar transiciones.

Alternativamente se puede usar algún programa para contar clicks de teclado, o para programar series de clicks.

No se recomienda el uso de Building Block por los problemas que puede causar. Y para el Análisis de Coste Computacional convendría asegurar un procedimiento que proporcione el coste total del algoritmo.

Ejercicios:

0. Palíndromos I

Se plantea uno de los ejemplos vistos en clase magistral

```
Dado el lenguaje \Sigma = \{a, b\}
Definimos x palíndromo
x \in \Sigma^*, |x| = 2k, k = 0, 1, 2, 3, ...
\exists w \in \Sigma^*, |w|=k \mid x = w \cdot w^{-1}
```

Ejemplos de palabras:

```
válidas: λ, aa, bb, aaaa, bbbb, abba, baab, aaaaaa, aabbaa, ... inválidas: ab, ba, aaa, aba, bbb, abb, ..., aabb, abab, baba, ...
```

Tareas propuestas:

a. MT Determinista de 1 cinta

- I. Implementad el diseño propuesto (más adelante)
- II. Determinad cuál es el peor caso en cuanto a coste computacional para un tamaño n dado.
- III. Realizad las simulaciones para palabras de diferente tamaño (usando step). Preparad la tabla de tamaños de problema y con los pasos obtenidos.
- IV. Calculad las diferencias finitas
- V. Calculad T(n)
- VI. Determinad una cota superior asintótica, pa<mark>ra n₀ = 10</mark>

b. MT Determinista de 2 cintas

(la misma secuencia que para a)

c. MT No Determinista de 2 cintas

(la misma secuencia que para a)

A continuación, se dan los detalles necesarios para realizar esta parte de la práctica guiada.

Guía de Resolución Ejercicio 0.

1. MT Determinista de 1 cinta

Proponemos el siguiente diseño:

Input	Output	Result
а	0	Accept
aa	1	Accept
aaa	0	Accept
aaaa	1	Accept
aaaaa	0	Accept
aaaaaa	1	Accept
ababab	0	Accept
abbbba	1	Accept

MT1DxPalindromo

Funcionamiento:

Ciclo

Borra una letra en extremo izgda.

Busca la correspondiente a la dcha

La borra

Vuelve atrás a la primera letra por la izqda.

Fin1: Cinta en blanco Deja 1 en la cinta y Para (Acepta)

Fin2: Falla una correspondencia Deja 1 en la cinta y Para ("Falla")

Fin3: Incluye caso de número impar de letras se trata en Fin2

Detalles:

- Palabra de tamaño n=2k
- La MT hace k recorridos si n es el número de símbolos inicial
- Recorridos sucesivos se acortan en 2 símbolos
- En caso de fallar la correspondencia
 - ⇒ hay que borrar la cinta (q6) con un recorrido lineal

• Determinar el peor caso:

(cuando es palíndromo para tamaños par)

Análisis: I. Fase Empírica:

Input	#tam	#pasos
λ	0	1
aa	2	6
abba	4	15
aabaaba	6	28
aaabbaaa	8	45
bbaabbaabb	10	66
bbbbbaabbbbb	12	91

N	0	2	4	6	8	10	12
Pasos	1	6	15	28	45	66	91

Análisis: II. Fase Analítica:

Diferencias Finitas:

N	0	2	4	6	8	10	12
Pasos	1	6	15	28	45	66	91
Dif 1		5	9	13	17	21	25
Dif 2		4	4	4	4	4	
Dif 3			0	0	0	0	

Al ser constantes las Diferencias Finitas segundas (y nulas las terceras)

⇒ Podemos aproximar T(N) con polinomio de segundo orden

$$T(N) = aN^2 + bN + c$$

$$a \cdot 0^2 + b \cdot 0 + c = 1 \Rightarrow c = 1$$

$$a \cdot 2^2 + b \cdot 2 + c = 6$$

$$a \cdot 4^2 + b \cdot 4 + c = 15$$

$$4a + 2b = 5 (x2)$$

$$16a + 4b = 14$$

8a = 4
$$\Rightarrow$$
 a = 1/2

$$4a + 2b = 5$$

2 + 2b = 5 $\Rightarrow b = 3/2$

$$\Rightarrow$$
 T(N) = N²/2 + 3N/2 + 1

2. MT Determinista de 2 cintas

Diseño propuesto

MT2Dx-palindromo

Coste Computacional:

La MT2D realiza tres recorridos:

1.	Copia de Cinta 1 a Cinta 2	n+1
2.	Rebobina Cinta 2	n+1
3.	Coteja Cinta 1 con Cinta 2 en reverso	n+1
	En caso de fallo, termina de borrar ambas	

$$\Rightarrow$$
 T(n) = 3(n+1)

3. MT NO Determinista de 2 cintas

Diseño propuesto

3 estados!!!

Se basa en:

- Transcribir la primera mitad de la palabra de la primera cinta a la segunda.
- A partir de la mitad de la palabra se coteja el resto en la primera cinta con lo transcrito en la segunda (en reverso).
- Problema. A priori la MT NO SABE dónde está la mitad.
- Solución: va bifurcando de forma no determinista en cada símbolo en la transición q0 —> q1 suponiendo que el último símbolo procesado es el último de la primera mitad.
- Si w es palíndromo alguno de ellos será el último de la primera mitad
- Si alguna de las instancias de la MT llega al estado final ⇒ palabra w es palíndromo
- En este caso, no se incluye la opción de dejar un 0 en la cinta en caso de que no sea palíndromo, porque sólo debe sobrevivir la instancia que reconozca el palíndromo.

Coste computacional:

$$T(n) = n + 1 \quad O(n)$$

+1 debido a transición al estado final.

Es lineal, pero obviamente NO DETERMINISTA.

1. Suma de enteros en base UNO

La suma dos números enteros x e y representados en **base UNO**. La cinta inicial contendrá #x\$y#. Al final sólo debe quedar el valor de x en la cinta (#x#). Estudiad las mejoras obtenidas con las siguientes opciones:

a. MT Determinista con una cinta.

La Máquina de Turing indicada a continuación es un sumador de dos números en base uno. Los dos números están separados por el símbolo \$. La suma se realiza en base a las operaciones succ y pred de la aritmética de Peano. La primera opera por la derecha de y, la segunda por la izquierda de x, sobreescribiendo éste valor.

I. Implementad el diseño propuesto

Determinad cuál es el peor caso en cuanto a coste computacional para un tamaño n dado.

- III. Realizad las simulaciones para palabras de diferente tamaño (usando step). Preparad la tabla de tamaños de problema y con los pasos obtenidos.
- IV. Calculad las diferencias finitas
- V. Calculad T(n)
- VI. Determinad una cota superior asintótica, pa<mark>ra n₀ = 10</mark>

b. MT con dos cintas.

Diseñad una versión con 2 cintas. Completad los mismos a.

c. Evaluación de la mejora obtenida con la MT de dos cintas.

2. Suma de enteros en base DOS

La suma dos números enteros x e y representados en **base DOS**. La cinta inicial contendrá #x\$y#. Al final sólo debe quedar el valor de x en la cinta (#x#). Estudiad las mejoras obtenidas con las siguientes opciones:

a. MT Determinista con una cinta.

La Máquina de Turing indicada a continuación es un sumador de dos números en base dos. Los dos números están separados por el símbolo \$. La suma se realiza en base a las operaciones succ y pred de la aritmética de Peano. La primera opera sobre y, la segunda sobre x, dejando en él resultado.

- I. Implementad el diseño propuesto
- II. Determinad cuál es el peor caso en cuanto a coste computacional para un tamaño n dado.
- III. Realizad las simulaciones para palabras de diferente tamaño (usando step). Preparad la tabla de tamaños de problema y con los pasos obtenidos.
- IV. Calculad las diferencias finitas
- V. Calculad T(n)
- VI. Determinad una cota superior asintótica, para $n_0 = 10$

b. MT con dos cintas.

(los mismos apartados que para a).

c. Evaluación de la mejora obtenida con la MT de dos cintas.

3. Comparativa de los Ejercicios 1 y 2.

a. Determinar la eficiencia de cada algoritmo

Mediante una tabla para comparar los pasos realizados para las mismas sumas (no los mismos tamaños)

- b. ¿Por qué la diferencia de complejidades?
- c. ¿Cómo se interpretan las diferencias en complejidad y en eficiencia?

4. Palíndromos de Orden k

Definimos palíndromo de orden k (Alfabeto $\Sigma = \{a, b\}$):

- uu⁻¹ es palíndromo de orden 1 si u⁻¹ es reverso de u, y u no es palíndromo
- vv⁻¹ es palíndromo de orden k si v⁻¹ es reverso de v y v es palíndromo de orden k-1

Ejemplos de palindromos:

- orden 1: aa, abba
- orden 2: aaaa, abbaabba
- orden 3: aaaaaaaa, abbaabbaabba

En este caso vamos a plantear un enfoque distinto, convirtiendo el problema en uno de decisión. En concreto, "dado el valor k y la palabra x, determinar si x es palíndromo de al menos orden k". La cinta inicial contendrá #k\$x#, siendo k un número en base 1. La cinta final contendrá #1# en caso de aceptar.

a. Diseñar MT Multicinta Determinista

que determine si dado un valor q y una palabra x, la palabra x es palíndromo de al menos orden q. La MT debe procesar la entrada y determinar si se cumple el problema de decisión. En tal caso parará en un estado final. En caso contrario terminará con fallo.

- I. Implementad el diseño propuesto
- II. Determinad cuál es el peor caso en cuanto a coste computacional para un tamaño n dado.
- **III.** Realizad las simulaciones para palabras de diferente tamaño (usando step). Preparad la tabla de tamaños de problema y con los pasos obtenidos.
- IV. Calculad las diferencias finitas
- V. Calculad T(n)
- VI. Determinad una cota superior asintótica, pa<mark>ra n₀ = 10</mark>

b. Diseñar MT Multicinta NO Determinista

Es importante que sólo llegue a estado final aceptando cuando determine que efectivamente la palabra es palíndromo de al menos orden k.

- c. Opcional: Diseñar MT Determinista de 1 cinta.
- d. Evaluación de la mejora obtenida con la MT Multicinta NO Determinista.

Entregas

Fechas de Entrega

Dispondréis de varias fechas de entrega:

- Entrega 1: sesión del 16-04-2021 (hasta el 20-04-2021), con lo que tengáis hecho.
- Entrega 2: sesión del 23-04-2021 (hasta el 27-04-2021), con lo que tengáis hecho.
- Entrega 3 Final: del 28-04-2021 al 29-04-2021.

Entrega FINAL:

Debéis entregar un archivo zip de nombre MT03-grupo-Apellido1-Apellido2-Apellido3.zip, donde ApellidoK es el primer apellido de cada alumno, puestos en orden alfabético.

Con el contenido:

- Un documento que recoja
 - los diseños y análisis de todos los apartados indicados en la memoria.
 - En anexos se podrá incluir el trabajo no solicitado explícitamente en este enunciado.

Utilizad siempre imágenes en formato PNG.

Nombre: memoria.pdf. Formato: pdf.

- Los ficheros de todos los diseños, usando una nomenclatura sistemática (se propone seguir la numeración de apartados de este enunciado).
 - Las máquinas diseñadas, en formato jff.
 - Las imágenes de todas las máquinas, siempre en formato PNG.