Lab 9-10 – Nanoprocessor Design Competition CS1050 Computer Organization and Digital Design

Dept. of Computer Science and Engineering, University of Moratuwa

Group Members:

- Jayasooriya D.D.M. 210250D
- Udayanga H.K.I. 210661M

Lab task

We had to design a 4-bit processor which can execute instructions such as,

- MOVI R,d → Move immediate value d to register R
- ADD R_a , R_b \rightarrow Add values in registers R_a and R_b and store the result in R_a
- NEG R \rightarrow 2's complement of register R
- JZR R, $d \rightarrow$ Jump if value in register R is zero

First we had to design the following components.

- 4-bit Add/Subtract Unit
- 3-bit Adder
- 3-bit Program Counter
- 2-way 3-bit Multiplexer
- 2-way 4-bit Multiplexer
- 8-way 4-bit Multiplexer
- Register Bank
- Program ROM
- Instruction Decoder

After creating the components we connected them using buses.

Then we verified the functionality via simulation and on the development board.

Assembly Program

(To calculate the total of all integers between 1 and 3)

Machine Code Representation

- 0. 100010000011
- 1. 100100000001
- 2. 010100000000
- 3. 001110010000
- 4. 000010100000
- 5. 110010000111
- 6. 110000000011
- 7. 110000000111

VHDL Codes

• 4-bit Add/Subtract unit

```
______
-- Company:
-- Engineer:
-- Create Date: 06/01/2023 10:02:29 AM
-- Design Name:
-- Module Name: ASU 4 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ASU 4 is
   Port ( A : in STD LOGIC VECTOR (3 downto 0);
         B : in STD LOGIC VECTOR (3 downto 0);
         ASU_EN : in STD_LOGIC;
```

```
AS_Sel : in STD_LOGIC;
            Sum : out STD_LOGIC_VECTOR (3 downto 0);
            Carry : out STD LOGIC;
            Overflow: out STD LOGIC;
            Zero : out STD_LOGIC);
end ASU_4;
architecture Behavioral of ASU 4 is
component FA
    port(
    A: in std_logic;
    B: in std_logic;
    C in : in std logic;
    S : out std logic;
    C_out : out std_logic);
end component;
SIGNAL BO, B1, B2, B3, S0, S1, S2, S3, C0, C1, C2, C3 : STD_LOGIC;
begin
    BO \le AS Sel XOR B(0);
    B1 \le AS Sel XOR B(1);
    B2 \le AS Sel XOR B(2);
    B3 <= AS_Sel XOR B(3);
    FA_0 : FA
        port map(
        A => A(0)
        B \Rightarrow B0,
        C_in => AS_Sel, -- add 1 to LSB if subtracting to convert to two's
complement
        s \Rightarrow s0,
        C_out => C0);
    FA 1 : FA
        port map(
        A \Rightarrow A(1),
        B => B1,
        C_{in} => C0,
        S \Rightarrow S1,
        C_out => C1);
    FA_2 : FA
        port map(
        A \Rightarrow A(2),
        B \Rightarrow B2,
        C in => C1,
        S \Rightarrow S2
        C_out => C2);
    FA 3 : FA
        port map(
        A => A(3),
        B \Rightarrow B3,
        C in => C2,
        s => s3,
        C_out => C3);
```

```
Carry <= C3;
Overflow <= C3 AND ASU_EN;
Sum(0) <= S0 AND ASU_EN;
Sum(1) <= S1 AND ASU_EN;
Sum(2) <= S2 AND ASU_EN;
Sum(3) <= S3 AND ASU_EN;

process (S0, S1, S2, S3) begin
    if (S0 = '0' and S1 = '0' and S2 = '0' and S3 = '0') then
        Zero <= '1';
    else
        Zero <= '0';
    end if;

end process;
end Behavioral;</pre>
```

3-bit adder

```
-- Company:
-- Engineer:
-- Create Date: 06/01/2023 08:41:29 PM
-- Design Name:
-- Module Name: RCA_3 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
\ensuremath{\text{--}} arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity RCA 3 is
```

```
Port ( I : in STD_LOGIC_VECTOR (2 downto 0);
            S_out : out STD_LOGIC_VECTOR (2 downto 0));
end RCA 3;
architecture Behavioral of RCA_3 is
component FA
   port(
    A: in std logic;
    B: in std logic;
    C in : in std logic;
    S : out std_logic;
    C_out : out std_logic);
end component;
SIGNAL CO, C1, C2, Carry : std_logic;
SIGNAL S : std_logic_vector(2 downto 0);
begin
    FA_0 : FA
        port map(
        A => '1',
        B => I(0),
        C_{in} \Rightarrow '0', -- grounded
        S \Rightarrow S(0),
        C \text{ out } \Rightarrow C0);
    FA_1 : FA
        port map(
        A => '0',
        B => I(1),
        C in => C0,
        S \Rightarrow S(1),
        C_out => C1);
    FA 2 : FA
        port map(
        A => '0',
        B => I(2),
        C_in => C1,
        S \Rightarrow S(2),
        C_out => C2);
    S out <= S;
    Carry <= C2;
end Behavioral;
```

• 3-bit Program Counter (PC)

```
-- Module Name: PC_3 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity PC_3 is
   Port ( D : in STD_LOGIC_VECTOR (2 downto 0);
          Res : in STD_LOGIC;
          Clk : in STD LOGIC;
          Q : out STD LOGIC VECTOR (2 downto 0));
end PC_3;
architecture Behavioral of PC 3 is
component D FF
   Port ( D : in STD LOGIC;
          Res : in STD_LOGIC;
          Clk : in STD LOGIC;
          Q : out STD_LOGIC;
          Qbar : out STD LOGIC);
end component;
begin
    D_FF0 : D_FF
       port map (
           D \Rightarrow D(0)
           Res => Res,
           Clk => Clk,
           Q => Q(0);
    D FF1 : D FF
       port map (
           D \Rightarrow D(1),
           Res => Res,
           Clk => Clk,
```

-- Design Name:

• tri-state buffer

begin

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 10:29:28 AM
-- Design Name:
-- Module Name: Tri_Buffer_3 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Tri_Buffer_3 is
   Port ( I : in STD_LOGIC_VECTOR (2 downto 0);
         EN : in STD LOGIC;
         I out : out STD LOGIC VECTOR (2 downto 0));
end Tri Buffer 3;
architecture Behavioral of Tri_Buffer_3 is
```

```
I_out <= I WHEN (EN = '1') ELSE "ZZZ";
end Behavioral;</pre>
```

• 2-way 3-bit multiplexer

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 11:04:35 AM
-- Design Name:
-- Module Name: MUX_2W_3B - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity MUX 2W 3B is
   Port ( A : in STD LOGIC VECTOR (2 downto 0);
          B : in STD LOGIC VECTOR (2 downto 0);
          Sel : in STD_LOGIC;
          Y : out STD_LOGIC_VECTOR (2 downto 0));
end MUX 2W 3B;
architecture Behavioral of MUX 2W 3B is
component Tri_Buffer_3
```

```
Port ( I : in STD_LOGIC_VECTOR (2 downto 0);
           EN : in STD_LOGIC;
           I out : out STD LOGIC VECTOR (2 downto 0));
end component;
SIGNAL Y1, Y2 : STD_LOGIC_VECTOR (2 downto 0);
SIGNAL EN_A,EN_B : STD_LOGIC;
begin
    EN A <= NOT(Sel);
    EN B <= Sel;
    Buffer1 : Tri Buffer 3
        port map (
        I \Rightarrow A
        EN => EN A,
        I_out => Y1);
    Buffer2 : Tri_Buffer_3
       port map (
        I \Rightarrow B
       EN => EN B,
        I out => Y2);
    Y <= Y1 WHEN( Y2= "ZZZ") ELSE Y2;
end Behavioral;
```

• 2-way 4-bit multiplexer

```
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 11:53:50 AM
-- Design Name:
-- Module Name: MUX_2W_4B - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
```

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity MUX 2W 4B is
    Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
           B : in STD_LOGIC_VECTOR (3 downto 0);
           Sel : in STD_LOGIC;
           Y : out STD_LOGIC_VECTOR (3 downto 0));
end MUX 2W 4B;
architecture Behavioral of MUX_2W_4B is
component Tri Buffer 4
   Port ( I : in STD LOGIC VECTOR (3 downto 0);
           EN : in STD LOGIC;
           I out : out STD LOGIC VECTOR (3 downto 0));
end component;
SIGNAL Y1, Y2 : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL EN A, EN B : STD LOGIC;
begin
   EN A <= NOT(Sel);
    EN B <= Sel;
    Buffer1 : Tri Buffer 4
        port map (
        I \Rightarrow A
        EN => EN_A,
        I out => Y1);
    Buffer2 : Tri Buffer 4
        port map (
        I \Rightarrow B
        EN => EN_B,
        I out \Rightarrow Y2);
    Y <= Y1 WHEN( Y2= "ZZZZ") ELSE Y2;
```

end Behavioral;

8-way 4-bit multiplexer

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 02:00:13 PM
-- Design Name:
-- Module Name: MUX 8W 4B - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM. VComponents.all;
entity MUX 8W 4B is
   Port ( Reg0 : in STD_LOGIC_VECTOR (3 downto 0);
          Reg1 : in STD_LOGIC_VECTOR (3 downto 0);
         Reg2 : in STD_LOGIC_VECTOR (3 downto 0);
         Reg3 : in STD_LOGIC_VECTOR (3 downto 0);
         Reg4 : in STD_LOGIC_VECTOR (3 downto 0);
         Reg5 : in STD_LOGIC_VECTOR (3 downto 0);
         Reg6 : in STD LOGIC VECTOR (3 downto 0);
         Reg7: in STD LOGIC VECTOR (3 downto 0);
         RegSel : in STD LOGIC VECTOR (2 downto 0);
         RegOut : out STD_LOGIC_VECTOR (3 downto 0));
end MUX_8W_4B;
architecture Behavioral of MUX_8W_4B is
component Decoder 3 to 8
   port(
       I : IN STD LOGIC VECTOR(2 downto 0);
       EN : IN STD LOGIC;
       Y : OUT STD LOGIC VECTOR(7 downto 0));
end component;
component Tri_Buffer_4
```

```
Port ( I : in STD_LOGIC_VECTOR (3 downto 0);
            EN : in STD LOGIC;
            I out : out STD LOGIC VECTOR (3 downto 0));
end component;
SIGNAL Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Reg_EN : STD_LOGIC_VECTOR(7 downto 0);
begin
    Decoder: Decoder_3_to_8
        port map (
        I => RegSel,
        EN => '1',
         Y => Reg EN);
    Buffer0 : Tri_Buffer_4
             port map (
             I \Rightarrow Reg0,
             EN => Reg_EN(0),
             I_out => Y0);
    Buffer1 : Tri_Buffer_4
             port map (
             I \Rightarrow Reg1,
             EN => Reg EN(1),
             I out => Y1);
    Buffer2 : Tri_Buffer_4
            port map (
             I \Rightarrow Reg2,
             EN => Reg EN(2),
             I out \Rightarrow Y2);
    Buffer3 : Tri_Buffer_4
             port map (
             I \Rightarrow Reg3,
             EN \Rightarrow Reg EN(3),
             I out \Rightarrow Y3);
    Buffer4 : Tri Buffer 4
             port map (
             I \Rightarrow Reg4,
             EN => Reg EN(4),
             I_out => Y4);
    Buffer5 : Tri_Buffer_4
             port map (
             I \Rightarrow Reg5,
             EN \Rightarrow Reg EN(5),
             I out => Y5);
    Buffer6 : Tri_Buffer_4
             port map (
             I \Rightarrow Reg6,
             EN => Reg EN(6),
             I out => Y6);
    Buffer7 : Tri_Buffer_4
```

```
port map (
    I => Reg7,
    EN => Reg_EN(7),
    I_out => Y7);

RegOut <= Y0 WHEN( Y0 /= "ZZZZ") ELSE
    Y1 WHEN( Y1 /= "ZZZZ") ELSE
    Y2 WHEN( Y2 /= "ZZZZ") ELSE
    Y3 WHEN( Y3 /= "ZZZZ") ELSE
    Y4 WHEN( Y4 /= "ZZZZ") ELSE
    Y5 WHEN( Y5 /= "ZZZZ") ELSE
    Y6 WHEN( Y6 /= "ZZZZ") ELSE
    Y7 WHEN( Y7 /= "ZZZZ");</pre>
```

end Behavioral;

Register Bank

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 03:44:08 PM
-- Design Name:
-- Module Name: RegBank - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity RegBank is
   Port ( D : in STD LOGIC VECTOR (3 downto 0);
         Reg EN : in STD LOGIC VECTOR (2 downto 0);
         CLK : in STD LOGIC;
         Res : in STD LOGIC;
```

```
Q0 : out STD_LOGIC_VECTOR (3 downto 0);
            Q1 : out STD_LOGIC_VECTOR (3 downto 0):= "0000";
            Q2 : out STD LOGIC VECTOR (3 downto 0);
            Q3 : out STD_LOGIC_VECTOR (3 downto 0);
            Q4 : out STD_LOGIC_VECTOR (3 downto 0);
            Q5 : out STD_LOGIC_VECTOR (3 downto 0);
            Q6 : out STD_LOGIC_VECTOR (3 downto 0);
            Q7 : out STD LOGIC VECTOR (3 downto 0));
end RegBank;
architecture Behavioral of RegBank is
component Decoder_3_to_8
    Port ( I : in STD LOGIC VECTOR (2 downto 0);
            EN : in STD LOGIC;
            Y : out STD LOGIC VECTOR (7 downto 0));
end component;
component Reg
    Port ( D : in STD_LOGIC_VECTOR (3 downto 0);
            En : in STD LOGIC;
            Clk : in STD LOGIC;
            Res : in STD LOGIC;
            Q : out STD_LOGIC_VECTOR (3 downto 0));
end component;
SIGNAL R EN : STD LOGIC VECTOR (7 downto 0);
begin
    Decoder : Decoder_3_to_8
    port map (
        I => Reg EN,
        EN => '1',
        Y => R_EN );
    R0 : Reg
    port map (
        D => "0000",
        EN \Rightarrow R EN(0),
        Clk => CLK,
        Q \Rightarrow Q0,
        Res \Rightarrow Res );
    R1 : Reg
    port map (
        D \Rightarrow D
        EN \Rightarrow R_EN(1),
        Clk => CLK,
        Q \Rightarrow Q1,
        Res \Rightarrow Res );
    R2 : Reg
    port map (
        D \Rightarrow D_{\prime}
        EN \Rightarrow R EN(2),
        Clk => CLK,
        Q \Rightarrow Q2,
        Res \Rightarrow Res );
```

```
R3 : Reg
     port map (
          D \Rightarrow D
          EN \Rightarrow R_EN(3),
          Clk => CLK,
          Q => Q3,
          Res => Res );
     R4 : Req
     port map (
          D \Rightarrow D
          EN \Rightarrow R_EN(4),
          Clk => CLK,
          Q \Rightarrow Q4,
          Res \Rightarrow Res );
     R5 : Reg
     port map (
          D => D,
          EN \Rightarrow R EN(5),
          Clk => CLK,
          Q \Rightarrow Q5,
          Res => Res );
     R6 : Reg
     port map (
          D \Rightarrow D_{\prime}
          EN \Rightarrow R_EN(6),
          Clk => CLK,
          Q => Q6,
          Res \Rightarrow Res );
     R7 : Reg
     port map (
          D \Rightarrow D
          EN \Rightarrow R EN(7),
          Clk => CLK,
          Q \Rightarrow Q7,
          Res => Res );
end Behavioral;
```

• Program ROM

```
-- Company:
-- Engineer:
--
-- Create Date: 06/02/2023 05:04:37 PM
-- Design Name:
-- Module Name: ProgROM - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
```

```
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ProgROM is
   Port ( M Sel : in STD LOGIC VECTOR (2 downto 0);
          Instruction : out STD LOGIC VECTOR (11 downto 0));
end ProgROM;
architecture Behavioral of ProgROM is
   type rom_type is array (0 to 7) of std_logic_vector (11 downto 0);
       SIGNAL program ROM : rom type := (
           "100010000011", -- MOVI R1,3
           "100100000001", -- MOVI R2,1
           "010100000000", -- NEG R2
           "001110010000", -- ADD R7,R1
           "000010100000", -- ADD R1,R2
           "110010000111", --JZR R1,7
           "110000000011", --JZR R0,3
"110000000111" -- NULL
           );
begin
   Instruction <= program_ROM(to_integer(unsigned(M_Sel)));</pre>
end Behavioral;
```

Instruction Decoder

```
-- Company:
-- Engineer:
--
-- Create Date: 06/05/2023 06:59:12 PM
```

```
-- Design Name:
-- Module Name: Instruction Decoder - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM. VComponents.all;
entity Instruction_Decoder is
   Port ( Instruction : in STD_LOGIC_VECTOR (11 downto 0);
          Reg_Check_J : in STD_LOGIC_VECTOR (3 downto 0);
          Reg EN : out STD LOGIC VECTOR (2 downto 0);
          Load Sel : out STD LOGIC;
          Im Val : out STD LOGIC VECTOR (3 downto 0);
          Reg_Sel_1 : out STD_LOGIC_VECTOR (2 downto 0);
          Reg Sel 2 : out STD LOGIC VECTOR (2 downto 0);
          Add Sub Sel : out STD LOGIC;
          Jump Flag : out STD LOGIC;
          ASU EN : out STD LOGIC := '0';
          Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
end Instruction Decoder;
architecture Behavioral of Instruction Decoder is
begin
   process(Instruction, reg_check_j) begin
       case Instruction(11 downto 10) is
           when "00" =>
               -- sending addresses of the register to be enabled
               Reg Sel 1 <= Instruction(9 downto 7);</pre>
               Reg Sel_2 <= Instruction(6 downto 4);</pre>
               Add Sub Sel <= '0';
               Reg EN <= Instruction(9 downto 7); -- Enabling the register to</pre>
store the answer
               Load Sel <= '0'; -- selecting the output of the 4 bit Add sub unit
(ASU 4)
               Jump Flag <= '0';</pre>
```

```
Im_Val <= "0000";</pre>
                  Jump Address <= "000";</pre>
                  ASU EN <= '1';
             when "01" =>
                  Reg_Sel_2 <= Instruction(9 downto 7);</pre>
                  Reg_Sel_1 <= "000";</pre>
                  Reg EN <= Instruction(9 downto 7);</pre>
                  Add Sub Sel <= '1'; -- Enable subtractor
                  ASU EN <= '1';
                  Load Sel <= '0';
                  Im_Val <= "0000";</pre>
                  Jump Flag <= '0';</pre>
                  Jump_Address <= "000";</pre>
             when "10" =>
                  Reg_EN <= Instruction(9 downto 7);</pre>
                  Im_Val <= Instruction(3 downto 0);</pre>
                  Load_Sel <= '1'; -- selecting the immediate value</pre>
                  Jump_Flag <= '0';</pre>
                  reg sel 2 <= "000";
                  reg sel 1 <= "000";
                  Add Sub Sel <= '0';
                  Jump Address <= "000";</pre>
             when "11" =>
                  Reg_Sel_1 <= Instruction(9 downto 7);</pre>
                  reg_sel_2 <= "000";
                  load_sel <= '0';
                  Add Sub Sel <= '0';
                  Im_Val <= "0000";</pre>
                  reg en <= "000";
                  if (Reg Check J = "0000") then -- jump if value in register at
Reg_Sel_1 is 0
                      Jump_Flag <= '1';</pre>
                      Jump Address <= Instruction(2 downto 0);</pre>
                  end if;
             when others =>
         end case;
    end process;
end Behavioral;
```

Processor

```
-- Company:
-- Engineer:
--
-- Create Date: 06/07/2023 06:17:37 PM
-- Design Name:
-- Module Name: NanoProcessor - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
```

```
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity NanoProcessor is
   Port ( CLK : in STD LOGIC;
         Res : in STD LOGIC;
          Zero: out STD LOGIC;
          Overflow : out STD LOGIC;
          Reg7_LED: out STD_LOGIC_VECTOR (3 downto 0);
          Reg7 7Seg : out STD LOGIC VECTOR (6 downto 0);
          Anode : out STD_LOGIC_VECTOR (3 downto 0):= "1110");
end NanoProcessor;
architecture Behavioral of NanoProcessor is
   component Instruction_Decoder
       Port (Instruction: in STD LOGIC VECTOR (11 downto 0);
              Reg_Check_J : in STD_LOGIC_VECTOR (3 downto 0);
              Reg EN : out STD LOGIC VECTOR (2 downto 0);
              Load_Sel : out STD_LOGIC;
              Im Val : out STD LOGIC VECTOR (3 downto 0);
              Reg_Sel_1 : out STD_LOGIC_VECTOR (2 downto 0);
              Reg Sel 2 : out STD LOGIC VECTOR (2 downto 0);
              Add Sub Sel : out STD LOGIC;
              Jump_Flag : out STD_LOGIC;
              ASU_EN : out STD_LOGIC := '0';
              Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
   end component;
   component RegBank
       Port ( D : in STD_LOGIC_VECTOR (3 downto 0);
              CLK : in STD LOGIC;
              Reg EN : in STD LOGIC VECTOR (2 downto 0);
              Res : in STD LOGIC;
              Q0 : out STD LOGIC VECTOR (3 downto 0);
              Q1 : out STD LOGIC VECTOR (3 downto 0);
              Q2 : out STD LOGIC VECTOR (3 downto 0);
              Q3 : out STD LOGIC VECTOR (3 downto 0);
              Q4 : out STD_LOGIC_VECTOR (3 downto 0);
```

```
Q5 : out STD_LOGIC_VECTOR (3 downto 0);
           Q6 : out STD LOGIC VECTOR (3 downto 0);
           Q7 : out STD LOGIC VECTOR (3 downto 0));
end component;
component ProgROM
   Port ( M_Sel : in STD_LOGIC_VECTOR (2 downto 0);
           Instruction : out STD LOGIC VECTOR (11 downto 0));
end component;
component PC 3
   Port ( D : in STD_LOGIC VECTOR (2 downto 0) := "000";
           Res : in STD LOGIC;
           Clk : in STD LOGIC;
           Q : out STD LOGIC VECTOR (2 downto 0) := "000");
end component;
component ASU 4
    Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
           B : in STD_LOGIC_VECTOR (3 downto 0);
           AS Sel : in STD LOGIC:='0';
           ASU EN : in STD LOGIC;
           Sum : out STD LOGIC VECTOR (3 downto 0);
           Carry : out STD LOGIC;
           Overflow : out STD LOGIC;
           Zero : out STD LOGIC);
end component;
component RCA 3
    Port ( I : in STD LOGIC VECTOR (2 downto 0) := "000";
           S out : out STD LOGIC VECTOR (2 downto 0) := "000");
end component;
component MUX 8W 4B
    Port ( Reg0 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg1 : in STD LOGIC VECTOR (3 downto 0);
           Reg2: in STD LOGIC VECTOR (3 downto 0);
           Reg3 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg4 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg5 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg6 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg7 : in STD_LOGIC_VECTOR (3 downto 0);
           RegSel : in STD LOGIC VECTOR (2 downto 0);
           RegOut : out STD LOGIC VECTOR (3 downto 0));
end component;
component MUX 2W 3B
    Port ( A : in STD_LOGIC_VECTOR (2 downto 0) := "000";
           B : in STD LOGIC VECTOR (2 downto 0) := "000";
           Sel : in STD LOGIC;
           Y : out STD LOGIC VECTOR (2 downto 0) := "000");
end component;
component MUX 2W 4B
    Port ( A : in STD LOGIC VECTOR (3 downto 0);
           B : in STD LOGIC VECTOR (3 downto 0);
           Sel : in STD LOGIC;
           Y : out STD LOGIC VECTOR (3 downto 0));
end component;
```

```
component LUT 16 7
        Port (address: in STD LOGIC VECTOR (3 downto 0);
               data : out STD LOGIC VECTOR (6 downto 0));
    end component;
    component Slow_Clk
        Port ( Clk_in : in STD_LOGIC;
             Clk out : out STD LOGIC);
    end component;
SIGNAL CLK_Slow, Load_Sel, AS_Sel, Jump_Flag, Carry, ASU_EN: STD_LOGIC;
SIGNAL Instruction : STD LOGIC VECTOR (11 downto 0);
SIGNAL A Out, Im Val, ASU 4 Sum, D, B Out : STD LOGIC VECTOR (3 downto 0);
SIGNAL Reg0, Reg1, Reg2, Reg3, Reg4, Reg5, Reg6, Reg7 : STD_LOGIC_VECTOR (3 downto
0);
SIGNAL Reg_EN, Reg_Sel_A, Reg_Sel_B, Jump_Address, M_Sel,Incremented_Address:
STD LOGIC VECTOR (2 downto 0);
SIGNAL Next_Address : STD_LOGIC_VECTOR (2 downto 0) := "000";
begin
Slow_Clk_0 : Slow_Clk port map (
   Clk in => CLK,
   Clk out => CLK Slow);
Instruction Decoder 0 : Instruction Decoder port map (
    Instruction => Instruction,
    Reg_Check_J => A_Out,
    Reg EN => Reg EN,
    Load_Sel => Load_Sel,
    Im Val => Im Val,
    Reg Sel 1 => Reg Sel A,
    Reg_Sel_2 => Reg_Sel_B,
    Add_Sub_Sel => AS_Sel,
    Jump Flag => Jump Flag,
    ASU EN => ASU EN,
    Jump Address => Jump Address);
MUX 2W 4B 0 : MUX 2W 4B port map ( -- MUX to select Data to be sent to registers
    A => ASU 4 Sum,
    B \Rightarrow Im Val,
    Sel => Load Sel,
    Y => D);
Add_Sub_Unit : ASU_4 port map (
    A => A_Out,
    B \Rightarrow B Out,
    AS Sel => AS_Sel,
    ASU EN => ASU EN,
    Sum => ASU 4 Sum,
   Carry => Carry,
    Overflow => Overflow,
    Zero => Zero);
MUX_8W_4B_A : MUX_8W_4B port map (
   Reg0 => Reg0,
   Reg1 => Reg1,
```

```
Reg2 => Reg2,
    Reg3 => Reg3,
    Reg4 => Reg4,
    Reg5 => Reg5,
    Reg6 => Reg6,
    Reg7 => Reg7,
    RegSel => Reg_Sel_A,
    RegOut => A Out);
MUX_8W_4B_B : MUX_8W_4B port map (
    Reg0 => Reg0,
    Reg1 => Reg1,
    Reg2 \Rightarrow Reg2,
    Reg3 => Reg3,
    Reg4 => Reg4,
    Reg5 => Reg5,
    Reg6 => Reg6,
    Reg7 => Reg7,
    RegSel => Reg_Sel_B,
    RegOut => B_Out);
Adder_3bit : RCA_3 port map (
    I => M Sel,
    S out => Incremented Address);
{\tt MUX\_2W\_3B\_0} : {\tt MUX\_2W\_3B} port map ( -- to select the address of the next instruction
    A => Incremented Address,
    B => Jump_Address,
    Sel => Jump Flag,
    Y => Next Address);
Program_Counter : PC_3 port map (
    D => Next_Address,
    Res => Res,
    Clk => CLK Slow,
    Q \Rightarrow M Sel);
Program_ROM : ProgROM port map (
    M Sel => M_Sel,
    Instruction => Instruction);
Register_bank : RegBank port map (
    D => D,
    CLK => CLK_Slow,
    Reg_EN => Reg_EN,
    Res => Res,
    Q0 \Rightarrow Reg0,
    Q1 \Rightarrow Reg1,
    Q2 \Rightarrow Reg2,
    Q3 \Rightarrow Reg3,
    Q4 \Rightarrow Reg4,
    Q5 \Rightarrow Reg5,
    Q6 => Reg6,
    Q7 \Rightarrow Reg7);
LUT_7Seg : LUT_16_7 port map (
```

```
address => Reg7,
  data => Reg7_7Seg);

Reg7_LED <= Reg7;
end Behavioral;</pre>
```

Test Bench Codes

• 4-bit Add/Subtract unit

```
______
-- Company:
-- Engineer:
-- Create Date: 06/01/2023 10:30:45 AM
-- Design Name:
-- Module Name: ASU_4_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ASU 4 TB is
-- Port ();
end ASU_4_TB;
architecture Behavioral of ASU_4_TB is
component ASU 4
   Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
          B : in STD_LOGIC_VECTOR (3 downto 0);
         AS_Sel : in STD_LOGIC;
```

```
ASU_EN : in STD_LOGIC;
           Sum : out STD_LOGIC_VECTOR (3 downto 0);
           Carry : out STD LOGIC;
           Overflow : out STD LOGIC;
           Zero : out STD_LOGIC);
end component;
SIGNAL A, B, Sum : STD LOGIC VECTOR (3 downto 0);
SIGNAL AS Sel, Carry, Zero, Overflow, ASU EN : STD LOGIC;
begin
   UUT : ASU 4 PORT MAP (
            A => A
            B \Rightarrow B
            AS Sel => AS Sel,
            ASU_EN => ASU_EN,
            Sum => Sum,
            Carry => Carry,
            Overflow => Overflow,
            Zero => Zero);
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        ASU_EN <= '0';
        A <= "1010";
        B <= "0101";
        AS Sel <= '0';
        wait for 100ns;
        AS_Sel <= '1';
        wait for 100ns;
        ASU EN <= '1';
        A <= "1010";
        B <= "0101";
        AS_Sel <= '0';
        wait for 100ns;
        AS Sel <= '1';
        wait for 100ns;
        A <= "0100";
        B <= "1110";
        AS Sel <= '0';
        wait for 100ns;
        AS_Sel <= '1';
        wait for 100ns;
        A <= "0101";
        B <= "0110";
        AS Sel <= '0';
        wait for 100ns;
```

```
AS_Sel <= '1';
wait for 100ns;

A <= "0011";
B <= "0011";
AS_Sel <= '0';
wait for 100ns;

A <= "0000";
B <= "0001";
AS_Sel <= '1';
wait for 100ns;

AS_Sel <= '1';
wait;
end process;

end Behavioral;
```

• 3-bit adder

```
-- Company:
-- Engineer:
-- Create Date: 06/01/2023 08:52:10 PM
-- Design Name:
-- Module Name: RCA_3_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
\ensuremath{\text{--}} arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
```

```
entity RCA_3_TB is
-- Port ( );
end RCA 3 TB;
architecture Behavioral of RCA_3_TB is
component RCA_3
   Port ( I : in STD LOGIC VECTOR (2 downto 0);
          S out : out STD LOGIC VECTOR (2 downto 0));
end component;
SIGNAL I, S_out : STD_LOGIC_VECTOR (2 downto 0);
begin
    UUT: RCA_3 PORT MAP (
            I \Rightarrow I
            S_out => S_out);
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        I <= "010";</pre>
        wait for 100ns;
        I <= "101";</pre>
        wait for 100ns;
        I <= "001";</pre>
        wait for 100ns;
        I <= "100";</pre>
        wait;
    end process;
end Behavioral;
```

• 3-bit Program Counter (PC)

```
-- Company:
-- Engineer:
--
-- Create Date: 06/01/2023 09:25:00 PM
-- Design Name:
-- Module Name: PC_3_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
-- Revision:
```

```
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity PC_3_TB is
-- Port ( );
end PC_3_TB;
architecture Behavioral of PC_3_TB is
component PC 3
    Port ( D : in STD LOGIC VECTOR (2 downto 0);
           Res : in STD LOGIC;
           Clk : in STD_LOGIC;
           Q : out STD_LOGIC_VECTOR (2 downto 0));
end component;
SIGNAL D, Q : STD LOGIC VECTOR (2 downto 0);
SIGNAL Res, Clk : STD LOGIC := '0';
begin
    UUT : PC 3 PORT MAP (
        D \Rightarrow D_{\prime}
        Res => Res,
        Clk => Clk,
        Q \Rightarrow Q;
    process begin
        Clk <= NOT(Clk);
        wait for 10ns;
    end process;
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        D <= "010";
        wait for 100ns;
        Res <= '1';
        wait for 100ns;
        D <= "101";
        wait for 100ns;
```

```
Res <= '1';
wait for 100ns;

Res <= '0';
wait;
end process;

end Behavioral;</pre>
```

• tri-state buffer

EN : in STD LOGIC;

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 10:41:54 AM
-- Design Name:
-- Module Name: Tri_Buffer_3_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Tri_Buffer_3_TB is
-- Port ();
end Tri Buffer 3 TB;
architecture Behavioral of Tri_Buffer_3_TB is
component Tri_Buffer_3
   Port ( I : in STD_LOGIC_VECTOR (2 downto 0);
```

```
I_out : out STD_LOGIC_VECTOR (2 downto 0));
end component;
SIGNAL I, I_out : STD_LOGIC_VECTOR (2 downto 0);
SIGNAL EN : STD LOGIC;
begin
    UUT : Tri Buffer 3 PORT MAP (
            I \Rightarrow I
            EN => EN
            I_out => I_out);
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        EN <= '1';
        I <= "010";</pre>
        wait for 100ns;
        EN <= '0';
        wait for 100ns;
        I <= "101";</pre>
        wait for 100ns;
        EN <= '1';
        wait;
    end process;
end Behavioral;
```

2-way 3-bit multiplexer

```
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM. VComponents.all;
entity MUX_2W_3B_TB is
-- Port ( );
end MUX_2W_3B_TB;
architecture Behavioral of MUX 2W 3B TB is
component MUX 2W 3B
   Port ( A : in STD LOGIC VECTOR (2 downto 0);
          B: in STD LOGIC VECTOR (2 downto 0);
          Sel : in STD LOGIC;
          Y : out STD_LOGIC_VECTOR (2 downto 0));
end component;
SIGNAL A, B, Y : STD_LOGIC_VECTOR (2 downto 0);
SIGNAL Sel : STD LOGIC;
begin
   UUT : MUX 2W 3B PORT MAP (
           A => A
           B \Rightarrow B
           Sel => Sel,
           Y => Y);
   process begin
       -- 210250 -> 11 0011 0101 0100 1010
       -- 210661 -> 11 0011 0110 1110 0101
       A <= "010";
       B <= "101";
       Sel <= '0';
       wait for 400ns;
       Sel <= '1';
       wait;
   end process;
end Behavioral;
```

• 2-way 4-bit multiplexer

```
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 11:58:35 AM
-- Design Name:
-- Module Name: MUX 2W 4B TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity MUX_2W_4B_TB is
-- Port ();
end MUX 2W 4B TB;
architecture Behavioral of MUX_2W_4B_TB is
component MUX 2W 4B
   Port ( A : in STD LOGIC VECTOR (3 downto 0);
          B : in STD LOGIC VECTOR (3 downto 0);
          Sel : in STD LOGIC;
          Y : out STD_LOGIC_VECTOR (3 downto 0));
end component;
SIGNAL A, B, Y: STD LOGIC VECTOR (3 downto 0);
SIGNAL Sel : STD LOGIC;
begin
   UUT : MUX 2W 4B PORT MAP (
          A => A
           B => B,
```

```
Sel => Sel,
        Y => Y);

process begin
    -- 210250 -> 11 0011 0101 0100 1010
    -- 210661 -> 11 0011 0110 1110 0101

A <= "1010";
    B <= "0101";
    Sel <= '0';
    wait for 400ns;

Sel <= '1';
    wait;

end process;

end Behavioral;</pre>
```

• 8-way 4-bit multiplexer

```
______
-- Company:
-- Engineer:
-- Create Date: 06/02/2023 02:35:32 PM
-- Design Name:
-- Module Name: MUX_8W_4B_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity MUX 8W 4B TB is
-- Port ();
```

```
end MUX_8W_4B_TB;
architecture Behavioral of MUX 8W 4B TB is
component MUX 8W 4B
    Port ( Reg0 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg1 : in STD_LOGIC_VECTOR (3 downto 0);
           Reg2: in STD LOGIC VECTOR (3 downto 0);
           Reg3 : in STD LOGIC VECTOR (3 downto 0);
           Reg4: in STD LOGIC VECTOR (3 downto 0);
           Reg5 : in STD LOGIC VECTOR (3 downto 0);
           Reg6 : in STD LOGIC VECTOR (3 downto 0);
           Reg7: in STD LOGIC VECTOR (3 downto 0);
           RegSel : in STD LOGIC VECTOR (2 downto 0);
           RegOut : out STD LOGIC VECTOR (3 downto 0));
end component;
SIGNAL Reg0, Reg1, Reg2, Reg3, Reg4, Reg5, Reg6, Reg7, RegOut : STD_LOGIC_VECTOR
(3 downto 0);
SIGNAL RegSel : STD_LOGIC_VECTOR (2 downto 0);
begin
    UUT : MUX 8W 4B PORT MAP (
           Reg0 => Reg0,
           Reg1 => Reg1,
           Reg2 => Reg2,
           Reg3 => Reg3,
           Reg4 => Reg4,
           Reg5 => Reg5,
           Reg6 => Reg6,
           Reg7 => Reg7,
           RegSel => RegSel,
           RegOut => RegOut);
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        Reg0 <= "1010";
        Reg1 <= "0101";
        Reg2 <= "0100";
        Reg3 <= "1110";
        Reg4 <= "0111";
        Reg5 <= "0110";
        Reg6 <= "0011";
        Reg7 <= "1011";
        RegSel <= "000";</pre>
        wait for 100ns;
        RegSel <= "001";
        wait for 100ns;
        RegSel <= "010";
        wait for 100ns;
        RegSel <= "011";</pre>
        wait for 100ns;
```

```
RegSel <= "100";
        wait for 100ns;
        RegSel <= "101";</pre>
        wait for 100ns;
        RegSel <= "110";
        wait for 100ns;
        RegSel <= "111";</pre>
        wait;
    end process;
end Behavioral;
```

Register Bank

```
______
-- Company:
-- Engineer:
-- Create Date: 06/05/2023 04:27:43 PM
-- Design Name:
-- Module Name: RegBank TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity RegBank TB is
-- Port ();
end RegBank TB;
```

```
architecture Behavioral of RegBank_TB is
component RegBank is
    Port ( D : in STD LOGIC VECTOR (3 downto 0);
           CLK : in STD_LOGIC;
           Reg_EN : in STD_LOGIC_VECTOR (2 downto 0);
           Res : in STD LOGIC;
           Q0 : out STD LOGIC VECTOR (3 downto 0);
           Q1 : out STD LOGIC VECTOR (3 downto 0);
           Q2 : out STD LOGIC VECTOR (3 downto 0);
           Q3 : out STD LOGIC VECTOR (3 downto 0);
           Q4 : out STD LOGIC VECTOR (3 downto 0);
           Q5 : out STD_LOGIC_VECTOR (3 downto 0);
           Q6 : out STD LOGIC VECTOR (3 downto 0);
           Q7 : out STD LOGIC VECTOR (3 downto 0));
end component;
SIGNAL Res, CLK : STD_LOGIC := '0';
SIGNAL D, Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7 : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Reg_EN : STD_LOGIC_VECTOR (2 downto 0);
begin
    UUT : RegBank PORT MAP (
        D \Rightarrow D
        CLK => CLK,
        Reg EN => Reg EN,
        Res => Res,
        Q0 \Rightarrow Q0,
        Q1 => Q1,
        Q2 \Rightarrow Q2,
        Q3 \Rightarrow Q3,
        Q4 \Rightarrow Q4,
        Q5 => Q5,
        Q6 \Rightarrow Q6,
        Q7 => Q7);
     process begin
        CLK <= NOT(CLK);
        wait for 3ns;
    end process;
    process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        D <= "1010";
        Reg EN <= "101";
        wait for 100ns;
        D <= "0101";
        Reg EN <= "100";
        wait for 100ns;
        D <= "1110";
        Reg EN <= "110";
        wait for 100ns;
```

```
Res <= '1';
wait;
end process;
end Behavioral;</pre>
```

Program ROM

```
_____
-- Company:
-- Engineer:
-- Create Date: 06/05/2023 06:31:46 PM
-- Design Name:
-- Module Name: ProgROM_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ProgROM_TB is
-- Port ();
end ProgROM_TB;
architecture Behavioral of ProgROM_TB is
component ProgROM
   Port ( M_Sel : in STD_LOGIC_VECTOR (2 downto 0);
         Instruction : out STD LOGIC VECTOR (11 downto 0));
end component;
SIGNAL M Sel : STD LOGIC VECTOR (2 downto 0);
```

```
SIGNAL Instruction : STD_LOGIC_VECTOR (11 downto 0);
begin
   UUT : ProgROM PORT MAP (
       M_Sel => M_Sel,
        Instruction => Instruction);
   Process begin
    -- 210250 -> 11 0011 0101 0100 1010
    -- 210661 -> 11 0011 0110 1110 0101
       M_Sel <= "010";
       wait for 300ns;
       M Sel <= "101";
       wait for 300ns;
       M Sel <= "001";
       wait;
    end process;
end Behavioral;
```

Instruction Decoder

```
-- Company:
-- Engineer:
-- Create Date: 06/06/2023 03:39:39 PM
-- Design Name:
-- Module Name: Instruction_Decoder_TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
```

```
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Instruction_Decoder_TB is
-- Port ();
end Instruction Decoder TB;
architecture Behavioral of Instruction Decoder TB is
component Instruction Decoder
    Port (Instruction: in STD LOGIC VECTOR (11 downto 0);
           Reg Check J : in STD LOGIC VECTOR (3 downto 0);
           Reg EN : out STD LOGIC VECTOR (2 downto 0);
           Load Sel : out STD LOGIC;
           Im_Val : out STD_LOGIC_VECTOR (3 downto 0);
           Reg_Sel_1 : out STD_LOGIC_VECTOR (2 downto 0);
           Reg_Sel_2 : out STD_LOGIC_VECTOR (2 downto 0);
           Add_Sub_Sel : out STD_LOGIC;
           -- RCA 3 EN : out STD LOGIC := '0';
           Jump Flag : out STD LOGIC;
           Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
end component;
SIGNAL Instruction: STD LOGIC VECTOR (11 downto 0);
SIGNAL Reg_Check_J, Im_Val : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Reg_EN, Reg_Sel_1, Reg_Sel_2, Jump_Address : STD_LOGIC_VECTOR (2 downto 0);
SIGNAL Load_Sel, Add_Sub_Sel, Jump_Flag : STD_LOGIC;
begin
    UUT : Instruction_Decoder PORT MAP (
       Instruction => Instruction,
        Reg_Check_J => Reg Check J,
        Reg EN => Reg EN,
        Load Sel => Load Sel,
        Im Val => Im Val,
        Reg_Sel_1 => Reg_Sel_1,
        Reg_Sel_2 => Reg_Sel_2,
        Add_Sub_Sel => Add_Sub_Sel,
        Jump Flag => Jump Flag,
        Jump Address => Jump Address);
   process begin
        -- 210250 -> 11 0011 0101 0100 1010
        -- 210661 -> 11 0011 0110 1110 0101
        Instruction <= "100010001010";</pre>
        wait for 200ns;
        Instruction <= "000010100000";</pre>
        wait for 200ns;
        Instruction <= "010010000000";</pre>
        wait for 200ns;
        Instruction <= "110010100000";</pre>
```

-- Uncomment the following library declaration if instantiating

```
Reg_Check_J <= "0000";
wait for 200ns;
end process;
end Behavioral;</pre>
```

Processor

```
______
-- Company:
-- Engineer:
-- Create Date: 06/07/2023 10:08:06 PM
-- Design Name:
-- Module Name: Processor TB - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Processor TB is
-- Port ();
end Processor TB;
architecture Behavioral of Processor TB is
component NanoProcessor
   Port ( CLK : in STD_LOGIC;
          Res : in STD_LOGIC;
          Zero: out STD_LOGIC;
          Overflow: out STD_LOGIC;
          Reg7_LED: out STD_LOGIC_VECTOR (3 downto 0);
          Reg7 7Seg : out STD LOGIC VECTOR (6 downto 0);
```

```
Anode : out STD_LOGIC_VECTOR (3 downto 0):= "0111");
end component;
SIGNAL CLK, Res : STD_LOGIC := '0';
SIGNAL Overflow, Zero: STD_LOGIC;
SIGNAL Anode, Reg7_LED: STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Reg7_7Seg : STD_LOGIC_VECTOR (6 downto 0);
begin
UUT : NanoProcessor PORT MAP (
   CLK => CLK,
   Res => Res,
    Zero => Zero,
    Overflow => Overflow,
    Reg7_LED => Reg7_LED,
    Reg7_7Seg => Reg7_7Seg,
    Anode => Anode);
    process begin
       CLK <= NOT(CLK);
       wait for 2ns;
    end process;
    process begin
        Res <= '1';
        wait for 100ns;
        Res <= '0';
        wait;
    end process;
end Behavioral;
```

Timing Diagrams

4-bit Add/Subtract unit

• 3-bit adder

• 3-bit Program Counter (PC)

• tri-state buffer

• 2-way 3-bit multiplexer

• 2-way 4-bit multiplexer

8-way 4-bit multiplexer

Register Bank

Program ROM

Instruction Decoder

Processor

Conclusions

- We need to hardcode assembly instructions as binary values because the microprocessor only understands machine language.
- Simulating and testing each and every component helped us to make sure the correct functionality of our design.
- Since some of the components were already designed in previous labs, we only had to develop them further without starting from scratch.
- When designing circuits, we can use buses instead of many parallel wires.
- This project helped us to understand the functionality of a microprocessor

Contribution

210250D (10 hours)	210661M(10 hours)
4-bit Add/Subtract Unit	3-bit Adder
2-way 3-bit Multiplexer	3-bit Program Counter
2-way 4-bit Multiplexer	Register Bank
8-way 4-bit Multiplexer	Instruction Decoder
Program ROM	
Tri-state buffer	