Select control stores

The client has selected store numbers 77, 86 and 88 as trial stores and want control stores to be established stores that are operational for the entire observation period.

We would want to match trial stores to control stores that are similar to the trial store prior to the trial period of Feb 2019 in terms of :

- · Monthly overall sales revenue
- · Monthly number of customers
- · Monthly number of transactions per customer

<pre>In [3]: 1 client_df.head()</pre>	
---------------------------------------	--

Out[3]:

	LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_§
0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2	
1	1002	2018- 09-16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	
2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	
3	1003	2019- 03-08	1	4	106	Natural ChipCo Hony Soy Chckn175g	1	
4	1004	2018- 11-02	1	5	96	WW Original Stacked Chips 160g	1	
4								>

```
In [4]:
          1 | # check for null values
          2 client_df.isnull().sum()
Out[4]: LYLTY CARD NBR
                             0
        DATE
                             0
        STORE NBR
                             0
        TXN_ID
                             0
        PROD NBR
        PROD NAME
        PROD QTY
        TOT_SALES
        PACK SIZE
                             0
        BRAND
        LIFESTAGE
                             0
        PREMIUM CUSTOMER
        dtype: int64
In [5]:
          1 # check datatypes
          2 client_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 264834 entries, 0 to 264833
        Data columns (total 12 columns):
         #
             Column
                                Non-Null Count
                                                 Dtype
                                _____
                                                 _ _ _ _ _
         0
             LYLTY_CARD_NBR
                                264834 non-null
                                                 int64
         1
             DATE
                                264834 non-null
                                                 object
         2
             STORE_NBR
                                264834 non-null
                                                int64
         3
             TXN ID
                                264834 non-null
                                                int64
         4
             PROD NBR
                                264834 non-null
                                                int64
         5
             PROD NAME
                                264834 non-null object
         6
             PROD QTY
                                264834 non-null
                                                int64
         7
             TOT SALES
                                264834 non-null float64
         8
             PACK_SIZE
                                264834 non-null
                                                int64
         9
             BRAND
                                264834 non-null
                                                object
         10
             LIFESTAGE
                                264834 non-null
                                                 object
         11 PREMIUM CUSTOMER 264834 non-null
                                                 object
        dtypes: float64(1), int64(6), object(5)
        memory usage: 24.2+ MB
In [6]:
            # change date column to datetime format
            client df['DATE'] = pd.to datetime(client df['DATE'])
```

In [7]: 1 client_df.head()

Out[7]:

	LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_§
0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2	
1	1002	2018- 09-16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	
2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	
3	1003	2019- 03-08	1	4	106	Natural ChipCo Hony Soy Chckn175g	1	
4	1004	2018- 11-02	1	5	96	WW Original Stacked Chips 160g	1	

In [8]: 1 client_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 264834 entries, 0 to 264833

Data columns (total 12 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	LYLTY_CARD_NBR	264834 non-null	int64
1	DATE	264834 non-null	datetime64[ns]
2	STORE_NBR	264834 non-null	int64
3	TXN_ID	264834 non-null	int64
4	PROD_NBR	264834 non-null	int64
5	PROD_NAME	264834 non-null	object
6	PROD_QTY	264834 non-null	int64
7	TOT_SALES	264834 non-null	float64
8	PACK_SIZE	264834 non-null	int64
9	BRAND	264834 non-null	object
10	LIFESTAGE	264834 non-null	object
11	PREMIUM_CUSTOMER	264834 non-null	object
44		(1) £1+(1/1)	: -+ C 1 / C \ + / 1 \

dtypes: datetime64[ns](1), float64(1), int64(6), object(4)

memory usage: 24.2+ MB

```
1 # check unique values for all features
In [9]:
          2 client_df.nunique()
Out[9]: LYLTY CARD NBR
                               72636
        DATE
                                 364
        STORE NBR
                                 272
        TXN_ID
                              263125
        PROD NBR
                                 114
        PROD NAME
                                 114
        PROD QTY
                                   5
        TOT SALES
                                 111
        PACK SIZE
                                  21
        BRAND
                                  21
        LIFESTAGE
                                   7
        PREMIUM CUSTOMER
                                   3
        dtype: int64
```

Client wanted to select store numbers 77, 86 88 as trial stores and want control stores to be established stores that are operational for the entire observation period. We would want to match trial stores to control stores that are similar to the trial store prior to the trial period of Feb 2019 in terms of:

- · Monthly overall sales revenue
- · Monthly number of customers
- · Monthly number of transactions per customer

```
In [10]:
             # change datatypes first
           2 client_df['DATE'] = client_df['DATE'].astype("str")
In [11]:
              # add a new month ID column with the format yyyymm
              yearmonth values = []
           2
              for i in range(client df.shape[0]):
           3
                  # get the year data. covert to string for joining later
           4
           5
                  client_year = client_df['DATE'][i].split("-")[0]
           6
                  # get the month data and convert to string for joining
           7
                  client_month = client_df['DATE'][i].split("-")[1]
                  # add values together
           8
           9
                  some value = client year+client month
          10
                  # append to list
          11
                  yearmonth_values.append(some_value)
```

```
In [12]:
           1 | client df['yearmonth'] = yearmonth values
           2 client df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 264834 entries, 0 to 264833
         Data columns (total 13 columns):
                                Non-Null Count
              Column
                                                  Dtype
              -----
                                 -----
              LYLTY CARD NBR
          0
                                264834 non-null
                                                 int64
          1
              DATE
                                264834 non-null
                                                 object
          2
              STORE_NBR
                                264834 non-null
                                                 int64
          3
              TXN ID
                                264834 non-null
                                                  int64
          4
              PROD NBR
                                264834 non-null
                                                  int64
          5
              PROD NAME
                                264834 non-null
                                                 object
          6
              PROD OTY
                                264834 non-null
                                                 int64
          7
              TOT SALES
                                264834 non-null
                                                 float64
          8
              PACK SIZE
                                264834 non-null
                                                  int64
          9
                                                 object
              BRAND
                                264834 non-null
          10 LIFESTAGE
                                264834 non-null
                                                 object
          11 PREMIUM_CUSTOMER 264834 non-null
                                                 object
          12 yearmonth
                                264834 non-null
                                                 object
         dtypes: float64(1), int64(6), object(6)
         memory usage: 26.3+ MB
In [13]:
             # convert month id column to integer datatype
           2 | client_df['yearmonth'] = pd.to_numeric(client_df['yearmonth'])
In [14]:
             # convert the date column back to datetime object
             client df['DATE'] = pd.to datetime(client df['DATE'])
```

In [15]: 1 # check if changes are made
2 client_df

Out[15]:

	LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY
0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2
1	1002	2018- 09-16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1
2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1
3	1003	2019- 03-08	1	4	106	Natural ChipCo Hony Soy Chckn175g	1
4	1004	2018- 11-02	1	5	96	WW Original Stacked Chips 160g	1
264829	2370701	2018- 12-08	88	240378	24	Grain Waves Sweet Chilli 210g	2
264830	2370751	2018- 10-01	88	240394	60	Kettle Tortilla ChpsFeta&Garlic 150g	2
264831	2370961	2018- 10-24	88	240480	70	Tyrrells Crisps Lightly Salted 165g	2
264832	2370961	2018- 10-27	88	240481	65	Old El Paso Salsa Dip Chnky Tom Ht300g	2
264833	2373711	2018- 12-14	88	241815	16	Smiths Crinkle Chips Salt & Vinegar 330g	2

264834 rows × 13 columns

```
In [16]:
           1 client df.dtypes
Out[16]: LYLTY CARD NBR
                                        int64
          DATE
                               datetime64[ns]
          STORE_NBR
                                        int64
          TXN ID
                                        int64
          PROD NBR
                                        int64
          PROD NAME
                                       object
          PROD OTY
                                        int64
          TOT SALES
                                      float64
          PACK_SIZE
                                        int64
          BRAND
                                       object
          LIFESTAGE
                                       object
                                       object
          PREMIUM CUSTOMER
          vearmonth
                                        int64
          dtype: object
```

For each store and month calculate total sales, number of customers, transactions per customer, chips per customer and the average price per unit.

```
In [18]:
           1 # total sales per store per date
           2 total_sales = client_df.groupby(by=['STORE_NBR','yearmonth']).sum()['TOT_SAL
           3 total sales
Out[18]: STORE NBR
                     yearmonth
                     201807
                                  206.9
                     201808
                                  176.1
                     201809
                                  278.8
                     201810
                                  188.1
                     201811
                                  192.6
                                   . . .
         272
                     201902
                                  395.5
                     201903
                                  442.3
                     201904
                                  445.1
                     201905
                                  314.6
                     201906
                                  312.1
         Name: TOT SALES, Length: 3169, dtype: float64
```

```
1 | # get the number of transactions
In [19]:
           2 transactions = client_df.groupby(by=['STORE_NBR','yearmonth']).count()['LYLT
           3 transactions
Out[19]: STORE_NBR
                     yearmonth
                                  52
                     201807
         1
                     201808
                                  43
                     201809
                                  62
                     201810
                                  45
                                  47
                     201811
         272
                     201902
                                  48
                     201903
                                  53
                                  56
                     201904
                     201905
                                  40
                     201906
                                  37
         Name: LYLTY_CARD_NBR, Length: 3169, dtype: int64
In [20]:
           1 # get the number of customers
           2 unique_customers = client_df.groupby(by=['STORE_NBR','yearmonth']).nunique()
           3 unique customers
Out[20]: STORE NBR
                     yearmonth
         1
                     201807
                                  49
                     201808
                                  42
                                  59
                     201809
                     201810
                                  44
                     201811
                                  46
                                  . .
         272
                     201902
                                  45
                     201903
                                  50
                     201904
                                  54
                     201905
                                  34
                     201906
                                  34
         Name: LYLTY CARD NBR, Length: 3169, dtype: int64
In [21]:
           1 # get the number of transactions PER customer
           2 transactions per customer = transactions / unique customers
           3 transactions_per_customer
Out[21]: STORE_NBR
                     yearmonth
         1
                     201807
                                  1.061224
                     201808
                                  1.023810
                     201809
                                  1.050847
                     201810
                                  1.022727
                     201811
                                  1.021739
         272
                     201902
                                  1.066667
                     201903
                                  1.060000
                     201904
                                  1.037037
                     201905
                                  1.176471
                                  1.088235
                     201906
         Name: LYLTY_CARD_NBR, Length: 3169, dtype: float64
```

```
In [22]:
           1 # get the number of chips purchased
           2 chips_purchased = client_df.groupby(by=['STORE_NBR','yearmonth']).sum()['PRO
           3 chips purchased
Out[22]: STORE NBR
                     yearmonth
                     201807
                                   62
                                   54
                     201808
                                   75
                     201809
                     201810
                                   58
                     201811
                                   57
                                  . . .
         272
                     201902
                                   91
                     201903
                                  101
                     201904
                                  105
                     201905
                                   71
                                   70
                     201906
         Name: PROD QTY, Length: 3169, dtype: int64
In [23]:
           1 # get chips PER customer
           2 chips_per_customer = chips_purchased / unique_customers
           3 chips_per_customer
Out[23]: STORE NBR
                     yearmonth
                     201807
                                  1.265306
                     201808
                                  1.285714
                     201809
                                  1.271186
                     201810
                                  1.318182
                     201811
                                  1.239130
                                     . . .
         272
                     201902
                                  2.022222
                     201903
                                  2.020000
                     201904
                                  1.944444
                     201905
                                  2.088235
                     201906
                                  2.058824
         Length: 3169, dtype: float64
In [24]:
           1 # get chips PER transaction
           2 chips_per_transaction = chips_purchased / transactions
           3 chips per transaction
Out[24]: STORE NBR
                     yearmonth
                     201807
                                  1.192308
                     201808
                                  1.255814
                     201809
                                  1.209677
                     201810
                                  1.288889
                     201811
                                  1.212766
         272
                     201902
                                  1.895833
                     201903
                                  1.905660
                     201904
                                  1.875000
                     201905
                                  1.775000
                     201906
                                  1.891892
         Length: 3169, dtype: float64
```

```
In [25]:
            1 # get the average price per unit
              price per unit = total sales / chips purchased
            3 price per unit
Out[25]: STORE NBR
                     yearmonth
                      201807
                                    3.337097
                      201808
                                   3.261111
                      201809
                                   3.717333
                      201810
                                   3.243103
                      201811
                                   3.378947
                                      . . .
          272
                     201902
                                   4.346154
                      201903
                                   4.379208
                      201904
                                   4.239048
                     201905
                                   4.430986
                      201906
                                   4.458571
          Length: 3169, dtype: float64
              # concatenate total sales, num_customers, transactions/customer, chips/custo
In [26]:
            2
              items_tojoin = [total_sales, \
            3
                                unique customers, \
            4
                                transactions_per_customer, \
            5
              #
                                  chips_per_customer,\
            6
                                chips_per_transaction, \
            7
                                price per unit]
            8
              # concatenate and store in a variable
              measureOverTime df = pd.concat(items tojoin, axis=1)
In [27]:
              measureOverTime_df.columns.values
Out[27]: array(['TOT_SALES', 'LYLTY_CARD_NBR', 'LYLTY_CARD_NBR', 0, 1],
                dtype=object)
In [28]:
              # rename columms
              new_names = ["totSales", 'nCustomers', 'nTxnPerCust', 'nChipsPerTxn', 'avgPrice
            2
            3
              measureOverTime_df.columns = new_names
In [29]:
              # check if changes are made
            1
            2 measureOverTime_df.head()
Out[29]:
                                 totSales nCustomers nTxnPerCust nChipsPerTxn avgPricePerUnit
           STORE_NBR yearmonth
                                                 49
                    1
                          201807
                                   206.9
                                                        1.061224
                                                                     1.192308
                                                                                    3.337097
                          201808
                                   176.1
                                                 42
                                                        1.023810
                                                                     1.255814
                                                                                    3.261111
                          201809
                                   278.8
                                                 59
                                                        1.050847
                                                                     1.209677
                                                                                    3.717333
                          201810
                                   188.1
                                                 44
                                                        1.022727
                                                                     1.288889
                                                                                    3.243103
                          201811
                                   192.6
                                                 46
                                                        1.021739
                                                                     1.212766
                                                                                    3.378947
```

```
In [30]:
              measureOverTime df.reset index(inplace=True)
In [31]:
```

Out[31]:

measureOverTime df.head()

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

```
In [32]:
             ## find the stores with full observation (store with all dates)
           3 # first find how many oberservations there are in total:
           4 | client_df['yearmonth'].nunique()
```

Out[32]: 12

```
In [33]:
             # stores that don't have 12 unique "yearmonth" values don't have full observ
           2 store_yearmonth = pd.DataFrame(measureOverTime_df.groupby(by='STORE_NBR').nu
           3 store_yearmonth.loc[store_yearmonth['yearmonth'] != 12]
```

Out[33]:

yearmonth

STORE_NBR	
11	2
31	2
44	11
76	1
85	1
92	1
117	11
193	3
206	2
211	2
218	11
252	2

```
1 # find stores that don't have 12 obervations
In [34]:
           2 store_missingValues = store_yearmonth.loc[store_yearmonth['yearmonth'] != 12
```

201807

Out[560]: 201906

In [36]: 1 measureOverTime_df.head()

Out[36]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

In [38]: 1 print(storesWithFullObs.shape)
2 storesWithFullObs.head()

(3120, 7)

Out[38]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

In [40]:	1	# filter the pre-trial period (before february of 2019)	
	2	<pre>preTrialMeasures = storesWithFullObs.loc[storesWithFullObs['yearmonth'] < 20</pre>	9
	3	<pre>preTrialMeasures.head()</pre>	

Out[40]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

Create a functions that calculates the **correlation** between trial store and other stores based on a single metric

In [41]: 1 client_df.head()

Out[41]:

•		LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_S
	0	104039	2018- 07-01	104	103937	53	RRD Sweet Chilli & Sour Cream 165g	2	
	1	118107	2018- 07-01	118	121300	33	Cobs Popd Swt/Chlli &Sr/Cream Chips 110g	2	
	2	226024	2018- 07-01	226	226348	114	Kettle Sensations Siracha Lime 150g	2	
	3	152040	2018- 07-01	152	150459	25	Pringles SourCream Onion 134g	2	
	4	33140	2018- 07-01	33	30342	10	RRD SR Slow Rst Pork Belly 150g	2	
									•

Out[92]: 0.07521784241886638

```
In [124]:
               # create a functions that calculates the correlation between trial store and
               def findCorrelation(pre trial store, trial store num, measuring metric):
            2
                   # create empty dataframe with column names to store values later
            3
                   some dataframe = pd.DataFrame(columns =
            4
                                                 ['trial store', "other stores", "measure", "co
            5
            6
            7
                   # define number of stores for Looping
            8
                   number of stores = pre trial store['STORE NBR'].unique()
            9
           10
                   for i in number_of_stores:
           11
                       # create a dataframe for the store used for comparison with just the
           12
                       df_forTrial = pd.DataFrame(pre_trial_store.loc[pre_trial_store['STOR])
           13
           14
                       # Create a dataframe for the pre-trial store with the measuring metr
           15
           16
                       measuring_df = pd.DataFrame(pre_trial_store.\
                                                    loc[pre trial store['STORE NBR']==trial
           17
           18
                                                        measuring_metric]).reset_index(drop=
           19
                       # Find correlation between two columns of data
           20
           21
                       correlation val = measuring df.corrwith(df forTrial, axis=0).values[
           22
                       # append the calculated values into a dataframe
           23
           24
                       some_dataframe = some_dataframe.append({
```

"trial store": trial store num,

"measure": measuring metric,

"correlation": correlation val

return the dataframe created in this function

"other stores": i,

}, ignore index=True)

return some_dataframe

25

26

27 28

29 30 31

32

Out[133]:

	trial_store	other_stores	measure	correlation
0	4	1	totSales	-0.513184
1	4	2	totSales	0.128407
2	4	3	totSales	0.227754
3	4	4	totSales	1.000000
4	4	5	totSales	-0.118735
255	4	268	totSales	-0.282850
256	4	269	totSales	0.463409
257	4	270	totSales	0.255360
258	4	271	totSales	0.318078
259	4	272	totSales	0.651821

260 rows × 4 columns

Apart from correlation, calculate a standardized metric based on the absolute difference bewteen the trial store's performance and each control store's performance.

```
In [131]:
               # find magnitude difference
            1
               def findDifference(pre trial store, trial store num, measuring metric):
            2
            3
                   # create empty dataframe
                   some dataframe = pd.DataFrame(columns =
            4
            5
                                                  ['trial_store', "other_stores", "measure", "di
            6
            7
                   # define number of stores for Looping
            8
                   number of stores = pre trial store['STORE NBR'].unique()
            9
           10
                   for i in number_of_stores:
           11
                       df forTrial = pd.DataFrame(pre trial store.loc[pre trial store['STOR
                       measuring_df = pd.DataFrame(pre_trial_store.\
           12
           13
                                                     loc[pre_trial_store['STORE_NBR']==trial_
                                                         measuring metric]).reset index(drop=
           14
                       # calculate absolute difference (this outputs a dataframe with total
           15
           16
                       abs difference = abs(measuring df - df forTrial)
           17
           18
           19
                       # standardize the magnitude distance so the measure ranges from 0 to
                       #######################
           20
           21
                       abs max = abs difference.max()
           22
                       abs_min = abs_difference.min()
           23
                       mag_difference = np.mean(1 - (abs_difference-abs_min) /
           24
           25
                                                (abs_max - abs_min))
                       #######################
           26
           27
           28
                       # add calculated values into the dataframe
           29
                       some dataframe = some dataframe.append({
                            "trial store": trial store num,
           30
           31
                            "other stores": i,
           32
                            "measure": measuring metric,
                            "difference": mag difference.values[0]
           33
           34
                       }, ignore index=True)
           35
           36
           37
                   return some dataframe
```

In [134]: 1 # calculate correlation against store 77 using total sales and number of cus

In [135]: 1 preTrialMeasures.head()

Out[135]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

```
In [937]: 1 # correlation for total sales and number of customers
2 corr_nSales = findCorrelation(preTrialMeasures, 77, "totSales")
3 corr_nCustomers = findCorrelation(preTrialMeasures, 77, "nCustomers")
In [938]: 1 corr_nSales
```

Out[938]:

	trial_store	other_stores	measure	correlation
0	77	1	totSales	0.075218
1	77	2	totSales	-0.263079
2	77	3	totSales	0.806644
3	77	4	totSales	-0.263300
4	77	5	totSales	-0.110652
•••				
255	77	268	totSales	0.344757
256	77	269	totSales	-0.315730
257	77	270	totSales	0.315430
258	77	271	totSales	0.355487
259	77	272	totSales	0.117622

260 rows × 4 columns

In [939]: 1 corr_nCustomers

Out[939]:

	trial_store	other_stores	measure	correlation
0	77	1	nCustomers	0.322168
1	77	2	nCustomers	-0.572051
2	77	3	nCustomers	0.834207
3	77	4	nCustomers	-0.295639
4	77	5	nCustomers	0.370659
255	77	268	nCustomers	0.369517
256	77	269	nCustomers	-0.474293
257	77	270	nCustomers	-0.131259
258	77	271	nCustomers	0.019629
259	77	272	nCustomers	0.223217

260 rows × 4 columns

```
In [940]: 1 # magnitude for total sales and number of customers
2 mag_nSales = findDifference(preTrialMeasures, 77, 'totSales')
3 mag_nCustomers = findDifference(preTrialMeasures, 77, "nCustomers")
In [941]: 1 mag_nSales
```

Out[941]:

	trial_store	other_stores	measure	difference
0	77	1	totSales	0.408163
1	77	2	totSales	0.590119
2	77	3	totSales	0.522914
3	77	4	totSales	0.644934
4	77	5	totSales	0.516320
255	77	268	totSales	0.429787
256	77	269	totSales	0.559099
257	77	270	totSales	0.591547
258	77	271	totSales	0.341091
259	77	272	totSales	0.523631

260 rows × 4 columns

In [942]: 1 mag_nCustomers

Out[942]:

	trial_store	other_stores	measure	difference
0	77	1	nCustomers	0.663866
1	77	2	nCustomers	0.471429
2	77	3	nCustomers	0.489796
3	77	4	nCustomers	0.498258
4	77	5	nCustomers	0.512605
255	77	268	nCustomers	0.571429
256	77	269	nCustomers	0.484472
257	77	270	nCustomers	0.536680
258	77	271	nCustomers	0.328571
259	77	272	nCustomers	0.545455

260 rows × 4 columns

Out[943]:

	trial_store	other_stores	measure	correlation	difference
0	77	1	totSales	0.075218	0.408163
1	77	2	totSales	-0.263079	0.590119
2	77	3	totSales	0.806644	0.522914
3	77	4	totSales	-0.263300	0.644934
4	77	5	totSales	-0.110652	0.516320
255	77	268	totSales	0.344757	0.429787
256	77	269	totSales	-0.315730	0.559099
257	77	270	totSales	0.315430	0.591547
258	77	271	totSales	0.355487	0.341091
259	77	272	totSales	0.117622	0.523631

260 rows × 5 columns

In [944]: 1 corrMag_customers_df

Out[944]:

	trial_store	other_stores	measure	correlation	difference
0	77	1	nCustomers	0.322168	0.663866
1	77	2	nCustomers	-0.572051	0.471429
2	77	3	nCustomers	0.834207	0.489796
3	77	4	nCustomers	-0.295639	0.498258
4	77	5	nCustomers	0.370659	0.512605
255	77	268	nCustomers	0.369517	0.571429
256	77	269	nCustomers	-0.474293	0.484472
257	77	270	nCustomers	-0.131259	0.536680
258	77	271	nCustomers	0.019629	0.328571
259	77	272	nCustomers	0.223217	0.545455

260 rows × 5 columns

```
In [945]:  # calculate weighted average of each row using correlation and difference
2  # use 50% weighting for now assuming the two variables are equally important
3  corr_weight = 0.5
4  # for the sales dataframe
5  corrMag_sales_df['corrMagAVG_sales'] = corr_weight * corrMag_sales_df['correctorr_weight * corrMag_sales_df['differen
7  # for the customers dataframe
8  corrMag_customers_df['corrMagAVG_customers'] = corr_weight * corrMag_customers_df['
10
11
```

In [946]:

```
print("corrMag_sales_df")
display(corrMag_sales_df.head())
print("corrMag_customers_df")
corrMag_customers_df.head()
```

corrMag sales df

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_sales
0	77	1	totSales	0.075218	0.408163	0.241691
1	77	2	totSales	-0.263079	0.590119	0.163520
2	77	3	totSales	0.806644	0.522914	0.664779
3	77	4	totSales	-0.263300	0.644934	0.190817
4	77	5	totSales	-0.110652	0.516320	0.202834

corrMag_customers_df

Out[946]:

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_customers
0	77	1	nCustomers	0.322168	0.663866	0.493017
1	77	2	nCustomers	-0.572051	0.471429	-0.050311
2	77	3	nCustomers	0.834207	0.489796	0.662002
3	77	4	nCustomers	-0.295639	0.498258	0.101310
4	77	5	nCustomers	0.370659	0.512605	0.441632

In [947]: 1 corrMag_customers_df.loc[corrMag_customers_df['other_stores']==77]

Out[947]:

	trial_store	rial_store other_stores		correlation	difference	corrMagAVG_customers
72	77	77	nCustomers	1.0	NaN	NaN

In [948]: 1 sum(corrMag_sales_df.index == corrMag_customers_df.index) == len(corrMag_sal

Out[948]: True

```
In [949]: 'am@ with just the corrMagAVG column
?s_@f.reset_index(), corrMag_customers_df.reset_index(), how='inner')
con@at([corrMag_sales_df, corrMag_customers_df], axis=1)[['trial_store', 'other_st']
4
```

Out[949]:

	trial_store	trial_store	other_stores	other_stores	corrMagAVG_sales	corrMagAVG_customers
0	77	77	1	1	0.241691	0.493017
1	77	77	2	2	0.163520	-0.050311
2	77	77	3	3	0.664779	0.662002
3	77	77	4	4	0.190817	0.101310
4	77	77	5	5	0.202834	0.441632

Out[950]:

	trial_store	other_stores	corrMagAVG_sales	corrMagAVG_customers
0	77	1	0.241691	0.493017
1	77	2	0.163520	-0.050311
2	77	3	0.664779	0.662002
3	77	4	0.190817	0.101310
4	77	5	0.202834	0.441632
255	77	268	0.387272	0.470473
256	77	269	0.121684	0.005090
257	77	270	0.453489	0.202710
258	77	271	0.348289	0.174100
259	77	272	0.320626	0.384336

260 rows × 4 columns

```
In [ ]: 1
```

store with the highest corrMagAVG score will be selected as the control store since it is the most similar to the trial store.

In [952]: 1 control_store_df.head()

Out[952]:

	trial_store	other_stores	corrMagAVG_sales	corrMagAVG_customers	control_score
0	77	1	0.241691	0.493017	0.367354
1	77	2	0.163520	-0.050311	0.056604
2	77	3	0.664779	0.662002	0.663390
3	77	4	0.190817	0.101310	0.146064
4	77	5	0.202834	0.441632	0.322233

Out[953]:

	trial_store	other_stores	corrMagAVG_sales	corrMagAVG_customers	control_score
221	77	233	0.697290	0.816607	0.756949
67	77	71	0.789497	0.663123	0.726310
79	77	84	0.656972	0.715000	0.685986
111	77	119	0.636046	0.729729	0.682887
108	77	115	0.708347	0.645155	0.676751
230	77	242	-0.121818	-0.046675	-0.084247
178	77	186	-0.128806	-0.057268	-0.093037
95	77	102	-0.102238	-0.119121	-0.110680
8	77	9	-0.144121	-0.087135	-0.115628
72	77	77	NaN	NaN	NaN

260 rows × 5 columns

From this chart, we can see that store 233 matches trial store 77 the most.

```
1
               1
                      201808
                                 176.1
                                                   42
                                                            1.023810
                                                                            1.255814
                                                                                              3.261111
2
               1
                      201809
                                 278.8
                                                   59
                                                           1.050847
                                                                            1.209677
                                                                                              3.717333
3
               1
                      201810
                                  188.1
                                                            1.022727
                                                                            1.288889
                                                                                              3.243103
                                                   44
                      201811
                                  192.6
                                                            1.021739
                                                                            1.212766
                                                                                              3.378947
                                                   46
```

```
In [956]:
              # add a column labelling whether the store is "other stores", 'control store'
            2
              # create empty list to store numbers
            3
               store label = []
               for i in range(store_data_df.shape[0]):
            4
            5
                   if store_data_df['STORE_NBR'][i] == trial_store:
                       store label.append("trial store")
            6
            7
                   elif store_data_df['STORE_NBR'][i] == ctrl_store:
            8
                       store label.append("control store")
            9
                   else:
                       store_label.append("other_stores")
           10
           11
               store_data_df['store_type'] = store_label
           12
           13
```

```
In [957]: 1 store_data_df.head()
```

Out[957]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	
0	1	201807	206.9	49	1.061224	1.192308	3.337097	0
1	1	201808	176.1	42	1.023810	1.255814	3.261111	0
2	1	201809	278.8	59	1.050847	1.209677	3.717333	0
3	1	201810	188.1	44	1.022727	1.288889	3.243103	0
4	1	201811	192.6	46	1.021739	1.212766	3.378947	0
4								•

```
In [958]: 1 store_data_df['store_type'].unique()
```

Out[958]: array(['other_stores', 'trial_store', 'control_store'], dtype=object)

Out[959]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
504	77	201807	296.8	51	1.078431	1.527273	3.533333
505	77	201808	255.5	47	1.021277	1.541667	3.452703
506	77	201809	225.2	42	1.047619	1.590909	3.217143
507	77	201810	204.5	37	1.027027	1.368421	3.932692
508	77	201811	245.3	41	1.073171	1.522727	3.661194
509	77	201812	267.3	46	1.065217	1.469388	3.712500
510	77	201901	204.4	35	1.114286	1.666667	3.144615
1547	233	201807	290.7	51	1.058824	1.629630	3.303409
1548	233	201808	285.9	48	1.041667	1.600000	3.573750
1549	233	201809	228.6	42	1.071429	1.555556	3.265714
1550	233	201810	185.7	35	1.028571	1.555556	3.316071
1551	233	201811	211.6	40	1.025000	1.512195	3.412903
1552	233	201812	279.8	47	1.063830	1.500000	3.730667
1553	233	201901	177.5	35	1.000000	1.342857	3.776596
4							

```
In [960]: 1 # run if needed
2 if "transaction_month" in store_data_df.columns.values:
3 store_data_df.drop(columns='transaction_month', inplace=True)
```

```
In [961]: 1 # create a transaction month column for graphing later
2 date_data = pd.to_datetime(store_data_df['yearmonth'], format = '%Y%m')
3
4 # insert in the third index of the column beside yearmonth
5 store_data_df.insert(2, "transaction_month", date_data)
```

```
In [962]: 1 store_data_df.head()
```

Out[962]:

	STORE_NBR	yearmonth	transaction_month	totSales	nCustomers	nTxnPerCust	nChipsPerTxn
0	1	201807	2018-07-01	206.9	49	1.061224	1.192308
1	1	201808	2018-08-01	176.1	42	1.023810	1.255814
2	1	201809	2018-09-01	278.8	59	1.050847	1.209677
3	1	201810	2018-10-01	188.1	44	1.022727	1.288889
4	1	201811	2018-11-01	192.6	46	1.021739	1.212766
4							•

```
In [964]:
            1 # visually check if drivers are indeed similar in the period before the tria
            2 sns.set(style='whitegrid')
            3 # set figure size
              plt.figure(figsize=(20,14))
            4
            5
            6
              # create line chart
            7
               sns.lineplot(x = "transaction month",
            8
                           y = "totSales",
            9
                           hue = "store_type",
           10
                           data = store_data_df)
           11
           12 # set x label orientation
           13 plt.xticks(rotation=45)
           14
           15 # set fontsize
           16 plt.xlabel("Transaction Month", fontsize=23)
           17 plt.ylabel("Total Sales", fontsize=23)
           18 plt.title("total sales by month".title(), fontsize=30)
           19
              plt.tick_params(labelsize=18)
           20
           21 # Legend Labels
           22
              some_labels = ['Other Stores',
           23
                             "Trial Store",
           24
                             "Control Store"]
           25
              # set legend location and fontsize
           26
               plt.legend(title = "store type".title(),
           27
           28
                          labels=some_labels,
           29
                         loc='best',
           30
                         fontsize=20,
           31
                         title_fontsize=23)
           32
           33 # fit the graph
           34 plt.tight_layout()
           35
           36 # save file
           37 | plt.savefig("static/module2_analysis_pics/trial_control_salesPerMonth.png")
```


In [728]: 1 store_data_df.head(3)

Out[728]:

		STORE_NBR	yearmonth	transaction_month	totSales	nCustomers	nTxnPerCust	nChipsPerTxn
_	0	1	201807	2018-07-01	206.9	49	1.061224	1.192308
	1	1	201808	2018-08-01	176.1	42	1.023810	1.255814
	2	1	201809	2018-09-01	278.8	59	1.050847	1.209677
4								>

```
In [965]:
            1 # this time graph the customers data
            2 sns.set(style='whitegrid')
            3 # set figure size
              plt.figure(figsize=(20,14))
            4
            5
            6
              # create line chart
            7
               sns.lineplot(x = "transaction month",
            8
                           y = "nCustomers",
            9
                           hue = "store_type",
                           data = store_data_df)
           10
           11
              # set x label orientation
           12
           13
              plt.xticks(rotation=45)
           14
           15 # set fontsize
           16 plt.xlabel("Transaction Month", fontsize=23)
           17 plt.ylabel("Number of Customers", fontsize=23)
           18 plt.title("total number of customers by month".title(), fontsize=30)
           19
               plt.tick_params(labelsize=18)
           20
           21 # Legend Labels
           22
               some_labels = ['Other Stores',
           23
                             "Trial Store",
           24
                             "Control Store"]
           25
               # set Legend Location and fontsize
           26
               plt.legend(title = "store type".title(),
           27
           28
                          labels=some_labels,
           29
                         loc='best',
           30
                         fontsize=20,
           31
                         title_fontsize=23)
           32
           33 # fit the graph
           34 plt.tight_layout()
           35
           36 # save file
              plt.savefig("static/module2_analysis_pics/trial_control_customersPerMonth.pn
           37
           38
```


In []: 1

Assement of Trial for trial store 77

The trial period starts from february 2019 to the end of April 2019 and now we check to see if there has been an uplift in overall chip sales

```
In [966]: 1 print(trial_store)
2 print(ctrl_store)
77
```

233

```
In [967]:
            1
              # scale pre trial control sales to match pre-trial trial store sales
            3
              # trial store total sales
              trial totSales = store data df.loc[store data df['STORE NBR'] == trial store
            4
            5
            6
              # control store total sales
               ctrl_totSales = store_data_df.loc[store_data_df['STORE_NBR'] == ctrl_store,
            7
            8
            9
               # scale numbers
              scalingFactorForControlSales = trial_totSales / ctrl_totSales
           10
               scalingFactorForControlSales
```

Out[967]: 1.0236173032895528

In [968]: 1 measureOverTime_df.head()

Out[968]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	tı
0	1	201807	206.9	49	1.061224	1.192308	3.337097	
1	1	201808	176.1	42	1.023810	1.255814	3.261111	
2	1	201809	278.8	59	1.050847	1.209677	3.717333	
3	1	201810	188.1	44	1.022727	1.288889	3.243103	
4	1	201811	192.6	46	1.021739	1.212766	3.378947	

In [969]:

H apply the scaling factor

2

3 | scaled_control_stores = measureOverTime_df.loc[measureOverTime_df['STORE_NBR

4 scaled_control_stores

Out[969]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
2699	233	201807	290.7	51	1.058824	1.629630	3.303409
2700	233	201808	285.9	48	1.041667	1.600000	3.573750
2701	233	201809	228.6	42	1.071429	1.555556	3.265714
2702	233	201810	185.7	35	1.028571	1.555556	3.316071
2703	233	201811	211.6	40	1.025000	1.512195	3.412903
2704	233	201812	279.8	47	1.063830	1.500000	3.730667
2705	233	201901	177.5	35	1.000000	1.342857	3.776596
2706	233	201902	244.0	45	1.044444	1.489362	3.485714
2707	233	201903	199.1	40	1.025000	1.439024	3.374576
2708	233	201904	158.6	30	1.100000	1.393939	3.447826
2709	233	201905	344.4	57	1.087719	1.483871	3.743478
2710	233	201906	221.0	41	1.000000	1.487805	3.622951
4							•

```
In [970]:
                # reorder columns
             2
                scaled_control_stores = scaled_control_stores[['STORE_NBR', 'yearmonth', 'nC
             3
                        'nChipsPerTxn', 'avgPricePerUnit', 'totSales']]
             4
In [971]:
                scaled_control_stores['control_sales'] = scaled_control_stores['totSales']
In [972]:
                scaled_control_stores.head()
Out[972]:
                  STORE_NBR yearmonth
                                         nCustomers nTxnPerCust nChipsPerTxn avgPricePerUnit totSales
            2699
                                  201807
                                                                                                  290.7
                          233
                                                  51
                                                         1.058824
                                                                       1.629630
                                                                                       3.303409
            2700
                          233
                                  201808
                                                                                                  285.9
                                                  48
                                                         1.041667
                                                                       1.600000
                                                                                       3.573750
            2701
                          233
                                  201809
                                                  42
                                                         1.071429
                                                                       1.555556
                                                                                       3.265714
                                                                                                  228.6
            2702
                          233
                                  201810
                                                  35
                                                         1.028571
                                                                       1.555556
                                                                                       3.316071
                                                                                                  185.7
            2703
                          233
                                  201811
                                                  40
                                                         1.025000
                                                                       1.512195
                                                                                       3.412903
                                                                                                  211.6
```

In [973]:

```
## create a percentagedifference dataframe

## create a percentagedifference dataframe

## calcualte total sales for the trials data

# trial_sales = measureOverTime_df.loc[measureOverTime_df['STORE_NBR'] == tria

## trial_sales = measureOverTime_df.loc[measureOverTime_df['STORE_NBR'] == tria

## create a percentage_df['store="trial_sales"] = trial_sales.values

## create a percentage_difference_df['trial_sales'] = trial_sales.values

## create a percentagedifference_df
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[973]:

	yearmonth	control_sales	trial_sales
2699	201807	297.565550	296.8
2700	201808	292.652187	255.5
2701	201809	233.998916	225.2
2702	201810	190.085733	204.5
2703	201811	216.597421	245.3
2704	201812	286.408121	267.3
2705	201901	181.692071	204.4
2706	201902	249.762622	235.0
2707	201903	203.802205	278.5
2708	201904	162.345704	263.5
2709	201905	352.533799	299.3
2710	201906	226.219424	264.7

```
In [974]:
            1
               ## calculate percentage difference
            2
            3
              # select control sales
               control2 sales = percentage difference df['control sales']
            4
            5
            6
               # select trial sales
            7
               trial2 sales = percentage difference df['trial sales']
            8
            9
               # store calculated value in a new column
               percentage_difference_df['percentage_diff'] = abs(control2_sales - trial2_sa
           10
           11
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:

10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Remove the CWD from sys.path while we load stuff.

```
In [975]: 1 percentage_difference_df.reset_index(drop=True, inplace=True)
```

In [976]: 1 percentage_difference_df

Out[976]:

	yearmonth	control_sales	trial_sales	percentage_diff
0	201807	297.565550	296.8	0.002573
1	201808	292.652187	255.5	0.126950
2	201809	233.998916	225.2	0.037602
3	201810	190.085733	204.5	0.075830
4	201811	216.597421	245.3	0.132516
5	201812	286.408121	267.3	0.066716
6	201901	181.692071	204.4	0.124980
7	201902	249.762622	235.0	0.059107
8	201903	203.802205	278.5	0.366521
9	201904	162.345704	263.5	0.623080
10	201905	352.533799	299.3	0.151003
11	201906	226.219424	264.7	0.170103

the null hypothesis is that the trial period is the same as the pre-trial period, so i will verify this by checking to see if the difference is significant

```
In [977]: 1 from scipy.stats import ttest_ind
```

```
In [978]: 1 import scipy.stats

In [979]: 1 ## take the standard deviation based on the scaled percentage difference in 2 perDiff_preTrial = percentage_difference_df.loc[percentage_difference_df['ye 3 stdDev = perDiff_preTrial.std() 4 stdDev

Out[979]: 0.04994076264142549
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[981]:

	yearmonth	control_sales	trial_sales	percentage_diff	tValues
7	201902	249.762622	235.0	0.059107	1.183534
8	201903	203.802205	278.5	0.366521	7.339116
9	201904	162.345704	263.5	0.623080	12.476373
10	201905	352.533799	299.3	0.151003	3.023650
11	201906	226.219424	264.7	0.170103	3.406093

```
In [982]: 1 # find the 95th percentile of the t distribution with degrees of freedom (df
2 # 95% confidence level
3 # degree of freedom of 7 is derived from have 9 pre-trial months. dof = 8-1=
4 scipy.stats.t.ppf(q=0.95, df=7)
```

Out[982]: 1.894578605061305

the t-value is much larger than the 95th percentile value of the t-distribution for March and April

The increase in sales in the trial store in March and April is statistically greater than in the control store.

Now we will create a more visual version of this by plotting the sales of the control store, the sales of the trial stores and the 95th percentile value of sales of the control store.

```
In [983]:
                measureOverTime df.head()
Out[983]:
               STORE_NBR yearmonth
                                       totSales
                                                            nTxnPerCust nChipsPerTxn avgPricePerUnit to
                                                nCustomers
            0
                         1
                               201807
                                         206.9
                                                        49
                                                                1.061224
                                                                              1.192308
                                                                                             3.337097
            1
                         1
                               201808
                                         176.1
                                                        42
                                                                1.023810
                                                                              1.255814
                                                                                             3.261111
            2
                         1
                               201809
                                         278.8
                                                        59
                                                                1.050847
                                                                              1.209677
                                                                                             3.717333
            3
                         1
                               201810
                                         188.1
                                                                1.022727
                                                                              1.288889
                                                                                             3.243103
                                                        44
                         1
                                                                                             3.378947
            4
                               201811
                                         192.6
                                                                1.021739
                                                                              1.212766
                                                        46
In [984]:
                # create another checkpoint so we don't mess up the original data
                measureOverTimeSales = measureOverTime df
In [985]:
                measureOverTimeSales.head()
Out[985]:
               STORE_NBR yearmonth
                                       totSales
                                                nCustomers
                                                            nTxnPerCust nChipsPerTxn
                                                                                       avgPricePerUnit to
            0
                         1
                               201807
                                         206.9
                                                        49
                                                                1.061224
                                                                              1.192308
                                                                                             3.337097
            1
                         1
                               201808
                                         176.1
                                                        42
                                                                1.023810
                                                                              1.255814
                                                                                              3.261111
                               201809
            2
                         1
                                         278.8
                                                        59
                                                                1.050847
                                                                              1.209677
                                                                                             3.717333
                               201810
            3
                                         188.1
                                                        44
                                                                1.022727
                                                                              1.288889
                                                                                             3.243103
                                                                                             3.378947
                               201811
                                         192.6
                                                        46
                                                                1.021739
                                                                              1.212766
In [986]:
                # add a transaction month column
                measureOverTimeSales['transaction month'] = pd.to datetime(measureOverTimeSa
In [987]:
             1
                # trial and control store total sales
              2
                trial sales = measureOverTimeSales.loc[measureOverTimeSales['STORE NBR'] ==
              3
                                                             ['transaction_month','totSales']].res
             4
                control sales = measureOverTimeSales.loc[measureOverTimeSales['STORE NBR'] =
             5
             6
                                                              ['transaction_month','totSales']].re
```

```
In [988]: 1 display(trial_sales.head())
2 display(control_sales.head())
```

	transaction_month	totSales
0	2018-07-01	296.8
1	2018-08-01	255.5
2	2018-09-01	225.2
3	2018-10-01	204.5
4	2018-11-01	245.3

	transaction_month	totSales
0	2018-07-01	290.7
1	2018-08-01	285.9
2	2018-09-01	228.6
3	2018-10-01	185.7
4	2018-11-01	211.6

```
In [990]: 1 combineSales_df = pd.merge(trial_sales, control_sales, how='inner')
2 combineSales_df
```

Out[990]:

	transaction_month	trial_totSales	control_totSales
0	2018-07-01	296.8	290.7
1	2018-08-01	255.5	285.9
2	2018-09-01	225.2	228.6
3	2018-10-01	204.5	185.7
4	2018-11-01	245.3	211.6
5	2018-12-01	267.3	279.8
6	2019-01-01	204.4	177.5
7	2019-02-01	235.0	244.0
8	2019-03-01	278.5	199.1
9	2019-04-01	263.5	158.6
10	2019-05-01	299.3	344.4
11	2019-06-01	264.7	221.0

Out[991]:

	transaction_month	trial_totSales	control_totSales	control_5%_interval	control_95%_interval
0	2018-07-01	296.8	290.7	261.664441	319.735559
1	2018-08-01	255.5	285.9	257.343872	314.456128
2	2018-09-01	225.2	228.6	205.767083	251.432917
3	2018-10-01	204.5	185.7	167.152001	204.247999
4	2018-11-01	245.3	211.6	190.465069	232.734931
5	2018-12-01	267.3	279.8	251.853149	307.746851
6	2019-01-01	204.4	177.5	159.771029	195.228971
7	2019-02-01	235.0	244.0	219.628908	268.371092
8	2019-03-01	278.5	199.1	179.213588	218.986412
9	2019-04-01	263.5	158.6	142.758790	174.441210
10	2019-05-01	299.3	344.4	310.000803	378.799197
11	2019-06-01	264.7	221.0	198.926183	243.073817

```
In [992]: 1 # melt combineSales_df so i can use the hue parameter later on seaborn
2 melted_77_sales_df = combineSales_df.melt('transaction_month', var_name='col
3
4 # convert transaction_month to string datatype so xticks won't display time
5 melted_77_sales_df['transaction_month'] = melted_77_sales_df['transaction_mo
In [993]: 1 # import dates
2 import matplotlib.dates as mdates
```

```
In [994]:
            1
               # plot
               sns.set(style="whitegrid")
            2
            3
            4
               plt.figure(figsize=(20,12))
            5
            6
               # plot
            7
               g = sns.lineplot(x="transaction month",
            8
                               y="vals",
            9
                               hue='cols',
                                data= melted_77_sales_df
           10
           11
           12
           13
               # Highlight trial period
               g.axvspan("2019-02-01", "2019-05-01", color='#EF9A9A', alpha=0.5)
           14
           15
           16 # set x labels orientation
           17
               plt.xticks(rotation=45)
           18
           19 # # set fontsize
           20 plt.xlabel("Month of Operation", fontsize= 22)
           21 plt.ylabel("Total Sales", fontsize=22)
           22 plt.title("Total Sales by Month", fontsize=26)
           23
              plt.tick_params(labelsize=18)
           24
           25
               # set x limits
               # plt.xlim(["2018-07-01","2019-06-01"])
           26
           27
           28
               legend_labels = ['Trial Total Sales',
           29
                                "Control Total Sales",
           30
                                "Control 5% Interval",
           31
                                "Control 95% Interval"]
           32
               plt.legend(title = "Store Types",
           33
           34
                          labels = legend_labels,
           35
                         loc='best',
                         fontsize=20,
           36
           37
                         title fontsize=23)
           38
           39
               plt.tight layout()
           40
           41 # save figure
               plt.savefig("static/module2 analysis pics/trail 77 salesByMonth.png")
```


From this graph we can conclude that the trial store 77 is significantly different than the control store in the trial period (2019-02-01 to 2019-06-01)

In [716]: 1 store_data_df.head()

Out[716]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	
0	1	201807	206.9	49	1.061224	1.192308	3.337097	0
1	1	201808	176.1	42	1.023810	1.255814	3.261111	0
2	1	201809	278.8	59	1.050847	1.209677	3.717333	О
3	1	201810	188.1	44	1.022727	1.288889	3.243103	О
4	1	201811	192.6	46	1.021739	1.212766	3.378947	0

In [734]:

print(trial_store)
print(ctrl_store)

77

233

Out[745]: 1.0033557046979866

Out[746]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
2699	233	201807	290.7	51	1.058824	1.629630	3.303409
2700	233	201808	285.9	48	1.041667	1.600000	3.573750
2701	233	201809	228.6	42	1.071429	1.555556	3.265714
2702	233	201810	185.7	35	1.028571	1.555556	3.316071
2703	233	201811	211.6	40	1.025000	1.512195	3.412903
2704	233	201812	279.8	47	1.063830	1.500000	3.730667
2705	233	201901	177.5	35	1.000000	1.342857	3.776596
2706	233	201902	244.0	45	1.044444	1.489362	3.485714
2707	233	201903	199.1	40	1.025000	1.439024	3.374576
2708	233	201904	158.6	30	1.100000	1.393939	3.447826
2709	233	201905	344.4	57	1.087719	1.483871	3.743478
2710	233	201906	221.0	41	1.000000	1.487805	3.622951

In [752]: 1 scaled_control_stores.head()

Out[752]:

	STORE_NBR	yearmonth	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	totSales
2699	233	201807	51	1.058824	1.629630	3.303409	290.7
2700	233	201808	48	1.041667	1.600000	3.573750	285.9
2701	233	201809	42	1.071429	1.555556	3.265714	228.6
2702	233	201810	35	1.028571	1.555556	3.316071	185.7
2703	233	201811	40	1.025000	1.512195	3.412903	211.6
4							•

In [754]:

```
## create a percentagedifference dataframe

## calcualte total sales for the trials data

trial_nCustomers = measureOverTime_df.loc[measureOverTime_df['STORE_NBR'] ==

## build the dataframe for analysis later

percentage_difference_df = scaled_control_stores[['yearmonth', 'control_nCus percentage_difference_df['trial_nCustomers'] = trial_nCustomers.values

percentage_difference_df
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[754]:

	yearmonth	control_nCustomers	trial_nCustomers
2699	201807	51.171141	51
2700	201808	48.161074	47
2701	201809	42.140940	42
2702	201810	35.117450	37
2703	201811	40.134228	41
2704	201812	47.157718	46
2705	201901	35.117450	35
2706	201902	45.151007	45
2707	201903	40.134228	50
2708	201904	30.100671	47
2709	201905	57.191275	55
2710	201906	41.137584	41

```
In [755]:
            1
              ## calculate percentage difference
            2
            3 # select control sales
              control2 nCustomers = percentage difference df['control nCustomers']
            4
            5
            6
              # select trial sales
            7
              trial2 nCustomers = percentage difference df['trial nCustomers']
            8
            9
              # store calculated value in a new column
              percentage_difference_df['percentage_diff'] = abs(control2_nCustomers - tria
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Remove the CWD from sys.path while we load stuff.

```
In [756]: 1 # reset index
2 percentage_difference_df.reset_index(drop=True, inplace=True)
```

In [757]: 1 percentage_difference_df

Out[757]:

	yearmonth	control_nCustomers	trial_nCustomers	percentage_diff
0	201807	51.171141	51	0.003344
1	201808	48.161074	47	0.024108
2	201809	42.140940	42	0.003344
3	201810	35.117450	37	0.053607
4	201811	40.134228	41	0.021572
5	201812	47.157718	46	0.024550
6	201901	35.117450	35	0.003344
7	201902	45.151007	45	0.003344
8	201903	40.134228	50	0.245819
9	201904	30.100671	47	0.561427
10	201905	57.191275	55	0.038315
11	201906	41.137584	41	0.003344

Out[758]: 0.01824074855824395

In [759]: 1 # t

test with null hypothesis of there being 0 difference between trial and co
percentage_difference_df['tValues'] = (percentage_difference_df['percentage_

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

In [760]:

1 percentage_difference_df.head()

Out[760]:

	yearmonth	control_nCustomers	trial_nCustomers	percentage_diff	tValues
0	201807	51.171141	51	0.003344	0.183352
1	201808	48.161074	47	0.024108	1.321664
2	201809	42.140940	42	0.003344	0.183352
3	201810	35.117450	37	0.053607	2.938874
4	201811	40.134228	41	0.021572	1.182622

In []:

In [761]:

1 measureOverTimeSales.head()

Out[761]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	tı
0	1	201807	206.9	49	1.061224	1.192308	3.337097	
1	1	201808	176.1	42	1.023810	1.255814	3.261111	
2	1	201809	278.8	59	1.050847	1.209677	3.717333	
3	1	201810	188.1	44	1.022727	1.288889	3.243103	
4	1	201811	192.6	46	1.021739	1.212766	3.378947	

In [762]:

```
In [763]:
```

```
display(trial_nCustomers)
display(control_nCustomers.head())
```

	transaction_month	nCustomers
0	2018-07-01	51
1	2018-08-01	47
2	2018-09-01	42
3	2018-10-01	37
4	2018-11-01	41
5	2018-12-01	46
6	2019-01-01	35
7	2019-02-01	45
8	2019-03-01	50
9	2019-04-01	47
10	2019-05-01	55
11	2019-06-01	41

	transaction_month	nCustomers
0	2018-07-01	51
1	2018-08-01	48
2	2018-09-01	42
3	2018-10-01	35
4	2018-11-01	40

```
In [764]: 1 # rename columns
2 trial_nCustomers.columns = ['transaction_month', 'trial_nCustomers']
3 control_nCustomers.columns = ['transaction_month', 'control_nCustomers']
```


Out[765]:

		transaction_month	trial_nCustomers	control_nCustomers
_	0	2018-07-01	51	51
	1	2018-08-01	47	48
	2	2018-09-01	42	42
	3	2018-10-01	37	35
	4	2018-11-01	41	40

In [767]: 1 combineCustomers_df.head()

Out[767]:

	transaction_month	trial_nCustomers	control_nCustomers	control_5%_interval	control_95%_inter
0	2018-07-01	51	51	49.139444	52.8605
1	2018-08-01	47	48	46.248888	49.7511
2	2018-09-01	42	42	40.467777	43.5322
3	2018-10-01	37	35	33.723148	36.2768
4	2018-11-01	41	40	38.540740	41.4592

In [768]:

```
# melt combineCustomers_df for graphing later
melted_77_customer_df = combineCustomers_df.melt('transaction_month', var_na

# convert transaction month to string datatype so xticks won't display time
melted 77 customer df['transaction month'] = melted 77 customer df['transact
```

```
In [769]:
```

```
# Look at the first and Last 5 datapoints
display(melted_77_customer_df.head())
display(melted_77_customer_df.tail())
```

	transaction_month	cols	vals
0	2018-07-01	trial_nCustomers	51.0
1	2018-08-01	trial_nCustomers	47.0
2	2018-09-01	trial_nCustomers	42.0
3	2018-10-01	trial_nCustomers	37.0
4	2018-11-01	trial_nCustomers	41.0

	transaction_month	cols	vals
43	2019-02-01	control_95%_interval	46.641667
44	2019-03-01	control_95%_interval	41.459260
45	2019-04-01	control_95%_interval	31.094445
46	2019-05-01	control_95%_interval	59.079445
47	2019-06-01	control 95% interval	42.495741

```
In [995]:
            1
              # plot
               sns.set(style='whitegrid')
            2
            3
               # set figure size
            4
            5
               plt.figure(figsize=(20,12))
            6
            7
               # plot
               ax = sns.lineplot(x='transaction month',
                                y = 'vals',
            9
                                hue = 'cols',
           10
                                data = melted_77_customer_df)
           11
           12
           13
               # highlight trial period
               ax.axvspan("2019-02-01",'2019-05-01',color = '#EF9A9A', alpha=0.5)
           14
           15
           16 # set x labels orientation for visability
           17
               plt.xticks(rotation=45)
           18
           19 # set font sizes and labels
           20 plt.xlabel("Month of Operation", fontsize = 22)
           21 plt.ylabel("Total Number of Customers", fontsize = 22)
               plt.title("Total Number of Customers by Month", fontsize=26)
           22
           23
               plt.tick params(labelsize=18)
           24
           25
               legend labels = ['Trial Customers',
           26
                                "Control Customers",
           27
                               "Control 5% Interval",
           28
                               "Control 95% Interval"]
           29
           30
               plt.legend(title = "Store Types",
           31
                          labels = legend_labels,
           32
                         loc='best',
           33
                         fontsize=20,
           34
                         title_fontsize=23)
           35
               plt.tight layout()
           36
               plt.savefig("static/module2 analysis pics/trial 77 customerByMonth.png")
           37
```


The number of customers for the trial store (store 77) is much higher than the control store during the trial period similar to the sales graph we identified earlier.

Other trial stores we have are store 86 and store 88 so i will now assess the impact for each of these two stores

Trial Store 86

```
In [997]: 1 trial_store = 86
2 # find correlation for sales and customers using previously defined function
3 corr_nSales = findCorrelation(preTrialMeasures, trial_store, "totSales")
4 corr_nCustomers = findCorrelation(preTrialMeasures, trial_store, 'nCustomers)

In [998]: 1 # compute magnitude with new trial store
2 magnitude_nSales = findDifference(preTrialMeasures, trial_store, 'totSales')
3 magnitude_nCustomers = findDifference(preTrialMeasures, trial_store, 'nCusto
```

In [999]: 1 corr_nSales

Out[999]:

	trial_store	other_stores	measure	correlation
0	86	1	totSales	0.445632
1	86	2	totSales	-0.403835
2	86	3	totSales	-0.261284
3	86	4	totSales	-0.039035
4	86	5	totSales	0.235159
255	86	268	totSales	-0.452182
256	86	269	totSales	0.697055
257	86	270	totSales	-0.730679
258	86	271	totSales	0.527637
259	86	272	totSales	0.004926

260 rows × 4 columns

```
In [1000]:
```

- 1 # concatenate the sales together and customers together
- corrMag_sales_df = pd.merge(corr_nSales, magnitude_nSales, how='inner')
- 3 corrMag_customers_df = pd.merge(corr_nCustomers, magnitude_nCustomers, how='
- 4 corrMag sales df.head()

Out[1000]:

	trial_store	other_stores	measure	correlation	difference
0	86	1	totSales	0.445632	0.488334
1	86	2	totSales	-0.403835	0.321131
2	86	3	totSales	-0.261284	0.507515
3	86	4	totSales	-0.039035	0.635654
4	86	5	totSales	0.235159	0.579835

In [1001]:

- 1 # calculate weighted average of each row using correlation and difference
- 2 # use 50% weighting for now assuming the two variables are equally important
- 3 corr weight = 0.5
- 4 # for the sales dataframe
- 5 corrMag_sales_df['corrMagAVG_sales'] = corr_weight * corrMag_sales_df['corre
 6 corr_weight * corrMag_sales_df['differen
- 7 # for the customers dataframe
- 8 corrMag_customers_df['corrMagAVG_customers'] = corr_weight * corrMag_custome
- corr_weight * corrMag_customers_df['

```
In [1002]:
```

```
print("corrMag_sales_df")
display(corrMag_sales_df.head())
print("corrMag_customers_df")
corrMag_customers_df.head()
```

corrMag_sales_df

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_sales
0	86	1	totSales	0.445632	0.488334	0.466983
1	86	2	totSales	-0.403835	0.321131	-0.041352
2	86	3	totSales	-0.261284	0.507515	0.123116
3	86	4	totSales	-0.039035	0.635654	0.298309
4	86	5	totSales	0.235159	0.579835	0.407497

corrMag_customers_df

Out[1002]:

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_customers
0	86	1	nCustomers	0.485831	0.510204	0.498018
1	86	2	nCustomers	-0.086161	0.428571	0.171205
2	86	3	nCustomers	-0.353786	0.563025	0.104620
3	86	4	nCustomers	-0.169608	0.537815	0.184103
4	86	5	nCustomers	-0.253229	0.714286	0.230528

In [1003]:

```
### FIND CONTROL STORE ###

### FIND CONTROL STORE ###

# merge into one dataframe with just the corrMagAVG column

# pd.merge(corrMag_sales_df.reset_index(), corrMag_customers_df.reset_index()

control_store_df = pd.concat([corrMag_sales_df, corrMag_customers_df], axis=

control_store_df.head()
```

Out[1003]:

	trial_store	trial_store	other_stores	other_stores	corrMagAVG_sales	corrMagAVG_customers
0	86	86	1	1	0.466983	0.498018
1	86	86	2	2	-0.041352	0.171205
2	86	86	3	3	0.123116	0.104620
3	86	86	4	4	0.298309	0.184103
4	86	86	5	5	0.407497	0.230528

```
In [1004]:
                  # remove duplicate columns
                  control store df = control store df.loc[:, ~control store df.columns.duplica
In [1005]:
                  # check if changes are made
               1
                  control store df.head()
Out[1005]:
                           other_stores
                                        corrMagAVG_sales corrMagAVG_customers
                 trial_store
              0
                        86
                                      1
                                                 0.466983
                                                                        0.498018
              1
                        86
                                      2
                                                 -0.041352
                                                                        0.171205
              2
                        86
                                      3
                                                 0.123116
                                                                        0.104620
              3
                                                 0.298309
                                                                        0.184103
                        86
                                      4
                                      5
              4
                        86
                                                 0.407497
                                                                        0.230528
In [1006]:
                  # Store with the highest corrMagAVG score will be selected as the control st
               1
               2
                  control store df['control store'] = 0.5 * (control store df['corrMagAVG sale')
               3
                                                                    control_store_df['corrMagAVG_cust
In [1007]:
                  control_store_df.head()
Out[1007]:
                                        corrMagAVG_sales
                                                          corrMagAVG_customers
                 trial_store
                           other_stores
                                                                                 control_store
              0
                        86
                                      1
                                                 0.466983
                                                                        0.498018
                                                                                      0.482500
                                      2
              1
                        86
                                                 -0.041352
                                                                        0.171205
                                                                                      0.064927
              2
                        86
                                      3
                                                 0.123116
                                                                        0.104620
                                                                                      0.113868
              3
                        86
                                      4
                                                 0.298309
                                                                        0.184103
                                                                                      0.241206
                        86
                                      5
                                                 0.407497
                                                                        0.230528
                                                                                      0.319013
In [1008]:
                  # select the control store based on the highest score
                  control store df.sort values(by='control store', ascending=False).head()
Out[1008]:
                                          corrMagAVG_sales
                                                             corrMagAVG_customers
                   trial_store
                              other_stores
                                                                                    control_store
              147
                          86
                                      155
                                                   0.808106
                                                                          0.733343
                                                                                        0.770724
              102
                          86
                                      109
                                                   0.697120
                                                                          0.742532
                                                                                        0.719826
              107
                          86
                                                   0.631393
                                                                          0.663384
                                                                                        0.647389
                                      114
              213
                          86
                                      225
                                                   0.601841
                                                                          0.684356
                                                                                        0.643099
              130
                          86
                                      138
                                                   0.593296
                                                                          0.660565
                                                                                        0.626930
```

From this chart, since store 155 has the highest score, we will select store 155 as our control store.

Out[1009]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

155

Out[1010]: 86

Out[1011]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
560	86	201807	892.20	99	1.272727	1.992063	3.554582
561	86	201808	764.05	94	1.191489	1.919643	3.553721
562	86	201809	914.60	103	1.252427	2.000000	3.544961
563	86	201810	948.40	109	1.266055	2.000000	3.436232
564	86	201811	918.00	100	1.270000	2.000000	3.614173
565	86	201812	841.20	98	1.224490	2.000000	3.505000
566	86	201901	841.40	94	1.382979	2.000000	3.236154
1029	155	201807	924.60	101	1.237624	2.000000	3.698400
1030	155	201808	782.70	91	1.318681	1.908333	3.417904
1031	155	201809	1014.40	103	1.407767	2.000000	3.497931
1032	155	201810	963.80	108	1.259259	2.000000	3.543382
1033	155	201811	898.80	101	1.336634	2.000000	3.328889
1034	155	201812	849.80	97	1.247423	2.000000	3.511570
1035	155	201901	874.60	96	1.312500	2.000000	3.470635
4							•

```
In [1012]:
                 # create store types for graphing later (store type as in trial/control/othe
              2
                 store label = []
              3
                 for i in range(store data df.shape[0]):
              4
                      if store data df['STORE NBR'][i] == trial store:
              5
                          store_label.append("trial_store")
              6
                      elif store_data_df['STORE_NBR'][i] == ctrl_store:
              7
                          store label.append("control store")
              8
                      else:
              9
                          store_label.append("other_stores")
             10
             11
                 store data df['store type'] = store label
In [1013]:
                 # add a date column to store data df
                 store data df['transaction dates'] = pd.to datetime(store data df['yearmonth
In [1014]:
                 store data df.head()
Out[1014]:
                STORE_NBR yearmonth totSales
                                               nCustomers
                                                           nTxnPerCust nChipsPerTxn avgPricePerUnit
             0
                          1
                                         206.9
                               201807
                                                       49
                                                               1.061224
                                                                            1.192308
                                                                                           3.337097 o
             1
                          1
                               201808
                                         176.1
                                                       42
                                                               1.023810
                                                                            1.255814
                                                                                           3.261111 o
             2
                          1
                               201809
                                         278.8
                                                       59
                                                               1.050847
                                                                            1.209677
                                                                                           3.717333 o
                               201810
             3
                                         188.1
                                                       44
                                                               1.022727
                                                                            1.288889
                                                                                           3.243103 o
                               201811
                                         192.6
                                                               1.021739
                                                                            1.212766
                                                                                           3.378947 o
                          1
                                                       46
```

```
In [1015]:
             1 # visually check if drivers are indeed similar in the period before the tria
             2 sns.set(style='whitegrid')
             3 # set figure size
             4
               plt.figure(figsize=(20,14))
             5
             6
               # create line chart
             7
                sns.lineplot(x = "transaction dates",
             8
                            y = "totSales",
             9
                            hue = "store_type",
            10
                            data = store_data_df)
            11
            12 # set x label orientation
            13 plt.xticks(rotation=45)
            14
            15 # set fontsize
            16 plt.xlabel("Transaction Month", fontsize=23)
            17 plt.ylabel("Total Sales", fontsize=23)
            18 plt.title("total sales by month (trial store 86)".title(), fontsize=30)
            19
               plt.tick_params(labelsize=18)
            20
            21 # Legend Labels
            22
               some_labels = ['Other Stores',
            23
                              "Trial Store",
            24
                              "Control Store"]
            25
               # set legend location and fontsize
            26
                plt.legend(title = "store type".title(),
            27
                           labels=some_labels,
            28
            29
                          loc='best',
            30
                          fontsize=20,
            31
                          title_fontsize=23)
            32
            33 # fit the graph
            34 plt.tight_layout()
            35
            36 # save figure
            37 | plt.savefig("static/module2_analysis_pics/trial_control_86_salesPerMonth.png
```



```
In [1016]:
             1 # graph the customers data
             2 | # visually check if drivers are indeed similar in the period before the tria
             3 sns.set(style='whitegrid')
             4 # set figure size
             5 plt.figure(figsize=(20,14))
             6
             7
               # create line chart
               sns.lineplot(x = "transaction_dates",
                            y = "nCustomers",
             9
                            hue = "store_type",
            10
            11
                            data = store_data_df)
            12
            13 # set x label orientation
            14
               plt.xticks(rotation=45)
            15
            16 # set fontsize
            17 plt.xlabel("Transaction Month", fontsize=23)
            18 plt.ylabel("Total Sales", fontsize=23)
               plt.title("total Number of Customers by month".title(), fontsize=30)
            19
            20 plt.tick params(labelsize=18)
            21
            22 # Legend Labels
            23 | some_labels = ['Other Stores',
            24
                              "Trial Store",
            25
                              "Control Store"]
            26
               # set legend location and fontsize
            27
            28
               plt.legend(title = "store type".title(),
            29
                           labels=some labels,
            30
                          loc='best',
            31
                          fontsize=20,
            32
                          title_fontsize=23)
            33
            34 # fit the graph
            35 plt.tight_layout()
            36
            37 #save figure
            38
               plt.savefig("static/module2_analysis_pics/trial_control_86_customerPerMonth.
```


Assessment for trial store 86

```
In [806]:
               trial_store
Out[806]: 86
In [807]:
               # scale pre_trial control sales to match pre-trial store sales
            1
            2
            3
               # trial store total sales
               trial_totSales = store_data_df.loc[store_data_df['STORE_NBR'] == trial_store
            4
            5
               # control store total sales
            6
            7
               ctrl_totSales = store_data_df.loc[store_data_df['STORE_NBR'] == ctrl_store,
            8
            9
               # scale numbers
               scalingFactorForControlSales = trial_totSales / ctrl_totSales
           10
               scalingFactorForControlSales
```

Out[807]: 0.9700651481287746

Out[808]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
1793	155	201807	924.60	101	1.237624	2.000000	3.698400
1794	155	201808	782.70	91	1.318681	1.908333	3.417904
1795	155	201809	1014.40	103	1.407767	2.000000	3.497931
1796	155	201810	963.80	108	1.259259	2.000000	3.543382
1797	155	201811	898.80	101	1.336634	2.000000	3.328889
1798	155	201812	849.80	97	1.247423	2.000000	3.511570
1799	155	201901	874.60	96	1.312500	2.000000	3.470635
1800	155	201902	891.20	95	1.336842	2.000000	3.508661
1801	155	201903	804.40	94	1.276596	2.000000	3.351667
1802	155	201904	844.60	99	1.222222	2.000000	3.490083
1803	155	201905	922.85	106	1.292453	1.934307	3.482453
1804	155	201906	857.20	95	1.284211	2.000000	3.513115

In [811]: 1 scaled_control_stores

Out[811]:

	STORE_NBR	yearmonth	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	totSales
1793	155	201807	101	1.237624	2.000000	3.698400	924.60
1794	155	201808	91	1.318681	1.908333	3.417904	782.70
1795	155	201809	103	1.407767	2.000000	3.497931	1014.40
1796	155	201810	108	1.259259	2.000000	3.543382	963.80
1797	155	201811	101	1.336634	2.000000	3.328889	898.80
1798	155	201812	97	1.247423	2.000000	3.511570	849.80
1799	155	201901	96	1.312500	2.000000	3.470635	874.60
1800	155	201902	95	1.336842	2.000000	3.508661	891.20
1801	155	201903	94	1.276596	2.000000	3.351667	804.40
1802	155	201904	99	1.222222	2.000000	3.490083	844.60
1803	155	201905	106	1.292453	1.934307	3.482453	922.85
1804	155	201906	95	1.284211	2.000000	3.513115	857.20

In [812]:

```
## create a percentagedifference dataframe

## calcualte total sales for the trials data

trial_sales = measureOverTime_df.loc[measureOverTime_df['STORE_NBR'] == tria

## build the dataframe for analysis later

percentage_difference_df = scaled_control_stores[['yearmonth', 'control_sale percentage_difference_df['trial_sales'] = trial_sales.values

percentage_difference_df
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[812]:

	yearmonth	control_sales	trial_sales
1793	201807	896.922236	892.20
1794	201808	759.269991	764.05
1795	201809	984.034086	914.60
1796	201810	934.948790	948.40
1797	201811	871.894555	918.00
1798	201812	824.361363	841.20
1799	201901	848.418979	841.40
1800	201902	864.522060	913.20
1801	201903	780.320405	1026.80
1802	201904	819.317024	848.20
1803	201905	895.224622	889.30
1804	201906	831.539845	838.00

```
In [813]:
            1
               ## calculate percentage difference
            2
            3
              # select control sales
               control2 sales = percentage difference df['control sales']
            4
            5
            6
               # select trial sales
            7
               trial2 sales = percentage difference df['trial sales']
            8
            9
               # store calculated value in a new column
               percentage_difference_df['percentage_diff'] = abs(control2_sales - trial2_sa
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Remove the CWD from sys.path while we load stuff.

```
In [814]: 1 percentage_difference_df.reset_index(drop=True, inplace=True)
```

In [815]: 1 percentage_difference_df

Out[815]:

	yearmonth	control_sales	trial_sales	percentage_diff
0	201807	896.922236	892.20	0.005265
1	201808	759.269991	764.05	0.006296
2	201809	984.034086	914.60	0.070561
3	201810	934.948790	948.40	0.014387
4	201811	871.894555	918.00	0.052880
5	201812	824.361363	841.20	0.020426
6	201901	848.418979	841.40	0.008273
7	201902	864.522060	913.20	0.056306
8	201903	780.320405	1026.80	0.315870
9	201904	819.317024	848.20	0.035253
10	201905	895.224622	889.30	0.006618
11	201906	831.539845	838.00	0.007769

Our null hypothesis is such that the trial period is the same as the pre-trial period Take the standard deviation based on the scaled percentage difference in the pre-trial period

Out[816]: 0.025833952854772656

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:

2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

```
In [818]: 1 # select the trial period
2 percentage_difference_df.loc[percentage_difference_df['yearmonth'] >= 201902
```

Out[818]:

	yearmonth	control_sales	trial_sales	percentage_diff	tValues
7	201902	864.522060	913.2	0.056306	2.179542
8	201903	780.320405	1026.8	0.315870	12.226922
9	201904	819.317024	848.2	0.035253	1.364580
10	201905	895.224622	889.3	0.006618	0.256176
11	201906	831.539845	838.0	0.007769	0.300725

```
In [819]: 1 # find the 95th percentile of the t distribution with degrees of freedom (df
2 # 95% confidence level
3 # degree of freedom of 7 is derived from have 9 pre-trial months. dof = 8-1=
4 scipy.stats.t.ppf(q=0.95, df=7)
```

Out[819]: 1.894578605061305

```
In [821]: 1
2  # add a transaction month column
3  measureOverTimeSales['transaction_month'] = pd.to_datetime(measureOverTimeSa
```

	transaction_month	totSales
0	2018-07-01	892.20
1	2018-08-01	764.05
2	2018-09-01	914.60
3	2018-10-01	948.40
4	2018-11-01	918.00

	transaction_month	totSales
0	2018-07-01	924.6
1	2018-08-01	782.7
2	2018-09-01	1014.4
3	2018-10-01	963.8
4	2018-11-01	898.8

```
In [825]: 1 combineSales_df = pd.merge(trial_sales, control_sales, how='inner')
2 combineSales_df
```

Out[825]:

	transaction_month	trial_totSales	control_totSales
0	2018-07-01	892.20	924.60
1	2018-08-01	764.05	782.70
2	2018-09-01	914.60	1014.40
3	2018-10-01	948.40	963.80
4	2018-11-01	918.00	898.80
5	2018-12-01	841.20	849.80
6	2019-01-01	841.40	874.60
7	2019-02-01	913.20	891.20
8	2019-03-01	1026.80	804.40
9	2019-04-01	848.20	844.60
10	2019-05-01	889.30	922.85
11	2019-06-01	838.00	857.20

Out[826]:

	transaction_month	trial_totSales	control_totSales	control_5%_interval	control_95%_interval
0	2018-07-01	892.20	924.60	876.827854	972.372146
1	2018-08-01	764.05	782.70	742.259530	823.140470
2	2018-09-01	914.60	1014.40	961.988076	1066.811924
3	2018-10-01	948.40	963.80	914.002472	1013.597528
4	2018-11-01	918.00	898.80	852.360886	945.239114
5	2018-12-01	841.20	849.80	805.892614	893.707386
6	2019-01-01	841.40	874.60	829.411250	919.788750
7	2019-02-01	913.20	891.20	845.153562	937.246438
8	2019-03-01	1026.80	804.40	762.838337	845.961663
9	2019-04-01	848.20	844.60	800.961287	888.238713
10	2019-05-01	889.30	922.85	875.168273	970.531727
11	2019-06-01	838.00	857.20	812.910271	901.489729

combineSales_df

```
In [827]:  # melt combineSales_df so i can use the hue parameter later on seaborn
2  melted_df = combineSales_df.melt('transaction_month', var_name='cols', valu
3
4  # convert transaction_month to string datatype so xticks won't display time
5  melted_df['transaction_month'] = melted_df['transaction_month'].astype("str"
```

In [828]: 1 melted_df

Out[828]:

	transaction_month	cols	vals
0	2018-07-01	trial_totSales	892.200000
1	2018-08-01	trial_totSales	764.050000
2	2018-09-01	trial_totSales	914.600000
3	2018-10-01	trial_totSales	948.400000
4	2018-11-01	trial_totSales	918.000000
5	2018-12-01	trial_totSales	841.200000
6	2019-01-01	trial_totSales	841.400000
7	2019-02-01	trial_totSales	913.200000
8	2019-03-01	trial_totSales	1026.800000
9	2019-04-01	trial_totSales	848.200000
10	2019-05-01	trial_totSales	889.300000
11	2019-06-01	trial_totSales	838.000000
12	2018-07-01	control_totSales	924.600000
13	2018-08-01	control_totSales	782.700000
14	2018-09-01	control_totSales	1014.400000
15	2018-10-01	control_totSales	963.800000
16	2018-11-01	control_totSales	898.800000
17	2018-12-01	control_totSales	849.800000
18	2019-01-01	control_totSales	874.600000
19	2019-02-01	control_totSales	891.200000
20	2019-03-01	control_totSales	804.400000
21	2019-04-01	control_totSales	844.600000
22	2019-05-01	control_totSales	922.850000
23	2019-06-01	control_totSales	857.200000
24	2018-07-01	control_5%_interval	876.827854
25	2018-08-01	control_5%_interval	742.259530
26	2018-09-01	control_5%_interval	961.988076
27	2018-10-01	control_5%_interval	914.002472
28	2018-11-01	control_5%_interval	852.360886
29	2018-12-01	control_5%_interval	805.892614
30	2019-01-01	control_5%_interval	829.411250
31	2019-02-01	control_5%_interval	845.153562
32	2019-03-01	control_5%_interval	762.838337
33	2019-04-01	control_5%_interval	800.961287

	transaction_month	cols	vals
34	2019-05-01	control_5%_interval	875.168273
35	2019-06-01	control_5%_interval	812.910271
36	2018-07-01	control_95%_interval	972.372146
37	2018-08-01	control_95%_interval	823.140470
38	2018-09-01	control_95%_interval	1066.811924
39	2018-10-01	control_95%_interval	1013.597528
40	2018-11-01	control_95%_interval	945.239114
41	2018-12-01	control_95%_interval	893.707386
42	2019-01-01	control_95%_interval	919.788750
43	2019-02-01	control_95%_interval	937.246438
44	2019-03-01	control_95%_interval	845.961663
45	2019-04-01	control_95%_interval	888.238713
46	2019-05-01	control_95%_interval	970.531727
47	2019-06-01	control_95%_interval	901.489729

```
In [933]:
            1 # plot
               sns.set(style="whitegrid")
            2
            3
               # set figure size
            4
            5
              plt.figure(figsize=(20,12))
            6
            7
               # plot
               g = sns.lineplot(x="transaction_month",
            9
                               y="vals",
           10
                               hue='cols',
                               data= melted_77_sales_df
           11
           12
           13
               # Highlight trial period
           14
               g.axvspan("2019-02-01", "2019-05-01", color='#EF9A9A', alpha=0.5)
           15
           16
           17
           18 # set x labels orientation
           19
               plt.xticks(rotation=45)
           20
           21 # # set fontsize
           22 plt.xlabel("Month of Operation", fontsize= 20)
           23 plt.ylabel("Total Sales", fontsize=20)
               plt.title("Total Sales by Month (Trial Store 86)", fontsize=26)
           24
           25
              plt.tick_params(labelsize=18)
           26
           27
               legend labels = ['Trial Total Sales',
           28
                                "Control Total Sales",
           29
                                "Control 5% Interval",
           30
                               "Control 95% Interval"]
           31
               plt.legend(title = "Store Types",
           32
                          labels = legend labels,
           33
           34
                         loc='best',
           35
                         fontsize=20,
           36
                         title_fontsize=23)
           37
               plt.tight_layout()
           38
           39
           40 # save figure
               plt.savefig("static/module2_analysis_pics/trial_86_salesByMonth.png")
```


trial store 86 is not significantly different to its control store in the trial period. This relationship was shown in the graph where the trial store's performance lie within the confidence interval of the control store in two of the three trial months (trial months: from 2019-02 to 2019-06)

This time make a graph looking at the number of customers

```
In [836]: 1 print(trial_store)
2 print(ctrl_store)
```

86

155

```
In [837]:
              ### Find the Standard deviation based on scaled percentage difference in the
            1
            3
              # scale pre trial control sales to match pre-trial trial store sales
            4
              # trial store total sales
            5
              trial_nCustomers = store_data_df.loc[store_data_df['STORE_NBR'] == trial_sto
            6
              # control store total sales
              ctrl nCustomers = store data df.loc[store data df['STORE NBR'] == ctrl store
            9
           10
           11 # scale numbers
           12 | scalingFactorForControlSales = trial nCustomers / ctrl nCustomers
           13
           14
              # apply the scaling factor
           15
              scaled control stores = measureOverTime df.loc[measureOverTime df['STORE NBR
           16
           17
           18 # reorder columns
           19
              scaled_control_stores = scaled_control_stores[['STORE_NBR', 'yearmonth', 'nC
                      'nChipsPerTxn', 'avgPricePerUnit', 'totSales']]
           20
           21
           22
              # add a customers feature
           23
              scaled control stores['control nCustomers'] = scaled control stores['nCustom
           24
           25
              ## create a percentagedifference dataframe
           26
           27
           28 # calcualte total sales for the trials data
           29 | trial nCustomers = measureOverTime df.loc[measureOverTime df['STORE NBR'] ==
           30
           31 # build the dataframe for analysis later
               percentage_difference_df = scaled_control_stores[['yearmonth', 'control_nCus
           33
               percentage difference df['trial nCustomers'] = trial nCustomers.values
           34
           35
           36 | ## calculate percentage difference
           37
           38 # select control sales
           39 | control2 nCustomers = percentage difference df['control nCustomers']
           40
           41 # select trial sales
           42 | trial2 nCustomers = percentage difference df['trial nCustomers']
           43
              # store calculated value in a new column
           44
              percentage difference df['percentage diff'] = abs(control2 nCustomers - tria
           45
           46
           47
              # reset index
           48
              percentage difference df.reset index(drop=True, inplace=True)
           49
           50
           51 # Calculate standard deviation based on the scaled percentage difference in
              perDiff preTrial = percentage difference df.loc[percentage difference df['ye
           53
               stdDev = perDiff preTrial.std()
              stdDev
           54
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.p

y:33: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.p
y:45: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[837]: 0.010687444701395238

In [838]: 1 measureOverTimeSales.head()

Out[838]:

	3.337097
1.255814	2 261111
	3.201111
1.209677 3	3.717333
1.288889 3	3.243103
1.212766 3	3.378947
	1.288889

In [839]:

trial and control store nCustomers

trial_nCustomers = measureOverTimeSales.loc[measureOverTimeSales['STORE_NBR']

['transaction_month', 'nCustomers

4 control_nCustomers = measureOverTimeSales.loc[measureOverTimeSales['STORE_NB

5 ['transaction_month', 'nCustome

```
In [840]: 1 display(trial_nCustomers.head())
2 display(control_nCustomers.head())
```

	transaction_month	nCustomers
0	2018-07-01	99
1	2018-08-01	94
2	2018-09-01	103
3	2018-10-01	109
4	2018-11-01	100

	transaction_month	nCustomers
0	2018-07-01	101
1	2018-08-01	91
2	2018-09-01	103
3	2018-10-01	108
4	2018-11-01	101

Out[842]:

	transaction_month	trial_nCustomers	control_nCustomers
0	2018-07-01	99	101
1	2018-08-01	94	91
2	2018-09-01	103	103
3	2018-10-01	109	108
4	2018-11-01	100	101
5	2018-12-01	98	97
6	2019-01-01	94	96
7	2019-02-01	107	95
8	2019-03-01	115	94
9	2019-04-01	105	99
10	2019-05-01	104	106
11	2019-06-01	98	95

In [844]: 1 | combineCustomers_df.head()

Out[844]:

	transaction_month	trial_nCustomers	control_nCustomers	control_5%_interval	control_95%_inter
0	2018-07-01	99	101	98.841136	103.1588
1	2018-08-01	94	91	89.054885	92.9451
2	2018-09-01	103	103	100.798386	105.2016
3	2018-10-01	109	108	105.691512	110.3084
4	2018-11-01	100	101	98.841136	103.1588

```
In [846]:
```

```
# melt combineCustomers_df for graphing
melted_86_customer_df = combineCustomers_df.melt('transaction_month',var_nam')

# convert transaction month to string datatype so xticks won't display time
melted_86_customer_df['transaction_month'] = melted_86_customer_df['transact']
```

```
In [847]: 1 display(melted_86_customer_df.head())
2 display(melted_86_customer_df.tail())
```

	transaction_month	cols	vals
0	2018-07-01	trial_nCustomers	99.0
1	2018-08-01	trial_nCustomers	94.0
2	2018-09-01	trial_nCustomers	103.0
3	2018-10-01	trial_nCustomers	109.0
4	2018-11-01	trial nCustomers	100.0

	transaction_month	cols	vals
43	2019-02-01	control_95%_interval	97.030614
44	2019-03-01	control_95%_interval	96.009240
45	2019-04-01	control_95%_interval	101.116114
46	2019-05-01	control_95%_interval	108.265738
47	2019-06-01	control_95%_interval	97.030614

```
In [849]: 1 trial_store
```

Out[849]: 86

```
In [1017]:
             1
                sns.set(style='whitegrid')
             2
             3 # set figure size
                plt.figure(figsize=(20,12))
             4
             5
             6
               # plot
             7
                g = sns.lineplot(x="transaction month",
             8
                                y="vals",
             9
                                hue='cols',
                                data= melted_86_customer_df
            10
            11
            12
            13
               # Highlight trial period
                g.axvspan("2019-02-01", "2019-05-01", color='#EF9A9A', alpha=0.5)
            14
            15
            16 # set x labels orientation for visability
            17
               plt.xticks(rotation=45)
            18
            19 # set font sizes and labels
            20 plt.xlabel("Month of Operation", fontsize = 20)
            21 plt.ylabel("Total Number of Customers", fontsize = 20)
            22 plt.title("Total Number of Customers by Month (Trial Store 86)", fontsize=30)
            23 plt.tick_params(labelsize=18)
            24
            25 # set Legend Labels
               legend_labels = ['Trial Customers',
            26
            27
                                 "Control Customers",
                                 "Control 5% Interval"
            28
            29
                                 "Control 95% Interval"]
            30
            31
                # set Legend
                plt.legend(title = 'Store Types',
            32
            33
                           labels = legend labels,
            34
                          loc = 'best',
            35
                          fontsize=20,
                          title fontsize=23)
            36
            37
                plt.tight_layout()
            38
            39
            40 # save figure
                plt.savefig("static/module2_analysis_pics/trial_86_customerByMonth.png")
```


Trial store 88

In []:

In []:

1

do the same thing like i did for the previous two stores

```
In [854]: 1 trial_store = 88
2 # find correlation for sales and customers using previously defined function
3 corr_nSales = findCorrelation(preTrialMeasures, trial_store, "totSales")
4 corr_nCustomers = findCorrelation(preTrialMeasures, trial_store, 'nCustomers)

In [855]: 1 # compute magnitude with new trial store
2 magnitude_nSales = findDifference(preTrialMeasures, trial_store, 'totSales')
3 magnitude_nCustomers = findDifference(preTrialMeasures, trial_store, 'nCustomers')
```

In [856]: 1 corr_nSales

Out[856]:

	trial_store	other_stores	measure	correlation
0	88	1	totSales	0.813636
1	88	2	totSales	-0.067927
2	88	3	totSales	-0.507847
3	88	4	totSales	-0.745566
4	88	5	totSales	0.190330
255	88	268	totSales	-0.021429
256	88	269	totSales	-0.172578
257	88	270	totSales	-0.723272
258	88	271	totSales	-0.103037
259	88	272	totSales	-0.772772

260 rows × 4 columns

```
In [857]:
```

- 1 # concatenate the sales together and customers together
- 2 corrMag_sales_df = pd.merge(corr_nSales, magnitude_nSales, how='inner')
- 3 corrMag_customers_df = pd.merge(corr_nCustomers, magnitude_nCustomers, how='
- 4 corrMag sales df.head()

Out[857]:

	trial_store	other_stores	measure	correlation	difference
0	88	1	totSales	0.813636	0.548959
1	88	2	totSales	-0.067927	0.541212
2	88	3	totSales	-0.507847	0.458109
3	88	4	totSales	-0.745566	0.484447
4	88	5	totSales	0.190330	0.496409

In [858]:

```
# calculate weighted average of each row using correlation and difference
# use 50% weighting for now assuming the two variables are equally important
corr_weight = 0.5
# for the sales dataframe
corrMag_sales_df['corrMagAVG_sales'] = corr_weight * corrMag_sales_df['corre corr_weight * corrMag_sales_df['differen]
# for the customers dataframe
```

8 corrMag_customers_df['corrMagAVG_customers'] = corr_weight * corrMag_custome
9 corr_weight * corrMag_customers_df['

```
In [859]: 1 print("corrMag_sales_df")
2 display(corrMag_sales_df.head())
3 print("corrMag_customers_df")
4 corrMag_customers_df.head()
```

corrMag_sales_df

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_sales
0	88	1	totSales	0.813636	0.548959	0.681297
1	88	2	totSales	-0.067927	0.541212	0.236643
2	88	3	totSales	-0.507847	0.458109	-0.024869
3	88	4	totSales	-0.745566	0.484447	-0.130559
4	88	5	totSales	0.190330	0.496409	0.343370

corrMag_customers_df

Out[859]:

	trial_store	other_stores	measure	correlation	difference	corrMagAVG_customers
0	88	1	nCustomers	0.305334	0.357143	0.331238
1	88	2	nCustomers	-0.452379	0.285714	-0.083332
2	88	3	nCustomers	0.522884	0.683673	0.603279
3	88	4	nCustomers	-0.361503	0.577922	0.108210
4	88	5	nCustomers	-0.025320	0.558442	0.266561

Out[860]:

	trial_store	trial_store	other_stores	other_stores	corrMagAVG_sales	corrMagAVG_customers
0	88	88	1	1	0.681297	0.331238
1	88	88	2	2	0.236643	-0.083332
2	88	88	3	3	-0.024869	0.603279
3	88	88	4	4	-0.130559	0.108210
4	88	88	5	5	0.343370	0.266561

```
In [862]:
                # check if changes are made
             2 control store df.head()
Out[862]:
                         other_stores
                                     corrMagAVG_sales
                                                       corrMagAVG_customers
               trial_store
            0
                      88
                                   1
                                              0.681297
                                                                    0.331238
                                   2
                      88
                                              0.236643
                                                                    -0.083332
            2
                      88
                                   3
                                              -0.024869
                                                                    0.603279
                      88
                                              -0.130559
                                                                    0.108210
                      88
                                   5
                                              0.343370
                                                                    0.266561
In [863]:
                # Store with the highest corrMagAVG score will be selected as the control st
             2
                control_store_df['control_score'] = 0.5 * (control_store_df['corrMagAVG_sale')
                                                                control store df['corrMagAVG cust
             3
                control store df.head()
In [864]:
Out[864]:
               trial store
                         other_stores corrMagAVG_sales corrMagAVG_customers control_score
            0
                      88
                                   1
                                              0.681297
                                                                    0.331238
                                                                                  0.506268
            1
                      88
                                   2
                                              0.236643
                                                                    -0.083332
                                                                                  0.076655
            2
                      88
                                   3
                                              -0.024869
                                                                    0.603279
                                                                                  0.289205
            3
                                   4
                                              -0.130559
                                                                    0.108210
                      88
                                                                                  -0.011175
                      88
                                   5
                                              0.343370
                                                                    0.266561
                                                                                  0.304965
In [868]:
                # select the control store based on the highest score
                some_sorted_df = control_store_df.sort_values(by='control_score', ascending=
                display(some sorted df)
                # save dataframe as html
                some_sorted_df.to_html("html_formatted_dataframes/module_two_files/trial88Pr
```

	trial_store	other_stores	corrMagAVG_sales	corrMagAVG_customers	control_score
170	88	178	0.650803	0.707828	0.679316
12	88	14	0.646064	0.685774	0.665919
126	88	134	0.775084	0.540154	0.657619
225	88	237	0.451974	0.777235	0.614604
179	88	187	0.616752	0.594560	0.605656

From this chart, since store 178 has the highest score, we will select store 155 as our control store.

The control scores doesn't seem very high but we will try it anyways to see how it compare to the trial store

Out[869]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
0	1	201807	206.9	49	1.061224	1.192308	3.337097
1	1	201808	176.1	42	1.023810	1.255814	3.261111
2	1	201809	278.8	59	1.050847	1.209677	3.717333
3	1	201810	188.1	44	1.022727	1.288889	3.243103
4	1	201811	192.6	46	1.021739	1.212766	3.378947

Out[870]: 88

Out[871]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
574	88	201807	1310.0	129	1.186047	2.000000	4.281046
575	88	201808	1323.8	131	1.221374	1.893750	4.368977
576	88	201809	1423.0	124	1.282258	2.000000	4.474843
577	88	201810	1352.4	123	1.284553	2.000000	4.279747
578	88	201811	1382.8	130	1.207692	2.000000	4.403822
579	88	201812	1325.2	126	1.182540	2.000000	4.446980
580	88	201901	1266.4	117	1.247863	2.000000	4.336986
1190	178	201807	952.0	107	1.233645	2.000000	3.606061
1191	178	201808	915.5	108	1.250000	1.874074	3.618577
1192	178	201809	954.4	101	1.316832	2.000000	3.587970
1193	178	201810	962.6	102	1.421569	2.000000	3.319310
1194	178	201811	975.6	111	1.252252	2.000000	3.509353
1195	178	201812	947.2	101	1.336634	2.000000	3.508148
1196	178	201901	837.2	95	1.284211	2.000000	3.431148
4							+

```
In [872]:
             1
                # create store types for graphing later (store type as in trial/control/othe
              2
                store label = []
              3
                for i in range(store data df.shape[0]):
                     if store data df['STORE NBR'][i] == trial store:
             4
              5
                          store label.append("trial store")
              6
                     elif store_data_df['STORE_NBR'][i] == ctrl_store:
              7
                          store label.append("control store")
             8
                     else:
             9
                          store_label.append("other_stores")
            10
                 store data df['store type'] = store label
            11
In [873]:
                # add a date column to store data df
                store_data_df['transaction_dates'] = pd.to_datetime(store_data_df['yearmonth
In [874]:
                store data df.head()
Out[874]:
               STORE_NBR yearmonth totSales
                                                nCustomers
                                                            nTxnPerCust nChipsPerTxn avgPricePerUnit
            0
                         1
                               201807
                                         206.9
                                                                                             3.337097 o
                                                        49
                                                               1.061224
                                                                             1.192308
            1
                               201808
                                         176.1
                                                        42
                                                               1.023810
                                                                             1.255814
                                                                                             3.261111
            2
                         1
                               201809
                                         278.8
                                                        59
                                                               1.050847
                                                                             1.209677
                                                                                             3.717333 o
             3
                               201810
                                         188.1
                                                               1.022727
                                                                             1.288889
                                                                                             3.243103 o
                                                        44
                               201811
                                         192.6
                                                                1.021739
                                                                             1.212766
                                                                                             3.378947
                                                        46
                store_data_df['store_type'].unique()
In [881]:
Out[881]:
           array(['other_stores', 'trial_store', 'control_store'], dtype=object)
In [883]:
                store data df.loc[store data df['store type'] == "trial store"]
Out[883]:
                 STORE_NBR yearmonth totSales
                                                  nCustomers nTxnPerCust nChipsPerTxn avgPricePerUnit
             574
                          88
                                 201807
                                          1310.0
                                                         129
                                                                  1.186047
                                                                                2.00000
                                                                                               4.281046
             575
                          88
                                 201808
                                          1323.8
                                                         131
                                                                  1.221374
                                                                                1.89375
                                                                                               4.368977
                                 201809
             576
                          88
                                          1423.0
                                                         124
                                                                  1.282258
                                                                                2.00000
                                                                                               4.474843
             577
                          88
                                 201810
                                          1352.4
                                                         123
                                                                  1.284553
                                                                                2.00000
                                                                                               4.279747
             578
                          88
                                 201811
                                          1382.8
                                                         130
                                                                  1.207692
                                                                                2.00000
                                                                                               4.403822
                                          1325.2
                                                         126
             579
                          88
                                 201812
                                                                  1.182540
                                                                                2.00000
                                                                                               4.446980
             580
                          88
                                 201901
                                          1266.4
                                                         117
                                                                  1.247863
                                                                                2.00000
                                                                                               4.336986
```

```
In [889]:
            1 # visually check if drivers are indeed similar in the period before the tria
            2 sns.set(style='whitegrid')
            3 # set figure size
              plt.figure(figsize=(20,14))
            4
            5
            6
              # create line chart
            7
               sns.lineplot(x = "transaction dates",
            8
                           y = "totSales",
            9
                           hue = "store_type",
           10
                           data = store_data_df)
           11
           12 # set x label orientation
           13 plt.xticks(rotation=45)
           14
           15 # set fontsize
           16 plt.xlabel("Transaction Month", fontsize=23)
           17 plt.ylabel("Total Sales", fontsize=23)
           18 plt.title("total sales by month (trial store 88)".title(), fontsize=30)
           19
               plt.tick_params(labelsize=18)
           20
           21 # Legend Labels
           22
              some_labels = ['Other Stores',
           23
                             "Trial Store",
           24
                             "Control Store"]
           25
              # set legend location and fontsize
           26
               plt.legend(title = "store type".title(),
           27
           28
                          labels = some_labels,
           29
                         loc='best',
           30
                         fontsize=20,
           31
                         title_fontsize=23)
           32
           33 # fit the graph
           34 plt.tight_layout()
           35
           36 plt.savefig("static/module2_analysis_pics/trial_control_88_salesPerMonth.png
```



```
In [888]:
            1 # graph the customers data
            2 | # visually check if drivers are indeed similar in the period before the tria
            3 sns.set(style='whitegrid')
            4 # set figure size
            5 plt.figure(figsize=(20,14))
            6
            7
               # create line chart
               sns.lineplot(x = "transaction_dates",
                           y = "nCustomers",
            9
                           hue = "store_type",
           10
           11
                           data = store_data_df)
           12
           13 # set x label orientation
           14
               plt.xticks(rotation=45)
           15
           16 # set fontsize
           17 plt.xlabel("Transaction Month", fontsize=23)
           18 plt.ylabel("Total Sales", fontsize=23)
               plt.title("total number of customers by month (Trial Store 88)".title(), fon
           19
           20 plt.tick params(labelsize=18)
           21
           22 # Legend Labels
           23 | some_labels = ['Other Stores',
                             "Trial Store",
           24
                             "Control Store"]
           25
           26
               # set legend location and fontsize
           27
           28
              plt.legend(title = "store type".title(),
           29
                          labels=some labels,
           30
                         loc='best',
           31
                         fontsize=20,
           32
                         title_fontsize=23)
           33
           34 # fit the graph
           35 plt.tight_layout()
           36
           37 # save figure
           38
              plt.savefig("static/module2_analysis_pics/trial_control_88_customersPerMonth
```


Assessment for trial store 88

```
In [535]:
               trial_store
Out[535]: 88
In [890]:
               # scale pre_trial control sales to match pre-trial store sales
            1
            2
            3
               # trial store total sales
               trial_totSales = store_data_df.loc[store_data_df['STORE_NBR'] == trial_store
            4
            5
               # control store total sales
            6
            7
               ctrl_totSales = store_data_df.loc[store_data_df['STORE_NBR'] == ctrl_store,
            8
            9
               # scale numbers
               scalingFactorForControlSales = trial_totSales / ctrl_totSales
           10
               scalingFactorForControlSales
```

Out[890]: 1.4338146535258616

Out[891]:

	STORE_NBR	yearmonth	totSales	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit
2069	178	201807	952.0	107	1.233645	2.000000	3.606061
2070	178	201808	915.5	108	1.250000	1.874074	3.618577
2071	178	201809	954.4	101	1.316832	2.000000	3.587970
2072	178	201810	962.6	102	1.421569	2.000000	3.319310
2073	178	201811	975.6	111	1.252252	2.000000	3.509353
2074	178	201812	947.2	101	1.336634	2.000000	3.508148
2075	178	201901	837.2	95	1.284211	2.000000	3.431148
2076	178	201902	1088.8	107	1.373832	2.000000	3.703401
2077	178	201903	998.8	114	1.254386	2.000000	3.492308
2078	178	201904	1059.8	117	1.282051	2.000000	3.532667
2079	178	201905	888.0	102	1.284314	1.908397	3.552000
2080	178	201906	722.6	92	1.173913	2.000000	3.345370

In [894]: | 1 | scaled_control_stores

Out[894]:

	STORE_NBR	yearmonth	nCustomers	nTxnPerCust	nChipsPerTxn	avgPricePerUnit	totSales
2069	178	201807	107	1.233645	2.000000	3.606061	952.0
2070	178	201808	108	1.250000	1.874074	3.618577	915.5
2071	178	201809	101	1.316832	2.000000	3.587970	954.4
2072	178	201810	102	1.421569	2.000000	3.319310	962.6
2073	178	201811	111	1.252252	2.000000	3.509353	975.6
2074	178	201812	101	1.336634	2.000000	3.508148	947.2
2075	178	201901	95	1.284211	2.000000	3.431148	837.2
2076	178	201902	107	1.373832	2.000000	3.703401	1088.8
2077	178	201903	114	1.254386	2.000000	3.492308	998.8
2078	178	201904	117	1.282051	2.000000	3.532667	1059.8
2079	178	201905	102	1.284314	1.908397	3.552000	888.0
2080	178	201906	92	1.173913	2.000000	3.345370	722.6

In [895]:

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[895]:

	yearmonth	control_sales	trial_sales
2069	201807	1364.991550	1310.00
2070	201808	1312.657315	1323.80
2071	201809	1368.432705	1423.00
2072	201810	1380.189985	1352.40
2073	201811	1398.829576	1382.80
2074	201812	1358.109240	1325.20
2075	201901	1200.389628	1266.40
2076	201902	1561.137395	1370.20
2077	201903	1432.094076	1477.20
2078	201904	1519.556770	1439.40
2079	201905	1273.227412	1308.25
2080	201906	1036.074469	1354.60

```
In [896]:
            1
               ## calculate percentage difference
            2
            3
              # select control sales
               control2 sales = percentage difference df['control sales']
            4
            5
            6
               # select trial sales
            7
               trial2 sales = percentage difference df['trial sales']
            8
            9
               # store calculated value in a new column
               percentage_difference_df['percentage_diff'] = abs(control2_sales - trial2_sa
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Remove the CWD from sys.path while we load stuff.

```
In [897]: 1 percentage_difference_df.reset_index(drop=True, inplace=True)
```

In [898]: 1 percentage_difference_df

Out[898]:

	yearmonth	control_sales	trial_sales	percentage_diff
0	201807	1364.991550	1310.00	0.040287
1	201808	1312.657315	1323.80	0.008489
2	201809	1368.432705	1423.00	0.039876
3	201810	1380.189985	1352.40	0.020135
4	201811	1398.829576	1382.80	0.011459
5	201812	1358.109240	1325.20	0.024232
6	201901	1200.389628	1266.40	0.054991
7	201902	1561.137395	1370.20	0.122307
8	201903	1432.094076	1477.20	0.031496
9	201904	1519.556770	1439.40	0.052750
10	201905	1273.227412	1308.25	0.027507
11	201906	1036.074469	1354.60	0.307435

Our null hypothesis is such that the trial period is the same as the pre-trial period Take the standard deviation based on the scaled percentage difference in the pre-trial period

Out[899]: 0.01707405192279777

```
In [900]: 1 # test with null hypothesis of there being 0 difference between trial and co
percentage_difference_df['tValues'] = (percentage_difference_df['percentage_
```

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.py:
2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[901]:

	yearmonth	control_sales	trial_sales	percentage_diff	tValues
7	201902	1561.137395	1370.20	0.122307	7.163302
8	201903	1432.094076	1477.20	0.031496	1.844699
9	201904	1519.556770	1439.40	0.052750	3.089489
10	201905	1273.227412	1308.25	0.027507	1.611038
11	201906	1036.074469	1354.60	0.307435	18.005977

```
In [902]: 1 # find the 95th percentile of the t distribution with degrees of freedom (df
2 # 95% confidence level
3 # degree of freedom of 7 is derived from have 9 pre-trial months. dof = 8-1=
4 scipy.stats.t.ppf(q=0.95, df=7)
```

Out[902]: 1.894578605061305

```
In [904]: 1
2  # add a transaction month column
3  measureOverTimeSales['transaction_month'] = pd.to_datetime(measureOverTimeSa
```

	transaction_month	totSales
0	2018-07-01	1310.0
1	2018-08-01	1323.8
2	2018-09-01	1423.0
3	2018-10-01	1352.4
4	2018-11-01	1382.8

	transaction_month	totSales
0	2018-07-01	952.0
1	2018-08-01	915.5
2	2018-09-01	954.4
3	2018-10-01	962.6
4	2018-11-01	975.6

```
In [908]: 1 combineSales_df = pd.merge(trial_sales, control_sales, how='inner')
2 combineSales_df
```

Out[908]:

	transaction_month	trial_totSales	control_totSales
0	2018-07-01	1310.00	952.0
1	2018-08-01	1323.80	915.5
2	2018-09-01	1423.00	954.4
3	2018-10-01	1352.40	962.6
4	2018-11-01	1382.80	975.6
5	2018-12-01	1325.20	947.2
6	2019-01-01	1266.40	837.2
7	2019-02-01	1370.20	1088.8
8	2019-03-01	1477.20	998.8
9	2019-04-01	1439.40	1059.8
10	2019-05-01	1308.25	888.0
11	2019-06-01	1354.60	722.6

```
In [909]:
```

```
# create two columns marking the 95% and 5% confidence interval for graphing
combineSales_df['control_5%_interval'] = combineSales_df['control_totSales']

combineSales_df['control_95%_interval'] = combineSales_df['control_totSales']

combineSales_df
```

Out[909]:

	transaction_month	trial_totSales	control_totSales	control_5%_interval	control_95%_interval
0	2018-07-01	1310.00	952.0	919.491005	984.508995
1	2018-08-01	1323.80	915.5	884.237411	946.762589
2	2018-09-01	1423.00	954.4	921.809050	986.990950
3	2018-10-01	1352.40	962.6	929.729035	995.470965
4	2018-11-01	1382.80	975.6	942.285110	1008.914890
5	2018-12-01	1325.20	947.2	914.854916	979.545084
6	2019-01-01	1266.40	837.2	808.611207	865.788793
7	2019-02-01	1370.20	1088.8	1051.619545	1125.980455
8	2019-03-01	1477.20	998.8	964.692874	1032.907126
9	2019-04-01	1439.40	1059.8	1023.609840	1095.990160
10	2019-05-01	1308.25	888.0	857.676484	918.323516
11	2019-06-01	1354.60	722.6	697.924580	747.275420

In [912]: 1 melted_88_sales_df

Out[912]:

	transaction_month	cols	vals
0	2018-07-01	trial_totSales	1310.000000
1	2018-08-01	trial_totSales	1323.800000
2	2018-09-01	trial_totSales	1423.000000
3	2018-10-01	trial_totSales	1352.400000
4	2018-11-01	trial_totSales	1382.800000
5	2018-12-01	trial_totSales	1325.200000
6	2019-01-01	trial_totSales	1266.400000
7	2019-02-01	trial_totSales	1370.200000
8	2019-03-01	trial_totSales	1477.200000
9	2019-04-01	trial_totSales	1439.400000
10	2019-05-01	trial_totSales	1308.250000
11	2019-06-01	trial_totSales	1354.600000
12	2018-07-01	control_totSales	952.000000
13	2018-08-01	control_totSales	915.500000
14	2018-09-01	control_totSales	954.400000
15	2018-10-01	control_totSales	962.600000
16	2018-11-01	control_totSales	975.600000
17	2018-12-01	control_totSales	947.200000
18	2019-01-01	control_totSales	837.200000
19	2019-02-01	control_totSales	1088.800000
20	2019-03-01	control_totSales	998.800000
21	2019-04-01	control_totSales	1059.800000
22	2019-05-01	control_totSales	888.000000
23	2019-06-01	control_totSales	722.600000
24	2018-07-01	control_5%_interval	919.491005
25	2018-08-01	control_5%_interval	884.237411
26	2018-09-01	control_5%_interval	921.809050
27	2018-10-01	control_5%_interval	929.729035
28	2018-11-01	control_5%_interval	942.285110
29	2018-12-01	control_5%_interval	914.854916
30	2019-01-01	control_5%_interval	808.611207
31	2019-02-01	control_5%_interval	1051.619545
32	2019-03-01	control_5%_interval	964.692874
33	2019-04-01	control_5%_interval	1023.609840

	transaction_month	cols	vals
34	2019-05-01	control_5%_interval	857.676484
35	2019-06-01	control_5%_interval	697.924580
36	2018-07-01	control_95%_interval	984.508995
37	2018-08-01	control_95%_interval	946.762589
38	2018-09-01	control_95%_interval	986.990950
39	2018-10-01	control_95%_interval	995.470965
40	2018-11-01	control_95%_interval	1008.914890
41	2018-12-01	control_95%_interval	979.545084
42	2019-01-01	control_95%_interval	865.788793
43	2019-02-01	control_95%_interval	1125.980455
44	2019-03-01	control_95%_interval	1032.907126
45	2019-04-01	control_95%_interval	1095.990160
46	2019-05-01	control_95%_interval	918.323516
47	2019-06-01	control 95% interval	747.275420

```
In [930]:
            1
               # plot
               sns.set(style="whitegrid")
            2
            3
            4
               plt.figure(figsize=(20,12))
            5
            6
               # plot
            7
               g = sns.lineplot(x="transaction month",
            8
                               y="vals",
            9
                               hue='cols',
                                data= melted_88_sales_df
           10
           11
           12
           13
               # Highlight trial period
               g.axvspan("2019-02-01", "2019-05-01", color='#EF9A9A', alpha=0.5)
           14
           15
           16 # set x labels orientation
           17
              plt.xticks(rotation=45)
           18
           19 # # set fontsize
           20 plt.xlabel("Month of Operation", fontsize= 22)
           21 plt.ylabel("Total Sales", fontsize=22)
           22 plt.title("Total Sales by Month (Trial Store 88)", fontsize=30)
           23
               plt.tick_params(labelsize=18)
           24
           25
               legend labels = ['Trial Total Sales',
           26
                                "Control Total Sales",
           27
                                "Control 5% Interval",
           28
                                "Control 95% Interval"]
           29
               plt.legend(title = "Store Types",
           30
           31
                          labels = legend_labels,
           32
                         loc='best',
           33
                         fontsize=20,
           34
                         title_fontsize=23)
           35
               plt.tight_layout()
           36
           37
               # save figure
           38
               plt.savefig("static/module2 analysis pics/trial 88 salesByMonth.png")
```


trial store 86 is not significantly different to its control store in the trial period. This relationship was shown in the graph where the trial store's performance lie within the confidence interval of the control store in two of the three trial months (trial months: from 2019-02 to 2019-06)

This time make a graph looking at the number of customers

88

178

```
In [916]:
              ### Find the Standard deviation based on scaled percentage difference in the
            1
            3
              # scale pre trial control sales to match pre-trial trial store sales
            4
              # trial store total sales
            5
              trial_nCustomers = store_data_df.loc[store_data_df['STORE_NBR'] == trial_sto
            6
              # control store total sales
              ctrl nCustomers = store data df.loc[store data df['STORE NBR'] == ctrl store
            9
           10
           11 # scale numbers
           12 | scalingFactorForControlSales = trial nCustomers / ctrl nCustomers
           13
           14
              # apply the scaling factor
           15
              scaled control stores = measureOverTime df.loc[measureOverTime df['STORE NBR
           16
           17
           18 # reorder columns
           19
              scaled_control_stores = scaled_control_stores[['STORE_NBR', 'yearmonth', 'nC
                      'nChipsPerTxn', 'avgPricePerUnit', 'totSales']]
           20
           21
           22
              # add a customers feature
           23
               scaled control stores['control nCustomers'] = scaled control stores['nCustom
           24
           25
              ## create a percentagedifference dataframe
           26
           27
           28 # calcualte total sales for the trials data
           29 | trial nCustomers = measureOverTime df.loc[measureOverTime df['STORE NBR'] ==
           30
           31 # build the dataframe for analysis later
               percentage_difference_df = scaled_control_stores[['yearmonth', 'control_nCus
           33
               percentage difference df['trial nCustomers'] = trial nCustomers.values
           34
           35
           36 | ## calculate percentage difference
           37
           38 # select control sales
           39 | control2 nCustomers = percentage difference df['control nCustomers']
           40
           41 # select trial sales
           42 | trial2 nCustomers = percentage difference df['trial nCustomers']
           43
              # store calculated value in a new column
           44
              percentage difference df['percentage diff'] = abs(control2 nCustomers - tria
           45
           46
           47
              # reset index
           48
              percentage difference df.reset index(drop=True, inplace=True)
           49
           50
           51 # Calculate standard deviation based on the scaled percentage difference in
              perDiff preTrial = percentage difference df.loc[percentage difference df['ye
           53
               stdDev = perDiff preTrial.std()
              stdDev
           54
```

y:33: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

C:\Users\smartestpersonalive\Anaconda3\lib\site-packages\ipykernel_launcher.p
y:45: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out[916]: 0.012417826272588403

In [917]: 1 measureOverTimeSales.head()

Out[917]:

	tı
3.337097	
3.261111	
3.717333	
3.243103	
3.378947	

In [918]:

```
# trial and control store nCustomers
```

trial_nCustomers = measureOverTimeSales.loc[measureOverTimeSales['STORE_NBR']

['transaction_month', 'nCustomers

4 control_nCustomers = measureOverTimeSales.loc[measureOverTimeSales['STORE_NB

['transaction_month', 'nCustome

```
In [919]: 1 display(trial_nCustomers.head())
2 display(control_nCustomers.head())
```

	transaction_month	nCustomers
0	2018-07-01	129
1	2018-08-01	131
2	2018-09-01	124
3	2018-10-01	123
4	2018-11-01	130

	transaction_month	nCustomers
0	2018-07-01	107
1	2018-08-01	108
2	2018-09-01	101
3	2018-10-01	102
4	2018-11-01	111

Out[921]:

	transaction_month	trial_nCustomers	control_nCustomers
0	2018-07-01	129	107
1	2018-08-01	131	108
2	2018-09-01	124	101
3	2018-10-01	123	102
4	2018-11-01	130	111
5	2018-12-01	126	101
6	2019-01-01	117	95
7	2019-02-01	124	107
8	2019-03-01	134	114
9	2019-04-01	128	117
10	2019-05-01	128	102
11	2019-06-01	121	92

In [923]: 1 combineCustomers_df.head()

Out[923]:

	transaction_month	trial_nCustomers	control_nCustomers	control_5%_interval	control_95%_inter
0	2018-07-01	129	107	104.342585	109.6574
1	2018-08-01	131	108	105.317750	110.6822
2	2018-09-01	124	101	98.491599	103.5084
3	2018-10-01	123	102	99.466763	104.5332
4	2018-11-01	130	111	108.243243	113.7567

```
In [924]:
```

```
# melt combineCustomers_df for graphing
melted_88_customer_df = combineCustomers_df.melt('transaction_month',var_nam')

# convert transaction month to string datatype so xticks won't display time
melted_88_customer_df['transaction_month'] = melted_88_customer_df['transact']
```

```
In [925]:
```

```
1 display(melted_88_customer_df.head())
2 display(melted_88_customer_df.tail())
```

	transaction_month	cols	vals
0	2018-07-01	trial_nCustomers	129.0
1	2018-08-01	trial_nCustomers	131.0
2	2018-09-01	trial_nCustomers	124.0
3	2018-10-01	trial_nCustomers	123.0
4	2018-11-01	trial_nCustomers	130.0

	transaction_month	cols	vals
43	2019-02-01	control_95%_interval	109.657415
44	2019-03-01	control_95%_interval	116.831264
45	2019-04-01	control_95%_interval	119.905771
46	2019-05-01	control_95%_interval	104.533237
47	2019-06-01	control_95%_interval	94.284880

```
In [926]: 1 trial_store
```

Out[926]: 88

```
In [1018]:
             1
                sns.set(style='whitegrid')
             2
             3 # set figure size
                plt.figure(figsize=(20,12))
             4
             5
             6
               # plot
             7
                g = sns.lineplot(x="transaction month",
             8
                                y="vals",
             9
                                hue='cols',
                                data= melted_88_customer_df
            10
            11
            12
            13
               # Highlight trial period
                g.axvspan("2019-02-01", "2019-05-01", color='#EF9A9A', alpha=0.5)
            14
            15
            16 # set x labels orientation for visability
            17
               plt.xticks(rotation=45)
            18
            19 # set font sizes and labels
            20 plt.xlabel("Month of Operation", fontsize = 20)
            21 plt.ylabel("Total Number of Customers", fontsize = 20)
            22 plt.title("Total Number of Customers by Month (Trial Store 88)", fontsize=30)
            23 plt.tick_params(labelsize=18)
            24
            25 # set legend labels
               legend_labels = ['Trial Customers',
            26
                                 "Control Customers",
            27
                                 "Control 5% Interval"
            28
            29
                                 "Control 95% Interval"]
            30
            31
                # set Legend
                plt.legend(title = 'Store Types',
            32
            33
                           labels = legend labels,
                          loc = 'best',
            34
            35
                          fontsize=20,
                          title fontsize=23)
            36
            37
            38
                plt.tight_layout()
            39
                plt.savefig("static/module2 analysis pics/trial 88 customerByMonth.png")
            40
```


In []:	1	
In []:	1	
In []:	1	
In []:	1	