

DM Lab Assignment PART - C

Report Submitted By:

Pranav Hegde - 1MS18IS412

Kumar Hegde - 1MS18IS406

Bhaskar .C - 1MS18IS402

Table of Contents:

Abstract	3
Introduction	4
Approach Used	. 5
Result And Discussion	6
Conclusion	13
References	14

Abstract

Coronavirus is a family of viruses that are named after their spiky crown. The novel coronavirus, also known as SARS-CoV-2, is a contagious respiratory virus that first reported in Wuhan, China. On 2/11/2020, the World Health Organization designated the name COVID-19 for the disease caused by the novel coronavirus. This notebook aims at exploring COVID-19 through data analysis and projections.

Introduction

Novel Corona Virus 2019 Dataset

Dataset_Source:-https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset?select=COVID19 line list data.csv

2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread.

However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it's unclear how easily or sustainably this virus is spreading between people CDC

This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

Approach Used:

Regression analysis is a set of statistical methods used for the estimation of relationships between a dependent variable and one or more independent variables. It can be utilized to assess the strength of the relationship between variables and for modeling the future relationship between them.

Regression analysis includes several variations, such as linear, multiple linear, and nonlinear. The most common models are simple linear and multiple linear. Nonlinear regression analysis is commonly used for more complicated data sets in which the dependent and independent variables show a nonlinear relationship.

Formula to Find The Regression Model : $Y_i = f(X_i, \beta) + e_i$.

Data Analysis:

Initial Setup:

Data Description:

	Admin2	Province_State	Country_Reg	ion	Last_Update	Lat	Long	_ Confirme	d Death	s Rec	overed	Active	Combin	ned_Key	Incidence_R	ate Case	-Fatality_Rati	0	
NaN	NaN	NaN	Afghanis	tan 2020-	10-21 04:24:14	33.93911	67.70995	3 4036	9 150	1	33790	5068.0	Afg	hanistan	103.669	971	3.71434	9	
NaN	NaN	NaN	Alba	ania 2020-	10-21 04:24:14	41.15330	20.16830	0 176	1 458	3	10225	5968.0		Albania	613.350	476	2.59475	4	
NaN	NaN	NaN	Alg	eria 2020-	10-21 04:24:14	28.03390	1.65960	5482	9 187	3	38346 1	4610.0		Algeria	125.034	654	3.41607	5	
NaN	NaN	NaN	And	orra 2020-	10-21 04:24:14	42.50630	1.52180	362	23 62	2	2273	1288.0		Andorra	4689.057	141	1.71128	9	
NaN	NaN	NaN	Ang	jola 2020-	10-21 04:24:14	-11.20270	17.87390	0 804	19 25	1	3037	4761.0		Angola	24,490	155	3.11840	0	
onfi	med_df.h	ead()																	
Prov	ince/State	Country/Region	Lat	Long	1/22/20 1/	23/20 1/24	1/20 1/25	6/20 1/26/	20 1/27/	20	12/24/2	12/	25/20	12/26/20	12/27/20	12/28/20	12/29/20	12/30/20	12/3
	NaN	Afghanistan	33.93911	67.709953	0	0	0	0	0	0	5065	5	50810	50886	51039	51280	51350	51405	5
	NaN	Albania	41.15330	20.168300	0	0	0	0	0	0	5482	7	55380	55755	56254	56572	57146	57727	5
	NaN	Algeria	28.03390	1.659600	0	0	0	0	0	0	9700	7	97441	97857	98249	98631	98988	99311	9
	NaN	Andorra			_		_			_	700			7000	7004	7071	7010	7983	
	14014	Andona	42.50630	1.521800	0	0	0	0	0	0	769	9	7756	7806	7821	7875	7919	/905	-
ows :	NaN 351 colu	Angola	42.50630 -11.20270		0	0	0	0	0	0	1702		17099	17149	17240	17296		17433	
s_me	NaN 351 colu	Angola mns a . head ()	-11.20270	17.873900	0	0	0	0	0	0	1702	9	17099	17149	17240	1729€	17371	17433	1
s_me	NaN 351 colu	Angola	-11.20270	17.873900 e La	0	0		0	0	0	1702	9	17099	17149	17240	1729€		17433	1 ISO
s_me	NaN 351 colu	Angola mns a . head ()	-11.20270	17.873900 e La	0 Long_	0	0	0	0	0	1702	9 Rate F	17099 People_T	17149	17240	1729€	17371	17433	1
_me	NaN 351 columnia dical_dat	Angola mns a . head () Country_Region	-11.20270 Last_Updat 2020-10-2	e La 1 32.318;	0 Long_	O	0 Deaths	0 Recovered	0 Active	0	1702	9 Rate F	17099 People_T	17149	17240	17296	17371 ortality_Rate 1.607192	17433 UID	ISO US
s_me	NaN: 351 coluidical_dat ince_State Alabama	Angola mns a.head() Country_Region US	-11.20270 Last_Updat 2020-10-2 04:30:3 2020-10-2	e La 1 32.318. 1 61.370	0 Long_	0 Confirmed	0 Deaths 1 2805	0 Recovered 74238.0	Active 97485.0	0 FIPS	1702 Incident_ 3559.48;	Rate F	17099 People_T 1265 546	17149	17240	17296 talized N	17371 ortality_Rate 1.607192	17433 UID 84000001	ISO US
s_me	NaN 351 colu dical_dat ince_State Alabama Alaska American	Angola mns a.head() Country_Region US	-11.20270 Last Updat 2020-10-2 04:30:3 2020-10-2 04:30:3 2020-10-2	e La 1 32.318; 1 61.370 1 -14.271(1 32.729)	0	Confirmed 175210 11391	0 Deaths 2805	0 Recovered 74238.0 6681.0 NaN	Active 97485.0 4643.0	0 FIPS 1.0 2.0	1702: Incident_ 3559.48; 1557.11!	Rate F 2255 5420	17099 People_T 1265 546	17149 Fested Pe 5575.0	17240	17296 talized N NaN	ortality_Rate 1.607192 0.588184	UID 84000001 84000002	ISO US US ASI

Data Preprocessing:

In this processing we will get all the dates of the out break of pandemic and daily Increases and averages.

```
confirmed = confirmed_df.loc[:, cols[4]:cols[-1]]
deaths = deaths_df.loc[:, cols[4]:cols[-1]]
recoveries = recoveries_df.loc[:, cols[4]:cols[-1]]
dates = confirmed.keys()
world_cases = []
total_deaths = []
mortality rate = []
recovery_rate = []
total_recovered = []
total_active = []
for i in dates:
    confirmed_sum = confirmed[i].sum()
death_sum = deaths[i].sum()
     recovered_sum = recoveries[i].sum()
     # confirmed, deaths, recovered, and active
     world_cases.append(confirmed_sum)
     total deaths.append(death sum)
     total_recovered.append(recovered_sum)
    total_active.append(confirmed_sum-death_sum-recovered_sum)
     # calculate rates
     mortality_rate.append(death_sum/confirmed_sum)
    recovery_rate.append(recovered_sum/confirmed_sum)
```

Increasing the Daily Cases Of Corona Virus Accoding to the Basis of Perticular regions.

Visualization:

The data is further processed for better visualization of datetime.

The different regressions are used for visualization they are listed below

```
start = '1/22/2020'
start_date = datetime.datetime.strptime(start, '%m/%d/%Y')
future_forcast_dates = []
for i in range(len(future_forcast)):
    future_forcast_dates.append((start_date + datetime.timedelta(days=i)).strftime('%m/%d/%Y'))

# slightly modify the data to fit the model better (regression models cannot pick the pattern)
X_train_confirmed, X_test_confirmed, y_train_confirmed, y_test_confirmed = train_test_split(days_since_1_22[50:], world_cases[50:], test_size=0.2, shuffle=False)
```

SVM Regressor

```
# svm_confirmed = svm_search.best_estimator_
svm_confirmed = SVR(shrinking=True, kernel='poly',gamma=0.01, epsilon=1,degree=3, C=0.1)
svm_confirmed.fit(X_train_confirmed, y_train_confirmed)
svm_pred = svm_confirmed.predict(future_forcast)

# check against testing data
svm_test_pred = svm_confirmed.predict(X_test_confirmed)
plt.plot(y_test_confirmed)
plt.plot(y_test_confirmed)
plt.plegend(['Test_Data', 'SVM Predictions'])
print('MAE:', mean_absolute_error(svm_test_pred, y_test_confirmed))
print('MSE:', mean_squared_error(svm_test_pred, y_test_confirmed))

MAE: 1326548.419556894
MSE: 1965217939383.6392
```


Polynomial Regression

```
# transform our data for polynomial regression
poly = PolynomialFeatures(degree=4)
poly_X_train_confirmed = poly.fit_transform(X_train_confirmed)
poly_X_test_confirmed = poly.fit_transform(X_test_confirmed)
poly_future_forcast = poly.fit_transform(future_forcast)
bayesian_poly = PolynomialFeatures(degree=5)
bayesian_poly_X_train_confirmed = bayesian_poly.fit_transform(X_train_confirmed) bayesian_poly_X_test_confirmed = bayesian_poly_fit_transform(X_test_confirmed)
bayesian_poly_future_forcast = bayesian_poly.fit_transform(future_forcast)
# polynomial regression
linear_model = LinearRegression(normalize=True, fit_intercept=False)
linear_model.fit(poly_X_train_confirmed, y_train_confirmed)
 test_linear_pred = linear_model.predict(poly_X_test_confirmed)
linear_pred = linear_model.predict(poly_future_forcast)
print('MAE:', mean_absolute_error(test_linear_pred, y_test_confirmed))
print('MSE:',mean_squared_error(test_linear_pred, y_test_confirmed))
MAE: 7945015.295903881
MSE: 79185296204042.3
print(linear_model.coef_)
[[-1.38287451e+06 3.14448519e+04 -2.02859763e+02 3.88791621e+00
  -5.32255097e-03]]
plt.plot(y_test_confirmed)
plt.plot(test_linear_pred)
plt.legend(['Test Data', 'Polynomial Regression Predictions'])
```

<matplotlib.legend.Legend at 0x7fe6e68e3f10>

Bayesian ridge polynomial regression

6.5 6.0 5.5 5.0

```
# bayesian ridge polynomial regression tol = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2] alpha_1 = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3] alpha_2 = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3] lambda_1 = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3] lambda_2 = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3] normalize = [True, False]
  bayesian = BayesianRidge(fit_intercept=False)
bayesian_search = RandomizedSearchCV(bayesian, bayesian_grid, scoring='neg_mean_squared_error', cv=3, return_train_score=True, n_jobs=-1, n_iter=40, verbose=1)
  bayesian_search.fit(bayesian_poly_X_train_confirmed, y_train_confirmed)
 Fitting 3 folds for each of 40 candidates, totalling 120 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 48 tasks | elapsed: 2.0s
[Parallel(n_jobs=-1)]: Done 120 out of 120 | elapsed: 2.1s finished
bayesian_search.best_params_
 {'tol': 0.001,
  ('tol': 0.001,
'normalize': False,
'lambda_2': 1e-06,
'lambda_1': 0.001,
'alpha_2': 0.001,
'alpha_1': 1e-07}
 bayesian_confirmed = bayesian_search.best_estimator_
test_bayesian_pred = bayesian_confirmed.predict(bayesian_poly_X_test_confirmed)
bayesian_pred = bayesian_confirmed.predict(bayesian_poly_future_forcast)
print('MSE:', mean_baolute_error(test_bayesian_pred, y_test_confirmed))
print('MSE:',mean_squared_error(test_bayesian_pred, y_test_confirmed))
MAE: 7142471.68637624
MSE: 63025963254224.75
  plt.plot(y_test_confirmed)
plt.plot(test_bayesian_pred)
plt.legend(['Test Data', 'Bayesian Ridge Polynomial Predictions'])
 <matplotlib.legend.Legend at 0x7fe6e6b11ad0>
1e7
8.5 Est Data
Bayesian Ridge Polynomial Predictions
 7.0
```

Here be the Example Of the Confirmed cases And Graphing the number of confirmed cases, active cases, deaths, recoveries, mortality rate and recovery rate.

```
adjusted_dates = adjusted_dates.reshape(1, -1)[0]
plt figure(figsize=(1, 10))
plt figure(figsize=(1, 10))
plt plt dadjusted_dates, word confirmed avg, linestyle='dashed', color='orange')
plt.shbel('goy Since 1/22/2020', size=30)
plt.yabel('so f Cores', size=30)
plt.legend('pivolabide Cornavirus Cases', 'Noving Average {} Days'.format(window)], prop={'size': 20})
plt ricks(size=20)
plt ricks(size=20)
plt.show()
plt.plt(adjusted_dates, total_deaths)
plt.plt(adjusted_dates, total_deaths)
plt.plt(adjusted_dates, total_deaths)
plt.plt(adjusted_dates, total_deaths)
plt.plt(adjusted_dates, total_deaths)
plt.ripure(figsize=(16, 10))
plt.plt(adjusted_dates, total_deaths)
plt.xibel('so f Cores', size=30)
plt.xibel('so f Cores', size=30)
plt.xibel('so f Cases', size=30)
plt.xibel('so f Cases', size=30)
plt.xibel('so f Cases', size=30)
plt.xibel('gotize=20)
```


Conclusion:

After referring the different techniques and using those on dataset conclude that we got the main features of the dataset those are confirmed cases, active cases, deaths, recoveries, mortality rate and recovery rate.

The features are graphed and made easy to understand the current situation

References:

- The data set was taken from the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset?select=COVID19_line_list_data.csv
- Also from https://www.kaggle.com/bhushanaditya/covid-19-data-visualization