Statistical Data Analysis Lab

Anna Tkachev

Requirements

→ Basic programming skills (I will be using Python)

→ Basic knowledge of statistics and probability

Course overview

- Probability and distributions
- Statistics testing and assumptions
- Statistical significance
- Data transformation
- Basic predictive modeling

- Real-world datasets
- Synththically generated datasets
- Hands on: scripting and testing statistical tools and approaches

Grading

Only homework, according to Canvas schedule

Probability and Distributions

(one class)

Probability, statistics, randomness

Definition [edit]

The requirements for a set function μ to be a probability measure on a σ -algebra are that:

- μ must return results in the unit interval [0,1], returning 0 for the empty set and 1 for the entire space.
- μ must satisfy the *countable additivity* property that for all countable collections E_1, E_2, \ldots of pairwise disjoint sets:

$$\mu\left(igcup_{i\in\mathbb{N}}E_i
ight)=\sum_{i\in\mathbb{N}}\mu(E_i)$$

Probability, statistics, randomness

Definition [edit]

The requirements for a set function μ to be a probability measure on a σ -algebra are that:

- μ must return results in the unit interval [0,1], returning 0 for the empty set and 1 for the entire space.
- μ must satisfy the *countable additivity* property that for all countable collections E_1, E_2, \ldots of pairwise disjoint sets:

$$\mu\left(igcup_{i\in\mathbb{N}}E_i
ight)=\sum_{i\in\mathbb{N}}\mu(E_i)$$

Now suppose that (B,\mathcal{B},μ) is a measure space equipped with the counting measure μ . The probability density function f of X with respect to the counting measure, if it exists, is the Radon–Nikodym derivative of the pushforward measure of X (with respect to the counting measure), so $f=dX_*P/d\mu$ and f is a function from B to the non-negative reals. As a consequence, for any $b\in B$ we have

$$P(X=b) = P(X^{-1}(b)) = X_*(P)(b) = \int_b f d\mu = f(b),$$

demonstrating that f is in fact a probability mass function.

$$P(sum = 8) = P(2 \text{ and } 6) + P(3 \text{ and } 5) + P(4 \text{ and } 4) + P(5 \text{ and } 3) + P(6 \text{ and } 2) = 5/12$$

(random variable)

(random variable)

$$X_1, X_2, X_3, ... X_n$$

Laws of nature:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

20

 $X_1, X_2, X_3, ... X_n$

Law of nature:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

will get more certain with larger *n*

LLN

"distribution"

"distribution"

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}$$

$$\sum_{i=1}^{n} \frac{\left(X_{i} - \overline{X}\right)^{2}}{n-1}$$

"spread"

"distribution"

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}$$
 "center"

$$\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{n-1}$$
 "spread"

General shape of distribution

Black box process

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}$$
 "center" mean
$$\mu$$

$$\sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n - 1}$$
 "spread"
$$\text{standard deviation}$$
 std

General shape of distribution

parametric families, ex. normal, uniform, exponential, etc.

mean = 0.49 std = 0.29

mean = 0.47 std = 0.48

mean = 0.49 std = 0.29

mean = 0.47 std = 0.48

ex: mean 10, std 1

Where does it come from?

ex: mean 10, std 1

Law of nature:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

will get more similar to a normal distribution with larger n

68% 95% 99.7%

ex: mean 10, std 1

Example in nature:

Human height

your height ~ 1/2(mother's height + father's height)

Example in nature:

Human height

your height
$$\sim 1/2$$
(grandmother's height + granfather's height) + 1/2(grandmother's height+ + granfather's height))

. . .

your height
$$\sim \frac{1}{n} \sum_{i=1}^{n} X_i$$

 X_{i} - Individual height of your ancestor

Could also reformulate this in terms of many independent genetic factors

Example in nature:

Human height

174 samples,20 years of age, female (Howell1.csv)

Purple line: generated normal distribution with estimated mean and std

Distribution of $\frac{1}{n} \sum_{i=1}^{n} X_i$:

Law of nature:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

will get more similar to a normal distribution with larger n

CLT

Distribution of $\frac{1}{n} \sum_{i=1}^{n} X_i$:

for X_i - uniform distribution,

calculate
$$\frac{1}{n} \sum_{i=1}^{n} X_{i}$$

and repeat 10000 times to generate the distribution of $\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Lognormal distribution

Very common in nature, biology, and medicine as well

 X_i is has lognormal distribution, if the logarithm of X_i is normally distributed

examples:

Log normal distribution

Where does it come from?

$$\prod_{i=1}^{n} X_{i}$$

will get more similar to a lognormal distribution with larger n

Log normal distribution

Where does it come from?

$$C*\prod_{i=1}^{n} X_{i}$$

will get more similar to a lognormal distribution with larger n

Log normal distribution

 $\prod_{i=1}^{n} X_{i}$

200

product_rand_sample=10
for i in np.arange(0,K):
 x=normal(1,0.1,1000)
product rand sample=product rand sample*x

Χ

log2 X

Log normal disitibution

Real world example:

n = 768

PRECURSORINTENSITY:PI_GER_g1520_x5_pos_535.mzXML
PRECURSORINTENSITY:PI_GER_g1521_x5_pos_393.mzXML
PRECURSORINTENSITY:PI_GER_g1522_x5_pos_586.mzXML
PRECURSORINTENSITY:PI_GER_g1523_posx5_209.mzXML
PRECURSORINTENSITY:PI_GER_g1524_x5_pos_678.mzXML
PRECURSORINTENSITY:PI_GER_g1525_x5_pos_53.mzXML
PRECURSORINTENSITY:PI_GER_g1526_x5_pos_607.mzXML
PRECURSORINTENSITY:PI_GER_g1527_x5_pos_149.mzXML
PRECURSORINTENSITY:PI_GER_g1528_x5_pos_620.mzXML
PRECURSORINTENSITY:PI_GER_g1529_posx5_341.mzXML
PRECURSORINTENSITY:PI_GER_g1530_x5_pos_1094.mzXML
PRECURSORINTENSITY:PI_GER_g1531_x5_pos_83.mzXML
PRECURSORINTENSITY:PI_GER_g1532_x5_pos_567.mzXML
PRECURSORINTENSITY:PI_GER_g1533_posx5_281.mzXML
PRECURSORINTENSITY:PI_GER_g1534_x5_pos_110.mzXML
PRECURSORINTENSITY:PI GER q1535 x5 pos 544.mzXML

Log normal disitibution

Real world example:

n features = 235

	CAR 10:1	CAR 12:1	CAR 18:2	CAR 18:1
PRECURSORINTENSITY:PI_GER_g1520_x5_pos_535.mzXML	13.9868355356746	13.7568182375003	13.8419376862341	14.5556110739153
PRECURSORINTENSITY:PI_GER_g1521_x5_pos_393.mzXML	13.7409130159943	12.9891351592992	14.0672933316656	13.9066482998761
PRECURSORINTENSITY:PI_GER_g1522_x5_pos_586.mzXML	13.5134309894261	13.2128612208716	13.7960614705597	14.2209741754035
PRECURSORINTENSITY:PI_GER_g1523_posx5_209.mzXML	14.3585864197179	13.753273432842	13.6868116704381	13.686974367965
PRECURSORINTENSITY:PI_GER_g1524_x5_pos_678.mzXML	14.0501662094891	13.4825236856777	13.9385369522722	14.1374823799142
PRECURSORINTENSITY:PI_GER_g1525_x5_pos_53.mzXML	14.3260462789677	13.0351690743192	13.6521219597924	13.9984763634375
PRECURSORINTENSITY:PI_GER_g1526_x5_pos_607.mzXML	13.5791747210104	13.4099018775543	13.6745992345387	14.136769413487
PRECURSORINTENSITY:PI_GER_g1527_x5_pos_149.mzXML	13.7328931321784	13.3035326766687	13.1183743337904	13.8391802206644
PRECURSORINTENSITY:PI_GER_g1528_x5_pos_620.mzXML	13.3172160543242	13.3865124321879	13.102865589948	14.1460553593803
PRECURSORINTENSITY:PI_GER_g1529_posx5_341.mzXML	13.4262432690065	12.7444423897913	13.8927467741453	13.6755301466585
PRECURSORINTENSITY:PI_GER_g1530_x5_pos_1094.mzXML	13.7197310034305	13.3832993321152	13.3434974789075	14.0896899836215
PRECURSORINTENSITY:PI GER g1531 x5 pos 83.mzXML	12.4364617880371	12.5416580011312	13.2692700285682	13.7421828206475
PRECURSORINTENSITY:PI GER g1532 x5 pos 567.mzXML	13.3551193273866	12.1406181976534	13.3700128857638	13.7912871544003
PRECURSORINTENSITY:PI GER g1533 posx5 281.mzXML	14.3520268785438	13.4683287650172	13.0853867945694	13.1196127474753
PRECURSORINTENSITY:PI_GER_g1534_x5_pos_110.mzXML	14.5072449140457	13.9698695366852	13.3307775372826	13.9274144221603
PRECURSORINTENSITY:PI GER q1535 x5 pos 544.mzXML	12.2498961710926	11.701271792652	12.5462480545009	13.2843472453556

log2 Feature levels (one sample)