13. Übungszettel Robotik WS15/16

Prof. Dr. Daniel Göhring, Zahra Boroujeni Institut für Informatik, Freie Universität Berlin Abgabe online bis Dienstag, 02.02.2016, 12 Uhr s.t.

modified package

https://github.com/ZahraBoroujeni/ackermann_vehicle

new files which are added:

libmodel_push.so

obstacle.world

modified file:

ackermann_vehicle_gazebo/launch/ackermann_vehicle_.launch

I defined an obstacles that moves in x axis Sinusoidal. Use the package above and answer the question below. modify the line below in obstacle.world to find the libmodel_push.so file:

<plugin name="model_push" filename="/home/mi/boroujeni/catkin_ws/src/ackermann_vehicle/ackermann_vehicle_gazebo/worlds/libmodel_push.so"/>

1. Aufgabe (2 Punkte):

Berechnen Sie die Sensordaten-Fehler-Kovarianzmatrix R für die x-Koordinate und x-Geschwindigkeiteines Hindernisses. Zeichnen Sie dafür die entsprechenden Messwerte für das Obstacle über einen geeigneten Zeitraum auf.

laser topic:

/ackerman_vehicle/laser/scan

2. Aufgabe (2 Punkte):

Berechnen Sie die Prozess-Fehler-Kovarianzmatrix Q für die x-Koordinate und x-Geschwindigkeit eines Hindernisses. Zeichnen Sie dafür die entsprechenden Messwerte (bzw. die Differenz zu vorhergehenden Messwerten) für das Obstacle über einen geeigneten Zeitraum auf.

rqt_plot /ackermann_vehicle/gazebo/model_states/pose[2]/position/x /ackermann_vehicle/gazebo/model_states/twist[2]/linear/x sin((2pi/0.6) t)

3. Aufgabe (6 Punkte):

Implementieren Sie ein Kalman-Filter für die x-Koordinate und die x-Geschwindigkeit eines Hindernisses. Verwenden sie folgende Parameter:

- Die Messungen z haben die Form (x-Koordinate, x-Geschwindigkeit)^T
- Verwenden Sie als Beobachtungsmatrix H die Identitätsmatrix
- Verwenden Sie als Zustandsübergangsmatrix A folgende Matrix:

1	0.04
0	1

- Da wir bei diesem Kalman-Filter keinen Input haben, wird die Input-Matrix B nicht verwendet.
- Verwenden Sie als initialen Wert für die A-Posteriori-Kovarianzmatrix P₀:

1000	0
0	1000

- Verwenden Sie als initialen Wert für die A-Posteriori-Zustandsabschätzung \hat{x}_0 = $(0,0)^{\rm T}$

Filtern Sie mit diesem Kalman-Filter die Messwerte für das Obstacle. Plotten Sie die gemessenen sowie die gefilterten Werte für x-Koordinate und x-Geschwindigkeit über der Zeit.