$$(P_s, S) \Rightarrow (P_{s_n}, S_n)$$
 $\sim \mathcal{H} \Rightarrow \mathcal{H}'$  (Self. stabadungia)

(2) atskálázás
$$x' = \frac{x}{b} \qquad l'_{min} = \frac{b l_{min}}{b} = l_{min}$$

- feltételes rabadenegia & T egységelben

$$e^{-\beta F} = Z = \sum_{s} e^{-\mathcal{N}_{s}} = \sum_{s_{1}} \left(\sum_{s_{2}} e^{-\mathcal{N}_{s}}\right) = \sum_{s} e^{-\mathcal{N}_{s_{1}}}$$

$$P_{s} = \frac{e^{-\mathcal{N}_{s}}}{Z} \sim P_{s} = \sum_{s_{2}} \frac{e^{-\mathcal{N}_{s}}}{Z} = \frac{e^{-\mathcal{N}_{s_{1}}}}{Z}$$

ügyes transzformáció: S & Sz (elvirales)

· azonos struktúra

(pl. bing -> bing)

Szabadsági fold Izuna:

$$\mathcal{H}_{S} = \mathcal{H}(K)$$
 paranéterezhető, nen "alanmilyen" alali  $\mathcal{H}_{S_4} = \mathcal{H}(K')$ 

## Példal

1 lsing-vadell sibbeli D raison

bloll-spin: többségi szubály

luis = a ( vacsállandó)

transaformació valos tentas

$$\begin{cases} 771 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 171 \\ 17$$

No blossol is A vaison lessuel!

2. transz farnáció hellámstán ténben

$$\phi(x) = \frac{1}{\sqrt{N}} \sum_{q} e^{iqx} S_q$$

$$(9 < A)$$

$$eeragas$$

$$A \sim \frac{1}{\sqrt{N}}$$



ani tortenil a fizikai menngisegettel?

enelaciós housa: ¿

2. Cépésken 
$$\xi' = \frac{\xi}{b} \sim \frac{\xi'}{b} = \frac{\xi(x)}{b}$$

· stabadeneng la scrisège

~> blobbolia vetitet starbadenegia

$$\int = \frac{F}{IV} = \frac{F}{b^{d}N'} = \frac{f'}{b^{d}}$$

· félospat - jelleg:

$$\begin{array}{c}
R_b \ \underline{K} = \underline{K}' \\
R_b' \ \underline{K}' = \underline{K}''
\end{array}$$

$$\begin{array}{c}
R_{bb'} \ \underline{K} = \underline{K}''
\end{array}$$

$$\begin{array}{c}
R_{bb'} \ \underline{K} = \underline{K}''
\end{array}$$

$$K' = F(K)$$



· adott fizilai viz. : K. (T), K. (T)

bejelilleti? a hit portos.

> etel definition egg Litilus felilitet

\$ = 00

Calgebral Cossergés ( - 1/x )

Selfessii? Logy ex a vaido-las egy fixportha tat.

· A bit. felület invaiais RZ RG - hafóra,

· itendei6: vandalas Enitilus felileten.

· fixport: K\* = F (K\*)

· Suit felületen avonzé (stabil) fixpont.

· ha nen hit feliletvel indulung:

\$ < \$ tassifi fix port.

$$\begin{pmatrix}
S K_1' \\
S K_2'
\end{pmatrix} = \begin{pmatrix}
\frac{\partial F_1}{\partial K_1} & \frac{\partial F_1}{\partial K_2} \\
\frac{\partial F_2}{\partial K_1} & \frac{\partial F_1}{\partial K_2}
\end{pmatrix} \begin{pmatrix}
S K_1 \\
S K_2
\end{pmatrix}$$

~ Soordinaturs. onigójat elteltel a fixporba.

megoldása: 
$$\Lambda(b) = b^{9}$$
 $\lambda_{1} = b^{9}$ 
 $\lambda_{2} = b^{9}$ 
 $\lambda_{3} = b^{9}$ 
 $\lambda_{4} = b^{9}$ 
 $\lambda_{5} = b^{9}$ 
 $\lambda_{6} = b^{9}$ 
 $\lambda_{7} = b^{9}$ 
 $\lambda_{8} = b^{$ 

No by Liets 21, 22

$$\delta K = d_1 e_1 + d_2 e_2$$

$$\delta K' = b^3 d_1 e_1 + b^3 d_2 e_2$$

$$\alpha \quad \text{lititus flocken } d_1 = 0$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = b^{-d} \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, b^3 d_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

$$\delta (t_1, t_2) = \delta \int (b^3 d_1, t_2)$$

& n |t, (T)|=1/4 hatra uf. viselbedes

• def:  $\xi \sim |t|^{-\nu} \longrightarrow \left[\nu = \frac{1}{y_1}\right]$ 

· Suit visel Bedes figget to - til! -> univerzalitais (portosa nelgil vst. - + vitsgargid...)

 $\left\{ \left( \, \xi_{1} \left( T \right), \, t_{2} \left( T \right) \right) = b^{-d} \, \left\{ \left( \, \zeta^{9} \left( \, \xi_{1} \left( T \right) \right), \, \zeta^{9} \left( \, \xi_{2} \left( T \right) \right) \right) \right.$ 

 $\begin{cases}
\left(t_{1}(T), t_{1}(T)\right) = \left|\frac{t_{10}}{t_{1}(T)}\right|^{-\frac{d}{s_{1}}} \int \left(\pm t_{10}, 0\right) & \text{hat a by } \int U.
\end{cases}$ 

def:  $g \sim |t|^{2-d} \sim [2-d=dv]$ 

RG biztosítja a hipustálatv.-t.

· + use anit a fix pont cone, ugganatt a brit. viselbedést mutatja.

• sonsejtéssel lehet séalátaíshoz Soneécióbat raínolni

Le fonélcié arayos t<sub>2</sub>(T)-vel no man un univertalis

- RG eleg flexibilis no sol 189. - lez igazetani lehet.