

Dynamic Programming

All Pairs Shortest Paths | Transitive Closure

Longest Common Subsequence

Kazi Lutful Kabir

Algorithmic Paradigms

- Greedy: Build up a global solution incrementally, myopically by optimizing some local criterion.
- Divide-and-conquer: Break up a problem into disjoint (non-overlapping) sub-problems, solve the sub-problems recursively, and then combine their solutions to form solution to the original problem. Brand-new sub-problems are generated at each step of the recursion.
- Dynamic programming: Break up a problem into a series of overlapping sub-problems and build up solutions to larger and larger sub-problems.
 Typically, same sub-problems are generated repeatedly.

Dynamic Programming (DP)

- DP is a method for solving certain kind of problems
- DP can be applied when the solution of a problem includes solutions to subproblems
- We need to find a recursive formula for the solution
- We can recursively solve subproblems, starting from the trivial case, and save their solutions in memory
- In the end we'll get the solution of the whole problem

Properties of a Problem that can be Solved with Dynamic Programming

Simple Subproblems

 We should be able to break the original problem to smaller subproblems that have the same structure

Optimal Substructure of the Problems

The solution to the problem must be a composition of subproblem solutions

Subproblem Overlap

Optimal subproblems to unrelated problems can contain subproblems in common

Optimal Substructure Property

- A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems.
- Whenever a problem exhibits optimal substructure, we have a good clue that dynamic programming might apply.
- Consequently, we must take care to ensure that the range of subproblems we consider includes those used in an optimal solution.
- We must also take care to ensure that the total number of distinct subproblems is a polynomial in the input size.

Steps

- 1. Find the optimal substructure property
- 2. Develop a recursive (can have iterative substitute) solution

3. Compute the optimal cost

4. Construct an optimal solution

All Pairs Shortest Paths: Floyd Warshall Algorithm

 Problem: Find the shortest distances between every pair of vertices in a given weighted directed Graph

Optimal Substructure Property

Building a Recursive Solution

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

Computing the Shortest Path: The Algorithm

```
FLOYD-WARSHALL(W)
```

```
Running Time: \theta(n^3)
1 \quad n = Number of vertices
                                                     Space Complexity: \theta(n^2)
2 D^{(0)} = W
3 for k = 1 to n
          let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
          for i = 1 to n
                 for j = 1 to n
                      d_{ii}^{(k)} = \min \left( d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)} \right)
    return D^{(n)}
```

Constructing Shortest Path

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 4 & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

Adjacency Matrix for Weighted & Directed Graph

$$\begin{array}{c}
3 \\
\hline
1 \\
2 \\
\hline
8 \\
\hline
3 \\
\hline
6 \\
\hline
4
\end{array}$$

$$D^{(1)} = \begin{pmatrix} \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$\begin{array}{c}
3 \\
\hline
1 \\
2 \\
\hline
8 \\
\hline
3 \\
\hline
6 \\
\hline
4
\end{array}$$

$$D^{(3)} = \begin{pmatrix} \infty & 0 & \infty & 1 & 7 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 3 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set $V = \{1, 2, ..., n\}$, we might wish to determine whether G contains a path from i to j for all vertex pairs $i, j \in V$. We define the *transitive closure* of G as the graph $G^* = (V, E^*)$, where

 $E^* = \{(i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}$.

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i,j) \in E, \end{cases}$$

and for $k \geq 1$,

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$
.

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Running Time: $\theta(n^3)$ Space Complexity: $\theta(n^2)$

TRANSITIVE-CLOSURE (G)

```
1 n = |G.V|
2 let T^{(0)} = (t_{ii}^{(0)}) be a new n \times n matrix
 3 for i = 1 to n
           for j = 1 to n
               if i == j or (i, j) \in G.E
                 t_{ij}^{(0)} = 1
else t_{ij}^{(0)} = 0
      for k = 1 to n
           let T^{(k)} = (t_{ii}^{(k)}) be a new n \times n matrix
            for i = 1 to n
10
                  for j = 1 to n
                       t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})
      return T^{(n)}
```

Exercise for Practice

• Try Floyd-Warshall algorithm on the following graph (also find the transitive closure):

Longest Common Subsequence (LCS)

• Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$

$$Y = \langle y_1, y_2, ..., y_n \rangle$$

A subsequence of a given sequence is just the given sequence with zero or more elements left out

- A common subsequence $Z = \langle z_1, z_2, ..., z_k \rangle$ of X and Y
 - -Z is a subsequence of both X and Y
- Example:

$$X = ABCBDAB$$
 $Y = BDCABA$

Goal: Find the Longest Common Subsequence (LCS)

Optimal Substructure Property of LCS

- The LCS problem has an optimal substructure property
 - solutions of subproblems are parts of the final solution
 - Subproblems: LCS of pairs of prefixes of X and Y

 An LCS of two sequences contains within it an LCS of prefixes of the two sequences.

Building the Solution

- □ Define c[i, j] to be the length of an LCS of the sequences X_i and Y_j .
 - \square Goal: Find c[m, n]
 - □ Basis: c[i, j] = 0 if either i = 0 or j = 0
 - \square Recursion: How to define c[i, j] recursively?
- \square Finding an LCS of $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
 - If $x_m = y_n$, then we must find an LCS of X_{m-1} and Y_{n-1} .
 - □ Appending $x_m = y_n$ to this LCS yields an LCS of X and Y.
 - If $x_m \neq y_n$, then we must solve two subproblems:
 - \square Finding an LCS of X_{m-1} and Y
 - \square Finding an LCS of *X* and Y_{n-1}
 - □ Whichever of these two LCSs is longer is an LCS of *X* and *Y*.
- ☐ The recursive formula is

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x[i] = y[j], \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x[i] \neq y[j] \end{cases}$$

Algorithm Pseudocode

```
LCS-LENGTH(X, Y)
     m \leftarrow length[X]
                                  ☐ The algorithm calculates the values of each
 2 n \leftarrow length[Y]
                                     entry of the array c[m, n].
    for i \leftarrow 1 to m
                                     Each c[i, j] is calculated in constant time,
            do c[i, 0] \leftarrow 0
                                      and there are m \cdot n elements in the array.
     for j \leftarrow 0 to n
                                     So, the running time is O(m \cdot n).
            do c[0, j] \leftarrow 0
      for i \leftarrow 1 to m
 8
            do for j \leftarrow 1 to n
 9
                     do if x_i = y_i
10
                            then c[i, j] \leftarrow c[i-1, j-1] + 1
11
                                   b[i, j] \leftarrow " \ ""
12
                            else if c[i - 1, j] \ge c[i, j - 1]
                                      then c[i, j] \leftarrow c[i-1, j]
13
14
                                            b[i, j] \leftarrow "\uparrow"
15
                                      else c[i, j] \leftarrow c[i, j-1]
16
                                             b[i, j] \leftarrow "\leftarrow"
17
      return c and b
```

We'll see how LCS algorithm works on the following example:

$$X = ABCG$$

$$Y = BDCAG$$

$$LCS(X, Y) = BCG$$

$$X = A B C G$$

$$Y = BDCAG$$

ABCG ₋ BDCAG

	j	0	1	2	3	4	5 D .
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}						
1	A						
2	В						
3	C						
4	G						

$$X = ABCG$$
; $m = |X| = 4$
 $Y = BDCAG$; $n = |Y| = 5$
Allocate array: $c[5, 4]$

ABCG _z BDCAG

	j	0	1	2	3	4	5 D
i		y_j	В	D	C	A	G
0	x_i	0	0	0	0	0	0
1	A	0					
2	В	0					
3	C	0					
4	\mathbf{G}	0					

for
$$i = 0$$
 to $m \ c[i, 0] = 0$
for $j = 1$ to $n \ c[0, j] = 0$

ABCG

BDCAG

	j	0	1	2	3	4	5 G
i	1	y_j	B	D	C	A	G
0	x_i	0	0	0	0	0	0
1	A	0	• 0				
2	В	0					
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1	2	3	4	5
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	5 E
i		y_j	В	D	C	A	G
0	x_i	0	0	0	0 、	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	5
i	ŗ	y_j	В	D	C	A	(G)
0	x_i	0	0	0	0	0	0
1	A	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1	2	3	4	5
i	ſ	y_j	$\left(\mathbf{B}\right)$	D	C	A	G
0	\mathcal{X}_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1				
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	5 E
i	ı	y_j	В	D	C	A	\rightarrow G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	\bigcirc B	0	1	1	1	→ 1	
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG - BDCAG

	j	0	1	2	3	4	5 D
i		y_j	В	D	C	A	(G)
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1	1	1	1	1
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1		3	4	5
i	ſ	y_j	B	D	C	A	G
0	\mathcal{X}_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	_1	1	1	1
3	\bigcirc	0	1 -	1			
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	5 E
i		y_j	В	D	(C)	A	G
0	x_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1 、	1	1	1
3	\bigcirc	0	1	1	2		
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	-5^{1}	SDC
i	-	y_j	В	D	C	A	G	
0	\mathcal{X}_{i}	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	1	
3	\bigcirc	0	1	1	2 -	2 -	2	
4	$\overline{\mathbf{G}}$	0						

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1	2	3	4	5
i		y_j	B	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	_1	1	2	2	2
4	G	0	1				

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG BDCAG

	j	0	1	2	3	4	5 B
i	ı	y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	1	1	2	2	2
4	G	0	1 -	1	2 -	2	

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG - BDCAG

	j	0	1	2	3	4	5
i		y_j	В	D	C	A	G
0	\mathcal{X}_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	1	1	2	2 🔨	2
4	G	0	1	1	2	2	3

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

How to Find Actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We can modify this algorithm to make it output an LCS of X and Y.
- Each <code>[i, j]</code> depends on <code>[i-1, j-1]</code>, or <code>[i-1, j]</code> and <code>[i, j-1]</code>.
- For each c[i, j] we can say how it was acquired.

For example, here
$$c[i, j] = c[i-1, j-1] + 1 = 2+1=3$$

How to Find Actual LCS

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We can start from c[m, n] and go backwards
- Whenever c[i, j] = c[i-1, j-1]+1, remember x[i], because x[i] is a part of LCS
- When i=0 or j=0 (we reached the beginning), output remembered letters in reverse order

Finding LCS: Example

	j	0	1	2	3	4	5
i	J	y_{j}	В	D	C	\mathbf{A}	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0 🖍	0	0	0	1	1
2	В	0	1 ←	- 1 ×	1	1	1
3	C	0	1	1	2 ←	- 2 🔻	2
4	G	0	1	1	2	2	3

Finding LCS: Example

LCS (reversed order): G C B

LCS (straight order): B C G

Another LCS Example

Reference

Chapter-15 & 25, Introduction to Algorithms (3rd Ed.) by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

THANK YOU

Stevens Institute of Technology