RUSHADÃO Al'S

Prova 2022

Exercício 1 (1 ponto) Mostre todos os subgrafos do seguinte grafo que contêm exatamente duas arestas:

Exercício 2 (1 ponto) Prove que o máximo número de arestas de um grafo simples bipartido de n vértices é $\lfloor n^2/4 \rfloor$, isto é, o maior inteiro menor ou igual a $n^2/4$.

O bipartido com mouor número de ventices é o Kyz, n/z

O grave de todo vértice desse grafo e $S(v) = \frac{n}{2}$, logo $2|E| = \sum_{i=1}^{n} \frac{n}{2} = \frac{n^2}{4}$

Exercício 3 (1,5 pontos) Descaho um grafo cuja matriz de adjacência é $A=(a_{ij})$ de tamanho 7×7 e tal que:

$$a_{ij} = \begin{cases} 1 & \text{se } i \neq j \text{ e } i+1 \text{ \'e divisor de } j+1, \\ 1 & \text{se } i \neq j, \text{ e } j+1 \text{ \'e divisor de } i+1, \\ 2 & \text{se } i=j, \\ 0 & \text{caso contr\'ario.} \end{cases}$$

Exercício 4 (1,5 pontos) Use o algoritmo de Dijkstra para achar o caminho de a a z de menor comprimento no seguinte grafo. Detalhe as iterações do algoritmo.

Exercício 5 (2 pontos) Seja G um grafo conexo que possui quatro vértices de grau ímpar: v_i para i=1,2,3,4, (G pode ter mais de quatro vértices em total). Prove que existem caminhos P_1 de v_1 a v_2 , e P_2 de v_3 a v_4 , sem arestas repetidas, tais que cada aresta de G pertence a exatamente um desses caminhos.

Ilustre esta propriedade no seguinte grafo:

o Sabemos que todo véntice tem grave o 2k+1, logo dado um caminho P1 de v, a tz, pussamos numos quantidode impar de arestas adjascentes a v1 e vz. Assim criamos o subgrafo G' removendo as arestas de P1 do grafo G. Assim, v1 e vz tem grave par, pois: 2k+1-2p-1 = 2(k-p) (2p+1 é a quantidade de arestas que passam por v1 ou vz). No novo subgrafo G', v1 e vz tem grave parsam por v3 ou vz). No novo subgrafo G', v1 e vz tem grave parsa par e v3, v4 tem grave impar, isso é condição suficiente para ten caminho euleriano de v3 a v4.

Exercício 6 (3 pontos) Determine e justifique se as seguintes afirmações são verdadeiras ou falsas. São as justificativas que contam pontos.

- (a) Não existe grafo cuja matriz de incidência tenha uma coluna com todos zeros.
- (b) Não existe grafo cuja matriz de incidência tenha uma linha com todos zeros.
- (c) Todo grafo completo K_n contém um ciclo Hamiltoniano.
- (d) O seguinte grafo é Hamiltoniano:

a) Verdode, pois isso implien que existe austa que não incide em ponto nenhum (Contra definição de aresta)

b) Falso, contra exemplo:

c) Pado $Kn(V^K E^K)$, $\forall v \in V^K$; $\delta(v) = n-1$, \log_0 , $\forall v, w \in V^K$, $\delta(v) + \delta(w) > n \Rightarrow n-1+n-1 > n$ logo, existe ciclo hamiltoniano.

Prova 2023

tuleriano? Não, há vértices de grave impar Harviltoniano: Não, removendo os vértices 1,2,3, há 4 componentes conexas.

Sim, é bipartido

Exercício 2 (2 pontos) Prove que K_5 não é planar.

$$\forall v \in V, \ S(v) = 4 \ , \ |V| = 5 : E = \frac{4.5}{2} = 10$$

$$F + 5 = 2 + 10 \Rightarrow F = 7$$

$$3F \le 2E \Rightarrow 3.7 \le 2.10 \Rightarrow 21 \le 20$$

$$Nao \ e \ planar$$

Exercício 3 (2,5 pontos) Use o algoritmo de Dijkstra para achar o caminho de A a I de menor comprimento no seguinte grafo. Detalhe as iterações do algoritmo.

Denote com s o comprimento do caminho mais curto de A a I.

- \bullet Para quais arestas e do grafo, diminuir o peso de e em 0.1, altera o valor de s?
- Para quais arestas e do grafo, aumentar o peso de e em 0.1, altera o valor de s?

· {H, I}

· {A,C3,{C,F3, {F,H3, {A,B}, {B,D}, {D,H3,

Removo:

80,03 80,63 REDUZO EM SERIE:

SÉRIE:

S Momeomorfo a K3,3

Exercício 5 (3 pontos) Determine e justifique se as seguintes afirmações são verdadeiras ou falsas. São as justificativas que contam pontos.

(a) Sejam A a matriz de adjacência de K_5 e n um inteiro positivo. Então, todos os elementos da diagonal de A^n são iguais entre sí, e todos os elementos de fora da diagonal também.

Verdoole. Como Todos 05 véntices ligam entre ri, um cominho de Tamanho n de v; a ve pode ten os véntices permutados pois sempre há uma aneste que liga v; e Op. Logo, $\forall v \in V$, Imesma quantidade de caminhos de tamanho n de v para qualquer outro véntice.

(b) Todo grafo bipartido completo $K_{n,m}$ com $n \ge 1$ e $m \ge 1$ ímpares, possui um ciclo euleriano.

Não, se m possui 2k+1 véntices, $\forall v \in Vn$ (Conjunto de n véntices), $\delta(v)=2k+1$, logo não há ciclo eulevouno (grace (mpan).

Mão, em 62 existe uma triangulação, ou reja, existe ciclos de tamanho 3. Agora em 61, não existe vértice com erra canacterística