ECE 421 Homework 1 Name: Mark Qi
Student TD: 1006764645
$D = \{(x_n, y_n)\}_{n=1}^N, x_n \in \mathbb{R}^d, y_n \in \{+1, -1\}$
h(x) = sign(b + wi xi) = sign(w x) Perceptron weight update rule (1.3)
$w(t+1) = w(t) + y(t) \times (t)$
Since x(t) is misclassified by w(t), this means h(t) = y(t), thus one is positive and the other is
negative since h(t) $\in \{t \mid s - 1\}$ and y(t) $\in \{t \mid s - 1\}$
Either $h(x) = -1$, $y(x) = 1$ $y(t)h(x) = y(t)w(t)^{T}x(t) < 0$ Or $h(x) = 1$, $y(x) = -1$
$y(t)h(x) = y(t)w(t)^{T}x(t) < 0$
Thus, for all misclassified xi(t), yi(t) w(t) 7 xi(t) < 0

(b) w(t+1) = w(t) + y(t)x(t) $y(t) w(t+1)^{T}x(t) = y(t)((w(t)+y(t)x(t))^{T}x(t))$ $= y(t)(w(t)^{T}x(t)+y(t) x(t) ^{2}$ $= y(t)(w(t)^{T}x(t)+y(t) x(t) ^{2}$ $= y(t)(w(t)^{T}x(t)+y(t) x(t) ^{2}$ $= y(t)(w(t)^{T}x(t)+y(t) x(t) ^{2}$)
$= y(t) w(t) x(t) + x(t) _{2}^{2}$ $ > y(t) w(t) x(t)$	
Perceptron Weight Update Rule $W(t+1) = W(t) + y(t) \times (t)$ Since $y_n(w_k^T \times x_n) < y_n(w_{k-1} \times x_n)$, we are moving towards the more positive position	
Question 2, $x \in \mathbb{R}^2$ $x_1 = (1,0)^T$, $y_1 = +1$ $x_2 = (-1,0)^T$, $y_2 = -1$ $x_3 = (1,d)^T$, $y_3 = +1$	

Point $x_2 = (1, -1, 0)^T \in \mathbb{R}^3$ $y_2 = sign(w_1 x_2) = sign(w_0 x_{20} + w_1 x_{21} + w_2 x_{22})$
$= sign((1)(1)+(1)(-1)+(0)(0))$ $= sign(0) \neq y_2$ 1
W = 1 + (4) - 1 = 2
Point $X_3 = (1, 1, 1) + (1) $
$= sign(2) = 1 = y_2$ No change to weight vector w
Perceptron Algorithm, Second Round (1,2,3) Point $x_1 = (1, 1, 0)^T \in \mathbb{R}^3$ $\hat{y_1} = \text{sign}(w^Tx_1) = \text{sign}(w_0 x_{10} + w_1 x_{11} + w_2 x_{12})$
= sign((0)(1) + (2)(1) + (0)(0)) $= sign(2) = 1 = y,$
No change to weight vector w

Poir	nt	X2	_) _	ر (-	<u>()</u>	T	\mathbb{R}^3								
<u>J</u>	= 6	5 jg	n(W	X2)=	Sig	jn(WO.	X20	+W1	X	+ 1	ر ز کردا	(20	,)	
								n (-() +	(0)(0))	
No	cho	ince	to	wei	aht			1	2)		1						
									_								
Poir	nt	ε^{χ}	= n())	9)	T	\mathbb{R}^3								
Jà	= (519	n (Μ'	X ₃)=	510	jn(WO.	X30	†W1	Xai	+ 1		32)	,)	
								n () 7)(d))	
No	chc	unge	to	wei	ght			1			1						
									le.		0						
<u>S</u> =	Mi 1≤n		n()	(* T)	(n)	_	2		W*	=	2						
) x	(, + ,	$\bigcirc X_2$	=)													
	1 1 1																
Par	t C	Init	ializ =	er	/eigl	nt '	Vecto	Y	M	To	Be						
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		MO	=0		173										
		γγ		Wi	= ()		IK										
				112													

		ron ~								,,,)					
J ₃	-	X3 519	_ n(T,	X3)	=	si ₍	gn (Mo	X80	tw	1 ×31	+ V	(aX	32)		
						=	Sig	nC	(0)	(I)	+(0)(1)-	t Co)(c	7)	
					(_	SIC	jn C		产) I						
\mathcal{M}	_	0	+	(1)	(_	1										
		\Diamond			4		9										
Pai	nt	X2 5 i gi	_			-),	\bigcirc	T (\mathbb{R}^3								
<u>J</u> 2	=	Sig	n(WT	X ₂						†W1	X	+ 1	(2X)	(دو		
								n(n()(-	- () -	- (d)(0))	
		((210	1810		7	בע						
M	=		+	(H)	-(11	2										
					0		d										
Poir	nt	XI		CI	,	, (Т	CIF	3								
Ĭ1	=	X ₁ Sig	n(T _W T,	X()	=	Sig	gn (Mo	X10	+W	1/	+ 1/	(2X	12)	~1)	
							216	n(jn(CO	(1)	1 (_	2)(1)-	T (c	1)(
No	cho	ange	to	wei	ght			1			,						

Poir	nt	ε X	=)	()	9)	T	\mathbb{R}^3								
J3	=	X з Sig	n(W	X ₃)=	Sig	jn(MO	X30	†Wι	Xai	+1	<u>ک</u> رکا	(2)		
							Sìc	n((0)	(1)	+(2	.)(') +	- (d)(d		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\				. \ 1			nC	2+	(۲	=	=	=)3	,			
No	cho	unge	to	We	ight	Ye	ctor	W									
Pair	nt	X	_		_	-) ,	\bigcirc	T _	\mathbb{R}^3								
\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	=	X ₂ Sig	n(W	X ₂)=	Sic	Jn(M9	X20	†Wι	X	+ W	ر (عرد)	(20		
						=	SįC	n($[\bigcirc)$	(1)	+(2)(-	-1)+	6)(0		
								n C	-2)		-\=	حل					
No	cho	ange	to	WC,	ight	Ye	ctor	W									
D. :	7	2/					ΛT	C IT	3								
		X ₁ Sig								×	+101	· ~	+ \^	(\ \			
91		219	110	YV	<i>/</i> (<i>)</i>		Sid	nC	(())	/110	+ (1)-	12X t (~	12)	(((
						_	Sic	in C	2)		=		` /	,	1 - 0		
No	cho	inge	to	we	ight	Ye	ctor	W									
		Ö						Min 1 <n<1< td=""><td>))n</td><td>(W</td><td>* T X,</td><td><u> </u></td><td>2</td><td></td><td></td><td></td><td></td></n<1<>))n	(W	* T X,	<u> </u>	2				
M*	_	2										1					
	/ 1	<u>d</u>	,				Inc	lepe	nde	nt c	A C	1					
27	1, †	911 QX	2 ⁻														
			Q =		17,												
		 	Q =		2	Xı											

(d)) Cho) <i>0</i> 26	26	لارک ر	nce	iti	s le	: ZZ	SUC	ept	able	e ti) NC) SiSE	> IN	
dat	TUSE	t														