

A2 - Analysis

1.1 Extremstelle bestätigen

Es gilt
$$g_a(x) = \sqrt{a \cdot x \cdot \mathrm{e}^{-x} + 0, 1 \cdot a} = (a \cdot x \cdot \mathrm{e}^{-x} + 0, 1 \cdot a)^{\frac{1}{2}}.$$

1. Schritt: Ableitung bilden

Mit Ketten- und Produktregel folgt für $g_a(x)$:

$$g'_a(x) = \frac{1}{2} \cdot (a \cdot x \cdot e^{-x} + 0, 1 \cdot a)^{-\frac{1}{2}} \cdot (a \cdot x \cdot (-1) \cdot e^{-x} + a \cdot e^{-x})$$

$$= \frac{1}{2} \cdot \frac{1}{\sqrt{a \cdot x \cdot e^{-x} + 0, 1 \cdot a}} \cdot (-x + 1) \cdot a \cdot e^{-x}$$

$$= \frac{(-x + 1) \cdot a \cdot e^{-x}}{2\sqrt{a \cdot x \cdot e^{-x} + 0, 1 \cdot a}}$$

2. Schritt: Notwendige Bedingung für Extremstellen anwenden

$$g_a'(x) = 0$$

$$\frac{(-x+1)\cdot a\cdot \mathrm{e}^{-x}}{2\sqrt{a\cdot x\cdot \mathrm{e}^{-x}+0,1\cdot a}} = 0 \quad |\cdot 2\sqrt{a\cdot x\cdot \mathrm{e}^{-x}+0,1\cdot a}$$

$$(-x+1)\cdot a\cdot \mathrm{e}^{-x} = 0 \quad |\cdot (a\cdot \mathrm{e}^{-x})$$

Da $a \cdot e^{-x} \neq 0$ für alle $x \in \mathbb{R}$, folgt mit dem Satz vom Nullprodukt:

$$\begin{array}{rcl}
-x+1 & = & 0 & |+x \\
1 & = & x
\end{array}$$

x=1 erfüllt die notwendige Bedingung für Extremstellen und ist unabhängig von a. Da laut Aufgabenstellung auf den Nachweis der hinreichenden Bedingung verzichtet werden kann, ist x=1 für jedes $a\in\mathbb{R}$ mit a>0 eine Extremstelle von g_a .

1.2 Parameterwert bestimmen

Einsetzen der Koordinaten des Punktes $H(1 \mid a)$ in die Funktionsgleichung von g_a liefert:

Anwendung des Satzes vom Nullprodukt liefert $a_1=0$ und:

$${
m e}^{-1} + 0, 1 - a = 0 + a$$
 ${
m e}^{-1} + 0, 1 = a_2$ $0, 47 pprox a_2$

Da a>0 gefordert ist, ist der gesuchte Wert $a\approx 0,47$.

2. Asymptote bestimmen

Die Berechnung des Grenzwertes $\lim_{x o \infty} g_a(x)$ liefert:

$$egin{array}{lll} \lim_{x o\infty}g_a(x)&=&\lim_{x o\infty}\sqrt{a\cdot x\cdot \mathrm{e}^{-x}+0,1\cdot a}\ &=&\lim_{x o\infty}\sqrt{a}\cdot\sqrt{x\cdot \mathrm{e}^{-x}+0,1}\ &=&\sqrt{a}\cdot\lim_{x o\infty}\sqrt{x\cdot \mathrm{e}^{-x}+0,1} \end{array}$$

Es gilt $\lim_{x\to\infty} (x\cdot {\rm e}^{-x})=0$, da der lineare Term langsamer gegen unendlich strebt als die Exponentialfunktion gegen Null. Somit folgt:

$$\lim_{x o \infty} g_a(x) = \sqrt{a} \cdot \sqrt{0+0,1}$$
 $= \sqrt{0,1a}$

Die Graphen von g_a nähern sich für $x o \infty$ der Asymptote $y = \sqrt{0,1a}$ an.

3. Stammfunktion nachweisen

Durch die Verwendung von partieller Integration wird eine Stammfunktion von $(g_a(x))^2$ wie folgt bestimmt:

$$\int_a^b \left(f(x)\cdot g'(x)
ight) \; \mathrm{d}x = \left[f(x)\cdot g(x)
ight]_a^b - \int_a^b f'(x)\cdot g(x) \; \mathrm{d}x$$

$$\int (g_{a}(x))^{2} dx = \int \left(\sqrt{a \cdot x \cdot e^{-x} + 0, 1 \cdot a}\right)^{2} dx$$

$$= \int (a \cdot x \cdot e^{-x} + 0, 1 \cdot a) dx$$

$$= \int (a \cdot x \cdot e^{-x}) dx + \int (0, 1 \cdot a) dx$$

$$= \int (a \cdot x \cdot e^{-x}) dx + 0, 1 \cdot a \cdot x$$

$$= a \cdot x \cdot (-1) \cdot e^{-x} - \int (a \cdot (-1) \cdot e^{-x}) dx + 0, 1 \cdot a \cdot x$$

$$= -a \cdot x \cdot e^{-x} + \int (a \cdot e^{-x}) dx + 0, 1 \cdot a \cdot x$$

$$= -a \cdot x \cdot e^{-x} + a \cdot (-1) \cdot e^{-x} + 0, 1 \cdot a \cdot x + C$$

$$= a \cdot (-x - 1) \cdot e^{-x} + 0, 1 \cdot a \cdot x + C$$

Mit C=0 folgt, dass $G_a(x)=a\cdot (-x-1)\cdot \mathrm{e}^{-x}+0, 1\cdot a\cdot x$ eine Stammfunktion von $(g_a(x))^2$ ist.

4. Nachweisen, dass alle Funktionen der Schar die gleiche Nullstelle haben

$$g_a(x)=0$$
 $\sqrt{a\cdot x\cdot \mathrm{e}^{-x}+0,1\cdot a}=0$ $|^2$ $a\cdot x\cdot \mathrm{e}^{-x}+0,1\cdot a=0$

Da a > 0, darf auf beiden Seiten durch a geteilt werden und es folgt:

$$x \cdot e^{-x} + 0, 1 = 0$$

Diese Gleichung hängt nicht mehr von a ab und hat laut Aufgabenstellung genau eine Lösung. Somit haben alle Funktionen g_a die gleiche Nullstelle.

5.1 Volumen des Glaskörpers berechnen

Das Volumen V eines solchen Rotationskörpers im Intervall [a;b] wird mit folgender Formel berechnet:

$$V = \pi \cdot \int_a^b \left(f(x)
ight)^2 \,\mathrm{d}x$$

Die Berechnung des Volumens mit den Ergebnissen aus den vorherigen Aufgabenteilen, wie z.B. einer Stammfunktion von g_{20} , liefert:

$$V = \pi \cdot \int_{-0,09}^{9} (g_{20}(x))^{2} dx$$

$$= \pi \cdot [20 \cdot (-x - 1) \cdot e^{-x} + 0, 1 \cdot 20 \cdot x]_{-0,09}^{9}$$

$$= \pi \cdot [(-20x - 20) \cdot e^{-x} + 2 \cdot x]_{-0,09}^{9}$$

$$= \pi \cdot ((-20 \cdot 9 - 20) \cdot e^{-9} + 2 \cdot 9 - ((-20 \cdot (-0,09) - 20) \cdot e^{-(-0,09)} + 2 \cdot (-0,09)))$$

$$= \pi \cdot (-200 \cdot e^{-9} + 18 - (-18, 2 \cdot e^{0,09} - 0, 18))$$

$$= \pi \cdot (-200 \cdot e^{-9} + 18 + 18, 2 \cdot e^{0,09} + 0, 18)$$

$$= \pi \cdot (-200 \cdot e^{-9} + 18, 2 \cdot e^{0,09} + 18, 18)$$

$$\approx 119, 6 \text{ [VE]}$$

Der Glaskörper hat ein Volumen von ca. 119,6 cm³.

Maximalen Umfang des Glaskörpers berechnen

 g_{20} stellt den Radius des Glaskörpers dar. An der Stelle an der der Funktionswert von g_{20} sein Maximum annimmt, ist der Umfang des Glaskörpers am größten. Die Bestimmung des Funktionswertes r an der Extremstelle x=1 liefert:

$$r = g_{20}(1)$$

= $\sqrt{20 \cdot 1 \cdot e^{-1} + 0, 1 \cdot 20}$
= $\sqrt{20 \cdot e^{-1} + 2}$

Einsetzen in die Gleichung für den Umfang:

$$\begin{array}{rcl} U & = & 2 \cdot \pi \cdot r \\ \\ & = & 2 \cdot \pi \cdot \sqrt{20 \cdot \mathrm{e}^{-1} + 2} \\ \\ \approx & 19, 22 \, \mathrm{[cm]} \end{array}$$

Der maximale Umfang des Glaskörpers beträgt ca. 19, 22 cm.

5.2 Rechnerischen Ansatz entwickeln

lst das Glas bis zur Stellet gefüllt, wird das entsprechende Volumen mit Hilfe eines Rotationsvolumens wie in Aufgabe 5.1 berechnet.

Es gilt also $V=20~{
m cm}^3,$ sodass folgt:

$$V = 20$$

$$\pi \cdot \int_{-0.09}^{t} (g_{20}(x))^2 dx = 20$$

$$\pi \cdot \left[20 \cdot (-x-1) \cdot \mathrm{e}^{-x} + 0, 1 \cdot 20 \cdot x \right]_{-0,09}^t \ = \ 20$$

$$\pi \cdot \left[20 \cdot (-x - 1) \cdot e^{-x} + 2 \cdot x \right]_{-0.09}^{t} = 20$$

6. Phänomen erklären

Bei der Berechnung des Rotationsvolumens wird, anders als bei der Berechnung des Flächeninhalts, über den quadrierten Funktionsterm integriert.

Die Erklärung lautet demnach:

Große Abweichungen der Funktionswerte nach oben haben einen größeren Einfluss auf das Volumen als auf den Flächeninhalt.

Die Fläche, die nur in A_1 und nicht in A_2 liegt, ist im Bereich $0 \le x \le 1$ deutlich über dem Graphen von f. Im Ausgleich dafür schließt der Graph von f im Bereich von ungefähr $-0,9 \le x \le -0,09$ mit der x-Achse eine Fläche im positiven y-Bereich ein, welche größer als die vorherige ist. Da diese Fläche im Vergleich zur ersten Fläche deutlich näher an der x-Achse liegt, hat sie einen kleineren Einfluss auf das Rotationsvolumen und es folgt $V_1 > V_2$.