B.Tech 1st Semester Exam., 2021 (New Course)

MATHEMATICS-I

(Calculus and Differential Equation)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer (any seven):

(a) Let $f(x) = \sin 2x$, $0 \le x \le \frac{\pi}{2}$ and f'(c) = 0

for $c \in \left(0, \frac{\pi}{2}\right)$. Then c is equal to

- (i) $\frac{\pi}{4}$
- (ii) $\frac{\pi}{3}$
- (iii) $\frac{\pi}{6}$
- (iv) None of the above

- (b) $\tan\left(\frac{\pi}{4} + x\right)$ when expanded in Taylor's series gives
 - (i) $1+x+x^2+\frac{4}{3}x^3+...$
 - (ii) $1+2x+2x^2+\frac{8}{3}x^3+...$
 - (iii) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + ...$
 - (iv) None of the above
- (c) The differential equation whose linearly independent solutions are $\cos 2x$, $\sin 2x$ and e^{-x} is

$$(i) (D^3 + D^2 + 4D + 4)y = 0$$

(ii)
$$(D^3 - D^2 + 4D - 4)y = 0$$

(iii)
$$(D^3 + D^2 - 4D - 4)y = 0$$

(iv)
$$(D^3 - D^2 - 4D + 4)y = 0$$

(d) For what value of a

$$\lim_{x \to 1} \left(\frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right)^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}$$

(i) 1

(ii) 2

(iii) 3

(iv) 4

- (e) The evolute of a cycloid is
 - (i) circle
 - (ii) another cycloid
 - (iii) an ellipse
 - (iv) None of the above
- (f) The value of improper integral $\int_0^\infty \sqrt{x} e^{-x^2} dx$ is
 - (i) $\sqrt{\pi}$
 - (ii) $\frac{\sqrt{\pi}}{2}$
 - (iii) $\Gamma\left(\frac{3}{8}\right)$
 - ' (iv) $\frac{1}{2}\Gamma\left(\frac{3}{4}\right)$
- (g) Radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ is
 - (i) 1
 - (ii) −1
 - (iii) 0
 - (iv) ∞

(h) If J_n is the Bessel's function of first kind, then the value of $J_{\frac{3}{2}}$ is

$$\sqrt{2 \pi x} \left(\frac{\cos x}{x} - \sin x \right)$$

(ii)
$$\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$$

(iii)
$$\sqrt{\frac{2}{\pi x}} \sin x$$

(iv)
$$\sqrt{\frac{2}{\pi x}}\cos x$$

- (i) The Fourier series of the periodic function $f(x) = x + x^2$, $-\pi < x \le \pi$ at $x = \pi$ converges to
 - (i) π
 - (ii) 2π
 - (iii) π²
 - (iv) $\pi + \pi^2$
- (j) The singular solution of $p = \log(px y)$ is
 - (i) $y = x(\log x 1)$
 - (ii) $y = x \log x 1$
 - (iii) $y = \log x 1$
 - (iv) $y = x \log x$

'AK/850

(Continued)

2. (a) Show that the equation to the evolutes of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is

$$(x+y)^{2/3} + (x-y)^{2/3} = 2a^{2/3}$$

(b) Show that

$$\Gamma(2n) = \frac{2^{2n-1}}{\sqrt{\pi}} \Gamma\left(n + \frac{1}{2}\right) \Gamma(n) \text{ and}$$

$$\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \pi\sqrt{2}$$
7

- 3. (a) Obtain the Taylor's polynomial expression of the function f(x) = sin(x) about the point x = π/4. Show that the error term tends to zero as n→∞ for any real x. Hence, write the Taylor's series expansion of f(x).
 - (b) Find the Fourier series expansion of the function $f(x) = \pi + x$, $-\pi \le x \le \pi$. Hence, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

4. (a) Find the power series solution about x=0 of the differential equation

$$(1-x^2)y''-2xy'+2y=0$$

- (b) Find the directional derivative of $d(x, y, z) = 2x^2 + y^2 + z^2$ at (1, 2, 3) in the direction of the line $\frac{x}{3} = \frac{y}{4} = \frac{z}{4}$.
- 5. (a) Find the smallest distance and largest distance between the points P and Q, such that P lies on the plane x+y+z=2a and Q lies on the sphere $x^2+y^2+z^2=a^2$, where a is any constant.

7

7

(b) Find the volume of ellipsoid $\frac{x^2}{x^2} + \frac{y^2}{x^2} + \frac{z^2}{x^2} = 1$

5. (a) Evaluate the integral
$$\iint_T z \, dx \, dy \, dz$$
, where T is the region bounded by the cone $z^2 = x^2 \tan^2 \alpha + y^2 \tan^2 \beta$ and the plane $z = 0$ to $z = h$ in the first octant.

(b) Verify Stokes' theorem for the vector field $v = (3x - y)\hat{i} - 2yz^2\hat{j} - 2y^2z\hat{k}$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 16$, z > 0.

7

:0

7

7. (a) Solve the differential equation

$$(2xy + x^2)y' = 3y^2 + 2xy 7$$

- (b) Find the general solution and singular solution of the Clairaut's equation y = xy' (1/y').
- 8. (a) State and prove the orthogonal property of Legendre polynomials.
 - (b) Show that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1$
- 9. (a) Find the general solution of the partial differential equation

$$(3-2yz) p + x(2z-1)q = 2x(y-3)$$

(b) Find the complete integral of the partial differential equation

$$2\sqrt{p} + 3\sqrt{q} = 6x + 2y$$