МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультут Компьютерных наук

Кафедра Цифровых технологий

Название

Дипломная работа

02.03.01 Математика и компьютерные науки

Распределенные системы и искусственный интеллект

Зав. кафедрой	д-р физмат. наук, проф.	С.Д. Кургалин
Студент		А.А. Махно
Руководитель	канд. физмат. наук, доц.	А.В. Флегель

Содержание

Введение		3
1	Физическая задача	4
2	Описание метода перевала	4
3	Численное решение	9
4	Формулы	11
38	аключение	13

Введение

Здесь будет введение

1 Физическая задача

$$M_0(\epsilon, t) = \sqrt{\frac{m}{2\pi i\hbar}} \int_{-\infty}^{0} \frac{e^{i\epsilon(t-t')/\hbar}}{(t-t')^{3/2}} [e^{iS(t,t')/\hbar} - 1] dt'$$
 (1)

2 Описание метода перевала

Метод перевала применяется для оценки при больших значениях параметра λ контурных интегралов вида

$$F(\lambda) = \int_{C} \phi(t)e^{\lambda f(z)}dz \tag{2}$$

где f(z) и $\phi(z)$ функции, аналитические вдоль линии интегрирования С. Интегралами вида (2) представляются многие специальные функции, решения дифференциальных уравнений, как обыкновенных, так и с частными производными. Эти интегралы часто встречаются при решении различных задач физики.

Рассмотрим частный случай, а именно - действительные интегралы вида

$$F(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \tag{3}$$

Этот случай был рассмотрен в свое время Лапласом. Идея здесь такая.

Предположим, что f(t) имеет на отрезке (a,b) один резко выраженный максимум. Чем боьше значение параметра λ , тем резче выражается этот максимум, и поэтому ясно, что при больших λ основный вклад в значение интеграла дает окрестность точки максимума.

В основе этого метода лежит лемма:

Лемма: Пусть дан интеграл

$$F(\lambda) = \int_0^a \phi(t)e^{-\lambda t^{\alpha}}dt \quad (0 < a \le \infty, \alpha > 0)$$

где $\phi(t)$ при |t| < 2h представляется сходящимся рядом

$$\phi(t) = t^{\beta}(c_0 + c_1t + \dots + c_nt^n + \dots), \ \beta > -1$$

причем $\int_0^a |\phi(t)| e^{-\lambda_0 t^\alpha} dt \le M$ для некоторого λ_0 . Тогда имеет место асимптотическое разложение

$$F(\lambda) \sim \sum_{n=0}^{\infty} \frac{c_n}{\alpha} \Gamma\left(\frac{\beta + n + 1}{\alpha}\right) \lambda^{-\frac{\beta + n + 1}{\alpha}}$$
 (4)

где Г - гамма-функция Эйлера.

К доказанной лемме сводится оценка интеграла (3)

Теорема 1. Пусть интеграл (3) абсолютно сходится для некоторого $\lambda = \lambda_0$, т. е.

$$\int_{a}^{b} |\phi(t)| e^{\lambda_0 f(t)} dt \le M,$$

и f(t) достигает своего наибольшего значения во внутренней точке t_0 отрезка (a,b), в окрестности $|t-t_0|<\delta$ которой f(t) представляется рядом

$$f(t) = f(t_0) + a_2(t - t_0)^2 + \dots + a_n(t - t_0)^n + \dots$$
 (a₂ < 0),

причем существует h>0 такое, что вне этой окрестности $f(t_0)-f(t)>h$. Пусть еще функция $t=\psi(\tau)$ определяется в окрестности точки $\tau=0$ из уравнения $f(t_0)-f(t)=\tau^2$, причем в этой окрестности

$$\phi[\psi(\tau)]\psi'(\tau) = \sum_{n=0}^{\infty} c_n \tau^n \tag{5}$$

Тогда интеграл (3) имеет асимптотическое разложение

$$F(\lambda) = \int_a^b \phi(t) e^{\lambda f(t)} dt \sim e^{\lambda} f(t_0) \sqrt{\frac{\pi}{\lambda}} \sum_{n=0}^{\infty} \frac{c_2 n}{\lambda^n} \frac{(2n)!}{4^n n!}.$$

Эта теорема относится к случаю, когда наибольшее значение f(t) достигается во внутренней точке отрезка (a, b).

 $Teopema\ 2$. Пусть интеграл (3) абсолютно сходится для некоторого $\lambda=\lambda_0$ (см теорему 1) и f(t) достигает наибольшего значения в точке t=a, аналитична в этой точке $(f'(a)\neq 0)$, и существует h>0 такое, что f(a)-f(t)>h вне некоторой окрестности точки а. пусть еще функция $t=\psi(t)$ определяется в окрестности точки $\tau=0$ из уравнения $f(a)-f(t)=\tau$, причем в этой окрестности имеет место разложение (5). Тогда

$$F(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \sim \frac{e^{f(a)}}{\lambda} \sum_{n=0}^{\infty} \frac{n!c_n}{\lambda^n}$$
 (6)

Суть метода перевала состоит в том, что при больших значениях параметра λ величина интеграла

$$F(\lambda) = \int_{C} \phi(t)e^{\lambda f(z)}dz$$

в основном определяется тем участком пути интегрирования C, на котором $|e^{\lambda f(z)}|=e^{\lambda \mathrm{Re}f(z)}$, т. е. $\mathrm{Re}f(z)$ велика по сравнению со значениями на остальной

части С. При этом интеграл оценивается тем легче, чем меньше этот участок и чем круче падает величина $\operatorname{Re} f(z)$ В соответствии со сказанным, при применении метода перевала стараются деформировать путь интегрирования С в наиболее удобный путь \widetilde{C} , пользуясь тем, что по теореме Коши такая деформация не меняет величины интеграла. [?]

Чтобы уяснить вопрос геометрически, положим z = x + iy и представим

$$u = \operatorname{Re} f(z)$$

как поверхность S в пространстве (x, y, u). Так как функция и гармоническая, то S не может иметь точек максимума и минимума, а точки, в которых f'(z) = 0, будут для нее точками перевала (седловыми точками, рис. 1).

Рис. 1: Седловые точки

Наиболее удобный для оценки путь интегрирования \widetilde{C} , в каждой точке должен проходить в направлении наиболее быстрого изменения $\mathrm{Re}f(z)$, а так как функция $\mathrm{f}(z)$ аналитическая, то это направление должно совпадать с линией, на которой $\mathrm{Im}f(z)=\mathrm{const.}$

Также, новый контур \widetilde{C} должен содержать точку z_0 , в которой $\mathrm{Re} f(z)$ достигает наибольшего значения на \widetilde{C} . Покажем для этого случая, что $f'(z_0)=0$, то есть точка линии $\mathrm{Im} f(z)=\mathrm{const}$, в которой $\mathrm{Re} f(z)$ достигает наибольшего значения, является точкой перевала.

Так и есть, ведь в точке z_0 , которая является максимумом для $\mathrm{Re} f(z)$ производная u=0 вдоль линии \widetilde{C} должна быть равна 0, т. е. $\frac{\partial}{\partial s}\mathrm{Re} f(z)=0$, а так как $\mathrm{Im} f(z)=\mathrm{const}$ на \widetilde{C} , то $\frac{\partial}{\partial s}\mathrm{Im} f(z)\equiv=0$, а значит и

$$f'(z_0) = \frac{\partial}{\partial s} \operatorname{Re} f(z) + i \frac{\partial}{\partial s} \operatorname{Im} f(z) = 0.$$

Подведем итоги. Для метода перевала к интегралу (2) путь интегрирования C следует деформировать в путь \widetilde{C} , проходящий через точку перева-

ла z_0 и в окрестности этой точки идущий вдоль линии наибольшего ската $\operatorname{Im} f(z) = \operatorname{const} (puc. 1)$.

Есть одно важное обстоятельство, обеспечивающее эффективность применения метода перевала: так как вдоль линии \widetilde{C} имеем $\arg e^{f(z)} = \operatorname{Im} f(z) = \operatorname{const}$, то оценка интеграла (2) сводится к оценке интеграла от действительной функции, которая может быть проведена по методу Лапласа для интеграла вида (3).

Именно это позволяет нам пользоваться полученными результатами теорем 1 и 2.

Рассмотрим случай, когда путь интегрирования C можно деформировать в путь \widetilde{C} , проходящий через точку перевала z_0 , где $f'(z_0)=0$, $f''(z_0)\neq 0$, и в окрестности z_0 совпадающий с линией наибольшего ската $\mathrm{Im} f(z)=\mathrm{const}$, причем на \widetilde{C} вне этой окрестности $\mathrm{Re} f(z)<\mathrm{Re} f(z_0)-h$ (h>0). Кроме того, предположим, что интеграл (2) абсолютно сходится для достаточно больших значений λ . Тогда образом, оценку интеграла можно провести на основании теоремы 1. Пусть z=z(t) будет уравнение контура \widetilde{C} ; Тогда,

$$F(\lambda) = \int_{C} \phi(z) e^{\lambda f(z)} dz = e^{\lambda i \operatorname{Im} f[z(t)]} \int_{a}^{b} \phi[z(t)] e^{\lambda \operatorname{Re} f[z(t)]} z' dt$$
 (7)

и задача сводится к оценки интеграла вида 3 действительной области, разложение для которого уже было получено Лапласом, и имеет вид [?]

$$F(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \sim \frac{e^{f(a)}}{\lambda} \sum_{n=0}^{\infty} \frac{n!c_n}{\lambda^n}$$

Выпишем первый член этого разложения. Обозначим $\phi[z(t)]z'=\widetilde{\phi}(t)$, $\mathrm{Re}f[z(t)]=\widetilde{f}(t)$ и тогда по формуле (6) получаем:

$$\int_{a}^{b} \widetilde{\phi}(t) e^{\lambda \widetilde{f}(t)} dt \sim e^{\lambda \widetilde{f}(t_0)} \sqrt{\frac{\pi}{\lambda}} \widetilde{c}_0$$
 (8)

где \widetilde{c}_0 - свободный член в разложении функции $\widetilde{\phi}[\widetilde{\psi}(au)]\widetilde{\psi}'(au).$

Имеем: $\widetilde{\phi}(t_0) = \phi(z_0)z'(t_0)$, и исходя из того, что $f[z(t)] = \mathrm{Re}f[z(t)] + i\mathrm{Im}f[z(t)] = \widetilde{f}(t) + \mathrm{const}$ вдоль \widetilde{C} , то

$$\widetilde{f}''(t_0) = \frac{d^2}{dt^2} f[z(t)] \mid_{t=t_0} = f''(z_0) z'^2(t_0).$$

Причем f'[z(t)]z''(t) = 0 при $t = t_0$. Так как эта величина отрицательна, то представив $z'(t_0) = ke^{i\theta}$, можно записать ее в виде $\widetilde{f}'' = -|f''(z_0)|k^2$. Получаем, что

$$\widetilde{c}_0 = \widetilde{\phi}(t_0) \sqrt{-\frac{2}{\widetilde{f}''(z_0)}} = \phi(z_0) e^{i\theta} \sqrt{\frac{2}{|f''(z_0)|}}$$

подставим найденное значение в (8), а затем в (7), получаем искомую формулу

$$F(\lambda) \sim e^{\lambda f(z_0)} \sqrt{\frac{2\pi}{|f''(z_0)|}} \phi(z_0) e^{i\theta} \frac{1}{\sqrt{\lambda}}$$
(9)

Как уже много раз говорилось, точка z_0 - это точка, где $\mathrm{Re} f(z)$ достигает своего максимального значения. В то же время совершенно обычная ситуация - когда на искомом контуре \widetilde{C} имеется несколько точек перевала, в которых значения $\mathrm{Re} f(z)$ находятся вблизи к наибольшему, то следует взять сумму выражений (9) по всем этим точками.

Тот случай, когда контур интегрирования заканчивается в точке перевала z_0 , аналогичным образом приводится к теореме 2.

Итак, мы получили рабочую формулу, подставляя в которую составляющие наших искомых функций $\phi(z)$ и f(z), мы должны получать приближенные значения интеграла, когда $\lambda \to \infty$

3 Численное решение

Выполним численное интегрирование интеграла (1)

Заметим, что нижний предел интегрирования у нас $-\infty$. Очевидно, что с этими производить вычисления невозможно, но зато наша начальная функция под первым интегралом

$$A(t) = -c \int_{-\infty}^{t} F(\tau) d\tau$$

Имеет вид:

$$F(t) = F_0 e^{-\frac{x^2}{\alpha^2}} \cos(\omega x) \tag{10}$$

и является затухающей. Таким образом, решив уравнение

$$|e^{-\frac{t_b^2}{\alpha^2}}| < \epsilon$$

на промежутке $[-\infty; 0]$, приближаясь слева, мы получим то самое значение t_b , при котором можно не учитывать отрезок интегрирования в связи с достижением необходимой точности.

В этом случае интеграл (10) примет вид:

$$A(t) = -c \int_{t_b}^{t} F(\tau) d\tau$$

Для вычисления этого интеграла воспользуемся методом интегрирования Гаусса, когда

$$\int_{x_1}^{x_2} f(x)dx = \sum_{j=1}^{N} \omega_j f(x_j)$$

В методе Гаусса точки интегрирования берутся с разными интервалами и при этом имеют различные веса ω_i , характеризующие их вклад в интеграл.

Метод Гаусса также может считать интегралы от неограниченных, быстро затухающий функция. Нам это не потребуется, но в связи с тем, что у нас этот интеграл (10) будет входить, далее, в подынтегральные функции, а также с необходимостью на каждом шаге пересчета матричного элемента, менять пределы интегрирования придется использовать адаптивные методы, то есть с переменным шагом. Они не так сложны в реализации, но поскольку вычислений будет очень много, имеет смысл воспользоваться уже готовой библиотекой GNU GSL.

GNU GSL - Это библиотека, написанная на языке программирования С для численных вычислений в прикладной математике и науке.

Самый главный ее плюс - в скорости вычислений, а также относительная экономия памяти, или же по крайней мере, ограничение ее использования. А также в ней реализовано огромное количество численных методов

Нас пока что интересует только один из них, а именно $gsl_integration_qags$, позволяющий нам интегрировать функцию на отрезке с заданной точностью.

Стоит отменить, что для первого интеграла (10) GSL не смог добиться точности абсолютной ошибки выше 10^{-13} , а значит, использовать результат в дальнейшем с большей точностью смысла не имеет.

Далее, у нас есть интеграл α

$$\alpha(\epsilon, t, t') = \frac{|e|}{c} [A_{\tau}(\epsilon) - \frac{1}{(t-t')} \int_{t'}^{t} A(\tau) d\tau]$$
(11)

Который потом будет входить в интеграл

$$S(t,t') = -\frac{1}{2m} \int_{t'}^{t} \alpha(\epsilon,t,t')^2 d\epsilon$$
 (12)

Для упрощения вычислений имеет преобразовать функцию (12) к виду

$$S(t,t') = -\frac{1}{2m} \int_{t'}^{t} A(\tau)^2 d\tau + \frac{1}{2(t'-t)} \int_{t'}^{t} A(\tau) d\tau$$
 (13)

Итак мы получили функцию S(t,t'), которая входит в исходный интеграл (1). Но сложность для вычислений представляет именно последний интеграл M

Заметим схожесть интеграла (1) с общим видом преобразования Фурье Введем замену t-t'= au, получаем

$$M = \int_0^\infty \frac{e^{i\epsilon\tau}}{\tau^{3/2}} (e^{i[+S(t,t-\tau)]/\hbar} - 1) d\tau$$
$$F(\xi) = \int_{-\infty}^\infty e^{i\xi\tau} F(\tau) d\tau$$

Для дискретного преобразования Фурье разницы между нашими пределами не будет, так как функция будет определена только на отрезке $[0; t_{end}]$. То есть интегрирование можно ускорить, использовав не стандартные методы интегрирования, а используя дискретное преобразование Фурье. Или же быстрое преобразование Фурье, что будет еще лучшим решением.

Для этого воспользуемся библиотекой FFTW.

FFTW является набором модулей на языках Си и Фортран для вычисления быстрого преобразования Фурье (БПФ). FFTW позволяет работать как с действительными, так и с комплексными числами, с произвольным размером входных данных, т.е. с длиной данных, не обязательно являющейся числом, кратным

 2^n . Библиотека также включает модули параллельной обработки БП Φ , которые позволяют использовать ее на многопроцессорных машинах с общей и распределенной памятью.

4 Формулы

Дана формула (1)

Часть интеграла с (-1) может быть отброшена, так как (говорилось ранее) основной вклад с интеграл вносят седловые точки. !!!!!Написать что-нибудь еще

$$M \sim \int_{-\infty}^{t} \frac{1}{(t-t')^{3/2}} e^{i[\epsilon(t-t')+S(t,t')]/\hbar} dt'$$

Введем замену t-t'= au, получаем

$$M \sim \int_0^\infty \frac{1}{\tau^{3/2}} e^{i[\epsilon \tau + S(t, t - \tau)]/\hbar} d\tau$$

Если обозначить $f(t,\tau)=\epsilon \tau+S(t,t-\tau)$ и $\phi(\tau)=\frac{1}{\tau^{3/2}}$ То получим формулу вида

$$M \sim \int_0^\infty \phi(\tau) e^{if(t,\tau)/\hbar} d\tau$$

Которая совпадает с формулой для Метода Перевала, применимого для интегралов вида

$$\int_{-\infty}^{\infty} \phi(x) e^{f(x)} dx$$

Для нашего случая приближение должно принимать вид:

$$M_0(\epsilon, t) \simeq \sqrt{\frac{m}{2\pi i\hbar}} \sum_{t_0} e^{f(t_0)} \sqrt{-\frac{2}{f''(t_0)}} \phi(t_0)$$

, где t_0 - корни уравнения f'(t)=0

Остается только получить формулу для f''(t) и решить уравнение на стационарные точки

В формулу (1) входят некоторые элементы, такие как

$$S(t,t') = -\frac{1}{2m} \int_{t'}^{t} \alpha(\epsilon,t,t')^2 d\epsilon$$

$$\alpha(\epsilon, t, t') = \frac{|e|}{c} [A_{\tau}(\epsilon) - \frac{1}{(t-t')} \int_{t'}^{t} A(\tau) d\tau]$$

$$A(t) = -c \int_{-\infty}^{t} F(\tau) d\tau$$

Найдем теперь перевальные точки (t_0) , дифференцируя по au

$$f(t,\tau) = \epsilon \tau + S(t,t-\tau),$$

$$f'(t,\tau) = \epsilon + S'(t,t-\tau)$$

$$f'(t,\tau) = 0 \Longrightarrow S'(t,t-\tau) = -\epsilon$$
(14)

 ${\bf C}$ введенной заменой S примет вид

$$S(t, t - \tau) = -\frac{1}{2m} \int_{t-\tau}^{t} \alpha(\epsilon, t, t - \tau)^{2} d\epsilon$$

Дифференцируя по τ , получаем

$$S'(t, t - \tau) = -\frac{1}{2m}\alpha(t - \tau, t, t - \tau)^2$$

Произведем обратную замену $t_0 = t - \tau$ и с учетом того, что $S' = -\epsilon$ (14), получаем явный вид уравнения на стационарные точки:

$$\alpha(t_0, t, t_0) = 2\epsilon m$$

Теперь найдем f''(t)

$$f''(t) = -\frac{1}{2m} [\alpha(t - \tau, t, t - \tau)^2]' =$$
$$= -\frac{2\alpha(t_0, t, t_0)}{2m} * \alpha(t_0, t, t_0)'$$

Рассмотрим новое α

$$\alpha(t_0, t, t_0) = \frac{|e|}{c} [A_{\tau}(t_0) - \frac{1}{(t - t_0)} \int_{t_0}^t A(\tau) d\tau]$$

Итого, получаем формулу для F'' вида

$$F''(t,t_0) = -\frac{|e|\alpha(t_0,t,t_0)}{m} [F(t_0) - \frac{1}{(t-t_0)^2} \int_{t_0}^t A(\tau)d\tau - A(t_0) \frac{1}{t-t_0}]$$

Обозначим $D=-2mF''(t,t_0)$ и

$$S^{\sim} = \epsilon \tau + S(t, t - \tau) = \epsilon(t - t_0) + S(t, t_0)$$

Подставляя в формулу для Метода перевала, получаем:

$$M_0(\epsilon, t) \simeq \sqrt{\frac{m}{2\pi i\hbar}} \sum_{t_0} \frac{e^{\frac{i}{\hbar}S^{\sim}(t, t_0)}\sqrt{2m}}{\sqrt{D}(t - t_0)^{3/2}} = \frac{1}{\sqrt{\pi i\hbar}} \sum_{t_0} \frac{m e^{\frac{i}{\hbar}S^{\sim}(t, t_0)}}{\sqrt{D}(t - t_0)^{3/2}}$$

Заключение