Momentum and Data

MGMT 638: Data-Driven Investments: Equity

Kerry Back, Rice University

Momentum

- What people have found in equities and other markets (see "Value and Momentum Everywhere" by Asness and other AQR people) is
 - long-term reversals (5 year returns reverse somewhat)
 - medium-term momentum (1 year or 6 month returns continue)
 - short-term reversals (1 month or 1 week returns reverse)
- The conventional definition of momentum in academic work (including the Asness paper) is last year's return excluding the most recent month
 - In other words, the return over the first 11 of the previous 12 months.

Plan for today

- Look for momentum at the industry level using the Fama-French 49 industries
- Get acquainted with the JGSB SQL database of stock fundamentals and prices
- Sort stocks on momentum and look at portfolio returns

Fama-French 49 Industries

• Start by finding the filename to download.


```
In [1]:
        from pandas datareader.famafrench import get available datasets
        get available datasets()
Out[1]: ['F-F Research Data Factors',
          'F-F Research Data Factors_weekly',
          'F-F Research Data Factors daily',
          'F-F Research Data 5 Factors 2x3',
          'F-F Research Data 5 Factors 2x3 daily',
          'Portfolios Formed on ME',
           'Portfolios Formed on ME Wout Div',
           'Portfolios Formed on ME_Daily',
           'Portfolios Formed on BE-ME',
           'Portfolios_Formed_on_BE-ME_Wout_Div',
           'Portfolios Formed_on_BE-ME_Daily',
           'Portfolios Formed_on_OP',
           'Portfolios Formed on OP Wout Div',
           'Portfolios Formed on OP Daily',
           'Portfolios Formed_on_INV',
           'Portfolios Formed_on_INV_Wout_Div',
           'Portfolios Formed on INV Daily',
          '6 Portfolios 2x3',
           '6 Portfolios 2x3 Wout Div',
          '6 Portfolios 2x3 weekly',
          '6 Portfolios 2x3 daily',
           '25 Portfolios 5x5',
           '25 Portfolios 5x5_Wout_Div',
           '25 Portfolios 5x5 Daily',
           '100 Portfolios_10x10',
```

'100 Portfolios 10v10 Wout Div'

Get daily returns of all industries

In [2]: from pandas_datareader import DataReader as pdr rets = pdr("49_Industry_Portfolios_daily", "famafrench", start=1970)[0]/100 rets.head(3)

Out[2]:		Agric	Food	Soda	Beer	Smoke	Toys	Fun	Books	Hshlc
	Date									
	1970- 01-02	0.0305	0.0083	0.0018	0.0043	0.0000	0.0224	0.0220	-0.0004	-0.002
	1970- 01-05	0.0367	0.0071	-0.0068	0.0037	0.0138	0.0028	-0.0047	-0.0026	0.0007
	1970- 01-06	0.0138	-0.0038	0.0032	0.0012	0.0005	-0.0172	-0.0002	-0.0091	-0.0104

3 rows × 49 columns

Calculating momentum

- Each day, we want to look back one year and compound the returns, excluding the most recent month.
- Count the days in the past year as 1, 2, ..., 252.
- We want to calculate $(1+r_1)\cdot (1-r_{231})$
- We can do this as

$$rac{(1+r_1)\cdots(1+r_{231})(1+r_{232})\cdots(1+r_{252})}{(1+r_{232})\cdots(1+r_{252})}$$

• In other words,

$$\frac{1 + \text{last year's return}}{1 + \text{last month's return}}$$

In [4]: mom.head(3)

Out[4]:

	Agric	Food	Soda	Beer	Smoke	Toys	Fun
Date							
1970- 12-31	-0.268268	-0.028023	0.040410	-0.080067	0.292730	-0.179984	-0.168475
1971- 01-04	-0.300242	-0.025224	0.049104	-0.080067	0.253838	-0.176059	-0.169394
1971- 01-05	-0.308732	-0.011133	0.055588	-0.065458	0.268250	-0.154429	-0.160920

3 rows × 49 columns

Rank by momentum each day (at close of prior day)

In [6]: df.head() ret rank mom Out[6]: **Date** 1970-12-31 **Agric** -0.268268 0.0078 13.0 **Food** -0.028023 0.0051 35.0 0.040410 43.0 Soda -0.0069 **Beer** -0.080067 -0.0034 32.0 **Smoke** 0.292730 -0.0135 48.0

Trading strategy

- Long the 5 industries with highest momentum
- Short the 5 industries with lowest momentum


```
In [7]: long = df[df["rank"]>=45].groupby("Date").ret.mean() # ranks 45, 46, 47, 46
        short = df[df["rank"]<=5].groupby("Date").ret.mean()  # ranks 1, 2, 3, 4, 5
        long_minus_short = long - short
        print(f"long-minus-short annualized mean return is {252*long_minus_short.mean
```

long-minus-short annualized mean return is 11.15%

JGSB SQL Database

- Must be on RiceOwls or the Rice VPN.
- Neet to pip install or conda install pymssql and maybe sqlalchemy
- Following is boilerplate to create a connection. Always the same code for this.
- Can close the connection with conn.close().


```
In [8]: from sqlalchemy import create_engine
   import pymssql
   server = 'fs.rice.edu'
   database = 'stocks'
   username = 'stocks'
   password = '6LAZH1'
   string = "mssql+pymssql://" + username + ":" + password + "@" + server + "/"
   conn = create_engine(string).connect()
```


Database tables

- tickers has one row for each ticker, with general company information
- indicators has one row for each variable in the other tables with definitions
- sf1 has annual and quarterly reports for all NYSE/Nasdaq stocks back to 2000
- sep has daily open, high, low, close and adjusted close for same stocks
- daily has marketcap, pb, pe, ps, ev, evebit, evebitda for same stocks
- sep_weekly is a weekly version of sep
- weekly is a weekly version of daily

Basic SQL

- select [] from [] join [] on [] where [] order by []
- select * means select all columns
- select top 3 * means select all columns for top 3 rows
- join [] on [] where [] order by [] are all optional
- a table that always exists in information_schema.tables. It lists the other tables.

In [9]: pd.read_sql("select * from information_schema.tables", conn)

Out[9]:		TABLE_CATALOG	TABLE_SCHEMA	TABLE_NAME	TABLE_TYPE
	0	stocks	dbo	prices_weekly	BASE TABLE
	1	stocks	dbo	sep	BASE TABLE
	2	stocks	dbo	sf1	BASE TABLE
	3	stocks	dbo	daily	BASE TABLE
	4	stocks	dbo	today	BASE TABLE
	5	stocks	dbo	ghz	BASE TABLE
	6	stocks	dbo	indicators	BASE TABLE
	7	stocks	dbo	tickers	BASE TABLE
	8	stocks	dbo	weekly	BASE TABLE
	9	stocks	dbo	sep_weekly	BASE TABLE
	10	stocks	dbo	sep2	BASE TABLE

In [10]: pd.read_sql("select top 3 * from tickers", conn) permaticker siccode lastupdated firstadded firstpricedate lastpricedate fir Out[10]: 2014-09-196290 2023-08-31 1999-11-18 2023-10-27 0 3826 26 2016-11-1 124392 3334 2023-10-26 2016-11-01 2023-10-27 01 2017-09-2019-07-29 1998-09-25 2 122827 6022 2003-01-28 09

 $3 \text{ rows} \times 26 \text{ columns}$

pd.read_sql("select top 3 * from indicators", conn) In [11]: tbl indicator isfilter isprimarykey description unittype title Out[11]: [Income Statement] SF1 Ν 0 Ν Revenues The amount revenue currency of Revenue recog... [Income Statement] Cost of The **1** SF1 Ν Ν cor currency Revenue aggregate cost of goods... [Income Selling General Statement] and **2** SF1 Ν Ν currency sgna Administrative component of [OpEx] Expense repre...

pd.read_sql("select top 3 * from sep", conn) In [12]: volume closea ticker date lastupdated high low cls opn Out[12]: 2021-2021-09-10 **BOOT** 85.12 86.40 83.340 83.44 257625.000 83.4 09-10 2021-BNTC 2023-07-26 64.94 67.32 64.175 67.15 2597.529 67.1 09-10 2023-2 2023-08-04 170.55 171.82 168.240 170.26 621922.000 **JBHT** 169.5 04-05

In [13]: pd.read_sql("select top 3 * from daily", conn) date lastupdated ev evebit evebitda marketcap pb ticker Out[13]: pe p 2000-2021-06-14 0 FKLT 30.4 -2.7 -2.8 30.9 6.3 -2.7 9.6 10-10 2000-12.5 0.8 13.6 3.4 FFDF 2022-07-12 40.5 29.3 26.7 10-10 2000-2019-03-28 2161.2 2 FL 9.9 1776.2 1.5 15.6 0.4 5.5 10-10

In [14]: pd.read_sql("select top 3 * from sf1", conn) ticker dimension calendardate datekey reportperiod lastupdated accoci Out[14]: 1999-1999-03-31 2023-08-15 O ACHV ARQ 1999-03-31 0.0 05-13 1999-**1** ACHV ARQ 1999-06-30 1999-06-30 2023-08-15 0.0 08-06 1999-**2** ACHV 1999-09-30 ARQ 1999-09-30 2023-08-15 0.0 11-16

3 rows × 111 columns

In [15]: pd.read_sql("select top 3 * from sep_weekly", conn) date lastupdated opn high low volume closeadj closeunadj ticker Out[15]: 2002-2023-08-07 73.0 73.52 68.7 0 ALX 5140.0 27.327 72.80 07-26 2002-2023-08-07 69.1 71.20 69.1 ALX 1100.0 26.712 71.16 08-02 2002-2 2023-08-07 70.0 70.00 67.1 ALX 1300.0 25.586 68.16 08-09

In [16]: pd.read_sql("select top 3 * from weekly", conn) lastupdated ev evebit evebitda marketcap рb ticker date Out[16]: pe 2000-2019-06-13 56.6 **0** CADMQ -4.2 -4.6 53.1 -126.4 -3.8 04-14 2000--91.7 -2.7 2019-06-13 42.0 **1** CADMQ -3.1 -3.4 38.5 04-20 2000-2019-06-13 40.7 **2** CADMQ -3.0 -3.3 37.2 -88.6 -2.7 04-28

sep_weekly data

- get ticker, date, closeadj, closeunadj from sep_weekly
- keep only last updated row for each ticker, date (in case multiple updates)

In [18]: df.head()

Out[18]:

		closeadj	closeunadj
ticker	date		
Α	2010-01-08	20.187	30.96
	2010-01-15	19.855	30.45
	2010-01-22	19.900	30.52
	2010-01-29	18.707	28.69
	2010-02-05	19.235	29.50

Calculate weekly returns and momentum

- Compute weekly return as closeadj.pct_change()
- Compute annual returns (through end of prior week)
- Compute monthly returns (through end of prior week)
- Momentum = (1 + annual)/(1 + monthly) 1
- Momentum is through end of prior week so can be used to predict this week's returns
- Also, shift closeunadj by one week because we want to use it to filter out penny stocks.

In [20]: df.head()

Out[20]:

		cioseadj	closeunadj	weekiy	adj_snift	annual	monthly	
ticker	date							
Α	2011- 01-14	27.529	42.22	0.008130	27.307	0.352702	0.127922	0.19
	2011- 01-21	28.918	44.35	0.050456	27.529	0.386502	0.090949	0.2
	2011- 01-28	26.721	40.98	-0.075973	28.918	0.453166	0.086204	0.3
	2011- 02-04	26.727	40.99	0.000225	26.721	0.428396	-0.022426	0.4
	2011- 02-11	28.318	43.43	0.059528	26.727	0.389498	-0.021240	0.4

Filter out penny stocks

- Penny stocks have an undue influence on equally weighted portfolio returns
- We could do value weighted returns instead
- Instead, we'll impose a common filter: price at the time of portfolio formation > \$5.00

In [21]: df = df[df.unadj_shift > 5].copy() df.head()

Out[21]:

		closeadj	closeunadj	weekly	adj_shift	annual	monthly	
ticker	date							
Α	2011- 01-14	27.529	42.22	0.008130	27.307	0.352702	0.127922	0.19
	2011- 01-21	28.918	44.35	0.050456	27.529	0.386502	0.090949	0.2
	2011- 01-28	26.721	40.98	-0.075973	28.918	0.453166	0.086204	0.3
	2011- 02-04	26.727	40.99	0.000225	26.721	0.428396	-0.022426	0.4
	2011- 02-11	28.318	43.43	0.059528	26.727	0.389498	-0.021240	0.4

Form decile portfolios

- We want to go long the top momentum stocks and short the low momentum stocks and see if we earn alpha.
- Let's try top = top 10% and bottom = bottom 10%
- Could try top = top 100 and bottom = bottom 100 instead or other things.


```
In [31]: df["decile"] = df.groupby("date", group_keys=False).mom.apply(
          lambda x: pd.qcut(x, 10, labels=range(1, 11))
)
df.head(3)
```

Out[31]:			closeadj	closeunadj	weekly	adj_shift	annual	monthly	1
	ticker	date							
	Α	2011- 01-14	27.529	42.22	0.008130	27.307	0.352702	0.127922	0.19
		2011- 01-21	28.918	44.35	0.050456	27.529	0.386502	0.090949	0.27

40.98 -0.075973

28.918 0.453166 0.086204 0.33

2011-

01-28

26.721

Returns of equally-weighted portfolios


```
In [32]:
          port_rets = df.groupby(["date", "decile"], group_keys=True).weekly.mean()
          port_rets = port_rets.unstack()
          port_rets.head()
                                     2
                                                3
                                                                      5
                                                                                6
                          1
                                                          4
          decile
Out[32]:
            date
          2011-
                  -0.003574
                             -0.003988
                                        -0.000700
                                                   -0.003290
                                                              -0.005264
                                                                         -0.007649
                                                                                    0.000558
          01-14
          2011-
                   0.017434
                              0.018820
                                                                          0.012560
                                         0.015247
                                                    0.014496
                                                              0.011896
                                                                                    0.011547
          01-21
          2011-
                  -0.024139
                             -0.017535
                                        -0.014224
                                                  -0.009462
                                                              -0.012853
                                                                         -0.011438
                                                                                    -0.015802
          01-28
          2011-
                  -0.005927
                             -0.001812
                                         0.001808
                                                    0.000847
                                                              0.001169
                                                                          0.002995
                                                                                    0.005542
          02-04
          2011-
                   0.016875
                              0.023576
                                         0.018955
                                                    0.026951
                                                               0.019405
                                                                          0.023759
                                                                                    0.025541
          02-11
```



```
In [33]: port_rets.mean()
Out[33]:
         decile
                0.000457
                0.001333
                0.001823
                0.002074
                0.002281
                0.002367
                0.002174
          8
                0.001941
          9
                0.002400
                0.002452
          10
          dtype: float64
```



```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid")

(1+port_rets).cumprod().plot()
plt.legend()
plt.show()
```



```
In [42]: # Log scale
         (1+port_rets).cumprod().plot(logy=True)
         plt.legend()
         plt.show()
```


Long-minus short returns


```
In [36]: long_minus_short = port_rets[10] - port_rets[1]
    print(f"annualized long-minus-short return is {52*long_minus_short.mean():.2%
    annualized long-minus-short return is 10.38%
```



```
In [43]: (1+long_minus_short).cumprod().plot()
```

Out[43]: <AxesSubplot: xlabel='date'>

Database: industries and other information

- famaindustry and siccode, etc. are in tickers table
- join tables in SQL to get this info in
- or download tickers table and merge in pandas

Joining in SQL Example


```
In [37]: df2 = pd.read_sql(
    """
    select date, a.ticker, closeadj, closeunadj, a.lastupdated,
    famaindustry, siccode
    from sep_weekly as a join tickers as b
    on a.ticker=b.ticker
    where date>='2020-01-01'
    order by a.ticker, date, a.lastupdated
    """,
    conn,
)
df2 = df2.groupby(["ticker", "date", "lastupdated"]).last()
df2 = df2.droplevel("lastupdated")
```


Merging in Pandas Example


```
In [40]: tickers = pd.read_sql("select ticker, siccode, famaindustry from tickers", col
         df3 = df3.reset_index().merge(tickers, on="ticker")
         df3 = df3.set_index(["ticker", "date"])
         df3.info()
         <class 'pandas.core.frame.DataFrame'>
         MultiIndex: 972409 entries, ('A', datetime.date(2020, 1, 3)) to ('ZYX
         I', datetime.date(2023, 10, 27))
         Data columns (total 4 columns):
                           Non-Null Count Dtype
            Column
          0 closeadj
                           972409 non-null float64
          1 closeunadj 972409 non-null float64
          2 siccode
                           972409 non-null int64
             famaindustry 970284 non-null object
         dtypes: float64(2), int64(1), object(1)
         memory usage: 33.6+ MB
```