Th. $\lambda_1, \ldots \lambda_p$ - различные собственные значения $\mathcal{A}: V \to V$, им соответствуют U_{λ_i} собственные подпространства V для λ_i

Пусть
$$e^{(1)} = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}\}, e^{(2)} = \{e_1^{(2)}, \dots, e_{k_2}^{(2)}\}, \dots$$
 - базисы $U_{\lambda_1}, U_{\lambda_2}, \dots$ Составим систему $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$

Тогда система е - линейно независима

Составим линейную комбинацию:

1) Пусть
$$\alpha_1 e_1^{(1)} + \cdots + \alpha_{k_1} e_{k_1}^{(1)} + \cdots + \gamma_{k_p} e_{k_p}^{(p)} + \cdots + \gamma_{k_p} e_{k_p}^{(p)} = 0$$

Тогда $\sum_{i=1}^{P} x_i = 0$ (x_i - линейно независимы, так как λ_i - различны) - этого не может быть, так как $\forall i \ x_i \neq 0$ (как собственный вектор)

2) В
$$\forall U_{\lambda_i}$$
 содержится 0-вектор. Тогда $\sum_{i=1}^n x_i = 0 \Longleftrightarrow \forall x_i = 0$

Ho $x_j = \sum_{i=1}^{\kappa_i} c_i e_i^{(j)} = 0$ $(e_i^{(j)}$ - базисные, то есть линейно независимы) $\Longrightarrow \forall c_j = 0$ (комбинация должна быть тривиальна)

Nota. Таким образом, объединение базисов собственных подпространств U_{λ_i} образует линейно независимую систему в V^n

Что можно сказать о размерности системы $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$?

Обозначим $S = \sum_{i=1}^{p} \dim U_{\lambda_i} = \sum_{i=1}^{p} \beta_i$, где β_i - геометрическая кратность λ_i Очевидно, что $S \le n$

Th. $S = n \iff \exists$ базис V^n , составленный из собственных векторов

Система $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$ состоит из собственных векторов Если S=n, получаем n собственных векторов, линейно независимых - базис V^n Если \exists базис из n лин. незав. собственных векторов, тогда $\dim e = S = n$

Nota. Условие **Th.** равносильно: $V^n = \bigoplus_{i=1}^r U_{\lambda_i}(\lambda_i \neq \lambda_j)$

Действительно: $\dim V^n = \sum_{i=1}^p \dim U_{\lambda_i}$ и $\forall i, j \ U_{\lambda_i} \cap U_{\lambda_j} = 0$

Ex. Если $\exists n$ различных собственных чисел $\lambda_1,\ldots,\lambda_n,$ то $\dim U_{\lambda_i}=1 \forall i$

 $\mathbf{Def.}$ Оператор $\mathcal A$ диагонализируемый, если существует базис e такой, что A_e - диагональна

Th. \mathcal{A} - диагонализируем \iff существует базис из собственных векторов

 \longleftarrow $e = \{e_1, \dots, e_n\}$ - базис собственных векторов

Собственный вектор по определению: $\exists \lambda_i \mid \mathcal{R}e_i = \lambda_i e_i = 0 \cdot e_1 + \dots + \lambda_i e_i + \dots + 0 \cdot e_n$

$$\begin{cases} \mathcal{R}e_1 = \lambda_1 e_1 + \sum_{k \neq 1} 0 \cdot e_k \\ \mathcal{R}e_2 = \lambda_2 e_2 + \sum_{k \neq 2} 0 \cdot e_k \end{cases} \iff \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}_e \cdots e_i = \mathcal{R}e_i$$

 $\exists f$ - базис, в котором A_f - диагональная (по $\mathbf{Def.}\ \mathcal{A}$ - диагонализируем)

$$A_f = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix} \qquad \text{Применим } \mathcal{A} \text{ к } f_i \in f$$

$$A_f = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix}$$
 Применим \mathcal{A} к $f_i \in f$
$$\mathcal{A}f_i = A_f f_i = \begin{pmatrix} \alpha_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \alpha_n \end{pmatrix} f_i = \alpha_i f_i \Longrightarrow \alpha_i \text{ - собственное число (по def), a } f_i \text{ - собственный }$$

Nota. О связи алгебраической и геометрической кратностей (α - алгебраическая, β - геометрическая кратность)

1) α, β не зависят от выбора базиса

 β_i по определению $\dim U_{\lambda_i}$ и не связана с базисом

Для α : строим вековое уравнение $|A_f - \lambda I| = 0 \Longrightarrow \lambda_i$ с кратностью $\alpha_i, \alpha = \sum \alpha_i$

 $\sqsupset A_g$ - матрица $\mathcal A$ в базисе g

Но $A_g = T_{f o g} A_f T_{g o f}$ или для оператора

$$A_g - \lambda I = T_{f \to g} (A_f - \lambda I) T_{g \to f} = T_{f \to g} A_f T_{g \to f} - \lambda T_{f \to g} I T_{g \to f} = A_g - \lambda I$$

Таким образом, матрицы $A_g - \lambda I, \ A_f - \lambda I$ - подобные

Def. Подобные матрицы - матрицы, получаемые при помощи преобразования координат

Тогда
$$\det(A_f - \lambda I) = \det(A_q - \lambda I)$$
 (инвариант) \Longrightarrow одинаковая кратность

2) Геометрическая кратность не превышает алгебраической. У диагонализируемого оператора $\alpha = \beta$

2.8. Самосопряженные операторы

1* Сопряженные операторы

Далее будем рассматривать операторы только в евклидовом пространстве над вещественном полем. Пространство со скалярным произведением над комплексным полем называется унитарным

Mem. Скалярное произведение $(x,y):\mathbb{R}^2 \to \mathbb{R}$ - функция, со свойствами:

- 1) (x + y, z) = (x, z) + (y, z)
- 2) $(\lambda x, y) = \lambda(x, y)$
- 3) $(x, x) \ge 0$, $(x, x) = 0 \Longrightarrow x = 0$
- 4) (x,y)=(y,x) в \mathbb{R} . Но в комплексном множестве: $(x,y)=\overline{(y,x)}$. Тогда $(x,\lambda y)=\overline{(\lambda y,x)}$