© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★

CCINP Maths 1 TSI 2005

On rappelle que l'intégrale $I = \int_0^{+\infty} \frac{\sin(u)}{u} du$ est convergente et vaut $\frac{\pi}{2}$.

- 1. Calculer l'intégrale $I(a) = \int_0^{+\infty} \frac{\sin(au)}{u} du$ où a est un réel.
- 2. a. Justifier la convergence de l'intégrale $J = \int_0^{+\infty} \frac{\sin^2(u)}{u^2} du$.
 - **b.** Calculer J.
- 3. On considère $K(a,b) = \int_0^{+\infty} \frac{\sin(au)\sin(bu)}{u^2} du$, où a et b sont des réels.
 - **a.** Exprimer K(a, b) en fonction de I(a + b) et I(a b).
 - **b.** En déduire les valeurs de K(a, b) en distinguant les différentes régions du plan (a, b).
 - c. Donner une expression de K(a, b) regroupant les différents cas.

Exercice 2 ★★

D'après E3A Maths 1 PSI 2017

Dans tout l'exercice, I désigne l'intervalle $[0, +\infty[$ et $\mathcal{C}(I, \mathbb{R})$ est le \mathbb{R} -espace vectoriel des applications continues de I vers \mathbb{R} .

On note E l'ensemble des éléments f de $\mathcal{C}(I,\mathbb{R})$ tels que f^2 est intégrable sur I, c'est-à-dire tels que $\int_0^{+\infty} f(t)^2 dt$ converge.

Questions de cours

- 1. Prouver que pour tous réels a et b, $ab \le \frac{1}{2}(a^2 + b^2)$.
- 2. Montrer que le produit de deux éléments de E est une application intégrable sur I.
- 3. Montrer que E est un R-espace vectoriel.
- **4.** Soit φ l'application qui au couple $(f,g) \in E^2$ associe le réel : $\varphi(f,g) = \int_0^{+\infty} f(t)g(t) dt$. Montrer que l'on définit ainsi un produit scalaire sur E que l'on notera par la suite $\langle \ | \ \rangle$.

Partie 1

Soit h élément de $\mathcal{C}(I,\mathbb{R})$, tel que l'intégrale $\int_0^{+\infty} h(t) dt$ converge.

- **5.** Pour tout $n \in \mathbb{N}$, on pose $J_n = \int_n^{n+1} h(t) dt$. Prouver que: $\lim_{n \to +\infty} J_n = 0$.
- **6.** En déduire l'existence d'une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de I telle que : $\lim_{n\to+\infty}a_n=+\infty$ et $\lim_{n\to+\infty}h(a_n)=0$.

Partie 2

Soit F l'ensemble des applications f de I dans \mathbb{R} de classe \mathcal{C}^1 sur I, telles que les intégrales $\int_0^{+\infty} t^2 f(t)^2 dt$ et $\int_0^{+\infty} f'(t)^2 dt$ convergent. Soit $f \in \mathbb{F}$.

- 7. Montrer que les intégrales $\int_0^{+\infty} f(t)^2 dt$ et $\int_0^{+\infty} t f(t) f'(t) dt$ convergent.
- **8.** Etablir l'égalité : $\int_0^{+\infty} t f(t) f'(t) dt = -\frac{1}{2} \int_0^{+\infty} f(t)^2 dt.$ On pourra, par exemple, utiliser un résultat de la partie 1.
- 9. Démontrer

$$\left(\int_0^{+\infty} f(t)^2 dt\right)^2 \le 4 \left(\int_0^{+\infty} t^2 f(t)^2 dt\right) \left(\int_0^{+\infty} f'(t)^2 dt\right) \tag{\star}$$

10. Déterminer toutes les applications $f \in F$ pour lesquelles il y a égalité dans l'inégalité (\star) .

Exercice 3 ★★

D'après E3A PSI 2009

 $\mathbb R$ est l'ensemble des nombres réels et n et n_0 sont des entiers naturels.

Cet exercice comporte deux parties. Dans la première partie, on établit un résultat général appelé «règle de Raabe-Duhamel». Dans la deuxième partie on applique, sans omettre les justifications nécessaires, ce résultat à l'étude de plusieurs séries particulières.

Soit (α_n) une suite réelle. On rappelle que la relation $\alpha_n = o\left(\frac{1}{n}\right)$ signifie que $\lim_{n \to +\infty} n\alpha_n = 0$.

1 Règle de Raabe-Duhamel

Soit $(u_n)_{n\geq n_0}$ une suite de réels strictement positifs telle qu'il existe un réel λ vérifiant :

$$\forall n \ge n_0, \ \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

- 1. Prouver que si $\lambda < 0$, alors la série $\sum u_n$ diverge.
- 2. Soit β un réel quelconque et $v_n = \frac{1}{n^{\beta}}$. Montrer que $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} = \frac{\mu}{n} + o\left(\frac{1}{n}\right)$ où μ est un réel, indépendant de n, à déterminer.
- 3. On suppose que $\lambda > 1$. On se propose de démontrer que la série $\sum u_n$ converge. On choisit β tel que $\lambda > \beta > 1$.
 - **a.** Justifier l'existence d'un entier naturel N tel que, pour $n \ge N$, on ait $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$.
 - **b.** Déterminer un réel positif K, indépendant de n, tel que pour $n \ge N$, on ait $u_n \le K v_n$.
 - **c.** Prouver que la série $\sum u_n$ converge.
- **4.** On suppose que $0 \le \lambda < 1$. Démontrer par un raisonnement analogue à celui fait à la question précédente que la série $\sum u_n$ diverge (on choisira β de manière à ce que la série $\sum v_n$ diverge et que ceci implique la divergence de la série $\sum u_n$).
- 5. Pour $n \ge 2$, on pose $x_n = \frac{1}{n}$ et $y_n = \frac{1}{n \ln(n)^2}$. Déterminer la nature des séries $\sum x_n$ et $\sum y_n$ et en déduire que le cas $\lambda = 1$ est un cas douteux de la règle de Raabe-Duhamel.

2 Applications

Les questions qui suivent sont indépendantes et sont des applications directes ou partielles de la règle de Raabe-Duhamel.

- **6.** Pour $n \ge 2$, on pose $w_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)$. Déterminer la nature de la série $\sum w_n$.
- 7. Pour $n \ge 1$, on considère l'intégrale généralisée $\int_0^{+\infty} \frac{\mathrm{d}t}{(t^4+1)^n}$.
 - a. Montrer que cette intégrale généralisée converge. On note I_n sa valeur.
 - **b.** Etablir que $I_n = 4n(I_n I_{n+1})$.
 - **c.** En déduire la nature de la série $\sum I_n$.