

빅데이터 분석 결과 시각화

연도별 데이터 시각화

학습내용

- 시계열 분석 시각화
- 연도별 데이터 수집
- 연도별 데이터 시각화

학습목표

- 시계열 분석에 대한 데이터를 활용하여 시각화할 수 있다.
- 날짜와 시간 축 포맷에 대해 이해하고, 연도별 데이터를 수집할 수 있다.
- 수집한 연도별 데이터를 활용하여 시각화할 수 있다.

1. 시계열 분석의 개념

◆ 시계열 분석

- 시계열(時系列, Time Series)
 - 일정 시간 간격으로 배치된 데이터들의 수열
- 시계열 해석(Time Series Analysis)
 - 시계열을 해석하고 이해하는 데 쓰이는 여러 가지 방법을 연구하는 분야
- 시계열 예측(Time Series Prediction)
 - 주어진 시계열을 보고 수학적인 모델을 만들어서 미래에 일어날 것들을 예측하는 것
 - 일반적으로 이런 방법들은 공학이나 과학계산, 혹은 금융시장에서의 주가 예측 등에서 많이 쓰임

1. 시계열 분석의 개념

◆ 시계열 데이터 분석 목적

미래 값 예측	데이터의 특성 파악
• 일주일간 주가 예측, 다음 달 매출액 예측 등	• 경향(Trend), 주기(Cycle), 계절성(Seasonality), 불규칙성(Irregular) 등

1. 시계열 분석의 개념

◆ 시계열 자료의 예

- 국민총생산, 물가지수, 주가지수 등 경제활동과 관련된 시계열
- 일일 강수량, 기온, 연간 지진 발생 수 등 물리적 현상과 관련된 시계열
- 상품판매량, 상품광고액, 상품재고량 등 경영활동과 관련된 시계열
- 총인구, 농가 수, 인구증가율 등 인구와 관련된 시계열
- 품질관리 등 생산관리와 관련된 시계열
- 월별 교통사고 건수, 월별 범죄발생 수 등 사회생활과 관련된 시계열

◆ 시계열 분석의 통계 그래프

● 구글 트렌드에서 검색량을 보면 어떤 데이터의 흐름에 따라 관심도의 변화를 보고 이후 통계량을 예측할 수 있음

1. 시계열 분석의 개념

- ♦ 예측 기법
 - 예측이 왜 필요한가?
 - 누가 예측치를 사용할 것인가?
 - 가용한 데이터의 특징은 무엇인가?
 - 어느 정도의 기간을 예측할 것인가?
 - 최소한의 데이터 필요는 어느 정도인가?
 - 어느 정도의 정확도를 요하는가?
 - 예측에 수반되는 비용은 얼마인가?

- 2. 시계열 분석 시각화 실습
 - ◆ 시계열 분석 시각화 실습 순서
 - ① 데이터 준비하기
 - ② 날짜 포맷 핵심 코드 입력하기
 - ③ 축 표현하기
 - ④ 결과화면 확인하기

• 연도별 데이터 수집

1. 날짜 / 시간 축 포맷

◆ 타임 포맷 설정하기

```
var margin = {top: 20, right: 20, bottom: 100, left: 50},
```

```
svg.append("g")
.attr("class", "axis")
.attr("transform", "translate(0, "+ height +") ")
.call(d3.axisBottom(x)
.tickFormat(d3.timeFormat("%Y-%m-%d")))
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", ".15em")
.attr("transform", "rotate(-65)");
```

● 연도별 데이터 수집

1. 날짜 / 시간 축 포맷

◆ 타임 포맷의 종류

종류	의미				
%a	요일 이름을 약어로 표현				
%A	전체 요일 이름				
%b	월 이름을 약어				
%B	전체 월 이름				
%с	날짜 및 시간, "%a %b %e %H:%M:%S %Y"				
%d	진수 [01, 31]와 달의 0이 들어간 일				
%e	진수 [1, 31] 같은 달의 일				
%Н	시간 (24시간) 진수 [00,23] 등				
%I	진수 [01, 12]와 같은 시간 (12시간 시계)				
%j	진수 [001, 366] 등 한 해의 날				
%m	진수 [01, 12] 같은 달				
%M	진수 [00, 59]와 같은 분				
%p	AM 또는 PM 중 하나				
%S	진수 [00, 61]로 초				
%U	진수 [00, 53]로 올해 (일요일 주일의 첫날로)의 주 번호				
%w	십진수로 요일 [0(일), 6]				
%W	진수 [00, 53]로 올해 (월요일주의 첫 번째 날 등)의 주 번호				
%x	날짜 "%m/%d/%y"				
%X	시간 "%H:%M:%S"				
%y	진수 [00,99]와 같은 세기 없이 해				
%Y	십진수로 세기와 해				
%Z	시간대는 "-0700"으로 오프셋				

● 연도별 데이터 수집

1. 날짜 / 시간 축 포맷

◆ 타임 포맷의 예시

타임포맷	결과화면
d3.time.format("%Y-%m-%d")	2026-05-28
d3.time.format("%m/%d/%Y")	05/28/1986
d3.time.format("%H:%M")	10:19
d3.time.format("%H:%M %p")	10:19 AM
d3.time.format("%B %d")	January 28
d3.time.format("%d %b")	28 Jan
d3.time.format("%d-%b-%y")	28-Jan-86
d3.time.format("%S s")	13 s
d3.time.format("%M m")	39 m

• 연도별 데이터 수집

- 2. 연도별 데이터 수집 실습
 - ◆ 연도별 데이터 수집 실습 순서
 - ① 데이터 준비하기
 - ② CSS 설정하기
 - ③ 날짜 포맷 작성하기
 - ④ 요일별 선거범죄 그래프 결과 확인하기

• 연도별 데이터 시각화

1. 연도별 범죄 데이터 만들기

① 범죄 발생 시간별 데이터 수집

범죄 발생/	시간											
											단위 : 건(발	발생원표)
구 분 죄 종		계	00:00-02:5	03:00-05:5	06:00-08:5	09:00-11:5	12:00-14:5	15:00-17:5	18:00-20:5	21:00-23:5	미상	

② 지능범죄 데이터를 새로운 데이터로 만듦

	공갈	4,310	164	108	150	338	378	641	673	478	1,380	
	소괴	57.813	5 957	4.850	3 445	4 512	4.005	5.725	10.224	12 599	6.496	
지능범죄	소계	329,439	7,976	5,339	3,392	55,880	29,908	21,391	14,495	13,122	177,936	
	식무유기	555	3	4	2	161	51	22	12	6	294	
	직권남용	325	9	5	10	60	25	19	17	26	154	
	조스리	252	1	0	1	40	17	10	7	11	161	

③ 범죄 발생시간을 date, 지능범죄수를 close로 바꿈

④ 타임설정 및 축 범위 설정

● 날짜 시간 분석

var parseTime = d3.timeParse("%H:%M"); // 시간과 분을 분석

● 축 범위설정

```
var x = d3.scaleTime().range([0, width]);
var y = d3.scaleLinear().range([height, 0]);
```

• 연도별 데이터 시각화

1. 연도별 범죄 데이터 만들기

⑤ 데이터 가져오기

● 데이터 가져오기

```
d3.csv("crime2.csv", function(error, data) {
  if (error) throw error;
```

● 데이터 date, close 값 가져오기

```
data.forEach(function(d) {
    d.date = parseTime(d.date);
    d.close = +d.close;
});
```

⑥ X축 좌표 만들기

● X축의 좌표에 글자 넣기

```
svg.append("g")
.attr("class", "axis")
.attr("transform", "translate(0, "+ height +")")
.call(d3.axisBottom(x)

.tickFormat(d3.timeFormat("%H:%M")))

.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", ".15em")
.attr("transform", "rotate(-65)");
```

• 연도별 데이터 시각화

- 2. 연도별 범죄 데이터 시각화 실습
 - ◆ 연도별 범죄 데이터 시각화 실습 순서
 - ① 데이터 준비하기
 - ② CSS 설정하기
 - ③ 시간을 설정하는 축의 값 표현하기
 - ④ 결과화면 확인하기

1. 시계열 분석 시각화

■ 시계열 분석이란?

- 시계열(時系列, Time Series)은 일정 시간 간격으로 배치된 데이터들의 수열을 말함
- 시계열 해석(Time Series Analysis)라고 하는 것은 이런 시계열을 해석하고 이해하는 데 쓰이는 여러 가지 방법을 연구하는 분야임
- 시계열 예측(Time Series Prediction)이라고 하는 것은 주어진 시계열을 보고 수학적인 모델을 만들어서 미래에 일어날 것들을 예측하는 것을 뜻함
- 일반적으로 이런 방법들은 공학이나 과학계산, 혹은 금융시장에서의 주가 예측 등에서 많이 쓰임

■ 시계열 데이터 분석 목적

- 가장 중요한 목적 : 미래 값을 예측하는 것
- 시계열 데이터의 특성: 경향(Trend), 주기(Cycle), 계절성(Seasonality), 불규칙성(Irregular) 등

■ 시계열 자료의 예

- 국민총생산, 물가지수, 주가지수 등 경제활동과 관련된 시계열
- 일일 강수량, 기온, 연간 지진 발생 수 등 물리적 현상과 관련된 시계열
- 상품판매량, 상품광고액, 상품재고량 등 경영활동과 관련된 시계열
- 총인구, 농가 수, 인구증가율 등 인구와 관련된 시계열
- 품질관리 등 생산관리와 관련된 시계열
- 월별 교통사고 건수, 월별 범죄발생 수 등 사회생활과 관련된 시계열

1. 시계열 분석 시각화

- 시계열 분석의 통계 그래프
 - 구글 트렌드에서 검색량을 보면 어떤 데이터의 흐름에 따라 관심도의 변화를 보고 이후 통계량을 예측할 수 있음

■ 예측 기법

- 예측이 왜 필요한가?
- 누가 예측치를 사용할 것인가?
- 가용한 데이터의 특징은 무엇인가?
- 어느 정도의 기간을 예측할 것인가?
- 최소한의 데이터 필요는 어느 정도인가?
- 어느 정도의 정확도를 요하는가?
- 예측에 수반되는 비용은 얼마인가?

2. 연도별 데이터 수집

- 타임 포맷의 종류
 - %a 요일 이름을 약어로 표현
 - %A 전체 요일 이름
 - %b 월 이름을 약어
 - %B 전체 월 이름
 - %c 날짜 및 시간, "%a %b %e %H:%M:%S %Y"
 - %d 진수 [01,31]와 달의 0이 들어간 일
 - %e 진수 [1,31] 같은 달의 일
 - %H 시간 (24 시간) 진수 [00,23] 등
 - %I 진수 [01,12]와 같은 시간 (12 시간 시계)
 - %i 진수 [001,366] 등 한 해의 날
 - %m 진수 [01,12] 같은 달
 - %M 진수 [00,59]와 같은 분
 - %p AM 또는 PM 중 하나
 - %S 진수 [00,61]로 초
 - %U 진수 [00,53]로 올해 (일요일 주일의 첫날로)의 주 번호
 - %w 십진수로 요일 [0 (일), 6]
 - %W 진수 [00,53]로 올해 (월요일주의 첫 번째 날 등)의 주 번호
 - %x 날짜 "%m/%d/%y"
 - %X 시간, "%H:%M:%S"
 - %y 진수 [00,99]와 같은 세기 없이 해
 - %Y 십진수로 세기와 해
 - %Z 시간대는 "-0700"으로 오프셋

2. 연도별 데이터 수집

■ 타임 포맷의 예시

타임포맷	결과화면					
d3.time.format("%Y-%m-%d")	2026-05-28					
d3.time.format("%m/%d/%Y")	05/28/1986					
d3.time.format("%H:%M")	10:19					
d3.time.format("%H:%M %p")	10:19 AM					
d3.time.format("%B %d")	January 28					
d3.time.format("%d %b")	28 Jan					
d3.time.format("%d-%b-%y")	28-Jan-86					
d3.time.format("%S s")	13 s					
d3.time.format(" <mark>%M m</mark> ")	39 m					

3. 연도별 데이터 시각화

- . 연도별 범죄 데이터 만들기
 - ① 범죄 발생 시간별 데이터 수집
 - ② 지능범죄 데이터를 새로운 데이터로 만듦
 - ③ 범죄 발생시간을 date, 지능범죄수를 close로 바꿈
 - ④ 타임설정 및 축 범위 설정
 - ⑤ 데이터 가져오기
 - ⑥ X축 좌표 만들기