CMPT-439 Numerical Computation

Fall 2020

Solving Systems of Linear Equations Introduction, Cramer's Rule

Linear Algebraic Equations

- An equation of the form ax + by + c = 0 or ax + by = -c is called a linear equation in unknowns x and y
- ax+by+cz=d is a linear equation in three unknowns x, y, and z
- Thus, a linear equation in *n* unknowns is

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 $a_1, \dots, a_n, b \in R \text{ or } a_1, \dots, a_n, b \in C$

- A solution of such an equation consists of numbers $c_1, c_2, c_3, \ldots, c_n$
- If we have to deal with more than one linear equation, a set (system) of linear equations must be solved simultaneously

Systems of Linear Equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots = b_3$$

$$\vdots$$

> In a matrix form:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix} \longrightarrow Ax = b$$

Systems of Linear Equations

- Solve Ax=b, where A is an $n \times n$ matrix and b is an $n \times 1$ column vector
- Can also talk about non-square systems where A is $m \times n$, b is $m \times 1$, and x is $n \times 1$
 - Overdetermined if m>n: "more equations than unknowns"
 - Underdetermined if n>m:
 "more unknowns than equations"

Square Matrices

 A square matrix of order n contains the same number of rows and columns

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

 Square matrices are particularly important when a system of equations to be solved

A Symmetric Matrix

• A square matrix is called a symmetric matrix when the pairs of elements with the symmetric indexes across the diagonal are equal $a_{ij} = a_{ji}; i, j = 1,...,n$

$$\begin{bmatrix} a_{11} & x & y \\ x & a_{22} & z \\ y & z & a_{33} \end{bmatrix}$$

The Transpose of a Matrix

 The transpose of a matrix is a matrix obtained by writing the rows as columns or (which is the same) by writing the columns as rows

$$A = [a_{ij}]; A^T = [a_{ji}]$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}; A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}$$

Diagonal Matrix

 If all elements in a square matrix except those on the main diagonal are zero, the matrix is called a diagonal matrix

$$A = \begin{bmatrix} a_{11} & 0 & \dots & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & \dots & \ddots & \dots & 0 \\ 0 & \dots & 0 & a_{n-1n-1} & 0 \\ 0 & \dots & \dots & 0 & a_{nn} \end{bmatrix}$$

Triangular Matrices

- A square matrix is called triangular if all the elements above or below diagonal are zeros
- Lower-triangular

$$egin{bmatrix} a_{11} & 0 & ... & 0 \ a_{21} & a_{22} & 0... & 0 \ ... & ... & \ddots & 0 \ a_{n1} & a_{n2} & ... & a_{nn} \end{bmatrix}$$

Upper-triangular

Identity Matrix

• If the nonzero elements of a diagonal matrix of order $\it n$ all are equal to 1 , the matrix is called the identity

matrix of order n $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & \ddots & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix}$$

• For any square matrix A of order n $I_n A = AI_n = A$

Transposition Matrix

 If two rows of an identity matrix are interchanged, it is called a transposition matrix

$$I_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{2nd \text{ and } 4th \text{ rows are interchanged}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = P_{24} = P_{42}$$

Transposition Matrix

 If a transposition matrix is multiplied with a square matrix A of the same size, the product will be the A matrix, but with the same two rows interchanged as in the transposition matrix

$$A = \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix}; P_{24}A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 6 & 2 & 13 \\ 3 & 2 & 6 & 8 \\ 0 & 7 & 1 & 9 \\ 4 & 2 & 8 & 11 \end{bmatrix}$$

Transposition Matrix

• If a square matrix A is multiplied with the transposition matrix P of the same size, the product will be the A matrix, but with the columns of A interchanged according to the rows of P interchanged

$$A = \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix}; AP_{24} = \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 13 & 2 & 6 \\ 4 & 11 & 8 & 2 \\ 0 & 9 & 1 & 7 \\ 3 & 8 & 6 & 2 \end{bmatrix}$$

Permutation Matrix

 A permutation matrix is obtained by multiplying several transposition matrices

$$P_{24}P_{12} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \tilde{P}$$

$$A = \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix}; \tilde{P}A = P_{24}(P_{12}A) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & 6 & 2 & 13 \\ 4 & 2 & 8 & 11 \\ 0 & 7 & 1 & 9 \\ 3 & 2 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 8 & 11 \\ 3 & 2 & 6 & 8 \\ 0 & 7 & 1 & 9 \\ 9 & 6 & 2 & 13 \end{bmatrix}$$

Permutation

 $\begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix}; \alpha_i \in \{1, \dots, n\}, i = 1, \dots, n$

• Symbols r and s in a permutation create an inversion if r > s and r precedes s:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & r & \dots & s & \dots & \alpha_n \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$2,1 \text{ and } 4,3 \text{ are inversions}$$

 A permutation is even if it contains the even number of inversions, and it is odd if it contains the odd number of inversions

Permutation and Permutation Matrix

 A permutation corresponding to a permutation matrix determines a new order of rows:

$$P_{24}P_{12} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \tilde{P}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{pmatrix}$$

Determinant

- A determinant of order n corresponding to a given square matrix of order n is a value, which equals to the algebraic sum of n! additive terms such that every term is a product of exactly the n elements from the matrix taken by 1 from every row and every column
- The additive term appears in the sum with the "+" sign if the permutation created from the numbers of rows (the 1st row of the permutation) and columns (the second row of the permutation) is even, and with the "-" sign if this permutation is odd
- det(A) is a common notation for the determinant of A

Determinant

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix};$$

• 2x2 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
; $\det(A) = a_{11}a_{22} - a_{12}a_{21}$ $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

3x3 matrix

0 invers. 1 invers.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix};$$

$$\det(A) = a_{11}a_{22}a_{33} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{13}a_{12}a_{31}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

0 invers. 1 invers. 2 invers. 1 invers. 2 invers. 3 invers.

Singular Matrix

- A matrix is called singular if its determinant equals 0
- A singular matrix is not invertible!
- A matrix is always singular if some row (column) is a linear combination of some other rows (columns)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ ka_{11} & ka_{12} & ka_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ k_{1}a_{11} + k_{2}a_{31} & k_{1}a_{12} + k_{2}a_{32} & k_{1}a_{13} + k_{2}a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 A system of n linear equations in n unknowns has a single non-zero solution only if its matrix is not singular

Singular Systems of Linear **Equations**

Singular systems can be underdetermined:

$$2x_1 + 3x_2 = 5$$
$$4x_1 + 6x_2 = 10$$

(the second equation is coefficient-wise proportional to the first one)

• or inconsistent:

$$2x_1 + 3x_2 = 5$$

$$4x_1 + 6x_2 = 11$$

(the system matrix
$$\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$
 is singular)

Minor

- Let us have an $n \times m$ matrix A. Let us choose in this matrix arbitrarily k rows and k columns $k \le p; p = \min(m, n)$.
- The elements located in the intersection points of these k rows and k columns form a k x k matrix.
- The determinant of this $k \times k$ matrix is called a minor of order k of the matrix A.

Minor

- Any nxm matrix has more than 1 minor of order k<n for any k.
- A rank of an nxm matrix is the highest order of a non-zero minor of this matrix

$$D = \begin{vmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{vmatrix}$$

$$D_{11} = \begin{vmatrix} a_{22} a_{23} \\ a_{32} a_{33} \end{vmatrix} = a_{22} a_{33} - a_{32} a_{23};$$

$$D_{12} = \begin{vmatrix} a_{21} a_{23} \\ a_{31} a_{33} \end{vmatrix} = a_{21} a_{33} - a_{31} a_{23}; D_{13} = \begin{vmatrix} a_{21} a_{22} \\ a_{31} a_{32} \end{vmatrix} = a_{21} a_{32} - a_{31} a_{22}$$

Systems of Linear Equations

- Solve Ax=b, where A is an $n \times n$ matrix and b is an $n \times 1$ column vector
- Usually not a good idea to compute $x=A^{-1}b$
 - Inefficient (because finding an inverse matrix is a special and computationally very costly procedure)
 - Prone to round-off errors
- So some numerical methods are needed...

Systems of Linear Equations

- Solve Ax=b, where A is an $n \times m$ matrix and b is an $m \times 1$ column vector
- A is called a matrix of the system of linear equations
- $\begin{bmatrix} b_1 \\ A & \dots \\ b_m \end{bmatrix}$ is an augmented $n \times (m+1)$ matrix of the system
- Rouché-Kronecker-Capelli Theorem: A system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix

Methods for Solving Systems of Equations

- For small number of equations and unknowns $(n \le 3)$ linear equations can be solved by simple techniques such as "method of elimination by hand"
- On the other hand, Linear Algebra provides the tools to solve such systems of linear equations
- Nowadays, easy access to computers makes the solution of large sets of linear algebraic equations possible and practical

Methods for Solving Systems of Equations

Solving Systems of Equations

 There are many ways to solve a system of linear equations:

Example: Graphical Method

For two equations:

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

• Solve both equations for x_2 :

$$x_2 = -\left(\frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}} \implies x_2 = (\text{slope}_1)x_1 + \text{intercept}_1$$

$$x_2 = -\left(\frac{a_{21}}{a_{22}}\right)x_1 + \frac{b_2}{a_{22}} \implies x_2 = (\text{slope}_2)x_1 + \text{intercept}_2$$

- Plot x_2 vs. x_1 for both equations.
- The intersection of the lines present the solution

Graphical Method

No solution

Infinite solutions

Ill-conditioned (Slopes are too close)

Trivial Elimination Method

For two equations:

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

• Let us solve both equations for x_2 :

Trivial Elimination Method

From the 1st eq.
$$x_2 = -\left(\frac{a_{11}}{a_{12}}\right) x_1 + \frac{b_1}{a_{12}} = -\left(\frac{a_{21}}{a_{22}}\right) x_1 + \frac{b_2}{a_{22}} \quad \text{From the 2}^{\text{nd}} \quad \text{eq.}$$

$$\Rightarrow \left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right) x_1 + \frac{b_1}{a_{12}} - \frac{b_2}{a_{22}} = 0$$

$$\Rightarrow x_1 = -\frac{\left(\frac{b_1}{a_{12}} - \frac{b_2}{a_{22}}\right)}{\left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right)} = \frac{\left(\frac{b_2}{a_{22}} - \frac{b_1}{a_{12}}\right)}{\left(\frac{a_{21}}{a_{22}} - \frac{a_{11}}{a_{12}}\right)}$$

 x_2 can now easily be found from either of the two equations

Cramer's Rule

- Cramer's rule expresses the solution of a system Ax=b (where A is an $n\times n$ matrix) of linear equations in terms of ratios of determinants
- The unknown x_i is equal to the ratio of the determinant created from the one of the matrix A by replacement of its ith column with a column of "free" coefficients to the determinant of the matrix A.

Cramer's Rule

• For example: Ax = b

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}; x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}; D = |A| = \det(A)$$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{D}$$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{D} \qquad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}}{D} \qquad x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{D}$$

$$x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{D}$$

Cramer's Rule Example

Find x_2 in the following system of equations:

$$0.3x_1 + 0.52x_2 + x_3 = -0.01$$
$$0.5x_1 + x_2 + 1.9x_3 = 0.67$$
$$0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44$$

Find the determinant D

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix} = 0.3 \begin{vmatrix} 1 & 1.9 \\ 0.3 & 0.5 \end{vmatrix} - 0.52 \begin{vmatrix} 0.5 & 1.9 \\ 0.1 & 0.5 \end{vmatrix} + 1 \begin{vmatrix} 0.5 & 1 \\ 0.1 & 0.4 \end{vmatrix} = -0.0022$$

Find determinant D_2 by replacing D's second column with b

$$D_2 = \begin{vmatrix} 0.3 & -0.01 & 1 \\ 0.5 & 0.67 & 1.9 \\ 0.1 & -0.44 & 0.5 \end{vmatrix} = 0.3 \begin{vmatrix} 0.67 & 1.9 \\ -0.44 & 0.5 \end{vmatrix} - 0.01 \begin{vmatrix} 0.5 & 1.9 \\ 0.1 & 0.5 \end{vmatrix} + 1 \begin{vmatrix} 0.5 & 0.67 \\ 0.1 & -0.44 \end{vmatrix} = -0.0649$$

Divide

$$x_2 = \frac{D_2}{D} = \frac{0.0649}{-0.0022} = -29.5$$

Cramer's Rule

- Advantage of the Cramer's rule is its formal algebraic simplicity
- Disadvantage of the Cramer's rule is a computational complexity of determinants computation for large values of n