Perpendiculars and Tangents

We say that two lines are *perpendicular* if they form a right angle.

Definition 1 (Foot). Let ℓ be a line and p a point not on ℓ in a plane geometry. We say that a point $f \in \ell$ is a foot of p on ℓ if ℓ and \overrightarrow{FP} are perpendicular.

Construction 1 (Foot of a point). Let ℓ be a line and p a point not on ℓ in a plane geometry. Then p has a unique foot on ℓ .

Proof. To see existence, let x and y be distinct points on ℓ . Note that $\mathcal{C}_x(p) \cap \mathcal{C}_y(p)$ is not empty, and by Circle Cut Transfer there is a second point o in the intersection of these circles which is on the opposite side of ℓ . By the Plane Separation property, ℓ and \overline{op} meet at a unique point f. Now $\triangle oxy \equiv \triangle pxy$ by SSS, so that $\angle pxf \equiv \angle oxf$. Then $\triangle pxf \equiv \triangle oxf$ by SAS. Then $\angle pfx \equiv \angle ofx$, so that ℓ and \overrightarrow{op} meet at a right angle as needed.

To see uniqueness, note that if p has two distinct feet f_1 and f_2 on ℓ then p, f_1 , and f_2 form a triangle with two internal right angles – a contradiction. \square

Construction 2 (Perpendicular at a point). Let ℓ be a line and $p \in \ell$ a point in a plane geometry. There exists a unique line t containing p which is perpendicular to ℓ .

Proof. Let x be a point on ℓ different from p, and copy \overline{px} to the opposite side of p at a point y by Circle Separation. Note that p is the midpoint of \overline{xy} . Construct a point z such that $\triangle xyz$ is equilateral. Now $\triangle zxp \equiv \triangle zyp$ by SSS, so that $\angle zpx \equiv \angle zpy$, and thus \overleftarrow{pz} is perpendicular to ℓ .

Uniqueness follows from the uniqueness of angles on a half-plane. \Box

Definition 2 (Perpendicular Bisector). If x and y are two points, then the (unique) line perpendicular to \overrightarrow{xy} at the midpoint of \overline{xy} is called the perpendicular bisector of \overline{xy} .

Intersections of Lines and Circles

Proposition 3. In a plane geometry, a line and a circle can have at most two points in common.

Proof. Let ℓ be a line and $\mathcal{C}_o(a)$ a circle which have at least three points in common; say x, y, and z. Suppose WLOG that [xyz]. Note that o cannot also be on ℓ , as in this case z cannot be distinct from both x and y by the uniqueness of congruent segments on rays. Now $\angle oyx \equiv \angle oxy$, $\angle oyz \equiv \angle ozy$, and $\angle oxz \equiv \angle ozx$ by Pons Asinorum. In particular, $\angle oyx$ is right, so that $\triangle oxy$ has two right interior angles – a contradiction.

Definition 3 (Tangent). Let ℓ be a line and C a circle in a plane geometry. We say that ℓ is tangent to C if ℓ and C have exactly one point in common. Suppose this point is t; in this case we say that ℓ is tangent to C at t.

Proposition 4. Let ℓ be a line and C a	circle with center o in a plane geometry.
Then ℓ is tangent to C if and only if o C .	is not on ℓ and the foot of o on ℓ is on
Proof.	