Unsupervised Simulation under Bad distribution generation

Jiaxin Hu

8.29.2019

According to the *Paper Sketch of AISTATS*, when we choose bad distribution to generate the core tensor, the result would not be such good. In terms of MSE, we assume that constrains would improve the performance.

I ran simulations when the rank of core tensor is (5,5,5) and the dimension of the tensor ranges from 20 to 70. Apply three constrains under unsupervised case: no constrain, vanilla, conjugate(penalty likelihood) constrain. The distributions of the core tensor entries are : N(0,1), N(10,1), U(0,1), U(0,10).

1 MSE results

1.1 N(0,1)

Unsupervised rank 5, N(0,1)

Figure 1: The core tensor entries are generated from N(0,1)

Through Figure 1, under the case of N(0,1) the adding constrains, especially conjugate(penalty likelihood) constrain can improve the performance of the MSE.

1.2 N(10,1)

As there are only partial result under the case N(10, 1), U(0, 10), the Figure 2,4 only show result when dimension is 20,40,60.

Unsupervised rank 5, N(10,1)

Figure 2: The core tensor entries are generated from N(10,1)

1.3 U(0,1)

Through Figure 3, under the case U(0,1), adding conjugate and vanilla constrain can slightly improve the performance.

Unsupervised rank 5, U(0,1)

Figure 3: The core tensor entries are generated from U(0,1)

$1.4 \quad U(0,10)$

Unsupervised rank 5, U(0,10)

Figure 4: The core tensor entries are generated from U(0, 10)

2 True U vs Est U; True G vs Est G

This part shows the scatter plot of $True\ U\ vs\ Est\ U$ and $True\ G\ vs\ Est\ G$, which can somehow display the influence from the constrains.

In this section, the setting is: rank of core tensor is 5, dimension of the tensor is 40.

2.1 True U vs Est U

Figure 5: True U(x-axis) vs Est U(y-axis) when core tensor entries from N(0,1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 6: True U(x-axis) vs Est U(y-axis) when core tensor entries from N(10, 1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 7: True U(x-axis) vs Est U(y-axis) when core tensor entries from U(0,1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 8: True U(x-axis) vs Est U(y-axis) when core tensor entries from U(0,10); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

2.2 True G vs Est G

Figure 9: True G(x-axis) vs Est G(y-axis) when core tensor entries from N(0,1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 10: True G(x-axis) vs Est G(y-axis) when core tensor entries from N(10,1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 11: True G(x-axis) vs Est G(y-axis) when core tensor entries from U(0,1); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

Figure 12: True G(x-axis) vs Est G(y-axis) when core tensor entries from U(0,10); the magnitude of axis in three graphs are the same; from left to the right, the graph comes from no constrain/vanilla constrain/conjugate constrain case.

2.3 Analysis

In general, conjugate constrain have a relatively strong effect to the iteration process. Vanilla give a similar or slightly better performance than no constrains.

When the entries of U focus around the 0, like N(0,1), U(0,1), it is difficult to estimate the true U and the pattern of true U vs U est would naturally be a "star shape". Under these cases, conjugate constrain can significantly decrease the magnitude of the entries of U and G (see in *Figure 5,7,9,11*), which leads to a better MSE performance. However, the conjugate constrain can not change the shape of pattern – still a "star" shape.

When the entries of U more scattered, like N(10,1), U(0,10), the algorithm gives a fairly good result even without the constrain. And vanilla constrain doesn't effect much. However, conjugate constrain would shrink the U entries too much (see Figure 6,8). In the contrary, conjugate constrain gives the similar result on estimate G (see Figure 10,12) and give a similar MSE performance with other two cases when dim = 40.