

概述

TP4054是一个完善的单片锂离子电池恒流/恒压线形电源管理芯片。它薄的尺寸和小的外包装使它便于便携应用。 更值得一提的是,TP4054专门设计适用于USB的供电规格。得益于内部的MOSFET结构,在应用上不需要外部电阻 和阻塞二极管。在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。

充电电压被限定在4.2V,充电电流通过外部电阻调节。在达到目标充电电压后,当充电电流降低到设定值的1/10 时, TP4054 就会自动结束充电过程。当输入端(插头或USB 提供电源)拔掉后,TP4054自动进入低电流状态,电池漏 电流将降到2μA以下TP4054 还可被设置于停止工作状态,使电源供电电流降到25μA。

TP4054确保电池接反时芯片自动进入保护状态,确保IC不被击穿导致电池自放电引起事故。 其余特性包括:充电电流监测,输入低电压闭锁,自动重新充电和充电已满及开始充电的标志。

特点

- ◆可编程使充电电流可达500mA.
- ◆不需要MOSFET, 传感电阻和阻塞二极管
- ◆小的尺寸实现对锂离子电池的完全线形充电管理
- ◆恒电流/恒电压运行和热度调节使得电池管理效力 最高,没有热度过高的危险
- ◆从USB 接口管理单片锂离子电池
- ◆预设充电电压为4.2V±1%
- ◆充电电流输出监控
- ◆充电状态指示标志
- ◆1/10充电电流终止
- ◆停止工作时提供25uA 电流
- ◆2.9V涓流充电阈值电压
- ◆软启动限制浪涌电流电流
- ◆电池反接保护

打标说明及管脚分布

应用

- ◆ 手机, PDA, MP3
- ◆ 蓝牙应用

TP4054的封装SOT-23-5L。

管脚号	管脚名	描述
1	CHRG	漏极开路充电状态输出。
2	GND	接地端 。
3	BAT	充电电流输出端
4	VCC	提供正电压输入
5	PROG	充电电流编程,充电电流监控 和关闭端

引脚功能

<u>CHRG(引脚1)</u>。漏极开路充电状态输出。当充电时,CHRG端口被一个内置的N沟道MOSFET置于低电位。当充电完成时,CHRG呈现高阻态。当TP4054检测到低电锁定条件 ,CHRG呈现高阻态。当在BAT引脚和地之间**接**一1µF的电容,就可以完成电池是否接好的指示,当没有电池时,LED灯会快速闪烁。

GND (引脚2): 接地端。

<u>BAT(引脚3)</u>充电电流输出端。给电池提供充电电流并控制浮动电压最终达到4.2V。电池接反时,内部保护电路保护VBAT的ESD二极管不被烧坏,同时GND与BAT之间形成大约0.7mA电流。

VCC (引脚4): 提供正电压输入。为充电器供电。VCC可以为4.25V到6.5V并且必须有至少1μF的旁路电容。如果BAT引脚端电压与VCC的压差降到30mV以内时,TP4054进入停工状态,并使BAT电流降到2μA以下。

PROG (引脚5): 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为1%的接到地的电阻控制。在恒定充电电流状态时,此端口提供1V的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流: IBAT = (VPROG/RPROG)×1000。

PROG端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的2μA电流源拉高PROG端口电压。当达到1.21V的极限停工电压值时,充当器进入停止工作状态,充电结束,输入电流降至25μA。此端口夹断电压大约2.4V。给此端口提供超过夹断电压的电压,将获得1.5 mA的高电流。再使PROG和地端结合将使充电器回到正常状态。

最大额定值 (注释1)

符号	符号说明	范围	单位
Vcc	输入电压	Vss-0.3~Vss+7	V
V_{PROG}	PROG端电压	Vss-0.3~Vss+0.3	V
V _{BAT}	BAT端电压	Vss-0.3~7	V
V _{CHRG}	CHRG端电压	Vss-0.3~Vss+10	V
P _{DMAX}	功耗	250	mW
I _{BAT}	BAT端电流	500	mA
I _{PROG}	PROG端电流	800	μΑ
V _{ESD}	人体模式ESD能力	2	kV
Тора	工作外围温度	-40~+85	$^{\circ}$
T _{STR}	存储温度	-65~+125	${\mathbb C}$

注释 1: 超出最大范围器件可能损毁。推荐工作范围内器件可以工作,但不保证其特性。电气特性表明的直流和 交流特性是在特定条件下测得,其特性可以保证。此特性假定器件在推荐工作范围内工作。未示出特性不 保证其性能。典型值是最佳性能点。

典型应用电路

基本电路

典型电路

USB/适配器电源锂充电器

功能齐全的单锂电池充电器

带反向输入保护的锂充电器

结构框图

电气特性

符号	符号说明	条件	最小值	典型值	最大值	单位
Vcc	输入电压		4.2		6.5	V
Icc		充电模式(R _{PROG} =10KΩ)		300	2000	μA
	 输入电流	待机模式		200	500	μA
100	相グくもが	关断模式(R PROG不接,		25	50	πΔ
		V _{CC} <v<sub>BAT或V_{CC}<v<sub>UV)</v<sub></v<sub>				
V _{FLOAT}	输出控制电压	0℃ <ta<85℃,ibat=40ma< td=""><td>4.158</td><td>4.2</td><td>4.242</td><td></td></ta<85℃,ibat=40ma<>	4.158	4.2	4.242	
		R _{PROG} =10K,电流模式	93	100	107	mA
		R _{PROG} =2K,电流模式	465	500	535	mA
I _{BAT}	BAT端电流	V _{BAT} =4.2V, 待机模式	0	-2.5	-6	μA μA V mA
IBAT		关断模式		1	2	<u> </u>
		V _{BAT} = - 4V, 电池反接模式		0.7		
		V _{CC} =0V,睡眠模式		1	2	<u> </u>
I _{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL, R_{PROG}=2K</v<sub>	40	50	60	mA
V_{TRIKL}	涓流充电极限电压	R _{PROG} =10K,V _{BAT} 上升	2.8	2.9	3.0	V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =10K	60	80	110	mV
V_{UV}	电源低电闭锁阈值电压	Vcc从低升高	3.7	3.8	3.93	V
V _{UVHYS}	电源低电阈值迟滞电压		150	200	300	mV
\/	 手动关闭阈值电压	PROG脚上升	1.15	1.21	1.30	
V _{MSD}	于幼人的國臣屯压	PROG脚上升	0.9	1.0	1.1	V
Vasd Vcc-V _{BAT} 停止工	│ │Vcc-VBAT停止工作阈值电压	Vcc从低到高	70	100	140	mV
	VCC-VBAITT工厂图阻地压	Vcc从高到低	5	30	50	mV
I _{TERM} (C/10终端阈值电流	R _{PROG} =10K	0.085	0.10	0.115	mA/
	0/10炎姍阈值电弧	R _{PROG} =2K	0.085	0.10	0.115	mA
V_{PROG}	PROG端电压	R _{PROG} =10K,电流模式	0.93	1.0	1.07	V
V_{CHRG}	CHRG端最小输出电压	I _{CHRG} =5mA		0.35	0.6	V
Δ V _{RECG}	电池再充电迟滞电压	V _{FLOAT} -V _{RECHRG}		100	200	mV
trechg	充电比较器滤波时间	V _{BAT} 从高到低	0.8	1.8	4	mS
t _{TERM}	终止比较器滤波时间	IBAT跌至ICHG / 10以下	0.63	1.4	3	mS
I _{PROG}	PROG脚上拉电流			2		μA

TP4054

微型线性电池管理芯片

封装说明: SOT-23-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A 1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950 (BSC)		0.037 (BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
r	0°	8°	0°	8°