

WHAT IS CLAIMED IS:

1 1. A method of acquiring timing associated with an input data stream,
2 comprising:
3 detecting whether transitions of the input data stream fall into a predetermined
4 portion of a sample clock period of a sample clock utilized to sample
5 the input data stream; and
6 evaluating whether a phase-locked loop (PLL) has acquired the timing of the
7 input data stream according to occurrence of transitions of the input
8 data stream in the predetermined portion of the sample clock period.

1 2. The method as recited in claim 1 wherein the evaluating further
2 comprises determining over a plurality of time periods, each of the time periods
3 including an increasing number of evaluation intervals, whether the PLL is locked to
4 the timing of the input data stream according to a number of evaluation intervals
5 having one or more transitions in the predetermined portion of the sample clock
6 period.

1 3. The method as recited in claim 1, wherein the sample clock is a clock
2 recovered from the input data stream.

1 4. The method as recited in claim 1, wherein the evaluating includes
2 counting a number of evaluation intervals that have at least one transition in the
3 predetermined portion of the clock period, generating a count indicative thereof and
4 determining if lock is achieved according to the count.

1 5. The method as recited in claim 4 wherein the evaluation intervals are at
2 least as long as a minimum period of frequency offset.

1 6. The method as recited in claim 4, further comprising comparing the
2 count to a threshold count to determine if lock is achieved.

1 7. The method as recited in claim 4, further comprising adjusting an
2 output frequency of a variable frequency oscillator circuit if it is determined that lock
3 is not achieved.

1 8. The method as recited in claim 7, wherein the output frequency is
2 adjusted by changing a variable impedance associated with the oscillator circuit until
3 lock is achieved.

1 9. The method as recited in claim 8 wherein the variable impedance is
2 changed by adjusting at least a portion of the variable impedance in increasing
3 increments around an initial impedance value.

1 10. The method as recited in claim 9 further comprising sweeping another
2 portion of the variable impedance linearly for each impedance setting resulting from
3 adjusting at least a portion of the variable impedance in increasing increments around
4 the initial impedance value.

1 11. The method as recited in claim 8, wherein the variable impedance is a
2 capacitance.

1 12. The method as recited in claim 11 wherein the oscillator circuit is a
2 tank circuit including an inductive element.

1 13. The method as recited in claim 7 wherein the oscillator circuit is a ring
2 oscillator.

1 14. The method as recited in claim 8 wherein the oscillator circuit is a
2 voltage controlled oscillator (VCO).

1 15. The method as recited in claim 1 wherein the predetermined portion of
2 the clock period is adjacent to a clock edge used to sample the input data stream.

1 16. An integrated circuit comprising:
2 means for detecting whether transitions of an input data stream fall into a
3 predetermined portion of a clock period of a clock utilized to sample
4 the input data stream; and
5 means for evaluating whether a phase-locked loop (PLL) has recovered a
6 timing associated with the input data stream according to occurrence of
7 transitions in the predetermined portion of the clock.

1 17. The integrated circuit as recited in claim 16 means for evaluating
2 includes means for counting a number of evaluation intervals that have one or more
3 transitions that fall into the predetermined portion of the clock period, generating a
4 count thereof and determining if lock is achieved according to the count.

1 18. The integrated circuit as recited in claim 16, further comprising means
2 for changing an output frequency of a variable oscillator circuit if it is determined that
3 lock is not achieved.

1 19. A method of acquiring a clock embedded in an input data stream,
2 comprising varying an output of a variable oscillator until transitions of the input data
3 stream occurring in a predefined phase zone of a sample clock sampling the input data
4 stream occur below an acceptable rate.

1 20. The method as recited in claim 19 wherein the acceptable rate is
2 determined according to a number of evaluation intervals having one or more
3 transitions occurring in the predefined phase zone.

1 21. The method as recited in claim 19 wherein the output of the variable
2 oscillator is varied by varying an impedance of the variable oscillator.

1 22. The method as recited in claim 19 wherein varying the output of the
2 variable oscillator comprises varying at least one of a control voltage and a control
3 current supplied to the variable oscillator.

1 23. An integrated circuit for receiving an input data stream and locking to
2 a clock embedded in the input data stream using a phase-locked loop, the integrated
3 circuit comprising:

4 a phase zone detect circuit coupled to determine if a transition of the input data
5 stream occurs in a predetermined phase zone of a sample clock used to
6 sample the input data stream;
7 a counter circuit coupled to the phase zone detect circuit to supply an
8 indication of a number of evaluation intervals in which at least one bit
9 error occurs;
10 a compare circuit coupled to compare the indication and a threshold value and
11 to output a compare indication, thereby indicating if the phase-locked
12 loop has locked to the input data stream;
13 a variable oscillator circuit forming part of the phase-locked loop; and
14 a control circuit, responsive to the indication that lock is not achieved, to vary
15 the output of the variable oscillator circuit.

1 24. The integrated circuit as recited in claim 23 wherein:

2 the phase zone detect circuit includes a first data path and a second data path
3 coupled to receive the input data stream, one of the first and second
4 data paths being delayed with respect to the other, thereby defining the
5 phase zone, and wherein an output signal supplied from the first and
6 second data paths are coupled to a logic circuit to be logically
7 compared.

1 25. The integrated circuit as recited in claim 23 wherein the first data path
2 is a phase detector circuit coupled to provide an indication of phase error between a
3 recovered clock being used to sample the input data stream and the input data stream.

1 26. The integrated circuit as recited in claim 24 wherein the one of the first
2 and second data paths is delayed by delaying one of the clock and the data of the input
3 data stream supplied to the one of the first and second data paths.

1 27. The integrated circuit as recited in claim 23 wherein the second data
2 path includes one or more selector circuits to select from a plurality of clock
3 frequencies.

1 28. The integrated circuit as recited in claim 24 wherein the first and
2 second data paths are logically compared in an exclusive OR circuit.

1 29. The integrated circuit as recited in claim 23 further comprising:
2 a variable impedance circuit forming part of the variable oscillator circuit; and
3 wherein the control circuit is responsive to the indication that lock is not
4 achieved, to vary the variable impedance circuit to thereby adjust the
5 output of the variable oscillator circuit.

1 30. The integrated circuit as recited in claim 29 wherein the control circuit
2 adjusts the impedance by changing the impedance to successively above and then
3 below an initial value to provide a gradually increasing swing around an initial
4 impedance value.

1 31. The integrated circuit as recited in claim 23 wherein the phase-locked
2 loop is determined to be locked to the input data stream if the indication from the
3 count circuit indicates that the number of evaluation intervals in which at least one
4 transition in a predetermined phase zone occurs is below a predetermined threshold
5 value.

1 32. The integrated circuit as recited in claim 29, wherein the variable
2 impedance is a capacitance.

1 33. The integrated circuit as recited in claim 23 wherein the oscillator
2 circuit is a tank circuit including an inductive element.

1 34. The integrated circuit as recited in claim 23 wherein the oscillator
2 circuit is ring oscillator.

105290-333360

1 35. The integrated circuit as recited in claim 23 wherein the oscillator
2 circuit is a voltage controlled oscillator (VCO).

00888653-062501