Curso de Tecnologia em Sistemas de Computação

Disciplina : Álgebra Linear

AD1 - Segundo Semestre de 2017

Professores: Márcia Fampa & Mauro Rincon

- 1.(2.0) Sejam u = (1, 0, -4), v = (1, 1, 0) e w = (-1, -2, -4) vetores do \mathbb{R}^3 .
 - (a) Determine a projeção ortogonal de u sobre v $(Proj_v u)$
 - (b) Determine S o subespaço vetorial do \mathbb{R}^3 gerado por u e v.
 - (c) Determine uma base ortogonal para S
 - (d) Faça um esboço do subespaço S.
- 2.(2.0) Seja S o subespaço de $P_2 = \{at^2 + bt + c; a, b, c \in \mathbb{R}\}$ gerado pelos vetores $v_1 = t^2 + 1, v_2 = t + 2$ e $v_3 = t^2 3t$, determinar:
 - (a) Uma base de S e dim(S)
 - (b) Uma base para P_2 contendo os vetores v_1 e v_2 .
 - (c) Mostre que o vetor $p_2(t) = t^2 2t + 1$ pode ser escrito como combinação linear v_1 e v_2 .
- 3.(2.0) Seja $S = \{(x, y, z, w) \in \mathbb{R}^4 / x + 2w = 0 \text{ e } y 2z = 0\}$. Verifique se S é uma subespaço vetorial do \mathbb{R}^4 , e em caso afirmativo determine uma base.
- 4.(2.0) Considere as matrizes:

$$A = \begin{bmatrix} 1 & 9 \\ -2 & 2 \\ -2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -4 & 2 \\ -3 & 4 & 1 \end{bmatrix}$$

Determine, se possível, as matrizes: $C = A^T - 2B$, C = A.B, C = A.A e C = B.A, onde A^T é matriz transposta.

5.(2.0) Uma indústria produz três produtos, X, Y e Z, utilizando dois tipos de insumo, A e B. Para a manufatura de cada kg de X são utilizados 2 gramas do insumo A e 1 grama do insumo B; para cada kg de Y, 1 grama de insumo A e 3 gramas de insumo B e, para cada kg de Z, 3 gramas de A e 5 gramas de B. O preço de venda do kg de cada um dos produtos X, Y e Z é R\$ 3,00, R\$ 2,00 e R\$ 4,00, respectivamente. Com a venda de toda a produção de X, Y e Z manufaturada com 1,9 kg de A e 2,4 kg de B, essa indústria arrecadou R\$ 2.900,00. Determine quantos kg de cada um dos produtos X, Y e Z foram vendidos.