

WE CLAIM:

- 1 1. A processor comprising:
 - 2 Intel Architecture-32 (IA-32) instruction set decoding logic; and
 - 3 an expanded logical register set, coupled to said IA-32 instruction set, said
 - 4 expanded logical register set including more than eight logical registers of a first type.
- 1 2. The processor of claim 1, wherein said expanded logical register set includes up
2 to sixteen logical registers of a first type.
- 1 3. The processor of claim 1, wherein said expanded logical register set includes up
2 to thirty-two logical registers of a first type.
- 1 4. The processor of claim 1, wherein the more than eight logical registers of a first
2 type include more than eight logical general integer registers.
- 1 5. The processor of claim 1, wherein the more than eight logical registers of a first
2 type include more than eight logical MMX® technology registers.
- 1 6. The processor of claim 1, wherein the more than eight logical registers of a first
2 type include more than eight logical SIMD (single instruction multiple data) floating-
3 point registers.
- 1 7. The processor of claim 1, further comprising:
 - 2 expanded register set decoding logic, coupled to said IA-32 instruction set
 - 3 decoding logic, to determine that an instruction includes an at least four-bit register
 - 4 identifier, the four-bit register identifier to specify one logical register of said expanded
 - 5 logical register set.

- 1 8. The processor of claim 7, wherein said expanded register set decoding logic is
 - 2 to decode an at least four-bit register identifier.
- 1 9. The processor of claim 8, wherein said expanded register set decoding logic is
 - 2 to decode the at least four-bit register identifier based at least in part on at least four bits
 - 3 of a scale index base (SIB) byte of the instruction.
- 1 10. The processor of claim 9, wherein said expanded register set decoding logic is
 - 2 to decode the at least four bit register identifier based at least in part on at least one bit
 - 3 of a scale field of the scale index base (SIB) byte of the instruction.
- 1 11. The processor of claim 7, wherein said expanded register set decoding logic is
 - 2 to decode an at least five bit register identifier.
- 1 12. The processor of claim 11, said expanded register set decoding logic is to
 - 2 decode the at least five bit register identifier based at least in part on five bits of a scale
 - 3 index base (SIB) byte of the instruction.
- 1 13. The processor of claim 12, wherein said expanded register set decoding logic is
 - 2 to decode the at least five-bit register identifier based at least in part on two bits of a
 - 3 scale field of the scale index base (SIB) byte of the instruction.
- 1 14. A processor comprising:
 - 2 decoder logic to decode Intel Architecture-32 (IA-32) instructions; and
 - 3 means for decoding an instruction that specifies a logical register of an
 - 4 expanded logical register set, the expanded logical register set including more than
 - 5 eight logical registers.

1 15. The processor of claim 14, wherein said means for decoding includes means for
2 decoding an at least four-bit register identifier within the instruction.

1 16. The processor of claim 14, wherein said means for decoding includes means for
2 decoding the at least four-bit register identifier within the instruction based on at least
3 one bit within a scale field of a scale index base (SIB) byte of the instruction.

1 17. A method to access an expanded logical register set of a processor, the method
2 comprising:

3 determining that a mod field of a ModR/M byte of an Intel Architecture-32 (IA-
4 32) instruction contains a value selected from the values of 01B, 10B, and 00B;

5 determining that an r/m field of the ModR/M byte of the IA-32 instruction
6 contains a value of 100B;

7 determining that an index field of a scale index base (SIB) byte contains a value
8 of 100B; and

9 decoding an at least four-bit logical register identifier.

1 18. The method of claim 17, wherein decoding an at least four-bit logical register
2 identifier is based at least in part on at least one bit of a scale field of a scale index base
3 (SIB) byte of the IA-32 instruction.

1 19. The method of claim 17, wherein decoding an at least four-bit logical register
2 identifier includes decoding an at least five-bit logical register identifier.

1 20. The method of claim 19, wherein decoding an at least five-bit logical register
2 identifier is based at least in part on two bits of a scale field of a scale index base (SIB)
3 byte of the IA-32 instruction.

1 21. A processor comprising:
2 a logical register set including more than eight logical registers of a first type;
3 instruction decoding logic coupled to the logical register set, said instruction
4 decoding logic including:
5 a first comparator to determine that a mod field comparator to a
6 ModR/M byte of an Intel Architecture-32 (IA-32) instruction contains a value
7 selected from the values of 01B, 10B, and 00B;
8 a second comparator to determine that an r/m field of the ModR/M byte
9 of the IA-32 instruction contains a value of 100B;
10 a third comparator to determine that an index field of a scale index base
11 (SIB) byte contains a value of 100B; and
12 a decoder to decode an at least four-bit logical register identifier.

1 22. The processor of claim 21, wherein the decoder to decode an at least four-bit
2 logical register identifier is to decode the at least four-bit logical register identifier
3 based at least in part on at least one bit of a scale field of a scale index base (SIB) byte
4 of the IA-32 instruction.