1

Decision Tree

Sang Yup Lee

- 기본 원리
 - DT는 dataset에 있는 관측치들을 독립변수 (feature)의 값에 따라서 종속변수의 값이 유사한 여러 개의 그룹으로 분리하고, 각 그룹에 속한 관측치들의 종속변수 값을 동일한 값으로 예측하는 알고리즘
 - 회귀문제와 분류문제 모두 적용 가능
 - 회귀문제에 적용되는 DT: Decision Tree Regressor
 - 분류문제에 적용되는 DT: Decision Tree Classifier
 - DT는 독립변수의 값을 이용하여 관측치들을 서로 다른 그룹으로 분리하기 위해서 Tree 형태의 분리 과정을 사용

Example with two IVs (X1, X2)

X2

X1

Example (cont'd) – step 1

X2

10

X1

Example (cont'd) – step 2

5/9/22

Example (cont'd)

- 종속변수 값의 예측
 - 각 그룹에 속한 관측치들은 동일한 예측치를 갖는다.
 - Group k에 속한 관측치들의 종속변수 값 예측치
 - 회귀문제
 - 평균값 사용
 - $\hat{y}_k = \frac{1}{m_k} \sum_{i \in Group_k} y_i$, where $m_k = \#$ of points in group k
 - 분류문제
 - Mode 값 (최빈값) 사용
 - 즉, 해당 그룹에서 가장 많은 관측치가 갖는 종속변수 값을 예측치로 사용

- 종속변수 값의 예측 (cont'd)
 - 특정 그룹에 대해서
 - 회귀문제
 - 10개의 관측치들의 종속변수 값 => (2, 3, 4, 4, 3, 6, 4, 10, 2, 12)
 - 종속변수의 예측치는 (2+ 3+ 4+ 4+ 3+ 6+ 4+ 10+ 2+ 12)/10 = 5
 - 분류문제
 - 종속변수가 취할 수 있는 값 => 0, 1, 2
 - 10개의 관측치들의 종속변수 값 => (2, 0, 1, 1, 1, 2, 1, 1, 0, 1)
 - 종속변수의 예측치 => 최빈값

- How to split data into two groups?
 - 즉, 각 decision node에서 어떠한 변수의 어떠한 값(cutpoint value)으로 데이터를 split 할 것인가?
 - split되었을 때 발생하는 에러 정도를 최소화하게끔 split
 - 회귀문제와 분류문제에서의 에러 정도를 계산하는 방법이 상이

- 회귀 문제
 - 각 그룹 (e.g., Group j)의 RSS
 - $\sum_{i \in G_j} (y_i \hat{y}_{G_j})^2$
 - \hat{y}_{G_j} : Group j에 대한 종속변수 예측치
 - 노드를 split해서 두개의 그룹이 발생하는 경우, 각 그룹 RSS 합을 minimize 하는 변수 j와 해당 변수의 값 (s)을 찾아야 함, 이를 기준으로 split
 - $\stackrel{\triangle}{\neg}$, $\min_{j,s}(RSS_1 + RSS_2)$

- 독립변수의 어떠한 값들을 try 하는가?
 - 데이터에 존재하는 변수의 실제값들 사용
 - 구체적으로 어떠한 값을 사용하는지는 변수의 유형 (연속, 범주형 범수)에 따라 구분
 - 연속변수
 - 변수의 값을 크기에 따라 정렬
 - 연속된 두개의 값의 평균값을 사용

Weight		Weight	
60		80	→ 72
64		64	7 /2
55	정렬	60	:
80		55	

■ 범주형 변수: 있는 그대로의 값을 사용

- 분류 문제
 - 분류 문제의 경우, 각 그룹에서의 오차 정도를 측정하기 위해 다음 두가지 값을 사용
 - Gini index
 - $G = \sum_{k=1}^{K} \hat{p}_{j,k} (1 \hat{p}_{j,k})$
 - 종속변수가 취할 수 있는 값 => 1, ..., K
 - $\hat{p}_{j,k}$ = Group j에서 class k의 비중 = $\frac{m_k}{m_j}$

Example) Group 1 (0,0,0, 1,1,1, 2,2,2,2) $\hat{p}_{1,0} = ?$

- 분류 문제
 - Entropy
 - $E = -\sum_{k=1}^{K} \hat{p}_{j,k} \log \hat{p}_{j,k}$
 - $\hat{p}_{j,k}$ = Group j에서 class k의 비중 = $\frac{m_k}{mj}$
 - Group j에 존재하는 종속변수의 불확실성을 의미
 - 종속변수의 값이 동일할수록 불확실성 감소 => 즉 entropy 값 감소
 - 두 값 모두 impurity (or heterogeneity / uncertainty) 정도를 의미 (즉, 각 그룹에서 동일한 class의 points가 많을 수록 값이 작아짐)
 - 모든 dp가 동일한 값을 갖을 경우 제일 작고
 - 각 값을 갖는 dp의 수가 동일한 경우 제일 크다.

- 분류 문제
 - 각 노드에서 다음 값을 minimize하는 변수와 해당 변수의 값을 찾아야 함
 - Gini₁ + Gini₂ 또는
 - $E_1 + E_2$
 - 각 그룹의 data points 수에 따라 weight를 주기도 함 (즉, weighted average 사용)

- 분류문제
 - DT_clf_iris.ipynb
 - petal length and width 만 사용
- In Python, DecisionTreeClassifier 사용
 - https://scikitlearn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
 - 予요 hyperparameters
 - criterion: gini or entropy
 - max_depth: maximum depth of the tree
 - min_samples_split: minimum number of data points a decision node must have before it can be split
 - min_samples_leaf: minimum number of data points a leaf node must have
 - max_leaf_nodes: maximum number of leaf nodes

Stopping criterion

Hyperparameter가 많아서, Gridsearch 방법 사용 권고

- 회귀문제
 - DT_reg_hitters.ipynb

- Another example
 - See "heart_disease_example.ipynb"
 - Note the feature importance part