The International College of Economics and Finance Econometrics - 2020. Mid-term exam, October 22

Part 1. (30 minutes). In each of 12 multiple choice tests indicate the correct answer.

- 1. In the Simple Linear Regression Model $Y_i = \beta_1 + \beta_2 X_i + u_i$ the population covariance of the OLS estimators of the intercept and slope coefficient $cov(b_1, b_2)$ is
- 1) positive if the mean value of X is positive;
- (2) negative if the mean value of X is positive;
 - 3) may be positive or negative if the mean value of X is positive;
 - 4) may be positive or negative if the mean value of X is negative;
 - 5) does not depend on the mean value of X.

- 2. For the Model $Y_i = \beta_2 X_i + u$ (Model A assumptions satisfied, i=1, $b_2 = \frac{((Y_1 + Y_2 + Y_3)/3) - \overline{Y}}{((X_1 + X_2 + X_3)/3) - \overline{X}}$ is:
 - 1) non-linear estimator of β_2 ; (2) unbiased estimator of β_2 ; 2) efficient estimator of β_2 ; (3) biased estimator of β_2 ; (5) not an estimator of β_2 .
- 3. In a simple regression with an intercept $\ddot{Y} = b_1 + b_2 X$, the estimated slope coefficient b_2 is equal to zero. Then the determination coefficient R^2 is
- 1) Equal to one;
- 2) Not equal to 1 or 0;
- 3) In some situations can be negative:
- (4) Equal to zero
 - 5) Can not be calculated for the model due to violation of assumptions.
 - 4. If a new observation and a new explanatory variable are added in the Linear Regression Model, then for OLS-estimation, the following is true:
 - 1) The Residual Sum of Squares (RSS) decreases; the Determination Coefficient R^2 may increase, decrease or stay the same;
 - 2) The Residual Sum of Squares (RSS) increases; the Determination Coefficient R^2 may increase, decrease or stay the same;
 - 3) Both the Determination Coefficient R^2 and the Residual Sum of Squares (RSS) may increase, decrease or stay the same;
 - 4) The Determination Coefficient R^2 increases; the Residual Sum of Squares (RSS) may increase, decrease or stay the same;
 - 5) The Determination Coefficient R^2 decreases; the Residual Sum of Squares (RSS) may increase, decrease or stay the same;

HW:
$$tss$$
, Ess , Pss , Pss , P^2 => Ess , P^2

is a new ods: is acced

$$y' = \frac{h}{h+1} y + \frac{1}{h+1} y_{n+1}$$

$$tss' = \sum (y_1 - y')^2 = \frac{h}{h+1} (y_1 - y')^2 = \frac{h}{h+1} (y_2 - y') + \frac{h}{h+1} (y_3 + (-y')^2) + \frac{h}{h+1} (y_3 + (-y')^2) + \frac{h}{h+1} (y_3 + (-y')^2) = \frac{h$$

- 0.34 Rubles; (2) 0.34%; (3) 34%; 4) 0.0034%; 5) 34 Ruble 6. For the Model (3) (4)5) 34 Rubles.
- estimator

$$b_2 = \frac{\sum (Y_i - \overline{Y})}{\sum (X_i - \overline{X})}$$
 is, generally speaking:

- 1) biased and inconsistent estimator of β_2 ;
- 2) biased but consistent estimator of β_2 ;
- 3) unbiased but inefficient estimator of β_2 ;
- 4) equal to the OLS estimator;
- (5) can not be calculated;
- 7. Introduction of two linear restrictions on parameters in a regression model, estimated using OLS
 - 1) results in minor increase of the sum of squared errors if at least one of the restrictions is not valid;
 - 2) results in significant increase of the sum of squared errors if at least one of the restrictions is valid;
 - results in minor increase of the sum of squared errors if both restrictions are valid;
 - 4) results in significant increase of the sum of squared errors only if both restrictions are valid:
 - 5) all the above is incorrect.
- 8. Let $Y^* = \lambda_1 + \lambda_2 Y$. In a simple regression model, b_1^* is the OLS estimator of the intercept in the regression of Y^* on X, and b_1 is the OLS estimator of the intercept in the regression of Y on *X.* Then the following is correct:

 $10 b^*_{l} = \lambda_{l} + \lambda_{2} b_{l}; \quad 2) \quad b^*_{l} = b_{l}; \quad 3) \quad b^*_{l} = b_{l} * \lambda_{2}; \quad 4) \quad b^*_{l} = \lambda_{l} + b_{l}; \quad 5) \quad \text{none of the above.}$

9. There are (1) and (2) versions of the Multiple Regression Model:

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + u$$
 (1)

$$Y - X_4 = \beta_1 + \beta_2 (X_2 + X_3) + u$$
 (2)

The Model (2) is the Model (1) with the following restrictions:

$$\beta_3=0; \beta_4=0; (2)\beta_2=\beta_3; \beta_4=1; \beta_2=\beta_3=1; \beta_4=1; \beta_4=1$$

- 10. A student regressed Y and log(Y) on X, with the intercept (regressions 1 and 2 respectively). Then he did Zarembka scaling $Y^*=Y/geometric$ mean of Y, and regressed Y^* and $log(Y^*)$ on X (regressions 3 and 4). Then the following is correct:
 - 1) All the coefficients' estimates, including the intercept, are the same in regression 3 as in regression 1;
 - 2) All the coefficients' estimates, including the intercept, are the same in regression 4 as in regression 2;
 - 3) All the coefficients' estimates, except the intercept, are the same in regression 3 as in regression 1;
 - 4) All the coefficients' estimates, except the intercept, are the same in regression 4 as in regression 2;
 - 5) None of the above.
- 11. The population variance of prediction error $\sigma_{PE}^2 = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{1}\right)^{\frac{1}{2}} + \frac{\left(\frac{1}{2}\right)^{\frac{1}{2}}}{\sum_{i=1}^{2}\left(\frac{1}{2}\right)^{\frac{1}{2}}}$ 2) is always less than the population variance of disturbance term σ_u^2 ;

 - 3) can be greater, less then or equal to the population variance of disturbance term σ_u^2 ;
 - 4) is always equal to the population variance of disturbance term σ_u^2 ;
 - 5) is not related to the population variance of disturbance term σ_u^2 .
- 12. Root mean squared error of prediction $\sqrt{\sum_{t=1}^{T+h} (\hat{y}_t y_t)^2 / h}$ is always
 - $\sum_{t=1}^{T+h} |\hat{y}_t y_t| / h$ 1) Greater or equal to the Mean absolute error of prediction 2) Less or equal to the Mean absolute error of prediction;
 - 3) May be greater or less than the Mean absolute error of prediction;
 - 4) Equal to the Mean absolute error of prediction;
 - 5) Can not be compared with the Mean absolute error of prediction since it has different dimensity.