Jamboree Education

Jamboree has helped thousands of students like you make it to top colleges abroad. Be it GMAT, GRE or SAT, their unique problem-solving methods ensure maximum scores with minimum effort. They recently launched a feature where students/learners can come to their website and check their probability of getting into the IVY league college. This feature estimates the chances of graduate admission from an Indian perspective.

Column Profiling:

- Serial No. (Unique row ID)
- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose and Letter of Recommendation Strength (out of 5)
- Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)
- Chance of Admit (ranging from 0 to 1)

Problem Statment: Predict the chances of graduate admission based on the given features.

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.metrics import r2_score

from statsmodels.stats.outliers_influence import variance_inflation_factor
from scipy import stats
```

df = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/839/original/Jamboree_Admission.csv")
df.head()

			o,	0					
0	1 3	337 118		4	4.5	4.5	9.65	1	0.92
1	2 3	324 107		4	4.0	4.5	8.87	1	0.76
2	3 3	316 104	;	3	3.0	3.5	8.00	1	0.72
3	4 3	322 110	:	3	3.5	2.5	8.67	1	0.80
4	5 3	314 103	:	2	2.0	3.0	8.21	0	0.65
.info())								
	geIndex: 500 entrie a columns (total 9 Column		Dtyne						
		Non-Null Count							
0	Serial No.	500 non-null	int64						
1	GRE Score	500 non-null	int64						
2	TOEFL Score	500 non-null	int64						
3	University Rating		int64						
4	SOP	500 non-null	float64						
5	LOR	500 non-null	float64						
6	CGPA	500 non-null	float64						

int64

Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit

dtypes: float64(4), int64(5) memory usage: 35.3 KB

7 Research 500 non-null

There are no missing values present in the dataset.

8 Chance of Admit 500 non-null float64

cat_cols = ['University Rating', 'SOP', 'LOR ', 'Research'] num_cols = ['GRE Score', 'TOEFL Score', 'CGPA']

df.describe()

target = 'Chance of Admit '

	count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
	mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
	std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
	min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
	25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
	check for .isnull()	missing val .sum()	lues							
	SOP LOR CGPA Researd	ore Score sity Rating ch of Admit	0 0 0 0 0 0 0							
· U	nivariat	te Analys	sis							
ro fi in	ws, cols = g, axs = p dex = 0 r row in p for col sns	= 2, 2 plt.subplots range(rows): in range(co	s(rows,cols, : ols):	ical variable figsize=(12, 8)) ndex]], kde=True,		1])				
sn	s.histplo	t(df[num_co]	ls[-1]], kde	=True, ax=axs[1,0])					

LOR

SOP

Research Chance of Admit

Serial No. GRE Score TOEFL Score University Rating

sns.histplot(df[target], kde=True, ax=axs[1,1])

plt.show()


```
# check for outliers using boxplots
rows, cols = 2, 2
fig, axs = plt.subplots(rows, cols, figsize=(12, 7))
```

```
index = 0
for col in range(cols):
    sns.boxplot(x=num_cols[index], data=df, ax=axs[0,index])
    index += 1

sns.boxplot(x=num_cols[-1], data=df, ax=axs[1,0])
sns.boxplot(x=target, data=df, ax=axs[1,1])
plt.show()
```


There are no outliers present in the dataset.

```
# check unique values in categorical variables
for col in cat_cols:
   print("Column: {:18} Unique values: {}".format(col, df[col].nunique()))
    Column: University Rating
                                  Unique values: 5
                                  Unique values: 9
    Column: SOP
    Column: LOR
                                  Unique values: 9
    Column: Research
                                  Unique values: 2
# countplots for categorical variables
cols, rows = 2, 2
fig, axs = plt.subplots(rows, cols, figsize=(10, 7))
index = 0
for row in range(rows):
   for col in range(cols):
        sns.countplot(x=cat_cols[index], data=df, ax=axs[row, col], alpha=0.8)
        index += 1
plt.show()
```


▼ Bivariate Analysis

```
1 2 3 4 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

# check relation bw continuous variables & target variable
fig, axs = plt.subplots(1, 2, figsize=(12,5))

sns.scatterplot(x=num_cols[0], y=target, data=df, ax=axs[0])
sns.scatterplot(x=num_cols[1], y=target, data=df, ax=axs[1])
plt.show()
sns.scatterplot(x=num_cols[2], y=target, data=df)
plt.show()
```


Seems like there is a linear correlation between the continuous variables and the target variable.

```
rows, cols = 2,2
fig, axs = plt.subplots(rows, cols, figsize=(16,10))
index = 0
for row in range(rows):
   for col in range(cols):
        sns.boxplot(x=cat_cols[index], y=target, data=df, ax=axs[row,col])
       index += 1
```

nα-

- As you can see from the graphs, as tge rating increases the Chance of Admit also increases.
- Students who have the research experience have more chances of Admin as compared to other students who don't have the research experience.

▼ Multivariate Analysis

```
sns.pairplot(df[num_cols])
plt.show()
```


Independent continuous variables are also correlated with each other.

df.corr()

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
Serial No.	1.000000	-0.103839	-0.141696	-0.067641	-0.137352	-0.003694	-0.074289	-0.005332	0.008505
GRE Score	-0.103839	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398	0.810351
TOEFL Score	-0.141696	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012	0.792228
University Rating	-0.067641	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047	0.690132
SOP	-0.137352	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116	0.684137
LOR	-0.003694	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526	0.645365
CGPA	-0.074289	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.501311	0.882413
Research	-0.005332	0.563398	0.467012	0.427047	0.408116	0.372526	0.501311	1.000000	0.545871
Chance of Admit	0.008505	0.810351	0.792228	0.690132	0.684137	0.645365	0.882413	0.545871	1.000000
8 1		- 1	.07.500150151	- I					

plt.figure(figsize=(10,8))
sns.heatmap(df.corr(), annot=True)
plt.show()

• There are no missing values, outliers and duplicates present in the dataset.

Data preparation for model building

```
X = df.drop(columns=[target])
y = df[target]
```

```
# standardize the dataset
sc = StandardScaler()
X = sc.fit transform(X)
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
print(X_train.shape, y_train.shape)
```

print(X test.shape, y test.shape) (350, 7) (350,) (150, 7) (150,)

> n: no of samples p: no of predictors r2: r2 score

> rmse = np.sqrt(mse)

```
▼ Model Building
  def adjusted_r2(r2, p, n):
```

 $adj_r2 = 1 - ((1-r2)*(n-1) / (n-p-1))$ return adj r2

def get_metrics(y_true, y_pred, p=None): n = y_true.shape[0] mse = np.sum((y true - y pred)**2) / n

```
adi r2 = None
    if p is not None:
        adj_r2 = adjusted_r2(score, p, n)
    res = {
        "mean absolute error": round(mae, 2),
        "rmse": round(rmse, 2),
        "r2 score": round(score, 2),
        "adj r2": round(adj r2, 2)
    return res
def train_model(X_train, y_train, X_test, y_test,cols, model_name="linear", alpha=1.0):
    model = None
   if model_name == "lasso":
        model = Lasso(alpha=alpha)
    elif model_name == "ridge":
        model = Ridge(alpha=alpha)
    else:
        model = LinearRegression()
    model.fit(X train, y train)
    y pred train = model.predict(X train)
   y_pred_test = model.predict(X_test)
    p = X train.shape[1]
    train_res = get_metrics(y_train, y_pred_train, p)
    test res = get metrics(y test, y pred test, p)
    print(f"\n---- {model name.title()} Regression Model ----\n")
    print(f"Train MAE: {train res['mean absolute error']} Test MAE: {test res['mean absolute error']}")
    print(f"Train RMSE: {train res['rmse']} Test RMSE: {test res['rmse']}")
    print(f"Train R2_score: {train_res['r2_score']} Test R2_score: {test_res['r2_score']}")
    print(f"Train Adjusted R2: {train res['adj r2']} Test Adjusted R2: {test res['adj r2']}")
    print(f"Intercept: {model.intercept_}")
    #print(len(df.columns), len(model.coef ))
    coef df = pd.DataFrame({"Column": cols, "Coef": model.coef })
    print(coef_df)
    print("-"*50)
    return model
```

mae = np.mean(np.abs(y_true - y_pred))
score = r2 score(y true, y pred)

```
train_model(X_train, y_train, X_test, y_test,df.columns[:-1], "linear")
train_model(X_train, y_train, X_test, y_test,df.columns[:-1], "ridge")
train_model(X_train, y_train, X_test, y_test,df.columns[:-1], "lasso", 0.001)
```

Linear Regression Model ----

- Since model is not overfitting, Results for Linear, Ridge and Lasso are the same.
- R2_score and Adjusted_r2 are almost the same. Hence there are no unnecessary independent variables in the data.

▼ Linear Regression Model - Assumption Test

```
Irain KMSE: 0.06 Test KMSE: 0.06
```

▼ Mutlicollinearity Check

res

0	GRE Score	1308.061089)
1	TOEFL Score	1215.951898	3
2	University Rating	20.93336	
2	90B	2E 26E004	
•	GRE Score and ag	-	ate the VIF
	feature	VIF	
0	TOEFL Score	639.741892	
1	University Rating	19.884298	
2	SOP	33.733613	
3	LOR	30.631503	
4	CGPA	728.778312	
5	Research	2.863301	
	o TOEFL Score ar	_	lculate the VIF
	feature	VIF	
0	University Rating	19.777410	
1	SOP	33.625178	
2	LOR	30.356252	
3	CGPA	25.101796	
4	Research	2.842227	

feature

VIF

```
# Now lets drop the SOP and again calculate VIF
res = vif(df.iloc[:,2:-1].drop(columns=['SOP']))
res

feature VIF
```

	3	Research	2.819171		
newdf newdf	= df.	o the LOR as iloc[:,2:-1] udf.drop(columewdf)	.drop(colu	,	
		feature	VIF		
	0 Un	iversity Rating	12.498400		

LOR 26.918495

CGPA 22.369655

0 University Rating 15.140770

1

2

1

2

```
# drop the University Rating
newdf = newdf.drop(columns=['University Rating'])
res = vif(newdf)
res
```

CGPA 11.040746

Research 2.783179

```
        feature
        VIF

        0
        CGPA
        2.455008
```

X = sc.fit_transform(X)

```
# now again train the model with these only two features

X = df[['CGPA', 'Research']]

sc = StandardScaler()
```

```
model = train_model(X_train, y_train, X_test, y_test, ['CGPA', 'Research'], "linear")
train_model(X_train, y_train, X_test, y_test, ['CGPA', 'Research'], "ridge")
train_model(X_train, y_train, X_test, y_test, ['CGPA', 'Research'], "lasso", 0.001)
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

After removing collinear features using VIF and using only two features. R2_score and Adjusted_r2 are still the same as before the testing dataset.

rain kz_score: ט./ט ופגד kz_score: ט.טו

Mean of Residuals

It is clear from RMSE that Mean of Residuals is almost zero.

Linearity of variables

It is quite clear from EDA that independent variables are linearly dependent on the target variables.

Train RMSE: 0.06 Test RMSE: 0.07

▼ Normality of Residuals

```
y_pred = model.predict(X_test)
residuals = (y_test - y_pred)
sns.histplot(residuals)
plt.show()
```

```
25 -
```

stats.probplot(residuals, plot=plt)
plt.show()

▼ Test for Homoscedasticity

```
plt.scatter(y_pred, residuals)
plt.show()
```


Since the plot is not creating a cone type shape. Hence there is no homoscedasticity present in the data. $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{$

Insights

- 1. Multicollinearity is present in the data.
- 2. After removing collinear features there are only two variables which are important in making predictions for the target variables.
- 3. Indepedent variables are linearly correlated with dependent variables.

Recommendations

- 1. CGPA and Research are the only two variables which are important in making the prediction for Chance of Admit.
- 2. CGPA is the most important varibale in making the prediction for the Chance of Admit.
- 3. Following are the final model results on the test data:
 - **RMSE:** 0.07
 - MAE: 0.05
 - **R2_score:** 0.81
 - **Adjusted_R2:** 0.81