Introduction to Quantum Computing

How I Learned to Stop Worrying and Love the Bomb

Dr. Omri Har-Shemesh

13. February 2019

Schmiede.ONE GmbH & Co. KG

Introduction

Ce n'est pas un lustre (This is not a Chandelier)

· New computing paradigm

- · New computing paradigm
- \cdot Uses the rules of quantum mechanics

- · New computing paradigm
- · Uses the rules of quantum mechanics
- · Might be able to solve some problems exponentially faster

- · New computing paradigm
- · Uses the rules of quantum mechanics
- Might be able to solve some problems exponentially faster
- Definitely could simulate quantum systems better

- · New computing paradigm
- · Uses the rules of quantum mechanics
- Might be able to solve some problems exponentially faster
- · Definitely could simulate quantum systems better
- · Realizable in large scale?

- · New computing paradigm
- · Uses the rules of quantum mechanics
- Might be able to solve some problems exponentially faster
- · Definitely could simulate quantum systems better
- · Realizable in large scale?

The Technical Part

"Shut up and calculate"

David Mermin

Overview

- · Representing computation with linear algebra
- · Qubits, superposition and quantum logic gates
- Simplest problem where a quantum computer outperforms a classical one
- · Bonus: Quantum entanglement and quantum teleportation

Representing classical bits as vectors

One bit with value 0, also written as $|0\rangle$ (Dirac vector notation)

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

One bit with value 1, also written as |1
angle

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Review: matrix multiplication

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Operations on one classical bit (cbit)

Identity
$$f(x) = x \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 Negation
$$f(x) = \neg x \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 Constant-0
$$f(x) = 0 \qquad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 Constant-1
$$f(x) = 1 \qquad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Reversible computing

- · Given the operation and the input, you can always infer the output.
 - $\cdot \ \, \text{For}\, Ax = b \text{, given } b \text{ and } A \text{, you can uniquely find } x.$

Reversible computing

- · Given the operation and the input, you can always infer the output.
 - For Ax = b, given b and A, you can uniquely find x.
- · Permutations are reversible; erasing and overwriting are not
 - · Identity and negation are reversible.
 - · Constant-0 and Constant-1 are not reversible.

Reversible computing

- · Given the operation and the input, you can always infer the output.
 - For Ax = b, given b and A, you can uniquely find x.
- · Permutations are reversible; erasing and overwriting are not
 - · Identity and negation are reversible.
 - Constant-0 and Constant-1 are not reversible.
- · Quantum computers use only reversible operations.
 - · In fact, all quantum operations are their own inverse.

Review: tensor product of vectors

Representing multiple cbits

$$|00\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad |01\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \qquad |100\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$

$$|10\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad |11\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$$

- The tensor representation is called the product state.
- · It can be factored back into the individual state representation.
- The product state of n bits is a vector of size 2^n .

- · Takes two bits, one control bit and one target bit.
- If the control bit is set, flip the target bit, otherwise leave it.

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

$ 00\rangle$	$ 00\rangle$
$ 01\rangle$	$ 01\rangle$
$ 10\rangle$	$ 10\rangle$
$ 11\rangle$	$ 11\rangle$

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

$$\begin{array}{ccc} |00\rangle & \longrightarrow & |00\rangle \\ |01\rangle & & |01\rangle \\ |10\rangle & & |10\rangle \\ |11\rangle & & |11\rangle \end{array}$$

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

$$\begin{array}{ccc}
|00\rangle & \longrightarrow & |00\rangle \\
|01\rangle & \longrightarrow & |01\rangle \\
|10\rangle & & |10\rangle \\
|11\rangle & & |11\rangle
\end{array}$$

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

- · Takes two bits, one control bit and one target bit.
- · If the control bit is set, flip the target bit, otherwise leave it.
- If most significant bit is control, and least-significant is target, then:

$$\begin{array}{ccc} |00\rangle & \longrightarrow & |00\rangle \\ |01\rangle & \longrightarrow & |01\rangle \\ \\ |10\rangle & & & |10\rangle \\ |11\rangle & & & |11\rangle \end{array}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$C\left|10\right\rangle = C\left(\begin{pmatrix}0\\1\end{pmatrix}\otimes\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}\begin{pmatrix}0\\0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\0\\1\end{pmatrix}\otimes\begin{pmatrix}0\\1\end{pmatrix}\otimes\begin{pmatrix}0\\1\end{pmatrix} = \left|11\right\rangle$$

$$C\left|11\right\rangle = C\left(\begin{pmatrix}0\\1\end{pmatrix}\otimes\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}\begin{pmatrix}0\\0\\1\\1\end{pmatrix} = \begin{pmatrix}0\\0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\1\\0\end{pmatrix}\otimes\begin{pmatrix}1\\0\\0\end{pmatrix} = \left|10\right\rangle$$

$$C\left|00\right> = C\left(\begin{pmatrix}1\\0\end{pmatrix}\otimes\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\end{pmatrix}\otimes\begin{pmatrix}1\\0\\0\end{pmatrix} = \left|00\right>$$

$$C\left|01\right> = C\left(\begin{pmatrix}1\\0\end{pmatrix}\otimes\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}\begin{pmatrix}0\\1\\0\\0\end{pmatrix} = \begin{pmatrix}0\\1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\end{pmatrix}\otimes\begin{pmatrix}0\\1\\0\end{pmatrix} = \left|01\right>$$

- · Cbits are a special case of Qubits!
- A qbit is represented by $\binom{a}{b}$ where a and b are complex numbers such that $||a||^2+||b||^2=1.$
 - The cbit vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ fit this definition.
- · Example qbit values:

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \qquad \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

What does that mean?

What does that mean?

Superposition

The qbit is in a state of both $|0\rangle$ and $|1\rangle$. We can write this as:

$$\begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = a |0\rangle + b |1\rangle.$$

What does that mean?

Superposition

The qbit is in a state of both $|0\rangle$ and $|1\rangle$. We can write this as:

$$\begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = a \left| 0 \right\rangle + b \left| 1 \right\rangle.$$

Amplitudes

a and b are called amplitudes. $||a||^2$ is the probability of the qbit being 0 when measured; $||b||^2$ is the probability of measuring 1.

What does that mean?

Superposition

The qbit is in a state of both $|0\rangle$ and $|1\rangle$. We can write this as:

$$\begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = a \left| 0 \right\rangle + b \left| 1 \right\rangle.$$

Amplitudes

a and b are called amplitudes. $||a||^2$ is the probability of the qbit being 0 when measured; $||b||^2$ is the probability of measuring 1.

Measurement

The measurement of the qbit collapses its state. It will be in the state $|0\rangle$ if we measured 0 and $|1\rangle$ if we measured 1.

For example

The qbit $\left(\frac{1}{\sqrt{2}}\right)$ has a $\left|\left|\frac{1}{\sqrt{2}}\right|\right|^2=\frac{1}{2}$ chance of collapsing to $|0\rangle$ or $|1\rangle$.

The qbit $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ has 100% chance of collapsing to $|0\rangle$, and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ has a 100% chance of collapsing to $|1\rangle$.