Pushdown Automata (PDA)

Pushdown Automata (PDA)

If the input symbol is a and the top stack symbol is x then

q1 to q2, pop x, push y, advance read head

If a = E do not advance read head

If $x = \mathcal{E}$ do not read from stack

If $y = \mathcal{E}$ do not write to stack

When does a PDA accept a string?

input: W₁W₂...W_n

accept if any branch accepts

Pushdown Automata (PDA)

$$(Q, \Sigma, \Gamma, \delta, q_0, F)$$

δ: $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathscr{P}(Q \times \Gamma_{\varepsilon})$

Theorems

Not every nondeterministic PDA has an equivalent deterministic PDA

A language is context-free iff some PDA recognizes it

CFL vs. Regular Languages

CFL vs. Regular Languages

PDA to NFA

CFL vs. Regular Languages

NFA to PDA

CFL vs. Regular Languages

NFA to PDA

PDA Design Examples

PDA Design $\{0^n1^n \mid n \ge 0\}$

$$\{0^n1^n \mid n \ge 0\}$$

$$\{0^n1^n\mid n\geq 0\}$$

$$\{0^n1^n \mid n \ge 0\}$$

$$\{0^n1^n \mid n \ge 0\}$$

0

$$\{0^n1^n \mid n \ge 0\}$$

0 0 0

$$\{0^n1^n \mid n \ge 0\}$$

input: 000111_

$$\{0^n1^n \mid n \ge 0\}$$

Does this work?

 $\{0^n1^n \mid n \ge 0\}$

$\{0^n1^n\mid n\geq 0\}$

PDA Design $\{ww^{R} \mid w \in \{0, 1\}^*\}$

$\{ww^{R} \mid w \in \{0, 1\}^{*}\}$

PDA Design $\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } j = k\}$

$\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i = j\}$

$\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$

$\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i=j \text{ or } j=k\}$

$\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i=j \text{ or } j=k\}$

Pumping Lemma: Regular Languages

If A is a regular language, then there is a pumping length p st if $s \in A$ with $|s| \ge p$ then we can write s = xyzso that

- $\forall i \geq 0 \ xy^i z \in A$
- |y| > 0
- |xy| ≤ p

To prove $\{0^n 1^n | n \ge 0\}$ is *not* regular using the Pumping Lemma

- 1. Suppose $\{0^n1^n \mid n \ge 0\}$ is regular
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$. Let $s = 0^{p_1p_2}$
- 4. The pumping lemma says that for *some* split $0^p1^p = xyz$ all the following conditions hold
 - $\forall i \geq 0 \ xy^i z \in A$
 - |y| > 0 \Rightarrow y is a non-empty string of 0s
 - |xy| ≤ p

To prove A is *not* regular using the Pumping Lemma

- 1. Suppose A is regular
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$
- 4. The pumping lemma says that for *some* split s = xyz *all* the following conditions hold
 - $\forall i \geq 0 \ xy^i z \in A$
 - |y| > 0
 - |xy| ≤ p