IFT 1215 - Introduction aux systèmes informatiques Examen intra-Automne 2015

Professeur: Michel Boyer

Date: Le 13 octobre 2015, 13:30 - 15:20, salle B-2285, pav. 3200 J.-Brillant.

Directives:

- Aucune documentation autorisée.
- Aucun appareil électronique autorisé (calculatrice, téléphone, iPod, etc).
- Répondre suite questionnaire dans 'espacedisponible. Utiliser le verso de la feuille précé dente pour les brouillons.
- Attention, les questions n'ont pas été mises en ordre de difficulté.
- Total: $100 \times 0.3 = 30\%$ de la note finale.

Nom, Prén.:	Matricule:	

Question 1	/10
Question 2	/15
Question 3	/20
Question 4	/20
Question 5	/10
Question 6	/15
Question 7	/10
Total	/100

Signature:	

Matricule: IFT 1215(2/9)

1. Codage (10 points)

Dans cette question, le nombre de bits pour représenter une donnée n'est pas contraint à être multiple de 8 ou puissance de 2; ce peut être un entier quelconque.

A. (2 *pts*) Quel est le nombre minimum de bits nécessaires pour représenter 64 carac tères?

B. (2 *pts*) Quel est le nombre minimum de bits nécessaires pour représenter les nombres de - 32 à 31 en notation signe-valeur absolue.

C. (2 *pts*) Quel est le nombre minimum de bits nécessaires pour représenter les nombres de - 32 à 31 en notation complément à deux.

IVI (uiricule:	215 (3/9)
2.	Conversions de bases (15 points)	
	A. (3 pts) Convertir en base 2 et base 16 le nombre 2.2568 en exhibant vos calcu	ls.
	B. (3 <i>pts</i>) Donnez la représentation en base 16 des nombres 16 ⁸ et 16 ⁸ -1.	
	C. (5 <i>pts</i>) Convertissez en base 2 le 15.28125 ₁₀ en exhibant vos calculs pour la p	artie frac
	tionnaire.	

D. *(4 pts)* Convertir 3/4 en base 5 en mettant une barre au dessus de la période si La représentation est infinie. Exhibez vos calculs.

IVI	atricule: 1Ft 1215 (4/9)
3.	Nombres signés (20 points)
	A. (6 <i>pts</i>) Soit la séquence de huit bits 1001 1001 ; donner (en notation décimale) la valeur qu'elle représente
	(a) si ces bits représentent un nombre en notation signe et valeur absolue (sur 8 bits);
	(b) si ces bits sont un nombre signé en représentation complément à 2 sur 8 bits;
	(c) si ces bits sont un nombre signé en représentation décimale codée binaire (DCB, BCD en anglais) complément à 10 sur deux chiffres.

B. (4 pts) Représenter le nombre - 30 en notation complément à 2 sur 8 bits.

- D. (6 *pts*) Calculer les expressions suivantes en utilisant l'aritllmétique en complément à 2 sur 8 bits puis remplir le tableau
 - (a) $S = 1010 \ 1101 0110 \ 1011$

S =	
C (Carry) =	
V (oVerflow) =	
S exact en non signé?	
S exact en signé CA2?	

(b) 1010 1101 - 1101 0110

S =	
C =	
V=	
S exact en non signé ?	
S exact en signé CA2?	

4. Nombres à virgule flottante en représentation IEEE-754 32 bits (20 points).

Les nombre en représentation IEEE-754 simple précision (non infinis ou NaN) sont représentés sur 32 bits dans le format $s \mid \hat{e} \mid m$ avec un bit pour s (signe), 8 bits pour \hat{e} (exposant biaisé) et 23 bits pour m (mantisse) selon le tableau

ê	e	m	Valeur	Type
e+127	-126 ≤ e ≤ 127	$f_1 \dots f_{23}$	$(-1)^s(1.f_1f_{23}) \times 2^e$	Normalisé
0	-126	$f_1 \dots f_{23} \neq 0$	$(-1)^s(0.f_1f_2f_{23})\times 2^{-126}$	Dénormalisé
0	-126	000000000000000000000000000000000000000	±0	Dénormalisé

A. *(8 pts)* Quelle est la représentation sur 32 bits selon cette norme du nombre dont la valeur écrite en binaire est -100101. 0111101₂ ?

B. (*4 pts*) Donnez la représentation sur 32 bits du plus petit nombre strictement positif qui peut être représenté en IEEE-754 simple précision et donnez sa valeur.

C. (8 pts) Représenter 5 x 2⁻¹³⁰ en IEEE-754 32 bits.

Matricule: **IFf 1215** (7/9)

5. Circuits de base (10 points)

A. *(3 pts)* Exprimez sous forme d'expression algébrique en fonction des entrées A, Bet C la sortie F du circuit suivant

B. *(3 pts)* Représentez sous forme de circuit (sans la simplifier ou la modifier) la fonction booléenne F = (AB+C)(B+C) d'entrées (inputs) A, B, C et D.

C. (4 pts) Donnez sous forme de somme de produits (sans simplifier) la fonction booléenne $F(A,B,C,D) = \Sigma(l, 3, 5, 13, 15)$

Matricule: IFT 1215 (8/9)

- 6. Tables de Karnaugh et Minimisations (15 points)
 - A. (5 pts) Soit $X = X_3 X_2 X_1 X_0$ un nombre de quatre chiffres en notation décimale codée binaire complément à 10. On sait qu'il est positif si X_3 est inférieur à 5 et négatif pour X_3 de 5 à 9. Notons ABCD les quatre bits de X_3 Donnez sous forme de table de Karnaugh (sans faire les regroupements ni simplifier) la fonction F qui retourne O si X est positif et 1 si X est négatif.

			/	4
Λ.Γ.	,]	В	
AE Cd	00	01	11	10
00				
01				
11				
10				

B. (a) (5 *pts*) Faites les regroupements donnant une somme minimale de produits et donnez l'expression minimale correspondante de F comme somme de produits si F est spécifiée par la table de Karnaugh suivante (aucun calcul algébrique n'est demandé).

					А
	Λ.Π	1		В	-
	AE CD	00	01	11	10
	00	d			d
	01		1	1	
	D 11		1	1	
С	L 10	d			1
			F		

Matricule:

IFT 1215 (9/9)

(b) *(s pts)* Donner une expression minimale de cette même fonction F, mais cette fois comme produit minimal de sommes en utilisant la méthode de Kamaugh (exhibez encore bien vos regroupements).

				/	۹
	ΛD]	В	
	AB CD	00	01	11	10
	00				
	01				
	D 11				
С	10				

- 7. Composantes digitales (10 points)
 - A. *(5 pts)* Implantez avec un mux 4 à 1 en utilisant A et B comme bits de contrôle, la fonction F qui est retournée par le mux 8 à 1 suivant

