CH 9

CH 9

9.1 Introduction

Deflection Curve

9.2 Differential Equations of The Deflection Curve

Beams with Small Angles of Rotation

Nonprismatic Beams

Prismatic Beams

Exact Expression for Curvature

9.3 Deflections by Integration of the Bending-Moment Equation

Boundary Conditions

Continuity Conditions

Symmetry Conditions

9.1 Introduction

Deflection Curve

definition: the axis is deformed to into a curve while loading by a lateral forces

9.2 Differential Equations of The Deflection Curve

Beams with Small Angles of Rotation

$$\kappa = \frac{1}{\rho} = \frac{\mathrm{d}\theta}{\mathrm{d}x}$$

$$\theta pprox an heta = rac{\mathrm{d}v}{\mathrm{d}x}$$

$$\kappa = \frac{1}{\rho} = \frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\mathrm{d}^2 v}{\mathrm{d}x^2}$$

$$\kappa = \frac{1}{\rho} = \frac{M}{EI}$$

$$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = \frac{M}{EI}$$

Nonprismatic Beams

In the case of a nonprismatic beam, the flexural rigidity EI is variable, and therefore

$$EI_xrac{\mathrm{d}^2v}{\mathrm{d}x^2}=M$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(EI_x\frac{\mathrm{d}^2v}{\mathrm{d}x^2}) = \frac{\mathrm{d}M}{\mathrm{d}x} = V$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(EI_x\frac{\mathrm{d}^2v}{\mathrm{d}x^2}) = \frac{\mathrm{d}V}{\mathrm{d}x} = -q$$

Prismatic Beams

In the case of a prismatic beam, the flextural rigidity is constant, and therefore

$$EIrac{\mathrm{d}^2 v}{\mathrm{d}x^2} = M \qquad EIrac{\mathrm{d}^3 v}{\mathrm{d}x^3} = V \qquad EIrac{\mathrm{d}^2 v}{\mathrm{d}x^2} = -q$$
 $EIv''' = M \qquad EIv''' = V \qquad EIv'''' = -q$

Exact Expression for Curvature

Like the curvature in calculus, the exact expression can be written as

$$\kappa = rac{1}{
ho} = rac{v''}{[1 + (v')^2]^{3/2}}$$

9.3 Deflections by Integration of the Bending-Moment Equation

Boundary Conditions

the deflections and slope at the supports of a beam

Continuity Conditions

occur at points where the regions of integration meet

At point C:
$$(v)_{AC} = (v)_{CB}$$

 $(v')_{AC} = (v')_{CB}$

Symmetry Conditions

the beam is loaded by uniformly distributed

