MATH 164 Review (A)

Problems

- 1. Consider a circle of radius r and center O at the origion. Let C be at the coordinate (l,0) for some $l \in [-r,r]$ and consider the chord AB perpendicular to OC. Let A be the area inside the circle and to the right of the chord AB. Find the area of A...
 - (a) ...in terms of l and r.
 - (b) ...in terms of r and θ .
 - (c) Verify that your equations give the same (and correct!) results at l=r,0,-r and $\theta=0,\frac{\pi}{2},\pi$.

2. The Sun and Moon both occupy approximately the same solid angle in the sky (i.e., both are about 0.2 square degrees or $6 \cdot 10^{-5}$ solid radians). This means that during a solar eclipse, it is possible for the Moon to cover a large portion of the Sun. Consider the scenario where O is the center of the outline of the Sun, D is the center of the outline of Moon, and their circular outlines intersect at points A and B. As in Problem 1, let C the midpoint of the chord AB and C be the distance from C to C.

- (a) Working in units of the apparant common radius of the Sun and Moon (i.e., set r = 1), use your result from Problem 1 to compute the total area A of the eclipse as a function of l. [Hint: AB is a line of symmetry for this problem.]
- (b) Suppose the maximum area of the Sun that is covered by the Moon in a particular eclipse is 80%. At what value of l is this maximum achieved?

- 3. Let $f,g: \mathbb{R} \to \mathbb{R}$ be periodic functions. Say $f(t+T_1)=f(t)$ and $g(t+T_2)=g(t)$ for all $t \in \mathbb{R}$ where T_1 and T_2 are positive constants. An important question is that, when viewed as a pair, is the function (f(t),g(t)) periodic? That is, is there some (minimal) T>0 such that f(t+T)=f(t) and g(t+T)=g(t) for all $t \in \mathbb{R}$.
 - (a) Let $T_1 = 1$ and $T_2 = 2$. What is T?
 - (b) Let $T_1 = 2$ and $T_2 = 3$. What is T?
 - (c) Let $T_1 = 2$ and $T_2 = 4$. What is T?
 - (d) Show that if T exists, then there must be integers m and n such that $nT_1 = mT_2 = T$.
 - (e) If $T_1 = a/b$ and $T_2 = c/d$, show that m/n = (bc)/(ad).
 - (f) If T_1 is rational and T_2 is irrational, show that T does not exist.
 - (g) Given parameters A, B, a, and b, a Lissajous curve is the set

$$G = \{(x, y) \in \mathbb{R}^2 \mid x = A\cos(at) \text{ and } y = B\sin(bt), t \in \mathbb{R}\}.$$

This is the graph of the (parametric) equation $(A\cos(at), B\sin(bt))$. Assume A, B, a, b > 0. If a = b, what is the shape of G? Plot several examples in Desmos to familiarize yourself with the shape of G. Under what condition will the length of G be finite?

- 4. Evaluate the following quantities.
 - (a) arccos(-0.5)
 - (b) $\arcsin(-0.5)$
 - (c) arctan(1)
 - (d) $\cos(\arcsin(0.25))$
 - (e) $\tan(\arccos(a/b))$ where b > a > 0
- 5. Consider the triangle below. Unless otherwise specified, report all angles in degrees. Approximate means use a calculator and round to 5 digits of accuracy.
 - (a) Express x and y in terms of r and θ .
 - (b) Evaluate $\theta + \psi$ in degrees and radians.
 - (c) Suppose r=2 and $\theta=40^{\circ}$. Approximate the missing measurements.
 - (d) Suppose x=3 and $\psi=1$ (radian). Approximate the missing measurements.
 - (e) Suppose x=3 and y=4. Approximate the missing measurements.
 - (f) Suppose r=5 and $\psi=15^{\circ}$. Approximate the missing measurements.

