Cleveland Clinic - Medical Resource Optimization Mathematical Formulation

May 20, 2020

Dimensions

 $r \in Resources$: set of resources $f \in Facilities$: set of facilities $sl \in Service\ lines$: set of service lines $ss \in Sub-services$: set of sub-services $io \in Inpatient/Outpatient$: set of Inpatient/Outpatient indicator $ms \in Medical/Surgical$: set of Medical/Surgical indicator $d \in Days$: set of days $w \in Weeks$: set of weeks $q \in Phase\ start\ dates$: set of phase start dates $icu \in ICU\ Resources$: set of ICU resources

Data Parameters: Model Coefficients

 $capacity_{f,sl,ss,r}$ is the capacity of resource r at facility f, service line sl, sub-service ss

 $utilization_{f,sl,ss,io,ms,r}$ is the usage of resource r per patient per day at facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $revenue_{f,sl,ss,io,ms}$ is the revenue per patient at facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $margin_{f,sl,ss,io,ms}$ is the margin per patient at facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $demand_{f,sl,ss,io,ms,d}$ is the maximum demand of facility f, service line sl, sub-service ss, and day d, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $losMean_{f,sl,ss,io,ms}$ is the mean hospitalization time of facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

minday is the minimum day among the set $d \in Days$, $\min_{d \in Days} d$

maxday is the maximum day among the set $d \in Days, \, \max_{d \in Days} d$

 $dlyRapidTest_d$ is the total daily rapid tests available across all facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $dlyNonRapidTest_d$ is the total daily non-rapid tests for COVID-19 available across all facility f, service line sl, subservice ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $week_d$ is the week number of day d in set $d \in Days$

daysBeforeSurgAdm is the number of days before which a surgery patient should be tested for COVID-19 (using a non-rapid test kit)

fracInpTest is the fraction of inpatients tested for COVID-19 using the rapid test kit on the day of admission

minDemRatio is the minimum proportion of demand that must be satisfied at a sub-service ss if its is open at a facility f, service line sl

 $newPntBfCovid_{f,sl,ss,io,ms,d}$ is the new patients admitted without COVID-19 test constraints at the facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms on day d

 $fixOpenFlag_{f,sl,ss}$ is a flag and is set to 1 if the facility f, service line sl, sub-service ss is open, 0 otherwise.

 $emerSurRatio_{f,sl,ss}$ is a proportion of emergency surgical patients at the facility f, service line sl, sub-service ss.

 $numCancel_{f,sl,ss,io,ms}$ is the maximum number of patients cancelled at the facility f, service line sl, sub-service ss, for inpatient/outpatient indicator io, and medical/surgical indicator ms

 $maxUtil_f$ is the maximum utilization allowed for ICU resource at the facility f

Decision Variables

 $NewPatients_{f,sl,ss,io,ms,d} \ge 0$ is the number of patients accepted in facility f, service line sl, sub-service ss, on day d, for inpatient/outpatient indicator io, and medical/surgical indicator ms.

 $Reschedule Patients_{f,sl,ss,io,ms,d} \ge 0$ is the number of patients rescheduled in facility f, service line sl, sub-service ss, on day d, for inpatient/outpatient indicator io, and medical/surgical indicator ms.

 $OpenFlg_{f,sl,ss,d} \in \{0,1\}$ is the binary variable indicating if facility f, service line sl, sub-service ss is open on day d.

Variables

 $Total Patients_{f,sl,ss,io,ms,d}$ is the total number of patients accepted and rescheduled in facility f, service line sl, sub-service ss, cumulative for day d, for inpatient/outpatient indicator io, and medical/surgical indicator ms where,

$$Total Patients_{f,sl,ss,io,ms,d} = \sum_{\substack{d1 \in d \text{ and} \\ \max\{[d-losMean_{f,sl,ss,io,ms}+1], \\ minday\} \leq d1 \leq d}} (New Patients_{f,sl,ss,io,ms,d1} + Reschedule Patients_{f,sl,ss,io,ms,d1})$$

 $\forall f, sl, ss, io, ms, d$

Objective Functions

$$max \quad Total Revenue = \sum_{f,sl,ss,io,ms,d} (New Patients_{f,sl,ss,io,ms,d} + Reschedule Patients_{f,sl,ss,io,ms,d}) \ revenue_{f,sl,ss,io,ms}$$

$$max \quad Total Margin = \sum_{f,sl,ss,io,ms,d} (New Patients_{f,sl,ss,io,ms,d} + Reschedule Patients_{f,sl,ss,io,ms,d}) \ margin_{f,sl,ss,io,ms}$$

Constraints

Maximum demand constraint: Number of patients accepted for f, sl, ss, io, ms should be less than the maximum demand for day d.

$$NewPatients_{f,sl,ss,io,ms,d} \le demand_{f,sl,ss,io,ms,d} \ OpenFlg_{f,sl,ss,d} \ \ \forall f,sl,ss,io,ms,d \ \ (1)$$

Capacity constraint: Resources used for the total number of patients for f, sl, ss on day d should be less than or equal to available capacity of resource r.

$$\sum_{io,ms} utilization_{f,sl,ss,io,ms,r} \ Total Patients_{f,sl,ss,d} \le capacity_{f,sl,ss,r} \quad \forall f,sl,ss,d,r \tag{2}$$

Max. ICU resource utilization constraint: The utilization of ICU resources at f on day d should be less than or equal to the available capacity of resource r times the max utilization allowed for these resource at f.

$$\sum_{\substack{sl, ss, io, ms, r \\ \text{and } r \in icu}} utilization_{f, sl, ss, io, ms, r} \ TotalPatients_{f, sl, ss, d} \leq \sum_{\substack{sl, ss, r \\ \text{and } r \in icu}} capacity_{f, sl, ss, r} \ maxUtil_f \quad \forall f, d$$
 (3)

Rescheduling constraint: Rescheduling patients for f, sl, ss, io, ms on day d is not allowed if the sub-service is not open

$$Reschedule Patients_{f,sl,ss,io,ms,d} \le num Cancel_{f,sl,ss,io,ms} Open Flg_{f,sl,ss,d} \quad \forall f, sl, ss, io, ms, d$$

$$\tag{4}$$

Maximum rescheduling constraint: Total number of rescheduled patients across all days for f, sl, ss, io, ms should be less than the maximum number of rescheduled patients.

$$\sum_{d} Reschedule Patients_{f,sl,ss,io,ms,d} \le num Cancel_{f,sl,ss,io,ms} \quad \forall f, sl, ss, io, ms$$
 (5)

Minimum proportion of demand constraint: If a sub-service ss is open at f, sl then, we should at the least satisfy a minimum proportion of the weekly demand of f, sl, ss.

$$\sum_{\substack{io, ms, d \text{ and } \\ week_d = w}} (NewPatients_{f,sl,ss,io,ms,d} + ReschedulePatients_{f,sl,ss,io,ms,d}) \ge minDemRatio$$

$$\sum_{\substack{io, ms, d \text{ and } \\ week_d = w}} newPntBfCovid_{f,sl,ss,io,ms,d} \ OpenFlg_{f,sl,ss,d} \quad \forall f, sl, ss, w$$
(6)

COVID-19 inpatient tests constraint: Total number of inpatients accepted (excluding surgical patients) and the emergency surgical patients admitted for f, sl, ss, ms on day d should be less than the total rapid test available daily rapid test available.

$$\sum_{\substack{f,sl,ss,io,ms\\\text{and }io='I'\\\text{and }ms!='SURG'}} (NewPatients_{f,sl,ss,io,ms,d} + ReschedulePatients_{f,sl,ss,io,ms,d}) + \sum_{\substack{f,sl,ss,io,ms\\\text{and }ms='SURG'}} (NewPatients_{f,sl,ss,io,ms,d} + ReschedulePatients_{f,sl,ss,io,ms,d}) + \sum_{\substack{f,sl,ss,io,ms\\\text{and }ms='SURG'}} (NewPatients_{f,sl,ss,io,ms,d}) + \sum_{\substack{f,$$

 $+ \, Reschedule Patients_{f,sl,ss,io,ms,d}) \,\, emer Sur Ratio_{f,sl,ss} \leq \left(dly RapidTest_d \,\, / fracInpTest \right) \quad \forall d \in \mathcal{C}_{d}$

COVID-19 surgery patient tests constraint: Total number of surgery patients who will be admitted for surgery after 'daysBeforeSurgAdm' days for f, sl, ss, io in day d should be less than the total non-rapid test available for the day d.

$$\sum_{\substack{f,sl,ss,io,ms \text{ and} \\ d1=[d+daysBeforeSurgAdm] \\ \text{and } d1\in d \\ \text{and } \\ ms='SURG'}} (NewPatients_{f,sl,ss,io,ms,d1} + ReschedulePatients_{f,sl,ss,io,ms,d1})$$

$$(8)$$

$$(1 - emerSurRatio_{f,sl,ss})) \leq dlyNonRapidTest_d \quad \forall d$$

Sub-service open constraint: If a sub-service ss is open at f, sl on day d then it should be open for the remainder of the horizon.

$$OpenFlg_{f,sl,ss,d+1} \ge OpenFlg_{f,sl,ss,d} \quad \forall f, sl, ss, d \text{ and } d1 \in d$$
 (9)

Sub-service already opened constraint: If a sub-service ss is already opened at f, sl then we set OpenFlg variable as 1 for the entire planning horizon.

$$OpenFlg_{f,sl,ss,d} = 1 \quad \forall f, sl, ss, d \text{ and } d = minday \text{ and } fixOpenFlag_{f,sl,ss} = 1$$
 (10)

Sub-service open on phase date constraint: The sub-service ss allowed to open only on the phase dates or on the first day of the planning horizon.

$$OpenFlg_{f,sl,ss,d} = OpenFlg_{f,sl,ss,d-1} \quad \forall f, sl, ss, d \text{ and } (d-1) \in d \text{ and } d \notin q$$

$$\tag{11}$$