Singular Value Decomposition

Vincent Guillemot

SOME MENTAL IMAGES

Potato Chips Analysis

Cut the yummiest French fries

Whale versus krill: this is you (credit: Allison Horst)

Eat the most krill (put on your 3D glasses)

Artwork by @allison horst

Whale versus krill: this is your data (credit: Allison Horst)

Eat the most krill (put on your 3D glasses)

Artwork by @allison horst

THE TRI-FORCE OF PCA

Beautiful illustration

Screeplot, versus individual map, versus circle of correlation. With the associated theoretical concepts: inertia (multivariate variance), distance between individuals, and angles between

Example data

```
xtmp <-
readxl::read_excel("../data/simul.xlsx")
x <- as.matrix(xtmp[, -1])
rownames(x) <- xtmp$Ind</pre>
```

Example screeplot

Example individual map

Example circle of correlation

VOCABULARY

French versus English

"Aaaaah, mais ACP en fait c'est la PCA!"

(Anonymous student, after 6 hours of teaching PCA in French)

English	French
PCA = principal component analysis	ACP = analyse en composantes principales
SVD = singular value decomposition	SVD = décomposition en valeurs singulières
EVD = eigenvalue decomposition	décomposition en éléments propres
ICA = independent component analysis	ICA = analyse en composantes indépendantes
MDS = multidimensional scaling	MDS = multidimensional scaling

R vocabulary

Base methods:

- eigen for eigenvalue decomposition, svd for singular value decomposition,
- prcomp and princomp for PCA,
- biplot

Nice packages:

- FactoMineR: PCA, MFA, CA, MCA and associates. In earlier versions, the graphs were "crude"...
- factoextra: "helper" package to make beautiful plots, and much more!
- ade4: more than "one block" type of analyses. Made by ecologists so ⇒ PCOA, coinertia analysis, STATIS, etc.
- ExPosition: made for psychometricians (they like PLS)

And a few nice books and papers

books and papers

A LITTLE BIT OF MATH

Notations

(non-universal) Conventions: matrices and vectors are bold

- I = number of observations, J = number of variables (only quantitative)
- i for an individual observation, and j for a single variable
- X = data matrix, with n rows and p columns, sometimes already centered, and scaled, to make our life easy
- X_j = variable j, and jth column of X
- w a set of weights

A little detour: matrix multiplication

Take a pen and paper, and do this multiplication:

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Cool video: 5 ways to see matrix multiplication

PCA

"Find a linear combination of the columns of the data that would capture the most information."

In mathematical words, find

$$\mathbf{X}\mathbf{w} = w_1 \mathbf{X}_1 + \dots + w_p \mathbf{X}_p$$

that maximizes... wait a minute! What are the dimensions?

- **X**: *I* rows and *J* columns,
- w: J rows and 1 columns,
- **Xw**: *I* rows and 1 column.

THE MATHEMATICAL TRANSLATION OF THE INTUITIONS BEHIND PCA

Most popular intuition of PCA: how does it translate?

"PCA creates a linear combination of variables that maximizes variance."

$$\underset{\|\mathbf{w}\|_2^2=1}{\text{arg max var}(\mathbf{X}\mathbf{w})}$$

- Why $\| \mathbf{w} \|_2 = 1$?
- Dirty trick: $var(Xw) = w^TX^TXw$

Least "well-known" intuition of PCA: how does it translate?

"PCA creates a linear combination of variables that maximizes correlation."

$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{j=1}^{p} \operatorname{cor} (\mathbf{X}\mathbf{w}, \mathbf{X}_{j})^{2}$$

Second least "well-known" intuition of PCA: how does it translate?

"PCA creates the best lower rank approximation of the covariance matrix."

$$\arg\min_{\|\mathbf{w}\|_2^2=1} \left\| \frac{1}{n} \mathbf{X}^\mathsf{T} \mathbf{X} - \lambda \mathbf{w} \mathbf{w}^\mathsf{T} \right\|_F^2$$

- $\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X}$
- λ : the [blank] of the covariance matrix
- w: the [blank] of the covariance matrix

A little image

Rank-1 approximations

Increasing rank approximations

We can do the same kind of magic with the data itself

Singular value decomposition can be used to approximate a rectangular matrix with a lower ranked matrix of the same dimension

$$\arg\min_{\|\mathbf{u}\|_2^2 = \|\mathbf{w}\|_2^2 = 1} \|\mathbf{X} - \delta \mathbf{u} \mathbf{w}^{\mathsf{T}}\|_F^2$$

- δ : singular value
- u: left singular vector
- w: right singular vector

Rank 1 approximation

Rank-1 approximations

Increasing rank approximations

CONSTRAINING THE SVD

LASSO

LASSO is a (relatively) recent technique originally intended for regression problems:

$$\underset{\beta}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} \text{ such that } \|\boldsymbol{\beta}\|_{1} \leq r$$

or the dual form

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1}$$

- the obtained weights are sparse (with zeros)
- the non-zeros coefficients correspond to important variables
- the result is biased
- selecting λ is done through cross-validation

Sparse GSVD (sGSVD) and sparse MCA (sMCA)

- Sparsify the GSVD: the sparse GSVD (sGSVD)
 - Intersection of 3 spaces
 - L_1 -ball
 - L_2 -ball with weights $P^TW_XP = I$
 - Orthogonal space:

- Sparse MCA (sMCA)
 - Generalize L_1 -constraint
 - Group constraint:
 - $L_{(1,2)}$ -norm: sum of L_2 -norms
 - L_2 -norms: [(Level 1 loading)² + (Level 2 loading)² + ...]

Optimization problem

$$(\delta_{\ell}, \mathbf{p}_{\ell}, \mathbf{q}_{\ell}) = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \| \mathbf{X} - \delta \mathbf{p}^{\top} \mathbf{q} \|_{2}^{2}$$

$$\mathbf{p}^{\top} \mathbf{M} \mathbf{p} = \mathbf{q}^{\top} \mathbf{W} \mathbf{q} = 1$$
such that
$$\begin{cases} \mathbf{p}^{\top} \mathbf{M} \mathbf{p}_{\ell'} = \mathbf{q}^{\top} \mathbf{W} \mathbf{q}_{\ell'} = 0, \forall \ell' < \ell \\ \| \mathbf{p} \|_{1} \leq s_{\mathbf{p}, \ell} \text{ and } \| \mathbf{q} \|_{1} \leq s_{\mathbf{q}, \ell} \end{cases}$$

Lost & Found

- Transition formulas: from rows to columns and back: pseudoversion
- Supplementary projection: pseudo-inverse projector
- Asymmetric projection ($\lambda = 1$): kept
- Distributional equivalence: kept
- Nested Solutions (i.e., **X** vs. **X** rc^T) and ($\lambda_1 = 1$): Lost

What are the parameters?

- M and W = masses, weights... so metrics
- $s_{\mathbf{p},\ell}$ and $s_{\mathbf{q},\ell}$ = sparsity parameters, between 1 (strong sparsity), and $\sqrt{\text{dimension}}$ (no sparsity)