Questionnaire & Join MS teams today

Please help me understand you more

How to apply MS account

- And, Join MS teams right after the class
- Code: ig0604f

Institute of Artificial Intelligence Innovation Department of Computer Science

Operating System Lecture 01: Introduction

Shuo-Han Chen (陳碩漢), shch@nycu.edu.tw

Wed. 10:10 - 12:00 EC115 + Fri. 11:10 - 12:00 Online

Course Schedule

W	Date	Lecture	Online	Homework
1	Sept. 4	Lec01: Couse Overview & Historical Prospective		
2	Sept. 11	Lec02: Introduction	V	
3	Sept. 18	Lec03: OS Structure	V	HW01
4	Sept. 25	Lec04: Processes Concept	V	
5	Oct. 2	Lec08: Memory Management	V	
6	Oct. 9	Lec09: Virtual Memory Management	V	HW02
7	Oct. 16	Lec05: Process Scheduling	V	
8	Oct. 23	School Midterm Exam		
9	Oct. 30	Lec06: Process Synchronization	V	
10	Nov. 6	Lec07: Deadlocks	V	HW03
11	Nov. 13	Lec10: File System Interface	V	
12	Nov. 20	School Event – No class		
13	Nov. 27	Lec11: File System Implementation	V	HW04
14	Dec. 4	Lec12: Mass Storage System	V	
15	Dec. 11	Lec13: IO Systems	V	
16	Dec. 18	School Final Exam		

Computer System

- Four components:
 - Hardware, OS, Application, User

Computer System

- User people, machines, other computers
- Application define the ways in which the system resources are used to solve the computing problems
- Operating System controls and coordinates the use of the hardware/resources
- Hardware provides basic computing resources (CPU, memory, I/O devices)

What is an Operating System

 An operating system is the "permanent" software that controls/abstracts hardware resources for user applications

Multi-tasking Operating Systems

- Manages resources and processes to support different user applications
- Provides Applications Programming Interface (API) for user applications

General-Purpose Operating Systems

Definition of an Operating System

- Resource allocator manages and allocates resources to insure efficiency and fairness
- Control program controls the execution of user programs and operations of I/O devices to prevent errors and improper use of computer
- Kernel the one program running at all times (all else being system/application programs)
 - No universally accepted definition

Goals of an Operating System

Convenience

- make computer system easy to use and compute
- In particular for small PC

Efficiency

- use computer hardware in an efficient manner
- Especially for large, shared, multiuser systems

- Two goals are sometimes contradictory
- In the past, efficiency is more important

Importance of an Operating System

- System API are the only interface between user applications and hardware
 - API are designed for general-purpose, not performance driven
- OS code cannot allow any bug
 - Any break (e.g. invalid access) causes reboot
- The owner of OS technology controls the software & hardware industry
- Operating systems and computer architecture influence each other

Modern Operating Systems

- x86 platform
 - Linux (CentOS, Redhat, openSUSE, Ubuntu, etc)
 - Windows (Windows 10, XP, 2000, etc)
- PowerPC platform Mac OS
- Smartphone Mobile OS
 - Android, iOS, Windows10 Mobile, Ubuntu Touch
- Embedded OS
 - Embedded Linux(Andriod, WebOS), Windows CE
 - Raspberry Pi, Xbox, etc

Review Slides (1)

- Definition of OS?
- Goals of OS?
- Importance of OS?

Computer-System Organization

- One or more CPUs, device controllers connect through common bus providing access to shared memory
- Goal: Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operations

- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- I/O is from the device to controller's local buffer
- CPU moves data from/to memory to/from local buffers in device

Busy/wait output

- Simplest way to program device
 - Use instructions to test when device is ready

```
#define OUT CHAR 0x1000
                                  // device data register
#define OUT STATUS 0x1001
                                  // device status register
current char = mystring;
while (*current_char != '\0') {
    poke(OUT_CHAR,*current_char);
    while (peek(OUT_STATUS) != 0); // busy waiting
    current char++;
```

Interrupt I/O

- Busy/wait is very inefficient
 - CPU can't do other work while testing device
 - Hard to do simultaneous I/O
- Interrupts allow a device to change the flow of control in the CPU
 - Causes subroutine call to handle device

Interrupt I/O Timeline

Interrupt time line for I/O on a single process

Interrupt-Driven I/O

Interrupt

- Modern OS are interrupt driven
- The occurrence of an event is signaled by an interrupt from either hardware or software.
 - Hardware may trigger an interrupt at any time by sending a signal to CPU
 - Software may trigger an interrupt either by an error (division by zero or invalid memory access) or by a user request for an operating system service (system call)
- Software interrupt also called trap

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the *interrupt vector*, which contains the addresses (function pointer) of all the service (i.e. interrupt handler) routines
- Interrupt architecture must save the address of the interrupted instruction
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt

Review Slides (2)

- What is interrupt and how does it work?
- What is the difference between trap and interrupt?

Storage-Device Hierarchy

Storage-Device Hierarchy

- Storage systems organized in hierarchy.
 - Speed , Cost, Volatility
- Main memory only large storage media that the CPU can access directly
 - RAM: Random Access Memory
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
 - Magnetic disk

RAM: Random-Access Memory

- DRAM (Dynamic RAM):
 - Need only one transistor
 - Consume less power
 - values must be periodically refreshed
 - Access Speed: >= 30ns
- SRAM (Static RAM):
 - Need six transistors
 - Consume more power
 - Access Speed: 10ns~30ns
 - usage: cache memory

Disk Mechanism

- Speed of magnetic disk
 - Transfer time = data size / transfer rate
 - Positioning time (random access time)
 - seek time (cylinder) + rotational latency (sector)

Performance of Various Levels of Storage

	Level	1	2	3	4
	Name	registers	cache	main memory	disk storage
	Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
	Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
	Access time (ns)	0.25 – 0.5	0.5 – 25	80 – 250	5,000.000
	Bandwidth (MB/sec)	20,000 - 100,000	5000 – 10,000	1000 – 5000	20 – 150
	Managed by	compiler	hardware	operating system	operating system
	Backed by	cache	main memory	disk	CD or tape

Caching

- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there

Coherency and Consistency Issue

- The same data may appear in different levels
 - Issue: Change the copy in register make it inconsistent with other copies
- Single task accessing:
 - No problem, always use the Highest level copy
- Multi-task accessing:
 - Need to obtain the most recent value
- Distributed system:
 - Difficult b.c. copies are on different computers

Review Slides (3)

- Why storage hierarchy?
- Caching? involved issues?

Hardware Protection

- Dual-Mode Operation
- I/O Protection
- Memory Protection
- CPU Protection

Dual-Mode Operation

- What to protect?
 - Sharing system resources requires OS to ensure that an incorrect program cannot cause other programs to execute incorrectly
- Provide hardware support to differentiate between at least two modes of operations
 - User mode execution done on behalf of a user
 - Monitor mode (also kernel mode or system mode) execution done on behalf of operating system

Dual-Mode Operation (Cont'd)

- Mode bit added to computer hardware to indicate the current mode: kernel (0) or user (1)
- When an interrupt/trap or fault occurs, hardware switches to monitor mode

- Privileged instructions
 - Executed only in monitor mode
 - Requested by users (system calls)

I/O Protection

- All I/O instructions are privileged instructions
 - Any I/O device is shared between users
- Must ensure that a user program could never gain control of the computer in monitor mode (i.e., a user program that, as part of its execution, stores a **new address** in the interrupt vector)

Memory Protection

- Protect
 - Interrupt vector and the interrupt service routines
 - Data access and over-write from other programs
- HW support: two registers for legal address determination:
 - Base register holds the smallest legal physical memory address
 - Limit register contains the size of the range
- Memory outside the defined range is protected

Use of Base and Limit Register

Hardware Address Protection

CPU Protection

- Prevent user program from not returning control
 - getting stuck in an infinite loop
 - not calling system services
- HW support: Timer—interrupts computer after specified period
 - Timer is decremented every clock tick
 - When timer reaches the value 0, an interrupt occurs
- Timer commonly used to implement time sharing
- Load-timer is a privileged instruction

Review Slides (4)

- Dual-mode Operation?
- CPU protection?
- Memory protection?

Reading Material & HW

- Chap 1
- Problem set
 - 1.8: What is the purpose of interrupt? How does an interrupt differ from trap? Can traps be generated intentionally by a user program? If so, for what purpose?
 - 1.10: some computer systems do not provide a privileged mode of operation in hardware. Is it possible to construct a secure operating system for these computer systems? Give arguments both that it is and that it is not possible.
 - Why dual mode operation can protect the system?

Q&A

Thank you for your attention