"Tensión en los componentes de RLC y respuestas ante entradas básicas"

Componente	Frecuencia	Tiempo
Inductor	$V_l = L * S * I_{(s)}$	$V_L = L \frac{di}{dt}$
Capacitor	$V_c = \frac{I_{(s)}}{C * S}$	$V_C = \frac{1}{C} \int_0^t I_C dt$
Resistencia	$V_R = I_{(S)} * R$	$V_R = I * R$

Sabiendo que L=1 μ H, R=1K Ω y C=1 μ f.

Entradas ($V_{in}(s)$)

Impulso =1

Escalón Unitario=
$$\frac{1}{s}$$

Rampa =
$$\frac{1}{s^2}$$

• Ecuaciones por utilizar (General de Kirchhoff):

Para resistencia	$\frac{V_R(S)}{V_{in}(S)} = \frac{S * R}{L * S^2 + R * S + \frac{1}{C}}$
Para inductor	$\frac{V_L(S)}{V_{in}(S)} = \frac{S^2 * L}{L * S^2 + R * S + \frac{1}{C}}$
Para Capacitor	$\frac{V_C(S)}{V_{in}(S)} = \frac{S}{CR * S^2 + CL * S^3 + S}$

Resistencia

$$\frac{\boldsymbol{V_R(S)}}{\boldsymbol{V_{in}(S)}} = \frac{S*R}{L*S^2 + R*S + \frac{1}{C}}$$

o Impulso

$$V_R(s) = \frac{S*R}{L*s^2 + R*s + \frac{1}{C}}*1$$

laplace inverse (1*10^3*s)/(1*10^3s+1*10^-6*s^2+(1/1*10^-6))

 $\left(500\,000\,000\,e^{-\frac{1\,000\,000\,t}{500+\sqrt{249\,999}}}\left(499\,999\,e^{\frac{1\,000\,000\,t}{500+\sqrt{249\,999}}+\left(-500\,000\,000-1000\,000\,\sqrt{249\,999}}\right)t\right. + \\
\left.1000\,\sqrt{249\,999}\,e^{\frac{1\,000\,000\,t}{500+\sqrt{249\,999}}+\left(-500\,000\,000-1\,000\,000\,\sqrt{249\,999}}\right)t} - 1\right)\right)\right/ \\
\left(249\,999+500\,\sqrt{249\,999}\right)$

☆日

Input interpretation:

$$\mathcal{L}_{s}^{-1} \left[\frac{1 \times 10^{3} \text{ s}}{1 \times 10^{3} \text{ s} + 1 \times 10^{-6} \text{ s}^{2} + \frac{1}{1 \times 10^{-6}}} \right] (t)$$

Escalón

$$V_R(s) = \frac{1000s}{1x10^{-6} * s^2 + 1000 * s + \frac{1}{1x10^{-6}}} * \frac{1}{s}$$

laplace inverse (1*10^3*s)/(1*10^3s+1*10^-6*s^2+(1/1*10^-6))(1/s)

☆ 8

$$\mathcal{L}_{s}^{-1} \left[\frac{1 \times 10^{3} s}{1 \times 10^{3} s + 1 \times 10^{-6} s^{2} + \frac{1}{1 \times 10^{-6}}} \times \frac{1}{s} \right] (t)$$

$$-\left(\left[500\left(500 + \sqrt{249999}\right)e^{-\frac{1000000t}{500 + \sqrt{249999}}}\right]e^{-\frac{1000000t}{500 + \sqrt{249999}}}\left(e^{\frac{1000000t}{500 + \sqrt{249999}} + \left(-500000000 - 10000000\sqrt{249999}\right)t} - 1\right)\right) / \left(249999 + 500\sqrt{249999}\right)$$

o Rampa

$$V_R(s) = \frac{1000s}{1x10^{-6} * s^2 + 1000 * s + 1x10^6} * \frac{1}{s^2}$$

$$\mathcal{L}_{s}^{-1} \Big[\frac{1 \times 10^{3} \ s}{1 \times 10^{3} \ s + 1 \times 10^{-6} \ s^{2} + \frac{1}{1 \times 10^{-6}}} \times \frac{1}{s^{2}} \, \Big] (t)$$

☆ B

$$1000 \left(\frac{1}{1\,000\,000} - \left(e^{-\frac{1\,000\,000\,t}{500 + \sqrt{249\,999}}} \left(-e^{\frac{1\,000\,000\,t}{500 + \sqrt{249\,999}} + \left(-500\,000\,000 - 1\,000000\,\sqrt{249\,999} \right) t} + 499\,999 + 1000\,\sqrt{249\,999} \right) \right) \right) \right)$$

- Capacitor:
 - o Impulso

$$V_C(S) = \frac{S}{CR * S^2 + CL * S^3 + S}$$

laplace inverse (s)/(1*10^-3*s^2+1*10^-12*s^3+s)

$$\mathcal{L}_{s}^{-1} \left[\frac{s}{1 \times 10^{-3} \ s^{2} + 1 \times 10^{-12} \ s^{3} + s} \right] (t)$$

$$- \left(\left[500\ 000 \left(500 + \sqrt{249\ 999} \right) e^{-\frac{1\ 000\ 000\ t}{500 + \sqrt{249\ 999}} \right) e^{-\frac{1\ 000\ 000\ t}{500 + \sqrt{249\ 999}} \right] t} - 1 \right] \right) / t$$

 $(249999 + 500 \sqrt{249999})$

$$V_C(S) = \frac{S}{CR * S^2 + CL * S^3 + S} * \frac{1}{S}$$

laplace inverse (s)/(1*10^-3*s^2+1*10^-12*s^3+s)(1/s)

tr E

$$\mathcal{L}_{s}^{-1}\Big[\frac{s}{1\times 10^{-3}\,s^2+1\times 10^{-12}\,s^3+s}\times \frac{1}{s}\Big](t)$$

$$1 - \left(e^{-\frac{1000000t}{500 + \sqrt{249\,999}}} - \left(e^{-\frac{1000000t}{500 + \sqrt{249\,999}} + \left(-500000\,000 - 1000\,000\sqrt{249\,999}}\right)t} + 499\,999 + 1000\sqrt{249\,999}\right)\right) / \left(2\left(249\,999 + 500\sqrt{249\,999}\right)\right)$$

o Rampa

$$V_C(S) = \frac{S}{CR * S^2 + CL * S^3 + S} * \frac{1}{S^2}$$

laplace inverse (s)/(1*10^-3*s^2+1*10^-12*s^3+s)(1/s^2)

A .

$$\mathcal{L}_{s}^{-1} \Big[\frac{s}{1 \times 10^{-3} \; s^2 + 1 \times 10^{-12} \; s^3 + s} \times \frac{1}{s^2} \Big] (t)$$

$$\left(e^{-\frac{1000000t}{500+\sqrt{249\,999}}} \left(-500\,e^{\frac{1000000t}{500+\sqrt{249\,999}}} + \left(-500\,000\,000-1000\,000\,\sqrt{249\,999}\right)t + \sqrt{249\,999}\,e^{\frac{1000000t}{500+\sqrt{249\,999}}} + \left(-500000\,000-1000\,000\,\sqrt{249\,999}\right)t + \sqrt{249\,999\,500} + 999\,999\,\sqrt{249\,999}\right)\right) / \left(2\,000\,000\left(249\,999 + 500\,\sqrt{249\,999}\right)\right) + t - \frac{1}{1000}$$

Inductor

$$V_L(S) = \frac{S^2 * L}{L * S^2 + R * S + \frac{1}{C}} * 1$$

o Impulso

$$\mathcal{L}_{s}^{-1} \left[\frac{1 \times 10^{-6} \, s^{2}}{1 \times 10^{3} \, s + 1 \times 10^{-6} \, s^{2} + \frac{1}{1 \times 10^{-6}}} \right] (t)$$

$$\frac{1}{1\,000\,000} \left(1\,000\,000\,\delta(t) - \left(500\,000\,000\,000\,e^{-\frac{1\,000\,000\,t}{500+\sqrt{249\,999}}}\right)t - \left(499\,998\,500\,e^{\frac{1\,000\,000\,t}{500+\sqrt{249\,999}}} + \left(-500\,000\,000-1000\,000\,\sqrt{249\,999}\right)t + \left(-500\,000\,000-1000\,000\,\sqrt{249\,999}\right)t - \left(-500\,0000\,000-1000\,000\,000\,\sqrt{249\,999}\right)t - \left(-500\,000\,000-1000\,000\,000\,000\right)t - \left(-500\,000\,000-10$$

Escalón Unitario:

 $\mathcal{L}_{s}^{-1} \Big[\frac{1 \times 10^{-6} \, s^{2}}{1 \times 10^{3} \, s + 1 \times 10^{-6} \, s^{2} + \frac{1}{1 \times 10^{-6}}} \times \frac{1}{s} \Big] (t)$ $\left(e^{-\frac{1000000 \, t}{500 + \sqrt{249 \, 999}}} \left(\frac{1000000 \, t}{499 \, 999} \, e^{\frac{1000000 \, t}{500 + \sqrt{249 \, 999}}} + \left(-500000 \, 000 - 1000 \, 000 \sqrt{249000} \right) t + \frac{1000 \, 000 \, t}{500 + \sqrt{249 \, 999}} \right) \left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(2 \left(249 \, 999 + 500 \, \sqrt{249 \, 999} \right) \right)$ $\left(3 \left(249 \, 999 + 500 \, \sqrt{249$

laplace inverse (1*10^-6*s^2)/(1*10^3s+1*10^-6*s^2+(1/1*10^-6))(1/s^2)

$$\mathcal{L}_{s}^{-1} \Big[\frac{1 \times 10^{-6} \, s^{2}}{1 \times 10^{3} \, s + 1 \times 10^{-6} \, s^{2} + \frac{1}{1 \times 10^{-6}}} \times \frac{1}{s^{2}} \, \Big] \, (t)$$

$$\frac{\left(500 + \sqrt{249999}\right)e^{-\frac{1000000t}{500 + \sqrt{2499999}}\left(e^{\frac{1000000t}{500 + \sqrt{2499999}} + \left(-500000000 - 1000000\sqrt{249999}\right)t} - 1\right)}{2000000\left(249999 + 500\sqrt{249999}\right)}$$

