Anelli euclidei, PID e UFD

Gabriel Antonio Videtta

31 dicembre 2022

Indice

	D e UFD
2.1	Irriducibili e prime definizioni
2.2	PID e MCD
2.3	L'algoritmo di Euclide
2.4	UFD e fattorizzazione
Egg	
Ese	
3.1	empi notevoli di anelli euclidei ${ m I}$ numeri interi: ${ m Z}$
$3.1 \\ 3.2$	empi notevoli di anelli euclidei I numeri interi: \mathbb{Z}
$3.1 \\ 3.2$	empi notevoli di anelli euclidei ${ m I}$ numeri interi: ${ m Z}$
3.1 3.2 3.3	empi notevoli di anelli euclidei I numeri interi: \mathbb{Z}

1 Anelli euclidei e prime proprietà

Nel corso della storia della matematica, numerosi studiosi hanno tentato di generalizzare – o meglio, accomunare a più strutture algebriche – il concetto di divisione euclidea che era stato formulato per l'anello dei numeri interi $\mathbb Z$ e, successivamente, per l'anello dei polinomi $\mathbb K[x]$. Lo sforzo di questi studiosi ad oggi è converso in un'unica definizione, quella di anello euclideo, di seguito presentata.

Definizione 1.1. Un **anello euclideo** è un dominio d'integrità D^1 sul quale è definita una funzione g detta **funzione grado** o norma soddisfacente le seguenti proprietà:

- $g: D \setminus \{0\} \to \mathbb{N}$,
- $\forall a, b \in D \setminus \{0\}, g(a) \le g(ab),$
- $\forall a \in D, b \in D \setminus \{0\}, \exists q, r \in D \mid a = bq + r \in r = 0 \lor g(r) < g(q).$

¹Difatti, nella letteratura inglese, si parla di *Euclidean domain* piuttosto che di anello.

Di seguito vengono presentate alcune definizioni, correlate alle proprietà immediate di un anello euclideo.

Definizione 1.2. Dato un anello euclideo E, siano $a \in E$ e $b \in E \setminus \{0\}$. Si dice che $b \mid a$, ossia che b divide a, se $\exists c \in E \mid a = bc$.

Osservazione. Si osserva che, per ogni anello euclideo E, qualsiasi $a \in E$ divide 0. Infatti, 0 = a0.

Proposizione 1.1. Dato un anello euclideo $E, a \mid b \land b \nmid a \implies g(a) < g(b)$.

Dimostrazione. Poiché $b \nmid a$, esistono q, r tali che a = bq + r, con g(r) < g(b). Dal momento però che $a \mid b$, $\exists c \mid b = ac$. Pertanto $a = ac + r \implies r = a(1 - c)$. Dacché $1 - c \neq 0$ – altrimenti r = 0, f –, così come $a \neq 0$, si deduce dalle proprietà della funzione grado che $g(a) \leq g(r)$. Combinando le due disuguaglianze, si ottiene la tesi: g(a) < g(b).

Proposizione 1.2. g(1) è il minimo di Imm g, ossia il minimo grado assumibile da un elemento di un anello euclideo E.

Dimostrazione. Sia $a \in E \setminus \{0\}$, allora, per le proprietà della funzione grado, $g(1) \leq g(1a) = g(a)$.

Teorema 1.1. Sia $a \in E \setminus \{0\}$, allora $a \in E^* \iff g(a) = g(1)$.

 ${\it Dimostrazione}.$ Dividiamo la dimostrazione in due parti, ognuna corrispondente a una implicazione.

 (\Longrightarrow) Sia $a \in E^*$, allora $\exists b \in E^*$ tale che ab=1. Poiché sia a che b sono diversi da 0, dalle proprietà della funzione grado si desume che $g(a) \leq g(ab) = g(1)$. Poiché, dalla *Proposizione 1.2*, g(1) è minimo, si conclude che g(a) = g(1).

(\iff) Sia $a \in E \setminus \{0\}$ con g(a) = g(1). Allora esistono q, r tali che 1 = aq + r. Vi sono due possibilità: che r sia 0, o che g(r) < g(a). Tuttavia, poiché g(a) = g(1), dalla *Proposizione 1.2* si desume che g(a) è minimo, e quindi che r è nullo. Si conclude quindi che aq = 1, e dunque che $a \in E^*$.

2 PID e UFD

2.1 Irriducibili e prime definizioni

Come accade nell'aritmetica dei numeri interi, anche in un dominio è possibile definire una nozione di *primo*. In un dominio possono essere tuttavia definiti due tipi di "primi", gli elementi *irriducibili* e gli elementi *primi*.

Definizione 2.1. In un dominio A, si dice che $a \in A \setminus A^*$ è **irriducibile** se $\exists b$, $c \mid a = bc \implies b \in A^*$ o $c \in A^*$.

Osservazione. Dalla definizione si escludono gli invertibili di A per permettere di definire meglio il concetto di fattorizzazione in seguito. Infatti, se li avessimo inclusi, avremmo che ogni dominio sarebbe a fattorizzazione non unica, dal momento che a = bc potrebbe essere scritto anche come a = 1bc.

Definizione 2.2. In un dominio A, si dice che $a \in A \setminus A^*$ è **primo** se $a \mid bc \implies a \mid b \lor a \mid c$.

Proposizione 2.1. Se $a \in A$ è primo, allora a è anche irriducibile.

Dimostrazione. Si dimostra la tesi contronominalmente. Sia a non irriducibile. Se $a \in A^*$, allora a non può essere primo. Altrimenti a = bc con b, $c \in A \setminus A^*$.

Chiaramente $a \mid bc$, ossia sé stesso. Senza perdità di generalità, se $a \mid b$, esiste $d \in A$ tale per cui b = ad. Pertanto, $a = adc \implies a(1 - dc) = 0$. Poiché A è un dominio, uno dei due fattori deve essere nullo. a non può esserlo, perché 0 non può dividere b. Tuttavia neanche dc - 1 può essere nullo, altrimenti si verificherebbe che dc = 1, e quindi che $c \in A^*$, f.

Definizione 2.3. Si dice che due elementi non nulli a, b appartenenti a un anello euclideo E sono **associati** se $a \mid b \in b \mid a$.

Proposizione 2.2. $a \in b$ sono associati $\iff \exists c \in E^* \mid a = bc \in a, b$ entrambi non nulli.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\implies) Se a e b sono associati, allora $\exists d, e$ tali che a=bd e che b=ae. Combinando le due relazioni si ottiene:

$$a = aed \implies a(1 - ed) = 0.$$

Poiché a è diverso da zero, si ricava che ed=1, ossia che $d, e \in E^*$, e quindi la tesi.

(\iff) Se a e b sono entrambi non nulli e $\exists c \in E^* \mid a = bc$, b chiaramente divide a. Inoltre, $a = bc \implies b = ac^{-1}$, e quindi anche a divide b. Pertanto a e b sono associati.

Proposizione 2.3. Siano $a \in b$ due associati in E. Allora $a \mid c \implies b \mid c$.

Dimostrazione. Poiché a e b sono associati, per la Proposizione 2.2, $\exists d \in E^*$ tale che a = db. Dal momento che $a \mid c$, $\exists \alpha \in E$ tale che $c = \alpha a$, quindi:

$$c = \alpha a = \alpha db$$
,

da cui la tesi. □

Proposizione 2.4. Siano $a \in b$ due associati in E. Allora (a) = (b).

Dimostrazione. Poiché a e b sono associati, $\exists d \in E^*$ tale che a = db. Si dimostra l'uguaglianza dei due insiemi.

Sia $\alpha = ak \in (a)$, allora $\alpha = dbk$ appartiene anche a (b), quindi $(a) \subseteq (b)$. Sia invece $\beta = bk \in (b)$, allora $\beta = d^{-1}ak$ appartiene anche a (a), da cui $(b) \subseteq (a)$. Dalla doppia inclusione si verifica la tesi, (a) = (b).

2.2 PID e MCD

Come accade per \mathbb{Z} , in ogni anello euclideo è possibile definire il concetto di massimo comun divisore, sebbene con qualche accortezza in più. Pertanto, ancor prima di definirlo, si enuncia la definizione di PID e si dimostra un teorema fondamentale degli anelli euclidei, che si ripresenterà in seguito come ingrediente fondamentale per la fondazione del concetto di MCD.

Definizione 2.4. Si dice che un dominio è un *principal ideal domain* $(PID)^2$ se ogni suo ideale è monogenerato.

Teorema 2.1. Sia E un anello euclideo. Allora E è un PID.

Dimostrazione. Sia I un ideale di E. Se I=(0), allora I è già monogenerato. Altrimenti si consideri l'insieme $g(I \setminus \{0\})$. Poiché $g(I \setminus \{0\}) \subseteq \mathbb{N}$, esso ammette un minimo per il principio del buon ordinamento.

Sia $m \in I$ un valore che assume tale minimo e sia $a \in I$. Poiché E è euclideo, $\exists q, r \mid a = mq + r$ con r = 0 o g(r) < g(m). Tuttavia, poiché $r = a - mg \in I$ e g(m) è minimo, necessariamente r = 0 – altrimenti r sarebbe ancor più minimo di m, f –, quindi $m \mid a$, $\forall a \in I$. Quindi $I \subseteq (m)$.

Dal momento che per le proprietà degli ideali $\forall a \in E, ma \in I$, si conclude che $(m) \subseteq I$. Quindi I = (m).

Adesso è possibile definire il concetto di massimo comun divisore, basandoci sul fatto che ogni anello euclideo è un PID.

Definizione 2.5. Sia D un dominio e siano $a, b \in D$. Si definisce massimo comun divisore (MCD) di a e b un generatore dell'ideale (a, b).

Osservazione. Questa definizione di MCD è una buona definizione dal momento che sicuramente esiste un generatore dell'ideale (a, b), dacché D è un PID.

Osservazione. Non si parla di un unico massimo comun divisore, dal momento che potrebbero esservi più generatori dell'ideale (a,b). Segue tuttavia che tutti questi generatori sono in realtà associati³. Quando si scriverà MCD(a,b) s'intenderà quindi uno qualsiasi di questi associati.

Teorema 2.2 (*Identità di Bézout*). Sia d un MCD di a e b. Allora $\exists \alpha, \beta$ tali che $d = \alpha a + \beta b$.

Dimostrazione. Il teorema segue dalla definizione di MCD come generatore dell'ideale (a,b). Infatti, poiché $d \in (a,b)$, esistono sicuramente, per definizione, α e β tali che $d = \alpha a + \beta b$.

Proposizione 2.5. Siano $a, b \in D$. Allora vale la seguente equivalenza:

$$d = \text{MCD}(a, b) \iff \begin{cases} d \mid a \land d \mid b \\ \forall c \text{ t.c. } c \mid a \land c \mid b, \ c \mid d \end{cases}$$

²Ossia un dominio a soli ideali principali, quindi monogenerati, proprio come da definizione.

³Infatti ogni generatore divide ogni altro elemento di un ideale, e così i vari generatori si dividono tra di loro. Pertanto sono associati.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

(\Longrightarrow) Poiché d è generatore dell'ideale (a,b), la prima proprietà segue banalmente.

Inoltre, per l'*Identità di Bézout*, $\exists \alpha$, β tali che $d = \alpha a + \beta b$. Allora, se $c \mid a$ e $c \mid b$, sicuramente esistono γ e δ tali che $a = \gamma c$ e $b = \delta c$. Pertanto si verifica la seconda proprietà, e quindi la tesi:

$$d = \alpha a + \beta b = \alpha \gamma c + \beta \delta c = c(\alpha \gamma + \beta \delta).$$

(\iff) Sia m = MCD(a, b). Dal momento che d divide sia a che b, d deve dividere, per l'implicazione scorsa, anche m. Per la seconda proprietà, m divide d a sua volta. Allora d è un associato di m, e quindi, dalla *Proposizione 2.4*, (m) = (d) = (a, b), da cui d = MCD(a, b).

Proposizione 2.6. Se $a \mid bc \in d = MCD(a, b) \in D^*$, allora $a \mid c$.

Dimostrazione. Per l'Identità di Bézout $\exists \alpha, \beta$ tali che $\alpha a + \beta b = d$. Allora, poiché $a \mid bc, \exists \gamma$ tale che $bc = a\gamma$. Si verifica quindi la tesi:

$$\alpha a + \beta b = d \implies \alpha ac + \beta bc = dc \implies ad^{-1}(\alpha c + \beta \gamma) = c.$$

Lemma 2.1. Se a è un irriducibile di un PID D, allora $\forall b \in D$, $(a,b) = D \lor (a,b) = (a)$, o equivalentemente $MCD(a,b) \in D^*$ o MCD(a,b) = a.

Dimostrazione. Dacché $\mathrm{MCD}(a,b) \mid a$, le uniche opzioni, dal momento che a è irriducibile, sono che $\mathrm{MCD}(a,b)$ sia un invertibile o che sia un associato di a stesso.

Teorema 2.3. Se a è un irriducibile di un PID D, allora a è anche un primo.

Dimostrazione. Siano b e c tali che $a \mid bc$. Per il Lemma 2.1, MCD(a,b) può essere solo un associato di a o essere un invertibile. Se è un associato di a, allora, per la Proposizione 2.3, poiché MCD(a,b) divide b, anche a divide b. Altrimenti MCD $(a,b) \in D^*$, e quindi, per la Proposizione 2.6, $a \mid c$.

2.3 L'algoritmo di Euclide

Per algoritmo di Euclide si intende un algoritmo che è in grado di produrre in un numero finito di passi un MCD tra due elementi a e b non entrambi nulli di un anello euclideo⁴. L'algoritmo classico è di seguito presentato:

⁴Si richiede che l'anello sia euclideo e non soltanto che sia un PID, dal momento che l'algoritmo usufruisce delle proprietà della funzione grado.

```
\begin{split} e &\leftarrow \max(a,b); \\ d &\leftarrow \min(a,b); \\ \textbf{while } d > 0 \textbf{ do} \\ & \mid \begin{array}{c} m \leftarrow d; \\ d \leftarrow e \bmod d; \\ e \leftarrow m; \\ \textbf{end} \\ \end{split}
```

dove e è l'MCD ricercato e l'operazione mod restituisce un resto della divisione euclidea⁵.

Lemma 2.2. L'algoritmo di Euclide termina sempre in un numero finito di passi.

Dimostrazione. Se d è pari a 0, l'algoritmo termina immediatamente.

Altrimenti si può costruire una sequenza $(g(d_i))_{i\geq 1}$ dove d_i è il valore di d all'inizio di ogni i-esimo ciclo **while**. Ad ogni ciclo vi sono due casi: se d_i si annulla dopo l'operazione di mod, il ciclo si conclude al passo successivo, altrimenti, poiché d_i è un resto di una divisione euclidea, segue che $g(d_i) < g(d_{i-1})$, dove si pone $d_0 = \min(a, b)$.

Per il principio della discesa infinita, $(g(d_i))_{i\geq 1}$ non può essere una sequenza infinita, essendo strettamente decrescente. Quindi la sequenza è finita, e pertanto il ciclo **while** s'interrompe dopo un numero finito di passi.

Lemma 2.3. Sia $r = a \mod b$. Allora vale che (a, b) = (b, r).

Dimostrazione. Poiché $r=a \mod b$, $\exists q$ tale che a=qb+r. Siano k_1 e k_2 tali che $(k_1)=(a,b)$ e $(k_2)=(b,r)$. Dal momento che k_1 divide sia a che b, si ha che divide anche r. Siano α , β tali che $a=\alpha k_1$ e $b=\beta k_1$. Si verifica infatti che:

$$r = a - qb = \alpha k_1 - q\beta k_1 = k_1(\alpha - q\beta).$$

Poiché k_1 divide sia b che r, per le proprietà del MCD, k_1 divide anche k_2 . Analogamente, k_2 divide k_1 . Pertanto k_1 e k_2 sono associati, e dalla *Proposizione 2.4* generano quindi lo stesso ideale, da cui la tesi.

Teorema 2.4. L'algoritmo di Euclide restituisce sempre correttamente un MCD tra due elementi a e b non entrambi nulli in un numero finito di passi.

Dimostrazione. Per il Lemma 2.2, l'algoritmo sicuramente termina. Se d è pari a 0, allora l'algoritmo termina restituendo e. Il valore è corretto, dal momento che, senza perdità di generalità, se b è nullo, allora $\mathrm{MCD}(a,b)=a$: infatti a divide sia sé stesso che 0, e ogni divisore di a è sempre un divisore di 0.

Se invece d non è pari a 0, si scelga il d_n tale che $g(d_n)$ sia l'ultimo elemento della sequenza $(g(d_i))_{i\geq 1}$ definita nel Lemma 2.2. Per il Lemma 2.3, si ha la seguente uguaglianza:

⁵Ossia $a \mod b$ restituisce un r tale che $\exists q \mid a = bq + r$ con r = 0 o g(r) < g(q).

$$(e_0, d_0) = (d_0, d_1) = \cdots = (d_n, 0) = (d_n).$$

Poiché quindi d_n è generatore di $(e_0, d_0) = (a, b), d_n = MCD(a, b).$

2.4 UFD e fattorizzazione

Si enuncia ora la definizione fondamentale di UFD, sulla quale costruiremo un teorema fondamentale per gli anelli euclidei.

Definizione 2.6. Si dice che un dominio D è uno unique factorization domain $(\mathbf{UFD})^6$ se ogni $a \in D$ non nullo e non invertibile può essere scritto in forma unica come prodotto di irriducibili, a meno di associati.

Lemma 2.4. Sia E un anello euclideo. Allora ogni elemento $a \in E$ non nullo e non invertibile può essere scritto come prodotto di irriducibili.

Dimostrazione. Si definisca A nel seguente modo:

$$A = \{g(a) \mid a \in E \setminus (E^* \cup \{0\}) \text{ non sia prodotto di irriducibili}\}.$$

Se $A \neq \emptyset$, allora, poiché $A \subseteq \mathbb{N}$, per il principio del buon ordinamento, esiste un $m \in E$ tale che g(m) sia minimo. Sicuramente m non è irriducibile – altrimenti $g(m) \notin A$, \mathscr{E} –, quindi m = ab con $a, b \in E \setminus E^*$.

Poiché $a \mid m$, ma $m \nmid a$ – altrimenti a e m sarebbero associati, e quindi b sarebbe invertibile –, si deduce che g(a) < g(m), e quindi che $g(a) \notin A$. Allora a può scriversi come prodotto di irriducibili. Analogamente anche b può scriversi come prodotto di irriducibili, e quindi m, che è il prodotto di a e b, è prodotto di irriducibili, f.

Quindi $A = \emptyset$, e ogni $a \in E$ non nullo e non invertibile è prodotto di irriducibili.

Teorema 2.5. Sia E un anello euclideo. Allora E è un UFD⁷.

Dimostrazione. Innanzitutto, per il Lemma 2.4, ogni $a \in E$ non invertibile e non nullo ammette una fattorizzazione.

Sia allora $a \in E$ non invertibile e non nullo. Affinché E sia un UFD, deve verificarsi la seguente condizione: se $a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s \in E$, allora r = s ed esiste una permutazione $\sigma \in S_r$ tale per cui σ associ a ogni indice i di un p_i un indice j di un q_j in modo tale che p_i e q_j siano associati.

Si procede per induzione.

⁶Ossia un dominio a fattorizzazione unica.

⁷In realtà questo teorema è un caso particolare di un teorema più generale: ogni PID è un UFD. Poiché la dimostrazione esula dalle intenzioni di questo articolo, si è preferito dimostrare il caso più familiare. Per la dimostrazione del teorema più generale si rimanda a [1, pp. 124-126].

(passo base) Se r = 1, allora a è irriducibile. Allora necessariamente s = 1, altrimenti a sarebbe prodotto di irriducibili, e quindi contemporaneamente anche non irriducibile. Inoltre esiste la permutazione banale $e \in S_1$ che associa p_1 a q_1 .

 $(passo\ induttivo)$ Si assume che valga la tesi se a è prodotto di r-1 irriducibili. Si consideri p_1 : poiché p_1 divide a, p_1 divide anche $q_1q_2\cdots q_s$. Dal momento che E, in quanto anello euclideo, è anche un dominio, dal $Teorema\ 2.3$, p_1 è anche primo, e quindi $p_1 \mid q_1$ o $p_1 \mid q_2 \cdots q_s$.

Se $p_1 \nmid q_1$ si reitera il procedimento su $q_2 \cdots q_s$, trovando in un numero finito di passi un q_j tale per cui $p_1 \mid q_j$. Allora si procede la dimostrazione scambiando $q_1 \in q_j$.

Poiché q_1 è irriducibile, p_1 e q_1 sono associati, ossia $q_1 = kp_1$ con $k \in E^*$. Allora $p_1 \cdots p_r = q_1 \cdots q_s = kp_1 \cdots q_s$, quindi, dal momento che $p_1 \neq 0$ ed E è un dominio:

$$p_1(p_2\cdots p_r - kq_2\cdots q_s) = 0 \implies p_2\cdots p_r = kq_2\cdots q_s.$$

Tuttavia il primo membro è un prodotto r-1 irriducibili, pertanto r=s ed esiste un $\sigma \in S_{r-1}$ che associa ad ogni irriducibile p_i un suo associato q_i . Allora si estende σ a S_r mappando p_1 a q_1 , verificando la tesi.

3 Esempi notevoli di anelli euclidei

3.1 I numeri interi: \mathbb{Z}

Senza ombra di dubbio l'esempio più importante di anello euclideo – nonché l'esempio da cui si è generalizzata proprio la stessa nozione di anello euclideo – è l'anello dei numeri interi.

In questo dominio la funzione grado è canonicamente il valore assoluto:

$$q: \mathbb{Z} \setminus \{0\} \to \mathbb{N}, k \mapsto |k|$$
.

Infatti, chiaramente $|a| \leq |ab| \ \forall a, b \in \mathbb{Z} \setminus \{0\}$. Inoltre esistono – e sono anche unici, a meno di segno – $q, r \in \mathbb{Z} \mid a = bq + r$, con $r = 0 \lor |r| < |q|$.

Dal momento che così si verifica che \mathbb{Z} è un anello euclideo, il *Teorema fondamentale dell'aritmetica* è una conseguenza del *Teorema 2.5*.

3.2 I campi: \mathbb{K}

Ogni campo \mathbb{K} è un anello euclideo, seppur banalmente. Infatti, eccetto proprio per 0, ogni elemento è "divisibile" per ogni altro elemento: siano $a, b \in \mathbb{K}$, allora $a = ab^{-1}b$.

Si definisce quindi la funzione grado come la funzione nulla:

$$g: \mathbb{K}^* \to \mathbb{N}, a \mapsto 0.$$

Chiaramente g soddisfa il primo assioma della funzione grado. Inoltre, poiché ogni elemento è "divisibile", il resto è sempre zero – non è pertanto necessario verificare nessun'altra proprietà.

3.3 I polinomi di un campo: $\mathbb{K}[x]$

I polinomi di un campo \mathbb{K} formano un anello euclideo rilevante nello studio dell'algebra astratta. Come suggerisce la terminologia, la funzione grado in questo dominio coincide proprio con il grado del polinomio, ossia si definisce come:

$$g: \mathbb{K}[x] \setminus \{0\} \to \mathbb{N}, f(x) \mapsto \deg f.$$

Si verifica facilmente che $g(a(x)) \leq g(a(x)b(x)) \ \forall a(x), b(x) \in \mathbb{K}[x] \setminus \{0\}$, mentre la divisione euclidea – come negli interi – ci permette di concludere che effettivamente $\mathbb{K}[x]$ soddisfa tutti gli assiomi di un anello euclideo⁸.

Esempio 3.1. Sia $\alpha \in \mathbb{K}$ e sia $\varphi_{\alpha} : \mathbb{K}[x] \to \mathbb{K}$, $f(x) \mapsto f(\alpha)$ la sua valutazione polinomiale in $\mathbb{K}[x]$. φ_{α} è un omomorfismo, il cui nucleo è rappresentato dai polinomi in $\mathbb{K}[x]$ che hanno α come radice. Poiché $\mathbb{K}[x]$ è un PID, Ker φ deve essere monogenerato. $x - \alpha \in \text{Ker } \varphi$ è irriducibile, e quindi è il generatore dell'ideale. Si desume così che Ker $\varphi = (x - \alpha)$.

3.4 Gli interi di Gauss: $\mathbb{Z}[i]$

Un importante esempio di anello euclideo è il dominio degli interi di Gauss $\mathbb{Z}[i]$, definito come:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$$

Figura 1: Visualizzazione della divisione euclidea nel piano degli interi di Gauss.

La funzione grado coincide in particolare con il quadrato del modulo di un numero complesso, ossia:

$$g(z): \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}, a + bi \mapsto |a + bi|^2.$$

Il vantaggio di quest'ultima definizione è l'enfasi sul collegamento tra la funzione grado di \mathbb{Z} e quella di $\mathbb{Z}[i]$. Infatti, se $a \in \mathbb{Z}$, il grado di a in \mathbb{Z} e in $\mathbb{Z}[i]$ sono uno il quadrato dell'altro. In particolare, è possibile ridefinire il grado di \mathbb{Z} proprio in modo tale da farlo coincidere con quello di $\mathbb{Z}[i]$.

 $^{^{8}}$ Curiosamente i polinomi di $\mathbb{K}[x]$ e i campi \mathbb{K} sono gli unici anelli euclidei in cui resti e quozienti sono unici, includendo la scelta di segno (vd. [2]).

Teorema 3.1. $\mathbb{Z}[i]$ è un anello euclideo.

Dimostrazione. Si verifica la prima proprietà della funzione grado. Siano a, $b \in \mathbb{Z}[i] \setminus \{0\}$, allora $|a| \ge 1 \land |b| \ge 1$. Poiché $|ab| = |a| |b|^9$, si verifica facilmente che $|ab| \ge |a|$, ossia che $g(ab) \ge g(a)$.

Si verifica infine che esiste una divisione euclidea, ossia che $\forall a \in \mathbb{Z}[i], \forall b \in \mathbb{Z}[i] \setminus \{0\}, \exists q, r \in \mathbb{Z}[i] \mid a = bq + r \in r = 0 \lor g(r) < g(b)$. Come si visualizza facilmente nella *Figura 1*, tutti i multipli di *b* formano un piano con basi *b* e *ib*, dove sicuramente esiste un certo *q* tale che la distanza |r| = |a - bq| sia minima.

Se a è un multiplo di b, vale sicuramente che a = bq. Altrimenti dal momento che r è sicuramente inquadrato in uno dei tasselli del piano, vale sicuramente la seguente disuguaglianza, che lega il modulo di r alla diagonale di ogni quadrato:

$$|r| \leq \frac{|b|}{\sqrt{2}}.$$

Pertanto vale la seconda e ultima proprietà della funzione grado:

$$|r| \le \frac{|b|}{\sqrt{2}} < |b| \implies |r|^2 < |b|^2 \implies g(r) < g(b).$$

3.5 Gli interi di Eisenstein: $\mathbb{Z}[\omega]$

Sulla scia di $\mathbb{Z}[i]$ è possibile definire anche l'anello degli interi di Eisenstein, aggiungendo a \mathbb{Z} la prima radice cubica primitiva dell'unità in senso antiorario, ossia:

$$\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i.$$

In particolare, ω è una delle due radici dell'equazione $z^2+z+1=0$, dove invece l'altra radice altro non è che $\omega^2=\overline{\omega}$.

Figura 2: Visualizzazione della divisione euclidea nel piano degli interi di Eisenstein.

La funzione grado in $\mathbb{Z}[\omega]$ deriva da quella di $\mathbb{Z}[i]$ e coincide ancora con il quadrato del modulo del numero complesso. Si definisce quindi:

$$g: \mathbb{Z}[\omega] \setminus \{0\}, \ a + b\omega \mapsto |a + b\omega|^2.$$

Sviluppando il modulo è possibile ottenere una formula più concreta:

$$|a+b\omega|^2 = \left|\left(a-\frac{b}{2}\right) + \frac{b\sqrt{3}}{2}i\right|^2 =$$

⁹Questa interessante proprietà del modulo è alla base dell'identità di Brahmagupta-Fibonacci: $(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2$.

$$= \left(a - \frac{b}{2}\right)^2 + \frac{3b^2}{4} = a^2 - ab + b^2.$$

Teorema 3.2. $\mathbb{Z}[\omega]$ è un anello euclideo.

Dimostrazione. Sulla scia della dimostrazione presentata per $\mathbb{Z}[i]$, si verifica facilmente la prima proprietà della funzione grado. Siano $a,b\in\mathbb{Z}[\omega]$, allora $|a|\geq 1$ e $|b|\geq 1$. Poiché dalle proprietà dei numeri complessi vale ancora $|a|\,|b|\geq |a|$, la proprietà $g(ab)\geq g(a)$ è già verificata.

Si verifica infine la seconda e ultima proprietà della funzione grado. Come per $\mathbb{Z}[i]$, i multipli di $b \in \mathbb{Z}[\omega]$ sono visualizzati su un piano che ha per basi b e ωb (come in Figura 2), pertanto esiste sicuramente un q tale che la distanza |a-bq| sia minima.

Se a è multiplo di b, allora chiaramente a=bq. Altrimenti, a è certamente inquadrato in uno dei triangoli del piano, per cui vale la seguente disuguaglianza:

$$|r| \le \frac{\sqrt{3}}{2} |b|.$$

Dunque la tesi è verificata:

$$|r| \le \frac{\sqrt{3}}{2} |b| < |b| \implies |r|^2 < |b|^2 \implies g(r) < g(b).$$

4 Riferimenti bibliografici

- P. Di Martino e R. Dvornicich. Algebra. Didattica e Ricerca. Manuali. Pisa University Press, 2013. ISBN: 9788867410958.
- M. A. Jodeit. «Uniqueness in the Division Algorithm». In: The American Mathematical Monthly 74.7 (1967), pp. 835-836. ISSN: 00029890, 19300972.
 URL: http://www.jstor.org/stable/2315810.