Machine Learning

Ravi Kumar Tiwari 14 June 2016

```
library(caret)
library(rpart.plot)
library(rattle)
library(calibrate)
library(randomForest)
library(e1071)
library(class)
library(knitr)
library(party)
library(gda)
library(gbm)
library(leaps)
```

Regression

Used for predicting continuous variable

1. Code to Build the model object

```
lmModel <- lm(mpg ~ wt, data = mtcars)</pre>
```

2. Code to obtain the model parameters

```
sumModel <- summary(lmModel)
sumModel$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.285126 1.877627 19.857575 8.241799e-19
## wt -5.344472 0.559101 -9.559044 1.293959e-10
```

3. Prediction of response using the regression model

```
predValue <- predict(lmModel, data.frame(wt = mtcars$wt))</pre>
```

- 4. Assessing the accuracy of the model
- Visual Inspection

• R-squared value

```
sumModel <- summary(lmModel)
sumModel$r.squared</pre>
```

[1] 0.7528328

• F-statistics

sumModel\$fstatistic

```
## value numdf dendf
## 91.37533 1.00000 30.00000
```

5. Code to build linear regression model using multiple predictors

```
 lmModel2 <- lm(mpg ~ wt+hp+disp, data = mtcars) \# wt, hp, and disp will be used as predictor \\ lmModel3 <- lm(mpg~ ., data = mtcars) \# All the variable will be used
```

6. Code to do subset selection

identifies the best model that contains a given number of predictors, where best is quantified using RSS

```
fwdSelection <- regsubsets(mpg ~ ., data = mtcars, method = "forward")</pre>
sumFwdSel <- summary(fwdSelection)</pre>
sumFwdSel
## Subset selection object
## Call: regsubsets.formula(mpg ~ ., data = mtcars, method = "forward")
## 10 Variables (and intercept)
       Forced in Forced out
## cyl
           FALSE
                       FALSE
           FALSE
                       FALSE
## disp
## hp
           FALSE
                       FALSE
## drat
           FALSE
                      FALSE
## wt
           FALSE
                      FALSE
           FALSE
                      FALSE
## qsec
           FALSE
## vs
                       FALSE
## am
           FALSE
                      FALSE
## gear
           FALSE
                      FALSE
## carb
           FALSE
                      FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: forward
            cyl disp hp drat wt qsec vs am gear carb
## 1 (1)""""
     (1)"*"""
                     11 11 11 11
                              "*" " "
## 2
## 3 (1) "*"
                         11 11
                         11 11
## 5
     (1)"*"
      (1
     (1)"*""*"
## 8 (1) "*" "*"
names(sumFwdSel)
                                                             "outmat" "obj"
## [1] "which" "rsq"
                         "rss"
                                  "adjr2" "cp"
                                                    "bic"
sumFwdSel$rsq
## [1] 0.7528328 0.8302274 0.8431500 0.8490314 0.8580721 0.8659105 0.8675989
## [8] 0.8684657
which.max(sumFwdSel$adjr2)
## [1] 6
coef(fwdSelection,6)
## (Intercept)
                       cyl
                                  disp
                                                                       qsec
                                                hp
## 20.05169952 -0.50206577 0.01396099 -0.01956054 -3.99773180 0.81017782
##
## 2.94074955
  7. Challenge
```

• Use backward selection model to find the best model for mpg

Tree based algorithm

Problem Description

Given a data set that contains some observation and corresponding class label, can a machine learning algorithm be trained to determine the class label of any data set (not necessarily the data that was used for training) from its observation

Solution using decision tree

```
head(iris)
```

```
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                         3.5
                                      1.4
                                                  0.2 setosa
## 2
             4.9
                         3.0
                                      1.4
                                                  0.2 setosa
## 3
             4.7
                         3.2
                                      1.3
                                                  0.2 setosa
## 4
             4.6
                         3.1
                                      1.5
                                                  0.2 setosa
## 5
             5.0
                         3.6
                                      1.4
                                                  0.2 setosa
## 6
             5.4
                         3.9
                                      1.7
                                                  0.4 setosa
```

Create data partition

```
set.seed(100)
inTrain <- createDataPartition(iris$Species, p = 0.6, list = FALSE)
trainData <- iris[inTrain,]
testData <- iris[-inTrain,1:4]
testClass <- iris[-inTrain,5]</pre>
```

Build a decision tree model and use it for prediction on test data set

```
treeModel <- train(Species ~ ., data = trainData, method = "rpart")
predClass <- predict(treeModel, newdata = testData)
cMatrix <- confusionMatrix(predClass, testClass)
cMatrix$table</pre>
```

```
##
              Reference
## Prediction setosa versicolor virginica
##
    setosa
                   20
                               0
                                          0
                    0
                               19
                                          2
##
     versicolor
                     0
                                         18
##
     virginica
                                1
```

Look at what are the important variables

varImp(treeModel)

```
## rpart variable importance
##
## Overall
## Petal.Width 100.00
## Petal.Length 89.53
## Sepal.Length 18.24
## Sepal.Width 0.00
```


Add some challenge

Advantages of decision tree

Easy to interpret

Problem with the decision tree

Lower prediction accuracy

Solution

Aggregate many decision trees (bagging, random forest, boosting)

random Forest

Need to decorrelate the trees. Making it more accurate

ntree

Random Forest classifier

16

Individual tree

random forest example

```
rfModel <- randomForest(Species ~ ., data=trainData, mtry=3, ntree=15)
predClass <- predict(rfModel, newdata = testData)
table(predClass, testClass)</pre>
```

```
##
               testClass
               setosa versicolor virginica
## predClass
##
                    20
                                0
                                          0
     setosa
                                          2
     versicolor
                     0
                               19
     virginica
                     0
                                         18
##
                                1
```

${\tt rfModel\$importance}$

##		MeanDecreaseGini
##	Sepal.Length	0.789298
##	Sepal.Width	1.251341
##	Petal.Length	24.475953
##	Petal.Width	33.034519

Add some challenge

Boosting

Illustration

example

knn

```
myIris <- iris[,3:5]
head(myIris)</pre>
```

```
## Petal.Length Petal.Width Species
## 1 1.4 0.2 setosa
```

```
## 4
               1.5
                             0.2 setosa
## 5
               1.4
                             0.2 setosa
## 6
               1.7
                             0.4 setosa
inTrain <- createDataPartition(myIris$Species, p = 0.6, list = FALSE)</pre>
trainData <- myIris[inTrain,1:2]</pre>
trainClass <- myIris[inTrain,3]</pre>
testData <- myIris[-inTrain,1:2]</pre>
testClass <- myIris[-inTrain,3]</pre>
predClass <- knn(trainData, testData, cl = trainClass, k = 3)</pre>
table(predClass, testClass)
```

```
##
               testClass
                setosa versicolor virginica
## predClass
##
     setosa
                     20
                                            2
##
     versicolor
                      0
                                19
                      0
                                           18
##
     virginica
                                 1
```

2

3

1.4

1.3

0.2 setosa

0.2 setosa

clustering example

kmeans clustering

```
myIris <- iris[3:4]</pre>
group <- iris$Species</pre>
predGroup <- kmeans(myIris, centers = 3)</pre>
predGroupC <- ifelse(predGroup$cluster==2, "setosa", ifelse(predGroup$cluster==3,</pre>
                                                    "versicolor", "virginnica"))
predGroupC <- factor(predGroupC)</pre>
table(predGroupC, group)
##
               group
## predGroupC setosa versicolor virginica
##
     setosa
                   0
                                2
##
     versicolor
                    50
                                0
                                           0
                               48
##
     virginnica
                   0
par(mfrow = c(1,2))
plot(myIris$Petal.Length, myIris$Petal.Width, pch = 19, col = predGroupC)
legend(x=1,y=2.5, legend = c("group1", "group2", "group3"),
       col = c("green", "black", "red"), pch = 19, y.intersp=0.5, cex = 0.75)
plot(myIris$Petal.Length, myIris$Petal.Width, pch = 17, col = group)
legend(x=1,y=2.5, legend = c("setosa", "versicolor", "virginica"),
       col = c("green", "black", "red"), pch = 19, y.intersp=0.5, cex = 0.75)
```



```
par(mfrow = c(1,1))
```

hierarchichal clustering

par(mfrow = c(1,1))

Cross-validation

5 fold cross validation illustration

baye's theorem

#head(Titanic)

 \mathbf{svm}

#svmModel <- svm()