Statistical Machine Learning

Week 03 (Version 2.0)

Temporal Point Process

Hamid R. Rabiee Spring 2023

Recall: Binomial Distribution and its relation to Poisson Distribution

Bionomial Distribution: $X \sim B(n, p)$ probability of exactly k success in n trials:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$B(n,p) \xrightarrow{n \to \infty} Poisson(np)$$

$$np \text{ remains constant}$$

- Recall: Binomial and Poisson distributions:
 Both distributions can be used to model the number of occurrences of some event.
- Recall: Poisson arrivals are the limiting behavior of Binomial random variables. (Refer to Poisson approximation of Binomial random variables in your text book):

$$P\left\{ \text{"k arrivals occur in an interval of duration Δ''} \right\} = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, 2, \cdots$$

Where:

$$\lambda = np = \mu T \cdot \frac{\Delta}{T} = \mu \Delta$$

It follows that:

$$P\left\{ \text{"k arrivals occur in an} \atop \text{interval of duration } 2\Delta'' \right\} = e^{-2\lambda} \frac{(2\lambda)^k}{k!}, \qquad k = 0, 1, 2, \dots,$$

since in that case:

$$np_1 = \mu T \cdot \frac{2\Delta}{T} = 2\mu \Delta = 2\lambda.$$

- Poisson arrivals over an interval form a Poisson random variable whose parameter depends on the duration of that interval.
- Moreover because of the Bernoulli nature of the underlying basic random arrivals, events over nonoverlapping intervals are independent.
- We shall use these two key observations to define a Poisson process formally.

Definition: X(t) = n(0, t) represents a Poisson process if:

(i) the number of arrivals $n(t_1, t_2)$ in an interval (t_1, t_2) of length $t = t_2 - t_1$ is a Poisson random variable with parameter λt . Thus:

$$P\{n(t_1, t_2) = k\} = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
 $k = 0, 1, 2, ..., t = t_2 - t_1$

And:

(ii) If the intervals (t_1, t_2) and (t_3, t_4) are nonoverlapping, then the random variables $n(t_1, t_2)$ and $n(t_3, t_4)$ are independent.

Since $n(0, t) \sim P(\lambda t)$ we have:

$$E[X(t)] = E[n(0,t)] = \lambda t$$

And:

$$E[X^{2}(t)] = E[n^{2}(0,t)] = \lambda t + \lambda^{2} t^{2}$$

To determine the autocorrelation function $R_{xx}(t_1, t_2)$ let $t_2 > t_1$ then from (ii) above $n(0, t_1)$ and $n(t_1, t_2)$ are independent Poisson random variables with parameters λt_1 and $\lambda (t_2 - t_1)$ respectively.

Thus:

$$E[n(0,t_1)n(t_1,t_2)] = E[n(0,t_1)]E[n(t_1,t_2)] = \lambda^2 t_1(t_2-t_1)$$

But:

$$n(t_1, t_2) = n(0, t_2) - n(0, t_1) = X(t_2) - X(t_1)$$

And:

$$E[X(t_1)\{X(t_2) - X(t_1)\}] = R_{\chi\chi}(t_1, t_2) - E[X^2(t_1)]$$

We obtain:

$$R_{\chi\chi}(t_1, t_2) = \lambda^2 t_1(t_2 - t_1) + E[X^2(t_1)] = \lambda t_1 + \lambda^2 t_1 t_2$$
$$t_2 \ge t_1$$

Similarly:

$$R_{\chi\chi}(t_1, t_2) = \lambda t_2 + \lambda^2 t_1 t_2$$

Thus:

$$R_{xx}(t_1, t_2) = \lambda^2 t_1 t_2 + \lambda \min(t_1, t_2)$$

Example:

$$X(t) \longrightarrow \frac{d(\cdot)}{dt} \longrightarrow X'(t)$$

(Derivative as a LTI system)

Then:

$$\mu_{X'}(t) = \frac{d\mu_{X}(t)}{dt} = \frac{d\lambda t}{dt} = \lambda, \quad a constant$$

And:

$$R_{xx'}(t_1, t_2) = \frac{\partial R_{xx}(t_1, t_2)}{\partial t_2} = \begin{cases} \lambda^2 t_1 & t_1 \le t_2 \\ \lambda^2 t_1 + \lambda & t_1 > t_2 \end{cases}$$
$$= \lambda^2 t_1 + \lambda U(t_1 - t_2)$$

And:

$$R_{XX'}(t_1, t_2) = \frac{\partial R_{XX'}(t_1, t_2)}{\partial t_1} = \lambda^2 + \lambda \delta(t_1 - t_2).$$

Notice that:

- The Poisson process X(t) *does not* represent a wide sense stationary process.
- Although X(t) does not represent a wide sense stationary process, its derivative X'(t) does represent a wide sense stationary process.

Since X'(t) is a wide sense stationary process; nonstationary inputs to linear systems *can* lead to wide sense stationary outputs, an interesting observation.

Sum of Poisson Processes:

If $X_1(t)$ and $X_2(t)$ represent two independent Poisson processes, then their sum $X_1(t) + X_2(t)$ is also a Poisson process with parameter $(\lambda_1 + \lambda_2)t$. (Follows from the definition of the Poisson process in (i) and (ii)).

Random selection of Poisson Points:

Let $t_1, t_2, \dots, t_i, \dots$ represent random arrival points associated with a Poisson process X(t) with parameter λt , and associated with each arrival point, define an independent Bernoulli random variable N_i , where:

$$P(N_i = 1) = p,$$
 $P(N_i = 0) = q = 1 - p.$

Define the processes:

$$Y(t) = \sum_{i=1}^{X(t)} N_i$$
; $Z(t) = \sum_{i=1}^{X(t)} (1 - N_i) = X(t) - Y(t)$

We claim that both Y(t) and Z(t) are independent Poisson processes with parameters λpt and λqt , respectively, where q = 1- p. When X(t) is a Poisson process with parameter λt .

Proof:

$$Y(t) = \sum_{n=k}^{\infty} P\{Y(t) = k \mid X(t) = n\} P\{X(t) = n\}.$$

But given X(t) = n, we have $Y(t) = \sum_{i=1}^{n} N_i \sim B(n, p)$ so that:

$$P{Y(t) = k \mid X(t) = n} = {n \choose k} p^k q^{n-k}, \quad 0 \le k \le n,$$

And:

$$P\{X(t)=n\}=e^{-\lambda t}\frac{(\lambda t)^n}{n!}.$$

$$P\{Y(t) = k\} = e^{-\lambda t} \sum_{n=k}^{\infty} \frac{n!}{(n-k)!k!} p^{k} q^{n-k} \frac{(\lambda t)^{n}}{n!} = \frac{p^{k} e^{-\lambda t}}{k!} (\lambda t)^{k} \sum_{n=k}^{\infty} \frac{(q\lambda t)^{n-k}}{(n-k)!}$$

$$= (\lambda p t)^{k} \frac{e^{-(1-q)\lambda t}}{k!} = e^{-\lambda p t} \frac{(\lambda p t)^{k}}{k!}, \quad k = 0, 1, 2, \dots$$

$$\sim P(\lambda p t).$$

More generally:

$$P\{Y(t) = k, Z(t) = m\} = P\{Y(t) = k, X(t) - Y(t) = m\}$$

$$= P\{Y(t) = k, X(t) = k + m\}$$

$$= P\{Y(t) = k \mid X(t) = k + m\} P\{X(t) = k + m\}$$

$$= {\binom{k+m}{k}} p^k q^m \cdot e^{-\lambda t} \frac{(\lambda t)^{k+m}}{(k+m)!} = \underbrace{e^{-\lambda pt} \frac{(\lambda pt)^n}{k!}}_{P(Y(t)=k)} \underbrace{e^{-\lambda qt} \frac{(\lambda qt)^n}{m!}}_{P(Z(t)=m)}$$

$$= P\{Y(t) = k\} P\{Z(t) = m\},$$

Notice that Y(t) and Z(t) are generated as a result of random Bernoulli selections from the original Poisson process X(t), where each arrival gets tossed over to either Y(t) with probability p or to Z(t) with probability q. Each such sub-arrival stream is also a Poisson process. Thus random selection of Poisson points preserve the Poisson nature of the resulting processes. However, deterministic selection from a Poisson process destroys the Poisson property for the resulting processes.

Let τ_1 denote the time interval (delay) to the first arrival from *any* fixed point t_0 . To determine the probability distribution of the random variable τ_1 , we argue as follows: Observe that the event " $\tau_1 > t$ " is the same as " $n(t_0, t_0+t) = 0$ ", or the complement event " $\tau_1 \le t$ " is the same as the event " $n(t_0, t_0+t) > 0$ ".

Hence the distribution function of τ_1 is given by:

$$F_{\tau_1}(t) \stackrel{\Delta}{=} P\{\tau_1 \le t\} = P\{X(t) > 0\} = P\{n(t_0, t_0 + t) > 0\}$$
$$= 1 - P\{n(t_0, t_0 + t) = 0\} = 1 - e^{-\lambda t}$$

Its derivative gives the probability density function for τ_1 to be:

$$f_{\tau_1}(t) = \frac{dF_{\tau_1}(t)}{dt} = \lambda e^{-\lambda t}, \quad t \ge 0$$

i.e. τ_1 is an exponential random variable with parameter λ so that: $E(\tau_1) = 1/\lambda$.

Similarly, let t_n represent the nth random arrival point for a Poisson process. Then:

$$\Delta F_{t_n}(t) = P\{t_n \le t\} = P\{X(t) \ge n\}$$

$$= 1 - P\{X(t) < n\} = 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

and hence:

$$f_{t_n}(x) = \frac{dF_{t_n}(x)}{dx} = -\sum_{k=1}^{n-1} \frac{\lambda(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} + \sum_{k=0}^{n-1} \frac{\lambda(\lambda x)^k}{k!} e^{-\lambda x}$$
$$= \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x}, \quad x \ge 0$$

which represents a Gamma density function. i.e., the waiting time to the nth Poisson arrival has a Gamma distribution. Moreover:

$$t_n = \sum_{i=1}^n \tau_i$$

where τ_i is the random inter-arrival duration between the $(i-1)^{th}$ and i^{th} events. Notice that τ_i s are independent, identically distributed random variables. Hence using their characteristic functions, it follows that all inter-arrival durations of a Poisson process are independent exponential random variables with common parameter λ . i.e.,

$$f_{\tau_i}(t) = \lambda e^{-\lambda t}, \quad t \ge 0.$$

Alternatively, we have τ_1 is an exponential random variable. By repeating that argument after shifting t_0 to the new point t_1 , we conclude that τ_2 is an exponential random variable. Thus the sequence $\tau_1, \tau_2, \dots, \tau_n, \dots$ are independent exponential random variables with common p.d.f.

Thus if we systematically tag every m^{th} outcome of a Poisson process X(t) with parameter λt to generate a new process e(t), then the inter-arrival time between any two events of e(t) is a Gamma random variable.

Notice that:

$$E[e(t)] = m/\lambda$$
, and if $\lambda = m\mu$, then $E[e(t)] = 1/\mu$.

The inter-arrival time of e(t) in that case represents an Erlang-m random variable, and e(t) is an Erlang-m process.

In summary, if Poisson arrivals are randomly redirected to form new queues, then each such queue generates a new Poisson process.

Poisson Departures between Exponential Inter-arrivals

Let $X(t) \sim P(\lambda t)$ and $Y(t) \sim P(\mu t)$ represent two independent Poisson processes called *arrival* and *departure* processes.

Let Z represent the random interval between any two successive arrivals of X(t). Z has an exponential distribution with parameter λ . Let N represent the number of "departures" of Y(t) between any two successive arrivals of X(t). Then from the Poisson nature of the departures we have:

$$P\{N = k \mid Z = t\} = e^{-\mu t} \frac{(\mu t)^k}{k!}.$$

Poisson Departures between Exponential Inter-arrivals

$$P\{N = k\} = \int_{0}^{\infty} P\{N = k \mid Z = t\} f_{z}(t) dt$$

$$= \int_{0}^{\infty} e^{-\mu t} \frac{(\mu t)^{k}}{k!} \lambda e^{-\lambda t} dt$$

$$= \frac{\lambda}{k!} \int_{0}^{\infty} (\mu t)^{k} e^{-(\lambda + \mu)t} dt$$

$$= \frac{\lambda}{\lambda + \mu} \left(\frac{\mu}{\lambda + \mu}\right)^{k} \frac{1}{k!} \underbrace{\int_{0}^{\infty} x^{k} e^{-x} dx}_{k!}$$

$$= \left(\frac{\lambda}{\lambda + \mu}\right) \left(\frac{\mu}{\lambda + \mu}\right)^{k}, \quad k = 0, 1, 2, \dots$$

Poisson Departures between Exponential Inter-arrivals

The random variable *N* has a geometric distribution. Thus if customers come in and get out according to two independent Poisson processes at a counter, then the number of arrivals between any two departures has a geometric distribution. Similarly the number of departures between *any* two arrivals also represents another geometric distribution.

Example

Suppose there are 2 Poisson processes with $\lambda_1 = 1$, $\lambda_2 = 2$. Find the probability that 2^{nd} arrival of first process occurs before 3^{rd} arrival of the second process.

Solution:

Consider the superposition of these two Poisson processes. It is still a Poisson process with $\lambda = 1 + 2 = 3$. Also each event of the resulting process is from first process with probability $\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{1}{3}$ and otherwise with probability $\frac{2}{3}$. So for the 2nd arrival of first process to occur before 3rd arrival of the second process, we need the first 4 occurrences to cover at least 2 occurrences of the first process:

$$\sum_{k=2}^{4} {4 \choose k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{4-k}$$

Example: Coupon Collecting

Suppose a cereal manufacturer inserts a sample of one type of coupon randomly into each cereal box. Suppose there are *n* such distinct types of coupons. One interesting question is that how many boxes of cereal should one buy on the average in order to collect at least one coupon of each kind?

Example: Coupon Collecting

We shall reformulate the above problem in terms of Poisson processes. Let $X_1(t), X_2(t), \dots, X_n(t)$ represent n independent identically distributed Poisson processes with common parameter λt . Let t_{i1}, t_{i2}, \dots represent the first, second, ... random arrival instants of the process $X_i(t)$, $i = 1, 2, \dots, n$. They will correspond to the first, second, ... appearance of the ith type coupon in the above problem. Let:

$$X(t) \triangleq \sum_{i=1}^{n} X_{i}(t),$$

so that the sum X(t) is also a Poisson process with parameter μt , where

$$\mu = n\lambda$$
.

Example: Coupon Collecting

- $1/\lambda$ represents: The average inter-arrival duration between any two arrivals of $X_i(t), i = 1, 2, \dots, n$, whereas:
- $1/\mu$ represents the average inter-arrival time for the combined sum process X(t).

Bulk Arrivals and Compound Poisson Processes

In an ordinary Poisson process X(t), only one event occurs at any arrival instant. Instead suppose a random number of events C_i occur simultaneously as a cluster at every arrival instant of a Poisson process. If X(t) represents the total number of all occurrences in the interval (0, t), then X(t) represents a **compound Poisson process**, or a **bulk arrival process**.

Bulk Arrivals and Compound Poisson Processes

Inventory orders, arrivals at an airport queue, tickets purchased for a show, etc. follow this process (when things happen, they happen in a bulk, or a bunch of items are involved.)

Let:

$$p_k = P\{C_i = k\}, \quad k = 0, 1, 2, \dots$$

represent the common probability mass function for the occurrence in any cluster C_i . Then the compound process X(t) satisfies:

$$X(t) = \sum_{i=1}^{N(t)} C_i,$$

where N(t) represents an ordinary Poisson process with parameter λ . Let:

$$P(z) = E\{z^{C_i}\} = \sum_{k=0}^{\infty} p_k z^k$$

represent the moment generating function associated with the cluster Statistics. Then the moment generating function of the compound Poisson process X(t) is given by:

$$\phi_{X}(z) = \sum_{n=0}^{\infty} z^{n} P\{X(t) = n\} = E\{z^{X(t)}\}\$$

$$= E\{E[z^{X(t)} \mid N(t) = k]\} = E[E\{z^{\sum_{i=1}^{k} C_{i}} \mid N(t) = k\}]\$$

$$= \sum_{k=0}^{\infty} (E\{z^{C_{i}}\})^{k} P\{N(t) = k\}\$$

$$= \sum_{k=0}^{\infty} P^{k}(z) e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} = e^{-\lambda t (1 - P(z))}$$

If we let:

$$P^{k}(z) \stackrel{\Delta}{=} \left(\sum_{n=0}^{\infty} p_{n} z^{k}\right)^{k} = \sum_{n=0}^{\infty} p_{n}^{(k)} z^{n}$$

where $\{p_n^{(k)}\}$ represents the k fold convolution of the sequence $\{p_n\}$ with itself, we obtain:

$$P\{X(t) = n\} = \sum_{k=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} p_n^{(k)}$$

The above, represents the probability that there are n arrivals in the interval (0, t) for a compound Poisson process X(t).

We can rewrite $\phi_x(z)$ also as:

$$\phi_{x}(z) = e^{-\lambda_{1}t(1-z)}e^{-\lambda_{2}t(1-z^{2})}\cdots e^{-\lambda_{k}t(1-z^{k})}\cdots$$

where $\lambda_k = p_k \lambda$, which shows that the compound Poisson process can be expressed as the sum of integer-scaled independent Poisson processes $m_1(t), m_2(t), \cdots$. Thus:

$$X(t) = \sum_{k=1}^{\infty} k \, m_k(t).$$

More generally, every linear combination of independent Poisson processes represents a compound Poisson process.

Point Processes

Many discrete events in continuous time

Online actions

Financial trading

Disease dynamics

Mobility dynamics

Variety of processes behind these events

Events are (noisy) observations of a variety of complex dynamic processes...

Flu spreading

Article creation in Wikipedia

News spread in Twitter

Reviews and sales in Amazon

Ride-sharing requests

FAST

SLOW

...in a wide range of temporal scales.

Example I: Information propagation

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Aren't these event traces just time series?

Temporal Point Processes (TPPs): Introduction

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time $\mathcal{H} = \{t_i\}$

Model time as a random variable

Likelihood of a timeline: $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

Intensity function

Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \quad \Longrightarrow \quad \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation: $\lambda^*(t)$ It is a rate = # of events / unit of time

Advantages of intensity parametrization (I)

$$\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \lambda^*(t) \exp\left(-\int_0^T \lambda^*(\tau) d\tau\right)$$

$$\langle w, \phi^*(t_1) \rangle \qquad \langle w, \phi^*(t_3) \rangle \qquad \exp\left(-\int_0^T \langle w, \phi^*(\tau) \rangle d\tau\right)$$

Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Relation between f*, F*, S*, λ*

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Poisson process

Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

Fitting & sampling from a Poisson

Fitting by maximum likelihood:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Sampling using inversion sampling:

$$t \sim \mu \exp(-\mu(t-t_3)) \qquad \Rightarrow \qquad t = -\frac{1}{\mu} \log(1-u) + t_3$$

$$f_t^*(t) \qquad \qquad F_t^{-1}(u)$$

Uniform(0,1)

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \geqslant 0$$
 (Independent of history)

Fitting & sampling from inhomogeneous Poisson

Fitting by maximum likelihood: maximize
$$\sum_{i=1}^n \log g(t_i) - \int_0^T g(\tau) \, d\tau$$

Sampling using thinning (reject. sampling) + inverse sampling:

- 1. Sample t from Poisson process with intensity μ using inverse sampling
- 2. Generate $u_2 \sim Uniform(0,1)$
- 3. Keep the sample if $u_2 \leq g(t) / \mu$

Keep sample with prob. $g(t)/\mu$

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

Observations:

1. Limited number of occurrences

Self-exciting (or Hawkes) process

Observations:

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline

Fitting by maximum likelihood:

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity $\,\lambda_0\,$ changes over time

Summary

Building blocks to represent different dynamic processes:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inho

Term

We know **how to fit** them and **how to sample** from them

$$A(t) = g(t)(1 - IV(t))$$

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Mutually exciting process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i)$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i) \right)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time

Independent identically distributed marks

Distribution for the marks:

$$x^*(t_i) \sim p(x)$$

Observations:

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Dependent marks: SDEs with jumps

Marks given by stochastic differential equation with jumps:

$$x(t+dt)-x(t)=dx(t)=\underbrace{f(x(t),t)dt}_{\text{T}}+\underbrace{h(x(t),t)dN(t)}_{\text{T}}$$
 Observations: Drift Event influence

- 1. Marks dependent of the temporal dynamics
- 2. Defined for all values of t

Dependent marks: distribution + SDE with jumps

Distribution for the marks:

$$x^*(t_i) \sim p\left(\left.x^*\right| x(t)\right) \implies dx(t) = \underbrace{f(x(t),t)dt}_{\text{Drift}} + \underbrace{h(x(t),t)dN(t)}_{\text{Event influence}}$$

- 1. Marks dependent on the temporal dynamics
- 2. Distribution represents additional source of uncertainty 66

Mutually exciting + marks

Marks affected by neighbors

$$dx(t) = \underbrace{f(x(t),t)dt}_{\text{T}} + \underbrace{g(x(t),t)dM(t)}_{\text{Neighbor influence}}$$

Marked TPPs as stochastic dynamical systems

Example: Susceptible-Infected-Susceptible (SIS)

$$X_i(t) = 0$$

 $X_i(t) = 0 X_i(t) = 1 X_i(t) = 0$

Susceptible

Infected Susceptible

$$\mathbb{E}\left[dY_i(t)\right] = \lambda_{Y_i}(t)dt$$

Node is susceptible

$$\lambda_{Y_i}(t)dt = (1 - X_i(t))\beta \sum_{j \in \mathcal{N}(i)} X_j(t)dt$$

If friends are infected, higher infection rate

rate

$$\mathbb{E}\left[dW_i(t)\right] = \lambda_{W_i}(t)dt$$

SDE with jumps $d\lambda_{W_i}(t) = \delta dY_i(t) - \lambda_{W_i}(t)dW_i(t) + \rho dN_i(t)$

node gets infected

Self-recovery rate when If node recovers, Rate increases if rate to zero node gets treated

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences as cascades

An example: idea adoption

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Infection cascade representation

We represent an infection cascade using terminating temporal point processes:

Infection intensity

Model inference from multiple cascades

Conditional intensities

$$\lambda_u^*(t)$$

Diffusion log-likelihood

$$\mathfrak{L} = \sum_{u=1}^{n} \log \lambda_u^*(t_u) - \int_0^T \lambda_u^*(\tau) d\tau$$

Maximum likelihood approach to find model parameters!

Theorem. For any choice of parametric memory, the **maximum likelihood** problem is **convex**.

In some cases, influence change over time:

Propagation over networks 0 with variable influence

Recurrent events: beyond cascades

Up to this point, each users is only infected once, and event sequences can be seen as cascades.

In general, users perform recurrent events over time. E.g., people repeatedly express their opinion online:

How social media is revolutionizing debates

The New York Times

Social Media Are Giving a Voice to Taste Buds

Twitter Unveils A New Set Of Brand-Centric Analytics

The New york Times

Campaigns Use Social Media to Lure Younger Voters

Recurrent events representation

We represent messages using nonterminating temporal point processes:

Recurrent events intensity

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences

So far, we have assumed the cascade (topic, meme, etc.) that each event belongs to was known.

Often, the cluster (topic, meme, etc.) that each event in a sequence belongs to is not known:

Assume the event cluster to be hidden and aim to automatically learn the cluster assigments from the data:

Bayesian methods to cluster event sequences in the context of:

Health care

Method	DMHP
ICU Patient	0.3778
IPTV User	0.2004

[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]

Hierarchical Dirichlet Hawkes process

1st year computer science student

Events representation

We represent the events using marked temporal point processes:

Cluster intensity

User events intensity

Users adopt more than one cluster:

A user's learning events as a multidimensional Hawkes:

Time cluster
$$(t_n,p_n) \sim Hawkes \left(\begin{array}{c} \lambda_{u,1}^*(t) \\ \vdots \\ \lambda_{u,\infty}^*(t) \end{array}\right)$$

Content
$$\rightarrow q_n = \boldsymbol{\omega} \quad \omega_j \sim Multinomial(\boldsymbol{\theta}_p)$$

People share same clusters

Different users adopt same clusters

- Shared parameters across users.

Content

Version control tasks tend to be specific, quickly solved after performing few questions

Content

Machine learning tasks tend to be more complex and require asking more questions

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Up to now, we have focused on simple temporal dynamics (and intensity functions):

Recent works make use of RNNs to capture more complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017; Trivedi et al., 2017; Xiao et al., 2017a; 2018]

Neural Hawkes process

- 1) History effect does not need to be additive
- 2) Allows for complex memory effects (such as delays)

Neural Hawkes process

Applications (I): Predictive Models

Know-Evolve, Trivedi et al. (2017)

Coevolutionary Embedding,

Key idea: Intensity- and likelihood-free models

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

Recent works have focused on performing causal inference

using event sequences:

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t-t') dN_v(t')$$
 Effect of v's past events on u

Granger causality:

"X causes Y in the sense of Granger causality if forecasting future values of Y is more successful while taking X past values into account"

[Granger, 1969]

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t-t') dN_v(t')$$
 Effect of v's past events on u

Granger causality on multivariate Hawkes processes:

" $N_v(t)$ does not Ganger-cause $N_u(t)$ w.r.t. N(t) if and only if $k_{u,v}(\tau)=0$ for $\tau\in\Re^+$ "

[Eichler et al., 2016]

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \text{ for all } u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \text{ for all } u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Key idea: Estimate G using the cumulants dN(t) of the Hawkes process.

Key idea: Estimate G using the cumulants the dN(t) of the Hawkes process.