

Big Data Analytics

Lecture 6: Aggregation and Visualization I

Prof. Dr. Ulrich Matter 01/04/2021

Updates

Examination Part I: Timeline of take-home exercises

- Examination handed out via GitHub (Classroom): 7 May 2020
- Deadline to hand in results: 8 June 2020 (16:00)

Format of take-home exercises

- GitHub classroom group assignment.
- Basic starter code handed out as repository.
- A data analytics project based on a large data set, including the entire data pipeline.
- Tasks
 - Instructions in README
 - Improve efficiency of given code
 - Extend code: complete specific tasks
 - Explain/document procedure (conceptual understanding)
- · 'Product': the repository, including R code, and a report in R markdown.

Examination Part II: Group Projects/Presentations

- Groups formed decentrally (same groups as for take-home exercises).
- Own research question, find a data set, think of approach/strategy, implement in R, presentation of results as Rmd/R-presentation recorded in a 'screencast'.
- Hand in screencast via Canvas/Studynet (assignment is already open), commit code/rmd to GitHub-classroom (initial group formation assignment).

Register in GitHub Classroom

- By the end of the month, teams must be set!
- Please register, if you have not done so yet and join your team in GitHub Classroom!
- Still problems finding a team? Use the **Q&A Section in Canvas**! In case of emergencies, email me: ulrich.matter@unisg.ch

Recap Week 5

Beyond memory

- · RAM is not sufficient to handle the amount of data to be analyzed...
- What to do?
- Scale up by using parts of the available Mass Storage (hard-disk) as *virtual memory.

Virtual memory

Out-of-memory strategies

- · Chunked data files on disk
- Memory-mapped files and shared memory

Out-of-memory strategies

- · Chunked data files on disk: ff-package
- Memory-mapped files and shared memory: bigmemory-package

Aggregation and Visualization

Setting: NYC yellow caps

- Data source: NYC Taxi & Limousine Commission (TLC)
- Data on all trip records including pick-up and drop-off times/locations.
 - **-** (2009-2018)
 - Trip-level observations
 - Amount of fare paid
 - Amount of tip paid, etc.
- · All raw data: over 200GB
 - Here: First 1 million observations (in January 2009)

Gathering and Compilation of all the raw data

```
# Fetch all TLC trip recrods
# Data source:
# https://wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page
# Input: Monthly csv files from urls
# Output: one large csv file
# UM, St. Gallen, January 2019
# SET UP -----
# load packages
library(data.table)
library(rvest)
library(httr)
# fix vars
BASE URL <- "https://s3.amazonaws.com/nyc-tlc/trip+data/yellow tripdata 2018-01.csv"
OUTPUT PATH <- "../data/tlc trips.csv"
START DATE <- as.Date("2009-01-01")
END DATE <- as.Date("2018-06-01") # set to "2009-01-01" for the first file only
# BUILD URLS -----
# parse base url
base url <- gsub("2018-01.csv", "", BASE URL)
```

Data aggregation with chunked data files

Data aggregation: The 'split-apply-combine' strategy

- Background: Compute a statistic for specific groups (e.g. women vs men, etc.)
- 1. Split the data into subsamples (e.g. one for women, one for men)
- 2. Compute the statistic for each of the subsamples.
- 3. Combine all results in one table.

Preparation: Data import and cleaning

First, we read the raw taxi trips records into R with the ff-package.

```
# load packages
library(ff)
library(ffbase)
# set up the ff directory (for data file chunks)
if (!dir.exists("fftaxi")){
     system("mkdir fftaxi")
options(fftempdir = "fftaxi")
# import a few lines of the data, setting the column classes explicitly
col classes <- c(V1 = "factor",</pre>
                 V2 = "POSIXct",
                 V3 = "POSIXct",
                 V4 = "integer",
                 V5 = "numeric",
                 V6 = "numeric",
                 V7 = "numeric".
                 V8 = "numeric",
                 V9 = "numeric",
                 V10 = "numeric".
                 V11 = "numeric".
                 V12 = "factor",
                 V13 = "numeric".
                 V14 = "numeric".
```

Preparation: Data import and cleaning

Following the data documentation provided by TLC, we give the columns of our data set more meaningful names.

```
# first, we remove the empty vars V8 and V9
taxi$V8 <- NULL
taxi$V9 <- NULL
# set covariate names according to the data dictionary
# see https://www1.nyc.gov/assets/tlc/downloads/pdf/data dictionary trip records yellow.pdf
# note instead of taxizonne ids, long/lat are provided
varnames <- c("vendor id",</pre>
              "pickup time",
              "dropoff time",
              "passenger count",
              "trip distance",
              "start lat",
              "start long",
              "dest lat",
              "dest long",
              "payment type",
              "fare amount",
              "extra",
              "mta tax",
              "tip amount",
```

#4411a amazint#

Preparation: Data cleaning

```
# inspect the factor levels
levels(taxi$payment type)
## [1] "Cash"
                   "CASH"
                               "Credit"
                                            "CREDIT" "Dispute" "No Charge"
# recode them
levels(taxi$payment type) <- tolower(levels(taxi$payment type))</pre>
taxi$payment type <- ff(taxi$payment type,</pre>
                        levels = unique(levels(taxi$payment type)),
                        ramclass = "factor")
# check result
levels(taxi$payment type)
## [1] "cash"
                   "credit"
                               "dispute" "no charge"
```

- Goal: a table that shows the average amount of tip paid for each payment-type category.
- Approach: ffdfply() and summaryBy()

```
# load packages
library(doBy)
# split-apply-combine procedure on data file chunks
tip pcategory <- ffdfdply(taxi,
                          split = taxi$payment_type,
                          BATCHBYTES = 1000000000,
                          FUN = function(x) {
                               summaryBy(tip amount~payment type,
                                         data = x,
                                         FUN = mean,
                                         na.rm = TRUE)
## 2021-02-19 15:25:40, calculating split sizes
## 2021-02-19 15:25:40, building up split locations
## 2021-02-19 15:25:40, working on split 1/2, extracting data in RAM of 1 split elements, totalling,
## 2021-02-19 15:25:40, ... applying FUN to selected data
## 2021-02-19 15:25:41, ... appending result to the output ffdf
```

Now we can have a look at the resulting summary statistic in the form of a data.frame().

We add an additional variable percent_tip and then repeat the aggregation exercise for this variable.

```
# add additional column with the share of tip
taxi$percent tip <- (taxi$tip amount/taxi$total amount)*100
# recompute the aggregate stats
tip pcategory <- ffdfdply(taxi,
                          split = taxi$payment type,
                          BATCHBYTES = 1000000000,
                          FUN = function(x) {
                               summaryBy(percent tip~payment type, # note the difference here
                                         data = x,
                                         FUN = mean,
                                         na.rm = TRUE)
## 2021-02-19 15:25:41, calculating split sizes
## 2021-02-19 15:25:41, building up split locations
## 2021-02-19 15:25:41, working on split 1/2, extracting data in RAM of 1 split elements, totalling,
## 2021-02-19 15:25:42, ... applying FUN to selected data
```

Goal: Get number of observations by covariate-values Approach: Cross-tabulatoni with table.ff() (ffbase-package)

```
table.ff(taxi$payment_type)
```

```
## cash credit dispute no charge
## 781295 215424 536 2745
```

- What factors are correlated with payment types?
- · Is payment type associated with the number of passengers in a trip?

```
# select the subset of observations only containing trips paid by credit card or cash
taxi sub <- subset.ffdf(taxi, payment type=="credit" | payment type == "cash")
taxi sub$payment type <- ff(taxi sub$payment type,
                        levels = c("credit", "cash"),
                        ramclass = "factor")
# compute the cross tabulation
crosstab <- table.ff(taxi sub$passenger count,</pre>
                     taxi sub$payment type
# add names to the margins
names(dimnames(crosstab)) <- c("Passenger count", "Payment type")</pre>
# show result
crosstab
                  Payment type
## Passenger count credit
                            cash
                        2
##
                              44
##
                 1 149990 516828
                 2 32891 133468
##
                 3 7847 36439
##
                 4 2909 17901
##
                 5 20688 73027
##
##
                 6 1097 3588
```

Visualization of cross-tabulations

```
# install.packages(vcd)
# load package for mosaic plot
library(vcd)

## Loading required package: grid

# generate a mosaic plot
mosaic(crosstab, shade = TRUE)
```

High-speed in-memory data aggregation with data.table

Necessary condition for data.table

- · Data still fit into RAM
- Possible with our subsample of 1 million rows (on most modern computers).
- Unlikely to work well with the full data set (200GB)

Data import

We use the already familiar fread() to import the same first million observations from the January 2009 taxi trips records.

Data preparation

We prepare/clean the data as in the ff-approach above.

```
# first, we remove the empty vars V8 and V9
taxi$V8 <- NULL
taxi$V9 <- NULL
# set covariate names according to the data dictionary
# see https://www1.nyc.gov/assets/tlc/downloads/pdf/data dictionary trip records yellow.pdf
# note instead of taxizonne ids, long/lat are provided
varnames <- c("vendor id",</pre>
              "pickup time",
              "dropoff time",
              "passenger count",
              "trip distance",
              "start lat",
              "start long",
              "dest lat",
              "dest long",
              "payment type",
              "fare amount",
              "extra",
              "mta tax",
              "tip amount",
              "tolls amount",
              "total amount")
```

data.table-syntax for 'split-apply-combine' operations

- With [] syntax we index/subset usual data.frame objects in R.
- · When working with data.tables, much more can be done in the step of 'subsetting' the frame.

```
taxi[, mean(tip_amount/total_amount)]
## [1] 0.03452489
```

data.table-syntax for 'split-apply-combine' operations

And we can do the same with 'splitting' the rows first by specific groups and apply the function to each batch of observations.

data.table-syntax for cross-tabulations

Similarly we can use data.table's dcast() for crosstabulation-like operations.

```
dcast(taxi[payment_type %in% c("credit", "cash")],
     passenger count~payment type,
     fun.aggregate = length,
     value.var = "vendor id")
                     cash credit
##
     passenger_count
                         44
## 1:
## 2:
                   1 516828 149990
                   2 133468 32891
## 3:
                   3 36439 7847
## 4:
## 5:
                   4 17901 2909
## 6:
                   5 73027 20688
                   6 3588 1097
## 7:
```

(Big) Data Visualization

ggplot2

- 'Grammar of Graphics'
- Build plots layer-by-layer
- Here: Usefull tool for explorative visualization
- In-memory operations
 - Works well with 1 million obs.

Exploration: what determines tip amounts?

Set up the canvas...

```
# load packages
library(ggplot2)

# set up the canvas
taxiplot <- ggplot(taxi, aes(y=tip_amount, x= fare_amount))
taxiplot</pre>
```

Exploration: what determines tip amounts?

Visualize the co-distribution of the two variables with a simple scatter-plot.

```
# simple x/y plot
taxiplot +
          geom_point()
```


Problem: too many points

```
# simple x/y plot
taxiplot +
    geom_point(alpha=0.2)
```


2-D bins

Where are most observations located?

2-dimensional bins

taxiplot +
 geom_bin2d()

2-D bins: In of count

2-dimensional bins

Frequencies

Frequencies

plot top 20 frequent tip amounts

```
fare <- ggplot(data = frequencies[1:20], aes(x = factor(tip_amount), y = n_same_tip)) fare + geom_bar(stat = "identity")
```


Split by payment type

```
fare + geom_bar(stat = "identity") +
    facet_wrap("payment_type")
```


Split by payment type

Let's have a closer look at non-zero tip amounts.

Payment habits?

Fractions of dollars due to loose change as tip?

```
# indicate natural numbers
taxi[, dollar_paid := ifelse(tip_amount == round(tip_amount,0), "Full", "Fraction"),]

# extended x/y plot
taxiplot +
    geom_point(alpha=0.2, aes(color=payment_type)) +
    facet_wrap("dollar_paid")
```

Payment habits?

Rounding up?

Modelling of payment habits

'X% tip rule'?

Prepare the plot for reporting

References