Block ciphers (2)

Blockciphers

Family of permutations, one permutation for each key

$$E: \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$$

Use notation $E(K,X) = E_K(X) = Y$ Define inverse $D(K,Y) = D_K(Y) = X$ such that $D_K(E_K(X)) = X$ E,D must be efficiently computable

Key generation: pick K uniformly at random from $\{0,1\}^k$

Nowadays $k \ge 128$

DES and AES blockciphers

PRF definition

Adversary (distinguisher) can't tell between E_{K} and random function

Let Func(n,n) be set of all functions from n bits to n bits

$$\epsilon = \left|\Pr[K \leftarrow \{0,1\}^k \ : \ \mathcal{A}^{E_K(\cdot)} = 1] - \Pr[\rho \leftarrow Func(n,n) \ : \ \mathcal{A}^{\rho(\cdot)} = 1] \right|$$
 Select a secret key

- Insecure if we can find adversary ${\mathcal A}$ such that ϵ is close to 1
- Secure if we can prove that no (computationally efficient) adversary can achieve advantage far from 0
- Adversary is computationally bound in run time, and consequently can only make a limited number of queries to its oracle

Permutations as PRFs

Adversary (distinguisher) can't tell between E_K and random function

Let Func(n,n) be set of all functions from n bits to n bits

$$\epsilon = \left|\Pr[K \leftarrow \{0,1\}^k \ : \ \mathcal{A}^{E_K(\cdot)} = 1] - \Pr[\rho \leftarrow Func(n,n) \ : \ \mathcal{A}^{\rho(\cdot)} = 1] \right|$$
 Select a secret key

- Recall that we require E_{κ} to be a *permutation*
- Can we give an adversary ${\mathcal A}$ such that ϵ is close to 1 for any E_{K} ?

Pseudorandom permutations (PRPs)

Adversary (distinguisher) can't tell between E_K and random permutation

Let Perm(n,n) be set of all permutations from n bits to n bits

$$\epsilon = \left|\Pr[K \leftarrow \{0,1\}^k \ : \ \mathcal{A}^{E_K(\cdot)} = 1] - \Pr[\pi \leftarrow Perm(n,n) \ : \ \mathcal{A}^{\pi(\cdot)} = 1]\right|$$
 Select a secret key

- Insecure if we can find adversary ${\mathcal A}$ such that ϵ is close to ${f 1}$
- Secure if we can prove that no (computationally efficient) adversary can achieve advantage far from 0
- Adversary is computationally bound in run time, and consequently can only make a limited number of queries to its oracle

PRP/PRF Switching Lemma

If n is large enough, then not much difference between PRP and PRF. More formally:

$$\left| \Pr[\rho \leftarrow Func(n,n) : \mathcal{A}^{\rho(\cdot)} = 1] - \Pr[\pi \leftarrow Perm(n,n) : \mathcal{A}^{\pi(\cdot)} = 1] \right| \le \frac{q^2}{2^n}$$

where q is number of oracle queries $\,{\cal A}\,$ makes

$$n = 4$$
 pretty good attack even with $q = 2$

$$n = 64$$
 q must get close to 2^{32} to distinguish

$$n = 128$$
 q must get close to 2^{64} to distinguish

Encryption from good PRF/PRP

Recall our multi-message encryption:

```
\frac{\operatorname{Enc}_{K}(m):}{r <- U_{n}}
Return ( r, m \bigoplus E_{K}(r) )
```

This is provably multi-message secure if E is secure PRF (or, by switching lemma, PRP)

Instantiating PRF with AES

Recall our multi-message encryption:

```
\frac{\operatorname{Enc}_{K}(m):}{r <- U_{n}}
Return ( r, m \bigoplus AES<sub>K</sub>(r) )
```

This is provably multi-message secure if AES is secure PRF (or, by switching lemma, PRP)

We will make this assumption, and trust that no cryptanalysts can find better attacks

Two encryption applications

We'll look closely at two encryption applications:

- Length-preserving encryption
 - Useful for cases where ciphertexts must be same length as plaintexts.
 - Should only be used when absolutely needed

- Length-extending encryption (used for TLS)
 - Insecure variants: CTR mode, ECB mode, CBC mode
 - We'll build secure ones in a few lectures

Example: Credit card number encryption

Jane Doe	1343-1321-1231-2310
Thomas Ristenpart	9541-3156-1320-2139
John Jones	5616-2341-2341-1210
Eve Judas	2321-4232-1340-1410

Database schemas
 and software require
 <= 16 decimal digits
 and valid Luhn
 checksum

 $AES_K : \{0,1\}^{128} \longrightarrow \{0,1\}^{128}$

Ciphertexts are too big for replacing plaintext within database!

M = 2321-4232-1345-1415

AES_K
128 bits

Example: Credit card number encryption

Encryption tool whose ciphertexts are also credit-card numbers

Format-preserving encryption (FPE)

Disk sectors / payment card numbers just two examples Some others:

- 1) Valid addresses for a certain country
- 2) 4096-byte disk sectors
- 3) Assigned Social Security Numbers (9 digits, without leading 8 or 9)
- 4) Composition of (1) and (3)

How to build FPE on 48 bits?

Special case of FFX encryption

$$F_{K1}(R) = AES(K, 1 || R)$$

 $F_{K2}(R) = AES(K, 2 || R)$

• • •

Take XOR mod 2²⁴

Use 10 rounds

Balanced Feistel security in theory

- Luby & Rackoff showed that if round functions are PRFs and n is relatively large, then
 - 3 rounds suffice to prove that Feistel is a PRP
 - Proofs hold up to $q \approx 2^{n/4}$

- For FPE n is often not very large:
 - FFX designers suggested 10 rounds as heuristic
 - Recent "certificational" weaknesses against 10 rounds [Bellare, Hoang, Tessaro 2016]

FPE now widely used in practice

Security problems with length-preserving encryption?

But determinism has problems:

	Plaintext	Ciphertext
Jane Doe	1343-1321-1231-2310	1049-9310-3210-4732
Thomas Ristenpart	9541-3156-1320-2139	7180-4315-4839-0142
John Jones	2321-4232-1340-1410	5731-8943-1483-9015
Eve Judas	1343-1321-1231-2310	1049-9310-3210-4732

Simple frequency analysis attacks

Say adversary steals a medical database with a column encrypted with FPE

Patient #	Sex	Disease type
0	11110010	101010101001000
1	10101100	111110101000101
2	10101100	111110101000101
3	10101100	001111100011111

Know sex is only Male or Female
More women go to hospital then men

Know 4 types of diseases and their distribution population

Simple frequency analysis attacks

Say adversary steals a medical database with a column encrypted with FPE

Patient #	Sex	Disease type
0	11110010	101010101001000
1	10101100	111110101000101
2	10101100	111110101000101
3	10101100	001111100011111

There are some mitigations for attacks, but in general one should use FPE *only as a last resort*!

Length-extending encryption security

- Not a bit of information about plaintext leaked
 - Equality of plaintexts hidden
 - Even in case of active attacks (we'll get to this)
 - Padding oracles we will see later
- Eventually: authenticity of messages as well
 - Decryption should reject modified ciphertexts