$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \qquad \leftarrow$	$ ightarrow f(x) \qquad \leftarrow$	$\rightarrow \int f(x) dx$
a	ax	$\frac{a}{2}x^2$
nx^{n-1}	x^n	$\frac{1}{n+1}x^{n+1}$
$a \cdot e^{ax}$	e^{ax}	$\frac{1}{a}e^{ax}$
$a^x \ln(a)$	a^x	$rac{a^x}{\ln(a)}$
$\frac{1}{x}$	$\ln x $	$x \ln x - x$
$\frac{1}{x \ln(a)}$	$\log_a(x)$	$\log_a(x) - \frac{x}{\ln(a)}$
$\cos(x)$	$\sin(x)$	$-\cos(x)$
$-\sin(x)$	$\cos(x)$	$\sin(x)$
$\sec^2(x)$	$\tan(x)$	$-\ln\left \cos(x)\right = \ln\left \sec x\right $
$-\csc(x)\cot(x)$	$\csc(x)$	$\ln \left \csc(x) - \cot(x) \right $
$\sec(x)\tan(x)$	$\sec(x)$	$\ln \left \sec(x) + \tan(x) \right $
$-\csc^2(x)$	$\cot(x)$	$\ln \left \sin(x) \right = -\ln \left \csc(x) \right $
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(x/a\right)$	$x\sin^{-1}(x/a) + \sqrt{a^2 - x^2}$
$-\frac{1}{\sqrt{a^2-x^2}}$	$\cos^{-1}\left(x/a\right)$	$x\cos^{-1}(x/a) - \sqrt{a^2 - x^2}$
$\frac{1}{a^2 + x^2}$	$\tan^{-1}\left(x/a\right)$	$x \tan^{-1}(x/a) - a\frac{1}{2} \ln x^2 + a^2 $
$-\frac{a}{ x \sqrt{x^2-a^2}}$	$\csc^{-1}\left(x/a\right)$	$x \csc^{-1}(x/a) + a \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $
$\frac{a}{ x \sqrt{x^2 - a^2}}$	$\sec^{-1}\left(x/a\right)$	$x \sec^{-1}(x/a) - a \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $
$-\frac{a}{x^2 + a^2}$	$\cot^{-1}\left(x/a\right)$	$x \cot^{-1}(x/a) + a\frac{1}{2} \ln a^2 + x^2 $

$\ln x \ll x^p \ll b^x \ll x! \ll x^x$

Series	$\sum_{k=0}^{\infty} a_k$	Converges	Diverges
Geometric	$\sum_{k=0}^{\infty} ar^k$	$\sum a_k \to \frac{a}{1-r} \Rightarrow r < 1$	r ot < 1
Telescoping	$\sum_{k=0}^{\infty} \left(a_k - a_{k+1} \right)$	$\sum a_k \to a_1 - \lim_{k \to \infty} a_k$	×
p-series	$\sum_{k=0}^{\infty} \frac{1}{k^p}$	p > 1	$p \not \geq 1$
Harmonic	$\sum_{k=0}^{\infty} \frac{1}{k}$	×	√
Divergence Test	$\sum_{k=0}^{\infty} a_k$	$\lim_{k \to \infty} a_k = 0 \to \text{inconclusive}$	$\lim_{k \to \infty} a_k \neq 0$
Integral Test	☐ Continuous ☐ Positive ☐ Decreasing		