Load balancer e Teorema de CAP

Load Balancer

A single point of failure (SPOF) é um componente em um sistema que se falha vai causar que o sistema inteiro falhe ou se torne indisponível.

Redundância e Alta Disponibilidade: múltiplos load balancers em regiões ou zonas de disponibilidade diferentes

Failover Automático: em caso de falha do load balancer principal, outro assuma o tráfego sem intervenção manual

Escalabilidade e Elasticidade: escalar automaticamente conforme a demanda, evitando sobrecarga em momentos de pico

Monitoramento/Observabilidade: monitorar saúde dos seus load balancers

Teorema de CAP

Any networked system providing shared data can provide only two of the following three properties:

first published as [Fox and Brewer, 1999].

Practical distributed systems are inherently unreliable.

Consistência (C)

Garante que todos os nós do sistema vejam os mesmos dados simultaneamente.

Exemplo prático:

Sistemas bancários: Em transações financeiras, é essencial que o saldo de uma conta seja consistente em todos os servidores.

Se um usuário transfere R\$ 100, todos os nós devem refletir essa alteração imediatamente para evitar duplicações ou perdas

Disponibilidade (A)

Assegura que todas as solicitações recebam uma resposta, mesmo que os dados estejam desatualizados.

Exemplo prático:

Redes sociais: Plataformas como Twitter priorizam a disponibilidade. Durante uma partição, novos tweets podem ser exibidos

em alguns servidores antes de sincronizar com outros, aceitando inconsistência temporária para evitar interrupções

Tolerância a Partições (P)

Capacidade do sistema de continuar operando durante falhas de comunicação entre nós.

Exemplo prático:

CDNs (Content Delivery Networks): Servidores distribuídos globalmente replicam conteúdo estático (ex: imagens de um site).

Se um servidor na Europa falhar, usuários na Ásia ainda acessam o conteúdo via outros nós, mesmo com dados potencialmente desatualizados

