Part II

Concept Learning 2

(12 points) Structured questions. Answer in the space provided on the script.

- 1. (12 points) Consider the hypothetical task of learning the target concept MLGrade to understand the factors affecting the grades of students enrolled in an ML class and the hypothesis space H that is represented by a conjunction of constraints on input attributes, as previously described on page 7 of the "Concept Learning" lecture slides. Each constraint on an input attribute can be a specific value, don't care (denoted by '?'), and no value allowed (denoted by ' \emptyset '), as previously described on page 5 of the "Concept Learning" lecture slides. Each input instance is represented by the following input attributes:
 - AttendClass (with possible values Always, Sometimes, Rarely),
 - FinalsGrade (with possible values Good, Average, Poor),
 - ProjectGrade (with possible values Good, Average, Poor), and
 - LoveML (with possible values Yes, No).

For example, a typical hypothesis in H is

$$\langle ?, Average, ?, Yes \rangle$$
.

Trace the CANDIDATE-ELIMINATION algorithm (reproduced below in Fig. 1) for the hypothesis space H given the sequence of positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples from Table 1 below (i.e., show the sequence of S and G boundary sets).

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H
- 3. For each training example d
 - If d is a positive example
 - Remove from ${\cal G}$ any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - * Remove s from S
 - Add to S all minimal generalizations h of s s.t.
 h is consistent with d, and
 some member of G is more general than or equal to h
 - st Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - $* \ \ \mathsf{Remove} \ g \ \mathsf{from} \ G$
 - * Add to G all minimal specializations h of g s.t. h is consistent with d, and some member of S is more specific than or equal to h
 - st Remove from G any hypothesis that is more specific than another hypothesis in G

Figure 1: CANDIDATE-ELIMINATION algorithm.

Example		Target Concept			
Student	AttendClass	FinalsGrade	ProjectGrade	Love ML	MLGrade
1. Ryutaro	Sometimes	Good	Poor	Yes	Pass
2. Haibin	Sometimes	Good	Average	Yes	Pass
3. Jinho	Rarely	Average	Average	No	Fail
4. Jingfeng	Sometimes	Poor	Average	No	Fail

Table 1: Positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples for target concept MLGrade.

Suppose that the target concept c is in the hypothesis space H (i.e., $c \in H$) and an active learner has already observed the set D of 4 training examples in Table 1 above. State **every** possible input instance (i.e., assuming such a student exists) that the active learner can query next for the 5-th training example to reduce the version space $VS_{H,D}$ by at least half. Note that the active learner does not know the output label c(x) of any input instance x that it has not yet observed.

Hint: Draw the version space $VS_{H,D}$.

Part V Neural Networks

(20 points) Structured questions. Answer in the space provided on the script.

Solution:					
lides) are all see set for the puputs to the puputs to the puputs.	posing the weights u et to the value of 1 , derceptron to represent the erceptron are false, u of the perceptron erivation. No marks	lerive the largest nt the OR functi and true otherv are Boolean wi	possible range of on. That is, the p vise. Assume that th the values of 1	the values of w_0 (i perceptron outputs at the inputs x_1, x (i.e., true) or -1 (n terms of n) that false if all n Bool $2, \ldots, x_n$ and ou

Solution:
(8 points) Construct and draw a network of perceptron units with only one hidden layer (of four units) tha implements $(x_1 \text{ XOR } x_2) \text{ XOR } x_3$ based on the following rules:
 There should be only one (Boolean) output unit and an input unit for every (Boolean) input. A Boolean is -1 if false, and 1 if true.
• The activation function of every (non-input) unit is a -1 to 1 step function (refer to page 6 of the "Neura Networks" lecture slides), including that of the output unit.
 Your weights must take on one of the following values: -1, 0, 1, 3. You don't have to draw edges with weight 0.
Hint: Observe the truth table of $(x_1 \text{ XOR } x_2) \text{ XOR } x_3$.
Solution:

_ END OF PAPER _