

Fragenkatalog Amateurfunk Technik

Version vom 18.01.2018

Inhaltsverzeichnis

1.	Elektrizität, Magnetismus und Funktheorie	. 5
2.	Bauelemente	27
3.	Schaltungen	45
4.	Empfänger	91
5.	Sender10	07
6.	Antennen und Antennenzuleitungen12	21
7.	Wellenausbreitung13	35
8.	Messtechnik1	43
9.	Störungen und Störschutz14	49
10.	Schutz gegen elektrische Spannungen, Personenschutz 1	55
11.	Schutz vor nichtionisierender Strahlung, NIS1	59
12.	Blitzschutz10	61
13.	Liste der verwendeten Symbole10	65
14.	Liste der verwendeten Abkürzungen10	69

1.1.

1. Elektrizität, Magnetismus und Funktheorie

HB3/HB9

Welche	Einheit hat die elektrische Leistung?
a)	Volt (V)
b)	Watt (W)
c)	Ampere (A)
d)	Ohm (Ω)
Lö	sung: b)
1.2. Die elek	HB3/HB¹ trische Arbeit bezeichnet man auch mit…
a)	Kilowatt (kW)
b)	Volt (V)
,	Kilowattstunde (kWh)
,	Voltampere (VA)
-	sung: c)
	ourig. o _j
1.3.	HB3/HB
Was ver	steht man unter Spannungsabfall?
a)	Restspannung einer entladenen Batterie.
b)	Ein mehr oder weniger grosser Spannungsverlust, der nicht mit dem ohmschen Gesetz erklärt werden kann.
c)	Man bezeichnet damit z.B. die an den Klemmen eines Widerstandes gemessene Potentialdifferenz.
d)	Auf alle Fälle ein unerwünschter Spannungsverlust.
Lö	sung: c)

1.4. In welcl	HB3/HB9 her Gruppe kommen nur Halbleitermaterialien vor?
a	
b)	
C)) Kupfer, Selen, Germanium
ď) Selen, Germanium, Silizium
L	ösung: d)
1.5. In welcl	HB3/HB9 ne Kategorie fallen die Materialien Germanium und Silizium?
a)	,
•) Isolatoren
C)	
d)	
L	ösung: c)
1.6. Welche desto	HB3/HB9 Aussage ist richtig? Je grösser der Querschnitt eines Leiters
a)kleiner der Widerstand.
b))grösser der Widerstand.
C)	kleiner der spezifische Widerstand.
ď)grösser der spezifische Widerstand.
L	ösung: a)

1.7.	HB3/HB9
Bei einer Serieschaltung von drei unterschiedlichen Widerständ	en sind
die Teilspannungen über den einzelnen Widerständen	

- a) ...überall gleich.
- b) ...umgekehrt proportional zum Widerstandswert.
- c) ...proportional zum Widerstandswert.
- d) ...die Frage kann nicht eindeutig beantwortet werden.

Lösung: c)

1.8. HB3/HB9 Bei einer Serieschaltung von drei unterschiedlichen Widerständen ist der Strom in den einzelnen Widerständen...

- a) ...überall gleich.
- b) ...umgekehrt proportional zum Widerstandswert.
- c) ...proportional zum Widerstandswert.
- d) ...abhängig von den einzelnen Widerständen (bei gleichen Gesamtwiderstand).

Lösung: a)

1.9. HB3/HB9 Welche Spannung darf maximal an einen Widerstand von 470 Ω , ¼W angelegt werden?

Lösung: 10.84V

1.10. HB3/HB9

Vier Widerstände, $R_1 = 100\Omega$, $R_2 = 500\Omega$, $R_3 = 1k\Omega$ und $R_4 = 5k\Omega$ sind parallel geschaltet.

Die Ströme in den einzelnen Widerständen sind...

- a) ...überall gleich.
- b) ...umgekehrt proportional zum Widerstandswert.
- c) ...proportional zum Widerstandswert.
- d) ...die Frage kann nicht eindeutig beantwortet werden.

Lösung: b)

1.11. HB3/HB9

Drei stromdurchflossene Widerstände mit den Werten $R_1 = 8.2k\Omega$, $R_2 = 2.7k\Omega$ und $R_3 = 47k\Omega$ sind in Serie geschaltet. Über welchem Widerstand liegt die grösste Teilspannung an?

Lösung: R₃

1.12. HB3/HB9

Aus einem Knotenpunkt heraus fliessen 218mA, 78mA, 54mA, 300mA und 42mA. In den Knotenpunkt hinein fliessen 150mA, 370mA, 99mA und ? mA

Lösung: 73mA

1.13. HB3/HB9

Eine Signallampe mit den Daten 9V / 1W soll in einem Funkgerät, welches an 12V angeschlossen ist, eingesetzt werden. Wie gross muss der Vorwiderstand dimensioniert werden?

Lösung: 27Ω

1.14. HB9

Ein Speisegerät hat eine Ausgangsspannung von 13.8V bei einem Laststrom von 20A.

Die Speisung des Funkgerätes erfolgt über ein 3.5m langes Kabel mit einem Leiterquerschnitt von 6mm².

Der spezifische Widerstand von Kupfer ist 0.0175 $\frac{\Omega \cdot mm^2}{m}$

Wie gross ist die Spannung am Funkgerät?

Lösung: 13.4V

1.15. HB9 In der untenstehenden Schaltung fliesst ein Strom von I_1 = 1.7mA. Wie gross ist U an den Klemmen?

Lösung: 31.7V

1.16. HB9 Wie muss der Innenwiderstand R_i einer Konstantstromquelle im Bezug zum Lastwiderstand R_L sein?

- a) sehr viel kleiner
- b) klein
- c) gleich $(R_i = R_L)$
- d) sehr viel grösser

Lösung: d)

1.17. HB9

Wie gross sind Uq und Ri in dieser Schaltung?

Lösung: $U_q = 10V$, $R_i = 1\Omega$

1.18. HB9

Ein Sender mit einer Leistung von 100W bewirkt an einem Empfänger ein Eingangssignal von $2\mu V$.

Welche Leistung müsste der Sender aufweisen, damit im Empfänger ein Eingangssignal von $1\mu V$ resultiert?

Lösung: 25W

1.19. HB9

Ein Amateursender mit einer Sendeleistung von 100W bewirkt in 10m Distanz zur Antenne eine Feldstärke von E = 2V/m.

In welcher Distanz zur Antenne beträgt die Feldstärke 1V/m?

Lösung: 20m

1.20. HB9

An einem mit 6dB pro S-Stufe geeichten S-Meter eines Empfängers wird ein Signal mit S9 angezeigt.

Für eine Anzeige von S6 müsste die Sendeleistung ca. um welchen Faktor reduziert werden?

Lösung: 64

1.21. HB9

An einem bestimmten Empfangsort A wird die Feldstärke eines Senders B mit 10µV/m gemessen. Eine Woche früher waren es 5µV/m bei gleichen Ausbreitungsbedingungen.

Um wie viele dB wurde die Sendeleistung geändert?

Lösung: 6dB

1.22. HB9

In einer Kurzwellen-Verbindung wird gegenseitig eine Signalstärke von S7 angezeigt. Beide S-Meter sind in 6-dB-Schritten pro S-Stufe geeicht, die Sender erzeugen je 100W HF-Leistung.

Eine Verständigung wäre aber auch mit einem S3-Signal möglich. Auf welchen Wert könnte die Sendeleistung reduziert werden?

Lösung: ca. 400mW

1.23. HB9

Ein Sendesignal kommt am Empfangsort mit S7 an. Das S-Meter des Empfängers ist auf 6dB pro S-Stufe geeicht.

Um welchen Faktor muss die Sendeleistung erhöht werden, wenn 8½ S-Stufen angezeigt werden sollen?

Lösung: 8

1.24. HB9

Die Entfernung zwischen zwei Amateurstationen beträgt 50km. Jeder empfängt die andere Station mit einer Antennenspannung von $60\mu V$ (an 50Ω).

Mit welcher Antennenspannung könnten sich beide Stationen empfangen, wenn die Entfernung 75km betragen würde (gleiche Ausrüstung, nicht Raumwelle)?

Lösung: 40μV

1.25. HB9

Ein 50W AM-Sender bewirkt bei einem Empfänger mit einer Empfindlichkeit von 0.5µV ein NF-Signal von 50mW.

Wie stark müsste dieser Sender sein, wenn die Empfindlichkeit des Empfängers auf 1µV absinkt (ohne automatische Regelung, gleiche NF-Leistung, gleiches Nutz-Störsignalverhältnis)?

Lösung: 200W

1.26. HB9

Eine Antenne mit der Impedanz 50Ω liefert eine Signalspannung von $50\mu V$ an einen Vorverstärker mit einer Verstärkung von 30dB, der sich direkt bei der Antenne befindet. Die Zuleitung zum Empfänger dämpft das Signal um 20dB, ein Antennenrelais hat 3dB und ein eingeschlauftes Filter ebenfalls 3dB Dämpfung.

Wie gross ist die Spannung am 50Ω -Empfängereingang?

Lösung: 79.2µV

1.27. HB9

An einem Empfängereingang (Impedanz 50Ω) wird ein Signal von $15\mu V$ gemessen.

Welcher Leistung entspricht dies?

Lösung: 4.5pW

1.28. HB9

Gemäss Skizze sind 2 parallele Leiter mit den Klemmen einer Batterie von U = 1V verbunden.

Bei der Skizze a) beträgt die elektrische Feldstärke E = 1V/m. Wie gross ist die Feldstärke bei Skizze b)?

Lösung: 0.5V/m

1.29. HB9

Gemäss Skizze sind 2 parallele Leiter mit dem Klemmen einer Batterie mit einer Spannung von U_B = 1V verbunden. Der Abstand zwischen den Leitern beträgt d = 1.0m. Die resultierende Feldstärke beträgt 1V/m. Welchen Wert hat die Feldstärke wenn der Abstand d zwischen den Leitern auf 0.5m reduziert wird?

Lösung: 2V/m

1.30. HB9

Ein Sender gibt eine HF-Leistung von 100W ab.

Diese Leistung wird über eine Antenne mit 6dB Antennengewinn (dBd) abgestrahlt.

Wie hoch ist die effektiv abgestrahlte Leistung (ERP)?

Lösung: 400W ERP

1.31. HB9

Über eine Antenne wird eine HF-Leistung von 100W ERP abgestrahlt. Welche Feldstärke ist in 100m Distanz zur Antenne zu erwarten (Fernfeld, Freiraumausbreitung, keine Reflexionen)?

Lösung: ca. 0.7V/m

1.32. HB9

Über eine Antenne wird eine HF-Leistung von 100W ERP abgestrahlt. In welcher Distanz zur Antenne ist eine Feldstärke von 1V/m zu erwarten (Fernfeld, Freiraumausbreitung, keine Reflexionen)?

Lösung: ca. 70m

1.33. HB3/HB9

Wie verhält sich die magnetische Feldstärke einer bifilaren Wicklung bei einer Stromänderung von 1.8A in 200ms?

- a) Eine bifilare Wicklung erzeugt gegen aussen kein Magnetfeld; keine Änderung.
- b) Das gegen aussen erzeugte Magnetfeld wird grösser.
- c) Das gegen aussen erzeugte Magnetfeld wird kleiner.
- d) Die Auswirkungen sind abhängig vom verwendeten Material (Eisen, Kupfer) der Wicklung.

Lösung: a)

1.34. Wie verhä	HB3/HB9 alt sich die magnetische Feldstärke um einen einzelnen Leiter?
a)	Sie ist proportional zum Strom.
b)	Sie ist umgekehrt proportional zum Strom.
c)	Sie ist unabhängig vom Strom.
d)	Sie ist abhängig vom Material des Leiters.
Lös	ung: a)
1.35. 24.930MF	HB3/HB9 Hz sind – verglichen mit der Wellenlänge von 12.010m – die
•	tiefere Frequenz höhere Frequenz
,	gleiche Frequenz
d)	kleinere Wellenlänge
,	ung: a)
	ug. u.,
1.36. Welche d	HB3/HB9 er aufgelisteten Frequenzen liegt im 15m Amateurfunkband?
a)	3777kHz
b)	14323kHz
c)	18092kHz
d)	21376kHz
Lös	ung: d)
1.37. Welcher I	HB3/HB9 Frequenz entspricht die Wellenlänge von 2m?
	ung: 150MHz

1.38. HB3/HB9

Wie stehen im elektromagnetischen Feld die Vektoren E und H zueinander?

- a) Sie stehen senkrecht zueinander.
- b) Sie weisen in die gleiche Richtung.
- c) Sie stehen 180° zueinander.
- d) Sie stehen 45° zueinander.

Lösung: a)

1.39. HB3/HB9

Welches ist die Wellenlänge des Netz-Wechselstromes (50Hz) im freien Raum?

Lösung: 6000km

1.40. HB3/HB9

Ein Voltmeter zeigt bei einer sinusförmigen Wechselspannung einen Wert von 80V an.

Wie gross ist die Spitzenspannung (Upeak)?

Lösung: 113.14V

1.41. HB9 In welcher Darstellung besteht eine Phasenverschiebung von 180° zwischen U und I?

Lösung: b)

1.42. HB3/HB9 Wie nennt sich die in der Zeichnung mit "b" bezeichnete Grösse?

- a) negative Halbwelle
- b) positive Halbwelle
- c) Periodendauer
- d) Amplitude

Lösung: a)

1.43. HB9 In einem korrekt abgeschlossenen Kabel mit einer Impedanz von Z = 50Ω wird eine HF-Leistung von 120W übertragen. Welches ist der Spitzenwert des Stromes?

Lösung: 2.19A

1.44. HB9 In einem impedanzrichtig abgeschlossenen Kabel mit einer Impedanz von 60Ω wird eine HF-Leistung von 250 Watt übertragen. Welches ist der Spitzenwert des Stromes?

Lösung: 2.89A

1.45. HB9

Ein Sender ist über ein Koaxialkabel impedanzrichtig an eine Kunstlast angeschlossen. Bei einer Leistung von 714W wird am Kabel eine Spannung von 207V gemessen.

Welches ist die Impedanz des Kabels?

Lösung: 60Ω

1.46. HB9

In einem Wechselstromkreis wird an einem ohmschen Widerstand von 120Ω eine Leistung von 300W in Wärme umgewandelt. Wie gross ist der Scheitelwert (U_{peak}) der Spannung?

Lösung: 268.3V

1.47. HB9

Zwei Widerstände von 75 Ω und 22 Ω sind parallel geschaltet und werden von einem Gesamtstrom von 1.5A durchflossen. Wie gross ist der Strom durch den 75 Ω Widerstand?

Lösung: 340mA

1.48. HB3/HB9

In eine Kunstantenne von 50Ω wird eine Leistung von 300W abgegeben. Wie gross ist die Spannung?

Lösung: 122.5V

1.49. HB3/HB9

Eine 50Ω Kunstantenne ist für 2W Belastung ausgelegt. Wie gross darf der Strom maximal sein?

Lösung: 200mA

1.50. HB3/HB9

Eine 50Ω Kunstantenne ist für 2W Belastung ausgelegt. Wie gross darf die Spannung maximal sein?

Lösung: 10V

1.51. HB3/HB9

Eine Kunstantenne ist wie folgt angeschrieben: 50Ω , 600W. Welches ist der maximale Strom?

Lösung: 3.464A

1.52. HB3/HB9

Ein $18k\Omega$ Widerstand trägt die zusätzliche Bezeichnung 1.25W. Wie gross ist der maximal zulässige Strom?

Lösung: 8.33mA

1.53. HB3/HB9

Ein 470Ω Widerstand ist mit einem halben Watt belastbar. Wie gross ist der maximal zulässige Strom?

Lösung: 32.6mA

1.54. HB3/HB9

Ein ideales Rechtecksignal setzt sich wie folgt zusammen:

- a) aus einer Sinus-Grundwelle und theoretisch unendlich vielen ganzzahligen, ungeraden Harmonischen.
- b) aus einer Sinus Grundwelle und der 3. und 5. Harmonischen.
- c) aus einer Sinus Grundwelle und der 2. und 5. Harmonischen.
- d) aus einer Sinus Grundwelle und einer Anzahl Frequenzen die unterhalb der Grundwelle liegen.

Lösung: a)

1.55. HB3/HB9

Der Begriff "Oberwellen" bedeutet

- a) ganzzahlige Vielfache der Grundfrequenz.
- b) gradzahlige Vielfache der Grundfrequenz.
- c) ungradzahlige Vielfache der Grundfrequenz.
- d) das Bestreben eines HF-Stromes, an der Oberfläche eines Leiters zu fliessen.

Lösung: a)

1.56. HB3/HB9

Was sagt die Messgrösse Klirrfaktor eines NF-Signals aus?

- a) sie gibt die Grösse der Verzerrungen des Signals an.
- b) sie beschreibt den Frequenzgang einer Verstärker-Stufe.
- c) sie beschreibt die maximal mögliche Amplitude des Signals.
- d) sie beschreibt um welchen Faktor die hohen Frequenzen (> 4kHz) angehoben werden.

Lösung: a)

1.57. HB9 Welches ist die Effektivspannung und die Frequenz des abgebildeten

Signals?

Lösung: $U_{eff} = 80 \text{mV}$, f = 83.33 kHz

1.58. HB9

Ein Sender wird mit 1.8kHz NF und 3kHz Hub moduliert. Wie gross ist der Modulationsindex?

Lösung: 1.67

1.59. HB3/HB9

Bei der HF-Übertragung mittels AM wird die NF-Tonhöhe bestimmt durch...

- a) ...die Frequenz der Hüllkurve.
- b) ...die maximale Amplitude der Trägerfrequenz.
- c) ...die Auslenkung der Trägerfrequenz (Frequenzhub).
- c) ...den Modulationsgrad der Trägerfrequenz.

Lösung: a)

1.60. HB3/HB9

Wie gross ist der Modulationsgrad der gezeichneten Amplitudenmodulation (A3E)?

Lösung: 100%

1.61. HB3/HB9

Welche Modulationsart stellt das KO-Bild dar?

- a) 2-Ton SSB-Modulation (J3E)
- b) CW-Modulation (A1A)
- c) AM (A3E)
- d) FM (F3E)

Lösung: a)

1.62. HB9

Welche Bandbreite ist für die Betriebsart RTTY (50 Bd, F1B) erforderlich?

- a) ~330Hz mit 170Hz Shift, ~1010Hz mit 850Hz Shift
- b) ~170Hz mit 170Hz Shift, ~850Hz mit 850Hz Shift
- c) ~800Hz mit 170Hz Shift, ~2400Hz mit 850Hz Shift
- d) ~2400Hz mit 170Hz Shift, ~3000Hz mit 850Hz Shift

Lösung: a)

1.63. HB9

Welche Bandbreite ist für CW (A1A) erforderlich?

- a) ~21Hz bei 10 WPM, ~63Hz bei 30 WPM
- b) ~42Hz bei 10 WPM, ~125Hz bei 30 WPM
- c) ~84Hz bei 10 WPM, ~250Hz bei 30 WPM
- d) ~168Hz bei 10 WPM, ~500Hz bei 30 WPM

Lösung: b)

1.64. HB9

Welche Modulationsarten werden für RTTY verwendet?

- a) PWM (pulse width modulation)
- b) FSK (frequency shift keying) und AFSK (audio frequency shift keying)
- c) CW (continuous wave)
- d) PDM (pulse depth modulation)

Lösung: b)

1.65. HB9

Wie gross ist die Ausgangsspannung U_{out} bei der untenstehenden Schaltung?

 $U_{in} = 316mV$, $a_1 = 3dB$, $a_2 = 7dB$, $Z_{in} = Z_{out}$

Lösung: 1V

1.66. HB9

Warum muss die Ausgangsimpedanz eines Senders an die Eingangsimpedanz der Antenne angepasst werden?

- a) Damit eine maximale Leistungsübertragung (Leistungsanpassung) erfolgt.
- b) Damit gleichartige Stecker und Kabel verwendet werden können.
- c) Damit die Beschaltung einfacher wird.
- d) Damit die Antennenvorschriften eingehalten werden.

Lösung: a)

1.67. HB9

Mit einer Linearendstufe kann ein Sendeamateur die Sendeleistung seines Handgerätes um 7dB erhöhen.

Wie gross ist die Leistung am Ausgang der Endstufe, wenn das Handgerät 1.5W abgibt?

Lösung: 7.5W

1.68. HB9

Die Ausgangsleistung einer VHF-Endstufe beträgt 150W. Diese Endstufe wird über ein 10.6m langes Kabel, dessen Dämpfung für die gegebene Frequenz 17dB/100m beträgt, mit einer Antenne verbunden, die einen Gewinn von 7.8dBd aufweist.

Wie gross ist die effektiv abgestrahlte Leistung (ERP)?

Lösung: 597W

1.69. HB9

Die 3. Harmonische (2. Oberwelle) eines KW-Senders mit 150W Ausgangsleistung wird gegenüber dem Nutzsignal um 40dB gedämpft. Durch ein zusätzliches Tiefpassfilter wird diese Oberwelle um weitere 60dB abgeschwächt.

Wie gross ist die Leistung dieser Oberwelle nach dem Tiefpassfilter?

Lösung: 15nW

1.70. HB9

In einem Prospekt wird die Leistung eines Senders mit 46dBm angegeben.

Dies entspricht welcher Leistung in Watt?

Lösung: 39.8W

1.71. HB9

Eine Sendeleistung von 10W entspricht welchem Wert in dBm?

Lösung: 40dBm

1.72. HB9

Bei einem Sender mit 50Ω Ausgangsimpedanz wird bei einer Periode der Hochfrequenzschwingung bei der höchsten Spitze der Modulationshüllkurve ein Pegel von $U_{peak} = 200V$ gemessen. Wie gross ist die Senderausgangs-Spitzenleistung PEP?

Lösung: 400W

1.73. HB9

In einem Prospekt wird eine Linearenstufe für 435MHz mit einer Verstärkung von 26dB angeboten. Welche Ausgangsleistung ist bei einer Ansteuerung von 100mW zu erwarten?

Lösung: 40W

1.74. HB9

Eine Endstufe wird mit 13.8V / 22A gespeist. Sie gibt eine Leistung von 120W ab.

Wie gross ist der Wirkungsgrad dieser Endstufe in %?

Lösung: 40%

2. Bauelemente

2.1. HB3/HB9

Zwei Akkumulatoren 12V, 2.2Ah werden parallel geschaltet. Wie gross ist die resultierende Spannung und die Kapazität?

Lösung: 12V, 4.4Ah

2.2. HB3/HB9

Eine Trockenbatterie bestehend aus 40 Monozellen à 1.5V soll durch einen aufladbaren Akku aus Ni-Cd Elementen à 1.2V ersetzt werden. Wie viele solche Elemente werden dazu benötigt?

Lösung: 50

2.3. HB3/HB9

Wie verändert sich der Innenwiderstand R_i eines Bleiakkus mit zunehmendem Alter?

- a) R_i wird grösser.
- b) R_i wird kleiner.
- c) R_i verändert sich nicht.
- d) Die Klemmenspannung fehlt.

Lösung: a)

2.4. HB3/HB9

Der innere Widerstand eines Akkumulatorelementes und seine Kapazität sind über die gesamte Lebensdauer betrachtet ...

- a) ... proportional zueinander.
- b) ... umgekehrt proportional zueinander.
- c) ... voneinander absolut unabhängig.
- d) ... immer gleich bleibend.

Lösung: b)

2.5. HB3/HB9 Der Temperaturkoeffizient eines Widerstandes ist eine Zahl welche angibt...

- a) ...um wie viel Ω sich ein Widerstand von 1Ω bei einer Temperaturänderung um 1°C verändert.
- b) ...um wie viele Grad (°C) sich ein Widerstand bei einer bestimmten Belastung erwärmt.
- c) ...bis zu welcher maximalen Temperatur ein Widerstand betrieben werden darf.
- d) ...um wie viel sich ein Widerstand bei einer Temperaturänderung von 1° ausdehnt.

Lösung: a)

2.6. HB3/HB9 Bei welchen Kondensatortypen müssen Sie auf richtige Polarität achten?

- a) Keramik Kondensatoren
- b) Metall-Papier-Kondensatoren
- c) Luftkondensatoren (Drehkondensatoren)
- d) Elektrolyt- und Tantalkondensatoren

Lösung: d)

2.7. HB3/HB9

Wie verhält sich die Kapazität eines Luftkondensators wenn der Plattenabstand verdoppelt wird?

- a) Die Kapazität wird halbiert.
- b) Die Kapazität wird verdoppelt.
- c) Die Kapazität wird um den Faktor $\sqrt{2}$ kleiner.
- d) Die Kapazität wird um den Faktor $\sqrt{2}$ grösser.

Lösung: a)

2.8. HB3/HB9 Welche der folgenden Kurven stellt das Verhalten einer Kapazität dar?

Lösung: d)

2.9. HB9 Wie gross ist die Phasenverschiebung zwischen Strom und Spannung über einem idealen Kondensator?

- a) Strom und Spannung liegen in Phase.
- b) Der Strom eilt der Spannung um 90° voraus.
- c) Der Strom eilt der Spannung um 90° nach.
- d) Strom und Spannung liegen 180° auseinander.

Lösung: b)

a)halbiert.	
 b)verdoppelt. c)um den Faktor √2 kleiner. d)um den Faktor √2 grösser. Lösung: a) 	
2.11. Wie gross ist die Gesamtinduktivität, wenn zwei Spulen mit den Wert L_1 = $10\mu H$ und L_2 = $5\mu H$ - ohne gegenseitige Beeinflussung - in Serie geschaltet werden?	en
Lösung: 15μH	
2.12. Wie gross ist die Phasenverschiebung zwischen Strom und Spannun einer idealen Spule?	HB9 g in
 a) Strom und Spannung liegen in Phase. b) Der Strom eilt der Spannung um 90° voraus. c) Der Strom eilt der Spannung um 90° nach. d) Strom und Spannung liegen 180° auseinander. 	

Lösung:

c)

2.13. HB9

Welches ist die korrekte vektorielle Darstellung einer idealen Spule gemäss Schema (bei Wechselstrom)?

Lösung: a)

2.14. HB9

Wie gross ist die Induktionsspannung in einer Spule mit einer Induktivität von L = 1H, wenn die Stromstärke pro Sekunde um 0.5A zu- oder abnimmt?

Lösung: 0.5V

2.15. HB9

Wie gross ist die Induktivität einer Spule, wenn bei einer Stromänderung von 1A pro Sekunde eine Spannung von 1mV induziert wird?

Lösung: 1mH

2.16. HB9

Bei einer Spule wird bei gleichen mechanischen Abmessungen die Windungszahl verdoppelt.

Wie verändert sich die Induktivität?

- a) Sie wird um den Faktor 2 grösser.
- b) Sie wird um den Faktor 4 grösser.
- c) Sie wird um den Faktor 2 kleiner.
- d) Sie wird um den Faktor 4 kleiner.

Lösung: b)

2.17. HB3/HB9

Wie verhalten sich bei einem Transformator die Stromstärken zu den Windungszahlen?

- a) proportional
- b) umgekehrt proportional
- c) kein Zusammenhang
- $d) \qquad \frac{n_1}{n_2} = \frac{l_1}{l_2}$

Lösung: b)

2.18. HB3/HB9

Warum wird ein Netztransformator mit einem Paket aus isolierten Einzelblechen aufgebaut und nicht mit einem massiven Eisenkern?

- a) Um den Zusammenbau zu vereinfachen.
- b) Um die Wärmeableitung zu verbessern.
- c) Als Schutz vor Überspannungen.
- d) Um die Wirbelstromverluste möglichst klein zu halten.

Lösung: d)

2.19. HB3/HB9

Ein Transformator soll die Spannung von 230V auf 3V transformieren. Die Primärwicklung hat 845 Windungen.

Wie gross ist Windungszahl der Sekundärwicklung?

Lösung: 11

2.20. HB3/HB9

Ein Transformator hat folgende Daten:

Primäre Windungszahl 418; sekundäre Windungszahl 90;

Primärspannung 230 Volt.

Wie gross ist die Sekundärspannung (verlustfrei)?

Lösung: 49.5V

2.21. HB9

Wie gross ist I_{sek} bei der gezeichneten Schaltung (verlustfrei)? $U_{prim} = 200V$, $U_{sek} = 100V$, $I_{prim} = 10A$.

Lösung: 20A

2.22. HB9

Ein HF-Verstärker mit einem Feldeffekttransistor (FET) hat eine Eingangsimpedanz von $0.75M\Omega$. Die Antennenimpedanz beträgt 75Ω . Wie viele Windungen muss die Antennenspule haben, wenn die Gate-Spule 300 Windungen aufweist (Berechnung ohne Verluste)?

3 Windungen Lösung:

2.23. HB9

Ein Transformator soll die Spannung von 230V auf 5V herabsetzen. Dabei soll ein Strom von 1A geliefert werden.

Wie gross ist der Strom in der Primärwicklung (verlustfrei)?

Lösung: 21.74mA 2.24.

Die dargestellte Charakteristik entspricht ...

HB9

- a) ...einer Siliziumdiode
- b) ...einer Germaniumdiode
- c) ...einem Widerstand
- d) ...einem Thyristor

Lösung: a)

2.25. HB9 Wo wird dieses Bauteil eingesetzt?

- a) in FM-Modulatoren, Oszillatoren
- b) in AM-Modulatoren
- c) in Demodulatoren
- d) in Gleichrichtern

Lösung: a)

2.26. HB9

Welches Symbol zeigt einen N-Kanal Feldeffekttransistor?

Lösung: d)

2.27. HB9

Welcher der aufgeführten Transistortypen hat den grössten Eingangswiderstand?

- a) npn-Transistor
- b) Feldeffekttransistor (FET)
- c) pnp-Transistor
- d) Unijunctiontransistor

Lösung: b)

2.28. HB9

In der folgenden Schaltung hat der Transistor T_1 eine Gleichstromverstärkung von $\beta_1 = 50$, T_2 eine solche von $\beta_2 = 100$. Wie gross ist die gesamte Gleichstromverstärkung dieser Schaltung?

Lösung: 5000

2.29. HB9

Bei welcher Gitterspannung U_G ist U_A am grössten?

- a) -3V
- b) 3V
- c) -8V
- d) -12V

Lösung: d)

2.30. HB9

In einer einfachen Verstärker-Schaltung mit einer Triode kann die Gittervorspannung eingestellt werden. Die Anode wird über einen Arbeitswiderstand gespiesen.

Bei welcher Gittervorspannung tritt an der Anode (gegen Masse) die grösste Gleichspannung auf?

- a) +20V
- b) 0V
- c) -10V
- d) -30V.

Lösung: d)

2.31. HB9

Eine HF-Endstufe arbeitet mit einer Anodenverlustleistung von 60W und einem Output von 200W.

Wie gross ist der Wirkungsgrad dieser Endstufe?

Lösung: 77%

2.32. HB9

Eine KW-Linear-Endstufe weist nach Datenblatt eine Anodenverlustleistung von 350W auf und die Ausgangsleistung wird mit 800W angegeben.

Wie gross ist der Wirkungsgrad?

Lösung: 69.6%

2.33. HB9

Wie gross ist die Ausgangsleistung einer Senderendstufe welche eine Eingangsleistung von 120W aufnimmt und einen Wirkungsgrad von $\eta = 71\%$ hat?

Lösung: 85.2W

2.34. HB9

In einer Endstufe mit einer Ausgangleistung von 450W werden 320W in Wärme ungesetzt.

Welches ist der Wirkungsgrad?

Lösung: 58.4%

2.35. HB9

Im Datenblatt einer Linear-Endstufe steht u.a. folgendes: Ausgangsleistung 420W, Verlustleistung 500W. Wie gross ist der Wirkungsgrad?

Lösung: 45.7%

2.36. HB9

Die Endstufe eines KW-Transceivers zieht bei einer Anodenspannung von 800V einen Kathodenstrom von 220mA. Der HF-Output beträgt 106W.

Welches ist der Wirkungsgrad dieser Endstufe?

Lösung: 60.2%

2.37. HB9

Welcher digitalen Grundfunktion entspricht die folgende Wahrheitstabelle?

(A und B sind Eingänge, X ist der Ausgang);

- A B X 0 0 1 0 1 1 1 1 0 1 1 0
- a) einem AND- Gatter
- b) einem NAND- Gatter
- c) einem OR- Gatter
- d) einem NOR- Gatter

Lösung: b)

Wahrhei	tstabel	lle?	ndfunktion entspricht die folgende ge, X ist der Ausgang);	HB9
•	A E O O O O O O O O O O O O O O O O O O	3 X 0 0 1 0 0 0 1 1		
a)	eine	m AND	- Gatter	
b)	einem NAND- Gatter			
c)	einem OR- Gatter			
d)	einem NOR- Gatter			
Lö	sung:	a)		
	J	,		
Wahrhei	tstabel	lle?	ndfunktion entspricht die folgende ge, X ist der Ausgang);	HB9
	0 0	3 X 0 1 1 0 0 0 1 0		
a)	eine	m AND	- Gatter	
b)	einem NAND- Gatter			
c)	einem OR- Gatter			

d) einem NOR- Gatter

Lösung: d)

Wahrheitstabe	HB9 llen Grundfunktion entspricht die folgende elle? Eingänge, X ist der Ausgang);				
0 0	B X 0 0 1 1 0 1 1 1				
a) eine	einem AND- Gatter				
b) eine	einem NAND- Gatter				
c) eine	einem OR- Gatter				
d) eine	einem NOR- Gatter				
Lösung:	c)				
Wahrheitstabe	HB9 Ilen Grundfunktion entspricht die folgende elle? ang, X ist der Ausgang);				
0	X 1 0				
a) eine	em AND- Gatter				
b) eine	em NAND- Gatter				
c) eine	em NOT- Gatter (Inverter)				
d) eine	em NOR- Gatter				
Lösung:	c)				

2.42.

Dieses Symbol entspricht einem ...

HB9

- a) ... npn-Transistor.
- b) ... pnp-Transistor.
- ... Darlington-Transistor. c)
- d) ... Feldeffekt-Transistor (P-Kanal).

Lösung: a)

2.43. HB9

Dieses Symbol entspricht einem ...

- a) ... npn-Transistor.
- ... pnp-Transistor. b)
- ... Darlington-Transistor. c)
- ... Feldeffekt-Transistor (P-Kanal).

Lösung: b)

2.44.

Dieses Symbol entspricht einem...

- a) ... npn-Transistor.
- b) ... pnp-Transistor.
- c) ... Feldeffekt-Transistor (N-Kanal).
- d) ... Feldeffekt-Transistor (P-Kanal).

Lösung: c)

2.45. Dieses Symbol entspricht einem...

HB9

- a) ... npn-Transistor.
- b) ... pnp-Transistor.
- c) ... Feldeffekt-Transistor (N-Kanal).
- d) ... Feldeffekt-Transistor (P-Kanal).

Lösung: d)

2.46. HB9

Dieses Symbol entspricht ...

- a) ... einer Diode.
- b) ... einem Thyristor.
- c) ... einer Kapazitätsdiode.
- d) ... einer LED.

Lösung: b)

2.47. HB9

Was versteht man unter Piezoeffekt?

- a) Druckänderungen auf einen Quarzkristall erzeugen elektrische Ladungen.
- b) Druckänderungen auf einen Quarzkristall erzeugen akustische Wellen.
- c) Druckänderungen auf einen Quarzkristall verändern dessen Widerstand.
- d) Druckänderungen auf einen Quarzkristall verändern dessen Lichtdurchlässigkeit.

Lösung: a)

3. Schaltungen

3.1. HB9 Welches Element ist in dieser Verstärkerstufe falsch eingezeichnet?

Lösung: C₁

3.2. HB9 Welches Element ist in dieser Verstärkerstufe falsch eingezeichnet?

Lösung: C₁

3.3. HB9

Welches Bauteil verhindert das richtige Funktionieren dieses Röhrenverstärkers?

Lösung: C₂

3.4. HB9

Auf welche Spannung $U_{\mathbb{C}}$ lädt sich der Kondensator \mathbb{C} in untenstehender Schaltung auf?

 $U_{B}=12V,\ R_{1}=20k\Omega,\ R_{2}=54k\Omega,\ R_{3}=30k\Omega.$

Lösung: 7.2V

3.5. HB9

Ein Kondensator von $0.5\mu F$ wird über einen Widerstand von $100k\Omega$ geladen.

Wie gross ist die Zeitkonstante?

Lösung: 50ms

3.6. HB9

Ein Kondensator wird über einen Widerstand entladen. Wie gross ist die Spannung am Kondensator in %, nach einer Zeitkonstante τ ? (Beginn der Entladung = 100%)

Lösung: 37%

3.7. HB9

Wie lange dauert es, bis ein vollgeladener Kondensator von $5000\mu F$ über einen Widerstand von $12k\Omega$ praktisch ganz entladen ist?

Lösung: 5 Minuten

3.8. HB9

Die Daten eines Drehkondensators sind:

Endkapazität C_e = 150pF, Anfangskapazität C_a = 20pF.

Durch Zuschalten eines Seriekondensators soll die Endkapazität auf 115pF reduziert werden.

Wie gross muss dieser Seriekondensator gewählt werden?

Lösung: 493pF

3.9. HB9

Über einer Kapazität C liegt eine Wechselspannung von 175mV mit einer Frequenz von f = 18.168MHz. Es fliesst ein Strom von $I = 25\mu A$. Wie gross ist die Kapazität?

Lösung: 1.25pF

3.10. HB9

Bei einer bestimmten Frequenz f_1 fliesst durch einen Kondensator C ein Strom I.

Die Frequenz wird so geändert, dass der Strom I bei konstanter Spannung den vierfachen Wert erreicht.

Welches ist die neue Frequenz f₂?

Lösung: 4 x f₁

3.11. HB9

Durch eine Parallelschaltung einer RC-Kombination von 470 Ω und 25 μ F fliesst ein Wechselstrom.

Bei welcher Frequenz ist der Strom in R und in C gleich gross?

Lösung: 13.6Hz

3.12. HB9

In einer Schaltung liegt eine RC-Parallel-Kombination von 56Ω und $0.47\mu F$.

Bei welcher Frequenz ist der Strom durch R und C gleich?

Lösung: 6.047kHz

3.13. HB9

Die Parallelschaltung einer RC-Kombination von 1000Ω und $64\mu F$ wird von einem Wechselstrom durchflossen.

Bei welcher Frequenz ist der Strom in R und C gleich gross?

Lösung: 2.487Hz

3.14. HB9

Wie gross ist der Strom durch einen Kondensator von 3µF, wenn er an eine Spannung von 375V bei einer Frequenz von 50Hz gelegt wird?

Lösung: 0.353A

3.15. HB9

Welcher Strom fliesst durch einen Filterkondensator von $12\mu F$, wenn er an eine Spannung von 80V bei einer Frequenz von 50Hz gelegt wird?

Lösung: 302mA

3.16. HB9

An einem Kondensator von 6.8µF liegt eine Wechselspannung von 82V. Der Strom beträgt 5.255A.

Wie gross ist die Frequenz?

Lösung: 1500Hz

3.17. HB9

Wie gross ist die Impedanz Z wenn ein Widerstand von R = 200Ω und ein Kondensator mit einem gegebenen X_C von 224Ω in Serie geschaltet werden?

Lösung: 300Ω

3.18. HB9

Wie gross ist der Strom I in der untenstehenden Schaltung? $U=240V,\,f=50Hz,\,C_1=1\mu F,\,C_2=1.5\mu F,\,C_3=2.2\mu F$

Lösung: 142.6mA

3.19. HB9 Wie gross ist die Gesamtkapazität der nachstehenden Schaltung?

 $C_1 = 0.66nF$, $C_2 = 3nF$, $C_3 = 0.22nF$.

Lösung: 0.2nF

3.20. HB3/HB9

Die nachstehende Schaltung ist ...

- a) ... ein Tiefpass.
- b) ... ein Hochpass.
- c) ... ein Bandpass.
- d) ... eine Bandsperre.

Lösung: a)

3.21. HB9

Welche Spannungsfestigkeit muss dieser Kondensator mindestens aufweisen wenn $U_{in} = 230V$, 50Hz ist?

Lösung: 326V

3.22. HB3/HB9 Im folgenden Schaltbild ist ein passiver Vierpol dargestellt. Welches der 4 Diagramme zeigt den charakteristischen Verlauf der Ausgangsspannung U_{out} in Abhängigkeit der Frequenz f?

Lösung: b)

3.23. HB9 Welchen Blindwiderstand hat eine Induktivität von 0.1mH bei einer Frequenz von 1.8MHz?

Lösung: 1131Ω

3.24. HB9

Welchen Blindwiderstand X_L hat eine Induktivität von $3.5 \mu H$ bei einer Frequenz von 145.2MHz?

Lösung: $3.19k\Omega$

3.25. HB9

Eine Spule hat bei einer Frequenz von 14.150MHz einen Blindwiderstand von $X_L = 133.36k\Omega$. Wie gross ist die Induktivität dieser Spule?

Lösung: 1.5mH

3.26. HB9

Bei welcher Frequenz hat eine Spule von L = 1.5mH einen Blindwiderstand von $X_L = 133.36k\Omega$?

Lösung: 14.15MHz

3.27. HB9

Wie gross ist die Spulengüte Q bei einer Frequenz von 1500kHz, wenn L = 0.2mH und $R = 5\Omega$ beträgt?

Lösung: 377

3.28. HB9

Bei welcher Frequenz hat eine Spule von $100\mu H$ eine Güte von 100? Der ohmsche Widerstand der Spule beträgt 10Ω .

Lösung: 1591kHz

3.29. HB9

Eine Spule mit einer Induktivität von L = 20mH wird von der Gleichstromspeisung getrennt. Der Strom sinkt innerhalb von $50\mu s$ um 200mA.

Wie gross ist die Selbstinduktionsspannung?

Lösung: 80V

3.30. HB3/HB9

Die nachstehende Schaltung ist...

- a) ... ein Tiefpass.
- b) ... ein Hochpass.
- c) ... ein Bandpass.
- d) ... eine Bandsperre.

Lösung: a)

3.31. HB3/HB9 Im folgenden Schaltbild ist ein passiver Vierpol dargestellt. Welches der vier Diagramme zeigt den charakteristischen Verlauf der Ausgangsspannung U_{out} in Abhängigkeit der Frequenz f?

Lösung: a)

3.32. HB3/HB9 Welches der vier Diagramme zeigt die Resonanzkurve eines Serieschwingkreises?

3.33. HB3/HB9 Welches der vier Diagramme zeigt die Resonanzkurve eines Parallelschwingkreises?

Lösung: a)

3.34. Wie gross ist der Strom I in der untenstehenden Schaltung? U = 48V, f = 100Hz, R = 50Ω , C = 20μ F, L = 20mH.

Lösung: 574mA

3.35. HB9

Welches ist die Grenzfrequenz (-3dB Punkt) dieser Schaltung? $R = 1k\Omega$, C = 150nF.

Lösung: 1061Hz

3.36. HB9

Mit einem Drehkondensator von 20 - 140pF soll ein Frequenzbereich von 3.5 - 7MHz überstrichen werden.

Wie gross muss die Parallelkapazität sein?

Lösung: 20pF

3.37. HB9

Wie gross ist die Frequenzvariation des untenstehenden Parallelschwingkreises (Verhältnis f₁ zu f₂)?

Lösung: 3.162

3.38. HB9

Die untenstehende Schaltung arbeitet in Resonanz. Die Impedanz Z beträgt 50Ω .

U = 3V, C = 70pF, $L = 60\mu H$.

Wie gross ist die Spannung über dem Kondensator?

Lösung: 55.5V

3.39. HB9

Die Resonanzfrequenz eines Sperrkreises soll auf den halben Wert gebracht werden.

Wie muss die Induktivität verändert werden, wenn die Kapazität unverändert bleibt?

- a) um den Faktor 2 vergrössert
- b) um den Faktor 4 vergrössert
- c) um den Faktor 2 verkleinert
- d) um den Faktor 4 verkleinert

Lösung: b)

3.40. HB9

In einem Schwingkreis wird die Induktivität der Spule um den Faktor 4 vergrössert.

Welche Auswirkung hat diese Veränderung auf die Resonanzfrequenz fo des Schwingkreises?

- a) f₀ wird um den Faktor 2 grösser
- b) f₀ wird um den Faktor 4 grösser
- c) f₀ wird um den Faktor 2 kleiner
- d) f₀ wird um den Faktor 4 kleiner

Lösung: c)

3.41. HB9

Wie gross ist in untenstehender Schaltung der Kondensator C? Resonanzfrequenz $f_0 = 145.250 MHz$, $R = 52\Omega$, $L = 0.2 \mu H$.

Lösung: 6pF

3.42. HB9

Wie gross muss die Spule L dimensioniert werden, damit eine Resonanzfrequenz von 21.700MHz resultiert? C = 40pF, $R = 50\Omega$, U = 0.8V.

Lösung: 1.34µH

3.43. Wie gross ist die Spannung U $_2$ bei Resonanz? U $_1$ = 100V, R $_1$ = 900k Ω , R $_2$ = 100k Ω , L = 3H, C = 1 μ F.

Lösung: 10V

3.44. HB9 Welches ist die Resonanzfrequenz dieses Schwingkreises? $L = 6.4 \mu H, C = 75 pF.$

Lösung: 7.26MHz

3.45. Welches ist die Resonanzfrequenz dieses Schwingkreises? L = 6.4 μ H, C = 75pF, R = 100 Ω .

Lösung: 7.26MHz

3.46. HB9

Ein Serieschwingkreis hat folgende Daten:

 $L = 7\mu H$, C = 125pF, Q = 13.

Wie gross ist die Impedanz dieses Schwingkreises bei Resonanzfrequenz?

Lösung: 18.2Ω

3.47. HB9

Eine Spule mit einer Induktivität von 19mH und einem ohmschen Widerstand von 1.5Ω ist mit einem Kondensator mit einer Kapazität von 47pF in Serie geschaltet.

Bei welcher Frequenz beträgt die Impedanz ein Minimum und wie gross ist diese Impedanz?

Lösung: 168.42kHz, 1.5Ω

3.48. HB9

Ein Serie-Schwingkreis weist folgende Daten auf:

 $L = 20\mu H$, Widerstand der Spule R_V = 3.5 Ω , C = 15pF.

Wie gross ist die Schwingkreisgüte Q?

Lösung: 330

3.49. HB9

Berechnen Sie die Güte dieses Schwingkreises.

Lösung: 78.3

3.50. HB9

Welche Güte Q hat ein Serie-Schwingkreis mit folgenden Daten: L = 7μ H, C = 150pF, R = 8Ω ?

Lösung: 27

3.51. HB9

Der Durchlassbereich eines Resonanzkreises (-3dB-Punkte) liegt zwischen 6.9MHz und 7.3MHz.

Wie gross ist die Güte Q?

Lösung: 17.75

3.52. HB9

Die 3dB-Bandbreite eines Filters beträgt 16kHz und seine Mittenfrequenz liegt bei 10.7MHz. Welches ist die Güte Q?

Lösung: 669

3.53. HB9

Welche Gleichung trifft für den Resonanzfall eines Schwingkreises zu?

- a) Der Blindwiderstand der Spule ist grösser als derjenige des Kondensators ($X_L > X_C$).
- b) Der Blindwiderstand der Spule ist kleiner als derjenige des Kondensators ($X_L < X_C$).
- c) Die Blindwiderstände der Spule und des Kondensators sind gleich ($X_L = X_C$)
- d) Die Verluste der Spule und des Kondensators sind gleich ($V_L = V_C$).

Lösung: c)

3.54. HB9 Welche der gezeichneten Schaltungen arbeitet als richtige Graetz-Schaltung?

Lösung: c)

3.55. HB9

Welches Element verhindert das richtige Funktionieren dieses Brückengleichrichters?

- a) D_1
- b) D₂
- c) D₃
- d) D₄

Lösung: d)

3.56. HB3/HB9

Ein Brückengleichrichter wird mit 141.4V Wechselspannung (Ueff) gespiesen.

Wie gross ist die unbelastete Gleichspannung – nach dem Siebglied gemessen – am Ausgang?

Lösung: 200V

3.57. HB3/HB9

Wie gross ist die Spannung U_{out} in der folgenden Schaltung? $U_{in} = 14V/50 Hz$.

Lösung: ≈ 20V

3.58. HB3/HB9

Welche Kurvenform hat die Spannung Uout?

Lösung: a)

3.59. HB9 Für welche Sperrspannung muss die Diode in dieser Schaltung mindestens ausgelegt sein? U = 230V

Lösung: 651V 3.60. HB9 Welche Funktion hat das C-L-C Glied in dieser Schaltung?

- a) Glättung der pulsierenden Gleichspannung.
- b) Spannungsverdoppler
- c) Spannungsregelung
- d) Frequenzverdoppler

Lösung: a)

3.61. HB9 Bei diesem Schaltbild handelt es sich um...

- a) ...eine Gleichrichterschaltung.
- b) ...ein Ersatzschaltbild für einen Transistor.
- c) ...eine halbe Dioden-Brückenschaltung.
- d) ...zwei antiparallel geschaltete Dioden (z.B. Knackschutz).

Lösung: d)

3.62. HB9

Wie gross ist die Verlustleistung an der Silizium-Diode in untenstehender Schaltung?

 $U_{in}=5V,\,U_F=0.6V,\,R_1=1k\Omega.$

Lösung: 2.64mW

3.63. Im untenstehenden Stromkreis weisen die Dioden u.a. folgende Daten auf: $U_F=0.7V,\ U_{in}=5V,\ R_1=100\Omega.$

Wie gross ist der Strom I₁?

Lösung: 21.5mA

3.64. HB9

Die Leuchtdiode im folgenden Schema soll mit einem Strom von 12mA betrieben werden, $U=12V,\,U_f=2V.$

Welchen Wert muss der Vorwiderstand R haben?

Lösung: 833Ω

3.65. Die beiden Zenerdioden mit einer Durchlassspannung Uf = 0.7V haben eine Zenerspannung von U_Z = 9.6V, R_1 = 10 Ω . Wie gross ist der Strom I?

Lösung: ±970mA

3.66. HB9 In der angegebenen Schaltung wird eine Z-Diode mit einer Z-Spannung $U_Z = 6 \text{ V}, \ U_F = 0.7 \text{V}$ verwendet. $U_{in} = 15 \text{V}$. Wie gross ist die Ausgangsspannung U_{out} ?

Lösung: 0.7V

3.67. Wie gross ist U_{out} in dieser Schaltung wenn U_{in} = 12.6V, U_{Z1} = 2.7V, U_{Z2} = 2.7V?

Lösung: 5.4V

3.68. HB9 Welchen minimalen Wert darf R_L in dieser Schaltung annehmen damit

Welchen minimalen Wert darf R_L in dieser Schaltung annehmen damit die Ausgangsspannung von $U_{out} = 6.2V$ nicht unterschritten wird? $U_{in} = 12.6V$, $R_V = 100\Omega$.

Lösung: 97Ω

3.69. HB9

Eine Siliziumdiode mit den Daten $U_f=0.7V$, $I_r=5\mu A$ wird gemäss der untenstehenden Schaltung betrieben. U=5V, $R=10k\Omega$. Wie gross ist die Verlustleistung in der Diode?

Lösung: 24.75µW

HB9

3.70. Wie gross ist der Strom durch die Zenerdiode Z? $U_{in}=18V,\ U_{out}=12V,\ R_1=8\Omega,\ R_2=100\Omega.$

Lösung: 630mA

3.71. HB9 Welche der drei Transistor-Grundschaltungen hat die grösste Eingangsimpedanz?

- a) die Basisschaltung
- b) die Kollektorschaltung
- c) die Emitterschaltung
- d) Sie ist bei den drei Grundschaltungen immer gleich.

Lösung: b)

3.72. HB9 Welche der drei Transistor-Grundschaltungen hat die grösste Leistungsverstärkung?

- a) die Basisschaltung
- b) die Kollektorschaltung
- c) die Emitterschaltung
- d) Sie ist bei den drei Grundschaltungen immer gleich.

Lösung: c)

3.73. HB9

Wie gross ist U_{out} in der folgenden Schaltung, wenn ein Siliziumtransistor verwendet wird?

 $U_{in} = 12V$, $U_Z = 5.6V$, $R_1 = 390\Omega$.

Lösung: 4.9V

3.74. HB9 Welche der folgenden Darstellungen zeigt eine Basisschaltung?

Lösung: a)

3.75. HB9

Bei einer Transistorstufe fliessen ein Basisstrom von $150\mu A$, ein Kollektorstrom von 30mA, ein Emitterstrom von 30.15mA und ein Querstrom von 2.6mA. Die Kollektorspannung beträgt 7.8V. Berechnen Sie die Gleichstromverstärkung β des verwendeten Transistors.

Lösung: 200

3.76. HB9

In der untenstehenden Schaltung sind folgende Werte gegeben: $+U=10V,\ U_{BE}=0.7V,\ I_{E}=20.2mA,\ I_{2}=10\cdot I_{B},\ \beta=100.$ Wie gross muss R₁ gewählt werden?

Lösung: 4227Ω

3.77. HB9

In der untenstehenden Schaltung sind folgende Werte gegeben: +U=10V, $I_2=1.8mA$, $U_C=5V$, $U_{BE}=0.7V$, $\beta=100$, $I_1=10\cdot I_B$. Welchen Wert hat R_C ?

Lösung: 250Ω

3.78. Wie gross ist in der untenstehenden Schaltung der Kollektorstrom $I_{\mathbb{C}}$? +U = 12V, β = 25.

Lösung: 0.5mA

3.79. HB9 In der untenstehenden Schaltung wird der Wert von R₁ verkleinert. Welche Aussage trifft zu?

- a) Ic wird kleiner
- b) IB wird kleiner
- c) U_B wird kleiner
- d) U_C wird kleiner

Lösung: d)

3.80. HB9

Das Schaltbild zeigt eine Verstärkerstufe. Der Arbeitspunkt dieser Emitterschaltung ist durch einen Basisspannungsteiler festgelegt. Es fliesst ein Ruhestrom von $I_C = 8mA$. U = 12V, $R_C = 1k\Omega$. Wie gross ist die Verlustleistung P_V am Transistor?

Lösung: 32mW

3.81. HB9

Ein VHF-Funkgerät für 12V Gleichspannung soll mit einem Speisegerät an ein 230V Wechselstrom-Bordnetz mit grösseren Spannungsschwankungen angeschlossen werden.

Welche der folgenden Schaltungen ist dazu am besten geeignet?

Lösung: c)

3.82. HB9 Durch welche schaltungstechnische Massnahme kann ein Verstärker am unerwünschten Schwingen gehindert werden?

- a) durch Gegenkopplung
- b) durch Mitkopplung
- c) nach Möglichkeit keine Kondensatoren verwenden
- d) Betriebsspannung möglichst klein wählen

3.83. HB9

Mit einem Operationsverstärker realisieren Sie folgende Schaltung: $U_{in}=1V,~R_1=10k\Omega,~R_2=100k\Omega.$ Wie gross ist U_{out} ?

Lösung: -10V

3.84. HB9

An die mit einer Brücke verbundenen Eingänge x und y wird gegen Masse (0) eine Spannung von +1V angelegt.

 $R_1=10k\Omega,\ R_2=10\ k\Omega,\ R_3=100k\Omega,\ R_4=100k\Omega.$

Welche Spannung wird am Ausgang z gemessen?

Lösung: 0V

3.85. HB9

Am Eingang x liegt +1V, am Eingang y werden +2V gemessen. R_1 = $10k\Omega$, R_2 = $10k\Omega$, R_3 = $100k\Omega$, R_4 = $100k\Omega$. Wie gross wird die Ausgangsspannung an z?

Lösung: +10V

3.86. HB9

Am Eingang x liegen +1V.

 $R_1 = 10k\Omega, R_2 = 9.09k\Omega, R_3 = 100k\Omega.$

Welche Spannung wird am Ausgang z gemessen?

Lösung: -10V

3.87. HB9

Am Eingang y liegen +1V an.

 $R_1 = 10k\Omega$, $R_2 = 90k\Omega$.

Wie gross ist die Ausgangsspannung an z?

Lösung: +10V

3.88. HB9 Welche Formel verwenden Sie zur Berechnung der Verstärkung v dieser Schaltung?

a)
$$V = \frac{R_2}{R_1} + 1$$

b)
$$V = \frac{R_1}{R_2} + 1$$

c)
$$V = \frac{R_2}{R_1} - 1$$

d)
$$V = \frac{R_1}{R_2} - 1$$

Lösung: a)

3.89. HB9

- a) Das SSB-Signal wird mit Hilfe einer Gleichrichterschaltung demoduliert.
- b) Das SSB-Signal wird mit Hilfe eines Diskriminators demoduliert.
- c) Das SSB-Signal wird mit einem zusätzlichen Träger gemischt und dann demoduliert.
- d) Das SSB-Signal wird demoduliert und dann mit einem 800Hz Ton gemischt.

3.90. HB9 Welchen der folgenden Demodulatoren setzen Sie zur Demodulation eines SSB-Signals (J3E) ein?

Lösung: a)

3.91. HB9 Welchen der folgenden Demodulatoren setzen Sie zur Demodulation eines FM-Signals (F3E) ein?

Lösung: b)

3.92. HB3/HB9 Welcher der aufgeführten Oszillatoren hat die beste Frequenzstabilität?

- a) Quarzoszillator
- b) LC-Oszillator
- c) RC-Oszillator
- d) VCO

3.93. HB9 Welchen Demodulator setzen Sie zur Demodulation eines AM-Signals (A3E) ein?

3.94. HB3/HB9

Bei den technischen Daten Ihres 70cm Gerätes steht unter anderem: Frequenztoleranz bei 435.000MHz: $\pm 2 \cdot 10^{-6}$.

Was bedeutet diese Angabe?

- a) Frequenzabweichung bei 435MHz maximal ±870Hz.
- b) Frequenzabweichung bei 435MHz maximal ±2Hz.
- c) Bandbreite der Endstufe 870Hz.
- d) Bandbreite der Endstufe 2MHz.

Lösung: a)

3.95. HB3/HB9

Ein Eichmarkengeber (100kHz-Quarz) hat eine Genauigkeit von $\pm 8 \cdot 10^{-6}$.

Wie genau lässt sich damit die Frequenz 28.100MHz einstellen?

Lösung: Auf ±225Hz

3.96. HB9

Welche Phasenbedingungen müssen zur Schwingungserzeugung bei einem Oszillator erfüllt sein?

- a) Die Signalrückführung muss in der Phasenlage so gedreht werden, dass das Signal am Eingang phasengleich erscheint.
- b) Die Signalrückführung muss in der Phasenlage so gedreht werden, dass das Signal am Eingang gegenphasig erscheint.
- c) Die Signalrückführung muss in der Phasenlage so gedreht werden, dass das Signal am Eingang um 90° verschoben erscheint.
- d) Die Phasenlage des zurückgeführten Signals spielt keine Rolle.

3.97.
Dieses Ersatzschema entspricht welchem Bauteil?

HB9

- a) einer Spule
- b) einem Kondensator
- c) einem Widerstand
- d) einem Schwingquarz

Lösung: d)

3.98. HB9 Welcher dieser Oszillatoren kann nicht als Obertonoszillator verwendet werden?

3.99. HB9 Was für eine Schaltung befindet sich in dieser "Blackbox"?

- a) ein Hochpass-Filter
- b) ein Tiefpass-Filter
- c) eine Spule
- d) ein spannungsgesteuerter Oszillator (VCO)

Lösung: d)

3.100. HB9

In einer Quarzoszillator-Schaltung arbeitet der Quarz in Parallelresonanz.

Durch welche Massnahme kann die Resonanzfrequenz (um einen kleinen Betrag) angehoben werden?

- a) Durch Vergrössern der Parallelkapazität zum Quarz.
- b) Durch Verkleinern der Parallelkapazität zum Quarz.
- c) Durch das Einfügen eines Widerstandes parallel zum Quarz.
- d) Durch das Einfügen eines Widerstandes in Serie zum Quarz.

Lösung: b)

3.101. HB9

Sie haben einen PLL- und einen Quarzoszillator zur Verfügung. Bei welchem ist das Phasenrauschen geringer?

- a) beim Quarzoszillator
- b) beim PLL-Oszillator
- c) bei beiden gleich
- d) lässt sich nur durch eine Messung bestimmen

Lösung: a)

3.102. HB9 In der folgenden Zeichnung ist eine PLL-Schaltung dargestellt. Welche Funktionsgruppe enthält die mit "?" bezeichnete "Blackbox"?

- a) einen Frequenzvervielfacher
- b) einen Frequenzteiler
- c) einen Zähler
- d) einen Tiefpass

Lösung: b)

3.103. HB9

Was verstehen Sie unter dem Begriff PLL?

- a) einen Verstärker
- b) einen phasengeregelten Oszillator
- c) einen Bandpass
- d) einen Huth-Kühn-Oszillator

Lösung: b)

3.104. HB9

Wie gross ist der Widerstand R_x bei abgeglichener Brücke? $R_1 = 450\Omega$, $R_2 = 600\Omega$, $R_3 = 500\Omega$.

Lösung: 375Ω

3.105. HB9

Dieses Netzwerk ist aus 10Ω Widerständen aufgebaut. Wie gross ist der Gesamtwiderstand der Schaltung?

Lösung: 7.14Ω

3.106. HB9

Im unterstehenden Schema sind verschiedene Spannungen mit Zahlen bezeichnet.

Welches ist die Klemmenspannung?

Lösung: 2

3.107. HB9

Eine Röhre benötigt eine negative Gittervorspannung. Mit welcher der angegebenen Schaltungen wird dies erreicht?

4. Empfänger

4.1. HB3/HB9 Welcher Unterschied besteht im technischen Konzept zwischen einem Geradeaus- und einem Überlagerungs-Empfänger?

- a) Beim Geradeaus-Empfänger erfolgt die Demodulation auf der Empfangsfrequenz.
- b) Beim Geradeaus-Empfänger erfolgt die Demodulation auf der Zwischenfrequenz.
- c) Beim Überlagerungs-Empfänger ist die demodulierte NF-Spannung grösser.
- d) Beim Überlagerungs-Empfänger erfolgt die Demodulation auf der Empfangsfrequenz.

Lösung: a)

4.2. HB9 Welches sind die zwei wichtigsten Vorteile eines Doppelsuper "Double Conversion" Empfängers?

- a) höhere Spiegelfrequenz-Dämpfung und kleinere Trennschärfe
- b) kleinere Spiegelfrequenz-Dämpfung und grössere Trennschärfe
- kleinere Spiegelfrequenz-Dämpfung und grössere ZF-Verstärkung
- d) höhere Spiegelfrequenz-Dämpfung und grössere Trennschärfe

Lösung: d)

4.3. HB9 Welchen Empfängertyp zeigt das folgende Schaltbild?

VFO DEMOD

- a) Geradeaus-Empfänger
- b) 2-fach-Überlagerungs-Empfänger
- c) SSB-Empfänger
- d) 1-fach-Überlagerungs-Empfänger

Lösung: b)

4.4. HB9 Welche Funktion hat die mit "?" bezeichnete Baugruppe im folgenden Empfänger nach dem Prinzip des Direktmischers?

- a) Gleichrichter
- b) Diskriminator
- c) PLL-Schaltung
- d) NF-Tiefpass- oder Bandpassfilter

Lösung: d)

4.5. HB9

Warum muss bei einem Empfänger die erste Zwischenfrequenz möglichst hoch gewählt werden?

- a) Damit eine hohe Selektivität erreicht werden kann.
- b) Damit eine hohe Verstärkung erreicht werden kann.
- c) Damit die Spiegelfrequenz ausserhalb des benutzten Frequenzbandes liegt.
- d) Damit eine hohe Stabilität des Überlagerungsoszillators erreicht werden kann.

4.6. HB9

Die folgenden Blockschaltbilder stellen verschiedene Empfängertypen dar.

Welches zeigt den einfachsten Empfänger für den Empfang von AMmodulierten Signalen (A3E)?

4.7. HB9

Welche Stufe fehlt im Blockschema dieses Doppelsuperhet-Empfängers?

- a) HF-Verstärker
- b) 2. Oszillator
- c) 2. Mischer
- d) NF-Verstärker

Lösung: b)

4.8. HB9

Am Eingang einer Empfänger-Mischstufe liegen die Frequenzen f₁ (Empfangsfrequenz) und f₂ (Oszillatorfrequenz).

Welche Frequenz liegen am Ausgang der Mischstufe (kein Ringmischer oder "balanced mixer")?

a)
$$f_1$$
, f_2 , $f_1 + f_2$, $f_1 - f_2$

b)
$$f_1 + f_2$$
, f_1 , f_2 , $\frac{f_1}{f_2}$

C)
$$f_1$$
, f_2 , $f_1 \cdot f_2$, $f_1 - f_2$

d)
$$f_1 - f_2, f_1, f_2$$

4.9. HB3/HB9 Welche Aufgaben hat die HF-Vorstufe eines Empfängers unter anderem?

- a) Verbessern der Empfindlichkeit
- b) Stabilisieren des Oszillators
- c) Zuführen des BFO-Signals bei SSB-Empfang (J3E)
- d) Empfangssignal in die ZF (IF)-Lage transferieren Lösung: a)

4.10. HB3/HB9

Welche Funktion hat der Begrenzer in einem Empfänger?

- a) Unterdrückung von AM-Anteilen bei FM-Empfang (F3E)
- b) Rauschunterdrückung bei kleinen Signalen
- c) Verbesserung des Signal/Rausch-Abstandes
- d) Linearisierung der FM-Demodulation

Lösung: a)

4.11. HB3/HB9

Welche Aufgaben hat die automatische Verstärkungsregelung AVC (automatic volume control), auch AGC (automatic gain control) genannt, eines Empfängers?

- a) Konstanthaltung des ZF-Signals am Demodulator
- b) Ausblenden von steilflankigen Störsignalen
- c) Begrenzung der Ausgangsspannung des NF-Verstärkers
- d) Reduktion des Stromverbrauchs bei batteriebetriebenen Geräten

4.12. HB3/HB9 Welche Aufgabe hat der Überlagerungsoszillator BFO (beat frequency oscillator)?

- a) Abstimmhilfe durch Überlagerungston.
- b) Liefert bei den Betriebsarten CW und SSB die zur Demodulation fehlende Trägerfrequenz.
- c) Er dient zum Verschieben der ZF-Nulllage.
- d) Er steuert die ALC.

Lösung: b)

4.13. HB3/HB9

Weshalb wird der Frequenzgang der NF-Verstärker in Amateurfunkgeräten auf 300Hz - 3kHz beschränkt?

- a) zur Reduktion der Bandbreite
- b) zur Verstärkung des modulierten Signals
- c) zur Reduktion des Stromverbrauchs bei batteriebetriebenen Geräten.
- d) Hohe Frequenzen werden so besser hörbar.

Lösung: a)

4.14. HB3/HB9

Was bewirkt ein Störaustaster (noise blanker)?

- a) Er unterdrückt Störimpulse.
- b) Er reduziert das Rauschen.
- c) Er unterdrückt AM-Anteile bei FM-Betrieb.
- d) Er zeigt Störungen an.

4.15. HB3/HB9

Was bewirkt die unabhängige Empfängerverstimmung RIT (receiver incremental tuning), auch "Clarifier" genannt?

- a) RIT erlaubt die Sendefrequenz unabhängig von der Empfangsfrequenz, um einen geringen Betrag (f_{Tx} ca. ±10kHz) zu verschieben.
- b) RIT erlaubt die Empfangsfrequenz unabhängig von der Sendefrequenz, um einen geringen Betrag (f_{Rx} ca. ±10kHz) zu verschieben.
- c) RIT erlaubt die Empfängerempfindlichkeit um einen geringen Betrag zu verändern.
- d) RIT erlaubt die Mittenfrequenz des ZF-Filters um einen geringen Betrag zu verändern (fze ca. ±10kHz).

Lösung: b)

4.16. HB3/HB9

Was versteht man unter "IF-Shift"?

- a) "IF-Shift" gestattet die Mittenfrequenz des Vorverstärkers zu verschieben.
- b) "IF-Shift" erhöht die Selektivität der Empfängers.
- c) "IF-Shift" gestattet die Verschiebung der ZF-Mittenfrequenz.
- d) "IF-Shift" gestattet die Verringerung der ZF-Bandbreite.

Lösung: c)

4.17. HB3/HB9

Was versteht man unter einem Kerbfilter (Notchfilter)?

- a) Ein Filter zum Dämpfen breitbandiger Störungen.
- b) Ein Filter zum Dämpfen von Impulsstörungen (Viehhüter).
- c) Ein Filter zum Dämpfen einer einzelnen Störfrequenz.
- d) Ein Filter zum Dämpfen aller Frequenzen innerhalb eines kleinen Frequenzbereichs.

Lösung: d)

4.18. HB3/HB9

Was verstehen Sie unter dem Begriff "Squelch"?

- a) Eine Schaltung zur Begrenzung der ZF-Bandbreite im Empfänger.
- b) Eine Schaltung welche den NF-Verstärker im Empfänger sperrt, wenn kein HF-Signal anliegt.
- c) Eine Schaltung welche den NF-Verstärker im Empfänger einschaltet, wenn kein HF-Signal anliegt.
- d) Eine Schaltung welche den NF-Verstärker im Empfänger sperrt, wenn ein HF-Signal anliegt.

Lösung: b)

4.19. HB9

Ein Doppelsuperhet-Empfänger mit einer 1. ZF von 10.7MHz und einer 2. ZF von 455kHz wird auf eine Empfangsfrequenz von 145.000MHz abgestimmt.

Auf welcher Frequenz schwingt der 1. Überlagerungsoszillator?

- a) 155.700MHz
- b) 144.545MHz
- c) 166.400MHz
- d) 133.845MHz

4.20. HB3/HB9

Sie vergleichen die technischen Daten von zwei Empfängern miteinander.

Empfänger A hat ein Signal / Rauschverhältnis von 12dB bei $0.4\mu V$, Empfänger B ein solches von 20dB bei ebenfalls $0.4\mu V$. Welcher Empfänger ist empfindlicher?

- a) Empfänger A
- b) Empfänger B
- c) beide Empfänger sind gleich empfindlich
- d) Für einen Vergleich muss die Rauschzahl angegeben sein.

Lösung: b)

4.21. HB9

Ein Überlagerungsempfänger ist auf 14.200MHz abgestimmt. Er empfängt ein Spiegelfrequenzsignal von 15.110MHz. Mit welcher Oszillator- und Zwischenfrequenz arbeitet dieser Empfänger?

Lösung: $f_0 = 14.655MHz$, $f_{ZF} = 455kHz$

4.22. HB9

Ein Empfänger ist auf die Empfangsfrequenz 435.250MHz eingestellt. Der Empfangsoszillator schwingt auf der Frequenz 413.850MHz. Welches ist die Spiegelfrequenz?

Lösung: 392.450MHz

4.23. HB9

Ein Amateur empfängt im 20m-Band eine SSB-Aussendung (J3E) im oberen Seitenband (USB).

Was ändert sich, wenn bei gleichbleibender Sendefrequenz die Empfangsfrequenz um wenige 100Hz in Richtung höhere Frequenz verstellt wird?

- a) Die NF des demodulierten Signals wird in den Bereich niedrigerer Frequenzen verschoben.
- b) Die NF des demodulierten Signals wird in den Bereich höherer Frequenzen verschoben.
- c) Dem demodulierten Signal wird ein Pfeifton überlagert.
- d) Das demodulierte Signal verändert sich nicht.

Lösung: a)

4.24. HB9

Was versteht man unter Kreuzmodulation?

- a) das Übernehmen der Modulation eines Störsenders durch das Nutzsignal
- b) das Anstehen von mehreren Modulationsfrequenzen
- c) die Überlagerung eines NF-Signals durch einen Pfeifton
- d) Störungen durch einen Nachbarkanal

Lösung: a)

4.25. HB9

Die Rauschzahl eines SSB-Empfängers beträgt 8dB.

Wie gross ist der Signal / Rauschabstand am Ausgang des Empfängers, wenn am Eingang 15dB gemessen wurden?

Lösung: 7dB

4.26. HB9

Ein Empfänger wird durch zwei Empfangssignale von 14.200MHz und 14.250MHz übersteuert.

Auf welchen Frequenzen im 20m-Band entstehen Intermodulationsprodukte dritter Ordnung?

Lösung: 14.150 und 14.300MHz

4.27. HB9

Was verstehen Sie unter Nachbarkanalselektivität?

- a) die Dämpfung eines Signals im Nachbarkanal bezogen auf ein Signal im Nutzkanal (dB)
- b) die Bandbreite der ZF-Stufe
- c) die Bandbreite des Eingangsfilters
- d) der Frequenzabstand zum Nachbarkanal

Lösung: a)

4.28. HB3/HB9 Welche Baugruppe bestimmt die Rauschzahl und die Empfindlichkeit eines Empfängers?

- a) die Mischstufe
- b) der ZF-Verstärker
- c) der NF-Verstärker
- d) die HF-Vorstufe

Lösung: d)

4.29. HB3/HB9

Bei Empfangsanlagen über 30MHz kann der richtige Einbau eines zusätzlichen rauscharmen HF-Vorverstärkers die Empfindlichkeit wesentlich verbessern.

An welchem Punkt (Ort) der Anlage ist dieser einzubauen?

- a) unmittelbar am Eingang des Gerätes
- b) unmittelbar bei der Antenne
- c) Es spielt keine Rolle wo der Verstärker eingebaut wird.
- d) Das kann nur durch Messungen ermittelt werden.

Lösung: b)

4.30. HB9

Was bedeutet die Angabe:

Empfindlichkeit 0.25 µV bei 12dB SINAD?

- a) Dieser Empfänger liefert bei einem Eingangssignal von 0.25 μ V ein Ausgangssignal mit einem Verhältnis von $\frac{\text{Signal} + \text{Noise} + \text{Distortion}}{\text{Noise} + \text{Distortion}} = 12 dB.$
- b) Dieser Empfänger liefert bei einem Eingangssignal von $0.25\mu V$ ein Signal am Eingang des NF-Verstärkers von $1\mu V$.
- c) Das Eingangssignal muss mindestens 0.25 µV betragen, damit der Empfänger das Signal demodulieren kann.
- d) Signale $< 0.25 \mu V$ werden durch die Rauschsperre (Squelch) gesperrt.

4.31. HB9

Was bedeutet die Angabe:

Empfindlichkeit 0.25µV bei 10dB Signal / Rauschabstand?

- a) Dieser Empfänger liefert bei einem Eingangssignal von 0.25μV ein Ausgangssignal mit einem Signal / Rauschabstand von 10dB.
- b) Dieser Empfänger liefert bei einem Eingangssignal von $0.25\mu V$ ein Signal am Eingang des NF-Verstärkers von $0.79\mu V$.
- c) Das Eingangssignal muss mindestens 0.25μV betragen, damit der Empfänger das Signal demodulieren kann.
- d) Signale $< 0.25 \mu V$ werden durch die Rauschsperre (Squelch) gesperrt.

Lösung: a)

4.32. HB9

Was versteht man unter dem Begriff Rauschzahl (noise figure)?

- a) das Verhältnis zwischen Signal / Rausch Abstand am Empfängereingang zum Signal / Rausch - Abstand am Eingang des Demodulators
- b) der Rausch Abstand am Empfängereingang
- c) der Rausch Abstand am Ausgang des Demodulators
- d) der Abstand vom Rauschen zum Nutzsignal in dB

4.33. HB9

Sie empfangen auf der Frequenz 145.700MHz ein Signal mit einem Pegel von S9 (eine S-Stufe = 6dB).

Beim Einschalten des HF-Abschwächers von 20dB verschwindet dieses Signal.

Wie erklären Sie Sich diesen Effekt?

- a) Es handelt sich um Empfängerintermodulation.
- b) Der Empfänger ist zu wenig empfindlich.
- c) Es handelt sich um Spiegelfrequenz-Empfang.
- d) Die Trennschärfe des Empfängers ist nicht ausreichend.

Lösung: a)

4.34. HB9

Welches der folgenden Filter hat die beste Trennschärfe (Selektivität)?

a) b_{-6dB} : 2.4kHz, b_{-60dB} : 2.8kHz

b) b_{-6dB} : 3.0kHz, b_{-60dB} : 5.0kHz

c) b_{-6dB} : 3.0kHz, b_{-60dB} : 4.5kHz

d) b_{-6dB} : 2.4kHz, b_{-60dB} : 3.2kHz

Lösung: a)

4.35. HB3/HB9

Welche Funktion hat ein Notch-Filter (Kerb-Filter) in einem Empfänger?

- a) dämpfen breitbandiger Störungen
- b) dämpfen von Impulsstörungen (Viehhüter)
- c) dämpfen einer einzelnen Störfrequenz
- d) dämpfen aller Frequenzen innerhalb eines kleinen Frequenzbereichs nahe der Empfangsfrequenz

Lösung: d)

4.36. HB9

Abtasttheorem

Wie gross muss die Abtastrate für eine gegebene Frequenz sein um ein "aliasing" zu vermeiden?

- a) Sie muss mindestens gleich hoch sein wie die höchste abzutastende Frequenz.
- b) Sie muss 1.5 x höher sein als die höchste abzutastende Frequenz.
- c) Sie muss mehr als das Doppelte der höchsten abzutastenden Frequenz sein.
- d) Sie kann unabhängig von der abzutastenden Frequenz festgelegt werden.

Lösung: c)

4.37. HB9

Vor dem A/D-Wandler eines "Software Defined Radio"-Empfängers (KW) befindet sich ein Tiefpass. Was ist seine Funktion?

- a) Er verhindert Rückwirkungen des Lokaloszillators auf die HF-Stufe.
- b) Er verhindert das "Aliasing".
- c) Er schützt den A/D-Wandler vor starken HF-Signalen benachbarter Sender.
- d) Er verhindert die Rückkopplung des Signals.

Lösung: b)

5. <u>Sender</u>

HB9

5.1. Wie nennt sich diese Schaltung?

- a) PLL
- b) Überlagerer
- c) Transverter
- d) Endstufe

5.2. HB9 Welches Blockschaltbild zeigt einen Sender der nach dem Prinzip der Frequenzvervielfachung arbeitet?

Lösung: b)

5.3. HB3/HB9

Was ist ein Frequenzvervielfacher?

- a) Eine Baugruppe mit linearer Kennlinie, deren Ausgangsschwingkreis auf die Eingangsfrequenz abgestimmt ist.
- b) Eine Baugruppe mit linearer Kennlinie, deren Ausgangsschwingkreis auf ein Vielfaches der Eingangsfrequenz abgestimmt ist.
- c) Eine Baugruppe mit nichtlinearer Kennlinie, deren Ausgangsschwingkreis auf die Eingangsfrequenz abgestimmt ist.
- d) Eine Baugruppe mit nichtlinearer Kennlinie, deren Ausgangsschwingkreis auf ein Vielfaches der Eingangsfrequenz abgestimmt ist.

Lösung: d)

5.4. HB9 Welches der folgenden Blockschaltbilder stellt einen SSB-Sender (J3E) dar?

Lösung: c)

5.5. HB3/HB9

Welche Aufgabe hat eine Pufferstufe?

- a) Entkopplung von Oszillator- oder Mischstufen von vorangehenden oder nachfolgenden Baugruppen
- b) Verstärkung der vorangehenden Stufe
- c) Dämpfung der vorangehenden Stufe
- d) Rückkopplung des Signals zur vorangehenden StufeLösung: a)

5.6.
Wie nennt sich diese Schaltung?

HB9

- a) Ringmodulator
- b) FM-Demodulator
- c) Brückengleichrichter
- d) AM-Demodulator

5.7. HB3/HB9 Welche Aufgabe hat die automatische Leistungsregelung ALC in einem Sender?

- a) Sie verbessert die Modulationstiefe bei SSB.
- b) Sie vermeidet die Überlastung der angeschlossenen Antenne.
- c) Sie hält den Mittelwert der Sendeleistung über einen bestimmten Bereich konstant.
- d) Sie verbessert die Anpassung zwischen Sender und Antenne.

Lösung: c)

5.8. HB9 Was versteht man im Zusammenhang mit Senderendstufen unter Neutralisation?

- a) eine Kompensation unerwünschter Rückkopplung (Schwingneigung)
- b) eine Schaltung zur Schwingungserzeugung
- c) eine Gegenkopplung zur Erweiterung des Frequenzbereiches
- d) eine Linearisierung zur Dämpfung der Oberwellen

Lösung: a)

5.9.
Welche Schaltung wird als Pi-Filter bezeichnet?

HB3/HB9

Lösung: b)

5.10. HB3/HB9 Wovon ist die belegte Bandbreite bei einem frequenzmodulierten Sender abhängig?

- a) von der Modulationsfrequenz und vom Frequenzhub
- b) von der Trägerleistung des Senders
- c) von der Trägerfrequenz des Senders
- d) von der Dauer der Übertragung

Lösung: a)

5.11. HB3/HB9
Wie wird bei Frequenzmodulation (F3F) die Lautstärke-Information

Wie wird bei Frequenzmodulation (F3E) die Lautstärke-Information übertragen?

- a) mit Hilfe der Preemphasis
- b) mit der Amplitude des HF-Signals
- c) mit der Geschwindigkeit der Frequenzauslenkung
- d) mit der Grösse der Frequenzauslenkung

Lösung: d)

5.12. HB3/HB9

Ein SSB-Sender (J3E) wird mit Sprache im NF-Bereich von 0.3 - 3kHz moduliert.

Wie gross ist die Bandbreite der Aussendung?

Lösung: 2.7kHz

5.13. HB3/HB9

Wie gross ist die Bandbreite einer AM-Aussendung (A3E) mit Modulationsfrequenzen von 0.3 - 3kHz?

Lösung: 6kHz

5.14. HB9

Ein AM-Sender (A3E) wird mit einem Ton zu 100% moduliert. Wie gross ist die Leistung im oberen Seitenband im Verhältnis zur Leistung des Trägers?

Lösung: 25%

5.15. HB3/HB9

Mit welcher der folgenden Betriebsarten wird im HF-Spektrum die kleinste Bandbreite belegt?

- a) J3E, höchste Modulationsfrequenz 3kHz
- b) A1A, Tempo max. 30 WPM
- c) F3E, höchste Modulationsfrequenz 3kHz, Modulationsindex 1
- d) A3E, höchste Modulationsfrequenz 3kHz

Lösung: b)

5.16. HB9

Welche der nachstehend aufgeführten Übermittlungsarten benötigt die kleinste HF-Bandbreite?

- a) RTTY (45Bd)
- b) SSB
- c) SSTV
- d) Fernsehen (C3F)

5.17. HB9

Warum ist bei CW-Betrieb eine weiche Tastung erforderlich?

- a) damit eine höhere Tastgeschwindigkeit möglich ist
- b) zur Reduktion der belegten Bandbreite
- c) damit der Kontakt des CW-Tasters keinem grossen Verschleiss unterliegt
- d) Es tönt schöner im Kopfhörer.

Lösung: b)

5.18. HB9

Ein Sender wird mit 1.5kHz NF und 3kHz Hub moduliert. Wie gross ist der Modulationsindex?

Lösung: 2

5.19. HB9

Ein SSB-Sender (J3E) auf 3700kHz wird mit einem reinen Sinus-Ton von 1kHz im unteren Seitenband moduliert.

Welche spektrale Darstellung trifft für diesen Fall zu?

5.20. HB3/HB9

Zwei Amateurstationen führen auf 145.525MHz ein FM QSO. Während der Verbindung driftet einer der Sender aufgrund thermischer Effekte um minus 300Hz.

Wie wirkt sich diese Frequenzverschiebung auf die Qualität der Verbindung aus?

- a) Die NF des demodulierten Signals wird in den Bereich höherer Frequenzen verschoben.
- b) Die NF des demodulierten Signals wird in den Bereich tieferer Frequenzen verschoben.
- c) Die Verbindung bricht ab.
- d) Die Frequenzabweichung hat auf die Qualität der Verbindung keine Auswirkungen.

Lösung: d)

5.21. HB9

Welche Folgen hat es, wenn Sie die Endstufe eines SSB-Senders (J3E) übersteuern?

- a) Die Nutzleistung sinkt, Verzerrungen treten auf, die Bandbreite wird grösser.
- b) Die Sendeleistung steigt, die Bandbreite sinkt.
- c) Das Netzteil wird überlastet.
- d) die Nutzleistung sinkt, Verzerrungen treten auf, die Bandbreite wird kleiner

Lösung: a)

5.22. HB9

Die Intermodulationsprodukte dritter Ordnung (3rd order intermodulation distortion) eines Senders wird mit 40dB unter einer Spitzen-

Ausgangsleistung von 100W bei 14MHz angegeben.

Wie gross darf die Leistung eines Intermodulationsproduktes höchstens sein?

Lösung: 10dBm

5.23. HB3/HB9 Welche Wirkung hat ein richtig eingestellter Sprachprozessor (auch speech processor, clipper oder compressor genannt) auf den Betrieb eines SSB-Senders unter anderem? Die Dynamik des Sprachsignalpegels wird erhöht. a) Die mittlere Ausgangsleistung des Senders wird erhöht. b) Die mittlere Ausgangsleistung des Senders wird verringert. c) Die belegte HF-Bandbreite wird kleiner. Lösung: b) 5.24. HB9 In welcher Verstärkerklasse betreibt man die Endstufe eines FM-Senders, um einen optimalen Wirkungsgrad zu erreichen? Klasse A a) Klasse B b) Klasse C c) d) Klasse AB Lösung: c) 5.25. HB9 In welcher Verstärkerklasse fliesst bei einer Endstufe der grösste Ruhestrom? Klasse A a) Klasse B b) c) Klasse C Klasse AB d)

Lösung:

a)

Welche Verstärkerbetriebsart (Verstärkerklasse) hat den grössten

HB9

5.26.

Wirkungsgrad?

sein.

a)

Lösung:

a)	Klasse A
b)	Klasse B
c)	Klasse C
d)	Klasse AB
Lös	sung: c)
5.27.	HB9
In welche Ruhestro	er Verstärkerklasse fliesst bei einer Endstufe der kleinste m?
a)	Klasse A
b)	Klasse B
c)	Klasse C
d)	Klasse AB
Lös	sung: c)
5.28.	HB3/HB9
	ner Bedingung ist die maximale Leistungsübertragung von ender zur Antenne gegeben?
a)	Die Impedanzen des Senders, des Antennenkabels und der Antenne müssen aufeinander abgestimmt sein.
b)	Die Impedanz des Senders muss möglichst gross sein.
c)	Die Impedanz des Antennenkabels muss möglichst gross

d) Die Impedanz des Antennenkabels muss möglichst klein sein.

5.29. HB3/HB9

Zwei Amateurstationen führen auf 144.310MHz ein SSB-QSO (J3E, USB).

Während der Verbindung driftet bei einer Station die Sendefrequenz aufgrund thermischer Effekte um minus 300Hz.

Wie wirkt sich diese Frequenzverschiebung auf die Qualität der Verbindung aus?

- a) Die NF des demodulierten Signals wird in den Bereich höherer Frequenzen verschoben.
- b) Die NF des demodulierten Signals wird in den Bereich tieferer Frequenzen verschoben.
- c) Die Verbindung bricht ab.
- d) Die Frequenzabweichung hat auf die Qualität der Verbindung keine Auswirkungen.

Lösung: b)

6. Antennen und Antennenzuleitungen

6.1.	HB3/HB9
Welcher elektrische Unterschied besteht zwischen einem offene	en Dipol
und einem Faltdipol der Länge λ/2?	

- a) Der Faltdipol hat einen grösseren Fusspunktwiderstand.
- b) Der Faltdipol hat einen kleineren Fusspunktwiderstand.
- c) Der Faltdipol verträgt mehr Leistung.
- d) Der Faltdipol hat eine schmalere horizontale Abstrahlkeule.

Lösung: a)

6.2. HB9 Wie gross ist die Eingangsimpedanz eines gestreckten Dipols der Länge $\lambda/2$ bei Resonanz?

Lösung: ca. 75Ω

6.3. HB3/HB9 Die Strahlerlänge der kleinsten möglichen resonanten Groundplane-Antenne (ohne Einsatz von Kompensationsspulen) steht in welchem Verhältnis zur Wellenlänge λ ?

- a) ca. $\lambda/4$
- b) ca. $\lambda/2$
- c) ca. $\lambda/8$
- d) ca. 1λ

6.4. Welch verwe		ntennenformen werden im VHF- und UHF-Bereich nich	HB3/HB9 it
	a)	W3DZZ	
	b)	Quad	
	c)	Helical	
	d)	Parabolspiegel	
	Lösı	ung: a)	
6.5. Welch	ne Ar	ا ntennenformen werden im KW-Bereich nicht verwende	HB3/HB9 t?
	a)	W3DZZ	
	b)	Quad	
	c)	Helical	
	d)	Parabolspiegel	
	Lösı	ung: d)	
6.6.	a:aa		HB3/HB9
		e λ/2 endgespiesene Antenne ausser auf ihrer Grundfre anderen Frequenzen in Resonanz betrieben werden?	equenz
	a)	ja, auf ganzzahligen (1, 2, 3,) Vielfachen ihrer Grundfrequenz	
	b)	nur auf gradzahligen (2, 4, 6,) Vielfachen ihrer Grundfrequenz	
	c)	nur auf ungradzahligen (3, 5, 7,) Vielfachen ihrer Grundfrequenz	
	d)	nein	
	Lösı	ung: a)	

6.7. HB3/HB9

Vier gleiche Yagi-Antennen mit je 8dB Gewinn werden verlustfrei zusammengeschaltet.

Wie gross ist der Gewinn dieser Kombination?

Lösung: 14dB

6.8. HB9

Was bedeutet die Aussage: "Die Antenne wird stromgekoppelt gespeist". Ist die Impedanz am Speisepunkt hoch- oder niederohmig?

- a) niederohmig
- b) hochohmig
- c) Die Impedanz kann nicht bestimmt werden.
- d) Die Impedanz ist von der Antennenrichtung abhängig.

Lösung: a)

6.9. HB9

Was bedeutet die Aussage: "Die Antenne wird spannungsgekoppelt gespeist".

Ist die Impedanz am Speisepunkt hoch- oder niederohmig?

- a) niederohmig
- b) hochohmig
- c) Die Impedanz kann nicht bestimmt werden.
- d) Die Impedanz ist von der Antennenrichtung abhängig.

Lösung: b)

6.10. HB3/HB9 Welche der gezeichneten Strom- und Spannungsverteilungen stimmt für eine vertikale $\lambda/4$ -Antenne?

Lösung: b)

6.11. HB9 Eine Dipolantenne der Länge $\lambda/2$ wird in der Mitte eingespeist. An welcher Stelle der Antenne tritt die höchste Spannung auf?

- a) an den beiden Enden der Antenne
- b) am Speisepunkt der Antenne
- c) in der Mitte der beiden Schenkel
- d) in der linken Hälfte der Antenne

Lösung: a)

6.12. HB3/HB9 An den äusseren Enden eines Halbwellen-Dipols befindet sich

- a) der Spannungsbauch (maximum)
- b) der Strombauch (maximum)
- c) der kleinste Strahlungswiderstand
- d) die kleinste Feldstärke

6.13. HB9

Eine Draht-Antenne ist zu lang.

Durch welche Massnahme kann sie elektrisch verkürzt werden?

- a) durch das Einfügen einer Serie-Kapazität beim Speisepunkt
- b) durch das Einfügen einer Serie-Induktivität beim Speisepunkt
- c) durch das Einfügen einer Serie-Kapazität am Ende des Drahtes
- d) durch das Parallelschalten einer Kapazität am SpeisepunktLösung: a)

6.14. HB3/HB9

Was verstehen Sie bei einer Richtantenne unter dem Begriff "Antennengewinn"?

- a) Der Antennengewinn G gibt das Verhältnis der Nutzleistung einer Richtantenne (P_v) zu einem Dipol (P_d) in der Hauptstrahlrichtung in dB an.
- b) Der Antennengewinn G gibt das Verhältnis der Nutzleistung einer Richtantenne (P_v) zur Leistung in Rückwärtsrichtung (P_r) in dB an.
- c) Der Antennengewinn G gibt das Verhältnis der Nutzleistung einer Richtantenne in Vorwärtsrichtung (P_v) zur seitlich im Winkel von 90° abgestrahlten Leistung (P_s) in dB an.
- d) Der Antennengewinn G errechnet sich mit der Wurzel aus dem Verhältnis der eingesetzten Elementzahl (Direktoren) zum normalen Dipol in dB.

6.15. HB3/HB9

Was verstehen Sie bei einer Richtantenne unter dem Begriff "Vor / Rückverhältnis"?

- a) Das Verhältnis der im Zuleitungskabel vorlaufenden (zur Antenne) Energie zur rückfliessenden Leistung (von der Antenne zum Gerät) in dB.
- b) Das Verhältnis der in der Hauptstrahlrichtung abgestrahlten Leistung zur Leistung in Rückwärtsrichtung (180°) in dB.
- c) Das Verhältnis der Anzahl Elemente vor dem Dipol (Direktoren) zur Anzahl der Elemente hinter dem Dipol (Reflektoren) in dB.
- d) Das Verhältnis der in der Hauptstrahlrichtung (vorwärts) abgestrahlten Leistung (P_v) zur seitlich im Winkel von 90° abgestrahlten Leistung (P_s) in dB.

Lösung: b)

6.16. HB9

Eine Sendeanlage wird mit einer Strahlungsleistung von 10W ERP betrieben.

Wie gross ist die Strahlungsleistung, wenn Sie eine Antenne mit einem um 9dB grösseren Gewinn verwenden?

Lösung: 79.4W ERP

6.17. HB3/HB9 Welche Horizontal-Strahlungscharakteristik trifft für die gezeichnete Antenne zu?

Lösung: a)

6.18. HB9
Die Länge eines Dipols errechnet sich aus Arbeitsfrequenz
(Wellenlänge) und aus der Ausbreitungsgeschwindigkeit des Signals.
Welche der folgenden Aussagen ist richtig?

Die Länge des Dipols...

- a) ...entspricht genau der berechneten Wellenlänge.
- b) ...ist länger als die berechneter Wellenlänge.
- c) ...ist geringfügig kürzer als die berechnete Wellenlänge.
- d) ...ist abhängig von der Drahtrichtung.

Lösung: c)

6.19. HB9

Für das 10-MHz-Band (Mittenfrequenz: 10.125MHz) wurde die Länge eines Halbwellendipols berechnet.

Welches ist – bei einem Verkürzungsfaktor von 5% – die ermittelte Länge?

Lösung: 14.074m

6.20. HB9

Für das 24MHz-Band soll eine Dipol-Antenne (λ /2) konstruiert werden. Als Mittenfrequenz wird 24.940MHz festgelegt, der Verkürzungsfaktor beträgt 3%.

Wie lang wird diese Antenne?

Lösung: 5.834m

6.21. HB3/HB9
Welche Figenschaft einer Antenne ist mit dem Begriff Öffnungswinkel"

Welche Eigenschaft einer Antenne ist mit dem Begriff "Öffnungswinkel" definiert?

- a) Der Öffnungswinkel gibt den Winkelabstand der beiden Punkte an, bei denen der Gewinn gegenüber dem maximalen Wert um 3dB abgefallen ist.
- b) Der Öffnungswinkel gibt den Winkelabstand der beiden Punkte an, bei denen der Gewinn gegenüber dem maximalen Wert auf 0dB abgefallen ist.
- c) Der Öffnungswinkel gibt den Winkel an, um den die Antenne gegenüber der Vertikalen geneigt sein muss (Steilstrahler).
- d) Der Öffnungswinkel gibt den Winkel an, um den die Antenne gegenüber der Horizontalen geneigt sein muss (Flachstrahler).

6.22. HB3/HB9 Welche Horizontal-Strahlungscharakteristik trifft für die gezeichnete Antenne zu?

Lösung: d)

6.23. HB3/HB9 Welche Speiseleitungsart wird im Kurzwellenbereich nicht eingesetzt?

- a) symmetrische Speiseleitung
- b) asymmetrische Speiseleitung
- c) Koaxialkabel
- d) Hohlleiter

Lösung: d)

6.24. HB3/HB9 Der Wellenwiderstand eines Koaxialkabels ist hauptsächlich abhängig ...

- a) ...vom Durchmesserverhältnis Aussenleiter zu Innenleiter.
- b) ...vom Aussendurchmesser des Koaxialkabels.
- c) ...vom verwendeten Isolationsmaterial.
- d) ...vom verwendeten Leitermaterial.

6.25. HB3/HB9

Eine 100m-Rolle Koaxialkabel ist mit 60Ω Wellenwiderstand angeschrieben. Es werden davon 20m abgeschnitten. Wie gross ist der Wellenwiderstand der verbleibenden 80m?

Lösung: 60Ω

6.26. HB3/HB9

Bei einer HF-Leitung mit einem Wellenwiderstand Z_L ist folgende Aussage richtig:

- a) Z_L ist unabhängig von der Leitungslänge und der Frequenz.
- b) Z_L ist abhängig von der Leitungslänge und der Frequenz.
- c) Z_L ist abhängig vom verwendeten Leitermaterial (Kupfer, Eisen, etc.) und der Frequenz.
- d) Z_L ist abhängig vom verwendeten Isolationsmaterial (PVC, Teflon, etc.) und der Frequenz.

Lösung: a)

6.27. HB3/HB9 Mit welcher Geschwindigkeit bewegt sich eine elektrische Schwingung in einem Kabel?

- a) kleiner als die Lichtgeschwindigkeit
- b) grösser als die Lichtgeschwindigkeit
- c) hängt vom Wellenwiderstand ab
- d) mit Lichtgeschwindigkeit

6.28. HB9

Bei einer Amateurfunkanlage zeigt das Kreuzzeiger-Instrument des VSWR-Meters eine Vorwärtsleistung von 100W und eine reflektierte Leistung von 11W an.

Welchem VSWR entspricht dies?

Lösung: 1:2

6.29. HB3/HB9

Am Senderausgang einer Amateurfunkanlage welche im 2m-Band arbeitet, wird eine Leistung von 10W gemessen. Das 30m lange Koaxialkabel RG-213 hat in diesem Frequenzbereich eine Dämpfung von 10dB/100m.

Welche Leistung wird am Antennenfusspunkt gemessen?

Lösung: 5W

6.30. HB9

Eine Antenne mit einer Fusspunkt-Impedanz von 300Ω soll mit einem $\lambda/4$ - Anpasstrafo (Q-Match, Koaxialkabel) an die asymmetrische 75Ω Speiseleitung angepasst werden.

Wie gross muss die Impedanz des Kabels sein?

Lösung: 150Ω

6.31. HB9

Aus einem Koaxialkabel mit einem Verkürzungsfaktor von 0.8 bauen Sie einen Saugkreis (Notch) für 145.000MHz (Stub-Methode). Wie lang muss dieser Stub sein und wie wird das Ende ausgeführt?

- a) 41.4cm, Ende offen
- b) 41.4cm, Ende kurzgeschlossen
- c) 51.7cm, Ende offen
- d) 51.7cm, Ende kurzgeschlossen

6.32. HB3/HB9

Wozu wird ein Antennentuner (Matchbox) eingesetzt?

- a) Anpassung der Antennenimpedanz an den Senderausgang
- b) Abstimmung der Antenne
- c) Leistungsanpassung des Senders an die Antenne
- d) Anpassung der Polarität der Antennenabstrahlung

Lösung: a)

6.33. HB9

Was verstehen Sie unter einem Baluntransformator?

- a) ein Symmetrierglied oder Symmetrierglied mit Impedanztransformation
- b) eine Frequenzanpassung
- c) ein Oberwellenfilter
- d) eine Anpassung Sender/Antennenkabel

Lösung: a)

6.34. HB3/HB9

Eine Senderendstufe ist über einen Übertrager an eine Antenne angekoppelt. Die Antenne hat einen Fusspunktwiderstand von 75Ω , der Übertrager hat eine Primärwindungszahl von 8 und eine Sekundärwindungszahl von 4.

Welches ist die Impedanz der Primärwicklung (Senderseite)?

Lösung: 300Ω

6.35. HB3/HB9

Ein Faltdipol mit der Impedanz 240 Ω wird mittels eines Übertragers an eine 50 Ω Speiseleistung angeschlossen.

Welches ist das Windungszahl-Verhältnis des Übertragers?

Lösung: 2.19:1

6.36. HB3/HB9

Zur Anpassung einer symmetrischen Speiseleitung von 470 Ω an den asymmetrischen Senderausgang von 50 Ω wird ein Übertrager benötigt. Was für ein Windungszahl-Verhältnis muss gewählt werden?

Lösung: 3.07:1

6.37. HB3/HB9

Ein Faltdipol mit der Impedanz von 240Ω wird über einen Übertrager, dessen Windungszahl-Verhältnis 4:1 beträgt, an einen angepassten Verstärker angeschlossen.

Welches ist die Eingangs-Impedanz dieses Verstärkers?

Lösung: 15Ω

6.38. HB3/HB9

Eine symmetrische Speiseleitung von 600Ω soll an ein Koaxialkabel von 50Ω angeschlossen werden.

Wie gross ist das Windungszahlverhältnis des benötigten Übertragers?

Lösung: 3.46:1

6.39. HB9

Welches der nachfolgend genannten Anpassglieder wird nicht zur Anpassung eines Koaxialkabels an eine symmetrische Antenne verwendet?

- a) Deltamatch
- b) Gammamatch
- c) Balun
- d) Halbwellenumwegleitung

6.40. HB9

Eine Antenne ist zu kurz.

Durch welche Massnahme kann sie elektrisch verlängert werden?

- a) durch das Einfügen einer Serie-Induktivität in die Antenne
- b) durch das Einfügen einer Serie-Kapazität
- c) durch Aufhängung in grösserer Höhe über Grund
- d) durch Änderung des Drahtmaterials (Kupfer, Eisen, Aluminium etc.)

7. Wellenausbreitung

7.1.		HB3/HB9
Mac varatable man untar dam Augdruck	Chart Ckin"?	

Was versteht man unter dem Ausdruck "Short Skip"?

- a) Reflexion an sporadischen E-Schichten
- b) Überbrückung von kurzen Distanzen im 160m-Band
- c) Bodenwellenausbreitung
- d) Verbindungen von kurzer Dauer

Lösung: a)

7.2. HB3/HB9 Was versteht man im Kurzwellenbereich unter Bodenwellenausbreitung?

- a) die Ausbreitung entlang der Erdoberfläche
- b) den Teil der Ausbreitung der durch den Boden, Erde, Wasser etc. übertragen wird
- den Teil der Abstrahlung, der nach der Reflexion an der Ionosphäre durch den Erdboden absorbiert wird
- d) die Abstrahlung der Antenne

Lösung: a)

7.3. HB3/HB9 Was versteht man im Kurzwellenbereich unter Raumwellenausbreitung?

- a) die Ausbreitung entlang der Erdoberfläche
- b) die Ausbreitung durch Reflexion an der Ionosphäre
- c) den Teil der Abstrahlung, der sich im Weltraum verliert
- d) die Abstrahlung der Antenne

Lösung: b)

7.4. HB3/HB9

Wie äussert sich der so genannte Mögel-Dellinger-Effekt auch bekannt unter "Sudden Ionospheric Disturbance(SID)"?

- a) hohe Feldstärken bei KW-Verbindungen
- b) starke Feldstärke-Schwankungen bei KW-Verbindungen
- c) zeitlich begrenzter Totalausfall von KW-Verbindungen
- d) stark erhöhtes Rauschen bei KW-Verbindungen

Lösung: c)

7.5. HB3/HB9

Was versteht man unter Auroraeffekt?

- a) Überreichweiten von VHF-Verbindungen durch Reflexionen an Inversionsschichten
- b) Überreichweiten von VHF-Verbindungen durch Reflexionen an Ionisationsfeldern
- c) Überreichweiten von VHF-Verbindungen durch Refraktion an Luftschichten mit unterschiedlicher Luftfeuchtigkeit
- d) Überreichweiten von VHF-Verbindungen durch Reflexionen im Gelände (Felsen, Berge, Gebäude etc.)

Lösung: b)

7.6. HB3/HB9

Wie verhält sich die Ausbreitung der Funkwellen im 2m- und 70cm-Bereich?

- a) Sie ist unter normalen Bedingungen quasioptisch.
- b) Sie ist vom Ionisationsgrad der E-Schicht abhängig.
- c) Sie ist von der Lufttemperatur abgängig.
- d) Sie ist vom Ionisationsgrad der D-Schicht abhängig.

7.7. HB3/HB9 Wie beeinflusst der Sonnenfleckenzyklus die Wellenausbreitung?

- a) Bei hoher Sonnenaktivität werden die Ausbreitungsbedingungen für VHF/UHF schlechter.
- b) Bei hoher Sonnenaktivität werden die Ausbreitungsbedingungen für KW (HF) schlechter.
- c) Bei hoher Sonnenaktivität werden die Ausbreitungsbedingungen für KW (HF) besser.
- d) Bei hoher Sonnenaktivität werden die Ausbreitungsbedingungen für UHF/VHF besser.

Lösung: c)

7.8. HB3/HB9

Was bedeutet der Begriff "MUF" in der Radiotechnik?

- a) <u>Maximum Usable Frequency, die höchste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann.</u>
- b) <u>Minimum Usable Frequency</u>, die niedrigste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann.
- c) <u>Mittlere Umgebungs Fläche, wegen der NIS-Verordnung abgesperrter Bereich um die Antenne.</u>
- d) <u>Maximale Umschalt Frequenz, maximale Geschwindigkeit mit der zwischen Senden und Empfang umgeschaltet werden kann.</u>

7.9. HB3/HB9

Was bedeutet der Begriff "LUF" in der Radiotechnik?

- a) <u>Lowest Usable Frequency</u>, die niedrigste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann. Wird durch die F-Schicht bestimmt.
- b) <u>Lowest Usable Frequency</u>, die niedrigste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann. Wird durch die D-Schicht bestimmt.
- c) <u>L</u>owest <u>U</u>sable <u>F</u>requency, die niedrigste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann. Wird durch die Wetterlage bestimmt.
- d) <u>L</u>owest <u>U</u>sable <u>F</u>requency, die niedrigste Frequenz, die für einen bestimmten Übertragungsweg benutzt werden kann. Wird durch den Luftdruck bestimmt.

Lösung: b)

7.10. HB3/HB9

Welches sind reflektierenden Schichten für Kurzwelle?

- a) E- und F-Schicht
- b) Inversionsschichten
- c) D-Schicht
- d) Polarlicht

Lösung: a)

7.11. HB3/HB9

In welchem Frequenzbereich arbeitet man vorwiegend mit Raumwellenausbreitung?

- a) 1.8 30MHz
- b) 144 470MHz
- c) 100 500kHz
- d) 2 6GHz

Wie sollte der Abstrahlwinkel einer KW-Antenne für Nahverbindungen

HB3/HB9

7.12.

a)

b)

c)

Lösung:

Erdbodens

a)

(≈ 500 - 1000km) sein?	
a) senkrecht nach oben (90°) b) sehr flach (Bodenwelle) c) steil (über 30°) d) flach (15°) Lösung: c)	
7.13. Wie sollte der Abstrahlwinkel einer KW-Antenne für interkontinentale Verbindungen (DX) sein?	В9
 a) flach (5 – 15°) b) sehr flach (Bodenwelle) c) steil (über 30°) d) senkrecht nach oben (90°) Lösung: a) 	
7.14. Was versteht man unter Fading bzw. Schwund?	В9

Starke Feldstärkeschwankungen beim Zusammentreffen von

Feldstärkeschwankungen beim Auftreten von Nordlichtern

Feldstärkeschwankungen beim Auftreten einer Gewitterfront

Feldstärkeschwankungen durch Änderung der Absorption des

Funkwellen mit unterschiedlicher Phasenlage

7.15. HB3/HB9 Ist die MUF (Maximum Usable Frequency) leistungsabhängig?

- a) Nein, sie wird nur durch die Reflexionsfähigkeit des Bodens bestimmt.
- b) Ja, sie hängt von der Frequenz und der Leistung ab.
- c) Nein, sie wird nur durch die Reflexionsfähigkeit der entsprechenden ionosphärischen Schichten (E, F1, F2) bestimmt.
- d) Ja, sie ist von der Frequenz und der Temperatur abhängig.

Lösung: c)

7.16. HB3/HB9

Wie lange dauert ein "Sonnenfleckenzyklus"?

Lösung: 11 Jahre

7.17. HB3/HB9 Ist die LUF (Lowest Usable Frequency) leistungsabhängig?

- a) Ja, sie kann durch erhöhen der Sendeleistung angehoben werden.
- b) Ja, sie kann durch erhöhen der Sendeleistung gesenkt werden.
- c) Nein, sie hängt nur von der Frequenz ab.
- d) Nein, sie hängt nur von der Reflexionsfähigkeit der ionisierten Schichten (E, F1,F2) ab.

Lösung: b)

HB3/HB9 er aufgeführten Medien ermöglichen keine Scatter – ngen?
Wolken
Vakuum
Meteoriten
Staub
ung: b)
HB3/HB9 reich sind Überreichweiten (in Telefonie) aus meteorologischen möglich. t sich die dafür verantwortliche Erscheinung?
Inversion
Reflexion am Boden
Reflexion an der D-Schicht
Statische Aufladung durch ein Gewitter
ung: a)
HB9 der aufgeführten Amateurfunkbänder ist für Meteorscatter eher gnet?
50MHz
144MHz
435MHz
1290MHz
ung: d)

7.21. HB3/HB9

Station A in Fribourg arbeitet auf KW am Vormittag um 10 Uhr in Telegrafie mit einer Station B in Bern (Distanz ca. 28km). Beide stellen ein langsames, aber starkes Fading des Empfangssignals fest.

Was ist der Grund?

- a) Das Zusammenwirken von Boden- und Raumwelle mit zunehmender Ionisation der D-Schicht.
- b) Starke Veränderungen der Bodenleitfähigkeit
- c) Reflexionsschwankungen an der E-Schicht
- d) Atmosphärische Störungen

Lösung: a)

7.22. HB3/HB9

Welche Eigenschaft wird mit "Skin-Effekt" bezeichnet?

- a) Abstrahlung der HF in den Raum
- b) Das Bestreben eines HF-Stromes, an der Oberfläche eines Leiters zu fliessen.
- c) Widerstandsabnahme im Leiter durch HF
- d) Widerstandszunahme im Leiter durch HF

Lösung: b)

8. Messtechnik

8.1. HB3/HB9

Die Trägerleistung eines AM-Senders (A3E) beträgt 100W. Mit einem PEP-Wattmeter wird ebenfalls 100W gemessen. Nun wird der Sender mit einem Ton 100% moduliert.

Welche Leistung wird nun vom PEP-Wattmeter angezeigt?

Lösung: 400W

8.2. HB9

Ein Messinstrument soll so umgebaut werden, dass bei Vollausschlag 15mA angezeigt werden. Das Instrument hat einen Innenwiderstand R_i von 50Ω und einen Endausschlag von 2mA. Wie gross ist der erforderliche Mess-Shunt?

Lösung: 7.7Ω

8.3. HB3/HB9 Wie werden Ampèremeter angeschlossen und was ist dabei zu

Wie werden Ampéremeter angeschlossen und was ist dabei zu beachten?

- a) Das Ampèremeter ist seriell in den Stromkreis einzuschlaufen.
 Das Messgerät soll möglichst niederohmig sein.
- b) Das Ampèremeter ist parallel in den Stromkreis einzuschlaufen. Das Messgerät soll möglichst niederohmig sein.
- c) Das Ampèremeter ist seriell in den Stromkreis einzuschlaufen. Das Messgerät soll möglichst hochohmig sein.
- d) Das Ampèremeter ist parallel in den Stromkreis einzuschlaufen. Das Messgerät soll möglichst hochohmig sein.

8.4. HB9

In den folgenden Bildern sehen Sie die Hüllkurven und die Spektralanalyse eines Zweiton-HF-Signals (J3E). Bei welcher Darstellung ist der Sender optimal eingestellt?

8.5. HB9

Welche Modulationsart zeigt die folgende Grafik?

- a) FM
- b) AM
- c) PCM (Pulse Code Modulation)
- d) SSB

Lösung: a)

8.6. HB3/HB9

An einem Kathodenstrahloszillografen wird die nachstehend abgebildete Hüllkurve eines AM-Senders dargestellt.

Wie gross ist der Modulationsgrad?

Lösung: 100%

8.7. HB3/HB9 Wie werden Voltmeter angeschlossen und was ist dabei zu beachten?

- a) Das Voltmeter ist parallel zum Messobjekt anzuschliessen. Das Messgerät soll möglichst hochohmig sein.
- b) Das Voltmeter ist seriel zum Messobjekt anzuschliessen. Das Messgerät soll möglichst hochohmig sein.
- c) Das Voltmeter ist parallel zum Messobjekt anzuschliessen. Das Messgerät soll möglichst niederohmig sein.
- d) Das Voltmeter ist seriel zum Messobjekt anzuschliessen. Das Messgerät soll möglichst niederohmig sein.

Lösung: a)

8.8. HB9 Mit welcher Schaltung können Strom und Spannung an einem Widerstand gemessen werden?

8.9. HB9 Welche Messeinrichtung ist zur Messung von Stehwellen geeignet?

Lösung: b)

9. Störungen und Störschutz

9.1. HB3/HB9 Ihr Nachbar hört die Aussendung Ihres SSB-Senders aus den Lautsprechern seiner Stereoanlage, gleichgültig auf welche Funktion er sein Gerät eingestellt hat. Welche Ursache kann das haben?

- a) Die HF-Energie gelangt über Zuleitungen oder direkt in den NF-Teil des Gerätes und wird dort gleichgerichtet.
- b) Der HF-Teil des Empfängers wird übersteuert.
- c) Ihr Sender ist übersteuert und produziert Oberwellen.
- d) Der Demodulator des Empfängers wird übersteuert.

Lösung: a)

9.2. HB3/HB9 Ein Empfänger arbeitet auf der Frequenz 436.575MHz. Seine erste

Zwischenfrequenz liegt bei 10.7MHz. Er wird durch einen Sender der auf 145.525MHz läuft, gestört.

Es handelt sich mit grosser Wahrscheinlichkeit um...

- a) ...eine Störung durch zu hohe Feldstärke.
- b) ...eine Störung durch Direkteinstrahlung.
- c) ...eine Störung durch Oberwellen (3. Harmonische).
- d) ...eine Störung durch Übersteuerung der Empfänger-ZF (10,7MHz).

9.3. HB3/HB9

Im Modulationsbericht Ihrer Gegenstation heisst es, dass Sie "Splatter" erzeugen.

Was können Sie zur Abhilfe tun?

- a) die Antennenhöhe über Grund vergrössern
- b) dem QSO-Partner QSY vorschlagen
- c) den Mike-Gain verringern, die ALC prüfen (einstellen)
- d) ein Tiefpass-Filter in die Antennenzuleitung schalten

Lösung: c)

9.4. HB3/HB9

Sie betreiben Ihre Amateurfunkanlage in einem dicht besiedelten Gebiet in dem eine Kabelfernseh-Anlage in Betrieb ist.

Beim Absuchen des 2m-Bandes empfangen Sie auf 145.750MHz Sprache und Musik.

Welche Ursache könnte vorliegen?

- a) Intermodulation in der Empfängereingangsstufe
- b) Kabelfernsehanlage, Sonderkanal 6, Ton 145,75MHz, Bild 140,25MHz
- c) unzureichende Störfestigkeit des Empfängers
- d) schlechte Anpassung der Antenne an dem Empfänger

Lösung: b)

9.5. HB3/HB9

Welche Ursache kann eine, durch eine Amateurfunkanlage verursachte, Störung in einer Empfangsanlage <u>nicht</u> haben?

- a) zu hohe Strahlungsleistung des Senders
- b) Einstrahlung ins Netz
- c) zu kleine Empfindlichkeit der Empfangsanlage
- d) strahlende Speiseleitung beim Sender

9.6. HB3/HB9 Welches ist die wahrscheinlichste Ursache für eine, durch eine

Welches ist die wahrscheinlichste Ursache für eine, <u>durch eine</u> <u>Amateurfunkanlage verursachte</u>, TV - Empfangsstörung?

- a) Übersteuerung des Empfängereingangs oder des Antennenverstärkers
- b) schlechte Anpassung der Antenne an das Koaxialkabel
- c) zu kleine Betriebsspannung
- d) mangelnde Verdrosselung des Netzteils

Lösung: a)

9.7. HB3/HB9

Der Antennenverstärker einer Fernsehempfangsanlage wird durch die Signale einer benachbarten KW-Amateurfunkanlage übersteuert. Wie kann diese Störung behoben werden?

- a) Durch Einfügung eines Tiefpassfilters vor den Antennen-Verstärker
- b) Durch Einfügung eines Hochpassfilters am Senderausgang
- c) Durch Einfügung eines Tiefpassfilters am Senderausgang
- d) Durch Einfügung eines Hochpassfilters vor den Antennenverstärker

Lösung: d)

9.8. HB3/HB9

Eine Rundfunkempfangsanlage wird durch einen Amateursender gestört. Welche der aufgeführten Massnahmen auf der Empfängerseite bringt keine Abhilfe?

- a) Filter am Empfängereingang
- b) Abblocken und Verdrosselung der Lautsprecherleitung
- c) Filter in der Netzleitung
- d) Dämpfungsglied in die Antennenzuleitung

Lösung: d)

9.9. HB3/HB9 Welche technischen Massnahmen können auf der Senderseite bei

Welche technischen Massnahmen können auf der Senderseite bei störender Beeinträchtigung des Rundfunkempfanges ergriffen werden?

- a) Verminderung der effektiven Strahlungsleistung (ERP)
- b) Vergrösserung der effektiven Strahlungsleistung (ERP)
- c) Änderung der Modulationsart (z.B. FM statt SSB)
- d) Auswechseln der Antennenzuleitung (Bandkabel statt Koax)Lösung: a)

9.10. HB3/HB9

Ein am 230-Volt-Netz betriebener tragbarer Kassettenrecorder wird beim Abspielen von Kassetten durch die SSB-Aussendungen eines benachbarten Amateurs gestört.

Bei Batteriebetrieb des Recorders verschwinden die Störungen. Welche Entstörmassnahme ist zu empfehlen?

- a) Der Einsatz eines Tiefpassfilters in die Antennenleitung der Amateurfunkanlage.
- b) Der Einsatz eines Hochpassfilters in die Antennenleitung der Amateurfunkanlage.
- c) keine
- d) Der Einbau eines Netzfilters beim Kassettenrecorder.

Lösung: d)

9.11. HB9

Das Bordnetz ist mit HF-Störungen überlagert.

Welches Filter ist geeignet, diese Störungen von einem empfindlichen Verbraucher fernzuhalten?

Lösung: d)

9.12. HB3/HB9 Welche der nachfolgend angegebenen Massnahmen helfen nicht mit, Störungen im Radio- und Fernsehempfang zu vermindern oder zu verhindern?

- a) unangepasste offene Speiseleitung
- b) Tiefpassfilter im Senderausgang
- c) Mantelwellensperren im Koaxialkabel
- d) angepasste Antenne

9.13. HB3/HB9

Welches Bild zeigt einen gebräuchlichen "Funkenlöscher"?

Lösung: d)

9.14. HB3/HB9

Mit Ihrem Kurzwellensender verursachen Sie Störungen in einem bestimmten Fernsehkanal (Direktempfang). Andere Kanäle sind nicht gestört.

Welche Massnahme könnte hier Abhilfe schaffen?

- a) Hochpassfilter zwischen Sender und Antenne
- b) Tiefpassfilter zwischen Sender und Antenne
- c) Mantelwellensperre im Koaxialkabel
- d) Wechseln des Antennentyps (Magnetloop statt Dipol)

Lösung: b)

10. Schutz gegen elektrische Spannungen, Personenschutz

10.1. HB3/HB9 Bietet ein Fehlerstromschutzschalter (FI-Schalter) absoluten Personenschutz?

- a) nein
- b) ja
- c) nur wenn der Ansprechstrom grösser 100mA ist
- d) nur wenn Sie gleichzeitig die Phase und den Neutralleiter berühren

Lösung: a)

10.2. HB3/HB9 Wie hoch ist in der Schweiz die Netzspannung (Nennspannung) und welche Frequenz hat sie?

- a) 230/400V, 50Hz
- b) 230/400V, 60Hz
- c) 110/190V, 50Hz
- d) 110/190V, 60Hz

10.3. HB3/HB9

Welche Funktion hat der mit "?" bezeichnete Anschluss einer Netzsteckdose?

- a) Anschluss der Phase
- b) Anschluss des Neutralleiters
- c) Führungsstift
- d) Anschluss des Schutzleiters

Lösung: d)

10.4. HB3/HB9

Sie möchten Ihre Amateurfunkanlage welche mit einem 3-poligen Netzstecker versehen ist, am Netz anschliessen. Leider steht Ihnen nur eine alte, 2-polige Steckdose zur Verfügung.

Dürfen Sie den Erdstift am Stecker Ihrer Amateurfunkanlage einfach absägen?

- a) nein
- b) ja
- c) ja, wenn Sie auf Holz oder Teppichboden stehen
- d) ja, wenn das Gehäuse aus Metall ist

		HB3/HB9 eräte dürfen über einen 2-poligen Stecker am 230V-Netz essen werden?
	a)	Geräte mit Metallgehäuse
	b)	Handlampen ohne isolierten Griff
	c)	schutzisolierte Geräte mit -Zeichen
	d)	alle Geräte mit weniger als 10W Leistung
	Lösı	ung: c)
		HB3/HB9 eiter eines Netzkabels muss mit dem Metallgehäuse eines benen Gerätes verbunden werden?
	a)	der Neutralleiter
	b)	die Phase
	c)	der Schutzleiter
	d)	die Abschirmung
	Lösı	ung: c)
10.7. Welc Schw		HB3/HB9 arbe hat der Schutzleiter eines 3-adrigen Netzkabels in der
	a)	grüngelb
	b)	rot
	c)	gelb
	d)	weiss
	Lösı	ung: a)

10.8. Darf of werde		HB3/H leutralleiter mit dem Metallgehäuse eines Gerätes verbunder	
	a)	ja	
	b)	nein	
	c)	nur bei Steckern mit 3 Stiften	
	d)	nur bei Verwendung in Wohnräumen	
	Lösı	ung: b)	
10.9. Wie h	noch	HB3/F darf die maximal zulässige Berührungsspannung sein?	lB9
	a)	230V	
	b)	325V	
	c)	75V	
	d)	50V	
	Lösı	ung: d)	
	he V	HB3/Forschriften sind massgebend für Elektroinstallationen in eine eich (Shack)?	
	a)	Die Niederspannungs-Installationsverordnung (NIV) und die Niederspannungs-Installationsvorschriften (NIN))
	b)	Die Verordnung über den Schutz vor nichtionisierender Strahlung (NISV)	
	c)	Das Fernmeldegesetz (FMG)	
	d)	Die Prüfungsvorschriften für den Amateurfunk	
	Lösı	ung: a)	

11. Schutz vor nichtionisierender Strahlung, NIS

11.1.	HB3/HB9
Ab welcher abgestrahlten Leistung muss beim Bau einer Antenn	e eine
Immissionsprognose im Sinne der NISV erstellt werden?	

- a) 3W
- b) 6W
- c) 10W
- d) 50W

Lösung: b)

HB3/HB9
Wo ist der Grenzwert für die zulässige nichtionisierende Strahlung einer

Wo ist der Grenzwert für die zulässige nichtionisierende Strahlung einer Antenne festgelegt?

- a) im Fernmeldegesetz (FMG)
- b) in der Verordnung über den Schutz vor nichtionisierender Strahlung (NISV), Anhang 2
- c) in den Niederspannungs-Installationsvorschriften (NIN)
- d) in der Niederspannungs-Installationsverordnung (NIV)

Lösung: b)

11.3. HB3/HB9

Wann muss für eine Station mit 100 Watt Ausgangsleistung die nur mit einer Dipolantenne arbeitet auch eine NIS-Immissionsberechnung erstellt werden?

- a) in jedem Fall
- b) wenn die Sendedauer mehr als 800 Stunden pro Jahr beträgt
- c) wenn der Abstand der Antenne zum Nachbargrundstück weniger als 20m beträgt
- d) wenn der Nachbar eine solche Analyse verlangt

11.4. HB3/HB9

Wer ist für den Vollzug der NIS-Verordnung zuständig?

- a) die Kantone
- b) die Gemeinden
- c) das Bundesamt für Kommunikation
- a) Amateurfunkanlagen sind von der NIS-Verordnung ausgenommen.

12. Blitzschutz

12.1. HB3/HB9

Was ist mit einer Antenne auf einem Gebäude das bereits mit einer Blitzschutzanlage ausgerüstet ist zu beachten?

- a) nichts
- b) Die Antennenanlage (Mast) ist auf kürzestem Wege mit der Blitzschutzanlage zu verbinden.
- c) Die Antennenanlage ist an einer separaten Erdelektrode zu erden.
- d) Die Antenne ist über eine Funkenstrecke mit der Blitzschutzanlage zu verbinden.

Lösung: b)

12.2. HB3/HB9

Was ist bei der Hauseinführung von Steuer- und HF-Leitungen zu beachten?

- a) Sie müssen mit einem Überspannungsschutz ausgerüstet sein.
- b) Es ist eine Feinsicherung einzubauen.
- c) Die Leitungen dürfen nur über keramische, nichtbrennbare Rohre eingeführt werden.
- d) Spezielle Massnahmen sind nur bei KW-Antennen mit grossen Abmessungen notwendig.

12.3. HB3/HB9 Muss eine Antenne auf einem Gebäude ohne Blitzschutzanlage speziell geerdet werden?

- a) Nein, es sind keine speziellen Massnahmen erforderlich.
- b) Ja, die Antenne ist mit der am nächsten gelegenen Wasserleitung zu verbinden.
- c) Ja, es ist eine Verbindung zur Gebäudeerdung oder zu einem separaten Stab- oder Banderder zu erstellen.
- d) Nein, denn auf einem Haus ohne Blitzschutz darf keine Antenne erstellt werden.

Lösung: c)

12.4. HB3/HB9 Dürfen Antennenleitungen durch feuer- und explosionsgefährdete

Dürfen Antennenleitungen durch feuer- und explosionsgefährdete Räume geführt werden?

- a) ja, wenn die HF-Leitung nicht blank, also isoliert ist
- b) nein, nie
- c) ja, wenn die zu überbrückende Länge kleiner als 1 m ist
- d) ja, wenn Koaxialkabel verwendet werden

Lösung: b)

12.5. HB3/HB9

Eine Blitzschutzanlage (Fangleitung + Ableitung) wird aus blankem Kupfer erstellt. Welcher minimale Leiter-Durchmesser ist vorgeschrieben?

- a) 4mm
- b) 6mm
- c) 2.5mm
- d) 10mm

Lösung: b)

12.6. HB3/HB9 Dürfen Aluminium, Alu-Legierungen, Stahl oder Chromstahl als Ableiter für Blitzschutzanlagen verwendet werden?

- a) nein, nur Kupfer
- b) Stahlableiter dürfen nur verwendet werden wenn sie isoliert sind.
- c) ja, bei Wahl der richtigen Querschnitte
- d) Es dürfen nur nichtrostende Materialien verwendet werden.

13. <u>Liste der verwendeten Symbole</u>

U, I, R, P Spannung, Strom, Widerstand, Leistung

L, C Induktivität, Kapazität

X, Z, Blindwiderstand, Impedanz

Q Gütefaktor

β Gleichstromverstärkung

(Transistor)

B Magnetische Flussdichte

(Induktion)

E Elektrische Feldstärke

H Magnetische Feldstärke

f Frequenz

b Bandbreite

t Zeit

λ Wellenlänge

Widerstand, einstellbarer

Widerstand

 $Kondensator, \ Trimmkondensator,$

Drehkondensator

Elektrolyt-Kondensator

168/170

1 x	x 1	Frequenzvervielfacher, Frequenzteiler
		Mikrofon, Lautsprecher
	\otimes	Lampe

14. Liste der verwendeten Abkürzungen

In dieser Zusammenstellung werden die in diesem Fragenkatalog verwendeten Abkürzungen aufgeführt und beschrieben, sofern es sich nicht um in der Elektrotechnik allgemein gebräuchliche Begriffe handelt.

AF audio frequency

AFSK audio frequency shift keying

AGC automatic gain control
ALC automatic level control
AM amplitude modulation

ARRL American Radio Relay League

ATV amateur television

AVC automatic volume control BFO beat frequency oscillator

CEPT conférence européenne des postes et des

télécommunications

CW continuous wave

DARC Deutscher Amateur-Radio-Club

DEMOD demodulator
DEV deviation
DISC discriminator

EMF electromotive force

ERP effective radiated power FM frequency modulation FSK frequency shift keying

HAREC harmonized amateur radio examination certificates

HF high frequency

IF intermediate frequency

ITU international telecommunications union

LSB lower sideband

LUF lowest usable frequency

MIC microphone MOD modulator

MUF maximum usable frequency

OSC oscillator

PA power amplifier

PEP peak envelope power
PHASE COMP phase comparator
PLL phase locked loop
PM phase modulation

PTT push to talk

PWM pulse width modulation

170/170

REF OSC reference oscillator
RF radio frequency
RTTY radioteletype
RX receiver

SSB single sideband SSTV slow scan television

TX transmitter

UHF ultra high frequency USB upper sideband

USKA Union Schweizerischer Kurzwellen-Amateure

Union des amateurs suisses d'ondes courtes Unione radioamatori di onde corte svizzeri

Union of Swiss Short Wave Amateurs

UTC universal time coordinated VCO voltage controlled oscillator

VHF very high frequency

VSWR voltage standing wave ratio

WPM words per minute (12 WPM = 60 signs per minute)