This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BÖRDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-139467

(43)公開日 平成10年(1998) 5月26日

(51) Int.Cl. 6

識別記号

FΙ

C 0 3 C 3/078 G09F 9/30

3 1 0

C03C 3/078 G09F 9/30

310

審査請求 未請求 請求項の数7 OL (全 4 頁)

(21)出願番号

特廢平8-300545

(22)出願日

平成8年(1996)11月12日

(71)出願人 000000044

旭硝子株式会社

東京都千代田区丸の内2丁目1番2号

(72)発明者 西沢 学

神奈川県横浜市神奈川区羽沢町1150番地

旭硝子株式会社中央研究所内

(72)発明者 中尾 泰昌

神奈川県横浜市神奈川区羽沢町1150番地

旭硝子株式会社中央研究所内

(74)代理人 弁理士 泉名 謙治

(54) 【発明の名称】 無アルカリガラス及びフラットディスプレイパネル

(57)【要約】

【課題】バッファードフッ酸や塩酸への耐久性に優れ、 フロート法による成形が可能な無アルカリガラスを得

【解決手段】モル表示で実質的に、SiO2:50~7 5%, A 1 2 O3 : $0\sim25\%$, B2 O3 : $0\sim20$ %、MgO:0~20%、CaO:0~20%、Sr 0:0~20%, BaO:0~20%, MgO+CaO +SrO+BaO: 5~40%, SnO2 +ZrO2 + $TiO_2: 0.1~20\% rb t_2$

【特許請求の範囲】

【請求項1】モル表示で実質的に、

SiO2	50~75%
A 1 2 O3	0~25%
B ₂ O ₃	0~20%
MgO	0~20%
CaO	0~20%
SrO	0~20%
BaO	0~20%

 $MgO+CaO+SrO+BaO5\sim40\%$

 $SnO_2 + ZrO_2 + TiO_2O$. 1~20%,

からなり、アルカリ金属酸化物を実質的に含有しない無 アルカリガラス。

【請求項2】歪点が600℃以上である請求項1記載の 無アルカリガラス。

【請求項3】50~300℃の平均熱膨張係数が50× 10-7/℃以下である請求項1または2記載の無アルカ リガラス。

【請求項4】BaOを実質的に含有しない請求項1、2 または3記載の無アルカリガラス。

【請求項5】40%フッ化アンモニウム(NH, F)と 50%フッ酸(HF)とを体積比で9:1に混合したバ ッファードフッ酸に25℃で1時間浸漬したときのガラ スの重量減少量が4mg/cm²以下、ガラス表面の白 濁度が20%以下であることを特徴とする請求項1、 2、3または4記載の無アルカリガラス。

【請求項6】1/10規定の塩酸に90℃で20時間浸 漬したときのガラスの重量減少量が1mg/cm²以 下、ガラス表面の白濁度が40%以下であることを特徴 とする請求項1、2、3、4または5記載の無アルカリ 30 品性が低下する傾向がある。 ガラス。

【請求項7】請求項1、2、3、4、5または6記載の 無アルカリガラスを少なくとも一方の基板として使用し たフラットディスプレイパネル.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種ディスプレイ やフォトマスク用基板ガラスとして好適な、アルカリ金... 属酸化物を実質上含有せずフロート成形の可能な、無ア ルカリガラスに関するものである。

[0002]

【従来の技術】従来、各種ディスプレイ用基板ガラス、 特に表面に金属または酸化物薄膜等を形成させるもので は、以下に示す特性が要求されてきた。

【0003】(1)アルカリ金属酸化物を含有している と、アルカリ金属イオンが薄膜中に拡散して、膜特性を 劣化させてしまうため、実質的にアルカリ金属イオンを 含まないこと。

【0004】(2)薄膜形成工程で高温にさらされるた め、ガラスの変形及びガラスの構造安定化に伴う収縮

(熱収縮)を最小限に抑えるため、高い歪点を有してい

【0005】(3)半導体形成に用いられる各種薬品に 対して充分な化学耐久性を有すること。特にSiOxや SiNx のエッチングのためのバッファードフッ酸(フ ッ酸+フッ化アンモニウム; BHF)、及びITOのエ ッチングに用いられる塩酸を含有する薬液、金属電極の エッチングに用いられる各種の酸(硝酸、硫酸等)、レ ジスト剥離液のアルカリに対して耐久性のあること。

10 【0006】(4)内部及び表面に欠点(泡、脈理、イ ンクルージョン、ピット、キズ等)をもたないこと。 【0007】上記の要求に加えて、近年では、以下のよ うな状況にある。

【0008】(1)これまでのアモルファスシリコンタ イプの液晶ディスプレイに加え、若干熱処理温度の高い 多結晶シリコンタイプの液晶ディスプレイが作製される ようになってきた。すなわち、アモルファスシリコンタ イプではせいぜい350℃程度の熱処理であるが、多結 晶シリコンタイプでは550℃にも達することがある。 20 このため、より歪点の高いものが求められるようになっ

【0009】(2)液晶ディスプレイ作製熱処理の昇降 温速度を速くして、生産性を上げたり、耐熱衝撃性を上 げるために、ガラスの熱膨張係数の小さいガラスが求め られるようになってきた。

【0010】このような状況下、これらすべての条件を 満足するガラスは、耐薬品性と、歪点が非常に高いガラ スであり、一般には、熔融粘性が極めて高く、熔融が困 難なものである。そして、熔融が容易な組成では、耐薬

[0011]

【発明が解決しようとする課題】本発明の目的は、熔融 が比較的容易で、耐BHF性、あるいは耐塩酸性を向上 させた、無アルカリガラスを提示することにある。

[0012]

【課題を解決するための手段】本発明は、モル表示で実 質的に、

	S. i-O2	- 5-0~7-5 _% .
	A 1 2 O3	0~25%、
40	B ₂ O ₃	0~20%
	МgО	0~20%
	CaO	0~20%、
	SrO	0~20%、
	BaO	0~20%.

 $MgO+CaO+SrO+BaO5\sim40\%$

 $SnO_2 + ZrO_2 + TiO_2O$. 1~20%.

からなり、アルカリ金属酸化物を実質的に含有しない無 アルカリガラスである。

[0013]

【発明の実施の形態】次に上記の通り各成分の組成範囲

について述べる。

【0014】SiO2 は50モル%(以下単に%と記載 する)未満では、歪点が充分に上げられないと同時に、 熱膨張係数が増大、密度も上昇し、好ましくない。好ま しくは60%以上、特に好ましくは62%以上である。 他方、75%を超えると熔解性が低下し、失透温度も上 昇するので熔解性及びフロート成形性が低下して好まし くない。好ましくは72%以下である。

【0015】A12 O3 はガラスの分相性を抑制し、熱 膨脹係数を下げ、歪点をあげる効果がある。好ましい含 10 有量は5%以上、特に好ましくは9%以上である。一 方、25%をこえるとガラスの熔解性が悪くなったり、 失透温度を上昇させるので好ましくない。 好ましくは2 0%以下、特に好ましくは16%以下である。

【0016】B₂O₃はガラスの熔解反応性をよくし、 また、失透温度を低下させるため添加してもよい。ただ し、多く入れすぎると歪点が低くなるため好ましくな い。20%以下が好ましく、特に好ましくは16%以下 である。

【0017】MgO、CaO、SrO及びBaOはこの 20 うち少なくとも1種類を含有し、合量で、5~40%含 まれるようにされる。5%未満だと溶解が困難になるお それがある。7%以上が好ましい。他方、40%を超え ると耐薬品性が悪く、膨張係数が大きくなりすぎるおそ れがある。25%以下が好ましく、特に好ましくは18 %以下である。

【0018】MgOはアルカリ土類の中では膨張を高く せず、かつ歪点を過大には低下させないという特徴を有 し、熔解性も向上させる。しかし、20%を超えると、 失透温度の上昇につながり、好ましくない。好ましくは 30 15%以下、特に好ましくは6%以下である。

【0019】 CaOはMgOに次いでアルカリ土類の中 では膨張を高くせず、かつ歪点が過大には低下させない という特徴を有し、熔解性も向上させる。しかし、20 %を超えると、失透温度が上昇するため好ましくない。 好ましくは9%以下である。

【0020】Sr0は、ガラスの失透温度を上昇させず 熔解性を向上させる。しかし、20%を超えると失透温-度が上昇するため好ましくない。好ましくは15%以 下、特に好ましくは9%以下である。

【0021】BaOはガラスの失透温度を低下させる効 果が大きいため、添加してもよい。しかし20%以上で は膨張と密度を過大に増加させるので好ましくない。好 ましくは15%以下である。さらに低熱膨張率が求めら れる場合は、1%以下、特には無添加が好ましい。

【0022】SnOz、ZrOz、TiOz は耐BHF 性もしくは耐塩酸性を向上させる成分で、これらの中の 少なくとも1つの成分を含有する。合量で0.1%未満 では効果がなく、20%以上含有すると逆に耐BHF性 もしくは耐塩酸性を悪化させたり、他の物性を悪化させ 50 同様に実施例 $4\sim6$ は比較例2の組成に、 SnO_2 、Z

るおそれがある。好ましい含有量は10%以下である。 【0023】SnO2 はBHF浸漬によるガラスの重量 減少量を小さくし、かつ、浸漬後のガラスの表面に生成 する白濁 (ヘイズ) を大きく減少させる効果がある。ま た、塩酸に対するガラスの重量減少量も小さくする効果 がある。0.1~10%程度含有されることが特に好ま

【0024】 ZrO2 は塩酸への浸漬によるガラスの重 量減少量を小さくし、かつ、浸漬後のガラスの表面への 生成物を非常に少なくする効果がある。BHFに対する 影響は少ない。0.1~10%程度含有されることが好 ましい。

【0025】TiO2 はBHF浸漬によるガラスの重量 減少量を小さくし、かつ、浸漬後のガラスの表面に生成 する白渇(ヘイズ)を大きく減少させる効果がある。塩 酸に対する影響は少ない。0.1~10%程度含有され ることが好ましい。

【0026】本発明の無アルカリガラスは、ディスプレ イ等のデバイスに作製する際の熱収縮を小さくするた め、歪点が600℃以上であることが好ましく、特に6 40℃以上であることが好ましい。

【.0027】また、デバイス製造時の耐熱衝撃性を良く するため、50~300℃の平均熱膨張係数が50×1 0-7/℃以下であることが好ましく、特に30×10-7 ~40×10⁻⁷ン℃であることが好ましい。

【0028】さらに、本発明の無アルカリガラスは、4 0%フッ化アンモニウム (NH4 F) と50%フッ酸 (HF)を体積比で9:1に混合したバッファードフッ 酸に25℃で1時間浸漬したときのガラスの重量減少量 が、好ましくは 4 mg/cm^2 以下、特に好ましくは3 mg/cm²以下、ガラス表面の白濁度が好ましくは2 0%以下、特に好ましくは5%以下である。

【0029】また、本発明の無アルカリガラスは、1/ 10規定の塩酸に90℃で20時間浸漬したときのガラ スの重量減少量が、好ましくは、1mg/cm²以下、 特に好ましくは0.5mg/cm~以下、ガラス表面の 白濁度が好ましくは40%以下、特に好ましくは5%以 - 下である。-

【0030】本発明のガラスは、例えば次のような方法 で製造できる。

【0031】通常使用される各成分の原料を目標成分に なるように調合し、これを熔解炉に連続的に投入し、1 500~1600℃に加熱して熔融する。この熔融ガラ スをフロート法により所定の板厚に成形し、徐冷後切断 する。

[0032]

【実施例】表1に本発明の実施例と比較例を示す。 実施 例1~3は比較例1の組成に、SnOz、ZrOz、T iO2 をさらにそれぞれ3モル%添加した結果である。

rOz、TiOzをさらにそれぞれ3モル%添加した結

【0033】各成分の原料を目標組成になるように調合 し、白金坩堝を用いて、1500~1600℃の温度で 熔解した。熔解にあたっては、白金スターラーを用いて 撹拌し、ガラスの均質化を行った。次いで熔融ガラスを 流し出し、板状に成形後徐冷した。

【0034】表には、各組成と、耐バッファードフッ酸 性、耐塩酸性、平均熱膨張係数(すなわち、50~35 解の目安となる粘性が10² ポイズとなる温度(Tlo $g_{\eta}=2.0$)とフロート成形性の目安となる粘性が1 O' ポイズとなる温度 (Tlogn=4.0)) を示し た。

【0035】耐バッファードフッ酸性は、薬液として1 9BHF(40%フッ化アンモニウム(NH4F)と5 0%フッ酸(HF)を体積比で9:1に混合した液)を 用い、浸漬条件は25℃で1時間浸漬したときのガラス の重量減少量と浸漬後超音波洗浄及び乾燥後のガラス表 面の白濁度(ヘイズ)を測定した結果を示す。ヘイズ値 20 は全透過光(直線光+散乱光強度)に対する散乱光の強 度の比で表され、測定はスガ試験機製へイズメーターで 測定した。

*【0036】耐塩酸性は、薬液として1/10規定の塩 酸を用い、浸漬条件は90℃で20時間浸漬したときの ガラスの重量減少量と浸漬後超音波洗浄、乾燥後のガラ ス表面の白濁度(ヘイズ)を測定した結果を示す。な お、白濁度は、研磨あるいは洗浄が適切でないと、大き なばらつきを生じることがあるため、同一の研磨条件と 洗浄条件(すなわち同一ロット)で試験を行った。

【〇〇37】表から、本発明のガラスは、ディスプレイ 用基板等に適していることがわかる。また、表から明ら O℃の平均熱膨脹係数)、歪点、密度、高温粘性値(熔 10 かなように、SnO2 はBHF浸漬によるガラスの重量 減少量を小さくし、かつ、浸漬後のガラスの表面に生成 する白濁 (ヘイズ) を大きく減少させる効果があること がわかる。塩酸に対するガラスの重量減少量も小さくす る効果がある。ZrOz は塩酸への浸漬によるガラスの 重量減少量を小さくし、かつ、浸漬後のガラスの表面へ の生成物を少なくし、ヘイズを減らす効果があることが わかる。TiO2はBHF浸漬によるガラスの重量減少 量を小さくし、かつ、浸漬後のガラスの表面に生成する 白濁 (ヘイズ) を大きく減少させる効果があることがわ かる。

[0038]

【表1】

した。		· · · · · · · · · · · · · · · · · · ·	*		,		,	
mo1%	実施例 1	実 施 例 2	実施例 3	比較例 1	実 施 例 4	: 実施例 5	実施例 6	比較例
SiO: A1:0: B:0: B:0: Hg0 Ca0 Sr0 Ba0 Zr0: SnO: TiO: Total	64.0 14.0 7.0 5.0 5.0 0.0 0.0 0.0	64.0 14.0 7.0 5.0 5.0 0.0 0.0 3.0 0.0	54.0. 14.0 7.8 5.0 5.0 0.0 0.0 0.0 3.0 103.0	64.0 14.0 7.0 5.0 5.0 0.0 0.0 0.0 0.0	67.0 8.0 6.0 3.0 4.0 5.0 7.0 3.0 0.0	67.0 8.0 6.0 3.0 4.0 5.0 7.0 0.0 3.0 0.0	67.0 8.0 6.0 3.0 4.0 5.0 7.0 0.0 0.0 3.0	67.0 8.0 6.0 3.0 4.0 5.0 7.0 0.0 0.0
BHF 重量減 (mg/cm²) ヘイズ (%)	1.6	1.2 0.0	1.5	1.6 1.0	2.5 0.1	2.0 0.0	2.2 0.1	2.5 0.2
HC1 重量減 (mg/cm²) ヘイズ (%)	0.21	0.29 3.0	0.37 6.0	0.32 5.0	0.01	0.03 0.0	0.03	0.03
平均熱膨張係数 (x10-7/℃)	38	3 5	3.5	36	5.2.	4.8	48 -	4.9
歪点(℃)	685	6.8.5	660	680	640	640	620	635
密 度 (g/cc)	2.58	2.58	2.54	2.51	2.83	2.84	2.81	2.77
高温粘性 Tlogn=2 Tlogn=4	1610 1270	1640 1250	1620 1250	1650 1250	1590 1230	1620 1220	1500 1200	1630 1220

[0039]

【発明の効果】本発明によるガラスは、バッファードフ ッ酸や塩酸への耐久性に優れ、フロート法による成形が※ ※可能である。ディスプレイ用基板、フォトマスク基板、 TFTタイプのディスプレイ基板等かかる特性を要求す る用途に好適である。