K4M56163PG - R(B)E/G/C/F

Mobile SDRAM

4M x 16Bit x 4 Banks Mobile SDRAM in 54FBGA

FEATURES

- · 1.8V power supply.
- · LVCMOS compatible with multiplexed address.
- · Four banks operation.
- · MRS cycle with address key programs.
 - -. CAS latency (1, 2 & 3).
 - -. Burst length (1, 2, 4, 8 & Full page).
 - -. Burst type (Sequential & Interleave).
- EMRS cycle with address key programs.
- All inputs are sampled at the positive going edge of the system clock.
- · Burst read single-bit write operation.
- Special Function Support.
 - -. PASR (Partial Array Self Refresh).
 - -. Internal TCSR (Temperature Compensated Self Refresh)
 - -. DS (Driver Strength)
 - -. DPD (Deep Power Down)
- · DQM for masking.
- · Auto refresh.
- 64ms refresh period (8K cycle)
- Commercial Temperature Operation (-25°C ~ 70°C).
- Extended Temperature Operation (-25°C ~ 85°C).
- 54Balls FBGA (-RXXX -Pb, -BXXX -Pb Free).

GENERAL DESCRIPTION

The K4M56163PG is 268,435,456 bits synchronous high data rate Dynamic RAM organized as 4 x 4,196,304 words by 16 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4M56163PG-R(B)E/G/C/F75	133MHz(CL3), 83MHz(CL2)		- /
K4M56163PG-R(B)E/G/C/F90	111MHz(CL3), 83MHz(CL2)	LVCMOS	54 FBGA Pb (Pb Free)
K4M56163PG-R(B)E/G/C/F1L	111MHz(CL3)*1, 66MHz(CL2)		,

- R(B)E/G : Normal/ Low Power, Extended Temperature(-25°C \sim 85°C)
- R(B)C/F: Normal/Low Power, Commercial Temperature(-25°C ~ 70°C)

Notes:

1. In case of 40MHz Frequency, CL1 can be supported.

Address configuration

Organization	Bank	Row	Column Address
16M x 16	BA0, BA1	A0 - A12	A0 - A8

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

- 1. For updates or additional information about Samsung products, contact your nearest Samsung office.
- 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

FUNCTIONAL BLOCK DIAGRAM

Package Dimension and Pin Configuration

< Top	View*2 >
-------	----------

5 (D. II(O. O) 5 DO A								
54Ball(6x9) FBGA								
	1	2	3	7	8	9		
Α	VSS	DQ15	VSSQ	VDDQ	DQ0	VDD		
В	DQ14	DQ13	VDDQ	VSSQ	DQ2	DQ1		
С	DQ12	DQ11	VSSQ	VDDQ	DQ4	DQ3		
D	DQ10	DQ9	VDDQ	VSSQ	DQ6	DQ5		
Е	DQ8	NC	VSS	VDD	LDQM	DQ7		
F	UDQM	CLK	CKE	CAS	RAS	WE		
G	A12	A11	A9	BA0	BA1	CS		
Н	A8	A7	A6	A0	A1	A10		
J	VSS	A5	A4	А3	A2	VDD		

Pin Function

Data Input/Output

Power Supply/Ground

Data Output Power/Ground

CLK	System Clock				
CS	Chip Select				
CKE	Clock Enable				
A0 ~ A12	Address				
BA ₀ ~ BA ₁	Bank Select Address				
RAS	Row Address Strobe				
CAS	Column Address Strobe				
WE	Write Enable				
L(U)DQM	Data Input/Output Mask				

Pin Name

DQ0 ~ 15

VDD/Vss

VDDQ/Vssq

b z		•••	\$ A1 \rightarrow A
-----	--	-----	---------------------

< Top View*2 >

#A1 Ball Origin Indicator

[Unit:mm]

Symbol	Min	Тур	Max
А	-	-	1.00
A ₁	0.25	-	-
Е	7.9	8.0	8.1
E ₁	-	6.40	-
D	10.9	11.0	11.1
D ₁	-	6.40	-
е	-	0.80	-
b	0.45	0.50	0.55
Z	-	-	0.10

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 ~ 2.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 ~ 2.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	PD	1.0	W
Short circuit current	los	50	mA

NOTES:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, Ta = -25°C ~ 85°C for Extended, -25°C ~ 70°C for Commercial)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Cupply voltage	VDD	1.7	1.8	1.95	V	1
Supply voltage	VDDQ	1.7	1.8	1.95	V	1
Input logic high voltage	ViH	0.8 x VDDQ	1.8	VDDQ + 0.3	V	2
Input logic low voltage	VIL	-0.3	0	0.3	V	3
Output logic high voltage	Voн	VDDQ -0.2	-	-	V	Iон = -0.1mA
Output logic low voltage	VoL	-	-	0.2	V	IOL = 0.1mA
Input leakage current	lu	-2	=	2	uA	4

- 1. Under all conditions VDDQ must be less than or equal to VDD.
- 2. VIH (max) = 2.2V AC.The overshoot voltage duration is ≤ 3ns. 3. VIL (min) = -1.0V AC. The undershoot voltage duration is ≤ 3ns.
- 4. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

5. Dout is disabled, $0V \le VOUT \le VDDQ$.

$\textbf{CAPACITANCE} \text{ (VDD = 1.8V, TA = 23°C, f = 1MHz, VREF =0.9V } \pm 50 \text{ mV)}$

Pin	Symbol	Min	Max	Unit	Note
Clock	Сськ	1.5	3.5	pF	
RAS, CAS, WE, CS, CKE, DQM	CIN	1.5	3.0	pF	
Address	CADD	1.5	3.0	pF	
DQ0 ~ DQ15	Соит	2.0	4.5	pF	

DC CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25°C ~ 85°C for Extended, -25°C ~ 70°C for Commercial)

Deven	Cumala al	Took Occurren	lan			Version				Nets
Parameter	Symbol	Test Condit	ion		-75	-9	0	-1L	Unit	Note
Operating Current (One Bank Active)	Icc1	Burst length = 1 $tRC \ge tRC(min)$ trule 10 = 0 mA			50	60 45 45		mA	1	
Precharge Standby Current in	Icc2P	CKE ≤ VIL(max), tcc = 10ns			0.3				- mA	
power-down mode	Icc2PS	CKE & CLK ≤ VIL(max), tcc =	CKE & CLK ≤ Vi∟(max), tcc = ∞			0.3				
Precharge Standby Current	Icc2N	CKE ≥ VIH(min), $\overline{\text{CS}}$ ≥ VIH(min), tcc = 10ns nput signals are changed one time during 20ns			10			4		
in non power-down mode	Icc2NS	CKE ≥ VIH(min), CLK ≤ VIL(m Input signals are stable	CKE \geq VIH(min), CLK \leq VIL(max), tcc = ∞			1			- mA	
Active Standby Current	ІссзР	CKE ≤ VIL(max), tcc = 10ns			5				1	
in power-down mode	Icc3PS	CKE & CLK ≤ ViL(max), tcc = ∞			2			mA		
Active Standby Current	Icc3N	CKE \geq VIH(min), $\overline{CS} \geq$ VIH(min), tcc = 10ns nput signals are changed one time during 20ns			25			mA		
in non power-down mode (One Bank Active)	Icc3NS	CKE ≥ VIH(min), CLK ≤ VIL(m Input signals are stable	CKE ≥ VIH(min), CLK ≤ VIL(max), tcc = ∞ nput signals are stable			15		mA		
Operating Current (Burst Mode)	lcc4	lo = 0 mA Page burst 4Banks Activated tccd = 2CLKs		75	65	5	65	mA	1	
Refresh Current	Icc5	tarfc ≥ tarfc(min)			85	85	5	85	mA	2
			Intern	al TCSR	45 * ₋	4	8	85/70	°C	3
				Full	200)		450		
			-E/C	1/2	160			300		5
Self Refresh Current	Icc6	CKE ≤ 0.2V		1/4	140)		250		
			-G/F	Full	150)		300	- uA	
				1/2	135			250		6
					130)	225			
Deep Power Down Current	Icc8	CKE ≤ 0.2V				10	0		uA	7

NOTES:

- 1. Measured with outputs open.
- 2. Refresh period is 64ms.
- 3. Internal TCSR can be supported.
 In comercial Temp: 45xC/Max 70xC. In extended Temp: 45xC/Max 85xC.
- 4. It has +/-5 xC tolerance.
- 5. K4M56163PG-R(B)E/C**
- 6. K4M56163PG-R(B)G/F**
- 7. DPD(Deep Power Down) function is an optional feature, and it will be enabled upon request. Please contact Samsung for more information.
- 8. Unless otherwise noted, input swing level is CMOS(VIH /VIL=VDDQ/VSSQ).

AC OPERATING TEST CONDITIONS (VDD = $1.7V \sim 1.95V$, TA = $-25 \sim 85^{\circ}$ C for Extended, $-25 \sim 70^{\circ}$ C for Commercial)

Parameter	Value	Unit
AC input levels (Vih/Vil)	0.9 x VDDQ / 0.2	V
Input timing measurement reference level	0.5 x Vddq	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	0.5 x Vddq	V
Output load condition	See Figure 2	

Figure 2. AC Output Load Circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Cumbal		Version		Unit	Note
Parameter		Symbol	-75	-90	-1L	Unit	Note
Row active to row active delay		trrd(min)	15	18	18	ns	1
RAS to CAS delay		trcd(min)	22.5	24	27	ns	1
Row precharge time		trp(min)	22.5	24	27	ns	1
Row active time		tras(min)	50	50	50	ns	1
Row active time	·	tras(max)		100	•	us	
Row cycle time		trc(min)	72.5	74	77	ns	1
Last data in to row precharge		trdl(min)		15		ns	2
Last data in to Active delay		tdal(min)		tRDL + tRP		-	
Last data in to new col. address delay		tcdl(min)		1		CLK	2
Last data in to burst stop		tBDL(min)		1		CLK	2
Auto refresh cycle time		tarfc(min)		80		ns	3
Exit self refresh to active command		tsrfx(min)		120		ns	
Col. address to col. address delay		tccd(min)		1		CLK	4
Number of valid output data		S latency=3		2			
Number of valid output data	CAS	S latency=2		1		ea	5
Number of valid output data	CAS	S latency=1		-	0		

NOTES:

- 2. Minimum delay is required to complete write.
- 3. Maximum burst refresh cycle: 8
- 4. All parts allow every cycle column address change.
- 5. In case of row precharge interrupt, auto precharge and read burst stop.

^{1.} The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Paramete	_	Symbol	-	75	-9	90	-1	IL	Unit	Note
Paramete	r	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
	CAS latency=3	tcc	7.5		9		9			
CLK cycle time	CAS latency=2	tcc	12	1000	12	1000	15	1000	ns	1
	CAS latency=1	tcc	-		-		25			
	CAS latency=3	tsac		6		7		7		
CLK to valid output delay	CAS latency=2	tsac		9		9		10	ns	1,2
	CAS latency=1	tsac		-		-		20		
	CAS latency=3	tон	2.5		2.5		2.5			
Output data hold time	CAS latency=2	tон	2.5		2.5		2.5		ns	2
	CAS latency=1	tон	-		-		2.5			
CLK high pulse width	,	tсн	2.5		3.0		3.0		ns	3
CLK low pulse width		tcL	2.5		3.0		3.0		ns	3
Input setup time		tss	2.0		2.0		2.0		ns	3
Input hold time		tsн	1.0		1.0		1.0		ns	3
CLK to output in Low-Z		tsız	1		1		1		ns	2
	CAS latency=3			6		7		7		
CLK to output in Hi-Z	CAS latency=2	tsHZ		9		9		10	ns	
	CAS latency=1			-		-		20		

NOTES:

- Parameters depend on programmed CAS latency.
- 2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.
- 3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

С	OMMAND		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA 0,1	A10/AP	A12, A11, A9 ~ A0	Note
Register	Mode Regis	ster Set	Н	Х	L	L	L	L	Х		OP CO	DE	1, 2
	Auto Refres	sh	Н	Н	L	L	L	Н	Х		Х		3
Refresh	0 1/	Entry	11	L	_	L	_	'''	^		^		3
Refresii	Self Refresh	Exit	L	Н	L	Н	Н	Н	Х		Х		3
		LXII	_	''	Н	Х	Х	Х			^		3
Bank Active & Ro	ow Addr.	<u> </u>	Н	Х	L	L	Н	Н	Х	V Row		Address	
Read &		arge Disable		V					V		L	Column	4
Column Address	Auto Precha	arge Enable	Н	X	L	Н	L	Н	Х	V	Н	Address (A0~A8)	4, 5
Write &	Auto Precha	arge Disable		V			-		V	V	L	Column	4
Column Address	Auto Precha	arge Enable	Н	X	L	Н	L	L	X	V		Address (A0~A8)	4, 5
Deep Power Dov	ın.	Entry	Н	L	L	Н	Н	L	Х		~		
Deep Fower Dov	Exit		L	Н	Н	Х	Х	Х	Х		^		
Burst Stop			Н	Х	L	Н	Н	L	Х		X X X X X X X		6
Precharge	Bank Select	tion	Н	Х	L	L	Н	L	Х	V	L	V	
Frecharge	All Banks		П	^	_	_	П		^	Х	Н	^	
		Entry	Н	L	Н	Х	Х	Х	X				
Clock Suspend of Active Power Do		Entry	П	_	L	V	V	V	^		Х		
		Exit	L	Н	Χ	Х	Х	Х	Х				
		Entry	Н	L	Η	Х	Х	Х	X				
Precharge Powe	r Down	Entry	П	_	L	Н	Н	Н	^		Х		
Mode		- Cvit		- 11	Н	Х	Х	Х	X		^		
Exit L H X X X X L V V V		^											
DQM		•	Н			Х			V		Х		7
No Operation Co	mmond		LI	V	Н	Х	Х	Х	Х		~		
No Operation Co	mmana		Н	Х	L	Н	Н	Н	^		Х		

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

NOTES:

1. OP Code : Operand Code

A0 ~ A12 & BA0 ~ BA1 : Program keys. (@MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.

3. Auto refresh functions are the same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto".

Auto/self refresh can be issued only at all banks precharge state.

Partial self refresh can be issued only after setting partial self refresh mode of EMRS.

- 4. BA0 ~ BA1 : Bank select addresses.
- During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst.

New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation, it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

A. MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with Normal MRS

Address	BA0 ~ BA1	A12 ~ A10/AP	A9*2	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
Function	"0" Setting for Normal MRS	RFU	W.B.L	Test I	Mode	CA	AS Later	псу	ВТ	Вι	ırst Lenç	gth

Normal MRS Mode

	7	Test Mode		CA	S Late	ency		Burst	Туре			Bur	st Length	
A8	Α7	Туре	A6	A5	A4	Latency	А3		Туре	A2	A 1	A0	BT=0	BT=1
0	0	Mode Register Set	0	0	0	Reserved	0	Se	quential	0	0	0	1	1
0	1	Reserved	0	0	1	1	1	Int	Interleave		0	1	2	2
1	0	Reserved	0	1	0	2		Mode S	Select	0	1	0	4	4
1	1	Reserved	0	1	1	3	BA1	BA0	Mode	0	1	1	8	8
	Write	Burst Length	1	0	0	Reserved				1	0	0	Reserved	Reserved
А9		Length	1	0	1	Reserved	0	0	Setting for Nor- mal MRS	1	0	1	Reserved	Reserved
0		Burst	1	1	0	Reserved	U	U		1	1	0	Reserved	Reserved
1		Single Bit	1	1	1	Reserved				1	1	1	Full Page	Reserved

Full Page Length x16: 64Mb(256), 128Mb(512),256Mb(512),512Mb(1024)

Register Programmed with Extended MRS

Address	BA1	BA0	A12 ~ A10/AP	A9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
Function	Mode	Select		RFU*1			D	S	RF	U*1		PASR	

EMRS for PASR(Partial Array Self Ref.) & DS(Driver Strength)

		Mode Selec	t			Driv	er Stre	ength				PASR
BA1	BA0		Mode		A6	A5	Driv	er Strength	A2	A1	A0	Size of Refreshed Array
0	0	No	rmal MRS		0	0		Full		0	0	Full Array
0	1	R	eserved		0	1		1/2		0	1	1/2 of Full Array
1	0	EMRS for	Mobile SDR	AM	1	0		1/4	0	1	0	1/4 of Full Array
1	1	R	eserved		1	1		1/8	0	1	1	Reserved
	*		Reserved A	Addres	ss	•	•		1	0	0	Reserved
A12~	410/AP	A9	A8	Α	.7	Α	4	А3	1	0	1	Reserved
	0	0	0	()		0	0	1	1	0	Reserved
		_			-				1	1	1	Reserved

^{1.}RFU(Reserved for future use) should stay "0" during MRS cycle.
2.If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

Partial Array Self Refresh

- 1. In order to save power consumption, Mobile SDRAM has PASR option.
- 2. Mobile SDRAM supports 3 kinds of PASR in self refresh mode: full array, 1/2 of full array, 1/4 of full array.

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0 BA0=0 BA0=1 BA1=1 BA0=0 BA1=1 BA0=1

- Full Array

- 1/2 Array

- 1/4 Array

Partial Self Refresh Area

Internal Temperature Compensated Self Refresh (TCSR)

Note:

- In order to save power consumption, Mobile-SDRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the two temperature range; 45 °C and 85 °C(for Extended), 70 °C(for Commercial).
- 2. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.
- 3. It has +/-5 °C tolerance.

		S	Self Refresh	Current (Icc6	5)		
Temperature Range		-E/C			- G / F		Unit
	Full Array	1/2 Array	1/4 Array	Full Array	1/2 Array	1/4 Array	
45 °C *3	200	160	140	150	135	130	uA
85/70 °C	450	300	250	300	250	225	uA

B. POWER UP SEQUENCE

- 1. Apply power and attempt to maintain CKE at a high state and all other inputs may be undefined.
- Apply VDD before or at the same time as VDDQ.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- 6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.

For operating with DS or PASR, set DS or PASR mode in EMRS setting stage.

In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.

C. BURST SEQUENCE

1. BURST LENGTH = 4

Initial A	Address		Segu	ential		Interleave						
A1	Α0		Jequ	Cittai								
0	0	0	1	2	3	0	1	2	3			
0	1	1	2	3	0	1	0	3	2			
1	0	2	3	0	1	2	3	0	1			
1	1	3	0	1	2	3	2	1	0			

2. BURST LENGTH = 8

Init	ial Addr	ess				Sogu	ential							Intor	leave			
A2	A 1	Α0				Sequ	Cilliai							iiitei	leave			
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

