#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6:  C07H 21/02, 21/04, C12Q 1/68, G01N 33/53, C12P 21/00, C12N 15/63, 15/85, A61K 48/00 |             | (11) International Publication Number:                            | WO 95/19369             |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------|-------------------------|--|
|                                                                                                                                  |             | (43) International Publication Date:                              | 20 July 1995 (20.07.95) |  |
| (21) International Application Number: PC                                                                                        | CT/US95/006 | (81) Designated States: AU, CA, JP,<br>CH, DE, DK, ES, FR, GB, GR |                         |  |

(30) Priority Data:

(22) International Filing Date:

14 January 1994 (14.01.94) US 08/182.961 17 January 1995 (17.01.95) US 08/373,799

17 January 1995 (17.01.95)

- (71) Applicant: VANDERBILT UNIVERSITY [US/US]; 405 Kirkland Hall, Nashville, TN 37240 (US).
- (72) Inventors: HOLT, Jeffrey, T.; 1708 Leaton Court, Franklin, TN 37064 (US). JENSEN, Roy, A.; 2701 Longwood Lane, Franklin, TN 37064 (US). PAGE, David, L.; 5905 Robert E. Lee Court, Nashville, TN 37215 (US). OBERMILLER, Patrice, S.; 5305 Frankliln Pike, Nashville, TN 37220 (US). ROBINSON-BENION, Cheryl, L.; 2105 Summit Avenue, Nashville, TN 37218 (US). THOMPSON, Marilyn, E.; 105 Southwood Park Place, Nashville, TN 37217 (US).
- (74) Agent: LANQUIST, Edward, D., Jr.; Waddey & Patterson, 27th floor, L & C Tower, 401 Church Street, Nashville, TN 37219 (US).

SE).

#### Published

With international search report. With amended claims and statement.

- (54) Title: METHOD FOR DETECTION AND TREATMENT OF BREAST CANCER
- (57) Abstract

The present invention provides a method of detecting and diagnosing pre-invasive breast cancer by identifying differentially expressed genes in early, pre-invasive breast cancer tissue. Differentially expressed genes can be used as genetic markers to indicate the presence of pre-invasive cancerous tissues. Microscopically directed tissue sampling techniques combined with differential display or differential screening of cDNA libraries are used to determine differential expression of genes in the early stages of breast cancer. Differential expression of genes in pre-invasive breast cancer tissue is confirmed by RT-PCR, nuclease protection assays and in-situ hybridization of ductal carcinoma in situ tissue RNA and control tissue RNA. The present invention also provides a method of screening for compounds that induce expression of the BRCA1 gene, whose product negatively regulates cell growth in both normal and malignant mammary epithlial cells. The present invention also relates to gene therapy method using this gene.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|     |                          | GB       | United Kingdom               |   | MR  | Mauritania                                 |
|-----|--------------------------|----------|------------------------------|---|-----|--------------------------------------------|
| ΤA  | Austra                   | GI       | Georgia                      |   | MW  | Malawi                                     |
| ALI | Australia                | GN:      | Gunes                        |   | NE  | Niger                                      |
| BB  | Barbado:                 | GR<br>GR | Greece                       |   | NL  | Netherlands                                |
| BE  | Belgium                  | HU       |                              |   | NO  | Norway                                     |
| BF  | Burkina Faso             |          | Hungary                      |   | NZ  | New Zealand                                |
| BG  | Bulgans                  | IE.      | Ireland                      |   | PL  | Poland                                     |
| BJ  | Benii-                   | 17       | Italy                        |   | PT  | Portugal                                   |
| BR  | Brazi!                   | 31,      | Japa:                        |   | RO  | Romania                                    |
| BY  | Belarus                  | KE       | Kenya                        |   | RU: | Russian Federation                         |
| CA  | Canada                   | KG       | Kyrgystan                    |   |     |                                            |
| CF  | Central African Republic | KP       | Democratic People's Republic |   | SD  | Sudan                                      |
| CG. | Congo                    |          | of Korea                     |   | SE  | Sweden                                     |
| CH  | Switzerland              | KR       | Republic of Korea            |   | SI  | Slovenia                                   |
| CI  | Côte d'Ivoire            | KZ.      | Kazakhstan                   |   | SK  | Slovakia                                   |
| CM  | Cameroon                 | LI       | Liechtenstein                |   | SN  | Senegal                                    |
| -   | China                    | LK       | Sri Lanka                    |   | TD  | Chad                                       |
| CN  |                          | LU       | Luxembourg                   |   | TG  | Togo                                       |
| CS  | Czechoslovakia           | LV       | Latvia                       |   | TJ  | Tajikistan                                 |
| CZ  | Czech Kepublic           | MC       | Monaco                       |   | TT  | Trinidad and Tobago                        |
| DE  | Germany                  | MD       | Republic of Moldova          |   | UA  | Ukraine                                    |
| DK  | Denmark                  |          | •                            |   | us  | United States of America                   |
| ES  | Spain                    | MG       | Madagascar                   |   | UZ  | Uzbekistan                                 |
| FI  | Finland                  | ML       | Mali                         | ( | VN  | Vict Nam                                   |
| FR  | France                   | MN       | Mongolia                     |   | A14 | , p. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |
| GA  | Gabon                    |          |                              |   |     |                                            |

BNSDOCID: <WO\_\_\_9519369A1\_I, >

WO 95/19369 PCT/US95/00608

#### DESCRIPTION

## "METHOD FOR DETECTION AND TREATMENT OF BREAST CANCER" TECHNICAL FIELD

The present invention relates generally to methods of detection and diagnosis of breast cancer and more particularly to a diagnostic method which relies on the identification of marker genes expressed in pre-invasive cancers by microscopically-directed cloning. Furthermore, this invention concerns the prevention, detection, and diagnosis of breast cancer by addressing the molecular events which occur during the earliest alterations in breast tissue.

The present invention also relates generally to methods of treatment of breast cancer, and more particularly to gene therapy methods and methods for screening compounds that induce expression of the BRCA1 gene product.

#### BACKGROUND ART

It will be appreciated by those skilled in the art that there exists a need for a more sensitive and less invasive method of early detection and diagnosis of breast cancer than those methods currently in use. Breast cancer presents inherent difficulties in regard to the ease with which it is detected and diagnosed. This is in contrast to detection of some other common cancers, including skin and cervical cancers, the latter of which is based on cytomorphologic screening techniques.

There have been several attempts to develop improved methods of breast cancer detection and diagnosis. In the attempts to improve methods of detection and diagnosis of breast cancer, numerous studies have scarched for oncogene mutations, gene amplification, and loss of heterozygosity in invasive breast cancer (Callahan, et al., 1992; Cheickh, et al., 1992; Chen, et al., 1992; and, Lippman, et al., 1990). However, few studies of breast cancer have analyzed gene mutations and/or altered gene expression in ductal carcinoma in situ (DCIS). Investigators have demonstrated high levels of p53 protein in 13-40% of DCIS lesions employing a monoclonal antibody to p53, and subsequent sequencing demonstrated mutations in several cases (Poller et al, 1992). The neu/erbB2 gene appears to be amplified in a subset of DCIS lesions (Allred et al, 1992; Maguire et al, 1992). Histologic analysis of DCIS cases suggests that mutations and altered gene expression events, as well as changes in chromatin and

ENSDOCID: <WO\_\_ 9519369A1\_!

- 5

10

15

20

25

DNA content, occur predominantly in comedo DCIS (Böcker et al, 1992; Killeen et al, 1991; and, Komitowski et al, 1990), which has a rapid rate of local invasion and progression to metastasis. Thus, there are presently no reliable marker genes for non-comedo DCIS (NCDCIS, hereafter).

Cancer in humans appears to be a multi-step process which involves progression

5

from pre-malignant to malignant to metastatic disease which ultimately kills the patient. Epidemiologic studies in humans have established that certain pathologic conditions are "pre-malignant" because they are associated with increased risk of malignancy. There is precedent for detecting and eliminating pre-invasive lesions as a cancer prevention strategy: dysplasia and carcinoma in-situ of the uterine cervix are examples of pre-malignancies which have been successfully employed in the prevention of cervical cancer by cytologic screening methods. Unfortunately, because the breast cannot be sampled as readily as cervix, the development of screening methods for breast pre-malignancy involves more complex approaches than cytomorphologic screening now

currently employed to detect cervical cancer.

15

20

25

10

Pre-malignant breast disease is also characterized by an apparent morphological progression from atypical hyperplasias, to carcinoma in-situ (pre-invasive cancer) to invasive cancer which ultimately spreads and metastasizes resulting in the death of the Careful histologic examination of breast biopsies has demonstrated patient. intermediate stages which have acquired some of these characteristics but not others. Detailed epidemiological studies have established that different morphologic lesions progress at different rates, varying from atypical hyperplasia (with a low risk) to comedo ductal carcinoma-in-situ which progresses to invasive cancer in a high percentage of patients (London et al, 1991; Page et al, 1982; Page et al, 1985; Page et al, 1991; and Page et al, 1978). Family history is also an important risk factor in the development of breast cancer and increases the relative risk of these pre-malignant lesions (Dupont et al, 1985; Dupont et al, 1993; and, London et al, 1991). Of particular interest is non-comedo carcinoma-in-situ which is associated with a greater than ten-fold increased relative risk of breast cancer compared to control groups (Ottesen et al, 1992; Page et al, 1982). Two other reasons besides an increased relative risk support the concept that DCIS is pre-malignant: 1) When breast cancer occurs in

WO 95/19369 PCT/US95/00608

3

these patients it regularly occurs in the same region of the same breast where the DCIS was found; and 2) DCIS is frequently present in tissue adjacent to invasive breast cancer (Ottesen et al, 1992; Schwartz et al, 1992). For these reasons DCIS very likely represents a rate-limiting step in the development of invasive breast cancer in women.

5

10

DCIS (sometimes called intraductal carcinoma) is a group of lesions in which the cells have grown to completely fill the duct with patterns similar to invasive cancer, but do not invade outside the duct or show metastases at presentation. DCIS occurs in two forms: comedo DCIS and non-comedo DCIS. Comedo DCIS is often a grossly palpable lesion which was probably considered "cancer" in the 19th and early 20th century and progresses to cancer (without definitive therapy) in at least 50% of patients within three years (Ottesen et al, 1992; Page et al, 1982). Most of the molecular alterations which have been reported in pre-malignant breast disease have been observed in cases of comedo DCIS (Poller et al, 1993; Radford et al, 1993; and, Tsuda et al, 1993). Non-comedo DCIS is detected by microscopic analysis of breast aspirates or biopsies and is associated with a 10 fold increased risk of breast cancer, which corresponds to a 25-30% absolute risk of breast cancer within 15 years (Ottesen et al, 1992; Page et al, 1982; and, Ward et al, 1992).

15

20

Widespread application of mammography has changed the relative incidence of comedo and non-comedo DCIS such that NCDCIS now represents the predominant form of DCIS diagnosed in the United States (Ottesen et al, 1992; Page et al, 1982; and Pierce et al, 1992). Both forms of DCIS generally recur as invasive cancer at the same site as the pre-malignant lesion (without definitive therapy). The precursor lesions to DCIS are probably atypical ductal hyperplasia and proliferative disease without atypia which are associated with lower rates of breast cancer development, but show further increased risk when associated with a family history of breast cancer (Dupont et al, 1985; Dupont et al, 1989; Dupont et al, 1993; Lawrence, 1990; London et al, 1991; Page et al, 1982; Page et al, 1985; Page et al, 1991; Page et al, 1978; Simpson et al, 1992; Solin et al, 1991; Swain, 1992; Weed et al, 1990).

25

What is needed, then, is a sensitive method of detection and diagnosis of breast cancer when the cancerous cells are still in the pre-invasive stage. To illustrate the usefulness in early breast cancer detection of a marker gene and its encoded protein,

10

15

20

25

consider the dramatic impact that prostate specific antigen has had on early stage prostate cancer. This method of early detection and diagnosis of breast cancer is presently lacking in the prior art.

Breast cancer occurs in hereditary and sporadic forms. Recently the BRCA 1 gene has been cloned and shown to be mutated in kindreds with hereditary breast and ovarian cancer (Hall et al. 1990, Miki, Y. et al. 1994, Friedman et al. 1994, Castilla et al. 1994, Simard et al. 1994). Although 92% of families with two or more cases of early-onset breast cancer and two cases of ovarian cancer have germ-line mutations in BRCA 1 (Narod et al. in press), the gene has not been shown to be mutated in any truly sporadic case to date (Futrcal et al. 1994). Despite the surprising paucity of somatically acquired mutations in sporadic breast cancer, it is still a likely tumor suppressor gene with a key role in breast epithelial cell biology. The BRCA 1 gene encodes a protein of 1863 amino acids with a predicted zinc finger domain observed in proteins which regulate gene transcription. Until the discovery of the function of the BRCA1 gene in conjucntion with the delopment of the present invention, the function was unknown.

## DISCLOSURE OF THE INVENTION

Epidemiologic studies have established that NCDCIS of the breast is associated with a ten-fold increased risk of breast cancer (absolute risk of 25-30%). It seems likely that this pre-invasive lesion is a determinate precursor of breast cancer because the subsequent development of breast cancer is regularly in the same region of the same breast in which the NCDCIS lesion was found. Important aspects of the present invention concern isolated DNA segments and those isolated DNA segments inserted into recombinant vectors encoding differentially expressed marker genes in abnormal tissue, specifically in NCDCIS, as compared with those expressed in normal tissue, and the creation and use of recombinant host cells through the application of DNA technology, which express these differentially expressed marker genes (Sambrook et al, 1989).

Because there are no cell lines or animal models which clearly display known characteristics of pre-invasive breast disease, human breast tissue samples are essential

for studying pre-invasive breast disease. Using human tissue samples, we subsequently have developed a method for cDNA cloning from histologically identified lesions in human breast biopsies. We have used this method to clone genes which are differentially expressed in pre-invasive breast lesions such as NCDCIS lesions as compared to genes expressed in normal tissue. The differentially expressed genes detected in pre-invasive breast cancer are called marker genes. Identification of marker genes for pre-invasive breast disease provides improved methods for detection and diagnosis of pre-invasive breast cancer tissue, and further provides marker genes for studies of the molecular events involved in progression from pre-invasive to malignant breast disease.

Analysis of marker gene expression in NCDCIS presents the advantage that cancerous breast tissue at that stage is non-invasive. Detection and diagnosis of NCDCIS by means of differentially expressed marker genes compared to the same marker genes in normal breast tissue, would allow a greater ability to detect, prevent and treat the disease before it becomes invasive and metastasizes. The stage or intermediate condition of NCDCIS is a particularly good candidate for early intervention because it is 1) prior to any invasion and thus prior to any threat to life; 2) it is followed by invasive carcinoma in over 30% of cases if only treated by biopsy; and, 3) there is a long "window" of opportunity (4-8 years) approximately before invasive neoplasia occurs. Thus, NCDCIS is an ideal target for early diagnosis. While these morphologically defined intermediate endpoints have been widely accepted, progress in defining the molecular correlates of these lesions has been hampered by an inability to identify and sample them in a manner which would allow the application of molecular techniques.

Frozen tissue blocks from breast biopsies were used to construct and screen cDNA libraries prepared from NCDCIS tissue, normal breast tissue, breast cancer tissue, and normal human breast epithelial cells. Several cDNAs which were differentially expressed in human DCIS epithelial cells compared to normal breast epithelial cells were cloned and sequenced. One gene which is differentially expressed is the M2 subunit of RibRed which is expressed at low levels in human breast epithelial cells but at higher levels in 4 out of 5 DCIS tissue samples. It is presumed that the

30

5

10

15

20

altered morphologic appearance and determinant biologic behavior of DCIS results from altered expression of genes (such as RibRed) which is important in the induction of breast cancer in humans.

This invention, therefore, provides a method of detecting and diagnosing pre-invasive breast cancer by analyzing marker genes which are differentially expressed in non-comedo DCIS cells. Histopathologic studies have demonstrated that these morphologic patterns in breast tissue lead to invasive breast cancer in at least 20-30% of patients. The present method analyzes gene expression in normal, pre-malignant and malignant breast biopsies; and, it allows simultaneous comparison and cloning of marker genes which are differentially expressed in pre-invasive breast cancer. These marker genes can then be used as probes to develop other diagnostic tests for the early detection of pre-invasive breast cancer.

The present invention concerns DNA segments, isolatable from both normal and abnormal human breast tissue, which are free from total genomic DNA. The isolated DCIS-1 protein product is the regulatory element of the RibRed enzyme. This and all other isolatable DNA segments which are differentially expressed in preinvasive breast cancer can be used in the detection, diagnosis and treatment of breast cancer in its earliest and most easily treatable stages. As used herein, the term "abnormal tissue" refers to pre-invasive and invasive breast cancer tissue, as exemplified by collected samples of non-comedo or comedo DCIS tissues.

As used herein, the term "DNA segment" refers to a DNA molecule which has been isolated free of total genomic DNA of a particular species. Therefore, a DNA segment encoding a differentially expressed protein (as measured by the expression of mRNA) in abnormal tissue refers to a DNA segment which contains differentially expressed-coding sequences in abnormal tissue as compared to those expressed in normal tissue, yet is isolated away from, or purified free from, total genomic DNA of Homo sapiens sapiens. Furthermore, a DNA segment encoding a BRCA1 protein refers to a DNA segment which contains BRCA1 coding sequences, yet is isolated away from, or purified free from, total genomic DNA of Homo sapiens sapiens. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids,

25

5

10

15

20

10

15

20

25

30

phage, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified differentially expressed gene or comprising an isolated or purified BRCA1 gene refers to a DNA segment including differentially expressed coding sequences or BRCA1 coding sequences isolated substantially away from other naturally occurring genes or protein encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences and cDNA sequences. "Isolated substantially away from other coding sequences" means that the gene of interest, in this case, any differentially expressed marker gene or the BRCA1 gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode differentially expressed genes in pre-invasive breast cancer, each which includes within its amino acid sequence an amino acid sequence in accordance with SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7, all seq id no:s 1-7 are derived from non-comedo DCIS samples from Homo sapiens sapiens. In other particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode the M2 subunit of human RibRed that includes within its amino acid sequence the similar amino acid sequence of hamster RibRed corresponding to the M2 subunit of hamster RibRed.

In certain embodiments, the invention concerns isolated DNA segments and recombinant vectors which partially or wholly encode a protein or peptide that includes within its amino acid sequence an amino acid sequence essentially as partially or wholly encoded, respectively, by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7. Naturally, where the DNA segment or vector encodes a full length differentially expressed protein, or is intended

10

15

20

25

for use in expressing the differentially expressed protein, the most preferred sequences are those which are essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7 and which encode a protein that exhibits differential expression, e.g., as may be determined by the differential display or differential sequencing assay, as disclosed herein.

The term "a sequence essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7" means that the sequence substantially corresponds to a portion of SEQ ID NO:1, SEQ ID NO:2, SEO ID NO:3, SEO ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7, respectively, and has relatively few nucleotides which are not identical to, or a biologically functional equivalent of, the nucleotides of the respective SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein, for example see pages 24 through 25. Accordingly, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7 will be sequences which are "essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7", respectively.

In particular embodiments, the invention concerns a drug screening method and a gene therapy method that use isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence an amino acid sequence in accordance with SEQ ID NO:49, SEQ ID NO:49 derived from breast tissue from Homo sapiens. In other particular embodiments, the invention concerns isolated DNA sequences and recombinant DNA vectors incorporating DNA sequences wich encode a protein taht includes with its amino acid sequence the amino acid sequence of the BRCA1 gene product from human breast tissue.

In certain embodiments, the invention concerns methods using isolated DNA segments and recombinant vectors which partially or wholly encode a protein or peptide that includes within its amino acid sequence an amino acid sequence essentially as set forth in SEQ ID NO:49. Naturally, where the DNA segment or vector encodes a full length BRCA1 protein, or is intended for use in expressing the BRCA1 protein, the most preferred sequences are those which are essentially as set forth in SEQ ID NO:47 and which encode a protein that retains activity as a negative growth regulator in human breast cells, as may be determined by antisense assay, as disclosed herein.

The term "a sequence essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7" means that the sequence substantially corresponds to a portion of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7, respectively, and has relatively few nucleotides which are not identical to, or a biologically functional equivalent of, the nucleotides of the respective SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein, for example see pages 24 through 25. Accordingly, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7 will be sequences which are "essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, or SEQ ID NO:7", respectively.

The term "a sequence essentially as set forth in SEQ ID NO:49" means that the sequence substantially corresponds to a portion of SEQ ID NO:49 and has relatively few amino acids which are not identical to, or a biologically functional equivalent of, the nucleotides of SEQ ID NO:49. The term "biologically functional equivalent" is well understood in the art and is further defined in detail herein, for example see pages 24 through 25. Accordingly, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more

5

10

15

20

25

preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of SEQ ID NO:49 will be sequences which are "essentially as set forth in SEQ ID NO:49".

In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7. The term "essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7" is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7, respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7, respectively. Again, DNA segments which encode proteins exhibiting differential expression will be most preferred. The term "functionally equivalent codon" is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also refers to codons that encode biologically equivalent amino acids (see Figure

20

8).

5

10

15

In certain other embodiments, the invention concerns a method for screening drugs and a gene therapy method which involve the use of isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NO:47 and SEQ ID NO:48. The term "essentially as set forth in SEQ ID NO:47 and SEQ ID NO:48" is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO:47 and SEQ ID NO:48 respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of SEQ ID NO:47 and SEQ ID NO:48, respectively. Again, DNA segments which encode proteins exhibiting the negative regulatory activity of the BRCA1 will be most preferred. The term "functionally equivalent codon" is used herein to refer to codons

10

15

20

25

30

that encode the same amino acid, such as the six codons for arginine or serine, and also refers to codons that encode biologically equivalent amino acids (see Figure 8).

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences which may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

Excepting intronic or flanking regions, and allowing for the degeneracy of the genetic code, sequences which have between about 20% and about 50%; or more preferably, between about 50% and about 70%; or even more preferably, between about 70% and about 99%; of nucleotides which are identical to the nucleotides of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 will be sequences which are "essentially as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7", respectively. Sequences which are essentially the same as those set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 may also be functionally defined as sequences which are capable of hybridizing to a nucleic acid segment containing the complement of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7, respectively, under relatively stringent conditions. Suitable relatively stringent hybridization conditions will be well known to those of skill in the art (Sambrook et al, 1989).

Excepting intronic or flanking regions, and allowing for the degeneracy of the genetic code, sequences which have between about 20% and about 50%; or more preferably, between about 50% and about 70%; or even more preferably, between about 70% and about 99%; of nucleotides which are identical to the nucleotides of SEQ ID NO:47 and SEQ ID NO:48 will be sequences which are "essentially as set forth in

SEQ ID NO:47 and SEQ ID NO:48", respectively. Sequences which are essentially the same as those set forth in SEQ ID NO:47 and SEQ ID NO:48 may also be functionally defined as sequences which are capable of hybridizing to a nucleic acid segment containing the complement of SEQ ID NO:47 and SEQ ID NO:48, respectively, under relatively stringent conditions. Suitable relatively stringent hybridization conditions will be well known to those of skill in the art (Sambrook et al, 1989).

It is also important to understand the molecular events which lead to progression from pre-invasive to invasive breast cancer. Breast cancer is a disease that is presumed to involve a series of genetic alterations that confer increasing growth independence and metastatic capability on somatic cells. Identifying the molecular events that lead to the initial development of a neoplasm is therefore critical to understanding the fundamental mechanisms by which tumors arise and to the selection of optimal targets for gene therapy and chemopreventive agents. As intermediate endpoints in neoplastic development, some pre-malignant breast lesions represent important, and possibly rate-limiting steps in the progression of human breast cancer, and careful epidemiological studies have established the relative risk for breast cancer development for specific histologic lesions. In particular, invasive breast cancer develops in the region of the previous biopsy site in at least 25-30% of patients following diagnosis of non-comedo DCIS providing strong evidence that this pre-malignant lesion is a determinant event in breast cancer progression. While these morphologically defined intermediate endpoints have been widely accepted, progress in defining the molecular correlates of these lesions has been hampered by an inability to identify and sample them in a manner which would allow the application of molecular techniques.

The present invention includes a comparison of gene expression between multiple breast tissue biopsy samples as a means to identify differentially expressed genes in pre-malignant breast disease compared with normal breast tissue. These genetic markers should be extremely useful reagents for early diagnosis of breast cancer, and for the delineation of molecular events in progression of breast cancer.

Identification of gene markers which are expressed in the majority of preinvasive breast cancer tissue samples involves cDNA library preparation from both

30

5

10

15

20

WO 95/19369 PCT/US95/00608

13

normal and abnormal tissue. This is followed by either a modified differential display method or a differential screening method to identify differential expression of genes which is subsequently confirmed by RT-PCR, nuclease protection assays and in situ hybridization of DCIS tissue RNA and control tissue RNAs (Sambrook et al, 1989). Use of genetic engineering methods can bias the screening to specifically identify genes whose encoded proteins are secreted or are present at the cell surface, in order to find proteins which will be useful markers for diagnostic blood tests (secreted proteins) or for diagnostic imaging studies (cell surface proteins).

Thus, the method of the present invention begins with the collection of at least one tissue sample by a microscopically-directed collection step in which a punch biopsy is obtained exclusively from abnormal tissue which exhibits histological or cytological characteristics of pre-invasive breast cancer. Preferably, the sample site will be an isolatable tissue structure, such as ductal epithelial cells from pre-invasive breast cancer tissue. The mRNA is purified from the sample. Then, a cDNA library is prepared from the mRNA purified from the abnormal tissue sample (Sambrook et al, 1989).

A normal tissue sample is then obtained from the patient, using a sample site from an area of tissue which does not exhibit histological or cytological characteristics of pre-invasive cancer. A cDNA library is also prepared from this normal tissue sample.

The abnormal tissue cDNA library can then be compared with the normal tissue cDNA library by differential display or differential screening to determine whether the expression of at least one marker gene in the abnormal tissue sample is different from the expression of the same marker gene in the normal tissue sample.

Further diagnostic steps can be added to the method by cloning the marker gene using sequence-based amplification to create a cloned marker gene which can then be DNA-sequenced in order to derive the protein sequence. The protein sequence is then used to generate antibodies which will recognize these proteins by antibody recognition of the antigen. The presence of the antibody-recognized antigen can then be detected by means of conventional medical diagnostic tests.

30

5

10

15

20

10

15

This invention also includes methods of screening for compounds and gene therapy methods using the BRCA1 gene. BRCA1 mRNA is expressed at 5-10 fold higher levels in normal mammary tissue than in invasive breast cancer samples. Having demonstrated that mRNA expression levels of BRCA1 are higher in normal mammary cells than in cancer cells, antisense methods were used to test the hypothesis that BRCA1 expression inhibits cell growth. These tests showed that diminished expression of BRCA1 increased the proliferative rate of breast cells.

An object of the present invention, then, is to provide a method of early detection of pre-invasive breast cancer in human tissue.

It is a further object of this invention to identify early marker genes for preinvasive breast disease which can be used in screening methods for early pre-invasive breast cancer.

It is also an object of this invention to produce a cDNA library from preinvasive breast cancer tissue resulting in a permanent genetic sample of that preinvasive breast cancer tissue.

It is also an object of this invention to provide a drug or biological screening method using the BRCA 1 promoter region and gene therapy method using the BRCA 1 gene.

#### Tist of Abbreviations

|    |        | List of Appreviations                                  |  |  |  |
|----|--------|--------------------------------------------------------|--|--|--|
| 20 | TPA    | Phorbol 12-myristate 13-acetate                        |  |  |  |
|    | MCF-7  | An immortalized cell line derived from a metastasis of |  |  |  |
|    |        | human breast cancer                                    |  |  |  |
|    | HMEC   | A primary (non-immortalized) cell line derived from    |  |  |  |
|    |        | breast epithelial cells obtained during reduction      |  |  |  |
| 25 |        | mammoplasty                                            |  |  |  |
|    | DCIS   | Ductal Carcinoma-in-situ                               |  |  |  |
|    | NCDC   | Non-Comedo Ductal Carcinoma in situ                    |  |  |  |
|    | cDNA   | Complementary DNA obtained from an RNA template        |  |  |  |
|    | DNA    | Deoxyribonucleic Acid                                  |  |  |  |
| 30 | RT-PCR | Reverse Transcriptase-Polymerase Chain Reaction        |  |  |  |
|    | RibRed | Ribonucleotide Reductase                               |  |  |  |

WO 95/19369 PCT/US95/00608

15

Fig. 1 shows Table I which describes anatomic lesion types in the human breast with pre-malignant implication.

Fig. 2 shows a model for pre-malignant conditions, highlighting magnitude of risk for progression to clinical malignancy.

5

Fig. 3 contains color photos of DCIS tissue, before (upper left panel) and after microscopically-directed excisional punch biopsy (upper right panel). The lower panels show tissue samples of normal breast tissue (lower left panel), and invasive breast cancer (lower right panel).

10

Fig. 4 shows expression of collagen III mRNA in tissue mRNA samples, analyzed by RNase protection assay methods.

Fig. 5 shows differential display of cDNAs obtained from patient tissue samples and controls.

Fig. 6 shows a comparison of the sequence between DCIS-1 and the human and hamster genes.

15

Fig. 7 shows expression of DCIS-1 mRNA in tissue mRNA samples analyzed by RNase protection assay as described in the legend to Figure 4.

Fig. 8 is Table II which displays the genetic code.

Fig. 9 is a Table which lists differentially expressed marker genes.

20

Figs. 10A and 10B shows expression of BRCA1 mRNA during breast cancer progression by PCR detection and nuclease protection assay, respectively.

Figs. 11A and 11B is a comparison of BRCA1 expression in normal breast and invasive breast cancer using nuclease protection assay of RNA, respectively.

Figs. 12A, 12B, and 12C show that antisense inhibition of BRCA1 accelerates mammary cell proliferation.

25

Figs. 13A and 13B includes a Northern blot of mRNA and nuclear runon studies that show that ribonucleotide reductase M2 mRNA is cell cycle regulated in MCF-7 cells.

30

Fig. 14 includes a nuclease protection assay that shows that antisense inhibition of BRCA1 in human mammary cells decreases BRCA1 mRNA and increases ribonucleotide reductase mRNA.

#### UTILITY STATEMENT

The detection of differentially expressed genes in pre-invasive breast tissue, specifically in non-comedo ductal carcinoma in situ as compared to genes expressed in normal tissue, is useful in the diagnosis, prognosis and treatment of human breast cancer. Such differentially expressed genes are effective marker genes indicating the significantly increased risk of breast cancer in a patient expressing these differentially expressed marker genes. These marker genes are useful in the detection, early diagnosis, and treatment of breast cancer in humans.

The discovery of the function of the BRCA 1 gene has broad utility including, in the present invention, development of methods to treat familial and sporadic breast cancers as well as screen for therapeutic drugs through production of important indicator compounds.

#### **ACTIVITY STATEMENT**

15

5

10

Of the differentially expressed genes described in this invention, DCIS-1 encodes a gene similar to the M2 subunit of hamster ribonucleotide reductase. The M2 subunit of ribonucleotide reductase (RibRed, hereafter) is responsible for regulation of RibRed. The differential levels of expression of the marker genes described in this invention (Seq ID No.s 1-7), indicate genetic changes which have been linked to the presence of pre-invasive breast cancer.

20

The BRCA1 gene (Seq. ID No. 47) is differentially expressed in invasive breast cancer cells. The BRCA1 gene product is a negative regulator of mammary cell proliferation which is expressed at diminished levels in sporadic breast cancer.

25

## BEST MODE FOR CARRYING OUT THE INVENTION

For the purposes of the subsequent description, the following definitions will be used:

30

Nucleic acid sequences which are "complementary" are those which are capable of base-pairing according to the standard Watson-Crick complementarity rules. That is, that the larger purines will always base pair with the smaller pyrimidines to form only combinations of Guanine paired with Cytosine (G:C) and Adenine paired with

10

15

20

25

either Thymine (A:T) in the case of DNA or Adenine paired with Uracil (A:U) in the case of RNA.

"Hybridization techniques" refer to molecular biological techniques which involve the binding or hybridization of a probe to complementary sequences in a polynucleotide. Included among these techniques are northern blot analysis, southern blot analysis, nuclease protection assay, etc.

"Hybridization" and "binding" in the context of probes and denatured DNA are used interchangeably. Probes which are hybridized or bound to denatured DNA are aggregated to complementary sequences in the polynucleotide. Whether or not a particular probe remains aggregated with the polynucleotide depends on the degree of complementarity, the length of the probe, and the stringency of the binding conditions. The higher the stringency, the higher must be the degree of complementarity and/or the longer the probe.

"Probe" refers to an oligonucleotide or short fragment of DNA designed to be sufficiently complementary to a sequence in a denatured nucleic acid to be probed and to be bound under selected stringency conditions.

"Label" refers to a modification to the probe nucleic acid that enables the experimenter to identify the labeled nucleic acid in the presence of unlabeled nucleic acid. Most commonly, this is the replacement of one or more atoms with radioactive isotopes. However, other labels include covalently attached chromophores, fluorescent moeities, enzymes, antigens, groups with specific reactivity, chemiluminescent moeities, and electrochemically detectable moeities, etc.

"Marker gene" refers to any gene selected for detection which displays differential expression in abnormal tissue as opposed to normal tissue. It is also referred to as a differentially expressed gene.

"Marker protein" refers to any protein encoded by a "marker gene" which protein displays differential expression in abnormal tissue as opposed to normal tissue.

"Tissuemizer" describes a tissue homogenization probe.

"Abnormal tissue" refers to pathologic tissue which displays cytologic, histologic and other defining and derivative features which differ from that of normal

tissue. This includes in the case of abnormal breast tissue, among others, pre-invasive and invasive neoplasms.

"Normal tissue" refers to tissue which does not display any pathologic traits.

PCT/US95/00608

"PCR technique" describes a method of gene amplification which involves sequenced-based hybridization of primers to specific genes within a DNA sample (or library) and subsequent amplification involving multiple rounds of annealing, elongation and denaturation using a heat-stable DNA polymerase.

"RT-PCR" is an abbreviation for reverse transcriptase-polymerase chain reaction. Subjecting mRNA to the reverse transcriptase enzyme results in the production of cDNA which is complementary to the base sequences of the mRNA. Large amounts of selected cDNA can then be produced by means of the polymerase chain reaction which relies on the action of heat-stable DNA polymerase produced by Thermus aquaticus for its amplification action.

"Microscopically-directed" refers to the method of tissue sampling by which the tissue sampled is viewed under a microscope during the sampling of that tissue such that the sampling is precisely limited to a given tissue type, as the investigator requires. Specifically, it is a collection step which involves the use of a punch biopsy instrument. This surgical instrument is stereotactically manually-directed to harvest exclusively from abnormal tissue which exhibits histologic or cytologic characteristics of pre-invasive cancer. The harvest is correlated with a companion slide, stained to recognize the target tissue.

"Differential display" describes a method in which expressed genes are compared between samples using low stringency PCR with random oligonucleotide primers.

"Differential screening" describes a method in which genes within cDNA libraries are compared between two samples by differential hybridization of cDNAs to probes prepared from each library.

"Nuclease protection assay" refers to a method of RNA quantitation which employs strand specific nucleases to identify specific RNAs by detection of duplexes.

"Differential expression" describes the phenomenon of differential genetic expression seen in abnormal tissue in comparison to that seen in normal tissue.

10

5

15

20

25

WO 95/19369 PCT/US95/00608

19

"Isolatable tissue structure" refers to a tissue structure which when visualized microscopically or otherwise is able to be isolated from other different surrounding tissue types.

"In situ hybridization of RNA" refers to the use of labeled DNA probes employed in conjunction with histological sections on which RNA is present and with which the labeled probe can hybridize allowing an investigator to visualize the location of the specific RNA within the cell.

"Comedo DCIS cells" refers to cells comprising an in situ lesion with the combined features of highest grade DCIS.

"Non-comedo DCIS cells" refers to cells of DCIS lesions without comedo features.

"Cloning" describes separation and isolation of single genes.

"Sequencing" describes the determination of the specific order of nucleic acids in a gene or polynucleotide.

The present invention provides a method for detecting and diagnosing cancer by analyzing marker genes which are differentially expressed in early, pre-invasive breast cancer, specifically in non-comedo DCIS cells. Our histopathologic studies have demonstrated that certain morphologic patterns in breast tissue are pre-malignant, leading to invasive breast cancer in at least 20-30% of patients. We have developed a new method for analyzing gene expression in normal, pre-malignant and malignant breast biopsies which allows simultaneous comparison and cloning of marker genes which are differentially expressed in pre-invasive breast cancer. These marker genes (which appear as differentially expressed genes in pre-invasive breast cancer) can be used as probes to develop diagnostic tests for the early detection of pre-invasive breast cancer (Sambrook, 1989).

The present invention thus comprises a method of identification of marker genes which are expressed in the majority of pre-invasive breast cancer tissue samples. It involves cDNA library preparation followed by a modified differential display method. Use of genetic engineering methods (Sambrook, 1989) can bias the screening to specifically identify genes whose encoded proteins are secreted or are present at the cell

10

5

15

20

25

surface, in order to find proteins which will be useful markers for diagnostic blood tests (secreted proteins) or for diagnostic imaging studies (cell surface proteins).

Naturally, the present invention also encompasses DNA segments which are complementary, or essentially complementary, to the sequence set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:47 and SEQ ID NO:48. Nucleic acid sequences which are "complementary" are those which are capable of base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term "complementary sequences" means nucleic acid sequences which are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:47 and SEQ ID NO:48 under relatively stringent conditions such as those described herein.

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments may be prepared which include a short stretch complementary to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6. SEQ ID NO:7, SEQ ID NO:47 and SEQ ID NO:48, such as about 10 nucleotides, and which are up to 10,000 or 5,000 base pairs in length, with segments of 500 being preferred in most cases. DNA segments with total lengths of about 1,000, 500, 200, 100 and about 50 base pairs in length are also contemplated to be useful.

It will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:47, SEQ ID NO:48, and SEQ ID NO:49. Recombinant vectors and isolated DNA

10

5

15

20

25

segments may therefore variously include the differentially expressed coding regions or the BRCAl coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides which nevertheless include differentially expressed-coding regions and the BRCAl coding regions or may encode biologically functional equivalent proteins or peptides which have variant amino acids sequences.

The DNA segments of the present invention encompass biologically functional equivalent differentially expressed proteins and peptides biologically functional equivalent proteins of BRCA1. Such sequences may arise as a consequence of codon redundancy and functional equivalency which are known to occur naturally within nucleic acid sequences and the proteins thus encoded. Alternatively, functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test site-directed mutants or others in order to examine carcinogenic activity of the differentially expressed marker genes at the molecular level.

If desired, one may also prepare fusion proteins and peptides, e.g., where the differentially expressed marker gene coding regions are aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins which may be purified by affinity chromatography and enzyme label coding regions, respectively).

Recombinant vectors form important further aspects of the present invention. Particularly useful vectors are contemplated to be those vectors in which the coding portion of the DNA segment is positioned under the control of a promoter. The promoter may be in the form of the promoter which is naturally associated with a RIBRED gene, e.g., in human cells, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology, in connection with the compositions disclosed herein.

5

10

15

20

25

In other embodiments, it is contemplated that certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a differentially expressed marker gene or the BRCA1 gene in its natural environment. Such promoters may include MMTV promoters normally associated with other genes, and/or promoters isolated from any other bacterial, viral, eukaryotic, or mammalian cell. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al. (1989). The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems contemplated for use in high-level expression include, but are not limited to appropriate bacterial promoters.

As mentioned above, in connection with expression embodiments to prepare recombinant differentially expressed marker gene encoded proteins and peptides, it is contemplated that longer DNA segments will most often be used, with DNA segments encoding the entire differentially expressed protein or subunit being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of differentially expressed peptides or epitopic core regions, such as may be used to generate anti-marker protein antibodies, also falls within the scope of the invention (Harlow et al., 1988).

25

5

10

15

20

DNA segments which encode peptide antigens from about 15 to about 50 amino acids in length, or more preferably, from about 15 to about 30 amino acids in length are contemplated to be particularly useful. The C terminus of proteins provide an excellent region for peptide antigen recogition (Harlow et al, 1988). DNA segments encoding peptides will generally have a minimum coding length in the order of about 45 to about 147, or to about 90 nucleotides. DNA segments encoding partial length peptides may have a minimum coding length in the order of about 50 nucleotides for

10

15

20

a polypeptide in accordance with seq id no:3, or about 264 nucleotides for a polypeptide in accordance with SEQ ID NO: 1.

In addition to their use in directing the expression of the differentially expressed marker proteins, the nucleic acid sequences disclosed herein also have a variety of other uses. For example, they also have utility as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that oligonucleotide fragments corresponding to the sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 for stretches of between about 10 to 15 nucleotides and about 20 to 30 nucleotides will find particular utility. Longer complementary sequences, e.g., those of about 40, 50, 100, 200, 500, 1000, and even up to full length sequences of about 2,000 nucleotides in length, will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to differentially expressed marker gene sequences will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Nucleic acid molecules having stretches of 20, 30, 50, or even of 500 nucleotides or so, complementary to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting. This would allow differentially expressed structural or regulatory genes to be analyzed, both in patients and sample tissue from pre-invasive and invasive breast tissue. The total size of fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the complementary region may be varied, such as between about 10 and about 100 nucleotides, but larger complementary stretches of up to about 300 nucleotides may be used, according to the length complementary sequences one wishes to detect.

30

10

15

20

#### Nucleic Acid Hybridization

The use of a hybridization probe of about 10 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 10 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 15 to 20 nucleotides, or even longer where desired.

Hybridization probes may be selected from any portion of any of the sequences

disclosed herein. All that is required is to review the sequences set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 and to select any continuous portion of one of the sequences, from about 10 nucleotides in length up to and including the full length sequence, that one wishes to utilise as a probe or primer. The choice of probe and primer sequences may be governed by various factors, such as, by way of example only, one may wish to employ primers from towards the termini of the total sequence, or from the ends of the functional domain-encoding sequences, in order to amplify further DNA; one may

employ probes corresponding to the entire DNA, or to the 5' region, to clone marker-type genes from other species or to clone further marker-like or homologous genes from any species including human; and one may employ randomly selected, wild-type and mutant probes or primers with sequences centered around the RibRed M2 subunit

encoding sequence to screen DNA samples for differentially expressed levels of RibRed, such as to identify human subjects which may be expressing differential levels

of RibRed and thus may be susceptible to breast cancer.

The process of selecting and preparing a nucleic acid segment which includes a sequence from within SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7 may alternatively be described as "preparing a nucleic acid fragment". Of course, fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion. Small nucleic acid segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly

25

WO 95/19369 PCT/US95/00608

25

practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Patent 4,603,102 (incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of differentially expressed marker genes or cDNAs. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by 0.02M-0.15M NaCl at temperatures of 50°C to 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating specific differentially expressed marker genes.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate marker gene sequences from related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ conditions such as 0.15M-0.9M salt, at temperatures ranging from 20°C to 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

5

10

15

20

25

10

15

20

25

30

In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantified, by means of the label. (Sambrook et al, 1989).

In a preferred embodiment of the method, certain preliminary procedures are necessary to prepare the sample tissue and the probes before the detection of differential expression of marker genes in abnormal tissue as compared to that in normal tissue can be accomplished.

#### SAMPLE PREPARATION

RNA purification

RNA was isolated from frozen tissue samples by mincing of microdisected frozen tissue fragments with a razor blade and then adding 800 microliter of 5.6M

guanidinium to increase mixing, followed by a 30 second microcentrifuge centrifugation at 14,000 rpm to remove particulate matter. The supernatant was then removed and the viscosity was reduced by multiple aspirations through a 22 gauge needle and then 200 ul of chloroform was added and the sample was incubated on ice for 15 minutes (during this time the sample was vortexed multiple times). Following incubation with chloroform, the sample was centrifuged for 15 minutes at 14,000 rpm and the aqueous layer was removed and ethanol precipitated. This extraction method produces RNA which is primarily derived from cells of epithelial origin. In order to obtain RNA samples which presumably includes RNA derived from these stromal cells; the particulate material (remaining in the pellet from the 30 second centrifugation) was homogenized with a tissuemizer, washed with PBS, treated with collagenase at 37°C for 30 minutes, sonicated, extracted with phenol/chloroform and ethanol precipitated.

cDNA libraries were constructed in lambda phage using polyA-selected mRNA from the following samples; cultured human breast epithelial cells, tissue from three reduction mammoplasty patients, tissue from three DCIS patients, and tissue from one DCIS patient (patient #10) that showed a focus of microinvasion adjacent to an area of DCIS. Multiple punches were needed to obtain sufficient RNA for polyA selection and library construction. 200 ug of total RNA was obtained by pooling 20 punches from normal breast tissue (reduction mammoplasty samples) and 5-8 punches from DCIS lesions, presumably reflecting the greater cellularity of the DCIS samples. cDNA libraries were constructed by first and second strand cDNA synthesis followed by the addition of directional synthetic linkers (ZAP-cDNA Synthesis Kit, Stratagene, La Jolla, California). The Xho I-Eco RI linkered cDNA was then ligated into lambda arms, packaged with packaging extracts, and then used to infect XL1-blue bacteria resulting in cDNA libraries.

#### PROBE PREPARATION

The collagen III probe employed for nuclease protection assays was constructed by subcloning the 208 bp Hinc II-Pst I fragment from the 3' untranslated region of the human type III procollagen gene into pGem4Z. This region of the human procollagen III gene was obtained by PCR amplification of published sequence (Ala-Kokko et al, 1989) followed by restriction with Hinc II and Pst I. For a control probe to assure

5

10

15

20

25

10

15

20

equal loading and recovery of RNA, we used a T7 polymerase-generated probe for human glyceraldehyde phosphate dehydrogenase (GADP) which protects a 140 bp Sac I-Xba I fragment; (a generous gift from Janice Nigro, Vanderbilt University). Probe DCIS-1 was generated by linearizing the rescued plasmid with Pvu II, which should generate a 200 bp protected fragment. RNase protection assays were performed with 1 ug of unselected RNA and the above-cited probes using the methods we have reported previously (Holt, 1993).

Differential Display-based cloning of cDNAs:

Rescued cDNA library samples were used as templates for low stringency PCR with the either a pair of 25 bp primers or an anchored 14 bp primer paired with a random 25 bp primer. Random 25 bp primers were generated by a computer-based algorithm (Jotte and Holt, unpublished). Samples were denatured for two minutes at 95°C followed by 40 cycles, each cycle consisting of denaturation for 1 minute at 94°C., annealing for 2 minutes at 25°C., and extension for 1 minute at 72°C. The samples were then run on an 6% non-denaturing polyacrylamide gel, which was dried and autoradiographed. Specific bands were excised then reamplified with the same primers used for their generation. Specificity was confirmed on 6% polyacrylamide gel, and samples were purified by ethanol precipitation of the remainder of the PCR reaction. Fragments were then individually cloned into Srfl cut vectors by standard methods using PCR-Script™SK(+) Cloning Kit (Stratagene, LaJolla, California) and then sequenced.

### EXAMPLE 1

## Studies showing Increased Risk of Breast Cancer

in Patients with DCIS

Since the 1970's, studies of pre-invasive lesions associated with the development of breast cancer have been undertaken in an attempt to refine histologic and cytologic criteria for the hyperplastic lesions analogous to those of the uterine cervix and colon. Because of the availability of tissue from breast biopsies done many years previously, cohorts of women who underwent breast biopsies 15 to 20 years ago, can be studied to determine the risk for development of breast cancer attributable to specific lesions.

30

Many concurrent studies evaluating lesions associated with cancer at time of cancer diagnosis led the way in pointing out lesions of potential interest (Wellings et al, 1975). Hopefully, these intermediate stages in cancer development will serve to provide indicators of breast cancer development sufficiently precise to guide prevention and intervention strategies (Weed et al, 1990; Lippman et al, 1990). Such intermediate elements prior to the development of metastatic capable cancers also provide the opportunity to define the molecular biology of these elements. Studies of the development of pre-invasive breast disease have provided insight into different types of lesions with different implications for breast cancer risk and the process of carcinogenesis (See Figure 1). Pre-invasive breast disease is herewith defined to be any reproducibly defined condition which confers an elevated risk of breast cancer approaching double that of the general population (Komitowski et al, 1990). The specifically-defined atypical hyperplasias and lobular carcinoma in situ confer relative risks of four to ten times that of the general population. This risk is for carcinoma to develop anywhere in either breast (Page et al, 1985; Page et al, 1991). The statistical significance of these observations have regularly been < .0001. Thus, absolute risk figures of 10-20% likelihood of developing into invasive carcinoma in 10 to 15 years arise. DCIS is a very special element in this story because the magnitude of risk is as high as any other condition noted (P < .00005), but remarkably, the developing invasive cancer is in the same site in the same breast. This local recurrence and evolution to invasiveness marks these lesions as determinate precursors of invasive breast cancer (Betsill et al., 1978; Page et al., 1982). These figures are for the type of DCIS which has become detected very commonly since the advent of mammography, the small and NCDCIS variety. It is likely that the comedo DCIS variety indicates a much greater risk, often presenting as larger lesions, and treated regularly by mastectomy in the past 50 years making follow-up studies impossible (Figure 1).

The precision of histopathologic diagnosis in this area as noted in Table I (shown in Figure 1) was most convincingly confirmed in a large, prospective study (London et al, 1991). There has also been a recent review of the reproducibility of the assignment of diagnosis by a panel of pathologists (Schnitt et al, 1992). The precision has been fostered by combining histologic pattern criteria with cytologic and extent of

5

10

15

20

25

lesion criteria. Classic surgical pathology criteria were predominantly derived from histologic pattern only. A further point of relevance to the importance of these histopathologically defined lesions of pre-malignancy in the breast is the relationship to familiality. A family history of breast cancer in a first degree relatives confers about a doubling of breast cancer risk. However, women with the atypical hyperplasias at biopsy and a family history of breast cancer are at 9-10 times the risk of developing invasive breast cancer as the general population (Dupont et al, 1985; Dupont et al, 1989).

to

Careful consideration of all of the above-mentioned epidemiologic data has led to the following model for progression from generalized pre-malignant lesions to determinant lesions to invasive cancer. Figure 2 shows this model for the induction and progression of pre-invasive breast disease based on study of the Vanderbilt cohort (Dupont et al, 1985) of more than 10,000 breast biopsies (follow-up rate 85%; median time of 17 years; 135 women developed breast cancer).

15

5

10

#### **EXAMPLE 2**

# Identification of genes which are differentially expressed in DCIS Construction of cDNA libraries from DCIS lesions

20

In order to study differential gene expression in DCIS, we collected cases of NCDCIS. The diagnosis of DCIS is made on histomorphologic grounds based on architectural, cytologic, and occasionally extent criteria. NCDCIS lacks comedo features and consists of microscopic intraductal lesions which fill and extend the duct, contain rigid internal architecture, and often have hyperchromatic and monomorphic nuclei.

25

Study of non-comedo DCIS for differential marker gene expression indicates the diagnostic utility of comparison of marker gene expression in these tissues. Although the morbidity and mortality of breast cancer clearly results from invasion and metastasis, the development of breast cancer is clearly significant in its early stages for two basic reasons:

30

1) The molecular changes will presumably be simpler in early lesions than in later lesions which may have acquired numerous mutations or "hits";

and

2) Successful prevention strategies may require attacking cancer before it develops the capacity to invade or metastasize.

Non-comedo DCIS is the earliest determinant lesion which recurs locally as invasive cancer. Although comedo DCIS may be technically easier to study because the tumors are larger, its aggressiveness and the presence of numerous genetic alterations (such as p53 and erbB2) suggest that it may have advanced beyond the earliest stages of carcinogenesis.

The commercial utility of a method for prevention of cancer is clear. In order to study differential gene expression in DCIS, breast tissue with extensive microscopic non-comedo DCIS was identified and banked in a frozen state. cDNA libraries were constructed from mRNA isolated from frozen sections of DCIS lesions. Tissue samples from patients with mammographic results consistent with DCIS were cryostat frozen and a definitive diagnosis was made by the histopathologic criteria which we have described (Jensen et al, Submitted for publication; Holt et al, In press).

Control mRNA was obtained from frozen tissue samples obtained from reduction mammoplasties and from cultured human breast epithelial cells. Because non-comedo DCIS is a microscopic lesion, we had to microlocalize regions of DCIS in biopsy samples. To accomplish this we prepared frozen sections in which we located regions of DCIS and then employed a 2 mm punch to obtain an abnormal tissue sample only from those regions that contained DCIS. This selective harvesting was accomplished by carefully aligning the frozen section slide with the frozen tissue block and identifying areas of interest. The harvest of the appropriate area was then confirmed with a repeat frozen section. A similar approach was used to isolate mRNA from lobules of normal breast in samples collected from a reduction mammoplasty. Prior studies have shown that breast lobules are approximately 2.5 mm in diameter, thus the 2 mm punch provided a well-tailored excision. This microlocation and collection step, in which abnormal tissue samples are collected from an isolatable tissue structure, was performed with extreme care and was absolutely crucial to the success of these studies. Contamination by normal breast epithelial cells or by breast stromal cells would clearly negatively skew the differential screening approach. If the punch biopsy did not cleanly

30

5

10

15

20

10

15

20

25

30

excise DCIS without contamination by other cell types or tissues then the sample was not used for mRNA isolation (Jensen et al, Submitted for publication). Figure 3 contains color photos of DCIS (abnormal) tissue, before (upper left panel) and after excisional punch biopsy (upper right panel). The lower panels show tissue samples of normal breast tissue (lower left panel), and invasive breast cancer (lower right panel).

Following microlocation punch harvesting of the frozen tissue, RNA was isolated, purified, and employed to construct cDNA libraries. RNA was isolated following mincing of tissue in 5.6M guanidinium isothiocyanate and 40% phenol, centrifugation to remove particulate matter, viscosity reduction by repeated aspiration through a 22 gauge needle, chloroform extraction and ethanol precipitation. In most samples there was particulate matter resistant to guanidinium-phenol extraction that was white in color and fibrous in appearance and was presumed to represent breast stroma. This stromal material was sparse in DCIS samples but abundant in samples obtained from normal breast tissue derived from reduction mammoplasties. The stromal material was minced with a tissuemizer, washed with PBS, treated with collagenase at 37°C for 30 minutes, sonicated, extracted with phenol/chloroform and ethanol precipitated. 200 ug of total RNA was obtained by pooling 20 punches from normal breast tissue (reduction mammoplasty samples) and 5-8 punches from DCIS lesions, presumably reflecting the greater cellularity of the DCIS samples. All libraries had greater than 50% inserts and contained between 2 X 106 and 7 X 107 phage recombinants with an average insert size varying between 500 and 1000 base pairs.

#### **EXAMPLE 3**

## Development of an extraction method which produces breast epithelial RNA

It was necessary that tissue samples not be contaminated by non-epithelial stromal cells. Such contamination would complicate efforts to compare gene expression between samples. In order to test the extent of stromal contamination of the mRNA samples, we determined the level of expression of collagen III mRNA by an RNase protection assay. RNase protection assays were employed in these and subsequent studies because it is a quantitative method and can be performed on small amounts of unselected RNA. Collagen III mRNA was identified in the presumed stromal fraction

of the normal breast tissue and to a lesser extent in the microinvasive breast cancer sample, but no expression of collagen III was detected in the DCIS samples which were subsequently employed for cDNA library construction. Figure 4 compares expression in NL 2 and #10CA with other patient samples and NL1 to determine collagen III expression.

Expression of Collagen III mRNA in tissue mRNA samples was analyzed by RNase protection assay by methods we have reported previously (Holt, 1993). One  $\mu$ g of mRNA was hybridized with two labeled RNA probes: a T7 polymerase-generated probe for human glyceraldehyde phosphate dehydrogenase (GADP) which protects a 140 bp Sac I-Xba I fragment; and a T7 polymerase-generated probe which protects a 208 bp Hinc II-Pst I fragment from the 3' untranslated region of the human type III procollagen gene (Coll III) obtained by PCR subcloning of the published sequence (Ala-Kokko et al, 1991). RNA samples were labeled as follows: NL1 is RNA from cultured human breast epithelial cells (Hammond et al, 1984), NL2 is RNA from normal breast tissue, NL3 is RNA derived from the fibrous stromal fraction of breast tissue as described (Jensen et al, Submitted for publication), NL4 is another sample from normal breast tissue. This is described in greater detail on page 30 of this patent application. #12,#8,#4,#6, and #10 are from patient samples with DCIS. Sample #10CA is RNA obtained from the small focus of microinvasion shown in Figure 3. Con is a control sample using tRNA.

#### EXAMPLE 4

#### Screening of cDNA libraries

Following successful testing which demonstrated that stromal contamination was not a problem, cDNA libraries were constructed in lambda phage using polyA-selected mRNA from the following samples: cultured human breast epithelial cells, tissue from three reduction mammoplasty patients, tissue from three DCIS patients, and tissue from one DCIS patient (patient #10) that showed a small focus of invasion adjacent to an area of DCIS. Multiple punches were needed to obtain sufficient RNA for polyA selection and library construction. Selective handling of tissue was accomplished.

5

10

15

20

25

Comparison of gene expression between samples was performed by either differential screening or a modification of differential display (Liang et al, 1992a; Liang et al, 1992b; Saiki et al, 1988; Melton et al, 1984). Plasmid DNA was prepared from the cDNA libraries following helper phage rescue and screened by two independent methods. Figure 5 below shows the results of differential display comparing cDNAs of several patient DCIS samples with cDNA obtained from normal breast epithelial cells and an early invasive cancer. Although few genes shown in this Figure are differentially expressed in the majority of samples with DCIS, the heterogeneity of gene expression in patient samples is seen.

The differential display method (Liang et al, 1992a and 1992b) allows simultaneous comparison of multiple tissue samples. Initial studies using this method (reverse transcriptase followed by PCR) were unsatisfactory because of unwanted amplification of contaminating DNA in tissue samples and the small size of many of the fragments identified by display. To circumvent some of these problems, we have attempted to combine the advantages of cDNA library screening with the advantages of differential display by:

- 1) Constructing cDNA libraries from the tissue mRNA samples;
- Performing differential display on the plasmid DNA prepared from the cDNA libraries;
- 3) Subcloning the fragments identified by differential display;
- 4) Using the subcloned fragment as a probe to clone the cDNA from the appropriate library.

#### Example 5

Identification of a gene (RibRed) which is differentially expressed in multiple NCDCIS cases

Employing these methods, 10 differentially expressed clones were identified and the seven that showed the greatest difference in expression between multiple samples were further characterized by DNA sequencing. Comparison of the sequenced clones with GenBank demonstrated that six of the clones are apparently unique sequences (although further DNA sequencing is necessary); but that one of the clones (here termed DCIS-1 and described in Sequence Listing No. 1) showed 90% homology to the

10

5

15

20

30

previously cloned hamster gene encoding the M2 subunit of ribonucleotide reductase (Pavloff et al, 1992; Hurta et al, 1991; Hurta et al, 1991). Although human M2 ribonucleotide reductase has been cloned previously, comparison of the hamster cDNA sequence with our clone and with the prior human clone indicates that DCIS-1 is homologous to an alternatively poly-adenylated form of the human ribonucleotide reductase which has not been cloned previously. Figure 6 shows a comparison of the sequence between DCIS-1 and the human and hamster genes.

Because of our concern that different patients may have differential gene expression which is idiosyncratic (or related to morphological differences in biopsy appearance) and not necessarily related to the induction or progression of DCIS, we simultaneously analyzed gene expression in multiple DCIS samples compared to multiple control samples. We constructed cDNA libraries from the following samples:

- 1) Cultured HMEC epithelial cells;
- 2) Reduction mammoplasty: 11 year old with virginal hyperplasia;
- 3) Reduction mammoplasty: 28 year old patient;
- 4) Reduction mammoplasty: 35 year old patient;
- 5) DCIS patient #12;
- 6) DCIS patient #8;
- 7) DCIS patient #10;
- 8) DCIS patient #10 from an area of invasive cancer adjacent to DCIS;

In addition to the samples we employed to construct cDNA libraries shown above, we also obtained frozen tissue samples from 7 more DCIS patients, 2 cellular fibroadenoma samples, and samples of "usual hyperplasia" and atypical hyperplasia.

Because the DCIS clones were identified by cloning methods which include selection and amplification, it was important to confirm by nuclease protection assays that the genes were differentially expressed in the original unselected, unamplified RNA samples (Figure 7).

This approach allowed identification of a human gene similar to the hamster RibRed gene (coding for the M2 subunit) and 7 other human genes as genes which are differentially expressed in a majority of cases of DCIS in human breast tissue. The table of differentially expressed genes lists the genes which have been identified as

10

5

15

20

.

25

10

15

20

25

differentially expressed genes in DCIS tissue samples as compared to that in normal tissue (Figure 9).

# EXAMPLE 6

Methods for studying potential use of differentially expressed genes for diagnostic screening

One advantage of the differential display method is that it allows comparison of multiple tissue samples of pre-invasive or invasive breast cancer. For example, use of this method has successfully demonstrated that the M2 subunit ribonucleotide reductase gene is differentially expressed in 4 out of 5 pre-invasive breast cancer tissue samples. It is significant that the M2 subunit is involved in the regulation of the ribonucleotide reductase gene and is found to be over-expressed in abnormal tissue samples.

Identification of differentially expressed genes may lead to discovery of genes which are potentially useful for breast cancer screening. Of particular interest are genes whose expression is restricted to breast epithelial cells and whose gene products are secreted. Screening for secreted proteins is possible by using the known hydrophobic sequences which encode leader sequences as one primer for differential display. The identification of secreted proteins which are specific for early breast premalignancy (or even early invasive cancer) would provide an important tool for early breast cancer screening programs. If a differentially expressed gene has not been cloned previously (or if details of its expression are unknown or uncertain) then nuclease protection assays or Northern blots can be performed on RNA prepared from tissue samples from a variety of tissues to determine if expression of this gene is restricted to breast. If necessary cDNA libraries prepared from other tissues can be added to the differential display screen as a way to identify only those genes which are expressed in early breast cancer and, in addition, are only expressed in breast tissue.

Once differentially expressed genes have been initially characterized for expression in pre-malignant and malignant breast disease, antibodies to the protein products of potentially useful genes can be developed and employed for immunohistochemistry (Harlow et al, 1988). This will provide an additional test to determine whether the expression of this gene is restricted to the breast. Subsequently, these antibodies will

37

be used to detect the presence of this protein present in the blood of patients with preinvasive and/or invasive cancer. By assaying for serum protein levels in the same patients who exhibited elevated expression of the gene in their tissue samples it will be possible to determine whether a gene product is being secreted into the blood.

5

10

15

#### **EXAMPLE 7**

# Decreased expression of BRCA1 accelerates growth and is observed during breast cancer progression

Breast cancer occurs in hereditary and sporadic forms. Recently the BRCA 1 gene has been cloned and shown to be mutated in kindreds with hereditary breast and ovarian cancer (Hall et al. 1990, Miki, Y. et al. 1994, Friedman et al. 1994, Castilla et al. 1994, Simard et al. 1994). Although 92% of families with two or more cases of early-onset breast cancer and two cases of ovarian cancer have germ-line mutations in BRCA 1 (Narod et al. in press), the gene has not been shown to be mutated in any truly sporadic case to date (Futreal et al. 1994). Despite the surprising paucity of somatically acquired mutations in sporadic breast cancer, it is still a likely tumor suppressor gene with a key role in breast epithelial cell biology. The BRCA 1 gene encodes a protein of 1863 amino acids with a predicted zinc finger domain observed in proteins which regulate gene transcription.

20

As an initial characterization of the regulation and function of the BRCA 1 gene, we analyzed and manipulated expression of BRCA 1 mRNA levels. The results taken together indicate that the BRCA 1 gene product is a negative regulator of mammary cell proliferation which is expressed at diminished levels in sporadic breast cancer.

# Expression of BRCA1 mRNA during breast cancer progression

25

30

As described above, microscopy-directed cloning has been employed to compare gene expression in normal mammary epithelium, carcinoma in-situ, and invasive breast cancer. This method produces predominantly epithelial mRNA with minimal contamination from stromal elements and we used this approach to obtain mRNA from normal neoplastic tissues from patients without a family history of breast cancer. Expression of BRCA1 exon 24 in human breast tissue samples is shown in Fig. 1. The legend of Fig. 1 is as follows.

The following tissue samples were used for mRNA isolation: Normal tissue samples: NL1-cultured human breast epithelial cells, NL2- Histologically normal breast tissue from an 11 year old undergoing a reduction mammoplasty, NL4- histologically normal breast tissue from an 14 year old undergoing a reduction mammoplasty. Carcinoma-in-situ samples are #6, #8, #10, #12, #23 (comedo type), #41, #55; and invasive cancer samples #10CA (invasive cancer from the same patient with carcinoma-in-situ), 36CA, 1CA. All of these tissue samples were obtained from patients who had no family history of hereditary breast cancer and RNA preparation was performed as described above.

PCR detection of BRCA1 exon 24 in cDNA libraries from the following tissue samples is described in Figure 10A. Lane 1: human genomic DNA, lane 2: NL1, lane 3: NL4, lane 4: \$8, lane 5: #12, lane 6: #10, lane 7: #10CA, lane 8: #41, lane 9: #23, lane 10: 36CA, lane 11: lambda DNA. The arrow points to the expected 113 bp band.

Nuclease protection assays of microdissected mRNA from tissue samples are described in Fig. 10B. One ug of mRNA from each tissue sample was hybridized with 32P-labelled, T7 polymerase-generated RNA probes for BRCA1 and human glyceraldehyde-3-phosphate dehydrogenase (GAPD) which produce expected protected fragments of 113 and 140 respectively as indicated by the lines on the right. Data were quantitated by phosphorimaging. The hybridizing intensity of each BRCA1 band was normalized to its respective GAPD band. The normalized values of NL1, NL2, and NL4 were intensity in each sample relative to 1. Sample 1 employs human leukocyte mRNA; Samples 2-4 are NL1, NL2, and NL4; Samples 5-9 are #6(2.8), 8(3.7), 10(2.8), 12 (5.9), and 55 (1.4); and 10-12 are #10CA (0.07), 36CA (0.13), and 1CA (0.2).

Fig. 10 shows that BRCA1 exon 24 mRNA is expressed at 5-10 fold higher levels in normal mammary tissue than in invasive breast cancer samples. Initial studies showed detectable levels of BRCA1 cDNA in a cDNA library prepared from a tissue sample with preinvasive carcinoma-in-situ but not in normal breast cancer invasive breast cancer cDNA libraries (Figure 10A). Because this method is relatively insensitive we directly quantitated BRCA1 mRNA by nuclease protection assays in RNA samples obtained by our microdissection method described above. These assays

25

5

10

15

20

39

indicate that expression of BRCA1 mRNA in micro-dissected normal mammary epithelial tissue (lanes 2-4, Figure 10B) is 5-15 fold higher than that in breast cancer (lanes 10-12, Figure 10B). The highest levels of BRCA1 are observed in samples from non-comedo ductal carcinoma-in-situ (lanes 5-9, Figure 10B), a premalignant breast lesion with a finite, but relatively low rate of progression to invasion (Betsill et at., 1978, Page, D.L. et al., 1982, Page and Dupont, 1990).

Because these studies suggested that invasive breast cancer exhibited lower mRNA levels than normal breast epithelial cells, we compared expression of paired samples of normal breast and invasive cancer from the same patient (Figure 11A; compare lanes 2 and 3, 4 and 5, 6 and 7). The legend of Fig. 11 is as follows.

Nuclease protection assays of RNA obtained from paired samples of invasive breast cancer and histologically normal breast tissue are shown in Fig. 11A. Samples in lanes 2 and 3 (first patient), 4 and 5 (second patient), 6 and 7 (third patient) are from invasive cancer and normal breast tissue respectively. Lane 1 is NL1 mRNA as described in legend to Fig. 10 and lane 8 is human leukocyte mRNA. Ratios of BRCA1/GAPD for each sample: lane 1: 25.9, lane 2: 1.8, lane 3: 7.6, lane 4: 2.0, lane 5: 12.4, lane 6: 0.7, lane 7: 6.0. The probes and methods are as described in Fig. 10 except the GAPD probe was of lower specific activity to improve quantitation.

Nuclease protection assays of RNA from a series of invasive breast cancer tissue samples (lanes 2-9 compared with NL1 (lane 1) and leukocyte mRNA (lane 10) are shown in Fig. 11B. Ratios of BRCA1/GAPD for each sample: lane 1: 19.1, lane 2: 0.3, lane 3: 1.8, lane 4: 1.6, lane 5: 0.2, lane 6: 0.3, lane 7: 1.9, lane 8: 0, lane 9: 0.6.

Although the samples were paired in Fig. 11A, they were not microdissected so this approach overestimates the relative expression level of invasive samples because they have a greater percentage of epithelial cells. RNA levels were four to eight fold higher in samples derived from normal breast than in samples derived from invasive breast cancer. We next analyzed expression levels in 8 non-hereditary invasive cancer samples (Figure 11B: lanes 2-7). Although these samples showed some variability in expression level, all had lower levels of BRCA1 mRNA (determined by ratio of

5

10

15

20

25

BRCA1 to GAPD) than the primary breast epithelial cell line or the normal breast samples shown in Figure 11A.

### Effects of BRCA1 gene inhibition on proliferative rate and gene expression

Having demonstrated that mRNA expression levels of BRCA1 are higher in normal mammary cells than in cancer cells, we used antisense methods to test the hypothesis that BRCA1 expression inhibits cell growth. Unmodified 18 base deoxyribonucleotide complementary to the BRCA1 translation initiation site were synthesized and added to cultures of primary mammary epithelial cells (Stampfer et al. 1980) or MCF-7 breast cancer cells (Soule and McGrath, 1980). Figure 12 is graph showing growth rate of human primary mammary epithelial cells (A), MCF-7 cells (B), retinal pigmented epithelial cells (C), cultured as described below. Points and bars represent the mean and the 95% confidence interval of triplicate counts of cells incubated with a single bolus of the indicated concentration of antisense or control sense deoxyribonucleotide.

The morphologic appearance of the cell lines was not noticeably changed by addition of antisense oligonucleotide, but the proliferative rate was faster. Incubation of cells with 40 uM anti-BRCA1 oligonucleotide produced accelerated growth of both normal (Figure 12A) and malignant mammary cells (Figure 12B), but did not affect the growth of human retinal pigmented epithelial cells (Figure 12C). An intermediate dose of anti-BRCA1 oligonucleotide produced a less pronounced but significant increase in cell growth rate. This was not a toxic effect of the oligonucleotide since a control "sense" oligomer with the same GC content did not increase the proliferation rate, and because an addition of a 10 fold excess of sense oligomer to the anti-BRCA1 oligomer reversed the growth activation.

In order to critically evaluate the function of BRCA1 gene inhibition on growth stimulation and cell cycle progression it was necessary to identify a gene whose expression is cell cycle regulated in human mammary cells. The gene encoding the M2 subunit of ribonucleotide reductase is amplified in conditions of nucleotide starvation (Hurta and Wright 1992) and as shown above, exhibits elevated levels of expression in premalignant breast disease. Because ribonucleotide reductase constitutes the rate limiting step in DNA synthesis, we reasoned that it might be cell cycle regulated in a

10

5

15

20

25

41

synchronous growth model such as MCF-7 cells which can be growth arrested by tamoxifen and then restimulated by estrogen (Aitken et al. 1985, Arteaga et al. 1989). MCF-7 cells were growth arrested by tamoxifen for 48 hours and then stimulated at time zero (0) with 1uM estradiol (+E) or control vehicle (-E). Inhibition of DNA synthesis by tamoxifen and induction of synthesis by estrogen were confirmed by nuclear labelling studies with tritiated thymidine.

Fig. 13 panels A and B show that transcription of the ribonucleotide reductase M2 gene is cell cycle regulated, inhibited by tamoxifen, and induced by estrogen. Fig. 13A is a Northern blot of mRNA from synchronized MCF-7 cells. At the indicated time in hours, total cellular RNA was isolated and Northern blotting performed using the 1.6 Kb Eco RI fragment from our cloned human ribonucleotide reductase cDNA described above. Two mRNA species of 1.6 and 3.4 Kb are observed in these studies.

Fig. 13B shows nuclear runon studies of synchronized MCF-7 cells were performed by our published methods (Holt et al 1988) employing the 1.6 Kb fragment of ribonucleotide reductase described above (RR); the 1.8 Kb fragment of Topoisomerase II (Topo) described in the Olsen et al. 1993); the 1.0 Kb cyclophilin gene (Thompson et al. 1994) used as a constitutive control; and 18S ribosomal RNA (Thompson et al. 1994). Con represents cells which were grown for 48 hours but not treated with tamoxifen.

Antisense inhibition is a useful strategy for studying gene expression which is dependent on expression of the antisense target gene (Robinson-Benion and Holt, in press, 1995), e.g. genes whose expression is directly or indirectly dependent on BRCA1 levels. Fig. 14 demonstrates that antisense inhibition of BRCA1 results in a corresponding increased expression of M2 ribonucleotide reductase mRNA. A nuclease protection assay of mRNA derived from primary mammary epithelial cells (lanes 1-4, 9-10) or MCF-7 cells (lanes 5-8, 11-12) cultured for 4 days with antisense or control oligonucleotide was performed under the following conditions: no oligonucleotide (lanes 1 and 5); 40uM antiBRCA1 (lanes 2,6,10,12); 4uM antiBRCA1 (lanes 3 and 7); 40uM sense control (lanes 4,8,9,11). Probes for BRCA1 and GAPD are as described for

5

10

15

20

25

10

15

20

25

Figure 10, and the ribonucleotide reductase M2 probe (RR) detects the 200 bp probe is described above.

Ribonucleotide reductase mRNA levels are highest in samples treated with 40 uM anti-BRCA1 oligonucleotide for both primary mammary epithelial cells and for MCF-7 cells (Fig. 14). Antisense inhibition of BRCA1 results in a 70-90% inhibition of mRNA levels in anti-BRCA1 treated cells compared with cells treated with the "sense" control oligonucleotide (compare lanes 9 and 10, Fig. 14). Note that MCF-7 cells have lower levels of BRCA1 than the normal mammary epithelial cells (compare lanes 1 and 5, Fig. 14) anti-BRCA 1 since the antisense inhibition may drop BRCA1 levels below a critical threshold which normally functions to inhibit growth.

## Methodology

Tissue samples. Freshly obtained breast biopsy or reduction mammoplasty specimens were frozen and then RNA was obtained following the microdissection method described above. Lesions were selected which were microlocalized and homogenous so that pure lesions could be obtained by 2 mm punches. Samples which had admixed normal epithelial, carcinoma-in-situ, or invasive cancer were not used for this study. Family history was obtained by chart review and/or interview to exclude familial breast cancer cases.

PCR primers were derived from BRCA1 Nuclease Protection Assays. forward number U14680); (Accession GenBank sequence CAATTGGGCAGATGTGT 3' and reverse 5' CTGGGGGATCTGGGGTATCA 3' which amplify a 113 bp region from exon 24: corresponding to bases 5587 to 5699 of the human BRCA1. This region was selected because this exon has not been reported to be differentially spliced unlike more 5' exons. The BRCA1 probe was cloned by subcloning this 113 bp band from normal human genomic DNA into PCRscriptSK and screening for correct orientation. One ug of mRNA from each tissue sample was hybridized with 32P-labelled, T7 polymerase-generated RNA probes for BRCA1 and human glyceraldehyde-3-phosphate dehydrogenase (GADP) which would produce expected protected fragments of 113 and 140 respectively. The construction and use of the GADP probe for RNA standardization has been described above. The probe for

ribonucleotide reductase M2 mRNA is the same as above and detects a 200 bp protected fragment.

Antisense oligonucleotide studies. Unmodified deoxyribonucleotide were analyzed by gel electrophoresis and UV shadowing and shown to be homogenous and of appropriate size. These oligonucleotide were purified by multiple lyophilization and solubilized in buffered media as described (Holt et al. 1988). Sequence of the unmodified antiBRCA1 oligonucleotide 5' AAGAGCAGATAAATCCAT 3' and the complementary sense oligonucleotide 5' ATGGATTTATCTGCTCTT 3' correspond to the presumed translation initiation site at bases 12-137 of the GenBank sequence. The antisense oligonucleotide sequence was searched against Genbank and no significant homologies were identified to genes except BRCA1. Oligonucleotides were used according to our published methods (Holt et al. 1988). Primary mammary epithelial cells were cultured in serum-free medium supplemented with epidermal growth factor, insulin, hydrocortisone, ethanolamine, phosphorylethanolamine, and bovine pituitary extract. MCF-7 cells were cultured in Minimum Essential Medium Eagle (Modified) with Earle's salts and 2g/L sodium bicarbonate m supplemented with 2mM Lglutamine, GMS-A (Gibco Cat. #680-1300AD), nonessential amino acids, and 2.5% fetal calf serum. Retinal pigmented perithelial cells were cultured in DMEM and 10% calf serum.

20

25

30

5

10

15

Our results indicate that the BRCA1 gene is expressed at higher levels in normal mammary cells than in breast cancer cells and that diminished expression of BRCA1 increased the proliferative rate of breast cells. This correlates well with the recent finding that patients with BRCA1 gene-linked hereditary breast cancer have tumors that grow more rapidly than comparable sporadic tumors (Marcus, J. et al. 1994). The decreased mRNA levels which were observed in sporadic breast cancers are not a consequence of differential splicing of the gene since the RNAs were quantitated with probes from the 3' end of the mRNA which is not a region where differential splicing is reported to occur (Miki, Y. et al 1994). Invasive sporadic cancers have BRCA1 mRNA levels which vary from 0 (in one case) to 20% of the levels observed in normal human mammary epithelium.

Examples 8 and 9 describe applications of the discovery of the function of the BRCA1 gene. Example 8 describes a gene therapy method and example 9 describes a drug screening method. The discovery of the diminished expression of the BRCA1 mRNA in breast cancer using the microdissection techniques of this invention provides an important scientific basis for these examples.

Example 8

5

10

15

20

25

Gene Therapy method based on determination of the function of the BRCA1 Gene

Viral vectors containing a DNA sequence that codes for a protein having an amino acid sequence as essentially set forth in SEQ ID NO:49 can be constructed using techniques that are well known in the art. This sequence includes the BRCA1 gene product. Viral vectors containing a DNA sequence essentially as set forth in SEQ ID NO:47 (the BRCA1 gene) can be also constructed using techniques that are well known in the art. Retroviral vectors, adenoviral vectors, or adeno-associated viral vectors are all useful methods for delivering genes into breast cancer cells. An excellent candidate for use in breast cancer gene therapy is a Moloney-based retroviral vector with a breast selective MMTV promoter which we have reported previously (Wong et al). The viral vector is constructed by cloning the DNA sequence essentially as set forth in SEQ ID:47 into a retroviral vector such as a breast selective vector. Most preferably, the full-length (coding region) cDNA for BRCA1 is cloned into the retroviral vector. The retroviral vector would then be transfected into virus producing cells in the following manner: Viruses are prepared by transfecting PA317 cells with retroviral vector DNAs which were purified as described in Wong et al. Following transfection, the PA317 cells are split and then treated with G418 until individual clones can be identified and expanded. Each clone is then screened for its titer by analyzing its ability to transfer G418 resistance (since the retroviral vector contains a Neomycin resistance gene). The clones which have the highest titer are then frozen in numerous aliquots and tested for sterility, presence of replication-competent retrovirus, and presence of mycoplasm. The methods generally employed for construction and production of retroviral vectors have been described in Muller, 1990.

Once high titer viral vector producing clones have been identified, then patients with breast cancer can be treated by the following protocol: Viral vector expressing

45

BRCA1 is infused into either solid tumors or infused into malignant effusions as a means for altering the growth of the tumor (since it is shown above that the BRCA1 gene product decreases the growth rate of breast cancer cells). Because viral vectors can efficiently transduce a high percentage of cancer cells, the tumors would be growth inhibited.

Example 9

Method of Screening Compounds Capable of Activating Promoter Region of the BRCA1 Gene

The discovery of the function of the BRCA1 gene provides a clear utility in that induction of expression of the gene and the resulting increase in level of protein encoded by the gene in the breast cancer cell should slow the proliferation of the breast cancer cells. Induction of expression of the gene can be caused by administering a compound to a patient that stimulates the regulatory regions of this gene, such as the promoter.

15

20

5

10

A method for screening compounds that activate the promoter of the BRCA1 gene is designed in the following way. A promoter sequence is a DNA segment that upregulates the expression of a gene. A sequence essentially as set forth in SEQ ID NO:48 can be ligated into a suitable vector, such as a plasmid, that contains a reporter gene using standard recombinant DNA techniques of restriction enzyme digests, ligation of fragment into vector, and transformation of bacteria. SEQ ID NO:48 includes the promoter sequence of the BRCA1 gene. A reporter gene is a gene that produces a readily detectable product. Examples of appropriate reporter genes which could be employed for this purpose include Beta-galactosidase or the chloramphenicol acetyltransferase gene.

25

30

The BRCA1 promoter/reporter gene combination can then be cloned into an expression vector or viral vector by standard recombinant DNA methods. Breast cancer cells can then be transfected with the expression vector containing the BRCA1 promoter/reporter gene using standard transfection methods which we have reported previously (Holt et al. PNAS 1986). A stable transformant with appropriate low level expression (breast cancer cells have low level BRCA1 expression as shown above) will be identified and then characterized to demonstrate proper DNA integration and

10

15

20

25

expression. Methods of establishing and characterizing stable transformants have been described (Holt. MCB, 1994). Once an appropriate stable transformant cell line is identified, then we can plate the cell line in a manner than permits screening of hundreds or thousands of drugs or biological agents (for example in multiple 96 well microtiter plates). Level of expression of the reporter gene can be quantitated and agents which activate expression are thus identified. A positive result (i.e. induction of the promoter region) results in increased levels of the reporter gene resulting in either an increase in color (Beta-galactosidase assay) or specific radioactivity (Chloramphenicol acetyltransferase activity) through a reaction between the protein encoded by the reporter gene and a compound in the reaction medium. The compound produced by the reaction between the reporter gene protein and the compound in the reaction medium is the cause of the increase in color or specific radioactivity. These compounds can be called indicator compounds in that their presence indicates that the drug or biologial agent activitated the BRCA1 promoter. Methods for standardizing and performing Beta-galactosidase or chloramphenicol acetyltransferase assays have been reported (Holt et. al. MCB 1994). This method would be useful for initial screening of agents which increase BRCA1 expression. These agents could then be tested in more rigorous assays of breast cancer growth such as nude mouse tumor assays (Arteaga et al). This approach allows mass screening of large numbers of agents, sparing more rigorous animal tests for only promising compounds which score in the reporter gene assay described herein.

Thus, although there have been described particular embodiments of the present invention of a new and useful "Method for Detection and Treatment of Breast Cancer", it is not intended that such embodiments be construed as limitations upon the scope of this invention except as set forth in the following claims. It will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. For example, the above described techniques may be used in the diagnosis of other diseases and detection of differential genetic expression from microscopically-directed tissue samples of pathologic tissue. The production of a cDNA library produced as a result of the differential expression of genes in pathologic tissue in comparison to normal tissue provides the opportunity for

further adiagnostic capabilities. Further, although there have been described certain experimental conditions used in the preferred embodiment, it is not intended that such conditions be construed as limitations upon the scope of this invention except as set forth in the claims.

5

The following references are included to provide details of scientific technology herein incorporated by reference to the extent that they provide additional information for the purposes of indicating the background of the invention or illustrating the state of the art.

10

#### REFERENCES

Abendroth, C. S., H. H. Wang, et al. 1991. Comparative features of carcinoma in situ and atypical ductal hyperplasia of the breast on fine-needle aspiration biopsy specimens. Am J Clin Pathol 96(5): 654-659.

15

Aitken, S.C. & Lippman, M.E. Effect of estrogens and antiestrogens on growth-regulatory enzymes in human breast cancer cells in tissue culture. *Cancer Res.* 45, 1611-1620 (1985).

Ala-Kokko, L., S. Kontusaari, C. T. Baldwin, H. Kuivaniemi, D. J. Prockop. 1991. Structure of cDNA clones coding for the entire preproalpha I (III) chain of human type III procollagen. Biochemical Journal 260, 509-516.

20

Allred, D. C., G. M. Clark, et al. 1992. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 23(9): 974-979.

25

Arteaga, C.L. et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84, 1418-1423 (1989).

25

Betsill, WL, Jr., PP Rosen, PH Lieberman, and GF Robbins. 1978. Intraductal carcinoma. Long term follow-up after biospy only. J.A.M.A. 239:1863-1867.

30

Böcker, W., B. Bier, et al. 1992. An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part II: Epitheliosis and ductal carcinoma in situ. Virchows Arch A Pathol Anat Hispathol 421: 323-330.

10

15

20

25

Callahan R, CS Cropp, GR Merlo, DS Liscia, APM Cappa, and R. Lidereau. 1992. Somatic mutations and human breast cancer. Cancer 69:1582-86.

Carter D, RRL Smith. 1977. Carcinoma in situ of the breast. Cancer 40:1189-1193.

Castilla, L.C. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. *Nature Genet* 8, 387-391 (1994).

Cheickh MB, P Rouanet, G Louason, P Jeanteur, and C Theillet. 1992. An attempt to define sets of cooperating genetic alterations in human breast cancer. Int. J. Cancer 51:542-547.

Chen L-C, W Kurisu, B-M Ljung, ES Goldman, Dmorre II, and HS Smith. 1992. Heterogeneity for allelic loss in human breast cancer. JNCI 84:506-510.

Dupont, WD, Parl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, Schuyler PA, Plummer WD: Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 71:1258-1265, 1993.

Dupont WD, and DL Page. 1985. Risk factors for breast cancer in women with proliferative breast disease. N.Engl.J.Med. 312:146-151.

Dupont WD, DL Page, LW Rogers, and FF Parl. 1989. Influence of exogenous estrogens, proliferative breast disease, and other variables on breast cancer risk. Cancer 63:948-957.

Fentiman, I. S. 1992. Ductal carcinoma in situ. BMJ 304: 1261-1262.

Fisher, E. R. and R. Siderit .1992. Value of cytometric analysis for distinction of intraductal carcinoma of the breast. Breast Cancer Res Treat 21: 165-172.

Friedman, L.S. et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. *Nature Genet* 8, 399-404 (1994).

Futreal, A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120-122 (1994).

Hall, J.M. et al. Linkage of early-onset breast cancer to chromosome 17q21. Science 250, 1684-1689 (1990).

Hammond SL, RG Ham, and MR Stampfer. 1984. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435-5439.

Harlow E, D Lane. 1988. Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory Press.

Holt JT, RA Jensen, and DL Page. Histopatholoy: Old Principles and new methods. 1994. Cancer Surveys. In Press.

Holt, JT. Antisense rescue defines specialized and generalized functional domains for c-fos protein. 1993. Molecular and Cellular Biology 13, 3821-3830.

Holt, J.T., Redner, R.L., and Nienhuis, A.W. An oligomer complementary to c-myc mRNA inhibits proliferation of H-60 promyelocytic cells and induces differentiation. *Mol. Cell. Biol* 8, 963-973 (1988).

Hurta, RAR, J. A. Wright. 1992. Alteration in the activity and regulation of mammalian ribonucleotide reductase by a DNA damaging agent. Journal of Biological Chemistry 267, 7066-7071.

Hurta, RAR, S. K. Samuel, A. H. Greenberg, J. A. Wright. 1991. Early induction of ribonucleotide reductase gene expression by TGF-beta1 in malignant Ras transformed cell lines. Journal of Biological Chemistry 266, 24097-24100.

Jensen, RA, DL Page, and JT Holt. Identification of genes expressed in pre-malignant breast disease by microscopically-directed cloning. Proc. Natn. Acad. Sci. U.S.A. 91, 9257-9261 (1994).

Killeen, J. L. and H. Namiki .1991. DNA analysis of ductal carcinoma in situ of the breast: A comparison with histologic features. Cancer 68: 2602-2607.

Komitowski D, and C. Janson. 1990. Quantitative features of chromatin structure in the prognosis of breast cancer. Cancer 65:2725-2730.

Lawrence, G. 1991. Evaluation of treatment options for ductal carcinoma in situ of the breast. Arch Surg 126: 1541-1541.

Lennington, WJ, RA Jensen, LW Dalton, and DL Page. Ductal carcinoma in situ of the breast. Cancer 73: 118-124, 1994.

10

5

15

20

25

10

15

20

25

Liang P, and AB Pardee. 1992. Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science 257:967-971.

Liang P, L Averboukh, K Keyomarsi, R Sager, and AB Pardee. 1992. Differential display and cloning of messenger RNAs from human breast cancers versus mammary epithelial cells. Cancer 52:6966-6968.

Lippman SM, JS Lee, R Lotan, W Hittelman, MJ Wargovich, and WK Hong. 1990. Biomarkers as intermediate endpoints in chemoprevention trials. JNCI 82:555-560.

London SJ, JL Connolly, SJ Schnitt, and GA Colditz. 1991. A prospective study of benign breast disease and risk of breast cancer. JAMA 267:941-944.

Maguire, H. J., M. E. Hellman, et al. 1992. Expression of c-erbB-2 in in situ and in adjacent invasive ductal adenocarcinomas of the female breast. Pathobiology 60: 117-121.

Marcus, J.N., Watson, P., Page, D.L. & Lynch, H.T. Pathology and heredity of breast cancer in younger women. J. Nat. Cancer Inst. Monograph No. 16, 23-34 (1994).

Melton, D.A., D.A. Krieg, M.R. Rebagliati, T. Flaniatis, K. Zinn, and M.R. Green. 1984. SP6 RNA polymerase. Nucleic.Acid.Res. 12:7035-7056.

Miki, Y, et al. A strong candidate gene for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66-71 (1994).

Narod, S.A. et al. A heterogeneity analysis of 145 breast-ovarian cancer families. Am. J. Human Genet. (In Press)

Olsen, J.E., Winston, J.T., Whitlock, J.A., and Pledger, W.J. Cell cycle-dependent gene expression in V point-arrested Balb c 3T3 cells. *J. Cell. Phys.* 154, 333-342 (1993).

Ottesen, G. L., H. P. Graversen, et al. 1992. Ductal carcinoma in situ of the female breast: Short-term results of a prospective nationwide study. Am J Surg Pathol 16: 1183-1196.

Page DL, WD Dupont, LW Rogers, and M Landenberger. 1982. Intraductal carcinoma. Follow-up after biopsy only. Cancer 49:751-758.

Page DL, WD Dupont, LW Rogers, and MS Rados. 1985. Atypical hyperplastic lesions of the female breast. A long term follow-up study. cancer 55:2698-2708.

Page, D.L. & Dupont, W.D. A typical hyperplastic lesions of the female breast. A long term follow up study. Cancer 66, 1326-1335 (1990).

Page DL, TE Kidd, WD Dupont, JF Simpson, and LW Rogers. 1991. Lobular neoplasia of the breast: higher risk for subsequent invasion predicted by more extensive disease. Hum Pathol. 22:1232-1239.

Page DL, R Vander Zwaag, LW Rogers, LT Williams, WE Alker, and WH Hartman. 1978. Relation between component parts of fibrocystic disease complex and breast cancer. J.Natl. Cancer Inst. 61:1055-1063.

Pavloff, N., D. Rivard, S. Masson, S. H. Shen, A. M. Mes-Masson. 1992. Sequence analysis of the large and small subunits of human ribonucleotide reductase. DNA Sequence 2, 227-234.

Pierce, S. M., S. J. Schnitt, et al. 1992. What to do about mammographically detected ductal carcinoma in situ? Cancer 70: 2576-2578.

Poller, D. N., C. E. Hutchings, et al. 1992. p53 Protein expression in human breast carcinoma: Relationship to expression of epidermal growth factor receptor, c-erbB-2 protein overexpression, and oestrogen receptor. Br J Cancer 66: 583-588.

Poller, DN, EC Roberts, JA Bell, CW Elston, RW Blamey, and IO Ellis. p53 expression in mammary ductal carcinoma in situ: relationship to immunohistochemical expression of estrogen receptor and cerbB2 protein. Human Pathology 1993, 24:463-468.

Posner, M. C. and N. Wolmark 1992. Non-invasive breast carcinoma. Breast Cancer Res Treat 21: 155-164.

Radford DM, K Fair, AM Thompson, JH Ritter, M Holt, T Steinbrueck, W Wallace, Wells SA Jr, and HR Donis-Keller. Allelic loss on chromosome 17 in ductal carcinoma in situ of the breast. Cancer Res 1993, 53:2947-2950.

Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.

10

15

20

25

Sambrook J, EF Fritsch, T Maniatis. 1989. Molecular Cloning Laboratory Manual, 2d Edition. Cold Spring Harbor Laboratory Press.

Sanchez LM, F Vizoso, I Diez-Itza, C Lopez-Otin. 1992. Cancer Res 32:95-100.

Schnitt, SJ, JL Connolly, FA Tavassoli, et al. 1992. Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am.J. Surg. Pathol. 16:1133-1143.

Schwartz, G. F., G. C. Finkel, et al. 1992. Subclinical ductal carcinoma in situ of the breast: Treatment by local excision and surveillance alone. Cancer 70: 2468-2474.

Simard, J. et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. *Nature Genet* 8, 392-398 (1994).

Simpson, T., R. C. Thirlby, et al. 1992. Surgical treatment of ductal carcinoma in situ of the breast: 10- to 20-year follow-up. Arch Surg 127: 468-472.

Solin, L. J., A. Recht, et al. 1991. Ten-year results of breast-conserving surgery and definitive irradiation for intraductal carcinoma (ductal carcinoma in situ) of the breast. Cancer 68: 2337-2344.

Soule, H.D. & McGrath, C.M. Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters 10, 177-189 (1980).

Stampfer, M., Hallowes, R.C., & Hackett, A.J. Growth of normal human mammary cells in culture. In Vitro 16, 415-425 (1980).

Swain, S. M. 1992. Ductal carcinoma in situ. Cancer Invest 10: 443-454.

Tsuda H, K Iwaya, T Fukutomi, S Hirohashi. p53 mutations and c-erbB2 amplification in intraductal and invasive breast carcinomas of high histologic grade. Jpn J Cancer Res 1993, 84:394-401.

Thompson, M.E., Valentine, D.L., Strada, S.J., Wagner, J.A., and Scammell, J.G. Transcriptional regulation of secretogranin II and chromogranin B by cyclic AMP in a rat pheochromocytoma cell line. *Mol. Pharmacol.* 880-889 (1994).

Ward, B. A., C. F. McKhann, et al. 1992. Ten-year follow-up of breast carcinoma in situ in Connecticut. Arch Surg 12: 1392-1395.

10

15

20

25

Weed DL, P Greenwald, and JW Cullem. 1990. The future of cancer prevention and control. Semin.Oncol. 17:504-509.

Wellings SR, HM Jensen, and RG Marcum. 1975. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J.Natl. Cancer Inst. 55:231-273.

# ADDITIONAL DESCRIPTION OF THE FIGURES

Figure 2: Model for premalignant conditions, highlighting magnitude of risk for progression to clinical malignancy. Terms from human breast neoplasia are used: no proliferative disease (No Pro), proliferative disease without alypia (PDWA), typical hyperplasia (AH), carcinoma in situ (CIS). As is proposal of tumor progression each stage is more likely to proceed to the next (dotted lines), but could also remain stable (horizontal lines, probably fairly frequent), or directly proceed to develop a clone of cells with malignant behavior (vertical lines, becoming more likely further to right.)

Figure 5: Differential display of cDNAs obtained from patient tissue samples and controls. Rescued cDNA library samples were used as templates for low stringency PCR with the primers 5'GATGAGTTCGTGTCCGTACAACTGG3' and 5' GGTTATCGAAATCAGCCACAGCGCC3'; 40 cycles were performed at conditions described above. Samples (See legend to Figure 4): Lane 1 - #12; Lanes 2 and 3: separate phage rescues of NL1 to show reproducibility of the assay; Lane 4 - #8; Lane 5 - #10; Lane 6 - #10CA; Lane 7 - control from the rescued phage vector without cDNA inserts. Arrows mark cDNAs which are overexpressed in DCIS versus normal. Arrowheads mark cDNAs which are differentially expressed in the invasive cancer (note this may reflect contamination from stromal cells). The bar marks a cDNA which is expressed in normal breast cells at higher levels than in DCIS or invasive cancer.

Figure 7: Expression of DCIS-1 mRNA in tissue mRNA samples analyzed by RNase protection assay. Probes: GADH probe and DCIS-1 clone probe which was generated by linearizing the rescued plasmid with Pvu II and should generate a 200 bp protected fragment. RNA samples were labeled as in the legend to Figure 4.

)

|            | SEGUENCE DISTURGS                                    |
|------------|------------------------------------------------------|
|            | (1) GENERAL INFORMATION:                             |
| (i)        | APPLICANT: HOLT, JEFFREY T.                          |
| <b>(-)</b> | JENSEN, ROY A.                                       |
|            | PAGE, DAVID L.                                       |
|            | OBERMILLER, PATRICE S.                               |
|            | ROBINSON-BENION, CHERYL L.                           |
|            | THOMPSON, MARILYN E.                                 |
| (ii)       | TITLE OF INVENTION: METHOD FOR DETECTION AND         |
|            | TREATMENTS OF BREAST CANCER                          |
| (iii)      | NUMBER OF SEQUENCES: 49                              |
| (iv)       | CORRESPONDENCE ADDRESS:                              |
| , ,        | (A) ADDRESSEE: I.C. WADDEY, JR.                      |
|            | (B) STREET: 27TH FLOOR, L & C TOWER, 401 CHURCH      |
|            | (C) CITY: NASHVILLE                                  |
|            | (D) STATE: TENNESSEE                                 |
|            | (E) COUNTRY: USA                                     |
|            | (F) ZIP: 37219                                       |
| (v)        | COMPUTER READABLE FORM:                              |
|            | (A) MEDIUM TYPE: Diskette, 3.50 inch, 800 kB storage |
|            | (B) COMPUTER: IBM PC/XT/AT compatible                |
|            | (C) OPERATING SYSTEM: MS-DOS (version 5.0)           |
|            | (D) SOFTWARE: WordPerfect 5.1/WordPerfect Editor     |
| (vi)       | CURRENT APPLICATION DATA:                            |
|            | (A) APPLICATION NUMBER:                              |
|            | (B) FILING DATE:                                     |
|            | (C) CLASSIFICATION:                                  |
| (vii)      | PRIOR APPLICATION DATA:                              |
|            | (A) APPLICATION NUMBER: U.S. 08/182,961              |
|            | (B) FILING DATE: 14 JAN 1994                         |

**(B)** 

| (viii) | ATTO | RNEY/AGENT INFORMATION:                             |  |  |  |
|--------|------|-----------------------------------------------------|--|--|--|
|        | (A)  | NAME: I.C. WADDEY, JR.                              |  |  |  |
|        | (B)  | REGISTRATION NUMBER: 25,180                         |  |  |  |
|        | (C)  | REFERENCE/DOCKET NUMBER: 0216-9409                  |  |  |  |
| (ix)   | TELE | COMMUNICATION INFORMATION (O):                      |  |  |  |
|        | (A)  | TELEPHONE: (615) 242-2400                           |  |  |  |
|        | (B)  | TELEFAX: (615) 242-2221                             |  |  |  |
|        | (C)  | TELEX:                                              |  |  |  |
|        | (2)  | INFORMATION FOR SEQ ID NO:1:                        |  |  |  |
| (i)    | SEQU | JENCE CHARACTERISTICS:                              |  |  |  |
|        | (A)  | LENGTH: 264                                         |  |  |  |
|        | (B)  | TYPE: nucleic acid                                  |  |  |  |
|        | (C)  | STRANDEDNESS: double                                |  |  |  |
|        | (D)  | TOPOLOGY: linear                                    |  |  |  |
| (ii)   | MOL  | ECULE TYPE: cDNA to mRNA                            |  |  |  |
| (iii)  | HYP  | OTHETICAL: no                                       |  |  |  |
| (iv)   | ANT  | ANTI-SENSE: no                                      |  |  |  |
| (v)    | ORIC | SINAL SOURCE                                        |  |  |  |
|        | (A)  | ORGANISM: Homo sapiens sapiens                      |  |  |  |
|        | (C)  | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS       |  |  |  |
|        | (D)  | DEVELOPMENTAL STAGE: adult                          |  |  |  |
|        | (F)  | TISSUE TYPE: female breast                          |  |  |  |
|        | (G)  | CELL TYPE: ductal carcinoma in situ                 |  |  |  |
|        | (H)  | CELL LINE: not derived from a cell line             |  |  |  |
|        | (I)  | ORGANELLE: no                                       |  |  |  |
| (vii)  | IMN  | MEDIATE SOURCE:                                     |  |  |  |
|        | (A)  | LIBRARY: cDNA library derived from human            |  |  |  |
|        | (B)  | CLONE: obtained from identification of differential |  |  |  |
|        |      | gene expression                                     |  |  |  |

| (viii)       | POSIT                                                          | TON IN GENOME:                                                                                                                                                                                                              |  |  |  |
|--------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | (A)                                                            | CHROMOSOME/SEGMENT: unknown                                                                                                                                                                                                 |  |  |  |
|              | (B)                                                            | MAP POSITION: unknown                                                                                                                                                                                                       |  |  |  |
|              | (C)                                                            | UNITS: unknown                                                                                                                                                                                                              |  |  |  |
| (ix)         | FEAT                                                           | URE:                                                                                                                                                                                                                        |  |  |  |
|              | (A)                                                            | NAME/KEY: DCIS-1                                                                                                                                                                                                            |  |  |  |
|              | <b>(B)</b>                                                     | LOCATION: GenBank accession no. L2736                                                                                                                                                                                       |  |  |  |
|              | (C)                                                            | IDENTIFICATION METHOD: microscopically-directed                                                                                                                                                                             |  |  |  |
|              |                                                                | sampling and differential display                                                                                                                                                                                           |  |  |  |
|              | (D)                                                            | OTHER INFORMATION: gene encoding M2 subunit of                                                                                                                                                                              |  |  |  |
|              |                                                                | humanribonucleotide reductase                                                                                                                                                                                               |  |  |  |
| (x)          | PUBI                                                           | ICATION INFORMATION: unpublished                                                                                                                                                                                            |  |  |  |
|              | (K)                                                            | RELEVANT RESIDUES IN SEQ ID NO: 1                                                                                                                                                                                           |  |  |  |
| (xi)         | SEQU                                                           | JENCE DESCRIPTION: SEQ ID NO:1:                                                                                                                                                                                             |  |  |  |
| AGTTCAGAGC A | AGGCCGCCAC C<br>AGCTTGGCGT A<br>CCACACACAACA T<br>CTAACTCACA I | CCCCCACTG TGCCGAATTC CTGCATGCGG GGGATCCACT 60 CGTAGGACT CCAGCTITTG TTCGTTCCCT TTAGTGAGGG 120 ATCATGGTC ATAGCTGTTT CCTGTGGAA ATTGTTATCC 180 ACGAGCCGG AAGCATAAAA GTGTAAAGCC TGGGGTGCCT 240 TAA 264 DRMATION FOR SEQ ID NO:2: |  |  |  |
| (i)          | SEQ                                                            | SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                   |  |  |  |
|              | (A)                                                            | LENGTH: 73                                                                                                                                                                                                                  |  |  |  |
|              | <b>(B)</b>                                                     | TYPE: nucleic acid                                                                                                                                                                                                          |  |  |  |
|              | (C)                                                            | STRANDEDNESS: double                                                                                                                                                                                                        |  |  |  |
|              | <b>(</b> D)                                                    | TOPOLOGY: linear                                                                                                                                                                                                            |  |  |  |
| (ii)         | MOI                                                            | ECULE TYPE: cDNA to mRNA                                                                                                                                                                                                    |  |  |  |
| (iii)        | HYP                                                            | HYPOTHETICAL: no                                                                                                                                                                                                            |  |  |  |
| (iv)         | ANT                                                            | ANTI-SENSE: no                                                                                                                                                                                                              |  |  |  |
| (v)          | ORI                                                            | GINAL SOURCE                                                                                                                                                                                                                |  |  |  |
|              | ORG                                                            | ANISM: Homo sapiens sapiens                                                                                                                                                                                                 |  |  |  |
|              | (C)                                                            | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS                                                                                                                                                                               |  |  |  |
|              | (D)                                                            | DEVELOPMENTAL STAGE: adult                                                                                                                                                                                                  |  |  |  |
|              | <b>(F)</b>                                                     | TISSUE TYPE: female breast                                                                                                                                                                                                  |  |  |  |
|              | , ,                                                            |                                                                                                                                                                                                                             |  |  |  |

|                | (G)                                 | CELL TYPE: ductal carcinoma in situ                      |  |  |  |
|----------------|-------------------------------------|----------------------------------------------------------|--|--|--|
|                | (H)                                 | CELL LINE: not derived from a cell line                  |  |  |  |
|                | (I)                                 | ORGANELLE: no                                            |  |  |  |
| (vii)          | IMMI                                | EDIATE SOURCE:                                           |  |  |  |
|                | (A)                                 | LIBRARY: cDNA library derived from human                 |  |  |  |
|                | (B)                                 | CLONE: obtained from identification of differential gene |  |  |  |
| expression     |                                     |                                                          |  |  |  |
| (viii)         | POSIT                               | ΠΟΝ IN GENOME:                                           |  |  |  |
|                | (A)                                 | CHROMOSOME/SEGMENT: unknown                              |  |  |  |
|                | (B)                                 | MAP POSITION: unknown                                    |  |  |  |
|                | (C)                                 | UNITS: unknown                                           |  |  |  |
| (ix)           | FEAT                                | URE:                                                     |  |  |  |
|                | (A)                                 | NAME/KEY: DCIS-2                                         |  |  |  |
|                | (B)                                 | LOCATION: GenBank accession no. L27637                   |  |  |  |
|                | (C)                                 | IDENTIFICATION METHOD: microscopically-directed          |  |  |  |
|                | sampl                               | ing and differential display                             |  |  |  |
| (x)            | PUBL                                | LICATION INFORMATION: unpublished                        |  |  |  |
|                | (K)                                 | RELEVANT RESIDUES IN SEQ ID NO: 2                        |  |  |  |
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 2: |                                                          |  |  |  |
|                | AAATAG C                            | CACAGCGCC TCTTCACTAT CAGCAGTACG CCGCCCAGTT 60            |  |  |  |
| GTACGGACAC GGA | (2)                                 | INFORMATION FOR SEQ ID NO:3:                             |  |  |  |
| (i)            | SEQU                                | JENCE CHARACTERISTICS:                                   |  |  |  |
|                | (A)                                 | LENGTH: 46                                               |  |  |  |
|                | (B)                                 | TYPE: nucleic acid                                       |  |  |  |
|                | (C)                                 | STRANDEDNESS: double                                     |  |  |  |
|                | (D)                                 | TOPOLOGY: linear                                         |  |  |  |
| (ii)           | MOL                                 | ECULE TYPE: cDNA to mRNA                                 |  |  |  |
| (iii)          | HYPOTHETICAL: no                    |                                                          |  |  |  |
| (iv)           | ANTI-SENSE: no                      |                                                          |  |  |  |
| (v)            | ORIGINAL SOURCE                     |                                                          |  |  |  |
|                | (A)                                 | ORGANISM: Homo sapiens sapiens                           |  |  |  |

|              | (C)              | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS                   |
|--------------|------------------|-----------------------------------------------------------------|
|              | (D)              | DEVELOPMENTAL STAGE: adult                                      |
|              | <b>(F)</b>       | TISSUE TYPE: female breast                                      |
|              | (G)              | CELL TYPE: ductal carcinoma in situ                             |
|              | (H)              | CELL LINE: not derived from a cell line                         |
|              | (I)              | ORGANELLĖ: no                                                   |
| (vii)        | IMM              | EDIATE SOURCE:                                                  |
|              | (A)              | LIBRARY: cDNA library derived from human                        |
|              | (B)              | CLONE: obtained from identification of differential gene        |
| expression   |                  |                                                                 |
| (viii)       | POS              | ITION IN GENOME:                                                |
|              | (A)              | CHROMOSOME/SEGMENT: unknown                                     |
|              | <b>(B)</b>       | MAP POSITION: unknown                                           |
|              | (C)              | UNITS: unknown                                                  |
| (ix)         | FEA              | TURE:                                                           |
|              | (A)              | NAME/KEY: DCIS-3                                                |
|              | (B)              |                                                                 |
|              | (C)              | IDENTIFICATION METHOD: microscopically-directed                 |
|              |                  | pling and differential display                                  |
| (x)          | PU               | BLICATION INFORMATION: unpublished                              |
|              | (K)              |                                                                 |
| (xi)         | SEQ              | UENCE DESCRIPTION: SEQ ID NO: 3:                                |
| TGCCCGATGT G | 161CGTAC#<br>(2) | A ACTEGECECTE TEGETER TO CERTAR 46 INFORMATION FOR SEQ ID NO:4: |
| (i)          | SE               | QUENCE CHARACTERISTICS:                                         |
|              | (A)              | LENGTH: 72                                                      |
|              | <b>(B)</b>       | TYPE: nucleic acid                                              |
|              | (C)              | STRANDEDNESS: double                                            |
|              | (D               | TOPOLOGY: linear                                                |
| (ii)         | M                | OLECULE TYPE: cDNA to mRNA                                      |
| (iii)        | H                | YPOTHETICAL: no                                                 |
| (iv)         | ΑÌ               | NTI-SENSE: no                                                   |

| (v)           | ORIG       | INAL SOURCE                                              |  |  |  |  |  |
|---------------|------------|----------------------------------------------------------|--|--|--|--|--|
|               | (A)        | ORGANISM: Homo sapiens sapiens                           |  |  |  |  |  |
|               | (C)        | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS            |  |  |  |  |  |
|               | (D)        | DEVELOPMENTAL STAGE: adult                               |  |  |  |  |  |
|               | (F)        | TISSUE TYPE: female breast                               |  |  |  |  |  |
|               | (G)        | CELL TYPE: ductal carcinoma in situ                      |  |  |  |  |  |
|               | (H)        | CELL LINE: not derived from a cell line                  |  |  |  |  |  |
|               | (I)        | ORGANELLE: no                                            |  |  |  |  |  |
| (vii)         | IMM        | EDIATE SOURCE:                                           |  |  |  |  |  |
|               | (A)        | LIBRARY: cDNA library derived from human                 |  |  |  |  |  |
|               | (B)        | CLONE: obtained from identification of differential gene |  |  |  |  |  |
| expression    |            |                                                          |  |  |  |  |  |
| (viii)        | POSI       | TION IN GENOME:                                          |  |  |  |  |  |
|               | (A)        | CHROMOSOME/SEGMENT: unknown                              |  |  |  |  |  |
|               | (B)        | MAP POSITION: unknown                                    |  |  |  |  |  |
|               | (C)        | UNITS: unknown                                           |  |  |  |  |  |
| (ix)          | FEATURE:   |                                                          |  |  |  |  |  |
|               | (A)        | NAME/KEY: DCIS-4                                         |  |  |  |  |  |
|               | <b>(B)</b> | LOCATION: L27640                                         |  |  |  |  |  |
|               | (C)        | IDENTIFICATION METHOD: microscopically-directed          |  |  |  |  |  |
|               | samp       | ling and differential display                            |  |  |  |  |  |
| (x)           | PUB        | LICATION INFORMA'TION: unpublished                       |  |  |  |  |  |
|               | (K)        | RELEVANT RESIDUES IN SEQ ID NO: 4                        |  |  |  |  |  |
| (xi)          | SEQ        | UENCE DESCRIPTION: SEQ ID NO: 4:                         |  |  |  |  |  |
|               | CGTGTCC    | GTACAACIGG GGCGCTGIGG CIGATITCGA TANNNNNAGC 60 72        |  |  |  |  |  |
| ATCAGCCEGA EG | (2)        | INFORMATION FOR SEQ ID NO:5:                             |  |  |  |  |  |
| (i)           | SEQ        | UENCE CHARACTERISTICS:                                   |  |  |  |  |  |
| .,            | (A)        | LENGTH: 84                                               |  |  |  |  |  |
|               | (B)        | TYPE: nucleic acid                                       |  |  |  |  |  |
|               | (C)        | STRANDEDNESS: double                                     |  |  |  |  |  |
|               | (D)        | TOPOLOGY: linear                                         |  |  |  |  |  |

| (11)           | MOLECULE TYPE: CDNA to mikina |                                                          |  |  |
|----------------|-------------------------------|----------------------------------------------------------|--|--|
| (iii)          | HYPOTHETICAL: no              |                                                          |  |  |
| (iv)           | ANTI-SENSE: no                |                                                          |  |  |
| (v)            | ORIGINAL SOURCE               |                                                          |  |  |
|                | (A)                           | ORGANISM: Homo sapiens sapiens                           |  |  |
| •              | (C)                           | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS            |  |  |
|                | (D)                           | DEVELOPMENTAL STAGE: adult                               |  |  |
|                | (F)                           | TISSUE TYPE: female breast                               |  |  |
|                | (G)                           | CELL TYPE: ductal carcinoma in situ                      |  |  |
|                | (H)                           | CELL LINE: not derived from a cell line                  |  |  |
|                | (I)                           | ORGANELLE: no                                            |  |  |
| (vii)          | IMMI                          | EDIATE SOURCE:                                           |  |  |
|                | (A)                           | LIBRARY: cDNA library derived from human                 |  |  |
|                | <b>(B)</b>                    | CLONE: obtained from identification of differential gene |  |  |
| expression     |                               |                                                          |  |  |
| (viii)         | POST                          | TION IN GENOME:                                          |  |  |
|                | (A)                           | CHROMOSOME/SEGMENT: unknown                              |  |  |
|                | <b>(B)</b>                    | MAP POSITION: unknown                                    |  |  |
|                | (C)                           | UNITS: unknown                                           |  |  |
| (ix)           | FEAT                          | TURE:                                                    |  |  |
|                | (A)                           | NAME/KEY: DCIS-5                                         |  |  |
|                | <b>(B)</b>                    | LOCATION: L27641                                         |  |  |
|                | (C)                           | IDENTIFICATION METHOD: microscopically-directed          |  |  |
|                | samp                          | ling and differential display                            |  |  |
| (x)            | PUB                           | LICATION INFORMATION: unpublished                        |  |  |
|                | (K)                           | RELEVANT RESIDUES IN SEQ ID NO: 5                        |  |  |
| (xi)           | SEQ                           | UENCE DESCRIPTION: SEQ ID NO: 5:                         |  |  |
|                |                               | GCCACAGCGC CTAACTTCTG CAGAAGCCTT TGACCATCAC 60           |  |  |
| CAGTTGTACG GAC | (2)                           | INFORMATION FOR SEQ ID NO:6:                             |  |  |
|                | \ · /                         |                                                          |  |  |

| (i)        | SEQUENCE CHARACTERISTICS:                                    |
|------------|--------------------------------------------------------------|
|            | (A) LENGTH: 99                                               |
|            | (B) TYPE: nucleic acid                                       |
|            | (C) STRANDEDNESS: double                                     |
|            | (D) TOPOLOGY: linear                                         |
| (ii)       | MOLECULE TYPE: cDNA to mRNA                                  |
| (iii)      | HYPOTHETICAL: no                                             |
| (iv)       | ANTI-SENSE: no                                               |
| (v)        | ORIGINAL SOURCE                                              |
|            | (A) ORGANISM: Homo sapiens sapiens                           |
|            | (C) INDIVIDUAL/ISOLATE: sample of non-comedo DCIS            |
|            | (D) DEVELOPMENTAL STAGE: adult                               |
|            | (F) TISSUE TYPE: female breast                               |
|            | (G) CELL TYPE: ductal carcinoma in situ                      |
|            | (H) CELL LINE: not derived from a cell line                  |
|            | (I) ORGANELLE: no                                            |
| (vii)      | IMMEDIATE SOURCE:                                            |
|            | (A) LIBRARY: cDNA library derived from human                 |
|            | (B) CLONE: obtained from identification of differential gene |
| expression |                                                              |
| (viii)     | POSITION IN GENOME:                                          |
|            | (A) CHROMOSOME/SEGMENT: unknown                              |
|            | (B) MAP POSITION: unknown                                    |
|            | (C) UNITS: unknown                                           |
| (ix)       | FEATURE:                                                     |
|            | (A) NAME/KEY: DCIS-6                                         |
|            | (B) LOCATION: L27642                                         |
|            | (C) IDENTIFICATION METHOD: microscopically-directed          |
|            | sampling and differential display                            |
| (x)        | PUBLICATION INFORMATION: unpublished                         |
|            | (K) RELEVANT RESIDUES IN SEQ ID NO: 6                        |

| (xi)            | SEQUENCE DESCRIPTION: SEQ ID NO: 6: |                                                         |  |  |  |  |
|-----------------|-------------------------------------|---------------------------------------------------------|--|--|--|--|
|                 |                                     | AGGGGGGT GCTGGCGTGT GGAATTGTCG CGGCCCCTGG 60            |  |  |  |  |
| TCTGCCGCGG CGTT | 111161 CT.<br>(2)                   | ACATICGT CGTAGCTCG  INFORMATION FOR SEQ ID NO:7:        |  |  |  |  |
| (i)             | ` •                                 | SEQUENCE CHARACTERISTICS:                               |  |  |  |  |
| <b>、</b>        | (A)                                 | LENGTH: 88                                              |  |  |  |  |
|                 | (B)                                 | TYPE: nucleic acid                                      |  |  |  |  |
|                 | (C)                                 | STRANDEDNESS: double                                    |  |  |  |  |
|                 | (D)                                 | TOPOLOGY: linear                                        |  |  |  |  |
| (ii)            | MOLE                                | ECULE TYPE: cDNA to mRNA                                |  |  |  |  |
| (iii)           | HYPC                                | OTHETICAL: no                                           |  |  |  |  |
| (iv)            | ANTI                                | -SENSE: no                                              |  |  |  |  |
| (v)             | ORIG                                | INAL SOURCE                                             |  |  |  |  |
|                 | (A)                                 | ORGANISM: Homo sapiens sapiens                          |  |  |  |  |
| V               | (C)                                 | INDIVIDUAL/ISOLATE: sample of non-comedo DCIS           |  |  |  |  |
|                 | (D)                                 | DEVELOPMENTAL STAGE: adult                              |  |  |  |  |
|                 | (F)                                 | TISSUE TYPE: female breast                              |  |  |  |  |
|                 | (G)                                 | CELL TYPE: ductal carcinoma in situ                     |  |  |  |  |
|                 | (H)                                 | CELL LINE: not derived from a cell line                 |  |  |  |  |
|                 | (I)                                 | ORGANELLE: no                                           |  |  |  |  |
| (vii)           | IMMI                                | EDIATE SOURCE:                                          |  |  |  |  |
|                 | (A)                                 | LIBRARY: cDNA library derived from human                |  |  |  |  |
|                 | <b>(B)</b>                          | CLONE: obtained rom identification of differential gene |  |  |  |  |
| expression      |                                     |                                                         |  |  |  |  |
| (viii)          | POSI                                | TION IN GENOME:                                         |  |  |  |  |
|                 | (A)                                 | CHROMOSOME/SEGMENT: unknown                             |  |  |  |  |
|                 | (B)                                 | MAP POSITION: unknown                                   |  |  |  |  |
|                 | (C)                                 | UNITS: unknown                                          |  |  |  |  |
| (ix)            | FEAT                                | TURE:                                                   |  |  |  |  |
|                 | (A)                                 | NAME/KEY: DCIS-7                                        |  |  |  |  |
|                 | <b>(B)</b>                          | LOCATION: L27643                                        |  |  |  |  |

|                                | (C)                                   | IDENTIFICATION               | METHOD:       | microscopically-directed |  |  |
|--------------------------------|---------------------------------------|------------------------------|---------------|--------------------------|--|--|
|                                | sampling and differential display     |                              |               |                          |  |  |
| (x)                            | PUBL                                  | ICATION INFORMAT             | TON: unpublis | hed                      |  |  |
|                                | (K) RELEVANT RESIDUES IN SEQ ID NO: 7 |                              |               |                          |  |  |
|                                |                                       |                              |               |                          |  |  |
| (xi)                           | SEQU                                  | ENCE DESCRIPTION             | : SEQ ID NO:  | 7:                       |  |  |
|                                |                                       | ACCCGCGCC CCCCCCTCCG TCGGAAT |               | 50<br>88                 |  |  |
| ATCCATAGGA TGTG                | (2)                                   | INFORMATION FOR              |               | - <del>-</del>           |  |  |
| (i)                            | SEQU                                  | ENCE CHARACTERI              | STICS:        |                          |  |  |
| .,                             | (A)                                   | LENGTH: 25                   |               |                          |  |  |
|                                | (B)                                   | TYPE: nucleic acid           |               |                          |  |  |
|                                | (C)                                   | STRANDEDNESS: si             | ngle          |                          |  |  |
|                                | (D)                                   | TOPOLOGY: linear             |               |                          |  |  |
| (ii)                           | MOL                                   | ECULE TYPE: DNA              |               |                          |  |  |
|                                | (A)                                   | DESCRIPTION: PCR             | primer        |                          |  |  |
| (iii)                          | HYPO                                  | HYPOTHETICAL: yes            |               |                          |  |  |
| (iv)                           | ANTI-SENSE: no                        |                              |               |                          |  |  |
| (v)                            | FRAGMENT TYPE: oligonucleotide        |                              |               |                          |  |  |
|                                |                                       |                              |               |                          |  |  |
| (xi)                           | SEQU                                  | JENCE DESCRIPTION            | 1: SEQ ID NO  | : 8:                     |  |  |
| CGCGACGGCC GCGCGTCTGC CAGGG 25 |                                       |                              |               |                          |  |  |
|                                | (2)                                   | INFORMATION FO               | R SEQ ID NO   | :9                       |  |  |
| (i)                            | SEQU                                  | JENCE CHARACTER              | ISTICS:       |                          |  |  |
|                                | (A)                                   | LENGTH: 25                   |               |                          |  |  |
|                                | (B)                                   | TYPE: nucleic acid           |               |                          |  |  |
|                                | (C)                                   | STRANDEDNESS: s              | single        |                          |  |  |
|                                | (D) ·                                 | TOPOLOGY: linear             |               |                          |  |  |
| (ii)                           | MOL                                   | ECULE TYPE: DNA              |               |                          |  |  |
|                                | (A)                                   | DESCRIPTION: PCI             | R primer      |                          |  |  |
| (iii)                          | HYPOTHETICAL: yes                     |                              |               |                          |  |  |
| (iv)                           | ANTI-SENSE: no                        |                              |               |                          |  |  |

| (v)            | FRAGMENT TYPE: oligonucleotide       |                                  |  |
|----------------|--------------------------------------|----------------------------------|--|
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 9:  |                                  |  |
| CGCCCCTGCG TTA | בככדככב כם                           | ccg 25                           |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:10     |  |
| (i)            | • •                                  | ENCE CHARACTERISTICS:            |  |
|                |                                      | LENGTH: 25                       |  |
|                | ` '                                  | TYPE: nucleic acid               |  |
|                |                                      | STRANDEDNESS: single             |  |
|                | •                                    | TOPOLOGY: linear                 |  |
| (ii)           | • •                                  | ECULE TYPE: DNA                  |  |
| ()             | (A)                                  | DESCRIPTION: PCR primer          |  |
| (iii)          | HYPO                                 | OTHETICAL: yes                   |  |
| (iv)           | ANTI                                 | -SENSE: no                       |  |
| (v)            | FRAGMENT TYPE: oligonucleotide       |                                  |  |
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 10: |                                  |  |
| GGATGGCGTC CT  | GTAACCCG A                           | CGCT 25                          |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:11     |  |
| (i)            |                                      | JENCE CHARACTERISTICS:           |  |
| (-)            | (A)                                  |                                  |  |
|                | ` .                                  | TYPE: nucleic acid               |  |
|                |                                      | STRANDEDNESS: single             |  |
|                | (D)                                  | TOPOLOGY: linear                 |  |
| (ii)           | MOL                                  | LECULE TYPE: DNA                 |  |
| • •            | (A)                                  | DESCRIPTION: PCR primer          |  |
| (iii)          | НҮР                                  | OTHETICAL: yes                   |  |
| (iv)           | ANT                                  | I-SENSE: no                      |  |
| (v)            | FRA                                  | GMENT TYPE: oligonucleotide      |  |
| (xi)           | SEQ                                  | UENCE DESCRIPTION: SEQ ID NO: 11 |  |
| ACTGGGCTGT C   |                                      |                                  |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:12     |  |

| (i)             | SEQUENCE CHARACTERISTICS:            |                                  |  |
|-----------------|--------------------------------------|----------------------------------|--|
|                 | (A)                                  | LENGTH: 25                       |  |
|                 | (B)                                  | TYPE: nucleic acid               |  |
|                 | (C)                                  | STRANDEDNESS: single             |  |
|                 | (D)                                  | TOPOLOGY: linear                 |  |
| (ii)            | MOLE                                 | ECULE TYPE: DNA                  |  |
|                 | (A)                                  | DESCRIPTION: PCR primer          |  |
| (iii)           | HYPC                                 | THETICAL: yes                    |  |
| (iv)            | ANTI                                 | SENSE: no                        |  |
| (v)             | FRAG                                 | MENT TYPE: oligonucleotide       |  |
|                 |                                      |                                  |  |
| (xi)            | SEQU                                 | ENCE DESCRIPTION: SEQ ID NO: 12: |  |
| CTGAGAGGTA GCCG | CGCGGA GG                            | SCTG 25                          |  |
|                 | (2)                                  | INFORMATION FOR SEQ ID NO:13     |  |
| (i)             | SEQU                                 | ENCE CHARACTERISTICS:            |  |
|                 | (A)                                  | LENGTH: 25                       |  |
|                 | (B)                                  | TYPE: nucleic acid               |  |
|                 | (C)                                  | STRANDEDNESS: single             |  |
|                 | (D)                                  | TOPOLOGY: linear                 |  |
| (ii)            | MOL                                  | ECULE TYPE: DNA                  |  |
|                 | (A)                                  | DESCRIPTION: PCR primer          |  |
| (iii)           | HYPO                                 | OTHETICAL: yes                   |  |
| (iv)            | ANTI-SENSE: no                       |                                  |  |
| (v)             | FRAGMENT TYPE: oligonucleotide       |                                  |  |
| (xi)            | SEQUENCE DESCRIPTION: SEQ ID NO: 13: |                                  |  |
| GCCTGGCCGC GACA | CGGATT A                             | CCGC 25                          |  |
|                 | (2)                                  | INFORMATION FOR SEQ ID NO:14     |  |
| (i)             | SEQU                                 | JENCE CHARACTERISTICS:           |  |
| `,              | (A)                                  | LENGTH: 25                       |  |
|                 | (B)                                  | TYPE: nucleic acid               |  |
|                 | (C)                                  | STRANDEDNESS: single             |  |

|                | (D)                                  | TOPOLOGY: linear               |  |  |
|----------------|--------------------------------------|--------------------------------|--|--|
| (ii)           | MOLECULE TYPE: DNA                   |                                |  |  |
|                | (A)                                  | DESCRIPTION: PCR primer        |  |  |
| (iii)          | HYPOTHETICAL: yes                    |                                |  |  |
| (iv)           | ANTI                                 | ANTI-SENSE: no                 |  |  |
| (v)            | FRAC                                 | FRAGMENT TYPE: oligonucleotide |  |  |
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 14: |                                |  |  |
| TTAGCGCATG GTG | GACCTGG A                            | GACG 25                        |  |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:15   |  |  |
| (i)            | SEQU                                 | JENCE CHARACTERISTICS:         |  |  |
|                | (A)                                  | LENGTH: 25                     |  |  |
|                | <b>(B)</b>                           | TYPE: nucleic acid             |  |  |
|                | (C)                                  | STRANDEDNESS: single           |  |  |
|                | (D)                                  | TOPOLOGY: linear               |  |  |
| (ii)           | MOL                                  | ECULE TYPE: DNA                |  |  |
|                | (A)                                  | DESCRIPTION: PCR primer        |  |  |
| (iii)          | HYPOTHETICAL: yes                    |                                |  |  |
| (iv)           | ANTI-SENSE: no                       |                                |  |  |
| (v)            | FRAGMENT TYPE: oligonucleotide       |                                |  |  |
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 15  |                                |  |  |
| TGTGGTTACG TC  | AGCGAAGG                             | TAATA 25                       |  |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:16   |  |  |
| (i)            | SEQ                                  | UENCE CHARACTERISTICS:         |  |  |
|                | (A)                                  | LENGTH: 25                     |  |  |
|                | <b>(B)</b>                           | TYPE: nucleic acid             |  |  |
|                | (C)                                  | STRANDEDNESS: single           |  |  |
|                | (D)                                  | TOPOLOGY: linear               |  |  |
| (ii)           | MO                                   | LECULE TYPE: DNA               |  |  |
|                | (A)                                  | DESCRIPTION: PCR primer        |  |  |
| (iii)          | HYPOTHETICAL: yes                    |                                |  |  |
| (iv)           | ANTI-SENSE: no                       |                                |  |  |

| (v)              | FRAGMENT TYPE: oligonucleotide       |                              |  |
|------------------|--------------------------------------|------------------------------|--|
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 16: |                              |  |
| AGTCGCACGC ATGTC | ACGCT CC                             | GCC 25                       |  |
|                  | (2)                                  | INFORMATION FOR SEQ ID NO:17 |  |
| (i)              | SEQU                                 | ENCE CHARACTERISTICS:        |  |
|                  | (A)                                  | LENGTH: 25                   |  |
|                  | <b>(B)</b>                           | TYPE: nucleic acid           |  |
|                  | (C)                                  | STRANDEDNESS: single         |  |
|                  | (D)                                  | TOPOLOGY: linear             |  |
| (ii)             | MOLI                                 | ECULE TYPE: DNA              |  |
|                  | (A)                                  | DESCRIPTION: PCR primer      |  |
| (iii)            | HYPOTHETICAL: yes                    |                              |  |
| (iv)             | ANTI-SENSE: no                       |                              |  |
| (v)              | FRAGMENT TYPE: oligonucleotide       |                              |  |
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 17: |                              |  |
| TATCCAAGCG GCAG  | GCTACG A                             | GGCC 25                      |  |
|                  | (2)                                  | INFORMATION FOR SEQ ID NO:18 |  |
| (i)              | SEQU                                 | IENCE CHARACTERISTICS:       |  |
|                  | (A)                                  | LENGTH: 25                   |  |
|                  | <b>(B)</b>                           | TYPE: nucleic acid           |  |
|                  | (C)                                  | STRANDEDNESS: single         |  |
|                  | (D)                                  | TOPOLOGY: linear             |  |
| (ii)             | MOL                                  | ECULE TYPE: DNA              |  |
|                  | (A)                                  | DESCRIPTION: PCR primer      |  |
| (iii)            | HYP                                  | OTHETICAL: yes               |  |
| (iv)             | ANTI-SENSE: no                       |                              |  |
| (v)              | FRAGMENT TYPE: oligonucleotide       |                              |  |
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 18  |                              |  |
| GGCGCGCCCG ACGG  | STCTGGT A                            | TCTA 25                      |  |
|                  | (2)                                  | INFORMATION FOR SEQ ID NO:19 |  |

| (i)           | SEQU                           | SEQUENCE CHARACTERISTICS:           |  |  |
|---------------|--------------------------------|-------------------------------------|--|--|
|               | (A)                            | LENGTH: 25                          |  |  |
|               | <b>(B)</b>                     | TYPE: nucleic acid                  |  |  |
|               | (C)                            | STRANDEDNESS: single                |  |  |
|               | <b>(D)</b>                     | TOPOLOGY: linear                    |  |  |
| (ii)          | MOL                            | ECULE TYPE: DNA                     |  |  |
|               | (A)                            | DESCRIPTION: PCR primer             |  |  |
| (iii)         | HYPO                           | OTHETICAL: yes                      |  |  |
| (iv)          | ANT                            | ANTI-SENSE: no                      |  |  |
| (v)           | FRAC                           | FRAGMENT TYPE: oligonucleotide      |  |  |
| (xi)          | SEQU                           | JENCE DESCRIPTION: SEQ ID NO: 19:   |  |  |
| CTCCCTCCCC GG | ACTCGGGG T                     | TAGT 25                             |  |  |
|               | (2)                            | INFORMATION FOR SEQ ID NO:20        |  |  |
| (i)           | SEQ                            | JENCE CHARACTERISTICS:              |  |  |
|               | (A)                            | LENGTH: 25                          |  |  |
|               | <b>(B)</b>                     | TYPE: nucleic acid                  |  |  |
|               | (C)                            | STRANDEDNESS: single                |  |  |
|               | (D)                            | TOPOLOGY: linear                    |  |  |
| (ii)          | MOLECULE TYPE: DNA             |                                     |  |  |
|               | (A)                            | DESCRIPTION: PCR primer             |  |  |
| (iii)         | HYPOTHETICAL: yes              |                                     |  |  |
| (iv)          | ANTI-SENSE: no                 |                                     |  |  |
| (v)           | FRAGMENT TYPE: oligonucleotide |                                     |  |  |
| (xi)          | SEQ                            | SEQUENCE DESCRIPTION: SEQ ID NO: 20 |  |  |
| ATGCGGGCGG C  | TCGGGCCTG                      | GTCGC 25                            |  |  |
|               | (2)                            | INFORMATION FOR SEQ ID NO:21        |  |  |
| (i)           | SEQ                            | UENCE CHARACTERISTICS:              |  |  |
|               | (A)                            | LENGTH: 25                          |  |  |
|               |                                | TYPE: nucleic acid                  |  |  |
|               |                                | STRANDEDNESS: single                |  |  |
|               | (D)                            |                                     |  |  |

| (ii)           | MOL                            | MOLECULE TYPE: DNA                  |  |  |
|----------------|--------------------------------|-------------------------------------|--|--|
|                | (A)                            | DESCRIPTION: PCR primer             |  |  |
| (iii)          | HYP(                           | OTHETICAL: yes                      |  |  |
| (iv)           | ANTI                           | ANTI-SENSE: no                      |  |  |
| (v)            | FRAC                           | FRAGMENT TYPE: oligonucleotide      |  |  |
| (xi)           | SEQU                           | SEQUENCE DESCRIPTION: SEQ ID NO: 21 |  |  |
| CGTGAAGCCT ATG | CCCTCCC 1                      | CAAC 25                             |  |  |
|                | (2)                            | INFORMATION FOR SEQ ID NO:22        |  |  |
| (i)            | SEQU                           | JENCE CHARACTERISTICS:              |  |  |
|                | (A)                            | LENGTH: 25                          |  |  |
|                | <b>(B)</b>                     | TYPE: nucleic acid                  |  |  |
|                | (C)                            | STRANDEDNESS: single                |  |  |
|                | (D)                            | TOPOLOGY: linear                    |  |  |
| (ii)           | MOL                            | ECULE TYPE: DNA                     |  |  |
|                | (A)                            | DESCRIPTION: PCR primer             |  |  |
| (iii)          | HYP                            | OTHETICAL: yes                      |  |  |
| (iv)           | ANT                            | ANTI-SENSE: no                      |  |  |
| (v)            | FRA                            | FRAGMENT TYPE: oligonucleotide      |  |  |
| (xi)           | SEQU                           | ENCE DESCRIPTION: SEQ ID NO: 22:    |  |  |
| GTGCCGTCGT AG  | CCCTTCAG                       | CGATC 25                            |  |  |
|                | (2)                            | INFORMATION FOR SEQ ID NO:23        |  |  |
| (i)            | SEQ                            | UENCE CHARACTERISTICS:              |  |  |
|                | (A)                            | LENGTH: 25                          |  |  |
|                | (B)                            | TYPE: nucleic acid                  |  |  |
|                | (C)                            | STRANDEDNESS: single                |  |  |
|                | (D)                            | TOPOLOGY: linear                    |  |  |
| (ii)           | MOI                            | LECULE TYPE: DNA                    |  |  |
|                | (A)                            | DESCRIPTION: PCR primer             |  |  |
| (iii)          | HYF                            | POTHETICAL: yes                     |  |  |
| (iv)           | ANTI-SENSE: no                 |                                     |  |  |
| (v)            | FRAGMENT TYPE: oligonucleotide |                                     |  |  |

াৰ্ক্তিক আৰু **স্থা**ৰ কৰা কৰিছে কৰা কৰিছে। সংস্কৃতিক স্থানিক স্থানিক স্থানিক স্থানিক স্থানিক স্থানিক স্থানিক স্থানিক স

| (xi)                           | SEQUENCE DESCRIPTION: SEQ ID NO: 23: |                              |  |  |
|--------------------------------|--------------------------------------|------------------------------|--|--|
| GCGACACTAG GCTCC               | CGGAG GA                             | GGG 25                       |  |  |
|                                | (2)                                  | INFORMATION FOR SEQ ID NO:24 |  |  |
| (i)                            | SEQUENCE CHARACTERISTICS:            |                              |  |  |
| <b>、</b>                       |                                      | LENGTH: 25                   |  |  |
| ٠                              | (B)                                  | TYPE: nucleic acid           |  |  |
|                                | (C)                                  | STRANDEDNESS: single         |  |  |
|                                | (D)                                  | TOPOLOGY: linear             |  |  |
| (ii)                           | MOLECULE TYPE: DNA                   |                              |  |  |
|                                | (A)                                  | DESCRIPTION: PCR primer      |  |  |
| (iii)                          | HYPOTHETICAL: yes                    |                              |  |  |
| (iv)                           | ANTI-SENSE: no                       |                              |  |  |
| (v)                            | FRAGMENT TYPE: oligonucleotide       |                              |  |  |
| (xi)                           | SEQUENCE DESCRIPTION: SEQ ID NO: 24: |                              |  |  |
| TGGGCCAGGC CTCC                | GGGCCC GG                            | STAT 25                      |  |  |
|                                | (2)                                  | INFORMATION FOR SEQ ID NO:25 |  |  |
| (i)                            | SEQU                                 | ENCE CHARACTERISTICS:        |  |  |
| •                              | (A)                                  | LENGTH: 25                   |  |  |
|                                | <b>(B)</b>                           | TYPE: nucleic acid           |  |  |
|                                | (C)                                  | STRANDEDNESS: single         |  |  |
|                                | (D)                                  | TOPOLOGY: linear             |  |  |
| (ii)                           | MOL                                  | ECULE TYPE: DNA              |  |  |
|                                | (A)                                  | DESCRIPTION: PCR primer      |  |  |
| (iii)                          | HYPO                                 | OTHETICAL: yes               |  |  |
| (iv)                           | ANTI-SENSE: no                       |                              |  |  |
| (v)                            | FRAGMENT TYPE: oligonucleotide       |                              |  |  |
| (xi)                           | SEQUENCE DESCRIPTION: SEQ ID NO: 25: |                              |  |  |
| CCGGAACTGC GATAGCGTCC GTCCC 25 |                                      |                              |  |  |
|                                | (2)                                  | INFORMATION FOR SEQ ID NO:26 |  |  |

PCT/US95/00608

WO 95/19369

| (i)        | SEQU         | SEQUENCE CHARACTERISTICS:         |  |  |  |
|------------|--------------|-----------------------------------|--|--|--|
|            | (A)          | LENGTH: 25                        |  |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |  |
|            | (D)          | TOPOLOGY: linear                  |  |  |  |
| (ii)       | MOLI         | ECULE TYPE: DNA                   |  |  |  |
|            | (A)          | DESCRIPTION: PCR primer           |  |  |  |
| (iii)      | HYPO         | OTHETICAL: yes                    |  |  |  |
| (iv)       | ANTI         | -SENSE: no                        |  |  |  |
| (v)        | FRAC         | SMENT TYPE: oligonucleotide       |  |  |  |
| (xi)       | SEQU         | JENCE DESCRIPTION: SEQ ID NO: 26: |  |  |  |
| AGCGGACACC | TGTTTCCCGA G | AGCC 25                           |  |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:27      |  |  |  |
| (i)        | SEQU         | SEQUENCE CHARACTERISTICS:         |  |  |  |
|            | (A)          | LENGTH: 25                        |  |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |  |
|            | (D)          | TOPOLOGY: linear                  |  |  |  |
| (ii)       | MOL          | ECULE TYPE: DNA                   |  |  |  |
|            | (A)          | DESCRIPTION: PCR primer           |  |  |  |
| (iii)      | HYP          | OTHETICAL: yes                    |  |  |  |
| (iv)       | ANT          | ANTI-SENSE: no                    |  |  |  |
| (v)        | FRA          | FRAGMENT TYPE: oligonucleotide    |  |  |  |
| (xi)       | SEQ          | JENCE DESCRIPTION: SEQ ID NO: 27: |  |  |  |
| AACGGGTGGA | CATCCGCCTG C | ccgcc 25                          |  |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:28      |  |  |  |
| (i)        | SEQ          | UENCE CHARACTERISTICS:            |  |  |  |
|            | (A)          | LENGTH: 25                        |  |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |  |
|            | (D)          | TOPOLOGY: linear                  |  |  |  |

| (ii)         | MOLECULE TYPE: DNA                  |    |
|--------------|-------------------------------------|----|
|              | (A) DESCRIPTION: PCR primer         |    |
| (iii)        | HYPOTHETICAL: yes                   |    |
| (iv)         | ANTI-SENSE: no                      |    |
| (v)          | FRAGMENT TYPE: oligonucleotide      |    |
| (xi)         | SEQUENCE DESCRIPTION: SEQ ID NO: 25 | 8: |
| TGAACCACGA T | TCAATCGT CCCGA 25                   |    |
|              | (2) INFORMATION FOR SEQ ID NO:29    | l  |
| (i)          | SEQUENCE CHARACTERISTICS:           |    |
| (7)          | (A) LENGTH: 25                      |    |
|              | (B) TYPE: nucleic acid              |    |
|              | (C) STRANDEDNESS: single            |    |
|              | (D) TOPOLOGY: linear                |    |
| (ii)         | MOLECULE TYPE: DNA                  |    |
|              | (A) DESCRIPTION: PCR primer         |    |
| (iii)        | HYPOTHETICAL: yes                   |    |
| (iv)         | ANTI-SENSE: no                      |    |
| (v)          | FRAGMENT TYPE: oligonucleotide      |    |
| (xi)         | SEQUENCE DESCRIPTION: SEQ ID NO:    | 29 |
| TCATCCCCGC   | CGAAAGACGC TCGCC 25                 |    |
|              | (2) INFORMATION FOR SEQ ID NO:3     | 30 |
| (i)          | SEQUENCE CHARACTERISTICS:           |    |
| •            | (A) LENGTH: 25                      |    |
|              | (B) TYPE: nucleic acid              |    |
|              | (C) STRANDEDNESS: single            |    |
|              | (D) TOPOLOGY: linear                |    |
| (ii)         | MOLECULE TYPE: DNA                  |    |
| ` , ,        | (A) DESCRIPTION: PCR primer         |    |
| (iii)        | HYPOTHETICAL: yes                   |    |
| (iv)         | ANTI-SENSE: no                      |    |
| (v)          | FRAGMENT TYPE: oligonucleotide      |    |
|              |                                     |    |

WO 95/19369 PCT/US95/00608

| (xi)             | SEQU     | ENCE DESCRIPTION: SEQ ID NO: 30:  |
|------------------|----------|-----------------------------------|
| ATAGGETGEG GEACE | CGCTG GG | ACT 25                            |
|                  | (2)      | INFORMATION FOR SEQ ID NO:31      |
| (i)              | SEQU     | ENCE CHARACTERISTICS:             |
|                  | (A)      | LENGTH: 25                        |
|                  | (B)      | TYPE: nucleic acid                |
|                  | (C)      | STRANDEDNESS: single              |
|                  | (D)      | TOPOLOGY: linear                  |
| (ii)             | MOLI     | ECULE TYPE: DNA                   |
|                  | (A)      | DESCRIPTION: PCR primer           |
| (iii)            | HYPO     | OTHETICAL: yes                    |
| (iv)             | ANTI     | -SENSE: no                        |
| (v)              | FRAC     | GMENT TYPE: oligonucleotide       |
| (xi)             | SEQU     | JENCE DESCRIPTION: SEQ ID NO: 31: |
| GACCAGGTGC GCAC  | GAGCAT G | TACA 25                           |
|                  | (2)      | INFORMATION FOR SEQ ID NO:32      |
| (i)              | SEQU     | JENCE CHARACTERISTICS:            |
|                  | (A)      | LENGTH: 25                        |
|                  | (B)      | TYPE: nucleic acid                |
|                  | (C)      | STRANDEDNESS: single              |
|                  | (D)      | TOPOLOGY: linear                  |
| (ii)             | MOL      | ECULE TYPE: DNA                   |
|                  | (A)      | DESCRIPTION: PCR primer           |
| (iii)            | HYP      | OTHETICAL: yes                    |
| (iv)             | ANT      | I-SENSE: no                       |
| (v)              | FRA      | GMENT TYPE: oligonucleotide       |
| (xi)             | SEQ      | UENCE DESCRIPTION: SEQ ID NO: 32: |
| AGCGTAGTCA TCG   |          |                                   |
|                  | (2)      | INFORMATION FOR SEQ ID NO:33      |

| (i)        | SEQU         | SEQUENCE CHARACTERISTICS:         |  |  |
|------------|--------------|-----------------------------------|--|--|
|            | (A)          | LENGTH: 25                        |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |
|            | (D)          | TOPOLOGY: linear                  |  |  |
| (ii)       | MOL          | ECULE TYPE: DNA                   |  |  |
|            | (A)          | DESCRIPTION: PCR primer           |  |  |
| (iii)      | HYP          | OTHETICAL: yes                    |  |  |
| (iv)       | ANT          | I-SENSE: no                       |  |  |
| (v)        | FRA          | GMENT TYPE: oligonucleotide       |  |  |
| (xi)       | SEQ          | JENCE DESCRIPTION: SEQ ID NO: 33: |  |  |
| GGCCCCTAGC | CCAGGGTGAA ( | CCCA 25                           |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:34      |  |  |
| (i)        | SEQ          | UENCE CHARACTERISTICS:            |  |  |
|            | (A)          | LENGTH: 25                        |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |
|            | (D)          | TOPOLOGY: linear                  |  |  |
| (ii)       | MOI          | LECULE TYPE: DNA                  |  |  |
|            | (A)          | DESCRIPTION: PCR primer           |  |  |
| (iii)      | HYP          | OTHETICAL: yes                    |  |  |
| (iv)       | ANI          | ANΠ-SENSE: no                     |  |  |
| (v)        | FRA          | FRAGMENT TYPE: oligonucleotide    |  |  |
| (xi)       | SEQ          | UENCE DESCRIPTION: SEQ ID NO: 34  |  |  |
| CCCAGTGCTA | cgggccgccc   | CAAGC 25                          |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:35      |  |  |
| (i)        | SEQ          | UENCE CHARACTERISTICS:            |  |  |
|            | (A)          | LENGTH: 25                        |  |  |
|            | (B)          | TYPE: nucleic acid                |  |  |
|            | (C)          | STRANDEDNESS: single              |  |  |

WO 95/19369 PCT/US95/00608

|                | (D)                                  | TOPOLOGY: linear                  |  |
|----------------|--------------------------------------|-----------------------------------|--|
| (ii)           | MOL                                  | ECULE TYPE: DNA                   |  |
|                | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)          | HYPO                                 | OTHETICAL: yes                    |  |
| (iv)           | ANTI                                 | -SENSE: no                        |  |
| (v)            | FRAC                                 | GMENT TYPE: oligonucleotide       |  |
| (xi)           | SEQU                                 | JENCE DESCRIPTION: SEQ ID NO: 35: |  |
| CCTTCCTGGG TTA | CCTGCCC T                            | cggg 25                           |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:36      |  |
| (i)            | SEQU                                 | JENCE CHARACTERISTICS:            |  |
|                | (A)                                  | LENGTH: 25                        |  |
|                | (B)                                  | TYPE: nucleic acid                |  |
|                | (C)                                  | STRANDEDNESS: single              |  |
|                | (D)                                  | TOPOLOGY: linear                  |  |
| (ii)           | MOL                                  | ECULE TYPE: DNA                   |  |
|                | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)          | HYP                                  | OTHETICAL: yes                    |  |
| (iv)           | ANTI-SENSE: no                       |                                   |  |
| (v)            | FRAGMENT TYPE: oligonucleotide       |                                   |  |
| (xi)           | SEQUENCE DESCRIPTION: SEQ ID NO: 36: |                                   |  |
| TCCGGACAGC AG  | CCACGCCA /                           | AGGGC 25                          |  |
|                | (2)                                  | INFORMATION FOR SEQ ID NO:37      |  |
| (i)            | SEQ                                  | UENCE CHARACTERISTICS:            |  |
|                | (A)                                  | LENGTH: 25                        |  |
|                | <b>(B)</b>                           | TYPE: nucleic acid                |  |
|                | (C)                                  | STRANDEDNESS: single              |  |
|                | (D)                                  | TOPOLOGY: linear                  |  |
| (ii)           | MOI                                  | LECULE TYPE: DNA                  |  |
|                | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)          | HYF                                  | POTHETICAL: yes                   |  |
| (iv)           | ANT                                  | T-SENSE: no                       |  |

| (v)             | FRAG                                 | MENT TYPE: oligonucleotide        |  |
|-----------------|--------------------------------------|-----------------------------------|--|
| (xi)            | SEQUENCE DESCRIPTION: SEQ ID NO: 37: |                                   |  |
| ACGCGCTGGT CCAC | CGAGGC CT                            | GAT 25                            |  |
|                 | (2)                                  | INFORMATION FOR SEQ ID NO:38      |  |
| (i)             | SEQU                                 | ENCE CHARACTERISTICS:             |  |
|                 | (A)                                  | LENGTH: 25                        |  |
|                 | <b>(B)</b>                           | TYPE: nucleic acid                |  |
|                 | (C)                                  | STRANDEDNESS: single              |  |
|                 | (D)                                  | TOPOLOGY: linear                  |  |
| (ii)            | MOLI                                 | ECULE TYPE: DNA                   |  |
|                 | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)           | HYPO                                 | OTHETICAL: yes                    |  |
| (iv)            | ANTI                                 | -SENSE: no                        |  |
| (v)             | FRAC                                 | GMENT TYPE: oligonucleotide       |  |
| (xi)            | SEQU                                 | JENCE DESCRIPTION: SEQ ID NO: 38: |  |
| CGATGCAAGG CCA  | GCAGCAC T                            | CGAC 25                           |  |
|                 | (2)                                  | INFORMATION FOR SEQ ID NO:39      |  |
| (i)             |                                      | JENCE CHARACTERISTICS:            |  |
| (-)             | (A)                                  |                                   |  |
|                 |                                      | TYPE: nucleic acid                |  |
|                 |                                      | STRANDEDNESS: single              |  |
|                 |                                      | TOPOLOGY: linear                  |  |
| (ii)            |                                      | LECULE TYPE: DNA                  |  |
| (11)            | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)           | • •                                  | POTHETICAL: yes                   |  |
| (iv)            |                                      | Π-SENSE: no                       |  |
| (v)             |                                      | GMENT TYPE: oligonucleotide       |  |
|                 |                                      | UENCE DESCRIPTION: SEQ ID NO: 39: |  |
| (Xi)            |                                      |                                   |  |
| CCCCCOUNGC G    | J. 10 311 00 00                      |                                   |  |
|                 | (2)                                  | INFORMATION FOR SEQ ID NO:40      |  |

| (i)        | SEQU         | IENCE CHARACTERISTICS:             |  |  |
|------------|--------------|------------------------------------|--|--|
|            | (A)          | LENGTH: 25                         |  |  |
|            | (B)          | TYPE: nucleic acid                 |  |  |
|            | (C)          | STRANDEDNESS: single               |  |  |
|            | (D)          | TOPOLOGY: linear                   |  |  |
| (ii)       | MOL          | ECULE TYPE: DNA                    |  |  |
|            | (A)          | DESCRIPTION: PCR primer            |  |  |
| (iii)      | HYP          | OTHETICAL: yes                     |  |  |
| (iv)       | ANT          | I-SENSE: no                        |  |  |
| (v)        | FRA          | GMENT TYPE: oligonucleotide        |  |  |
| (xi)       | SEQ          | UENCE DESCRIPTION: SEQ ID NO: 40:  |  |  |
| AGCGGGGAGG | GATCGGGGGC ( | CAAGC 25                           |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:41       |  |  |
| (i)        | SEQ          | UENCE CHARACTERISTICS:             |  |  |
|            | (A)          | LENGTH: 25                         |  |  |
|            | (B)          | TYPE: nucleic acid                 |  |  |
|            | (C)          | STRANDEDNESS: single               |  |  |
|            | (D)          | TOPOLOGY: linear                   |  |  |
| (ii)       | MOI          | LECULE TYPE: DNA                   |  |  |
|            | (A)          | DESCRIPTION: PCR primer            |  |  |
| (iii)      | HYI          | POTHETICAL: yes                    |  |  |
| (iv)       | ANT          | ANTI-SENSE: no                     |  |  |
| (v)        |              | FRAGMENT TYPE: oligonucleotide     |  |  |
| (xi)       | SEC          | QUENCE DESCRIPTION: SEQ ID NO: 41: |  |  |
| GCCTGGTGT  | A GGCAGGCAGC | TCTTA 25                           |  |  |
|            | (2)          | INFORMATION FOR SEQ ID NO:42       |  |  |
| (i)        | SEC          | QUENCE CHARACTERISTICS:            |  |  |
|            | (A)          | LENGTH: 25                         |  |  |
|            | (B)          | TYPE: nucleic acid                 |  |  |
|            | (C)          | STRANDEDNESS: single               |  |  |
|            | (D)          | TOPOLOGY: linear                   |  |  |

| (ii)          | MOLECULE TYPE: DNA                  |                                  |  |
|---------------|-------------------------------------|----------------------------------|--|
|               | (A)                                 | DESCRIPTION: PCR primer          |  |
| (iii)         | нүро                                | THETICAL: yes                    |  |
| (iv)          | ANTI-                               | SENSE: no                        |  |
| (v)           |                                     | MENT TYPE: oligonucleotide       |  |
| (xi)          | SEQU                                | ENCE DESCRIPTION: SEQ ID NO: 42: |  |
| CCACCCCTGT AG | TGCGGGCT GC                         | GAG 25                           |  |
|               | (2)                                 | INFORMATION FOR SEQ ID NO:43     |  |
| (i)           | SEQU                                | ENCE CHARACTERISTICS:            |  |
|               | (A)                                 | LENGTH: 25                       |  |
|               | (B)                                 | TYPE: nucleic acid               |  |
|               | (C)                                 | STRANDEDNESS: single             |  |
|               | (D)                                 | TOPOLOGY: linear                 |  |
| (ii)          | MOL                                 | ECULE TYPE: DNA                  |  |
|               | (A)                                 | DESCRIPTION: PCR primer          |  |
| (iii)         | HYP                                 | OTHETICAL: yes                   |  |
| (iv)          | •                                   | I-SENSE: no                      |  |
| (v)           |                                     | GMENT TYPE: oligonucleotide      |  |
| (xi)          | SEQUENCE DESCRIPTION: SEQ ID NO: 43 |                                  |  |
| GGAACCCGAC    | GCCCGTCCAG                          | GGTTC 25                         |  |
|               | (2)                                 | INFORMATION FOR SEQ ID NO:44     |  |
| (i)           | SEQ                                 | UENCE CHARACTERISTICS:           |  |
|               | (A)                                 | LENGTH: 25                       |  |
|               | (B)                                 | TYPE: nucleic acid               |  |
|               | (C)                                 | STRANDEDNESS: single             |  |
|               | (D)                                 | TOPOLOGY: linear                 |  |
| (ii)          | МО                                  | LECULE TYPE: DNA                 |  |
|               | (A)                                 | DESCRIPTION: PCR primer          |  |
| (iii)         | HY                                  | POTHETICAL: yes                  |  |
| (iv)          | AN                                  | TI-SENSE: no                     |  |

| (v)           | FRAC                                 | MENT TYPE: oligonucleotide        |  |
|---------------|--------------------------------------|-----------------------------------|--|
| (xi)          | SEQU                                 | JENCE DESCRIPTION: SEQ ID NO: 44: |  |
| TCGGGCAGCA AC | GCCGGGAC G                           | CTCC 25                           |  |
|               | (2)                                  | INFORMATION FOR SEQ ID NO:45      |  |
| (i)           | SEQU                                 | JENCE CHARACTERISTICS:            |  |
|               | (A)                                  | LENGTH: 25                        |  |
|               | (B)                                  | TYPE: nucleic acid                |  |
|               | (C)                                  | STRANDEDNESS: single              |  |
|               | (D)                                  | TOPOLOGY: linear                  |  |
| (ii)          | MOL                                  | ECULE TYPE: DNA                   |  |
|               | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)         | HYP                                  | OTHETICAL: yes                    |  |
| (iv)          | ANT                                  | I-SENSE: no                       |  |
| (v)           | FRA                                  | GMENT TYPE: oligonucleotide       |  |
| (xi)          | SEQUENCE DESCRIPTION: SEQ ID NO: 45: |                                   |  |
| GACGGGGGAC G  | GGCTAGGTG (                          | GCTTA 25                          |  |
|               | (2)                                  | INFORMATION FOR SEQ ID NO:46      |  |
| (i)           | SEQ                                  | UENCE CHARACTERISTICS:            |  |
|               | (A)                                  | LENGTH: 25                        |  |
|               | <b>(B)</b>                           | TYPE: nucleic acid                |  |
|               | (C)                                  | STRANDEDNESS: single              |  |
|               | (D)                                  | TOPOLOGY: linear                  |  |
| (ii)          | MOI                                  | LECULE TYPE: DNA                  |  |
|               | (A)                                  | DESCRIPTION: PCR primer           |  |
| (iii)         | HYP                                  | OTHETICAL: yes                    |  |
| (iv)          | ANT                                  | T-SENSE: no                       |  |
| (v)           | FRA                                  | GMENT TYPE: oligonucleotide       |  |
| (xi)          | SEQ                                  | UENCE DESCRIPTION: SEQ ID NO: 46: |  |
| CTTGTTGCCG    | _                                    |                                   |  |
|               | (2)                                  | INFORMATION FOR SEQ ID NO:47:     |  |

| (i)    | SEQU       | SEQUENCE CHARACTERISTICS:                                   |  |  |  |
|--------|------------|-------------------------------------------------------------|--|--|--|
|        | (A)        | LENGTH: 5712                                                |  |  |  |
|        | (B)        | TYPE: nucleic acid                                          |  |  |  |
|        | (C)        | STRANDEDNESS: double                                        |  |  |  |
|        | (D)        | TOPOLOGY: linear                                            |  |  |  |
| (ii)   | MOLI       | ECULE TYPE: cDNA to mRNA                                    |  |  |  |
| (iii)  | НҮРС       | OTHETICAL: no                                               |  |  |  |
| (iv)   | ANTI       | -SENSE: no                                                  |  |  |  |
| (v)    | ORIG       | INAL SOURCE                                                 |  |  |  |
|        | (A)        | ORGANISM: Homo sapiens sapiens                              |  |  |  |
|        | (C)        | INDIVIDUAL/ISOLATE:                                         |  |  |  |
|        | (D)        | DEVELOPMENTAL STAGE: adult                                  |  |  |  |
|        | <b>(F)</b> | TISSUE TYPE: female breast                                  |  |  |  |
|        | (G)        | CELL TYPE: ductal carcinoma in situ, invasive breast cancer |  |  |  |
|        |            | and normal breast tissue                                    |  |  |  |
|        | (H)        | CELL LINE: not derived from a cell line                     |  |  |  |
|        | <b>(1)</b> | ORGANELLE: no                                               |  |  |  |
| (vii)  | IMM        | EDIATE SOURCE:                                              |  |  |  |
|        | (A)        | LIBRARY: cDNA library derived from human                    |  |  |  |
|        | <b>(B)</b> | CLONE: obtained using published sequence                    |  |  |  |
| (viii) | POSI       | TION IN GENOME:                                             |  |  |  |
|        | (A)        | CHROMOSOME/SEGMENT: unknown                                 |  |  |  |
|        | (B)        | MAP POSITION: unknown                                       |  |  |  |
|        | (C)        | UNITS: unknown                                              |  |  |  |
| (ix)   | FEA        | TURE:                                                       |  |  |  |
|        | (A)        | NAME/KEY: BRCA1                                             |  |  |  |
|        | (B)        | LOCATION: GenBank accession no. U14680                      |  |  |  |
|        | (C)        | IDENTIFICATION METHOD: microscopically-directed             |  |  |  |
|        |            | sampling and nuclease protection assay                      |  |  |  |
|        | (D)        | OTHER INFORMATION: gene encoding BRCA1 protein              |  |  |  |

| (x)             | PUBLI      | CATION INF        | ORMATION:                                          |                              |
|-----------------|------------|-------------------|----------------------------------------------------|------------------------------|
|                 | (A)        | AUTHORS:          | Miki, Y., et. al.                                  |                              |
|                 | (B)        | TITLE:            | A strong candidate gen                             | e for the breast and ovarian |
|                 |            | •                 | cancer susceptibility g                            | ene BRCA1.                   |
|                 | (C)        | JOURNAL:          | Science                                            |                              |
|                 | (D)        | VOLUME: 2         | 266                                                |                              |
|                 | (E)        | PAGES: 66-        |                                                    |                              |
|                 | (E)<br>(F) | DATE: 1994        |                                                    |                              |
|                 | , ,        |                   |                                                    | NO: 47                       |
|                 | (K)        |                   | RESIDUES IN SEQ II                                 |                              |
| (xi)            | SEQU       | ENCE DESCI        | RIPTION: SEQ ID NO                                 | D:47:                        |
|                 |            |                   | ggg gtttctcaga taactgggcc                          | 60                           |
|                 |            |                   | eag ticatiggaa cagaaagaa                           | 119                          |
|                 |            |                   | gta caa aat gtc att aat<br>Val Gin Asn Val lie Asn | 10.                          |
| 1               | 5          | 10                | 15                                                 |                              |
|                 |            | gag tgt ccc atc   | tgt ctg gag ttg atc aag                            | 215                          |
|                 |            | Glu Cys Pro Ile   | Cys Leu Glu Leu 1le Lys                            |                              |
| 20              |            | 25                | 30                                                 | 247                          |
|                 |            |                   | ttt tgc aaa ttt tgc atg<br>Phe Cys Lys Phe Cys Het | 263                          |
| Glu Pro Val Ser | inr Lys    | 40                | 45                                                 |                              |
|                 | AAC CAG    |                   | tca cag tgt cct tta tgt                            | 311                          |
|                 |            |                   | Ser Gln Cys Pro Leu Cys                            |                              |
| 50              |            | 55                | 60                                                 |                              |
|                 |            |                   | gaa agt acg aga ttt agt                            | 359                          |
| Lys Asn Asp Ile | Thr Lys    | Arg Ser Leu Gln   | Glu Ser Thr Arg Phe Ser                            |                              |
| <b>6</b> 5      | 70         |                   | 75 80                                              | 407                          |
|                 |            |                   | tgt gct ttt cag ctt gac<br>Cys Ala Phe Gin Leu Asp | 401                          |
| Gin Leu Vai Giu | 85         | 90 Lys Ite Ite    | 95                                                 |                              |
| aca out tto Gag |            |                   | ttt gce aaa aag gaa aat                            | 455                          |
| Thr Gly Leu Glu | ı Tyr Ala  | Asn Ser Tyr Asn   | Phe Ala Lys Lys Glu Asn                            |                              |
| 100             |            | 105               | 110                                                |                              |
|                 |            |                   | tct atc atc cas agt atg                            | 503                          |
|                 | J His Lev  |                   | Ser Ile Ile Gln Ser Het                            |                              |
| 115             |            | 120               | 125                                                | 551                          |
| ggc tac aga aac | c cgt gcc  | : asa aga ctt cte | cag agt gas ccc gas ast<br>Gin Ser Glu Pro Glu Asn |                              |
| Gly Tyr Arg Asi | n Arg Ali  | 135               | 140                                                |                              |
|                 | g gaa ac   |                   | cas ctc tct sac ctt ggs                            | 599                          |
| Pro Ser Leu Gli | n Glu Thi  | r Ser Leu Ser Val | Gin Leu Ser Asn Leu Gly                            |                              |
| 145             | 15         |                   | 155 160                                            |                              |

| cact gtg aga act ctg agg aca aag cag cgg ata caa cct caa aag acg | 647    |
|------------------------------------------------------------------|--------|
| Thr Val Arg Thr Leu Arg Thr Lys Gln Arg Ile Gln Pro Gln Lys Thr  |        |
| 165 170 175                                                      |        |
|                                                                  |        |
| tot gto tac att gam ttg gga tot gat tot tot gam gat acc gtt amt  | 695    |
| Ser Val Tyr Ile Glu Leu Gly Ser Asp Ser Ser Glu Asp Thr Val Asn  |        |
| 180 185 190                                                      |        |
| and ace act tot toe agt ata age but can ase the tra can ate ace  | 743    |
| Lys Ala Thr Tyr Cys Ser Val Gly Asp Gln Glu Leu Leu Gln Ile Thr  |        |
| 195 200 205                                                      |        |
| cct cas ggs acc agg gat gas atc agt ttg gat tct gcs ass asg gct  | 791    |
| Pro Gin Gly Thr Arg Asp Glu Ile Ser Leu Asp Ser Ala Lys Lys Ala  |        |
| 210 215 220                                                      |        |
| gct tgt gas ttt tct gag acg gat gta aca eat act gas cat cat caa  | 839    |
| Ale Cys Glu Phe Ser Glu Thr Asp Val Thr Asn Thr Glu His His Gln  |        |
| 225 230 235 240                                                  |        |
| ccc agt eat eat gat ttg eac acc ect gag eag cgt gca gct gag agg  | 887    |
| Pro Ser Asn Asn Asp Leu Asn Thr Thr Glu Lys Arg Ala Ala Glu Arg  |        |
| 245 250 255                                                      |        |
| cat cca gaa aag tat cag ggt agt tot gtt toa aac ttg cat gtg gag  | 935    |
| His Pro Glu Lys Tyr Gln Gly Ser Ser Val Ser Asn Leu His Val Glu  |        |
| 260 265 270                                                      |        |
| cce tgt ggc ace eat act cat gcc egc tca tta ceg cet gag aec agc  | 983    |
| Pro Cys Gly Thr Asn Thr His Ala Ser Ser Leu Gln His Glu Asn Ser  |        |
| 275 280 285                                                      |        |
| agt tta tta ctc act asa gac ogs atg ast gta gas oag gct gas ttc  | 1031   |
| Ser Leu Leu Leu Thr Lys Asp Arg Het Asn Val Glu Lys Ala Glu Phe  |        |
| 290 295 300                                                      |        |
| tgt aat aae agc aae cag cot ggo tta goa agg ago cae cat aac aga  |        |
| Cys Asn Lys Ser Lys Gln Pro Gly Leu Ale Arg Ser Gln His Asn Arg  |        |
| 305 310 315 320                                                  |        |
| tgg gct gga agt aag gaa oce tgt aat gat agg egg act eec age aca  |        |
| Trp Ala Gly Ser Lys Glu Thr Cys Asn Asp Arg Arg Thr Pro Ser Thr  |        |
| 325 330 335                                                      |        |
| ges ass mag gts get ctg sat gct get ccc ctg tgt geg age ass gae  |        |
| Glu Lys Lys Val Asp Leu Asn Ala Asp Pro Leu Cys Glu Arg Lys Glu  | 1      |
| 340 345 350                                                      |        |
| tgg aat aag cag aaa ctg cca tgc tca gag aat cct aga gat act gaa  |        |
| Trp Asn Lys Gln Lys Leu Pro Cys Ser Glu Asn Pro Arg Asp Thr Glu  | 1      |
| 355 360 365                                                      |        |
| gat git cot igg ata aca cia aat ago ago att cag aas git aat ga   | g 1271 |
| Asp Val Pro Trp Ile Thr Leu Asn Ser Ser Ile Gln Lys Val Asn Gli  | J.     |
| 370 375 380                                                      |        |
| tgg ttt tcc aga agt gat gas ctg tta ggt tct gat gac tca cat ga   |        |
| Trp Phe Ser Arg Ser Asp Glu Leu Leu Gly Ser Asp Asp Ser His As   |        |
| 385 390 395 40                                                   |        |
| ggg gag tot gaa toa aat goo aaa gta got gat gta tig gac git ot   |        |
| Gly Glu Ser Glu Ser Asn Ala Lys Val Ala Asp Val Leu Asp Val Le   | U      |
| 405 410 415                                                      |        |

| a | at    | gag  | g   | ta    | gat     | gae                                     | tat   | tct    | ggt  | tct  | tca  | 989    | 888        | ete   | gac   | tta       | ctg   | 1415 |
|---|-------|------|-----|-------|---------|-----------------------------------------|-------|--------|------|------|------|--------|------------|-------|-------|-----------|-------|------|
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | Lys        |       |       |           |       |      |
|   |       |      |     |       | 420     |                                         | •     |        |      | 425  |      |        |            |       | 430   |           |       |      |
| _ |       | -01  |     |       |         | cat                                     | GAG   | act    | tta  | ata  | tat  | 888    | agt        | 988   | aga   | gtt       | cac   | 1463 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | Ser        |       |       |           |       |      |
| ^ | 10    | 361  |     | 35    |         |                                         | • • • |        | 440  |      | -,-  | -,-    |            | 445   |       |           |       |      |
|   |       |      |     |       |         |                                         |       |        |      |      | 240  | 222    | ata        |       | 000   | AAA       | ACC   | 1511 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        |            |       |       |           |       |      |
| S | er    |      |     | er    | ABÍ     | Glu                                     | Ser   |        | 116  | GLU  | иър  | Lys    | 1le<br>460 | -116  | 3.,   | .,.       |       |      |
|   |       | 450  |     |       |         |                                         |       | 455    |      |      | •••  |        |            |       |       |           | 001   | 1559 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | cat        |       |       |           |       | .,,, |
| Ţ | УГ    | Arg  | L   | ys    | Lys     | Ala                                     |       | Leu    | Pro  | ASN  | Leu  |        | His        | VB    | ınr   | GIU       |       |      |
|   | 65    |      |     |       |         |                                         | 470   |        |      |      |      | 475    |            |       |       |           | 480   | 4407 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | ata        |       |       |           |       | 1607 |
| L | eu    | Ιle  | 1   | le    | Gly     | Ala                                     | Phe   | Val    | Ser  | Glu  | Pro  | Gln    | Ile        | lle   | Gln   | Glu       | Arg   |      |
|   |       |      |     |       |         | 485                                     |       |        |      |      | 490  |        |            |       |       | 495       |       |      |
| • | cc    | cto  |     | CB    | aat     | 888                                     | tta   | aag    | cgt  | 880  | agg  | aga    | cct        | aca   | tca   | 99c       | ctt   | 1655 |
| F | , ro  | Lei  | , 1 | hr    | Asn     | Lys                                     | Leu   | Lys    | Aeg  | Lys  | Arg  | Arg    | Pro        | Thr   | Ser   | Gly       | Leu   |      |
|   |       |      |     |       |         | 500                                     |       |        |      |      | 505  |        |            |       |       | 510       |       |      |
| ( | at    | cc1  | : 5 | ag    | gat     | ttt                                     | atc   | aag    | 888  | gca  | gat  | ttg    | gca        | gtt   | CBB   | aag       | act   | 1703 |
| , | lis   | Pro  |     | ilu   | Asp     | Phe                                     | ile   | Lys    | Lys  | Ala  | Asp  | Leu    | Ala        | Val   | Gln   | Lys       | Thr   |      |
|   |       |      |     |       | 515     |                                         |       |        |      | 520  |      |        |            |       | 525   |           |       |      |
| ( | ct    | gai  |     | atg   | ata     | aat                                     | cag   | 998    | act  | 880  | caa  | acg    | gag        | cag   | eat   | ggt       | CBB   | 1751 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | Glu        |       |       |           |       |      |
|   |       | -    |     | 530   |         |                                         |       | ·      | 535  |      |      |        |            | 540   |       |           |       |      |
|   | ata   | . at |     |       | att     | act                                     | aat   | agt    | ART  | cat  | 989  | aat    | 888        | aca   | 888   | ggt       | gat   | 1799 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        | Lys        |       |       |           |       |      |
|   | •••   | 54   |     |       | • • • • | • • • • • • • • • • • • • • • • • • • • | ,     | 550    |      |      |      |        | 555        |       |       |           |       |      |
|   | • - • |      |     |       |         | 000                                     |       |        |      | AAC  | CCE  | ata    |            | tca   | ctc   | 988       | 888   | 1847 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        |            |       |       |           | Lys   |      |
|   | 560   |      | •   |       | 701     |                                         | 565   |        |      |      |      | 570    |            |       |       |           | 575   |      |
|   |       |      |     | +     | •••     |                                         |       |        | nct  | 088  |      |        |            | 800   | act   | ate       | agc   | 1895 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        |            |       |       |           | Ser   |      |
|   |       | 36   |     | A 1 B | PILE    | 580                                     |       | - 7    |      |      | 585  |        |            |       |       | 590       |       |      |
|   |       |      |     |       |         | _                                       |       |        |      |      |      |        |            |       | cet   | -         | 989   | 1943 |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        |            |       |       |           | s Lys |      |
|   | ASI   | 1 61 | u   | Leu   |         |                                         | ASF   | , ,,,, | HE   | 600  |      | . 36.  | Cyc        |       | 605   |           | ,-    |      |
|   |       |      |     |       | 59      |                                         |       |        |      |      |      |        |            | . co1 |       |           | 7 088 | 1991 |
|   | 881   | t ag | 9   | ctg   | 899     | 9 899                                   | 9 889 | 1 (    |      |      | . 69 | y car  |            |       | · Ale |           | t gaa | •••  |
|   | Ası   | n Ar |     |       |         | g Ar                                    | g Lys | s se   |      |      | AL   | 9 1111 |            | 620   |       |           | u Glu |      |
|   |       |      |     | 610   |         |                                         |       |        | 619  |      |      |        |            |       |       |           |       | 2039 |
|   | ct    | B 91 | 8   | gtc   | 98      | t ag                                    | 881   | ct     | 8 89 |      | B CC | T 08'  | t tgi      | . 80  | . gar |           | g caa | 2037 |
|   | Le    | u Va | l   | Val   | Se      | r Ar                                    | g Ası |        |      | r Pr | o Pr | O ASI  |            |       | r 611 | ı Le      | u Gln |      |
|   |       | 62   |     |       |         |                                         |       | 63     |      |      |      |        | 63         |       |       |           |       | 2007 |
|   | at    | t ga | t   | ag1   | t g     | t tc                                    | t ag  | c ag   | t ga | 8 98 | g at | 8 8 8  | 9 88       | 88 8  | 8 8 8 | g ta<br>_ | C BBC | 2087 |
|   | 11    | e As | s p | Set   | - Cy    | s Se                                    | r Se  | r Se   | r Gl | u Gl | u Il |        |            | s Ly  | s Ly  | s Ty      | r Asn |      |
|   | 64    |      |     |       |         |                                         | 64    |        |      |      |      | 65     |            |       |       |           | 655   |      |
|   |       |      |     |       |         |                                         |       |        |      |      |      |        |            |       |       |           | t aaa |      |
|   | Gl    | n A  | et  | Pro   | o Va    | l Ar                                    | g Hi  | s Se   | г Аг | g As | n Le | eu Gl  | n Le       | u #e  | t Gl  | u Gl      | y Lys |      |
|   |       |      |     |       |         | 44                                      | n     |        |      |      | 66   | 5      |            |       |       | 67        | 0     |      |

| and                                                                                    | 8 2183         |
|----------------------------------------------------------------------------------------------------------------------------|----------------|
| gae oot goe act gga goo aag aag agt aac aag coa aat gae cag ac                                                             |                |
| Glu Pro Ala Thr Gly Ala Lys Lys Ser Asn Lys Pro Asn Glu Gln Th                                                             | ••             |
| <b>675 68</b> 0 <b>68</b> 5                                                                                                |                |
| agt ass aga cat gac agc gat act ttc cca gag ctg aag tta aca as                                                             | it 2231        |
| Ser Lys Arg His Asp Ser Asp Thr Phe Pro Glu Leu Lys Leu Thr As                                                             | in             |
| 690 695 700                                                                                                                |                |
| gcs cet ggt tet tit act asg tgt tea ast acc agt gss ett ass ge                                                             | aa 2279        |
| Ala Pro Gly Ser Phe Thr Lys Cys Ser Asn Thr Ser Glu Leu Lys G                                                              | lu             |
| 715                                                                                                                        |                |
| 705 710                                                                                                                    | ee 2327        |
| Phe Val Asn Pro Ser Leu Pro Arg Glu Glu Lys Glu Glu Lys Leu G                                                              | lu             |
| 730                                                                                                                        | 35             |
| 720                                                                                                                        | ta 2375        |
| aca gtt aaa gtg tot aat aat got gaa gac ooc aaa gat oto atg t                                                              | eu             |
| Thr Val Lys Val Ser Asn Asn Ala Glu Asp Pro Lys Asp Leu Het L                                                              |                |
| 740                                                                                                                        | at 2423        |
| agt ggs gas agg gtt ttg cas act gas aga tct gts gag agt agc a                                                              | •              |
| Ser Gly Glu Arg Val Leu Gln Thr Glu Arg Ser Val Glu Ser Ser S                                                              | er             |
| 755 760 765                                                                                                                | tca 2471       |
| att tea ttg gta cet ggt act gat tat gge act cag gas agt ate t                                                              |                |
| Ile Ser Leu Val Pro Gly Thr Asp Tyr Gly Thr Gln Glu Ser Ile S                                                              | ser            |
| 770 775 780                                                                                                                | 2540           |
| tta ctg gas gtt agc act cts ggg sag gcs ass aca gas ccs ast                                                                | ваа 2519       |
| Leu Leu Glu Val Ser Thr Leu Gly Lys Ala Lys Thr Glu Pro Asn                                                                | Lys            |
| 785 790 795                                                                                                                |                |
| tgt gtg agt cag tgt gca gca ttt gaa aac ccc aag gga cta att                                                                | cet 2567       |
| Cys Val Ser Gln Cys Ala Ala Phe Glu Asn Pro Lys Gly Leu Ile                                                                | His            |
| 800 805 810                                                                                                                | 815            |
| ggt tgt tcc ass gat ast age eat gac aca gas ggc ttt sag tat                                                                | сса 2615       |
| Gly Cys Ser Lys Asp Asn Arg Asn Asp Thr Glu Gly Phe Lys Tyr                                                                | Pro            |
| 820 825 830                                                                                                                |                |
| ttg gga cat gaa gtt aac cac agt cgg gaa aca agc ata gaa atg                                                                | gaa 2663       |
| Leu Gly His Glu Val Asn His Ser Arg Glu Thr Ser Ile Glu Het                                                                | Glu            |
| 835 840 845                                                                                                                |                |
| gas agt gas ctt gat gct cag tat ttg cag aat aca ttc aag gtt                                                                | tca 2711       |
| Glu Ser Glu Leu Asp Ala Gin Tyr Leu Gin Asn Thr Phe Lys Val                                                                | Ser            |
| eer 860                                                                                                                    |                |
|                                                                                                                            | gag 2759       |
| ang cgc cng ten ttt get eeg ttt ten mat een ggm mat gen gam<br>Lys Arg Gin Ser Phe Alm Pro Phe Ser Asm Pro Gly Asm Alm Giu |                |
| 979 875                                                                                                                    |                |
| 865                                                                                                                        | agt 2807       |
| gas tgt gcs aca ttc tct gcc cac tct ggg tcc tts aag asa cas                                                                | Ser            |
| Glu Cys Ala Thr Phe Ser Ala His Ser Gly Ser Leu Lys Lys Glr                                                                | 895            |
| 880 885 890                                                                                                                |                |
| cca ass gtc act ttt gas tgt gas cas asg gas gas ast cas ggt                                                                |                |
| Pro Lys Val Thr Phe Glu Cys Glu Gln Lys Glu Glu Asn Gln Gly                                                                | , <u>-</u> , , |
| 900 905 910                                                                                                                |                |
| ant gag tot ant atc ang cot gta cag aca gtt ant atc act go                                                                 | aggc 290       |
| Asn Glu Ser Asn Ile Lys Pro Val Gln Thr Val Asn Ile Thr Al                                                                 | a Gly          |
| 925                                                                                                                        |                |

|     |       |       |       | ggt          |       |       | ORT                                     | DAG   | CCB            | att   | gat          | aat   | 900          | 888           | tgt  | ; ;      | 2951         |
|-----|-------|-------|-------|--------------|-------|-------|-----------------------------------------|-------|----------------|-------|--------------|-------|--------------|---------------|------|----------|--------------|
| ttt | CET   | gtg   | gtt   | Gly          | CLE   | 1     | 465                                     | Lve   | Pro            | Val   | Asp          | Asn   | Ala          | Lvs           | Cys  | 5        |              |
| Phe | Pro   |       | ABI   | GLY          | uin   | Lys   | 935                                     | .,.   |                | •••   | ,,,,,        | 940   |              | •             | ·    |          |              |
|     |       | 930   |       |              |       |       |                                         |       |                | • • • |              |       | ***          | 808           | 900  | e        | 2999         |
| agt | atc   | 888   | gga   | ggc          | tct   | agg   |                                         | tgt   |                | 500   | 505          | Clo   | Pho          | Aro           | GIV  |          |              |
| Ser | Ile   | Lys   | Gly   | Gly          | Ser   |       | Phe                                     | Cys   | reu            | Ser   |              |       | rne          | רי א          | 31   | ,        |              |
|     | 945   |       |       |              |       | 950   |                                         |       |                |       | 955          |       |              |               |      | _        | <b>3</b> 0/7 |
| 880 | 988   | act   | 998   | ctc          | att   | act   | CCB                                     | aat   | 888            | cat   | 998          | ctt   | tta          | CBB           | 88   | <b>C</b> | 3047         |
| Asn | Glu   | Thr   | Gly   | Leu          | 1 l e | Thr   | Pro                                     | Asn   | Lys            | His   | Gly          | Fen   | Leu          | Gin           |      |          |              |
| 960 |       |       |       |              | 965   |       |                                         |       |                | 970   |              |       |              |               | 97   |          |              |
| CCB | tet   | cgt   | ata   | CCB          | CCB   | ctt   | ttt                                     | ccc   | atc            | 888   | tca          | ttt   | gtt          | 886           | ac   | t        | 3095         |
| Pro | Tyr   | Arg   | Ile   | Pro          | Pro   | Leu   | Phe                                     | Рго   | He             | Lys   | Ser          | Phe   | · Val        | Lys           | ; Th | r        |              |
|     |       |       |       | 980          |       |       |                                         |       | 985            |       |              |       |              | 990           | )    |          |              |
| AAA | tat   | aac   | 888   | aat          | ctg   | cta   | gag                                     | gaa   | 880            | ttt   | gag          | gas   | cat          | tca           | a at | 9        | 3143         |
| Lve | rve   | lve   | 1 00  | Asn          | Leu   | l eu  | Glu                                     | Glu   | Asr            | Phe   | Gli          | GLU   | His          | s Sei         | r He | t        |              |
| Lys | Lys   |       | 995   |              |       |       | • • • • • • • • • • • • • • • • • • • • | 100   |                |       |              |       | 10           |               |      |          |              |
|     |       |       |       | ,<br>988     |       |       |                                         |       |                |       |              | n ad  | t ac         | e at          | Q 89 | ıc       | 3191         |
| tca | CC1   | 988   | age   | gaa<br>Glu   | . atg | . C1. | . ^                                     | . Cl. | , 000<br>. Acr |       | Pr           | o Sei | r Th         | r Va          | lSe  | er       |              |
| Ser | Pro   |       |       | 9 610        | ı net |       | 101                                     | _     | , ,,,,         |       |              | 10    |              |               |      |          |              |
|     |       | 101   |       | t aa t       |       |       |                                         |       |                | n at  |              |       |              | a 9c          | c as | ac       | 3239         |
| ac. | ati   | t ag  | c cg  | g Asr        | 880   |       | . aya                                   | . Cti | . ^61          | . y.  | l Ph         | - IV  | s Gl         | u Al          | a S  | er       |              |
| The |       |       | r Ar  | g AST        | 1 AST |       |                                         | , 611 | u 451          | , ,,  |              | 35    |              |               |      |          |              |
|     | 10    |       |       |              |       | 10:   |                                         |       |                |       |              |       | a nt         |               | r t  | cc       | 3287         |
| tc  | e eg  | C BB  | t at  | t aat        | t gai | s gt  | B 99                                    |       | c ag           |       |              | - 61  | 1/2          | ים פ<br>וים ו |      | ٥.       |              |
| Se  | r Se  | r As  | n Il  | e Ası        | n Gli | u Va  | l Gl                                    | y Se  | r Se           |       |              | n Gi  | U VE         |               |      | 055      |              |
| 10  |       |       |       |              | 104   |       |                                         |       |                |       | 50           |       |              |               |      |          | 7775         |
| ag  | t at  | t 88  | t ga  | a at         | a 99  | t tc  | c ag                                    | t ga  | t ga           | 8 88  | c at         | t ce  | a go         | :a 98         | 38 C | T B      | 3335         |
| Se  | r Il  | e As  | n Gl  | u 11         | e Gl  | y Se  | r Se                                    | r As  | p Gl           | u As  | n II         | e Gl  | n Al         |               |      | eu       |              |
|     |       |       |       | 10           |       |       |                                         |       |                | 65    |              |       |              |               | 070  |          |              |
| 88  | t ag  | 88 8  | c ag  | 8 gg         | g cc  | 86 6  | a tt                                    | 9 88  | t go           | t at  | g c          | tt ag | a t          | ta g          | 99 9 | )tt      | 3383         |
| Gl  | y Ar  | g As  | in Ar | g Gl         | у Рг  | o Ly  | s Le                                    | u As  | n Al           | a #6  | et Le        | eu Ai |              |               | ly \ | /al      |              |
|     |       |       |       | 075          |       |       |                                         |       | 080            |       |              |       |              | 1085          |      |          |              |
| ti  | .g c  | 88 C  | ct g  | g gt         | c te  | t a   | 98 CE                                   | 8 8   | gt c           | tt c  | ctg          | 98 B  | gt ø         | et t          | gt   | 889      | 3431         |
| Le  | eu Gi | ln Pi | ro GI | u Va         | ıl Ty | r Ly  | rs Gl                                   | n Se  | er Le          | eu Pi | ro G         | ly S  | ег А         | sn C          | ys I | LYS      |              |
|     |       |       | 090   |              |       |       |                                         | 95    |                |       |              |       | 100          |               |      |          |              |
| CI  | at c  | ct a  | 88 8  | ta 88        | 88 88 | g c   | 98 ga                                   | a t   | et g           | BB 9  | 8 68         | ta g  | tt c         | 89 <b>8</b>   | ct   | gtt      | 3479         |
| н   | is P  | ro G  | lu I  | le Ly        | ys Ly | ys G  | in G                                    | lu T  | yr G           | lu G  | lu V         | al V  | al G         | iln T         | hr ' | Val      |              |
| •   |       | 105   |       |              |       |       | 110                                     |       |                |       |              | 115   |              |               |      |          |              |
| _   |       |       | at t  | tc to        | ct E  | ca t  | at c                                    | ta a  | tt t           | ca g  | 8 7 <b>6</b> | ac t  | ta g         | aa c          | ag   | cct      | 3527         |
|     | o     | 66 g  | - D   | he S         | or P  | ro T  | vr L                                    | eu I  | le S           | er A  | SP A         | sn L  | eu (         | ilu (         | iln  | Pro      |              |
|     |       | III A | sp r  | ne 3.        |       | 125   | ,                                       |       |                |       | 130          |       |              |               |      | 1139     | 5            |
| 1   | 120   |       |       | gt c         |       |       |                                         |       |                |       |              | aa s  | aca (        | ct            | at   | gac      | 3575         |
| a   | tg g  | ga 8  | igt 8 | gt c<br>er H | at 9  | CB 1  | 6                                       | - y   |                |       | er (         | stu 1 | thr I        | Pro A         | Asp  | Asp      |              |
| Ħ   | et G  | ily S | er S  |              |       | 18 5  | er u                                    | th 4  |                |       |              |       |              |               | 1150 | ,        |              |
|     |       |       |       |              | 140   |       |                                         |       |                | 145   |              | ort ' | ***          |               |      |          | 3623         |
| c   | tg t  | ta g  | at g  | at g         | gt g  | 88 8  | ta a                                    | ag g  | 188 (          | at    | SC (         | co-   | iii '<br>Dha | Al-           | 200  | Acr      |              |
| ι   | eu l  | .eu / | Asp A | sp G         | ily G | lu 1  | le L                                    |       |                | (sp   | וחר          | ser : | rne          | 414F          | u    | Mar)     |              |
|     |       |       |       | 1155         |       |       |                                         |       | 1160           |       |              |       |              | 1165          |      |          | 367          |
| 9   | ac i  | att ( | eag ( | 988 &        | gt t  | ct    | ct s                                    | itt 1 | ttt            | egc : | 888          | agc   | gtc          | cag           | 888  | yga      |              |
|     | Asp   | ile I | Lys ( | Glu S        | Ser S | er i  | la \                                    | /al I | Phe :          | Ser   | Lys          | Ser   |              |               | LYS  | GLY      | •            |
|     |       |       | 1170  |              |       |       |                                         | 175   |                |       |              |       | 1180         |               |      |          |              |

| 989    | ctt    | agc   | 899    | agt   | cct      | agc  | cct  | ttc   | acc   | CBT        | BCB   | CBT   | ttg  | gcı   | cag           | 3/17   |
|--------|--------|-------|--------|-------|----------|------|------|-------|-------|------------|-------|-------|------|-------|---------------|--------|
| Glu    | Leu    | Ser   | Arg    | Ser   | Pro      | Ser  | Pro  | Phe   | Thr   | His        | Thr   | His   | Leu  | Ala   | Gln           |        |
|        | 1185   | ;     |        |       |          | 1190 |      |       |       |            | 1195  | ,     |      |       |               |        |
| agt    | tac    | cga   | 898    | 999   | gcc      | 889  | 888  | tta   | gag   | tcc        | tca   | gaa   | gag  | aac   | tta           | 3767   |
| Gly    | Туг    | Arg   | Агр    | Gly   | Ala      | Lys  | Lys  | Leu   | Glu   | \$er       | Ser   | Glu   | Glu  | Asn   | Leu           |        |
| 1200   |        |       |        |       | 1205     |      |      |       |       | 1210       |       |       |      |       | 1215          |        |
|        |        | 080   | gat    | gaa   | gag      | ctt  | ccc  | tgc   | ttc   | CD8        | CBC   | ttg   | tta  | ttt   | ggt           | 3815   |
| Ser    | Ser    | Glu   | ASD    | Glu   | Glu      | Leu  | Pro  | Cys   | Phe   | Gin        | His   | Leu   | Leu  | Phe   | Gly           |        |
|        |        | •     | •      | 1220  |          |      |      |       | 1229  |            |       |       |      | 123   |               |        |
| 888    | ata    | 880   | aat    | eta   | cct      | tct  | cag  | tct   | act   | <b>agg</b> | cat   | agc   | асс  | gtt   | gct           | 3863   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | Ala           |        |
| -,-    |        |       | 123    |       |          |      |      | 124   |       |            |       |       | 124  | _     |               |        |
| acc    | gag    | tgt   | ctg    | tct   | 889      | 880  | aca  | gag   | 989   | aat        | tta   | tta   | tca  | ttg   | 889           | 3911   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | ı Lys         |        |
|        |        | 125   |        |       | ·        |      | 125  | _     |       |            |       | 126   |      |       |               |        |
| AAT    | agc    |       | -      | gac   | tgc      | egt  | 880  | cag   | gta   | ata        | ttg   | BCB   | 889  | gce   | tct           | 3959   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | Ser           |        |
| ,,,,,, | 126    | _     |        |       | ·        | 127  |      |       |       |            | 127   | _     |      |       |               |        |
| CAG    |        |       | cac    | ctt   | agt      | 989  | gaa  | aca   | 888   | tgt        | tct   | gct   | ago  | : ttg | ttt           | 4007   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | . Phe         |        |
| 128    | _      |       |        |       | 128      |      |      |       |       | 129        |       |       |      |       | 129           | 5      |
|        |        | Cag   | tgc    | agt   | 988      | ttg  | 988  | gac   | ttg   | ect        | 906   | aat   | BC   | 8 88  | c acc         | 4055   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | n Thr         |        |
| • • •  |        |       | •      | 1300  |          |      |      |       | 130   |            |       |       |      | 13    |               |        |
| CBC    | get    | cci   | ttt    | : tts | att      | ggt  | tet  | tcc   | 888   | CBE        | ate   | 999   | ca'  | t ca  | g tct         | 4103   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | n Ser         |        |
|        | •      |       | 131    |       |          |      |      | 132   |       |            |       |       | 13   |       |               |        |
| 988    | a age  | c ca  | 994    | a gti | t ggt    | cts  | ag1  | t gad | 889   | 981        | e tt  | g gt  | t tc | 88 6  | t gat         | 4151   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | p Asp         |        |
|        |        | 13    |        |       |          |      | 133  |       |       |            |       | 134   |      |       |               |        |
| ga     | B 98   | 8 89  | a gg   | B ac  | 999      | tte  | gaa  | e ga  | 88 8  | t 88       | t ca  | 8 98  | 8 98 | g ca  | a agc         | 4199   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | n Ser         |        |
|        | 13     |       | •      | •     |          | 13:  |      |       |       |            | 13    |       |      |       |               |        |
| at     | g ga   | t tc  | 8 88   | c tt  | e 99'    | t ga | e gc | 8 gc  | e tc  | t gg       | g tg  | t ga  | 9 89 | t ga  | 90 GC         | 4247   |
|        |        |       |        |       |          |      |      |       |       |            |       |       |      |       | u Thr         |        |
| 13     |        |       |        |       | 13       |      |      |       |       | 13         |       |       |      |       | 137           |        |
|        |        | c to  | t ga   | a ga  | c tg     | c tc | a gg | g ct  | a tc  | c tc       | t ca  | g ag  | t ga | ac 81 | t tt          | 4295   |
| Se     | r Va   | l Se  | r Gl   | u As  | p Cy     | s Se | r Gl | y Le  | u Se  | r Se       | r Gl  | n Se  | r As | p II  | le Lei        | J      |
|        |        |       |        |       | 80       |      |      |       |       | 85         |       |       |      |       | 390           |        |
| ac     | c ac   | t ce  | 10 CB  | 98 0  | g g8     | t ac | c et | g ca  | a ca  | t 88       | c ct  | g at  | 8 8  | g c   | tc ca         | g 4343 |
| Th     | r Th   | ır Gi | n Gl   | n Ar  | g As     | o Th | r #e | t Gl  | n Hi  | s As       | n Le  | eu Il | e Ly | ys L  | eu Gli        | n      |
| •••    | ••     | •     |        | 95    | <b>J</b> |      |      |       | 00    |            |       |       |      | 405   |               |        |
|        |        | ים פו |        |       | A C?     | B 08 | 8 90 |       |       | a ge       | 8 C   | 3g C8 | at g | 99 8: | gc <b>c</b> a | g 4391 |
| C      | - CI   | 10 G  | . Al   | . 6   | 1 6      | u Gl | u Al | a Va  | ıl Le | eu Gl      | u GI  | n Hi  | is G | ly S  | er Gl         | n      |
| G      | .11 61 |       | 410    |       |          | _ •• |      | 15    |       |            |       |       | 420  |       |               |        |
|        |        |       |        | nc +1 |          | t to |      |       | ta ac | it gi      | ec to | ct to | ct g | cc c  | tt ga         | g 4439 |
| D-     |        |       | er ef  | ar Ti | ,r Dr    | n Se | r 1  | le II | le Si | er A       | sp S  | er S  | er A | la L  | eu Gl         | u      |
| PI     |        | er A: | 5f) 36 | ET 17 | y. FI    | 1/   |      | • '   |       |            |       | 435   |      |       |               |        |

| -    |      |      |      |      |            |      |      |      |      |            |      |      |      | tta        |            | 4487  |
|------|------|------|------|------|------------|------|------|------|------|------------|------|------|------|------------|------------|-------|
| Asp  | Leu  | Arg  | Asn  |      |            | Gln  | Ser  | Thr  |      |            | Lys  | Val  | Leu  | Gln        | Thr        |       |
| 1440 |      |      |      | 1445 |            |      |      |      | 1450 |            |      |      |      | 1455       |            |       |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | ggc        |            | 4535  |
| Ser  | Gln  | Lys  |      |      | Glu        | Tyr  | Pro  |      |      | Gln        | Asn  | Pro  |      | Gly        | Xee        |       |
|      |      |      | 1460 |      |            |      |      | 1465 |      |            |      |      | 1470 |            |            |       |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | 888        |            | 4583  |
| Ser  | Ala  |      |      | Phe  | Glu        | Val  |      |      | Asp  | Ser        | \$er |      |      | Lys        | Asn        |       |
|      |      | 1475 |      |      |            |      | 1480 | _    |      |            |      | 1485 |      | _          |            |       |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | tca        |            | 4631  |
| Lys  |      |      | Gly  | Val  | Glu        | _    |      | Ser  | Pro  | Ser        | -    | -    | Pro  | Ser        | Leu        |       |
|      | 1490 |      |      |      |            | 1495 |      |      |      |            | 1500 |      |      |            |            |       |
| -    |      |      |      |      |            |      |      |      |      |            |      |      |      | tsa        |            | 4679  |
| Asp  | Asp  | Arg  | Тrр  | Tyr  | Ħet        | His  | Ser  | Cys  | Ser  | Gly        | Ser  | Leu  | Gln  | Asn        | Arg        |       |
| 1505 | 5    |      |      |      | 1510       | )    |      |      |      | 1515       | 5    |      |      |            | 1520       |       |
| 880  | tac  | CCB  | tct  | CBB  | 989        | gag  | ctc  | att  | 889  | gtt        | gtt  | gat  | gtg  | gag        | 989        | 4727  |
| Asn  | Туг  | Pro  | Pro  | Gln  | Glu        | Glu  | Leu  | Ile  | Lys  | Val        | Val  | Asp  | Val  | Glu        | Glu        |       |
|      |      |      |      | 1525 | 5          |      |      |      | 1530 | )          |      |      |      | 1535       | 1          |       |
|      | -    | _    | -    |      |            |      |      |      |      |            |      |      |      | tct        |            | 4775  |
| Gln  | Gln  | Leu  |      |      | Ser        | Gly  | Pro  |      |      | Leu        | Thr  | Glu  |      | Ser        | Tyr        |       |
|      |      |      | 1540 |      |            |      |      | 1545 |      |            |      |      | 1550 |            |            |       |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | 998        |            | 4823  |
| Leu  | Pro  | Arg  | Gln  | Asp  | Leu        | Glu  | Gly  | Thr  | Pro  | Tyr        | Leu  |      |      | Gly        | Ile        |       |
|      |      | 1555 | 5    |      |            |      | 156  | 0    |      |            |      | 156  | 5    |            |            |       |
| -    |      |      |      | -    | _          |      |      |      |      |            |      |      |      | 898        |            | 4871  |
| Ser  | Leu  | Phe  | Ser  | Asp  | Asp        | Pro  | Glu  | Ser  | Asp  | Pro        | Ser  | Glu  | Asp  | Arg        | Ala        |       |
|      | 157  |      |      |      |            | 157  |      |      |      |            | 1580 |      |      |            |            |       |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | BCB        |            | 4919  |
|      |      | Ser  | Ala  | Arg  |            |      | Asn  | He   | Рго  |            |      | Thr  | Ser  | Ala        |            |       |
| 158  |      |      |      |      | 159        |      |      |      |      | 159        |      |      |      |            | 1600       | 4047  |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | gct        |            | 4967  |
| Lys  | Val  | Pro  | Gln  |      |            | Val  | Ala  | Glu  |      |            | Gln  | Ser  | Pro  | Ala        |            |       |
|      |      |      |      | 160  | -          |      |      |      | 161  |            |      |      |      | 161        |            | E01E  |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | agt        |            | 5015  |
| Ala  | His  | Thr  |      |      | Thr        | AlB  | Gly  |      |      | Ala        | Het  | GIU  |      | Ser        | ABI        |       |
|      |      |      | 162  |      |            |      |      | 162  |      |            |      |      | 163  | -          |            | 5063  |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | 880        |            | 2003  |
| Ser  | Arg  |      |      | Pro  | Glu        | f en |      |      | Ser  | INF        | Glu  | 164  |      | Asn        | Lys        |       |
|      |      | 163  |      |      |            |      | 164  |      |      |            |      |      |      |            |            | 5111  |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | atg        |            | 2111  |
| Arg  |      |      | пеt  | ABI  | Val        |      |      | ren  | IRC  | PFO        |      |      | rne  | Het        | FEU        |       |
|      | 165  |      |      |      |            | 165  |      |      |      |            | 166  |      |      |            |            | 5159  |
|      |      |      |      |      |            |      |      |      |      |            |      |      |      | cta        |            | 7 129 |
|      | Tyr  | Lys  | Phe  | Ala  | Arg        |      | MIS  | HIS  | ıte  |            |      | ınr  | AST  | Leu        | 1680       |       |
| 166  |      |      |      |      |            |      |      |      |      |            |      |      |      |            |            |       |
|      |      |      |      |      | 167        |      |      | =    |      | 167        |      |      |      |            |            | 5207  |
| act  | 988  |      |      |      | cat        | gtt  |      |      |      | ace        | gat  |      |      | ttt        | gtg        | 5207  |
| act  | 988  |      |      |      | cat<br>His | gtt  |      |      |      | ace<br>Thr | gat  |      |      | ttt<br>Phe | gtg<br>Val | 5207  |

|     |      |              | 969   | cta   | AAA          | tat        | ttt          | cte        | 698   | att           | gcg            | 998     | 998        | 888   | tgg            | 5255     |
|-----|------|--------------|-------|-------|--------------|------------|--------------|------------|-------|---------------|----------------|---------|------------|-------|----------------|----------|
| Cur | Saa  | \r.c         | Thr   | Leu   | Lvs          | Tvr        | Phe          | Leu        | Gly   | lie           | Ala            | Gly     | Gly        | Lys   | Trp            |          |
| Lys | 610  | AI B         | 1700  |       | -,-          | .,.        |              | 170        |       |               |                |         | 1710       |       |                |          |
| ata | att  | agc          |       |       | tgg          | gtg        | acc          | cag        | tct   | att           | 888            | gaa     | 898        | 888   | atg            | 5303     |
| Val | Val  | Ser          | Туг   | Phe   | Trp          | Val        | Thr          | Gln        | Ser   | Ile           | Lys            | Glu     | Arg        | Lys   | Het            |          |
|     |      | 171          | 5     |       |              |            | 172          | 0          |       |               |                | 172     | 5          |       |                |          |
| ctg | aat  | gag          | cat   | gat   | ttt          | 988        | gtc          | 898        | 898   | gat           | gtg            | gtc     | aat        | 998   | 898            | 5351     |
| Leu | Asn  | Glu          | His   | Asp   | Phe          |            |              | Arg        | Gly   | Asp           |                |         | Asn        | Gly   | Ar <b>g</b>    |          |
|     | 173  |              |       |       |              | 173        |              |            |       | •             | 174            |         | 949        | 220   | ATC            | 5399     |
| 880 | Cac  | CBB          | ggt   | CCA   | eag          | cga<br>^== | gce          | aga<br>^so | Gua   | tcc           | Cln            | ysc     | ogo<br>Δro | Lvs   | lle            | •••      |
|     |      | Gin          | GLY   | Pro   | 175          |            | ALB          | MIS        | , 510 | 175           |                | , ,,,,, |            | -,-   | 1760           |          |
| 174 |      | 000          | cta   | QAS   |              |            | tgc          | tat        | 999   | ccc           | ttc            | 800     | 880        | atg   | ccc            | 5447     |
| Phe | Arg  | Gly          | Leu   | Glu   | ılle         | Cys        | Cys          | Туг        | Gly   | Pro           | Phe            | Thr     | Asr        | n Het | Pro            |          |
|     |      |              |       | 176   | 5            |            |              |            | 177   | 70            |                |         |            | 177   | 75             |          |
| BCB | gat  | CBE          | cts   | gaa   | tgg          | atg        | gte          | CBS        | cts   | tgt           | 991            | gc1     | tct        | gts   | gtg            | 5495     |
| Thr | Asp  | Glr          | ı Lei | , Gli | ı Trp        | Het        | Val          |            |       | ı Cys         | GLY            | Ali     |            |       | Val            |          |
|     |      |              | 178   |       |              |            |              | 178        |       |               |                |         | 179        |       |                | 5543     |
| 889 | 989  | g cti        | t tci | tc    | e tto        | ; acc      | CTI          | . 61       | c ac  | 8 991<br>C () | y Va           | l Hi    | s Pri      | o Ile | t gtg<br>e Val | 3345     |
| Lys | Gli  | u Lei<br>171 |       | . 26  | r Pn         |            | 180          |            | y     |               | , ,,           | 18      |            |       |                |          |
| ati | ati  |              |       | 8 Q8  | t ac         | c tgs      |              |            | g ga  | C 88          | t 99           | c tt    | c ca       | t gc  | a att          | 5591     |
| Va  | l Va | l Gl         | n Pr  | o As  | p Al         | a Tri      | o Th         | t Gl       | u As  | p As          | n Gl           | y Ph    | e Hi       | s Al  | a ile          |          |
|     | 18   | 10           |       |       |              | 18         | 15           |            |       |               | 18             | 20      |            |       |                |          |
| 99  | д св | g at         | g tg  | t ga  | g <b>g</b> c | a cc       | t gt         | g gt       | g ac  | c cg          | a 9a           | g tg    | g gt       | g tt  | g gac          | 5639     |
| Gl  | y Gl | n He         | t Cy  | s Gl  |              |            | o Va         | t ∀a       | l Th  |               |                | u Tr    | p Va       | l Le  | ս Asp<br>184   | <b>.</b> |
| 18  |      |              |       |       |              | 30         |              |            |       |               | 35             |         |            | o at  |                |          |
| 89  | t gt | 8 90         | a ct  | c ta  | . CB         | g tg       | c ca         | 9 98       | in Le | .g.ya<br>∝ıΔs | ונ פנ<br>לו מו | ir Ti   | r Le       | eu II | e Pro          |          |
| Se  | r va | il Al        | a Le  |       | 45           | 11 Cy      | 5 <b>U</b> . |            |       | 350           |                |         |            |       | 355            |          |
| CB  | a et |              | :c ce |       |              | c te       | c ts         | at         |       |               |                |         |            |       |                | 5712     |
|     |      |              | o Hi  |       |              |            |              |            |       |               |                |         |            |       |                |          |
|     |      |              |       | 360   |              |            |              |            |       |               |                |         |            |       |                |          |
|     |      |              |       | •     | 2)           |            |              |            |       |               |                |         |            |       |                | NO:48:   |
| (i  | .)   |              |       | 9     | SEÇ          | UE         | NC           | E          | CHA   | AR#           | CI             | ER      | IST        | ICS   | S:             |          |
|     |      |              |       | (     | (A)          | _          |              |            |       | 12            |                |         |            |       |                |          |
|     |      |              |       | (     | (B)          | •          | TY.          | PE:        | שמ    | clei          | c ac           | id      |            |       |                |          |
|     |      |              |       | (     | (C)          | ;          | STI          | RA.        | NDI   | EDP           | VES            | S:      | dou        | ble   |                |          |
|     |      |              |       |       | (D)          |            |              |            |       | GY:           |                |         |            |       |                |          |
| (   | ii)  |              |       |       | MO           | LE         | CU.          | LE         | TY    | PE:           | DI             | AK      | reg        | ulat  | огу            | sequence |
| (   | iii) |              |       |       | HY           | PO         | ΓHI          | ETI        | CA    | L: r          | 10             |         |            |       |                |          |
| (   | iv)  |              |       |       | AN           | TI-:       | SEN          | <b>ISE</b> | : n   | 0             |                |         |            |       |                |          |

WO 95/19369

89

| (v)    | ORIG  | INAL SOURCE                                      |
|--------|-------|--------------------------------------------------|
| ` /    | (A)   | ORGANISM: Homo sapiens sapiens                   |
|        | (C)   | INDIVIDUAL/ISOLATE:                              |
|        | (D)   | DEVELOPMENTAL STAGE: adult                       |
|        | (F)   | TISSUE TYPE: female breast                       |
|        |       | CELL TYPE: normal breast                         |
|        | (H)   | CELL LINE: not derived from a cell line          |
|        | (I)   | ORGANELLE: no                                    |
| (vii)  | IMM   | EDIATE SOURCE:                                   |
| , ,    | (A)   | LIBRARY: cDNA library derived from human         |
|        | (B)   | CLONE: obtained using published sequence         |
| (viii) | POSI  | TION IN GENOME:                                  |
|        | (A)   | CHROMOSOME/SEGMENT: unknown                      |
|        | (B)   | MAP POSITION: unknown                            |
|        | (C)   | UNITS: unknown                                   |
| (ix)   | FEAT  | TURE:                                            |
|        | (A)   | NAME/KEY: BRCA1 promoter                         |
|        | (B)   | LOCATION:                                        |
|        | (C)   | IDENTIFICATION METHOD: restriction enzyme digest |
|        | (D)   | OTHER INFORMATION: DNA sequence regulating gene  |
|        | encoc | ling BRCA1 protein                               |
| (x)    | PUB   | LICATION INFORMATION:                            |
|        | (A)   | AUTHORS: Brown et al.                            |
|        | (B)   | TITLE: Scientific Correspondence                 |
|        | (C)   | JOURNAL: Nature                                  |
|        | (D)   | VOLUME: 372                                      |
|        | (E)   | PAGES: 733                                       |
|        | (F)   | DATE: 22/29 DECEMBER 1994                        |
|        | (K)   | RELEVANT RESIDUES IN SEQ ID NO: 48               |

SEQUENCE DESCRIPTION: SEQ ID NO:48:

TICCGGGACI CTACTACCTI TACCCAGACG AGAGGGTGAA GGCCTCCTGA TCGCAGGGGC 60 CCAGTTATCT GAGAAACCCC ACAGCCTGGT GCGGGGTCCA GGAAGTCTCA GCGAGCTCAC 120

(xi)

| GCCGCGCAGT | CGCAGTTTTA ATTT  | ATCTGT AATTCCCGCG CTTTTCCGTT GCCACGGAAA 18   | -          |
|------------|------------------|----------------------------------------------|------------|
|            |                  | GCCTCT CAGAATACGA AATCAAGGTA CAATCAGAGG 24   | -          |
|            |                  | CGTCTC TCGGGGCTCT GGATTGGCCA CCCAGTCTGC 30   | -          |
|            |                  | GACGGA AGAGGAAGAA TICTACCIGA GIICGCCGTA 36   | _          |
|            |                  | GETTEE AGTTGCGGET TATTAGGTGA GAGTTETT        | _          |
|            |                  | IDAGGE ETBARTATER GEGTANDATA GIGIOGOGO       | -          |
|            |                  | CCCCAC TCTTTCCGCC CTAATGGAGT CCTCCAGTTT 54   |            |
|            |                  | ACTIGITE CITEGAAACT GTAGTCTTAT GGAGAGGAAC 66 |            |
|            |                  | TICTCAC GGAAATCCÁG TGGATAGATT GGAGACCTCC 72  | 20         |
|            |                  | NATATIG GGTIGTIATG TICTCCTATC TIGAGAGCAG 78  | 30         |
|            |                  | GGAAGAC TACGATTCCC ATCCAGCCCC ACGAGTCTCG 84  | 40         |
|            |                  |                                              | 00 .       |
|            |                  |                                              | 60         |
|            |                  | ITEAGGE IGETTETACE CEGECOCKTO BIOGRAFIE      | 020        |
|            |                  | TITUAGG BACAAGTOOT WAGAGCOATT SATETION       | 080        |
|            |                  | AGITACT GICTITATEC GCCATGITAG ATTENDED.      | 140        |
|            |                  | GCGGACG GICCIIGCAI IGGGCIGGGG GAGGGGGG       | 200<br>237 |
| CCGGGGGGGG | G GAAGETGGTA AGG | AAGCAGC TOCOGTT                              |            |
|            | <b>(</b> -)      | INFORMATION FOR SEQ ID NO:                   | 47.        |
| (i)        | •                | ENCE CHARACTERISTICS:                        |            |
|            | ()               | LENGTH: 1863                                 |            |
|            | (-)              | TYPE: amino acid                             |            |
|            | (C)              | STRANDEDNESS: unknown                        |            |
|            | (D)              | TOPOLOGY: unknown                            |            |
| (ii)       | MOLE             | CULE TYPE: protein                           |            |
| (iii)      | HYPO             | THETICAL: no                                 |            |
| (iv)       | ANTI-            | SENSE: no                                    |            |
| (v)        | ORIGI            | NAL SOURCE                                   |            |
|            | (A)              | ORGANISM: Homo sapiens sapiens               | 3          |
|            | (C)              | INDIVIDUAL/ISOLATE:                          |            |
|            | (D)              | DEVELOPMENTAL STAGE: adul                    | t          |
|            | <b>(F)</b>       | TISSUE TYPE: female breast                   |            |
|            | (G)              | CELL TYPE: normal breast tissue              |            |
|            | (H)              | CELL LINE: not derived from a ce             | ll line    |
|            | (I)              | ORGANELLE: no                                |            |
| (ix)       | FEAT             | URE:                                         |            |

(A) NAME/KEY: BRCA1 protein

- 2 (B) LOCATION: 1 to 1863
  - (C) IDENTIFICATION METHOD: observation of mRNA and antisense inhibition of BRCA1 gene
  - (D) OTHER INFORMATION: BRCA1 protein has a negative regulatory effect on growth of human mammary cells.

## (x) PUBLICATION INFORMATION:

- (A) AUTHORS: Miki, Y., et. al.
- (B) TITLE: A strong candidate gene for the breast and ovarian cancer susceptibility gene BRCA1.
- (C) JOURNAL: Science
- (D) VOLUME: 266
- (E) PAGES: 66-71
- (F) DATE: 1994
- (K) RELEVANT RESIDUES IN SEQ ID NO: 49

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

 Met Asp Leu Ser Ala Leu Arg Val Glu Glu Val Gln Asn Val Ile Asn

 1
 5
 10
 15

 Ala Met Gln Lys Ile Leu Glu Cys Pro Ile Cys Leu Glu Leu Ile Lys
 20
 25
 30

 Glu Pro Val Ser Thr Lys Cys Asp His Ile Phe Cys Lys Phe Cys Met
 35
 40
 45

Leu Lys Leu Leu Asn Gin Lys Lys Gly Pro Ser Gin Cys Pro Leu Cys
50 55 60

Lys Asn Asp 11e Thr Lys Arg Ser Leu Gin Glu Ser Thr Arg Phe Ser 65 70 75 80

Gin Leu Val Glu Glu Leu Leu Lys Ile Ile Cys Ala Phe Gin Leu Asp 85 90 95

Thr Gly Leu Glu Tyr Ala Asn Ser Tyr Asn Phe Ala Lys Lys Glu Asn 100 105 110

Asn Ser Pro Glu His Leu Lys Asp Glu Val Ser Ile Ile Gln Ser Het
115 120 125

Gly Tyr Arg Asn Arg Ala Lys Arg Leu Leu Gln Ser Glu Pro Glu Asn 130 135 140

Pro Ser Leu Gln Glu Thr Ser Leu Ser Val Gln Leu Ser Asn Leu Gly
145 150 155 160

Thr Val Arg Thr Leu Arg Thr Lys Gln Arg Ile Gln Pro Gln Lys Thr 165 170 175

Ser Val Tyr Ile Glu Leu Gly Ser Asp Ser Ser Glu Asp Thr Val Asn 180 185 190

| Lys Ala Ti       | hr Tyr  | Cys         | Ser '        | Val  | Gly    | Asp        | Gln  | Glu        | Leu        | Leu   | Gln   | lle                                     | Thr    |
|------------------|---------|-------------|--------------|------|--------|------------|------|------------|------------|-------|-------|-----------------------------------------|--------|
|                  | 95      |             |              |      | 200    |            |      |            |            | 205   |       |                                         |        |
| Pro Gin G        | ly Thr  | Arg         | Asp          | Glu  | Ile    | \$er       | Leu  | Asp        | Ser        | Ala   | Lys   | Lys                                     | Ala    |
| 210              |         |             |              | 215  |        |            |      |            | 220        |       |       |                                         |        |
| Ala Cys G        | lu Phe  | Ser         | Glu          | Thr  | Asp    | Val        | Thr  | Asn        | Thr        | Glu   | His   | His                                     |        |
| 225              |         |             | 230          |      |        |            |      | 235        |            |       |       |                                         | 240    |
| Pro Ser A        | sn Asn  | Asp         | Leu          | Asn  | Thr    | Thr        | Glu  | Lys        | Arg        | Ala   | Ala   |                                         | Arg    |
|                  |         | 245         |              |      |        |            | 250  |            |            |       |       | 255                                     |        |
| His Pro G        | lu Lys  | Tyr         | Gln          | Gly  | Ser    |            | Val  | \$er       | Asn        | Leu   |       | Val                                     | GLU    |
|                  | 260     |             |              | _    |        | 265        | _    | _          |            |       | 270   |                                         | C      |
| Pro Cys G        |         | Asn         | Thr          | His  |        | Ser        | Şer  | Leu        | GLN        |       | Glu   | ASN                                     | Ser    |
|                  | 75      |             |              |      | 280    |            | ۸    | W-1        | <b>C</b> 1 | 285   | ۸۱۵   | Glu                                     | Dhe    |
| Ser Leu L        | eu Lei  | ı Thr       | Lys          |      | Arg    | Het        | ASN  | ABI        | 300        | Lys   | ALO   | 610                                     | riic   |
| 290<br>Cys Asn L |         |             | 61-          | 295  | CLV    | 1 011      | ۸۱۵  | ۸۰۵        |            | Gla   | Hic   | Δsn                                     | Δra    |
|                  | ys Sei  | . LA2       | 310          | Pro  | ьцу    | rea        | ALB  | 315        | 361        | U.    | ***** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 320    |
| 305<br>Trp Ala ( |         | - 4         |              | The  | E.ve   | ۸en        | ۸۰۵  |            | Ara        | Thr   | Pro   | Ser                                     |        |
| Trp Ala (        | sty Sei | 325         |              | 1111 | Lys    | изп        | 330  |            | ~· 3       | ****  |       | 335                                     |        |
| Glu Lys I        | ve Va   |             |              | Δsn  | Δla    | Δsn        |      |            | Cvs        | Glu   | ı Arg |                                         |        |
| GIO LYS I        | 34      |             | , , , , ,    | 7,5  |        | 345        |      | •          | -,-        |       | 350   |                                         |        |
| Trp Asn I        |         |             | Leu          | Pro  | Cys    |            |      | Asn        | Pro        | Arg   | ASF   | Thr                                     | Glu    |
| · ·              | 355     | -,-         |              |      | 360    |            |      |            |            | 365   |       |                                         |        |
| Asp Val I        |         | pile        | . Thr        | Leu  | J Asn  | Ser        | Ser  | Ile        | Glr        | Ly:   | . Val | Asr                                     | Glu    |
| 370              |         | •           |              | 375  |        |            |      |            | 380        |       |       |                                         |        |
| Trp Phe          | Ser Ar  | g Ser       | Asp          | Gli  | , Leu  | Leu        | Gly  | / Ser      | Asp        | A S   | Se1   | r His                                   | Asp    |
| 385              |         |             | 390          |      |        |            |      | 399        |            |       |       |                                         | 400    |
| Gly Glu          | Ser Gl  | u Sei       | n Asn        | Ala  | Lys    | Val        | Ale  | A S F      | Val        | Le    | u Ası | eVa                                     | l Leu  |
|                  |         | 40          |              |      |        |            | 410  |            |            |       |       | 41                                      |        |
| Asn Glu          | Val As  | p Glo       | u Tyr        | Sei  | r Gly  |            |      | r Gli      | ı Lyı      | s 11  |       |                                         | ı Leu  |
|                  | 42      |             |              |      |        | 425        |      |            |            |       | 43    |                                         |        |
| Ala Ser          | Asp Pr  | o Hi        | e Glu        | AL   |        |            | 5 CA | s Ly       | s Se       |       |       | g Ve                                    | l M16  |
|                  | 435     |             |              |      | 440    |            |      |            |            | 44    | -     | •                                       | - 46-  |
| Ser Lys          | Ser Va  | il Gl       | u Ser        |      |        | e Gli      | U AS | b ra       | 46         |       | e ui  | y Ly                                    | \$ INT |
| 450              |         |             | _            | 45   |        |            |      | 6.         |            |       | .I Th | - 61                                    | ^en    |
| Tyr Arg          | Lys Ly  | rs Al       |              |      | u Pr   | O ASI      | n Le | u se<br>47 |            | 5 V   |       |                                         | 480    |
| 465<br>Leu Ile   |         |             | 470          |      |        |            | Dr   |            |            | o 11  | اء ه  | n Gl                                    |        |
| Leu Ile          | Ile G   |             |              | 5 A9 | l Se   | r Gti      | 49   |            |            |       |       | 49                                      | 5      |
| Pro Leu          | 76      | 48          |              |      | ·c ^o  |            |      |            | a Pr       | o Th  | ır Se | -                                       | -      |
| Pro Leu          | Inr A   | sn Ly<br>50 |              | u Ly | 8 AE   | 9 L 7      | 50   |            |            | •     |       | 51                                      |        |
| His Pro          | Chu A   |             |              |      | ne I v | -ς Δ1      |      |            | u Al       | a V   | al GI | n Ly                                    | s thr  |
| #15 PFO          |         | вр Рп<br>15 | ·C 16        | ,    | ,      | 5 A.<br>52 |      | ,          | - ···•     |       | 52    |                                         |        |
| Pro Glu          | -       |             | in GI        | n Gi | y Th   |            |      | n Th       | r Gl       | u G   |       |                                         | y Gln  |
| F10 G10          | 530     | . E ME      |              | •    | 53     |            | •    |            |            |       | 60    |                                         |        |
| Val Het          |         | le Ti       | )r Δ<        | n Se |        |            | s GI | Lu As      | in Ly      | rs Ti | hr L  | ys G                                    | ly Asp |
| Val Het<br>545   |         |             |              | 5!   |        | •          | -    |            | 55         |       |       |                                         |        |
| Ser Ile          |         | sn G        | lu Lv        |      |        | o As       | n Pi | ro 11      | e Gi       | u S   | er L  | eu G                                    | lu Lys |
| 201 116          |         | J. J.       | - <b>-</b> , |      | -      |            |      | 57         |            |       |       |                                         | 575    |

| 510                                                  | Ser                                                                 | Ala                                                       | Phe                                                           |                                               | Thr                                           | Lys                                           | Ala                                                  | Glu                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lle                                                  | Ser                                      | Ser                              | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lle                                                    | Ser                                                  |
|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
|                                                      |                                                                     |                                                           |                                                               | 580                                           |                                               |                                               |                                                      |                                                               | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 590                                                    |                                                      |
| Asn                                                  | Glu                                                                 | Leu                                                       | Glu<br>595                                                    | Ļeu                                           | Asn                                           | 1 l e                                         | Met                                                  | His<br>600                                                    | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                                  | Lys                                      | Ala                              | Pro<br>605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lys                                                    | Lys                                                  |
| Asn                                                  | Arg                                                                 |                                                           | Arg                                                           | Arg                                           | Lys                                           | Ser                                           |                                                      | Thr                                                           | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His                                                  | 1 l e                                    |                                  | Als                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                    | Glu                                                  |
|                                                      |                                                                     | 610                                                       |                                                               |                                               |                                               |                                               | 615                                                  | _                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | _                                        | 620                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | <b>-</b> 1 -                                         |
| Leu                                                  | Val<br>625                                                          | Val                                                       | Ser                                                           | Arg                                           |                                               | 630                                           | Ser                                                  | Pro                                                           | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                  | 635                                      | Thr                              | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                    | Gin                                                  |
| lle                                                  | Asp                                                                 | Ser                                                       | Cys                                                           | Ser                                           | \$er                                          | Ser                                           | Glu                                                  | Glu                                                           | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lys                                                  | Lys                                      | Lys                              | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туг                                                    | Asn                                                  |
| 640                                                  |                                                                     |                                                           |                                                               |                                               | 645                                           |                                               |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 650                                                  |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 655                                                  |
| Gln                                                  | Het                                                                 | Pro                                                       | Val                                                           | Arg                                           | His                                           | Ser                                           | Arg                                                  | Asn                                                           | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln                                                  | Leu                                      | Ħet                              | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gly                                                    | Lys                                                  |
|                                                      |                                                                     |                                                           |                                                               | 660                                           |                                               |                                               |                                                      |                                                               | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 670                                                    |                                                      |
| Glu                                                  | Pro                                                                 | Ala                                                       | Thr                                                           | Gly                                           | Ala                                           | Lys                                           | Lys                                                  | Ser                                                           | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lys                                                  | Pro                                      | Asn                              | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln                                                    | Thr                                                  |
|                                                      |                                                                     |                                                           | 675                                                           |                                               |                                               |                                               |                                                      | 680                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                          |                                  | 685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                      |
| Ser                                                  | Lys                                                                 | Arg                                                       | His                                                           | Asp                                           | Ser                                           | Asp                                           | Thr                                                  | Phe                                                           | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glu                                                  | L eu                                     | Lys                              | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr                                                    | Asn                                                  |
|                                                      |                                                                     | 690                                                       |                                                               |                                               |                                               |                                               | 695                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                          | 700                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |
| Ala                                                  | Pro                                                                 | Gly                                                       | Ser                                                           | Phe                                           | Thr                                           | Lys                                           | Cys                                                  | Ser                                                           | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr                                                  | Ser                                      | Glu                              | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lys                                                    | Glu                                                  |
|                                                      | 705                                                                 |                                                           |                                                               |                                               |                                               | 710                                           |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 715                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |
| Phe                                                  | Val                                                                 | Asn                                                       | Pro                                                           | Ser                                           | Leu                                           | Pro                                           | Arg                                                  | Glu                                                           | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lys                                                  | Glu                                      | Glu                              | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                    | Glu                                                  |
| 720                                                  |                                                                     |                                                           |                                                               |                                               | 725                                           |                                               |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>73</b> 0                                          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 735                                                  |
| Thr                                                  | Val                                                                 | Lys                                                       | Val                                                           | Ser                                           | Asn                                           | Asn                                           | Ala                                                  | Glu                                                           | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pro                                                  | Lys                                      | Asp                              | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Het                                                    | Leu                                                  |
|                                                      |                                                                     |                                                           |                                                               | 740                                           |                                               |                                               |                                                      |                                                               | 745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 750                                                    |                                                      |
| Ser                                                  | Gly                                                                 | Glu                                                       | Arg                                                           | Val                                           | L eu                                          | Gln                                           | Thr                                                  | Glu                                                           | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                                  | Val                                      | Glu                              | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                                    | Ser                                                  |
|                                                      |                                                                     |                                                           | 755                                                           |                                               |                                               |                                               |                                                      | 760                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                          |                                  | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                      |
| I l e                                                | Ser                                                                 | Leu                                                       | Val                                                           | Pro                                           | Gly                                           | Thr                                           | Asp                                                  | Туг                                                           | Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thr                                                  | Gln                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ile                                                    | Ser                                                  |
|                                                      |                                                                     | 770                                                       |                                                               |                                               |                                               |                                               | 775                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                          | <b>78</b> 0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |
| Leu                                                  |                                                                     |                                                           | Val                                                           | Ser                                           | Thr                                           |                                               |                                                      | Lys                                                           | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l ys                                                 |                                          | Glu                              | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                    | Lys                                                  |
|                                                      | 785                                                                 |                                                           |                                                               |                                               |                                               | 790                                           |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 795                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |
|                                                      |                                                                     |                                                           |                                                               |                                               |                                               |                                               |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                    |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |
|                                                      | Val                                                                 |                                                           | Gln                                                           | Cys                                           |                                               |                                               | Phe                                                  | Glu                                                           | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                          | Gly                              | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lle                                                    |                                                      |
| 800                                                  | Val                                                                 | Ser                                                       |                                                               |                                               | 805                                           | Ale                                           |                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810                                                  |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 815                                                  |
| 800                                                  | Val                                                                 | Ser                                                       |                                                               | Asp                                           | 805<br>Asn                                    | Ale                                           |                                                      |                                                               | Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 810<br>Glu                                           |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tyr                                                    | 815                                                  |
| 800<br>G1y                                           | Val                                                                 | Ser<br>Ser                                                | Lys                                                           | Asp<br>820                                    | 805<br>Asn                                    | Ale                                           | Asn                                                  | Asp                                                           | Thr<br>825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 810<br>Glu                                           | Gly                                      | Phe                              | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1yr<br>830                                             | 815<br>Pro                                           |
| 800<br>G1y                                           | Val                                                                 | Ser<br>Ser                                                | Lys<br>Glu                                                    | Asp<br>820<br>Val                             | 805<br>Asn                                    | Ale                                           | Asn                                                  | Asp                                                           | Thr<br>825<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 810<br>Glu                                           | Gly                                      | Phe                              | Lys<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tyr<br>830<br>Het                                      | 815<br>Pro                                           |
| 800<br>Gly<br>Lec                                    | Val<br>Cys                                                          | Ser<br>Ser                                                | 61 u<br>835                                                   | Asp<br>820<br>Val                             | 805<br>Asn<br>Asn                             | Arg                                           | Asn                                                  | Asp<br>Arg<br>840                                             | Thr<br>825<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 810<br>Glu<br>Thr                                    | Gly                                      | Phe                              | Lys<br>Glu<br>845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr<br>830<br>Het                                      | 815<br>Pro<br>Glu                                    |
| 800<br>Gly<br>Lec                                    | Val<br>Cys                                                          | Ser<br>Ser<br>His                                         | Glu<br>835<br>Leu                                             | Asp<br>820<br>Val                             | 805<br>Asn<br>Asn                             | Arg                                           | Asn<br>Ser                                           | Asp<br>Arg<br>840<br>Leu                                      | Thr<br>825<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 810<br>Glu<br>Thr                                    | Gly                                      | Phe Ile                          | Glu<br>845<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr<br>830<br>Het                                      | 815<br>Pro<br>Glu                                    |
| BOO<br>Gly<br>Let                                    | Val<br>Cys<br>Gly<br>Ser                                            | Ser<br>Ser<br>His                                         | Glu<br>835<br>Leu                                             | Asp<br>820<br>Val                             | 805<br>Asn<br>Asn                             | Ale<br>Arg<br>His                             | Asn<br>Ser<br>Tyr<br>855                             | Asp<br>Arg<br>840<br>Leu                                      | Thr<br>825<br>Glu<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 810<br>Glu<br>Thr                                    | Gly<br>Ser                               | Phe<br>Tile<br>Phe<br>860        | Glu<br>845<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr<br>830<br>Het                                      | 815<br>Pro<br>Glu<br>Ser                             |
| BOO<br>Gly<br>Let                                    | Val<br>Cys<br>Gly<br>Ser                                            | Ser<br>Ser<br>His<br>Glu<br>850                           | Glu<br>835<br>Leu                                             | Asp<br>820<br>Val                             | 805<br>Asn<br>Asn                             | Ale<br>Arg<br>His<br>Glr                      | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu                                      | Thr<br>825<br>Glu<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 810<br>Glu<br>Thr                                    | Gly<br>Ser                               | Phe<br>Tile<br>Phe<br>860<br>Asr | Glu<br>845<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr<br>830<br>Het                                      | 815<br>Pro<br>Glu<br>Ser                             |
| BOO<br>Gly<br>Let<br>Gli                             | Val<br>Cys<br>Gly<br>Ser<br>SATS                                    | Ser<br>Ser<br>His<br>Glu<br>850                           | Glu<br>835<br>Leu<br>Ser                                      | Asp<br>820<br>Val<br>Asp                      | 805<br>Asn<br>Asn<br>Ala                      | Ale<br>Arg<br>His<br>Glr<br>Pro<br>870        | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser                               | Thr<br>825<br>Glu<br>Gln<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810<br>Glu<br>Thr<br>Asn                             | Gly<br>Ser<br>Thr<br>Gly<br>875          | Phe<br>Tle<br>Phe<br>860<br>Asr  | Glu<br>845<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 830<br>Het<br>Val                                      | 815<br>Pro<br>Glu<br>Ser<br>Glu                      |
| Gli<br>Gli<br>Gli<br>Lys                             | Cys<br>Cys<br>Gly<br>Ser<br>S Ars<br>865                            | Ser<br>Ser<br>His<br>Glu<br>850                           | Glu<br>835<br>Leu<br>Ser                                      | Asp<br>820<br>Val<br>Asp                      | 805<br>Asn<br>Asn<br>Ala<br>Ala               | Ala<br>Arg<br>His<br>Glr<br>Pro<br>870<br>Ala | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser                               | Thr<br>825<br>Glu<br>Gln<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810<br>Glu<br>Thr<br>Asn                             | Ser<br>Thr<br>Gly<br>875                 | Phe<br>Tle<br>Phe<br>860<br>Asr  | Glu<br>845<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr<br>830<br>Het                                      | 815<br>Pro<br>Glu<br>Ser<br>Glu                      |
| BOO<br>Gly<br>Let<br>Gli<br>Lys<br>Gli<br>886        | Val Cys Gly Ser Ser S65                                             | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr                    | Lys<br>Glu<br>835<br>Leu<br>Ser                               | Asp<br>820<br>Val<br>Asp<br>Phe               | Asn<br>Asn<br>Ala<br>Ala<br>Ser<br>885        | Ala<br>Arg<br>His<br>Gin<br>Pro<br>870<br>Ala | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser                               | Thr<br>825<br>Glu<br>Gln<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810<br>Glu<br>Thr<br>Asn<br>Pro                      | Ser<br>Thr<br>Gly<br>875<br>Leu          | Phe<br>Tile<br>Phe<br>860<br>Asr | Glu<br>845<br>Lys<br>)<br>n Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tyr<br>830<br>Het<br>Val                               | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895        |
| BOO<br>Gly<br>Let<br>Gli<br>Lys<br>Gli<br>886        | Val Cys Gly Ser Ser S65                                             | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr                    | Lys<br>Glu<br>835<br>Leu<br>Ser                               | Asp<br>820<br>Val<br>Asp<br>Phe               | 805<br>Asn<br>Asn<br>Ala<br>Ala<br>Ser<br>885 | Ala<br>Arg<br>His<br>Gin<br>Pro<br>870<br>Ala | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser                               | Thr<br>825<br>Glu<br>Gln<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810<br>Glu<br>Thr<br>Asn<br>Pro<br>Ser<br>890<br>Glu | Ser<br>Thr<br>Gly<br>875<br>Leu          | Phe<br>Tile<br>Phe<br>860<br>Asr | Glu<br>845<br>Lys<br>)<br>n Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 830<br>Het<br>Val                                      | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895        |
| BOOG GLY Lett GLL Ly: GLE B86                        | Val Cys Gly Ser 865 Cys                                             | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr<br>Glr<br>Glr      | Glu<br>835<br>Leu<br>Ser<br>Thr                               | Asp<br>820<br>Val<br>Asp<br>Phe               | ASD<br>ASD<br>ASD<br>ALB<br>SET<br>885        | Ala<br>Arg<br>His<br>Gin<br>Pro<br>Ala        | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser<br>Ser                        | B25<br>Glu<br>Gln<br>Gln<br>Gly<br>Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 810<br>Glu<br>Thr<br>Asn<br>Pro<br>Ser<br>890<br>Glu | Ser<br>Thr<br>875<br>Leu                 | Phe Ite Phe 860 Asr              | S45<br>B45<br>Lys<br>Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tyr<br>830<br>Het<br>Val<br>Glu<br>Glu<br>Gly<br>910   | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895<br>Lys |
| BOOG GLY Lett GLL Ly: GLE B86                        | Val Cys Gly Ser 865 Cys                                             | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr<br>Glr<br>Glr      | Lys<br>Glu<br>835<br>Leu<br>Ser<br>Thr                        | Asp<br>820<br>Val<br>Asp<br>Phe<br>Phe<br>900 | ASD<br>ASD<br>ASD<br>ALB<br>SET<br>885        | Ala<br>Arg<br>His<br>Gin<br>Pro<br>Ala        | Asn<br>Ser<br>Tyr<br>855<br>Phe                      | Asp<br>Arg<br>840<br>Leu<br>Ser<br>Ser                        | Start  | 810<br>Glu<br>Thr<br>Asn<br>Pro<br>Ser<br>890<br>Glu | Ser<br>Thr<br>875<br>Leu                 | Phe Ite Phe 860 Asr              | S45<br>B45<br>Lys<br>Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tyr 830 Het Glu    | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895<br>Lys |
| BOO<br>Gly<br>Lec<br>Gli<br>Lys<br>Gli<br>B88<br>Pro | Val  Cys Gly Gly Ser 865 Arg 865 Cys                                | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr<br>;<br>;<br>; Ala | Ser Thr. Thr. 915                                             | Asp<br>820<br>Val<br>Asp<br>Phe<br>Phe<br>900 | Asn Ala Ala Ser 885                           | Ala<br>Arg<br>His<br>Gln<br>Pro<br>870<br>Ala | Asn<br>Ser<br>Tyr<br>855<br>Phe<br>His               | Asp<br>Arg<br>840<br>Leu<br>Ser<br>Ser<br>Glr<br>920          | Fire State S | 810<br>Glu<br>Thr<br>Asn<br>Pro<br>Ser<br>890<br>Glu | Ser<br>Thr<br>Gly<br>875<br>Leu<br>J Glu | Phe<br>Phe<br>860<br>Asr         | E Lys  Lys  Lys  Lys  Lys  Glr  Glr  Glr  92:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tyr<br>830<br>Het<br>Val<br>Glu<br>Glu<br>910<br>1 Ala | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895<br>Lys |
| BOO<br>Gly<br>Lec<br>Gli<br>Lys<br>Gli<br>B88<br>Pro | Val  Cys Gly Gly Ser 865 Arg 865 Cys                                | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr<br>;<br>;<br>; Ala | Lyss Glu 835 1 Leu 1 Ser 2 Thr 2 Thr 4 Ser 915                | Asp<br>820<br>Val<br>Asp<br>Phe<br>Phe<br>900 | Asn Ala Ala Ser 885                           | Ala<br>Arg<br>His<br>Gln<br>Pro<br>870<br>Ala | Asn<br>Ser<br>Tyr<br>855<br>Phe<br>His               | Asp<br>840<br>Leu<br>Ser<br>Ser<br>Glr<br>920                 | Fire State S | 810<br>Glu<br>Thr<br>Asn<br>Pro<br>Ser<br>890<br>Glu | Ser<br>Thr<br>Gly<br>875<br>Leu<br>J Glu | Phe<br>Phe<br>860<br>Asr         | Elys Glu 845 Elys Ale Glr Glr Glr Glr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tyr 830 Het Glu    | 815<br>Pro<br>Glu<br>Ser<br>Glu<br>Ser<br>895<br>Lys |
| BOOGGIST Leving Glical Base Processing Ph.           | Val  Cys Gly Gly GS Arg B65 Cys | Ser<br>Ser<br>His<br>Glu<br>850<br>Glr<br>Ala<br>Val      | Lyss Glu 835 1 Leu 1 Ser 2 Thr 2 Thr 2 Ser 3 Leu 2 Lyss 3 Thr | Asp<br>820<br>Val<br>Asp<br>Phe<br>Phe<br>900 | Asn Ala Ala Ser B85: Glu                      | Ale Arg                                       | Asn<br>Ser<br>Tyr<br>855<br>Phe<br>His<br>Glu<br>Val | Asp<br>Arg<br>840<br>Leu<br>Ser<br>Ser<br>Glr<br>920<br>D Lyr | Start  | 810 Glu Thr Asn Pro Ser 890 Glu Val                  | Gly Ser Thr Gly 875 Lec                  | Phe Ite Phe 860 Asr              | Stys Cluster Gluster G | Tyr<br>830<br>Het<br>Val<br>Glu<br>Glu<br>910<br>TAL8  | Ser Glu Ser 895 Lys Gly                              |

| Asn Glu Thr Gly Leu Ile Thr Pro Asn Lys His Gly Leu Leu Gln As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
| 960 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| Pro Tyr Arg Ile Pro Pro Leu Phe Pro Ile Lys Ser Phe Val Lys Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Г                                               |
| 980 985 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |
| Lys Cys Lys Lys Asn Leu Leu Glu Glu Asn Phe Glu Glu His Ser He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                                               |
| 995 1000 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| Ser Pro Glu Arg Glu Het Gly Asn Glu Asn Ile Pro Ser Thr Val Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er.                                             |
| 1010 1015 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| Thr lie Ser Arg Asn Asn lie Arg Glu Asn Val Phe Lys Glu Ala S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e۲                                              |
| 1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| 1025 1030 1035<br>Ser Ser Asn Ile Asn Glu Val Gly Ser Ser Thr Asn Glu Val Gly S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er                                              |
| 1050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 055                                             |
| 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eu                                              |
| Ser Ile Asn Glu Ile Gly Ser Ser Asp Glu Asn Ile Gln Ala Glu L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ام                                              |
| Gly Arg Asn Arg Gly Pro Lys Leu Asn Ala Het Leu Arg Leu Gly V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                              |
| 1075 1080 1085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| Leu Gin Pro Giu Vai Tyr Lys Gin Ser Leu Pro Gly Ser Asn Cys L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ys                                              |
| 1090 1095 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| His Pro Glu Ile Lys Lys Gln Glu Tyr Glu Glu Val Val Gln Thr \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al                                              |
| 1105 1110 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| Asn Thr Asp Phe Ser Pro Tyr Leu Ile Ser Asp Asn Leu Glu Gln 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , LO                                            |
| 1120 1125 1130 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135                                             |
| Het Gly Ser Ser His Ala Ser Gln Val Cys Ser Glu Thr Pro Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \sp                                             |
| 1140 1145 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| Leu Leu Asp Asp Gly Glu 1le Lys Glu Asp Thr Ser Phe Ala Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asn                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
| 1155 1160 1165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| Asp Ite Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys 1170 1175 1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gly                                             |
| Asp Ite Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys 1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gly                                             |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys 1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala 1185 1190 1195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gly                                             |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys 1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala 1185 1190 1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gly                                             |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys 1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata 1185 1190 1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gly<br>Gln<br>Leu<br>1215                       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185 1190 1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gly<br>Gln<br>Leu<br>1215<br>Gly                |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala 1185 1190 1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1236                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gly<br>Gln<br>Leu<br>1215<br>Gly                |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala  1185  1190  1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ile Pro Ser Gln Ser Thr Arg His Ser Thr Val                                                                                                                                                                                                                                                                                                                                                                                   | Gly<br>Gln<br>Leu<br>1215<br>Gly                |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245                                                                                                                                                                                                                                                                                                                                                                 | Gly<br>Gln<br>Leu<br>1215<br>Gly<br>Ala         |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala  1185 1190 1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1230  Lys Val Asn Asn Ile Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235 1240 1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu                                                                                                                                                                                                                                                                                                                | Gly<br>Gln<br>Leu<br>1215<br>Gly<br>Ala         |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala  1185 1190 1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1236  Lys Val Asn Asn Ile Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235 1240 1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu 1250 1255 1260                                                                                                                                                                                                                                                                                                 | Gly Gln Leu 1215 Gly Ala                        |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  1255  1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats                                                                                                                                                                                                                     | Gly Gln Leu 1215 Gly Ala                        |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1230  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats  1265  1270  1275                                                                                                                                                                                                               | Gly Gln Leu 1215 Gly Ala Lys                    |
| Asp Ile Lys Glu Ser Ser Ala Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ala  1185  1190  1195  Gly Tyr Arg Arg Gly Ala Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ile Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  1255  1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ile Leu Ala Lys Als  1265  1270  1275  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ala Ser Leu                                                                                                                                      | Gly Gln Leu 1215 Gly Ala Lys Ser                |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  1255  1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats  1265  1270  1285  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu  1280  1285                                                                                                                          | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1236  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  1255  1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats  1265  1270  1285  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu  1280  1285                                                                                                                          | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata 1185 1190 1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1230  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val 1235 1240 1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu 1250 1255 1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats 1265 1270 1275  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu 1280 1285 1290  Ser Ser Gln Cys Ser Glu Leu Glu Asp Leu Thr Ata Asn Thr Asn 1300 1305 131                                                                | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata 1185 1190 1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1230  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val 1235 1240 1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu 1250 1255 1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats 1265 1270 1275  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu 1280 1285 1290  Ser Ser Gln Cys Ser Glu Leu Glu Asp Leu Thr Ata Asn Thr Asn 1300 1305 131                                                                | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170  1175  1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185  1190  1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn  1200  1205  1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe  1220  1225  1230  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val  1235  1240  1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu  1250  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats  1265  1270  1275  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu  1280  1285  1290  Ser Ser Gln Cys Ser Glu Leu Glu Asp Leu Thr Ata Asn Thr Asn                                                                   | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295       |
| Asp Ite Lys Glu Ser Ser Ata Val Phe Ser Lys Ser Val Gin Lys  1170 1175 1180  Glu Leu Ser Arg Ser Pro Ser Pro Phe Thr His Thr His Leu Ata  1185 1190 1195  Gly Tyr Arg Arg Gly Ata Lys Lys Leu Glu Ser Ser Glu Glu Asn 1200 1205 1210  Ser Ser Glu Asp Glu Glu Leu Pro Cys Phe Gln His Leu Leu Phe 1220 1225 1236  Lys Val Asn Asn Ite Pro Ser Gln Ser Thr Arg His Ser Thr Val 1235 1240 1245  Thr Glu Cys Leu Ser Lys Asn Thr Glu Glu Asn Leu Leu Ser Leu 1250 1255 1260  Asn Ser Leu Asn Asp Cys Ser Asn Gln Val Ite Leu Ata Lys Ats 1265 1270 1275  Gln Glu His His Leu Ser Glu Glu Thr Lys Cys Ser Ata Ser Leu 1280 1285 1290  Ser Ser Gln Cys Ser Glu Leu Glu Asp Leu Thr Ata Asn Thr Asn 1300 1305 1316  Gln Asp Pro Phe Leu Ite Gly Ser Ser Lys Gln Met Arg His Glr | Gly Gln Leu 1215 Gly Ala Lys Ser Phe 1295 Thr 0 |

| Glu Glu Arg Gly | Thr Gly Leu  | Glu Glu Asn   | Asn Gln Glu   | Glu Gln Ser   |
|-----------------|--------------|---------------|---------------|---------------|
| 1345            | 1350         | l             | 1355          |               |
| Het Asp Ser Asn | Leu Gly Glu  | Ala Ala Ser   | Gly Cys Glu   | Ser Glu Thr   |
| 1360            | 1365         |               | 1370          | 1375          |
| Ser Val Ser Glu | Asp Cys Ser  | Gly Leu Ser   | Ser Gln Ser   | Asp Ile Leu   |
|                 | 1380         | 1385          | 5             | 1390          |
| Thr Thr Gln Gln | Arg Asp Thr  | Het Gln His   | Asn Leu 1le   | Lys Leu Gin   |
| 1395            |              | 1400          |               | 1405          |
| Gin Glu Met Ala | Glu Leu Glu  | Ala Val Leu   | Glu Gln His   | Gly Ser Gln   |
| 1410            |              | 1415          | 1420          | ı             |
| Pro Ser Asn Ser | Tyr Pro Ser  | lle lle Ser   | Asp Ser Ser   | Ala Leu Glu   |
| 1425            | 1430         |               | 1435          |               |
| Asp Leu Arg Asn | Pro Glu Gln  | Ser Thr Ser   | Glu Lys Val   | Leu Gln Thr   |
| 1440            | 1445         | 145           |               | 1455          |
| Ser Gin Lys Ser | Ser Glu Tyr  | Pro 1le Ser   | Gin Asn Pro   | Glu Gly Xaa   |
| 1460            |              | 1465          |               | 1470          |
| Ser Ala Asp Lys | Phe Glu Val  | Ser Ala Asp   | Ser Ser Thr   | Ser Lys Asn   |
| 1475            |              | 1480          | 1485          |               |
| Lys Glu Pro Gly | Val Glu Arg  | Ser Ser Pro   | Ser Lys Cys   | Pro Ser Leu   |
| 1490            | 149          |               | 1500          |               |
| Asp Asp Arg Trp | Tyr Het His  | Ser Cys Ser   | Gly Ser Leu   | Gln Asn Arg   |
| 1505            | 1510         |               | 1515          | 1520          |
| Asn Tyr Pro Pro | Gin Glu Glu  | Leu Ile Lys   | Val Val Asp   | Val Glu Glu   |
|                 | 1525         | 153           |               | 1535          |
| Gln Gln Leu Glu | Glu Ser Gly  | Pro His Asp   | Leu Thr Glu   | Thr Ser Tyr   |
| 1540            | 0            | 1545          |               | 1550          |
| Leu Pro Arg Gln | Asp Leu Glu  | Gly Thr Pro   | Tyr Leu Glu   | Ser Gly Ile   |
| 1555            |              | 1560          | 156           |               |
| Ser Leu Phe Ser | Asp Asp Pro  | Glu Ser Asp   | Pro Ser Glu   | Asp Arg Ala   |
| 1570            | 157          |               | 1580          |               |
| Pro Glu Ser Ala | Arg Val Gly  | Asn Ile Pro   | Ser Ser Thr   | Ser Ala Leu   |
| 1585            | 1590         |               | 1595          | 1600          |
| Lys Val Pro Gin | Leu Lys Val  | . Ala Glu Sei | r Ala Gln Ser | Pro Ala Ala   |
|                 | 1605         | 161           |               | 1615          |
| Ala His Thr Thr | Asp Thr Ale  | Gly Tyr Asi   | n Ala Het Glu | ı Glu Ser Val |
| 162             |              | 1625          |               | 1630          |
| Ser Arg Glu Lys | Pro Glu Lei  | J Thr Ala Se  |               |               |
| 1635            |              | 1640          | 164           | -             |
| Arg Het Ser Het | Val Val Sei  | r Gly Leu Th  | r Pro Glu Gli | , Phe Met Leu |
| 1650            | 165          |               | 1660          |               |
| Val Tyr Lys Phe | Ala Arg Ly   | s His His Il  | e Thr Leu Thi |               |
| 1665            | 1670         |               | 1675          | 1680          |
| Thr Glu Glu Thr | r Thr His Va | l Val Het Ly  | s Thr Asp Ala |               |
|                 | 1685         |               | 90            | 1695          |
| Cys Glu Arg Thr | r Leu Lys Ty |               | y Ile Ala Gi  |               |
| 170             |              | 1705          |               | 1710          |
| Val Val Ser Tyr | r Phe Trp Va | l Thr Gln Se  |               |               |
| 1715            |              | 1720          | 17            | 25            |

| Leu                    | ۸en  | GLu | His  | Asp  | Phe  | Glu           | Val | Arg | Gly  | Asp  | Val     | Val          | Asn  | Gly | Arg  |
|------------------------|------|-----|------|------|------|---------------|-----|-----|------|------|---------|--------------|------|-----|------|
| LEO                    | 1730 |     |      |      |      | Glu Val Arg G |     |     |      | 1740 |         |              |      |     |      |
|                        |      |     | clv  | Pro  | l ve |               |     | Ara | Glu  | Ser  | Gln     | Asp          | Arg  | Lys | Ile  |
| Asn His Gln Gly Pro Ly |      |     |      |      | 1750 |               |     |     |      | 1755 |         |              |      |     | 1760 |
| 1745<br>Phe Arg Gi     |      |     |      |      |      |               | _   | _   |      |      |         | **-          | A    | Mat | Dro  |
| Phe                    | Arg  | Gly | Fen  | Glu  | He   | Cys           | CAR | Tyr | Gly  | Pro  | Pne     | Inc          | ASI  |     |      |
|                        |      |     |      | 176  | 5    |               |     |     | 1770 |      |         |              | 1775 |     |      |
| The                    | ASD  | Gin | Leu  | Glu  | Trp  | Het           | Val | Gln | Leu  | Суб  | Gly     | Ala          | Ser  | Val | Val  |
|                        |      |     | 1780 |      |      | 1785          |     |     |      |      |         |              | 1790 |     |      |
| LVS                    | Glu  | Leu | Ser  | Ser  | Phe  | Thr           | Leu | Gly | Thr  | Gly  | Vel     | His          | Pro  | He  | Val  |
| -,-                    | 1795 |     |      |      |      | 1800          |     |     |      | 1805 |         |              |      |     |      |
| Val                    | Val  |     |      | Asp  | Ala  | Trp           | Tht | Glu | Asp  | Asn  | Gly     | Phe          | His  | Ala | Ile  |
|                        | 1810 |     |      | •    |      | 1815          |     |     |      | 1820 |         |              |      |     |      |
| e l v                  |      |     | Cys  | Glu  | Ala  | Pro           | Val | Val | Thr  | Arg  | Glu     | Trp          | Val  | Leu | Asp  |
| 1825                   |      |     | -,   | 1830 |      |               |     |     |      |      | 1835    |              |      |     | 1840 |
|                        |      |     |      | _    |      |               | -1- |     |      |      | . 76-   | 7.75         |      | 110 | Pro  |
| Ser                    | Val  | Ale | Leu  | Туг  | Gln  | Cys           | Gin | 610 |      |      | , ,,,,, | 1 <b>y</b> 1 | 200  |     | Pro  |
|                        |      |     |      | 184  | 5    | 18            |     |     |      | 50   |         |              | 1855 |     |      |
| Glr                    | lle  | Pro | His  | Ser  | His  | Tyr           | •   |     |      |      |         |              |      |     |      |
|                        |      |     | 184  | 60   |      |               |     |     |      |      |         |              |      |     |      |

BNSDOCID: <WO\_\_\_9519369A1\_I\_>

WO 95/19369 PCT/US95/00608

97

## **CLAIMS**

What I claim is:

1. A method for detecting differential expression of at least one marker gene in pre-invasive cancerous breast tissue, said method comprising the steps of:

- (a) obtaining an abnormal breast tissue sample by a collection step wherein said abnormal breast tissue sample comprises substantially exclusively abnormal breast tissue which exhibits histological or cytological characteristics of pre-invasive breast cancer;
  - (b) isolating mRNA from said abnormal breast tissue sample;
- (c) preparing at least one abnormal breast tissue cDNA library from said mRNA isolated from said abnormal breast tissue sample;
- (d) obtaining a normal breast tissue sample from humans either with or without disease, said normal breast tissue sample comprising substantially exclusively normal breast tissue which does not exhibit histological or cytological characteristics of pre-invasive breast cancer;
- (e) preparing at least one normal breast tissue cDNA library from said normal breast tissue sample; and
- (f) comparing said abnormal breast tissue cDNA library with said normal tissue cDNA library to determine whether the expression of at least one marker gene in said abnormal breast tissue sample is different from the expression of said marker gene in said normal breast tissue sample.
- 2. The method according to Claim 1 wherein said collection step is microscopically-directed.
- 3. The method according to Claim 2 wherein the size of said abnormal tissue sample substantially conforms to an isolatable tissue structure such that only cells exhibiting abnormal cytological or histological characteristics are collected.
- 4. The method according to Claim 3 wherein said isolatable tissue structure comprises ductal epithelial cells in pre-invasive breast cancer tissue.
- 5. The method according to Claim 1 further comprising confirming said differential expression of said marker gene in said normal tissue sample and in said abnormal tissue sample by using a hybridization or PCR technique.

- 6. The method according to Claim 5 wherein said hybridization technique comprises RT-PCR.
- 7. The method according to Claim 5 wherein said hybridization technique comprises nuclease protection assays.
- 8. The method according to Claim 5 wherein said hybridization technique comprises in-situ hybridization of RNA in said abnormal tissue sample and in said normal tissue sample.
- 9. The method according to Claim 1 wherein said abnormal cDNA library and said normal cDNA library are compared by means of differential display.
- 10. The method according to Claim 1 wherein said abnormal cDNA library and said normal cDNA library are compared by means of differential screening.
- 11. The method according to claim 1, wherein said normal tissue comprises normal breast tissue cells.
- 12. The method according to claim 1, wherein said abnormal breast tissue cells are non-comedo ductal carcinoma in situ cells.
- 13. The method according to claim 1, wherein the primer used in the PCR amplification technique is selected from the group consisting of randomly selected primers having the sequences

```
5'-CGCGACGGCCGCGCGTCTGCCAGGG-3', 5'-CTTGCGCGCATACGCACAAC-3',
5'-AACCCTCACCCTAACCCCAA-3', 5'-CGCCCCTGCGTTACCCTCCCGCGC-3',
5'-GGATGGCGTCCTGTAACCCGACGCT-3', 5'-ACTGGGCTGTCCTGCGGTGGCGGGG-3',
5'-CTGAGAGGTAGCCGCGGGAGGCTG-3', 5'-GCCTGGCCGCACACGGATTACCGC-3',
5'-TTAGCGCATGGTGGACCTGGAGACG-3', 5'-TGTGGTTACGTCAGCGAAGGTAATA-3',
```

- 15. A method of diagnosing the presence of pre-invasive breast cancer in human pathologic tissues, said method comprising the steps of:
- (a) obtaining an abnormal breast tissue sample by a collection step wherein said abnormal breast tissue sample comprises substantially exclusively abnormal breast tissue which exhibits histological or cytological characteristics of pre-invasive breast cancer;
  - (b) isolating mRNA from said abnormal breast tissue sample;
- (c) preparing at least one abnormal breast tissue cDNA library from said mRNA isolated from said abnormal breast tissue sample;
- (d) obtaining a normal breast tissue sample from humans either with or without disease, said normal breast tissue sample comprising substantially exclusively normal breast tissue which does not exhibit histological or cytological characteristics of pre-invasive breast cancer;
- (e) preparing at least one normal breast tissue cDNA library from said normal breast tissue sample; and
- (f) comparing said abnormal breast tissue cDNA library with said normal tissue cDNA library to determine whether the expression of at least one marker gene in said abnormal breast tissue sample is different from the expression of said marker gene in said normal breast tissue sample.
- (g) cloning said differentially expressed marker gene using sequence-based amplification to create a cloned marker gene;
  - (h) sequencing said cloned marker gene;
  - (i) producing proteins encoded by said cloned marker gene;

- 18. The method according to claim 15, wherein said medical diagnostic tests comprise blood tests.
- 19. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding secreted proteins.
- 20. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding transcription factors.
- 21. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding RibRed.
- 22. The method according to claim 15, wherein said cloned marker genes encoding secreted proteins are employed in the diagnosis of specific diseases by using a blood test.
- 23. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences adapted to clone marker genes which encode cell surface proteins.
- 24. The method according to claim 15, wherein said proteins encoded by said cloned marker comprise cell surface proteins and wherein the presence of said proteins as a diagnostic indicator is detected by using a diagnostic imaging test.
- 25. A diagnostic method to determine the presence of pre-invasive breast cancer using detection of a differentially expressed marker gene, according to claim 15, wherein said diagnostic method comprises:
- a) obtaining a substantially purified marker gene which is expressed to a greater degree in cells collected by a microscopically-directed cloning method from abnormal tissue than in cells collected from normal tissue;
- b) probing tissues using a hybridization technique to determine whether said substantially purified marker gene is differentially expressed; and,
- c) probing nucleic acids of tissues using a standard hybidization technique to determine the presence of said substantially purified marker gene in a tissue, the

presence of the marker gene indicating the presence of non-comedo DCIS which is preinvasive breast cancer.

26. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:1, which comprises

TIGGGAATIG GGTACGCGGG CCCCCCACTG TGCCGAATIC CTGCATGCGG GGGATCCACT 60
AGTICAGAGC AGGCCGCCAC CCGTAGGACI CCAGCTITIG TICGTICCCT TIAGTGAGGG 120
TIAATITICG AGCTIGGCGT AATCATGGTC ATAGCTGTIT CCTGTGTGAA ATTGTTATCC 180
GCTCACAATI CCACACAACA TACGAGCCGG AAGCATAAAA GTGTAAAGCC TGGGGTGCCT 240
AATGAGTGAG CTAACTCACA TTAA 264

27. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:2, which comprises

TAGCCCGGTT ATCGAAATAG CCACAGCGCC TCTTCACTAT CAGCAGTACG CCGCCCAGTT 60
GTACGGACAC GGA 73

- 28. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:3, which comprises
- TGCCCGATGT GTGTCGTACA ACTGGCGCTG TGGCTGATTT CGATAA 46
- 29. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:4, which comprises

TAGCCCATGA GTTCGTGTCC GTACAACTGG GGCGCTGTGG CTGATTTCGA TANNNNAGC 60
ATCAGCCCGA CG 72

30. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:5, which comprises

TAGCCCGGTT ATCGAAATCA GCCACAGCGC CTAACTTCTG CAGAAGCCTT TGACCATCAC 60
CAGTTGTACG GACACGAACT CATC 84

31. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:6, which comprises

GTGGTTTCCG AAATTCCTGG GAAGGGGGGT GCTGGCGTGT GGAATTGTCG CGGCCCCTGG 60
TCTGCCGCGG CGTTTTTTGT CTACATTCGT CGTAGCTCG 99

32. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:7, which comprises

ATCAGCGCGC GACATICGGG TACCCGCGCC CCCCCCTCCG TCGGAATICC TCGAGCCGGG 60
ATCCATAGGA TGTGGAGTTA GTTTTGTT 88

- 33. A method for detecting differential expression of at least one marker gene in pre-invasive cancerous breast tissue, said method comprising the steps of:
- (a) obtaining an abnormal tissue sample by a collection step wherein said abnormal tissue sample comprises substantially exclusively abnormal tissue which exhibits histological or cytological characteristics of pre-invasive cancer;
  - (b) isolating mRNA from said abnormal tissue sample;
- (c) preparing at least one abnormal tissue cDNA library from said mRNA isolated from said abnormal tissue sample;
- (d) obtaining a normal tissue sample from humans either with or without disease, said normal tissue sample comprising substantially exclusively normal tissue which does not exhibit histological or cytological characteristics of pre-invasive cancer;
- (e) preparing at least one normal tissue cDNA library from said normal tissue sample; and
- (f) comparing said abnormal tissue cDNA library with said normal tissue cDNA library to determine whether the expression of at least one marker gene in said abnormal tissue sample is different from the expression of said marker gene in said normal tissue sample.
- 34. The method according to Claim 33 wherein said collection step is microscopically-directed.
- a) obtaining a substantially purified marker gene which is expressed to a greater degree in cells collected by a microscopically-directed cloning method from abnormal tissue than in cells collected from normal tissue;
- b) probing tissues using a hybridization technique to determine whether the marker gene is differentially expressed; and,
- c) probing nucleic acids of tissues using a standard PCR technique to determine the presence of the marker gene in a tissue, the presence of the marker gene indicating the presence of pre-invasive cancer.

- 35. Substantially purified DNA having the nucleotide sequences selected from the group of sequences consisting of: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEO ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7.
- 36. An expression vector for the differentially expressed polypeptides encoded by said substantially purified DNA comprising one of the group of DNA sequences of claim 28 operatively linked to at least one control sequence compatible with a suitable bacterial host cell.
- 37. The vector of claim 36 wherein the DNA encoding the differentially expressed polypeptides encoded by said substantially purified DNA comprising one of the group of DNA sequences of claim 28 is linked to at least one sequence from bacteriophage.
- 38. Substantially purified polypeptides encoded by substantially purified DNA comprising one of the group of DNA sequences of claim 35 free of proteins other than proteins encoded by said substantially purified DNA.
- 39. An antibody specifically binding one of the group of polypeptides encoded by one of the nucleotide sequences selected from the group of sequences consisting of: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID ID NO:7.
- 40. A method of detecting and/or determining said antibody in a test sample, comprising the steps:
  - (a) providing a test sample suspected of containing said marker protein;
- (b) adding a quantity of said marker protein of claim 38 to the antibody of claim 39; and
  - (c) determining a level of said marker protein in said test sample.
- 41. A method of screening compounds for activity in the treatment of breast cancer, comprising the steps of:
  - (a) ligating a DNA sequence that regulates expression of the BRCA1 gene into a vector, the vector having a reporter gene, so that the DNA sequence is located such that the DNA sequence regulates expression of the reporter gene;

- (b) introducing the ligated DNA sequence/reporter gene into a breast cancer cell;
- (c) administering a compound to the breast cancer cell; and
- (d) detecting levels of a protein produced by the reporter cell.
- 42. The method according to claim 41 wherein the DNA sequence is as essentially set forth in SEQ ID NO:48.
- 43. The method according to claim 42 wherein the DNA sequence is selected from among:
  - a. a DNA sequence which hybridizes to SEQ ID NO:48 or fragments thereof; and
  - b. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 44. The method according to claim 41 wherein the ligated DNA sequence/reporter gene is introduced into the breast cancer cell by cloning the ligated DNA sequence/reporter gene into an expression vector and transfecting the breast cancer cells with the expression vector.
- 45. The method according to claim 44 wherein the DNA sequence is essentially set forth in SEQ ID NO:48 or its complementary strands.
  - 46. A method of producing an indicator compound, comprising the steps of:
  - (a) ligating a DNA sequence that regulates expression of the BRCA1 gene into a vector, the vector having a reporter gene, so that the DNA sequence is located such that the DNA sequence regulates expression of the reporter gene;
  - (b) introducing the ligated DNA sequence/reporter gene into a breast cancer cell;
  - (c) administering a biological agent to the breast cancer cell; and
  - (d) producing a protein encoded by the reporter gene; and
  - (e) reacting the protein encoded by the reporter gene with a compound in the reaction media to produce the indicator compound.
- 47. The method according to claim 46 wherein the ligated DNA sequence/reporter gene is introduced into the breast cancer cell by cloning the ligated

DNA sequence/reporter gene into an expression vector and transfecting the breast cancer cells with the expression vector.

- 48. The method according to claim 46 wherein the DNA sequence is as essentially set forth in SEQ ID NO:48 or its complementary strands.
- 49. The method according to claim 46 wherein the DNA sequence is selected from among:
  - a. a DNA sequence which hybridizes to SEQ ID NO:48 or fragments thereof; and
  - b. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 50. A method of treating breast cancer in a patient comprising the steps of ligating a gene that encodes a protein having an amino acid sequence as essentially set forth in SEQ ID NO:49 with a promoter capable of inducing expression of the gene in a breast cancer cell and introducing the ligated gene into a breast cancer cell.
- 51. The method of treating breast cancer described in claim 50 wherein the gene has a DNA sequence selected from among:
  - a. the DNA sequence as essentially set forth in SEQ ID NO:47 or its complementary strands;
  - b. a DNA sequence which hybridizes to SEQ ID NO:47 or fragments thereof; and
  - c. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 52. The method of treating breast cancer described in claim 50 wherein the gene has a DNA sequence having 20-99% homology with SEQ ID NO:47.
- 53. The method according to claim 50 wherein the ligated gene is introduced into the cell in a viral expression vector.
- 54. The method according to claim 50 wherein the breast cancer is genelinked hereditary breast cancer.
- 55. The method described in claim 50 wherein the breast cancer is sporadic breast cancer.

PCT/US95/00608

WO 95/19369

5

10

15

AMENDED CLAIMS

[received by the International Bureau on 14 June 1995 (14.06.95); original claims 13 and 15 amended; new claims 14,16 and 17 added; remaining claims unchanged (8 pages)]

- 6. The method according to Claim 5 wherein said hybridization technique comprises RT-PCR.
- 7. The method according to Claim 5 wherein said hybridization technique comprises nuclease protection assays.
- 8. The method according to Claim 5 wherein said hybridization technique comprises in-situ hybridization of RNA in said abnormal tissue sample and in said normal tissue sample.
- 9. The method according to Claim 1 wherein said abnormal cDNA library and said normal cDNA library are compared by means of differential display.
- 10. The method according to Claim 1 wherein said abnormal cDNA library and said normal cDNA library are compared by means of differential screening.
- 11. The method according to claim 1, wherein said normal tissue comprises normal breast tissue cells.
- 12. The method according to claim 1, wherein said abnormal breast tissue cells are non-comedo ductal carcinoma in situ cells.
- 13. The method according to claim 1, wherein the primer used in the PCR amplification technique is selected from the group consisting of randomly selected primers having the sequences

```
5'-CGCGACGGCCGCGCGTCTGCCAGGG-3', 5'-CTTGCGCGCATACGCACAAC-3',
20
                5'-AACCCTCACCCTAACCCCAA-3', S'-CGCCCCTGCGTTACCCTCCCCGCCG-3',
                5'-GGATGGCGTCCTGTAACCCGACGCT-3', 5'-ACTGGGCTGTCCTGCGGTGGCGGGG-3',
                5'-CTGAGAGGTAGCCGCGGGGGGGGTG-3', 5'-GCCTGGCCGCGACACGGATTACCGC-3',
                5'-TTAGCGCATGGTGGACCTGGAGACG-3', 5'-TGTGGTTACGTCAGCGAAGGTAATA-3',
                5'-AGTCGCACGCATGTCACGCTCCGCC-3', 5'-TATCCAAGCGGCAGGCTACGAGGCC-3',
25
                5'-GGCGCGCCCGACGGTCTGGTATCTA-3', 5'-CTCCCTCCCGGACTCGGGGTTAGT-3',
                5'-ATGCGGGGGGCTCGGGCCTGGTCGC-3', 5'-CGTGAAGCCTATGCCCTCCCTCAAC-3',
                5'-GTGCCGTCGTAGCCCTTCAGCGATC-3', 5'-GCGACACTAGGCTCCCGGAGGAGGGG-3',
                5'-TGGGCCAGGCCTCCGGGCCCGGTAT-3', 5'-CCGGAACTGCGATAGCGTCCGTCCC-3',
                5'-AGCGGACACCTGTTTCCCGAGAGCC-3', 5'-AACGGGTGGACATCCGECTGCCGCC-3',
30
                5'-TGAACCACGATGTCAATCGTCCCGA-3', 5'-TCATCCCCGCCGAAAGACGCTCGCC-3',
                5'-ATAGGCTGCGGCACGCGCTGGGACT-3', 5'-GACCAGGTGCGCACGAGCATGTACA-3',
                5'-AGCGTAGTCATCGGCCTTCGCGCCC-3', 5'-GGCCCCTAGCCCAGGGTGAAGCCCA-3',
                5'-CCCAGTGCTACGGGCCGCCCCAAGC-3', 5'-CCTTCCTGGGTTACCTGCCCTCGGG-3',
                5'-TCCGGACAGCAGCCACGCCAAGGGC-3', 5'-ACGCGCTGGTCCACCGAGGCCTGAT-3',
35
                5'-CGATGCAAGGCCAGCAGCACTCGAC-3', 5'-CCCCCGGAGCGGACCACCGGACGTG-3',
                5'-AGCGGGGGGGGTCGGGGGCCAAGC-3', 5'-GCCTGGTGTAGGCAGGCAGCTCTTA-3',
                5'-CCACCCCTGTAGTGCGGGCTGCGAG-3', 5'-GGAACCCGACGCCCGTCCAGGGTTC-3',
```

BNSDOCID: <WO\_\_\_9519369A1\_I\_>

e grāzis

5'-TCGGGCAGCAAGGCCGGGACGCTCC-3', 5'-GACGGGGGACGGGCTAGGTGGCTTA-3', and 5'-CTTGTTGCCGGCGAGAGGGCTGCC-3'.

- 14. The method according to claim 2, wherein said abnormal tissue sample is approximately 2 mm in diameter.
- 15. A method of diagnosing the presence of pre-invasive breast cancer in human pathologic tissues, said method comprising the steps of:
- (a) obtaining an abnormal breast tissue sample by a collection step wherein said abnormal breast tissue sample comprises substantially exclusively abnormal breast tissue which exhibits histological or cytological characteristics of pre-invasive breast cancer;
  - (b) isolating mRNA from said abnormal breast tissue sample;
- (c) preparing at least one abnormal breast tissue cDNA library from said mRNA isolated from said abnormal breast tissue sample;
- (d) obtaining a normal breast tissue sample from humans either with or without disease, said normal breast tissue sample comprising substantially exclusively normal breast tissue which does not exhibit histological or cytological characteristics of pre-invasive breast cancer;
- (e) preparing at least one normal breast tissue cDNA library from said normal breast tissue sample; and
- (f) comparing said abnormal breast tissue cDNA library with said normal tissue cDNA library to determine whether the expression of at least one marker gene in said abnormal breast tissue sample is different from the expression of said marker gene in said normal breast tissue sample.
- (g) cloning said differentially expressed marker gene using sequence-based amplification to create a cloned marker gene;
  - (h) sequencing said cloned marker gene;
  - (i) producing proteins encoded by said cloned marker gene;
- (j) generating antibodies which will recognize said proteins encoded by said cloned marker gene by antigen recognition; and
  - (k) detecting said recognized antigen by means of medical diagnostic tests.
- 16. The method according to claim 15, wherein said medical diagnostic tests comprise diagnostic tissue tests.

5

10

15

20

25

- 17. The method according to claim 15, wherein said medical diagnostic tests comprise X-ray tests.
- 18. The method according to claim 15, wherein said medical diagnostic tests comprise blood tests.
- 19. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding secreted proteins.
- 20. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding transcription factors.
- 21. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences designed to clone marker genes encoding RibRed.
- 22. The method according to claim 15, wherein said cloned marker genes encoding secreted proteins are employed in the diagnosis of specific diseases by using a blood test.
- 23. The method according to claim 15, wherein said sequence-based amplification employs DNA sequences adapted to clone marker genes which encode cell surface proteins.
- 24. The method according to claim 15, wherein said proteins encoded by said cloned marker comprise cell surface proteins and wherein the presence of said proteins as a diagnostic indicator is detected by using a diagnostic imaging test.
- 25. A diagnostic method to determine the presence of pre-invasive breast cancer using detection of a differentially expressed marker gene, according to claim 15, wherein said diagnostic method comprises:
- a) obtaining a substantially purified marker gene which is expressed to a greater degree in cells collected by a microscopically-directed cloning method from abnormal tissue than in cells collected from normal tissue;
- b) probing tissues using a hybridization technique to determine whether said substantially purified marker gene is differentially expressed; and,
  - c) probing nucleic acids of tissues using a standard hybidization technique

5

10

15

20

25

5

10

15

20

25

30

35

to determine the presence of said substantially purified marker gene in a tissue, the presence of the marker gene indicating the presence of non-comedo DCIS which is pre-invasive breast cancer.

26. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:1, which comprises

TIGGGAATIG GGTACGCGGG CCCCCCACTG IGCCGAATIC CTGCATGCGG GGGATCCACT 60
AGTICAGAGC AGGCCGCCAC CCGTAGGACT CCAGCTTITG ITCGTICCCT ITAGTGAGGG 120
TIAATITICG AGCTIGGCGT AATCATGGTC ATAGCTGTIT CCTGTGTGAA ATTGTTATCC 180
GCTCACAATI CCACACAACA TACGAGCCGG AAGCATAAAA GTGTAAAGCC TGGGGTGCCT 240
AAIGAGTGAG CTAACICACA TTAA 264

- 27. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:2, which comprises

  TAGGEGGGTT ATGGAAATAG CCACAGGGCC TETTCACTAT CAGGAGTACG CCGCCCAGTT 60

  GTACGGACAC GGA

  73
- 28. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:3, which comprises

TGCCCGATGT GTGTCGTACA ACTGGCGCTG TGGCTGATTT CGATAA 46

- 29. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:4, which comprises

  TAGCCCATGA GTTCGTGTCC GTACAACTGG GGCGCTGTGG CTGATTTCGA TANNNHAGC 60
  ATCAGCCCGA CG 72
- 30. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:5, which comprises

TAGCCCGGTT ATCGAAATCA GCCACAGCGC CTAACTTCTG CAGAAGCCTT TGACCATCAC 60
CAGTTGTACG GACACGAACT CATC 84

31. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:6, which comprises

GTGGTTTCCG AAATTCCTGG GAAGGGGGGT GCTGGCGTGT GGAATTGTCG CGGCCCCTGG 60
TCTGCCGGCG CGTTTTTTGT CTACATTCGT CGTAGCTCG 99

PCT/US95/00608

5

10

15

20

25

30

32. The method according to claim 25, wherein said substantially purified marker gene has the sequence listed according to SEQ ID NO:7, which comprises

ATCAGCGCGC GACATICGGG TACCCGCGCC CCCCCCTCCG TCGGAATICC TCGAGCCGGG 60
ATCCATAGGA TGTGGAGTTA GTTTTGTT 88

- 33. A method for detecting differential expression of at least one marker gene in pre-invasive cancerous breast tissue, said method comprising the steps of:
- (a) obtaining an abnormal tissue sample by a collection step wherein said abnormal tissue sample comprises substantially exclusively abnormal tissue which exhibits histological or cytological characteristics of pre-invasive cancer;
  - (b) isolating mRNA from said abnormal tissue sample;
- (c) preparing at least one abnormal tissue cDNA library from said mRNA isolated from said abnormal tissue sample;
- (d) obtaining a normal tissue sample from humans either with or without disease, said normal tissue sample comprising substantially exclusively normal tissue which does not exhibit histological or cytological characteristics of pre-invasive cancer;
- (e) preparing at least one normal tissue cDNA library from said normal tissue sample; and
- (f) comparing said abnormal tissue cDNA library with said normal tissue cDNA library to determine whether the expression of at least one marker gene in said abnormal tissue sample is different from the expression of said marker gene in said normal tissue sample.
- 34. The method according to Claim 33 wherein said collection step is microscopically-directed.
- a) obtaining a substantially purified marker gene which is expressed to a greater degree in cells collected by a microscopically-directed cloning method from abnormal tissue than in cells collected from normal tissue;
- b) probing tissues using a hybridization technique to determine whether the marker gene is differentially expressed; and,
- c) probing nucleic acids of tissues using a standard PCR technique to determine the presence of the marker gene in a tissue, the presence of the marker gene indicating the presence of pre-invasive cancer.

- 35. Substantially purified DNA having the nucleotide sequences selected from the group of sequences consisting of: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEO ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID NO:7.
- 36. An expression vector for the differentially expressed polypeptides encoded by said substantially purified DNA comprising one of the group of DNA sequences of claim 28 operatively linked to at least one control sequence compatible with a suitable bacterial host cell.
- 37. The vector of claim 36 wherein the DNA encoding the differentially expressed polypeptides encoded by said substantially purified DNA comprising one of the group of DNA sequences of claim 28 is linked to at least one sequence from bacteriophage.
- 38. Substantially purified polypeptides encoded by substantially purified DNA comprising one of the group of DNA sequences of claim 35 free of proteins other than proteins encoded by said substantially purified DNA.
- 39. An antibody specifically binding one of the group of polypeptides encoded by one of the nucleotide sequences selected from the group of sequences consisting of: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, and SEQ ID ID NO:7.
- 40. A method of detecting and/or determining said antibody in a test sample, comprising the steps:
  - (a) providing a test sample suspected of containing said marker protein;
- (b) adding a quantity of said marker protein of claim 38 to the antibody of claim 39; and
  - (c) determining a level of said marker protein in said test sample.
- 41. A method of screening compounds for activity in the treatment of breast cancer, comprising the steps of:
  - (a) ligating a DNA sequence that regulates expression of the BRCA1 gene into a vector, the vector having a reporter gene, so that the DNA sequence is located such that the DNA sequence regulates expression of the reporter gene;
  - (b) introducing the ligated DNA sequence/reporter gene into a breast cancer

5

10

15

20

cell;

- (c) administering a compound to the breast cancer cell; and
- (d) detecting levels of a protein produced by the reporter cell.
- 42. The method according to claim 41 wherein the DNA sequence is as essentially set forth in SEQ ID NO:48.
- 43. The method according to claim 42 wherein the DNA sequence is selected from among:
  - a. a DNA sequence which hybridizes to SEQ ID NO:48 or fragments thereof; and
  - b. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 44. The method according to claim 41 wherein the ligated DNA sequence/reporter gene is introduced into the breast cancer cell by cloning the ligated DNA sequence/reporter gene into an expression vector and transfecting the breast cancer cells with the expression vector.
- 45. The method according to claim 44 wherein the DNA sequence is essentially set forth in SEQ ID NO:48 or its complementary strands.
  - 46. A method of producing an indicator compound, comprising the steps of:
  - (a) ligating a DNA sequence that regulates expression of the BRCA1 gene into a vector, the vector having a reporter gene, so that the DNA sequence is located such that the DNA sequence regulates expression of the reporter gene;
  - (b) introducing the ligated DNA sequence/reporter gene into a breast cancer cell;
  - (c) administering a biological agent to the breast cancer cell; and
  - (d) producing a protein encoded by the reporter gene; and
  - (e) reacting the protein encoded by the reporter gene with a compound in the reaction media to produce the indicator compound.
- 47. The method according to claim 46 wherein the ligated DNA sequence/reporter gene is introduced into the breast cancer cell by cloning the ligated DNA sequence/reporter gene into an expression vector and transfecting the breast

10

5

15

20

25

cancer cells with the expression vector.

- 48. The method according to claim 46 wherein the DNA sequence is as essentially set forth in SEQ ID NO:48 or its complementary strands.
- 49. The method according to claim 46 wherein the DNA sequence is selected from among:
  - a. a DNA sequence which hybridizes to SEQ ID NO:48 or fragments thereof; and
  - b. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 50. A method of treating breast cancer in a patient comprising the steps of ligating a gene that encodes a protein having an amino acid sequence as essentially set forth in SEQ ID NO:49 with a promoter capable of inducing expression of the gene in a breast cancer cell and introducing the ligated gene into a breast cancer cell.
- 51. The method of treating breast cancer described in claim 50 wherein the gene has a DNA sequence selected from among:
  - a. the DNA sequence as essentially set forth in SEQ ID NO:47 or its complementary strands;
  - b. a DNA sequence which hybridizes to SEQ ID NO:47 or fragments thereof; and
  - c. DNA sequences which but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) and (b).
- 52. The method of treating breast cancer described in claim 50 wherein the gene has a DNA sequence having 20-99% homology with SEQ ID NO:47.
- 53. The method according to claim 50 wherein the ligated gene is introduced into the cell in a viral expression vector.
- 54. The method according to claim 50 wherein the breast cancer is genelinked hereditary breast cancer.
- 55. The method described in claim 50 wherein the breast cancer is sporadic breast cancer.

10

5

15

20

114

#### STATEMENT UNDER ARTICLE 19

Pursuant to Article 19 of the Patent Cooperation Treaty and Rule 46, Applicant respectfully submits the attached sheets of amended claims. The sheets are replacement sheets for pages 98-105 of the above referenced International application. These sheets contain Claims 6-55 of the above referenced international application. New Claims 14, 16 and 17 have been added to replacement pages 99-100. Additional primers have been listed in Claim 13 on replacement pages 98-99. These primers are described in the Sequence Listing. Claim 15 has been amended to include steps (j) and (k) on replacement page 99. The new claims and the amended claims do not go beyond the scope of the application as filed. The remaining replacement sheets include no amendments, but are filed to maintain the correct numbering of the claim pages.

Figure 1:

Anatomic Lesion Types in the Human Breast with Pre-malignant Implication TABLE I:

Pre-malignant Lesions

Indicators of generalized increased risk

Relative Risk\*

P value

Reference

(Dupont, et al, 1985 and 1993.)

10000. >

4-5 fold

Atypical ductal hyperplasia

(Page, et al, 1991.)

< .00001 >

9-10 fold

Lobular CIS

(Page, et al, 1982.)

< .00005

10-11 fold

Non-comedo DCIS

Determinant Lesions with Regional Risk

\* represents the 95% confidence interval for relative risk.

Figure 1: Table I describes anatomic lesion types in the human breast with pre-malignant implication.

Fig. 2



3/19

Fig. 3



Fig. 3



Fig. 5



SUBSTITUTE SHEET (RULE 26)



Figure 6: Comparison of the sequence between DCIS-1 and the human and hamster genes.

Fig. 7

Con NL1 NL2 NL3 #12 #6 #4 #6 #10 #100



SUBSTITUTE SHEET (RULE 26)

Fig. 8 - Table of the Genetic Code

| Amino Acids   |     | _ | Codons |      |             |     |     | <del></del> |
|---------------|-----|---|--------|------|-------------|-----|-----|-------------|
| Alanine       | Ala | A | GCA    | GCC  | <b>c</b> cc | GCU |     |             |
| Eysteine      | Cys | c | UGC    | UGU  |             |     |     | •           |
| Aspartic acid | Asp | D | GAC    | GAU  |             |     |     |             |
| Glutamic acid | Glu | E | ممو    | GAG  |             |     |     |             |
| Phenylalanine | Phe | F | טטב    | UUU  |             |     |     |             |
| Glycine       | Gly | G | GGA    | GGC  | ccc         | GGU |     |             |
| Histidine     | His | н | CAC    | CAU  |             |     |     |             |
| Isoleucine    | lle | 1 | AUA    | SUA  | AUU         |     |     |             |
| Lysine        | Lys | ĸ | AAA    | AAG  |             |     |     |             |
| Leucine       | Leu | L | UUA    | UUG  | CUA         | cuc | כטפ | CUU         |
| Methionine    | Met | M | AUG    |      |             |     |     |             |
| Asparagine    | Asn | И | AAC    | LAAU |             |     |     |             |
| Proline       | Prc | P | 433    | ccc  | ccg         | ccu |     |             |
| Glutamine     | Gln | o | CAA    | CAG  |             |     |     |             |
| Arginine      | Arg | ĸ | AGA    | AGG  | CGA         | CGC | ccc | CGU         |
| Serine        | Ser | s | AGC    | AGU  | UCA         | ucc | ucc | UCU         |
| Threonine     | Thr | T | AC#    | ACC  | ACG         | ACU |     |             |
| Valine        | Val | ٧ | GUA    | GUC  | GUG         | GUU |     |             |
| Tryptophan    | Trp | ¥ | იმმ    |      |             |     |     |             |
| Tyrosine      | Tyr | Y | UAC    | UAU  |             |     |     |             |

Figure 8: Table of the Genetic Code.

| SEQ ID 1     | NO: 1: (DCIS-1)                                        |            |
|--------------|--------------------------------------------------------|------------|
| TIGGGAATTG G | STACGEGGG CECECCACTG TGEEGAATTE CTGEATGEGG GGGATECACT  | 60         |
| ACTICAGAGE E | COTAGGACT CCAGCITITG TICGLICCCT TIAGLGAGGG TIAATTITCG  | 120        |
| ACCITCGCGT A | MATCATGGTC ATCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA | 180        |
| CATACGAGCC G | GAAGCATAA AAGTGTAAGC AATGAGTGAG CTAACTCACA TTAA        | 234        |
| SEO ID NO: 2 | 2: (DCIS-2)                                            |            |
| TAGCCCGGTT A | ATCGAAATAG CCACAGEGEE TETTEACTAT CAGCAGTACG EEGEECAGTT | 60         |
| GTA CGG ACA  |                                                        | 72         |
| SEQ 10 NO: 3 | 3: (DC1S-3)                                            |            |
| TGCCCGATGA ( | GTTGTGTCGT ACAACTGGCG CTGTGGCTGA TTTCGATAA             | 45         |
| SEO ID NO: 4 | 4: (DC1S-4)                                            |            |
| TAGCCCATGA ( | GTICGIGICC GTACAACIGG GGCGCIGIGG CIGATIICGA TAHNHHAGC  | 60         |
| ATCAGCCCGA   | CG                                                     | 72         |
| SEG ID NO:   | 5: (DCIS-5)                                            |            |
|              | ATEGAAATCA GCCACAGCGC CTAACTICIG CAGAAGCCTT IGACCATCAC | 60         |
| CAGTIGIACG   | GAAACGAACT CATC                                        | 84         |
| SEQ 10 NO:   | 6: (DCIS-6)                                            | 60         |
| GIGGITICCG . | AAATTOCTO GGAAGGGGGG TGCTGGCGTG TGGAATTGTC GCGGCCCCTG  | 10         |
| GTCTGCCGCG   | GCGTTTTTT GTCTACATTC GTCGTAGCTC G                      | 10         |
| SEC ID NO:   | 7: (DCIS-7)                                            | 60         |
|              | GACATICGGG TACCCGCGCC C*****TCCG TCGGAATTCC TCGAGCCGGC | . 60<br>88 |
| AT**ATAGGA   | TGTGGAGTTA GTTTTGTT                                    | 50         |

Figure 9: Table of Differentially Expressed Marker Genes From Pre-Invasive Human Breast Tissue

Fig. 10A



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Fig. 11A



13/19

Fig. 11B





Fig. 12A



Fig. 12E



Fig. 12C

Fig. 13A



Fig. 13B





SUBSTITUTE SHEET (RULE 26)

Inc. .al application No.
PCT/US95/00608

|                    | SSIFICATION OF SUBJECT MATTER Please See Exira Sheet.                                                                                                                                                                     |                                                                                                                                                        |                                                                 |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| UC CI d            | US CI Disease See Extra Sheet                                                                                                                                                                                             |                                                                                                                                                        |                                                                 |  |  |  |
|                    | According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                         |                                                                                                                                                        |                                                                 |  |  |  |
|                    | DS SEARCHED                                                                                                                                                                                                               | ev classification symbols)                                                                                                                             |                                                                 |  |  |  |
|                    | ocumentation searched (classification system followed b                                                                                                                                                                   |                                                                                                                                                        |                                                                 |  |  |  |
|                    | 35/6, 7.1, 69.2, 172.3, 320.1; 514/44; 536/23.2, 23                                                                                                                                                                       |                                                                                                                                                        |                                                                 |  |  |  |
| Documentati        | Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                             |                                                                                                                                                        |                                                                 |  |  |  |
| Electronia de      | ata base consulted during the international search (nam                                                                                                                                                                   | e of data base and, where practicable,                                                                                                                 | search terms used)                                              |  |  |  |
|                    | ee Extra Sheet.                                                                                                                                                                                                           |                                                                                                                                                        | ·                                                               |  |  |  |
| C. DOC             | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                          |                                                                                                                                                        |                                                                 |  |  |  |
| Category*          | Citation of document, with indication, where appr                                                                                                                                                                         | ropriate, of the relevant passages                                                                                                                     | Relevant to claim No.                                           |  |  |  |
| P, Y               | Science, Vol. 266, issued 07 Octol "A Strong Candidate for the Brea Susceptibility Gene BRCA1", pa document.                                                                                                              | ast and Ovarian Cancer                                                                                                                                 | 1-13, 15, 18-<br>37, 40                                         |  |  |  |
| Y                  | Cancer Research, Vol. 52, issued 15 December 1992, P. Liang et al., "Differential Display and Cloning of Messenger RNAs from Breast Cancer <i>versus</i> Mammary Epithelial Cells", pages 6966-6968, see entire document. |                                                                                                                                                        |                                                                 |  |  |  |
| Y                  | Cancer Surveys, Vol. 18, issued "Histopathology: Old Principles and 1-16, Tables 1 and 2 and Figures 1                                                                                                                    | nd New Methods", pages                                                                                                                                 | 1-13                                                            |  |  |  |
|                    |                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                 |  |  |  |
| X Furt             | ther documents are listed in the continuation of Box C.                                                                                                                                                                   |                                                                                                                                                        |                                                                 |  |  |  |
| Į.                 | pecial categories of cited documents:                                                                                                                                                                                     | "T" biter document published after the ir<br>date and not in conflict with the appl<br>principle or theory underlying the ir                           | ication but cited to understand the                             |  |  |  |
| te te              | ocument defining the general inte of the art which is not considered to be of particular relevance                                                                                                                        | .v. document of porticular relevance:                                                                                                                  | the claimed invention cannot be                                 |  |  |  |
| -1· a              | artier document published on or after the international filing date<br>locument which may throw doubts on priority claim(s) or which a                                                                                    | considered novel or cannot be consistent the document is taken alone                                                                                   |                                                                 |  |  |  |
| .O. q              | ited to establish the publication date of another cristion or other pecial reason (as appearing)  (ocument referring to an oral disclosure, use, exhibition or other                                                      | "Y" document of particular relevance;<br>considered to involve an inventi<br>combined with one or more other m<br>being obvious to a person skilled in | ve step when the document is<br>uch documents, such combination |  |  |  |
| -p- d              | document published prior to the international filing date but later than "&" document member of the same patent family                                                                                                    |                                                                                                                                                        |                                                                 |  |  |  |
|                    | he priority date claimed c actual completion of the international search                                                                                                                                                  | Date of mailing of the international search report                                                                                                     |                                                                 |  |  |  |
| 21 APR             |                                                                                                                                                                                                                           | 04 MAY 1995                                                                                                                                            |                                                                 |  |  |  |
| Commiss<br>Box PCT | mailing address of the ISA/US nioner of Patents and Trademarks                                                                                                                                                            | Authorized officer Lathauntergon ( Stephanie W. Zitomer, Ph.D.                                                                                         |                                                                 |  |  |  |
|                    | No. (703) 305-3230                                                                                                                                                                                                        | Telephone No. (703) 308-0196                                                                                                                           |                                                                 |  |  |  |

Form PCT/ISA/210 (second sheet)(July 1992)

i.... nal application No. PCT/US95/00608

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                | Relevant to claim No |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Y         | DNA (N.Y.), Vol. 5, No. 5, issued 1986, Neuhold et al., "Dioxin-Inducible Enhancer Region Upstream from the Mouse P-1450 Gene and Interaction with a Heterologous SV-40 Promoter", abstract, see entire document. | 41-49                |
| E, Y      | US, A, 5,399,346 (ANDERSON ET AL.) 21 March 1995.                                                                                                                                                                 | 50-55                |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |
|           |                                                                                                                                                                                                                   |                      |

Form PCT/ISA/210 (continuation of second sheet)(July 1992).

in . . . nal application No. PCT/US95/00608

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                |  |  |  |  |  |
| 1. Claims Nos.:  because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                    |  |  |  |  |  |
| 2. Claims Nos.:  because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:   |  |  |  |  |  |
| 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                          |  |  |  |  |  |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                  |  |  |  |  |  |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                  |  |  |  |  |  |
| Please See Extra Sheet.                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                  |  |  |  |  |  |
| 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                      |  |  |  |  |  |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                          |  |  |  |  |  |
| 3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-13, 15, 18-37, 40-55 |  |  |  |  |  |
| No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:                 |  |  |  |  |  |
| Remark on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                        |  |  |  |  |  |

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)\*

Internation No. PCT/US95/00608

### A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

C07H 21/02, 21/04; C12Q 1/68; G01N 33/53; C12P 21/00; C12N 15/63, 15/85; A61K 48/00

#### A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/6, 7.1, 69.2, 172.3, 320.1; 514/44; 536/23.2, 23.5; 935/3, 6, 9, 11, 14, 23, 77, 78

#### B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG: Biosis, Derwent Biotech. Abstracts, WPI, Chem. Abstr., Diss. Abstr., Embase, Medline, Current Biotech. Abstr. (Royal Soc.); search strat: (cancer or carcinoma)(p)(breast or ovar?)(p)(gene or nucleic)(p)gene(..) sequence, nucleic(...) sequence?

#### BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-13 and 25-37, drawn to a first process of using and a first product used: a diagnostic process using the product nucleic acids.

Group II, claims 15, 18-24 and 40, drawn to a second process of using, an immunoassay.

Group III, claims 38 and 39, drawn to a second product used, proteins including polypeptides and antibodies.

Group IV, claims 41-45, drawn to a third process of using, a process of screening compounds for activity in breast cancer treatment.

Group V, claims 46-49, drawn to a fourth process of using, a process for producing an indicator compound.

Group VI, claims 50-55, drawn to a fifth process of using, a process for treating breast cancer.

The inventions listed as Groups I-VI do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions of Groups III-VI lack the diagnostic technical feature and the inventions of Groups II-VI lack the nucleic acid special feature of Group I while the inventions of Groups II and IV-VI each have a different result such that they individually lack the special features of the others that are responsible for that result: The Group II process has a diagnostic result; the Group IV invention identifies a compound that affects the expression of the BRCA1 gene; the Group V process produces an indicator compound; the invention of Group VI treats cancer.

Form PCT/ISA/210 (extra sheet)(July 1992).

| <br> |   | <br> |      | <br>• |   |
|------|---|------|------|-------|---|
|      |   |      |      | •     |   |
|      |   |      |      |       | • |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      | (a.) |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      | •     |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      |       |   |
|      | 7 | · •  |      |       |   |
|      |   |      |      |       |   |
|      |   |      |      | • • • |   |
|      |   |      |      |       |   |