Ayudantía 6 Heurísticas y búsqueda adversaria

Maximiliano Torres - Blanca Romero

Heuristicas

¿Qué es una heurística?

Las heurísticas usan **conocimiento previo** para discriminar cuáles estados son "mejores" o "peores".

Así se **reduce el tiempo de búsqueda** (pues evitamos irnos por caminos "malos").

La heurística es una **estimación** de la cercanía de cierto estado a la solución.

Ejemplos de heurísticas

- No comprar un producto con mala calificación.
- Llevar paraguas si el día está nublado.
- Elegir un producto porque su envase se ve de buena calidad.
- Distancia Euclidiana.
- Distancia Manhattan.

Formalmente...

Si se tiene un problema de búsqueda (S, A, s_init, G)

S = conjunto de estados posibles

A = conjunto de acciones posibles

s_init = estado inicial

G = conjunto de estados objetivo (puede ser sólo uno...)

Una heurística es una función *h* que recibe como entrada un estado *s* y entrega un valor real.

La idea es que el valor h(s) sea una medida de qué tan cerca está el estado s de alguna solución g.

Admisibilidad

Una heurística *h* se dice **admisible** si y solo si **nunca sobreestima respecto a un camino óptimo**. Es decir:

$$h(s) \leq h^*(s)$$

para todo estado s.

 $h^*(s)$ = costo de un camino óptimo desde s hasta un objetivo

$$h(A) \le h^*(A)$$

 $h(B) \le h^*(B)$
 $h(C) \le h^*(C)$
 $1 \le 2$
 $8 \le 16$
La heurística es admisible!

Consistencia

Una heurística h se dice **consistente** si y solo si

• h(s) = 0 para todo $s \in G$

No se sobre estima en los objetivos

• $h(s) \le c(s, s') + h(s')$ para todo vecino s' de s

La variación del *h* de dos estados no es mayor que el costo de ir de uno a otro

La heurística también es **consistente!**

la heurística es inconsistente

IMPORTANTE

Si h es consistente, entonces h es admisible.

El algoritmo A* siempre estrega soluciones óptimas si se usa con una heurística admisible.

IMPORTANTE

S h es **consistente**, entonces h es **admisible**.

El algoritmo A* siempre estrega soluciones óptimas si se usa con una heurística admisible.

Búsqueda adversaria

Tipo de problemas (Juegos)

Veremos juegos de **dos jugadores**, con **turnos**, **información perfecta** y **suma cero**:

- Información perfecta: Tenemos toda la información del tablero de juego
- **Suma cero:** Lo que es bueno para mí, es malo para mi oponente (en igual medida)

Búsqueda

Podemos considerar un juego como un **espacio de búsqueda**:

- **Tablero** = nodo/estado
- **Jugadas** = conecciones/acciones

El **objetivo** será llegar a un **tablero donde ganamos** (estado objetivo):

- Gato: tres fichas (nuestras) en línea
- Conecta-4: cuatro fichas (nuestras) en línea
- Ajedrez: Jaque-mate al rey del oponente

Adversario

Para cada estado que revisemos en la búsqueda, tenemos que considerar si es mi turno, o el turno de mi adversario.

La búsqueda puede presentarse como una simulación del juego entre dos jugadores: Max y Min:

Si es mi turno: Max

• Elijo la mejor jugada que tengo disponible, para **max**imizar el puntaje.

Si es el turno de mi oponente: Min

 Asumo que mi oponente toma siempre las decisiones óptimas, entonces elige la opción que **min**imiza mi puntaje (la mejor jugada para mi oponente es la que me "hace peor")

¿Cómo defino la mejor jugada desde un tablero?

Puntuamos el tablero en base al valor minimax

```
\begin{aligned} \text{MINIMAX}(s) = & & \text{Valor del tablero para Max} \\ & \left\{ \begin{array}{ll} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{array} \right. \end{aligned}
```

Para jugar de manera óptima, elegimos la acción asociada al valor minimax


```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN}  \end{cases}
```



```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}
```



```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN}  \end{cases}
```



```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}
```



```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN}  \end{cases}
```



```
 \begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}
```


$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

Me traslado al estado asociado al 8 (hijo izquierdo)

$$\begin{cases} \text{UTILITY}(s, \text{MAX}) & \text{if Is-Terminal}(s) \\ \max_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MAX} \\ \min_{a \in Actions(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if To-Move}(s) = \text{MIN} \end{cases}$$

Búsqueda MiniMax

Es un algoritmo que recibe un tablero y retorna la acción asociada al valor minimax de dicho tablero:

```
function MAX-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v, move \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v, move \leftarrow +\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Rendimiento MiniMax

La búsqueda MiniMax corre DFS sobre el árbol de estados completo:

> Para el ajedrez, esto es explorar 10⁴⁴ estados

Para mejorar el rendimiento podemos:

- Acotar la profundidad del árbol de búsqueda.
- Podar ramas del árbol de búsqueda.

Acotar profundidad del árbol de búsqueda

Función de evaluación

- Es como una **heurística** pero en el contexto de búsqueda adversaria
- Asigna puntajes a estados no terminales, lo que permite limitar a un máximo la altura de un árbol

Poda Alpha-Beta

Podemos podar buena parte del árbol si guardamos dos parámetros adicionales en cada llamada a la búsqueda MiniMax

- alpha: cota inferior del valor de un nodo
- beta: cota **superior** del valor de un nodo

Tener estas cotas nos indica si es necesario calcular un nodo.

Poda Alpha-Beta - cota superior beta

Primer nodo hijo calculado; beta se actualiza a 8

Poda Alpha-Beta - cota inferior alpha

alpha se actualiza a 8

Poda Alpha-Beta

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
   if game.Is-Terminal(state) then return game.Utility(state, player), null
   v \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
     if v^2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, \nu)
     if v \geq \beta then return v, move
   return v, move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
   if game.Is-TERMINAL(state) then return game.UTILITY(state, player), null
   v \leftarrow +\infty
   for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
     if v^2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow MIN(\beta, \nu)
     if v \leq \alpha then return v, move
   return v, move
```

FIN

Nos pueden preguntar cualquier duda xd