UNIMODALITY IDEAS

AARON LANDESMAN

1. Directions to move

- (1) Look at generalising p_i^r for general r.
- (2) Generalizing to q analog of cyclic group.
- (3) Try relating p_i, q_i .
- (4) Coding which groups G we have $p_i = q_i$.
- (5) When are $p_i = q_i$.
- (6) Try to compute q_i .
- (7) Look at simple groups, and maybe solvable groups, try quotienting by normal subgroups?
- (8) Are there any ways to combine G_1, G_2 where G_i are groups with $p_i = q_i$.
- (9) Are there some characterisations of groups with q_i, p_i .
- (10) How to use sage, what can we do with groups?
- (11) Which edge poset definition do we want? Do we include edges containing y or exclude them?
- (12) Look at $B_n(q)$.
- (13) Look at generalizing $F_r(B_n)$ to arbitrary posets
- (14) Try relating Wilson's Normal Form to our posets?

2. The Functor of Faces

Remark 2.0.1. We assume all posets are ranked posets, and G actions are rank preserving, order preserving actions.

Definition 2.0.2. Define the poset category \mathcal{P}_r , where the objects $P \in \mathcal{P}_r$ are ranked poset, and the morphisms Mor(P,Q) are rank preserving, order preserving maps, which send all B_{r+1} to other B_{r+1} .

Definition 2.0.3. Define the Functor of Faces $\mathfrak{F}: \mathfrak{P} \to \mathfrak{P}$, that associates to any poset $P \in \mathfrak{P}$ a poset $\mathfrak{F}(P)$, where the vertices of $\mathfrak{F}(P)$ are pairs $(x,y) \in P \times P$, $x \lessdot y$, and the ordering in $\mathfrak{F}(P)$ is given by $(x,y) \leq (a,b)$ if $x \leq a,y \leq b$. For $f \in Mor(P,Q)$, the corresponding morphism $\mathfrak{F}(f): \mathfrak{F}(P) \to \mathfrak{F}(Q)$, given by $\mathfrak{F}(f)(x,y) = (f(x),f(y))$.

Conjecture 1. The Functor of faces \mathfrak{F} is fully faithful.

3. Quotient Edges

This section will build up to the theorem that for a symmetric poset P, with $\mathcal{F}(P)$ having injective order raising maps for rank $i < \frac{n}{2}$, we will also have $\mathcal{F}(P/G)$ has injective order raising maps for $i < \frac{n-1}{2}$.

Notation 3.0.4. Let $U_i: P_i \to P_{i+1}$ be the raising operator for the poset P. Then, we obtain an induced map

$$U_i \otimes U_{i+1} : P_i \otimes P_{i+1} \to P_{i+1} \otimes P_{i+1}, x \otimes y \mapsto U(x) \otimes U(y).$$

Notation 3.0.5. We also have the natural inclusions

$$k_i: \mathfrak{F}(P)_i \to P_i \otimes P_{i+1},$$

$$x \otimes y \mapsto x \otimes y$$

$$k_i^{G \times G}: \mathfrak{F}(P/G)_i \to (P/G)_i \otimes (P/G)_{i+1},$$

$$Gx \otimes Gy \mapsto Gx \otimes Gy,$$

where we have $x \leq y$ and $Gx \leq Gy$. The maps above are defined on a basis, and are extended by linearity.

Notation 3.0.6. *Next, we define the map*

$$j_i: (P/G)_i \otimes (P/G)_{i+1} \to P_i \otimes P_{i+1},$$

$$Gx \otimes Gy \mapsto \frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy.$$

where x is an arbitrary representative of Gx and y is an arbitrary representative of Gy

Lemma 3.0.7. The map j_i is well defined.

Proof. It suffices to check that if x, z are two representatives of Gx, then $\sum_{g \in G} gx = \sum_{h \in G} gz$. This is clear because by definition Gx = Gz means $z = g_1x$ for some $g_1 \in G$, and so we can reorder the sum.

Notation 3.0.8. Define the map

$$p_i: P_i \otimes P_{i+1} \to (P/G)_i \otimes (P/G)_{i+1},$$

 $x \otimes y \mapsto Gx \otimes Gy.$

Notation 3.0.9. Define the map

$$(U_i \otimes U_{i+1})^{G \times G} : P_i \otimes P_{i+1} \to P_{i+1} \otimes P_{i+1},$$

$$Gx \otimes Gy \mapsto p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i(Gx \otimes Gy).$$

Notation 3.0.10. We also have the projections inclusions

$$\begin{split} \pi_i: P_i \otimes P_{i+1} &\to \mathfrak{F}(P)_i, \\ x \otimes y &\mapsto \begin{cases} x \otimes y, & \text{if } x \lessdot y \\ 0 & \text{otherwise} \end{cases} \\ \pi_i^{G \times G}: (P/G)_i \otimes (P/G)_{i+1} &\to \mathfrak{F}(P/G)_i, \\ Gx \otimes Gy &\mapsto \begin{cases} Gx \otimes Gy, & \text{if } Gx \lessdot Gy \\ 0 & \text{otherwise} \end{cases}, \end{split}$$

where we have $x \le y$ and $Gx \le Gy$. The maps above are defined on a basis, and are extended by linearity.

Notation 3.0.11. We denote

$$\mathcal{F}(U)_i : \mathcal{F}(P)_i \to \mathcal{F}(P)_{i+1}$$

$$x \otimes y \mapsto k_i \circ (U \otimes U) \circ \pi_{i+1}(x \otimes y)$$

$$\mathcal{F}(U)_i^{G \times G} : \mathcal{F}(P/G)_i \to \mathcal{F}(P/G)_{i+1}$$

$$Gx \otimes Gy \mapsto k_i^{G \times G} \circ (U \otimes U)^{G \times G} \circ \pi_{i+1}^{G \times G}(Gx \otimes Gy)$$

where it is defined above on a basis and we extend to the whole space by linearity.

Remark 3.0.12. For $i < \frac{n}{2}$ we obtain the following (almost commuting, but $j_{i+1} \circ p_{i+1} \neq \text{id.}$) diagram

Lemma 3.0.13. The map p_i is a left inverse for j_i . That is, $p_i \circ j_i = id$.

Proof. For $Gx \otimes Gy \in (P/G)_i \otimes (P/G)_{i+1}$, we have

$$p_i \circ j_i(Gx \otimes Gy) = p_i(\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy)$$
$$= \frac{1}{|G|} \sum_{g \in G} Gx \otimes \frac{1}{|G|} \sum_{h \in G} Gy$$
$$= Gx \otimes Gy$$

Lemma 3.0.14. The central square commutes. That is, $j_{i+1} \circ (U_i \otimes U_{i+1})^{G \times G} = (U_i \otimes U_{i+1}) \circ j_i$.

Proof. By definition, $(U_i \otimes U_{i+1})^{G \times G} = p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i$. Therefore, we have $j_{i+1} \circ (U_i \otimes U_{i+1})^{G \times G} = j_{i+1} \circ p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i$.

So, in order to complete the lemma, it suffices to show that $j_{i+1} \circ p_{i+1}|_{\operatorname{Im}((U_i \otimes U_{i+1}) \circ j_i)} = \operatorname{id}_{\operatorname{Im}((U_i \otimes U_{i+1}) \circ j_i)}$. Indeed, any element $v \in \operatorname{Im}((U_i \otimes U_{i+1}) \circ j_i)$ must be of the form

$$v = \sum_{x \otimes y} c_{x \otimes y} \left(\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy \right).$$

In order to show

$$j_{i+1} \circ p_{i+1}|_{\text{Im}((U_i \otimes U_{i+1}) \circ j_i)} = \text{id}|_{\text{Im}((U_i \otimes U_{i+1}) \circ j_i)},$$

it suffices to check it on a basis. That is, we only have to show

$$j_{i+1} \circ p_{i+1} \left(\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy \right) = \frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy,$$

or equivalently

$$j_{i+1} \circ p_{i+1} \left(\sum_{g \in G} gx \otimes \sum_{h \in G} hy \right) = \sum_{g \in G} gx \otimes \sum_{h \in G} hy.$$

However,

$$j_{i+1} \circ p_{i+1} \left(\sum_{g \in G} gx \otimes \sum_{h \in G} hy \right) = j_{i+1} \left(\sum_{g \in G} Gx \otimes \sum_{h \in G} Gy \right)$$
$$= j_{i+1} \left(|G| \cdot Gx \otimes |G| \cdot Gy \right)$$
$$= \frac{1}{|G|} \sum_{g \in G} |G|gx \otimes \frac{1}{|G|} \sum_{h \in G} |G|hy$$
$$= \sum_{g \in G} gx \otimes \sum_{h \in G} hy$$

Lemma 3.0.15. If $\mathcal{F}(U)_i$ is injective, then $\ker(\pi_i)|_{Im((U_i \otimes U_{i+1}) \circ k_i)} = 0$.

Proof. Since $\mathfrak{F}(U)_i$ is injective, $\ker \mathfrak{F}(U)_i = 0$. Therefore, since $\mathfrak{F}(U)_i = \pi_i \circ (U_i \otimes U_{i+1})k_i$, we have $\ker(\pi_i)|_{\operatorname{Im}((U_i \otimes U_{i+1}) \circ k_i)} = 0$.

Lemma 3.0.16. If $\mathcal{F}(U)_i$, are injective, then $\ker \pi_{i+1} \cap Im((U \otimes U) \circ j_i \circ k_i^{G \times G}) = 0$.

Proof. Any element $v \in \text{Im}((U \otimes U) \circ j_i \circ k_i^{G \times G})$ can be written in the form

$$v = \sum_{x \otimes y} c_{x \otimes y} \left(\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy \right).$$

Therefore, if $v \in \ker \pi_{i+1}$, we must have $\pi_{i+1}\left(\frac{1}{|G|}\sum_{g\in G}gx\otimes\frac{1}{|G|}\sum_{h\in G}hy\right)=0$ for all pairs (x,y), such that $x\in Gx,y\in Gy$, because distinct orbits are disjoint. Hence, it suffices to show that we cannot have $\pi_{i+1}\left(\frac{1}{|G|}\sum_{g\in G}gx\otimes\frac{1}{|G|}\sum_{h\in G}hy\right)=0$

We know that if $\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy \in \text{Im}((U \otimes U) \circ j_i \circ k_i^{G \times G})$, then there must exist some $x \in Gx, y \in Gy$ for which $x \lessdot y$. However, this implies

that $x \otimes y \in Supp\left(\pi_{i+1}\left(\frac{1}{|G|}\sum_{g \in G}gx \otimes \frac{1}{|G|}\sum_{h \in G}hy\right)\right)$, and so in particular $\pi_{i+1}\left(\frac{1}{|G|}\sum_{g \in G}gx \otimes \frac{1}{|G|}\sum_{h \in G}hy\right) \neq 0$.

Lemma 3.0.17. We have $\ker \left(\pi_{i+1}^{G \times G} \circ p_{i+1}\right) \cap Im((U \otimes U) \circ j_i \circ k_i^{G \times G}) \subset \ker \pi_{i+1} \cap Im((U \otimes U) \circ j_i \circ k_i^{G \times G})$

Proof. Once, again, starting with an arbitrary $v \in \text{Im}((U \otimes U) \circ j_i \circ k_i^{G \times G})$, we can write

$$v = \sum_{x \otimes y} c_{x \otimes y} \left(\frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy \right).$$

where $x \leqslant y$, for all $x \otimes y$ in the support of the above sum. The aim is to show that $v \in \ker \pi \implies v \in \ker(\pi_i^{G \times G} \circ p_i)$ Since distinct G orbits are disjoint, we can assume $v = \frac{1}{|G|} \sum_{g \in G} gx \otimes \frac{1}{|G|} \sum_{h \in G} hy$. In this case, if $v \in \ker \pi$, this means $x \not\approx y$ for any $x \in Gx$, $y \in Gy$. But this means $Gx \not\approx Gy$, and so $v \in \ker(\pi_i^{G \times G} \circ p_i)$. \square

Corollary 3.0.18. If $\mathcal{F}(U)_i$, are injective, then $\ker(\pi_{i+1}^{G\times G}\circ p_{i+1})\cap Im((U\otimes U)\circ j_i\circ k_i^{G\times G})=0.$

 $\begin{array}{l} \textit{Proof.} \ \, \text{By } 3.0.17, \, \text{we know } \ker(\pi_{i+1}^{G\times G}\circ p_{i+1})\cap \operatorname{Im}((U\otimes U)\circ j_{i}\circ k_{i}^{G\times G})\subset \ker\pi_{i+1}\cap \operatorname{Im}((U\otimes U)\circ j_{i}\circ k_{i}^{G\times G}). \, \text{But by } 3.0.16 \, \text{we know } \ker\pi_{i+1}\cap\operatorname{Im}((U\otimes U)\circ j_{i}\circ k_{i}^{G\times G})=0. \end{array}$ $\text{Therefore, } \ker(\pi_{i+1}^{G\times G}\circ p_{i+1})\cap\operatorname{Im}((U\otimes U)\circ j_{i}\circ k_{i}^{G\times G})=0. \qquad \qquad \Box$

Lemma 3.0.19. If $\mathfrak{F}(U)_i, U_i, U_{i+1}$ are injective, then so is $\pi_{i+1}^{G \times G} \circ p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i \circ k_i^{G \times G}$.

Proof. Since U_i, U_{i+1} are both injective, $U_i \otimes U_{i+1}$ is as well. It is always the case that $j_i, k_i^{G \times G}$ are injective. Therefore, $(U_i \otimes U_{i+1}) \circ j_i \circ k_i^{G \times G}$ is injective. In order to show $\pi_{i+1}^{G \times G} \circ p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i \circ k_i^{G \times G}$ is injective, it suffices to show that $\ker(\pi_{i+1}^{G \times G} \circ p_{i+1}) \cap \operatorname{Im}((U \otimes U) \circ j_i \circ k_i^{G \times G}) = 0$, which is precisely true by 3.0.18 \square

Lemma 3.0.20. We have an equality of linear transformations $\pi_{i+1}^{G \times G} \circ p_{i+1} \circ (U_i \otimes U_{i+1}) \circ j_i \circ k_i^{G \times G} = \mathcal{F}(U)_i$.

Proof. By 3.0.14, we have

$$\pi_{i+1}^{G\times G}\circ p_{i+1}\circ (U_i\otimes U_{i+1})\circ j_i\circ k_i^{G\times G}=\pi_{i+1}^{G\times G}\circ p_{i+1}\circ j_{i+1}\circ (U_i\otimes U_{i+1})^{G\times G}\circ k_i^{G\times G}.$$

Then, by ??, we obtain

$$\pi_{i+1}^{G\times G} \circ p_{i+1} \circ j_{i+1} \circ (U_i \otimes U_{i+1})^{G\times G} \circ k_i^{G\times G} = \pi_{i+1}^{G\times G} \circ (U_i \otimes U_{i+1})^{G\times G} \circ k_i^{G\times G}$$
$$= \mathcal{F}(U)_i^{G\times G}$$

Therefore,

$$\pi_{i+1}^{G\times G}\circ p_{i+1}\circ (U_i\otimes U_{i+1})\circ j_i\circ k_i^{G\times G}=\mathfrak{F}(U)_i^{G\times G}.$$

Theorem 3.0.21. If $\mathfrak{F}(U)_i, U_i, U_{i+1}$ are injective, then $\mathfrak{F}(U)_i^{G \times G}$ is injective.

Proof. By 3.0.19, we know $\pi_{i+1}^{G\times G}\circ p_{i+1}\circ (U_i\otimes U_{i+1})\circ j_i\circ k_i^{G\times G}$ is injective. But by 3.0.20, $\pi_{i+1}^{G\times G}\circ p_{i+1}\circ (U_i\otimes U_{i+1})\circ j_i\circ k_i^{G\times G}=\mathfrak{F}(U)_i$. Therefore, $\mathfrak{F}(U)_i$ is injective.

4. The object $\mathfrak{F}(B_n)$.