Санкт-Петербургский Политехнический Университет Высшая школа прикладной математики и вычислительной физики, ФизМех 01.03.02 Прикладная математика и информатика

Отчет по лабораторной работе № 7
"Решение краевой задачи для ОДУ 2 порядка"
дисциплина "Численные методы"
Метод конечных разностей 2 порядка

Выполнил студент гр. 5030102/20003 Преподаватель

Мелко Т. А. Козлов К.Н.

Содержание

Формулировка задачи и ее формализация	3
Формализация задачи	3
Постановка задачи	3
Алгоритмы методов и условия их применимости	4
Алгоритм метода	4
Тестовый пример для задачи с детальными расчетами	5
Подготовка контрольных тестов и модульная структура программы	7
Контрольные тесты	7
Контрольные тесты	7
Численный анализ решения	8
Графики функций и их ошибки	8
Общие выводы	10

Формулировка задачи и ее формализация

Формализация задачи:

Рассмотрим задачу Коши для линейного дифференциального уравнения второго порядка:

$$\begin{cases} y''(x) + p(x)y'(x) + q(x)y(x) = f(x), & x \in [a, b] \\ y(a) = y_a, \\ y'(a) = y'_a, \end{cases}$$
 (1)

Требуется найти функцию y(x), которая удовлетворяет следующим условиям:

1. y(x) является решением дифференциального уравнения

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x), \quad x \in [a, b].$$

 $2. \ y(x)$ удовлетворяет начальным условиям

$$y(a) = y_a, \quad y'(a) = y'_a.$$

Постановка задачи:

 $y'' + 4xy' + (4x^2 + 3)y = e^{(-x^2)}, (0,1)$ Точное решение: $y = e^{(-x^2)}$ Исследовать: полученное решение с точным, фактическую погрешность от заданной точности, фактическую ошибку от фиксированного шага

Алгоритмы методов и условия их применимости

Алгоритм метода

Разделить интервал [a,b] на N равных частей с шагом $h=\frac{b-a}{N}$ Определить точки сетки $x_i=a+ih$, где $i=0,1,\ldots,N$ Инициализировать массивы A и B размерности $(N+1)\times(N+1)$ и N+1 соответственно

Установить начальные условия: $A[0,0] \leftarrow 1$ $B[0] \leftarrow y_a$ i=1 to N-1 $A[i,i-1] \leftarrow -\frac{1}{h^2} - \frac{p(x_i)}{2h}$ $A[i,i] \leftarrow \frac{2}{h^2} + q(x_i)$ $A[i,i+1] \leftarrow -\frac{1}{h^2} + \frac{p(x_i)}{2h}$ $B[i] \leftarrow f(x_i)$ Учитываем производное начальное условие: $A[N,N] \leftarrow 1$ $A[N,N-1] \leftarrow -2h \cdot y_a' - 1$ $B[N] \leftarrow 0$ Решить систему линейных уравнений методом Томаса для трехдиагональной матрицы $A\mathbf{y} = \mathbf{B}$ для \mathbf{y}

Тестовый пример для задачи с детальными расчетами

$$\begin{cases}
-1,8 & 1,125 & 0 & | -0,815 \\
0,75 & -1,75 & 1,25 & 0,055
\end{cases}
0 & 0,625 & -1,67 & -0,47
\end{cases}$$

$$\lambda_{7} = \frac{-1,125}{-1,8} = 0,625 \quad \beta_{7} = \frac{-0,815}{-1,8} = 0,45$$

$$\lambda_{2} = \frac{-1,25}{-1,75+0,75\cdot0,625} = 0,97 \quad \beta_{2} = \frac{0,05-0,75\cdot0,45}{-7,75+0,75\cdot0,625} = 0,22$$

$$\lambda_{3} = 0 \quad \beta_{3} = \frac{-0,47-0,625\cdot0,22}{-1,67+0,625\cdot0,97} = 0,57$$

$$y_{3} = 0,57$$

$$y_{2} = \lambda_{2} \cdot y_{3} + \beta_{2} = 0,97\cdot0,57 + 0,22 = 0,77$$

$$y_{1} = \lambda_{1} \cdot y_{2} + \beta_{2} = 0,465\cdot0,77 + 0,45 = 0,93$$

$$y_{1}^{*} = 0,93 \quad y_{2}^{*} = 0,77 \quad y_{3}^{*} = 0,57$$

$$c_{22} = [0,0,09;0,008;0,01;0]$$

Подготовка контрольных тестов и модульная структура программы

Контрольные тесты

Для исследования будем использовать метод МКР 2 порядка для функции $y''+4xy'+(4x^2+3)y=e^{(-x^2)},(0,1)$ Точное решение: $y=e^{(-x^2)}$. Для исследования точности будет брать ϵ от 10^-1 до 10^-7 .

Модульная структура программы

double df - возвращает значение исследуемой функции double f - возвращает значение точного решения double** FDM - применяет метод конечных разностей 2 порядка

Численный анализ решения

Графики функций

Рассмотрим график 1 точного и численного решения для двух фиксированных значений шага на отрезке

Рис. 1: Фиксированное значение шага

Рассмотрим график 2 ошибки на отрезке для полученных решений.

Рис. 2: Ошибка для фиксированных значений шагов

Рассмотрим график 3 ошибки по отрезку для точности 0.0001.

Рис. 3: Изменение шага по отрезку

Рассмотрим график 4 зависимости фактической погрешности от заданной точности.

Рис. 4: Фактическая ошибка от точности

Общие выводы

1.	Фактическая ошибка метода Метода конечных разностей 2-го порядка соответствует за-
	данной точности. Это подтверждает высокую точность метода для численного решения
	дифференциальных уравнений.