STAT 305: Chapter 5

Part III

Amin Shirazi

Course page: ashirazist.github.io/stat305.github.io

Continuous Random Variables

Terminology, Use, and Common Distributions

What is a Continuous Random Variable?

What?

Background on Continuous Random Variable

Along with discrete random variables, we have continuous random variables. While discrete random variables take one specific values from a *discrete* (aka countable) set of possible real-number values, continous random variables take values over intervals of real numbers.

def: Continuous random variable

A continuous random variable is a random variable which takes values on a continuous interval of real numbers.

The reason we treat them differently has mainly to do with the differences in how the math behaves: now that we are dealing with interval ranges, we change summations to integrals.

Background Examples of continuous random variable:

What?

Z is the amount of torque required to lossen the next bold (not rounded)

T is the time you will wait for the next bus

C is the outside temprature at 11:49 pm tomorrow

L is the length of the next manufactured metal bar

V is the yield of the next run of process

Terminology and Usage

Probability Density Function

Terminology

pdf

Since we are now taking values over an interval, we can not "add up" probabilities with our probability function anymore. Instead, we need a new function to describe probability:

def: probability density function

A probability density function (pdf) defines the way the probability of a continuous random variable is distributed across the interval of values it can take. Since it represents probability, the probability function must always be non-negative. Regions of higher density have higher probability.

Probability Density Function

Terminology

Validity of a pdf

pdf

Any function that satisfies the following can be a probability density function:

$$1. \int_{-\infty}^{\infty} f(x) dx = 1$$

2.
$$f(x) \geq 0$$
 for all x in $(-\infty, \infty)$

and such that for all $a \leq b$,

$$egin{aligned} P(a \leq X \leq b) &= P(a \leq X < b) = \ P(a < X \leq b) &= P(a < X < b) \ &= \int\limits_a^b f(x) dx. \end{aligned}$$

Probability Density Function

Terms and Use

pdf

With continuous random variables, we use pdfs to get probabilities as follows:

For a continuous random variable X with probability density function f(x),

$$P(a \leq X \leq b) = \int_a^b f(x) dx$$

for any real values a, b such that a < b

Example

Terms and Use

Consider a de-magnetized compass needle mounted at its center so that it can spin freely. It is spun clockwise and when it comes to rest the angle, θ , from the vertical, is measured. Let

pdf

Y = the angle measured after each spin in radians

What values can *Y* take?

What form makes sense for f(y)?

Example

Terms and Use

If this form is adopted, that what must the pdf be?

pdf

Using this pdf, calculate the following probabilities:

•
$$P[Y < \frac{\pi}{2}]$$

Background Example

Terms and Use

•
$$P[rac{\pi}{2} < Y < 2\pi]$$

pdf

•
$$P[Y=\frac{\pi}{6}]$$

Cumulative Density Function (CDF)

Terms and Use

pdf

cdf

We also have the cumulative density function for continuous random variables:

def: Cumulative density function (cdf) For a continous random variable, X, with pdf f(x) the cumulative density function F(x) is defined as the probability that X takes a value less than or equal to x which is to say

$$F(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$$

TRUE FACT: the Fundamental Theorem of Calculus applies here:

$$rac{d}{dx}F(x) = f(x)$$

Cumulative Density Function (CDF)

Terms and Use

Properties of CDF for continuous random variables

As with discrete random variables, F has the following properties:

pdf

• **F** is monotonically increasing (i.e it is never decreasing)

cdf

- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$
 - $\circ~$ This means that $0 \leq F(x) \leq 1$ for **any CDF**
- **F** is *continuous*. (instead of just right continuous in discrete form)

Mean and Variance

of

Continuous Random Variables

Expected Value and Variance

Terms and Use

Expected Value

pdf

cdf

E(X), V(X)

As with discrete random variables, continuous random variables have expected values and variances:

def: Expected Value of Continuous Random Variable

For a continous random variable, X, with pdf f(x) the expected value (also known as the mean) is defined as

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

We often use the symbol μ for the mean of a random variable, since writing E(X) can get confusing when lots of other parenthesis are around. We also sometimes write EX.

Expected Value and Variance

Terms and Use

pdf

cdf

E(X), V(X)

Variance

def: Variance of Continuous Random Variable

For a continous random variable, X, with pdf f(x) and expected value μ , the variance is defined as

$$V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$

which is identical to saying

$$V(X) = E(X^2) - E(X)^2$$

We will sometimes use the symbol σ^2 to refer to the variance and you may see the notation VarX or VX as well.

Expected Value and Variance

Terms and Use

Sdandard Deviation (SD)

We can also use the variance to get the standard deviation of the random variable:

pdf

cdf

E(X), V(X)

def: Standard Deviation of Continuous Random Variable

For a continous random variable, X, with pdf f(x) and expected value μ , the standard deviation is defined as:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x) dx}$$

Expected Value and Variance: Example

Terms and Use

pdf

Library books

Let X denote the amount of time for which a book on 2-hour hold reserve at a college library is checked out by a randomly selected student and suppose its density function is

$$f(x) = \left\{ egin{array}{ll} 0.5x & 0 \leq x \leq 2 \ 0 & ext{otherwise} \end{array}
ight.$$

Calculate $\mathbf{E}X$ and $\mathbf{Var}X$.

An important point about Expected Value and Variance of Random Variables

Terms and Use

pdf

Expected Value and Variance:

For a linear function, g(X)=aX+b, where a and b are constants,

$$\mathrm{E}(aX+b)=a\mathrm{E}(X)+b$$
 $\mathrm{Var}(aX+b)=a^2\mathrm{Var}(X)$

e.g Let $X \sim Binomial(5, 0.2)$. What is the expected value and variance of 4X- 3?

Common Distributions

Uniform Distribution

Common continuous Distributions

Terms and Use

Uniform Distribution

Common Dists

For cases where we only know/believe/assume that a value will be between two numbers but know/believe/assume *nothing* else.

Uniform

Origin: We know a the random variable will take a value inside a certain range, but we don't have any belief that one part of that range is more likely than another part of that range.

Definition: Uniform random variable

The random variable U is a uniform random variable on the interval [a,b] if it's density is constant on [a,b] and the probability it takes a value outside [a,b] is 0. We say that U follows a uniform distribution or $U \sim uniform(a,b)$.

Uniform Distribution

Terms and Use

Common Dists

Uniform

Definition: Uniform pdf

If U is a uniform random variable on [a,b] then the probability density function of U is given by

$$f(u) = \left\{ egin{array}{ll} rac{1}{b-a} & a \leq u \leq b \ 0 & o. \, w. \end{array}
ight.$$

With this, we can find the for any value of a and b, if $U \sim uniform(a,b)$ the mean and variance are:

$$E(U) = \frac{1}{2}(b-a)$$

$$Var(U)=rac{1}{12}(b-a)^2$$

Background Uni

Uniform Distribution

Terms and Use

Common Dists

Uniform

Definition: Uniform cdf

If U is a uniform random variable on $\left[a,b\right]$ then the cumulative density function of U is given by

$$F(u) = \left\{egin{array}{ll} 0 & u < a \ \dfrac{u-a}{b-a} & a \leq u \leq b \ 1 & u > b \end{array}
ight.$$

Uniform Distribution

Terms and Use

A few useful notes:

Common Dists

• The most commonly used uniform random variable is $U \sim Uniform(0,1)$.

Uniform

- Again, this is useful if we want to use a random variable that takes values within an interval, but we don't think it is likely to be in any certain region.
- The values a and b used to determine the range in which f(u) is not 0 are parameters of the distribution.

Common Continuous Distributions

Exponential Distribution

Exponential Distribution

Terms and Use

Common Dists

Uniform

Exponential

Definition: Exponential random variable

An $\operatorname{Exp}(\alpha)$ random variable measures the waiting time until a specific event that has an equal chance of happening at any point in time. (it can be cosidered the continous version of geometric distribution)

Examples:

 Time between your arrival at the bus station and the moment that bus arrives

- Time until the next person walks inside the park's library
- The time (in hours) until a light bulb burns out.

Exponential Distribution

Terms and Use

Common Dists

Uniform

Exponential

Definition: Exponential pdf

If X is an exponential random variable with rate $\frac{1}{\alpha}$ then the probability density function of X is given by

$$f(u) = egin{cases} rac{1}{lpha}e^{-rac{x}{lpha}} & x \geq 0 \ 0 & o.\,w. \end{cases}$$

Exponential Distribution

Terms and Use

Common Dists

Uniform

Exponential

Definition: Exponential CDF

If X is a exponential random variable with rate $1/\alpha$ then the cumulative density function of X is given by

$$F(x) = egin{cases} 1 - exp(-x/lpha) & 0 \leq x \ 0 & x < 0 \end{cases}$$

Mean and Variance of Exponential Distribution

Exponential Distribution

Terms and Use

Common Dists

Uniform

Exponential

Definition: Exponential pdf

If X is an exponential random variable with rate $\frac{1}{\alpha}$ then the probability density function of X is given by

$$f(u) = egin{cases} rac{1}{lpha}e^{-rac{x}{lpha}} & x \geq 0 \ 0 & o.\,w. \end{cases}$$

`From this, we can derive:

$$E(X) = \alpha$$

$$Var(X) = \alpha^2$$

Exponential Distribution

Terms and Use

Example: Library arrivals, cont'd

Common Dists

Recall the example the arrival rate of students at Parks library between 12:00 and 12:10pm early in the week to be about 12.5 students per minute. That translates to a 1/12.5 = .08 minute average waiting time between student arrivals.

Uniform

Consider observing the entrance to Parks library at exactly noon next Tuesday and define the random variable

Exponential

T: the waiting time (min) until the first student passes through the door.

Using $T \sim \mathrm{Exp}(.08)$, what is the probability of waiting more than 10 seconds (1/6 min) for the first arrival?

Exponential Distribution

Terms and Use

Example: Library arrivals, cont'd

T: the waiting time (min) until the first student passes through the door.

Common Dists

What is the probability of waiting less than 5 seconds?

Uniform

Exponential

Common Continous Distibutions Normal Distribution

The Normal distribution

Terms and Use

We have already seen the normal distribution as a "bell shaped" distribution, but we can formalize this.

Common Dists

The **normal** or **Gaussian** (μ, σ^2) distribution is a continuous probability distribution with probability density function (pdf)

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} \qquad ext{for all } x$$

Uniform

for $\sigma > 0$.

We then show that by $X \sim \mathrm{N}(\mu, \sigma^2)$

Exponential

Normal

The Normal distribution

Terms and Use

A normal random variable is (often) a finite average of many repeated, independent, identical trials.

Common Dists

Mean width of the next 50 hexamine pallets

Mean height of 30 students

Rotal % yield of the next 10 runs of a chemical process

Uniform

Exponential

Normal

Normal Distribution's Center and Shape

Terms and Use

Regardless of the values of μ and σ^2 , the normal pdf has the following shape:

Common Dists

Uniform

Exponential

Normal

In other words, the distribution is centered around μ and has an inflection point at $\sigma=\sqrt{\sigma^2}$.

In this way, the value of μ determines the center of our distribution and the value of σ^2 deterimes the spread.

Normal Distribution's Center and Shape

Terms and Use

Here we can see what differences in μ and σ^2 do to the shape of the shape of distribution

Common Dists

Uniform

Exponential

Normal

Mean dna Variance

of

Normal Distribution

The Normal distribution

Terms and Use

It is not obvious, but

$$ullet \int\limits_{-\infty}^{\infty}f(x)dx=\int\limits_{-\infty}^{\infty}rac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}dx=$$

Common Dists

$$ullet$$
 $\mathrm{E}X=\int\limits_{-\infty}^{\infty}xrac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}dx=$

Uniform

Exponential

$$ullet ext{Var} X = \int\limits_{-\infty}^{\infty} (x-\mu)^2 rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} dx =$$

Normal