PAID MEDIA SPEND ANALYSIS

Regression Analysis to predict revenue and understand channel contribution

By Jaime Garvey

MOTIVATION

How can we understand how paid marketing channels are driving revenue to better allocate budget, identify optimal spend levels, and forecast key metrics?

ASSUMPTIONS

Data Context Assumption

Target: Revenue

Features:
Combinations of
Paid Media &
Funnel Stages

Business Priority

Business prioritizing model interpretability over predictive power

FEATURES & TRANSFORMATIONS

What features & transformations were considered?

- 1. Business
 - Aggregating features by platform or funnel
- 2. Control
 - Date features (Month, Quarter, End of Quarter, etc.)
 - Lag Features (dependent variables)

- 1. Weekly Observations (vs. Daily)
- 2. Achieving Stationarity
 - 1. Log transformation
 - 2. Differencing
- 3. Standardization

MVP MODEL METHODOLOGY

Model Steps

- 1. Preprocess Data
 - Log Transformation
 - First Order Differencing
 - Mean Normalization
- 2. Linear Regression (log-log model)
- 3. Time Series Split
- 4. Backwards Feature Elimination
- 5. Convert Data to Original Scale

Output

Decomposition Chart

Composition Chart

RESULTS

Model	Technique	Score	
Linear Regression	Regression	0.0154	
Ridge	Regression	0.0152	
Random Forest	Regression	0.0159	
	Linear Regression Ridge	Linear Regression Regression Ridge Regression	Linear Regression Regression 0.0154 Ridge Regression 0.0152

MVP Model due to interpretability and performance

FUTURE WORK

- 1. Establish **base model** to identify base revenue levels before paid media contributions
- 2. Implement ridge regression to prevent overfitting
- 3. Incorporate **Saturation Effect** (i.e., Adstock transformations)

Thank You

Jaime Garvey

/jaimemgarvey

/jaime-garvey