CHEMFORMULA

v4.12b 2015/09/08

typesetchemicalcompoundsandreactions (CN)

Clemens NIEDERBERGER

http://www.mychemistry.eu/forums/forum/chemformula/

contact@mychemistry.eu

Table of Contents

1.	Intro	oduction	2	7.	Special Input Types	19
2.	Lice	nce and Requirements	2		7.1. Single Token Groups	19 19 20
3∙	Setup		2		7.2. Option Input	21
4.	The Basic Principle		3	8.	Escaped Input	21
					8.1. Text	22
5.	Stoi	chiometric Factors	4		8.2. Math	22
6.	Compounds		7	9.	Arrows	
	6.1.	Adducts	7		9.1. Arrow types	23
	6.2.	Subscripts	8		9.2. Labels	24
	6.3.	Commands	9		9.3. Customization	26
	6.4.	Charges and Other Superscripts	9		9.4. Modify Arrow Types	27
	6.5.	Bonds	11		9.5. Standalone Arrows	29
		6.5.1. Native Bonds	11			
		6.5.2. Flexible Bonds	12	10	Names	29
	6.6.	Customization	14		10.1. Syntax	29
	6.7.	Standalone Formulae	18		10.2. Customization	30
	6.8.	Extend Compound Properties	18		10.3. Standalone Names	31

1. Introduction

11. Format and Font		A.3. Version 4.3	38
		A.4. Version 4.4	38
12. Usage In Math Equations	33	A.5. Version 4.5	38
		A.6. Version 4.6	38
13. Usage with TikZ or pgfplots and ex-		A.7. Version 4.7	39
ternalization	34	A.8. Version 4.8	39
		A.9. Version 4.9	39
14. Lewis Formulae	35	A.10. Version 4.10	39
		A.11. Version 4.11	39
15. Kröger-Vink Notation	36	A.12. Version 4.12	39
A. History Since Version 4.0	38	B. References	39
A.1. Version 4.0	38		3,
A.2. Version 4.2	38	C. Index	40

1. Introduction

Probably every chemist using Late $2_{\mathcal{E}}$ is aware of the great mhchem package by Martin Hensel. There have always been some difficulties intertwining it with the CHEMMACROS package, though. Also, some other minor points in mhchem always bothered me, but they hardly seemed enough for a new package. They weren't even enough for a feature request to the mhchem author. The challenge and the fun of creating a new package and the wish for a highly customizable alternative led to CHEMFORMULA after all.

CHEMFORMULA works very similar to mhchem but is more strict as to how compounds, stoichiometric factors and arrows are input. In the same time CHEMFORMULA offers *many* possibilities to customize the output.

2. Licence and Requirements

Permission is granted to copy, distribute and/or modify this software under the terms of the LATEX Project Public License (LPPL), version 1.3 or later (http://www.latex-project.org/lppl.txt). The software has the status "maintained."

The CHEMFORMULA package needs and thus loads the packages l3kernel [L3Pa], xparse, l3keys2e and xfrac (all three are part of the l3packages bundle [L3Pb]), tikz¹ [Tan13], amstext [MSoo], nicefrac [Rei98] and scrlfile (from the KOMA-Script² bundle [Koh15]).

3. Setup

All of CHEMFORMULA's options belong to CHEMMACROS' module chemformula. This means if you load it via CHEMMACROS or in addition to CHEMMACROS they can be setup with

^{1.} on CTAN as pgf: http://mirrors.ctan.org/graphics/pgf/

^{2.} on CTAN as koma-script: http://mirrors.ctan.org/macros/latex/contrib/koma-script/

```
\chemsetup[chemformula]{\langle options \rangle}
```

Set up options for **CHEMFORMULA** exclusively, or

```
\chemsetup{chemformula/<math>\langle option1 \rangle, chemformula/\langle option2 \rangle}
```

Set up options for CHEMFORMULA together with others of CHEMMACROS' options.

However, if you're using CHEMFORMULA as a standalone package the command \chemsetup is not available. This is why CHEMFORMULA also has its own setup command:

```
\setchemformula{\langle options \rangle}
```

Set up CHEMFORMULA when using it independently from CHEMMACROS.

4. The Basic Principle

CHEMFORMULA offers one main command.

```
\ch[\langle options \rangle] \{\langle input \rangle\}
```

CHEMFORMULA's main command.

The usage will seem very familiar to you if you're familiar with mhchem:

```
H_2O
                                                                   Sb_2O_3
1 \ch{H20} \par
2 \ch{Sb203} \par
                                                                   H^+
3 \ch{H+} \par
                                                                   CrO_4^{\ 2-}
4 \ch{Cr04^2-} \par
                                                                   AgCl<sub>2</sub>
5 \ch{AgCl2-} \par
                                                                   [AgCl_2]
6 \ch{[AgCl2]-} \par
                                                                   Y<sup>99+</sup>
7 \ch{Y^{99}+} \par
                                                                   Y<sup>99+</sup>
8 \ch{Y^{99+}} \par
                                                                   H_{2(aq)}
9 \ch{H2_{(aq)}} \par
                                                                   NO_3^-
10 \ch{NO3-} \par
11 \ch{(NH4)2S} \par
                                                                   (NH_4)_2S
<sub>12</sub> \ch{^{227}_{90}Th+} \par
                                                                   <sup>227</sup><sub>90</sub>Th<sup>+</sup>
<sub>13</sub> $V_{\ch{H20}}$ \par
                                                                   V_{\mathrm{H_2O}} \mathrm{Ce^{IV}}
<sub>14</sub> \ch{Ce^{IV}} \par
<sub>15</sub> \ch{KCr(S04)2 * 12 H20}
                                                                   KCr(SO_4)_2 \cdot 12 H_2O
```

However, there are differences. The most notable one: **CHEMFORMULA** distinguishes between different types of input. These different parts *have* to be separated with blanks:

```
\ch{part1 part2 part3 part4}
```

A blank in the input *never* is a blank in the output. This role of the blank strictly holds and disregarding it can have unexpected results and even lead to errors.

Another notable difference: **CHEMFORMULA** tries to avoid math mode whenever possible:

$$\begin{pmatrix}
1 \\ ch{A + B ->[a] C} \\
2 \\ ce{A + B ->[a] C}
\end{pmatrix}$$

$$A + B \xrightarrow{a} C \\
A + B \xrightarrow{a} C$$

This means that **\ch**{2H20} is recognized as a *single* part, which in this case is recognized as a compound.

This also means, that a part cannot contain a blank since this will automatically divide it into two parts. If you need an extra blank in the output you need to use ~. However, since commands in most cases gobble a space after them a input like \ch{\command ABC} will be treated as a single part. If you want or need to divide them you need to add an empty group: \ch{\command{}} ABC}. The different input types are described in the following sections.

There are some options to customize the output of the \ch command. They can either be applied locally using the optional argument or can be set globally using the setup command. All options of CHEMFORMULA belong to the module chemformula and can be set in different ways:

```
\chemsetup[chemformula]{\langle options\rangle} when loaded via CHEMMACROS
\chemsetup{chemformula/\langle options\rangle} when loaded via CHEMMACROS
\setchemformula{\langle options\rangle} independent from CHEMMACROS
```

5. Stoichiometric Factors

A stoichiometric factor may only contain of numbers and the signs . , _/()

```
1 \ch{2} \par
2 \ch{12}
                                                             2
4 % decimals:
                                                             12
5 \ch{.5} \par
                                                             0.5
6 \ch{5,75}
                                                             5.75
8 % fractions:
                                                             1\frac{1}{2}
9 \ch{3/2} \par
_{10} \ \ ch\{1_1/2\}
                                                             (1/2)
<sub>12</sub> % ``iupac'':
<sub>13</sub> \ch{(1/2)}
```

As you can see if you input decimal numbers a missing leading zero is added. You have to be a little bit careful with the right syntax but I believe it is rather intuitive.

```
_{\scriptscriptstyle 1} this won't work but will result in an error: \ch{1/1\_1}
```

If stoichiometric factors are enclosed with parentheses the fractions are not recognized and missing leading zeros are not added. What's inside the parentheses is typeset as is.

You can find many examples like the following for stoichiometric factors in parentheses in the IUPAC Green Book [Coh+o8]:

```
 (1/5) \, KMn^{VII}O_4 + (8/5) \, HCl \quad = \quad (1/5) \, Mn^{II}Cl_2 + (1/2) \, Cl_2 + (1/5) \, KCl + (4/5) \, H_2O
```

There are a few possibilities to customize the output.

```
decimal-marker = \{\langle marker \rangle\}
```

Default: .

The symbol to indicate the decimal.

```
frac-style = math|xfrac|nicefrac
  Determines how fractions are displayed.
```

Default: math

```
frac-math-cmd = \{\langle command \ sequence \rangle\}
```

Default: \frac

Introduced in version 4.1

Allows you to choose which command is used with frac-style = {math}. This needs to be a command sequence that takes two arguments that are set in math mode.

```
stoich-space = \{\langle skip \rangle\}
```

Default: .1667em plus .0333em minus .0117em

The space that is placed after the stoichiometric factor. A rubber length.

```
stoich-paren-parse = true|false
```

Default: false

If set to true stoichiometric factors enclosed by parentheses also are parsed.

```
stoich-print = \{\langle cs \rangle\}
```

Default: \chstoich

This option allows to redefine the macro that prints the stoichiometric factors. $\langle cs \rangle$ should be a macro that takes one mandatory argument. Please note that using this option will disable CHEMFORMULA's stoichiometric parsing as that is done by the default command \chstoich.

The option $frac-style = \{xfrac\}$ uses the \sfrac command of the xfrac package. The output strongly depends on the font you use.

```
\ch[frac-style=xfrac]{3/2} \ch[frac-style=xfrac]{1_1/2}

3/2 11/2
```

CHEMFORMULA defines the instance chemformula-text-frac which you can redefine to your needs. See the xfrac documentation for further information. The default definition is this:

```
1 \DeclareInstance{xfrac}{chemformula-text-frac}{text}
2 {
3    slash-left-kern = -.15em ,
4    slash-right-kern = -.15em
5 }
```

This document uses the font Linux Libertine O and the following definition:

The option frac-style = {nicefrac} uses the \nicefrac command of the nicefrac package.

```
\ch[frac-style=nicefrac]{3/2} \ch[frac-style=nicefrac]{1_1/2}

3/2 11/2
```

The option stoich-space allows you to customize the space between stoichiometric factor and the group following after it.

6. Compounds

CHEMFORMULA determines compounds as the type that "doesn't fit in anywhere else." This point will become more clear when you know what the other types are.

6.1. Adducts

CHEMFORMULA has two identifiers which will create adducts.

6. Compounds

```
\begin{array}{c} \textbf{\ch{A.B}}\\ A \cdot B\\ \\ \textbf{\ch{A*B}}\\ A \cdot B \end{array}
```

Since numbers in a compound always are treated as subscripts (see section 6.2) you sometimes need to introduce stoichiometric factors for the right output:

6.2. Subscripts

All numbers in a compound are treated as subscripts.

```
_{1} \ch{H2SO4}
```

If you want a letter to be a subscript you can use the math syntax:

```
\left\{ \begin{array}{ll} A_{n}B_{m} \end{array} \right\}
```

The subscript recognizes groups. You can also use math inside it.

```
 \begin{array}{c|c} & \text{$\stackrel{1}{\text{$}}$} &
```

6.3. Commands

Commands are allowed in a compound:

However, if the commands demand numbers as argument, *e. g.*, space commands or **CHEM-MACROS**' \ox command the direct use will fail. This is because the numbers are treated as subscripts *before* the command expands.

```
\ch{A\hspace{2mm}B} will raise an error because \hspace sees something like this: \hspace{$_2$mm}. Actually not at all like it but equally bad\ldots
```

See section 8.1 for a way around this.

6.4. Charges and Other Superscripts

Basics If a compound *ends* with a plus or minus sign it will be treated as charge sign and typeset as superscript. In other places a plus is treated as a triple bond and a dash will be used as a single bond, see section 6.5.

For longer charge groups or other superscripts you can use the math syntax. It recognizes groups and you can use math inside them. Inside these groups neither + nor - are treated as bonds. If a dot . is inside a superscript it is treated as indicator for a radical. A * gives the excited state.

6. Compounds

```
A^{x-}
1 \ch{A^{x-}} \par
                                                                A^{x-}
_2 \ \ch{A^x-} \ \par
                                                                A^{x-}
3 \ch{A^{x}-} \par
                                                                A^{x-}
4 \ch{A^{$x-$}} \par
                                                                RNO<sub>2</sub>-•
5 \ch{RN02^{-.}} \par
                                                                ^{3}H
6 \ch{^31H} \par
7 \ch{^{14}6C} \par
                                                                <sup>14</sup><sub>6</sub>C
8 \ch{^{58}_{26}Fe} \par
                                                                <sup>58</sup><sub>26</sub>Fe
9 \ch{N0^*}
                                                                NO
```

Changed in version 4.5a

Actually a dot . is not always treated as indicator for a radical: if the dot in the superscript is followed by a number it is interpreted as a decimal sign. It is typeset according to the option decimal-marker. This may be a good place to mention that a comma , in a superscript is also typeset according to decimal-marker.

```
\ch{^{22,98}_{11}Na}
\( \ch\{^{22,98}_{11}Na\} \)
\( \ch\{^{22.98}_{11}Na\} \)
\( \setchemformula\{decimal-marker=\{,\}\} \)
\( \ch\{^{22,98}_{11}Na\} \)
\( \shaper \)
\( \ch\{^{22,98}_{11}Na\} \)
\( \shaper \)
\( \ch\{^{22.98}_{11}Na\} \)
```

Ions and ion composites with more than one charge can be typeset quite as easy:

Charge Commands You don't need to use \mch and related commands inside \ch. Indeed, you *shouldn't* use them as they might mess with the subscript and superscript alignment. The CHEMMACROS option circled is obeyed by \ch.

```
\label{eq:chemsetup} $$  \ch{H+ + OH- <=> H2O}$$  $$  H^+ + OH^- \iff H_2O$
```

CHEMFORMULA knows the options circled and circletype also on its own:

There are coupled with CHEMMACROS options, *i. e.*, setting CHEMMACROS' options will also set CHEMFORMULA's equivalents. The other way around the options act independently: setting CHEMFORMULA's options will *not* set CHEMMACROS' options.

```
circled = formal|all|none
```

Default: formal

CHEMFORMULA uses two different kinds of charges which indicate the usage of real (+/-) and formal (\oplus/\ominus) charges. The choice formal distinguishes between them, choice none displays them all without circle, choice all circles all.

```
circletype = chem|math
```

Default: chem

This option switches between two kinds of circled charge symbols: \fplus ⊕ and \$\oplus\$ ⊕.

Behaviour The supercripts behave differently depending on their position in a compound, if there are super- and subscripts following each other directly.

- If a compound *starts* with a sub- or superscript both sub- and superscript are aligned to the *right* else to the *left*.
- If a compound *does not start* with a sub- or superscript and there is both a sub- and a superscript, the superscript is shifted additionally by a length determined from the option charge-hshift = {\langle dim\rangle}, also see page 14f.

The second point follows IUPAC's recommendations:

In writing the formula for a complex ion, spacing for charge number can be added (staggered arrangement), as well as parentheses: SO_4^{2-} , $(SO_4)^{2-}$. The staggered arrangement is now recommended.

**IUPAC Green Book [Coh+o8, p. 51]

6.5. Bonds

6.5.1. Native Bonds

There are three kinds of what I will call "native bonds":

6. Compounds

TABLE 1: Bonds available with \bond.

name	appearance	aliases
single	_	normal, sb
double	=	db
triple	=	tp
dotted		semisingle
deloc	<u></u>	semidouble
tdeloc	=	semitriple
co>	\rightarrow	coordright
<c0< td=""><td>\leftarrow</td><td>coordleft</td></c0<>	\leftarrow	coordleft

6.5.2. Flexible Bonds

Predefined Bonds In addition to the three native bonds there are a few more which can be called by

$\begin{cases} \mathbf{bond}(\begin{cases} bond\ name \end{cases} \end{cases}$

Prints the bond type specified by \(\langle bond name \rangle \).

The predefined bond types are shown in table 1.

 $$$ \ \ch{C\bond{sb}C\bond{tp}C\bond{deloc}C\bond{tdeloc}C\bond{co>}C\bond{co}$

$$C{-}C{=}C{\equiv}C{\equiv}C{\rightarrow}C{\leftarrow}C$$

Own Bonds CHEMFORMULA offers commands to define own bond types:

$\NewChemBond{\langle name \rangle} {\langle code \rangle}$

Introduced in version 4.3

Define the new bond type $\langle name \rangle$. Issue an error if a bond $\langle name \rangle$ already exists.

$\DeclareChemBond\{\langle name \rangle\}\{\langle code \rangle\}$

Define the new bond type $\langle name \rangle$ or overwrite it if it already exists.

$\RenewChemBond\{\langle name \rangle\}\{\langle code \rangle\}$

Redefine the existing bond type $\langle name \rangle$. Issue an error if a bond $\langle name \rangle$ doesn't exist.

$\ProvideChemBond\{\langle name \rangle\}\{\langle code \rangle\}\$

Introduced in version 4.12a

Define the new bond type $\langle name \rangle$ only if it doesn't exist yet.

```
\NewChemBondAlias\{\langle new\ name \rangle\}\{\langle old\ name \rangle\}
```

Introduced in version 4.3

Declare the bond type $\langle new \ name \rangle$ to be an alias of $\langle old \ name \rangle$. Issue an error if a bond $\langle new \ name \rangle$ already exists.

```
\DeclareChemBondAlias\{\langle new\ name \rangle\}\{\langle old\ name \rangle\}
```

Declare the bond type $\langle new \ name \rangle$ to be an alias of $\langle old \ name \rangle$.

```
\ShowChemBond{\langle name \rangle}
```

Print the definition of bond type $\langle name \rangle$.

The usage is best described with an example. So let's see how the single bond and the cobond are defined:

Two points are important: the names of the starting and the ending coordinates, chemformula-bond-start and chemformula-bond-end, and the TikZ style of the bonds chembond.

So, let's say you want to define a special kind of dashed bond. You could do this:

```
1 \usetikzlibrary{decorations.pathreplacing}
2 \makeatletter
3 \NewChemBond{dashed}
4 {
5   \draw[
6    chembond,
7    decorate,
8    decoration={
9     ticks,
10    segment length=\chemformula@bondlength/10,amplitude=1.5pt
11  }]
```

6. Compounds

```
c (chemformula-bond-start) -- (chemformula-bond-end);
(chemformula-bond-e
```

The last example showed you another macro: \chemformula@bondlength. It only exists so you can use it to access the bond length as set with bond-length directly.

6.6. Customization

Introduced in

Introduced in version 4.6

version 4.6

These options allow you to customize the ouptut of the compounds:

```
subscript-vshift = \{\langle dim \rangle\}
                                                                                       Default: 0pt
  Extra vertical shift of the subscripts.
                                                                                     Default: text
subscript-style = text|math
  Style that is used to typeset the subscripts.
charge-hshift = \{\langle dim \rangle\}
                                                                                    Default: .25em
  Shift of superscripts when following a subscript.
charge-vshift = \{\langle dim \rangle\}
                                                                                       Default: 0pt
  Extra vertical shift of the superscripts.
charge-style = text|math
                                                                                     Default: text
  Style that is used to typeset the superscripts.
                                                                                   Default: formal
circled = formal|all|none
  Like CHEMMACROS' package option but local to CHEMFORMULA'S \ch. That is: since CHEM-
  MACROS' macros use CHEMFORMULA's mechanism this is effectively an alias.
circletype = chem|math
                                                                                     Default: chem
  Like CHEMMACROS' package option but local to CHEMFORMULA'S \ch. That is: since CHEM-
  MACROS' macros use CHEMFORMULA's mechanism this is effectively an alias.
adduct-space = \{\langle dim \rangle\}
                                                                                  Default: .1333em
  Space to the left and the right of the adduct point.
bond-length = \{\langle dim \rangle\}
                                                                                  Default: .5833em
  The length of the bonds.
                                                                                    Default: .07em
bond-offset = \{\langle dim \rangle\}
  Space between bond and atoms.
```

6. Compounds

 $bond-style = \{\langle TikZ \rangle\}$ (initially empty)

TikZ options for the bonds.

bond-penalty = $\{\langle num \rangle\}$ Default: 10000

Introduced in version 4.0a

The penalty that is inserted after a bond for (dis-)allowing line breaks.

$$radical-style = {\langle TikZ \rangle}$$
 (initially empty)

TikZ options for the radical point.

radical-radius =
$$\{\langle dim \rangle\}$$
 Default: .2ex

The radius of the radical point.

radical-hshift =
$$\{\langle dim \rangle\}$$
 Default: .15em

Horizontal shift before the radical point is drawn.

radical-vshift =
$$\{\langle dim \rangle\}$$
 Default: .5ex

Vertical shift relative to the current baseline.

radical-space =
$$\{\langle dim \rangle\}$$
 Default: .15em

Horizontal shift after the radical point is drawn.

Maybe you have noticed that charges of certain ions are shifted to the right.

They are shifted if they *follow* a subscript which follows IUPAC recommendations [Coh+o8, p. 51]. The amount of the shift can be set with the option charge-hshift.

```
\label{eq:charge} $$  \  \ch{S04^2-} \ \ch{NH4+} \ \ch{Na+} \ \par \ \ch{S04^2-} \ \ch{NH4+} \ \ch{Na+} \ \par \ \ch{S04^2-} \ \ch{NH4+} \ \ch{Na+} \ \ch{S04^2-} \ \ch{NH4+} \ \ch{Na+} \ \ \ch{S04^2-} \ \ch{NH4+} \ \ch{Na+} \ \ \ch{S04^2-} \ \ch{NH4} \ \ch{Na+} \ \ch{S04^2-} \ \ch{NH4} \ \ch{Na+} \ \ch{Na+} \ \ch{S04^2-} \ \ch{NH4} \ \ch{Na+} \ \ch
```

Despite IUPAC's recommendation CHEMFORMULA does not make fully staggered arrangements in the default setting as I find it hard to read in some cases and ugly in others. Since this is a subjective decision CHEMFORMULA not only let's you define the absolute amount of the

shift but also provides a possibility for full staggered arrangements. For this you have to use charge-hshift = {full}.

```
\label{eq:continuous} $$  \  \ch[charge-hshift=0pt]{C5H11+} \ch[charge-hshift=0pt]{S04^2-} \par $$  \  \ch[C5H11+] \ch[charge-hshift=1ex]{S04^2-} \par $$  \ch[charge-hshift=1ex]{S04^2-} \par $$  \ch[charge-hshift=full]{C5H11+} \ch[charge-hshift=full]{S04^2-} $$  \  \ch[charge-hshift=full]{S04^2-} $$  \  \ch[charge-hshift=full]{S04^2-} $$  \  \ch[charge-hshift=full]{S04^2-} $$  \  \ch[charge-hshift=full]{S04^2-} $$  \ch[charge-hshift=full]{S04^2-} $$  \  \c
```

If you don't want the charges to be typeset in text mode you can switch to math mode:

The option subscript-vshift can be used to adjust the vertical shift of the subscripts:

```
\label{eq:chemsetup} $$ \ \ch{H2S04} \ \ch{Na3P04} \ \par $$ \ \ch{H2S04} \ \ch{Na3P04} \ \par $$ \ \ch{H2S04} \ \chemsetup[\chemformula]{\subscript-vshift=-.2ex} $$ \ \ch{H2S04} \ \ch{Na3P04} $$ \ \ch{H2S04} \ \ch{Na3P04} $$ \ \ch{H2SO_4} \ \na_3PO_4 $$ \ \ch_2SO_4 \ \na_3PO_4 $$ \ \ch_2SO_4 \ \na_3PO_4 $$ \ \ch_2SO_4 \ \na_3PO_4 $$
```

You can choose the mode subscripts are typeset in the same way as it is possible for the

charges:

The option adduct-space sets the space left and right to the adduct symbol ·.

```
\label{eq:change_state} $$ \ \ch{Na3P03*H20} \ \par $$ \ch{Na3P03*H20}$$ $$ \ch{Na3P0}_3 \cdot H_2O $$ \Na_3PO_3 \cdot H_2O $$ \Na_3PO_3 \cdot H_2O $$ \end{tabular}
```

Changing the length of the bonds:

```
1 \chemsetup[chemformula]{bond-length=4mm}%
2 single: \ch{CH3-CH3} \par
3 double: \ch{CH2=CH2} \par
4 triple: \ch{CH+CH}

single: CH<sub>3</sub>—CH<sub>3</sub>
double: CH<sub>2</sub>=CH<sub>2</sub>
triple: CH=CH
```

You can change the distance between bond and atom, too:

```
\ch{H-H + N+N + 0=0} \par
```

$$_2$$
 \ch[bond-offset=1pt]{H-H + N+N + 0=0}

$$H-H + N \equiv N + O = O$$

 $H-H + N \equiv N + O = O$

6.7. Standalone Formulae

Introduced in version 4.0

CHEMFORMULA offers a command that *only accepts* the "compound" input type:

```
\checklimber \ch
```

Typeset single compounds.

6.8. Extend Compound Properties

Introduced in version 4.10

It is possible to extend the range of special input symbols within compounds. In the default setting those are *.-=+' and arabic numerals. Others can be added or the existing ones be changed with one of the following commands:

$\NewChemCompoundProperty{\langle token \rangle}{\langle replacement \rangle}$

 $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is not yet part the compounds' property list. Otherwise an error is issued.

\ProvideChemCompoundProperty{\langle token\rangle} \{\langle replacement\rangle\}

Introduced in version 4.12a

 $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is not yet part the compounds' property list.

$\RenewChemCompoundProperty{\langle token \rangle} {\langle replacement \rangle}$

 $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property is only added if $\langle token \rangle$ is already part the compounds' property list. Otherwise an error is issued.

$\DeclareChemCompoundProperty{\langle token \rangle} {\langle replacement \rangle}$

 $\langle token \rangle$ will be replaced by $\langle replacement \rangle$ within compounds. The property silently overwrites any previously set $\langle replacement \rangle$ for $\langle token \rangle$ if $\langle token \rangle$ is already part the compounds' property list.

$\mbox{RemoveChemCompoundProperty}\{\langle token \rangle\}$

Removes *(token)* from the compounds' property list.

For example you can use

```
1 \NewChemCompoundProperty{\}{\slash}
```

to allow line breaks after slashes in compounds.

7. Special Input Types

There are some "special type" input groups.

7.1. Single Token Groups

The first kind are groups which consist of only one token. They are again divided into two groups, "addition symbols" and "symbols".

```
7.1.1. Addition Symbols
```

```
\ch{ + } +
```

Creates the plus sign between compounds with space around it:

```
ch{2 Na + Cl2} 2Na + Cl_2
```

```
\ch{ - } -
```

Introduced in version 4.3a

Creates the minus sign between compounds with space around it:

```
\ch{M - H} M - H
```

Addition symbols are surrounded with space which can be customized according to options explained in a bit. There is also some penalty prohibiting a line break after them which also can be customized with an option.

You can define/redefine your own addition symbols:

```
\NewChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle}
```

Introduced in version 4.11

Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$.

```
\ProvideChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle}
```

Introduced in version 4.12a

Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$ only no addition symbol with then name $\langle name \rangle$ doesn't exist.

```
\RenewChemAdditionSymbol{\langle name \rangle} {\langle input \rangle} {\langle output \rangle}
```

Introduced in version 4.11

Redefines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$.

Introduced in version 4.11

Introduced in version 4.0a

(Re-)Defines the addition symbol $\langle name \rangle$ with input symbol $\langle input \rangle$ and output $\langle output \rangle$ without checking if the symbol exists or not.

The space left and right of the plus and the minus sign and the signs themselves can be set with the following options:

```
plus-space = \{\langle skip \rangle\}
```

Default: .3em plus .1em minus .1em

A rubber length.

 $plus-penalty = \{\langle num \rangle\}$

Default: 700

The penalty that is inserted after the plus sign for (dis-)allowing line breaks.

```
plus-output-symbol = \{\langle code \rangle\}
```

Default: +

Introduced in The $\langle code \rangle$ that is used for the plus sign. version 4.9

minus-space = $\{\langle skip \rangle\}$

Default: .3em plus .1em minus .1em

Introduced in version 4.9

A rubber length.

minus-penalty = $\{\langle num \rangle\}$

Default: 700

Introduced in version 4.9

The penalty that is inserted after the minus sign for (dis-)allowing line breaks.

minus-output-symbol = $\{\langle code \rangle\}$

Default: \$-\$

Introduced in version 4.9

The $\langle code \rangle$ that is used for the minus sign.

The corresponding three options are defined when $\ensuremath{\mbox{NewChemAdditionSymbol}}$ or one of the variants is used, $\langle name \rangle$ -space and $\langle name \rangle$ -penalty both with the same defaults as above, and $\langle name \rangle$ -output-symbol.

```
\label{eq:continuous} \begin{array}{lll} & & & & A+B \\ & & & \\ & & \\ & & \\ & & \\ \end{array}
```

7.1.2. Symbols

\ch{ v }↓

Sign for precipitate: \ch{BaSO4 v} BaSO₄↓

\ch{ ^ } ↑

Sign for escaping gas 3 : \ch{H2 ^} H_2

You can define/redefine your own symbols:

 $\NewChemSymbol{\langle input\rangle}{\langle output\rangle}$

Introduced in version 4.11

Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$.

 $\ProvideChemSymbol{(input)}{(output)}$

Introduced in version 4.12a

Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$ only if no symbol with input $\langle input \rangle$ exists.

 $\RenewChemSymbol{\langle input\rangle}{\langle output\rangle}$

Introduced in version 4.11

Redefines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$.

 $\DeclareChemSymbol{\langle input\rangle}{\langle output\rangle}$

Introduced in version 4.11

(Re-)Defines the addition symbol with input $\langle input \rangle$ and output $\langle output \rangle$ without checking if the symbol exists or not.

^{3.} Is this the correct English term? Please correct me if it isn't.

7.2. Option Input

Sometimes you might want to apply an option only to a part of a, say, reaction. Of course you have the possibility to use **\ch** several times.

This, however, interrupts the input in your source and *may* mess with the spacing. That's why there is an alternative:

```
\ch{ @{\langle options \rangle} }
```

The options specified this way will be valid *only* until the next compound is set.

8. Escaped Input

In some cases it may be desirable to prevent **CHEMFORMULA** from parsing the input. This can be done in two ways.

8.1. Text

 $\ch{\{} '\langle escaped\ text\rangle' \}$

If you put something between " " or ' ' then the input will be treated as normal text, except that spaces are not allowed and have to be input with ~.

```
\ch{ "\(escaped text\)\" \}
One of two possibilities to \(escape \chince{Chemformula}\)'s parsing.
```

The second of two possibilities to escape CHEMFORMULA's parsing.

In many cases you won't need to escape the input. But when you get into trouble when using a command inside \ch try hiding it.

8.2. Math

If you especially want to input math you just enclose it with \$ \$. This output is different from the escaped text as it is followed by a space. The reasoning behind this is that I assume math will mostly be used to replace stoichiometric factors.

```
\ch{ $\langle escaped math \rangle $ }
```

One of two possibilities to escape CHEMFORMULA's parsing into math mode.

```
\ch\{ (\langle escaped \ math \rangle ) \}
```

The second of two possibilities to escape CHEMFORMULA's parsing into math mode.

```
escaped text: \ch{"$x$" H20} \par escaped text: xH_2O
escaped math: \ch{$x$ H20} \par escaped math: xH_2O
also escaped math: \ch{\(x\) H20} \par also escaped math: xH_2O
\frac{1}{2} \text{ escaped text: } xH_2O
escaped math: xH_2O
also escaped math: xH_2O
\frac{1}{2} \text{ Na} + nCl_2 \longrightarrow 2n \text{ NaCl}
```

The space that is inserted after a math group can be edited:

```
math-space = \{\langle skip \rangle\}
A rubber length.
```

Default: .1667em plus .0333em minus .0117em

9. Arrows

9.1. Arrow types

Arrows are input in the same intuitive way they are with mhchem. There are various different types:

reversed equilibrium arrow

->> --
unbalanced equilibrium arrow to the right

>=<< --
reversed unbalanced equilibrium arrow to the right

<<=> --
unbalanced equilibrium arrow to the left

>>=< --
reversed unbalanced equilibrium arrow to the left

>>=< --
reversed unbalanced equilibrium arrow to the left

<o> --
isolobal arrow

<==> ---

I've seen this one used. I'm not sure it actually has a meaning in chemical equations. If you have some official reference for this arrow type please feel free to contact me.

All these arrows are drawn with TikZ.

9.2. Labels

The arrows take two optional arguments to label them.

```
\rightarrow [\langle above \rangle] [\langle below \rangle]
```

Add text above or under an arrow.

The label text can be parsed seperately from the arrow. The recipe is easy: leave blanks.

If you leave the blanks CHEMFORMULA treats the groups inside the square brackets as seperated input types. The arrow reads its arguments *afterwards*. As you can see the arrows "grow" with the length of the labels. What stays constant is the part that protrudes the labels. As you also can see in the last example square brackets inside the arrow arguments can be produced using \[and \]. They keep their usual meaning outside \ch. These commands were necessary since the usual grouping (*i. e.*, hiding the brackets inside curly brackets) didn't work due to the way \ch read its argument. This is no longer true but meanwhile \[and \] are kept for backwards compatibility.

```
1 \ch{A ->[a] B} \par
2 \ch{A ->[ab] B} \par
3 \ch{A ->[abc] B} \par
4 \ch{A ->[abc~abc] B} \par
5 % needs the `chemfig' package:
6 \setatomsep{15pt}
7 \ch{A ->["\chemfig{-[:30]-[:-30]0H}"] B} \par
8 \ch{A ->[[]] B} vs. \ch{A ->[\[]] B}

A \(\begin{array}{c} \alpha \\ \alpha
```

$$\begin{array}{cccc}
A & \xrightarrow{OH} & B \\
A & \xrightarrow{[]} & B \text{ vs. } A & \xrightarrow{[]} & B
\end{array}$$

9.3. Customization

These are the options which enable you to customize the arrows:

$$arrow-offset = \{\langle dim \rangle\}$$

Default: .75em

This is the length that an arrow protrudes a label on both sides. This means an empty arrow's length is two times arrow-offset.

$$arrow-min-length = \{\langle dim \rangle\}$$

Default: 0pt

Introduced in version 3.6b

The minimal length an error must have unless two times arrow-offset = $\{\langle p \rangle\}$ lus the width of the label is larger.

arrow-yshift =
$$\{\langle dim \rangle\}$$

Default: 0pt

Shifts an arrow up (positive value) or down (negative value).

$$arrow-ratio = \{\langle < factor > \rangle\}$$

Default: .6

The ratio of the arrow lengths of the unbalanced equilibrium. .4 would mean that the length of the shorter arrow is $0.4 \times$ the length of the longer arrow.

compound-sep =
$$\{\langle dim \rangle\}$$

Default: .5em

The space between compounds and the arrows.

$$label-offset = \{\langle dim \rangle\}$$

Default: 2pt

The space between the labels and the arrows.

 $label-style = \{\langle font \ command \rangle\}$

Default: \footnotesize

The relative font size of the labels.

$$arrow-penalty = \{\langle num \rangle\}$$

Default: 0

Introduced in The penalty that is inserted after an arrow for (dis-)allowing line breaks.

version 4.0a

6/70:1

(initially empty)

arrow-style = $\{\langle TikZ \rangle\}$

Additional TikZ keys for formatting the arrows.

Introduced in version 4.1a

The following code shows the effect of the different options on the <=>> arrow:

```
standard: \ch{A <=>>[x][y] B} \par
longer: \ch[arrow-offset=12pt]{A <=>>[x][y] B} \par
higher: \ch[arrow-yshift=2pt]{A <=>>[x][y] B} \par
more balanced: \ch[arrow-ratio=.8]{A <=>>[x][y] B} \par
labels further away: \ch[label-offset=4pt]{A <=>>[x][y] B} \par
larger distance to compounds: \ch[compound-sep=2ex]{A <=>>[x][y] B} \par
smaller labels: \ch[label-style=\tiny]{A <=>[x][y] B}
```

standard:
$$A \xrightarrow{\frac{x}{y}} B$$

longer: $A \xrightarrow{\frac{x}{y}} B$

higher: $A \xrightarrow{\frac{x}{y}} B$

more balanced: $A \xrightarrow{\frac{x}{y}} B$

labels further away: $A \xrightarrow{\frac{x}{y}} B$

larger distance to compounds: $A \xrightarrow{\frac{x}{y}} B$

smaller labels: $A \xrightarrow{\frac{x}{y}} B$

Introduced in version 4.7

If you want to have different arrow tips there is an easy way to use existing arrow tips (as defined by TikZ). CHEMFORMULA uses three different arrow tips: cf, left cf and right cf. If you want them to match those of chemfig [Tel13] for example you could do:

```
1 \pgfkeys{
2  cf /.tip = {CF@full} ,
3  left cf /.tip = {CF@half}
4 }
```

chemfig has no equivalent of right cf. This mechanism relies on TikZ version 3.0.0 and the new arrows.meta library.

9.4. Modify Arrow Types

The arrows are defined with the commands

```
\NewChemArrow{\langle type \rangle} {\langle TikZ \rangle}
```

Define the new arrow type $\langle type \rangle$. Issue an error if an arrow type $\langle type \rangle$ already exists.

```
\ProvideChemArrow{\langle type \rangle}{\langle TikZ \rangle}
```

Introduced in version 4.12a

Define the new arrow type $\langle type \rangle$ only if it doesn't exist, yet.

```
\DeclareChemArrow{\langle type \rangle}{\langle TikZ \rangle}
```

Define the new arrow type $\langle type \rangle$ or overwrite it if it already exists.

```
\RenewChemArrow{\langle type \rangle} {\langle TikZ \rangle}
```

Redefine the arrow type $\langle type \rangle$. Issue an error if an arrow type $\langle type \rangle$ doesn't exist.

Print out the current definition of the arrow type $\langle type \rangle$.

 $\langle type \rangle$ is the sequence of tokens that is replaced with the actual arrow code. For example the basic arrow is defined via

```
1 \NewChemArrow{->}{
2 \draw[chemarrow,-cf] (cf_arrow_start) -- (cf_arrow_end);
3 }
```

In order to define arrows yourself you need to know the basics of TikZ.⁴ The predefined arrows use the arrow tips cf, left cf and right cf. They also all except the net reaction arrow == use the TikZ-style chemarrow that you should use, too, if you want the option arrow-style to have an effect.

There are some predefined coordinates you can and should use. For completeness' sake the arrow tips and the TikZ-style are also listed:

```
(cf_arrow_start)
  The beginning of the arrow.
(cf_arrow_end)
  The end of the arrow.
(cf_arrow_mid)
  The mid of the arrow.
(cf_arrow_mid_start)
  The beginning of the shorter arrow in types like <=>>.
(cf_arrow_mid_end)
  The end of the shorter arrow in types like <=>>.
cf
  A double-sided arrow tip.
left cf
  A left-sided arrow tip.
right cf
  A right-sided arrow tip.
chemarrow
```

CHEMFORMULA's TikZ-style that is applied to the arrows and set with arrow-style

^{4.} Please see the pgfmanual for details.

```
5  \draw[chemarrow,-cf]
6     (cf_arrow_start)
7      .. controls ([yshift=3ex]cf_arrow_mid) ..
8     (cf_arrow_end);
9 }
10 \ch{A .> B} \ch{A .>[a][b] B} \ch{A n> B}

A \rightarrow B A \rightarrow B
```

```
1 \texttt{\ShowChemArrow{->}} \par
2 \RenewChemArrow{->}{\draw[chemarrow,->,red] (cf_arrow_start) -- (cf_arrow_end)
    ;}
3 \texttt{\ShowChemArrow{->}} \par
4 \ch{A -> B}

\draw [chemarrow,-cf](cf_arrow_start)--(cf_arrow_end);
  \draw [chemarrow,->,red] (cf_arrow_start) -- (cf_arrow_end);
  A \rightarrow B
```

9.5. Standalone Arrows

Introduced in version 4.0

CHEMFORMULA offers a command that *only accepts* the "arrow" input type:

```
\charrow{\langle type \rangle} [\langle above \rangle] [\langle below \rangle] Print the arrow type \langle type \rangle.
```

This command is internally used for the arrows, too, when \ch is parsed.

10. Names

10.1. Syntax

CHEMFORMULA has a built-in syntax to write text under a compound. In a way it works very similar to the arrows.

```
\ch{ !(\langle text \rangle) ( \langle formula \rangle ) } Writes \langle text \rangle below \langle formula \rangle.
```

If an exclamation mark is followed by a pair of parentheses **CHEMFORMULA** will parse it this way:

```
\label{eq:chanol} $$ \ \ $^{\cdot}(ethanol)(\ CH2CH2OH\ )$$ $$ $$ $$ CH_2CH_2OH$ $$ $$ ethanol
```

The same what's true for the arrows arguments holds for these arguments: if you leave blanks the different parts will be treated according to their input type before the text is set below the formula.

```
1 \ch{!(water)(H20)} \quad
2 \ch{!( "\textcolor{blue}{water}" )( H20 )} \quad
3 \ch{!( $2n-1$ )( H20 )} \quad
4 \ch{!( H20 )( H20 )} \quad
5 \ch{!(oxonium)( H30+ )}

H2O H<sub>2</sub>O H<sub>2</sub>O H<sub>2</sub>O H<sub>3</sub>O<sup>+</sup>
water water 2n-1 H<sub>2</sub>O oxonium
```

If for some reason you want to insert an exclamation mark *without* it creating a name you only have to make sure it isn't followed by parentheses.

```
1 \ch{H20~(!)} \par H2O (!)
2 \ch{A!{}()} A!()
```

10.2. Customization

CHEMFORMULA provides two options to customize the output of the names:

```
name-format = \{\langle commands \rangle\} Default: \scriptsize\centering
```

The format of the name. This can be arbitrary input.

```
name-width = \langle dim \rangle | auto Default: auto
```

The width of the box where the label is put into. auto will detect the width of the name and set the box to this width.

10.3. Standalone Names

Introduced in version 4.0

CHEMFORMULA offers a command that allows the usage of the "name" syntax in normal text. This is the command that a bang is replaced with in CHEMFORMULA's formulas, actually. Both arguments are mandatory.

```
\chname (\langle text \ 1 \rangle) (\langle text \ 2 \rangle)
```

The command that is useed internally for placing $\langle text \ 1 \rangle$ below of $\langle text \ 2 \rangle$.

11. Format and Font

In the standard setting CHEMFORMULA doesn't make any default changes to the font of the formula output. Let's take a look at a nonsense input which shows all features:

```
\label{eq:command*} $$ \end{array} $$ \end{array}
```

Now we're going to change different aspects of the font a look what happens:

```
\[ \s\frac{1}{2} \text{ \text{tfamily Hallo \sample \normalfont \\ 3 \bfseries Hallo \sample \normalfont \\ 4 \text{ \text{itshape Hallo \sample}} \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \]

Hallo H_2C-C=C-CH=CH^+ + CrO_4^{2^-} = \frac{x}{y} = 2.5 \text{ Cl}^{-\delta} + 3\frac{1}{2} \text{ Na} \cdot OH_{(aq)} + A^n \text{ LATEX } 2\epsilon \text{ Name}
```

As you can see most features adapt to the surrounding font.

If you want to change the default format you need to use this option:

```
format = {\langle anything \rangle} (initially empty)
Adds arbitrary code before the output of \ch.
```

You can also specifically change the fontfamily, fontseries and fontshape of the output.

font-family =
$$\{\langle family \rangle\}$$
 (initially empty) Changes the fontfamily of the output with \fontfamily $\{\langle family \rangle\}$.

```
font-series = {\langle series\rangle} (initially empty)
  Changes the fontseries of the output with \fontseries{\langle series\rangle}.

font-shape = {\langle shape\rangle} (initially empty)
  Changes the fontshape of the output with \fontshape{\langle shape\rangle}.
```

If you're using X¬IATEX or LuaIATEX and have loaded fontspec you have the possibilty to set the font with it:

```
font-spec = {\langle font\rangle} (initially empty)
  Use font \langle font\rangle for CHEMFORMULA's formulas.
  or with options
font-spec = {[\langle options\rangle] \langle font\rangle}
  Use font \langle font\rangle with options \langle options\rangle for CHEMFORMULA's formulas.
```

Since this document is typeset with pdfIATFX the option cannot be demonstrated here.

12. Usage In Math Equations

The \ch command can be used inside math equations. It recognizes \\ and & and passes them on. However, you can't use the optional arguments of \\ inside \ch.

```
1 \begin{align}
2 \ch{
3     H20 & ->[a] H2S04 \\
4     Cl2 & ->[x][y] CH4
5  }
6 \end{align}
7 \begin{align*}
8 \ch{
9     RN02     &<=>[ + e- ] RN02^{-.} \\
10     RN02^{-.} &<=>[ + e- ] RN02^2-
11 }
12 \end{align*}
```

$$H_2O \xrightarrow{a} H_2SO_4$$

$$Cl_2 \xrightarrow{x} CH_4$$
(1)

$$RNO_{2} \xrightarrow{+ e^{-}} RNO_{2}^{- \bullet}$$

$$RNO_{2}^{- \bullet} \xrightarrow{+ e^{-}} RNO_{2}^{2^{-}}$$

13. Usage with TikZ or pgfplots and externalization

Introduced in version 4.1

Since CHEMFORMULA uses TikZ to draw reaction arrows and bonds they would be externalized, too, if you use that facility with TikZ or pgfplots [Feu13]. This may not be desirable since they are very small pictures maybe containing of a single line. This is why CHEMFORMULA's default behaviour is to disable externalization for it's bonds and arrows. This can be turned on and off through the following option:

```
tikz-external-disable = true | false Default: true dis- or enable TikZ' externalization mechanism for CHEMFORMULA's arrows and bonds.
```

If you should be using a formula that contains bonds or arrows inside of a tikzpicture that is externalized you should locally enable it for CHEMFORMULA, too:

```
1 \begin{tikzpicture}
2 \setchemformula{tikz-external-disable=false}
3 \begin{axis}[xlabel={\ch{2 H+ + 2 e- -> H2}}]
```

^{5.} on CTAN as pgfplots: http://mirrors.ctan.org/macros/latex/contrib/pgfplots/

```
\addplot ...;
   \end{axis}
6 \end{tikzpicture}
```

14. Lewis Formulae

Introduced in version 4.2

CHEMFORMULA offers a command to typeset Lewis formulae. This does not mean Lewis structures! Those can be achieved using the chemfig package [Tel13]. CHEMFORMULA provides the possibility to draw electrons as dots and pairs of dots or a line around an atom.

```
\chlewis[\langle options \rangle] \{\langle electron\ spec \rangle\} \{\langle atom \rangle\}
```

Draws electrons around the *(atom)* according to *(electron spec)*.

Electrons are specified by the angle to the horizontal in the couter-clockwise direction. The default appearance is a pair of electrons drawn as a pair of dots. Other specifications can be chosen. The specification follows the pattern $\langle angle \rangle \langle separator \rangle$. $\langle angle \rangle$ is a positiv or negativ integer denoting the angle counter clockwise to the horizontal where the electrons should be drawn. (separator) is either a dot (., single electron), a colon (:, electron pair), a vertical line (|, electron pair), an o (o, empty pair), or a comma (, default spec).

```
\chlewis{\langle angle_1\rangle\langle type_1\rangle\langle angle_2\rangle\langle type_2\rangle}{\langle atom\rangle}
    For example: \chlewis{0,180}{0} gives \ccolored{\cdot}O: and \ccolored{\cdot}chlewis{0.90.180.270.}{C} gives \ccolored{\cdot}C.
```

The appearance can be influenced by a number of options:

lewis-default = .|:|||o|single|pair|pair (dotted)|pair (line)|empty Default: pair Sets the default type that is used when no type is given in *(electron spec)*.

```
lewis-distance = \{\langle dim \rangle\}
                                                                                                               Default: 1ex
```

The distance of two electrons in a pair.

```
lewis-line-length = \{\langle dim \rangle\}
                                                                                                       Default: 1.5ex
```

The length of the line representing an electron pair.

```
lewis-line-width = \{\langle dim \rangle\}
                                                                                                             Default: 1pt
```

The thickness of a line representing an electron pair.

```
lewis-offset = \{\langle dim \rangle\}
                                                                                                               Default: .5ex
```

The distance of the symbols from the atom.

The dots are drawn according to the radical-radius option mentioned in section 6.6.

The basic usage should be more or less self-explaining:

```
| \chlewis{0:90|180.270}{0}
| \quad
| \chlewis{45,135}{0}
| \quad
| \quad
| \chlewis{00}{Na}
```

The next example shows the effect of some of the options:

```
1 \chlewis[lewis-default=.]{23,68,113,158,203,248,293,338}{X}
2 \quad
3 \chlewis{0,90,180,270}{X}
4 \quad
5 \chlewis[lewis-distance=1.25ex]{0,90,180,270}{X}
6 \quad
7 \chlewis[lewis-distance=.75ex,radical-radius=.5pt]{0,90,180,270}{X}
8 \quad
9 \chlewis[
10 radical-radius=.5pt,
11 lewis-default=.
12 ]{23,68,113,158,203,248,293,338}{X}
```

15. Kröger-Vink Notation

Introduced in version 4.5

 $\begin{cases} {\bf CHEMFORMULA} & also supports the Kr\"{o}ger-Vink notation. \end{cases}$

```
kroeger-vink = true|false
```

Default: false

(initially empty)

Enable the Kröger-Vink notation. As most options this can be enabled globally via the setup command or locally as option to **\ch**.

With this option enabled several changes come into effect: ' produces a prime, a x in a superscript produces x, and both a . and a y produce a little filled circle. In the Kröger-Vink notation a prime denotes a negative relative charge, the circle a positive relative charge, and the cross denotes a neutral relative charge.

```
1 \setchemformula{kroeger-vink=true}
2 \ch{Al_{Al}^'}
                                                                        Al'_{Al} Al'_{Al}
3 \ch{Al_{Al}'}\par
                                                                       Ni_{Cu}^{\times}
4 \ch{Ni_{Cu}^{x}}\par
                                                                       \begin{matrix} V_{Cl}^{\bullet} \ V_{Cl}^{\bullet} \\ Ca_{i}^{\bullet \bullet} \end{matrix}
5 \ch{V_{Cl}^.}
6 \ch{V_{Cl}^*}\par
7 \ch{Ca_i^{..}}\par
                                                                       e'
8 \ch{e^'}\par
                                                                        Cl<sub>i</sub> Cl<sub>i</sub>
9 \ch{Cl_i^'}
                                                                        O_i'' O_i''
¹₀ \ch{Cl_i'}\par
11 \ch{0_i^{''}}
<sub>12</sub> \ch{0_i''}
```

There are a number of options for customizations:

The offset of two consecutive positive charge dots

 $kv-neutral-symbol = \{\langle T_E X \ code \rangle\}$

Default: \$\times\$

Symbol for neutral particles.

kv-positive-style = $\{\langle TikZ \rangle\}$

A. History Since Version 4.0

A.1. Version 4.0

Introduced in version 4.0

Since version 4.0, the CHEMFORMULA package can be used independently from CHEMMACROS. This means that if you say

1 \usepackage{chemformula}

then CHEMMACROS will not be loaded. The CHEMMACROS package, however, will load CHEMFORMULA.

A.2. Version 4.2

- New option arrow-style.
- New command \chlewis that allows to add Lewis electrons to an atom, see section 14.

A.3. Version 4.3

- New option stoich-print.
- New command \chstoich.
- The commands \DeclareChem(...) now don't give an error any more if the command already exists. This is more consistent with LATEX's \DeclareRobustCommand. For all those commands a version \NewChem(...) is introduced that *does* give an error if the new command is already defined.

A.4. Version 4.4

• A single dash - in \ch is now treated as a minus sign. This is consistent with the behaviour of a +.

A.5. Version 4.5

- New arrow types >=<, >=< and <==>.
- Internal changes to \ch allow usage of optional arguments of \\ and \label in CHEM-MACROS' reactions environment.

A.6. Version 4.6

• New options circled and circletype. this allows to set the behaviour as described on CHEMMACROS' manual for a specific usage of \ch.

A.7. Version 4.7

• Dependency change: CHEMFORMULA now requires the TikZ library arrows.meta instead of the library arrows. This requires TikZ version 3.0.0.

A.8. Version 4.8

• The CHEMFORMULA package now is no longer part of the CHEMMACROS bundle but is distributed as a package of it's own.

A.g. Version 4.9

- New options minus-space and minus-penalty equivalent to the existing plus-space and plus-penalty
- New options plus-output-symbol and minus-output-symbol for customizing the plus and minus signs in the output.

A.10. Version 4.10

 new macros \NewChemCompoundProperty, \RenewChemCompoundProperty, \DeclareChemCompoundProperty and \RemoveChemCompoundProperty. See section 6.8 for a description.

A.11. Version 4.11

• New macro set \NewChemAdditionSymbol, see section 7.1.1 and new macro set \NewChemSymbol, see section 7.1.2.

A.12. Version 4.12

• Change package requirement: **CHEMFORMULA** now not loads complete amsmath but only amstext.

B. References

- [Coh+o8] E. Richard COHAN et al. "Quantities, Symbols and Units in Physical Chemistry", IUPAC Green Book. 3rd Edition. 2nd Printing. IUPAC & RSC Publishing, Cambridge, 2008.
- [Feu13] Christian Feuersänger. pgfplots. version 1.9, Oct. 4, 2013.

 URL: http://mirror.ctan.org/graphics/pgf/contrib/pgfplots/.
- [Koh15] Markus Kohm. KOMA-Script. version 3.18, July 2, 2015.

 URL: http://mirror.ctan.org/macros/latex/contrib/koma-script/.
- [L3Pa] THE LATEX3 PROJECT TEAM. l3kernel. version SVN 5630, July 15, 2015. URL: http://mirror.ctan.org/macros/latex/contrib/l3kernel/.

[L3Pb] THE LATEX3 PROJECT TEAM. l3packages. version SVN 5530, July 15, 2015. URL: http://mirror.ctan.org/macros/latex/contrib/l3packages/.
 [MS00] Frank MITTELBACH and Rainer Schöff. amstext. version 2.01, June 29, 2000. URL: http://mirror.ctan.org/macros/latex/required/amstext/.
 [Rei98] Axel Reichert. nicefrac. version 0.9b, Aug. 4, 1998. URL: http://mirror.ctan.org/macros/latex/contrib/units/.
 [Tan13] Till Tantau. TikZ/pgf. version 3.0.0, Dec. 13, 2013. URL: http://mirror.ctan.org/graphics/pgf/.
 [Tel13] Christian Tellechea. chemfig. version 1.0h, Nov. 28, 2013. URL: http://mirror.ctan.org/macros/generic/chemfig/.

C. Index

Symbols	С	font-series33
-/> (arrow type) 23	\ce4	font-shape33
-> (arrow type) 23	\ch 3-12, 14-26, 29-34, 36 ff.	font-spec33
<- (arrow type) 23	charge-hshift11, 14 ff.	fontspec (package) 33
<-> (arrow type) 23	charge-style14	format 32
- (arrow type) 23</td <td>charge-vshift 14</td> <td>\fplus 11</td>	charge-vshift 14	\fplus 11
<=> (arrow type)	\charrow29	frac-math-cmd 6
<==> (arrow type) 24, 38	\chcpd	frac-style5ff.
<=> (arrow type) 23	chemfig (package)27, 35	
<=>> (arrow type) 24	chemformula2, 4	Н
<> (arrow type) 23	$\verb \chemformula@bondlength13 f.$	HENSEL, Martin 2
<0> (arrow type) 24	\chemsetup3 f., 10, 14-17, 23, 32 f.	
== (arrow type) 23	\chlewis	K
>=< (arrow type) 24, 38	\chname	Конм, Markus 2
>=<< (arrow type) 24, 38	\chstoich6, 38	KOMA-Script (bundle) 2
>>=< (arrow type) 24, 38	circled 10 f., 14, 38	kroeger-vink37
	circletype10 f., 14, 38	kv-neutral-symbol37
A	Сонан, E. Richard 5, 11, 15	kv-positive-hshift37
adduct-space 14, 17	compound-sep 26	kv-positive-offset37
amsmath (package)39	CTAN	kv-positive-radius37
amstext (package) 2, 39		kv-positive-style37
arrow-min-length26	D	kv-positive-vshift37
arrow-offset	decimal-marker5, 10	_
arrow-penalty26	\DeclareChemAdditionSymbol19	L
arrow-ratio26	\DeclareChemArrow27	l3kernel (bundle) 2
arrow-style 26, 28, 38	\DeclareChemBond 12	l3keys2e (package) 2
arrow-yshift26	\DeclareChemBondAlias13	lapackages (bundle) 2
_	\DeclareChemCompoundProperty	label-offset 26
В	18, 39	label-style26
\bond 12 ff., 17 f.	\DeclareChemSymbol20	lewis-default 35
bond-length14		lewis-distance 35
bond-offset14	F	lewis-line-length35
bond-penalty 15	FEUERSÄNGER, Christian 34	lewis-line-width35
bond-style15	font-family32	lewis-offset 35

INDEX

M math-space	plus-output-symbol19, 39 plus-penalty19, 39 plus-space19, 39 \ProvideChemAdditionSymbol19	\RenewChemCompoundProperty18, 39 \RenewChemSymbol20
\mch	\ProvideChemArrow27 \ProvideChemBond13 \ProvideChemCompoundProperty 18 \ProvideChemSymbol20 Q	S SCHÖPF, Rainer 2 scrlfile (package) 2 \setchemformula 3 f., 10, 34, 37 \ShowChemArrow 27, 29 \ShowChemBond 13
N name-format	"Quantities, Symbols and Units in Physical Chemistry", IUPAC Green Book . 5, 11, 15	stoich-paren-parse
\NewChemBond 12 f. \NewChemBondAlias 13 \NewChemCompoundProperty 18, 39 \NewChemSymbol 20, 39 nicefrac (package) 2, 7	radical-hshift 15 radical-radius 15, 35 radical-space 15 radical-style 15 radical-vshift 15	T TANTAU, Till
O \\0x	REICHERT, Axel	tikz-external-disable 34 TikZ/pgf (package) 2 X xfrac (package) 2, 6
pgfplots (package)34	\RenewChemBond13	xparse (package) 2