Lista 6

#### Kamil Matuszewski

# 13 kwietnia 2016

| 1        | 2        | 3 | 4        | 5 | 6        | 7 | 8        | 9 |
|----------|----------|---|----------|---|----------|---|----------|---|
| <b>✓</b> | <b>✓</b> | ~ | <b>~</b> | ~ | <b>~</b> | ~ | <b>\</b> | < |

#### Zadanie 1

Mamy

$$D_n = \begin{vmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & 1 & & & & \\ 1 & & 1 & & & \\ \vdots & & & \ddots & & \\ 1 & & & & 1 \end{vmatrix}$$

Pokaż, że  $det(D_n) = n$ .

Dowód. Okej. Dla n=1, n=2 trywialne. Załóżmy, że dla n-1 jest ok, sprawdzę dla n. Aby to zrobić skorzystam z Laprasa.

Rozwińmy to względem ostatniego wiersza. Patrząc na kolejne wyznaczniki macierzy  $M_{ni}$  zobaczymy, że mnożymy je przez zera we wszystkich miejscach poza pierwszym i ostatnim elementem. Dla ułatwienia, najpierw pomińmy element pierwszy - do niego wrócimy za chwilę. Co do ostatniego, jeśli skreślimy ostatni wiersz i ostatnią kolumnę, otrzymamy  $D_{n-1}$ . Z założenia indukcyjnego, jej wyznacznik to n-1.

Teraz, niech  $C_n$  będzie macierzą  $D_n$  bez pierwszej kolumny i ostatniego wiersza. Z Laprasa i z obserwacji powyżej, wyznacznik  $D_n$  to  $znak \cdot det(C_n) + n - 1$ , gdzie znak to  $(-1)^{n+1}$ .

$$C_n = \begin{vmatrix} -1 & -1 & \dots & -1 \\ 1 & & & & \\ & \ddots & & & \\ & & 1 & 0 \end{vmatrix}$$

Z pomocą eliminacji gaussa możemy ją łatwo sprowadzić do postaci

$$C_n = \begin{vmatrix} 0 & \dots & 0 & -1 \\ 1 & & & & \\ & \ddots & & & \\ & & 1 & 0 \end{vmatrix}$$

Znów zróbmy Laprasa tym razem względem pierwszego wiersza. Wyznaczniki  $M_{1i}$  będą mnożone przez 0 poza ostatnim elementem. Wyznacznik macierzy z usuniętą pierwszą i ostatnią kolumną to 1. Mnożymy to przez -1 i znak. Znak to  $(-1)^{n-1+1}$ . Czyli wyznacznik  $C_n$  to  $(-1)^{n+1}$ . Wracając do wyznacznika  $D_n$ , jak już wcześniej wspomniałem, wynosi on  $(-1)^{n+1} \cdot det(C_n) + n - 1 = (-1)^{n+1} \cdot (-1)^{n+1} + n - 1 = (-1)^{2(n+1)} + n - 1$ . Można łatwo zauważyć, że pierwszy składnik tej sumy to 1, niezależnie od n. Stąd otrzymujemy, że  $det(D_n) = 1 + n - 1 = n$ 

1

### UWAGA! ROZWIĄZANIE INNE (SZYBSZE):

Dowód. Weźmy nasze  $D_n$ . Zauważmy, że jeśli dodamy do pierwszego wiersza wszystkie kolejne dostaniemy:

$$D_n = \begin{vmatrix} n & 0 & 0 & \dots & 0 \\ 1 & 1 & & & \\ 1 & & 1 & & \\ \vdots & & & \ddots & \\ 1 & & & & 1 \end{vmatrix}$$

Czyli macierz dolnoprzekatniową. Wyznacznik tej macierzy to iloczyn liczb na przekatnej:

$$n \cdot 1 \cdot 1 \cdot \dots \cdot 1 = n$$

#### Zadanie 2

Pokaż, że jeśli X ma rozkład  $Poisson(\lambda)$  to zachodzi  $E(X^n) = \lambda E[(X+1)^{n-1}]$ . Za pomocą tego związku policz  $E[X^3]$ .

 $Dow \acute{o}d.$ 

$$E(X^n) = \sum_{x=0}^{\infty} x^n \frac{\lambda^x e^{-\lambda}}{x!} \stackrel{*}{=} \sum_{x=1}^{\infty} x^n \frac{\lambda^x e^{-\lambda}}{x!} = \lambda \sum_{x=1}^{\infty} x^{n-1} \frac{\lambda^{x-1} e^{-\lambda}}{(x-1)!} = \lambda \sum_{x=0}^{\infty} (x+1)^{n-1} \frac{\lambda^x e^{-\lambda}}{x!} = \lambda E[(X+1)^{n-1}]$$

$$* - \text{Zauważmy, że dla } x = 0 \text{ wyraz to } 0.$$

Policzenie  $E[X^3]$  zostawiam czytelnikowi jako ćwiczenie. Tu trzeba skorzystać z jakichś prostych własności, które wykorzystywaliśmy i dowodziliśmy na poprzednich listach.

## Zadanie 3

Zmienna X ma rozkład Poissona. Jak wygląda E(X!)?

$$E(X!) = \sum_{x=0}^{\infty} x! \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=0}^{\infty} \lambda^x e^{-\lambda} = e^{-\lambda} \frac{1}{1-\lambda}$$

#### Zadanie 4

Oblicz

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 + y^2)} \ dx \ dy$$

Przenieśmy się na współrzędne biegunowe.



Widzimy, że w takim wypadku  $x = r\cos\theta$  oraz  $y = r\sin\theta$  Widzimy też, że  $\theta \in [0^{\circ}, 360^{\circ}]$  (lub inaczej  $[0, 2\pi]$ ), a  $r \in [0, \infty)$ . Teraz, wystarczy jakobian przekształcenia:

$$\begin{vmatrix} \sin \theta & r \cos \theta \\ -\cos \theta & r \sin \theta \end{vmatrix} = r$$

No i liczymy całeczkę:

$$\int_0^\infty \int_0^{2\pi} r e^{-\frac{1}{2}r^2} \ d\theta \ dr = \int_0^\infty r e^{-\frac{1}{2}r^2} \int_0^{2\pi} 1 \ d\theta \ dr = 2\pi \cdot \left[ -e^{-r^2/2} \right]_0^\infty = 2\pi$$

## Zadanie 5

Dane są niezależne zmienne losowe X, Y o rozkładzie U[0,1]. Niech x, y - wylosowane wartości zmiennych X, Y. Innymi słowy mamy odcinek [0,1] i losujemy z niego x i y, dzieląc go na trzy części. Musimy sprawdzić, jakie jest prawdopodobieństwo, że z tych trzech punktów utworzymy trójkąt.

Okej. To jest w sumie zadanie podobne do jakiegoś zadania z LO, tylko trochę bardziej skomplikowane (troszeczkę). Na początku, wiemy, że losowanie 2 punktów na prostej [0,1] jest izomorficzne z losowaniem jednego punktu w przestrzeni [0,1]x[0,1]. To nam trochę ułatwi. Teraz, możemy zmniejszyć przestrzeń zdarzeń o połowę - pamiętając o tym i ostateczny wynik pomnożyć przez 2 - zakładając, że  $x \leq y$ . W naszej przestrzeni otrzymaliśmy trójkąt. Teraz, zastanówmy się jakie warunki muszą spełniać proste stworzone przez punkty, by dały się one złożyć w trójkąt. Trójkąt da się utworzyć, jeśli najdłuższy odcinek jest krótszy niż suma dwóch pozostałych. Nasz odcinek ma długość 1, więc najdłuższy odcinek musi być mniejszy od  $\frac{1}{2}$ . Mamy zatem równania:  $x < \frac{1}{2}$  - bo długość [0,x] musi być mniejsza od  $\frac{1}{2}$ , jako, że jest to pierwszy punkt na prostej. Podobnie z y, tyko  $y > \frac{1}{2}$ , bo odcinek [y,1] musi być krótszy niż  $\frac{1}{2}$ . Ostatni warunek, to odległość pomiędzy x a y musi być mniejsza od  $\frac{1}{2}$ , stąd  $y - x < \frac{1}{2} \Rightarrow y < x + \frac{1}{2}$ . Rysujemy więc trzy proste.  $x = \frac{1}{2}$ , i zaznaczamy pole na lewo od niej  $(x < \frac{1}{2})$ ,  $y = \frac{1}{2}$  i zazna-

Rysujemy więc trzy proste.  $x=\frac{1}{2}$ , i zaznaczamy pole na lewo od niej  $(x<\frac{1}{2}),\ y=\frac{1}{2}$  i zaznaczamy obszar na górze od niej  $(y>\frac{1}{2})$ , i prostą  $y=\frac{1}{2}+x$ , i zaznaczamy pole na dół od niej  $(y<\frac{1}{2}+x)$ . Część wspólna tych obszarów wyznacza nam trójkąt. Całka po tym trójkącie da nam połowę prawdopodobieństwa z zadania (pamiętamy że podzieliliśmy przestrzeń zdarzeń na pół). Obrazek poniżej obrazuje (hehe) co zrobiliśmy:



Czerwone pole to to co mamy policzyć. Ustalmy sobie x.  $0 \le x \le \frac{1}{2}$ . Z prostej  $y = x + \frac{1}{2}$ , widać, że  $\frac{1}{2} \le y \le x + \frac{1}{2}$ . Mamy już wszystko. Obliczmy całkę:

$$\int_0^{\frac{1}{2}} \int_{\frac{1}{2}}^{x+\frac{1}{2}} 1 \ dy \ dx = \frac{1}{8}$$

Pamiętamy, że wynik trzeba wymnożyć przez 2, więc wynik to  $\frac{1}{4}$ .

#### Zadanie 6

Zadanie 5 dla gęstości f(t) = 2t.

To jest zadanie 5, tylko inaczej liczymy ostatnią całkę. Zmienne są niezależne, f(x) = 2x, f(y) = 2y, f(x,y) = 4xy.

Obliczmy całkę:

$$\int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{x+\frac{1}{2}} 4xy \ dy \ dx = \int_{0}^{\frac{1}{2}} 2x^{2}(x+1)dx = \left[2\left(\frac{x^{4}}{4} + \frac{x^{3}}{3}\right)\right]_{0}^{\frac{1}{2}} = 2\left(\frac{1}{64} + \frac{1}{24}\right) = \frac{1}{32} + \frac{1}{12} = \frac{11}{96}$$

Pamiętamy, że wynik trzeba wymnożyć przez 2, więc wynik to  $\frac{11}{48}$ .

### Zadanie 7

Mamy  $f(x,y) = \frac{1}{\pi}$ , dla  $0 < x^2 + y^2 < 1$ . Oblicz gęstości brzegowe X i Y.

Po pierwsze zauważmy, że warunek  $x^2+y^2>0$  gwarantuje nam jedynie, że x i y są niezerowe. Poza tym mamy  $x^2+y^2=1$  i mamy policzyć pole pod nią. Widać, że jest to równanie okręgu o promieniu 1. Wiedząc to możemy bez problemu ustalić jakie mamy granice całkowania. Dla ustalonego x, mamy  $x^2+y^2<1\Rightarrow y^2<1-x^2\Rightarrow -\sqrt{1-x^2}< y<\sqrt{1-x^2}$ . Dla ustalonego y - analogicznie.

$$f(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2\sqrt{1-x^2}}{\pi}$$

$$f(y) = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx = \frac{2\sqrt{1-y^2}}{\pi}$$

#### Zadanie 8

Pokaż, że zmienne z zadania 7 są niezależne. Pokaż, że współczynnik korelacji wynosi 0.

To, że zmienne nie są niezależne widać od razu. Teraz, pokażę, że współczynnik korelacji wynosi 0.

Dowód.

$$p = \frac{\mu_{11}}{\sqrt{m_{20}m_{02}}} - wspoczynnik korelacji$$

Gdzie:

$$\mu_{11} = E[(X - EX)(Y - EY)] - moment centralny$$

$$m_{20} = E(X^2) - moment zwyky$$

$$m_{02} = E(Y^2) - moment zwyky$$

Okej. No to liczymy. Znów ustalamy sobie np. x. x przebiega od -1 do 1 (bo cały czas mówimy o okręgu o promieniu 1)

$$E(X) = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{x}{\pi} \, dy \, dx = \int_{-1}^{1} \frac{2x\sqrt{1-x^2}}{\pi} dx = 0$$

$$E(Y) = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{y}{\pi} \, dy \, dx = \int_{-1}^{1} 0 dx = 0$$

$$E(X^2) = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{x^2}{\pi} \, dy \, dx = \int_{-1}^{1} \frac{2x^2\sqrt{1-x^2}}{\pi} dx = \frac{1}{4}$$

$$E(Y^2) = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{y^2}{\pi} \, dy \, dx = \int_{-1}^{1} \frac{2(1-x^2)^{\frac{3}{2}}}{3\pi} dx = \frac{1}{4}$$

$$E[(X-0)(Y-0)] = E(XY) = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{xy}{\pi} \, dy \, dx = \int_{-1}^{1} 0 dx = 0$$

$$p = \frac{0}{\sqrt{\frac{1}{8}}} = 0$$

## Zadanie 9

Niech  $X_1 = Y_1 \cos Y_2$ ,  $X_2 = Y_1 \sin Y_2$ ,  $0 < Y_1 < 1$ ,  $0 \le Y_2 \le 2\pi$ . Znajdź gęstość  $g(y_1, y_2)$  zmiennej  $(Y_1, Y_2)$ . Sprawdź czy  $Y_1$  i  $Y_2$  są niezależne.

To się robi jakoś tak, że oblicza się jakobian, mnoży się przez gęstość. WKa ułatwił zadanie bo mamy już podane granice całkowania, więc obliczenie zależności zmiennych robi się trywialne.

Coś w stylu:

Jakobian:

$$|J| = \begin{vmatrix} \cos Y_2 & Y_1 \sin Y_2 \\ \sin Y_2 & -Y_1 \cos Y_2 \end{vmatrix} = |-Y_1 \cos^2 Y_2 - Y_1 \sin^2 Y_2| = |-Y_1| = Y_1$$

Gęstość:

$$f(y_1, y_2) = f(x_1, x_2) \cdot |J| = \frac{y_1}{\pi}$$

Gęstość  $y_1$ :

$$f(y_1) = \int_0^{2\pi} \frac{y_1}{p_i} dy_2 = \left[\frac{y_1 y_2}{\pi}\right]_{y_2=0}^{2\pi} = 2y_1$$

Gęstość  $y_2$ :

$$f(y_2) = \int_0^1 \frac{y_1}{pi} \ dy_1 = \frac{1}{2pi}$$

Niezależność:

$$f(y_1, y_2) = \frac{y_1}{pi} = \frac{1}{2pi} \cdot 2y_1 = f(y_1) \cdot f(y_2)$$

Wychodzi, że są niezależne. Z dokładnością do poprawności metody (na 95% poprawna).