

RESEARCH INTEREST

- Optimization: Federated Learning, Distributed Optimization
- . Machine Learning and Deep Learning: LLM inference, Learning Theory

EDUCATION

Peking University

Beijing, China

B.A. in Mathematics, School of Mathematical Sciences

Sep. 2022-Jul. 2026 (Expected)

- Mathematics Courses: Mathematical Analysis, Advanced Algebra, Complex Analysis, Probability Theory, Mathematical Statistics, Stochastic Processes, Basic Numerical Method, Basic Optimization Method.
- Computer Science Courses: Basic Artificial Intelligence and Deep Learning, Parallel and Distributed Computing, Introduction to Computer Vision, Introduction to Multi-model.
- Honors and Awards: Applied Mathematics Elite Program (The program accepted only 15 people this year)

Research Experience

Convergence and Speedup Analysis of Distributed Optimization Algorithms

Peking University

Nov. 2023 - Present

o Advisor: Kun Yuan

Undergraduate Research Assistant

- \circ Project 1: Analysis of Push-Pull Algorithm
 - * Currently finalizing a paper for submission to SIOPT.
 - * Conducted research on the Push-Pull Algorithm, focusing on convergence and linear speedup properties in non-convex and stochastic settings on arbitrary topology.
 - * First to prove convergence and linear speedup properties of the Push-Pull Algorithm under non-convex and stochastic settings on arbitrary topology.
 - st Conducted numerical experiments to validate theoretical results.
- o Project 2: Analysis on Decentralized Optimization over Row-stochastic Networks
 - * A paper submitted to ICML2025
 - * Introduced effective metrics to capture the influence of row-stochastic mixing matrices
 - * Established the first convergence lower bound for decentralized learning over row-stochastic networks
 - * Incorporated a multi-step gossip (MG) protocol, to attain the lower bound, achieving optimal complexity.
 - * Proposed a novel analysis framework demonstrating that PULL-DIAG-GT achieves linear speedup, which is the first such result for row-stochastic decentralized optimization.
 - * Conducted numerical experiments to validate theoretical results.

Online Scheduling on LLM Inference

Massachusetts Institute of Technology

 $Under graduate\ Research\ Assistant$

Oct. 2024 - Present

- o Advisor: David Simchi-Levi
- o Project 1: Online Batching Algorithm on LLM Inference
 - * Currently finalizing a paper for submission to Operations Research.
 - * Formulated the LLM inference as a multi-stage online scheduling task with stochastic queueable requests.
 - * Proposed a novel online batching algorithm for LLM inference.
 - * Proved that the algorithm achieves near-optimal throughput while controlling latency and Time to First Token (TTFT).
 - * Conducted numerical experiments on synthetic and real-world datasets with Llama-7B on A100 GPU to validate theoretical results.