## Stock Picking & Structural Breaks

Jeppe Sndergaard Johansen (pcv439)

August 21, 2019

- Model
- 2 Data
- Fitting the model
- 4 Algorithms
- 6 Analysis

#### Introduction & Overview

This paper investigates strategies for stock picking, where stock picking is assumed to be at any period only having a single stock, in an environment of structural breaks. The investigation follows the structure of:

- Model outline.
- A description of data.
- Model identification and fitting the parameters. A data set is simulated using these results.
- An ensemble of algorithms are discussed, and the best performing algorithm is found using the simulated data set.
- **5** The best performing algorithm is applied on the real data set, and compared to a set of benchmarks.

#### DGP in classic CAPM

- Returns are assumed to follow a DGP with constant covariance matrix and expected returns
- In this application i've restricted the assumption s.t. the returns are normally distributed.

$$\mathbf{R}^{(t)} \sim \mathcal{N}(\mu, \Omega)$$
 (1)

## DGP under assumptions of structural breaks

- I modify the assumption, and say at any point in time a structural break can occur.
- A structural break implies a new covariance matrix and vector of expected returns are drawn

$$b^{(t)} = bern(p) \tag{2}$$

$$\mu^{(t)} \sim d_{\mu} \qquad \Omega^{(t)} \sim d_{\Omega}, \qquad \text{if } b = 1$$
 (3)

$$\mu^{(t)} = \mu^{(t-1)}$$
  $\Omega^{(t)} = \Omega^{(t-1)}$ , if  $b = 0$  (4)

$$\mathbf{R}^{(t)} \sim \mathcal{N}(\mu^{(t)}, \Omega^{(t)}) \tag{5}$$

#### Data

- The data consists of 11 stocks for approximately 30 years ( $\approx$  7000 observations).
- The data is acquired through a public API provided by Quandle.
- The individual stocks represents a wide variety of companies from different sectors.
- To get stationarity in the data, the data is transformed by:

$$r_i^{(t)} = \frac{a_i^{(t)}}{a_i^{(t-1)}} - 1 \tag{6}$$

• The risk free asset is assumed to be of 2% annually throughout the paper.

#### Historical traces



## Summary statistics of Stocks

|      | AAPL    | GE      | BA      | WMT     | KO      | JPM     | CVX     | CAH     | XOM     | IBM     | INTC    |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| mean | 0.0011  | 0.0004  | 0.0006  | 0.0006  | 0.0005  | 0.0008  | 0.0005  | 0.0007  | 0.0005  | 0.0005  | 0.0009  |
| std  | 0.0282  | 0.0175  | 0.0187  | 0.0165  | 0.0141  | 0.0241  | 0.0153  | 0.0188  | 0.0145  | 0.0174  | 0.0240  |
| min  | -0.5187 | -0.1279 | -0.1763 | -0.1018 | -0.1047 | -0.2073 | -0.1249 | -0.2454 | -0.1395 | -0.1554 | -0.2202 |
| 25%  | -0.0128 | -0.0079 | -0.0092 | -0.0079 | -0.0064 | -0.0101 | -0.0078 | -0.0084 | -0.0072 | -0.0079 | -0.0115 |
| 50%  | 0.0001  | 0.0000  | 0.0001  | 0.0000  | 0.0000  | 0.0000  | 0.0002  | 0.0000  | 0.0000  | 0.0001  | 0.0004  |
| 75%  | 0.0144  | 0.0087  | 0.0104  | 0.0087  | 0.0072  | 0.0107  | 0.0089  | 0.0097  | 0.0082  | 0.0087  | 0.0130  |
| max  | 0.3322  | 0.1970  | 0.1546  | 0.1107  | 0.1388  | 0.2510  | 0.2085  | 0.2039  | 0.1719  | 0.1316  | 0.2012  |

# Structural Breaks (Visual inspection)



### Identification strategy

- Sampling from the structural model, requires the distributions to be specified, and the parameters of the distributions to be estimated.
- The  $d_{\mu}$  is assumed to be normal, and  $d_{\Omega}$  is found by a transformation of variances and correlations.
- the variances is assumed to be exponentially distributed, and the correlations is assumed to be normally distributed.
- When the model is identified,  $11 \times 2.000.000$  observations are simulated. This data set can be used to training and tuning different algorithms on.

## Distribution of Returns, $d_{\mu}$



# Distribution of Variances, $\sigma_i^2$

Needing to sample the covariance matrix, I find the distribution og variances, and the correlation matrix.



## Distribution of individual correlations, $\rho_{i,j}$



## Simulated Covariances vs. Empirical Covariances, $\sigma_{i,j}$



### Overview of 3 algorithms

- **LSTM**: Neural network based algorithm used for patern representation in time series problems. Used in self driving cars, and state of the art chess computers.
- Naive Rolling Sharpe Use the rolling Sharpe ratios on the different stock to pich the stock with highest sharpe ratio
- **Rolling Sharpe** An extension of the algorithm above, but with the capability to forget its distant past.

### Strategy for algorithm selection

- The three algorithms are tested on the simulated data set.
  The best performing algorithm (lowest mean squared error) is used on the real data set.
- Since the true variance and std. deviations in the simulated dataset are known the true Sharpe ratio can be calculated for each simulated stock in each time step.
- The *mean squared error* is found between the true Sharpe ratio and the Sharpe ratio predicted by the algorithm.
- The best performing algorithm is found to be Rolling Sharpe

### Predicted vs. actual Sharpe ratios



#### Analysis

- Taking the Rolling Sharpe algorithm to the real data we need benchmarks.
- 4 benchmarks is used: 1) The Apple stock, 2) The tangency portfolio calculated on the first 1000 observations, 3) The tangency portfolio calculated on the entire sample, 4) Perfect foresight.

# Performance Comparison (part 1)

|                               | Expected Return | Std     | Sharpe Ratio |
|-------------------------------|-----------------|---------|--------------|
| rolling sharpe                | 0.00263         | 0.02028 | 0.12562      |
| perfect stock pick            | 0.02515         | 0.02285 | 1.09734      |
| apple                         | 0.00111         | 0.02824 | 0.03661      |
| tangency portfolio (1000 obs) | 0.00058         | 0.01830 | 0.02719      |
| tangency portfolio (all obs)  | 0.00077         | 0.01246 | 0.05545      |

# Performance Comparison (part 2)

#### Counterfactual portfolios, using different strategies



# Performance Comparison (part 3)

Monte carlo simulation, using moments of portfolios from real data.

