

Michael Roytman

Chief Data Scientist Kenna Security @mroytman

"Prediction is very difficult, especially about the future."

-Niels Bohr

3 Types of Data-Driven

Retrospective analysis and reporting

Here-and-now real-time processing and dashboards

Predictions to enable smart applications

Too many vulnerabilities. How do we derive risk from vulnerability in a data-driven manner?

EXPLOITABILITY

RETROSPECTIVE
 REAL-TIME
 PREDICTIVE

EXPLOITABILITY

- 1. RETROSPECTIVE
- 2. REAL-TIME
- 3. PREDICTIVE

Retrospective Model: CVSS

Analyst Input

Temporal Score Estimation

Vulnerability Management Programs Augmenting Data

Current CVSS Score Distribution For All Vulnerabilities

Vulnerability Researchers

Weighted Average CVSS Score: 6.8

EXPLOITABILITY

- 1. RETROSPECTIVE
- 2. REAL-TIME
- 3. PREDICTIVE

Real-Time - The Data

Vulnerability Scans (Qualys, Rapid7, Nessus, etc):

- 7,000,000 Assets (desktops, servers, urls, ips, macaddresses)
- 1,400,000,000 Vulnerabilities (unique asset/CVE pairs)

Exploit Events - Successful Exploitations

- ReversingLabs' backend metadata
 - Hashes for each CVE
 - Number of found pieces of malware corresponding to each hash
- Alienvault Backdoor
- "attempted exploits" correlated with open vulnerabilities

Attackers Are Fast

Cumulative Probability of Exploitation

Positive Predictive Value of Remediating:

DATA OF FUTURE PAST

Q: "Of my current vulnerabilities, which ones should I remediate?"

A: Old ones with stable, weaponized exploits

FUTURE OF DATA PAST

Q: "A new vulnerability was just released.

Do we scramble?"

EXPLOITABILITY

RETROSPECTIVE
 REAL-TIME
 PREDICTIVE

Learning Machine Learning

Classification!

VS

The Future

- •Classification: output is qualitative
- •prediction:

"Will this vulnerability have an exploit written for it?"

(== cause more risk *later*)

Enter: AWS ML

The Data

All CVE. Described By:

- 1. National Vulnerability Database
- 2. Common Platform Enumeration
- 3. Occurrences in Kenna Scan Data

Labelled as Exploit Available/Not:

- 1. Exploit DB
- 2. Metasploit
- 3. D2 Elliot/Canvas
- 4. Blackhat Exploit Kits

All Models:

70% Training, 30% Evaluation Split

L2 regularizer

1 gb

100 passes over the data

Receiver operating characteristics for comparisons

Predictive - The Expectations

Distribution is not uniform. 77% of dataset is not exploited

1. Accuracy of 77% would be bad

Precision matters more than Recall

- 1. No one would use this model absent actual exploit available data.
- 2. False Negatives matter less than false positives wasted effort

We are not modeling when something will be exploited, just IF Could be tomorrow or in 6 months. Re-run the model every day

Model 1: Baseline

#RSAC

- -CVSS Base
- -CVSS Temporal
- -Remote Code Execution
- -Availability
- -Integrity
- -Confidentiality
- -Authentication
- -Access Complexity
- -Access Vector
- -Publication Date

- 79% are correct
 1,699 true positive
 17,517 true negative
- 21% are errors
 1,153 false positive
 4,020 false negative
- 12% of the records are predicted as "1"
- 88% of the records are predicted as "0"

False positive rate 0.0618

Precision 0.5957

Recall 0.2971

Accuracy 0.7879

LMGTFY:

Moar Simple?

Sample Good Chart

Measuring Performance

Model 2: Patches

#RSAC

- -CVSS Base
- -CVSS Temporal
- -Remote Code Execution
- -Availability
- -Integrity
- -Confidentiality
- -Authentication
- -Access Complexity
- -Access Vector
- -Publication Date
- -Patch Exists

- 79% are correct
 1,965 true positive
 17,294 true negative
- 21% are errors
 1,280 false positive
 3,687 false negative
- 13% of the records are predicted as "1"
- · 87% of the records are predicted as "0"

False positive rate 0.0689

Precision 0.6055

Recall **0.3477**

Accuracy 0.795

Model 3: Affected Software

MATERIAL #RSAC

- -CVSS Base
- -CVSS Temporal
- -Remote Code Execution
- -Availability
- -Integrity
- -Confidentiality
- -Authentication
- -Access Complexity
- -Access Vector
- -Publication Date
- -Patch Exists
- -Vendors
- -Products

27

- 82% are correct
 2,209 true positive
 17,595 true negative
- 18% are errors
 979 false positive
 3,443 false negative
- 13% of the records are predicted as "1"
- 87% of the records are predicted as "0"

False positive rate 0.0527

Precision 0.6929

Recall 0.3908

Accuracy 0.8175

RS

Model 4: Words!

#RSAC

- -CVSS Base
- -CVSS Temporal
- -Remote Code Execution
- -Availability
- -Integrity
- -Confidentiality
- -Authentication
- -Access Complexity
- -Access Vector
- -Publication Date
- -Patch Exists
- -Vendors
- -Products
- -Description, Ngrams 1-5

False positive (5.1%)

- 84% are correct
 2,983 true positive
 17,418 true negative
- 16% are errors
 1,252 false positive
 2,736 false negative
- 17% of the records are predicted as "1"
- 83% of the records are predicted as "0"

False positive rate 0.0671

Precision 0.7044

Recall 0.5216

Accuracy 0.8365

Model 5: Vulnerability Prevalence

- -CVSS Base
- -CVSS Temporal
- -Remote Code Execution
- -Availability
- -Integrity
- -Confidentiality
- -Authentication
- -Access Complexity
- -Access Vector
- -Publication Date
- -Patch Exists
- -Vendors
- -Products
- -Description, Ngrams 1-5
- -Vulnerability Prevalence
- -Number of References

- 84% are correct
 3,318 true positive
 17,169 true negative
- 16% are errors
 1,501 false positive
 2,401 false negative
- 20% of the records are predicted as "1"
- 80% of the records are predicted as "0"

False positive rate 0.0804

Precision 0.6885

Recall 0.5802

Accuracy 0.84

Model 6: "Somewhat Likely"

➤ Advanced metrics

False positive rate 0.0354	0
Precision 0.783	01
Recall 0.4991	0
Accuracy 0.8697	0 1

Model 6: "Highly Likely"

Disable real time predictions to update the threshold.

Trade-off based on score threshold 0.75

Reset score threshold (0.6)

86% are correct
2,093 true positive
22,172 true negative

14% are errors
269 false positive
3,653 false negative

8% of the records are predicted as "1"

92% of the records are predicted as "0"

➤ Advanced metrics

False positive rate 0.012	0
Precision 0.8861	01
Recall 0.3643	0
Accuracy 0.8609	0

Save score threshold at 0.75

Model 6: "Most Likely"

Disable real time predictions to update the threshold.

Trade-off based on score threshold 0.9

Reset score threshold (0.6)

84% are correct
1,363 true positive
22,372 true negative

16% are errors
69 false positive
4,383 false negative

5% of the records are predicted as "1"

95% of the records are predicted as "0"

Save score threshold at 0.90

➤ Advanced metrics

False positive rate 0.0031	0
Precision 0.9518	01
Recall 0.2372	0
Accuracy 0.8421	01

Future Work

-Track Predictions vs. Real Exploits

-Integrate 20+ BlackHat Exploit Kits - FP reduction? -Find better vulnerability descriptions - mine advisories for content? FN reduction?

-Attempt Models by Vendor

-Predict Breaches, not Exploits

PROBLEM.

Too many vulnerabilities.

How do we derive risk from vulnerability in a data-driven manner?

SOLUTION

- 1. Gather data about known successful attack paths
- 2. Issue forecasts where data is lacking in order to predict new exploits
- 3. Gather MORE data about known successful attack paths

Takeaways

- 1. Simple, Power Questions make Machine Learning Useful in Security
- 2. When Risk is Rare, Precision is Difficult
- 3. When Precision is Difficult, Be Smart about Tradeoffs

Machine Learning = ROBOT Unicorns + Rainbows

The Takeaway

'ANYONE CAN COOK!

Machine Learn!

Putting It All Together

Thank You for waking up so early for this!

@mroytman

www.kennasecurity.com

RSAConference2018