Differentiability and Chain Rule

Devika S

Department of Mathematics BITS Pilani, K K Birla Goa Campus

October 16, 2024

Definition

A function z=f(x,y) is differentiable at (x_0,y_0) if $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist and $\triangle z=f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0)$ satisfies

$$\triangle z = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\triangle x, \triangle y \to 0$.

Definition

A function z=f(x,y) is differentiable at (x_0,y_0) if $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist and $\triangle z=f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0)$ satisfies

$$\triangle z = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\triangle x, \triangle y \to 0$.

If f is differentiable at (x_0, y_0) , then

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + \epsilon_1(x - x_0) + \epsilon_2(y - y_0)$$

Definition

A function z=f(x,y) is differentiable at (x_0,y_0) if $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist and $\triangle z=f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0)$ satisfies

$$\triangle z = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\triangle x, \triangle y \to 0$.

If f is differentiable at (x_0,y_0) , then

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
$$+\epsilon_1(x - x_0) + \epsilon_2(y - y_0) =: L(x, y) + E(x, y)$$

Definition

A function z=f(x,y) is differentiable at (x_0,y_0) if $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist and $\triangle z=f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0)$ satisfies

$$\triangle z = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\triangle x, \triangle y \to 0$.

If f is differentiable at (x_0, y_0) , then

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
$$+\epsilon_1(x - x_0) + \epsilon_2(y - y_0) =: L(x, y) + E(x, y)$$

and the approximation

$$f(x,y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

is called the linear approximation of f at (x_0, y_0) .

f(x,y) is differentiable at (x_0,y_0) if

- $f_x(x_0, y_0)$ exists
- $f_y(x_0, y_0)$ exists
- the change in f satisfies the linearization property:

$$f(x_0+h,y_0+k)-f(x_0,y_0)=f_x(x_0,y_0)h+f_y(x_0,y_0)k+\epsilon_1h+\epsilon_2k,$$

where

$$\lim_{(h,k)\to(0,0)} \epsilon_1 = \lim_{(h,k)\to(0,0)} \epsilon_2 = 0.$$

f(x,y) is differentiable at (x_0,y_0) if

- $f_x(x_0, y_0)$ exists
- $f_y(x_0, y_0)$ exists
- the change in f satisfies the linearization property:

$$f(x_0+h,y_0+k)-f(x_0,y_0) = f_x(x_0,y_0)h+f_y(x_0,y_0)k+\epsilon_1h+\epsilon_2k,$$

where

$$\lim_{(h,k)\to(0,0)} \epsilon_1 = \lim_{(h,k)\to(0,0)} \epsilon_2 = 0.$$

Dividing the equation in f by $\sqrt{h^2+k^2}$ and letting $(h,k)\to (0,0),$

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - f_x(x_0,y_0)h - f_y(x_0,y_0)k}{\sqrt{h^2 + k^2}} = 0$$

Alternate Definition of Differentiability

Definition

Suppose $D \subset \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. A function $f \colon D \to \mathbb{R}$ is said to be differentiable at (x_0, y_0) if there is $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ such that

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\alpha_1h-\alpha_2k}{\sqrt{h^2+k^2}} = 0.$$

The pair (α_1, α_2) is called the total derivative of f at (x_0, y_0) .

Alternate Definition of Differentiability

Definition

Suppose $D \subset \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. A function $f \colon D \to \mathbb{R}$ is said to be differentiable at (x_0, y_0) if there is $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ such that

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\alpha_1h-\alpha_2k}{\sqrt{h^2+k^2}} = 0.$$

The pair (α_1, α_2) is called the total derivative of f at (x_0, y_0) .

If f is differentiable at (x_0,y_0) and (α_1,α_2) be the total derivative of f at (x_0,y_0) , then $\alpha_1=f_x$ (choose k=0 and use the limit definition for f_x) and $\alpha_2=f_y$ (choose h=0 and use the limit definition for f_y).

Theorem - The Increment Theorem for Functions of Two Variables

Suppose that the first partial derivatives of f(x,y) are defined throughout an open region R containing the point (x_0,y_0) and that f_x and f_y are continuous at (x_0,y_0) . Then the change

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

in the value of f that results from moving from (x_0, y_0) to another point $(x_0 + \triangle x, y_0 + \triangle y)$ in R satisfies an equation of the form

$$\triangle z = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\triangle x, \triangle y \to 0$.

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

Observations:

• f_x , f_y exist $\implies f(x,y)$ is continuous

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- f is differentiable \implies partial derivatives exist,

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- ullet f is differentiable \Longrightarrow partial derivatives exist, converse is not true

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- ullet f is differentiable \Longrightarrow partial derivatives exist, converse is not true
- f is differentiable $\implies f$ is continuous,

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- ullet f is differentiable \Longrightarrow partial derivatives exist, converse is not true
- ullet f is differentiable $\Longrightarrow f$ is continuous, converse is not true

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- ullet f is differentiable \Longrightarrow partial derivatives exist, converse is not true
- ullet f is differentiable $\Longrightarrow f$ is continuous, converse is not true
- ullet f_x and f_y are continuous $\Longrightarrow f$ is differentiable.

Corollary

If the partial derivatives f_x and f_y of a function f(x,y) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

- f_x , f_y exist $\implies f(x,y)$ is continuous
- f(x,y) is continuous $\implies f_x$ and f_y exist
- ullet f is differentiable \Longrightarrow partial derivatives exist, converse is not true
- ullet f is differentiable $\Longrightarrow f$ is continuous, converse is not true
- f_x and f_y are continuous $\implies f$ is differentiable. What about the converse?

- ① Discuss the existence of partial derivatives and differentiability of f at a point (x_0,y_0) :
 - $f(x,y) = x^2 + 2xy$ at (x_0,y_0) (differentiable)
 - $f(x,y) = x^2 + y^2$ at (x_0,y_0) (differentiable)
 - $f(x,y) = \sqrt{x^2 + y^2}$ at (0,0) $(f_x(0,0)$ does not exist $\implies f$ is not differentiable)
 - f(x,y) = |xy| at (0,0) $(f_x(0,0) = f_y(0,0) = 0$ and f is differentiable)

- ① Discuss the existence of partial derivatives and differentiability of f at a point (x_0,y_0) :
 - $f(x,y) = x^2 + 2xy$ at (x_0,y_0) (differentiable)
 - $f(x,y) = x^2 + y^2$ at (x_0,y_0) (differentiable)
 - $f(x,y) = \sqrt{x^2 + y^2}$ at (0,0) $(f_x(0,0)$ does not exist $\implies f$ is not differentiable)
 - f(x,y) = |xy| at (0,0) $(f_x(0,0) = f_y(0,0) = 0$ and f is differentiable)
- 2 Discuss the differentiability of f at (0,0):

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- ① Discuss the existence of partial derivatives and differentiability of f at a point (x_0,y_0) :
 - $f(x,y) = x^2 + 2xy$ at (x_0, y_0) (differentiable)
 - $f(x,y) = x^2 + y^2$ at (x_0,y_0) (differentiable)
 - $f(x,y) = \sqrt{x^2 + y^2}$ at (0,0) $(f_x(0,0)$ does not exist $\implies f$ is not differentiable)
 - f(x,y) = |xy| at (0,0) $(f_x(0,0) = f_y(0,0) = 0$ and f is differentiable)
- 2 Discuss the differentiability of f at (0,0):

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution: $f_x(0,0) = f_y(0,0) = 0$, but f is not differentiable at (0,0).

3 Show that the below function is differentiable at (0,0) but the partial derivatives f_x and f_y of f are not continuous at (0,0).

$$f(x,y) = \left\{ \begin{array}{ll} (x^2+y^2) \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & \text{when } (x,y) \neq (0,0), \\ \\ 0 & \text{when } (x,y) = (0,0). \end{array} \right.$$

3 Show that the below function is differentiable at (0,0) but the partial derivatives f_x and f_y of f are not continuous at (0,0).

$$f(x,y) = \left\{ \begin{array}{ll} (x^2+y^2) \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & \text{when } (x,y) \neq (0,0), \\ \\ 0 & \text{when } (x,y) = (0,0). \end{array} \right.$$

Solution: Use the limit definition to compute $f_x(0,0) = f_y(0,0) = 0$.

3 Show that the below function is differentiable at (0,0) but the partial derivatives f_x and f_y of f are not continuous at (0,0).

$$f(x,y) = \left\{ \begin{array}{ll} (x^2+y^2) \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & \text{when } (x,y) \neq (0,0), \\ \\ 0 & \text{when } (x,y) = (0,0). \end{array} \right.$$

Solution: Use the limit definition to compute $f_x(0,0)=f_y(0,0)=0$.

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - f_x(0,0)h - f_y(0,0)k}{\sqrt{h^2 + k^2}}$$

$$= \lim_{(h,k)\to(0,0)} \sqrt{h^2 + k^2} \sin\left(\frac{1}{\sqrt{h^2 + k^2}}\right) = 0.$$

3 Show that the below function is differentiable at (0,0) but the partial derivatives f_x and f_y of f are not continuous at (0,0).

$$f(x,y) = \left\{ \begin{array}{ll} (x^2+y^2) \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) & \text{when } (x,y) \neq (0,0), \\ \\ 0 & \text{when } (x,y) = (0,0). \end{array} \right.$$

Solution: Use the limit definition to compute $f_x(0,0)=f_y(0,0)=0$.

$$\begin{split} \lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - f_x(0,0)h - f_y(0,0)k}{\sqrt{h^2 + k^2}} \\ &= \lim_{(h,k)\to(0,0)} \sqrt{h^2 + k^2} \sin\left(\frac{1}{\sqrt{h^2 + k^2}}\right) = 0. \end{split}$$

(Use $\epsilon - \delta$ definition to show the above limit.)

Lets check the continuity of f_x at (0,0).

Lets check the continuity of f_x at (0,0). Consider $\lim_{(x,y)\to(0,0)} f_x(x,y)$.

Lets check the continuity of f_x at (0,0). Consider $\lim_{(x,y)\to(0,0)} f_x(x,y)$.

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

= $2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$

Lets check the continuity of f_x at (0,0). Consider $\lim_{(x,y)\to(0,0)} f_x(x,y)$.

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

= $2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$

 $\Longrightarrow \lim_{(x,y) o (0,0)} f_x(x,y)$ does not exist (to see this, choose y=mx and simplify for the second term)

 $\implies f_x$ is not continuous at (0,0).

Similarly, show that f_y is not continuous at (0,0).

This example shows that differentiability does not guarantee continuous partial derivatives.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q C

$$f(x,y) = \begin{cases} 0 & \text{if } x^2 < y < 2x^2, \\ 1 & \text{else.} \end{cases}$$

Show that $f_x(0,0)$ and $f_y(0,0)$ exist, but f is not differentiable at (0,0).

$$f(x,y) = \begin{cases} 0 & \text{if } x^2 < y < 2x^2, \\ 1 & \text{else.} \end{cases}$$

Show that $f_x(0,0)$ and $f_y(0,0)$ exist, but f is not differentiable at (0,0).

Solution: Use the limit definition to show that $f_x(0,0) = f_y(0,0) = 0$.

$$f(x,y) = \begin{cases} 0 & \text{if } x^2 < y < 2x^2, \\ 1 & \text{else.} \end{cases}$$

Show that $f_x(0,0)$ and $f_y(0,0)$ exist, but f is not differentiable at (0,0).

Solution: Use the limit definition to show that $f_x(0,0)=f_y(0,0)=0$.

Note that if f is not continuous at (0,0), then f is not differentiable at (0,0).

$$f(x,y) = \begin{cases} 0 & \text{if } x^2 < y < 2x^2, \\ 1 & \text{else.} \end{cases}$$

Show that $f_x(0,0)$ and $f_y(0,0)$ exist, but f is not differentiable at (0,0).

Solution: Use the limit definition to show that $f_x(0,0)=f_y(0,0)=0$.

Note that if f is not continuous at (0,0), then f is not differentiable at (0,0).

Along
$$y = x^2$$
, $\lim_{(x,y) \to (0,0)} f(x,y) = 1$.

Along
$$y = 1.5x^2$$
, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

 $\Longrightarrow f$ is not continuous at (0,0) $\Longrightarrow f$ is not differentiable at (0,0).

This example shows that existence of f_x and f_y does not imply the differentiability of f.

Chain Rule for Functions of Two Variables

Theorem

If w=f(x,y) is differentiable and if $x=x(t),\ y=y(t)$ are differentiable functions of t, then the composition w=f(x(t),y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t),$$

or

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

Branch diagram for Chain Rule

Chain Rule for Functions of Three Variables

Theorem

Let w=f(x,y,z) be a differentiable function, and let x=x(t), y=y(t), z=z(t) be three differentiable functions of t. Then the function w(t)=f(x(t),y(t),z(t)) is a differentiable function of t and the derivative is given by:

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$$

Branch Diagram

Chain Rule for Two Independent Variables and Three Intermediate Variables

Theorem

Suppose that $w=f(x,y,z),\ x=g(r,s),\ y=h(r,s)$ and z=k(r,s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\begin{split} \frac{\partial w}{\partial r} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}, \\ \frac{\partial w}{\partial s} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}. \end{split}$$

Chain Rule for Two Independent Variables and Three Intermediate Variables

Theorem

Suppose that $w=f(x,y,z),\ x=g(r,s),\ y=h(r,s)$ and z=k(r,s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\begin{split} \frac{\partial w}{\partial r} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}, \\ \frac{\partial w}{\partial s} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}. \end{split}$$

If w = f(x) and x = g(r, s), then

$$\frac{\partial w}{\partial r} = \frac{dw}{dx} \frac{\partial x}{\partial r} \text{ and } \frac{\partial w}{\partial s} = \frac{dw}{dx} \frac{\partial x}{\partial s}.$$

Branch Diagram

Dependent variable

Independent variables

Intermediate variables

$$w = f\left(g(r,s), h\left(r,s\right), k\left(r,s\right)\right)$$

(a)

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r} \qquad \qquad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}$$

(b)

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

(c)

1 Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1.

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$
$$= 4t \tan^{-1}(t) + 1.$$

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$
$$= 4t\tan^{-1}(t) + 1.$$

At t=1, $dw/dt=\pi+1$.

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$
$$= 4t \tan^{-1}(t) + 1.$$

At t = 1, $dw/dt = \pi + 1$.

- 3 Find $\partial w/\partial u$ and $\partial w/\partial v$ where w=xy+yz+xz with $x=u+v, \ y=u-v$ and z=uv at (u,v)=(1/2,1).
- 4 Find $\partial w/\partial v$ when u=v=0 if $w=x^2+(y/x)$, x=u-2v+1, y=2u+v-2.

- ① Evaluate dw/dt where $w=x^2+y^2$ with $x=\cos t$, $y=\sin t$ at $t=\pi$.
- 2 Evaluate dw/dt where $w=2ye^x-\ln z$ with $x=\ln(t^2+1)$, $y=\tan^{-1}t$, $z=e^t$ at t=1. Solution:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$
$$= \frac{4yte^x}{1+t^2} + \frac{2e^x}{1+t^2} - \frac{e^t}{z}$$
$$= 4t \tan^{-1}(t) + 1.$$

At t = 1, $dw/dt = \pi + 1$.

- 3 Find $\partial w/\partial u$ and $\partial w/\partial v$ where w=xy+yz+xz with $x=u+v, \ y=u-v$ and z=uv at (u,v)=(1/2,1).
- 4 Find $\partial w/\partial v$ when u=v=0 if $w=x^2+(y/x)$, x=u-2v+1, y=2u+v-2.

Polar coordinates

- **6** Let w=f(x,y) and let (r,θ) denotes standard polar coordinates. Then,
 - a) Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta \text{ and } \frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

- b) Express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \theta$.
- c) Show that

$$(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.$$

