COMP 755: Machine Learning

Recurrent Neural Networks

Department of Computer Science University of North Carolina at Chapel Hill

¹Slides adapted from Mahmoud Mostapha, Fei-Fei Li, Justin Johnson & Serena Yeung

COMP755

Plan for today:

- Recurrent Neural Networks (RNN)
 - Vanilla RNN
 - ► RNN with Attention
 - ► Long Short Term Memory (LSTM)
 - Other RNN Variants

AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.

Figure copyright Kaiming He, 2016. Reproduced with permission.

Figure copyright Kaiming He, 2016. Reproduced with permission.

AlexNet and VGG have tons of parameters in the fully connected layers

AlexNet: ~62M parameters

FC6: 256x6x6 -> 4096: 38M params

FC7: 4096 -> 4096: 17M params

FC8: 4096 -> 1000: 4M params

~59M params in FC layers!

Today: Recurrent Neural Networks

"Vanilla" Neural Network

e.g. **Image Captioning** image -> sequence of words

e.g. **Sentiment Classification** sequence of words -> sentiment

e.g. Video classification on frame level

Sequential Processing of Non-Sequence Data

Classify images by taking a series of "glimpses"

Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

Sequential Processing of Non-Sequence Data

Generate images one piece at a time!

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015 Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example: Character-level Language Model

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example: Characterlevel Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example: Characterlevel Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example: Characterlevel Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example: Characterlevel Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

min-char-rnn.py gist: 112 lines of Python

```
Minimal character-level Vanilla Rhbi model, Written by Andrej Karpathy (@Karpathy)
800 License
i import numpy as no
 data = open('input.txt', 'r').read() = unould be uisple plain text file
 chars = list(set(data))
data_size, vocah_size = len(data), len(chara)
print 'data has 'nd characters, 'nd unique.' % (data_size, vocab_size)
char to is = f ch:1 for i.ch in enumerate(chars) )
ix to char + ( i:ch for i.ch in enumerate(chars) )
in Midden size = 100 + size of Bidden layer of sources.
17 seg length = 15 = number of stage to unrall the SAS for
learning_rate = 1s-1
21 With # np.random.randn(hidden_mize, vocab_mize)*0.81 # Input to himber
32 With = np.random.randn(hidden_size, hidden_size)*8.41 # Nidden in hidden
11 Why = np.random.randn(vocab_size, hidden_size)*8.81 v hidden to output
bh = ng.zeros((hidden_size, 1)) = hidden him:
by = mp.zeros((voceh_size, i)) + suspec bias
def lassFun(imputs, targets, horev):
      inputs, targets are both list of integers.
      Aprey is 8x1 array of initial hidden state
      returns the loss, gradients on model parameters, and last hidden state
      xs. hs. ys. ps = (), (), ()
      fm[-1] = mp.copy(hprev)
     loss = 8
      for t in scange(len(inputs)):
        ss[t] * np.zeros((wotab_size,i)) # encode in 1-of-k representation
        xs[t][isputs[t]] = 1
        hs[t] = np.tanh(np.dot(with, xs[t]) + np.dot(with, hs[t-1]) + th) # Hilliam state
        ys[t] = np.det(Why, ha[t]) + by + unnormalized ing probabilizing for rest chara-
        pait1 = np.exp(yait1) / np.sum(np.exp(yait1)) a probabilities for next chara
        loss == -np.log(ps[t][targets[t],0]) + softmax (gross-entropy loss)
## # Bechwer# pass: compute gradients doing becoverds
desh, dwhh, dwhy = np.zeros like(wsh), np.zeros like(why), np.zeros like(why)
     dbh, dby = np.zeros_like(bh), np.zeros_like(by)
      dinext = np.zeros_like(ha[0])
      for t in reversed(wrange(lan(inputs))):
        dy = np.copy(ps[t])
        dy[targets[t]] .= 1 # backprup into y
        dwhy == np.dot(dy, hs[t].T)
     dh = np.dot(Why.T, dy) + dhnext + backgrop into h
        dhraw = (1 - hs[t] * hs[t]) * dh = hackprop through tanh nonlinearity
        dbh an dhrase
        doch == np.dot(dhraw, xs[t].T)
        dwith -- np.dot(dhraw, hs[t-1].T)
        dhnext = np.dot(whh.T, dhraw)
      for dparam in [dwish, dwish, shiny, sibh, sby]:
       ep.clip(dparam, -5, 0, out=dparam) = clip to milighto exploding gradients
      return loss, dark, dath, daty, dbh, dby, hs[lentinputs]-1]
```

```
on def samule(h, seed_ix, n):
 sample a sequence of integers from the model
 h is memory state, seed in is seed letter for first line step
x = np.rerus((vocah sire, T))
       x[seed.ix] = 1
       for t in grange(n):
        h = np.tenh(np.dot(woh, *) + np.dot(whh, h) + bh)
        y = np.dot(why, h) + by
        \mu = np.exp(y) / np.ssm(np.exp(y))
        ix = np.random.choice(range(vocab.size), p=p.ravel())
         n = np.zeros((vocah_size, 1))
         ixes.append(ix)
       return from
mach, math, mathy = np.zeros like(wsh), np.zeros like(wsh), np.zeros like(wsy)
subh, wby = np.zeros_like(bb), op.zeros_like(by) = numory variables for Adagrad
 smooth_loss = -np.log(1.0/voceh_size)*seq_length = Ioss = iteration =
 on # prepare inputs (we're oweeping from left to right in otems men_leagth long)
       if peace lamothic as language) or m as 0;
       hprev = np.zeros((hidden_size,1)) = reset NHH smoory
up p = 0 / go from start of data.
       inputs = [char_to_ix[ch] for ch in data[p:p-seq_length]]
       targets = [char_to_is[ch] for ch in data[p+1:p+seq_length+1]]
24 AF H W 208 CT ST
         sample is * sample(horev, inputs[0], 200)
         txt = "'.join(ix.to.char[ix] for ix in sample.ix)
         print '---- 'm %s \n----' % (txt. )
      # Tirward seg length characters through the net and fetch gradient
       loss, dish, dish, dish, dby, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * 0.000 + loss * 0.001
       if H m 100 = H: print 'iter md, loss: MF' M (H, Smooth_loss) # print progress
       for param, dparam, mem in zip([woh, whh, why, bh, by],
                                   [dwsh, dwhh, dwhy, dbh, dby],
                                   (each, mith, mity, mbh, mbv1):
         mem +0 dparam * dparam
         param += -learning_rate * dparam / rp.sprt(mem * 1e-8) * adaprad update
p ++ seq_length + must data pointer
n 40 I w iteration counter
```

(https://gist.github.com/karpathy/d4dee 566867f8291f086)

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine!

This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold.

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep. Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

I'll drink it.

VIOLA:

PANDARUS:

KING LEAR:

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

Shall be against your honour.

O, if you were a feeble sight, the courtesy of your law,

Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion

The Stacks Project: open source algebraic geometry textbook

Latex source

http://stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparison in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s''\in S'$ such that $\mathcal{O}_{X,x'}\to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longrightarrow (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces,\acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X,\mathcal{O}_X}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_{--},0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(O_{X'}) = O_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

.

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
 If Y is an affine open covering.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

type f_{\bullet} . This is of finite type diagrams, and • the composition of G is a regular sequence,

O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and $\mathcal F$ is a finite type representable by algebraic space. The property $\mathcal F$ is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??. A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}}$$
 $-1(\mathcal{O}_{X_{dtalx}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\overline{\eta}})$
is an isomorphism of covering of $\mathcal{O}_{X_{\ell}}$. If \mathcal{F} is the unique element of \mathcal{F} such that X

is an isomorphism. The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If $\mathcal F$ is a finite direct sum $\mathcal O_{X_\lambda}$ is a closed immersion, see Lemma \ref{Lemma} . This is a sequence of $\mathcal F$ is a similar morphism.


```
static void do command(struct seq file *m, void *v)
  int column = 32 << (cmd[2] & 0x80);
  if (state)
    cmd = (int)(int state ^ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
 else
    seq = 1;
  for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
      pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000ffffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x20000000);
    pipe set bytes(i, 0);
  /* Free our user pages pointer to place camera if all dash */
  subsystem info = &of changes[PAGE SIZE];
  rek controls(offset, idx, &soffset);
  /* Now we want to deliberately put it to device */
  control check polarity(&context, val, 0);
  for (i = 0; i < COUNTER; i++)
    seq puts(s, "policy ");
```

Generated C code

```
Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
    This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
         This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software Poundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include inux/kexec.h>
#include linux/errno.h>
#include ux/io.h>
#include inux/platform device.h>
#include linux/multi.h>
#include inux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
```

```
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG PG vesa slot addr pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type) (func)
#define SWAP ALLOCATE(nr)
                           (e)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" : : "r" (0)); \
 if (_type & DO_READ)
static void stat PC SEC read mostly offsetof(struct seq argsqueue, \
         pC>[1]);
static void
os prefix(unsigned long sys)
#ifdef CONFIG PREEMPT
 PUT PARAM RAID(2, sel) = get state state();
 set pid sum((unsigned long)state, current state str(),
          (unsigned long)-1->lr full; low;
```

#include <asm/io.h>
#include <asm/prom.h>

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

```
/* Unpack a filter field's string representation from user-space
* buffer. */
char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
{
  char *str;
  if (!*bufp || (len == 0) || (len > *remain))
   return ERR_PTR(-EINVAL);
/* Of the currently implemented string fields, PATH_MAX
* defines the longest valid length.
*/
```

```
"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."
```

quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

```
Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae--pressed forward into boats and into the ice-covered water and did not, surrender.
```

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei: 2015; reproduced with permission

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei; 2015; reproduced with permission

```
Cell that turns on inside comments and quotes:
                               quote/comment cell
```

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Floures copyright Karpathy, Johnson, and Fei-Fei: 2015: reproduced with permission

```
#ifdef config_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
{
  int i;
  if (classes[class]) {
    for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
      if (mask[i] & classes[class][i])
      return 0;
}
return 1;
}</pre>
```

code depth cell

Image Captioning

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Figure from Karpathy et a, "Deep Visual-Semantic Alignments for Generating Imag Descriptions", CVPR 2015; figure copyrig IEEE, 2015.

Reproduced for educational purposes

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al. Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network

Convolutional Neural Network

This image is CC0 public domain

test image

image conv-64

softmax

test image

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512

maxpool

FC-4096 FC-4096

test image

image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256 maxpool

conv-512

conv-512 maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

test image

x0 <STA RT>

Image Captioning: Example Results

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Image Captioning: Failure Cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

RNN focuses its attention at a different spatial location when generating each word

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Visual Question Answering

Q: What endangered animal is featured on the truck?

- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

Q: Where will the driver go if turning right?

- A: Onto 24 3/4 Rd.
- A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

Q: When was the picture taken?

- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church

Q: Who is under the umbrella?

- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

Visual Question Answering: RNNs with Attention

Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016 Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

What kind of animal is in the photo? A cat.

Why is the person holding a knife? To cut the **cake** with.

Multilayer RNNs

$$h_t^l = \tanh W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$h \in \mathbb{R}^n. \qquad W^l \quad [n \times 2n]$$

LSTM:

$$W^l [4n \times 2n]$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

depth time

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Backpropagation from ht to ht-1 multiplies by W (actually WhhT)

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of ho involves many factors of W (and repeated tanh)

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of ho involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: Vanishing gradients

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of ho involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of ho involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: Vanishing gradients

Change RNN architecture

Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

vector from

f: Forget gate, Whether to erase cell

i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell

o: Output gate, How much to reveal cell

$$\begin{pmatrix}
i \\
f \\
o \\
g
\end{pmatrix} = \begin{pmatrix}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{pmatrix} W \begin{pmatrix}
h_{t-1} \\
x_t
\end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

[Hochreiter et al., 1997]

Backpropagation from ct to ct-1 only elementwise multiplication by f, no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

Other RNN Variants

GRU [Learning phrase representations using rnn encoder-decoder for statistical machine translation, Cho et al. 2014]

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

[LSTM: A Search Space Odyssey, Greff et al., 2015]

[An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015]

MUT1: $z = \operatorname{sigm}(W_{xz}x_t + b_z)$ $r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$ $h_{t+1} = \tanh(W_{bb}(r \odot h_t) + \tanh(x_t) + b_b) \odot z$ + h_t ⊙ (1 - z) MUT2: $z = \operatorname{sigm}(W_{xx}x_t + W_{bx}h_t + b_x)$ $r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$ $h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$ $+ h_t \odot (1-z)$ MUT3: $z = \operatorname{sigm}(W_{xx}x_t + W_{bx} \tanh(h_t) + b_x)$ $r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$ $h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$ + h_t ⊙ (1 - z)

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

Today

- ► Vanilla RNN
- ► RNN with Attention
- ► LSTM
- ► GRU,...