Notas de conferencias

Sherlyn Ballestero Cruz Maria de Lourdes Choy Fernańdez

October 24, 2023

Conferencia4

Hasta ahora hemos visto que son lenguajes regulares aquellos que son aceptados por algún DFA, que los DFA son equivalente a los NFA, asi como a partir de las relaciones entre conjunto aplicado a lenguajes regulares se obtienen lenguajes regulares.

Es decir, dado que tenemos un Lenguaje si encontramos un DFA o un NFA entonces sabemos que es regular, pero... ¿Cómo decimos que un lenguaje no puede ser representado por algún autómata?...

1 Lema del Bombeo

Lema del Bombeo: Sea L un lenguaje regular, existe un n (que depende de L), tal que, \forall w con $|w| \ge n$, se puede escribir como xyz, tal que:

- 1. $y \neq \varepsilon$ 2. $|xy| \leq n$
- 3. $\forall k, xy^k z \in L$

eh????

Esto quiere decir que se puede encontrar la cadena $y \neq \varepsilon$, no muy lejana del inicio de w, que puede ser bombeada, o sea la podemos eliminar o repetir tantas veces como querramos y la cadena resultante w' va a pertenecer al lenguaje.

Demostración

Supongamos que L es regular.

Se tiene que L=L(A) para algún DFA A.

Supongamos que A tiene n estados.

Sea w,
$$|w| \ge n$$
.

Luego $w = a_1 a_2 ... a_m$, donde $m \ge n$ y $\forall a_i, a_i \in V$, o sea es un simbolo de entrada cada a_i . Para i=1...n, se definen los estados p_i de $\widehat{\delta}(q_0, a_1 a_2 ... ai)$, donde $\delta esta función detransicción de Ayq_0 el estado inicial.$

Luego A está en el estado p_i después de leer los primerosa i símbolos de w. Notese que $q_0 = p_0$.

Por principio del palomar no es posible tener n+1 p_i , pues los p_i para i=1...n, son distintos porque solo hay n diferentes estados. Luego se pueden encontrar dos enteros i,j tal que $0 \le i \le j \le n$ tal que $p_i = p_j$.

$$1.x = a_1...a_i$$

2.
$$y = a_{i+1}...a_j$$
 3. $z = a_{j+1}...a_m$.

Lo que sucede es que x nos lleva hasta p_i , luego con y se pasa por una serie de estados y se llega nuevamente a p_i y con z se termina w.

Si x es la cadena vacia, se parte del estado inicial y cuando se recorre y se

vuelve a caer en el estado inicial, si z es vacío sería j=n=m.