

Πανεπιστήμιο Δυτικής Αττικής

Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Υπολογιστών

Εργαστήριο Μικροηλεκτρονικής – Εργασία 4

Χρήστος Μαργιώλης – 19390133 Ιούνιος 2022

Περιεχόμενα

1	Θεωρητικό μέρος	2
2	Υλοποίηση της εργασίας	2
3	Συνδεσμολόγηση κυκλώματος	2
4	Εφαρμογή σήματος	3
5	Breadboard	6

1 Θεωρητικό μέρος

Το αντιχείμενο της εργασίας είναι η εξοιχείωση και η υλοποίηση ενός διαφοριστή. Ο διαφοριστής είναι ένα κύκλωμα το οποίο εκτελεί την μαθηματική πράξη της παραγώγησης σε ένα σήμα. Όσον αφορά το κύκλωμα, ο ιδανικός διαφοριστής είναι ένας αναστρέφων T.E με την διαφορά ότι αντί για αντίσταση εισόδου υπάρχει πυκνωτής ο οποίος έχει άεργη αντίσταση εισόδου. Στον πρακτικό διαφοριστή, προκειμένου να περιορίσουμε το κέρδος του, προσθέτουμε και μία αντίσταση εισόδου σε σειρά με τον πυκνωτή. Τέλος, για συχνότητα μεγαλύτερης της F_c , ο διαφοριστής παύει να διαφορίζει και συμπεριφέρεται σαν απλός αναστρέφων T.E.

2 Υλοποίηση της εργασίας

Για την υλοποίηση της εργασίας χρησιμοποιήθηκαν τα παρακάτω εργαλεία:

- Tina-TI για την συνδεσμολογία και τις μετρήσεις του κυκλώματος.
- Το breadboard του εργαστηρίου.
- ΕΤΕΧγια την συγγραφή της εργασίας.

3 Συνδεσμολόγηση κυκλώματος

• Συνδεσμολογήστε το κύκλωμα με $R_{in}=2.2\,\mathrm{k}\Omega,\,R_f=22\,\mathrm{k}\Omega,\,C_1=4.7\,\mathrm{nF},\,V_1=15\,\mathrm{V},\,V_2=-15\,\mathrm{V}$

Figure 1: Δ ιαφοριστής.

4 Εφαρμογή σήματος

• Εφαρμόστε τριγωνική/ημιτονική/τετραγωνική κυματομορφή πλάτους $10V_{pp}$, $400\,\mathrm{Hz}$ στην είσοδο του κυκλώματος.

4.1 Θεωρητική F_c

• Υπολογίστε την θεωρητική F_c του κυκλώματος.

$$F_c = \frac{1}{2\pi R_{in}C} \Rightarrow F_c = \frac{1}{2\pi \cdot 2.2\,\mathrm{k}\Omega \cdot 4.7\,\mathrm{nF}} \Rightarrow F_c = \approx 154\,000\,\mathrm{Hz} \Rightarrow F_c = \approx 154\,\mathrm{kHz}$$

4.2 Γράφημα εξόδου

• Αναπαραστήστε σε γράφημα την έξοδο του κυκλώματος ως προς την είσοδο για $F=400\,{
m Hz},\,F>>F_c,$ $F<< F_c.$

Figure 2: Ημιτονικό σήμα.

Figure 3: Τριγωνικό σήμα.

Figure 4: Τετραγωνικό σήμα.

4.3 Αύξηση τριγωνικής συχνότητας

• Για τριγωνική κυματομορφή εισόδου $7V_{pp}$, $400\,{\rm Hz}$, αρχίστε να αυξάνετε την συχνότητα του σήματος έως ότου να παρατηρήσετε στην έξοδο του κυκλώματος την ύπαρξη τριγωνικής κυματομορφής (ο διαφοριστής παύει να διαφορίζει και λειτουργεί σαν αναστρέφων ${\rm T.E.}$). Σημειώστε την πειραματικά μετρούμενη συχνότητα του κυκλώματος. Τι σχέση έχει η θεωρητική με την πρακτική συχνότητα F_c ;

Figure 5: Τριγωνική συχνότητα $400\,\mathrm{Hz}$

Μετά από πειραματισμό παρατήρησα ότι περίπου στα $150\,\mathrm{kHz}$ η έξοδος αρχίζει να γίνεται τριγωνικής μορφής, δηλαδή ο διαφοριστής λειτουργεί σαν αναστρέφων Τ.Ε. Βλέπουμε ότι η πρακτική συχνότητα $150\,\mathrm{kHz}$ είναι πολύ κοντά με την θεωρητική $F_c=154\,\mathrm{kHz}$.

Figure 6: Τριγωνική συχνότητα 150 kHz

5 Breadboard

Η συνδεσμολογία έγινε στον χώρο του εργαστηρίου. Για την σύνδεση του T.E χρησιμοποιούμε το pinout του T.E:

LM741 Pinout Diagram

Figure 7: Pinout T.E

