Problem 1

a)

converse: : if I will stay at home, then it snows tonight

Contrapositive: if I wont stay at home, then it doesn't snow tonight. Inverse : if it doesn't snow tonight, then I won't stay at home.

b)

Converse : It is a sunny summer day whenever I go to the beach.

Contrapositive: It is not sunny summer day whenever I don't go to the beach. Inverse : I don't go to the beach whenever it is not a sunny summer day.

c)

Converse : If I sleep until noon, then I stay up late.

Contrapositive: If I don't sleep until noon, then I stay up late.

Inverse : If I don't stay up late, then I don't sleep until noon.

Problem 2

a)

р	q	¬р	$\neg q$	p ⊕ ¬q
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

b)

p	q	r	¬р	¬q	¬r	p	$\neg p \Longleftrightarrow \neg r$	$(p \Longleftrightarrow q) \oplus (\neg p \Longleftrightarrow \neg r)$
0	0	0	1	1	1	1	1	0
0	0	1	1	1	0	1	0	1
0	1	0	1	0	1	0	1	1
0	1	1	1	0	0	0	0	0
1	0	0	0	1	1	0	0	0
1	0	1	0	1	0	0	1	1
1	1	0	0	0	1	1	0	1
1	1	1	0	0	0	1	1	0

c)

p	q	¬ p	¬ q	p ⊕ q	p ⊕ ¬ q	$(p \oplus q) \Rightarrow (p \oplus \neg q)$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	0	1	1

Problem 3

- a) $\exists x (P(x) \land Q(x))$
- b) $\exists x (P(x) \land \neg Q(x))$
- c) $\forall x (P(x) \lor Q(x))$
- d) $\neg \exists x (P(x) \lor Q(x))$
- e) $\exists x (P(x) \land Q(x)) \rightarrow \exists x H(x)$
- f) $\exists x H(x)$
- g) Not everyone can speak English and knows python.

Problem 4

Basis step
$$\Rightarrow$$
 Let's apply $n=1$ on the equation
$$3+3.5=3(5^{2}-1)$$

$$18=18$$
We from that the equation true for $n=1$

Inductive Step \Rightarrow Apply $n=k$ on the equation and accept that the equation is true for $n=k$

$$3+3.5+\ldots+3.5^{k}=3(5^{k+1}-1)$$

$$\Rightarrow$$
 Apply $n=k+1$ on the equation and prove that equation is 1 000 based on $1=k$

$$3+3.5+\ldots+3.5^{k}+3.5^{k+1}=3(5^{k+1}-1)$$

$$4(5^{k+1}-1)+1.3.5^{k+1}=k(5^{k+1}-1)$$

$$4(5^{k+1}-1)+1.3.5^{k+1}=k(5^{k+1}-1)$$

$$5.5^{k+1}-1=5^{k+2}-1$$

$$5.5^{k+1}-1=5^{k+2}-1$$

$$5.5^{k+1}-1=5^{k+2}-1$$

Problem 5

Problem 6

- a) Roots of that equation 2 and 4 so the set is {2, 4}
- b) There are infinite numbers between 2 and 3. The set is infinitive including 2 and 3
- c) {2,4,5}
- d) {2,4}
- e) {2,4}

So, a = d = e.

Problem Bonus

a)

- 1- The upper side of the circuit we have a statement $(p \land q)$
- 2- The bottom side we have a statement (p v q')
- 3- On the multiplexer 1 is selected so bottom side will be result.
- 4- So, the sentence will be "It is sunny or the flowers are not blooming."
- b) I wrote the program in c++

```
#include<iostream>
using namespace std;

int main()

bool p,q;
bool result, multiplexer;

cout << "Enter the value of p, q and multiplexer:";
cin >> p >> q >> multiplexer;

if(multiplexer == 0)
    result = p & q;
else
    result = p | (!q);

cout << "Result is "<< result <<endl;
return 0;

return 0;</pre>
```