

Grundbegriffe der Informatik Tutorium 33

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 02.02.2017

Gliederung

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas bach@student kit edu

Automaten

Automaten

Mealy-Automat Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Endliche

Akzeptoren

Moore-Automat

Reguläre Ausdrücke

Reguläre

Ausdrücke

Rechtslineare Grammatiken

Rechtslineare

Mealy-Automat

Maximilian Staab, maximilian.staab@fsmi.us Lukas Bach.

Mealy-Automat

Lukas Bach, lukas bach@student.kit., Ein Mealy-Automat ist ein Tupel $A=(Z,z_0,X,f,Y,h)$ mit...

Automaten

endliche Zustandsmenge Z

Mealy-Automat

• Anfangszustand $z_0 \in Z$

Moore-Automat

Eingabealphabet X

Endliche Akzeptoren ■ Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$

• A

Ausgabealphabet Y
Ausgabefunktion h: Z × X → Y*

Reguläre Ausdrücke Darstellung als Graph

Rechtslineare

lacksquare Zustände ightarrow Knoten

ken St

 \blacksquare Startzustand \to Pfeil an diesen Knoten (ohne Anfang)

lacktriangle Zustandsüberführungsfunktion o Kanten mit Beschriftung

lack Ausgabefunktion ightarrow zusätzliche Kantenbeschriftung

Beispiel Mealy-Automat

a|0

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre

Ausdrücke

Rechtslineare Grammatiken

Moore-Automat

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach.

Lukas Bach,

Ein Moore-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Ausdrucke

Rechtslineare Grammatiken

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- → Bis hierhin alles wie bei Mealy!
 - Ausgabefunktion h : Z → Y*

Bemerkung

Für jeden Mealy-Automaten kann man einen Moore-Automaten konstruieren, der genau die gleiche Aufgabe erfüllt, und umgekehrt.

Umwandlung Mealy- in Moore-Automat

Maximilian Staab, Links ein Mealy-, rechts ein Moore-Automat

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe

Wie sieht der Mealy-Automat als äquivalenter Moore-Automat aus, wie sieht der Moore-Automat als äquivalenter Mealy-Automat aus?

Endliche Akzeptoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Sonderfall von Moore-Automaten
- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)
- Statt der Ausgabefunktion h schreibt man einfach die Menge der akzeptierenden Zustände $F \subseteq Z$ auf
- Zustände, die nicht akzeptieren, heißen ablehnend
- Im Graphen werden akzeptierende Zustände einfach mit einem doppelten Kringel gekennzeichnet

Akzeptierte Wörter und Sprachen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Akzeptierte Wörter

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Bemerkung

Wird ein Wort nicht akzeptiert, dann wurde es abgelehnt

Akzeptierte formale Sprache

Die von einem Akzeptor A akzeptierte formale Sprache L(A) ist die Menge aller von ihm akzeptierten Wörter.

Endliche Akzeptoren

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach.

Aufgabe zu endlichen Akzeptoren

Lukas Bach, lukas bach@student.kit. Konstruiere einen endlichen Akzeptor, der die Sprache

$$L_1(A) = \{ w \in \{a, b\}^* : (N_a(w) \ge 3 \land N_b(w) \ge (2) \}$$
 erkennt.

Automaten

Mealy-Automat Losur

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Lösung

Endliche Akzeptoren

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Aufgabe zu endlichen Akzeptoren

Lukas.bach@student.kit. Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 \, ababbw_2 | w_1, \, w_2 \in \{a, b\}^*\}$ erkennt.

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Lösung

Aufgabe

Konstuiere einen endlichen Akzeptor der die Sprache $L_3 = \{w \in \{a,b\}^* | w \notin L_2\}$ akzeptiert.

Lösung

Ablehnende Zustände wereden zu akzeptierenden und andersrum.

Endliche Akzeptoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgaben zu endlichen Akzeptoren

- Gebe für den unten stehenden Automaten an, welche Sprache dieser akzeptiert.
- Gebe für die folgende Sprache über dem Alphabet $\{a,b\}$ einen endlichen Akzeptor an: $L = \{w \in \Sigma^* | N_a(w) \mod 3 > N_b(w) \mod 2\}$

Lösungen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.edu Lösung 1

 $L = \{w \in \Sigma^* | |w| \text{ mod } 2 = 1\}$ (Worte ungerader Länger)

Automaten

Lösung 2

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare

 a_0b_1 a_2b_1 a₀b₀ a_1b_1 a_1b_0 a_2b_0

Endliche Akzeptoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Automaten

Mealy-Automat

Moore-Automat

Wann wird das leere Wort ε von einem endlichen Akzeptor akzeptiert? $\varepsilon \in L(A)$ gilt genau dann, wenn der Startzustand akzeptiert wird.

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare

Regulärer Ausdruck

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Regulärer Ausdruck

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die gewissen Vorschriften genügt.
- Vorschriften
 - Ø ist ein RA
 - Für jedes $x \in A$ ist x ein RA
 - Wenn R_1 und R_2 RA sind, dann auch $(R_1|R_2)$ und (R_1R_2)
 - Wenn R ein RA ist, dann auch (R*)

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Klammerregeln

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

"Stern- vor Punktrechnung"

Automaten

"Punkt- vor Strichrechnung"

Mealy-Automat

 $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

Moore-Automat

■ Bei mehreren gleichen Operatoren ohne Klammern links geklammert

Endliche

 $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Akzeptoren

Aufgabe

Reguläre Ausdrücke Entferne so viele Klammern wie möglich, ohne die Bedeutung des RA zu verändern.

Rechtslineare

 $\qquad (((((ab)b)*)*)|(\emptyset*)) \rightarrow (abb)**|\emptyset*$

 $((a(a|b))|b) \rightarrow a(a|b)|b$

Alternative Definition

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, 11 Lad Wir können die Syntax von regulären Ausdrücken auch über eine kontextfreie Grammatik definieren.

Automaten

Mealy-Automat Aufgabe

Vervollständigt die folgende Grammatik.

Endliche $G = (\{R\}, \{|, (,), *, \emptyset\} \cup A, R, P)$

 $mit P = \{R \to \emptyset, R \to x \text{ (mit } x \in A), \}$

 $R \rightarrow (R|R), R \rightarrow (RR),$

Reguläre R o (R*)

 $R \to \epsilon$ }

Rechtslineare

Akzeptoren

Wieso brauchen wir ε ?

Durch R beschriebene Sprache

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Notation

Automaten

• Spitze Klammern \langle,\rangle

Mealy-Automat

Regeln

Moore-Automat

Endliche

 $\langle x \rangle = \{x\} \text{ für jedes } x \in A$

Akzeptoren

Reguläre Ausdrücke

• (

 $\qquad \langle \textit{R}* \rangle = \langle \textit{R} \rangle *$

Rechtslineare Grammatiken

Charakterisierung regulärer Sprachen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Satz

Für jede formale Sprache *L* sind äquivalent:

- 1. L kann von einem endlichen Akzeptor erkannt werden.
- 2. L kann durch einen regulären Ausdruck beschrieben werden
- 3. *L* kann von einer rechtslinearen Grammatik erzeugt werden.

Solche Sprachen heißten regulär.

Anwendung von regulären Ausdrücken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Zum selbst probieren: http://regexr.com/

Achtung: Reguläre Ausdrücke in praktischer Programmierung funktionieren zwar ähnlich, haben aber eine andere Syntax und können teils mehr!

Reguläre Ausdrücke

Rechtslineare

Rechtslineare Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Definition

Eine rechtslineare Grammatik ist eine reguläre Grammatik G = (N, T, S, P) mit der Einschränkung, dass alle Produktionen die folgende Form haben:

- $X \rightarrow w$ mit $w \in T^*$ oder
- $x \rightarrow wY \text{ mit } w \in T^*, Y \in N$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu rechtslinearen Grammatiken

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Gebe zu $L = \{w \in \{0,1\}^* | \exists k \in \mathbb{N}_0 : Num_2(w) = 2^k + 1\}$ jeweils einen regulären Ausdruck R und eine rechtslineare Grammatik G an, sodass $L = \langle R \rangle = L(G)$ gilt.

Lösung

- R = (0*10)|(0*1(0)*1) = 0*10|0*10*1
- $G = (\{S, A\}, \{0, 1\}, S, \{S \rightarrow 0S | 10 | 1A, A \rightarrow 0A | 1\})$

Informationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Zum Tutorium

- Lukas Bach
 - Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul