પ્રશ્ન 1(અ) [3 ગુણ]

એક્યુરેસી, રીપ્રોડ્યુસીબિબિટી અને રિપીટેબિલિટી ની વ્યાખ્યા આપો.

જવાબ:

чε	વ્યાખ્યા
એક્યુરેસી	માપવામાં આવતા પરિમાણની વાસ્તવિક કિંમત સાથે માપેલી કિંમતની નજીકતા
રીપ્રોક્યુસીબિલિટી	અલગ-અલગ પરિસ્થિતિઓમાં (અલગ ઓપરેટર, સ્થાન, સમય) એક જ ઇનપુટ માટે એકસમાન માપ આપવાની ઉપકરણની ક્ષમતા
રિપીટેબિલિટી	એક જ પરિસ્થિતિઓમાં વારંવાર માપ લેવામાં આવે ત્યારે એક જ ઇનપુટ માટે એકસમાન માપ આપવાની ઉપકરણની ક્ષમતા

મેમરી ટ્રીક: "ARR - સચોટ પરિણામો વારંવાર"

પ્રશ્ન 1(બ) [4 ગુણ]

વ્હીટસ્ટોન બ્રિજની આકૃતિ દોરી અને સમજાવો.

જવાબ:

આકૃતિ:

લક્ષણ	વિગત
રથના	હીરા આકારમાં જોડાયેલા ચાર અવરોધકો
સંતુલન શરત	R1/R2 = R3/R4 (જ્યારે આઉટપુટ વોલ્ટેજ શૂન્ય હોય)
ઉપયોગ	અજ્ઞાત અવરોધનું ચોક્કસ માપન
કાર્ચપદ્ધતિ	એક બાજુમાં અજ્ઞાત અવરોધક મૂકવામાં આવે છે, બ્રિજ સંતુલિત થાય ત્યાં સુધી બાકીના અવરોધકો સમાયોજિત કરવામાં આવે છે

મેમરી ટ્રીક: "WBMP - સંતુલિત થઈને ચોક્કસ માપો"

પ્રશ્ન 1(ક) [7 ગુણ]

Q મીટરનો સિદ્ધાંત સમજાવો. અને સાથે સાથે પ્રેક્ટીકલ Q મીટરની આકૃતિ દોરી અને સમજાવો.

જવાબ:

Q મીટરનો સિદ્ધાંત:

Q-મીટર શ્રેણી અનુનાદના સિદ્ધાંત પર કાર્ય કરે છે, જ્યાં Q ફેક્ટર અનુનાદ સમયે લાગુ વોલ્ટેજની તુલનામાં કેપેસિટર પરના વોલ્ટેજના ગુણોત્તર તરીકે માપવામાં આવે છે.

પ્રેક્ટીકલ Q મીટરની આકૃતિ:

ยวร	ธเน้
RF ઓસિલેટર	ચલ આવૃત્તિ સિગ્નલ પૂરા પાડે છે
વર્ક કોઇલ	ટેસ્ટ સર્કિટમાં ઇન્ડક્ટિવલી સિગ્નલ જોડે છે
અનુનાદ સર્કિટ	ચલ કેપેસિટર C સાથે ટેસ્ટ ઇન્ડક્ટર L શ્રેણીમાં
VTVM	કેપેસિટર પરના વોલ્ટેજને માપે છે
Q- e se	સીધો Q મૂલ્ય વાંચવા માટે અંશાંકિત

- **અનુનાદ સૂત્ર**: f = 1/(2π√LC)
- **Q ગણતરી**: Q = Vc/Vs (કેપેસિટર પરનું વોલ્ટેજ / સ્રોત વોલ્ટેજ)

મેમરી ટ્રીક: "RIVQ - અનુનાદ મૂલ્યવાન ગુણવત્તા દર્શાવે છે"

પ્રશ્ન 1(ક OR) [7 ગુણ]

મુવિંગ કોઈલ ટાઈપ ઇન્સ્ટ્રુમેન્ટની રચના દોરો અનેસમજાવો.

જવાબ:

ยรร	વિગત
કાયમી ચુંબક	મજબૂત ચુંબકીય ક્ષેત્ર બનાવે છે
મુવિંગ કોઇલ	એલ્યુમિનિયમ ફ્રેમ પર વીંટળાયેલી હળવી કોઇલ
સ્પ્રિંગ્સ	નિયંત્રિત બળ પૂરું પાડે છે અને વીજળીક જોડાણો બનાવે છે
પોઇન્ટર	કોઇલ સાથે જોડાયેલ, અંશાંકિત સ્કેલ પર ગતિ કરે છે
કોર	ચુંબકીય પ્રવાહને કેન્દ્રિત કરવા માટે નરમ લોખંડનો નળાકાર કોર

- કાર્ય સિદ્ધાંત: વળાંક બળ = BIIN (B-ક્ષેત્ર તીવ્રતા, I-વીજપ્રવાહ, I-લંબાઈ, N-આંટા)
- નિયંત્રિત બળ: વળાંક ખૂણા પ્રમાણે સ્પ્રિંગ્સ દ્વારા પ્રદાન કરાયેલ

મેમરી ટ્રીક: "MAPS-C: ચુંબક ક્રિયા કરે છે, પોઇન્ટર વીજપ્રવાહ બતાવે છે"

પ્રશ્ન 2(અ) [3 ગુણ]

અલગ અલગ પ્રકારની એરરની યાદી બનાવો અને કોઈપણ બે સમજાવો.

જવાબ:

એરર ના પ્રકાર
ગ્રોસ એરર (મોટી ભૂલો)
સિસ્ટેમેટિક એરર (પદ્ધતિસરની ભૂલો)
રેન્ડમ એરર (અનિયમિત ભૂલો)
પર્યાવરણીય એરર
લોડિંગ એરર

બે એરર ની સમજૂતી:

- 1. સિસ્ટેમેટિક એરર:
 - ૦ વાસ્તવિક મૂલ્યથી સાતત્યપૂર્ણ અને અનુમાનિત વિચલન
 - ૦ ઉપકરણ અંશાંકન, ડિઝાઇન, અથવા પદ્ધતિને કારણે થાય છે

2. રેન્ડમ એરર:

- ૦ માપનમાં અણધારી વિવિધતાઓ
- ૦ નોઇઝ, પર્યાવરણીય ફેરફારો, અથવા નિરીક્ષકની મર્યાદાઓને કારણે થાય છે

મેમરી ટ્રીક: "GSREL - સારી પદ્ધતિઓ ભૂલ સ્તર ઘટાડે છે"

પ્રશ્ન 2(બ) [4 ગુણ]

મેક્સવેલ બ્રિજ દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

ยรร	รเช้
R1, R2, R3, R4	બ્રિજના બાહુઓમાં ચોકસાઈપૂર્ણ અવરોધકો
અજ્ઞાત L	માપવાના અવરોધ સાથેનો ઇન્ડક્ટર
કેપેસિટર C	સામેની બાજુમાં પ્રમાણભૂત કેપેસિટર
ડિટેક્ટર	નલ ડિટેક્ટર (ગેલ્વેનોમીટર)

• **સંતુલન સમીકરણ**: L = CR2R3

• અવરોધ સમીકરણ: RL = R2R3/R4

• **ઉપયોગ**: નોંધપાત્ર અવરોધ સાથેના ઇન્ડક્ટન્સનું માપન

મેમરી ટ્રીક: "MBLR - મેક્સવેલ બ્રિજ અવરોધને જોડે છે"

પ્રશ્ન 2(ક) [7 ગુણ]

મુવિંગ આયર્ન ટાઈપ ઇન્સ્ટ્રુમેન્ટની રચના દોરો અનેસમજાવો.

જવાબ:

ยรร	વિગત
કોઇલ	માપન કરવાના વીજપ્રવાહને વહન કરતી સ્થિર કોઇલ
આયર્ન વેન્સ	બે નરમ લોખંડના ટુકડા (એક સ્થિર, એક ગતિશીલ)
પોઇન્ટર	ગતિશીલ વેન સાથે જોડાયેલ
કંટ્રોલ સ્મ્રિંગ	અવરોધિત બળ પૂરું પાડે છે
ડેમ્પિંગ મિકેનિઝમ	હલકા એલ્યુમિનિયમ પિસ્ટનનો ઉપયોગ કરીને હવાના ઘર્ષણ દ્વારા ડેમ્પિંગ

- **કાર્ય સિદ્ધાંત**: જ્યારે કોઇલમાંથી વીજપ્રવાહ પસાર થાય છે, ત્યારે બંને લોખંડના ટુકડા સમાન ધ્રુવતા સાથે ચુંબકિત થાય છે જેના કારણે વિકર્ષણ થાય છે
- **ફાયદા**: AC અને DC બંને માટે યોગ્ય, મજબૂત બાંધકામ
- **ગેરફાયદા**: બિન-સમાન સ્કેલ, PMMC કરતાં વધુ વીજ વપરાશ

મેમરી ટ્રીક: "IRAM - આયર્ન વિકર્ષણ ગતિ સક્રિય કરે છે"

પ્રશ્ન 2(અ OR) [3 ગુણ]

બેસિક ડીસી વોલ્ટમીટર સમજાવો.

જવાબ:

ยรร	รเช่
PMMC મૂવમેન્ટ	મૂળભૂત વીજપ્રવાહ-સંવેદનશીલ મૂવમેન્ટ
મલ્ટિપ્લાયર રેઝિસ્ટર	ઉચ્ચ-મૂલ્યનો શ્રેણી અવરોધક
સ્કેલ	સીધા વોલ્ટેજ વાંચવા માટે અંશાંકિત

- **કાર્ય સિદ્ધાંત**: વોલ્ટમીટર શ્રેણી અવરોધક સાથેનું PMMC મીટર છે
- **ગણતરી**: Rs = (V/lm) Rm (Rs=શ્રેણી અવરોધક, V=વોલ્ટેજ, lm=પૂર્ણ સ્કેલ વીજપ્રવાહ, Rm=મીટર અવરોધ)

મેમરી ટ્રીક: "SVM - શ્રેણી વોલ્ટેજ માપન"

પ્રશ્ન 2(બ OR) [4 ગુણ]

શેરિંગ બ્રિજ દોરો અને સમજાવો.

જવાબ:

आङ्गति:

ยรร	รเช็
C1	અજ્ઞાત કેપેસિટર (લોસ સાથે)
R1	C1 માં લોસનું પ્રતિનિધિત્વ કરતો અવરોધ
R3, R4	ચોકસાઈપૂર્ણ અવરોધકો
C4	પ્રમાણભૂત લોસ-ફ્રી કેપેસિટર
ડિક્ટર	નલ સૂચક

- સંતુલન સમીકરણ: C1 = C4(R3/R1)
- વિસર્જન ફેક્ટર: D = ωC1R1 = ωC4R4
- ઉપયોગ: કેપેસિટન્સ અને ડાયલેક્ટ્રિક લોસનું માપન

મેમરી ટ્રીક: "SCDR - શેરિંગ કેપેસિટન્સ અવરોધ નક્કી કરે છે"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ઇલેક્ટ્રોનિક મલ્ટીમીટર ઉપર ટૂંકનોંધ લખો.

જવાબ:

આકૃતિ:

લક્ષણ	વિગત
કાર્યો	વોલ્ટેજ (AC/DC), વીજપ્રવાહ (AC/DC), અવરોદ્ય, અને અન્ય પરિમાણોનું માપન કરે છે
સંવેદનશીલતા	એનાલોગ મીટર કરતાં વધુ સંવેદનશીલતા (સામાન્ય રીતે 10MΩ ઇનપુટ ઇમ્પીડન્સ)
રેન્જ	ઘણી પસંદ કરી શકાય તેવી માપન રેન્જ
ચોકસાઈ	ગુણવત્તા અને પરિમાણ પર આધારિત 0.1% થી 3%
ડિસ્પ્લે	ડિજિટલ રીડઆઉટ અથવા એનાલોગ પોઇન્ટર

- પ્રકાર: એનાલોગ ઇલેક્ટ્રોનિક મલ્ટીમીટર, ડિજિટલ મલ્ટીમીટર (DMM)
- ફાયદા: ઉચ્ચ ઇનપુટ ઇમ્પીડન્સ, ન્યૂનતમ લોડિંગ અસર, ઘણા કાર્યો
- **મુખ્ય સર્કિટ**: ઇનપુટ એટેન્યુએટર, સિગ્નલ કન્વર્ટર, એમ્પ્લિફાયર, ટેક્ટિફાયર, ડિસ્પ્લે ડ્રાઇવર

મેમરી ટ્રીક: "VCAR-D: વોલ્ટેજ, વીજપ્રવાહ અને અવરોધ - પ્રદર્શિત"

પ્રશ્ન 3(અ) [3 ગુણ]

CRO ના અલગ અલગ પ્રોબ્સ સમજાવો.

જવાબ:

પ્રોબના પ્રકાર	વિગત
પેસિવ પ્રોબ (1X)	સીધા જોડાણ પ્રોબ, કોઈ ઘટાડો નહીં
પેસિવ પ્રોબ (10X)	સિગ્નલને 10 ગણો ઘટાડે છે, સર્કિટ લોડિંગ ઘટાડે છે
એક્ટિવ પ્રોબ	ઉચ્ચ ઇમ્પીડન્સ અને ઓછા કેપેસિટન્સ માટે એક્ટિવ ઘટકો ધરાવે છે
કરંટ પ્રોબ	ચુંબકીય ક્ષેત્ર દ્વારા વીજપ્રવાહ માપે છે

- **પસંદગીના માપદંડ**: બેન્ડવિડ્થ, લોડિંગ ઇફેક્ટ, માપન રેન્જ
- **કોમ્પેન્સેશન**: સચોટ વેવફોર્મ માટે 10X પ્રોબ્સને કોમ્પેન્સેશન એડજસ્ટમેન્ટની જરૂર પડે છે

મેમરી ટ્રીક: "PAC-S: પ્રોબ્સ સર્કિટ સેન્સિંગની મંજૂરી આપે છે"

પ્રશ્ન 3(બ) [4 ગુણ]

કલેમ્પોન મીટરની રચના દોરો અને સમજાવો.

જવાબ:

आङ्गति:

ยวร	รเช้
સ્પ્લિટ કોર CT	વાહક ચારે બાજુ ક્લેમ્પ કરતું ફેરાઇટ કોર
કોઇલ વાઇન્ડિંગ	પ્રેરિત વીજપ્રવાહ ઉત્પન્ન કરતી સેકન્ડરી વાઇન્ડિંગ
સિગ્નલ સર્કિટરી	વીજપ્રવાહને માપી શકાય તેવા સિગ્નલમાં રૂપાંતરિત કરે છે
ડિસ્પ્લે યુનિટ	એમ્પ્સમાં અંશાંકિત ડિજિટલ/એનાલોગ ડિસ્પ્લે
ટ્રિગર મિકેનિઝમ	વાહક આસપાસ કોર ખોલે/બંધ કરે છે

- કાર્ય સિદ્ધાંત: કરંટ ટ્રાન્સફોર્મર પર આધારિત, સર્કિટ તોડ્યા વિના વીજપ્રવાહ માપે છે
- **ઉપયોગો**: લાઇવ વાહકોમાં AC વીજપ્રવાહને સુરક્ષિત રીતે માપવો

મેમરી ટ્રીક: "CAMP - ચુંબકીય સિદ્ધાંત દ્વારા વીજપ્રવાહનું વિશ્લેષણ"

પ્રશ્ન 3(ક) [7 ગુણ]

સક્સેસિવ એપ્રોક્સિમેશન ટાઈપ DVM ઉપર ટૂંક નોંધ લખો.

જવાબ:

ยรร	รเช้
સેમ્પલ એન્ડ હોલ્ડ	ઇનપુટ વોલ્ટેજને પકડે અને જાળવે છે
કમ્પેરેટર	ઇનપુટને DAC આઉટપુટ સાથે સરખાવે છે
સક્સેસિવ એપ્રોક્સિમેશન રજિસ્ટર	બાઇનરી સર્ચ એલ્ગોરિધમને નિયંત્રિત કરે છે
D/A કન્વર્ટર	તુલના માટે એનાલોગ વોલ્ટેજ ઉત્પન્ન કરે છે
ડિજિટલ ડિસ્પ્લે	માપેલી કિંમત બતાવે છે

- **કાર્ય સિદ્ધાંત**: એનાલોગ ઇનપુટને મેળ ખાતી ડિજિટલ કિંમત શોધવા બાઇનરી સર્ચ એલ્ગોરિધમનો ઉપયોગ કરે છે
- **રપાંતરનો સમય**: ઇનપુટના કદની પરવા કર્યા વિના નિશ્ચિત (8-16 બિટ માટે 8-16 ક્લોક સાયકલ)
- ફાયદા: મધ્યમ ગતિ, સારી રિઝોલ્યુશન, સાતત્યપૂર્ણ રૂપાંતરનો સમય
- ઉપયોગો: સામાન્ય હેતુના માપન જ્યાં મધ્યમ ગતિ પૂરતી છે

મેમરી ટ્રીક: "SACD - સેમ્પલ, એપ્રોક્સિમેટ, કમ્પેર, ડિસ્પ્લે"

પ્રશ્ન 3(અ OR) [3 ગુણ]

PH સેન્સર સમજાવો.

જવાબ:

ยวร	รเช้
ગ્લાસ ઇલેક્ટ્રોડ	હાઇડ્રોજન આયન સાંદ્રતા પ્રત્યે સંવેદનશીલ
રેફરન્સ ઇલેક્ટ્રોડ	સ્થિર સંદર્ભ પોટેન્શિયલ પ્રદાન કરે છે
તાપમાન સેન્સર	તાપમાનની અસરો માટે વળતર આપે છે
સિગ્નલ કન્ડિશનર	મિલિવોલ્ટ સિગ્નલને એમ્પ્લિફાય અને પ્રોસેસ કરે છે

• **કાર્ય સિદ્ધાંત**: હાઇડ્રોજન આયન સાંદ્રતાના પ્રમાણમાં વોલ્ટેજ ઉત્પન્ન કરે છે

• **આઉટપુટ**: 25°C પર દર pH એકમ દીઠ ~59 mV

• **રેન્જ**: 0-14 pH સ્કેલ (એસિડિક થી આલ્કલાઇન)

મેમરી ટ્રીક: "PHRV - pH વોલ્ટેજ સાથે સંબંધિત છે"

પ્રશ્ન 3(બ OR) [4 ગુણ]

ઇલેક્ટ્રોનિક વોટ મીટરની રચના દોરો અને સમજાવો.

જવાબ:

બ્લોક ડાયાગ્રામ:

ยรร	รเช้
કરંટ સેન્સર	CT અથવા શન્ટ દ્વારા લોડ કરંટ માપે છે
વોલ્ટેજ સેન્સર	પોટેન્શિયલ ડિવાઇડર દ્વારા વોલ્ટેજ માપે છે
મલ્ટિપ્લાયર	ક્ષણિક વોલ્ટેજ અને વીજપ્રવાહને ગુણાકાર કરે છે
ઇન્ટિગ્રેટર	સમય પર પાવરની સરેરાશ લે છે
ડિસ્પ્લે	વોટ્સમાં ડિજિટલ રીડઆઉટ

• **કાર્ય સિદ્ધાંત**: પાવર = V × I × cosθ (cosθ એ પાવર ફેક્ટર છે)

• ફાયદા: ઉચ્ચ યોકસાઈ, વિશાળ શ્રેણી, ડિજિટલ ડિસ્પ્લે

• **પ્રકાર**: ટ્રુ RMS, એવરેજ સેન્સિંગ

મેમરી ટ્રીક: "VIMP - વોલ્ટેજ અને તીવ્રતા પાવર બનાવે છે"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ઇન્ટીગ્રેટિંગ ટાઈપ DVM ઉપર ટૂંક નોંધ લખો.

જવાબ:

уѕіғ	કાર્ય સિદ્ધાંત
ક્યુઅલ-સ્લો પ	નિશ્ચિત સમય માટે ઇનપુટને ઇન્ટિગ્રેટ કરે છે, પછી સંદર્ભ સાથે ડિસ્ચાર્જ સમય માપે છે
વોલ્ટેજ-ટુ-ફ્રિક્વન્સી	વોલ્ટેજને આવૃત્તિમાં રૂપાંતરિત કરે છે, નિશ્ચિત સમય પર પલ્સની ગણતરી કરે છે
ચાર્જ-બેલેન્સ	ઇનપુટ ચાર્જને સંદર્ભ ચાર્જ સાથે સંતુલિત કરે છે

મુખ્ય લક્ષણો:

- **નોઇઝ રિજેક્શન**: પાવર લાઇન નોઇઝ (50/60Hz) નું ઉત્કૃષ્ટ રિજેક્શન
- ચોકસાઈ: સમય સરેરાશને કારણે ઉચ્ચ ચોકસાઈ
- રૂપાંતરની ગતિ: સક્સેસિવ એપ્રોક્સિમેશન પ્રકાર કરતાં ધીમી
- રિઝોલ્યુશન: સામાન્ય રીતે 4½ થી 6½ અંક

ઉપયોગો: ચોકસાઈપૂર્ણ માપ, ધોંધાટિયા વાતાવરણ, બેન્ય ઇન્સ્ટ્રુમેન્ટ્સ

મેમરી ટ્રીક: "TINA - સમય ઇન્ટિગ્રેશન સરેરાશને શૂન્ય કરે છે"

પ્રશ્ન 4(અ) [3 ગુણ]

ડિજિટલ સ્ટોરેજ ઓસીલોસ્કોપના કાયદા અને ઉપયોગો લખો.

જવાબ:

ફાયદા	ઉપયોગો
પ્રી-ટ્રિગર વ્યુઇંગ	ક્ષણિક ઘટનાઓને કેપ્યર કરવી
સિગ્નલ સ્ટોરેજ	અનિયમિત ખામીઓનું વિશ્લેષણ
વેવફોર્મ પ્રોસેસિંગ	જટિલ સિગ્નલ વિશ્લેષણ
ઉચ્ચ બેન્ડવિડ્થ	ઉચ્ચ-ગતિ ડિજિટલ સર્કિટ ટેસ્ટિંગ
મલ્ટિપલ ચેનલ ડિસ્પ્લે	ઘણા સિગ્નલોની તુલના

- **મુખ્ય લાલ**: એક-વખતની ઘટનાઓને કેપ્યર કરી શકે છે, પછીના વિશ્લેષણ માટે વેવફોર્મ સંગ્રહિત કરી શકે છે
- **ડિજિટલ સુવિધાઓ**: ઓટોમેટેડ માપ, FFT વિશ્લેષણ, PC કનેક્ટિવિટી

મેમરી ટ્રીક: "SPADE - સંગ્રહ, પ્રોસેસિંગ, વિશ્લેષણ, ડિસ્પ્લે, ઘટનાઓ"

પ્રશ્ન 4(બ) [4 ગુણ]

ઇલેક્ટ્રોનિક એનર્જી મીટર ઉપર ટૂંકનોંધ લખો.

જવાબ:

બ્લોક ડાયાગ્રામ:

ยวร	รเข้
વોલ્ટેજ અને કરંટ સેન્સર	લાઇન વોલ્ટેજ અને લોડ કરંટ માપે છે
મલ્ટિપ્લાયર સર્કિટ	ક્ષણિક પાવરની ગણતરી કરે છે
ઇન્ટિગ્રેટર	સમય પર પાવરને ઊર્જામાં રૂપાંતરિત કરે છે
માઇક્રોકંટ્રોલર	સિગ્નલ પ્રોસેસ કરે છે અને ડિસ્પ્લેને નિયંત્રિત કરે છે
LCD ડિસ્પ્લે	kWh માં ઊર્જા વપરાશ બતાવે છે

- કાર્ય સિદ્ધાંત: ઊર્જા = [P.dt (સમય પર પાવરનું ઇન્ટિગ્રલ)
- ફાયદા: કોઈ ગતિશીલ ભાગો નહીં, ઉચ્ચ ચોકસાઈ, છેડછાડ શોધન
- **સુવિદ્યાઓ**: મલ્ટિપલ ટેરિફ સપોર્ટ, બે-દિશા માપન, રિમોટ રીડિંગ

મેમરી ટ્રીક: "VICES - વોલ્ટેજ અને કરંટ ઊર્જા સરવાળો"

પ્રશ્ન 4(ક) [7 ગુણ]

એનાલોગ C.R.O. નો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો, અને દરેક બ્લોકનું વર્કિંગ લખો.

જવાબ:

બ્લોક	รเช้
વર્ટિકલ સિસ્ટમ	એમ્પ્લિટ્યુડ ડિસ્પ્લેને નિયંત્રિત કરે છે (સિગ્નલ અટેન્યુએશન, એમ્પ્લિફિકેશન)
હોરિઝોન્ટલ સિસ્ટમ	ટાઇમ બેઝને નિયંત્રિત કરે છે (સ્વીપ જનરેશન)
ટ્રિગર સિસ્ટમ	ઇનપુટ સિગ્નલ સાથે હોરિઝોન્ટલ સ્વીપને સિંક્રનાઇઝ કરે છે
CRT	સિગ્નલને પ્રદર્શિત કરે છે (ઇલેક્ટ્રોન ગન, ડિફ્લેક્શન પ્લેટ્સ, ફોસ્ફર સ્ક્રીન)
પાવર સપ્લાય	બધા સર્કિટને જરૂરી વોલ્ટેજ પ્રદાન કરે છે

- **વર્ટિકલ સિસ્ટમ**: ઇનપુટ સિગ્નલને પ્રોસેસ કરે છે, Y-એક્સિસ ડિફ્લેક્શનને નિયંત્રિત કરે છે
- **હોરિઝોન્ટલ સિસ્ટમ**: X-એક્સિસ ડિફ્લેક્શનને નિયંત્રિત કરે છે (ટાઇમ બેઝ)
- ટ્રિગરિંગ: એક જ બિંદુ પર સ્વીપ શરૂ કરીને વેવફોર્મ ડિસ્પ્લેને સ્થિર કરે છે
- CRT ડિસ્પ્લે: ઇલેક્ટ્રિકલ સિગ્નલને દેખાતી ટ્રેસમાં રૂપાંતરિત કરે છે

મેમરી ટ્રીક: "VTHCP - વર્ટિકલ, ટાઇમ, હોરિઝોન્ટલ, CRT, પાવર"

પ્રશ્ન 4(અ OR) [3 ગુણ]

પીજો ઈલેક્ટ્રીક ટ્રાન્સક્યુસર દોરો અને સમજાવો.

જવાબ:

લક્ષણ	વિગત
સિદ્ધાંત	યાંત્રિક રીતે દબાણ કરવામાં આવે ત્યારે વિદ્યુત ચાર્જ ઉત્પન્ન કરે છે
સામગ્રી	ક્વાર્ટ્ઝ, રોશેલ સોલ્ટ, PZT સિરામિક્સ
કાર્યપદ્ધતિ	સીધી અસર: બળ → વોલ્ટેજ, વિપરીત અસર: વોલ્ટેજ → વિસ્થાપન
આઉટપુટ	લાગુ કરેલા બળના પ્રમાણમાં ઉચ્ચ ઇમ્પીડન્સ વોલ્ટેજ

- ઉપયોગો: પ્રેશર સેન્સર, એક્સેલેરોમીટર, અલ્ટ્રાસોનિક ઉપકરણો
- ફાયદા: ઉચ્ચ સંવેદનશીલતા, ઝડપી પ્રતિસાદ, વિશાળ આવૃત્તિ શ્રેણી
- મર્યાદાઓ: ઉચ્ચ આઉટપુટ ઇમ્પીડન્સ, તાપમાન સંવેદનશીલ

મેમરી ટ્રીક: "PFVD - દબાણ વિસ્થાપન દ્વારા વોલ્ટેજ બનાવે છે"

પ્રશ્ન 4(બ OR) [4 ગુણ]

CRO ની મદદથી ફિકવન્સી મેઝરમેન્ટ માટેની આકૃતિ દોરો અને સમજાવો.

જવાબ:

પદ્ધતિ 1: લિસાજોસ પેટર્ન નો ઉપયોગ

પદ્ધતિ 2: ટાઇમ બેઝનો ઉપયોગ

પદ્ધતિ	ગણતરી
લિસાજોસ પેટર્ન	$Fx = Fy \times (Nx/Ny)$
સમય માપન	f = 1/T (T એ ટાઇમ બેઝનો ઉપયોગ કરીને માપવામાં આવેલો સમયગાળો છે)
XY મોડ	જાણીતા સંદર્ભ સાથે અજ્ઞાત આવૃત્તિની તુલના

- **ટાઇમ બેઝ પદ્ધતિ**: વેવફોર્મનો સમયગાળો માપો, આવૃત્તિની ગણતરી 1/T તરીકે કરો
- **લિસાજોસ પદ્ધતિ**: સંદર્ભને X ઇનપુટ સાથે જોડો, અજ્ઞાતને Y ઇનપુટ સાથે જોડો
- **કિજિટલ CRO**: આંતરિક કાઉન્ટરનો ઉપયોગ કરીને સીધો આવૃત્તિ રીડઆઉટ

મેમરી ટીક: "LTX - X-અક્ષ માટે લિસાજોસ અથવા સમય"

પ્રશ્ન 4(ક OR) [7 ગુણ]

થર્મિસ્ટર અને થર્મોકપલ દોરો અને સમજાવો.

જવાબ:

થર્મિસ્ટર આકૃતિ:

થર્મોકપલ આકૃતિ:

ટ્રાન્સક્યુસર	સિદ્ધાંત	લક્ષણો
થર્મિસ્ટર	તાપમાન સાથે અવરોધમાં ફેરફાર	ઉચ્ચ સંવેદનશીલતા, બિન-રેખીય, મર્યાદિત શ્રેણી
થર્મોકપલ	અસમાન ધાતુઓના સંયોજનથી વોલ્ટેજ ઉત્પન્ન થાય છે	વિશાળ શ્રેણી, રેખીય, ઓછી સંવેદનશીલતા

થર્મિસ્ટર પ્રકાર:

• NTC: નેગેટિવ તાપમાન ગુણાંક (તાપમાન વધવાથી અવરોધ ઘટે છે)

• PTC: પોઝિટિવ તાપમાન ગુણાંક (તાપમાન વધવાથી અવરોધ વધે છે)

થર્મોકપલ પ્રકાર:

• **ટાઇપ K**: ક્રોમેલ-એલ્યુમેલ (-200°C થી 1350°C)

• **ટાઇપ J**: આયર્ન-કોન્સ્ટન્ટન (-40°C થી 750°C)

• **ટાઇપ T**: કોપર-કોન્સ્ટન્ટન (-200°C થી 350°C)

મેમરી ટ્રીક: "TRT/TV] - તાપમાન અવરોધ/વોલ્ટેજ જંક્શન"

પ્રશ્ન 5(અ) [3 ગુણ]

વેલોસિટી ટ્રાન્સક્યુસર દોરો અને સમજાવો.

જવાબ:

ยวร	รเช้
કાયમી ચુંબક	ચુંબકીય ક્ષેત્ર બનાવે છે
મુવિંગ કોઇલ	વેગના પ્રમાણમાં વોલ્ટેજ ઉત્પન્ન કરે છે
હાઉસિંગ	માળખાને અને ચુંબકીય સર્કિટને સમર્થન આપે છે
આઉટપુટ સર્કિટ	માપન માટે સિગ્નલને કન્ડિશન કરે છે

• **કાર્ય સિદ્ધાંત**: ફેરાડેના ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શનના નિયમ પર આધારિત

• **આઉટપુટ**: વેગના પ્રમાણમાં વોલ્ટેજ (V = Blv)

• ઉપયોગો: વાયબ્રેશન માપન, ભૂકંપીય મોનિટરિંગ, મોશન નિયંત્રણ

મેમરી ટ્રીક: "VMMF - વેગ ચુંબકીય પ્રવાહ બનાવે છે"

પ્રશ્ન 5(બ) [4 ગુણ]

ટ્રાન્સક્યુસર નું વર્ગીકરણ કરો અને સમજાવો.

જવાબ:

વર્ગીકરણ	รเลน
ઊર્જા રૂપાંતરણ દ્વારા	એક્ટિવ (સ્વ-જનરેટિંગ) vs. પેસિવ (બાહ્ય પાવરની જરૂર)
માપન પદ્ધતિ દ્વારા	પ્રાથમિક vs. ગૌણ
ભૌતિક સિદ્ધાંત દ્વારા	રેઝિસ્ટિવ, કેપેસિટિવ, ઇન્ડક્ટિવ, ફોટોઇલેક્ટ્રિક, વગેરે
ઉપયોગ દ્વારા	તાપમાન, દબાણ, પ્રવાહ, સ્તર, વગેરે

સમજૂતી:

язіг	ઉદાહરણો	લક્ષણો
એક્ટિવ	થર્મોકપલ, પિઝોઇલેક્ટ્રિક	બાહ્ય પાવર વિના આઉટપુટ ઉત્પન્ન કરે છે
પેસિવ	RTD, સ્ટ્રેન ગેજ	બાહ્ય ઉત્તેજનાની જરૂર પડે છે
રેઝિસ્ટિવ	થર્મિસ્ટર, પોટેન્શિયોમીટર	ઇનપુટ સાથે અવરોધ બદલે છે
કેપેસિટિવ	પ્રેશર સેન્સર, પ્રોક્સિમિટી	ઇનપુટ સાથે કેપેસિટન્સ બદલે છે
ઇન્ડક્ટિવ	LVDT, પ્રોક્સિમિટી	ઇનપુટ સાથે ઇન્ડક્ટન્સ બદલે છે

મેમરી ટ્રીક: "APRCI - એક્ટિવ પેસિવ રેઝિસ્ટિવ કેપેસિટિવ ઇન્ડક્ટિવ"

પ્રશ્ન 5(ક) [7 ગુણ]

LVDT ઉપર ટૂંકનોંધ લખો.

જવાબ:

આકૃતિ:

ยรร	รเน้
પ્રાથમિક કોઇલ	AC સોર્સ સાથે જોડાયેલ ઉત્તેજના કોઇલ
સેકન્ડરી કોઇલ	શ્રેણી વિરોધી જોડાણમાં બે સમાન કોઇલ
ફેરોમેગ્નેટિક કોર	પારસ્પરિક ઇન્ડક્ટન્સ બદલતો ગતિશીલ કોર
સિગ્નલ કન્ડિશનર	ડિફરેન્શિયલ આઉટપુટને વિસ્થાપન માપનમાં રૂપાંતરિત કરે છે

કાર્ય સિદ્ધાંત:

- શૂન્ય સ્થિતિએ: બંને સેકન્ડરીમાં સમાન વોલ્ટેજ પ્રેરિત થાય છે, નેટ આઉટપુટ શૂન્ય
- કોર મૂવમેન્ટ: સેકન્ડરી વોલ્ટેજમાં અસંતુલન બનાવે છે
- આઉટપુટ વોલ્ટેજ: વિસ્થાપનના પ્રમાણમાં, ફેઝ દિશા દર્શાવે છે

લક્ષણો:

- **રેન્જ**: સામાન્ય રીતે ±0.5mm થી ±25cm
- રેખિયતા: નિર્ધારિત રેન્જમાં ઉત્કૃષ્ટ
- રિઝોલ્યુશન: લગભગ અનંત (રીડઆઉટ સર્કિટ દ્વારા મર્યાદિત)
- ફાયદા: ઘર્ષણ વિનાનું, મજબૂત, વિશ્વસનીય, ઉચ્ચ રિઝોલ્યુશન

મેમરી ટ્રીક: "CPSO: કોર પોઝિશન આઉટપુટ બદલે છે"

પ્રશ્ન 5(અ OR) [3 ગુણ]

સાદા ફિક્વન્સી કાઉન્ટરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

બ્લોક ડાયાગ્રામ:

બ્લોક	รเช็
ઇનપુટ કન્ડિશનિંગ	સિગ્નલને પત્સમાં રૂપાંતરિત કરે છે
ગેટ કંટ્રોલ	ટાઇમ બેઝના આધારે ગણતરી અવધિને નિયંત્રિત કરે છે
ટાઇમ બેઝ	યોક્કસ સંદર્ભ સમય અંતરાલ પ્રદાન કરે છે
કાઉન્ટર	ગેટ અવધિ દરમિયાન ઇનપુટ પલ્સની ગણતરી કરે છે
ડિસ્પ્ <u>લે</u>	ગણતરી પરિણામ (આવૃત્તિ) બતાવે છે

- **કાર્ય સિદ્ધાંત**: ચોક્કસ સમય અંતરાલ (સામાન્ય રીતે 1 સેકન્ડ) પર પલ્સની ગણતરી કરે છે
- **આવૃત્તિ ગણતરી**: f = ગણતરી/સમય અંતરાલ
- રિઝોલ્યુશન: ટાઇમ બેઝ ચોકસાઈ અને ગેટ સમય દ્વારા નિર્ધારિત

મેમરી ટ્રીક: "IGTCD - ઇનપુટ ગેટેડ ટાઇમ કાઉન્ટ્સ ડિસ્પ્લે"

પ્રશ્ન 5(બ OR) [4 ગુણ]

કેપેસિટીવ ટ્રાન્સડ્યુસર દોરો અને સમજાવો.

જવાબ:

કોન્ફિગરેશન	સિદ્ધાંત	ઉપયોગ
વેરિએબલ ગેપ	C = દ₀દૃA/d (અંતર સાથે વ્યસ્ત રીતે બદલાય છે)	દબાણ, વિસ્થાપન
વેરિએબલ એરિયા	C = દ₀દૃA/d (ઓવરલેપ એરિયા સાથે સીધો બદલાવ)	ખૂણીય સ્થિતિ, સ્તર
વેરિએબલ ડાયલેક્ટ્રિક	C = દ ₀ દ _r A/d (ડાયલેક્ટ્રિક કોન્સ્ટન્ટ સાથે બદલાય છે)	ભેજ, સામગ્રી વિશ્લેષણ

કાર્ય સિદ્ધાંત:

- ભૌતિક પરિમાણ સાથે કેપેસિટન્સ બદલાય છે
- સિગ્નલ કન્ડિશનિંગ કેપેસિટન્સને વોલ્ટેજ/વીજપ્રવાહમાં રૂપાંતરિત કરે છે
- ઉચ્ચ ઇમ્પીડન્સ આઉટપુટને યોગ્ય શીલ્ડિંગની જરૂર પડે છે

ફાયદા: ઉચ્ચ સંવેદનશીલતા, કોઈ ગતિશીલ સંપર્ક નહીં, ઓછું દળ

મેમરી ટ્રીક: "CGAD - કેપેસિટન્સ ગેપ એરિયા ડાયલેક્ટ્રિક"

પ્રશ્ન 5(ક OR) [7 ગુણ]

ફંકશન જનરેટરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

બ્લોક	รเช้
ફ્રિક્વન્સી કંટ્રોલ	ઓસિલેટરની આવૃત્તિ સેટ કરે છે (સામાન્ય રીતે 0.1Hz થી 20MHz)
વેવફોર્મ જનરેટર	મૂળભૂત વેવફોર્મ ઉત્પન્ન કરે છે (સાઇન, સ્ક્વેર, ટ્રાયએંગલ)
મોડ સિલેક્ટર	આઉટપુટ વેવફોર્મના પ્રકારની પસંદગી કરે છે
એમ્પ્લિફાયર અને એટેન્યુએટર	આઉટપુટ એમ્પ્લિટ્યુડને નિયંત્રિત કરે છે
આઉટપુટ બફર	ઓછી આઉટપુટ ઇમ્પીડન્સ પ્રદાન કરે છે
સ્વીપ સર્કિટ	રેન્જ પર આવૃત્તિને આપોઆપ બદલે છે
AM/FM મોક્યુલેટર	મોક્યુલેશન કાર્યો માટે સિગ્નલ બદલે છે

કાર્ય સિદ્ધાંત:

- RC ઓસિલેટર અથવા DDS નો ઉપયોગ કરીને સાઇન વેવ ઉત્પન્ન કરે છે
- શેપ કન્વર્ટર્સ સાઇનને સ્ક્વેર અને ટ્રાયએંગલમાં રૂપાંતરિત કરે છે
- આઉટપુટ એમ્પ્લિટ્યુડ એટેન્યુએટર સર્કિટ દ્વારા નિયંત્રિત
- આધુનિક જનરેટર ડિજિટલ સિન્થેસિસ તકનીકોનો ઉપયોગ કરે છે

ઉપયોગો: સર્કિટ ટેસ્ટિંગ, સિગ્નલ ઇન્જેક્શન, ફિલ્ટર કેરેક્ટરાઇઝેશન

મેમરી ટ્રીક: "FWMASO - ફ્રિક્વન્સી વેવફોર્મ મોડ એમ્પ્લિટ્યુડ સ્વીપ આઉટપુટ"