13 MULTIPLE INTEGRALS

Huakang

August 24, 2020

1 Double Integrals

The simplest sort of mutiple integrals is the double integrals

$$\iint_{R} f(x,y)dA$$

of a continuous function f(x,y) over the rectangle

$$R = [a, b] \times [c, d] = \{(x, y), a \le x \le b, c \le y \le d\}$$

in the xy-plane

To define the value

$$V = \iint_{R} f(x, y) dA$$

of such a double integral, we begin with an approximation to V. To obtain this approximation, the first step is to construct a **partition** \mathcal{P} of R into subrectangles $R_1, R_2, R_3, ..., R_k$ determined by points

$$a = x_0 < x_1 < x_2 < ... < x_m = b$$

of [a, b] and,

$$c = y_0 < y_1 < y_2 < \dots < y_n = d$$

of [c,d].

Next we choose an arbitrary point (x_i^*, y_i^*) of the *i*th rectangle R_i for each i (where $1 \le i \le k$). The collection of points $S = \{(x_i^*, y_i^*) | 1 \le i \le k\}$ is called a **selection** for the partition $\mathcal{P} = \{R_i | 1 \le i \le k\}$

As a measure of the size of the rectangles of the partition \mathcal{P} , we define its **norm** $|\mathcal{P}|$ to be the maximum of the lengths of the diagonals of the rectangles $\{R_i\}$. Now consider a rectangular column that rises straight up from the xy-plane. Its base is the rectangle R_i and its height is the value $f(x_i^*, y_i^*)$ of f at the selected point (x_i^*, y_i^*) of R_i If ΔA denotes the area of R_i , then the volume of the ith column is $f(x_i^*, y_i^*)\Delta A_i$

The sum of the volumes of all such columns is the Ruemann sum

$$\sum_{i=1}^{k} f(x_i^*, y_i^*) \Delta A_i$$

an approximation to the volume V of the solid region that lies above the rectangle R and under the graph z=f(x,y)

1.1 Definition of Double Integral

$$\iint_R f(x,y)dA = \lim_{|\mathcal{P}| \to 0} \sum_{i=1}^k f(x_i^*, y_i^*) \Delta A_i$$

1.2 Iterated Integrals

1.2.1 THEOREM 1

Support that f(x,y) is a continuous on the rectangle $R=[a,b]\times [c,d].$ Then

$$\iint_R f(x,y) dA = \int_a^b \bigg(\int_c^d f(x,y) dy \bigg) dx$$