Investigating the Relationship Between Movie Popularity and Quality

PRESENTER: NIKITA FERENTS

Project definition

01.

OBJECTIVE

Determine if movie popularity depends on quality.

SCOPE

- Use data from the TMDB API.
- Apply machine learning models for analysis.

02.

03.

METHODOLOGY

Data acquisition, processing, and machine learning.

Working with API

01 TMDB API OVERVIEW

The Movie Database (TMDB) is a community built movie and TV database. TMDB's strong international focus and breadth of data is largely unmatched.

The API service provides movie, TV show or actor images and/or data in TMDB application. This API is a system provided to programmatically fetch and use TMDB data and/or images.

02 API REGISTRATION AND ACCESS

To register and API for your project, you need to register on a TMDB website and generate your API key in the account setting. TMDB provides all necessary information you need, from overview to the statistics of usage

Once you have been issued a key, an example API key based request looks like this:

```
curl --request GET \
--url 'https://api.themoviedb.org/3/movie/11?
api_key=669a4175a226588523e788ed359dd4ba'
```

API Registration and Access

Example Results Object

```
"poster_path": "/IfB9hy4JH1eH6HEfIgIGORXi5h.jpg",
  "adult": false,
 "overview": "Jack Reacher must uncover the truth behind a major government conspiracy in order to
clear his name. On the run as a fugitive from the law, Reacher uncovers a potential secret from his
past that could change his life forever.",
                                                    "id": 343611,
 "release date": "2016-10-19",
                                                    "original title": "Jack Reacher: Never Go Back",
  "genre_ids": [
                                                    "original language": "en",
   53,
                                                    "title": "Jack Reacher: Never Go Back",
   28,
                                                    "backdrop path": "/4ynQYtSEuU5hyipcGkfD6ncwtwz.jpg",
   80,
                                                    "popularity": 26.818468,
   18,
                                                    "vote count": 201,
   9648
                                                    "video": false,
                                                    "vote_average": 4.19
```

Setting up and connecting to MongoDB

I defined a connection URI to connect to my MongoDB instance. This URI includes the protocol (mongodb://), the hostname (localhost), and the port number (27017). Also, it includes a database name (TMDB).

const mongoUri = 'mongodb://localhost:27017/TMDB';

I used the 'MongoClient' from the 'mongodb' package to connect to my MongoDB instance. Here's how I established the connection:

```
const { MongoClient } = require('mongodb');
const client = await MongoClient.connect(mongoUri, { useNewUrlParser: true,
useUnifiedTopology: true });
    const db = client.db();
```

Once connected to the MongoDB database, I created a collection named 'Movies'. Collections in MongoDB are similar to tables in relational databases, but they are schema-less.

const collection = db.collection(collectionName);

Fetching and Inserting Data

I fetched movie data using the Axios library, filtering and mapping the results to include only relevant fields (title, year, vote_count, vote_average).

```
const response = await axios.get(url);
       const movies = response.data.results
  .filter(movie => movie.vote_count > 100 && movie.vote_average > 0 )
  .map(movie => ({
    title: movie.title,
   year: new Date(movie.release_date).getFullYear(),
   vote_count: movie.vote_count,
    vote_average: movie.vote_average
  }));
// Accumulate movies from this page
allMovies.push(...movies);
```

Data Attributes and Data Processing

Filtering: I filtered out movies with a vote count less than 100 and a vote average of 0. This step ensures that only movies with a **significant** number of votes and **non-zero** ratings are included in the analysis.

```
const movies = response.data.results
.filter(movie => movie.vote_count > 100 && movie.vote_average > 0 )
```

Transformation involves converting the raw data into a structured format suitable for storage and analysis. Key transformations included:

- Field Extraction: Extracting relevant fields such as title, year, vote_count, and vote_average.
- **Data Mapping:** Converting the release date to a year format and mapping the necessary fields into a new structure.

Working with Machine Learning

Loading Data: To begin with, I loaded the dataset from Google Drive into a Pandas DataFrame for ease of manipulation and analysis.

```
import pandas as pd

from google.colab import drive

drive.mount('/content/gdrive')

data_path = '/content/gdrive/My Drive/BigDataAnalysis/TMDB.Movies.BIG.csv'
movie_df = pd.read_csv(data_path)
movie_df.info()
movie_df.head()
```


Initial Data Viualization

```
from matplotlib import pyplot as plt
movie_df['vote_average'].plot(kind='line', figsize=(8, 4),
title='vote_average')
plt.gca().spines[['top', 'right']].set_visible(False)|
```



```
movie_df.plot(kind='scatter', x='year', y='vote_count', s=32, alpha=.8)
plt.gca().spines[['top', 'right',]].set_visible(False)
```

Linear Regression


```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Reshape X for Linear Regression
X = X.to_numpy().reshape(-1, 1)
reg = LinearRegression().fit(X, y)
# Print model coefficients
print(f'Slope: {reg.coef_[0][0]}')
print(f'Intercept: {reg.intercept_[0]}')
# Predict and evaluate the model
y_predicted = reg.predict(X)
mse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
print(f'Linear Regression MSE: {mse}, R-squared: {r2}')
# Visualization
plt.scatter(X, y, label='Actual data')
plt.plot(X, y_predicted, 'r', label='Linear Regression')
plt.xlabel('Vote Count')
plt.ylabel('Vote Average')
plt.legend()
plt.show()
```

Polynomial Regression

```
from sklearn.preprocessing import PolynomialFeatures
  # Transform the features to polynomial features
  poly feature = PolynomialFeatures(degree=2, include bias=False)
  X poly = poly feature.fit transform(X)
                                                 y_new = lin_reg.predict(X_poly)
  # Train the polynomial regression model
                                                 poly_mse = mean_squared_error(y, y_new)
  lin reg = LinearRegression()
                                                 poly_r2 = r2_score(y, y_new)
  lin_reg.fit(X_poly, y)
                                                 print(f'Polynomial Regression MSE: {poly_mse}, R-squared: {poly_r2}')
                                                 # Visualization
  # Predict and evaluate the model
                                                 plt.scatter(X, y, label='Actual data')
                                                 plt.scatter(X, y new, label='Polynomial Regression')
                                                 plt.xlabel('Vote Count')
                                                 plt.ylabel('Vote Average')
                                                 plt.legend()
Polynomial regression
                                                 plt.show()
provides a curved line that fits
                                                 # Generating predictions with distributed points
the data points better by
                                                 X_{\text{new}} = \text{np.linspace}(0, 36000, 100).reshape}(100, 1)
                                                 X_new_poly = poly_feature.transform(X_new)
considering the polynomial
                                                 y_new_pred = lin_reg.predict(X_new_poly)
relationship.
                                                 plt.plot(X_new, y_new_pred, "r-", linewidth=2, label="Predictions")
                                                 plt.scatter(X, y)
                                                 plt.xlabel("Vote Count")
                                                 plt.ylabel("Vote Average")
                                                 plt.legend(loc="upper left", fontsize=14)
```

plt.show()

Here, a degree of 2 was used to include both linear and quadratic terms. The visualization shows how the polynomial model fits the data more closely compared to the linear model.

Pipeline for Polynomial Regression with Different Degrees

To explore the impact of polynomial degree on the model performance, I created pipelines that standardize the data and apply polynomial transformations of varying degrees before fitting a linear regression model.

The visualization compares the fit of models with different polynomial degrees, highlighting how higher degrees can overfit the data, while lower degrees may underfit.


```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
# Creating pipelines for different polynomial degrees
for style, degree in (("g-", 300), ("b--", 2), ("r-+", 1)):
   polybig_features = PolynomialFeatures(degree=degree, include_bias=False)
   scaler = MinMaxScaler()
   X_scaled = scaler.fit_transform(X)
   lin reg = LinearRegression()
    polynomial regression = Pipeline([
        ("poly features", polybig features),
        ("scaler", scaler),
        ("lin reg", lin reg),
    1)
    polynomial_regression.fit(X_scaled, y)
    y_newbig = polynomial_regression.predict(X_scaled)
    plt.plot(X scaled, y newbig, style, label=str(degree))
plt.scatter(X scaled, y, label='Actual data')
plt.legend(loc="upper left")
plt.xlabel("Vote Count (scaled)")
plt.ylabel("Vote Average (scaled)")
plt.show()
```

Results and Analysis

TMDB (6)

The linear model showed a **low** fit with an R-squared value indicating the proportion of variance in the **vote_average** that can be explained by **vote_count**.

reg.score(X,y) = 0.10871758693242362

POLYNOMIAL REGRESSION

The polynomial model, especially with degree 2, provided a better fit with a higher R-squared value, capturing the non-linear relationship more effectively.

HIGHER DEGREE POLYNOMIAL

While a higher degree polynomial may fit the training data **better**, it risks overfitting and may not generalize well to unseen data