Project: Movielens Case Study

Table of Contents

DESCRIPTION	3
#import required libraries	7
#importing the data files	7
#Exploratory Data Analysis	7
#merging movies with ratings on MovieID	9
#merging movies with ratings on UserID	9
#checking the Age Distribution	11
#group by movieID and sort then sort	12
#extracting boolean to UserID 2696	12
#preparing the dataframe of the data	12
#movies reviewed by UserID 2696	13
#User ratings for Toy Story	17
#The ratings of Toy Story	17
#extracting 10K data from Combined Data	18
#data10k.MovieID.value_counts()	18
#creating a new DF	18
#creating an empty list & creating a list of unique genres	19
#Eencoding for the genres present in the table	19
#Making separate buckets for age groups	20
#Building the model for predicting	25

Movielens Case Study

DESCRIPTION

Background of Problem Statement:

The GroupLens Research Project is a research group in the Department of Computer Science and Engineering at the University of Minnesota. Members of the GroupLens Research Project are involved in many research projects related to the fields of information filtering, collaborative filtering, and recommender systems. The project is led by professors John Riedl and Joseph Konstan. The project began to explore automated collaborative filtering in 1992 but is most well known for its worldwide trial of an automated collaborative filtering system for Usenet news in 1996. Since then the project has expanded its scope to research overall information by filtering solutions, integrating into content-based methods, as well as, improving current collaborative filtering technology.

Problem Objective:

Here, we ask you to perform the analysis using the Exploratory Data Analysis technique. You need to find features affecting the ratings of any particular movie and build a model to predict the movie ratings.

Domain: Entertainment

Analysis Tasks to be performed:

- Import the three datasets
- Create a new dataset [Master_Data] with the following columns MovieID Title UserID Age Gender Occupation Rating. (Hint: (i) Merge two tables at a time. (ii) Merge the tables using two primary keys MovieID & UserId)
- Explore the datasets using visual representations (graphs or tables), also include your comments on the following:
- 1. User Age Distribution
- 2. User rating of the movie "Toy Story"
- 3. Top 25 movies by viewership rating
- 4. Find the ratings for all the movies reviewed by for a particular user of user id = 2696
- Feature Engineering: Use column genres:
- 1. Find out all the unique genres (Hint: split the data in column genre making a list and then process the data to find out only the unique categories of genres)
- 2. Create a separate column for each genre category with a one-hot encoding (1 and 0) whether or not the movie belongs to that genre.
- 3. Determine the features affecting the ratings of any particular movie.
- 4. Develop an appropriate model to predict the movie ratings

Dataset Description:

These files contain 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 Movielens users who joined Movielens in 2000.

Ratings.dat

Format - UserID::MovieID::Rating::Timestamp

Field	Description
UserID	Unique identification for each user
MovieID	Unique identification for each movie

Rating	User rating for each movie
Timestamp	Timestamp generated while adding user review

- UserIDs range between 1 and 6040
- The MovieIDs range between 1 and 3952
- Ratings are made on a 5-star scale (whole-star ratings only)
- A timestamp is represented in seconds since the epoch is returned by time(2)
- Each user has at least 20 ratings

Users.dat

Format - UserID::Gender::Age::Occupation::Zip-code

Field	Description
UserID	Unique identification for each user
Genere	Category of each movie
Age	User's age
Occupation	User's Occupation
Zip-code	Zip Code for the user's location

All demographic information is provided voluntarily by the users and is not checked for accuracy. Only users who have provided demographic information are included in this data set.

- Gender is denoted by an "M" for male and "F" for female
- Age is chosen from the following ranges:

Value	Description
1	"Under 18"
18	"18-24"
25	"25-34"
35	"35-44"
45	"45-49"
50	"50-55"
56	"56+"

Occupation is chosen from the following choices:

Value	Description
0	"other" or not specified
1	"academic/educator"
2	"artist"
3	"clerical/admin"
4	"college/grad student"
5	"customer service"
6	"doctor/health care"
7	"executive/managerial"
8	"farmer"
9	"homemaker"
10	"K-12 student"
11	"lawyer"
12	"programmer"
13	"retired"
14	"sales/marketing"
15	"scientist"
16	"self-employed"
17	"technician/engineer"
18	"tradesman/craftsman"
19	"unemployed"
20	"writer"

<u>Movies.dat</u> Format - MovieID::Title::Genres

Field	Description
MovieID	Unique identification for each movie
Title	A title for each movie
Genres	Category of each movie

- Titles are identical to titles provided by the IMDB (including year of release)
- Genres are pipe-separated and are selected from the following genres:
- 1. Action
- 2. Adventure
- 3. Animation
- 4. Children's
- 5. Comedy
- 6. Crime
- 7. Documentary
- 8. Drama
- 9. Fantasy
- 10. Film-Noir
- 11. Horror
- 12. Musical
- 13. Mystery
- 14. Romance
- 15. Sci-Fi
- 16. Thriller
- 17. War
- 18. Western
- Some Movie IDs do not correspond to a movie due to accidental duplicate entries and/or test entries
- Movies are mostly entered by hand, so errors and inconsistencies may exist

The Actual Project Code - Project_Movielens.ipynb

#import required libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action = "ignore")

#importing the data files

```
movies = pd.read_table("movies.dat", sep = "::", names = (["MovieID", "Title", "Genre"]))
ratings = pd.read_table("ratings.dat", sep = "::", names = (["UserID", "MovieID", "Rating", "TimeStamp"]))
users = pd.read_table("users.dat", sep = "::", names = (["UserID", "Gender", "Age", "Occupation", "ZipCode"]))
users.shape
```

#Exploratory Data Analysis

type(users)

#User Age distribution using histogram

sns.distplot(users["Age"], hist = False)

<matplotlib.axes._subplots.AxesSubplot at 0x1c97e3d2408>

#This shows most of the users are between 20 years and 30 years of age.

sns.distplot(users["Occupation"])

<matplotlib.axes._subplots.AxesSubplot at 0x268ada71808>

movies.shape

(3883, 3)

ratings.shape

(1000209, 4)

movies.head(6)

Genre	Title	MovieID	
Animation Children's Comedy	Toy Story (1995)	1	0
Adventure Children's Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4
Action Crime Thriller	Heat (1995)	6	5

ratings.head(6)

	UserID	MovieID	Rating	TimeStamp
0	1	1193	5	978300760
1	1	661	3	978302109
2	1	914	3	978301968
3	1	3408	4	978300275
4	1	2355	5	978824291
5	1	1197	3	978302268

#merging movies with ratings on MovieID
movie_ratings = pd.merge(movies, ratings, on = "MovieID")

movie_ratings.head(6)

	MovieID	Title	Genre	UserID	Rating	TimeStamp
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268
1	1	Toy Story (1995)	Animation Children's Comedy	6	4	978237008
2	1	Toy Story (1995)	Animation Children's Comedy	8	4	978233496
3	1	Toy Story (1995)	Animation Children's Comedy	9	5	978225952
4	1	Toy Story (1995)	Animation Children's Comedy	10	5	978226474
5	1	Toy Story (1995)	Animation Children's Comedy	18	4	978154768

#merging movies with ratings on UserID

combinedData = pd.merge(movie_ratings, users, on = "UserID")

combinedData.head(6)

	Mov ieID	Title	Genre	Use rID	Ra tin g	Time Stam p	Ge nde r	A g e	Occu pation	Zip Cod e
0	1	Toy Story (1995	Animation Children's C omedy	1	5	97882 4268	F	1	10	480 67
1	48	Pocah ontas (1995	Animation Children's Musical Romance	1	5	97882 4351	F	1	10	480 67
2	150	Apoll o 13 (1995)	Drama	1	5	97830 1777	F	1	10	480 67
3	260	Star Wars: Episo de IV - A New Hope (1977	Action Adventure Fant asy Sci-Fi	1	4	97830 0760	F	1	10	480 67
4	527	Schin dler's List (1993	Drama War	1	5	97882 4195	F	1	10	480 67
5	531	Secret Garde n, The (1993	Children's Drama	1	4	97830 2149	F	1	10	480 67
combinedData.shape										

(1000209, 10)

df = users.Age.value_counts()

 $users \hbox{\tt ["Age"].} value_counts \hbox{\tt ().} plot \hbox{\tt (kind='bar')}$

<matplotlib.axes._subplots.AxesSubplot at 0x1c97e6e9888>

#df = pd.DataFrame(columns=["AgeGroup", "Freq"])
print(df)

#checking the Age Distribution.

#Age Group Under 18 - 222 people

#Age Group 18-24 - 1103 people

#Age Group 25-34 - 2096 people

#Age Group 35-44 - 1193 people

#Age Group 45-49 - 550 people

#Age Group 50-55 - 496 people

#Age Group 56+ - 380 people

25 2096

35 1193

18 1103

45 550

50 496

56 3801 222

Name: Age, dtype: int64

type(df)

pandas.core.series.Series

combinedData.Rating.value_counts()

combinedData.head()

	Mov ieID	Title	Genre	Use rID	Ra tin g	Time Stam p	Ge nde r	A g e	Occu pation	Zip Cod e
0	1	Toy Story (1995	Animation Children's C omedy	1	5	97882 4268	F	1	10	480 67
1	48	Pocah ontas (1995	Animation Children's Musical Romance	1	5	97882 4351	F	1	10	480 67
2	150	Apoll o 13 (1995)	Drama	1	5	97830 1777	F	1	10	480 67
3	260	Star Wars: Episo de IV - A New Hope (1977	Action Adventure Fant asy Sci-Fi	1	4	97830 0760	F	1	10	480 67
4	527	Schin dler's List (1993	Drama War	1	5	97882 4195	F	1	10	480 67

#group by movieID and sort then sort.

sortby_rating = combinedData.sort_values("Rating", ascending=False)

#extracting boolean to UserID 2696

filter_data_2696 = combinedData["UserID"]==2696

print(filter_data_2696.head(6))

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False
- 5 False

Name: UserID, dtype: bool

#preparing the dataframe of the data

filter_data_2696_1 = combinedData[filter_data_2696]

filter_data_2696_1.shape

(20, 10)

#movies reviewed by UserID 2696 filter_data_2696_1

	MovieI D	Tit le	Genre	U se rI D	R at in g	TimeSta mp	Ge nde r	Age	Occupat ion	ZipC ode
9 9 1 0 3 5	350	Cli ent , Th e (19 94)	Drama Myster y Thriller	26 96	3	9733088 86	M	25	7	24210
9 9 1 0 3 6	800	Lo ne Sta r (19 96)	Drama Myster y	26 96	5	9733088 42	M	25	7	24210
9 9 1 0 3 7	1092	Ba sic Ins tin ct (19 92)	Mystery Thrill er	26 96	4	9733088 86	M	25	7	24210
9 9 1 0 3 8	1097	E. T. the Ex tra Te rre stri al (19 82)	Children's Dra ma Fantasy Sc i-Fi	26 96	3	9733086 90	M	25	7	24210
9	1258	Shi nin	Horror	26	4	9733087	M	25	7	24210

	MovieI D	Tit le	Genre	U se rI D	R at in g	TimeSta mp	Ge nde r	Age	Occupat ion	ZipC ode
1 0 3 9		g, Th e (19 80)		96		10				
9 9 1 0 4 0	1270	Ba ck to the Fut ure (19 85)	Comedy Sci- Fi	26 96	2	9733086 76	М	25	7	24210
9 9 1 0 4 1	1589	Co p La nd (19 97)	Crime Drama Mystery	26 96	3	9733088 65	M	25	7	24210
9 9 1 0 4 2	1617	L. A. Co nfi de nti al (19 97)	Crime Film- Noir Mystery Thriller	26 96	4	9733088 42	M	25	7	24210
9 9 1 0 4 3	1625	Ga me , Th e (19 97)	Mystery Thrill er	26 96	4	9733088 42	M	25	7	24210
9 9 1	1644	I Kn ow	Horror Myster y Thriller	26 96	2	9733089 20	M	25	7	24210

	MovieI D	Tit le	Genre	U se rI D	R at in g	TimeSta mp	Ge nde r	Age	Occupat ion	ZipC ode
0 4 4		W hat Yo u Di d La st Su m me r (19 97)								
9 9 1 0 4 5	1645	De vil' s Ad vo cat e, Th e (19 97)	Crime Horror Mystery Thrill er	26 96	4	9733089 04	M	25	7	24210
9 9 1 0 4 6	1711	Mi dni ght in the Ga rde n of Go od an d Ev il (19 97)	Comedy Crim e Drama Myst ery	26 96	4	9733089 04	M	25	7	24210

	MovieI D	Tit le	Genre	U se rI D	R at in g	TimeSta mp	Ge nde r	Age	Occupat ion	ZipC ode
9 9 1 0 4 7	1783	Pal me tto (19 98)	Film- Noir Mystery Thriller	26 96	4	9733088 65	M	25	7	24210
9 9 1 0 4 8	1805	Wi Id Th ing s (19 98)	Crime Drama Mystery Thrill er	26 96	4	9733088 86	M	25	7	24210
9 9 1 0 4 9	1892	Per fec t M urd er, A (19	Mystery Thrill er	26 96	4	9733089 04	M	25	7	24210
9 9 1 0 5 0	2338	I Sti II Kn ow W hat Yo u Di d La st Su m me r (19 98)	Horror Myster y Thriller	26 96	2	9733089 20	M	25	7	24210

	MovieI D	Tit le	,	Genre	U se rI D	R at in g	TimeSta mp		Ge nde r	Age	Occupa io		ZipC ode
9 9 1 0 5	2389	Ps yc ho (19 98)	Crime I T	Horror Thriller	26 96	4	9733087 10		M	25		7	24210
9 9 1 0 5 2	2713	La ke Pla cid (19 99)	Horror	Thrille r	26 96	1	9733087 10		M	25		7	24210
9910 53	3 1 7 6		ted Mr. ey, The (1999)	Drama	Myster	y Thrill er	26 96	4	9733 0886 5	M	25	7	24 21 0
9910 54	3 3 8 6	JFK	(1991)	1	Drama N	Aystery	26 96	1	9733 0884 2	M	25	7	24 21 0

#User ratings for Toy Story
toystory = data10k[data10k.Title == "Toy Story (1995)"]

type(toystory) toystory.shape

toystory["Rating"].value_counts().plot(kind = "bar")

#The ratings of Toy Story

#The below graph is showing the ratings of Toy Story given by the users.

<matplotlib.axes._subplots.AxesSubplot at 0x1c97e7ca388>

#extracting 10K data from Combined Data

data10k = combinedData[:10000]

#data10k.MovieID.value_counts()

data10k.shape

#groupby10k = data10k.groupby(["MovieID"], sort=True)

(10000, 10)

newdf = pd.DataFrame(data10k[["Title", "Rating", "MovieID", "Genre"]])

#creating a new DF

newdf.head()

	Title	Rating	MovieID	Genre
0	Toy Story (1995)	5	1	Animation Children's Comedy
1	Pocahontas (1995)	5	48	Animation Children's Musical Romance
2	Apollo 13 (1995)	5	150	Drama
3	Star Wars: Episode IV - A New Hope (1977)	4	260	Action Adventure Fantasy Sci-Fi

```
4
                    Schindler's List (1993)
                                                                                                 Drama|War
                                                   5
                                                               527
sum_rating = data10k.groupby(["Title", "Rating", "Genre"]).size().sort_values(ascending = False)
print(sum_rating[:25])
Title
                                  Rating Genre
Toy Story (1995)
                                            Animation|Children's|Comedy
                                                                                20
                                       5
Matrix, The (1999)
                                       5
                                             Action|Sci-Fi|Thriller
                                                                           17
Star Wars: Episode V - The Empire Strikes Back (1980) 5
                                                           Action|Adventure|Drama|Sci-Fi|War
                                                                                                 16
E.T. the Extra-Terrestrial (1982)
                                                Children's|Drama|Fantasy|Sci-Fi
                                                                                    15
                                           5
Saving Private Ryan (1998)
                                                Action|Drama|War
                                                                               15
Toy Story (1995)
                                            Animation|Children's|Comedy
                                                                               15
Raiders of the Lost Ark (1981)
                                           5
                                                                               14
                                                 Action|Adventure
Princess Bride, The (1987)
                                               Action|Adventure|Comedy|Romance
Star Wars: Episode IV - A New Hope (1977)
                                                  5
                                                       Action|Adventure|Fantasy|Sci-Fi
Star Wars: Episode VI - Return of the Jedi (1983)
                                                  4
                                                       Action|Adventure|Romance|Sci-Fi|War 14
Bug's Life, A (1998)
                                        4
                                             Animation|Children's|Comedy
                                                                                13
American Beauty (1999)
                                          5
                                                Comedy|Drama
                                                                              13
Forrest Gump (1994)
                                         5
                                              Comedy|Romance|War
                                                                                13
X-Men (2000)
                                       4
                                            Action|Sci-Fi
                                                                        13
Toy Story (1995)
                                            Animation|Children's|Comedy
                                       3
                                                                                13
Schindler's List (1993)
                                        5
                                             Drama|War
                                                                         13
Big (1988)
                                          Comedy|Fantasy
                                                                        12
                                                Comedy|Romance
Shakespeare in Love (1998)
                                           5
                                                                                12
                                                                               12
Shawshank Redemption, The (1994)
                                                     Drama
American Beauty (1999)
                                                Comedy|Drama
                                                                              12
Sixth Sense, The (1999)
                                              Thriller
                                                                        12
Jurassic Park (1993)
                                       4
                                             Action|Adventure|Sci-Fi
                                                                             12
Star Wars: Episode I - The Phantom Menace (1999)
                                                          Action|Adventure|Fantasy|Sci-Fi
                                                                                             11
Men in Black (1997)
                                              Action|Adventure|Comedy|Sci-Fi
                                                                                  11
Clueless (1995)
                                           Comedy|Romance
dtype: int64
#creating an empty list & creating a list of unique genres
genres = []
uniquegenre = list(set(genres))
print(uniquegenre)
П
#Eencoding for the genres present in the table.
for i in uniquegenre:
```

data10k[i] = data10k["Genre"].str.contains(i)*1

Title

Rating

MovieID

Genre

data10k.head()

	Mov ieID	Title	Genre	Use rID	Ra tin g	Time Stam p	Ge nde r	A g e	Occu pation	Zip Cod e
0	1	Toy Story (1995	Animation Children's C omedy	1	5	97882 4268	F	1	10	480 67
1	48	Pocah ontas (1995	Animation Children's Musical Romance	1	5	97882 4351	F	1	10	480 67
2	150	Apoll o 13 (1995)	Drama	1	5	97830 1777	F	1	10	480 67
3	260	Star Wars: Episo de IV - A New Hope (1977	Action Adventure Fant asy Sci-Fi	1	4	97830 0760	F	1	10	480 67
4	527	Schin dler's List (1993	Drama War	1	5	97882 4195	F	1	10	480 67

data10k["Age"].value_counts()

25 3009

18 2316

35 2310

1 735

45 711

50 646

56 273

Name: Age, dtype: int64

#Making separate buckets for age groups.

data10k.loc[data10k['Age'] ==1, 'Age Group'] = 'Under 18' data10k.loc[data10k['Age'] ==18, 'Age Group'] = '18-24' data10k.loc[data10k['Age'] ==25, 'Age Group'] = '25-34' data10k.loc[data10k['Age']==35, 'Age Group'] = '35-44' data10k.loc[data10k['Age'] ==45, 'Age Group'] = '45-49'

```
data10k.loc[data10k['Age'] ==50, 'Age Group'] = '50-55' data10k.loc[data10k['Age']==56, 'Age Group'] = '56+'
```

effect_rating = data10k[["Rating", "Gender", "Age Group", "Occupation"]]

Here we are considering the data set of 500

working_dataset = effect_rating.iloc[:500,]

 $X = working_dataset.iloc[:,[1, 2, 3]]$

Y = working_dataset.iloc[:,0]

X.head()

	Gender	Age Group	Occupation
0	F	Under 18	10
1	F	Under 18	10
2	F	Under 18	10
3	F	Under 18	10
4	F	Under 18	10

Y.head()

- 0 5
- 1 5
- 2 5
- 3 4
- 4 5

Name: Rating, dtype: int64

 $X_{dummy} = pd.get_{dummies}(data=X)$

X_dummy2 = pd.get_dummies(X['Occupation'], prefix='Occupation')

X_Concat = pd.concat([X_dummy, X_dummy2], axis = 1)

X_Concat.head()

	Occ upa tion	Ge nd er_ F	Ge nde r_ M	Ag e Gr oup _25 -34	Ag e Gr oup _35 -44	Ag e Gr oup _50 -55	Age Gro up_ Und er 18	Occ upat ion_ 1	Occ upat ion_ 9	Occu patio n_10	Occu patio n_12	Occu patio n_17
0	10	1	0	0	0	0	1	0	0	1	0	0
1	10	1	0	0	0	0	1	0	0	1	0	0

	Occ upa tion	Ge nd er_ F	Ge nde r_ M	Ag e Gr oup _25 -34	Ag e Gr oup _35 -44	Ag e Gr oup _50 -55	Age Gro up_ Und er 18	Occ upat ion_ 1	Occ upat ion_ 9	Occu patio n_10	Occu patio n_12	Occu patio n_17
2	10	1	0	0	0	0	1	0	0	1	0	0
3	10	1	0	0	0	0	1	0	0	1	0	0
4	10	1	0	0	0	0	1	0	0	1	0	0

$X_Concat.columns$

Index(['Occupation', 'Gender_F', 'Gender_M', 'Age Group_25-34', 'Age Group_35-44', 'Age Group_50-55', 'Age Group_Under 18', 'Occupation_1', 'Occupation_9', 'Occupation_10', 'Occupation_12',

'Occupation_17'], dtype='object')

X_Concat.drop(['Occupation', "Gender_F"], axis = 1, inplace=**True**)

X_Concat.head()

	Gen der_ M	Age Gro up_2 5-34	Age Gro up_3 5-44	Age Gro up_5 0-55	Age Group _Unde r 18	Occup ation_ 1	Occup ation_ 9	Occup ation_ 10	Occup ation_ 12	Occup ation_ 17
0	0	0	0	0	1	0	0	1	0	0
1	0	0	0	0	1	0	0	1	0	0
2	0	0	0	0	1	0	0	1	0	0
3	0	0	0	0	1	0	0	1	0	0
4	0	0	0	0	1	0	0	1	0	0

 $XY = pd.concat([X_Concat, Y], axis = 1)$

XY.head(6)

	Gen der_ M	Age Gro up_ 25- 34	Age Gro up_ 35- 44	Age Gro up_ 50- 55	Age Grou p_Un der 18	Occu patio n_1	Occu patio n_9	Occup ation_ 10	Occup ation_ 12	Occup ation_ 17	R at in g
0	0	0	0	0	1	0	0	1	0	0	5

	Gen der_ M	G _ uj	ge ro p_ 5- 4	Age Gro up_ 35- 44) (Age Gro 1p_ 50- 55		rou _Un er		eccu atio _1	p	Occu eatio 1_9		ccup on_		ccup ion_	Occup ation_ 17	R at in g
1	0	0		0	()	1		0		0	ı	1		0		0	5
2	0	0		0)	1		0		0	0			0		0	5
3	0	0		0	()	1		0		0	ı	1		0		0	4
4	0	0		0	()	1		0		0	1	1		0		0	5
5	0	0		0	()	1		0		0	1	1		0		0	4
XY.corr()																		
		Ge nde r_ M	Age Gre up_ 25- 34	0	Age Gro up_ 35- 44	Age Gro up_ 50- 55		Age Grou p_Un der 18		Occu patio n_1		Occu patio n_9	p	Occu atio _10	p	Occu atio _12	Occu patio n_17	Ra tin g
Ger er_		1.0 000 00	1.0 000 00		- 0.5 840 30	- 0.3 987 62		- 0.337 518		- 0.584 030		- 0.398 762		.337 18		.633 54	0.529 166	- 0.1 61 71 4
Grep_2		1.0 000 00	1.0 000 00		0.5 840 30	- 0.3 987 62		- 0.337 518		- 0.584 030		- 0.398 762		.337 18		.633 54	0.529 166	- 0.1 61 71 4
Grop_3		0.5 840 30	0.5 840 30		1.0 000 00	- 0.2 423 95		- 0.205 167		1.000 000		0.242 395		.205 67		.369 23	- 0.309 049	0.1 42 97 4
Gr p_5		0.3 987 62	0.3 987 62	,	- 0.2 423 95	1.0 000 00		- 0.140 083		- 0.242 395		1.000 000		.140 83		.252 38	- 0.211 011	0.0 28 72 2
A Gr p_U		0.3	0.3		0.2	0.1		1.000 000		0.205		- 0.140		.000 00	0	.213	0.178	0.0 90

	Ge nde r_ M	Age Gro up_ 25- 34	Age Gro up_ 35- 44	Age Gro up_ 50- 55	Age Grou p_Un der 18	Occu patio n_1	Occu patio n_9	Occu patio n_10	Occu patio n_12	Occu patio n_17	Ra tin g
der 18	375 18	375 18	051 67	400 83		167	083		667	603	94 8
Occu patio n_1	0.5 840 30	0.5 840 30	1.0 000 00	0.2 423 95	- 0.205 167	1.000 000	- 0.242 395	- 0.205 167	- 0.369 723	- 0.309 049	0.1 42 97 4
Occu patio n_9	0.3 987 62	0.3 987 62	0.2 423 95	1.0 000 00	- 0.140 083	- 0.242 395	1.000 000	- 0.140 083	0.252 438	- 0.211 011	0.0 28 72 2
Occu patio n_10	0.3 375 18	0.3 375 18	0.2 051 67	0.1 400 83	1.000 000	- 0.205 167	0.140 083	1.000 000	- 0.213 667	0.178 603	0.0 90 94 8
Occu patio n_12	0.6 330 54	0.6 330 54	0.3 697 23	0.2 524 38	- 0.213 667	- 0.369 723	- 0.252 438	- 0.213 667	1.000 000	- 0.321 854	0.0 55 75 1
Occu patio n_17	0.5 291 66	0.5 291 66	0.3 090 49	0.2 110 11	- 0.178 603	- 0.309 049	- 0.211 011	- 0.178 603	- 0.321 854	1.000	0.1 36 67 9
Ratin g	- 0.1 617 14	- 0.1 617 14	0.1 429 74	0.0 287 22	0.090 948	0.142 974	- 0.028 722	0.090 948	- 0.055 751	- 0.136 679	1.0 00 00 0

sns.heatmap(XY.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x1c97e7845c8>

#Building the model for predicting

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(X_Concat,Y,test_size=0.3,random_state=102)

from sklearn.linear_model import LinearRegression lm = LinearRegression()

lm.fit(x_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

print(lm.intercept_)

-54426258464140.06

print(lm.coef_)

[

coffecient=pd.DataFrame(data=lm.coef ,index=x train.columns,columns=['coffecient'])

coffecient

	coffecient						
Gender_M	-2.245069e+13						
Age Group_25-34	7.166124e+13						
Age Group_35-44	1.218334e+14						
Age Group_50-55	-5.452482e+13						
Age Group_Under 18	2.721313e+13						
Occupation_1	-6.740715e+13						
Occupation_9	1.089511e+14						
Occupation_10	2.721313e+13						
Occupation_12	5.215716e+12						
Occupation_17	5.215716e+12						
pred_y = lm.predict(X=x_test)							

pred_y

```
array([3.8515625, 4.421875, 3.6640625, 3.8515625, 3.8515625, 3.8359375,
   4.421875, 4.1328125, 3.8515625, 4.421875, 3.6640625, 3.8359375,
   3.6640625, 4.421875, 3.6640625, 4.421875, 4.1328125, 4.1328125,
   4.421875, 4.1328125, 4.421875, 3.6640625, 4.421875, 3.8359375,
   3.8515625, 4.421875, 4.421875, 3.8515625, 3.6640625, 3.6640625,
   3.8515625, 3.8515625, 3.8515625, 4.421875, 3.6640625, 3.8515625,
   4.421875, 4.421875, 4.1328125, 3.8359375, 4.421875, 3.6640625,
   3.8515625, 3.6640625, 4.421875, 4.421875, 3.8359375, 4.1328125,
   3.8515625, 3.6640625, 4.1328125, 3.8515625, 4.421875, 3.6640625,
   3.8515625, 3.8359375, 3.8515625, 3.8515625, 4.421875, 4.421875,
   3.8515625, 4.421875, 3.8515625, 3.8515625, 3.8359375, 3.8515625,
   4.1328125, 4.421875, 3.8515625, 4.421875, 3.6640625, 4.421875,
   3.8515625, 3.8359375, 4.1328125, 4.1328125, 3.8515625, 4.421875,
   3.8515625, 3.6640625, 4.421875, 4.421875, 3.8515625, 4.1328125,
   3.8359375, 3.6640625, 3.6640625, 4.421875, 3.8359375, 3.6640625,
   3.8515625, 3.6640625, 4.1328125, 3.6640625, 3.6640625, 3.8515625,
   4.421875, 4.421875, 3.8515625, 4.421875, 3.8515625, 3.6640625,
   3.8359375, 3.8515625, 3.8359375, 3.8515625, 4.1328125, 4.1328125,
   3.8515625, 4.421875, 3.8359375, 3.6640625, 4.421875, 3.8359375,
   3.8515625, 3.8359375, 4.421875, 3.8515625, 3.6640625, 3.6640625,
   3.8359375, 3.8515625, 3.8515625, 3.8515625, 3.8515625, 3.8515625,
   3.8359375, 3.8359375, 3.6640625, 4.421875, 4.1328125, 3.6640625,
   4.421875, 3.6640625, 3.6640625, 4.421875, 3.8515625, 4.1328125,
   3.6640625, 3.8515625, 3.8359375, 4.421875, 4.421875, 4.1328125,
```

x_test.head()

	Gen der_ M	Age Gro up_2 5-34	Age Gro up_3 5-44	Age Gro up_5 0-55	Age Group _Unde r 18	Occup ation_ 1	Occup ation_ 9	Occup ation_ 10	Occup ation_ 12	Occup ation_ 17
1 4 3	1	1	0	0	0	0	0	0	1	0
4 5 9	0	0	1	0	0	1	0	0	0	0
2 8 1	1	1	0	0	0	0	0	0	0	1
1 4 8	1	1	0	0	0	0	0	0	1	0
1 9 9	1	1	0	0	0	0	0	0	1	0

from sklearn import metrics

metrics.mean_absolute_error(y_test, pred_y)

0.72348958333333334

metrics.mean_squared_error(y_test, pred_y)

0.7921268717447917

np.sqrt(metrics.mean_squared_error(y_test, pred_y))

0.8900150963578043

lm.score(x_test, y_test)

-0.078277851912264

<end of document>