Author: Alex Dolia, Company: Deep Intellect, Date: 5/06/2022

"" This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to [http://unlicense.org] (http://unlicense.org/s5D) """

In [ ]: ▶ import pandas as pd import numpy as np





#### **Problem statement:**

We gave three supermarket brands (for example, Lidl, Tesco and Asda) we denote them Shop 1, Shop 2 and Shop 3. They have branches in Camden, Ealing, Greenwich, Hounslow, Richmond upon Thames, Hammersmith and Fulham, Kensington and Chelsea and City of Westminster. They use two suppliers that have branches in the same London Boroughs, we have historical probability of item being in the given supplier branch of London Borough. We know how many items each supplier can deliver per days.

We are given total number of items demanded by every supermarket brand and information about when (date) and where (London Borough) the given supermarket can accept part of this total demand but exact value is not provided. The supplier can deliver items to supermarkets from the same Borough only. We have weights or probability that total supply for the given location is going to a particular supermarket. The task is to find date, location and number of items should be delivered to all three supermarkets.

```
# the following dhontAD code based on the link above
          def dhontAD(nSeats, votes):
              nSeats is the number of seats
              votes is an aaray of probabilities
              t votes = votes.copy()
              seats = np.zeros(len(votes))
              if sum(votes) > 0:
                while sum(seats) < nSeats:</pre>
                     next seat = np.argmax(t votes)
                     seats[next_seat] += 1
                     t votes[next seat] = votes[next seat] / (seats[next seat] + 1)
              return seats
          nSeats = 100 # we want to allocate 100 seats
          votes = np.array([0.2, 0.3, 0.5])
          dhontAD(nSeats, votes)
```

$$\max_{x} \sum_{d} \sum_{b} w_{1} \times x_{db1} + w_{2} \times x_{db2} + \dots + w_{N} \times x_{dbN}$$
s.t.  $x \in X$ 

we have one weight per supermarket; d is the date and b is the London borough or location; x is the number of items given date, London Borough and supermarket; X is the feasable set for x. Supply and Demand has to be from the same London Borough.

#### Demand Weights could be weight of the objective function that are used in linear programming.

| De     | mand We | ight   |
|--------|---------|--------|
| Shop 1 | Shop 2  | Shop 3 |
| 0.2    | 0.3     | 0.5    |

where  $w_1 = 0.2$ ,  $w_2 = 0.3$  and  $w_3 = 0.5$ .

The table below shows how many items is required by every supermarket in all considered locations during two days.

| Shop_Demand          |     |     |  |  |  |  |  |  |  |
|----------------------|-----|-----|--|--|--|--|--|--|--|
| Shop 1 Shop 2 Shop 3 |     |     |  |  |  |  |  |  |  |
| 150                  | 500 | 300 |  |  |  |  |  |  |  |

Information about when (date) and where (London Borough) the given supermarket is available to accept part of the above total demand (see the table called Shop\_Demand above) but how much it will accept it depends on the supply ib the given Borough and Demand Weights.

If it is "+" (True) the the supermarket is available to accept the items on the particular date and London Borough (location) and it does not accept otherwise (when it is "-" or False).

| 81 | Data       | Landan Barrayah        | Shop De           | emand Ava | ilability         |
|----|------------|------------------------|-------------------|-----------|-------------------|
| N  | Date       | London Borough         | Shop 1            | Shop 2    | Shop 3            |
| 1  | 11/06/2022 | Camden                 | )( <del>5</del> ) | NE)       | 536               |
| 2  | 11/06/2022 | Ealing                 | 949               | 16        | 0. <del>1</del> 6 |
| 3  | 11/06/2022 | Greenwich              | 954               | +         | 836               |
| 4  | 11/06/2022 | Hounslow               | 044               | ·+        | 1                 |
| 5  | 11/06/2022 | Richmond upon Thames   | +                 | 1.20      | 3.26              |
| 6  | 11/06/2022 | Hammersmith and Fulham | +                 | 100       | 0 <del>16</del>   |
| 7  | 11/06/2022 | Kensington and Chelsea | +                 | +         | 856               |
| 8  | 11/06/2022 | City of Westminster    | +                 | 0.45      | · +               |
| 9  | 12/06/2022 | Camden                 | 374               |           |                   |
| 10 | 12/06/2022 | Ealing                 | (44)              | 3.23      | +                 |
| 11 | 12/06/2022 | Greenwich              | 874               | +         |                   |
| 12 | 12/06/2022 | Hounslow               | (54-)             | 4         | 14                |
| 13 | 12/06/2022 | Richmond upon Thames   | +                 | -         | -                 |
| 14 | 12/06/2022 | Hammersmith and Fulham | 4                 | 2.23      | +                 |
| 15 | 12/06/2022 | Kensington and Chelsea | +                 | +         | -                 |
| 16 | 12/06/2022 | City of Westminster    | +                 | +         | +                 |
| 17 | Total      | (a+)                   | 150               | 500       | 300               |

```
In [ ]: ▶ # We define the INPUTS in this cell!!!
            nShops = 3
            dates = ["11/06/2022"] * 8 + ["12/06/2022"] * 8
            London Boroughs = ["Camden",
                               "Ealing",
                               "Greenwich",
                               "Hounslow",
                               "Richmond upon Thames",
                               "Hammersmith and Fulham",
                               "Kensington and Chelsea",
                               "City of Westminster"] * 2
            Demand Weights = {"Shop 1": 0.2, "Shop 2": 0.3, "Shop 3": 0.5}
            print("Demand Weights: ", Demand Weights)
            Shop Demand = {"Shop 1": 150, "Shop 2": 500, "Shop 3": 300}
            print("Shop Demand: ", Shop Demand)
            Avalablity Shop 1 = [False, False, False, False, True, True, True] * 2
            Avalablity Shop 2 = [False, False, True, True] * 4
            Avalablity Shop 3 = [False, True] * 8
            demand = pd.DataFrame({"date": dates,
                                   "London Borough": London Boroughs,
                                   "Avalablity Shop 1": Avalablity Shop 1,
                                   "Avalablity Shop 2": Avalablity Shop 2,
                                   "Avalablity Shop 3": Avalablity_Shop_3})
            demand
```

The information about Supply include the probability of supply over different London Borough (location) and daily total amount of the supplied items (see Table below).

The probability could be different for different supplier but in our example it is the same for simplicity of presentation.

|    |            |                        |                                                                                                                                                        | Sup         | ply         |            |
|----|------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|
| N  | Date       | London Borough         | Supp                                                                                                                                                   | lier 1      | Supplier 2  |            |
|    |            | 1000                   | Probability                                                                                                                                            | Daily Total | Probability | Daily Tota |
| 1  | 11/06/2022 | Camden                 | 0.118                                                                                                                                                  |             | 0.118       |            |
| 2  | 11/06/2022 | Ealing                 | 0.157                                                                                                                                                  |             | 0.157       |            |
| 3  | 11/06/2022 | Greenwich              | 0.118                                                                                                                                                  |             | 0.118       |            |
| 4  | 11/06/2022 | Hounslow               | 0.220                                                                                                                                                  | 255         | 0.220       | 255        |
| 5  | 11/06/2022 | Richmond upon Thames   | 0.078                                                                                                                                                  | 255         | 0.078       | 255        |
| 6  | 11/06/2022 | Hammersmith and Fulham | 0.118<br>0.157<br>0.118<br>0.220<br>5 0.078<br>m 0.192<br>a 0.039<br>0.078<br>0.118<br>0.157<br>0.118<br>0.157<br>0.118<br>0.220<br>5 0.078<br>m 0.192 |             | 0.192       |            |
| 7  | 11/06/2022 | Kensington and Chelsea |                                                                                                                                                        | 0.039       |             |            |
| 8  | 11/06/2022 | City of Westminster    | 0.078                                                                                                                                                  | 255         | 0.078       |            |
| 9  | 12/06/2022 | Camden                 | 0.118                                                                                                                                                  |             | 0.118       |            |
| 10 | 12/06/2022 | Ealing                 | 0.157                                                                                                                                                  |             | 0.157       |            |
| 11 | 12/06/2022 | Greenwich              | 0.118                                                                                                                                                  |             | 0.118       |            |
| 12 | 12/06/2022 | Hounslow               | 0.220                                                                                                                                                  | F10         | 0.220       | 255        |
| 13 | 12/06/2022 | Richmond upon Thames   | 0.078                                                                                                                                                  | 510         | 0.078       | 255        |
| 14 | 12/06/2022 | Hammersmith and Fulham | 0.192                                                                                                                                                  |             | 0.192       |            |
| 15 | 12/06/2022 | Kensington and Chelsea | 0.039                                                                                                                                                  |             | 0.039       |            |
| 16 | 12/06/2022 | City of Westminster    | 0.078                                                                                                                                                  |             | 0.078       |            |
| 17 |            | Total                  | 2                                                                                                                                                      | 765         | 2           | 510        |

## We finish definition of INPUTS at this point. Below we have our computations based on the above inputs.

In the rest of the script we use blue colour to show values that can be considered as Inputs to the following cell and red one as the Output.

# 1 We need to find how many supplied items is available for every supermarket given day and London Borough (location)

1.1 We multiply Shop Demand Availablity by Deman Weights

| NI | Date       | Landan Barawah         | Shop De | emand Ava | ilability | De     | mand Wei                                                | ght    |
|----|------------|------------------------|---------|-----------|-----------|--------|---------------------------------------------------------|--------|
| N  | Date       | London Borough         | Shop 1  | Shop 2    | Shop 3    | Shop 1 | Shop 2  0 0 0.3 0.3 0 0 0.3 0.3 0 0 0.3 0.3 0 0 0.3 0.3 | Shop 3 |
| 1  | 11/06/2022 | Camden                 | SES     | - 3       | 3         | 0      | 0                                                       | 0      |
| 2  | 11/06/2022 | Ealing                 | 198     | -3        | +         | 0      | 0                                                       | 0.5    |
| 3  | 11/06/2022 | Greenwich              | 8/25    | +         | -31       | 0      | 0.3                                                     | 0      |
| 4  | 11/06/2022 | Hounslow               | 198     | +         | +         | 0      | 0.3                                                     | 0.5    |
| 5  | 11/06/2022 | Richmond upon Thames   | +       | - 8       | 75        | 0.2    | 0                                                       | 0      |
| 6  | 11/06/2022 | Hammersmith and Fulham | 0.40    | -0        | +         | 0.2    | 0                                                       | 0.5    |
| 7  | 11/06/2022 | Kensington and Chelsea | +       | +         | -31       | 0.2    | 0.3                                                     | 0      |
| 8  | 11/06/2022 | City of Westminster    | 0#8     | 1.6       | +         | 0.2    | 0.3                                                     | 0.5    |
| 9  | 12/06/2022 | Camden                 | 1.5     | 8         | 15        | 0      | 0                                                       | 0      |
| 10 | 12/06/2022 | Ealing                 | 3.29    | -20       | +         | 0      | 0                                                       | 0.5    |
| 11 | 12/06/2022 | Greenwich              |         | +         | -         | 0      | 0.3                                                     | 0      |
| 12 | 12/06/2022 | Hounslow               | 2.23    | - +       | +         | 0      | 0.3                                                     | 0.5    |
| 13 | 12/06/2022 | Richmond upon Thames   | +       | 8         | =         | 0.2    | 0                                                       | 0      |
| 14 | 12/06/2022 | Hammersmith and Fulham | +       | -2        | +         | 0.2    | 0                                                       | 0.5    |
| 15 | 12/06/2022 | Kensington and Chelsea | +       | +         | -         | 0.2    | 0.3                                                     | 0      |
| 16 | 12/06/2022 | City of Westminster    | +       | - +       | +         | 0.2    | 0.3                                                     | 0.5    |
| 17 | Total      | 3.60                   | 150     | 500       | 300       |        | -                                                       |        |

```
In []: M for i in range(1, nShops + 1):
         demand["Weight Shop " + str(i)] = \
          demand["Avalablity Shop " + str(i)].apply(lambda x: Demand_Weights["Shop " + str(i)] * x)
#
demand
```

# 1.2 For every row normalise Deman Weights after above multiplication that they sum to 1 over all supermarkets.

In order to normalise we divide weights by its sum. If the sum of Demand Weights in row is equal to 0 (see Camden Borough) we do not change anything - keep this row all zeros.

| 61 | Dete       | Conden Borrera         | Shop De | emand Ava | ilability | De     | mand Wei | ght    | Row No   | ormalised | Weight   |
|----|------------|------------------------|---------|-----------|-----------|--------|----------|--------|----------|-----------|----------|
| N  | Date       | London Borough         | Shop 1  | Shop 2    | Shop 3    | Shop 1 | Shop 2   | Shop 3 | Shop 1   | Shop 2    | Shop 3   |
| 1  | 11/06/2022 | Camden                 | .596    | - 3       | 3         | 0      | 0        | 0      | 0        | 0         | 0        |
| 2  | 11/06/2022 | Ealing                 | ne:     | -3        | +         | 0      | 0        | 0.5    | 0        | 0         | 1        |
| 3  | 11/06/2022 | Greenwich              | 15/20   | +         | 126       | 0      | 0.3      | 0      | 0        | 1         | 0        |
| 4  | 11/06/2022 | Hounslow               | 1983    | 1.8       | 1.4       | 0      | 0.3      | 0.5    | 0        | 0.375     | 0.625    |
| 5  | 11/06/2022 | Richmond upon Thames   | +       | - 8       | 26        | 0.2    | 0        | 0      | 1        | 0         | 0        |
| 6  | 11/06/2022 | Hammersmith and Fulham | 1       | -8        | +         | 0.2    | 0        | 0.5    | 0.285714 | 0         | 0.714286 |
| 7  | 11/06/2022 | Kensington and Chelsea | +       | +         | - 36      | 0.2    | 0.3      | 0      | 0.4      | 0.6       | 0        |
| 8  | 11/06/2022 | City of Westminster    | 0+      | 1.6       | 1 +       | 0.2    | 0.3      | 0.5    | 0.2      | 0.3       | 0.5      |
| 9  | 12/06/2022 | Camden                 | 1.5     | ā         | 8         | 0      | 0        | 0      | 0        | 0         | 0        |
| 10 | 12/06/2022 | Ealing                 | 141     | 2         | +         | 0      | 0        | 0.5    | 0        | 0         | 1        |
| 11 | 12/06/2022 | Greenwich              | -       | +         | 18        | 0      | 0.3      | 0      | 0        | 1         | 0        |
| 12 | 12/06/2022 | Hounslow               | 2.23    | +         | +         | 0      | 0.3      | 0.5    | 0        | 0.375     | 0.625    |
| 13 | 12/06/2022 | Richmond upon Thames   | +       | 8         | -         | 0.2    | 0        | 0      | 1        | 0         | 0        |
| 14 | 12/06/2022 | Hammersmith and Fulham | +       | 2         | +         | 0.2    | 0        | 0.5    | 0.285714 | 0         | 0.714286 |
| 15 | 12/06/2022 | Kensington and Chelsea | +       | +         | 18        | 0.2    | 0.3      | 0      | 0.4      | 0.6       | 0        |
| 16 | 12/06/2022 | City of Westminster    | +       | +         | +         | 0.2    | 0.3      | 0.5    | 0.2      | 0.3       | 0.5      |
| 17 | Total      | 5-1                    | 150     | 500       | 300       |        |          |        | ~        |           |          |

```
In []: N for i in range(1, nShops + 1):
    if i == 1:
        demand["Weight Shop SUM"] = demand["Weight Shop " + str(i)].copy()
    else:
        demand["Weight Shop SUM"] += demand["Weight Shop " + str(i)].copy()

#
for i in range(1, nShops + 1):
    demand["row Normalised Weight Shop " + str(i)] = \
    demand.apply(lambda x: x["Weight Shop " + str(i)] / x["Weight Shop SUM"] if x["Weight Shop SUM"] > 0 else 0, \
        axis = 1)

#
demand
```

### 1.3 Find the quantity of items that suppliers can provide for the given date and London Borough (location).

For every date we apply D'hont algorithm that uses Supplier probabilities (vector of eight elements, for example, (0.118, 0.157, 0.118, 0.220, 0.078, 0.192, 0.039, 0.078)) and Supplier Total (for example, 255) given the date and supplier. In our further calculation we only need all available supply (see column "ALL" below) per London Borough.

|    |            |                        |             |            |       | Supply      |                                  |       |      |
|----|------------|------------------------|-------------|------------|-------|-------------|----------------------------------|-------|------|
| N  | Date       | London Borough         |             | Supplier 1 |       | Suppli      | ier 2                            |       | A11  |
|    |            | 765                    | Probability | Quantity   | Total | Probability | Quantity                         | Total | ALL  |
| 1  | 11/06/2022 | Camden                 | 0.118       | 30         |       | 0.118       | 30                               | 4     | 60   |
| 2  | 11/06/2022 | Ealing                 | 0.157       | 40         |       | 0.157       | 40                               |       | 80   |
| 3  | 11/06/2022 | Greenwich              | 0.118       | 30         |       | 0.118       | 30                               |       | 60   |
| 4  | 11/06/2022 | Hounslow               | 0.220       | 56         |       | 0.220       | 56                               | 255   | 112  |
| 5  | 11/06/2022 | Richmond upon Thames   | 0.078       | 20         | 255   | 0.078       | 20                               | 255   | 40   |
| 6  | 11/06/2022 | Hammersmith and Fulham | 0.192       | 49         |       | 0.192       | 49                               |       | 98   |
| 7  | 11/06/2022 | Kensington and Chelsea | 0.039       | 10         |       | 0.039       | 10                               |       | 20   |
| 8  | 11/06/2022 | City of Westminster    | 0.078       | 20         |       | 0.078       | 20                               |       | 40   |
| 9  | 12/06/2022 | Camden                 | 0.118       | 60         |       | 0.118       | 30                               |       | 90   |
| 10 | 12/06/2022 | Ealing                 | 0.157       | 80         |       | 0.157       | 40                               |       | 120  |
| 11 | 12/06/2022 | Greenwich              | 0.118       | 60         |       | 0.118       | 30                               |       | 90   |
| 12 | 12/06/2022 | Hounslow               | 0.220       | 112        | 510   | 0.220       | 56                               | 255   | 168  |
| 13 | 12/06/2022 | Richmond upon Thames   | 0.078       | 40         | 510   | 0.078       | 20                               | 255   | 60   |
| 14 | 12/06/2022 | Hammersmith and Fulham | 0.192       | 98         |       | 0.192       | 10<br>20<br>30<br>40<br>30<br>56 |       | 147  |
| 15 | 12/06/2022 | Kensington and Chelsea | 0.039       | 20         |       | 0.039       | 10                               |       | 30   |
| 16 | 12/06/2022 | City of Westminster    | 0.078       | 40         |       | 0.078       | 20                               |       | 60   |
| 17 |            | Total                  |             | 765        | 765   |             | 510                              | 510   | 1275 |

```
In [ ]: ▶ #
            nSuppliers = 2
            nDays
                       = 2
            Dates = ["11/06/2022", "12/06/2022"]
            Quantity Supplied given Supplier = {"1": [], "2": []}
            for i in range(1, nSuppliers + 1):
                for k in range(1, len(Dates) + 1):
                    Date = Dates[k - 1]
                                          = supply df[supply df["date"] == Date]["supplier " + str(i) + " prob"].values
                    prob
                    supplied daily amount = Daily Total Supplied Quantity["Day " + str(k) + \
                                                                          ", ALL Quantity, Supplier " + str(i)]
                    Quantity Supplied given Supplier Date = dhontAD(supplied daily amount, prob)
                    Quantity Supplied given Supplier[str(i)] = \
                    Quantity_Supplied_given_Supplier[str(i)] + list(Quantity_Supplied_given_Supplier_Date)
                supply_df["supplier " + str(i) + " quantity"] = Quantity_Supplied_given_Supplier[str(i)]
                supply_df["supplier " + str(i) + " quantity"] = supply_df["supplier " + str(i) + " quantity"].astype(int)
            supply_df["Supplier ALL"] = supply_df["supplier 1 quantity"] + supply_df["supplier 2 quantity"]
            supply df
```

#### 1.4 Evaluate how many items can be supplied to the given shop

We join demand and supply\_df tables and then apply DHont algorithm for every row using Row Normalised Weights (see demand table above) and Supplier ALL (see supply\_df above) as following:

| N  | Data       | Landan Bassish         | Shop De | emand Ava | ilability | De     | mand Wei | ight   | Row No   | ormalised | Weight   | Sup    | ply AS Den | nand   |
|----|------------|------------------------|---------|-----------|-----------|--------|----------|--------|----------|-----------|----------|--------|------------|--------|
| IN | Date       | London Borough         | Shop 1  | Shop 2    | Shop 3    | Shop 1 | Shop 2   | Shop 3 | Shop 1   | Shop 2    | Shop 3   | Shop 1 | Shop 2     | Shop 3 |
| 1  | 11/06/2022 | Camden                 | 1.54    | 8         | 8         | 0      | 0        | 0      | 0        | 0         | 0        | 0      | 0          | 0      |
| 2  | 11/06/2022 | Ealing                 | 2.23    | - 2       | +         | 0      | 0        | 0.5    | 0        | 0         | 1        | 0      | 0          | 80     |
| 3  | 11/06/2022 | Greenwich              | 1 = 1   | +         | 8         | 0      | 0,3      | 0      | 0        | 1         | 0        | 0      | 60         | 0      |
| 4  | 11/06/2022 | Hounslow               | 121     | +         | 14        | 0      | 0.3      | 0.5    | 0        | 0.375     | 0.625    | 0      | 42         | 70     |
| 5  | 11/06/2022 | Richmond upon Thames   | +       | 8         | 8         | 0.2    | 0        | 0      | 1        | 0         | 0        | 40     | 0          | 0      |
| 6  | 11/06/2022 | Hammersmith and Fulham | +       | - 2       | +         | 0.2    | 0        | 0.5    | 0.285714 | 0         | 0.714286 | 28     | 0          | 70     |
| 7  | 11/06/2022 | Kensington and Chelsea | +       | +         | 18        | 0.2    | 0.3      | 0      | 0.4      | 0.6       | 0        | 8      | 12         | 0      |
| 8  | 11/06/2022 | City of Westminster    | +       | 4         | 14        | 0.2    | 0.3      | 0.5    | 0.2      | 0.3       | 0.5      | 8      | 12         | 20     |
| 9  | 12/06/2022 | Camden                 | 3.75    | 5         | -51       | 0      | 0        | 0      | 0        | 0         | 0        | 0      | 0          | 0      |
| 10 | 12/06/2022 | Ealing                 | 2       | - 12      | +         | 0      | 0        | 0.5    | 0        | 0         | 1        | 0      | 0          | 120    |
| 11 | 12/06/2022 | Greenwich              | 5.55    | +         |           | 0      | 0.3      | 0      | 0        | 1         | 0        | 0      | 90         | 0      |
| 12 | 12/06/2022 | Hounslow               | 12      | +         | +         | 0      | 0.3      | 0.5    | 0        | 0.375     | 0.625    | 0      | 63         | 105    |
| 13 | 12/06/2022 | Richmond upon Thames   | +       | -         | -         | 0.2    | 0        | 0      | 1        | 0         | 0        | 60     | 0          | 0      |
| 14 | 12/06/2022 | Hammersmith and Fulham | +       | - 12      | +         | 0.2    | 0        | 0.5    | 0.285714 | 0         | 0.714286 | 42     | 0          | 105    |
| 15 | 12/06/2022 | Kensington and Chelsea | +       | +         |           | 0.2    | 0.3      | 0      | 0.4      | 0.6       | 0        | 12     | 18         | 0      |
| 16 | 12/06/2022 | City of Westminster    | +       | +         | +         | 0.2    | 0.3      | 0.5    | 0.2      | 0.3       | 0.5      | 12     | 18         | 30     |
| 17 | Total      |                        | 150     | 500       | 300       |        |          |        | 8        |           |          | 210    | 315        | 600    |

Note that, DHont algorithm in this case can be implemented in BigQuery using Keras because the number of shops given the supermarket network in the London Borough is less than 233155. this constrain comes from restriction that Keras in BigQuery process data in batches around 233155 elements in the batch.

#### 1.5 Evaluation of Available Demand

We find the minimum between what is required and what is available for the given supermarket network:

| Super Market | Demand | Supply | <b>Available Demand</b> |
|--------------|--------|--------|-------------------------|
| Shop 1       | 150    | 210    | 150                     |
| Shop 2       | 500    | 315    | 315                     |
| Shop 3       | 300    | 600    | 300                     |

```
In []: In [
```

### 1.6 Summary

The only purpose of the Section 1 is to find Available Demand per supermarket or demand that can be fulfill

Available Demand: {'shop 1': 150, 'shop 2': 315, 'shop 3': 300}

and Supply AS Demand that can be used for weight calculation in the nexr Section:

| Sup    | ply AS Den | nand   |
|--------|------------|--------|
| Shop 1 | Shop 2     | Shop 3 |
| 0      | 0          | 0      |
| 0      | 0          | 80     |
| 0      | 60         | 0      |
| 0      | 42         | 70     |
| 40     | 0          | 0      |
| 28     | 0          | 70     |
| 8      | 12         | 0      |
| 8      | 12         | 20     |
| 0      | 0          | 0      |
| 0      | 0          | 120    |
| 0      | 90         | 0      |
| 0      | 63         | 105    |
| 60     | 0          | 0      |
| 42     | 0          | 105    |
| 12     | 18         | 0      |
| 12     | 18         | 30     |
| 210    | 315        | 600    |

### 2. Final Allocation of Items given Date, Borough and Shop

#### 2.1 Column Normalise Weights

For every shop of Supply AS Demand win order to compute weight we divide the every value of Supply AS Demand by the corresponding column total. If we sum any column of the obtained weight we get 1.

| 7.60 | D-4-       | Foodoo waterings       | Sup    | ply AS Den | nand   | Column   | Normalise | d Weight |
|------|------------|------------------------|--------|------------|--------|----------|-----------|----------|
| N    | Date       | London Borough         | Shop 1 | Shop 2     | Shop 3 | Shop 1   | Shop 2    | Shop 3   |
| 1    | 11/06/2022 | Camden                 | 0      | 0          | 0      | 0        | 0         | 0        |
| 2    | 11/06/2022 | Ealing                 | 0      | 0          | 80     | 0        | 0         | 0.133333 |
| 3    | 11/06/2022 | Greenwich              | 0      | 60         | 0      | 0        | 0.190476  | 0        |
| 4    | 11/06/2022 | Hounslow               | 0      | 42         | 70     | 0        | 0.133333  | 0.116667 |
| 5    | 11/06/2022 | Richmond upon Thames   | 40     | 0          | 0      | 0.190476 | 0         | 0        |
| 6    | 11/06/2022 | Hammersmith and Fulham | 28     | 0          | 70     | 0.133333 | 0         | 0.116667 |
| 7    | 11/06/2022 | Kensington and Chelsea | 8      | 12         | 0      | 0.038095 | 0.038095  | 0        |
| 8    | 11/06/2022 | City of Westminster    | 8      | 12         | 20     | 0.038095 | 0.038095  | 0.033333 |
| 9    | 11/06/2022 | Camden                 | 0      | 0          | 0      | 0        | 0         | 0        |
| 10   | 12/06/2022 | Ealing                 | 0      | 0          | 120    | 0        | 0         | 0.2      |
| 11   | 12/06/2022 | Greenwich              | 0      | 90         | 0      | 0        | 0.285714  | 0        |
| 12   | 12/06/2022 | Hounslow               | 0      | 63         | 105    | 0        | 0.2       | 0.175    |
| 13   | 12/06/2022 | Richmond upon Thames   | 60     | 0          | 0      | 0.285714 | 0         | 0        |
| 14   | 12/06/2022 | Hammersmith and Fulham | 42     | 0          | 105    | 0.2      | 0         | 0.175    |
| 15   | 12/06/2022 | Kensington and Chelsea | 12     | 18         | 0      | 0.057143 | 0.057143  | 0        |
| 15   | 12/06/2022 | City of Westminster    | 12     | 18         | 30     | 0.057143 | 0.057143  | 0.05     |
| 17   | Total      | -                      | 210    | 315        | 600    | 1        | 1         | 1        |

### 2.2 Final Allocations of Items to Shops

We use the column normalised weight and Available Demand as inputs to DHont algorithm. Output of Dhont algorithm is the final allocation of Items to the shop as following:

| 2.1 | D-4-       | reside estimate        | Sup    | ply AS Den | nand   | Column   | Normalise | d Weight | Fir    | nal Allocati | on     |
|-----|------------|------------------------|--------|------------|--------|----------|-----------|----------|--------|--------------|--------|
| N   | Date       | London Borough         | Shop 1 | Shop 2     | Shop 3 | Shop 1   | Shop 2    | Shop 3   | Shop 1 | Shop 2       | Shop 3 |
| 1   | 11/06/2022 | Camden                 | 0      | 0          | 0      | 0        | 0         | 0        | 0      | 0            | 0      |
| 2   | 11/06/2022 | Ealing                 | 0      | 0          | 80     | 0        | 0         | 0.133333 | 0      | 0            | 40     |
| 3   | 11/06/2022 | Greenwich              | 0      | 60         | 0      | 0        | 0.190476  | 0        | 0      | 60           | 0      |
| 4   | 11/06/2022 | Hounslow               | 0      | 42         | 70     | 0        | 0.133333  | 0.116667 | 0      | 42           | 35     |
| 5   | 11/06/2022 | Richmond upon Thames   | 40     | 0          | 0      | 0.190476 | 0         | 0        | 29     | 0            | 0      |
| 6   | 11/06/2022 | Hammersmith and Fulham | 28     | 0          | 70     | 0.133333 | 0         | 0.116667 | 20     | 0            | 35     |
| 7   | 11/06/2022 | Kensington and Chelsea | 8      | 12         | 0      | 0.038095 | 0.038095  | 0        | 5      | 12           | 0      |
| 8   | 11/06/2022 | City of Westminster    | 8      | 12         | 20     | 0.038095 | 0.038095  | 0.033333 | 5      | 12           | 10     |
| 9   | 11/06/2022 | Camden                 | 0      | 0          | 0      | 0        | 0         | 0        | 0      | 0            | 0      |
| 10  | 12/06/2022 | Ealing                 | 0      | 0          | 120    | 0        | 0         | 0.2      | 0      | 0            | 60     |
| 11  | 12/06/2022 | Greenwich              | 0      | 90         | 0      | 0        | 0.285714  | 0        | 0      | 90           | 0      |
| 12  | 12/06/2022 | Hounslow               | 0      | 63         | 105    | 0        | 0.2       | 0.175    | 0      | 63           | 53     |
| 13  | 12/06/2022 | Richmond upon Thames   | 60     | 0          | 0      | 0.285714 | 0         | 0        | 44     | 0            | 0      |
| 14  | 12/06/2022 | Hammersmith and Fulham | 42     | 0          | 105    | 0.2      | 0         | 0.175    | 31     | 0            | 52     |
| 15  | 12/06/2022 | Kensington and Chelsea | 12     | 18         | 0      | 0.057143 | 0.057143  | 0        | 8      | 18           | 0      |
| 15  | 12/06/2022 | City of Westminster    | 12     | 18         | 30     | 0.057143 | 0.057143  | 0.05     | 8      | 18           | 15     |
| 17  | Total      | 8                      | 210    | 315        | 600    | 1        | 1         | 1        | 150    | 315          | 300    |

Test: Available Demand has to be equal to the corresponding Final Allocation

```
In []: # Test: final Allocation should be equalt to Available_Demand.
print("Available_Demand: ", Available_Demand)
demand_supply[["Final Allocation Shop 1", "Final Allocation Shop 2", "Final Allocation Shop 3"]].sum(axis = 0)
```