Shenzhen Toby Technology Co., Ltd.

Report No.: TB-MPE167719

Page: 1 of 5

RF Exposure Evaluation FCC ID: 2AHJQ-AX11

1. Client Information

Applicant: APRIX LATINOAMERICA S.A.

Address : ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL

PANAMA

Manufacturer : APRIX LATINOAMERICA S.A.

Address : ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL

PANAMA

2. General Description of EUT

Z. Ochiciai	DC	Scription of Lo			
EUT Name		Notebook			
Models No.		Aprix AX11			
Product		Operation Frequency:	2.4G: 802.11b/g/n(HT20): 2412MHz~2462MHz Bluetooth 4.0(BLE): 2402MHz~2480MHz 5G: U-NII-1: 5180MHz~5240MHz U-NII-3: 5745MHz~5825MHz		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM) 802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM) BLE: GFSK		
Power Supply		AC Adapter(Aprix Net-A11): Input: AC 100-240V, 50/60Hz, 1A Output: DC 12V, 3A			
Software Version	:	N/A			
Hardware Version		EM_IG520_272B_V2.0			
Connecting I/O Port(S)	•	Please refer to the User's Manual			

Note: More test information about the EUT please refer the RF Test Report.

TB-RF-074-1. 0

Tel: +86 75526509301 Fax: +86 75526509195

Page: 2 of 5

SAR Test Exclusion Calculations

1. FCC: According to KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

- (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1)The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

Page: 3 of 5

2. Calculation:

		2.4	4G WiFi Mode(802.11I	b)		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.412	8.91	8.5±0.5	9.0	7.943	2.467	3.0
2.437	8.13	8.5±0.5	9.0	7.943	2.480	3.0
2.462	8.43	8.5±0.5	9.0	7.943	2.493	3.0
	CALLED S	2.4	4G WiFi Mode(802.11	g)		117
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.412	7.76	7±0.5	7.5	5.623	1.747	3.0
2.437	7.11	7±0.5	7.5	5.623	1.756	3.0
2.462	6.73	7±0.5	7.5	5.623	1.765	3.0
	WW TO	2.4G	WiFi Mode(802.11n(H	T20))		THE
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.412	7.03	7±0.5	7.5	5.623	1.747	3.0
2.437	6.76	7±0.5	7.5	5.623	1.756	3.0
2.462	6.60	7±0.5	7.5	5.623	1.765	3.0

Page: 4 of 5

Test separatio	n: 5mm		COURS OF THE PERSON OF THE PER	7 110		1
	33	MAG	BLE Mode (GFSK)		CILLION TO	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	-1.458	-1±1	0	1.000	0.310	3.0
2.442	-2.743	-2±1	-1	0.794	0.248	3.0
2.480	-3.745	-3±1	-3	0.501	0.158	3.0

Test separation: 5mm					
	The wors	st RF Exposure Evaluatio	ń		
Worst Calculation Value Total Calculation			Threshold Value		
2.4G WiFi Mode	Bluetooth Mode	Value	Tillesilolu value		
2.493	0.310	2.803	3.0		

Because the 2.4G WiFi and Bluetooth can be operated simultaneously, So the worst RF Exposure Evaluation is calculated as 2.493+0.310=2.803 / cm2 < limit 3.0, So standalone SAR measurements are not required.

Page: 5 of 5

Test separation: 5mm						1
			5G WiFi			
Mode	Worst Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
U-NII-1 (5180MHz)	6.86	6.5±0.5	7	5.012	2.281	2.0
U-NII-3 (5825MHz)	6.84	6.5±0.5	7	5.012	2.419	3.0

Test separation: 5mm					
a W	The wors	st RF Exposure Evaluation	on		
Worst Calcu	ulation Value	Total Calculation	Threshold Value		
5G WiFi Mode	Bluetooth Mode	Value	Tillesiloid Value		
2.281	0.310	2.591	3.0		

Because the 5G WiFi and Bluetooth can be operated simultaneously, So the worst RF Exposure Evaluation is calculated as 2.281+0.310=2.591 / cm2 < limit 3.0, So standalone SAR measurements are not required.

----END OF REPORT----