CARRUS

ABSTRACT

CARRUS is a software aimed to be implemented in kiosks to bridge the gap between shops and shoppers on the go. It aids urban dwellers to search, locate and buy products through a kiosk and just pick them up at the shop saving time at billing counters and reducing crowding at stores.

CARRUS: A PROJECT

1. Roles and responsibilities.

- Vishnu Vardhan V (Team Leader, Front End, SQL Backend)
- Savion Mario Sequeira (Front End, SQL Backend)
- Shreyas C (Front End, SQL Backend)
- Shruthi M (Front End, SQL Backend)

2. Stakeholders.

- Shoppers (End Users)
- Shopkeepers
- Advertising Agencies
- City Corporation
- System Admin (Maintenance)

3. Team goals and a business objective.

- To create an easy and interactive solution for on the go shoppers
- Contribute towards the smart city vision.
- Help local shopkeepers boost their business.
- Generate revenue through advertising.
- Reduce billing time and crowd at shops, in turn reducing infrastructure required to set up a shop.

4. Background and strategic fit.

- Inspiration for this project occurred because we felt a need to fill the void between app-based grocery shopping which isn't instant and physical store shopping which is time consuming.
- During the pandemic we witnessed that most app-based shopping solutions couldn't meet everybody's need and had to stop taking new orders before fulfilling old ones.
 On the other hand, most people were reluctant to go to shops due to crowding and billing time.
- This project is a solution that will boost local shops business and save shoppers time.
- Since, a smart city is one that provides infrastructure to ease our day to day activities
 with technology and also benefit businesses in some way, CARRUS is an affordable
 solution to meet these needs.
- Zero paper usage makes the solution sustainable.

5. Assumptions.

- Availability of uninterrupted electricity supply to the kiosk.
- Availability of uninterrupted internet service to the kiosk.
- Shelter to the kiosk from natural elements like rain, dust, etc.
- Basic English language literacy by the users.

DESIGN

> ER DIAGRAM

Entity Relationship Diagram

Relationship Schema

> DATASET

• MK Retail

Item Name	Quantity	
Lays	7	
Heinz	3	
Oreo	103	
Quaker Oats	17	
Cavin's	25	
Cup Noodles	5	
Hide and Seek	4	
Red Bull	20	
Oil	10	
Cake	40	

Aishwarya

Item Name	Quantity	
Coca Cola	43	
Lays	23	
Cadbury	77	
Tropicana	11	
Heinz	55	
American Garden	5	
Kurkure	9	
Jolly Rancher	19	

• Reliance Mart

Item Name	Quantity	
Lays	34	
Tropicana	25	
Milk	67	
Jim Jam	89	
Pasta	12	
Jolly Rancher	40	
Monster	25	
Bounty	40	

• More

Item Name	Quantity	
Coco Cola	32	
Heinz	34	
Maggi	64	
Oreo	88	
Kellogg's	20	
Quaker Oats	100	
Cavin's	6	
Kwality Walls	44	
Cup Noodles	11	
Red Bull	9	
American Garden	11	
Bounty	10	

• KwikEMart

Item Name	Quantity
Lays	50
Cadbury	58
Tropicana	15
Oreo	11
Quaker Oats	64
Pringles	10
Cavin's	25
Kurkure	35
Monster	10
Cake	15

• Classic Grocers

Item Name	Quantity
Heinz	3
Oreo	13
Quaker Oats	93
Pringles	10
Sprite	12
Snickers	17
Pasta	16
Red Bull	3
Nestle	17
Bounty	40

> IMPLEMENTATION OF DIJKSTRA'S ALGORITHM

Dijkstra's algorithm is used to find the nearest shop from the kiosk being operated. If the user is utilising kiosk 1 in the above example then using the algorithm the nearest shop if the item is available will be shop A.

BUDGET PLAN (APPROXIMATE COSTS)

> Initial investment

ITEM	COST PER ITEM	QUANTITY	TOTAL AMOUNT
Kiosk	12,000	10	1,20,000
Operating system	9,299	1	9,299
		Total (in INR)	1,29,299

Recurring Costs

ITEM	COST PER ITEM	QUANTITY/ TIME VALIDITY(MONTHLY)	TOTAL AMOUNT
Electricity	9.95p per unit	21.6kW	21,600
Internet	-	Unlimited(1Gbps)	20,000
		Total (in INR)	41,600

FUTURE SCOPE

- Can implement schemes for few customers or shops to get priority which will also act as a method to generate revenue.
- Kiosks can act as emergency service contact machines with quick links to police, ambulance and fire services.