original M.C.: state space S, transition rates {9ij}, stationary distrib {pi} truncated M.C.: state space 5, transition rates {9ij}

(a) Given:

$$P_{j} \sum_{i \in \overline{S}} q_{ji} = \sum_{i \in \overline{S}} P_{i} q_{ij}$$
 $\forall j \in \overline{S}$

Divide both sides by \sum_{k\in \bar{5}} P_k

$$\left(\frac{P_{j}}{\sum_{k \in S} P_{k}}\right) \sum_{i \in \overline{S}} q_{ji} = \sum_{i \in \overline{S}} \left(\frac{P_{i}}{\sum_{k \in \overline{S}} P_{k}}\right) q_{ij} \qquad \forall j \in \overline{S}$$

Define
$$\bar{p}_{j} = \frac{p_{j}}{\sum_{k \in \bar{S}} p_{k}}$$

We have $\bar{p}_j > 0$ (bec $\bar{p}_j > 0$) and $\sum_{j \in \bar{S}} \bar{P}_j = 1$, and therefore $\{\bar{p}_j\}$ is a valid probability distribution. Furthermore, $\{\bar{p}_j\}$ satisfy the global balance equations of the truncated M.C. Hence, $\{\bar{p}_j\}$ is the stationary distribution of the truncated M.C.

(b) If the original M.C. is time reversible, then

$$\sum_{i \in \overline{S}} P_i q_{ji} = \sum_{i \in \overline{S}} P_i q_{ij} \quad \forall j \in S$$

Thus, we have

is satisfied.

Moreover,

$$P_{j} q_{ji} = P_{i} q_{ij} \quad \forall i,j \in S \Rightarrow P_{j} q_{ji} = P_{i} q_{ij} \quad \forall i,j \in S \in S$$

$$\Rightarrow P_{j} q_{ji} = P_{i} q_{ij} \quad \forall i,j \in S$$

Therefore, the truncated M.C. is time reversible too.

queve 1

queve 2

The queves are independent.

Let Nk be the number of customers in "queue k", k=1,2.

Define
$$\rho = \frac{\lambda_k}{\gamma_k}$$
 $k = 1/2$.

* Without a bound on the number of customers, we have

m=0,1, --

$$P(N_2=n) = (1-P_2) p_2^n$$

n=0/1/--

of the queves are independent

$$P(N_1=m, N_2=n) = P(N_1=m) P(N_2=n) = (1-P_1)(1-P_2) P_1^m P_2^n$$

m = 0, 1, --

Define the state of theM.C. as (N1, N2)

- * Now, consider the finite capacity case: NI+NZ & B the original M.C. is time reversible
 - on the condition in part (a) is satisfied
 - the stationary distribution of the truncated M.C. can be obtained from the stationary distribution of the original M.C. by renormalization. More precisely

$$P(N_1=m, N_2=n) = (1-P_1)(1-P_2), P_1^m P_2^n + (m,n) \in S$$

where $\overline{5} = \{(m,n) : m+n \leq B\}$

and
$$K = \sum_{\substack{m,n:\\m \neq n \leq B}} (1-p_1)(1-p_1) p_1^m p_2^n$$