Evidential clustering with label constraints [1]

V. Antoine

Clermont-Auvergne University, LIMOS, UMR CNRS 6158, France

July 2023

[1] V. Antoine & al, Fast semi-supervised evidential clustering, IJAR, 2021

Clustering

Determine the group of objects based on a similarity notion

Clustering

Determine the group of objects based on a similarity notion

A famous clustering algorithm: k-means

Clustering: a technique of Machine Learning

Constrained clustering

Clustering problematic

No background knowledge

- how to define a similarity notion ?
- how to chose between several clustering solutions?

Constrained clustering

Clustering problematic

No background knowledge

- how to define a similarity notion ?
- how to chose between several clustering solutions?

Expert information

- retrieve constraints from background knowledge
- semi-automatically collect constraints (active learning)

Constrained clustering

Constraint types

Instance level constraints

Informativeness

Label

An object belong to a class: $\mathbf{x}_i \in \mathcal{L}$

Triplet

 \mathbf{x}_a is closer to \mathbf{x}_b than to \mathbf{x}_c : $d(x_a, x_b) < d(x_a, x_c)$

Must-Link / Cannot-Link:

Two objects are in the same/different class:

$$\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)\in\mathcal{M}\;/\;\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)\in\mathcal{C}$$

Chunklets: set of objects in the same class

Motivations

[1] P. Smets, The transferable belief model for quantified belief representation, 1998

[2] M.-H. Masson & al, ECM: An evidential version of the fuzzy c-means algorithm, 2008

[3] V. Antoine & al, Fast semi-supervised evidential clustering, 2021

Outline: the soft variants of k-means

- Background
 - FCM
 - ECM
- SECM
 - Consistency measure
 - Objective function
 - Optimization
- 3 Experiments
- 4 Conclusion

Outline

- Background
 - FCM
 - ECM
- SECM
 - Consistency measure
 - Objective function
 - Optimization
- 3 Experiments
- 4 Conclusion

Fuzzy partition

Each object has a degree of membership to each cluster

•
$$\mathbf{U} = (u_{ik}) \text{ s.t } u_{ik} \in [0,1], \sum_{k=1}^{c} u_{ik} = 1$$

Example

Let ω_1 be the class of square, ω_2 the class of round

	p_{i1}	p_{i2}
O	0	1
	1	0
	0.9	0.1
$\overline{\Box}$	0.5	0.5

Fuzzy c-means (FCM)

Geometrical model

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Mahalanobis distance $d_{ik}^2 = (\mathbf{x}_i \mathbf{v}_k)\mathbf{S}_k(\mathbf{x}_i \mathbf{v}_k)$

Objective function

$$J_{FCM}(\mathbf{U}, \mathbf{V}, \mathbf{S}) = \sum_{i=1}^{N} \sum_{k=1}^{C} u_{ik}^{\beta} d_{ik}^{2}$$

Subject to

$$\sum_{k=1}^{C} u_{ik} = 1 \text{ and } u_{ik} \ge 0 \quad \forall i, k$$

Gauss-Seidel optimization method

$$\operatorname{\mathsf{min}}_{\mathbf{J}} J_{FCM} \to \operatorname{\mathsf{min}}_{\mathbf{J}} J_{FCM} \to \operatorname{\mathsf{min}}_{\mathbf{S}} J_{FCM} \to \dots$$

$$u_{i1} = 0.3, \ u_{i2} = 0.7 +$$
closed world ?

Belief function theory

Let Y be a variable taking values in a finite set Ω .

Mass function
$$m:2^\Omega \to [0,1]$$

$$\sum_{\mathcal{A}\subset\Omega}m(\mathcal{A})=1$$

- m(A): degree of belief specific to $Y \in A$
- If m(A) > 0 then A is a focal set

Credal partition

- ullet Each object has a degree of belief to each subset $\mathcal{A}_j \subseteq \Omega$
- ullet $oldsymbol{\mathsf{M}}=(\mathit{m}_{ij})$ s.t $\mathit{m}_{ij}\in[0,1]$, $\sum_{\mathcal{A}_i\subseteq\Omega}\mathit{m}_{ij}=1$

Example

Let ω_1 be the class of square, ω_2 the class of round

	$m_{i\emptyset}$	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\Omega}$
O	0	0	1	0
	0	1	0	0
	0	0.9	0.1	0
\Box	0	0	0	1
☆	1	0	0	0

Evidential c-means (ECM)

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Centroid $\overline{\mathbf{v}}_j$: barycenter of centers associated to classes composing $\mathcal{A}_j \subseteq \Omega$
- ullet Distance d_{ij}^2 between ${f x}_i$ and ${f \overline v}_j$

Evidential c-means (ECM)

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Centroid $\overline{\mathbf{v}}_j$: barycenter of centers associated to classes composing $\mathcal{A}_j \subseteq \Omega$
- ullet Distance d_{ij}^2 between ${f x}_i$ and ${f \overline v}_j$

Evidential c-means (ECM)

Objective function

$$J_{ECM}(\mathbf{M}, \mathbf{V}, \mathbf{\mathcal{S}}) = \sum_{i=1}^{N} \sum_{\mathcal{A}_{j} \subseteq \Omega, \; \mathcal{A}_{j}
eq \emptyset} |\mathcal{A}_{j}|^{lpha} m_{i} (\mathcal{A}_{j})^{eta} d_{ij}^{2} + \sum_{i=1}^{N} \delta^{2} m_{i} (\emptyset)^{eta}$$

Subject to

$$\sum_{\mathcal{A}_j \subseteq \Omega, \ \mathcal{A}_j \neq \emptyset} m_i(\mathcal{A}_j) + m_i(\emptyset) = 1, \ m_i(\mathcal{A}_j) \geq 0 \quad \forall i, j, \ \det(\mathbf{S}_k) = 1 \quad \forall \omega_k \in \Omega$$

Gauss-Seidel optimization method

$$\mathsf{opt}(\mathsf{M}) o \mathsf{opt}(\mathsf{V}) o \mathsf{opt}(\mathcal{S}) o \dots$$

Interest of ECM: application for health care [1]

[1] Armel Soubeiga & al, Classification automatique de séries chronologiques de patients souffrant de douleurs chroniques, EGC 2023

Outline

- - FCM
 - ECM
- SECM
 - Consistency measure
 - Objective function
 - Optimization

Expert provides imprecise labels A_i : $(\mathbf{x}_i, A_i) \in \mathcal{L}$

Consistency between labels and hard credal partition

			credal	label						
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j		
0	1	0	0	0	0	0	0	ω_1	++	
O	0	0	1	0	0	0	0	ω_1	+	
O	0	0	0	0	0	0	1	ω_1	=	
Ŏ	0	1	0	0	0	0	0	ω_1	-	

Consistency between labels and hard credal partition

			credal	label						
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	$\mid A_j \mid$		
0	1	0	0	0	0	0	0	ω_1	++	
O	0	0	1	0	0	0	0	ω_1	+	
0	0	0	0	0	0	0	1	ω_1	=	
O	0	1	0	0	0	0	0	ω_1	-	
	0	1	0	0	0	0	0	ω_{12}	++	
	0	0	1	0	0	0	0	ω_{12}	+	
\Box	0	0	0	0	1	0	0	ω_{12}	=	
\Box	0	0	0	0	0	0	1	ω_{12}	=	
\Box	0	0	0	1	0	0	0	ω_{12}	_	

Consistency between labels and hard credal partition

		credal partition								
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j		T_{ij}
0	1	0	0	0	0	0	0	ω_1	++	1
Ö	0	0	1	0	0	0	0	ω_1	+	1/2
Ö	0	0	0	0	0	0	1	ω_1	=	1/3
Ö	0	1	0	0	0	0	0	ω_1	-	0
	0	1	0	0	0	0	0	ω_{12}	++	1
\Box	0	0	1	0	0	0	0	ω_{12}	+	$\sqrt{2}/2$
\Box	0	0	0	0	1	0	0	ω_{12}	=	1/2
\Box	0	0	0	0	0	0	1	ω_{12}	=	$\sqrt{2}/3$
\Box	0	0	0	1	0	0	0	ω_{12}	-	0

Consistency measure

$$T_{ij} = T_i(\mathcal{A}_j) = \sum_{\mathcal{A}_\ell \cap \mathcal{A}_j
eq \emptyset} rac{|\mathcal{A}_j \cap \mathcal{A}_\ell|^{r/2}}{|\mathcal{A}_\ell|^r} m_{i\ell}, \ r \geq 0 \ ext{a constant}$$

990

Seed evidential clustering: SECM

			credal	label						
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	\mathcal{A}_{j}		T_{ij}				
O	1	0	0	0	0	0	0	ω_1	++	1
O	0	1	0	0	0	0	0	ω_1	-	0
	0	1	0	0	0	0	0	ω_{12}	++	1
\Box	0	0	0	1	0	0	0	ω_{12}	-	0

Basic idea

If $(\mathbf{x}_i, \mathcal{A}_j) \in \mathcal{L} \Rightarrow T_{ij}$ should be high

Objective function to minimize

$$J_{SECM} = J_{ECM} + \gamma \sum_{(\mathbf{x}_i, \mathcal{A}_i) \in \mathcal{L}} 1 - T_{ij}$$

Consistency measure: r study

Consistency measure

$$\mathcal{T}_{ij} = \sum_{\mathcal{A}_{\ell} \cap \mathcal{A}_{j}
eq \emptyset} rac{|\mathcal{A}_{j} \cap \mathcal{A}_{\ell}|^{r/2}}{|\mathcal{A}_{\ell}|^{r}} m_{i\ell}$$

$$r = 1$$

$$\mathcal{T}_{ij} = \sum_{\mathcal{A}_{\ell} \cap \mathcal{A}_{j}
eq \emptyset} rac{|\mathcal{A}_{j} \cap \mathcal{A}_{\ell}|^{1/2}}{|\mathcal{A}_{\ell}|} m_{i\ell}$$

- Low cardinality are favored
- + make decision when labels are known

$$r = 0$$

$${\mathcal T}_{ij} = \sum_{{\mathcal A}_\ell \cap {\mathcal A}_i
eq \emptyset} {\mathsf m}_{i\ell} = {\mathsf pl}_i({\mathcal A}_j)$$

- no difference between low and high cardinality
- + robust to noisy labels

Gauss-Seidel optimization method

[1] M.-H. Masson & al. ECM: An evidential version of the fuzzy c-means algorithm, 2008

[2] D. Gustafson & al, Fuzzy clustering with a fuzzy covariance matrix. 1978

[3] V. Antoine & al, CFCM:constrained evidential c-means algorithm, 2012

Optimization of the credal partition

Optimization of the credal partition

Heuristic optimization SECM_H

Hypothesis

Relaxing $m_{ij} > 0$ has an insignificant impact on the solution

Lagragian multipliers

$$\mathcal{L}(\mathbf{M}, \lambda_1, \dots, \lambda_n) = J_{ECM} + \left(\gamma \sum_{(\mathbf{x}_i, \mathcal{A}_j) \in \mathcal{L}} 1 - T_{ij} \right) - \sum_{i=1}^n \lambda_i \left(\sum_{\mathcal{A}_j} m_{ij} - 1 \right)$$

$$rac{\partial \mathcal{L}}{\partial m_{ij}} = 0 \Rightarrow m_{ij} = rac{1}{|\mathcal{A}_i|^{lpha} d_{ii}^2 D} + \gamma f(\mathbf{x}_i, \mathcal{A}_j) - \gamma g(\mathbf{x}_i, \mathcal{A}_\ell)$$

Heuristic optimization SECM_H

Hypothesis

Relaxing $m_{ii} > 0$ has an insignificant impact on the solution

Lagragian multipliers

$$\mathcal{L}(\mathbf{M}, \lambda_1, \dots, \lambda_n) = J_{ECM} + \left(\gamma \sum_{(\mathbf{x}_i, \mathcal{A}_j) \in \mathcal{L}} 1 - T_{ij} \right) - \sum_{i=1}^n \lambda_i \left(\sum_{\mathcal{A}_j} m_{ij} - 1 \right)$$

$$\frac{\partial \mathcal{L}}{\partial m_{ij}} = 0 \Rightarrow m_{ij} = \boxed{\frac{1}{|\mathcal{A}_j|^{\alpha} d_{ij}^2 D}} + \boxed{\gamma f(\mathbf{x}_i, \mathcal{A}_j)} - \boxed{\gamma g(\mathbf{x}_i, \mathcal{A}_\ell)}$$

$$\text{ECM update formula} \qquad \qquad \text{if } (\mathbf{x}_i, \mathcal{A}_\ell) \in \mathcal{L}$$

Heuristic optimization SECM_H

$$m_{ij} = \frac{1}{|\mathcal{A}_j|^{\alpha} d_{ij}^2 D} + \sqrt{\gamma f(\mathbf{x}_i, \mathcal{A}_j)} - \sqrt{\gamma g(\mathbf{x}_i, \mathcal{A}_\ell)}$$

$$\geq 0 \qquad \geq 0$$

Hence,

- $m_{ij} \in]-\infty,1]$
- $\sum_{\mathcal{A}_i \subset \Omega} m_{ij} = 1$

Heuristic optimization $SECM_H$

$$m_{ij} = \frac{1}{|\mathcal{A}_j|^{\alpha} d_{ij}^2 D} + \gamma f(\mathbf{x}_i, \mathcal{A}_j) - \gamma g(\mathbf{x}_i, \mathcal{A}_\ell)$$

$$\geq 0 \qquad \geq 0$$

Hence,

- $m_{ij} \in]-\infty,1]$
- $\sum_{\mathcal{A}_i \subset \Omega} m_{ij} = 1$

Outline

- Background
 - FCM
 - ECM
- 2 SECM
 - Consistency measure
 - Objective function
 - Optimization
- 3 Experiments
- 4 Conclusion

Constraints interest

Constraints interest

Experimental protocol

Data sets

	# objects	# attributes	# classes
Column	310	6	3
Iris	150	4	3
Wine	178	13	3

Evaluation method based on true known classes

- random constraints selection
- evaluation measure:
 - pignistic transformation ⇒ fuzzy partition
 - maximum of probability ⇒ hard partition
 - ARI \in [0, 1]

Optimization analysis on Wine data set

30 const.	SECM _H	$SECM_{E}$	
J_{SECM} (×10 ⁻³)	236.3[1.1]	232.7[1.1]	
CPU (s)	0.19[0.00]	0.89[0.03]	
ARI	0.92[0.02]	0.92[0.03]	

Influence of the r parameter on Iris data set

		\mathcal{L}_s set		\mathcal{L}_n set		
		SECM _H	$SECMpl_H$	SECM _H	SECMpl _H	
[std]	0 10	0.67 [0.01] 0.82 [0.07]	0.67 [0.01] 0.77 [0.07]	0.67 [0.01] 0.51 [0.14]	0.67 [0.01] 0.62 [0.08]	
ARI	20 30	0.90 [0.05] 0.92 [0.03]	0.86 [0.06] 0.89 [0.05]	0.58 [0.10]	0.61 [0.08] 0.58 [0.07]	

Influence of the r parameter on Iris data set

		\mathcal{L}_s set		\mathcal{L}_n set	
		SECM _H	SECMpl _H	SECM _H	$SECMpI_H$
ARI [std]	0 10 20 30	0.67 [0.01] 0.82 [0.07] 0.90 [0.05] 0.92 [0.03]	0.67 [0.01] 0.77 [0.07] 0.86 [0.06] 0.89 [0.05]	0.67 [0.01] 0.51 [0.14] 0.58 [0.10] 0.59 [0.08]	0.67 [0.01] 0.62 [0.08] 0.61 [0.08] 0.58 [0.07]

Algorithm comparison on Column data set

Outline

- Background
 - FCM
 - ECM
- SECM
 - Consistency measure
 - Objective function
 - Optimization
- 3 Experiments
- 4 Conclusion

Conclusion

SECM

- evidential clustering
- incorporation of labels
- + credal partition is full of information
- + labels improve performances
- computational complexity
- sensitivity to label selection

Thank you