1. (a) Claim: I[x] is a proper ideal of R[x].

We note that $0 \in I$ and since $I \subseteq I[x]$, we get that $0 \in I[x]$.

Meanwhile, for $a_n x^n + \cdots + a_0, b_m x^m + \cdots + b_0 \in I[x]$. Assuming $n \ge m$, for each k > m, $a_k \in I$. For each $k \le m$ that $a_k + b_k \in I$. Hence, we get that $a_n x^n + \cdots + a_{m+1} x^{m+1} + (a_m + b_m) x^m + \cdots + (a_0 + b_0) \in I[x]$. We note that I[x] is closed under addition.

Lastly, for $a_n x^n + \cdots + a_0 \in I[x]$ and $b_m x^m + \cdots + b_0 \in R[x]$, we note that $(a_n x^n + \cdots + a_0)(b_m x^m + \cdots + b_0)$ can be expressed as:

$$\sum_{k=0}^{n} a_k x^k (b_m x^m + \dots + b_0)$$

For $0 \le i \le m$, $a_k b_i \in I$, so $a_k b_i x^{i+k} \in I[x]$. This implies that $a_k b_m x^{m+k} + \cdots + a_k b_0 x^k \in I[x]$ as each term is in I[x] and I[x] is closed under addition. Since each item in the sum is in I[x], it further implies that the sum is in I[x].

We proved that I[x] is an ideal of R[x], so we now prove properness. Clearly, $I[x] \subseteq R[x]$. Since I is a proper ideal, $1 \notin I$, so $1 \cdot x = x \notin I[x]$. However, $x \in R[x]$, so we get that $I[x] \neq R[x]$, so it is a proper ideal.

Claim: $R[x]/I[x] \cong (R/I)[x]$

Our goal is to use the First Isomorphism Theorem to achieve this result.

By Proposition 9.5, a homomorphism $\psi: R[x] \to (R/I)[x]$ is the same as defining a homomorphism $\varphi: R \to (R/I)[x]$ along with an element $\alpha \in (R/I)[x]$. We define φ to be the natural projection map of $r \mapsto [r]_I \in R/I$ for $r \in R$, which exists in (R/I)[x] due to the inclusion of constants. Meanwhile, we choose $\alpha = x \in (R/I)[x]$, so $\psi(x) = \alpha$.

We now prove that $im(\psi)$ is surjective. Let $a_nx^n + \cdots + a_0 \in (R/I)[x]$. For each $0 \le k \le n$, $a_k = [r_k]_I$ for some $r_k \in R$. In other words, $\psi(r_k) = a_k$. Hence, considering that $x = \psi(x)$, we note that:

$$a_n x^n + \dots + a_0 = \psi(r_n) x^n + \dots + \psi(r_0)$$
$$= \psi(r_n) \psi(x^n) + \dots + \psi(r_0)$$
$$= \psi(r_n x^n + \dots + r_0)$$

Since $r_n x^n + \cdots + r_0 \in R[x]$, we proved that $im(\psi)$ is surjective.

We now prove that $ker(\psi)=I[x]$. Let $b_nx^n+\cdots b_0\in I[x]$. We note that $\psi(b_nx^n+\cdots b_0)=[b_n]_Ix^n+\cdots+[b_0]_I$. For $0\leq k\leq n$, we note that $b_k\in I$, so $[b_k]_I=0$. Hence, $\psi(b_nx^n+\cdots b_0)=0x^n+\cdots+0=0$. This shows that $I[x]\subset ker(\psi)$. Meanwhile, let $b_nx^n+\cdots b_0\in ker(\psi)$. Clearly, $\psi(b_nx^n+\cdots+b_0)=0$. This implies that for each $0\leq k\leq n$, we get that $\psi(b_k)=0$, which further implies $[b_k]_I=0$ and $b_k\in I$. Since each of its coefficients are in I, $b_nx^n+\cdots+b_0\in I[x]$. Thus, we showed that $I[x]\supset ker(\psi)$. We can now conclude $I[x]=ker(\psi)$.

We satisfied all the conditions for the First Isomorphism Theorem, so $R[x]/I[x] \cong (R/I)[x]$.

- (b) Since the polynomial f(x) is a unit, there exists a $g(x) \in R[x]^{\times}$ where f(x)g(x) = 1. Since a prime ideal is also defined to be a proper ideal, we can apply the homomorphism $\psi: R[x] \to (R/I)[x]$ from (a). We note that $\psi(f(x))$ is a unit in (R/I)[x] because $\psi(f(x)) \cdot \psi(g(x)) = \psi(f(x)g(x)) = \psi(1) = 1$. We then note that from HW6 3(c), since I is a prime ideal, R/I is an integral domain. From Lemma 9.3, this implies $\psi(f(x))$ is a constant. Since $\psi(f(x)) = [a_n]_I x^n + \cdots + [a_0]_I$ and its degree is 0 from being a constant, this implies that for $i \geq 1$ that $[a_i]_I = 0$. In other words, it implies $a_i \in I$ as desired. \square
- (c) We note that for $0 \le r \le 2024$, [r] represents each element in $\mathbb{Z}/2025\mathbb{Z}$ bijectively.

Claim: [r] is nilpotent iff $15 \mid r$.

Let r be arbitrary and assume that for some positive integer n that $[r]^n = [r^n] = 0$. This implies that $2025 \mid r^n$. Since $3 \mid 2025$ and $5 \mid 2025$, we get that $3 \mid r^n$ and $5 \mid r^n$. By Euclid's Lemma, since 3 is prime, either $3 \mid r$ or $3 \mid r^{n-1}$. If $3 \mid r$, we are done. If not, then $3 \mid r^{n-1}$, so we can repeat the process with $3 \mid r$ or $3 \mid r^{n-2}$. Since $3 \nmid r$, it must be that $3 \mid r^{n-2}$. We can repeat this process until we reach $3 \mid r$ or $3 \mid r^0 = 1$. Since $3 \nmid 1$, we reach a contradiction, so it must be that $3 \mid r$. Since $5 \mid r$ as desired. we can apply the same process to get $5 \mid r$. We note that $\gcd(3,5) = 1$, so $3 \cdot 5 \mid r$ as desired.

For the converse, assume 15 | r, so there exists some integer q such that r = 15q. If we set n = 4, we notice that $[(15q)^4] = [3^4 \cdot 5^4 \cdot q^4] = [25 \cdot 2025 \cdot q^4] = 0$. Thus, [r] is a nilpotent element.

The claim implies that we only need to look for multiples of 15 within the range of r to search for all nilpotent elements. Hence, there exist $\lfloor 2025/15 \rfloor = 134$ nonzero r's that are multiples of 15. Since 15 | 0, we include it to get that there exist 134 + 1 = 135 nilpotent elements in $\mathbb{Z}/2025\mathbb{Z}$.

- (d) Let I be a prime ideal of R and r be a nilpotent element in R where $r^n=0$ for some positive integer n. Since I is an ideal, $r^n \in I$. Since I is a prime ideal, either $r \in I$ or $r^{n-1} \in I$. If $r \in I$, we are done. If not, then $r^{n-1} \in I$, so we can repeat the process with $r \in I$ or $r^{n-2} \in I$. Since $r \notin I$, it must be that $r^{n-2} \in I$. We can repeat this process until we would reach $r^1 = r \in I$, a contradiction. Hence, it must be that $r \in I$. This implies that all nilpotent elements in R belong to every prime ideal of R.
- (e) Let r be a nilpotent elemnt in R where $r^n = 0$ for some positive integer n. We note that $n \ge 2$ because r is a non-zero element.

Claim: -rx + 1 is unit in R[x].

$$(-rx+1)(r^{n-1}x^{n-1} + \dots + rx+1) = -(rx-1)(r^{n-1}x^{n-1} + \dots + rx+1)$$
$$= -(r^nx^n - 1)$$
$$= -(-1)$$
$$= 1$$

Hence, there exist a polynomial $f(x) \in R[x]$ where (-rx+1)f(x) = 1. This proves -rx+1 is a unit in R[x].

Since -rx + 1 is a non-constant unit, we proved the existence of an $f(x) \in R[x]^{\times}$ that is not a constant.

2. (a) We begin by noting that:

$$\alpha^{m} - 1 = \prod_{\substack{d \mid m \\ d \mid m}} \Phi_{d}(\alpha)$$

$$= \prod_{\substack{d \mid m \\ d \neq m \\ d \neq m}} \Phi_{d}(\alpha) \cdot \Phi_{m}(\alpha)$$

$$= \prod_{\substack{d \mid m \\ d \neq m \\ d \neq m}} \Phi_{d}(\alpha) \cdot 0$$

$$= 0$$

Thus, we get that $\alpha^m = 1$. This implies the existence of $o(\alpha)$ and that $o(\alpha) \mid m$. This also implies that $o(\alpha) \leq m$. Let us denote $b = o(\alpha)$ and assume that b < m. Since $b \mid m$, any divisor of b is also a divisor of m, which allows us to obtain this expression:

$$x^{m} - 1 = \Phi_{m}(x) \cdot \prod_{\substack{d|b}} \Phi_{d}(x) \cdot \prod_{\substack{d|m\\d\nmid b\\d\neq m}} \Phi_{d}(x)$$
$$= \Phi_{m}(x) \cdot (x^{b} - 1) \cdot \prod_{\substack{d|m\\d\nmid b\\d\neq m}} \Phi_{d}(x)$$

By its definition, $\alpha^b=1$, so $\alpha^b-1=0$. This implies that α is a root for both $\Phi_m(x)$ and (x^b-1) . By Corollary 9.7, since F is an integral domain from being a field, there exist polynomials $h(x), g(x) \in F[x]$ where $\Phi_m(x) = (x-\alpha)h(x)$ and $(x^b-1) = (x-\alpha)g(x)$. This allows us to obtain the expression that:

$$x^{m} - 1 = (x - \alpha)(x - \alpha)h(x)g(x) \prod_{\substack{d \mid m \\ d \nmid b \\ d \neq m}} \Phi_{d}(x)$$

This implies that α is a repeated root of x^m-1 . However, we note that $(\alpha^m-1)'=m\alpha^{m-1}$. Notice that $m\alpha^{m-1}=m\alpha^m\alpha^{-1}$. We note that $m\alpha^m=m(1)$ and since $p\nmid m$, m(1) must be non-zero. Since α^{-1} is also a non-zero from being a unit and that F is an integral domain from being a field, this implies that $m\alpha^{m-1}$ is a non-zero element. By Proposition 9.12, this implies that α is not a repeated root for x^m-1 , which is a contradiction. Thus, it must be that b=m, so we get that $o(\alpha)=m$ as desired.

(b) Claim: $\Phi_m(\alpha) = 0$

We note that:

$$\alpha^{m} - 1 = \prod_{\substack{d \mid m}} \Phi_{d}(\alpha)$$
$$= \prod_{\substack{d \mid m \\ d \neq m}} \Phi_{d}(\alpha) \cdot \Phi_{m}(\alpha)$$

We then note that for every divisor of m that is not equal to m, we get that d < m, so $\alpha^d - 1 \neq 0$ because of $o(\alpha)$'s minimality. Since $\Phi_d(x)$ is a factor of $x^d - 1$, we get that $\Phi_d(\alpha)$ must be non-zero. Since F is an integral domain from being a field we note that:

$$\prod_{\substack{d|m\\d\neq m}} \Phi_d(\alpha) \neq 0$$

Thus, since $\alpha^m - 1 = 0$, with all other factors being non-zero, this implies that $\Phi_m(\alpha) = 0$.

Claim: $\Phi'_m(\alpha) \neq 0$

By contradiction, $\Phi'_m(\alpha) = 0$. By Proposition 9.12, this implies that α is a repeated root for $\Phi_m(x)$ as $\Phi_m(\alpha) = 0$. Since $\Phi_m(x)$ is a factor of $x^m - 1$, α is also a repeated root of $x^m - 1$. By Proposition 9.12 again, this implies that $(\alpha^m - 1)' = 0$. However, since $\alpha^m = 1$, we can apply the same reasoning from (a) to deduce that $m\alpha^{m-1} \neq 0$, which is a contradiction. Hence, it must be that $\Phi'_m(\alpha) \neq 0$.