

 $\frac{-Q^2 b^3 c^0}{403 b^4 c^3}$ Ans 5 Formula Used: am = am-n $\frac{-10^2 \, b^3 \, c^0}{4 \, q^3 \, b^4 \, c^3}$ (0=1 -1 a-1 b-1 c-3 $= \left(-4abc^{3}\right)^{4}$ (-Maxxxx) - 256 a4 b4 c12 Simplify the expression below $(3u^3v^4 + 9u) - (3u^3v^4 - 8u + 8u^2v^2) + (-8u^2v^2 + 8u^3v^3)$ $34^{3}\sqrt{4} + 94 - 34^{3}\sqrt{4} + 84 - 84^{2}\sqrt{2} - 84^{2}\sqrt{2} + 84^{3}\sqrt{4}$ -16 u2 v2 + 8 u3 v4 + 17 4 843v4-1642v2+174

Quest Solve for s in the expression below:

$$-28 + 25 = -2(3s - 8)$$

$$-28 + 25 = -65 + 16$$

$$-28 - 16 = -65 - 25$$

$$+ 44 = +85$$

$$11 44 = 5$$

$$2 - 8$$

$$S = 11/2$$
Verify:

$$LHS = -28 + 2 \left(\frac{11}{2} \right)$$

$$= -28 + 11$$

$$= -17$$

$$RHS = -2 \left(\frac{3s - 8}{2} \right)$$

$$= -2 \left(\frac{33 - 8}{2} \right)$$

$$= -2 \left(\frac{33 - 16}{2} \right)$$

$$= -17$$

$$LHS = RHS$$

0	
Q-11	Write the expression below in Radical form $(2p+4)^{-4/3}$
Solali	Exponential form: $(2p+4)^{-\frac{4}{3}}$
	$= \frac{1}{(2\beta+4)^{4/3}}$
	= 1 (2)+4)4×1/3
	= 1 3 (2p+4)4
	Radical form: 1 3 (2p+4)
Q-1/2	
	$\frac{(121 \chi^8)^{1/2}}{(121 \chi^8)^{1/2}}$
	12128
	$\frac{(1 \chi^4)^2}{(1 \chi^4)^2}$
	$\frac{\left(11\pi^{4}\right)^{2}}{\text{Ans!-}}$
-0	nrs II'A.