TUTORIAL SHEET NO.2

1. Convert each of the following binary numbers to octal, decimal, and hexadecimal formats.

i. $(111011101.001)_2$

Ans. (735.1)₈ =(1DD.2)₁₆=(477.125)₁₀

ii (10101010111)₂

Ans. $(2527)_8 = (11367)_{10} = (557)_{16}$

iii. $(111100000)_2$

Ans. $(740)_8 = (480)_{10} = (1E0)_{16}$

2. Convert each of the following octal numbers to binary, decimal, and hexadecimal formats.

i. $(3754)_8$

Ans. $(11111101100)_2 = (7EC)_{16} = (2028)_{10}$

ii. (7777)₈

Ans. (111111111111)₂ =(FFF)₁₆=(4095)₁₀

iii. $(247.4)_8$

Ans. $(10100111.100)_2 = (A7.8)_{16} = (167.5)_{10}$

3. Convert each of the following decimal numbers to binary, octal, and hexadecimal formats.

- i. (3479.25)₁₀
- Ans. (110110010111.01)₂ =(D97.4)₁₆=(6627.2)₈

ii. $(642)_{10}$

Ans. $(1010000010)_2 = (282)_{16} = (1202)_8$

iii. $(555)_{10}$

Ans. $(1000101011)_2 = (22B)_{16} = (1053)_8$

4. Convert each of the following hexadecimal numbers to binary, octal, and decimal formats.

i. (4FB2)₁₆

- Ans. $(1001111110110010)_2 = (47662)_8 = (20402)_{10}$
- ii. (88BAE)16
- Ans. (10001000101110101110)₂ =(2105656)₈=(560046)₁₀

iii. (DC4.7)₁₆

Ans. (110111000100.0111)₂=(6704.34)₈=(3524.4375)₁₀

5. Perform each of the addition operations indicated below.

i. $(1001011)_2 + (11101)_2$

Ans. (1101000)₂

ii. $(4556)_8 + (1245)_8$

Ans. $(6023)_8$

iii. $(BCD)_{16} + (A34)_{16}$

Ans. (1601)₁₆

6. Form the two's complement of each of the following binary numbers.

i. (111011101110)2

, 1s. 000100010010

ii. (11111111000100)2

Ans.00000000111100

iii. (100000000)2

Ans. 100000000

iv. (1010101010111)2

Ans. 0101010101001

7. Perform each of the subtraction using two's complement.

the state of the s

i. $(100101)_2 - (11011)_2$

Ans. (001010)₂

ii. (1101011)₂ - (111010)₂

Ans. (0110001)2

iii. $(1110111)_2 - (10110111)_2$

Ans. (1000000)₂

8. Simplify the following:

- i. XY+XYZ+XYZ'+X'YZ≈Y(X+Z)
- ii. A'B'C'+A'BC'+A'BC=A'(C'+B)
- iii. A'BC'D+A'BCD+ABD=BD
- iv. $A+A'B+AB'\approx A+B$
- V. AB+(AC)'+AB'C(AB+C)=1
- vi. AB+AB'A+AB'C=
- vii. AB'C'+AB'C'D+AC'=AC'
- viii. (A+B)(AC+C)(B+AC)'=A'B
 - ix. AB+AC+ABC(AB+C)=1
 - x. C(B+C)(A+B+C)=C
 - xi. (A+B)(A+B')(A'+B)=AB
- xii. A+AB+AB'C=A

9. Realize XOR and XNOR gate using

- i. NAND gate only
- ii. NOR gate only

10. Find the complement

- i. Y=AB'C+A'B'C'
- ii. Y=A(BC+B'C')
- 11. Design a logic circuit using basic gates only, using NAND gates only and using NOR gates only
 - i. Y=(A+B+C'D)+A'BC'
 - ii. Y=ABC+B'C+CD
 - iii. Y=(A+B)(A+C'+D)+(B'+C)
 - 12. Convert the following into canonical form and write their minterms and maxterms
 - i. AB+BC
 - ii. AB+ABC+BCD
 - iii. (A+B)(B+C)
 - iv. (A+C'+D)(A+B)(C'+C)
 - 13. Develop the truth table of the following function
 - i. F=AB+AB'+B'C
 - ii. AB+BC'D+A'D

Tutorial Sheet-3

- Q.1 Simplify the following expression using K-map and implement the simplified expression using basic gates
 - $AC + \bar{A}D$ a) $F(A,B,C,D)=\sum m(1,3,5,7,8,9,12,13)$ $\bar{D}A + AB + AC$ b) $F(A,B,C,D) = \sum m(8,10,11,12,13,14,15)$ $ABD + \bar{A}\bar{C}D + \bar{A}\bar{B}\bar{D}$ c) $F(A,B,C,D) = \sum m(0,1,2,5,13,15)$ $\bar{B} + \bar{A}D + A\bar{C}$ d) $F(A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,10,11,12,13)$ AB + AC + AD + BCDe) $F(A,B,C,D) = \sum m(7,9,10,11,12,13,14,15)$
 - $AB + \bar{A}D$ f) $F(A,B,C,D)=AB+B\bar{C}D+\bar{A}D$ $ACD + ABC + A\overline{C}D + \overline{A}B\overline{C}$ g) $F(A,B,C,D) = \sum m(3,4,5,7,9,13,14,15)$ $(\bar{B}+D).C$ h) $F(A,B,C,D)=\Pi M(0,1,4,5,6,8,9,12,13,14)$
- $(B+C).(\bar{A}+B+D).(A+C+\bar{D})$ i) $F(A,B,C,D)=\Pi M(0,1,2,5,8,9,10)$ $(\bar{A} + \bar{D}).(\bar{B} + \bar{C}).(B + C).(\bar{C} + \bar{D})$ i) $F(A,B,C,D)=\Pi M(0,1,3,6,7,8,9,11,13,14,15)$
- $(B+D).(A+\overline{D}).(A+\overline{C})$ k) $F(A,B,C,D)=\Pi M(0,1,2,3,5,6,7,8,10)$ l) $F(A,B,C,D)=(A+\bar{B}).(\bar{C}+\bar{D}).(A+\bar{C}).(A+D).(B+D)$ ans $.(A+\bar{B}).(\bar{C}+\bar{D}).(B+D)$
- Q.2 Simplify the following expression using K-map and implement the simplified expression using (i) only NAND gate (ii) only NOR gate
- a) $F(A,B,C,D) = \sum m(1,3,4,6,8,911,13,15) + \sum d(0,2,14)$ $\bar{X}\bar{Z} + \bar{X}\bar{Y} + WY$ b) $F(W,X,Y,Z) = \sum m(0,1,2,9,11,15) + \sum d(8,10,14)$ $\bar{A}\bar{B} + \bar{A}D + \bar{B}\bar{C}D + ABC + AC\bar{D}$ c) $F(A,B,C,D) = \sum m(0,1,3,5,7,9,10,14,15) + \sum d(2,4)$ $ABC + \bar{A}\bar{C} + \bar{B}D$ d) $F(A,B,C,D) = \sum m(0,1,3,4,9,11,14) + \sum d(5,12,15)$ $\bar{A}\bar{B} + CD + \bar{C}\bar{D} + \bar{A}D$ e) $F(A,B,C,D) = \sum m(0,2,3,5,7,12,15) + \sum d(1,4,8,11)$ $A.(\bar{B}+\bar{C}+\bar{D}).(B+C+\bar{D})$ g) $F(A,B,C,D) = \Pi M(1,2,5,7,9,15).d(0,3,4,6)$ \bar{A} . $(\bar{B}+C)$. $(C+\bar{D})$
- h) $F(A,B,C,D) = \Pi M(1,4,9,10,12,13,14). d(5,8,11,15)$ $(A+C).(B+\overline{D}).(\overline{A}+\overline{B}+\overline{C})$ i) $F(A,B,C,D) = \Pi M(0,1,3,4,9,11,14) \cdot d(5,12,15)$ j) $F(A,B,C,D) = \Pi M(0,4,6,9,10,12,13,14) \cdot d(1,2,8)$ $D.(\bar{A}+C)$ k)
- $(A,B,C,D) = \Pi M(3,4,8,9,11,13,15). d(1,2,5,6) (\bar{A} + B + C)(\bar{A} + \bar{D})(B + \bar{D})(A + \bar{B} + C)$
- Q.3 Simplify the expression in POS using K-map

$$F(A,B,C,D) = \sum m(1,3,5,7) + \sum d(6,8,9,14,15)$$

and implement the simplified expression using

- (i) only NAND gate (ii) only NOR gate (iii) Basic gates
- Q.4 Simplify the expression in SOP using K-map

Ans. B.D

$$F(A,B,C,D) = \Pi M(0,2,3,6,8,11). d(7,9,12)$$

and implement the simplified expression using

(i) only NAND gate (ii) only NOR gate (iii) Basic gates

Ans. $B\bar{C} + \bar{C}D + AB$

 $\bar{A}\bar{B} + \bar{A}\bar{D} + AD + \bar{B}\bar{C}$