第七次作业

Ext 7.1

Ex. 7.1 Derive the estimate of in-sample error (7.24).

In summary, we have the important relation

$$E_{\mathbf{y}}(\mathrm{Err}_{\mathrm{in}}) = E_{\mathbf{y}}(\overline{\mathrm{err}}) + \frac{2}{N} \sum_{i=1}^{N} \mathrm{Cov}(\hat{y}_{i}, y_{i}). \tag{7.22}$$

This expression simplifies if \hat{y}_i is obtained by a linear fit with d inputs or basis functions. For example,

$$\sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i) = d\sigma_{\varepsilon}^2$$
(7.23)

for the additive error model $Y = f(X) + \varepsilon$, and so

$$E_{\mathbf{y}}(Err_{in}) = E_{\mathbf{y}}(\overline{err}) + 2 \cdot \frac{d}{N} \sigma_{\varepsilon}^{2}.$$
 (7.24)

Notice that from (7.22) we just need to show that:

$$\sum_{i=1}^N Cov(\hat{y_i},y_i) = d\sigma^2_\epsilon$$

We use trace to simplify the equation(using the truth that $\hat{y} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Ty$):

$$\sum_{i=1}^{N} Cov(\hat{y}_i, y_i) = tr(Cov(\hat{y}, y)) = tr(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\sigma_{\epsilon}^2) = tr(I_d)\sigma_{\epsilon}^2 = d\sigma_{\epsilon}^2$$

第七次作业

Ext 7.3

Ex. 7.3 Let $\hat{\mathbf{f}} = \mathbf{S}\mathbf{y}$ be a linear smoothing of \mathbf{y} .

(a) If S_{ii} is the *i*th diagonal element of **S**, show that for **S** arising from least squares projections and cubic smoothing splines, the cross-validated residual can be written as

$$y_i - \hat{f}^{-i}(x_i) = \frac{y_i - \hat{f}(x_i)}{1 - S_{ii}}. (7.64)$$

- (b) Use this result to show that $|y_i \hat{f}^{-i}(x_i)| \ge |y_i \hat{f}(x_i)|$.
- (c) Find general conditions on any smoother S to make result (7.64) hold.

Firstly we know that $\hat{f}=Sy$ is a linear smoothing of y, so we know that:

$$\mathbf{S} = \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{\Omega})^{-1} \mathbf{X}^T.$$

(a)

We write $\hat{f}^{-i}(x_i)$ first. We use X_{-i} to notation for input X without the i-th row.

$$egin{aligned} \hat{f}^{-i}(x_i) &= x_i^T (\mathbf{X}_{-i}^T \mathbf{X}_{-i} + \lambda \mathbf{\Omega})^{-1} \mathbf{X}_{-i}^T \mathbf{y}_{-i} \ &= x_i^T (\mathbf{X}^T \mathbf{X} - x_i x_i^T + \lambda \mathbf{\Omega})^{-1} (\mathbf{X}^T \mathbf{y} - x_i y_i). \end{aligned}$$

And use the Woodbury matrix Identity that we see $\mathbf{X}^T\mathbf{X} + \lambda \mathbf{\Omega}$ as \mathbf{A} . so

$$(\mathbf{A} - x_i x_i^T)^{-1} = \mathbf{A}^{-1} + rac{\mathbf{A}^{-1} x_i x_i^T \mathbf{A}^{-1}}{1 - x_i^T \mathbf{A}^{-1} x_i}.$$

Then we use

$$egin{aligned} \hat{f}^{-1}(x_i) &= x_i^T \left(\mathbf{A}^{-1} + rac{\mathbf{A}^{-1} x_i x_i^T \mathbf{A}^{-1}}{1 - x_i^T \mathbf{A}^{-1} x_i}
ight) (\mathbf{X}^T \mathbf{y} - x_i y_i) \ &= \left(x_i^T \mathbf{A}^{-1} + rac{S_{ii} x_i^T \mathbf{A}^{-1}}{1 - S_{ii}}
ight) (\mathbf{X}^T \mathbf{y} - x_i y_i) \ &= x_i^T \mathbf{A}^{-1} \mathbf{X}^T \mathbf{y} - x_i^T \mathbf{A}^{-1} x_i y_i + rac{S_{ii} x_i^T \mathbf{A}^{-1} \mathbf{X}^T \mathbf{y}}{1 - S_{ii}} - rac{S_{ii} x_i^T \mathbf{A}^{-1} x_i y_i}{1 - S_{ii}} \ &= \hat{f}(x_i) - y_i S_{ii} + rac{S_{ii} \hat{f}(x_i)}{1 - S_{ii}} - rac{y_i S_{ii}^2}{1 - S_{ii}} \ &= rac{\hat{f}(x_i) - y_i S_{ii}}{1 - S_{ii}}. \end{aligned}$$

Then we get (7.64) easily.

$$y_i - \hat{f}^{-i}(x_i) = rac{y_i - \hat{f}(x_i)}{1 - S_{ii}}.$$

(b)

From this part in textbook:

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how λ is chosen for the smoothing spline. Later in this chapter we describe automatic methods using techniques such as cross-validation. In this section we discuss intuitive ways of prespecifying the amount of smoothing.

A smoothing spline with prechosen λ is an example of a *linear smoother* (as in linear operator). This is because the estimated parameters in (5.12) are a linear combination of the y_i . Denote by $\hat{\mathbf{f}}$ the N-vector of fitted values $\hat{f}(x_i)$ at the training predictors x_i . Then

$$\hat{\mathbf{f}} = \mathbf{N}(\mathbf{N}^T \mathbf{N} + \lambda \mathbf{\Omega}_N)^{-1} \mathbf{N}^T \mathbf{y}
= \mathbf{S}_{\lambda} \mathbf{y}.$$
(5.14)

Again the fit is linear in \mathbf{y} , and the finite linear operator \mathbf{S}_{λ} is known as the *smoother matrix*. One consequence of this linearity is that the recipe for producing $\hat{\mathbf{f}}$ from \mathbf{y} does not depend on \mathbf{y} itself; \mathbf{S}_{λ} depends only on the x_i and λ .

Linear operators are familiar in more traditional least squares fitting as well. Suppose \mathbf{B}_{ξ} is a $N \times M$ matrix of M cubic-spline basis functions evaluated at the N training points x_i , with knot sequence ξ , and $M \ll N$. Then the vector of fitted spline values is given by

$$\hat{\mathbf{f}} = \mathbf{B}_{\xi} (\mathbf{B}_{\xi}^T \mathbf{B}_{\xi})^{-1} \mathbf{B}_{\xi}^T \mathbf{y}
= \mathbf{H}_{\xi} \mathbf{y}.$$
(5.15)

Here the linear operator \mathbf{H}_{ξ} is a projection operator, also known as the *hat* matrix in statistics. There are some important similarities and differences between \mathbf{H}_{ξ} and \mathbf{S}_{λ} :

- Both are symmetric, positive semidefinite matrices.
- $\mathbf{H}_{\xi}\mathbf{H}_{\xi} = \mathbf{H}_{\xi}$ (idempotent), while $\mathbf{S}_{\lambda}\mathbf{S}_{\lambda} \leq \mathbf{S}_{\lambda}$, meaning that the right-hand side exceeds the left-hand side by a positive semidefinite matrix. This is a consequence of the *shrinking* nature of \mathbf{S}_{λ} , which we discuss further below.
- \mathbf{H}_{ξ} has rank M, while \mathbf{S}_{λ} has rank N.

We can get that $S^2 = S^ op S \preceq S$

where \leq denotes that the components are less than, so that there are $orall i, (S^2)_{ii} \leq S_{ii}$

Considering the expansion $S^2 = S^ op S$ it is easy to see that the actual results are

第七次作业 4

$$(S^2)_{ii} = \sum_j (S_{ij})^2 = \sum_{i
eq j} (S_{ij})^2 + (S_{ii})^2$$

Thus,

$$0 \leq \sum_{i \neq j} (S_{ij})^2 + (S_{ii})^2 \leq S_{ii}$$

And the other side of the inequality can be obtained simply by reductio ad absurdum, assuming that $S_{ii} \geq 1$

then we have:

$$\sum_{i
eq j} (S_{ij})^2 + (S_{ii})^2 \geq (S_{ii})^2 \geq S_{ii}$$

Contradicts the conclusion above. So it can only be $S_{ii} \leq 1$

(c)

For general linear smoother $\hat{f} = \mathbf{S}\mathbf{y}$, if \mathbf{S} only depends on \mathbf{X} and other tuning parameters (i.e, independent of y.

To see that, note that if we replace y_i with $\hat{f}^{-i}(x_i)$ and denote the new vector by \mathbf{y}', \mathbf{S} is not changed. Thus we have

$$egin{aligned} \hat{f}^{-i}(x_i) &= (\mathbf{S}\mathbf{y}')i \ &= \sum_i i
eq j S_{ij}\mathbf{y}j' + Sii\hat{f}^{-i}(x_i) \ &= \hat{f}(x_i) - S_{ii}y_i + S_{ii}\hat{f}^{-i}(x_i), \end{aligned}$$

therefore we obtain (1).

Ext 7.4

Ex. 7.4 Consider the in-sample prediction error (7.18) and the training error err in the case of squared-error loss:

$$\operatorname{Err}_{\operatorname{in}} = rac{1}{N} \sum_{i=1}^{N} \operatorname{E}_{Y^{0}} (Y_{i}^{0} - \hat{f}(x_{i}))^{2}$$
 $\overline{\operatorname{err}} = rac{1}{N} \sum_{i=1}^{N} (y_{i} - \hat{f}(x_{i}))^{2}.$

Add and subtract $f(x_i)$ and $E\hat{f}(x_i)$ in each expression and expand. Hence establish that the average optimism in the training error is

$$\frac{2}{N} \sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i),$$

as given in (7.21).

Firstly we define the following notation:

$$egin{aligned} A_i &= E_{Y^0} (Y_i^0 - f(x_i))^2 \ B_i &= E_{Y^0} (f(x_i) - E \hat{y}_i)^2 = (f(x_i) - E \hat{y}_i)^2 \ C_i &= E_{Y^0} (E \hat{y}_i - \hat{y}_i)^2 = (E \hat{y}_i - \hat{y}_i)^2 \ D_i &= 2 E_{Y^0} (Y_i^0 - f(x_i)) (f(x_i) - E \hat{y}_i) \ E_i &= 2 E_{Y^0} (Y_i^0 - f(x_i)) (E \hat{y}_i - \hat{y}_i) \ F_i &= 2 E_{Y^0} (f(x_i) - E \hat{y}_i) (E \hat{y}_i - \hat{y}_i) = 2 (f(x_i) - E \hat{y}_i) (E \hat{y}_i - \hat{y}_i) \end{aligned}$$

and

$$egin{split} \mathrm{Gi} &= (y_i - f(x_i))^2 \ H_i &= 2(y_i - f(x_i))(f(x_i) - E\hat{y}_i) \ J_i &= 2(y_i - f(x_i))(E\hat{y}_i - \hat{y}_i). \end{split}$$

Then we can rewrite the two type of error.

$$egin{align} Err_{in} &= rac{1}{N} \sum_{i=1}^{N} E_{Y^0} ig(Y_i^0 - f(x_i) + f(x_i) - E \hat{y}_i + E \hat{y}_i - \hat{y}_i ig)^2 \ &= rac{1}{N} \sum_{i=1}^{N} A_i + B_i + C_i + D_i + E_i + F_i, \ &\overline{err} &= rac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i) + f(x_i) - E \hat{y}_i + E \hat{y}_i - \hat{y}_i)^2 \ &= rac{1}{N} \sum_{i=1}^{N} G_i + B_i + C_i + H_i + J_i + F_i, \end{gathered}$$

Therefore we get

$$egin{aligned} E_{\mathbf{y}}(\mathrm{op}) &= E_{\mathbf{y}}(\mathrm{Err_{in}} - \overline{\mathrm{err}}) \ &= rac{1}{N} \sum_{i=1}^{N} E_{\mathbf{y}}[(A_i - G_i) + (D_i - H_i) + (E_i - J_i)] \ &= -rac{2}{N} \sum_{i=1}^{N} J_i \ &= -rac{2}{N} \sum_{i=1}^{N} E_{\mathbf{y}}(y_i - f(x_i))(E\hat{y}_i - \hat{y}_i) \ &= rac{2}{N} \sum_{i=1}^{N} [E_{\mathbf{y}}(y_i \hat{y}_i) - E_{\mathbf{y}} y_i E_{\mathbf{y}} \hat{y}_i] \ &= 2 \mathrm{Cov}(y_i, \hat{y}_i). \end{aligned}$$

Ext 7.5

Ex. 7.5 For a linear smoother $\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}$, show that

$$\sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i) = \operatorname{trace}(\mathbf{S}) \sigma_{\varepsilon}^2, \tag{7.65}$$

which justifies its use as the effective number of parameters.

This problem is quite same as the Ex7.1, and we use the same method to get this:

$$egin{aligned} \sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i) &= \operatorname{trace}(\operatorname{Cov}(\hat{\mathbf{y}}, \mathbf{y})) \ &= \operatorname{trace}(\operatorname{Cov}(\mathbf{S}\mathbf{y}, \mathbf{y})) \ &= \operatorname{trace}(\mathbf{S}\operatorname{Cov}(\mathbf{y}, \mathbf{y})) \ &= \operatorname{trace}(\mathbf{S}\operatorname{Var}(\mathbf{y})) \ &= \operatorname{trace}(\mathbf{S})\sigma^2_{\epsilon}. \end{aligned}$$