NLP

Week - 1

Supervised Learning

Sentiment Analysis

Vocabulary

Feature Extraction

in-kumar-anala-35760523

Sparse Representation Limitation

I am happy because I am learning learning AI.

[I, am, happy, because, learning, AI,...., hated, the, Joke]

$$[\theta_0, \, \theta_1, \, \theta_2, \, \theta_3, \, \theta_4, \, \theta_5, \dots, \theta_{n-2}, \, \theta_{n-1}, \, \theta_n \,]$$

Bias

Too Many Zeros. Has to find out (Vn + 1) parameters.

- Large Training time
- Large Prediction time

Another Approach for Feature Extraction

Sentiment Analysis

Corpus

I am happy because I am learning AI.

I am happy.

I am sad, I am not learning AI.

I am sad.

Sentiment Analysis - Word Frequency in Classes

I am happy because I am learning AI.

I am happy.

Vocabulary	Frequency	
1	3	
am	3	
happy	2	
because	1	
learning	1	
Al	1	
sad	0	
not	0	

Sentiment Analysis - Word Frequency in Classes

Vocabulary	Frequency	
I	3	
am	3	
happy	0	
because	0	
learning	1	
Al	1	
sad	2	
not	1	

Sentiment Analysis - Word Frequency in Classes

Vocabulary		
I		
am		
happy		
because		
learning		
Al		
sad		
not		
	l	

Positive Frequency		
3		
3		
2		
1		
1		
1		
0		
0		

Frequency		
3		
3 3		
0		
0		
1		
1		
2		
1		

Megative

This is called **Frequency Dictionary Mapping** from (word, class): Frequency

Sentiment Analysis - Feature Extraction

Vocabulary

и am

happy

because

learning

ΑI

sad

not

Positive Frequency

3

3

2

1

1

1

0

0

Negative Frequency

3

3

0

_

U

1

1

2

1

I am sad, I am not learning Al.

 $X_{m} = [1, \Sigma_{m} freq(w, 1), \Sigma_{m} freq(w, 0)]$

$$X_{m} = [1, 8, 11]$$

Preprocessing: Stop words, Punctuation, Handles, URLs

@Arun @Kabir

Travelling Made Fun. Travel While Making Friends.

#ridemate #travelmate #bengaluru #delhi #newdelhi

Travelling Made Fun. Travel While Making Friends.

Preprocessing: Stemming and Lowercase

Processed Text

[travel, made, fun, while, making, friend]

General overview

$$X_m = [1, \Sigma_m freq(w, 1), \Sigma_m freq(w, 0)]$$

Supervised Learning

Probability and Bayes Rule

Corpus of texts

Texts containing the word happy

Probability and Bayes Rule

Corpus of texts

P(positive) =
$$N_{pos}/N = 13/20 = 0.65$$

$$P(negative) = 1 - 0.65 = 0.35$$

Probability and Bayes Rule

Corpus of texts

B → Texts contains "happy"

$$P(B) = P(happy) = 4 / 20 = 0.2$$

Probability of Intersection

$$P(A \cap B) = P(A, B) = 3 / 20 = 0.15$$

Conditional Probability

$$P(A|B) = P(Positive|happy)$$

= 3 / 4 = 0.75

Text has 75% likelihood of being positive, if it contains the word "happy"

Conditional Probability

$$P(B|A) = P(happy|positive)$$

= 3 / 13 = 0.231

Text has 23.1% likelihood of containing the word "happy", if the text is positive.

Bayes Rule

 $P(Positive \mid "happy") = P(Positive \cap "happy") / P("happy")$

P("happy" | Positive) = P(Positive ∩ "happy") / P(Positive)

Bayes' rule

 $P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$

$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

Arun Kumar Anala nalaarun.k@gmail.com

Naive Bayes Rule for Sentiment Analysis

Corpus

I am happy because I am learning Al.

I am happy, not sad.

I am sad, I am not learning AI.

I am sad, not happy.

Vocabulary	Positive Frequency	Negative Frequency
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
AI	1	1
sad	1	2
not	1	2
	13	12

https://www.linkedin.com/in/arun-kumar-anala-35760523

Naive Bayes Rule for Sentiment Analysis

Vocabulary	Positive Frequency	Negative Frequency	Positive Probability		Ne Pro
I	3	3	0.24		
am	3	3	0.24		
happy	2	1	0.25		
because	1	0	0.08		
learning	1	1	0.08		
Al	1	1	0.08		
sad	1	2	0.08		
not	1	2	0.08		
	13	12	1	_	

Negative robability 0.25 0.25 80.0 80.0 80.0 0.17 0.17

https://www.linkedin.com/in/arun-kumar-anala-35760523/

Naive Bayes Rule for Sentiment Analysis

I am happy today; I am learning

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

Vocabulary	Positive Probability	Negative Probability
I	0.24	0.25
am	0.24	0.25
happy	0.25	0.08
because	0.08	0
learning	0.08	0.08
AI	0.08	0.08
sad	0.08	0.17
not	0.08	0.17

1

Arun Kumar An

Bag of Words

