Music Generation - Deep Learning 2k25

Hassan Iftikhar Ali Arshad Bogdan Monogov Alen Aliev

Motivation & Background

Why Generate Music with Deep Learning?

- Music is structured, hierarchical, and temporal.
- Manual composition is creative but time-consuming.
- Deep generative models can learn and replicate compositional structure
- Applications:
 - Assisting composers
 - Generating background music
 - Music therapy and personalization

Overview of Models Explored

Model Type	Approach	Strengths
Transformers	Sequence modeling	Long-term memory, flexible tokenization
MuseGAN	GAN for multi-track music	Polyphonic and harmonic generation
Diffusion	Score-based denoising models	High-quality diverse outputs
VAE	Latent space interpolation	Style mixing, variation

Datasets Used

Transformers for Monophonic Music

Decoder Transformer trained to predict the next note & duration.

Monophonic setup using top voice of the cello.

Input: Tokenized sequence of (note, duration) pairs

Output: Predicted next (note, duration)

Transformers for Monophonic Music

```
Notes string:
['E-3', 'B-2', 'C3', 'D3', 'E-2', 'G3', 'F3', 'E-3', 'F3', 'B-3', 'G3', 'G#3', 'G3', 'F3', 'G3', 'E-3', 'F3', 'G3', 'G#3', 'B-3', 'G#3', 'B-3', 'E-4', 'C4', 'C#4', 'C4', 'B-3', 'C4', 'G#3', 'B-3', 'C4', 'B-3', 'C4', 'B-3', 'C4', 'B-3', 'C4', 'B-3', 'C4', 'B-3', 'C4'] ...

Durations string:
['0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0.5', '0
```

Step	Input (note, dur)		Target (note, dur)		
0	10 (B-3)	2 (0.5)	7 (A3)	2 (0.5)	
1	7 (A3)	2 (0.5)	51 (G3)	2 (0.5)	
2	51 (G3)	2 (0.5)	7 (A3)	2 (0.5)	
3	7 (A3)	2 (0.5)	44 (F3)	2 (0.5)	
4	44 (F3)	2 (0.5)	36 (E3)	2 (0.5)	

Transformers Results

Music files here: Music Generation-/transformer/output at main · Micro046/Music Generation-

MuseGAN for Polyphonic Chorales

Trained on chorales dataset & split into two-bar phrases.

Each sample: Shape (2, 16, 84, 4) → bars × timesteps × pitches × tracks.

Generator: Outputs 4-track music

Critic: Judges harmonic and temporal realism

MuseGAN

Music files here: Music Generation-/MuseGan/output at main · Micro046/Music Generation-

Observation: losses are decreasing and can be seen stabilized.

MuseGAN Training History

Diffusion model for music generation

The model was trained on bach-cello dataset (67 MIDI files)

The data underwent the padding, cutting and augmentation

The chosen model architecture is UNet-2D

Hyperparameter name	Value		
# of epochs	100		
Batch size	8		
Learning rate	8e-5		
Patience interval	10		
Pitch range	128		
Number of diffusion steps	1000		
Velocity bins	32		
Block channels in UNet	(32, 64, 96)		

Diffusion model for music generation

Fast convergence (pseudo-convergence)

Poor quality of the generated MIDI samples

Variational Autoencoder

- Input: piano roll sequences (binary grid).
- Encoder compresses to latent vector z.
- Decoder reconstructs sequence from z.
- Trained using reconstruction and KL loss.

Variational Autoencoder: Encoder

- 1D CNN extracts time-local features.
- Bidirectional GRU captures temporal context.
- Fully connected layers output mean and std.
- Latent vector generated via reparametrization.

Variational Autoencoder: Decoder

- MLP maps latent z to notes.
- GRU was too strong, lead to model collapse
- Linear → ReLU → Linear → Sigmoid.
- No recurrence, encourages latent use.

Variational Autoencoder: Loss

- Binary cross-entropy for reconstruction.
- KL divergence regularizes latent space.
- KL warm-up prevents posterior collapse.
- Free bits ensure each dimension contributes.

$$ext{KL} = \sum_{i=1}^d \max\left(au, \ -rac{1}{2}\left(1+\log\sigma_i^2 - \mu_i^2 - \sigma_i^2
ight)
ight)$$

$$\mathcal{L}_{ ext{recon}} = -\sum_{t=1}^{T} \sum_{d=1}^{D} \left[x_{t,d} \log \hat{x}_{t,d} + (1-x_{t,d}) \log (1-\hat{x}_{t,d})
ight]$$

Variational Autoencoder: Loss

- Binary cross-entropy for reconstruction.
- KL divergence regularizes latent space.
- KL warm-up prevents posterior collapse.
- Free bits ensure each dimension contributes.

$$ext{KL} = \sum_{i=1}^d \max\left(au, \ -rac{1}{2}\left(1+\log\sigma_i^2 - \mu_i^2 - \sigma_i^2
ight)
ight)$$

$$\mathcal{L}_{ ext{recon}} = -\sum_{t=1}^{T} \sum_{d=1}^{D} \left[x_{t,d} \log \hat{x}_{t,d} + (1-x_{t,d}) \log (1-\hat{x}_{t,d})
ight]$$

Variational Autoencoder: Training

Variational Autoencoder: Training

Variational Autoencoder: Observations

- VAE can learn meaningful music representations.
- Architecture balance is critical.
- Future: conditional generation and style control.

Conclusion

- Transformers, which excel at capturing long-term dependencies and musical structure
- MuseGAN, which enables multi-track, polyphonic generation using GANs
- Diffusion model shows the worst results from the implemented models (due to the poor translation of image-specific architecture to audio generation, not sufficient number of training samples, inappropriate loss function)

GitHub Repository

Micro046/Music_Generation-: Music generation project for deep learning