Portland State University

Electrical & Computer Engineering ECE 311 Feedback & Control

-Homework #3-

Text Problems: B-5-12, B-5-13, B-5-14, B-5-15

Problem 1:

A proposed closed-loop system that includes a pacemaker and the measurement of heart rate is shown below.

Design the amplifier gain to satisfy the requirement that overshoot to a step in desired heart rate should be less than 10% Find a suitable range of K.

Problem 2:

A second order-control system has the following system specifications for a step input:

- (1) Percent overshoot: $PO \le 5\%$
- (2) Settling time (2%): $T_s < 4 \sec \theta$
- (3) Peak time: $T_p < 1 \text{sec}$

Show the permissible area for the poles of the closed-loop system in order to achieve the desired response.

Problem 3:

Consider standard second order system:

$$T(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

- (a) Find the region of allowable *s*-plane pole locations such that the system 2% settling time is less than 2 seconds and overshoot is less than 10 percent
- (b) Solve for the allowable ranges of ω_n and ξ for (a)

Fundamentals of Engineering Exam Problem 1:

The inverse Laplace transform of G(s) is most nearly:

$$G(s) = \frac{5}{\left(s+3\right)^2}$$

- (A) 15te^{-3t} (B) 15e^{-3t} (C) 5te^{-3t} (D) 5e^{-3t}

Fundamentals of Engineering Exam Problem 2:

The inverse Laplace transform of G(s) is most nearly:

$$G(s) = \frac{5}{s^2 + 8s + 41}$$

- (A) $e^{-4t} + e^{-5t}$
- (B) e^{-4t}cos5t (C) e^{-4t}sin5t
- (D) te^{-4t}