Homework Set 3

Miles Van de Wetering, Charles Hill, Cierra Shawe

February 19, 2017

Problem 1 - a

Suppose \exists a maximal matching M and a maximum matching M^* in G=(V,E). \rightarrow For each matched vertex in M, there must be at least two matched vertices in M^* AND

 \rightarrow There must be at least one matched vertex in M for which \exists 4 matched vertices in M^*

Contradiction: Take these four vertices v_1, v_2, v_3, v_4 and at least 2 edges e_1 and e_2 which must connect either $v_1 \to v_2$ and $v_3 \to v_4$ or $v_1 \to v_3$ and $v_2 \to v_4$ in M^* . In M, only one of these 4 vertices is matched (thus using a third edge by necessity), leaving one of e_1 or e_2 as a free edge (with neither of its vertices included in the M matching).

 \therefore , |M| cannot be less than $\frac{1}{2}$ $|M^*|$. Thus, $|M| \geq \frac{1}{2}$ $|M^*|$.

Then, to computed a maximal matching, simply iterate over all edges in G, and match each free edge found, giving us a running time of O(E).

Pseudocode:

for each edge e = (u,v) in E: if u and v are free, mark u and v, using e.

Problem 2

If a graph is bipartite, then every path is an alternating path between odd and even vertices, and no vertex can be both even and odd (by definition).

Assume \exists some odd cycle $v_1 \to v_2 \dots v_n$ where n is odd. Then, assign v_1 to be odd and walk the cycle. v_2 must be even, v_2 odd, and so forth, with v_n being odd. then, walk from v_n to v_1 . This path is not an alternating path since v_1 and v_n are both odd.

 \therefore , if G is bipartite, there can be no odd cycle.

Now, any path that is not a cycle can be an alternating path. An even cycle can be drawn as an alternating path with v_1 as odd, v_2 even ... v_n even since n is even (even cycle). Therefore, $v_1 \to v_n \to v_1$ is an alternating path. so, if a graph is made up of only non-cyclical paths and/or even cycles then it is a bipartite graph.

 \therefore , if G has no odd cycles, it is bipartite

G has no cycles $\Leftrightarrow G$ is bipartite.