

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN

 $egin{aligned} \mathbf{M} \mathbf{\tilde{A}} & \mathbf{L} \mathbf{U} \mathbf{U} & \mathbf{T} \mathbf{R} \mathbf{\tilde{U}} \\ & (\mathrm{do\ Ph\`{o}ng\ KT-DBCL\ ghi}) \end{aligned}$

Học kỳ II - Năm học: 2019-2020

Tên học phần:	VI TÍCH PHÂN 2B	Mã HP:	MTH00004
Thời gian làm bài:	90 phút	Ngày thi:	
Họ và tên sinh viên:		MSSV:	
Ghi chú: Sinh viên không được phép sử dụng tài liệu khi làm bài.			

ĐỀ THI CÓ 4 CÂU

Câu 1 (2.5 điểm).

a) Khảo sát sự tồn tại của các giới hạn sau

$$\lim_{\substack{(x;y)\to(0;0)}} \frac{x^2y}{x^2+y^2}; \qquad \lim_{\substack{(x;y)\to(0;0)}} \frac{xy^3}{x^4+2y^4}$$

b) Khảo sát sự liên tục của các hàm sau tại mỗi điểm thuộc \mathbb{R}^2

$$f(x;y) = \begin{cases} 1 & \text{n\'eu } (x;y) = (0;0) \\ \frac{x^2y}{x^2 + y^2} & \text{n\'eu } (x;y) \neq (0;0) \end{cases}; \quad g(x;y) = \begin{cases} 0 & \text{n\'eu } (x;y) = (0;0) \\ \frac{xy^3}{x^4 + 2y^4} & \text{n\'eu } (x;y) \neq (0;0) \end{cases}$$

Câu 2 (2.5 điểm).

a) Cho một hàm số hai biến có dạng

$$f(x;y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{n\'eu } (x;y) \neq (0;0) \\ 0 & \text{n\'eu } (x;y) = (0;0) \end{cases}$$

Hãy dùng định nghĩa đạo hàm riêng ở dạng giới hạn để tìm các đạo hàm riêng $f_x(0;0)$ và $f_y(0;0)$.

- b) Cho hàm số g định bởi $g(x;y) = x xy\cos(\pi y)$. Hãy giải thích sự tồn tại và lập phép xấp xỉ tuyến tính của g tại (1;1).
- c) Hãy tính xấp xỉ g(1,05;0,95).

Câu 3 (2.5 điểm).

- a) Hãy tìm giao điểm của hai đường d: y = x + 2 và $(P): y = x^2$. Bằng cách đưa về tích phân lặp, hãy tính $\iint_{P} 2xy dA$ với D là miền bị bao quanh bởi d và (P).
- b) Tính lại kết quả câu a bằng cách dùng định lý Green.
- c) Chứng minh trường vector $\vec{F} = \langle 2xy; x^2 + 3y^2 \rangle$ là trường bảo toàn (trường thế) trên \mathbb{R}^2 .
- d) Tính $\int_{\vec{r}} \vec{F} \cdot d\vec{r}$ với \vec{F} là trường vector ở câu c và $\vec{r}(t) = t\sqrt{t}\,\vec{\mathbf{i}} + 3\sin(\frac{\pi t}{8})\vec{\mathbf{j}}$, $0 \le t \le 4$

Câu 4 (2.5 điểm).

a)
$$y' = x + 5y$$
.

b)
$$y'' - y' = x$$
; $y(0) = 2$; $y'(0) = 1$.

Người ra đê/MSCB: Bộ Môn Giải Tích	Người duyệt để:
Chữ ký:	Chữ ký: