

Complete Genome Sequence of a Severe Acute Respiratory Syndrome-Related Coronavirus from Kenyan Bats

Ying Tao, a Suxiang Tonga

^aDivision of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

ABSTRACT We identified a strain of betacoronavirus BtKY72/Rhinolophus sp./Kenya/ 2007 (here BtKY72) from rectal swab samples in Kenyan bats. This paper reports the complete genomic sequence of BtKY72, which is closely related to BtCoV/BM48-31/ Bulgaria/2008, a severe acute respiratory syndrome (SARS)-related virus from Rhinolophus bats in Europe.

he 2002 and 2003 outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV) infection was a significant public health threat at the beginning of the 21st century (1-6). Initial identification of SARS-CoV in civet cats and other wild animals in live animal markets suggests zoonosis (7). Later, Rhinolophus sp. bats were identified as harboring severe acute respiratory syndrome-related CoV at high frequencies and were believed to be a natural reservoir host for SARS-CoV (8, 9).

During a 5-year bat coronavirus (CoV) surveillance study (2006 to 2010) in Kenya, we identified five bat betacoronaviruses by pan-CoV reverse transcription-PCR (RT-PCR) from fecal samples of Chaerephon and Rhinolophus bats (10, 11). The Institutional Animal Care and Use Committee (IACUC) of the Centers for Disease Control and Prevention and Kenya Wildlife Services approved all protocols related to the animal experiments in this study. These bat betacoronaviruses shared >98% nucleotide identity with each other and were clustered with other known bat SARS-related CoVs identified from Rhinolophus bats in China and Europe (8, 9, 12-15) based on a short amplicon sequence of open reading frame 1b (ORF1b) (121 bp). We selected RNA from the BtKY72 bat, which was one of the five betacoronavirus-positive bats from a previous study (11), for full genome sequencing. To determine the full genome sequence, consensus degenerate primers were designed from conserved sequences based on all known SARS-related CoVs (Table 1). Several small islands of sequences scattered throughout the genome were first determined from a Kenyan Rhinolophus bat using sets of seminested or nested consensus RT-PCR primers by Sanger sequencing. Then, sets of sequence-specific primers were used to fill the gaps and generate the full genome sequence, named BtKY72/Rhinolophus sp./Kenya/2007 (Table 1). The 5' and 3' ends of genome sequences were determined using a 5'/3' rapid amplification of cDNA ends (RACE) kit (Roche). Complete genome sequencing was not performed due to limited viral loads in fecal samples from the other four betacoronavirus-positive bats.

The genome of BtKY72 was 29,259 nucleotides long, including the poly(A) tail, with 39% G+C content. Sequence alignment and a BLAST search analysis of the full-length genome sequences showed that the BtKY72 genome shared an 81% overall nucleotide identity to its nearest relative, BtCoV/BM48-3, which was identified from a Rhinolophus bat in Europe (15), and that it has 93 to 94% amino acid identity in the seven concatenated, conserved replicase domains (ADP-ribose-1"-phosphatase [ADRP], nonstructural protein 5 [nsp5], and nsp12 to nsp16) to BtCoV/BM48-31 (Fig. 1). Phylogenetic analysis suggested that BtKY72 belongs to the subgenus Sarbecovirus of the genus Betacoronavirus (Fig. 1). The genome organization contained the following gene

Citation Tao Y, Tong S. 2019. Complete genome sequence of a severe acute respiratory syndrome-related coronavirus from Kenyan bats. Microbiol Resour Announc 8:e00548-19. https://doi.org/10.1128/MRA .00548-19.

Editor Kenneth M. Stedman, Portland State

This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. Address correspondence to Suxiang Tong, sot1@cdc.gov.

Received 13 May 2019 Accepted 18 June 2019 Published 11 July 2019

Downloaded from http://mra.asm.org/ on July 29, 2019 by guest

study
this st
.⊑
nsed
primers used
PCR
Genomic
_
TABLE 1

	-					
	First-round PCR primer	rimer		Nested-round PCR primer	primer	
PCR or primer no.	Name	Sequence (5′→3′)	Nucleotide position ^a	Name	Sequence (5′→3′)	Nucleotide position ^a
Consensus degenerate						
PCK primers	F20 Fwd	TACTOAGGAAAAGGAAAAGGAAGGAAGGAAGAAA	15-37	E20 Ewd	TACCOACTAAAACTCAACT	15-37
-	R328new Rev	TGTAAAACAGGTAAACTGAGTTGGACGTG	296–324	R300 Rev	TGAAACCAGGGACAAGGCTCTCC	254–284
2	F180_Fwd	AGACTGCAGACTGCTTACGGTTTCG	174–198	F220_Fwd	CATCAGCATACCTAGGTTTCGTCCG	216–240
	R700_Rev	CACCTAACTCATAAGACTTTAGATCGATGCC	869-899	R490_Rev	CATCAGATCGTTTAATGAACACATAGGGC	457-485
3	F1440_Fwd	ATTGAAACTCGACTCCGCAAGGG	1436–1458	F1470_Fwd	GGTAGGACTARATGTTTTGGRGGYTGTG	1460–1487
	R2090_Rev	TACAAGACCACCWGTIACATAYGCCATRA	2050-2079	R2090_Rev	TACAAGACCACCWGTIACATAYGCCATRA	2050–2079
4	F5810_Fwd	CAGAATATAAAGGACCAGTGACTGATGTTTTC	5691–5722	F5810_Fwd	CAGAATATAAAGGACCAGTGACTGATGTTTTC	5691–5722
	R6580_Rev	GCTCGTTAGGTTTCTTAATGGTAATGCTTG	6429–6458	R6580_Rev	GCTCGTTAGGTTTCTTAATGGTAATGCTTG	6429–6458
2	F8330_Fwd	ATGCCCAAGTAGCAARAAGYCACAATG	8220-8246	F8330_Fwd	ATGCCCAAGTAGCAARAGYCACAATG	8220–8246
,	R9580_Rev	TGGTGAAATAGAATGTCAAGTACAAGTAAAAGA	9441–9473	R9470_Rev	TAGCAGCAACTACATGGTTGTACTCACC	9345–9372
9	F10290_Fwd	GGCTTAAAGTTGATACYTCTAAYCCTAAGACACC	10183-10216	F10290_Fwd	GGCTTAAAGTTGATACYTCTAAYCCTAAGACACC	10183-10216
1	K11440_KeV	GCCCACALGGAAAIAGCIIGAICIAAKG	11308-11335	K11480_KeV	AACGACACCAGAATAGTIAGAGGTIACAGAA	11345-11375
	F11190_FWd	C ACA GCC GC GGG GA G	110/9-11104	F11220_FWd	CGIAIIAIGACAIGGCIYGAAIIGGC	11105-11130
œ	F15280_hev	ACAGGRCTATGCTAACATAG	15170-15198	F15300 Fwd		15200-15225
)	R15980 Rev	TTTCAATCATRAGTGTACCATCTGTTTTGAC	15849-15879	R15980 Rev	TTTCAATCATRAGTGTACCATCTGTTTTGAC	15849–15879
6	F15830 Fwd	GACCTCAYGAATTTTGCTCWCAGC	15729-15752	F15850 Fwd	TCTCAGCAYACRAATGCTAGTTAAACAAGG	15746-15775
	R16850_Rev	GTAGTACCTCTGTACACAACAGCATCWCC	16718–16746	R16840_Rev	GTACACAACAGCATCACCATAGTCACC	16709-16735
10	F16455_Fwd	TTGTGTGCTAATGGTCAGGTTTTTGG	16347-16372	F16455_Fwd	TTGTGTGCTAATGGTCAGGTTTTTGG	16347-16372
	R17560_Rev	GTGTCRACAATTTCRGCAGGACAACG	17427-17452	R17510_Rev	ATGTCWGGACCTATTGTTTTCATRAGTCTGC	17377-17407
11	F17990_Fwd	CGMAATGTGGCTACKTTACARGCAGAA	17874-17903	F17990_Fwd	CGMAATGTGGCTACKTTACARGCAGAA	17874-17903
	R19170_Rev	TTACAATTCCAAAACAARCARACACCATC	19038-19066	R19195_Rev	CATTGGCYGGRTAACGATCAACG	19069-19091
12	F18870_Fwd	CGCGTTGATTGGTCTGTTGAATAYC	18768–18792	F18870_Fwd	CGCGTTGATTGGTCTGTTGAATAYC	18768–18792
	R20100_Rev	ATGTGACTCCATTGACRCTWGCTTG	19959-19983	R20110_Rev	TITIACTGATTCTCCAATTAATGTGACTCC	19974–20004
	F19880_Fwd		19//3-19802	F19900_Fwd	GAC GACA GMCAAGAAACC AC G	19/9/-19823
77	K20/30_Rev	GCGIIICACCAIAAIICIGAAGGIC	20000-20025	K2U/30_KeV	GCGIIICACCAIAAIICIGAAGGIC	2000-2002
<u>+</u>	F2U36U_FWU R21200 Rev		20479-20304	F2U36U_FWG R21210 Rev	GG1G1AAGGA1GGAACA1G11GAAAACC	21083_21107
15	F24200_Fwd	TGGCATATAGGTTYAATGGCATTGGAG	24089-24033	F24220 Fwd	CLCTTGTAGTTRCYCA AAATGTTCTC	24109-24126
2	R25345 Rev	CTCATAACAAATCCATTAAGTTCGTTTATGTG	25197-25229	R25345 Rev	CTCATAACAAATCCATTAAGTTCGTTTATGTG	25197-25229
16	F24970_Fwd	CAAAAATCATACATCACCWGATGTTGATC	24854-24882	F25005_Fwd	TTTCAGGCATTAAYGCTTCWGTCG	24894-24918
	R26290_Rev	CGCAGTAAGGATGGCTAGTGTGACTA	26127-26152	R26235_Rev	AAAGAAGTACGCTATTAACTATTAACGTACCTG	26070-26102
17	F26065_Fwd R26890_Rev	ACACAATCGACGCTCTTCAGGAG GATCACAGCNCCAATGACAAGTTCAC	25945–25968 26726–26751	F26120_Fwd R26870_Rev	TGAGCCGACGACGACTACTAGCGT CAAGTTCACTTTCCARGAGCGGTCTG	25988–26011 26709–26734
Specific PCR primers						
_	contig10F1_Fwd	GGTAAGATGGAGAGCCTTGTCCCTG	254–278	contig10F2_Fwd	AACGAGAAACTCACGTCCAACTCAG	284–309
2	contig 10K1_Kev	CIGACATAGAAGCAAGAATAATTACTACTICCTC	16/0-1/03 1872-1894	contig10K1_Kev	CIGACAIAGAAGCAAGAAIAAIIACIACIICCIC	16/0-1/03
٧	contigo F1_F wd		6212-6237	conting-R2 Rey		6134-6158
e	contig 11F1_Fwd	AGTCAAACACTTGTCTCTGAAGAAGTAGTGG	6248–6278	contig11F2_Fwd	GAAGTAGTAGAACTCCTACCATACAGAAGG	6269–6299
	contig8-R1_Rev	GCATGATAATGTAAAACAGACTAGCAACTAATACC	8462-8495	contig8-R2_Rev	CATGTGTTATTCAATTTACCACCCTTAAGTG	8397-8427
4	contig5-F1_Fwd	TTCTACCACGTGTTTAGTGCTGTTG	8772-8798	contig5-F1_Fwd	TTCTACCACGTGTGTTTAGTGCTGTTG	8772-8798
	R10475_Rev	GTTAAAACCAACACTACCACATGANCCATT	10334-10363	R10410_Rev	ATTAGGTCTCATGGCACACTGRTAAACWC	10281-10309
2	Contig7-F1_Fwd	AAAATGGCAGATCAGGCTATGACC	12129-12153	Contig7-F2_Fwd	ACAGGCTAGGTCTGAAGACAAGAGGG	12164–12189
	coning 14k1_kev		13444-13409	cornigi 4442_nev	CCATCAGTAGAGTGCATTCACATTAGC	13401-13432
					(Continue	(Continued on next page)

TABLE 1 (Continued)

	First-round PCR primer			Nested-round PCR primer	ner	
PCR or primer no.	Name	Sequence (5′→3′)	Nucleotide position	Name	Sequence (5′→3′)	Nucleotide position
9	500-c1-F1_Fwd	TCGATGGCCACTAATTATGACCTGAG	17229-17254	500-c1-F1_Fwd	TCGATGGCCACTAATTATGACCTGAG	17229-17254
	500-c2-R1_Rev	AGCCCAAAGGACAACACGACTC	18369-18392	500-c2-R2_Rev	ACGCACTATGTTCCAAGGCAGACC	18442-18464
7	500-c3-F1_Fwd	AAGTTGGCATTAGGTGGTTCTGTGG	21000-21024	contig3-F2_Fwd	GCCATAAAGATTACAGAGCATTCGTGG	21024-21050
	500-R22790_Rev	CAGGTCCGATAGGTATATCACACTCATAGG	23378-23406	500-R22740_Rev	TGGCTCCTAGAAGACAACCAGCTTG	23338-23362
8	F23200_Fwd	CCGTGCTCTTTTGGTGGTGTKAGTG	23161–23185	F23200_Fwd	CCGTGCTCTTTTGGTGGTGTKAGTG	23161–23185
	500-c4-R1_Rev	CTGACATTTTAGTAGCAGCAAGATTAGCAG	24334-24361	500-c4-R2_Rev	TCTGGACTTCAGCCTCAACTTTATCAAG	24446-24475
6	500C4F1_Fwd	GCTTAGCTACTTTGTTGCATCATTCAGG	26593-26620	500C4F2_Fwd	ATTGGTGCTCATGATCATTCGTGGTT	26735-26760
	oligodT anchor_Rev	GTTTCCCAGTCACGATATTTTTTTTTTTTTV	29273-29289	oligodT anchor_Rev	GTTTCCCAGTCACGATATTTTTTTTTTTTTV	29273-29289

^a Positions relative to the genome of BtKY72/Rhinolophus sp./Kenya/2007 (GenBank accession no. KY352407).

Volume 8 Issue 28 e00548-19

Downloaded from http://mra.asm.org/ on July 29, 2019 by guest

FIG 1 Phylogenetic analysis of whole-genome sequences of betacoronaviruses. The phylogenetic tree is inferred using the maximum likelihood (ML) method available in PhyML version 3.0 (16), assuming a general time-reversible (GTR) model with a discrete gamma-distributed rate variation among sites (Γ_a) and a subtree pruning and regrafting (SPR) tree-swapping algorithm. The sequences are labeled with accession number, strain name, geographic (three-letter country code), and host (species) information. BtKY72/Rhinolophus sp./Kenya/2007, sequenced in this study, is highlighted with a solid circle. The genus taxonomy information is shown to the right side of the phylogeny. The maximum likelihood bootstrap is indicated next to the nodes. The scale bar indicates the estimated number of nucleotide substitutions per site. KEN, Kenya; CHN, China; BGR, Bulgaria; NGA, Nigeria; MERS-CoV, Middle East respiratory syndrome coronavirus; HCoV, human coronavirus; MHV, mouse hepatitis virus; ZBCoV, Zaria bat coronavirus.

order: 5' UTR-ORF1ab-S-ORF3a-E-M-ORF6-ORF7a-ORF7b-N-3' UTR. Unlike SARS-CoV and other known SARS-CoV-related bat viruses, both ORF3b and ORF8 were absent in BtKY72. ORF8 was also missing in its closest neighbor, BtCoV/BM48-31 (15).

In conclusion, our study demonstrates that the SARS-related CoVs that were identified from *Rhinolophus* bats in China and Europe were also present in Kenyan *Rhinolophus* bats (Fig. 1). The discovery of SARS-related CoVs in Kenyan bats adds to the diversity and geographic range of CoVs in *Rhinolophus* bats. The genome data for BtKY72 will facilitate understanding of the molecular evolutionary characteristics of bat SARS-related CoV.

Data availability. The complete genome sequence of BtKY72 is available in Gen-Bank under the accession number KY352407.

ACKNOWLEDGMENTS

We thank Ivan Kuzmin and Michael Niezgoda from the Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control

Volume 8 Issue 28 e00548-19 mra.asm.org 4

and Prevention (CDC), Atlanta, GA, and Bernard Agwanda from the National Museum, Kenya Wildlife Service, Nairobi, Kenya, for excellent technical and logistical assistance and field study.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

REFERENCES

- Cherry JD, Krogstad P. 2004. SARS: the first pandemic of the 21st century. Pediatr Res 56:1–5. https://doi.org/10.1203/01.PDR.0000129184.87042.FC.
- Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1986–1994. https://doi.org/10.1056/NEJMoa030685.
- 8. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, members of the SARS Study Group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2.
- 4. Zhong N, Ding Y, Mao Y, Wang Q, Wang G, Wang D, Cong Y, Li Q, Liu Y, Ruan L, Chen B, Du X, Yang Y, Zhang Z, Zhang X, Lin J, Zheng J, Zhu Q, Ni D, Xi X, Zeng G, Ma D, Wang C, Wang W, Wang B, Wang J, Liu D, Li X, Liu X, Chen J, Chen R, Min F, Yang P, Zhang Y, Luo H, Lang Z, Hu Y, Ni A, Cao W, Lei J, Wang S, Wang Y, Tong X, Liu W, Zhu M, Zhang Y, Zhang Z, Zhang X, Li X, Chen W, Xhen X, Lin L, Luo Y, Zhong J, Weng W, Peng S, Pan Z, Wang Y, Wang R, Zuo J, Liu B, Zhang N, Zhang J, Zhang B, Zhang Z, Wang W, Chen L, Zhou P, Luo Y, Jiang L, Chao E, Guo L, Tan X, Pan J, Chinese Medical Association, China Association of Chinese Medicine. 2003. Consensus for the management of severe acute respiratory syndrome. Chin Med J (Engl) 116:1603–1635.
- Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, Group SW. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966. https://doi.org/10.1056/NEJMoa030781.
- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976. https://doi.org/10.1056/NEJMoa030747.
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278. https://doi.org/10.1126/science.1087139.
- 8. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-

- like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102: 14040–14045. https://doi.org/10.1073/pnas.0506735102.
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679. https://doi.org/10.1126/science.1118391.
- Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, Niezgoda M, Haynes L, Agwanda B, Breiman RF, Anderson LJ, Rupprecht CE. 2009. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 15:482–485. https://doi.org/10.3201/eid1503 .081013.
- Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S. 2017. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e01953-16. https://doi.org/10.1128/JVI .01953-16.
- He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, Xia L, Zhou J, Zhen W, Feng Y, Guo H, Zhang H, Tu C. 2014. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol 88:7070–7082. https://doi.org/10.1128/JVI.00631-14.
- Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LL, Peiris JS, Smith GJ, Chen H, Guan Y. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 80:7481–7490. https://doi.org/10.1128/JVI.00697-06.
- Yuan J, Hon CC, Li Y, Wang D, Xu G, Zhang H, Zhou P, Poon LL, Lam TT, Leung FC, Shi Z. 2010. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol 91:1058–1062. https://doi.org/10.1099/ vir.0.016378-0.
- Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, Seebens A, Niedrig M, Pfefferle S, Yordanov S, Zhelyazkov L, Hermanns U, Vallo P, Lukashev A, Muller MA, Deng H, Herrler G, Drosten C. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 84:11336–11349. https://doi.org/10.1128/JVI.00650-10.
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321. https://doi.org/10.1093/sysbio/syq010.

Volume 8 Issue 28 e00548-19