

2020-2021(2)《计算机网络》测试参考答案

1.(1) 每个波特有 4 个合法值,因此,比特率是波特率的两倍。对应于 1200 波特,数据速率 是 2400b/s。(2) 由于相位总是 90,但坐标点的振幅不同,因此这是直接的振幅调制。

2. (1)

说明:为什么很多书都是由高到低表示 0 而由低到高表示 1? 曼彻斯特编码的规则为:前 T/2 传送该比特的反码,后 T/2 传送该比特的源码。所以,由高到低时,低电平表示 0,而由低到高时,高电平表示 1。

- (2) 码元传输速率即波特率,以太网使用曼彻斯特编码,这就意味着发送的每一位都有两个信号周期。标准以太网的数据速率是 10MB/s,因此波特率是数据率的两倍,即 20M 波特。
- 3. 首先对三个码片序列求补:

 $ar{A}$:(+1+1+1-1-1+1-1-1) $ar{B}$:(+1+1-1+1-1-1+1) $ar{C}$:(+1-1+1-1-1+1+1) 然后得到: $ar{A} + ar{B} + ar{C} = (+3+1+1-1-3-1-1+1)$

4. (1)部门 A 需要分配大于等于 500 个 IP 地址,这里分配 512 个,则其子网掩码为 255.255.254.0。部门 B 需要分配大于等于 250 个 IP 地址,这个分配 256 个,则子网掩码为 255.255.255.0。部门 C 这里分配 128 个,则子网掩码为 255.255.255.128。部门 D 这里分配 64 个,则子网掩码为 255.255.255.192。部门 E 这里分配 32 个,则子网掩码为 255.255.255.2540

主机数	IP 地址空间	子阿掖码
500	512	255, 255, 254, 0
250	256	255, 255, 255, 0
120	128	255, 255, 255, 128
60	64	255, 255, 255, 192
25	32	255, 255, 255, 224
12	16	255, 255, 255, 240

- (2)因公司地址块为/22, 故网络号为 22 位, 主机号为 10 位, 可拥有 1024 个 IP 地址, 而 总共分配出去 512+256+128+64+32+16=1008 个 IP 地址, 还有 16 个 IP 地址没有分配
- (3)非空子网必须有独立的主机,而子网掩码 255.255.255.254 对应的子网主机位只有 1 位,其中 0 为网络号,1 为广播号,对应的子网为空子网,故,非空子网的子网掩码不可以是 255.255.255.254。事实上,最小的非空子网的子网掩码为 255.255.255.252。
- 5.(1)该单位的地址块中共有 $2^{32-26}=2^6=64$ 个地址,平均分为 4 个子网,故网络前缀为/28
 - (2)因为每个子网的网络前缀是/28, 故只有 4 位表示子网的 IP 地址, 每个子网有 2⁴=16 个 地址
 - (3)四个子网的地址块分别是 136.23.12.64/28, 136.23.12.80/28, 136.23.12.96/28 和 136.23.12.112/28

(4	い毎一/	子网分配给主机私用的最小地址和最大地	业为.
ι-	t <i>) ↔</i>	J [7] /J [D[15]	ンロ. ノリモ

子网地址块	可分配给主机的最小地址	可分配给主机的最大地址	
136, 23, 12, 64	136, 23, 12, 65	136, 23, 12, 78	
136, 23, 12, 80	136, 23, 12, 81	136, 23, 12, 94	
136, 23, 12, 96	136, 23, 12, 97	136, 23, 12, 110	
136, 23, 12, 112	136, 23, 12, 113	136, 23, 12, 126	

- 6. (1) 应用数据被分割成 TCP 认为最适合发送的数据块。(2) TCP 给发送的每一个数据块进行编号,接收方对数据块进行排序,把按序到达的数据传送给应用层。(3)校验和: TCP 有首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到 TCP 报文段的检验和有差错,TCP 将丢弃这个报文段且不会确认收到的此报文段。(4)TCP 的接收端会丢弃重复的数据。(5)流量控制: TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据时,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。(TCP 利用滑动窗口实现流量控制)(6)拥塞控制:当网络拥塞时,减少数据的发送。(7)停止等待协议: 也是为了实现可靠传输,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。(8)超时重传:当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。
- 7. (1)各计算机的子网掩码均为 255.255.255.240, 计算机 A 与 E 的子网地址为 192.168.1.32, 计算机 B、C、D 的子网地址为 192.168.1.48。因此计算机 A 和 E 可以直接访问,计算机 B、C、D 之间可以直接访问。(2)由于集线器不能分隔子网,因此这些计算机实际上处于同一子网中,它们之间都可以直接访问。
- 8.(1)帧定界符(标志字段)的值为 0x7E; 转义字符"ESC"的值为 0x7D; 当数据中出现帧定界符 0x7E 时,将其转变为(0x7D,0x5E); 当数据中出现转义符 0x7D 时,将其转变为(0x7D,0x5D),而 PPP 帧的数据部分 7D 5E FE 27 7D 5D 7D 5D 65 7D 5E 出现了两个帧定界符和两个转义符; 其真正数据为: 7E FE 27 7D 7D 65 7E;
 - (2) 根据零比特填充法,由于帧定界符 7E 的二进制表示是 01111110; 在发送端,只要发现数据部分有 5 个连续 1,则在其后立即填入一个 0,所以数据 0110111111111100 经过零比特填充后为 011011111011111000;
 - (3) 根据零比特填充法,接收端对帧中的比特流进行扫描,每当发现 5 个连续 1 时,就把这 5 个连续 1 后的一个 0 删除。所以 0001110111110111110110 就变成了 000111011111 1111 1110。
- 9.(1)接收方的确认号=按序收到的最后一个字节的编号+1,它也是期望收到对方的下一个报 文段数据的第一个字节的序号。由于两个连续 TCP 报文段的序号分别为 70 和 100。 因此第一个报文段的数据序号是 70 到 99,共有 10-70=30 字节的数据。
 - (2)根据接收方的确认号=正确收到的最后一个字节的编号+1,且第一个报文段的数据序号是 70 到 99, 所以, 主机 B 收到第一个报文段后发回的确认中的确认号应当是 100。
 - (3)由于主机 B 收到第二个报文段后发回的确认中的确认号是 180,说明序号为 180 之前的字节都已收到,而第一个报文段的最后一个字节是序号为 99,所以 A 发送的第二个报文段中的数据编号为 100 到 179,故第二个报文段中共有 180-100 = 80 字节。
 - (4) A 发送的第一个报文段丢失,第二个报文段到达 B。由于 TCP 使用累积确认,B 在第二个报文段到达后向 A 发送确认时仅对所有按序接收到的数据进行确认,所以确认号为 70(即未按序到达的第一个报文段的第 1 个字节的序号)。