EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 10	9 Mai 2021

1 Exercices

Exercice 1.

Soient $K \subset L \subset F$ des extensions de corps. Si $K \subset L$ et $L \subset F$ sont algébriques, montrez qu'il en est de même pour $K \subset F$.

Exercice 2.

Soit n>0 un entier positif. Montrez que $\cos(2\pi/n)$ et $\sin(2\pi/n)$ sont des nombres algébriques sur \mathbb{Q} .

Exercice 3.

Soit $\mathbb{Q}(x)$ le corps de fractions de l'anneau polynomial $\mathbb{Q}[x]$, et considérons

$$s := \frac{x^3 + 2}{x} \in \mathbb{Q}(x).$$

On a les extensions successives $\mathbb{Q} \subset \mathbb{Q}(s) \subset \mathbb{Q}(x)$.

- 1. Montrez que $\mathbb{Q}(x)$ est une extension algébrique de $\mathbb{Q}(s)$.
- 2. Calculez $[\mathbb{Q}(s) : \mathbb{Q}]$ et $[\mathbb{Q}(x) : \mathbb{Q}(s)]$.

Exercice 4.

Soit $\xi = e^{\frac{2\pi i}{n}}$ pour un entier n > 2. Démontrez que les corps de décomposition de $x^n - 2$ et de $x^{2n} - 3x^n + 2$ sur \mathbb{Q} sont les mêmes, et ils sont les mêmes aussi que le sous-corps de \mathbb{C} engendré par ξ et $\sqrt[n]{2}$.

Exercice 5. 1. Montrez qu'il existe que 2 polynômes irréductibles de degré 3 sur \mathbb{F}_2 .

- 2. Soit f et g ces deux polynômes. Montrez que tous les deux f et g obtient 3 racines distinctes dans $K = \mathbb{F}_2[x]/(f)$.
- 3. Montrez que les corps de décomposition de ces 2 polynômes sont les mêmes, et il est isomorphe à $K = \mathbb{F}_2[x]/(f)$.

Exercice 6. 1. Considérons la situation suivante :

- $-\phi: K \to K'$ est un isomorphisme des corps,
- $K \subseteq L$ et $K' \subseteq L'$ sont deux extensions de corps
- $L = K(\alpha)$ et $L' = K(\alpha')$ avec α et α' algébriques sur K et K' respectivement
- si $\xi: K[x] \to K'[x]$ est l'homomorphisme induit par ϕ , alors $\xi(m_{\alpha,K}) = m_{\alpha',K'}$

Démontrez qu'il existe une extension unique de ϕ à un isomorphisme $\eta:L\to L'$ tel que $\eta(\alpha)=\alpha'$

- 2. Démontrez que $K(x)[\sqrt{x+1}] \cong K(x)[\sqrt{x+2}]$
- 3. Démontrez que $K(x,y)[\sqrt{xy}] \cong K(x,y)[\sqrt{x(x+y)}]$