Part II: Principle of Statistics - Revision Notes

Lectures by , notes by Zhimei Liu

1. Likelihood principle

1.1. Basic ideas and concepts

Definition: (Likelihood function) Let $\{f(\cdot,\theta):\theta\in\Theta\}$ be a statistical model of pfd/pmf $f(x,\theta)$ for the distribution P of a random variable X and consider iid copies $X_1,X_2,...,X_n$ of X. Then likelihood function of the model is:

$$L_n(\theta) = \prod_{i=1}^n f(x_i, \theta)$$

Log-likelihood function:

$$\ell_n(\theta) = \sum_{i=1}^n log(f(x_i, \theta))$$

Normalised log-likelihood function:

$$\bar{\ell}_n(\theta) = \frac{1}{n}\ell_n(\theta)$$

Definition: (Maximum likelihood estimator)

$$\hat{\theta}_{MLE} = argmax_{\theta \in \Theta} \ L_n(\theta)$$

Definition: (Score function) For $\Theta \subseteq \mathbb{R}^p$,

$$S_n(\theta) = \nabla_{\theta} \ell_n(\theta) = \left[\frac{\partial \ell_n(\theta)}{\partial \theta_1}, ..., \frac{\partial \ell_n(\theta)}{\partial \theta_n}\right]^T$$

One of the main uses of the score function is to look for the MLE as a solution to $S_n(\hat{\theta})=0$

1.2. Information geometry and likelihood function

Theorem 1.1. Model $\{f(\cdot,\theta):\theta\in\Theta\}$, a variable $X\sim P$ s.t. $\mathbb{E}[|log(f(X,\theta))|]<\infty$, if the model is well specified with $f(x,\theta_0)$ as pdf of P, the function

$$\ell(\theta) = \mathbb{E}_{\theta_0}[log(f(X, \theta))]$$

is maximized at θ_0 .

Proof. Compare $\ell(\theta) - \ell(\theta_0)$ with 0 and apply Jensen's inequality with concave function $\phi \colon \mathbb{E}[\phi(Z)] \leq \phi(\mathbb{E}[Z])$.

Definition: (Kullback-Leibler divergence)

$$\ell(\theta_0) - \ell(\theta) = KL(P_{\theta_0}, P_{\theta}) = \int_{\mathcal{X}} f(x, \theta_0) \log \frac{f(x, \theta_0)}{f(x, \theta)} dx$$

This quantity can be thought of as a 'distance' between distributions.

Theorem 1.2. $\{f(\cdot,\theta):\theta\in\Theta\}$ regular enough that integration and differentiation can be exchanged, then $\forall \ \theta\in int(\Theta)$,

$$\mathbb{E}_{\theta}[\nabla_{\theta} log f(X, \theta)] = 0$$

Proof. By expanding the expectation and changing integration and differentiation.

Definition: (Fisher information matrix)

$$I(\theta) = \mathbb{E}_{\theta}[\nabla_{\theta} \log f(X, \theta) \ \nabla_{\theta} \log f(X, \theta)^{T}]$$

$$I_{ij}(\theta) = \mathbb{E}_{ij}\left[\frac{\partial}{\partial \theta_i} \log f(X, \theta) \frac{\partial}{\partial \theta_j} \log f(X, \theta)\right]$$

In one dimension,

$$I(\theta) = \mathbb{E}_{\theta}[(\frac{d}{d\theta}\log f(X,\theta))^2] = \text{Var}_{\theta}[\frac{d}{d\theta}\log f(X,\theta)]$$

Theorem 1.3.

$$I(\theta) = -\mathbb{E}_{\theta}[\nabla_{\theta}^{2} \log f(X, \theta)]$$

$$I_{ij}(\theta) = -\mathbb{E}_{\theta}\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X, \theta)\right]$$

In one dimension,

$$I(\theta) = \operatorname{Var}_{\theta}\left[\frac{d}{d\theta}\log f(X, \theta)\right] = -\mathbb{E}_{\theta}\left[\frac{d^2}{d\theta^2}\log f(X, \theta)\right]$$

Definition: For a random vector $X = (X_1, ..., X_n) \in \mathbb{R}^n$, the fisher information matrix is

$$I_{\theta}(\theta) = \mathbb{E}_{\theta}[\nabla_{\theta} \log f(X_1, ..., X_n, \theta) \nabla_{\theta} \log f(X_1, ..., X_n, \theta)^T]$$

Proposition 1.1. For a random vector $X = (X_1, ..., X_n)$, fisher information tensorizes,

$$I_n(\theta) = nI(\theta)$$

where $I(\theta)$ is the Fisher information for one copy X_i .

Theorem 1.4. (Cramer-Rao lower bound) $\tilde{\theta} = \tilde{\theta}(X_1, ..., X_n)$ is an unbiased estimator.

$$\operatorname{Var}_{\theta}(\tilde{\theta}) = \mathbb{E}_{\theta}[(\tilde{\theta} - \theta)^2] \ge \frac{1}{nI(\theta)}$$

Proof. Apply Cauchy-Schwartz inequality:

$$Cov(Y, Z)^2 \le Var(Y)Var(Z)$$

and taking $Y = \tilde{\theta}$ and $Z = \frac{d}{d\theta} \log f(X, \theta)$. Then true for n = 1.

Proposition 1.2. Let $\tilde{\Phi}$ be an unbiased estimator of $\Phi(\theta)$. Then

$$\operatorname{Var}_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \nabla_{\theta} \Phi(\theta)^T I^{-1}(\theta) \nabla_{\theta} \Phi(\theta)$$

2. Asymptotic theory for MLE

2.1. Stochastic convergence concepts

Let $(X_n)_{n\geq 0}$, X be random vectors in \mathbb{R}^k .

Definition: X_n converges to X almost surely, or $X_n \to^{a.s.} X$ as $n \to \infty$, if

$$\mathbb{P}(||X_n - X|| \to 0 \text{ as } n \to \infty) = 1$$

Definition: X_n converges to X in **probability**, or $X_n \to^P X$ as $n \to \infty$, if $\forall \epsilon > 0$

$$\mathbb{P}(||X_n - X|| \ge \epsilon) \to 0$$

Definition: X_n converges to X in distribution, or $X_n \to^d X$ as $n \to \infty$, if $\forall t$

$$\mathbb{P}(X_n \leq t) \to \mathbb{P}(X \leq t)$$

Proposition 2.1. almost surely \implies in probability \implies in distribution

Proposition 2.2. (Continuous mapping theorem) For $g: \mathcal{X} \to \mathbb{R}$ continuous, have

$$X_n \to a.s./P/d X \implies q(X_n) \to a.s./P/d q(X)$$

Proposition 2.3. (Slusky's lemma)

Proposition 2.5. (Weak law of large numbers) Let $X_1, ..., X_n$ be iid copies of X with $\text{Var}(X) < \infty$. Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to^P \mathbb{E}[X]$$

Proof. Use Chebyshev's inequality to $Z_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}[X]).$

Proposition 2.5. (Strong law of large numbers) Let $X_1, ..., X_n$ be iid copies of $X \sim P$ with $\mathbb{E}[||X||] < \infty$. Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to^{a.s.} \mathbb{E}[X]$$

Proof. Use Chebyshev's inequality to $Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mathbb{E}[X])$.

2.2. Law of large numbers and CLT

Theorem 2.2. (Central limit theorem) Let $X_1, ..., X_n$ be iid copies of $X \sim P$ on \mathbb{R} and assume $\text{Var}(X) = \sigma^2 < \infty$. As $n \to \infty$,

$$\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}[X])\to^{d}\mathcal{N}(0,\sigma^{2})$$