Tutoría 01

Problema 1: Halle el ángulo de fase entre v(t) y i(t). Además, determine la relación de adelanto-retraso entre ambas señales.

$$v(t) = -\cos(2t + 20^{\circ}) V e i(t) = 5\sin(2t - 35^{\circ}) A$$

Problema 2: Determine la representación fasorial de $v(t) = -\sin(t - 10^{\circ}) V$.

Problema 3: Determine la señal representada por el fasor $\mathbf{I} = -2je^{-j180^{\circ}}A$.

Problema 4: Utilizando el método fasorial, determine la tensión v(t) de un circuito el cual esta descrito por la siguiente ecuación integro-diferencial:

$$4v(t) + \int v(t)dt - 3\frac{dv(t)}{dt} = \cos(2t)$$

Problema 5: Para el siguiente circuito si $R = 1\Omega$, L = 1mH, $C = 100\mu F$ y $v_s(t) = 10\sin(1000t)~V$, determine el diagrama fasorial para los fasores V_s , V_R , V_L , V_C y I rotulando correctamente los ejes del plano.

Problema 6: Considere el circuito que se muestra en la siguiente figura:

Las corrientes del circuito están definidas por:

- $i_S(t) = I_S \cos(\omega t + \theta_S) A$
- $i_L(t) = I_L \cos(\omega t + \theta_L) A$
- $i_R(t) = I_R \cos(\omega t + \theta_R) A$
- a) Determine el valor de I_L si $I_S=\sqrt{34}$ e $I_R=3.$
- b) Considerando los valores de I_s , I_L e I_R obtenidos en el punto anterior, calcule los ángulos θ_S y θ_R si $\theta_L=10^o$.

Problema 7: Considere la siguiente donde se muestra un circuito eléctrico y dos ondas sinusoidales que pertenecen a dicho circuito.

En el circuito se tienen dos impedancias Z_1 y Z_2 conectadas en paralelo ambas a una fuente de alimentación. Se sabe que las magnitudes de las impedancias son:

- $|Z_1| = 2.5 \Omega$
- $|Z_2| = 5/3 \Omega$

Además, las ondas temporales que se muestran en la figura representan la corriente y la tensión características de la fuente de alimentación, según su definición en el mismo circuito. Considerando toda la información suministrada, determine:

- a. Las impedancias Z_1 y Z_2 .
- b. La resistencia y/o capacitancia y/o inductancia características de la impedancia Z_1 según el resultado obtenido en el punto anterior.

Problema 8: Determine la corriente I_o .

Problema 9: Utilizando superposición determine la corriente $i_o(t)$ del circuito.

Problema 10: Para el siguiente circuito, halle el circuito equivalente de Thévenin en las terminales a-b.

Problema 11: Calcule $i_o(t)$ aplicando el teorema de Norton.

Problema 12: Si la impedancia de entrada se define como $\mathbf{Z}_{en} = \mathbf{V}_s/I_s$, halle la impedancia de entrada del circuito del amplificador operacional de la siguiente figura cuando $R_1 = 10k\Omega$, $R_2 = 20k\Omega$, $C_1 = 10n\mathrm{F}$, $C_2 = 10n\mathrm{F}$ y $\omega = 5000\,\mathrm{rad/s}$.

Problema 13: Considere el siguiente circuito mostrado en la siguiente figura:

Si se sabe que la tensión de entrada es $v_s(t)=10\cos(2000t)$ V, $C_1=C_2=1$ nF, $R_1=R_2=100$ $k\Omega,$ $R_3=20$ $k\Omega$ y $R_4=40$ $k\Omega.$

- a) Mediante un análisis de nodos, determine la relación V_o/V_s y el desfase existente entre las señales $v_s(t)$ y $v_o(t)$.
- b) En relación con el resultado del punto a), determine la señal $v_o(t)$.