ZEXEL - PRÜFWERTE Reiheneinspritzpumpen

 BOSCH-Kombinationsnummer
 : 9 400 610 297 1/4

 ZEXEL-Kombinationsnummer
 : 101431-0630

 Ausgabe
 : 31.10.1993 [2]

 Kunde
 : ISUZU

 Motor
 : C240 / 5-15601-030-2

EP-Typnummer / Bezeichnung : 101043-9180 / PES4A Regler-Typnummer / Bezeichnung : 105520-3100 / EP/RBD

PRÜFVORAUSSETZUNGEN

Prūfol : ISO-4113

Prüföl-Zulauftemperatur °C: 40,00...45,00

Zulaufdruck bar : 1,6

Prüf-Düsenhalter-Kombination : 1 688 901 013

Öffnungsdruck bar: 175

Prüfdruckleitung

Außen x Innen x Länge mm : $6,00 \times 2,00 \times 600$

FÖRDERBEGINN

Vorhub mm : $2,25 \pm 0,0.5$

Regelweg mm : -

Förderbeginn-Anriß Zyl.-Nummer : -

Nockenfolge : 1-3-4-2

Förderbeginn-Anriß Zyl.-Nummer: 0-90-180-270

Förderbeginn-Versatz °NW : -

Toleranz +- °C: 0,50 (0,75)

Fördermengen:

Einstellposition	Regelweg (mm)	Drehzahl (1/min)	Fördermenge (cm³/1000 Hübe)	Unterschied (%)	Fixierung	Bemerkungen
	12,4	750	33,0 ± 1,6	± 4,0	Regelstange	
	11,8	1450	36,5 ± 1,0	± 2,5	Regelstange	Basis
	ca. 8,8	350	7,0 ± 1,1	± 14,0	Regelstange	
						4

Spritzversteller: EP/SCD

105621-0370 ,

Drenzahl	500 ± 50	800	1050	1500	1750	
(1/min)						1
Grad.	START	1 ± 0,5	2,0 +0,7	4,5 +0,4	ENDE	
			-0,8	-0,6	6 ± 0,5	

Bild 1 EINSTELLUNG DES REGLERS

101431-0630 2/4

a = Unterdruck

b = über

c = über

d = Regelstangenweg

e = einstellen der Angleichfeder:
f = einstellen mit Leerlauffeder:

VERSTELLUNG DES SPRITZBEGINNS

Auf 4. Element des Spritzbeginns stellen. Vor oberen Totpunkt des Winkels (B.T.D.C): 14°

a = Marke "Z"

A4 ZEXEL - Prüfwertę
Einspritzpumpen

A5

ZEXEL - Prüfwerte

LUFT-DICHTHEITS-VERSUCH

101431-0630 3/4

1. Unterdruck von 4,9 kPa (500 mmAq) in pneumatische Reglerkammer geben, während Pumpendrehzahl auf 500 U/min erhöht wird. Verstellhebelposition auf 11,8 mm halten.

2. Darauf achten, daß die Abfallzeit über 10 s für den Unterdruck von 4,9 kPa (500 mmAq) zu 4,7 kPa (480 mmAq) beträgt.

EINSTELLUNG

A Pneumatischer Regler (Pumpendrehzahl: U/min)

	Unterdruck kPa (mmAq)	Regelweg (mm)	Bemerkungen
Raucheinstellschraube einstellen			• Federkapsel (4) einstellen
Angleichung einstellen 1) Start der Angleichung ein-	•		
stellen 2) Ende der Angleichung ein-	. 160 ± 10	12,4	Ausgleichscheibe (2) einstellen
stellen 3) Bestätigung	310 ± 50	11,8	• Ausgleichscheibe (3) einstellen
4) Angleichhub bestätigen			• Werte: 0,6 ± 0,05 mm
Einstellung Regelung hohe Drehzahl	über 400	11,8	Ausgleichscheibe (6) einstellen
Leerlauf einstellen	- 660 ± 10	6,5 6,0	• Schraube (1) einstellen • Bestätigung

B Mechanischer Regler (Unterdruck: kPa {mmAq})

	Pumpengeschwindigkeit (1/min)	Regelweg (mm)	Bemerkungen
Einstellung Regelung maximale Drehzahl	·		 Schraube (1) einstellen Bestätigung (Fördermenge bestätigen: unter 3 cm³/1000 Hübe)

ZEXEL - Prüfwerte

Einspritzpumpen

ZEXEL - Prüfwerte

1 = Schraube

2 = Ausgleichscheibe

3 = Ausgleichscheibe

4 = Federkapsel

5 = Federkapsel

6 = Ausgleichscheibe

101431-0630 4/4

ZEXEL - Prüfwerte

Einspritzpumpen

ZEXEL - Prüfwerte A 9

Raı	ıcheinstellung	J	Fördermengen-Einstellung			
Pumpendrehzahl	Regelweg	Fördermenge	Pumpendrehzahl	Unterdruck	Fördermenge	
(1/min)	(mm)	(cm³/1000 Hübe)	(1/min)	kPa (mmAq)	(cm³/1000 Hübe)	
			`			
	-					

ZEXEL - PRÜFWERTE Reiheneinspritzpumpen

 BOSCH-Kombinationsnummer
 : 9 400 610 295 1/4

 ZEXEL-Kombinationsnummer
 : 101691-9581

 Ausgabe
 : 29.10.1993 [1]

 Kunde
 : NISSAN DIESEL

 Motor
 : ND6 / 16700-95066

EP-Typnummer / Bezeichnung : 101069-3640 / PE6A Regler-Typnummer / Bezeichnung : 105462-0570/EP/RAD-B

PRÜFVORAUSSETZUNGEN

Prūfol : ISO-4113

Prüföl-Zulauftemperatur °C: 40,00...45,00

Zulaufdruck bar: 1,6

Prüf-Düsenhalter-Kombination - : 1 688 901 013

Öffnungsdruck bar: 175

Prüfdruckleitung

Außen x Innen x Länge \cdot mm : 6,00 x 2,00 x 600

FÖRDERBEGINN

Vorhub mm : $2,75 \pm 0,05$ mm

Regelweg mm: Förderbeginn-Anriß Zyl.-Nummer: -

Nockenfolge : 1-4-2-6-3-5

Förderbeginn-Anriß Zyl.-Nummer : 0-60-120-180-240-300

Förderbeginn-Versatz °NW : -

Toleranz +- °C: 0,50 (0,75)

Fördermengen:

Einstellposition	Regelweg (mm)	Drehzahl (1/min)	Fördermenge (cm³/1000 Hübe)	Unterschied (%)	Fixierung	Bemerkungen
A	9,0	800	53,8 ± 1,0	± 2	Regelstange	Basis
Н	ca. 7,6	225	9,0 ± 1,2.	± 13	Regelstange	
A	9,0	800	53,8 ± 1,0	-	Hebel	Basis
В	8,7	1500	66,1 ± 2,0	± 4	Hebel	
D	(12,6)	150	über 84	, -	Hebel	Einstellung der Startmenge für Startvorgang ,

Spritzversteller: EP/SA

105614-3170

Drehzahl	unter	↑ 500	800	1200		
(1/min)	550					
Grad.	START	unter (0,5)	ENDE (1,5±0,5)	(4±0,5)		
				(-2-/-/	L	

ZEXEL - Prüfwerte

A 13

a = Pumpendrehzahl

b = über

c = über

d = Regelstangenweg

e = Einstellung der Startmenge für Startvorgang:

EINSTELLUNG DES REGLERS

A = Lastverstellhebelwinkel

a = Stopstellung

b = Leerlauf

c = Vollast

101691-9581 2/4

VERSTELLUNG DES SPRITZBEGINNS

Auf 1. Element des Spritzbeginns stellen.

a = Position der Kupplungskeilnut

A15 ZEXEL - Prüfwerte
Einspritzpumpen

A 16

ZEXEL - Prüfwerte

EINSTELLUNG

	Pumpendrehzahl	Regelweg	Bemerkungen
	(1/min)	(mm)	
Einstellung des Fliehgewicht-	ca. 1800	0,7	• Drehzahlverstellhebel
hubs und der Vollastposition			provisorisch einstellen
			• Schraube (1) einstellen
	Pumpendrehzahl mit ca. 1200 1/	min antreiben und mit	Schraube (2) auf Schnellaufhub
	8,7 mm einstellen.		
Einstellung des Leerlaufs	über 600	0,3	• Schraube (3) einstellen
	225	7,2	• Federkapsel (6) einstellen
1			Bestätigen
			Bestätigen
9 9			• Bestätigen des Verstell-
	<i>m</i>		hebelwinkels: (39°± 5°).
Einstellung der Angleichfeder	ca. 1300	8,7	
Einstellung der	Pumpendrehzahl auf 1600 1/min	halten und mit dem Ver	stellhebel Regelweg 5,7 mm ein-
Dämpferfeder	stellen. Dann Pumpendrehzahl l	angsam auf Regelweg (.	mm) steigern und halten.
	Dampterteder einschrauben bis		
	bamprerreder embemadben, bis	sich der Verstellhebe.	l auf 5,8 mm bewegt. In dieser
	Stellung Schraube festziehen.	sich der Verstellhebe.	l auf 5,8 mm bewegt. In dieser
	Stellung Schraube festziehen.		•
	Stellung Schraube festziehen. Lastverstellhebel ist auf Voll		•
	Stellung Schraube festziehen. Lastverstellhebel ist auf Voll position geklemmt.	astposition, Drehzahlve	erstellhebel auf Enddrehzahl-
	Stellung Schraube festziehen. Lastverstellhebel ist auf Voll		erstellhebel auf Enddrehzahl- • Schraube (4) einstellen
	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve	• Schraube (4) einstellen • Bestätigen
	Stellung Schraube festziehen. Lastverstellhebel ist auf Voll position geklemmt.	astposition, Drehzahlve	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell-
	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve	 Schraube (4) einstellen Bestätigen Bestätigen des Verstell- hebelwinkels (Drehzahl-
	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve	 Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahl-hebelwinkel: 14,0°± 3°;
	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve	 Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahlhebelwinkel: 14,0°± 3°; Lasthebelwinkel)
Enddrehzahl einstellen und Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 14,0°± 3°; Lasthebelwinkel) • Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500 1600 ± 15	astposition, Drehzahlve 8,7 5,8	 Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahlhebelwinkel: 14,0°± 3°; Lasthebelwinkel)
Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500	astposition, Drehzahlve 8,7 5,8	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 14,0°± 3°; Lasthebelwinkel) • Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500 1600 ± 15	astposition, Drehzahlve 8,7 5,8	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 14,0°± 3°; Lasthebelwinkel) • Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500 1600 ± 15	astposition, Drehzahlve 8,7 5,8	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 14,0°± 3°; Lasthebelwinkel) • Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Voll position geklemmt. über 1500 1600 ± 15	astposition, Drehzahlve 8,7 5,8	 Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahl-hebelwinkel: 14,0°± 3°; Lasthebelwinkel) Bestätigen: Keine Einspritzmenge

101691-9581 4/4

1 = Schraube

2 = Schraube 3 = Schraube

4 = Schraube

5 = Dämpferfeder

6 = Federkapsel

7 = Drehzahlverstellhebel

8 = Lastverstellhebel

ZEXEL - Prüfwerte

Einspritzpumpen

ZEXEL - Prüfwerte A 20

Prüföl: ISO 4113 od SAE J967d

ZEXEL - PRÜFWERTE

Verteiler-Einspritzpumpen

Motor: NEWHA

9 460 610 616 BOSCH Nr. ZEXEL Nr. 104740-0192 Datum: 29.10.1993 [2] Firma: MAZDA Nr. 483313800A

Einspritzpumpe Nr.: 104640-0192 (NP-VE4/10F1500RNP121) Drehrichtung von : Antriebseite rechts

Prüf-Düsenhalterkombination: 1 688 901 000

Prüf-Druckleitung:

,	1 688 901 000 1 680 750 017			7
1. Einstellwerte	Drehzahl Einstellwerte (1/min)		Ladedruck kPa (mmHg)	Mengenunterschied (cm ³)
1-1 Spritzverstellerweg	1000	2,0 - 2,4 (mm)		
1-2 Förderpumpendruck	1000	392-451 (4,0-4,6) kPa(kgf/cm ²)		
1-3 Vollastmenge	1000	53,1 - 54,1 (cm ³ /1000 Hübe)		3,5
Vollastmenge		(cm ³ /1000 Hübe)		
1-4 Leerlauf-Abregelung	315	10,8 - 14,8 (cm ³ /1000 Hübe)	•	2,5
1-5 Start	100	über 78,0 (cm³/1000 Hübe)		
1-6 End-Abregelung	1680	9,6 - 15,6 (cm ³ /1000 Hübe)		
1-7 Lastabhängiger Förderbeginn				
1-8	ĺ			
2. Prüfwerte				

2-1 Spritzversteller	$N = 1/\min$		1000	1500
	mm		1,9 - 2,5	4,6 - 5,8
2-2 Förderpumpe	N = 1/min	500	1000	1500
	kPa/mmHg	226 - 284	392 - 451	559 - 618
	(kgf/cm²)	(2,3-2,9)	(4,0 - 4,6)	(5,7 - 6,3)
2-3 Überlaufmenge	N = 1/min		1000	
	cm³/10s		53,0 - 97,0	

2-4 Fördermengen				
Verstellhebellage	Drehzahl	Fördermenge	Ladedruck	Mengenunterschied
	(1/min)	(cm³/1000 Hübe)	kpa (mmHg)	(Cm³)
Endanschlag .	1000	52,6 - 54,6		
	500	45,6 - 49,6	1	
	1500	50,3 - 54,3		
	1680	9,6 - 15,6		
	1780	unter 4,0	٠	
Abstellung	315	0		
Leerlauf-	315	10,8 - 14,8		
anschlag	unter 620	0	1	
Teillast				
2-5	Einschaltspa	annung max.: 8V		4
Magnet	Prüfspannung	g: 12 - 14V		

3. Maf	Se					
K	3,2	-	3,4	mm		
KF	5,7	-	5,9	mm		
MS	1,7	-	1,9	mm		
LDA		-		mm		
Vorhub	0,18	-	0,22	mm		ļ
Winkel	des V	/eı	cstell	hebe	els	
α	19	-	29	(°)		
a	4,4	-	9,6	mm		j
β	37	-	47	(°)		
b	11,1	-	15,1	mm		
γ		-		(°)		
C		-		mm		İ

ZEXEL - Prüfwerte

Einspritzpumpen

A 22

ZEXEL - Prüfwerte

Prūföl: ZEXEL - PRÜFWERTE ISO 4113 od Verteiler-Einspritzpumpen BOSCH Nr. 9 460 610 615 SAE J967d Motor: XA ZEXEL Nr. 104740-0292 Datum: 29.10.1993 [3] Firma: MAZDA Einspritzpumpe Nr.:104640-0272 (NP-VE4/10F1500RNP271) Nr. XA /475613800A Drehrichtung von : Antriebseite rechts Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 000 1 680 750 017 Drehzahl Einstellwerte Ladedruck 1. Einstellwerte Mengenunterschied (1/min) kPa {mmHq} (cm³)1-1 | Spritzverstellerweg 1000 2,3 - 2,7 (mm)1-2 Förderpumpendruck $392-451 (4,0-4,6) \text{ kPa}(\text{kgf/cm}^2)$ 1000 1-3 Vollastmenge 1000 $44,3 - 45,3 \text{ (cm}^3/1000 \text{ Hübe)}$ 3,0 Vollastmenge (cm³/1000 Hübe) 1-4 | Leerlauf-Abregelung 4,2 - 8,2 (cm³/1000 Hübe) 350 2,0 1-5 Start über 78,0 (cm³/1000 Hübe) 100 1-6 End-Abregelung 1680 $7,6 - 13,6 \text{ (cm}^2/1000 \text{ Hübe)}$ 1-7 Lastabhängiger Förderbeginn 1-8 2. Prüfwerte 2-1 Spritzversteller $N = 1/\min$ 1000 1500 mm 2,2 - 2,84,8 - 6,02-2 Förderpumpe $N = 1/\min$ 500 1000 1500 3. Maße kPa/mmHq 216 - 275 392 - 451 569 - 628 kqf/cm² (4,0-4,6)(2,2-2,8)(5,8-6,4)3,2 - 3,4 mm2-3 Überlaufmenge $N = 1/\min$ 1000 KF 5,7 - 5,9 mm cm³/10s 54,7 - 98,7 MS 1,5 - 1,7 mm 2-4 Fördermengen LDA Verstellhebellage Drehzahl Fördermenge Ladedruck Mengenunterschied Varhub , mm (1/min) (cm³/1000 Hübe) kPa (mmHq) (cm³)Endanschlag 1000 43,8 - 45,8Winkel des Verstellhebels 500 37,5 - 41,56 - 14 (°) 1500 45,6 - 49,64,4 - 9,6 mm 1680 7,6 - 13,6 "33 - 43 (°) 1780 unter 4,0 b 10,5 - 14,1 mm (°) mm Abstellung 350 Leerlauf-350 4,2 - 8,2anschlag unter 500 Teillast 2-5 Einschaltspannung max.: 8 V Prüfspannung: 12 - 14 V Magnet

ZEXEL - Prüfwerte

Einspritzpumpen

Prüföl: ZEXEL - PRÜFWERTE ISO 4113 od Verteiler-Einspritzpumpen BOSCH Nr. 9 460 610 614 SAE J967d Motor:PN ZEXEL Nr. 104740-0514 Datum: 31.10.1993 [5] Firma: MAZDA Einspritzpumpe Nr.:104640-0514 (NP-VE4/10F2350RNP963) Nr. PN6213800C Drehrichtung von :Antriebseite rechts Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 022 1 680 750 073 Drehzahl Einstellwerte 1. Einstellwerte Ladedruck Mengenunterschied (1/min) kPa (mmHq) (Cm³)1-1 Spritzverstellerweg 1500 6.0 - 6.4 (mm)1-2 Förderpumpendruck 520-559 (5,3-5,7)kPa {kgf/cm²} 1500 1-3 Vollastmenge 29,8 - 30,8 (cm³/1000 Hübe) 1500 2,5 Vollastmenge (cm³/1000 Hübe) 1-4 Leerlauf-Abregelung 6,0 - 8,0 (cm³/1000 Hübe) 410 2,0 1-5 Start 60,0 - 80,0 (cm³/1000 Hübe) 100 . 1-6 End-Abregelung 10,4 - 14,4 (cm³/1000 Hübe) 2635 4,0 Lastabhängiger Förderbeginn T-0.8 - 1.2 (mm) 1000 1-8 2. Prüfwerte 2-1 Spritzversteller N = 1/min50C 875 1000 1500 2250 2350 mm unter 1,0 1,3-2,9 2,3-3,5 5,9-6,5 8,6-10,4 9,4-10,2 2-2 Förderpumpe $N = 1/\min$ 1500 2350 3. Maße kPa/mmHq 520-559 716-775 {kqf/cm²} (5, 3-5, 7)(7, 3-7, 9)2-3 Überlaufmenge $N = 1/\min$ 1500 3,2 - 3,4 mm $cm^3/10s$ 51,0-94,0 KF 5,62 - 5,82 mm 2-4 Fördermengen MS 1,1 - 1,3 mm Verstellhebellage Drehzahl Fördermenge Ladedruck Mengenunterschied LDA mm (1/min) (cm³/1000 Hübe) kPa (mmHq) (cm³/1000 Hübe) Vorhub mm Endanschlag 1500 29,3 - 31,3 Winkel des Verstellhebels 1000 26,7 - 30,7 21°- 29° Winkel 2350 25,6 - 31,6 Ya 3,8 - 7,3 mm 2635 9,9 - 14,938°-48° Winkel 2850 unter 5.0 Yb 9,7 - 13,0 mm Winkel mm Abstellung 410 0 Leerlauf-500 unter 3,0 anschlag 410 5,5 - 8,5 2-5 Einschaltspannung max. 9 V Magnet Prüfspannung 12 - 14 V ZEXEL - Prüfwerte

1. Einstellen

1) Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren.

Ladedruck:

kPa (~mmHg)

Pumpendrehzahl:

1000

1/min

Einspritzmenge:

19,5 - 20,5

 $cm^{3}/1000$

Hübe

2) In der Verstellhebelstellung gemäß obigem Wert 1) die Reglerhülse so einstellen, daß der Verstellerweg wie vorgeschrieben ist (Seite 1-7).

2. Lastabhängigen Förderbeginn prüfen

Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren und lastabhängigen Förderbeginn prüfen.

Verstellhebel-Stellung			Vorgeschriebene Werte	
Pumpendrehzahl	Einspritzmenge	Ladedruck	Verstellerweg	Verringerung des Verstellerwegs
(1/min)	(cm³/1000 Hübe)	kPa (mmHg)	(mm)	(mm)
1000	19,0 - 21,0	-	-	0,7 - 1,3
1000	8,5 - 11,5	-	-	1,2 - 2,2

104740-0514 3/5

VERSTELLHEBELWINKEL EINSTELLEN

$$\alpha = 21 - 29^{\circ}$$

$$(Ya = 3,8 - 7,3 mm)$$

$$\beta = 38 - 48^{\circ}$$

$$\beta = 38 - 48^{\circ}$$
 (Yb = 9,7 - 13,0 mm)

DÄMPFER EINSTELLEN

- Parallelendmaß (Fühlerlehre) 8,5 ± 0,05 mm in den Spalt zwischen Verstellhebel und Leerlaufanschlagschraube einsetzen (Verstellhebelwinkel: 16 - 18°).
- 2. In der unter Punkt 1 festgelegten Lage des Verstellhebels, die Dämpfer-Einstellschraube so einstellen, daß die Dämpfer-Einstellschraube und der Stößel einander berühren. Durch Festziehen der Mutter sichern.

8 = Stift
9 = Stift

10 = Einstellschraube

Bild 7

104740-0514 5/5

a = Lufttemperatur

b = Verstellerweg

c = Spiel (L) Verstellhebel

 $:TA = -0.0738 t + 4.428 (t \ge 10^{\circ}C)$

Verstellhebel - Spiel (L) : L = -0, 156 t + 5, 36 (t \geq 10°C)

W-KSB EINSTELLEN

1. Spritzverstellerhub einstellen

- 1) Aus dem Diagramm (Bild 7) den Spritzverstellerhub für die Lufttemperatur zum Zeitpunkt der Einstellung ablesen.
- 2) Mit der Spritzversteller-Einstellschraube (1) den Spritzverstellerhub so einstellen, daß er mit dem oben unter Punkt 1) abgelesenen Wert übereinstimmt.

ZEXEL - Prüfwerte

Einspritzpumpen

Verstellerweg (TA)

B8 |

ZEXEL - Prüfwerte

(Fortsetzung)

2. W-FICD-Anschlag einstellen

- 1) Ein Parallelendmaß (Fühlerlehre) mit L ± 0,2 mm (berechnet mit Hilfe von Abb. 7) zwischen dem Haltewinkel (5) und der Einstellschraube des Verstellhebels (4) einführen.
 - 2) Die Schraube (2) so anziehen, daß der Stift des FICD-Hebels (3) den Verstellhebel (4) berührt. Anschließend die Schraube (2) mit der Mutter fixieren.

Prüföl: ZEXEL-PRÜFWERTE ISO 4113 od Verteiler-Einspritzpumpen BOSCH Nr. 9 460 610 611 SAE J967d Motor: 4D55 ZEXEL Nr. 104740-3180 Datum: 29.10.1993 [1] Firma: MITSUBISHI Einspritzpumpe Nr. 104640-3100 (NP-VE4/10F2100RNP178) Nr. MD063907 Drehrichtung von: Antriebseite rechts Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 000 1 680 750 017 Drehzahl Einstellwerte Ladedruck Mengenunterschied 1. Einstellwerte (1/min) kPa (mmHq) (cm^3) 1-1 Spritzverstellerweg 850 1,1 - 1,5 (mm) 1-2 Förderpumpendruck 1250 441-500 (4,5-5,1)kPa {kqf/cm²} 1-3 Vollastmenge 750 $33,2 - 34,2 \text{ (cm}^3/1000 \text{ Hübe)}$ 3.0 Vollastmenge (cm³/1000 Hübe) 1-4 Leerlauf-Abregelung 6.9 - 9.9 (cm³/1000 Hübe) 375 2.5 1-5 Start 100 $66,0 - 86,0 \text{ (cm}^3/1000 \text{ Hübe)}$ 1-6 End-Abregelung 2550 $13,1 - 19,1 \text{ (cm}^3/1000 \text{ Hübe)}$ 4.0 1-7 Lastabhängiger Förderbeginn 1-8 2. Prüfwerte 2-1 Spritzversteller $N = 1/\min$ 850 1750 2100 mm 0,9-1,7 6,1-7,3 7,8-8,6 2-2 Förderpumpe $N = 1/\min$ 600 1250 2100 3. Maße kPa 284-343 441-500 637-696 $\{kgf/cm^2\}$ | 2,9-3,5 4,5-5,1 6,5-7,1 2-3 Überlaufmenge $N = 1/\min$ 1250 K 3.2 - 3.4 mm $cm^{3}/10s$ 48 - 92 KF 5,7 - 5,9 mm 2-4 Fördermengen MS 1,3 - 1,5 mm Verstellhebellage Drehzahl Fördermenge Ladedruck Mengenunterschied LDA mm (1/min) (cm³/1000 Hübe) kPa (mmHg) (cm3) Vorhub Endanschlag 750 32,7 - 34,7Winkel des Verstellhebels 1250 36,7 - 40,755° - 63° Winkel 2100 32,2 - 36,2a mm 2550 11,1 - 21,1 38° -48° Winkel 2900 unter 5,0 b Winkel С mm Abstellung 375 0 Leerlauf-600 unter 3,0 anschlag 375 6,4 - 10,4Einschaltspannung max.: 8V 2-5 Prüfspannung: 12 - 14V Magnet

Prūföl: ZEXEL - PRÜFWERTE ISO 4113 od Verteiler-Einspritzpumpen BOSCH Nr. 9 460 610 612 SAE J967d Motor: 4D55 ZEXEL Nr. 104740-3490 Datum: 29.10.1993 [0] Firma: MITSUBISHI Einspritzpumpe Nr.:104640-3240 (NP-VE4/10F2100RNP194) Nr. MD0761571 Drehrichtung von: Antriebseite rechts Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 000 1 680 750 017 Einstellwerte Drehzahl 1. Einstellwerte Ladedruck Mengenunterschied (1/min) kPa (mmHq) (cm³)1-1 | Spritzverstellerweg 1000 2,1 - 2,5 (mm)1-2 Förderpumpendruck 441-500 (4,5-5,1)kPa {kgf/cm²} 1250 1-3 Vollastmenge 39,2 - 40,2 (cm³/1000 Hübe) 1250 3,0 Vollastmenge (cm³/1000 Hübe) 1-4 Leerlauf-Abregelung 6,5 - 9,5 (cm³/1000 Hübe) 375 2.0 1-5 Start 63,0 - 83,0 (cm³/1000 Hübe) 100 1-6 End-Abregelung 2550 $10,1 - 16,1 \text{ (cm}^3/1000 \text{ Hübe)}$ 4,0 1-7 Lastabhängiger Förderbeginn 1-8 2. Prüfwerte 2-1 Spritzversteller $N = 1/\min$ 1000 1750 2100 mm 1,9-2,7 5,2-6,4 7,0-7,8 2-2 Förderpumpe $N = 1/\min$ 600 1250 2100 3. Maße kPa 284-343 441-500 637-696 {kgf/cm²} 2,9-3,5 4,5-5,1 6,5-7,1 2-3 Überlaufmenge $N = 1/\min$ 1250 3,2 - 3,4 mm $cm^3/10s$ 48 - 92 5,7 - 5,9 mm KF 2-4 Fördermengen MS 1,3 - 1,5 mm Verstellhebellage Drehzahl Fördermenge Mengenunterschied Ladedruck LDA (1/min) (cm³/1000 Hübe) kPa (mmHg) (cm³)Varhub Endanschlag 1250 38,7 - 40,7Winkel des Verstellhebels 1750 33,7 - 37,755° - 63° Winkel 31,7 - 35,7

ZEXEL - Prüfwerte	- 0
Einspritzpumpen	

Abstellung

Leerlauf-

anschlag

2-5

the sale of the sale of the sale of

B12

Magnet

2100

2550

2900

375

600

375

Einschaltspannung max: 8V

Prüfspannung. 12 - 14V

8,1 - 18,1

unter 3,0

0

unter 3,0

6,4 - 10,0

10,5 - 16,0 mm

11,5 - 15,5 mm

38° - 48° Winkel

Winkel

mm

ZEX	EL	-	Prüf	werte

the same of

Abstellung

Leerlauf-

anschlag

Teillast

2-5

B14

Magnet

27,8 - 32,8

5,3 - 12,4

unter 5,0

4,5 - 8,5

unter 2,0

2350

2550

2700

350

350

450

Einschaltspannung max.: 8V

Prüfspannung: 12 - 147

37°-47° Winkel

Winkel

mm

10,7 - 14,8 mm

b

С

104740-9301 2/2

a = Bohrung "A"
b = Flanschfläche

WINKELMESSLAGE DES VERSTELLHEBELS

1. Verstellhebelwinkel (α, β, γ) bei Bohrung "A" messen.

Prūföl: ZEXEL - PRÜFWERTE 1/5 ISO 4113 od Verteiler-Einspritzpumpen 9 460 610 609 BOSCH Nr. SAE J967d Motor: 4JG2-TC DKKC Nr. 104741-5990 Datum: 29.10.1993 [0] Firma: ISUZU Einspritzpumpe Nr.:104641-5990 (NP-VE4/11F1800RNP1103) Nr. 89708 05910 Drehrichtung von :Antriebseite rechts Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 022 1 680 750 073 Drehzahl Einstellwerte 1. Einstellwerte Ladedruck Mengenunterschied (1/min) kPa {mmHq} (cm³)1-1 Spritzverstellerweg 1250 3,1 - 3,5 (mm) 72,0-74,6 (540-560) 1-2 Förderpumpendruck 1250 $471-510 (4,8-5,2) kPa\{kgf/cm^2\}$ 72,0-74,6 (540-560) 1-3 Vollastmenge 1000Vollast 76,7 - 77,7 (cm³/1000 Hübe) 72,0-74,6 (540-560) 3.5 Vollastmenge 70,9 - 71,9 (cm³/1000 Hübe) 600 (KSB) 32,0-34,7 (240-260) 4,5 1-4 | Leerlauf-Abregelung 13,8 - 17,8 (cm³/1000 Hübe) 360 2,0 1-5 Start 100 $95,0 - 135,0 \text{ (cm}^3/1000 \text{ Hübe)}$ 1-6 End-Abregelung 2300 $31,6 - 37,6 \text{ (cm}^3/1000 \text{ H\"ube)}$ 72,0-74,6 (540-560) 5,5 1-7 Lastabhängiger Förderbeginn 1250 T-0,7-1,1 (mm) 72,0-74,6 (540-560) 2. Prüfwerte Ladedruck 72,0-74,6 kPa {540-560 mmHq} 2-1 Spritzversteller $N = 1/\min$ 1000 1250 1500 2000 mm 1,5-2,7 3,0-3,6 3,9-5,1 6,2-7,02-2 Förderpumpe $N = 1/\min$ 1250 1500 2000 3. Maße kPa 471-510 510-588 657-696 {kqf/cm²} 4,8-5,2 5,2-6,0 6,5-7,1 2-3 Überlaufmenge $N = 1/\min$ 1250 3,2 -3,4 mm $cm^{3}/10s$ 87 - 130 KF 5,7 - 5,9 mm2-4 Fördermengen MS 0,6 - 0,8 mm Verstellhebellage Drehzahl Fördermenge Ladedruck LDA 3,0 - 3,2 mm $(1/\min)$ (cm³/1000 Hübe) kPa ({mHg} Varhub Endanschlag 1000 Vollast 73.9 - 75.9 $72.0^{\circ} - 74.6 (540 - 560)$ Winkel des Verstellhebels 600 (KSB) 70,4 - 72,4 32,0 - 34,7 (240 - 260)20 - 28 750 57,0 - 64,0 0 11,4 - 14,9 mm 1000 55,6 - 62,6 40 - 50 (°) 1800 69,1 - 76,172,0 - 74,6 (540 - 560) b 12,3 - 15,7 mm 2300 31,1 - 38,172,0 - 74,6 (540 - 560) (°) 2550 unter 5,0 72,0 - 74,6 (540 - 560) mm Abstellung 360 0 Leerlauf-600 unter 3.0 0 anschlag 360 13,3 - 18,3 Teillast 750 21,5 - 24,5 72,0 - 74,6 (540 - 560) 2-5 Einschaltspannung max.: 8 V • Magnet Prüfspannung: 12 - 14 V

Einspritzpumpen

B 18

1. Einstellen

1) Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren.

Ladedruck:

72,0 - 74,6

kPa {540-560 mmHg}

Pumpendrehzahl:

1250

1/min -

Einspritzmenge:

54,4 - 56,4

cm³/1000 Hübe

2) In der Verstellhebelstellung gemäß obigem Wert 1) die Reglerhülse so einstellen, daß der Verstellerweg wie vorgeschrieben ist (Seite 1-7).

2. Lastabhängigen Förderbeginn prüfen

Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren und lastabhängigen Förderbeginn prüfen.

Verstellhebel-Stellung			Vorgeschriebene Werte	
Pumpendrehzahl (1/min)	Einspritzmenge (cm³/1000 Hübe)	Ladedruck kPa {mmHg}	Verstellerweg (mm)	Verringerung des Verstellerwegs (mm)
1250	53,9 - 56,9	72,0 - 74,6 (540 - 560)	-	0,6 - 1,2
1250	37,3 - 40,3	72,0 - 74,6 (540 - 560)	-	1,4 - 2,4

Pumpendrehzahl (1/min)	Einstellwert für Aus- gangsspannung (V)	Einspritzmenge (cm³/1000 Hübe)	Bemerkungen
750	3,26 - 3,32	Ladedruck = 73,3 kPa {550 mmHg}	Einstellpunkt
360	0 - 0,89	Leerlauf	Prüfpunkt

(Eingangsspannung 10V)

- Bei Pumpendrehzahl 750 1/min und einer Einspritzmenge von (Q = cm³/1000 Hübe), die Einstellschraube so ≥instellen, daß sie am Verstellhebel anliegt. Mit Sicherungsmutter befestigen.
- 2. Danach das Potentiometer so einstellen, daß die Ausgangsspannung 3,26 3,32 V beträgt.
- 3. Nach erfolgter Einstellung, die Einstellschraube entfernen und vergewissern, daß die Ausgangsspannung des Potentiometers in der Leerlaufstellung des Verstellhebels die oben angegebenen Werte aufweist.

Bild 9

1 = Stützwinkel

2 = Einstellschraube

3 = Ausgleichscheibe (Dicke)

B 21

1.5 1 (EEE) VI 0.5 0 15 20 25 30 a (°C)

Bild 10

Bild 11

104741-5990 4/5

a = Lufttemperatur
b = Verstellerweg

Verstellerweg TA: TA = -0.0216 t + 1.21 mm

W-KSB EINSTELLEN

- 1. Verstellerweg einstellen (siehe Bild 11)
 - 1) Dem Diagramm (Abb. 11) den Verstellerweg entsprechend der Lufttemperatur bei der Einstellung entnehmen.
 - 2) Verstellerweg-Einstellschraube so einstellen, daß der Verstellerweg dem unter Punkt 1) ermittelten Wert entspricht.

104741-5990 5/5

a = mind. 1 mm

V-FICD-EINSTELLUNG

- 1. Nach dem Einstellen des Potentiometers, V-FICD einbauen.
- Sicherstellen, daß das Spiel zwischen dem Verstellhebel (2) und der Stellerstange (1) mind. 1 mm beträgt.
- 3. Eine Unterlegscheibe von 2,60 \pm 0,1 mm Stärke zwischen dem Verstellhebel (4) und der Leerlauf-Einstellschraube (3) anbringen.

- 4. Die Hubeinstellschraube (5) so einstellen, daß der Steller den vollständigen Hub durchläuft. Anschließend die Schraube mit der Mutter (6) feststellen.
- Hinweis: Wenn der Stellerhub nicht mit der Schraube(5) eingestellt werden kann, die Position der Stellerstange mit (7), (8), (9) verändern, und anschließend den Hub mit der Einstellschraube (5) und der Mutter (6) neu einstellen.
- 5. Am Steller einen Druck von ~53,3 kPa {~400 mmHg} anlegen und sicherstellen, daß der Steller den vollständigen Hub durchläuft.
- 6. Wenn kein Druck mehr anliegt, erneut sicherstellen, daß das Spiel zwischen der Stellerstange (1) und dem Verstellhebel (2) mind. 1 mm beträgt.

ZEXEL - Prüfwerte

Magnet

Einspritzpumpen

The state of the s

Prüfspannung: 12 - 14 V

1. Einstellen

1) Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren.

Ladedruck:

kPa {~mmHg}

Pumpendrehzahl:

1250

1/min

Einspritzmenge:

27,2 - 29,2

 $cm^{3}/1000$

Hübe

2) In der Verstellhebelstellung gemäß obigem Wert 1) die Reglerhülse so einstellen, daß der Ve stellerweg wie vorgeschrieben ist (Seite 1-7).

2. Lastabhängigen Förderbeginn prüfen

Verstellhebel in der den folgenden Bedingungen entsprechenden Stellung arretieren und lastabhångigen Förderbeginn prüfen.

Verstellhebel-Stellung			Vorgeschriebene Werte	
Pumpendrehzahl	Einspritzmenge	Ladedruck	Verstellerweg	Verringerung des Verstellerwegs
(1/min)	(cm³/1000 Hübe)	kPa {mmHg}	(mm)	(mm)
1250	26,7 - 29,7	-	-	0,5 - 1,1
1250	16,6 - 19,6	-	-	1,5 - 2,5

ZEXEL - Prüfwerte

104748-0166 3/6

VERSTELLHEBELWINKEL EINSTELLEN

$$\alpha = 28 - 32^{\circ}$$
 (Ya = 34,2 - 36,5 mm)
 $\beta = 39 - 49^{\circ}$ (b = 11,5 - 14,8 mm)

104748-0166 4/6

a = von Leerlaufeinstellschraube

EINSTELLEN DES M-KSB-ANSCHLAGS

1. M-KSB-Anschlag fixieren

- Läßt den Rollenhalter den Kugelbolzen berühren, wenn der Verstellwinkel des Verstellerhalters "0" beträgt.
- 2) Position des KSB-Hebels (1) einstellen und so mit der Mutter (4) fixieren, daß das Spaltmaß zwischen dem M-KSB-Hebel (1) und dem Anschlag (2) 0,5 + 2 mm beträgt.

(Fortsetzung) `

2. M-FICD-Anschlag einstellen

- 1) KBS-Hebel (1) vollständig in Verstellrichtung schwenken.
- 2) Schraube (5) so einstellen und mit der Mutter (6) festziehen, daß das Spaltmaß zwischen dem Verstellhebel (7) und der Leerlaufeinstellschraube 3 ± 1 mm beträgt (Verstellhebelwinkel 4,5°).

104748-0166 5/6

a = von Leerlaufeinstellschraube

MIKROSCHALTER EINSTELLWERTE

- 1. Einen Abstand von 8,5 \pm 1 mm zwischen dem Verstellhebel und der Leerlaufeinstellschraube sicherstellen (Verstellhebelwinkel: 12,5°).
- 2. Die Schraube des Verstellhebels festziehen und mit der Mutter in der Position fixieren, in der der Mikroschalter eingeschaltet wird.

104748-0166 5/6 (Fortsetzung)

1 = Einstellschraube

a = von Leerlaufeinstellschraube

 $b = Spiel von 3 \pm 1 mm während des Einbaus$

EINSTELLEN DES V-VICD-ANSCHLAGS

1. Einbaulage des V-FICD-Anschlags einstellen

- 1) Den Verstellhebel in der Leerlaufposition fixieren.
- 2) Die Position des FICD-Halters so einstellen, daß das Spaltmaß zwischen der Stellerwelle und der Verstellhebelrolle 3 ± 1 mm beträgt.

(Fortsetzung)

2. V-FICD-Anschlag einstellen

- Sicherstellen, daß sich der Steller vollständig in Verstellrichtung bewegen läßt.
- 2) Mit Hilfe der Einstellschraube den Winkel des Verstellhebels auf 2,5° einstellen (eine Unterlegscheibe von 1,6 ± 1 mm an der Leerlaufeinstellschraube).
- 3) Einen Druck von ~66,7 kPa {~500 mmHg} am Steller anlegen und sicherstellen, daß sich der Steller vollständig in Verstellrichtung bewegt.

104748-0166 6/6

1 = Verstellhebel

2 = FICD-Halter

a = über

FICD-EINBAULAGE EINSTELLEN

- 1. Verstellhebel in Leerlaufstellung halten.
- FICD-Halter so anordnen, daß das Spaltmaß zwischen Verstellhebel und FICD-Hebel über 3 mm beträgt.
- 3. Unterdruckdose innen mit -400 mmHg Unterdruck beaufschlagen. Prüfen, ob die V-FICD Verbraucherwelle den gesamten Hub macht.

Prüföl· ZEXEL - PRÜFWERTE ISO 4113 od Verteiler-Einspritzpumpen BOSCH Nr. 9 460 610 613 SAE J967d Motor: S2 ZEXEL Nr. 104748-0232 Datum: 29.10.1993 [2] Firma: MAZDA Einspritzpumpe Nr.:104648-0232 (NP-VE4/8F2125LNP335) Nr 316813800B Drehrichtung von :Antriebseite links Prüf-Düsenhalterkombination: Prüf-Druckleitung: 1 688 901 000 1 680 750 017 1. Binstellwerte Drehzahl Einstellwerte Ladedruck Mengenunterschied (1/min) kPa {mmHg} (cm³)1-1 Spritzverstellerweg 1250 4,0-4,4 (mm)1-2 Förderpumpendruck 1250 431-490 (4,4-5,0) kPa {kgf/cm²} 1-3 Vollastmenge 1250 $38,0 - 39,0 \text{ (cm}^3/1000 \text{ Hübe)}$ 2.5 Vollastmenge (cm³/1000 Hübe) 1-4 Leerlauf-Abregelung 325 $5,2 - 9,2 \text{ (cm}^3/1000 \text{ Hübe)}$ 2,5 1-5 | Start 100 über 40,0 (cm³/1000 Hübe) 1-6 End-Abregelung 2400 $13,1 - 17,1 \text{ (cm}^3/1000 \text{ Hübe)}$ 4,0 1-7 Lastabhängiger Förderbeginn 1-8 2. Einstellwerte 2-1 Spritzversteller $N = 1/\min$ 1250 2125 mm 3,9-4,5 8,5-9.7 2-2 Förderpumpe $N = 1/\min$ 500 1250 2125 3. Maße kPa 206-265 431-490 677-735 {kqf/cm²} $\{2,1-2,7\}$ $\{4,4-5,0\}$ {6,9-7,5} 2-3 Überlaufmenge N = 1/min1250 3,2-3,4 mm cm³/10s 51,3-95,3 KF 5,7 - 5,9 2-4 Fördermengen MS 1,7 - 1,9 mm Verstellhebellage Drehzahl Fördermenge Ladedruck Mengenunterschied LDA (1/min) (cm³/1000 Hübe) kPa {mmHq} (Cm³)dutto mm Endanschlag 1250 37,5 - 39,5Winkel des Verstellhebels 500 32,1 - 36,134°- 42° (°) 2125 31,7 - 36,72,5 - 7,7 mm 2400 12,1 - 18,145°-55° (°) 2500 unter 10,0 b 12,1 - 16,6 mm (0) mm Abstellung 325 Leerlauf-350 5,2 - 9,2anschlag unter 470 2-5 Einschaltspannung max.: 8V Magnet Prüfspannung: 12 - 14V

			7-	ZEXEL - Prüf	
ı	Einschaltspa Prüfspannung	annung max.: 8V g: 12 - 14V			
					1
	425	unter 2,0			
	375	3,3 - 7,3			┨
	350	0			1

1/2

2,0

2,0

2,0

Winkel

mm

And the second

Abstellung

Leerlauf-

anschlag

Teillast

2-5

Magnet

350

104748-1704 2/2

1 = Anschlaghebel

2 = Einstellschraube

START-EINSPRITZMENGE EINSTELLEN

Prüföl: ISO 4113 od

SAE J967d

ZEXEL - PRÜFWERTE

Verteiler-Einspritzpumpen

Motor: LD20

BOSCH Nr. 9 460 610 605 ZEXEL Nr. 104749-2431 Datum: 29.10.1993 [1] Firma: NISSAN 1670007C00

Einspritzpumpe Nr.:104649-2411 (NP-VE4/9F1900RNP655) Nr. Prüf-Düsenhalterkombination: Drehrichtung von :Antriebseite rechts Prüf-Druckleitung: 1 688 901 000 1 680 750 017

1. Einstellwerte		1 000 750 017					
		Drehzahl (1/min)	Einstellwerte	Ladedruck kPa {mmHg}	Mengenunterschied (cm³)		
	Spritzverstellerweg Förderpumpendruck	1200 1200	2,8 - 3,4 (mm) 353-412 (3,6-4,2)kPa {kgf/cm²}				
1-3	Vollastmenge Vollastmenge	1900	30,8 - 31,8 (cm ³ /1000 Hübe) (cm ³ /1000 Hübe)		2,5		
	Leerlauf-Abregelung Start	350	4,7 - 7,7 (cm ³ /1000 Hübe) über 40,0 (cm ³ /1000 Hübe)				
	End-Abregelung Lastabhängiger Förderbeginn	2250	4,7 - 10,7 (cm ³ /1000 Hübe)				
1-8							

2. Prüfwerte

2-1 Spritzversteller	N = 1/min	900	1200	1900
	→ mm	1,3 - 2,5	2,7 - 3,5	6,4 - 7,6
2-2 Förderpumpe	N = 1/min kPa {kgt/cm²}	900 275 - 353 {2,8 - 3,6}	1200 343 - 422 {3,5 - 4,3}	1900 530 - 608 {5,4 - 6,2}
2-3 Überlaufmenge	$N = 1/\min$ cm ³ /10s	900 37,0 - 81,0		

2-4 Fördermengen Verstellhebellage	Drehzahl	Translation of the state of the		
verscerifierdilage	1	Fördermenge	Ladedruck	Mengenunterschied
	(1/min)	(cm³/1000 Hübe)	kPa {mmHg}	(cm³)
Endanschlag	. 1900	30,3 - 32,3		
	900	28,6 - 32,6		
	2250	4,2 - 11,2		
	2400	unter 3,0		
	·			
Abstellung	350	0		
Leerlauf-	350	4,2 - 8,2	2,5	
anschlag	500	unter 3,0		
Teillast	900	4,1 - 14,1		
2-5	Einschalts	pannung max.: 8V		
Magnet		ing: 12 - 14V	-	

3. Maße							
K	3,2 -	3,4	mm				
KF	5,7 -		and the second s				
MS	1,1 -	1,3	mm				
LDA	-		mm				
Vorhub	-		mm				
Winkel	des Vei	rstell	lhebels				
α	21°-	29°	Winkel				
a	4,3 -						
β	36°-	46°	Winkel				
b	10,9 -	14,6	mm				
γ	10,5 -	11,5	Winkel				
С	6,9 -	7,5	mm				

ZEXEL - Prüfwerte

C18

ZEXEL - Prüfwerte

ZEXEL - PRÜFWERTE Reiheneinspritzpumpen

 BOSCH-Kombinationsnummer
 : 9 400 610 298 1/4

 ZEXEL-Kombinationsnummer
 : 106671-2910

 Ausgabe
 : 29.10.1993 [2]

 Kunde
 : MITSUBISHI

 Motor
 : 6D22T / ME059629

EP-Typnummer / Bezeichnung : 106067-7810 /PE6P Regler-Typnummer / Bezeichnung : 105487-1440/EP/RFD-C

PRÜFVORAUSSETZUNGEN

Prüföl : ISO-4113

Prüföl-Zulauftemperatur °C: 40,00...45,00

Zulaufdruck bar : 1,6

Prüf-Düsenhalter-Kombination : 1 688 901 013

Öffnungsdruck bar : 175

Prüfdruckleitung

Außen x Innen x Länge mm : $8,00 \times 3,00 \times 600$

FÖRDERBEGINN

Vorhub mm : 4.8 ± 0.05 mm

Regelweg mm : -

Förderbeginn-Anriß Zyl.-Nummer : -

Nockenfolge : 1-5-3-6-2-4

Förderbeginn-Anriß Zyl.-Nummer: 0-60-120-180-240-300

Förderbeginn-Versatz °NW : -

Toleranz +- °C: 0,50 (0,75)

Fördermengen:

Einstellposition	Regelweg (mm)	Drehzahl (1/min)	Fördermenge (cm ³ /1000 Hübe)	Unterschied (%)	Fixierung	Bemerkungen
А	8,9	1000	106,5 ± 3,0	± 3	Regelstange	Basis
Н	ca. 6,3	200	16,5 ± 2,5	± 15	Regelstange	
А	8.9	1000	106,5 ± 3,0	-	Hebel	Basis
. C	-	100	128,0 ± 20,0	-	Hebel	
					·	Einstellung der Startmenge für Startvorgang

Spritzversteller: EP/SP

105636-1150

Drehzahl (1/min)	unter 650	600	900	1000		
Grad.	START	unter (0,5)	(1,6) ± 0,5	(2,2) ± 0,5	ENDE 3 ± 0,5	

a = Pumpendrehzahl

b = über

c = Regelstangenweq

d = Einstellung der Startmenge

für Startvorgang e = einstellen auf:

f = Dämpferfeder einstellen

EINSTELLUNG DES REGLERS

A = Abstellhebelwinkel

a = Stopstellung

b = Normalstellung

B = Lastverstellhebelwinkel

= Vollast

b = Leerlauf

= Drehzahlverstellhebelwinkel

a = Obere Nenndrehzahl

106671-2910 2/4

(6°)±5°

VERSTELLUNG DES SPRITZBEGINNS

Auf 1. Element des Spritzbeginns stellen.

a = Position der Kupplungskeilnut

ZEXEL - Prüfwerte C 22 Einspritzpumpen

ZEXEL - Prüfwerte C 23

	Pumpendrehzahl	Regelweg	Bemerkungen
	(1/min)	(mm)	
Einstellung des Fliehgewicht-	ca. 1200	1,4	• Drehzahlverstellhebel
hubs und der Vollastposition			provisorisch einstellen
			• Schraube (1) einstellen
	Pumpendrehzahl mit ca. 1000 1/mi	in antreiben und mit	Schraube (2) auf Schnellaufhub
·	7,5 mm einstellen.		
Einstellung des Leerlaufs	über 600	1,8 ± 0,5	• Schraube (3) einstellen
	. 200	6,3	• Federkapsel (6) einstellen
			Bestätigen
	·		Bestätigen
	·		Bestätigen des Verstell-
<u> </u>	·		hebelwinkels: (39°± 5°)
	Dämpferfeder einschrauben, bis s	sich der Verstellhebe	mm) steigern und halten. el auf 3,4 mm bewegt. In dieser
Enddrehzahl einstellen und	Stellung Schraube festziehen.		el auf 3,4 mm bewegt. In dieser
Enddrehzahl einstellen und Proportionalgrad prüfen	Dämpferfeder einschrauben, bis s Stellung Schraube festziehen. Lastverstellhebel ist auf Vollas position geklemmt.		el auf 3,4 mm bewegt. In dieser
	Stellung Schraube festziehen. Lastverstellhebel ist auf Vollas		el auf 3,4 mm bewegt. In dieser
	Stellung Schraube festziehen. Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv	el auf 3,4 mm bewegt. In dieser rerstellhebel auf Enddrehzahl-
	Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv 8,4 ± 0,1	el auf 3,4 mm bewegt. In dieser erstellhebel auf Enddrehzahl- • Schraube (4) einstellen
	Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv 8,4 ± 0,1	el auf 3,4 mm bewegt. In dieser rerstellhebel auf Enddrehzahl- • Schraube (4) einstellen • Bestätigen
	Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv 8,4 ± 0,1	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 6,0°± 5°;
	Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv 8,4 ± 0,1	 erstellhebel auf Enddrehzahl- Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahlhebelwinkel: 6,0°± 5°; Lasthebelwinkel)
	Lastverstellhebel ist auf Vollas position geklemmt.	tposition, Drehzahlv 8,4 ± 0,1	 erstellhebel auf Enddrehzahl- Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahl-hebelwinkel: 6,0°± 5°; Lasthebelwinkel) Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Vollas position geklemmt. 1035 1105	8,4 ± 0,1 4,6 ± 1,0	 erstellhebel auf Enddrehzahl- Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahlhebelwinkel: 6,0°± 5°; Lasthebelwinkel)
Proportionalgrad prüfen	Lastverstellhebel ist auf Vollas position geklemmt.	8,4 ± 0,1 4,6 ± 1,0	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 6,0°± 5°; Lasthebelwinkel) • Bestätigen:
	Lastverstellhebel ist auf Vollas position geklemmt. 1035 1105	8,4 ± 0,1 4,6 ± 1,0	• Schraube (4) einstellen • Bestätigen • Bestätigen des Verstell- hebelwinkels (Drehzahl- hebelwinkel: 6,0°± 5°; Lasthebelwinkel) • Bestätigen:
Proportionalgrad prüfen	Lastverstellhebel ist auf Vollas position geklemmt. 1035 1105 Lastverstellhebel ist auf Vollas	8,4 ± 0,1 4,6 ± 1,0	 erstellhebel auf Enddrehzahl- Schraube (4) einstellen Bestätigen Bestätigen des Verstell-hebelwinkels (Drehzahl-hebelwinkel: 6,0°± 5°; Lasthebelwinkel) Bestätigen: keine Einspritzmenge

106671-2910 4/4

- 1 = Schraube
- 2 = Schraube
- 3 = Schraube
- 4 = Schraube

5 = Dämpferfeder

- 6 = Federkapsel
- 7 = Drehzahlverstellhebel
- 8 = Lastverstellhebel`

ZEXEL - Prüfwerte

Einspritzpumpen

C 27

ZEXEL - Prüfwerte

ZEXEL - PRÜFWERTE Reiheneinspritzpumpen

 BOSCH-Kombinationsnummer
 : 9 400 610 296 1/4

 ZEXEL-Kombinationsnummer
 : 106691-6250

 Ausgabe
 : 29.10.1993 [2]

 Kunde
 : ISUZU

 Motor
 : E120 / 1-15600-621-1

EP-Typnummer / Bezeichnung : 106069-1101 /PE6P Regler-Typnummer / Bezeichnung : 105407-0780/ EP/RSV

PRÜFVORAUSSETZUNGEN

Prüföl : ISO-4113

Prüföl-Zulauftemperatur °C: 40,00...45,60

Zulaufdruck bar : 1,6

Prüf-Düsenhalter-Kombination : 1 688 901 013

Öffnungsdruck bar: 175

Prüfdruckleitung

Innen x Außen x Länge mm : $3,00 \times 8,00 \times 600$

FÖRDERBEGINN

Vorhub mm : 3.0 ± 0.05

Regelweg mm : - Förderbeginn-Anriß Zyl.-Nummer : -

Nockenfolge : 1-4-2-6-3-5

Förderbeginn-Anriß Zyl.-Nummer : -

Förderbeginn-Versatz °NW: 0-60-120-180-240-300

Toleranz +- °C: 0,50 (0,75)

Fördermengen:

Einstell- Position	Regelweg (mm)	Drehzahl (1/min)	Fördermenge (cm³/1000 Hübe)	Unterschied (%)	Fixierung	Bemerkung
A	6,4	750	73,4 ± 2,0	± 3,0	Regelstange	Basis
Н	ca. 5,1	500	11,8 ± 3,2	± 13,0	Regelstange	
A	6,4	750	73,4 ± 2,0	-	Hebel	Basis
В	7,5	700	125,3 ± 3,8	± 3,0	Hebel	:
			7			

Spritzversteller: EP/SA

105614-0460

Drehzaiil	700 ± 50	800	1000	1200		
(1/min)					·	
Grad	START			Ende		
(°)		0,7±0,5	2,7±0,5	4,5±0,5		

D3

Bild 21 EINSTELLUNG DES REGLERS

a = Pumpendrehzahl

b = Regelstangenweg

c = Einstellung der Reglerfeder

d = Einstellen mit Leerlauffeder

Proportionalgrad für die Einstellschraubenposition: 9

106691-6250 2/4

A = Drehzahlverstellhebelwinkel

a = bei einer Förderarbeit von:

b = obere Nenndrehzahl

c = Leerlauf

d = einstellen auf:.

B = Abstellhebelwinkel

a = Stopstellung

b = Normalstellung

VERSTELLUNG DES SPRITZBEGINNS

Auf 1. Element des Spritzbeginns stellen.

a = Mittelpunkt des Gewindelochs des Schwungrads

ZEXEL - Prüfwerte Einspritzpumpen

		- · · · · · · · · · · · · · · · · · · ·	Pumpendrehzahl	Regelweg	Ladedruck	Bemerkung
			(1/min)	(mm)	kPa {mmHg}	
Vollastposition			900	7,5	-	• Schraube (2) einstellen
provisorisch eins			750 ± 5	6,4	Ì	• Schraube (1) einstellen
Angleichfeder 1 einstellen	l. Hub		-	.x	_	Federkapsel (4) einstellenBestätigung
						Bestätigung des Angleich-
-	2. Hub					hubs (mm)
	. Rub		-	-	-	Federkapsel (4) einstellenBestätigung
			4			Bestätigung des Angleich- hubs (mm)
Reglerfeder einst	cellen		740 ± 5	6,4		Verstellhebel festhalten
			755 - 765	4,4		 Proportionalgrad bestätigen
			· ·			Federkapsel (4) einstellen
Ladedruckabhängig	ron Volla					Bestätigung
anschlag	ger volla:	SL-				Verstellhebel festhalten
anschiag			-	•	-	• Schraube (6) einstellen
						• Bestätigung des LDA-Hubs: (mm)
Leerlauf einstell	.en		750 ± 5	6,4	7 <u>-</u>	Verstellhebel festhalten
1. Leerlauffeder		A	775 - 785	4,4		Federkapsel (5) einstellenBestätigung
2. Verstellhebel		Н	500	5,1	_	Verstellhebel einstellen
Vollast einstelle	en .		750	6,4		Bestätigung
			900 ± 5	6,4		• Einstellen
Bestätigung des V	erstell-				l Delwinkel auf Le	eerlauf-und Vollastposition.
hebelwinkels			• Wenn der Volla	stdrehzahlhebelv	winkel nicht sti	immt, Verstellbolzen der Aus-
			gleichscheibe	ändern und noch	mals einstellen.	
			 Wenn der Leerl scheibe änderr 	aufhebelwinkel r n und nochmals e:	nicht stimmt, Ve instellen.	erstellbolzen der Ausgleich-
Regelstangenansch	lag		-	•	-	Schraube einstellen
einstellen						

ZEXEL - Prüfwerte

Einspritzpumpen

ZEXEL - Prüfwerte **D** 7

1 = Schraube

2 = Schraube

5 = Federkapsel

Bild 22

3 = Schraube 4 = Federkapsel

6 = Schraube

ZEXEL - Prüfwerte **D9**

Einspritzpumpen

106691-6250 4/4

ZEXEL - Prüfwerte