

Variational Bayesian Weighted Complex Network Reconstruction

Shuang Xu (徐爽)
School of Mathematics and Statistics
Xi'an Jiaotong University
2019.06.08

Content

- Introduction
- New framework
- Experiments
- Conclusion and discussion

Content

- Introduction
- New framework
- Experiments
- Conclusion and discussion

Network reconstruction

Modified from: Han, et al. *Physical Review Letters* 114.2(2015):028701.

Example

- Consider electrical current transportation (ECT) in power network
- Based on Kirchhoff's law, there is

Example

• If data is collected at M time points, we have

$$\begin{bmatrix} I_{i,1} \\ \vdots \\ I_{i,M} \end{bmatrix}_{M \times 1} = \begin{bmatrix} V_{i,1} - V_{j,1} & \cdots & V_{i,1} - V_{N,1} \\ \vdots & \ddots & \vdots \\ V_{i,M} - V_{j,M} & \cdots & V_{i,M} - V_{N,M} \end{bmatrix}_{M \times N} \begin{bmatrix} a_{i,1}/r_{i,1} \\ \vdots \\ a_{i,N}/r_{i,N} \end{bmatrix}_{N \times 1}$$

Example

• If data is collected at M time points, we have

Network Reconstruction

Related work

- Granger causality analysis (GCA)
 - Partial GCA [Guo, et al., 2008. J. Neurosci. Meth. 172, 79–93.]
 - Piecewise GCA [Wu, et al., 2012. Phys. Rev. E 86, 046106.]
- Lasso / Compressive sensing
 - Complex network [Han, et al., 2015. *Phys. Rev. Lett.* 114, Art. No. 028701.]
 - Multilayer networks [Mei, et al., 2018. IEEE T. Cybern. 48, 754–764.]
- Statistical inference
 - Binary time series [Ma, et al., 2018. *Phys. Rev. E* 97, 022301.]
 - Ising model [Xiang, et al. 2018. *Chaos* 28, 123117.]

Related work

- Few researchers pay attention to large-scale weighted network reconstruction.
 - Zhang, et al., 2018. Reconstruction of complex time-varying weighted networks based on lasso, in: 2018 37th *Chinese Control Conference (CCC)*, pp. 6417–6422.
 Liu, et al., 2018. Robust reconstruction of continuously time-varying topologies of weighted networks. *IEEE T. Circ. & Sys.* I 65, 2970–2982.

Very small-scale!

Difficulty

- Simultaneously estimate linkages and weights.
- 2. If use lasso, we have to carefully tune hyper-parameter

Goal

To propose a new framework for large-scale weighted networks with accurate reconstruction and fast speed.

Content

- Introduction
- New framework
- Experiments
- Conclusion and discussion

Problem formulation

$$\begin{bmatrix} I_{i,1} \\ \vdots \\ I_{i,M} \end{bmatrix}_{M \times 1} = \begin{bmatrix} V_{i,1} - V_{1,1} & \cdots & V_{i,1} - V_{N,1} \\ \vdots & \ddots & \vdots \\ V_{i,M} - V_{1,M} & \cdots & V_{i,M} - V_{N,M} \end{bmatrix}_{M \times N} \begin{bmatrix} a_{i,1}/r_{i,1} \\ \vdots \\ a_{i,N}/r_{i,N} \end{bmatrix}_{N \times 1}$$

$$\begin{bmatrix} y_{i,1} \\ \vdots \\ y_{i,M} \end{bmatrix}_{M \times 1} = \begin{bmatrix} x_{1,1}^{(i)} & \cdots & x_{N,1}^{(i)} \\ \vdots & \ddots & \vdots \\ x_{1,M}^{(i)} & \cdots & x_{N,M}^{(i)} \end{bmatrix}_{M \times N} \begin{bmatrix} a_{i,1}w_{i,1} \\ \vdots \\ a_{i,N}w_{i,N} \end{bmatrix}_{N \times 1}$$

$$y = X(a \odot w) = X\mathbb{D}(a)w$$

$$(\text{Binary}) \text{Linkage} \quad (\text{Continuous}) \text{Weight}$$

Hierarchical Bayesian Model

$$y = X\mathbb{D}(a)w + \epsilon$$

- Noise term: $\epsilon_i \sim \mathcal{N}(0, \tau^{-1})$
- Continuous coefficient: $w_j \sim \mathcal{N}(0, \lambda_j^{-1})$
- Binary coefficient: $a_i \sim \text{Bernoulli}(\rho)$
- Conjugate prior:
 - $\tau \sim \text{Gamma}(c_0, d_0)$
 - $\lambda_j \sim \text{Gamma}(g_0, h_0)$
 - $\rho \sim \text{Beta}(e_0, f_0)$

Hierarchical Bayesian Model

Hierarchical Bayesian Model

Joint distribution

$$p(\mathbf{y}, \mathbf{a}, \mathbf{w}, \lambda, \tau, \rho) = p(\mathbf{y} | \mathbf{a}, \mathbf{w}, \tau) p(\tau) p(\rho) \prod_{j} p(a_{j} | \rho) p(w_{j} | \lambda_{j}) p(\lambda_{j})$$
Consterior distribution (Goal)

computationally infeasible

Posterior distribution (Goal)

$$p(\boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho | \boldsymbol{y}) = p(\boldsymbol{y}, \boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho) / p(\boldsymbol{y})$$

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{a}, \mathbf{w}, \lambda, \tau, \rho) p(\mathbf{a}, \mathbf{w}, \lambda, \tau, \rho) \, d\mathbf{a} d\mathbf{w} d\lambda d\tau d\rho$$

Variational Inference

Use variational distribution

$$q(\mathbf{a}, \mathbf{w}, \lambda, \tau, \rho) = q(\mathbf{a})q(\mathbf{w})q(\lambda)q(\tau)q(\rho)$$

to approximate posterior $p(\boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho | \boldsymbol{y})$

• In formula, we employ KL divergence measure the difference,

$$q^* = \min_{q(\boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho)} KL(q(\boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho) || p(\boldsymbol{a}, \boldsymbol{w}, \lambda, \tau, \rho | \boldsymbol{y}))$$

Variational Inference

 Theorem 1. The optimal variational posterior distributions of our model are

$$\begin{split} q(\boldsymbol{w}) &= \mathcal{N}(\boldsymbol{w} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}), \\ q(\tau) &= \operatorname{Gamma}(\tau \mid c, d), \\ q(\rho) &= \operatorname{Beta}(\rho \mid e, f), \\ q(a_j) &= \operatorname{Bernoulli}(a_j \mid \theta_j), j = 1, \cdots, N, \\ q(\lambda_j) &= \operatorname{Gamma}(\lambda_j \mid g_j, h_j), j = 1, \cdots, N, \end{split}$$

(See proof at https://arxiv.org/abs/1812.04369)

Variational Inference

Algorithm 1 $(\mu, \theta) = \mathsf{vbr}(X, y)$

- 1: Initialize $g_0 = c_0 = 10^{-2}, d_0 = h_0 = 10^{-4}, e_0 = 1, f_0 = N, \boldsymbol{\theta}^{(0)} = \mathbf{1}, c = c_0 + M/2, g_j = g_0 + 1/2, (j = 1, \dots, p).$
- 2: while the convergence criterion does not satisfy do
- 3: Update parameters according to theorem 1;
- 4: end while

$$\begin{split} & \Omega = \theta \theta^{\mathrm{T}} + \mathbb{D}(\theta) \odot (\boldsymbol{I}_{N} - \mathbb{D}(\theta)), \\ & \boldsymbol{\Sigma} = \left[\frac{c}{d}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}) \odot \boldsymbol{\Omega} + \mathbb{D}\left(\frac{g}{h}\right)\right]^{-1} \boldsymbol{\mu} = \frac{c}{d}\boldsymbol{\Sigma}\mathbb{D}(\theta)\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}, \\ & g_{j} = g_{0} + \frac{1}{2}, \\ & h_{j} = h_{0} + \frac{1}{2}(\boldsymbol{\Sigma}_{jj} + \boldsymbol{\mu}_{j}^{2}), \\ & c = c_{0} + \frac{M}{2}, \\ & d = d_{0} + \frac{1}{2}\left\{\|\boldsymbol{y}\|^{2} - 2\boldsymbol{y}^{\mathrm{T}}\boldsymbol{X}\mathbb{D}(\theta)\boldsymbol{\mu} \\ & + \mathrm{tr}\left[\left((\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}) \odot \boldsymbol{\Omega}\right)(\boldsymbol{\Sigma} + \boldsymbol{\mu}^{\mathrm{T}}\boldsymbol{\mu})\right]\right\}, \end{split}$$

$$e = e_{0} + \sum_{j=1}^{N} \theta_{j}, f = f_{0} + \sum_{j=1}^{N} (1 - \theta_{j}). \end{split}$$

Variational Inference

Algorithm 2 Bayesian complex network reconstruction: $\hat{\mathbf{W}} = \text{BayesRecon}(V, I)$

- 1: **for** $i = 1, 2, \dots, N$ **do**
- 2: Compute the response vector $\mathbf{y}^{(i)} = (y_{t_1}^{(i)}, \cdots, y_{t_M}^{(i)})^{\mathrm{T}}$ and the design matrix $\mathbf{X}^{(i)} = (x_{j,t_m}^{(i)})_{M \times (N-1)}$ with $x_{j,t_m}^{(i)} = V_i(t_m) V_j(t_m)$, where $m = 1, 2, \cdots, M$ and $j = 1, 2, \cdots, i-1, i+1, \cdots, N$.
- 3: Apply Algorithm 1 to $(X^{(i)}, y^{(i)})$ and let $(\mu_i, \theta_i) = \text{vbr}(X^{(i)}, y^{(i)})$.
- 4: end for
- 5: Let $\hat{w}_{ij} = \mu_{ij}\hat{a}_{ij}$, where $\hat{a}_{ij} = 1$ if $\theta_{ij} > 0.5$ and 0 otherwise.

Content

- Introduction
- New framework
- Experiments
- Conclusion and discussion

Environment

- Matlab 2017b
- Intel Core CPU 3.6GHz, 8GB RAM
- Source code (VBR): https://github.com/xsxjtu/VBR
- Lasso: Statistics and Machine Learning Toolbox of Matlab

Metrics

TPR =
$$\frac{\text{TP}}{\text{P}} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \hat{a}_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}},$$

TNR =
$$\frac{\text{TN}}{\text{N}} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (1 - a_{ij})(1 - \hat{a}_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{N} (1 - a_{ij})},$$

$$\text{Error} = \frac{\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (\hat{w}_{ij} - w_{ij})^2}}{\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij}^2}}.$$

Toy Example

- BA net
- 30 nodes
- 30 time points

Node — True Positive Edge — False Positive Edge — False Negative Edge

Experiment 1: Noise sensitivity (BA-50 nodes)

Experiment 1: Noise sensitivity (WS-50 nodes)

Experiment 2: Exponential-law coefficient sensitivity (SF-100 nodes)

Experiment 3: Running time $O(N^3)$

Experiment 4: Real world nets

Results on empirical networks. ECT is simulated on first two networks and communication is simulated on rest ones.

Networks	N	Method	TPR	TNR	Error	Time
HB494BUS	494	Lasso VBR	0.972 0.987	1.000 1.000	0.028 0.002	238.549 73.710
HB1138BUS	1138	Lasso VBR	0.948 0.977	1.000 1.000	0.027 0.001	3381.924 1553.495
Jazz	198	Lasso VBR	0.981 0.969	0.998 1.000	0.031 0.003	49.361 0.913
Karate	34	Lasso VBR	0.983 0.997	0.999 1.000	0.031 0.000	0.665 0.015

Content

- Introduction
- New framework
- Experiments
- Conclusion and discussion

Conclusion and discussion

Lasso

$$\min|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}|_2^2 + \lambda_{lasso}|\boldsymbol{w}|_1$$

- Sparsity is derived from L_1 norm penalty!
- We have to fine-tune λ_{lasso} for weighted network!
- Cross validation is time-consuming!
- Bad statistical property: Biased estimation!

VBR

$$y = X\mathbb{D}(a)w$$

- Respectively estimate linkages and weights.
- Full Bayesian inference.
- No parameters need fine-tune.
- An interpretable framework.

Conclusion and discussion

Future work

- Reduce computational complexity
- Design models for other dynamics

Thanks!

See details at https://arxiv.org/abs/1812.04369

Email: shuangxu@stu.xjtu.edu.cn

Homepage: https://xsxjtu.github.io/