Computational Geometry

PROJECT

使用说明

小组成员: (拼音顺序) 刘家旗(2013213472) 乔 鑫(2013213464) 王鹏帅(2013311416)

Contents

1	程序	简介	2	
2	主要	功能介绍	2	
	2.1	实时增量式展示	2	
	2.2	非实时增量式展示	5	
	2.3	随机点集展示	6	
	2.4		8	
3	加载	、保存数据	9	
4	小功能介绍 1			
	4.1	滚轮调节单步时长 1	1	
	4.2	隐藏曲面和点集	1	
	4.0			
	4.3	截图	2	
	4.3	截图	_	
	1.0	显示坐标轴	_	
	4.4	显示坐标轴	2 2	

1 程序简介

本程序,意在展示二维点集的Delaunay三角剖分在三维空间中的对应变化。本程序实现了二维点集的Delaunay三角剖分,并展示了二维空间的三角剖分在三维中的对应效果(仿射变换方程为 $z=x^2+y^2$)。

(关于Delaunay 三角剖分在三维空间中的解释,详见《实验报告》。)

2 主要功能介绍

2.1 实时增量式展示

打开程序后,默认的功能即为"实时增量式展示"。左边面板为二维输入面板,右边为三维输出。

直接在左边面板选点,即可增量地加点。Delaunay三角剖分将实时进行。

Figure 1: 程序展示界面

左边面板操作

- 鼠标左右键均为加点。
- 滚轮可调节Delaunay剖分的"单步时长"。

右边面板操作

- 左键移动模型坐标系。
- 右键旋转模型坐标系
- 滚轮可调节视图大小。

教学示例

下图展示操作流程。

Delay between steps: 5500 ms

Figure 2: 滚轮: 调整"单步时长"

Figure 3: 左面板: 鼠标输入适当的点集

Figure 4: 左右面板: 展示"由凸变凹"的流程

Figure 5: 左右面板: 展示"由凸变凹"的流程

Figure 6: 左右面板: 展示"由凸变凹"的流程

清除操作

点集"橡皮擦"按钮,可以清除输入的点集。

Figure 7: 清除输入

2.2 非实时增量式展示

清除原输入点集后,点击"火箭"按钮(即不选中)。进入"非实时模式"。

Figure 8: 火箭按钮,选中为实时模式

此时,用户可先在左边面板输入点集。待输入完成后,点击"Perform"按钮,开始Delaunay操作。

注:操作过程中,仍然可以对"单步时长"、右边面板做各种操作。

Figure 9: Perform按钮

2.3 随机点集展示

清除原输入点集。点击"Random Generation"按钮,输入点数,并点击"Perform"按钮开始执行剖分。

Figure 10: Random Generation接钮

Figure 11: 输入点集数量

Figure 12: 执行剖分

Figure 13: 结果截图

2.4 另一种评价函数

我们还实现了,在另一种评价函数下的Delaunay三角剖分。

按下图选择评价函数。接着选择"Random Generation"按钮,输入点数,并点击"Perform"按钮开始执行剖分。

Figure 14: 选择评价函数

Figure 15: Delaunay结果

3 加载、保存数据

Figure 16: 加载数据

Figure 17: 加载数据

Figure 18: Delaunay结果

4 小功能介绍

4.1 滚轮调节单步时长

在左边面板,滚动滚轮,可调整三角剖分的单步时长。

Figure 19: 滚轮: 调整"单步时长"

4.2 隐藏曲面和点集

按钮、结果如下图所示。

Figure 20: 隐藏曲面和点集

Figure 21: 隐藏曲面和点集

4.3 截图

Figure 22: 截图按钮

4.4 显示坐标轴

Figure 23: 显示坐标轴

4.5 显示"地平面"

按键盘的G键,可显示"地平面"。

Figure 24: 显示"地平面"

4.6 视角的记录与还原

Alt+F1(或F2, ..., F12),可记录视角。单独按F1(或F2, ..., F12),可还原到该视角。

4.7 Github

我们的代码在Github上。

Figure 25: Github地址