

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

Internet of Things Basic Concepts

Prof. Vicente Hernández Díaz

vicente.hernandez@upm.es

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

IoT Background

Ubiquitous Computing

- Since 1991, Mark Weiser predicted what human beings expected from future technology: ubiquitous computing.
 - "Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives".
 - "Welcome to the Calm Technology and The Ubiquitous Computing"

Ubiquitous Computing

- The Weiser's *calm technology*:
 - The purpose of a computer is to help you do something else.
 - The best computer is a quiet, invisible servant.
 - The more you can do by intuition the smarter you are; the computer should extend your unconscious.
 - Technology should create calm.
 - The disappearing computer:
 - "The most profound technologies are those that <u>disappear</u>. They weave themselves into the fabric of <u>everyday life</u> until they are <u>indistinguishable</u> from it"

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

- What was Weiser thinking of?
 - Maintenance Examples
 - Industrial plant operation

- Daily use cases
 - Smart shopping

Ubiquitous Computing

- What does Weiser's predictions entails?
 - Context awareness
 - Human-Computer-Interface (HCI) or Human-Machine-Interface (HMI)
 - High computational and storage capabilities
 - Computer vision
 - Machine learning
 - Data fusion
 -

Computational and storage capabilities

■ In 2016, IHS forecast that there would be 30.73 billions of devices connected to Internet in 2020, 35.82 in 2021 and 75.4 in 2025: appliances, wearables, medical devices, cars, smart meters, doors, boxes, ...

36 billions things providing and consuming information !!!

Exabytes (10¹⁸ bytes)

Computational and storage capabilities

Providing information about the information:

Metainformation

Providing meaning to the metainformation.

Computational and storage capabilities

- 1. Open Linked Data (OLD)
- Resource Description Framework (RDF)
- 3. Ontologies
- 4. Middleware

It's very important to provide meaning to the information provided by the things in order to reach interoperability among services and applications.

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

Future Internet

What's going on?

Future Internet

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

What's the Internet of Things

What's the Internet of Things

Standardization

Definition

(5) A global infrastructure for the Information Society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies.

thing: With regard to the Internet of things, this is an object of the physical world (physical things) or the information world (virtual things), which is capable of being identified and integrated into communication networks.

-----**Definición (ITU-**Y.2060)

What's the Internet of Things

From any time, any place connectivity for anyone, we will now have connectivity for anything!

loT enablers

IoT main enablers:

- Lower microcontrollers and microprocessors costs:
 - Old microcontrollers and microprocessors costs have decreased, though their computing capabilities are pretty enough for non deeply processing demanding applications in small devices.
- Wireless communication technologies have improved significantly:
 - Larger ranges.
 - Lower energy consumption.
 - Easily embeddable in tiny devices.
 - •
- The Cloud Computing effectiveness came to be real.

But how do we....?

- get things involved in a use case participate in another different use case?
- get things from different providers talk to each other?
- get things protect privacy and become trustworthy?

• ...

AIOTI
ALLIANCE FOR INTERNET OF THINGS INNOVATION

STANDARDIZATION & MODELLING

What's the Internet of Things

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

1oT & Edge Commercial Adoption Survey Report 2023

(follow this link for the full document)

IoT technologies are being adopted: 64% of respondents vs 53% in 2022. An additional of 23% plan in 1-2 years

Edge computing stops raising: 33% of respondents have adopted. 30% plan to adopt in 2 years.

Scale-up in Production Deployments: 17% spent between \$1-10M in 2023. This indicates a transition from proof-of-concept to ROI-focused deployments

Larger deployments: more than 1K managed assets per deployment. 10% of deployments of 50K or more devices

Open source plays a major role.

Challenges:

- Connectivity: 48%
- Security: 29%
- Data collection & Analytics: 19%

Hybrid IoT Cloud strategies lead the way: 39% of organizations.

Data management dominates Edge Workloads:

- Facilitates machine learning
- •Edge computing is a natural extensión of the hybrid cloud.

Master of Science in *Internet of Things*. Embedded platforms and communications for IoT

IoT & Edge Developer Survey 2023

(follow this <u>link</u> for the full document)

IoT & Edge Developer 2023 Results

Top operating system landscape for constrained devices

 Top operating system landscape for IoT Gateways & Edge nodes

Linux distributions employed in IoT Solutions

Top Edge Computing Workloads

Top Edge Computing Container Orchestration in IoT Solutions

Top programming languages

Contrained Devices

loT GW and Edge Nodes

Most used connectivity technologies

Most Favoured Security-Related Technologies

HW architecture usage for constrained devices

HW architecture usage for IoT GW & Edge

Types of IoT Data Stored in Database/Data Store

Top IoT cloud platforms

Top IoT developer concerns

