Particularily important are semigroups such that for every $t \ge 0$ we have $\|T(t)\| \le M$ (bounded semigroups) or $\|T(t)\| \le 1$ (contraction semigroups). In both cases we have $\omega \le 0$.

It follows from the subsequent examples and from 3.1 that ω may be any number $-\infty \le \omega < +\infty$. Moreover the reader should observe that the infimum in (1.1) need not be attained and that M may be larger than 1 even for bounded semigroups.

Examples 1.4. (i) Take $E=\mathbb{C}^2$, $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ and $T(t)=e^{tA}=\begin{pmatrix}1&t\\0&1\end{pmatrix}$. Then for the 1-norm on E we obtain $\|T(t)\|=1+t$, hence $(T(t))_{t\geq0}$ is an unbounded semigroup having growth bound $\omega=0$. (ii) Take $E=L^1(\mathbb{R})$ and for $f\in E$, $t\geq0$ define

$$T(t)f(x) := \begin{cases} 2 \cdot f(x+t) & \text{if } x \in [-t,0] \\ \\ f(x+t) & \text{otherwise} \end{cases}$$

Each T(t) , t > 0 , satisfies $\|T(t)\| = 2$ as can be seen by taking $f := 1_{[0,t]}$. Therefore $(T(t))_{t \ge 0}$ is a strongly continuous semigroup which is bounded, hence has $\omega = 0$, but the constant M in (1.1) cannot be choosen to be 1.

The most important object associated to a strongly continuous semigroup $(T(t))_{t\geq 0}$ is its 'generator' which is obtained as the (right)derivative of the map $t \uparrow T(t)$ at t=0. Since for strongly continuous semigroups the functions $t \uparrow T(t)f$, $f \in E$, are continuous but not always differentiable we have to restrict our attention to those $f \in E$ for which the desired derivative exists. We then obtain the 'generator' as a not necessarily everywhere defined operator.

<u>Definition</u> 1.5. To every semigroup $(T(t))_{t\geq 0}$ there belongs an operator (A,D(A)), called the generator and defined on the domain

$$D(A) := \{f \in E : \lim_{h \to 0} \frac{T(h) f - f}{h} \text{ exists in } E\}$$

by Af :=
$$\lim_{h\to 0} \frac{T(h) f - f}{h}$$
 for $f \in D(A)$.

Clearly, D(A) is a linear subspace of E and A is linear from D(A) into E . Only in certain special cases (see 2.1) the generator