Equating OTUs With Species

Micah Dunthorn

OTUS

OTUS = species

clustering as a step

clustering

= grouping of similar sequences

clustering

sampling, storage

nucleotide extraction

amplification, sequencing

clustering

environmental microbiology

Environmental Microbiology (2010) 12(7), 1806-1810

doi:10.1111/j.1462-2920.2010.02201.x

Opinion

Replicate or lie

James I. Prosser*

Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK. sampling, storage nucleotide extraction amplification, sequencing

cleaning, dereplication → **clustering** → more cleaning

2017 8:1188

ARTICLE

program: LULU

DOI: 10.1038/s41467-017-01312-x

OPEN

Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates

Tobias Guldberg Frøslev (5) 1,2, Rasmus Kjøller 1, Hans Henrik Bruun (5) 1, Rasmus Ejrnæs 3, Ane Kirstine Brunbjerg 3, Carlotta Pietroni 2 & Anders Johannes Hansen 2

sampling, storage

nucleotide extraction amplification, sequencing

cleaning, dereplication — clustering — more cleaning

taxonomic assignments, phylogenetic placements

 α , β diversities, co-occurrences

what is a species

1997 in "Species: The units of biodiversity"

A hierarchy of species concepts: the denouement in the saga of the species problem

R. L. Mayden

Contacting address: Department of Biological Sciences, P.O. Box 0344, University of Alabama, Tuscaloosa, AL 35487, USA

eukaryote vs. bacteria and archaea

sexual vs. asexual

macro-evolutionary processes of phylogeny

Barraclough (2019) The Evolutionary Biology of Species

macro-evolutionary processes of phylogeny

micro-evolutionary processes of population genetics

Barraclough (2019) The Evolutionary Biology of Species

biological species

= actually or potentially interbreeding natural populations, which are reproductively isolated

- Mayr 1942

morphological species

= the smallest groups that are consistently and persistently distinct

- Cronquist 1978

phylogenetic species

= the smallest biological entities that are diagnosable and/or monophyletic

Mayden 1997

Syst. Biol. 56(6):879–886, 2007 Copyright © Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150701701083

Species Concepts and Species Delimitation

KEVIN DE QUEIROZ

Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA; E-mail: dequeirozk@si.edu

concept of a species

= separately evolving metapopulation lineages

concept of a species

= separately evolving metapopulation lineages

operational criteria for delimitation

= Biological Species, Morphological Species, Phylogenetic Species, etc.

clustering methods

just clustering vs. clustering and cleaning

de novo clustering vs. closed-reference clustering

vs. metabarcoding data vs. metagenomic/ metatranscriptomic

2002 75:509-516

Biol. J. Linn. Soc.

On the use of genetic divergence for identifying species

J. WILLEM H. FERGUSON*

Department Zoology and Entomology, University of Pretoria, 0002 Pretoria, South Africa

global clustering thresholds

local clustering thresholds

pairwise comparisons comparisons

phylogenetic

global clustering thresholds

local clustering thresholds

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate PTP

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate PTP

2016 4:e2584

VSEARCH: a versatile open source tool for metagenomics

Torbjørn Rognes^{1,2}, Tomáš Flouri^{3,4}, Ben Nichols⁵, Christopher Quince^{5,6} and Frédéric Mahé^{7,8}

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 2009, p. 7537–7541 0099-2240/09/\$12.00 doi:10.1128/AEM.01541-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Vol. 75, No. 23

Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities[∇]

Patrick D. Schloss, 1,2* Sarah L. Westcott, 1,2 Thomas Ryabin, 1 Justine R. Hall, 3 Martin Hartmann, 4 Emily B. Hollister, 5 Ryan A. Lesniewski, 6 Brian B. Oakley, 7 Donovan H. Parks, 8 Courtney J. Robinson, 2 Jason W. Sahl, 9 Blaz Stres, 10 Gerhard G. Thallinger, 11 David J. Van Horn, 2 and Carolyn F. Weber 12

each hexagon is a unique sequence, neighboring hexagons differ by one base pair

97%

lan Marshall @ianpgm.bsky.social

I know people teaching with old slides that never updated the 97% species threshold to 98.7%... looks like they've waited long enough that now those slides are almost accurate again :-)

Cameron Thrash @jcamthrash.bsky.s... · 5h Setting new boundaries of 16S rRNA gene identity for prokaryotic taxonomy www.microbiologyresearch.org/content/jour... #jcampubs

April 9, 2025 at 7:22 PM 🔉 Everybody can reply

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate PTP

BRIEF COMMUNICATIONS

2016 13:581-583

DADA2: High-resolution sample inference from Illumina amplicon data

Benjamin J Callahan¹, Paul J McMurdie², Michael J Rosen³, Andrew W Han², Amy Jo A Johnson² & Susan P Holmes¹ Nature Methods

amplicon sequence variants (ASVs)

amplicon sequence variants (ASVs)

clustering by another name

1000%

population genetics doesn't matter

Sewall Wright

J.B.S. Haldane

Ronald Fisher

sampling, storage

nucleotide extraction

amplification, sequencing

cleaning, dereplication — clustering

more cleaning

taxonomic assignments placements

phylogenetic α, β diversities, co-occurrences

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

local clustering thresholds

VSEARCH/ Mothur

DADA2

Swarm

multi-rate PTP

Bioinformatics, 38(1), 2022, 267–269 doi: 10.1093/bioinformatics/btab493 Advance Access Publication Date: 9 July 2021 Applications Note

OXFORD

Sequence analysis

Swarm v3: towards tera-scale amplicon clustering

Frédéric Mahé^{1,2,*}, Lucas Czech ® ^{3,4}, Alexandros Stamatakis^{3,5}, Christopher Quince^{6,7,8}, Colomban de Vargas^{9,10}, Micah Dunthorn ® ^{11,12} and Torbjørn Rognes^{13,14}

pairwise comparisons

phylogenetic comparisons

global clustering thresholds

VSEARCH/ Mothur

DADA2

local clustering thresholds

Swarm

multi-rate PTP

Bioinformatics, 33(11), 2017, 1630-1638

doi: 10.1093/bioinformatics/btx025

Advance Access Publication Date: 20 January 2017

Original Paper

Phylogenetics

Multi-rate Poisson tree processes for singlelocus species delimitation under maximum likelihood and Markov chain Monte Carlo

P. Kapli^{1,*}, S. Lutteropp^{1,2}, J. Zhang¹, K. Kobert¹, P. Pavlidis³, A. Stamatakis^{1,2,*} and T. Flouri^{1,2,*}

where to now with OTUs

operational taxonomic units

operational criteria for species delimitation

in conclusion

OTUS = species

separately OTUS = evolving evolving metapopulation lineages

thanks to:

CIRAD

Frédéric Mahé

Heidelberg Institute for Theoretical Studies
Alexandros Stamatakis
Pierre Barbera

<u>Institut de Ciències del Mar</u> Ramiro Logares