Math 327 Homework 6

Sathvik Chinta

November 18th, 2022

1. **7** a

We want to prove that the function is continuous on the interval [0,1].

Let x_n be a sequence in [0,1] such that $x_n \to x_0 \in [0,1]$. By the sum and product properties of convergent sequences, we have

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sqrt{x_n}$$
$$= \sqrt{x_0}$$
$$= f(x_0)$$

Thus, f is continuous at x_0 .

b

We want to prove that the function is uniformly continuous on the interval [0,1].

Let u_n and v_n be sequences in [0,1] such that

$$\lim_{n\to\infty} [u_n - v_n] = 0$$

We want to prove that

$$\lim_{n\to\infty} |f(u_n) - f(v_n)| = 0$$

We shall prove so by arguing the contradition. Suppose that the differences between the two limits is not equal to 0. Then, thre must exist some $\epsilon > 0$ such that

$$|f(u_n) - f(v_n)| \ge \epsilon$$

for all n.

We know, however, that the domain of f is [0,1]. By the Sequential Compactness Theorem, there exists a subsequence u_{n_k} of u_n and a point x_0 in [0,1] such that

$$lim_{k\to\infty}u_{n_k}=x_0$$

Similarly, we also conclude that there exists a subsequence v_{n_k} of v_n and a point x_0 in [0,1] such that

$$lim_{k\to\infty}v_{n_k}=x_0$$

Knowing, however, that f is continuous at x_0 , we have

$$f(u_{n_k}) = f(x_0) = f(v_{n_k})$$

for all k. Thus, we have

$$|f(u_{n_k}) - f(v_{n_k})| = 0$$

for all k.

This contradicts our assumption that there exists some $\epsilon > 0$ such that

$$|f(u_n) - f(v_n)| \ge \epsilon$$

for all n. Thus, we have proved that the function is uniformly continuous on the interval [0,1].

c

We want to prove that the function is not Lipschitz. We prove by contradiction Suppose there $\exists C \in \mathbb{R}$ such that $|f(x) - f(y)| \leq C|x - y|$ for any $x, y \in [0, 1]$.

$$\begin{split} |\sqrt{x} - \sqrt{y}| & \leq C|x - y| = C|\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}| \\ & 1 \leq C|\sqrt{x} + \sqrt{y}| \\ & \frac{1}{c} \leq |\sqrt{x} + \sqrt{y}| \end{split}$$

For any $x,y\in[0,1]$ where $x\neq y$. However, this cannot be true. For instance, let y=0 and $x=\frac{1}{c+1}$. Since $\frac{1}{c}>\frac{1}{c+1}$, $\frac{1}{c}>\sqrt{\frac{1}{c+1}}$. This is a contradiction to our equation above. Thus, we have proved that the function is not Lipschitz.