

何诗大学

Ch4 随机变量的数字特征

- 数学期望(Expectation)
- 一、加权平均数

人数如下表所示:

则学生的平均成绩是总分÷总人数(分)。即

$$\frac{40\times1+60\times6+70\times9+80\times15+90\times7+100\times2}{1+6+9+15+7+2}=76.5(\%)$$

上式也可以写成:

$$\frac{1}{40} \times 40 + \frac{6}{40} \times 60 + \frac{9}{40} \times 70 + \frac{15}{40} \times 80 + \frac{7}{40} \times 90 + \frac{2}{40} \times 100$$

$$= 76.5(\cancel{5}\cancel{)}$$

此即为40,60,70,80,90和100六个数的加权平均数。

一般地
$$x_1, x_2, \dots, x_n$$
的加权算术平均数为: $\sum_{i=1}^{n} \omega_i x_i$,

其中
$$ω_i \ge 0$$
, $\sum_{i=1}^{n} ω_i = 1$, $ω_i$ 称为 x_i 的权重。

引进r.v.X表示学生得分,则X有分布律 70 40 60 80 100 1/40 6/40 9/40 15/40 7/40 2/40 于是上述平均数可以写成 $\frac{1}{40} \times 40 + \frac{6}{40} \times 60 + \frac{9}{40} \times 70 + \frac{15}{40} \times 80 + \frac{7}{40} \times 90 + \frac{2}{40} \times 100$ $\Rightarrow = 40 \times P\{X = 40\} + 60 \times P\{X = 60\} + 70 \times P\{X = 70\} +$

 $+80 \times P\{X = 80\} + 90 \times P\{X = 90\} + 100 \times P\{X = 100\}$

即取值乘取值的概率相加即得平均值。

这就是r.v.的数学期望的概念

二、离散型随机变量的数学期望

定义:离散型随机变量X,其分布律为:

$$P{X = x_k} = p_k, k = 1, 2, \dots$$

若级数 $\sum_{k=1}^{\infty} x_k p_k$ 绝对收敛,则称级数 $\sum_{k=1}^{\infty} x_k p_k$ 的和

为随机变量X的数学期望,记为E(X)

即
$$E(X) = \sum_{k=1}^{\infty} x_k p_k$$

 $\sum_{k=1}^{\infty} x_k p_k$ 发散,则说X的数学期望不存在。

随机变量X的数学期望是其一切取值的平均值。

例 r.v. X的分布律为:

X	10	30	50	70	90
p	3/6	2/6	1/36	3/36	2/36

 \Rightarrow 求E(X)。

$$10 \times \frac{3}{6} + 30 \times \frac{2}{6} + 50 \times \frac{1}{36} + 70 \times \frac{3}{36} + 90 \times \frac{2}{36} = 27.22$$

例 单点分布(退化分布)

即 r.v.X的分布律为: $P\{X=c\}=1$

$$\therefore E(X) = c \times 1 = c$$

即常数的数学期望为常数。E(c) = c

例 X~(0—1)分布

即 r.v.X的分布律为:

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline p & 1-p & p \end{array} \qquad \qquad E(X) = p$$

$$\therefore E(X) = 0 \times (1-p) + 1 \times p = p$$

⇒ 即 r.v.X的分布律为:

$$P\{X=k\} = C_n^k p^k (1-p)^{n-k}, k = 0,1,2,\dots,n$$

₩ Market Mark

即
$$r.v.X$$
的分布律为: $E(X) = \lambda$

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots, (\lambda > 0)$$

例
$$r.v.X$$
的取值为: $x_k = \frac{(-1)^k 2^k}{k}, k = 1, 2, \cdots$ 对应的概率为: $p_k = \frac{1}{2^k}$

$$E(X) = \sum_{k=1}^{\infty} x_k p_k = \sum_{k=1}^{+\infty} \frac{(-1)^k 2^k}{k} \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = -\ln 2$$

但
$$\sum_{k=1}^{\infty} |x_k| p_k = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$
 所以 $E(X)$ 不存在!

三、连续型随机变量的数学期望

定义 设连续型 r.v.X的概率密度函数为 f(x),

言若积分 $\int xf(x)dx$ 绝对收敛,则称积分 $\int xf(x)dx$

一的值为连续型 r.v.X的数学期望,记为E(X)。

即
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

置若积分 $\int |x| f(x) dx$ 发散时, X的数学期望不存在.

例 r.v.X的概率密度函数为:

$$f.v.X$$
 的概率省度函数万:
$$f(x) = \begin{cases} 1 - e^{-x}, & 0 \le x \le 1\\ (e - 1)e^{-x}, & x \ge 1\\ 0, & others \end{cases}$$

$$= \int_{0}^{1} x dx - \int_{0}^{1} x e^{-x} dx + (e - 1) \int_{1}^{+\infty} x e^{-x} dx = \frac{3}{2}$$

例 $X\sim U(a, b)$ 均匀分布

其概率密度函数为:

$$E(X) = \frac{a+b}{2}$$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$

求
$$E(X)$$
.

具概率省度函数为:
$$E(X) = 2$$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$
求 $E(X)$.

解 $E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{a}^{b} x \frac{1}{b-a}dx = \frac{a+b}{2}$

例 指数分布 $E(\lambda)$

X服从参数为 λ 的指数分布,其概率密度函数为:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & others \end{cases} (\lambda > 0) \quad E(X) = \frac{1}{\lambda}$$

$$RE(X).$$

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{0}^{+\infty} x\lambda e^{-\lambda x}dx = \frac{1}{\lambda}$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

例 正态分布 $X \sim N(\mu, \sigma^2)$

其概率密度函数为:

$$E(X) = \mu$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \sigma > 0, -\infty < x < +\infty$$

菜
$$E(X)$$
.
$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \frac{\int_{-\infty}^{\Delta} \sqrt{2\pi} dt}{\int_{-\infty}^{\Delta} (\sigma t + \mu) e^{-\frac{t^{2}}{2}} dt} = \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{-\frac{t^{2}}{2}} dt + \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}}{2}} dt$$

例 r.v.X的概率密度函数为: (Cauthy分布)

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \qquad -\infty < x < +\infty$$

由于
$$\int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{+\infty} |x| \cdot \frac{1}{\pi} \cdot \frac{1}{1+x^2} dx$$

$$= \int_{-\infty}^{0} -x \cdot \frac{1}{\pi} \cdot \frac{1}{1+x^{2}} dx + \int_{0}^{+\infty} x \cdot \frac{1}{\pi} \cdot \frac{1}{1+x^{2}} dx = \infty$$

所以E(X)不存在!

四、对于r.v.X的函数的数学期望

oY为 r.v.X的函数, Y=g(X), g为连续函数 (i) X是离散型随机变量,其分布律为

$$p_k = P\{X = x_k\}, \qquad k = 1, 2, \cdots$$

若 $\sum_{k=1}^{\infty} g(x_k) p_k$ 绝对收敛,则有

$$E(Y) = E(g(X)) = \sum_{k=1}^{\infty} g(x_k) \cdot p_k$$

(ii) X是连续型随机变量,其概率密度函数为 f(x) 若 $\int_{-\infty}^{+\infty} g(x)f(x)dx$ 绝对收敛,则有

$$E(Y) = E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x)dx$$
综上有:

若已知 X 的分布以及函数 g(x),可以不必求出 Y=g(x)的分布,直接利用上面的公式求出 Y的数学期望.

例 r.v.X的分布律为:

⇒ 求 $E(2X^2+X-2)$ 和 $E[X-E(X)]^2$.

$$E(2X^{2} + X - 2) = \sum_{k=1}^{\infty} (2x_{k}^{2} + x_{k} - 2) \cdot p_{k}$$

$$= [2 \times (-2)^{2} + (-2) - 2] \times 0.4 + (2 \times 0^{2} + 0 - 2) \times 0.1 + (2 \times 5^{2} + 5 - 2) \times 0.5 = 27.8$$

例 r.v.X的概率密度函数为:

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

菜
$$E(3X^2-7X+8)$$
和 $E[X-E(X)]^2$.
解 $E(3X^2-7X+8) = \int_{-\infty}^{+\infty} (3x^2-7x+8) \cdot f(x) dx$

$$= \int_{-\infty}^{+\infty} (3x^2-7x+8) \cdot e^{-x} dx = 3$$

o 二维 r.v.(X, Y), Z=g(X, Y), g为连续函数

(i) (X, Y) 是离散型随机变量,其分布律为 $p_{ij} = P\{X = x_i, Y = y_j\}, \quad i, j = 1, 2, \cdots$

若 $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g(x_i, y_j) \cdot p_{ij}$ 绝对收敛,则有

$$E(Z) = E(g(X,Y)) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} g(x_i, y_j) \cdot p_{ij}$$

(ii) (X, Y)是连续型随机变量,其概密为f(x, y)

$$E(Z) = E(g(X,Y)) = \int_{-\infty - \infty}^{+\infty + \infty} g(x,y) \cdot f(x,y) dxdy$$

例
$$r.v.(X, Y)$$
的概率密度函数为:
$$f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, & others \end{cases}$$

学 求E(XY), $E(X^2+Y^2)$ 。

例 在长为 a 的线段上任取两点,求两点间距离 自的数学期望。

五、数学期望的性质

- L 1. E(c)=c, c是常数;
- = 2. E(cX) = c E(X), c是常数;
- **3.** E(aX+b)=a E(X)+b, a,b为常数;
 - 4. E(X+Y)=E(X)+E(Y);

$$E(X_1+X_2+\cdots+X_n)=E(X_1)+E(X_2)+\cdots+E(X_n);$$

$$E(c_1X_1+\cdots+c_nX_n)=c_1E(X_1)+\cdots+c_nE(X_n);$$

- 5. 若X与Y独立,则E(XY)=E(X)E(Y).
 - $若X_1, X_2, \cdots, X_n$ 相互独立,则

$$E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n)$$

例 一个人有 n 把钥匙,其中只有一把能打开房门,他任取一把尝试,试过的钥匙拿开不再用,直到把门打开为止。试求平均试开次数。

- 方差(Variance or Dispersion)
- 方差是衡量随机变量取值与其均值的偏离 一程度的一个数字特征。
- 1.定义 若E(X)存在,则称 $E[X-E(X)]^2$ 为 r.v. X的 方差,记为D(X),或Var(X).

可见
$$D(X) = \begin{cases} \sum_{k=1}^{\infty} [x_k - E(X)]^2 P\{X = x_k\},$$
 离散型情况
$$\int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx,$$
 连续型情况

2.推论 $D(X)=E(X^2)-[E(X)]^2$.

例 单点分布(退化分布)

即 r.v.X的分布律为: $P\{X=c\}=1$ E(c)=c

即常数的方差为零。D(c)=0

例 X~(0—1)分布

即 r.v.X的分布律为:

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline p & 1-p & p \end{array}$$

$$E(X) = p$$

$$D(X) = p (1-p)$$

例 $X \sim B(n, p)$ 二项分布

即
$$r.v.X$$
的分布律为:
 $P\{X=k\}=C_n^k p^k (1-p)^{n-k}, k=0,1,2,\cdots,n$

$$E(X) = n p \qquad D(X) = n p (1-p)$$

例 X~P(λ) Poisson分布

即 r.v.X的分布律为:

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots, (\lambda > 0)$$

$$E(X) = \lambda$$
 $D(X) = \lambda$

$M = M \times U(a, b)$ 均匀分布

- 其概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$

共 版 华 省 浸 函 数
$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$$

$$E(X) = \frac{a+b}{2} \qquad D(X) = \frac{(b-a)^2}{12}$$

例 指数分布 $E(\lambda)$

- X服从参数为λ的指数分布, 其概率密度函数为:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & others \end{cases}$$

$$E(X) = \frac{1}{\lambda} \qquad D(X) = \frac{1}{\lambda^2}$$

$$E(X) = \frac{1}{\lambda}$$
 $D(X) = \frac{1}{\lambda^2}$

- 其概率密度函数为:

$$E(X) = \mu$$
 $D(X) = \sigma^2$

常见分布的期望和方差

分布名称	分 布 律	期望	方 差
0-1分布	$\begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$	p	p(1-p)
二项分布 B(n, p)	$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$ $k = 0,1,2,\dots,n$	np	np(1-p)
Poisson 分布P(λ)	$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$ $k = 0,1,2,\cdots$	λ	λ

9			
分布名称	概率密度函数	期望	方 差
均匀分布 U(a, b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & others \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 E(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & others \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布 N(μ,σ²)	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
•			

3. 方差的性质

- (1) D(C) = 0, C为常数;
 - (2) $D(c X) = c^2 D(X)$, c为常数;
 - (3) 若 X, Y 独立, 则 D(X+Y)=D(X)+D(Y); 若 X, Y 独立, 则 D(X-Y)=D(X)+D(Y); 若 X_1 , X_2 , \cdots , X_n 相互独立, 则

$$D(X_1 + X_2 + \cdots + X_n) = D(X_1) + D(X_2) + \cdots + D(X_n);$$

$$D(c_1X_1 + \cdots + c_nX_n) = c_1^2D(X_1) + \cdots + c_n^2D(X_n);$$

(4) $D(X)=0\Leftrightarrow$ 存在常数C,使 $P\{X=C\}=1$,且C=E(X)。

X 记 n 重贝努里试验中A发生的次数,则 $X\sim B(n,p)$

若记
$$X_i = \begin{cases} 1, \text{ 若在第 } i \text{ 次试验中 } A \text{ 发生; } i = 1, \dots, n \\ 0, \text{ 若在第 } i \text{ 次试验中 } A \text{ 不发生。} \end{cases}$$

$$X_i \sim \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$
且 X_1, X_2, \dots, X_n 相互独立

:.
$$E(X_i) = p$$
, $D(X_i) = p(1-p)$ $i = 1, 2, \dots, n$

:.
$$E(X)=E(X_1)+E(X_2)+\cdots+E(X_n)=np$$
,

$$D(X)=D(X_1)+D(X_2)+\cdots+D(X_n)=np(1-p)$$
.

 $\sqrt{D(X)}$ 称为X 的均方差或标准差,其量纲与X的一致。

若
$$r.v. X$$
 满足: $E(X) = \mu$, $D(X) = \sigma^2$

$$\pi X^* = \frac{X - E(X)}{\sqrt{D(X)}} = \frac{X - \mu}{\sigma}$$
 为 X 的标准化.

易知 $E(X^*)=0$, $D(X^*)=1$.

$$\pi \delta_X = \frac{\sqrt{D(X)}}{E(X)}$$
 为 X 的变异系数.

• 切比雪夫不等式

若 r.v.X的期望和方差存在,则对任意 $\varepsilon > 0$,有

$$P\{|X-E(X)|<\varepsilon\}\geq 1-\frac{D(X)}{\varepsilon^2}.$$

这就是著名的<mark>切比雪夫(Chebyshev)</mark>不等式。 它有以下几种等价的形式:

$$P\{|X-E(X)|\geq \varepsilon\}\leq \frac{D(X)}{\varepsilon^2};$$

记
$$\sigma^2 = D(X)$$
, $\mu = E(X)$, 则对 $a > 0$, 有

$$P\{|X - \mu| \ge a\sigma\} \le \frac{1}{a^2}$$
 或 $P\{|X - \mu| < a\sigma\} \ge 1 - \frac{1}{a^2}$.

定理 (Cauchy-Schwarz不等式)

若对任意的 r.v. X、 Y, 若 $E(X^2) < +\infty$, $E(Y^2)$

<+∞,则

 $[E(XY)]^2 \leq E(X^2) \cdot E(Y^2)$

当且仅当 $P{Y=aX}=1$ 时等号成立,其中a为某常数.

- 协方差,相关系数
- _ 1.协方差定义(Co-variance)

若 r.v. X的期望 E(X)和Y 的期望 E(Y)存在,则称 $E\{[X-E(X)][Y-E(Y)]\}$ 为X与Y的协方差,记为 Cov(X,Y).

即 $Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}.$

易有 Cov(X, Y) = E(XY) - E(X)E(Y)。

$Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}$

- 2.协方差性质 =E(XY)-E(X)E(Y)
- (1) 若X, Y相互独立,则Cov(X, Y) = 0;
- (2) Cov(X, Y) = Cov(Y, X);
- (3) Cov(aX, bY) = abCov(X, Y), 其中a, b为常数;
- (4) Cov(X+Y, Z) = Cov(X, Z) + Cov(Y, Z);
- $\operatorname{Cov}(\sum a_i X_i, \sum b_j Y_j) = \sum \sum a_i b_j \operatorname{Cov}(X_i, Y_j);$
- (5) $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y).$

3. 相关系数

 \rightarrow 定义 若 r.v. X、Y的方差和协方差均存在,且

$$D(X) > 0, D(Y) > 0,$$
 则

$$\rho = \rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$$

称为X与Y的相关系数.

→ 相关系数的性质 $|\rho_{xy}| \leq 1$; **特别**

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$$

1 若 $\rho_{yy}=0$,则称 X=Y不相关,否则称 X=Y相关.

(1) X与Y不相关 $\Leftrightarrow \rho_{XY} = 0 \Leftrightarrow Cov(X, Y) = 0$

 $\Leftrightarrow E(XY) = E(X)E(Y) \Leftrightarrow D(X \pm Y) = D(X) + D(Y)$ 。
(2) X与Y独立,则X与Y不相关,反之不然。

即独立一不相关

- 2 $|\rho_{XY}|=1$ ⇔ 存在常数a,b 使 $P\{X=aY+b\}=1$ 。
 - (1) 若 $\rho_{XY}=1$, 称 X=Y 完全正相关。 即 存在常数a>0, b 使 $P\{X=aY+b\}=1$;
 - (2) 若 $\rho_{XY} = -1$, 称 X = 5 完全负相关。 即 存在常数a < 0, $b \notin P\{X = aY + b\} = 1$ 。

例 设(X, Y)在 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 上服从均匀分布,则X = Y 不相关,但不是相互独立的。

例 已知二元
$$r.v.(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \frac{1}{2\sigma_1\sigma_2\sqrt{1$$

$$\cdot e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

 \rightarrow 求 ρ_{XY} 。

Notes 对于二元正态分布,其独立性和不相关性是等价的。其它的分布没有这个性质。

- 矩 (假设其中一切期望都存在)
- 1.k 阶原点矩

$$A_k = E(X^k), k=1, 2, ...$$

2. k 阶中心矩

$$B_k = E[X - E(X)]^k, k=1, 2, ...$$

易知
$$E(X)=A_1, D(X)=B_2$$
.

3. k+l 阶混合原点矩

 $E(X^{k}Y^{l}), k, l=0, 1, 2, ...;$

4. k+l 阶混合中心矩

 $E\{[X-E(X)]^k [Y-E(Y)]^l\}, k, l=0, 1, 2, ...;$

易知 $Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}$

是1+1阶混合中心矩。

• 多维随机变量的期望和协方差矩阵

数学期望

定义 设 X_1, \dots, X_n 为n个r.v.,记

$$X = (X_1, \cdots, X_n)^T$$

称
$$E(X) = (E(X_1), \dots, E(X_n))^T$$
为 $X = (X_1, \dots, X_n)^T$ 的

数学期望。

= 1. 定义 设 X_1, \dots, X_n 为n个r.v.,记 b_{ij} =Cov (X_i, X_j)

), $i,j=1,2,\cdots,n$. 则称由 b_{ij} 组成的矩阵为 $r.v.X_1$, \cdots,X_n 的协方差矩阵B。即

$$B = (b_{ij})_{n \times n} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

2.协方差矩阵的性质

- (1) $B=B^T$, 其中 B^T 为B的转置;
- (2) B是非负定矩阵,

即对任意n维实向量 $\alpha = (\alpha_1, \dots, \alpha_n)^T$.有

$$\alpha^T B \alpha \geq 0.$$

 $\alpha^T B \alpha \ge 0.$ 例 设 $(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

$$B = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}, |B| = \sigma_1^2 \sigma_2^2 (1 - \rho^2),$$

$$X = (X_1, X_2)^T$$
的概率密度为
$$f(x_1, x_2) = \frac{1}{2\pi |B|^{1/2}} \exp\{-\frac{1}{2}(x - \mu)^T B^{-1}(x - \mu)\},$$

 其中
$$x = (x_1, x_2)^T, \mu = (\mu_1, \mu_2)^T,$$

可记为
$$X = (X_1, X_2)^T \sim N(\mu, B)$$
.

一般地, 若 $X = (X_1, \dots, X_n)^T \sim N(\mu, B)$,则

$$f(x) = \frac{1}{(2\pi)^{n/2} |B|^{1/2}} \exp\{-\frac{1}{2} (x - \mu)^T B^{-1} (x - \mu)\},$$

其中 $x = (x_1, \dots, x_n)^T$,

$$\mu = (\mu_1, \dots, \mu_n)^T 为 X = (X_1, \dots, X_n)^T$$
的均值向量,

称X服从n维正态分布.