- 3.1 પ્રસ્તાવના
- 3.2 કેપ્લરના નિયમો
- 3.3 ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ
- 3.4 ગુરૂત્વાકર્ષણનો સાર્વત્રિક અચળાંક
- 3.5 गुरुत्वप्रवेग
- 3.6 ગુરૂત્વતીવ્રતા
- 3.7 પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વ સ્થિતિમાન અને ગુરુત્વ સ્થિતિ-ઊર્જા
- 3.8 નિષ્ક્રમણ ઊર્જા અને નિષ્ક્રમણ ઝડપ
- 3.9 ઉપગ્રહો
 - સારાંશ
 - સ્વાધ્યાય

3.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, આકાશમાંના તારાઓ અને સૂર્યની આસપાસ ઘૂમતા ગ્રહો પ્રાચીન સમયથી વિજ્ઞાનીઓનું ધ્યાન આકર્ષતા રહ્યા છે.

સૂર્યમંડળનો વૈજ્ઞાનિક પદ્ધતિથી અભ્યાસ કરનાર સૌપ્રથમ ગ્રીક લોકો હતા. લગભગ 2000 વર્ષ અગાઉ ટોલેમી (Ptolemy) નામના વિજ્ઞાનીએ ગ્રીક ખગોળશાસ્ત્રનો જે સિદ્ધાંત રજૂ કર્યો, તેને ટોલેમીનો પૃથ્વી-કેન્દ્રીય વાદ (geocentric theory) કહે છે.

આ વાદ અનુસાર પૃથ્વી વિશ્વના કેન્દ્રમાં સ્થિર છે અને બધા આકાશી પદાર્થોન તારાઓ, સૂર્ય અને ગ્રહો એ બધા - પૃથ્વીની આસપાસ ભ્રમણ કરે છે. ટોલેમીએ આ પદાર્થોની ગતિ વર્તુળમય હોવાનો મત રજૂ કર્યો હતો. તેના મત મુજબ ગ્રહો વર્તુળમાર્ગે ગતિ કરે છે અને એ વર્તુળોનાં કેન્દ્ર વધુ મોટાં વર્તુળોમાં ગતિ કરે છે. પરંતુ પાંચમી સદીમાં આર્યભક્ટે, સૂર્યને કેન્દ્ર તરીકે રાખી બધા ગ્રહો તેની આસપાસ વર્તુળમય ગતિ કરે છે, તેવો સિદ્ધાંત રજૂ કર્યો.

ત્યાર બાદ લગભગ એક હજાર વર્ષ પછી પોલૅન્ડના નિકોલસ કૉપરનિકસે (1473-1543) કેન્દ્રમાં સૂર્ય હોય અને તેની આસપાસ બધા પ્રહો વર્તુળમાર્ગો પર ભ્રમણ કરતા હોય તે અંગેનું સચોટ મોંડેલ રજૂ કર્યું. આને કૉપરનિકસનો સૂર્ય-કેન્દ્રીય વાદ (helio-centric theory) કહે છે. આમ, આર્યભટ્ટના સિદ્ધાંતને સમર્થન મળ્યું. જોકે કોપરનિકસના મૉડેલને તે સમયની માન્ય સંસ્થાઓ તરફથી સમર્થન-સ્વીકૃતિ મળ્યાં ન હતાં, પરંતુ ગેલિલિયોએ તેના સિદ્ધાંતને ટેકો આપ્યો હતો.

ડેન્માર્કના ટાઇકો બ્રાહે (Tyco Brahe, 1546-1601) એ પોતાના સમગ્ર જીવન દરમ્યાન ગ્રહોની ગતિ અંગે નરી આંખે મેળવેલાં અવલોકનોનો અભ્યાસ જહોન કેપ્લરે (1571-1640) કર્યો અને ગ્રહોની ગતિ અંગેના ત્રણ નિયમો પ્રતિપાદિત કર્યા, જે કેપ્લરના નિયમો તરીકે ઓળખાય છે. આ પ્રકરણમાં આપણે આ નિયમો, ન્યૂટનનો ગુરુત્વાકર્ષણનો નિયમ અને ઉપગ્રહો વિષે અભ્યાસ કરીશું.

3.2 કૅપ્લરના નિયમો (Kepler's Laws)

ટાઇકો બ્રાહેએ મેળવેલાં અવલોકનોના અભ્યાસ પરથી જહૉન કૅપ્લરે ગ્રહોની ગતિ અંગે ત્રણ નિયમો આપ્યા, જેને કૅપ્લરના નિયમો કહે છે. આ નિયમો નીચે મુજબ છે.

પહેલો નિયમ (કક્ષાનો નિયમ) First law (law of orbits) : "બધા ગ્રહો એવી લંબવૃત્તીય કક્ષાઓમાં ભ્રમણ કરે છે કે જેના એક કેન્દ્ર પર સૂર્ય હોય."

ગ્રહની લંબવૃત્તીય કક્ષા આકૃતિ 3.1

PA = 2a, MN = 2b

OP = OA = a = અર્ધ-દીર્ધ અક્ષ

આકૃતિ 3.1માં કોઈ ગ્રહનો ગતિપથ દર્શાવતા લંબવૃત્ત P N A Mનાં બે કેન્દ્રો S અને S' છે.

કૉપરનિકસે વર્તુળકક્ષા સૂચવી હતી, તેના કરતાં આ કક્ષાનો નિયમ અલગ આકાર સૂચવે છે.

[માત્ર જા<mark>ણકારી માટે :</mark> લંબવૃત્ત નીચે પ્રમાણે દોરી શકાય.

એક l લંબાઈની દોરીના બે છેડાઓને F_1 અને F_2 બિંદુઓ પર સ્થિર રાખો, જ્યાં $F_1F_2 < l$. હવે એક પેન્સિલની અણીને દોરી સાથે રાખી દોરી કડક રહે તેમ ફેરવતાં મળતો વક્ર P N A M આકૃતિ 3.2 મુજબનો લંબવૃત્ત બને છે.

લંબવૃત્ત આ રીતે દોરી શકાય આકૃતિ 3.2

OP = a = OA

OM = b = ON

અહીં $\mathrm{F_1X} \ + \ \mathrm{F_2X} =$ અચળ. તે લંબવૃત્તની લાક્ષણિકતા દર્શાવે છે. વળી, જ્યારે a=b; બને ત્યારે લંબવૃત્ત એ વર્તુળ બને છે.]

બીજો નિયમ (ક્ષેત્રફળનો નિયમ) Second Law (Law of Areas): "સૂર્ય અને ગ્રહને જોડતી રેખાએ સમાન સમયગાળામાં આંતરેલ ક્ષેત્રફળ સમાન હોય છે." જુઓ આકૃતિ 3.3.

ક્ષેત્રીય વેગ અચળ હોય છે આકૃતિ 3.3

જ્યારે ગ્રહ સૂર્યથી દૂર હોય છે, ત્યારે અમુક Δt સમયગાળામાં $\mathbf{P_1}$ થી $\mathbf{P_2}$ સ્થાને જાય છે અને સૂર્યની નજીક હોય ત્યારે તેટલા જ સમયગાળામાં $\mathbf{P_3}$ થી $\mathbf{P_4}$ પર જાય છે. આથી આ નિયમ મુજબ,

 SP_1P_2 નું ક્ષેત્રફળ = SP_3P_4 નું ક્ષેત્રફળ

ગ્રહ જ્યારે સૂર્યથી દૂર હોય ત્યારે તેની કક્ષામાં ધીમે ફરતા હોય છે અને નજીક હોય ત્યારે વધારે ઝડપથી ફરતા હોય છે, તેવાં અવલોકનો પરથી આ નિયમ મળેલ છે.

એકમસમયમાં આંતરેલ ક્ષેત્રફળને આપણે ક્ષેત્રીય વેગ (= ક્ષેત્રફળ/સમય) areal velocity કહી શકીએ અને આ નિયમ ક્ષેત્રીય વેગ અચળ રહે છે તેમ દર્શાવે છે. આ બાબત પ્રકરણ 2માં પણ તમે જોઈ ગયા છો.

ત્રીજો નિયમ (આવર્તકાળનો નિયમ) Third Law (Law of Period) : "કોઈ પણ ગ્રહના પરિભ્રમણના આવર્તકાળ (T)નો વર્ગ તેની લંબવૃત્તીય કક્ષાની અર્ધ-દીર્ઘ અક્ષ (a)ના ઘનના સમપ્રમાણમાં હોય છે." એટલે કે $T^2 \propto a^3$.

આવર્તકાળ (T) એટલે એક પરિભ્રમણ પૂરું કરવા લાગતો સમય.

નીચેના ટેબલમાં નમૂનારૂપે આપેલ કેટલાક ગ્રહોના ઉદાહરણ પરથી $T^2/a^3 =$ અચળ અને તેથી $T^2 \alpha a^3$ હોય છે, તેમ તમે જોઈ શકશો.

ટેબલ 3.1 : (કેટલાક ગ્રહો માટે T^2/a^3 નાં મૂલ્ય) (આ ટેબલ માત્ર જાણકારી માટે છે.)

ગ્રહ	а	T	T^2/a^3
	m	year	year ² /m ³
બુધ	5.79×10^{10}	0.24	2.95×10^{-34}
પૃથ્લી	15×10^{10}	1.0	2.96×10^{-34}
મંગળ	22.8×10^{10}	1.88	2.98×10^{-34}
શનિ	143×10^{10}	29.5	2.98× 10 ⁻³⁴

ગુરુત્વાકર્ષણની શોધ : માત્ર જાણકારી માટે :

ન્યૂટને સફરજનને નીચે પડતું જોયું આકૃતિ 3.4

એક દંતકથા પ્રમાણે ઝાડ નીચે બેઠેલા ન્યૂટને ઝાડ પરથી સફરજનને નીચે પડતું જોયું. (તે ખાઈ જવાને બદલે !) ''તે નીચે જ કેમ પડ્યું ?'' - તેના ગહન ચિંતનમાં તે ડૂબી ગયો. આવા ચિંતનના પરિણામ-સ્વરૂપે ન્યૂટને ગુરુત્વાકર્ષણના નિયમની શોધ કરી. તેની વિચારયાત્રા કંઈક અંશે આવી હતી : (i) પૃથ્વીની સપાટી નજીક મુક્તપતન કરતા પદાર્થનો પ્રવેગ $9.8~\text{m/s}^2$ છે, તે જાણીતું હતું. તેથી સફરજનનો પ્રવેગ $a_{\text{apple}}=9.8~\text{m/s}^2$. (ii) પૃથ્વીની આસપાસ વર્તુળભ્રમણ કરતા ચંદ્રનો પ્રવેગ $a_{\text{moon}}=v^2/r_m$ પૃથ્વીના કેન્દ્ર તરફ હોય છે. જયાં $r_m=$ ચંદ્રની કક્ષાની ત્રિજયા = 3.84×10^5 km. ચંદ્રનો પૃથ્વીની આસપાસના ભ્રમણનો આવર્તકાળ $T_m=27.3$ દિવસ છે. આ પરથી $v=2\pi~r_m/T_m$ મેળવીને તેને ઉપરના સમીકરણમાં મૂક્તાં $a_{\text{moon}}=0.0027~\text{m/s}^2$ મળે છે.

$$\therefore \frac{a_{apple}}{a_{moon}} = \frac{9.8}{0.0027} = 3600 \tag{1}$$

વળી પૃથ્વીના કેન્દ્રથી તેમનાં અંતરોનો ગુજ્ઞોત્તર

$$\frac{r_{apple}}{r_{moon}} = \frac{6400 \ km}{3.84 \times 10^5 km} = \frac{1}{60}$$
 (2)

જ્યાં r_{apple} = પૃથ્વીની ત્રિજ્યા જેટલું અંતર. પરિશામ (1) અને (2) પરથી ન્યૂટનને જણાયું કે, પદાર્થનો પ્રવેગ, પૃથ્વીના કેન્દ્રથી તેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે, $(a \propto \frac{1}{r^2})$. તેથી પૃથ્વી વડે

m દળના પદાર્થ પર લાગતું બળ $\propto \frac{m}{r^2}$.

હવે ન્યૂટનના ગતિના ત્રીજા નિયમ અનુસાર આ પદાર્થ પણ તેટલા જ મૂલ્યનું બળ પૃથ્વી પર વિરુદ્ધ દિશામાં લગાડે, તેથી બળનું મૂલ્ય પૃથ્વીના દળ (M)ને પણ સમપ્રમાણમાં હશે. આમ, $F \propto \frac{Mm}{r^2}$ અથવા $F = \frac{GMm}{r^2}$ મળે, જ્યાં G = અચળાંક.

આ મહાન વૈજ્ઞાનિક શોધના પાયામાં ન્યૂટનની કેટલીક ક્રાંતિકારી માન્યતા હતી. ન્યૂટને એમ માન્યું હતું કે પૃથ્વી પરના પદાર્થો માટે તેમજ આકાશી પદાર્થો માટે કુદરતના નિયમો (laws of nature) એકસમાન છે.

આથી પૃથ્વી અને સફરજન વચ્ચેનું બળ તથા પૃથ્વી અને ચંદ્ર વચ્ચેનું બળ એક જ નિયમને અનુસરતા હોવા જોઈએ. આજે તો આપણને આ વિધાન બહુ સાહજિક (obvious) લાગે પણ ન્યૂટનના તે સમયમાં પૃથ્વી પરના પદાર્થો માટેના અને આકાશી પદાર્થો માટેના નિયમો અલગ-અલગ હોવાની માન્યતા હતી. તેથી ન્યૂટનની માન્યતા ખરેખર ક્રાંતિકારી હતી.

3.3 ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ (Newton's Universal Law of Gravitation)

ન્યૂટને આપેલો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ નીચે મુજબ છે :

"વિશ્વમાંનો દરેક કણ બીજા દરેક કણ પર આકર્ષી બળ લગાડે છે, જેનું મૂલ્ય તેમનાં દળોના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે." આ બળની દિશા તેમને જોડતી રેખા પર હોય છે. આ બળને ગુરુત્વાકર્ષણ બળ, અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી બળ અથવા ગુરુત્વાકર્ષી બળ અથવા

આ નિયમ મુજબ દળ $m_{_1}$ ધરાવતા $rac{1}{2}$ 1 પર તેનાથી r અંતરે રહેલા બીજા દળ $m_{_2}$ ધરાવતા $rac{1}{2}$ વડે લાગતા ગુરુત્વાકર્ષણ બળનું મૂલ્ય

$$|\overrightarrow{F_{12}}| = \frac{Gm_1m_2}{r^2}$$
 (3.3.1)

આ બળની દિશા ક્રેશ 1થી ક્રેશ 2 તરફ $(\overrightarrow{r_{12}}$ ની દિશામાં) છે. (જુઓ આકૃતિ 3.5)

અત્રે, G એ અચળાંક છે અને તેને ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક કહે છે, કારણ કે તેનું મૂલ્ય સમગ્ર વિશ્વમાં બધાં સ્થળે અને બધા સમયે એકસમાન જ હોય

છે. Gનું મૂલ્ય સૌપ્રથમ કૅવેન્ડિશ નામના વિજ્ઞાનીએ પ્રયોગ પરથી મેળવ્યું હતું. ત્યાર બાદ ઘણા વિજ્ઞાનીઓએ પણ વધુ ચોકસાઈપૂર્વક મેળવ્યું હતું. હાલમાં Gનું સ્વીકૃત મૂલ્ય 6.67×10^{-11} N m^2/kg^2 છે. Gનું પારિમાણિક સૂત્ર M^{-1} L^3 T^{-2} છે.

સમીકરણ (3.3.1)ને સદિશ સ્વરૂપમાં લખવા માટે આકૃતિ 3.5 ને ધ્યાનમાં લો.

ગુરુત્વબળના સૂત્રનું સદિશ સ્વરૂપ મેળવવું આકૃતિ 3.5

આકૃતિ પરથી,

$$\overrightarrow{r_{12}} = \overrightarrow{r_2} - \overrightarrow{r_1}$$

$$\stackrel{\wedge}{r_{12}} = \frac{\stackrel{\rightarrow}{r_{12}}}{|\stackrel{\rightarrow}{r_{12}}|} = \frac{\stackrel{\rightarrow}{r_2} - \stackrel{\rightarrow}{r_1}}{|\stackrel{\rightarrow}{r_{12}}|}$$

$$= \frac{\stackrel{\rightarrow}{r_2} - \stackrel{\rightarrow}{r_1}}{|\stackrel{\rightarrow}{r_1}|} \qquad (3.3.2)$$

અહીં $r=ert_{12}^{
ightarrow}ert$ આકૃતિ પરથી સ્પષ્ટ છે કે,

ગુરુત્વાકર્ષણ બળો પરસ્પર ક્રિયાગત બળો છે. તેથી જેટલું બળ કણ 1 પર કણ 2 વડે $\left(\overrightarrow{F_{12}}\right)$ લાગે છે. તેટલું જ બળ કણ 2 પર કણ 1 વડે $\left(\overrightarrow{F_{21}}\right)$ વિરુદ્ધ દિશામાં લાગે છે.

$$\therefore \begin{bmatrix} \overrightarrow{F_{21}} \\ \text{લાગતું બળ} \end{bmatrix} = \frac{-G \, m_1 \, m_2}{r^2} \, \hat{r}_{12} = \frac{G \, m_1 \, m_2}{r^2} \, \hat{r}_{21}$$
(3.3.4)

આ બંને બળો $\overrightarrow{F_{12}}$ અને $\overrightarrow{F_{21}}$ આકૃતિ 3.6માં દર્શાવ્યાં છે.

બે ક્ક્ષ પરનાં પરસ્પર બળો આકૃતિ 3.6

વિસ્તૃત પદાર્થ (extended object) વડે લાગતું બળ : વિસ્તૃત પદાર્થને આપણે બિંદુવત્ ક્શોના સમૂહ તરીકે લઈ શકીએ. આવા વિસ્તૃત પદાર્થ વડે કોઈ એક બિંદુવત્ ક્શા પર લાગતું કુલ બળ, વિસ્તૃત પદાર્થમાંના દરેક બિંદુવત્ ક્શા ઘરા તે ક્શા પર લાગતા વ્યક્તિગત બળોના સદિશ સરવાળા જેટલું થાય છે. એટલે કે ક્શા 1 પર વિસ્તૃત પદાર્થ દ્વારા લાગતું કુલ બળ,

$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14} + \dots$$
 (3.3.5)

$$= \frac{G m_1 m_2}{r_{12}^2} \hat{r}_{12} + \frac{G m_1 m_3}{r_{13}^2} \hat{r}_{13} + \frac{G m_1 m_4}{r_{14}^2} \hat{r}_{14} + \dots (3.3.6)$$

આ જ રીતે આપશે એક વિસ્તૃત પદાર્થના દરેક કશ વડે બીજા વિસ્તૃત પદાર્થના દરેક કશ પર લાગતાં બળોના સિંદશ સરવાળા પરથી તે પદાર્થ પર લાગતું કુલ બળ શોધી શકીએ છીએ. કલનશાસ્ત્રની મદદથી આવી ક્રિયા સહેલાઈથી કરી શકીએ છીએ. ખાસ કિસ્સાઓ તરીકે આપશે બે બાબતોની નોંધ લઈશું : (1) સમાન ઘનતાવાળા પોલા ગોળાકાર કવચ વડે કવચની બહાર આવેલા બિંદુવત્ કશ પર લાગતું ગુરુત્વબળ, જાશે કે કવચનું બધું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયું હોય તેમ ગણીને મળતા બળ જેટલું હોય છે.

[ગુણાત્મક સમજૂતી — માત્ર જાણકારી માટે]

r > R, માટે કવચ વડે લાગતું બળ કવચના કેન્દ્ર તરફ છે આકૃતિ 3.7

કવચ પરના કણ 2 અને 3 વડે કણ 1 પર લાગતા

બળો $\overrightarrow{F_{12}}$ અને $\overrightarrow{F_{13}}$ ના બે ઘટકો (i) OPને સમાંતર અને (ii) OP ને લંબ વિચારો. OPને લંબઘટકો નાબૂદ થશે અને OPને સમાંતર ઘટકોનો સરવાળો થશે. આવી ક્રિયા OP રેખાને અનુલક્ષીને સંમિત સ્થાનો ધરાવતા કવચના કેન્દ્રો માટે વિચારતાં P પરનું પરિણામી બળ કવચના કેન્દ્ર પર લાગતું જોઈ શકાય છે. આપણે સાબિતિ આપ્યા વિના એમ સ્વીકારી લઈશું કે આ બળનું મૂલ્ય ઉપર જણાવ્યા મુજબ મેળવી શકાય છે.]

(2) સમાન ઘનતાવાળા પોલા ગોળાકાર કવચ વડે કવચની અંદરના કોઈ પણ બિંદુએ આવેલ કણ પર લાગતું ગુરુત્વાકર્ષણ બળ શૂન્ય હોય છે.

[ગુષાત્મક સમજૂતી -- માત્ર જાણકારી માટે : કવચના જુદા-જુદા કર્ણો આપેલ ક્ષ પર જુદી-જુદી બધી દિશાઓમાં આકર્ષણબળ લગાડે છે અને આવાં બધાં બળોનું પરિણામી બળ શૂન્ય થાય છે. આને પણ આપણે સાબિતી વિના સ્વીકારી લઈશું.]

3.4 ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક (Universal Constant of Gravitation)

ન્યૂટનના ગુરુત્વાકર્ષણના સાર્વત્રિક નિયમને રજૂ કરતા સૂત્ર (3.3.1)માં આવતા અચળાંક Gનું મૂલ્ય સૌપ્રથમ ઇંગ્લિશ વિજ્ઞાની કેવેન્ડીશે 1798માં પ્રાયોગિક રીતે મેળવ્યું હતું. તેની પ્રાયોગિક ગોઠવણ સંજ્ઞાત્મક રીતે આકૃતિ 3.8માં દર્શાવી છે.

એક સ્થિર આધાર પરથી ધાતુના પાતળા તાર વડે લટકાવેલા લાંબા સિળયાના બે છેડે સીસાના નાના સમાન ગોળા A અને B લગાડેલા છે. સીસાના બીજા બે મોટા સમાન ગોળા નાના ગોળાઓની નજીક વિરુદ્ધ બાજુએ સમાન અંતરે લાવવામાં આવે છે. મોટા ગોળા વડે નાના ગોળા પર લાગતાં ગુરુત્વબળો સમાન મૂલ્યનાં અને વિરુદ્ધ દિશામાં છે. આ બળોથી ટૉર્ક રચાય છે, આથી સિળયો તાર OMની આસપાસ ભ્રમણ કરે છે. આમ તાર OM માં વળ ચઢે છે અને તેનો વિરોધ કરતું પુનઃસ્થાપક ટૉર્ક તારમાં (સ્થિતિસ્થાપકતાને લીધે) ઉત્પન્ન થાય છે.

ગુરુત્વબળોથી રચાતું ટૉર્ક, પુનઃસ્થાપક ટૉર્ક જેટલું બને ત્યારે તંત્ર સંતુલનમાં આવે છે અને સ્થિર થાય છે. આ સ્થિતિમાં તારમાં ચઢેલો વળ θ માપવામાં આવે છે. વળી, આ સ્થિતિમાં મોટા ગોળાના સ્થાન P અને Q (અથવા P'અને Q') AB રેખાને લંબરેખાઓ પર છે.

ધારો કે દરેક મોટા ગોળાનું દળ = M દરેક નાના ગોળાનું દળ = m

સંતુલનસ્થિતિમાં તેમનાં કેન્દ્રો વચ્ચેનું અંતર = AP = BQ = r.

સંતુલનસ્થિતિમાં તારમાં ચઢેલ વળ (કોણ) = θ તારમાં એકમ વળ દીઠ ઉદ્ભવતું પુનઃસ્થાપક ટૉર્ક = k

સળિયાની લંબાઈ AB = l. અત્રે મોટા ગોળા વડે નાના ગોળા પરનું ગુરૂત્વબળ

$$=\frac{\mathrm{G}\,\mathrm{M}\,m}{r^2}\tag{3.4.1}$$

આવાં બંને બળોથી રચાતું કુલ ટૉર્ક

$$= \left(\frac{GMm}{r^2}\right) (l) \tag{3.4.2}$$

અને પુનઃસ્થાપક ટૉર્ક
$$\tau = k\theta$$
 (3.4.3)

સંતુલનસ્થિતિમાં
$$\left(\frac{\operatorname{GM} m}{r^2}\right)(l) = k\theta$$
 (3.4.4)

$$\therefore G = \frac{k\theta r^2}{Mml}$$
 (3.4.5)

[અહીં θ નું મૂલ્ય તાર પર લગાડેલા એક નાના અરીસાની મદદથી લેમ્પ અને સ્કેલની રીતે મેળવવામાં આવે છે. આ બાબતો આકૃતિમાં દર્શાવેલ નથી. વળી, kનું મૂલ્ય એક અન્ય પ્રકારના બીજા પ્રયોગમાં જાણીતું ટૉર્ક au લગાડીને ઉદ્દભવતો વળ θ માપીને $k=rac{ au}{ heta}$ પરથી

ળવાય છે.] આમ θના માપન પરથી Gનું મૂલ્યાંકન થઈ શકે છે.

ઉદાહરણ 1 : 25 kg અને 10 kg દળના પદાર્થોના સ્થાનસદિશો અનુક્રમે (4, 7, 5) m અને (1, 3, 5) m છે, તો 25 kgના પદાર્થ પર 10 kgના પદાર્થ વડે લાગતા બળનો સદિશ મેળવો. ($G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ લો.)

ઉકેલ : અત્રે
$$m_1 = 25$$
 kg, $m_2 = 10$ kg,

$$\overrightarrow{r_1} = (4, 7, 5)m, \overrightarrow{r_2} = (1, 3, 5)m, \overrightarrow{F_{12}} = ?$$

$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1 = (1, 3, 5) - (4, 7, 5) = (-3, -4, 0) m$$

$$\therefore r = |\overrightarrow{r_{12}}| = \sqrt{(-3)^2 + (-4)^2 + (0)^2} = 5m$$

અને
$$\stackrel{\wedge}{r_{12}} = \frac{\stackrel{\rightarrow}{r_{12}}}{|\stackrel{\rightarrow}{r_{12}}|} = \frac{(-3, -4, 0)}{5}$$

$$= (-0.6, -0.8, 0) m$$

સમીકરણ (1) માં આ મૂલ્યો મૂકતાં,

$$\vec{F}_{12} = (6.67 \times 10^{-11}) \frac{(25 \times 10)}{5^2} (-0.6, -0.8, 0)$$

=
$$(6.67 \times 10^{-10}) (-0.6\hat{i} - 0.8\hat{j}) N$$

ઉદાહરણ 2 : સમબાજુ ત્રિકોણના દરેક શિરોબિંદુ પર m kg દળ ધરાવતો ક્રણ રહેલ છે. આ ત્રિકોણના મધ્યકેન્દ્ર પર M kg દળનો ક્રણ મૂકવામાં આવે, તો તેના પર લાગતું ગુરુત્વાકર્ષણ બળ શોધો. મધ્યકેન્દ્રથી શિરોબિંદુ વચ્ચેનું અંતર 1 m છે.

ઉકેલ : આકૃતિ 3.9માં દર્શાવ્યા મુજબ ત્રિકોશના મધ્યકેન્દ્ર પર જેનું ઊગમબિંદુ હોય તેવી યામાક્ષ પદ્ધતિ સ્વીકારતાં $\angle XGC = \angle X'GB = 30^\circ$.

G આગળના કણ પર A આગળના કણ વડે લાગતું

બળ,
$$\overrightarrow{F}_{GA} = \frac{Gm(M)}{1^2} \hat{j}$$
 (1)

તે જ રીતે B અને C આગળના ક્યોને લીધે લાગતાં બળો અનુક્રમે

$$\vec{F}_{GB} = \frac{G(m) (M)}{1^2} [-\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ] (2)$$

$$\vec{F}_{GC} = \frac{G(m)(M)}{(1^2)} [\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$
 (3)

.: G બિંદુએ રહેલા કણ પર લાગતું પરિણામી બળ

$$\vec{F} = \vec{F}_{GA} + \vec{F}_{GB} + \vec{F}_{GC}$$

$$= \frac{Gm (M)}{1^2} \hat{j}$$

$$+ \frac{Gm (M)}{1^2} [-\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$

$$+ \frac{Gm (M)}{1^2} [\hat{i} \cos 30^\circ - \hat{j} \sin 30^\circ]$$

$$= 0$$

નોંધ : સદિશોના સરવાળા માટેનો ત્રિકોણનો નિયમ વાપરીને પણ તમે ઉપર મુજબનું પરિણામ મેળવી શકો. ઉપરાંત અહીં બળોને દર્શાવતા સદિશો વડે બંધ ગાળો રચાતો હોવાનું જોઈ શકાય છે અને તે પરથી પણ પરિણામી બળ શૂન્ય હોવાનું કહી શકાશે.

3.5 ગુરુત્વપ્રવેગ અને તેમાં ફેરફારો (Gravitational Acceleration and Variations in it)

3.5 (a) ગુરુત્વપ્રવેગ (Gravitational Acceleration) : ગુરુત્વાકર્ષી બળને લીધે પદાર્થમાં ઉદ્ભવતા પ્રવેગને ગુરુત્વપ્રવેગ (g) કહે છે.

પૃથ્વીને સંપૂર્શ ગોળાકાર ગણીને અને પૃથ્વીની અંદર ઘનતા બધે એકસમાન છે એમ માનીને આપણે જુદાં-જુદાં બિંદુઓએ પૃથ્વીને લીધે ઉદ્ભવતા ગુરુત્વપ્રવેગ અંગે વિચારીશું. આપણે પૃથ્વીને અસંખ્ય પોલી સંકેન્દ્રિય ગોળાકાર કવચોની બનેલી કલ્પી શકીએ. હવે પૃથ્વીની બહારના બિંદુએ આવેલો ક્ષ આ બધી કવચોની પણ બહાર છે અને તેથી તેવા ક્ષ પર દરેક કવચથી લાગતું બળ શોધવામાં દરેક કવચનું દળ પૃથ્વીના કેન્દ્ર પર કેન્દ્રિત થયેલું ગણી શકીએ (પરિચ્છેદ 3.3માં જણાવ્યા મુજબ). આમ, સમગ્ર પૃથ્વી વડે તે ક્ષ પર લાગતું બળ શોધવા માટે સમગ્ર પૃથ્વીનું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયેલું ગણી શકીએ.

ધારો કે પૃથ્વીનું દળ \mathbf{M}_{p} અને ત્રિજ્યા \mathbf{R}_{p} છે. પૃથ્વીના કેન્દ્રથી r અંતરે, પૃથ્વીની બહાર આવેલા (અહીં $r > \mathbf{R}_{p}$) m દળના કણ પર લાગતું પૃથ્વીનું ગુરૂત્વબળ

$$F = \frac{GM_e m}{r^2} \ \dot{\vartheta}.$$

તેથી ન્યૂટનના ગતિના બીજા નિયમ પરથી આપશે

ગુરુત્વપ્રવેગ
$$g = \frac{F}{m} = \frac{GM_e}{r^2}$$
 લખી શકીએ. (3.5.1)

હવે પૃથ્વીની સપાટી પરના ક્રણ માટે $r=\mathrm{R}_{\varrho}.$. પૃથ્વીની સપાટી પરના ક્રણ માટે,

ગુરુત્વપ્રવેગ
$$g_e = \frac{GM_e}{R_e^2}$$
 (3.5.2)

આપણે પૃથ્વીને સંપૂર્ણ ગોળાકાર ધારી હોવાથી આ g_{p} નું મૂલ્ય પૃથ્વીની સમગ્ર સપાટી પરનાં બધાં સ્થળોએ એકસમાન મળે. વાસ્તવમાં પૃથ્વી સંપૂર્ણ ગોળાકાર નથી. પણ વિષુવવૃત્ત પાસે થોડીક ઉપસેલી છે અને ધ્રુવો પાસે સહેજ ચપટી છે. ધ્રુવો પાસેની પૃથ્વીની ત્રિજ્યા લગભગ 21 km વધુ છે. આથી ધ્રુવો પાસેનું g_{p} નું મૂલ્ય વિષુવવૃત્ત પાસેના g_{p} ના મૂલ્ય કરતાં સહેજ વધારે હોય છે, પરંતુ પૃથ્વીની સમગ્ર સપાટી પરનાં જુદાં-જુદાં સ્થળોએ g_{p} ના મૂલ્યમાં જણાતો તફાવત અત્યંત સૂક્ષ્મ હોવાથી પૃથ્વીની સમગ્ર સપાટી પરનાં બધાં સ્થળો માટે વ્યાવહારિક હેતુઓ માટે g_{p} નું મૂલ્ય એક-સમાન લેવામાં આવે છે. આ g_{p} નું પ્રાયોગિક મૂલ્ય 9.8 m/s^{2} માલૂમ પડેલ છે.

તમે ઉપરના સમીકરણમાં ${
m M}_e=6 imes10^{24}~{
m kg}$ અને ${
m R}_e=6400~{
m km}$ લઈ ${
m g}_e$ નું મૂલ્ય ગણતરીથી મેળવો.

ઉદાહરણ 3 : જો કોઈ કારણસર પૃથ્વીનું સંકોચન થઈ (તેનું દળ અચળ રહે તે રીતે) પૃથ્વીની ત્રિજ્યા હાલની ત્રિજ્યાના 60% થઈ જાય, તો પૃથ્વીની સપાટી પરના ગુરૂત્વપ્રવેગના મૃલ્યમાં કેટલા ટકાનો ફેરફાર થાય ?

ઉંકેલ : ગુરુત્વપ્રવેગનું મૂળ મૂલ્ય
$$g_e=rac{\mathrm{GM}_e}{\mathrm{R}^2_e}$$

પૃથ્વીની નવી ત્રિજ્યા R' $= \frac{60}{100} \, \mathrm{R}_e = 0.6 \, \, \mathrm{R}_e$

$$\therefore$$
 ગુરુત્વપ્રવેગનું નવું મૂલ્ય $g'=rac{\mathrm{GM}_e}{\mathrm{R}^{'2}}$

$$= \frac{GM_e}{(0.6 R_e)^2} = \frac{g_e}{0.36}$$
$$= \frac{25}{9} g_e$$

∴ ગુરૂત્વપ્રવેગમાં થતો વધારો

$$= g' - g_e = \frac{25}{9}g_e - g_e = \frac{16}{9}g_e$$

ગુરુત્વપ્રવેગના મૂલ્યમાં ટકાવાર વધારો

=
$$\frac{q + 12}{4 m + e4} \times 100$$

= $\frac{16}{9} \times \frac{g_e}{g_e} \times 100$
= 177.8 %

ઉદાહરણ 4 : જો પૃથ્વીના દળ અને ત્રિજ્યા બંનેમાં 1 ટકાનો ઘટાડો થાય તો સપાટી પરના ગુરુત્વપ્રવેગમાં કેટલા ટકાનો ફેરફાર થાય ?

ઉકેલ : ગુરુત્વપ્રવેગનું મૂળ મૂલ્ય
$$g=rac{\mathrm{GM}_e}{\mathrm{R}_e^2}$$

હવે જો ${\rm M_e}'=0.99~{\rm M_e}$ અને ${\rm R_e}'=0.99~{\rm R_e}$, થાય તો ગુરુત્વપ્રવેગનું નવું મૂલ્ય

$$g' = \frac{GM'_e}{R'_e^2} = \frac{G \times 0.99 M_e}{(0.99 R_e)^2}$$

$$= 1.01 \left(\frac{GM_e}{R_e^2}\right)$$

$$= 1.01 g$$

 \therefore ગુરુત્વપ્રવેગમાં ફેરફાર = g' - g= $1.01 \ g - g = 0.01 \ g$

∴ ગુરુત્વપ્રવેગમાં ટુકાવાર ફેરફાર
$$= \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \times 100$$

$$= \frac{0.01 \, g}{g} \times 100$$

$$= 1 \, \%$$

આમ, gના મૂલ્યમાં 1 ટકાનો વધારો થાય.

3.5(b) ગુરુત્વપ્રવેગ કુમાં ઊંચાઈ સાથે ફેરફાર (Variation in Gravitational Acceleration g with Altitude):

પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ $g_e = rac{\mathrm{GM}_e}{\mathrm{R}_e^2}$

પૃથ્વીની સપાટીથી h ઊંચાઈએ ગુરુત્વપ્રવેગ આકૃતિ 3.10

પૃથ્વીની સપાટીથી h ઊંચાઈએ આવેલા બિંદુ Pનું પૃથ્વીના કેન્દ્રથી અંતર $r=R_{\rho}+h$ છે.

 \therefore આ બિંદુએ m દળના પદાર્થ પર લાગતું પૃથ્વીનું ગુરૂત્વબળ

$$F(h) = \frac{GM_e m}{(R_e + h)^2}$$
 (3.5.3)

∴ P બિંદુએ ગુરુત્વપ્રવેગ

$$g(h) = \frac{GM_e}{(R_e + h)^2}$$
 (3.5.4)

$$\therefore \frac{g(h)}{g_e} = \frac{{R_e}^2}{(R_e + h)^2}$$

$$= \frac{{R_e}^2}{{R_e}^2 \left[1 + \frac{h}{R_e}\right]^2}$$
 (3.5.5)

$$\therefore g(h) = \frac{g_e}{\left[1 + \frac{h}{R_e}\right]^2}$$
 (3.5.6)

આ પરથી સ્પષ્ટ છે કે $g(h) < g_e$ સમીકરણ (3.5.6)

પરથી
$$g(h) = g_e \left[1 + \frac{h}{R_e} \right]^{-2}$$
 (3.5.7)

$$=g_{e}\,\left[1\,-\,rac{2h}{{
m R}_{e}}\,+\,rac{h}{{
m R}_{e}}\,\,$$
 ની એક કરતાં મોટી ઘાતનાં પદો] (3.5.8) (દ્વિપદી પ્રમેયનો ઉપયોગ કરતાં)

જો $h << \mathrm{R}_e$, હોય તો $\dfrac{h}{\mathrm{R}_e}$ નાં એક કરતાં મોટી ઘાતનાં પદોને અવગણી શકાય છે. એ સંજોગોમાં

$$g(h) = g_e \left[1 - \frac{2h}{R_e} \right] \tag{3.5.9}$$

સમીકરણ (3.5.6) કોઈ પણ ઊંચાઈ (h) માટે વાપરી શકાય છે. જ્યારે સમીકરણ (3.5.9) \$ક્ત $h << R_e$ હોય ત્યારે જ વાપરી શકાય છે.

જોકે પૃથ્વીની સપાટીથી થોડી ઊંચાઈ માટે gનું મૂલ્ય g_e જેટલું લગભગ લઈ શકાય છે. આ બાબત એક ઉદાહરણથી સમજીએ. પૃથ્વીની સપાટીથી $h=10~\mathrm{km}$ ઊંચાઈ માટે g શોધવા માટે ઉપરના સમીકરણ (3.5.9)માં $R_e=6400~\mathrm{km}$ અને $g_e=9.8~\mathrm{m/s^2}$ મૂકતાં,

$$\therefore g(h = 10 \text{ km}) = 9.8 \left[1 - \frac{(2)(10)}{6400} \right]$$
$$= 9.8 - 0.028$$
$$= 9.772$$
$$\approx 9.8 \text{ m/s}^2.$$

આમ, પૃથ્વીની સમગ્ર સપાટી પર તેમજ સપાટીની +જીક થોડીક ઊંચાઈના વિસ્તારમાં પણ $g=g_e=9.8~\mathrm{m/s^2}$ વ્યાવહારિક હેતુઓ પૂરતું લઈ શકાય છે.

ઉદાહરણ 5: સાબિત કરો કે પૃથ્વીની સપાટીથી પૃથ્વીની ત્રિજ્યા જેટલી ઊંચાઈએ આવેલા સ્થળે gમાં થતા ફેરફારનો દર અને પૃથ્વીની સપાટી પરના gના

મૂલ્યનો ગુણોત્તર $\frac{-1}{4R_{\rho}}$.

ઉકેલ: પૃથ્વીના કેન્દ્રથી $r \geq R_e$ જેટલા અંતરે ગુરૂત્વપ્રવેગ $g(r) = GM/r^2$ છે.

આ સમીકરણનું અંતર r સાપેક્ષે વિકલન કરતાં,

$$\left\lfloor \frac{dg(r)}{dr} \right\rfloor = \frac{-2GM_e}{r^3}$$

વળી,
$$r = R_e + h = R_e + R_e = 2R_e$$

$$\therefore \left[\frac{dg(r)}{dr} \right]_{2R_e} = \frac{-2GM_e}{(2R_e)^3} = \frac{-2GM_e}{8R_e^3}$$

પરંતુ પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ $g_e = rac{\mathrm{GM}_e}{\mathrm{R}_{\scriptscriptstyle
ho}^{\ 2}}$

$$\therefore \frac{\left[\frac{dg(r)}{dr}\right]_{2R_e}}{g_e} = \frac{-2GM_e}{8R_e^3} \times \frac{{R_e}^2}{GM_e} = \frac{-1}{4R_e}$$

3.5(c) ગુરુત્વપ્રવેગ g માં પૃથ્વીની સપાટીથી ઊંડાઈ સાથે ફેરફાર (Variation in the Gravitational Acceleration g with Depth from the Surface of the Earth) :

પૃથ્વીની સપાટીથી ઊંડાઈ સાથે *gમાં* ફેરફાર આકૃતિ 3.11

પૃથ્વીની સપાટીથી d ઊંડાઈએ P બિંદુએ રહેલ m દળના કણનો વિચાર કરો. તેનું પૃથ્વીના કેન્દ્રથી અંતર $r=\mathrm{R}_{\rho}-d$ છે.

આ ક્યા પર લાગતું પૃથ્વીનું ગુરુત્વાકર્ષણ બળ શોધવા માટે આપણે પૃથ્વીને $r=R_e-d$ ત્રિજ્યાના નાના નક્કર ગોળા અને તેની ઉપર d જાડાઈની ગોળાકાર કવચની બનેલી કલ્પી શકીએ. P બિંદુ આગળનો આ ક્યા આ ગોળાકાર કવચની અંદર આવેલો છે. તેથી આ ગોળાકાર કવચને લીધે તે ક્યા પર લાગતું બળ શૂન્ય છે (પરિચ્છેદ 3.3માં સમજાવ્યા મુજબ). વળી, આ ક્યા r ત્રિજ્યાના નાના (છાયાંકિત કરેલા) ગોળાની બહારની સપાટી પર છે. આથી તે ક્યા પર લાગતું બળ નાના ગોળાનું સમગ્ર દળ (M') તેના કેન્દ્ર O પર કેન્દ્રિત થયેલું ગણીને મેળવી શકાય છે.

જો પૃથ્વીની સમાન ઘનતા ρ હોય તો,

$$\rho = \frac{\text{gel so}}{\text{gel se}} = \frac{M_e}{\frac{4}{3}\pi R_e^3}$$
 (3. 5.10)

 \therefore અને r ત્રિજ્યાના નાના ગોળાનું દળ

$$M' = (\mathfrak{s}\mathfrak{E})$$
 (ધનતા)
$$= \left(\frac{4}{3}\pi r^3\right)(\rho) \tag{3.5.11}$$

∴ P આગળ ગુરુત્વપ્રવેગ,

$$g(r) = \frac{GM'}{r^2}$$

$$= \frac{G}{r^2} \left(\frac{4}{3}\pi r^3\right)(\rho)$$

$$= \frac{4}{3}\pi \ G\rho \ r \tag{3.5.12}$$

આ સમીકરણ પરથી પૃથ્વીની સપાટી $(r=\mathbf{R}_{\varrho})$ પર ગુરુત્વપ્રવેગ

$$g_e = \frac{4}{3}\pi G \rho R_e \tag{3.5.13}$$

સમીકરણ (3.5.12) અને (3.5.13) પરથી,

$$\frac{g(r)}{g_e} = \frac{r}{R_e} \tag{3.5.14}$$

$$\therefore g(r) = g_e \left(\frac{r}{R_e}\right) \tag{3.5.15}$$

સમીકરણ (3.5.12) અને (3.5.15) પરથી સ્પષ્ટ છે કે પૃથ્વીના કેન્દ્રથી સપાટી સુધી g(r)એ rના સમપ્રમાણમાં છે એટલે કે પૃથ્વીની અંદરના વિસ્તારમાં આવેલ બિંદુએ ગુરુત્વપ્રવેગ gનું મૂલ્ય પૃથ્વીના કેન્દ્રથી તે બિંદુના અંતરના સમપ્રમાણમાં હોય છે. વળી, પૃથ્વીની સપાટીની બહારના

વિસ્તારમાં $g(r) = \operatorname{GM}_{\ell} r^2$ પરથી $g(r) \propto \frac{1}{r^2}$. મુજબ બદલાય છે. આથી પૃથ્વીના કેન્દ્ર (0)થી શરૂ કરતાં સપાટી સુધી અંતર (r)ના સમપ્રમાણમાં g(r)નું મૂલ્ય વધે છે. પછી સપાટીની બહાર g(r)નું મૂલ્ય અંતરના વ્યસ્ત વર્ગ મુજબ ઘટે છે. gમાં થતા આવા ફેરફાર નીચેની આકૃતિ 3.12માં દર્શાવ્યા છે.

પૃથ્વીના કેન્દ્રથી અંતર r સાથે gમાં ફેરફાર

આકૃતિ 3.12

સમીકરણ (3.5.15)માં $r=R_e-d$ મૂકતા ગુરુત્વપ્રવેગનું મૂલ્ય પૃથ્વીની સપાટીથી ઊંડાઈ dના પદમાં મળે છે. તેને g(d), તરીકે દર્શાવીશું.

$$\therefore g(d) = \frac{g_e}{R_e} (R_e - d)$$

$$= g_e \left[1 - \frac{d}{R_e} \right] \qquad (3.5.16)$$

આ દર્શાવે છે કે d ઊંડાઈએ ગુરુત્વપ્રવેગનું મૂલ્ય સપાટી પરના મૂલ્ય કરતાં ઓછું છે.

આમ, પૃથ્વીના ગુરુત્વપ્રવેગનું મૂલ્ય તેની સપાટી પર સૌથી વધુ છે અને ત્યાંથી ઉપર કે નીચે જતાં તે ઘટતું જાય છે અને પૃથ્વીના કેન્દ્ર પર શૂન્ય બને છે. આ નોંધપાત્ર બાબત છે.

3.5 (d) પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક ગુરુત્વપ્રવેગ g'માં થતો ફેરફાર (Variation in effective Gravitational Acceleration g' with Lattitute Due to Earth's Rotation) :

પૃથ્વીની સપાટી પરના આપેલા સ્થળને પૃથ્વીના કેન્દ્ર સાથે જોડતી રેખાએ વિષુવવૃત્તીય રેખા સાથે બનાવેલા ખૂણાને તે સ્થળનો અક્ષાંશ (lattitude) (λ) કહે છે. આથી વિષુવવૃત્ત પર અક્ષાંશ $\lambda=0^\circ$ અને ધ્રુવ પર અક્ષાંશ $\lambda=90^\circ$ થાય.

આકૃતિ (3.13)માં દર્શાવ્યા મુજબ પૃથ્વીની સપાટી પરના P સ્થાને અક્ષાંશ $\lambda = \angle POE$ છે. આ સ્થાને m દળના કણનો વિચાર કરો. તેના પર લાગતાં બળો તરીકે બે બળો વિચારવાનાં છે :

પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક g'માં ફેરફાર આકૃતિ 3.13

(1) પૃથ્વીનું ગુરુત્વબળ = mg, \overrightarrow{PO} દિશામાં(3.5.17)

(2) બીજું બળ સમજવા પૃથ્વીની ચાકગતિને ધ્યાનમાં લો. પૃથ્વી તેની ચાકગતિને કારણે પ્રવેગ ધરાવે છે. એટલે આ કણ પ્રવેગી નિર્દેશફ્રેમમાં છે. આ બિંદુએ તે નિર્દેશ-ફ્રેમનો પ્રવેગ = $\frac{v^2}{r}$ જેટલો \overrightarrow{PM} દિશામાં (એટલે કે વર્તુળમાર્ગના કેન્દ્ર તરફ) છે. આથી તેની વિરુદ્ધ દિશામાં એટલે કે \overrightarrow{MPQ} દિશામાં $\frac{v^2}{r}$ જેટલો ક્શાનો આભાસી

પ્રવેગ અને તેથી $\frac{mv^2}{r}$ જેટલું તેના પર આભાસી બળ

ગણવાનું છે. આ બળનો $\overset{
ightarrow}{\mathrm{PR}}$ દિશામાંનો ઘટક

$$= \frac{mv^2}{r} \cos \lambda \tag{3.5.18}$$

જે બીજું બળ આપશે ગણવાનું છે તે આ છે.

આમ સમીકરણ (3.5.17) અને (3.5.18) મુજબનાં બે બળો ગણતરીમાં લેતાં, P આગળના કણ પર પૃથ્વીના કેન્દ્ર તરફ લાગતું અસરકારક બળ

$$mg' = mg - \frac{mv^2}{r}\cos\lambda \qquad (3.5.19)$$

જ્યાં g' = આ સ્થાને પૃથ્વીની ચાકગતિને ધ્યાનમાં લઈને મળતો અસરકારક ગુરૂત્વપ્રવેગ

g =પૃથ્વીની ચાકગતિ ધ્યાનમાં લીધા સિવાય આ સ્થાને ગ્<u>ર</u>ત્વપ્રવેગ

$$\therefore g' = g - \frac{v^2}{r} \cos \lambda \tag{3.5.20}$$

પરંતુ $v=r\omega$ જ્યાં $\omega=$ પૃથ્વીની કોણીય ઝડપ

$$\therefore g' = g - \frac{(r\omega)^2}{r} \cos \lambda \qquad (3.5.21)$$

$$= g - r\omega^2 \cos \lambda \qquad (3.5.22)$$

આકૃતિ પરથી,
$$r = MP = R_e \cos \lambda$$
 (3.5.23)

$$\therefore g' = g - R_e \omega^2 \cos^2 \lambda \qquad (3.5.24)$$

અથવા
$$g' = g \left[1 - \frac{R_e \omega^2 \cos^2 \lambda}{g} \right]$$
 (3.5.25)

આ સમીકરણ (3.5.24) અથવા (3.5.25) પરથી પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે *g*માં થતા ફેરફારની માહિતી મળે છે. બે વિશિષ્ટ કિસ્સાઓની નોંધ લઈએ :

- (i) વિષુવવૃત્ત માટે, $\lambda = 0^{\circ}$, $\therefore \cos \lambda = 1$, $\therefore g' = g R_e \omega^2$, જે અસરકારક ગુરુત્વપ્રવેગનું લઘુતમ મૃલ્ય દર્શાવે છે.
- (ii) ધ્રુવ પર, $\lambda = 90^{\circ}$, $\cos \lambda = 0$, g' = g; જે અસરકારક ગુરુત્વપ્રવેગનું મહત્તમ મૂલ્ય દર્શાવે છે.

ઉદાહરણ 6 : પૃથ્વીના વિષુવવૃત્ત પર અસરકારક ગુરુત્વપ્રવેગ શૂન્ય થવા માટે પૃથ્વીની તેની અક્ષની આસપાસની ચાકગતિનો આવર્તકાળ કેટલો હોવો જોઈએ ?

ઉકેલ : વિષુવવૃત્ત પર અક્ષાંશ $\lambda=0^\circ$. પૃથ્વીની સપાટી પરના λ અક્ષાંશ ધરાવતા સ્થળે અસરકારક ગુરુત્વપ્રવેગ $g'=g-R_e\omega^2\cos^2\lambda...$ (સમીકરણ 3.5.24 પરથી). $R_e=$ પૃથ્વીની ત્રિજયા,

g =ચાકગતિ ધ્યાનમાં લીધા સિવાય પૃથ્વીની સપાટી પર ગુરૂત્વપ્રવેગ.

$$\omega =$$
પૃથ્વીની ચાકગતિની કોણીય ઝડપ $= \frac{2\pi}{T}$.

વિષુવવૃત્ત પર g'=0 થવા માટે આવર્તકાળ T શોધવાનો છે.

$$\therefore 0 = g - R_e \omega^2 \cos^2(0^\circ)$$

$$\therefore g = R_e \omega^2 \quad ...(\cos 0^\circ = 1)$$

$$= R_e \left(\frac{4\pi^2}{T^2}\right)$$

$$\therefore T^2 = 4\pi^2 \frac{R_e}{g} \therefore T = 2\pi \sqrt{\frac{R_e}{g}}$$

3.6 ગુરૂત્વાકર્ષી તીવ્રતા (Gravitational Intensity)

એક પદાર્થ વડે બીજા પદાર્થ પર લાગતું ગુરુત્વાકર્ષી બળ ન્યૂટનના ગુરુત્વાકર્ષણના નિયમ (સમીકરણ 3.3.1)પરથી મળે છે. એકબીજાથી દૂર રહેલા બે પદાર્થો વચ્ચે બળ લાગવાની આ પ્રક્રિયા (action at a distance)ને નીચે મુજબ ક્ષેત્ર દ્વારા થતી હોય તેમ સમજાવવામાં આવે છે.

(1) દરેક પદાર્થ તેના દળને લીધે પોતાની આસપાસ ગુરુત્વક્ષેત્ર ઉત્પન્ન કરે છે. (2) આ ક્ષેત્રમાં આવતા (કે રહેલા) બીજા પદાર્થ પર આ ક્ષેત્ર બળ લગાડે છે. આથી આવા ગુરુત્વક્ષેત્રની તીવ્રતા (પ્રબળતા) વિશે જાણવાનું મહત્ત્વનું છે.

"આપેલા પદાર્થ વડે આપેલા બિંદુએ એકમદળના પદાર્થ પર લાગતા ગુરુત્વાકર્ષી બળને તે બિંદુએ ગુરુત્વાકર્ષી ક્ષેત્રની તીવ્રતા (I) કહે છે." તેને ઘણી વાર ટૂંકમાં ગુરુત્વાકર્ષી ક્ષેત્ર, અથવા ગુરુત્વક્ષેત્ર અથવા ગુરુત્વીય તીવ્રતા અથવા ગુરુત્વાકર્ષી તીવ્રતા અથવા ગુરુત્વતીવ્રતા પણ કહે છે.

ન્યૂટનના ગુરુત્વાકર્ષણના નિયમનો ઉપયોગ કરીને આપણે ગુરુત્વતીવ્રતાનું સૂત્ર લખી શકીએ. યામાક્ષોના ઊગમબિંદુએ M દળના પદાર્થનો વિચાર કરો. તેના લીધે કોઈ P બિંદુએ ઉદ્ભવતી ગુરુત્વતીવ્રતા

$$\vec{I} = \frac{-GM(1)}{r^2} \hat{r} = \frac{-GM}{r^2} \hat{r}$$
 ...(3.6.1), જયાં

 $\overrightarrow{OP} = \hat{r}$ અને $\hat{r} = \overrightarrow{r}$ ની દિશા (એટલે \overrightarrow{OP})માંનો એકમ સદિશ. મૂલ્યમાં આપણે $I = \frac{GM}{r^2}$...(3.6.2) લખી શકીએ. તેનો એકમ N/kg અને પારિમાણિક સૂત્ર $\mathbf{M}^0\mathbf{L}^1\mathbf{T}^{-2}$ છે.

હવે જો કોઈ m દળના પદાર્થને આ P બિંદુ પર લાવીએ (અથવા ત્યાં રહેલો હોય) તો ગુરુત્વક્ષેત્ર વડે તેના

પર લાગતું બળ
$$\overrightarrow{F} = \overrightarrow{I} m = \frac{-GMm}{r^2} \hat{r}$$
 ..(3.6.3)

સમીકરણ (3.6.2) દર્શાવે છે કે પૃથ્વીને લીધે આપેલા બિંદુએ ગુરુત્વતીવ્રતાનું મૂલ્ય તે બિંદુ આગળના ગુરુત્વ પ્રવેગ જેટલું હોય છે. પરંતુ આ બે રાશિઓ અલગ-અલગ છે. અને તેમના એકમ જુદા-જુદા પરંતુ સમતુલ્ય છે, $[N/kg=m/s^2]$. આમ, એ સ્પષ્ટ છે કે પૃથ્વીના ગુરુત્વક્ષેત્ર માટે I-r આલેખ g-r આલેખ જેવો જ હોય (આકૃતિ 3.12 જેવો) [ભવિષ્યમાં તમે વિદ્યુતના કિસ્સામાં વિદ્યુતબળ = (વિદ્યુતક્ષેત્રની તીવ્રતા $\stackrel{\rightarrow}{E}$) \times (વિદ્યુતભાર q) એવું સૂત્ર ભણશો.]

ઉદાહરણ 7: એક બિંદુએ ગુરુત્વાકર્ષી ક્ષેત્રની તીવ્રતા $\overrightarrow{I}=10^{-9}\,(\hat{\imath}\,+\,\hat{\jmath}\,)\,$ N/kg છે. તો તે બિંદુએ $10\,$ kg દળના પદાર્થ પર લાગતા બળનું મૂલ્ય અને તેના પ્રવેગનું મૂલ્ય શોધો.

ઉકેલ :

$$\overrightarrow{F} = (\overrightarrow{1})(m)$$

$$= (10^{-9})(\hat{i} + \hat{j})(10)$$

$$= 10^{-8}\hat{i} + 10^{-8}\hat{j} \text{ N}$$

$$\therefore |\overrightarrow{F}| = \sqrt{(10^{-8})^2 + (10^{-8})^2}$$

$$= 10^{-8}\sqrt{2}$$

$$= 1.414 \times 10^{-8} \text{ N}$$

$$g = \frac{|\overrightarrow{F}|}{m} = \frac{1.414 \times 10^{-8}}{10}$$

$$= 1.414 \times 10^{-9} \text{ m/s}^2.$$

3.7 પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વસ્થિતિમાન અને ગુરુત્વ સ્થિતિ-ઊર્જા (Gravitational Potential and Gravitational Potential Energy in the Earth's Gravitational Field)

(a) ગુરુત્વસ્થિતિમાન : દરેક પદાર્થ પોતાની આસપાસ ગુરુત્વક્ષેત્ર ઉત્પન્ન કરે છે. આવા ક્ષેત્રની એક લાક્ષણિકતાને ગુરુત્વસ્થિતિમાન (gravitational potential) નામની રાશિ તરીકે નીચે મુજબ વ્યાખ્યાયિત કરવામાં આવે છે :

"એકમ દળના પદાર્થને અનંત અંતરેથી ગુરુત્વક્ષેત્રમાંના આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વબળે કરેલા કાર્યના ઋષ્ણ મૂલ્યને તે બિંદુ આગળનું ગુરુત્વ સ્થિતિમાન (\phi) કહે છે." ... ગુરુત્વસ્થિતિમાનનો એકમ J kg⁻¹ છે અને તેનું પારિમાણિક સૂત્ર M⁰L²T⁻² છે.

સૂક્ષ્મ સ્થાનાંતરમાં ગુરુત્વ બળ વડે થતું કાર્ય આકૃતિ 3.14

પૃથ્વીના ગુરુત્વક્ષેત્રમાં ગુરુત્વસ્થિતિમાનનું સૂત્ર મેળવવા આકૃતિ 3.14ને ધ્યાનમાં લો.

પૃથ્વીના કેન્દ્ર પર આપણે યામતંત્રનું ઊગમબિંદુ 0 મૂકીશું. પૃથ્વીનું દળ \mathbf{M}_{p} અને ત્રિજયા \mathbf{R}_{p} છે. પૃથ્વીના કેન્દ્રથી r અંતરે આવેલા \mathbf{P} બિંદુનો સ્થાનસદિશ

 $\overrightarrow{\mathrm{OP}} = \overrightarrow{r}$. અતે $r \geq \mathrm{R}_e$ છે. આ બિંદુએ એકમદળના પદાર્થ પર લાગતું પૃથ્વીનું ગુરુત્વબળ

$$\vec{F} = \frac{-GM_e(1)}{r^2}\hat{r}$$

$$= \frac{-GM_e}{r^2}\hat{r}$$
(3.7.1)

આ બળ અચળ નથી પણ અંતર સાથે બદલાય છે, પરંતુ સૂક્ષ્મ સ્થાનાંતર $d\stackrel{
ightarrow}{r}$ દરમ્યાન બળને અચળ ગણી શકાય છે. આથી આ સૂક્ષ્મ સ્થાનાંતરમાં ગુરુત્વબળ વડે થતું કાર્ય

$$dW = \overrightarrow{F} \cdot \overrightarrow{dr} = \left(\frac{-GM_e}{r^2} \hat{r}\right) (dr \hat{r}) (3.7.2)$$

$$= \frac{-GM_e}{r^2} dr ag{3.7.3}$$

P બિંદુથી અનંત અંતર સુધીના સમગ્ર ગાળાને મોટી સંખ્યાના સૂક્ષ્મ ગાળાઓમાં વિભાગેલો કલ્પી શકાય. આ દરેક સૂક્ષ્મ ગાળામાં બળ અચળ ગણીને તે ગાળા દરમિયાન થતું કાર્ય ગણી શકાય અને એવા બધા કાર્યનો સરવાળો કરવાથી કુલ કાર્ય W મળે. આ પ્રક્રિયા સતત હોવાથી સરવાળાને સંકલન રૂપે લખી શકાય. આથી, આ કિસ્સામાં આ પદાર્થને r અંતરે રહેલા બિંદુ Pથી અનંત અંતરે લઈ જવા દરમિયાન ગુરુત્વબળ વડે થતું કાર્ય.

$$W_{r \to \infty} = \int dW = \int_{r}^{\infty} \left(-\frac{GM_e}{r^2} \right) dr \qquad (3.7.4)$$

$$= -GM_e \int_{r}^{\infty} \frac{1}{r^2} dr \qquad (3.7.5)$$

$$= -GM_e \left[-\frac{1}{r} \right]_r^{\infty} \tag{3.7.6}$$

$$= \frac{-GM_e}{r} \tag{3.7.7}$$

હવે આ પદાર્થને અનંત અંતરેથી r અંતરના P બિંદુએ લાવીએ, તો તે દરમિયાન ગુરુત્વબળ વડે થતું કાર્ય $(\mathbf{W}_{\infty \to r})$ એ સમીકરણ (3.7.7) થી મળતા કાર્ય જેટલું જ પણ વિરુદ્ધ ચિક્ષ ધરાવતું હશે.

 $[\, {
m W}_{\infty \,
ightarrow \, r} \, = - \, {
m W}_{r \,
ightarrow \, \infty}]$, કારણ કે ગુરુત્વબળ એ સંરક્ષી બળ છે.

$$\therefore W_{\infty \to r} = \frac{GM_e}{r}$$
 (3.7.8)

આ કાર્ય $(\mathbf{W}_{\infty \to r})$ ના ૠણ મૂલ્યને વ્યાખ્યા મુજબ \mathbf{P} બિંદુ આગળનું ગુરુત્વસ્થિતિમાન ϕ કહે છે.

∴ P આગળનું ગુર્ત્વસ્થિતિમાન

$$\phi = \frac{-GM_e}{r} \tag{3.7.9}$$

આ પરથી પૃથ્વીની સપાટી પર ($r=\mathbf{R}_e$ મૂકતાં) ગુરુત્વસ્થિતિમાન

$$\phi_e = \frac{-GM_e}{R_e} \tag{3.7.10}$$

આપણે ગુરુત્વસ્થિતિમાન અંગેની કેટલીક બાબતોની નોંધ લઈએ :

- (1) પૃથ્વીના કેન્દ્રથી અનંત અંતરે ગુરૂત્વસ્થિતિમાન = 0.
- (2) ગોળાકાર નિયમિત કવચની અંદરના ભાગમાં બધા બિંદુએ ગુરુત્વસ્થિતિમાન એકસમાન છે અને તે તેની સપાટી પરના મૂલ્ય જેટલું જ એટલે કે $\frac{-GM}{R}$ જેટલું છે, જ્યાં M =કવચનું દળ, R =કવચની ત્રિજ્યા. આનું કારણ એ છે કે કવચની અંદર બધા બિંદુએ ગુરુત્વબળ શૂન્ય હોવાથી કવચની અંદરના ભાગમાંની પદાર્થની ગતિ દરમિયાન કોઈ કાર્ય કરવું પડતું નથી. માત્ર ∞થી સપાટી સુધીની ગતિમાંનું કાર્ય જ ગણતરીમાં આવે છે.
- (3) M દળની અને R ત્રિજ્યાની કવચના કેન્દ્રથી અંતર r સાથે સ્થિતિમાન ϕ નો ફેરફાર આકૃતિ 3.15માં દર્શાવેલ છે.

φ માં અંતર *r* સાથે ફેરફાર આકૃતિ 3.15

(b) ગુરુત્વસ્થિતિ-ઊર્જા : "આપેલા (m દળના) પદાર્થને પૃથ્વીના ગુરુત્વાકર્ષી ક્ષેત્રમાં અનંત અંતરેથી આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વબળે કરેલા કાર્યના ૠણ મૂલ્યને તે બિંદુ પાસે તે પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા U કહે છે. તે ખરેખર તો પૃથ્વી + તે પદાર્થના તંત્રની ગુરુત્વસ્થિતિ-ઊર્જા છે.

ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાની વ્યાખ્યાઓને ધ્યાનમાં લેતાં, સમીકરણ (3.7.8) પરથી, પૃથ્વીના કેન્દ્રથી $r(\geq R_o)$ અંતરે, m દળના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

$$U = \phi m = \frac{-GM_e m}{r} \tag{3.7.10}$$

આથી પૃથ્વીની સપાટી પર $(r=\mathrm{R}_{e})$ રહેલા m દળના પદાર્થની ગુરૂત્વસ્થિતિ-ઊર્જા

$$U_e = \frac{-GM_e m}{R_e}$$
 (3.7.11)

ગુરુત્વસ્થિતિમાન એ એકમદળના પદાર્થની સ્થિતિ-ઊર્જા છે, એમ પણ આપણે કહી શકીએ.

પૃથ્વીના કેન્દ્રથી અનંત અંતરે તે પદાર્થ પરનું પૃથ્વીનું ગુરુત્વબળ શૂન્ય છે અને ઉપરની વ્યાખ્યા મુજબ આપણે કહી શકીએ કે તેની ગુરુત્વસ્થિતિ-ઊર્જા પણ શૂન્ય છે.

સ્થિતિ-ઊર્જા (કે સ્થિતિમાન)ના નિરપેક્ષ મૂલ્યનું કોઈ મહત્ત્વ નથી, માત્ર તેના મૂલ્યમાં થતા કેરફારનું જ મહત્ત્વ છે. એટલે શૂન્ય સ્થિતિ-ઊર્જા (કે શૂન્ય સ્થિતિમાન) માટેનું સંદર્ભિલંદુ આપણે ગમે ત્યાં લઈ શકીએ છીએ. (યાદ કરો, ''કાર્ય, ઊર્જા અને પાવર''ના પ્રકરણમાં આપણે પૃથ્વીની સપાટી પર સ્થિતિ-ઊર્જા શૂન્ય લીધી હતી, જ્યારે અહીં આપણે અનંત અંતરે સ્થિતિ-ઊર્જા શૂન્ય લીધી છે. પરંતુ બંને કિસ્સામાં માત્ર ફેરફારો જ મહત્ત્વના હોવાથી કોઈ વિરોધાભાસ સર્જાતો નથી.)

અત્રે સ્થિતિ-ઊર્જા U એ પૃથ્વી અને પદાર્થથી બનેલા તંત્રની છે પણ આ ક્રિયામાં પૃથ્વીના સ્થાનમાં કે વેગમાં ખાસ કંઈ ફેરફાર થતો ન હોવાથી તેને રૂઢિગત રીતે પદાર્થની સ્થિતિ-ઊર્જા તરીકે પણ ઉલ્લેખવામાં આવે છે. જ્યારે પણ આવો ઉલ્લેખ થાય ત્યારે આપણે એમ સમજવાનું છે કે આ સ્થિતિ-ઊર્જા તત્ત્વતઃ તો એ તંત્રની છે પણ તે સ્થિતિ-ઊર્જાનો બધો ફેરફાર માત્ર પદાર્થ જ અનુભવતો દેખાય છે.

આગળ ઉપર આપશે ઉપગ્રહનો પણ વિચાર કરવાના છીએ. તે કિસ્સામાં સ્થિતિ-ઊર્જા પૃથ્વી અને ઉપગ્રહથી બનેલા તંત્રની હોય છે. પણ આપશે ઉપગ્રહની સ્થિતિ-ઊર્જા તરીકે તેનો ઉલ્લેખ કરીશું.

ઉદાહરણ 8: આકૃતિ (3.16) માં દર્શાવ્યા મુજબ જેની પ્રત્યેક બાજુનું માપ *l* છે તેવા ચોરસના દરેક શિરોબિંદુ પર *m* દળ ધરાવતા ક્શ રહેલ છે. આ ચાર ક્શોથી બનતા તંત્રની ગુરુત્વસ્થિતિ-ઊર્જા શોધો. આ ચોરસના કેન્દ્ર પર ગુરૂત્વસ્થિતિમાન પણ શોધો.

 $rac{ extbf{G}}{ extbf{G}}$: અહીં ક્રણોની દરેક જોડથી મળતી સ્થિતિ- $extbf{G} extbf{M} extbf{M} extbf{G} extbf{M} extbf{G} extbf{M} extbf{G} extbf{M} extbf{G} extbf{M} extbf{G} extbf{M} ext$

 m_i અને m_j એ અનુક્રમે i અને j ક્રમનાં ક્ણોનાં દળ છે અને r_{ij} તેમની વચ્ચેનું અંતર છે. $m_i=m_j=m$.

∴ કુલ સ્થિતિ-ઊર્જા

$$U = -Gm^{2} \left[\sum_{i < j} \frac{1}{r_{ij}} \right]$$

$$= -Gm^{2} \left[\frac{1}{r_{12}} + \frac{1}{r_{13}} + \frac{1}{r_{14}} + \frac{1}{r_{23}} + \frac{1}{r_{24}} + \frac{1}{r_{34}} \right]$$

$$= -Gm^{2} \left[\frac{1}{l} + \frac{1}{\sqrt{2}l} + \frac{1}{l} + \frac{1}{l} + \frac{1}{\sqrt{2}l} + \frac{1}{l} \right]$$

$$= -Gm^{2} \left[\frac{4 + \sqrt{2}}{l} \right]$$

$$l$$

આકૃતિ 3.16

1

3

$$r_{13} = r_{24} = \sqrt{2} l$$

 $r_{01}=r_{02}=r_{03}=r_{04}=r$ ચોરસના કેન્દ્ર પર કુલ ગુરુત્વસ્થિતિમાન $\phi=4$ (દરેક ક્શથી ઉદ્ભવતું સ્થિતિમાન)

$$= 4 \left(\frac{-Gm}{r}\right); \text{ sui } r = \frac{\sqrt{2}l}{2}$$

$$\therefore \phi = \frac{-4\sqrt{2}Gm}{l}$$

3.8 નિષ્ક્રમણ-ઊર્જા અને નિષ્ક્રમણ-ઝડપ (Escape Energy and Escape Speed)

આપણે હાથથી કોઈ પથ્થરને ઊર્ધ્વ દિશામાં ફેંકીએ તો તે અમુક ઊંચાઈએ જઈને કરી પાછો પૃથ્વી તરફ પડે છે. જો પ્રારંભિક ઝડપ વધુ ને વધુ આપીએ, તો તે પથ્થરને આપણે વધુ ને વધુ ઊંચે મોકલી શકીએ. આ પરથી એવો સ્વાભાવિક પ્રશ્ન ઉદ્ભવે કે શું આપણે પથ્થરને એટલી પ્રારંભિક ઝડપથી ફેંકી શકીએ કે જેથી તે કરી પાછો પૃથ્વી તરફ આવે જ નહિ ? એટલે કે તે કાયમ માટે પૃથ્વીથી દૂર અનંત અંતરે જતો રહે અને તેના પર પૃથ્વીનું કોઈ આકર્ષણબળ રહે નહિ. આનો ઉકેલ મેળવવા તેની ઊર્જાનો વિચાર કરીએ.

પૃથ્વીની સપાટી પર સ્થિર રહેલા m દળના પદાર્થની

સ્થિતિ-ઊર્જા =
$$\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}$$
 અને ગતિ-ઊર્જા શૂન્ય હોય છે

તેથી તેની કુલ ઊર્જા =
$$\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}$$
 છે. જો આ પદાર્થને

આપણે $\frac{+\mathrm{GM}_e m}{\mathrm{R}_e}$ જેટલી ઊર્જા ગતિ-ઊર્જા સ્વરૂપે પૂરી પાડીએ, તો તે એવા બિંદુ સુધી જઈ શકે કે જ્યાં તેની

કુલ ઊર્જા
$$\frac{+\mathrm{GM}_e m}{\mathrm{R}_e}$$
 $+$ $\left(\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}\right)$ $=$ 0 બને.

એટલે કે તે પૃથ્વીથી અનંત અંતરે પહોંચી જાય અને ત્યાં તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જા બંને શૂન્ય હોય. આ સ્થિતિમાં પદાર્થ કાયમ માટે પૃથ્વીના બંધનમાંથી છૂટી જાય છે અને કરી પાછો આવતો નથી. (જો આપણે પદાર્થને GM_{pm}/R_{e} કરતાં વધુ ગતિ-ઊર્જા આપીએ તો અનંત અંતરે તેની સ્થિતિ-ઊર્જા તો શૂન્ય હોય પણ તેની પાસે અમુક ગતિ-ઊર્જા પણ બચેલી હોય છે.)

"પૃથ્વીના ગુરુત્વાકર્ષી ક્ષેત્રમાંથી (બીજા શબ્દોમાં પૃથ્વીના બંધનમાંથી) પદાર્થને મુક્ત કરવા માટે તેને આપવી પડતી લઘુતમ ઊર્જાને તે પદાર્થની નિષ્ક્રમણ ઊર્જા (Escape energy) કહે છે." અને તેને ઘણીવાર પદાર્થની બંધન-ઊર્જા (Binding energy) પણ કહે છે.

આમ, પૃથ્વીની સપાટી પર સ્થિર રહેલા m દળના

પદાર્થની નિષ્ક્રમણ-ઊર્જા =
$$\frac{GM_e m}{R_e}$$
 (3.8.1)

આ નિષ્ક્રમણ-ઊર્જા જેટલી ગતિ-ઊર્જા પદાર્થને આપવા માટે તેને આપવી પડતી ઝડપને નિષ્ક્રમણ-ઝડપ (v_e) કહે છે, જેને ઘણીવાર નિષ્ક્રમણ-વેગ પણ કહે છે.

$$\therefore \frac{1}{2} m v_e^2 = \frac{GM_e m}{R_e}$$
 (3.8.2)

∴ નિષ્ક્રમણ-ઝડપ
$$v_e = \sqrt{\frac{2GM_e}{R_e}}$$
 (3.8.3)

$$= \sqrt{2gR_e} \quad (3.8.3a)$$

સમીકરશ (3.8.3) પરથી સ્પષ્ટ છે કે પદાર્થની નિષ્ક્રમશ-ઝડપ (v_p) નું મૂલ્ય તેના પોતાના દળ પર આધારિત નથી. (પણ જેના બંધનમાંથી-ત્રાસમાંથી ! - તેને છૂટવાનું છે, તે પદાર્થના દળ અને ત્રિજ્યા પર આધારિત છે.)

ઉપરના સમીકરણ (3.8.3) માં G, M_e અને R_e નાં મૂલ્યો મૂકતાં, $v_e=11.2~\mathrm{km/s}$ મળે છે. જો પદાર્થની પ્રારંભિક ઝડપ v_e જેટલી કે વધુ હોય, તો પદાર્થ હંમેશ માટે પૃથ્વીના ગુરૂત્વક્ષેત્રમાંથી છટકી જાય છે.

ચંદ્રની સપાટી પરના સ્થિર પદાર્થને આ પ્રમાણે ચંદ્રથી $ext{4.5}$ કરાવી દેવા માટે જરૂરી ઝડપ $ext{$v_{
m p}$}'$ હોય, તો

$$v_e' = \sqrt{\frac{2GM_m}{R_m}}$$
, જ્યાં $M_m =$ ચંદ્રનું દળ,

 $\mathbf{R}_m=$ ચંદ્રની ત્રિજ્યા. આ કિસ્સામાં $\mathbf{v}_e^{\; \mathbf{l}}=2.3 \; \mathrm{km/s}$ મળે છે, જે પૃથ્વીની સપાટી પર રહેલા પદાર્થ માટેના નિષ્ક્રમણ-

ઝડપના મૂલ્ય કરતાં લગભગ $\left(\frac{1}{6}\right)$ ગશું છે. આ કારણથી

ચંદ્રને વાતાવરણ નથી. તેની સપાટી પર જો વાયુના અશુઓ નિર્માણ પામે, તો ત્યાંના તાપમાને તે અશુઓની ઝડપ ઉપર જણાવેલ મૂલ્ય કરતાં વધુ હોય છે. તેથી તેઓ ચંદ્રના ગુરૂત્વક્ષેત્રમાંથી કાયમ માટે છટકી જાય છે.

જો કોઈ પદાર્થની ઘનતાનું મૂલ્ય એટલું બધું વધારે હોય કે જેથી તેની સપાટી પરના બિંદુએ $v_{e} > C$ (પ્રકાશનો વેગ) હોય, તો તેની સપાટી પરથી કંઈ પણ કાયમ માટે છટકી શકશે નહિ. (પ્રકાશ પણ નહિ!) આવા પદાર્થને black hole કહે છે. આપણે ખ્યાલમાં રાખવાનું છે કે કોઈ પણ દ્રવ્ય કણનો વેગ પ્રકાશના વેગ જેટલો કે તેથી વધુ હોઈ શકતો નથી. ($C = 3 \times 10^8 \text{ m s}^{-1}$)

ઉદાહરણ 9: પૃથ્વી પરના સ્થિર પદાર્થ માટે નિષ્ક્રમણ-ઝડપનું મૂલ્ય $v_{\varrho}=11.2~{\rm km/s}$ છે. જો પૃથ્વીની સપાટી પરના કોઈ સ્થિર પદાર્થને આના કરતાં ત્રણ ગણી ઝડપથી દૂર તરફ ફેંકવામાં આવે તો પૃથ્વીના ગુરુત્વક્ષેત્રમાંથી છટકયા પછી તે પદાર્થની ઝડપ કેટલી હશે ?

ઉકેલ : ફેંકેલા પદાર્થની પ્રારંભિક ઝડપ = $v = 3v_e$, જ્યાં $v_e =$ નિષ્ક્રમણ-ઝડપ = 11.2 km/s

પૃથ્વીના ગુરૂત્વક્ષેત્રમાંથી છટક્યા પછી (એટલે કે અનંત અંતરે), ધારો કે આ પદાર્થની ઝડપ = v'

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ પરથી,

$$\therefore \frac{1}{2}mv^2 + \left(\frac{-\mathrm{GM}_e m}{\mathrm{R}_e}\right) = \left[\frac{1}{2}mv^{,2} + 0\right]...(1)$$
(∵ અનંત અંતરે સ્થિતિ-ઊર્જા = 0)

પરંતુ,
$$v_e = \sqrt{\frac{2 G M_e}{R_e}}$$
 \therefore $\frac{G M_e}{R_e} = \frac{{v_e}^2}{2}$

આ મૂલ્ય સમીકરણ (1) માં મૂકતાં અને $v=3v_e$ (આપેલ છે) લખતાં

$$\frac{1}{2}m(9v_e^2) + \left(\frac{-v_e^2m}{2}\right) = \frac{1}{2}mv^{1/2}$$

$$\therefore 9v_e^2 - v_e^2 = v'^2$$

$$\therefore v' = \sqrt{8} v_e = (\sqrt{8})(11.2)$$
$$= 31.63 \text{ km/s}$$

ઉદાહરણ 10 : પૃથ્વીના કેન્દ્રથી r (> \mathbb{R}_p) અંતરે રહેલા એક પદાર્થને મુક્ત પતન કરાવવામાં આવે, તો તે પદાર્થ પૃથ્વીની સપાટી પર અથડાય ત્યારે તેની ઝડપ શોધો.

ઉકેલ : પૃથ્વીના કેન્દ્રથી $r > R_p$ અંતરે રહેલા પદાર્થને મુક્ત પતન કરાવતાં તેનો પ્રારંભિગ વેગ શૂન્ય હોવાથી તેની ગતિ-ઊર્જા = 0 અને સ્થિતિ-ઊર્જા =

$$\frac{-\mathrm{GM}_{e}m}{r}$$
; જ્યાં $m=$ પદાર્થનું દળ.

પદાર્થ પૃથ્વીની સપાટી પર પડે ત્યારે તેનો વેગ v હોય તો ગતિ-ઊર્જા $= \frac{1}{2} m v^2$, અને અહીં તેની

સ્થિતિ-ઊર્જા =
$$\frac{-GM_e m}{R_e}$$

હવાનો અવરોધ અવગણતાં, યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ,

$$\therefore \left\{ 0 + \left(\frac{-GM_e m}{r} \right) \right\} = \left\{ \frac{1}{2} m v^2 + \left(\frac{-GM_e m}{R_e} \right) \right\}$$

$$\therefore v^2 = 2GM_e \left[\frac{1}{R_e} - \frac{1}{r} \right]$$
 (1)

આ પરથી માંગેલ ઝડપ v મળે છે. પરંતુ જો gના પદમાં જવાબ મેળવવો હોય તો,

$$g = \frac{\mathrm{GM}_e}{\mathrm{R}_e^{\;2}}$$
 પરથી $\mathrm{GM}_e = g\mathrm{R}_e^{\;2}$

ઉપરના સમીકરણમાં મૂકતાં,

$$v^2 = 2g R_e^2 \left[\frac{1}{R_e} - \frac{1}{r} \right]$$
 (2)

$$\therefore v = \left[2gR_e^2 \left(\frac{1}{R_e} - \frac{1}{r}\right)\right]^{\frac{1}{2}} \tag{3}$$

 $\frac{1}{1}$: જો પદાર્થને ખૂબ જ ઊંચેથી $(r \to \infty)$ મુક્ત-પતન કરાવેલ હોય તો સમીકરણ (1) અને (2) પરથી

$$v=\sqrt{rac{2\mathrm{GM}_e}{\mathrm{R}_e}}~=~\sqrt{2\mathrm{R}_e g}$$
 . આ નિષ્ક્રમણ-ઝડપનું જ

સૂત્ર છે.

3.9 ઉપગ્રહો (Satellites)

કોઈ પણ ગ્રહની આસપાસ પરિભ્રમણ કરતા પદાર્થને તેનો ઉપગ્રહ (satellite) કહે છે. ઉપગ્રહની કક્ષીય ગતિ ગ્રહના ગુરુત્વાકર્ષણ બળ અને પ્રારંભિક શરતો પર આધારિત હોય છે. ઉપગ્રહોને બે વર્ગોમાં વહેંચી શકાય : (1) કુદરતી ઉપગ્રહ (2) કૃત્રિમ ઉપગ્રહ.

ચંદ્ર એ પૃથ્વીનો કુદરતી ઉપગ્રહ છે. વળી, ગુરુને અને બીજા ગ્રહોને પણ તેમના ચંદ્રો (એટલે કે ઉપગ્રહો) છે. આપણા ચંદ્રનો પૃથ્વીની આસપાસના પરિભ્રમણનો આવર્તકાળ 27.3 દિવસ છે અને ચંદ્રનો પોતાની ધરીની આસપાસનો આવર્તકાળ પણ લગભગ આટલો જ છે.

1957માં રશિયન વિજ્ઞાનીઓએ પૃથ્વીની આસપાસ તરતો મૂકેલો 'સ્પુટનિક' નામનો ઉપગ્રહ એ માનવજાતે બનાવેલો સૌપ્રથમ કૃત્રિમ ઉપગ્રહ હતો. આપણા ભારતીય વિજ્ઞાનીઓએ પણ અવકાશ ક્ષેત્રે હરણફાળ ભરીને 'આર્યભટ્ટ' અને 'ઇન્સેટ' શ્રેણીના ઘણા ઉપગ્રહો સફળતાપૂર્વક તરતા

મૂક્યા છે. હાલમાં તો વિશ્વના ઘણા બધા દેશો દ્વારા તરતા મૂકાયેલા સેંકડો ઉપગ્રહો પૃથ્વીની આસપાસ અવકાશમાં ભ્રમણ કરી રહ્યા છે, જેમનો ઉપયોગ વૈજ્ઞાનિક, એન્જિનિયરિંગ, હવામાનની આગાહી, જાસુસી, લશ્કરી, સંદેશા વ્યવહાર, વગેરે હેતુઓ માટે કરાય છે. પ્રસ્તુત પરિચ્છેદમાં આપણે ઉપગ્રહોના ગતિવિજ્ઞાનની અને ભૂસ્થિર તેમજ ધ્રુવીય ઉપગ્રહોની ચર્ચા કરીશું.

ઉપગ્રહની કક્ષીય ગતિ

આકૃતિ 3.17

ધારો કે m દળના એક ઉપગ્રહને પૃથ્વીના કેન્દ્રથી r અંતરે તરતો મૂકેલો છે, અને તેની વર્તુળ કક્ષામાંની ઝડપ v_0 છે. તેને કક્ષીય ઝડપ અથવા કક્ષીય વેગ કહે છે. અહીં, $r=\mathbf{R}_e+h$ જયાં, $\mathbf{R}_e=$ પૃથ્વીની ત્રિજયા અને h= પૃથ્વીની સપાટીથી ઉપગ્રહની ઊંચાઈ. તેની આ વર્તુળગતિ માટેનું જરૂરી કેન્દ્રગામી બળ (mv_0^2/r) , એ તેના પરના પૃથ્વીના ગુરુત્વાકર્ષણ બળ દ્વારા પૂરું પડાય છે.

$$\therefore \frac{m{v_0}^2}{r} = \frac{GM_e m}{r^2}$$
 (3.9.1)

$$\cdot$$
ે. ઉપગ્રહની ક્ક્ષીય ઝડપ $v_0 = \sqrt{rac{\mathrm{GM}_e}{r}}$ (3.9.2)

સમીકરણ (3.9.1), પરથી ઉપગ્રહની ગતિ-ઊર્જા

$$K = \frac{1}{2}mv_0^2 = \frac{GM_em}{2r}.$$
 (3.9.3)

સમીકરણ (3.7.10) પરથી આ ઉપગ્રહની (ખરેખર તો પૃથ્વી + ઉપગ્રહના તંત્રની) સ્થિતિ-ઊર્જા

$$U = \frac{-GM_e m}{r}$$
 (3.9.4)

∴ ઉપગ્રહની કુલ ઊર્જા

62 ભૌતિકવિશાન

E = ગતિ-ઊર્જા K + સ્થિતિ-ઊર્જા U

$$=\frac{\mathrm{GM}_{e}m}{2r}-\frac{\mathrm{GM}_{e}m}{r}\tag{3.9.5}$$

$$= \frac{-GM_e m}{2r} \tag{3.9.6}$$

આ કુલ ઊર્જા ઋષ્મ છે, તેથી તે આ ઉપગ્રહ બંધિત અવસ્થામાં હોવાનું સૂચવે છે. સમીકરષ્મ (3.9.3), (3.9.4) અને (3.9.6) પરથી તમે જોઈ શકશો કે જો ઉપગ્રહની ગતિ-ઊર્જા x હોય તો તેની સ્થિતિ-ઊર્જા -2x અને કુલ ઊર્જા -x થાય છે. તેથી તેની બંધન-ઊર્જા (નિષ્ક્રમણ-ઊર્જા) x થશે.

ઉપગ્રહનો આવર્તકાળ (T) : ઉપગ્રહને પૃથ્વીની આસપાસ એક પરિભ્રમણ પૂરું કરતાં લાગતો સમય એ તેનો આવર્તકાળ (T) છે અને આ સમય દરમિયાન તેણે કાપેલું અંતર વર્તુળમાર્ગના પરિઘ $(2\pi r)$ જેટલું છે.

$$\therefore$$
 કક્ષીય ઝડપ $v_0 = \frac{2\pi r}{T}$ (3.9.7)

∴ સમીકરણ (3.9.1) પરથી,

$$\frac{m}{r} \left(\frac{4\pi^2 r^2}{T^2} \right) = \frac{GM_e m}{r^2} \tag{3.9.8}$$

$$\therefore T^2 = \left(\frac{4\pi^2}{GM_e}\right) r^3 \tag{3.9.9}$$

કૌંસમાંની બધી રાશિઓ અચળ હોવાથી T^2 α r^3 (3.9.10)

આમ, "ઉપગ્રહના ક્ક્ષીય આવર્તકાળનો વર્ગ તેની ક્ક્ષીય ત્રિજ્યાના ઘનના સમપ્રમાણમાં હોય છે." આ વિધાન ઉપગ્રહની વર્તુળકક્ષાના સંદર્ભમાં કેપ્લરનો ત્રીજો નિયમ છે.

સમીકરણ (3.9.9) પરથી,

$$T = \left(\frac{4\pi^2 r^3}{GM_e}\right)^{\frac{1}{2}}$$
 (3.9.11)

ભૂસ્થિર ઉપગ્રહ : પૃથ્વીના જે ઉપગ્રહનો કક્ષીય આવર્તકાળ 24 hour (એટલે કે પૃથ્વીની પોતાની અક્ષની આસપાસની ચાકગતિના આવર્તકાળ જેટલો) હોય તેને ભૂસ્થિર ઉપગ્રહ (geo-stationary અથવા geo-synchronous satellite) કહે છે, કારણ કે પૃથ્વી પરથી જોતાં તે કાયમ સ્થિર દેખાય છે. આવા ભૂસ્થિર ઉપગ્રહ

પૃથ્વીની આસપાસ વિષુવવૃતીય સમતલમાં ભ્રમણ કરતા હોય છે. જુઓ આકૃતિ 3.18(a).

ભૂસ્થિર ઉપગ્રહ આકૃતિ 3.18(a)

ભૂસ્થિર ઉપગ્રહ માટે સમીકરણ (3.9.11)માં $G=6.67 \times 10^{-11}~\mathrm{N}m^2~\mathrm{kg}^{-2},~\mathrm{M}_e=5.98 \times 10^{24}~\mathrm{kg}$ અને $T=24 \times 3600~\mathrm{s},~\mathrm{h}$ કતાં, $r=42260~\mathrm{km}$ મળે છે. આથી પૃથ્વીની સપાટીથી આ ભૂસ્થિર ઉપગ્રહની ઊંચાઈ $h=r-\mathrm{R}_e=42260-6400=35860~\mathrm{km}$ મળે છે. આ સિવાયની બીજી કોઈ ઊંચાઈ માટે ઉપગ્રહ ભૂસ્થિર રહી શકતો નથી.

આવા ઉપગ્રહ દૂર સંચાર (tele communication)માં વપરાય છે. ઉપરાંત તેમનો ઉપયોગ Global Positioning System (GPS)માં પણ થાય છે, જેમાં વ્યક્તિને આપેલા સ્થાનેથી તેના ગંતવ્યસ્થાન (destination) સુધી જવા માટેના વિવિધ રસ્તાઓની અને તેમાંથી સૌથી ટૂંકા રસ્તા અંગેની માહિતી નકશાસહિત મૉનિટરના screen પર દર્શાવવામાં આવે છે.

ધ્રુવીય ઉપગ્રહ (Polar Satellite): આવા ઉપગ્રહ પૃથ્વીની કરતે ઉત્તર-દક્ષિણ દિશામાં ભ્રમણ કરતા હોય છે. તેઓ પૃથ્વીની સપાટીથી લગભગ 800 km ઊંચાઈએ હોય છે. પૃથ્વીનું ભ્રમણ પૂર્વ-પશ્ચિમ દિશામાં થતું હોવાથી આવા ઉપગ્રહ (તેમનો આવર્તકાળ T લગભગ 100 મિનિટ હોય છે.) પૃથ્વીના દરેક વિભાગને દરરોજ કેટલીય વાર જોઈ શકે છે. તેમાં રાખેલા કૅમેરાની મદદથી દર એક ભ્રમણમાં પૃથ્વીનો એક પાતળી પટ્ટી જેવો વિસ્તાર જોઈ શકે છે. બીજા ભ્રમણમાં તેની બાજુની પટ્ટીનો વિસ્તાર જોઈ શકે છે. આમ સમગ્ર દિવસ દરમિયાન સમગ્ર પૃથ્વીનું અવલોકન ઘણીવાર કરી શકે છે. આ પરથી મળેલી માહિતી દૂર-સંવેદન (remote sensing)માં, હવામાનશાસ્ત્રમાં, પર્યાવરણના અભ્યાસમાં, જાસ્ત્રીમાં વગેરેમાં થાય છે.

ધ્રુવીય કક્ષા આકૃતિ 3.18(b)

ઉદાહરણ 11 : એક કાલ્પનિક સાદા લોલકનું આધારબિંદુ પૃથ્વીની સપાટીથી અનંત ઊંચાઈએ છે અને લોલકનો ગોળો પૃથ્વીની સપાટીથી તદ્દન નજીક છે. આ લોલકનો (એટલે કે અનંત લંબાઈના લોલકનો)

આવર્તકાળ
$$T=2\pi\sqrt{\frac{R_e}{g}}$$
 છે. તેમ દર્શાવો.

6કેલ ઃ અહીં લોલકનું આધારબિંદુ અનંત ઊંચાઈએ હોવાથી ગોળાનો સૂક્ષ્મ ગતિપથ લગભગ સુરેખ લઈ શકાય. ગોળાનું દળ = m.

અહીં ગુરુત્વબળ F_G (= mg)નો $mg\cos\theta$ ઘટક ગોળાને પુનઃસ્થાપક બળ પૂરું પાડે છે. તેથી ગોળા પરનું પુનઃસ્થાપક બળ $F=-mg\cos\theta$ (બળ પુનઃસ્થાપક હોવાથી ઋષ્ણ ચિક્ષ મૂક્યું છે.)

આકૃતિ 3.19

આકૃતિ 3.19 પરથી $\cos\theta=\frac{x}{\mathrm{R}_e}$. (ગોળો પૃથ્વીની સપાટીની તદ્દન નજીક હોવાથી $\mathrm{AO}=\mathrm{BO}=\mathrm{R}_e$ લઈ શકાય.)

$$\therefore F = -mg\left(\frac{x}{R_e}\right)$$

$$\therefore F = -kx \tag{1}$$

જ્યાં,
$$k =$$
બળ-અચળાંક $= \frac{mg}{R_e}$

∴ સમીકરણ (1) સૂચવે છે કે લોલકની ગતિ સરળ આવર્તગતિ છે.

$$\therefore T = 2\pi \sqrt{\frac{m}{k}} \text{ gives,}$$

$$T = 2\pi \sqrt{\frac{m}{mg} / R_e}$$

$$= 2\pi \sqrt{\frac{R_e}{g}}$$

ઉદાહરણ 12 : સાબિત કરો કે પૃથ્વીની સપાટીની તદ્દન નજીક રહીને પૃથ્વીની આસપાસ ભ્રમણ કરતા ઉપગ્રહ માટે બંધન-ઊર્જા $\frac{1}{2} mg R_e$ જેટલી હોય છે.

ઉકેલ : અહીં, ઉપગ્રહ (દળ = m), વર્તુળ ગતિ માટે જરૂરી કેન્દ્રગામી બળ એ પૃથ્વીનું તેના પરનું ગુરુત્વાકર્ષી બળ છે.

$$\therefore \frac{mv^2}{R_e} = \frac{GM_em}{R_e^2} = gm \ (\because g = \frac{GM_e}{R_e^2})$$
 ઉપગ્રહની ગતિ-ઊર્જા = $\frac{1}{2}mv^2 = \frac{1}{2}mgR_e$ અને સ્થિતિ-ઊર્જા = $\frac{-GM_em}{R_e}$ = $\frac{-GM_em}{R_e^2}R_e$ = $-gmR_e$ \therefore કુલ ઊર્જા = ગતિ-ઊર્જા + સ્થિતિ-ઊર્જા = $\frac{1}{2}mgR_e - gmR_e$

$$\therefore$$
 ઉપગ્રહની બંધન-ઊર્જા = $\frac{1}{2}mgR_e$

 $= -\frac{1}{2} mgR_e$

ઉદાહરણ 13 : એકબીજાથી 10m અંતરે રહેલા 1 kg અને 2 kg દળના પદાર્થો સ્થિર સ્થિતિમાંથી મુક્ત કરવામાં આવે છે. તેમના પર પરસ્પર ગુરુત્વબળો જ લાગતા હોવાનું સ્વીકારીને જ્યારે તેમની વચ્ચેનું અંતર 5m થાય, ત્યારે તે દરેકના વેગ શોધો.

$$(G = 6.66 \times 10^{-11} \text{ N}m^2/\text{kg}^2 \text{ ell.})$$

64 ભૌતિકવિશાન

ઉકેલ : પ્રારંભમાં બંને પદાર્થીની વેગ શૂન્ય છે, તેથી ગતિ-ઊર્જાઓ શૂન્ય છે. (એટલે કે, $\nu_1=\nu_2=0$; $\mathbf{K}_1=\mathbf{K}_2=0$)

જયારે તેમની વચ્ચેનું અંતર 5m થાય ત્યારે તેમના વેગ અનુક્રમે $v_1^{'}$ અને $v_2^{'}$ છે અને ગતિ-ઊર્જાઓ $\mathbf{K_1}'$ અને $\mathbf{K_2}'$ છે.

આ તંત્રની પ્રારંભિક સ્થિતિ-ઊર્જા
$${\bf U}_1=rac{-{f G}m_1m_2}{r_1}$$

$$= \frac{-(6.67 \times 10^{-11})(1 \times 2)}{10}$$
$$= -13.32 \times 10^{-12} \text{ J.}$$

અંતિમ સ્થિતિ-ઊર્જા
$$U_2 = \frac{-Gm_1m_2}{r_2}$$

$$= \frac{-(6.66 \times 10^{-11})(1 \times 2)}{5}$$

$$= -26.64 \times 10^{-12} \text{ J.}$$

$$\therefore$$
 સ્થિતિ-ઊર્જાનો ફેરફાર $\Delta U = U_2 - U_1$
$$= -26.64 \times 10^{-12} - (-13.32 \times 10^{-12})$$

$$= -13.32 \times 10^{-12} \text{ J}$$

યાંત્રિક-ઊર્જાના સંરક્ષણના નિયમ મુજબ K + U = અચળ \therefore Δ K + Δ U = 0.

$$\therefore \frac{v_1^{2}}{2} + v_2^{2} = 13.32 \times 10^{-12} \tag{1}$$

વેગમાનસંરક્ષણના નિયમ મુજબ પ્રારંભિક કુલ વેગમાન = અંતિમ કુલ વેગમાન

$$\therefore m_1 \overrightarrow{v_1}' + m_2 \overrightarrow{v_2}' = 0$$

$$\therefore m_1 \overrightarrow{v_1}' = -m_2 \overrightarrow{v_2}'$$

$$\therefore \overrightarrow{v_1}' = -\frac{m_2}{m_1} \overrightarrow{v_2}'$$

∴
$$|\overrightarrow{v_1}'| = \left(\frac{m_2}{m_1}\right)(|\overrightarrow{v_2}'|)$$

∴ $v_1' = 2v_2'$ (2)
સમીકરણ (1) અને (2) પરથી
$$\frac{4v_2'^2}{2} + v_2'^2 = 13.32 \times 10^{-12}$$
∴ $3v_2'^2 = 13.32 \times 10^{-12}$
∴ $v_2'^2 = 4.44 \times 10^{-12} = 444 \times 10^{-14}$
∴ $v_2' = 21.07 \times 10^{-7}$ m/s

ઉદાહરણ 14: એક ગ્રહની આસપાસ બે ઉપગ્રહો S_1 અને S_2 એક સમતલસ્થ એવી બે જુદી-જુદી વર્તુળાકાર કક્ષાઓમાં ભ્રમણ કરે છે. જો તેમના આવર્તકાળ અનુક્રમે $31.4\ h$ અને $62.8\ h$ હોય અને S_1 ની કક્ષાની ત્રિજ્યા $4000\ \mathrm{km}$ હોય, તો (i) S_2 ની કક્ષાની ત્રિજ્યા શોધો. (ii) બંને ઉપગ્રહોનાં કક્ષીય વેગનાં મૃદય શોધો.

 $v_1' = 42.14 \times 10^{-7} \text{ m/s}$

ઉકેલ :

(i) $T^2 \alpha r^3$

$$\therefore \frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$$

$$\therefore r_2^3 = r_1^3 \left(\frac{T_2^2}{T_1^2}\right)$$

$$= (4000)^3 \left(\frac{62.8^2}{31.4^2}\right)$$

$$\therefore r_2 = (4000)(4)^{\frac{1}{3}} = (4000)(1.588)$$

(ii)
$$v_1 = \frac{2\pi r_1}{T_1} = \frac{(2)(3.14)(4000)}{31.4}$$

 $= 800 \text{ km/h}$
 $v_2 = \frac{2\pi r_2}{T_2} = \frac{(2)(3.14)(6352)}{62.8}$
 $= 635.2 \text{ km/h}$

= 6352 km

સમુદ્રમાં ભરતી (માત્ર જાણકારી માટે)

વિદ્યાર્થીમિત્રો,

તમને કદાચ એવો ખ્યાલ હશે કે સમુદ્રમાં આવતી ભરતીનું કારણ ગુરુત્વાકર્ષણ છે. આ ઘટનામાં સૂર્ય અને ચંદ્ર બંનેનાં ગુરુત્વબળ ભાગ ભજવે છે. હવે સૂર્ય વડે પૃથ્વી પર લાગતું ગુરુત્વબળ, ચંદ્ર વડે પૃથ્વી પર લાગતા ગુરુત્વબળ કરતાં લગભગ 175 ગણું છે, તેમ છતાં ભરતીની ઘટનામાં સૂર્ય કરતાં ચંદ્રનો ફાળો વધુ છે - સૂર્ય કરતાં લગભગ 2.17 ગણો છે. આ હકીકત છે. આનું કારણ શું હશે ?

આનું કારણ એવું છે કે ગણતરીઓ પરથી ભરતી-જનકબળ (tidal force-ટાઇડ્લ ફોર્સ) ગુરુત્વબળના અંતર સાથેના કેરકારના દર પર આધારિત હોવાનું જણાય છે, નહિ કે ગુરુત્વબળના મૃલ્ય પર. એટલે $F_{4^{i_1}+4^{i_2}} > F_{4i_4+4^{i_3}}$ હોવા છતાં $\frac{d}{dr}(F_{4^{i_4}+4^{i_4}}) > \frac{d}{dr}(F_{4^{i_4}+4^{i_4}})$ હોય છે, તેથી ભરતીની ઘટનામાં ચંદ્રનો ફાળો વધુ છે. $F = \frac{GMm}{r^2}$ પરથી $\frac{d}{dr}(F) = \frac{-2GMm}{r^3}$. આ સૂત્રોમાં m = એકમ દળનું પાણી વિચારીને તમે જાતે આ બાબતને ચકાસી શકશો. આ માટે ઉપરનાં સૂત્રોમાં $(M_S = 2 \times 10^{30} \text{ kg}, r_S = 1.5 \times 10^{11} \text{ m}, M_m = 7.36 \times 10^{22} \text{ kg}, r_m = 3.84 \times 10^8 m$ લો.)

(આ તો માત્ર સાદી સમજૂતી છે, બાકી ભરતીની ઘટના ઘણી જટિલ છે. તેમાં સ્થાનિક પરિબળો-જેવાં કે સમુદ્ર તટથી સમુદ્રના તળિયાનું અંતર, સમુદ્રની નીચેનું નજીકનું પૃથ્વીનું બંધારણ, ઉપરાંત પૃથ્વીની ચાકગતિ વગેરે પણ અમુક અંશે ભાગ ભજવે છે.)

આપણે માત્ર ભરતી-જનક-બળ $\dfrac{1}{r^3}$ પર આધારિત હોવાની નોંધ લઈશું અને આ કારણથી ઉપરનાં સૂત્રો મુજબ ચંદ્રનો ફાળો સૂર્ય કરતાં વધુ છે.

સારાંશ

- ટોલેમીના પૃથ્વી-કેન્દ્રીય વાદ અને કૉપરિનક્સના સૂર્ય-કેન્દ્રીય વાદમાંથી હાલમાં સૂર્ય-કેન્દ્રીયવાદની સત્યતા સ્વીકારવામાં આવી છે.
- કેપ્લરના નિયમો : (1) ''બધા પ્રહો એવી લંબવૃતીય કક્ષાઓમાં ભ્રમણ કરે છે કે જેના એક કેન્દ્ર પર સૂર્ય હોય.'' (2) ''સૂર્ય અને પ્રહને જોડતી રેખાએ સમાન સમયગાળામાં આંતરેલ ક્ષેત્રફળ સમાન હોય છે.'' (3) કોઈ પણ પ્રહના પરિભ્રમણના આવર્તકાળ (T)નો વર્ગ તેની લંબવૃત્તીય કક્ષાની અર્ધ-દીર્ઘ અક્ષ (a) ના ઘનના સમપ્રમાણમાં હોય છે. (T² α a³)
- 3. ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ : ''વિશ્વમાંનો દરેક પદાર્થ બીજા દરેક પદાર્થ પર આકર્ષી બળ લગાડે છે. જેનું મૂલ્ય તેમનાં દળોના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં હોય છે.'' એટલે કે, $F=rac{Gm_1m_2}{r^2}$.

સદિશ સ્વરૂપમાં
$$\left[egin{array}{c} \overrightarrow{F_{12}} \\ 1 & \mbox{v. 2} \\ \omega \mbox{v} \end{array}
ight] = rac{G \emph{m}_1 \emph{m}_2}{\emph{r}^2} \ \emph{r}_{12}$$

જ્યાં
$$\hat{r}_{12}=rac{\stackrel{
ightarrow}{r_2-\stackrel{
ightarrow}{r_1}}{\stackrel{
ightarrow}{r_{12}}}$$
 અને $\stackrel{
ightarrow}{r_{12}}=(\stackrel{
ightarrow}{r_2}\stackrel{
ightarrow}{-\stackrel{
ightarrow}{r_1}});$ $|\stackrel{
ightarrow}{r_{12}}|=r$

વળી,
$$\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$$

નોંધપાત્ર મુદા : (i) પોલા ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ આવેલા ક્જા પર લાગતું ગુરુત્વબળ, જાણે કે તે કવચનું બધું દળ તેના કેન્દ્ર પર કેન્દ્રિત થયું હોય તેમ ગણીને, મળતા બળ જેટલું હોય છે. (ii) પોલા ગોળાકાર કવચની અંદરના કોઈ પણ બિંદુએ આવેલ ક્જા પર લાગતું ગુરૂત્વબળ શૂન્ય હોય છે.

- 4. G નું મૂલ્ય સૌપ્રથમ કૅવેન્ડિશે પ્રાયોગિક રીતે મેળવ્યું હતું. હાલમાં Gનું સ્વીકૃત મૂલ્ય $6.67 \times 10^{-11}~\mathrm{N}~m^2/\mathrm{kg}^2$ છે.
- ગુરૂત્વાકર્ષી બળને લીધે પદાર્થમાં ઉદ્ભવતા પ્રવેગને ગુરૂત્વપ્રવેગ g કહે છે. પૃથ્વીની સપાટી

પરના બિંદુ માટે ગુરુત્વપ્રવેગનું સૂત્ર
$$g_e=rac{G{
m M}_e}{{{
m R}_e}^2}$$
 છે. તેનું મૂલ્ય 9.8 m/s² છે.

વિષુવવૃત્ત કરતાં ધ્રુવ પર $g_{_{m{e}}}$ નું મૂલ્ય થોડું વધારે હોય છે, પરંતુ તફાવત અત્યંત અલ્પ છે.

પૃથ્વીની સપાટીથી h ઊંચાઈએ ગુરુત્વપ્રવેગ $g(h)=\dfrac{g_e}{\left[1+\dfrac{h}{R_e}\right]^2}$ છે. સપાટીથી થોડી ઊંચાઈ માટે $g(h)\approx g_e$ લઈ શકાય છે.

પૃથ્વીની સપાટીથી d ઊંડાઈએ પૃથ્વીની અંદર આવેલા બિંદુએ ગુરુત્વપ્રવેગ $g(d) = g_e \left[1 - \frac{d}{\mathsf{R}_e} \right]$

છે. પૃથ્વીના કેન્દ્ર પર ગુરુત્વપ્રવેગ શૂન્ય છે.

પૃથ્વીના ભ્રમણને લીધે λ અક્ષાંશ ધરાવતા સ્થળે પૃથ્વીની સપાટી પર અસરકારક ગુરુત્વપ્રવેગ

$$g' = g \left[1 - \frac{R_e \omega^2 \cos^2 \lambda}{g} \right] \dot{\vartheta}.$$

- 7. એકમદળના પદાર્થને અનંત અંતરેથી ગુરુત્વક્ષેત્રમાંના આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વ- બળે કરેલા કાર્યના ઋણ મૂલ્યને તે બિંદુ આગળનું ગુરુત્વસ્થિતિમાન (ϕ) કહે છે. $\phi = \frac{GM_e}{r}$

પૃથ્વીના કેન્દ્રથી r (> \mathbf{R}_e) અંતરે $\mathbf{\phi}_e = \frac{-\mathbf{G}\mathbf{M}_e}{\mathbf{R}_e}$ અને પૃથ્વીની સપાટી પર ગુરુત્વસ્થિતિમાન

 $\phi_e = \frac{-GM_e}{R_e}$. ગુરુત્વસ્થિતિમાનનો એકમ J kg $^{-1}$ અને પારિમાયિક સૂત્ર M 0 L 2 T $^{-2}$ છે. આપેલા (m દળના) પદાર્થને પૃથ્વીના ગુરુત્વાકર્ષી ક્ષેત્રમાં અનંત અંતરેથી આપેલા બિંદુએ લાવવા દરમિયાન ગુરુત્વબળે કરેલા કાર્યના ઋષ્ણ મૂલ્યને તે બિંદુ પાસે પૃથ્વી અને તે પદાર્થના તંત્રની ગુરુત્વસ્થિતિ-ઊર્જા U કહે છે, જેને સામાન્ય રીતે તે પદાર્થની સ્થિતિ-ઊર્જા તરીકે પણ ઉલ્લેખવામાં આવે છે. પૃથ્વીના કેન્દ્રથી r (> R $_e$) અંતરે રહેલા m દળના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

 $U=rac{-GM_em}{r}=\phi m$ અને પૃથ્વીની સપાટી પરના પદાર્થની ગુરુત્વસ્થિતિ-ઊર્જા

$$U_e = \frac{-GM_e m}{R_e} = \phi_e m.$$

ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાનાં મૂલ્યોનું કોઈ મહત્ત્વ નથી, માત્ર તેમના ફેરફારનું જ મહત્ત્વ છે.

8. પૃથ્વીની સપાટી પરના સ્થિર પદાર્થ માટે કુલ ઊર્જા = તેની સ્થિતિ-ઊર્જા = $\frac{-\mathrm{GM}_e m}{\mathrm{R}_s}$.

$$\therefore$$
 તેની નિષ્ક્રમણ-ઊર્જા = બંધન-ઊર્જા = $\dfrac{\mathrm{GM}_e m}{\mathrm{R}_e}$ અને નિષ્ક્રમણ-વેગ $v_e = \sqrt{\dfrac{2\mathrm{GM}_e}{\mathrm{R}_e}}$ =

11.2 km/s.

ચંદ્રની સપાટી પરના સ્થિર પદાર્થ માટે નિષ્ક્રમણ-વેગ 2.3 km/s.

9. પૃથ્વીની આસપાસ કરતા ઉપગ્રહનો કક્ષીય વેગ $v_0 = \sqrt{\frac{{
m GM}_e}{r}}$ અને ઉપગ્રહની કુલ ઊર્જા

$$=rac{-\mathrm{GM}_e m}{2r}$$
. તેની બંધન-ઊર્જા $=rac{\mathrm{GM}_e m}{2r}$. ભૂસ્થિર ઉપગ્રહનો આવર્તકાળ $\mathrm{T}=24$ hour

= 24×3600 s. તેઓ વિષુવવૃત્તીય સમતલમાં પૂર્વ-પશ્ચિમ દિશામાં ભ્રમણ કરે છે. પૃથ્વીની સપાટીથી તેની ઊંચાઈ h=35800 km (લગભગ) છે. ધ્રુવીય ઉપગ્રહ ઉત્તર-દક્ષિણ દિશામાં ભ્રમણ કરે છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 1. N m^2/kg^2 એ નીચેનામાંથી શાનો એકમ છે ?
 - (A) રેખીય વેગમાન

- (B) ગુરત્વબળ
- (C) ગુરૂત્વાકર્ષણનો સાર્વત્રિક અચળાંક
- (D) ગુરૂત્વપ્રવેગ
- 2. કોઈ ગ્રહની આસપાસ ભ્રમણ કરતા જુદા જુદા ઉપગ્રહોની કક્ષીય ત્રિજ્યા r અને અનુરૂપ આવર્તકાળ T પરથી મળતા $\log r \log T$ ના આલેખનો ઢાળ કેટલો હશે ?
 - (A) $\frac{3}{2}$
- (B) 3
- (C) $\frac{2}{3}$
- (D) 2

3.	પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગનું મૂલ્ય 9.81 m/s² હોય તો પૃથ્વીની સપાટીથી પૃથ્વીના
	વ્યાસ જેટલી ઊંચાઈએ ગુરૂત્વપ્રવેગ કેટલો હશે ? (A) 4.905 m/s² (B) 2.452 m/s² (C) 3.27 m/s² (D) 1.09 m/s²
4.	પૃથ્વીની સપાટી પર ગુરુત્વસ્થિતિમાન જ્રૃ હોય, તો સપાટીથી પૃથ્વીની ત્રિજ્યા જેટલી ઊંચાઈએ
	ગુરુત્વસ્થિતિમાન કેટલું હશે ?
	(A) $\frac{\Phi_e}{2}$ (B) $\frac{\Phi_e}{4}$ (C) Φ_e (D) $\frac{\Phi_e}{2}$
5.	પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ 10 m/s² અને પૃથ્વીની ત્રિજ્યા 6400 km લેતાં, સપાટીથી
	64 km ઊંડાઈએ જતાં ગુરુત્વપ્રવેગ <i>gન</i> ા મૂલ્યમાં થતો ઘટાડો m/s² હશે.
	(A) 0.1 (B) 0.2 (C) 0.05 (D) 0.3
6.	પૃથ્વીની ચાકગતિને લીધે તેના વિષુવવૃત્ત પર રહેલા પદાર્થનો પૃથ્વીના કેન્દ્રથી દૂર તરફની ત્રિજ્યાવર્તી દિશામાંનો આભાસી પ્રવેગ કેટલો હશે ?
	(A) ωR_e (B) $\omega^2 R_e$ (C) ωR_e^2 (D) $\omega^2 R_e^2$
	જ્યાં, $\omega =$ પૃથ્વીની કોશીય ઝડપ,
	$R_e = પૃથ્વીની ત્રિજ્યા$
7.	ગ્રહની આસપાસ જુદી-જુદી વર્તુળકક્ષાઓમાં ભ્રમણ કરતા જુદા-જુદા ઉપગ્રહો માટે કોણીય
	વેગમાન L અને કક્ષીય ત્રિજ્યા r વચ્ચેનો સંબંધ નીચેનામાંથી કયો છે ?
	(A) L $\alpha \frac{1}{\sqrt{r}}$ (B) L αr^2 (C) L $\alpha \sqrt{r}$ (D) L $\alpha \frac{1}{r^2}$
8.	ગોળાકાર નિયમિત કવચની અંદરના વિસ્તારમાં બધાં બિંદુઓએ
	(A) ગુરુત્વતીવ્રતા અને ગુરુત્વસ્થિતિમાન બંને શૂન્ય હોય છે.
	(B) ગુરુત્વતીવ્રતા અને ગુરુત્વસ્થિતિમાન બંને અશૂન્ય હોય છે.
	(C) ગુરુત્વતીવ્રતા અશૂન્ય અને ગુરુત્વસ્થિતિમાન શૂન્ય હોય છે.
0	(D) ગુરુત્વતીવ્રતા શૂન્ય અને ગુરુત્વસ્થિતિમાન અશૂન્ય પણ સમાન હોય છે.
9.	નીચેનામાંથી કયો વિકલ્પ અનુક્રમે ગુરુત્વસ્થિતિમાન અને ગુરુત્વસ્થિતિ-ઊર્જાનાં પારિમાણિક સૂત્રો રજૂ કરે છે ?
	(A) $M^1L^1T^{-1}$, $M^1L^2T^{-2}$ (B) $M^0L^2T^{-2}$, $M^1L^2T^{-2}$
	(C) $M^0L^2T^{-2}$, $M^1L^2T^2$ (D) $M^1L^2T^{-1}$, $M^2L^1T^{-1}$
10	. સૂર્યની આસપાસ પરિભ્રમણ કરતા ગ્રહ માટે
	(A) રેખીય ઝડપ અને કોણીય ઝડપ અચળ હોય છે.
	(B) ક્ષેત્રીય વેગઅને કોણીય વેગમાન અચળ હોય છે.
	(C) રેખીય ઝડપ અને ક્ષેત્રીય વેગ અચળ હોય છે.
	(D) ક્ષેત્રીય વેગ અચળ હોય છે, પણ કોણીય વેગમાન બદલાય છે.
11	- પ્રહની આસપાસ એક જ કક્ષામાં ઘૂમતા બે ઉપગ્રહોનાં દળોનો ગુણોત્તર $rac{m_1}{m_2}=rac{1}{2}$ હોય,
	તો તેમના કક્ષીય વેગોનો ગુણોત્તર $rac{ u_1}{ u_2} =$
	(A) 1 (B) $\frac{1}{2}$ (C) 2 (D) 4
12	એક ગ્રહની આસપાસ r ત્રિજ્યાની કક્ષામાં રહેલા ઉપગ્રહનો આવર્તકાળ $oldsymbol{\mathrm{T}}$ હોય, તો $4r$
	ત્રિજ્યાની કક્ષામાંના (પ્રાયહનો આવર્તકાળ T' =

(A) 4T (B) 2T (C) 8T (D) 16T

> 13. બે પ્રહોની ત્રિજ્યાઓ અનુક્રમે r_1 અને r_2 તથા તેમની ઘનતાઓ અનુક્રમે ho_1 અને ho_2 છે. તેમની સપાટી પરના ગુરુત્વપ્રવેગ અનુક્રમે g_1 અને g_2 છે, તો. $\frac{g_1}{g_2} = \dots$

- (A) $\frac{r_1\rho_1}{r_2\rho_2}$
- (B) $\frac{r_2\rho_2}{r_1\rho_1}$ (C) $\frac{r_1}{r_2} \cdot \frac{\rho_2}{\rho_1}$ (D) $\frac{r_2}{r_1} \cdot \frac{\rho_1}{\rho_2}$

f 14. પૃથ્વીની આસપાસ ભ્રમણ કરતા ઉપગ્રહોની ગતિ-ઊર્જા ($f E_{
u}$) અને તેમની કક્ષીય ત્રિજ્યા (r)વચ્ચેનો સંબંધ કેવા પ્રકારનો હશે ?

- (A) $E_k \propto r$ (B) $E_k \propto \frac{1}{r}$ (C) $E_k \propto r^2$ (D) $E_k \propto \frac{1}{r^2}$

15. પૃથ્વીની ત્રિજ્યા R_{ϱ} માંથી $\frac{R_{\varrho}}{2}$ થાય તેમ પૃથ્વીનું સંકોચન થાય (પણ કપાઈ જતી નથી !) તો તે બે સ્થિતિમાં તેના કેન્દ્રથી R અંતરે આવેલા બિંદુએ ગુરુત્વપ્રવેગ gનાં મૂલ્ય અને ગુરુત્વસ્થિતિમાન ¢નાં મૃલ્ય અંગે શું કહી શકાય ?

- (A) g અને φ બંનેનાં મૂલ્ય અડધાં થાય છે.
- (B) gનું મૂલ્ય અડધું થાય અને φનું મૂલ્ય અગાઉ જેટલું જ છે.
- (C) gનું મૂલ્ય અગાઉ જેટલું જ અને φનું મૂલ્ય અડધું થાય છે.
- (D) g અને φ ના બંનેનાં મૂલ્ય અગાઉ જેટલાં જ રહે છે.

જવાબો

- 5. (A) 1. (C) 2. (C) 3. (D) 4. (A) 6. (B)
- 7. (C) 8. (D) 9. (B) **10.** (B) **11.** (A) 12. (C)
- 14. (B) 15. (D) 13. (A)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- પૃथ્વીના વિષુવવૃત્ત અને ધ્રુવમાંથી કયા સ્થળે ગુરુત્વપ્રવેગ gનું મૂલ્ય વધારે હોય છે ? શા માટે ?
- પૃથ્વીના કેન્દ્ર પર ગુર્ત્વપ્રવેગ અને ગુર્ત્વતીવ્રતાનાં મૂલ્યો જણાવો.
- એક બિંદુએ ગુરૂત્વતીવ્રતાનું મૂલ્ય 0.7 N/kg છે, તો તે બિંદુએ 5 kg દળના પદાર્થ પર લાગતા ગુરુત્વબળનું મૂલ્ય કેટલું હશે ? [value : 3.5 N]
- ''કોઈ ગ્રહની સપાટી પરના સ્થિર પદાર્થ માટે નિષ્ક્રમણ-વેગ vૃનું મૂલ્ય ગ્રહના દળ અને ત્રિજ્યાના સમપ્રમાણમાં હોય છે.'' – આ વિધાન સાચું છે ? જો ન હોય તો સુધારીને લખો.
- ધ્રુવીય ઉપગ્રહના કોઈ બે ઉપયોગો જણાવો.
- જો કોઈ ઉપગ્રહની ગતિ-ઊર્જા 6 × 10° J હોય તો તેની સ્થિતિ-ઊર્જા કેટલી હશે ? કુલ ઊર્જા કેટલી હશે ?
- 7. એક ઉપગ્રહની સ્થિતિ-ઊર્જા $-8 \times 10^9 \, \mathrm{J}$ છે. તો તેની બંધન-ઊર્જા (અથવા નિષ્ક્રમણ-ઊર્જા) કેટલી હશે ?

8. જુદા-જુદા ગ્રહોનાં દળ \mathbf{M}_1 , \mathbf{M}_2 , \mathbf{M}_3 ત્રિજ્યાઓ \mathbf{R}_1 , \mathbf{R}_2 , \mathbf{R}_3 અને સપાટી પરના ગુરુત્વ-પ્રવેગ g_1 , g_2 , g_3 છે, તો તેમને માટેના નીચેના આલેખ પરથી તેમનાં દળનાં મૂલ્યોને ઊતરતા ક્રમમાં ગોઠવો.

(**Hint** : કોઈક નિશ્ચિત અંતર $r > R_3$ માટે $g = \frac{GM}{r^2}$ પરથી વિચારો.]

[$\forall a : M_3 > M_1 > M_2$]

નીચેના પ્રશ્નોના જવાબ આપો :

- ન્યૂટનનો ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ જણાવો અને તેના સૂત્રને સદિશ સ્વરૂપમાં લખો અને સમજાવો.
- પૃथ્વીના ઉપગ્રહ માટે કક્ષીય વેગનું સૂત્ર મેળવો.
- પૃથ્વીના ઉપગ્રહ માટે આવર્તકાળનું સૂત્ર તારવો.
- પૃथ્વીની સપાટી પર રહેલા સ્થિર પદાર્થ માટે નિષ્ક્રમણ-ઝડપ (નિષ્ક્રમણ-વેગ)નું સૂત્ર મેળવો.
- 5. પૃથ્વીની સપાટીથી d ઊંડાઈએ ગુર્ત્વપ્રવેગનું સૂત્ર મેળવો.
- ઉપગ્રહની કુલ ઊર્જાનું સૂત્ર મેળવો.
- ગુરુત્વાકર્ષી તીવ્રતાની વ્યાખ્યા આપો અને તેનું સૂત્ર લખો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 8. ગુરુત્વસ્થિતિમાનની વ્યાખ્યા આપો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 욐 ગુરૂત્વ સ્થિતિ-ઊર્જાની વ્યાખ્યા આપો. તેનો એકમ અને પારિમાણિક સૂત્ર જણાવો.
- 10. પૃથ્વીના કેન્દ્રથી r (> $R_{
 ho}$) અંતરે તેના ગુરુત્વસ્થિતિમાનનું સૂત્ર મેળવો.
- પૃથ્વીના ભ્રમણને લીધે અક્ષાંશ સાથે અસરકારક ગુરુત્વપ્રવેગ g' માં થતાં ફેરફારનું સૂત્ર મેળવો.
- f 12. સૂર્યની આસપાસ ઘૂમતા ગ્રહની અર્ધ-દીર્ઘ અક્ષ a છે અને આટલા અંતરે ગ્રહની યાંત્રિક ઊર્જા

 $\frac{-\mathrm{GM}m}{2a}$; જ્યાં, $\mathrm{M}=\mathrm{He}_{2a}$ દળ; $m=\mathrm{He}_{2a}$ દળ. જ્યારે પ્રહનું He_{2a} અંતર r હોય ત્યારે તેનો વેગ શોધો.

$$[\operatorname{Said}: v = \sqrt{\operatorname{GM}\left(\frac{2}{r} - \frac{1}{a}\right)}]$$

[Hint : યાંત્રિક ઊર્જા-સંરક્ષણના નિયમનો ઉપયોગ કરો.].

13. g અને G વચ્ચેના તફાવતના મુદ્દા આપો.

નીચેના દાખલા ગણો :

1. એક અવકાશયાન પૃથ્વીથી સીધું સૂર્ય તરફ જાય છે. તો પૃથ્વીના કેન્દ્રથી કેટલે દૂર અવકાશયાન પર લાગતાં સૂર્ય અને પૃથ્વીનાં ગુરુત્વાકર્ષી બળો સમાન મૂલ્યનાં થશે ? સૂર્ય અને પૃથ્વી વચ્ચેનું અંતર 1.49×10^8 km, સૂર્ય અને પૃથ્વીનાં દળ અનુક્રમે 2×10^{30} kg અને 6×10^{24} kg લો. [જવાબ : 25.7×10^4 km]