PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11222536 A

(43) Date of publication of application: 17.08.99

(51) Int. CI

C08L 9/00 F16F 1/36

(21) Application number: 10041352

(22) Date of filing: 06.02.98

(71) Applicant:

NIPPON ZEON CO LTD

(72) Inventor:

TOTO TAKESHI

(54) RUBBER COMPOSITION AND VIBRATION ISOLATING MATERIAL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a vibration-isolating material excellent in vibration-isolating performances and low-temperature properties.

SOLUTION: This vibration-isolating material is prepared by crosslinking a polybutadiene rubber having an Mw/Mn

ratio of 4.5-14.5 (wherein Mw and Mn are the weight-average molecular weight and the number-average molecular weight as determined by gel permeation chromatography) and having a molecular weight curve in which at least one peak top appears in the molecular weight range of 100,000-1,500,000 and at least one peak top appears in the molecular weight range of 10,000-50,000.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-222536

(43)公開日 平成11年(1999)8月17日

(51) Int.Cl.6

酸別記号

FΙ

CO8L 9/00 F16F 1/36 C08L 9/00

F16F 1/36

С

審査請求 未請求 請求項の数2 FD (全 11 頁)

(21)出願番号

特願平10-41352

(71)出願人 000229117

(22)出顧日

平成10年(1998) 2月6日

日本ゼオン株式会社 東京都千代田区丸の内2丁目6番1号

(72) 発明者 唐渡 毅

神奈川県川崎市川崎区夜光1-2-1 日

本ゼオン株式会社総合開発センター内

(54) 【発明の名称】 ゴム組成物および防振材

(57)【要約】

【課題】 防振特性、低温特性に優れた防振材を提供する。

【解決手段】 ゲルパーミエーションクロマトグラフィで測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~14.5であり、分子量分布曲線上の分子量100.000~1.500.000の範囲にピークトップが一つ以上、分子量10,000~50,000の範囲にピークトップが一つ以上存在するポリブタジエンゴムを架橋して防振材とする。

【特許請求の範囲】

【請求項1】 ゲルパーミエーションクロマトグラフィ(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~14.5であり、分子量100.000~1.500.000の範囲にピークトップが一つ以上、分子量10.000~50,000の範囲にピークトップが一つ以上ある分子量分布曲線を有するボリブタジエンゴムと架橋剤とを含有するゴム組成物。

1

【請求項2】 請求項1記載のゴム組成物を架橋して成 10 る防振材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ゴム組成物と防振材に関し、架橋することにより、防振特性、低温特性に優れ、かつ耐久性に優れた、特定のポリブタジェンゴムと、それを架橋した防振材に関する。

[0002]

【従来の技術】2つの部材間における振動、騒音などの 緩和を目的として、部材間に防振ゴムが使用されてい る。その目的、部材の種類、入力振動に応じて、防振ゴ ムは各種の要求特性を満足させることが求められる。例 えば、自動車用の防振ゴムの内、エンジンマウント用の ものは、高重量物を支える必要があるため、耐久性を要 求される。

【0003】自動車用の防振ゴムにおいては、シェイク、バウンズ振動などの低周波数高振幅の振動(周波数10~15Hz程度、振幅0.5~2.0mm程度)の入力時には高減衰性を有して、車体振動のエンジンへの影響、エンジン振動の車体への影響を抑制し、一方、エ 30ンジン音のようなこもり音など高周波数微少振幅の振動(周波数80~150Hz程度、振幅0.025~0.05mm程度)の入力時には動バネ定数(Kd)と静バネ定数(Ks)の比(Kd/Ks)で示される助倍率が低く、外部への騒音の漏洩を防ぐことが求められている。

【0004】しかし、一般に、防振ゴムを低周波数高振幅時に高減衰性を示すように調製すると、高周波数微少振幅時に動バネ定数が大きくなるため動倍率が高くなり、高周波数微少振幅時に低動倍率になるように調製す 40 ると低周波数高振幅時の減衰性が低くなる。このため、相反するこれらの二種の防振特性を同時に備える、すなわち、防振ゴムを得ることは困難であった。

【0005】ブチルゴム、高スチレンSBRなどを主成分とする防振ゴムの中には、高減衰性で低動倍率のものも知られているが、低温での特性変化が大きい、防振特性の調整が困難であるなどの実用上の問題があった。また、液体封入式防振ゴムも利用可能であるが、構造が複雑であり製造効率が悪い。

【0006】さらに、特開昭63-227641号公報 50 つのピークトップは分子量10,000以上、好ましく

や特開平7-216136号公報などで、液状ゴムを用いたゴム組成物が提案されている。しかし、エンジンマウント用に用いられる防振ゴムとしては、耐久性が不十分であった。

[0007]

【発朋が解決しようとする課題】本発明の目的は、防振特性、低温特性に優れ、且つ耐久性に優れた防振材を提供することにある。

[8000]

【課題を解決するための手段】本発明者らは、上記目的を達成するべく、鋭意努力の結果、特定のポリブタジェンゴムを架橋することにより、有効な防振特性、低温特性に優れた防振材が得られることを見い出し、本発明を完成させるに至った。

【0009】かくして、本発明によれば、ゲルバーミエーションクロマトグラフィ(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~14.5であり、分子量100,000~1.500.000範囲にピークトップが一つ以上、分子量10,000~50,000範囲にピークトップが一つ以上ある分子量分布曲線を有するポリブタジエンゴムと架橋剤から成るゴム組成物、それを架橋してなる防振材が提供される。

【0010】(多峰性ポリブタジエンゴム)本発明で用いるポリブタジエンゴムは、ゲルバーミエーションクロマトグラフィ(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~14.5であり、分子量100,000~1,500,000~50,000の範囲にピークトップが一つ以上、分子量10,000~50,000の範囲にピークトップが一つ以上ある分子量分布曲線を有しするものである(以下、このポリブタジエンゴムを多峰性ポリブタジエンゴムという)。

【0011】多峰性ポリブタジエンゴムの分子量分布(Mw/Mn)は、好ましくは5.0~14.0、より好ましくは6.0~13.5、最も好ましくは8.0~13.0である。多峰性ポリブタジエンゴムの分子量分布が大きすぎると防振材の耐久性の改良効果が不十分になり、小さすぎると防振特性の改良効果が不十分になるという問題を生じる。

【0012】多峰性ポリブタジエンゴムの少なくとも一つのピークトップは分子量100,000以上、好ましくは200,000以上、より好ましくは300,000以上、1,500,000以下、好ましくは1,200,000以下、より好ましくは800,000の範囲にある(以下、この分子量範囲のゴム成分を高分子量成分という)。この範囲にピークトップがない場合は、本発明の防振材は、耐久性が不足する場合がある。

【0013】多峰性ポリブタジエンゴムの少なくとも一つのピークトップは分子費10 000以上 好事しく

は13,000以上、より好ましくは15,000以上、50,000以下、好ましくは40,000以下、より好ましくは30,000以下の範囲にある(以下、この分子量範囲のゴム成分を低分子量成分という)。この範囲にピークトップがない場合は、本発明の組成物は、防振特性や耐久性が不足する場合がある。

【0014】多峰性ポリブタジエンゴムのシス-1,4 構造含有率(シス-1,4結合量)は、特に限定されず、通常60重量%以上、好ましくは80重量%以上、より好ましくは85重量%以上、特に好ましくは90重 10量%以上である。多峰性ポリブタジエンゴムのシス-1,4構造含有率が低すぎると低温で耐破壊特性が劣る、すなわち脆くなるという問題を生じる場合がある。防振材が通常使用される-20℃以上では特に大きな問題はないが、特に-30℃以下で使用する場合には、他の使用条件にもよるが、シス-1,4構造含有率を高く設定するととが好ましい。

【0015】多峰性ポリブタジェンゴムは、トルエン溶液中、30 ℃で測定した固有粘度 [μ] が好ましくは 1.0 \sim 6.0、より好ましくは1.5 \sim 4.5、さら 20 に好ましくは2.0 \sim 3.0 である。

【0016】多峰性ポリブタジエンゴムは、高分子量成分が30~98重量%のものが好ましく、40~97重量%のものがより好ましく、50~95重量%のものがさらに好ましい。また、低分子量成分が2~70重量%のものが好ましく、3~60重量%のものがより好ましく、5~50重量%のものがさらに好ましい。さらに、高分子量成分と低分子量成分を合わせた量が50重量%以上のものが好ましく、70重量%以上のものがより好ましく、90重量%以上のものが特に好ましい。高分子量成分が少なすぎても低分子量成分が多すぎても、防振材の製造が困難になり、耐久性に劣るという傾向があり、高分子量成分が多すぎても低分子量成分が少なすぎても、防振特性の改善効果が小さく、耐久性に劣るという傾向があるため、使用条件によっては効果がそれほど高くなくなる場合もある。

【0017】多峰性ポリブタジエンゴムの製造方法は、特に限定されず、例えば、高分子量成分および低分子量成分に相当する各ポリブタジエンゴムを製造した後、両成分を混合することにより調製しても、高分子量成分と低分子量成分を同時に一つの重合反応液中で製造してもよい。

【0018】ポリブタジエンゴムは、通常、不活性有機溶媒中で、遷移金属化合物、有機アルミニウム化合物、および極性化合物を含む重合触媒系を用いて1、3-ブタジエンを重合することにより製造することができる。重合に際し、必要に応じて、分子量調節剤、ゲル化防止剤などを使用することができる。ポリブタジエンゴムの分子量は、触媒の種類と使用量、分子量調節剤などの使用量などを調節することにより調整することができる。

【0019】ポリブタジエンゴムの重合に通常使用され る遷移金属化合物としては、遷移金属を有し、かつ重合 溶媒に可溶であれば特に制限されないが、通常、遷移金 属の塩化合物が用いられる。遷移金属は、不完全なDま たはF亜殼を持つ金属元素またはそのような亜殼を持つ 陽イオンを生ずる金属元素として定義され、一般に、I UPAC無機化学命名法改訂版(1989年)による周 期表第3~11族の元素が挙げられる。具体的には、例 えば、チタン、クロム、マンガン、鉄、コバルト、ニッ ケル、鋼、イットリウム、ランクン、ネオジウムなどが 挙げられ、好ましくは鉄、コバルト、ニッケル、ネオジ ミウムで、特に好ましくはコバルト、ニッケルである。 塩化合物としては、例えば、有機酸塩、有機錯体塩など が挙げられる。有機酸塩や有機錯体塩の炭素数は、格別 限定はないが、通常1~80個、好ましくは2~25 個、より好ましくは3~20個である。これらの遷移金 属化合物は、それぞれ単独で、あるいは2種以上を組み 合わせて用いるととができる。

【0021】極性化合物としては、使用される遷移金属化合物及び有機アルミニウム化合物の組み合わせで、水、アルコール類、エーテル類、ルイス酸などから、重合活性を妨げない化合物を選択することができる。例えば、有機酸コバルト塩/ジエチルアルミニウムクロライドの組み合わせでは、極性化合物としては、水が有効である。極性化合物は、触媒活性を安定的に向上させるとともに、生成ポリマーの分子量分布および分岐度を調整する上で重要である。

【0022】本発明で使用される重合溶媒としては、ボ 40 リブタジエンゴムを溶解し、かつ重合触媒の活性に悪影響を及ばさないものであれば特に制限されず、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類: シクロヘキサン、メチルシクロヘキサン、シクロペンタンなどの脂環式炭化水素類: n-ブタン、n-ヘキサン、n-ヘブタンなどの飽和脂肪族化水素類: シス-2-ブテン、トランス-2-ブテン、ブテン-1などの脂肪族不飽和炭化水素類; などが挙げられる。これらの不活性有機溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用される。重合溶媒の使用量 50 は、単量体濃度が通常5~50重量%、好ましくは10

~40重量%になるように調整すればよい。

【0023】分子量調節剤は、必要に応じて使用される が、シス-1,4-ポリブタジエンゴムの重合反応で一 般に使用される、1、2-ブタジエンなどのアレン類や シクロオクタジエンなどの環状ジエン類などが好ましく 使用される。

【0024】ゲル化防止剤は、必要に応じて使用される が、例えば、ルイス塩基、カルボン酸エステル類、オル ト酸エステル類などが好ましく使用される。

【0025】ポリブタジエンゴムの重合反応は、回分 式、連続式のいずれでもよい。重合温度は、通常0~1 00℃、好ましくは10~60℃である。重合圧力は、 通常0~5気圧(ゲージ圧)である。反応終了後、重合 反応液にアルコールなどの重合停止剤、老化防止剤、酸 化防止剤、紫外線吸収剤などの配合剤を添加することが できる。次いで、常法に従って、生成ポリマーを洗浄、 分離、乾燥して目的のポリブタジエンを得ることができ る。

【0026】重合反応液に添加する老化防止剤は特に限 化を防止するため、フェノール系安定剤、リン系安定 剤、イオウ系安定剤などを1種、または2種以上配合す ることが好ましい。配合量はそれぞれの特性に合わせて 決められる。

【0027】フェノール系安定剤は、特開平4-252 243号公報などで公知のものであり、例えば、例え は、2,6-ジーtert-ブチル-4-メチルフェノ ール、2,6-ジーtert-ブチル-4-エチルフェ ノール、2, 6-ジーtert-ブチルー4-n-ブチ so-7 function 1 function 2 - tert-7 function 4, 6-ジメチルフェノール、2,4,6-トリシクロヘキ シルフェノール、2,6-ジーtertーブチルー4-メトキシフェノール、2、6-ジーフェノール-4-オ クタデシルオキシフェノール、n-オクタデシル-3-(3', 5' -ジーtert-ブチル-4-ヒドロキシ フェニル)プロピオネート、テトラキスー (メチレンー 3-(3', 5'-ジ-tert-ブチル-4'-ヒド ロキシーフェニル) プロピオネート]ーメタン、1, 3, 5-トリメチルー2, 4, 6-トリス(3, 5-ジ 40 -tert-ブチル-4-ヒドロキシベンジル) ベンゼ ンなどや、後述のイオウ含有フェノール系安定剤が例示 される。リン系安定剤も公知のものであり、例えば、ト .リス(ノニルフェニル)フォスファイト、サイクリック ネオペンタンテトライルビス (オクタデシルフォスファ イト)、トリス(2,4-ジ-tert-ブチルフェニ ル)フォスファイトなどが例示される。

【0028】イオウ系安定剤としては、ペンタエリスリ トールーテトラキスー (β-ラウリルーチオープロビオ ネート)、ジラウリル-3, 3'-チオジプロピオネー 50 ビニルブタジエンブロック共重合体ゴム、高ビニルブタ

ト、ジミリスチルー3、3′ーチオジプロピオネート、 ジステアリル-3、3'-チオジプロピオネートなど や、イオウ含有フェノール系安定剤(例えば、2,4-ビス(n-オクチルチオメチル)-6-メチルフェノー ル、2、4-ビス(2',3'-ジーヒドロキシブロビ ルチオメチル) -3, 6-ジ-メチルフェノール、2, 4-ビス(2'-アセチルオキシエチルチオメチル)-3.6-ジーメチルフェノールなど)が例示される。 【0029】なお、高分子量成分と低分子量成分を別々 10 に重合して混合する場合は、混合は溶媒の存在下で混合 するのが好ましい。溶媒の不存在下で混合すると、耐久 性が不十分となる場合がある。工程が簡単であることか ら、重合反応液をブレンドして、洗浄、分離、乾燥すれ ばよい。

【0030】(ゴム組成物)本発明のゴム組成物は、多 峰性ポリブタジエンゴムと架橋剤を含有するものであ る。ゴム組成物は、多峰性ポリブタジェンゴム以外のゴ ムを含有していてもよいが、多峰性ポリブタジエンゴム の含量がゴム組成物中のゴムの総量に対して、5重量% 定されないが、分離、乾燥工程での加温によるゴムの劣 20 以上のものが好ましく、10重量%以上のものがより好 ましく、20重量%以上のものが特に好ましく、90重 量%以下のものが好ましく、80重量%以下のものがよ り好ましく、70重量%以下のものが特に好ましい。な お、多峰性ポリブタジエンゴムは、2種以上を用いても £64.

【0031】含有しうる多峰性ポリブタジェンゴム以外 のゴムは、上記の多峰性ポリブタジエンゴムに該当しな いものであれば、特に限定されず、通常の固体ゴムでも 液状ゴムでもよく、ポリエーテルゴム、アクリルゴム、 ルフェノール、2.6-ジ-tert-ブチル-4-i 30 ポリアミド、ジエンゴムなどであっても構わない。好ま しいものはジエンゴムである。ジエンゴムとしては、例 えば、天然ゴム、イソプレンゴム、スチレンーブタジエ ンランダム共重合体ゴム (例えば、結合スチレン量5~ 50重量%、ブタジエン結合単位の1,2-ビニル結合 **量10~80%)、スチレン-ブタジエン多元ブロック** 共重合体ゴム (例えば、結合スチレン量5~50重量 %、ブタジエン結合単位の1、2-ビニル結合量10~ 80%)、スチレン-ブタジエンテーバードブロック共 重合体ゴム (例えば、結合スチレン量5~50重量%、 ブタジエン結合単位の1,2-ビニル結合量10~80 %) スチレンイソプレン共重合体ゴム、高トランススチ レンーブタジエン共重合体ゴム(例えば、結合スチレン 量5~50重量%、ブタジエン結合単位の1,4-トラ ンス結合量70~95%)、スチレン-イソプレン多元 ブロック共重合体ゴム、溶液重合スチレンーイソプレン ブタエンランダム共重合体ゴム、乳化重合スチレンー イソプレン-ブタエンランダム共重合体ゴム、高ビニル ・スチレン-ブタジエン-低ピニル・スチレン-ブタジ エンブロック共重合体ゴム、高ピニル・ブタジエンー低

ジェンー (スチレンーブタジェン) ブロック共重合体ゴム、イソプレンー (スチレンーブタジェン) ブロック共重合体ゴム、イソプレンーブタジェンブロック共重合体ゴム、アクリロニトリルーブタジェン共重合体ゴム (例えば、結合アクリロニトリル量5~60重量%)、水素化アクリロニトリルーブタジェン共重合体ゴム (例えば、結合アクリロニトリル量5~60重量%) などが挙げられる。特に天然ゴム、イソプレンゴムが好ましい。複数種のゴムを混合して用いる場合は、天然ゴムおよび/またはイソプレンゴムを主成分とするものが好ましい。

【0032】なお、多峰性ポリブタジェンゴム以外のゴムはポリスチレン換算より求めたゲルバーミエーションクロマトグラフィ(GPC)の数平均分子質が好ましくは $1,000\sim1,500,000$ 、より好ましくは $10,000\sim1,200,000$ 、特に好ましくは $50,000\sim800,000$ のものである。

【0033】本発明のゴム組成物に含有される架橋剤は、特に限定はなく、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄などのハロゲン化硫黄; ジクミルバーオキシド、ジターシャリブチルバーオキシドなどの有機過酸化物: pーキノンジオキシム、p,p′ージベンゾイルキノンジオキシムなどのキノンジオキシム; トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4′ーメチレンピスーロークロロアニリンなどの有機多価アミン化合物; メチロール基を持ったアルキルフェノール樹脂; などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄が特に好ましい。これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。

【0034】架橋剤の配合割合は、ゴム組成物に含有されるゴムの全量を100重量部として、通常、0.1~15重量部、好ましくは0.3~10重量部、さらに好ましくは0.5~5重量部の範囲である。架橋剤の配合割合がこの範囲にある時に、本発明の防振材は耐久性に優れるとともに、耐熱性や残留ひずみなどの特性にも優れるので好ましい。、

【0035】通常、架橋剤と共に架橋促進剤が配合される。架橋促進剤は、例えば、Nーシクロへキシルー2ー 40ベンゾチアジルスルフェンアミド、Nーtーブチルー2ーベンゾチアジルスルフェンアミド、Nーオキシエチレンー2ーベンゾチアジルスルフェンアミド、Nーオキシエチレンー2ーベンゾチアジルスルフェンアミド、N・N'ージイソプロビルー2ーベンゾチアジルスルフェンアミドなどのスルフェンアミド系架橋促進剤; ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系架橋促進剤; チオカルボアニリド、ジオルトトリルチオウレア、エチレンチオウレア、ジエチルチオウレア、トリメチルチオウ

8

レアなどのチオウレア系架橋促進剤: 2-メルカプト ベンゾチアゾール、ジベンゾチアジルジスルフィド、2 - メルカプトベンゾチアゾール亜鉛塩、2 - メルカプト ベンゾチアゾールナトリウム塩、2-メルカプトベンゾ チアゾールシクロヘキシルアミン塩、2-(2,4-ジ ニトロフェニルチオ) ベンゾチアゾールなどのチアゾー ル系架橋促進剤: テトラメチルチウラムモノスルフィ ド、テトラメチルチウラムジスルフィド、テトラエチル チウラムジスルフィド、テトラブチルチウラムジスルフ ィド、ジベンタメチレンチウラムテトラスルフィドなど のチウラム系架橋促進剤: ジメチルジチオカルバミン 酸ナトリウム、ジエチルジチオカルバミン酸ナトリウ ム、ジーnーブチルジチオカルバミン酸ナトリウム、ジ メチルジチオカルバミン酸鉛、ジメチルジチオカルバミ ン酸亜鉛、ジエチルジチオカルパミン酸亜鉛、ジーnー ブチルジチオカルバミン酸亜鉛、ペンタメチレンジチオ カルバミン酸亜鉛、エチルフェニルジチオカルバミン酸 亜鉛、ジエチルジチオカルバミン酸テルル、ジメチルジ チオカルバミン酸セレン、ジエチルジチオカルバミン酸 20 セレン、ジメチルジチオカルバミン酸銅、ジメチルジチ オカルバミン酸鉄、ジエチルジチオカルバミン酸ジエチ ルアミン、ペンタメチレンジチオカルバミン酸ピペリジ ン、メチルペンタメチレンジチオカルバミン酸ピペコリ ンなどのジチオカルバミン酸系架橋促進剤: イソプロ ビルキサントゲン酸ナトリウム、イソプロビルキサント ゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサント ゲン酸系架橋促進剤: などの架橋促進剤が挙げられ

【0036】これらの架橋促進剤は、通常、それぞれ単独で、あるいは2種以上を組み合わせて用いられるが、少なくともスルフェンアミド系架橋促進剤を含むものが特に好ましい。スルフェンアミド系架橋促進剤の割合が全架橋促進剤中の30重量%以上のものが好ましく、50重量%以上のものがより好ましく、70重量%以上のものが特に好ましい。架橋促進剤の配合割合は、ゴムの総量を100重量部とすると、通常0.1~15重量部、好ましくは0.3~10重量部、さらに好ましくは0.5~5重量部の範囲である。

0 【0037】また、通常、架橋剤と共に架橋活性化剤が 用いられる。架橋活性化剤としては、特に制限はない が、例えばステアリン酸などの高級脂肪酸や酸化亜鉛な どを用いることができる。酸化亜鉛としては、例えば、 表面活性の高い粒度5μm以下のものを用いるのが好ま しく、かかる具体例としては、粒度が、例えば、0.0 5~0.2μmの活性亜鉛華や0.3~1μmの亜鉛華 などを挙げることができる。また、酸化亜鉛は、アミン 系の分散剤や湿潤剤で表面処理したものなどを用いるこ とができる。

0 【0038】とれらの架橋活性化剤は、それぞれ単独

で、あるいは2種以上を併用して用いることができる。 架橋活性化剤の配合割合は、架橋活性化剤の種類により 適宜選択される。高級脂肪酸を用いる場合、ゴム組成物 中のゴムの総量を100重量部とすると、通常0.05 ~15重量部、好ましくは0.1~10重量部、より好 ましくは0.5~5重量部配合する。酸化亜鉛を用いる 場合は、ゴム組成物中のゴムの総量を100重量部とす ると、通常0.05~10重量部、好ましくは0.1~ 5重量部、より好ましくは0.5~2重量部配合する。 酸化亜鉛の配合割合がこの範囲にある時に、加工性、耐 久性などの特性が高度にバランスされ好適である。

【0039】その他の配合剤の例としては、例えば、ジ エチレングリコール、ポリエチレングリコール、シリコ ーンオイルなどの活性剤、可塑剤、滑剤: 炭酸カルシ ウム、タルク、クレーなどの充填剤: などのほか、補 強剤、オイル、ワックスなどが挙げられる。

【0040】本発明のゴム組成物に用いられる補強剤と しては、特に制限はないが、例えば、シリカやカーボン ブラックなどを挙げることができる。

【0041】シリカとしては、特に制限はないが、例え ば、乾式法ホワイトカーボン、湿式法ホワイトカーボ ン、コロイダルシリカ、および特開昭62-62838 号公報に開示される沈降シリカなどが挙げられる。これ らの中でも、含水ケイ酸を主成分とする湿式法ホワイト カーボンが特に好ましい。これらのシリカは、それぞれ 単独で、あるいは2種以上を組み合わせて用いることが できる。

【0042】シリカの比表面積は、特に制限はされない が、窒素吸着比表面積(BET法)で、通常50~40 $0m^2/g$ 、好ましくは $100\sim250m^2/g$ 、さらに 好ましくは120~190㎡/gの範囲である時に、 耐久性や動倍率や高減衰性が高いレベルで改善され好適 である。ととで窒素吸着比表面積は、ASTM D30 37-81に準じBET法で測定される値である。

...

【0043】カーボンブラックとしては、特に制限はな いが、例えば、ファーネスブラック、アセチレンブラッ ク、サーマルブラック、チャンネルブラック、グラファ イトなどを用いることができる。これらの中でも、特に ファーネスプラックが好ましく、その具体例としては、 SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-L S. MAF. FEF. FEF-LS. GPF. GPF-HS, GPF-LS, SRF, SRF-HS, SRF-LMなどの種々のグレードのものが挙げられる。とれら のカーボンブラックは、それぞれ単独で、あるいは2種 以上を組み合わせて用いることができる。

【0044】カーボンブラックが窒素吸着比表面積(N 2SA)は、特に制限はないが、通常5~200m²/ g、好ましくは $10\sim150$ m $^{1}/g$ 、より好ましくは 20~130m²/gの範囲である時に、耐久性や動倍

率や高減衰性が高いレベルで改善され、好適である。約 70m³/gより小さいと低助倍率化が特に優れ、約7 0m²/gより大きいと高減衰性が特に優れる。また、 カーボンブラックのDBP吸着量は、特に制限はない が、通常5~300m1/100g、好ましくは20~ 200ml/100g、より好ましくは50~160m 1/100gの範囲である時に、耐久性や動倍率や高減 衰性が改善され、好適である。

10

【0045】補強剤の配合割合は、ゴム組成物中のゴム の総量を100重量部とすると、通常5~200重量 部、好ましくは10~150重量部、より好ましくは2 0~120重量部である。

【0046】本発明の目的から、補強剤として、カーボ ンブラック単独またはシリカ単独で、あるいはシリカと カーボンブラックとを併用して用いることができる。シ リカとカーボンブラックとを併用する場合の混合割合 は、用途や目的に応じて適宜選択されるが、シリカとカ ーボンブラックが重量比で、通常10:90~99: 1、好ましくは30:70~95:5、より好ましくは 50:50~90:10である。シリカを補強剤として 用いると低動倍率化に効果がある。

【0047】シリカを配合する場合は、シランカップリ ング剤も合わせて配合するのが一般的である。シランカ ップリング剤は、特に制限はないが、例えば、ビニルト リクロルシラン、ビニルトリエトキシシラン、ビニルト リス (βーメトキシエトキシ) シラン、β-(3,4-エポキシシクロヘキシル) -エチルトリメトキシシラ ン、アーグリシドキシプロピルトリメトキシシラン、ア -メタクリロキシプロピルトリメトキシシラン、N-β - (アミノエチル) - γ-アミノプロピルトリメトキシ シラン、N-β-(アミノエチル)-γ-アミノプロピ ルメチルジメトキシシラン、N-フェニル-~-アミノ プロビルトリメトキシシラン、ァークロロプロビルトリ メトキシシラン、ャーメルカプトプロピルトリメトキシ シラン、ャーアミノプロピルトリエトキシシラン、ビス (3-(トリエトキシシリル)プロピル)テトラスルフ ィドなどのほか、ァートリメトキシシリルプロビルジメ チルチオカルバミルテトラスルフィド、ァーリメトキシ シリルプロピルベンゾチアジルテトラスルフィドなどの ようなテトラスルフィド類なども挙げることができる。 【0048】とれらのシランカップリング剤は、それぞ れ単独で、あるいは2種以上の組み合わせで使用すると とができる。シランカップリング剤の配合割合はシリカ 100重量部あたり、通常、0.1~30重量部、好ま しくは1~20重量部、更に好ましくは2~10重量部 の範囲である。

【0049】ゴム組成物に含有されるオイルとしては、 プロセスオイル、パラフィンワックス、流動パラフィン などの鉱物油; ひまし油、綿実油、あまに油、トール 油などの植物油; 合成油; などが挙げられる。プロ セスオイルはアロマ系プロセスオイル、ナフテン系プロセスオイル、パラフィン系プロセスオイルなどが挙げられ、3員環以上の多環芳香族成分量がオイル中の3%以下であるととくに低温特性を改善する。

【0050】 これらのオイルは、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。オイルの配合量は、使用目的に応じて適宜選択されればよいが、ゴム組成物中のゴムの総量を100重量とすると、通常3~150重量部、好ましくは4~100重量部、より好ましくは5~75重量部の範囲である。オイルの配合量がこの範囲にあるときに、耐久性や防振特性および加工性が高いレベルで改善され好適である。

【0051】そのほか、老化防止剤、活性剤、可塑剤、 滑剤、充填剤などのその他の配合剤をそれぞれ必要に応 じて必要量含量することができる。

【0052】本発明のゴム組成物は、常法に従って各成分を配合することにより得ることができる。例えば、高分子量成分と低分子量成分を同一溶媒中で同時に重合した重合反応液など、多峰性ポリブタジエンゴムを溶解または分散させた有機溶媒液に、配合成分を加えて分散させた後、スチームストリッピング法や熱ロールを用いた方法により有機溶媒を除去したり、多峰性ポリブタジエンゴムと配合成分をロール、バンバリー、押出機を用いて混練すればよい。

【0053】本発明のゴム組成物を製造において多峰性ポリブタジエンゴム以外のゴムを配合する場合は、予め調製された多峰ポリブタジエンゴムとそれ以外のゴムを混合して製造することが好ましい。そのように製造したものは、高分子量成分と低分子量成分と他の配合成分とを同時に混合してゴム組成物を製造したものなどに比べて、ゴム組成物を架橋して得られる防振材の耐久性などがより優れている。

【0054】多峰性ポリブタジエンゴムにそれ以外のゴムを配合する方法も特に限定されず、通常は、1軸または2軸などの押出機、バンバリーミキサー、ロール、ニーダーなどの各種混練装置を用いて行われる。

【0055】(防振材)本発明の防振材は、多峰性ポリブタジエンゴムと架橋剤からなるゴム組成物を架橋・成形したものである。

【0056】架橋、成形の方法は特に限定されず、架橋は使用する架橋剤に応じて適した方法で行えばよく、成形は用途や目的に応じた形状に成形すればよい。一般には、成形と架橋は同時に行われるが、架橋後に削り出して成形してもよい。

【0057】補強剤としてカーボンブラックを用いる場合のゴム組成物の製造方法、防振材の製造の一例を示す。

【0058】ゴム成分と架橋剤および架橋促進剤を除く配合剤を混合した後、その混合物に架橋剤と架橋促進剤を混合してゴム組成物を得ることができる。

【0059】ゴム成分と架橋剤および架橋促進剤を除く配合剤を混合する際の温度は、通常、 $30\sim180$ ℃である。混合時間は、通常、30 秒以上であり、好ましくは $1\sim30$ 分間である。

12

【0060】次いで、得られたゴム組成物を通常100 ℃以下、好ましくは15~80℃まで冷却後、架橋剤と架橋促進剤を加え混練し、これらを含有するゴム組成物を得る。このゴム組成物を、通常120~200℃、好ましくは140~180℃でプレス架橋して成形し、防振材を得ることができる。

【0061】補強剤としてシリカを用いる場合の一例を示す。

【0062】多峰性ポリブタジエンゴムなどのゴムと、 架橋剤と架橋促進剤を除く配合剤を混練するに当たり、 先ず、ゴムとシリカの少なくとも一部をロール、バンバリーなどの混合機を用いて混合し、次いで、架橋剤や架 橋促進剤を除く残余の配合剤を添加し混合すると、分散性が向上し、より優れた性質を備えたゴム組成物を得る ことができる。この場合、シリカの添加は、一括でもよいが、所定量を好ましく2回以上に分割して添加すると分散が容易になり、シリカとゴムとの混合が一層容易に なる。例えば、1回目にシリカの全量の10~90重量 %を添加し、残余を2回目以降に添加することができる。

【0063】ゴムとシリカを混合する際の温度は、通常、50~250℃、好ましくは100~200℃、さらに好ましくは120~180℃である。この温度が、過度に低くなると防振材の耐摩耗性の向上が少なく、逆に、過度に高くなるとゴムの焼けが生じるので、いずれも好ましくない。混合時間は、通常、30秒以上であり、好ましくは1~30分間である。

【0064】次いで、得られた混合物を通常100℃以下、好ましくは $15\sim80$ ℃まで冷却後、架橋剤と架橋促進剤を加え混練して、これらを含有するゴム組成物を得る。このゴム組成物を通常 $120\sim200$ ℃、好ましくは $140\sim180$ ℃の温度でプレス架橋して防振材を得ることができる。

[0065]

50

【実施例】以下に参考例、実施例、比較例を挙げて、本 発明をさらに詳細に説明する。

【0066】なお、ポリブタジエンの分子量は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィによりポリスチレン換算値として求めた。との測定には、東ソー製TSKgel GMH-XLカラム(30cm×7.5mmID)を2本連結して用いた。シス-1、4結合量及び1、2-ビニル結合量は、赤外分光光度計を用いて赤外線吸収スペクトル測定を行い、モレロ法により、固有粘度は、ポリマーをトルエン溶液とし、30℃で、オスワルド粘度計により、測定した。

【0067】防振特性はダイナミックサーボを用い、23℃、15Hzで損失正接(tanδ)を、23℃、100Hzで動倍率(Kd/Ks)を測定した。tanδが高いほど高減衰性を有して、動倍率が低いほど静音性を有して防振特性がよいことをしめす。低温特性はJISK6261に準じてゲーマンねじり試験機を用い、比モジュラスがそれぞれ定温時(23℃)の5倍になるときの温度T5を測定した。温度T5が低いほど耐寒性がよい。耐久性はJISK6262の圧縮永久ひずみ試験方法に準じて測定した。圧縮永久ひずみ率(%)が10小さいほど耐久性がよい。

【0068】参考例1

攪拌機、及び還流冷却器のついた250リットルのステンレス製重合反応容器を2基直列につなぎ、以下のよう にして連続重合を行った。

【0069】トルエン10重量%、2-ブテン70重量%、および1、3-ブタジエン20重量%からなる原料混合溶液を毎時70kgで重合反応器に供給する際に、供給配管中に1、2-ブタジエンを毎時325ミリモル、オルト蟻酸トリメチルを毎時5.1ミリモル、水を20毎時96ミリモル、トルエン溶液として添加した。この混合液に、さらにジエチルアルミニウムモノクロライドを毎時320ミリモル、トルエン溶液として添加しながら重合反応器に導入した。

【0070】原料混合液とは別の配管からオクテン酸コバルトを毎時9.6ミリモル、トルエン溶液として添加し、20℃、滞留時間2時間として48時間連続重合を行った。2基目の重合反応器から反応混合液を連続して抜き出し、メタノールを添加して重合反応を停止してポリブタジエンゴムを含有する混合液を得た。この混合液中のポリブタジエンゴムのピークトップ分子量は、ピークトップ分子量は550.000であった。このポリブタジエンゴムは高分子量成分に相当する。

【0071】参考例2

1. 2-ブタジエン添加量を毎時130ミリモル、水添加量を毎時145ミリモル、オルト蟻酸トリメチルを添加せず、ジエチルアルミニウムモノクロライド添加量を毎時291ミリモル、オクテン酸コバルトの代わりにナフテン酸ニッケルを添加し、その添加量を毎時6ミリモルとし、さらに24時間連続重合にする以外は参考例1と同様に処理して、ポリブタジエンゴムを含有する混合液を得た。この混合液中のポリブタジエンゴムのピークトップ分子量は、23、000であった。このポリブタジエンゴムは低分子量成分に相当する。

【0072】参考例3

水添加量を毎時262ミリモルとする以外は、参考例2と同様に処理してポリブタジエンゴムを含有する混合液を得た。との混合溶液中のポリブタジエンゴムのピークトップ分子量は、ピークトップ分子量は84,000であった。とのポリブタジエンゴムは高分子量成分にも低50

分子量成分にも相当しない。

【0073】参考例4

水添加量を毎時99ミリモルとする以外は、参考例2と 同様に処理してポリブタジエンゴムを含有する混合液を 得た。この混合溶液中のポリブタジエンゴムのピークト ップ分子量は、ピークトップ分子量は5,500であっ た。このポリブタジエンゴムは高分子量成分にも低分子 量成分にも相当しない。

【0074】参考例5

参考例1で得た反応液と参考例2で得た反応液を含有するポリプタジエンゴム重量比にして70:30になるように混合し、混合液中のポリプタジエンゴム100重量部に対し、老化防止剤として2、4ービス(nーオクチルチオメチル)-6ーメチルフェノールを0.2重量部添加して、スチームストリッピングし、脱水、押出乾燥機で乾燥してポリプタジエンゴム組成物を得た。このポリブタジエンゴム組成物は、分子量分布(Mw/Mn)10.2、二峰性、すなわちピークトップが二つあり、高分子量側のピークトップ分子量552、000、近分子量側のピークトップ分子量22、500、シス-1、4ー結合量は93、7重量%、1、2ービニル結合量は2、5重量%であった。このポリブタジエンゴムは多峰性ポリブタジエンゴムに相当する。

【0075】参考例6

参考例2で得た反応液の代わりに参考例3で得た反応液を用いる以外は参考例5と同様に処理して、ポリブタジエンゴム組成物を得た。このポリブタジエンゴム組成物は、分子量分布(Mw/Mn)3.8、一峰性、すなわちビークトップが一つしか認められず、シスー1,4一結合量は93.5重量%、1,2ービニル結合量は2.5重量%であった。このポリブタジエンゴムはビークトップが一つしか認められないので、多峰性ポリブタジエンゴムに相当しない。

【0076】参考例7

参考例2で得た反応液の代わりに参考例4で得た反応液を用いる以外は参考例5と同様に処理して、ボリブタジエンゴム組成物を得た。このポリブタジエンゴム組成物は、分子量分布(Mw/Mn)37.0、二峰性であり、高分子量側のピークトップ分子量550,000、低分子量側のピークトップ分子量5,500、シスー1,4-結合量は93.1重量%、1,2-ビニル結合量は2.6重量%であった。このボリブタジエンゴムは、分子量10,000~50,000の範囲にピークトップを有していないので、多峰性ポリブタジエンゴムに相当しない。

【0077】実施例1~5 および比較例1~3 表1に示す処方に従って、ゴム成分を小型パンパリーミ キサー(1.8リットル容)に容積比75%となるよう に配合した。

0 【0078】温度を温水で50℃にして、まずゴム成分

15

を前記バンバリーに投入し、混練を開始した。1分後に 硫黄と架橋促進剤を除く添加剤を投入し、3分後にクリーニングし、5分後に取り出した後、オープンロール (温度55℃)で硫黄と架橋促進剤を投入しシート状に 押し出した。金型温度160℃で15分間加硫を行いシート状サンブルを作成した。また、160℃20加硫を行い厚さ25mm、直径29mmの円柱状サンプルと厚さ1インチ、高さ2インチの円柱状サンプルを作成した。

【0079】加硫シート状サンプルを打ち抜いて定伸長 10 疲労試験とゲーマンねじり試験を行い、また厚さ25mm、直径29mmの円柱状サンプルを用い圧縮永久歪み試験を行い、また厚さ1インチ、高さ2インチの円柱状サンプルを用いダイナミックサーボで試験かけた結果を表1に示す

【0080】なお、使用した各成分は次のようなものである。

天然ゴム (RSS#3)

Nipol 9528 (油展乳化重合スチレン・ブタジェン共重合体ゴム、日本ゼオン社製、スチレン含量35 20 重量%、ゴム100重量部に対してアロマオイル50重*

*部油展、数平均分子量21万)

NS116(溶液重合スチレン・ブタジエン共重合体ゴム、日本ゼオン社製、スチレン含量21重量%、ブタジエン結合単位の1、2-ビニル結合量63%、数平均分子量21万)

カーボンブラックFEF(シーストSO、東海カーボン 社製)

カーボンブラックSRF (シーストS、東海カーボン社 製)

1.0 カーボンブラックHAF (シースト3、東海カーボン社 製)

アロマオイル (フッコール M、富士興産社製) 老化防止剤 N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン

酸化亜鉛#3

硫黄 325メッシュによる粉末硫黄 架橋促進剤 N-シクロヘキシル-2-ベンゾチアジル スルフェンアミド

[0081]

【表1】

表 1

					_			
		寒	施	例		比	較	例
	1	2	3	4	5	1	2	3 .
ゴムの配合量(重量部)								
天然ゴム	60	60	60	60	60	60	60	60
参考例5のポリプタシ゚エンコ゚ム	28	28	28	56	56			
参考例ものポリプタシ゚エンコ゚ム]		28	1
参考例でのポリプタジエンコ゚ム			l	l	Į.			14
Nipol 9528	30		30		1	60	30	45
NS116		20						
ゴム100重量部当たりの	配合剤	の配合	量(重	(油量)				-
FEFカーボンプラック	40	40		40		40	40	40
HAFカーボンブラック			40					
SRFカーボンブラック	1				50			
アロマオイル	7.5	17.5	7.5	- 5. 0	5.0	5. 5	7.5	5. 5
酸化亜鉛	5.0	5.0	5. 0	5.0	5.0	5.0	5.0	5. 0
ステアリン酸	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
老化防止剤	1.0	0.1	1.0	1.0	1.0	1.0	1.0	t. 0
硫黄 (加硫剤)	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
加硫促進剤	1.2	1.2	1. 2	1. 2	1.2	1.2	1. 2	1. 2
物性								
圧縮永久ひずみ								ļ
圧縮永久ひずみ率(%)	23	23	24	23	23	23	22	27
動的特性								
損失正接						0. 153	0. 105	0. 153
動倍率	1. 80	1.71	2. 22	1.65	1. 52	2. 18	1. 76	2. 30
低温特性ゲーマン								
T 5 (℃)	-55	-55	-56	-58	-58	-30	-55	-40

【0082】実施例1、2、3、4、5と比較例1の比較から、本発明の防振材は、本発明のポリブタジエンゴムを含有する防振材に比較して、動特性と低温特性のバランスが極めて良好なことがわかる。

【0083】実施例1と比較例2、3の比較から、本発 50

明の防振材は、本発明に言う多峰性ポリブタジェンの定 義に合致しない、分子量の異なる二種のポリブタジェン ものを含有する防振材に比較して、動特性と耐久性のパ ランスが極めて良好なことがわかる。

[0084]

【発明の効果】本発明のゴム組成物を成形、架橋した防 振材は、耐久性に優れ、低周波数での損失が大きく防振 性に優れ、高周波数での動倍率が低く防音性に優れ、低 温でもゴムとしての特性を失いにくい。これらのことか ら、自動車用エンジンマウントや、鉄道車両、軌道や、 建造物などでの防振材用途に最適である。

【0085】(態様)本発明の態様としては、例えば、 ゲルパーミエーションクロマトグラフィ(GP C)で測定した重量平均分子量(Mw)と数平均分子量 (Mn) との比 (Mw/Mn) が4.5~14.5であ り、分子量100,000~1,500,000の範囲 にピークトップが一つ以上、分子量10,000~5 0,000の範囲にピークトップが一つ以上ある分子量 分布曲線を有する多峰性ポリブタジエンゴムと架橋剤か らなるゴム組成物、(2) 多峰性ポリブタジエンゴム が分子量が好ましくは200,000以上、より好まし くは300,000以上、好ましくは1,000,00 0以下、より好ましくは800,000以下の範囲にピ ークトップを一つ以上有するものである(1)記載のゴ ム組成物、(3) 多峰性ポリブタジエンゴムが分子量 20 式法ホワイトカーボンである(13)記載のゴム組成 子量が好ましくは13,000以上、より好ましくは1 5,000以上、好ましくは40,000以下、より好 ましくは30,000以下の範囲にピークトップを一つ 以上有するものである(1)または(2)記載のゴム組 成物、(4) 多峰性ポリブタジエンゴムの分子量分布 (Mw/Mn)が5.0以上、好ましくは6.0以上、 より好ましくは8.0以上、14.0以下、好ましくは 13.5以下、より好ましくは13.0以下である (1)~(3)のいずれかに記載のゴム組成物、(5) 多峰性ポリブタジエンゴムのシス-1,4構造含有率 (シス-1, 4結合量) が60重量%以上、好ましくは 80重量%以上、より好ましくは85重量%以上、特に 好ましくは90重量%以上である(1)~(4)のいず れかに記載のゴム組成物、(6) 多峰性ポリブタジェ ンゴムが、髙分子量成分を30重量%以上、好ましくは 40重量%以上、より好ましくは50重量%以上、98 重量%以下、好ましくは97重量%以下、より好ましく は95重量%以下含有するものである(1)~(5)の いずれかに記載のゴム組成物、(7) 多峰性ポリブタ ジエンゴムが、低分子量成分を2重量%以上、好ましく は3重量%以上、より好ましくは5重量%以上、70重 量%以下、好ましくは60重量%以下、より好ましくは 50 重量%以下含有するものである(1)~(6)のい ずれかに記載のゴム組成物、(8) 多峰性ポリブタジ エンゴムが、高分子量成分と低分子量成分を合わせて5 ○重量%以上、好ましくは70重量%以上、より好まし くは90重量%以上含有するものである(1)~(7) のいずれかに記載のゴム組成物、(9) 多峰性ポリブ タジエンゴム以外のゴムがジエンゴムである(1)~

(8)のいずれかに記載のゴム組成物、(10) 多峰

性ポリブタジエンゴム以外のゴムが数平均分子量が1, 000以上、好ましくは10.000以上、より好まし くは50,000以上、1,500,000以下、好ま しくは1、200、000以下、より好ましくは80 0,000以下のものである(1)~(9)のいずれか にゴム組成物、(11) 多峰性ポリブタジエンゴムが ゴムの総量に対し、5重量%以上、好ましくは10重量 %以上、より好ましくは20重量%以上、90重量%以 下、好ましくは80重量%以下、より好ましくは75重 量%以下である(1)~(10)のいずれかに記載のゴ ム組成物、

【0086】(12) ゴムの総量を100重量部とす ると、さらに補強剤を5重量部以上、好ましくは10重 量部以上、より好ましくは20重量部以上、200重量 部以下、好ましくは150重量部以下、より好ましくは 120重量部以下含有する(1)~(11)のいずれか に記載のゴム組成物、(13) 補強剤がシリカおよび /またはカーボンブラックである(12)記載のゴム組 成物、(14) シリカが含水ケイ酸を主成分とする湿 物、(15) シリカの比表面積が窒素吸着比表面積 (BET法) で50 m²/g以上、好ましくは100 m² /g以上、より好ましくは120m²/g以上、400 m³/g以下、好ましくは250m³/g以下、より好ま しくは190m゚/g以下である(13)または(1 4)記載のゴム組成物、(16) カーボンブラックの 窒素吸着比表面積(N,SA)が5m²/g以上、好まし くは10m²/g以上、より好ましくは20m²/g以 . 上、200m²/g以下、好ましくは150m²/g以 30 下、より好ましくは130m²/g以下、DBP吸着量 が5m1/100g以上、好ましくは20m1/100 g以上、より好ましくは50m1/100g以上、30 0m1/100g以下、好ましくは200m1/100 g以下、より好ましくは160m1/100gである (14)~(15)のいずれかに記載のゴム組成物、 (17) シリカとカーボンブラックの総質に対して、 シリカの量が10重量%以上、好ましくは30重量%以 上、より好ましくは50重量%以上、99重量%以下、 好ましくは95重量%以下、より好ましくは90重量% 以下である(13)~(16)のいずれかに記載のゴム 組成物、(18) ゴムの総量を100重量部とする と、さらにオイルを3重量部以上、好ましくは4重量部 以上、より好ましくは5重量部以上、150重量部以 下、好ましくは100重量部以下、より好ましくは75 重量部以下含有する(1)~(17)のいずれかに記載 のゴム組成物、

【0087】(19) ゴムの総量を100重量部とす ると、架橋剤を0.1重量部以上、好ましくは0.3重 量部以上、より好ましくは0.5重量部以上、15重量 50 部以下、好ましくは10重量部以下、より好ましくは5

重量部以下含有する(1)~(18)のいずれかに記載のゴム組成物、(20) ゴムの総量を100重量部とり好ましくは0.5 重量部以上、好ましくは0.3 重量部以上、より好ましくは0.5 重量部以上、より好ましくは10重量部以下、より好ましくは5重量部以下、より好ましくは5重量部以下含有する(1)~(19)のいずれかに記載のゴム組成物、(21) 架橋促進剤がその30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上がスルフェンアミド系架橋促進りである(20)記載のゴム組成物、(22) ゴムの 10 などが挙げられる。総量を100重量部とすると、さらに架橋活性化剤が

0.05重量部以上、好ましくは0.1重量部以上、より好ましくは0.5重量部以上、10重量部以下、好ましくは5重量部以下、より好ましくは2重量部以下含有する(1)~(21)のいずれかに記載のゴム組成物、(23) 架橋活性化剤が高級脂肪酸あるいは粒度 5μ m以下の酸化亜鉛である(22)記載のゴム組成物、【0088】(24) (1)~(23)のいずれかに記載のゴム組成物を架橋してなる防振材、(25) 自動車エンジン用マウントである(24)記載の防振材、などが挙げられる。