Rank-65611 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65611

General information

Number of lines	5
Number of points	9
Number of singular points	3
Number of Eckardt points	2
Number of double points	2
Number of single points	5
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$3^2, 2^2, 1^5$

Singular Points

The surface has 3 singular points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0)$$
 $2: P_9 = \mathbf{P}(1, 0, 0, 1) = \mathbf{P}(1, 0, 0, 1)$ $1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0)$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1, 0, 0, 1, 0, 0)_{6}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{4}$$

Rank of lines: (0, 4, 28, 14, 18)

Rank of points on Klein quadric: (0, 2, 19, 6, 4)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0), T = -1$$

$$1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = -1$$

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_9 = (1, 0, 0, 1) = \ell_3 \cap \ell_4$$

Single Points

The surface has 5 single points:

The single points on the surface are:

$$0$$
 : $P_5 = (1,1,0,0)$ lies on line ℓ_0

1:
$$P_6 = (1, 0, 1, 0)$$
 lies on line ℓ_1

2:
$$P_7 = (0, 1, 1, 0)$$
 lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

3: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_3 4: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_4

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 0 & 011110 \\ 1 & 10101 \\ 2 & 11011 \\ 3 & 10101 \\ 4 & 01110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_1	P_2	P_1	P_2

Line 3 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_1	P_1	P_9

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_9

 $8: P_{13} = (1,0,1,1)$

The surface has 9 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ $4: P_6 = (1,0,1,0)$ $1: P_1 = (0, 1, 0, 0)$ $2: P_2 = (0, 0, 1, 0)$ $3: P_5 = (1, 1, 0, 0)$ $5: P_7 = (1, 0, 1, 0)$ $5: P_7 = (0, 1, 1, 0)$ $6: P_9 = (1, 0, 0, 1)$ $7: P_{11} = (1, 1, 0, 1)$