import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

 $from\ statsmodels.tsa.arima_model\ import\ ARMA$

from statsmodels.tsa.ar_model import AR

Loading The Dataset (reading the dataset using read_csv)

df = pd.read_csv("stock_data.csv", parse_dates=True, index_col="Date")

displaying the first five rows of dataset

df.head()

	Unnamed: 0	Open	High	Low	Close	Volume	Name
Date							
2006-01-03	NaN	39.69	41.22	38.79	40.91	24232729	AABA
2006-01-04	NaN	41.22	41.90	40.77	40.97	20553479	AABA
2006-01-05	NaN	40.93	41.73	40.85	41.53	12829610	AABA
2006-01-06	NaN	42.88	43.57	42.80	43.21	29422828	AABA
2006-01-09	NaN	43.10	43.66	42.82	43.42	16268338	AABA

deleting column

df.drop(columns='Unnamed: 0')

	Open	High	Low	Close	Volume	Name
Date						
2006-01-03	39.69	41.22	38.79	40.91	24232729	AABA
2006-01-04	41.22	41.90	40.77	40.97	20553479	AABA
2006-01-05	40.93	41.73	40.85	41.53	12829610	AABA
2006-01-06	42.88	43.57	42.80	43.21	29422828	AABA
2006-01-09	43.10	43.66	42.82	43.42	16268338	AABA
2017-12-22	71.42	71.87	71.22	71.58	10979165	AABA
2017-12-26	70.94	71.39	69.63	69.86	8542802	AABA
2017-12-27	69.77	70.49	69.69	70.06	6345124	AABA
2017-12-28	70.12	70.32	69.51	69.82	7556877	AABA
2017-12-29	69.79	70.13	69.43	69.85	6613070	AABA

3019 rows × 6 columns

#Plotting a simple line plot for time series data.

df['Volume'].plot()

<AxesSubplot:xlabel='Date'>

#Plot other columns

df.plot(subplots=True, figsize=(4, 4))

```
<AxesSubplot:xlabel='Date'>, <AxesSubplot:xlabel='Date'>,
<AxesSubplot:xlabel='Date'>, <AxesSubplot:xlabel='Date'>],
       dtype=object)
  0.05
  0.00
                                                    Unnamed: 0
-0.05
75
50
25
                                         Open
     75
50
25
                                         High
     75
50
25
                                          Low
     75
50
25
                                         Close
    2.5
                                        Volume
    0.0
                                                   2016
                                                            2018
     2006
                       2010
                                 2012
                                          2014
```

Date

array([<AxesSubplot:xlabel='Date'>, <AxesSubplot:xlabel='Date'>,

Resampling the time series data based on monthly 'M' frequency

df_month = df.resample("M").mean()

using subplot

fig, ax = plt.subplots(figsize=(6, 6))

plotting bar graph

ax.bar(df_month['2016':].index,

df_month.loc['2016':, "Volume"],

width=25, align='center')

<ipython-input-5-a4f78f2a9bfc>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future versi
on, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
 df_month = df.resample("M").mean()

<BarContainer object of 24 artists>

Activate Windows

<AxesSubplot:xlabel='Date'>

df.High.diff(2).plot(figsize=(10, 6))

Finding the trend in the "Open"

column using moving average method

```
window_size = 50
rolling_mean = df['Open'].rolling\ (window_size).mean()
rolling_mean.plot()
```

<AxesSubplot:xlabel='Date'>

