Avaliação e processamento de dados brutos de sequenciamento de genomas e transcriptomas

Desirrê Petters-Vandresen

Módulo I – Genômica no Estudo de Microrganismos

Por que devemos avaliar os dados brutos com atenção?

 Muitas perguntas são respondidas e muitas hipóteses são testadas com base na informação existente nas sequências de um genoma ou transcriptoma

 Diversas ferramentas de anotação utilizam características presentes nas sequências para realizar predições

 Sequências erradas podem ter um grande impacto negativo nos resultados e conclusões de um estudo

Por que devemos avaliar os dados brutos com atenção?

 Muitas perguntas são respondidas e muitas hipóteses são testadas com base na informação existente nas sequências de um genoma ou transcriptoma

Montar todos os reads brutos que saem do equipamento em um genoma ou transcriptoma sem qualquer tipo de controle de qualidade não é uma boa ideia!

nos resultados e conclusões de um estudo

O que devemos avaliar nos dados brutos antes de prosseguir com montagens?

Qualidade das bases

• Presença de adaptadores e contaminantes

Comprimento dos reads

Quantidade de reads

Indicador de qualidade Q (Phred quality score)

 Baseado na probabilidade de erro (E) na identificação de uma base em determinada posição do read

$$Q = -10\log E$$

- Define a acurácia de uma base
 - 90%: um erro em cada 10 leituras (0.1), Q = 10
 - 99%: um erro em cada 100 leituras (0.01), Q = 20
 - 99,9%: um erro em cada 1.000 leituras (0.001), Q = 30
 - 99,99%: um erro em cada 10.000 (0.0001), Q = 40
- Q < 20, a perda de confiabilidade é muito alta e rápida
- Q > 20, o aumento na confiabilidade não é tão significativo
- 20 ou 25 como valores de corte em muitos casos

Formato FASTQ

• Formato de armazenamento de sequências biológicas e scores de qualidade correspondentes às bases

- 1 @A00178:149:H7K7YDSXY:4:1101:1506:1000 1:N:0:GCACTCAT+ATGAGTGC
 2 ONGCTCTGGTCATCCGTCTCGGCTCGCGAGATTCAAGCGTTGCCGTCAACCTTGGCAATGTAGACAAGGA
 GGTCGAGGACACGGCGGGAGTAGCCCCACTCGTTGTCGTACCAGGAGACGAGCTTGACGAAGTTCTCGTT
 GAGCGAGATAC
 3 +

Linha 01: começa com um @ e contém o identificador da sequência (similar à primeira linha do formato FASTA)

Linha 02: sequência em

nucleotídeos

Linha 03: começa com um + e pode conter o identificar da sequência novamente

Linha 04: contém os valores de qualidade para a sequência na linha 02. Mesmo número de caracteres que a linha 02 (cada símbolo é correspondente à uma letra)

Q	P_error	ASCII	Q	P_error	ASCI	I	Q	P_error	ASC	II	Q	P_error	ASCI
0	1.00000	33 !	11	0.07943	44	,	22	0.00631	55	7	33	0.00050	66 1
1	0.79433	34 "	12	0.06310	45	-	23	0.00501	56	8	34	0.00040	67
2	0.63096	35 #	13	0.05012	46	•	24	0.00398	57	9	35	0.00032	68
3	0.50119	36 Ş	14	0.03981	47	1	25	0.00316	58		36	0.00025	69
4	0.39811	37 %	15	0.03162	48	0	26	0.00251	59	;	37	0.00020	70
5	0.31623	38 €	16	0.02512	49	1	27	0.00200	60	<	38	0.00016	71
6	0.25119	39 '	17	0.01995	50	2	28	0.00158	61	-	39	0.00013	72
7	0.19953	40 (18	0.01585	51	3	29	0.00126	62	>	40	0.00010	73
8	0.15849	41)	19	0.01259	52	4	30	0.00100	63	?	41	0.00008	74
9	0.12589	42 *	20	0.01000	53	5	31	0.00079	64	0	42	0.00006	75
0	0.10000	43 +	21	0.00794	54	6	32	0.00063	65	A			

- Download dos dados
- Verificação do formato do arquivo
- Separação de reads forward e reverso

Pré-preparação

Avaliação da qualidade (1ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

- Remoção de adaptadores e contaminantes
 - Remoção de reads muitos curtos e/ou de baixa qualidade

Limpeza dos reads

Avaliação da qualidade (2ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

Pré-preparação - Download

- Organizar os arquivos para que possam ser avaliados e processados:
 - Servidores online como o Galaxy
 - Servidor interno (e. g. cluster de um instituto de pesquisa)
 - Computador pessoal
- Obtenção de dados em bases de dados públicas
 - NCBI SRA
 - JGI Mycocosm

Pré-preparação - Verificação do formato do arquivo

 Formato FASTQ (compactado ou descompactado): formato compatível com os softwares de avaliação e processamento

 Formato SRA: exige conversão para o formato FASTQ para que possa ser avaliado e processador

Avaliação de qualidade (1ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

• Diferentes módulos de análises e resultados no FastQC

Limpeza dos reads

- Remoção de adaptadores e contaminantes
- Remoção de reads muitos curtos e/ou de baixa qualidade

Uso do software Trimmomatic e arquivo de sequências de adaptadores

Avaliação de qualidade (2ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

- Diferentes módulos de análises e resultados no FastQC
- Determinar se a limpeza realizada pelo Trimmomatic foi suficiente e se os dados estão adequados para as análises posteriores