Entrega 2 Programación Paralela

Por este problema hay los siguientes invariantes:

```
1° counter >= 0
```

2° north inside!= 0 => south inside = 0 and turn south = False

3° south_inside != 0 => north_inside = 0 and turn_north = False

4° waiting = True <= north_inside != 0 or south_inside != 0

Demostración (1°):

Por cada wants_enter, que pone counter += 1, hay después un leaves_tunnel que baja el counter de 1.

Siendo que wants_enter es siempre anterior a leaves_tunnel y counter empieza a 0, siempre sarà >= 0.

Demostración (2° y 3*):

Analizamos el caso 2°, es el mismo procedimento por el 3° Hypotizamos que el primer coche llegue de norte. wants_enter pone turno_south = False. Ahora la condition de ok_to_go de cada coche a sur es falsa. No pudiendo entrar ningún coche de sur, south_inside se queda igual a 0. Al cambiarse de dirección, se pone turno_north = False, así que no puedan entrar mas coches en el tunnel.

Cuando empiezan a entrar coches de sur, se verifica el invariable 3°.

Demonstration (4°):

Waiting empieza como False, al primo coche que entra south/north_inside != 0. Elegida una dirección, la otra tiene el turn = False. Ahora un lado del tunnel está bloqueado. Al primer coche que no puede entrar wants_enter pone Waiting = True