Введение в Машинное обучение: примеры и основные методы

Зуева Надежда ФИВТ МФТИ

March 2018

План

- Организационные моменты
- Напоминания
- Короткая историческая справка
- Закон Мура
- Терминология и мотивировка
 - Основные определения: объекты и признаки
 - Задача обучения по прецедентам
 - Мотивационные примеры
- Виды задач
- Инструменты

Программа курса

- Математика и Питон для Машинного Обучения
- Введение в машинное обучение и обработку данных. Работа с Git
- Классификация
- Регрессия
- Отбор признаков и снижение размерности
- Кластеризация лекция и семинар
- Работа с текстовыми данными
- Введение в глубокое обучение
- Работа с изображениями

Историческая справка

- Артур Сэмюэль, Checkers-playing, 1952 год
- Джозеф Вейцбаум, ELIZA, 1966
- Фрэнк Розенблатт, Perceptron, конец 1950х
- Big Data, MapReduce, Hadoop начало 2000х
- Deep Learning, новые алгоритмы 2010е

Закон Мура

Количество транзисторов на интегральной схеме удваивается каждые 24 месяца, то есть с каждым годом производительность компьютеров увеличивается, открывается простор для изучения больших данных.

Напоминание. Производная

Производная функция — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке.

Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует.

Если производная равна нулю в некоторой точке, то эта точка экстремум (локальный или глобальный максимум или минимум функции). $f'(x_0) = \frac{df}{dx}(x_0)$

Напоминание. Линейная алгебра

Вектор — в линейной алгебре вектором называется элемент линейного пространства. Векторы могут иметь различную природу: направленные отрезки, матрицы, числа, функции и другие, однако все линейные пространства одной размерности изоморфны между собой.

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

<u> Напоминание. Теория вероятностей</u>

Случайная величина — это переменная, значения которой представляют собой исходы какого-нибудь случайного феномена или эксперимента.

Выборка — набор независимых между собой случайных величин Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).

Основные понятия

X — множество **объектов**

У – множество допустимых ответов

 y^* — целевая функция, $y^*: X \to Y, y_i = y^*(x_i)$ известны только на **конечном** подмножестве объектов $x_1, ..., x_m$ из X

Пары (x_i, y_i) — прецеденты

Совокупность пар таких пар при i из 1,...,m — обучающая выборка (X_{train})

a — **решающая функция** (алгоритм), которая любому объекту из Xставит в соответсвие допустимый ответ из Y и приближает целевую функцию y*

 X_{test} — выборка прецедентов для тестирования построеннного алгоритма а

Для решения задачи обучения по прецедентам в первую очередь фиксируется восстанавливаемой зависимости.

Основные понятия

Признак (feature) f объекта x — это результат измерения некоторой характеристики объекта. Формально признаком называется отображение $f: X \to D_f$, где D_f — множество допустимых значений признака. В частности, любой алгоритм $a: X \to Y$ также можно рассматривать как признак Пусть дан набор признаков $f_1(x), ..., f_n(x)$.

Признаковое описание объекта X — вектор (одномерный массив) $(f_1,...,f_n)$. Совокупность признаковых описаний всех объектов выборки длины m, записанную в виде таблицы размера mn, называют матрицей объектов-признаков.

Основные понятия

Знакомьтесь — это Вася. Кем он может быть в нашей терминологии? Какие признаки могут быть у Васи?

Задача обучения по прецедентам

По выборке X_{train} построить решающую функцию (decision function) a:X o Y , которая приближает целевую функцию y^* , причём не только на объектах обучающей выборки, но и на всём множестве X.

Решающая функция а должна быть вычислимой.

Кредитный скорринг

Обучающая выборка

1	6	4	12	5	5	3	4	1	67	3	2	1	2	1	0	0	1	0	0	1	0	0	1	1
2	48	2	60	1	3	2	2	1	22	3	1	1	1	1	0	0	1	0	0	1	0	0	1	2
4	12	4	21	1	4	3	3	1	49	3	1	2	1	1	0	0	1	0	0	1	0	1	0	1
1	42	2	79	1	4	3	4	2	45	3	1	2	1	1	0	0	0	0	0	0	0	0	1	1
1	24	3	49	1	3	3	4	4	53	3	2	2	1	1	1	0	1	0	0	0	0	0	1	2
4	36	2	91	5	3	3	4	4	35	3	1	2	2	1	0	0	1	0	0	0	0	1	0	1
4	24	2	28	3	5	3	4	2	53	3	1	1	1	1	0	0	1	0	0	1	0	0	1	1
2	36	2	69	1	3	3	2	3	35	3	1	1	2	1	0	1	1	0	1	0	0	0	0	1
4	12	2	31	4	4	1	4	1	61	3	1	1	1	1	0	0	1	0	0	1	0	1	0	1
2	30	4	52	1	1	4	2	3	28	3	2	1	1	1	1	0	1	0	0	1	0	0	0	2
2	12	2	13	1	2	2	1	3	25	3	1	1	1	1	1	0	1	0	1	0	0	0	1	2
1	48	2	43	1	2	2	4	2	24	3	1	1	1	1	0	0	1	0	1	0	0	0	1	2
2	12	2	16	1	3	2	1	3	22	3	1	1	2	1	0	0	1	0	0	1	0	0	1	1
1	24	4	12	1	5	3	4	3	60	3	2	1	1	1	1	0	1	0	0	1	0	1	0	2
1	15	2	14	1	3	2	4	3	28	3	1	1	1	1	1	0	1	0	1	0	0	0	1	1
1	24	2	13	2	3	2	2	3	32	3	1	1	1	1	0	0	1	0	0	1	0	1	0	2
4	24	4	24	5	5	3	4	2	53	3	2	1	1	1	0	0	1	0	0	1	0	0	1	1
1	30	0		5	2	3	3	3	25	1	3	1	1	1	0	0	1	0	0	1	0	0	1	1
2	24	2	126	1	5	2	2	4	44	3	1	1	2	1	0	1	1	0	0	0	0	0	0	2
4	24	2		3	5	3	2	3	31	3	1	2	2	1	0	0	1	0	0	1	0	0	1	1
4	9	4	21	1	3	3	4	3	48	3	3	1	2	1	1	0	1	0	0	1	0	0	1	1
1	6	2	26	3	3	3	3	1	44	3	1	2	1	1	0	0	1	0	1	0	0	0	1	1
1	10	4	22	1	2	3	3	1	48	3	2	2	1	2	1	0	1	0	1	0	0	1	0	1
2	12	4	18	2	2	3	4	2	44	3	1	1	1	1	0	1	1	0	0	1	0	0	1	1
4	10	4	21	5	3	4	1	3	26	3	2	1	1	2	0	0	1	0	0	1	0	0	1	1
1	6	2	14	1	3	3	2	1	36	1	1	1	2	1	0	0	1	0	0	1	0	1	0	1
4	6	0	4	1	5	4	4	3	39	3	1	1	1	1	0	0	1	0	0	1	0	1	0	1
3	12	1	4	4	3	2	3	1	42	3	2	1	1	1	0	0	1	0	1	0	0	0	1	1

Кредитный скорринг

Задание

Данные — информация о выданных кредитах, требуется предсказать вероятность успешного погашения кредита. X_{train} содержится в файле train.csv, X_{test} — test.csv. Информация о значениях признаков содержится в файле featureDescr.csv

Целевой признак — *loan_{status}*, бинарный признак. 1 означает, что кредит успешно погашен.

Задача

Предсказать, кому стоит выдавать кредит?

Рекомендательные системы

Популярные товары

9 999₽

4620₽ Автомобильная шина MICHELIN...

Форма для кулича Жостовская фабри...

Матрас Аскона Balance Forma... Matrix шампунь Total Диван Hoff Xareн Results So Long...

Кроватка Mimi 7 в 1 Все товары

Женская парфюмерия

405₽

amp: 3 Dolce 1506₽ LACOSTE Lacoste pour Femme

2745 Eau de Parfum

2145₽ Christian Dior J'adore Dolce & amp: Gabbana 3...

1468 3 620₽ Versace Bright Crystal Guerlain Mon Guer Территория детства Игрушки

Features

Какие важные для конкретных задач признаки могут быть у Васи?

Основные виды задач

Обучение с учителем

Каждый прецедент представляет собой пару «объект, ответ». Требуется найти функциональную зависимость ответов от описаний объектов и построить алгоритм, принимающий на входе описание объекта и выдающий на выходе ответ. Функционал качества обычно определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.

Обучение без учителя

В этом случае ответы не задаются, и требуется искать зависимости между объектами.

Основные виды задач

- Частичное обучение Комбинация первых двух вариантов
- Обучение с подкреплением Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды). Как и в задачах прогнозирования, здесь существенную роль играет фактор времени. Примеры прикладных задач: формирование инвестиционных стратегий, автоматическое управление технологическими процессами, самообучение роботов, и т.д.
- etc Трансдуктивное, активное, метаобучение...

Обучение с учителем. Классификация

Классификация

Множество допустимых ответов конечно. Их называют метками классов (class label). Класс — это множество всех объектов с данным значением метки.

Обучение с учителем. Регрессия

Регрессия

Отличается тем, что допустимым ответом является действительное число или числовой вектор.

Обучение без учителя. Кластеризация

Кластеризация

Заключается в том, чтобы сгруппировать объекты в кластеры, используя данные о попарном сходстве объектов. Функционалы качества могут определяться по-разному, например, как отношение средних межкластерных и внутрикластерных расстояний.

Инструменты

- Jupyter Notebook
- Python (NumPy, SciPy, Sklearn, Pandas,...)
- Математический аппарат