Uppsala Universitet

Matematiska Institutionen Marcus Vaktnäs Tentamen i Matematik Sannolikhetsteori 1, 1MS034 2022-10-28

Skrivtid: 5 timmar. Tillåtna hjälpmedel: miniräknare och formelsamlingen. Varje uppgift ger som mest 5 poäng. Maxpoäng är 40, plus 2 möjliga bonuspoäng från inlämningsuppgifter. 18-24 ger betyg 3, 25-31 ger betyg 4, och 32-42 ger betyg 5. Lycka till!

- **1.** Låt A, B och C vara händelser i ett sannolikhetsrum (Ω, \mathcal{F}, P) med $P(B \cap C) > 0$.
- a) Visa att P(B) > 0.
- b) Visa att $P(A^c | B) = 1 P(A | B)$.
- c) För sannolikhetsmåttet $Q(A) = P(A \mid B)$, visa att $Q(A \mid C) = P(A \mid B \cap C)$.
- **2.** Den tvådimensionella slumpvariabeln (X,Y) har simultan täthetsfunktion $f_{X,Y}(x,y) = cx$ för $x,y \in [0,1]$ och $f_{X,Y}(x,y) = 0$ annars.
- a) Bestäm c.
- b) Bestäm de marginella täthetsfunktionerna till X och Y.
- c) Bestäm kovariansen Cov(X, Y).
- **3.** En apa spelar en rad på stryktipset varje vecka. En tipsrad består av 13 fotbollsmatcher där apan på varje match fyller i 1, X eller 2.
- a) Hur länge kommer det ta i genomsnitt (medelvärde) för apan att få minst 12 rätt på en rad?
- b) Hur länge måste apan leva för att den ska ha minst 90% chans att få minst 12 rätt under sin livstid?
- **4.** Låt $X \sim N(0,1)$ och $Y \sim N(0,1)$ vara oberoende slumpvariabler.
- a) Använd faltningsformlerna för att hitta fördelningen till X + Y.
- b) Använd genererande funktioner för att hitta fördelningen till X + Y.
- 5. Kasta ett mynt 50 gånger och skriv p för sannolikheten att myntet landade på krona minst 30 ggr.
- a) Använd Chebyshevs olikhet för att visa att $p \leq 1/4$.
- b) Använd en noggrant utvald tabell för att approximera p.
- **6.** Kasta en symmetrisk tärning med n sidor till någon sida dykt upp två gånger. Låt X_n vara antalet kast som behövs. Bestäm fördelningsfunktionen till X_n och visa att gränsfördelningen till X_n/\sqrt{n} är \sqrt{X} där $X \sim \text{Exp}(1/2)$.

Ledning: För att hitta gränsfördelningen, beräkna $\lim_{n\to\infty} \log P(X_n/\sqrt{n} > t)$ genom att använda Taylorutvecklingen $\log(1-x) = -x + \mathcal{O}(x^2)$ när $x\to 0$, och använd er av att

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad , \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

- 7. Vi skriver $X \sim Y$ om X och Y har samma fördelning. Avgör om följande påståenden om diskreta slumpvariabler är sanna eller falska. Om ett givet påstående är sant, förklara varför, och om falskt, ge ett motexempel.
- a) Om P(X > 0) = 1 så är X > 0.
- b) Om X > 0 så är EX > 0.
- c) Om $X_1 \sim X_2$ och $Y_1 \sim Y_2$ så är $X_1 + Y_1 \sim X_2 + Y_2$.
- d) Om $X \sim Y$ så är $cX \sim cY$ för alla $c \in \mathbb{R}$.
- e) Om $X \sim Y$ så är EX = EY.
- **8.** Hitta diskreta slumpvariabler X_1, X_2, \ldots som bara antar värden i $\mathbb{N} = \{0, 1, 2, \ldots\}$ så att följande påståenden stämmer.
- a) $EX_1 = 1$ och $Var(X_1) = 32$.
- b) $EX_2 < \infty$ och $Var(X_2) = \infty$.
- c) $\operatorname{Cov}(X_3,X_4)=0$ men X_3 och X_4 är beroende.
- d) $P(X_5 > m + n \mid X_5 > m) = P(X_5 > n)$ för alla $m \in \mathbb{N}$ och $n \in \mathbb{N}$.
- e) $\lim_{n\to\infty} EX_n = \infty$ men $\lim_{n\to\infty} P(X_n \ge \epsilon) = 0$ för varje $\epsilon > 0$.