Bacharelado em Estatística Inferência Bayesiana Prof. Gustavo L. Gilardoni

Lista de Exercícios 2

Trata dos conceitos básicos associados ao paradigma Bayesiano: Cálculo da distribuição a posteriori usando a Fórmula de Bayes a partir da distribuição a priori e a verossimilhança; distribuições preditivas, estimação pontual e por intervalos e testes de hipóteses.

Os exercícios não especificam quando são requeridos cálculos exatos ou aproximados. Em cada caso deve-se decidir qual das duas possibilidades é mais conveniente.

Os exercícios numerados em verde são optativos.

- 1. O seu professor chega na sala de aula e mostra uma moeda. Você suspeita que a moeda possa ser falsa e ter duas caras. Considere a priori probabilidades iguais para os eventos da moeda ser falsa ou ser honesta (i.e. uma moeda bem equilibrada). (i) Calcule a sua probabilidade de obter cara num lançamento dessa moeda. (ii) Se o professor lançar a moeda e o resultado for cara, qual é agora a probabilidade dela ser falsa? (iii) Se o professor lançar a moeda n vezes e obter n caras, qual é a probabilidade dela ser falsa? Estude o comportamento desta probabilidade para n grande. (iv) Se o professor lançar a moeda uma vez e obter cara, qual é a probabilidade do próximo lançamento ser cara? (v) Explique porque é falso neste contexto a afirmação "os dois lançamentos da moeda são independentes", e explique qual seria a afirmação correta.
- 2. Seja $y_1, y_2, ..., y_n$ uma amostra da distribuição de Bernoulli com probabilidade de sucesso θ e considere uma distribuição a priori uniforme para θ . (i) Ache a distribuição a posteriori de θ e a sua média e variância. (ii) Mostre que é possível expressar a esperança a posteriori de θ da forma $(1-w)E(\theta)+w\hat{\theta}$, onde $E(\theta)$ e $\hat{\theta}$ são respectivamente a esperança a priori e a estimativa máximo verossímil de θ , e interprete este resultado. (iii) Se y_{n+1} é uma observação futura deste processo de Bernoulli, ache a distribuição preditiva $p(y_{n+1}|y_1,...y_n)$.
- 3. Seja y_1, y_2, \ldots, y_n uma amostra da distribuição de Bernoulli com probabilidade de sucesso θ e suponha que, a priori, $\eta = \text{logit}(\theta) = \log \frac{\theta}{1-\theta}$ segue uma distribuição Normal com média $\mu = 0$ e desvio padrão $\sigma = 10$. (i) Ache a densidade a priori de θ . (ii) No caso que n = 12 e $s = \sum_{i=1}^{12} y_i = 9$, calcule numericamente uma aproximação para a densidade a posteriori. (iii) No caso anterior, faça um gráfico comparando a distribuição a posteriori com a que seria obtida quando a priori $\theta \sim \text{Uniforme}(0,1)$ (i.é. a distribuição Beta com $\alpha = 10$ e $\beta = 4$).
- 4. No exercício 2, calcule (i) a estimativa bayesiana para Perda Quadrática e (ii) o limite da estimativa bayesiana para Perda Zero-Um quando $\epsilon \to 0$. No caso especial que n=12, $s=\sum_{i=1}^{12}y_i=9$, calcule (iii) a estimativa bayesiana sob Perda Absoluta e (iv) um intervalo HPD com nível 99%.
- 5. A função de perda $L(d, g(\theta)) = w(\theta)[d g(\theta)]^2$, onde $w(\theta) \ge 0$ é chamada Perda Quadrática Ponderada (PQP, sem trocadilho). (i) Mostre que, quando existe, o estima-

dor bayesiano para PQP é

$$\hat{g} = \frac{\int w(\theta) g(\theta) p(\theta \mid x) d\theta}{\int w(\theta) p(\theta \mid x) d\theta} = \frac{\mathrm{E}[w(\theta) g(\theta) \mid x]}{\mathrm{E}[w(\theta) \mid x]}.$$

- (ii) Mostre que essa estimativa é a mesma que obteríamos usando PQ mas com a distribuição a priori $p_*(\theta) = w(\theta) p(\theta) / \int w(\theta) p(\theta) d\theta$ e interprete esse resultado.
- 6. Suponha que um experimento binomial fornece s sucessos em n ensaios, e que a priori a probabilidade de sucesso $\theta \sim \text{Beta}(\alpha,\beta)$. (a) Calcule a estimativa bayesiana de θ sob a PQP $L(\theta,\hat{\theta}) = \theta^a (1-\theta)^b (\hat{\theta}-\theta)^2$; (b) Considere detalhadamente e interprete os casos (i) a = b = -1, (ii) a = -1, b = 0 e (iii) a = 0, b = -1;
- 7. (Gelman, Carlin, Stern e Rubin). Suponha que $x_1, \ldots, x_5 \stackrel{iid}{\sim} \text{Cauchy}(\theta, 1)$ (i.é. $p(y_1|\theta) = \pi^{-1}/[1 + (y_1 \theta)^2]$ para $-\infty < y_1 < \infty$). Assuma que a sua distribuição a priori para θ é Uniforme(0,1). Dadas as observações $(x_1, \ldots, x_5) = (-2, -1, 0, 1.5, 2.5)$: (i) Compute a densidade a posteriori não normalizada [isto é, $p(\theta)$ $p(x_1, \ldots, x_5|\theta)$] numa grade de pontos $\theta = 0, \frac{1}{m}, \frac{2}{m}, \ldots, \frac{m-1}{m}, 1$ para algum valor grande de m. (ii) Usando essa grade, calcule uma aproximação para $p(\theta|x_1, \ldots, x_5)$ e faça um gráfico dela. (iii) Amostre 1000 observações da distribuição a posteriori aproximada e faça um histograma dessa amostra. (iv) Usando a amostra da parte (iii), amostre 1000 observações da distribuição preditiva de uma observação futura y_6 . Calcule a média e faça um histograma dessa amostra.
- 8. Suponha que (x_1, x_2, x_3) dado p_1, p_2, p_3 segue uma distribuição Multinomial com parâmetros n e (p_1, p_2, p_3) , onde $p_i \ge 0$ e $p_1 + p_2 + p_3 = 1$, e que, a priori, (p_1, p_2, p_3) segue uma distribuição de Dirichlet com parâmetros $(\alpha_1, \alpha_2, \alpha_3)$. (i) Ache a distribuição a posteriori de p_1, p_2, p_3 e as distribuições a posteriori marginais de p_i (i = 1, 2, 3) e (ii) Calcule as estimativas bayesianas de p_i e de $p_j p_i$ sob Perda Quadrática $(i, j = 1, 2, 3, i \ne j)$.
- 9. Na véspera do primeiro turno para a eleição de governador do DF de 2010, a Datafolha divulgou uma pesquisa indicando que, de 891 eleitores entrevistados que já tinham decidido em quem votar, Agnelo Queiroz tinha a preferência de 467, Weslian Roriz a de 315 e outros candidatos a de 109 eleitores. Formule um modelo para analizar esses dados. Ache estimativas bayesianas e construa intervalos críveis para (a) a proporção de votantes de Agnelo Queiroz e (b) a diferença entre a proporção de votantes de Agnelo e de Weslian Roriz.
- 10. Os dados a seguir mostram o resultado de 2 ensaios clínicos realizados nos anos 80 para estudar se o consumo diário de aspirina tem algum efeito na redução da taxa de mortalidade devido a doenças cardiacas. Assuma independência condicional tanto entre ensaios quanto entre os grupos placebo/aspírina dentro do ensaio e considere o modelo $x_{A,i}|\theta_{A,i} \sim \text{Binomial } (n_{A,i};\theta_{A,i}); x_{P,i}|\theta_{P,i} \sim \text{Binomial } (n_{P,i};\theta_{P,i}).$

	Aspirina		Placebo	
	Pacientes $(n_{A,i})$	Mortes $(x_{A,i})$	Pacientes $(n_{P,i})$	Mortes $(x_{P,i})$
Ensaio 1	810	85	406	52
Ensaio 2	832	102	850	126

- (a) Construa uma dsitribuição a priori para o vetor de parametros $(\theta_{A,1}, \theta_{P,1}, \theta_{A,2}, \theta_{P,2})$. Explique. (b) Usando a priori da parte (a), ache uma estimativa bayesiana e construa um intervalo crível para a diferença entre os efeitos netos da aspirina nos dois ensaios (o efeito neto da aspirina no ensaio i é definida como $\eta_i = (\theta_{A,i} \theta_{P,i})$). (c) Usando a priori da parte (a), ache uma estimativa bayesiana e um intervalo crível para a diferença entre os efeitos brutos da aspirina nos dois ensaios (o efeito bruto da aspirina no ensaio i é $\theta_{A,i}$).
- 11. É conhecido que 25% dos pacientes de um certo grupo que sofrem de enxaqueca melhoram após duas horas de serem tratados com um placebo. Para verificar se uma droga nova é melhor que o placebo, n=20 pacientes foram tratados com o placebo e verificou-se que após duas horas s=8 deles relataram ter melhorado. Seja θ a probabilidade de um paciente tratado com a droga nova melhorar após duas horas. (i) Especifique a hipótese nula H_0 e a alternativa H_1 ; (ii) Usando a distribuição a priori "não informativa" $\theta \sim$ Uniforme(0,1), calcule as chances relativas a priori e a posteriori de H_1 e o correspondente Fator de Bayes; (iii) Seja d=1 a decisão de rejeitar H_0 e d=0 a de não rejeitar. Considere a função de perda de Neyman para a qual é 5 vezes mais custoso rejeitar H_0 quando ela é verdadeira do que não rejeitar quando ela é falsa [isto é, $L(d=1,\theta \in H_0)=5$ $L(d=0,\theta \notin H_0)$, $L(d=1,\theta \notin H_0)=L(d=0,\theta \in H_0)=0$]. Calcule a decisão ótima a posteriori; (iv) É razoável chamar essa distribuição a priori de "não informativa" nesse problema? Se a sua resposta for negativa, sugira uma outra distribuição a priori e refaça os cálculos anteriores.
- 12. Considere o teste de uma hipótese simples $H_0: \theta = \theta_0$ contra a alternativa $H_1: \theta = \theta_1$ (i.é., o espaço paramétrico é $\Theta = \{\theta_0, \theta_1\}!$) O Lemma de Neyman-Pearson (N-P) afirma que as regiões críticas admissíveis são da forma
 - $p(x \mid \theta_1) > k p(x \mid \theta_0)$ implica que $x \in C$ e
 - $p(x \mid \theta_1) < k p(x \mid \theta_0)$ implica que $x \notin C$;

no sentido que essas regiões críticas minimizam a probabilidade do *Erro Tipo* II (β) para um valor fixo do *Erro Tipo* I (α) . Mais precisamente, para qualquer outra região crítica C_* tal que $\alpha_* = \mathbb{P}(x \in C_* | \theta_0) \leq \mathbb{P}(x \in C | \theta_0) = \alpha$, devemos ter que $\beta_* = \mathbb{P}(x \notin C_* | \theta_1) \geq \mathbb{P}(x \notin C | \theta_1) = \beta$. É usual nas aplicações escolher (fixar) o nível de significância α , embora na verdade é possível verificar que existe uma relação biunívoca entre α , β e o k usado na definição de C, no sentido que conhecendo o valor de qualquer um deles é possível determinar o valor dos outros dois.

Considere $X_1, \ldots, X_n \mid \theta \sim$ Exponencial (θ) (i.é., $f(x \mid \theta) = \theta e^{-\theta x}$ para x > 0) e o problema de testar $H_0: \theta = 1$ contra a alternativa $H_1: \theta = 2$. (i) Para n = 10, ache o valor de β e o de k quando $\alpha = 0.9$, 0.95 e 0.99; (ii) Repita o item anterior para n = 30 e n = 100; (iii) Repita os cálculos anteriores mas agora fixando k = 2 (i.é., ache nesse caso os valores correspondentes de α e de β); (iv) Qual sería a interpretação de fixar k = 2 do ponto de vista Bayesiano?