

DECREE & PC. COLLEGE.
DED ALWAL SECUNDERABAD 500 DEG TELANGANA, INDIA (Autonomous and Affiliated to Osmania University)

II-SEMESTER-END THEORY EXAMINATIONS, APRIL-2023

Course

: B.Sc. Computer Data Science & Data Analytics Engg.

Subject

Abstract Algebra

Code

DS18201

UID No .:

Max. Duration :

3 Hours.

Max. Marks :

60 Marks

SECTION - A

Answer ALL the following short questions:

 $110 \times 2 = 20 \text{ M}$

- Prove that $\{1, -1\}$ form an abelian group under multiplication.
- Define Cosets and Formalizer of an element.
- Show that the intersection of any two normal subgroups of a group is normal subgroup.
- Define Homomorphism and Kernel of a homomorphism.
- Define Even and Odd permutations.
- Find the number of generators of cyclic group of order 60. 6.
- Define Echelon form of a matrix.
- State the condition under which a system of Non Homogeneous equations will have a Unique solution.
- 9. Prove that ±1 can be the only real characteristic roots of an orthogonal matrix.
- Obtain the matrix corresponding to the quadratic form $x^2+2y^2+3z^2+4xy+5yz+6zx$. 10.

SECTION - B

Answer any ONE of the two essay questions from each of the following units: $[5 \times 8 = 40 \text{ M}]$

UNIT-I

- Define Binary operation and Prove that the set of n^{th} roots of unity under multiplication forms a Finite group.
- Define sub group and Abelion Group. 2. (a)
 - (b) If H and K are two subgroups of a G, then HK is subgroup of G iff HK=KH

- Let H is a normal subgroup of G, then show that the set $\frac{G}{H}$ of all cosets of H in G forms a Group With respect to coset multiplication.
- Let $S = \{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mid a, b \in R \}$. Show that $\phi : (C, +) \rightarrow (S, +)$ given by

 $\Phi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ is a Group isomorphism.

Contd...2....

DEGREE & PG COLLEGE OLD ALWAL, SECUNDERABAD 500 010, TELANGANA, DIDIA (Autonomous and Affiliated to Osmania University)

II- SEMESTER-SUPPLEMENTARY THEORY EXAMINATIONS, NOV-2022

B.Sc. (Computer Data Science & Analytics Engineering) UID No.:

ubject Abstract Algebra Max. Duration 3 Hours ode DS18201 Max. Marks 60 Mark

SECTION - A

Answer ALL the following short questions:

Define Group and Subgroup.

Define order of an element.

Show that every subgroup of an abelion group is normal.

Define Automorphism.

 $\begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 1 & 4 & 6 & 8 & 7 \end{bmatrix}$, Find the order of permutation α .

Show that every group of prime order is cyclic.

Define Rank of a matrix.

If A be an n-r owed non singualar matrix, X be an $n\times 1$ matrix, B be an $n\times 1$ matrix, the system of equations AX= B has a unique solution

Find the Eigen values of the identity matrix.

Write down the quadratic form corresponding to the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 2 & 1 \end{pmatrix}$.

SECTION - B

Answer any ONE of the two essay questions from each of the following units:

 $[10 \times 2 = 20 \text{ M}]$

UNIT - I

Prove that a non - empty finite subset of a group which is closed under multiplication is a Sub gr

(a) State and Prove Lagrange's theorem.

(b) If $H = \{1, -1\}$ and $G = \{1, -1, i, -i\}$, Find all the Right cosets of H in G.

UNIT - II

Define Centre Z of G and Normalizer N(a).

(b) If G is a group then the centre Z of G is a normal subgroup of G. State and prove fundamental theorem on Homomorphism of groups.

UNIT - III

Define Symmetric Group and Show that the set A_n of all even permutations of degree n forms a Group of order $\frac{n!}{2}$ w.r.t permutation multiplication.

Show that any infinite cyclic group is isomorphic to the additive group of integers (Z, +) and ev finite cyclic group G of order n is isomorphic to the group of integer's addition modulo n i.e., (Z_r

Find the ranks of A and B, where $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{pmatrix}$.

Show that the equations x + y + z = -3

$$x + y + z = -3$$

 $3x + y - 2z = -2$
 $2x + 4y + 7z = 7$

are not Consistent.

Find the Eigen values and Eigen vectors of the matrix $A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 2 \end{pmatrix}$

Reduce the quadratic form $x^2+4y^2+9z^2+t^2-4xy-12yz+6zx-2xt-6zt$ to canonical

DEGREE & PG COLLEGE OLD ALWAL, SECUNDERABAD 500 010, TELANGANA, INDIA (Autonomous and Affiliated to Osmania University)

II-SEMESTER-END THEORY EXAMINATIONS, APRIL-2024

: B.Sc. Computer Data Science & Data Analytics urse

UID No .:

: Abstract Algebra bject de : DS18201

Max. Duration:

3 Hours.

Max. Marks:

60 Marks

 $(5 \times 8 = 40 \text{ M})$

SECTION - A

Answer ALL the following short questions:

 $(10 \times 2 = 20 \text{ M})$

	M	CO	BT
Prove that If G is a finite group, then there exists a positive integer k such that $x^k = e, \forall x \in G$	(2)	1	L5
Write the elementary properties of groups	(2)	1	L1
Define homomorphism	(2)	2	L1
Prove that all abelian groups have normal subgroups.	(2)	2	L5
Define cyclic group	(2)	3	L1
What is permutation group	(2)	3	L2
Define Rank of a matrix	(2)	4	L1
Find the value of 'k' such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2	(2)	4	L6
Vhat is a quadratic form.	(2)	5	L2
Define eigen values and eigen vectors of the matrix	(2)	5	Li

SECTION - B

Answer any ONE of the two essay questions from each of the following units:

<u>UNIT – I</u>	M	CO	BT
G is a group such that $(ab)^n = a^n b^n$ for three consecutive integers, then prove that	8	1	5
b = ba			
rove that the union of two subgroups of a group is a subgroup of the group iff one is	8	1	2
ontained in the other.			
<u>UNIT – II</u>			
homomorphism $\emptyset: G \to H$ is injective if and only if $ker\emptyset = \{e\}$	8	2	4
ove that Every cyclic group is isomorphic to Z or to $Z/(n)$ for some $n \in N$	8	2	4
TITLE THE TITLE			
<u>UNIT – III</u>			
ove that every subgroup of a cyclic group is cyclic	8	3	3
			1
te and prove Cayley's theorem.	8	3	5

OYOLA ACADEMY DEGREE & PG (AUTONOMOUS) COLLEGE

ral underabad 010

Affiliated to Osmania University Re-accredited with 'A' Grade (3.5/4.0 CGPA) by NAAC

www.loyolaacademyugpg.ac.in

A "College with Potential for Excellence" by UGC

040-27862363 27860077

II - SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER - 2018

B.Sc. Computer Data Science & Analytics Engineering

UID No. :

Abstract Algebra ject 311203

Max. Duration: 3 hrs. Max. Marks: 60 M

SECTION - A

Answer ALL the following short questions:

 $[10 \times 2 = 20 \text{ M}]$

Define Group with example.

State Lagrange's Theorem.

Define Normal Subgroup.

Define Homomorphism of groups.

State Cayley's Theorem.

Define cyclic group with an example.

Define Echelon form of a matrix.

Give one example of Rank of Matrix.

State Cayley-Hamilton Theorem.

Define Eigen value of a matrix.

SECTION - B

Answer any ONE of the two essay questions from each of the following units: $[5 \times 8 = 40 \text{ M}]$

UNIT - I

- [a] If a, b are any two elements of a group G, then the equations ax = b and ya = b have unique Solutions in G.
- [b] If $G = \left\{ \begin{bmatrix} a & o \\ o & o \end{bmatrix} : a \text{ is any non zero real number} \right\}$, Show that G is a Commutative group under Matrix Multiplication.
- [a] If a, b are any two elements of a group G and H is any subgroup of G, then prove that $Ha = Hb \Leftrightarrow ab^{-1} \in H \text{ and } aH = bH \Leftrightarrow a^{-1}b \in H$.
- [b] If H is any Subgroup of a group G and $h \in H$, then prove that Hh = H = hH.

- [a] Prove that subgroup H of a group G is normal $\Leftrightarrow xHx^{-1} = H \ \forall x \in G$.
- [b] Prove that the intersection of any two normal subgroups of a group is a normal subgroup.

Suppose G is a group and N is a normal Subgroup of G. Let f be a mapping from G to $\frac{G}{N}$ defined by $f(x) = Nx \ \forall x \in G$. Then show that f is a homomorphism of G onto $\frac{G}{N}$ and Kernel f = N.

Contd....2....

1.0000 | 0.9975 | 0.9900 | 0.9776 | 0.9604 y:

www.loyelaacademyugpg.ac.in.Ph. 040-27862363/27860077 Fax: 040-27867939

II - SEMESTER END THEORY EXAMINATIONS JULY - 2021

: B.Sc. [Computer Data Science & Data Analytics] airsc

UID No. :

Abstract Algebra bject DS18201/311203

de

Max. Duration:

2 hrs.

60 M Max. Marks

SECTION - A

Answer any FIVE of the following short Answer Questions:

 $[5 \times 2 = 10M]$

Define a monoid with example.

Show that the composition * defined by a * $b = ab^2$ is not associative.

Show that in a group G, $(a^{-1})^{-1} = a \forall a \in G$.

If H is a subgroup of group G prove that HH = H.

If Ha and Hb are any two right cosets of H in G then prove that Ha = Hb if and only if ab⁻¹ ∈ H.

Find the inverse of permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$

Define the rank of a matrix and find the rank of the Matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$

Define the characteristic Equation of a matrix A and State Cayley-Hamilton Theorem.

Find the Characteristic roots of the matrix $A = \begin{bmatrix} 2 & -1 \\ 6 & 5 \end{bmatrix}$

Find the quadratic form of the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & -1 & -2 \\ 3 & -2 & 6 \end{bmatrix}$

SECTION - B

Answer any FOUR units, choosing one question from each unit:

 $[4 \times 12 \frac{1}{2} = 50M]$

UNIT - I

- L (a) Define a Group. Show that the set $G = \{1, 2, 3, 4, 5, 6\}$ form an abelian group w.r.t \times_7 . Also find order of each element in G.
 - (b) Show that the set a group G is abelian if and only if $(a b)^2 = a^2 \cdot b^2 \cdot \forall a, b \in G$.
- Show that the product of two subgroups H & K is subgroup of group G iff HK =KH. !. (a)
 - State and prove Lagrange's theorem.

Contd...2...