

(이론) GCP-1차수

- I 오리엔테이션
- Ⅲ 클라우드 컴퓨팅
- Ⅲ GCP 인프라 및 도구
- **IV** Compute Engine

수업의 목표

- 클라우드 환경의 이해
- GCP 사용 경험 확보
- 실무에 필요한 기초지식 확보

Ⅲ 클라우드 컴퓨팅-클라우드 컴퓨팅 개념 이해

교육 서비스

클라우드 컴퓨팅의 정의

- 클라우드 컴퓨팅은 컴퓨팅 리소스(스토리지 및 인프라)를 인터넷을 통해 서비스로 사용할 수 있는 주문형 서비스
- 개인과 기업이 물리적 리소스를 직접 관리할 필요가 없으며, 사용한 만큼만 비용을 지불

주요 클라우드 컴퓨팅 서비스 모델

- IaaS(Infrastructure as a Service) : 컴퓨팅 및 스토리지 서비스를 제공
- PaaS(Platform as a Service) : 클라우드 앱 빌드를 위한 개발 및 배포 환경을 제공
- SaaS(Software as a Service) : 앱을 서비스로 제공

[그림 1] SaaS, PaaS, IaaS

Infrastructure as a Service (laaS) 정의

- 확장성이 우수한 컴퓨팅 리소스를 인터넷을 통한 서비스로 사용할 수 있는 주문형 가용성 서비스
- 기업에서 직접 인프라를 조달하거나 구성, 관리할 필요가 없으며 사용한 만큼 비용을 지불하면 됨

항목	내용
경제적	• laaS 리소스는 온디맨드로 사용되고 기업에서는 실제 사용되는 컴퓨팅, 스토리지, 네트워킹 리소스에 대한 비용만 지불하면 됨 • laaS 비용을 합리적으로 예측할 수 있으며, 간편하게 예산을 책정할 수 있음
효율적	laaS 리소스는 필요할 때 기업에 정기적으로 제공됨 기업에서는 인프라를 확장할 때 발생하는 지연 시간과 용량을 과도하게 빌드 할 때 발생하는 리소스 낭비를 줄일 수 있음
생산성 향상	• 클라우드 제공업체가 기본 물리적 인프라를 설정하고 유지관리할 책임이 있으므로 기업의 IT 부서는 시간과 비용을 절약하고 리소스를 보다 전략적인 활동에 투입할 수 있음
안정적	• laaS에는 단일 장애점이 없으며, 하드웨어 리소스의 구성요소 중 하나에 문제가 발생해도 서비스는 계속 사용할 수 있음
확장 가능	• 클라우드 컴퓨팅에서 laaS의 가장 큰 장점 중 하나는 기업의 요구에 따라 리소스를 빠르게 확장 또는 축소하는 기능
TTM(time to market) 단축	• laaS는 사실상 무한한 유연성과 확장성을 제공하기 때문에 기업은 작업을 보다 효율적으로 수행하여 개발 수명주기를 단축할 수 있음

[표 1] laaS 장점

Platform as a Service(PaaS) 정의

• 개발자가 서버, 운영체제부터 모든 네트워킹, 스토리지, 미들웨어, 도구 등 애플리케이션을 빌드, 실행, 관리하는 데 필요한 모든 것을 포함하는 환경

목적 및 범위

Paa\$ 솔루션은 애플리케이션 및 소프트웨어 개발 전용이며 일반적으로 다음이 포함됨

- 클라우드 인프라: 데이터 센터, 스토리지, 네트워크 장비, 서버
- 미들웨어 소프트웨어: 운영체제, 프레임워크, 개발 키트(SDK), 라이브러리 등
- 사용자 인터페이스: 그래픽 사용자 인터페이스(GUI), 명령줄 인터페이스(CLI), API 인터페이스, 경우에 따라 이 세 가지 모두

항목	내용
TTM(time to market) 단축	• 복잡한 리프트 절차가 필요 없으며, 개발자가 빌드 하거나 관리할 필요가 없는 완벽한 애플리케이션 개발 플랫폼에 즉시 액세스할 수 있으므로 개발 및 배포 시간이 확보됨
유지보수 수요 감소	 사내 애플리케이션 스택에서는 특히 업그레이드와 관련된 문제가 많이 발생함 제공업체에서 모든 항목을 최신 상태로 유지하므로 유지보수 작업을 직접 수행할 필요가 없음
비용 효율적인 가격 책정	 PaaS 리소스는 주문형 리소스이므로 실제로 사용한 만큼만 비용을 지불하면 됨 또한 PaaS에서는 완전히 구매하려면 많은 비용을 지출할 수 있는 고급 개발 도구와 기능도 사용할 수 있음
손쉬운 확장성	 리소스 용량을 걱정할 필요가 없음 예로 트래픽이 적은 기간에 맞게 축소하거나 예기치 않게 급증하는 수요에 맞게 즉시 수직 확장할 수 있음
유연한 액세스	• 개발 및 DevOps 팀이 인터넷 연결을 통해 장소에 관계없이 모든 기기에서 공유 PaaS 서비스와 도구에 액세스할 수 있음
공유 보안	 PaaS를 사용하는 경우 제공업체에서 인프라를 보호함 대부분의 주요 PaaS 서비스 제공업체가 플랫폼에서 빌드 할 수 있도록 가이드라인과 권장사항도 제공함

[그림 3] PaaS 예

[표 2] PaaS의 장점

교육 서비스

Software as a Service(SaaS) 정의

• SaaS 서비스로서의 소프트웨어를 의미하며, 웹브라우저로 소프트웨어를 중앙에서 호스팅하고 액세스하는 모델

목적 및 범위

- SaaS 비즈니스 모델에서는 소프트웨어 제공업체가 소프트웨어를 소유하고 유지관리함
- 기존 SaaS의 기반 위에 구축된 AI 기반 SaaS는 진화의 다음 단계를 보여줌
- 인공지능을 클라우드 기반 애플리케이션에 원활하게 통합하여 사용자에게 새로운 수준의 인텔리전스, 자동화, 맞춤 설정된 경험을 제공하는 동시에 SaaS 모델의 핵심 이점을 유지할 수 있음

항목	내용	
스마트	 진정한 지능형 SaaS 환경을 제공 Google Cloud의 고급 AI를 활용하여 상호작용을 학습, 예측, 맞춤 설정 하는 애플리케이션을 빌드함 	
간편함	 빌드를 가속화하고 관리를 간소화함 Google Cloud는 직관적인 도구와 강력한 플랫폼을 통해 복잡한 SaaS 개발 및 배포를 간소화함 	
안전	• Google Cloud의 포괄적인 업계 최고의 보안 인프라로 SaaS 애플리케이 션과 고객의 민감한 정보를 보호	
확장성	 비즈니스를 무제한으로 성장 가능성 제공 안정적이고 고성능 인프라를 통해 AI 기반 SaaS를 손쉽게 확장 	

[표 3]에이전틱 AI로 혁신

[그림 4] SaaS 예

클라우드 컴퓨팅 -공유 책임 모델

교육 서비스

공유책임 모델 정의

• 클라우드 플랫폼 서비스의 보안에 대한 책임을 구글과 고객이 나누어 갖는 것을 의미

[그림 5] 클라우드 공유 책임 모델 구조

Ⅲ 클라우드 컴퓨팅 - 공유 책임 모델

교육 서비스

구체적 책임 구분

책임 구분	요소	
구글의 책임	 물리적 인프라(데이터 센터, 하드웨어 등) 보안 가상화 계층(하이퍼바이저 등) 보안 클라우드 서비스의 안정성 및 가용성 인프라 및 플랫폼 서비스의 보안 업데이트 	
고객의 책임	 애플리케이션 및 데이터 보안 접근 권한 관리 (사용자 계정, 역할, 권한 등) 네트워크 구성 및 보안 고객이 사용하는 서비스 및 구성 요소의 보안 설정 보안 로그 분석 및 모니터링 	

[표 4]구체적인 책임 구분

[그림 6]워크로드에 따른 정의

워크로드에 따른 구분

클라우드 서비스	설명
Infrastructure as a Service(laaS)	• laaS 대부분의 보안 책임이 사용자에게 있는 반면, Google의 책임은 주로 기본 인프라 및 물리적 보안에 있음
Platform as a Service(PaaS)	 PaaS는 Google이 laaS에 비해 더 많은 제어를 담당함 일반적으로 이 결과는 사용하는 서비스와 기능에 따라 달라짐 애플리케이션 수준 제어 및 IAM 관리에 대한 책임을 사용자와 Google이 공유함 사용자에게는 데이터 보안 및 클라이언트 보호에 대한 책임이 있음
Software as a service(SaaS)	SaaS는 Google에서 보안 책임을 대부분 맡고 있음 애플리케이션에 저장하도록 선택한 데이터와 액세스 제어에 대한 책임은 사용자에게 있음

[표 5]워크로드에 따른 정의

Ⅲ 클라우드 컴퓨팅 - 스케일러빌리티

교육 서비스

스케일러빌리티의 종류

- 스케일 업 : VM / Instance 성능 증가
- 스케일 아웃 : VM / Instance 개수 증가(복사)
- 스케일 인 : VM / Instance 개수 감소(삭제)

[그림 7] 스케일러빌리티의 종류

관리형 인스턴스 그룹(MIG) 시나리오

- 스테이트리스(stateless) 제공 워크로드(예: 웹사이트 프런트엔드)
- 스테이트리스(Stateless) 일괄 처리, 고성능 또는 고처리량 컴퓨팅 워크로드(예: 큐에서 이미지 처리)
- 스테이트풀(Stateful) 애플리케이션(예: 데이터베이스, 기존 애플리케이션, 체크포인트를 수행하는 장기 실행 일괄 계산) SaaS 서비스로서의 소프트웨어를 의미하며, 웹브라우저로 소프트웨어를 중앙에서 호스팅하고 액세스하는 모델

[그림 8] MIG 기능과 일반적인 워크로드의 개요

Ⅲ 클라우드 컴퓨팅 - 스케일러빌리티

교육 서비스

MIG 기능과 일반적인 워크로드의 개요

항목	내용	항목	내용
	 실패한 VM 자동 복구: 그룹의 VM이 중지하거나, 충돌하거나, 선점되거나(Spot VM), MIG에서 시작되지 않은 작업으로 삭제되는 경우, MIG는 VM이 작업을 재개할 수 있도록 원래 구성(동일한 VM 이름, 동일한 템플릿)을 기반으로 해당 VM을 자동으로 다시 생성 애플리케이션 기반 자동 복구: 애플리케이션이 MIG의 각 인스턴스에서 예상한 대로 응답하는지 주기적으로 확인하는 애플리케이션 기반 상태 확인을설정할 수 있음 VM에서 애플리케이션이 응답하지 않으면 MIG가 VM을 자동으로 다시 만듬 리전(멀티 영역) 노출 범위: 리전 MIG를 사용하면 앱 부하를 여러 영역에 분산할 수 있으며, 이러한 복제 기능은 영역 장애가 발생하지 않도록 방지 부하 분산: MIG는 부하 분산 서비스와 함께 작동하여 그룹의 모든 인스턴스에 트래픽을 분산함 	확장성	 앱이 추가 컴퓨팅 리소스를 필요로 하는 경우, 자동 확장된 MIG가 그룹의 인스턴스 수를 자동으로 늘려서 요구사항을 충족함 요구사항이 감소하면 자동 확장된 MIG가 비용 절감을 위해 자동으로 축소됨
		자동 업데 이트	 MIG 자동 업데이트 프로그램을 사용하면 새로운 버전의 소프트웨어를 MIG의 인스턴스에 안전하게 배포할 수 있으므로 순차적 업데이트 및 카나리아 업데이트와 같은 가변형 출시를 지원함 배포 속도와 범위는 물론 서비스 중단 수준을 제어할 수 있음
		스테이트풀 (Stateful) 워크로드 지원	 MIG를 사용하면 스테이트풀(Stateful) 데이터 또는 구성을 사용하는 애플리케이션의 가용성이 높은 배포를 빌드하고 작업을 자동화할 수 있음 스테이트풀(Stateful) MIG는 머신 다시 시작, 다시 만들기, 자동 복구 또는 업데이트 이벤트시 각 인스턴스의 고유 상태(인스턴스 이름, 연결된 영구 디스크, 메타데이터)를 보존함
		GPU VM 한 번에 만 들기	 정확한 수의 GPU VM이 필요한 일괄 작업(예: AI 또는 ML 학습)이 있는 경우 MIG에서 크기 조절 요청을 만들면 VM을 한 번에 모두 만들 수 있음 VM을 실행할 기간을 지정하여 GPU와 같이 수요가 많은 리소스의 가용성을 개선할 수 있음

[표 6] MIG 기능과 일반적인 워크로드의 개요

Ⅲ 클라우드 컴퓨팅 - 코스트(비용)

교육 서비스

코스트 주요 항목

항목	내용
사용한 만큼 비용 지불	 Google Cloud의 사용한 만큼 지불 가격 책정 구조를 사용하면 사용한 서비스에 대한 요금만 지불하면 됨(선불 비용은 없으며, 해지 수수료가 부과되지 않음) 가격은 제품 및 사용량에 따라 다름
워크로드 비용 최대 57% 절감하기	 Google Cloud를 사용하면 월별 사용량에 기초한 자동 절약과 할인된 가격에 리소스 비용 선불 결제로 다른 제공업체를 사용할 때보다 비용 절감이 가능함 예를 들어 머신 유형 또는 GPU와 같은 Compute Engine 리소스에 약정 사용 할인을 적용하여 최대 57%를 절약할 수 있음
지속적인 지출 관리	 예산, 알림, 할당량 한도, 기타 무료 비용 관리 도구로 지출을 관리 가능 현재 비용 추세와 예상 비용 파악 조직에서 비용에 대한 책임성 명확화 강력한 재무 관리 정책 및 권한으로 비용 관리 지능형 권장사항으로 클라우드 비용 및 사용량 최적화
비용 예측	 "가격 계산기"로 위치, 워크로드, 기타 변수에 따라 비용이 어떻게 달라지는지 확인 가능 또는 영업 담당자에게 문의하여 커스텀 견적을 받을 수 있음

[표 7] 코스트 주요 항목

[그림 9] 비용 확인 화면

[그림 10] "가격 계산기"

Ⅲ 클라우드 컴퓨팅 - 코스트(비용)

교육 서비스

결제 > 개요

[그림 11] 결제 > 개요

결제 관련 보고서 및 비용분석

[그림 12] 결제 > 보고서

[그림 13] 결제 > 보고서 > 비용분석

결제 > 예산 및 알림

[그림 14] 결제 > 예산 및 알림

Ⅲ 클라우드의 기초- 클라우드 vs 온프라미스

교육 서비스

클라우드 vs 온프라미스

	클라우드	온-프라미스
비용	 초기 비용 X 사용량에 따라 월간 요금 지불 	• 하드웨어, 설치 작업, 소프트웨어 라이선스, 데이터 백업 등 초기에 고려해야 하는 비용적인 요소가 많음
보안	상위 CSP에서 종합적으로 보안을 제공 지속적인 보안 모니터링 네트워크 보호 물리적 데이터 보호 의심스러운 활동 탐지 등	• 보안 전문 지식과 물리적 자산에 대한 지속적인 모니터링 및 유지 관리가 요 구되며, 이를 위한 보안도구 및 사내 인력이 필요
스케일링	• 기본 제공 기능(Auto Scaling)을 사용하여 클릭만으로도 기능 제공	• 갑작스러운 변화에 스케일링이 어려우며, 스케일업을 하기 위해서는 사전 계획과 많은 시간 소요
재해복구	• Failover, 백업, 연동 가능한 별도 저장공간, 자동 로깅 등과 같은 다양한 도구로 데이터 손실 방지 기능을 제공하고 있음	• 별도 백업서비스를 사용해야 함

[표 8] 클라우드 vs 온프라미스

Ⅲ GCP 인프라 및 도구-Region / Zones

교육 서비스

GCP 리전(Region)과 존(Zone)

- 리즌 (Region): Google이 클라우드 서비스를 호스팅 하는 특정 지리적 위치
- 존 (Zone) :
 - 여러 개의 존(3개 이상)으로 이루어짐
 - 가상 머신과 스토리지와 같은 GCP 리소스가 호스팅 되는 개별 데이터 센터를 의미

[그림 15] 2025년 3월 기준, 총 42개의 리전과 127개의 존이 구성

GCP 콘솔 프로젝트 생성 및 선택

[그림 16] GCP 콘솔

[그림 18] 프로젝트 선택 or 생성

[그림 17] GCP 콘솔 > 프로젝트 생성 및 선택

[그림 19] 프로젝트 생성

GCP 제공 제품 및 서비스

[그림 20] 모든 제품 보기

[그림 21] GCP 제공 제품 및 서비스

GCP 서비스 별 상세 정보

[그림 22] Compute Engine 서비스 예

Ⅲ GCP 인프라 및 도구-클라우드 쉘

교육 서비스

GCP 클라우드 쉘 CLI

[그림 23] Cloud shell 접근

[그림 24] Cloud shell 접근

[그림 25] Cloud shell 접근

[그림 26] 튜토리얼 생성

[그림 27] tutorial.md 파일

[그림 28] 튜토리얼 생성 및 실행(cloudshell launch-tutorial tutorial.md)

GCP 클라우드 쉘 Editor

[그림 30] Cloud shell CLI + Editor

```
Your active configuration is: [cloudshell-20421]
jshan97@cloudshell:~ (gcp-study-463918)$ clear
jshan97@cloudshell:~ (gcp-study-463918) $ gcloud config list
[accessibility]
screen reader = True
[component manager]
disable update check = True
[compute]
gce metadata read timeout sec = 30
[core]
account = jshan97@gmail.com
disable color = true
disable usage reporting = False
project = gcp-study-463918
[metrics]
environment = devshell
Your active configuration is: [cloudshell-20421]
jshan97@cloudshell:~ (gcp-study-463918)$
```

[그림 31] gcloud config list

GCP 클라우드 쉘 지원 언어 및 도구

언어	버전
Java	JRE/JDK 17(OpenJDK)
Go	• 최신
Python	• 3.12
Node.js	• LTS
Ruby	• 3.2
PHP	• 8.3
.NET Core	• SDK 6.0, 7.0, 8.0

[표 9] 지원 언어

유형	도구
Linux 셸 인터프리터	Bash, sh
Linux 유틸리티	• 표준 Debian 시스템 유틸리티
gcloud CLI 및 도구	 App Engine SDK Google Cloud CLI, Cloud Storage용 gcloud CLI gsutil 포함
텍스트 편집기	Emacs, Vim, Nano
빌드 및 패키지 도구	Gradle, Helm, Make, Maven, BazelNpm, Nvm, Pip, Composer
소스 제어 도구	Git Mercurial
추가 도구	 Docker iPython MySQL 클라이언트 gRPC 컴파일러 TensorFlow Terraform

[표 10] 사용가능한 도구

Compute Engine VM

[그림 32] Compute Engine

[그림 33] VM 관련 제공 서비스

GCP Compute Engine – VM 인스턴스

교육 서비스

Compute Engine VM 인스턴스

- Compute Engine 인스턴스, 컴퓨팅 인스턴스 또는 인스턴스 용어는 동의어임
- 지정하는 머신 유형에 따라 인스턴스는 다음과 같이 베어메탈 인스턴스 또는 가상 머신(VM) 인스턴스일 수 있음
 - 머신 유형 이름이 -metal로 끝나면 인스턴스는 하이퍼바이저가 설치되지 않은 베어메탈 인스턴스
 - 가상 머신 인스턴스, VM 인스턴스, VM 용어는 동의어
- Compute Engine 인스턴스에서는 Google에서 제공하는 Linux 및 Windows Server 용 공개 이미지뿐만 아니라 사용자가 만들거나 기존 시스템에서 가져 올 수 있는 비공개 커스텀 이미지를 실행할 수 있음
- 또한 Container-Optimized OS 공개 이미지를 실행하는 인스턴스에서 자동으로 시작되는 Docker 컨테이너를 배포할 수 있음
- 사전 정의된 머신 유형 세트를 사용하거나 자체 커스텀 머신 유형을 만들어 가상 CPU 수 및 메모리 용량과 같은 인스턴스의 머신 속성을 선택할 수 있음

[그림 34] VM 인스턴스 정보

IV GCP Compute Engine – VM - VM 인스턴스

교육 서비스

VM 인스턴스 유형

- 머신 계열 : 특정 워크로드에 최적화된 프로세서 및 하드웨어 구성으로 선별된 세트
- 머신 시리즈 : 머신 계열은 시리즈, 세대, 프로세서 유형에 따라 추가로 분류
- 머신 유형 :
 - 모든 머신 시리즈는 하나 이상의 머신 유형을 제공함
 - 각 머신 유형은 vCPU, 메모리, 디스크, GPU와 같은 컴퓨팅 인스턴스의 리소스 세트를 제공합니다. 사전 정의된 머신 유형이 요구사항을 충족하지 않 는 경우 일부 머신 시리즈에서는 커스텀 머신 유형을 만들 수도 있음
- ※예를 들어 c3-standard-22 머신 유형은 vCPU가 22개이고 standard 머신 유형이므로 메모리 88GB도 포함됨

[그림 35] VM 인스턴스 유형

GCP Compute Engine - 스토리지 - 이미지

교육 서비스

이미지

- 공개 OS 이미지 :
 - Google, 오픈소스 커뮤니티, 타사 공급업체에서 제공되고 유지보수됨
 - 기본적으로 모든 Google Cloud 프로젝트에서 이러한 OS 이미지에 액세스하고 이를 사용하여 VM 인스턴스를 만들 수 있음
- 커스텀 OS 이미지:
 - 사용자의 Google Cloud 프로젝트에서만 사용할 수 있음
 - 부팅 디스크 및 다른 이미지에서 커스텀 OS 이미지를 만들 수 있음
 - 이후 커스텀 OS 이미지를 사용하여 VM 인스턴스 생성

[그림 36] 이미지 생성 및 사용

GCP Compute Engine – 스토리지 – Persistent Disk

교육 서비스

Persistent Disk(영구 디스크)

- 모든 워크로드에 적합한 고성능 블록 스토리지
 - Persistent Disk 성능은 디스크 크기와 VM 인스턴스의 vCPU 수에 따라 확장
 - 디스크 성능 옵션을 선택하고 사용한 스토리지에 해당하는 비용만 지불함
- 비즈니스 운영을 위한 내구성 및 가용성
 - Persistent Disk는 내구성을 위해 설계됨
 - 최고 수준의 데이터 무결성을 보장하기 위해 데이터를 자동으로 중복 저장함

[그림 37] 디스크 성능 비교

- 예정된 유지보수 문제나 예기치 않은 장애에 대한 우려가 있다 하더라도 데이터를 사용할 수 있고 비즈니스를 중단 없이 유지할 수 있도록 보장함
- 자동 보안 및 암호화
 - 데이터가 인스턴스 외부에서 Persistent Disk 스토리지로 이동하기 전에 자동으로 암호화됨
 - 각 Persistent Disk는 시스템 정의 키 또는 고객 제공 키를 사용하여 암호화된 상태로 유지됨
 - Google은 Persistent Disk 데이터를 여러 물리적 디스크에 분산하여 최상의 보안 수준을 보장함
 - 디스크가 삭제되면 키를 삭제하여 데이터를 복구할 수 없게 됨
- 비즈니스 연속성을 위한 데이터 보호
 - 영역 간 동기식 복제, 리전 간 비동기 복제, 디스크 스냅샷, 디스크 클론으로 데이터를 보호하여 필요할 때 언제 어디서든 데이터를 복구할 수 있도록 함
 - 데이터를 여러 접속 지점으로 복제하면 워크로드의 복원력이 향상되고 멀티 영역 또는 멀티 리전 비즈니스 연속성 전략을 구현할 수 있음