Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 3.5.1

Изучение плазмы газового разряда в неоне

Автор:

Филиппенко Павел, Б01-001

Долгопрудный, 2021

1 Расчетные формулы

1. Температура электронов:

$$T_e = \frac{1}{2k_{\rm B}} \frac{eI_i}{\frac{dI}{dU}|_{U=0}} \tag{1}$$

2. Электронный ток насыщения:

$$I_i \simeq 0.4 n_e e S \sqrt{\frac{2k_{\rm B}T_e}{m_i}} \tag{2}$$

3. Плазменная (ленгмюровская) частота:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{3}$$

4. Электронная поляризационная длина:

$$r_{De} = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}} \tag{4}$$

5. Ионная поляризационная длина:

$$r_{Di} = \sqrt{\frac{k_{\rm B}T_i}{4\pi n_i e^2}} \tag{5}$$

6. Дебаевский радиус:

$$r_D = (r_{De}^{-2} + r_{Di}^{-2})^{-1/2} = \sqrt{\frac{k_{\rm B}}{2\pi n_e e^2} \frac{T_e T_i}{T_e + T_i}}$$
 (6)

2 Обработка эксперементальных данных

Запишем параметры установки

Диаметр зонда d=0.2 мм Длина зонда l=5.2 мм Длина трубки $L\approx 35.5$ см

Эксперементально установленное напряжение зажигания заряда $U_{\text{заж}} \approx 1.54 \text{ кB}$.

Снимем вольт-амперную характеристику разряда.

Сравнив имзеренный участок с графиком, приходим к выводу, что измеренный участок соответсвует участку DC диаграммы. По наклону кривой определим максимальное дифференциальное сопротивление разряда.

$$R_{\rm диф} = 27,83 \; {
m Om}$$

Снимем зондовые характеристики при $I_p = 4.8$ мA, $I_p = 3$ мA, $I_p = 1.5$ мA.

Для расчета температуры электронов T_e , концентрации электронов и ионов $n_e = n_i$ а так же плазменной частоты ω_p воспользуемся формулами (1) (2) (3).

Рис. 1: Вольт-амперная характеристика разряда

Рис. 2: $I_p = 4.8 \text{ мA}$

Рис. 3: $I_p=3$ мА

Рис. 4: $I_p = 1.5$ мА

I, мА	U, B
60	246,89
120	232,19
180	225,26
240	210,07
300	177,87
360	161,35
420	150,36
480	144,13
540	139,51
600	136,99
660	135,45
720	133,70
780	131,81
840	130,55

Таблица 1: BAX разряда в неоне

I, мк A	U, B	I, мк A	U, B
123,34	31,61	2,17	-0,008
122,77	30,9	2,11	-0,015
121,79	29,97	2,07	-0,019
120,86	29,08	1,96	-0,027
119,82	28,07	1,65	-0,05
118,77	27,02	1,23	-0,086
117,5	25,99	0,8	-0,119
114,37	23,04	0,43	-0,154
111,22	20,03	-0,18	-0,208
107,95	17,03	-1,21	-0,302
103,54	14,04	-2,81	-0,45
96,88	11	-4,38	-0,6
85,83	8,02	-6,43	-0,8
68,47	5,01	-8,42	-1
61,25	4,03	-22,63	-2,509
53,09	3,01	-36,27	-4
44,62	2,03	-52,54	-6,02
35,33	1,01	-70,49	-9,02
32,72	0,72	-100,41	-12,053
31,86	0,63	-106,36	-15,03
30,75	0,51	-110,39	-18,11
29,54	0,39	-113,52	-21,05
28,62	0,3	-116,67	-24,08
27,1	0,145	-119,74	-27,02
26,36	0,069	-121,86	-29,06
25,76	0,007	-124,59	-31,61

Таблица 2: ВАХ двойного зонда при $I=4.8~\mathrm{mA}$

I, MKA	U, B	I, мкА	U, B
72,77	31,61	19,02	0,995
71,64	30,04	17,77	0,8
70,84	28,96	15,59	0,5
70,21	28,08	15,08	0,4
69,44	27,01	14,13	0,246
68,04	25,02	13,02	0,1
66,6	22,99	12,73	0,045
65,23	21,03	8,23	-0,019
63,88	19,08	8,28	-0,035
62,48	17,07	8,03	-0,055
60,93	14,98	7,66	-0,104
59,29	13,082	-4,97	-2,013
56,9	11,02	-11,07	-3
53,31	8,95	-22,12	-5,02
48,43	7,05	-26,64	-5,97
40,98	5,03	-37,17	-9
33,85	3,52	-42,59	-12,013
31,13	3,02	-45,37	-15,026
28,24	2,25	-47,15	-17,98
25,44	2,07	-48,89	-21,04
23,93	1,8	-50,61	-23,99
22,78	1,6	-52,42	-27,085
21,57	1,4	-54,34	-30,13
20,34	1,2	-55,3	-31,61
		· · · · · · · · · · · · · · · · · · ·	

Таблица 3: ВАХ двойного зонда при $I=3~\mathrm{mA}$

I, MKA	U, B	<i>I</i> , мкА	U, B
39,29	31,6	5,92	-0,02
38,63	30,03	5,77	-0,05
38,18	29	5,63	-0,1
37,74	28,01	5,26	-0,2
37,32	27,04	4,89	-0,29
36,46	25,06	4,14	-0,499
35,19	22,08	2,31	-1,01
33,88	19	-1,22	-2,01
32,61	16,045	-2,89	-2,5
31,2	12,98	-4,55	-3,01
29,32	10,07	-6,1	-3,5
25,79	7,06	-7,58	-4
19,51	3,99	-14,89	-7,008
16,75	3,006	-19,21	-10,025
15,24	2,5	-21,22	-13,004
13,65	2	-22,17	-16,02
11,89	1,506	-22,95	-19,06
10,21	1,002	-23,68	-22
8,45	0,504	-24,4	-25,01
7,73	0,3	-25,34	-28,06
7,37	0,2	-25,62	-29,04
6,97	0,098	-25,92	-30,04
6,6	0,005	-26,39	-31,6
6	-0,0086		

Таблица 4: ВАХ двойного зонда при $I=1.5~\mathrm{mA}$

I_p , мА	I_{in} , MKA	dI/dU, мк A/B	T_e , эВ	$n_e \cdot 10^{13}$	$\omega_p \cdot 10^4$, рад/с
4,8	78,856	9,137	4,311	230	2,85
3,0	41,020	6,067	3,378	135	2,18
1,5	21,407	3,435	3,113	73,57	1,61

Таблица 5: Таблица результатов

