



# COMPLIANCE WORLDWIDE INC. TEST REPORT 286-14

In Accordance with the Requirements of

Federal Communications Commission CFR Title 47 Part 15.249, Subpart C Industry Canada RSS 210, Issue 8

Low Power License-Exempt Radio Communication Devices Intentional Radiators

Issued to

GoodLux Technology, LLC 288 Norfolk Street Cambridge MA 02139 617-835-2091 for the

SunSprite
Wearable Light Tracker

FCC ID: 2ACEO-SS1 IC: 12091A-SS1

Report Issued on June 13, 2014

Tested by

Brian F. Breault

Reviewed by





## **Table of Contents**

| 1. Scope                                        | 3  |
|-------------------------------------------------|----|
| 2. Product Details                              | 3  |
| 2.1. Manufacturer                               | 3  |
| 2.2. Model Number                               | 3  |
| 2.3. Serial Number                              | 3  |
| 2.4. Description                                | 3  |
| 2.5. Power Source                               | 3  |
| 2.6. EMC Modifications                          | 3  |
| 3. Product Configuration                        | 3  |
| 3.1. EUT Hardware                               | 3  |
| 3.2. Support Equipment                          | 3  |
| 3.3. Cables                                     |    |
| 3.4. Operational Characteristics & Software     | 3  |
| 3.5. Block Diagram                              | 4  |
| 4. Measurements Parameters                      | 4  |
| 4.1. Measurement Equipment Used to Perform Test | 4  |
| 4.2. Measurement & Equipment Setup              | 5  |
| 4.3. Measurement Procedure                      |    |
| 4.4. Choice of Operating Frequencies            | 5  |
| 4.5. EUT Positions for Emissions Measurements   | 5  |
| 5. Measurement Summary                          | 7  |
| 6. Measurement Data                             | 8  |
| 6.1. Antenna Requirement                        |    |
| 6.2. Radiated Field Strength of Fundamental     | 8  |
| 6.3. Radiated Field Strength of Harmonics       |    |
| 6.4. Band Edge Measurements                     | 12 |
| 6.5. Spurious Radiated Emissions                | 14 |
| 6.6. Occupied Bandwidth                         |    |
| 6.7. 99% Emissions Bandwidth                    |    |
| 7. Test Setup Photographs                       | 19 |
| 8. Test Site Description                        | 25 |
| Appendix A                                      | 26 |





# 1. Scope

This test report certifies that the GoodLux Technology Wearable Light Tracker, as tested, meets the FCC Part 15, Subpart C and Industry Canada RSS 210, Issue 8 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

#### 2. Product Details

2.1. Manufacturer: GoodLux Technology, LLC

2.2. Model Number: SS-0012.3. Serial Number: None

**2.4. Description:** Wearable Light Tracker

**2.5. Power Source:** 3.6 VDC (Self contained – 1 lithium battery, solar charged) Note: An

external DC power supply was substituted to facilitate measurement

testing.)

2.6. Hardware Revs.: None2.7. Software Rev.: None2.8. EMC Modifications: None

#### 3. Product Configuration

#### 3.1. EUT Hardware

| Manufacturer             | Model                     | Serial Number | Input<br>Volts | Frq (Hz) | Description/Function   |
|--------------------------|---------------------------|---------------|----------------|----------|------------------------|
| GoodLux Technology, LLC. | Wearable Light<br>Tracker | N/A           | 3.6            | DC       | Wearable Light Tracker |

3.2. Support Equipment

| Device | Manufacturer | Model | Serial No. | Comment |
|--------|--------------|-------|------------|---------|
| None   |              |       |            |         |

#### 3.3. Cables

| Cable Type | Length | Shield | From | То |
|------------|--------|--------|------|----|
| None       |        |        |      |    |





## 3. Product Configuration (continued)

## 3.4. Operational Characteristics & Software

Note: All testing is to be performed with the power set to -4 dBm.

- 1. Power the unit with the external DC power supply set to 3.6 volts DC (necessary for running the device under test for a long enough to take measurements).
- 2. Apply the high brightness LED source to the front of the device to "switch it on." A check of the power supply's current meter will show a slight increase when the device turns on. The high brightness led source can then be turned off and removed.
- 3. The device defaults to channel 0 (2402 MHz) at the 0 dBm power level when powered on. Repeatedly depress the momentary switch on the side of the device to toggle through the following settings:

Channel 19 2440 MHz 0 dBm
Channel 39 2480 MHz 0 dBm
Channel 0 2402 MHz -4 dBm
Channel 19 2440 MHz -4 dBm
Channel 39 2480 MHz -4 dBm

All settings are modulated. Select the setting needed to test. If you continue to depress the momentary switch on the side of the device, the settings will repeat.

#### 3.5. Block Diagram

GoodLux Technology Wearable Light Tracker

#### 4. Measurements Parameters

#### 4.1. Measurement Equipment Used to Perform Test

| Device                            | Manufacturer    | Model No. | Serial No. | Cal Due   | Cal Cycle |
|-----------------------------------|-----------------|-----------|------------|-----------|-----------|
| Spectrum Analyzer 20 Hz to 40 GHz | Rohde & Schwarz | FSV40     | 100899     | 6/6/2015  | biannual  |
| EMI Receiver 9 kHz to 6.5 GHz     | Hewlett Packard | 8546A     | 3650A00360 | 6/13/2014 | biannual  |
| EMI Receiver 9 kHz to 7 GHz       | Rohde & Schwarz | ESR7      | 101156     | 4/4/2015  | biannual  |
| Microwave Preamp 2 to 50 GHz      | Hewlett Packard | 8449B     | 3008A01323 | 6/5/2015  | biannual  |
| Loop Antenna 9 kHz to 30 MHz      | EMCO            | 6512      | 9309-1139  | 8/28/2014 | biannual  |
| Bilog Antenna 30 to 2000 MHz      | Sunol Sciences  | JB1       | A050913    | 5/15/2015 | biannual  |
| Horn Antenna 1 to 18 GHz          | ETS-Lindgren    | 3117      | 00143292   | 1/14/2015 | biannual  |
| Horn Antenna 18 to 40 GHz         | Com-Power       | AH-840    | 03075      | 8/27/2014 | biannual  |
| 2.4 GHz Band Reject Filter        | Micro-Tronics   | BRM50702  | 050        | 2/4/2015  | annual    |





## 4. Measurements Parameters (continued)

#### 4.2. Measurement & Equipment Setup

Test Dates: 5/12/2014 – 6/13/2014
Test Engineers: Brian Breault, Cody Merry

Normal Site Temperature (15 - 35°C): 21.2 Relative Humidity (20 -75%RH): 35

Frequency Range: 32 kHz to 24.8 GHz

Measurement Distance: 3 Meters

EMI Receiver IF Bandwidth:

120 kHz - 30 MHz to 1 GHz
1 MHz - Above 1 GHz
300 kHz - 30 MHz to 1 GHz

EMI Receiver Average Bandwidth:

3 MHz - Above 1 GHz

Detector Function:

Peak, Quasi-Peak & Average

#### 4.3. Measurement Procedure

Test measurements were made in accordance FCC Part 15.249, IC RSS-210 Annex II: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

The test methods used to generate the data in this test report are in accordance with ANSI C63.10: 2009, American National Standard for Testing Unlicensed Wireless Devices.

## 4.4. Choice of Operating Frequencies

In accordance with 47CFR Part15, Section 15.31(m), Bluetooth frequency channels 1 (lowest), 19 (middle) and 39 (highest) were selected for test.

#### 4.5. EUT Positions for Emissions Measurements

In accordance with ANSI C63.10-2009, Section 5.10.1; a portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other non-metallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal positions such that emissions from the EUT are maximized.



X-Axis (Lapel Clasp (Black Band) is to the left. Front faces antenna at 0º azimuth.)





# 4. Measurements Parameters (continued)

## 4.5. EUT Positions for Emissions Measurements (continued)



Y-Axis (Lapel Clasp (Black Band) is to the top. Front faces antenna at 0° azimuth.)



Z-Axis (Lapel Clasp (Black Band) faces away from antenna at 0° azimuth. Front faces up.)





# **5. Measurement Summary**

| Test Requirement                       | FCC<br>Requirement                  | IC<br>Requirement  | Test<br>Section | Result          | Comment                           |
|----------------------------------------|-------------------------------------|--------------------|-----------------|-----------------|-----------------------------------|
| Antenna Requirement                    | 15.203                              | RSS-GEN<br>7.1.2   | 6.1             | Compliant       | Unit has an internal PCB antenna. |
| Radiated Field Strength of Fundamental | 15.249 (a),(c)                      | RSS-210 A2.9       | 6.2             | Compliant       |                                   |
| Radiated Field Strength of Harmonics   | 15.249 (a),(c)                      | RSS-210 A2.9       | 6.3             | Compliant       |                                   |
| Fixed, Point-to-Point<br>Operation     | 15.249 (b)                          | N/A                |                 | Not<br>Required |                                   |
| Band Edge Measurements                 | 15.249 (d)<br>15.209                | RSS GEN 4.9        | 6.4             | Compliant       |                                   |
| Spurious Radiated<br>Emissions         | 15.249 (d),<br>15.209               | RSS-210<br>A2.9(b) | 6.5             | Compliant       |                                   |
| Occupied Bandwidth 26 dB               | ANSI C63.4<br>§ 13.1.7              | N/A                | 6.6             | Compliant       |                                   |
| 99% Bandwidth                          | N/A                                 | RSS-GEN<br>4.6.1   | 6.7             | Compliant       |                                   |
| AC Power Line Conducted Emissions      | 15.207                              | RSS-GEN<br>7.2.4   |                 | Not<br>Required | DUT is sunlight powered           |
| RF Safety                              | 95.1125<br>2.1093<br>1.1307 (b)(1)) | N/A                | 6.8             | Not<br>Required |                                   |





#### 6. Measurement Data

#### 6.1. Antenna Requirement (Section 15.203, RSS-GEN)

Requirement: An intentional radiator shall be designed to ensure that no antenna other

than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be

considered sufficient to comply with the provisions of this Section.

Result: The unit under test employs permanent, non-user accessible printed

circuit antenna.

## 6.2. Radiated Field Strength of Fundamental (15.249, Section (a), (c)), IC RSS-210 A2.9

Requirement: The 3 meter field strength of the fundamental emissions from intentional radiators operating within the 2400 – 2483.5 MHz frequency band shall comply with the following requirement: 50 millivolts/meter (94 dB $\mu$ V/m) quasi-peak mode measurement and 500 millivolts/meter (114 dB $\mu$ V/m) peak mode measurement.

| Frequency<br>(MHz) | Amplitude <sup>1</sup><br>(dBµV/m) at<br>3 Meters |                      | Limit<br>(dBµV/m) at<br>3 Meters |         | Margin<br>(dBµV/m) at<br>3 Meters |         | Ant<br>Polarity | Ant<br>Height | Turntable<br>Azimuth | Result    |
|--------------------|---------------------------------------------------|----------------------|----------------------------------|---------|-----------------------------------|---------|-----------------|---------------|----------------------|-----------|
|                    | Peak                                              | Average <sup>2</sup> | Peak                             | Average | Peak                              | Average | H/V             | cm            | Deg                  |           |
| 2402               | 66.68                                             | 62.05                | 114.00                           | 94.00   | -47.32                            | -31.95  | Н               | 100           | 0                    | Compliant |
| 2440               | 66.67                                             | 63.29                | 114.00                           | 94.00   | -47.33                            | -30.71  | Н               | 268           | 179                  | Compliant |
| 2480               | 66.55                                             | 62.89                | 114.00                           | 94.00   | -47.45                            | -3.02   | Н               | 100           | 245                  | Compliant |

<sup>&</sup>lt;sup>1</sup> All correction factors are included in measurement values.

<sup>&</sup>lt;sup>2</sup> The average values in the above table represent the absolute worst case modulation characteristics. The field strength in actual use will most likely be lower.





## 6. Measurement Data (continued)

## 6.2. Radiated Field Strength of Fundamental (15.249, Section (a), (c)), IC RSS-210 A2.9

6.2.1. Radiated Field Strength of Fundamental - Channel 1



#### 6.2.2. Radiated Field Strength of Fundamental - Channel 19







# 6. Measurement Data (continued)

6.2. Radiated Field Strength of Fundamental (15.249, Section (a), (c)), IC RSS-210 A2.9

6.2.3. Radiated Field Strength of Fundamental - Channel 39







## 6. Measurement Data (continued)

## 6.3. Radiated Field Strength of Harmonics (15.249, Section (a)), IC RSS-210 A2.9

Requirement: The 3 meter field strength of the harmonic emissions from intentional radiators operated within the 2400 to 2483.5 MHz frequency bands shall

comply with the following: 500 microvolts/meter (54 dBµV/m), average mode measurement. Peak field strength may not be greater than 20 dB

above the average limit (74 dBµV/m).

Test Results: Compliant

Notes: All correction factors are included in the field strength values.

The tabled values represent the worst case antenna polarity and orthogonal

position of the DUT.

| Freq.    | Field Strength<br>(dBµV/m) |         | Limit<br>(dBµV/m) |         | Margin<br>(dΒμV/m) |         | Antenna<br>Polarity | Result    |
|----------|----------------------------|---------|-------------------|---------|--------------------|---------|---------------------|-----------|
| (111112) | Peak                       | Average | Peak              | Average | Peak               | Average | (H/V)               |           |
| 4804     | 49.42                      | 36.43   | 74.00             | 54.00   | -24.58             | -17.57  | V                   | Compliant |
| 4880     | 49.12                      | 37.03   | 74.00             | 54.00   | -24.88             | -16.97  | Н                   | Compliant |
| 4960     | 51.79                      | 41.41   | 74.00             | 54.00   | -22.21             | -12.59  | Н                   | Compliant |
| 7206     | 51.08                      | 37.81   | 74.00             | 54.00   | -22.92             | -16.19  | Н                   | Compliant |
| 7320     | 50.47                      | 37.11   | 74.00             | 54.00   | -23.53             | -16.89  | Н                   | Compliant |
| 7440     | 51.29                      | 37.47   | 74.00             | 54.00   | -22.71             | -16.53  | V                   | Compliant |
| 9608     | 53.88                      | 40.47   | 74.00             | 54.00   | -20.12             | -13.53  | Н                   | Compliant |
| 9760     | 54.39                      | 40.47   | 74.00             | 54.00   | -19.61             | -13.53  | Н                   | Compliant |
| 9920     | 56.58                      | 43.18   | 74.00             | 54.00   | -17.42             | -10.82  | V                   | Compliant |
| 12010    | 56.89                      | 42.67   | 74.00             | 54.00   | -17.11             | -11.33  | Н                   | Compliant |
| 12200    | 56.75                      | 43.12   | 74.00             | 54.00   | -17.25             | -10.88  | V                   | Compliant |
| 12400    | 56.71                      | 43.16   | 74.00             | 54.00   | -17.29             | -10.84  | Н                   | Compliant |
| 14412    | 58.77                      | 44.96   | 74.00             | 54.00   | -15.23             | -9.04   | Н                   | Compliant |
| 14640    | 59.51                      | 45.52   | 74.00             | 54.00   | -14.49             | -8.48   | V                   | Compliant |
| 14880    | 57.90                      | 44.67   | 74.00             | 54.00   | -16.10             | -9.33   | V                   | Compliant |
| 16814    | 61.93                      | 47.72   | 74.00             | 54.00   | -12.07             | -6.28   | V                   | Compliant |
| 17080    | 60.72                      | 47.02   | 74.00             | 54.00   | -13.28             | -6.98   | Н                   | Compliant |
| 17360    | 60.79                      | 46.86   | 74.00             | 54.00   | -13.21             | -7.14   | V                   | Compliant |
| 19216    | 56.80                      | 43.17   | 74.00             | 54.00   | -17.20             | -10.83  | V                   | Compliant |
| 19520    | 56.49                      | 42.71   | 74.00             | 54.00   | -17.51             | -11.29  | Н                   | Compliant |
| 19840    | 56.87                      | 42.94   | 74.00             | 54.00   | -17.13             | -11.06  | Н                   | Compliant |
| 21618    | 56.62                      | 43.07   | 74.00             | 54.00   | -17.38             | -10.93  | V                   | Compliant |
| 21960    | 58.02                      | 44.31   | 74.00             | 54.00   | -15.98             | -9.69   | Н                   | Compliant |
| 22320    | 59.70                      | 46.12   | 74.00             | 54.00   | -14.30             | -7.88   | Н                   | Compliant |
| 24020    | 59.15                      | 46.54   | 74.00             | 54.00   | -14.85             | -7.46   | V                   | Compliant |
| 24400    | 59.96                      | 46.15   | 74.00             | 54.00   | -14.04             | -7.85   | Н                   | Compliant |
| 24800    | 60.18                      | 46.69   | 74.00             | 54.00   | -13.82             | -7.31   | V                   | Compliant |





## 6. Measurement Data (continued)

## 6.4. Band Edge Measurements

Requirement: Emissions radiated outside of the specified frequency band of 2400 to

2483.5 MHz, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission

limits in Section 15.209, whichever is the lesser attenuation.

Test Note: The upper band edge peak mode measurement meets the FCC Part 15,

Section 15.209 peak and average (-54 dBµV/m) requirement.

#### Band Edge Measurements - Lower and Upper Band Edge

| Frequency<br>(MHz) | Band Edge<br>(dBμV/m) |          |       |         |      | mit<br>µV/m) |                   | rgin<br>µV/m) | Result    |
|--------------------|-----------------------|----------|-------|---------|------|--------------|-------------------|---------------|-----------|
| (                  |                       | Freq MHz | Peak  | Average | Peak | Average      | Peak <sup>1</sup> | Average       |           |
| 2402               | Lower                 | 2400     | 42.95 | 29.43   | 74   | 54           | -31.05            | -24.57        | Compliant |
| 2480               | Upper                 | 2483.5   | 41.96 | 31.02   | 74   | 54           | -32.04            | -22.98        | Compliant |

#### 6.4.1. Band Edge Measurements - Lower Band Edge







# 6. Measurement Data (continued)

# 6.4. Band Edge Measurements (continued)

6.4.2. Band Edge Measurements - Upper Band Edge







## 6. Measurement Data (continued)

# 6.5. Spurious Radiated Emissions, 32 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN

Requirement: Emissions radiated outside of the specified frequency bands, except for

harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209,

whichever is the lesser attenuation.

Test Notes: Details of the spurious emissions measurements are located in Appendix

A beginning on page 26.

The lowest frequency generated by the DUT is 32.768 kHz.

#### 6.5.1. Regulatory Limit: FCC Part 209, Quasi-Peak & Average

| Frequency Range (MHz) | Distance<br>(Meters) | Limit<br>(dBµV/m) |
|-----------------------|----------------------|-------------------|
| 0.009 to 0.490        | 3                    | 128.5 to 93.8     |
| 0.490 to 1.705        | 3                    | 73.8 to 63        |
| 1.705 to 30           | 3                    | 69.5              |
| 30 to 88              | 3                    | 40.0              |
| 88 to 216             | 3                    | 43.5              |
| 216 to 960            | 3                    | 46.0              |
| Above 960             | 3                    | 54.0              |

#### 6.5.2. Measurement Summary

Notes: Each of the tabled entries represent the worst case receive antenna polarity and DUT orthogonal position for the given frequency range.

All measurements were made with a peak detector.

| Frequency<br>Range<br>(MHz) | Worst Case<br>Emission<br>Frequency<br>(MHz) | Peak<br>Amplitude<br>(dBµV/m) | QP/Average<br>Limit<br>(dBµV/m) | Margin<br>(dB) | Antenna<br>Polarity<br>(Orientation) |
|-----------------------------|----------------------------------------------|-------------------------------|---------------------------------|----------------|--------------------------------------|
| 0.010 to 0.150              | 0.013                                        | 116.85                        | 128.21                          | -11.36         | Parallel                             |
| 0.150 to 30.000             | 0.588                                        | 65.24                         | 72.69                           | -7.45          | Parallel                             |
| 30 to 1000                  | 958.835                                      | 36.26                         | 46.00                           | -9.74          | Horizontal                           |
| 1000 to 6000                | 4804.300                                     | 52.56                         | 54.00                           | -1.44          | Horizontal                           |
| 6000 to 12000               | 11923.500                                    | 52.90                         | 54.00                           | -1.10          | Horizontal                           |
| 12000 to 18000              | 17713.600                                    | 51.11                         | 54.00                           | -2.89          | Horizontal                           |
| 18000 to 26500              | 26459.600                                    | 52.56                         | 54.00                           | -1.44          | Horizontal                           |





# 6. Measurement Data (continued)

## 6.6 Occupied Bandwidth (ANSI C63.10, Section 6.9.1 & IC RSS-GEN)

Requirement: The occupied bandwidth measurements on an intentional radiator shall be

made in accordance with the requirements outlined in ANSI C63.10-2009, Section 6.9.1. If no bandwidth requirement is specified by the procuring or regulatory agency, the bandwidth will be measured at -20 dB with respect

to the reference level.

Test Notes:

The span range for the SA display shall be between two times and five times the OBW. The nominal IF filter bandwidth (3 dB RBW) should be approximately 1% to 5% of the OBW, unless otherwise specified, depending on the applicable requirement. The dynamic range of the SA at the selected RBW shall be more than 10 dB below the target "dB down" (attenuation) requirement, i.e., if the requirement calls for measuring the – 20 dB OBW, the SA noise floor at the selected RBW shall be at least 30 dB below the largest measured value on the display.

| Frequency<br>(MHz) | -20 dB<br>Bandwidth<br>(MHz) |
|--------------------|------------------------------|
| 2402               | 1.595                        |
| 2440               | 1.347                        |
| 2480               | 1.361                        |

## 6.6.1. Occupied (-20 dB) Bandwidth, Channel 0







## 6. Measurement Data (continued)

# 6.6 Occupied Bandwidth (ANSI C63.4, Section 13.1.7 & IC RSS-GEN) (continued)

6.6.2. Occupied (-20 dB) Bandwidth, Channel 19



#### 6.6.3. Occupied (-20 dB) Bandwidth, Channel 39







## 6. Measurement Data (continued)

## 6.7. 99% Emission Bandwidth (IC RSS-GEN Section 4.6.1)

Requirement: When an occupied bandwidth value is not specified in the applicable

RSS, the transmitted signal bandwidth to be reported is to be its 99%

emission bandwidth, as calculated or measured.

**Test Notes:** 

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

| Frequency<br>(MHz) | Emission<br>Bandwidth<br>(MHz) |
|--------------------|--------------------------------|
| 2402               | 2.609                          |
| 2440               | 2.024                          |
| 2480               | 2.438                          |

#### 6.7.1. 99% Emission Bandwidth, Channel 0







## 6. Measurement Data (continued)

## 6.7. 99% Emission Bandwidth (IC RSS-GEN Section 4.6.1) (continued)

6.7.2. 99% Emission Bandwidth, Channel 19



#### 6.7.3. 99% Emission Bandwidth, Channel 39







## 7. Test Setup Photographs

7.1 Radiated Field Strength, Harmonics and Spurious Emissions >1 GHz, Front View







## 7. Test Setup Photographs

7.2. Radiated Field Strength, Harmonics and Spurious Emissions >1 GHz, Rear View (1 GHz to 18 GHz)







## 7. Test Setup Photographs

7.3. Radiated Field Strength, Harmonics and Spurious Emissions >1 GHz, Rear View (above 18 GHz)







## 7. Test Setup Photographs

7.4. Spurious Emissions <1 GHz, Front View







## 7. Test Setup Photographs

7.5. Spurious Emissions, Rear View (10 kHz to 30 MHz)







## 7. Test Setup Photographs

7.6. Spurious Emissions, Rear View (30 MHz to 1 GHz)







## 8. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC), Industry Canada, and Voluntary Control Council Interference (VCCI) standards. A description of the test sites is on file with the FCC (registration number 96392), Industry Canada (file number IC 3023A-1), and VCCI (Member number 3168), Registration numbers C-3673, G-167, R-3305 & T-1809.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.





# Appendix A

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.1. Spurious Radiated Emissions (10 kHz to 150 kHz) Measurement Results

A.1.1. Measurement Results - DUT Position: X-Axis, Parallel Antenna



A.1.2. Measurement Results - DUT Position: X-Axis, Perpendicular Antenna







## **Appendix A (continued)**

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.1. Spurious Radiated Emissions (10 kHz to 150 kHz) Measurement Results

A.1.3. Measurement Results – DUT Position: Y-Axis, Parallel Antenna



A.1.4. Measurement Results – DUT Position: Y- Axis, Perpendicular Antenna







## **Appendix A (continued)**

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.1. Spurious Radiated Emissions (10 kHz to 150 kHz) Measurement Results

A.1.5. Measurement Results - DUT Position: Z-Axis, Parallel Antenna



A.1.6. Measurement Results - DUT Position: Z-Axis, Perpendicular Antenna







# **Appendix A (continued)**

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Measurement Results

A.2.1. Measurement Results - DUT Position: X-Axis, Parallel Antenna



A.2.2. Measurement Results - DUT Position: X-Axis, Perpendicular Antenna







## 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Measurement Results

A.2.3. Measurement Results - DUT Position: Y-Axis, Parallel Antenna



A.2.4. Measurement Results - DUT Position: Y-Axis, Perpendicular Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.2. Spurious Radiated Emissions (150 kHz to 30 MHz) Measurement Results

A.2.5. Measurement Results - DUT Position: Z-Axis, Parallel Antenna



A.2.6. Measurement Results - DUT Position: Z-Axis, Perpendicular Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.3. Spurious Radiated Emissions (30 MHz to 1 GHz) Measurement Results

A.3.1. Measurement Results – DUT Position: X-Axis, Horizontal Antenna



A.3.2. Measurement Results - DUT Position: X-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.3. Spurious Radiated Emissions (30 MHz to 1 GHz) Measurement Results

A.3.3. Measurement Results - DUT Position: Y-Axis, Horizontal Antenna



A.3.4. Measurement Results - DUT Position: Y-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.3. Spurious Radiated Emissions (30 MHz to 1 GHz) Measurement Results

A.3.5. Measurement Results - DUT Position: Z-Axis, Horizontal Antenna



A.3.6. Measurement Results - DUT Position: Z-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.4. Spurious Radiated Emissions (1 GHz to 6 GHz) Measurement Results

A.4.1. Measurement Results – DUT Position: X-Axis, Horizontal Antenna



#### A.4.2. Measurement Results - DUT Position: X-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.4. Spurious Radiated Emissions (1 GHz to 6 GHz) Measurement Results

A.4.3. Measurement Results – DUT Position: Y-Axis, Horizontal Antenna



#### A.4.4. Measurement Results - DUT Position: Y-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.4. Spurious Radiated Emissions (1 GHz to 6 GHz) Measurement Results

A.4.5. Measurement Results - DUT Position: Z-Axis, Horizontal Antenna



#### A.4.6. Measurement Results - DUT Position: Z-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.5. Spurious Radiated Emissions (6 GHz to 12 GHz) Measurement Results

A.5.1. Measurement Results - DUT Position: X-Axis, Horizontal Antenna



#### A.5.2. Measurement Results - DUT Position: X-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.5. Spurious Radiated Emissions (6 GHz to 12 GHz) Measurement Results
A.5.3. Measurement Results – DUT Position: Y–Axis, Horizontal Antenna



A.5.4. Measurement Results - DUT Position: Y-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.5. Spurious Radiated Emissions (6 GHz to 12 GHz) Measurement Results
A.5.5. Measurement Results – DUT Position: Z–Axis, Horizontal Antenna



A.5.6. Measurement Results - DUT Position: Z-Axis, Vertical Antenna







## 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.6. Spurious Radiated Emissions (12 GHz to 18 GHz) Measurement Results

A.6.1. Measurement Results - DUT Position: X-Axis, Horizontal Antenna



#### A.6.2. Measurement Results - DUT Position: X-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.6. Spurious Radiated Emissions (12 GHz to 18 GHz) Measurement Results
A.6.3. Measurement Results – DUT Position: Y–Axis, Horizontal Antenna



A.6.4. Measurement Results - DUT Position: Y-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.6. Spurious Radiated Emissions (12 GHz to 18 GHz) Measurement Results
A.6.5. Measurement Results – DUT Position: Z–Axis, Horizontal Antenna



A.6.6. Measurement Results - DUT Position: Z-Axis, Vertical Antenna







## 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.7. Spurious Radiated Emissions (18 GHz to 26.5 GHz) Measurement Results

A.7.1. Measurement Results - DUT Position: X-Axis, Horizontal Antenna



A.7.2. Measurement Results - DUT Position: X-Axis, Vertical Antenna







## 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.7. Spurious Radiated Emissions (18 GHz to 26.5 GHz) Measurement Results
A.7.3. Measurement Results – DUT Position: Y–Axis, Horizontal Antenna



A.7.4. Measurement Results - DUT Position: Y-Axis, Vertical Antenna







# 6. Measurement Data (continued)

Spurious Radiated Emissions, 10 kHz to EUT 10<sup>th</sup> Harmonic (15.249, Section (d)), IC RSS-GEN (continued)

A.7. Spurious Radiated Emissions (18 GHz to 26.5 GHz) Measurement Results
A.7.5. Measurement Results – DUT Position: Z–Axis, Horizontal Antenna



A.7.6. Measurement Results - DUT Position: Z-Axis, Vertical Antenna

