

Introduction to Machine Learning [Fall 2022]

Diving Deeper into Gradients

October 18, 2022

Lerrel Pinto

Topics for today

- Fundamentals for gradients
- Gradients with high-dimensional inputs
- Examples of gradient descent

Recap: Derivatives

Recap: Derivatives

- Given: cost / loss/ objective function $f(\theta)$.
- Goal: find θ^* such that $f(\theta^*) = \min_{\theta} f(\theta)$.

- Given: cost / loss/ objective function $f(\theta)$.
- Goal: find θ^* such that $f(\theta^*) = \min_{\theta} f(\theta)$.
- Gradient descent solution:
 - Start from initial guess θ^0 and learning rate α
 - Update $\theta^{i+1} \leftarrow \theta^i \alpha \frac{df(\theta)}{d\theta}$
 - ullet Repeat until change in heta is small, or maximum number of steps reached.

- Given: cost / loss/ objective function $f(\theta)$.
- Goal: find θ^* such that $f(\theta^*) = \min_{\theta} f(\theta)$.
- Gradient descent solution:

- Start from initial guess θ^0 and learning rate α
- Update $\theta^{i+1} \leftarrow \theta^i \alpha \frac{df(\theta)}{d\theta}$
- ullet Repeat until change in heta is small, or maximum number of steps reached.

Credits: Charles Bordet

Credits: Charles Bordet

Interactive demo:

https://uclaacm.github.io/gradient-descent-visualiser/

What happens when number of dimensions is high?

What happens when number of dimensions is high?

What happens when number of dimensions is high?

$$f(x, y) = 9 - x^2 - y^2$$

$$f(x, y) = 9 - x^2 - c^2$$

$$f(x,y) = 9 - c^2 - y^2$$

$$\frac{\partial f(x,y)}{\partial x} = -2x$$

$$\frac{\partial f(x,y)}{\partial x} = -2x \qquad \qquad \frac{\partial f(x,y)}{\partial y} = -2y$$

Gradient vector:

$$\nabla f(x, y) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x})$$

$$\nabla f(x, y) = (-2x, -2y)$$

Gradient Descent Algorithm with multiple params

- Given: cost / loss/ objective function $f(\overrightarrow{\theta})$. Where $\overrightarrow{\theta} \in \mathbb{R}^d$.
- Goal: find $\overrightarrow{\theta}^*$ such that $f(\overrightarrow{\theta}^*) = \min_{\overrightarrow{\theta}} f(\overrightarrow{\theta})$.

Gradient Descent Algorithm with multiple params

- Given: cost / loss/ objective function $f(\overrightarrow{\theta})$. Where $\overrightarrow{\theta} \in \mathbb{R}^d$.
- Goal: find $\overrightarrow{\theta}^*$ such that $f(\overrightarrow{\theta}^*) = \min_{\overrightarrow{\theta}} f(\overrightarrow{\theta})$.
- Gradient descent solution:
 - Start from initial guess $\overrightarrow{\theta}^0$ and learning rate α
 - Update $\overrightarrow{\theta}^{i+1} \leftarrow \overrightarrow{\theta}^{i} \alpha \nabla f(\overrightarrow{\theta})$
 - ullet Repeat until change in heta is small, or maximum number of steps reached.

Credits: Lili Jiang

Credits: Lili Jiang

Credits: Wikimedia, Hoang Duong

Credits: Wikimedia, Hoang Duong

Credits: Wikimedia, Hoang Duong

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \mathbb{R}^1)$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.
- Goal: to find $\overrightarrow{w} \in \mathbb{R}^d$ such that $\langle \overrightarrow{w}, \overrightarrow{x} \rangle = y$
 - Minimize $||X^T\overrightarrow{w} Y||^2$
- Analytic Solution: $\overrightarrow{w} = (XX^T)^{-1}XY$

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \mathbb{R}^1)$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.
- Goal: to find $\overrightarrow{w} \in \mathbb{R}^d$ such that $\langle \overrightarrow{w}, \overrightarrow{x} \rangle = y$
 - Minimize $||X^T\overrightarrow{w} Y||^2$
- Loss function $f(\overrightarrow{w}) = ||X^{\mathsf{T}}\overrightarrow{w} Y||^2 = (X^{\mathsf{T}}\overrightarrow{w} Y)^{\mathsf{T}}(X^{\mathsf{T}}\overrightarrow{w} Y)$

• Loss function
$$f(\overrightarrow{w}) = ||X^{\mathsf{T}}\overrightarrow{w} - Y||^2 = (X^{\mathsf{T}}\overrightarrow{w} - Y)^{\mathsf{T}}(X^{\mathsf{T}}\overrightarrow{w} - Y)$$

• Set
$$f(\overrightarrow{w}) = \sum_{i=1}^{n} (x^i \cdot \overrightarrow{w} - y^i)^2$$

• Compute
$$\frac{\partial f}{\partial w_k} = \sum_{i=1}^n 2(\overrightarrow{w}^T x^i - y^i)x_k^i$$

• Compute
$$\nabla f = \left[\frac{\partial f}{\partial w_1}, \dots, \frac{\partial f}{\partial w_k}, \dots, \frac{\partial f}{\partial w_d}\right]$$

Use gradient descent

Credits: https://www.kdnuggets.com/

Credits: https://www.kdnuggets.com/

Credits: Tobias Roeschl

Credits: Tobias Roeschl

Gradient Descent Algorithm for Machine Learning

- Given: cost / loss/ objective function $f(\overrightarrow{\theta}, D)$. Where $\overrightarrow{\theta} \in \mathbb{R}^d$.
- Goal: find $\overrightarrow{\theta}^*$ such that $f(\overrightarrow{\theta}^*, D) = \min_{\overrightarrow{\theta}} f(\overrightarrow{\theta}, D)$.
- Gradient descent solution:
 - Start from initial guess $\overrightarrow{\theta}^0$ and learning rate α
 - Update $\overrightarrow{\theta}^{i+1} \leftarrow \overrightarrow{\theta}^{i} \alpha \nabla f(\overrightarrow{\theta}, D)$
 - ullet Repeat until change in heta is small, or maximum number of steps reached.

Key issue: Local minima

One solution: Stochastic Gradient Descent (SGD)

- Gradient descent solution:
 - Start from initial guess $\overrightarrow{\theta}^0$ and learning rate α
 - Update $\overrightarrow{\theta}^{i+1} \leftarrow \overrightarrow{\theta}^{i} \alpha \nabla f(\overrightarrow{\theta}, D)$
- SGD:
 - ullet Sample single or multiple datapoints $d \sim D$
 - Update $\overrightarrow{\theta}^{i+1} \leftarrow \overrightarrow{\theta}^{i} \alpha \nabla f(\overrightarrow{\theta}, d)$

One solution: Stochastic Gradient Descent (SGD)

Credits: Stanley Chan

Another solution: Momentum

$$v^{t+1} = \beta v^t + \alpha \nabla f(\overrightarrow{w})$$

$$\overrightarrow{\theta}^{t+1} \leftarrow \overrightarrow{\theta}^t - v^{t+1}$$

Another solution: Momentum

$$v^{t+1} = \beta v^t + \alpha \nabla f(\overrightarrow{w})$$

$$\overrightarrow{\theta}^{t+1} \leftarrow \overrightarrow{\theta}^t - v^{t+1}$$

More solutions have been proposed!

Credits: Alec Radford

More solutions have been proposed!

Credits: Alec Radford

Additional Reading

- Interactive tutorial: https://uclaacm.github.io/gradient-descent-visualiser/
- Book chapter: https://www.cs.utah.edu/~jeffp/IDABook/T6-GD.pdf
- SGD + variants: https://ruder.io/optimizing-gradient-descent

Questions?