Bringing Portraits to Life

- PDF link
- This is a SIGGRAPH Asia 2017 paper.
- Authors
 - Hadar Averbuch-Elor
 - Daniel Cohen-Or
 - Johannes Kopf
 - · Michael F. Cohen

Abstract

- Input
 - · A driving face video
 - A single target face image
- Output
 - The video of the person in the target image acting with the motion of the driving video.
- Technique
 - Animate by 2D warps that imitate the facial movement in the source video.
 - Add fine-scale dynamic details for creases and wrinkles.
 - Hallucinate the inner of the mouth.

Introduction

- The selling point of this paper is that it uses only a single target face image.
 - Previous papers assume a video or a collection of images of the target face.
- The paper uses "lightweight" 2D warps to transform face.
 - No construction of 3D model.
 - What is possible are only moderate facial movements.
 - I guess this means frontal to profile/side view transform.
 - Correspondences are established by facial landmarks.
 - There's a reliance on facial landmark detectors.
- Unique features.
 - Adding details such as wrinkles and creases.
 - Hallucinating hidden areas, especially the inside of the mouth.
- Novel application: reactive profiles
 - Think of the moving portraits from Harry Potter.

Previous Works

- Some previous papers that also use "lightweight" 2D morphs.
 - Perspective-aware Manipulation of Portrait Photos

- Manipulate camera viewpoint from a single image.
- Real-time facial reenactment.
- Data-driven enhancement of facial attractiveness
- Expression flow for 3D-aware face component transfer
- Papers that create use 3D models for creating animation from human photos.
 - A morphable model for the synthesis of 3D faces
 - The first paper that fits a morphable model to photo.
 - The model can then be manipulated to change pose and appearance.
 - Reanimating Faces in Images and Video
 - Fits model to photo and then manipulate the mouth region.
 - Automatic 3D Face Reconstruction from Single Images or Video
 - Automatic pipeline for fitting morphable model to a single image.
 - Automated 3D Face Reconstruction from Multiple Images using Quality Measures
 - This one uses multiple images.
 - It observes that, if one image is used, manual initialization is needed.
- Papers that require a target video as input.
 - Video Face Replacement
 - Face transfer with multilinear models
 - Edit 3D mesh of generated from the target video.
 - A Data-driven Approach for Facial Expression Synthesis in Video
 - Use facial performance database to generate output video.
 - Being John Malkovich
 - Uses image search for animation.
 - Only works if the target person has many images or videos to search from.
 - VDub: Modifying Face Video of Actors for Plausible Visual Alignment to a Dubbed Audio Track
 - Generating mouth movement from speech.
- Works that involve non-human avatars.
 - Real-time avatar animation from a single image
 - Local PDF
 - I should read and cite this paper.
 - Mood Swings: Expressive Speech Animation
 - Extract expression from video and transfer to avatar.
- Sophisticated capture methods
 - Real-Time High-Fidelity Facial Performance Capture
 - Real-Time Facial Segmentation and Performance Capture from RGB Input
- Some other cited papars.
 - Semantic Facial Expression Editing using Autoencoded Flow
 - FaceWarehouse: a 3D Facial Expression Database for Visual Computing
 - The Averbuch-Elor et al. paper says that this paper introduces videoto-image retargetting.

- Gaze Correction for Home Video Conferencing
- <u>DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation</u>
- <u>Data-Driven Speech Animation Synthesis Focusing on Realistic Inside of the Mouth</u>
- Automatic Cinemagraph Portraits
 - Remove camera shake and large movements to create relatively still moving portraits.
- Facial Expression Editing in Video Using a Temporally-Smooth Factorization
 - Exaggerating and attenuating expressions in some parts of a video.

Overview

- · The algorithm
 - 1. The paper first extracts landmarks in the source video and the target images.
 - There are two types of landmarks:
 - Face landmarks
 - Non-face landmarks → in order to animate the whole moving head
 - 2. After landmarks are extract, correspondences between source frames and target image are established.
 - A correspondence map is a vector field that tells that tells, for each pixel in the warped image, where in the original image should come from.
 - Hence, correspondence spans over the entire image, not just the face.
 - The paper expands correspondence from pairs of landmark positions to a vector field over the image.
 - When generating correspondence, the paper treat high-confidence regions (i.e., around face landmarks) differently from low-confidence regions (i.e., any other areas),
 - The paper also maintains correspondence over time.
 - 3. 2D warps are then generated from the correspondence and applied to the target image.
 - The output of this step is called the coarse target video.
 - 4. Hidden regions and fine-scale details are then added to the warped image.
 - Inner mouth region and wrinkles are transferred from the source video to the target video.

Coarse Target Video Generation

- Inputs
 - Target image t^* .
 - Driving video S.
 - The *i*th frame is called s_i .

- Output
 - A video T which maintains the identity of t^* but has the movement of S.
 - The ith frame is denoted by t_i .
- Assumptions
 - t^* has a neutral expression.
 - · Mouth is closed.
 - S has a frame s^* with neutral expression.
 - This is generally assumed to be the first frame s_0 , but this can be changed by manual choosing.
 - Since s_0 is defined in such a way, we shall assume that the 0th frame of the output video would be t^* itself. In other words, $t_0 = t^*$.
- The aligning transformation ϕ
 - t^* is not aligned to s^* .
 - So the paper generates a transformation ϕ that compensates for it.
 - This is done by first using <u>Dlib</u> to detect 68 facial landmarks in the two images.
 - The paper then finds a rotate-and-scale transformation (no translation?) that minimizes the square distance between the landmarks in the eye regions and the tip of the nose.
 - From reading the paper, it seems that ϕ aligns the s^* to t^* , not the other way around.
- For each source video frame and the target image, we extract landmarks.
 - Landmark positions are denoted by bold letter p.
 - p_i^s = landmarks in the *i*th source frame.
 - p_i^s = landmarks in the *i*th target frame (which is the output).
 - There are two types of landmarks.
 - Face landmarks = the 68 face landmarks computed by <u>Dlib</u>.
 - There's a paper for this if you want to cite it. Link
 - · Peripheral landmarks.
 - The points are obtained by two means.
 - Tracking points in the source video. The paper uses a simple optical flow tracking algorithm. <u>Link</u>
 - Points on the image boundary that do not move throughout the video.
 - Note that the method above only generate peripheral landmarks in the frames of S. It does not generate peripheral landmarks in t^{\ast}
 - To generate peripheral landmarks in t^* , the then hallucianate them by applying ϕ to the peripheral landmarks in a source target frame.
 - It is not clear whether ϕ is applied to \mathbf{p}_0^s or \mathbf{p}_i^s for each i separately.
 - IMHO, p₀^s makes more sense.

- The landmark positions in the target frame p_i^t are computed as follows.
 - We just previously discussed how to compute p_0^t , which are landmarks in the 0th frame.
 - For other frames, the paper computes:

$$\mathbf{p}_i^t = \mathbf{p}_0^t + \phi \cdot (\mathbf{p}_i^s - \mathbf{p}_0^s).$$

- $p_i^s p_0^s$ is the offset of the landmarks in the source frames relative to the neutral frame.
- · Dense warp field computation
 - The paper computes a Delaunay triangulation using p_0^s .
 - The topology can then be imposed on \mathbf{p}_0^t and \mathbf{p}_i^t for all i.
 - By moving the points from \mathbf{p}_0^t to \mathbf{p}_i^t and moving the pixels inside the triangles as if the pixels are texture mapped onto the triangles, we have created a piecewise linear warp field from the original target image $t_0 = t^*$ to the target frame t_i .
- · Confidence-based warping
 - The authors observed that the warping above works well only in the face region where the landmarks are reliable.
 - Outside the regions, weird things such as straight lines in the background might be warped incorrectly.
 - To alleviate this, the paper convolves the warp field with a blurring kernel whose radius increases away from the face region.
 - This blurs the warp field as we move away from the face region.
 - The paper uses blurring kernels with 10 radius values in the range $[0,0.05 \times S_{diag}]$ where S_{diag} is the size of the image diagonal.

Transferring Mouth Interior

- Algorithm
 - 1. The paper first aligns the frame s_i with t_i using the warping procedure in the previous section.
 - 2. Then, it crops the mouth interior region from the source frame.
 - 3. To make sure that the crop strictly involves the inside of the mouth, the paper erodes by radius $0.1 \times h_{mouth}$ where h_{mouth} is the height (in pixels) of the mouth in the target frame.
 - 4. The crop is then alpha blended into the target frame.
 - 5. Poisson blending is then applied to merge the crop to the target frame.
- The mouth interior is transferred only when the mouth size in s_i is significantly bigger than in t^* .
 - Let a_{mouth}^* be the area (in pixels) of the mouth interior in t^* .
 - Let a_{mouth}^i be the same for t_i .
 - ullet The mouth interior is transferred only when $a_{mouth}^i>2a_{mouth}^*$.

• To make the change smooth, the paper linearly blends between the two mouths when the size is in the range $[a_{mouth}^*, 2a_{mouth}^*]$.

Transferring Fine-Scale Details

- The fine details considered include:
 - Shading changes included by wrinkles around the eyes when smiling.
 - Creases alongside a smiling mouth.
- The transfer is based on the technique by Liu et al. [2001]
 - The paper deals with transferring appearance changes due to a change in a person's expression.
 - We have a neural face of a person in an image I_a .
 - To change the person's expression, we warp the face to obtain another image I_b with the facial parts in the right positions.
 - However, geometric warping does not include the fine-detail changes above.
 - We then need another image \tilde{I}_{a_l} which will donate the appearance to I_b .
 - We first warp \tilde{I}_a so that it aligns with I_a .
 - Then, we compute the expression ratio image (ERI):

$$R=rac{f({ ilde I}_a)}{f(I_a)}$$

where f is some generic function such as computing the luminance channel.

• The warped image I_b is then transformed to \tilde{I}_b according to

$${ ilde I}_b=R imes I_b.$$

Here, R has been warped so that it now aligns with I_b .

- In the context of the Averbuch-Elor et al. paper, we have that:
 - The neural source frame s is I_a .
 - The frame s_i is the image \tilde{I}_{a_i} which would donate the appearance.
 - The target frame t_i is the warped image I_b .
- The authors observed that applying the ERI everywhere causes the following problems.
 - 1. Certain areas of the resulting image may become saturated.
 - 2. The resulting image can include outliers.
 - Inappropriate shadowing caused by the nose or other misalignments.
 - 3. Temporal instability.
 - 4. Artifacts may appear in the eye or the background.
- The authors then discusses how to deal with these problems.
 - 1. For the saturation problem, they tune down pixels with R>1 by multiplying it with a constant factor of 0.01.
 - 2. For the artifact problems outside the face, the paper estimate the face region and only apply the ERI there. The region is estimated by the following

two-step process.

- Fitting an ellipse to the points along the chin.
- Use the ellipse as an initial estimate for the Grab-Cut optimization to find a more accurate face region.
- 3. For the outlier problem, the paper detects and removes them.
 - The paper does not perform outlier detection for each frame separately.
 - Instead, it performs outlier detection in a reference frame s_{ref} , which is the most different from the neutral frame s^* .
 - To find the reference frame, the paper computer computes a transformation ϕ_i (consisting of a scale, a rotation, and perhaps a translation) that minimizes the distance between $\phi_i(\mathbf{p}_i^s)$ and \mathbf{p}_0^s .
 - The paper then computes the L2 difference between $\phi_i(\mathbf{p}_i^s)$ and \mathbf{p}_0^s .
 - The reference frame is the frame where the L2 difference above is maximum.
 - Once the reference frame has been determined, the paper detects outliers in it.
 - The paper first identify pixels with significant expression ratio values.
 - Significant values are those that are less than 1/1.1 and more than 1.1.
 - The paper would then find connected components of these significant pixels (based on the 8 neighbors of each pixel).
 - For each pixel in the component:
 - The algorithm considers the 20×20 region around it.
 - For each pixel in this region, it considers the 3×3 neighborhood of each pixel and compute the maximum RGB pixel difference in the neighborhood.
 - Then, it computes the minimum of the maxima above in the 20×20 region.
 - With the above step, we have a minimum of maximum RGB pixel difference at each pixel in the component.
 - The algorithm then finds the average of the minima over the component.
 - If the average of the minima is less than 5, then the algorithm considers the component an outlier.
 - The footprints of the outlier components are then propagated to the other frames in the output video.
 - For the pixels close enough to the outlier component footprints (within 20 pixels radius), the ERI is set to 1, nullifying the expression ratio's effects.

- To increase the temporal stability of the ERI, the paper Gaussian blurs the aligned ERIs temporally over 21 frames.
- This is a convoluted and poorly described algorithm.