RETAIL STORE STOCK INVENTORY ANALYTICS

NALAIYA THIRAN PROJECT REPORT

IBM-Project-15021-1659593378

TEAM ID: PNT2022TMID08352

Submitted by

PRAVEENKUMAR A	(810419104088)
NAVANEETHAKRISHNAN S	(810419104068)
RAHUL G	(810419104092)
SARAVANAN G	(810419104099)

in partial fulfillment for the award of the degree

of

BATCHELOR OF ENGINNERING
IN
COMPUTER SCIENCE AND ENGINEERING

DHANALAKSHMI SRINIVASAN ENGINEERING COLLEGE (AUTONOMOUS) PERAMBALUR 621212

TABLE OF CONTENTS

1.	INTRODUCTION 1
	Project Overview
	Purpose
2.	LITERATURE SURVEY 1
	Existing problem
	References
	Problem Statement Definition
3.	IDEATION & PROPOSED SOLUTION4
	Empathy Map Canvas
	Ideation & Brainstorming
	Proposed Solution
	Problem Solution fit
4.	REQUIREMENT ANALYSIS 11
	Functional requirement
	Non-Functional requirements
5 .	PROJECT DESIGN 13
	Data Flow Diagrams
	Solution & Technical Architecture
	User Stories
6.	PROJECT PLANNING & SCHEDULING13
	Sprint Planning & Estimation
	Sprint Delivery Schedule
	Reports from JIRA
7.	CODING & SCREENSHOT17
8.	TESTING36
	Test Cases
	User Acceptance Testing
0	
7.	RESULTS38
	Performance Metrics
10	. ADVANTAGES & DISADVANTAGES39

11.	CONCLUSION	39
12.	FUTURE SCOPE	39
13.	APPENDIX	40
	Source Code	
	GitHub & Project Demo Link	

1. INTRODUCTION

Project Overview:

Project is based on Retail Store Stock Inventory analytics which is used to supply the stocks for shops based on their needs .By managing inventory, retailers meet customer demand without running out of stock or carrying excess supply.

Inventory management is vital for retailers because the practice helps themincrease profits. They are more likely to have enough inventory to capture every possible sale while avoiding overstock and minimizing expenses.

Purpose:

Purpose of retail store stock analysis is to find the necessary stock required for to supply customer when there are in need of , the shop holder view the stock, price and sale in form dashboard, report and story in webpage which helps them to track regularly the status of their stock availability.

It helps in managing the current stock levels, ordered items and products as well as ones already sold. It provides a constant supply of products to fulfill customer demand. It allows customer retention. Customers convertinto loyal customers by handling stock levels.

2. LITERATURE SURVEY

Existing problem:

Existing system consist of methods using ABC Analysis and Min-Max Analysis. In the Data Mart, the search for goods classes per sub category is carried out using the ABC Analysis calculation method. Furthermore, in the Data Mart, the search for maximum and minimum stock values is based on the Min-Max Analysis calculation method. The resulting maximum and minimum grade and stock values are then implemented into the goods

data table in the retail management information system database. The laststage is to arrange the order amount that is allowed in the order module in the retail management information system. Rules that are made based on the class of goods along with the minimum and maximum stock values.

References:

The following are the references used:

- [1] H S Sugiarto and H T Saksono 2016 Scheduling System on Goods Order At PT XYZ Using Economic Order Quantity Method The Third International Conference on Entrepreneurship.
- [2] K E Fu and P Apichotwasurat 2013 Application of Economic Order Quantity on Production Scheduling and Control System for a Small Company. Proceedings of the Institute of Industrial Engineers Asian Conference 2013.
- [3] M Rusănescu 2014 Abc Analysis , Model for Classifying Inventory HIDRAULICA.
- [4] D Dhoka and Y L Choudary 2013 ABC Classification for Inventory Optimization IOSR J Bus Manage.
- [5] Funaki, K..., "Strategies safety stock placement in supply chain design with due-date based demand," International Journal of Production Economics, vol. 135, pp 4-13, 2012. [6] Grewal, CS, Enns, ST, and Rogers, P., "Dynamic reorder point replenishment strategies for a capacitated supply chain with seasonal demand," Computer, and industrial engineering, vol.
- .80, pp 97-110, 2015.
- [7] Indrajit, RE, and Djokopranoto, R., "General merchandise and inventory management of spare parts for maintenance, repair and operation", Yogyakarta: Grasindo, 2014.
- [8] Mebarki, N. and Shahzad, A., "Correlation among tardiness based

measures for priority scheduling using dispatching rules" Month, pp 1-14, 2012.

Problem Statement Definition:

The shop holder sell the product as requested by the consumer at the time when the stock is not available it will reduce customer satisfaction and it is also a loss for the seller.

In order to overcome this drawback we using visualization to represent stocks availability and sale. Therefore quality and quantity of product can be delivered without any demand.

Problem	I am	I'm trying	But	Because	Which makes me
Statement	(Customer)	to			feel
(PS)					
PS-1	A Shopaholic	Buy my	Most of	But the	Unsatisfied
		favourite	the	demand for	
		products	products	the product	
			are not	is high	
			available		
			in store		
PS-2	A Foodie	Buy my	It is not	It is	Frustrated
		favourite	available	imported	
		chocolate	in any	chocolates	
			stores		

Problem Statement-1:

Problem Statement-2:

3. IDEATION & PROPOSED SOLUTION

Empathy Map Canvas:

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. Much like a user persona, an empathy map can represent a group of users, such as a customer segment.

An Empathy Map consists of four quadrants. The four quadrants reflect four key traits, which the user demonstrated/possessed during the observation/research stage. The four quadrants refer to what the user:

Said, Did, Thought, and Felt. It's fairly easy to determine what the user saidand did.

Ideation & Brainstorming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Proposed Solution:

Proposed Solution means the technical solution to be provided by the Implementation agency in response to the requirements and the objectives of the Project.

The main goal of presenting a business proposal is to provide solution to a problem faced by a potential buyer. This section should be as comprehensive as possible, and able to address all the needs that you have pointed in the first section.

S.No.	Parameter	Description
1.	Problem Statement	Customers gets disappointed
	(Problem to be solved)	when the store does not meets
		the satisfaction level of them.
2.	Idea / Solution description	Using dashboard it would
		become easy for the store to keep
		a track on their stock, sothat they
		can meet customer's
		satisfaction level.
3.	Novelty / Uniqueness	Expiry alert of the product will be
3.	Novelty / Offiqueness	1
		given.
4.	Social Impact / Customer	Quality and Quantity of the
	Satisfaction	product can maintained to the best,
		and customer's will have a heart
		full feeling while leaving
		the store.
5.	Business Model (Revenue	Using this method the companywill
	Model)	have reputed customers and stocks
		will be delivered on time, so there is
		no need of last
		minute hassle.
		IIIIIIIIIII

Team Id: PNT2022TMID083	352
-------------------------	-----

6.	Scalability of the Solution	When your inventory is hard to
		identify or locate in the warehouse,
		it leads to incomplete, inaccurate or
		delayed shipments. Receiving and
		finding the right stock is vital to
		efficient warehouse operations and
		provides a
		positive customer experiences.

Problem Solution fit:

Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for itactually solves the customer's problem. The Problem-Solution Fit is an important step towards the Product-Market Fit, but often an underestimated one.

Problem-Solution canvas is a tool for entrepreneurs, marketers and corporate innovators, which helps them identify solutions with higher chances for solution adoption, reduce time spent on solution testing andget a better overview of current situation.

4. REQUIREMENT ANALYSIS

Functional requirement:

Functional requirements may involve calculations, technical details, data manipulation and processing, and other specific functionality that define what a system is supposed to accomplish. Behavioral requirements describe all the cases where the system uses the functional requirements, these are captured in use cases.

Functional requirements drive the application architecture of a system, while non-functional requirements drive the technical architecture of a system.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Registration	Registration through webpage
FR-2	User Login	Login through webpage
FR-3	User Stock List	View in the webpage
FR-4	Sales List	View in the webpage
FR-5	Revenue Detail	View in the webpage

Non-Functional requirements:

Non-functional requirements are often mistakenly called the "quality attributes" of a system, however there is a distinction between the two. Non-functional requirements are the criteria for evaluating how a software system should perform and a software system must have certain quality attributes in order to meet non-functional requirements.

FR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	Clear view about Stock Details
		which provides benefit to the
	Y	users.
NFR-2	Security	Only authorized users can log in toview
		that provide security to the
		users.

NFR-3	Reliability	Information about one store
		cannot be viewed by the other

		store users.	
NFR-4	Performance	Available and required amount of stock can be viewed in dashboard by visualization hence the user can make decision according to it.	
NFR-5	Availability	Visualization shows the stock availability and the products which need to be refilled can be viewed that prevent user from last minute shortage.	
NFR-6	Scalability	Product expiry date can be viewed which helps the user to sell those product in prior that provides benefits to the shop owner.	

5. PROJECT DESIGN

Data Flow Diagrams:

A data-flow diagram is a way of representing a flow of data through a process or a system. The DFD also provides information about the outputs and inputs of each entity and the process itself. A data-flow diagram has no control flow — there are no decision rules and no loops.

FIRST LEVEL DATA FLOW DIAGRAM

Solution & Technical Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Technical Architecture (TA) is a form of IT architecture that is used to design computer systems. It involves the development of a technical blueprint with regard to the arrangement, interaction, and interdependence of all elements so that system-relevant requirements are met.

User Stories:

Team Id: PNT2022TMID08352

A user story is an informal, general explanation of a software featurewritten from the perspective of the end user or customer. The purpose of a user story is to articulate how a piece of work will deliver a particular valueback to the customer. In software development and product management, a user story is an informal, natural language description of features of a software system.

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	Medium	Suchitra Ramaraj, Ragavi.S
Sprint-1	Login	USN-2	As a user, I can log into the application by entering username& password.	2	Medium	Varshetha.M, Sharon Shamitha.S
Sprint-2	Data Upload	USN-3	As a user, I can upload my data so that I can have a visual representation of it.	1	Low	Ragavi.S
Sprint-2	Dashboard Creation	USN-4	As a user, I can view the visual representation Of my data in dashboard.	3	High	Rathnaa.S, Suchitra Ramaraj
Sprint-3	Report Creation	USN-5	As a user, I can view the visual representation Of my data in report.	3	High	Varshetha.M, Sharon Shamitha.S
Sprint-4	Story Creation	USN-6	As a user, I can view the visual representation Of my data in story.	3	High	Ragavi.S, Rathnaa.S

6. PROJECT PLANNING & SCHEDULING

Sprint Planning & Estimation:

In Scrum Projects, Estimation is done by the entire team during Sprint Planning Meeting. The objective of the Estimation would be to consider the User Stories for the Sprint by Priority and by the Ability of the team to deliver during the Time Box of the Sprint.

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	30 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	06 Nov 2022	20	06 Nov 2022
Sprint-3	20	6 Days	06 Nov 2022	13 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Sprint Delivery Schedule:

In Scrum project sprint delivery schedule is used to estimate when sprint has started and delivery date of the sprint. Due to estimation of the sprint delivery schedule it helps the developer to complete their project within the estimated time.

Reports from JIRA:

The reports in jira has been denoted below:

BACKLOG:

Backlog is usually a list of issues describing what your team is going to do on a project. It's a convenient place for creating, storing, and managing several kinds of issues: issues that you're currently working on (you can also see them on the board and in the current sprint if you're using a Scrumproject).

7. CODING & SCREENSHOT

Code:

```
from flask import Flask, render template, flash, request, session, send file
from flask import render template, redirect, url for, request
import datetime
import mysql.connector
import sys
app = Flask( name
app.config['DEBUG']
app.config['SECRET KEY'] = '7d441f27d441f27567d441f2b6176a'
(a)app.route("/")
def homepage():
  import os, shutil
  folder = 'static/plott'
 for filename in os.listdir(folder):
     file path = os.path.join(folder, filename)
     try:
       if os.path.isfile(file path) or os.path.islink(file path):
          os.unlink(file path)
       elif os.path.isdir(file path):
         shutil.rmtree(file path)
```

```
except Exception as e:
       print('Failed to delete %s. Reason: %s' % (file path, e))
  return render template('index.html')
@app.route("/ViewData")
def ViewData():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  cur = conn.cursor()
  cur.execute("SELECT * FROM salestb ")
  data = cur.fetchall()
 return render template('ViewData.html',data=data)
(@app.route("/excelpost", methods=['GET', 'POST'])
def uploadassign():
  if request.method == 'POST':
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
     cursor = conn.cursor()
    cursor.execute("truncate table salestb")
     conn.commit()
     conn.close()
    file = request.files['fileupload']
     file extension = file.filename.split('.')[1]
     print(file extension)
    #file.save("static/upload/" + secure filename(file.filename))
     import pandas as pd
     import matplotlib.pyplot as plt
     df = "
    if file extension == 'xlsx':
       df = pd.read excel(file.read(), engine='openpyxl')
     elif file extension == 'xls':
       df = pd.read excel(file.read())
     elif file extension == 'csv':
       df = pd.read csv(file)
     print(df)
     print("Preprocessing Completed")
     print(df)
     conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     cursor = conn.cursor()
     for row in df.itertuples():
```

```
cursor.execute(" INSERT INTO salestb VALUES (""+ row.Month +"",""+
row.Customer+"',""+ row.Period +"",""+row.Product +"",""+ row.Location +"",""+
row.SalesRep +"',""+ row.Supplier+"',""+ row.WarehouseLocations +"',""+ str(row.Actual) +
"",""+str(row.CSales)+"",""+ str(row.InventoryStock)+"",""+ str(row.LSales)+"",""+
str(row.MSales) +"",""+str(row.NumberofRecords) + "",""+str(row.ReceivedInventory) +"",""+
str(row.RepSales) +"',""+str(row.Target) +"' )")
    conn.commit()
    conn.close()
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
    cur = conn.cursor()
    cur.execute("SELECT * FROM salestb ")
    data = cur.fetchall()
    return render template('ViewData.html', data=data)
@app.route("/Customer")
def Customer():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
    "SELECT distinct Customer FROM salestb")
  customer = cur.fetchall()
  #print(coorname)
  return render template ('Customer.html', customer=customer)
@app.route("/csearch", methods=['GET', 'POST'])
def csearch():
  if request.method == 'POST':
    cname = request.form['Customer']
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    mycursor = conn.cursor()
    # Feething Data From mysql to my python progame
    mycursor.execute("select Month, sum(CSales) as CSales from salestb where
```

```
Customer=""+ cname +"" group by Month")
     result = mycursor.fetchall
     Month = []
    CSales = []
     Month.clear()
     CSales.clear()
     for i in mycursor:
      Month.append(i[0])
       CSales.append(i[1])
     print("Month = ", Month)
     print("Total Sales = ", CSales)
     # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
    plt.bar(Month, CSales, color=['black', 'red', 'green', 'blue', 'cyan'])
    \#plt.ylim(0, 5)
     ax = plt.gca()
    plt.draw()
    ax.tick params(axis='x', rotation=70)
     plt.xlabel("Month",fontsize=5)
    plt.ylabel("Total Sales")
    plt.title("Customer Sales")
     import random
     n = random.randint(1111, 9999)
     plt.savefig('static/plott/' + str(n) + '.jpg')
    iimg = 'static/plott/' +str(n)+ 'jpg'
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Customer=""+ cname +"" ")
     data = cur.fetchall()
     conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
     # cursor = conn.cursor()
    cur = conn.cursor()
     cur.execute(
       "SELECT distinct Customer FROM salestb")
    customer = cur.fetchall()
     return render template('Customer.html', data=data,dataimg=iimg,customer=customer)
(a)app.route("/Location")
```

```
def Location():
 conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
     "SELECT distinct Location FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('Location.html', locat=location)
@app.route("/lsearch", methods=['GET', 'POST'])
def lsearch():
  if request.method == 'POST':
    lllocation = request.form['loc']
    import matplotlib.pyplot as plt
     import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     mycursor = conn.cursor()
    mycursor.execute("select Month, sum(MSales) as MSales from salestb where
Location=""+ Illocation +"" group by Month")
    result = mycursor.fetchall
     Month = []
    MSales = []
    Month.clear()
    MSales.clear()
     for i in mycursor:
       Month.append(i[0])
       MSales.append(i[1])
     print("Month = ", Month)
     print("Total Sales = ", MSales)
    # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
     plt.bar(Month, MSales, color=['yellow', 'red', 'green', 'blue', 'cyan'])
    \#plt.ylim(0, 5)
     ax = plt.gca()
    plt.draw()
     ax.tick params(axis='x', rotation=70)
     plt.xlabel("Month")
     plt.ylabel("Total Sales")
```

```
plt.title("Sales By Location")
    import random
    n = random.randint(1111, 9999)
     plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Location=""+ Illocation +"" "
     data = cur.fetchall()
     conn = mysql.connector.connect(user='root', password='', host='localhost'
database='1Medicalddb')
    # cursor = conn.cursor()
    cur = conn.cursor()
    cur.execute(
       "SELECT distinct location FROM salestb")
    locati = cur.fetchall()
    return render template('Location.html', data=data, dataimg=iimg, locat=locati)
@app.route("/Sales")
def Sales():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
     "SELECT distinct Month FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('Sales.html', mon=location)
@app.route("/salsearch", methods=['GET', 'POST'])
def salsearch():
  if request.method == 'POST':
     month = request.form['loc']
    import matplotlib.pyplot as plt
     import matplotlib
     matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     mycursor = conn.cursor()
     mycursor.execute("select Product, sum(RepSales) as MSales from salestb group by
Product")
```

```
result = mycursor.fetchall
     Month = []
    MSales = []
     Month.clear()
    MSales.clear()
     for i in mycursor:
       Month.append(i[0])
       MSales.append(i[1])
     print("Month = ", Month)
     print("Total Sales = ", MSales)
    # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
    plt.bar(Month, MSales, color=['yellow', 'red', 'green', 'blue', 'cyan'])
    \#plt.ylim(0, 5)
    ax = plt.gca()
     plt.draw()
    ax.tick params(axis='x', rotation=70)
    plt.xlabel("Product")
    plt.ylabel("Total Sales")
    plt.title("Sales By Product")
    import random
    n = random.randint(1111, 9999)
    plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
     cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Month=""+ month +"" ")
     data = cur.fetchall()
     conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     # cursor = conn.cursor()
    cur = conn.cursor()
     cur.execute(
       "SELECT distinct Month FROM salestb")
     locati = cur.fetchall()
    return render template('Sales.html', data=data, dataimg=iimg, mon=locati)
@app.route("/SupplierInventory")
def SupplierInventory():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
```

```
# cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
     "SELECT distinct Supplier FROM salestb")
  customer = cur.fetchall()
  #print(coorname)
  return render template('SupplierInventory.html', sup=customer)
@app.route("/supsearch", methods=['GET', 'POST'])
def supsearch():
  if request.method == 'POST':
    cname = request.form['sup']
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    mycursor = conn.cursor()
    # Feething Data From mysql to my python progame
     mycursor.execute("select Month, sum(InventoryStock) as InventoryStock from salestb
where Supplier="+ cname +" group by Month")
    result = mycursor.fetchall
    Month = []
    CSales = []
    Month.clear()
     CSales.clear()
     for i in mycursor:
       Month.append(i[0])
       CSales.append(i[1])
     print("Month = ", Month)
    print("Total Sales = ", CSales)
    # Visulizing Data using Matplotlib
    plt.figure(figsize=(12, 10))
    plt.bar(Month, CSales, color=['black', 'red', 'green', 'blue', 'cyan'])
     \#plt.ylim(0, 5)
     ax = plt.gca()
     plt.draw()
     ax.tick params(axis='x', rotation=70)
     plt.xlabel("Month")
    plt.ylabel("Inventory Stock")
     plt.title("Inventory")
```

```
import random
    n = random.randint(1111, 9999)
    plt.savefig('static/plott/' + str(n) + '.jpg')
    iimg = 'static/plott/' +str(n)+ '.jpg'
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Supplier=""+ cname +"" ")
    data = cur.fetchall()
    conn = mysql.connector.connect(user='root', password='', host='localhost'
database='1Medicalddb')
    # cursor = conn.cursor()
    cur = conn.cursor()
    cur.execute(
       "SELECT distinct Supplier FROM salestb")
    customer = cur.fetchall()
    return render template('SupplierInventory.html',
data=data,dataimg=iimg,sup=customer)
@app.route("/Inventory")
def Inventorv():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
    "SELECT distinct Month FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('Inventory.html', mon=location)
@app.route("/insearch", methods=['GET', 'POST'])
def insearch():
  if request.method == 'POST':
    month = request.form['loc']
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    mycursor = conn.cursor()
    mycursor.execute("select Product, sum(InventoryStock) as InventoryStock from salestb
where Month=""+ month +"" group by Product")
```

```
result = mycursor.fetchall
     Month = []
     MSales = []
     Month.clear()
    MSales.clear()
     for i in mycursor:
       Month.append(i[0])
       MSales.append(i[1])
     print("Month = ", Month)
     print("Total Sales = ", MSales)
    # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
    plt.bar(Month, MSales, color=['yellow', 'red', 'green', 'blue', 'cyan'])
     \#plt.ylim(0, 5)
    ax = plt.gca()
     plt.draw()
     ax.tick params(axis='x', rotation=70)
    plt.xlabel("Product")
    plt.ylabel("Inventory Stock")
    plt.title(" Inventory")
    import random
    n = random.randint(1111, 9999)
    plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Month=""+ month +"" ")
     data = cur.fetchall()
     conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     # cursor = conn.cursor()
    cur = conn.cursor()
     cur.execute(
       "SELECT distinct Month FROM salestb")
     locati = cur.fetchall()
    return render template('Inventory.html', data=data, dataimg=iimg, mon=locati)
@app.route("/SalesTrend")
def SalesTrend():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
```

```
# cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
     "SELECT distinct Month FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('SalesTrend.html', mon=location)
@app.route("/stsearch", methods=['GET', 'POST'])
def stsearch():
  if request.method == 'POST':
     month = request.form['loc']
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
     mycursor = conn.cursor()
    mycursor.execute("select Product, sum(Actual) as Actual from salestb where
Month=""+ month +"" group by Product order by Actual DESC")
    result = mycursor.fetchall
     Month = []
    MSales = []
    Month.clear()
     MSales.clear()
     for i in mycursor:
       Month.append(i[0])
       MSales.append(i[1])
     print("Month = ", Month)
    print("Total Sales = ", MSales)
    # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
    plt.bar(Month, MSales, color=['yellow', 'red', 'green', 'blue', 'cyan'])
     \#plt.ylim(0, 5)
    ax = plt.gca()
     plt.draw()
    ax.tick params(axis='x', rotation=70)
    plt.xlabel("Product")
    plt.ylabel("Total Sales")
    plt.title("Sales Trend")
     import random
    n = random.randint(1111, 9999)
```

```
plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Month=""+ month +"" ")
    data = cur.fetchall()
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
    # cursor = conn.cursor()
    cur = conn.cursor()
    cur.execute(
       "SELECT distinct Month FROM salestb")
    locati = cur.fetchall()
    return render template('SalesTrend.html', data=data, dataimg=iimg, mon=locati)
@app.route("/MonthlySales")
def MonthlySales():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
  cur.execute(
    "SELECT distinct Month FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('MonthlySales.html', mon=location)
@app.route("/msearch", methods=['GET', 'POST'])
def msearch():
  if request.method == 'POST':
    month = request.form['loc']
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    mvcursor = conn.cursor()
    mycursor.execute("select Product, sum(MSales) as MSales from salestb where
Month=""+ month +"" group by Product ")
    result = mycursor.fetchall
    Month = []
```

```
MSales = []
    Month.clear()
     MSales.clear()
     for i in mycursor:
       Month.append(i[0])
       MSales.append(i[1])
    print("Month = ", Month)
    print("Total Sales = ", MSales)
    # Visulizing Data using Matplotlib
     plt.figure(figsize=(12, 10))
    plt.bar(Month, MSales, color=['yellow', 'red', 'green', 'blue', 'cyan']
     \#plt.ylim(0, 5)
     ax = plt.gca()
    plt.draw()
    ax.tick params(axis='x', rotation=70)
     plt.xlabel("Product")
    plt.ylabel("Total Sales")
    plt.title("Monthly Sales")
     import random
     n = random.randint(1111, 9999)
    plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
    cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Month=""+ month +"" ")
     data = cur.fetchall()
     conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
    # cursor = conn.cursor()
    cur = conn.cursor()
     cur.execute(
       "SELECT distinct Month FROM salestb")
    locati = cur.fetchall()
     return render template('MonthlySales.html', data=data, dataimg=iimg, mon=locati)
@app.route("/InventorybyMonth")
def InventorvbvMonth():
  conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
  # cursor = conn.cursor()
  cur = conn.cursor()
```

```
cur.execute(
     "SELECT distinct Month FROM salestb")
  location = cur.fetchall()
  #print(coorname)
  return render template('InventorybyMonth.html', mon=location)
@app.route("/insalsearch", methods=['GET', 'POST'])
def insalsearch():
  if request.method == 'POST':
    month = request.form['loc']
    import matplotlib.pyplot as plt
    import matplotlib
     import numpy as np
     matplotlib.use('Agg')
    conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
     mycursor = conn.cursor()
    mycursor.execute("select Product, sum(Actual) as Actual, sum(ReceivedInventory) as
ReceivedInventory from salestb where Month=""+ month +"" group by Product ")
     result = mycursor.fetchall
     Month = []
     Actual = []
     inven = []
    Month.clear()
     Actual.clear()
     inven.clear()
     for i in mycursor:
       Month.append(i[0])
       Actual.append(i[1])
       inven.append(i[2])
       # Visulizing Data using Matplotlib
     #labels = ['G1', 'G2', 'G3', 'G4', 'G5']
     #men means = [20, 34, 30, 35, 27]
     #women means = [25, 32, 34, 20, 25]
     plt.figure(figsize=(12, 10))
     x = np.arange(len(Month)) # the label locations
     width = 0.35 # the width of the bars
     fig, ax = plt.subplots()
    rects 1 = ax.bar(x - width / 2, Actual, width, label='Actual')
    rects2 = ax.bar(x + width / 2, inven, width, label='inven')
    # Add some text for labels, title and custom x-axis tick labels, etc.
    ax.set ylabel('Count')
```

```
ax.set title(' Actual and Received Inventory by Month')
     ax.set xticks(x, Month, fontsize=8)
     ax.tick params(axis='x', rotation=70)
    ax.legend()
     ax.bar label(rects1, padding=3)
     ax.bar label(rects2, padding=3)
    fig.tight layout()
    #@plt.show()
    import random
    n = random.randint(1111, 9999)
    plt.savefig('static/plott/'+str(n)+'.jpg')
    iimg = 'static/plott/'+str(n)+'.jpg'
     conn = mysql.connector.connect(user='root', password=", host='localhost',
database='1Medicalddb')
    cur = conn.cursor()
    cur.execute("SELECT * FROM salestb where Month=""+ month +"" ")
    data = cur.fetchall()
    conn = mysql.connector.connect(user='root', password='', host='localhost',
database='1Medicalddb')
    # cursor = conn.cursor()
     cur = conn.cursor()
```

SCREENSHOTS

8. TESTING

Team Id: PNT2022TMID08352

Test Case:

- Verifies whether the user can login if he/she was an registered user.
- Verifies whether an unregistered user cannot proceed with the login.
- Verifies whether an unregistered user can successfully register as anuser.
- Verifies whether an register user cannot register them self as an newuser.
- Verifies whether an alert message popsup when an unregistered user tries to login.
- Verifies whether an alert message popsup when an registered user tries to register again.
- Verifies whether an alert message popsup when an registered user enters his/her username or password incorrect.
- Verifies whether an alert message popsup when an new user registers.
- Verifies whether all UI button(signup,login now,logout,report,story,user dashboard) works efficiently.
- Verifies whether username popsup on the welcome note.

Test case ID	Feature Type	Compo	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Sta tes	Commets	TC for Automation(Y/N	BU G ID	Executed By
Testcase_1	Functional	Login Page	Verifies whether the user can login if he/she was an registered user	Checks whether the logged in username is registered in backend.	1.Enter your username 2.Enter your password 3.click signin button	username: Nalayia Thrian passwoediabod	Homepage should display	Working as expected	Pass				user
Testcase_2	Functional	Login Page	Verifies whether an unregistered user cannot proceed with the login.	Checks whether the logged in username is not registered in backend.	1.Enter your username 2.Enter your password 3.click signin button	username:nalayathrian password:1234	Homepage will not display	Working as expected	pass			1/4	user
testcase_3	Functional	register page	Verifies whether an unregistered user can successfully register as an user.	The details given by the user is stored in backend	1.Enter your username 2.Enter your email 3.Enter your password 4.Enter your confirm password 5.Click on signup button	Enter your data	User will be able to access to login page	working as expected	pass			- K	user
testcase_4	Functional	Register page	Verifies whether an register user cannot register themself as an new user.	checks whether the user name is present in the database.	1.Enter your username 2.Enter your email 3.Enter your password 4.Enter your confirm password 5.Olick on signup button	username:Nalayia Thrian password:abcd	User will not be able to access to login page	working as expected	pass				user
Testcase_5	Functional	Login page	Verifies whether an alert message popsup when an unregistered user tries to login		1.Enter your username 2.Enter your password 3.click signin button	username:raja password:abcd	message should display	Working as expected	Pass				user

Testcase_6	Functional	Register page	Verifies whether an alert message popsup when an registered user tries to register again.	checks whether the user name is present in the database.		Username:Nalayia Thrian password: abcd	.message should display	Working as expected	Pass		user
Testcase_7	Functional		Verifies whether an alert message popsup when an registered user enters his/her username or password incorrect	checks the username given by the user against the username and password in the database.	1.Enter your username 2.Enter your password 3.click signin button	Username:Nalayia Thrian password: 1234	user will not be able to access the home page	working as expected	Pass		user
Testcase_8	Functional	Register page	Verifies whether an alert message popsup when an new user registers.	checks whether the username and password is iploaded in the database.	1.Enter your username 2.Enter your email 3.Enter your password 4.Enter your confirm password 5.Click on signup button	Username:Nalayia Thrian password: 1234	message should display	Working as expected	Pass		user
Testcase_9	UI		Verifies whether all UI button(signup,loginnow,logou t,report,story,user dashboard) works efficiently.		1.Enter username, password to login. 2.Click on report, story,user dashboard and logout button			Working as expected	Pass		user
Testcase_10	Functional	Home page	Verifies whether username popsup on the welcome note.	check whether the message display	1.Enter your username 2.Enter your password 3.click signin button		welcome note should display	Working as expected	Pass		user

User Acceptance Testing:

The purpose of this is to briefly explain the test coverage and open issues of the retail store stock analytics project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	8	4	2	1	15
Duplicate	0	0	0	0	0
External	3	2	0	1	6
Fixed	4	0	1	0	5
Not Reproduced	0	0	1	0	1
Skipped	0	0	0	1	1
Won't Fix	0	0	1	0	1
Totals	15	6	5	3	29

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	5	0	0	5
Client Application	30	0	0	30
Security	2	0	0	2
			'	
Outsource Shipping	4	0	0	4
Exception Reporting	8	0	0	8
Final Report Output	6	0	0	6
Version Control	2	0	0	2

9. RESULTS

Performance Metrics:

Performance metrics are defined as figures and data representative of an organization's actions, abilities, and overall quality.

S.No.	Parameter	Screenshot / Values
1.	Dashboard design	Dashboard consist of 8graph in 8 different tabs.
2.	Data Responsiveness	Data was responsive for creating dashboard, story and report.
3.	Amount Data to	Inventory management dataset which consist of 938
	Rendered (DB2	datas in it.
	Metrics)	
4.	Utilization of Data	Data filters was used to find the top most of the data in
	Filters	form of visualization.
5.	Effective User Story	Story consist of 4 scenes and 5 graphs.
6.	Descriptive Reports	Created 2 reports with 7 graphs.

38

10. ADVANTAGES & DISADVANTAGES:

Advantage:

Team Id: PNT2022TMID08352

- > An advantage of the retail inventory method is that it does not require a physical inventory.
- > The retail inventory method only requires an organization to record the retail prices of inventory items.

Cost-Effective:

Manual inventory control would increase your labor and process costs.

Saves Time:

Paper-based retail inventory management can take a lot of time and effort.

Process Efficiency:

Inventory management is one of the crucial retail processes.

Disadvantage:

- > Overstocking on products runs the risk of the product becoming obsolete.
- > Higher storage and insurance costs.
- > Certain goods might perish.
- > Stock may become obsolete before it is used.
- > Your capital is tied up

11. CONCLUSION:

Hence in Retail store stock analysis it helps shop holder to manage stock, sale and price and maintain the necessary stock without reaching to demand, by maintaining the stock it gains the trust for the customer to buyproduct on a regular basis which also provide gain to to shop holder by increasing the profit.

12. FUTURE SCOPE:

Inventory management systems have become more real-time, giving retailers more data about demographics, spending habits, shopping preferences, etc.. Stock control for omni channel retailing. Stores doing omni channel retailing

are at the top of their game; they attract the 90% of consumers who switch between at least three applications per day to complete specific tasks. Inventories that power experiential retail.

13. APPENDIX:

GitHub Link: https://github.com/IBM-EPBL/IBM-Project-15021-1659593378

Project Demo Link: https://drive.google.com/file/d/1t3eq_a-2x5T2FCwMmjYGEYOVA1N8Zbno/view?usp=drivesdk