

Hasta ahora nuestro mundo ideal

Modelo y análisis simplificado

Respuesta temporal de un sistema

sistema LTI (Linear Time-Invariant): cumple las propiedades de linealidad e invarianza en el tiempo.

La respuesta en el tiempo de un sistema consta de 2 partes:

- La respuesta transitoria: es la que va desde un estado inicial a un estado final.
- La respuesta en régimen permanente: es el comportamiento del sistema cuando $t \to \infty$

$$y(t) = y(t)_{rt} + y(t)_{rp}$$

Respuesta transitoria

$$y(t) = y(t)_{rt} + y(t)_{rp}$$

$$\lim_{t \to \infty} y(t)_{rt} = 0 \qquad \qquad \lim_{t \to \infty} y(t) = y(t)_{rp}$$

Método de análisis del transitorio

- Consiste en la aplicación de una señal de prueba y analizar la forma de la respuesta transitoria para determinar los parámetros que caracterizan al sistema.
- Se asume comportamiento lineal.
- Sistema en reposo al inicio (salida y todas las derivadas respecto del tiempo son cero). De esta manera es mas sencillo analizar la respuesta transitoria antes de alcanzar el estado estable.

$$v_i(t) = v(t) \\ v_o(t) = v_c(t) \longrightarrow RC \frac{dv_C(t)}{dt} + v_C(t) = v(t)$$

¿Qué pasa si $5\tau = T/2$ o $5\tau = T/2$?

t [s]

¿Pueden observar la respuesta temporal transitoria y la respuesta permanente de este sistema?, donde?

¿Qué pasa si
$$5\tau = T/2$$
 o $5\tau = T/2$?

¿Pueden observar la respuesta temporal transitoria y la respuesta permanente de este sistema?, donde?

¿Qué pasa si
$$5\tau = T/2$$
 o $5\tau = T/2$

¿Pueden observar la respuesta temporal transitoria y la respuesta permanente de este sistema?, donde?

¿Qué pasa si $5\tau = T/2$ o $5\tau = T/2$?

Circuito RC – solución desde la medición

El mundo no es lo ideal que vimos hasta ahora

¿Cuál es el modelo más parecido a la realidad?

Sistemas en el mundo real

La señal de entrada no se conoce con anticipación, y en general puede ser de naturaleza aleatoria y no puede expresarse en forma analítica.

Sólo en casos muy especiales se conoce con antelación y se puede expresar en forma analítica o mediante alguna curva.

Modelando un sistema

El sistema es considerado como una caja negra y realizo experiencias a partir de pares (x, y).

Determinar un modelo a partir del conocimiento previo del sistema y experiencias prácticas realizadas sobre él. Como por ejemplo como se comporta con un escalón, una rampa, una parábola, una sinusoide.

Definir métodos de identificación paramétricos a través de los coeficientes de la función de transferencia g(t).

Entrada y Salida de un Sistema Lineal

Para el análisis y diseño de un sistema debemos tener una base de comparación, para ello se lo diseña y configura especificando las señales de entrada y comparando las respuestas a estas señales de entrada.

Teorema de Fourier

Dada una f(t) que sea integrable en [to-T/2, to+T/2], se puede obtener el desarrollo en serie de Fourier de f, en ese intervalo. Fuera del intervalo la serie será periódica, con período T.

$$f(t) \sim rac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos igg(rac{2n\pi}{T} t igg) + b_n \sin igg(rac{2n\pi}{T} t igg)
ight]$$

Componer una señal con senoidales

https://falstad.com/fourier/

Análisis temporal vs Análisis en frecuencia

Señales en el dominio de la frecuencia

$$y(t) = y_1 \, \sin(2\pi f_1 \, t) + y_2 \, \sin(2\pi f_2 \, t) + y_3 \, \sin(2\pi f_3 \, t)$$

Al realizar la misma medición con suficiente granularidad y para un rango de frecuencias de interés, podemos obtener un gráfico continuo que indica la ganancia del sistema Vo/Vi en el rango analizado. Dicho gráfico es la representación gráfica de la respuesta en frecuencia del sistema (circuito).

 $v_i(t) = 1 \text{V sen}(2\pi f_1 t) + 1 \text{V sen}(2\pi f_2 t) + 1 \text{V sen}(2\pi f_3 t)$

$$v_i(t)$$
 \leftarrow $v_o(t) = 0.9 \text{V sen}(2\pi f_1 t) + 0.7 \text{V sen}(2\pi f_2 t) + 0.6 \text{V sen}(2\pi f_3 t)$

Si ustedes piensan el gráfico en el dominio de t como si fuera de esta forma es porque lo están pensando desde el punto de vista del dominio de f. Pero sepan que en t el gráfico no se vería así, sino que realmente hay que sumar las señales

Frecuencia: [0,01Hz, 0,03Hz, 0,1Hz, 0,3Hz, 1Hz, 10.000Hz]

Respuesta en frecuencia (medición con osciloscopio)

Osciloscopio a utilizar: www.falstad.com – Circuito RC (salida Vc)

Respuesta en frecuencia Circuito RC – salida sobre C

Respuesta en frecuencia Circuito RC – salida sobre C

Respuesta en frecuencia Circuito RC – salida sobre C

Tiempo y Frecuencia 2 caras de la misma moneda

Respuesta en frecuencia (para que resuelvan en casa)

En un mismo gráfico semilogarítmico graficar la respuesta en frecuencia de los 4 circuitos. Evaluar las frecuencias que sean más convenientes para cada uno de ellos

Respuesta en frecuencia (para pensar)

¿Lo resolvieron en el dominio del tiempo?

¿Cómo lo resolverían en el dominio de la frecuencia?