CSCI3230

Fundamentals of Artificial Intelligence Written Assignment 1 (Optional) Suggested Solutions

September 19, 2013

1 Function Evaluation

f(n) = g(n)	Uniform-cost search	[5 marks]
f(n) = h(n)	Heuristic search	[5 marks]
f(n) = g(n) + h(n)	A* search	[5 marks]

Differences between them:

Method	Optimality	Completeness	Time Complexity	
Uniform-	Yes	Yes, if step cost ≥	$\#$ of nodes with $g \leq$	[8 marks]
cost search		ϵ (epsilon, small pos-	cost of optimal solu-	
		itive real no)	tion, $O(b^{\lceil C^*/\epsilon \rceil})$ Where	
			C^* is the cost of the	
			optimal solution	
Heuristic	No	No, can get stuck	$O(b^m)$, but a good	[8 marks]
search		in loops. Complete	heuristic can give dra-	
		in finite space with	matic improvement	
		repeated-state check-		
		ing.		
A* search	Yes	Yes, unless there are	Exponential in [rela-	[9 marks]
		infinitely many nodes	tive error in $h \times length$	_
		with $f \leq f(G)$	of solution]	

2 Two Water Tanks

- 1. (a) State Space: $\{(x,y): x,y\in Z, 0\leq x\leq M, 0\leq y\leq N\}$
 - (b) State Transitions:

i. Fill in a tank:

Tank 1
$$(x,y) \longmapsto (M,y)$$

Tank 2
$$(x,y) \longmapsto (x,N)$$

ii. Empty a tank:

Tank 1
$$(x,y) \longmapsto (0,y)$$

Tank 2
$$(x,y) \longmapsto (x,0)$$

iii. Pour water from one tank to another (without spilling):

Tank 1 to Tank 2
$$(x,y) \longmapsto (x-\delta,y+\delta)$$
 where $\delta = min(x,N-y)$

Tank 2 to Tank 1
$$(x,y) \longmapsto (x+\epsilon,y-\epsilon)$$
 where $\epsilon = min(M-x,y)$

(c) Goal State(s):
$$\{(x,G): x \in Z, 0 \leq x \leq M, G < N\} \cup \{(G,y): y \in Z, 0 \leq y \leq N, G \leq M\}$$

2. The table:

Enom	To					
From	Fill1	Fill2	Emp1	Emp2	Pou1	Pou2
(0,0)	(3,0)	(0,5)				
(3,0)		(3,5)	(0,0)		(0,3)	
(0,5)	(3,5)			(0,0)		(3,2)
(3,5)			(0,5)	(3,0)		
(0,3)	(3,3)	(0,5)		(0,0)		(3,0)
(3,2)		(3,5)	(0,2)	(3,0)	(0,5)	
(3,3)		(3,5)	(0,3)	(3,0)	(1,5)	
(0,2)	(3,2)	(0,5)		(0,0)		(2,0)
(1,5)	(3,5)		(0,5)	(1,0)		(3,3)
(2,0)	(3,0)	(2,5)	(0,0)		(0,2)	
(1,0)	(3,0)	(1,5)	(0,0)		(0,1)	
(2,5)	(3,5)		(0,5)	(2,0)		(3,4)
(0,1)	(3,1)	(0,5)		(0,0)		(1,0)
(3,4)		(3,5)	(0,4)	(3,0)	(2,5)	
(3,1)		(3,5)	(0,1)	(3,0)	(0,4)	
(0,4)	(3,4)	(0,5)		(0,0)		(3,1)

3. Two: (3,4) and (0,4)

4.
$$(0,0) \xrightarrow{Fill2} (0,5) \xrightarrow{Pou2} (3,2) \xrightarrow{Emp1} (0,2) \xrightarrow{Pou2} (2,0) \xrightarrow{Fill2} (2,5) \xrightarrow{Pou2} (3,4)$$

