Amortized Complexity

Jin Long Cao

November 2022

 $L = [x_1, x_2, \dots, x_n]$ is a list of items, each with a distinct min-heap key, i.e. $x_i \cdot p$ has key p. We want a bound on the worst-case sequence run-time complexity of inserting the items from L into binomial heap H using the Binomial-Heap-Insert algorithm below. Answer parts (a) and (b) using the indicated method.

```
Binomial-Heap-Insert(H, x)
   p[x] \leftarrow NIL
                                     \triangleright make a new B_0
   \operatorname{child}[x] \leftarrow \mathtt{NIL}
3 degree[x] \leftarrow 0
4 sibling[x] \leftarrow head[H]
                                     \triangleright insert new B_0 at head of list of B_is
5 head [H] \leftarrow x
6 cur node \leftarrow head[H]
                                     ▷ prepare to walk the list
   next node \leftarrow sibling[head[H]]
    while next_node ≠ NIL and degree[cur_node] = degree[next_node]
            if key[cur node] < key[next node]
                                                                   ▷ min-heap order
                 sibling[cur node] \leftarrow sibling[next node]
10
                 Binomial-Link(next node, cur node)
11
                                                                   > cur node now parent of next node
12
            else
13
                head[H] \leftarrow next\_node
                 Binomial-Link(cur node, next node)
14
                                                                   > next node now parent of cur node
                 cur node \leftarrow next node
15
        next node ← sibling[cur node]
                                                       b check if next two trees must link
17 return H
                         > all done linking binomial trees
```

- (a) The aggregate method from CLRS. Show your work.
- (b) The accounting method from CLRS. Show your work.

Solutions

Let $L = [x_1, x_2, ..., x_n]$ be a list of items, each with a distinct priorities $(x_i.p)$ has priority p). Let $k \in \mathbb{N}$. When inserting into a binomial heap, we need to consider two things.

- MAKE-HEAP(x): return a new heap containing only element x.
- UNION (H_1, H_2) : return a new heap containing all elements of heap H_1 and H_2 .
 - (1) First merge H_1 and H_2 into H' with binomial trees in ascending order (based on priority).
 - ② If H' contains 2 B_k adjacent to each other, call them B_{k_1} and B_{k_2} , then merge them into a B_{k+1} .
 - (3) If there are now 3 B_{k+1} adjacent then we merge the second and third B_{k+1} .

Note: 2 may run multiple times until there aren't anymore pairs of B_k .

For example, consider a binomial heap H_1 with binomial trees B_0, B_1, B_2 . if we insert an element, MAKE-HEAP(x) would creates a new heap with single node B_0 , then UNION(H_1, B_0) would merge the two B_0 into a B_1 (2) ran once), but now we have two B_1 which will run (2) again resulting in another binomial heap with two B_2 which will trigger (2) to run again. In this example, (2) ran 3 times from inserting one element.

(a) Aggregate Method

Notice that (2) occurs every other time you insert something. Every time you insert something, you create a single node (B_0) and then you add it with the rest of your binomial heap. That means every other time you insert something, you'll have two B_0 and (2) will run (at least once). Also,

- Every fourth insert, we'll have two B_1 and (2) will have to run again.
- Every eighth insert, we'll have two B_2 and ② will have to run again.
- Every 2^k -th insert, we'll have two B_{k-1} and (2) will have to run again.

In a sequence of n operations: MAKE-HEAP(x) and ① always run (2n), ② will run at least once every other time $(\frac{n}{2})$ to combine the two B_0 . But in total, ② will run in the sequence of $\sum_{i=1}^{k} \lfloor \frac{n}{2^i} \rfloor$. Since we're starting with an empty binomial heap and inserting one element at a time, there won't be any possibility that $3 B_{k+1}$ are adjacent such that ③ will run zero times (0). Putting it all together, the total number of times each operation runs for n insertion is

$$2n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2^k} = 2n + n(1 - (\frac{1}{2})^k)$$
$$= 2n + n - n(\frac{1}{2})^k$$
$$< 3n$$

Using aggregate method, we can conclude that the total cost of the sequence is O(n) and the amortized cost per operation is $\frac{O(n)}{n} = O(1)$.

(b) Accounting Method:

Notice that if a Binomial heap have $2^k - 1$ nodes (with k binomial trees) and we insert once. Then the binomial heap will have 2^k nodes which means it should have only one binomial tree (B_k). To get one binomial tree, UNION will merge k times.

Total nodes	number of merges*	B_i
1	0	B_0
2	1	B_1
3	0	B_0, B_1
4	2	B_2
5	0	B_0, B_2
6	1	B_1, B_2
7	0	B_0, B_1, B_2
8	3	B_3
:	:	:
n-1	$\leq \lg(n-1)$	
n	$\leq \lg n$	

*not including the first merge (1)

Note: x represents rounding to the closest integer to x

For MAKE-HEAP(x), it cost 1 to create a singleton heap and it cost another 1 to store an item from L into a binomial heap. Then the amortized cost = $1 + 1 = 2 = \theta(1)$.

For UNION (H_1, H_2) , it cost 1 to just merge H_1 and H_2 and we would like to save $\lg n$ credit in the bank so that we can merge if there are multiple B_k adjacent. From the table above, we know that it will cost less than $\lg n$ so we'll always have enough credit. Then the amortized cost $= 1 + \lg n = \theta(\lg n)$

Combining it together, we now know that the amortized cost of insert $= 2 + 1 + \lg n = \theta(\lg n)$ and can conclude that the bound on the worst-case run-time complexity of inserting the items from L into a binomial heap is $\theta(\lg n)$