

Computer Graphics (Graphische Datenverarbeitung)

- Transformations -

Hendrik Lensch

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

Overview

- Last Time
 - Tone Mapping
- Today
 - Homogeneous Coordinates
 - Basic transformations in homogeneous coordinates
 - Concatenation of transformations
 - Projective transformations
- Next Lectures
 - Camera transformations
 - Rasterization

What you should learn

- Basic transformations in 3D
 - How to describe them
- Perspective transformations in 3D
- Homogeneous Coordinates
 - How to express transformations conveniently

Euclidean Vector Space

- Known from Mathematics:
 - Elements of a 3D vector space

$$\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)^{\mathsf{T}} \in \mathsf{V}^3 = \mathsf{R}^3$$

- Formally: Vectors written as column vectors (n x 1 matrix)!
- Vectors describe directions not positions!
- 3 linear independent vectors create a basis:
 - $\bullet \{\underline{e}_1, \underline{e}_2, \underline{e}_3\}$
- Any vector can now uniquely be represented with coordinates

- Operations
 - Addition, Subtraction, Scaling, ...

- Dot/inner product:
 - Used for measurements of length $(|\underline{v}|^2 = \underline{v} \cdot \underline{v})$ and angles $(\cos(v_1, v_2) = v_1 \cdot v_2 / |v_1||v_2|)$
- Orthonormal basis

$$\underline{\mathbf{e}}_{\mathbf{i}} \cdot \underline{\mathbf{e}}_{\mathbf{j}} = \delta_{\mathbf{i}\mathbf{j}}$$

• right-/left handed: $\underline{e}_1 \times \underline{e}_2 = +/-\underline{e}_3$

Affine Space

- Known from Mathematics
- Affine Space: A³
 - Elements are positions no directions!
- Defined via its associated vector space V³
 - $a, b \in A^3 \Leftrightarrow v \in V^3 \text{ with } v = b a$
 - \rightarrow : unique, \leftarrow : ambiguous
 - Addition of points and vectors (p + $v \in A^3$)
 - distance(a, b) = length(a b)
- Operations on A³
 - Subtraction yields a vector
 - No addition of affine elements

Affine Basis

- Affine Basis:

 - {o, e1, e2, e3}
 Origin: o ∈ A³ and
 Basis of vector space
 Position vector of point p
 (p o) ∈ V3

Affine Coordinates

- Affine Combination
 - Linear combination of (n+1) points
 - Weights form a partition of unity
 - $b_0, \ldots, b_n \in A^n$

$$\underline{b} = \sum_{i=0}^{n} \alpha_i \, \underline{b}_i = \underline{b}_0 + \sum_{i=1}^{n} \alpha_i (\underline{b}_i - \underline{b}_0) = \underline{o} + \sum_{i=1}^{n} \alpha_i \, \underline{e}_i, \quad \text{with } \sum_{i=1}^{n} \alpha_i = 1$$

- Affine Coordinates
 - Barycentric coordinates
 - Center of mass (R = Σ m_i r_i / Σ m_i)
 - Affine weighted sum
 - Weights given by the splitting ratio

•
$$\underline{p} = \alpha_1 \underline{p}_1 + \alpha_2 \underline{p}_2$$

 $\alpha_1 + \alpha_2 = 1$

Affine Mappings

- Properties
 - Affine mapping (continuous, bijective, invertible)
 - T: $A^3 \rightarrow A^3$
 - Defined by two non-degenerated simplicies
 - 2D: Triangle, 3D: Tetrahedron, ...
 - Affine/Barycentric coordinates are invariant under affine transformations
 - Other invariants
 - Straight lines, parallelism, splitting ratios, surface/volume ratios
 - Characterization via fixed points and lines
 - Eigenvalues and eigenvectors of the mapping
- Representation
 - Linear mapping A plus a translation t
 - $\mathbf{T}\underline{p} = \mathbf{A}\underline{p} + \underline{t}$ with $(n \times n)$ matrix \mathbf{A}
 - Invariance of affine coordinates

■ Tp= T(
$$\alpha_1\underline{p}_1 + \alpha_2\underline{p}_2$$
)= A($\alpha_1\underline{p}_1 + \alpha_2\underline{p}_2$) + \underline{t} = α_1 A(\underline{p}_1) + α_2 A(\underline{p}_2) + $\alpha_1\underline{t}$ + $\alpha_2\underline{t}$ = α_1 T \underline{p}_1 + α_2 T \underline{p}_2

Homogeneous Coordinates

Homogeneous Coordinates for 3D

- Embedding of R³ into P(R⁴)
 - For the time being

$$R^{3} \ni \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in P(R^{4}), \quad \text{and} \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} \rightarrow \begin{pmatrix} X/W \\ Y/W \\ Z/W \end{pmatrix}$$

- Representation of transformations by 4x4 matrices
- Mathematical trick
 - Convenient representation to express rotations and translations as matrix multiplications
 - Easy to find line through points, point-line/line-line intersections
- Also important for projections (later)

Points and Lines in Homogeneous Coordinates

Point Representation

$$x = \frac{X}{W}$$
 $y = \frac{Y}{W}$

Line Representation

$$ax+by+c=0$$

$$ax+by+c\cdot 1=0$$

$$ax+by+c\cdot 1=0$$

$$\mathbf{x} \cdot \mathbf{l} = 0$$

Intersection of Lines

$$\mathbf{l'} \times \mathbf{l} = \mathbf{x}$$

Line through 2 Points

$$\mathbf{x'} \times \mathbf{x} = \mathbf{l}$$

Linear Map = Matrix

- Vector Matrix Product
 - Action of a linear map on a vector
 - Multiplication of matrix with column vector

$$\underline{p'} = \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = T \underline{p} = T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} t_{xx} & t_{xy} & t_{xz} & t_{xw} \\ t_{yx} & t_{yy} & t_{yz} & t_{yw} \\ t_{zx} & t_{zy} & t_{zz} & t_{zw} \\ t_{wx} & t_{wy} & t_{wz} & t_{ww} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

- Composition (first T₁, then T₂)
 - Matrix multiplication
 - $T_2T_1\underline{p} = T_2(T_1\underline{p}) = (T_2T_1)\underline{p} = T\underline{p}$
 - Warning: In general, matrix multiplications do not commute !!!

Translation

$$T(d_x, d_y, d_z) = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{T}\underline{p} = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + d_x \\ p_y + d_y \\ p_z + d_z \\ 1 \end{pmatrix}$$

Translation of Vectors

- So far we looked at points (affine entities)
- Vectors are defined as the difference of two points
- Consequently, for vectors W is always equal to zero

$$\underline{v} = \underline{p} - \underline{q} = \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} - \begin{pmatrix} q_x \\ q_y \\ q_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x - q_x \\ p_y - q_y \\ p_z - q_z \\ 0 \end{pmatrix}$$

- This means that translations DO NOT act on vectors
 - Which is exactly what we expect to happen

$$\mathbf{T}\underline{v} = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \underline{v}$$

Translations

Properties

- T(0,0,0)= 1 (Identity Matrix)

-
$$T(t_x, t_y, t_z) T(t_x', t_y', t_z') = T(t_x + t_x', t_y + t_y', t_z + t_z')$$

-
$$T(t_x, t_y, t_z) T(t_x', t_y', t_z') = T(t_x', t_y', t_z') T(t_x, t_y, t_z)$$

-
$$T^{-1}(t_x, t_y, t_z) = T(-t_x, -t_y, -t_z)$$

Rotation

• Rotation in 2D

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$x', y'?$$

Rotation

Rotation in 2D

$$x = r\cos\theta$$
$$y = r\sin\theta$$

$$x' = r\cos(\theta + \varphi)$$
$$y' = r\sin(\theta + \varphi)$$

$$\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$$
$$\sin(\theta + \varphi) = \cos\theta\sin\varphi + \sin\theta\cos\varphi$$

Rotation around major axis

$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad R_{y}(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{z}(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Assumes a right handed coordinate system

Rotation

Properties

-
$$R_a(0) = 1$$

$$- R^{-1}{}_{a}(\theta) = R_{a}(-\theta)$$

-
$$R_a(\theta) R_a(\phi) = R_a(\theta + \phi)$$

-
$$R_a(\theta) R_a(\phi) = R_a(\phi) R_a(\theta)$$

-
$$R^{-1}_{a}(\theta) = R_{a}(-\theta) = R_{a}^{T}(\theta)$$

- BUT in general: $R_a(\theta) R_b(\phi) \neq R_b(\phi) R_a(\theta)$
 - For rotations around different axes, the order matters

Scaling

$$S(s_x, s_y, s_z) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Uniform Scaling
 - sx= sy = sz

Reflection at Z

$$M_z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Warning: Change of orientation!

Shear (deutsch: Scherung)

$$H(h_{xy}, h_{xz}, h_{yz}, h_{yx}, h_{zx}, h_{zy}) = \begin{pmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Concatenation of Transformations

• In general, transformations do not commute

Rotation about Arbitrary Axis

- Move base point to origin
 - T(-<u>o</u>)
- Rotation around Y-axis, so that <u>r</u> is in YZ-plane
 - Use projection into XZ-plane
 - $R_y(-\phi_1)$ $tan(\phi_1) = r_x/r_z$ $r' = R_y(-\phi_1) r$
- Rotation around X-axis, so that <u>r</u>' is along Z-axis
 - $R_x(\varphi_2)$ tan (φ_2) = r'_y/r_z'
- Rotation around Z-axis with angle φ
- Rotate back around X-axis
- Rotate back around Y-axis
- Translate back
- Together
 - $R(\varphi, \underline{o}, \underline{r}) = T(\underline{o})R_y(\varphi_1)R_x(-\varphi_2)R_z(\varphi)R_x(\varphi_2)R_y(-\varphi_1)T(-\underline{o})$

Matrices as Basis Transform

Columns are transformed basis

$$p' = \begin{pmatrix} t_{xx} & t_{xy} & t_{xz} & t_{xw} \\ t_{yx} & t_{yy} & t_{yz} & t_{yw} \\ t_{zx} & t_{zy} & t_{zz} & t_{zw} \\ t_{wx} & t_{wy} & t_{wz} & t_{ww} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ or } , \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$(\underline{e}_x' \quad \underline{e}_y' \quad \underline{e}_z' \quad \underline{o}') = M$$

- Transformation into new basis
 - Simple: Write new basis vectors into columns of matrix

Complex Transformations

- Either by concatenation
- Or by coordinate transform
 - Translation plus transformation of basis vectors

Complex Transformations

- Either by concatenation
- Or by coordinate transform
 - Translation plus transformation of basis vectors

$$T(d_x, d_y)R(45)$$

Complex Transformations

- Either by concatenation
- Or by coordinate transform
 - Translation plus transformation of basis vectors

Orthonormal Matrices

- Orthonormal transformations
 - Images of basis vectors are again orthonormal

•
$$e_i' \cdot e_j' = \delta_{ij}$$

$$\mathbf{M}^{T}\mathbf{M} = (\underline{e}_{x}' \ \underline{e}_{y}' \ \underline{e}_{z}')^{T}(\underline{e}_{x}' \ \underline{e}_{y}' \ \underline{e}_{z}') =$$

$$= (\underline{e}_{x}'\underline{e}_{x}' \ \underline{e}_{x}'\underline{e}_{y}' \ \underline{e}_{x}'\underline{e}_{z}')$$

$$= (\underline{e}_{y}'\underline{e}_{x}' \ \underline{e}_{y}'\underline{e}_{y}' \ \underline{e}_{y}'\underline{e}_{z}')$$

$$= (\underline{e}_{z}'\underline{e}_{x}' \ \underline{e}_{z}'\underline{e}_{y}' \ \underline{e}_{z}'\underline{e}_{z}')$$

$$= 1$$

Which means that

$$\mathbf{M}^T = \mathbf{M}^{-1}$$

Transformation of Normals

Transformations

- Line
 - Transform end points
- Plane
 - Transform three points
- Vector
 - $\underline{v} = \underline{p} q_{\underline{}} = (x, z, y, 0)^{T}$
 - Translations to not act on vectors
- Normal vectors
 - Problem: e.g. with non-uniform scaling

Transforming Normals

Dot product as matrix multiplication

- Normal N on a plane
 - For any vector T in the plane: $\underline{N}^T * \underline{T} = 0$
 - Given M, find transformation M' for normal vector, such that

$$(\mathbf{M}'^*\underline{N})^T * (\mathbf{M} * \underline{T}) = 0 = \underline{N}^T * (\mathbf{M}'^T * \mathbf{M}) * \underline{T}$$
$$\mathbf{M}'^T * \mathbf{M} = 1$$
$$\mathbf{M}' = (\mathbf{M}^{-1})^T$$

Transforming Normals

Remember:

Normals are transformed by the transpose of the inverse of the 4x4 transformation matrix of points and vectors

- No problem with orthogonal transformations
 - E.g. rotation, uniform scaling
 - M⁻¹ = M^T
 - M^{-1} = M^{T} = M

Projections

Projections

- Definition: Projection
 - Mapping from 3D to 2D
 - Results in loss of information
 - Non invertible
- Planar perspective projections
 - Projection along lines onto a projection plane
 - Perspective projection (central projection)
 - Lines intersect in a single point
 - Special case: Orthographic projection
 - Parallel lines
 - View point at infinity

Classification of Projections

Axonometric Projection

- Properties
 - Parallel/orthographic projection
 - Projection plane orthogonal to projection direction
- Isometric Projection
 - Projektion direction has same angle with every coordinate axis
 - Lengths are maintained

Axonometric Projection

- Dimetric and Trimetric Projection
 - Same angle with 2 axes
 - Two lengths are maintained, one is scaled

- Same angle with one axis
 - One length is maintained, two are scaled

Sheared Perspective

Oblique Projection

- Properties
 - Parallel projection
 - Projektion plane parallel to two coordinate axes (e.g. x, y)
 - Projection direction *not* orthogonal to plane
- Cavalier Projection
 - Same length on all axes

Oblique Projection

- Cabinet Projection
 - Foreshortening of ½ orthogonal to projection plane

- Implementation of Oblique Projections
 - Shearing plus parallel projection

Planar Perspective Projection

- Properties
 - Projection onto plane along lines through a projection point
 - Parallel lines do *NOT* stay parallel
 - Not an affine transformation
- Vanishing point
 - Projections of intersection points axis-parallel lines at infinity
 - N-point perspective
- Details later

Projective Transformations in 3D

Taxonomy of Projective Transformations

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	Δ	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{cccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$		Ratio of lengths, angle. The circular points, \mathbf{I}, \mathbf{J} (see section 1.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area

Distortions under Central Projection

- Similarity: circle remains circle, square remains square
- ⇒ line orientation is preserved
- Affine: circle becomes ellipse, square becomes rhombus
- ⇒ parallel lines remain parallel
- Projective: imaged object size depends on distance from camera
- ⇒ parallel lines converge

Summary

- Vector space and Affine Space
- Affine transformations
- Homogeneous coordinates
- Basic transformations
- Concatenation vs. basistransform
- Treatment of normals
- Projections

Overview

- Last Time
 - Tone Mapping
- Today
 - Homogeneous Coordinates
 - Basic transformations in homogeneous coordinates
 - Concatenation of transformations
 - Projective transformations
- Next Lectures
 - Camera transformations
 - Rasterization