Подготовка к проверочной работе

1	Чему равен угол между биссектрисами двух смежных углов?
2	Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых? Докажите это.
3	Сформулируйте и докажите теорему о внешнем угле треугольника.
4	Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
5	Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
6	Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
7	Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
8	Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
9	Сформулируйте теорему о диаметре, перпендикулярном хорде.
10	Сформулируйте теорему о диаметре, проходящем через середину хорды.
11	Где лежит центр вписанной в треугольник окружности?
12	Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
13	Чему равна сумма всех внешних углов треугольника?
14	Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
15	В треугольнике ABC обе стороны AB и BC равны 15. Чему равна сторона AC , если $\angle BAC = 60^{\circ}$?
16	В треугольнике ABC известно, что $\angle A=50$ и $\angle B=80$. Найдите сторону BC , если $AC=10$ и $P_{ABC}=40$.
17	Угол между биссектрисами двух углов треугольника равен 120° . Чему равен третий угол треугольника?
18	Угол треугольника равен 50° . Найдите угол между высотами, проведенными из двух других углов
19	В треугольнике ABC угол $\angle B=60^\circ$. Найдите угол между биссектрисами двух других внешних углов.
20	Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются

в точке P. Докажите, что треугольники APD и BPC равнобедренные.

21

- **22** Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
- Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^\circ$.
- **24** К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **25** Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
- В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 5, AC = 12.
- Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3\angle ACD$.
- Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.