Exercise 1. Recreate Figure 3.1.

Exercise 2. Define the following phrases.

- (a) triangular number
- (b) square number
- (c) pentagonal number
- (d) polygonal number

Exercise 3. According to the textbook, "From Figure 3.1 it is easy to calculate an expression for the mth n-gonal number as the sum of a certain arithmetic series ..." Do this for:

- (a) the triangular numbers;
- (b) the square numbers; and,
- (c) the pentagonal numbers.

Exercise 4 (3.2.1). *Show that any square leaves remainder* 0, 1, *or* 4 *on division by* 8.

Exercise 5 (3.2.2). *Deduce that a sum of three squares leaves remainder* 0, 1, 2, 3, 4, 5, *or* 6 *on division by* 8.

Bonus Material

For each nonnegative integer k, let $P_k(t)$ be the polynomial with rational coefficients given by

$$P_0(t) = 1$$
, and $P_k(t) = {t \choose k} = \frac{t(t-1)\cdots(t-k+1)}{k!}$ for $k \ge 1$.

Exercise 6. Find the following.

- (*a*) $P_1(t)$
- (b) $P_2(t)$
- (c) $P_3(t)$

Exercise 7. Complete the following table.

t	$P_0(t)$	$P_1(t)$	$P_2(t)$	$P_3(t)$
0				
1				
2				
3				
4				
5				

Given a(n integer valued) polynomial f(t) define a new integer-valued polynomial $(\Delta f)(t)$ by

$$(\Delta f)(t) = f(t+1) - f(t).$$

Exercise 8. *Find the following.*

- (a) $(\Delta P_0)(t)$
- (b) $(\Delta P_1)(t)$
- (c) $(\Delta P_2)(t)$
- (d) $(\Delta P_3)(t)$

Think of the operator Δ as a discrete analog of differentiation. We write $\Delta^2 f$ for $\Delta(\Delta f)$.

Exercise 9. Let a, b, and c be integers. And, let $f(t) = aP_0(t) + bP_1(t) + cP_2(t)$. Complete the following table.

t	f(t)	$(\Delta f)(t)$	$(\Delta^2 f)(t)$
0			
1			
2			
3			
4			
5			

Exercise 10. Suppose you are given a sequence of integers a_0, a_1, \ldots and you are asked whether that sequence is of the form $a_n = f(n)$ for some quadratic polynomial (with rational coefficients), how might you test that idea? And, how you find f when such a polynomial exists?