Etapa 01 Atividade Avaliativa 01

Ano letivo 2024

Atividade 01

Construir um código iterativo que calcule o n-éssimo número da Sequência de Padovan. A sequência de Padovan é uma sequência de naturais P(n) definida pelos valores iniciais:

$$P(0) = P(1) = P(2) = 1$$

e a seguinte relação recursiva:

$$P(n) = P(n-2) + P(n-3) \text{ se } n > 2$$

Alguns valores da sequência são: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28.

Requisitos:

- Código montável, ligável e executável
- O cálculo do n-éssimo número Padovan deve ser iterativo
 - não usar recursividade, pois não estudamos funções até o momento
- Sintaxe Intel x64 86

Funcionamento:

- Deve ser solicitado ao usuário a entrada do n-éssimo número padovan buscado
 - A entrada é pelo teclado
 - uma string de caracteres ASCII que representa o número
 - máximo com 2 dígitos
 - usuário entrará sempre com 0, 1, 2 ou +3 dígitos e enter para finalizar
 - nunca caracteres alfabéticos ou especiais.
- Verificação de entrada
 - 1 ou 2 dígitos
 - verificação de limites de representação
 - Quanto é p(99)?
 - Qual é o tamanho do registrador x64 86?
 - nenhum dígito ou +3 dígitos
 - mensagem de falha genérica, limpeza de buffer e encerramento
- Conversão dos dígitos ASCII para número equivalente
 - dicas:
 - ASCII para todos os números são:

ASCII:	0011 0000	0011 0001	0011 0010	0011 0011	0011 0100	0011 0101	0011 0110	0011 0111	0011 0100	0011 0101
HEX:	0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39
Dígito:	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"
Num:	0	1	2	3	4	5	6	7	8	9

- Após, usar a notação posicional
 - Exemplo1: 5_d é escrito como (0) + 5
 - Exemplo2: 34_d é escrito como (10*3) + 4
 - Exemplo3: 57_d é escrito como (10*5) + 7
- Cuidado: verifique no gdb a ordem dos dígitos na memória!
- Caso a conversão tenha sucesso e o limite não tenha sido excedido
 - Calcular, de forma iterativa, padovan

- Utilize os links para verificar sua solução.
 - WolframAlpha ou Ke!sanOC
- Para finalizar, grave um arquivo binário
 - Nome do arquivo: p(n).bin, onde n é a entrada do usuário
 - Conteúdo: resultado em "formato" binário
 - isto é, não é necessário converter inteiro para caracteres ASCII.
- Exemplo de execução com falha:
 - Mensagem de erro genérica

 - Limpeza de bufferArquivo de solução não criado
- Exemplo de execução com sucesso:
 - Sem mensagem
 - Arquivo de solução criado com o nome no padrão p(n).bin
- Arquivo de resultado:
 - utilize algum editor hexadecimal
 - sugestão: <u>HexEdit</u>

Entrega

via Teams

Nome do arquivo: [LM pratica 01] NomeSobrenome1 NomeSobrenome2

- Aquivo único em formato .asm com o nome especificado
- Adicione a linha de montagem e ligação como comentário no início da solução.

Prazo: até dia 10/10/2024 23h59m.

Composição da Nota da Etapa 01

Sugestão: 50% Avaliação Teórica + 50% Atividade Avaliativa 01