

Reproducing the Classic Calculator Using Modern Web Technology

Takahiro FUJIWARA

DQ4WX0, 7th Semester Faculty of informatics, Computer Science Engineering

University of Dunaújváros

Supervisor: Dr. Király Zoltán, Tetsuo Iwase

Introduction

- □ The Goal Is to Provide Realistic Simulation With the World's First Calculator
 - Photo
 - Display
 - **■** Sound
 - **Touch Feeling**
 - **■** Unique Operation

- We are familiar to Calculator
 - Use it in real life, shopping, study, business
 - Computer Science Students learn programming of calculator.
- □ Calculator H/W is decreasing...
 - Go in the PC, now go in Smartphone
 - Calculator may disappear like analog phones.
- ☐ Modern people will be interested in classic calculators.
 - Like classic cars.

History of World's First Calculator Focused on Handheld, Display Technology

According to:

- EdTechMagazine.com
- VintageCalculators.com - TheCalculatorSite.com
- arithmomuseum.com

W-First: World's First

1623: W-First Adding Machine (DE)

1773: W-First **Functional** Calculator (DE)

1820: W-First Commercially **Produced Mechanical** Calculator (FR)

1945: W-First Vacuum Computer ENIAC (US)

1948: W-First **Pocket Calculator CURTA (AU)**

1954: W-First All-**Transistor** Calculator 608 by IBM (US)

1957: W-First All-**Electronic Dedicated** Calculator 14-A by CASIO (JP)

1961: W-First All-Electronic Desktop Calculator ANITA-VII by Bell Punch (UK)

1964: Fir Desktop **HUNOR** (HU)

1900

1960

1970

1980

1990

2000

1967: W-First portable batteryoperated calculator ICC-500W by SONY (JP). Nixie display

1967: W-First prototype handheld 'Cal-Tech' by Texas Instruments (US). Output: Paper-tape only.

1970: W-First mass-produced handheld battery calculator QT-8B by SHARP (JP). VFD display.

1970: W-First Handheld Nixie display Calculator, ICC-82D by SANYO (JP) Nixie display.

1970 W-First Handheld Printing Calculator, Pocketronic by Canon (JP). Contribution by **Texas Instruments (US)** Paper-Tape only.

1971: W-First Handheld LED display, LE-120A by Busicom (JP). Segment LED.

1973: W-First 1973: W-First LCD Display. mass-produced LC-800 by LCD Display, **DATAKING** EL-805 by (US). SHARP (JP). **Segment LCD** Segment LCD

2007: W-First touchscreen smartphone with calculator, iPhone by Apple (US). Pixel LCD, color.

Why Focused on Sharp QT-8B? From Many of the World's First.

- ☐ One of collection at Smithsonian Museum, USA
 - Archiving the "Creativity and Innovation Things" →
- **□ SHARP** received <u>IEEE Milestone</u>, includes QT-8D (predecessor of QT-8B) **↓**

QT-8D, **1969** AC Powered

QT-8B, **1970**Battery Powered

SHARP IEEE Milestone Calculators, 1964-1973
"Honor Historical Achievements"

- 1. Use a real photograph
 - 3D perspective
- 2. Simulate the display, look and feel
 - VFD segment display
- 3. Simulate the old era operations .
 - Very unique combination key
- 4. Simulate the feel of the buttons
 - Mechanical sound, Button touch
- 5. Direction: simulate it ...
 - On a web page for people to experience

[1] Use a Real Photograph

- ☐ Got acceptance to use it from owner of photo, QT-8B
- **□** Perspective is adapted
 - Display, buttons on the photo
 - Transformed a rectangle into a

trapezoid

Perspective is adapted

Technology: CSS Transforms Module Level 1 (2019 candidate Recommendation)

[2] Simulate the Display Look and Feel

□ VFD segment display and special design was used

↓QT-8B, 1970

Sample Photo and Power Consumption			
Technology Name	NIXIE (<u>N</u> umeric <u>I</u> ndicator experiment No.1)	VFD (Vacuum Fluorescent Display)	LCD (Liquid Cristal Display)
Main-stream	1950-1970s	1967-1980s	1973-now

☐ Same design font is available since 2021, by individual

SIL Open Font License https://github.com/jz5/fonts-vfdigit

- I used it with web-font technology
 - O To show it for all audience

The Road to Simulation for Display

[3] Simulate the Old Era Operations

☐ Seems influenced from cash register operation

□ Expression-based input wasn't settled in old time

 Cf. SONY calculator followed expression-based input in 1964, got "amazing" but it was done as prototype.

		QT-8B		Regular Calc.	
	Action	Operation	Display	Operation	Display
1	Purchase \$10	10[+=]	10.	10[+]	10.
2	Purchase \$20	2[+=]	12.	2[+]	12.
3	It was TYPO!	2[==]	10.	[-]2[+]	10.
4	Re-enter	20[+=]	30.	20[+]	30.
5	Give \$100	100[==]	70. –	[-]100[=]	70. –
6	Back \$70			2 more keys	

7 8 9 C -= 1 2 3 × ÷ +=

QT-8B Keys

The Work What I Did

- ✓ Check the Instruction Manual
- ✓ Check the real behavior QT-8B/8D especially, division

[4] Simulate the Feel of the Buttons

■ Need mechanical sound

Just record it and make sound editing as short

■ Play sound when press the key

☐ Simulate the feeling of touch

■ Imitate the shadow of a finger

PC keyboard also available

□ On a web page for people to experience

HTML	60 Lines
CSS	150 Lines
JavaScript	500 Lines
Total	710 Lines

☐ Using modern web technology

- JavaScript ES6 (since 2015)
 - Object-oriented programming is available
- CSS3 recent level
 - O Web-Font (since 2010), transform, perspective, text-shadow (since 2019)

- □ Apply object-oriented programming
 - Object class corresponding to real-world concept

Calculator	Key	Sound
	Display	Register a, b

Now, Simulator For World's Classic Calculator Is Here

25sec) **♦**(video Simulator QT-8B

Video Operation

Expression	Mouse			
1+2 = 3	1[+=] 2[+=]			
×4 = 12	[×÷] 4[+=]			
÷24=0.5	[×÷]24[-=]			
PC keyboard				
3.1415929				
⊠ 6				

You Can Try It by Yourself

https://bit.ly/ fujiwat-qt-8b

2023. 11. 8.

Difficulty: easy
■□□□□hard

Item	Difficulty	Achieved
[1] Use a real photograph	_	_
Get approval to use		100%
3D perspective		100%
[2] Simulate the display, look and feel	_	_
Font design		100%
Using web font		100%
Illuminate the numbers		80%
[3] Simulate the old era operations	_	_
Operation key: $[-=][\times \div][+=]$		90%
[4] Simulate the feel of the buttons	_	_
Mechanical Sound		100%
Imitate the shadow of a finger		100%
[5] Direction: Simulate it	_	_
On a web page		100%
Using modern technology		100%
Apply object-oriented programming		100%

Already at a similar level when looked at normally.

> But precisely to say, it is different...

QT-8B has a function of fixed-point display for decimal fraction (without division result).

Need to investigate more

I received message. >
I was very encouraged with it.

"I took my version from the cabinet to compare. The behavior as well as the looks very well resemble the real machine."

- Tiny Henst, owner of QT-8B.

from the Netherlands, 30th October 2023.

Thank You for Your Kind Attention

