

1 Bug List	1
2 File Index	3
2.1 File List	3
3 File Documentation	5
3.1 CMakeLists.txt File Reference	5
3.1.1 Function Documentation	5
3.1.1.1 cmake_minimum_required()	5
3.2 main.c File Reference	5
3.2.1 Macro Definition Documentation	7
3.2.1.1 ADC_ACQUISITION_TIME	8
3.2.1.2 ADC_CHANNEL_ID	8
3.2.1.3 ADC_CHANNEL_INPUT	8
3.2.1.4 ADC_GAIN	8
3.2.1.5 ADC_NID	8
3.2.1.6 ADC_REFERENCE	8
3.2.1.7 ADC_RESOLUTION	8
3.2.1.8 BOARDBUT1	8
3.2.1.9 BOARDBUT2 [1/2]	9
3.2.1.10 BOARDBUT2 [2/2]	9
3.2.1.11 BOARDBUT4	9
3.2.1.12 BOARDLED1	9
3.2.1.13 BUFFER_SIZE	9
3.2.1.14 FATAL_ERR	9
3.2.1.15 GPIO0_NID	9
3.2.1.16 len_dados	9
3.2.1.17 MAIN_SLEEP_TIME_MS	10
3.2.1.18 PWM0_NID	10
3.2.1.19 RX_TIMEOUT	10
3.2.1.20 RXBUF_SIZE	10
3.2.1.21 SAMP_PERIOD_MS	10
3.2.1.22 STACK_SIZE	10
3.2.1.23 thread_A1_prio	10
3.2.1.24 thread_A_prio	11
3.2.1.25 thread_B_prio	11
3.2.1.26 thread_C_prio	11
3.2.1.27 thread_D_prio	11
3.2.1.28 TXBUF_SIZE	11
3.2.1.29 UART_NID	11
3.2.2 Function Documentation	11
3.2.2.1 but1press_cbfunction()	11
3.2.2.2 but2press_cbfunction()	12

3.2.2.3 but4press_cbfunction()	12
3.2.2.4 K_THREAD_STACK_DEFINE() [1/5]	13
3.2.2.5 K_THREAD_STACK_DEFINE() [2/5]	13
3.2.2.6 K_THREAD_STACK_DEFINE() [3/5]	13
3.2.2.7 K_THREAD_STACK_DEFINE() [4/5]	13
3.2.2.8 K_THREAD_STACK_DEFINE() [5/5]	13
3.2.2.9 main()	14
3.2.2.10 thread_A1_code()	15
3.2.2.11 thread_A_code()	15
3.2.2.12 thread_B_code()	16
3.2.2.13 thread_C_code()	17
3.2.2.14 thread_D_code()	18
3.2.3 Variable Documentation	19
3.2.3.1 a1a	19
3.2.3.2 ab	19
3.2.3.3 adc_dev	19
3.2.3.4 bc	19
3.2.3.5 bd	20
3.2.3.6 Flag_1	20
3.2.3.7 Flag_2	20
3.2.3.8 Flag_3	20
3.2.3.9 Flag_4	20
3.2.3.10 flag_flag	20
3.2.3.11 gpio0_dev	20
3.2.3.12 my_timer	20
3.2.3.13 rep_mesg	21
3.2.3.14 sem_a1a	21
3.2.3.15 sem_ab	21
3.2.3.16 sem_bc	21
3.2.3.17 sem_bd	21
3.2.3.18 thread_A1_data	21
3.2.3.19 thread_A1_tid	21
3.2.3.20 thread_A_data	21
3.2.3.21 thread_A_tid	22
3.2.3.22 thread_B_data	22
3.2.3.23 thread_B_tid	22
3.2.3.24 thread_C_data	22
3.2.3.25 thread_C_tid	22
3.2.3.26 thread_D_data	22
3.2.3.27 thread_D_tid	22
3.2.3.28 uart_cfg	23
3.2.3.29 uart_dev	23

	3.2.3.30 uart_rx_rdy_flag	23
	3.2.3.31 welcome_mesg	23
3.3 main.h Fi	le Reference	23
3.3.1 D	etailed Description	24
3.3.2 F	unction Documentation	24
	3.3.2.1 but1press_cbfunction()	25
	3.3.2.2 but2press_cbfunction()	25
	3.3.2.3 but4press_cbfunction()	25
	3.3.2.4 main()	26
	3.3.2.5 thread_A1_code()	27
	3.3.2.6 thread_A_code()	28
	3.3.2.7 thread_B_code()	29
	3.3.2.8 thread_C_code()	30
	3.3.2.9 thread_D_code()	31
Index		33

Chapter 1

Bug List

File main.h

No known bugs.

2 Bug List

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

main.c main.h		5
	Application to control the light intensity of a given region. The system comprises a light sensor, an	
	illumination system and a Human-Machine Interface. The system can operate in two modes ∴ • Automatic: programmable via the terminal. Should allow setting On/Off periods and the	
	corresponding light intensity; • Manual: interface via the DevKit buttons. Allows to turn the	
	system On/Off (when in "Off" the system operates in automatic mode), via two of the buttons.	
	The other two buttons allow to set (increase/decrease) the desired intensity	23

File Index

Chapter 3

File Documentation

3.1 CMakeLists.txt File Reference

Functions

cmake_minimum_required (VERSION 3.20.0) find_package(Zephyr REQUIRED HINTS \$ENV

3.1.1 Function Documentation

3.1.1.1 cmake_minimum_required()

3.2 main.c File Reference

```
#include <zephyr.h>
#include <device.h>
#include <devicetree.h>
#include <drivers/gpio.h>
#include <drivers/adc.h>
#include <drivers/pwm.h>
#include <drivers/pwm.h>
#include <sys/printk.h>
#include <sys/__assert.h>
#include <string.h>
#include <timing/timing.h>
#include <stdlib.h>
#include <drivers/uart.h>
#include <drivers/uart.h>
#include <drivers/uart.h>
#include dependency graph for main.c:
```


Macros

- #define len_dados 10
- #define STACK SIZE 1024
- #define thread A1 prio 1
- #define thread A prio 1
- #define thread B prio 1
- #define thread_C_prio 1
- #define thread D prio 1
- #define SAMP PERIOD MS 1000
- #define ADC NID DT NODELABEL(adc)
- #define ADC RESOLUTION 10
- #define ADC_GAIN ADC_GAIN_1_4
- #define ADC REFERENCE ADC REF VDD 1 4
- #define ADC_ACQUISITION_TIME ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40)
- #define ADC CHANNEL ID 1
- #define ADC CHANNEL INPUT NRF SAADC INPUT AIN1
- #define BUFFER_SIZE 1
- #define GPIO0_NID DT_NODELABEL(gpio0)
- #define PWM0_NID DT_NODELABEL(pwm0)
- #define BOARDLED1 0x0d
- #define BOARDBUT1 0xb /* Pin at which BUT1 is connected. Addressing is direct (i.e., pin number) */
- #define BOARDBUT2 0xc
- #define BOARDBUT2 0xc
- #define BOARDBUT4 0x19
- #define FATAL_ERR -1 /* Fatal error return code, app terminates */
- #define UART NID DT NODELABEL(uart0) /* UART Node label, see dts */
- #define RXBUF SIZE 60 /* RX buffer size */
- #define TXBUF SIZE 60 /* TX buffer size */
- #define RX_TIMEOUT 1000 /* Inactivity period after the instant when last char was received that triggers an
 rx event (in us) */
- #define MAIN_SLEEP_TIME_MS 10 /* Time between main() activations */

Functions

- K THREAD STACK DEFINE (thread A1 stack, STACK SIZE)
- K THREAD STACK DEFINE (thread A stack, STACK SIZE)
- K_THREAD_STACK_DEFINE (thread_B_stack, STACK_SIZE)
- K_THREAD_STACK_DEFINE (thread_C_stack, STACK_SIZE)
- K_THREAD_STACK_DEFINE (thread_D_stack, STACK_SIZE)
- void thread A1 code (void *argA, void *argB, void *argC)
- void thread A code (void *argA, void *argB, void *argC)

Lê o valor da ADC e guarda numa variável global (shared memory between tasks A/B) no nosso Código denominada por "ab" e no final faz give do semáforo AB.

void thread_B_code (void *argA, void *argB, void *argC)

Neste Script, feito o take do semáforo AB É efetuada a filtragem, em que é realizado a média das últimas 10 amostras calculadas na thread A e o filtro rejeita todos os valores que estejam abaixo ou acima de 10% da média destas amostras e faz give do semáforo BD.

void thread_C_code (void *argA, void *argB, void *argC)

Modo Manual, sempre que se carregar no botão 2 incrementa a luminosidade e ao clicar no botão 4 a luminosidade do led decrementa igualmente, ou seja, sempre que um dos botões for pressionado, o PWM varia em ± 10% do período deste, dependendo do botão que for pressionado.

void thread_D_code (void *argA, void *argB, void *argC)

Modo Automatico: Faz o take que vem do semáforo BD (após a filtragem). Se o valor for menor que 500, significa que existe muita luz no meio, entao o led apaga. Quando estamos à luz ambiente, (valores lidos entre 500 e 900), o led está com uma intensidade de luz intermédia, se não existir luminosidade, (ambiente escuro) o led acende com a máxima intensidade.

void but1press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 1 is pressed, Update Flag 1.

• void but2press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 2 is pressed, Update Flag 2.

• void but4press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 4 is pressed, Update Flag 4.

• void main (void)

Main funtion: Initialize semaphores and configure GPIO_PIN.

Variables

- struct k thread thread A1 data
- struct k_thread thread_A_data
- struct k_thread thread_B_data
- · struct k thread thread C data
- struct k_thread thread_D_data
- k_tid_t thread_A1_tid
- k tid t thread A tid
- k_tid_t thread_B_tid
- · k tid t thread C tid
- · k tid t thread D tid
- int a1a =0
- int ab = 0
- int bc = 0
- int bd = 0
- struct k_sem sem_a1a
- struct k_sem sem_ab
- struct k_sem sem_bc
- struct k_sem sem_bd
- struct k_timer my_timer
- const struct device * adc_dev = NULL
- volatile int Flag_1 = 0
- volatile int Flag_3 = 0
- volatile int Flag_2 = 0
- volatile int Flag 4 = 0
- volatile bool flag_flag = 0
- const struct device * gpio0_dev
- const struct uart_config uart_cfg
- · const struct device * uart_dev
- · volatile int uart rx rdy flag
- uint8_t welcome_mesg [] = "UART demo: Type a few chars in a row and then pause for a little while ...\n\r"
- uint8_t rep_mesg [TXBUF_SIZE]

3.2.1 Macro Definition Documentation

3.2.1.1 ADC_ACQUISITION_TIME

#define ADC_ACQUISITION_TIME ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40)

3.2.1.2 ADC_CHANNEL_ID

#define ADC_CHANNEL_ID 1

3.2.1.3 ADC_CHANNEL_INPUT

#define ADC_CHANNEL_INPUT NRF_SAADC_INPUT_AIN1

3.2.1.4 ADC_GAIN

#define ADC_GAIN ADC_GAIN_1_4

3.2.1.5 ADC_NID

#define ADC_NID DT_NODELABEL(adc)

ADC definitions and includes

3.2.1.6 ADC_REFERENCE

#define ADC_REFERENCE ADC_REF_VDD_1_4

3.2.1.7 ADC_RESOLUTION

#define ADC_RESOLUTION 10

3.2.1.8 BOARDBUT1

#define BOARDBUT1 0xb /* Pin at which BUT1 is connected. Addressing is direct (i.e., pin number) */

3.2.1.9 BOARDBUT2 [1/2]

#define BOARDBUT2 0xc

3.2.1.10 BOARDBUT2 [2/2]

#define BOARDBUT2 0xc

3.2.1.11 BOARDBUT4

#define BOARDBUT4 0x19

3.2.1.12 BOARDLED1

#define BOARDLED1 0x0d

3.2.1.13 BUFFER_SIZE

#define BUFFER_SIZE 1

3.2.1.14 FATAL_ERR

#define FATAL_ERR -1 /* Fatal error return code, app terminates */

3.2.1.15 GPIO0_NID

#define GPIO0_NID DT_NODELABEL(gpio0)

Refer to dts file

3.2.1.16 len_dados

#define len_dados 10

Number of samples for the average

3.2.1.17 MAIN_SLEEP_TIME_MS

#define MAIN_SLEEP_TIME_MS 10 /* Time between main() activations */

3.2.1.18 PWM0_NID

#define PWM0_NID DT_NODELABEL(pwm0)

3.2.1.19 RX_TIMEOUT

#define RX_TIMEOUT 1000 /* Inactivity period after the instant when last char was received that triggers an rx event (in us) */

3.2.1.20 RXBUF_SIZE

#define RXBUF_SIZE 60 /* RX buffer size */

3.2.1.21 SAMP_PERIOD_MS

#define SAMP_PERIOD_MS 1000

Therad periodicity (in ms)

3.2.1.22 STACK_SIZE

#define STACK_SIZE 1024

Size of stack area used by each thread (can be thread specific, if necessary)

3.2.1.23 thread_A1_prio

#define thread_A1_prio 1

Thread scheduling priority

3.2.1.24 thread_A_prio

```
#define thread_A_prio 1
```

3.2.1.25 thread_B_prio

```
#define thread_B_prio 1
```

3.2.1.26 thread_C_prio

```
\#define thread\_C\_prio 1
```

3.2.1.27 thread_D_prio

```
#define thread_D_prio 1
```

3.2.1.28 TXBUF_SIZE

```
#define TXBUF_SIZE 60 /* TX buffer size */
```

3.2.1.29 UART_NID

```
\#define UART_NID DT_NODELABEL(uart0) /* UART Node label, see dts */
```

3.2.2 Function Documentation

3.2.2.1 but1press_cbfunction()

Parameters

```
arg3 const struct device *dev, struct gpio_callback *cb, uint32_t pins.
```

Returns

No returns

3.2.2.2 but2press cbfunction()

Parameters

```
arg3 const struct device *dev, struct gpio_callback *cb, uint32_t pins.
```

Returns

No returns

3.2.2.3 but4press_cbfunction()

Parameters

 $Flag_4 = 1;$

arg3 const struct device *dev, struct gpio_callback *cb, uint32_t pins.

Returns

No returns

3.2.2.4 K_THREAD_STACK_DEFINE() [1/5]

Create thread stack space

3.2.2.5 K_THREAD_STACK_DEFINE() [2/5]

3.2.2.6 K_THREAD_STACK_DEFINE() [3/5]

3.2.2.7 K_THREAD_STACK_DEFINE() [4/5]

3.2.2.8 K_THREAD_STACK_DEFINE() [5/5]

3.2.2.9 main()

```
void main (
     void )
```

```
Main funtion: Initialize semaphores and configure GPIO PIN.
```

```
void main(void)
 int err=0;
   printf("\n\r Illustration of the use of shmem + semaphores\n\r");
   ret = gpio_pin_configure(gpio0_dev, BOARDBUT1, GPIO_INPUT | GPIO_PULL_UP);
ret = gpio_pin_configure(gpio0_dev, BOARDBUT2, GPIO_INPUT | GPIO_PULL_UP);
   ret = gpio_pin_configure(gpio0_dev, BOARDBUT4, GPIO_INPUT | GPIO_PULL_UP);
       printk("Error %d: Failed to configure BUT 1 \r", ret);
   return;
   ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT1, GPIO_INT_EDGE_TO_ACTIVE);
   ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT2, GPIO_INT_EDGE_TO_ACTIVE); ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT4, GPIO_INT_EDGE_TO_ACTIVE);
   if (ret != 0) {
   printk("Error %d: failed to configure interrupt on BUT1 pin \r", ret);
   gpio_init_callback(&but1_cb_data, but1press_cbfunction, BIT(BOARDBUT1));
gpio_add_callback(gpio0_dev, &but1_cb_data);
   gpio_init_callback(&but2_cb_data, but2press_cbfunction, BIT(BOARDBUT2));
   gpio_add_callback(gpio0_dev, &but2_cb_data);
   gpio_init_callback(&but4_cb_data, but4press_cbfunction, BIT(BOARDBUT4));
   gpio_add_callback(gpio0_dev, &but4_cb_data);
   err=0;
   uint8_t welcome_mesg[] = "UART demo: Type a few chars in a row and then pause for a little while
        ...\n\r";
   uint8_t rep_mesg[TXBUF_SIZE];
   k_sem_init(&sem_ala, 0, 1);
   k_sem_init(&sem_ab, 0, 1);
   k_sem_init(&sem_bc, 0,
    k_{sem_init(\&sem_bd, 0, 1)}
    thread_A1_tid = k_thread_create(&thread_A1_data, thread_A1_stack,
        K_THREAD_STACK_SIZEOF(thread_A1_stack), thread_A1_code,
        NULL, NULL, NULL, thread_A1_prio, 0, K_NO_WAIT);
   thread_A_tid = k_thread_create(&thread_A_data, thread_A_stack,
        \label{eq:KTHREAD_STACK_SIZEOF} \texttt{K\_THREAD\_STACK\_SIZEOF} \texttt{(thread\_A\_stack), thread\_A\_code,}
   NULL, NULL, NULL, thread_A_prio, 0, K_NO_WAIT);
thread_B_tid = k_thread_create(&thread_B_data, thread_B_stack,
   K_THREAD_STACK_SIZEOF(thread_B_stack), thread_B_code,
        NULL, NULL, NULL, thread_B_prio, 0, K_NO_WAIT);
   thread_C_tid = k_thread_create(&thread_C_data, thread_C_stack,
        \label{eq:K_THREAD_STACK_SIZEOF} \texttt{(thread\_C\_stack), thread\_C\_}
   NULL, NULL, NULL, thread_C_prio, 0, K_NO_WAIT);
thread_D_tid = k_thread_create(&thread_D_data, thread_D_stack,
        K_THREAD_STACK_SIZEOF(thread_D_stack), thread_D_code,
        NULL, NULL, NULL, thread_D_prio, 0, K_NO_WAIT);
   return;
```

Parameters

NO_args without arguments

Returns

No returns

Welcome message

Create and init semaphores

Create tasks

3.2.2.10 thread_A1_code()

```
void thread_Al_code (
     void * argA,
     void * argB,
     void * argC)
```

Thread code prototypes

3.2.2.11 thread_A_code()

Lê o valor da ADC e guarda numa variável global (shared memory between tasks A/B) no nosso Código denominada por "ab" e no final faz give do semáforo AB.

```
void thread_A_code(void *argA , void *argB, void *argC)
   int err=0;
   printk("Thread A init\n");
    adc_dev = device_get_binding(DT_LABEL(ADC_NID));
    if (!adc dev) {
       printk("ADC device_get_binding() failed\n");
    err = adc_channel_setup(adc_dev, &my_channel_cfg);
       printk("adc_channel_setup() failed with error code %d\n", err);
    NRF_SAADC->TASKS_CALIBRATEOFFSET = 1;
    while(1) {
       k_sem_take(&sem_ala, K_FOREVER);
       err=adc_sample();
       if (err) {
           printk("adc_sample() failed with error code %d\n\r",err);
            if(adc_sample_buffer[0] > 1023) {
               printk("adc reading out of range\n\r");
           else {
               ab=adc_sample_buffer[0];
       printk("Thread A set ab value to: %d ",ab);
        k_sem_give(&sem_ab);
    }
}
```

Parameters

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

3.2.2.12 thread B code()

```
void thread_B_code (
     void * argA,
     void * argB,
     void * argC )
```

Neste Script, feito o take do semáforo AB É efetuada a filtragem, em que é realizado a média das últimas 10 amostras calculadas na thread A e o filtro rejeita todos os valores que estejam abaixo ou acima de 10% da média destas amostras e faz give do semáforo BD.

```
void thread_B_code(void *argA , void *argB, void *argC)
    int Array_dados[len_dados]={0};
    int k=0;
    printk("Thread B init (sporadic, waits on a semaphore by task A) \n");
        int sumador=0, somador_2=0, media=0, media_filtered=0;
        int contador=0;
        k_sem_take(&sem_ab, K_FOREVER);
        printk("Task B read ab value: %d\n",ab);
        for(int k=len_dados-1; k>0;k--) {
        Array_dados[k] = Array_dados[k-1];
        Array_dados[0] = ab;
       for(int i = 0; i < len_dados; i++){</pre>
            if (Array_dados[i] != 0) {
                sumador = sumador + Array_dados[i];
        media=sumador/len_dados;
        contador=0;
        for(int j = 0; j < len_dados; j++) {
   if(Array_dados[j] < (media - media*0.1) || Array_dados[j] > (media + media*0.1))
                somador_2=somador_2;
                somador_2 = somador_2 + Array_dados[j];
                contador =contador +1;
            }
        if(somador_2 != 0)
            media_filtered=somador_2/contador;
            media_filtered = 0;
        bd=ab:
        printk("Thread B set bc value to: %d\n",bc);
        k_sem_give(&sem_bd);
 }
```

Parameters

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

array de dados da adc

3.2.2.13 thread_C_code()

Modo Manual, sempre que se carregar no botão 2 incrementa a luminosidade e ao clicar no botão 4 a luminosidade do led decrementa igualmente, ou seja, sempre que um dos botões for pressionado, o PWM varia em ± 10% do período deste, dependendo do botão que for pressionado.

```
void thread_C_code(void *argA , void *argB, void *argC)
   const struct device *gpio0_dev;
   const struct device *pwm0_dev;
   int ret=0;
   unsigned int dcValue[]={100,90,80,70,60,50,40,30,20,10,0};
   unsigned int dcIndex=0;
   unsigned int pwmPeriod_us = 100;
  printk("Thread C init (sporadic, waits on a semaphore by task B)\n");
   gpio0_dev = device_get_binding(DT_LABEL(GPIO0_NID));
   if (gpio0_dev == NULL) {
       printk("Error: Failed to bind to GPIOO\n\r");
   return;
   pwm0_dev = device_get_binding(DT_LABEL(PWM0_NID));
   if (pwm0_dev == NULL) {
   printk("Error: Failed to bind to PWM0\n r");
   return;
   }
   while(1) {
       k_sem_take(&sem_bc, K_FOREVER);
       ret=0:
       if(Flag_2) {
          dcIndex++;
           if(dcIndex == 11)
               dcIndex = 0;
           Flag_2 = 0;
           printk("PMM DC value set to %u %%\n\r",dcValue[dcIndex]);
ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) ((pwmPeriod_us*dcValue[dcIndex])/100), PWM_POLARITY_NORMAL);
               printk("Error %d: failed to set pulse width\n", ret);
       return;
       if(Flag_4) {
           if(dcIndex == 0)
               dcIndex = 11;
           dcIndex--;
           Flag_4 = 0;
           printk("PWM DC value set to %u %%\n\r",dcValue[dcIndex]);
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) ((pwmPeriod_us*dcValue[dcIndex])/100), PWM_POLARITY_NORMAL);
           if (ret) {
               printk("Error %d: failed to set pulse width\n", ret);
       return:
       printk("Task C - PWM: %u % n", (unsigned int)(((pwmPeriod_us*bc)/1023)/10));
   }
```

Parameters

}

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

Prints dutty-cycle

3.2.2.14 thread_D_code()

Modo Automatico: Faz o take que vem do semáforo BD (após a filtragem). Se o valor for menor que 500, significa que existe muita luz no meio, entao o led apaga. Quando estamos à luz ambiente, (valores lidos entre 500 e 900), o led está com uma intensidade de luz intermédia, se não existir luminosidade, (ambiente escuro) o led acende com a máxima intensidade.

```
void thread_D_code(void *argA , void *argB, void *argC)
  const struct device *qpio0_dev;
  const struct device *pwm0_dev;
  int ret=0;
  unsigned int dcValue[]={100,90,80,70,60,50,40,30,20,10,0};
  unsigned int dcIndex=0;
  unsigned int pwmPeriod_us = 100;
  printk("Thread C init (sporadic, waits on a semaphore by task B)\n");
  gpio0_dev = device_get_binding(DT_LABEL(GPIO0_NID));
  if (gpio0_dev == NULL) {
      printk("Error: Failed to bind to GPIOO\n\r");
  return;
  pwm0_dev = device_get_binding(DT_LABEL(PWM0_NID));
   if (pwm0_dev == NULL) {
  printk("Error: Failed to bind to PWM0\n r");
   return;
  while(1) {
      k_sem_take(&sem_bd, K_FOREVER);
      printk("Valor lido para automatico %d\n\r",bd);
      ret=0;
      if(bd<500) {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
            pwmPeriod_us, (unsigned int) (pwmPeriod_us), PWM_POLARITY_NORMAL);
             (ret) {
               printk("Error %d: failed to set pulse width\n", ret);
       return;
          }
       else if(bd>500 && bd<900) {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) (pwmPeriod_us*0.5), PWM_POLARITY_NORMAL);
           if (ret) {
              printk("Error %d: failed to set pulse width\n", ret);
      else {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
            pwmPeriod_us, (unsigned int)(0), PWM_POLARITY_NORMAL);
           if (ret) {
              printk("Error %d: failed to set pulse width\n", ret);
       return;
```

Parameters

NO_args	without arguments
arg3	void *argA , void *argB, void *argC.

Takes one adc_sample

```
static int adc_sample(void)
{
  int ret;
  const struct adc_sequence sequence = {
     .channels = BIT(ADC_CHANNEL_ID),
     .buffer = adc_sample_buffer,
     .buffer_size = sizeof(adc_sample_buffer),
     .resolution = ADC_RESOLUTION,
};
if (adc_dev == NULL) {
     printk("adc_sample(): error, must bind to adc first \r");
     return -1;
}
ret = adc_read(adc_dev, &sequence);
if (ret) {
     printk("adc_read() failed with code %d\n", ret);
}
return ret;
```

Parameters

NO_args	without arguments
---------	-------------------

Returns

Read ADC_sample value (static int)

3.2.3 Variable Documentation

3.2.3.1 a1a

```
int ala =0
```

Global vars (shared memory between tasks A/B and B/C, resp)

3.2.3.2 ab

```
int ab = 0
```

3.2.3.3 adc dev

```
const struct device* adc_dev = NULL
```

3.2.3.4 bc

```
int bc = 0
```

3.2.3.5 bd

int bd = 0

3.2.3.6 Flag_1

volatile int $Flag_1 = 0$

3.2.3.7 Flag_2

volatile int $Flag_2 = 0$

3.2.3.8 Flag_3

volatile int Flag_3 = 0

3.2.3.9 Flag_4

volatile int $Flag_4 = 0$

3.2.3.10 flag_flag

volatile bool flag_flag = 0

3.2.3.11 gpio0_dev

const struct device* gpio0_dev

3.2.3.12 my_timer

struct $k_timer my_timer$

Global vars

3.2.3.13 rep_mesg

```
uint8_t rep_mesg[TXBUF_SIZE]
```

3.2.3.14 sem_a1a

struct k_sem sem_ala

Semaphores for task synch

3.2.3.15 sem_ab

struct $k_sem sem_ab$

3.2.3.16 sem_bc

struct k_sem sem_bc

3.2.3.17 sem_bd

struct k_sem sem_bd

3.2.3.18 thread_A1_data

struct k_thread thread_A1_data

Create variables for thread data

3.2.3.19 thread_A1_tid

k_tid_t thread_A1_tid

Create task IDs

3.2.3.20 thread_A_data

struct k_thread thread_A_data

3.2.3.21 thread_A_tid

k_tid_t thread_A_tid

3.2.3.22 thread_B_data

struct k_thread thread_B_data

3.2.3.23 thread_B_tid

k_tid_t thread_B_tid

3.2.3.24 thread_C_data

struct k_thread thread_C_data

3.2.3.25 thread_C_tid

k_tid_t thread_C_tid

3.2.3.26 thread_D_data

struct $k_thread thread_D_data$

3.2.3.27 thread_D_tid

k_tid_t thread_D_tid

3.2.3.28 uart_cfg

3.2.3.29 uart_dev

```
const struct device* uart_dev
```

3.2.3.30 uart_rx_rdy_flag

```
volatile int uart_rx_rdy_flag
```

3.2.3.31 welcome_mesg

```
uint8_t welcome_mesg[] = "UART demo: Type a few chars in a row and then pause for a little while ...\r"
```

Main function

3.3 main.h File Reference

Application to control the light intensity of a given region. The system comprises a light sensor, an illumination system and a Human-Machine Interface. The system can operate in two modes: • Automatic: programmable via the terminal. Should allow setting On/Off periods and the corresponding light intensity; • Manual: interface via the DevKit buttons. Allows to turn the system On/Off (when in "Off" the system operates in automatic mode), via two of the buttons. The other two buttons allow to set (increase/decrease) the desired intensity.

Functions

· void main (void)

Main funtion: Initialize semaphores and configure GPIO PIN.

void thread A code (void *argA, void *argB, void *argC)

Lê o valor da ADC e guarda numa variável global (shared memory between tasks A/B) no nosso Código denominada por "ab" e no final faz give do semáforo AB.

- void thread_A1_code (void *argA, void *argB, void *argC)
- void thread_B_code (void *argA, void *argB, void *argC)

Neste Script, feito o take do semáforo AB É efetuada a filtragem, em que é realizado a média das últimas 10 amostras calculadas na thread A e o filtro rejeita todos os valores que estejam abaixo ou acima de 10% da média destas amostras e faz give do semáforo BD.

void thread_C_code (void *argA, void *argB, void *argC)

Modo Manual, sempre que se carregar no botão 2 incrementa a luminosidade e ao clicar no botão 4 a luminosidade do led decrementa igualmente, ou seja, sempre que um dos botões for pressionado, o PWM varia em ± 10% do período deste, dependendo do botão que for pressionado.

void thread_D_code (void *argA, void *argB, void *argC) static int adc_sample(void)

Modo Automatico: Faz o take que vem do semáforo BD (após a filtragem). Se o valor for menor que 500, significa que existe muita luz no meio, entao o led apaga. Quando estamos à luz ambiente, (valores lidos entre 500 e 900), o led está com uma intensidade de luz intermédia, se não existir luminosidade, (ambiente escuro) o led acende com a máxima intensidade.

void but1press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 1 is pressed, Update Flag 1.

• void but2press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 2 is pressed, Update Flag 2.

• void but4press_cbfunction (const struct device *dev, struct gpio_callback *cb, uint32_t pins)

If button 4 is pressed, Update Flag 4.

3.3.1 Detailed Description

Application to control the light intensity of a given region. The system comprises a light sensor, an illumination system and a Human-Machine Interface. The system can operate in two modes: • Automatic: programmable via the terminal. Should allow setting On/Off periods and the corresponding light intensity; • Manual: interface via the DevKit buttons. Allows to turn the system On/Off (when in "Off" the system operates in automatic mode), via two of the buttons. The other two buttons allow to set (increase/decrease) the desired intensity.

Author

Frederico Moreira, Ana Sousa, Pedro Rodrigues

Date

21 June 2022

Bug No known bugs.

3.3.2 Function Documentation

3.3.2.1 but1press_cbfunction()

Parameters

arg3 const struct device *dev, struct gpio_callback *cb, uint32_t pins.

Returns

No returns

3.3.2.2 but2press_cbfunction()

Parameters

arg3 const struct device *dev, struct gpio_callback *cb, uint32_t pins.

Returns

No returns

3.3.2.3 but4press_cbfunction()

Parameters

arg3

const struct device *dev, struct gpio_callback *cb, uint32_t pins.

Returns

No returns

3.3.2.4 main()

```
void main (
     void )
```

Main funtion: Initialize semaphores and configure GPIO PIN.

```
void main(void) {
 int err=0;
  printf("\n\r Illustration of the use of shmem + semaphores\n\r");
   ret = gpio_pin_configure(gpio0_dev, BOARDBUT1, GPIO_INPUT | GPIO_PULL_UP);
   ret = gpio_pin_configure(gpio0_dev, BOARDBUT2, GPIO_INPUT | GPIO_PULL_UP);
ret = gpio_pin_configure(gpio0_dev, BOARDBUT4, GPIO_INPUT | GPIO_PULL_UP);
   if (ret < 0) {
       printk("Error %d: Failed to configure BUT 1 \r", ret);
   return;
   ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT1, GPIO_INT_EDGE_TO_ACTIVE);
   ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT2, GPIO_INT_EDGE_TO_ACTIVE);
   ret = gpio_pin_interrupt_configure(gpio0_dev, BOARDBUT4, GPIO_INT_EDGE_TO_ACTIVE);
   if (ret != 0) {
   printk("Error %d: failed to configure interrupt on BUT1 pin \r", ret);
   gpio_init_callback(&but1_cb_data, but1press_cbfunction, BIT(BOARDBUT1));
gpio_add_callback(gpio0_dev, &but1_cb_data);
   gpio_init_callback(&but2_cb_data, but2press_cbfunction, BIT(BOARDBUT2));
   gpio_add_callback(gpio0_dev, &but2_cb_data);
   gpio_init_callback(&but4_cb_data, but4press_cbfunction, BIT(BOARDBUT4));
   gpio_add_callback(gpio0_dev, &but4_cb_data);
   err=0;
   {\tt uint8\_t} {\tt welcome\_mesg[]} = "UART demo: Type a few chars in a row and then pause for a little while
        ..\n\r";
   uint8_t rep_mesg[TXBUF_SIZE];
   k sem init(&sem ala, 0, 1);
   k_sem_init(&sem_ab, 0, 1);
   k_sem_init(&sem_bc, 0, 1);
    k_sem_init(&sem_bd, 0, 1);
    thread_A1_tid = k_thread_create(&thread_A1_data, thread_A1_stack,
   K_THREAD_STACK_SIZEOF(thread_A1_stack), thread_A1_code,
       NULL, NULL, NULL, thread_A1_prio, 0, K_NO_WAIT);
   thread_A_tid = k_thread_create(&thread_A_data, thread_A_stack,
       K_THREAD_STACK_SIZEOF(thread_A_stack), thread_A_code,
   NULL, NULL, NULL, thread_A_prio, 0, K_NO_WAIT);
thread_B_tid = k_thread_create(&thread_B_data, thread_B_stack,
       K_THREAD_STACK_SIZEOF(thread_B_stack), thread_B_code,
       NULL, NULL, NULL, thread_B_prio, 0, K_NO_WAIT);
```

```
thread_C_tid = k_thread_create(&thread_C_data, thread_C_stack,
    K_THREAD_STACK_SIZEOF(thread_C_stack), thread_C_code,
    NULL, NULL, NULL, thread_C_prio, 0, K_NO_WAIT);
thread_D_tid = k_thread_create(&thread_D_data, thread_D_stack,
    K_THREAD_STACK_SIZEOF(thread_D_stack), thread_D_code,
    NULL, NULL, NULL, thread_D_prio, 0, K_NO_WAIT);
return;
```

Parameters

NO_args	without arguments
---------	-------------------

Returns

No returns

Welcome message

Create and init semaphores

Create tasks

3.3.2.5 thread_A1_code()

Neste script faz-se o toggle entre o sistema manual e o sistema automático através do botão 1, sendo esta thread periódica. Caso estejamos perante o caso Modo Manual, a próxima thread a ser executada é a thread 'C', caso contrário, é a thread 'A' a ser executada.

```
void thread_A1_code(void *argA , void *argB, void *argC)
{
    int64_t fin_time=0, release_time=0;
    int err=0;
    printk("Thread A1 init (periodic)\n");

    release_time = k_uptime_get() + SAMP_PERIOD_MS;
    while(1) {

        if (flag_flag==0) {
            printk("Modo manual\n");
            printk("Modo key 2 e 4\n");
            k_sem_give(&sem_bc);}

        else{

            printk("Modo automatico\n");

            k_sem_give(&sem_ala);
        }
        fin_time = k_uptime_get();
        if( fin_time < release_time) {
                k_msleep(release_time - fin_time);
                 release_time += SAMP_PERIOD_MS;
        }
    }
}</pre>
```

Parameters

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

Thread code prototypes

3.3.2.6 thread_A_code()

Lê o valor da ADC e guarda numa variável global (shared memory between tasks A/B) no nosso Código denominada por "ab" e no final faz give do semáforo AB.

```
void thread_A_code(void *argA , void *argB, void *argC)
   int err=0;
   printk("Thread A init\n");
   adc_dev = device_get_binding(DT_LABEL(ADC_NID));
       printk("ADC device_get_binding() failed\n");
   err = adc_channel_setup(adc_dev, &my_channel_cfg);
   if (err) {
       printk("adc_channel_setup() failed with error code %d\n", err);
   NRF_SAADC->TASKS_CALIBRATEOFFSET = 1;
   while(1) {
       k_sem_take(&sem_ala, K_FOREVER);
       err=adc_sample();
       if(err) {
           printk("adc_sample() failed with error code d\n\r",err);
            if(adc_sample_buffer[0] > 1023) {
               printk("adc reading out of range\n\r");
           else {
               ab=adc_sample_buffer[0];
       printk("Thread A set ab value to: %d ",ab);
       k_sem_give(&sem_ab);
```

Parameters

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

3.3.2.7 thread_B_code()

Neste Script, feito o take do semáforo AB É efetuada a filtragem, em que é realizado a média das últimas 10 amostras calculadas na thread A e o filtro rejeita todos os valores que estejam abaixo ou acima de 10% da média destas amostras e faz give do semáforo BD.

```
void thread_B_code(void *argA , void *argB, void *argC)
    int Array_dados[len_dados]={0};
    printk("Thread B init (sporadic, waits on a semaphore by task A)\n");
    while(1) {
       int sumador=0,somador_2=0,media=0, media_filtered=0;
       int contador=0:
       k_sem_take(&sem_ab, K_FOREVER);
       printk("Task B read ab value: %d\n",ab);
        for(int k=len_dados-1; k>0;k--) {
       Array_dados[k] = Array_dados[k-1];
       Array_dados[0]= ab;
       for(int i = 0; i < len_dados; i++) {</pre>
           if(Array_dados[i] != 0){
               sumador = sumador + Array_dados[i];
       media=sumador/len_dados;
       contador=0;
        for(int j = 0; j < len_dados; j++){</pre>
           if(Array_dados[j] < (media - media*0.1) || Array_dados[j] > (media + media*0.1))
               somador_2=somador_2;
                somador_2 = somador_2 + Array_dados[j];
                contador =contador +1;
           }
        if(somador_2 != 0)
           media_filtered=somador_2/contador;
           media_filtered = 0;
       bd=ab;
       printk("Thread B set bc value to: %d\n",bc);
        k_sem_give(&sem_bd);
}
```

Parameters

```
arg3 | void ∗argA, void ∗argB, void ∗argC.
```

Returns

No returns

array de dados da adc

3.3.2.8 thread_C_code()

Modo Manual, sempre que se carregar no botão 2 incrementa a luminosidade e ao clicar no botão 4 a luminosidade do led decrementa igualmente, ou seja, sempre que um dos botões for pressionado, o PWM varia em ± 10% do período deste, dependendo do botão que for pressionado.

```
void thread_C_code(void *argA , void *argB, void *argC)
   const struct device *gpio0_dev;
   const struct device *pwm0_dev;
   int ret=0;
   unsigned int dcValue[]={100,90,80,70,60,50,40,30,20,10,0};
   unsigned int dcIndex=0;
   unsigned int pwmPeriod_us = 100;
  printk("Thread C init (sporadic, waits on a semaphore by task B)\n");
   gpio0_dev = device_get_binding(DT_LABEL(GPIO0_NID));
   if (gpio0_dev == NULL) {
       printk("Error: Failed to bind to GPIOO\n\r");
   return;
   pwm0_dev = device_get_binding(DT_LABEL(PWM0_NID));
   if (pwm0_dev == NULL) {
   printk("Error: Failed to bind to PWM0\n r");
   return;
   }
   while(1) {
       k_sem_take(&sem_bc, K_FOREVER);
       ret=0:
       if(Flag_2) {
          dcIndex++;
           if(dcIndex == 11)
               dcIndex = 0;
           Flaq_2 = 0;
           printk("PMM DC value set to %u %%\n\r",dcValue[dcIndex]);
ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) ((pwmPeriod_us*dcValue[dcIndex])/100), PWM_POLARITY_NORMAL);
               printk("Error %d: failed to set pulse width\n", ret);
       return;
       if(Flag_4) {
           if(dcIndex == 0)
               dcIndex = 11;
           dcIndex--;
           Flag_4 = 0;
           printk("PWM DC value set to %u %%\n\r",dcValue[dcIndex]);
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) ((pwmPeriod_us*dcValue[dcIndex])/100), PWM_POLARITY_NORMAL);
           if (ret) {
               printk("Error %d: failed to set pulse width\n", ret);
       return:
       printk("Task C - PWM: %u % n", (unsigned int)(((pwmPeriod_us*bc)/1023)/10));
   }
```

Parameters

}

```
arg3 void *argA , void *argB, void *argC.
```

Returns

No returns

Prints dutty-cycle

3.3.2.9 thread_D_code()

```
void thread_D_code (
     void * argA,
     void * argB,
     void * argC)
```

Modo Automatico: Faz o take que vem do semáforo BD (após a filtragem). Se o valor for menor que 500, significa que existe muita luz no meio, entao o led apaga. Quando estamos à luz ambiente, (valores lidos entre 500 e 900), o led está com uma intensidade de luz intermédia, se não existir luminosidade, (ambiente escuro) o led acende com a máxima intensidade.

```
void thread_D_code(void *argA , void *argB, void *argC)
  const struct device *qpio0_dev;
  const struct device *pwm0_dev;
  int ret=0;
  unsigned int dcValue[]={100,90,80,70,60,50,40,30,20,10,0};
  unsigned int dcIndex=0;
  unsigned int pwmPeriod_us = 100;
  printk("Thread C init (sporadic, waits on a semaphore by task B)\n");
  gpio0_dev = device_get_binding(DT_LABEL(GPIO0_NID));
  if (gpio0_dev == NULL) {
      printk("Error: Failed to bind to GPIOO\n\r");
  return;
  pwm0_dev = device_get_binding(DT_LABEL(PWM0_NID));
   if (pwm0_dev == NULL) {
  printk("Error: Failed to bind to PWM0\n r");
   return;
  while(1) {
      k_sem_take(&sem_bd, K_FOREVER);
      printk("Valor lido para automatico %d\n\r",bd);
      ret=0;
      if(bd<500) {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
            pwmPeriod_us, (unsigned int) (pwmPeriod_us), PWM_POLARITY_NORMAL);
             (ret) {
               printk("Error %d: failed to set pulse width\n", ret);
       return;
          }
       else if(bd>500 && bd<900) {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
             pwmPeriod_us, (unsigned int) (pwmPeriod_us*0.5), PWM_POLARITY_NORMAL);
           if (ret) {
              printk("Error %d: failed to set pulse width\n", ret);
      else {
           ret = pwm_pin_set_usec(pwm0_dev, BOARDLED1,
            pwmPeriod_us, (unsigned int)(0), PWM_POLARITY_NORMAL);
           if (ret) {
              printk("Error %d: failed to set pulse width\n", ret);
       return;
```

Parameters

NO_args	without arguments
arg3	void *argA , void *argB, void *argC.

Takes one adc_sample

```
static int adc_sample(void)
{
  int ret;
  const struct adc_sequence sequence = {
        .channels = BIT(ADC_CHANNEL_ID),
        .buffer = adc_sample_buffer,
        .buffer_size = sizeof(adc_sample_buffer),
        .resolution = ADC_RESOLUTION,
};
  if (adc_dev == NULL) {
        printk("adc_sample(): error, must bind to adc first \r");
        return -1;
}
  ret = adc_read(adc_dev, &sequence);
  if (ret) {
        printk("adc_read() failed with code %d\n", ret);
}
  return ret;
```

Parameters

NO_args without arguments

Returns

Read ADC_sample value (static int)

Index

a1a	FATAL_ERR
main.c, 19	main.c, 9
ab	Flag_1
main.c, 19	main.c, 20
ADC_ACQUISITION_TIME	Flag_2
main.c, 7	main.c, 20
ADC_CHANNEL_ID	Flag_3
main.c, 8	main.c, 20
ADC_CHANNEL_INPUT	Flag_4
main.c, 8	main.c, 20
adc_dev	flag_flag
main.c, 19	main.c, 20
ADC_GAIN	aunia O. Havy
main.c, 8	gpio0_dev
ADC_NID	main.c, 20
main.c, 8	GPIO0_NID
ADC_REFERENCE	main.c, 9
main.c, 8	K THREAD STACK DEFINE
ADC_RESOLUTION	main.c, 13
main.c, 8	mamo, ro
	len_dados
bc	main.c, 9
main.c, 19	
bd	main
main.c, 19	main.c, 13
BOARDBUT1	main.h, 26
main.c, 8	main.c, 5
BOARDBUT2	a1a, 19
main.c, 8, 9	ab, 19
BOARDBUT4	ADC_ACQUISITION_TIME, 7
main.c, 9	ADC_CHANNEL_ID, 8
BOARDLED1	ADC_CHANNEL_INPUT, 8
main.c, 9	adc_dev, 19
BUFFER_SIZE	ADC_GAIN, 8
main.c, 9 but1press_cbfunction	ADC_NID, 8
	ADC_REFERENCE, 8
main.c, 11 main.h, 24	ADC_RESOLUTION, 8
but2press_cbfunction	bc, 19
main.c, 12	bd, 19
main.h, 25	BOARDBUTT, 8
but4press cbfunction	BOARDBUT2, 8, 9 BOARDBUT4, 9
main.c, 12	•
main.h, 25	BOARDLED1, 9 BUFFER SIZE, 9
	but1press cbfunction, 11
cmake_minimum_required	but2press_cbfunction, 12
CMakeLists.txt, 5	but4press cbfunction, 12
CMakeLists.txt, 5	FATAL_ERR, 9
cmake minimum required, 5	Flag 1, 20

34 INDEX

Flag_2, 20	main.c, 9
Flag_3, 20	my_timer
Flag_4, 20	main.c, 20
flag_flag, 20	DWMO NID
gpio0_dev, 20	PWM0_NID
GPIO0_NID, 9	main.c, 10
K_THREAD_STACK_DEFINE, 13	rep_mesg
len_dados, 9	main.c, 20
main, 13	RX TIMEOUT
MAIN_SLEEP_TIME_MS, 9	main.c, 10
my_timer, 20	RXBUF SIZE
PWM0_NID, 10	main.c, 10
rep_mesg, 20	
RX_TIMEOUT, 10	SAMP_PERIOD_MS
RXBUF_SIZE, 10	 main.c, 10
SAMP_PERIOD_MS, 10	sem a1a
sem_a1a, 21	main.c, 21
sem_ab, 21	sem_ab
sem_bc, 21	main.c, 21
sem_bd, 21	sem_bc
STACK_SIZE, 10	main.c, 21
thread_A1_code, 14	sem_bd
thread_A1_data, 21	main.c, 21
thread_A1_prio, 10	STACK_SIZE
thread_A1_tid, 21	main.c, 10
thread_A_code, 15	
thread_A_data, 21	thread_A1_code
thread_A_prio, 10	main.c, 14
thread_A_tid, 21	main.h, <mark>27</mark>
thread_B_code, 16	thread_A1_data
thread_B_data, 22	main.c, 21
thread_B_prio, 11	thread_A1_prio
thread_B_tid, 22	main.c, 10
thread_C_code, 16	thread_A1_tid
thread_C_data, 22	main.c, 21
thread_C_prio, 11	thread_A_code
thread_C_tid, 22	main.c, 15
thread_D_code, 17	main.h, <mark>28</mark>
thread_D_data, 22	thread_A_data
thread_D_prio, 11	main.c, 21
thread_D_tid, 22	thread_A_prio
TXBUF_SIZE, 11	main.c, 10
uart_cfg, 22	thread_A_tid
uart_dev, 23	main.c, 21
UART_NID, 11	thread_B_code
uart_rx_rdy_flag, 23	main.c, 16
welcome_mesg, 23	main.h, <mark>29</mark>
main.h, 23	thread_B_data
but1press_cbfunction, 24	main.c, 22
but2press_cbfunction, 25	thread_B_prio
but4press_cbfunction, 25	main.c, 11
main, 26	thread_B_tid
thread_A1_code, 27	main.c, 22
thread_A_code, 28	thread_C_code
thread_B_code, 29	main.c, 16
thread_C_code, 29	main.h, 29
thread_D_code, 30	thread_C_data
MAIN_SLEEP_TIME_MS	main.c, 22

INDEX 35

thread_C_prio main.c, 11 thread_C_tid main.c, 22 thread_D_code main.c, 17 main.h, 30 thread_D_data main.c, 22 thread_D_prio main.c, 11 thread_D_tid main.c, 22 TXBUF_SIZE main.c, 11 uart_cfg main.c, 22 uart_dev main.c, 23 UART_NID main.c, 11 uart_rx_rdy_flag main.c, 23 welcome_mesg main.c, 23