Exam Preparation Machine Learning S. 5 Bachelor WS21/22

Jonas Weßner

February 4, 2022

Contents

	1.1 Confusion Matrix	
	1.2 Accuracy	
	1.3 Precision	
	1.4 Recall	
	1.5 F1 Score	
	1.6 Importance of the metrics	. 4
2	One-hot encoding	4
3	Overfitting and underfitting	4
	3.1 How can it be detected?	. 4
	3.2 Possible solutions	. 4
4	PCA - principal component analysis	4
	4.1 Reasons for using PCA	
	4.2 Selection of good values for compon	. 4
5	Python Basics	4
	5.1 Slicing	. 4
	5.2 Data Extraction with Pandas	. 4
6	Regularization	_
•	6.1 What is regularization	. 4
	6.2 Lasso	
	6.3 Ridge	
	6.4 Dropout	
7	Machine Learning Tasks	4
	7.1 Classification	
	7.2 Regression	
	7.3 Clustering	. 4
8	MLP - Multi-Layer-Perceptron	4
	8.1 What is MPL?	
	8.2 Calculation of a number of parameters with and without bias $\dots \dots \dots \dots$. 4
9	Feature map calculation in convolutional NN	_
9		-

11 Activation functions	5
11.1 Softmax	. 5
11.2 Sigmoid	. 5
11.3 RELU	. 5
12 Solving non-linear problems with NNs	5
13 K-means	5
14 Gradient Descent	5
15 Hyperparameters of ML models	5
15.1 Learning Rate	. 5
15.2 Epochs	
15.3 Regularization	
15.4 Batch Size	. 5
15.5 Convolution Kernel size	
15.6 Max-Pooling	. 5
16 Logistic Regression and Cross Entropy	5
17 Linear Regression and Normal Equation	5
18 Decision Trees	5
19 K-nearest Neighbors	5

1 Metrics for evaluating predictions

The following metrics can be used to analyze the quality of a classification model.

1.1 Confusion Matrix

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

1.2 Accuracy

Accuracy answers the question "What is the probability that a prediction is correct?".

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

It is only good, if the real distribution of positive and negatives in the data is close to symmetric.

1.3 Precision

Precision answers the question "If we classify something as positive, how probable is it that it is actually positive?".

$$Precision = \frac{TP}{TP + FP}$$

1.4 Recall

Recall a.k.a. sensitivity answers the question "If a sample is positive, what is the probability we also label it as positive?".

$$Recall = \frac{TP}{TP + FN}$$

1.5 F1 Score

The F1-score divides the true positives by the sum of the true positives and the mean of the false positives and false negatives. This a high F1-score requires the model to make not few false predictions in either direction. Therefore F1-score is better than accuracy if the real distribution of positive and negative values in the dataset is uneven.

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{TP}{TP + \frac{1}{2} \cdot (FP + FN)}$$

- 1.6 Importance of the metrics
- 2 One-hot encoding
- 3 Overfitting and underfitting
- 3.1 How can it be detected?
- 3.2 Possible solutions
- 4 PCA principal component analysis
- 4.1 Reasons for using PCA
- 4.2 Selection of good values for compon
- 5 Python Basics
- 5.1 Slicing
- 5.2 Data Extraction with Pandas
- 6 Regularization
- 6.1 What is regularization
- 6.2 Lasso
- 6.3 Ridge
- 6.4 Dropout
- 7 Machine Learning Tasks
- 7.1 Classification
- 7.2 Regression
- 7.3 Clustering
- 8 MLP Multi-Layer-Perceptron
- 8.1 What is MPL?
- 8.2 Calculation of a number of parameters with and without bias
- 9 Feature map calculation in convolutional NN
- 10 Input and output sizes in Neural networks

Describe here: Size of inputs and outputs in MLP and convolutional NN calculated from image size and the number of output classes.

- 11 Activation functions
- 11.1 Softmax
- 11.2 Sigmoid
- 11.3 RELU
- 12 Solving non-linear problems with NNs

Use example of logical function XOR here.

- 13 K-means
- 14 Gradient Descent
- 15 Hyperparameters of ML models
- 15.1 Learning Rate
- 15.2 Epochs
- 15.3 Regularization
- 15.4 Batch Size
- 15.5 Convolution Kernel size
- 15.6 Max-Pooling
- 16 Logistic Regression and Cross Entropy
- 17 Linear Regression and Normal Equation
- 18 Decision Trees
- 19 K-nearest Neighbors