Math 69: Logic Winter '23

Homework assigned February 10, 2023

Prof. Marcia Groszek Student: Amittai Siavava

For this assignment, \mathcal{L} is the language of first-order logic with equality, countably many constant symbols, $c_0, c_1, \ldots, c_n, \ldots$, and no other predicate, constant, or function symbols. We will find all the complete theories of \mathcal{L} . This is a single problem in five parts. You may use completeness, soundness, and compactness.

If $\mathfrak A$ is a structure for $\mathcal L$, define an equivalence relation on the set $C = \{c_0, c_1, \ldots, c_n, \ldots\}$ of constant symbols of $\mathcal L$ by

$$c_m \equiv_{\mathfrak{A}} c_n \iff c_m^{\mathfrak{A}} = c_n^{\mathfrak{A}},$$

That is, two constant symbols are equivalent if and only if they name the same element of \mathfrak{A} .

Suppose that $\mathfrak A$ and $\mathfrak B$ are structures such that $\equiv_{\mathfrak A}$ is the same as $\equiv_{\mathfrak B}$. Then two constant symbols name the same element in $\mathfrak A$ if and only if they name the same element in $\mathfrak B$.

Let \equiv be any equivalence relation on C. Then there is a structure $\mathfrak A$ for $\mathcal L$ such that $\equiv_{\mathfrak A}$ is the same relation as \equiv . Namely, let the universe of the structure be the set of equivalence classes of constant symbols, and let each constant symbol name its own equivalence class:

$$|\mathfrak{A}| = C/\equiv$$
, and $c_n^{\mathfrak{A}} = [c_n].$

The most complicated part of this is the notation. The relation \equiv on C specifies whether constants c_n and c_m are to refer to the same element of a structure or to different elements. Therefore, as long as \equiv actually is an equivalence relation, you can create a structure obeying those rules.

Problem 1.

Show that if $\mathfrak A$ is any finite structure for $\mathcal L$, there is a countable structure $\mathfrak B$ such that $\mathfrak B$ is elementarily equivalent to $\mathfrak A$, and in $\mathfrak B$, infinitely many elements are not named by constant symbols. In other words, we have that

$$\left\{b \in |\mathfrak{B}| \mid \forall n(b \neq c_n^{\mathfrak{B}})\right\}$$

is infinite. (Hint: Use compactness.)

Compactness Theorem: If $\Gamma \vDash \varphi$, then for some finite $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \vDash \varphi$. (In other words, a set Γ has a model iff every finite subset has a model)

Elementary equivalence: Two structures $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent if $\models_{\mathfrak A} \alpha \iff \models_{\mathfrak B} \alpha$,

Let \mathfrak{A} be a *finite* structure for \mathcal{L} such that $|\mathfrak{A}| \neq \infty$.

Define B as such

(i) Include translations of the constant symbols from C in $|\mathfrak{B}|$. That is; for each $c_n \in C$, $c_n^{\mathfrak{B}} \in |\mathfrak{B}|$. Whenever $c_m^{\mathfrak{A}} = c_n^{\mathfrak{A}}$, let $c_m^{\mathfrak{B}} = c_n^{\mathfrak{B}}$ so that $c_m \equiv_{\mathfrak{B}} c_n$ if and only if $c_m =_{\mathfrak{A}} c_n$.

- (ii) Define a new set of countably many elements $B = \{b_0, b_1, b_2, \ldots, b_n, \ldots\}$ such that:
 - $\forall i \forall j \neg (b_i = c_j)$.
 - $\forall i \forall j (i = j \lor \neg (b_i = b_j)).$
- (iii) For each $b_i \in B$, let $b_i^{\mathfrak{B}} \in |\mathfrak{B}|$.

Then $\mathfrak B$ is an infinite structure for $\mathcal L$ that is elementarily equivalent to $\mathfrak A$.

Problem 2.

Show that if $\mathfrak A$ and $\mathfrak B$ are countable structures for $\mathcal L$ in which infinitely many elements sre not named by constant symbols, and $\equiv_{\mathfrak A}$ is the same relation as $\equiv_{\mathfrak B}$, then $\mathfrak A$ is isomorphic to $\mathfrak B$.

Since $\equiv A$ is the same relation as $\equiv B, \mathfrak{A}$ and \mathfrak{B} agree on which of the constants in C name the same elements.

Let $A = \{a_1, a_2, \dots, a_n, \dots\}$ be the set of countable elements of $\mathfrak A$ that are not named by constant symbols, and let $B = \{b_1, b_2, \dots, b_n, \dots\}$ be the set of countable elements of $\mathfrak B$ that are not named by constant symbols.

Define a bijection from $|\mathfrak{A}|$ to $|\mathfrak{B}|$ as follows:

$$\psi: |\mathfrak{A}| \to |\mathfrak{B}|$$
$$c_n^{\mathfrak{A}} \mapsto c_n^{\mathfrak{B}}$$
$$a_i \mapsto b_i$$

Then ψ is an isomorphism, since:

$$c_n^{\mathfrak{A}} \equiv_{\mathfrak{A}} c_m^{\mathfrak{A}} \qquad \Longleftrightarrow \qquad c_n^{\mathfrak{B}} \equiv_{\mathfrak{B}} c_m^{\mathfrak{B}},$$

but $c_n^{\mathfrak{B}} = \psi(c_n^{\mathfrak{A}})$ and $c_m^{\mathfrak{B}} = \psi(c_m^{\mathfrak{A}})$, so

$$c_n^{\mathfrak{A}} \equiv_{\mathfrak{A}} c_m^{\mathfrak{A}} \iff \psi(c_n^{\mathfrak{A}}) \equiv_{\mathfrak{B}} \psi(c_m^{\mathfrak{A}}).$$

Since every element in A and every element in B is not named by any constant symbol, and each element is distinct from all other elements in the set, each $a \in A$ is in its own equivalence class and so is each $b \in B$. ψ matches element a_i in $\mathfrak A$ to element b_i in $\mathfrak B$, so it guarantees that any element in a_i maps to an element in a_i (since a_i only contains the single element a_i , and a_i if and only if $a_i \in \mathfrak B$ is in its own equivalence class and so is each a_i only contains the single element a_i , and a_i in a_i in a_i only if a_i in a_i in a_i in a_i in a_i only if a_i in a_i i

Therefore ψ is an isomorphism, and $\mathfrak A$ is isomorphic to $\mathfrak B$.

Problem 3.

Suppose $\mathfrak A$ and $\mathfrak B$ are two structures for $\mathcal L$, each of which is countable (or possibly finite). Which of the following conditions imply which others? In each case, either explain or give a counter-example.

- (i) \mathfrak{A} is isomorphic to \mathfrak{B} .
- (ii) \mathfrak{A} is elementarily equivalent to \mathfrak{B} .
- (iii) $\equiv_{\mathfrak{A}}$ is the same relation as $\equiv_{\mathfrak{B}}$.
 - (i) implies (ii) and (iii).

If $\mathfrak A$ is isomorphic to $\mathfrak B$ under some isomorphism ψ , then $\psi(c_i^{\mathfrak A}) \equiv_{\mathfrak B} \psi(c_j^{\mathfrak A}) \mathfrak A$ whenever $c_i^{\mathfrak A} \equiv_{\mathfrak A} c_j^{\mathfrak A}$ for every constant symbol, and, similarly, $\psi(a_i) \equiv_{\mathfrak B} \psi(a_j)$ whenever $a_i \equiv_{\mathfrak A} a_j$ symbol a_i in |A| that is not in C. Therefore, $\equiv_{\mathfrak A}$ and $\equiv_{\mathfrak B}$ are the same relation since they agree on all elements in the universes of the structures. Furthermore, whenever $\mathfrak A$ tautologically implies that $\alpha \equiv_{\mathfrak A} \beta$ for some $\alpha, \beta \in |\mathfrak A|$, $\mathfrak B$ also tautologically implies that $\psi(\alpha) \equiv_{\mathfrak B} \psi(\beta)$, so $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent.

• (ii) implies (iii), but does not necessarily imply (i).

If $\mathfrak A$ is elementarily equivalent to $\mathfrak B$, then $c_i \equiv_{\mathfrak A} c_j$ if and only if $c_i \equiv_{\mathfrak B} c_j$, so $\equiv_{\mathfrak A}$ and $\equiv_{\mathfrak B}$ are the same relation.

However, $\mathfrak A$ and $\mathfrak B$ may not be isomorphic.

If both $\mathfrak A$ and $\mathfrak B$ have a countably infinite set of non-constant symbols, or they both have the same finite number of non-constant symbols, then they are isomorphic (since there exists a bijection between $|\mathfrak A|$ and $|\mathfrak B|$ that preserves the relation).

If both $\mathfrak A$ and $\mathfrak B$ have a finite number of non-constant symbols but the number of non-constant symbols in $\mathfrak A$ does not equal the number of non-constant symbols in $\mathfrak B$, or if one of $\mathfrak A$ has an infinite number of non-constant symbols while the other has a finite number then there is no possible bijection between the sets of non-constant symbols so $\mathfrak A$ cannot be isomorphic to $\mathfrak B$.

• (iii) implies (ii) but does not necessarily imply (i)

If $\equiv_{\mathfrak{A}}$ is the same relation as $\equiv_{\mathfrak{B}}$, then $c_i \equiv_{\mathfrak{A}} c_j$ if and only if $c_i \equiv_{\mathfrak{B}} c_j$, so \mathfrak{A} and \mathfrak{B} always agree on any two constant symbols being in the same equivalence class or being in different equivalence classes. Therefore, \mathfrak{A} and \mathfrak{B} are elementarily equivalent.

However, as in the previous part, it is impossible for $\mathfrak A$ and $\mathfrak B$ to be isomorphic unless they either have the same number of non-constant symbols or they both have a countably infinite set of non-constant symbols.

Problem 4.

Suppose \equiv is an equivalence relation on C. Define

$$\Sigma_{\equiv} = \left\{ c_n = c_m \mid c_m \equiv c_n \right\} \cup \left\{ c_n \neq c_m \mid c_n \not\equiv c_m \right\}.$$

Show that if \equiv has infinitely many equivalence classes, then $Cn\Sigma_{\equiv}$ is a complete theory.

Suggestion: Explain why $\mathfrak A$ is a model of $Cn\Sigma_{\equiv}$ if and only if $\Xi_{\mathfrak B}$ is the same relation as Ξ . Then use (2) and (3) to show that if $\mathfrak A$ and $\mathfrak B$ are any two models for $Cn\Sigma_{\equiv}$, then there are structures $\mathfrak A^*$ and $\mathfrak B^*$ elementarily equivalent to $\mathfrak A$ and $\mathfrak B$ such that $\mathfrak A^*$ and $\mathfrak B^*$ are isomorphic.

Suppose $\mathfrak A$ is a model for Σ_{\equiv} . If $\mathfrak A$ satisfies Σ_{\equiv} under some variable assignment s, then for any two constant symbols c_m and c_n ,

- (i) If $\models_{\mathfrak{A}} c_m \equiv c_n[s]$, then Σ_{\equiv} contains a sentence that says $c_m = c_n$. So, by definition of $\equiv_{\mathfrak{A}}$, we also have that $c_m \equiv_{\mathfrak{A}} c_n$.
- (ii) If $\models_{\mathfrak{A}} c_m \not\equiv c_n[s]$, then Σ_{\equiv} contains a sentence that says $c_m \not\equiv c_n$, so $c_m \not\equiv_{\mathfrak{A}} c_n$.

Therefore, if $[c_i]_{\equiv}$ is the equivalence class of c_i under \equiv , and $[c_i]_{\equiv_{\mathfrak{A}}}$ is the equivalence class of c_i under $\equiv_{\mathfrak{A}}$, then $[c_i]_{\equiv} = [c_i]_{\equiv_{\mathfrak{A}}}$ since the two equivalence relations agree on any two constants being in the same equivalence class or not being in the same class. Therefore, \equiv and $\equiv_{\mathfrak{A}}$ are the same relation.

Now, suppose $\mathfrak A$ and $\mathfrak B$ are models for $Cn\Sigma_{\equiv}$, then $\equiv_{\mathfrak A}$ is the same same relation as \equiv , and $\equiv_{\mathfrak B}$ is also the same relation as \equiv , meaning $\equiv_{\mathfrak A}$ is the same relation as $\equiv_{\mathfrak B}$. Extend $\mathfrak A$ and $\mathfrak B$ to $\mathfrak A^*$ and $\mathfrak B^*$ respectively by adding new, distinct symbols as in the proof of problem (2). That is, for each $i \in \mathbb N$, we define a_i to be a new symbol that does not yet exist in $|\mathfrak A|$, and b_i to be a new symbol that does not yet exist in $|\mathfrak A|$. We then define $|\mathfrak A^*| = |\mathfrak A| \cup \{a_i \mid i \in \mathbb N\}$ and $|\mathfrak B^*| = |\mathfrak B| \cup \{b_i \mid i \in \mathbb N\}$. Then $\mathfrak A^*$ are models for $Cn\Sigma_{\equiv}$, $\mathfrak A^*$ is elementarily equivalent to $\mathfrak A$, $\mathfrak B^*$ is elementarily equivalent to $\mathfrak B$, and $\mathfrak A^*$ is is isomorphic to $\mathfrak B^*$ since they have the same cardinality and $\equiv_{\mathfrak A}$ is the same relation as $\equiv_{\mathfrak B}$.

Problem 5.

Suppose \equiv is an equivalence relation on C with finitely many equivalence classes. Describe all the complete (consistent) theories of T with the property that $Cn\Sigma_{\equiv} \subset T$, by saying what sentences you need to add to Σ_{\equiv} to produce the set of axioms for T.

Hint: Consider the possible ways to get finite or infinite countable models of $Cn\Sigma_{\equiv}$ that are not isomorphic. Then consider whether these non-isomorphic structures have different theories.

Since every complete theory of \mathcal{L} contains some $Cn\Sigma_{\equiv}$ (because every structure for \mathfrak{L} satisfies some Σ_{\equiv}), problems (4) and (5) together describe all the complete theories of \mathcal{L} .

First, T must satisfy all the consequences of Σ_{\equiv} , i.e. $Cn\Sigma_{\equiv}\subset T$, so the set of axioms of T must contain all the axioms in Σ_{\equiv} .

One way to generate axioms for T is by adding axioms to Σ_{\equiv} that specify additional elements but do not alter the conditions that Σ_{\equiv} places on the constant symbols.

For example:

- (i) $\Sigma_1 = \Sigma_{\Xi} \cup \{\exists x_1 \forall c_i^{\mathfrak{A}} \neg (x_1 = c_i^{\mathfrak{A}})\}$ specifies that $|\mathfrak{A}|$ contains translations of all the constant symbols and $|\mathfrak{A}|$ also contains at least one non-constant symbol.
- (ii) $\Sigma_2 = \Sigma_1 \cup \{\exists x_1 \exists x_2 (\neg(x_1 = x_2) \land \forall c_i (\neg(x_1 = c_i) \land \neg(x_2 = c_i)))\}$ specifies that \mathfrak{A} contains translation of the constant symbols and it also contains at least two non-constant symbols.
- (iii) Inductively, we define Σ_n as follows:

$$\Sigma_n = \Sigma_{n-1} \cup \{\exists x_1 \dots \exists x_n (\neg(x_1 = x_2) \land \dots \land \neg(x_{n-1} = x_n) \land \forall c_i (\neg(x_1 = c_i) \land \dots \land \neg(x_n = c_i)))\}$$

Define x_n to be the new non-constant symbol added at step n, then Σ_n is countable. It is also finite for all finite n.

 Σ_1 and Σ_2 are not isomorphic since they have different cardinalities. Likewise, all such finite models of $\mathfrak A$ that have different cardinalities are not isomorphic and they have different theories.