Trimodal Mosei Documentation

Contents

Module trimodal-fusion-for-mosei	1
Functions	
Function Bimodal	1
Function Trimodal	1
Function calc_test_result_mosei3	1
Function createOneHot_mosei3	2
Function get_report	2
Function get_scores	2
Function load_bim_acts_mosei3	
Function load_unimodal_activations_mosei3	3
Function plot_clf_report	3
Function plot_confusion_matrix	
Function plot_tag_scores	3
Function test_res_maker	4

Module trimodal-fusion-for-mosei

Functions

Function Bimodal

```
def Bimodal()
```

Trains bimodal layers using the input feature vector and creates the bim_act.pickle file. The bimodal models and fusion layers are defined herein

Returns: None

Function Trimodal

```
def Trimodal()
```

Trains the trimodal layers Returns: result: a 3D numpy array of predictions of model in one hot encoded form (test_size by sequence_length by number of classes) test_label: a 3D numpy array of true labels in one hot encoded form (test_size by sequence_length by number of classes) test_mask: a 2D numpy array telling which inputs to ignore while calculating accuracies

Function calc_test_result_mosei3

```
def calc_test_result_mosei3(
    result,
    test_label,
    test_mask
)
```

Helper function for test_res_maker

Args: result: a 3D numpy array of predictions of model in one hot encoded form (test_size by sequence_length by number of classes) test_label: a 3D numpy array of true labels in one hot encoded form (test_size by se-

quence_length by number of classes) test_mask: a 2D numpy array telling which inputs to ignore while calculating accuracies

Returns: None

Function createOneHot mosei3

```
def createOneHot_mosei3(
    train_label
)
```

this function takes a np array of labels and converts it into a one hot encoded 2D matrix for use with categorical_crossentropy loss

Args: train_label: a 1d numpy array of integers corresponding to labels test_label: a 1d numpy array of integers corresponding to labels

Returns ——— a pair of 2D numpy arrays of size (dimension 0 of corresponding input, max label value in corresponding input+1)

Function get_report

```
def get_report(
    y_true,
    y_pred,
    classes
)
```

This function parses the classification report given by sklearn to get all the row names metric values as floats and supports for each class label.

```
Args —-= y_true : true (numerical) labels of data
y_pred predicted (numerical) labels of the same data
classes a python list of class labels
Returns —-= class_names : a python list of class labels (here, row names from report)
```

plotMat numerical values (metrics) in the classification report
support the number of instances for each class_name present in report

Function get_scores

```
def get_scores(
   y_true,
   y_pred,
   classes
)
```

This function calculates the correct and incorrect counts for each label as a fraction to the total instances of that class.

```
Args ——= y_true: true (numerical) labels of data
y_pred predicted (numerical) labels of the same data
classes a python list of class labels
Returns ——= numpy array of tuple of (correct,incorrect) fractions for each class
```

Function load_bim_acts_mosei3

```
def load_bim_acts_mosei3()
```

loads the pickle file saved at "./bim_act.pickle" containing a dictionary of bimodal activations

Returns: merged_train_data: 3D numpy array of input to trimodal layers merged_test_data: 3D numpy array to test trimodal layers train_label: 3D numpy array of one hot encoded labels test_label: 3D numpy array of one

hot encoded labels to test trimodal layers train_mask: 2D numpy array telling utternaces to ignore in train data test_mask: 2D numpy array telling utternaces to ignore in test data max_len: maximum sequence length

Function load_unimodal_activations_mosei3

```
def load_unimodal_activations_mosei3()
```

load unimodal activations saved at "../input/multimodal-sentiment/unimodal.pickle" The pickle file must contain a dictionary of numpy arrays having the feature vectors with keys: 'audio_train', 'video_train', 'audio_test', 'text_train', 'test_mask', 'test_label', 'video_test', 'train_mask', 'text_test', 'train_label'

Returns: merged_train_data: 3D numpy array of input to trimodal layers merged_test_data: 3D numpy array to test trimodal layers train_label: 3D numpy array of one hot encoded labels test_label: 3D numpy array of one hot encoded labels to test trimodal layers train_mask: 2D numpy array telling utternaces to ignore in train data test_mask: 2D numpy array telling utternaces to ignore in test data

Function plot_clf_report

```
def plot_clf_report(
    classes,
    plotMat,
    support,
    cmap=<matplotlib.colors.LinearSegmentedColormap object>
)
```

This function plots the classification report as an image, using the parsed values from the sklearn classification report and saves the image in the current working directory.

```
Args ——= classes: a python list of class labels

plotMat numerical values (metrics) in the classification report
support the number of instances for each class present in report
cmap the color map to be used in the output image
filename the filename with which the plot will be saved (can be a path too)
```

Returns ——— No return value. Shows and saves the report image.

Function plot_confusion_matrix

```
def plot_confusion_matrix(
    classes,
    mat,
    normalize=True,
    cmap=<matplotlib.colors.LinearSegmentedColormap object>
)
```

This function plots the confusion matrix as an image, using the parsed values from the confusion matrix and saves the image in the current working directory.

```
Args ——= classes: a python list of class labels

mat numerical values (metrics) in the confusion matrix

normalize controls the normalization of the confusion matrix (rows sum to 1 or not)

cmap the color map to be used in the output image

filename the filename with which the plot will be saved (can be a path too)
```

Returns ——— No return value. Shows and saves the confusion matrix image.

Function plot_tag_scores

```
def plot_tag_scores(
    classes,
    scores,
    normalize=True
```

)

This function plots the histogram for tag scores and saves the image in the current working directory.

```
Args —-= classes : a python list of class labels
```

scores a dictionary of correct and incorrect counts for each label
filename the filename with which the plot will be saved (can be a path too)

Returns ——— No return value. Shows and saves the tag scores plot.

$\textbf{Function} \ \texttt{test_res_maker}$

```
def test_res_maker(
    result,
    test_label,
    test_mask
)
```

Generates various classification stats in terminal

Args: result: a 3D numpy array of predictions of model in one hot encoded form (test_size by sequence_length by number of classes) test_label: a 3D numpy array of true labels in one hot encoded form (test_size by sequence_length by number of classes) test_mask: a 2D numpy array telling which inputs to ignore while calculating accuracies

Returns: None

Generated by *pdoc* 0.9.2 (https://pdoc3.github.io).