

Kernel: Definition

- Consider a transformation $\Phi: \mathcal{X} \to \mathcal{Z}$
 - \bullet E.g., transform features in space ${\mathcal X}$ non-linearly into higher-dimensional space ${\mathcal Z}$
- Kernel of transformation Φ yields inner product of two points $\underline{x},\underline{x}'\in\mathcal{X}$ in transformed space \mathcal{Z}

$$\mathcal{K}_{\Phi}(\underline{\textbf{x}},\underline{\textbf{x}}') \triangleq \langle \Phi(\underline{\textbf{x}}), \Phi(\underline{\textbf{x}}') \rangle = \Phi(\underline{\textbf{x}})^T \Phi(\underline{\textbf{x}}') = \underline{\textbf{z}}^T \underline{\textbf{z}}'$$

• Why doing this?

Kernel: Expression From the Transform

- If you have an expression for Φ , compute a closed formula for the kernel
- E.g., if transformation is $\Phi:\mathbb{R}^2\to\mathbb{R}^6,$ it introduces interaction terms:

$$\underline{z} = \Phi(\underline{x}) = \Phi(x_1, x_2) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

• Kernel of Φ is:

$$K_{\Phi}(\underline{\boldsymbol{x}},\underline{\boldsymbol{x}}') = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)^T (1, x'_1, x'_2, x'_1^2, x'_2^2, x'_1 x'_2)
= 1 + x_1 x'_1 + x_2 x'_2 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + x_1 x_2 x'_1 x'_2$$

Gaussian Kernel

- Aka "exponential kernel" or "Radial Basis Function" (RBF) kernel
- A Gaussian kernel has the form:

$$K(\underline{x},\underline{x}') = \exp(-\gamma \|\underline{x} - \underline{x}'\|^2) = \exp(-\frac{\|\underline{x} - \underline{x}'\|^2}{\sigma^2})$$

ullet It can be shown to be an inner product in an infinite dimension ${\mathcal Z}$

Kernel as Way to Measure Similarity

Intuition: The Gaussian kernel

$$K(\underline{\mathbf{x}},\underline{\mathbf{x}}') = \exp(-\gamma \|\underline{\mathbf{x}} - \underline{\mathbf{x}}'\|^2)$$

measures "similarity" of point \underline{x} to point \underline{x}_i :

- $K(\underline{x},\underline{x}')$ is 1 when points are the same
- Value is 0 when points are distant
- Effect strength depends on γ
- Using kernels to compute features:
 - Kernels often rely on distance between vectors
 - E.g., euclidean norm $\|\underline{x} \underline{x}'\|^2$
 - Need to scale features for similar effects among coordinates

Linear Kernel

- Consider the transformation Φ as the identity function $\Phi(\underline{x}) = \underline{x}$
- The kernel function is:

$$K_{\Phi}(\underline{x},\underline{x}') = \underline{x}^T\underline{x}'$$

- A linear kernel means using no kernel
- It is just a "pass-through"

Polynomial Kernel

ullet Given a point $\underline{x} \in \mathbb{R}^n$, consider the function with two parameters k and d

$$K_{\Phi}(\underline{\mathbf{x}},\underline{\mathbf{x}}') = (\mathbf{k} + \underline{\mathbf{x}}^T\underline{\mathbf{x}}')^d$$

- It is called polynomial since if you expand the dot product you get a polynomial
- It can be proved that this is always a kernel

Kernel: Identifying a Function as a Kernel

Problem:

• You have a certain function $K(\underline{x},\underline{x}')$ and you want to show that $K(\cdot)$ is an inner product in the form for some function $\Phi(\cdot)$

$$K(\underline{x},\underline{x}') = \Phi(\underline{x})^T \Phi(\underline{x}') \quad \forall \underline{x},\underline{x}'$$

for a certain Φ and \mathcal{Z}

- In theory, a given function $K(\underline{x},\underline{x}')$ is a valid kernel iff:
 - It is a symmetric, and
 - Satisfies the Mercer's condition: the matrix $K(\underline{x}_i,\underline{x}_j)$ is definite semi-positive

Kernel: Example of Identifying a Kernel

• Let's show that:

$$K(\underline{\mathbf{x}},\underline{\mathbf{x}}')=(k+\underline{\mathbf{x}}^T\underline{\mathbf{x}}')^d$$

is a kernel for any n, k, d

 According to the definition you need to show that there is always a transform Φ:

$$\Phi: \mathcal{X} = \mathbb{R}^n \to \mathcal{Z} = \mathbb{R}^q$$

with $q \gg d$, such that $K_{\Phi} = (k + \underline{\mathbf{x}}^T \underline{\mathbf{x}}')^d$

- Example
 - $\mathcal{X} = \mathbb{R}^2$, $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2 = (1 + x_1 x_1' + x_2 x_2')^2$
 - Compute the full expression in terms of the coordinates:

$$K(\underline{x},\underline{x}') = (1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2')$$

- Choose:
 - $\mathcal{Z}=\mathbb{R}^6$
 - $\Phi(x_1, x_2) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$

A Kernel Is a Computational Shortcut

- In literature, the kernel trick is a computational shortcut for the dot product of transformed vectors
- Compare 2 ways to compute the inner product of transformed vectors for a polynomial kernel
 - Using definition: compute images of vectors, then inner product in transformed space:

$$(1, x_1, x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2, ...)^T \cdot (1, x_1', ...)$$

- Requires combinatorial powers and a large dot product
- 2. Kernel trick: use kernel function for dot product in transformed space

$$(k + \underline{x}^T\underline{x}')^d$$

- Requires inner product of small vectors, then power of a number
- Kernel trick is more computationally efficient for inner product computation

• Support Vector Machines (Optional)

Support Vector Machines (SVM)

- Arguably one of the most successful classification algorithm, together with neural networks and random forests
- Idea: find a separating hyperplane that maximizes the distance from the class points (aka "margin")
- All the rage in 2005-2015
 - · Robust classifier handling outliers automatically
 - Strong theoretical justification of out-of-bound error
 - Strong link with VC dimension
 - Cool geometric interpretation
 - Solve a very complex optimization problem with some neat tricks
 - Works for both regression and classification
- SVM for classification:
 - Does not output probabilities (like logistic regression), but predicts directly the class
 - Has a notion of confidence, as distance from the margin

SVM Is a Large Margin Classifier

- Why large margin classifier is good?
- Given a linearly separable data set, the optimal separating line maximizes the margin:
 - More robust to noise
 - Large margin reduces VC dimension of hypothesis set

SVM: Notation and Conventions

- Assume that:
 - 1. Outputs are encoded as $y_i \in \{-1, 1\}$
 - 2. Pull out w_0 from w
 - The bias $w_0 = b$ plays a different role
 - $\underline{\boldsymbol{w}} = (w_1, ..., w_d)$ and there is no $x_0 = 1$
 - $\underline{\underline{w}}^T \underline{x} + b = 0$ is the equation of the separating hyperplane
 - 3. \underline{x}_n is the closest point to the hyperplane
 - It can be multiple points from different classes
- Normalize \underline{w} and b to get a canonical representation of the hyperplane imposing $|\underline{w}^T\underline{x}_n+b|=1$

SVM: Original Form of Problem

• The SVM problem is:

find
$$\underline{\boldsymbol{w}}, b$$
 maximize $\frac{1}{\|\underline{\boldsymbol{w}}\|}$ (max margin) subject to $\min_{i=1,\dots,n} |\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i + b| = 1$ (hyperplane)

• This problem is not friendly to optimization since it has norm, min, and absolute value

Primal Form of SVM Problem

You can rewrite it as:

find
$$\underline{\boldsymbol{w}}, b$$
 minimize $\frac{1}{2}\underline{\boldsymbol{w}}^T\underline{\boldsymbol{w}}$ subject to $y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1 \ \forall i=1,...,n$

- Note that under \underline{w} minimal and linear separable classes, it is guaranteed that for at least one \underline{x}_i in the second equation will be equal to 1 (as in the original problem)
 - In fact otherwise we could scale down $\underline{\boldsymbol{w}}$ and b (which does not change the plane) to use the slack, against the hypothesis of minimality of $\underline{\boldsymbol{w}}$

Dual (Lagrangian) Form of SVM Problem

minimize with respect to
$$\underline{\alpha}$$

$$\mathcal{L}(\underline{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \underline{\mathbf{x}}_i^T \underline{\mathbf{x}}_j$$
 subject to
$$\underline{\alpha} \geq \underline{\mathbf{0}}, \sum_{i=1}^{N} \alpha_i y_i = 0$$

$$\underline{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\mathbf{x}}_i$$

• The equation for $\underline{\boldsymbol{w}}$ is not a constraint, but it computes $\underline{\boldsymbol{w}}$ (the plane) given $\underline{\alpha}$, while b is given by $\min |\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i + b| = 1$

Dual Form of SVM as QP Problem

• The dual form of SVM problem is a convex quadratic programming problem, in the form:

minimize with respect to
$$\underline{\alpha}$$
 $\underline{\mathbf{1}}^T\underline{\alpha} - \frac{1}{2}\underline{\alpha}^T\underline{\underline{Q}}\underline{\alpha}$ subject to $\underline{\alpha} \geq 0, \underline{\mathbf{y}}^T\underline{\alpha} = 0$

where:

- the matrix is $\underline{{\bm Q}} = \{y_i y_j \underline{{\bm x}}_i^T \underline{{\bm x}}_j\}_{ij}$
- $\underline{\alpha}$ is the column vector $(\alpha_1, \ldots, \alpha_N)$

Solving Dual Formulation of SVM Problem (1/2)

- Solving convex problem for α
 - ullet Feeding this problem to a QP solver, you get the optimal vector lpha
- Compute hyperplane w
 - From $\underline{\alpha}$ recover the plane $\underline{\mathbf{w}}$ from the equation: $\underline{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\mathbf{x}}_i$
 - Looking at the optimal α_i , you can observe that many of them are 0
 - This is because when you applied the Lagrange multipliers to the inequalities: $y_i(\underline{w}^T\underline{x}_i + b) \ge 1$, you got the KKT condition:

$$\alpha_i(y_i(\underline{\mathbf{w}}^T\underline{\mathbf{x}}_i+b)-1)=0$$

- From these equations, either
 - $\alpha_i = 0$ and \underline{x}_i is an *interior point* since it has non-null distance from the plane (i.e., slack) from the plane; or
 - $\alpha_i \neq 0$ and the slack is 0, which implies that the \underline{x}_i point touches the margin, i.e., it is a *support vector*

Solving Dual Formulation of SVM Problem (2/2)

 Thus the hyperplane is only function of the support vectors:

$$\underline{\boldsymbol{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\boldsymbol{x}}_i = \sum_{\underline{\boldsymbol{x}}_i \in \mathsf{SV}} \alpha_i y_i \underline{\boldsymbol{x}}_i$$

since only for the support vectors $\alpha \neq 0$

- The $\alpha_i \neq 0$ are the real degree of freedom
- Compute b
 - Once $\underline{\boldsymbol{w}}$ is known, you can use any support vector to compute b:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)=1$$

Support Vectors and Degrees of Freedom for SVM

- The number of support vectors is related to the degrees of freedom of the model
- Because of the VC dimension, you have an in-sample quantity to bound the out-of-sample error:

$$E_{out} \leq E_{in} + c \frac{\text{num of SVs}}{N-1}$$

• You are "guaranteed" to not overfit

Non-Linear Transform for SVM

- $\Phi: \mathcal{X} \to \mathcal{Z}$ transforms $\underline{\boldsymbol{x}}_i$ into $\underline{\boldsymbol{z}}_i = \Phi(\underline{\boldsymbol{x}}_i) \in \mathbb{R}^{\tilde{d}}$ with $\tilde{d} > d$
- Transform vectors through Φ and apply SVM machinery
- Dual SVM formulation in \mathcal{Z} space:

$$\mathcal{L}(\underline{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \underline{z}_i^T \underline{z}_j$$

- Note:
 - Optimization problem has same number of unknowns as original space (number of points N)
 - Support vectors live in \mathcal{Z} : they have $\alpha=0$. In \mathcal{X} , they are pre-images of support vectors
 - Decision boundary and margin can be represented in original space (not linear)

Non-Linear Transforms for SVM vs Others

- In SVM the non-linear transform does not change the number of unknowns and degrees of freedom of the model
- This is different from transforming the variables in a linear problem, since in that case the number of unknowns changes

SVM in Higher Dimensional Space

Pros

- You don't pay the price in terms of complexity of optimization problem
 - Number of unknowns is still N (different than a linear problem)
- You don't pay the price in terms of increased generalization bounds
 - Number of support vectors is ≤ N
 - ullet This is because each hypothesis h can be complex but the cardinality of the hypothesis set ${\cal H}$ is the same

Cons

- You pay a price to compute $\Phi(\underline{x}_i)^T \Phi(\underline{x}_i)$, since Φ could be very complex
 - The kernel trick will remove this extrá complexity by doing $\Phi(\underline{x}_i)^T \Phi(\underline{x}_i) = K_{\Phi}(\underline{x}_i, \underline{x}_i)$

Non-Linear Transform in SVM vs Kernel Trick

- The trivial approach is
 - Transform vectors with $\Phi(\cdot)$
 - Apply all SVM machinery to the transformed vectors
- The issue is that Φ might be very complex, e.g., potentially exponential number of terms
- If you can express the SVM problem formulation and the prediction in terms of a kernel

$$K_{\Phi}(\underline{\mathbf{x}},\underline{\mathbf{x}}') = \Phi(\underline{\mathbf{x}})^T \Phi(\underline{\mathbf{x}}') = \underline{\mathbf{z}}^T \underline{\mathbf{z}}'$$

you would need the kernel of the transformation $\Phi(\cdot)$ (and not $\Phi(\cdot))$ itself

SVM Formulation in Terms of Kernel: Optimization Step

• When you build the QP formulation for the Lagrangian to compute the α we can use $K_{\Phi}(\underline{x}_i, \underline{x}_j)$ instead of $\underline{z}_i^T \underline{z}_j$

$$\mathcal{L}(\underline{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m K_{\Phi}(\underline{x}_n, \underline{x}_m)$$

• z_n does not appear in the constraints

$$\underline{\boldsymbol{\alpha}} \geq \underline{\boldsymbol{0}}, \underline{\boldsymbol{\alpha}}^T \boldsymbol{y} = 0$$

SVM Formulation in Terms of Kernel: Prediction Step

- You need only inner products to compute a prediction for a given \underline{z}
- In fact to make predictions, you replace the expression of $\underline{\tilde{w}} = \sum_{i:\alpha_i > 0} \alpha_i y_i \underline{z}_i$ in $h(\underline{x}) = \text{sign}(\underline{w}^T \Phi(\underline{x}) + b)$, yielding:

$$h(\underline{\mathbf{x}}) = \operatorname{sign}(\sum_{i:\alpha_i>0} \alpha_i y_i K_{\Phi}(\underline{\mathbf{x}}_i,\underline{\mathbf{x}}) + b)$$

where b is given by $y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{z}}_i+b)=1$ for any support vector $\underline{\boldsymbol{x}}_m$ and thus

$$b = \frac{1}{y_m} - \sum_{i:\alpha_i > 0} \alpha_i y_i K_{\Phi}(\underline{x}_i, \underline{x}_m)$$

Implications of Kernel Trick in SVM

- The "kernel trick" is a computational shortcut:
 - Use the kernel of the transformation instead of the transformation itself
- We have seen that in order to use SVMs we need only to be able to compute inner products between transformed vectors <u>z</u>
- The kernel trick implies:
 - No need to compute Φ (): we just need the kernel of the transformation K_{Φ} and not the transformation Φ itself
 - No need to know Φ : if we have a function K_{Φ} and we know that is an inner product in some space, we can still use all the SVM machinery, even if we don't know what is the ${\cal Z}$ space or what is the transformation Φ
 - Φ can be impossible to compute: K_{Φ} can even correspond to a transformation Φ to an infinite dimensional space (e.g., Gaussian kernel)

Non-Linearly Separable SVM Problem

- In general there are 2 types of non-separable data sets:
- 1. Slightly non-separable
 - ullet Few points crossing the boundary \Longrightarrow use soft margin SVMs
- 2. Seriously non-separable
 - ullet E.g., the class inside the circle \Longrightarrow use non-linear transforms / kernels
- In practice, both issues are present and one can combine soft margin SVM and non-linear transforms

Soft-Margin SVM for Better Generalization on Linearly-Separable Data Sets

- Sometimes, even if the data is linearly separable, one can get better E_{out} using soft margin SVM at the cost of worst E_{in}
 - Usual trade off between in-sample and out-of-sample performance
 - E.g., in the data set there are a few of outliers that are forcing a smaller margin than what we could obtain if we ignore them, in order to get all the points classified correctly
- If C parameter is very large the SVM optimization requires to make the error very small, and this might trade off a large margin with getting all the classification right

Primal Formulation for Soft Margin SVM

 We want to introduce an error measure based on the margin violation for each point, so instead of the constraint:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1$$
 (hard margin)

we use:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1-\xi_i, \text{ where } \xi_i\geq 0 \text{ (soft margin)}$$

- The cumulative margin violation is $C \sum_{i=1}^{N} \xi_i$
- The soft margin SVM optimization (primal form) is:

find
$$\underline{\boldsymbol{w}}, b, \underline{\boldsymbol{\xi}}$$
 minimize
$$\frac{1}{2}\underline{\boldsymbol{w}}^T\underline{\boldsymbol{w}} + C\sum_{i=1}^N \xi_i$$
 subject to
$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i + b) \geq 1 - \xi_i \ \forall i$$

$$\xi_i \geq 0$$

Classes of Support Vectors for Soft Margin SVM

- There are 3 classes of points:
- margin support vectors: they are exactly on the margin defining it
 - In primal form: $y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1 \iff \xi_i = 0$
 - In dual form: $0 < \alpha_i < C$
- non-margin support vectors: they are inside the margin and classified correctly or not
 - In primal form: $y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)<1\iff \xi_i>0$
 - In dual form: $\alpha_i = C$
- non-support vectors, i.e., interior points:
 - In primal form: $y_i(\underline{w}^T\underline{x}_i + b) > 1$
 - In dual form: $\alpha_i = 0$

