Fuel consuption prediction

Fuel consumption - prediction using linear Regression

Business context

• Problem Statement: Crie um modelo de regressão linear para prever o consumo de combustível

Data Prep

Libraries

```
library(tidyverse)
library(car)
library(ucimlrepo)
library(magrittr)
library(fastDummies)
library(olsrr)
```

Dataset

```
auto_mpg_info <- ucimlrepo::fetch_ucirepo(id=9)
data <- auto_mpg_info$data
auto_mpg <- data.frame(data$original)</pre>
```

Variable Dictionary - Auto MPG

				Missing
Variable	\mathbf{Type}	Description	Units	Values
mpg	Continuous	Fuel consumption in miles per gallon (target variable).	Miles per gallon	No
cylinders	Discrete	Number of engine cylinders.	Integer	No
displacement	Continuous	Engine displacement.	Cubic inches	No
horsepower	Continuous	Engine horsepower.	Horsepower (hp)	Yes (6 values)
weight	Continuous	Vehicle weight.	Pounds	No
acceleration	Continuous	Time to accelerate (0 to 60 mph).	Seconds	No
model_year	Discrete	Model year of the vehicle.	Year	No
origin	Discrete	Origin of the vehicle (1 = USA, 2 = Europe, 3 = Japan).	Integer	No
car_name	Categorical	Name of the car.	Text	No

Exploratory data analysis (EDA)

Para começar a conhecer melhor o dataset vou exibir uma pequena amostra usando as 6 primeiras linhas

head(auto_mpg)

	car_name	${\tt cylinders}$	${\tt displacement}$	${\tt horsepower}$	weight
1	chevrolet,chevelle,malibu	8	307	130	3504
2	buick,skylark,320	8	350	165	3693
3	plymouth, satellite	8	318	150	3436
4	amc,rebel,sst	8	304	150	3433
5	ford, torino	8	302	140	3449
6	ford,galaxie,500	8	429	198	4341
acceleration model_year origin mpg					
1	12.0 70	1 18			

2	11.5	70	1	15
3	11.0	70	1	18
4	12.0	70	1	16
5	10.5	70	1	17
6	10.0	70	1	15

O summary abaixo fornece um resumo das variaveis do dataset e as principais medidas descritivas associadas. É possivel constatar que:

- a variavael horsepower possui 6 registros NA
- as variaveis car_name e origin podem ser tomadas como categoricas a variavel model_year é uma variavel discreta

summary(auto_mpg)

```
car_name
                      cylinders
                                      displacement
                                                        horsepower
Length:398
                    Min.
                           :3.000
                                     Min.
                                            : 68.0
                                                             : 46.0
                    1st Qu.:4.000
Class : character
                                     1st Qu.:104.2
                                                     1st Qu.: 75.0
Mode :character
                    Median :4.000
                                    Median :148.5
                                                     Median: 93.5
                           :5.455
                                            :193.4
                                                             :104.5
                    Mean
                                     Mean
                                                     Mean
                    3rd Qu.:8.000
                                     3rd Qu.:262.0
                                                      3rd Qu.:126.0
                    Max.
                           :8.000
                                     Max.
                                            :455.0
                                                     Max.
                                                             :230.0
                                                     NA's
                                                             :6
    weight
                acceleration
                                  model_year
                                                      origin
                                                                       mpg
Min.
       :1613
                       : 8.00
                                        :70.00
                                                         :1.000
                                                                  Min.
                                                                          : 9.00
               Min.
                                Min.
                                                 Min.
1st Qu.:2224
               1st Qu.:13.82
                                1st Qu.:73.00
                                                 1st Qu.:1.000
                                                                  1st Qu.:17.50
Median:2804
               Median :15.50
                                Median :76.00
                                                 Median :1.000
                                                                  Median :23.00
Mean
       :2970
                       :15.57
                                        :76.01
                                                         :1.573
                                                                          :23.51
               Mean
                                Mean
                                                 Mean
                                                                  Mean
3rd Qu.:3608
               3rd Qu.:17.18
                                3rd Qu.:79.00
                                                 3rd Qu.:2.000
                                                                  3rd Qu.:29.00
       :5140
                       :24.80
                                        :82.00
                                                         :3.000
                                                                          :46.60
Max.
               Max.
                                Max.
                                                 Max.
                                                                  Max.
```

Através do boxplot é possivel identificar a presença de outliers nas variaveis independentes horsepower e acceleration além da variavel dependente mpg.

```
p <- auto_mpg %>%
    ggplot(aes_string(x = i))+
    geom_boxplot() +
    ggtitle(paste('Distribution of', i))

plots[[i]] <- p
}
gridExtra::grid.arrange(grobs = plots, nrow = 2, ncol = 3)</pre>
```


Os histogramas abaixo sao uteis na identificação do comportamento da distrubuição das variáveis. Os gráficos abaixo sugerem que apenas a variável acceleration apresenta distribuição de comportamento normal, as demais são assimétricas

```
hists <- list()

for (i in continuous_variables){

  p <- auto_mpg %>%
     ggplot(aes_string(x = i))+
     # geom_histogram()+
```

```
geom_density()+
  ggtitle(paste('Histogram of', i))
hists[[i]] <- p
}
gridExtra::grid.arrange(grobs = hists, nrow = 2, ncol = 3)</pre>
```


Análise das variaveis categoricas e discretas

```
cat_variables <- c('car_name', 'model_year', 'origin', 'cylinders')
bar_plt <- list()
for ( i in cat_variables){
  b <- auto_mpg %>%
    ggplot(aes_string(x = i)) +
    geom_bar()
bar_plt[[i]] <- b</pre>
```


Na matriz de correlação abaixo é possível observar que as variaveis weight e displacement apresenda colinearidade o que nos da um indicativo de que uma vez presente no modelo podem ser causadoras de multicolinearidade.

```
auto_mpg_numeric <- auto_mpg %>%
dplyr::select(-car_name)

cor_matrix <- cor(auto_mpg_numeric)

corrplot::corrplot(cor_matrix, method = "color", type = "upper", tl.col = "black", tl.srt = tl.cex = 0.8, addCoef.col = "black", number.cex = 0.7, mar = c(0,0,2,0))</pre>
```


Examinando relação de linearidade com a variavel dependente

Transforming and clean-ups

Missing

Nesse caso decidi retirar os missing cases da base. Como o numero de missing representa apenas 1,5% dos data point entendo que nao haverá grande impacto na construcao de um modelo eficiente

```
auto_mpg <- auto_mpg %>%
  dplyr::filter(!is.na(horsepower))
```

Outliers

Como é possível perceber através dos graficos box_plot, as variaveis independentes horsepower e acceleration.

Categorical variables

Em relacao as variaveis categoricas foi possivel notar atraves do grafico de barras que o excessivo numero de categorias na variavel cars_name nao contribui para um modelo de grande eficiencia sem aumetar de maneira expressiva a sua complexidade. Dessa forma farei a remoçao dessa variavel do dataset.

```
auto_mpg <- auto_mpg %>%
  dplyr::select(-car_name)
```

Ja quanto a variavel origin a abordagem vai se baser na quantidade de cada categoria A tabela abaixo nos mostra que 62% nos carros sao da origem de codigo americanos (cod = 1), portanto farei um agrupamento dos demais em um único grupo

```
auto_mpg %>%
 dplyr::group_by(origin) %>%
 dplyr::summarise(total = dplyr::n()) %>%
 dplyr::mutate(freq = total/sum(total))
# A tibble: 3 x 3
 origin total freq
   <int> <int> <dbl>
          245 0.625
1
      1
           68 0.173
2
      2
3
      3
           79 0.202
auto_mpg <- auto_mpg %>%
 dplyr::mutate(origin =
```

Em seguida utilizarei de variaveis dummy para representar a variavel origin. Dessa forma conseguirei utilizar do poder de explicacao dessa variavel no modelo

'Non_US'))

dplyr::if_else(origin == 1, 'US',

Utilizarei a mesma abordagem para a variavel cylinders. A tabela abaixo mostra que mais de 50% dos carros sao modelos de 4 cilindros, modelos de 6 e 8 cilindros possuem frequencia

semelhante, 21% e 25% respectivamente. Modelos de 3 e 5 cilindros representam em torno de apenas 1%. Usando ainda o contexto de negocio, farei o agrupamento em apenas duas categorias: até 4 cilindros (up_to_four) e a partir de 5 cilindros (five_more)

```
auto_mpg %>%
 dplyr::group_by(cylinders) %>%
 dplyr::summarise(total = dplyr::n()) %>%
 dplyr::mutate(freq = total/sum(total))
# A tibble: 5 x 3
 cylinders total
                    freq
      <int> <int> <dbl>
         3
               4 0.0102
2
         4 199 0.508
         5
              3 0.00765
3
         6
              83 0.212
4
5
             103 0.263
auto_mpg <- auto_mpg %>%
 dplyr::mutate(cylinders =
                 dplyr::if_else(cylinders > 4, 'five_more',
```

Em seguida utilizarei de variaveis dummy para representar a variavel cylinders. Dessa forma conseguirei utilizar do poder de explicacao dessa variavel no modelo.

'up_to_four'))

Muticolinearity

Após a transformação das variaveis categoricas é interessante voltar à analise de multicolinearidade.

```
cor_matrix <- cor(auto_mpg)

corrplot::corrplot(cor_matrix, method = "color", type = "upper", tl.col = "black", tl.srt = tl.cex = 0.8, addCoef.col = "black", number.cex = 0.7, mar = c(0,0,2,0))</pre>
```


De acordo com a matriz acima as variaveis horsepower, weight, displacement e cylinders_up_to_four apresentam niveis de colinearidade excessivos entre si, por isso ferei a remoçao de algumas delas, tomando os seguintes critérios: - displacement possui os maiores niveis de colinearidade com as outras variaveis, por isso será removida - weight apresenta colinearidade com horsepower e discplacemente por isso tambem será removida, levando em consideração que ao remove-la nao restará nenhuma relação de colineridade entre as ariaveis independentes

Model

A primeira tentativa de criacao do modelo utiliza uma abordagem simples e direta. Os resultados se mostraram bons, de certa forma: - Testes F e t satisfatorios (exceto para horsepower e acceleration) - R2 e adjusted R2 por volta de 0.8

```
first_model <- lm(mpg ~ ., data = auto_mpg)
summary(first_model)</pre>
```

Call:

lm(formula = mpg ~ ., data = auto_mpg)

Residuals:

Min 1Q Median 3Q Max -8.8039 -1.8688 -0.2637 1.6017 13.1857

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 70.06726 8.93831 7.839 4.47e-14 *** horsepower -34.11579 2.25629 -15.120 < 2e-16 *** acceleration -25.39779 3.27590 -7.753 8.06e-14 ***

```
model_year 0.68207 0.04778 14.274 < 2e-16 ***
origin_US -1.94015 0.42583 -4.556 7.00e-06 ***
cylinders_up_to_four 3.27628 0.52409 6.251 1.08e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.176 on 386 degrees of freedom Multiple R-squared: 0.8365, Adjusted R-squared: 0.8344 F-statistic: 394.9 on 5 and 386 DF, p-value: < 2.2e-16

Checando se o metodo stepwise de selecao de variaveis será capaz de fornecer um modelo melhor. O metodo de elecao de variaveis apresentpou um modelo com metricas de eficiencia semelhantes ao primeiro modelo, utilizando menos variavies, ou seja, de menor complexidade mas mais assertivo.

```
step_model <- step(first_model, direction = 'both')</pre>
```

```
Start: AIC=912.07
```

mpg ~ horsepower + acceleration + model_year + origin_US + cylinders_up_to_four

	Df	Sum	of	Sq	RSS	AIC
<none></none>					3894.7	912.07
- origin_US	1	2	209	. 46	4104.1	930.61
- cylinders_up_to_four	1	3	94	.30	4289.0	947.88
- acceleration	1	6	06	. 48	4501.2	966.81
- model_year	1	20	55.	.86	5950.6	1076.23
- horsepower	1	23	306	.78	6201.5	1092.42

```
summary(step_model)
```

Call:

Residuals:

```
Min 1Q Median 3Q Max -8.8039 -1.8688 -0.2637 1.6017 13.1857
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept)
                     70.06726
                                 8.93831
                                          7.839 4.47e-14 ***
                    -34.11579
                                 2.25629 -15.120 < 2e-16 ***
horsepower
acceleration
                    -25.39779
                                 3.27590 -7.753 8.06e-14 ***
model_year
                      0.68207
                                 0.04778 14.274 < 2e-16 ***
origin_US
                                 0.42583 -4.556 7.00e-06 ***
                     -1.94015
                                 0.52409
                                           6.251 1.08e-09 ***
cylinders_up_to_four
                      3.27628
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.176 on 386 degrees of freedom Multiple R-squared: 0.8365, Adjusted R-squared: 0.8344 F-statistic: 394.9 on 5 and 386 DF, p-value: < 2.2e-16

A comparacao da eficiencia dos modelos tambem pode ser feita atraves do calulo da metrica AIC e os resultos sugerem ligeira superioridade do primeiro modelo. Como a diferença é bem pequena continuarei a utilizar o modelo stepwise como principal

```
AIC(first_model)
```

[1] 2026.522

AIC(step_model)

[1] 2026.522

Redisuals

Normalidade de residuos

Os gráficos abaixo apontam para uma distribuiçao normal dos residuos, o que satisfaz uma das condiçoes conceituais do modelo

hist(step_model\$residuals)

Histogram of step_model\$residuals

qqnorm(step_model\$residuals)
qqline(step_model\$residuals)

Normal Q-Q Plot

Abaixo apliquei o Shapiro test para confirmar a normalidade residual e ela nao foi atestada

shapiro.test(step_model\$residuals)

Shapiro-Wilk normality test

data: step_model\$residuals
W = 0.97276, p-value = 1.036e-06

Homocedasticidade

O gráfico de residuos abaixo aponta a media zero para a variancia, o que é bom, mas ainda tenho duvidas em relacao a existencia de padrão na variancia dos residuos

olsrr::ols_plot_resid_fit(step_model)

Residual vs Fitted Values

Aplicando o testde e Breusch-Pagan é possivel afirmar que a variancia nao é constante, portante o modelo não foi atestado

olsrr::ols_test_breusch_pagan(step_model)

Breusch Pagan Test for Heteroskedasticity -----Ho: the variance is constant

Data

Ha: the variance is not constant

Response : mpg

Variables: fitted values of mpg

Test Summary

DF = 3

Chi2 = 39.14838 Prob > Chi2 = 3.927896e-10

Multicolinearity

Para atestar a existencia de multicolinearidade no modelo utilizarei a analise VIF

```
olsrr::ols_vif_tol(step_model)
```

```
Variables Tolerance VIF
horsepower 0.2325170 4.300761
coloration 0.4445739 2.249345
model_year 0.8328903 1.200638
origin_US 0.6056517 1.651114
cylinders_up_to_four 0.3753154 2.664426
```

Box Cox

As the residual analysis shows that its variance is not constant and its not normal distributed I'll use Box-Cox transformation to make another try.

```
lambda <- car::powerTransform(auto_mpg$mpg)
auto_mpg$mpg_adj <- forecast::BoxCox(auto_mpg$mpg, lambda = lambda$lambda)</pre>
```

Verificando o modelo com após a transformação do y

```
auto_mpg_adj <- auto_mpg %>% dplyr::select(-mpg)
new_model <- lm(mpg_adj ~ ., auto_mpg_adj)</pre>
step_new_model <- step(new_model, direction = 'both')</pre>
Start: AIC=-1175.06
mpg_adj ~ horsepower + acceleration + model_year + origin_US +
   cylinders_up_to_four
                     Df Sum of Sq
                                    RSS
<none>
                                 18.973 -1175.06
- origin_US
                      1
                          0.9168 19.890 -1158.56
- cylinders_up_to_four 1 2.6620 21.635 -1125.60

    acceleration

                          3.5062 22.480 -1110.59
                      1
- model_year
                      1 11.4022 30.376 -992.59
- horsepower
                      1 15.7449 34.718 -940.21
summary(step_new_model)
Call:
lm(formula = mpg_adj ~ horsepower + acceleration + model_year +
   origin_US + cylinders_up_to_four, data = auto_mpg_adj)
Residuals:
              1Q
                  Median
                              3Q
                                      Max
-0.65335 -0.14011 -0.01197 0.13141 0.79523
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                    8.299580 0.623866 13.303 < 2e-16 ***
(Intercept)
                   -2.818521 0.157482 -17.897 < 2e-16 ***
horsepower
                   -1.931119  0.228648  -8.446  6.20e-16 ***
acceleration
                   model_year
                   origin_US
cylinders_up_to_four 0.269195 0.036580 7.359 1.12e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2217 on 386 degrees of freedom
```

Multiple R-squared: 0.8711, Adjusted R-squared: 0.8695 F-statistic: 521.9 on 5 and 386 DF, p-value: < 2.2e-16

Residuals normality distribution

hist(step_new_model\$residuals)

Histogram of step_new_model\$residuals

step_new_model\$residuals

qqnorm(step_new_model\$residuals)
qqline(step_new_model\$residuals)

Normal Q-Q Plot

shapiro.test(step_new_model\$residuals)

Shapiro-Wilk normality test

data: step_new_model\$residuals
W = 0.99177, p-value = 0.02867

Multicolineartity

olsrr::ols_vif_tol(step_new_model)

```
Variables Tolerance VIF
horsepower 0.2325170 4.300761
coloration 0.4445739 2.249345
model_year 0.8328903 1.200638
origin_US 0.6056517 1.651114
cylinders_up_to_four 0.3753154 2.664426
```

Homocedasticity test

olsrr::ols_plot_resid_fit(step_new_model)

Residual vs Fitted Values

olsrr::ols_test_breusch_pagan(step_new_model)

${\tt Breusch\ Pagan\ Test\ for\ Heteroskedasticity}$

Ho: the variance is constant Ha: the variance is not constant

Data

Response : mpg_adj

Variables: fitted values of mpg_adj

Test Summary

DF = 1

Chi2 = 3.578561 Prob > Chi2 = 0.05852984