A smart energy monitoring system using ESP32

Smart Energy Monitoring System using ESP32 Microcontroller

Authors and Affiliations

- Hala Jarallah El-Khozondar, Islamic University of Gaza, Palestine
- Shady Y. Mtair, Islamic University of Gaza, Palestine
- Khaled O. Qoffa, Islamic University of Gaza, Palestine
- Omer I. Qasem, Islamic University of Gaza, Palestine
- Ahmad H. Munyarawi, Islamic University of Gaza, Palestine
- Yasser F. Nassar, Wadi ALShatti University, Brack-Libya
- Ehab H.E. Bayoumi, British University in Egypt, ElSherouk, Cairo, Egypt
- Ahmed Abd El Baset Abd El Halim, Egyptian Chinese University, Cairo, Egypt

Keywords

- ESP32 microcontroller
- Blynk platform
- Energy Monitoring
- IoT (Internet of Things)
- Smart grid
- Energy meter

Introduction

Electrical Deficit in Gaza

Gaza's power crisis is exacerbated by persistent electricity shortages, leading consumers to rely heavily on private generators that come with steep operational costs. The financial burden of high energy prices creates a strain on households, often resulting in unexpectedly large utility bills that complicate financial planning and allocation of resources.

Importance of Monitoring

The critical state of energy management calls for an innovative electronic monitoring system. Such a system is essential for aiding consumers in tracking and managing their energy consumption effectively, promoting responsible usage and cost-saving strategies.

Purpose of the Study

Main Aim

This study aims to develop a low-cost Internet of Things (IoT) energy monitoring system that provides real-time energy usage data. It is designed to assist consumers in managing expenditures while encouraging energy-saving practices.

Technology Utilized

The system employs the versatile ESP32 microcontroller, which is equipped with Wi-Fi capabilities, for collecting data from energy meters. The collected data is processed and sent as notifications through WhatsApp via the user-friendly Blynk platform, allowing for seamless communication and updates.

Real-Time Monitoring Benefits

- 1. **Enhanced Decision Making**: Real-time insights into energy consumption patterns empower consumers to make informed choices about their energy usage, leading to better optimization and cost reduction.
- 2. **Anomaly Detection**: The system can detect unusual consumption patterns quickly, enabling consumers to take proactive steps to address energy inefficiencies.
- 3. **Immediate Alerts**: Users receive timely notifications when their energy usage exceeds predefined thresholds, helping to avoid waste and reduce costs.
- 4. **Environmental Impact**: By identifying areas for energy efficiency improvements, the system supports sustainability efforts in energy consumption.
- Cost Savings: The monitoring system aims to reduce energy waste, thus maximizing financial savings for consumers and businesses alike.

Proposed Monitoring System Components

Key Elements

- **Energy Meter**: The cornerstone of the system, this device records electricity consumption and supports pulse generation to ensure accuracy in data capture.
- **ESP32 Microcontroller**: Serving as the brains of the system, the microcontroller handles data acquisition, processing, and transmission to the Blynk platform.
- **Wi-Fi Connection**: This connectivity facilitates a smooth link to the Blynk platform for processing data and sending alerts.
- Notification System: Users are notified through WhatsApp about pertinent updates, allowing for hands-on management of energy usage.

Blynk Platform Limitations

- **Scalability Issues**: While the Blynk platform is effective for small to medium-sized projects, it may encounter challenges when scaled to larger systems.
- **Security Concerns**: Given the sensitive nature of energy management data, there may be vulnerabilities that require additional protective measures.
- **Integration Challenges**: Integrating the system with existing infrastructure may present complexities that need addressing.
- **Data Processing Latency**: High traffic may cause delays in real-time data processing, potentially impacting the responsiveness of the system.
- **Dependency on Internet Connectivity**: Fluctuations in internet connectivity may hinder system performance and reliability.

Features of ESP32 Microcontroller

- **Built-in Connectivity**: The ESP32 supports both Wi-Fi and Bluetooth, providing flexible connectivity options for diverse applications.
- Low Power Consumption: Equipped with various sleep modes, the ESP32 ensures energy efficiency, making it suitable for prolonged operation.
- **Processing Power**: The microcontroller features dual-core processors that facilitate real-time computing and sophisticated data analytics.
- **Peripheral Interface Support**: Its compatibility with numerous sensors and components allows for versatile scalability of the monitoring system.
- **Cost-Effective**: Compared to other microcontrollers with similar capabilities, the ESP32 stands out as a cost-effective solution for energy monitoring endeavors.
- Robust Development Ecosystem: The extensive libraries and community support available for the ESP32 simplify the implementation process.
- **Security Features**: The microcontroller includes hardware encryption and secure boot processes to safeguard data against unauthorized access.

System Design Overview

Hardware Components

- PCB: The printed circuit board houses all essential components, including the ESP32, relays, displays, and sensors.
- **Energy Meter**: This device measures the electrical energy consumed by the system and generates relevant pulse counts for data processing.
- Buzzer and LEDs: These serve as indicators for system status and provide alerts to users.

Software Components

• Mobile Application Interface: The Blynk platform facilitates user engagement, offering full

control and monitoring capabilities through a mobile interface.

- Reading Section: This area displays detailed energy readings and usage statistics for user analysis.
- **Control Section**: Features such as sliders and buttons enable users to set custom energy limits based on personal consumption goals.
- **Visualization Section**: Graphical representations, such as charts, illustrate trends in energy use, making it easier for users to understand their consumption patterns.

Data Handling and Calculations

Energy Consumption Calculation

• **Pulse-based Calculation**: This method leverages pulse counts generated by the energy meter to calculate the overall energy consumption accurately.

Cost Calculation Formulas

- Daily cost: priceDay = energyConsumedPerDay * Price_KWH
- Monthly cost: MonthlyCost = energyConsumedPerMonth * Price_KWH

Challenges and Solutions

- **Communication Issues**: An automatic reconnection code is implemented within the system to ensure stable connectivity and continuous data flow.
- **Battery Management**: Circuit designs are tailored to ensure continuous operation without data loss, even in fluctuating power conditions.

Conclusion

The proposed system represents a comprehensive approach to monitoring energy consumption effectively through IoT technologies, enabling users to manage their energy usage intelligently.

Future Enhancements

- **Multiple User Implementation**: Consideration for scaling the system to accommodate multiple users for broader accessibility.
- **Centralized Installations**: Developing a centralized version for residential buildings aimed at enhancing cost efficiency through shared resources.
- **Improved Alert Mechanisms**: Exploring advanced features for alert notifications to enhance user engagement and proactive energy management.

Recommendations for Future Work

- Incorporating additional security measures to bolster data protection against potential cyber threats.
- Investigating automated power distribution strategies that adjust based on user needs and consumption patterns, contributing to sustainable energy practices.