Криптография

Лекция 2. Асимметричные шифры.

Дмитрий Яхонтов

"Кочерга", 2019

Асимметричное шифрование

(оно же шифрование с открытым ключом)

Для шифрования и дешифровки служат разные ключи.

Открытый ключ распространяется свободно, закрытый необходимо сохранять в секрете.

Односторонние функции

информация

- В прямом направлении функция вычисляется легко (с полиномиальной сложностью).
- Не существует *известного* алгоритма для лёгкого вычисления функции в обратном направлении.
- Функция с "потайным входом": знание дополнительной информации позволяет легко вычислить функцию в обратном направлении.

Протокол Диффи — Хеллмана (пример с цветами)

Модулярная арифметика

Z — целые числа

Z/n — целые числа по модулю n

- *Сравнение по модулю*A mod n = X :
 0 ≤ X ≤ n-1
 A = kn + X
- Обратное число X-1
 X-X-1 mod n = 1
- Вычисление обратных чисел
 расширенный
 алгоритм Евклида

Протокол Диффи — Хеллмана

Протокол RSA

дешифровка:

 $\mathbf{D} = C^d \mod n = m^{ed} \mod n = m$

Почему это работает?

• функция Эйлера:

```
m{\phi}(\mathbf{n}) — количество натуральных чисел меньше \mathbf{n}, взаимно простых \mathbf{c} ним для простых чисел: \phi(\mathbf{p}) = \mathbf{p} - 1; \phi(\mathbf{q}) = \mathbf{q} - 1 функция Эйлера мультипликативна: \phi(\mathbf{n}) = \phi(\mathbf{p}\mathbf{q}) = \phi(\mathbf{p})\phi(\mathbf{q}) = (\mathbf{p} - 1)(\mathbf{q} - 1)
```

- теорема Эйлера: $\mathbf{x}^{\varphi(\mathbf{n})} = 1 \mod \mathbf{n}$ для взаимно простых \mathbf{n} и \mathbf{x}
- доказательство корректности дешифровки RSA:

$$\mathbf{e} \cdot \mathbf{d} = 1 \mod \varphi(\mathbf{n}) = 1 + \mathbf{a} \cdot \varphi(\mathbf{n})$$
 сообщение после шифрования и дешифровки: $\mathbf{m}^{\mathrm{ed}} = \mathbf{m}^{(1 + \mathbf{a} \cdot \varphi(\mathbf{n}))} = \mathbf{m}^{1} \cdot \mathbf{m}^{\mathbf{a} \cdot \varphi(\mathbf{n})} = \mathbf{m} \cdot (\mathbf{m}^{\varphi(\mathbf{n})})^{\mathbf{a}} \mod \mathbf{n} = \mathbf{m} \cdot \mathbf{1}$

по теореме Эйлера вот это равно 1

Протокол RSA

(пример с числами)

$$p = 7, q = 13$$

$$n = 7.13 = 91$$

$$\mathbf{m} = 24$$

n = 91 **≺**-

закрытый ключ:

$$d = 5^{-1} \mod (6 \cdot 12) = 29$$

29.5 = 145 = 1 mod 72

шифрование:

дешифровка:

Криптография на эллиптических кривых

- *Определим 1* P * 1 = P
- Определим P-1
 P * P-1 = 1
- Определим операцию *
 P * Q * R = 1
 ecли P, Q, R лежат
 на одной прямой.

$$P * Q = R^{-1}$$

Эллиптические кривые над полем целых чисел по модулю n

- Координаты точек целые числа от 0 до (n-1)
- Все определения работают:

$$P * 1 = P$$
 $P * P^{-1} = 1$
 $P * O = R^{-1}$

• Возведение в степень:

$$P^{k} = P * P * P * ... * P (k pa3)$$

• Обратная задача (дискретный логарифм) — трудная.

название системы	год	вычислительная задача	назначение
Диффи — Хеллмана	1976	дискретный логарифм	обмен ключами
RSA (Rivest-Shamir-Adleman)	1977	разложение на простые множители	шифрование, ЭЦП
Меркла — Хеллмана	1978	задача о рюкзаке	шифрование
Рабина	1979	дискретный квадратный корень	шифрование
DSA (Digital Signature Algorithm)	1991	дискретный логарифм	ЭЦП
ECDSA (Elliptic Curve Digital Signature Algorithm)	1999	дискретный логарифм на эллиптич. кривых	ЭЦП
ΓΟCT P 34.10-2012	2012	дискретный логарифм на эллиптич. кривых	ЭЦП
NTRUEncrypt	1996	поиск кратчайшего вектора решётки	шифрование, ЭЦП

Преимущества и недостатки (по сравнению с симметричной криптографией)

Преимущества:

- Не нужен защищённый канал для передачи ключей
- Только одна сторона должна хранить ключ в секрете
- Простой обмен ключами в сетях с большим числом участников
- Возможность создания цифровой подписи

Недостатки:

- Ресурсоёмкие и медленные (в ~1000 раз) алгоритмы
- Требуется большая длина ключа (в ~5-20 раз) для достижения сравнимой стойкости

Гибридное шифрование

Криптоанализ асимметричных шифров

• Метод "baby-step, giant-step"

```
Q = P \times \text{mod } n, \ x = ?
Q = P^{(am+b)}
Q = P^{am} \times P^{b}
Q \times (P^{am})^{-1} = P^{b}
m = \sqrt{n}

1. Для всех b = 0, 1, 2 \dots m: вычисление P^{b} (baby step)
2. Для всех a = 0, 1, 2 \dots m: вычисление Q \times (P^{am})^{-1} (giant step)
```

3. Поиск совпадений между результатами п.1 и 2

Вместо полного перебора со сложностью 2^n перебор двух диапазонов со сложностью $2^{(n/2+1)}$ и использование памяти объемом $2^{(n/2)}$

• Поиск слабых классов параметров

Для некоторых частных случаев существуют алгоритмы быстрого вычисления обратной функции. Параметры криптосистемы, позволяющие применять эти алгоритмы, называются **слабыми**.

Например: слабые ключи, слабые эллиптические кривые.

Принцип проверяемой случайности ("nothing up my sleeve")

S = random() — односторонняя функция — параметры

Вместе с параметрами системы публикуется порождающее значение S. Односторонняя функция гарантирует, что S не может быть вычислено постфактум, на основе подобранных слабых параметров.

Атака "человек посередине" (Man-in-the-Middle, MitM)

Задачи

- 1. Предложите модификацию протокола Диффи—Хеллмана для произвольного числа участников (больше двух). Все участники должны получить общий секретный ключ.
- 2. Алиса провайдер кабельного телевидения предоставляет услугу "фильм по запросу". Абонент (Боб) выбирает фильм по каталогу, затем шифрует название фильма и желаемое время просмотра по протоколу RSA открытым ключом Алисы и отправляет ей. В указанное время Алиса начинает трансляцию фильма по кабельной сети всем абонентам сразу.

Ева может прослушивать линии связи абонентов, и она очень хочет узнать, кто какие фильмы заказывает. Предложите способ это сделать. Какие изменения нужно внести в протокол, чтобы противодействовать данной атаке?

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

