- 1. PROGRAMMABLE LOGIC ARRAY: (PLA)

PROBLEM 1:

① Implement the following functions using PLA $F_1 = \sum_{m} (1, 2, 4, 6)$, $F_2 = \sum_{m} (0, 1, 6, 7)$, $F_3 = \sum_{m} (2, 6)$.

Step 1: Truth table.

	Inpl	Outputs			
A	В	a Ca	F ₁	F2	Fa
0 0 0 0 1 1 1 1 1	00110011	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 1 1 0 1 0 1 0	1 1 0 0 0 0 1 1	00100010

Stepa: K- Map

$$F_1 = \overline{ABC} + A\overline{C} + B\overline{C}$$

Fa:

C BC BC BC BC II

PLA Exogram table

Step 3: PLA Program table:

Peroduct terms	Ing	Inputs			Outputs		
	A	B	c	F,	F ₂	F3	
ĀĒC	0	0	10	1	0 -	- 0	
AC	1	7	0	1	0	- 0	
Вē	0	1	0	1	1-	1 1	
ĀĒ	00	0	- 0	-	0	- 0	
AB	1,1	1	-	_	01	-	

Truth -lable

Step 4: Logic diagram:

- PROGRAMMABLE ARRAY LOGIC: (PAL)
 - . AND gate → Porogrammable
 . OR gate → Fixed.

PROBLEM:

Implement the following function using PAL F1 = Em (3, 5, 6, 7), F2 = Em (0, 1, 6, 7)

Step 1: Touth table

			- 0	0		
Inputs			Outputs.			
A	В	C	F,	Fargo		
0	0	0	0	1		
0	0	, 1	0	1		
0	1	0	× 0 ^	0		
0	1	1	1	0		
1	0	×0	, ox	0		
1	0	1	1	0		
1	1	0	1	1		
1	1	1	1	1		

Step a: K-map

A BC	FI BOO	BC	BC 11	BC 10
A o	0	1	3	2
AI	4	5	' 7	

Step A Logic de

Step 3: PAL Program table:

		10000	AND SECTION AND ADDRESS.	Part La	3 000 100		
Poroduct		Inputs			Outputs.		
turns	A	В	C	F,	Fa		
AC N	1	in fund	1	1.1	Sizm		
BC	(5.0	(1.1)	1	1	37)		
AB	1	1	-	2 and	1		
ĀB	0	0	-	-	1		
	29	Out o			toul		

Step 4: Logic diagram:

3. PROGRAMMABLE READ ONLY MEMORY (PROM)

- . AND gate → Fixed
- · OR gate -> Programmable

PROBLEM:

Design a Combinational circuit using a PROM.

the circuit accepts 3 bit binary number and

generates its equivalent Excess-3-code.

Step 1 : Truth table.

-	- 1				Outp	outs	
	Input	, 8	×	8	4 4	2	×
B2	B,	Во	N	E3	Ea	E,	Eo
الم	0	0	7	0	0	1	1
0	×	1		0	1	0	0
0	0	0		0	1	0	1
0	1	1		0	1	1	0
0	1		-	0	1	1	1
1	0	1			0	0	0
1	0	1		1			
1	1	0		1	0	0	1
1	1	1		1	0	1	D

Min terms:

to = 2m (0, 2, 4, 6)

E1: 2m (0,3,4,7)

E2: 2m (1, 2, 3, 4)

Eg = Em (5, 6, 7)

Step 3: Logie diagram:

0 0

2001

49.00

(3,4,6,0)