

03 MA11292

The Last Whole Errata Catalog

by

Donald E. Knuth

Research sponsored by

Office of Naval Research and **National Science Foundation**

Department of Computer Science

Stanford University Stanford, CA 94305

DTE FILE COPY

107 04 02 82

THE LAST

WHOLE

ERRATA

CATALOG

by Donald E. Knuth
Stanford University

A

The publication of this report was supported in part by National Science Foundation grant MCS-77-23738, by National Science Foundation grant IST-79-21977, and by Office of Naval Research contract N00014-81-K-0269, Reproduction in whole or in part is permitted for any purpose of the United States government.

THE ART OF COMPUTER PROGRAMMING

E • R • R • A • T • A et A • D • D • E • N • D • A

July 13, 1981

This list supplements previous errata published in Stanford reports CS551 (1976) and CS712 (1979). It includes the first corrections and changes to the second edition of volume two (published January, 1981) as well as to the most recent printings of volumes one and three (first published in 1975). In addition to the errors listed here, about half of the occurrences of 'which' in volumes one and three should be changed to 'that'.

1.iX tine -7 historically have always developed from almost always owe their origin to	10/10/78	1
1.XX line -5 2.2 \(\sqrt{-} \rightarrow 2.2. \)	1/5/81	2
1.1 historical improvements lines -6, -4: Khowârizmî	9/4/79	3
lines -5, -4: Khowârizm." Khiva. Central Asia was once known as Lake Khwârizm, and the region is located in the Amu River basin just south of that a line -3: w'al-muqabala wa'l-muqâbala line -3: restoration and reduction restoring and equating lines -2, -1: although algebraic. which was a systemathe solution of linear and quadratic equations.	e Khwârism ea.	
1.25 exercise 19	1/26/80	4
a 14-digit integer, \wedge an integer whose decimal representation long,	n is 14 digits	•
1.42 line 4 $\sum_{1 \le k \le n} $ $\searrow $ $\sum_{1 \le k \le n}$	2/23/81	5
1.61 lines 4 and 5	6/1/81	6
to introduce still further complication \wedge to complicate things	even more	
1.72 line -4 (overrides 1979 change #18) $A_{n(k-1)} + \binom{n}{k}. ^{\bullet} A_{(n-1)(k-1)} + \binom{n}{k}, \text{ for } nk > 0.$	8/30/89	7

The Art of Computer Programming: ERRATA ET ADDRNDA———July 13,	1981	
1.78 line -2 al-Khowârismî 💠 al-Khwârismî	9/4/79	8
1.86 line -12 $ z < z_0$. $\rightsquigarrow z < z_0 $.	12/16/79	9
1.87 three lines after (4) latter 🎶 last-mentioned	10/26/79	10
1.88 bottom line $1 \le j < m \checkmark 0 \le j < m$	4/1/79	11
1.97 clarifying remarks line 10: $A = k$. \longrightarrow $A = k$. Let this number be P_{nk} . line 14: that \longrightarrow that $P_{nk} = P_{(n-1)(k-1)} + (n-1)P_{(n-1)k}$, which leads to	3/10/81	12
1.108 line 7 Academæ → Academiæ	9/26/80	13
1.110 just after (13), overriding 1976 change #31 provided that to n. \rightarrow provided that $f^{(2k+2)}(x)f^{(2k+4)}(1 < x < n)$.	10/25/79 x) > 0 for	14
1.112 new wording for exercise 3 3. [HM20] Let $C_m = ((-1)^m B_m/m!)(f^{(m-1)}(n) - f^{(m-1)}(1))$ be the matterm in Euler's summation formula. If $f^{(2k)}(x)$ has a constant sign for 1 show that $ R_{2k} \leq C_{2k} $ when $k > 0$; in other words, the remainder is a absolute value than the last term computed.	$1 \leq x \leq n$,	15
1.119 new exercise 18. [M25] Show that the sums $\sum {n \choose k} k^k (n-k)^{n-k}$ and $\sum {n \choose k} (k+1)^k (n-k)^{n-k}$	• • •	16
be expressed very simply in terms of the Q function. 1.122 improvements in wording line 1: A position has A computer word consists of five sign. The sign portion has line 8: bytes, and its sign bytes; it behaves as if its sign line 17: the preceding "JUMP" instruction, the most rece	•	17
operation, 1.123 more improvements in wording line 2 after (3): 8 is \$\frac{1}{2}\$ 8 specifies	4/12/81 e address.	18

1.132 wrong fonts line -17: A through Z	. 19
1.132 line -9 ignored. ignored. When a typewriter is used for input, the "carr return" that is typed at the end of each line causes the remainder of that lin be filled with blanks.	iage
1.136 and also page 137 c/c/sc replace by the chart on the endpapers of the new volume 2	. 21
1.140 line -3 bytes 20, since	
1.141 line 13 cell($x + i$). $\ \ \ \ \ \ \ \ \ \ \ \ \ $. 23
1.148 changes brought about by the demise of punched cards 3/30/s Fig. 15 will change to include also the following copy as typed on a typhardcopy terminal: • EXAMPLE PROGRAM TABLE OF PRIMES • L EQU 500 PRINTER EQU 18 The caption will change to " onto cards, or typed on a terminal."	•
line -6: cards, cards or typed on a computer terminal, line -5: used: used in the case of punched cards:	
1.149 new paragraph to follow line 5 When the input comes from a terminal, a less restrictive format is used: The field ends with the first blank space, while the OP and ADDRESS fields (if pres begin with a nonblank character and continue to the next blank; the specis code ALF, however, is followed by either two blank spaces and five character alphameric data, or by a single blank space and five alphameric characters, first of which is nonblank. The remainder of each line contains optional rems	LOC ent) 1 OP rs of the
1.150 line 22 context),	. 26
1.151 lines 9 and 10 e/4/se values: C, F, A, and I. The	. 27

-The Art of Computer Programming: ERRATA ET ADDENDA-----July 13, 1981-

1/80 2

here is a new Algorithm I together with a new Program I:

Algorithm I (Inverse in place). Replace X[1]X[2]...X[n], a permutation on $\{1,2,...,n\}$, by its inverse. This algorithm is due to Huang Bing-Chao.

- II. [Initialize.] Set $m \leftarrow n, j \leftarrow -1$.
- 12. [Next element.] Set $i \leftarrow X[m]$. If i < 0, go to step I5 (the element has already been processed).
- 13. [Invert one.] (At this point j < 0 and i = X[m]. If m is not the largest element of its cycle, the original permutation had X[-j] = m.) Set $X[m] \leftarrow j$, $j \leftarrow -m$, $m \leftarrow i$, $i \leftarrow X[m]$.
- I4. [End of cycle?] If i > 0, go back to I3 (the cycle has not ended); otherwise set $i \leftarrow j$. (In the latter case, the original permutation has X[-j] = m, and m is largest in its cycle.)
- I5. [Store final value.] Set $X[m] \leftarrow -i$. (Originally X[i] was equal to m.)
- I6. (Loop on m, Decrease m by 1. If m > 0, go back to I2; otherwise the algorithm terminates.

For an example of this algorithm, see Table 2. The method is based on inversion of successive cycles of the permutation, tagging the inverted elements by making them negative, afterwards restoring the correct sign.

Table 2

COMPUTING THE INVERSE OF 621543 BY ALGORITHM I

(Read columns from left to right.) At point *, the cycle (163) has been inverted.

					- ,			-	-	•	•				
After step:	12	I3	I3	13	I5*	12	I3	13	I5	I2	15	15	13	I5	15
X[1]	6	6	6	-3	3	-3	3	-3	3	—3	-3	-3	—3	-3	3
X(2)	2	2	2	2	2	2	2	2	2	2	2	2	-4	2	2
X[3]	1	1	6	6	-6	6	-6	-6	-6	6	6	6	6	6	6
X[4]	5	5	5	5	5	5	5	5	-5	5	5	5	5	5	5
X[5]	4	4	4	4	4	4	-1	-1	4	4	4	4	4	4	4
$X^{[6]}$	3	-1	1	-1	1	1	1	1	1	1	1	1	1	1	1
771.	6	3	1	6	6	5	4	5	5	4	4	3	2	2	1
j	-1	6	-3	1	-1	-	_	4	-4	-4	4	-4	-2	—2	-2
i	3	1	6	-1	-1	4	5	1	4	5	5	-6	-4	2	3

Algorithm I resembles parts of Algorithm A, and it very strongly resembles the cycle-finding algorithm in Program B (lines 50-64). Thus it is typical of a number of algorithms involving rearrangements. When preparing a MIX implementation, we find that it is most convenient to keep the value of -i in a register instead of i itself:

Program I (Inverse in place). $rl1 \equiv m$; $rl2 \equiv -i$; $rl3 \equiv j$; and n = N, a symbol to be defined when this program is assembled as part of a larger routine.

```
01
    INVERT ENT1 N
                          1
                             II. Initialise. m \leftarrow n.
02
             ENT3 -1
                         1
                             j \leftarrow -1.
03
    21
             LD2N X,1 N
                              12. Next element. i \leftarrow X[m].
04
             J2P
                    5F N
                              To I6 if i < 0.
05
    3H
             ST3
                   X,1 N
                              13. Invert one. X[m] \leftarrow j.
06
             ENN3 0,1 N
                             j \leftarrow -m.
07
             ENN1 0,2 N
                              m \leftarrow i.
08
             LD2N X,1 N
                             i \leftarrow X[m].
                              End of cycle? To 13 if i > 0.
             J2N 3B N
09
    4H
10
             ENN2 0.3 C
                              Otherwise set i \leftarrow j.
    5H
             ST2 X,1 N
                             15. Store final value. X[m] \leftarrow -i.
12
    6H
             DEC1 1
                         N
                             16. Loop on m.
15
              J1P 2B N
                             To 12 if m > 0.
```

28

The timing for this program is easily worked out in the manner shown earlier; every element X[m] is set first to a negative value in step 13 and later to a positive value in step 15. The total time comes to (14N+C+2)u, where N is the order of the permutation and C is the total number of cycles. The behavior of C in a random permutation is analyzed below.

There is almost always more than one algorithm ...

1.177 line 17 A, B, and I, A A and B,	11/11/80	29
1.209 program line 21 LDA * ENTA	4/4/80	30
1.234 line -17 i.e., • e.g.,	3/3/81	31
1.246 improved overlap line -10 should become: OLDTOP[j] = D[j] = NEWBASE[j+1] line -9: n+1;	2/4/79	32
1.248 addendum to 1979 change #47 See also A. S. Fraenkel, Inf. Proc. Letters 8 (1979), 9-10, who sugges with pairs of stacks that grow towards each other.	2/7/79 ests working	33
1.250 new rating for exercise 13 [M47] \$\square\$ [HM44]	3/1/70	34
1.252 lines -12 and -11 together or to break one apart. together, or to break one ap that will grow independently.	s/:s/so Part into two	35
1.254 replacement for lines 16 and 17 Otherwise set X ← POOLMAX and POOLMAX ← POOLMAX + c, where c is the node sise; OVERFLOW now occurs if POOLMAX > SEQMIN."	2/4/70 (7)	36
1.284 the line for time 0693	7/1/79	37
1.309 line 10 and two \rightarrow and the elements of two	9/4/80	38

Art of Computer Programming: ERRATA ET ADDENDA-

のできたいできたがあっていているというからないというからないというから、またいできたいできたがないできたが、またいかないなどのできたいからできないというできないというできます。 「「「「「「「「」」」

13. [22] Design an algorithm that begins with m weights $w_1 \leq w_2 \leq \cdots \leq w_m$ and constructs an extended binary tree having minimum weighted path length. Represent the final tree in three arrays

$$A[1], \ldots, A[2m-1]; L[1], \ldots, L[m-1]; R[1], \ldots, R[m-1];$$

here L[i] and R[i] point to the left and right sons of internal node i, the root is node 1, and A[i] is the weight of node i. The original weights should appear as the external node weights $A[m], \ldots, A[2m-1]$. Your algorithm should make fewer than 2m weight-comparisons. Caution: Some or all of the given weights may be negative!

14. [25] (T. C. Hu and A. C. Tucker.) After k steps of Huffman's algorithm, the nodes combined so far form a forest of m-k extended binary trees. Prove that this forest has the smallest total weighted path length, among all forests of m-k extended binary trees that have the given weights.

15. [M25] Show that a Huffman-like algorithm will find an extended binary tree that minimizes (a) $\max(w_1 + l_1, \ldots, w_m + l_m)$; (b) $w_1 x^{l_1} + \cdots + w_m x^{l_m}$, given x > 1.

16. [M25] (F. K. Hwang.) Let $w_1 \leq \cdots \leq w_m$ and $w_1' \leq \cdots \leq w_m'$ be two sets of weights with

$$\sum_{1 \le j \le k}^{\cdot} w_j \le \sum_{1 \le j \le k} w_j' \quad \text{for } 1 \le k \le m.$$

Prove that the minimum weighted path lengths satisfy $\sum_{1 \le j \le m} w_j l_j \le \sum_{1 \le j \le m} w_j' l_j'$.

17. [HM30] (C. R. Glassey and R. M. Karp.) Let s_1, \ldots, s_{m-1} be the numbers inside the internal (circular) nodes of an extended binary tree formed by Huffman's algorithm, in the order of construction. Let s_1', \ldots, s_{m-1}' be the internal node weights of any extended binary tree on the same set of weights $\{w_1, \ldots, w_m\}$, listed in any order such that each non-root internal node appears before its father. (a) Prove that $\sum_{1 \le j \le k} s_j \le \sum_{1 \le j \le k} s_j'$ for $1 \le k < m$. (b) The result of (a) is equivalent to

$$\sum_{1 \leq j < m} f(s_j) \leq \sum_{1 \leq j < m} f(s'_j)$$

for every nondecreasing concave function f, i.e., every function f with $f'(x) \geq 0$ and $f''(x) \leq 0$. [Cf. Hardy, Littlewood, and Polya, Messenger of Math. 58 (1929), 145-152.] Use this fact to study the recurrence

$$F(n) = f(n) + \min_{1 \le k \le n} (F(k) + F(n-k)), \qquad F(1) = 0,$$

given any function f(n) such that $\Delta f(n) = f(n+1) - f(n) \ge 0$ and $\Delta^2 f(n) = \Delta f(n+1) - \Delta f(n) \le 0$.

1.420 new paragraph before the exercises

2/7/70 47

Daniel P. Friedman and David S. Wise have observed that the reference counter method can be employed satisfactorily in many cases even when lists point to themselves, if certain link fields are not included in the counts [Inf. Proc. Letters 8 (1979), 41-45].

1.448 line 6 after the caption

3/81 **4**0

changed from \wedge changed to vary from

Art of Computer Programming: ERRATA ET ADDENDA-

1.498 new answer to 1.2.11.2-3, overrides 1976 change #104 10/15/79

3. $|R_{2k}| \leq |B_{2k}/(2k)!| \int_1^n |f^{(2k)}(x) dx|$. [Notes: We have $B_m(x) = (-1)^m B_m(1-x)$, and $B_m(x)$ is m! times the coefficient of x^m in $xe^{xx}/(e^x-1)$. In particular, since $e^{x/2}/(e^x-1) = 1/(e^{x/2}-1) - 1/(e^x-1)$ we have $B_m(\frac{1}{2}) = (2^{1-m}-1)B_m$. It is not difficult to prove that the maximum of $|B_{2m}-B_{2m}(x)|$ for $0 \leq x \leq 1$ occurs at $x=\frac{1}{2}$. Now when $k \geq 2$ we have $R_{2k-2} = C_{2k} + R_{2k} = \int_1^n (B_{2k} - B_{2k}(\{x\})) f^{(2k)}(x) dx/(2k)!$, and $B_{2k} - B_{2k}(\{x\})$ is between 0 and $(2-2^{1-2k})B_{2k}$, hence R_{2k-2} lies between 0 and $(2-2^{1-2k})C_{2k}$. It follows that R_{2k} lies between $-C_{2k}$ and $(1-2^{1-2k})C_{2k}$, a slightly stronger result. According to this argument we see that if $f^{(2k+2)}(x)f^{(2k+4)}(x) > 0$ for 1 < x < n, the quantities C_{2k+2} and C_{2k+4} have opposite signs, while R_{2k} has the sign of C_{2k+2} and R_{2k+2} has the sign of C_{2k+4} and $|R_{2k+2}| \leq |C_{2k+2}|$; this proves (13). Cf. J. F. Steffensen, Interpolation (Baltimore: 1927), §14.]

1.499 exercise 7 (overrides 1979 change #80)

3/25/81 60

59

3/25

(It is "Glaisher's constant" 1.2824271...) To \rightarrow To

This formula ... n = 4.

(The constant A is "Glaisher's constant" 1.28242..., which equals $(2\pi e^{\gamma-\epsilon'(2)/\epsilon(2)})^{1/12}$; cf. F. W. J. Olver, Asymptotics and Special Functions (New York: Academic Press, 1974), Section 8.3.3.)

$1.501\,$ new answer

/81 *61*

18. Let $S_n(x,y) = \sum {n \choose k} (x+k)^k (y+n-k)^{n-k}$. Then for n>0 we have $S_n(x,y) = x \sum {n \choose k} (x+k)^{k-1} (y+n-k)^{n-k} + n \sum {n-1 \choose k} (x+1+k)^k (y+n-1-k)^{n-k-k} = (x+y+n)^n + n S_{n-1}(x+1,y)$ by Abel's formula 1.2.6-16; consequently $S_n(x,y) = \sum {n \choose k} k! (x+y+n)^{n-k}$. [This formula is due to Cauchy, who proved it by quite different means in Exercices de Mathématiques (Paris: 1826), 62-73.] The stated sums are therefore equal respectively to $n^n(1+Q(n))$ and $(n+1)^n Q(n+1)$.

1.510 answer 13

6/4/80 62

line 2, replace by two lines: TAPE EQU 19 Input unit number

TYPE EQU 19 Output unit number

lines 16 and 18: UNIT \longrightarrow TAPE (twice) lines 38 and 42 (the latter is on page 511): 19 \longrightarrow TYPE (twice)

1.515 line 5

For ... history,

10/18/79

18/79

63

Historical notes: C. Haros gave a (more complicated) rule for constructing such sequences, in J. de l'École Polytechnique 4, 11 (1802), 364-368; his method was correct, but his proof was inadequate. The geologist John Farey independently conjectured several years later that x_k/y_k is always equal to $(x_{k-1} + x_{k+1})/(y_{k-1} + y_{k+1})$ [Philos. Magazine and Journal 47 (1816), 385-386]; a proof was supplied shortly afterwards by A. Cauchy [Bull. Société Philomathique de Paris (3) 3 (1816), 133-135], who attached Farey's name to the series. For more of its interesting properties,

1.531 line -2 10/18/79 6.	4
	•
X's. For the history of the ballot problem $\wedge \rightarrow X$'s. This problem was actually resolved as early as 1708 by Abraham de Moivre, who showed that the number of sequences containing l A's and m B's, and containing at least one initial substring with n more A's than B's, is $f(l, m, n) = \binom{l+m}{\min(m, l-n)}$. In particular, $a_n = \binom{2n}{n} - f(n, n, 1)$ as above. (De Moivre stated this result without proof [Philos. Trans. 27 (1711), 262-263]; but it is clear from other passages in his paper that he knew how to prove it, since the formula is obviously true when $l \geq m+n$, and since his generating-function approach to similar problems yields the symmetry condition $f(l, m, n) = f(m+n, l-n, n)$ by simple algebra.) For the later history of the ballot problem	
1.538 insert new answer 3/1/70 $ extit{6}$.	5
13. A. C. Yao has shown that $\max(k_1, k_2)$ will be $\frac{1}{2}m + (2\pi(1-2p))^{-1/2}\sqrt{m} + O(m^{-1/2}(\log m)^2)$ for large m , when $p < \frac{1}{2}$. [SIAM J. Computing 10 (1981), 398-403.]	
1.547 answer 5	6
(Solution by B. Young.) \wedge (Cf. exercise 2.2.3-7.)	
1.548 first line of answer 9 4/17/79 $ heta$	7
should. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
1.550 exercise 18 (corrects 1979 change #96) 3/2/77 66	8
denotes, are included \wedge denotes "exclusive or." Other invertible operations, such as addition or subtraction modulo the pointer field size, could also be used. It is convenient to include two adjacent list heads	
1.560 additional sentence to follow 1976 change #135	9
(Steps T4 and T5 can be streamlined so that nodes are not taken off the stack and immediately reinserted.)	
1.562 answer 21 10/17/79 76	0
21. The following .	
21. (Solution by D. Branislav, traverses either in preorder or inorder.)	
U1. [Initialize.] If $T = \Lambda$, terminate the algorithm. Otherwise set $Q \leftarrow T$. U2. [Preorder visit.] If traversing in preorder, visit NODE(Q).	

- U3. [Go to left.] Set $R \leftarrow LLINK(Q)$. If $R = \Lambda$, go to U5.
- U4. [Insert a right thread.] Set $P \leftarrow Q$ and $Q \leftarrow R$, then set $R \leftarrow RLINK(R)$ sero or more times until $RLINK(R) = \Lambda$. Set $RTAG(R) \leftarrow "-"$ and $RLINK(R) \leftarrow P$. Return to step U2.
- U5. [Inorder visit.] If traversing in inorder, visit NODE(Q).
- U6. [Go to right.] If RLINK(Q) $\neq \Lambda$ and RTAG(Q) = "+", set Q \leftarrow RLINK(Q) and go to step U2.
- U7. [Remove the thread.] Set $R \leftarrow RLINK(Q)$, $RTAG(Q) \leftarrow "+"$, $RLINK(Q) \leftarrow \Lambda$.
- U8. [Go up.] Set $Q \leftarrow R$. Go back to step U5 if $Q \neq \Lambda$, otherwise terminate the algorithm.

Alternatively, the following slightly slower

The Art of Computer Programming: ERRATA ET ADDENDA—

0,2 \(\sqrt{0} \) 0,2(RLINKT)

75

6/8/80

1.568 improvements to	program lines 93-100	6/8/80	76
93 C4 LDA 0,1(LLINK) 94 JANZ 4B 95 STZ 0,2(LLINK) 96 C5 LD2N 0,2(RLINKT) 97 LD1 0,1(RLINK) 98 J2P C5 99 ENN2 0,2 100 C6 J2NZ C2	C4. Anything to left? Jump if LLINK(P) ≠ Λ. LLINK(Q) ← Λ. C5. Advance. Q ← —RLINKT(Q). P ← RLINK(P). Jump if RTAG(Q) was "—". Q ← —Q. C6. Test if complete.		
1.568 lines 3 and 4 of all 89-95, 18u);	94, n ; 95, $n-a$; 96-98, $n+1$; 99-100, n	6/8/80 a; 101-103,	77
	(improves 1979 change #100) means $c(j,i)$ when $j < i$.	9/21/76	78
1.579 in the biggest ma	trix d the label on column 3 from [10] to [20]	5/1/79	79
1.579 in the second-bigg $a_{0m} \rightsquigarrow a_{0n}$	gest matrix, row 1	5/1/79	80
1.581 new answer		5/19/81	81
$t_j = \sum_i a_{ij}t_i$ for all j . Since But this is not difficult, become products $p(e_1) \dots p(e_n)$ taken and such that there is a unique includes V_j . Removing any softhe identity is obtained by side corresponds to those that	$e(e)$ over all arcs e from V_i to V_j . We are $e \sum_i a_{ji} = 1$, we must prove that $\sum_i a_{ji} t$ ausse both sides of the identity represent to over subgraphs $\{e_1, \ldots, e_n\}$ of G such that e oriented cycle contained in $\{e_1, \ldots, e_n\}$, what of the cycle yields an oriented tree; the factoring out the arcs that leave V_j , while t enter V_j . is a combination of exercises 19 and 26.	$j = \sum_{i} a_{ij}t_{i}$. the sum of all init(e _i) = V _i there this cycle lefthand side	
1.582 line -9 Note: Kruskal's 🎶 N weaker form of embedding. I	Note: Kruskal actually proved a stronger r	3/1/79 esult, using a	82
1.582 line -6	Dershowitz, Information Proc. Letters 9 (19	^{3/25/81} 979), 212–215,	83
1.588 lines -4 and -3 of is methods above \searrow tively replaces $d_k d_{k+1}$ by (d. 129-130]. The methods above			84

The Art of Computer Programming: ERRATA ET ADDENDA..........July 13, 1981-

1.589 line 1 of answer 4

10/18/79 85

 $l_j > l_{j+1}$ \searrow $l_j \ge l_{j+1}$

1.590 addendum to answer 10

10/18/79 86

(place the figure at the right margin and set the copy narrower, to its left)

The desired ternary tree is

The desired ternary tree is shown at the right. F. K. Hwang has observed [SIAM J. Appl. Math. 37 (1979), 124-127] that a similar procedure is valid for minimum weighted path length trees having any prescribed multiset of degrees: at each step the smallest t weights are combined, where t is as small as possible.

1.590 new answers replacing answer 12

87

12. By exercise 9, it is the internal path length divided by n. [This holds for general trees as well.]

13. [Cf. J. van Leeuwen, Proc. 3rd International Colloq. Automata, Languages, and Programming, Edinburgh (July 1976), 382-410.]

H1. [Initialise.] Set $A[m-1+i] \leftarrow w_i$ for $1 \le i \le m$. Then set $x \leftarrow m$, $i \leftarrow m+1$, $j \leftarrow m-1$, $k \leftarrow m$. (During this algorithm $A[i] \le \cdots \le A[2m-1]$ is the queue of unused external weights and $A[k] \ge \cdots \ge A[j]$ is the queue of unused internal weights; the current left and right pointers are x and y.)

H2. [Find right pointer.] If j < k or $A[i] \le A[j]$, set $y \leftarrow i$ and $i \leftarrow i + 1$; otherwise set $y \leftarrow j$ and $j \leftarrow j - 1$.

H3. [Create internal node.] Set $k \leftarrow k-1$, $L[k] \leftarrow x$, $R[k] \leftarrow y$, $A[k] \leftarrow A[x] + A[y]$.

II4. [Done?] Terminate the algorithm if k = 1.

H5. [Find left pointer.] (At this point $j \ge k$ and the queues contain a total of k unused weights. If A[y] < 0 we have j = k, i = y + 1, and A[i] > A[j].) If $A[i] \le A[j]$, set $x \leftarrow i$ and $i \leftarrow i + 1$; otherwise set $x \leftarrow j$ and $j \leftarrow j - 1$. Return to step H2.

14. The proof for k = m - 1 applies with little change. [Cf. SIAM J. Appl. Math. 21 (1971), 518.]

15. Use the combined-weight functions (a) $1 + \max(w_1, w_2)$ and (b) $x(w_1 + w_2)$, respectively, instead of $w_1 + w_2$ in (9). [Part (a) is due to M. C. Golumbic, IEEE Trans. C-25 (1976), 1164-1167; part (b) to T. C. Hu, D. Kleitman, and J. K. Tamaki, SIAM J. Appl. Math. 37 (1979), 246-256. Part (a) may be considered as the limiting case of part (b) as $x \to \infty$; Huffman's problem is, similarly, the limiting case as $x \to 1$, since $\sum (1+\epsilon)^l w_l = \sum w_l + \epsilon \sum w_l l_l + O(\epsilon^2)$.]

D. Stott Parker, Jr., has pointed out that a Huffman-like algorithm will also find the minimum of $w_1x^{i_1} + \cdots + w_mx^{i_m}$ when 0 < x < 1, if the two maximum weights are combined at each step. In particular, the minimum of $w_12^{-i_1} + \cdots + w_m2^{-i_m}$, when $w_1 \le \cdots \le w_m$, is $w_1/2 + \cdots + w_{m-1}/2^{m-1} + w_m/2^{m-1}$.

16. Let $l_{m+1} = l'_{m+1} = 0$. Then

$$\sum_{1 \le j \le m} w_j \, l_j \le \sum_{1 \le j \le m} w_j \, l_j' = \sum_{1 \le k \le m} (l_j' - l_{j+1}') \sum_{1 \le j \le k} w_j$$

$$\le \sum_{1 \le k \le m} (l_j' - l_{j+1}') \sum_{1 \le j \le k} w_j' = \sum_{1 \le j \le m} w_j' \, l_j',$$

since $l'_j \ge l'_{j+1}$ as in exercise 4. The same proof holds for many other kinds of optimum trees, including those of exercise 10.

17. (a) This is exercise 14. (b) We can extend f(n) to a concave function f(x), so the stated inequality holds. Now F(m) is the minimum of $\sum_{1 \le j < m} f(s_j)$, where the s_j are internal node weights of an extended binary tree on the weights 1, 1, ..., 1. Huffman's algorithm, which constructs the complete binary tree with m-1 internal nodes in this case, yields the optimum tree. Therefore the choice $k=2^{\lceil \lg n/3 \rceil}$ yields the minimum in the recurrence, for each n. [Reference: SIAM J. Appl. Math. 31 (1976), 368-378. We can evaluate F(n) in $O(\log n)$ steps; cf. exercises 5.2.3-20 and 21. If f(n) is convex instead of concave, so that $\Delta^2 f(n) \ge 0$, the solution to the recurrence is obtained when $k = \lfloor n/2 \rfloor$.

1.603 new version of lines ?2-24 (overrides previous changes) 10/18/70

[This method is called the "LISP 2 garbage collector." An interesting alternative, which does not require the LINK field at the beginning of a node, can be based on the idea of linking together all pointers that point to each node—see Lars-Erik Thorelli, BIT 16 (1976), 426-441; F. Lockwood Morris, CACM 21 (1978), 662-665, 22 (1979), 571; and H. B. M. Jonkers, Inf. Proc. Letters 9 (1979), 26-30. Other methods have been published by B. K. Haddon and W. M. Waite, Comp. J. 10 (1967), 162-165; B. Wegbreit, Comp. J. 15 (1972), 204-208; D. A. Zave, Inf. Proc. Letters 3 (1975), 167-169.]

42. We can assume that $m \ge 6$. The main idea is to establish the occupancy pattern $R_{m-2}(F_{m-3}R_1)^k$ at the beginning of the memory, for $k=0, 1, \ldots$, where R_j and F_j denote reserved and free blocks of size j. The transition from k to k+1 begins with

$$R_{m-2}(F_{m-3}R_1)^k \to R_{m-2}(F_{m-3}R_1)^k R_{m-2}R_{m-2}$$

$$\to R_{m-2}(F_{m-3}R_1)^{k-1}F_{2m-4}R_{m-2}$$

$$\to R_{m-2}(F_{m-3}R_1)^{k-1}R_m R_{m-5}R_1R_{m-2}$$

$$\to R_{m-2}(F_{m-3}R_1)^{k-1}F_m R_{m-5}R_1;$$

then the commutation sequence $F_{m-3}R_1F_mR_{m-5}R_1 \to F_{m-3}R_1R_{m-2}R_2R_{m-5}R_1 \to F_{2m-4}R_2R_{m-5}R_1 \to R_mR_{m-5}R_1R_2R_{m-5}R_1 \to F_mR_{m-5}R_1F_{m-3}R_1$ is used k times until we get $F_mR_{m-5}R_1(F_{m-3}R_1)^k \to F_{2m-5}R_1(F_{m-3}R_1)^k \to R_{m-2}(F_{m-3}R_1)^{k+1}$. Finally when k gets large enough there is an endgame that forces overflow unless the memory size is at least (n-4m+11)(m-2); details appear in Comp. J. 20 (1977), 242-244. [Note that the worst conceivable worst case, which begins with the pattern $F_{m-1}R_1F_{m-1}R_1F_{m-1}R_1\dots$, is only slightly worse than this; the next-fit strategy of exercise 6 can produce this pattern.]

43. We will show that if D_1, D_2, \ldots is any sequence of numbers such that $D_1/m + D_2/(m+1) + \cdots + D_m/(2m-1) \ge 1$ for all $m \ge 1$, and if $C_m = D_1/1 + D_2/2 + \cdots + D_m/m$, then $N_{\rm FF}(n,m) \le nC_m$. In particular, since

$$\frac{1}{m} + \frac{1}{m+1} + \dots + \frac{1}{2m-1} = 1 - \frac{1}{2} + \dots + \frac{1}{2m-3} - \frac{1}{2m-2} + \frac{1}{2m-1} > \ln 2,$$

the constant sequence $D_m=1/(\ln 2)$ satisfies the necessary conditions. The proof is by induction on m. Let $N_j=nC_j$ for $j\geq 1$, and suppose that some request for a block of size m cannot be allocated in the leftmost N_m cells of memory. Then m>1. For $0\leq j< m$, we let N_j' denote the rightmost position allocated to blocks of sizes $\leq j$, or 0 if all reserved blocks are larger than j; by induction we have $N_j'\leq N_j$. Furthermore we let N_m' be the rightmost occupied position $\leq N_m$, so that $N_m'\geq N_m-m+1$. Then the interval (N_{j-1}',N_j') contains at least $\lceil j(N_j'-N_{j-1}')/(m+j-1)\rceil$ occupied cells, since its free blocks are of size < m and its reserved blocks are of size $\geq j$. It follows that $n-m\geq n$ number of occupied cells $\geq \sum_{1\leq j\leq m} j(N_j'-N_{j-1}')/(m+j-1)=mN_m'/(2m-1)-(m-1)\sum_{1\leq j< m} N_j'/(m+j)(m+j-1)>mN_m/(2m-1)-m-(m-1)\sum_{1\leq j< m} N_j(1/(m+j-1)-1/(m+j))=\sum_{1\leq j\leq m} nD_j/(m+j-1)-m\geq n-m$, a contradiction.

[This proof establishes slightly more than was asked. If we define the D's by $D_1/m + \cdots + D_m/(2m-1) = 1$, then the sequence C_1, C_2, \ldots is 1, $\frac{7}{4}$, $\frac{161}{72}$, $\frac{7483}{72}$, \ldots ; and the result can be improved further, even in the case m = 2, cf. exercise 38.]

1.617 _L entry for Abel, binomial formula generalized 398. \rightsquigarrow 398, 501.	3/16/81	90
1.617L al-Khowārismī Mohammed 🍫 al-Khwārismī, abu Ja'far Muḥammad	9/4/79	91
1.618_R entry for Best-fit add p. 455	4/1/81	92
1.618 _R	3/16/81	93

Bergman, George Mark, 493, 588.

The Art of Computer Programming: ERRATA ET ADDENDA	July 13, 1981	
1.618_R entry for Bernoulli polynomials add p. 498	10/25/79	94
1.618_R entry for Binary trees, complete 401. \rightsquigarrow 401, 590.	3/15/81	95
1.618_R entry for Binary trees, copying of 332 \rightsquigarrow $331-332$	10/17/79	96
1.618_R entry for Binomial theorem, Abel's generalization 398. \rightsquigarrow 398, 501.	3/16/81	97
1.619 _L Branislav, Ďurian, 562.	10/17/79	98
1.619 _R Cauchy, Augustin Louis, 36–37, 501, 515, 578.	3/16/81	99
1.620 _L Complete binary tree, 400-401, 590.	3/15/81	100
1.620 _L Concave function, 405.	3/15/81	101
1.620L line -10 strongly, 372, 377, 381.	5/19/81	102
1.620 _R Convex function, 590.	3/15/81	103
1.620_R entry for Copy a tree $332 \rightsquigarrow 331-332$	10/17/79	104
1.621 _L Dershowits, Nachum, 582.	3/25/81	105
1.621R lines 3 and -21 omit these entries about 'divided differences'	7/8/81	106
1.622_R line 2 add p. 472 to the Euler entry	7/8/81	107
1.622 _R Farey, John, 157, 515.	10/18/79	108
1.623L entry for First-fft add p. 455	4/1/81	109

...

- the Mis of Compact 1 registrating. Institute At Modern Market	,,	
1.623L Fraenkel, Aviesri S., 248.	2/7/79	110
1.623L Friedman, Daniel Paul, 420.	2/7/79	111
1.623R Glassey, Charles Roger, 405.	3/15/81	112
1.623R Golumbic, Martin Charles, 590.	3/15/61	113
1.623R Hardy, Godfrey Harold, 12, 405, 496, 515.	3/15/81	114
1.623 _R Haros, Ch., 515.	10/18/79	115
1.624L Hu, Te Chiang, 405, 590.	3/15/61	116
1.624L Hwang, Frank Kwangming, 405, 590.	10/14/79	117
1.625L Jonkers, Henricus Bernardus Maria, 803.	10/18/79	118
1.625L Karp, Richard Manning, 405.	3/15/81	119
1.625 _R Kleitman, Daniel J., 590.	3/15/81	120
1.626R Littlewood, John Edensor, 405.	3/15/01	121
1.627 _R Morris, Francis Lockwood, 603. Morris, Joseph Martin, 562.	3/25/81	122
1.627 _R Next-fit method, 452 (exercise 6), 606.	4/1/81	123
1.628L Olver, Frank William John, 499.	3/25/81	124
1.628R Parker, Douglass Stott, Jr., 560.	5/19/61	125

をからない しゅんかん あんかん

The Att of Computer Programming: ERRATA ET ADDENDA-	-July 13, 1981	
1.629% Põiya entry acd p. 405	12712776	126
1.630 _L line 1 271, 458, 596.	3/15/81	127
1.630 _L line 7 249.	12/12/70	128
1.631L new subentry under Schröder numbers, 534, 587.	3/3/61	129
1.631R Spanning tree, minimum, 370-371.	2/20/81	130
1.631R Steady states, 381.	ŝ/19/ 8 1	131
1.631R Steffensen, Johan Frederik, 498.	3/30/81	132
1.632L . Strongly connected directed graph, 372, 377, 381.	5/19/81	133
1.632R Tamaki, Jeanne Keiko, 590.	3/15/81	134
1.633L entry for Trees, copying of	10/17/79	135
1.633R Tucker, Alan Curtiss, 405.	3/15/91	156
1.633R van Leeuwen, Jan, 590.	3/15/81	137
1.634L Wise, David Stephen, 420, 434, 595.	2/1/16	138
1.634R Yao, Andrew Chi-Chih, 538.	3/1/70	139
1.634R delete the entry for Benna Kay Young	3/3/81	140
2.xii line -6 300 \$\square\$ 302	4/11/81	141

;

2.6 fine -10	4/10/61	142
ielt table 🥎 fult-comerci table 2.7 first line of exercise 7 least 🎶 greatest	3/6/81	143
2.14 line 19 . DEC 20 \to DEC system 20	12/20/80	144
2.38 lines 14 and 17 too much space after 'Dr.' (twice)	1/27/81	145
2.45 line -9 though though \$\square\$ though	1/27/81	146
2.55 line 10 0 and 1 >> 0 and n	2/2/81	147
2.58 exercise 19 Kolomogrov 🎶 Kolmogorov	1/27/81	148
2.61 line -7 above the mean" and "runs below \wedge below the mean" and "runs below the mean" and "		149
2.64 line 4 after Algorithm P exchange $U_r U_s \rightsquigarrow \text{exchange } U_r \leftrightarrow U_s$	9/9/80	150
2.66 left side of second equation in (14) $Z_{pj} \sim Z_{qj}$	2/2/81	151
2.67 right side of second equation in (18) $Z_{pj} \leftrightarrow Z_{qj}$	3/26/81	152
2.68 big matrix display (22) (I'll fix this so the numerators and denominators are a little bit furth fraction lines)	1/12/81 her from t	<i>153</i> he
2.75 line 4 $aX_k + \beta Y_k \searrow aU_k + \beta V_k$	2/2/21	154
2.104 line -9 $6X_{n+2} \rightsquigarrow 6X_{n+1}$	2/28/91	155

-The Art of Computer Programming: ERRATA ET ADDEND .----

	,	
2.115 five lines before (3) (1976), ~ (1977),	. 1 e	156
2.117 five lines after (10) 28 (1958), 610;	3/2/81	157
2.125 line -2 $-4/\ln U$, \sim $-4 \ln U$,	4/28/81	158
2.127 Equation (28) 1/cu	4/13/61	159
2.129 three lines before (35) see G. Marsaglia, \rightsquigarrow see E. B. Wilson and M. M. Hilferty, Pro Sci. 17 (1931), 684–688; G. Marsaglia,	• •	160 .d.
$2.130 \text{line -15} $ $(1-z) \checkmark \qquad (1-Z)$	2/2/81	161
$\begin{array}{cccc} 2.135 & \text{line 2} \\ & cg(t) & & & cg(t) \end{array}$	4/13/81	162
2.136 line 19 (J. L. Bentley and J. D. Saxe.) Fint \rightsquigarrow Find	5/4/81	163
2.142 fine 1 3.5. ** *3.5.	1/16/81	164
2.143 line 16 $U_1, U_2, \searrow U_0, U_1,$	=/2/ta	165
2.164 line 4 defined in exercise 1.1-8.) \rightsquigarrow discussed in Section 1.1.)	2/2/81	166
2.171 line -17 (and also page 172 line 12) DIMENSION IA(1) $ ightharpoonup ighth$	4/10/81	167
2.172 lines -3 to -5 of the FORTRAN subroutine IRN55(IA)	12/12/80	168
2.184 line 1 l'Academie 🎶 l'Académie	9/26/60	169

The Art of Computer , regressming BRRAIA ET ADDENDA----

2.188 line 2 l'Academie 🎶 l'Académie	6136151	170
2.193 last line before exercises roman 🖴 Roman	1/12/81	171
2.195 last line of exercise 23 sero. → sero, if 0 ∈ D. Show that this conclusion need not be true i	4/2/81 f 0 ∉ D.	172
2.198 Planck's constant replaces Dirac h line 21: $h = 1.0545$ \rightsquigarrow $h = 6.6256$ line -3: $h = (24, +.10545000)$. \rightsquigarrow $h = (24, +.66256000)$.	1/10/81	173
2.201 step N5 choose the odd. \rightsquigarrow change f to the nearest multiple f' of that $b^p f' + \frac{1}{2}b$ is odd.	1/12/81 6 suc	•
2.210 line -4 computer System, ~ Computer System,	1/12/81	175
2.213 move the two quotations down between exercise 19 and the beginning	1/12/81 g of 4.2.2	
2.216new (18) $ \delta(x) = \frac{ \rho(x) }{2} \le \frac{ \rho(x) }{b-1 + \rho(x) } \le \frac{1}{2}b^{e-p}/(b^{e-1} + \frac{1}{2}b^{e-p}) < \frac{1}{2}b^{1-p}.$	l/1 2/81	177
2.218 line -2 $(\epsilon_1 + \epsilon_2); \checkmark (\min(\epsilon_1, \epsilon_2));$	4/27/81	178
2.22 lines 23-26 line 23: but if $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1/8/81	179
line 24: occur. [Roy \rightarrow occur, although repeated rounding of like 2.5454 will lead to almost as much error. [Cf. Roy line 25: On the other hand, since \rightarrow Some line 26: remainder \rightarrow least significant digit line 26: often. \rightarrow often. Exercise 23 demonstrates this ad round-to-even.		
2.223 Planck's constant replaces Dirac h line -17: (-23, +.00010545)	1/10/81	180

-The Art of Computer Programming: ERRATA ET ADDENDA----------July .2 1961-

The Art of Con puter Programming, ERRATA ST ADDENDA	1981	
2.225 replacement for bottom line $h = [(-26, +.60252000), (-26, +.60261005)];$	1. 1994	181
2.226 replacement for line 3 $N \otimes h = \{(-2, +.39898544), (-2, +.39907676)\}.$ (also change h to h on line 2)	1/10/81	182
2.227 corrections to bad German line 24: Begrund- Begrün- line 25: ung der Rechenarithmetik dung der Rechnerarithm	4/22/81 netik	183
2.227 last line before exercises 1980 • 1981	6/16/81	184
2.259 line 9 [rAX/v1].	4/13/81	185
2.268 exercise 36 Appendix B A Appendix A	1/15/61	186
2.268 last line of exercise 36 1974.]	4/28/81	187
2.276 line 21 Informací 3 A Informací (Information Processing Machines) 3	4/30/81	188
2.305 line -5 q ; \sim 9;	1/18/41	189
2.307 last line of Example 1 (14198757) ₁₀ .	i/27/ & i	190
2.314 new display for line 7 $\frac{201}{3} / \left(\frac{66}{6} \cdot \frac{12}{3}\right) = 67/44.$	1/20/81	191
2.353 line 4 partial fractions \(\square \) continued fractions	2/4/81	192
2.369 lines 1 and 2 4th ed. (Oxford, 1960)	2/33/61	193
2.371 line 7 +1.	6/16/81	194

THE ALL OF COMPLETE LOGICATIONS. DESCRIPT DE REPORTEDA.	••	_
2.374 line E S'(1,721). V. S'(1,711).	14:3 25	195
2.377 top line of (16) $x^{n_4-1} \rightsquigarrow x^{n_4-1}$	1/26/81	196
2.377 line -5 this, ** this:	2/1/81	197
2.384 lines -7, -5, -4 N V (thrice)	1/11/81	198
2.384 last three lines D. R. Hickerson 224.	B/16/81	199
2.385 line 25 Dixon's method	9/25/81 260]	200
2.386 line -11 1979 \$\square\$ 1978	2/17/81	201
2.388 line 12 $\frac{1}{6} \ln p_1 p_2 \approx 45$ 45 $\frac{1}{3} \ln p_1 p_2 \approx 90$	2/12/81	202
2.388 line -16 651 \$\square\$ 654	4/22/81	20 3
$2.389 \lim_{z \to 0} 20$ $\gcd(x,y) \rightsquigarrow \gcd(x-y,N)$	3/22/6.	204
2.391 first line of (23) 2203 2281, \$\sqrt{1}\$ 2203, 2281,	1/27/81	205
2.391 line 4 after (23) CRAY-I	1/27/ 6 1	206
2.396 line 2 all primes 4 all odd primes	3/31/61	207
2.396 exercise 24 line 2 $z = n \rightsquigarrow z \mod n = 0$	1/17/81	208

2.398 new exercise	2 * 1	205
39. $[HM30]$ (L. Adleman.) Let p be a rather large prime number primitive root modulo p ; thus, all integers b in the range $1 \le b < p$ $b = a^n \mod p$, for some unique n with $1 \le n < p$. Design an algorithm that almost always finds n , given b , in $0 \le 0$, using ideas similar to those of Dixon's factoring algorithm. building a repertoire of numbers n , such that $a^{n} \mod p$ has only small properties.	p can be writte (p ^c) steps for a [Hint: Start b	en all Dy
2.402 line 15 $r_1(x) = 0.$ $r_1(x) = r_2(x).$	2/15/81	210
2.402 line 2 of step D1 $\leftarrow \sim =$	2/3/81	211
$2.407 \text{line -2} \\ \gcd(v(x), \operatorname{pp}((r(x))) \rightsquigarrow \gcd(v(x), \operatorname{pp}(r(x)))$	3/3/81	212
2.409 fractions in (13) and (14) (the numerators and denominators will be moved a bit further fr lines)	4/28/81 om the fractio	
2.414 line -4· (25) \(\sqrt{26} \)	6/5/81	214
2.415 line 7 (16) and (17) \(\sho_{\rightarrow} \) (17) and (18)	6/5/81	215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/2/81	216
$2.430 \text{line -10} \\ \gcd(g_d(x), t(x)^{(p^d-1)/2}) \rightsquigarrow \gcd(g_d(x), t(x)^{(p^d-1)/2} - 1)$	2/22/81	217
2.430 line -4 Comp., to appear.] \sim Comp. 36 (1981), 587-592.]	6/16/41	218
2.432 line -9 (x^2-13-7) $(x^2-13x-7)$	6/11/8\	219
2.432 fine -8 are factors \rightsquigarrow could be a factor	3/3/61	220
2.433 bottom line $d > \frac{1}{2}r$. $\wedge r$ $d \leq \frac{1}{2}r$.	5/21/61	221

The Art of Computer Programming: ERRATA ET ADDENDA	198	_
2.434 line 11 2'-: /y 2'-: -1	21271°,	222
2.438 line 3 of exercise 18 $\cdots u_0 u_n^{n-1}$. $\longrightarrow \cdots + u_0 u_n^{n-1}$.	4/27/81	223
2.439 line 14 mod 2 \$\sqrt{\text{mod nodulo 2}}\$	3/3/81	224
2.442 three lines before Algorithm A	6/18/81	225
2.482 line 16 Math., to appear. Math. 7 (1981), 73-125.]	1/10/81	226
2.484 bottom line $2n^2+2$ \rightsquigarrow $2n^2+2n$	5/6/81	227
2.487 the display after (46) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ \rightsquigarrow $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	1/27/81	228
2.496 line 26 462.		
2.506 lines 4-5 their quotient, etc., \(\square \) and sometimes their quotient,	4/29/81	230
2.517line -12 $X_0 = a \checkmark X_1 = a$	2/2/81	231
$2.519 \text{line 2} 6\sqrt{\pi/2m} \rightsquigarrow \sqrt{\pi/2m}$	5/5/81	232
2.520 exercise 15 $(m-1)^m/m$, $(m-1)^m/m^m$,	2/1/91	233
2.523 lines 8 and 9	2/2/81	234
so result. \rightsquigarrow so $(a^{2^{e-1}}-1)/(a-1)\equiv 0\pmod{2^e}$ iff $(a^{2^{e-1}}\pmod{2^e})$ iff $(a^{2^{e-1}}-1)$, which is true.	1 1)/2 =	: 0

The state of the s

2.523 line 4 of exercise 11 $(\pm x)^{2e-f-1} \xrightarrow{\searrow} (\pm x)^{2^{e-f-1}} \\ (\pm x)^{2e-f} \xrightarrow{\searrow} (\pm x)^{2^{e-f}}$	2/2/81	235
$2.531 \text{line -2} \\ F_n(x) - F_n(y), \rightsquigarrow F_n(y) - F_n(x),$	2/2/81	236
2.536 exercise 15 and S has \rightsquigarrow and X has	:/2/81	237
$\begin{array}{cccc} 2.536 & \text{line -5} \\ \binom{U_1' \ U_2' \dots U_{n-1}'}{V_1' \ V_2' \dots V_{n-1}'} & & & & & & & & & & & & & \\ \begin{pmatrix} U_0' \ U_1' \dots U_{n-1}' \\ V_0' \ V_1' \dots V_{n-1}' \end{pmatrix} \end{array}$	2/2/81	238
2.540 line 3 $\left(\left(rac{a(x+c_0/d)}{m/d} ight)\right) ightharpoons \left(\left(rac{a(x+c_0/d)}{m/d} ight)\right)$	2/2/81	239
2.543 line 5 of exercise 5 $(h'-qh)^2$ $(h'-q'h)^2$	2/2/81	240
2.546 line 2 of exercise 24 mod n \rightsquigarrow mod m	2/2/81	241
2.547 line 10 of exercise 27	2/2/81	242
2.550 line -2 of answer 10 b_1 , \sim $(b_1$,	4/4/81	243
2.550 first line of answer 11 $\int_0^x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4/9/81	244
2.554 lines 2 and 3 [ACM appear.] \searrow [This technique was apparently introduced in the 1960s by David Seneschol; cf. Amer. Statistician 26,4 (October 1972), 56-57. The alternative of generating n uniform numbers and sorting them is probably faster unless n is rather large, but this method is particularly valuable if only a few of the largest or smallest X 's are desired. Note that $(F^{-1}(X_1), \ldots, F^{-1}(X_n))$ will be sorted deviates having distribution F .]		
2.561 bottom line of answer 37 334.] (1975).] bottom line of answer 37 334; see also the Ph.D. thesis of Thomas N. Hersog, Univ. of thesis of Thomas N. Hersog, Univ. of thesis of Thomas N. Hersog, Univ. of the thesis of the the thesis of the the thesis of the the thesis of the the the thesis of the thesis of the thesis of the thesis of the		246 ad

The Art of Computer Programming: ERRATA ET ADDENDA-----------July 13, 1981-

 $\frac{1}{3}qn + \min(\frac{1}{3}n, r) = \frac{1}{3}N + \min(\frac{1}{3}n - \frac{1}{3}r, \frac{2}{3}r) \le \frac{1}{3}N + \frac{1}{3}n \le \frac{1}{3}N$

The Art of Computer Programming: ERRATA ET ADDENDA-July 13, 1981-

Fred ... (1979). A Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun,

J. Algorithms 1 (1980), 259-295.

The Art of Computer Programming: ERRATA ET ADDENDAJuly	13, 1981	
2.666 line -4 $\Sigma \rightsquigarrow 4\Sigma$	3/3/81	269
2.668R Adleman, Leonard Max, 380, 386, 396, 398.	4/5/81	270
2.669n Balanced decimal number system, 195, 565.	4/2/81	271
2.670L delete the entry for Jon Bentley	5/4/81	272
2.670 _L Berlekamp entry 420, 423, \$\frac{1}{2}\$ 420-423,	3/3/81	273
2.670R Brakke, Kenneth Allen, 565.	4/2/81	274
2.670_R Richard Brent entry add p. 637	5/21/81	275
2.670 _R . Brooks, Frederick Phillips, Jr., 210.	3/2/81	276
2.670 _R delete 'Brown, D. J. Spencer, 637.'	12/1/80	277
2.671_R near the Congruential sequence entry delete the spurious comma in the right margin	1/12/81	278
2.672L Cormack, Gordon Villy, 614.	12/12/80	279
2.672 _L CRAY-1, 391.	1/27/81	280
2.672 _L DECsystem 20, 14.	12/20/80	281
2.673 _R Dixon, John Douglas, 356, 385, 395, 397, 398.	4/5/81	282
2.675R Galois, Evariste, 🎶 Galois, Évariste,	4/13/81	283
2.676L GRH entry Reimann A Riemann	3/12/81	284

一年 一十二十二

2.676R Hersog, Thomas Nelson, 166, 558, 561.	30/81	285
2.676R delete the entry for D. R. Hickerson	6/81	286
2.676R Hilferty, Margaret M., 129.	4/81	287
2.677 _R entry for Knuth, Donald vi-vii, \rightsquigarrow iv, vi-vii,	/2/81	288
2.678L Leibniz entry freiherr Freiherr	2/81	289
2.678R new subentry under Logarithm and an analysis of the subsection of the subsect	/5/ 8 1	290
2.678 _R Mandelbrot, Benoît Baruch, 564.	/2/81	291
2.680 _R line -24 balanced decimal, 195, 565.	/2/81	292
2.680 _R NP-complete problem, 480, 550, 639.	:7/8L	293
2.682L Pippenger, Nicholas John, 461, 639.	/3/81	294
2.682L delete 'Plass, Michael Frederick, 614.'	12/80	295
2.683L entry for Primitive root	/5/81	296
$2.684_{ m R}$ entry for Rounding 2, 364. $ ightharpoonup$ 364, 573.	/2/81	297
2.684_{R} delete the entry for James Saxe	/4/81	298
2.685L Schönemann, Theodor, 626.	17/81	299
2.685 _L Seneschol, David, 554.	/4/81	300

The Art of Computer Programming: ERRATA ET ADDENDAJuly 13, 1981	
2.685L Shanks entry 8/16/16/16/16/16/16/16/16/16/16/16/16/16/	m 301
2.685 _R Sobol', Il'ik Meerovich, 519.	302
2.685 _R Spencer Brown, David John, 637.	80 303
2.687 _R von Mises entry 5/22/	sı 304
2.688L Williams, Hugh Cowie, 378, 384, 397, 614.	as 305
2.688L Wilson, Edwin Bidwell, 129.	sı 306
2.688L Wynn-Williams, Charles Eryl, 186.	80 <i>307</i>
2.688 _R Zaremba entry Slanisław	308
3.9 exercise 17 How \(\tau \) (This n is called the index of b modulo p, with respect to a.) How	
3.10 line -9 7/4/	81 310
3.19 second line of exercise 9 its own inverse an involution (i.e., its own inverse)	aı 311
3.23 lines 17 and 22 Anuyogadvarā Anuyogadvāra (twice)	79 312
3.76 line -7 $p(n) \rightsquigarrow p(N)$	·· 313
3.90 caption 10/18/	r• 314
3.108 line -14 between between	·· 315

3.204 lines -12 and -11	6/24/80	316
This proof 6.) \rightsquigarrow The reader may have noticed a pattern formulas just proved; Paul Stockmeyer and Frances Yao have she pattern holds in general, i.e., that the lower bounds derived by the st suffice to establish the values $M(m, m + d) = 2m + d - 1$ for $n \in SIAM J$. Computing 9 (1980), 85-90.	own that the	re ve
3.317 correction to step B1 transpose the two sentences 'Then write' ↔ 'Set A[0,0]'	11/14/79	317
3.321 line 4 individually	10/5/79	318
3.378 new exercise	10/10/80	319
19. [HM25] (R. W. Floyd.) Show that the lower bound of Theorem	em F can l	be
improved to $\frac{(k+1)nb \lg b + nb/\ln 2}{b+c} \left(1 + O\left(\frac{\log b}{b}\right)\right)$		
when $n = b^k$, for fixed k as $b \to \infty$, and also to $nb + O(n/\log n)$ in $n \to \infty$, in the sense that some initial configuration must require many stops. [Hint: Count the configurations that can be sorted as	at least th	is
3.381 the line for "Diminishing increments" $15N^{1.25} ightharpoonup 15N^{1.25} + 10\log_3(N/3)$	3/17/81	320
3.384 line 15	3/15/81	321
is an incidental remark which appears in an article \rightsquigarrow is in Robert Feindler, Das Hollerith-Lochkarten-Verfahren (Berlin: Rein 1929), 126-130; it was also mentioned at about the same time in an	nar Hobbin	
3.389 line -11 (also make this change throughout the book) data base $$	3/25/81	322
3.392 lines -12 and -11	10/10/80	323
Cincinnati Redlegs A Chicago White Sox		
3.405 line 3 of exercise 19 i, j ? $\rightsquigarrow i \neq j$?	6/1/81	324
3.412 line -6	4/8/81	325
$\left\lfloor \frac{N+2^{j-1}}{2^j} \right\rfloor = \left(\frac{N}{2^j} \right) \text{ rounded, } \wedge \left\lfloor \frac{N+2^{j-1}}{2^j} \right\rfloor,$		

-The Art of Computer Programming: ERRATA ET ADDENDA-July 13, 1981-

3.419 line 22	6/2/80	326
but 23). \wedge but a successful search will require about one more on the average, because of (2). Since the inner loop is performed $\log N$ times, this tradeoff between an extra iteration and a faster los ave time unless N is extremely large. (See exercise 23.) On the Bottenbruch's algorithm will find the rightmost occurrence of a give the table contains duplicates, and this property is occasionally imposite the second of the se	only about oop does not other han en key whe	ut ot id
3.420 line -9 11 ** 11.	3/2/81	327
3.422 fine 9 necessary!) \rightsquigarrow necessary on a successful search!)	6/2/80	328
3.422 exercise 27 line 6 $n \rightsquigarrow k$	1/24/79	329
3.439 update to 1979 change #240 the Hu-Kleitman-Tamaki paper appeared in SIAM J. Appl. Math 246-256	2/28/81 1. 37 (1979	<i>330</i>)),
3.448 last line of exercise 6 of C'_{n-1} ? \sim of this distribution?	4/13/81	331
3.449 exercise 23 (cf. 1979 change #311) $p_1 = 5 \rightsquigarrow p_1 = 9$	11/15/78	332
3.451 line -3 Akademiia 🖴 Akademii	3/20/81	333
3.471 insert quotation before Section 6.2.4	3/15/81	334
Samuel considered the nation of Israel, to and the tribe of Benjamin was p Then he considered the tribe of Benjamin, fam and the family of Matri was p Then he considered the family of Matri, i and Saul son of Kish was p But when they looked for Saul he could n	picked by lo illy hy famil picked by lo man by ma picked by lo	ot. ly, ot. or, ot.

-The Art of Computer Programming: ERRATA ET ADDENDA-July 13, 1981-

3.472 line 11 $_{log_2} \sim _{lg}$ lg

-1 Samuel 10:20-21

beginning with that pattern. 3.506 line 8 1/24/79 342 Section 🖴 Sections 3.507 update to 1979 change #259

is 1; now we find RTAG = 1, so we go back to node γ , which refers us to the TEXT. The search path we have taken would occur for any argument whose bit pattern is 1xxxx xxxxx x01..., and we must check to see if it matches the unique key

850, 22 (1979), 104,

3/1/70 343

3.518 corrected analysis

1/10/80 344

line 9, a new equation: $C'_N = 1 + \frac{N(N-1)}{2M^2} \approx 1 + \frac{1}{2}\alpha^2$

line 6 after (19): The method introduces a tag bit in each entry; the average number of proles needed in an unsuccessful search therefore decreases slightly, from (18) to

$$\left(1 - \frac{1}{M}\right)^N + \frac{N}{M} \approx e^{-\alpha} + \alpha. \tag{18'}$$

line 8 after (19): delete the sentence 'If separate ... $\alpha > 1$.'

line 11 after (19): $\frac{1}{2}$. \longrightarrow $\frac{1}{2}$. However, it is usually preferable to use an alternative scheme that puts the first colliding elements into an auxiliary storage area, allowing lists to coalesce only when this auxiliary area has filled up; see exercise 43.

3.519 bottom line

6/6/80 345

9u 🖴 8u

3.522 last line of (24)

1/4/80 346

ORR A. OR

3.524 several refinements

1/10/80 347

line 1 just after (30): In this

Program D takes a total of 8C + 19A + B + 26 - 13S - 17S1 units of time; modification (30) saves about $15(A - S1) \approx 7.5\alpha$ of these in a successful search. In this

furthermore, Fig. 42 needs to be more accurately redrawn using the following data:

 $\alpha = 0.0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 0.9 \ 0.92 \ 0.94 \ 0.96 \ 0.98 \ 0.99$

 $L = 24.0 \ 24.9 \ 26.3 \ 29.3 \ 38.0 \ 55.5 \ 64.3$

 $D = 23.0 \ 25.7 \ 28.8 \ 32.6 \ 38.4 \ 43.9 \ 45.7 \ 47.9 \ 51.2 \ 56.8 \ 62.5$

 $D_{\text{mod}} = 23.0 \ 24.2 \ 26.0 \ 28.8 \ 34.1 \ 39.6 \ 41.5 \ 43.9 \ 47.2 \ 53.1 \ 58.9$

$3.526\,$ new paragraph after line 19

/1/81 *348*

E. G. Mallach [Comp. J. 20 (1977), 137-140] has experimented with refinements of Brent's variation, and further results have been obtained by Gaston H. Gonnet and J. Ian Munro [SIAM J. Computing 8 (1979), 463-478].

3.539 Change to curves S and SO in Figure 44(a)

1/10/80 349

 $\alpha = 0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0$

 $S = 1.0 \ 1.005 \ 1.020 \ 1.045 \ 1.080 \ 1.125 \ 1.180 \ 1.245 \ 1.320 \ 1.405 \ 1.500$ $SO = 1.0 \ 1.003 \ 1.013 \ 1.029 \ 1.051 \ 1.079 \ 1.112 \ 1.151 \ 1.195 \ 1.244 \ 1.299$

3.543 new rating for exercise 10

3/1/79 350

[M43] A [M38]

3.544 exercise 14 (replacement for lines 3 and following) 2/23/79 351

2-bit TAG field and two link fields called LINK and AUX, with the following interpretation:

- TAG(P) == 0 indicates a word in the list of available space; LINK(P) points to the next entry in this list, and AUX(P) is unused.
- TAG(P) = 1 indicates any word in use where P is not the hash address of any key in the scatter table; the other fields of the word in location P may have any desired format.
- TAG(P) = 2 indicates that P is the hash address of at least one key; AUX(P) points to a linked list specifying all such keys, and LINK(P) points to another word in the list memory. Whenever a word with TAG(P) = 2 is accessed during the processing of any list, it is necessary to set $P \leftarrow LINK(P)$ repeatedly until reaching a word with TAG(P) ≤ 1 . (For efficiency we might also then change prior links so that it will not be necessary to skip over the same scatter table entries again and again.)

Show how to define suitable algorithms for inserting and retrieving keys in a combined table of this sort.

3.544 exercise 23

2/23/79 352

[23] 🖴 [33]

3.546 replacements for exercises 34(c), 35, 36

/10/80 353

- (c) Express the average number of probes for a successful search in terms of this generating function. (d) Deduce the average number of probes in an unsuccessful search, considering variants of the data structure in which the following conventions are used: (i) hashing is always to a list head (cf. Fig. 38); (ii) hashing is to a table position (cf. Fig. 40), but all keys except the first of a list go into a separate overflow area; (iii) hashing is to a table position and all entries appear in the hash table.
- 35. [M24] Continuing exercise 34, what is the average number of probes in an unsuccessful search when the individual lists are kept in order by their key values? Consider data structures (i), (ii), and (iii).
- 36. [M23] Continuing exercise 34(d), find the variance of the number of probes when the search is unsuccessful, using data structures (i) and (ii).

$3.546\,$ new wording of exercises 37 and 40

/10/80 354

- ▶ 37. [M29] Eq. (19) gives the average number of probes in separate chaining when the search is successful; what is the variance of this quantity?
- 40. [M33] Eq. (15) gives the average number of probes used by Algorithm C in an unsuccessful search; what is the variance of this quantity?

$3.546\,$ new wording for exercise 39 (keep the old last line)

1/80 355

39. [M27] Let $c_N(k)$ be the total number of lists of length k formed when Algorithm C is applied to all M^N hash sequences (35). Find a recurrence relation on the numbers $c_N(k)$ that makes it possible to determine a simple formula for the sum

$$S_N = \sum_{k} \binom{k}{2} c_N(k).$$

• • • • • • • • • • • • • • • • • • • •				
3.546 New rating for exercise 43 [M42]	8/8/80	356		
[
3.563 line 12	6/10/80	357		
{NEEDLE, NODDLE, NOODLE}	• •			
3.576 addendum to 1976 change #324	4/5/81	<i>358</i>		
John M. Pollard [Math. Comp. 32 (1978), 918-924] has discovered an to solve this problem with very little memory in about $O(\sqrt{p})$ steps, based o of random mappings. See also the asymptotically faster method of exercises.	a the theo	r y		
3.593 display in answer 25	2/26/80	359		
$z^n/n! \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2/20/80	000		
z / 11: 				
3.608 line -8	2/15/79	360		
$z^{N+1-\delta_{s_1}} \longrightarrow z^{N+1}$	2,00,00			
3.609 answers 24 and 27	3/1/79	361		
line 3 of answer 24: replace by lines 8 and 9 of answer 27				
lines 8 and 9 of answer 27 should be:				
$\alpha \neq \beta$; $g(x) = x^{\beta}(\ln x + C)$ for $\alpha = \beta$. We have $p_t(-t - 2) = 0$; so solution to our differential equation is	the gener	al		
2614		666		
3.614 line -6 of answer 55	1/29/80	302		
rA · ↑ rA				
3.617 line -6	12/14/79	969		
· · · ·	12/14/19	000		
(exercise 4.5.4-8) is a $O(N)$ \sim (as implemented in exercise 4.5.4-8) is a $O(N \log \log N)$				
2.010		001		
3.619 answer 31	3/16/81			
lines 1 and 2: Let $B[i]$ for $\begin{array}{l} \begin{array}{l} \beg$				
2.004		00-		
3.624 line -5	5/1/79	365		
$g_{M,N}^{n+1}(z) \qquad \Diamond \qquad g_{M,N}^{(n+1)}(z)$				
3.633 new answer	11/11/80	366		
	,, 00			
14. [SIAM J. Computing 9 (1980), 298-320.]				
3.665 new answer	10/10/80	367		
19. There are at least $(nb)!/b!^{2n}$ configurations, and the number that can be obtained from a given one after s stops is at most $((n-1)\binom{b+c}{b})^s$, which is less than $n^s 2^{(b+c)s}$. Hence $s > (\ln(nb)! - 2n \ln b!)/(\ln n + (b+c) \ln 2)$ and the stated results follow.				

-The Art of Computer Programming: ERRATA ET ADDENDA-----July 13, 1981-

3.667 answer 19	6/1/81	<i>368</i>
line 1: We \wedge Assuming that $d(i,i)=0$, we line 3: is due \wedge for $i\neq j$ is due		
3.672 line 4	3/15/81	369
[From exercise 6.2.1-25b we can therefore \longrightarrow [By exercise 6.2.1-25] the mean and variance of C_n' to	o) we can u	se
3.672 line 1 of answer 15	10/23/79	370
$a_i \stackrel{\bullet}{\bigvee} a_j$		
3.675 answer 11 (improvement to 1979 change #312)	1/31/79	371
produces $\begin{tabular}{ll} $ & $ & $ & $ & $ & $ & $ & $ & $ & $ $		
3.680 addendum to 1976 change #359	3/25/81	372
respectively x_1, \ldots, x_n nonzero entries, a 'first-fit' method that offsets to by the minimum amount r_j that will not conflict with the previously place have $r_j \leq (x_1 + \cdots + x_{j-1})x_j$, since each previous nonzero entry can bloodfsets. This worst-case estimate gives $r_j \leq 93$ for the data in Table 1, that any twelve tables of length 30 containing respectively 10, 5, 4, 3, 3, 2, 2 nonzero entries can be packed into $93 + 30$ consecutive locations regulatern of the nonzeros. Further refinements of this method have been R. E. Tarjan and A. C. Yao, CACM 22 (1979), 606-611.	ed tables weak at most guaranteei 3, 3, 3, 2, ardless of t	ill x; ag 2, he
3.683 answer 14 line 4	1/31/79	373
TAG 🆴 TAG		
3.688 new answer 10	3/1/79	374
10. See F. M. Liang's elegant proof in Discrete Math. 28 (1979), 325-326	6.	
3.689 line 2 lists, \rightsquigarrow lists, following a suggestion of Allen Newell,	3/16/81	375
3.689 new paragraph inserted at beginning of answer 14	2/23/79	376
14. According to the stated conventions, the notation " $X \leftarrow AVAIL$ " of stands for the following operations: "Set $X \leftarrow AVAIL$; then set $X \leftarrow LIM$ more times until either $X = 0$ (an OVERFLOW error) or TAG(X) = 0; finally LINK(X)."	K(X) zero	10
3.689 new paragraph appended at end of answer 14	2/23/79	377
Another way to place a hash table "on top of" a large linked m coalescing lists instead of separate chaining, has been suggested by J. S.		

The Art of Computer Programming: ERRATA ET ADDENDA July 13, 1981

thesis, Stanford Univ. (1980), 72-73].

$3.690\,$ new answer 23

6/6/80 378

23. J. S. Vitter [Ph.D. thesis, Stanford Univ. (1980), 61-68] has introduced a deletion method for coalesced chaining that preserves the distribution of search times.

3.693 answer 34

1/10/80 379

lines 4 and 5: C'_N ... all keys. \longrightarrow Consider the total number of probes to find all keys, not counting the fetching of the pointer in the list head table of Fig. 38 if such a table is used.

3.693 new answer 35

10/80 *380*

35. (i) $\sum (1 + \frac{1}{2}k - (k + 1)^{-1})P_{Nk} = 1 + N/2M - M(1 - (1 - 1/M)^{N+1})/(N+1) \approx 1 + \frac{1}{2}\alpha - (1 - e^{-\alpha})/\alpha$. (ii) Add $\sum \delta_{k0}P_{Nk} = (1 - 1/M)^N \approx e^{-\alpha}$ to the result of (i). (iii) Assume that when an unsuccessful search begins at the jth element of a list of length k, the given key has random order with respect to the other k elements, so the expected length of search is $(j \cdot 1 + 2 + \cdots + (k+1-j) + (k+1-j))/(k+1)$. Summing on j now gives $MC_N' = M - N + M\sum_{i=1}^{N}(k^3 + 9k^2 + 2k)P_{Nk}/6(k+1) = M - N + M(\frac{1}{6}N(N-1)/M^2 + \frac{3}{2}N/M - 1 + (M/(N+1))(1 - (1-1/M)^{N+1}))$; hence $C_N' \approx \frac{1}{2}\alpha + \frac{1}{6}\alpha^2 + (1 - e^{-\alpha})/\alpha$.

3.693 answer 36

6/6/80 381

line 1, replace first sentence by: (i) $N/M - N/M^2$. (ii) $\sum (\delta_{k0} + k)^2 P_{Nk} = \sum (\delta_{k0} + k^2) P_{Nk} = P_N(0) + P_N'(1) + P_N'(1)$.

line -1, add new remark: [For data structure (iii), a more complicated analysis like that in exercise 37 would be necessary.]

3.694 replacement for lines 1-3 and big display of answer 39 $_{6/1/80}$ 382

39. (This approach to the analysis of Algorithm C was suggested by J. S. Vitter.) We have $c_{N+1}(k) = (M-k)c_N(k) + (k-1)c_N(k-1)$ for $k \ge 2$, and furthermore $\sum kc_N(k) = NM^N$. Hence $S_{N+1} = \sum_{k\ge 2} {k \choose 2} c_{N+1}(k) = \sum_{k\ge 2} {k \choose 2} ((M-k)c_N(k) + (k-1)c_N(k-1)) = \sum_{k>1} [(M+2){k \choose 2} + k)c_N(k) = (M+2)S_N + NM^N$.

3.694 line 1 of answer 40

5/1/80 383

 $\binom{j}{2}$ replaced by $\binom{j+1}{3}$. \bigwedge $\binom{k}{2}$ replaced by $\binom{k+1}{3}$.

3.694 new answer

16/80 *384*

43. Let $N = \alpha M'$ and $M = \beta M'$, and let $e^{-\lambda} + \lambda = 1/\beta$, $\rho = \alpha/\beta$. Then $C_N \approx 1 + \frac{1}{2}\rho$ and $C'_N \approx \rho + e^{-\rho}$, if $\rho \leq \lambda$; $C_N \approx \frac{1}{8\rho}(e^{2(\rho-\lambda)} - 1 - 2(\rho-\lambda))(3 - 2/\beta + 2\lambda) + \frac{1}{4}(\rho + \lambda) + \frac{1}{4}\lambda(1 - \lambda/\rho)$ and $C'_N \approx 1/\beta + \frac{1}{4}(e^{2(\rho-\lambda)} - 1)(3 - 2/\beta + 2\lambda) - \frac{1}{4}(\rho - \lambda)$, if $\rho \geq \lambda$. For $\alpha = 1$ we get the smallest $C_N \approx 1.69$ when $\beta \approx .853$; the smallest $C'_N \approx 1.79$ occurs when $\beta \approx .782$. So it pays to put the first collisions into an area that doesn't conflict with hash addresses, even though a smaller range of hash addresses causes more collisions to occur. These results are due to Jeffrey S. Vitter [Ph.D. thesis, Stanford Univ. (1980); Proc. Symp. Foundations Comp. Sci. 21 (1980), 238-247].

	•	
3.710 _R Anuyogadvarā ♦ Anuyogadvāra	10/18/79	385
3.712L delete 1979 change #334 (Fan Chung no longer mentioned on page 688)	3/1/79	386
3.713 _L Edighoffer, Judy Lynn Harkness, 619.	3/16/81	387
3.713 _R Feindler, Robert, 384.	3/15/81	388
3.714 _L First-fit allocation, 471, 680.	3/25/81	389
3.715 _L Index modulo p, 9.	4/5/81	390
3.716 _R Liang, Franklin Mark, 688.	3/1/79	391
3.718 _L Newell, Allen, 689.	3/15/81	392
3.718_R (this entry now moves to the preceding column) $_{\text{ORR}}$ \rightsquigarrow $_{\text{OR}}$	4/4/80	393
3.719_{L} Vaughan Pratt entry add p. 450	1/24/79	394
3.720 _L Samuel, 471.	3/15/81	395
3.720 _L Sparse array, 680.	3/25/81	396
3.721L update to 1979 change #384 Sprugnoli, Renso, 507.	3/1/79	397
3.721 _R Stockmeyer, Paul Kelly, 204.	6/24/80	398
3.721 _R Tarjan, Robert Endre, 216, 624, 680.	3/25/81	399
3.722 _L Twin heap, 619.	3/16/81	400

-The Art of Computer Programming: ERRATA ET ADDENDA----July 13, 1981-

The Art of Computer Programming, ERRATA ET ADDEADA		
3.722 _R Vitter, Jeffrey Scott, 689, 690, 694.	1/10/81	401
3.722 _R von Mises entry	5/22/81	402
3.722R Yao, Andrew Chi-Chih, 232, 235, 422, 479, 549, 639, 678, 680. Yao, Foong Frances, 204, 232, 422.	3/25/81	403

-41-