EN 204

Material Science for Energy Applications

Class 3

Shaibal K Sarkar

Department of Energy Science and Engineering

shaibal.sarkar@iitb.ac.in

Brief recap

In the last class, we had a brief review of the energy states of any free particle and a bound particle.

We had a classroom quiz and the result is disastrous

Number of students in the class: 27

Quiz result submitted: 17

A real-world example:

Consider the following dye molecule, the length of which can be considered the length of the "box" an electron is limited to:

What wavelength of light corresponds to ΔE from n=1 to n=2?

$$\Delta E = \frac{h^2}{8mL^2} \left(n_{final}^2 - n_{initial}^2 \right) = \frac{h^2}{8m(8\mathring{A})^2} \left(2^2 - 1 \right) = 2.8 \times 10^{-19} J$$

 $\lambda \approx 700 nm$ (Observed value 680 nm, not bad!)

If the length L of the "box" in the particle in a box potential is reduced, what do you expect to happen to the energy levels?

One effect of a "constraining potential" is that the energy of the system becomes quantized.

"The Globe is not flat"

Back to the hydrogen atom:

Energy levels of hydrogen atom

So, for the hydrogen atom, energy becomes quantized due to the presence of a constraining potential.

Exact q.m. solution is the Bohr formula!

Distribution of Energy depends on Potential Profile

What is the expected distribution of energy levels for the harmonic oscillator?

What is the expected distribution of energy levels for the harmonic oscillator?

Assignment: Solve it!

Harmonic Oscillator

Let us come back to the real-life scenario

The Simplest Model to describe electron in solid

Recap of Schrödinger Equation

The time-independent Schrödinger Equation...

$$\frac{d^2\psi}{dx^2} + \frac{2m_0}{\hbar^2}(E - U)\psi = 0$$

If E >U, then

$$\frac{\mathbf{k}}{\hbar} = \frac{\sqrt{2m_0[E - U]}}{\hbar} \qquad \frac{d^2\psi}{dx^2} + \frac{\mathbf{k}}{2}\psi = 0 \qquad \psi(x) = A\sin(kx) + B\cos(kx)$$
$$\equiv A_+e^{ikx} + A_-e^{-ikx}$$

If U>E, then

$$\alpha = \frac{\sqrt{2m_0[U-E]}}{\hbar} \qquad \frac{d^2\psi}{dx^2} - \alpha^2\psi = 0 \qquad \psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$$

Case 3: Free Electron, E>>U

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad k \equiv \frac{\sqrt{2m_0[E - U]}}{\hbar}$$

1) Solution
$$\psi(x) = A \sin(kx) + B \cos(kx)$$
$$\equiv A_{+}e^{ikx} + A_{-}e^{-ikx}$$

$$\psi(x) = A_{+}e^{ikx}$$
 positive going wave
= $A_{-}e^{-ikx}$ negative going wave

Case 3: Free Electron, E>>U

$$\psi(x) = A \sin(kx) + B \cos(kx)$$
$$\equiv A_{+}e^{ikx} + A_{-}e^{-ikx}$$

$$\psi(x) = A_{+}e^{ikx}$$
 positive going wave
= $A_{-}e^{-ikx}$ negative going wave

Probability:
$$\left|\psi\right|^2 = \psi\psi^* = \left|A_+\right|^2 or \left|A_-\right|^2$$

Momentum:
$$p = \int_{0}^{\infty} \Psi^* \left[\frac{\hbar}{i} \frac{d}{dx} \right] \Psi \ dx = \hbar k \text{ or } -\hbar k$$

Case 2: Bound Electron, E << U

Electron in an infinite Quantum well

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad k = \frac{\sqrt{2m_0[E - U]}}{\hbar}$$

1) Solutions: $\psi = A \sin kx + B \cos(kx)$

2) Boundary conditions

$$\psi(x=0) = 0 = A \sin k(0) + B \cos k(0)$$

$$\psi(x=a) = 0 = A \sin(ka) = A \sin(n\pi)$$

$$k_n = \frac{n\pi}{a} = \frac{\sqrt{2m_0 E_n}}{\hbar}$$
 $E_n = \frac{\hbar^2 n^2 \pi^2}{2m_0 a^2}$

Quick Suggestion: Five Steps for Analytical Solution

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0$$

$$\psi(x = -\infty) = 0$$
$$\psi(x = +\infty) = 0$$

$$\psi(x = +\infty) = 0$$

$$\left. \frac{\psi \Big|_{x=x_B^-}}{dx} = \psi \Big|_{x=x_B^+}$$

$$\left. \frac{d\psi}{dx} \right|_{x=x_B^-} = \frac{d\psi}{dx} \Big|_{x=x_B^+}$$

$$\int_{-\infty}^{\infty} |\psi(x,E)|^2 dx = 1$$

Case 1: Loosely Bound Electron E<U

Electron in a Finite well

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0$$

$$\psi(x = -\infty) = 0$$

$$\psi = A \sin kx + B \cos kx$$

$$\psi = De^{-\alpha x} + We^{+\alpha x}$$

a

Case 1: Loosely Bound Electron E<U

Continuity of Wave function

Implementing 3rd step

$$\left. \frac{\psi \right|_{x=x_B^-}}{dx} = \psi \Big|_{x=x_B^+}$$

$$\left. \frac{d\psi}{dx} \right|_{x=x_B^-} = \frac{d\psi}{dx} \Big|_{x=x_B^+}$$

$$C = B$$

$$\alpha C = -kA$$

$$A\sin(ka) + B\cos(ka) = De^{-\alpha a}$$

$$kA\cos(ka) - kB\sin(ka) = -\alpha De^{-\alpha a}$$

Case 1: Loosely Bound Electron E<U

$$\triangle$$
(coefficient matrix)=0

$$\tan(\alpha a \sqrt{\xi}) = \frac{2\sqrt{\xi(1-\xi)}}{2\xi-1} \qquad \xi \equiv \frac{E}{U_0} \quad \alpha \equiv \sqrt{\frac{2mU_0}{\hbar^2}}$$

Only Unknown is E

Graphical Solution for bound level

$$x^{2} = x + 5$$

$$y_{1} = x^{2} \quad y_{2} = x + 5$$

X

Graphical Solution for bound level

Finding the Energy State

