AML_Project

April 10, 2022

1 Importing Libraries

```
[1]: import re
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from collections import defaultdict
     %matplotlib inline
     import nltk
     from nltk.corpus import stopwords
     from nltk.stem import PorterStemmer
     from nltk.stem.snowball import SnowballStemmer
     from nltk.stem import WordNetLemmatizer
     from nltk.tokenize import word_tokenize
     nltk.download('stopwords')
     nltk.download('punkt')
     from sklearn.model_selection import train_test_split
     from sklearn.model_selection import GridSearchCV
     from sklearn import metrics
     from sklearn.metrics import accuracy_score
     from sklearn.svm import SVC
     from sklearn.svm import LinearSVC
     from sklearn.metrics import confusion_matrix, plot_confusion_matrix
     from sklearn.naive_bayes import MultinomialNB
     from sklearn.linear_model import LogisticRegression
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.ensemble import AdaBoostClassifier
     from sklearn.ensemble import GradientBoostingClassifier
     from sklearn.feature_extraction.text import TfidfVectorizer
     from sklearn.feature_extraction.text import CountVectorizer
     import warnings
     warnings.filterwarnings('ignore')
     warnings.simplefilter('ignore')
```

```
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
```

2 Preprocessing

```
[2]: train = pd.read csv('/content/drive/MyDrive/train.csv')
     test = pd.read_csv('/content/drive/MyDrive/test.csv')
     train.head()
[2]:
        id keyword location
                                                                               text \
                NaN
                               Our Deeds are the Reason of this #earthquake M...
                         {	t NaN}
                NaN
     1
         4
                                          Forest fire near La Ronge Sask. Canada
                         {\tt NaN}
     2
         5
                NaN
                         {\tt NaN}
                              All residents asked to 'shelter in place' are ...
     3
                NaN
                               13,000 people receive #wildfires evacuation or...
                         {\tt NaN}
               NaN
                               Just got sent this photo from Ruby #Alaska as ...
                         {\tt NaN}
        target
     0
             1
             1
     1
     2
              1
     3
             1
[3]: train = train.drop(['keyword', 'location'], axis = 1)
     test = test.drop(['keyword','location'], axis = 1)
     train.head()
[3]:
        id
                                                             text
                                                                   target
            Our Deeds are the Reason of this #earthquake M...
                                                                       1
     1
                        Forest fire near La Ronge Sask. Canada
                                                                         1
         5 All residents asked to 'shelter in place' are ...
     3
            13,000 people receive #wildfires evacuation or...
                                                                       1
            Just got sent this photo from Ruby #Alaska as ...
                                                                       1
[4]: # Checking Shape of Train and Test sets:
     print("Shape of Train set:", train.shape)
     print("Shape of Test set:", test.shape)
    Shape of Train set: (7613, 3)
    Shape of Test set: (3263, 2)
[5]: # Removing duplicates of Train set. There are few duplicates in Test set as u
      \rightarrow well,
```

```
# however, duplicates of Test set can'b be removed because the final test with_

target has to be uploaded as a submission file

train = train.drop_duplicates(subset=['text'], keep='last')

print("Shape of Train set after removing duplicates:", train.shape)
```

Shape of Train set after removing duplicates: (7503, 3)

```
[6]: train[train['text'].map(lambda x: x.isascii())]
    test[test['text'].map(lambda x: x.isascii())]
     # Cleaning Tweets
    def clean_tweets(text):
        text = re.sub(r'@[A-Za-z0-9]+','',text)
                                                   # Removing @mentions
        text = re.sub(r'#','',text)
                                                    # Removing #tag symbol
        text = re.sub(r'RT[\s]+',' ',text)
                                                   # Remvoing RT
        text = re.sub(r'\n','',text)
        text = re.sub(r',','',text)
        text = re.sub(r'.[.]+','',text)
        text = re.sub(r'\w+:\//\S+','',text)
        text = re.sub(r'https?:\/\\S+','',text)
                                                   # Removing hyperlinks
        text = re.sub(r'/', '', text)
        text = re.sub(r'-', '', text)
        text = re.sub(r' ',' ',text)
        text = re.sub(r'!','',text)
        text = re.sub(r':',' ',text)
        text = re.sub(r'$','',text)
        text = re.sub(r'%','',text)
        text = re.sub(r'^','',text)
        text = re.sub(r'&','',text)
        text = re.sub(r'=',' ',text)
        text = re.sub(r' +', '', text)
                                                   # Removing extra whitespaces
        return text
     # Removing Emojis
    def clean emoji(inputString):
        return inputString.encode('ascii', 'ignore').decode('ascii')
    train['text'] = train['text'].apply(clean_tweets)
                                                        # Applying function to ___
     →clean tweets
    train['text'] = train['text'].apply(clean_emoji) # Applying function to__
     →remove emojis
    train['text'] = train.text.str.lower()
                                                         # Making all texts tou
     → lower case
    train['text'] = train['text'].str.strip()
                                                         # Removing leading and
     \rightarrow trailing whitespaces
```

```
test['text'] = test['text'].apply(clean_tweets)  # Applying function to_\( \to clean tweets \)
test['text'] = test['text'].apply(clean_emoji)  # Applying function to_\( \to remove emojis \)
test['text'] = test.text.str.lower()  # Making all texts to_\( \to lower case \)
test['text'] = test['text'].str.strip()  # Removing leading and_\( \to trailing whitespaces \)
#pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', -1)
```

Labels are as follows:

'target' -> This denotes whether a tweet is about a real disaster (1) or not (0)

3 Setups:

Each of our classification models (SVM, Naive Bayes, Logistic Regression, K Nearest Neighbours, Ada Boost, Gradient boosting and Random Forest) were tested on the following setups:

- 1. **Setup 1: Removing Punctuation:** All the models are trained and tested after removing punctuations from the corpus.
- 2. **Setup 2: Removing Stop-words:** All the models are trained and tested after removing stop-words from the corpus.
- 3. **Setup 3: Removing Numbers:** All the models are trained and tested after removing numbers from the corpus.
- 4. **Setup 4: Removing Repeating Characters:** All the models are trained and tested after removing repeating characters.
- 5. **Setup 5: Stemming and Lemmatization:** All the models are trained and tested after applying stemming and lemmatization.
- 6. **Setup 6: Setup 1–5:** All the models are trained and tested after removing punctuation, stop-words, numbers, repeating words, stemming and lemmatization.
- 7. **Setup 7: Keeping all above features:** All the models are trained and tested without eliminating any of the above special features.

4 Models:

4.0.1 These models with hyperparameters will be used by all setups, to find the best setup and best model:

```
[8]: # making a dictionary with four models with some parameters:
    model_params = {
        'SVC' :{
            'model' : SVC(),
            'params' : {
                'C': [0.1, 1, 10], 'gamma': [1, 0.1, 0.01], 'kernel':
     }
        },
        'MultinomialNB' :{
            'model' : MultinomialNB(),
            'params' : {
                'alpha' : np.linspace(0.5, 1.5, 6), 'fit_prior' : [True, False]
        },
        'logistics_regression' :{
            'model' : LogisticRegression(solver = 'lbfgs', multi class = 'auto'),
                'C': [0.1, 1, 20, 40, 60, 80, 100], 'solver': ['lbfgs', |
     →'liblinear']
            }
        },
        'K_Nearest_Neighbors' :{
            'model' : KNeighborsClassifier(),
            'params' : {
                'n_neighbors' : [5, 10, 20, 50, 80, 100, 200], 'weights' : [
     }
        },
        'random_forest' :{
            'model' : RandomForestClassifier(),
            'params' : {
                'n_estimators' : [50,100,150],
                'max_depth':[2,3,None], 'criterion':['gini','entropy']
            }
        },
```

```
'AdaBoost':{
    'model': AdaBoostClassifier(),
    'params': {
        'n_estimators': [50,100,150], 'learning_rate': [0.5,1,1.5]
    }
}

#'Gradient_Boosting':{ 'model': GradientBoostingClassifier(), 'params': □
    →{'n_estimators': [50,100,150], 'criterion':['friedman_mse', □
    →'squared_error', 'mae']}}
}
```

4.1 Setup 1: Models after removing Punctuations:

```
[9]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.1.1 Removing Punctuations:

```
[10]: import string
    string.punctuation

[10]: '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

[11]: punctuations_list = string.punctuation
    def cleaning_punctuations(text):
        translator = str.maketrans('', '', punctuations_list)
        return text.translate(translator)

    df['text'] = df['text'].apply(lambda x: cleaning_punctuations(x))
```

4.1.2 Splitting data into Train and Test:

```
[12]: # Splitting data into Train and Test sets:
X = df['text']
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □ → random_state = 3)
```

4.1.3 Transforming dataset using TF-IDF Vectorizer:

```
[13]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature_words: 62381

4.1.4 Results:

```
[14]: %%time
      # implemented GridSearchCV for four models using a loop and a previously_
       \rightarrow created dictionary
      # in the created variable 'scores', results are stored for each model such as:
       → model, best_score and best_params.
      scores = []
      for model_name, mp in model_params.items():
          clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1, verbose=1) #__
       →Using Cross Validation of 5 and n jobs=-1 for fast training by using all the
       \rightarrowprocessors
          print(mp['model'])
          print('\nTraining the model...')
          best_model = clf.fit(X_train, y_train)
                                                                          # Training the
          clf_pred = best_model.predict(X_test)
                                                                           # Predicting
       \rightarrow the results
                                                                          # Printing
          print(confusion_matrix(y_test,clf_pred))
       \hookrightarrow Confusion Matrix
          print(metrics.classification_report(y_test, clf_pred))
                                                                          # Printing
       \hookrightarrow Classification Report
          scores.append({
                                                                           # Appending_
       →results to 'scores' list
               'model' : model_name,
               'best_score' : best_model.score(X_test, y_test),
               'best_params' : clf.best_params_
          })
          print('\nScore is appended.\n')
```

```
# Creating data frame with model, best scores and best params:
res1 = pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
```

SVC()

Training the model...

Fitting 5 folds for each of 36 candidates, totalling 180 fits $[[735\ 108]$

[185 473]]

	precision	recall	f1-score	support
0	0.80	0.87	0.83	843
1	0.81	0.72	0.76	658
accuracy			0.80	1501
macro avg	0.81	0.80	0.80	1501
weighted avg	0.81	0.80	0.80	1501

Score is appended.

MultinomialNB()

Training the model...

Fitting 5 folds for each of 12 candidates, totalling 60 fits $[[778 \quad 65]]$

[237 421]]

	precision	recall	f1-score	support
0	0.77	0.92	0.84	843
1	0.87	0.64	0.74	658
accuracy			0.80	1501
macro avg	0.82	0.78	0.79	1501
weighted avg	0.81	0.80	0.79	1501

Score is appended.

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits [[708 135]

[179 479]]

precision recall f1-score support

0	0.80	0.84	0.82	843
1	0.78	0.73	0.75	658
accuracy			0.79	1501
macro avg	0.79	0.78	0.79	1501
weighted avg	0.79	0.79	0.79	1501

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[741\ 102]$

[221 437]]

	precision	recall	f1-score	support
0	0.77	0.88	0.82	843
1	0.81	0.66	0.73	658
accuracy			0.78	1501
macro avg	0.79	0.77	0.78	1501
weighted avg	0.79	0.78	0.78	1501

Score is appended.

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits [[768 75]

[255 403]]

	precision	recall	f1-score	support
0	0.75	0.91	0.82	843
1	0.84	0.61	0.71	658
accuracy			0.78	1501
macro avg	0.80	0.76	0.77	1501
weighted avg	0.79	0.78	0.77	1501

Score is appended.

AdaBoostClassifier()

```
Fitting 5 folds for each of 9 candidates, totalling 45 fits
     [[686 157]
      [230 428]]
                   precision
                                recall f1-score
                                                   support
                0
                        0.75
                                  0.81
                                            0.78
                                                       843
                        0.73
                                  0.65
                                            0.69
                                                       658
                                            0.74
                                                      1501
         accuracy
        macro avg
                        0.74
                                  0.73
                                            0.73
                                                      1501
     weighted avg
                        0.74
                                  0.74
                                            0.74
                                                      1501
     Score is appended.
     CPU times: user 56.8 s, sys: 2.49 s, total: 59.3 s
     Wall time: 45min 34s
[15]: res1
[15]:
                       model best_score \
      0 SVC
                              0.804797
      1 MultinomialNB
                              0.798801
     2 logistics_regression 0.790806
      3 K_Nearest_Neighbors
                              0.784810
      4 random_forest
                              0.780147
      5 AdaBoost
                              0.742172
                                                           best_params
     0 {'C': 1, 'gamma': 1, 'kernel': 'linear'}
      1 {'alpha': 0.5, 'fit_prior': True}
      2 {'C': 20, 'solver': 'liblinear'}
      3 {'n_neighbors': 50, 'weights': 'distance'}
      4 {'criterion': 'gini', 'max_depth': None, 'n_estimators': 100}
      5 {'learning_rate': 0.5, 'n_estimators': 150}
     4.2 Setup 2: Models after removing Stop-words:
[16]: # Creating a df that is copy of the train set.
      df = train.copy()
```

Training the model...

4.2.1 Removing Stop-words:

```
[17]: sw = stopwords.words('english')
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if

→word not in (sw)]))
```

4.2.2 Splitting data into Train and Test:

```
[18]: # Splitting data into Train and Test sets:
    X = df['text']
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □ → random_state = 3)
```

4.2.3 Transforming dataset using TF-IDF Vectorizer:

```
[19]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature_words: 51017

4.2.4 Results:

```
print(mp['model'])
    print('\nTraining the model...')
    best_model = clf.fit(X_train, y_train)
                                                                    # Training the_
    clf_pred = best_model.predict(X_test)
                                                                    # Predicting
 \rightarrow the results
    print(confusion_matrix(y_test,clf_pred))
                                                                    # Printing
 \hookrightarrow Confusion Matrix
    print(metrics.classification_report(y_test, clf_pred))
                                                                    # Printing
 \hookrightarrow Classification Report
    scores.append({
                                                                    # Appending_
 →results to 'scores' list
         'model' : model name,
         'best_score' : best_model.score(X_test, y_test),
         'best_params' : clf.best_params_
    })
    print('\nScore is appended.\n')
# Creating data frame with model, best scores and best params:
res2 = pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
SVC()
Training the model...
Fitting 5 folds for each of 36 candidates, totalling 180 fits
[[728 115]
 [182 476]]
              precision
                         recall f1-score
                                                support
           0
                   0.80
                              0.86
                                         0.83
                                                    843
           1
                   0.81
                              0.72
                                         0.76
                                                    658
    accuracy
                                         0.80
                                                   1501
                   0.80
                              0.79
                                         0.80
                                                   1501
   macro avg
                   0.80
                              0.80
                                         0.80
weighted avg
                                                   1501
Score is appended.
MultinomialNB()
Training the model...
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[[767 76]
 [220 438]]
              precision recall f1-score
                                                support
```

0	0.78	0.91	0.84	843
1	0.85	0.67	0.75	658
accuracy			0.80	1501
macro avg	0.81	0.79	0.79	1501
weighted avg	0.81	0.80	0.80	1501

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[703\ 140]$

[183 475]]

	precision	recall	f1-score	support
0	0.79	0.83	0.81	843
1	0.77	0.72	0.75	658
accuracy			0.78	1501
macro avg	0.78	0.78	0.78	1501
weighted avg	0.78	0.78	0.78	1501

Score is appended.

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits [[738 105]

[222 436]]

	precision	recall	f1-score	support
0	0.77	0.88	0.82	843
1	0.81	0.66	0.73	658
accuracy			0.78	1501
macro avg	0.79	0.77	0.77	1501
weighted avg	0.79	0.78	0.78	1501

Score is appended.

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits $[[705\ 138]$

[219 439]]

	precision	recall	f1-score	support
0	0.70	0.04	0.00	042
0	0.76	0.84	0.80	843
1	0.76	0.67	0.71	658
accuracy			0.76	1501
macro avg	0.76	0.75	0.75	1501
weighted avg	0.76	0.76	0.76	1501

Score is appended.

AdaBoostClassifier()

Training the model...

Fitting 5 folds for each of 9 candidates, totalling 45 fits $[[747 ext{ } 96]$

[270 388]]

	precision	recall	f1-score	support	
0	0.73	0.89	0.80	843	
1	0.80	0.59	0.68	658	
accuracy			0.76	1501	
macro avg	0.77	0.74	0.74	1501	
weighted avg	0.76	0.76	0.75	1501	

Score is appended.

CPU times: user 38.7 s, sys: 3.43 s, total: 42.1 s

Wall time: 39min 31s

[21]: res2

[21]:		model	best_score	\
	0	SVC	0.802132	
	1	MultinomialNB	0.802798	
	2	logistics_regression	0.784810	
	3	${\tt K_Nearest_Neighbors}$	0.782145	
	4	random_forest	0.762159	
	5	AdaBoost	0.756163	

best_params

```
0 {'C': 1, 'gamma': 1, 'kernel': 'linear'}
1 {'alpha': 0.5, 'fit_prior': True}
2 {'C': 40, 'solver': 'lbfgs'}
3 {'n_neighbors': 100, 'weights': 'distance'}
4 {'criterion': 'gini', 'max_depth': None, 'n_estimators': 50}
5 {'learning_rate': 0.5, 'n_estimators': 150}
```

4.3 Setup 3: Models after removing numbers:

```
[22]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.3.1 Removing numbers:

```
[23]: def cleaning_numbers(text):
    return re.sub('[0-9]+', '', text)

df['text'] = df['text'].apply(lambda text: cleaning_numbers(text))
```

4.3.2 Splitting data into Train and Test:

```
[24]: # Splitting data into Train and Test sets:
X = df['text']
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □ → random_state = 3)
```

4.3.3 Transforming dataset using TF-IDF Vectorizer:

```
[25]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature_words: 60344

4.3.4 Results:

```
[26]: %%time
      # implemented GridSearchCV for four models using a loop and a previously_
       ⇔created dictionary
      # in the created variable 'scores', results are stored for each model such as:
       → model, best_score and best_params.
      scores = []
      for model_name, mp in model_params.items():
          clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1, verbose=1) #__
       →Using Cross Validation of 5 and n_jobs=-1 for fast training by using all the
       \rightarrow processors
          print(mp['model'])
          print('\nTraining the model...')
          best_model = clf.fit(X_train, y_train)
                                                                          # Training the
       \rightarrowmodel
          clf_pred = best_model.predict(X_test)
                                                                          # Predicting
       \rightarrow the results
          print(confusion_matrix(y_test,clf_pred))
                                                                          # Printing
       \hookrightarrow Confusion Matrix
          print(metrics.classification_report(y_test, clf_pred))
                                                                          # Printing
       \hookrightarrow Classification Report
          scores.append({
                                                                          # Appending_
       →results to 'scores' list
               'model' : model_name,
               'best_score' : best_model.score(X_test, y_test),
               'best_params' : clf.best_params_
          })
          print('\nScore is appended.\n')
      # Creating data frame with model, best scores and best params:
      res3 = pd.DataFrame(scores, columns=['model', 'best score', 'best params'])
     SVC()
     Training the model...
     Fitting 5 folds for each of 36 candidates, totalling 180 fits
     [[732 111]
      [187 471]]
                    precision
                               recall f1-score
                                                      support
                 0
                         0.80
                                    0.87
                                               0.83
                                                          843
                         0.81
                                    0.72
                                               0.76
                                                          658
                 1
```

accuracy			0.80	1501
macro avg	0.80	0.79	0.80	1501
weighted avg	0.80	0.80	0.80	1501

MultinomialNB()

Training the model…

Fitting 5 folds for each of 12 candidates, totalling 60 fits $[[772 \quad 71]$

[236 422]]

	precision	recall	f1-score	support
0	0.77	0.92	0.83	843
1	0.86	0.64	0.73	658
accuracy			0.80	1501
macro avg	0.81	0.78	0.78	1501
weighted avg	0.81	0.80	0.79	1501

Score is appended.

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[706\ 137]$

[182 476]]

	precision	recall	f1-score	support
0	0.80	0.84	0.82	843
1	0.78	0.72	0.75	658
accuracy			0.79	1501
macro avg	0.79	0.78	0.78	1501
weighted avg	0.79	0.79	0.79	1501

Score is appended.

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits

[[746 97] [228 430]]

[220 100]]	precision	recall	f1-score	support
0	0.77	0.88	0.82	843
1	0.82	0.65	0.73	658
accuracy			0.78	1501
macro avg	0.79	0.77	0.77	1501
weighted avg	0.79	0.78	0.78	1501

Score is appended.

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits $[[760 \ 83]]$

[254 404]]

	precision	recall	f1-score	support
0	0.75	0.90	0.82	843
1	0.83	0.61	0.71	658
accuracy			0.78	1501
macro avg	0.79	0.76	0.76	1501
weighted avg	0.78	0.78	0.77	1501

Score is appended.

AdaBoostClassifier()

Training the model...

Fitting 5 folds for each of 9 candidates, totalling 45 fits $[[684\ 159]]$

[228 430]]

	precision	recall	f1-score	support
0	0.75	0.81	0.78	843
1	0.73	0.65	0.69	658
accuracy			0.74	1501
macro avg	0.74	0.73	0.73	1501
weighted avg	0.74	0.74	0.74	1501

```
Score is appended.
     CPU times: user 46.1 s, sys: 3.82 s, total: 49.9 s
     Wall time: 44min
[27]: res3
[27]:
                       model best_score \
     O SVC
                              0.801466
     1 MultinomialNB
                              0.795470
     2 logistics_regression 0.787475
     3 K_Nearest_Neighbors
                              0.783478
     4 random forest
                              0.775483
     5 AdaBoost
                              0.742172
                                                         best_params
     0 {'C': 1, 'gamma': 1, 'kernel': 'linear'}
     1 {'alpha': 0.5, 'fit_prior': True}
     2 {'C': 40, 'solver': 'lbfgs'}
     3 {'n_neighbors': 80, 'weights': 'distance'}
     4 {'criterion': 'gini', 'max_depth': None, 'n_estimators': 50}
     5 {'learning_rate': 0.5, 'n_estimators': 150}
```

4.4 Setup 4: Models after removing repeating characters:

```
[28]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.4.1 Removing repeating characteres:

4.4.2 Splitting data into Train and Test:

```
[30]: # Splitting data into Train and Test sets:

X = df['text'].astype(str)
y = df['target'].astype(str)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □
→random_state = 3)
```

4.4.3 Transforming dataset using TF-IDF Vectorizer:

```
[31]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
vectoriser.fit(X_train)
print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
X_train = vectoriser.transform(X_train)
X_test = vectoriser.transform(X_test)
```

No. of feature_words: 62005

4.4.4 Results:

```
[32]: %%time
      # implemented GridSearchCV for four models using a loop and a previously_
       → created dictionary
      # in the created variable 'scores', results are stored for each model such as:
       \rightarrow model, best_score and best_params.
      scores = []
      for model_name, mp in model_params.items():
          clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1, verbose=1) #__
       →Using Cross Validation of 5 and n_jobs=-1 for fast training by using all the
       \rightarrowprocessors
          print(mp['model'])
          print('\nTraining the model...')
          best_model = clf.fit(X_train, y_train)
                                                                           # Training the
       \rightarrow model
                                                                            # Predicting
          clf_pred = best_model.predict(X_test)
       \rightarrow the results
          print(confusion_matrix(y_test,clf_pred))
                                                                           # Printing
       \rightarrow Confusion Matrix
```

SVC()

Training the model...

Fitting 5 folds for each of 36 candidates, totalling 180 fits [[732 111]

[187 471]]

	precision	recall	f1-score	support
0	0.80	0.87	0.83	843
1	0.81	0.72	0.76	658
accuracy			0.80	1501
macro avg	0.80	0.79	0.80	1501
weighted avg	0.80	0.80	0.80	1501

Score is appended.

MultinomialNB()

Training the model...

Fitting 5 folds for each of 12 candidates, totalling 60 fits [[779 64]

[233 425]]

	precision	recall	f1-score	support
0	0.77	0.92	0.84	843
1	0.87	0.65	0.74	658
accuracy			0.80	1501
macro avg	0.82	0.78	0.79	1501
weighted avg	0.81	0.80	0.80	1501

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[702 \ 141]]$

[172 486]]

	precision	recall	f1-score	support
0	0.80	0.83	0.82	843
1	0.78	0.74	0.76	658
accuracy			0.79	1501
macro avg	0.79	0.79	0.79	1501
weighted avg	0.79	0.79	0.79	1501

Score is appended.

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[750 \ 93]$

[231 427]]

	precision	recall	f1-score	support
0	0.76	0.89	0.82	843
1	0.82	0.65	0.72	658
accuracy			0.78	1501
macro avg	0.79	0.77	0.77	1501
weighted avg	0.79	0.78	0.78	1501

Score is appended.

 ${\tt RandomForestClassifier()}$

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits $[[755 \quad 88]$

[259 399]]

	precision	recall	f1-score	support
0	0.74	0.90	0.81	843
1	0.82	0.61	0.70	658

```
accuracy 0.77 1501
macro avg 0.78 0.75 0.76 1501
weighted avg 0.78 0.77 0.76 1501
```

AdaBoostClassifier()

Training the model...

Fitting 5 folds for each of 9 candidates, totalling 45 fits [[691 152]

[231 427]]

	precision	recall	f1-score	support
0	0.75	0.82	0.78	843
1	0.74	0.65	0.69	658
accuracy			0.74	1501
macro avg	0.74	0.73	0.74	1501
weighted avg	0.74	0.74	0.74	1501

Score is appended.

CPU times: user 1min 14s, sys: 4.19 s, total: 1min 18s

Wall time: 46min 15s

[33]: res4

[33]: model best_score \
0 SVC 0.801466
1 MultinomialNB 0.802132
2 logistics_regression 0.791472
3 K_Nearest_Neighbors 0.784144
4 random_forest 0.768821
5 AdaBoost 0.744837

best_params

```
0 {'C': 1, 'gamma': 1, 'kernel': 'linear'}
1 {'alpha': 0.5, 'fit_prior': True}
2 {'C': 80, 'solver': 'lbfgs'}
3 {'n_neighbors': 80, 'weights': 'distance'}
4 {'criterion': 'entropy', 'max_depth': None, 'n_estimators': 150}
5 {'learning_rate': 0.5, 'n_estimators': 150}
```

4.5 Setup 5: Applying Stemming and Lemmatization:

```
[34]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.5.1 Applying Stemming:

```
[35]: # Tokenizing tweets:
    tokens = (word_tokenize(i) for i in df.text)
    df['text'] = df['text'].apply(nltk.word_tokenize)

stemm = SnowballStemmer('english')
    df['text'] = df['text'].apply(lambda x: [stemm.stem(y) for y in x])
```

4.5.2 Splitting data into Train and Test:

```
[36]: # Splitting data into Train and Test sets:

X = df['text'].astype(str)

y = df['target'].astype(str)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □

→random_state = 3)
```

4.5.3 Transforming dataset using TF-IDF Vectorizer:

```
[37]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature_words: 57871

4.5.4 Results:

```
[38]:  %%time

# implemented GridSearchCV for four models using a loop and a previously

→ created dictionary
```

```
# in the created variable 'scores', results are stored for each model such as:\Box
 →model, best_score and best_params.
scores = []
for model_name, mp in model_params.items():
     clf = GridSearchCV(mp['model'], mp['params'], cv=5, n jobs=-1, verbose=1) #__
 →Using Cross Validation of 5 and n_jobs=-1 for fast training by using all the
 \rightarrowprocessors
    print(mp['model'])
    print('\nTraining the model...')
    best_model = clf.fit(X_train, y_train)
                                                                     # Training the_
 \rightarrow model
     clf_pred = best_model.predict(X_test)
                                                                     # Predicting_
 \rightarrow the results
    print(confusion_matrix(y_test,clf_pred))
                                                                     # Printing
 \hookrightarrow Confusion Matrix
    print(metrics.classification_report(y_test, clf_pred))
                                                                     # Printing
 \hookrightarrow Classification Report
     scores.append({
                                                                     # Appending_
 →results to 'scores' list
         'model' : model name,
         'best_score' : best_model.score(X_test, y_test),
         'best_params' : clf.best_params_
    })
    print('\nScore is appended.\n')
# Creating data frame with model, best scores and best params:
res5 = pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
SVC()
Training the model...
Fitting 5 folds for each of 36 candidates, totalling 180 fits
[[709 134]
 [184 474]]
                            recall f1-score
              precision
                                                 support
           0
                    0.79
                              0.84
                                         0.82
                                                     843
           1
                    0.78
                              0.72
                                         0.75
                                                     658
                                                    1501
    accuracy
                                         0.79
                    0.79
                              0.78
                                         0.78
                                                    1501
   macro avg
weighted avg
                    0.79
                              0.79
                                         0.79
                                                    1501
```

MultinomialNB()

Training the model...

Fitting 5 folds for each of 12 candidates, totalling 60 fits $[[774 \quad 69]]$

[232 426]]

	precision	recall	f1-score	support
0	0.77	0.92	0.84	843
1	0.86	0.65	0.74	658
accuracy			0.80	1501
macro avg	0.81	0.78	0.79	1501
weighted avg	0.81	0.80	0.79	1501

Score is appended.

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[695\ 148]$

[178 480]]

	precision	recall	f1-score	support
0	0.80	0.82	0.81	843
U				
1	0.76	0.73	0.75	658
accuracy			0.78	1501
macro avg	0.78	0.78	0.78	1501
weighted avg	0.78	0.78	0.78	1501

Score is appended.

 ${\tt KNeighborsClassifier()}$

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits [[745 98]

[217 441]]

	precision	recall	f1-score	support
0	0.77	0.88	0.83	843
1	0.82	0.67	0.74	658

accuracy			0.79	1501
macro avg	0.80	0.78	0.78	1501
weighted avg	0.79	0.79	0.79	1501

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits $[[752 \ 91]$

[247 411]]

	precision	recall	f1-score	support
	_			
0	0.75	0.89	0.82	843
1	0.82	0.62	0.71	658
accuracy			0.77	1501
macro avg	0.79	0.76	0.76	1501
weighted avg	0.78	0.77	0.77	1501

Score is appended.

AdaBoostClassifier()

Training the model...

Fitting 5 folds for each of 9 candidates, totalling 45 fits $[[708\ 135]$

[233 425]]

	precision	recall	f1-score	support
0	0.75	0.04	0.70	0.40
0	0.75	0.84	0.79	843
1	0.76	0.65	0.70	658
accuracy			0.75	1501
macro avg	0.76	0.74	0.75	1501
weighted avg	0.76	0.75	0.75	1501

Score is appended.

CPU times: user 1min 11s, sys: 3.68 s, total: 1min 14s

Wall time: 45min

```
[39]: res5
[39]:
                       model best_score \
     0 SVC
                              0.788141
     1 MultinomialNB
                              0.799467
     2 logistics_regression 0.782811
     3 K_Nearest_Neighbors
                              0.790140
     4 random_forest
                              0.774817
     5 AdaBoost
                              0.754830
                                                          best params
     0 {'C': 10, 'gamma': 0.1, 'kernel': 'sigmoid'}
     1 {'alpha': 0.5, 'fit_prior': True}
     2 {'C': 20, 'solver': 'lbfgs'}
     3 {'n_neighbors': 80, 'weights': 'distance'}
     4 {'criterion': 'gini', 'max_depth': None, 'n_estimators': 150}
     5 {'learning_rate': 0.5, 'n_estimators': 150}
```

4.6 Setup 6: Models after removing all the features:

```
[40]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.6.1 Removing Punctuation:

```
[41]: import string
string.punctuation

punctuations_list = string.punctuation
def cleaning_punctuations(text):
    translator = str.maketrans('', '', punctuations_list)
    return text.translate(translator)

df['text'] = df['text'].apply(lambda x: cleaning_punctuations(x))
```

4.6.2 Removing Stop-words:

```
[42]: sw = stopwords.words('english')
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if

→word not in (sw)]))
```

4.6.3 Removing Numbers:

```
[43]: def cleaning_numbers(text):
    return re.sub('[0-9]+', '', text)

df['text'] = df['text'].apply(lambda text: cleaning_numbers(text))
```

4.6.4 Removing repeating characters:

4.6.5 Applying Stemming and Lemmatization:

```
[45]: stemm = SnowballStemmer('english')

df['text'] = df['text'].apply(lambda x: [stemm.stem(y) for y in x])
```

4.6.6 Splitting data into Train and Test:

```
[46]: # Splitting data into Train and Test sets:

X = df['text'].astype(str)

y = df['target'].astype(str)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □

→random_state = 3)
```

4.6.7 Transforming dataset using TF-IDF Vectorizer:

```
[47]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000) vectoriser.fit(X_train)
```

```
print('No. of feature_words: ', len(vectoriser.get_feature_names()))
# Transforming the data using TD-IDF Vectorizer
X_train = vectoriser.transform(X_train)
X_test = vectoriser.transform(X_test)
```

No. of feature_words: 46081

4.6.8 Results:

```
[48]: %%time
      # implemented GridSearchCV for four models using a loop and a previously_
       → created dictionary
      # in the created variable 'scores', results are stored for each model such as:
       →model, best_score and best_params.
      scores = []
      for model_name, mp in model_params.items():
          clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1, verbose=1) #_J
       →Using Cross Validation of 5 and n_jobs=-1 for fast training by using all the
       \rightarrowprocessors
          print(mp['model'])
          print('\nTraining the model...')
          best_model = clf.fit(X_train, y_train)
                                                                         # Training the
          clf_pred = best_model.predict(X_test)
                                                                         # Predicting
       \rightarrow the results
          print(confusion_matrix(y_test,clf_pred))
                                                                         # Printing
       \hookrightarrow Confusion Matrix
          print(metrics.classification_report(y_test, clf_pred))
                                                                         # Printing
       \hookrightarrow Classification Report
          scores.append({
                                                                          # Appending_
       →results to 'scores' list
               'model' : model_name,
               'best_score' : best_model.score(X_test, y_test),
              'best_params' : clf.best_params_
          })
          print('\nScore is appended.\n')
      # Creating data frame with model, best scores and best params:
      res6 = pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
```

SVC()

Training the model...

Fitting 5 folds for each of 36 candidates, totalling 180 fits $[[713 \ 130]]$

[179 479]]

support	f1-score	recall	precision	
843	0.82	0.85	0.80	0
658	0.76	0.73	0.79	1
1501	0.79			accuracy
1501	0.79	0.79	0.79	macro avg
1501	0.79	0.79	0.79	weighted avg

Score is appended.

MultinomialNB()

Training the model...

Fitting 5 folds for each of 12 candidates, totalling 60 fits $[[760 \ 83]]$

[222 436]]

	precision	recall	f1-score	support
0	0.77	0.90	0.83	843
1	0.84	0.66	0.74	658
accuracy			0.80	1501
macro avg	0.81	0.78	0.79	1501
weighted avg	0.80	0.80	0.79	1501

Score is appended.

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[701\ 142]$

[180 478]]

	precision	recall	f1-score	support
0	0.80	0.83	0.81	843
1	0.77	0.73	0.75	658
accuracy			0.79	1501
macro avg	0.78	0.78	0.78	1501

weighted avg 0.78 0.79 0.78 1501

Score is appended.

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[730\ 113]$

[212 446]]

	precision	recall	f1-score	support
0	0.77	0.87	0.82	843
1	0.80	0.68	0.73	658
accuracy			0.78	1501
macro avg	0.79	0.77	0.78	1501
weighted avg	0.78	0.78	0.78	1501

Score is appended.

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits $[[742\ 101]$

[231 427]]

	precision	recall	f1-score	support
0	0.76	0.88	0.82	843
1	0.81	0.65	0.72	658
accuracy			0.78	1501
macro avg	0.79	0.76	0.77	1501
weighted avg	0.78	0.78	0.77	1501

Score is appended.

AdaBoostClassifier()

Training the model...

Fitting 5 folds for each of 9 candidates, totalling 45 fits [[747 96]]

[270 388]]

precision recall f1-score support

```
0
                    0.73
                              0.89
                                         0.80
                                                     843
                    0.80
                              0.59
           1
                                         0.68
                                                     658
                                         0.76
                                                    1501
    accuracy
   macro avg
                    0.77
                              0.74
                                         0.74
                                                    1501
weighted avg
                    0.76
                              0.76
                                         0.75
                                                    1501
```

```
CPU times: user 1min 1s, sys: 2.34 s, total: 1min 3s
```

Wall time: 36min 49s

```
[49]: res6
```

best_params

```
0 {'C': 1, 'gamma': 1, 'kernel': 'linear'}
1 {'alpha': 0.5, 'fit_prior': True}
2 {'C': 20, 'solver': 'liblinear'}
3 {'n_neighbors': 50, 'weights': 'distance'}
4 {'criterion': 'entropy', 'max_depth': None, 'n_estimators': 150}
5 {'learning_rate': 0.5, 'n_estimators': 150}
```

4.7 Setup 7: Models without removing any setup:

```
[50]: # Creating a df that is copy of the train set.

df = train.copy()
```

4.7.1 Splitting data into Train and Test:

```
[51]: # Splitting data into Train and Test sets:
    X = df['text']
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □ → random_state = 3)
```

4.7.2 Transforming dataset using TF-IDF Vectorizer:

```
[52]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature_words: 62117

4.7.3 Results:

```
[53]: %%time
      # implemented GridSearchCV for four models using a loop and a previously_
       → created dictionary
      # in the created variable 'scores', results are stored for each model such as:
       → model, best_score and best_params.
      scores = []
      for model_name, mp in model_params.items():
          clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1, verbose=1) #__
       →Using Cross Validation of 5 and n_jobs=-1 for fast training by using all the
       \rightarrowprocessors
          print(mp['model'])
          print('\nTraining the model...')
          best_model = clf.fit(X_train, y_train)
                                                                          # Training the
          clf_pred = best_model.predict(X_test)
                                                                          # Predicting
       \rightarrow the results
                                                                          # Printing
          print(confusion_matrix(y_test,clf_pred))
       \hookrightarrow Confusion Matrix
          print(metrics.classification_report(y_test, clf_pred))
                                                                          # Printing
       \hookrightarrow Classification Report
          scores.append({
                                                                          # Appending_
       →results to 'scores' list
               'model' : model_name,
               'best_score' : best_model.score(X_test, y_test),
               'best_params' : clf.best_params_
          })
          print('\nScore is appended.\n')
```

```
# Creating data frame with model, best scores and best params:
res7 = pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
```

SVC()

Training the model...

Fitting 5 folds for each of 36 candidates, totalling 180 fits $[[736\ 107]]$

[187 471]]

	precision	recall	f1-score	support
0	0.80	0.87	0.83	843
1	0.81	0.72	0.76	658
accuracy	0.01	0.70	0.80	1501
macro avg weighted avg	0.81	0.79	0.80	1501
	0.81	0.80	0.80	1501

Score is appended.

MultinomialNB()

Training the model...

Fitting 5 folds for each of 12 candidates, totalling 60 fits [[777 66]

[233 425]]

	precision	recall	f1-score	${ t support}$
0	0.77	0.92	0.84	843
1	0.87	0.65	0.74	658
accuracy			0.80	1501
macro avg	0.82	0.78	0.79	1501
weighted avg	0.81	0.80	0.80	1501

Score is appended.

LogisticRegression()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits [[705 138]

[180 478]]

precision recall f1-score support

0	0.80	0.84	0.82	843
1	0.78	0.73	0.75	658
accuracy			0.79	1501
macro avg	0.79	0.78	0.78	1501
weighted avg	0.79	0.79	0.79	1501

KNeighborsClassifier()

Training the model...

Fitting 5 folds for each of 14 candidates, totalling 70 fits $[[753 \ 90]]$

[230 428]]

	precision	recall	f1-score	support
0	0.77	0.89	0.82	843
1	0.83	0.65	0.73	658
accuracy			0.79	1501
macro avg	0.80	0.77	0.78	1501
weighted avg	0.79	0.79	0.78	1501

Score is appended.

RandomForestClassifier()

Training the model...

Fitting 5 folds for each of 18 candidates, totalling 90 fits [[764 79]

[277 381]]

	precision	recall	f1-score	support
0	0.73	0.91	0.81	843
1	0.83	0.58	0.68	658
			0.76	1501
accuracy			0.76	1501
macro avg	0.78	0.74	0.75	1501
weighted avg	0.78	0.76	0.75	1501

Score is appended.

AdaBoostClassifier()

```
Fitting 5 folds for each of 9 candidates, totalling 45 fits
     [[718 125]
      [260 398]]
                   precision
                                recall f1-score
                                                    support
                0
                        0.73
                                   0.85
                                             0.79
                                                        843
                1
                        0.76
                                   0.60
                                             0.67
                                                        658
                                             0.74
                                                       1501
         accuracy
                                             0.73
                                                       1501
        macro avg
                        0.75
                                   0.73
                        0.75
     weighted avg
                                   0.74
                                             0.74
                                                       1501
     Score is appended.
     CPU times: user 58 s, sys: 4.29 s, total: 1min 2s
     Wall time: 44min 58s
[54]: res7
[54]:
                        model best_score \
        SVC
                               0.804131
      0
      1 MultinomialNB
                               0.800799
      2 logistics_regression 0.788141
      3 K_Nearest_Neighbors
                               0.786809
      4 random_forest
                               0.762825
      5 AdaBoost
                               0.743504
                                                               best_params
       {'C': 1, 'gamma': 1, 'kernel': 'linear'}
      1 {'alpha': 0.5, 'fit_prior': True}
      2 {'C': 40, 'solver': 'lbfgs'}
```

5 Creating Submission file:

3 {'n_neighbors': 80, 'weights': 'distance'}

5 {'learning_rate': 0.5, 'n_estimators': 150}

Training the model...

It can be observed that **Setup-1** and **7** is performing best for SVM model. **Setup 6** will be used. Let's just train this model with 100% training data. This model will be used for predicting test file.

```
[55]: # Creating a df that is copy of the train set.

df = train.copy()
```

4 {'criterion': 'entropy', 'max_depth': None, 'n_estimators': 100}

5.0.1 Removing Punctuation:

```
[56]: import string
string.punctuation

punctuations_list = string.punctuation
def cleaning_punctuations(text):
    translator = str.maketrans('', '', punctuations_list)
    return text.translate(translator)

df['text'] = df['text'].apply(lambda x: cleaning_punctuations(x))
```

5.0.2 Removing Stop-words:

```
[57]: sw = stopwords.words('english')

df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if

→word not in (sw)]))
```

5.0.3 Removing Numbers:

```
[58]: def cleaning_numbers(text):
    return re.sub('[0-9]+', '', text)

df['text'] = df['text'].apply(lambda text: cleaning_numbers(text))
```

5.0.4 Removing repeating characters:

5.0.5 Applying Stemming and Lemmatization:

```
[60]: stemm = SnowballStemmer('english')
df['text'] = df['text'].apply(lambda x: [stemm.stem(y) for y in x])
```

5.0.6 Splitting data into Train and Test:

```
[61]: # Splitting data into Train and Test sets:
X = df['text'].astype(str)
y = df['target'].astype(str)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, □
→random_state = 3)
```

5.0.7 Transforming dataset using TF-IDF Vectorizer:

```
[62]: # Extracting features using TF-IDF (1,2) - unigrams and bigrams
  vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000)
  vectoriser.fit(X_train)
  print('No. of feature_words: ', len(vectoriser.get_feature_names()))

# Transforming the data using TD-IDF Vectorizer
  X_train = vectoriser.transform(X_train)
  X_test = vectoriser.transform(X_test)
```

No. of feature words: 46081

5.0.8 SVC model:

Fitting 5 folds for each of 48 candidates, totalling 240 fits Best HyperParameter: {'C': 1, 'gamma': 1, 'kernel': 'linear'}

```
[96]: from sklearn.metrics import accuracy_score print("The accuracy is:", accuracy_score(y_test,svc_pred))
```

The accuracy is: 0.7941372418387741

```
[97]: cv=confusion_matrix(y_test,svc_pred)
sns.heatmap(cv,annot=True, fmt='g')
```

[97]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc7ede82f50>

5.0.9 Submission file:

```
[95]: print(svc_pred)
print(type(svc_pred))

my_array = svc_pred
print(len(my_array))
submission = pd.DataFrame({'Ground Truth':y_test,'Predicted':my_array})
submission['id'] = test['id']
submission = submission[['id','Ground Truth','Predicted']]
submission.to_csv('submission.csv', index=False)
submission
```

```
['1' '0' '1' ... '0' '0' '1'] <class 'numpy.ndarray'>
```


				_	
[95]:		id	Ground	Truth	Predicted
	7090	NaN	1		1
	1275	4193.0	0		0
	5721	NaN	1		1
	2308	7710.0	0		0
	244	780.0	0		0
	•••				
	1785	6028.0	0		0
	485	1578.0	0		0
	3756	NaN	0		0
	1604	5419.0	1		0
	2664	8895.0	1		1

[1501 rows x 3 columns]