Today: Start classification Recap regression via least squares methods

Find $f: \mathbb{R}^d \rightarrow \mathbb{R}$ so that $f(\vec{x}_i) \approx y_i$ for $(\vec{x}_i, y_i)_{i=1}^n$ min $\int_{i=1}^{n} (f(\vec{x}_i) - y_i)^2$ training data

Mean squared error -> least squares estimator

Models for f coefficient · linear model f(x) = (Bo) + p, x, + ... + (bd) xd = [1, \times , \times , \times d] · fixed features + linear modes ex/degree-2 polynomials basis fxns = $\frac{1}{i-1}$ $\phi_i(\vec{x}) \beta_i$ $\overline{\phi}(\overline{x}) = [1, x, x, x_2, x_2, x_1, x_2, x_2]^T \in \mathbb{R}^6$ feature featurization $\vec{x} \in \mathbb{R}^2$, d=2, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Linear predictors fit hyperplane to (xi, y)

d=1

y de la constant de l

in d=1 dins, hyperplane is a line

B is orthogonal to the hyperplane

BTV = 0 for any

VEH

If
$$\beta_0 = 0$$
 then $\overline{\beta}$
 $\beta_0 = 0$ then $\overline{$

features labels

MIN // XB-g//
B Estimatoss:
Ordinary least squares · Ridge regression controlling variance
noise in ys regu
collinear features
- small singular values of X regularization penalty · Lasso, giving sparsity $\dots + \lambda \parallel \beta \parallel_1$

Turns out that least squares Best possible prédictor prediction $f(\vec{x}) = \mathbb{E}[Y/\hat{x}]$ Bayes predictor "true"
"false" lassification $f(\hat{\mathbf{x}}) = 0$ Categorical Want f to Pr[Y=+1/x] f(x) < 0 $f(\vec{x}) > 0$

V rest us. Ntrain $-\sum_{i=1}^{N}\left(f(\vec{x_i})-g_i\right)^{2}$ averay (np. linalg. mean ((ypred-y) = 2) - XB-9112 MSE mean square error Very similar $Y = /2 \times 61$