ROB311 Quiz 1

Hanhee Lee

February 5, 2025

Contents

T	Pro	blogue
	1.1	Setup of Planning Problems
	1.2	Components of a Robotic System
		1.2.1 Overview (Robots, the Environment)
		1.2.2 Robot (Sensors, Actuators, the Brain)
		1.2.3 Brain (Tracker, Planner, Memory)
		1.2.4 Environment (Physics, State)
	1.3	Equations of a Robotic System
	1.0	1.3.1 Sensing
		1.3.2 Tracking
		1.3.4 Acting
		1.3.5 Simulating
2	Sea	rch Algorithms
	2.1	Modifications to Search Algorithms:
	2.2	Setup
	2.3	Search Graphs
	$\frac{2.3}{2.4}$	Path Trees
	2.4	Search Algorithms
	$\frac{2.5}{2.6}$	Modifications to Search Algorithms
	2.0	
		2.6.2 Iterative Deepening
		2.6.3 Cost-Limiting
		2.6.4 Iterative-Inflating
		2.6.5 Intra-Path Cycle Checking
		2.6.6 Inter-Path Cycle Checking
	2.7	Informed Search Algorithms
		2.7.1 Estimated Cost
		2.7.2 Admissible
		2.7.3 Consistent
		2.7.4 Domination
		2.7.5 Designing Heuristics via Problem Relaxation
		2.7.6 Combining Heuristics
		2.7.7 Anytime Search Algorithms
	2.8	Canonical Examples
	2.0	2.8.1 How to setup a search problem?
		2.8.2 How to setup a path tree?
		2.8.3 When to use each algorithm?
		2.8.4 Tracing Search Algorithms
3	Cor	nstraint Satisfaction Problems
	3.1	Setup of CSP
	3.2	Assignment
	3.3	Consistent

		3.3.1 Complete Assignment
		3.3.2 Partial Assignment
		3.3.3 k-Consistent
		3.3.4 Edge/Arc Consistent
	3.4	Constraint Satisfaction Algorithms
	0.1	3.4.1 Main
		3.4.2 Satisfy
		3.4.3 Enforce: Enforcing k-Consistency
	2.5	
	3.5	Setup of CSP
	3.6	Classification vs. Regression Problems
	3.7	Feature Spaces
4 PAC Learning		
4		
	4.1	Probably Approximately Correct (PAC) Estimations
		4.1.1 Hoeffding's Inequality
	4.2	PAC Learning
		4.2.1 Error
		4.2.2 Union Bound Theorem
		4.2.3 Generalization of Hoeffding's Inequality
	_	
5		cision Trees
	5.1	Structure
	5.2	Building a Decision Tree
		5.2.1 Special Case
		5.2.2 General Case
		5.2.3 Entropy, Conditional Entropy, and Information Gain

1 Prologue

Summary:

• Variables:

- State: $\mathbf{x}(t)$

- Action(s): $\mathbf{u}(t)$

– Measurement: $\mathbf{y}_k^{(i)}$

– Context: $\mathbf{z}_k^{(i)}$

– Old Context: $\mathbf{z}_{k-1}^{(i)}$

- Plan: $\mathbf{p}_k^{(i)}$ - (i): Ith agent

• Conversion to DT is necessary because robots are digitalized system and then converted back to CT for execution.

Setup of Planning Problems 1.1

Definition: In a planning problem, it is assumed that:

- ullet the environment is representable using a discrete set of states, ${\mathcal S}$
- for each state, $s \in \mathcal{S}$, each agent, i, has a discrete set of actions, $\mathcal{A}_i(s)$, with $\mathcal{A}(s) := \times_i \mathcal{A}_i(s)$ (joint action
- Move: Any tuple, (s, a), where $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- **Transition:** Any 3-tuple, (s, a, s'), where $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
 - the transition resulting from a move may be deterministic/stochastic
- Reward: $rwd_i(s, a, s')$ is agent i's reward for the transition, (s, a, s')
- Path: Any sequence of transitions of the form.

$$p = \langle (s^{(0)}, a^{(1)}, s^{(1)}), (s^{(1)}, a^{(2)}, s^{(2)}), \dots \rangle$$

• Objective: Each agent wants to realize a path that maximizes its own reward

Warning: A(s) is the joint action set of all agents at state s.

1.2 Components of a Robotic System

Summary:

Figure 1: Components of a Robotic System (Words)

Figure 2: Components of a Robotic System (Math)

1.2.1 Overview (Robots, the Environment)

Definition:

Figure 3: Overview (Robots, the Environment)

Notes:

 \bullet Environment \to previous actions + current state \to robot \to new action \to environment

1.2.2 Robot (Sensors, Actuators, the Brain)

Definition:

Figure 4: Robot (Sensors, Actuators, the Brain)

Notes:

- \bullet Measurements can be noisy and inaccurate if not a perfect sensor.
- Measurements go into the brain which can create a plan.

1.2.3 Brain (Tracker, Planner, Memory)

Definition:

Figure 5: Brain (Tracker, Planner, Memory)

Notes:

- The tracker takes in the measurements and old context and updates the context.
- The planner takes in the context and creates a plan.
- The memory stores the context.

1.2.4 Environment (Physics, State)

Definition:

Figure 6: Environment (Physics, State)

1.3 Equations of a Robotic System

1.3.1 Sensing

Definition: Take a measurement:

$$\mathbf{y}^{(i)}(t) = \operatorname{sns}^{(i)}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Convert the measurement into a discrete-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{y}_k^{(i)} = \mathrm{dt}(\mathbf{y}^{(i)}(t), t, T^{(i)})$$

Figure 7: Sensing

1.3.2 Tracking

Definition: Track (update) the context:

$$\mathbf{z}_k^{(i)} = \operatorname{trk}^{(i)} \left(\mathbf{z}_{k-1}^{(i)}, \mathbf{y}_k^{(i)}, k \right)$$

Figure 8: Tracking

1.3.3 Planning

Definition: Make a plan:

Figure 9: Planning

1.3.4 Acting

Definition: Convert the plan into a continuous-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{p}(t) = \operatorname{ct}(\mathbf{p}_k^{(i)}, t, T^{(i)})$$

Execute the plan:

$$\mathbf{u}^{(i)}(t) = \cot^{(i)}(\mathbf{p}^{(i)}(t), t)$$

Figure 10: Acting

1.3.5 Simulating

Definition: Simulate the environment's response:

$$\dot{\mathbf{x}}(t) = \text{phy}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Figure 11: Simulating

2 Search Algorithms

Summary:

Alg. Halting Sound Complete Optimal Time Space

Choose $REMOVE(\cdot)$ so algo. exhibits the characteristics:

- Halting: Terminates after finitely many nodes explored | Sound: Returned (possibly NULL) soln. is correct
- Complete: Halting & sound when a non-NULL soln. exists | Opt.: Returns an opt. soln. when mult. exist
- Time: Minimizes nodes explored/expanded/exported | Space: Minimizes nodes simultaneously open

Choose REMOVE(·) so algo. exhibits the characteristics for as many path trees as possible.

- b ($b < \infty$): Branching factor (the maximum number of children a node can have)
- d: Depth (the length of the longest path), l^* : Length of the shortest solution
- c^* : Cost of the cheapest solution, ϵ : Cost of the cheapest edge

Uninformed Search Algorithms

BFS $d < \infty$, non-NULL always always constant cst b^{l^*} b^{l^*+1}

• Explores the least-recently expanded open node first.

DFS $d < \infty$ always $d < \infty$ never b^d bd

• Explores the most-recently expanded open node first.

IDDFS always always constant cst b^{l^*} bl^*

• Same as DFS but with iterative deepening.

CFS $d < \infty$, non-NULL yes $\epsilon > 0$ $\delta^{c^*/\epsilon}$ $\delta^{c^*/\epsilon+1}$

• Explores the cheapest open node first.

Informed Search Algorithms

HFS $d < \infty$ never never - -

• Explores the node with the smallest hur-value first, ecst(p) = hur(p)

 \mathbf{A}^* hur admissible, $\epsilon > 0$ always hur admissible, $\epsilon > 0$ hur admissible, $\epsilon > 0$ $O\left(b^{c^*/\epsilon}\right)$ $O\left(b^{c^*/\epsilon+1}\right)$

• Explores the node with the smallest ecst-value first, $\operatorname{ecst}(p) = \operatorname{cst}(p) + \operatorname{hur}(p)$

 IIA^* always always always always b^{l^*} bl^*

• Same as A* but with iterative inflating on ecst.

 $\mathbf{W}\mathbf{A}^*$ - - - - - -

- Same as A* but $\operatorname{ecst}(s) = \operatorname{wcst}(s) + (1 w)\operatorname{hur}(s) \text{ w}/w \in [0, 1]$
- w = 0: HFS, w = 0.5: A*, w = 1: CFS, iteratively increasing w from 0 to 1: anytime version of WA^*

2.1 Modifications to Search Algorithms:

Summary:

Modifications

Depth-Limiting

 \bullet Enforce a depth limit, $d_{\rm max},$ to any search algorithm.

Iterative-Deepening

• Iteratively increase the depth-limit to any search algorithm w/ depth-limiting.

Cost-Limiting

 \bullet Enforce a cost limit of c_{\max} to any search algorithm.

Iterative Inflating

• Iteratively increase the cost limit, c_{max} , to any search algorithm w/ cost-limiting.

Intra-Path Cycle Checking

• Do not expand a path if it is cyclic.

Inter-Path Cycle Checking

• Do not expand a path if its destination is that of an explored path.

2.2 Setup

Definition: In a search problem, it is assumed that:

- There is only one agent (us).
- For each state, $s \in S$, we have a discrete set of actions, $\mathcal{A}(s)$.
- The transition resulting from a move, (s, a), is deterministic; the resulting state is tr(s, a).
- cst(s, a, tr(s, a)) is our cost for the transition, (s, a, tr(s, a)).
- We want to realize a path that minimizes our cost.

A search problem may have no solutions, in which case, we define the solution as NULL.

Warning: A NULL solution is not the same as $p = \langle \rangle$ (an empty solution w/ $s^{(0)} \in \mathcal{G}$).

2.3 Search Graphs

Definition: In a search graph (a graph representing a search problem):

- \bullet S is defined by the vertices.
- \mathcal{G} is a subset of the vertices.
- $s^{(0)}$ is some vertex.
- $tr(\cdot, \cdot)$ and \mathcal{T} are defined by the edges.
- $cst(\cdot, \cdot, \cdot)$ is defined by the edge weights.

2.4 Path Trees

Definition: A search algorithm explores a tree of possible paths.

- In such a tree, each node represents the path from the root to itself.
 - The node may also include other info (such as the path's origin, cost, etc).

2.5 Search Algorithms

Algorithm: All search algorithms follow the template below:

• $\langle \rangle$: Empty path, 0: Cost of empty path.

```
procedure SEARCH(\mathcal{O})

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow REMOVE(\mathcal{O})

if \mathrm{DST}(n) \in \mathcal{G} then

return n

for n' \in \mathrm{CHL}(n) do

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})

if \mathcal{O} = \emptyset then

return n

b the search algorithm found a path to a goal

b "expland" n and "export" its children

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
```

- Explore: Remove a node from the open set.
- Expand: Generate the children of the node.
- Export: Add the children to the open set.

Warning: The key difference is in the order that REMOVE(\cdot) removes nodes.

2.6 Modifications to Search Algorithms

2.6.1 Depth-Limiting

Algorithm:

```
procedure SEARCHDL(\mathcal{O}, d_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if \text{len}(n') \leq d_{\max} then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCHDL(\mathcal{O}, d_{\max})

be the search algorithm failed to find a path to a goal

be "explore" a node, n

be the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

be "expand" n and "export" its children

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm found a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm failed to find a path to a goal

condition of the search algorithm f
```

2.6.2 Iterative Deepening

Algorithm:

```
procedure SEARCHID(): n \leftarrow \text{NULL} \\ d_{\text{max}} = 0 \\ \text{b while a solution has not been found, reset the open set, run the search algorithm, then increase the depth-limit while <math>n = \text{NULL do} \mathcal{O} \leftarrow \{(\langle \rangle, 0)\} \\ n \leftarrow \text{SEARCHDL}(\mathcal{O}, d_{\text{max}}) \\ d_{\text{max}} \leftarrow d_{\text{max}} + 1 \\ \text{return } n
```

Warning: Increasing d_{max} can be done in different ways.

2.6.3 Cost-Limiting

Algorithm:

```
procedure SEARCHCL(\mathcal{O}, c_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if \text{cst}(n') \leq c_{\max} then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCHCL(\mathcal{O}, c_{\max})

\text{procedure SEARCHCL}(\mathcal{O}, c_{\max})

\text{procedure SEARCHCL
```

2.6.4 Iterative-Inflating

Algorithm: procedure SEARCHII(): $n \leftarrow \mathtt{NULL}$ $c_{\mathtt{max}} = 0$ \triangleright while a solution has not been found, reset the open set, run the search algorithm, then increase the while n = NULL do $\mathcal{O} \leftarrow \{(\langle \rangle, 0)\}$ $n \leftarrow \mathtt{SEARCHCL}(\mathcal{O}, c_{\mathtt{max}})$ $c_{\mathtt{max}} \leftarrow c_{\mathtt{max}} + \epsilon$ ${\tt return}\ n$

Warning: Increasing c_{max} can be done in different ways.

2.6.5 Intra-Path Cycle Checking

```
Algorithm:
   procedure SEARCH(\mathcal{O}):
           if \mathcal{O}=\emptyset then
                  return NULL
          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
           if \mathtt{dst}(n) \in \mathcal{G} then
                  {\tt return}\ n
           for n' \in \operatorname{chl}(n) do
                                                                                                                               \,\vartriangleright\, "expand" n and "export" its children
                   if not \mathtt{CYCLIC}(n') then
                                                                                                                                                \triangleright unless the child is cyclic
                          \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
           SEARCH(O)
```

• Optimately of an algorithm is preserved provided $\epsilon > 0$.

2.6.6 Inter-Path Cycle Checking

```
Algorithm:
   procedure SEARCH(\mathcal{O}, \mathcal{C}):
          if \mathcal{O}=\emptyset then
                  return NULL
          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
          \mathcal{C} \leftarrow \mathcal{C} \cup \{n\}
                                                                                                                                                 \triangleright add n to the closed set
          if \mathtt{dst}(n) \in \mathcal{G} then
                  {\tt return}\ n
           for n'\in \operatorname{chl}(n) do
                                                                                                                            if n' \notin \mathcal{C} then

    □ unless the child's destination is closed

                         \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
           SEARCH(\mathcal{O}, \mathcal{C})
```

and then call the algorithm as follows:

```
\mathcal{O} \leftarrow \{(\langle \rangle, 0)\}
_{2} \mathcal{C} \leftarrow \{\}
                                                                                                                                                                ▷ initialize a set of closed vertices
    SEARCH(\mathcal{O}, \mathcal{C})
```

2.7 Informed Search Algorithms

2.7.1 Estimated Cost

Definition: $ecst(\cdot)$: estimate the total cost to a goal given a path, p, based on:

- cst(p): Cost of path p
- hur: $S \to \mathbb{R}_+$: Estimate of the extra cost needed to get to a goal from $\mathrm{dst}(p)$
 - hur(s) estimates the cost to get to \mathcal{G} from s and hur(p) means hur(dst(p)).

2.7.2 Admissible

Definition: A heuristic, $hur(\cdot)$, is said to be **admissible** if

$$hur(s) \le hur^*(s)$$

for all $s \in \mathcal{S}$ and

$$hur(s) = 0$$

for all $s \in \mathcal{G}$.

2.7.3 Consistent

Definition: A heuristic, $hur(\cdot)$, is said to be **consistent** if

$$\underbrace{\operatorname{hur}(s) - \operatorname{hur}(\operatorname{tr}(s,a))}_{\text{estimated cost of the transition }(s,a,\operatorname{tr}(s,a))} \leq \underbrace{\operatorname{cst}(s,a,\operatorname{tr}(s,a))}_{\text{true cost of the transition, }(s,a,\operatorname{tr}(s,a))}$$

for all $s \in \mathcal{S}$, and $a \in \mathcal{A}(s)$, and

$$hur(s) = 0$$

for all $s \in \mathcal{G}$.

Theorem: If a heuristic, $hur(\cdot)$, is consistent, then it is also admissible.

2.7.4 Domination

Definition: If hur_1 and hur_2 are admissible, then:

• hur₁ strongly dominates hur₂ if for all $s \in \mathcal{S} \setminus \mathcal{G}$:

$$hur_1(s) > hur_2(s)$$

• hur₁ weakly dominates hur₂ if for all $s \in \mathcal{S}$:

$$hur_1(s) \ge hur_2(s)$$

and for some $s \in \mathcal{S}$:

$$hur_1(s) > hur_2(s)$$

2.7.5 Designing Heuristics via Problem Relaxation

Definition: Let hur_{ori}^* be the perfect heuristic for a search problem, and cst_{rel}^* be the optimal cost for a relaxed version of the problem. Then

$$\operatorname{cst}_{\operatorname{rel}}^*(s) \leq \operatorname{hur}_{\operatorname{ori}}^*(s) \text{ for all } s \in \mathcal{S}.$$

2.7.6 Combining Heuristics

 $\textbf{Definition:} \text{ If } \{ \text{hur}_k(\cdot) \}_k \text{ are admissible (resp. consistent), then } \max_k \{ \text{hur}_k \}(\cdot) \text{ is also admissible (resp. consistent)}.$

Definition: If $hur_{max} \equiv max\{hur_1, hur_2\}$, then if hur_k is consistent:

$$\operatorname{hur}_k(s) - \operatorname{hur}_k(\operatorname{tr}(s, a)) \le \operatorname{cst}(s, a, \operatorname{tr}(s, a))$$

$$\operatorname{hur_{max}}(s) = \operatorname{hur_{max}}(\operatorname{tr}(s, a)) - \operatorname{cst}^*(s, a, \operatorname{tr}(s, a))$$

2.7.7 Anytime Search Algorithms

Definition: An **anytime algorithm** finds a solution quickly (even if it is sub-optimal), and then iteratively improves it (if time permits).

2.8 Canonical Examples

2.8.1 How to setup a search problem?

Process:

- 1. Givne a search graph, we need to define the following:
 - S: set of vertices
 - \mathcal{G} : goal states (subset of \mathcal{S})
 - $s^{(0)}$: initial state
 - \mathcal{T} : set of edges (defined by $\operatorname{tr}(\cdot, \cdot)$)
 - $-\operatorname{tr}(\cdot,\cdot)$: transition function
 - $\operatorname{cst}(\cdot,\cdot,\cdot)$: cost function (defined by edge weights)

Example:

His energy consumption for a given step depends on the terrain transition.

Figure 14

Figure 15

- $S = \{0, \dots, 4\}^2$ $G = \left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$ $s^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

2.8.2 How to setup a path tree?

Process:

- 1. Start at $s^{(0)}$
- 2. Choose a path until you reach a goal state.
- 3. Repeat until you have found all paths (probably infinite).

2.8.3 When to use each algorithm?

Process:

- 1. Do we have a heuristic?
 - Yes: Use informed search algorithms.
 - No: Use uninformed search algorithms.
- 2. Are path costs non-uniform?
 - Yes: Eliminate BFS.
 - No: Eliminate CFS, A*
- 3.
- 4. Is the search space finite or infinite?
 - Finite: Use any algorithm.
 - Infinite: Use BFS, IDDFS, CFS, or A*.
- 5. Do we need to guarantee finding a solution (completeness)?
 - Yes: Use BFS, IDDFS, IIA*, CFS (if $\epsilon > 0$).
 - No: Use DFS, HFS, WA*
- 6. Find properties needed for the problem and match them to the characteristics of the algorithm.
- 7. Choose the algorithm that best matches the properties.
 - BFS: Need shortest path in an unweighted graph.
 - DFS: Explore a deep path quickly, and completeness is not needed.
 - IDDFS: Want completeness of BFS but with the complexity of DFS.
 - CFS: Need the least-cost path in a weighted graph.
 - HFS:
 - A*:
 - IIA*:
 - WA*:

Example:

2.8.4 Tracing Search Algorithms

Example:

Figure 18

Process: BFS

- 1. Start at s_0 as **current node**
- 2. Expand all neighboring nodes of the **current node** and add them to the open set (queue).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the least-recently expanded node from the open set as the **current node**.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Example: BFS

Path	Open Set
	$\{A\}$
A	$\{B,C,D\}$
AB	$\{C, D, E\}$
ABC	$\{D, E\}$
ABCD	$\{E\}$
ABCDE	{}

Process: DFS

- 1. Start at s_0 as current node
- 2. Expand all neighboring nodes of the current node and add them to the open set (stack).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the most-recently expanded node from the open set as the **current node**.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Example: DFS

Path	Open Set
A	$\{A\}$ $\{B,C,D\}$
$\stackrel{A}{AD}$	$\{B,C,E\}$
ADE	$\{B,C\}$

Process: IDDFS

- 1. Start with a depth limit of 0.
- 2. Perform DFS up to the current depth limit.
- 3. If the goal state is not reached, increment the depth limit based on given fcn and repeat step 2.

4. Continue until the goal state is found or all nodes are explored.

Example: IDDFS

Depth	Path	Open Set
0		$\{A\}$
0	A	{}
1	A	$\{B,C,D\}$
1	AB	$\{C,D\}$
1	AC	$\{D\}$
1	AD	{}
2	AD	$\{E\}$
2	ADE	{}

Process: CFS

- 1. Start at s_0 as current node
- 2. Expand all neighboring nodes of the current node and add them to the open set (priority queue).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the cheapest expanded node from the open set as the **current node**.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Example: CFS

No Inter-Path Cycle Checking, No Intra-Path Cycle Checking

Path	Open Set
	$\{A \mid 0\}$
A	$\{AB \mid 2, AC \mid 4, AD \mid 6\}$
AB	$\{AC \mid 4, AD \mid 6, ABC \mid 3, ABA \mid 4\}$
ABC	$\{AC \mid 4, \ AD \mid 6, \ ABA \mid 4, \ ABCE \mid 5, \ ABCD \mid 6\}$
AC	$\{AD \mid 6, \ ABA \mid 4, \ ABCE \mid 5, \ ABCD \mid 6, \ ACD \mid 7, \ ACE \mid 6\}$
ABA	{AD 6, ABCE 5, ABCD 6, ACD 7, ACE 6, ABAB 6, ABAC 8, ABAD 10}
ABCE	$\{AC \mid 4, \ ABA \mid 4, \ AD \mid 6, \ ABCD \mid 6\}$

Intra-Path Cycle Checking:

Path	Open Set
	$\{A \mid 0\}$
A	$\{AB \mid 2, AC \mid 4, AD \mid 6\}$
AB	$\{AC \mid 4, AD \mid 6, ABC \mid 3, ABA \text{ intra}\}$
ABC	$\{AC \mid 4, AD \mid 6, ABCE \mid 5, ABCD \mid 6\}$
AC	$\{AD \mid 6, \ ABCE \mid 5, \ ABCD \mid 6, \ ACD \mid 7, \ ACE \mid 6\}$
ABCE	$\{AC \mid 4, \ AD \mid 6, \ ABCD \mid 6, \ ACD \mid 7, \ ACE \mid 6\}$

• Inter-Path Cycle Checking: Doesn't affect the algorithm in this instance.

Warning:

• How to perform shortcut?

Process: HFS

- 1. Start at s_0 as **current node**
- 2. Expand all neighboring nodes of the current node and add them to the open set (priority queue).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the lowest heuristic value expanded node from the open set as the **current node**.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Example: HFS

Path	Open Set
	$\{A \mid 3\}$
A	$\{AB \mid 2, AC \mid 1, AD \mid 1\}$
AC	$\{AB \mid 2, AD \mid 1, ACE \mid 0\}$
ACE	$\{AB \mid 2, AD \mid 1\}$

• Inter/Intra-Path Cycle Checking: Doesn't affect the algorithm in this instance.

Process: A*

- 1. Start at s_0 as current node
- 2. Expand all neighboring nodes of the **current node** and add them to the open set (priority queue).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the lowest $\operatorname{esct}(p) = \operatorname{cst}(p) + \operatorname{hur}(p)$ expanded node from the open set as the **current node**.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Example: A^*

No Inter-Path Cycle Checking, No Intra-Path Cycle Checking

Path	Open Set
	$\{A \mid 3\}$
A	$\{AB \mid 2+2, AC \mid 4+1, AD \mid 6+1\}$
AB	$\{AC \mid 5, AD \mid 7, ABC \mid 3+1, ABA \mid 4+3\}$
ABC	$\{AC \mid 5, AD \mid 7, ABCD \mid 6+1, ABCE \mid 5+0, ABA \mid 7\}$
AC	{AD 7, ABCD 7, ABCE 5, ABA 7, ACD 7 + 1, ACE 6 + 0}
ABCE	$\{AD \mid 7, \ ABCD \mid 7, \ ABA \mid 7 \ ACD \mid 8, \ ACE \mid 6\}$

Intra-Path Cycle Checking:

Path	Open Set
	$\{A \mid 3\}$
A	$\{AB \mid 2+2, AC \mid 4+1, AD \mid 6+1\}$
AB	$\{AC \mid 5, AD \mid 7, ABC \mid 3+1, ABA \text{ intra}\}$
ABC	$\{AC \mid 5, AD \mid 7, \ ABCD \mid 6+1, \ ABCE \mid 5+0\}$
AC	$\{AD \mid 7, ABCD \mid 7, ABCE \mid 5, ACD \mid 7+1, ACE \mid 6+0\}$
ABCE	$\{AD \mid 7, \ ABCD \mid 7, \ ACD \mid 8, \ ACE \mid 6\}$

• Inter-Path Cycle Checking: Doesn't affect the algorithm in this instance.

Process: IIA*

- 1. Start with a cost limit of 0.
- 2. Perform A* up to the current cost limit.
- 3. If the goal state is not reached, increment the cost limit based on given fcn and repeat step 2.

4. Continue until the goal state is found or all nodes are explored.

Example: IIA*
Inter-Path Cycle Checking, Intra-Path Cycle Checking

Cost	Path	Open Set
0	$\langle \rangle$	$\{A \mid 0+3\}$
1	$\langle \rangle$	$\{A \mid 3\}$
2	$\langle \rangle$	$\{A \mid 3\}$
3 3	$\langle \rangle$ A	$A \mid 3$ $AB \mid 2+2, AC \mid 4+1, AD \mid 6+1$
4	AB	
4	ABC	{AC 5, AD 7, ABCD 6 + 1, ABCE 5 + 0}
5 5	AC $ABCE$	

Process: WA*

- 1. Start at s_0 as current node
- 2. Expand all neighboring nodes of the current node and add them to the open set (priority queue).
- 3. Remove the **current node** from the open set and add it to the path.
- 4. Choose the lowest $\operatorname{esct}(p) = w \cdot \operatorname{cst}(p) + (1 w) \cdot \operatorname{hur}(p)$ expanded node from the open set as the **current** node.
- 5. Repeat steps 2 and 4 until the goal state is reached or the open set is empty.

Process: How to Prove Consistent/Admissible Given a Search Graph?

Admissible:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)). If consistent, then it is admissible.
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not admissible.
- 3. For each $s \in \mathcal{S}$, calculate hur*(s) (i.e. actual cost of optimal soln.) using the search graph.
 - (a) Start at s and choose path that gives the lowest cost to $s \in \mathcal{G}$.
- 4. Check if $\operatorname{hur}(s) \leq \operatorname{hur}^*(s) \ \forall s \in \mathcal{S}$. If not, then it is not admissible.
- 5. Repeat $\forall s \in \mathcal{S}$.
- 6. If all are true, then it is admissible.

Consistent:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)).
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not consistent.
- 3. For each $s \in \mathcal{S}$, calculate hur(s) hur(tr(s, a)).
 - (a) check if it is $\leq \operatorname{cst}(s, a, \operatorname{tr}(s, a))$. If not, then it is not consistent.
 - (b) Repeat $\forall a \in \mathcal{A}(s)$
- 4. Repeat $\forall s \in \mathcal{S}$.
- 5. If all are true, then it is consistent.

Warning: Be careful of bidirectional edges be for consistency you need compute the cost of the heuristic edge in both directions.

Example:

Figure 19: Jungle $(s^{(0)})$, Desert, Swamp, Mountain, Plains (Goal)

Admissible:

- 1. s =Plains: hur(Plains) = 0
- 2. $s = Jungle: hur(Jungle) = 3 \le hur^*(Jungle) = 2 + 1 + 2 = 5$
- 3. s =**Desert:** $hur(Desert) = 2 \le hur^*(Desert) = 1 + 2$
- 4. s =Swamp: $hur(Swamp) = 1 \le hur^*(Swamp) = 2$
- 5. $s = Mountain: hur(Mountain) = 1 \le hur^*(Mountain) = 1$
- 6. Therefore, it is admissible.

Consistent:

- 1. s =Plains: hur(Plains) = 0
- 2. s =Jungle:
 - (a) $hur(Jungle) hur(Desert) = 3 2 = 1 \le cst(Jungle, \cdot, Desert) = 2$
 - (b) $hur(Jungle) hur(Swamp) = 3 1 = 2 \le cst(Jungle, \cdot, Swamp) = 4$
 - (c) $hur(Jungle) hur(Mountain) = 3 1 = 2 \le cst(Jungle, \cdot, Mountain) = 6$
- 3. s =**Desert:**
 - (a) $hur(Desert) hur(Jungle) = 2 3 = -1 < cst(Desert, \cdot, Jungle) = 2$
 - (b) $hur(Desert) hur(Swamp) = 2 1 = 1 \le cst(Desert, \cdot, Swamp) = 1$
- 4. $s = \mathbf{Swamp}$:
 - (a) $hur(Swamp) hur(Mountain) = 1 1 = 0 \le cst(Swamp, \cdot, Mountain) = 3$
 - (b) $hur(Swamp) hur(Plains) = 1 0 = 1 \le cst(Swamp, \cdot, Plains) = 2$
- 5. s = Mountain:
 - (a) $hur(Mountain) hur(Jungle) = 1 3 = -2 \le cst(Mountain, \cdot, Desert) = 6$
 - (b) $hur(Mountain) hur(Plains) = 1 0 = 1 \le cst(Mountain, \cdot, Plains) = 1$
- 6. Therefore, it is consistent.

Process: How to Design Heuristic via Problem Relaxation?

- $1.\,$ Make an assumption to simplify the problem as a relaxed problem.
- 2. Find the cost of the optimal solution of the relaxed problem, $\operatorname{cst}_{\operatorname{rel}}(s)$.
- 3. HOW TO FIND THE COST OF THE OPTIMAL SOLUTION?

Example:

Figure 20

3 Constraint Satisfaction Problems

3.1 Setup of CSP

Definition: A constraint satisfaction problem (CSP) consists of:

- a set of variables, \mathcal{V} , where the domain of $V \in \mathcal{V}$ is dom(V)
- a set of constraints, C, where the scope of $C \in C$ is $scp(C) \subseteq V$

3.2 Assignment

Definition: An **assignment** is a set of pairs, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, where $v\in \text{dom}(V)$, and $\tilde{\mathcal{V}}\subseteq\mathcal{V}$. It is **complete** if $\tilde{\mathcal{V}}=\mathcal{V}$, and **partial** otherwise.

3.3 Consistent

3.3.1 Complete Assignment

Definition: A complete assignment, A, is **consistent** if it satisfies every constraint \mathcal{C} with $scp(\mathcal{C}) \subseteq \tilde{\mathcal{V}}$.

Warning: A solution to a CSP is any complete and consistent assignment.

3.3.2 Partial Assignment

Definition: A (possibly partial) assignment, $\{(V, v)\}_{V \in \tilde{\mathcal{V}}}$, is **consistent** if it satisfies every constraint, $C \in \mathcal{C}$ such that $\text{scp}(C) \subseteq \tilde{\mathcal{V}}$.

3.3.3 k-Consistent

Definition: A CSP is k-consistent if for any consistent assignment of k-1 variables, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, and any k^{th} variable, V', there is a value, $v'\in \text{dom}(V')$, so the assignment, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}\cup \{(V',v')\}$ is consistent.

3.3.4 Edge/Arc Consistent

Definition: 2-consistent.

3.4 Constraint Satisfaction Algorithms

3.4.1 Main

Algorithm:

3.4.2 Satisfy

Algorithm:

3.4.3 Enforce: Enforcing k-Consistency

Algorithm:

3.4.4 EnforceVar: Enforcing k-Consistency

Algorithm:

3.5 Setup of CSP

Example: Different ways to formulate the CSP problem.

- How can you formulate the CSP problem in a different way? Can I get a specific example?
 - The domain could be set to everything, then set the constraints later.
- What is the constraint graph showing? Grouping the variables
- How do you check consistency in a CSP?
- Why can you use any search algorithm when you formulate this as a search problem?
- What does a node contain? A node contans a path.
 - How does that match the example on slide 10. It does.
- Why is formulalting a CSP problem as a search problem a bad idea? B/c you have to search through all possible combinations, but if you find a constraint then you can prune the search space.
 - A lot easier to see if there is a solution or not. But in a search problem, you see if there's a solution and how to get to it.

Example:

Figure 21

Figure 22

Figure 23

Process: How to build a hyper-graph?

1. Circle the variables that appear in constraint $C_i \, \forall i$.

Example:

Figure 24

Process: How to build a path tree?

1

Example:

Figure 25

Figure 26

Process: How to determine a solution to a CSP?

1.

Example:

$$\left\{ \left(\textcircled{3},2\right) ,\left(\textcircled{3},1\right) ,\left(\textcircled{3},1\right) ,\left(\textcircled{4},0\right) ,\left(\textcircled{3},1\right) \right\}$$

Figure 27

Process: How to check *k*-Consistency?

- 1. Given \mathcal{V} w/ dom $(V) = \{v_1, \dots, v_{|\text{dom}(V)|}\}\ \forall V \in \mathcal{V}$ and \mathcal{C} w/ scp $(C) = \{V_1, \dots, V_{|\text{scp}(C)|}\}\ \forall C \in \mathcal{C}$.
- 2. Remove all constraints that have k+1 or more variables.
- 3. For each $C \in \mathcal{C}$, do the following:
 - (a) For each $V \in \operatorname{scp}(C)$, do the following:
 - i. For each $v \in \text{dom}(V)$, do the following:
 - Fix V to v for k-1 variables.
 - For the last variable V, find a value in dom(V) that satisfies all constraints.
 - **Key:** If there is one combination that doesn't satisfy the constraint, then the CSP is not k-consistent.
- 4. If all constraints are satisfied, then the CSP is k-consistent.

Process: How to Enforce k-Consistency?

- 1. Given \mathcal{V} w/ dom $(V) = \{v_1, \dots, v_{|\text{dom}(V)|}\}\ \forall V \in \mathcal{V}$ and \mathcal{C} w/ scp $(C) = \{V_1, \dots, V_{|\text{scp}(C)|}\}\ \forall C \in \mathcal{C}$.
- 2. Remove all constraints that have k+1 or more variables.
- 3. **Pre-pruning:** For each remaining $C \in \mathcal{C}$, do the following:
 - (a) For each $V \in \operatorname{scp}(C)$, do the following:
 - i. For each $v \in \text{dom}(V)$, do the following:
 - Fix V to v.
 - For the other $V \in \text{scp}(C)$, check if the constraint is satisfied by trying all combinations (need only one).
 - **Key:** If the constraint is not satisfied, then remove the value from dom(V).
- 4. If you had to remove any values from dom(V), then check with the other constraints.
- 5. **Pruning:** Every constraint is satisfied.

Warning: Can think of checking as picking k-1 variables, then choosing any value for the k^{th} variable that satisfies all constraints. While enforcing is fixing a variable to a value, then checking if there is a combination for the other variables that satisfies all constraints.

Warning: Enforcing k-consistency is enforcing $k-1,\ldots,1$ -consistency.

Example:

Figure 28

Figure 29: Pre-pruning. Since only one constraint, it is also pruning.

Example:

1. **Given:** Consider a CSP in which $V = \{A, B, C, D, E\}$, where:

$$dom(A) = \{0, 1, 2, 3, 4\}$$

$$dom(B) = \{0, 1, 2, 3, 4\}$$

$$dom(C) = \{0, 1, 2, 3\}$$

$$dom(D) = \{0, 1, 2, 3, 4, 5\}$$

$$dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$$

and $C = \{C_1, C_2, C_3, C_4\}$, where:

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

$$C_2: 3 \le a + c \le 4$$

$$C_3: 2 \le a + b + 2c \le 5$$

$$C_4: 1 \le b \le 2$$

2. **Problem:** Solve the following CSP using k = 4 consistency. Pre-prune the domains using k = 4 consistency. Assign variables in alphabetical order and values in numerical order.

Example: 4-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

 $b=0,\,b=1,\,b=2,\,b=3,\,b=4$ No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a + c \le 4$$

a = 0, a = 1, a = 2, a = 3, a = 4Yes, Yes, Yes, Yes, Yes $c=0,\,c=1,\,c=2,\,c=3$ Yes, Yes, Yes, Yes

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a + b + 2c \le 5$$

a = 0, a = 1, a = 2, a = 3, a = 4Yes, Yes, Yes, Yes, Yes

b = 1, b = 2

Yes, Yes

c = 0, c = 1, c = 2, c = 3Yes, Yes, Yes, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example:

Fixed Value

Satisfactory Combination?

$$C_2: 3 \le a + c \le 4$$

a = 0, a = 1, a = 2, a = 3, a = 4c = 0, c = 1, c = 2

No, Yes, Yes, Yes, Yes

Yes, Yes, Yes

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a + b + 2c \le 5$$

a = 1, a = 2, a = 3, a = 4

Yes, Yes, Yes, Yes

b = 1, b = 2

Yes, Yes

c = 0, c = 1, c = 2

Yes, Yes, No

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a+c \le 4$$

a = 1, a = 2, a = 3, a = 4

No, Yes, Yes, Yes

Yes, Yes

 $c=0,\,c=1$

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a+b+2c \le 5$$

a = 2, a = 3, a = 4

Yes, Yes, Yes

b = 1, b = 2

Yes, Yes

c = 0, c = 1

Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- \bullet dom $(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example:

Fixed Value

Satisfactory Combination?

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

a = 2, a = 3, a = 4

b = 1, b = 2

 $d=0,\,d=1,\,d=2,\,d=3,\,d=4,\,d=5$

Yes, Yes, Yes

Yes, Yes

Yes, Yes, Yes, No, No, No

 $e=0,\,e=1,\,e=2,\,e=3,\,e=4,\,e=5,\,e=6$ Yes, Yes, No, No, No,

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, \emptyset\}$

$$C_1: 8 \le 2a + 2b + 2d + 3e \le 10$$

a = 2, a = 3, a = 4

b = 1, b = 2

d = 0, d = 1, d = 2

e = 0, e = 1

Yes, Yes, Yes

Yes, Yes

Yes, Yes, Yes

Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, \emptyset\}$
- 4. Conclusion: This is the final pruned domain, which means if I fix a variable to a value, then I can find a satisfactory combination for the rest of the variables in this pruned domain.
 - $dom(A) = \{2, 3, 4\}$
 - $dom(B) = \{1, 2\}$
 - $dom(C) = \{0, 1\}$
 - $dom(D) = \{0, 1, 2\}$
 - $dom(E) = \{0, 1\}$

Example: 3-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a + c \le 4$$

 $a=0,\ a=1,\ a=2,\ a=3,\ a=4$ Yes, Yes, Yes, Yes, Yes $c=0,\ c=1,\ c=2,\ c=3$ Yes, Yes, Yes, Yes

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a + b + 2c \le 5$$

a = 0, a = 1, a = 2, a = 3, a = 4 Yes, Yes, Yes, Yes, Yes

b = 1, b = 2

Yes, Yes

 $c=0,\, c=1,\, c=2,\, c=3$

Yes, Yes, Yes, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example:

Fixed Value

Satisfactory Combination?

$$C_2: 3 \le a + c \le 4$$

a = 0, a = 1, a = 2, a = 3, a = 4 No, Yes, Yes, Yes, Yes

c = 0, c = 1, c = 2Yes, Yes, Yes

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- \bullet dom(E) = {0, 1, 2, 3, 4, 5, 6}

$$C_3: 2 \le a + b + 2c \le 5$$

a = 1, a = 2, a = 3, a = 4

b = 1, b = 2

c = 0, c = 1, c = 2

Yes, Yes, Yes, Yes

Yes, Yes

Yes, Yes, No

- $dom(A) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a+c \le 4$$

a = 1, a = 2, a = 3, a = 4

c = 0, c = 1

No, Yes, Yes, Yes

- Yes, Yes
- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_3: 2 \le a+b+2c \le 5$$

a = 2, a = 3, a = 4

b = 1, b = 2

c = 0, c = 1

Yes, Yes, Yes

Yes, Yes

Yes, Yes

- $dom(A) = \{\emptyset, 1/2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- \bullet dom $(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. Conclusion: $dom(A) = \{2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 4, 5\}, dom(E$ $\{0, 1, 2, 3, 4, 5, 6\}$

Example: 2-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}\$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

$$C_2: 3 \le a + c \le 4$$

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, 3, 4\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. **Conclusion:** $dom(A) = \{0, 1, 2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Example: 1-Consistency

Fixed Value

Satisfactory Combination?

$$C_4: 1 \le b \le 2$$

b = 0, b = 1, b = 2, b = 3, b = 4 No, Yes, Yes, No, No

- $dom(A) = \{0, 1, 2, 3, 4\}$
- $dom(B) = \{\emptyset, 1, 2, \emptyset, \cancel{A}\}$
- $dom(C) = \{0, 1, 2, 3\}$
- $dom(D) = \{0, 1, 2, 3, 4, 5\}$
- $dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$
- 4. **Conclusion:** $dom(A) = \{0, 1, 2, 3, 4\}, dom(B) = \{1, 2\}, dom(C) = \{0, 1, 2, 3\}, dom(D) = \{0, 1, 2, 3, 4, 5\}, dom(E) = \{0, 1, 2, 3, 4, 5, 6\}$

Learning Problems

Definition: Assume that there is some (unknown) relationship,

$$f: \mathcal{X} \to \mathcal{Y} \text{ s.t. } x \mapsto_f y$$

- \mathcal{X} : Input Space
- \mathcal{Y} : Output Space (i.e. information we desire about input)

Find $h: \mathcal{X} \to \mathcal{Y}$ (hypothesis) s.t. $h \approx f$, given some data about f:

$$\mathcal{D} = \left\{ \left(x^{(i)}, y_i \right), x^{(i)} \in \mathcal{X}, y_i = f\left(x^{(i)} \right) \in \mathcal{Y}, i = 1 \dots N \right\}$$

- $\operatorname{in}(\mathcal{D}) = \{x \text{ s.t. } (x, y) \in \mathcal{D}\}$
- $\operatorname{out}(\mathcal{D}) = \{ y \text{ s.t. } (x, y) \in \mathcal{D} \}$

3.6 Classification vs. Regression Problems

Definition:

- Classification Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{N}$ Regression Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{R}$

3.7 **Feature Spaces**

Definition: It is often easier to learn relationships from high-level features (instead of the raw input). Need mapping b/w input space and feature space:

$$\phi: \mathcal{X} \to \mathcal{F}$$

4 PAC Learning

4.1 Probably Approximately Correct (PAC) Estimations

4.1.1 Hoeffding's Inequality

Definition: For any $\epsilon > 0$,

$$\mathbb{P}(|\nu - \mu| \ge \epsilon) \le 2e^{-2\epsilon^2 N} \tag{1}$$

- μ : Probability of an event.
- ν : Relative frequency in a sample size N.
- $\mu \stackrel{?}{\approx} \nu$: μ is probably approximately equal to ν . As $N \to \infty$: $\nu \to \mu$
- ϵ : Tolerance (i.e. how close we want ν to be to μ).

$$-\epsilon \to 0$$
: $\nu = \mu$

Warning: Approximate the true distribution with high probability by taking a large enough sample size (i.e. empirical distribution converges to true distribution).

4.2 PAC Learning

4.2.1 Error

Definition:

• Out-Sample Error:

$$E_{\text{out}} = \mathbb{P}[f \neq h]$$

• In-Sample Error:

$$E_{\text{in}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[f(x^{(i)}) \neq h(x^{(i)})]$$

4.2.2 Union Bound Theorem

Theorem:

$$\mathbb{P}\left[E_1 \vee \cdots \vee E_M\right] \leq \sum_{i=1}^M \mathbb{P}[E_i]$$

Warning: If the events are highly correlated, then the union bound is not tight.

4.2.3 Generalization of Hoeffding's Inequality

Definition: Assuming that h is chosen from a set of hypotheses \mathcal{H} , derive a (loose) upper-bound on $|E_{\text{out}} - E_{\text{in}}|$:

$$\mathbb{P}\left[\bigvee_{h\in\mathcal{H}}\left(|E_{\text{out}} - E_{\text{in}}(h)| > \varepsilon\right)\right] \leq \sum_{h\in\mathcal{H}} \mathbb{P}\left[|E_{\text{out}} - E_{\text{in}}(h)| > \varepsilon\right]$$
$$\leq \sum_{h\in\mathcal{H}} 2e^{-2\varepsilon^{2}N}$$
$$= 2|\mathcal{H}|e^{-2\varepsilon^{2}N}$$

- Endow \mathcal{F} w/ prob. distribution, $P: \mathcal{X} \to [0,1]$, then
 - $E_{\rm out}$ is analogous to μ
 - $-E_{\rm in}(h)$ is analogous to ν .

Notes:

- $E_{\rm in}(h) \stackrel{?}{\approx} E_{\rm out}$ requires small $|\mathcal{H}|$ (generalization)
- $E_{\rm in}(h) \approx 0$ requires large $|\mathcal{H}|$ (discrimination)

Example:

- 1. **Given:** An opaque box containing red and blue balls. Take N IID samples.
 - μ : Probability of drawing a ball (unknown).
 - ν : Relative frequency of balls in the sample (known).
- 2. **Problem 1:** What is ν in this case? 8 balls total, 5 are blue.
- 3. Solution 1: $\nu = \frac{5}{8}$ 4. Problem 2: How to partition \mathcal{F} into regions where f = h and $f \neq h$?
- 5. Solution 2:

Figure 30: LS h, MS f

- 6. **Problem 3:** What is the out-sample error?
- 7. Solution 3: In words, the probability of the hypothesis being wrong.

Figure 31

- 8. **Problem 4:** What is the in-sample error given this sample of 11 balls s.t. f = h, 1 ball s.t. $f \neq h$?
- 9. Solution 4: $E_{\rm in} = \frac{1}{12}$

Decision Trees 5

5.1Structure

Definition: Each vertex in a decision tree is either:

- 1. A **condition vertex**: a vertex that sorts points based on a question.
- 2. A **decision vertex**: a vertex that assigns all points a specific class.

Notes: We want to find the minimum # of condition vertices (or questions) needed to "sufficiently discriminate" (identify the class of every point in \mathcal{D}).

- More condition vertices improve discrimination.
- Less condition vertices improve generalization.

5.2Building a Decision Tree

Definition: Consider determining the calss of a randomly chosen target point.

• If we ask a K-ary question abt. the pts. in \mathcal{D} , we can form K subsets, $\mathcal{D}^{(1)}, \dots, \mathcal{D}^{(K)}$, using the answers s.t.

$$- |\mathcal{D}^{(k)}| \in \{0, \dots, |\mathcal{D}|\}$$

$$- |\mathcal{D}^{(k)}| \in \{0, \dots, |\mathcal{D}|\}$$
$$- |\mathcal{D}| = \sum_{k=1}^{K} |\mathcal{D}^{(k)}|$$

5.2.1Special Case

Notes: Suppose each pt. belongs to a unique class (i.e. the # of classes is $|\mathcal{D}|$).

Figure 32

- 1. Before asking the question: $|\mathcal{D}|$ possible guesses for the target point's class.
- 2. After asking the question: Either
 - $|\mathcal{D}^{(1)}|, \dots, |\mathcal{D}^{(K-1)}|$ or
 - $\bullet |\mathcal{D}^{(K)}|$

guesses, depending on the answer for the target point.

3. Goal: Minimize the # of guesses needed in the worst-case, which would be

$$\max\{|\mathcal{D}^{(1)}|,\ldots,|\mathcal{D}^{(K)}|\}.$$

4. Given the constraints on $|\mathcal{D}^{(1)}|, \dots, |\mathcal{D}^{(K)}|$, we can show that $\max\{|\mathcal{D}^{(1)}|, \dots, |\mathcal{D}^{(K)}|\}$ is minimized when

$$|\mathcal{D}^{(K)}| \in \left\{ \left\lfloor \frac{|\mathcal{D}|}{K} \right\rfloor, \left\lceil \frac{|\mathcal{D}|}{K} \right\rceil \right\}.$$

Basically, the best question splits \mathcal{D} into K sets of (roughly) the same size.

Warning: Roughly due to floor/ceil.

Theorem: Given a classification data-set, \mathcal{D} , in which the class of each point is unique (i.e., $|\text{out}(\mathcal{D})| = |\mathcal{D}|$), the class of a randomly chosen target point can be determined within

$$\lceil \log_K(|\mathcal{D}|) \rceil$$

K-ary questions.

5.2.2 General Case

Motivation: Suppose points do not necessarily belong to a unique class.

In the context of decision trees:

- X is the class of a randomly chosen target point.
- Y is the answer to a K-ary question for X.

Maximize IG(X|Y) (i.e. choose the question to maximize the information gained).

5.2.3 Entropy, Conditional Entropy, and Information Gain

Definition: The **entropy** of a random variable X (in K-its) is defined as

$$H(X) = -\sum_{\forall x \in X} p_X(x) \log_K(p_X(x)).$$

The **conditional entropy** of a random variable, X, given a random variable Y, is

$$H(X|Y) = -\sum_{\forall y \in Y} \sum_{\forall x \in X} p_{X|Y}(x|y) \log_K(p_{X|Y}(x|y)).$$

The **information gain** from Y is:

$$IG(X|Y) = H(X) - H(X|Y).$$

Warning:

There are ∞ many potential questions, but there are only finite many ways to split the dataset.

Process:

- 1. Calculate H(X) (i.e. entropy before the split).
- 2. Calculate H(X|Y) (i.e. entropy after the split).
 - (a) Calculate entropy for each subset of X based on the question, Y.
 - (b) Calculate the weighted average of the entropies.
- 3. Calculate IG(X|Y) = H(X) H(X|Y).

Example:

Figure 33

Example: 2-Ary Question

- 1. **Given:** $X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \le 3 \\ 0, & \text{if } x_1 > 3 \end{cases}$ (Yes)
- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split:

i.
$$H(X_{\text{left}}) = \frac{3}{5} \log_2 \left(\frac{5}{3}\right) + \frac{2}{5} \log_2 \left(\frac{5}{2}\right)$$

ii.
$$H(X_{\text{right}}) = \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{3}{5} \log_2 \left(\frac{5}{3}\right)$$
.

iii. Weighted Avg. Entropy:
$$H(X|Y) = \frac{5}{10}H(X_{\text{left}}) + \frac{5}{10}H(X_{\text{right}})$$

(c) IG(X|Y) = H(X) - H(X|Y)

Example: 2-Ary Question

- 1. **Given:** $X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_2 \le 3 \\ 0, & \text{if } x_2 > 3 \end{cases}$ (Yes)
- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split:

$$\begin{split} \text{i. } & H(X_{\text{top}}) = \frac{3}{3} \log_2 \left(\frac{3}{3} \right) \\ & \text{ii. } & H(X_{\text{bottom}}) = \frac{3}{5} \log_2 \left(\frac{5}{3} \right) + \frac{2}{5} \log_2 \left(\frac{5}{2} \right) + \frac{2}{5} \log_2 \left(\frac{5}{2} \right). \\ & \text{iii. Weighted Avg. Entropy: } & H(X|Y) = \frac{3}{10} H(X_{\text{top}}) + \frac{7}{10} H(X_{\text{bottom}}) \\ & \text{(c) } & IG(X|Y) = H(X) - H(X|Y) \end{split}$$

Example: 3-Ary Question

1. **Given:**
$$X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \leq 3 \text{ and } x_2 \leq 3 \\ 2, & \text{if } x_1 \leq 3 \text{ and } x_2 > 3 \\ 3, & \text{if } x_1 > 3 \end{cases}$$

- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:

(a) Entropy before the split:
$$H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$$

(b) Entropy after the split:

i.
$$H(X_1) = \frac{3}{3} \log_2 \left(\frac{3}{3}\right)$$

ii. $H(X_2) = \frac{2}{2} \log_2 \left(\frac{2}{2}\right)$
iii. $H(X_3) = \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{3}{5} \log_2 \left(\frac{5}{3}\right)$
iv. $H(X|Y) = \frac{3}{10} H(X_1) + \frac{2}{10} H(X_2) + \frac{5}{10} H(X_3)$
(c) $IG(X|Y) = H(X) - H(X|Y)$

Example: Decision Tree

- 1. **Given:** $X = \{0, 1, 2\}$
- 2. **Problem:** Draw a decision tree using binary conditions of the form, $x_i \leq k$, where $i \in \{1, 2\}$ and $k \in \mathbb{Z}$, that maximizes the information gained at each level.
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split: