Count-Min Sketches

Sriram Sankaranarayanan

Data Structures and Algorithms

Problem: Count Items in a Data Stream

Problem: Keep count of how often each URL is requested.

Unique URLs: $U_1 U_2 U_3 U_4 U_5 U_6 ... U_N$

Have N distinct counters: C(1),..., C(N)

Each time URL U_j requested: Increment counter C(j)

Problem: N is humungous.

Most URLs are requested very few times. A few URLs are requested a lot of times.

Advantage: Approximate count within 10% of actual answer (say) is acceptable.

Approximate Counting Data-Structure

Stream of data: $x_1x_2x_3x_4, \cdots, x_W$ Each element of the stream : $x_j \in \{1, ..., N\}$ Return approxCount(j) : must be within ϵW of $true\ count$ with probability at least δ

- Typical Numbers: $N \sim 10^8$, $W \sim 10^9$, $\epsilon \sim 10^{-6}$, $\delta = 0.99$
- From a stream of nearly 1 billion items each having a number between 1 and 100Million, count how often each item occurs where the count is within 1000 of the true count at least 99% of the time.

Basic Idea of Count-Min Sketch

Use m counters: $C(1) \dots C(m)$

We will choose m later (expect $m \ll M$)

Draw a hash function at random from family $H = \{h_1, h_2, \dots\}$ $h_i \colon \{1, \dots, M\} \to \{1, \dots m\}$

Stream Item x_j : Increment($C(h(x_j))$)

approxCount(k) = C(h(k))

Count-Min Sketch Error Analysis

• $approxCount(j) \ge count(j)$

Count-Min Sketch: Choosing m

Count-Min Sketch: Reducing Error Probability

Count-Min Sketch: Overall Algorithm

• Initialize K counter-banks with hash functions : h_1 , h_2 , ..., h_K

- Stream item x_i
 - Increment $C_1(h_1(x_i)), C_2(h_2(x_i)), ..., C_K(h_K(x_i))$
- Query count of k
 - $approxCount(k) = \min(C_1(h(k)), C_2(h(k)), ... C_K(h(k)))$

Count-Min Sketch: Some actual numbers

- Stream of 1 Billion Items
- $\epsilon = 10^{-6}$ (tolerate error of upto 1000)
- $\delta = 0.9$

•
$$m = \frac{e}{\epsilon} \approx 3 \times 10^6, K = -\ln(1 - \delta) \approx 3$$

- Use 3 banks of 3 million counters, each.
 - Guarantees that approxCount will be within 1000 of true at least answer 90% of the time.