Universita' degli Studi di Perugia Dipartimento di Matematica e Informatica

Corso di Laurea in Informatica

Ingegneria delSoftware

Prof. Alfredo Milani

Sequence Diagrams – Diagrammi di Sequenza

Diagrammi di Sequenza Sequence Diagrams

SOMMARIO

Introduzione

Partecipanti e messaggi

Concetti avanzati

Diagrammi di comunicazione/collaborazione

SOMMARIO

Introduzione

Partecipanti e messaggi

Concetti avanzati

Diagrammi di collaborazione/comunicazione

DIAGRAMMI DI SEQUENZA

DIAGRAMMI DI SEQUENZA

Ogni fase, i suoi diagrammi

DIAGRAMMI DI SEQUENZA

Definizione

 Descrivono la collaborazione di un gruppo di oggetti (non classi!!!) che devono implementare collettivamente un comportamento solitamente relativo a uno scenario di un caso d'uso

SOMMARIO

Introduzione

Partecipanti e messaggi

Concetti avanzati

Diagrammi di comunicazione/collaborazione

PARTECIPANTI

- Entità che detengono il flusso del caso d'uso
 - UML 1.x -> Istanze di classi (oggetti)
 - UML 2.x -> Concetto più ampio
 - Eliminata la sottolineatura
 - Barra di attivazione
 - Indica in quale momento un partecipante è attivo il tempo scorre dall'alto in basso
 - Opzionale, ma molto utile

 NomeOggetto: NomeClasse

 Barra di attivazione

MESSAGGI (SEGNALI)

- Dati e operazioni scambiati tra i partecipanti
 - Chiamata a metodi degli oggetti da parte di altri oggetti
 - Messaggio di innesco/trigger msg
 - Primo messaggio che scaturisce dall'esterno del diagramma di sequenza

ESEMPIO

Creazione di un Utente da parte di un Client

 Tipologie di messaggi o segnali o chiamate di metodi (da sx verso dx) o ritorni (da dx verso sx)

- Passaggio di dati
 - Nessuna tecnica di modellazione standard!!!
 - Metodo classico

Girini dei dati (data tadpoles)

- Messaggi sincroni
 - Il chiamante rimane in attesa della risposta

- Messaggi asincroni
 - Il chiamante non rimane in attesa della risposta

- Messaggi ritorno
 - Da utilizzare solo se necessario per chiarezza

- Tempo
 - Solitamente il tempo di trasmissione è trascurabile
 - Se non lo è si può annotare la durata o etichettare i messaggi aggiungendo una nota

- Creazione partecipanti
 - segnale con lo stereotipo <<new>> o <<create>>
- Distruzione segnale con lo stereotipo <<destroy>>

ESEMPIO

SOMMARIO

Introduzione

Partecipanti e messaggi

Concetti avanzati

Diagrammi di comunicazione/collaborazione

CICLI E CONDIZIONI

- Condizioni solitamente limitate a uno scenario con condizioni guardia o un ramo else
- Cicli solitamente limitati a iterazioni indicate con asterisco * e/o condizioni guardia
- La specifica di dettaglio è lasciata all'implementatore

CICLI E CONDIZIONI

Frame di interazione (UML 2)

CICLI E CONDIZIONI

Frame di interazione

Operatore	Significato
alt	Frammenti multipli in alternativa; verrà eseguito solo quello per cui è verificata la condizione.
opt	Opzionale; il frammento viene eseguito solo se la condizione specificata è verificata. Equivalente a alt con solo una freccia.
par	Parallelo; ogni frammento è eseguito in parallelo.
loop	Ciclo; il frammento può essere eseguito più volte, la base dell'iterazione è indicata dalla guardia.
region	Regione critica; il frammento può essere eseguito da un solo thread alla volta.
neg	Negativo; il frammento mostra un'interazione non valida.
ref	Riferimento; si riferisce ad un'interazione definita in un altro diagramma
sd	Sequence diagram; utilizzato per racchiudere un intero diagramma di Sequenza come chiamata innestata.

MODELLAZIONE

- Ottimi per modellare le collaborazioni fra oggetti
 - Non la logica di controllo, non il codice
- Inadeguatezza a modellare cicli e condizioni ...
 - Meglio i diagrammi di attività activity diagrams
 - ... o pseudocodice allegato(non standard UML) ...
- Controllo centralizzato VS Distribuito
 - Centralizzato
 - Unico partecipante che governa l'elaborazione
 - Distribuito
 - Suddivisione dei compiti dei partecipanti

MODELLAZIONE

Controllo centralizzato VS Distribuito

Relazione con Diagramma di Classe ed ERRORI comuni

- Nel diagramma di SEQUENZA compaiono oggetti con nome (es. X: NomeClasse)
 o oggetti oggetti anonimi (es. :NomeClasse) tutti appartenenti a classi, mentre
 NON compaiono MAI CLASSI ISOLATE (es. NomeClasse)
- Tutte le classi cui appartengono gli oggetti DEVONO essere dichiarate nel diagramma di classe
- Tutti i metodi (segnali, messaggi) chiamati sugli oggetti DEVONO essere definiti nella classe dell'oggetto su cui il metodo è chiamato (quello sulla punta della freccia) e NON sulla classe dell'oggetto chiamante (quello da cui parte la freccia)

SOMMARIO

Introduzione

Partecipanti e messaggi

Concetti avanzati

Diagrammi di comunicazione/collaborazione

DIAGRAMMI DI COLLABORAZIONE/COMUNICAZIONE

- I diagrammi di collaborazione o anche diagrammi di comunicazione mostrano una particolare sequenza di messaggi scambiata tra un certo numero di oggetti
 - esattamente come i diagrammi di sequenza
 - I diagrammi di sequenza sono utilizzati per modellare il flusso del controllo rispetto all'ordinamento temporale
 - sono migliori per mostrare la sequenza dei messaggi
 - non sono adatti per rappresentare costrutti condizionali ed iterativi complessi
- i diagrammi di collaborazione/comunicazione sono utilizzati per modellare l'organizzazione del flusso del controllo
 - mostrano i collegamenti tra gli oggetti considerando una particolare sequenza di messaggi alla volta
 - I diagrammi di Collaborazione sono COMPLEMENTARI ai diagrammi di Sequenza

ESEMPIO

Diagramma di sequenza

Diagramma di collaborazione corrispondente

ESEMPIO DI DIAGRAMMA DI SEQUENZA E ...

... IL SUO DIAGRAMMA DI COMUNICAZIONE

DIAGRAMMI DI COMUNICAZIONE/COLLABORAZIONE

Componenti alcune convenzioni

Multi oggetto

 dialogo tra un oggetto di classe :A ed un di un insieme di oggetti di classe :B

 Oggetti composti (oggetto di classe :A interagisce con oggetto compost di classe :B)

Oggetti attivi

 in grado generare autonomamente messaggi e controllo del flusso dei messaggi, indicati in grassetto

DIAGRAMMI DI COLLABORAZIONE/COMUNICAZIONE

- etichette numerate indicano l'ordine sequenziale e strutturato per livelli nei messaggi
- Stereotipi <<create>>, <<destroy>> e [condizioni guardia] analoghi ai diagrammi di sequenz
- iteratore asterisco * per multi messaggi
- risultati di ritorno restituiti espressione assegnata con := l'espressione assegnata è detta firma del messaggio

ESEMPIO

 Diagramma di sequenza: scenario principale uso distributore automatico

ESEMPIO

Diagramma di comunicazione

RIFERIMENTI

- OMG Homepage
 - www.omg.org
- UML Homepage
 - www.uml.org
- UML Distilled, Martin Fowler, 2004, Pearson (Addison Wesley)
- Learning UML 2.0, Kim Hamilton, Russell Miles, O'Reilly, 2006