NPS-68-85-023

"NAVAL POSTGRADUATE SCHOOL.

Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA16 20 May - 23 JUNE 1985

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N.K. Mooers

August 1985

Approved for public release; distribution unlimited.

FEDDOCS D 208.14/2

Prepared for: Office of Naval Research NPS-68-85-023 Environmental Sciences Directorate (Code 420) Arlington, VA 22217 10.10. L 278:1/2 17- 48-85-023

NAVAL POSTGRADUATE SCHOOL

EUF LIBR.

Monterey, California 93943

RADM R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

CURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONTY CLASSIFICATION OF THIS PAGE (WHAT Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NPS-68-85-23	3. RECIPIENT'S CATALOG NUMBER
HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA16, 20 May to 23 June 1985	Report for October 1982 to August 1985
Of loanie, no may to no tune 1000	6. PERFORMING ORG. REPORT NUMBER
Paul A. Wittmann, Edward A. Kelley, Jr. and Christopher N.K. Mooers	6. CONTRACT OR GRANT NUMBER(a)
Naval Postgraduate School Monterey, CA 93943-5100	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N NOO01484NR24501
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE AUGUST 1985
Office of Naval Research (Code 420) Arlington, VA 22217	13. NUMBER OF PAGES 125
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	UNCLASSIFIED
	ISO. DECLASSIFICATION DOWN GRADING SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

California Current System Physical Oceanography Dynamic Oceanography

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The three cruises, Legs MI, MII and A, were undertaken in May and June 1985. This report presents the hydrographic data, acquired by XBT and CID casts, from the cruises.

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

<u>RESPONSIBILITY</u>. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

- General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank
 - Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.
 - Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.
- Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.
- Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E,"AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.
- Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.
- Block 6. Performing Organization Report Number—Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such number are used, leave this space blank.
- <u>Block 7.</u> Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.
- Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.
- Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.
- Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary," or the DD Form 1634. "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.
- Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")
 - Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.
 - Block 13. Number of Pages. Enter the total number of pages.
- Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.
- Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.
- Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."
- Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report), Insert here the applicable distribution statement of the abstract from DoD Directive 5200,20, "Distribution Statements on Technical Documents."
- Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .
- Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.
- Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

Hydrographic Data from the OPTOMA Program:

OPTOMA16 20 May - 23 June, 1985

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N. K. Mooers

Chief Scientists:

A. A. Bird, E. A. Kelley, Jr. C. N. K. Mooers

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

r Jr) - LIBR Ne ADE 9394J-517

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	ii
LIST OF FIGURES	iii
INTRODUCTION	2
DATA ACQUISITION	3
DATA PROCESSING	3
DATA PRESENTATION	4
SECTION 1: LEG MI	9
SECTION 2: LEG MII	61
SECTION 3: LEG A	91
ACKNOWLEDGEMENTS	121
REFERENCE	121
INITIAL DISTRIBUTION LIST	122

LIST OF TABLES

Table No.	Caption	Page
1.	Scientific instruments aboard NOAA Ship MCARTHUR	6
2.	Scientific instruments aboard R/V ACANIA	7
3.	Leg M1 Station Listing	13
4.	Leg MII Station Listing	65
5.	Leg A Station Listing	95

LIST OF FIGURES

igure	No.	<u>Caption</u>	Page
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.		The cruise track for OPTOMA16, Leg MI.	10
3.		XBT and CTD locations for OPTOMA16, Leg MI.	11
4.		Station numbers for OPTOMA16, Leg MI.	12
5.	(a)-(1).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, Leg MI).	19
6.	(a)-(f)	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg MI).	31
- 7 .	(a)-(o).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg MI).	37
8.	(a)-(i).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg MI).	47
9.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA16, Leg MI).	56
10.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg MI).	57
11.		(a) T-S pairs and (b) mean T-S relation, with+ and - the standard deviation, from the CTD's.Selected sigma-t contours are also shown.(OPTOMA16, Leg MI).	58
12.		Mean N^2 profile (), with + and - the standard deviation (). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (····). (OPTOMA16, Leg MI).	59
13.		The cruise track for OPTOMA16, Leg MII.	62

Figure	No.	Caption	Page
14.		XBT and CTD locations for OPTOMA16, Leg MII.	63
15.		Station numbers for OPTOMA16, Leg MII.	64
16	(a)-(f).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, Leg MII).	68
17	(a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg MII).	74
18.	(a)-(i).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg MII).	77
19	(a)-(d)	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg MII).	82
20.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA16, Leg MII).	86
21.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg MII).	87
22.		(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA16, Leg MII).	88
23.		Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (\cdots) . (OPTOMA16, Leg MII).	89
24.		The cruise track for OPTOMA16, Leg A.	92
25.		XBT and CTD locations for OPTOMA16, Leg A.	93
26.		Station numbers for OPTOMA16, Leg A.	94
27	(a)-(f).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, Leg A).	98

Figure	No.	<u>Caption</u>	Page
28	(a)-(c)	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg A).	104
29	(a)-(p).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg A).	107
30.	(a)-(c).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg A).	115
31.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA16, Leg A).	117
32.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg A).	118
33.	,	(a) T-S pairs and (b) mean T-S relation, with+ and - the standard deviation, from the CTD's.Selected sigma-t contours are also shown.(OPTOMA16, Leg A).	119
34.		Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (\cdots) . (OPTOMA16, Leg A).	120

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

Two cruises were undertaken, during May and June 1985, in the NOAA Ship MCARTHUR and one cruise in the R/V ACANIA during June 1985. Hydrographic data were acquired off the coast of Washington, Oregon, and California in an area which covered and extended the NOCAL regions.

Leg MI was carried out from 20 May to 1 June and sampled an area approximately 370km by 450km centered about 280km off the coast between Pt. Arena and Cape Mendocino, with additional transects from San Francisco and to Eureka, as shown in Figure 2.

Leg MII was carried out from 4 to 11 June, and sampled an area approximately 200km by 330km centered about 200km off the coast from Cape Mendocino, with additional transects from Eureka and to the straits of Juan de Fuca, as shown in Figure 13.

Leg A was carried out from 13 to 23 June, and sampled the shelf and slope waters from nearshore to about 50km offshore from Pt. Reyes to Eureka, with additional transects from and to Monterey as shown in Figure 24.

On each cruise track, transect extremes are identified by letter in these figures to aid in cross-referencing the data presented in subsequent figures. Or each of these cruises, hydrographic stations were occupied at approximately 18km along the track.

DATA ACQUISITION

Data acquired during Leg MI, Leg MII and Leg A include XBT and CTD profiles. Bucket surface temperature and water samples for salinity were taken at most CTD stations. These surface values were used for calibration purposes as well as contributions to the data base. Leg A also acquired continuous 2m thermosalinograph measurements, continuous meteorological data such as atmospheric pressure at a height of 2m and wind speed and direction at a height of 20m, and acoustic Doppler velocity data.

The XBT data on Legs MI and MII were acquired using a SEAS system (Bathy Systems, Inc.) that had been installed recently on the NOAA Ship MCARTHUR; data were recorded using an HP 85 computer, on cassettes. The XBT data on Leg A were digitized using a Sippican MK9 unit; data were recorded, using an HP200 series computer, on data disks. The continuous "underway" data were digitized using an HP 5328 frequency counter and a 40 channel digital voltmeter. The continuous data were averaged over two-minute intervals. All data were transferred to the IBM 3033 mainframe computer for editing and processing.

Station positions aboard ship were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. Neil Brown CTD's and Sippican XBT's were used during Legs MI, MII and Leg A. Their accuracies are stated in Table 1. The bottle surface salinity samples from Leg MI and Leg MII were determined onboard by a Plessy salinometer; its accuracy is contained in Table 1. Samples from Leg A were determined ashore by a Guildline Model 8400 "Autosal" salinometer with an accuracy of ± 0.003 ppt.

DATA PROCESSING

Data processing, such as estimating depth profiles for the XBT temperature profiles based on the descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on

the IBM 3033 at the Naval Postgraduate School. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 100%, 100%, and 98% of casts were retained in the data sets of Legs MI, MII, and A, respectively. From a comparison of the CTD salinities with the salinity samples from the bottles, it was determined that the salinity offsets were .007, .001, and .01 ppt for Legs MI, MII, and A, respectively. No corrections were made to the salinities. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBT's and CTD's identified) and station numbers are shown in the first three figures of each of the next three sections, which present the data from Legs MI, MII and A, respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow. Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or

more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to ± 20 m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Sections 1, 2, and 3 include mean profiles of temperature from the XBT's and CTD's. In addition mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs and the mean S(T) curve, with the \pm standard deviation envelope; the data presentation concludes with a plot of the mean N² (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N² plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Table 1: Scientific instruments aboard the NOAA Ship McARTHUR

Instrument	Variable	Sensor	Accuracy	Resolution
Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
Sippican BT	temperature depth	thermistor descent speed	0.2 C greater of 4.6 and 2% of dept	
Plessey CTD	pressure temperature conductivity		+0.04% of dept +0.005 C +0.005 mmho	h
Plessey salinometer	salinity		<u>+</u> 0.003ppt	

Table 2: Scientific instruments aboard the R/V ACANIA

	Instrument	Variable	Sensor	Accuracy	Resolution
	Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
	Sippican BT	temperature depth	thermistor descent speed	0.2 C greater of 4.6 and 2% of dept	
*	Guildline Autosal	conductivity	electrode cell	0.003 ppt	0.0002 ppt
	Amatek straza ADVP	velocity profiles to 100m	4 beam sonar	3 cm/sec relative to ship speed	3 cm/sec
	Rosemount Sensor	sea surface temperature	platinum thermometer	0.05 C	0.005 C
	Sea-Bird Sensors	temperature conductivity at 2 meters	thermistor electrode cell	0.003 C 0.003 mmho	0.0005 C 0.0005 mmho
	Rosemount Sensor	air temperature	thermometer	0.01 C	
	Kavolico Barometer	atmospheric pressure	pressure transducer	1.5 mb	0.1 mb
*	1200 EPS Hygrometer	dew point	condensation temp. sensor	0.2 C	0.02 C
	Meteorology Res. Inc.	wind speed	anemometer	0.15 mph or 1%	
	Meteorology Res. Inc.		vane	2.5 degrees	
	Internav LC408 LORAN C	position	two chain LORAN receiver	100 meters	10 meters
	Motorola Miniranger	position	microwave transponders	4 meters	2 meters

^{*} Not operating on the OPTOMA16 cruise.

THIS PAGE LEFT BLANK INTENTIONALLY

SECTION 1
OPTOMA16 LEG MI

Figure 2: The cruise track for OPTOMA16, Leg MI.

Figure 3: XBT and CTD locations for OPTOMAl6, Leg MI.

Figure 4: Station numbers for OPTOMA16, Leg MI.

Table 3 : Leg MI Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH)			SALINI	TEMP	BOTTLE SALINITY
1 2 3 4	XBT XBT XBT XBT	85140 85140 85141 85141	2240 2352 111 218	37.48 37.49 37.51 37.54	122.58 123.13 123.27 123.40	10.9 10.2 9.9 10.5	(111)	(1116-6)	(111)
5 6 7 8 9	XBT XBT CTD XBT XBT XBT	85141 85141 85141 85141 85141	258 349 456 607 701 758	38.01 38.09 38.18 38.27 38.35 38.44	123.43 123.53 124.00 124.07 124.12 124.20	10.9 10.6 10.8 10.7 10.8 11.4	33.48	11.1	33.47
11 12 13 14 15	XBT CTD XBT XBT XBT	85141 85141 85141 85141 85141	854 1014 1140 1234 1344	38.52 39.01 39.08 39.18 39.29	124.25 124.34 124.38 124.46 124.55	12.1 12.3 12.3 11.7	32.90	12.7	32.86
16 17 18 19 20	XBT XBT XBT XBT XBT	85141 85141 85141 85141	1421 1520 1634 1725 1812	39.35 39.35 39.35 39.26 39.18	125.00 125.12 125.32 125.25 125.18	11.5 12.2 11.6 12.2 12.3			
21 22 23	XBT CTD XBT	85141 85141 85141	1859 2008 2133	39.09 39.01 38.52	125.12 125.05 124.57	12.5 12.8 12.5	32.87	13.0	32.88
24 25	CTD XBT	85141 85142	2244 8	38.44 38.35	124.52 124.45	12.9 12.7	32.88	13.3	32.87
26 27 28 29	XBT CTD XBT XBT	85142 85142	57 256 432 600	38.26 38.17 38.09	124.36 124.31 124.24 124.18	12.7 12.7 12.1	32.60	12.9	32.58
30 31	CTD XBT	85142 85142 85142	638 813	37.59 38.00 37.52	124.18 124.11	11.6 11.9 12.0	32.75	11.9	32.71
32 33 34 35 36	XBT CTD XBT XBT XBT	85142 85142 85142 85142 85142	911 939 1127 1221 1329	37.52 37.52 37.53 38.01 38.09	124.25 124.28 124.41 124.48 124.54	12.3 12.5 11.6 12.4 12.3	32.69	*	*
37 38 39	XBT CTD XBT	85142 85142 85142	1605 1630 1746	38.17 38.17 38.27	125.01 125.01 125.08	12.6 12.9 13.0	32.87	13.1	32.88
40 41 42 43	XBT CTD XBT XBT	85142 85142 85142 85142	1835 1946 2055 2206	38.35 38.44 38.52 39.03	125.13 125.22 125.27 125.37	13.0 13.3 12.9 13.0	32.87	13.6	32.87
44 45	XBT CTD	85142 85142	2234 2338	39.09 39.18	125.41 125.48	13.1 13.4	32.88	13.9	32.87

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	TEMP	SALINI	TY TEMP	BOTTLE SALINITY (PPT)
46 47 48 49	XBT XBT XBT XBT	85143 85143 85143 85143	55 145 247 347	39.27 39.35 39.35 39.35	125.55 126.02 126.16 126.32	13.2 12.9 13.1 13.6			
50 51 52	CTD XBT	85142 85143 85143	502 613 701	39.26 39.18 39.09	126.25 126.18 126.11	13.3 13.9	32.36	13.3	32.63
53 54 55 56	XBT CTD XBT XBT XBT	85143	822 927 1018 1107	39.01 38.52 38.43 38.35	126.04 125.58 125.51 125.43	13.2 13.5 13.3 13.3	32.88	13.8	32.86
57 58	CŤD XBT	85143 85143	1218 1334	38.27 38.18	125.39 125.31		32.84	13.6	32.84
59 60 61 62 63	CTD XBT XBT XBT XBT	85143 85143 85143 85143 85143	1450 1613 1704 1813 1913	38.09 38.01 37.52 37.52 37.52	125.24 125.16 125.11 125.25 125.42	13.0 13.5 13.0 13.4 13.8	32.64	13.3	32.63
64 65 66 67	XBT CTD XBT XBT	85143 85143 85143 84144	2005 2116 2226 4	38.00 38.09 38.17 38.26	125.49 125.56 126.02 126.09	13.9 14.3	32.71	13.7	32.93
68 69 70	CTD XBT XBT	85144	10 138 227	38.35 38.44 38.52	126.16 126.21 126.29	14.3 13.7	32.80	14.7	32.78
71 72 73 74	CTD XBT XBT XBT	85144 85144 85144 85144	332 440 529 617	39.01 39.09 39.18 39.27	126.36 126.43 126.48 126.56	14.3 14.2 13.4	32.57	14.7	32.87
75 76 77	CTD XBT XBT	85144	734 836 939	39.36 39.35 39.35	127.01 127.14 127.31		32.64	13.9	32.62
78 79 80	CTD		1050	39.26 39.18 39.09	127.26	13.9 13.7	32.79	14.1	32.78
81 82 83	CTD XBT XBT	85144 85144 85144	1344 1452 1540	39.00 38.52 38.42	127.11 127.06 126.59 126.52	13.3	32.71	13.6	32.70
84 85 86 87	CTD XBT XBT XBT XBT XBT	85144 85144 85144 85144 85144	1644 1751 1843 1933 2021	38.34 38.26 38.17 38.09 38.01	126.32 126.46 126.39 126.31 126.26 126.18	13.8 13.5 13.4 13.8 13.9	32.49	13.8	32.76
89 90	CTD XBT	85144 85144	2138 2251	37.52 37.52	126.13 126.27	14.0	32.82	14.1	32.85

STN	TYPE	YR/DAY	GMŤ	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM		SALINIT	Y TEMP	SALINITY
91 92 93 94	XBT XBT CTD XBT	85144 85145 85145 84145	2350 44 147 249	37.52 38.00 38.09 38.18	126.43 126.50 126.56 127.03	13.7 13.6 13.7 13.3	32.66	13.9	32.65
95 96 97	XBT CTD XBT	84145 85145 84145	342 506 635	38.27 38.34 38.43	127.10 127.16 127.22	13.2 13.8 13.5	32.70	14.0	32.89
98 99 100 101	XBT CTD XBT XBT	85145 85145 85145 85145	728 835 939 1039	38.52 39.01 39.09 39.18	127.30 127.37 127.42 127.49 127.56	13.3 13.1 13.4 13.3	32.65	13.3	32.64
102	XBT CTD	85145 85145	1145 1307	39.26 39.35	128.04	13.0 13.0	32.61	13.1	32.60
104 105 106	XBT CTD XBT	85145 85145 85145	1428 1553 1726	39.45 39.51 40.01	128.11 128.18 128.26	13.3 13.4 12.8	32.65	12.8	32.75
107 108	XBT XBT	85145 85145	1838 1953	40.09 40.18	128.32 128.38	13.2 12.5			
109 110	CTD XBT	85145 85145	2117 2228	40.26 40.35	128.46 128.53	13.2 12.8	32.77	13.3	32.76
111 112	XBT	85145 85146	2328	40.42	129.00 129.07	12.9	32.71	13.2	32.71
113	XBT	85146	214	41.00	129.13	12.8	32.71	13.2	32.71
114 115	XBT XBT	85146 85146	316 419	41.00 41.00	129.29 129.44	12.8 12.7			
116 117	XBT CTD	85146 85146	518 621	40.50 40.41	129.37 129.31	13.2 12.9	32.72	13.1	32.71
118 119	XBT CTD	85146 85146	727 832	40.35	129.24 129.18	12.8		13.2	32.77
120	XBT	85146	941	40.17	129.09	13.0 13.2	32.78	13.2	32.77
121 122	XBT XBT	85146 85146	1029 1115	40.09 40.02	129.03 128.56	12.9 13.1			
123 124	CTD XBT	85146	1219	39.52	128.49	13.3	32.86	13.5	32.87
125	XBT	85146 85146	1322 1412	39.44 39.35	128.43 128.35	13.1 13.0			
126 127	CTD XBT	85146 85146	1527 1636	39.26 39.17	128.27 128.21	13.0 12.5	32.76	13.1	32.74
128	XBT	85146	1725	39.09	128.15	12.7			
129 130	XBT	85146 85146	1814 1927	39.00 38.52	128.07 128.02	13.0 12.9	32.73	13.1	32.72
131 132	XBT XBT	85146 85146	2030 2118	38.43 38.34	127.54 127.46	12.7 13.1			
133 134	CTD	85146 85146	2219 2320	38.26 38.17	127.41 127.32	13.4 13.4	32.92	13.5	32.90
135	XBT	85147	10	38.08	127.32	13.4			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)			BOTTLE SALINITY (PPT)
136 137 138 139	XBT CTD XBT XBT	85147 85147 85147 85147	102 213 351 447	38.01 37.52 37.52 37.52	127.21 127.14 127.31 127.44	13.3 13.4 13.5 13.5	32.77	13.4	32.77
140 141 142 143	XBT CTD XBT XBT	85147 85147 85147 85147	555 718 830 936	38.02 38.09 38.18 38.27	127.49 127.58 128.04 128.11	13.4 13.0 12.9 13.0	32.87	13.1	32.86
144 145	CTD XBT	85147 85147	1059 1228	38.34 38.43	128.18 128.24	13.2 13.3	32.72	13.3	32.71
146 147 148 149	XBT CTD XBT XBT	85147 85147 85147 85147	1333 1453 1616 1719	38.52 39.01 39.10 39.17	128.30 128.37 128.45 128.52	13.3 13.4 13.4 13.1	32.84	13.6	32.84
150 151 152	XBT CTD XBT	85147 85147 85147	1822 1947 2058	39.26 39.35 39.43	129.00 129.06 129.13	13.5 13.6 13.6	32.96	13.8	32.96
153 154 155 156	XBT CTD XBT XBT	85147 85147 85147 85148	2150 2255 2356 46	39.50 40.00 40.08 40.17	129.18 129.29 129.32 129.41	13.7 13.9 13.9 13.6	33.00	14.2	32.98
157 158 159	XBT CTD XBT	85148 85148 85148	136 243 351	40.25 40.34 40.44	129.48 129.55 130.02	13.2 13.3 13.0	32.93	13.4	32.92
160 161 162 163	XBT CTD XBT XBT	85148 85148 85148 85148	442 552 715 800	40.52 41.00 41.00 41.00	130.08 130.14 130.32 130.45	12.6 12.7 12.4 12.6	32.78	12.8	32.72
164 165 166	XBT CTD XBT	85148 85148 85148	840 950 1042	40.53 40.44 40.35	130.40 130.33 130.26	12.4 12.8 12.8	32.81	13.7	32.80
169	XBT	85148 85148 85148	1336	40.09	130.05	13.7	32.99	13.8	32.96
170 171 172	CTD XBT	85148 85148 85148	1425 1534 1648	39.53 39.43	129.57 129.54 129.43	14.0 13.9	32.99	14.2	32.99
173 174 175	CTD XBT	85148 85148 85148	1737 1849 1953	39.26 39.17	129.37 129.30 129.23	14.0 13.9	32.99	14.2	32.99
176 177 178	XBT	85148 85148 85148	2047 2158 2312	39.00 38.51	129.14 129.09 129.04	13.3 13.2	32.80	13.4	32.79
179 180		85149 85149	100		128.55 128.48	13.7 14.0	32.93	14.2	32.93

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM				Y TEMP	SALINITY
181 182 183 184	XBT XBT XBT XBT	85149 85149 85149 85149	152 240 327 416	38.25 38.16 38.09 38.00	128.41 128.34 128.28 128.20	13.8 13.5 13.7 13.5			
185 186 187 188	CTD XBT XBT XBT	85149 85149 85149 85149	528 630 744 809	37.52 37.55 38.02 38.04	128.15 128.03 127.48 127.43	14.0 13.2 13.4 13.7	32.89	14.2	32.88
189 190 191 192	XBT XBT XBT XBT	85149 85149 85149 85149	856 945 1036 1126	38.08 38.12 38.17 38.20	127.30 127.19 127.08 126.56	13.4 13.0 12.6 12.7			
193 194 195 196	XBT XBT XBT XBT	85149 85149 85149 85149	1216 1307 1357 1447	38.24 38.29 38.33 38.37	126.44 126.33 126.23 126.11	12.9 12.8 12.8 12.8			
197 198 199 200	XBT XBT XBT XBT	85149 85149 85149	1536 1625 1714 1801	38.42 38.46 38.50 38.55	125.59 125.48 125.35 125.25	12.9 12.8 12.7 13.2			
201 202 203 204	XBT XBT XBT XBT	85149 85149 85149 85149	1909 2001 2051 2141	39.00 39.09 39.17 39.26	125.20 125.14 125.09 125.05	13.0 12.9 13.1 13.1	22 10	11.0	20.00
205 206 207 208 209	CTD XBT XBT XBT CTD	85149 85149 85150 85150 85150	2241 2352 53 141 243	39.35 39.44 39.35 39.27 39.18	125.00 124.54 124.43 124.38 124.30	11.9 12.2 10.9 11.6 12.3	32.19	12.5	32.22
210 211 212 213	XBT XBT CTD XBT	85150 85150 85150 85150	343 430 531 633	39.09 39.01 38.52 38.44	124.23 124.17 124.11 124.04	11.8 11.4 11.3 10.7	32.97	11.4	32.97
214 215 216 217	XBT CTD XBT XBT	85150 85150 85150 85150	723 827 936 1023	38.35 38.27 38.18 38.09	123.57 123.51 123.44 123.37	10.9 11.6 10.8 10.1	33.16	11.7	33.15
218 219 220 221	XBT XBT XBT XBT	85150 85150 85150 85150	1110 1201 1259 1339	38.01 37.52 37.53 38.02	123.29 123.23 123.09 123.15	10.3 10.3 9.9 9.9			
222 223 224 225	CTD XBT XBT	85150 85150 85150 85150	1438 1533 1626 1727	38.09 38.19 38.27 38.34	123.22 123.30 123.36 123.42	9.4 9.6 10.2 11.4	33.80	9.6	33.80

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	SALINIT		SALINITY
226	XBT	85150	1826	38.45	123.48	11.1			
227	XBT	85150	1921	38.53	123.55	12.1			
228	CTD	85150	2013	39.00	124.01	11.9	32.95	12.2	32.95
229	XBT XBT	85150	2107	39.10 39.18	124.10	12.4			
230 231	CTD	85150 85150	2204 2303	39.16	124.17 124.23	12.6 11.4	32.52	12.0	32.44
232	XBT	85151	2303	39.35	124.23	12.1	32.32	12.0	32.44
233	XBT	85151	53	39.43	124.35	12.8			
234	CTD	85151	148	39.51	124.43	12.7	33.13	12.8	33.12
235	XBT	85151	255	40.01	124.49	11.5			
236	XBT	85151	337	40.09	124.55	12.0			
237	CTD	85151	440	40.17	125.05	11.5	32.42	11.7	32.46
238	XBT	85151	550	40.26	125.10	12.3			
239	XBT	85151	644	40.34	125.17	12.7			
240	CTD	85151	738	40.43	125.24	12.8	32.41	12.9	32.40
241	XBT	85151	847	40.51	125.31	12.9	00 / -		00 / 0
242	CTD	85151	940	41.00	125.38	12.8	32.41	13.0	32.40
243	XBT	85151	1044	41.00	125.24	12.7			
244	XBT	85151	1136	40.51	125.19	12.6			
245	XBT	85151	1221	40.43	125.12	12.4			
246 247	XBT XBT	85151 85151	1314 1411	40.33 40.25	125.05 124.58	12.4			
248	XBT	85151	1504	40.23	124.36	11.1 11.3			
249		85151	1556	40.31	124.40	12.0			
250	XBT	85151	1646	40.44	124.27	12.3			

^{*} Data not available

Figure 5(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, Leg MI).

Figure 5(f)

Figure 5(g)

Figure 5(k)

Figure 5(1)

Figure 6(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg MI).

Figure 6(b)

Figure 6(c)

Figure 6(d)

Figure 6(e)

Figure 6(f)

Figure 7(a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg MI).

Figure 7(c)

Figure 7(d)

Figure 7(e)

Figure 7(f)

Figure 7(k)

Figure 7(n)

Figure 7(o)

Figure 8(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg MI).

Figure 8(b)

Figure 8(c)

Figure 8(d)

Figure 8(f)

Figure 8(h)

Figure 8(i)

Figure 9: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA16, Leg MI).

Figure 10: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg MI).

(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from Selected sigma-t contours are also shown (OPTOMA16, Leg MI). Figure 11: (the CTD's.

Figure 12: Mean N^2 profile (--), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (...) (OPTOMA16, Leg MI).

THIS PAGE IS LEFT BLANK INTENTIONALLY

SECTION 1
OPTOMA16 LEG MII

Figure 13: The cruise track for OPTOMA16, Leg MII.

Figure 14: XBT and CTD locations for OPTOMA16, Leg MII.

Figure 15: Station numbers for OPTOMA16, Leg MII.

Table 4 : Leg MII Station Listing

STN	TYPE	YR/DAY	GMT	(NORTH)	LONG (WEST) (DDD.MM)	TEMP	SALINI	TY TEMP	BOTTLE SALINITY (PPT)
1 2 3 4 5 6 7 8	XBT CTD XBT XBT XBT XBT XBT XBT	85155 85155 85155 85156 85156 85156 85156	2201 2300 2315 28 121 210 258 348	40.47 40.49 40.49 40.51 40.53 40.56 40.58 41.00	124.21 124.34 124.32 124.45 124.59 125.11 125.25 125.38	11.6 12.9 12.0 13.2 13.9 13.4 13.6	31.47	12.3	32.04
9 10 11 12 13	CTD XBT XBT XBT XBT	85156 85156 85156 85156	457 612 701 758 847	40.50 40.43 40.34 40.25 40.17	125.31 125.25 125.17 125.10 125.04	13.3 13.4 13.8 13.1 11.9	32.45	13.4	32.47
14 15 16 17 18 19 20 21 22 23 24 25	CTD XBT	85156 85156 85156 85156 85156 85156 85156 85156 85156 85156	952 1051 1138 1225 1312 1359 1447 1546 1649 1738 1828 1916	40.08 40.01 39.51 39.43 39.35 39.26 39.18 39.18 39.18 39.25 39.35	124.56 124.49 124.41 124.35 124.28 124.16 124.31 124.46 124.53 125.00 125.07	13.3 14.1 13.7 13.7 14.1 13.7 14.1 14.2 14.2 14.2	33.07	13.3	33.07
26 27 28 29 30	CTD XBT XBT XBT XBT	85156 85156 85156	2050 2234 2327 19 106	39.51 40.01 40.09 40.18 40.26	125.11 125.19 125.27 125.32 125.41	13.1 13.6 13.7 13.2 14.2	32.14	13.3	32.19
31 32 33 34 35 36	CTD XBT XBT XBT XBT XBT		227 336 424 512 607 711	40.36 40.42 40.50 41.00 41.00	125.48 125.53 126.01 126.08 126.21 126.38	13.9 13.6 13.4 13.2 13.3	32.45	14.1	32.47
37 38 39	CTD XBT XBT	85157 85157 85157	8·59 1011 1057	40.50 40.42 40.35	126.31 126.24 126.19	13.2 13.0 12.9	32.63	13.4	32.63
40 41	CTD XBT	85157 85157	1221 1335	40.24 40.18	126.11 126.04	13.3 13.2	32.26	13.5	32.25
42 43 44 45	CTD XBT XBT XBT	85157 85157 85157 85157	1451 1558 1646 1733	40.08 40.00 39.51 39.43	125.58 125.51 125.44 125.37	13.8 13.7 13.6 13.4	32.42	13.9	32.41

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	TEMP	SALINI	TY TEMP	BOTTLE SALINITY (PPT)
46 47 48 49	XBT CTD XBT XBT	85157 85157 85157 85157	1820 1936 2054 2139	39.35 39.35 39.35 39.43	125.32 125.47 126.02 126.07	13.7 14.2 13.9 14.0	32.55	14.4	32.54
50 51	CTD XBT	85157 84158	2255	39.51 40.01	126.14 126.20	13.7	32.60	13.9	32.57
52 53	CTD XBT	85158 85158	125 245	40.07 40.17	126.27 126.34		32.68	14.2	32.64
54 55	CTD XBT	85158 85158	356 524	40.25	126.40 126.49	13.9	32.57	14.1	32.56
56 57 58	CTD XBT XBT	85158 85158 85158	628 804 854	40.42 40.51 41.00	126.51 127.03 127.09	13.7 13.0 13.2	32.26	13.9	32.64
59 60 61	CTD XBT	85158 85158 85158	1017 1153 1251	41.00 41.00 41.00 40.51	127.24 127.40	13.4 13.1	32.64	13.8	32.63
62 63	XBT CTD XBT	85158 85158 85158	1409 1527 1615	40.31 40.42 40.34 40.25	127.33 127.27 127.18 127.11	12.8 13.5 13.2 13.5	32.24	13.8	32.23
64 65 66 67	XBT XBT CTD XBT	85158 85158 85158	1705 1819 1938	40.18 40.09 40.01	127.11 127.05 126.58 126.52	14.2 14.0 14.0	32.72	14.2	32.71
68 69 70	XBT CTD XBT	85158 85158 85158	2026 2141 2301	39.52 39.44 39.35	126.44 126.39 126.30	14.1	32.69	14.8	32.70
71 72 73 74 75	XBT XBT CTD XBT XBT	85159 85159 85159 85159 85159	17 109 222 348 439	39.34 39.35 39.44 39.51 40.00	126.47 127.03 127.09 127.15 127.23	14.6	32.85	14.9	32.84
76 77	CTD XBT	85159 85159	606	40.08 40.18	127.23 127.31 127.37	13.8	32.68	14.0	32.68
78 79 80	CTD XBT XBT	85159 85159 85159	834 943 1031	40.25 40.35 40.43	127.44 127.50 127.56	13.4 13.3	32.43	13.8	32.58
81 82 83	XBT CTD XBT	85159 85159 85159	1234 1402	41.00 41.00	128.04 128.11 128.27	13.5 13.4	32.63	13.9	32.61
84 85 86	XBT CTD XBT	85159 85159 85159	1459 1628 1801	40.50	128.42 128.35	13.5	32.70	13.7	32.69
87 88 89 90	CTD XBT XBT XBT	85159 85159	1919 2145 2239	40.47 40.57		13.6 13.9 13.5	32.71	13.9	32.69

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE	SURFACE BUCKET BOTTLE
				(NORTH)	(WEST)		SALINITY TEMP SALINITY
				DD.MM	DDD.MM	(DEG C)	(PPT) (DEG C) (PPT)
91	XBT	85160	32	41.14	128.01	13.4	
92	XBT	85160	129	41.24	127.57	13.4	
93	XBT	85160	225	41.33	127.51	13.1	
94	XBT	85160	323	41.42	127.45	13.1	
95		85160	423	41.52	127.43	13.1	
96	XBT	85160	523	42.02	127.37	12.9	
97	XBT	85160	625	42.11	127.32	13.0	
98	XBT	85160	723	42.21	127.25	13.0	
99	XBT	85160	821	42.30	127.23		
100	XBT	85160	924	42.39	127.18	13.2	
101	XBT	85160	1025	42.49	127.13	13.1	
102	XÉT	85160	1126	42.57	127.10	12.9	
103	XBT	85160	1230	43.07	127.06	12.9	
104	XBT	85160	1335	43.16	127.00	12.9	
105	XBT	85160	1444	43.26	126.57	13.0	
106	XBT	85160	1549	43.35	126.53	12.9	
107	XBT	85160	1655	43.44	126.47	12.9	
108	XBT	85160	1759	43.54	126.42	12.7	
109	XBT	85160	1904	44.03	126.37	12.9	
110	XBT	85160	2007	44.12	126.32	12.6	
111	XBT	85160	2115	44.21	126.26	12.8	
112	XBT	85160	2216	44.30	126.21	13.2	
113	XBT	85160	2317	44.40	126.18	14.0	
114	XBT	85161	13	44.49	126.13	13.8	
115 116	XBT XBT	85161 85161	103 154	44.58 45.09	126.07 126.01	13.9 13.4	
117	XBT	85161	245	45.18	125.57	13.4	
118	XBT	85161	336	45.27	125.57	13.4	
119	XBT	85161	427	45.37	125.45	13.1	·
120	XBT	85161	517	45.46	125.40	13.4	
121	XBT	85161	607	45.56	125.37	13.3	
122	XBT	85161	705	46.06	125.32	13.1	
123	XBT	85161	745	46.15	125.25	13.1	
124	XBT	85161	834	46.23	125.22	13.0	
125	XBT	85161	922	46.32	125.15	13.0	
126	XBT	85161	1012	46.41	125.10	13.0	
127	XBT	85161	1115	46.53	125.05	13.1	
128	XBT	85161	1202	47.02	125.00	13.7	
129	XBT	85161	1256	47.13	125.00	13.8	
130	XBT	85161	1343	47.23	124.58	13.2	
131 132	XBT	85161	1435	47.33	125.00	13.2	
132	XBT XBT	85161 85161	1531 1624	47.43 47.53	124.55 124.54	13.9 13.0	
134	XBT	85161	1717	47.33	124.54	13.0	
135	XBT	85161	1800	48.12	124.54	12.5	
136	XBT	85161	1855	48.22	124.49	11.0	
					, ,		

Figure 16(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, LegMII).

Figure 16(b)

Figure 16(c)

Figure 16(e)

Figure 17(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg MII).

Figure 17(b)

Figure 17(c)

Figure 18 (a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg MII).

Figure 18(c)

Figure 18(d)

Figure 18(e)

Figure 18(f)

Figure 18(g)

Figure 18(h)

Figure 19(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg MII).

Figure 19(b)

Figure 19(c)

Figure 19(d)

Figure 20: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA16, Leg MII).

Figure 21: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg MII).

Figure 22: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA16, Leg MII). Selected sigma-t contours are also shown (OPTOMA16, Leg MII).

Figure 23: Mean N^2 profile (--), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (...) (OPTOMA16, LegMII).

THIS PAGE IS LEFT BLANK INTENTIONALLY

SECTION 3

OPTOMA16 LEG A

Figure 24: The cruise track for OPTOMA16, Leg A.

Figure 25: XBT and CTD locations for OPTOMA16, Leg A.

Figure 26: Station numbers for OPTOMA16, Leg A.

Table 5 : Leg A Station Listing

STN	TYPE	YR/DAY	GMT		(WEST)	SURFACE TEMP (DEG C)	SALINIT		SALINITY
12345678901121145671890112222345678901121111111111111111111111111111111111	XBT	85165 85166 85166 85167 85167 85167 85167 85167 85167 85168 85168 85168 85168 85168 85168 85168 85168 85168 85168 85168 85168 85168 85168	1751 1904 2014 2126 2243 7 125 311 9 52 1901 1628 1804 2044 2152 23 13 129 257 557 703 828 1046 1157 1345 1515 1635 1735 1735 1735 1735 1735 1735 1735 17	36.50 36.58 37.06 37.13 37.21 37.29 37.36 37.51 37.58 38.06 38.15 38.23 38.41 38.50 38.52 38.41 38.50 38.52 38.41 38.50 38.52 38.41 38.50 38.52 38.43	122.08 122.16 122.24 122.33 122.41 122.50 122.58 123.06 123.14 123.22 123.29 123.36 123.49 123.55 124.00 123.55 124.00 123.55 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.35 123.49 123.42 123.42 123.35 123.45 123.45 123.45 123.45 123.46 123.47 123.47 123.48 123.47 123.48	12.3 12.0 11.9 12.3 13.1 14.0 13.3 11.5 10.2 10.1 9.0 9.1 9.2 10.3 11.7 10.5 10.9 10.4 9.3 9.5 9.8 10.5 9.4 8.7 10.0 9.4 8.7 10.0 9.4 8.7 10.0 9.4 8.7 10.0 9.4 10.0 9.4 10.0 9.4 10.0 9.4 10.0 9.4 10.0 9.4 10.0 9.4 10.0 9.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	33.60	10.7	33.58
45	XBT	85169	702	39.04	123.59	10.2			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM		SURFACE TEMP (DEG C)	SALINIT		SALINITY
46 47 48 49 50	XBT XBT CTD XBT XBT	85169 85169 85169 85169 85169	815 925 1114 1305 1421	39.13 39.20 39.29 39.39 39.48	124.06 124.12 124.18 124.25 124.32	12.6 13.0 13.2 13.0	32.35	13.2	32.32
51 52 53 54	XBT CTD XBT XBT	85169 85169 85169 85169	1532 1701 1741 1855	39.56 40.05 40.07 39.57	124.39 124.46 124.40 124.34	11.8 12.4 12.4 12.2	32.58	12.3	32.56
55 56 57 58 59 60 61 62 63 64	CTD XBT	85169 85169 85169 85169 85170 85170 85170 85170 85170	2012 2130 2231 2343 47 200 232 346 505 617	39.49 39.40 39.33 39.23 39.14 39.07 39.09 39.18 39.26 39.35	124.27 124.20 124.14 124.07 124.00 123.53 123.48 123.55 124.02 124.09	12.2 13.5 13.2 10.7 13.3 11.4 10.6 9.9 10.1 12.3 10.0	32.29	13.7	32.34
65 66 67 68 69 70	CTD XBT XBT XBT XBT XBT XBT XBT	85170 85170 85170 85170 85170 85170	743 928 1047 1209 1245 1357	39.33 39.43 39.52 40.01 40.09 40.12 40.03	124.09 124.15 124.22 124.29 124.36 124.31 124.24	10.0 12.9 12.7 12.6 11.4 10.9	32.46	12.9	32.40
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90	CTD XBT	85170 85170 85170 85170 85170 85170 85170 85171 85171 85171 85171 85171 85172 85172 85172 85172 85172 85172 85172	1515 1651 1801 1919 2029 2143 2257 29 151 315 448 650 1345 710 1512 1901 2005 2107 2154 2301	39.54 39.46 39.37 39.29 39.41 39.49 39.58 40.07 40.15 40.23 40.30 40.39 40.45 41.05 41.15 41.13 41.04 40.55 40.49	124.24 124.09 124.03 123.56 123.56 124.04 124.09 124.17 124.23 124.29 124.34 124.33 124.39 124.53 124.53 124.51 124.52 124.51	13.1 10.0 10.0 10.6 9.7 10.4 11.4 12.1 10.6 9.5 9.2 10.5 10.8 9.8 9.4 9.6 10.3 10.1 11.1 10.2	32.59	13.2	32.56

STN	TYPE	YR/DAY	GMT		LONG			E BUCKET	
				(NORTH)					SALINITY
				DD.MM	MM. עעע	(DEG C)	(PPT)	(DEG C)	(PPT)
91	CTD	85173	16	40.34	124.45	9.8	33.73	10.3	33.74
92	XBT	85173	132	40.27	124.49	11.9			
93	XBT	85173	328	40.32	125.04	10.4			
94	XBT	85173	410	40.35	125.07	11.0			
95	CTD	85173	426	40.34	125.07	11.1	33.31	11.3	33.31
96	XBT	85173	558	40.24	125.12	12.8			
97	CTD	85173		40.15	125.15	12.7	32.76	12.6	32.99
98	XBT	85173	747	40.15	125.16	12.4			
99	XBT	85173	904	40.07	125.07	12.0			
100	XBT	85173	1015	39.58	125.01	13.0			
101	XBT	85173	1129	39.49	124.54	13.6			
102	CTĎ	85173	1257	39.41	124.48	14.3	32.52	13.8	32.49
103	XBT	85173	1433	39.31	124.42	14.5			
104	XBT	85173	1539	39.23	124.36	13.4			
105	CTD	85173	1704	39.14	124.29	13.9	32.30	14.0	32.37
106	XBT	85173	1834	39.05	124.22	13.1			
107	XBT	85173	1941	38.58	124.14	12.3			
108	CTD	85173	2105	38.49	124.07	12.0	33.04	12.6	32.92
109	XBT	85173	2240	38.39	124.02	12.6	-		
110	CTD	85174	2	38.31	123.55	12.6	32.88	13.3	32.83
111	XBT		134	38.22	123.48	12.5			
112	CTD	85174	259	38.12	123.41	12.7	33.61	13.0	33.58
113	XBT	85174	415	38.04	123.34	11.7			
114	CTD	85174	539	37.54	123.29	14.0	32.88	14.1	32.84
115	XBT	85174	646	37.58	123.21	13.2			
116	.CTD	85174	728	38.01	123.16	13.3	33.51	13.7	33.52
117	XBT	85174	832	38.04	123.10	14.1			
118	CTD	85174	906	38.06	123.06		32.92	14.1	33.17
119	CTD	85174	1027	37.59	123.03		33.26		
120	CTD	85174	1132	37.56	122.55		33.72		
121	XBT	85174	1223	37.53	123.02	13.1			
122	CTD	85174	1305	37.51	123.08		33.56	12.6	32.84
123	XBT	85174	1353	37.48	123.14	12.4			
124	CTD	85174	1443	37.46	123.19	12.4	33.34	12.8	33.34
125	XBT	85174	1613	37.39	123.07	12.5			
126	XBT	85174	1715	37.33	123.00	13.1			
127	XBT	85174	1828	37.25	122.50	13.2			
128	XBT	85174	1932	37.18	122.42	14.0			
129	XBT	85174	2038	37.11	122.34	14.0			
130	XBT	85174	2146	37.04	122.24	14.6			
131	XBT	85174	2253	36.57	122.16	14.8			
132	XBT	85175	5	36.50	122.08	14.4			

Figure 27(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA16, Leg A).

Figure 27(b)

Figure 27(c)

Figure 27(d)

Figure 28(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt (OPTOMA16, Leg A).

Figure 28(b)

Figure 28(c)

station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA16, Leg A). Figure 29(a): Along-track isotherms. Tick marks along the upper horizontal axis show

Figure 29(b)

Figure 29(c)

Figure 29(d)

Figure 29(e)

Figure 29(f)

Figure 29(g)

Figure 29(h)

Figure 29(i)

Figure 29(j)

Figure 29(o)

Figure 30(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA16, Leg A).

Figure 31: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA16, Leg A).

Figure 32: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA16, Leg A).

Figure 33: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA16, Leg A).

Figure 34: Mean N² profile($\frac{}{}$), with $\frac{}{}$ and $\frac{}{}$ the standard deviation (---). The N² profile from $\frac{}{}$ T(z) and S(z) is also shown (...) (OPTOMA16, Leg A).

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crew of the NOAA Ship McARTHUR and R/V ACANIA. The National Ocean Service, NOAA is thanked for making the NOAA ship McARTHUR available for cooperative PMEL and NPS ocean circulation and mesoscale prediction studies of the Pacific Coast EEZ. Members of the scientific cruise party were:

Leg MI Ms. Arlene Bird, Chief Scientist, NPS

Mr. James Stockel, NPS

Mr. Steve Kelley-Hansen, PMEL Mr. Ramon Buendia, MCARTHUR Mr. Bruce McDonald, MCARTHUR Mr. Seth Strickland, MCARTHUR

Leg MII Dr. Edward Kelley, Jr., Chief Scientist, NPS

Mr. Michael McCann, NPS

Mr. Steve Kelley-Hansen, PMEL Mr. Ramon Buendia, MCARTHUR Mr. Bruce McDonald, MCARTHUR Mr. Seth Strickland, MCARTHUR

Leg A Prof. C.N.K. Mooers, Chief Scientist, NPS

Ms. Marie Colton, NPS Mr. Paul Wittmann, NPS Mr. Billie Payne, NPS Ms. Shannon Rauqust, NPS

Mr. Donald Martens, NPS

Mr. Dennis McGillicuddy, HU

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Dr. Edward A. Kelley Ms. Marie C. Colton Mr. Paul A. Wittmann Dr. Mary L. Batteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN	33 1 1 1 1 1 1 1
2.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138	
	Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering	1 1 1 1 1 1
3.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	
	Dr. Thomas W. Spence Dr. Thomas B. Curtin	. 1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Prof. Robert L. Smith Dr. Adrian Huyer	1
5.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Denise E. Hagan (Code 183-501) Dr. Mark Abbott (also at Scripps)	1

6.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN	1 1 1 1
7.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
8.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
9.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
٠	Dr. Dale B. Haidvogel	1
10.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
11.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Prof. George L. Mellor	1
12.	Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118	
	Dr. Robert N. Miller	1

13.	Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley	
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station Bay St. Louis, MS 39525	
	Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	
15.	Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4	
	Prof. Lawrence A. Mysak	1
16.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
17.	NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	
	LTJG Diane C. Durban, USN	1
18.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Dr. Motoyoshi Ikeda	1
19.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Dr. Jacques Saurel	1

20.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	1
21.	Applied Physics Laboratory University of Washington 1013 NE 40th Str. Seattle, WA 98105	
	Dr. Thomas B. Sanford	1
22.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	1
23.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
24.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Dong-Ping Wang	1
25.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	Dr. Jack Calman	1
26.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
27.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
28.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2

