

2021 Mathematical Methods Trial Exam 1 Solutions © 2020 itute

Q1a
$$(x-1)^{\frac{2}{3}} = (x-2)^{\frac{2}{3}}$$
, $(x-1)^2 = (x-2)^2$, $(x-1)^2 - (x-2)^2 = 0$, $(x-1+x-2)=0$, $2x=3$, $x=\frac{3}{2}$
Q1b $e^{4x-4} - 2e^{2x-2} - 3 = 0$, $(e^{2x-2})^2 - 2(e^{2x-2}) - 3 = 0$, $(e^{2x-2} - 3)(e^{2x-2} + 1) = 0$, $e^{2x-2} - 3 = 0$, $2x-2 = \log_e 3$, $x = \frac{1}{2}(\log_e 3 + 2)$

Q2a
$$f(x) = \frac{(x-1)(x^3 + 2x^2 + 2x + 1)}{x^2 - 1} = \frac{(x-1)(x^3 + 2x^2 + 2x + 1)}{(x-1)(x+1)}$$

= $\frac{x^3 + 2x^2 + 2x + 1}{x+1} = x^2 + x + 1$
Q2b $f'(x) = 2x + 1$

Q3
$$\Pr(X = 1) = \binom{n}{1} p (1-p)^{n-1} = (1-p)^{n-2},$$

 $np(1-p)^{n-1} - (1-p)^{n-2} = 0, (1-p)^{n-2} (np(1-p)-1) = 0$
 $\therefore np^2 - np + 1 = 0, \therefore p = \frac{n \pm \sqrt{n^2 - 4n}}{2n} = \frac{1 \pm \sqrt{1 - \frac{4}{n}}}{2},$
 $\therefore 0 \le 1 - \frac{4}{n} < 1, \therefore n \ge 4$

Q4a

$$\Pr(0.3836 < \hat{P} < 0.4104 \mid \hat{P} > 0.3836) = \frac{0.8}{0.95} = \frac{16}{19}$$

$$Q4b \quad p + z\sqrt{\frac{p(1-p)}{n}} = 0.4 + 1.04\sqrt{\frac{0.4 \times 0.6}{n}} \approx 0.4104,$$

$$\therefore n \approx 2400$$

O5a

Q5b Average temperature in $[0, 24] = 8^{\circ} \text{ C}$

Q5c Average rate of change = $\frac{13-3}{20-8} = \frac{5}{6}$ °C per hour

Q5d $T < \alpha$ for 4 hours, i.e. $3 < T < \alpha$ for 2 hours, .: α is the temperature at t = 8 + 2 = 10

$$T(10) = 8 - 5\sin\left(\pi\left(\frac{10}{12} - \frac{1}{6}\right)\right) = 8 - 5\sin\frac{2\pi}{3} = 8 - \frac{5\sqrt{3}}{2}$$

Q5e

$$T(t) = 8 - 5\sin\left(\pi\left(\frac{t-1}{12} - \frac{1}{6}\right)\right) = 8 - 5\sin\left(\pi\left(\frac{t}{12} - \frac{1}{4}\right)\right), :: b = -\frac{1}{4}$$

Q6a For $0 \le h \le 2$, $V = Ah = 3\sqrt{3}h$; and for $2 < h \le 4$, $V = 3\sqrt{3} \times 2 + 2\sqrt{3}(h-2) = 2\sqrt{3}h + 2\sqrt{3} = 2\sqrt{3}(h+1)$ $\therefore V(h) = \begin{cases} 3\sqrt{3}h, & 0 \le h \le 2 \\ 2\sqrt{3}(h+1), & 2 < h \le 4 \end{cases}$

Q6b For
$$h > 2$$
, $V = 2\sqrt{3}(h+1)$, $\frac{dV}{dt} = 2\sqrt{3}\frac{d}{dt}(h+1) = 2\sqrt{3}\frac{dh}{dt}$

$$\therefore \frac{dh}{dt} = \frac{1}{2\sqrt{3}}\frac{dV}{dt} = \frac{1}{2\sqrt{3}} \times \frac{1}{500} = \frac{\sqrt{3}}{3000}$$

Q7a
$$f(e) = g(e)$$
, :: $1 = \sqrt{ae+b}$; $f'(x) = \frac{1}{x}$, $g'(x) = \frac{a}{2\sqrt{ax+b}}$,

$$f'(e) = g'(e)$$
, $\therefore \frac{1}{e} = \frac{a}{2\sqrt{ae+b}}$ $\therefore a = \frac{2}{e}$, $1 = \sqrt{2+b}$, $b = -1$

Q7b
$$g'(x) = \frac{1}{e\sqrt{\frac{2}{e}x-1}}, \frac{2}{e}x-1>0, x>\frac{e}{2}$$

Since
$$(x-e)^2 > 0$$
 for $x \neq e$, $\therefore x^2 - 2ex + e^2 > 0$, $x^2 > 2ex - e^2$,

$$\therefore x > \sqrt{2ex - e^2}$$
 for $x > \frac{e}{2}$

$$g'(x) - f'(x) = \frac{1}{e\sqrt{\frac{2}{e}x - 1}} - \frac{1}{x} = \frac{1}{\sqrt{2ex - e^2}} - \frac{1}{x} > 0 \text{ for } x > \frac{e}{2} \text{ and}$$

 $x \neq e$

$$g'(x) > f'(x)$$
 for $x \in \left(\frac{e}{2}, e\right) \cup (e, \infty)$

Q8a
$$f(-5) = -f(5) = -f(5-7) = -f(-2) = -2$$
 or $f(-5) = f(-5+7) = f(2) = -f(-2) = -2$ Q8b $f'(-5) = f'(2) = f'(-2) = \frac{1}{3}$ Q8c $\int_{-5}^{9} f(x) dx = \int_{-7}^{7} f(x) dx = \int_{-7}^{0} f(x) dx + \int_{0}^{7} f(x) dx = \int_{-7}^{0} f(x) dx - \int_{-7}^{0} f(x) dx = 0$ Q9a $R \cap R^{+} = R^{+}$ Q9b $b = f(a)$, $(a,b) \in f$, .: $(b,a) \in f^{-1}$ i.e. $(b,a) \in g$ $f'(x) = e^{x} + \frac{1}{x}$ for $x > 0$, .: $f'(a) = e^{a} + \frac{1}{a} = \frac{ae^{a} + 1}{a}$.: $g'(b) = \frac{1}{f'(a)} = \frac{a}{ae^{a} + 1}$

Please inform mathline@itute.com re conceptual and/or mathematical errors