<u>HW</u>: Solve the problem of the independent switches for n = 4, which means: 1) Truth table

2) Draw the 4-D cube

Truth Table						1-0 cube
ж,	×2	x3	Хч	f,	f2	0100 1100
0	0	O	0	0	lι	1101
0	0	0	1	1	0	0110
0	0	ι	0	l	ס	
0	o	ι	1	0	1	011,
0	1	0	0	ι	0	0.00
0	ı	0	1	0	1	0 001
0	١	l	0	0	ı	1001
Ð	1	1)	١	Ð	1010
1	0	0	0	١	D	0011
1	v	D	1	0	ı	
ı	0	ı	0	0	ı	
l	0	ı	1	l	D	
t	١	0	0	0	1	
1	J	v	ι	1	0	
l	ı	ı	0	ı	0	
1	\		,	D	۱ ا	

HW: Write all axioms and properties for the B. algebra of sets:

$$S = set, S \neq \emptyset$$

 $(P(S), \cup, \cap, \emptyset; \emptyset, S).$
Set of all subsets of S

[Remember: if S has n elements then P(S) has 2^n]

$$5 = set$$

 $5 \neq \emptyset$
 $(P(5), U, n, \ell; \emptyset, 5)$
if 5 has a elements then $P(5)$ has 2^n
Answer: $(B, +, \cdot, \cdot; 0, 1)$: