

MATLAB Unit 6-Lecture 20

BTech (CSBS) -Semester VII

30 Septemer 2022, 09:35AM

Control Flow and Operators

- 1) relational and logical operators
- 2) "if ... end" structure
- 3) "for ... end" loop
- 4) "while ... end" loop
- 5) other flow structures
- 6) operator precedence
- 7) saving output to a file

Relational operators

Relational operators compare the elements in two arrays and return logical true or false values to indicate where the relation holds.

==	Determine equality	
>=	Determine greater than or equal to	
>	Determine greater than	
<=	Determine less than or equal to	
<	Determine less than	
~=	Determine inequality	
isequal	Determine array equality	
isequaln	Determine array equality, treating NaN values as equal	

Relational operators: Examples

Examples: If $x = [1 \ 5 \ 3 \ 7]$ and $y = [0 \ 2 \ 8 \ 7]$, then k = x < yresults in $k = [0 \ 0 \ 1 \ 0]$ because $x_i < y_i$ for i = 3, results in $k = [0 \ 0 \ 1 \ 1]$ $k = x \le y$ because $x_i \leq y_i$ for i = 3 and 4, results in $k = [1 \ 1 \ 0 \ 0]$ because $x_i > y_i$ for i = 1 and 2, k = x > yresults in $k = [1 \ 1 \ 0 \ 1]$ because $x_i \geq y_i$ for i = 1, 2, and 4, k = x >= yresults in $k = [0 \ 0 \ 0 \ 1]$ because $x_i = y_i$ for i = 4, and k = x == ybecause $x_i \neq y_i$ for i = 1, 2, and 3. k = x = yresults in $k = [1 \ 1 \ 1 \ 0]$

Logical operators

&	Find logical AND	
~	Find logical NOT	
I	Find logical OR	
xor	Find logical exclusive-OR	
all	Determine if all array elements are nonzero or true	
any	Determine if any array elements are nonzero	
false	Logical 0 (false)	
find	Find indices and values of nonzero elements	
islogical	Determine if input is logical array	
logical	Convert numeric values to logicals	
true	Logical 1 (true)	

PAGE 1

Logical operators: Examples

```
Examples: For two vectors x = [0 \ 5 \ 3 \ 7] and y = [0 \ 2 \ 8 \ 7], m = (x>y)&(x>4) results in m = [0 \ 1 \ 0 \ 0], because the condition is true only for x_2, results in n = [0 \ 1 \ 1 \ 1], because either x_i or y_i is nonzero for i = [2 \ 3 \ 4], m = ^{\sim}(x|y) results in m = [1 \ 0 \ 0 \ 0], which is the logical complement of x|y, and results in p = [0 \ 0 \ 0 \ 0], because there is no such index i for which x_i or y_i, but not both, is nonzero.
```


Logical operators: builtin functions

In addition to these logical operators, there are many useful built-in logical functions, such as:

all true (=1) if all elements of a vector are true, Example: all (x<0) returns 1 if each element of x is negative. true (=1) if any element of a vector is true, any Example: any (x) returns 1 if any element of x is nonzero. true (= 1) if the argument (a variable or a function) exists, exist true (=1) for an empty matrix, isempty isinf true for all infinite elements of a matrix, true for all finite elements of a matrix. isfinite isnan³ true for all elements of a matrix that are not a number (NaN), and finds indices of nonzero elements of a matrix. find Examples: find(x) returns $[2 \ 3 \ 4]$ for $x=[0 \ 2 \ 5 \ 7]$ and [r,c]=find(A>100) returns the row and column indices

To complete this list of logical functions, we just mention isreal, issparse, isstr, and ischar.

i and j of A, in vectors r and c, for which $A_{ij} > 100$.

Elementary math functions

Trigonometric functions

sin, sind	sine,	sinh	hyperbolic sine,
asin, asind	inverse sine,	asinh	inverse hyperbolic sine,
cos, cosd	cosine,	cosh	cyperbolic cosine,
acos, acosd	inverse cosine,	acosh	inverse hyperbolic cosine,
tan, tand	tangent,	tanh	hyperbolic tangent,
atan, atand	inverse tangent,	atanh	inverse hyperbolic tangent,
atan2	four-quadrant \tan^{-1} ,		
sec, secd	secant,	sech	hyperbolic secant,
asec, asecd	inverse secant,	asech	inverse hyperbolic secant,
csc, cscd	cosecant,	csch	hyperbolic cosecant,
acsc, acscd	inverse cosecant,	acsch	inverse hyperbolic cosecant,
cot, cotd	cotangent,	coth	hyperbolic cotangent,
acot, acotd	inverse cotangent, and	acoth	inverse hyperbolic cotangent.

Elementary math functions

The angles given to these functions as arguments must be in radians for sin, cos, etc., and in degrees for sind, cosd, etc. Thus, $\sin(pi/2)$ and $\sin d(90)$ produce the same result. All of these functions, except atan2, take a single scalar, vector, or matrix as input argument. The function atan2 takes two input arguments, $\arctan 2(y,x)$, and produces the four-quadrant inverse tangent such that $-\pi \leq \tan^{-1} \frac{y}{x} \leq \pi$. This gives the angle a rectangular to polar conversion.

```
Examples: If q=[0 pi/2 pi], x=[1 -1 -1 1], and y=[1 1 -1 -1], then sin(q) gives [0 1 0], sinh(q) gives [0 2.3013 11.5487], atan(y./x) gives [0.7854 -0.7854 0.7854 -0.7854], and atan2(y,x) gives [0.7854 2.3562 -2.3562 -0.7854].
```


Exponential Functions

exp	exponential,
	Example: $\exp(A)$ produces a matrix with elements $e^{(A_{ij})}$.
	So how do you compute e^A ? See the next section.
log	natural logarithm,
	Example: $log(A)$ produces a matrix with elements $ln(A_{ij})$.
log10	base 10 logarithm,
	Example: $log10(A)$ produces a matrix with elements $log_{10}(A_{ij})$.
sqrt	square root,
	Example: sqrt(A) produces a matrix with elements $\sqrt{A_{ij}}$.
	But what about \sqrt{A} ? See the next section.
nthroot	real nth root of real numbers,
	Example: nthroot(A,3) produces a matrix with elements $\sqrt[3]{A_{ij}}$.

AT AT

Complex Functions

abs	absolute value, Example: abs(A) produces a matrix of absolute values $ A_{ij} $.
angle	phase angle, $Example$: angle(A) gives the phase angles of complex A.
complex	constructs complex numbers from given real and imaginary parts,
	Example: complex(A,B) produces $A + Bi$.
conj	complex conjugate, Example: conj(A) produces a matrix with elements \bar{A}_{ij} .
imag	imaginary part, Example: imag(A) extracts the imaginary part of A.
real	real part, $Example: real(A)$ extracts the real part of A .

Round off Functions

```
round toward 0,
fix
               Example: fix([-2.33 \ 2.66]) = [-2 \ 2].
               round toward -\infty,
floor
               Example: floor([-2.33 2.66]) = [-3 2].
               round toward +\infty,
ceil
               Example: ceil([-2.33 \ 2.66]) = [-2 \ 3].
               modulus after division; mod(a,b) is the same as a-floor(a./b)*b,
mod
               Example: mod(26,5) = 1 and mod(-26,5) = 4.
               round toward the nearest integer,
round
               Example: round([-2.33 2.66]) = [-2 3].
               remainder after division, rem(a,b) is the same as a-fix(a./b)*b,
rem
               Example: If a=[-1.5 7], b=[2 3], then rem(a,b) = [-1.5 1].
               signum function,
sign
               Example: sign([-2.33 \ 2.66]) = [-1 \ 1].
```

Matrix Functions

expm(A)	finds the exponential of matrix A, e^A ,
logm(A)	finds $\log(A)$ such that $A = e^{\log(A)}$, and
sqrtm(A)	finds \sqrt{A} .