

Lecture Notes on Nov/16

Adelson-Velsky and Landis (AVL) Tree

ECE217 Data Structure and Algorithms

Instructor: Dr. Shayan (Sean) Taheri

- Introduction to AVL Tree
- Searching in AVL Tree
- Insertion in AVL Tree
- Rotations in AVL Tree
- Deletion in AVL Tree

AVL Tree with Balance Factors (Green)

- Animation showing the insertion of several elements into an AVL tree.
- <u>It includes left, right, left-right</u> and right-left rotations.

AVL tree		
Туре	Tree	
Invented	1962	
Invented	Georgy Adelson-Velsky and	
by	Evgenii Landis	
Time complexity in big O notation		
Algorithm	Average	Worst case
Space	$\Theta(n)$	$\mathrm{O}(n)$
Search	$\Theta(\log n)^{[1]}$	$O(\log n)^{[1]}$
Insert	$\Theta(\log n)^{[1]}$	$O(\log n)^{[1]}$
Delete	$\Theta(\log n)^{[1]}$	$O(\log n)^{[1]}$

- AVL tree (a.k.a. **height-balanced tree**) is a self-balancing binary search tree in which the heights of the two sub-trees of a node may differ by at most one.
- \rightarrow AVL Tree Height \rightarrow O(logn) = Average Time for search, insertion and deletion.
- **▶** Balance factor = Height (left sub-tree) Height (right sub-tree)
- A binary search tree in which every node has a balance factor of -1, 0, or +1 is said to be height balanced.

Balanced AVL Tree \rightarrow Balance Factor = 0

Left Heavy AVL Tree → **Balance Factor** = +1 (**Exercise**)

Right Heavy AVL Tree → **Balance Factor** = -1 (Exercise)

Searching for a Node in an AVL Tree

- ➤ Since an AVL tree is also a variant of binary search tree, searching is also done in the same way as it is done in case of a binary search tree.
- The operation does not modify the structure of the tree, no special provisions need to be taken.

Searching in Balanced AVL Tree

Searching in Left Heavy AVL Tree (Exercise)

Searching in Right Heavy AVL Tree (Exercise)

Inserting a Node in an AVL Tree

- The new node is always inserted as the leaf node.
- But the step of insertion is usually followed by an additional step of rotation.
- \triangleright Rotation is done to restore the balance of the tree, if the balance factor of every node is not equal to -1, 0, or +1.
- ➤ The nodes whose balance factors will change are those which lie on the path between the root of the tree and the newly inserted node.
- ➤ Critical node is the nearest ancestor node on the path from the root to the newly inserted node whose balance factor is neither -1, 0 nor 1.
 - ☐ Creating an "unbalanced sub-tree".

Rotations to Balance AVL Trees

- ➤ Task 1: Finding the critical node.
- > Task 2: Determining one of four types of rebalancing rotation to be done.
 - ➤ It depends on the position of the inserted node with reference to the critical node.
 - ➤ LL Rotation: The new node is inserted in the left sub-tree of the left sub-tree of the critical node
 - > RR Rotation: The new node is inserted in the right sub-tree of the right sub-tree of the critical node
 - ➤ LR Rotation: The new node is inserted in the right sub-tree of the left sub-tree of the critical node

> RL Rotation: The new node is inserted in the left sub-tree of the right sub-tree of the

Deleting a Node from an AVL Tree

- There are two classes of rotation that can be performed on an AVL tree after deleting a given node for rebalancing: **R Rotation** and **L Rotation**.
- ➤ If the node to be deleted is present in the left sub-tree of the critical node, then **L Rotation** is applied else if node is in the right sub-tree, **R Rotation** is performed.
- **L Rotation Variations**: L-1, L0, and L+1 rotations.
- **R** Rotation Variations: R-1, R0, and R+1 rotations.

Left AVL Tree: R0 Rotation – Deleting "72" Center AVL Tree: R+1 Rotation – Deleting "72" Right AVL Tree:
R-1 Rotation – Deleting "72"

AVL Tree Operations in C++ Language

```
Adelson-Velsky and Landis (AVL) Tree Operations in C++ Language
      // Instructor: Dr. Shayan (Sean) Taheri
      #include <iostream>
      using namespace std;
      // AVL Tree Node Class
    -class Node {
       public:
9
          int key;
10
          Node *left;
11
         Node *right;
12
          int height;
13
     };
14
15
      // Function Declaration of "Getting Maximum Value"
16
      int max(int a, int b);
17
18
      // Height Calculation for AVL Tree
19
    -int height(Node *N) {
20
       if (N == NULL)
21
          return 0;
22
        return N->height;
23
24
25
      // Function Definition of "Getting Maximum Value"
26
    int max(int a, int b) {
27
        return (a > b) ? a : b;
28
29
```



```
// Node Creation for AVL Tree
31
    -Node *newNode(int key) {
32
        Node *node = new Node();
33
        node->key = key;
34
        node->left = NULL;
35
        node->right = NULL;
36
        node->height = 1;
37
         return (node);
38
39
40
       // Rotate to Right Side for AVL Tree
41
    Node *rightRotate(Node *y) {
42
        Node *x = y -> left;
43
        Node *T2 = x \rightarrow right;
44
        x->right = y;
45
        y \rightarrow left = T2;
46
        y->height = max(height(y->left),
47
                  height(y->right)) +
48
49
        x\rightarrow height = max(height(x\rightarrow left),
50
                  height(x->right)) +
51
52
         return x;
53
54
```



```
// Rotate to Left Side for AVL Tree
56
    -Node *leftRotate(Node *x) {
57
        Node *y = x->right;
58
        Node *T2 = y -> left;
59
        y \rightarrow left = x;
60
        x->right = T2;
61
        x->height = max(height(x->left),
62
                 height(x->right)) +
63
64
       y->height = max(height(y->left),
65
                 height(y->right)) +
66
               1;
67
        return y;
68
69
70
      // Getting Balance Factor of Each AVL Tree Node
71
    -int getBalanceFactor(Node *N) {
72
        if (N == NULL)
73
          return 0;
74
        return height (N->left) -
75
              height (N->right);
76
77
```



```
// AVL Node Insertion
     Node *insertNode(Node *node, int key) {
        // Find the correct postion and insert the node
 82
        if (node == NULL)
           return (newNode(key));
 83
        if (key < node->key)
 84
           node->left = insertNode(node->left, key);
        else if (key > node->key)
 86
          node->right = insertNode(node->right, key);
 87
        else
           return node;
 89
 90
        // (1) Updating Balance Factor of Each AVL Tree Node
        // (2) Balancing AVL Tree
 92
       node->height = 1 + max(height(node->left),
 93
                      height (node->right));
 94
        int balanceFactor = getBalanceFactor(node);
 95
        if (balanceFactor > 1) {
 96
          if (key < node->left->key) {
             return rightRotate(node);
 98
            else if (key > node->left->key) {
             node->left = leftRotate(node->left);
100
             return rightRotate (node);
        if (balanceFactor < -1) {
104
          if (key > node->right->key) {
105
             return leftRotate(node);
106
            else if (key < node->right->key) {
            node->right = rightRotate(node->right);
108
             return leftRotate(node);
110
111
112
         return node;
113
```



```
// Getting AVL Tree Node with Minimum Value
     Node *nodeWithMimumValue(Node *node) {
116
        Node *current = node;
117
        while (current->left != NULL)
118
           current = current->left;
119
        return current;
121
       // AVL Node Deletion
     Node *deleteNode(Node *root, int key) {
124
        // Find the node and delete it
125
126
        if (root == NULL)
          return root;
127
        if (key < root->key)
128
          root->left = deleteNode(root->left, key);
129
        else if (key > root->key)
           root->right = deleteNode(root->right, key);
131
        else {
132
          if ((root->left == NULL) ||
133
             (root->right == NULL)) {
134
             Node *temp = root->left ? root->left : root->right;
135
             if (temp == NULL) {
136
               temp = root;
138
               root = NULL;
             } else
139
140
               *root = *temp;
             free (temp);
            else {
142
143
             Node *temp = nodeWithMimumValue(root->right);
144
             root->key = temp->key;
             root->right = deleteNode(root->right,
145
146
                           temp->key);
147
        if (root == NULL)
150
           return root;
```



```
// (1) Updating Balance Factor of Each AVL Tree Node
        // (2) Balancing AVL Tree
154
        root->height = 1 + max(height(root->left),
                     height(root->right));
        int balanceFactor = getBalanceFactor(root);
        if (balanceFactor > 1) {
          if (getBalanceFactor(root->left) >= 0) {
            return rightRotate(root);
           } else {
            root->left = leftRotate(root->left);
            return rightRotate(root);
164
        if (balanceFactor < -1) {
          if (getBalanceFactor(root->right) <= 0) {
            return leftRotate(root);
           } else {
            root->right = rightRotate(root->right);
            return leftRotate(root);
174
        return root;
176
       // Printing AVL Tree
    void printTree(Node *root, string indent, bool last) {
        if (root != nullptr) {
          cout << indent;</pre>
          if (last) {
            cout << "R----";
            indent += " ";
           else {
            cout << "L---";
            indent += "| ";
          cout << root->key << endl;</pre>
          printTree(root->left, indent, false);
          printTree(root->right, indent, true);
```



```
// Driver Code
int main() {

// Task 1: Create an AVL Tree Node

// Task 2: Execute AVL Tree Operations on the Created Tree

// Task 2: Execute AVL Tree Operations on the Created Tree
```


- > Reading Assignment:
 - □ Data Structures Using C by Reema Thareja, Oxford University Press; 2nd Edition.
 - Chapter 10. Efficient Binary Trees (Starting Page: 298).
 - □ AVL Tree in Wikipedia.
- ➤ Assignment 2 Part B Deadline: November/21/2022.

Questions?