Ds 5, le 31 janvier 2018

Exercice 1

On note $E = \mathbb{R}_2[X]$ l'espace des polynômes de degré ≤ 2 .

On note aussi $\mathcal{B} = (P_0, P_1, P_2)$ la base canonique de E définie par :

▶ $P_0(X) = 1$

 $P_1(X) = X$

 $P_2(X) = X^2$

Partie I : Étude d'un endomorphisme de E.

Soit f l'application qui, à tout $P \in E$, associe le polynôme Q tel que : $Q(X) = (X-1) \cdot P'(X) + P(X)$.

1. Montrer que f est un endomorphisme de E.

1. Montrer que f est un endomorphisme de E. 2. Vérifier que la matrice A de f dans \mathcal{B} , s'écrit sous la forme : $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{bmatrix}$.

3. Quelles sont les valeurs propres de f?

L'endomorphisme f est-il : diagonalisable?

▶ un automorphisme de *E*?

4. Déterminer l'image par f des polynômes R_0, R_1, R_2 définis par : $R_0(X) = 1$

 $R_1(X) = X - 1$

 $R_2(X) = (X-1)^2$

5. Montrer que $\mathcal{B}' = (R_0, R_1, R_2)$ est une base de vecteurs propres de f.

▶ la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}'

• et la matrice D de f dans la base \mathcal{B}' .

6. Vérifier les relations : $R_2(X) + 2 \cdot R_1(X) + R_0(X) = P_2(X),$ $R_1(X) + R_0(X) = P_1(X)$.

En déduire la matrice de passage de la base \mathcal{B}' à la base \mathcal{B}

7. Écrire A^{-1} en fonction de D^{-1} .

Démontrer par récurrence, pour $n \in \mathbb{N}$, que : $[A^{-1}]^n = P \cdot [D^{-1}]^n \cdot P^{-1}$.

Expliciter la troisième colonne de la matrice $[A^{-1}]^n$.

PARTIE II : Suite d'épreuves aléatoires.

On dispose d'une urne qui contient trois boules numérotées de 0 à 2.

On s'intéresse à une suite d'épreuves définies de la manière suivante :

- La première épreuve consiste à choisir au hasard une boule dans cette urne.
- Si j est le numéro de la boule tirée, on enlève de l'urne toutes les boules dont le numéro est strictement supérieur à j, le tirage suivant se faisant alors dans l'urne ne contenant plus que les boules numérotées de 0 à j.

On considère alors la variable aléatoire réelle X_k égale au numéro de la boule obtenue à la $k^{\text{ème}}$ épreuve (quec $k \ge 0$)

épreuve. $(avec\ k \ge 0)$ On note alors U_k la matrice unicolonne définie par : $U_k = \begin{pmatrix} \mathbb{P}(X_k = 0) \\ \mathbb{P}(X_k = 1) \\ \mathbb{P}(X_k = 2) \end{pmatrix}$.

 $(avec \mathbb{P}(X_k = j) \ la \ probabilité \ de \ tirer \ la \ boule \ numéro \ j \ à \ la \ k^{ème}$ épreuve.)

On convient de définir la matrice U_0 par : $U_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

8. Déterminer la loi de X_2 Calculer l'espérance et la variance de X_2

(On pourra s'aider d'un arbre).

- **9.** Par utilisation de la formule des probabilités totales, prouver que $k \in \mathbb{N}$, on a : $U_{k+1} = A^{-1} \cdot U_k$.
- **10.** Écrire U_k en fonction de A^{-1} et U_0
- 11. Pour tout $k \in \mathbb{N}$, donner la loi de X_k et vérifier que l'on a :

$$\lim_{k\to +\infty} \mathbb{P}\big(X_k=0\big)=1, \quad \lim_{k\to +\infty} \mathbb{P}\big(X_k=1\big)=0, \quad \lim_{k\to +\infty} \mathbb{P}\big(X_k=2\big)=0$$

Exercice 2

PARTIE I : Étude d'une variable aléatoire

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie, pour tout $t \in \mathbb{R}$, par : $f(t) = \frac{e^{-t}}{(1+e^{-t})^2}$.

- 1. Vérifier que la fonction f est paire.
- **2.** Montrer que f est une fonction densité.

Dans la suite de l'exercice, on considère une variable aléatoire réelle X admettant pour densité f.

- **3.** Montrer que, pour $x \in \mathbb{R}$, la fonction de répartition de X s'écrit : $F_X(x) = \frac{1}{1 + e^{-x}}$. Interpréter la valeur de la probabilité : $F_X(0)$.
- **4.** a) Montrer que l'intégrale $\int_0^{+\infty} t \cdot f(t) dt$ converge.
 - **b)** Montrer que X admet une espérance et que : $\mathbb{E}[X] = 0$. On utilisera l'imparité de la fonction : $t \mapsto t \cdot f(t)$.
 - c) En intégrant par parties, montrer, pour $A \in \mathbb{R}$, que : $\int_0^A t \cdot f(t) \, \mathrm{d}t = -\frac{A}{1 + \mathrm{e}^A} + \int_0^A \frac{1}{1 + \mathrm{e}^t} \, \mathrm{d}t.$
 - **d)** Vérifier que la fonction $u: t \mapsto -\ln(1+e^{-t})$ est une primitive de $v: t \mapsto \frac{1}{1+e^t}$.
 - e) En déduire la valeur de l'intégrale : $\int_0^{+\infty} t \cdot f(t) dt$, et celle de l'espérance : $\mathbb{E}[|X|]$.

PARTIE II : Étude d'une autre variable aléatoire

On considère l'application $\varphi : \mathbb{R} \to \mathbb{R}$ définie, pour tout x de \mathbb{R} , par : $\varphi(x) = \ln(1 + e^x)$.

- 5. a) Montrer que φ est une bijection de $\mathbb R$ sur un intervalle I à préciser.
 - **b)** Pour tout y de I, exprimer : $\varphi^{-1}(y)$.

On considère la variable aléatoire réelle Y définie par : $Y = \varphi(X)$.

- **6. a)** Justifier: $\mathbb{P}(Y \leq 0) = 0$.
 - **b)** Déterminer la fonction de répartition de Y.
 - ${f c}$) Reconnaître alors la loi de Y et donner, sans calcul, son espérance et sa variance.

7. On utilise le script Scilab suivant afin de simuler un échantillon de la loi à densité f.

- a) En quoi la représentation graphique obtenue confirme-t-elle l'étude dans la PARTIE II?
- b) Compléter l'instruction manquant au script.
- c) Quelle constante mathématique reconnaît-on dans le résultat du calcul suivant? De quelle question de la PARTIE I vérifie-t-on ainsi le résultat?

```
1 --> mean(abs(X)/2)
2 ans =
3 0.6938775
```

PARTIE III: Étude d'une convergence en loi

On considère une suite de variables aléatoires réelles $(X_n)_{n \in \mathbb{N}^*}$.

On suppose qu'elles sont : • mu

- mutuellement indépendantes,
- de même densité f, où f a été définie dans la partie I.

Pour tout $n \ge 1$ entier, on pose : $T_n = \max(X_1, ..., X_n)$ et $U_n = T_n - \ln(n)$.

- **8.** Soit $n \ge 1$ un entier.
 - a) Déterminer la fonction de répartition de T_n .
 - **b)** Pour $x \in \mathbb{R}$, en déduire : $\mathbb{P}(U_n \le x) = \frac{1}{\left(1 + \frac{e^{-x}}{n}\right)^n}$.
- **9.** En déduire que la suite de variables aléatoires $(U_n)_{n \in \mathbb{N}^*}$ converge en loi. Préciser la fonction de répartition limite. Montrer que la loi limite est associée à une densité que l'on déterminera.

Exercice 3

On considère l'application φ définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ \varphi(x) = \ln(x) - \ln(x+1) + \frac{1}{x}.$$

Étude de la fonction φ

- 1. Étude en 0⁺
 - a) Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0^+ .
 - **b)** Montrer que pour $x \to 0^+$, on a l'équivalent : $\varphi(x) \sim \frac{1}{x}$.
 - c) L'intégrale $\int_0^1 \varphi(x) dx$ converge-t-elle?

- 2. Étude en $+\infty$
 - a) Montrer que $\forall x > 0$, on peut écrire : $\varphi(x) = \frac{1}{x} \ln(1 + \frac{1}{x})$.
 - **b)** Déterminer la limite de $\varphi(x)$ lorsque x tend vers $+\infty$.
 - c) Rappeler le développement limité à l'ordre 2 de $\ln(1+h)$ quand $h \to 0$.
 - **d)** En déduire que pour $x \to +\infty$, on a l'équivalent : $\varphi(x) \sim \frac{1}{2x^2}$.
 - e) L'intégrale $\int_{1}^{+\infty} \varphi(x) dx$ converge-t-elle?
- 3. Dresser le tableau de variation de φ et y faire apparaître les limites de φ en 0^+ et $+\infty$.

Résolution de l'équation $\varphi(x) = 1$.

4. Montrer que l'équation $\varphi(x) = 1$ possède une unique solution notée α et que : $\frac{1}{3} < \alpha < \frac{1}{2}$.

(On utilisera: $ln(2) \simeq 0.7$ et $ln(3) \simeq 1.1.$)

5. On définit la fonction φ comme suit :

```
1 function y=phi(x)
2  y = log(x) - log(x+1) + 1/x
```

3 endfunction

Compléter la dichotomie pour encadrer α dans un intervalle [a;b] d'amplitude $\leq 10^{-2}$.

```
1  a = ---
2  b = ---
3  while ---
4   m = (a+b)/2
5   if ---
6       then a = m
7       else b = m
8   end
9  end
```

Après éxecution du script, la commande disp([a,b]) affiche: 0.4635417 0.46875

Une variable à densité.

Soit X une variable aléatoire réelle admettant pour densité de probabilité la fonction f donnée par : $\forall x \in \mathbb{R}$, $f(x) = \begin{cases} \frac{1}{x^2 \cdot (x+1)} & \text{si } x > \alpha \\ 0 & \text{si } x \leq \alpha \end{cases}$ (où α désigne le réel défini à la question **4**.)

- **6.** a) Rappeler l'expression de $\varphi'(x)$.
 - **b)** Vérifier que *f* est bien une densité de probabilité.
 - c) Déterminer la fonction de répartition de X.
- **7.** Montrer que X admet une espérance $\mathbb{E}[X]$.
- **8.** a) Démontrer que pour $x > \alpha$, on a : $x \cdot f(x) = \varphi'(x) + \frac{1}{x^2}$.
 - **b)** En déduire que l'espérance de X est donnée par : $\mathbb{E}[X] = \frac{1-\alpha}{\alpha}$.
 - c) Donner un encadrement de $\mathbb{E}[X]$ par deux entiers consécutifs.
- **9.** La variable aléatoire réelle *X* admet-elle une variance?