Cross-section for low mass resonance production

Amit Adhikary

$1 ext{ SM} + Axion Model$

The Effective Lagrangian for the light scalar, a, in this model is,

$$\mathcal{L}_{axion} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 + i \sum_f g_{aff} m_f \, a \bar{f} \gamma_5 f \,. \tag{1}$$

where, $g_{aff} = \frac{C_f}{f_a}$.

Mass (m_a)	Coupling (g_{aff})	Decay width (Γ_a)
(GeV)		(GeV)
20	0.1	0.340122
	10^{-3}	0.340122×10^{-4}
	10^{-5}	0.340122×10^{-8}
40	0.1	0.780416
	10^{-3}	0.780416×10^{-4}
	10^{-5}	0.780416×10^{-8}
60	0.1	1.39909
	10^{-3}	1.39909×10^{-4}
	10^{-5}	1.39909×10^{-8}

Table 1: Total decay width of light scalar for different mass and coupling.

Production channels:

1.1 The $pp \rightarrow a\gamma$ process

Figure 1: Feynman diagram for $pp \to a\gamma$ process.

Backgrounds:

1.
$$pp \rightarrow b\bar{b}\gamma$$

Figure 2: Production cross-section of $pp \to a\gamma$ process vs scalar mass. Here, $p_{T,\gamma} \ge 10$ GeV.

1.2 The $pp \rightarrow aj$ process

Figure 3: Feynman diagram for $pp \to aj$ process.

Figure 4: Production cross-section of $pp \to a\gamma$ process vs scalar mass. Here, $p_{T,j} \ge 20$ GeV.

1.3 $pp \rightarrow b\bar{b}a$ process

Figure 5: Feynman diagram for $pp \to b\bar{b}a$ process.

Figure 6: Production cross-section of $pp \to b\bar{b}a$ process vs scalar mass. Here, $p_{T,b} \ge 20$ GeV.

1.4 $pp \rightarrow t\bar{t}a$ process

Figure 7: Feynman diagram for $pp \to t\bar{t}a$ process.

Figure 8: Production cross-section of $pp \to t\bar{t}a$ process as a function of scalar mass.

1.5 $pp \rightarrow aV$, V = W/Z process

Figure 9: Feynman diagram for $pp \to aV, V = W/Z$ process.

Figure 10: Production cross-section of $pp \to aV, V = W/Z$ process as a function of scalar mass.

After trigger cuts:

1.6 The $pp \rightarrow a\gamma$ process

Figure 11: Production cross-section of $pp \to a\gamma$ process vs $p_{T,\gamma}$.

1.7 The $pp \rightarrow aj$ process

Figure 12: Production cross-section of $pp \to aj$ process vs $p_{T,j}$.

1.8 The $pp \rightarrow b\bar{b}a$ process

Figure 13: Production cross-section of $pp \to b\bar{b}a$ process vs $p_{T,b}$.

1.9 The $pp \rightarrow aV, V \rightarrow$ leptons process

Figure 14: Production cross-section of $pp \to aV$, $V \to$ leptons process vs $p_{T,l}$.

1.10 The $pp \rightarrow aV, V \rightarrow \mathbf{jets}$ process

Figure 15: Production cross-section of $pp \to aV, V \to \text{jets}$ process vs $p_{T,j}$.

Channel	Mass of a, m_a	Backgrounds
	(GeV)	(V=W/Z)
$a + \mathrm{jet}, a \to b\bar{b} [1]$	[70, 230]	QCD multijet, V+jets, $t\bar{t}$, single top
$a + \gamma, a \rightarrow \text{jets } [2]$	[225, 1100]	QCD multijet $+\gamma$
$t\bar{t}a, \ a \to b\bar{b}$ [3]	[20, 100]	$t\bar{t} + X, X = b/\text{light-jet}/h/V$
$a, a \to \text{jets } [4]$	[450, 1800]	QCD multijet
$Zh, h \rightarrow aa \rightarrow 4b, Z \rightarrow ll [5]$	[20, 60]	$t\bar{t}, Z+jets, t\bar{t}b\bar{b}, VV+jets, t\bar{t}V, Wt, t\bar{t}t\bar{t}, t\bar{t}WW$

Table 2: Existing collider searches for scalar production, decaying to b-jets/light jets.

References

- [1] ATLAS collaboration, Search for boosted resonances decaying to two b-quarks and produced in association with a jet at $\sqrt{s} = 13$ TeV with the ATLAS detector, tech. rep., CERN, Geneva, 2018.
- [2] ATLAS collaboration, M. Aaboud et al., Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B **795** (2019) 56–75, [1901.10917].
- [3] M. Casolino, T. Farooque, A. Juste, T. Liu and M. Spannowsky, *Probing a light CP-odd scalar in di-top-associated production at the LHC, Eur. Phys. J. C* **75** (2015) 498, [1507.07004].
- [4] ATLAS collaboration, M. Aaboud et al., Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. **121** (2018) 081801, [1804.03496].
- [5] ATLAS collaboration, G. Aad et al., Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D 102 (2020) 112006, [2005.12236].