(3.4) FFT
$$x[n]$$
, $n = 0, 1, 2, ..., N-1$

IF N is an even number

$$x[n] \longrightarrow O[n] = x[2n] , n = 0,1,..., \frac{1}{2}-1$$

 $b[n] = x[2n+1], n = 0,1,..., \frac{1}{2}-1$

$$N/2$$
 n even #

 $a[n]$ $a[n]$ $a[n]$
 $a[n]$ $a[n]$

$$N = 1026, 1025$$

 $N = 1024 = 2^{10}$

• Bit reversing
$$8 = 2^3$$

Real-time online

Time areal of	B:nary	Reverse B:+	Order
lime point a	000	Word)C[@]
1	001	100	X[1]X
2	010	010	x[2]
3	011	110	x[3]
4	100	001	x [43
5	101	101	x[5]
6	(10	0 1 1	x[6]
7	(()	(x[1]

1) LT computation

Given
$$X(t)$$
, two-sided LT $X(s) = \int_{-\infty}^{\infty} X(t)e^{-gt} dt$

S = Freq Variable (complex)

CFT:
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t} dt$$

 $S = i\omega$

For one sided LT $X(s) = \int_{-\infty}^{\infty} X(t) e^{-st} dt$

ILT: Given
$$X(s)$$

$$X(t) = \int_{-\infty}^{\infty} X(s) e^{st} dt$$

$$X(t) \xrightarrow{4} X(s)$$

$$V(t) \xrightarrow{4} V(s)$$

Example 3.7 (a)
$$20t \leftrightarrow 20^{1/52}$$

(b) $2e^{3t} \leftrightarrow 2\left(\frac{1}{5-3}\right)$
(c) $5\cos(2t) \leftrightarrow 5\left(\frac{5^2}{5^2+4}\right)$

(d)
$$2e^{-t}5:n(3t) \leftrightarrow 2\left(\frac{3}{(5+1)^2+3^2}\right)$$

(e)
$$1 + 2t \cdot e^{-t} \leftrightarrow \frac{1}{5} + \frac{2}{5^2} + \frac{1}{5+1}$$

(F)
$$2t + 3 \frac{dx(t)}{dt} \leftrightarrow \frac{2}{5^2} + 3 [SX(S) - x(O)]$$

$$y(t) = x(t) \otimes h(t)$$

$$TF: H(s) = \frac{Y(s)}{X(s)}$$

$$H(s) = \frac{b_{m}5^{m} + b_{m-1}5^{m-1} + ... + b_{1}5 + b_{0}}{1 * 5^{m} + \alpha_{m-1}5^{m-1} + ... + \alpha_{1}5 + \alpha_{0}}$$

NEM

Factorial Form:

$$H(s) = \frac{b_{m}(s-z_{1})(s-z_{2})*...*(s-z_{m})}{(s-p_{1})(s-p_{2})*...*(s-p_{n})}$$

- · P., P2, ..., Pn ~ roots of denominator polynomial (poles)
 - · Z., Zz,....Zm ~ roots of the numerator (zeros)
- MATLAB : roots M
- H(s) properties ~ poles, Zeros
 - · ~ = order of the H(s)

Example 3.8

Given the Following Frequency Function, determine the roots + order of the system

$$H(5) = \frac{25^2 + 125 + 20}{5^3 + 65^2 + 105 + 8} = \frac{2(5^2 + 65 + 10)}{5^3 + 65^2 + 105 + 8}$$

Solution:
$$H(s) = \frac{\lambda(s+3-s)(s+3+s)}{(s+4)(s+1-s)(s+1+s)}$$

- o 3rd order system
 - roots: -4, -1 = 3
- · Zeros : -3 = 3
- · poles : -4 ; -1 = 5

input
$$\frac{\times (s)}{\times (t)}$$
 $\frac{H(s)}{system}$ $\frac{y(s)}{y(t)}$ output

Solution to get y(x)

- · h(+) H(s)
- $X(k) \longrightarrow X(s)$
- · Y(s) = H(s) * ×(s)
- · 9(x) (5)

Coiven the following frequency Function, determine it's corresponding time signal.

$$H(s) = \frac{5+2}{5^3+45^2+3s}$$

Poles :

$$H(s) = \frac{5+2}{5(5+4s+3)}$$

$$= \frac{5+2}{5(5+3)(5+1)}$$

2eros : -2

poles: 0, -3, -1

$$\frac{1}{5} + \frac{b}{5+3} + \frac{c}{5+1}$$