Math 300 Homework 1

Problem 1

Find each of the following limits:

(a).
$$\lim_{z \to 2i} \frac{z^2 + 9}{2z^2 + 8}$$

(b).
$$\lim_{z \to \infty} \frac{3z^2 - 2z}{z^2 - iz + 8}$$

(c).
$$\lim_{z \to 5} \frac{3z}{z^2 - (5-i)z - 5i}$$

(d).
$$\lim_{z \to \infty} (8z^3 + 5z + 2)$$

(e).
$$\lim_{z \to \infty} e^z$$

(a). Solution.

$$\lim_{z \to 2i} \frac{z^2 + 9}{2z^2 + 8} = \frac{\lim_{z \to 2i} (z^2 + 9)}{\lim_{z \to 2i} (2z^2 + 8)}$$
$$= \frac{-8 + 9}{-8 + 8}$$
$$= \frac{1}{0}$$
$$= \infty$$

(b). Solution.

$$\lim_{z \to \infty} \frac{3z^2 - 2z}{z^2 - iz + 8} = \lim_{z \to \infty} \frac{3 - \frac{2}{z}}{1 - \frac{i}{z} + \frac{8}{z^2}}$$

$$= \frac{\lim_{z \to \infty} (3 - \frac{2}{z})}{\lim_{z \to \infty} (1 - \frac{i}{z} + \frac{8}{z^2})}$$

$$= \frac{3 - \frac{2}{\infty}}{1 - \frac{i}{\infty} + \frac{8}{\infty}}$$

$$= \frac{3}{1}$$

$$= 3$$

(c). Solution.

$$\lim_{z \to 5} \frac{3z}{z^2 - (5 - i)z - 5i} = \lim_{z \to 5} \frac{3}{z - (5 - i) - \frac{5i}{z}}$$

$$= \frac{\lim_{z \to 5} 3}{\lim_{z \to 5} (z - (5 - i) - \frac{5i}{z})}$$

$$= \frac{3}{\infty - (5 - i) - \frac{5i}{\infty}}$$

$$= \frac{3}{\infty - 0}$$

$$= 0$$

(d). Solution.

$$\lim_{z \to \infty} (8z^3 + 5z + 2) = \lim_{z \to \infty} z^3 (8 + \frac{5}{z^2} + \frac{2}{z^3})$$

$$= (\lim_{z \to \infty} z^3) (\lim_{z \to \infty} (8 + \frac{5}{z^2} + \frac{2}{z^3}))$$

$$= \infty \cdot (8 + \frac{5}{\infty} + \frac{2}{\infty}))$$

$$= \infty \cdot (8 + 0 + 0)$$

$$= \infty$$

(e). Solution. We claim that $\lim_{z\to\infty} e^z$ does not exist. Let z=a+bi. Then $e^z=e^ae^{ib}=e^a(\cos b+i\sin b)$. We note that if b=0, if $z\to\infty$, we can either have $a\to\infty$ or $a\to-\infty$. It is a common result from first year calculus that $\lim_{a\to\infty} e^a=\infty$ and $\lim_{a\to-\infty} e^a=0$.

For the sake of contradiction, assume that $\lim_{z\to\infty}e^z=L$, $L\in\mathbb{C}$. Then for $\varepsilon>0$, there exists M>0 such that $|z|>M\implies |e^z-L|<\varepsilon$. We also know that there is some N such that if a>N where $a\in\mathbb{R}$, then $e^a>L+\varepsilon$. Fix $\varepsilon>0$. This gives us an M that satisfies our limit inequality, and an N that satisfies the inequality above. So if $M_1=\max\{N,M\}$, then if $z\in\mathbb{R}$ such that $z>M_1\geq M$, then we have $e^z>L+\varepsilon\implies e^z-L>\varepsilon$. Now since $\varepsilon>0$, $e^z>L$, so $e^z-L>0\implies e^z-L=|e^z-L|$ so $|e^z-L|>\varepsilon$, which is a contradiction.

Now for the sake of contradiction, assume that $\lim_{z\to\infty}e^z=\infty$. Then for any N>0, there exists M>0 such that $|z|>M\implies |e^z|>N$. Note that for any M>0, for any a>M where $a\in\mathbb{R}$, we have $0< e^{-a}< e^0=1$. So if N=2, for any M>0, if $z\in(-\infty,0)$ such that |z|>M, we still have $e^z\leq 2$, which is a contradiction.