Truth Tables

LOGIC I Benjamin Brast-McKie September 19, 2023

Truth Functions

Previously: For an interpretation \mathcal{I} , a VALUATION function $\mathcal{V}_{\mathcal{I}}$ is the smallest function to assign truth-values to every sentence of SL that satisfies the semantic clauses:

- (*A*) $\mathcal{V}_{\mathcal{T}}(\varphi) = \mathcal{I}(\varphi)$ iff φ is a sentence letter of SL.
- (¬) $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1$ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 0$ (i.e., $\mathcal{V}_{\mathcal{I}}(\varphi) \neq 1$).
- $(\wedge) \quad \mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 1 \text{ and } \mathcal{V}_{\mathcal{I}}(\psi) = 1.$
- (\vee) $\mathcal{V}_{\mathcal{I}}(\varphi \vee \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ or $\mathcal{V}_{\mathcal{I}}(\psi) = 1$ (or both).
- $(\supset) \quad \mathcal{V}_{\mathcal{I}}(\varphi \supset \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \text{ or } \mathcal{V}_{\mathcal{I}}(\psi) = 1 \text{ (or both)}.$
- (\equiv) $\mathcal{V}_{\mathcal{I}}(\varphi \equiv \psi) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}(\varphi) = \mathcal{V}_{\mathcal{I}}(\psi).$

Truth Tables: Use the semantics to fill out the CHARACTERISTIC TRUTH TABLES given below:

		φ	ψ	$\varphi \wedge \psi$	$\varphi \lor \psi$	$arphi\supset\psi$	$\varphi \equiv \psi$
φ	$\neg \varphi$	1	1	1	1	1	1
1	0 1	1	0	0	1	0	0
0	1	0	1	0	1	1	0
		0	0	0	0	1 0 1 1	1

Sentential Operators: The connectives are SENTENTIAL OPERATORS which map sentences to sentences.

Truth Functional: The connectives express truth-functions:

 $\mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 - \mathcal{V}_{\mathcal{I}}(\varphi);$ $\mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = \mathcal{V}_{\mathcal{I}}(\varphi) \times \mathcal{V}_{\mathcal{I}}(\psi).$

HOMEWORK: Given an interpretation \mathcal{I} , specify the truth-values of $\varphi \lor \psi$, $\varphi \supset \psi$, and $\varphi \equiv \psi$ as a function of the truth-values of φ and ψ in a similar fashion as above.

Task 1: How many unary/binary truth-functions are there? *Adequacy:* Given the expressive limitations of SL, what should we hope to be able to adequately regiment?

Examples

COMPLEX ARGUMENTS

Rain

- (1) If it is raining on a week day, Sam took his car.
- (2) Kate borrowed Sam's car only if Sam did not take it.
- (3) Kate borrowed Sam's car just in case she visited her parents.
- (3) It is raining and Kate visited her parents.
- ... It is not a week day.

Task 2: Regiment this argument and construct its truth table.

Observe: This argument can be adequately regimented and evaluate in SL.

CONJUNCTION

Gym

- (1) Kate took a shower and went to the gym.
- ... Kate went to the gym and took a shower.

Task 3: Regiment this argument and construct its truth table.

Observe: Conjunction in English can track temporal order.

Question: How can we capture the invalidity of this argument in SL?

DISJUNCTION

Vault

- (1) If Kin uses the remote, the trunk will open.
- (2) If Adi tries the handle, the trunk will open.
- (3) If Kin uses the remote and Adi tries the handle, the trunk won't open.
- ... If Kin uses the remote or Adi tries the handle, the trunk will open.

Task 4: Regiment this argument and construct its truth table.

Observe: We cannot regiment the conclusion with inclusive-'or'.

Question: Can we salvage the validity of this argument?

THE MATERIAL CONDITIONAL

Roses

- (1) Sugar is sweet.
- ... The roses are only red if sugar is sweet.

Task 5: Regiment this argument and construct its truth table.

Observe: The locution 'only if' appears to assert something stronger than ⊃.

Vacation

- (1) Casey is not on vacation.
- ... If Casey is on vacation, then he is in Paris.

Crimson

- (1) Mary doesn't like the ball unless it is crimson.
- (2) Mary likes the ball.
- ... If the ball is blue, then Mary likes it.

THE BICONDITIONAL

Rectangle

- (1) The room is a square.
- (2) The room is a rectangle.
- ... The room is a square if and only if it is a rectangle.

Work

- (1) Kin isn't a professor.
- (2) Sue isn't a chef.
- ... Kin is a professor just in case Sue is a chef.

Applications

Objection: The semantics for SL is not good for anything.

Response: SL is perfect for necessary claims (like in mathemat-

ics), as well as sentences where we only care about their truth-value as opposed to their modal profile or

subject-matter.