Trial cross-bar controller Device guide

Вячеслав Тарасов 8 декабря 2021 г.

Содержание

1	Раб	очее о	круже	ение																			3
	1.1	doc.																					3
	1.2	rtl																					3
	1.3	\sin																					
	1.4	syn																					3
	1.5	tb																					
2	Арх	китекту	/pa																				4
	2.1^{-2}	Описал	ние пор	ртов .																			4
	2.2	Тактир																					
	2.3	Описал			_																		
			cross_																				4
			cross_																				4
			cross																				
		2.3.4	cross	bar	slav	е.																	5
		2.3.5	cross_	bar_	rr_	arbi	iter	•														 	5
3	Фун	нкцион	ирова	ние																			6

1 Рабочее окружение

Описание всех основных директорий рабочего окружения.

1.1 doc

Директория с исходниками документации.

- dev guide.tex руководство разработчика в LATEX версии;
- preamble.tex преамбула для L^AT_EXокружения;
- dev guide.pdf руководство разработчика, сохраненное в PDF формате.

1.2 rtl

Директория с исходниками cross-bar контроллера.

- cross bar pkg.sv пакет со всеми ключевыми параметрами дизайна;
- cross bar top.sv модуль верхнего уровня контроллера;
- cross bar master.sv модуль мультиплексоров для сигналов из slave в master;
- cross_bar_slave.sv модуль мультиплексоров для сигналов из master в slave с арбитражной логикой;
- \bullet cross_bar_arbiter.sv модуль арбитра.

$1.3 \quad sim$

Содержит скрипты для запуска симуляции в Xcelium.

• src.files - файл со списком всех исходников для симуляции.

1.4 syn

Директория со скриптами запуска синтеза в Genus. Используется для оценки временных/пространственных параметров блоков.

• lib - директория с библиотеками.

Директория **cross** bar построена по принципу:

- syn_genus/run_genus скрипт для запуска Genus, в который передаются Tcl скрипты, описанные ниже;
- syn genus/elab.tcl скрипт с командами подключения библиотек, исходников и сборки;
- syn genus/syn.tcl скрипт с командами ограничений для тактового сигнала и синтеза;
- syn genus/clean скрипт для очистки всех артефактов синтеза;
- syn wrp.sv файл обертка для синтезируемого модуля;

1.5 tb

Директория с тестбенчами.

- dev рабочий тестбенч; используется при разработке контроллера;
- rr arbiter тестбенч для тестирования арбитра;
- tb vip slave.sv отдельный файл, в который вынесен модуль Verification IP инфраструктуры.

2 Архитектура

Cross-bar controller позволяет осуществлять коммутацию нескольких master и нескольких slave устройств. Параметры контроллера:

- Количество master устройств (parameter MASTER N), не менее 2-х;
- Количество slave устройств (parameter **SLAVE N**);
- \bullet Ширина шины адреса (parameter **ADDR W**);
- \bullet Ширина шины данных (parameter **DATA W**);
- Выбор slave устройства определяется старшими битами адреса;
- Арбитраж между несколькими master запросами в одно slave устройство осуществляется по дисциплине "round-robin".

2.1 Описание портов

Таблица 1: Тактирование и сброс

Сигнал	Направление	Примечание
clk	вход	тактовый сигнал
aresetn	вход	асинхронный сброс с активным нулем

Таблица 2: Интерфейс к master устройствам

Tackinga 2. Tim op pone it maeter yerpenersan									
Сигнал	Направление	Примечание							
master_req	вход	запрос на выполнение транзакции							
$master_addr[ADDR_W - 1: 0]$	вход	содержит адрес запроса							
$master_cmd$	вход	признак операции: 0 - read, 1 - write							
$master_wdata[DATA_W - 1: 0]$	вход	содержит записываемые данные							
$master_ack$	выход	сигнал-подтверждение от slave устройства							
$master_rdata[DATA_W - 1: 0]$	выход	содержит считываемые данные							

Таблица 3: Интерфейс к slave устройствам

Сигнал	Направление	Примечание
slave_req	выход	запрос на выполнение транзакции
$slave_addr[ADDR_W - 1: 0]$	выход	содержит адрес запроса
$slave_cmd$	выход	признак операции: 0 - read, 1 - write
$slave_wdata[DATA_W - 1: 0]$	выход	содержит записываемые данные
$slave_ack$	вход	сигнал-подтверждение от slave устройства
$slave_rdata[DATA_W - 1: 0]$	вход	содержит считываемые данные

2.2 Тактирование и сброс

- Разделения на тактовые домены внутри нет;
- Для всех триггеров внутри контроллера используется асинхронный сброс с активным нулём.

2.3 Описание модулей

2.3.1 cross bar top

Модуль верхнего уровня контроллера. Здесь происходит подключение всех основных модулей. Все параметры задаются через пакет cross_bar_pkg.

2.3.2 cross bar pkg

Пакет со всеми глобальными для дизайна параметрами, типами и пр. Этот пакет импортируется во все модули контроллера.

2.3.3 cross bar master

Чистая комбинационная логика мультиплексоров сигналов ack и rdata от slave κ master.

2.3.4 cross bar slave

Модуль содержит в себе комбинационную логику мультиплексоров сигналов req, addr, cmd и wdata от master κ slave, фильтр запросов req и модуль арбитража.

2.3.5 cross bar rr arbiter

Модуль арбитра, переписанный из открытых источников, требует дополнительной проверки. Также присутствует логика синхронизации сигналов req.

3 Функционирование

Полностью параметризованный модуль cross-bar, позволяющий производить автоматическую коммутацию настраиваемого количества master устройств и slave устройств.

Выбор slave устройства определяется старшими битами сигналов addr.

В случае одновременного обращения нескольких master устройств к одному slave устройству осуществляется арбитраж по дисциплине "round-robin".