# **Chemistry of Organic Electronic Materials**

## 6483- Fall 2012

Tuesdays and Thursdays: 9:35-10:50 am Lecture Room 1201A, MoSE Building

#### **Dr. Jean-Luc Brédas:**

Office – M Building – Room 2100M

e-mail - jean-luc.bredas@chemistry.gatech.edu

#### **Dr. Veaceslav Coropceanu:**

Office - M Building - Room 4202C

e-mail - veaceslav.coropceanu@chemistry.gatech.edu

#### Dr. Chad Risko:

Office – M Building – Room 4202C

e-mail - chad.risko@chemistry.gatech.edu

The goal of this course is to provide a broad description of the basic chemical and physical concepts that determine the properties of electrically active organic materials.

The discussion will include aspects of synthesis, electronic structure, physico-chemical characterization, and device applications.



**Example of a flexible organic light-emitting diode (OLED)** (from the Center on Organic Photonics and Electronics at Georgia Tech) and of an ultra-thin 55-inch OLED television coming on the market this fall (from LG)

#### Topics to be discussed in class

- General introduction to the <u>electronic structure of organic materials</u> with connection to their electrical properties and optical absorption
- **Electrically conducting polymers**
- Basic concepts of conductivity
- > Introduction to the concepts of polarons and solitons
- > Evolution of electronic structure upon doping (polyacetylene; polypyrrole)
- **Excited states**
- > At the molecular level
  - fluorescence
  - phosphorescence
- > At the condensed-phase level
- **Electron transfer**
- General introduction to Marcus Theory
  - energy transfer
  - o electron transfer
- **Theory of charge transport and mobility in organic materials**
- > Band regime vs. hopping regime
- Electron-vibration couplings
- Luminescent materials
- > Basic concepts of light absorption and emission
- **Electroluminescence**
- Impact of interchain/intermolecular interactions
- $\triangleright$  Luminescent organic  $\pi$ -conjugated polymers and coordination complexes
- Organic electronics
- $\triangleright$  Applications of  $\pi$ -conjugated materials in organic light-emitting diodes
- $\triangleright$  Applications of  $\pi$ -conjugated materials in organic solar cells
- $\triangleright$  Applications of  $\pi$ -conjugated materials in organic field-effect transistors

#### **Assignments**

Assignments will take the form of reading a number of recommended review papers.

There will be two mid-term exams on Sept. 20 and Oct. 25 (during normal class hours). The final exam (on Dec. 13) will be cumulative. In each instance, study guides will be provided.

### **Grading:**

First mid-term: 100 points.

Second mid-term (cumulative): 150 points.

Final (cumulative): 250 points.

Total: 500 points.

| Class # | Date       | Topic                                                    |
|---------|------------|----------------------------------------------------------|
| 1       | Aug. 21    | Introduction – Electronic Structure of Organic Materials |
| 2       | Aug. 23    | Electronic Structure of Organic Materials                |
| 3       | Aug. 28    | Electronic Structure of Organic Materials                |
| 4       | Aug. 30    | Intro to π-Conjugated Materials                          |
| 5       | Sept. 04   | Intro to Electron Transfer Theory (VC)                   |
| 6       | Sept. 06   | Intro to Electron Transfer Theory (VC)                   |
| 7       | Sept. 11   | Conducting Polymers                                      |
| 8       | Sept. 13   | Conducting Polymers                                      |
| 9       | Sept. 18   | Conducting Polymers                                      |
| 10      | Sept. 20   | Mid-term I                                               |
| 11      | Sept. 25   | Intro to Luminescence Phenomena                          |
| 12      | Sept. 27   | Organic Light-Emitting Materials and OLEDs               |
| 13      | Oct. 02    | Organic Light-Emitting Materials and OLEDs               |
| 14      | Oct. 04    | Organic Light-Emitting Materials and OLEDs               |
| 15      | Oct. 09    | Impact of Interchain/Intermolecular Interactions         |
| 16      | Oct. 11    | Impact of Interchain/ Intermolecular Interactions        |
| 17      | Oct. 16    | Fall Break                                               |
| 18      | Oct. 18    | Transport Properties                                     |
| 19      | Oct. 23    | Transport Properties (CR)                                |
| 20      | Oct. 25    | Mid-term II                                              |
| 21      | Oct. 30    | Transport Properties (CR)                                |
| 22      | Nov. 01    | Transport Properties / Metal-Organic Interfaces          |
| 23      | Nov. 06    | Metal-Organic Interfaces                                 |
| 24      | Nov. 08    | Metal-Organic Interfaces                                 |
| 25      | Nov. 13    | NO CLASS                                                 |
| 26      | Nov. 15    | Organic Transistors                                      |
| 27      | Nov. 20    | Organic Solar Cells                                      |
| 28      | Nov. 22    | THANKSGIVING                                             |
| 29      | Nov. 27    | Organic Transistors (VC)                                 |
| 30      | Nov. 29    | Organic Solar Cells                                      |
| 31      | Dec. 04    | Organic Solar Cells                                      |
| 32      | Dec. 06    | Review for final exam                                    |
| 33      | Dec. 13    | Final Exam 8:00-10:50am                                  |
|         | (Thursday) |                                                          |