

Limiarização em redes neurais convolucionais para classificação em cenário aberto

Gabriel Lucas Silva Machado

Jefersson Alex dos Santos
{gabriel.lucas, jefersson}@dcc.ufmg.br

Contexto

Redes Neurais Convolucionais (*CNNs*) se demonstraram uma eficiente ferramenta de aprendizado de máquina quando se trata de imagens. A quantidade de informação que uma imagem pode carregar é imensa, e nem sempre são conhecidos todos os elementos presentes nas imagens. A abordagem para cenário aberto (*openSet recognition*) surgiu visto a necessidade de abstração de todos os ele-

mentos presentes nas imagens, focando somente no que é relevante. Esse trabalho consiste em uma implementação e análise experimental de uma CNN aplicada em um problema de segmentação, utilizando duas abordagens distintas: o cenário completamente aberto e o cenário semi-aberto.

Cenário Aberto e *Dataset* Closed Training and Claimed One class, Multiple known testing samples everything else identity, classes, many come from possibility for in the world is unknown known classes classes impostors negative Figura 1: Tipos de abordagens.

Figura 2: Exemplo de instância do dataset utilizado no projeto.

Objetivos

Os objetivos do trabalho são:

- Realizar um estudo comparativo das abordagens de cenário aberto e semi-aberto aplicada em um problema de classificação de *pixels* em imagens de sensoriamento remoto.
- Estimar o threshold em ambos cenários, comparar os resultados e avaliar os impactos nos resultados.

Arquitetura da Rede e Protocolo de validação

Figura 3: Arquitetura da CNN utilizada.

Figura 4: Protocolo K-fold cross validation.

Resultados Experimentais

Cenário Semi-aberto:

Nessa abordagem foram apresentadas duas classes na fase de treinamento: café e não café.

Tabela 1: Tabela de resultados obtidos.

	Sem o estimador	Round 1	Round2
Fold 1	0.853800	0.854164	0.854176
Fold 2	0.861376	0.862928	0.862964
Fold 3	0.768684	0.796316	0.800252
Fold 4	0.859576	0.869496	0.869568
Fold 5	0.819636	0.836012	0.837164
Média	0.8326144	0.8437832	0.8448248

Figura 5: Resultado obtido em um dos testes feitos.

Cenário completamente aberto :

Nessa abordagem foi apresentada somente uma classe na fase de treinamento: café. As tentativas de usar essa abordagem não foram bem sucedidas, visto que durante o treino a rede neural acabou aprendendo o caminho óbvio que era classificar qualquer *input* como café, com 100% de certeza. Dessa forma a acurácia na fase de treinamento era de 100% e com uma função de perda baixa.

Acredita-se que para contornar o problema é necessário apresentar pelo menos mais uma classe durante a fase de treinamento. Dessa forma a capacidade de generalização da CNN não é completamente enviesada para o óbvio.