Функционални зависимости (Functional Dependencies)

Значение на FD's Ключове и суперключове Аксиоми на Армстронг

Slide 1

Релационен модел - основни понятия

- Атрибути
- Схеми
- Кортежи
- Домейни

Slide 2

Релация

- Формализирана дефиниция:
 - Ако **A**, **B** са м-ва, релацията **R** е подмножество на **A x B**
- A={1,2,3}, B={a,b,c,d}, R = {(1,a), (1,c), (3,b)}

makes е подмножество на Product x Company:

Slide 3

Формална дефиниция

- Нека г е релация. Да означим с R нейната схема
 R(A₁, A₂, ..., A_n)
- Тогава г, или r(R), е математическа релация от степен n върху домейните $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$ подмножество на декартовото произведение на домените, които дефинират R. Това може да се изрази чрез:

 $r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$

- r(R) е м-во от n-tuples, $r = \{t_1, t_2, ..., t_m\}$
- Всеки n-tuple t е подреден списък от n стойности $t=<\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n>$, където $\mathbf{v}_i,\ 1\leq i\leq n$, е елемент от $dom(A_i)$ или специалната стойност NULL value

Slide

Нотация

 $R(A_1, A_2, ..., A_n)$

 $r = \{t_1, t_2, ..., t_m\}$

t=<v₁, v₂, ..., v_n>

 $t[A_1]$ or $t.A_1$

Имена на релации: Q, R, S

Екземпляри на релации : q, r, s

Кортежи (tuples): t, u, v

Slide 5

Функционални зависимости

- Дефиниция
- Функционални зависимости и ключове
- Правила за функционални зависимости
 - Аксиоми на Армстронг
 - Правила за извод

Функционална зависимост дефиниция (FD)

- $\mathbf{A_1},\,\mathbf{A_2},\,...,\,\mathbf{A_n}\!\rightarrow\!\mathbf{B}$
 - . __, ..., .-, /_ ..., А_n функционално определя В"
- Ако два кортежа от r(R) съвпадат по атрибутите $A_1, A_2, ..., A_n$ of R, те трябва да съвпадат и по атрибута В

Графично представяне...

• Нека $A \rightarrow B$

FD се отнася за всеки два кортежа t и u в релацията R

Пример

Movies					
title	year	length	filmType	studioName	starName
Star Wars	1977	124	color	Fox	Carrie Fisher
Star Wars	1977	124	color	Fox	Mark Hamill
Star Wars	1977	124	color	Fox	Harrison Ford
Mighty Ducks	1991	104	color	Disney	Emilio Estevez
Wayne's World	1992	95	color	Paramount	Dana Carvey
Wayne's	1992	95	color	Paramount	Mike Myers

title year → length

 $\text{title year} \rightarrow \text{filmType}$

 $\text{title year} \rightarrow \text{studioName}$

 $title\ year \rightarrow starName$

Нотация

- А, В, С, ... м-ва от атрибути
 - Понякога за по-голяма яснота се използва АА или ВВ
 - $A_1,\,A_2,\,A_3,\,...,\,A_n$ означават индивидуални атрибути
- F се използва за означение на м-то на функционалните зависимости
 - С малки букви f означаваме единични функционални зависимости

FD's и схема

- FD е твърдение за схемата на релацията, не за конкретен екземпляр
 - FD's не могат да се определят чрез просто преглеждане на данните
 - FDs са свойства на семантиката на атрибутите
 - Всички данни ги удовлетворяват

Ключове на релации

- $K = \{A_1, A_2, ..., A_n\}$ е *ключ* за релацията R ако:
 - 1. М-то К функционално определя всички атрибути на R.
 - 2. За нито едно подмножество на K(1) не е
- Ако K удовлетворява (1), но не удовлетворява (2), то К е суперключ.
 - •За ключовете в E/R модела няма изискване за минималност

Пример

Movies(title, year, length, filmType, studioName,starName)

- Ключ {title, year, starName}
- Няма други ключове, но има много суперключове.
 - Всяко супермножество на {title, year, starName}
 - Пример : {title, year, starName,length, stufioName} is a superkey

Slide 13

FD's и ключове

- Нова дефиниция в термините на FD's
- K={A₁,A₂,...,A_n} е ключ на релацията R ако:
 - 1.К определя функционално ВСИЧКИ други атрибути на R
 - ${}^{\bullet}K \to R$
 - •Не е възможно 2 различни кортежа $\mbox{\it t}$ и $\mbox{\it u}$ да съвпадат по $\mbox{\rm A}_1, \mbox{\rm A}_2, ..., \mbox{\rm A}_n$
 - 2. Нито едно подмножество на K не може да определи функционално всички останали атрибути на R
 - К е минимално

Slide 14

Какво е функционалното при FDs?

- $A_1A_2...A_n \to B$ се нарича *функционална* зависимост, защото има функция, която на списък от стойности (по една за всяко $A_1,A_2,...A_n$) съпоставя уникална стойност за B
- Тук функцията не се изчислява по стандартния начин
 - "изчислението" става чрез търсене в релацията

Slide 15

Откриване на ключове в релации

- Когато релационната схема е получена от преобразуването на E/R диаграма в релация, структурата на ключа може да се предвиди:
 - Преобразуване на същност
 - Ако релацията е получена от м-во същности, ключът на релацията се формира от атрибутите на ключа на м-вото същности
 - Преобразуване на бинарна връзка

Slide 16

Определяне на всички FDs

Α	В	С
а	b	С
а	b1	С
a1	b	c1

A → C ?

Slide 17

Student-course database

ld#	Name	Address	C#	Description	Grade
124	Jones	Phila	Phil7	Plato	Α
456	Smith	NYC	Phil7	Plato	В
789	Brown			Topology	С
124	Jones			Topology	Α
789	Brown	Boston	Eng12	Chaucer	В

Добри и лоши проекти

• Защо проектът не е добър?

Data(Id#, Name, Address, C#, Description, Grade)

• Защо трябва да предпочетем този проект?

Student(Id#, Name, Address) Course(C#, Description) Enrolled(Id#, C#, Grade)

student-course database

Slide 19

Пример за лошо проектиране

Id#	Name	Address	C#	Description	Grade
124	Jones	Phila	Phil7	Plato	Α
456	Smith	NYC	Phil7	Plato	В
789	Brown	Boston	Math8	Topology	С
124	Jones			Topology	Α
789	Brown	Boston	Eng12	Chaucer	В

- Излишество на информация
 - · Name Address
- Информацията за курса зависи от наличието на студент

Slide 20

Определяне на FDs

• FDs при student-course database

 $Id\# \rightarrow Name$, Address $C\# \rightarrow Description$ Id#, $C\# \rightarrow Grade$

- Всяка релация трябва да удовлетворява FDs.
- FDs са твърдения за семантиката на БД (не претърсваме екземплярите на БД за откриването им).
- Как да открием всички FDs, ако имаме някои от тях?

Slide 21

Аксиоми на Армстронг

- Някои FD's могат да се получат като логически следствия от други, чрез прилагане на определени правила. Тези правила са познати под името Armstrong's axioms:
 - Рефлексивност
 - Разширение
 - Транзитивност

Slide 22

Аксиоми на Армстронг

• А1 Рефлексивност (Reflexivity).

Ako $Y \subseteq X$ to $X \rightarrow Y$

Пример: Name, Address \rightarrow Address

•A2 Разширение, попълнение (Augmentation).

Ako $X \rightarrow Y$ to $XW \rightarrow YW$

Пример : от $C\# \to Description$ получаваме $C\#_r Id\# \to Description$, Id#

•А3 Транзитивност (Transitivity).

Ако $X \rightarrow Y$ и $Y \rightarrow Z$ то $X \rightarrow Z$

Slide 23

Аксиоми на Армстронг

- А1 Рефлексивност (Reflexivity) Ако $Y \subseteq X$ то $X \rightarrow Y$
 - Всеки 2 кортежа \boldsymbol{t} и \boldsymbol{u} съвпадат по всички атрибути на \boldsymbol{X} , следователно те съвпадат и по всяко подмножество на \boldsymbol{X} , включително \boldsymbol{Y}

Аксиоми на Армстронг

• А2 Разширение, попълнение (Augmentation). Ако $X \to Y$ то $XW \to YW$

Да допуснем, че има $\,2\,$ кортежа $\,t$ и $\,u$, които съвпадат по всички атрибути на $\,xw$, но не съвпадат по $\,yw$.

t и u задължително съвпадат по w.

Следователно $\emph{t} \mathrel{<>} \emph{u}$ по някой от атрибутите на \emph{Y} , което противоречи на $\emph{X} \mathrel{\rightarrow} \emph{Y}$

Slide 25

Аксиоми на Армстронг

• А3 Транзитивност (Transitivity). Ако $X \to Y$ и $Y \to Z$ то $X \to Z$

Да допуснем, че има 2 кортежа (x,y1,z1) и (x,y2,z2), които съвпадат по всички атрибути на *X*.

 $X \to Y$, следователно щом съвпадат по всички атрибути на X, задължително съвпадат по всички атрибути на Y, т.е. y1=y2

 $Y \rightarrow Z \dots z 1=z2$

2-та кортежа съвпадат

Slide 26

Следствия от Armstrong's Axioms

- Обединение Ако $X \to Y$ и $X \to Z$ то $X \to YZ$
- Псевдотранзитивност Ако $X \to Y$ и $WY \to Z$ то $XW \to Z$
- Декомпозиция Ако $X \to Y$ и $Z \subseteq Y$ то $X \to Z$

Доказателство?

Slide 27

Следствия от Armstrong's Axioms

• Обединение Ако $X \rightarrow Y$ и $X \rightarrow Z$ то $X \rightarrow YZ$

 $X \to Y$, следователно $X \to XY$ (A2) $X \to Z$, следователно $XY \to ZY$ (A2)

 $XY \rightarrow ZY$ (A3)

Slide 28

Следствия от Armstrong's Axioms

• Псевдотранзитивност Ако $X \to Y$ и $WY \to Z$ то $XW \to Z$

X o Y, следователно WX o WY (A2)

 $WY \rightarrow Z$, следователно $WX \rightarrow Z$ (A3)

Следствия от Armstrong's Axioms

• Декомпозиция

Ако $X \rightarrow Y$ и $Z \subseteq Y$ то $X \rightarrow Z$

 $X \to Y$ $Z \subseteq Y$, следователно $Y \to Z$ (A1)

 $X \rightarrow Z$ (A3)

Правила за разделяне и обединение

- Имаме право да разделим множеството атрибути в дясната част на FD и да поставим всеки от тях в дясната част на нова FD.
- Правило за декомпозиция:
 - Ако $AA \to B_1, B_2, ..., B_n$, то $AA \to B_1$ $AA \to B_2$, ..., $AA \to B_n$
- Можем ли да декомпозираме лявата част?

Slide 31

Правила за разделяне и обединение

• Правило за обединение:

Ако
$$AA \rightarrow B_1$$
 $AA \rightarrow B_2$, ..., $AA \rightarrow B_n$ то $AA \rightarrow B_1$, B_2 , ..., B_n

Slide 32

Тривиални зависимости

- Функционалната зависимост $A_1A_2...A_n \to B$ се нарича **тривиална**, ако атрибутът B съвпада с някой от атрибутите $A_1,A_2,\,...,\,A_n$. В противен случай **нетривиална**.
- Тривиални, нетривиални, напълно нетривиални
 - Тривиална: атрибутите $B_1B_2...B_n$ са подмножество на $A_1A_2...A_n$ title year \rightarrow title
 - Нетривиална: поне един атрибут от B₁B₂...B_n не е подмножество на A₁A₂...A_n
 title year → year, length
 - Напълно нетривиална: нито един от атрибутите В's не е част от A's

Slide 33

Правило на тривиалната зависимост

 Имаме право от дясната част на FDs да премахнем тези атрибути, които принадлежат на лявата част:

От
$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$
 получаваме

$$\begin{array}{l} A_1A_2...A_n \to C_1C_2...C_k \\ \text{където } \{C_1,C_2...C_k\} \subseteq \{B_1,B_2...B_m\} \text{ и нито един от атрибутите C не е от } A_1A_2...A_n \end{array}$$

Slide 34

Пример

Дадено AB \rightarrow C; CD \rightarrow E Да се докаже ABD \rightarrow E.

Slide 35

Пример

Дадено AB \rightarrow C; CD \rightarrow E Да се докаже ABD \rightarrow E.

- AB → C (Given)
- ABD → CD (A2)
- CD → E (Given)
- ABD \rightarrow E (A3)