You must show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided. Illegible work falls under the *Intended Purpose* policy.

Nama.	T.	1-11		Ω		•	L
Namo	上Sa	hell	(A	15u	CAN	ic	h

- 1. Convert the following as indicated: (0.4 points)
 - (a) 342_{10} to an 8-bit unsigned binary integer.

Answer:____

(b) 00100101_2 to a decimal integer.

(c) 00101001_2 to a hexadecimal integer.

Answer:____

(d) $B1_{16}$ to an 8-bit unsigned binary integer.

- 2. Compute the **4-bit binary** sum of the following 4-bit unsigned binary integers. Provide the base-10 result as well. Do allow values to overflow—that is do not add bits in excess of the 4 bits. Additionally, provide decimal(base₁₀) integer values ¹: (0.4 points)
 - (a) 0101 + 1001

Answer:

(b) 1010 + 0010

 $^{^{1}}$ Take into account overflow. Do not tell me that 15+15=30. I know you know that.

- 3. Convert the following to 8-bit signed binary integers and perform the indicated operations: (0.4 points)
 - (a) $1F_{16} 20_{16}$

Answer:

(b) $31_{10} - 17_{10}$

- 4. For each of the following, show their conversion to binary coded decimals (BCD) as 8421-code: (0.4 points)
 - (a) 127_{10}

Answer:____

(b) $F7_{16}$

Answer:

5. Decode the two following 8-bit binary strings into ASCII characters² characters: (0.4 points) ${\rm (a)}\ \ 01100011\ 01010011\ 01000011\ 01100101$ $(b) \ 01110100 \ 01101100 \ 00111011 \ 01100100 \ 01110010 \\$

Answer:_

²You may use the 7-bit ASCII from the book, but do keep in mind ASCII values, like all values in a computer, are 8-bits in