Overview

Discrete random variables often model real-life applications using specific probability distributions. Three e

1. Binomial Probability Distribution

- **Definition**: A Binomial experiment consists of \(n \) identical Bernoulli trials with two outcomes: success
- **Characteristics**:
 - Fixed number of trials \(n \).
 - Each trial is independent.
 - Probability of success \(p \) is constant across trials.
- **Probability Formula**:

```
\[  P(X = x) = C(n, x) p^x q^{(n-x)}  \]  where \ \ (C(n, x) = \frac{n!}{x!(n-x)!} \ ).
```

- **Mean and Variance**:
 - Mean: \(E(X) = \mu = np \)
 - Variance: \(Var(X) = npq \)
 - Standard deviation: \(\sigma = \sqrt{npq} \)
- **Examples**:
 - **Coin Tossing**: When tossing a coin 3 times, analyze probabilities for outcomes (e.g., observing 2 he
 - **Multiple Choice Test**: Calculate passing probabilities with random guessing.

2. Hypergeometric Probability Distribution

- **Definition**: This distribution applies to scenarios of sampling without replacement from a finite populati
- **Probability Formula**:

```
\[ P(X = x) = \frac{C(M, x) C(N-M, n-x)}{C(N, n)}
```

- **Mean and Variance**:
 - Mean: \(\mu = \frac{nM}{N} \)
- **Examples**:
 - **Urn Problem**: Determine probabilities of selecting red balls from a mixed set.
 - **Investing in Stocks**: Calculate the likelihood of selecting negatively performing stocks.
- ### 3. Binomial Approximation to the Hypergeometric Distribution
- **Approximation**: When \(N \) is much larger than \(n \), sampling without replacement may be approxing
- ### 4. Poisson Probability Distribution
- **Definition**: A Poisson distribution models the probability of a number of events occurring within a fixed
- **Probability Formula**:

```
\label{eq:power_power} $$ P(X = x) = \frac{e^{-\mu } \mu^x}{x!} $$
```

- **Mean and Variance**:
- Mean \(\mu \)

- Variance \(\mu\)

- **Examples**:
 - **Ship Collisions**: Calculate probabilities of occurrences over specified periods.
 - **Psychic Hotline Calls**: Use the Poisson model for call frequency.

5. Poisson Approximation to the Binomial Distribution

- **When to Use**: This approximation is best applied when \(n \) is large and \(p \) is small, ensuring \(n \)

Exercises

- **Binomial Examples**: Coin tossing, multiple choice tests, defective light bulbs.
- **Hypergeometric Examples**: Selecting red balls, choosing stocks with potential failures.
- **Poisson Examples**: Ship collisions, call predictions for hotlines, life insurance claims.

Summary

This chapter outlines significant discrete probability distributions? Binomial, Hypergeometric, and Poisson?