Game Theory Exercise Sheet 1

Game Theory Exercise Sheet 1

Date: April 28, 2015 Student: Tarek Saier

Exercise 1.1

(a)
$$G = \langle N, (A_i), (u_i) \rangle$$
 with $N = \{1, 2\}$ $A_1 = A_2 = \{u, l, m\}$ //Note: $u = \text{upper path}, l = \text{lower path}$ $m = \text{path using vertical edge in the middle}$

	u	l	m
\overline{u}	-2.2 , -2.2	-1.7 , -1.7	-2.2 , -1.6
\overline{l}	-1.7 , -1.7	-2.2 , -2.2	-2.2 , -1.6
\overline{m}	-1.6 , -2.2	-1.6 , -2.2	-2.1 , -2.1

stricktly dominated actions:

$$u_1(a_{-1}, m_1) > u_1(a_{-1}, l_1)$$

$$u_2(a_{-2}, m_2) > u_2(a_{-2}, l_2)$$

$$u_1(a_{-1}, m_1) > u_1(a_{-1}, u_1)$$

$$u_2(a_{-2}, m_2) > u_2(a_{-2}, u_2)$$

weakly dominated actions:

$$u_1(a_{-1}, m_1) \ge u_1(a_{-1}, l_1)$$

$$u_2(a_{-2}, m_2) \ge u_2(a_{-2}, l_2)$$

$$u_1(a_{-1}, m_1) \ge u_1(a_{-1}, u_1)$$

$$u_2(a_{-2}, m_2) \ge u_2(a_{-2}, u_2)$$

Nash equilibria: (m, m)

(b) A notable difference to the lecture example is that fact that the main diagonal of the matrix does not have the same values for all action sets. If both players choose m they gain a higher utility compared to both choosing u or l. In both variants adding more players to the game would increase the benefit of taking a $\frac{n_i}{n}$ -path alone whilst the rest of the players take the respective other path.

Game Theory Exercise Sheet 1

Exercise 1.2

(a) Nash equilibria: (yield,claim), (claim,yield) The game is *not* strictly competitive, since $\forall a \in A : u_1(a) = -u_2(a)$ does not hold.

(b) Nash equilibria: (landside,landside), (seaside,seaside)
The game is different insofar, als choosing the *same* action as the opponent is beneficial. For the claim-yield game it's the opposite: playing the action *different* from the opponent's is beneficial.