${\tt EECS119}$ - ${\tt VLSI}$ - Project 4

Andrey Miroshnikov, ID No ——

0.1 Introduction

For this project, a Binary Coded Decimal (BCD) up/down counter was constructed using a standard cell approach. An approach using JK flip flops was chosen as this was a popular counter architecture. The up/down circuit was found in [1] and was modified by using JK flip flops with a reset and additional reset logic that became asserted when the counter output was 1010 (10).

0.2 Design Parameters

Like in the previous project, the transistor parameters were: $L_n = L_p = 1.5\mu m, W_n = 3\mu m, W_p = 6\mu m.$

0.3 Logic Gates

Five gates were necessary to implement the higher level blocks: NOT, AND, OR, 2-NAND and 3-NAND. The first three gates were slightly altered since the previous project (smaller area and metal 3 used for V_{dd} and Gnd).

0.3.1 Inverter layout

Figure 1: Inverter layout.

0.3.2 AND gate layout

Figure 2: AND gate layout.

0.3.3 OR gate layout

Figure 3: AND gate layout.

0.3.4 2-input NAND gate layout

Figure 4: 2 input NAND gate layout.

0.3.5 3-input NAND gate layout

Figure 5: 3 input NAND gate layout.

0.4 JK Flip Flop

The JK flip flop design was based on schematic from [2] with four 3-input NAND gates and 4 2-input NAND gates. However the original schematic did not have set or reset inputs, which were added.

Figure 6: JK flip flop schematic.

Figure 7: JK flip flop layout.

0.5 BCD Up/Down Counter

The design of the BCD counter that could increment and decrement was simplified significantly with the modified logic gate standard cells. The total area of the counter was $772 \mu m$ by $96 \mu m$ or $74,000 \mu m^2$

Figure 8: BCD up/down counter schematic.

Figure 9: BCD up/down counter layout without the transistors shown.

Figure 10: BCD up/down counter complete layout.

0.6 Simulation

The counter layout had successfully passed the DRC and LVS tests.

0.6.1 DRC

```
DRC started......Thu Dec 7 10;52;24 2017
completed ....Thu Dec 7 10;52;24 2017
CPU TIME = 00;00;00 TOTAL TIME = 00;00;00

************ Summary of rule violations for cell "BCD_Counter_JK layout" *********
Total errors found: 0
```

Figure 11: Design Rule Checker result.

0.6.2 LVS check

Figure 12: LVS match confirmation popup.

0.6.3 Testbench schematic

Figure 13: Testbench schematic for the BCD up/down counter.

0.6.4 Waveforms

Several cases were tested with transient analysis using ADE L.

Schematic and layout comparison

Firstly, both the schematic and layout were tested for correct functionality (counting up and down depending on the value of the "Up" input).

Figure 14: Schematic and layout test result waveforms

Layout with Up=1

Figure 15: Layout test showing incrementing behaviour.

Layout with Up=0

Figure 16: Layout test showing decrementing behaviour.

The counter had successfully passed the test with Up=1 and Up=0 (incrementing and decrementing) as well as reseting if decrementing from 0 or incrementing past 9.

Bibliography

- [1] TECHNICAL ARTICLES, Synchronous Counters, https://www.allaboutcircuits.com/textbook/digital/chpt-11/synchronous-counters/
- [2] ElectronicsTutorials, JK Flip Flop and the Master-Slave JK Flip Flop Tutorial, http://www.electronics-tutorials.ws/sequential/seq_2.html