HW1 Associative Model Forecast

Group 2

2025-09-13

Table of contents

1 Explain Data 1

中文

1 Explain Data

已對資料做整理,取每個月的最後一筆收盤價當成月的基礎。 再利用轉對數的形式讓小樣本的序列能更平穩 報酬率公式:

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

利用報酬率來預測輝達收盤價跟SOXX(美國半導體產業股票指數)的收盤價的關聯本次使用ARIMAX模型來探討,但因資料筆數為11筆,模型只能作為參考。

library(readr)
library(forecast)

Registered S3 method overwritten by 'quantmod': method from as.zoo.data.frame zoo

```
library(skimr)
library(knitr)
library(kableExtra)
data <- read_csv("nvdatsmc.csv")

New names:
* `` -> `...1`

Rows: 11 Columns: 6
-- Column specification -------
Delimiter: ","
chr (1): MonthEnd
dbl (5): ...1, TSMC, TSMC_ret, NVDA, NVDA_ret

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

skim(data)
```

Table 1: Data summary

Name Number of rows Number of columns	data 11 6
Column type frequency: character numeric	1 5
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
MonthEnd	0	1	9	10	0	11	0

Variable type: numeric

skim_variabh	<u>e</u> missin g om	plete_	r antne an	sd	p0	p25	p50	p75	p100	hist
1	0	1	5.00	3.32	0.00	2.50	5.00	7.50	10.00	
TSMC	0	1	9.72	1.28	7.65	9.04	9.54	10.25	12.10	
TSMC_ret	0	1	-	0.10	-	-	-	-	0.22	
			0.03		0.18	0.07	0.07	0.01		
NVDA	0	1	137.52	223.58	108.38	122.50	134.29	148.12	2177.87	7
NVDA_ret	0	1	0.03	0.11	-	-	0.04	0.10	0.22	
					0.14	0.03				

```
library(tseries)
library(knitr)
library(broom)
nvda_adf <- adf.test(data$NVDA_ret)
soxx_adf <- adf.test(data$TSMC_ret)
kable(tidy(nvda_adf), caption = "ADF test on NVDA returns", digits = 4)</pre>
```

Table 4: ADF test on NVDA returns

statistic	p.value	parameter	method	alternative
-1.8792	0.6184	2	Augmented Dickey-Fuller Test	stationary

```
kable(tidy(soxx_adf), caption = "ADF test on SOXX returns", digits = 4)
```

Table 5: ADF test on SOXX returns

statistic	p.value	parameter	method	alternative
-2.0361	0.5586	2	Augmented Dickey-Fuller Test	stationary

```
#| fig-align: "center"
#| fig-width: 10
#| fig-height: 5
y <- data$NVDA_ret
X <- stats::lag(data$TSMC_ret, -1) # 1 t NVDA t-1 SOXX
df <- data.frame(y=y, X=X)
df <- na.omit(df)

y_ts <- ts(df$y, frequency = 12, start = c(2024,8)) # 2024 8
X_mat <- as.matrix(df$X)
# ---- ARIMAX ----
fit <- auto.arima(y_ts, xreg = X_mat, seasonal = FALSE,</pre>
```

Table 6: ARIMAX Model Coefficients

term	estimate	std.error
xreg	-0.0091721	0.3160346

Table 7: ARIMAX Model Fit Summary

sigma	logLik	AIC	BIC	nobs
0.1140704	8.796218	-13.59244	-12.79665	11

Table 8: Box-Pierce Test on Residuals

statistic	p.value	parameter	method
0.9596366	0.3272785	1	Box-Pierce test

Table 9: NVDA Forecast (h = 4)

Step	Mean	Lo80	Hi80	Lo95	Hi95
1	0.000405	-0.145782	0.146592	-0.223169	0.223978
2	0.000405	-0.145782	0.146592	-0.223169	0.223978
3	0.000405	-0.145782	0.146592	-0.223169	0.223978
4	0.000405	-0.145782	0.146592	-0.223169	0.223978

```
#| fig-align: "center"
#| fig-width: 10
#| fig-height: 5

future_X <- matrix(rep(tail(df$X,1), 4), ncol = 1)
colnames(future_X) <- "X"
fc <- forecast(fit, xreg = future_X, h=4)</pre>
```

Warning in forecast_forecast_ARIMA(fit, xreg = future_X, h = 4): xreg contains different column names from the xreg used in training. Please check that the regressors are in the same order.

```
library(knitr)
library(kableExtra)
fc table <- data.frame(</pre>
  Step = 1:length(fc$mean),
  Mean = round(as.numeric(fc$mean), 6),
 Lo80 = round(as.numeric(fc$lower[, "80\%"]), 6),
 Hi80 = round(as.numeric(fc$upper[, "80%"]), 6),
 Lo95 = round(as.numeric(fc$lower[, "95%"]), 6),
 Hi95 = round(as.numeric(fc$upper[, "95%"]), 6)
)
kable(
 fc table,
 format = "latex", booktabs = TRUE,
  caption = "NVDA Forecast (h = 4)",
  align = c("c", rep("r", 5))
) %>%
  kable_styling(latex_options = "scale_down", position = "center")
```

```
h < -4
ret4 <- as.numeric(tail(fc$mean, h))</pre>
last_price <- as.numeric(tail(data$NVDA, 1))</pre>
price4 <- last_price * cumprod(exp(ret4))</pre>
     =4
pred_table <- data.frame(</pre>
  Month = c("2025-09", "2025-10", "2025-11", "2025-12"),
 NVDA_ret_forecast = ret4,
 NVDA price forecast = price4,
 stringsAsFactors = FALSE
library(knitr)
library(kableExtra)
library(dplyr)
Attaching package: 'dplyr'
The following object is masked from 'package:kableExtra':
    group_rows
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
kable(
  pred_table %>%
   mutate(
      NVDA_ret_forecast = round(NVDA_ret_forecast, 8),
      NVDA_price_forecast = round(NVDA_price_forecast, 4)
    ),
```

NVDA_ret_forecast	NVDA_price_forecast
0.0004046	174.2505
0.0004046	174.3210
0.0004046	174.3916
0.0004046	174.4622
	0.0004046 0.0004046 0.0004046

```
format = "latex", booktabs = TRUE,
  col.names = c("Month", "NVDA_ret_forecast", "NVDA_price_forecast"),
  align = c("c","r","r")
) %>%
  kable_styling(latex_options = "scale_down", position = "center")
```

```
#| fig-align: "center"
#| fig-width: 10
#| fig-height: 5
set.seed(42) #
h <- 4
              # NVDA 4
# NVDA t SOXX {t-1} 3 10~12
y <- data$NVDA_ret
X <- stats::lag(data$TSMC ret, -1)</pre>
                                      # t NVDA t-1 SOXX
df <- na.omit(data.frame(y = y, X = X))</pre>
y_ts \leftarrow ts(df\$y, frequency = 12, start = c(2024, 8))
X_mat <- as.matrix(df$X)</pre>
fit_nvda <- auto.arima(</pre>
  y_ts, xreg = X_mat, seasonal = FALSE,
  stepwise = FALSE, approximation = FALSE
# (1)
        SOXX ret ARIMA
                           SOXX
soxx_ts <- ts(na.omit(data$TSMC_ret), frequency = 12, start = c(2024, 8))</pre>
fit soxx <- auto.arima(</pre>
 soxx ts, seasonal = FALSE,
  stepwise = FALSE, approximation = FALSE
)
```

```
# (2)
           SOXX ret
# simulate 2000 times
n sim <- 2000
lastX <- as.numeric(tail(soxx_ts, 1))</pre>
     3
           SOXX ARIMA
       SOXX
               3
sim_one_soxx <- function() {</pre>
  as.numeric(simulate(fit soxx, nsim = 3, future = TRUE))
}
soxx_future_mat <- t(replicate(n_sim, sim_one_soxx())) # n_sim x 3</pre>
# (3)
           NVDA
                   ARIMAX
#
          \mathbb{N}()
#
## 95\% = mean \pm z * sd \rightarrow sd (upper-mean)/z
draw_one_from_fc <- function(fc_obj) {</pre>
  m <- as.numeric(fc_obj$mean)</pre>
  lo <- as.numeric(fc obj$lower[, "95%"])</pre>
  hi <- as.numeric(fc_obj$upper[, "95%"])
  z \ll qnorm(0.95)
  sd \leftarrow (hi - m) / z
  rnorm(length(m), mean = m, sd = sd)
}
nvda_ret_sims <- matrix(NA_real_, nrow = n_sim, ncol = h)</pre>
for (i in 1:n_sim) {
  # lag 1 NVDA lastX
  future X <- c(lastX, soxx future mat[i, ])</pre>
  fc_i <- forecast(fit_nvda, xreg = matrix(future_X, ncol = 1), h = h)</pre>
                 ARIMAX
  nvda_ret_sims[i, ] <- draw_one_from_fc(fc_i)</pre>
# (4)
last_price <- as.numeric(tail(data$NVDA, 1)) #</pre>
```

```
nvda price sims <- t(apply(nvda ret sims, 1, function(r) last price * exp(cumsum(r))))</pre>
# (5)
         P10 P90
quant <- function(x, p) as.numeric(quantile(x, probs = p, na.rm = TRUE))</pre>
months <- c("2025-09","2025-10","2025-11","2025-12")
library(knitr)
library(kableExtra)
summary table <- data.frame(</pre>
 Month = months,
 Ret Mean = apply(nvda ret sims, 2, mean),
 Ret Median = apply(nvda ret sims, 2, median),
 Ret_P10 = apply(nvda_ret_sims, 2, quant, p = 0.10),
 Ret P90 = apply(nvda ret sims, 2, quant, p = 0.90),
 Price_Mean = apply(nvda_price_sims, 2, mean),
 Price_Median = apply(nvda_price_sims, 2, median),
 Price_P10 = apply(nvda_price_sims, 2, quant, p = 0.10),
 Price_P90 = apply(nvda_price_sims, 2, quant, p = 0.90)
kable(
 summary table %>%
   mutate(
     Ret_Mean = round(Ret_Mean, 6),
     Ret_Median = round(Ret_Median, 6),
                 = round(Ret_P10, 6),
     Ret_P10
     Ret_P90
                 = round(Ret_P90, 6),
     Price_Mean = round(Price_Mean, 2),
     Price_Median = round(Price_Median, 2),
     Price_P10 = round(Price_P10, 2),
     Price P90 = round(Price P90, 2)
    ),
 format = "latex", booktabs = TRUE,
 caption = "NVDA Forecast (Monte Carlo Simulation, 2000 runs)",
 align = c("c", rep("r", 8))
) %>%
 kable styling(latex options = "scale down", position = "center")
```

```
# ------
# 6) bear/base/bull
```

Table 10: NVDA Forecast (Monte Carlo Simulation, 2000 runs)

Month	Ret_Mean	Ret_Median	Ret_P10	Ret_P90	Price_Mean	Price_Median	Price_P10	Price_P90
2025-09	0.001100	0.005126	-0.178079	0.178011	176.04	175.08	145.77	208.12
2025-10	-0.000620	-0.001203	-0.181543	0.168849	177.47	174.10	136.75	222.49
2025-11	-0.004456	-0.008315	-0.176493	0.169850	178.27	173.79	128.53	233.43
2025-12	-0.001409	0.000377	-0.174285	0.169114	179.61	172.63	123.31	243.93

```
SOXX ret ARIMA
                        → sd
    SOXX 3
                  95%
fc_soxx <- forecast(fit_soxx, h = 3)</pre>
m_sx <- as.numeric(fc_soxx$mean)</pre>
sd_sx \leftarrow (as.numeric(fc_soxxsupper[, "95%"]) - m_sx) / qnorm(0.95)
scenarios <- list(</pre>
  bear = m sx - sd sx,
 base = m_sx,
  bull = m_sx + sd_sx
run scn <- function(path3) {</pre>
  future X <- c(lastX, path3)</pre>
  fc <- forecast(fit_nvda, xreg = matrix(future_X, ncol = 1), h = h)</pre>
  r mean <- as.numeric(fc$mean)</pre>
  price_path <- last_price * exp(cumsum(r_mean))</pre>
  data.frame(
    Month = months,
    NVDA ret = r mean,
    NVDA_price = price_path
  )
}
scn_bear <- run_scn(scenarios$bear)</pre>
scn_base <- run_scn(scenarios$base)</pre>
scn_bull <- run_scn(scenarios$bull)</pre>
print_scn <- function(df, title){</pre>
  kable(
    df %>%
      mutate(
        NVDA_ret = round(NVDA_ret, 6),
         NVDA price = round(NVDA price, 2)
```

Table 11: Scenario: Bear

Month	NVDA_ret_forecast	NVDA_price_forecast
2025-09	0.000405	174.25
2025-10	0.001134	174.45
2025-11	0.001134	174.65
2025-12	0.001134	174.84

Table 12: Scenario: Base

Month	NVDA_ret_forecast	NVDA_price_forecast
2025-09	0.000405	174.25
2025-10	0.00000	174.25
2025-11	0.000000	174.25
2025-12	0.000000	174.25

```
    format = "latex", booktabs = TRUE,
    caption = paste("Scenario:", title),
    col.names = c("Month", "NVDA_ret_forecast", "NVDA_price_forecast"),
    align = c("c","r","r")
) %>%
    kable_styling(latex_options = "scale_down", position = "center")
}

print_scn(scn_bear, "Bear")
```

```
print_scn(scn_base, "Base")
```

```
print_scn(scn_bull, "Bull")
```

Table 13: Scenario: Bull

Month	NVDA_ret_forecast	NVDA_price_forecast
2025-09	0.000405	174.25
2025-10	-0.001134	174.05
2025-11	-0.001134	173.86
2025-12	-0.001134	173.66