

AD-A218 076

DTIC FILE COPY . . .

(2)

NAVAL POSTGRADUATE SCHOOL

Monterey, California

S DTIC
ELECTE
FEB 15 1990
D
OO

THESIS

PARAMETRIC STUDY OF THE DYNAMIC STABILITY OF TOWED SHIPS

by

David L. Kolthoff

June, 1989

Thesis Advisor:

Prof. F. A. Papoulias

Approved for public release; distribution unlimited.

90 02 15 029

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Naval Postgraduate School	6b. OFFICE SYMBOL (If applicable) 34	7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School	
6c. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943		7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO.	PROJECT NO.
		TASK NO	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification) Parametric Study of the Dynamic Stability of Towed Ships (Unclassified)			
12. PERSONAL AUTHOR(S) Kolthoff, David L.			
13a. TYPE OF REPORT Master's Thesis	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) June, 1989	15. PAGE COUNT 48
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Towing, Stability, Ship Motions	
FIELD	GROUP	SUB-GROUP	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Several accidents in towing operations of barges or disabled ships in restricted waters have made necessary the investigation of the course keeping stability of towed vessels. In this work a non-linear model is used to simulate the slow surge, sway, and yaw motions of a vessel towed by a heavy catenary towline. The effect of geometric parameters of the system on the stability of equilibrium configurations is analyzed. It is shown that for certain choices of towing system parameters, dynamic loss of stability may occur which results in qualitatively different asymptotic response. The results of this study identify regions in the parameter space that lead to either safe operations or hazardous system response.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL F.A. Paroulias		22b. TELEPHONE (Include Area Code) (408) 646-3381 22c. OFFICE SYMBOL 69PA	

Approved for public release; distribution unlimited.

Parametric Study of the Stability of Towed Ships

by

David L. Kolthoff
Lieutenant Commander, United States Navy
B.S.E., University of Michigan, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June, 1989

Author:

David Lee Kolthoff

Approved by:

Fotis A. Papoulias, Thesis Advisor

A. J. Healey, Chairman, Department of
Mechanical Engineering

Gordon E. Schacher, Dean of Science
and Engineering

PARAMETRIC STUDY OF THE DYNAMIC STABILITY OF TOWED VESSELS

Several accidents in towing operations of barges or disabled ships in restricted and open waters have made necessary the investigation of the course keeping stability of towed vessels. In this work a non-linear mathematical model is used to simulate the slow surge, sway, and yaw motions of a vessel towed by a heavy catenary towline. The effect of geometric parameters of the system on the stability of equilibrium configurations is analyzed.

It is shown that for certain choices of towing system parameters, dynamic loss of stability may occur which results in qualitatively different asymptotic response. The results of this study identify regions in the parameter space that lead to either safe operations or hazardous system response.

Accession For	
NTIS	CRA&I
DTIC TAB	<input type="checkbox"/>
Unpublished	<input type="checkbox"/>
Jurisdiction	<input type="checkbox"/>
By	
Date	
Priority Codes	
Unit	Classification
A-1	

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
A.	BACKGROUND.....	1
B.	PROBLEM CONDITIONS.....	2
II.	PROBLEM FORMULATION AND METHOD OF APPROACH.....	6
III.	RESULTS AND DISCUSSION.....	12
A.	BARGE WITH SKEG.....	12
B.	TANKER.....	18
C.	BARGE WITHOUT SKEG.....	24
D.	PRACTICAL CONSIDERATIONS.....	27
IV.	CONCLUSIONS AND RECOMMENDATIONS.....	30
A.	CONCLUSIONS.....	30
B.	RECOMMENDATIONS.....	32
	APPENDIX.....	34
	LIST OF REFERENCES.....	42
	INITIAL DISTRIBUTION LIST.....	43

LIST OF FIGURES

Figure No.	Title	Page
1	Problem Geometry	3
2	Body Plans of Vessels Studied	5
3	Critical Real Part vs. x_p - Barge with skeg	13
4	y_p vs. x_p , L_w as parameter	15
5	L_w vs. x_p , y_p as parameter	16
6	Critical Real Part vs. x_p - Tanker	19
7	L_w vs. x_p , $y_p > 0$ as parameter	20
8	Critical Real Part vs. x_p - $y_p < 0$	22
9	L_w vs. x_p , $y_p < 0$ as parameter	23
10	L_w vs. x_p , $y_p < 0$, Close-up	25
11	Critical Real Part vs. x_p - Barge w/o skeg	26
12	L_w vs. x_p , y_p as parameter	28

I. INTRODUCTION

A. BACKGROUND

A long history of towing accidents resulting in loss of life, damage to property, and pollution of the environment have prompted many studies into the dynamics of towing operations. Of primary concern was the motions of the towed vessel in the horizontal plane (yaw, sway, and surge). Excessive and unstable motions could lead to collisions and capsizing. The ability to predict the motion of a particular towing system would be of particular benefit to ship designers and towing operators, by identifying those situations where the towing operations would be the safest, or those which must be avoided.

Previous studies at the University of Michigan and elsewhere had developed mathematical models and numerical techniques to analyze towing dynamics, and had identified those parameters which are of primary importance to the stability of the towing system. The linear model usually used to describe ship motions [Ref. 1, Chapter 7] is inadequate for the towing problem. Non-linear models, as in [Ref. 2], must be utilized to accurately describe the towing system. These studies had identified the position of

the towline attachment point on the towed vessel and the towline tension as the most significant (and controllable) parameters of the towing system.

B. PROBLEM CONDITIONS

In this study, computer programs developed in [Ref. 3] were used to analyze the effect of different parameter combinations on the towed stability of three vessels. These programs use bifurcation to identify the unstable and stable regions of the parameter space. The principal parameters studied were (Fig.1):

1. longitudinal position of the towline attachment point forward of the towed vessel's center of gravity, x_p ;
2. athwartships position of the towline attachment point port or starboard of the towed vessel's centerline, y_p ;
3. length of the towline, L_w .

In the model used in this study, unlike [Ref. 2], the towline is modeled as an inextensible catenary, thus making towline tension a function of its length. The model conditions were:

1. speed of towing vessel of 2 knots;
2. towing vessel on steady course;
3. calm seas, no wind; i.e., no external environmental forces.

Characteristics of the towed vessel were inputted into the programs from a data file containing hydrodynamic coefficients, resistance data, towline characteristics, and

Figure 1. Problem Geometry

skeg data, if applicable. The effect of asymmetrical forces acting on the towed vessel, such as the presence of a propellor or an environmental force, are introduced through a bias in the data file. All dimensions are nondimensionalized with respect to the towed ship's length between perpendiculars (LBP).

Three vessels were studied (Fig.2):

1. a 191 foot barge with a skeg, with no propellor (i.e., no bias);
2. a 1066 foot tanker with no skeg, but with a propellor (i.e., with a bias);
3. the same barge as in 1), but without the skeg and with a propellor (i.e., with a bias).

Unlike previous studies, this work includes the effect of athwartship position of the towline attachment point in the stability of the towing system.

Chapter II provides background into the problem formulation and stability analysis used in this study.

Chapter III presents the results of the analysis and discusses some practical aspects of these results. Chapter IV discusses the conclusions which can be made from the results of this study on the stability of the towing system and the use of the techniques used herein.

* Barge with skeg, no bias

* Barge with no skeg, with bias

* Tanker with bias

Figure 2. Body Plans of Vessels Studied

II. PROBLEM FORMULATION AND METHOD OF APPROACH

Slow motions of a towed vessel in the horizontal plane are described by a system of six nonlinear, coupled, differential equations. [Ref. 4 and 5] In its standard form this system is

$$\dot{x}_1 = \frac{1}{m - x_u} [F_1(x_1, x_2, x_3) + T_{\text{surge}}(x_4, x_5, x_6)]$$

$$\dot{x}_2 = \frac{I_z - N_r}{D} [F_2(x_1, x_2, x_3) + T_{\text{sway}}(x_4, x_5, x_6)]$$

$$+ \frac{Y_r}{D} [F_3(x_1, x_2, x_3) + x_p T_{\text{sway}}(x_4, x_5, x_6) - y_p T_{\text{surge}}(x_4, x_5, x_6)],$$

$$\dot{x}_3 = \frac{N_v}{D} [F_2(x_1, x_2, x_3) + x_p T_{\text{sway}}(x_4, x_5, x_6)]$$

$$+ \frac{m - Y_v}{D} [F_3(x_1, x_2, x_3) + x_p T_{\text{sway}}(x_4, x_5, x_6) - y_p T_{\text{surge}}(x_4, x_5, x_6)],$$

$$\dot{x}_4 = x_1 \cos x_6 - x_2 \sin x_6 - u,$$

$$\dot{x}_5 = x_1 \sin x_6 + x_2 \cos x_6,$$

$$\dot{x}_6 = x_3,$$

where

$$T_{\text{surge}}(x_4, x_5, x_6) = R_x(x_4, x_5, x_6) \cos x_6 + R_y(x_4, x_5, x_6) \sin x_6,$$

$$-T_{\text{sway}}(x_4, x_5, x_6) = R_x(x_4, x_5, x_6) \sin x_6 - R_y(x_4, x_5, x_6) \cos x_6,$$

D denotes the known quantity

$$D = (m - Y_v)(I_z - N_r) - Y_r N_v,$$

and

$$\begin{aligned} F_1(x_1, x_2, x_3) = & X_u x_1 + \frac{1}{2} X_{uu} x_1^2 + 1/6 X_{uuu} x_1^3 + \frac{1}{2} X_{vv} x_2^2 + \frac{1}{2} X_{vvu} x_2^2 x_1 \\ & + \frac{1}{2} X_{rr} x_3^2 + \frac{1}{2} X_{rru} x_3^2 x_1 + (X_{vr} + m) x_2 x_3 + X_{rvu} x_1 x_2 x_3, \end{aligned}$$

$$\begin{aligned} F_2(x_1, x_2, x_3) = & Y_0 + Y_{0u} x_1 + Y_{ouu} x_1^2 + Y_v x_2 + 1/6 Y_{vvv} x_2^3 + \frac{1}{2} Y_{vrr} x_2 x_3^2 \\ & + Y_{vu} x_1 x_2 + \frac{1}{2} Y_{vuu} x_2 x_1^2 + (Y_r - mx_1) x_3 + 1/6 Y_{rrr} x_3^3 + \frac{1}{2} Y_{rvv} x_3 x_2^2 \\ & + Y_{ru} x_3 x_1 + \frac{1}{2} Y_{ruu} x_3 x_1^2, \end{aligned}$$

$$\begin{aligned} F_3(x_1, x_2, x_3) = & N_0 + N_{0u} x_1 + N_{ouu} x_1^2 + N_v x_2 + 1/6 N_{vvv} x_2^3 + \frac{1}{2} N_{vrr} x_2 x_3^2 \\ & + N_{vu} x_1 x_2 + \frac{1}{2} N_{vuu} x_2 x_1^2 + N_r x_3 + 1/6 N_{rrr} x_3^3 + \frac{1}{2} N_{rvv} x_3 x_2^2 \\ & + N_{ru} x_3 x_1 + \frac{1}{2} N_{ruu} x_3 x_1^2. \end{aligned}$$

In the above equations, x_1 denotes the sway velocity in surge (longitudinal motion) of the towed vessel, x_2 the velocity in sway (lateral motion), x_3 the angular velocity in yaw (turning motion about the vertical axis), x_4 and x_5 the coordinates of the center of gravity of the towed vessel

with respect to an (x, y) -coordinate system moving with the towing vessel, and x_6 the towed vessel yaw angle. Further, U is the steady towing vessel velocity in the x -direction, x_p and y_p are the coordinates of the towline connection point on the towed vessel with respect to an (X, Y) -coordinate system with its origin at the towed vessel center of gravity, and R_x , R_y are the towline restoring forces. The towing system configuration and notation conventions are shown in Figure 1. Expressions for F_1 , F_2 , F_3 are derived by Taylor expansion in terms of the relative velocities x_1 , x_2 , x_3 of the towed vessel with respect to the water. In nonlinear analysis terms up to third order are used whereas terms beyond third order and second- and higher-order acceleration terms are usually neglected. Subscripts u , v , r indicate derivative of force-moment component with respect to x_1 , x_2 , x_3 respectively, and subscript c indicates propellor dependent terms., which represent a source of system asymmetry. These terms are zero in the absence of a propellor. Terms X_{abc} , Y_{abc} , N_{abc} , where a , b , c are dummy independent variables representing u , v , r , are usually called slow motion derivatives. In unsteady reference motion, slow-motion derivatives are considered as functions of the frequency of motion. In our study of slowly varying reference motions, we assume that slow motion derivatives are time independent. This is a good approximation for ships with usual hull shapes and moderate speeds.

R_x and R_y denote restoring forces from the towline, and for a quasistatic towline response they are expressed as implicit functions of x_4 , x_5 , x_6 . In this study, the model used for the towline is that of an inextensible heavy catenary with nonlinear force-displacement characteristics as given in [Ref. 3].

In compact notation the above system of six ordinary differential equations is denoted as

$$\dot{x} = f(x) \quad (1)$$

where x and f are six dimensional vectors. To analyze the stability properties of (1), the first step is to identify the equilibrium configuration of the system. For this we have to solve a system of six nonlinear, coupled algebraic equations

$$f(\bar{x}) = 0 \quad (2)$$

where \bar{x} denotes an equilibrium configuration. It can be shown [Ref. 5] that system (2) has at most three solutions in \bar{x} corresponding to three distinct equilibrium positions. In this study we concentrated our efforts on one of these equilibrium positions, namely the one which, in the absence of a bias in the system, corresponds to the towed vessel being located directly astern of the tow-tug. This is the most interesting in applications. Having computed \bar{x} , its stability properties can be established as follows:

Linearization of (1) around \bar{x} leads to the linear system

$$\dot{z} = Az \quad (3)$$

where z represents the excursion from the equilibrium \bar{x} , and A is a constant 6×6 matrix. If all eigenvalues of A have negative real parts, then \bar{x} is stable; otherwise it is unstable.

In this study, we performed parametric analysis of the central equilibrium in terms of towline length L_w , and the towing point coordinates with respect to the center of gravity of the towed vessel, x_p and y_p . These parameters can be easily changed before or during towing operations and can provide a means of passive control of the towing system. Parameter L_w directly affects the amount of tension developed by the towline. Parameter x_p is directly related to the towline restoring force and moment. A small value for x_p may not be able to provide adequate restoring moment and may not guarantee system stability. On the other hand a very large value for x_p may result in over-compensation and therefore instability. Nonzero y_p values result in a source of asymmetry introduced in the system. For a biased system (for example due to the presence of a propeller or environmental forces), it should be expected that an extra appropriate bias introduced via a nonzero y_p helps counteract the effect of the former bias, and hence improve stability.

The particular equilibrium position will lose its stability when an eigenvalue of the A matrix in (3) changes its sign from negative real part to positive real part. The case when a real eigenvalue crosses zero has been analyzed in detail in [Ref. 5]. This corresponds to a static loss of stability with generation of additional equilibrium positions in the form of solution branching. In this study we focussed our attention on the case when a complex conjugate pair crosses the imaginary axis. This corresponds to a Hopf bifurcation: the particular equilibrium experiences a dynamic loss of stability and the system begins to oscillate. The resulting periodic solutions can be stable or unstable, but at any rate, such a situation is hazardous and should be avoided during towing operations.

III. RESULTS AND DISCUSSION

A. BARGE WITH SKEG

The first vessel to be studied was an unpowered barge with a skeg aft. Since there is no propellor to introduce a bias, the barge has athwartship symmetry.

1. Figure 3: Critical Real Part vs. xp

Program TOWBIF1 calculates eigenvalues for specific L_w and y_p , creates a file for each of six real and six imaginary parts, and creates a separate file containing the largest real part. The real part with the largest value is the critical indicator of the system's stability: if it is greater than zero, the system will be unstable; if less than zero, the system will be stable.

Figure 3 shows plots for the critical parts for $y_p=0.05$ and three values for L_w . The region where the plot is greater than zero indicate that range of x_p where the system is unstable. For example, for $L_w=0.5$ the critical real part is greater than zero for the range of $x_p=0.18$ to $x_p=0.48$, so the system is unstable within this range.

Note that as L_w increases, the unstable range becomes smaller, until for $L_w=3.0$ there is no region greater than zero. Therefore, the system will be stable for all values of x_p ; i.e., the barge should exhibit no unstable motion.

BARGE W/SKEG W/CATENARY

Figure 3. Critical Real Part vs. x_P - Barge with skeg

2. Figure 4: y_p vs. x_p , L_w as Parameter

Program TOWBIF2 does the same calculations as TOWBIF1 over a range of values of y_p with a given L_w , instead of a single value of y_p and L_w . In essence, Figure 3 represents a cut of Figure 4 at a single value of y_p and L_w . Unlike TOWBIF1, TOWBIF2 writes a point only where the critical real part changes sign. When plotted, these produce a curve delineating stable and unstable regions of the parameter space. This is the point of the process; we are more interested in finding what parameters produce stable or unstable system than the actual results of the equations of motion.

Recalling Figure 3, The area inside the curves represent the unstable region. For example, for $L_w=0.5$, the system is unstable for all values of y_p within the range $x_p=0.2$ to $x_p=0.5$. Increasing L_w first decreases the unstable range of x_p for high y_p , then decreases the unstable range of y_p . For large L_w (>4.0), the unstable range virtually disappears.

3. Figure 5: L_w vs. x_p , y_p as parameter

Program TOWBIF3 performs the same calculations as TOWBIF2, but with L_w as the ordinate and y_p as the parameter. Thus Figure 5 provides the same information as Figure 4 but with a different perspective.

BARGE W/SKEG W/CATENARY

Figure 4. Y_P vs. X_P , L_w as parameter

BARGE W/SKEG W/CATENARY

Figure 5. L_w vs. x_p , y_p as parameter

As in Figure 4, the unstable region is inside the curves. It clearly shows how increasing L_w decreases the unstable range for a constant y_p , as was evident in Figure 4. It also shows that, for constant L_w greater than about 0.7, increasing y_p also decreases the unstable region. In the narrow range of L_w from 0.2 to 0.7, increasing y_p increases the extent of the unstable range of x_p . This effect is apparent in Figure 4, but more dramatically presented in Figure 5. It would appear that using two views of the data would emphasize aspects of the curve that may be overlooked with one view.

Since positive values of y_p represent port side placement of the towline attachment point, and negative values starboard side placement, both positive and negative values for y_p were studied. As expected from the port-starboard symmetry of the barge, curves for positive and negative values of y_p were identical, and only positive values were presented here.

From an operational point of view, one may conclude from these curves that for the unpowered barge, placing the towline on an attachment point to either side, as far forward as possible, will make the tow stable for the greatest range of towline length, but the towline should be kept no shorter than the length of the barge.

B. TANKER

The second vessel studied was a tanker typical of those now in service. The effect of the tanker's propellor makes the hull asymmetrical; this effect is represented by a bias included in the tanker data file.

1. Figure 6: Critical Real part vs xp

Figure 6 plots data generated from TOWBIF1 with $yp=0.10$ and two values for Lw . These plots show the stable region to be between the two zero values for the curve. Note that the stable region becomes smaller with increasing Lw .

Note also that both curves are discontinuous in their slopes. The critical real parts file is a composite of several results files, each of which is critical over a certain range. Each results file forms a smooth curve; thus the curves plotted on each TOWBIF1 figure may be combinations of the critical section of several results files.

Finally, note that the stable region occurs over a narrow range of xp , unlike the barge with skeg discussed earlier.

2. Figure 7: Lw vs. xp, yp as Parameter

Figure 7 was produced from data generated by TOWBIF3 for positive values of yp . As was shown in Figure 6, the stable region is inside the curves. The vertical line at

TANKER W/ CATENARY

Figure 6. Critical Real Part vs. x_P - Tanker

TANKER W/ Catenary

Figure 7. L_w vs. x_p , $y_p > 0$ as parameter

$x_p=0.404$ is a common crossing point for all curves. Each curve is formed by two cusps, with the upper cusp dominating with decreasing y_p . Each cusp is the plot of different critical pair of eigenvalues; the "nose" in the curves is the point where they intersect.

Note how the stable region gets smaller with decreasing y_p for L_w less than 0.7, for example, with $y_p=0.0$ and L_w greater than 1.0, there is a very narrow range of x_p where stability can be assured.

3. Figure 8: Critical Real Part vs. x_p

TOWBIF1 was again used to form Figure 8, this time with one value for L_w ($L_w=0.6$) and three negative values for y_p . The negative y_p curves pass from stable to unstable regions, with the stable ranges for x_p getting smaller as x_p becomes more negative.

As in Figure 6, the curves are composites of those results curves which are critical over a particular range of x_p .

4. Figure 9: L_w vs. x_p , Negative Values of y_p as Parameters.

Figure 9 data was generated from TOWBIF3, with $y_p=0.0$ curve included to provide continuity with Figure 7.

The stable region gets smaller as y_p decreases from 0.0. At $y_p=-0.10$ the "nose" between upper and lower cusps appears to be tipping up, with the region inside the "nose"

TANKER W/CATENARY

Figure 8. Critical Real Part vs. $x_p - y_p < 0$

TANKER W/ Catenary

Figure 9. L_w vs. x_p , $y_p < 0$ as parameter

being stable. The curves plotted in Figure 8 were formed using a value of L_w which cut through this nose, thus forming the sinuous curves which pass in and out of the stable region. Note that for the most negative values of y_p , the cusps have disappeared, and the stable range of x_p is slightly increasing.

5. Figure 10: L_w vs x_p , Negative Values of y_p as Parameters.

Figure 10 is a "close-up" of Figure 9, focusing on what is happening around $y_p=-0.10$. The lower cusp tips up and merges with the upper to form a single curve. Note how the stable range of x_p virtually disappears for L_w greater than 0.5 for $y_p=-0.10$ and -0.11. As was seen in Figure 9, stable range for x_p for L_w greater than 0.5 reappears with y_p less than -0.15.

C. BARGE WITHOUT SKEG

The third vessel was a self-propelled version of the barge studied in Section A (not under power during tow), but without the skeg. As with the tanker, the presence of the propellor, simulated by a bias in the data file, introduces port-starboard asymmetry.

1. Figure 11: Critical Real Part vs x_p for $L_w=1.5$

Figure 11 shows curves for three values of y_p (greater than zero, zero, and less than zero) and one value of L_w . The curves show the stable range of x_p to be between

TANKER W/ CATENARY

Figure 10. L_w vs. x_p , $y_p < 0$, Close-up

BARGE W/ Catenary, NO SKEG

Figure 11. Critical Real Part vs. x_p - Barge w/o skeg

the zero crossing points of the critical real parts, as in the tanker case. Also similarly to the tanker, the stable region increases with increasing y_p . These results are opposite to the propellor-less barge with the skeg.

2. Figure 12: L_w vs x_p

Figure 12 dramatically shows how decreasing y_p reduces the stable region. The vertical line at $x_p=0.14$ was common to all values of y_p greater than and equal to zero. For values of y_p less than zero, the smooth shape of the curve is apparent.

The tanker and self-propelled barge cases dramatically demonstrate the effect that a bias, like a propellor, can introduce to the stability of the system.

D. PRACTICAL OBSERVATIONS

Analysis of the graphs suggests some general principles which may be applied when conducting slow speed towing operations with the vessels discussed in this chapter. While these principles are of course not generally applicable to all vessels, they illustrate how the analysis techniques employed in this work can be applied to other vessels.

For the unpowered, symmetric barge with a skeg, the operator should have the towline attachment point as far out to either side as possible and the towline as long as

BARGE W/ CATENARY, NO SKEG

Figure 12. L_w vs. x_p , y_p as parameter

practical. The attachment point can then be placed at any location forward of the center of gravity with stability assured. Conversely, if the attachment point must be on the centerline, placing it as far forward as possible (about half the barge's length forward of the center of gravity) will assure stability for all towline lengths.

For vessels with an asymmetrical bias (e.g., with a propellor), but without skegs, the attachment point needs to be as far to the biased side as possible (in the cases of the tanker and self-propelled barge, the +yp or port side) and placed forward of the center of gravity the distance indicated on the graph for all towline lengths. Placement of the attachment point on the opposite side (in the cases studied, the starboard side) will virtually assure the system to be unstable.

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This study highlighted the effect of athwartship position of the towline attachment point. The common assumption among ship operators prior to this research held that placing the towline on the centerline on the foremost point of the towed vessel would create the most advantageous towing situation. Studies such as [Ref. 2] have shown that towing stability can be dependent on the longitudinal placement of the attachment point. This research has shown that for certain conditions, attaching the towline off the centerline can also improve towed stability. The optimum towing configuration requires a combination of all three parameters - longitudinal and athwartship placement of the towline attachment point, and towline length.

The bifurcation technique used in this study can be used to produce stability information useful to ship designers and towing operators. Stability information can be assembled into a convenient graphical form that clearly defines the regions of stable and unstable operation based on the parameters the operator has the most control over - the placement and length of the towline.

For the ship designer, this technique can be useful in determining the implications particular design decisions would have on the vessel's performance under tow.

Depending on the vessel's use, adjustments to the design can be made to improve towing stability, or the customer can be forewarned to avoid certain kinds of operations. Since nearly all vessels are towed at some time, towing performance should be analyzed for all vessels.

For the towing operator, this technique can provide readily available information about how a particular vessel will respond under tow. The operator can then adjust the towing parameters (i.e., placement the attachment point and/or length of the towline) so the tow will be in its most stable condition, or, if unavoidable, know that a particular towing situation will be potentially dangerous and make preparations to deal with it.

Since ship data is inputted through a data file, the towed performance of any vessel can be analyzed with this method, including structures such as offshore oil platforms. Existing vessels can be analyzed, as well as different loading conditions.

Two principal disadvantages are associated with this technique:

1. The programs are dependent on the quality of the data provided. Determining hydrodynamic coefficients and resistance data requires tow tank experiments and analysis, and are not obtained for most vessels;
2. The programs require large amounts of computer time and memory to run, which may not be available or too costly for potential users, especially to run extensive "what-if" scenarios. This problem may be alleviated as more inexpensive, high speed, high capacity micro- and personal computers become available.

B. RECOMMENDATIONS

This study was done for only one set of conditions. Further research can be done in determining the effect of varying conditions, such as different speeds or maneuvering by the towing vessel, on the stability of the tow. External forces are modelled by the bias in the data file. A systematized method of introducing biases into the data would enable the analysis of the effect of environmental conditions on the towing system.

Further work should be conducted to improve the "user-friendliness" of the programs. As currently configured, the programs must be run instructively, and graphics produced offline. This is a time consuming process which does not use the full capabilities of either the programs or the graphics capabilities of the mainframe. Program

improvements should focus on streamlining computations and user interaction, and incorporating graphics, with the goal of making it available as a ship design tool.

APPENDIX

Driver programs used in this thesis are shown here.
Subroutines can be obtained by contacting:

Prof. F.A. Papoulias
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

FILE: TOWBIFI FORTRAN A1

PROGRAM TOWBII	TOW00010
C	TOW00020
C BIFURCATION ANALYSIS OF TOWING SYSTEMS	TOW00030
C PARAMETER DEPENDS ON IPAR	TOW00040
C IPAR = 1 : XP	TOW00050
C 2 : VP	TOW00060
C 3 : LW	TOW00070
C IT NEEDS SUBROUTINES FROM TOWING.FTN	TOW00080
C	TOW00090
IMPLICIT DOUBLE PRECISION (A-H,O-Z)	TOW00100
DOUBLE PRECISION MASSP,NVD,NV,NRD,IZZ,NR,LB,LEN,LW,	TOW00110
1 NO,NOU,NOUU,NVVV,NVRR,NVDD,NVU,NVUU,NRRR,NRVV,	TOW00120
2 NRDD,NRU,NRUU,ND,NDDD,NDDV,NDRR,NDU,NDUU,NVRD	TOW00130
C	TOW00140
DIMENSION IV1(6),A(6,6),VV(3),X(6),WR(6),HI(6),Z(6,6),SV2(6)	TOW00150
C	TOW00160
COMMON/INTGR/ISKEG,NRDP,ITYS,ID,IFDS,ISTAB,IPROP	TOW00170
COMMON/SPAR/MASCP,LW,XPP,YPP,LB	TOW00180
COMMON/SURGE/SU(7)	TOW00190
COMMON/XGURG/XU,XUU,XUUU	TOW00200
COMMON/SWAY/SW(15)	TOW00210
COMMON/YAW/YA(16)	TOW00220
COMMON/INTER/VCAR,RHO,ABS,CON1,CON2	TOW00230
COMMON/REGIST/VEL(40),RES1(40)	TOW00240
COMMON/VELE/UEL(100)	TOW00250
COMMON/POSTH/XI,YI,ZI	TOW00260
COMMON/GEOM/AL,RW,G,AET,MW,MWI	TOW00270
COMMON/PROP/ALE,P,EY,DIA,ANIU	TOW00280
COMMON/CTNR/XC(99),YC(99),ZC(99),TC(99)	TOW00290
COMMON/INT1/IC	TOW00300
COMMON/DOC/UC,ALPHA	TOW00310
COMMON/UEPT/RLX,RLY,RLZ	TOW00320
COMMON/SLOPE/PDRXX,PDRXY,PDRYX,PDRYY	TOW00330
COMMON/SLAN/RXX6,RYY6,RXX,RYY	TOW00340
C	TOW00350
OPEN (UNIT=35,FILE='BARGE2', STATUS='OLD')	TOW00360
OPEN (UNIT=1,FILE='RES0', STATUS='NEW')	TOW00370
C	TOW00380
OPEN (UNIT=11,FILE='RES1R', STATUS='NEW')	TOW00390
OPEN (UNIT=12,FILE='RES2R', STATUS='NEW')	TOW00400
OPEN (UNIT=13,FILE='RES3R', STATUS='NEW')	TOW00410
OPEN (UNIT=14,FILE='RES4R', STATUS='NEW')	TOW00420
OPEN (UNIT=15,FILE='RES5R', STATUS='NEW')	TOW00430
OPEN (UNIT=16,FILE='RES6R', STATUS='NEW')	TOW00440

```

C          OPEN (UNIT=21,FILE='REC11',STATUS='NEW')          TCW00450
C          OPEN (UNIT=22,FILE='REC21',STATUS='NEW')          TCW00460
C          OPEN (UNIT=23,FILE='REC31',STATUS='NEW')          TCW00470
C          OPEN (UNIT=24,FILE='REC41',STATUS='NEW')          TCW00480
C          OPEN (UNIT=25,FILE='REC51',STATUS='NEW')          TCW00490
C          OPEN (UNIT=26,FILE='REC61',STATUS='NEW')          TCW00500
C          OPEN (UNIT=27,FILE='REC71',STATUS='NEW')          TCW00510
C          CALL INPUTD(10)                                TCW00520
C          VCAR =VCAR*1.689D0                            TCW00530
C          MATZ =0                                     TCW00540
C          IFLOW=1                                    TCW00550
C          WRITE (*,1001)                               TCW00560
C          READ (*,*)   IPAR                           TCW00570
C          WRITE (*,1002)                               TCW00580
C          READ (*,*)   A1,A2                           TCW00590
C          WRITE (*,1003)                               TCW00600
C          READ (*,*)   .M1                           TCW00610
C          WRITE (*,1005)                               TCW00620
C          READ (*,*)   IKB                            TCW00630
C          WRITE (*,1006)                               TCW00640
C          READ (*,*)   NEQL                           TCW00650
C          READ (*,*)   NECL                           TCW00660
C          IF (IKB.GT.NECL) GO TO 500                  TCW00670
C          DO 1 I=1,NUM1
C              WRITE (*,2001) I,NUM1                   TCW00680
C              AA=A1*(A2-A1)*(I-1)/(NUM1-1)
C              IF (IPAR.EQ.1) XPP=AA
C
C              IF (IPAR.EQ.2) YPP=AA
C              IF (IPAR.EQ.3) LW =AA
C              AL =LW*LB*0.3048D0
C              ALE=AL
C              CALL STABIL(IVV,VV,ISOL)                 TCW00730
C
C          C          SET V=VV(K) FOR BIFURCATION ANALYSIS OF K-TH EQUILIBRIUM
C
C          IF (IVV.NE.NECL) GO TO 1
C          V=VV(IKB)
C          IF (DABS(V).GT.1.D0) STOP 1111
C          CALL ECUILB(V,X,RES,RX,RY)
C          CALL LINEAR(X,RES,A,RX,RY)
C          CALL RG(6,6,A,WR,W1,MATZ,Z,IV1,SV2,IER1)
C          IF (IER1.NE.0) STOP 2222
C          CALL DEGSTB(DEQS,WR)
C          WRITE (1,10) AA,DEQS
C          DO 11 J=1,6
C              JR=10+J
C              WRITE (JR,10) AA,WR(J)
C              JI=20+J
C              WRITE (JI,10) AA,W1(J)
C
C          11  CONTINUE
C          1  CONTINUE
C          500 STOP
C          10 FORMAT (2D20.10)
C          1001 FORMAT (' ENTER 1 : XP VARIATION',/,1,
C                      2 : YP VARIATION',/,1,
C                      2 : LW VARIATION')
C          1002 FORMAT (' ENTER PARAMETER RANGE')
C          1003 FORMAT (' ENTER NUMBER OF INCREMENTS')
C          1005 FORMAT (' ENTER EQUILIBRIUM NUMBER')
C          1006 FORMAT (' ENTER ESTIMATED NO. OF EQUILIBRIA')
C          2001 FORMAT (2I5)
C          E'c

```

FILE: TOWBIF2 FORTRAN A)

```

PROGRAM TOWBIF2                                TOW00010
C   PROGRAM TOWBIF.FTN                         TOW00020
C
C   BIFURCATION ANALYSIS OF TOWING SYSTEMS      TOW00030
C   PARAMETERS ARE: Xp, Yp                      TOW00040
C   IT NEEDS SUBROUTINES FROM TOWING.FTN        TOW00050
C
C   USER DEPENDENT SUBROUTINES:                  TOW00060
C     DEGSTB = CURVES ENCLOSING REGION II OF FIGURE 13    TOW00070
C           (SUBROUTINE DEGSTB IS IN TOWING.FTN)          TOW00080
C     DS1    = CURVES ENCLOSING REGION V OF FIGURE 13    TOW00090
C           (SUBROUTINE DS1 IS IN SPMBIF)                 TOW00100
C
C   IMPLICIT DOUBLE PRECISION (A-H,O-Z)          TOW00110
C   DOUBLE PRECISION MASSP,NVD,NV,NRD,IZZ,NR,LB,LEN,LW,    TOW00120
1       NO,NOU,NOOU,NVV,NVR,NVDD,NVU,NVUU,NRRR,NRVV,    TOW00130
2       NRDD,NRU,NRUU,ND,NDDD,NDVV,NDRR,NDU,NDUU,NVRD    TOW00140
C
C   DIMENSION IVI(6),A(6,6),VV(3),X(6),WR(6),WI(6),Z(6,6),SV2(6)  TOW00150
C
COMMON/INTGR/ISKEG,NREDP,ITYS,ID,IFDS,ISTAB,IPROP      TOW00160
COM/ION/SPAR/MACSP,LW,XPP,YPP,LB                     TOW00170
COMMON/SURGE/SU(7)                                    TOW00180
COMMON/XSURG/XU,XUU,XUUU                           TOW00190
COMMON/GWAY/GW(15)                                    TOW00200
COMMON/YAW/YA(16)                                    TOW00210
COMMON/MTER/VCAR,RHO,ABS,CON1,CON2                  TOW00220
COMMON/RESIST/VEL(40),RESI(40)                      TOW00230
COMMON/VELE/UEL(100)                                 TOW00240
COMMON/PGSTH/X1,Y1,Z1                               TOW00250
COMMON/GEOM/AL,RW,G,AET,HW,HWI                     TOW00260
COMMON/PROP/ALE,P,EY,DIA,ANIU                      TOW00270
COMMON/CTNR/XC(99),YC(99),ZC(99),TC(99)            TOW00280
COMMON/INT1/IC                                     TOW00290
COMMON/DCC/UC,ALPHA                                TOW00300
COMMON/UEPT/RLX,RLY,RLZ                            TOW00310
COMMON/GLOPE/PDRXX,PDRXY,PDRYY,PDRYY              TOW00320
COMMON/CLAN/RXX6,RYY6,RXX,RYY                      TOW00330
C
C   OPEN (UNIT=35,FILE='BKKEG2',STATUS='OLD')          TOW00340
COPEN (UNIT=11,FILE='REC1R',STATUS='NEW')             TOW00350
COPEN (UNIT=12,FILE='REC2R',STATUS='NEW')             TOW00360
COPEN (UNIT=13,FILE='REC3R',STATUS='NEW')             TOW00370
COPEN (UNIT=14,FILE='REC4R',STATUS='NEW')             TOW00380
COPEN (UNIT=15,FILE='REC5R',STATUS='NEW')             TOW00390
COPEN (UNIT=16,FILE='REC6R',STATUS='NEW')             TOW00400
C
C   CALL INPUTD(10)                                  TOW00410
VCAR =VCAR+1.689D0                                TOW00420
AL =LW+LB=0.3048D0                                TOW00430
ALE =AL                                         TOW00440
MATZ =0                                         TOW00450
IFLOW=1                                         TOW00460
EPS =1.D-5                                       TOW00470
ILMAX=1500                                      TOW00480
C
C   WRITE (*,1001)                                 TOW00490
READ (*,*) A1,A2                                TOW00500
WRITE (*,1002)                                 TOW00510
READ (*,*) NUM1                                TOW00520
WRITE (*,1003)                                 TOW00530
READ (*,*) B1,B2                                TOW00540
WRITE (*,1004)                                 TOW00550
READ (*,*) NUM2                                TOW00560
C
C   WRITE (*,1001)
READ (*,*) A1,A2
WRITE (*,1002)
READ (*,*) NUM1
WRITE (*,1003)
READ (*,*) B1,B2
WRITE (*,1004)
READ (*,*) NUM2

```

```

C
      WRITE (*,1005)                                     TOW00650
      READ (*,*)   IKB                                TOW00660
      WRITE (*,1006)                                     TOW00670
      READ (*,*)   IDG                                TOW00680
      DO 1 I=1,NUM1                                     TOW00690
      WRITE (*,2001) I,NUM1                            TOW00700
      YPP=A1*(A2-A1)*(I-1)/(NUM1-1)                   TOW00710
      YPP=B1
      CALL STABIL(IVV,VV,ISOL)                         TOW00720
      C
      C      SET V=VV(K) FOR BIFURCATION ANALYSIS OF K-TH EQUILIBRIUM TOW00730
      C
      V=VV(IKB)
      IF (DABS(V).GT.1.D0) STOP 1111                  TOW00740
      CALL EQUILB(V,X,RES,RX,RY)                      TOW00750
      CALL LINEAR(X,RES,A,RX,RY)                      TOW00760
      CALL RG(6,6,A,WR,W1,MATZ,Z,IV1,SV2,IER1)       TOW00770
      IF (IER1.NE.0) STOP 2222                         TOW00780
      IF (IDG.EQ.1) CALL DEGSTB(DEOS,WR)              TOW00790
      IF (IDG.EQ.2) CALL DS1(DEOS,WR)                 TOW00800
      DEOSCC=DEOS
      XPCO =XPP
      L   =0
      DO 2 J=2,NUM2                                     TOW00810
      WRITE (*,*) J
      XPP=B1*(B2-B1)*(J-1)/(NUM2-1)                   TOW00820
      CALL STABIL(IVV,VV,ISOL)                         TOW00830
      C
      C      SET V=VV(K) FOR BIFURCATION ANALYSIS OF K-TH EQUILIBRIUM TOW00840
      C
      V=VV(IKB)
      IF (DABS(V).GT.1.D0) STOP 1111                  TOW00850
      CALL EQUILB(V,X,RES,RX,RY)                      TOW00860
      CALL LINEAR(X,RES,A,RX,RY)                      TOW00870
      CALL RG(6,6,A,WR,W1,MATZ,Z,IV1,SV2,IER1)       TOW00880
      IF (IER1.NE.0) STOP 2222                         TOW00890
      IF (IDG.EQ.1) CALL DEGSTB(DEOS,WR)              TOW00900
      IF (IDG.EQ.2) CALL DS1(DEOS,WR)                 TOW00910
      DEOSNN=DEOS
      XPNN=XPP
      PR=DEOSCC*DEOSNN
      IF (PR.GT.0.D0) GO TO 3
      L=L+1
      IF (L.GT.6) STOP 1000
      IL=0
      XPO=XPCO
      XPN=XPNN
      DECCO=DECCOO
      DECSN=DECSNN
      6   XPL=XPO
      XPR=XPN
      DECSL=DECCO
      DECSR=DECSN
      XPP=(XPL+XPR)/2.D0
      CALL STABIL(IVV,VV,ISOL)
      V=VV(IKB)
      IF (DABS(V).GT.1.D0) STOP 1111
      CALL EQUILB(V,X,RES,RX,RY)
      CALL LINEAR(X,RES,A,RX,RY)
      CALL RG(6,6,A,WR,W1,MATZ,Z,IV1,SV2,IER1)
      IF (IER1.NE.0) STOP 2222
      CALL DEGSTB(DEOS,WR)
      DEOSM=DEOS
      TOW00920
      TOW00930
      TOW00940
      TOW00950
      TOW00960
      TOW00970
      TOW00980
      TOW00990
      TOW01000
      TOW01010
      TOW01020
      TOW01030
      TOW01040
      TOW01050
      TOW01060
      TOW01070
      TOW01080
      TOW01090
      TOW01100
      TOW01110
      TOW01120
      TOW01130
      TOW01140
      TOW01150
      TOW01160
      TOW01170
      TOW01180
      TOW01190
      TOW01200
      TOW01210
      TOW01220
      TOW01230
      TOW01240
      TOW01250
      TOW01260
      TOW01270
      TOW01280

```

```

XPM=XPP                                TOW01290
PRL=DEOSL=DEOSM                         TOW01300
PRR=DEOSR=DEOSM                         TOW01310
IF (PRL.GT.0.D0) GO TO 5                 TOW01320
XPO=XPL                                TOW01330
XPN=XPM                                TOW01340
DEOSO=DEOSL                            TOW01350
DEOSN=DEOSM                            TOW01360
IL=IL+1                                 TOW01370
IF (IL.GT.ILMAX) STOP 3100               TOW01380
DIF=DABS(XPL-XPM)                      TOW01390
IF (DIF.GT.EPS) GO TO 6                 TOW01400
XP=XPM                                  TOW01410
GO TO 4                                 TOW01420
5   IF (PRR.GT.0.D0) STOP 3200               TOW01430
XPO=XPM                                TOW01440

XPN=XPR                                TOW01450
DEOSO=DEOSM                            TOW01460
DEOSN=DEOSR                            TOW01470
IL=IL+1                                 TOW01480
IF (IL.GT.ILMAX) STOP 3100               TOW01490
DIF=DABS(XPM-XPR)                      TOW01500
IF (DIF.GT.EPS) GO TO 6                 TOW01510
XP=XPM                                  TOW01520
4   LLL=10*L                             TOW01530
WRITE (LLL,10) XP,YPP                  TOW01540
3   XPO0=XPNN                           TOW01550
DEOSOO=DEOSNN                         TOW01560
2   CONTINUE                            TOW01570
1   CONTINUE                            TOW01580
STOP                                   TOW01590
10 FORMAT (1D20.10)
1001 FORMAT (' ENTER RANGE OF Yp VARIATION')
1002 FORMAT (' ENTER NUMBER OF INCREMENTS IN Yp')
1003 FORMAT (' ENTER RANGE OF Xp VARIATION')
1004 FORMAT (' ENTER NUMBER OF INCREMENTS IN Xp')
1005 FORMAT (' ENTER EQUILIBRIUM NUMBER')
1006 FORMAT (' ENTER DEGREE OF STABILITY CONTROL')
2001 FORMAT (I5)
END                                     TOW01600
C
SUBROUTINE DS1(DEOS,WR)                  TOW01610
IMPLICIT DOUBLE PRECISION (A-H,O-Z)      TOW01620
DIMENSION WR(6)                          TOW01630
DEOS1=-1.D30                            TOW01640
DO 1 I=1,6                               TOW01650
  IF (WR(I).LT.DEOS1) GO TO 1           TOW01660
  DEOS1=WR(I)                           TOW01670
  IJ=I                                 TOW01680
1   CONTINUE                            TOW01690
  DEOS2=-1.D30                           TOW01700
  DO 2 I=1,6                           TOW01710
    IF (IJ.EQ.I) GO TO 2                 TOW01720
    IF (WR(I).LT.DEOS2) GO TO 2           TOW01730
    DEOS2=WR(I)                           TOW01740
    IJJ=I
2   CONTINUE                            TOW01750
  DEOS=-1.D30                           TOW01760
  DO 3 I=1,6                           TOW01770
    IF (I.EQ.IJ.OR.I.EQ.IJJ) GO TO 3     TOW01780
    IF (WR(I).GE.DEOS) DEOS=WR(I)        TOW01790
3   CONTINUE                            TOW01800
  RETURN                                TOW01810
END                                     TOW01820

```

FILE: TOWBIFS FORTRAN A1

C PROGRAM TOWBIFS.FTN	TOW00010
C	TOW00020
C BIFURCATION ANALYSIS OF TOWING SYSTEMS	TOW00030
C PARAMETERS ARE: Xp, LW	TOW00040
C IT NEEDS SUBROUTINES FROM TOWING.FTN	TOW00050
C	TOW00060
C USER DEPENDENT SUBROUTINES:	TOW00070
C DEGSTB = CURVES ENCLOSING REGION II OF FIGURE 13	TOW00080
C (SUBROUTINE DEGSTB IS IN TOWING.FTN)	TOW00090
C DS1 = CURVES ENCLOSING REGION V OF FIGURE 13	TOW00100
C (SUBROUTINE DS1 IS IN SPMBIF)	TOW00110
C	TOW00120
IMPLICIT DOUBLE PRECISION (A-H,O-Z)	TOW00130
DOUBLE PRECISION MASSP,NVD,NV,NRD,IZZ,NR,LB,LEN,LW,	TOW00140
1 NO,NOU,NOUU,NVVV,NVRR,NVDD,NVU,NVUU,NRRR,NRVV,	TOW00150
2 NRDD,NRU,NRUU,ND,NDDD,NDDV,NDRR,NDU,NDUU,NVRD	TOW00160
C	TOW00170
DIMENSION IV1(6),A(6,6),VV(3),X(6),WR(6),WI(6),Z(6,6),SV2(6)	TOW00180
C	TOW00190
COMMON/INTGR/ISKEG,NREDP,ITYS,ID,IFDS,ISTAB,IPROP	TOW00200
COMMON/SPAR/MASSP,LW,XPP,YPP,LB	TOW00210
COMMON/SURGE/SU(7)	TOW00220
COMMON/XSURG/XU,XUU,XUUU	TOW00230
COMMON/SWAY/SW(15)	TOW00240
COMMON/YAW/YA(16)	TOW00250
COMMON/MTER/VCAR,RHO,ABS,CONI,CONC	TOW00260
COMMON/RESIST/VEL(40),RESI(40)	TOW00270
COMMON/VELE/UEL(100)	TOW00280
COMMON/POSTN/X1,Y1,Z1	TOW00290
COMMON/GCH/AL,RW,G,AET,MW,MWI	TOW00300
COMMON/PRCP/ALE,P,EY,DIA,ANIU	TOW00310
COMMON/CTNR/XC(99),YC(99),ZC(99),TC(99)	TOW00320
COMMON/INT1/IC	TOW00330
COMMON/DOC/UC,ALPHA	TOW00340
COMMON/UEPT/RLX,RLY,RLZ	TOW00350
COMMON/SLOPE/PDRXX,PDRXY,PDRYX,PDRYY	TOW00360
COMMON/SLAN/RXX6,RYY6,RXX,RYY	TOW00370
C	TOW00380
OPEN (UNIT=35,FILE='TANKER2',STATUS='OLD')	TOW00390
OPEN (UNIT=1,FILE='RES1R',STATUS='NEW')	TOW00400
OPEN (UNIT=2,FILE='REC2R',STATUS='NEW')	TOW00410
OPEN (UNIT=3,FILE='REC3R',STATUS='NEW')	TOW00420
OPEN (UNIT=4,FILE='REC4R',STATUS='NEW')	TOW00430
C	TOW00440
CALL INPUTD(10)	TOW00450
VCAR =VCAR+1.689D0	TOW00460
AL =LW=LB=0.2048D0	TOW00470
ALE =AL	TOW00480
MATZ =0	TOW00490
IFLCH=1	TOW00500
ILMAX=1500	TOW00510
EPS =1.D-5	TOW00520
C	TOW00530
WRITE (*,1001)	TOW00540
READ (*,*) A1,A2	TOW00550
WRITE (*,1002)	TOW00560
READ (*,*) NUM1	TOW00570
WRITE (*,1003)	TOW00580
READ (*,*) B1,B2	TOW00590
WRITE (*,1004)	TOW00600
READ (*,*) NUM2	TOW00610
C	TOW00620
WRITE (*,1005)	TOW00630
READ (*,*) IKB	TOW00640

```

      WRITE (*,1006)
      READ (*,*) IDS
      DO I I=1,NUM1
        WRITE (*,2001) I,NUM1
        LW =AI*(AC-AI)*(I-1)/(NUM1-1)
        AL =LW=LB=0.3048D0
        ALE=AL
        XPP=B1
      1006      TOW00650
      2001      TOW00660
      3001      TOW00670
      4001      TOW00680
      5001      TOW00690
      6001      TOW00700
      7001      TOW00710
      8001      TOW00720
      CALL STABIL(IVV,VV,ISOL)          TOW00730
      C
      C      SET V=VV(K) FOR BIFURCATION ANALYSIS OF K-TH EQUILIBRIUM TOW00740
      C
      C      V=VV(1KB)
      IF (DABS(V).GT.1.D0) STOP 1111
      CALL EQUILB(V,X,RES,RX,RY)
      CALL LINEAR(X,RES,A,RX,RY)
      CALL RG(6.6,A,WR,WI,MATZ,Z,IV1,SV2,IER1)
      IF (IER1.NE.0) STOP 2222
      IF (IDS.EQ.1) CALL DEGSTB(DEOS,WR)
      IF (IDS.EQ.2) CALL DS1(DEOS,WR)
      DEOSOO=DEOS
      XPOO=XPP
      L=0
      DO 2 J=2,NUM2
        XPP=B1+(B2-B1)*(J-1)/(NUM2-1)
        CALL STABIL(IVV,VV,ISOL)
      2222      TOW00750
      3222      TOW00760
      4222      TOW00770
      5222      TOW00780
      6222      TOW00790
      7222      TOW00800
      8222      TOW00810
      9222      TOW00820
      10222     TOW00830
      11222     TOW00840
      12222     TOW00850
      13222     TOW00860
      14222     TOW00870
      15222     TOW00880
      16222     TOW00890
      17222     TOW00900
      C
      C      SET V=VV(K) FOR BIFURCATION ANALYSIS OF K-TH EQUILIBRIUM TOW00910
      C
      C      V=VV(1KB)
      IF (DABS(V).GT.1.D0) STOP 1111
      CALL EQUILB(V,X,RES,RX,RY)
      CALL LINEAR(X,RES,A,RX,RY)
      CALL RG(6.6,A,WR,WI,MATZ,Z,IV1,SV2,IER1)
      IF (IER1.NE.0) STOP 2222
      IF (IDS.EQ.1) CALL DEGSTB(DEOS,WR)
      IF (IDS.EQ.2) CALL DS1(DEOS,WR)
      DEOOGNN=DEOS
      XPNN=XPP
      PR=DECOOO=DEOSNN
      IF (PR.GT.0.D0) GO TO 3
      L=L+1
      IF (L.GT.4) STOP 1000
      IL=0
      X=0=XPOO
      XPN=XPNN
      DECOO=DEOSOO
      DECGN=DEOSNN
      XPL=XPO
      XPR=XPN
      DEOGL=DECOO
      DEOGR=DEOSN
      XPP=(XPL+XPR)/2.D0
      CALL STABIL(IVV,VV,ISOL)
      V=VV(1KB)
      IF (DABS(V).GT.1.D0) STOP 1111
      CALL EQUILB(V,X,RES,RX,RY)
      CALL LINEAR(X,RES,A,RX,RY)
      CALL RG(6.6,A,WR,WI,MATZ,Z,IV1,SV2,IER1)
      IF (IER1.NE.0) STOP 2222
      CALL DEGSTB(DEOS,WR)
      DEOCM=DEOS
      XPM=XPP
      1000      TOW00920
      1111      TOW00930
      2222      TOW00940
      3222      TOW00950
      4222      TOW00960
      5222      TOW00970
      6222      TOW00980
      7222      TOW00990
      8222      TOW01000
      9222      TOW01010
      10222     TOW01020
      11222     TOW01030
      12222     TOW01040
      13222     TOW01050
      14222     TOW01060
      15222     TOW01070
      16222     TOW01080
      17222     TOW01090
      18222     TOW01100
      19222     TOW01110
      20222     TOW01120
      21222     TOW01130
      22222    TOW01140
      23222    TOW01150
      24222    TOW01160
      25222    TOW01170
      26222    TOW01180
      27222    TOW01190
      28222    TOW01200
      29222    TOW01210
      30222    TOW01220
      31222    TOW01230
      32222    TOW01240
      33222    TOW01250
      34222    TOW01260
      35222    TOW01270

```

```

PRL=DEOSL+DEOSM          TOW01280
PRR=DECGR+DEOSM          TOW01290
IF (PRL.GT.0.D0) GO TO 5  TOW01300
XPO=XPL                  TOW01310
XPN=XPM                  TOW01320
DEOSO=DEOSL               TOW01330
DEOSN=DEOSM               TOW01340
IL=IL+1                  TOW01350
IF (IL.GT.ILMAX) STOP 3100 TOW01360
DIF=DABS(XPL-XPM)        TOW01370
IF (DIF.GT.EPS) GO TO 6  TOW01380
XP=XPM                  TOW01390
GO TO 4                  TOW01400
5 IF (PPR.GT.0.D0) STOP 3200 TOW01410
XPO=XPM                  TOW01420
XPN=XPR                  TOW01430
DEOSO=DEOSM               TOW01440

DEOSN=DEOSR               TOW01450
IL=IL+1                  TOW01460
IF (IL.GT.ILMAX) STOP 3100 TOW01470
DIF=DABS(XPM-XPR)        TOW01480
IF (DIF.GT.EPS) GO TO 6  TOW01490
XP=XPM                  TOW01500
4 WRITE (L,10) XP,LW      TOW01510
3 XPOO=XPNM               TOW01520
DEOSOC=DEOSNN             TOW01530
2 CONTINUE                 TOW01540
1 CONTINUE                 TOW01550
STOP                      TOW01560
10 FORMAT (2D0.10)         TOW01570
1001 FORMAT (' ENTER RANGE OF LW VARIATION') TOW01580
1002 FORMAT (' ENTER NUMBER OF INCREMENTS IN LW') TOW01590
1003 FORMAT (' ENTER RANGE OF XA VARIATION') TOW01600
1004 FORMAT (' ENTER NUMBER OF INCREMENTS IN Xp') TOW01610
1005 FFORMAT (' ENTER EQUILIBRIUM NUMBER') TOW01620
1006 FORMAT (' ENTER DEGREE OF STABILITY CONTROL') TOW01630
2001 FORMAT (2I5)           TOW01640
END                       TOW01650
C
SUBROUTINE DSI(DEOS,WR)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(6)
DEOS1=-1.D30
DO 1 I=1,6
  IF (WR(I).LT.DEOS1) GO TO 1
  DEOS1=WR(I)
  IJ=I
1 CONTINUE
DEOS2=-1.D30
DO 2 I=1,6
  IF (IJ.EQ.I) GO TO 2
  IF (WR(I).LT.DEOS2) GO TO 2
  DEOS2=WR(I)
  IJJ=I
2 CONTINUE
DEOS=-1.D30
DO 3 I=1,6
  IF (I.EQ.IJ.OR.I.EQ.IJJ) GO TO 3
  IF (WR(I).GE.DEOS) DEOS=WR(I)
3 CONTINUE
RETURN
END

```

LIST OF REFERENCES

1. Comstock, J.P., Editor, Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, 1967.
2. Department of Transportation, Report DOT/OST/P-34/86/046, Rational Method for Upgrading Towed Vessel Safety, by M.M. Bernitsas and F.A. Papoulias, May 1986
3. F.A. Papoulias, Dynamic Analysis of Mooring Systems, Doctoral Dissertation, The University of Michigan, Ann Arbor, Michigan, 1987.
4. M.M. Bernitsas and N.S. Kekridas, "Simulation and Stability of Ship Towing", International Shipbuilding Progress, v.32, 1985.
5. F.A. Papoulias, "A Qualitative and Quantitative Study of Steady-State Response of Towed Floating Bodies", Dynamics and Stability of Systems, v.3, 1988.

INITIAL DISTRIBUTION LIST

- | | |
|---|---|
| 1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145 | 2 |
| 2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002 | 2 |
| 3. LCDR David Kolthoff
3651 Tennyson Street
San Diego, CA 92106 | 1 |
| 4. Superintendent
Naval Postgraduate School
Code 34
Monterey, CA 93943 | 1 |
| 5. Professor F.A. Papoulias, Code 69Pa
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943 | 3 |