Model Documentation of the Ball in the Tube

1 Nomenclature

1.1 Nomenclature for Model Equations

 A_B ball cross-sectional area A_{SP} air gap cross-sectional area mmass of the styrofoam ball acceleration due to gravitation T_M time constant of the motor model k_{M} amplification of the motor model proportional factor between the volume flow of the fan k_V and the absolute speed rotation parameter, describes the relation between the air gap k_L velocity and the flow resistance force rotation speed η basic rotation speed η_0 hheight of the ball \dot{h} velocity of the ball motor control voltage u_{PWM}

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (\eta \ h \ \dot{h})^T = (x_1 \ x_2 \ x_3)^T$$
$$u = u_{PWM} = u$$

System Equations:

$$\dot{x}_{1} = -\frac{1}{T_{M}}x_{1} + \frac{k_{M}}{T_{M}}u \tag{1a}$$

$$\dot{x}_2 = x_3 \tag{1b}$$

$$\dot{x}_3 = \frac{k_L}{m} \left(\frac{k_V(x_1 + \eta_0) - A_B \dot{h}}{A_S P} \right)^2 - g$$
 (1c)

Parameters: $A_B A_{SP} m g T_M k_M k_V k_L n_0$

Outputs: h

2.1 Assumptions

1. The behavior of the ball does not influence the air flow provided by the fan.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
ball cross-sectional area	A_B	0.002827	m^2
air gap cross-sectional area	A_{SP}	0.0004299	m^2
mass of the ball	m	0.0028	kg
acceleration due to gravitation	g	9.81	$\frac{m}{s^2}$
time constant	T_M	0.369	s
amplification	k_M	0.273	s^{-1}
proportional factor	k_V	0.00012	m^3
parameter	k_L	0.0002823	$\frac{kg}{m}$
basic rotation speed	n_0	456	$\frac{\overset{iit}{U}}{min}$

3 Derivation and Explanation

The model of the system consists of two submodels. The first one is the model of the ball. Essentially there two forces acting on the ball, the weight force F_g and the force exerted by the flow resistance F_w .

$$F_g = mg (2)$$

$$F_w = \frac{1}{2} c_w \varrho_L A_B v_{SP}^2. \tag{3}$$

After inserting the equation for the relative velocity between the sphere and the medium flowing around it v_{SP} and using the proportinal factor k_V we get

$$F_w = \frac{1}{2} c_w \varrho_L A_B \left(\frac{k_V(\eta + \eta_0) - A_B \dot{h}}{A_S P} \right)^2. \tag{4}$$

If we now introduce the parameter k_L

$$F_w = k_L \left(\frac{k_V(\eta + \eta_0) - A_B \dot{h}}{A_S P} \right)^2 \tag{5}$$

results. Using the vertical force balance, the following equation can be set up.

$$m\ddot{h} = k_L \left(\frac{k_V(\eta + \eta_0) - A_B \dot{h}}{A_S P}\right)^2 - mg \tag{6}$$

The second model is the fan. We assume an ordinary fan with pulse width modulation (PWM) control. We are using a model with PT_1 -behaviour with the time constant T_M and the amplification k_M .

$$T_M \dot{\eta} + \eta = k_M u_{PWM} \tag{7}$$

4 Simulation

Figure 1: Simulation of the ball in tube.

References

[1] TU Dresden – Institut für Regelungs- und Steuerungstheorie: Regelungstechnikpraktikum, Praktikumsanleitung, published on OPAL April 2022. (not publicly accessible)