Intergers modulo n

- The set $\{[0], [1], [2], ..., [n-1]\}$ of the equivalence classes of $\equiv \mod n$ is called the **integers modulo** n denoted by \mathbb{Z}_n .
- Theorem: Let $n \in \mathbb{Z}^+$.

If $a \equiv a' \mod n$, $b \equiv b' \mod n$, then

- $a+b \equiv (a'+b') \bmod n$
- $ab \equiv a'b' \mod n$
- **3** $ac \equiv a'c \mod n$ and c is relatively prime to n (i.e. $\gcd(c,n)=1$), then $a \equiv a' \mod n$.
- $(\mathbb{Z}_n, +)$ is a group.
- \bullet $(\mathbb{Z}_n,.)?$

Order of a Group

- The number of elements in a group G is called the order of G, denoted by |G| or o(G).
- Example:
 - \bullet (\mathbb{Z}_5 , +) has order 5.
 - $(\mathbb{Z},+)$ has infinite order.

Order of an Element

• The order of an element, a, in a group G is the smallest positive integer n such that $a^n = e$.

September 1, 2023

- Example:
 - Elements of $(\mathbb{Z}_5, +)$.

Remark:

- \bullet If no such n exists, we say that a has infinite order.
- 2 The order of an element if denoted by |a|.
- $|a| = |a^{-1}| \ \forall a \in G.$

Abelian Group

ullet If a group G has the property that

$$a * b = b * a$$
 for every $a, b \in G$

then G is called an **Abelian group**.

• Examples:

Exercise

• Show that the set $G = \{x + y\sqrt{3} : x, y \in \mathbb{Q}\}$ is a group under addition.

Dr Maria Thomas Group Thoery September 1, 2023

Exercise

• Symmetrices of a Square

Subgroups

- If a subset H of a group G is itself a group under the operation of G, then H is said to be a subgroup of G.
- Notation: $H \leq G$
- If H is a subgroup of G, but not equal to G then H is said to be a proper subgroup of G, denoted by H < G.
- The subgroup $\{e\}$ is called the trivial subgroup of G.

Dr Maria Thomas Group Thoery September 1, 2023 15 / 24

Exercise

• Is $(\mathbb{Z}_n, +)$ a subgroup of $(\mathbb{Z}, +)$? No

- Let H be a non-empty subset of a group G. $H \leq G$ if and only if $a, b \in H \implies ab^{-1} \in H$.
- Let H and K be two subgroups of a group G. Then $H \cap K$ is a subgroup of G.
- Let H and K be two subgroups of a group G. Then $H \cup K$ is a subgroup of $G \Leftrightarrow$ either $H \subseteq K$ or $K \subseteq H$.

Product of Two Subgroups:

 Let H and K be two subgroups of a group G. Then their product is defined as

$$HK=\{hk:h\in H,k\in K\}.$$

• Theorem:

Let G be a group. Let H and K be subgroups of G. Then $HK \leq G \Leftrightarrow HK = KH$.

Cyclic Groups

- Let $a \in G$. Define $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$
- $\langle a \rangle$ is a subgroup of G.
- \bullet < a > is called a cyclic subgroup generated by a.
- G is said to be cyclic if and only if $\exists a \in G$ such that $G = \langle a \rangle$.
- Every cyclic group is Abelian.

Cyclic Groups: Examples

- ullet Example 1: The set of integer $\mathbb Z$ under addition is cyclic.
- Example 2: $(\mathbb{Z}_8, +_8)$
- Example 3: $(\mathbb{Z}_5 \setminus \{0\}, *)$

Semi Group

 \bullet A non-empty set G with a binary operation * is called a semi-group if

$$a*(b*c) = (a*b)*c \forall a,b,c \in G$$

- Remark: Every group is a semi-group. But the converse is not true.
- Example 1: $(\mathbb{Z}, *)$
- Example 2: $(\mathbb{Z}^+, +)$