

Second Semester 2021- 2022

Course Handout (Part-II)

Date: 28/122021

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE G641

Reaction

Course Title : Engineering Instructor-in-Charge : Srikanta Dinda

Description: Design of multi-phase reactors; analyses of gas-liquid and gasliquid- solid reactions; intrinsic kinetics of catalytic reactions; residence time distribution models for micro-and macro-mixing; mathematical models for gas-liquid-solid reactors; laboratory reactors; dynamics and design of various multi-phase reactors such as trickle bed reactors, bubble column reactors, segmented- bed reactors, slurry reactors, spouted bed reactors, pulsating reactors, fluidized bed reactors, etc.; optimization of chemical reactors.

Scope & Objective

This course includes basic and advanced topics in Chemical Reaction Engineering. The initial part of the course includes reaction mechanisms, basic reaction kinetics (like rate, concentration, conversion, and selectivity), and ideal reactor configurations. The design of catalytic and other multiphase reactors is elaborated. The characterization of non-ideal reactors and modeling of these, especially with reference to Residence Time Distribution (RTD Models) are dealt with. Thermal and Mass Transfer effects are also explained in multi-phase reactors. The main objective of this course is to give the student a better understanding of Chemical Reaction Engineering of Multi-Phase Non-ideal reactors encountered in Industry from the point of view of design and performance evaluation of such actual reactors. Short projects/assignments and industrial visits shall be planned to imbibe the concepts learned better.

Learning outcomes:

After studying this course, students will be able to

- Have the knowledge to what kind of reactor system is to be used for what situation.
- Student will be able to analyze the kinetic related data to find the size of the reactor for a specific reaction
- Lab exposer will help to know how to find the reaction kinetics of an unknown system

Text Books

- **T1** Levenspiel, Octave, *Chemical Reaction Engineering*, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2000 (or higher edition if available!).
- **T2** Fogler, H. Scott, *Elements of Chemical Reaction Engineering*, Prentice-Hall of India Pvt. Ltd., New Delhi, 4th Ed., 2006 (or higher edition if available!).

Reference Books

R1 Salmi, Tapio O., Jyri-Pekka M., and Johan P, W., *Chemical Reaction Engineering and Reactor Technology*, CRC Press, Taylor &Francis, New York, 2011 (or higher edition if available!).

Course Plan

Lecture	Learning Objectives	Topics to be covered	Reference
No.			
1-6	Review of chemical kinetics and ideal	Review of kinetics and ideal	Chap No. 1-8 of T1
	reactor concepts and ideal reactor designs,	reactors	Chap No. 1-3 of T2

	1		Cl N 12 CD1
	conversion, and sizing of ideal reactors		Chap No. 1-3 of R1
	including multiple reactors in series or		
	parallel		
7-10	Reaction mechanisms, elementary and	Review of mechanism of	Chap No. 1 of T1
	non-elementary homogeneous reactions,	reactions, order, and effect	Chap No. 7 of T2
	order of reactions	on reactor design	
10-12	Laboratory reactors, collection, and	Rate models and rate	Chap No. 1 of T1
	analysis of rate data	expressions, Laboratory data	Chap No. 5 of T2
		analysis and Interpretation	
13-19	Multiple reactions – series-parallel and	Multiple reactions	Chap No. 7-8 of T1
	effect on ideal reactor design		Chap No. 6 of T2
			Chap No. 4 of R1
20-21	Temperature and pressure effects on single	Effects of temperature and	Chap No. 9 of T1
	and multiple reactions	pressure	Chap No. 5 of R1
22-24	Catalysis and Catalytic reactors, catalyst	Heterogeneous catalysis	Chap No. 17-19 of T1
	deactivation, fouling, poisons, mitigations	introduction	Chap No. 10 of T2
25-29	Packed bed catalytic reactors and external	Heterogeneous catalysis with	Chap No. 19 of T1
	and internal diffusion	mass transfer	Chap No. 10-11 of T2
30-32	Multiphase reactors including gas-solid and	Multiphase catalytic reactors	Chap No. 20-22 of T1
	liquid slurry, bubble columns and fluid bed		Chap No. 12 of T2
	reactors, trickle bed reactors		
33-35	Non-Catalytic systems, fluid-fluid, fluid-	Multi-phase non-catalytic	Chap No. 23-26 of T1
	particle kinetics and reactor design	reactors	
36-41	Tracers, methods of obtaining Residence	Residence time Distribution	Chap No. 11-16 of T1
	time Distribution (RTD), models for flow	(Macro mixing)	Chap No. 13-14 of T2
	patterns		Chap No. 6 of R1

Lab experiments:

Lab Name	Experiment Name & Objective	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH and	
	ethyl acetate in a batch reactor @30 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH and	
	ethyl acetate in a batch reactor @40 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH and	
	ethyl acetate in a batch reactor @50 °C.	
CRE lab	Batch Reactor: To study the order and rate constant for the reaction between KOH and	
	butyl acetate in a batch reactor @30 °C.	
CRE lab	Continuous Stirred Tank Reactor: To study the order and rate constant for the reaction	
	between KOH and ethyl acetate in a CSTR @ 30 °C.	
CRE lab	Plug Flow Reactor: To study the order and rate constant for the reaction between KOH	
	and ethyl acetate in a PFR @ 30 °C.	
CRE lab	RTD study using CSTR	
CRE lab	RTD study using PFR	
CRE Lab	To find conversion of a reaction using spectrophotometric method	
CRE Lab	To find conversion of a reaction using GC analysis	
Multiphase lab	To find the adsorption capacity of an adsorbent for adsorption of a gas on solid	
	adsorbent	
Petroleum lab	Cracking of liquid fuel	

Evaluation scheme

EC	Evaluation Component	Duration	Weightage, %	Date, Time	Remarks
1.	Mid sem	90 min	25	As per Timetable	OB
2.	Comprehensive	120 min	35	As per Timetable	15% CB & 20% OB
3.	Assignment & / seminars	-	10	It will be	OB
				announced in class	
4	quizzes	-	10	It will be	СВ
				announced in class	
5	Lab experiments	-	20		OB

- Min. marks required to secure a valid grade is above 10% of the total marks.
- **Chamber consultation hour** will be announced in the class.
- The **notices**, if any, concerning the course, will be displayed on CMS /Departmental notice board.
- Make-up for mid & comprehensive will be granted for genuine cases with prior permission of IC only.
- Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge | **CHE G641** Srikanta Dinda