

Sección 2.2

- 1. Nada.
- **3.** (a) 0.
- (b) -1/2.
- (c) 1.

- **5.** (a) 5.
- (b) 0.
- (c) 2x.

- 7. $e^3/10$.
- **9.** (a) 0.
- (b) -1/2.
- (c) 0.
- **11.** (a) Componer f(x,y)=xy con $g(t)=(\sin t)/t$ para $t\neq 0$ y g(0)=1.
 - (b) El límite no existe.
 - (c) 0
- **13.** (a) 1.
 - (b) $\|\mathbf{x}_0\|$.
 - (c) (1, e).
 - (d) El límite no existe (calcular los límites para x = 0 e y = 0 por separado).
- **15.** En todas partes excepto en (0,0).
- **17.** 0.
- **19.** Si $(x_0, y_0) \in A$, entonces $|x_0| < 1$ y $|y_0| < 1$. Sea $r = \min(1 |x_0|, 1 |y_0|)$. Demostrar que $D_r(x_0, y_0) \subset A$ bien de forma analítica bien mediante una figura.
- **21.** Tómese $r = \min(2 \sqrt{x_0^2 + y_0^2}, \sqrt{x_0^2 + y_0^2} \sqrt{2}).$
- 23. Utilizar los apartados (II) y (III) del Teorema 4.

- **25.** (a) Hacer que el valor de la función sea igual a 1 en (0,0).
 - (b) No.
- **27.** Para $|x-2| < \delta = \sqrt{\varepsilon + 4} 2$, tenemos $|x^2 4| = |x-2||x+2| < \delta(\delta+4) = \varepsilon$. Por el Teorema 3(III), $\lim_{x \to 2} x^2 = (\lim_{x \to 2} x)^2 = 2^2 = 4$.
- **29.** Sea $r = \|\mathbf{x} \mathbf{y}\|/2$. Si $\|\mathbf{z} \mathbf{y}\| \le r$, sea $f(\mathbf{z}) = \|\mathbf{z} \mathbf{y}\|/r$. Si $\|\mathbf{z} \mathbf{y}\| > r$, sea $f(\mathbf{z}) = 1$.
- **31.** (a) $\lim_{\substack{x \to b^+ \\ \delta > 0}} f(x) = L$ si para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que x > b y $0 < x b < \delta$ implica que $|f(x) L| < \varepsilon$.
 - $\begin{array}{ll} \text{(b)} & \lim_{x\to 0^-} (1/x) = -\infty, \lim_{t\to -\infty} e^t = 0,\\ \text{y por tanto } \lim_{x\to 0^-} e^{1/x} = 0. \text{ Luego} \\ & \lim_{x\to 0^-} 1/(1+e^{1/x}) = 1. \text{ El otro límite es } 0. \end{array}$

- **33.** Para $\varepsilon > 0$ y \mathbf{x}_0 , sea $\delta = (\varepsilon/K)^{1/\alpha}$. Entonces $||f(\mathbf{x}) f(\mathbf{x}_0)|| < K\delta^{\alpha} = \varepsilon$ cuando $||\mathbf{x} \mathbf{x}_0|| < \delta$. Obsérvese que la elección de δ no depende de \mathbf{x}_0 . Esto significa que f es uniformemente continua.
- **35.** (a) Elegir $\delta < 1/500$.
 - (b) Elegir $\delta < 0.002$.

Sección 2.3

- **1.** (a) $\partial f/\partial x = y; \partial f/\partial y = x$.
 - (b) $\partial f/\partial x = ye^{xy}$; $\partial f/\partial y = xe^{xy}$.
 - (c) $\partial f/\partial x = \cos x \cos y x \sin x \cos y$; $\partial f/\partial y = -x \cos x \sin y$.
 - (d) $\partial f/\partial x = 2x[1 + \log(x^2 + y^2)];$ $\partial f/\partial y = 2y[1 + \log(x^2 + y^2)]; (x, y) \neq (0, 0).$
- **3.** (a) $\partial w/\partial x = (1 + 2x^2) \exp(x^2 + y^2);$ $\partial w/\partial y = 2xy \exp(x^2 + y^2).$