Cinétique chimique

exercices - CCINP

On donne les numéros atomiques de l'azote et de l'oxygène.

- 1. Donner la structure électronique de O et N en précisant et énonçant les règles utilisées.
- 2. Donner la formule de Lewis de NO₂ (structure ONO)
- 3. On étudie la réaction $N_2O_5=2NO_2+1/2O_2$ dans un volume constant à T=443 K. A t=3 s la réaction se termine avec 2/3 de N_2O_5 dissocié. Calculer k_1 la constante de vitesse.

Décomposition de CH_3CHO en CH_4 et CO, tous ces composés sont gazeux. On place n_0 moles d'éthanal seul dans un volume V à la température T. A l'instant initial, la pression, dans le volume V, à la température T, est p_0 .

- 1. Nommer les espèces et écrire la réaction.
- 2. Tracer le tableau d'avancement à t en fonction de $\xi(t)$ l'avancement.
- 3. Démontrer que l'on peut suivre l'avancement à l'aide de la mesure d'une seule grandeur physique.
- 4. Expérimentalement, la fonction $F(t)=-p(t)-p_0p(t)-2p_0$ est proportionnelle à t.
 - 4.1 Déterminer si les ordres 0,1 et 2 sont compatibles avec ces données.
 - 4.2 L'expérience donne $F(t)=1,22.10^{-2}t+3,48.10^{-5}$. Est-ce compatible?
 - 4.3 Calculer le temps de demi-réaction. Même question avec un volume 2V.

- 1. Donner les configurations électroniques de H, O (Z=8), puis la formule de Lewis de H_2O_2 .
- 2. Établir la constante d'équilibre entre MnO^{-4} et H_2O_2 ; on donnait les potentiels des couples H_2O_2/O_2 et MnO^{-4}/Mn^{2+} . Le dosage est-il possible ?
- 3. un dosage de la réaction $H_2O_2 \rightarrow H_2O+1/2O_2$ (au permanganate) On disait que l'on prélevait des volumes et que l'on dosait, il y avait un tableau présentant les volumes nécessaires (en permanganate ?) pour doser, à intervalles réguliers.
 - 3.1 On demandait de justifier que la concentration en H_2O_2 était proportionnelle au volume nécessaire (et question sur le facteur).
 - 3.2 Ensuite, il fallait, sous hypothèse d'une réaction d'ordre 1, établir une relation entre V et t.
 - 3.3 On demandait de calculer la constante k à la température d'étude.
 - 3.4 Finalement, on disait qu'à une autre température, k était multipliée par 5 : quelle grandeur peut-on en déduire ?

On considère la réaction en phase gazeuse : $NO_2+CO \leftrightharpoons CO_2+NO$. On mesure les vitesses de réaction r_0 à t=0 s qui suivent la loi : $r_0 = k_0[NO_2]^{a_0}[C_O]^{b_0}$, à P,T fixés. Les données étaient présentées dans deux tableaux, un où $[NO_2]$ variait seul et un où [CO] variait seul. Dans le cas de [CO], r_0 semblait rester fixe, et pour $[NO_2]$, quand on divisait la concentration par 2, r_0 était divisé par 4.

- 1. 1.1 Déterminer a_0 et b_0 .
 - 1.2 On suppose que les ordres partiels de la réaction ne varient pas. Déterminer $[NO_2](t)$
 - 1.3 Donner une relation entre k_0 et $t_{1/2}$ le temps de demi-réaction.
- On donne les graphes de la pression partielle de NO₂ en fonction du temps, à deux valeurs de température différentes.
 Dans les deux cas, la pression partielle initiale est la même.
 Déterminer k₀(T₁), k₀(T₂) et E_A l'énergie d'activation de la réaction.