AULA 21 – Grafos planares

Prof. Daniel Kikuti

Universidade Estadual de Maringá

17 de agosto de 2015

Conteúdo

- ▶ Introdução
 - Definição de grafo planar
 - Motivação para estudo de grafos planares
 - Algumas propriedades
- Caracterização de grafos planares
 - Relação de Euler para grafos planares
 - Teoremas de Kuratowski e Wagner
- ► Teste de planaridade
 - Indicação de referências bibliográficas

Imersão

Uma **imersão** de um grafo G em uma superfície S é uma representação geométrica (desenho) de G em S tal que dois vértices distintos não ocupam o mesmo lugar em S e não existe cruzamento de arestas, a não ser nos extremos quando duas arestas são adjacentes.

Grafo planar

Um grafo G é **planar** se ele tem imersão no plano (\mathbb{R}^2) .

Faces

As regiões limitadas por uma imersão planar são chamadas de faces. Toda imersão planar tem uma face ilimitada denominada de face externa.

Exemplo

Motivação

Aplicação em diferentes áreas (Elétrica, Mecânica, Engenharia Civil, etc.)

- Grafos planares são fáceis de visualizar (projeto elétrico ou hidráulico de uma casa). Cruzamentos dificultam o entendimento.
- Design de circuitos VLSI (quanto menor o número de cruzamentos, melhor o design).
- Projeto de rodovias/ferrovias. Cruzamentos s\u00e3o sempre problem\u00e1ticos.

Propriedades

- São grafos esparsos.
- São grafos 4-coloríveis.
- Várias operações podem ser feitas de maneira eficientes, o que leva ao desenvolvimento de algoritmos mais eficientes quando comparados com algoritmos para grafos genéricos (estruturas de dados especiais para armazenamento e manipulação).
- ▶ O tamanho de um grafo planar incluindo faces, arestas e vértices é O(V).

Problema de decisão

Dado um grafo G = (V, E), G é planar, isto é, pode ser desenhado no plano sem cruzar arestas?

Problema computacional

Dado um grafo G=(V,E), se G é planar, como G pode ser desenhado no plano tal que nenhuma aresta se cruze? Ou seja, mostre a representação planar do grafo G.

O grafo K_4 é planar?

E os grafos K_5 e $K_{3,3}$?

Algumas observações importantes

- Uma aresta de um ciclo pertence a duas faces;
- Uma aresta de corte (ponte) pertence somente a uma face;
- Um grafo planar é acíclico se e somente se o número de faces é igual a 1.

Teorema de Euler

Seja G=(V,E) um grafo planar e conexo com F faces, então |V|+F-|E|=2.

Teorema de Euler

Seja G = (V, E) um grafo planar e conexo com F faces, então |V| + F - |E| = 2.

Demonstração

Indução no número de faces. Se F=1, então G não possui ciclos (é uma árvore). Portanto, |E| = |V| - 1 e o resultado da relação se verifica. Assim, assuma que $F \ge 2$ e que o resultado se verifica para todos os grafos planares conexos com F-1 faces. Seja G um grafo planar com F faces. Como F > 2, G contém um ciclo. Seja (u, v) uma aresta pertencente a um ciclo. O grafo $G' = (V, E - \{(u, v)\})$ é um grafo planar conexo com |V| vértices, |E|-1 arestas e F-1 faces (note que a remoção de uma aresta comum a duas faces faz com que duas faces se tornem uma só no grafo G'). Pela hipótese indutiva,

$$|V| - (|E| - 1) + (F - 1) = 2 \implies |V| - |E| + F = 2.$$

Corolário

Seja G=(V,E) um grafo planar e conexo com pelo menos três vértices, então $|E|\leq 3|V|-6$.

Corolário

Seja G=(V,E) um grafo planar e conexo com pelo menos três vértices, então $|E|\leq 3|V|-6$.

K₅ não é planar

$$|V| = 5$$
, $|E| = 10 > 3|V| - 6 = 9$.

Corolário

Seja G=(V,E) um grafo planar e conexo com pelo menos três vértices, então $|E| \leq 3|V|-6$.

K₅ não é planar

$$|V| = 5$$
, $|E| = 10 > 3|V| - 6 = 9$.

Condição necessária, mas não suficiente

Verifique que o grafo formado pela junção do K_5 com o $K_{3,3}$ por meio de uma aresta respeita o Corolário.

Definição de subdivisão

- ▶ A **subdivisão** de uma aresta $(u, v) \in E$ é a operação de substituir (u, v) por um caminho (u, w, v), onde w é um novo vértice.
- Um grafo H é dito ser uma subdivisão de G se H pode ser obtido de G por uma sequência de subdivisões de arestas.

Observações

- ▶ Se G é planar, então qualquer subdivisão H de G é planar.
- Se G não é planar, então qualquer subdivisão H de G não é planar.
- ► Se uma subdivisão *H* de *G* não é planar, então *G* não é planar.

Grafo minor

- Seja (u, v) uma aresta em um grafo G. Remova os vértices u e v. Adicione um novo vértice w a G (u, v) e conecte w a todos os vértices em V {u, v} para os quais u ou v são adjacentes em G. Esta operação é chamada de contração de aresta.
- Um grafo H é dito ser minor de G, se uma cópia isomórfica de H pode ser obtida de G por uma sequência de remoções ou contrações de arestas.

Exemplo

Teorema de Kuratowski

Um grafo G é planar se, e somente se, ele não contém uma subdivisão do $K_{3,3}$ e do K_5 .

Teorema de Wagner

Um grafo G é planar se, e somente se, ele não contém um grafo minor $K_{3,3}$ ou K_5 .