Building modelling group

IBPSA Project 1 – WP3 - DESTEST

Previous expert meeting [02/04/2019]

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Start simple: 16 identical buildings

- Single-family dwelling of 1980
 - Thermal performance based on TABULA project for Belgium
 - Two-zone model (day zone and night zone)
 - Only heat demand for space heating
 - Standard occupant (ISO 13790)

Participants

Modelling environment	Modeler	Affiliation of participant
Modelica IDEAS	Ina De Jaeger	KU Leuven / VITO / EnergyVille
Modelica Buildings	Alessandro Maccarini	Aalborg University
Modelica AixLib	Michael Mans	RWTH Aachen
Modelica BuildingSystems	Haris Shamsi	UCD Dublin
IDA ICE	Øystein Rønneseth, Igor Sartori	Sintef Norway
DIMOSIM	Enora Garreau	CSTB
Trnsys	Enora Garreau	CSTB

Peak power & energy demand

Peak power

Annual energy demand

Load duration curve

Profiles: March

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Gradually increasing in complexity

- Single-family dwelling of 1980
 - Thermal performance based on TABULA project for Belgium
 - → Also include renovation (light and heavy)

ADDITION 2

Definition ready

- Two-zone model (day zone and night zone)
- Only heat demand for space heating
- Standard occupant (ISO 13790)
 - → Stochastic occupants (16 different profiles)
- Office building

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Results from IDEAS library for all occupant profiles

Peak power & energy demand

Peak power

Annual energy demand

Results from IDEAS library for all occupant profiles

Load duration curve

Results from IDEAS library & DIMOSIM for occupant 1

Peak power & energy demand

Peak power

Annual energy demand

Load duration curve

Profiles: March

Results from IDEAS library & DIMOSIM

Annual heat demand

Results from IDEAS library & DIMOSIM

Heating loads

Addition 1: 16 occupants

- Commitments?
- Next steps?

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Addition 2: renovations

[Based on TABULA, Belgium]

- Proposal 1:
 - Add 6 cm of MW to external walls
 - Add 8 cm of MW to roof
 - Add 6 cm of EPS to ground floor
 - Mount new windows, double glazed, argon filled, low E (U = 2 W/m²K)
- Proposal 2:
 - Add 12 cm of MW to external walls
 - Add 22 cm of MW to roof
 - Add 12 cm of EPS to ground floor
 - Mount new windows, double glazed, argon filled, low E, insulated frame (U = 1.6 W/m²K)

External walls (area 4 x 22.4 m²)						U = 1.07 W/m²K	
	Layers	t [m]	λ [W/mK]	ρ [kg/m³]	c [J/kgK]	sa [-]	ε [-]
	Heavy masonry	0.1	1.1	1850	840	0.55	0.9
	Cavity	0.1	0.555556	100	20	0.55	0.9
	EPS	0.01	0.036	26	1470	0.8	0.9
	Medium masonry	0.14	0.75	1400	840	0.55	0.9
	Gypsum	0.02	0.6	975	840	0.65	0.9

Roof (area 64 m²)					U = 0.71 W/m ² K		
	Layers	t [m]	λ [W/mK]	ρ [kg/m³]	c [J/kgK]	sa [-]	ε [-]
	Ceramic tile	0.025	1.4	2100	840	0.55	0.9
	Cavity	0.1	0.625	100	20	0.55	0.9
	Glasswoo I	0.04	0.04	80	840	0.85	0.9
	Gypsum	0.02	0.6	975	840	0.65	0.9

Ground floor (area 64 m²)					$U = 0.81 \text{ W/m}^2\text{K}$		
	Layers	t [m]	λ [W/mK]	ρ [kg/m³]	c [J/kgK]	sa [-]	ε [-]
	Dense concrete	0.15	1.4	2100	840	0.55	0.9
	EPS	0.03	0.036	26	1470	0.8	0.9
	Light concrete	80.0	0.6	1100	840	0.55	0.9
	Ceramic tile	0.02	1.4	2100	840	0.55	0.9

Addition 2: renovations

- Commitments?
 - Initialise case report 3 (Ina)
 - Define materials properties of new materials and add to case report 3 (Ina)
 - Make simulations in IDEAS (Ina)
 - Other simulations?

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Addition 3: office building

- Commitments?
 - Initialise report?
 - Simulations?
 - IDEAS (Arash)
 - AixLib (Michael)
- Current status?

FOURTH COMMON EXERCISE

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Gradually increasing in complexity – next steps?

- Single-family dwelling of 1980
 - Thermal performance based on TABULA project for Belgium
 - → Also include renovation (light and heavy)

ADDITION 2

Definition ready

- Two-zone model (day zone and night zone)
- Only heat demand for space heating
- Standard occupant (ISO 13790)
 - → Stochastic occupants (16 different profiles)
- Office building

→ Dreamlist? Next steps? When?

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?

Dissemination

- Case report
- Online results + plots
- CityGML model

Case report

- Finalize case report 1
- Update template for case reports (Ina)
- Start on next case reports?
 - Case report 2: stochastic occupants
 - Case report 3: renovations
 - Case report 4: office building
 - Commitments?

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

Online results and plots

- Currently: Google spreadsheet
 - Very slow
- Proposal:
 - Collect results in standardized format on <u>IBPSA Project 1 Github (WP2 directory)</u>? (might become too big)
 - Python script for automated plots? (show current status)
 - Other plots to add? (E.g. plots of Enora?)

- Start simple
- Gradually increasing in complexity
 - Addition 1: 16 occupants
 - Addition 2: renovations
 - Addition 3: office building
 - Next steps?
- Dissemination
 - Case report
 - Online results + plots
 - CityGML model

CityGML model

Ask Joachim (Ina)