Ejercicios Resueltos de Asimetría y Curtosis

1.- Con la siguiente información, determine el Coeficiente de Asimetría y Curtosis.

Se sabe: Md= 80,45 kg P_{10} = 62,25 kg P_{25} = 72,22 kg P_{75} = 88,21 kg P_{90} = 94,43 kg

Peso de los trabajadores

reso de los trabajadores						
Xi	"X"	Xs	f	"X" * f		
55	60	65	8	480		
65	70	75	9	630		
75	80	85	22	1760		
85	90	95	14	1260		
95	100	105	5	500		

N= 58 4630

COEFICIENTE DE ASIMETRÍA:

Fórmula:

$$Ca = \frac{3(\overline{X} - Md)}{S}$$

Para calcular la asimetría, necesitamos la mediana, la media aritmética y la Desviación Estándar. Ya la Mediana nos la da el ejercicio, falta determinar la Media Aritmética y la Desviación Estándar.

Aplicando la fórmula de la Media Aritmética para datos agrupados, tenemos:

$$\overline{X} = \frac{\Sigma("X" \times f)}{N}$$
 $\overline{X} = \frac{4.630}{58} = 79,83 \ kg$

Ahora con esta información, procedemos a determinar la Desviación Estándar:

Fórmula:

$$S = \sqrt{\frac{\sum (X - X^{-})^{2}}{N}}$$

Peso de los trabajadores

Xi	"X"	Xs	f	$(x - \overline{X})$	$(\mathbf{x} - \overline{X})^2$	$(x - \overline{X})^2 \times f$
55	60	65	8	-19,8275862	393,133175	3145,0654
65	70	75	9	-9,82758621	96,5814507	869,233056
75	80	85	22	0,17241379	0,02972652	0,65398335
85	90	95	14	10,1724138	103,478002	1448,69203
95	100	105	5	20,1724138	406,926278	2034,63139

7498,27586

$$S = \sqrt{\frac{7.498,2759}{58}} = 11,3702 \, kg$$

Una vez calculada la Desviación Estándar, procedemos a sustituir datos en la fórmula del Coeficiente de Asimetría.

$$Ca = \frac{3(79,83 - 80,45)}{11,3702} = -0.16$$
No lleva unidades, se colocan 2 decimales

Interpretación: Se contrasta el resultado con la tabla:

Si Coeficiente de Asimetría es igual a:

Cero "0"	es	Simétrica
0,01 a 0,10	es	Ligeramente Sesgada
0,11 a 0.30	es	Moderadamente Sesgada
0,31 a 1	es	Marcadamente Sesgada

Por lo tanto -0,16 es Moderadamente sesgada hacia la izquierda. El signo - δ + indica si el sesgo es para la izquierda (-) o para la derecha (+).

COEFICIENTE DE CURTOSIS O APUNTAMIENTO:

Fórmula:

$$Cu = \frac{P_{75} - P_{25}}{2(P_{90} - P_{10})}$$

Entre los datos del ejercicio están los percentiles a utilizar, solo deben sustituirlos en la fórmula y calcular:

No lleva unidades, se colocan 3 decimales
$$Cu = \frac{88,21-72,22}{2(94,43-62,25)} = 0,248$$

Interpretación:

Este resultado se contrasta con la siguiente tabla:

Si el Coeficiente de Curtosis es igual a:

= 0,263 Mesocúrtica

> 0,263 Leptocúrtica

< 0,263 Platicúrtica

Como el resultado obtenido 0,248 es menor que 0,263 se concluye que la Distribución es Platicúrtica.

Ejercicio de Coeficiente de Variación:

Si dos Trabajadores ejecutan la misma labor pero el Trabajador A, lo hace en un tiempo promedio de 1 hora con una Desviación Estándar de 5 min y el Trabajador B, hace el trabajo en un tiempo promedio de 45 min y una Desviación Estándar de 5 min. Se pregunta ¿Cuál trabajador es más homogéneo realizando la labor?

Datos:

Trabajador A:

$$\overline{X} = 1 hora$$

$$S = 5 \min$$

Trabajador B

$$\overline{X} = 45 \, min$$

$$S = 5 \min$$

Lo primero que se debe hacer es verificar que las unidades sean iguales, es decir, todo en horas o todo en minutos. Observamos que el trabajador A tiene el tiempo expresado en horas, vamos a hacer la conversión, que serían 60 min = 1 hora.

Ahora Sustituimos los datos en la fórmula del Coeficiente de variación:

$$Cv = \frac{S}{\overline{X}} \times 100$$

$$Cv(A) = \frac{5}{60} \times 100 = 8,33\%$$

$$Cv(B) = \frac{5}{45} \times 100 = 11,11\%$$

El trabajador A es más homogéneo realizando la labor porque es el que presenta menos dispersión.

El Cv no debe pasar del 100% si eso ocurre probablemente hubo algún error en los cálculos, de igual manera si el Cv da por encima del 30% se puede decir que la media aritmética no es representativa,