UFR	MATHÉMATIQUES
Maste	r 1 ^{re} année

Université Rennes 1 Année 2006/2007

Module G12:

Quelques exercices sur le calcul des probabilités

Hélène Guérin, Florent Malrieu, Aurélie Muller

helene.guerin@univ-rennes1.fr, florent.malrieu@univ-rennes1.fr, muller@lyon.cemagref.fr

http://perso.univ-rennes1.fr/philippe.briand/proba/

1. Généralités sur les probabilités

Exercice 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On considère

$$\mathcal{G} = \{ A \in \mathcal{F} : \mathbb{P}(A) = 0 \text{ ou } 1 \}.$$

Montrer que \mathcal{G} est une tribu.

Exercice 2. 1. Soient (E_1, \mathcal{E}_1) et (E_2, \mathcal{E}_2) deux espace mesurables. On suppose que $\mathcal{E}_i = \sigma(\mathcal{C}_i)$ avec $E_i \in \mathcal{C}_i$.

- (a) Montrer que la tribu $\mathcal{E}_1 \otimes \mathcal{E}_2$ est engendrée par les pavés $C_1 \times C_2$ où $C_i \in \mathcal{C}_i$.
- (b) En déduire que $\mathcal{B}(\mathbf{R}^d) \otimes \mathcal{B}(\mathbf{R}^n) = \mathcal{B}(\mathbf{R}^{d+n})$.
- 2. (a) Soit $X = (X_1, X_2)$ une application à valeurs dans $E_1 \times E_2$ (définie sur $(\Omega, \mathcal{F}, \mathbb{P})$). Montrer que X est une v.a. si et seulement si X_1 et X_2 sont des v.a.
 - (b) En déduire les propriétés algébriques des v.a.

Exercice 3. Soit $(A_n)_{\mathbf{N}}$ une suite d'événements. Montrer que

$$\mathbb{P}(\liminf A_n) \le \liminf_{n \to +\infty} \mathbb{P}(A_n) \le \limsup_{n \to +\infty} \mathbb{P}(A_n) \le \mathbb{P}(\limsup A_n).$$

Exercice 4. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles. Comparer les événements $\{\lim\sup_{n\to+\infty}X_n>1\}$ et $\limsup\{X_n>1\}$ puis $\{\lim\sup_{n\to+\infty}X_n\geq 1\}$ et $\lim\sup\{X_n\geq 1\}$.

Exercice 5. Soit $(X_n)_{\mathbf{N}}$ une suite de v.a. numériques définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. On suppose que $\sum_{n\geq 0} \mathbb{P}(|X_n| > \varepsilon_n) < +\infty$ où $(\varepsilon_n)_{n\geq 0}$ est une suite de réels positifs convergeant vers 0. Montrer que $(X_n)_{\mathbf{N}}$ converge presque sûrement vers 0.

Exercice 6. Soit X une v.a.r. normale centrée réduite définie sur $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. Calculer, pour tout réel s, $\mathbb{E}\left[e^{sX}\right]$. En déduire que $e^{s|X|}$ est intégrable pour tout $s\in\mathbf{R}$.
- 2. Montrer que $z \longmapsto \mathbb{E}\left[e^{zX}\right]$ est analytique sur ${\bf C}.$
- 3. En déduire que $\varphi_X(t)=\mathbb{E}\left[e^{itX}\right]=e^{-\frac{t^2}{2}}.$

Exercice 7. On considère la fonction réelle $u(x) = (1 + |x|)^{-1}$.

1. Soit X une variable réelle. On considère, pour $s \ge 0$, $\theta(s) = \mathbb{E}[u(sX)]$.

Montrer que θ est continue sur $[0, +\infty[$, de classe \mathcal{C}^1 sur $]0, +\infty[$. Exprimer $\theta'(s)$ comme une espérance. Déterminer $\lim_{s\to +\infty} \theta(s)$.

2. Soient U une variable aléatoire de loi uniforme sur [0,1] et $c \in]0,1[$. On considère la variable aléatoire $X = (U-c)^+$. Calculer, pour la variable X, $\theta(s)$ puis $\lim_{s\to+\infty}\theta(s)$. Est-ce cohérent avec la question précédente?

Correction. 1. Pour tout $s \ge 0$, $\omega \mapsto u[sX(\omega)]$ est mesurable. On a d'autre part,

$$\sup_{s \ge 0} |u(sX)| = \sup_{s \ge 0} \frac{1}{1 + s|X|} \le 1. \tag{1}$$

La fonction constante égale à un est intégrable puisque nous travaillons sur un espace probabilisé.

Remarquons, que pour ω fixé, la fonction $s \mapsto u[sX(\omega)]$ est continue sur \mathbf{R}^+ et vérifie $\lim_{s\to+\infty} u[sX(\omega)] = \mathbf{1}_{\{0\}}(X(\omega))$. La majoration (1) permet d'appliquer les résultats de continuité et passage à la limite pour les intégrales à paramètres : la fonction θ est définie et continue sur \mathbf{R}^+ et on a $\lim_{s\to+\infty} \theta(s) = \mathbb{E}\left[\lim_{s\to+\infty} u(sX)\right] = \mathbb{P}(X=0)$.

L'application – à ω fixé – $s \longmapsto u\left[sX(\omega)\right]$ est en fait de classe \mathcal{C}^1 sur $]0,+\infty[$ et on a

$$\forall s > 0, \qquad \frac{\partial}{\partial s} u[sX(\omega)] = -\frac{|X(\omega)|}{(1+s|X(\omega)|)^2}.$$

Remarquons, que pour tout a > 0,

$$\sup_{s \ge a} \left| \frac{\partial}{\partial s} u[sX(\omega)] \right| = \sup_{s \ge a} \frac{1}{s} \frac{s|X(\omega)|}{(1 + s|X(\omega)|)^2} \le \frac{1}{a}.$$

Le majorant précédent est intégrable : u est de classe \mathcal{C}^1 sur $[a, +\infty[$, pour tout a>0 donc sur $]0, +\infty[$ et

$$\forall s > 0, \qquad \theta'(s) = \mathbb{E}\left[\frac{\partial}{\partial s}u(sX)\right] = -\mathbb{E}\left[\frac{|X|}{(1+s|X|)^2}\right].$$

2. On a, pour tout $s \geq 0$,

$$\theta(s) = \int_0^1 \frac{1}{1 + s(u - c)^+} du = c + \int_c^1 \frac{1}{1 + s(u - c)} du = c + \frac{1}{s} \ln\left[1 + s(1 - c)\right].$$

Par conséquent, $\theta(s) \longrightarrow c$ si $s \to +\infty$. Or $\mathbb{P}((U-c)^+ = 0) = \mathbb{P}(U \le c) = c$.

Exercice 8. Soit X une variable aléatoire suivant la loi de Cauchy $\mathcal{C}(1)$ c'est à dire de densité $p(x) = \pi^{-1}(1+x^2)^{-1}$. Déterminer la loi de la variable aléatoire $Y = X^{-1}$.

Correction. Puisque X possède une densité, $\mathbb{P}(X=0)=0$; la définition de X^{-1} ne pose aucune difficulté. Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction borélienne et positive. On a

$$\mathbb{E}[f(Y)] = \int_{\mathbf{R}^*} f(x^{-1}) \frac{1}{\pi} \frac{1}{1+x^2} dx.$$

Le changement de variable $y = x^{-1} - C^1$ -difféomorphisme de \mathbb{R}^* dans lui-même – donne

$$\mathbb{E}[f(Y)] = \int_{\mathbf{R}^*} f(y) \, \frac{1}{\pi} \frac{1}{1 + y^2} \, dy \; ;$$

Y suit la loi de Cauchy $\mathcal{C}(1)$.

Exercice 9. Soit X une v.a.r. de loi exponentielle de paramètre $\alpha > 0$. Quelle est la loi de 1 + [X]? ([x] désigne la partie entière de x)

Exercice 10. Soit X de loi géométrique de paramètre 0 . On construit une v.a. <math>Y en posant $Y(\omega) = X(\omega)/2$ si $X(\omega)$ est pair, $Y(\omega) = (1 + X(\omega))/2$ si $X(\omega)$ est impair.

Déterminer la loi de la v.a. Y.

Exercice 11. Soit U=(X,Y) une v.a. dans \mathbf{R}^2 de densité $(x,y)\longmapsto ke^{-x}\mathbf{1}_{0<|y|< x}$.

- 1. Quelle est la valeur de k?
- 2. Déterminer les lois marginales.
- 3. Quelle est la loi du vecteur $(\frac{X-Y}{2},\frac{X+Y}{2})\,?$

Exercice 12. Soit (U, V) une v.a. dans \mathbb{R}^2 de densité $\mathbf{1}_{[0,1]}(u)\mathbf{1}_{[0,1]}(v)$.

- 1. Déterminer la loi du vecteur (X,Y) où $X=\sqrt{-2\ln U}\cos(2\pi V), Y=\sqrt{-2\ln U}\sin(2\pi V)$.
- 2. Quelle est la loi de X/Y?
- 3. On note $R = \sqrt{X^2 + Y^2}$. Déterminer la loi de (X/R, R).

Exercice 13. Soit X une v.a.r. de fonction de répartition F. Calculer $\mathbb{E}[F(X)]$.

Exercice 14. Soit X une variable aléatoire réelle de fonction de répartition F donnée par F(t) = [t]/(1+[t]) si $t \ge 0$, F(t) = 0 si t < 0.

Calculer pour tout $n \in \mathbb{N}$, $\mathbb{P}(X = n)$. Calculer $\mathbb{P}(1 < X \le 3)$, $\mathbb{P}(2 \le X \le 4)$ et $\mathbb{P}(X < 12)$. X possède-t-elle une densité? X est-elle intégrable?

Exercice 15. Soit F la fonction définie par

$$\forall t \in \mathbf{R}, \qquad F(t) = \sum_{i>1} 2^{-i} \mathbf{1}_{\left[\frac{1}{i}, +\infty\right[}(t).$$

- 1. Montrer que F est une fonction de répartition.
- 2. Soit X une var de fonction de répartition F.
 - (a) Calculer $\mathbb{P}(X < 0)$, $\mathbb{P}(X \le 0)$, $\mathbb{P}(X \ge 1)$, $\mathbb{P}(X > 1)$, $\mathbb{P}(0 \le X < \frac{1}{2})$.
 - (b) Déterminer la fonction de répartition de la var Y = 1/X. Y est-elle intégrable?

2. Indépendance

Exercice 16. Soient $X_0, ..., X_n$ n+1 v.a. réelles indépendantes et identiquement distribuées; soit N une v.a. de loi binomiale $\mathcal{B}(n,p)$ indépendante de $X_0, ..., X_n$. On pose

$$\forall \omega \in \Omega, \qquad Y(\omega) = \sum_{k=0}^{N(\omega)} X_k(\omega).$$

Exprimer la fonction caractéristique de Y en fonction de celle de X_1

Exercice 17. Soit X une variable aléatoire de loi géométrique de paramètre $p \in]0,1[$. On note Y et Z le quotient et le reste de la division euclidienne de X+2 par 3.

Quelles sont les valeurs prises par les variables Y et Z? Déterminer les lois de ces deux variables ? Sont-elles indépendantes ?

Exercice 18. Soient X et Y deux v.a. indépendantes; X de loi géométrique de paramètre p, Y de loi géométrique de paramètre p'. Déterminer la loi de $Z = \min(X, Y)$.

Exercice 19. Soient X une variable aléatoire réelle et N suivant la loi de Poisson de paramètre $\alpha > 0$; X et N indépendantes. On considère la variable aléatoire $U = X^N$ (U = 1 si N = 0). On note $G(t) = \mathbb{E}\left[e^{tX}\right]$.

- 1. Montrer que U est intégrable si et seulement si $\mathbb{E}\left[e^{\alpha|X|}\right]<+\infty$.
- 2. Dans ce cas, exprimer $\mathbb{E}[U]$ en fonction de G.
- 3. Si X suit la loi $\mathcal{N}(0,1)$, montrer que U est intégrable et calculer $\mathbb{E}[U]$.

Exercice 20. Soient X et Y deux v.a. réelles indépendantes et identiquement distribuées. On pose $U = \min(X, Y), V = X - Y$.

- 1. Déterminer la fonction de répartition de U (resp. de $\max(X,Y)$).
- 2. On suppose que X suit la loi exponentielle de paramètre $\alpha > 0$. Quelle est la loi de (U, V)? U et V sont-elles indépendantes?

Exercice 21. Soient X et Y deux v.a.r. indépendantes.

- 1. Montrer que si X + Y est intégrable alors X et Y le sont.
- 2. Montrer que si X + Y est presque sûrement constante alors X et Y le sont également.

Exercice 22. Soient X et Y deux v.a. réelles indépendantes.

1. On suppose que X suit la loi de Cauchy de paramètre $\alpha > 0$ et que Y suit celle de Cauchy de paramètre $\beta > 0$. Quelle est la loi de X + Y?

Si $\alpha = \beta$, montrer que, pour tous a et b positifs, aX + bY a la même loi que (a + b)X.

2. On suppose que X et Y suivent la même loi symétrique – i.e. X et -X ont même loi – et que aX + bY a la même loi que (a + b)X pour tous a et b positifs.

Montrer que si X n'est pas presque sûrement constante alors X suit une loi de Cauchy.

Correction. Rappelons que φ désigne la fonction caractéristique d'une variable aléatoire X symétrique et qui n'est pas presque sûrement constante.

Nous avions établi que φ était réelle paire et qu'elle vérifiait

$$\forall (u, v) \in]0, +\infty[, \qquad \varphi(u+v) = \varphi(u)\varphi(v).$$

Pour tout u > 0, $\varphi(u) = \varphi(u/2 + u/2) = \varphi(u/2)^2$ et donc φ est une fonction positive. On obtient facilement par récurrence que, pour tout u > 0 et tout $n \in \mathbf{N}^*$, $\varphi(nu) = \varphi(u)^n$. En particulier, $\varphi(n) = \varphi(1)^n$. Soit r > 0 un rationnel. On a r = p/q avec $p \in \mathbf{N}^*$, $q \in \mathbf{N}^*$ et

$$\varphi(1)^p = \varphi(p) = \varphi(qr) = \varphi(r)^q. \tag{2}$$

Si $\varphi(1) = 0$, alors $\varphi(r) = 0$ pour tout rationnel r > 0. Par continuité de φ – une fonction caractéristique est uniformément continue – $1 = \varphi(0) = \lim_{n \to +\infty} \varphi(n^{-1}) = 0$. Ceci est impossible. Donc $\varphi(1) > 0$. On a alors via (2), pour tout rationnel r > 0, $\varphi(r) = \varphi(1)^r$. Les fonctions φ et $t \mapsto \varphi(1)^t$ étant continues et les rationnels denses, on obtient $\varphi(t) = \varphi(1)^t$ pour tout $t \ge 0$ et par parité, notant $c = -\ln \varphi(1)$,

$$\forall t \in \mathbf{R}, \qquad \varphi(t) = \varphi(1)^{|t|} = e^{-c|t|}.$$

Ceci est la fonction caractéristique d'une variable aléatoire de Cauchy de paramètre c si nous parvenons à montrer que c>0. Or nous savons que $\varphi(1)>0$ et que $|\varphi(t)|\leq 1$ puisque c'est une fonction caractéristique. Donc $c\geq 0$. Reste à voir que $c\neq 0$. Si c=0 alors $\varphi(t)=1$ pour tout t; or $1=\widehat{\delta_0}(t)$. c=0 implique donc que X a pour loi δ_0 ce qui signifie que X=0 presque sûrement : ceci est exclu par l'énoncé.

Exercice 23. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. indépendantes, de carré intégrable et de même loi. On note $m = \mathbb{E}[X_1]$, $\sigma^2 = \sigma^2(X_1)$. On définit par récurrence :

$$Y_1 = X_1/2, Y_n = (Y_{n-1} + X_n)/2, n \ge 2.$$

- 1. Calculer $\mathbb{E}[Y_n]$ et $\mathbb{V}(Y_n)$ en fonction de n, m et σ^2 .
- 2. Si X_1 suit la loi $\mathcal{N}(m, \sigma^2)$, quelle est la loi de Y_n ?

Exercice 24. Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi μ et B un borélien de \mathbf{R} tel que $0 < \mu(B) < 1$.

On note τ_1 le temps d'entrée dans B c'est à dire

$$\forall \omega \in \Omega, \quad \tau_1(\omega) = \inf\{n > 0 : X_n(\omega) \in B\} \text{ avec inf } \emptyset = +\infty.$$

- 1. (a) Pour $k \in \mathbf{N}^*$, expliciter les événements $\{\tau_1 = k\}$ et $\{\tau_1 > k\}$.
 - (b) τ_1 est-il fini presque sûrement? Déterminer la loi de τ_1 .
 - (c) On s'amuse à lancer un dé équilibré. En moyenne :
 - combien de lancers sont nécessaires pour l'obtention d'un 6?
 - quel est le total des points jusqu'au premier 6?
- 2. On pose $\tau_0 = 0$ et pour $k \in \mathbf{N}$

$$\forall \omega \in \Omega, \quad \tau_{k+1}(\omega) = \inf\{i > \tau_k(\omega), \ X_i(\omega) \in B\}.$$

- (a) Montrer que, pour tout $k \in \mathbb{N}$, τ_k est fini presque sûrement.
- (b) Montrer que les variables $(\tau_{k+1} \tau_k)_{\mathbf{N}}$ sont indépendantes et identiquement distribuées.

Exercice 25. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et de même loi $\mathcal{B}(p)$ où $0 On pose, pour tout <math>\omega \in \Omega$,

$$\sigma(\omega) = \inf\{i \ge 1, \ X_i(\omega) = 0\}, \qquad \tau(\omega) = \inf\{i \ge 1, \ X_i(\omega) = 1\},$$

avec la convention $\inf\{\emptyset\} = +\infty$.

- 1. Montrer que $\mathbb{P}(\tau = +\infty) = \mathbb{P}(\sigma = +\infty) = 0$ et déterminer la loi de σ et τ .
- 2. On définit, pour $\omega \in \Omega$, $T(\omega) = \inf\{i \geq 2, X_{i-1}(\omega) = 0, X_i(\omega) = 1\}$ avec la même convention.
- (a) Montrer que $T \geq \sigma + 1$ et que $T(\omega) = \inf\{i > \sigma(\omega), X_i(\omega) = 1\}$. En déduire que $\mathbb{P}(T = \infty) = 0$.
- (b) Montrer que, si $k \geq 2$, $\{T=k\} = \bigcup_{i=1}^{k-1} \{T=k\} \cap \{\sigma=i\}$. En déduire la loi de T: pour $k \geq 2$, notant q=1-p,

$$\mathbb{P}(T=k) = \frac{pq}{q-p} (q^{k-1} - p^{k-1}) \quad \text{si } p \neq q.$$

Déterminer la série génératrice de T ainsi que sa moyenne.

Exercice 26. Soient $(\mathcal{F}_n)_{\mathbf{N}}$ une suite de sous-tribus de \mathcal{F} et $(\alpha_r)_{\mathbf{N}}$ une suite de réels positifs tendant vers 0. On suppose que

$$\forall r \in \mathbf{N}, \forall n \in \mathbf{N}, \quad \forall A \in \sigma(\mathcal{F}_i, i < n), \forall B \in \sigma(\mathcal{F}_i, i > n + r), \quad |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| < \alpha_r.$$

Montrer que, pour tout événement asymptotique de \mathcal{F}_n , $\mathbb{P}(A) = 0$ ou 1.

Exercice 27. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles. On note, pour $n\geq 1, S_n=X_1+\ldots+X_n$. Les événements

$$\{X_n \longrightarrow 0\}, \quad \{\limsup X_n < +\infty\}, \quad \{\limsup S_n < +\infty\}, \quad \{n^{-1}S_n \text{ converge dans } \mathbf{R}\},$$

 $\limsup \{S_n = 0\}, \quad \{(S_n)_{n \ge 1} \text{ converge dans } \mathbf{R}\}, \quad \{(S_n)_{n \ge 1} \text{ converge vers } S \le c\}$

sont-ils des événements asymptotiques de la suite $(X_n)_{n\geq 1}$?

Exercice 28. Soit $(X_n)_{\mathbf{N}}$ une suite de v.a.r. identiquement distribuées.

- 1. Soit $p \in [1, +\infty[$ et c > 0.
 - (a) Montrer que si $\mathbb{E}\left[|X_0|^p\right] < +\infty \text{ alors } \mathbb{P}\left(\limsup\left\{|X_n| > cn^{1/p}\right\}\right) = 0.$
 - (b) Montrer la réciproque dans le cas indépendant.

On suppose désormais les $(X_n)_{\mathbf{N}}$ indépendantes.

- 2. Montrer que si $\mathbb{P}(X_0 \neq 0) > 0$ alors $\sum_n |X_n| = +\infty$ \mathbb{P} -p.s.
- 3. On se propose d'étudier le rayon de convergence R de la série entière $\sum_n X_n z^n$. On suppose que $\mathbb{P}(X_0 \neq 0) > 0$.
 - (a) Montrer à l'aide de la question précédente que $R \leq 1$ P-p.s.
- (b) En utilisant la première question, montrer que si $\mathbb{E}\left[\ln^+(|X_0|)\right] < +\infty$ alors R = 1 \mathbb{P} -p.s. et que dans le cas contraire R = 0 \mathbb{P} -p.s.
 - (c) Pouvait-on prévoir que R était presque sûrement constant?

3. Convergence de variables aléatoires

Exercice 29. Soit $(f_n)_{\mathbf{N}}$ la suite de fonctions de [0,1] dans \mathbf{R} définie comme suit : $f_n(x) = 2^n$ s'il existe un entier k tel que $2^{-n}k \le x < 2^{-n}k + 2^{-2n}$, $f_n(x) = 0$ dans le cas contraire. Montrer que $(f_n)_{\mathbf{N}}$ converge vers 0 presque partout.

Exercice 30. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes toutes de loi exponentielle de paramètre 1. On pose, pour tout $n\geq 1$, $Y_n=\max_{1\leq i\leq n}X_i$. Montrer que, presque sûrement,

$$\limsup_{n \to +\infty} \frac{X_n}{\ln n} = 1, \qquad \lim_{n \to +\infty} \frac{Y_n}{\ln n} = 1.$$

Correction. Notons, pour $n \ge 1$, $U_n = X_n / \ln n$. $\limsup U_n$ est une variable aléatoire asymptotique de la suite de $(X_n)_{n\ge 1}$; ces v.a. sont indépendantes : la loi du tout ou rien de Kolmogorov implique que $\limsup U_n$ est presque sûrement constante. Notons c cette constante; $c \in \overline{\mathbf{R}}_+$.

Nous utiliserons à maintes reprises le point suivant : pour tout $\lambda \geq 0$, $\mathbb{P}(X_1 > \lambda) = e^{-\lambda}$.

Les variables $(X_n)_{n\geq 1}$ étant identiquement distribuées, on a

$$\sum_{n\geq 1} \mathbb{P}(X_n \geq \ln n) = \sum_{n\geq 1} \frac{1}{n} = +\infty,$$

et puisqu'elles sont également indépendantes, $\mathbb{P}(\limsup\{U_n \geq 1\}) = 1$ d'après le lemme de Borel-Cantelli. Presque sûrement, il y a une infinité d'entiers n tels que $U_n \geq 1$: $c \geq 1$.

De la même façon, pour tout $\varepsilon > 0$,

$$\sum_{n\geq 1} \mathbb{P}(X_n > (1+\varepsilon)\ln n) = \sum_{n\geq 1} \frac{1}{n^{1+\varepsilon}} < +\infty ;$$

donc $\mathbb{P}(\limsup\{U_n > (1+\varepsilon)\}) = 0$ soit encore $\mathbb{P}(\liminf\{U_n \leq (1+\varepsilon)\}) = 1$. Presque sûrement, il existe $r \geq 1$ (r dépend de ω) tel que, pour tout $n \geq r$, $U_n \leq (1+\varepsilon)$: donc $c \leq 1+\varepsilon$. Ceci étant valable pour tout $\varepsilon > 0$ on a $c \leq 1$ et donc c = 1.

Soit $r \geq 1$. Pour tout $n \geq r$, on a, les variables étant positives,

$$\frac{\max_{r < k \le n} X_k}{\ln n} \le \frac{Y_n}{\ln n} \le \frac{\max_{k \le r} X_k}{\ln n} + \frac{\max_{r < k \le n} X_k}{\ln n}.$$
 (3)

Or la suite $(\max_{k \le r} X_k / \ln n)_{n \ge 1}$ décroît vers 0, donc

$$\limsup_{n \to +\infty} \frac{\max_{r < k \le n} X_k}{\ln n} = \limsup_{n \to +\infty} \frac{Y_n}{\ln n}, \qquad \liminf_{n \to +\infty} \frac{\max_{r < k \le n} X_k}{\ln n} = \liminf_{n \to +\infty} \frac{Y_n}{\ln n} \; ;$$

 $\limsup Y_n/\ln n$ et $\liminf Y_n/\ln n$ sont deux v.a. asymptotiques de la suite $(X_n)_{n\geq 1}$: elles sont donc presque sûrement constantes disons égales à c^* et c_* respectivement.

Fixons $\varepsilon > 0$. Soit $\omega \in \liminf \{X_n \le (1 + \varepsilon) \ln n\}$. Il existe $r_\omega \ge 1$ tel que, pour tout $n \ge r_\omega$, $X_n(\omega) \le (1 + \varepsilon) \ln n$. On a alors via (3), $c^* \le 1 + \varepsilon$

De plus, les v.a. $(X_n)_{n\geq 1}$ étant i.i.d., nous avons

$$\mathbb{P}(Y_n < (1 - \varepsilon) \ln n) = \mathbb{P}(X_1 < (1 - \varepsilon) \ln n)^n = \left(1 - e^{-(1 - \varepsilon) \ln n}\right)^n \le e^{-n^{\varepsilon}},$$

qui est le terme général d'une série convergente. D'où $\mathbb{P}\left(\liminf\{Y_n \geq (1-\varepsilon) \ln n\}\right) = 1$ d'après le lemme de Borel-Cantelli : presque sûrement, il existe r tel que, pour tout $n \geq r$, $Y_n / \ln n \geq 1 - \varepsilon$; par suite $c_* \geq 1 - \varepsilon$.

Finalement, pour tout $\varepsilon > 0$, $1 - \varepsilon \le c_* \le c^* \le 1 + \varepsilon$: $c_* = c^* = 1$.

Exercice 31. Soit, pour $n \ge 1$, X_n une v.a.r. de Cauchy de paramètre 3^{-n} . On pose, pour $n \ge 1$, $S_n = X_1 + \ldots + X_n$. Montrer que $(S_n)_{n \ge 1}$ converge presque sûrement dans \mathbf{R} . Déterminer la loi de la limite lorsque les $(X_n)_{n \ge 1}$ sont indépendantes.

Correction. Rappelons tout d'abord que si X suit la loi de Cauchy de paramètre c > 0, on a, par parité et via x = cy, pour tout a > 0,

$$\mathbb{P}(|X| > a) = \frac{1}{\pi} \int_{|x| > a} \frac{c}{x^2 + c^2} dx = \frac{2}{\pi} \int_{\frac{a}{c}}^{+\infty} \frac{dy}{1 + y^2} = \frac{2}{\pi} \left(\frac{\pi}{2} - \arctan(a/c) \right) = \frac{2}{\pi} \arctan(c/a).$$

Par conséquent, pour tout $n \geq 1$,

$$\mathbb{P}(|X_n| > 2^{-n}) = \frac{2}{\pi}\arctan(2^n/3^n) \sim \frac{2}{\pi}\frac{2^n}{3^n}.$$

Le lemme de Borel-Cantelli donne $\mathbb{P}(\limsup\{|X_n|>2^{-n}\})=0$ et, en passant au complémentaire, $\mathbb{P}(\liminf\{|X_n|\leq 2^{-n}\})=1$. Or, si $\omega\in\liminf\{|X_n|\leq 2^{-n}\}$, la série $\sum X_n(\omega)$ est absolument convergente puisqu'à partir d'un certain rang $r|X_n(\omega)|\leq 2^{-n}$. D'où la convergence presque sûre de la suite des sommes partielles $(S_n)_{n\geq 1}$.

Plaçons nous dans le cas indépendant et notons S la limite. On a alors, pour tout réel t, via l'indépendance des $(X_n)_{n\geq 1}$,

$$\varphi_{S_n}(t) = \prod_{1 \le k \le n} \varphi_{X_k}(t) = \prod_{1 \le k \le n} e^{-3^{-k}|t|} = \exp\left\{-|t| \sum_{1 \le k \le n} 3^{-k}\right\}.$$

Par conséquent, pour tout t, $\varphi_{S_n}(t)$ converge vers $e^{-|t|/2}$ qui est la fonction caractéristique de la loi de Cauchy de paramètre 1/2.

D'un autre côté, pour tout t, e^{itS_n} converge presque sûrement vers e^{itS} et puisque $|e^{itS_n}| \le 1$, on peut appliquer le théorème de convergence dominée de Lebesgue pour obtenir

$$\varphi_S(t) = \lim_{n \to +\infty} \varphi_{S_n}(t) = e^{-|t|/2}.$$

S suit la loi de Cauchy de paramètre 1/2.

Exercice 32. Soient $(X_n)_{n \in \mathbb{N}^*}$, X et Y des variables aléatoires réelles ; $(X_n)_{n \in \mathbb{N}^*}$ converge vers X en probabilité.

- 1. On suppose dans cette question que, pour tout $n \in \mathbb{N}$, $|X_n| \leq Y$ presque sûrement.
 - (a) Montrer que $|X| \leq Y$ presque sûrement.
 - (b) Montrer que si Y est bornée $(X_n)_{n \in \mathbb{N}^*}$ converge vers X dans L^p pour tout réel $p \ge 1$.
 - (c) On suppose que $Y \in L^p$. Montrer que $(X_n)_{n \in \mathbb{N}^*}$ converge vers X dans L^p .
- 2. Montrer que $\mathbb{E}[|X|] \leq \liminf \mathbb{E}[|X_n|]$.

Indic. : Si $x \ge 0$ et $r \ge 0$, $x \ge \min(x, r)$.

Exercice 33 (Difficile!). Soit $(X_n)_{n\geq 1}$ une suite de v.a. numériques. On dit que la suite $(X_n)_{n\geq 1}$ est équi-intégrable si

$$\lim_{a \to +\infty} \sup_{n \ge 1} \mathbb{E}\left[|X_n|\mathbf{1}_{|X_n| > a}\right] = 0. \tag{4}$$

- 1. (a) Montrer qu'une v.a. intégrable est équi-intégrable.
 - (b) Montrer que la suite $(X_n)_{n\geq 1}$ est équi-intégrable dans les deux cas suivants :
 - (i) il existe une v.a. Y intégrable telle que, pour tout $n, |X_n| \leq Y$ presque sûrement;
 - (ii) $(X_n)_{\mathbf{N}}$ est bornée dans $L^p(\Omega, \mathcal{F}, \mathbb{P})$ pour p > 1.
 - (c) En déduire qu'un nombre fini de v.a. intégrables est équi-intégrable.
 - (d) Montrer que $(X_n)_{n\geq 1}$ est équi-intégrable si et seulement si

$$\lim_{a \to +\infty} \sup_{n \ge 1} \mathbb{E}\left[(|X_n| - a)^+ \right] = 0.$$

2. Soit $(X_n)_{n\geq 1}\subset L^1$ et X une variable aléatoire. Montrer que la suite $(X_n)_{\mathbf{N}}$ converge vers X dans L^1 si et seulement si $(X_n)_{n\geq 1}$ converge en probabilité vers X et $(X_n)_{n\geq 1}$ est équi-intégrable.

Indic: $\mathbb{E}[|X_n - X|] = \mathbb{E}[\min(|X_n - X|, a)] + \mathbb{E}[(|X_n - X| - a)^+]; x \longmapsto (x - a)^+ \text{ est convexe}$ et croissante sur \mathbb{R}_+ .

Exercice 34. Soit $f: \mathbf{R}_+ \longrightarrow \mathbf{R}_+$ une fonction continue, strictement croissante et bornée telle que f(0) = 0.

Montrer que les propriétés suivantes sont équivalentes :

- (i) $(X_n)_{n\geq 1}$ converge vers X en probabilité;
- (ii) $\lim_{n\to+\infty} \mathbb{E}\left[f(|X_n-X|)\right]=0.$

En pratique : $f(x) = \min(x, 1)$ *ou* f(x) = x/(1+x).

Correction. Soit $f:]0, +\infty[\longrightarrow]0, +\infty[$ une fonction croissante, bornée telle que $\lim_{x\to 0^+} f(x) = 0$. Supposons dans un premier temps que $(X_n)_{n\geq 1}$ converge vers X en probabilité. Nous avons, pour tout $\varepsilon > 0$, f étant croissante, positive et bornée

$$\mathbb{E}\left[f(|X_n - X|)\right] = \mathbb{E}\left[f(|X_n - X|)\mathbf{1}_{|X_n - X| > \varepsilon}\right] + \mathbb{E}\left[f(|X_n - X|)\mathbf{1}_{|X_n - X| \le \varepsilon}\right]$$

$$\leq ||f||_{\infty} \mathbb{P}(|X_n - X| > \varepsilon) + f(\varepsilon),$$

de sorte que $\limsup_{n\to+\infty} \mathbb{E}\left[f(|X_n-X|)\right] \leq f(\varepsilon)$; cette dernière inégalité conduit au résultat puisque $\lim_{x\to 0^+} f(x) = 0$.

Réciproquement, pour tout $\varepsilon > 0$, f étant croissante et positive,

$$f(\varepsilon) \mathbb{P}(|X_n - X| > \varepsilon) \le \mathbb{E}\left[f(|X_n - X|)\mathbf{1}_{|X_n - X| > \varepsilon}\right] \le \mathbb{E}\left[f(|X_n - X|)\right];$$

ce qui donne le résultat comme $f(\varepsilon) > 0$.

Exercice 35 (Lemme de Scheffé). Soient $(X_n)_{n \in \mathbb{N}^*} \subset L^1$ et X des v.a.r. positives. On suppose que la suite $(X_n)_{n \in \mathbb{N}^*}$ converge vers X en probabilité. Montrer que $(X_n)_{n \in \mathbb{N}}$ converge vers X dans L^1 si et seulement si X est intégrable et $\mathbb{E}[X_n] \longrightarrow \mathbb{E}[X]$.

Exercice 36. Soit X une variable aléatoire de loi donnée par $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=1/2$. On définit $X_n=X$ si n est pair, $X_n=-X$ si n est impair et $Y_n=X$ pour tout n. Montrer que $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ converge en loi vers X puis que la suite des couples (X_n,Y_n) ne converge pas en loi.

Exercice 37. Soient $(X_n)_{n\in\mathbb{N}}$ et X des variables à valeurs dans \mathbb{N} . Montrer que les propriétés suivantes sont équivalentes :

- (i) $(X_n)_{n \in \mathbb{N}}$ converge vers X en loi;
- (ii) pour tout $k \in \mathbb{N}$, $\lim_{n \to +\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$;
- (iii) G_{X_n} converge simplement vers G_X sur [0,1].

Exercice 38. Soient $(X_n)_{n\in\mathbb{N}}$, X des v.a.r. et D une partie dense de \mathbb{R} . On suppose que $F_{X_n}(t)$ converge vers $F_X(t)$ pour tout $t\in D$. Montrer que $(X_n)_{n\in\mathbb{N}}$ converge vers X en loi.

Correction. Soit $t \in \mathbf{R}$. Puisque D est dense dans \mathbf{R} , il existe une suite strictement croissante de points de D, disons $(p_k)_{k\geq 1}$, qui converge vers t. De même, il existe une suite strictement décroissante de points de D, $(q_k)_{k\geq 1}$, qui converge vers t. Pour tout $k\geq 1$, $p_k < t < q_k$.

Pour tout $n \geq 1$, F_{X_n} est croissante de sorte que, que pour tout $k \geq 1$,

$$F_{X_n}(p_k) \le F_{X_n}(t) \le F_{X_n}(q_k).$$

En particulier, pour tout $k \geq 1$,

$$F_X(p_k) = \liminf_{n \to +\infty} F_{X_n}(p_k) \le \liminf_{n \to +\infty} F_{X_n}(t), \qquad \limsup_{n \to +\infty} F_{X_n}(t) \le \limsup_{n \to +\infty} F_{X_n}(q_k) = F_X(q_k).$$

 F_X est continue à droite donc $\lim_{k\to+\infty} F_X(q_k) = F_X(t)$ et d'autre part, $\lim_{k\to+\infty} F_X(p_k) = F_X(t-)$. Par conséquent,

$$F_X(t-) \le \liminf_{n \to +\infty} F_{X_n}(t) \le \limsup_{n \to +\infty} F_{X_n}(t) \le F_X(t).$$

Si donc F_X est continue au point t, $F_{X_n}(t)$ converge vers $F_X(t):(X_n)_{n\geq 1}$ converge donc en loi vers X.

Exercice 39. Pour tout $n \in \mathbb{N}^*$, Y_n est une v.a. de loi géométrique de paramètre α/n où $\alpha > 0$ et $X_n = Y_n/n$. Montrer que $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers une v.a. X de loi exponentielle de paramètre α .

Correction. Rappelons que la fonction caractéristique d'une variable aléatoire de loi géométrique $\mathcal{G}(p), p \in]0,1[$, est

$$\theta_p(t) = \frac{p e^{it}}{1 - (1 - p) e^{it}} = \frac{p}{e^{-it} - 1 + p}.$$

On a, pour tout réel $t \in \mathbf{R}$,

$$\varphi_{X_n}(t) = \mathbb{E}\left[e^{it\frac{Y_n}{n}}\right] = \varphi_{Y_n}(t/n) = \theta_{\frac{\alpha}{n}}(t/n) = \frac{\frac{\alpha}{n}}{e^{-i\frac{t}{n}} - 1 + \frac{\alpha}{n}},$$

et, puisque $e^z = 1 + z + z\varepsilon(z)$ avec $\lim_{z\to 0} \varepsilon(z) = 0$,

$$\varphi_{X_n}(t) = \frac{\frac{\alpha}{n}}{-i\frac{t}{n} - i\frac{t}{n}\varepsilon(-i\frac{t}{n}) + \frac{\alpha}{n}} = \frac{\alpha}{\alpha - it - it\varepsilon(-it/n)}.$$

Par conséquent,

$$\forall t \in \mathbf{R}, \qquad \lim_{n \to +\infty} \varphi_{Y_n}(t) = \frac{\alpha}{\alpha - it}$$

qui est la fonction caractéristique d'une variable aléatoire de loi exponentielle de paramètre α . D'après le théorème de Paul Lévy, $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une v.a.r. X de loi $\mathcal{E}(\alpha)$.

Exercice 40. Soient $(X_n)_{n\in\mathbb{N}}$ et X des v.a.r. de densité respectives p_n et p. Montrer que si p_n converge vers p dans L^1 alors X_n converge vers X en loi. Montrer que la réciproque est fausse.

Exercice 41. Soient $(X_n)_{n \in \mathbb{N}}$ et X des variables à valeurs dans $\{0\} \cup \{k^{-1} : k \in \mathbb{N}^*\}$.

1. Montrer que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X si et seulement si,

$$\forall k \in \mathbf{N}^*, \qquad \lim_{n \to +\infty} \mathbb{P}\left(X_n = k^{-1}\right) = \mathbb{P}\left(X = k^{-1}\right).$$

2. A-t-on $\lim_{n\to+\infty} \mathbb{P}(X_n=0) = \mathbb{P}(X=0)$?

Correction. Soient $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction mesurable, positive ou bornée, et Y une v.a.r. à valeurs dans $A = \{0\} \cup \{p^{-1}, p \in \mathbf{N}^*\}$; on a :

$$\mathbb{E}[f(Y)] = f(0) \,\mathbb{P}(Y=0) + \sum_{p \ge 1} f\left(p^{-1}\right) \,\mathbb{P}\left(Y=p^{-1}\right). \tag{5}$$

1. Si X_n à valeurs dans A converge en loi vers X aussi à valeurs dans A, alors, pour toute fonction f continue et bornée sur \mathbf{R} , $\mathbb{E}[f(X_n)] \longrightarrow \mathbb{E}[f(X)]$. Soient $k \in \mathbf{N}^*$ et f_k la fonction

On a alors d'après la formule (5),

$$\mathbb{E}[f_k(X_n)] = \mathbb{P}(X_n = k^{-1}), \qquad \mathbb{E}[f_k(X)] = \mathbb{P}(X = k)$$

et comme f_k est continue et bornée,

$$\mathbb{E}[f_k(X_n)] = \mathbb{P}\left(X_n = k^{-1}\right) \longrightarrow \mathbb{E}\left[f_k(X)\right] = \mathbb{P}(X = k).$$

Supposons maintenant que, pour tout $k \ge 1$, $\lim_{n \to +\infty} \mathbb{P}(X_n = k^{-1}) = \mathbb{P}(X = k^{-1})$. Montrons que $F_{X_n}(t)$ converge vers $F_X(t)$ pour tout $t \in \mathbf{R}^*$. Pour t < 0, $F_{X_n}(t) = F_X(t) = 0$ et, pour $t \ge 1$, $F_{X_n}(t) = F_X(t) = 1$. Soit $t \in]0, 1[$. On a, via (5),

$$1 - F_{X_n}(t) = \mathbb{P}(X_n > t) = \sum_{p > 1} \mathbf{1}_{]t, +\infty[} \left(p^{-1} \right) \mathbb{P}\left(X_n = p^{-1} \right) = \sum_{1 \le p < t^{-1}} \mathbb{P}\left(X_n = p^{-1} \right);$$

il s'agit d'une somme finie et donc

$$\lim_{n \to +\infty} (1 - F_{X_n}(t)) = \sum_{1 \le p < t^{-1}} \lim_{n \to +\infty} \mathbb{P}\left(X_n = p^{-1}\right) = \sum_{1 \le p < t^{-1}} \mathbb{P}\left(X = p^{-1}\right) = 1 - F_X(t).$$

Par conséquent, $\lim_{n\to+\infty} F_{X_n}(t) = F_X(t)$ pour tout $t\neq 0$. Comme \mathbf{R}^* est dense dans \mathbf{R} , $(X_n)_{n\geq 1}$ converge en loi vers X (cf. exercice 38).

Regardons quand même ce qui se passe pour t = 0. On a, pour tout t > 0, F_{X_n} étant croissante pour tout $n \in \mathbb{N}^*$,

$$F_X(-t) = \liminf F_{X_n}(-t) \le \liminf F_{X_n}(0) \le \limsup F_{X_n}(0) \le \limsup F_{X_n}(t) = F_X(t).$$

Il s'en suit que, en faisant tendre t vers 0^+ , comme F_X est continue à droite,

$$F_X(0-) \le \liminf F_{X_n}(0) \le \limsup F_{X_n}(0) \le F_X(0)$$
;

si F_X est continue en 0, $F_{X_n}(0)$ tend vers $F_X(0)$. On a donc $\lim_{n\to+\infty} F_{X_n}(t) = F_X(t)$ dès que F_X est continue en t. $(X_n)_{n\in\mathbb{N}^*}$ converge donc en loi vers X.

2. La suite de variables constantes, $X_n = n^{-1}$, converge presque sûrement et donc en loi vers X = 0. Par contre, $\mathbb{P}(X_n = 0) = 0$ pour tout $n \in \mathbb{N}^*$ tandis que $\mathbb{P}(X = 0) = 1$.

Exercice 42. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. suivant la loi de Cauchy de paramètre c>0. On pose, pour tout $n\geq 1$, $Y_n=(\max_{1\leq k\leq n}X_k)/n$. Montrer que $(Y_n)_{n\geq 1}$ converge en loi vers 1/T où T suit une loi exponentielle dont on précisera le paramètre.

Correction. Rappelons que la fonction caractéristique d'une variable aléatoire X suivant la loi de Cauchy de paramètre c > 0 est

$$F_X(t) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{t}{c}\right), \quad t \in \mathbf{R}.$$

D'autre part, si T est une v.a.r. de loi exponentielle de paramètre $\lambda > 0$, $\mathbb{P}(T > 0) = 1$ et donc, pour t > 0,

$$F_{\frac{1}{T}}(t) = \mathbb{P}(1/T \le t, T > 0) = \mathbb{P}(T \ge 1/t, T > 0) = \mathbb{P}(T \ge 1/t) = e^{-\frac{\lambda}{t}},$$

tandis que, pour $t \leq 0$, $F_{\frac{1}{T}}(t) = \mathbb{P}(1/T \leq t) = 0$.

Déterminons à présent la fonction de répartition de Y_n . Puisque les $(X_n)_{n\geq 1}$ sont i.i.d. nous avons, pour tout $t\in \mathbf{R}$,

$$F_{Y_n}(t) = \mathbb{P}\left(\max_{1 \le k \le n} X_k \le nt\right) = \mathbb{P}(X_1 \le nt, \dots, X_k \le nt) = \mathbb{P}(X_1 \le nt)^n$$

soit

$$F_{Y_n}(t) = \left(\frac{1}{2} + \frac{1}{\pi}\arctan\left(\frac{nt}{c}\right)\right)^n.$$

Si $t \le 0$, $\frac{1}{2} + \frac{1}{\pi} \arctan(\frac{nt}{c}) \le \frac{1}{2}$ et $F_{Y_n}(t) \longrightarrow 0$. Si t > 0, comme $\arctan x = \pi/2 - \arctan(1/x)$ pour x > 0,

$$F_{Y_n}(t) = \left(1 - \frac{1}{\pi}\arctan\left(\frac{c}{nt}\right)\right)^n = \exp\left\{n\ln\left(1 - \frac{1}{\pi}\arctan\left(\frac{c}{nt}\right)\right)\right\}.$$

Comme $\arctan x = x + o(x)$ si $x \to 0$, $F_{Y_n}(t) \longrightarrow e^{-\frac{c}{\pi t}}$ pour t > 0.

Par conséquent, la fonction de répartition de Y_n converge simplement vers la fonction de répartition de 1/T où T est une v.a.r. de loi exponentielle de paramètre c/π et par suite $(Y_n)_{n\geq 1}$ converge en loi vers 1/T.

4. Loi des grands nombres; séries de v.a.

Si $(X_n)_{n\geq 1}$ est une suite de variables indépendantes, on note, pour tout $n\geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad M_n = \frac{S_n}{n}.$$

Exercice 43. Soient $(U_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. de loi uniforme sur [0,1] et $f:[0,1]\longrightarrow \mathbf{R}$ une fonction continue. On note pour tout $x\in[0,1]$,

$$\forall n \in \mathbf{N}^*, \quad S_n(x) = \sum_{i=1}^n \mathbf{1}_{U_i \le x}, \quad M_n(x) = n^{-1} S_n(x), \quad B_n(x) = \mathbb{E}\left[f(M_n(x))\right].$$

- 1. (a) Quelle est la loi de $S_n(x)$, sa moyenne, sa variance?
 - (b) Montrer que B_n est un polynôme.
- 2. (a) Montrer que, pour tout $x \in [0,1]$, $\lim_{n \to +\infty} B_n(x) = f(x)$.

(b) Établir l'inégalité

$$\forall x \in [0,1], \quad \forall \eta > 0, \quad \mathbb{P}(|M_n(x) - x| > \eta) \le \frac{x(1-x)}{n\eta^2} \le \frac{1}{4n\eta^2}.$$

(c) En déduire que $(B_n)_{n \in \mathbb{N}^*}$ converge vers f uniformément sur [0,1]. On pourra remarquer que $|B_n(x) - f(x)| \leq \mathbb{E}[|f(M_n(x)) - f(x)|]$ et utiliser l'inégalité précédente.

Exercice 44. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a.r. i.i.d. telle que X_1 est intégrable. On note, pour $n \geq 1$, $M_n = n^{-1}S_n$.

- 1. Déterminer la fonction caractéristique de M_n .
- 2. En déduire que $(M_n)_{n \in \mathbb{N}}$ converge en probabilité vers $m = \mathbb{E}[X_1]$.

Correction. 1. La suite $(X_n)_{n \in \mathbb{N}^*}$ étant i.i.d., on a, pour tout réel t,

$$\varphi_{M_n}(t) = \mathbb{E}\left[e^{it\frac{S_n}{n}}\right] = \mathbb{E}\left[\prod_{k \le n} e^{it\frac{X_k}{n}}\right] \stackrel{i.}{=} \prod_{k \le n} \varphi_{X_k}(t/n) \stackrel{i.d.}{=} (\varphi_{X_1}(t/n))^n.$$

2. Puisque X_1 est intégrable, φ_{X_1} et de classe \mathcal{C}^1 et $\varphi'_{X_1}(0)=i\,\mathbb{E}[X_1]=im\,;$ par suite,

$$\varphi_{X_1}(t) = 1 + imt + t\,\varepsilon(t), \qquad \lim_{t\to 0} \varepsilon(t) = 0,$$

et donc, pour tout $t \in \mathbf{R}$,

$$\varphi_{M_n}(t) = \left(1 + im\frac{t}{n} + \frac{t}{n}\varepsilon(t/n)\right)^n.$$

Rappelons (cf. cours) que, si $nz_n \longrightarrow z$ (tout est dans C) $\lim_{n \to +\infty} (1+z_n)^n = e^z$. Il vient alors

$$\lim_{n \to +\infty} \varphi_{M_n}(t) = e^{itm},$$

qui est la fonction caractéristique de la constante m. M_n converge donc en loi vers m. La limite étant constante la convergence a lieu également en probabilité. On a donc bien la loi faible des grands nombres.

Exercice 45. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. suivant la loi normale centrée réduite. Montrer que la série $\sum_{n\geq 1} X_n n^{-1} \sin(n\pi x)$ converge presque sûrement pour tout réel x.

Correction. La suite $(X_n)_{n \in \mathbb{N}^*}$ est i.i.d.; X_1 est de carré intégrable, $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^2] = 1$. On a

$$\sum_{n\geq 1} \mathbb{E}\left[n^{-2} X_n^2 \sin^2(n\pi t)\right] = \sum_{n\geq 1} n^{-2} \sin^2(n\pi t) \,\mathbb{E}\left[X_1^2\right] \leq \sum_{n\geq 1} n^{-2} < +\infty.$$

Il suffit alors d'appliquer le résultat sur les séries centrées.

Exercice 46. Soit $f:[0,1] \longrightarrow \mathbf{R}$ une fonction continue. On note, pour $n \in \mathbf{N}^*$,

$$I_n = \underbrace{\int_0^1 \dots \int_0^1}_{n} f\left(\frac{x_1 + \dots + x_n}{n}\right) dx_1 \dots dx_n.$$

Déterminer $\lim_{n\to+\infty} I_n$.

Correction. Soit $(U_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. suivant la loi uniforme sur [0,1]. Pour tout $n\geq 1, (U_1,\ldots,U_n)$ a pour densité (par indépendance) la fonction

$$(x_1,\ldots,x_n) \longmapsto \mathbf{1}_{[0,1]}(x_1)\ldots\mathbf{1}_{[0,1]}(x_n),$$

de sorte que $I_n = \mathbb{E}[f(S_n/n)]$ avec $S_n = U_1 + \cdots + U_n$.

D'après la loi forte des grands nombres, la suite de terme général S_n/n converge presque sûrement vers $\mathbb{E}[U_1] = 1/2$ et comme f est continue $f(S_n/n)$ converge presque sûrement vers f(1/2). Puisque f est bornée (continue sur un compact), cette dernière convergence a lieu également dans L^1 ; par conséquent,

$$I_n = \mathbb{E}[f(S_n/n)] \longrightarrow \mathbb{E}[f(1/2)] = f(1/2).$$

Exercice 47. 1. Soient $(X_n)_{n\in\mathbb{N}^*}$ des variables aléatoires indépendantes de carré intégrable et $(b_n)_{n\geq 1}$ une suite croissante de réels strictement positifs telle que $\lim_{n\to+\infty} b_n = +\infty$. On suppose que

$$b_n^{-1} \sum_{i=1}^n \mathbb{E}[X_i] \longrightarrow m, \quad \sum_{n \ge 1} b_n^{-2} \mathbb{V}(X_n) < +\infty.$$

Montrer que $(b_n^{-1}S_n)_{n\in\mathbb{N}^*}$ converge vers m presque sûrement et dans L^2 .

2. Soit $(A_n)_{n\geq 1}$ une suite d'événements indépendants telle que $\sum \mathbb{P}(A_n) = +\infty$. On note, pour $n\geq 1,$ $b_n=\sum_{1\leq k\leq n}\mathbb{P}(A_k)$. Montrer que la suite $\left(b_n^{-1}\sum_{1\leq k\leq n}\mathbf{1}_{A_k}\right)_{n\geq 1}$ converge presque sûrement vers 1.

Exercice 48. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes, intégrables et centrées. On suppose que la suite $(X_n)_{n\geq 1}$ est équi-intégrable cf. (4).

Montrer que $(M_n)_{n\geq 1}$ converge vers 0 en probabilité puis dans L¹.

Indic: $Y_n = X_n \mathbf{1}_{|X_n| > a}$.

5. Autour du TCL

Exercice 49. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. i.i.d. suivant la loi de Poisson de paramètre 1. On note $S_n = X_1 + \ldots + X_n$.

- 1. (a) Quelle est la loi de S_n ?
 - (b) Montrer que $Z_n = (S_n n)/\sqrt{n}$ converge en loi vers une gaussienne centrée réduite.
- (c) Plus généralement, si S_{λ} suit la loi de Poisson de paramètre λ , montrer que $(S_{\lambda} \lambda)/\sqrt{\lambda}$ converge en loi, lorsque $\lambda \to +\infty$ vers une gaussienne centrée réduite.
- 2. (a) Montrer que

$$\forall t > 0, \qquad \mathbb{P}(Z_n > t) \le t^{-2}.$$

- (b) En déduire que $\mathbb{E}\left[Z_n^+\right]$ converge vers $\mathbb{E}\left[G^+\right]$ où G est gaussienne centrée réduite.
- (c) Montrer que

$$\mathbb{E}\left[Z_n^+\right] = \frac{e^{-n}n^n\sqrt{n}}{n!}.$$

(d) Retrouver la formule de Stirling.

Correction. Rappelons que la fonction caractéristique d'une variable aléatoire suivant la loi de Poisson $\mathcal{P}(\alpha)$ est $\psi_{\alpha}(t) = \exp \{\alpha (e^{it} - 1)\}.$

1. (a) La suite étant i.i.d., nous avons

$$\varphi_{S_n}(t) = (\varphi_{X_1}(t))^n = \psi_1(t)^n = \exp\{n(e^{it} - 1)\} = \psi_n(t).$$

 S_n suit la loi de Poisson de paramètre n.

(b) Un calcul élémentaire donne

$$Z_n = \frac{S_n - n}{\sqrt{n}} = \sqrt{n} \left(\frac{S_n}{n} - 1 \right).$$

La suite $(X_n)_{n\in\mathbb{N}^*}$ est i.i.d., X_1 est de carré intégrable et $\mathbb{E}[X_1]=1$, $\mathbb{V}(X_1)=1$. D'après le TCL, $(Z_n)_{n\in\mathbb{N}^*}$ converge en loi vers une v.a.r. G de loi $\mathcal{N}(0,1)$.

(c) Posons $Z_{\lambda} = (S_{\lambda} - \lambda)/\sqrt{\lambda}$. On a

$$\varphi_{Z_{\lambda}}(t) = \mathbb{E}\left[e^{it\frac{S_{\lambda}-\lambda}{\sqrt{\lambda}}}\right] = e^{-it\sqrt{\lambda}}\,\mathbb{E}\left[e^{it\frac{S_{\lambda}}{\sqrt{\lambda}}}\right] = e^{-it\sqrt{\lambda}}\,\psi_{\lambda}\left(t/\sqrt{\lambda}\right) = e^{-it\sqrt{\lambda}}\,\exp\left\{\lambda\left(e^{i\frac{t}{\sqrt{\lambda}}}-1\right)\right\}.$$

On a $e^z = 1 + z + \frac{z^2}{2} + z^2 \varepsilon(z)$ avec $\varepsilon(z) \longrightarrow 0$ si $z \to 0$ et

$$\exp\left\{\lambda\left(e^{i\frac{t}{\sqrt{\lambda}}} - 1\right)\right\} = \exp\left\{\lambda\left(i\frac{t}{\sqrt{\lambda}} - \frac{t^2}{2\lambda} - \frac{t^2}{\lambda}\varepsilon\left(it/\sqrt{\lambda}\right)\right)\right\}$$
$$= \exp\left\{it\sqrt{\lambda} - \frac{t^2}{2} - t^2\varepsilon\left(it/\sqrt{\lambda}\right)\right\}.$$

Par conséquent, pour tout réel t,

$$\lim_{\lambda \to +\infty} \varphi_{Z_\lambda}(t) = \lim_{\lambda \to +\infty} \exp\left\{-\frac{t^2}{2} - t^2 \,\varepsilon\left(it/\sqrt{\lambda}\right)\right\} = \exp\left\{-\frac{t^2}{2}\right\}$$

qui est la fonction caractéristique d'une v.a.r. de loi $\mathcal{N}(0,1)$. D'après le théorème de Paul Lévy, Z_{λ} converge en loi vers une v.a.r. de loi $\mathcal{N}(0,1)$.

2. (a) Rappelons que si X suit la loi de Poisson $\mathcal{P}(\alpha)$, $\mathbb{E}[X] = \alpha$ et $\mathbb{V}(X) = \alpha$. Si t > 0, l'inégalité de Tchebycheff donne

$$\mathbb{P}(Z_n > t) = \mathbb{P}(S_n - \mathbb{E}[S_n] > t\sqrt{n}) \le \mathbb{P}(|S_n - \mathbb{E}[S_n]| > t\sqrt{n}) \le \frac{\mathbb{V}(S_n)}{t^2n} = \frac{1}{t^2}.$$

(b) Puisque Z_n^+ est une v.a.r. positive,

$$\mathbb{E}\left[Z_n^+\right] = \int_0^{+\infty} \mathbb{P}\left(Z_n^+ > t\right) dt = \int_0^{+\infty} \mathbb{P}(Z_n > t) dt.$$

Comme nous l'avons vu à la première question, Z_n converge en loi vers une v.a.r. G de loi $\mathcal{N}(0,1)$. F_G est continue sur \mathbf{R} et donc $F_{Z_n}(t)$ converge vers $F_G(t)$ pour tout réel t. Par conséquent, pour tout t > 0, $\mathbb{P}(Z_n > t) = 1 - F_{Z_n}(t) \longrightarrow 1 - F_G(t) = \mathbb{P}(G > t)$. D'autre part, pour tout $n \in \mathbf{N}^*$ et tout t > 0, $0 \le \mathbb{P}(Z_n > t) \le \min(1, t^{-2})$. La fonction $t \longmapsto \min(1, t^{-2})$ étant intégrable par rapport à la mesure de Lebesgue sur $]0, +\infty[$, on obtient par convergence dominée,

$$\lim_{n \to +\infty} \mathbb{E}\left[Z_n^+\right] = \lim_{n \to +\infty} \int_0^{+\infty} \mathbb{P}(Z_n > t) \, dt = \int_0^{+\infty} \mathbb{P}(G > t) \, dt = \mathbb{E}\left[G^+\right].$$

(c) Pour toute fonction $f: \mathbf{R} \longrightarrow \mathbf{R}$ borélienne, positive ou bornée, comme S_n suit la loi de Poisson $\mathcal{P}(n)$,

$$\mathbb{E}\left[f(Z_n)\right] = \mathbb{E}\left[f\left(\frac{S_n - n}{\sqrt{n}}\right)\right] = \sum_{k > 0} f\left(\frac{k - n}{\sqrt{n}}\right) e^{-n} \frac{n^k}{k!}.$$

En particulier,

$$\mathbb{E}\left[Z_n^+\right] = \sum_{k \geq 0} \left(\frac{k-n}{\sqrt{n}}\right)^+ \, e^{-n} \frac{n^k}{k!} = e^{-n} \, \sum_{k \geq n+1} \frac{k-n}{\sqrt{n}} \frac{n^k}{k!} = \frac{e^{-n}}{\sqrt{n}} \, \sum_{k \geq n+1} \left(\frac{n^k}{(k-1)!} - \frac{n^{k+1}}{k!}\right).$$

La série de terme général $u_k = n^{k+1}/k!$ est convergente puisque $u_{k+1}/u_k = n/(k+1) \longrightarrow 0$ si $k \to +\infty$. Notons R_p le reste d'ordre p soit $R_p = \sum_{k>p} u_k$. On a alors

$$\mathbb{E}\left[Z_n^+\right] = \frac{e^{-n}}{\sqrt{n}} \left(R_n - R_{n+1}\right) = \frac{e^{-n}}{\sqrt{n}} u_n = \frac{e^{-n}}{\sqrt{n}} \frac{n^{n+1}}{n!} = \frac{e^{-n} n^n \sqrt{n}}{n!}.$$

(d) Pour finir, remarquons que,

$$\mathbb{E}\left[G^{+}\right] = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} x e^{-\frac{x^{2}}{2}} dx = \frac{1}{\sqrt{2\pi}} \left[-e^{-\frac{x^{2}}{2}}\right]_{0}^{+\infty} = \frac{1}{\sqrt{2\pi}}.$$

On a donc

$$\lim_{n\to +\infty}\mathbb{E}\left[Z_n^+\right]=\lim_{n\to +\infty}\frac{e^{-n}n^n\sqrt{n}}{n!}=\mathbb{E}\left[G^+\right]=\frac{1}{\sqrt{2\pi}},$$

soit encore

$$\lim_{n \to +\infty} \frac{\sqrt{2\pi n} e^{-n} n^n}{n!} = 1.$$

Lorsque $n \to +\infty$, un équivalent de n! est $\sqrt{2\pi n} e^{-n} n^n$. C'est la formule de Stirling.

Exercice 50. On observe des particules dont la durée de vie X est une v.a. de loi exponentielle de paramètre $\theta > 0$.

- 1. Calculer la probabilité pour qu'une particule déterminée n'existe plus à l'instant t > 0.
- 2. n particules sont dans une enceinte close; leurs durées de vie sont indépendantes et de même loi $\mathcal{E}(\theta)$. On désigne par N_t le nombre de particules qui ne sont pas désintégrées à l'instant t. Quelle est la loi de N_t ? Calculer la moyenne et la variance de N_t . Étudier $\mathbb{V}[N_t]$ en fonction de t.
- 3. Soit $0 < \alpha < 1$. Étudier $\lim_{n \to \infty} \mathbb{P}(N_t > \alpha n)$. Si $t_0 = \ln(2)/\theta$, que vaut $\lim_{n \to \infty} \mathbb{P}(N_{t_0} > n/2)$?

Exercice 51. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite v.a.r. i.i.d. suivant la loi de Cauchy $\mathcal{C}(1)$. Peut-on appliquer le TCL?

Trouver la loi de M_n . Pensez-vous que $(\sqrt{n}M_n)_{n\geq 1}$ converge en loi ?

Exercice 52. Soit (P) la propriété suivante :

Si X et Y sont deux v.a.r. indépendantes et de même loi μ , $(X+Y)/\sqrt{2}$ est aussi de loi μ .

- 1. Montrer que la loi $\mathcal{N}(0,1)$ vérifie (P).
- 2. Soit μ une probabilité sur **R** telle que $\int_{\mathbf{R}} x^2 \mu(dx) = 1$ vérifiant (P).
 - (a) Montrer que si X est de loi μ alors $\mathbb{E}[X] = 0$.
 - (b) Montrer que, pour tout $n \geq 1$ et toute suite X_1, \ldots, X_{2^n} i.i.d. de loi μ , la v.a.r.

$$Y_n = 2^{-\frac{n}{2}} \sum_{i=1}^{2^n} X_i$$

est de loi μ .

(c) Montrer que $\mu = \mathcal{N}(0,1)$. Pensez au TCL!

Exercice 53 (Une autre démonstration du TCL). Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. i.i.d. telle que $X_1 \in L^3$; $\mathbb{E}[X_1] = 0$, $\mathbb{V}(X_1) = 1$. Considérons d'autre part $(G_n)_{n \in \mathbb{N}^*}$ une suite de v.a.r. i.i.d. suivant la loi $\mathcal{N}(0,1)$ indépendante de $(X_n)_{n \in \mathbb{N}^*}$.

On note $T_n = n^{-\frac{1}{2}} \sum_{i=1}^n X_i$. Pour $k = 1, \dots, n-1$, on note

$$U_k = \frac{1}{\sqrt{n}} (X_1 + \ldots + X_k + G_{k+1} + \ldots + G_n), \quad U_0 = \frac{1}{\sqrt{n}} \sum_{i=1}^n G_i, \quad U_n = T_n.$$

- 1. Quelle est la loi de U_0 ?
- 2. On pose, pour $k=1,\ldots,n,\ V_k=U_k-X_k/\sqrt{n}$. Montrer que $V_k=U_{k-1}-G_k/\sqrt{n}$.
- 3. Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction \mathcal{C}^3 dont la dérivée troisième est bornée.
 - (a) En écrivant un dévéloppement de Taylor (pensez à V_k), montrer que

$$|\mathbb{E}[f(U_k)] - \mathbb{E}[f(U_{k-1})]| \le \frac{c}{n^{\frac{3}{2}}}$$

où c est une constante que l'on déterminera.

(b) Soit G de loi $\mathcal{N}(0,1)$. Montrer que

$$|\mathbb{E}[f(T_n)] - \mathbb{E}[f(G)]| \le \frac{c}{\sqrt{n}}.$$

Commentaires?

Exercice 54. Soient $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. intégrables et $f: \mathbf{R} \longrightarrow \mathbf{R}$ une application continue sur \mathbf{R} et dérivable au point $m = \mathbb{E}[X_1]$.

Déterminer la limite en loi de la suite $(\sqrt{n} [f(M_n) - f(m)])_{n>1}$.

Indic: f(x) = f(m) + (x - m)f'(m) + (x - m)g(x) avec g continue et $\lim_{x \to m} g(x) = 0$.

6. Vecteurs gaussiens

Exercice 55. Loi du χ^2 Pour s > 0, t > 0,

$$\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx, \qquad B(s,t) = \int_0^1 x^{s-1} (1-x)^{t-1} dx.$$

- 1. Montrer que, pour s > 0, t > 0, $\Gamma(s)\Gamma(t) = \Gamma(s+t)B(s,t)$, $\Gamma(s+1) = s\Gamma(s)$, $\Gamma(1/2) = \sqrt{\pi}$.
- 2. Pour $\alpha > 0$ et s > 0, on note $\Gamma_{s,\alpha}$ la probabilité sur ${\bf R}$ de densité

$$\gamma_{s,\alpha}(x) = \frac{\alpha^s}{\Gamma(s)} x^{s-1} e^{-\alpha x} \mathbf{1}_{\mathbf{R}_+^*}(x).$$

- (a) Soient X et Y deux v.a.r. indépendantes; X de loi $\Gamma_{s,\alpha}$, Y de loi $\Gamma_{t,\alpha}$. Quelle est la loi de X+Y?
- (b) Soit G_1, \ldots, G_d indépendantes de loi $\mathcal{N}(0,1)$. Déterminer la densité de G_1^2 puis celle de $G_1^2+\ldots+G_d^2$.

Exercice 56. 1. Soient a > 0 et X de loi $\mathcal{N}(0,1)$, $U = X\mathbf{1}_{|X| \leq a} - X\mathbf{1}_{|X| > a}$. Quelle est la loi de U? Le couple (X, U) est-il gaussien?

2. Soit ε de loi $\mathbb{P}(\varepsilon = \pm 1) = 1/2$ indépendante de X. Loi de $Y = \varepsilon X$? Le couple (X,Y) est-il gaussien?

Exercice 57. Soient X_1, \ldots, X_n n v.a.r. gaussiennes indépendantes de loi $\mathcal{N}(0,1)$. Montrer que $\overline{X}_n = n^{-1}(X_1 + \ldots + X_n)$ et $W_n = \max_{1 \leq i \leq n} X_i - \min_{1 \leq i \leq n} X_i$ sont indépendantes.

Exercice 58 (Apprendre le cours). Soit $X = (X_1, X_2, X_3)^*$ un vecteur gaussien de moyenne $(1,0,3)^*$ et de matrice de covariance

$$\begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 6 \end{pmatrix} \qquad \text{respectivement} \qquad \begin{pmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- 1. Quelle est la fonction caractéristique de X?
- 2. Quelles sont les lois marginales? Déterminer les lois de (X_1, X_2) , (X_1, X_3) et (X_2, X_3) .
- 3. Est-ce que deux composantes de X sont indépendantes?
- 4. X admet-il une densité? Si oui la calculer.

Les lois usuelles

Si X est une variable aléatoire réelle, sa fonction de répartition est la fonction définie par

$$\forall t \in \mathbf{R}, \qquad F_X(t) = \mathbb{P}(X \le t).$$

Si X est à valeurs dans \mathbf{R}^d , sa fonction caractéristique est donnée par

$$\forall t \in \mathbf{R}^d, \qquad \varphi_X(t) = \mathbb{E}\left[e^{it \cdot X}\right].$$

Lois discrètes

Notation : pour p élément de [0,1], on note q=1-p.

Si X est à valeurs entières, sa fonction ou série génératrice est la série entière

$$\forall |z| \leq 1, \qquad G_X(z) = \mathbb{E}\left[z^X\right].$$

On a alors

$$\forall t \in \mathbf{R}, \qquad \varphi_X(t) = G_X\left(e^{it}\right).$$

Loi de Bernoulli, $\mathcal{B}(p)$, $0 \le p \le 1$:

$$\mathbb{P}(X=1) = p, \quad \mathbb{P}(X=0) = q;$$

Loi binomiale, $\mathcal{B}(n,p)$, $n \geq 1$, $0 \leq p \leq 1$:

$$\forall k = 0, \dots, n, \quad \mathbb{P}(X = k) = C_n^k p^k q^{n-k}.$$

Loi géométrique, G(p), 0 :

$$\forall k \in \mathbf{N}^*, \quad \mathbb{P}(X = k) = pq^{k-1}.$$

Loi binomiale négative, $\mathcal{B}_{-}(n,p), n \geq 1, 0 :$

$$\forall k \ge n, \quad \mathbb{P}(X = k) = C_{k-1}^{n-1} p^n q^{k-n}.$$

Loi de Poisson, $\mathcal{P}(c)$, c > 0:

$$\forall k \in \mathbf{N}, \quad \mathbb{P}(X = k) = e^{-c} \frac{c^k}{k!}.$$

Loi / v.a.	Notation	Espérance	Variance	G_X
Bernoulli	$\mathcal{B}(p)$	p	pq	q + pz
Binomiale	$\mathcal{B}(n,p)$	np	npq	$(q+pz)^n$
Géométrique	$\mathcal{G}(p)$	1/p	q/p^2	$pz\left(1-qz\right)^{-1}$
Binomiale négative	$\mathcal{B}_{-}(n,p)$	n/p	nq/p^2	$\left(pz\left(1-qz\right)^{-1}\right)^n$
Poisson	$\mathcal{P}(c)$	c	c	$e^{c(z-1)}$

Lois à densité

X à valeurs dans \mathbf{R}^d a pour densité p_X si

$$\forall B \in \mathcal{B}(\mathbf{R}^d), \qquad \mathbb{P}(X \in B) = \int_B p_X(x) \, dx.$$

Loi uniforme sur [a, b], $\mathcal{U}(a, b)$, a < b:

$$p_X(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x), \qquad F_X(t) = \begin{cases} 0 & \text{si } t < a \\ (b-a)^{-1}(t-a) & \text{si } a \le t < b \\ 1 & \text{si } t \ge b \end{cases}$$

Loi de Cauchy, C(c), c > 0:

$$p_X(x) = \frac{1}{\pi} \frac{c}{c^2 + x^2}, \qquad F_X(t) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{t}{c}\right).$$

Loi exponentielle, $\mathcal{E}(c)$, c > 0:

$$p_X(x) = ce^{-cx} \mathbf{1}_{\mathbf{R}_+}(x), \qquad F_X(t) = (1 - e^{-ct}) \mathbf{1}_{\mathbf{R}_+}(t).$$

Loi de Laplace, $\mathcal{L}(c)$, c > 0:

$$p_X(x) = \frac{c}{2}e^{-c|x|}, \qquad F_X(t) = \begin{cases} e^{ct}/2 & \text{si } t < 0, \\ 1 - e^{-ct}/2 & \text{si } t \ge 0 \end{cases}$$

Loi gaussienne ou normale réelle, $\mathcal{N}(m, \sigma^2), \, \sigma^2 > 0$:

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

Loi gaussienne dans \mathbf{R}^d , $\mathcal{N}(m,\Gamma): m \in \mathbf{R}^d$, Γ matrice réelle $d \times d$ symétrique et semi-définie positive. Densité si et seulement si det $\Gamma > 0$ et dans ce cas

$$p_X(x) = \frac{1}{\sqrt{(2\pi)^d \det \Gamma}} \exp\left(-\frac{(x-m) \cdot \Gamma^{-1}(x-m)}{2}\right).$$

Loi gamma, $\Gamma(s,c)$, s>0, c>0:

$$p_X(x) = \frac{c}{\Gamma(s)} (cx)^{s-1} e^{-cx} \mathbf{1}_{\mathbf{R}_+^*}(x), \text{ avec } \Gamma(s) = \int_{\mathbf{R}_+^*} x^{s-1} e^{-x} dx.$$

Loi / v.a.	Notation	Espérance	Variance	φ_X
Uniforme	$\mathcal{U}(a,b)$	(a+b)/2	$(b-a)^2/12$	$\left(e^{itb} - e^{ita}\right) \left(it(b-a)\right)^{-1}$
Cauchy	C(c)	non	non	$e^{-c t }$
Exponentielle	$\mathcal{E}(c)$	c^{-1}	c^{-2}	$c(c-it)^{-1}$
Laplace	$\mathcal{L}(c)$	0	$2c^{-2}$	$c^2 \left(c^2 + t^2\right)^{-1}$
Gaussienne	$\mathcal{N}(m,\sigma^2)$	m	σ^2	$\exp\left(itm - \sigma^2 t^2/2\right)$
Gaussienne	$\mathcal{N}(m,\Gamma)$	m	Г	$\exp\left(it\cdot m - \frac{1}{2}t\cdot\Gamma t\right)$
Gamma	$\Gamma(s,c)$	sc^{-1}	sc^{-2}	$\left(c(c-it)^{-1}\right)^s$