ECE 235: Introduction to Solid State Electronics

Discussion

Week 11

Md Mobinul Haque

Charge Profile

Forward Bias

Reverse Bias

Total Current

Consider a silicon pn junction at T = 300 K. Assume the doping concentration in the n region is $N_d = 10^{16}$ cm⁻³ and the doping concentration in the p region is $N_a = 6 \times 10^{15}$ cm⁻³, and assume that a forward bias of 0.60 V is applied to the pn junction.

Calculate the minority carrier concentrations at the edge of the space charge regions in a forward-biased pn junction. $n_i = 1.5 \times 10^{10} \, \mathrm{cm}^{-3}$

Determine the ideal reverse-saturation current density in a silicon pn junction at T = 300 K.

Consider the following parameters in a silicon pn junction:

$$N_a = N_d = 10^{16} \text{ cm}^{-3}$$
 $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ $D_n = 25 \text{ cm}^2/\text{s}$ $\tau_{p0} = \tau_{n0} = 5 \times 10^{-7} \text{ s}$ $T_{p0} = 10 \text{ cm}^2/\text{s}$ $T_{p0} = 10 \text{ cm}^2/\text{s}$

Consider a silicon pn junction diode at T = 300 K. Design the diode such that $J_n = 20$ A/cm² and $J_p = 5$ A/cm² at $V_a = 0.65$ V. Assume the remaining semiconductor parameters are as

$$n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}$$
 $D_n = 25 \,\mathrm{cm}^2/\mathrm{s}$
 $\tau_{p0} = \tau_{n0} = 5 \times 10^{-7} \,\mathrm{s}$
 $\sigma_{p0} = 10 \,\mathrm{cm}^2/\mathrm{s}$
 $\sigma_{p0} = 11.7$

For a pn junction diode assuming the total current is conducted by the electric field far from the junction, calculate the electric field. Assume the applied forward bias voltage is 0.65 V and temperature is 300 K. Other diode parameters are given in Practice Problem 2.