## What is claimed is:

5

15

30

- 1. A process for increasing the hydrophilicity of a polymer comprising adding to the polymer an effective amount of a di- C<sub>10-12</sub> fatty acid ester of polyethylene glycol.
- 2. The process of claim 1 wherein the polyethylene glycol has a molecular weight of from about 300 to about 600.
- 10 3. The process of claim 2 wherein the polyethylene glycol has a molecular weight of about 400.
  - The process of claim 1 wherein the effective amount is from about 0.5% to about 10% by weight of the polymer.
  - 5. The process of claim 4 wherein the effective amount is from about 0.5% to about 5% by weight of the polymer.
- 6. The process of claim 5 wherein the effective amount is from about 1.0% to about 2.5% by weight of the polymer.
  - 7. The process of claim 1 wherein the ester is di-laurate ester of polyethylene glycol.
- 25 8. The process of claim 7 wherein the polyethylene glycol has a molecular weight of about 400.
  - 9. The process of claim 1 wherein the ester is di-decanoate ester of polyethylene glycol.
  - 10. A process for making a synthetic polypropylene fiber having increased hydrophilicity comprising the steps of: (1) adding an effective amount of a di-  $C_{10-12}$  fatty acid ester of polyethylene glycol to polypropylene to form a mixture; (2) heating the mixture to form a melt; and

(3) spinning the melt into a fiber.

5

20

- 11. The process of claim 10 wherein the polyethylene glycol has a molecular weight of from about 300 to about 600.
- 12. The process of claim 11 wherein the polyethylene glycol has a molecular weight of about 400.
- 13. The process of claim 10 wherein the effective amount is from about 0.5% to about 10% by weight of the polymer.
  - 14. The process of claim 13 wherein the effective amount is from about 0.5% to about 5% by weight of the polymer.
- 15. The process of claim 14 wherein the effective amount is from about 1.0% to about 2.5% by weight of the polymer.
  - 16. The process of claim 10 wherein the ester is di-laurate ester of polyethylene glycol.
  - 17. The process of claim 16 wherein the polyethylene glycol has a molecular weight of about 400.
- 18. The process of claim 10 wherein the ester is di-decanoate ester of polyethylene glycol.
  - 19. The process of claim 18 wherein the polyethylene glycol has a molecular weight of about 400.
- 20. A non-woven fabric having increased hydrophilicity which comprises synthetic fibers comprised of a polymer containing an effective amount of a di- C<sub>10-12</sub> fatty acid ester of polyethylene glycol.
  - 21. The non-woven fabric of claim 20 wherein the polyethylene glycol

has a molecular weight of from about 300 to about 600.

5

20

- 22. The non-woven fabric of claim 21 wherein the polyethylene glycol has a molecular weight of about 400.
- 23. The non-woven fabric of claim 20 wherein the effective amount is from about 0.5% to about 10% by weight of the polymer.
- The non-woven fabric of claim 23 wherein the effective amount is from about 0.5% to about 5% by weight of the polymer.
  - 25. The non-woven fabric of claim 24 wherein the effective amount is from about 1.0% to about 2.5% by weight of the polymer.
- 15 26. The non-woven fabric of claim 20 wherein the ester is di-laurate ester of polyethylene glycol.
  - 27. The non-woven fabric of claim 26 wherein the polyethylene glycol has a molecular weight of about 400.
  - 28. The non-woven fabric of claim 20 wherein the ester is di-decanoate ester of polyethylene glycol.
- The non-woven fabric of claim 28 wherein the polyethylene glycol
  has a molecular weight of about 400.
  - 30. The non-woven fabric of claim 20 wherein the polymer is polyethylene.
- 31. The non-woven fabric of claim 20 wherein the polymer is polypropylene.