REPETIBILIDADE

O termo repetibilidade refere-se a expressão de um mesmo caráter em épocas distintas na vida do animal.

Produção de leite e gordura, produção de lã, comprimento da lã, peso e forma do ovo, tamanho da leitegada, intervalo de partos, etc.

A repetibilidade mede a correlação média entre dois fenótipos sucessivos de um mesmo indivíduo.

As diferenças entre os fenótipos repetidos de um animal refletem um efeito especial de ambiente já que o genótipo não muda.

Em geral, os produtores tendem a manter no rebanho aqueles animais melhores na primeira produção, esperando que sejam melhores nas produções futuras. Raciocínio semelhante é feito para os piores animais

Determinação da repetição - repetibilidade

No estudo da repetibilidade, os valores observados no caráter em estudo devem ser inicialmente corrigidos para alguns fatores de ambiente conhecidos:

Exemplo: Produção de leite em bovinos

Vida reprodutiva de uma vaca

Idade ao primeiro parto (IPP), período de serviço (PS), intervalo de partos (IP) e número de serviços/concepção (NSC)

Vida produtiva de uma vaca

Ordem de lactação (ou idade da vaca ao parto), período de lactação e período seco

	Cria/Recria	EM	Gestação	Per. Lactação	PS	
Na	sc. Pi	1p 3	cio 1º p	arto	2º p	arto

Fatores de correção (produção de leite)

a) <u>Período de lactação</u>: Preconizado = 305 dias Zebu = 280 dias.

Figura 1 - Médias observadas das PLDC para as primeiras lactações de vacas Holandesas.

Figure 1 - Observed means for first lactation test-day milk yields of Holstein cows.

Curva de lactação de algumas espécies (Adaptado do Biochemistry of Lactation, 1983).

30

20

10

Figura 1 - Curvas de lactação de vacas Nelores (N), F1 Simental-Nelore (SN) e F1 Limousin-Nelore (LN), ajustadas conforme modelo proposto por Jenkins & Ferrell (1984).

Figure 1 - Lactation curves of Nellore (N), F1 Simmental-Nelore (SN) and F1 Limousin-Nellore (LN), adjusted according to model proposed by Jenkis & Ferrell (1984).

Tabela 2-Fatores de correção multiplicativos da produção de leite, gordura e percentagem de gordura (2x), para um período de lactação de 305 dias

Table 2 - Multiplicative adjustment factors of the production of milk, fat and fat percentage (2x), for a period of lactation of 305 days

Período de lactação (dias)		Fatores de correção	
Lactation period	d (days)	Adjustment factors	
	Produção de leite	Produção de gordura	Percentagem de gordura
	Milk production	Fat production	Fat percentage
150-169	2,207206	2.241354	1.024866
170-179	1,892385	1,867899	1,004366
180-189	1,832614	1,839322	1,028555
190-199	1,798827	1,811509	1,001037
200-209	1,737584	1,722864	1,005364
210-219	1,608742	1,602357	1,005221
220-229	1,483849	1,469939	1,001090
230-239	1,470447	1,474424	1,013043
240-249	1,395457	1,381679	1,000320
250-259	1,305680	1,290417	0,994399
260-269	1,218843	1,210858	1,000231
270-279	1,168336	1,172869	1,004474
280-289	1,117609	1,109862	0,996853
290-299 300-309	1,051954	1,053261	0,999678
310-319	0,975020	0,973694	0,996072
320-329	0,951243	0,947880	0,992678
330-339	0,909267	0,907414	0,993809
340-349	0,887753	0,886165	0,994547
350-364	0,846889	0,845128	0,994586
365	0,784561	0,787525	0,995290

Correção para a duração da lactação (280 d)

Dias de lactação	Fator de correção
160	1,814
180	1,614
200	1,447
230	1,245
260	1,080
280	1,000
290	0,967
300	0,915

Vaca 1 - 2.000 kg leite e 200 dias de lactação Vaca 2 - 2.000 kg leite e 280 dias de lactação Vaca 3 - 2.000 kg leite e 300 dias de lactação

Vaca 1 - 2.000 kg x 1,447 = 2.894 kg leite Vaca 2 - 2.000 kg x 1,000 = 2.000 kg leite Vaca 3 - 2.000 kg x 0,915 = 1.830 kg leite

b) No de ordenhas: geralmente duas ordenhas.

- 1 para 2 \Rightarrow Produção \times 1,30
- 2 para $3 \Rightarrow \text{Produção} \times 1,20$
- 3 para $4 \Rightarrow \text{Produção} \times 1,13$
- 4 para $2 \Rightarrow \text{Produção} \times 0,67$
- 3 para $2 \Rightarrow \text{Produção} \times 0.80$
- 2 para $1 \Rightarrow \text{Produção} \times 0.70$

Tabela 1 - Número de observações (N), médias estimadas e desvios-padrão (DP) das produções de leite e de gordura, de acordo com o número de ordenhas

Table 1 - Number of observations (N), estimate averages and standard-deviation (DP) of the productions of milk and fat, in agreement with the number of milking daily

Variável Variable	N N		dução de leite Ik production		ıção de gordura at production
		Médias Averages	DP Standard deviation	Médias Averages	DP Standard deviation
Duas ordenhas Two milking	9317	5267,68	1982,81	198,99	75,17
Três ordenhas Three milking	1876	6491,37	2092,46	233,50	75,10

Vaca 1 - 2.000 kg de leite em 1 ordenha

Vaca 2 - 2.000 kg de leite em 2 ordenhas

Vaca 3 - 2.000 kg de leite em 3 ordenhas

Padronizando para duas ordenhas...

Vaca 1 - 2.000 kg \times 1,3 = 2.600 kg de leite

Vaca 2 - 2.000 kg \times 1,0 = 2.000 kg de leite

Vaca 3 - 2.000 kg \times 0,8 = 1.600 kg de leite

c) <u>Idade da vaca</u>: Maturidade 6-7 anos (USA) Zebu = 8-9 anos.

Produção de leite conforme a idade da vaca ao parto

Figura 1 – Produção de leite (kg), segundo a idade da vaca ao parto.

Figure 1 - Milk production (kg), according to the age of the cow at calving.

Idade	Jersey	Holandesa	Média
< 2 anos	1,45	1,44	1,42
2,0 - 2,5	1,36	1,37	1,35
2,5 - 3,0	1,28	1,27	1,27
3,0 - 3,5	1,20	1,19	1,19
3,5 - 4,0	1,14	1,13	1,14
4,0 - 4,5	1,08	1,09	1,09
4,5 - 5,0	1,04	1,06	1,05
5,0 - 6,0	1,02	1,03	1,03
6,0 - 7,0	1,00	1,00	1,01
7,0 - 8,0	1,00	1,00	1,00
8,0 - 9,0	1,00	1,01	1,01
10,0 - 11,0	1,02	1,02	1,03
11,0 - 12,0	1,05	1,03	1,04

Raça holandesa - correção para 7 anos

Vaca 1 - 2 anos de idade e 2.000 kg de leite

Vaca 2 - 7 anos de idade e 2.000 kg de leite

Vaca 3 - 10 anos de idade e 2.000 kg de leite

Vaca 1 - $2.000 \times 1,37 = 2.740,00$ kg de leite

Vaca 2 - $2.000 \times 1,00 = 2.000,00$ kg de leite

Vaca 3 - $2.000 \times 1,02 = 2.040,00$ kg de leite

d) Teor de gordura:

Zebu tem leite com teor de gordura maior que o gado Europeu

(Gaines-Davidson) -
$$L_{4\%}$$
 = 0,4PL+ (0,15PL × %G)

L_{4%} - Leite corrigida para o padrão 4%

PL° - Produção de leite %G - Porcentagem de gordura

Vaca 1 - 2.500 kg de leite com 3,6% de gordura $L_{4\%}$ = (0,4 × 2.500)+(0,15 × 2.500 × 3,6) = 2.350

Vaca 2 - 2.500 kg de leite com 4,2% de gordura $L_{4\%}$ = (0,4 × 2.500)+(0,15 × 2.500 × 4,2) = 2.575

Produção de gordura $L_{4\%}$ = 0,4PL + 15G

Vaca 1 - 2.600 kg de leite e 130 kg gordura $L_{4\%}$ = (0,4 x 2.600)+(15 x 130) = 2.990 kg leite

Vaca 2 - 2.600 kg de leite e 150 kg gordura $L_{4\%}$ = (0,4 x 2.600)+(15 x 150) = 3.290 kg leite

e) <u>Intervalo de partos</u> (IP ou IEP)

IP = período de serviço + período de gestação (PS)(60 dias) (PG)(275 - 305 dias)

A lactação é afetada pela parição precedente e pelos dias em gestação na lactação

Intervalos de partos com durações variáveis afetam diferentemente a produção de leite.

Europeu - PS = 60 a 90 d \Rightarrow IP = 290 a 380 d Tropical - PS = 80 a 274 d \Rightarrow IP = 370 a 564 d A duração do IP é afetada pelo manejo, nutrição, composição genética do rebanho, idade das vacas, pelo mês e ano do parto.

IP	2º lactação	3ª ou mais
300 - 319	1,070	1,039
320 - 339	1,056	1,026
340 - 359	1,029	1,016
360 - 379	1,016	1,006
380 - 399	1,003	0,994
400 - 419	0,994	0,985
420 - 439	0,983	0,976
440 - 459	0,970	0,964

Vaca 1 - IP de 300 dias e 2.000 kg de leite

Vaca 2 - IP de 380 dias e 2.000 kg de leite

Vaca 3 - IP de 440 dias e 2.000 kg de leite

Vaca 1 - $2.000 \times 1,07 = 2.140,00 \text{ kg de leite}$

Vaca 2 - $2.000 \times 1,003 = 2.006,00 \text{ kg de leite}$

Vaca 3 - $2.000 \times 0.97 = 1.954,00 \text{ kg}$ de leite

f) Período seco

Período seco = IP - Período de lactação.

Período necessário para que a glândula mamaria se regenere e para que o animal acumule reservas par a próxima lactação.

Reserva de 45 kg de gordura fornece energia para produção de 360 kg de leite.

Gado Europeu - máximo 60 dias. Gado Tropical - 96 a 213 dias.

O período seco é bastante afetado pelo manejo, nutrição, idade da vaca, época e ano de parto.

g) Rebanho

Diferenças entre rebanhos decorrem, principalmente, de diferenças no manejo, clima e alimentação onde são criados os animais e também da intensidade e critérios de seleção utilizados.

h) Mês e ano do parto

Diferenças nos índices pluviométricos, umidade relativa e temperatura de cada região, tipo de forrageira, manejo alimentar e sanitário, etc.

Efeitos de rebanho e de mês e ano do parto são corrigidos por meio de modelo matemático.

Modelo matemático: resume todas as fontes de variação que possam interferir no desempenho de uma característica sob análise.

Ex. Modelo matemático para análise dos fatores que interferem na produção de leite.

$$Y_{ijklmno} = \mu + R_i + E_j + A_k + DL_m + I_n + O_o + E_{ijklmno}$$

Rebanho (R), estação (E), ano (A), duração da lactação (DL), idade (I), nº ordenhas (O) e erro experimental (E).

Y_{ijklmno} = Produção de leite estimada de uma vaca do rebanho i, parida na estação j do ano k, com duração da lactação m, idade n e o ordenhas diárias. Corrigidos os dados para os fatores de ambiente conhecidos, resta ainda uma fração que não é anulada e que atua sobre todos os indivíduos da população.

$$\sigma_E^2 = \sigma_{EG}^2 + \sigma_{ES}^2$$
 (E geral + E especial).

A variância de uma característica pode ser analisada sob dois componentes:

Variância entre indivíduos: é parcialmente genética (σ_G^2) e parcialmente ambiental (circuns tâncias de meio que afetam permanentemente alguns indivíduos do rebanho) (σ_{ES}^2) .

Variância dentro dos indivíduos: mede as diferenças temporárias do ambiente e que afetam igualmente todos os indivíduos do rebanho (σ_{EG}^2) .

$$r = \frac{\sigma_G^2 + \sigma_{ES}^2}{\sigma_P^2} \qquad r = \frac{\sigma_G^2 + \sigma_{ES}^2}{\sigma_G^2 + \sigma_{EG}^2 + \sigma_{ES}^2} \qquad r = \frac{\sigma_F^2}{\sigma_F^2 + \sigma_E^2}$$

As estimativas das variâncias são obtidas por meio da análise de variância dos dados

Exemplo 1

Peso de 3 ovos postos consecutivamente por 6 galinhas

Galinha	Ovo 1	Ovo 2	Ovo 3	Total	Média
1	53.20	53.24	62.35	168.79	56.26
2	48.39	61.98	62.60	172.97	57.66
3	52.28	58.92	57.98	169.18	56.39
4	47.65	48.12	51.47	147.24	49.08
5	67.18	68.32	67.06	202.56	67.52
6	47.64	51.70	54.76	154.20	51.40
Total	316.44	342.28	356.22	1014.94	

$$Ve = 34,0125;$$

$$Vd = 20,4626;$$

$$r = 0,6244$$

Análise de variância

FV GL SQ QM (EQM)

Entre
$$\cap{Q}$$
 \cap{Q} \cap{Q}

 σ^2_R = componente de variância do erro (dentro) $\sigma^2_{\rm p}$ = componente de variância de fêmea k = número médio de informações do animal

$$\sigma^{2}_{R} = QM_{R}$$
 $\sigma^{2}_{\varphi} = (QM_{\varphi} - QMR)/k$
 $r = \sigma^{2}_{\varphi}/(\sigma^{2}_{\varphi} + \sigma^{2}_{R})$

Intervalo de partos em suínos

<u>•</u>					
FV	GL	QM	(EQM)		
Entre ?	94	4028,7	σ^{2}_{R} + 4,53 σ^{2}		
Dentro de ♀	250	2121,0	σ^2_R		
Total	344				
$\sigma^2_R = 2121,0$					
σ^2_R + 4,53 σ^2_{φ} =	4028	,7 ⇒ 212	21,0 + 4,53σ ² _♀ =		
σ^2_{\circ} = (4028,7 -	2121,	0)/4,53 =	421,13		
$r = \sigma^2_{\varphi}/(\sigma^2_{\varphi} + \sigma^2_{R}) = 421,13/(421,13 + 212)$					
r = 0,17					

Produção de leite em vacas Jersey

FV	GL	QM	(EQM)
Entre vacas	404	1127422,4	σ^{2}_{R} + 4,02 σ^{2}_{V}
Dentro de V	1199	316447,7	σ^2_R
Total	1603		

$$\sigma^{2}_{R}$$
 = 316447,7

 σ^{2}_{R} + 4,02 σ^{2}_{φ} = 1127422,4 \Rightarrow

316447,7 + 4,02 σ^{2}_{φ} = 1127422,4

 σ^{2}_{φ} = (1127422,4 - 316447,7)/4,02 = 201735

 $r = 201735/(201735,4 + 316447,7) \Rightarrow r = 0.39$

Considerações

- 1) A repetibilidade varia entre zero e um.
- 2) Estabelece o limite superior da herdabilidade.

$$r = (\sigma_G^2 + \sigma_{ES}^2) / \sigma_P^2$$
 $h^2 = \sigma_G^2 / \sigma_P^2$

- 3) É de fácil obtenção.
- 4) Permite estabelecer nº de observações para melhorar a eficiência da seleção.
- 5) Indica a acurácia de mensurações múltiplas.

Uma medida é dita acurada quando está próxima do seu valor verdadeiro.

Baixa acurácia Baixa precisão

Baixa acurácia Alta precisão

Alta acurácia Baixa precisão

Alta acurácia Alta precisão

- r alta (σ_{ES}^2 reduzida) \Rightarrow aumento do número de medidas não traz benefícios para a exatidão na estimação da σ_p^2 .
- r baixa (σ_{ES}^2 alta) \Rightarrow aumento no número de medidas pode aumentar a exatidão na estimação da σ_P^2 .

↑ Nº de mensurações
$$\Rightarrow$$
 \downarrow σ_{ES}^2 \Rightarrow \downarrow σ_P^2

Se existem n medidas, a variância a ser considerada será a média de n avaliações:

$$r_{n \text{ medidas múltiplas}} = \frac{nr}{1 + (n-1)r}$$

Efeito do número de medidas na σ_{ES}^2 n = 1

σ_G^2	$\sigma_{_{ES}}^2$
G	ES

n = 2

 σ_G^2 σ_{ES}^2

n = 3

 σ_G^2 σ_{ES}^2

n = 5

 σ_G^2 σ_{ES}^2

n = 10

 σ_G^2 σ_{ES}^2

	Valores iniciais de repetibilidade						
Obs.	0.1	0.2	0.3	0.4	0.5		
1	0.1000	0.2000	0.3000	0.4000	0.5000		
2	0.1818	0.3333	0.4615	0.5714	0.6667		
3	0.4000	0.6000	0.7200	0.8000	0.8571		
4	0.7273	0.8571	0.9114	0.9412	0.9600		
5	0.9302	0.9677	0.9809	0.9877	0.9917		
6	0.9877	0.9945	0.9968	0.9979	0.9986		
7	0.9982	0.9992	0.9995	0.9997	0.9998		
8	0.9998	0.9999	0.9999	1.0000	1.0000		
9	1.0000	1.0000	1.0000	1.0000	1.0000		
10	1.0000	1.0000	1.0000	1.0000	1.0000		

Estimativas da repetibilidade de algumas características

Espécie	Característica	Repetibilidade (%)
	Idade ao 1 ⁰ parto	35
Bovinos de corte	Peso ao nascer	20
	Peso ao desmame	40
Bovinos de leite	Intervalo de partos	15
	Produção de leite	50
	% de gordura	60
	N ⁰ leitões nascidos	15
	N ^o leitões desmamados	10
Suínos	Peso ao nascer	30
	Peso ao desmame	15
	Peso aos 21 dias	15
	Tamanho do ovo	95
Aves	Peso do ovo	90
	Peso da casca	70
	N ⁰ de crias	15
Ovince	Peso ao nascer	35
Ovinos	Peso aos 60 dias	25
	Peso do velo	40

6) Permite a estimação da <u>Capacidade</u> <u>Provável</u> <u>de Produção</u> (CPP) e da <u>Capacidade</u> <u>Provável</u> <u>de Transmissão</u> (CPT)

$$CPP = \overline{P} + \frac{nr}{1 + (n-1)r} (\overline{P}_i - \overline{P})$$

 \overline{P} = média do rebanho; \overline{P}_i = média do animal; $n = n^2$ de medidas no animal e r = repetibilidade

$$CPT = \bar{P} + \frac{nh^2}{1 + (n - 1)r} (\bar{P}_i - \bar{P})$$

h² = coeficiente de herdabilidade

Vaca com quatro lactações: 3.000, 3.400, 2.800 e 3.100 kg de leite, oriunda de um rebanho de produção média 3.000 kg, r = 0.30 e $h^2 = 0.25$.

$$CPP = 3000 + \frac{4 \times 0,30}{1 + (4 - 1)0,30}$$
 (3.075 - 3.000).

CPP = 3047,37 kg na próxima lactação.

$$CPT = 3000 + \frac{4 \times 0,25}{1 + (4 - 1)0,30}$$
 (3.075 - 3.000).

CPT = 3039,47 kg - produção da F_1 desta vaca.

Vaca 1 com duas lactações: 3.000 e 3.400 e vaca 2 com três lactações 2.800, 3.200 e 3600 kg de leite, oriundas de um rebanho de produção média 3.100 kg, r = 0,32

$$CPP_1 = 3100 + \frac{2 \times 0,32}{1 + (2 - 1)0,32}$$
 (3.200 - 3.100)

 $CPP_1 = 3148,48 \text{ kg na próxima lactação}$

$$CPP_2 = 3100 + \frac{3 \times 0,32}{1 + (3 - 1)0,32}$$
 (3.200 - 3.100)

CPP₂ = 3158,53 kg na próxima lactação