Álgebra lineal I, Grado en Matemáticas

Febrero 2017, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Submatriz. Matriz nilpotente.
- (b) Subespacio vectorial
- (c) Sistema de generadores y base de un espacio vectorial.
- (d) Subespacios núcleo e imagen de una aplicación lineal.

Ejercicio 1: (2 puntos)

Sean U y V dos \mathbb{K} –espacios vectoriales y $f:U\to V$ una aplicación lineal. Demuestre que f es inyectiva (o monomorfismo) si y sólo si el núcleo de f es $\mathrm{Ker}(f)=\{0\}$.

Ejercicio 2: (2 puntos)

Sean v_1, \ldots, v_n, u, w vectores de un \mathbb{K} – espacio vectorial V de dimensión finita. Se consideran los subespacios vectoriales:

$$U_1 = L(v_1, \dots, v_n), \ U_2 = L(v_1, \dots, v_n, u), \ U_3 = L(v_1, \dots, v_n, w)$$

Demuestre que si $w \notin U_1$ y $w \in U_2$, entonces $u \in U_3$.

Ejercicio 3: (4 puntos)

Sean $f:\mathbb{K}^3 \to \mathbb{K}^2$ y $g:\mathbb{K}^2 \to \mathbb{K}^4$ aplicaciones lineales dadas por

$$f(1,0,0) = (0,-3), \ f(0,1,0) = (0,-1), \ f(0,0,1) = (1,4)$$

 $g(2,1) = (2,1,2,0), \ g(1,2) = (4,2,4,0)$

- (a) Determine la matriz de $g \circ f$ en las bases canónicas.
- (b) Obtenga unas ecuaciones implícitas de los subespacios núcleo e imagen de g y justifique si dicha aplicación es, o no, inyectiva o sobreyectiva.
- (c) Determine el subespacio imagen inversa por f de la recta de \mathbb{K}^2 generada por el vector v = (1,0).

Ejercicio 1: Sean U y V dos \mathbb{K} —espacios vectoriales y $f:U\to V$ una aplicación lineal. Demuestre que f es inyectiva (o monomorfismo) si y sólo si el núcleo de f es $\mathrm{Ker}(f)=\{0\}$.

Demostración: Proposición 4.15, página 154.

Demostración alternativa:

- \Rightarrow) Si f es invectiva, entonces a vectores distintos le corresponden imágenes distintas, luego para todo $v \neq 0$, se tiene que $f(v) \neq f(0) = 0$. Por tanto, el único vector cuya imagen es 0 es el vector 0. Es decir, Ker $f = \{0\}$.
- \Leftarrow) Suponiendo Ker $(f) = \{0\}$, procedemos por reducción al absurdo: si f no es inyectiva, entonces existen $u_1, u_2 \in U$ con $u_1 \neq u_2$ tales que $f(u_1) = f(u_2)$. Por lo tanto, $f(u_1 u_2) = f(u_1) f(u_2) = 0$ y $u_1 u_2$ sería un vector no nulo perteneciente al núcleo de f, lo que contradice la hipótesis inicial. Luego f es inyectiva.

Ejercicio 2: Sean v_1, \ldots, v_n, u, w vectores de un \mathbb{K} – espacio vectorial V de dimensión finita. Se consideran los subespacios vectoriales:

$$U_1 = L(v_1, \dots, v_n), \ U_2 = L(v_1, \dots, v_n, u), \ U_3 = L(v_1, \dots, v_n, w)$$

Demuestre que si $w \notin U_1$ y $w \in U_2$, entonces $u \in U_3$.

Demostración: Si $w \in U_2$, entonces es combinación lineal de v_1, \ldots, v_n, u , de modo que existen escalares $\alpha_1, \ldots, \alpha_n, \beta \in \mathbb{K}$ tales que

$$w = \alpha_1 v_1 + \ldots + \alpha_n v_n + \beta u \quad (*)$$

Si $\beta \neq 0$, entonces podemos despejar u en la ecuación anterior y

$$u = -\frac{\alpha_1}{\beta}v_1 - \dots - \frac{\alpha_n}{\beta}v_n + \frac{1}{\beta}w$$

y por tanto $u \in U_3$.

Si $\beta = 0$, entonces la ecuación (*) queda

$$w = \alpha_1 v_1 + \ldots + \alpha_n v_n$$

y en tal caso w sería un vector de U_1 , lo que contradice la hipótesis de partida.

Entonces, $\beta \neq 0$ y así $u \in U_3$, como queríamos demostrar.

Ejercicio 3: Sean $f: \mathbb{K}^3 \to \mathbb{K}^2$ y $g: \mathbb{K}^2 \to \mathbb{K}^4$ aplicaciones lineales dadas por

$$f(1,0,0) = (0,-3), f(0,1,0) = (0,-1), f(0,0,1) = (1,4)$$

$$g(2,1) = (2,1,2,0), g(1,2) = (4,2,4,0)$$

- (a) Determine la matriz de $g \circ f$ en las bases canónicas.
- (b) Obtenga unas ecuaciones implícitas de los subespacios núcleo e imagen de g y justifique si dicha aplicación es, o no, inyectiva o sobreyectiva.
- (c) Determine el subespacio imagen inversa por f de la recta de \mathbb{K}^2 generada por el vector v = (1,0).

Solución:

(a) Determinamos las imágenes por $g\circ f$ de los vectores de la base canónica de \mathbb{K}^3

$$(g \circ f)(1,0,0) = g(f(1,0,0)) = g(0,-3) = g((2,1) - 2(1,2)) = g(2,1) - 2g(1,2)$$
$$= (2,1,2,0) - 2(4,2,4,0) = (-6,-3,-6,0)$$

$$(g \circ f)(0,1,0) = g(f(0,1,0)) = g(0,-1) = g(\frac{1}{3}(0,-3)) = \frac{1}{3}g(0,-3)$$
$$= \frac{1}{3}(-6,-3,-6,0) = (-2,-1,-2,0)$$

$$(g \circ f)(0,0,1) = g(f(0,0,1)) = g(1,4) = g(-\frac{2}{3}(2,1) + \frac{7}{3}(1,2)) = -\frac{2}{3}g(2,1) + \frac{7}{3}g(1,2)$$
$$= -\frac{2}{3}(2,1,2,0) + \frac{7}{3}(4,2,4,0) = (8,4,8,0)$$

Nótese que en la parte azul se han utilizado coordenadas en la base $\mathcal{B}' = \{(1,2), (2,1)\}$, que es en la que nos dan la aplicación g.La matriz de $g \circ f$ en las bases canónicas es:

$$\begin{pmatrix}
-6 & -2 & 8 \\
-3 & -1 & 4 \\
-6 & -2 & 8 \\
0 & 0 & 0
\end{pmatrix}$$

(b) En primer lugar determinamos la matriz de g en la bases canónicas \mathcal{B}_2 y \mathcal{B}_4 de \mathbb{K}^2 y \mathbb{K}^4 respectivamente. Lo podemos hacer igual que antes, calculando directamente las imágenes de los vectores de la base canónica \mathcal{B}_2 , o bien utilizando matrices de cambio de base:

$$\mathfrak{M}_{\mathcal{B}_{2}\mathcal{B}_{4}}(g) = \mathfrak{M}_{\mathcal{B}'\mathcal{B}_{4}}(g) \cdot \mathfrak{M}_{\mathcal{B}_{2}\mathcal{B}'} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \\ 2 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 2 \\ 0 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$$

La aplicación q no es invectiva ni sobrevectiva pues:

 $\dim\operatorname{Im} g=\operatorname{rg} g=1\neq\dim\mathbb{K}^4\ \Rightarrow\ \operatorname{Im} g\neq\mathbb{K}^4$

y dim Ker $g = 2 - \dim \operatorname{Im} g = 1 \implies \operatorname{Ker} g \neq \{0\}.$

Unas ecuaciones implícitas del núcleo, en la base canónica, se obtienen de la condición:

$$\begin{pmatrix} 0 & 2 \\ 0 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x_2 = 0$$

El subespacio de \mathbb{K}^4 imagen de g está generado por las imágenes de los vectores de una base de \mathbb{K}^2 :

$$\operatorname{Im} g = L(g(1,0),g(0,1)) = L((0,0,0,0),(2,1,2,1)) = L((2,1,2,0))$$

(c) Si R = L((1,0)), entonces en la base canónica tiene por ecuaciones implícitas: $x_2 = 0$.

$$f^{-1}(R) = \{(x_1, x_2, x_3) : f(x_1, x_2, x_3) \in R\}$$

= \{(x_1, x_2, x_3) : (x_3, -3x_1 - x_2 + 4x_3) \in R\}
= \{(x_1, x_2, x_3) : -3x_1 - x_2 + 4x_3 = 0\}

Luego $f^{-1}(R)$ es el plano de \mathbb{K}^3 de ecuación implícita $-3x_1 - x_2 + 4x_3 = 0$ en la base canónica.

Error muy frecuente cometido en este último apartado (Ejercicio 3(c)):

En lugar de calcular $f^{-1}(R)$, que es lo que se pedía, muchos estudiantes han calculado en su lugar la imagen inversa del vector (1,0), es decir $f^{-1}(\{(1,0)\})$, obteniendo un resultado incorrecto. De hecho se obtiene un conjunto determinado por unas ecuaciones no homogéneas, que ni siquiera es un subespacio vectorial.

Se ha procedido erróneamente del siguiente modo:

$$f^{-1}(\{(1,0)\}) = \{(x_1, x_2, x_3) : f(x_1, x_2, x_3) = (1,0)\}$$

$$= \{(x_1, x_2, x_3) : \begin{pmatrix} 0 & 0 & 1 \\ -3 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\}$$

$$f^{-1}(\{(1,0)\}) = \{(x_1, x_2, x_3) : x_3 = 1, -3x_1 - x_2 + 4x_3 = 0\} (*)$$

identificando $f^{-1}(R)$ con $f^{-1}(\{(1,0)\})$.

Nótese que las ecuaciones de (*) no determinan un subespacio vectorial pues, aunque son lineales, no son homogéneas.