Группа	P3215	К работе допущен	
Студент	Барсуков М.А.	Работа выполнена	
Преподаватель	Смирнов А.В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.03

"Определение удельного заряда электрона"

1 Цель работы

Определить удельный заряд электрона методом магнетрона.

2 Задачи, решаемые при выполнении работы

- 1. Провести измерения зависимости анодного тока I_a вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
- 2. Построить графики зависимостей I_a от B и определить по ним величины критических полей для каждого значения анодного напряжения.
- 3. По значениям критического поля найти величину удельного заряда электрона и оценить ее погрешность.

3 Объект исследования

Анодный ток в соосном вакуумном диоде под действием магнитного поля соленойдной обмотки.

4 Метод экспериментального исследования

Измерение анодного тока при изменении тока на соленоиде при различном напряжении на аноде.

5 Рабочие формулы и исходные данные

Радиус анода: $r_a = 3$ мм

Диаметр катушки: d = 37 мм Длина катушки: l = 36 мм

Число витков катушки: N=1500

Удельный заряд электрона:

$$\frac{e}{m} = \frac{8U}{B_c^2 r_a^2} \tag{1}$$

где U - анодное напряжение, $r=r_a$ и $B=B_c$ - критическое значение магнитной индукции (только

в таком случае траектория электронов будет касательной к аноду):

Магнитное поле внутри соленоида конечной длины в СИ ($\mu_0 \cong 1, 256637 \cdot 10^{-6} \frac{H}{A^2}$):

$$B = \frac{\mu_0 I N}{\sqrt{d^2 + l^2}} \tag{2}$$

6 Измерительные приборы

Nº	Наименование	Тип прибора	Используемый	Погрешность
	Паименование		диапазон	прибора
1	Мультиметр в режиме амперметра	электронный	$0 \div 10 A$	0,005 A
2	Мультиметр в режиме амперметра	электронный	$0 \div 2 MA$	$0.05~{\rm M}\kappa A$
3	Вольтметр	электронный	$9 \div 13 B$	$0.05 \ B$

7 Схема установки

Рис. 1: Принципиальная электрическая схема экспериментальной установки

8 Результаты прямых измерений и их обработки

№ опыта	i	1		3	
	U_{ai}, B	9		13,5	
I_c, A	В, мТл	$I_{a1}, \ \mathcal{M}\kappa A$	$\Delta I_{a1}/\Delta B$	I_{a3} , κA	$\Delta I_{a3}/\Delta B$
0,00	0,00	222,0		359,2	
0,02	0,73	222,0	0,00	359,3	0,14
0,04	1,46	221,8	-0,27	359,4	0,14
0,06	2,19	222,1	0,41	359,5	0,14
0,08	2,92	222,0	-0,14	359,6	0,14
0,10	3,65	222,0	0,00	359,7	0,14
0,12	4,38	222,3	0,41	360,2	0,68
0,14	5,11	222,1	-0,27	361,7	2,05
0,16	5,84	221,1	-1,37	362,2	0,68
0,18	6,57	218,6	-3,42	361,1	-1,51
0,20	7,30	211,9	-9,18	356,4	-6,44
0,22	8,03	199,7	-16,71	348,7	-10,55
0,24	8,76	144,0	-76,30	304,4	-60,68
0,26	9,49	124,3	-26,99	222,8	-111,78
0,28	10,22	104,5	-27,12	198,7	-33,01
0,30	10,95	88,9	-21,37	166,8	-43,70
0,32	11,68	75,6	-18,22	153,0	-18,90
0,34	12,41	66,1	-13,01	140,5	-17,12
0,36	13,14	58,9	-9,86	125,6	-20,41
0,38	13,88	51,3	-10,27	116,1	-12,84
0,40	14,61	47,4	-5,34	104,6	-15,75
0,42	15,34	42,5	-6,71	96,9	-10,55
0,44	16,07	39,5	-4,11	87,6	-12,74
0,46	16,80	35,4	-5,62	80,8	-9,32
0,48	17,53	34,1	-1,78	74,2	-9,04
0,50	18,26	31,0	-4,25	69,0	-7,12

Таблица 1: Результаты прямых измерений токов на аноде и на соленоиде и дальнейших расчетов (в выделенных ячейках - значения максимального отношения изменения анодного тока к изменению магнитного поля и соответственные им значения тока на соленойде)

9 Расчет результатов косвенных измерений

По формуле (2) были рассчитаны значения В для каждого тока на соленойдной обмотке, данные внесены в Таблицу 1. Зависимости анодного тока от магнитного поля соленойда представлены на Puc.2

Для каждого из значений анодного напряжения было найдено отношение изменения тока на аноде к изменению магнитного поля. При максимальном значении $\left|\frac{\Delta I_a}{\Delta I_c}\right|$ будет наблюдаться скорейшее изменение I_a , а значит и B, связанного с ним. Таким образом найдены критические значения силы тока на соленойде $I_{\rm kp} = \frac{I_{c2} + I_{c1}}{2}$ - то есть взято среднее значение тока на отрезке, удовлетворяющему максимальному изменению ΔB . Для каждого из анодных напряжений и значений критических токов по формуле 2 было рассчитано критическое значение магнитной индукции:

$$U = 9 \text{ B}: I_{\text{KP}} = 0,23 \text{ A}, B_c = 8,4 \text{ MTA}$$

 $U = 13,5 \text{ B}: I_{\text{KP}} = 0,25 \text{ A}, B_c = 9,13 \text{ MTA}$

Удельный заряд электронов для каждого из значений анодного напряжении и критического значения силы тока рассчитывался по формуле 1:

$$U=9~{
m B}: {e\over m}=1,134\cdot 10^{11}~{
m Kn/kr}$$
 $U=13,5~{
m B}: {e\over m}=1,44\cdot 10^{11}~{
m Kn/kr}$

Среднее значение удельного заряда электрона (полученное с помощью метода весов):

$$\langle \frac{e}{m} \rangle = 1,25 \cdot 10^{11} \ \textit{Kn/ke}$$

10 Расчет погрешностей измерений

Примем значения погрешностей:

 $\Delta r = 0.05$ MM

 $\Delta d = 0,5$ мм

 $\Delta l = 0,5$ мм

 $\Delta I_{kp} = 0,02A$ - так как $B \sim I_c \Rightarrow$ графическая погрешность определения критического значения = 0,01 A; приборная погрешность = $\frac{\Delta I_{c1} + \Delta I_{c2}}{2} \approx 0,005A$

Оценим погрешность удельного заряда электрона:

$$\Delta \frac{e}{m} = \frac{e}{m} \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(2\frac{\Delta r}{r}\right)^2 + \left(2\frac{\Delta I_{\rm KP}}{I_{\rm KP}}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2 + \left(2\frac{\Delta d}{d}\right)^2}$$

Вычислим для каждого из значений анодного напряжения и критического тока:

$$\left(\Delta \frac{e}{m}\right)_1 = 1,134 \cdot 10^{11} \sqrt{\left(\frac{0,05}{9}\right)^2 + \left(\frac{0,05}{3}\right)^2 + \left(2\frac{0,015}{0,23}\right)^2 + \left(2\frac{0,5}{37}\right)^2 + \left(2\frac{0,5}{36}\right)^2} \approx 0,15 \cdot 10^{11} \text{ KeV}$$

$$\left(\Delta \frac{e}{m}\right)_3 \approx 0,19 \cdot 10^{11} \text{ KeV}$$

Погрешность среднего значения (вычесленная по методу весов):

$$\Delta \langle \frac{e}{m} \rangle pprox 0, 12 \cdot 10^{11} \ {\it Kn/ke}$$

11 Графики

Рис.2

12 Окончательные результаты

Среднее значение удельного заряда электрона:

$$rac{e}{m} = (1, 25 \pm 0, 12) \cdot 10^{11} \ \mathit{Kn/ke}$$

Табличное значение удельного заряда электрона:

$$\frac{e}{m}\cong 1,76\cdot 10^{11}\ \mathit{Kn/\kappa}$$
г

13 Выводы и анализ результатов работы

В ходе работы был определен удельный заряд электрона методом магнетрона. При сравнении экспериментального значения с табличным заметно, что табличное значение не попадает в доверительный интервал. Такое расхождение возможно обусловлено упомянутым в методических указаниях влиянием облака заряда, накапливающегося в диоде. Заметно, что с увеличением напряжения на аноде растет и удельный заряд электрона, приближаясь к табличному значению. Следовательно, при больших значениях анодного напряжения влияние накапливающихся в диоде облака электронов уменьшается.