```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_1samp, ttest_ind, ttest_rel
from scipy.stats import f_oneway, shapiro, levene, probplot
from statsmodels.graphics.gofplots import qqplot
from scipy.stats import skew, kurtosis
from scipy.stats import chi2_contingency
df = pd.read_csv("/content/yulu.csv")
df.head()
               datetime season holiday workingday weather temp atemp humidity windspeed casual registered count
     0 2011-01-01 00:00:00
                                                       1 9.84 14.395
                                                                                                      13 16
     1 2011-01-01 01:00:00
                                                       1 9.02 13.635
                                                                                                      32 40
    2 2011-01-01 02:00:00
                                                                                                      27 32
                                                       1 9.02 13.635
    3 2011-01-01 03:00:00
                                                                           75
                                                                                                       10 13
                                                       1 9.84 14.395
                                                                                     0.0
    4 2011-01-01 04:00:00
                                                      1 9.84 14.395
```

Displaying the data type of each column in the "customers" table

5/18/24, 3:48 PM

```
df.info()
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10886 entries, 0 to 10885
    Data columns (total 12 columns):
    # Column Non-Null Count Dtype
    --- -----
    0 datetime 10886 non-null object
    1 season 10886 non-null int64
    2 holiday 10886 non-null int64
     3 workingday 10886 non-null int64
     4 weather 10886 non-null int64
                 10886 non-null float64
     6 atemp 10886 non-null float64
    7 humidity 10886 non-null int64
     8 windspeed 10886 non-null float64
     9 casual 10886 non-null int64
     10 registered 10886 non-null int64
     11 count 10886 non-null int64
    dtypes: float64(3), int64(8), object(1)
    memory usage: 1020.7+ KB
```

Finding the number of rows and columns in the dataset

df.shape

→ (10886, 12)

Generating descriptive statistics of numerical data within a DataFrame.

df.describe()

→ ▼	season		holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	
	count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	
	mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395	36.021955	155.552177	191.574132	
	std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245033	8.164537	49.960477	151.039033	181.144454	
	min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000	0.000000	0.000000	1.000000	
	25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500	4.000000	36.000000	42.000000	
	50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000	17.000000	118.000000	145.000000	
	75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900	49.000000	222.000000	284.000000	
	max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000	56.996900	367.000000	886.000000	977.000000	

To check for missing values and find the number of missing values in each column of a DataFrame, I used the isnull() function followed by the sum() function.

null_values= df.isnull().sum() null_values **→** datetime season

holiday workingday weather temp atemp humidity windspeed casual registered 0 count dtype: int64

To ensure data integrity and reliability, it's essential to identify and eliminate duplicate entries within a DataFrame.

duplicate = df[df.duplicated()] remove_duplicates = df.drop_duplicates()

remove_duplicates

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3	10	13
4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0	1	1
10881	2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88
9364 rows × 12 columns												

Understanding the distribution of data across numerical and categorical variables is fundamental in exploratory data analysis. It provides insights into the central tendency, spread, and frequency of different values within the dataset. Below are methods to analyze the distribution of

numerical and categorical variables:

Selecting numerical columns numerical_columns = ['temp', 'atemp', 'humidity', 'windspeed', 'casual', 'registered', 'count']

Plotting histograms and distplots for each numerical column for col in numerical_columns: plt.figure(figsize=(10, 6))

Histogram

plt.subplot(1, 2, 1) plt.hist(df[col], bins=20, color='skyblue', edgecolor='black')

plt.title('Histogram of ' + col) plt.xlabel(col) plt.ylabel('Frequency')

Distribution plot plt.subplot(1, 2, 2)

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2}) plt.title('Distribution of ' + col)

plt.xlabel(col) plt.ylabel('Density')

plt.tight_layout() plt.show()

https://colab.research.google.com/drive/17YIIOej-sA4K5g7LWM0XtroMDAESLoWO?usp=sharing#printMode=true

<ipython-input-10-943016339390>:17: UserWarning: `distplot` is a deprecated function and will be removed in seaborn v0.14.0. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

<ipython-input-10-943016339390>:17: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histograms). For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2})

<ipython-input-10-943016339390>:17: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2})

<ipython-input-10-943016339390>:17: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2})

<ipython-input-10-943016339390>:17: UserWarning: `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2})

<ipython-input-10-943016339390>:17: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

https://colab.research.google.com/drive/17YIIOej-sA4K5g7LWM0XtroMDAESLoWO?usp=sharing#printMode=truewards.

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2}) Distribution of registered Histogram of registered 0.010 -3000 -2500 -0.008 -2000 -0.006

<ipython-input-10-943016339390>:17: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[col], hist=True, kde=True, color='skyblue', hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2})

Selecting categorical columns categorical_columns = ['season', 'holiday', 'workingday', 'weather']

Plotting countplots and pie charts for each categorical column

for col in categorical_columns: plt.figure(figsize=(10, 6))

Countplot

plt.subplot(1, 2, 1)sns.countplot(x=col, data=df, palette='Set2')

plt.title('Countplot of ' + col) plt.xlabel(col)

plt.ylabel('Count')

Pie chart

plt.subplot(1, 2, 2) df[col].value_counts().plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=sns.color_palette('Set2', len(df[col].unique()))) plt.title('Pie Chart of ' + col)

plt.ylabel('')

plt.tight_layout() plt.show()

<ipython-input-11-9eff04ab276b>:10: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

holiday <ipython-input-11-9eff04ab276b>:10: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

Outliers, or extreme values, can significantly impact the analysis and interpretation of data. It's essential to identify and address outliers appropriately to ensure the accuracy and reliability of the analysis results. To check for outliers and to deal with them I used boxplot:

Defining a function to detect and deal with outliers using IQR method def deal_with_outliers(df, col): Q1 = df[col].quantile(0.25)Q3 = df[col].quantile(0.75)IQR = Q3 - Q1# Defining upper and lower bounds for outlier detection $lower_bound = Q1 - 1.5 * IQR$ upper_bound = Q3 + 1.5 * IQR# Removing outliers df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]</pre> # Iterate over numerical columns and deal with outliers for col in numerical_columns: df = deal_with_outliers(df, col) # After removing outliers, re-plotting the boxplots to confirm plt.figure(figsize=(12, 8)) df[numerical_columns].boxplot() plt.title('Boxplot of Numerical Variables (After Dealing with Outliers)') plt.xticks(rotation=45) plt.show() **Boxplot of Numerical Variables** 1000 -800 -600 -400 -Boxplot of Numerical Variables (After Dealing with Outliers) 500 -400 -300

Untitled25.ipynb - Colab

Understanding the relationships between dependent and independent variables is crucial in statistical analysis and modeling. It helps identify significant predictors and ensures the accuracy of predictive models. To establish these relationships I am plotting a Correlation Heatmap.A correlation heatmap provides a visual representation of the correlation coefficients between pairs of variables. It helps identify the strength and direction of the relationships between variables.

Identify non-numeric columns non_numeric_columns = df.select_dtypes(exclude=['float64', 'int64']).columns # Drop non-numeric columns from the dataset data_numeric = df.drop(columns=non_numeric_columns)

Calculate the correlation matrix correlation_matrix = data_numeric.corr()

5/18/24, 3:48 PM

Selecting numerical columns to check for outliers

Creating boxplots for each numerical column

plt.title('Boxplot of Numerical Variables')

plt.figure(figsize=(12, 8)) df[numerical_columns].boxplot()

plt.xticks(rotation=45)

plt.show()

numerical_columns = ['temp', 'atemp', 'humidity', 'windspeed', 'casual', 'registered', 'count']

Plot the correlation heatmap plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='viridis', fmt=".2f", linewidths=0.5) plt.title('Correlation Heatmap') plt.show()

To determine if there is a significant difference in the number of bike rides between weekdays and weekends, I conducted a two-sample independent t-test. Below are the steps involved in the analysis:

#HO: There is no significant diff between no of bike rides on weekdays and weekends #HA: There is a significant diff between no of bike rides on weekdays and weekends

Separate the data into weekdays and weekends

weekdays_data = df[df['workingday'] == 1]['count'] weekends_data = df[df['workingday'] == 0]['count']

Perform 2-Sample Independent T-test t_statistic, p_value = ttest_ind(weekdays_data, weekends_data)

Print the test statistics and p-value print("T-statistic:", t_statistic)

print("P-value:", p_value)

Compare p-value with significance level (alpha)

if p_value <= alpha:</pre>

print("Reject the Null Hypothesis: There is a significant difference between the number of bike rides on weekdays and weekends.") print("Fail to reject the Null Hypothesis: There is no significant difference between the number of bike rides on weekdays and weekends.")

T-statistic: 1.2096277376026694

P-value: 0.22644804226361348

Fail to reject the Null Hypothesis: There is no significant difference between the number of bike rides on weekdays and weekends.

Based on the analysis of the 2-Sample Independent T-test:

Inference: The calculated p-value is compared to the significance level (alpha) of 0.05. If the p-value is less than or equal to alpha (0.05), we reject the null hypothesis, indicating a significant difference between the number of bike rides on weekdays and weekends. If the p-value is greater than alpha (0.05), we do not reject the null hypothesis, indicating no significant difference between the number of bike rides on weekdays and weekends.

Conclusions: If the p-value is less than or equal to 0.05, we can conclude that there is a statistically significant difference between the number of bike rides on weekdays and weekends. If the p-value is greater than 0.05, we do not have sufficient evidence to conclude that there is a significant difference between the number of bike rides on weekdays and weekends.

Recommendations: If the null hypothesis is rejected (p-value <= 0.05), it suggests that there is a significant difference in the number of bike rides between weekdays and weekends. In such a case, further investigation can be conducted to understand the factors contributing to the difference. For example, it could be due to differences in commuting patterns, leisure activities, or marketing strategies on weekdays versus weekends. Based on the findings, appropriate strategies can be implemented to optimize bike rental services, such as adjusting bike availability, pricing, or promotions tailored to specific days of the week. If the null hypothesis is not rejected (p-value > 0.05), it suggests that there is no significant difference in the number of bike rides between weekdays and weekends. In this case, efforts can be focused on maintaining consistent service levels across all days of the week without specific emphasis on weekdays or weekends.

To investigate whether the demand for bicycles on rent varies across different weather conditions, we'll conduct a **one-way ANOVA test**. Here's a breakdown of the analysis process:

https://colab.research.google.com/drive/17YIIOej-sA4K5g7LWM0XtroMDAESLoWO?usp=sharing#printMode=true

```
df.weather.value_counts()
⇒ weather
     1 7192
    2 2834
    3 859
    4 1
     Name: count, dtype: int64
weather_1 = df[df['weather'] == 1]['count']
weather_2 = df[df['weather'] == 2]['count']
weather_3 = df[df['weather'] == 3]['count']
weather_4 = df[df['weather'] == 4]['count']
# Perform one-way ANOVA test
f_statistic, p_value = f_oneway(weather_1, weather_2, weather_3, weather_4)
# Print the test statistics and p-value
print("F-statistic:", f_statistic)
print("P-value:", p_value)
# Compare p-value with significance level (alpha)
alpha = 0.05
if p_value <= alpha:</pre>
    print("Reject the Null Hypothesis: There is a significant difference in the demand for bicycles on rent across different weather conditions.")
   print("Do not reject the Null Hypothesis: There is no significant difference in the demand for bicycles on rent across different weather conditions.")
F-statistic: 65.53024112793271
     P-value: 5.482069475935669e-42
     Reject the Null Hypothesis: There is a significant difference in the demand for bicycles on rent across different weather conditions.
Checking Assumptions of the Test:
# Select the 'count' column (demand for bicycles on rent) for each weather condition
weather_1 = df[df['weather'] == 1]['count']
weather_2 = df[df['weather'] == 2]['count']
weather_3 = df[df['weather'] == 3]['count']
weather_4 = df[df['weather'] == 4]['count']
# Plot Q-Q plots for each weather condition
plt.figure(figsize=(12, 6))
qqplot(weather_1, line='s')
plt.title('Q-Q Plot of Demand for Bicycles on Rent (Weather 1)')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.show()
plt.figure(figsize=(12, 6))
qqplot(weather_2, line='s')
plt.title('Q-Q Plot of Demand for Bicycles on Rent (Weather 2)')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.show()
plt.figure(figsize=(12, 6))
qqplot(weather_3, line='s')
plt.title('Q-Q Plot of Demand for Bicycles on Rent (Weather 3)')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.show()
plt.figure(figsize=(12, 6))
qqplot(weather_4, line='s')
plt.title('Q-Q Plot of Demand for Bicycles on Rent (Weather 4)')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.show()
Q-Q Plot of Demand for Bicycles on Rent (Weather 1)
         1000 -
          800 -
          600 -
          400 -
          200 -
         -200 ·
         -400 ·
                                    Theoretical Quantiles
     <Figure size 1200x600 with 0 Axes>
                 Q-Q Plot of Demand for Bicycles on Rent (Weather 2)
          800 -
          600 -
          400 -
          200 -
         -200 ·
         -400 ·
                                  -1 0
                          -2
                                    Theoretical Quantiles
     <Figure size 1200x600 with 0 Axes>
                 Q-Q Plot of Demand for Bicycles on Rent (Weather 3)
          800 -
          600 -
          400 -
          200 -
         -200 ·
                                    Theoretical Quantiles
     <Figure size 1200x600 with 0 Axes>
                  Q-Q Plot of Demand for Bicycles on Rent (Weather 4)
         172.5 -
         170.0
        167.5
         165.0
        162.5
         160.0
         157.5
         155.0 -
                                          0.00
                                                                  0.04
                                    Theoretical Quantiles
```

Compute skewness and kurtosis for each weather condition skewness_1 = skew(weather_1) kurtosis_1 = kurtosis(weather_1) skewness_2 = skew(weather_2) kurtosis_2 = kurtosis(weather_2) skewness_3 = skew(weather_3) kurtosis_3 = kurtosis(weather_3) skewness_4 = skew(weather_4) kurtosis_4 = kurtosis(weather_4) print("Weather 1 - Skewness:", skewness_1, " Kurtosis:", kurtosis_1) print("Weather 2 - Skewness:", skewness_2, " Kurtosis:", kurtosis_2) print("Weather 3 - Skewness:", skewness_3, " Kurtosis:", kurtosis_3) print("Weather 4 - Skewness:", skewness_4, " Kurtosis:", kurtosis_4) → Weather 1 - Skewness: 1.1396195185041555 Kurtosis: 0.9632151489948488 Weather 2 - Skewness: 1.293759189703101 Kurtosis: 1.5835130178554868 Weather 3 - Skewness: 2.1833160390123187 Kurtosis: 5.961191782478394 Weather 4 - Skewness: nan Kurtosis: nan statistic, p_value = levene(weather_1, weather_2, weather_3, weather_4)

Print the results

print("Levene's Test for Equality of Variance:") print("Test Statistic:", statistic) print("p-value:", p_value)

→ Levene's Test for Equality of Variance: Test Statistic: 54.85106195954556 p-value: 3.504937946833238e-35

In this code:

- We perform Levene's test to assess whether the variances of the demand for bicycles on rent are equal across different weather conditions.
- The test statistic and p-value are provided.
- If the p-value is greater than the chosen significance level, we fail to reject the null hypothesis, indicating that the variances are equal across groups.
- If the p-value is less than or equal to the significance level, we reject the null hypothesis, suggesting that the variances are not equal across groups.
- Based on the analysis, if we find evidence to reject the null hypothesis, it implies that weather conditions significantly influence the demand for

Weather-based Pricing: Adjust rental rates based on weather conditions, with potentially higher rates during favorable weather to capitalize on increased demand.

Inventory Management: Maintain an appropriate inventory of bicycles, ensuring an adequate supply during periods of high demand influenced

by weather conditions. Marketing and Promotions: Develop weather-specific marketing campaigns and promotions to attract customers. For instance, offering

discounts on rainy days or promoting leisurely rides during sunny weather.

https://colab.research.google.com/drive/17YIIOej-sA4K5g7LWM0XtroMDAESLoWO?usp=sharing#printMode=true

bicycles on rent. This information can be leveraged to implement targeted strategies such as:

Untitled25.ipynb - Colab

Service Enhancements: Introduce weather-related services or accessories, such as rain gear or sun protection, to cater to customers' needs

Analyzing Bicycle Rental Demand Across Seasons:

Formulating Null Hypothesis (H0) and Alternate Hypothesis (H1)

H0: The demand for bicycles on rent is the same across different seasons
H1: The demand for bicycles on rent varies across different seasons

Histogram
sns.histplot(df['count'], kde=True)
plt.title('Histogram of Bicycle Rental Demand')
plt.xlabel('Demand')

plt.ylabel('Frequency')

plt.show()


```
# Q-Q Plot
plt.figure(figsize=(8, 6))
probplot(df['count'], dist="norm", plot=plt)
plt.title('Q-Q Plot of Bicycle Rental Demand')
plt.show()
```

Shapiro-Wilk's test for normality
stat, p = shapiro(df['count'])
print('Shapiro-Wilk test p-value:', p)
if p < 0.05:</pre>

if p < 0.05:
 print('The data does not follow a normal distribution (reject H0).')</pre>

print('The data follows a normal distribution (fail to reject H0).')

The data does not follow a normal distribution (reject H0).

/usr/local/lib/python3.10/dist-packages/scipy/stats/_morestats.py:1882: UserWarning: p-value may not be accurate for N > 5000.

warnings.warn("p-value may not be accurate for N > 5000.")

ii. Equality Variance
Levene's test

if p < 0.05:
 print('The variances are not equal (reject H0).')</pre>

else:
print('The variances are equal (fail to reject H0).')

d. Set a significance level and Calculate the test Statistics / p-value.

d. Set a significance level and Calculate the test Statistics / p-val alpha = 0.05

df['count'][df['season'] == 2],
df['count'][df['season'] == 3],
df['count'][df['season'] == 4])

e. Decide whether to accept or reject the Null Hypothesis.

print('Reject the null hypothesis. There is evidence that the demand for bicycles on rent varies across different seasons.')
else:

print('Fail to reject the null hypothesis. There is no evidence that the demand for bicycles on rent varies across different seasons.')

Levene test p-value: 1.4156739715299946e-85
The variances are not equal (reject H0).

ANOVA test p-value: 9.583582124778882e-94
Reject the null hypothesis. There is evidence that the demand for bicycles on rent varies across different seasons.

Recommendations based on the analysis of bicycle rental demand across seasons:

Seasonal Marketing Strategies: Develop targeted marketing campaigns tailored to each season to capitalize on the varying demand patterns. For example, focus on promoting outdoor activities during warmer seasons and emphasize convenience and accessibility during colder seasons.

Weather-based Adjustments: Monitor weather forecasts and adjust operations accordingly. Prepare for increased demand during favorable weather conditions and implement contingency plans for adverse weather to minimize disruptions to service.

Collaborations and Partnerships: Explore collaborations with local businesses or tourism agencies to promote bicycle rentals as part of seasonal packages or experiences. Partnering with hotels, resorts, or event organizers can help reach new customers and increase rental demand.

Customer Engagement: Foster customer loyalty and engagement through personalized offers, rewards programs, and communication

channels. Tailor promotions and discounts to align with seasonal preferences and encourage repeat business.

on the p-value obtained from the test, a decision is made whether to accept or reject the null hypothesis.

Utilised the chi-square test for independence to determine if there is a significant association between weather conditions and seasons. Based

Creating contingency table against 'Weather' & 'Season' columns
contingency_table = pd.crosstab(df['weather'], df['season'])

Significance level
alpha = 0.05

Calculating the test statistics and p-value

https://colab.research.google.com/drive/17YIIOej-sA4K5g7LWM0XtroMDAESLoWO?usp=sharing#printMode=true