Didaktika matematiky

Zadání a řešení písemné práce – výroky a množiny

Kateřina Novotná, Adam Papula

27. října 2023

Čas: 15-20 minut

Cílový ročník: 1. ročník SŠ

Cíle testu:

- Žák užívá správně logické spojky a kvantifikátory.
- Žák správně neguje (kvantifikované) výroky.
- Žák čte a provádí zápisy v matematické symbolice a aplikuje základní množinové operace.

Bloomova taxonomie:

- Úloha č. 1
 - Znalost faktů a procedurální znalost (I, III)
 - Zapamatování si, rozpoznávat (1a)
- Úloha č. 2
 - Procedurální znalost (III)
 - Aplikovat, provádět (3a)
- Úloha č. 3
 - Procedurální znalost (III)
 - Aplikovat, provádět (3a)
- Úloha č. 4
 - Procedurální znalost (III)
 - Rozumět, interpretovat a aplikovat, provádět (2a + 3a)
- Úloha č. 5
 - Procedurální znalost (III)
 - Aplikovat, provádět (3a)
- Úloha č. 6
 - Procedurální znalost (III)
 - Rozumět, klasifikovat a aplikovat, implementovat (2c + 3b)
- Úloha č. 7
 - Procedurální znalost (III)
 - Aplikovat, provádět (3a)

Písemná práce: výroky a množiny (varianta A)

Jméno:		Třída:		DATUM:	
	Body 15 14 – Známka 1 2		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
1. Určete, zda se jedná o v	ýroky:				
(a) $(\frac{1}{2} \text{ b.})$ ANO NF	· · ·	vočíslo			
(b) $(\frac{1}{2} \text{ b.})$ ANO NI	<u> </u>		ík		
(c) $(\frac{1}{2} \text{ b.})$ ANO NI	_	_	iix.		
2. Určete negace kvantifiko	ovaných výroků:				
(a) (1 b.) Alespoň jede	en cestující nevyst	oupil.			
					• • •
(b) (1 b.) Právě jedna	moje učebnice je	těžká.			
3. Negujte následující výrc	oky:				
(a) (2 b.) Každé přiroz	zené číslo, které je	dělitelné dv	vaceti, je děl	itelné čtyřmi.	
(b) (2 b.) Do kina půje	du s Terkou nebo	s Eliškou.			

4. (1 1/2	$\binom{7}{2}$ b.) Z na	ásledujících (dvou <i>symb</i> e	olicky zaps	saných kvar	ntifikovaných	<i>výroků</i> si v	yberte ale-
spo	ň jeden	(druhý je bo	nusový), k	terý vyjád	lříte slovy.	Dále rozhodn	ěte o jeho	pravdivosti:

(a)
$$\forall x \in \mathbb{R} : \sqrt{x^2} = |x|$$

(b)
$$\exists x \in \mathbb{R} \forall y \in \mathbb{R} : x \cdot y = y$$

5. (1 b.) Vypište všechny prvky následující množiny:

$$M = \{ \xi \in \mathbb{Z} : -27 < \xi^3 \le 8 \}$$

6. (3 b.) Mějme zadány intervaly
$$A = \langle 0, 18 \rangle$$
, $B = (13, 28)$ a $C = \langle 15, 17 \rangle$. Určete $((A \cap B) \setminus C)'$

7. (2 b.) Ve třídě je 29 žáků, 19 z nich umí lyžovat, 12 jezdí na snowboardu, 5 jich nelyžuje a ani nejezdí na snowboardu. Znázorněte pomocí Vennova diagramu a určete, kolik žáků umí lyžovat i jezdit na snowboardu.

Písemná práce: výroky a množiny (varianta B)

Jméno:		TŘÍDA:	Datum:				
	Body 15 14 – Známka 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
1. Určete, zda se jedná o	výroky:						
(a) $(\frac{1}{2} \text{ b.})$ ANO N	$\exists ! x \in \mathbb{R}, \forall y \in$	$\mathbb{N}: \frac{y}{x} = 0$					
(b) (½ b.) ANO N	E Všechna prvo	čísla jsou lichá.					
(c) (½ b.) ANO N	E Berlín patří n	nezi racionální čísla.					
2. Určete negace kvantifik	zovaných výroků:						
(a) (1 b.) Všichni mo	ji kamarádi mají hı	nědé oči					
(b) (1 b.) Alespoň 4 d	lny v týdnu bude p	oršet.					
3. Negujte následující výr	oky:						
(a) (2 b.) Existuje ale v jediném bodě.	(2 b.) Existuje alespoň jeden trojúhelník, ve kterém se všechny jeho výšky neprotínají v jediném bodě.						
(b) (2 b.) Sní polévku	ı právě tehdy, když	v ní nebude zelenina.					

4.	$(1 \frac{1}{2} b.)$ Z následujících dvou	symbolicky zapsac	ných kvantifikovanýc	h výroků si vyberte ale-
	spoň jeden (druhý je bonusc	vý), který vyjádří	te slovy. Dále rozhod	lněte o jeho pravdivosti:

(a)
$$\forall x \in \mathbb{R} : x^2 > 0$$

(b)
$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R} : a = b \Leftrightarrow a^2 = b^2$$

5. (1 b.) Vypište všechny prvky následující množiny:

$$S = \{ \chi \in \mathbb{N} : -18 < \chi^3 \le 64 | \chi \text{ je sudé} \}$$

6. (3 b.) Mějme zadány intervaly
$$A=(-5,12),\,B=\langle 4,11\rangle$$
 a $C=\langle 3,5\rangle.$ Určete $((A\setminus B)\cup C)'$

7. (2 b.) Ve třídě hraje 21 žáků fotbal nebo košíkovou, 4 žáci z této třídy nehrají ani fotbal, ani košíkovou, 12 žáků hraje košíkovou, 14 žáků hraje fotbal. Znázorněte pomocí Vennova diagramu a určete, kolik žáků hraje pouze fotbal.

Písemná práce: výroky a množiny (varianta A) – řešení

- 1. Určete, zda se jedná o výroky:
 - (a) $(\frac{1}{2}$ b.) ANO NE Číslo 12 je prvočíslo.
 - (b) $(\frac{1}{2}$ b.) ANO $\overline{\text{NE}}$ Přines mi prosím kapesník.
 - (c) $(\frac{1}{2} \text{ b.})$ ANO NE $\forall x \in \mathbb{Z} : x + 3 > 0$
- 2. Určete negace kvantifikovaných výroků:
 - (a) (1 b.) Alespoň jeden cestující nevystoupil.

Řešení: Všichni cestující vystoupili.

(b) (1 b.) Právě jedna moje učebnice je těžká.

Řešení: Žádná moje učebnice nebo alespoň dvě moje učebnice jsou těžké.

- 3. Negujte následující výroky:
 - (a) (2 b.) Každé přirozené číslo, které je dělitelné dvaceti, je dělitelné čtyřmi.

Řešení: Existuje alespoň jedno přirozené číslo, které je dělitelné dvaceti a není dělitelné čtyřmi.

(b) (2 b.) Do kina půjdu s Terkou nebo s Eliškou.

Řešení: Do kina nepůjdu s Terkou a nepůjdu ani s Eliškou.

- 4. (1 $\frac{1}{2}$ b.) Z následujících dvou *symbolicky zapsaných kvantifikovaných výroků* si vyberte **alespoň jeden** (druhý je bonusový), který vyjádříte slovy. Dále rozhodněte o jeho pravdivosti:
 - (a) $\forall x \in \mathbb{R} : \sqrt{x^2} = |x|$
 - (b) $\exists x \in \mathbb{R} \forall y \in \mathbb{R} : x \cdot y = y$

Řešení:

- (a) Výrok je pravdivý. Druhá odmocnina z druhé mocniny libovolného reálného čísla je rovna jeho absolutní hodnotě.
- (b) Výrok je pravdivý. Existuje takové reálné číslo x, že pro všechna reálná čísla y platí $x \cdot y = y$
- 5. (1 b.) Vypište všechny prvky následující množiny:

$$M = \{ \xi \in \mathbb{Z} : -27 < \xi^3 \le 8 \}$$

Řešení:

$$M = \{-2, -1, 0, 1, 2\}$$

6. (3 b.) Mějme zadány intervaly $A=\langle 0,18\rangle,\ B=(13,28)$ a $C=\langle 15,17\rangle.$ Určete $((A\cap B)\setminus C)'$

Řešení:

$$A \cap B = (13, 18)$$

$$(A \cap B) \setminus C = (13, 15) \cup (17, 18)$$

$$((A \cap B) \setminus C)' = (-\infty, 13) \cup (15, 17) \cup (18, \infty)$$

7. (2 b.) Ve třídě je 29 žáků, 19 z nich umí lyžovat, 12 jezdí na snowboardu, 5 jich nelyžuje a ani nejezdí na snowboardu. Znázorněte pomocí Vennova diagramu a určete, kolik žáků umí lyžovat i jezdit na snowboardu.

Řešení: Označme si množinu všech žáků třídy jako T, |T| = 29. Žáky, kteří umí lyžovat označíme L, |L| = 19. Snowboardisty označíme S, |S| = 12. Žáků, kteří neumí ani lyžovat ano na snowboardu je celkem 5. Tedy

$$|L \cup S| = 29 - 5 = 24$$

žáků umí buď lyžovat, nebo na snowboardu nebo obojí. Nyní, pokud sečteme žáky, co umí lyžovat a na snowboardu dostaneme

$$19 + 12 = 31$$
,

což odpovídá případu, kdy neexistuje ani jeden žák co umí na lyžích a snowboardu zároveň. Jelikož ale platí 31>24, dostaneme informaci, že celkem

$$31 - 24 = \underline{7}$$

žáků umí na lyžích a snowboardu zároveň.

Písemná práce: výroky a množiny (varianta B) – řešení

- 1. Určete, zda se jedná o výroky:
 - (a) $(\frac{1}{2} \text{ b.})$ ANO NE $\exists ! x \in \mathbb{R}, \forall y \in \mathbb{N} : \frac{y}{x} = 0$
 - (b) (½ b.) ANO NE Všechna prvočísla jsou lichá.
 - (c) (½ b.) ANO NE Berlín patří mezi racionální čísla.
- 2. Určete negace kvantifikovaných výroků:
 - (a) (1 b.) Všichni moji kamarádi mají hnědé oči

Řešení: Alespoň jeden můj kamarád nemá hnědé oči.

(b) (1 b.) Alespoň 4 dny v týdnu bude pršet.

Řešení: Nejvýše 3 dny v týdnu bude pršet.

- 3. Negujte následující výroky:
 - (a) (2 b.) Existuje alespoň jeden trojúhelník, ve kterém se všechny jeho výšky neprotínají v jediném bodě.

Řešení: V každém trojúhelníku se všechny jeho výšky protínají v jediném bodě.

(b) (2 b.) Sní polévku právě tehdy, když v ní nebude zelenina.

Řešení: Sní polévku a bude v ní zelenina nebo v polévce zelenina nebude a polévku nesní.

- 4. (1 ½ b.) Z následujících dvou *symbolicky zapsaných kvantifikovaných výroků* si vyberte **alespoň jeden** (druhý je bonusový), který vyjádříte slovy. Dále rozhodněte o jeho pravdivosti:
 - (a) $\forall x \in \mathbb{R} : x^2 > 0$
 - (b) $\forall a \in \mathbb{R}, \forall b \in \mathbb{R} : a = b \Leftrightarrow a^2 = b^2$

Řešení:

- (a) Výrok není pravdivý.Druhá mocnina každého reálného čísla je větší než nula.
- (b) Výrok není pravdivý. Pro každá dvě reálná čísla platí: čísla se sobě rovnají právě tehdy, když se rovnají jejich druhé mocniny.
- 5. (1 b.) Vypište všechny prvky následující množiny:

$$S = \{ \chi \in \mathbb{N} : -18 < \chi^3 \le 64 | \chi \text{ je sudé} \}$$

Řešení:

$$S = \{2, 4\}$$

6. (3 b.) Mějme zadány intervaly $A=(-5,12),\,B=\langle 4,11\rangle$ a $C=\langle 3,5\rangle$. Určete $((A\setminus B)\cup C)'$

Řešení:

$$A \setminus B = (-5, 4) \cup \langle 11, 12 \rangle$$
$$(A \setminus B) \cup C = (-5, 5) \cup \langle 11, 12 \rangle$$
$$((A \cap B) \setminus C)' = (-\infty, -5) \cup (-5, 11) \cup \langle 12, \infty \rangle$$

7. (2 b.) Ve třídě hraje 21 žáků fotbal nebo košíkovou, 4 žáci z této třídy nehrají ani fotbal, ani košíkovou, 12 žáků hraje košíkovou, 14 žáků hraje fotbal. Znázorněte pomocí Vennova diagramu a určete, kolik žáků hraje pouze fotbal.

 $\bf \check{R}e\bf\check{s}ení:$ Označme si množinu všech žáků třídy jako T.Žáky, kteří hrají fotbal označíme Fa žáky hrající košíkovou K. Víme, že

$$|F \cap K| = 21.$$

Dále ze zadání víme, že

$$|(F \cap K)'| = 4.$$

Pro množinu K platí |K|=12 a pro množinu F platí |F|=14. Máme tedy

$$12 + 14 = 26$$
,

přičemž sportuje pouze 21 žáků, tedy

$$26 - 21 = 5$$

žáků hraje obě hry. Nyní nám stačí dopočítat počet žáků hrající pouze fotbal,

$$14 - 5 = \underline{9}$$

