Non-parametric models KNN and Decision Trees

Tech Lead Data Science

Master en Data Science 2022-2023

ÍNDICE

Parametric vs non-parametric models

2 KNN

3 Decision Trees

PARAMETRIC VS NON-PARAMETRIC

PARAMETRIC VS NON-PARAMETRIC

PARAMETRIC

The amount of parameters does **not depend on the size** of the sample.

NON-PARAMETRIC

The amount of parameters is not fixed and **might depend on the size** of the sample.

PARAMETRIC VS NON-PARAMETRIC

PARAMETRIC

The amount of parameters does not depend on the size of the sample.

Linear regression Logistic regression

NON-PARAMETRIC

The amount of parameters is not fixed and **might depend on the size** of the sample.

PARAMETRIC VS NON-PARAMETRIC

PARAMETRIC

The amount of parameters does not depend on the size of the sample.

Linear regression Logistic regression

NON-PARAMETRIC

The amount of parameters is not fixed and **might depend on the size** of the sample.

KNN (K-Nearest Neighbours)
Decision Trees

K-NEAREST NEIGHBOURS

- K-Nearest Neighbours (KNN) are **non-parametric models** that can be used for both **classification and regression** problems.
- The main idea of this models is to use the k nearest data to predict new data:
 - For classification, they will search for the class with highest frequency
 - o For regression, they will take the mean of the k nearest data
- k will be set by the user.

HOW DOES IT WORK?

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

Con k = 1

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

Con k = 3

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

Con k = 10

HOW DOES IT WORK?

KNN follows this structure to predict Y from X:

- 1. Calculates the distance from every data to Y.
- 2. Choose the nearest k values to Y.
- 3. Labeled Y using a criteria:
 - Mode for classification
 - Mean for regression

K'S IMPACT

K'S IMPACT

PREDICTIVE STRATEGIES

CLASSIFICATION

REGRESSION

PREDICTIVE STRATEGIES

CLASSIFICATION

- To use the modal class:uniform weights
- To weight the nearest classes considering the distances:
 distance weights

$$rac{1}{d(x,\!x_i)}$$

REGRESSION

PREDICTIVE STRATEGIES

CLASSIFICATION

- To use the modal class:uniform weights
- To weight the nearest classes considering the distances:

distance weights

$$rac{1}{d(x,x_i)}$$

REGRESSION

uniform weights

$$\hat{y} = rac{1}{k} \sum_{i \in Vec(x)} y_i$$

distance weights

$$\hat{y} = rac{1}{k} \sum_{i \in Vec(x)} rac{y_i}{d(x,x_i)}$$

DISTANCES

The most commonly used distance is the **Euclidean distance**:

PROS

CONS

- It has almost no assumptions about the data.
 - It's easy to update once it is deployed to production.

PROS

- It has almost no assumptions about the data.
 - It's easy to update once it is deployed to production.

CONS

- Very sensible to outliers.
- We need to handle nas.
- It has a high computational cost:
 - Space: We need to store all the training data.
 - Time: It needs to calculate all the distances between the different data points.

INTRODUCTION

• Decision trees are **non-parametric models** that can be used for both **classification and regression** problems.

They are highly interpretable and flexible.

- Decision trees are **non-parametric models** that can be used for both **classification and regression** problems.
- They are highly interpretable and flexible.

$$(x_1 \leq t_0)$$

GOOD OR BAD SPLIT?

- In classification problems, we are going to measure the **impurity** to decide if a split was good or bad.
- The most common impurity measures are:

Entropía

$$Entropia(S) = \sum_{c \in Clases(S)} -p_c \cdot \log_2(p_c)$$

donde
$$p_c = \frac{|\{x \in S, clase(x) = c\}|}{|S|}$$

Índice de Gini

$$Gini(S) = \sum_{c \in Clases(S)} p_c(1 - p_c)$$
$$= 1 - \sum_{c \in Clases(S)} p_c^2$$

GOOD OR BAD SPLIT?

GOOD OR BAD SPLIT?

GOOD OR BAD SPLIT?

To decide if a split is better than another one, we want to minimize the impurity:

Entropía(nodo padre) - Promedio pesado(Entropía (nodos hijos))

GOOD OR BAD SPLIT?

• To decide if a split is better than another one, we want to **minimize the impurity**:

Entropía(nodo padre) - Promedio pesado(Entropía (nodos hijos))

• Information gain:

Let V be the parent node with N data, X be the feature and s the split using that feature (X<s)

$$IG(X_j,s) = Entropy(V) - \sum_{V_i} rac{N_i}{N} Entropy(V_i)$$
 $V_i = \{X \in V | X_j \leq s \} ext{ o } \{X \in V | X_j > s \}$

GOOD OR BAD SPLIT?

To decide if a split is better than another one, we want to minimize the impurity:

Entropía(nodo padre) - Promedio pesado(Entropía (nodos hijos))

• Information gain:

Let V be the parent node with N data, X be the feature and s the split using that feature (X<s)

$$IG(X_j,s) = Entropy(V) - \sum_{V_i} rac{N_i}{N} Entropy(V_i)$$
 $V_i = \{X \in V | X_j \leq s \} ext{ o } \{X \in V | X_j > s \}$

THE HIGHER THE INFORMATION GAIN, THE BETTER THE ENTROPY REDUCTION

GOOD OR BAD SPLIT?

• To decide if a split is better than another one, we want to **minimize the impurity**:

Entropía(nodo padre) - Promedio pesado(Entropía (nodos hijos))

• Information gain:

Let V be the parent node with N data, X be the feature and s the split using that feature (X<s)

$$IG(X_j,s) = Entropy(V) - \sum_{V_i} rac{N_i}{N} Entropy(V_i)$$
 $V_i = \{X \in V | X_j \leq s \} ext{ o } \{X \in V | X_j > s \}$

THE HIGHER THE INFORMATION GAIN, THE BETTER THE ENTROPY REDUCTION

If we use Gini index instead of entropy, it is called Gini Gain.

GOOD OR BAD SPLIT?

Information Gain: $0.954-\frac{1}{2}*0.811-\frac{1}{2}*0$ = 0.5485

Information Gain: 0.954-3/8*0.918-5/8*0.

GOOD OR BAD SPLIT?

Information Gain: $0.954-\frac{1}{2}*0.811-\frac{1}{2}*0$ = 0.5485

Information Gain: 0.954-3/8*0.918-5/8*0.

TRAINING

- For each feature, the model will try different splits.
- The best split is selected according to the information gain value.
- It checks the stop constraints:
 - Maximum depth
 - Minimum amount of data to split
 - Minimum amount of data in a leaf to consider a split

TRAINING

- For each feature, the model will try different splits.
- The best split is selected according to the information gain value.
- It checks the stop constraints:
 - Maximum depth
 - Minimum amount of data to split
 - Minimum amount of data in a leaf to consider a split

Without them, the tree keeps growing until it finds a "perfect" model

TRAINING

- For each feature, the model will try different splits.
- The best split is selected according to the information gain value.
- It checks the stop constraints:
 - Maximum depth
 - Minimum amount of data to split
 - Minimum amount of data in a leaf to consider a split

Without them, the tree keeps growing until it finds a "perfect" model

REGRESSION

We'll try to minimize the Mean Squared Error

REGRESSION

• We'll try to minimize the Mean Squared Error

$$ECM = \sum_{j=1}^{J} \sum_{i \in R_{j}} (y_{i} - \hat{y}_{R_{j}})^{2}$$

$$X_{2} \leq t_{1} \qquad X_{2}$$

$$X_{1} \leq t_{3} \qquad X_{2} \leq t_{4}$$

$$R_{1} \qquad R_{2} \qquad R_{3} \qquad R_{4}$$

$$R_{2} \qquad R_{3} \qquad R_{4}$$

$$R_{3} \qquad R_{4} \qquad R_{5}$$

$$\sum_{i: \ x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: \ x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

$$R_1(j,s) = \{X | X_j < s\} \text{ and } R_2(j,s) = \{X | X_j \geq s\}$$

$$\Delta = ECM(\text{padre}) - \sum_{j \in \text{hijos}} \frac{N_j}{N} ECM(\text{hijo}_j)$$

Institute of Technology

REGRESSION

REGRESSION

PROS

- Easy to interpret
 - Fast training
- They can handle continuous and discrete data and missing values

CONS

- They tend to overfit
- Their performance is usually worse than the one for other classical models

