

Accueil Ressources Bibliothèques Références Thèmes Forum Dictionnaire Biographie de mathématiciens Formulaire Lexique français/anglais

Accueil 4

Ressources Collège
Lycée
Math Sup
Math Spé
Capes
Agreg interne
BTS

Bibliothèques Bibliothèque d'exercices Bibliothèque de problèmes

Références Dictionnaire
Biographie de mathématiciens
Formulaire
Lexique français/anglais

Thèmes Cryptographie et codes secrets Jeux et énigmes Carrés magiques Mathématiques au quotidien Dossiers

Forum

Dictionnaire de mathématiques > Géométrie > Courbes et figures remarquables > Dictionnaire de mathématiques > Applications > Algorithmique >

Algorithme de de Casteljau

L'algorithme de de Casteljau est un algorithme permettant la construction par barycentrages successifs de points d'une courbe de Bézier. On rappelle que la courbe de Bézier de points de contrôle P_0, \ldots, P_n est la courbe paramétrée donnée par

$$M(t) = \text{Bar}((P_0, B_0^n(t)), (P_1, B_1^n(t)), \dots, (P_n, B_n^n(t)))$$

οù

$$B_k^n(t) = \binom{n}{k} t^k (1-t)^{n-k}.$$

Si on a 4 points de contrôle, l'algorithme de de Casteljau pour construire le point M(t) comporte 3 étapes :

• Étape 1 : On commence par construire les 3 barycentres suivants :

$$\overrightarrow{OM_0^{(1)}(t)} = (1-t)\overrightarrow{OP_0} + t\overrightarrow{OP_1}$$

$$\overrightarrow{OM_1^{(1)}(t)} = (1-t)\overrightarrow{OP_1} + t\overrightarrow{OP_2}$$

$$\overrightarrow{OM_2^{(1)}(t)} = (1-t)\overrightarrow{OP_2} + t\overrightarrow{OP_3}$$

• **Étape 2**: On itère et on construit les barycentres de $M_0^{(1)}$ et de $M_1^{(1)}$ avec poids respectifs 1-t et t, puis de $M_1^{(1)}$ et de $M_2^{(1)}$, avec les mêmes poids :

$$\overrightarrow{OM_0^{(2)}(t)} = (1-t)\overrightarrow{OM_0^{(1)}(t)} + t\overrightarrow{OM_1^{(1)}(t)}
\overrightarrow{OM_1^{(2)}(t)} = (1-t)\overrightarrow{OM_1^{(1)}(t)} + t\overrightarrow{OM_2^{(1)}(t)}$$

• **Étape 3**: On itère et on construit les barycentres de $M_0^{(2)}$ et de $M_1^{(2)}$, toujours avec les poids respectifs (1-t) et t.

C'est une appliquette Java créée avec GeoGebra (www.geogebra.org) - Il semble que Java ne soit pas installé sur votre ordinateur, merci d'aller sur www.java.com

Voici la formulation générale de l'algorithme de de Casteljau:

Théorème: Soient P_0,\ldots,P_n des points du plan $\mathcal P$ et soit $t\in[0,1]$. Notons (M_k^ℓ) la suite de points de $\mathcal P$ indexée par $\ell\in\{0,1,\cdots,n\}$ et $k\in\{0,1,\cdots,n-\ell\}$ définie par récurrence en posant

- pour $\ell = 0$: $M_k^0 = P_k$, pour tout $k \in \{0, 1, \dots, n\}$;
- $M_k^{\ell+1} = \text{Bar}((M_k^{\ell}, 1-t), (M_{k+1}^{\ell}, t)) \text{ pour } \ell \in \{0, 1, \dots, n-1\} \text{ et } k \in \{0, 1, \dots, n-\ell-1\}.$

Alors on a

$$M_0^n = \text{Bar}((P_0, B_0^n(t)), (P_1, B_1^n(t)), \dots, (P_n, B_n^n(t))).$$

En particulier, M_0^n est le point de paramètre t de la courbe de Bézier de points de contrôle P_0, \ldots, P_n .

Consulter aussi...

Courbes de Bézier

Discussions des forums

- Géométrie seconde Transla ...
- Extension PDF
- crible en python
- Batir l'arithmétique sur ...
- equ diff
- Dimensionner un rectangle ...
- Exponentielle
- Merci
- Dimension
- Loi de Poisson
- Une thèse de cryptographi ...
- La quadrature du cercle e ...
- La métamatière et la prière
- dm mathématiques a rendre ...
- Merxi

Accéder aux forums

Mathématicien du mois

Gaston Julia (1893-1978)