Serial No.	Questions	СО	Bloom 's Taxon omy Level	Difficu lty Level	Compe titive Exam Questi on Y/N	Area	Topic	U n it	M a r k s
1	Define ordinary differential equation and give an example.	CO4	K1	Low	N	ordinary differential equation	Definition	4	2
2	Define order and degree of ordinary differential equation	CO4	K1	Low	N	ordinary differential equation	order and degree	4	2
3	Identify order and degree in each of the following differential equations $\frac{d^3y}{dx^3} - 5x \frac{dy}{dx} = e^x + 1$	CO4	K2	Mediu m	N	ordinary differential equation	order and degree	4	2
4	Identify order and degree in each of the following differential equations $y\left(\frac{dy}{dx}\right)^2 = x^2 + 1$	CO4	K2	Mediu m	N	ordinary differential equation	order and degree	4	2
5	Define general and particular solution of the ODE.	CO4	K1	Mediu m	N	Type of solution	Definition	4	2
6	Show that $y = e^{5x}$ is the particular solution of the ODE $y' - 5y = 0$.	CO4	K2	Low	N	Type of solution	Verifying of type of solution	4	2
7	Verify that $y = ce^t$ is the general solution of the differential equation $\frac{dy}{dt} = y$.	CO4	K2	Mediu m	N	Type of solution	Verifying of type of solution	4	2
8	What is the necessary and sufficient condition for $M(x, y)dx + N(x, y)dy = 0$ to be an exact differential equation.	CO4	K1	Low	N	Exact ODE of first order	necessary and sufficient condition for exactness	4	2
9	Determine the exactness of the differential equation $ydx + xdy = 0$.	CO4	K2	Low	N	Exact ODE of first order	Checking of exactness	4	2
10	Find the solution of the differential equation $(D^2 - 4) y = 0$.	CO4	K2	Mediu m	N	Homogeneous linear differential equation with constant coefficients	Complem entary function	4	2
11	For the initial value problem $\frac{dy}{dx} = \sin(x)$, $y(0) = 0$ Find the value of y at $x = \pi/3$.	CO4	K2	Low	Y	Differential equation with constant coefficient	Solution of differentia l equation	4	2

	(Gate 2017)								
12	Define linearly independent of two functions.	CO4	K1	Mediu m	N	Homogeneous linear differential equation with constant coefficient	Independe ncy	4	2
13	Is $y(x)=c_1 \sin 2x + c_2 \cos 2x$, where c_1 and c_2 are arbitrary constants, a solution of $y'' + 4y = 0$?.	CO4	K2	Mediu m	N	Homogeneous linear differential equation with constant coefficient	Solution of differentia l equation	4	2
14	Find the P.I of $\frac{1}{D^2 + 4} \cos 2x$	CO4	K2	High	N	Non- Homogeneous linear differential equation with constant coefficients	Particular integral	4	2
15	Find PI of $(D^2 - 2D)y = 5$.	CO4	K2	High	N	Non- Homogeneous linear differential equation with constant coefficients	Particular integral	4	2
16	Solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$, (Gate 2008)	CO4	K2	Mediu m	Y	Homogeneous linear differential equation with constant coefficients	Complem entary function (Repeated roots)	4	2
17	Find the general solution of second order linear homogeneous differential equation $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 25y = 0$, (Gate2018)	CO4	K2	Mediu m	Y	Homogeneous linear differential equation with constant coefficients	Complem entary function (Real and distinct roots)	4	2
18	Determine whether the differential equation $\cos(x+y)dx+(3y^2+2y+\cos(x+y))dy=0$ is exact, If exact solve it.	CO4	K2	Mediu m	N	Exact ODE of first order	Test and Solution	4	6
19	Determine whether the differential equation $x^3 dx + y^3 dy = 0$ is exact, If exact, solve it.	CO4	K2	Mediu m	N	Exact ODE of first order	Solution	4	6
20	Determine whether the differential equation $2x \tan y dx + \sec^2 y dy = 0$ is exact, If exact, solve it.	CO4	K2	Mediu m	N	Exact ODE of first order	Solution	4	6
21	Determine whether the	CO4	K2	Mediu m	N	Exact ODE of first order	Solution	4	6

	differential equation								
	2 ,								
	$e^{x^2} \left(2xydx + dy \right) = 0$ is exact, If								
	exact, solve it.								
22	Solve:	CO4	K3	High	Y	Homogeneous	Complem	4	6
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 5y = 0$					linear differential	entary function		
	$dx^2 dx$ (Gate 2017)					equation with	(complex		
	(Gate 2017)					constant coefficients	roots)		
23	Solve the differential equation	CO4	K3	Mediu	Y	Homogeneous	Complem	4	6
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0, \text{ given that y=0}$			m		linear	entary		
	$\begin{array}{ccc} dx^2 & dx \\ \text{and} & y' = 3e^{-1} \end{array}$					differential equation with	function (Repeated		
	at $x=0$, Find $y(2)$. (Gate 2016)					constant	roots)		
	• • • • • • • • • • • • • • • • • • • •					coefficients	·		
24	Solve: $d^2 y$	CO4	K3	Mediu m	Y	Homogeneous linear	Complem entary	4	6
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$			111		differential	function		
	y(0) = 1, y'(0) = 0					equation with	(Repeated		
	Gate 2016)					constant coefficients	roots)		
25	Solve the differential equation	CO4	K3	Mediu	Y	Homogeneous	Complem	4	6
	$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 0, \text{ given that}$			m		linear differential	entary function		
						equation with	(Real and		
	y=0 and $\frac{dy}{dx}$ =1					constant	distinct		
	at x=0.(Gate 2018)					coefficients	roots)		
26	A function y(t) satisfies the	CO4	K3	Mediu	Y	Homogeneous	Complem	4	6
	differential			m		linear differential	entary		
	$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = 0,$					equation with	function (Real and		
	and subjected to initial					constant	distinct		
	conditions $y(t=0)=0$ and					coefficients	roots)		
	dy/dt(t=0)=1. Then find $y(t=1)$.								
27	(Gate2013) Consider the second order	CO4	K2	Mediu	Y	Цотодопосия	Complem	4	6
41	linear ordinary differential	CO4	KΔ	m	1	Homogeneous linear	entary	4	U
	equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$, with					differential	function		
	$\frac{dx^2}{dx} \frac{dx}{dx}$ the boundary conditions					equation with constant	(Repeated roots)		
	$y(0) = 1, \frac{dy}{dx} \Big _{x=0} = 1$					coefficients	,		
	an a								
	Find the value of y at $x=1$. (GATE 2016)								
28	Find the particular solution of	CO4	K2	Mediu	Y	Non-	particular	4	6
	the differential equation			m		Homogeneous	solution		
	$y'' - 4y' + 3y = 2x - 3x^2.$					linear differential			
	(Gate 2017)					equation with			

						constant coefficients			
29	Solve: y'' + y' - 2y = 0, y(0) = 4, $y'(0) = -5$	CO4	K2	Mediu m	N	Homogeneous linear differential equation with constant coefficients	Complem entary function (Real and distinct roots)	4	6
30	Solve: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 10e^{-3x}$	CO4	K3	High	N	Non- homogeneous linear differential equation with constant coefficients	CF and PI	4	6
31	Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 12x^2$	CO4	К3	High	N	Non-homogeneous linear differential equation with constant coefficients	CF and PI	4	6
32	Solve: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-x}\cos x$	CO4	К3	High	N	Non- homogeneous linear differential equation with constant coefficients	CF and PI	4	6
33	Solve: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 2x\cos x$	CO4	К3	High	N	Non- homogeneous linear differential equation with constant coefficients	CF and PI	4	6
34	Solve: $3\frac{d^2y}{dx^2} + 27y = 3\cos x + \cos 3x$	CO4	K3	High	N	Non- homogeneous linear differential equation with constant coefficients	CF and PI	4	6
35	Solve: $\frac{d^2y}{dx^2} - 2y = 6e^{2x} - 4e^{-2x}$	CO4	К3	High	N	Non- homogeneous linear differential equation with constant coefficients	CF and PI	4	6
36	Solve the non homogeneous ODE by method of variation of	CO4	K3	High	N	Non- homogeneous	Variation of	4	6

	parameter: $\frac{d^2y}{dx^2} + y = \sec x$					linear differential equation with constant coefficients	parameter		
37	Find the solution of the differential equation $x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + 4y = 0$ (Gate 2017)	CO4	K3	Mediu m	Y	Homogeneous linear differential equation with variable coefficients	Cauchy- Euler equation	4	6
38	Solve: $x^2 y'' - xy' + y = 0$	CO4	К3	Mediu m	N	Homogeneous linear differential equation with variable coefficients	Cauchy- Euler equation	4	6
39	Find the current $I(t)$ in the IC -circuit with the following data assuming initial current and charge: L=2 Henry, C= 0.005 Farad and E=220 Sin 4t volts.	CO4	К3	Mediu m	N	Application of Linear Differential Equations to Electric circuits	LC – CIRCUIT	4	6
40	The equation of an $L\!-\!R$ circuit is given by $L\frac{dI}{dt}\!+\!RI=10\sin t$. If $I=0$ at $t=0$, express I as a function of t .	CO4	К3	Low	N	Application of Linear Differential Equations to Electric circuits	LR CIRCUIT	4	6
41	A resistance of 100 ohms and an inductance of 0.5 Henry are connected in series with a battery of 20 volts. Find the current in a circuit as a function of t.	CO4	K3	Mediu m	N	Application of Linear Differential Equations to Electric circuits	RL SERIES	4	6
42	The position of a particle y(t) is described by the differential equation $\frac{d^2y}{dt^2} + \frac{dy}{dt} + \frac{5}{4}y = 0,$ the initial conditions are $y(t=0)=0$ and $dy/dt(t=0)=1$. Find the position $at \ t = \pi$. (Gate 2018)	CO4	К3	Mediu m	Y	Homogeneous linear differential equation with constant coefficients	Complem entary function (Roots are complex)	4	6
43	Apply Method of variation of parameters to solve:	CO4	К3	High	N	Variation of parameter method	P.I of a second order linear	4	9

	$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 6e^{2x} / x^4$						differentia l equation.		
44	Apply Method of variation of parameters to solve: $y'' - y = e^{-x} \sin(e^{-x}) + \cos(e^{-x})$	CO4	K3	High	N	Variation of parameter method	P.I of a second order linear differentia l equation.	4	9
45	Apply Method of variation of parameters to solve $y'' - 2y' - 3y = xe^{-x}$	CO4	К3	High	N	Variation of parameter method	P.I of a second order linear differentia l equation.	4	9
46	Solve: $x^2y'' - 3xy' + 3y = 3 \ln x - 4$	CO4	K2	High	N	Homogeneous linear differential equation with variable coefficient	Cauchy- Euler equation	4	9
47	Solve: $ (x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2 $ (GATE 2014)	CO4	К3	High	Y	Homogeneous linear differential equation with variable coefficients	Cauchy- Euler equation	4	9
48	Solve: $(x^2D^2 - 4xD + 6I)y = 21x^{-2}$	CO4	K3	High	N	Homogeneous linear differential equation with variable coefficients	Cauchy- Euler equation	4	9
49	Solve the class of simultaneous differential equations: $\frac{dx}{dt} + 2\frac{dy}{dt} - 2x - y = e^{2t}$ $\frac{dy}{dt} + x - 2y = 0$	CO4	К3	Mediu m	N	System of linear differential equations.	Simultane ous linear differentia l equations with constant coefficient	4	9
50	Solve the set of simultaneous differential equations $(3D+1)x+3Dy=3t+1$ $(D-3)x+Dy=2t$	CO4	К3	Mediu m	N	System of linear Diff. equations	simultane ous differentia l equations	4	9
51	Solve the simultaneous differential equation	CO4	К3	Mediu m	Y	System of linear Diff. equations	Simultane ous linear differentia l equations	4	9

	$\frac{d^2x}{dt^2} + 4x + y = te^t$ $\frac{d^2y}{dt^2} + y - 2x = sin^2 t$ (GATE 2009)						with constant coefficient		
52	Find the current in the RLC circuit given that $R=20$ ohms, $L=5$ henries, $C=10^{-2}$ farad, $E=425\sin 4t$ volts.	CO4	К3	Mediu m	N	Application of Linear Diff. equations to Electric circuits	RLC CIRCUIT	4	9
53	Find the steady current in the RLC circuit with $R = 8$ ohms, L=0.1 henries, C=1 farad, $E = 160\cos 5t$ volts.	CO4	К3	Low	N	Application of Linear Differential Equations to Electric circuits	RLC CIRCUIT	4	9
54	An input voltage $v(t) = 10\sqrt{2}\cos(t+10^0) + 10\sqrt{3}\cos(2t+10^0)$ volts is applied to a series combination of resistance $R = 1\Omega$ and an inductance $L = 1H$. Find the resulting steady current in amperes. (GATE 2003)	CO4	К3	Low	Y	Application of Linear Differential Equations to Electric circuits	RLC CIRCUIT	4	9