Importing the libraries

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive')
```

Importing the Dataset

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64

dtypes: float64(2), int64(9), object(3)

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
Run this cell to mount your Google Drive. Learn more			850.000000	92.000000	10.000000	250898.0
		Dismiss				•

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
9995	9996	15606229	Obijiaku	771	France	Male	39	
9996	9997	15569892	Johnstone	516	France	Male	35	1
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	÷
9999	10000	15628319	Walker	792	France	Female	28	4
77								

Checking if our dataset contains any NULL values

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0

NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64

Data Analysis

```
data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

Plotting the features of the dataset to see the correlation between them

```
plt.hi
plt.ti
plt.xl
plt.yl
plt.show()
Run this cell to mount your Google Drive.
Learn more

or = 'pink')
e')
```



```
data['Age'].value_counts()
     37
            478
     38
            477
     35
            474
     36
            456
     34
            447
     92
              2
     82
              1
              1
     88
```

```
85 1
83 1
```

Name: Age, Length: 70, dtype: int64

comparison of age in the dataset

```
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
```


data['Geography'].value_counts()

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

comparison of geography

```
plt.hist(x = data.Geography, bins = 5, color = 'green')
plt.title('comparison of Geography')
plt.xlabel('Geography')
plt.ylabel('population')
plt.show()
```


data['HasCrCard'].value_counts()

1 7055 0 2945

Name: HasCrCard, dtype: int64

Geography

data['IsActiveMember'].value_counts()

```
1 - 5151
         Run this cell to mount your Google Drive.
         Learn more
                                      Dismiss
                                                 nave ?
# How
```

```
plt.hist(x = data.IsActiveMember, bins = 3, color = 'brown')
plt.title('Active Members')
plt.xlabel('Customers')
plt.ylabel('population')
plt.show()
```



```
# plotting a pie chart
```

```
labels = 'France', 'Germany', 'Spain'
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
```

```
explode = [ 0.01, 0.01, 0.01]

plt.pie(sizes, colors = colors, labels = labels, explode = explode, shadow = True)

plt.axis('equal')
plt.show()
```


Removing the unnecassary features from the dataset data = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis = 1) print(data.columns) Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object') data.shape # splitting the dataset into x(independent variables) and y(dependent variables) x = data.iloc[:,0:10]y = data.iloc[:,10]print(x.shape) print(y.shape) print(x.columns) #print(y)

(10000, 10)

C	reditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
0	619	42	2	0.00	1	1	1
1	608	41	1	83807.86	1	0	1
Rur	n this cell to mou	unt vou	r Google Drive	30.80	3	1	0
	arn more		3	0.00	2	0	0
			Dismi	ss 0.82	1	1	1

// +							
•)

x.shape

(10000, 13)

