I. Egalité de deux vecteurs-Somme de deux vecteurs

Activité:

Soient A, B, C et D quatre points du plan (P) .

- 1) Construire les points du plan M et N tels que $\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{AD}$ et $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AD}$.
- 2) Monter que $\overrightarrow{MN} = \overrightarrow{BC}$ et déduire la nature du quadrilatère MNCB.

Propriétés :

- O Deux vecteurs sont égaux s'ils ont la même direction, même sens et même norme (on note la norme d'un vecteur \vec{u} par $\|\vec{u}\|$).
- \circ Soient A , B et C trois points du plan. On a :
- \checkmark $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (Relation de Chasles).
- \checkmark $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.
- \checkmark $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ si et seulement si \overrightarrow{ABDC} est un parallélogramme.
- \checkmark $\overrightarrow{AB} = -\overrightarrow{BA}$ et $\overrightarrow{AA} = \overrightarrow{0}$.

Application:

- 1) Simplifier le vecteur \overrightarrow{U} tel que : $\overrightarrow{U} = \overrightarrow{BC} \overrightarrow{AC} \overrightarrow{BA} + \overrightarrow{AB}$.
- 2) Soient A, B, C, D et E des points du plan. Montrer que : $\overrightarrow{AC} \overrightarrow{DB} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \overrightarrow{0}$
- Exercice: Exercice 1 de la série.

II. Multiplication d'un vecteur par un nombre réel

Activité:

Soit ABC un triangle. Construire les points M, N, L et K tels que :

$$\overrightarrow{AM} = 2\overrightarrow{AB}$$
 , $\overrightarrow{BN} = -2\overrightarrow{BC}$, $\overrightarrow{AL} = \frac{1}{2}\overrightarrow{AC}$, $\overrightarrow{CK} = \frac{2}{3}\overrightarrow{CB}$

PP Définition:

Soit \vec{u} un vecteur non nul et k un nombre réel non nul.

- \circ $k\vec{u}$ est un vecteur.
- O Si k > 0, alors $k\vec{u}$ et \vec{u} ont même direction, même sens et $||k\vec{u}|| = k||\vec{u}||$
- O Si k < 0, alors $k\vec{u}$ et \vec{u} ont même direction, des sens opposés et $\left\| \vec{ku} \right\| = -k \left\| \vec{u} \right\|$

Application:

Soit ABC un triangle et soit D un point du plan tel que : $\overrightarrow{BD} = 3\overrightarrow{DC}$.

- 1) Montrer que : $\overrightarrow{BD} = \frac{3}{4} \overrightarrow{BC}$.
- 2) Placer le point D.

Propriétés :

Soient \vec{u} et \vec{v} deux vecteurs α et β deux nombres réels on a :

*
$$k\vec{u} = \vec{0}$$
 si et seulement si $\vec{u} = \vec{0}$ ou $k = 0$.

Application:

- 1) Simplifier les écritures vectorielles suivantes : $\overrightarrow{a} = 2(\overrightarrow{u} + 5\overrightarrow{v}) + 3(\overrightarrow{u} \overrightarrow{v})$ et $\overrightarrow{b} = 13\overrightarrow{u} + 3(4\overrightarrow{v} \overrightarrow{u}) + 2\overrightarrow{v}$.
- 2) En déduire une relation vectorielle entre les vecteurs \overrightarrow{a} et \overrightarrow{b} .

III. Colinéarité de deux vecteurs – Alignement de trois points

Activité:

Soit \overrightarrow{ABC} un triangle et soient D et E deux points du plan tels que : $\overrightarrow{AD} = 2\overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BC}$.

- 1) Construire une figure convenable.
- 2) Déduire la relation vectorielle entre les deux vecteurs \overrightarrow{AD} et \overrightarrow{AE}
- 3) Que peut-on dire sur les points A, D et E.

PP Définition et propriété :

- On dit que deux vecteurs \vec{u} et \vec{v} sont colinéaires, si et seulement s'il existe un nombre réel α tel que : $\vec{v} = \alpha \vec{u}$.
- On dit que les points A, B et C sont alignés, si et seulement s'il existe un nombre réel α tel que : $\overrightarrow{AC} = \alpha \overrightarrow{AB}$ (Le nombre α est appelé l'abscisse du point C au repère (A,B)).

EXEMPLE:

L'écriture $\overrightarrow{AC} = \frac{4}{3}\overrightarrow{AD}$ entraine que les points A, C et D sont alignés et que $\frac{4}{3}$ est l'abscisse du point C au repère (A, D).

Application:

 \overrightarrow{ABC} est un triangle et soient D et E deux points du plan tels que: $\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB}$ et $\overrightarrow{DE} = \frac{3}{2}\overrightarrow{BC}$.

Montrer que : $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AC}$. Que déduisez-vous ?

Exercice: Exercice 4 de la série.

IV. Milieu d'un segment :

// Propriété:

Soient A, B et I trois points du plan.

I est le milieu du segment [AB], si et seulement si $\overrightarrow{AI} = \overrightarrow{IB} = \frac{1}{2} \overrightarrow{AB}$.

Application:

Soit ABC un triangle et soient I et J les milieux respectifs de [AB] et [AC].

Montrer que $\overrightarrow{IJ} = \frac{1}{2} \overrightarrow{BC}$.

Propriété: (Propriété caractéristique de milieu d'un segment)

Si I est le milieu du segment $\begin{bmatrix} AB \end{bmatrix}$, alors pour tout point M du plan (P) :

 $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$.

Exercice : Exercice 3 de la série.

Exercice de synthèse : Exercice 11de la série.

