Interpolacja według metod Lagrange'a oraz Newtona

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 29 marca 2022

1 Opis problemu

Główną ideą zadania jest zbadanie zachowania wielomianów interpolacyjnych dla poniższej funkcji, dla zagadnienia Lagrange'a, skonstruowanych dwoma metodami: Newtona oraz Lagrange'a oraz korzystając z różnego rozmieszczenia węzłów: równomiernie oddalonych oraz według pierwiastków wielomianu Czebyszewa.

Badana funkcja:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

Gdzie $k = \frac{1}{2}, m = 4$ oraz $x \in [-6, 6].$

2 Opracowanie

Pierwszym krokiem będzie skonstuowanie wielomianów dla różnych ilości węzłow oraz narysowanie wykresów. Do tego użyty zostanie załączony program w języku Python.

Rysunek 1: Metoda Newtona dla 3 punktów

Dla 3 węzłów wykres wielomianu nie przypomina zbytnio wykresu funkcji f, co nie powinno dziwić. Podobnie w przypadku metody Lagrange'a:

Rysunek 2: Metoda Lagrange'a dla 3 punktów

Wraz z zwiększaniem ilości węzłów wykres wielomianu coraz bardziej zbliża się do wykresu funkcji f, poniżej przykład dla 15 węzłów, dla obu metod rozmieszczenia węzłów wyniki są wizualnie podobne.

Rysunek 3: Metoda Newtona dla 15 punktów

Jednak dla ok. 17-18 węzłów w przypadku równomiernego rozmieszczenia węzłów, na krańcach przedziału zaczyna być widoczny efekt Rungego. Wraz z dalszym zwiększaniem liczby węzłów dla rozłożenia równomiernego efekt poglębia się, a co za tym idzie, jakość interpolacji spada. Występowanie efektu Rungego nie jest zależne od metody interpolacji, natomiast nie występuje w przypadku węzłów Czebyszewa, które są gęściej upakowane na krańcach przedziału.

Rysunek 4: Metoda Lagrange'a dla 18 punktów

Podobieństwo wielomianu do funkcji f dla węzłów Czebyszewa rośnie dla obu metod aż do liczby 38 węzłów, gdzie następuje degradacja jakości wielomianu oraz pojawiają się błędy (wielomian nie zawiera punktów w węzłach) dla metody Newtona przy krańcach przedziału. Problem najprawdopodobniej wynika z błędów obliczeń związanymi z ograniczeniami precyzji floata. Na poniższym wykresie efekt ten zaczyna być zauważalny dla lewego krańca przedziału dla węzłow Czebyszewa (oraz bardzo ewidentny efekt Rungego dla równomiernie rozmieszczonych węzłów).

Rysunek 5: Metoda Newtona dla 38 punktów

Dla 50 węzłów, będącą największą zbadaną wartością, metoda Lagrange'a dla węzłów Czebyszewa bardzo dokładnie w przybliża funkcję f. Pozostałe metody, ze względu na efekt Rungego lub problem opisany na stronie 4, nie są w stanie przybilżyć funkcji.

Rysunek 6: Metoda Lagrange'a dla 50 punktów

Rysunek 7: Metoda Newtona dla 50 punktów

Kolejnym krokiem będzie policzenie dokładności przybliżenia. Miarami dokładności będą: średnia kwadratów odległości wartości odległości oraz największa różnica wartości odległości funkcji f oraz wielomianu interpolacyjnego dla

1000 równomiernie rozmieszczonych punktów w zakresie [-6,6]. Poniższe tabele zawierają dokładności od 3 do 49, mierząc co drugą liczbę węzłów.

Ilość	Newton		Lagrange	
węzłów	Czebyszew	rów. odd.	Czebyszew	rów. odd.
3	17.0733	23.98	17.0733	23.98
5	18.8049	23.98	18.8049	23.98
7	16.5071	23.98	16.5071	23.98
9	17.7717	225.44	17.7717	225.44
11	15.0579	16.10	15.0579	16.10
13	16.4392	23.98	16.4392	23.98
15	16.6307	15.98	16.6307	15.98
17	14.8798	14.81	14.8798	14.81
19	15.7795	18855.10	15.7795	18855.10
21	13.1300	7825523.53	13.1300	7825523.53
23	12.6171	513891521.49	12.6171	513891521.49
25	11.3945	9781348058	11.3945	9781348058
27	11.2069	76060415066	11.2069	76060415071
29	9.5034	297334254455	9.5034	297334254506
31	8.8444	667288797764	8.8444	667288797931
33	7.8320	940961326952	7.8321	940961329998
35	4.1558	889414296556	4.1555	889414307658
37	1.3042	591429140136	1.2971	591429134229
39	0.2676	287215295287	0.2574	287215301381
42	0.4426	104940098714	0.03472	104940003048
43	1.0863	29554893468	0.003348	29554762315
45	10.7866	6546668681	0.00023972	6546450581
47	734.1665	1160128264	0.00001312	1159986609
49	396.5238	166848078	0.00000056	166833341

Tabela 1: Średnia kwadratów różnic funkcji f oraz wielomianów

Wnioski uzyskane podczas analizy wykresów zgadzają się z zawartością tabeli: dla liczb węzłów mniejszych niż 18 wyniki są niemal identyczne niezależnie od metody lub rozmieszczenia węzłów. Równomiernie rozmieszczone punkty skutkują stratą dokładności przy liczbie węzłów większej niż ok. 18 (efekt Rungego), natomiast dokładność metody Newtona zaczyna maleć po przekroczeniu liczby ok. 40 węzłów (problem opisany na 4 stronie). Najdokładniejsza okazuje się metoda Lagrange'a dla węzłów Czebyszewa, której dokładność rośnie dla całej puli badanych liczb węzłów. Liczba węzłów, dal której uzyskano największą dokładność z użyciem załączonego programu (ze względu na długi czas działania) to 79, przy czym można przypuszczać, że dokładność nadal rośnie dla większych liczb.

Poniższa tabela maksiumów wartości odległości w punktach dla wielomianu oraz funkcji f utwierdza w dotychczasowych wnioskach.

Ilość	Newton		Lagrange	
węzłów	Czebyszew	rów. odd.	Czebyszew	rów. odd.
3	7.9752	7.9998	7.9752	7.9998
5	8.8575	7.9998	8.8575	7.9998
7	8.1337	7.9998	8.1337	7.9998
9	7.9917	37.2665	7.9917	37.2665
11	10.0078	7.9964	10.007	7.9964
13	8.0206	7.9998	8.0206	7.9998
15	8.6225	7.9992	8.6225	7.9992
17	7.8088	6.2050	7.8088	6.2050
19	8.1167	648.82	8.1167	648.829
21	8.6439	14045.280	8.6439	14045.2
23	8.0000	120159.07	8.0000	120159.0
25	8.3273	551407.06	8.3273	551407.0
27	7.8523	1611826	7.8523	1611826
29	8.2379	3327716	8.2379	3327716
31	7.8731	5187650	7.8731	5187650
33	6.1203	6409255	6.1203	6409255
35	3.8940	6437258	3.8940	6437258
37	2.0243	5444504	2.0243	5444504
39	1.4708	3909357	0.8717	3909357
42	9.8612	2433404	0.3185	2433401
43	13.3245	1331536	0.09962	1331533
45	42.691	642940	0.02706	642916
47	333.59	276428	0.00645	276373
49	266.21	107818	0.001365	107818

Tabela 2: Maksimum wartości bezw
ględnej różnic funkcji f oraz wielomianów

3 Wnioski

Zarówno metoda Newtona jak i Lagrange'a pozwala na skuteczne przybliżanie funkcji z użyciem wielomianów interpolacyjnych przy zachowaniu pewnych warunków, np. używaniu węzłów Czebyszewa, żeby uniknąć efektu Rungego. Użycie tych metod może być przydatne, jeżeli funkcja przybliżana jest skomplikowana i wygodniejsze jest używanie wielomianu interpolacyjnego lub gdy znane są tylko niektóre wartości funkcji.