

# Assigment 3 Training Robust Neural Networks

Marwa NAIR, Sabina ASKEROVA, Emmarius DELAR



#### Introduction

- **Challenge:** Neural networks are highly vulnerable to adversarial perturbations, making them unreliable in critical applications.
- **Goal of the Assignment:** Explore strategies to improve a NN-classifier robustness on the CIFAR-10 dataset.



## I. Baselines

### **Baselines**

- Standard Training: No defense mechanism, serves as a reference for comparison.
- Adversarial Training (AT) using :
  - o FGSM [1]
  - o PGD [2]
- $\rightarrow$  Two adversarially trained baseline models.

## A - Game Theory and Nash Equilibrium

Adversary

|    | Ф1(Н1)   | 1(H1) Ф2(H2) |  |  |
|----|----------|--------------|--|--|
| H1 | (-1; 1)  | (-1; 1)      |  |  |
| H2 | (1 ; -1) | (-1; 1)      |  |  |

#### **Mathematical formulation:**

 $\inf_{h \in \mathcal{H}} \sup_{\boldsymbol{\phi} \in (\mathcal{F}_{\mathcal{X}|\epsilon_2})^2} \mathcal{R}_{adv}(h, \boldsymbol{\phi})$ 

**Defender** 

## **B** - Assumption on the setup

- Adversary is completely informed (weight, data distribution, etc..)
- Mass penalty

$$\Omega_{\text{mass}}(\phi) := E_{Y \sim \nu} [E_{X \sim \mu_Y} [1\{X \neq \phi_Y(X)\}]]$$

Norm penalty

$$\Omega_{\text{norm}}(\phi) := E_{Y \sim \nu} \left[ E_{X \sim \mu_Y} \left[ ||X - \phi_Y(X)||_2 \right] \right]$$

## **C** - Boosted Adversarial Training

- Boosting:
  - Minimize the risk of a class of functions (H, our set of classifiers).
- Adversarial Training:
  - FGSM & PGD attacks are used to generate adversarial data.
- Randomization:
  - Define a mixture of models.



## **D** - Boosted Adversarial Training Algorithm

## **Algorithm 2** Boosted Adversarial Training [4]

- 1: **Input:** D the training data set and  $\alpha$  the weight parameter.
- 2: Create and adversarially train  $h_1$  on D
- 3: Generate the adversarial data set  $\tilde{D}$  against  $h_1$
- 4: Create and naturally train  $h_2$  on D
- 5:  $q \leftarrow (1 \alpha, \alpha)$
- 6:  $h \leftarrow (1 \alpha) * h_1 + (\alpha) * h_2$
- 7: **Return** h

## DeepFool attack

## III – DeepFool attack

## A - Principle

- Finds minimal adversarial perturbation to change image classification
- Iteratively projects input across decision boundary
- Aims to use smallest possible modification to fool the classifier



Adversarial perturbations (DF and FGSM)



Figure 2: Adversarial examples for a linear binary classifier.





## III – DeepFool attack

#### **B** - Limitations

- Minimal perturbations might not sufficiently challenge network
- Computational complexity of iterative algorithm
- Subtle adversarial examples may not effectively expand model's decision boundaries

DeepFool shows promise in theory, but practical implementation requires further refinement



## III – DeepFool attack

## **C** – Results

| MODEL                           | Natural Accuracy | Accuracy for DeepFool attacks |  |
|---------------------------------|------------------|-------------------------------|--|
| default                         | 78.125           | 18.55                         |  |
| BAT+PGD                         | 66.503           | 58.89                         |  |
| BAT+FGSM                        | 58.203 37.01     |                               |  |
| AT+DeepFool<br>(overshoot 0.02) | 75.407           | 37.5                          |  |
| AT+FGSM                         | 72.143           | 35.742                        |  |
| AT+PGD                          | 46.875 18.65     |                               |  |

## Results & Analysis

## Results and Analysis

| Model             | Net Acc (%) | PGD <b>ℓ</b> ∞ (%) | PGD ℓ2 (%) | Time (s) |
|-------------------|-------------|--------------------|------------|----------|
| Standard Training | 76.25       | 6.03               | 25.15      | 153.46   |
| AT + FGSM         | 63.75       | 15.92              | 17.85      | 444.51   |
| AT + PGD          | 43.75       | 24.53              | 30.01      | 137.6    |
| BAT + FGSM        | 63.75       | 50.03              | 57.79      | 247.3    |
| BAT + PGD         | 65          | 49.83              | 57.05      | 780      |

#### References

- [1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-sarial examples.
- [2] Aleksander Madry. Towards deep learning models resistant to adversarial attacks.
- [3] Fawzi A. Frossard P. Moosavi-Dezfooli, S. Deepfool: a simple and accurate method to fool deepneural networks.
- [4] Rafael Pinot, Raphael Ettedgui, Geovani Rizk, Yann Chevaleyre, and Jamal Atif. Randomization matters: how to defend against strong adversarial attacks



# Thank you for your attention!

Ð

UNIVERSITÉ PARIS DAUPHINE - PSL

Place du Maréchal de Lattre de Tassigny – 75775 Paris cedex 16