五、数据记录

组号: _____; 姓名_____

$I_a(\mu A)$ $U_a(V)$ $I_F(A)$	16.0	25.0	36.0	49.0	64.0	81.0	100.0	121.0

六、数据处理

1、作出 $\lg I_a - \sqrt{U_a}$ 曲线,并利用计算机作图(或最小二乘法)拟合曲线,求出截距 $\lg I$.

$ \frac{\lg I_a}{I_F(A)} \sqrt{U_a} $	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0

2、作出 $\lg \frac{I}{T^2} - \frac{1}{T}$ 曲线,并利用计算机作图(或最小二乘法)拟合曲线,求出斜率 k,并求出电子的溢出电势 V

$T(10^3 K)$			
$\lg T^2$			
$\lg I$			
$\lg(I/T^2)$			
$1/T(10^{-4})$			

3、计算出逸出功 φ 的数值,并与理论值 $\varphi_0=4.54eV$ 作比较