Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya

Mumbai | 2018

MICRO-OPERATIONS & CONTROL SIGNALS

- A Program is a set of Instructions.
- An Instruction, requires a set of small operations called Micro-Operations.
- A **Micro-Operation** is a **finite activity performed** by the processor **in one clock cycle**. One clock cycle is also called one **T-state** (Transition state).
- One Micro-Operation requires One T-state.
- Several **Independent** Micro-Operations can be performed in the same T-state.
- Control unit generates control signals to perform these very Micro-Operations.
- To understand Control Units, we must first clearly understand Micro-Operations.

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

MICRO-OPERATIONS FOR INSTRUCTION FETCHING

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction from MBR
	PC ← PC + 1	PC gets incremented

As we can see in the above table, two Micro-Operations can take place in the same T-state i.e.

IR← MBR and PC← PC + 1

This is because they are completely independent of each other.

In fact, PC becoming PC + 1 can also be performed in the 2^{nd} T-state while the instruction is being fetched from the memory through the data bus into MBR. This is shown below.

MICRO-OPERATIONS FOR INSTRUCTION FETCHING (ALTERNATE METHOD)

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
	PC ← PC + 1	PC gets incremented
T3:	IR ← MBR	IR gets instruction from MBR

Please Note

 $PC \leftarrow PC + 1$ cannot take place in the 1st T-state.

That's because, in the 1^{st} T-state, PC is providing the address on the address bus, through MAR. If at the same time PC gets incremented, then the incremented address will be put on the address bus.

Now that we know how an instruction is fetched, we can proceed further and learn Micro-Operations for various instructions, of different Addressing Modes.

Sem IV (Computers, IT) | Sem VI (Electronics)
Author: Bharat Acharya

Mumbai | 2018

MICRO-OPERATIONS FOR IMMEDIATE ADDRESSING MODE

E.g.: MOV R1, 25H; R1 register gets the immediate value 25H

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "MOV R1, 25H" from MBR
	PC ← PC + 1	PC gets incremented
T4:	R1 ← 25H (IR)	R1 register gets the value 25H from IR

MICRO-OPERATIONS FOR REGISTER ADDRESSING MODE

E.g.: MOV R1, R2; R1 register gets the data from Register R2

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "MOV R1, R2" from MBR
	PC ← PC + 1	PC gets incremented
T4:	R1 ← R2	R1 register gets the value from R2 Register

MICRO-OPERATIONS FOR DIRECT ADDRESSING MODE

E.g.: MOV R1, [2000H]; R1 register gets the data from memory location 2000H

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "MOV R1, [2000H]" from MBR
	PC ← PC + 1	PC gets incremented
T4:	MAR ← IR (2000H)	MAR gets the address 2000H from IR
T5:	MBR ← Memory ([2000H])	MBR gets contents of location 2000H from Memory.
T6:	R1 ← MBR ([2000H])	Register R1 gets contents of memory location 2000H from MBR

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

MICRO-OPERATIONS FOR INDIRECT ADDRESSING MODE

E.g.: MOV R1, [R2]; R1 register gets the data from memory location pointed by R2

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "MOV R1, [R2]" from MBR
	PC ← PC + 1	PC gets incremented
T4:	MAR ← R2	MAR gets the address R2 Register
T5:	MBR ← Memory ([R2])	MBR gets contents of location pointed by R2 from Memory.
T6:	R1 ← MBR ([R2])	Register R1 gets contents of memory location pointed by R2 from MBR
		In the exam, once, Add R1, [R2] was asked. Everything else will be same. Only change: T6: R1 \leftarrow R1 + MBR

MICRO-OPERATIONS FOR INDIRECT ADDRESSING MODE

E.g.: MOV [R2], R1; R1 register stores data into memory location pointed by R2

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "MOV [R2], R1" from MBR
	PC ← PC + 1	PC gets incremented
T4:	MAR ← R2	MAR gets the address R2 Register
T5:	MBR ← R1	R1 puts data into MBR to store it in the memory location pointed by R2.

MICRO-OPERATIONS FOR IMPLIED ADDRESSING MODE

E.g.: STC; Set the Carry Flag; (CF ← 1).

STATE	MICRO-OPERATION	EXPLANATION
T1:	MAR ← PC	PC puts address of the next instruction into MAR
T2:	MBR ← Memory (Instr)	MBR gets instruction from memory through data bus
T3:	IR ← MBR	IR gets instruction "STC" from MBR
	PC ← PC + 1	PC gets incremented
T4:	CF ← 1	Carry Flag in the Flag Register becomes 1