Rice Crop Yield Prediction

The goal of this project is to find insights on predicting crop yields of rice in India. Smallholder farmers, who make up most of the workforce there, face challenges like poverty and malnutrition. Predictive insights can help them make better decisions about resource use, and help in supporting food security.

The dataset can be found on Kaggle

```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import LabelEncoder, MinMaxScaler, OneHotEncoder,
        from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score, roc_curve, auc, classification_r
        from sklearn.metrics import ConfusionMatrixDisplay
        from sklearn import tree
        from sklearn.model_selection import cross_val_score, cross_validate
        import imblearn
        from imblearn.over_sampling import SMOTE, SMOTENC
        from imblearn.pipeline import Pipeline
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.compose import ColumnTransformer, make column selector
        from sklearn.impute import SimpleImputer
        from sklearn.model selection import GridSearchCV
        from sklearn.tree import export_text, plot_tree
        from sklearn.base import BaseEstimator, TransformerMixin
        from sklearn.preprocessing import FunctionTransformer
        from sklearn.decomposition import PCA
        from sklearn.linear_model import LinearRegression, Ridge, Lasso
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.model selection import GridSearchCV
        from sklearn.compose import TransformedTargetRegressor
        from sklearn.feature_selection import VarianceThreshold
        from lime.lime_tabular import LimeTabularExplainer
```

Let's load and examine the data

```
In [2]: # to show all columns
pd.set_option('display.max_columns', None)
```

to revert: pd.reset_option('display.max_columns')

In [3]: df = pd.read_csv("data/Train.csv", index_col=0)
 df.head(12)

Out[3]:

	District	Block	CultLand	CropCultLand	LandPreparationMet
ID					
ID_GTFAC7PEVWQ9	Nalanda	Noorsarai	45	40	TractorPlo FourWheelTracRotav
ID_TK40ARLSPOKS	Nalanda	Rajgir	26	26	WetTillagePudc TractorPlo FourWheelTra
ID_1FJY2CRIMLZZ	Gaya	Gurua	10	10	TractorPlo FourWheelTracRotav
ID_I3IPXS4DB7NE	Gaya	Gurua	15	15	TractorPlo FourWheelTracRotav
ID_4T8YQWXWHB4A	Nalanda	Noorsarai	60	60	TractorPlo WetTillagePudc
ID_W5MM9H353RL9	Vaishali	Garoul	10	5	TractorPlo
ID_6044Z25H1JAV	Jamui	Khaira	12	12	TractorPlo
ID_VRI9LEL2W3DR	Nalanda	Rajgir	80	80	FourWheelTracRotav
ID_6YA9Y09055LE	Jamui	Khaira	25	25	TractorPlo
ID_EDA8RK1CP60K	Nalanda	Noorsarai	20	10	WetTillagePudc

	ID_920QSAHCN51N	Jamui	Khaira	25	14	TractorPlo
	ID_LPERFIRDG4R1	Nalanda	Noorsarai	30	30	TractorPlo
In [4]:	df.info()					

http://localhost:8888/nbconvert/html/1_EDA.ipynb?download=false

<class 'pandas.core.frame.DataFrame'>
Index: 3870 entries, ID_GTFAC7PEVWQ9 to ID_KEPOQDTCZC6S
Data columns (total 43 columns):

#	Column	Non-N	Null Count	Dtype
0	District	3870	non-null	object
1	Block	3870	non-null	object
2	CultLand	3870	non-null	int64
3	CropCultLand	3870	non-null	int64
4	LandPreparationMethod	3870	non-null	object
5	CropTillageDate	3870	non-null	object
6	CropTillageDepth	3870	non-null	int64
7	CropEstMethod	3870	non-null	object
8	RcNursEstDate	3787	non-null	object
9	SeedingSowingTransplanting	3870	non-null	object
10	SeedlingsPerPit	3581	non-null	float64
11	NursDetFactor	3581	non-null	object
12	TransDetFactor	3581	non-null	object
13	TransplantingIrrigationHours	3677	non-null	float64
14	TransplantingIrrigationSource	3755	non-null	object
15	TransplantingIrrigationPowerSource	3367	non-null	object
16	TransIrriCost	2988	non-null	float64
17	StandingWater	3632	non-null	float64
18	OrgFertilizers	2535	non-null	object
19	Ganaura	1453	non-null	float64
20	CropOrgFYM	1196	non-null	float64
21	PCropSolidOrgFertAppMethod	2533	non-null	object
22	NoFertilizerAppln	3870	non-null	int64
23	CropbasalFerts	3682	non-null	object
24	BasalDAP	3327	non-null	float64
25	BasalUrea	2166	non-null	float64
26	MineralFertAppMethod	3870	non-null	object
27	FirstTopDressFert	3385	non-null	object
28	1tdUrea	3314	non-null	float64
29	1appDaysUrea	3314	non-null	float64
30	2tdUrea	1176	non-null	float64
31	2appDaysUrea	1170	non-null	float64
32	MineralFertAppMethod.1	3389	non-null	object
33	Harv_method	3870	non-null	object
34	Harv_date	3870	non-null	object
35	Harv_hand_rent	3618	non-null	float64
36	Threshing_date	3870	non-null	object
37	Threshing_method	3870	non-null	object
38	Residue_length	3870	non-null	int64
39	Residue_perc	3870	non-null	int64
40	Stubble_use	3870	non-null	object
41	Acre	3870	non-null	float64
42	Yield	3870	non-null	int64
dtvpe	es: float64(14), int64(7), object(22)		

dtypes: float64(14), int64(7), object(22)

memory usage: 1.3+ MB

In [5]: df.describe()

-		$\Gamma - 2$	
()	114	151	
w	u L	1.)	

	CultLand	CropCultLand	CropTillageDepth	SeedlingsPerPit	Transplantinglr
count	3870.000000	3870.000000	3870.000000	3581.000000	
mean	28.527907	24.727132	4.488372	2.706507	
std	30.454218	27.994802	1.133044	7.624397	
min	1.000000	1.000000	1.000000	1.000000	
25%	12.000000	10.000000	4.000000	2.000000	
50%	20.000000	20.000000	4.000000	2.000000	
75%	35.000000	30.000000	5.000000	3.000000	
max	800.000000	800.000000	8.000000	442.000000	

Get the descriptive statistics

```
In [6]: desc = df.describe()
# Calculate the 95th percentile for numeric columns only
percentile_95 = df.select_dtypes(include=[float, int]).quantile(0.99)
# Append the 95th percentile to the descriptive statistics
desc.loc['99%'] = percentile_95
desc
```

	г о т	
()ıı+	161	
ou c	$L \cup J$	

	CultLand	CropCultLand	CropTillageDepth	SeedlingsPerPit	Transplantinglr
count	3870.000000	3870.000000	3870.000000	3581.000000	
mean	28.527907	24.727132	4.488372	2.706507	
std	30.454218	27.994802	1.133044	7.624397	
min	1.000000	1.000000	1.000000	1.000000	
25%	12.000000	10.000000	4.000000	2.000000	
50%	20.000000	20.000000	4.000000	2.000000	
75%	35.000000	30.000000	5.000000	3.000000	
max	800.000000	800.000000	8.000000	442.000000	
99%	120.000000	100.000000	8.000000	12.000000	

We can see there are outliers for most numeric features.

```
In [7]: # Check for duplicate rows
    df.duplicated().sum()

Out[7]: 0

In [8]: # Count missing values in each column
    df.isnull().sum()
```

0 . [0]		
Out[8]:	District	0
	Block	0
	CultLand	0
	CropCultLand	0
	LandPreparationMethod	0
	CropTillageDate	0
	CropTillageDepth CropEstMethod	0
	RcNursEstDate	83
	SeedingSowingTransplanting	03
	SeedlingsPerPit	289
	NursDetFactor	289
	TransDetFactor	289
	TransplantingIrrigationHours	193
	TransplantingIrrigationNource	115
	TransplantingIrrigationPowerSource	503
	TransIrriCost	882
	StandingWater	238
	OrgFertilizers	1335
	Ganaura	2417
	CropOrgFYM	2674
	PCropSolidOrgFertAppMethod	1337
	NoFertilizerAppln	1557
	• •	188
	CropbasalFerts BasalDAP	543
	BasalUrea	1704
		0
	MineralFertAppMethod FirstTopDressFert	485
	1tdUrea	556
	1appDaysUrea	556
	2tdUrea	2694
	2appDaysUrea	2700
	MineralFertAppMethod.1	481
	Harv_method	401
	Harv_date	0
	Harv_hand_rent	252
	Threshing_date	0
	Threshing_method	0
	Residue_length	0
	Residue_perc	0
	Stubble_use	0
	Acre	0
	Yield	0
	dtype: int64	0
	acyper into-	

In [9]: # Calculate the percentage of missing values in each column
 (df.isnull().sum() * 100 / len(df)).round(2)

Out[9]:	District	0.00
	Block	0.00
	CultLand	0.00
	CropCultLand	0.00
	LandPreparationMethod	0.00
	CropTillageDate	0.00
	CropTillageDepth	0.00
	CropEstMethod	0.00
	RcNursEstDate	2.14
	SeedingSowingTransplanting	0.00
	SeedlingsPerPit	7.47
	NursDetFactor	7.47
	TransDetFactor	7.47
	TransplantingIrrigationHours	4.99
	TransplantingIrrigationSource	2.97
	TransplantingIrrigationPowerSource	13.00
	TransIrriCost	22.79
	StandingWater	6.15
	OrgFertilizers	34.50
	Ganaura	62.45
	Crop0rgFYM	69.10
	PCropSolidOrgFertAppMethod	34.55
	NoFertilizerAppln	0.00
	CropbasalFerts	4.86
	BasalDAP	14.03
	BasalUrea	44.03
	MineralFertAppMethod	0.00
	FirstTopDressFert	12.53
	1tdUrea	14.37
	1appDaysUrea	14.37
	2tdUrea	69.61
	2appDaysUrea	69.77
	MineralFertAppMethod.1	12.43
	Harv_method	0.00
	Harv_date	0.00
	Harv_hand_rent	6.51
	Threshing_date	0.00
	Threshing_method	0.00
	Residue_length	0.00
	Residue_perc	0.00
	Stubble_use	0.00
	Acre	0.00
	Yield	0.00
	dtype: float64	

In [10]: df['NoFertilizerAppln'].value_counts()

```
Out[10]: NoFertilizerAppln
2 2201
3 1181
1 481
4 7
Name: count, dtype: int64

In [11]: df['Harv_method'].value_counts()

Out[11]: Harv_method
hand 3642
machine 228
Name: count, dtype: int64
```

Visualize Numerical Variables

Correlation Heatmap for Numeric Columns

```
In [12]: # Select and normalize only the numeric columns
   numeric_data = df.select_dtypes(include=['float64', 'int64'])
   scaler = MinMaxScaler()
   normalized_data = scaler.fit_transform(numeric_data)
   normalized_df = pd.DataFrame(normalized_data, columns=numeric_data.columns)

# Compute the correlation matrix on normalized data
   correlation_matrix = normalized_df.corr()

# Plot the correlation heatmap
   plt.figure(figsize=(16, 12))
   sns.heatmap(correlation_matrix, annot=True, cmap='viridis', square=True)
   plt.title("Correlation Heatmap for Normalized Numeric Features")
   plt.show()
```


There are no significant correlations between features except 'CultLand' and 'CropCultLand'.

```
In [13]: # Select numerical columns
    numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns

# Set up rows of 3 plots each
    num_plots = len(numerical_columns)
    num_rows = (num_plots // 3) + (num_plots % 3 > 0)

fig, axes = plt.subplots(num_rows, 3, figsize=(18, num_rows * 4))
    axes = axes.flatten()

# Create histograms for each numerical column
for i, col in enumerate(numerical_columns):
```

```
sns.histplot(df[col].dropna(), kde=True, ax=axes[i])
          axes[i].set_title(f'Distribution of {col}')
           axes[i].set_xlabel(col)
           axes[i].set_ylabel('Frequency')
  # Hide any extra subplots
  for j in range(i + 1, num_rows * 3):
          axes[j].set_visible(False)
  plt.tight_layout()
  plt.show()
                  Distribution of CultLand
                                                                                                                       Distribution of CropTillageDepth
                                                                     Distribution of CropCultLand
                                                                                                         1400
 500
                                                                                                         1200
 400
                                                                                                         1000
                                                                                                         800
300
400
                                                      300
                                                                                                         600
                                                                                                         400
                                                                                                         200
                                                                                                                             CropTillageDepth
                Distribution of SeedlingsPerPit
                                                               Distribution of TransplantingIrrigationHours
                                                                                                                         Distribution of TransIrriCost
 1400
                                                                                                         400
1200
 1000
                                                      400
                                                      300
 400
                                                                                                         100
 200
                                                                      750 1000 1250 1500 1750 2000
TransplantingIrrigationHours
                                                                                                                               3000
TransIrriCost
                Distribution of StandingWater
                                                                      Distribution of Ganaura
                                                                                                                         Distribution of CropOrgFYM
 1200
                                                      500
                                                      400
 800
                                                                                                         250
                                                                                                         200
 600
                                                                                                         150
                                                                                                         100
                                                      100
 200
                                                                                                                           1500 2000 2500 3000 3500 4000
CropOrgFYM
                       8
StandingWater
                                                                           600 800
Ganaura
               Distribution of NoFertilizerAppIn
                                                                      Distribution of BasalDAP
                                                                                                                         Distribution of BasalUrea
2000
1500
 1000
                                                      200
 500
                                                                                                         100
                      2.5
NoFertilizerAppIn
                                                                                                                                40
BasalUrea
                                                                            BasalDAP
                  Distribution of 1tdUrea
                                                                    Distribution of lappDaysUrea
                                                                                                                           Distribution of 2tdUrea
 400
                                                                                                         200
                                                      500
                                                      300
E 200
                                                                                                        불 100
                                                      200
 100
```



```
In [14]: numerical columns
```

```
Index(['CultLand', 'CropCultLand', 'CropTillageDepth', 'SeedlingsPerPit',
Out[14]:
                 'TransplantingIrrigationHours', 'TransIrriCost', 'StandingWater',
                 'Ganaura', 'CropOrgFYM', 'NoFertilizerAppln', 'BasalDAP', 'BasalUre
          a',
                 '1tdUrea', '1appDaysUrea', '2tdUrea', '2appDaysUrea', 'Harv_hand_ren
          t',
                 'Residue length', 'Residue perc', 'Acre', 'Yield'],
                dtype='object')
```

Let's look closer at some of the features

```
In [15]: # Calculate the 95th percentile for the 'Ganaura' column
         q90 = df['Ganaura'].quantile(0.95)
         print("95th Percentile (Upper Limit):", q90)
```

95th Percentile (Upper Limit): 80.0

```
In [16]: # Ganaura, CropOrgFYM
         df['CropOrgFYM'].quantile(0.95)
```

Out[16]: 22.75

```
In [17]: # Calculate the 95th percentile
         q95 = df['lappDaysUrea'].quantile(0.95)
         print("95th Percentile (Upper Limit):", q95)
```

95th Percentile (Upper Limit): 45.0

```
In [18]: |q95 = df['TransplantingIrrigationHours'].quantile(0.95)
```

```
print("95th Percentile (Upper Limit):", q95)
        95th Percentile (Upper Limit): 15.0
In [19]: # Checking correlation between the two columns
         correlation = df[['CropCultLand', 'Acre']].corr()
         print(correlation)
                       CropCultLand
                                        Acre
        CropCultLand
                            1.00000
                                     0.39407
        Acre
                            0.39407
                                     1.00000
In [20]: # Checking correlation between the two columns
         correlation = df[['CultLand', 'Acre']].corr()
         print(correlation)
                  CultLand
                                 Acre
        CultLand
                  1.000000
                            0.409604
        Acre
                  0.409604 1.000000
In [21]: df['Yield'].quantile(0.90)
Out[21]: 1200.0
In [22]: df['Harv_hand_rent'].value_counts().sort_index()
Out[22]: Harv_hand_rent
          1.0
                      1
          2.0
                      2
          3.0
                     11
          4.0
                      4
          5.0
                      7
          6137.0
                      1
          7221.0
                      1
          7931.0
                      1
                      2
          9300.0
          60000.0
                      1
          Name: count, Length: 131, dtype: int64
         Let's inspect the number of fertilizer applications and their kind
In [23]: df['NoFertilizerAppln'].value_counts()
Out[23]: NoFertilizerAppln
          2
               2201
          3
               1181
          1
                481
          Name: count, dtype: int64
```

In [24]: df[df['NoFertilizerAppln'] != 1][['FirstTopDressFert', '1tdUrea', '1appDaysUrea

Out[24]: FirstTopDressFert 1tdUrea 1appDaysUrea

ID			
ID_GTFAC7PEVWQ9	Urea	15.0	18.0
ID_TK40ARLSPOKS	Urea	20.0	39.0
ID_1FJY2CRIMLZZ	Urea	5.0	65.0
ID_I3IPXS4DB7NE	Urea	5.0	5.0
ID_4T8YQWXWHB4A	Urea	30.0	26.0
ID_DU6AHQ06QMXV	Urea	9.0	23.0
ID_PW2LN7ACB8MM	Urea DAP	2.0	30.0
ID_7ZZQ6R4XB4FK	Urea	12.0	45.0
ID_PVVDF6LK6F08	Urea	6.0	45.0
ID_KEPOQDTCZC6S	Urea	10.0	28.0

3389 rows × 3 columns

```
In [25]: # Filter rows where 'FirstTopDressFert' does not contain "Urea" and 'NoFerti
filtered_df = df[(~df['FirstTopDressFert'].str.contains("Urea", na=False)) &
    # Display the filtered result
    print(filtered_df)
```

	FirstTopDressFert	1tdUrea	1appDaysUrea
ID			
<pre>ID_GRREKUJLG8N5</pre>	DAP	NaN	NaN
ID_RQ2X90R8F30U	DAP	NaN	NaN
<pre>ID_6VW9ED51TTXA</pre>	DAP	NaN	NaN
<pre>ID_6SNCEIE9GIKJ</pre>	DAP	NaN	NaN
ID_W53ULSZ3UZJK	DAP	NaN	NaN
ID_3KR27B00615L	DAP NPKS	NaN	NaN
<pre>ID_USJIQ3L9ZQLD</pre>	DAP	NaN	NaN
<pre>ID_9II4YBSXYK4Q</pre>	DAP	NaN	NaN
<pre>ID_2KJP9DE2ZBIY</pre>	DAP	NaN	NaN
ID_8I7QB5U74AUJ	DAP	NaN	NaN

[75 rows x 3 columns]

```
In [26]: df[df['NoFertilizerAppln']==3][['2tdUrea', '2appDaysUrea']]
```

2tdUrea 2appDaysUrea ID ID_6044Z25H1JAV 6.0 67.0 ID_6YA9Y09O55LE 7.0 58.0 ID_920QSAHCN51N 12.0 65.0 ID_SJYVZSXJCX8S 1.0 60.0 ID_O99ZE30OJQ0E 1.0 60.0 • • • ID_OQG31JUGU5JL 7.0 65.0 ID_RSC7O6MY665W 10.0 45.0 ID_DU6AHQ06QMXV 9.0 55.0 ID_PW2LN7ACB8MM 1.0 60.0 ID_PVVDF6LK6F08 6.0 6.0

1181 rows × 2 columns

Out[26]:

In [27]: df[(df['NoFertilizerAppln'].isin([3, 4])) & (df['2tdUrea'].isna() | df['2app

Out [27]: 2tdUrea 2appDaysUrea

ID		
ID_X4024AVMS14D	6.0	NaN
ID_N1ELLJ1F32VU	NaN	NaN
ID_JI5NFWHR5G3H	4.0	NaN
ID_90IBO92HGZYD	5.0	NaN
ID_T5LYSK1D2TZX	NaN	NaN
ID_K9MMVQBHNSWY	NaN	NaN
ID_AXUCB1MQPA7Q	NaN	NaN
ID_Q5NRUPWTA5NX	3.0	NaN
ID_V7KHHGC42620	NaN	NaN
ID_4BUF8KA1KQN5	NaN	NaN
ID_S6XXFVWMWIEC	NaN	NaN
ID_FTCLUK815GGN	6.0	NaN
ID_LVFLM1AU48RZ	NaN	NaN
ID_6E1ZCZXS0M7H	6.0	NaN
ID_7W8Z7KFB21B8	NaN	NaN
ID_I35G50DPKNCY	NaN	NaN
ID_05LJ8YMX1TWL	NaN	NaN
ID_HZ9W937YJ3RI	NaN	NaN

In [28]: df[(df['2tdUrea'].isna() | df['2appDaysUrea'].isna())][['2tdUrea', '2appDays

Out[28]:

2tdUrea 2appDaysUrea

_	

ID_GTFAC7PEVWQ9	NaN	NaN
ID_TK40ARLSPOKS	NaN	NaN
ID_1FJY2CRIMLZZ	NaN	NaN
ID_I3IPX\$4DB7NE	NaN	NaN
ID_4T8YQWXWHB4A	NaN	NaN
ID_NOASMX3TXXY9	NaN	NaN
ID_7ZZQ6R4XB4FK	NaN	NaN
ID_RBYVUPRATVMW	NaN	NaN
ID_ARE9QWENJNJ2	NaN	NaN
ID_KEPOQDTCZC6S	NaN	NaN

2700 rows × 2 columns

Visualize Categorical Variables

```
In [29]: # Define the number of top categories to display (including "Other")
         top n = 10
         categorical_columns = df.select_dtypes(include=['object']).columns
         # Calculate rows and columns for the subplots grid
         num plots = len(categorical_columns)
         num_rows = (num_plots // 2) + (num_plots % 2 > 0) # Two plots per row
         fig, axes = plt.subplots(num_rows, 2, figsize=(16, num_rows * 8)) # Adjust
         axes = axes.flatten()
         # Plot top categories with an "Other" category as the 11th bar
         for i, col in enumerate(categorical_columns):
             # Get the top N categories
             top_categories = df[col].value_counts().nlargest(top_n)
             # Calculate "Other" as the sum of all categories outside the top N
             other count = df[col].value counts()[top n:].sum()
             top_categories['Other'] = other_count # Add "Other" category as the 11t
             # Plot
             top_categories.plot(kind='bar', ax=axes[i], width=0.6) # Adjust width 1
```

```
axes[i].set_title(f'Top Categories in {col}', fontsize=14)
axes[i].set_xlabel(col, fontsize=12)
axes[i].set_ylabel('Count', fontsize=12)
axes[i].tick_params(axis='x', rotation=45)

# Hide any extra subplots if fewer than 2 plots in the last row
for j in range(i + 1, len(axes)):
    axes[j].set_visible(False)
plt.tight_layout()
plt.show()
```


Top Categories in CropEstMethod

Top Categories in RcNursEstDate

Visualize date columns

```
In [30]: # List of date columns
    date_columns = ['CropTillageDate', 'RcNursEstDate', 'SeedingSowingTransplant

# Temporarily convert date columns to datetime format
    for col in date_columns:
        df[col] = pd.to_datetime(df[col])

# Plot the distribution of each date column
    for col in date_columns:
        plt.figure(figsize=(10, 5))
        sns.histplot(df[col].dropna(), bins=100, kde=True) # Use KDE to see the
        plt.title(f'Distribution of {col}')
        plt.xlabel('Date')
        plt.ylabel('Frequency')
        plt.xticks(rotation=45)
        plt.show()
```


In [31]: # Filter rows where 'Harv_date' is before October 1, 2022
df[df['Harv_date'] < '2022-09-01']</pre>

Out[31]:		District	Block	CultLand	CropCultLand	LandPreparationMethod
	ID					
	ID_9P3DV08LL3SX	Jamui	Khaira	50	32	TractorPlough
	ID_YTZN9FE7PQUY	Nalanda	Rajgir	30	30	TractorPlough
	ID_RL2F5BMVBUAX	Jamui	Khaira	22	16	TractorPlough

In [32]: df[df['Harv_date'] > '2023-01-01']

Out[32]:		District	Block	CultLand	CropCultLand	LandPreparationMe ⁻
	ID					
	ID_PX8CNYP9YHPE	Vaishali	Chehrakala	8	6	TractorPlo FourWheelTracRota
	ID_PATK559888IV	Gaya	Gurua	30	30	TractorPlo FourWheelTracRota
	ID_ZAQF5TZH58PX	Nalanda	Rajgir	56	42	TractorPlo FourWheelTracRota
	ID_J7PL485NOPNC	Nalanda	Rajgir	38	28	TractorPlo FourWheelTracRota
	ID_X2XPIRO6ZYMC	Nalanda	Rajgir	42	32	TractorPlo FourWheelTracRota
	ID_WIXJZSB1JPAA	Gaya	Gurua	15	15	TractorPlo FourWheelTracRota
	ID_RCQBDGSCHLXV	Jamui	Jamui	10	10	TractorPlo
	ID_Z0CHG2VQSJ31	Jamui	Jamui	20	20	TractorPlo BullockPlo
	ID_2KJP9DE2ZBIY	Jamui	Jamui	18	5	WetTillagePud TractorPl BullockPl

```
In [33]: # Revert to original format if needed (optional)
for col in date_columns:
    df[col] = df[col].astype(str) # Convert back to string if needed
```

THE END

The rest of this notebook is failed model exploration.

In	[]:	
In]]:	
In]]:	
In	[]:	

Preprocessing

Split data into training and testing

```
In [302... # Drop the index column
    df = df.reset_index(drop=True)

X = df.drop('Yield', axis=1) # Features
y = df['Yield'] # Target

# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
```