Cardinality

MA 1201

Shibananda Biswas

IISER Kolkata

January 14, 2024

Countable sets

For checking countability

Definition.

- A set *A* is said to be *countably infinite* or just *countable* if it has same cardinality with \mathbb{N} , that is, \exists a bijection between \mathbb{N} and *A*.
- A set is called *atmost countable* if it is finite or countable.
- An infinite set is called *uncountable* if it is not countable.

Exc.

- If $A \subseteq B$ and B is countable, then A is atmost countable.
- If $f: A \to B$ is 1-1 and B is countable, then f(A) and hence A is atmost countable.
- If $f: A \to B$ is onto and A is countable, then B is atmost countable.

Countable union

Theorem

Countable union of countable sets is countable.

Proof. WLOG, let $A_1, A_2, \ldots, A_n, \ldots$ be a countable family of countable sets. Also let WLOG

$$A_{1} = \{a_{11}, a_{12}, \dots, a_{1n, \dots}\}$$

$$A_{2} = \{a_{21}, a_{12}, \dots, a_{2n, \dots}\}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$A_{n} = \{a_{n1}, a_{n2}, \dots, a_{nn, \dots}\}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Let
$$A = \bigcup_{i=1}^{\infty} A_i$$
.

Case I. $A_i \cap A_j = \emptyset$ for all $i \neq j$.

3

Proof idea

4

Idea of bijection

Tweak a little for explicit bijection

The bijection

Note that

$$\mathbb{N} = \bigcup_{m \in \mathbb{N}} \left(\frac{m(m-1)}{2}, \frac{m(m+1)}{2} \right]$$

and that this union is disjoint.

Also note that the arrows are like slanting lines joining (1, m) to (m, 1) with any point (r, s) of the m points lying on it satisfies r + s = m + 1.

So given $n \in \mathbb{N}$, $\exists m$ such that

$$\frac{m(m-1)}{2} < n \le \frac{m(m+1)}{2}$$

Define $f: \mathbb{N} \to A$ by $f(n) = a_{rs}$ with r + s = m + 1 and $r = n - \frac{m(m-1)}{2}, r \ge 1$.

7

The other way

Now, given rs, we want to associate an integer to it. We first look at which slating line it is lying on that is, what is r + s?

Say r + s = k + 1 for some k. So it is lying on the kth slanting line that has k many elements.

To count upto rs, then we first cross $1+2+\ldots+(k-1)$ many elements, that is, $\frac{k(k-1)}{2}$ elements and then r elements.

So we map

$$rs \mapsto r + \frac{k(k-1)}{2} = r + \frac{(r+s-1)(r+s-2)}{2}.$$

Define $g: A \to \mathbb{N}$ by $g(a_{rs}) = r + \frac{(r+s-1)(r+s-2)}{2}$.

To show bijection between A and \mathbb{N} , we shall show this g is a bijection instead of showing f is so.

8

Suppose $g(a_{rs}) = g(a_{ij})$.

$$r+\frac{(r+s-1)(r+s-2)}{2}=i+\frac{(i+j-1)(i+j-2)}{2}.$$

We claim r + s = i + j. If not, say r + s < i + j, then

$$g(a_{ij}) - g(a_{rs}) = i - r + \sum_{k \ge r+s-1}^{i+j-2} k$$

 $\ge i + s - 1$
 $> 0, \text{ as } i, s > 1.$

Similarly for r + s > i + j.

So $g(a_{rs}) = g(a_{ij})$ implies r + s = i + j and hence from the first equation r = i.

Subsequently, s = j. Therefore $a_{rs} = a_{ij}$ and g is 1 - 1.

We look back to f where given n, we associate a_{rs} .

Clearly
$$g(a_{rs}) = r + \frac{m(m-1)}{2}$$
 where $r + s = m + 1$.

Now we know
$$r = n - \frac{m(m-1)}{2}$$
, and thus $g(a_{rs}) = n$.

So, the proof of Case I is complete.

This association, that is, the map g of uniquely encoding two natural numbers into a single natural number is known as Cantor's pairing function (a very slight modification)

Case II

Here A_i need not be pairwise disjoint.

Let us define the sets B_i , $i \in \mathbb{N}$ by

$$B_1 = A_1, B_2 = A_2 \setminus A_1, B_3 = A_3 \setminus (A_1 \cup A_2), \dots$$

 $B_k = A_k \setminus (A_1 \cup A_2 \dots \cup A_{k-1})$

Then $B_i \subseteq A_i$ and hence atmost countable for all i, with B_1 countable, and

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i \ (?)$$

and $B_i \cap B_j = \emptyset$ for all $i \neq j$.

This completes the proof. (?)

11

Confession

I made a mistake - **Snehamayee** corrected me.

Question. Given an $n \in \mathbb{N}$, how to find m such that

$$\frac{m(m-1)}{2} < n \le \frac{m(m+1)}{2}$$
 ?

Note that $n = r + \frac{m(m-1)}{2}$ with $0 < r \le m$.

If $\frac{m(m-1)}{2} = \ell$, then $m = \frac{1 \pm \sqrt{1+8\ell}}{2}$ and as m should be positive,

$$m=\frac{1+\sqrt{1+8\ell}}{2}.$$

Now
$$\ell = \frac{m(m-1)}{2} < n \le \frac{m(m+1)}{2}$$
 gives

$$m = \frac{1 + \sqrt{1 + 8\ell}}{2} < \frac{1 + \sqrt{1 + 8n}}{2} \le m + 1.$$

In quest of *m* - Snehamayee's correction

So we have

$$m = \begin{cases} \left[\frac{1+\sqrt{1+8n}}{2}\right], & \text{if } \frac{1+\sqrt{1+8n}}{2} \notin \mathbb{N}, \\ \frac{1+\sqrt{1+8n}}{2} - 1, & \text{if } \frac{1+\sqrt{1+8n}}{2} \in \mathbb{N}. \end{cases}$$

Now I asserted in the class that I prove the function g is 1-1 instead of proving f is 1-1 in order to avoid this deduction for m.

However, Snehamayee demonstrated that it is not necessary to determine m to prove that f is 1-1; the mere existence of such an m suffices. In fact, proving this is significantly easier than showing that g is 1-1, which I had missed.

Proving f is a bijection

Let
$$f(n_1) = a_{rs}$$
, $f(n_2) = a_{ij}$ and $f(n_1) = f(n_2)$. Thus $r = i$ and $s = j$.

Existence of m_1 for n_1 and m_2 for n_2 and the construction of r, s would give $r + s = m_1 + 1$ and $i + j = m_2 + 1$. Therefore, $m_1 = m_2$. Then

$$n_1 = r + \frac{m_1(m_1 - 1)}{2} = i + \frac{m_2(m_2 - 1)}{2} = n_2.$$

On the other hand, f is onto as for any $a_{rs} \in A$, if we take r+s=m+1 and $n=r+\frac{m(m-1)}{2}$, then n satisfies

$$\frac{m(m-1)}{2} < n \le \frac{m(m+1)}{2},$$

and hence, $f(n) = a_{rs}$.

An alternate proof of Case I

Observe that by what ever we have learnt, it was enough to show g is 1-1 since A is infinite, g(A) is infinite subset of \mathbb{N} and hence countable and so is A.

Define $g: A \to \mathbb{N}$ by $g(a_{rs}) = 2^r 3^s$.

Exc. Show that g is 1-1.

We are then done by the observation.

Some more observations

Proposition

 $\mathbb{N} \times \mathbb{N}$ is countable.

Let \mathbb{Q}_+ be the set of all positive rational numbers.

Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}_+$ by $f(p,q) = \frac{p}{q}$. Note f is onto.

Exc. \mathbb{Q}_+ is countable.

Proposition

 \mathbb{Q} is countable.

Proof. $\mathbb{Q} = -\mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_+$.

Cartesian product of countable sets

Exc. Let $n \in \mathbb{N}$ and A_1, \ldots, A_n be non-empty countable sets, then

$$A_{\times} \ldots \times A_n$$

is countable.

Question. What about countable product of countable sets? What is countable product?

The finite cartesian product $A_{\times} \dots \times A_n$ can be thought of as

$$\{f|f:I_n\to \cup_{i=1}^n A_i \text{ such that } f(i)\in A_i\,\forall i\in I_n\}.$$

Realization of cartesian product of two sets as functions

For two sets A_1 and A_2 ,

$$A_1 \times A_2 = \{(a_1, a_2) : a_1 \in A_1 \text{ and } a_2 \in A_2\}$$

Let
$$F := \{f | f : \{1, 2\} \to A_1 \cup A_2 \text{ such that } f(1) \in A_1 \text{ and } f(2) \in A_2\}.$$

We claim that there is a natural bijection between $A_1 \times A_2$ and F.

Let
$$(a_1, a_2) \in A_1 \times A_2$$
, define a function $f_{a_1 a_2} : \{1, 2\} \to A_1 \cup A_2$ by

$$f_{a_1a_2}(1) = a_1$$
 and $f_{a_1a_2}(2) = a_2$.

Define $h: A_1 \times A_2 \rightarrow F$ by $h(a_1, a_2) = f_{a_1 a_2}$.

h is 1-1 since if $h(a_1,a_2)=h(b_1,b_2)$ for $(a_1,a_2),(b_1,b_2)\in A_1\times A_2$, we have $f_{a_1a_2}=f_{b_1b_2}$ and thus $a_1=f_{a_1a_2}(1)=f_{b_1b_2}(1)=b_1$ and $a_2=f_{a_1a_2}(2)=f_{b_1b_2}(2)=b_2$.

h is onto since if $f \in F$, then $(f(1), f(2)) \in A_1 \times A_2$ and $h(f(1), f(2)) = f_{f(1)f(2)} = f$ (?).

Cartesian product of countably many sets

Let $\{A_{\alpha}\}$ be a collection of sets indexed by $\alpha \in I$ for some index set I.

$$\prod_{\alpha \in I} A_\alpha := \{ f | f : I \to \cup_{\alpha \in I} A_\alpha \text{ such that } f(\alpha) \in A_\alpha \ \forall \alpha \in I \}.$$

Axiom of choice. The cartesian product of non-empty family of sets is non-empty.

Let $\{A_n : n \in \mathbb{N}\}$ be a countable family of sets..

$$\prod_{n\in\mathbb{N}} A_n := \{ f | f : \mathbb{N} \to \bigcup_{n\in\mathbb{N}} A_n \text{ such that } f(n) \in A_n \, \forall n \in \mathbb{N} \}.$$

Question. Suppose each A_i is countable, then is $\prod_{n \in \mathbb{N}} A_n$ countable?

A weaker question

Suppose we take all $A_n = A$, then $\prod A_n$ is denoted by $A^{\mathbb{N}}$. Note that

$$A^{\mathbb{N}} = \{ f | f : \mathbb{N} \to A \}.$$

This notation is motivated from the notation \mathbb{R}^n which, by reasons given previously, can be thought of as $\{f|f:\{1,2,\ldots,n\}\to\mathbb{R}\}.$

Question. Suppose *A* is countable, then is $A^{\mathbb{N}}$ countable?

If *A* is a singleton, say $A = \{0\}$. Then $A^{\mathbb{N}} = \{f | f(n) = 0 \forall n \in \mathbb{N}\}$ is a singleton.

However, this result is FALSE if |A| > 1.

Uncountable sets

Example of uncountable sets

Theorem

 $\{0,1\}^{\mathbb{N}}$ is uncountable.

Proof. Note

$$\{0,1\}^{\mathbb{N}} = \{f | f : \mathbb{N} \to \{0,1\}\}.$$

The map $n \mapsto \delta_n$ from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$ is 1-1 (?), where

$$\delta_n(i) = \begin{cases} 0 & \text{if } i \neq n, \\ 1 & \text{if } i = n. \end{cases}$$

Hence, $\{0,1\}^{\mathbb{N}}$ is infinite.

To prove $\{0,1\}^{\mathbb{N}}$, we shall show that it is not countable. On the contrary , we assume it to be countable and arrive at a contradiction.

Let $\{0,1\}^{\mathbb{N}} = \{f_1, f_2, \dots, f_n \dots\}$. We shall show that there exists a function $g: \mathbb{N} \to \{0,1\}$ so that $g \neq f_n$ for any $n \in \mathbb{N}$ - a contradiction.

Idea and proof - Cantor's diagonal argument

Listing of f_n 's as sequence when we evaluate them at 1, 2, 3, ...:

$$f_{1} \rightarrow f_{1}(1) \quad f_{1}(2) \quad f_{1}(3) \quad \cdots$$

$$f_{2} \rightarrow f_{2}(1) \quad f_{1}(2) \quad f_{2}(3) \quad \cdots$$

$$f_{3} \rightarrow f_{3}(1) \quad f_{3}(2) \quad f_{3}(3) \quad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f_{n} \rightarrow f_{n}(1) \quad f_{n}(2) \quad f_{n}(3) \quad \cdots \quad f_{n}(n) \quad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

For example, the zero function is given by the sequence

Consider $g: \mathbb{N} \to \{0, 1\}$ given by $g(n) \neq f_n(n)$ (diagonal entry) for all $n \in \mathbb{N}$, that is, g(n) = 1 if $f_n(n) = 0$ and g(n) = 0 if $f_n(n) = 1$.

Hence $g \neq f_n$ for any $n \in \mathbb{N}$.

Power set of \mathbb{N}

Theorem

There exists a bijection between $\mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$.

Proof. Let $A \in \mathcal{P}(\mathbb{N})$, that is, $A \subseteq \mathbb{N}$. Define the characteristics function $\chi_A : \mathbb{N} \to \{0,1\}$ of A by

$$\chi_A(n) = \begin{cases} 1 & \text{if } n \in A, \\ 0 & \text{if } n \notin A. \end{cases}$$

Observe that if $A = \emptyset$ iff χ_A is the constant function 0 and $A = \mathbb{N}$ iff χ_A is the constant function 1.

Define $h: \mathcal{P}(\mathbb{N}) \to \{0,1\}^{\mathbb{N}}$ by $h(A) = \chi_A$. We claim that h is a bijection.

Let $A, B \subseteq \mathbb{N}$. Then h(A) = h(B) implies $\chi_A = \chi_B$. Now

$$n \in A \iff \chi_A(n) = 1 \iff \chi_B(n) = 1 \iff n \in B$$

The first and last implication follows from definition whereas the middle one follows from the assumption. Thus A = B and hence h is 1 - 1.

Uncountability of $\mathcal{P}(\mathbb{N})$

Proof ctd. To prove *h* is onto, let $f : \mathbb{N} \to \{0, 1\}$. Define

$$A := \{n : f(n) = 1\}.$$

Note that $\chi_A(i) = 1$ if $i \in A$ and by definition, then f(i) = 1.

On the other hand, $\chi_A(i) = 0$ if $i \notin A$ by definition, then f(i) = 0.

So $\chi_A(i) = f(i)$ for all $i \in \mathbb{N}$. Thus $h(A) = \chi_A = f$ and hence, h is onto.

Corollary

 $\mathcal{P}(\mathbb{N})$ is uncountable.

Cantor's Theorem

So we just have observed that \mathbb{N} and $\mathcal{P}(\mathbb{N})$ do not have same cardinality.

What happens in general?

Theorem

For any set A, there does not exists a bijection between A and $\mathcal{P}(A)$.

Proof. We assume on the contrary that there exists a bijection $f: A \to \mathcal{P}(A)$.

Proof of Cantor's Theorem - Russell's paradox

Consdier the set

$$B := \{ x \in A : x \notin f(x) \}$$

Since f is onto, $\exists b \in A \text{ such that } f(b) = B$.

Now note either $b \in B$ or $b \notin B$.

If $b \in B$, then by definition, $b \notin f(b) = B$ - contradiction.

If $b \notin B$, then by definition, $b \in f(b) = B$ - contradiction. The proof is complete.

Remark

There does not exists an onto map from A to $\mathcal{P}(A)$.

Rethinking cardinality

Definition. Each set A is assigned with a symbol in such a way that two sets A and B are assigned with the same symbol if and only if there is a bijection between them. This symbol is called *cardinality* or *cardinal number* of A and is denoted by |A|.

0 is assigned to \emptyset and n to I_n . Thus

|A| = n if and only if \exists a bijection between A and I_n .

We just learnt that $\mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$ has same cardinality, that is $|\mathcal{P}(\mathbb{N})| = |\{0,1\}^{\mathbb{N}}|$ and hence $|\mathcal{P}(\mathbb{N})| \neq |\mathbb{N}|$.

Similarly Cantor's theorem says that $|A| \neq |\mathcal{P}(A)|$.

Ordering cardinality

Following definition extends the notion of ordering of cardinality of finite sets.

Definition. Let A and B are two sets. We say that cardinality of A is less than or equal to the cardinality of B, denoted by

$$|A| \leq |B|$$
,

if A has the same cardinality as of a subset of B, that is, \exists a 1 - 1 map from A to B.

Furthermore,

|A| is less than |B|, denoted by |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$,

|A| is greater than or equal to |B|, denoted by $|A| \ge |B|$ if $|B| \le |A|$,

|A| is greater than |B|, denoted by |A| > |B| if $|A| \ge |B|$ but $|A| \ne |B|$.

Rephrasing Cantor's Theorem

For any set, the function $g: A \to \mathcal{P}(A)$ given by $g(a) = \{a\}$ is 1 - 1.

Thus $|A| \leq |\mathcal{P}(A)|$.

Cantor's Theorem

For any set A, we have $|A| < |\mathcal{P}(A)|$.

Question. If for any two sets *A* and *B* with $|A| \leq |B|$ and $|B| \leq |A|$, does it imply

$$|A| = |B|$$
?

Answer is YES - this is known as Schroeder - Bernstein Theorem.

We will prove this next week.

A justification for notation

Notation. $\mathcal{P}(A)$ is also denoted by 2^A and $|\mathcal{P}(A)|$ by $2^{|A|}$.

For any finite set A with |A| = n, we have $|\mathcal{P}(A)| = 2^n$. A primary motivation for this notation.

Going by previous comments on realizing cartesian products $A^{\mathbb{N}}$ as functions $f: \mathbb{N} \to A$, for any two sets A and B,

let A^B denotes the set of all functions from B to A.

Exc. For any two finite sets A and B, the cardinality of A^B is $|A|^{|B|}$.

We have $|\mathcal{P}(A)| = |\{0,1\}^A|$ (?). This also somewhat justifies the notation above.