第一部分

1.	以下关于字符编码描述错误的是。 A. ASCII 码使用一个字节的编码,包含了所有的英文大小写字符 B. UTF-8 码使用两个字节的编码,包含了英文字符,中文字符以及日文字符等 C. 字符编码不包含字符如何显示的信息 D. 字符显示放大时,使用矢量字体的字符不会失真
2.	八位二进制数据 01011011 的奇校验位为:; 三位二进制数据 D3D2D1=101 的带全局校验的海明码校验码 P4P3P2P1 为。
3.	判断题(简述理由): RISC 指令的处理器运行频率要比 CISC 指令的处理器频率高。
4.	判断题(简述理由) : 只要运算器具有加法器和移位功能,再增加一些控制逻辑就能实现乘除运算。

5. 计算题:请使用加减交替法进行运算。x=0.1010, y=0.1101,求 x÷y,写出计算过程。

第三部分

1.	关于高速缓存的说法正确的是。 A. 写直达(write through)比写回(write back)的性能高 B. 固定的高速缓存大小,较大的块可提高时间局部性好的程序的命中率 C. 相联度的改变不会影响命中率 D. 以上都不对
2.	下列关于闪存特性及 FTL(Flash Translation Layer)的说法,错误的是。 A. 闪存的写粒度和擦除粒度不同 B. FTL 提供地址映射功能 C. 闪存页在写之前需要擦除 D. 闪存每单元能编码的比特数(bits per cell) 越高,闪存的寿命越长
3.	以下关于固态硬盘的描述,错误的是。 A. FTL(Flash Translation Layer)能够将逻辑地址翻译到物理地址 B. 固态硬盘的物理地址包括了 Die, Plane, Block 等的信息 C. 文件系统使用物理地址记录文件在固态硬盘中的位置 D. 固态硬盘是按照 Block 的粒度进行擦除,按照 Page 的粒度进行读写
4.	对于虚拟存储系统,一次访存过程中,下列命中组合不可能发生的是。 A. TLB 未命中,Cache 未命中,页表未命中 B. TLB 未命中,Cache 命中,页表命中 C. TLB 命中,Cache 未命中,页表命中 D. TLB 命中,Cache 命中,页表未命中
5.	关于存储器,以下描述正确的是。 A. 静态存储器不需要刷新,即使掉电之后数据也不会丢失 B. 动态存储器需要定期读出数据,然后将相同数据写回到动态存储器本身 C. 静态存储器的读操作是破坏性的,读出之后需要将数据写回 D. 固态硬盘属于静态存储器的一种,写入数据不需要刷新
6.	判断题(简述理由): RAID5 和 RAID4 比较,检错纠错能力更高。

7. 简答题:

现假设一计算机系统

- 采用 16 位的虚拟地址。
- 采用13位的物理地址。
- 页面大小为 512B。
- TLB 是 8 路组相联, 共有 16 个 TLB 表项。
- Cache 是 2 路组相联,共有 16 个大小为 4B 的 Cache Lines。

在下表中,所有数字均为 16 进制。 对于前 32 个页面,TLB、页表及 Cache 的内容如下:

TLB							
Index	Tag	PPN	Valid				
0	09	4	1				
	12	2	1				
	10	0	1				
	08	5	1				
	05	7	1				
	13	1	0				
	10	3	0				
	18	3	0				
1	04	1	0				
	0C	1	0				
	12	0	0				
	08	1	0				
	06	7	0				
	03	1	0				
	07	5	0				
	02	2	0				

	Page Table								
VPN	PPN	Valid	VPN	PPN	Valid				
00	6	1	10	0	1				
01	5	0	11	5	0				
02	3	1	12	2	1				
03	4	1	13	4	0				
04	2	0	14	6	0				
05	7	1	15	2	0				
06	1	0	16	4	0				
07	3	0	17	6	0				
08	5	1	18	1	1				
09	4	0	19	2	0				
0A	3	0	1A	5	0				
0B	2	0	1 B	7	0				
0C	5	0	1C	6	0				
0D	6	0	1D	2	0				
0E	1	1	1E	3	0				
0F	0	0	1F	1	0				

	2-way Set Associative Cache											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	19	1	99	11	23	11	00	0	99	11	23	11
1	15	0	4F	22	EC	11	2F	1	55	59	0B	41
2	1B	1	00	02	04	08	0B	1	01	03	05	07
3	06	0	84	06	B2	9C	12	0	84	06	B2	9C
4	07	0	43	6D	8F	09	05	0	43	6D	8F	09
5	0D	1	36	32	00	78	1E	1	A1	B 2	C4	DE
6	11	0	A2	37	68	31	00	1	BB	77	33	00
7	16	1	11	C2	11	33	1E	1	00	C0	0F	00

(1) (i) 下图展示了虚拟地址的格式, 在图中标出以下这些域(不存在不用标)。

VPO Virtual Page Offset

VPN Virtual Page Number

TLBI TLB Index

TLBT TLB Tag

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

(ii) 下图展示了一个物理地址的格式。在图中标出以下这些域。

PPO Physical Page Offset

PPN Physical Page Number

CO Offset within the Cache Line

CI Cache Index

CT Cache Tag

12	11	10	9	8	7	6	5	4	3	2	1	0

(2) 对于给定的虚拟地址 0x0bde, 标识出它映射到的 TLB 表项、物理地址、以及 Cache 状态, 标识出是否发生了一次 TLB 缺失、是否发生了一次缺页异常、是否发生了一次 Cache Miss。

如果发生了一次 Cache Miss, 请在"Cache Byte returned"处留空。

如果发生了一次缺页异常,请在 PPN 处、Physical Address 处留空,并将表 (ii) 中的每一格留空。

(i) 请填写下表:

Parameter	Value
VPN	
TLB Index	
TLB Tag	
TLB Hit? (Y/N)	
Page Fault? (Y/N)	
PPN	
Physical Address	

(ii) 请填写下表:

Parameter	Value
Cache Offset	
Cache Index	
Cache Tag	
Cache Hit? (Y/N)	
Cache Byte returned	

(3) 考虑下面的矩阵转置函数:

```
typedef short array [4][4];
void transpose(array dst, array src)
{
    int i,j;
    for(i=0; i<4; i++){
        for(j=0; j<4; j++){
            dst[j][i] = src[i][j];
        }
    }
}</pre>
```

- sizeof(short) = 2;
- 数组 src 从地址 0 开始,而数组 dst 从地址 32 开始(十进制);
- <u>Cache 初始为空</u>,对 src 和 dst 数组的访问分别是 Cache 读和写缺失的唯一来源。 在本题 Cache 设定下,请计算转置函数一共发生了多少次 Cache 缺失。

第四部分

1.	假设某计算机的 CPU 工作频率为 1GHz, 其理想 CPI 为 1.2。某程序中 50%为算术逻辑指令,40%为存取指令,10%为转移指令,取指时不发生缺失。存取指令中数据命中率为90%,数据缺失需要 50 个周期的延迟。请问实际 CPI 是。 A. 1.2 B. 3.2 C. 8.2 D. 21.2
2.	某中断系统有 4 个中断源,I1, I2, I3, I4,对应的中断屏蔽位为 0111, 0 代表对应中断被屏蔽,1 代表对应中断可以响应,中断优先级为 1>3>2>4。如果四个中断同时发生,那么 CPU 需要响应的下一个中断是。 A. I1 B. I2 C. I3 D. I4
3.	以下关于总线的描述,错误的是。 A. 菊链仲裁所有的设备共用一个总线请求信号 B. 集中平行仲裁每个设备有独立的总线授权信号 C. 同步总线所有设备必须按时钟频率工作,总线距离必须足够短 D. DMA 设备不可以独占使用内存总线
4.	某设备通过接口与 PCI 总线进行交互,在下面的功能描述中,不属于接口工作的是。 A. 设备识别 B. 数据输入输出缓冲 C. 完成总线仲裁 D. 使用同步帧进行实时设备同步
5.	提高总线带宽的方法有、、、、、。
6.	某计算机 CPU 的频率为 500MHz,处理器的平均 IPC 为 0.75。某外设有一个 16 位的数据缓冲器。处理器平均需要执行 200 条指令才能完成对外设的一次数据传输。中断服务程序还需要另外 300 条指令完成中断调度,在中断处理函数中还需要执行前述的 200 条指令完成数据传输。采用程序直接控制的方式,能够达到的最大数据传输率为。同样的设备采用 DMA 的方式,一次可以传输 4KB 数据到内存中,但是需要耗费 100 个时钟周期(包括配置和数据传输时间)加一次中断(中断需要执行 300 条指令),则采用 DMA 方式能够达到的最大数据传输率为。
7.	计算题: 自动驾驶依赖于海量数据的采集与处理。假设某辆自动驾驶汽车采用了 1080p 高 清摄像头 (分辨率为 1920*1080,每个像素用 3 个字节表示,帧率 60fps (frame per second))采集路面数据。存储采用的磁盘驱动器参数如下:

参数	值。
旋转速率	15000 RPM
平均寻道时间(Tavg seek)	4 <u>ms</u>
平均扇区数/磁道 (# of	1000
sectors per track)	
盘面数 (# of surfaces)	8 -
扇区大小 (Sector size)	512 字节

请问:

- (1) 总线带宽至少达到多少才能够满足高清摄像头的数据传输? (1920*1080=2073600=2025*1024)
- (2) 以单个文件存储一帧图象,文件由若干个 512 字节的逻辑块组成。假设程序顺序地读取文件内容,对第一个块定位读/写头的时间等于 Tavg seek(平均寻道时间) + Tavg rotation(平均旋转时间)。
 - (i) 计算定位并读取第一个块所需的时间(以 ms 为单位)。
 - (ii) 文件的逻辑块在磁盘上的位置分布有不同的方式,这些分布方式会对文件的读取时间产生影响,计算最好情况和最差情况(完全随机分布)下的文件读取时间。

(提示: 以 ms 为单位, 考虑第一块的定位时间, 柱面 cylinder 切换需要重新寻道。)

- (3) 请计算磁盘最大瞬时传输速率。
- (4) 假设 CPU 的主频是 1GHz, 采用 DMA 方式以 2MB 大小进行磁盘访问, 采用 (3) 中速率, DMA 初始化时间需要 1000 个时钟周期, DMA 完成后中断处理服务需要 500 个时钟周期, 那么在磁盘 100%工作状态下, CPU 用于磁盘 I/O 的时间百分比是多少?