SESA2024 Astronautics

Chapter 5: Mission Analysis Overview of Chapter 5

Professor Hugh Lewis

Mission analysis:

 To select orbit elements for a mission orbit, based upon derived payload requirements

Contents of chapter 5

- The contents of this chapter are divided into 14 recorded lectures & activities:
 - 2. Kepler's Laws
 - 3. The ellipse equation
 - 4. Orbital motion part 1
 - 5. Orbital motion part 2
 - 6. Confirming Kepler's Laws
 - 7. Orbital elements
 - 8. Orbit visualisation activity
 - 9. Orbital energy
 - 10. Orbital energy worked example
 - 11. Orbital transfers
 - 12. Hohmann transfer visualisation activity
 - 13. Hohmann transfer worked example
 - 14. Orbit selection
 - 15. Impacts on spacecraft & recap

We start with the work by Kepler and Newton to understand motion on elliptical orbits, then look at how we describe & define an orbit using orbital elements. Next, we use energy considerations to define an "energy equation", which enables us to calculate a key quantity that is important for mission analysis – "delta V". Finally, we apply our energy equation to solve a fundamental transfer manoeuvre: the Hohmann transfer.

How much time will I need?

Recordings:

- "Traditional" lectures
 - Kepler's Laws (04:30)
 - The ellipse equation (11:00)
 - Orbital motion part 1 (22:30)
 - Orbital motion part 2 (32:30)
 - Confirming Kepler's Laws (15:30)
 - Orbital elements (17:00)
 - Orbital energy (20:30)
 - Orbital transfers (25:30)
 - Orbit selection (14:30)
 - Impacts on spacecraft & recap (11:30)

TOTAL: ~2h 55m 00s

Worked examples

- Orbital energy worked example (08:30)
- Hohmann transfer worked example (14:00)

TOTAL: ~22m 30s

Additional activities

- Orbit visualisation activity (14:00)
- Hohmann transfer visualisation activity (13:00)

TOTAL: ~27m 00s

For all recordings: ~4h

How much time will I need?

Activities & worked examples:

- Reading
 - Chapter 4 SSE textbook (01:00:00)
 - Chapter 5 SSE textbook (01:00:00)
 - Wikipedia (ellipse) (30:00)

TOTAL: ~2h 30m

- Additional activities
 - Kepler's 3rd Law Excel (45:00)
 - Orbit visualisation activity (45:00)
 - WolframAlpha (10:00)
 - Hohmann transfer visualisation activity (20:00)

TOTAL: ~2h

- Worked examples
 - Orbital energy worked example (15:00)
 - Hohmann transfer worked example (20:00)

TOTAL: ~35m

For all activities: ~5h

Block 3 pacing

- Targets to aim for in the next two weeks:
 - By <u>13:00 Thursday 27th October</u> aim to have
 - Watched lectures 2 (Kepler's Laws), 3 (Ellipse Equation), 7 (Orbital Elements) and 9 (Orbital Energy)
 - Think about any questions you'd like to ask in the drop-in session on Monday 31st October
 - By <u>12:00 Tuesday 1st November</u> aim to have:
 - Watched most of the lecture recordings
 - Undertaken some of the additional learning activities & worked examples from the workshops
 - Started the problem sheet questions

Problem sheet questions

- Links to lectures and some hints:
 - Q1: Look at Lecture 5 and Lecture 9
 - Q2: Look at Lecture 9
 - Q3: Look at Lecture 11
 - We didn't derive a single formula for the total delta-V but you can write one if you understand the method (it's the sum of two differences; use some algebra and simplification and you will be able to write a formula for the total delta-V)
 - Q4: Look at Lecture 9
 - Q5: Look at Lecture 7
 - Q6: Look at Lecture 11 and Lecture 13 (the worked example)
 - Think about the important quantities that we are trying to find in Mission Analysis, whether we want these quantities to be large or small, and then how they relate to a Hohmann Transfer.
 - Q7: Look at Lecture 11 and Lecture 13 (the worked example)
 - Q8: Look at Lecture 11 and Lecture 13 (the worked example)
 - Figure 1 is trying to show you something in 3D (the parking orbit shown is circular, not elliptical)

Activity

- The orbital motion (Celestial Mechanics) topic is covered in chapter 4 of Fortescue, Stark & Swinerd:
 - Read this chapter (up to an including the "Specifying the Orbit" section; there is no need to go further) in preparation for the next few lectures & to support your learning of this topic
 - Access to the e-book is available via the Library website:
 - https://onlinelibrary.wiley.com/doi/book/10.10 02/9781119971009

