RECOMP Sprint 1 Report – Group 5

Isaac Santos – 1181242

André Teixeira – 1190384

Wimy Carvalho – 1161297

Matija Zupanc - 1240290

Table of contents

Introduction	
Address Schemes	
Oporto	
BR Warsaw	
BR Munich	
Device configuration	
Oporto	
VLAN Configuration	
STP	
HSRP	
VLAN on switches	9
DHCP configuration	10
Warsaw and Munich Configuration	11
Warsaw	11
Munich	12

Introduction

In this report it will be detailed how the network created for 3 sites of the hypothetical

company "RECOMP Corporation WAN", with each of those sites located in Oporto, Warsaw

and Munich was setup. Each section of this report will be dedicated to each of these sites,

and how their local networks were configured.

Address Schemes

Oporto

Parameters for our group:

Porto IPV4 address: 10.27.68.0/22

Warsaw IPV4 address: 192.168.154.0/23

Munich IPV4 address: 172.21.72.0/23

• VTP Domain: RECOMP2425M1B05

• DHCP Domain: RECOMP2425M1B05.recomp.com

Here follows a table with all available networks in the Oporto location site. Four separate

networks were setup on this site:

• Users, with 500 nodes

• Accounting, with 200 nodes

HR, with 100 nodes

Staff, with 50 nodes

3

Network	Network address	Broadcast address	Mask	First valid node address	Last valid node address
VLAN 40 - USERS - 500 nodes	10.27.68.0/23	10.27.69.255	255.255.254.0	10.27.68.1	10.27.69.254
VLAN 20 - ACCOUNTING - 200 nodes	10.27.70.0/24	10.27.70.255	255.255.255.0	10.27.70.1	10.27.70.254
VLAN 30 - HR - 100 nodes	10.27.71.0/25	10.27.71.127	255.255.255.128	10.27.71.1	10.27.71.126
VLAN 10 - STAFF - 50 nodes	10.27.71.128/26	10.27.71.191	255.255.255.192	10.27.71.129	10.27.71.190
HQ Router - HQ-MLS1	10.27.71.192/30	10.27.71.195	255.255.255.252	10.27.71.193	10.27.71.194
HQ Router - HQ-MLS2	10.27.71.196/30	10.27.71.199	255.255.255.252	10.27.71.197	10.27.71.194

Depicted below is a visual representation of the same network scheme.

The following table represents the interface and assigned addresses for each router/switch in the Oporto network.

	Gig0/0/0	Gig0/0	Gig0/1	
HQ(PORTO) - Router	209.165.200.129	10.27.71.193	10.27.71.197	
HQ-MLS1 - Multilayer	VLAN 10	VLAN 20	VLAN 30	VLAN 40
Switch	10.27.71.129	10.27.70.1	10.27.71.1	10.27.68.1
HQ-MLS2 - Multilayer	VLAN 10	VLAN 20	VLAN 30	VLAN 40
Switch	10.27.71.130	10.27.70.2	10.27.71.2	10.27.68.2

Redundancy between MLS1 and MLS2

The interconnection between the multilayer switches establishes a redundant path within the network. Should one of the switches fail, the other seamlessly takes over the traffic, ensuring high availability.

Cross-Connections

The "X" connecting the multilayer switches to the access switches represents redundancy at the access level. This means that the access switches have alternative pathways to communicate with the main switches (MLS1 or MLS2), enhancing network resilience and preventing the failure of a single switch from disrupting operations.

Multilayer Switch

As multilayer switches, MLS can perform routing functions (Layer 3) in addition to standard switching (Layer 2). This capability facilitates efficient routing between different VLANs, optimizing communication across the network.

Connections between Router and Switches (Router - MLS1 - SW1 and Router - MLS2 - SW2), the connections between the router and the multilayer switches utilize Gigabit Ethernet (GigE) technology. This choice is critical, as Gigabit Ethernet offers superior bandwidth (1 Gbps) compared to Fast Ethernet (100 Mbps). Given that these multilayer switches manage

a substantial volume of traffic and serve as the backbone of the network, a faster connection ensures optimal performance and reduced latency.

Therefore, whenever possible, we should prioritize the use of Gigabit Ethernet for primary connections to guarantee greater transmission capacity and efficient redundancy.

BR Warsaw

The addressing scheme for BR1 networks in Warsaw is as follows:

Network	Network address	Broadcast address	Mask	First valid node address	Last valid node address
USERS - 200 nodes - VLAN 40	192.168.154.0/24	192.168.154.255	255.255.255.0	192.168.154.1	192.168.154.254
ACCOUNTING - 200 nodes - VLAN 20	192.168.155.0/24	192.168.155.255	255.255.255.0	192.168.155.1	192.168.155.254

The following table represents the interfaces and assigned addresses for the router in the Warsaw network

BR1 (Warsaw) - Router	Gig0/0/0	f0/1-10 - VLAN 20	f0/11-20 - VLAN 40
BRI (Warsaw) - Router	192.0.2.97	192.168.155.1	192.168.154.1

BR Munich

The addressing scheme for BR2 networks in Munich is as follows:

Network	Network address	Broadcast address	Mask	First valid node address	Last valid node address
USERS - 200 nodes - VLAN 40	172.21.72.0/24	172.21.72.255	255.255.255.0	172.21.72.1	172.21.72.254
STAFF - 200 nodes - VLAN 10	172.21.73.0/24	172.21.73.255	255.255.255.0	172.21.73.1	172.21.73.254

The following table represents the interfaces and assigned addresses for the router in the Munich network

BR2 (Munich) - Router	Gig0/0/0	f0/1-10 - VLAN 10	f0/11-20 - VLAN 40
BRZ (Widnich) - Router	193.136.60.147	172.21.73.1	172.21.72.1

Device configuration

Oporto

Starting off, the first configuration done at Oporto was joining two interfaces between the main Multi-layer switches, and configuring them as a trunk.

VLAN Configuration

For multilayer switch 1 (MLS1), the FastEthernet ports 1-24 are configured as trunks using 802.1Q encapsulation, allowing all VLANs, with VLAN 50 set as the native VLAN. For both switches, VLAN 10 (STAFF), 20 (ACCOUNTING), 30 (HR), 40 (USERS), 50 (NATIVE), and 99 (BLACKHOLE) are created. Both switches share the same VTP domain "RECOMP2425M1B05" with the password "4232pmocer" and are configured in VTP server mode.

MLS1	MLS2
interface range fa0/1 - 24	vlan 10
switchport trunk encapsulation dot1q	name STAFF
switchport mode trunk	vlan 20
switchport trunk allowed vlan all	name ACCOUNTING
switchport trunk native vlan 50	vlan 30
	name HR
vlan 10	vlan 40
name STAFF	name USERS
vlan 20	vlan 50
name ACCOUNTING	name NATIVE
vlan 30	vlan 99
name HR	name BLACKHOLE
vlan 40	
name USERS	vtp domain RECOMP2425M1B05
vlan 50	vtp password 4232pmocer
name NATIVE	vtp mode server
vlan 99	
name BLACKHOLE	
vtp domain RECOMP2425M1B05	
vtp password 4232pmocer	
vtp mode server	

STP

At this point it is indicated that MLS1 must be defined as root bridge for VLANS 10 and 20, and this must be the secondary root bridge for VLANS 30 and 40, using rapid-STP. Furthermore, MLS2 must have the configuration opposite to MLS1, thus being the root bridge for VLANS 30 and 40, and secondary root bridge for VLANS 10 and 20.

We added the following commands:

MLS1	MLS2
spanning-tree vlan 10 root primary	spanning-tree vlan 30 root primary
spanning-tree vlan 20 root primary	spanning-tree vlan 40 root primary
spanning-tree vlan 30 root secondary	spanning-tree vlan 10 root secondary
spanning-tree vlan 40 root secondary	spanning-tree vlan 20 root secondary

HSRP

In the next step, we configured the HSRP protocol to ensure both multilayer switches (MLSs) work well together. For each network, we designated one of the two switches as the priority switch, with each switch serving as the priority for two of the networks. This configuration ensures that both switches share the load and provide redundancy, maintaining network availability in case one switch fails.

MLS1	MLS2
interface vlan10	interface vlan30
ip address 10.27.71.129 255.255.255.192	ip address 10.27.71.2 255.255.255.128
standby 10 ip 10.27.71.190	standby 30 ip 10.27.71.125
standby 10 priority 110	standby 30 priority 110
standby 10 preempt	standby 30 preempt
interface vlan20	interface vlan40
ip address 10.27.70.1 255.255.255.0	ip address 10.27.68.2 255.255.254.0
standby 20 ip 10.27.70.254	standby 40 ip 10.27.69.253
standby 20 priority 110	standby 40 priority 110
standby 20 preempt	standby 40 preempt
interface vlan30	interface vlan10
ip address 10.27.71.1 255.255.255.128	ip address 10.27.71.130 255.255.255.192
standby 30 ip 10.27.71.126	standby 10 ip 10.27.71.179
standby 30 priority 90	standby 10 priority 90
standby 30 preempt	standby 10 preempt
interface vlan40	interface vlan20
ip address 10.27.68.1 255.255.254.0	ip address 10.27.70.2 255.255.25.0
standby 40 ip 10.27.69.254	standby 20 ip 10.27.70.253
standby 40 priority 90	standby 20 priority 90
standby 40 preempt	standby 20 preempt

VLAN on switches

Moving on from multilayer switches, the Layer 2 switches were configured to allow the appropriate VLANs to pass through them. This configuration increases stability and removes unnecessary traffic from the network. Additionally, the VTP domain was created to enhance security.

SW1	SW2
vtp domain RECOMP2425M1B05	vtp domain RECOMP2425M1B05
vtp password 4232pmocer	vtp password 4232pmocer
vtp mode client	vtp mode client
interface range FastEthernet 0/1-4	interface range FastEthernet 0/5-8
switchport mode trunk	switchport mode access
no shutdown	switchport access vlan 10
<pre>interface range FastEthernet 0/5-8 switchport mode access switchport access vlan 10 no shutdown</pre>	<pre>interface range FastEthernet 0/9-12 switchport mode access switchport access vlan 20</pre>
<pre>interface range FastEthernet 0/9-12 switchport mode access switchport access vlan 20</pre>	<pre>interface range FastEthernet 0/13-16 switchport mode access switchport access vlan 30</pre>
<pre>interface range FastEthernet 0/13-16 switchport mode access switchport access vlan 30</pre>	<pre>interface range FastEthernet 0/17-20 switchport mode access switchport access vlan 40</pre>
<pre>interface range FastEthernet 0/17-20 switchport mode access switchport access vlan 40</pre>	<pre>interface range FastEthernet 0/21-24 switchport mode access switchport access vlan 99</pre>
<pre>interface range FastEthernet 0/21-24 switchport mode access switchport access vlan 99</pre>	

To check the propagation of VLANS across the remaining switches, on each switch, we used the command below and the following result was obtained:

DHCP configuration

To ensure each user automatically receives an IP address, we configured the DHCP protocol. By adding VLAN pools and excluding specific addresses, we improve network stability and security.

MLS1	MLS2
ip dhcp excluded-address 10.27.71.129	ip dhcp excluded-address 10.27.71.1
10.27.71.130	10.27.71.2
ip dhcp excluded-address 10.27.71.178	ip dhcp excluded-address 10.27.71.125
10.27.71.179	10.27.71.126
ip dhcp pool VLAN10-STAFF	ip dhcp pool VLAN30-HR
domain-name RECOMP2425M1B05	domain-name RECOMP2425M1B05
network 10.27.71.128 255.255.255.192	network 10.27.71.0 255.255.255.128
default-router 10.27.71.193	default-router 10.27.71.2
dns-server 8.8.8.8	dns-server 8.8.8.8
ip dhcp excluded-address 10.27.70.1	ip dhcp excluded-address 10.27.68.1
10.27.70.2	10.27.69.254
ip dhcp excluded-address 10.27.70.253	ip dhcp excluded-address 10.27.68.2
10.27.70.254	10.27.69.253
ip dhcp pool VLAN20-ACCOUNTING	ip dhcp pool VLAN40-USERS
domain-name RECOMP2425M1B05	domain-name RECOMP2425M1B05
network 10.27.70.0 255.255.255.0	network 10.27.68.0 255.255.254.0
default-router 10.27.70.1	default-router 10.27.68.2
dns-server 8.8.8.8	dns-server 8.8.8.8

Warsaw and Munich Configuration

After configuring the HQ network, we focused on ensuring connectivity with the two other branches. Similar to the HQ network, we created VLAN pools and implemented the DHCP protocol to achieve automatic IP address assignment. Additionally, we configured the switches to allow only specific VLANs on their interfaces, which enhances the reliability and structure of our branch networks.

Warsaw

BR	SW1
hostname Warsaw	hostname SW1
ip dhcp pool VLAN20-ACCOUNTING network 192.168.155.0 255.255.255.0 default-router 192.168.155.254 dns-server 8.8.8.8	<pre>interface GigabitEthernet0/1 switchport access vlan 50 switchport trunk native vlan 50 switchport mode trunk</pre>
ip dhcp pool VLAN40-USERS network 192.168.154.0 255.255.255.0 default-router 192.168.154.254 dns-server 8.8.8.8	<pre>interface FastEthernet0/1-10 switchport access vlan 20 switchport mode access interface FastEthernet0/11-20</pre>
interface GigabitEthernet0/0.20 encapsulation dot1Q 20	switchport access vlan 40 switchport mode access
ip address 192.168.155.254 255.255.255.0	interface FastEthernet0/21-24
interface GigabitEthernet0/0.40	switchport access vlan 99 switchport mode access

encapsulation dot1Q 40	shutdown
ip address 192.168.154.254 255.255.255.0	
ip dhcp excluded-address 192.168.154.254	
ip dhcp excluded-address 192.168.155.254	

Munich

This branch differs from the previous one in the manually configured router IP address. Everything else remains similar.

BR	SW1
hostname Munich	hostname SW1
interface GigabitEthernet0/0/0	interface GigabitEthernet0/1
ip address 193.136.60.147 255.255.255.248	switchport access vlan 50 switchport trunk native vlan 50
ip classless	switchport mode trunk
ip route 0.0.0.0 0.0.0.0 193.136.60.150	
	<pre>interface FastEthernet0/1-10</pre>
ip dhcp pool VLAN10-STAFF	switchport access vlan 10
network 172.21.73.0 255.255.255.0	switchport mode access
default-router 172.21.73.254	
dns-server 8.8.8.8	<pre>interface FastEthernet0/11-20</pre>
	switchport access vlan 40
ip dhcp pool VLAN40-USERS	switchport mode access
network 172.21.72.0 255.255.255.0	
default-router 172.21.72.254	interface FastEthernet0/21-24
dns-server 8.8.8.8	switchport access vlan 99
6	switchport mode access
interface GigabitEthernet0/0.10	shutdown
encapsulation dot1Q 10	
ip address 172.21.73.254 255.255.255.0	
interface GigabitEthernet0/0.40	
encapsulation dot1Q 40	
ip address 172.21.72.254 255.255.255.0	
ip dhcp excluded-address 172.21.73.254	
ip dhcp excluded-address 172.21.73.254	