Hard Real Time Task Scheduling

back

Link Piter

Indice

- · Hard Real Time Task Schedulingback
 - Indice
 - Assunti
 - Teorema sulla schedulabilità
 - Schedulazione clock-driven
 - · Timer-driven scheduling
 - · Ambiente di esecuzione
 - Sequenziale
 - Cyclic Executive
 - Approccio Cyclic Executive
 - Approccio Barker Shaw
 - Costruzione di un feasable schedule
 - Schedulazione Priority Driven
 - Algoritmo Rate Monotonic Priority Ordering (RMPO)
 - Test di schedulabilità LIU-LAYLAND
 - Corollario
 - Test di Kuo Mok
 - Test di Burchard
 - · Test di Han
 - · Analisi di schedulabilità di Audsley
 - Alternativa all'algoritmo di Audsley
 - Processi Sporadici
 - Deadline Monotonic Priority Ordering (DMPO)
 - Analisi di schedulabilità attraverso i tempi di risposta
 - Altro test
 - Test di Lehoczky
 - Test di Utilizzazione Efficace dei Processi
 - Algoritmo Earliest Deadline First (EDF)
 - Algoritmo Least Slack Time First (LST)
 - Metascheduler

Assunti

\$N\$ processi \$P_i\$ con \$i = 1, 2, ..., N\$ indipendenti

- · Senza vincoli di precedenza
- Senza risorse condivise

Ogni processo \$P_j\$ con \$j = 1, 2, ..., N\$

- è periodico, con periodo \$T_j\$ prefissato
- è caratterizzato da un tempo massimo di esecuzione \$C_j\$ con \$C_j < T_j\$
- è caratterizzato da una deadline \$D_j\$ con \$D_j = T_j\$

L'esecuzione dei processi è affidata a un sistema di elaborazione monoprocessore. Il tempo impiegato dal processore per operare una commutazione di contesto tra processi è trascurabile.

Teorema sulla schedulabilità

Condizione necessaria perchè \$N\$ precessi siano schedulabili

 $U = \sum_{j=1}^{N} U_j = \sum_{j=1}^{N} \frac{j}{T_j} 15$

\$U\$ è il fattore di utilizzazione del processore

II j-esimo termine della sommatoria $C_j/T_j = (C_j(H/T_j)) / H$ rappresenta la frazione dell'iperperiodo $H = mcm(T_1, T_2, ..., T_N)$ impiegata dal processo P_j

Schedulazione clock-driven

Schedulazione di tipo:

- offline
- guaranteed
- · non preemptive

Non idonea in contesti che implicano dinamicità e flessibilità.

I parametri temporali sei processi si intendono noti a priori e non soggetti a variazioni runtime.

Tutti i vincoli temporali vengono soddisfatti a priori in sede di costruzione di un feasable schedule.

associate a processi NP-hard

lo schedule viene fatto su un iperperiodo in istanti decisionali predefiniti.

Ipotesi per un corretto funzionamento: non job overrun.

Timer-driven scheduling

Ambiente di esecuzione

Sequenziale

Cyclic Executive

Approccio Cyclic Executive

Supponiamo tre processi con periodi armonici 25, 50 e 100 ms. (20 50 100 non sono armonici)

Ciclio Maggiore: Periodo Maggiore Ciclio Minore: Periodo Minore

In questo caso avremo tre cicli minori

Un Task \$P_1\$ per ogni ciclo Minore Un Task \$P_2\$ per ogni due cicli Minore Un Tast \$P_3\$ in un solo ciclo Minore

PRO: Molto semplice CONTRO: Macchinoso con grandi differenze di periodo, poco applicabile

Si può aggiungere il job slicing (frammentazione di un task)

Approccio Barker - Shaw

Cliclo maggiore: \$mcm(T_1, T_2, ..., T_N)\$

Ciclio minore (Frame):

- \$n mod m = 0\$ un ciclo maggiore composto da un numero intero di cicli minori
- \$m \geq c , \forall i\$ no job preemption

- \$m \leq T_i , \forall i\$ in ogni ciclo maggiore vanno eseguiti tutti i task
- $2m MCD(m,T_i) \leq T_i$, \forall i \ \ \ (T_i mod m) > 0

Costruzione di un feasable schedule

	С	Т	
P ₁	1	4	
P ₂	2	5	
P ₃	1	10	M = 20, m = 2
P ₄	2	20	

		PROCESSO I							Plocesso 2 PS P4					
		J ₁₁	J ₁₂	J ₁₃	J ₁₄	J ₁₅	J ₂₁	J ₂₂	J ₂₃	J ₂₄	J ₃₁	J ₃₂	J ₄₁	
	c ₁	×					×				×		×	
	c ₂	×					×				×		×	
	C ₃		x								×		×	
	C ₄		×					×			×		×	
	C ₅			×				×			×		×	
	c ₆			×					×			x	×	
	c ₇				x				×			x	×	
	c ₈				×							x	×	
	c ₉					×				×		x	×	
(10					×				×		×	×	

Job Slicing: Si può adottare dividendo i job con un tempo di elaborazione più lungo, finche non si rispetta il vincolo 5.

Dopo avere identificato \$n\$ e \$m\$ si applicano criteri euristici che possono portare a risultati differenti

Schedulazione Priority Driven

Ad ogni processo è associata una priorità statica o dinamica

Ogni processo può essere in stato:

• Ready: pronto per essere eseguito

• Running: in esecuzione

• Idle: in attesa di un evento

c'è preemption

Algoritmo Rate Monotonic Priority Ordering (RMPO)

Ad ogni processo è associata una priorità statica, direttamente proporzionale alla frequenza di esecuzione.

Algoritmo: Un insieme id processi a priorità astatica se non è schedulabile con RMPO non è schedulabile

Test di schedulabilità LIU-LAYLAND

Condizione sufficiente affinchè un insieme di \$N\$ processi con RMPO: \$U $U_{RMPO}(N) = N(2^{\frac{1}{N}} -1)$ \$

 $\lim_{N\cdot }U_{RMPO}(N)=\ln 2 = 0.693$

Corollario

Test meno stringente del teorema (che fallisce spesso)

\$U_{RMPO} = \prod_{i=1}^{N} (1+U_j)\leq 2\$

(Caso con due processi)

Quando i due fattori di utilizzazione sono simili il corollario da risultati simili al teorema.

Quando c'è differenza il corollario è meno stringente.

Test di Kuo - Mok

Un insieme \$S\$ di \$N\$ processi P_i \$ con \$i = 1, 2, ..., N\$ è schedulabile con RMPO se: \$U \leq U_{RMPO}(K)\$ essendo \$K\$ il numero di sottoinsiemi disgiunti di processi semplicemente periodici in \$S\$.

Si Raggruppano i task con periodi armonici ottenendo dei nuovi task dove:

- $U \{nuovo\} = U x + U y + ... + U z$
- T_{nuovo} = min{T_x, T_y, ..., T_z}
- C_{nuovo} = U_{nuovo} * T_{nuovo}

I nuovi task poi si sottopongono al teorema di Liu-Layland o al suo corollario.

Se il partizionamento non è univoco, allora optare per quello che ha fattori di utilizzazioni disuniformi.

Test di Burchard

L'utilizzazione schedulabile dell'algoritmo RMPO è tanto maggiore quanto meno i periodi dei processi si discostano dalla relazione armonica

Per primo vanno calcolati: $X_j = \log_2(T_j) - \left[\sqrt{L_j} \right]$

(\$\lfloor \log_2(T_j)\rfloor\$ indica la parte intera del logaritmo in base 2 di \$T_j\$)

dopo di che si ottiene la **distorisione (\$\zeta\$)** che indica di quanto i periodi si discostano dalla relazione armonica

 $x = {\max(x_i)}{1 \leq j \leq N} - {\min(x_j)}{1 \leq j \leq N}$

Ottenuto questo valore il coefficiente di utilizzazio massimo deve essere:

 $\mbox{$\$ \mathbb{U}_{RMPO}(N, \zeta) = \left(N-1\right) \left(2^{\zeta/(N-1)} - 1 \right) + 2^{1-\zeta} - 1 & \zeta < 1 - \left(1^{N}, \left(10^{N}\right) N \right) + 1 \right) & \zeta \leq 1 - \left(1^{N}, \left(10^{N}\right) N \right) + 2^{1-\zeta} - 1 \right) + 1 \left(10^{N}\right) + 1 \left(10^{N$

dove \$\zeta = 0\$ indica che i periodi sono armonici quindi \$U {RMPO}=1\$.

dove $\z = 1$ indica che i periodi sono tutti diversi quindi $U_{RMPO}=N(2^{1/N}-1)$, c'è molta distorsione.

Test di Han

Un insieme \$S\$ di \$N\$ processi P_i \$ con \$i = 1, 2, ..., N\$ è schedulabile con RMPO se ad esso corrsiponde un **insieme accelerato** \$S'\$ di \$N\$ processi P_i \$ con \$i = 1, 2, ..., N\$ semplicemente periodici con fattore di utilizzazione \$U' = U 1' + U 2' + ... + U N' \leq 1\$

Se \$S'\$ è schedulabile allora anche \$S\$ è schedulabile.

Per creare l'insieme accelerato si prende il periodo minore e si mettono gli altri in relazione armonica con esso, se falliscono i test si prende il secondo e così via. Se quensto non funziona si può procedere in altri modi.

Si possono applicare più metodi in cascata per esempio l'insieme accelerato può essere sottoposto al corollario di Liu-Layland.

Analisi di schedulabilità di Audsley

Algoritmo di Audsley basato sul calcolo dei tempi di risposta.

La schedulabilità è garantita se il tempo di risposta di ogni processo non eccede la sua deadline.

Dove \$I_i\$ è l'interferenza sul tempo di risposta \$R_i\$ del processo \$P_i\$ dovuta ai processi con priorità maggiore.

$$l(R_i) = \sum_{j=1}^{l} \left(\frac{R_i}{T_i} \right)$$

\$R_i\$ sarà:

$$R i^0 = C$$
, $R i^n = C i + I i(R i^{n-1})$ con $n = 1,2,...$

Esempio:

Alternativa all'algoritmo di Audsley

Meno calcoli, quindi test più veloci, ma meno efficace, solo condizioni sufficienti:

$$C_i + I_i(T_i) = C_i + \sum_{j=1}^{j>p_i} \left(T_i \right) + I_i(T_i) = C_i + \sum_{j=1}^{j} \left(T_i \right) = C_$$

Processi Sporadici

Tipicamente hanno una frequenza di esecuzione bassa ma una deadline stringente

Ogni processo sporadico \$P_i\$ con \$i = 1,2,...,N\$ è caratterizzato da:

- \$T_i\$ MIT (Minimum Interarrival Time) per i processi sporadici: tempo minimo tra due arrivi consecutivi di un processo sporadico, (nel caso di un processo periodico è il periodo).
- \$D_i\$ Deadline, \$\leq T_i\$ nei processi sporadici, \$= T_i\$ nei processi periodici
- \$C_i\$ Tempo di esecuzione massimo \$\leq D_i\$

Deadline Monotonic Priority Ordering (DMPO)

Ogni processo è associato a una priorità statica inversamente proporzionale alla sua deadline relativa:

\$p_i \propto \frac{1}{D_i}\$

Algoritmo ottimale, se un insieme di processi è schedulabile con un algoritmo a priorità statica allora è schedulabile con DMPO. Se non lo è con DMPO allora non lo è con nessun algoritmo a priorità statica.

Analisi di schedulabilità attraverso i tempi di risposta

Algoritmo di audsley, condizione **necessaria e sufficiente** affinché un insieme di \$N\$ processi periodici e sporadici sia schedulabile con DMPO:

$$R_i = C_i + \sum_{j=1}^{n} \lceil C_j \rceil$$

Alternativa più rapida, ma solo condizione sufficiente:

$$C_i + \sum_{j>p_i} \left(\sum_{j>p_i} \right) \$$

Quindi applico la formula (2) per tutti i task, per quelli che non hanno successo applico (1).

Altro test

Si basa sulla densità di utilizzazione.

Condizione sufficiente affinché un insieme di \$N\$ processi periodici e sporadici sia schedulabile:

$$\Delta = \sum_{j=1}^{N} \frac{C_j}{D_j} \leq U_{RMPO}(N) = N(2^{\frac{1}{n}} -1)$$

Test di Lehoczky

Sempre condizione sufficiente, definiamo \$D_j = \delta_j * T_j\$ con \$j=1,2,...,N\$

 $\sum_{j=1}^{N} \frac{C_j}{T_j}= \mathbb{U}(N, \beta) = \frac{1}{N}-1+1-\beta (N, \beta) = 0.5 \end{cases} \end{cases}$

Test di Utilizzazione Efficace dei Processi

\$f_j\$ Fattore di utilizzazione efficace:

```
f_j = (\sum_{i=1}^{K \setminus H_n} \frac{1}{T_i}(C_j + \sum_{i=1}^{K \setminus H_n} \frac{1}{T_i}(C_j + \sum_{i=1}^{K \setminus H_n} \frac{1}{T_i}(C_i + \sum_{i=1}^{K \setminus H_n} \frac{1}{T_i}(C_i
```

\$H_1\$ insieme dei processi che possono interferire al più una volta \$H_n\$ insieme dei processi che possono interferire due o più volte

```
$$ f_j\leq U(N=\mod{H_n}+1, \delta=d_j) $$
```

Allora l'insieme di processi è schedulabile se tale condizione (sufficiente) è soddisfatta \$\foall P_j\$ con \$j=1,2,...,N\$.

Algoritmo Earliest Deadline First (EDF)

Ad ogni processo è associata una priorità dinamica inversamente proporzionale alla sua deadline relativa

Condizione necessaria e sufficiente affinché un insieme di \$N\$ processi periodici e sporadici sia schedulabile con EDF:

```
$U = \sum_{j=1}^{N} \frac{C_j}{T_j} \leq U_{EDF} = 1$
```

Condizione sufficiente affinché un insieme di \$N\$ processi periodici e sporadici sia schedulabile con EDF:

\$\Delta = \sum_{j=1}^{N} \frac{C_j}{D_j} \leq 1\$

Algoritmo Least Slack Time First (LST)

Ad ogni processo è associata una priorità dinamica inversamente proporzionale allo slack time

Non strict, non preemptive

strict, preemptive

Metascheduler

Considerando \$N\$ task, il **Metascheduler** per gestire il release di tutti i task deve essere in grado di discriminare un tempo \$T_{metascheduler}\$:

$$T_{\text{metascheduler}} = mcd(T_1, ..., T_N)$$

Il Metascheduler a sua volta è un task che va eseguito con periodo \$T_{metascheduler}\$, il cui compito è la gestione dell'esecuzione dei task.

Il sistema genera degli interrupt periodici, creando così il **Tick di sisitema**, fondamentale al Metascheduler per scandire il tempo.

Il Metascheduler è il task con priorità maggiore, quindi il sistema operativo cede sempre a lui le risorse, si occupa poi di avviare gli altri task.