FBSP: Geometric image transformation

Nick Yao Larsen

nylarsen@cfin.au.dk

Spatial transformation

Spatial transformations perform a remapping of pixels

Such transformations include:

- Resizing/scaling/stretching
- Rotation
- Cropping
- Shearing
- Image projections

Affine transformations

Affine transformations:

- Straightlines remainstraight
- Parallel lines remainparallel
- Rectangles may become parallelograms
- Three point-pairs are required to calculate transformation

Examples of affine transformations:

- 1. Scaling/resize/stretch
- 2. Rotation
- 3. Cropping
- 4. Shearing

1. Scaling/resize/stretch

Scaling/resize/stretch the image to change size

2. Rotation

Rotate the image clockwise or counter clockwise

Usually rotation is defined to rotate around the center point

3. Cropping

Crop the image to keep only a portion of the original image

• Usually the crop area is defined by a rectangle

4. Shearing

- Shift pixels horizontally or vertically with different amount depending on the position
- Like "pulling" a corner of the image

Projective transformations

Projective transformations:

- Straight lines remain straight
- Parallel lines may converge towards "vanishing points"

Difference between projective and Affine transformation

- Projective transformations do not preserve parallelism, length, and angle.
- Affine transformations, unlike the projective ones, preserve parallelism

Quiz

Which image is using projective transformation?

Interpolation

- When doing transformations, it is often not possible to map pixels 1 to 1.
- Hence, spatial transformations usually require some form of interpolation in addition to possible anti-aliasing.

• Example:

Output Image

Interpolation

Interpolation methods:

- Nearest Neighbour: The output pixel is assigned the value of the closest pixel in the transformed image. An input pixel may fall into two or more output pixels
- Bilinear interpolation: The out put pixel is the weighted average of the transformed pixels in the nearest 2 by 2 neighborhood
- Bicubic interpolation: The weighted average is taken over a 4 by 4 neighborhood
- Since computation increases with the number of pixels that are considered, there is a tradeoff between quality and computational time

Nearest neighbour interpolation

Bilinear interpolation

• In 2D takes 4 pixels (2x2) into account

Bicubic interpolation

• In 2D, Bicubic interpolation considers 16 pixels (4×4) output pixels

Summary interpolation

Quiz

Which interpolation methods were used to upscale each of the 3 images below? (Original size 4 x 4 px)

A: Nearest-neighbor interpolation

B: Bilinear interpolation

C: Bicubic interpolation

Image registration

- Image registration is the alignment of two or more images so they best superimpose.
- To achieve the best alignment, it may be necessary to transform the images
- Image registration can be quite challenging even when the images are very similar.
- Frequently the images to be aligned are not that similar, perhaps because they have been acquired using different modalities.
- The difficulty in accurately aligning images presents a significant challenge to image registration algorithms, so the task is often aided by a human intervention or the use of embedded markers for reference.

Image registration

- Approaches to image registration can be divided into two broad categories: unassisted image registration, and interactive registration where a human operator guides or aids the registration process.
- Unassisted image registration, relies on an optimization technique to maximize the correlation between the images.
- Interactive registration, uses human pattern recognition skills to aid the alignment process, usually by selecting corresponding reference points in the images.

Unadied Image registration

- Unaided image registration involves the application of an optimization algorithm to maximize the correlation, or other measure of similarity, between the images.
- The appropriate transformation is applied to one of the images, termed the "input image," and a comparison is made between this transformed image and the "reference image" (also termed the "base image").
- The optimization routine seeks to vary the transformation until the comparison is the best possible.
- The problem with this approach is the same as with all optimization techniques: the optimization process may converge on a sub-optimal solution (a so-called "local maximum"), not the optimal solution (the "global maximum").

Unadied Image registration

 The optimally realigned image has an alignment quite similar to the original image.

Reference Image

Input Image

Aligned Image

Interactive Image registration

- The user interactively identifies a number of corresponding features in the reference and input image, and a transform is constructed from these pairs of reference points.
- The number of reference pairs required is the same as the number of variables needed to define a transformation: an affine transformation will require a minimum of three reference points while a projective transformation requires four variables.
- More reference points generally improve the alignment

Interactive Image registration

Distorted Original Realigned

- Even with interactive alignment using four reference points, the correction is not perfect.
- The resultant transformation of the distorted center image is shown on the right and closely matches the original (correlation 95%). Some reduction in sharpness is seen in the realigned image as a result of information lost in the distortion process.