Chapter 12 Working Drawing

TOPICS

- Introduction
- Detail drawing
- Assembly drawing
- Assembly section
- Dimensioning

Introduction

DEFINITION

Working drawing is a set of drawing used during the work of making a product.

DEFINITION

- Detail drawing is a multiview representation of a single part with dimensions and notes.
- Assembly drawing is a drawing of various parts of a machine or structure assembled in their relative working positions.

PURPOSE

- Detail drawing conveys the information and instructions for manufacturing the part.
- Assembly drawing conveys
 - 1. completed shape of the product.
 - 2. overall dimensions.
 - 3. relative position of each part.
 - 4. functional relationship among various components.

Detail Drawing

INFORMATION IN DETAIL DRAWING

1. General information ——— Title block 2. Part's information 2.1 Shape description ——— Object's views 2.2 Size description 2.3 Specifications **Notes**

GENERAL INFORMATION

- Name of company
- > Title of drawing (usually part's name)
- Drawing sheet number
- Name of drafter, checker
- Relevant dates of action (drawn, checked, approved etc.)
- > Revision table
- Unit
 - > Scale
 - Method of projection

PART'S INFORMATION

Shape

- Orthographic drawing
- Pictorial drawing

Size

Dimensions and Tolerances

Specifications

- Part number, name, number required
- Type of material used
- General notes
- Heat treatment
- Surface finish
- General tolerances

RECOMMENDED PRACTICE

- Draw one part to one sheet of paper.
- If not the case,
 - apply **enough spacing** between parts.
 - draw all parts using the *same scale*.

 Otherwise, the scale should be clearly note under each part's drawing.
- Standard parts such as **bolt**, **nut**, **pin**, **bearing** do not require detail drawings.

PLACING AN INFORMATION

(This course)

EXAMPLE: Interpreting detail drawing

Assembly Drawing

TYPES OF ASSEMBLY DRAWING

1. Exploded assembly drawings

The parts are separately display, but they are aligned according to their assembly positions and sequences.

2. General assembly drawings.

All parts are drawn in their working position.

3. Detail assembly drawings

All parts are drawn in their working position with a completed dimensions.

1. EXPLODED ASSEMBLY

Pictorial representation

1. EXPLODED ASSEMBLY

Orthographic representation

2. GENERAL ASSEMBLY

Pictorial

Orthographic

2. GENERAL ASSEMBLY

Only dimensions relate to machine's operation are given.

Only dimensions relate to machine's operation are given in tabulated form (not shown).

2. GENERAL ASSEMBLY

3. DETAILED ASSEMBLY

(working-drawing assembly)

REQUIRED INFORMATION IN GENERAL ASSEMBLY DRAWING

- 1. All parts, drawn in their operating position.
- 2. Part list (or bill of materials, BOM)
 - 1. Item number
 - 2. Descriptive name
 - 3. Material, MATL.
 - 4. Quantity required (per a unit of machine), QTY.
- 3. Leader lines with balloons around part numbers.
- 4. Machining and assembly operations and critical dimensions related to operation of the machine.

PLACING AN INFORMATION

(This course)

PART LIST (BOM) (This course)

Locate above or beside the title block. Fill the table from the bottom.

3	SET SCREW	1	Stainless Steel, M3 HEX SOCK CUP PT
2	SHAFT	1	Stainless Steel
1	SUPPORT	2	Cast Iron
NO.	PART NAME	REQD.	MATL. & NOTE

EXAMPLE: Another allowable place for BOM

STEPS TO CREATE ASSEMBLY DRAWING

- 1. Analyze geometry and dimensions of all parts in order to understand the assembly steps and overall shape of device or machine.
- 2. Select an appropriate view.
- 3. Choose major parts, i.e. parts that have several parts assembled on.
- 4. Draw a view of *major parts* according to a selected viewing direction.

STEPS TO CREATE ASSEMBLY DRAWING

- Add detail view of the remaining parts at their working positions.
- Apply section technique where relative positions between adjacent parts are needed to clarify.
- 7. Add *balloons*, *notes* and *dimensions* (if any).
- 8. Create BOM.

GENERAL PRACTICE

- The *number of views* can be one, two, three or more as needed, but it should be **minimum**.
- A good *viewing direction* is that represents all (or most) of the parts assembled in their working position.

EXAMPLE: Selection of a necessary view

Which is an appropriate view for assembly drawing?

GENERAL PRACTICE

Hidden lines usually omit unless they are absolutely necessary to illustrate some important feature that the reader might otherwise miss.

EXAMPLE: Hidden lines omit *or not*?

EXAMPLE: Hidden lines omit *or not*?

EXAMPLE: Hidden lines omit or not?

GENERAL PRACTICE

- Section technique is usually need to clarify mating of the parts.
- Use different section line styles for adjacent parts.

SECTION LINE PRACTICE

- Do not draw section lines on sectional view of standard parts.
 - Threaded fastener
 - Washer
 - (longitudinal cut of) Solid shaft, Pin, Key

EXAMPLE 1: Assembly steps

1 CLEVIS, Steel, 1 REQD.

2) ARM, Steel, 1 REQD.

(3) PIN, Steel, 1 REQD.

EXAMPLE: Section line practice

Which is an appropriate full section view of this assembly?

EXAMPLE 2: Assembly steps

1) SUPPORT, Steel, 1 REQD.

2 SHAFT, Steel, 1 REQD.

(3) TAPER PIN, Steel, 1 REQD.

EXAMPLE: Section line practice

EXAMPLE 3: Assembly steps

EXAMPLE: Section line practice

LEADER LINE PRACTICE

- Drawn from the inside of the part to the balloon and placed a filled circle at the beginning of a line.
- Drawn in the *oblique* direction.

EXAMPLE

INTERPRETING ASSEMBLY DRAWING

1. Assemble steps.

2. Function of each part in machine.

3. Design concept.

EXAMPLE 1 : Shaft support on a machine housing

Assemble steps

- 1. Install bearing to the shaft.
- 2. Install the bearing-shaft unit to the housing.
- 3. Install the cover plate.
- 4. Tighten the screw.

EXAMPLE 1 : Shaft support on a machine housing

Functions of main parts

1. Bearing:

Support the rotating shaft.

2. Cover:

- Control an axial movement.
- Prevent the bearing unit from rotation.

EXAMPLE 1 : Shaft support on a machine housing

Design concept

Avoid direct contact between rotating shaft and housing as well as cover plate by using a bearing and clearance holes.

EXAMPLE 2: Leakage prevention unit

Assemble steps

- 1. Wrap a packing to the shaft.
- 2. Install studs to the casing.
- 3. Install the gland ring where its holes align with stud.
- 4. Place the washer and tightening the nut.

EXAMPLE 2: Leakage prevention unit

Function

1. Packing

- Preventing the leakage of a fluid inside the casing.

2. Gland:

- Press the packing to make it radial expand and press the shaft surface.

EXAMPLE 2: Leakage prevention unit

Design concept

Avoid direct contact between rotating shaft and casing as well as gland ring's hole.

EXAMPLE 3: Fixing parts on a shaft.

Assemble steps

- Place the keys on the key seats.
- Insert the parts to the shaft until their surfaces lean against the shoulder.
- Insert collar and then pin or retaining ring into the groove.

EXAMPLE 3: Fixing parts on a shaft.

Function

1. Key:

 Preventing rotational movement of parts.

2. Pin and retaining ring:

- Prevent axial movement of parts on the shaft.

EXAMPLE: Fixing parts on a shaft.

Design concept

Retaining ring can resist lower axial force than collar & pin unit.

EXAMPLE: Parts with tapered holes on tapered shaft.

Assemble steps

- Insert the part on the tapered end of the shaft.
- 2. Insert the washer (non-standard).
- 3. Tightening the nut.

EXAMPLE: Parts with tapered holes on tapered shaft.

1. Washer:

 Improve the distribution the tightening force on the part. **EXAMPLE**: Parts with tapered holes on tapered shaft.

Design concept

Length of the tapered portion and depth of the tapered hole require a calculation.

EXAMPLE: Parts having preloaded spring

Assemble steps

- 1. Insert the spring into the casing.
- 2. Tighten the rod to the spring loader.
- 3. Close the cap and tighten.

EXAMPLE: Parts having preloaded spring

Function

1. Spring plunger:

- Transmit a force from rod to spring.
- Keep the spring in a position.

EXAMPLE: Parts having preloaded spring

Design concept

Spring plunger has a spherical surface contacts to the cap; therefore, the rod can align itself to original position.

Mating of Parts

POINTS TO CONSIDER

- 1. Surface finishing
- 2. Tolerance
 - Size
 - Geometry

SURFACE FINISHING

Surface finishing means the quality of a surface. It relates to the level of roughness of a surface.

Purpose

- 1. To control the accuracy in positioning and tightness between mating parts.
- 2. To reduce the friction, especially for the part moves relative to other parts.

TOLERANCE

Tolerance is the total amount dimension may vary.

It is defined as the difference between the upper and lower limits.

Purpose

- 1. To control an *interchangeability* of parts.
- 2. To ensures the mating part will have a desired fit.