Ejercicios a entregar: 1, 6, 7 y 11. Fecha de entrega: 21/4/2021

En lo que sigue G denota un grupo. Recuerda que si $H \leq G$, denotamos por G/H al conjunto de las clases laterales izquierdas de H en G. Recuerda también que si G es un grupo, entonces un p-subgrupo P de G se llama de Sylow si es un p-subgrupo maximal, es decir no está contenido propiamente en otro p-subgrupo de G.

Definiciones:

- A. Un G-conjunto X se llama transitivo si sólo tiene una órbita. Es decir, si para cualesquiera $x, y \in X$ existe $g \in G$ tal que x = gy.
- B. Dado un conjunto X y un morfismo $f:G\to S_X$, la acción que induce f se llama fiel si kerf=1. Es decir: dados $a,b\in G$, si ax=bx para todo $x\in X$, entonces a=b.

Ejercicios:

- **1.** Sean X un G-conjunto y $x, y \in X$. Si y = gx para algún $g \in G$, prueba que $G_y = gG_xg^{-1}$. Concluye que $|G_x| = |G_y|$.
- **2.** Prueba que si X es un G-conjunto, entonces la órbita de cualquier elemento, $\mathcal{O}(x)$, es un G-conjunto transitivo (con la misma acción que X).
- **3.** Prueba que G como G-conjunto con la acción de multiplicación por la izquierda (la acción del Teorema de Cayley) es transitivo, y que $G_x = 1$ para todo $x \in G$.
- **4.** Sea $H \leq G$.
 - a) Prueba que el G-conjunto G/H (como lo vimos en clase) es transitivo. Prueba también que el estabilizador de aH es aHa^{-1} .
 - b) Prueba que el conjunto de conjugados de H, con la acción de G que vimos en clase, es transitivo.
- **5.** Del archivo t7-Dummit: 1, 2, 3, 8, 9, 10, 14 y 15.
- **6.** Sea H un subgrupo normal de un grupo G. Prueba que si H y G/H son p-grupos, entonces G es un p-grupo. Importante: No estamos suponiendo G finito.
- 7. Si G es un grupo tal que $|G| = p^n$ para algún entero no negativo n, prueba que G tiene un subgrupo normal de orden p^k para todo $0 \le k \le n$.
- **8.** Prueba que si G es un p-grupo finito y H es un subgrupo normal no trivial de G, entonces $H \cap Z(G) \neq 1$.

- **9.** Prueba que si G es un p-grupo finito y H es un subgrupo normal de G de orden p, entonces $H \leq Z(G)$.
- 10. Sea H un subgrupo propio de un p-grupo finito G. Prueba que si $|H|=p^s$, entonces hay un subgrupo de orden p^{s+1} que contiene a H.
- 11. Sea G un grupo finito tal que p divide a |G| y sea P un p-subgrupo de Sylow de G.
 - i) Prueba que todo conjugado de P es un p-subgrupo de Sylow de G.
 - ii) Si P es el un único p-subgrupo de Sylow de G, entonces P es normal en G.
- **12.** Si p es un primo y G es un grupo de orden p^3 , entonces |Z(G)| = p, $G/Z(G) \cong C_p \times C_p$ y Z(G) = G'.