Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2015 : Lecture 19

Avinash Sharma CVIT, IIIT Hyderabad

Lecture Plan

- Data Clustering
 - Introduction
 - Similarity Measures
 - Criterion Functions for Clustering
- Hierarchical Clustering
 - Agglomerative Clustering
- Kmeans Clustering (EM) & Variants (Next Class)

Introduction to Data Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other.
 - Members of different clusters are dissimilar.
- Clustering is generally an *unsupervised learning* task as it attempts to recover the natural grouping of the data.
- Typically:
 - Points are sampled in a high dimensional space.
 - Generative Model assumption (with clusters having identical model parameters) rarely holds.

Introduction to Data Clustering

How do we know what is the best clustering solution?

Introduction to Data Clustering

 Generative Model assumption (with clusters having identical model parameters) rarely holds!

Similarity Measures

- Vectors: Cosine distance.
- Sets: Jaccard distance.
- Points: Minkowski distance
 - q=2: Euclidean distance
 - q=1: City-block distance
- Points: Mahalanobis metric
 - Data dependent

$$s(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^t \mathbf{x}'}{\|\mathbf{x}\| \|\mathbf{x}'\|}$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

(If A and B are both empty, we define J(A,B) = 1.)

$$0 \le J(A, B) \le 1.$$

$$d(\mathbf{x}, \mathbf{x}') = \left(\sum_{k=1}^{d} |x_k - x_k'|^q\right)^{1/q},$$

$$d(\mathbf{x}, \mathbf{y})^2 = (\mathbf{x} - \mathbf{y})^T \mathbf{S}^{-1} (\mathbf{x} - \mathbf{y})$$

Similarity Measures

- Should we always normalize the data?
 - Not advisable when data is has clusters that are drawn from multiple distributions.

Similarity Measures

 Three clustering solutions with different parameter choices (distance thresholds).

Criterion Functions for Clustering

- The Sum-of-Squared-Error Criterion:
 - Achieves minimum variance clustering

$$J_e = \sum_{i=1}^c \sum_{\mathbf{x} \in \mathcal{D}_i} \|\mathbf{x} - \mathbf{m}_i\|^2$$
. $\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{D}_i} \mathbf{x}$.

Not always best criterion

Criterion Functions for Clustering

Related Minimum Variance Criterion:

$$J_e = \frac{1}{2} \sum_{i=1}^c n_i \bar{s}_i, \qquad \bar{s}_i = \frac{1}{n^2} \sum_{\mathbf{x} \in \mathcal{D}_i} \sum_{\mathbf{x}' \in \mathcal{D}_i} \|\mathbf{x} - \mathbf{x}'\|^2.$$

• Or, in a generalized manner:

$$\bar{s}_i = \frac{1}{n_i^2} \sum_{\mathbf{x} \in \mathcal{D}_i} \sum_{\mathbf{x}' \in \mathcal{D}_i} s(\mathbf{x}, \mathbf{x}') \qquad \bar{s}_i = \min_{\mathbf{x}, \mathbf{x}' \in \mathcal{D}_i} s(\mathbf{x}, \mathbf{x}').$$

Hierarchical Clustering

- Combining two points/clusters at a time based on nearness of points/clusters until a fix number of clusters are remained as long as
 - any two points put into a single cluster remains in the same cluster all the way till final solution.

 Agglomerative clustering is a bottom-up procedure that combines nearest cluster in each iteration until desired number of clusters are obtained.

Algorithm 4 (Agglomerative hierarchical clustering)

```
begin initialize c, \hat{c} \leftarrow n, \mathcal{D}_i \leftarrow \{\mathbf{x}_i\}, i = 1, \dots, n
begin initialize c, \hat{c} \leftarrow n, \mathcal{D}_i \leftarrow \{\mathbf{x}_i\}, i = 1, \dots, n
do \hat{c} \leftarrow \hat{c} - 1
Find nearest clusters, say, \mathcal{D}_i and \mathcal{D}_j
Merge \mathcal{D}_i and \mathcal{D}_j

until c = \hat{c}
return c clusters
end
```

The measures of distance between clusters:

$$d_{min}(\mathcal{D}_{i}, \mathcal{D}_{j}) = \min_{\substack{\mathbf{x} \in \mathcal{D}_{i} \\ \mathbf{x}' \in \mathcal{D}_{j}}} \|\mathbf{x} - \mathbf{x}'\|$$

$$d_{max}(\mathcal{D}_{i}, \mathcal{D}_{j}) = \max_{\substack{\mathbf{x} \in \mathcal{D}_{i} \\ \mathbf{x}' \in \mathcal{D}_{j}}} \|\mathbf{x} - \mathbf{x}'\|$$

$$d_{avg}(\mathcal{D}_{i}, \mathcal{D}_{j}) = \frac{1}{n_{i}n_{j}} \sum_{\mathbf{x} \in \mathcal{D}_{i}} \sum_{\mathbf{x}' \in \mathcal{D}_{j}} \|\mathbf{x} - \mathbf{x}'\|$$

$$d_{mean}(\mathcal{D}_{i}, \mathcal{D}_{j}) = \|\mathbf{m}_{i} - \mathbf{m}_{j}\|.$$

 Nearest Neighbor strategy, also known as minimum algorithm or single-linkage algorithm, yields a minimum spanning tree solution.

• Farthest neighbor clustering algorithm, also known as maximum algorithm or complete-linkage algorithm.

Compromises

- Mean based distance is the simplest in terms of computational complexity
- Average distance based algorithm is usable when distances are replaced with similarity measures.