

Transfer Learning sur les images médicales : Détection du cancer de la peau.

Superviseur : Pr M A. MAHMOUDI

Présenté par :

- BOUT Nassim
- ROUIMYATE Ismail

Plan

- Que sont les CNNs?
- Qu'est-ce que Transfer Learning?
- Comment transférer des connaissances dans les CNNs?
- Objectifs du projet
- Dataset
- Configuration de l'expérience
- Résultats
- Discussion
- Conclusion

Que sont les CNNs?

- CNNs signifie Convolutional Neural Networks
- Ils sont une catégorie de réseaux de neurones
- Se montre très efficace dans les domaines de la reconnaissance d'image et classification
- Composé de quatre opérations principales:
 - Convolution
 - Non linéarité (ReLu)
 - Pooling
 - Classification

Qu'est-ce que Transfer Learning?

Idée:

- Transfert de connaissances d'un domaine à un autre domaine connexe
- L'idée vient des humains:
 - Par exemple, si deux personnes veulent apprendre à coder en Python
 - Une personne a une certaine expérience de codage et l'autre pas
 - Une personne expérimentée apprendra plus vite

Qu'est-ce que Transfer Learning?

Gain, au lieu d'entrainer un réseau à partir de zéro:

- Prenez un réseau formé sur un domaine différent pour une source différente tâche
- Adaptez-le au domaine cible et à la tâche cible

Comment transférer des connaissances dans les CNNs?

TRAINING FROM SCRATCH

TRANSFER LEARNING

Objectifs du projet

- Est-il possible de transférer des connaissances à partir d'un modèle à un modèle spécifique?
- Avec la classification des images médicales?
- Quels sont les bénéfices? Quels sont les points négatifs?
- Quel modèle parmi les modèles de l'état de l'art est plus adapter à notre problème (Skin cancer detection)?

Dataset

HAM10000 MINST Dataset:

- Composé de 10 015 images dromoscopiques de lésions cutanées pigmentées courantes
- Avec 7 classes
- Taille d'image (600,450) redimensionnée à (224.224)

7 classes de diagnostic cutané:

- 1 Kératoses actiniques et carcinome intraépithélial / maladie de Bowens (akiec)
- 2 carcinome basocellulaire (CCB)
- 3 Lésions bénignes de type kératose (bkl)
- 4 dermato-fibrome (df)
- 5 mélanome (mel)
- 6 naevus mélanocytaires (nv)
- 7 lésions vasculaires (vasc)

Configuration de l'expérience

Modèles transférés

- CNN avec poids pré-entrainés (ImageNet)

CNN

- Séparation 60/20/20
- Valeurs de pixel mises à l'échelle de -1 à 1
- Arrêt anticipé
- Poids pré-entrainés : entrainés sur ImageNet

Modèle

- VGG16 (Parameters: 138,357,544)
- Xception (Parameters: 22,910,480)
- Resnet50 (Parameters: 25,636,712)
- EfficientNetB7 (Parameters: 66,658,687)

ImageNet

- Grande base de données visuelle avec 14 millions d'images
- Contient plus de 20 000 catégories
- Catégories comme chien, chat, fraise, etc.

A Résultats

Résultats

Classification Report

	precision	recall	f1-score	support		precision	recall	f1-score	support	
akiec	0.82	0.14	0.24	63	akiec	0.71	0.24	0.36	63	
bcc	0.64	0.38	0.47	104	bcc	0.63	0.41	0.50	104	
bkl	0.47	0.48	0.47	209	bkl	0.57	0.44	0.50	209	
df	0.67	0.32	0.43	25	df	0.80	0.48	0.60	25	
mel	0.53	0.48	0.50	220	mel	0.54	0.50	0.52	220	
nv	0.86	0.94	0.90	1355	nv	0.84	0.95	0.89	1355	
vasc	0.65	0.56	0.60	27	vasc	0.67	0.37	0.48	27	
accuracy			0.77	2003	accuracy			0.78	2003	
macro avg	0.66	0.47	0.52	2003	macro avg	0.68	0.48	0.55	2003	
weighted avg	0.76	0.77	0.76	2003	weighted avg	0.76	0.78	0.76	2003	
VGG16						Xception				
Classification Report						Classification Report				
Classification	n Report				Classification	n Report				
Classification	n Report precision	recall	f1-score	support	Classification	n Report precision	recall	f1-score	support	
Classification akiec		recall 0.11	f1-score 0.20	support 63	Classification akiec		recall 0.20	f1-score 0.31	support 59	
	precision					precision				
akiec	precision 0.88	0.11	0.20	63	akiec	precision 0.67	0.20	0.31	59	
akiec bcc	precision 0.88 0.60	0.11 0.47	0.20 0.53	63 104	akiec bcc	0.67 0.79	0.20 0.50	0.31 0.61	59 96	
akiec bcc bkl	0.88 0.60 0.48	0.11 0.47 0.49	0.20 0.53 0.48	63 104 209	akiec bcc bkl	0.67 0.79 0.55	0.20 0.50 0.49	0.31 0.61 0.52	59 96 221	
akiec bcc bkl df	0.88 0.60 0.48 0.80	0.11 0.47 0.49 0.16	0.20 0.53 0.48 0.27	63 104 209 25	akiec bcc bkl df	0.67 0.79 0.55 0.62	0.20 0.50 0.49 0.59	0.31 0.61 0.52 0.60	59 96 221 27	
akiec bcc bkl df mel	0.88 0.60 0.48 0.80 0.58	0.11 0.47 0.49 0.16 0.35	0.20 0.53 0.48 0.27 0.44	63 104 209 25 220	akiec bcc bkl df mel	0.67 0.79 0.55 0.62 0.57	0.20 0.50 0.49 0.59 0.39	0.31 0.61 0.52 0.60 0.46	59 96 221 27 218	
akiec bcc bkl df mel nv	0.88 0.60 0.48 0.80 0.58 0.84	0.11 0.47 0.49 0.16 0.35 0.96	0.20 0.53 0.48 0.27 0.44 0.89	63 104 209 25 220 1355	akiec bcc bkl df mel nv	0.67 0.79 0.55 0.62 0.57 0.85	0.20 0.50 0.49 0.59 0.39 0.96	0.31 0.61 0.52 0.60 0.46 0.90	59 96 221 27 218 1353	
akiec bcc bkl df mel nv vasc	0.88 0.60 0.48 0.80 0.58 0.84	0.11 0.47 0.49 0.16 0.35 0.96	0.20 0.53 0.48 0.27 0.44 0.89 0.31	63 104 209 25 220 1355 27	akiec bcc bkl df mel nv vasc	0.67 0.79 0.55 0.62 0.57 0.85	0.20 0.50 0.49 0.59 0.39 0.96	0.31 0.61 0.52 0.60 0.46 0.90 0.65	59 96 221 27 218 1353 29	
akiec bcc bkl df mel nv vasc	0.88 0.60 0.48 0.80 0.58 0.84 1.00	0.11 0.47 0.49 0.16 0.35 0.96 0.19	0.20 0.53 0.48 0.27 0.44 0.89 0.31	63 104 209 25 220 1355 27	akiec bcc bkl df mel nv vasc	0.67 0.79 0.55 0.62 0.57 0.85 0.88	0.20 0.50 0.49 0.59 0.39 0.96 0.52	0.31 0.61 0.52 0.60 0.46 0.90 0.65	59 96 221 27 218 1353 29	

Classification Report

Discussion

Conclusion