Lane Detection

Rafael Lopez Gutierrez

Vision Computacional

Mayo. 21, 2013

Indice

- 1 Descripcion
- 2 Herramientas
- AplicacionesAplicacion existente
- 4 Funcionamiento
 - Implementación
 - Proceso
- 5 Desempeño
 - Experimento
- 6 Demostracion
 - Demo
 - Final

Descripcion

ITS

Sistema de detección de carriles basado en vision computacional. Se obtienen imágenes mediante una camara de vídeo situada en el vehículo y posteriormente se aplica el algoritmo de detección en tiempo real para calcular su orientacion.

Herramientas

- Python 2.7 (Lenguaje de desarrollo)
- PIL (Manipulacion de Imagenes
- OpenCV (Algoritmos de Vision Computacional

Herramientas

- Python 2.7 (Lenguaje de desarrollo)
- PIL (Manipulacion de Imagenes)
- OpenCV (Algoritmos de Vision Computacional)

Herramientas

- Python 2.7 (Lenguaje de desarrollo)
- PIL (Manipulacion de Imagenes)
- OpenCV (Algoritmos de Vision Computacional)

Aplicaciones

- Vehiculos teleoperados
- Asistencia de conduccior
- Vehiculos Autonomos

Aplicaciones

- Vehiculos teleoperados
- Asistencia de conduccion
- Vehiculos Autonomos

Aplicaciones

- Vehiculos teleoperados
- Asistencia de conduccion
- Vehiculos Autonomos.

Aplicacion Existente

Mobileye, el pionero mundial en el desarrollo de sistemas avanzados de asistencia al conductor.

Figure: Logo

ITS

Obtencion Imagen

Se captura video una camara configurada con cierto angulo.

Zona de Interes

Se recorta la imagen para considerar sólo la zona central que es la zona que nos importa y asi se elimina el horizonte.

Filtros

Se procesan los fotogramas usando escala de grises, umbrales, conversion HSV.

Deteccion de bordes

Se detectan los bordes de la imagen utilizando el filtro de canny.

ITS

Obtencion Imagen

Se captura video una camara configurada con cierto angulo.

Zona de Interes

Se recorta la imagen para considerar sólo la zona central que es la zona que nos importa y asi se elimina el horizonte.

Filtros

Se procesan los fotogramas usando escala de grises, umbrales , conversion HSV.

Deteccion de bordes

Se detectan los bordes de la imagen utilizando el filtro de canny.

ITS

Obtencion Imagen

Se captura video una camara configurada con cierto angulo.

Zona de Interes

Se recorta la imagen para considerar sólo la zona central que es la zona que nos importa y asi se elimina el horizonte.

Filtros

Se procesan los fotogramas usando escala de grises, umbrales , conversion HSV.

Deteccion de bordes

Se detectan los bordes de la imagen utilizando el filtro de canny .

ITS

Obtencion Imagen

Se captura video una camara configurada con cierto angulo.

Zona de Interes

Se recorta la imagen para considerar sólo la zona central que es la zona que nos importa y asi se elimina el horizonte.

Filtros

Se procesan los fotogramas usando escala de grises, umbrales , conversion HSV.

Deteccion de bordes

Se detectan los bordes de la imagen utilizando el filtro de canny .

Funcionamiento

ITS

Post-Procesamiento

Para calcular la orientacion se hizo de una forma sencilla se establecio una linea horizontal que funciona como marcadores y cuando la Intersección esta en cierto valor se detecta si se va hacia la derecha o a la izquierda .

Experimento

Figure: Exp 1

Experimento

Figure: Exp 2

Demostracion

- Experimento 1
- Experimento 2

Demostracion

- Experimento 1
- Experimento 2

Documentacion y Codigo . Github Reporte

github.com/rafaellopezgtz/lane-detection

Duda o comentario: rafaellopezgtz@gmail.com

Gracias ITS

Documentacion y Codigo . Github Reporte

github.com/rafaellopezgtz/lane-detection

Duda o comentario: rafaellopezgtz@gmail.com

Gracias ITS

Documentacion y Codigo . Github Reporte

- github.com/rafaellopezgtz/lane-detection
- blog.rafaellopezgtz.com

Duda o comentario: rafaellopezgtz@gmail.com