Examen 2019-2020

Josephson Junior R.

April 28, 2024

Table des matières

Exercice 1

2 Exercice 2

1. Différence de conductivité pour les types de revêtement

Soit le modèle ANOVA à un facteur de contrôle :

$$\mathbf{Y}_{\mathbf{i}\mathbf{j}} = \mu + \alpha_{\mathbf{i}} + \varepsilon_{\mathbf{i}\mathbf{j}}$$

On teste les hypothèses suivantes :

$$\begin{cases} \ \ \mbox{H0}: & \alpha_{\bf i} = {\bf 0} \\ \ \mbox{Ha}: & \exists {\bf i} \ / \ \alpha_{\bf i} \neq {\bf 0} \end{cases}$$

Sous H0 on définit la statistique de test :

$$\textbf{F} = \frac{\frac{SS_{Traitement}}{a-1}}{\frac{SS_E}{N-a}} ~\sim ~ \mathcal{F}(a-1,N-a) ~~(3,12)$$

AN:

$$\bar{Y}_{1.}=145$$
; $\bar{Y}_{2.}=145.25$; $\bar{Y}_{3.}=132.25$; $\bar{Y}_{4.}=129.25$

$$\text{SS}_{\text{Traitement}} = \sum_{i=1}^4 \sum_{j=1}^4 \left(\boldsymbol{\bar{Y}}_i - \boldsymbol{\bar{Y}} \right)^2 = 4 \times \sum_{i=1}^5 \boldsymbol{\bar{Y}}_i^2 - 16 \times \boldsymbol{\bar{Y}}^2 = 844.7$$

$$\text{SS}_{\text{T}} = \sum_{i=1}^{4} \sum_{j=1}^{4} \left(\textbf{Y}_{ij} - \bar{\textbf{Y}} \right)^2 = \sum_{i=1}^{4} \sum_{j=1}^{4} \textbf{Y}_{ij}^2 - 16 \times \bar{\textbf{Y}}^2 = 1080.9$$

$$SS_E = SS_T - SS_{Traitement} = 236.3$$

$$F = \frac{844.7/3}{236.3/12} = 14.3 > F^c$$

Donc on rejette H0 , il y a bien une différence de conductivité du aux types de revêtement.

2. Moyenne globale et les effets traitements

La moyenne globale est donnée par :

$$\bar{Y} = \frac{1}{4} \sum_{i=1}^{4} Y_{i.} = 137.9375$$

Les effets traitements :

$$\begin{cases} \hat{\alpha}_{1} = \bar{Y}_{1.} - \bar{Y} = 7.0625 \\ \hat{\alpha}_{2} = \bar{Y}_{2.} - \bar{Y} = 7.3125 \\ \hat{\alpha}_{3} = \bar{Y}_{3.} - \bar{Y} = -5.6875 \\ \hat{\alpha}_{4} = \bar{Y}_{4.} - \bar{Y} = -8.6875 \end{cases}$$

3. Les valeurs de la statistique t-test

Traitement	T-test
1 vs 2	-0.08
1 vs 3	4.06
1 vs 4	5.02
2 vs 3	4.14
2 vs 4	5.1
3 vs 4	0.96

$$T - test = \frac{\bar{Y}_{i.} - \bar{Y}_{j.}}{Strandard Error}$$

4. Intervalle de confiance de la moyenne pour revêtement type 4

$$IC_{\mu_4}^{95\%} = \left[\bar{Y}_4 \pm t_{\alpha/2,12} \times \sqrt{\frac{CM_{SSE}}{n}} \right] = [124.42, 134.08]$$

5. Intervalle de confiance de la différence de moyenne entre 1 et 4

$$IC_{\mu_1-\mu_4} = \left[\bar{Y}_1 - \bar{Y}_4 \pm t_{\alpha/2,12} \times \sqrt{\frac{2CM_{SSE}}{n}} \right] = [6.16, 25.34]$$

6. Différence de moyenne - Tableau 2

Traitement	Mean difference
1 vs 2	-0.25
1 vs 3	12.75
1 vs 4	15.75
2 vs 3	13
2 vs 4	16
3 vs 4	3

7i. Comparaison des paires moyennes par le test de Tukey

Soit le corps d'hypothèse :

$$\begin{cases} \mathbf{H0}: & \mu_{\mathbf{i}} = \mu_{\mathbf{j}} \\ \mathbf{Ha}: & \mu_{\mathbf{i}} \neq \mu_{\mathbf{j}} \end{cases}$$

La statistique du test est définie par :

$$q = \frac{\bar{Y}_{max} - \bar{Y}_{min}}{\sqrt{\frac{CM_{SSE}}{n}}}$$

Le seuil critique de Tukey est :

$$T_{\alpha} = q(a, f) \times \sqrt{\frac{CM_{SSE}}{n}} = 9.32$$

On dit que les paires moyennes sont significativement différentes si :

$$|\bar{Y}_i - \bar{Y}_i| > T_{alpha} \Rightarrow \grave{a}$$
 vous de conclure

7ii. LSD-Fisher

$$LSD = t_{\alpha/2, N-a} \times \sqrt{\frac{2CM_{SSE}}{n}} = 10.77$$

On rejette H0 si:

$$\left|ar{Y}_{\it i} - ar{Y}_{\it j}
ight| > {\it LSD} \Rightarrow {\sf \grave{a}}$$
 vous de conclure

7iii. Comparatif des deux tests

On constate que les deux tests donnent les mêmes résultats quant au rejet de H0. La seule différence entre les deux méthodes est que le Tukey-Test se base sur **le rang studentisé** tandis que le LSD de Fisher sur **la distribution de Student**.

8. Conductivité la plus élevée

C'est le revêtement 2 qui produit la conductivité la plus élevé compte tenu de sa moyenne qui est supérieure aux autres types de revêtement.

10. Analyse graphique

Le premier graphe donne une idée sur la loi des résidus qui semblent être de loi Normale compte tenu de l'ajustement des valeurs par rapport à une droite. Le second graphe renseigne sur les groupes de revêtement (on distingue deux) ; aucune anomalie pour le plot. Le troisième est pour l'homoscédastcité de la variance des résidus.

11. D'autres tests de comparaisons de paires moyennes

(Voir cours)

1. Différence significative entre les chimistes ?

Soit le modèle ANOVA à un facteur de contrôle :

$$\mathbf{Y}_{\mathbf{i}\mathbf{j}} = \mu + \alpha_{\mathbf{i}} + \varepsilon_{\mathbf{i}\mathbf{j}}$$

On teste les hypothèses suivantes :

$$\begin{cases} \ \ \mbox{H0}: & \alpha_{\bf i} = {\bf 0} \\ \ \mbox{Ha}: & \exists {\bf i} \ / \ \alpha_{\bf i} \neq {\bf 0} \end{cases}$$

Sous H0 on définit la statistique de test :

$$\textbf{F} = \frac{\frac{SS_{Traitement}}{a-1}}{\frac{SS_E}{N-a}} \ \sim \ \mathcal{F}(a-1,N-a) \ (3,8)$$

AN:

$$\bar{Y}_{1.}=84.47\;;\; \bar{Y}_{2.}=85.0533\;;\; \bar{Y}_{3.}=84.787\;;\; \bar{Y}_{4.}=84.283\;$$

$$\text{SS}_{\text{Traitement}} = \sum_{i=1}^4 \sum_{j=1}^3 \left(\boldsymbol{\bar{Y}}_i - \boldsymbol{\bar{Y}} \right)^2 = 3 \times \sum_{i=1}^4 \boldsymbol{\bar{Y}}_i^2 - 12 \times \boldsymbol{\bar{Y}}^2 = 1.0466$$

$$\text{SS}_{\text{T}} = \sum_{i=1}^{4} \sum_{j=1}^{3} \left(Y_{ij} - \boldsymbol{\bar{Y}} \right)^2 = \sum_{i=1}^{4} \sum_{j=1}^{3} Y_{ij}^2 - 12 \times \boldsymbol{\bar{Y}}^2 = 1.9028$$

$$\mathsf{SS}_\mathsf{E} = \mathsf{SS}_\mathsf{T} - \mathsf{SS}_\mathsf{Traitement} = 0.8582$$

$$\mathsf{F} = \frac{1.0466/3}{0.8582/8} = 3.25 \ < \ \mathsf{F}^\mathsf{c}$$

Donc on rejette H0, les chimistes sont significativement égales.

4 D > 4 A > 4 B > 4 B > 9 Q P

2. Les valeurs de la statistique t-test

Traitement	T-test
1 vs 2	-2.18
1 vs 3	-1.18
1 vs 4	0.7
2 vs 3	1
2 vs 4	2.88
3 vs 4	1.88

$$\mathsf{T} - \mathsf{test} = rac{ar{\mathsf{Y}}_\mathsf{i.} - ar{\mathsf{Y}}_\mathsf{j.}}{\mathsf{Strandard Error}}$$

3. Construction des contrastes orthogonaux

Hypothèses	Constrastes
H0 : $\mu_2 = \mu_1$	$\textbf{C}_1 = \ \textbf{y}_2 - \textbf{y}_1$
$H0: \mu_2 = \mu_3$	$\mathbf{C_2} = \ \mathbf{y_2} - \mathbf{y_3}$
$H0: \mu_2 = \mu_4$	$C_3=\ y_2-y_4$

i. Les sommes carrées des contrastes

Pour le premier contraste :

$$c_3 = c_4 = 0 \; ; \; c_2 = 1 \; \text{et} \; c_1 = -1 \Rightarrow \text{SS}_{C1} = \left(\frac{\sum c_i y_i}{\sqrt{\mathsf{n} \times \sum c_i^2}}\right)^2 = 0.51$$

Pour le second contraste :

$$c_1 = c_4 = 0 \; ; \; c_2 = 1 \; et \; c_3 = -1 \Rightarrow SS_{C2} = \left(\frac{\sum c_i y_i}{\sqrt{n \times \sum c_i^2}}\right)^2 = 0.107$$

Pour le troisème contraste :

$$c_3 = c_1 = 0 \; ; \; c_2 = 1 \; \text{et} \; c_4 = -1 \Rightarrow \text{SS}_{\text{C3}} = \left(\frac{\sum c_i y_i}{\sqrt{n \times \sum c_i^2}}\right)^2 = 0.9$$

iii. Le test approprié à chaque contraste

Les hypothèses pour ii. sont présentes dans le tableau 3. ; compte tenu des calculs precedent on utilise l'approche F-test pour la statistique de test.

Pour C_1 :

$$\text{F}_0 = \frac{\text{SS}_{\text{C1}}/1}{\text{SS}_{\text{E}}/N - a} = \frac{0.51}{0.107275} = 4.75$$

Pour C_2 :

$$\text{F}_0 = \frac{\text{SS}_{\text{C2}}/1}{\text{SS}_{\text{E}}/\text{N} - \text{a}} = \frac{0.107}{0.107275} = 1$$

Pour C_3 :

$$F_0 = \frac{SS_{C2}/1}{SS_E/N - a} = \frac{0.9}{0.107275} = 8.39$$

iv. Contraste significatif

Compte tenu des statistiques calculées seul le contraste 3 est significatif car $F_{0.3} > F^c = 5.32$.

v. Intervalle de confiance des constrastes

Pour C_1 :

$$\label{eq:continuous} \textbf{IC}_{\textbf{C}_1} = \left[\sum_{i=1}^4 c_i \boldsymbol{\bar{Y}}_i ~\pm~ t_{\alpha/2,\textbf{N}-\textbf{a}} \times \sqrt{\frac{\textbf{CM}_{\textbf{SSE}}}{\textbf{n}}} \times \sum_{i=1}^4 c_i^2 ~\right] = [0.05~,~1.12]$$

Pour C_2 :

$$\label{eq:continuous} \text{IC}_{\text{C}_2} = \left[\sum_{i=1}^4 c_i \bar{\textbf{Y}}_i ~\pm~ t_{\alpha/2,\text{N}-a} \times \sqrt{\frac{\text{CM}_{\text{SSE}}}{\text{n}}} \times \sum_{i=1}^4 c_i^2 ~\right] = [-0.27~,~0.8]$$

Pour C_3 :

$$\label{eq:continuous_continuous$$

Josephson Junior R. Plan d'Exp. 2019-2020 April 28, 2024

16 / 16