PRZEWODNICTWO CIEPLNE MIEDZI

T. Fas

7 listopada 2017

STRESZCZENIE

Celem doświadczenia było wyznaczenie współczynnika λ przewodnictwa cieplnego miedzi. Wartość otrzymana w eksperymencie wynosi $\lambda = (344 \pm 12) \text{ W/mK}$, która w porównaniu z wartościami tablicowymi nie przechodzi testu 3σ .

WSTEP

Jeśli między badanymi ciałami istnieje różnica temperatur, to zgodnie z prawami termodynamiki będzie istniał przepływ ciepła z ciała cieplejszego do zimniejszego. Z tym przepływem związany jest współczynnik λ przewodnictwa cieplnego. Jest on miarą zdolności ciała do transportu energii. Im większy współczynnik, tym więcej energii jest w stanie przepłynąć przez to ciało. Ilość przepływu ciepła Q w czasie dla ciała, którego dwa różne punkty x mają różną temperaturę T, jest opisana przez prawo Fouriera:

$$\frac{dQ}{dt} = -\lambda S \frac{\partial T}{\partial x},\tag{1}$$

gdzie S jest przekrojem poprzecznym ciała. Równanie (1) jest słuszne tylko dla stałej różnicy temperatur, czyli $\partial T/\partial x = const.$ Jeśli tak, to dQ/dt również jest wartością stałą. Tak więc, żeby wyznaczyć współczynnik λ z Równania (1) należy badać ciało w stanie stacjonarnym.

UKŁAD DOŚWIADCZALNY

Układ składał się z pręta miedzianego o średnicy $D=(6\pm0,1)$ mm umieszczonego w izolowanej obudowie, którego jeden koniec był zanurzony w wodzie, a drugi koniec był podłączony do grzałki. W różnych miejscach pręta zostały zamocowane termopary miedź-konstantan, które pozwoliły na zmierzenie napięcia między złączem najbliższym grzałce, a każdym kolejnym, a co za tym idzie, różnicy temperatur. między tymi punktami. Do pomiarów napięcia z termopar wykorzystano mikrowoltomierz NI-9211, który był podłączony do komputera. Wyniki były zapisywane w pamięci komputera. Warto dodać, że minimalna niepewność związana z mikrowoltomierzem wynosi 5 μ V. Dodatkowo wykorzystano dwa mierniki CHY 38 do rejestracji napięcia i natężenia związanego z grzałką. Grzałka byłą podłączona do zasilacza o kontrolowanym napięciu, co pozwalało na kontrolę mocy grzałki.

Pomiary były przeprowadzana dla kilku wartości mocy grzałki. Każdy z nich był przeprowadzany tak długo, aż napięcia na termoparach ustabilizowały się. Było to znakiem, że ustaliła się stałą różnica temperatur między danymi punktami.

WYNIKI POMIARÓW

Pomiary przeprowadzono dla pięciu rożnych wartości napięcia na grzałce. Wartości te przedstawiono w Tabeli 1. Na samym początku wykonano też jeden pomiar bez grzania. Ilość punktów pomiarowych związana z tymi pomiarami jest zbyt duża, by umieszczać je w raporcie.

Tabela 1: Napięcia, natężenia i ich niepewności

	- T C)				
Pomiar	1	2	3	4	5
Napięcie U [V]	6,00	7,00	8,01	9,01	10,0
Natężenie I [A]	0,0700	0,0817	0,0938	0,1055	0,1177
Niepewność U [V]	0,04	0,0450	0,0500	0,0551	0,0600
Niepewność I [A]	0,0008	0,0009	0,0010	0,0012	0,0013

Rysunek 1: Napięcia bez grzania

ANALIZA DANYCH

W pierwszej kolejności wykonano wykres związany z napięciami przy wyłączonej grzałce. Jest on pokazany na Rysunku 1. Wartości napięć są poniżej wartości ich niepewności, a z ich chaotyczności można wnioskować, iż rozkład temperatur na precie był w przybliżeniu jednorodny, a wymiana ciepła z otoczeniem jest bliska zeru.

Niepewności u związanie z pomiarem napięć V na mikrowoltomierzu obliczono, korzystając ze wzoru:

$$u_{\mu V} = 0,001 \cdot V + 5\,\mu V,\tag{2}$$

Jak już wspomniano wcześniej, niepewność ta nie jest mniejsza od 5 μV , co jest ważne w przypadku małych wartości napięć.

Niepewności u dla mierników CHY 38, związanych z pomiarami napięcia U i natężenia I obliczono z następujących wzorów:

$$u_U = 0,005 \cdot U + 0,01 V \tag{3}$$

$$u_I = 0,01 \cdot I + 0,0001 A \tag{4}$$

Wartości niepewności u_U i u_I zostały umieszczone w Tabeli 1.

Napięcie V na termoparach jest dane funkcją:

$$V(t) = V_{\infty} - V_0 \exp((t_0 - t)/\tau)$$
(5)

gdzie V_{∞} , V_0 , t_0 i τ są parametrami dopasowania. Dla bardzo długiego czasu wartość eksponensu dąży do zera, więc dominującym czynnikiem staje się V_{∞} . Jest to szukana wartość napięcia w stanie stacjonarnym. Wartość V_{∞} jest wprost proporcjonalna do różnicy temperatur związanych punktami pomiaru napięcia. Współczynnik proporcjonalności dla złącza miedź-konstantan wynosi $c=40,9\pm0,2~\mu\mathrm{V/K}$.

W celu dopasowania krzywej do punktów pomiarowych wykorzystano program SciDAVis. Niepewności pomiarów obliczono z Równania (2) i uwzględniono je w analizie. Wyniki dopasowań dla pomiaru pierwszego przedstawione są na Rysunku (2). W ramkach podano wartości V_{∞} oraz wartości χ^2 W tym przypadku na wykres składa się ponad tysiąc punktów pomiarowych przy czterech parametrach, co daje wartości krytyczne χ^2 przekraczające 100, np. dla 1000 stopni swobody i dla prawdopodobieństwa p=0,005 $\chi^2_0=1118.95$. Jak widać, krzywe przechodzą test χ^2 pomimo wizualnych odstępstw od punktów pomiarowych. Dzieje się tak, ponieważ niepewności napięcia są znaczne.

Analogiczne wykresy dla kolejnych pomiarów są przedstawione na Rysunkach 3-6.

W Tabelach 2-6 zebrano wszystkie współczynniki V_{∞} wraz z ich niepewnościami. Dodatkowo dopasowano te współczynniki do odpowiednich odległości na pręcie jak i obliczono różnicę temperatur. Niepewność różnic

Rysunek 2: Dopasowanie krzywej: pomiar 1.

Rysunek 3: Dopasowanie krzywej: pomiar 2.

Rysunek 4: Dopasowanie krzywej: pomiar 3.

Rysunek 5: Dopasowanie krzywej: pomiar 4.

Rysunek 6: Dopasowanie krzywej: pomiar 5.

temperatur wyznaczono, korzystając z propagacji małych błędów wyrażającej się wzorem:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2 + \sum_{i=1, i \neq j}^n \left(\frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} c_{ij}\right),\tag{6}$$

gdzie wielkość f zależy od wielkości x_i o niepewnościach u_i i o ocenach kowariancji c_{ij} [1]. W przypadku mierzonych napięć, kowariancja między nimi, a współczynnikiem termoelektrycznym wynosi 0. Ostatecznie niepewność różnicy temperatur ΔT jest dana wzorem:

$$u_{\Delta T} = \Delta T \sqrt{\frac{u_{V_{\infty}}^2}{V_{\infty}^2} + \frac{u_c^2}{c^2}} \tag{7}$$

Tabela 2: Różnice temperatur: pomiar 1

rasona z. resimes compensar. Pomiar r					
Odległość [mm]	V_{∞} [V]	$u_{V_{\infty}}$ [V]	$\Delta T [K]$	$u_{\Delta T} [K]$	
18,0	18,12	0,039	0,44	0,0024	
39,0	38,85	0,070	0,95	0,0050	
61,2	51,80	0,089	1,27	0,0066	
83,2	74,86	0,124	1,83	0,0095	

Tabela 3: Różnice temperatur: pomiar 2.

Tabela 3. Rozince temperatur. pomiar 2.					
Odległość x [mm]	V_{∞} [V]	$u_{V_{\infty}}$ [V]	$\Delta T [K]$	$u_{\Delta T}$ [K]	
18,0	25,19	0,027	0,616	0,0031	
39,0	54,592	0,037	1,335	0,0066	
61,2	72,706	0,044	1,778	0,0088	
83,2	105,11	0,057	2,570	0,0126	

Tabela 4: Różnice temperatur: pomiar 3.

Odległość x [mm]	V_{∞} [V]	$u_{V_{\infty}}$ [V]	$\Delta T [K]$	$u_{\Delta T} [K]$
18,0	32,645	0,024	0,798	0,004
39,0	70,904	0,040	1,734	0,009
61,2	94,286	0,050	2,305	0,011
83,2	136,46	0,071	3,336	0,016

Tabela 5: Różnice temperatur: pomiar 4.

Odległość x [mm]	V_{∞} [V]	$u_{V_{\infty}}$ [V]	$\Delta T [K]$	$u_{\Delta T}$ [K]
18,0	42,201	0,030	1,032	0,005
39,0	91,664	0,040	2,241	0,011
61,2	119,1	0,046	2,912	0,014
83,2	175,79	0,063	4,298	0,021

Tabela 6: Różnice temperatur: pomiar 5.

Odległość x [mm]	V_{∞} [V]	$u_{V_{\infty}}$ [V]	$\Delta T [K]$	$u_{\Delta T} [K]$
18,0	51,779	0,026	1,266	0,006
39,0	112,71	0,041	2,756	0,014
61,2	145,4	0,053	3,555	0,017
83,2	215,69	0,067	5,274	0,026

Na podstawie danych z tych tabel można wykonać wykres zależności $\Delta T(x)$. Punkty wyraźnie układają się w linię, przy czym współczynnik kierunkowy tej prostej odpowiada wyrażeniu $-\partial T/\partial x$ z Równania (1). Przy dopasowywaniu krzywej ponownie skorzystano z programu SciDAVis. Wykresy odpowiadające każdemu pomiarów przedstawione są na Rysunkach 6-11. Na tych rysunkach umieszczono też wartości współczynników wraz z wartościami χ^2 . Każdy z wykresów składa się z czterech punktów pomiarowych, a dopasowywana krzywa ma dwa parametry. Daje to łącznie dwa punkty swobody, co przy prawdopodobieństwie p=0,005 daje wartość krytyczną $\chi^2_0=10,60$. Jak widać, żaden z wykresów nie przeszedł testu χ^2 .

Rysunek 7: $\Delta T(x)$: pomiar 1.

Mimo to postanowiono kontynuować analizę danych. Otrzymane współczynniki kierunkowe przyporządkowano do odpowiednich mocy grzałki. Moc grzałki P=UI obliczono, korzystając z danych z Tabeli 1, a niepewność tej mocy wyznaczono korzystając z Równania (6). Otrzymano:

$$u_P = P\sqrt{\frac{u_U^2}{U^2} + \frac{u_I^2}{I^2}} \tag{8}$$

Dodatkowo uwzględniono, że nie cało mac grzałki jest przekazywana prętowi. Postanowiono przyjąć, iż sprawność

Rysunek 10: $\Delta T(x)$: pomiar 4.

Rysunek 11: $\Delta T(x)$: pomiar 5.

grzałki wynosi $\eta = 0,49 \pm 0,05$. Niepewność mocy ηP wynosi, na mocy Równania (6):

$$u_{\eta P} = \eta P \sqrt{\frac{u_P^2}{P^2} + \frac{u_\eta^2}{\eta^2}} \tag{9}$$

Tabela 7 przedstawia wartości ηP wraz z niepewnościami oraz wartości współczynników kierunkowych wraz z ich niepewnościami. Zgodnie z Równaniem (1) wartości z Tabeli 8 podlegają następującemu rozkładowi:

Tabela 7: Wartości mocy i gradientu

Współczynnik a [K/mm]	$\eta P [W]$	$u_a [{\rm K/mm}]$	$u_{\eta P}$ [W]
0,021	0,206	0,00063	0,0212
0,030	0,280	0,00088	0,0288
0,038	0,368	0,00115	0,0378
0,048	0,466	0,00172	0,048

$$\eta P + P_0 = \lambda S a,\tag{10}$$

gdzie P_0 jest mocą dostarczaną z otoczenia. Na podstawie danych z Tabeli 8 stworzono wykres wraz z krzywa najlepszego dopasowania, przedstawiony na Rysunku 12.

Obliczone współczynniki wynoszą: $A=\lambda S,\,B=-P_0.$ Zgodnie z oczekiwaniami, wymiana ciepła z otoczeniem jest niewielka.

Korzystając z wartości współczynnika A oraz $S=(\pi D^2)/4$ obliczono wartości $\lambda=344,02$ W/mK. Niepewność tej wielkości obliczono ponownie korzystając z Równania (6) otrzymując:

$$u_{\lambda} = \lambda \sqrt{\frac{u_A^2}{A^2} + \frac{u_S^2}{S^2}} \tag{11}$$

Po podstawieniu danych liczbowych otrzymano ostatecznie $\lambda=344\pm12~\text{w/mK}.$

Postanowiono porównać tę wartości z wartością tablicową wynoszącą 385 W/mK [2]. Posłużono się w tym celu testem 3σ , który polega na sprawdzeniu, czy różnica między wartością teoretyczną a eksperymentalną

Rysunek 12: $\eta P(a)$

jest mniejsza od trzykrotności niepewności tej różnicy. W tym przypadku potraktowano wartość tablicową jako znaną dokładnie. Różnica wielkości wynosi 40,98 W/mK a $3u_{\lambda}=34,55$ W/mK. Jak się okazuje wyznaczona wartość nie jest zgodna z wartością tablicową.

DYSKUSJA WYNIKÓW I WNIOSKI

Otrzymany wynik nie jest zgodny z wartością wzorcową pomimo starannie przeprowadzonych pomiarów. Pewną wskazówką w analizie błędów jest dopasowywanie krzywej zależności temperatury od odległości. Żadna z tych krzywych nie przeszłą testu χ^2 więc prawdopodobnie istnieje jakiś błąd w pomiarach lub dopasowywaniu krzywych do Równania (5), który choć początkowo niewidoczny, narastał w trakcie analizy i przechodzeniu przez kolejne jej kroki, by na samym końcu jego wpływ był znaczący. Dodatkowo warto byłoby powtórzyć pomiar z wykorzystaniem innego sprzętu, by wykluczyć możliwość wad w układzie doświadczalnym.

Literatura

- [1] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.
- [2] Young, Hugh D., University Physics, Addison-Wesley Pub. Co., 1992, Table 15-5.