Math Camp

Module #0 Introduction

Why are we here?

Who are we?

What is economics?

What is math?

Why is there math in economics?

There's not.

Definition. A *theory* is a set of <u>assumptions</u> together with the necessary <u>implications</u>.

Two approaches to forming theories

- 1. Construct a narrative to explain behavior witnessed in data
 - Pro: language allows for nuance and therefore realistic modeling assumptions
 - Con: language is imprecise so assumptions and their implications can be unclear

About math in economics (continued)

- 2. Use math to lay out <u>precise</u> assumptions and deduce <u>necessary</u> implications
 - Pro: meaning of assumptions and what implications follow cannot be debated; debate is limited to appropriateness of assumptions
 - Con: tractable assumptions are necessarily restrictive, limiting reach of theory

About this course

Four important points

- New concepts in mathematics are completely mysterious until they are trivial
- Simply reading the lecture slides/text may not be enough to understand the concepts
- Your ability to apply course concepts only comes through self practice
- Don't skip the exercises

Preregs: Logic

Let P and O be statements

- "A declarative sentence that is either true or false but not both"
- We can use logical operators to create new compound statements that are either true or false.

Logical Operators

- ogical Operators
 Conjunction: the conjunction of P and Q is the statement "P and Q", denoted $P \wedge Q$. Is only true if **both** P and Q are true.
- **Disjunction**: the disjunction of P and Q is the statement "P or Q", denoted $P \vee Q$, and is only true if **either** P or Q are true.

Prereqs: Logic

Logical Operators cont.

- **Negation**: the negation of a statement P is the statement "not P", denoted $\neg P$, and is only true if P is false, and is only false if P is true. $\neg P$
- Conditional: the conditional statement is the statement "If P then Q, denoted P → Q, means that Q must be true whenever P is true, and is only false when P is true and Q is false.

Prereqs: Numbers

What about R3

TR

- (ea) 0 1 2 3
- $\circ \mathbb{R}$ is the completion of the rational numbers
- Let $A \subseteq \mathbb{R}$. The <u>supremum</u> of A, denoted $\sup A$ is the least upper bound of A (may be infinite).
- \circ If $A \subset \mathbb{R}$ is bounded above then $\sup A \in \mathbb{R}$. (!!!!!)

- \circ $\mathbb C$ is algerbraically closed: every non-constant polynomial has a root in $\mathbb C$
- \circ Every polynomial equation has a solution in $\mathbb C$

$$\sum_{i=0}^{\infty} a_i \cdot X^i = 0$$

$$j=2 \qquad \alpha_0 + \alpha_1 X + \alpha_2 X^2$$

Definition. A *relation* on a set X is a subset R of $X \times X$

- if $(x,y) \in R$ then we write $x \sim y$
- R is an equivalence relation if it has the following properties
 - ∘ reflexivity $x \sim x$
 - symmetry $x \sim y \Rightarrow y \sim x$
 - transitivity $x \sim y$ and $y \sim z$ implies $x \sim z$
- the collection of all elements related to a given element is called an equivalence class

 \(\times_{\text{\ti}\text{\texi{\text{\text{\text{\t

partition

Definition. A partition of a set X is a collection of non-intersecting subsets whose union is X.

More formally, $\{X_{\lambda}\}_{{\lambda}\in{\Lambda}}$ is a partition of X provided

•
$$X_{\lambda} \subset X$$
 for all $\lambda \in \Lambda$

•
$$X = \bigcup_{\lambda \in \Lambda} X_{\lambda} = X, \bigcup X_{\lambda} \bigcup \dots \bigcup X_{N}$$

•
$$\lambda_1 \neq \lambda_2 \Rightarrow X_{\lambda_1} \cap X_{\lambda_2} = \emptyset$$