

2. 数插的表示可能 2.3 二进制补码与带减法功能的加法器

补码设计的精妙之处

2. 级对应用3.70.15 2.3 二进制补码

- 01 什么是补码
- 02 为什么需要补码
- 03 补码的运算
- 04 二进制数据表示范围
- 05 运算溢出

2. 数插的表示与证据 2.3 定点数二进制减法

求: 0111 - 0110 = ?

最高位	其他位		
?	?	?	?
符号位	数值位		

0	0000	1000	0
1	0001	1001	-1
2	0010	1010	-2
3	0011	1011	-3
4	0100	1100	-4
5	0101/	1101	-5
6	0110	1110	-6
7	0111	1111	-7

钟表时间:

$$03:00 + ? = 00:00$$

$$03:00 + (-3) = 00:00$$

$$03:00 + (9) = 00:00$$

$$12 - 3 = 9$$

- 3和 9 互为以12为模的补数

$$-3 \equiv +9 \pmod{12}$$

$$-4 \equiv +8 \pmod{12}$$

海城宝藏 专注IT教育在线学习平台

2.3 二进制计算中的补码

N位二进制的模就是2n

海城宝藏

2.3 二进制补码

正数是补码就是原码。 负数的补码是不含符号位的二进制,取反加一。

减法信号	输入位	输出位
0	0	0
0	1	1
1	0	1
1	1	0

异或

2.3 加法器升级

	1			
Bit位数	符号	最小值	最大值	
1	无	0	1	
	_	_	_	
1	无	0	15	
4	有	-8	7	
8	无	0	255 (2 ⁸ -1)	
	有	-128 (-2 ⁷)	127 (2 ⁷ -1)	
16	无	0	65535 (2 ¹⁶ -1)	
16	有	-32768 (2 ¹⁵)	32767 (2 ¹⁵ -1)	
20	无	0	232-1	
32	有	-2 ³¹	231-1	
64	无	0	264-1	
	有	-2 ⁶³	263-1	

海城宝藏 专注IT教育在线学习平台

2.3、溢出

发生条件:

符号相同时进行加运算,可能会发生符号不同时进行减运算,可能会发生

发生条件:

运算	操作数A	操作数B	溢出条件
A+B	≥0	≥0	< 0
A+B	< 0	< 0	≥0
A-B	≥0	< 0	< 0
A-B	< 0	≥0	≥0

发生原因:表示数据的位数不够

海城宝藏

2.3 本节总结

- 1. 非常适合用电路实现补码功能
- 2. 是一个真正的互补系统, +x+(-x)=0
- 3. 补码0是唯一的
- 4. 补码的最高位是符号位
- 5. N位补码数据的表示范围是: -2(n-1)~2(n-1)—1
- 6. 使用加法电路完成减法运算
- 7. 计算机中的数据都是有bit位数限制的,
- 8. 两个数如果发生叠加时,可能会出现溢出,主要判断是看结果是不是非正常结果。

欢迎参与学习

WELCOME FOR YOUR JOINING

船说:计算机基础