

Fig. 1

Fig. 2

[L-32α	ATGTGCTTCCCGAAGGTCCTCTCTGATGACATGAAGAGCTGAAGGCCCGAATG
Ľ-32β	ATGTGCTTCCCGAAGGTCCTCTCTGATGACATGAAGAAGCTGAAGGCCCGAATG
[L-32γ	ATGTGCTTCCCGAAGGTCCTCTCTGATGACATGAAGAAGCTGAAGGCCCGAATGGTAATG
[L-32δ	ATGAAGAĠCTGAAGGCCCGAATG
L-32α	
ιι-32β	
[L-32γ	$\tt CTCCTCCCTACTTCTGCTCAGGGGTTGGGGGCCTGGGTCTCAGCGTGTGACACTGAGGAC$
[L-32δ	
[L-32α	
г ь-32β	
[L-32γ	ACTGTGGGACACCTGGGACCCTGGAGGGACAAGGATCCGGCCCTTTGGTGCCAACTCTGC
[L-32δ	
L-32α	CACCAGGCTATAGAAAGATTTTATGATAAAATGCAAAATGCAGAATCA
Б-32β	CACCAGGCCATAGAAAGATTTTATGATAAAATGCAAAATGCAGAATCA
[L-32γ	CTCTCTTCACAGCACCAGGCCATAGAAAGATTTTATGATAAAATGCAAAATGCAGAATCA
L-32 δ	CACCAGGCCATAGAAAGATTTTATGATAAAATGCAAAATGCAGAATCA
L-32α	GGACGTGGACAGGTGATGTCGAGCCTGGCAGAGCTGGAGGACGACTTCAAAGAGGGCTAC
L-32β	GGACGTGGACAGGTGATGTCGAGCCTGGCAGAGCTGGAGGACGACTTCAAAGAGGGCTAC
L-32γ	GGACGTGGACAGGTGATGTCGAGCCTGGCAGAGCTGGAGGACGACTTCAAAGAGGGCTAC
L-32δ	GGACGTGGACAGGTGATGTCGAGCCTGGCAGAGCTGGAGGACGACTTCAAAGAGGGCTAC
L-32α	CTGGAGACAGTGGCGGCTTATTATGAGGAGCAGCACCCAGAGCTCACTCCTCTACTTGAA
Ъ-32β	$\tt CTGGAGACAGTGGCGGCTTATTATGAGGAGCAGCACCCAGAGCTCACTCCTCTACTTGAA$
L-32γ	$\tt CTGGAGACAGTGGCGGCTTATTATGAGGAGCAGCACCCAGAGCTCACTCCTCTACTTGAA$
Tı-32δ	CTGGAGACAGTGGCGGCTTATTATGAGGAGCAGCACCCAGAGCTCACTCCTCTACTTGAA

Fig. 3A

IL-32α	AAAGAAAGAGATGGATTACGGTGCCGAGGCAACAGATCCCCTGTCCCGGATGTTGAGGAT
1L-32β	AAAGAAAGAGATGGATTACGGTGCCGAGGCAACAGATCCCCTGTCCCGGATGTTGAGGAT
IL-32γ	AAAGAAAGAGATGGATTACGGTGCCGAGGCAACAGATCCCCTGTCCCGGATGTTGAGGAT
IL-32δ	AAAGAAAGAGATGGATTACGGTGCCGAGGCAACAGATCCCCTGTCCCGGATGTTGAGGAT
IL-32α	CCCGCAACCGAGGAGCCTGGGGAGAGCTTTTGTGACAAG
IL-32β	CCCGCAACCGAGGAGCCTGGGGAGAGCTTTTGTGACAAGGTCATGAGATGGTTCCAGGCC
IL-32γ	CCCGCAACCGAGGAGCCTGGGGAGAGCTTTTGTGACAAGGTCATGAGATGGTTCCAGGCC
IL-32δ	CCCGCAACCGAGGAGCCTGGGGAGAGCTTTTGTGACAAGGTCATGAGATGGTTCCAGGCC
IL-32α	
IL-32β	ATGCTGCAGCGGCTGCAGACCTGGTGGCACGGGGTTCTGGCCTGGGTGAAGGAGAAGGTG
IL-32γ	ATGCTGCAGCGGCTGCAGACCTGGTGGCACGGGGTTCTGGCCTGGGTGAAGGAGAAGGTG
IL-32δ	ATGCTGCAGCGGCTGCAGACCTGGTGGCACGGGGTTCTGGCCTGGGTGAAGGAGAAGGTG
IL-32α	
IL-32β	GTGGCCCTGGTCCATGCAGTGCAGGCCCTCTGGAAACAGTTCCAGAGTTTCTGCTGCTCT
IL-32γ	GTGGCCCTGGTCCATGCAGTGCAGGCCCTCTGGAAACAGTTCCAGAGTTTCTGCTGCTCT
IL-32δ	GTGGCCCTGGTCCATGCAGTGCAGGCCCTCTGGAAACAGTTCCAGAGTTTCTGCTGCTCT
IL-32α .	TCCTACGGAGCCCCACGGGGGGACAAGGAG
IL-32β	CTGTCAGAGCTCTTCATGTCCTCTTTCCAGTCCTACGGAGCCCCACGGGGGGACAAGGAG
IL-32γ	CTGTCAGAGCTCTTCATGTCCTCTTTCCAGTCCTACGGAGCCCCACGGGGGGACAAGGAG
IL-32δ	CTGTCAGAGCTCTTCATGTCCTCTTTCCAGTCCTACGGAGCCCCACGGGGGGACAAGGAG
IL-32α	GAGCTGACACCCCAGAAGTGCTCTGAACCCCCAATCCTCAAAATGA
IL-32β	GAGCTGACACCCCAGAAGTGCTCTGAACCCCCAATCCTCAAAATGA
IL-32γ	GAGCTGACACCCCAGAAGTGCTCTGAACCCCCAATCCTCAAAATGA
IL-32δ	GAGCTGACACCCCAGAAGTGCTCTGAACCCCCAATCCTCAAAATGA

Fig. 3B

PCT/US2004/037578 WO 2005/047478

A	
TT 20-	1 Myr
IL-32α	MCFPKVLSDDMKKLKARM
IL-32β	MCFPKVLSDDMKKLKARM
IL-32γ IL-32δ	MCFPKVLSDDMKKLKARMVMLLPTSAQGLGAWVSACDTEDTVGHLGPWRDKDPALWCQLC
111-320	MKKLKARM
	61 Myr
IL-32α	HQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAAYYEEQHPELTPLLE
IL-32β	HQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAAYYEEQHPELTPLLE
IL-32γ	LSSQHQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAAYYEEQHPELTPLLE
IL-32δ	HQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAAYYEEQHPELTPLLE
	121 (2)
IL-32α	121 Gly
IL-32α	KERDGLRGRRSPVPDVEDPATEEPGESFCDK
IL-32γ	KERDGLRCRGNRSPVPDVEDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKEKV
IL-32γ IL-32δ	KERDGLRCRGNRSPVPDVEDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKEKV
111-320	KERDGLRCRGNRSPVPDVEDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKEKV
	181 Myr
IL-32α	SYGAPRGDKEELTPQKCSEPQSSK
IL-32β	VALVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTPQKCSEPQSSK
IL-32γ	VALVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTPQKCSEPQSSK
IL-32δ ·	VALVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTPQKCSEPQSSK
B	
	1 ,
huIL-32β	MCFPKVLSDDMKKLKARMHQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAA
EqIL-32	MGYPKTSREDNERWKIRFHSTLDRWLDDIEVQSQGEEQVDLGLEDLEEKFSENILDAVEE
BoIL-32	MCFAKGVPYDQASLRSIMHKRVDDFCDKMGNEPE-EAQMEAALDETEEGLSEDICEFIED
Consensus	****
	61
huIL-32β	YYEEQHPELTPLLEKERDGLRCRGNRSPVPDVEDPATEEPGESFCDKVMR
EqIL-32	HHQKNNSESAPLLPDVKPRLRRRAQKSSVLNPEPEGPGILQVEALEAPEPEESFWVRAWR
BoIL-32	HIQENLPESLQESSPL-LQEARQGVRRRIQRPSVSARLEVQNPEESIWA
Consensus	******
	121
huIL-32β	WFQAMLQR-L-QTWWHGVLAWVKEKVVALVHAVQALWKQFQSFCCSLSELF
EqIL-32	SFMGMLQR-LKQRWQAVLA-WVREKVAAGWQALCSVAQSINSVLESFCSYMAGLF
BoIL-32 Consensus	RALGRFQVIL-QSLQQRCWDALTWLREKAVTFLEAICSVVKAVLGVLTDFCSSVGQLF
consensus	***************************************
	181
huIL-32β	MSSFQSYGAPRGDKEELTPQKCSEPQSSK
EqIL-32	RYHIQV
BoIL-32	GNLIQV*
Consensus	
	Fig. 4
	5/15 .

Fig. 5

7/15

Fig. 7

Fig. 8

Fig. 9

Fig. 10

B
0 5 15 30 45 60 90 120

P-p38 MAPK
p38 MAPK

Fig. 11

A

EqIL-32 alpha (SEQ ID NO:18)

MGYPKTSREDNERWKIRFHSTLDRWLDDIEVQSQGEEQVCQCAPTPCSRNLGGRVVTMTMRRKNVPPQVD LGPLTSPFSQRTFRSDLCHLPTLDLSLTTSLTSLLCTAWPPCPPCTSCSGFLLQV

B

EqIL-32 alpha (SEQ ID NO:19)

\mathbf{C}

EqIL-32 beta (SEQ ID NO:16)

MGYPKTSREDNERWKIRFHSTLDRWLDDIEVQSQGEEQVDLGLEDLEEKFSENILDAVEEHHQKNNSESA PLLPDVKPRLRRRAQKSSVLNPEPEGPGILQVEALEAPEPEESFWVRAWRSFMGMLQRLKQRWQAVLAWV REKVAAGWQALCSVAQSINSVLESFCSYMAGLFRYHIQV

D

EqIL-32 beta (SEQ ID NO:20)

Fig. 12

A

BoIL-32 beta (SEQ ID NO:17)

MCFAKGVPYDQASLRSIMHKRVDDFCDKMGNEPEEAQMEAALDETEEGLSEDICEFIEDHIQENLPESLQ ESSPLLQEARQGVRRRIQRPSVSARLEVQNPEESIWARALGRFQVILQSLQQRCWDALTWLREKAVTFLE AICSVVKAVLGVLTDFCSSVGQLFGNLIQV

\mathbf{B}

BoIL-32 beta (SEQ ID NO:21)

C

BoIL-32 gamma (SEQ ID NO:22)

MCFTKRDPRVLASFRVLMVRSSFPRIAGVREAWVLLGEAENILAHLGPSREKNRDSFTQVHLCSQHNLVD EFFDTMENEPEGAQMEAVLAETKEKFIKDAFKVMDNHIQENSPETLKESSPLLQEARQEVRCRIQRRSVS TSLEVQNPEESIWARALRQFLGILQSFLSGCRDALTWLWEKAAACLQAICSAVEALWEVLTDFCSFVGQL LCRSLIQV

D

BoIL-32 gamma (SEQ ID NO:23)

Fig. 13

A

OvIL-32 alpha (SEQ ID NO:24)

MCFARGVPHDQASLRSMLHTWVDHVCDKMGNEPEEAQMEAALAEMEEELSKDVCESWKITFKRTFPNPCR SPVPCFRKRSKKYAAESRDPQSLPVWRTRNRKRASGPEPCGGSEVFCGVSGSGVAMY

В

OvIL-32 alpha (SEQ IDO:25)

C

SwIL-32 alpha (SEQ ID NO:26)

MRGVSATRTLPKAGPQPRSGLGLPLPRRVPEPPPIPAESSPLLNEVRQGVRSRVRRPPGHNQPHYALAVR EPRQSTFRRILELFEEMLKRLQQRWRGALAWVQERAAACFRGLCRALEAFWSLVQSFCSSMGHAFGSVIQ V

D

SwIL-32 alpha (SEQ ID NO:27)

ATGACTTGGAGGGGAACTGAGCGGCCAGGCCCAGCCCCTGGGAAAAGTCCTGGGGTCTGTGGGGCTGTTG
GCAGGAAAGCAGCCTGTGTCCAAGGCGGGCCATGAGGGGGGTGTTGCCACCAGGACTCTCCCAAAGGCA
GGGCCTCAGCCAAGGTCAGGACTGGGGCTGCCTCTCCCCAGGCGGGTCCCTGAACCACCCCCCATCCCTG
CAGAATCCAGTCCTCTGCTCAACGAAGTCCGGCAGGGAGTCCGTTCTAGAGTCCGAAGGCCTCCTGGCCA
CAACCAGCCACATTATGCGCTAGCGGTCCGGGAGCCCAGGCAGAGCACTTTCAGACGACGCATCCTTGAGCTG
TTTGAGGAAATGCTGAAGCGCCTGCAGCAGAGGTGGAGGGGTGCCCTGGCTTGGGTGCAGGAAAGGGCTG
CTGCCTGCTTCCGGGGCTTGTGCAGGGCCCTTGAAGCTTTCTGGAGCCTGCTGCAGAGTTTTTTGCTCCTC
CATGGGGCACGCCTTCGGGAGTGTCATCCAGGTCTAAGGTGCTCCAGGTGAAATAAGAGTTTCTAGAGCA
CAACCTCCCCCTGCCTTGGCTAAAAAAGGCCAGCTGTAAGCCTTT

Fig. 14