University of Waterloo

Prof. Akshaa Vatwani • Winter 2018

Contents

1	Complex Numbers	1
	COMPLEX FUNCTIONS 2.1 Limits 2.2 Function Continuity	5

1 Complex Numbers

Definition 1.0.1. A <u>complex number</u> is a vector in \mathbb{R}^2 . The <u>complex plane</u> denoted by \mathbb{C} is the set of complex numbers.

$$\mathbb{C} = \mathbb{R}^2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

In \mathbb{C} , we usually write,

$$0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$x = \begin{pmatrix} x \\ 0 \end{pmatrix}$$
$$iy = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

with $x, y \in \mathbb{R}$. If $z = x + iy, x, y \in \mathbb{R}$, then x is called the real part of z and y the imaginary part of z and write

$$\Re(z) = x$$
 $\Im(z) = y$

Definition 1.0.2. We define the sum of two complex numbers to be the vector sum.

$$(a+ib) + (c+id) = \binom{a}{b} + \binom{c}{d}$$
$$= \binom{a+c}{b+d}$$

We define the <u>product of two complex numbers</u> by setting $i^2 = -1$ and by requiring the product to be commutative, associative and distributive over the sum. So,

$$(a+bi)(c+di) = ac + iad + ibc + i2bd$$
$$= (ac - bd) + (ad + bc)$$

Proposition 1 (Mulitplicative Inverses). Every complex number has a unique multiplicative inverse denoted by z^{-1} .

Proof. Let $z = a+i, a, b \in \mathbb{R}$ with $a^2+b^2=0$. We want to solve for x and y such that (a+ib)(x+iy)=1. In other words,

$$(ax - by) + i(ay + bx) = 1$$

$$\Rightarrow \begin{pmatrix} ax - by \\ bx + ay \end{pmatrix} = (1, 0)$$

$$\Rightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (1, 0)$$

$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{a}{a^2 + b^2} \\ \frac{b}{a^2 + b^2} \end{pmatrix}$$

This is unique as the inverse matrix is unique.

Remark. The set of complex numbers is a <u>field</u> under the operations of addition and multiplication as operations are associative, commutative and distributive and every element has a unique inverse as before.

Definition 1.0.3. If $z = x + iy, x, y \in \mathbb{R}$, then the <u>conjugate of</u> z is $\bar{z} = x - iy$.

Definition 1.0.4. We define the <u>modulus</u> (or length or magnitude) of $z = x + iy, x, y \in \mathbb{R}$ to be

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}$$

Remark. For any $z, w \in \mathbb{C}$,

$$\bar{z} = z$$

$$z + \bar{z} = 2\Re(z)$$

$$z - \bar{z} = 2\Im(z)$$

$$z \cdot \bar{z} = |z|^2$$

$$|z| = |\bar{z}|$$

$$\overline{z + w} = \bar{z} + \overline{w}$$

$$\overline{zw} = \bar{z} \cdot \overline{w}$$

$$|zw| = |z||w|$$

Proposition 2. The following inequalities hold for any $z \in \mathbb{C}$.

- 1. $|\Re(z)| \leq |z|$
- 2. $|\Im(z)| \le |z|$
- 3. $|z+w| \le |z| + |w|$

$$4. |z+w| \ge \left| |z| - |w| \right|$$

Proof. (1) and (2) follows as

$$|z|^2 = \Re(z)^2 + \Im(z)^2.$$

(3). Notice,

$$|x + iy|^2 = (x + iy)\overline{(x + iy)}$$
$$= (x + iy)(\overline{x} + \overline{iy})$$
$$= x\overline{x} + y\overline{y} + x\overline{y} + y\overline{x}$$

$$= |x|^2 + |y|^2 + x\bar{y} + y\bar{x}$$

$$= |x|^2 + |y|^2 + 2\Re(x\bar{y})$$

$$\leq |x|^2 + |y|^2 + 2|x\bar{y}|$$

$$= |x|^2 + |y|^2 + 2|x| \cdot |\bar{y}|$$

$$= |x + y|^2$$

Taking the square root of both sides gives the result.

(4). From (3), we have that

$$|z| = |z - w + w| \le |z - w| + |w|$$

 $|w| = |w - z + z| \le |w - z| + |z|$

Then, isolating |z-w| implies the result. More specifically since we have the simulateous inequality,

$$\begin{cases} |z| - |w| \le |z - w| \\ |w| - |z| \le |z - w| \end{cases} \Rightarrow |z - w| \ge ||z| - |w||$$

as desired.

Proposition 3. Every non-zero complex number has exactly 2 square roots.

Proof. Let $z=x+iy\in\mathbb{C}$ with $x^2+y^2\neq 0, x,y,\in\mathbb{R}$. We want to solve $w^2=z$ for $w\in\mathbb{C}$. Say w takes the form $w=u+iv,u,v\in\mathbb{R}$. Then

$$w^{2} = z$$

$$\Rightarrow (u + iv)^{2} = x + iy$$

$$\Rightarrow (u^{2} - v^{2}) + i2uv = x + iy$$

So we have that $x = u^2 - v^2$ and $y = 2uv^2$. We can solve for u and v. Take the square of both sides of the second equation to get $4u^2v^2 = y^2$. Now, we multiply the first equation by $4u^2$ to get

$$4u^4 - 4u^2v^2 = 4xu^2$$

$$\Rightarrow 4u^4 - 4xu^2 - y^2 = 0$$

This is a quadratic equation over u^2 so,

$$u^{2} = \frac{4x \pm \sqrt{16x^{2} + 16y^{2}}}{8} = \frac{x \pm \sqrt{x^{2} + y^{2}}}{2}$$

Suppose that $y \neq 0$. Then we must take the positive solution above to get

$$u^2 = \frac{x + \sqrt{x^2 + y^2}}{2}$$

Under the assumption that $x^2 + y^2 > 0$, this solution exists. Notice we cannot take the negative solution as it yields a negative u^2 which is impossible. We can use a similar procedure to find that

$$v^2 = \frac{-x + \sqrt{x^2 + y^2}}{2}$$

Rooting u and v gives 2 solutions for each. However, if y is positive, since 2uv = y, u and v must take the same sign. Similarly, if y is negative, they must take different signs. In each of these cases, there are 2 solutions for u and v. So,

$$w = \begin{cases} \pm \left[\left(\sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}} \right) + i \left(\sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}} \right) \right] &, y > 0 \\ \pm \left[\left(\sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}} \right) - i \left(\sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}} \right) \right] &, y < 0 \\ \pm \sqrt{x} &, x > 0, y = 0 \\ \pm i \sqrt{-x} &, x < 0, y = 0 \end{cases}$$

Remark. Let $z \in \mathbb{C}$. The notation \sqrt{z} may represent either one of the square roots of z or both of the square roots.

Remark. The square root doesn't distribute. Consider $z=w=-1\in\mathbb{C}.\ \sqrt{zw}\neq\sqrt{z}\sqrt{w}.$

Remark. The Quadratic Formula holds true for complex polynomials. In other words, if $a, b, c \in \mathbb{C}, a \neq 0$,

$$az^2 + bz + c = 0 \Rightarrow z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Definition 1.0.5. If $z \in \mathbb{C} \setminus \{0\}$, we define the <u>angle</u> (or <u>argument</u>) of z to be the angle $\theta(z)$ from the positive x-axis counterclockwise to z. In other words, $\overline{\theta(z)}$ is the angle such that

$$z = |z| (\cos \theta(z) + i \sin \theta(z)).$$

Remark. For $\theta \in \mathbb{R}$ (or for $\theta \in \mathbb{R}/2\pi$), we have that

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Remark. If $z \neq 0$, we have $x = \Re(z)$, $y = \Im(z)$, r = |z| and

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$\tan \theta = \frac{y}{x}, \text{ if } x \neq 0$$

$$z = rei\theta$$

$$\bar{z} = re^{-i\theta}$$

$$z^{-1} = \frac{1}{\pi}e^{-i\theta}$$

Remark. We now have 2 representations of a complex number $z \in \mathbb{C}$. We say that z = x + iy is the <u>cartesian coordinates</u> of z and $z = re^{i\theta}$, where r = |z|, is the polar form of z.

Consider $z = re^{i\alpha}$ and $w = se^{i\beta}$. We have,

$$zw = rs(\cos\alpha + i\sin\alpha)(\sin\beta + i\cos\beta)$$

= $rs((\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\sin\alpha\cos\beta + \cos\alpha\sin\beta))$
= $rs(\cos(\alpha + \beta) + i\sin(\alpha + \beta))$

4

$$=e^{i(\alpha+\beta)}$$

which defines a formula for multiplication in polar coordinates. Notice that the following identity known as De Moivre's Law follows.

$$(re^{i\theta})^n = r^n e^{in\theta}$$

for all $r, \theta \in \mathbb{R}$, $n \in \mathbb{Z}$. We can use this identity to find the n^{th} roots of z. In other words, we solve $w^n = z$. We have,

$$w^{n} = z$$

$$\Rightarrow (se^{i\alpha})^{n} = re^{i\theta}$$

$$\Rightarrow s^{n}e^{in\alpha} = re^{i\theta}$$

so $s^n = r$ and $n\alpha = \theta + 2\pi k$ for $k \in \mathbb{Z}$. In other words, we have

$$(re^{i\theta}) = \sqrt[n]{r}e^{i(\theta + 2\pi k)/n}, \quad k = 0, \dots, n-1$$

Remark. When working with complex numbers, for $0 \neq z \in \mathbb{C}$, and for $0 < n \in \mathbb{Z}$, $\sqrt[n]{z}$ or $z^{1/n}$ denotes either one of the n roots, or the set of all nth roots.

Example 1.0.6. Consider the n-1 diagonals of a regular n-gon inscribed in a circle of radius 1 obtained by connecting one vector with all the others. Show that the product of these diagonals is n.

Notice that z_2, \ldots, z_n are the n^{th} roots of unity other than 1. Let z be the variable and consider the polynomial

$$P(z) := 1 + z + \dots + z^{n-1}.$$

Since the roots of P(z) are n^{th} roots of unity other than 1, we can factorize

$$P(z) = 1 + z + \dots + z^{n-1}$$

= $(z - z_2) \dots (z - z_n)$

and setting z = 1, the result follows. In particular, we have

$$|1-z_2|\dots|1-z_n|=n.$$

Example 1.0.7. Let z be on the unit circle and take $Arg(\cdot) \in [-\pi, \pi]$. Suppose $z \neq -1, 1$. Show that

$$\operatorname{Arg}\left(\frac{z+1}{z-1}\right) = \begin{cases} \frac{\pi}{2} & \text{, if } z > 0\\ \frac{-\pi}{2} & \text{, if } z < 0 \end{cases}$$

2 Complex Functions

2.1 Limits

Definition 2.1.1. A sequence of complex numbers $z_1, z_2 \dots$ converges to $z \in C$ if

$$\lim_{n \to \infty} |z_n - z| = 0.$$

Equivalently, given any $\epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N}$ sufficiently large such that $|z_n - z| < \epsilon$ whenever n > N.

Remark. If $\{z_n\}_n$ converges to z, we write

$$\lim_{n\to\infty} z_n = z$$

or $z_n \to z$ as $n \to \infty$.

Example 2.1.2. For |z| > 1, show that $\{\frac{1}{z^n}\}_{n=1}^{\infty}$ converges.

Notice,

$$\lim_{n \to \infty} \left| \frac{1}{z^n} - 0 \right| = \lim_{n \to \infty} \left| \frac{1}{z^n} \right| = 0$$

as |z| > 1.

Example 2.1.3. Show that $\{i^n\}_{n=1}^{\infty}$ does not converge.

Definition 2.1.4. Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$. We say

$$\lim_{z \to z_0} f(z) = L$$

if for every sequence $\{z_n\}_n \subseteq \Omega$ we have that $z_n \to z \Rightarrow f(z_n) \to L$.

Remark. Here, z_0 need not to be in Ω .

Example 2.1.5. Let $f(z) = \frac{\overline{z}}{z}, z \in \mathbb{C} \setminus \{0\}$. Find $\lim_{z \to 0} f(z)$.

If $z=x\in\mathbb{R}\setminus\{0\}$, then $f(z)=\frac{x}{x}=1$. So $\lim_{x\to 0}f(x)=1$. If $z=iy,y\in\mathbb{R}\setminus\{0\}$, then $f(z)=\frac{-iy}{iy}=-1$. So $\lim_{y\to 0}f(iy)=-1$. Hence, the limit does not exist.

Example 2.1.6. Show that $z_n \to z$ if and only if $\Re z_n \to \Re z$ and $\Im z_n \to z$.

2.2 Function Continuity

Definition 2.2.1. Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$. We say f is continuous at $z_0 \in \Omega$ if for every sequence $\{z_n\} \subseteq \Omega$, we have $z_0 \to z \Rightarrow f(z_0) \to f(z)$. Equivalently, given any $\epsilon > 0, \exists \delta > 0$ such that $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$.

Remark. f is continuous on Ω if it is continuous at ever point of Ω .

Remark. We may split f into its real and imaginary parts

$$f(z) = f(x, y) = u(x, y) + iv(x, y)$$

where $u, v : \mathbb{R}^2 \to \mathbb{R}$.