第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

解的概念

■标准形式

$$(LP) \quad \max z = \sum_{j=1}^{n} c_j x_j \tag{1.1}$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$
 (1.2)

- \Box 满足约束条件 (1.2) 和 (1.3) 的 x_j ($j = 1, \dots, n$) 称为可行解
- 全部可行解的集合称为可行域
- □ 满足 (1.1) 的可行解称为最优解
- □ 最优解所对应的函数值称为最优值

解的概念

■ 设 A 为约束方程组 (1.2) 的 $m \times n$ (n > m) 阶系数矩阵, 其秩为 m, B 是矩阵 A 中的一个 $m \times m$ 阶的满秩子矩阵, 记为

$$\mathbf{B} = \left[egin{array}{ccc} a_{11} & \cdots & a_{1m} \ dots & & dots \ a_{m1} & \cdots & a_{mm} \end{array}
ight] = (\mathbf{P}_1, \cdots, \mathbf{P}_m)$$

- □ B 是线性规划问题 (LP) 的一个基
- □ B 中的每一个列向量 P_j $(j = 1, \dots, m)$ 称为基向量
- $oldsymbol{\square}$ 与基向量 \mathbf{P}_j 对应的变量 x_j 称为基变量,记为 $\mathbf{X}_B = (x_1, \cdots, x_m)^{\mathsf{T}}$
- $foldsymbol{\square}$ 除基变量以外的变量称为<mark>非基变量</mark>,记为 ${f X}_N=(x_{m+1},\cdots,x_n)^{ op}$

■ 找出线性规划问题的基、基向量和基变量

$$\max z = 70x_1 + 120x_2$$
s.t.
$$\begin{cases} 9x_1 + 4x_2 + x_3 = 360 \\ 4x_1 + 5x_2 + x_4 = 200 \\ 3x_1 + 10x_2 + x_5 = 300 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{ccccc} 9 & 4 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 0 & 0 & 1 \end{array} \right]$$

■ 寻找阶为 *m* 的满秩子矩阵

$$\mathbf{B} = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight] = (\mathbf{P}_3, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_3, x_4, x_5)^{\mathsf{T}}$,非基变量为 $\mathbf{X}_N = (x_1, x_2)^{\mathsf{T}}$

■写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{ccccc} 9 & 4 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 0 & 0 & 1 \end{array} \right]$$

■ 另一个基为

$$\mathbf{B}' = \left[egin{array}{ccc} 4 & 0 & 0 \ 5 & 1 & 0 \ 10 & 0 & 1 \end{array}
ight] = (\mathbf{P}_2, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_2, x_4, x_5)^{\mathsf{T}}$, 非基变量为 $\mathbf{X}_N = (x_1, x_3)^{\mathsf{T}}$

解的概念

■ 在 (1.2) 中,令所有非基变量 x_{m+1}, \dots, x_n 等于 0,则称

$$\mathbf{X} = (x_1, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为线性规划问题 (LP) 的基解

- 满足变量非负约束条件 (1.3) 的基解称为基可行解
- 对应于基可行解的基称为可行基

■ 求出全部基解,指出其中的基可行解,并确定最优解

$$\max z = 2x_1 + 3x_2 + x_3$$
s.t.
$$\begin{cases} x_1 + x_3 = 5 \\ x_1 + 2x_2 + x_4 = 10 \\ x_2 + x_5 = 4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

■ 全部基解见下表

序号	x_1	x_2	x_3	x_4	x_5		基可行解
<u> </u>	0	0	5	10	4	5	\checkmark
2	0	4	5	2	0	17	\checkmark
3	5	0	0	5	4	10	\checkmark
4	0	5	5	0	-1	20	×
(5)	10	0	-5	0	4	15	×
6	5	2.5	0	0	0	1.5	\checkmark
(7)	5	4	0	-3	0	22	×
8	2	4	3	0	0	19	✓

■ 最优解为 $X = (2, 4, 3, 0, 0)^{\mathsf{T}}$, 最优值为 $z^* = 19$

凸集

■ 对于任意两点 $X_1, X_2 \in \Omega$, 满足下式的集合 Ω 称为凸集

$$\alpha \mathbf{X}_1 + (1 - \alpha)\mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

■ 对于凸集 Ω 中的点 X, 如果不存在 X_1 , $X_2 \in \Omega$ 使得

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

则称 X 是凸集 Ω 的顶点 (极点)

■ 定理 1 若线性规划问题存在可行解,则可行域是凸集

证明 记 Ω 为满足线性规划问题束条件的集合

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \mathbf{b}, \ \mathbf{x}_{j} \ge \mathbf{0} \quad (j = 1, \cdots, n)$$

设 Ω 内的任意两点为

$$\mathbf{X}_1 = (x_{11}, \cdots, x_{1n})^{\top}, \ \mathbf{X}_2 = (x_{21}, \cdots, x_{2n})^{\top}$$

且 $X_1 \neq X_2$, 一定满足

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} = \mathbf{b}, \ x_{1j} \ge 0 \quad (j = 1, \dots, n)$$
$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} = \mathbf{b}, \ x_{2j} \ge 0 \quad (j = 1, \dots, n)$$

证明 (续) 令 $\mathbf{X} = (x_1, \cdots, x_n)^{\mathsf{T}}$ 为 \mathbf{X}_1 , \mathbf{X}_2 连线上任意一点,即

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \quad (0 < \alpha < 1)$$

其中 $x_i = \alpha x_{1i} + (1 - \alpha) x_{2i}$

于是

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \sum_{j=1}^{n} \mathbf{P}_{j} \left(\alpha x_{1j} + (1 - \alpha) x_{2j} \right)$$

$$= \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} + \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} - \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j}$$

$$= \alpha \mathbf{b} + \mathbf{b} - \alpha \mathbf{b}$$

$$= \mathbf{b}$$

考虑 $x_{1j}, x_{2j} \ge 0$, $\alpha > 0$, $1 - \alpha > 0$, 可知 $x_j \ge 0$ $(j = 1, \dots, n)$, 证毕

■ 引理 线性规划问题的可行解 $\mathbf{X} = (x_1, x_2, \dots, x_n)^{\top}$ 为基可行解的充要条件 是 \mathbf{X} 的正分量所对应的系数列向量是线性独立的

证明 (必要性) 由基可行解的定义可知

在 (1.2) 中,令所有非基变量 x_{m+1}, \dots, x_n 等于 0,则称

$$\mathbf{X} = (x_1, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为线性规划问题的基解,满足变量非负约束条件 (1.3) 的基解称为基可行解

证明(续) (充分性) 若向量 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 线性独立,则必有 $k \leq m$

(1) 当 k=m 时, $\mathbf{P}_1,\mathbf{P}_2,\cdots,\mathbf{P}_k$ 恰构成一个基,从而

$$\mathbf{X} = (x_1, x_2, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为相应的基可行解

(2) 当 k < m 时,则可以从其余的列向量中取出 m - k 个与 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 构成最大的线性独立向量组,其对应的解恰为 \mathbf{X} ,根据定义它是基可行解

- 定理 2 线性规划问题的基可行解 X 对应线性规划问题可行域 (凸集) 的顶点
- 定理 3 若线性规划问题有最优解,那么一定存在一个基可行解是最优解
- 定理 4 可行域有界,目标函数最优值必可在顶点得到

课堂练习1

■ 试证明定理 3, 即

若线性规划问题有最优解, 那么一定存在一个基可行解是最优解

课堂练习1(答案)

证明 设 $\mathbf{X}^{(0)} = (x_1^0, x_2^0, \cdots, x_n^0)^{\mathsf{T}}$ 是线性规划问题的一个最优解,那么

$$\mathbf{Z} = \mathbf{C}\mathbf{X}^{(0)} = \sum_{j=1}^{n} c_j x_j^0$$

是目标函数的最大值

若 $\mathbf{X}^{(0)}$ 不是基可行解,由定理 2 知 $\mathbf{X}^{(0)}$ 不是顶点,一定能在可行域内找到通过 $\mathbf{X}^{(0)}$ 的直线上的另外两个点

$$(\mathbf{X}^{(0)} + \mu \delta) \ge 0 \quad \text{fil} \quad (\mathbf{X}^{(0)} - \mu \delta) \ge 0$$

将这两个点带入目标函数有

$$\mathbf{C}(\mathbf{X}^{(0)} + \mu\delta) = \mathbf{C}\mathbf{X}^{(0)} + \mathbf{C}\mu\delta$$
$$\mathbf{C}(\mathbf{X}^{(0)} - \mu\delta) = \mathbf{C}\mathbf{X}^{(0)} - \mathbf{C}\mu\delta$$

课堂练习1(答案)

证明(续) 因 $\mathbf{C}\mathbf{X}^{(0)}$ 为目标函数的最大值,故有

$$\mathbf{C}\mathbf{X}^{(0)} \ge \mathbf{C}\mathbf{X}^{(0)} + \mathbf{C}\mu\delta$$
$$\mathbf{C}\mathbf{X}^{(0)} \ge \mathbf{C}\mathbf{X}^{(0)} - \mathbf{C}\mu\delta$$

由此 $C\mu\delta = 0$, 即有

$$\mathbf{C}(\mathbf{X}^{(0)} + \mu \delta) = \mathbf{C}\mathbf{X}^{(0)} = \mathbf{C}(\mathbf{X}^{(0)} - \mu \delta)$$

如果 $(\mathbf{X}^{(0)} + \mu \delta)$ 或 $(\mathbf{X}^{(0)} - \mu \delta)$ 仍不是基可行解,按照上面的方法继续做下去,最终一定可以找到一个基可行解,其目标函数值等于 $\mathbf{C}\mathbf{X}^{(0)}$,证毕

小结

- 解的概念
 - □ 可行解, 可行域, 最优解
 - □ 基, 基解, 基可行解, 可行基
 - □ 凸集, 顶点
- 解的性质
 - □ 所有可行解构成的集合是凸集
 - □ 每个基可行解对应可行域的一个顶点
 - □ 若有最优解,则必在顶点上得到
- 课后作业: P44, 习题 1.3

Q&A

Thank you!

感谢您的聆听和反馈