Lista de exercícios 02 – 2024.2 – Estabilidade e Critérios de Falha de Colunas sob Compressão e Painéis e Painéis reforçados sob compressão

1. Encontre a rigidez da coluna (F_c) e a carga permitida correspondente para um tubo de aço liga redondo com diâmetro $1^1/_2$ polegadas e espessura (gage) de 0,0049 polegadas com 30 polegadas de comprimento. O aço é tratado termicamente (heattreated) para uma resistência à tração de 180.000 psi. Assuma que o coeficiente de coluna (end-fixity coeficient) é c=2.

Utilizando a Figura 14.15, confira o resultado obtido indicando na figura. Aponte o resultado na figura.

Material	F _{tu} , ksi	F _{tv} , ksi	Short columns F_c , psi	Critical L'/ρ	Long columns F_{σ} , psi	
1025	55	36	$36,000 - 1.172(L'/\rho)^2$	124	$267 \times 10^6/(L'/\rho)^2$	
X-4130	95	75	$79,500 - 51.9(L'/\rho)^{1.5}$	91.5	$286 \times 10^6/(L'/\rho)^2$	
X-4130	100	85	$90,100 - 64.4(L'/\rho)^{1.5}$	86.0	$286 \times 10^6/(L'/\rho)^2$	
Heat-treated alloy steel	125	100	$100,000 - 8.74(L'/\rho)^2$	75.6	$286 \times 10^{6}/(L^{t}/\rho)^{3}$	
Heat-treated alloy steel	150	135	$135,000 - 15.92(L'/\rho)^3$	65.0	$286 \times 10^{6}/(L'/\rho)^{3}$	
Heat-treated alloy steel	180	165	$165,000 - 23.78(L'/\rho)^2$	58.9	$286 \times 10^{6}/(L^{6}/\rho)^{3}$	

APPENDIX

Table 1. Properties of Round Tubing

Diam.	0	A	ρ	I	I/Y	D/t	Weight, lb/100 in.	
	Gage						Steel	Dural
3/4	0.022	0.01576 0.01953	0.0810 0.0791	0.000103 0.000122	0.000825 0.000978	11.38 8.93	0.45 0.55	0.16 0.20
3/8	0.028	0.03053	0.1231	0.000462	0.002466	13.39	0.86*	0.31
	0.035	0.03739	0.1208	0.000546	0.002912	10.72	1.06	0.38
	0.049	0.05018	0.1166	0.000682	0.003636	7.65	1.43	0.51
1/2	0.028	0.04152	0.1672	0.001160	0.004641	17.85	1.17	0.42
	0.035	0.05113	0.1649	0.001390	0.005559	14.28	1.45*	0.52
	0.049	0.06943	0.1604	0.001786	0.007144	10.20	1.96	0.70
5/8	0.028	0.05252	0.2113	0.002345	0.007503	22.30	1.49	0.54
	0.035	0.06487	0.2090	0.002833	0.009065	17.85	1.84*	0.66 ³
	0.049	0.08867	0.2044	0.003704	0.011852	12.77	2.51	0.90
	0.058	0.10331	0.2016	0.004195	0.013425	10.79	2.93	1.05
3/4	0.028	0.06351	0.2555	0.004145	0.011052	26.80	1.80	0.65
	0.035	0.07862	0.2531	0.005036	0.013429	21.42	2.23*	0.80 ³
	0.049	0.10791	0.2485	0.006661	0.017762	15.30	3.06	1.09
	0.058	0.12609	0.2455	0.007601	0.02027	12.94	3.57	1.28
	0.065	0.13988	0.2433	0.008278	0.02208	11.53	3.96	1.42
7/8	0.028	0.07451	0.2996	0.006689	0.015289	31.23	2.11	0.76
	0.035	0.09236	0.2973	0.008161	0.018653	25.00	2.62*	0.94
	0.049	0.12715	0.2925	0.010882	0.02487	17.85	3.60	1.29
	0.058	0.14887	0.2896	0.012484	0.02853	15.10	4.22	1.51
	0.065	0.16541	0.2865	0.013653	0.03121	13.47	4.66	1.68
1	0.035	0.10611	0.3414	0.012368	0.02474	28.56	3.01*	1.07
	0.049	0.14640	0.3367	0.016594	0.03319	20.40	4.15	1.48
	0.058	0.17164	0.3337	0.019111	0.03822	17.25	4.86	1.74
	0.065	0.19093	0.3314	0.020970	0.04193	15.38	5.41	1.93
11/8	0.035	0.11985	0.3856	0.01782	0.03168	32.10	3.40*	1.21
	0.049	0.16564	0.3808	0.02402	0.04270	22.95	4.68*	1.68
	0.058	0.19442	0.3780	0.02775	0.04933	19.40	5.51	1.97
	0.065	0.21650	0.3755	0.03052	0.05425	17.30	6.14	2.20
11/4	0.035	0.13360	0.4297	0.02467	0.03948	35.70	3.78*	1.35
	0.049	0.18488	0.4250	0.03339	0.05342	25.50	5.23*	1.87
	0.058	0.2172	0.4219	0.03867	0.06187	21.55	6.15	2.20
	0.065	0.2420	0,4196	0.04260	0.06816	19.22	6.86	2.45
13/8	0.035	0.1473	0.4739	0.03309	0.04814	39.25	4.17	1.49
	0.049	0.2041	0.4691	0.04492	0.06534	28.05	5.78*	2.07
	0.058	0.2400	0.4661	0.05213	0.07583	23.70	6.80	2.43
	0.065	0.2675	0.4638	0.05753	0.08367	21.15	7.58	2.70
11/2	0.035	0.1611	0.5181	0.04324	0.05765	42.80	4.56	1.63
	0.049	0.2234	0.5132	0.05885	0.07847	30.60	6.32*	2.26
	0.058	0.2628	0.5102	0.06841	0.09121	25.85	7.45	2.66
	0.065	0.2930	0.5079	0.07558	0.10079	23.05	8.30	2.97
	0.083	0.3695	0.5018	0.09305	0.12407	18.08	10.47	3.74
15/8	0.035	0.1748	0.5622	0.05528	0.06803	46.40	4.95	1.77
	0.049	0.2426	0.5575	0.07540	0.09279	33.15	6.87*	2.46
	0.058	0.2855	0.5544	0.08776	0.10801	28.00	8.09	2.89
	0.065	0.3186	0.5520	0.09707	0.11948	25.00	9.05	3.23
	0.083	0.4021	0.5459	0.11985	0.14751	19.58	11.40	4.06
134	0.035	0.1885	0.6065	0.06936	0.07927	50.00	5.32	1.91
	0.049	0.2618	0.6017	0.09478	0.10832	35.70	7.42*	2.65 ³
	0.058	0.3083	0.5986	0.11046	0.12624	30.20	8.73*	3.12
	0.065	0.3441	0.5962	0.12230	0.13977	26.90	9.75	3.48
	0.083	0.4347	0.5901	0.15136	0.17299	21.10	12.32	4.40

- 2. Uma barra AB, usada em uma estrutura aeroespacial, tem seção transversal de 16 x 30mm e é feita de alumínio. A barra é presa aos apoios por meio de pinos. Cada extremidade da barra pode girar livremente em torno do eixo vertical pelas chapas de ligação. Sabendo que E = 70GPa, determine:
 - a. O comprimento L para que a carga crítica da barra seja de P_{cr} = 10kN;
 - b. A carga P, aplicada no centroide da seção transversal para um coeficiente de segurança de 2,8. Sabe-se que a barra tem comprimento L = 1,2m.

- 3. Seja um painel de construção interna que trabalha sob compressão e que possui comprimento efetivo de 500mm, módulo de elasticidade de 70000 N/mm² e sua elasticidade pode ser tomada como catastrófica quando a tensão de compressão atinge 300 N/mm². Utilizando 3,62 como coeficiente para a flambagem de placa com lados simplesmente apoiados e 0,385 com um lado simplesmente apoiado e o outro livre, determine:
 - a. Qual a carga por unidade de comprimento do painel (largura) quando a flambagem inicia;
 - b. A carga por unidade de comprimento para o colapso total.

Hipóteses: - espessura fina (seções constantes)

- Após a flambagem inicial, a tensão na placa aumenta parabolicamente a partir do valor crítico no centro das seções

Dica:

4. Encontre a Tensão de Flambagem por Compressão (F_{ccr})para uma placa de dimensões 4 x 4 polegadas e espessura de 0,125 polegadas, com seus quatro lados simplesmente apoiados e assumindo que a curva de coluna para o módulo tangente é dada na figura 14.32.

