COM S 578X: Optimization for Machine Learning Homework 1

Name: Email:

August 21, 2018

Problem 1.

Let $x = [r, v, \varphi, \omega]^T$. The nonlinear system can be reformulated in the form of $\dot{x} = f(x) + g(x)u$, where

$$f(x) = \begin{bmatrix} v \\ -g\sin\varphi + r\omega^2 \\ \omega \\ -\frac{2mr\upsilon\omega}{J + mr^2} - \frac{mgr\cos\varphi}{J + mr^2} \end{bmatrix}, g(x) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Tracking errors of coordinate z are shown in Fig. 1.

Other symbols \mathbb{R} , \mathbb{Q} , \mathbb{Z} , cos, and sin.

Theorem 1. If f is absolutely continuous, then $\dot{f}(t)=g(t)$ almost everywhere in the sense of Lebesgue measure.

Assumption 1. If f is absolutely continuous, then $\dot{f}(t)=g(t)$ almost everywhere in the sense of Lebesgue measure.

Remark 1. If f is absolutely continuous, then $\dot{f}(t)=g(t)$ almost everywhere in the sense of Lebesgue measure.

Problem 2. If f is absolutely continuous, then $\dot{f}(t)=g(t)$ almost everywhere in the sense of Lebesgue measure.

Lemma 1. If f is absolutely continuous, then $\dot{f}(t) = g(t)$ almost everywhere in the sense of Lebesgue measure.

Corollary 1. If f is absolutely continuous, then $\dot{f}(t)=g(t)$ almost everywhere in the sense of Lebesgue measure.

Proof. Here is my important proof

Figure 1: Tracking errors of the z coordinate with different ε