Convexity

Chapter 3

Functional Analysis

July 14, 2023

1/21

Dual space

Definition

The **dual space** of a TVS X is the vector space X^* whose elements are the continuous linear functionals on X.

Note that addition and scalar multiplication are defined in X^* by $(\Lambda_1 + \Lambda_2)x = \Lambda_1 x + \Lambda_2 x$ and $(\alpha \Lambda)x = \alpha \cdot \Lambda x$. Thus it is clear that X^* is indeed a vector space.

Some terminology

An additive functional Λ on a complex vector space X is called real-linear (resp. complex-linear) if $\Lambda(\alpha x) = \alpha \Lambda x$ for all $x \in X$ and for every real (resp. complex) scalar α .

Note that if u is the real part of a complex-linear functional f on X, then u is real-linear and f(x) = u(x) - iu(x) because z = Rez - iRe(iz) for all $z \in \mathbb{C}$. Conversely, if $u: X \to \mathbb{R}$ is real-linear on a complex vector space X and if f is defined the same, then f is also complex-linear.

Thus we may conclude that a complex-linear functional on X is an element of X^* if and only if its real part is continuous, and that every continuous real-linear $u: X \to \mathbb{R}$ is the real part of a unique $f \in X^*$.

Theorem

Suppose M is a subspace of a real vector space X, $p: X \to \mathbb{R}$ satisfies $p(x+y) \le p(x) + p(y)$ and p(tx) = p(x) for $x, y \in X$ and $t \ge 0$, and $f: M \to \mathbb{R}$ is linear and $f(x) \le p(x)$ on M. Then, there exists a linear $\Lambda: X \to \mathbb{R}$ such that $\Lambda x = f(x)$ for $x \in M$, and $-p(-x) \le \Lambda x \le p(x)$ for all $x \in X$.

Proof.

Suppose $M \neq X$. Choose $x_1 \in X \setminus M$, and define $M_1 = \{x + tx_1 \mid x \in M, \quad t \in \mathbb{R}\}$. Check that M_1 is a vector space. Since $f(x) + f(y) = f(x+y) \leq p(x+y) \leq p(x-x_1) + p(x_1+y)$, we have $f(x) - p(x-x_1) \leq p(y+x_1) - f(y)$ for $x,y \in M$. Let α be the least upper bound of $f(x) - p(x-x_1)$ as x goes through M. Then, $f(x) - \alpha \leq p(x-x_1)$ for all $x \in M$, and $f(y) + \alpha \leq p(y+x_1)$ for all $y \in M$.

Now we define f_1 on M_1 by $f_1(x+tx_1)=f(x)+t\alpha$ for $x\in M$ and $t\in \mathbb{R}$. Then, $f_1=f|_M$ and f_1 is linear on M_1 . Also $f_1\leq p$ on M_1 .

a??

Proof.

Now we conclude the proof by transfinite induction. Let \mathcal{P} be the collection of all pairs (M',f') where M' is a subspace of X containing M, and f' is a linear functional on M' extending f, and satisfying $f' \leq p$ on M'. Impose a partial ordering by $(M',f') \leq (M'',f'')$ if $M' \subset M''$ and f' = f'' on M'. By Hausdorff's maximality theorem, there exists a maximal totally ordered subcollection $\Omega \subset \mathcal{P}$.

Let Φ be the collection of all M' such that $(M',f')\in\Omega$. This makes Φ a totally ordered set, and the union \tilde{M} of all members of Φ is a subspace of X.^a Note that if $x\in \tilde{M}$ then $x\in M'$ for some $M'\in\Phi$, so we define $\Lambda x=f'(x)$ where f' is the pair function of M'.

^aWhy?

Proof.

Note that Λ is well-defined on \tilde{M} .^a Also Λ is linear, and $\Lambda \leq p$. Now if \tilde{M} were a proper subspace of X, then we could extend \tilde{M} , which contradicts the maximality of Ω . Thus $\tilde{M}=X$ and we have $-p(-x)\leq -\Lambda(-x)=\Lambda x$ for all $x\in X$.

aNot so clear...

Here is another dominated extension theorem.

Theorem

Suppose M is a subspace of a vector space X. Let p be a seminorm on X, and f be a linear functional on M such that $|f(x)| \le p(x)$ for all $x \in M$. Then f extends to a linear functional Λ on X such that $|\Lambda x| \le p(x)$ for all $x \in X$.

Proof.

If the scalar field is \mathbb{R} , then this follows by the previous theorem since p(-x)=p(x). Now assume the scalar field to be \mathbb{C} . Put $u=\operatorname{Re} f$. By the previous theorem, there is a real-linear U on X such that U=u on M and $U\leq p$ on X.

Proof.

Let Λ be the complex-linear functional on X whose real part is U. Now it follows that $\Lambda=f$ on M. Finally, to each $x\in X$ there is an $\alpha\in\mathbb{C}$, $|\alpha|=1$ such that $\alpha\Lambda x=|\Lambda x|$. Hence

$$|\Lambda x| = \Lambda(\alpha x) = U(\alpha x) \le p(\alpha x) = p(x)$$

Corollary

If X is a normed space and $x_0 \in X$, then there exists $\Lambda \in X^*$ such that $\Lambda x_0 = ||x_0||$ and $|\Lambda x| \le ||x||$ for all $x \in X$.

Proof.

For $x_0 = 0$, take $\Lambda = 0$. If $x_0 \neq 0$, apply the previous theorem with p(x) = ||x|| and M the one-dimensional space generated by x_0 , and $f(\alpha x_0) = \alpha ||x_0||$.

The separation theorem

Theorem

Suppose A, B are disjoint nonempty convex sets in a TVS X.

- (a) If A is open, then there exist $\Lambda \in X^*$ and $\gamma \in \mathbb{R}$ such that $Re\Lambda x < \gamma \leq Re\Lambda y$ for every $x \in A$ and $y \in B$.
- **(b)** If A is compact, B is closed and X is locally convex, then there exist $\Lambda \in X^*$, $\gamma_1 \in \mathbb{R}$ and $\gamma_2 \in \mathbb{R}$ such that $\text{Re}\Lambda x < \gamma_1 < \gamma_2 < \text{Re}\Lambda y$ for all $x \in A$, $y \in B$.

Note that if the scalar field is \mathbb{R} , then $\text{Re}\Lambda = \Lambda$.

The separation theorem

Proof.

We let the scalar field be \mathbb{R} since for \mathbb{C} there is a unique complex-linear functional on X whose real part is the desired real-linear functional.

(a) Fix $a_0 \in A$ and $b_0 \in B$. Put $x_0 = b_0 - a_0$ and put $C = A - B + x_0$.

13 / 21

Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on a set X, and assume $\mathcal{T}_1 \subset \mathcal{T}_2$. Then we say \mathcal{T}_1 is weaker than \mathcal{T}_2 , or stronger vice versa.

Notice that the topology of a compact Hausdorff space has rigidity; It cannot be weakened without losing the Hausdorff axiom, and cannot be strengthened without losing compactness.

Fact

If $\mathcal{T}_1\subset\mathcal{T}_2$ on X, and if \mathcal{T}_1 is Hausdorff and \mathcal{T}_2 is compact, then $\mathcal{T}_1=\mathcal{T}_2.$

To show this, consider a \mathcal{T}_2 -closed $F \subset X$. Thus F is compact in \mathcal{T}_2 , from which it follows that it is compact in \mathcal{T}_1 , hence is \mathcal{T}_1 -closed. Therefore $\mathcal{T}_1 \supset \mathcal{T}_2$, so the two are equal.

Here is another fact.

Fact

Consider the quotient topology \mathcal{T}_N of X/N, where $E \in \mathcal{T}_N$ if $\pi^{-1}(E) \in \mathcal{T}$. By definition, \mathcal{T}_N is the strongest topology on X/N that makes π continuous, and is the weakest one that makes π an open mapping.

Definition

Suppose X is a set and \mathcal{F} is a nonempty family of mappings $f: X \to Y_f$ where each Y_f is a topological space. Let \mathcal{T} be the topology generated by subbases $f^{-1}(V)$ for $f \in \mathcal{F}$ and V open in Y_f . Then \mathcal{T} is the weakest topology on X that makes each f continuous. This \mathcal{T} is called the **weak topology** on X induced by \mathcal{F} , or the \mathcal{F} -topology of X.

Example

The product topology \mathcal{T} of $X = \prod X_{\alpha}$ is the $\{\pi_{\alpha}\}$ -topology of X, the weakest one that makes each projection map continuous.

Fact

Suppose \mathcal{F} is a family of mappings $f: X \to Y_f$, where X is a set and each Y_f is a Hausdorff space. If \mathcal{F} separates points on X, then the \mathcal{F} -topology of X is Hausdorff.

Proof.

Suppose $p \neq q$ are points of X. Then $f(p) \neq f(q)$ for some $f \in \mathcal{F}$, so f(p) and f(q) have disjoint neighborhoods in Y_f such that their inverse images are open and disjoint. Thus X in the weak topology is Hausdorff.

A metrization theorem

Theorem

If X is a compact topological space, and if some sequence $\{f_n\}$ of continuous real-valued functions separates points on X, then X is metrizable.

Proof.

Let \mathcal{T} be the topology of X. Without loss of generality, assume $|f_n| \leq 1$ for all n. Let \mathcal{T}_d be the topology induced on X by the metric $d(p,q) = \sum_{n=1}^{\infty} 2^{-n} |f_n(p) - f_n(q)|$. (Check this is indeed a metric.) Note that d is continuous on $X \times X$ by the Weierstrass p-test. The open balls in this metric are \mathcal{T} -open, hence $\mathcal{T}_d \subset \mathcal{T}$. Recall the fact on slide 14 to conclude that $\mathcal{T} = \mathcal{T}_d$. Therefore X is metrizable.

A Lemma

Lemma

Suppose $\Lambda_1, \ldots, \Lambda_n$ and Λ are linear functionals on a vector space X. Let $N = \{x \in X \mid \Lambda_1 x = \cdots = \Lambda_n x = 0\}$. Then the following are equivalent:

- a There are scalars $\alpha_1, \ldots, \alpha_n$ such that $\Lambda = \alpha_1 \Lambda_1, \ldots, \alpha_n \Lambda_n$.
- b There exists a $\gamma < \infty$ such that $|\Lambda x| \leq \gamma \max_{1 \leq i \leq n} |\Lambda_i x|$ for all $x \in X$.
- c $\Lambda x = 0$ for every $x \in N$.

A Lemma

Proof.

If you think a while, it is clear that a implies b, b implies c. Thus we prove c implies a. Let Φ be the scalar field. Define $\pi: X \to \Phi^n$ by $pi(x) = (\Lambda_1 x, \ldots, \Lambda_n x)$. Note that $\pi(x) = \pi(x')$ implies $\Lambda x = \Lambda x'$. Therefore the linear functional f on $\pi(X)$ is well-defined by $f(\pi(x)) = \Lambda x$. By extension theorems, extend f to a linear functional F on Φ^n . This means there exist $\alpha_i \in \Phi$ such that $F(u_1, \ldots, u_n) = \alpha_1 u_1 + \cdots + \alpha_n u_n$. Therefore $\Lambda x = F(\pi(x)) = F(\Lambda_1 x, \ldots, \Lambda_n x) = \sum_{i=1}^n \alpha_i \Lambda_i x$.

A theorem on the topology of dual spaces

Theorem

Suppose X is a vector space, and X' is a vector space of linear functionals on X such that $\Lambda x_1 \neq \Lambda x_2$ for some $\Lambda \in X'$ whenever $x_1 \neq x_2$ (i.e. X' is a separating vector space.) Then the topology \mathcal{T}' of X', when applied to X, makes X into a locally convex space whose dual space is X'.