ECE368: Probabilistic Reasoning

Lab 2: Bayesian Linear Regression

Name: Saminul Islam Samin Student Number: 1004511833

You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) four figures for Question 2 and three figures for Question 4 in the .pdf format; and 3) one Python file regression.py that contains your code. All these files should be uploaded to Quercus.

1. Express the posterior distribution $p(\mathbf{a}|x_1, z_1, \dots, x_N, z_N)$ using $\sigma^2, \beta, x_1, z_1, x_2, z_2, \dots, x_N, z_N$. (1 **pt**)

$$X^{2}\begin{bmatrix}1 & x_{1}\\ \vdots & \vdots\\ 1 & x_{N}\end{bmatrix} \qquad \overline{Z}^{2}\begin{bmatrix}2_{1}\\ z_{2}\\ \vdots\\ z_{N}\end{bmatrix} \qquad \mathcal{A}^{2}\begin{bmatrix}\chi^{T}X + \frac{\sigma^{2}}{\beta}\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix})^{-1}X^{T}Z$$

$$\Sigma = \left(\chi^{T}X + \frac{\sigma^{2}}{\beta}\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}\right)^{-1}\sigma^{-2}$$

$$P(q|x_{1},z_{1},...,x_{N},z_{N}) = N(\mu,\Sigma)$$

- 2. Let $\sigma^2 = 0.1$ and $\beta = 1$. Draw four contour plots corresponding to the distributions $p(\mathbf{a})$, $p(\mathbf{a}|x_1, z_1)$, $p(\mathbf{a}|x_1, z_1, \dots, x_5, z_5)$, and $p(\mathbf{a}|x_1, z_1, \dots, x_{100}, z_{100})$. In all contour plots, the x-axis represents a_0 , and the y-axis represents a_1 . Please save the figures with names **prior.pdf**, **posterior1.pdf**, **posterior5.pdf**, **posterior100.pdf**, respectively. (1.5 **pt**)
- 3. Suppose that there is a new input x, for which we want to predict the corresponding target value z. Write down the distribution of the prediction z, i.e, $p(z|x, x_1, z_1, \ldots, x_N, z_N)$. (1 **pt**)

$$X = \text{Same as before} \qquad A = \begin{bmatrix} 1 & x \end{bmatrix} \qquad P(2 \mid x \mid x_1, z_1 - \dots x_N, z_N) = N(\mu_{new}, z_{new})$$

$$Z = \text{Same as before} \qquad P(2 \mid x \mid x_1, z_1 - \dots x_N, z_N) = N(\mu_{new}, z_{new})$$

$$M_{new} = A\left(X^TX + \frac{c^2}{B}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)^T X^TZ\right) = AM_{old}$$

$$Z_{new} = c^2 + A\left(X^TX + \frac{c^2}{B}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)^T c^2\right) A^T = c^2 + AZ_{old}A^T$$

- 4. Let $\sigma^2 = 0.1$ and $\beta = 1$. Given a set of new inputs $\{-4, -3.8, \dots, 3.8, 4\}$, plot three figures, whose x-axis is the input and y-axis is the prediction, corresponding to three cases:
 - (a) The predictions are based on one training sample, i.e., based on $p(z|x, x_1, z_1)$.
 - (b) The predictions are based on 5 training samples, i.e., based on $p(z|x, x_1, z_1, \dots, x_5, z_5)$.
 - (c) The predictions are based on 100 training samples, i.e., based on $p(z|x, x_1, z_1, \dots, x_{100}, z_{100})$.

The range of each figure is set as $[-4,4] \times [-4,4]$. Each figure should contain the following three components: 1) the new inputs and the corresponding predicted targets; 2) a vertical interval at each predicted target, indicating the range within one standard deviation; 3) the training sample(s) that are used for the prediction. Use plt.errorbar for 1) and 2); use plt.scatter for 3). Please save the figures with names predict1.pdf, predict5.pdf, predict100.pdf, respectively. (1.5 pt)