

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wkidata item Cite this page

Print/export

Create a book
Download as PDF
Printable version

Languages

Article Talk Read Edit View history Search Q

Rose tree

From Wikipedia, the free encyclopedia

For the species of rhododendron, see Rhododendron maximum.

In computing, a **multi-way tree** or **rose tree** is a tree data structure with a variable and unbounded number of branches per node. [1] [better source needed] The name rose tree for this structure is prevalent in the functional programming community, e.g., in the context of the Bird-Meertens formalism. [2] It was coined by Lambert Meertens to evoke the similarly-named, and similarly-structured, common rhododendron. [3]

Definition [edit]

The following is a definition in Haskell:

```
data RoseTree a = RoseTree a [RoseTree a]
```

Sources [edit]

- 1. ^ Haskell Wiki &, accessed 26 January 2012
- Malcolm, Grant (1990). "Data structures and program transformation". Science of Computer Programming 14 (2): 255–279.
- 3. A Skillicom, David B. (1996). "Parallel implementation of tree skeletons" (PDF). J. Parallel and Distributed Computing 39 (2): 115–125.

External links [edit]

- Rose tree

 on the Haskell wiki
- Bayesian Rose Trees
- Data.Tree ☑, an implementation of basic rose tree operations in the Haskell containers package

v· t· e Tree data structures [hide]	
Search trees (dynamic sets/associative arrays)	$23 \cdot 234 \cdot \text{AA} \cdot (\text{a,b}) \cdot \text{AML} \cdot \text{B} \cdot \text{B} + \cdot \text{B}^{\text{x}} \cdot \text{B}^{\text{x}} \cdot \text{(Optimal) Binary search} \cdot \text{Dancing} \cdot \text{HTree} \cdot \text{Interval} \cdot \text{Order statistic} \cdot \text{(Left-leaning) Red-black} \cdot \text{Scapegoat} \cdot \text{Splay} \cdot \text{T} \cdot \text{Treap} \cdot \text{UB} \cdot \text{Weight-balanced}$
Heaps	Binary · Binomial · Fibonacci · Leftist · Pairing · Skew · Van Emde Boas
Tries	Hash · Radix · Suffix · Ternary search · X-fast · Y-fast
Spatial data partitioning trees	$BK \cdot BSP \cdot Cartesian \cdot Hilbert \ R \cdot \textit{k-d} \ (implicit \textit{k-d}) \cdot M \cdot Metric \cdot MMP \cdot Octree \cdot Priority \cdot Quad \cdot R \cdot R + \cdot R^* \cdot Segment \cdot VP \cdot X$
Other trees	$eq:cover-exponential-Ferwick-Finger-Fusion-Hash calendar-iDistance-K-ary-Left-child right-sibling \cdot Link/cut \cdot Log-structured merge \cdot Merkle \cdot PQ \cdot Range \cdot SPQR-Top$

ti. This computer science article is a stub. You can help Wikipedia by expanding it.

Categories: Computer science stubs | Trees (data structures)

This page was last modified on 15 June 2015, at 17:57.

Text is available under the Oreative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Mobile view

