Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 03

Abgabetermin: Freitag, 27.11.2020, 9:15 Uhr

Aufgabe 1. (Polynomring) (6 Punkte) Es sei K ein Körper.

- (a) (1 Punkt) Bestimmen Sie den ggT von $f = X^3 3$ und $g = X^2 4$ in $\mathbb{Q}[X]$.
- (b) (1 Punkt) Bestimmen Sie den ggT von $f = X^3 3$ und $g = X^2 4$ in $\mathbb{F}_5[X]$.
- (c) (2 Punkte) Zeigen Sie, dass K[X] unendlich viele irreduzible, normierte Polynome enthält. (Hinweis: Imitieren Sie den Beweis für die Unendlichkeit der Primzahlen in \mathbb{Z} .)
- (d) (2 Punkte) Es sei $f \in K[X] \setminus \{0\}$ und L := K[X]/(f). Zeigen Sie, dass jede Restklasse $\overline{g} \in L$ einen eindeutigen Repräsentanten $g \in K[X]$ mit $\deg(g) < \deg(f)$ besitzt und folgern Sie $\dim_K L = \deg(f)$. Falls $\deg(f) \geq 1$, zeigen Sie weiter, dass $\overline{X} \in L$ eine Nullstelle von $f \in K[X] \subset L[X]$ ist.

Aufgabe 2. (Irreduzible Polynome) (6 Punkte; je 2 Punkte) Zeigen Sie, dass die folgenden Polynome irreduzibel sind:

- (a) $X^3 + 2X^2 20 \in \mathbb{Q}[X]$,
- (b) $X^6 + X^3 + 1 \in \mathbb{Q}[X],$
- (c) $X^7 + 2X^5Y + 3XY^3 + 4Y^3 + 5XY + 6X \in \mathbb{C}[X, Y].$

Aufgabe 3. (Nullstellen normierter Polynome über faktoriellen Ringen) (6 Punkte) Es sei R ein faktorieller Ring mit Quotientenkörper K := Q(R). Zeigen Sie:

- (a) (1 Punkt) Sind $a, b, c \in R$ und gilt a|bc sowie ggT(a, b) = 1, so folgt a|c.
- (b) (3 Punkte) Ist $f = X^n + a_{n-1}X^{n-1} + \ldots + a_0$ ein normiertes Polynom in R[X] und $\alpha \in K$ eine Nullstelle von f, so liegt α bereits in R und ist dort ein Teiler von a_0 .
- (c) (2 Punkte) Das Polynom $X^3 + aX^2 + bX + 1 \in \mathbb{Z}[X]$ ist genau dann irreduzibel in $\mathbb{Z}[X]$ (oder $\mathbb{Q}[X]$), wenn $a \neq b$ und $a + b \neq -2$.

Aufgabe 4. (Inhalt) (6 Punkte; je 2 Punkte) Es sei R ein faktorieller Ring und K := Q(R) sein Quotientenkörper. Für $f \in R[X]$ definieren wir den Inhalt $I(f) \in R$ als den ggT aller Koeffizienten von f (eindeutig bis auf Assoziiertheit). Für $f \in K[X]$ wählen wir ein $a \in R$ mit $af \in R[X]$ und definieren $I(f) := a^{-1}I(af) \in K$. Zeigen Sie:

- (a) Für jedes $f \in K[X]$ existiert solch ein $a \in R$ und die Definition von I(f) ist unabhängig von der Wahl von a. Bestimmen Sie I(f) für $R = \mathbb{Z}$ und $f = \frac{3}{7}X^3 + X 5 \in \mathbb{Q}[X]$.
- (b) Für $f, g \in K[X]$ gilt I(fg) = I(f)I(g).
- (c) Sei $r \in R$, $f \in R[X]$ und $h(X) := f(X+r) \in R[X]$. Dann gilt I(h) = I(f).

Bonusaufgabe 5. (Zwei-Quadrate-Satz) (6 Bonuspunkte) Wir wollen die schwierigere Implikation des folgenden Satzes zeigen: Eine ungerade Primzahl p lässt sich genau dann als Summe zweier Quadratzahlen schreiben, wenn $p \equiv 1 \mod 4$.

Zuerst untersuchen wir den euklidischen Ring $\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}$ (vgl. Blatt 02, Aufgabe 1 und 5; siehe auch LA2, SS2020, Blatt 3, Aufgabe 13; verfügbar auf Mampf) zusammen mit der multiplikativen Normfunktion (= Betragsquadrat in \mathbb{C})

$$N: \mathbb{Z}[i] \longrightarrow \mathbb{Z}, \quad N(a+bi) := a^2 + b^2.$$

- (a) (1 Punkt) Zeigen Sie $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
- (b) (3 Punkte) Es sei $p \in \mathbb{Z}$ eine Primzahl der Form p = 4n + 1 mit $n \in \mathbb{N}$. Zeigen Sie: p teilt das Produkt $((2n)! + i)((2n)! i) = (2n)!^2 + 1$, aber keinen der Faktoren, ist also kein Primelement in $\mathbb{Z}[i]$. (Hinweis: Satz von Wilson, Blatt 01, Aufgabe 2)
- (c) (2 Punkte) Sei $\pi \in \mathbb{Z}[i]$ ein Primelement mit $\pi|p$ in $\mathbb{Z}[i]$. Benutzen Sie (a), um $N(\pi) = p$ zu zeigen. Folgern Sie, dass p Summe zweier Quadratzahlen ist.

Bemerkung: Die andere Richtung des Zwei-Quadrate-Satzes geht so: Da Quadratzahlen immer kongruent zu 0 oder 1 modulo 4 sind (wieso?), kann keine Primzahl $p \equiv 3 \mod 4$ Summe zweier Quadratzahlen sein.