WenQuanYi Micro Hei WenQuanYi Micro Hei WenQuanYi Micro Hei Mono

AB Testing

Jacky Wang

June 28, 2016

 $\mathbf{2}$

Contents

1 AB Test

2	Sample Size 2.1 Hypothesis	2 2
1	AB Test	
	• H_0 : NULL hypothesis,	
	 a particular treatment has no effect there is no difference between the controlled(version A) and treatment(version B) group 	
	• H_1 : alternative hypothesis	
	• Type I Error, False Positive, $P(\hat{H}_1 H_0 \text{ is true}), \alpha$, believing a lie, false alarm,	
	• type II error, Flase Negative, $P(\hat{H}_0 H_1 \text{ is true}), \beta$, faling to raise an alarm	
	• Power: $1 - \beta$	
	• Recall: $\frac{TP}{TP+FN}$	
	• Precision: $\frac{TP}{TP+FP}$	
	A random sample of n observations X_i , $i=1,2,\cdots,n$ is taken from a normal population with mean μ a variance σ^2 .	nd
	– sample mean $\bar{X} = \sum_{i=1}^{n} X_i$	
	$-$ sample variance $ar{X}$	

2 Sample Size

2.1 Hypothesis

- Control Group: $X_0 \sim (\mu_0, \sigma_0^2) \Longrightarrow \bar{X_0} \sim N(\mu_0, \frac{\sigma_0^2}{n_0})$
- Treatment Group: $X_1 \sim (\mu_1, \sigma_1^2) \Longrightarrow \bar{X}_1 \sim N(\mu_1, \frac{\sigma_1^2}{n_1})$

• $H_0: \mu_1 - \mu_0 = 0$

 $\bullet \ H_1: \mu_1 - \mu_0 = \delta \neq 0$

• $n_0 = n_1 = n$

Then,

$$0 + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_0^2}{n} + \frac{\sigma_1^2}{n}} = \delta - z_{1-\beta} \sqrt{\frac{\sigma_0^2}{n} + \frac{\sigma_1^2}{n}} n = \frac{(z_{1-\frac{\alpha}{2}} + z_{1-\beta})^2 (\sigma_0^2 + \sigma_1^2)}{\delta^2}$$
(1)