

SISTEM PENDUKUNG KEPUTUSAN PENENTUAN UANG KULIAH TUNGGAL KEPADA MAHASISWA BARU DI UNIVERSITAS NUSA CENDANA MENGGUNAKAN METODE TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)

Benyamin Imanuel Libing¹, Dony M. Sihotang², Meiton Boru³
Jurusan Ilmu Komputer, Fakultas Sains Dan Teknik Universitas Nusa Cendana
Email: libingjimries@gmail.com¹, dmsihotang99@gmail.com², meitonboru@staf.undana.ac.id³

INTISARI

Uang Kuliah Tunggal (UKT) merupakan kebijakan pemerintah untuk membantu masyarakat kurang mampu memperoleh pendidikan sampai ke perguruan tinggi. Dalam penentuan UKT, Universitas Nusa Cendana menggunakan metode wawancara. Banyaknya jumlah mahasiswa baru yang diwawancarai untuk menetapkan UKT maka mempengaruhi tingkat keletihan dari pewawancara dan juga mempengaruhi keputusan yang diambil tidak lagi bersifat objektif, sehingga perlu sebuah Sistem Pendukung Keputusan (SPK) untuk membantu menangani masalah tersebut. Metode TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) merupakan salah satu metode dalam SPK yang dapat membantu menyelesaikan masalah tidak terstruktur. Sistem akan menyeleksi setiap alternatif menggunakan lima kriteria yaitu pendapatan orang tua, rekening air dan listrik, aset, jumlah tanggungan dan pekerjaan. Hasil dari pengujian senstifitas perubahan bobot, yang paling besar yaitu pada rekening air dan listrik dengan 91.66% dan yang paling sedikit yaitu pada pekerjaan dengan 35%. Sedangkan pengujian akurasi standar memperoleh hasil 26.66%.

Kata Kunci: Sistem Pendukung Keputusan, TOPSIS, Uang Kuliah Tunggal

ABSTRACT

Single tuition fee is government policy for poor people to get education until the college. In determination of single tuition fee, University of Nusa Cendana used the interview method. Amount of new student interviewed to determinate of single tuition fee then influence the level of weariness from interviewer and also termination is not objectively. So needed a decision support system to help this problem. The TOPSIS method (Technique for order preference by similarity to ideal solution) is a one method in decision support system that can help the unstructured problem. The system will select the alternative using five criteria like parent income, water and electricity account, asset, number of dependents and occupation. The result from sensitivity of weight change are the large number on water and electricity with 91.66% and smallest number on occupation with 35%. Meanwhile from standard accurate test get the result 26.66%.

Keywords: Decision Support System, TOPSIS, Single Tuition Fee

I PENDAHULUAN

Pada tahun 2013/2014 pemerintah menerapkan sebuah kebijakan baru yang diberi nama Uang Kuliah Tunggal (UKT) pada Perguruan Tinggi Negeri. Kebijakan yang dibuat untuk membantu masyarakat khususnya yang kurang mampu dalam memperoleh pendidikan sampai ke Perguruan Tinggi.

Dalam proses penentuan, Undana menerapkan proses wawancara yang menjadi tahap penentuan UKT kepada mahasiswa baru. Pada tahap ini mahasiswa akan ditanya beberapa pertanyaan, setelah itu mahasiswa menyerahkan berkas pengajuan UKT yang kemudian akan ditentukan menurut kemampuan setiap mahasiswa.

Dengan banyaknya jumlah mahasiswa baru yang diwawancarai untuk menetapkan jumlah UKT yang akan diberikan maka secara tidak langsung mempengaruhi tingkat keletihan dan secara langsung mempengaruhi keputusan yang diambil tidak lagi bersifat objektif.

Untuk menghindari keputusan yang tidak objektif perlu adanya sebuah Sistem Pendukung Keputusan (SPK) yang dapat membantu dalam penentuan UKT yang akan diterima mahasiswa baru. Konsep Sistem Pendukung Keputusan (*Decision Support System*) merupakan sebuah sistem interaktif berbasis komputer yang membantu pembuat keputusan memanfaatkan data dan model untuk menyelesaikan masalah-masalah yang bersifat tidak tersruktur dan semi terstruktur^[1]. Metode TOPSIS (*Technique for Order Preference by Similarity to Ideal Solution*) merupakan salah satu metode dalam Sistem Pendukung Keputusan yang memiliki beberapa kelebihan diantaranya konsepnya yang sederhana dan mudah dipahami, sistem komputasi yang efisien, dan memiliki kemampuan untuk mengukur kinerja relatif dari alternatif-alternatif keputusan dalam bentuk matematis yang sederhana^[3].

II MATERI DAN METODE

2.1 Sistem Pendukung Keputusan

Scoot-Morton dalam Turban (2005) mendefinisikan Sistem Pendukung Keputusan (SPK) sebagai sistem interaktif berbasis komputer yang membantu pengambil keputusan memanfaatkan data dan model untuk menyelesaikan masalah yang tidak terstruktur^[3]. Menurut Turban untuk mencapai keberhasilan, sistem tersebut haruslah sederhana, kokoh atau kuat, mudah dikontrol, adaptif, lengkap pada hal-hal yang penting dan mudah untuk berkomunikasi^[6]. Secara implisit pengertian tersebut berasumsi bahwa sistem tersebut berbasis komputer dan menyajikan kemampuan memecahkan masalah bagi penggunanya.

Dalam proses pengambilan keputusan, ada tiga fase utama dikemukakan oleh Simon (1977) dalam Turban, *dkk.* (2005). Tiga fase utama itu meliputi : inteligensi, desain, dan pilihan (kriteria). Simon kemudian menambahkan fase keempat, yakni implementasi. Monitoring dapat dianggap sebagai fase kelima, sebagai bentuk umpan balik. Akan tetapi oleh Turban, monitoring dipandang sebagai fase inteligensi yang diterapkan pada fase implementasi^[7].

2.2 Technique for Order Preference By Similarity To Ideal Solution (TOPSIS)

Metode *Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)* adalah salah satu metode pengambilan keputusan multi kriteria. Metode ini banyak digunakan untuk menyelesaikan pengambilan keputusan secara praktis^[5]. Metode TOPSIS merupakan salah satu metode yang termasuk dalam *Multi Attribute Decision Making* yang dimana hasil dari perhitungan merupakan solusi terbaik yang dilihat dari total nilai preferensi yang dihasilkan^[8].

Langkah-langkah dalam prosedur metode TOPSIS adalah sebagai berikut:

a. Membuat matriks keputusan yang ternormalisasi.

Topsis membutuhkan rating kinerja setiap alternatif A_i pada setiap kriteria C_j yang ternormalisasi, yaitu:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^{2}}}; dengan \ i = 1,2,3, ..., m; dan \ j = 1,2,3, ..., n$$
2.3

b. Membuat matriks keputusan yang ternormalisasi terbobot.

$$y_{ij} = w_i r_{ij}$$
; dengan $i = 1, 2, 3, ..., m$; dan $j = 1, 2, 3, ..., n$ 2.4

Keterangan:

 $y_{i,i}$ = Rating bobot ternormalisasi

 w_i = Bobot yang ditentukan

 r_{ij} = Rating kinerja ternormalisasi dari alternatif A_i pada atribut C_i

c. Menentukan matriks solusi ideal positif dan matriks solusi ideal negatif.

Solusi ideal positif (A^+) dihitung berdasarkan

$$A^{+} = (Y_{1}^{+}, Y_{2}^{+}, Y_{3}^{+}, \dots, Y_{n}^{+})$$
2.5

[SSN:2337-7631 (printed)]

2.7

Dengan
$$Y_{j}^{+} = \begin{cases} \max_{i}^{max} Y_{ij}, & jika j \text{ adalah atribut keuntungan} \\ \min_{i}^{min} Y_{ij}, & jika j \text{ adalah atribut biaya} \end{cases}$$
Selusi idaal negetif (A=) dibitusa bandasaksa

Solusi ideal negatif (A^{-}) dihitung berdasarkan:

Dengah
$$Y_{j}^{-} = \begin{cases} \min_{i} Y_{i}j, & jika \ j \ adalah \ atribut \ keuntungan \\ \\ \max_{i} Y_{i}j, & jika \ j \ adalah \ atribut \ biaya \end{cases}$$
2.8

d. Menentukan jarak antara alternatif A_i solusi ideal positif dan matriks solusi ideal negatif. Jarak alternatif A_i dengan solusi ideal positif:

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_{ij} - y_j^+)^2}; \qquad i = 1, 2, 3, ..., m$$
 2.9

$$D_{i}^{+} = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_{j}^{+})^{2}}; \qquad i = 1, 2, 3, ..., m$$
2.9

Jarak alternatif A_{i} dengan solusi ideal negatif:
$$D_{i}^{-} = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_{j}^{-})^{2}}; \qquad i = 1, 2, 3, ..., m$$
2.10

e. Menentukan nilai preferensi untuk setiap alternatif.

Nilai preferensi V_i untuk setiap alternatif diberikan sebagai:

$$V_i = \frac{D_i^-}{D_i^- + D_i^+};$$
 $i = 1,2,3,...,m$ 2.11

Mengurutkan Pilihan.

Alternatif dapat diurutkan berdasarkan urutan V_i maka dari itu, alternatif terbaik adalah yang memiliki jarak terpendek dari solusi ideal positif dan terjauh dari solusi ideal negatif.

Uang Kuliah Tunggal (UKT)

UKT adalah pembiayaan kuliah pada kategori I (satu) sampai dengan V (lima) per semester tergantung pada program studi dimana mahasiswa baru bersangkutan diterima. Nilai UKT dihitung berdasarkan *Unit Cost* atau Akuntansi Biaya, yang merupakan hasil dari penjumlahan semua biaya yang dibutuhkan mahasiswa sesuai dengan program studi masing-masing dibagi dengan masa studi selama menempuh perkuliahan^[4].

2.4 Gambaran Umum

Berikut akan dijelaskan alur sistem dalam penelitian ini adalah sebagai berikut:

Berdasarkan gambar alur dokumen, terlihat bahwa sistem ini dimulai dengan pengguna (user) memasukan data yang ditetapkan pada sistem ini. Setelah itu sistem langsung menghitung bobot setiap kriteria yang ada dengan menggunakan metode TOPSIS. Setelah sistem menampilkan nilai preferensi dan hasil penetapan golongan UKT kemudian sistem akan menyimpan seluruh data tersebut yang siap ditampilkan pada sistem dan dicetak.

Pada HIPO SPK penetapan UKT kepada mahasiswa baru terdapat 2 (dua) level yaitu level 0 (nol) dan level 1 (satu). Level 0 terdiri dari proses 1.0 yaitu log in, proses 2.0 olah data, proses 3.0 perhitungan TOPSIS, dan proses 4.0 cetak laporan data mahasiswa penerima UKT. Sedangkan, level 1 merupakan pecahan dari proses 3.0 yaitu perhitungan TOPSIS.

Gambar 1. Metodologi Penelitian

Gambar 2. HIPO SPK Penentuan UKT Mahasiswa Baru

Gambar 3. Diagram Konteks

Sistem Pendukung Keputusan penentuan UKT untuk mahasiswa memiliki 3 (tiga) entitas. Pegawai merupakan entitas yang dapat memberikan masukan pada sistem serta mendapatkan keluaran sistem berupa laporan, sedangkan mahasiswa adalah entitas yang mendapat informasi hasil penentuan UKT dan kepala BAAKPSI adalah entitas yang hanya mendapatkan keluaran dari sistem berupa laporan.

Pada sistem terdapat 4 (empat) proses utama yaitu proses 1.0 yaitu proses *log in*, proses 2.0 olah data, proses 3.0 perhitungan TOPSIS dan proses 4.0 cetak laporan.

Proses 3.0 merupakan proses mengolah data mahasiswa, data detail kriteria dan data golongan yang dilakukan dengan perhitungan TOPSIS sehingga mendapat keluaran berupa penetapan UKT kepada mahasiswa. Sedangkan proses 4.0 merupakan proses yang menghasilkan

laporan. Laporan yang diperoleh berupa laporan data mahasiswa pembayar UKT dan laporan hasil penentuan UKT.

Gambar 4. DFD Level 0

Gambar 5. DFD Level 1

DFD level 1 proses 3.0 merupakan penjabaran dari DFD level 0 proses 3.0 yaitu perhitungan TOPSIS.

Gambar 6. Entity Relationship Diagram

Terdapat 7 (tujuh) entitas yaitu entitas *login*, entitas mahasiswa, entitas kriteria, entitas detail kriteria, entitas golongan, entitas jurusan, dan entitas fakultas.

III HASIL DAN PEMBAHASAN

3.1 Hasil Pengujian

Hasil pengujian dari sistem yang dibangun adalah dengan melihat tingkat sensitivitas sistem dan juga dengan melihat tingkat akurasi antara sistem yang dibuat dengan hasil penetapan UKT yang dibuat oleh universitas.

Berikut adalah tabel hasil penentuan UKT yang ditetapkan oleh universitas dan sistem.

Tabel 1. Hasil Penetapan UKT Oleh Universitas

No	Nama Mahasiswa	Fakultas	Jurusan	Nominal (Rp)
1	Neurius Aureus Demong	FAPET	Peternakan	2.500.000, -
2	Ketzia Kahi Ludji	FAPET	Peternakan	500.000, -
3	Viktorianus Talan	FAPET	Peternakan	1.000.000, -
4	Wempi Mone	FAPET	Peternakan	1.500.000,-
5	Astrid Diana Koroh	FAPET	Peternakan	2.000.000,-
6	Ricardo Anggraini Binsasi	FST	Kimia	3.000.000,-
7	Natalia Leda Wonga	FST	Kimia	1.000.000,-
8	Theresia Febriana Delang	FST	Kimia	2.000.000,-
9	Tuti Sartika	FST	Kimia	2.500.000,-
10	Frengky Banamtuan	FST	Matematika	1.000.000,-
11	Maria G. R. A. Atulolon	FST	Matematika	3.000.000,-
12	Sherly Gracela Dian Maak	FST	Matematika	2.000.000,-
13	Vivi N. O. Abanat	FST	Matematika	500.000,-
14	Mawarni Angel Suilima	FST	Matematika	2.500.000,-
15	Theresia Omlensiana Bara	FKH	Kedokteran Hewan	1.500.000,-
16	Marito Britos Gomes	FKH	Kedokteran Hewan	12.500.000,-
17	Erni Paremadjangga	FKH	Kedokteran Hewan	7.500.000,-
18	Alfredo J. D. Niron	FKH	Kedokteran Hewan	9.000.000,-
19	Yudith E. C. Mauwalan	FKH	Kedokteran Hewan	1.000.000,-
20	Sance Kristina Agatha	FKIP	PG-PAUD	2.500.000,-
21	Apriyani Taopan	FKIP	PG-PAUD	2.500.000,-
22	Maria E. Diki Mbasa	FKIP	PG-PAUD	3.000.000,-
23	Timoteus Mau	FKIP	PG-PAUD	1.000.000,-
24	Eny Febrianti Bagaikala	FKIP	PG-PAUD	500.000,-
25	Astriyanti A. Syarif	FKIP	PG-PAUD	3.500.000,-
26	Leonardus Yohanes Fahik	FKIP	PJKR	3.500.000,-
27	Herdi Umbu Ndewa	FKIP	PJKR	500.000,-
28	Sri Wahyuni Lewar	FKIP	PJKR	1.000.000,-
29	Norvita S. C. Pandie	FKIP	PJKR	3.000.000,-
30	Sarah Kristina Lilimwelan	FST	Ilmu Komputer	3.000.000,-
31	Anggraini S. A. Terru	FST	Ilmu Komputer	2.500.000,-
32	Detha Dao Manu Djami	FST	Ilmu Komputer	3.500.000,-
33	Aurelia Oktaviani Kabosu	FKM	Psikologi	3.000.000,-
34	Maria Foni Bule	FKM	Psikologi	2.000.000,-
35	Maria Mukin	FKM	Psikologi	2.500.000,-

No	Nama Mahasiswa	Fakultas	Jurusan	Nominal (Rp)
36	Maria Adira B. Bangu	FKM	Psikologi	1.000.000,-
37	Kristina Y. Langgar	FKM	Psikologi	2.000.000,-
38	Nosita Anita Aome	FKM	Psikologi	1.000.000,-
39	Alda Soraya Asikin	FKM	Psikologi	2.500.000,-
40	Modesti T. Amal	FKM	Psikologi	2.500.000,-
41	Aurelia S. Gratfiella Bay	FST	Fisika	2.500.000,-
42	Engkie Aprilus Haga	FST	Fisika	2.500.000,-
43	Erna Corputy	FST	Fisika	1.000.000,-
44	Fabianus G. Muda	FST	Fisika	1.000.000,-
45	Damayanti Diru	FST	Fisika	2.000.000,-
46	Melani Irmawati Mesakh	FAPERTA	Kehutanan	1.500.000,-
47	Krisindy C. M. Dethan	FAPERTA	Kehutanan	1.000.000,-
48	Aryanto Albert Besi	FAPERTA	Kehutanan	1.500.000,-
49	Martinus Dean	FAPERTA	Kehutanan	500.000,-
50	Fenny Firanty Sabaora	FAPERTA	Kehutanan	2.500.000,-
51	Martha Selfita Safel	FAPERTA	Agroteknologi	1.000.000,-
52	Anggeritha Funan	FAPERTA	Agroteknologi	1.500.000,-
53	Selfi Bani	FAPERTA	Agroteknologi	1.000.000,-
54	Rikardus Rinto	FAPERTA	Agroteknologi	1.500.000,-
55	Jumina Ainun Hamzah	FAPERTA	Agroteknologi	1.000.000,-
56	Thomas Aquino Tome	FKM	IKM	1.000.000,-
57	Hermiana Sunarti Isi	FKM	IKM	500.000,-
58	Fransisca C. Bunga Wago	FKM	IKM	2.000.000,-
59	Maria Ines T. Wea Dede	FKM	IKM	1.000.000,-
60	Dewa Ayu Ratna Ningrum	FKM	IKM	3.000.000,-

Tabel 2. Hasil Penentuan UKT dari Perhitungan Sistem

				Nilai		
No	Nama	Fakultas	Jurusan	preferensi	Golongan	Nominal
1	Herdi Umbu Ndewa	FKIP	PJKR	0.63985	Golongan 4	3000000
2	Maria Ines Teresa Wea	FKM	IKM	0.63913	Golongan 4	2500000
	Dede					
3	Alda Soraya Asikin	FKM	Psikologi	0.63311	Golongan 4	2500000
4	Thomas Aquino Tome	FKM	IKM	0.62975	Golongan 4	2500000
5	Timoteus Mau	FKIP	PG-PAUD	0.62975	Golongan 4	3000000
6	Viktorianus Talan	FAPET	Peternakan	0.62975	Golongan 4	2000000
7	Frengky M. Banamtuan	FST	Matematika	0.62068	Golongan 4	2500000
8	Ketzia Kahi Ludji	FAPET	Peternakan	0.61488	Golongan 4	2000000
9	Nosita Anita Aome	FKM	Psikologi	0.60987	Golongan 4	2500000
10	Anggeritha Funan	FAPERTA	Agroteknologi	0.60067	Golongan 4	2000000
11	Martha Selfita Safel	FAPERTA	Agroteknologi	0.60067	Golongan 4	2000000
12	Selfi Bani	FAPERTA	Agroteknologi	0.60067	Golongan 4	2000000
13	Wempi mone	FAPET	Peternakan	0.60067	Golongan 4	2000000
14	Fabianus G. Muda	FST	Fisika	0.60067	Golongan 4	2500000

				Nilai		
No	Nama	Fakultas	Jurusan	preferensi	Golongan	Nominal
15	Vivi N. O. Abanat	FST	Matematika	0.60033	Golongan 4	2500000
16	Martinus Dean	FAPERTA	Kehutanan	0.5971	Golongan 3	1500000
17	Neurius Akireus Demong	FAPET	Peternakan	0.5971	Golongan 3	1500000
18	Alfredo J. D. Niron	FKH	Kedokteran hewan	0.5948	Golongan 3	7500000
19	Sherly Gracela Dian Maak	FST	Matematika	0.58705	Golongan 3	2000000
20	Theresia Febriana Delang	FST	Kimia	0.58595	Golongan 3	2000000
21	Astrid Diana Koroh	FAPET	Peternakan	0.58595	Golongan 3	1500000
22	Theresia Omlensiana Bara	FKH	Kedokteran hewan	0.58595	Golongan 3	7500000
23	Erna Corputy	FST	Fisika	0.57743	Golongan 3	2000000
24	Sri Wahyuni Lewar	FKIP	PJKR	0.56912	Golongan 3	2000000
25	Maria Mukin	FKM	Psikologi	0.56423	Golongan 3	2000000
26	Sarah Kristina Lilimwelat	FST	Ilmu komputer	0.56423	Golongan 3	2500000
27	Dewa Ayu Ratna Ningrum	FKM	IKM	0.56423	Golongan 3	2000000
28	Natalia Leda Wongo	FST	Kimia	0.56091	Golongan 3	2000000
29	Melani Irmawati Mesakh	FAPERTA	Kehutanan	0.55986	Golongan 3	1500000
30	Tuti Sartika	FST	Kimia	0.55986	Golongan 3	2000000
31	Krisindy C. M. Dethan	FAPERTA	Kehutanan	0.55107	Golongan 3	1500000
32	Yudith E. C. Mauwalan	FKH	Kedokteran hewan	0.54522	Golongan 3	7500000
33	Engkie Aprilus Haga	FST	Fisika	0.543	Golongan 3	2000000
34	Rikardus Rinto	FAPERTA	Agroteknologi	0.53416	Golongan 3	1500000
35	Apriyani Taopan	FKIP	PG-PAUD	0.52515	Golongan 3	2500000
36	Maria Ernawati Ndiki Mbasa	FKIP	PG-PAUD	0.51863	Golongan 3	2500000
37	Sance Kristina Agatha	FKIP	PG-PAUD	0.51837	Golongan 3	2500000
38	Maria Galang R. A. Atulolon	FST	Matematika	0.51837	Golongan 3	2000000
39	Fransisca C. B. Wago	FKM	IKM	0.51837	Golongan 3	2000000
40	Maria Foni Buke	FKM	Psikologi	0.50781	Golongan 3	2000000
41	Khristina Y. Langgar	FKM	Psikologi	0.50486	Golongan 3	2000000
42	Richarda Anggraini Binsasi	FST	Kimia	0.50486	Golongan 3	2000000
43	Aryanto Albert Besi	FAPERTA	Kehutanan	0.50304	Golongan 3	1500000
44	Hermiana Sunarti Isi	FKM	IKM	0.48373	Golongan 3	2000000
45	Modesti T. Amal	FKM	Psikologi	0.46461	Golongan 3	2000000
46	Damayanti Diru	FST	Fisika	0.46115	Golongan 3	2000000
47	Norvita S. C. Pandie	FKIP	PJKR	0.46115	Golongan 3	2000000
48	Erni Paremadjangga	FKH	Kedokteran hewan	0.46115	Golongan 3	7500000
49	Jumina Ainun Hamzah	FAPERTA	Agroteknologi	0.45554	Golongan 3	1500000
50	Leonardus Yohanes Fahik	FKIP	PJKR	0.45554	Golongan 3	2000000
51	Eny Febrianti Bagaikala	FKIP	PG-PAUD	0.45347	Golongan 3	2500000
52	Astriyanti A. Syarif	FKIP	PG-PAUD	0.44274	Golongan 3	2500000
53	Anggraini S. A. Terru	FST	Ilmu komputer	0.43997	Golongan 3	2500000

				Nilai		
No	Nama	Fakultas	Jurusan	preferensi	Golongan	Nominal
54	Mawarny Angel Suilima	FST	Matematika	0.40076	Golongan 3	2000000
55	Aurelia Oktaviani Kabosu	FKM	Psikologi	0.34355	Golongan 2	1000000
56	Fenny Firanti Sabaora	FAPERTA	Kehutanan	0.33191	Golongan 2	1000000
57	Detha Dao Manu Djami	FST	Ilmu komputer	0.33114	Golongan 2	1000000
58	Mariana Adira B. Bangu	FKM	Psikologi	0.32438	Golongan 2	1000000
59	Marito Britos Gomes	FKH	Kedokteran	0.22429	Golongan 2	6000000
			hewan			
60	Aurelia S. G. Bay	FST	Fisika	0.2198	Golongan 2	1000000

3.2 Pembahasan

a. Pengujian Akurasi

Berdasarkan 60 data uji yang telah diperoleh baik dari pihak Universitas Nusa Cendana yang ditunjukkan pada tabel 3.1 dan dari sistem yang ditunjukkan pada tabel 3.2 yang dibangun maka dapat diperoleh 16 data mahasiswa yang memiliki nominal UKT yang sama. Oleh karena itu perhitungan akurasi sistem dilakukan dengan menggunakan persamaan akurasi standar.

Akurasi=
$$\frac{\text{Jumlah Data Yang Sama}}{\text{Total Data}} \times 100\%$$

$$\text{Akurasi} = \frac{16}{60} \times 100\%$$

$$\text{Akurasi} = 26,66\%$$

Dari persamaan diatas dapat disimpulkan bahwa tingkat kesamaan data dalam penentuan UKT pada mahasiswa baru di Universitas Nusa Cendana mengalami perbedaan antara keputusan yang dihasilkan oleh pihak universitas dengan keputusan yang dihasilkan menggunakan sistem yaitu sebesar 26.66%.

b. Pengujian Sensitivitas Perubahan Bobot

Pada pengujian ini akan dilihat total data mahasiswa yang mengalami perubahan perankingan dengan merubah nilai bobot dari setiap kriteria. Berikut adalah tabel rangkuman total data mahasiswa yang mengalami perubahan perankingan yang ditunjukkan pada tabel 3.

Tabel 3. Total Data Mahasiswa Yang Mengalami Perubahan Ranking

T7 14 1	Kurang (-)			Tambah (+)		
Kriteria	0.5	1	1.5	0.5	1	1.5
Aset	43	49	52	37	46	52
Jumlah Tanggungan	35	52	53	34	51	53
Rekening Listrik & Air	34	49	54	39	51	55
Pekerjaan	21	31	35	35	42	53
Pendapatan	44	50	54	41	52	54

Dari tabel diatas dapat dilihat bahwa total perubahan perankingan dari data mahasiswa yang dimasukkan dalam pengujian sensitivitas perubahan bobot yang paling besar terjadi adalah pada saat nilai bobot dari kriteria rekening listrik dan air ditambah 1.5 sehingga data mahasiswa yang mengalami perubahan ranking adalah sebanyak 55 data. Sedangkan yang paling sedikit terjadi yaitu pada nilai bobot kriteria pekerjaan dikurangi 0.5 yang hanya menghasilkan 21 data mahasiswa yang mengalami perubahan. Perbedaan jumlah data perubahan ranking yang dihasilkan bergantung pada nilai bobot yang dikurangi dan nilai bobot dari setiap detail kriteria yang ada dalam setiap kriteria yang dimasukkan.

IV PENUTUP

4.1 Kesimpulan

Berdasarkan hasil pembahasan dan program yang dibangun maka dapat disimpulkan sebagai berikut:

- Sistem keputusan yang telah dibangun dapat membantu pihak universitas untuk mengambil keputusan yang objektif dalam menentukan golongan serta nominal Uang Kuliah Tunggal kepada mahasiswa baru di Universitas Nusa Cendana dengan kriteria-kriteria yang sudah ditentukan.
- 2) Berdasarkan hasil pengujian sensitifitas perubahan bobot terhadap 60 data mahasiswa, diperoleh hasil bahwa sistem yang dibuat cukup sensitif terhadap perubahan bobot.
- 3) Jumlah perubahan ranking yang paling banyak terjadi adalah pada pengujian sensitifitas perubahan bobot dengan nilai bobot rekening listrik dan air dari nilai bobot awal 4 ditambah 1,5 sehingga nilai bobot menjadi 5,5 dengan total perubahan ranking sebanyak 55 data mahasiswa atau sekitar 91,66%.
- 4) Jumlah perubahan ranking yang paling sedikit mengalami perubahan perankingan terletak pada pengujian dengan perubahan nilai bobot awal kriteria pekerjaan 3 dikurangi 0,5 sehingga menjadi 2,5 dengan total perubahan ranking sebanyak 21 data atau sekitar 35%.
- 5) Hasil pengujian akurasi terhadap 60 data mahasiswa yang telah dimasukkan adalah 26.66% dimana terdapat 16 data mahasiswa yang memiliki kesamaan antara sistem dan hasil dari universitas.

4.2 Saran

Adapun saran yang dapat disampaikan untuk pengembangan sistem ini yaitu:

- 1) Dalam sistem yang dibangun nilai bobot untuk setiap kriteria yang digunakan masih bersifat subjektif karena langsung diberikan oleh pihak universitas. Peneliti selanjutnya dapat menggunakan metode-metode ilmiah yang dapat menangani pemberian nilai bobot, sehingga diharapkan sistem dapat memberikan hasil yang lebih akurat.
- 2) Dalam mengembangkan sistem ini, metode *Technique for Order Preference by Similarity to Ideal Solution* bukan satu-satunya metode pengambilan keputusan yang dapat digunakan. Untuk itu peneliti selanjutnya dapat menggunakan metode sistem pendukung keputusan lainnya untuk mendukung pengambilan keputusan penentuan UKT bagi mahasiswa baru.
- 3) Dalam pengembangan sistem yang dibuat, untuk peneliti selanjutnya dapat mengembangkan sistem dengan tahap masukan data yang langsung diberikan oleh mahasiswa.

DAFTAR PUSTAKA

- [1] Baker, E.D.P.S., 2014. Sistem pendukung keputusan penetapan calon peserta sertifikasi guru dengan metode WP dan TOPSIS, Skripsi, Undana, Kupang.
- [2] Kadir, A., 2002. Konsep Sistem Pendukung Keputusan, Edisi 1, Gava Media, Yogyakarta.
- [3] Manurung, P., 2010. Sistem pendukung keputusan seleksi penerima beasiswa dengan metode AHP dan TOPSIS studi kasus Fmipa USU, Skripsi, USU, Medan.
- [4] Tahir, Ilham., 2016. Model Pengambilan Keputusan Penentuan Uang Kuliah Tunggal (UKT) Pada Perguruan Tinggi Negeri (Studi Kasus: Universitas Sembilan belas November Kolaka): Journal Speed.
- [5] Kefi, Yuneldi., 2013. Sistem pendukung keputusan seleksi calon karyawan pada PT BPR Christa Jaya Kupang dengan metode AHP dan TOPSIS: J-Icon.
- [6] Turban, E., dkk., 2015, Decision Support System and Intelegent System, Andi, Yogyakarta.
- [7] Turban, E., & Arronson, J., 2005, Decision support System and Intelegent System, Pretince Hall, New Jersey.
- [8] Kusumadewi, S., dkk., 2006. Fuzzy Multi-attribute Decission Making, Graha Ilmu, Yogyakarta.

