DrägerSensor® XXS OV-A

Order no. 68 11 535

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger Pac 8000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no
Dräger X-am 8000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Production of plastics, disinfection, paintshops, chemical industry.

TECHNICAL SPECIFICATIONS

TECHNICAL OF ECH 107						
Detection limit:	1 ppm					
Resolution:	1 ppm					
Measurement range/		C ₂ H ₄ O ¹				
relative sensitivity	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)	≈ 1.00				
	0 to 100 ppm H ₂ CCHCN (acrylonitrile)	≈ 0.15				
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	≈ 0.90				
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)	≈ 0.85				
	0 to 300 ppm C ₂ H ₅ OH (ethanol)	≈ 0.55				
	0 to 200 ppm CH ₃ CHO (acetaldehyde)	≈ 0.35				
	0 to 200 ppm (C ₂ H ₅) ₂ O (diethyl ether)	≈ 0.75				
	0 to 100 ppm C ₂ H ₂ (acetylene)	≈ 1.40				
Response time:	\leq 40 seconds (t ₅₀)					
Precision						
Sensitivity:	≤ ± 20% of measured value	≤ ± 20% of measured value				
Long-term drift, at 20°C (68°	F)					
Zero point:	≤ ± 5 ppm/year	≤ ± 5 ppm/year				
Sensitivity:	≤ ± 3% of measured value/month	≤ ± 3% of measured value/month				
Warm-up time:	≤ 18 hours					
Ambient conditions						
Temperature:	(-20 to 50)°C (-4 to 122)°F	(-20 to 50)°C (-4 to 122)°F				
Humidity:2)	(30 to 90)% RH	(30 to 90)% RH				
Pressure:	(700 to 1,300) hPa	(700 to 1,300) hPa				
Influence of temperature						
Zero point:	$(-20 \text{ to } 40)^{\circ}\text{C} (-4 \text{ to } 104)^{\circ}\text{F} = \pm 2 \text{ ppm}$	(-20 to 40)°C (-4 to 104)°F = ± 2 ppm				
Zero point:	(40 to 60)°C (104 to 140)°F = ± 0.5 ppm/K					
Sensitivity:	≤ ± 1% of measured value/K	≤ ± 1% of measured value/K				
Influence of humidity						
Zero point:	No effect					
Sensitivity:	≤ ± 0.5% of measured value/% RH					

TECHNICAL SPECIFICATIONS

Test gas:

approx. 3 to 50 ppm C₂H₄O

The Dräger Sensor XXS OV-A has a defined cross-sensitivity to ethylene oxide (EO). It can be calibrated with EO as a replacement for all of its target gases. This replacement calibration using EO can produce an additional measuring error of up to 30%. We recommend that devices are calibrated with the gas you intend to detect in actual operation. Calibration using the target gas is more accurate than replacement gas calibration.

SPECIAL CHARACTERISTICS

The DrägerSensor® XXS OV-A has the same excellent characteristics as the DrägerSensor® XXS OV, but it has also been optimized for other organic gases and vapors. Just like the DrägerSensor® XXS OV, the DrägerSensor® XXS OV-A can be calibrated with EO as a replacement, this may produce an additional measuring error of 30%. For more accurate measurements, we recommend calibrating using the target gas — i.e. the gas that you intend to detect in actual operation.

Sensor reaction to C_2H_4O at 20 °C/68 °F Flow = 0.5 I/min, with 20 ppm C_2H_4O

Influence of humidity on XXS OV-A sensors and PID sensors

¹⁾ Factors depend on serial numbers and are mentioned in the supplement to the sensor instructions for use (90 33 549).

²⁾ A use or storage over a longer period below the specified relative humidity may cause a change of sensor sensitivity due to dehydration. This effect is reversible once the relative humidity increases. Please consider the storage conditions stated on the packaging or in the instruction for use.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

1-chloro-2, 3 epoxypropane C₂H₃OCH₂CI 25 ppm ≤ 10 Acetic acid CH₃COOH 100 ppm No effect Ammonia NH₃ 100 ppm No effect Benzene CeH6 2,000 ppm No effect Butadiene CH₂CHCHCH₂ 50 ppm ≤ 75 Carbon dioxide CO₂ 30 Vol% No effect Carbon monoxide CO 100 ppm ≤ 45 Chlorine Cl₂ 10 ppm No effect Chlorobenzene CeH₅CI 200 ppm No effect Chlorobenzene CeH₅CI 200 ppm No effect Chlorobenzene CeH₅CI 200 ppm No effect Chlorobenzene CeHaCI 1,000 ppm No effect Chlorobenzene CeHaCI 200 ppm No effect Chlorobenzene <td< th=""><th>Gas/vapor</th><th>Chem. symbol</th><th>Concentration</th><th>Display in ppm C₂H₄O</th></td<>	Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1-chloro-2, 3 epoxypropane	C ₂ H ₃ OCH ₂ Cl	25 ppm	≤ 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acetic acid	CH₃COOH	100 ppm	No effect
Butadiene CH₂CHCHCH₂ 50 ppm ≤ 75 Carbon dioxide CO₂ 30 Vol% No effect Carbon monoxide CO 100 ppm ≤ 45 Chlorine Cl₂ 10 ppm No effect Chlorobenzene CeH₅Cl 200 ppm No effect Dichloromethane CH₂Cl₂ 1,000 ppm No effect Dimethylformamide HCON(CH₃)₂ 100 ppm No effect Ethene C₂H₄ 50 ppm ≤ 45 Ethyl acetate CH₃COOC₂H₅ 100 ppm No effect Formaldehyde HCOH 40 ppm ≤ 25 Hydrogen H₂ 1,000 ppm ≤ 5 Hydrogen chloride HCI 20 ppm ≤ 8 Hydrogen sulfide H2S 20 ppm ≤ 8 Hydrogen sulfide H2S 20 ppm ≤ 40 Isobutylene (CH₃)₂CCH₂ 100 ppm ≤ 75 Isopropanol (H₃C)₂CHOH 250 ppm ≤ 110 Methanol CH₄ 2 Vol%	Ammonia	NH ₃	100 ppm	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzene	C ₆ H ₆	2,000 ppm	No effect
$ \begin{array}{c} \text{Carbon monoxide} & \text{CO} & 100 \text{ ppm} & \leq 45 \\ \text{Chlorine} & \text{Cl}_2 & 10 \text{ ppm} & \text{No effect} \\ \text{Chlorobenzene} & \text{C}_6\text{H}_5\text{Cl} & 200 \text{ ppm} & \text{No effect} \\ \text{Dichloromethane} & \text{CH}_2\text{Cl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Dimethylformamide} & \text{HCON(CH}_3)_2 & 100 \text{ ppm} & \text{No effect} \\ \text{Ethene} & \text{C}_2\text{H}_4 & 50 \text{ ppm} & \leq 45 \\ \text{Ethyl acetate} & \text{CH}_3\text{COOC}_2\text{H}_5 & 100 \text{ ppm} & \text{No effect} \\ \text{Formaldehyde} & \text{HCOH} & 40 \text{ ppm} & \leq 25 \\ \text{Hydrogen} & \text{H}_2 & 1,000 \text{ ppm} & \leq 55 \\ \text{Hydrogen chloride} & \text{HCI} & 20 \text{ ppm} & \leq 3 \\ \text{Hydrogen cyanide} & \text{HCN} & 20 \text{ ppm} & \leq 40 \\ \text{Isobutylene} & (\text{CH}_3)_2\text{CCH}_2 & 100 \text{ ppm} & \leq 75 \\ \text{Isopropanol} & (\text{H}_3\text{C)}_2\text{CHOH} & 250 \text{ ppm} & \leq 110 \\ \text{Methane} & \text{CH}_4 & 2 \text{ Vol\%} & \text{No effect} \\ \text{Methyl isobutyl ketone} & (\text{CH}_3)_2\text{CCH}_3 & 60 \text{ ppm} & \leq 25 \\ \text{Methyl isobutyl ketone} & (\text{CH}_3)_2\text{CCH}_3 & 500 \text{ ppm} & \leq 160 \\ \text{Methyl monoxide} & \text{NO}_2 & 20 \text{ ppm} & \leq 15 \\ \text{Nitrogen monoxide} & \text{NO}_2 & 20 \text{ ppm} & \leq 15 \\ \text{Nitrogen monoxide} & \text{NO}_2 & 20 \text{ ppm} & \leq 15 \\ \text{Propylene} & \text{COCl}_2 & 50 \text{ ppm} & \text{No effect} \\ \text{Sulfur dioxide} & \text{SO}_2 & 20 \text{ ppm} & \leq 45 \\ \text{Sulfur dioxide} & \text{SO}_2 & 20 \text{ ppm} & \leq 45 \\ \text{Sulfur dioxide} & \text{SO}_2 & 20 \text{ ppm} & \leq 45 \\ \text{Styrene} & \text{C}_6\text{H}_5\text{CHCH}_2 & 35 \text{ ppm} & \leq 35 \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{So}_5 \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{So}_5 \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{So}_5 \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{So}_5 \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ \text{Trichloroethylene} & \text{CHClCCl}_2 & 1,000 \text{ ppm} & \text{No effect} \\ Tric$	Butadiene	CH ₂ CHCHCH ₂	50 ppm	≤ 75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon dioxide	CO ₂	30 Vol%	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon monoxide	CO	100 ppm	≤ 45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine	Cl ₂	10 ppm	No effect
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethene	C ₂ H ₄	50 ppm	≤ 45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Formaldehyde	НСОН	40 ppm	≤ 25
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Hydrogen	H ₂	1,000 ppm	≤ 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Hydrogen chloride	HCI	20 ppm	≤ 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen cyanide	HCN	20 ppm	≤ 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen sulfide	H ₂ S	20 ppm	≤ 40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Isopropanol	(H ₃ C) ₂ CHOH	250 ppm	≤ 110
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methane	CH ₄	2 Vol%	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methanol	CH ₃ OH	100 ppm	≤ 160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methyl methacrylate	H ₂ CC(CH ₃)COOCH ₃	60 ppm	≤ 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen dioxide	NO ₂	20 ppm	≤ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen monoxide	NO	20 ppm	≤ 15
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Phosgene	COCI ₂	50 ppm	No effect
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propene	C ₃ H ₆	50 ppm	≤ 35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propylene oxide	C ₃ H ₆ O	50 ppm	≤ 45
Tetrahydrofuran C_4H_8O 60 ppm ≤ 55 Trichloroethylene CHClCCl₂ 1,000 ppm No effect	Sulfur dioxide	SO ₂	20 ppm	≤ 9
Trichloroethylene CHClCCl ₂ 1,000 ppm No effect	Styrene	C ₆ H ₅ CHCH ₂	35 ppm	≤ 35
	Tetrahydrofuran	C ₄ H ₈ O	60 ppm	≤ 55
Vinyl chloride C_2H_3Cl 50 ppm ≤ 40	Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
	Vinyl chloride	C ₂ H ₃ Cl	50 ppm	≤ 40

ST-1713-2005

DrägerSensor® XXS OV-A