

>>>>

TABLE OF CONTENTS

01.

INTRODUCTION

GPUs and Video Models

02.

BACKGROUND

History of Graphics

03.

CURRENT

Current HW and limits

04.

FUTURE IMPLICATIONS

A brief "what's next??"

05.

CONCLUSION

Final points

06.

REFERENCES

<<<<

UT. INTRODUCTION

What are GPUs and Video Models???

WHAT IS A GPU???

- Electronic circuit
- Creates images/videos through rapid processing
- PC and gaming console display
- Modernly used for parallel processing
 - Quicker computations
 - Used in Machine Learning and Artificial Intelligence

WHAT DOES A GPU DO???

- Quick maths with small cores
 - Partial Differential Equations
 - Linear Algebra

- Vector-Vector Operations
 - o 2 vectors with number arrays to create images

- Matrix-Vector Operations
 - Matrix (rectangular array) and vector

VIDEO MODELS - WHAT ARE THEY???

- Video models
 - Use advanced machine learning to understand text and convert it to video

A litter of golden retriever puppies playing in the snow. their heads pop out of the snow

<<<<

02.

BACKGROUND

History of Graphics and the GPU

FIRST COMPUTER GRAPHICS SYSTEM

- "Baby" from 1949
- Dot-matrix display
- Demonstrated data stored on a cathode ray tube
- Could remember 2048 bits

FIRST DIGITAL COMPUTER USED FOR GRAPHICS

- "Whirlwind"
- First to use video displays for output and operate in real time
- Used new core memory for Random Access Memory (RAM)

OTHER BREAKTHROUGHS FOR GRAPHICS

- "Sketchpad" by Ivan Sutherland (1963)
- Term "pixel" (picture element) coined (1965)
- First "tablet," workstation, and game consoles introduced (1972)
- Personal Computer PE-8 by Jonathan Titus (1975)
 - Powered by Intel 8008 processor (8-Bit)
- Pixel Planes project (1980-2000)
 - "Genesis of the GPU"
 - Allocated one processor
 per pixel, allowing simultaneous
 Image generation

PRIMITIVE 3D GRAPHICS

- Many companies vying for top-spot
 - o Poor graphics, memory, and output limited them
- RCA's "Pixie" video chip (62x128 resolution) 1976
- TIA "1A" video chip (integral to the Atari 2600, trumped "Pixie") 1977
- Motorola "MC6845" video address generator 1978 (monochrome and color display adapter cards in IBM PC in 1981)
- Intel's "82720" graphics chip (8-color data at 256x256 resolution, 512x512 mono)
 - Big step toward graphics evolution 1983
- ATI and EGA release competing graphics processors in 1987, continued competition with other groups into the 90s
- 1993 top dogs of graphics start to show, but still offered new competition
 - Nvidia founded in 1993

"THE GAME-CHANGER"

- 3Dfx Voodoo
 - o 3D-only chip
 - Essentially rendered 2D obsolete for some companies

- Led to a plethora of other 3D cards being released
- Estimated that 80-85% of 3D market during Voodoo's beginnings
- Left all companies in a scramble to figure out the best system for graphics
 - S3 Savage 2000
 - ATI Rage Fury MAXX
 - Nvidia GeForce 256 project coined the term "GPU"
 - Increased efficiency in 3D image and video generation

NEW ERAS

- Early 2000's it was Nvidia versus ATI
- ATI released Radeon DDR (April, 2000)
 - "Most powerful graphics processor... for desktop PCs"
- Nvidia released GeForce 2 GTS (GigaTexel Shader)
 - o Emphasized details like blending, shading, refraction, waves, etc
- Rapid game and tech developments called for more and more chips to be made, creating constant market competition throughout the era

ATI GameCube GPU

くく

Nvidia NV2A inside Microsoft's Xbox

STREAM PROCESSING UNITS

- Unified shaders
 - Increased flexibility and efficiency due to all math being handled the same
- Nvidia DirectX 10, Shader model 4.0
 - Advanced Graphics and increased programmability
- AMD (previously ATI) and its Radeon HD 2000 Series
 - Laid groundwork for GPU advancement with graphics technology
- Increased GPU computing
 - Parallel processing power demand increase (science, data, engineering)
- Expansion GPUs and parallel computing more available

<<<<

03.

CURRENT

Current GPUs and Video Models

IMAGE MODELS

HOW IMAGES ARE GENERATED

- Text prompt as input from the user is tokenized and attached to starting image (noise)
- Image is sent through the neural network with the prompt attached and model tries to "denoise" the image.
- Loop through the process of taking the resulting denoised image and adding back most of the noise to get a more refined image.

DIFFUSION MODEL

SORA VIDEO MODEL

- Uses "patches" which are video version of tokens for an LLM
- Able to train on any resolution video or photos instead of cropping them all to the same base resolution
- Has a separate "captioner model" to caption the video with text before being used to train the text-to-video sora model
- Can be prompted with images and videos as well as the text-to-video option

SORA'S CAPABILITIES

3D CONSISTENCY / / / / / / /

OBJECT PERMANENCE / / / / / /

UNREALISTIC PHYSICS

WEIRD HANDS / FACES

GAPS IN RESEARCH

- Always evolving and changing because of the insane demand for AI
- Most companies keep trade secrets close to stay ahead
- Enormous cost of entry to compete keeps smaller companies from competing

CURRENT GPUS

- GPUs perform technical calculations faster and with greater energy efficiency than CPUs
- GPU performance has increased roughly 7,000 times since 2003
- NVLink interconnects allow for massive scaling with very little overhead

TRAINING SPEEDS

NVIDIA H100

- Up to 4x faster AI Training on GPT-3 model
- 350W TDP
- Used by every major AI company

NVIDIA ANNOUNCES BLACKWELL

- Brand new architecture built using TSMC 4NM process
- Flagship is 2 B200 GPU dies connected with super fast 10 terabytes per second (TB/s) chip-to-chip interconnect

<<<<

04.

FUTURE IMPLICATIONS

What's next???

A LOOK INTO THE FUTURE

- Advancements in Artificial Intelligence
 - Adding sound to videos, more realistic
 - Al learning about the physical world
- Scientific Research
 - Simulations, data analysis, molecular modeling, climate modeling, etc
- VR and AR
 - As GPU improves, as will VR and AR implications and applications
 - Gaming, healthcare, training simulations, etc
- **Autonomous Vehicles**
 - Sensor fusion, object detection, planning the path
 - Eventually safer travel
- Real-time video analytics
 - Hand-in-hand with autonomous cars
 - Other autonomous vehicles, facial recognition, higher quality streaming

O5. CONCLUSIONS

Takeaways

CONCLUSION

- GPU product turnover has been high since the 1990s
 - Trend will continue
 - Moore's Law double transistors every 2 years
- Video or reality???
 - Future, or even current videos could trick people
- Al Surge creates a larger demand for GPUs
 - Creates more turnover desire to be better
- Future implications
 - With better GPUs, other real-world applications will thrive

REFERENCES

- OpenAI Sora video model: <u>Introducing Sora OpenAI's text-to-video model</u>
- https://arstechnica.com/information-technology/2024/02/openai-collapses-media-reality-with-sora-a-photore alistic-ai-video-generator/
- https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
- https://openai.com/research/video-generation-models-as-world-simulators
- https://www.techspot.com/article/650-history-of-the-gpu/
- https://books.google.com/books?hl=en&lr=&id=lfKkEAAAQBAJ&oi=fnd&pg=PR6&dq=history+of+gpus
 &ots=1TCuhWiJ1N&sig=Pn0cY73OpbvPd1luTaT7FT23tzs#v=onepage&q=history%20of%20gpus&f=false
- https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-44-g
 https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-44-g
 https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-44-g
 https://developerations
 https://developerations
 https://developerations
 pu-framework-solving#
 https://developerations
 https://developerations
 https://developerations
 <a href="
- https://www.tweaktown.com/news/97140/openai-sora-video-tool-large-scale-deployment-uses-720-000-nvid ia-h100-gpus-worth-21-6-billion/index.html

