Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 12/06/2025

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q1 a Q4 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Q1 (5 punti). Nel seguito, sia code(-) una funzione iniettiva calcolabile che codifichi maccchine di Turing come stringhe in $\{0,1\}^*$. Per ciascuno dei seguenti linguaggi, indica se é (1) decidibile, (2) indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(b)	$\{y \in \{0,1\}^{\star} \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M si ferma su $\operatorname{code}(M)\}$			
(a)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M non si ferma su $\operatorname{code}(M)\}$			
(c)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M ha esattamente tre stati $\}$			
(d)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} M \text{ si ferma su tutte le stringhe diverse da } \epsilon \}$			
(e)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} M \text{ si ferma su tutte le stringhe}\}$			

a: (2), b: (3), c: (1), d: (3). e: (3).

Q2 (5 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c), (d), (e)) é applicabile il teorema di Rice.

	Rice?								
(a)		(b)		(c)		(d)		(e)	

Il teorema di Rice si applica a $d \in e$.

Q3 (4 punti). Sia L un linguaggio decidibile da una macchina di Turing in tempo T(n). Per quali dei seguenti quattro possibili valori di T(n) possiamo dire che L é nella classe P?

	É in P?
(a) $n + n^{53}$	
(b) $3n + 2^n$	

si, no, no, si

	É in P?
(c) n!	
(d) 2 ^{log₂ n}	

Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 12/06/2025

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q4 (12 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

	Linguaggio	V	F	Aperto
	Il seguente problema é in NP			
(a)	$\{\langle G,k\rangle\mid G$ é un grafo diretto ed esiste un percorso in G con almeno k archi}			
	Il seguente problema é in NP			
(b)	$\{\langle M, x, 1^k \rangle \mid \ M$ é una TM non-deterministica che accetta x in al piú k passi $\}$			
(c)	Se L é in NP , allora anche il suo complemento é in NP .			
(d)	Sia L in P . Se $3SAT \leq_p L$, allora $P = NP$.			
(e)	La classe dei linguaggi riconoscibili é chiusa sotto l'operazione di complemento.			
(f)	Se un linguaggio é in $NPSPACE$, allora lo é anche il complemento di quel linguaggio.			
(g)	Dato L decidibile, per qualsiasi linguaggio L' , abbiamo $L \leq L'$.			
(h)	Se $L \leq HALT$, allora L é indecidibile.			
(i)	Se Σ é un alfabeto infinito numerabile, allora Σ^{\star} é infinito numberabile.			
(j)	Alcuni linguaggi decidibili non sono in $PSPACE$.			
(k)	$2n^2 = o(n^3).$			
(l)	Il teorema di Cook-Levin relativizza a macchine di Turing con oracolo.			

(a) Vero.

- (b) Vero.
- (c) Problema aperto (dipende se P = NP).
- (d) Vero.
- (e) Falso.
- (f) Vero (per il teorema di Savitch, PSPACE = NPSPACE).
- (g) Vero.
- (h) Falso.
- (i) Vero
- (j) Vero (teorema di gerarchia di tempo)
- (k) Vero
- (l) Falso

Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 12/06/2025

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q5 (5 punti). Considera i seguenti linguaggi L_1 e L_2 .

```
L_1 = \{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M, \text{ e } M \text{ si ferma sulla stringa } 010\}

L_2 = \{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M, \text{ e } M \text{ si ferma su code}(M)\}
```

Dimostra che esiste una mapping reduction da L_1 a L_2 (notazione $L_1 \leq L_2$).

Vogliamo costruire una funzione decidibile f tale che $y \in L_5$ se e solo se $f(y) \in L_4$. Innanzitutto, se y non é il codice di alcuna TM, allora fissiamo f(y) = y. Altrimenti, abbiamo che $y = \operatorname{code}(M)$ per qualche M. In questo caso, definiamo $f(y) = \operatorname{code}(M')$, dove M' é definita come segue: su input $\operatorname{code}(M')$, pulisci il nastro e simula M su input 010. Su input diverso, entra in un ciclo.

Verifichiamo che f é computabile: il problema di determinare se y = code(M) per qualche M é decidibile, ed anche il problema di costruire M' a partire da M. Infine, verifichiamo che f sia una riduzione:

- Se $y \in L_1$, allora esiste M tale che y = code(M) e M ferma su 010, quindi M' ferma su code(M'), quindi $M' \in L_4$.
- Se $y \notin L_1$, allora si hanno due casi. Primo caso: $y \neq \operatorname{code}(M)$ per qualsiasi M, ed allora $f(y) = y \notin L_2$. Nel secondo caso, $y = \operatorname{code}(M)$ per qualche M e M non ferma su 010, quindi M' non ferma su $\operatorname{code}(M')$, quindi $f(y) = \operatorname{code}(M') \notin L_4$.