Algebraic multiplicity (AM) - of 1 is an eigenvalue of a matrix A, then the algebraic multiplicity of 1 is defined to be the multiplicity of 1 as a soot of the characteristic polynomial of A.

Geometric multiplicity (GM) - The geometric multiplicity of A eigenvalue is no of linearly independent eigenvectors corresponding to 1.

In previous example, AM of 1=1 is 2 and GM of 1=1 is 1.

Ex Find all eigenvalues and the corresponding eigenvectors of $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}$.

85/m:- The characteristic equation is $0 = |A-\lambda I| \Rightarrow$ $0 = \begin{vmatrix} -1-\lambda & 0 & 1 \\ 3 & -\lambda & -3 \end{vmatrix} = -\lambda \begin{vmatrix} -1-\lambda & 1 \\ 1 & -1-\lambda \end{vmatrix} = -\lambda (1+\lambda^2+2\lambda-1)$ $= -\lambda (\lambda^2+2\lambda) = -\lambda^2(\lambda+2)$

o's The eigenvalues are $\lambda_1 = 0$, $\lambda_2 = 0$, $\lambda_3 = -2$.

AM of deigenvalue 0 is 2 and eigenvalue 2 is 1.

Eigenvector for $l_1 = l_2 = 0$; $(A - OI) = 0 \Rightarrow A = 0$ $\Rightarrow \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix} = 0 \Rightarrow R_2 + 3R_1 \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ v_3 \end{bmatrix} = 0 \Rightarrow u_1 = u_2$

 $: V = (V_1, V_2, V_3) = (V_1, V_2, V_1) = V_1(1, 0, 1) + V_2(0, 1, 0)$

:. The eigenvectors are (1,0,1)+(0,1,0) for $d_1=\lambda_2=0$. Here, GM of eigenvalue 0 is 2. Page-06

Eigenvector for
$$J_3 = -2$$
; $(A+2I)V = 0$
=) $\begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & -3 \end{bmatrix} V = 0$ $R_3 - R_1$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \Rightarrow V_1 + V_3 = 0$
 $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} V = 0$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = 0 \Rightarrow V_1 + V_3 = 0$

: v = (-1, 3, 1) us an eigenvector of $d_3 = 2$.

(Note: the AM equals the GM for each eigenvalue.)

Ex Find all eigenvalues and eigenvectors corresponding to them f $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

Soln: The characteristic equation is 0 = |A-JI|

$$\Rightarrow 0 = \begin{vmatrix} 1-1 & 0 & 0 \\ 0 & 1-1 & 0 \\ 0 & 0 & 1-1 \end{vmatrix} \Rightarrow (1-1)^{3}$$

s'. The eigenvalue is $\lambda_1 = \lambda_2 = \lambda_3 = 1$ and so AM of eigenvalue 1 is 3.

Eigenrector for 1=1=1=1; (A-I)v=0

$$\Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} v = 0$$

- $v = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1)$
- :. The eigenvectors are (1,0,0), (0,1,0), (0,0,1) corresponding to $d_1=d_2=d_3=1$ and GM of eigenvalue 1 is 3.