Particle spectrograph

Wave operator and propagator

				<u>-5</u>)2)2
$\tau_{1^-}^{\#2}\alpha$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!2k^2)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0 - 4\beta_1)(1 + 2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{(\alpha_0 - 4\beta_1)(1 + k^2)}$	$-\frac{2}{(\alpha_0 - 4\beta_1)(1 + k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+\alpha\beta$	$^{\dagger 1} +^{\alpha}$	į + z + α	$\dot{t}_1 + \alpha$	<u>+</u> 2+α

	${\mathscr R}_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\mathcal{A}_0^{\sharp_1}$
	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ † $f_{0}^{#2}$ † $\mathcal{A}_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\mathcal{A}_0^{\sharp 1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2 \beta_1 + \alpha_3 k^2$
	+ (%) + (%)	α xf x	$\tau O_{X}I \alpha \beta$ $\tau O_{X}I \alpha \beta$	+ 2 0)

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\!$
$\sigma_{0^+}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$ \tau_{0^{+}}^{\#1} \dagger \\ \tau_{0^{+}}^{\#2} \dagger \\ \sigma_{0^{-}}^{\#1} \dagger $	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$
_				
ities				

	${\cal A}_{2}^{\#1}{}_{lphaeta}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\mathcal{A}_{2}^{\#1}{}_{lphaeta\chi}$
$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
${\cal A}_2^{\#1}\dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$
'			

0

 $\tau_{2}^{\#1} \dagger^{\alpha\beta}$

Source constraints		
SO(3) irreps	Fundamental fields	Multiplici
$\tau_{0+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#^2\alpha} + 2ik \sigma_1^{\#^2\alpha} = 0 \left \partial_\chi \partial_\beta \partial^\alpha t^{\beta\chi} = \partial_\chi \partial^\chi \partial_\beta t^{\alpha\beta} + 2 \partial_\delta \partial^\delta \partial_\chi \partial_\beta \sigma^{\alpha\beta\chi} \right $	3
$t_1^{\#1}{}^{\alpha} == 0$	$\partial_{x}\partial_{y}\partial_{\alpha}u^{1\beta} = \partial_{x}\partial_{x}\partial_{\beta}u^{1\beta}$	3
$\tau_1^{\#_1}{}^{\alpha\beta} + ik \ \sigma_1^{\#_2}{}^{\alpha\beta} == 0$	$t_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \left \partial_{\chi} \partial^{\alpha} t^{\beta\chi} + \partial_{\chi} \partial^{\beta} t^{\chi\alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + \right $	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
Total constraints/gauge generators:	ige generators:	10

	${\mathscr A}_1^{\#1}{}_+{}_{\alpha\beta}$	$\mathcal{A}_{1}^{\#2}{}_{\alpha\beta}$	$\mathcal{A}_{1}^{\#2}$ $f_{1}^{\#1}$ $a\beta$	$\mathcal{A}_{1^{-}}^{\#1}{}_{\alpha}$	$\mathcal{A}_{1}^{\#2}{}_{lpha}$ $f_{1}^{\#1}{}_{lpha}$	$f_{1^{-}\alpha}^{\#1}$	$f_{1^-}^{\#2}\alpha$
$\binom{\#1}{1} + \alpha \beta$	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\binom{\#2}{1} + \alpha \beta$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$a_1^{r+1} + \alpha \beta$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\mathcal{A}_{1^{ ext{-}}}^{\#1} \dagger^{lpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$
$\mathcal{A}_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0

Massive and massless spectra

 $\frac{1}{2} \alpha_0 (\mathcal{A}_{\alpha \chi \beta} \mathcal{A}^{\alpha \beta \chi} + \mathcal{A}^{\alpha \beta})$

 $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} -$

Quadratic (free) action

Quadratic pole				
Pole residue:	$\frac{1}{\alpha_0} > 0$			
Polarisations:	2			

 $rac{1}{3}\,lpha_3\,(4\,\partial_eta \mathcal{A}_{lpha\chi\delta}\!-\!2\,\partial_eta \mathcal{A}_{lpha\delta\chi}\!+\!2\,\partial_eta \mathcal{A}_{\chi\deltalpha}\!-\!\partial_\chi \mathcal{A}_{lpha\beta\delta}$

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$