A Multi-Vector Trust Framework for Autonomous Systems

Andrew Bolster, Alan Marshall

University of Liverpool

andrew.bolster@liv.ac.uk, alan.marshall@liv.ac.uk

June 8, 2015

 Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability
- Full System Views of Trust
 - Design Trust that a system of systems will perfom as spec'd / designed in operation

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability
- Full System Views of Trust
 - Design Trust that a system of systems will perfom as spec'd / designed in operation
 - ullet Operational Trust the systems within a larger system will perfom as designed in field \checkmark

Trust Management Frameworks

 Provide information regarding the estimated future states and operations of nodes within networks

¹Li2007.

Trust Management Frameworks

- Provide information regarding the estimated future states and operations of nodes within networks
- "[...]collecting the information necessary to establish a trust relationship and dynamically monitoring and adjusting the existing trust relationship" -1

¹Li2007.

Trust Management Frameworks

- Provide information regarding the estimated future states and operations of nodes within networks
- "[...]collecting the information necessary to establish a trust relationship and dynamically monitoring and adjusting the existing trust relationship" -1
- Enables nodes to form collaborative opinions on their cohort nodes based on
 - Direct Observation of Communications Behaviour (eg Successfully Forwarded Packets)
 - Common-Neighbour Recommendation
 - Indirect Reputation

¹Li2007.

Transitivity in Trust Networks

TMFs in Ad Hoc Autonomous Systems

 Multiple transitive relationships can be maintained over time, providing trust resilience with dyanmic network topology

TMFs in Ad Hoc Autonomous Systems

- Multiple transitive relationships can be maintained over time, providing trust resilience with dyanmic network topology
- Enable trust establishment from partial-strangers via indirect trust and direct observation

TMFs in Ad Hoc Autonomous Systems

- Multiple transitive relationships can be maintained over time, providing trust resilience with dyanmic network topology
- Enable trust establishment from partial-strangers via indirect trust and direct observation
- Enables nodes to inform internal processes for global efficiency given observed network behaviour / 'wellness', similar to those found in human social networks eg
 - Update routing table based on 'safest' node chains (Phone Tree)
 - Maneuver away from misbehaving nodes (Shunning)
 - Inform as to 'trustworthiness' of forwarded information (Healthy sense of Skepticism)
 - Historic Distrust/Trust decaying over time (Forgiveness/Relationship Decay)

Reason for using TMFs in MANETs

- Provide Risk Mitigation against many classical MANET attacks
 - Black/Grayhole
 - Routing Loop
 - Selective misbehaviour / selfishness
- Generally; to constrain potential malicious behaviour that can operate without detection

Trust in Autonomous Systems

- Public Key Infrastructure Requires Centralised Control and pre-shared keys
- Resurrecting Duckling Uses in-action keying with a trusted source
- Evidence Based Trust Uses shared keys
- Reputation Based Trust Uses Packet forwarding success rate for prediction of future actions
 - CONFIDANT Trust-based router implementation using packet forwarding rate
 - OTMF Trust including transitive information from otehr nodes

• ... and there are plenty more along the same lines

Trust in Autonomous Systems

- Public Key Infrastructure Requires Centralised Control and pre-shared keys
- Resurrecting Duckling Uses in-action keying with a trusted source
- Evidence Based Trust Uses shared keys
- Reputation Based Trust Uses Packet forwarding success rate for prediction of future actions
 - CONFIDANT Trust-based router implementation using packet forwarding rate
 - OTMF Trust including transitive information from otehr nodes
 - MTMF Relationships and Multiple Metrics combined with Gray Interval assessment
- ...and there are plenty more along the same lines

Vectorised Trust

- Application of several individual metrics for the construction of a single trust measurement
- For example:
 - $X = \{packet loss, signal strength, datarate, delay, throughput\}$
- This multi-parameter trust prevents 'smart' attackers; leveraging a known trust metric to subvert a TMF without detection
- Normally expressed as a vector, but can be condensed into an abstracted or weighted form for comparison [Guo2012]