1 Adressage IPv4

1.1 Lecture d'adresses

 $\bf 80.2.3.12/16$ adresse de classe $\bf A^1$ de machine avec réseau sur 16 bits (80.2.0.0) et broadcast $\bf 80.2.255.255$

147.127.2.0/16 classe B² réseau 147.127.0.0 sur 16 bits, broadcast 147.127.255.255

1.2.3.4/5 adresse de machine avec réseau sur 5 bits (0.0.0.0/5) et broadcast $(00000111)_2.255.255.255$ = 7.255.255.255

147.127.0.0 réseau de classe B, broadcast 147.127.255.255

192.168.0.0 réseau sur 16 bits, broadcast 192.168.255.255 (adresses privées)

223.4.17.0 réseau 223.4.16.0 sur 21 bits, broadcast: adresse 223.4. $(00010001)_2.0$, masque 255.255. $(11111000)_2.0$ donc 223.4. $(00010111)_2.255 = 223.4.23.255$

10.0.0.0 réseau sur 10.0.0.0 sur ? bits (classe A \implies 1 octet \implies 10.0.0.0/8), broadcast: 10.255.255.255 (adresses privées)

255.255.255 broadcast, TOUT INTERNEEEEEEEEEEEEET

127.0.0.1 there's no place like \leftarrow

1.2 Découpage d'une plage d'adresse

$$\underbrace{40.0.0}_{\rm net}.(\underbrace{000}_{\rm subnet}\underbrace{0.0000}_{\rm hosts})_2/24$$

réseau A 30 terminaux donc $\lceil \log_2(30) \rceil = 5$ bits...trop de monde!

On va plutôt faire un trie.

¹on prend A par défaut, sans le masque

²masque de ² octets

Figure 1: Réseau

Figure 2: Plan d'adressage

Soit M un host source sur le réseau A et D un host destination sur le réseau D

Table 2: Table de routage de $R_{AI}^{\ 4}$

		0 111	
dest	mask	gateway	interface
40.0.0.64	255.255.255.192		int0
40.0.0.8	255.255.255.248		int1
40.0.0.128	255.255.255.128	.10	int1
40.0.0.32	255.255.255.224	.11	int1
40 0 0 16	255 255 255 240	12	int1