

Integrated Systems Research Group – OnChip Universidad Industrial de Santander, Bucaramanga - Colombia javier.ardila@e3t.uis.edu.co

Universidad Industrial de Santander

Current Source Properties

Output resistance:

- Finite output resistance degrades current source accuracy and amplifier gain.
- Other important properties:
- Compliance voltage (headroom voltage in this case) \rightarrow maximum voltage that the current source can supply to a load.
 - Accuracy
- Noise

VEMIL

Circuits Biasing Issues

Assuming saturation, I_D is sensitive to: supply (V_{DD}) , process $(V_{TH} \& \mu_n C_{OX})$ and Temperature $(V_{TH} \& \mu_n)$. So this is not a good biasing.

High-Accuracy Current Sources

- Generating a high-accuracy current source (I_{REF}) is possible through a "bandgap reference" circuit, which employs several tens of devices to generate a supply-, process- and temperature-independent voltage.
- However, putting I_{REF} wherever it's needed implies a high cost in terms of area.

Current Mirror as a Solution

➤ Given the area problems, generating only one I_{REF} and copying its current value to wherever it's necessary rises as a possible solution.

How to copy current?

Simple Current Mirror

Current Multiplication With CMs

Next time: What happens if we consider λ=0?
Are there more current mirror configurations?

Additional points!!! - Design Exercise

ightharpoonup In 10min, design a current mirror that produces I_1 and I_2 from an I_{REF} of 0.3mA.

 $\lambda = 0$

Accuracy Limitations of Simple CMs

Channel-length modulation induces inaccuracy in simple current mirrors.

Accuracy Limitations of Simple CMs

In general $(W/L)_2=N(W/L)_1$, most probably VT1 \neq VT2, then

$$I_{D2} = \frac{\mu_{n} C_{OX}}{2} \left(\frac{W}{L}\right)_{2} (V_{GS} - V_{T})^{2} (1 + \lambda_{2} V_{DS2})$$

$$I_{D2} = \frac{\frac{\mu_{n}C_{OX}}{2} \left(\frac{W}{L}\right)_{2} (V_{GS} - V_{T2})^{2} (1 + \lambda_{2}V_{DS2})}{\frac{\mu_{n}C_{OX}}{2} \left(\frac{W}{L}\right)_{1} (V_{GS} - V_{T1})^{2} (1 + \lambda_{1}V_{DS1})} I_{D1} = \frac{K_{P2}(V_{GS} - V_{T2})^{2} (1 + \lambda_{2}V_{DS2})}{K_{P1}(V_{GS} - V_{T1})^{2} (1 + \lambda_{1}V_{DS1})} NI_{D1}$$

$$\lambda \propto \frac{1}{L}$$

M1

Long devices reduce the error; make VDS1=VDS

Error
$$\approx K_{P2} \neq K_{P1}$$

Errors can be reduced (but not eliminated) by using replicas of the main device and good layout!

$$Error \approx V_{T2} \neq V_{T1}$$

Effective mobility and threshold voltages are sensitive to V_{DS} and Vdsat

Good solution ==> use cascode structures

How to equal V_{DS1} and V_{DS2} ?

- ➤ M₃ shields node Y from variations in P, thus keeping node Y relatively constant.
- ightharpoonup Generate V_b such that $V_{S3}=V_b-V_{GS3}=V_{DS1}$, which means $V_b=V_{GS3}+V_{DS1}$.

How to generate V_b?

- \triangleright V_b=V_{GS3}+V_{DS1} means that V_b can be generated from two diode-connected transistors.
- ➤ In this case, V_{GS0} = V_{GS3}.

Cascode Current Mirror

> Therefore, a cascode current mirror allows generating an accurate current copy at Iout.

Trouble in Paradise?

$$V_P = (V_{GS3} - V_{TH}) + (V_{GS2} - V_{TH}) = 2V_{OV}$$

➤ While operating with a high output impedance value and an accurate current, the cascode CM consumes significant voltage headroom.

Comparing Simple and Cascode CMs

➤ While operating with a high output impedance value and an accurate current, the cascode CM consumes significant voltage headroom.

Solution?

The headroom issue would be mitigated if

$$V_b = V_{GS3} + (V_{GS2} - V_{TH})$$
, i.e., $V_{DS2} \sim V_{OV}$

ightharpoonup Instead of forcing V_{DS2} equal to V_{GS1} , which causes problems, we can force V_{GS1} equal to V_{DS2} .

An Intuitive Modification

ightharpoonup Instead of forcing V_{DS2} equal to V_{GS1} , which causes problems, we can force V_{GS1} equal to V_{DS2} .

Avoiding PVT Variations on Resistor

If $V_{GS0}=V_{GS3}$, we can ensure $V_{DS1}=V_{DS2}=V_b$ -

 $V_{GS0,3}$

under some conditions:

1.
$$V_{GS0}$$
- V_{TH} < V_{TH}

2.
$$V_b = V_{GS0} + (V_{GS1} - V_{TH})$$

ightharpoonup Instead of forcing V_{DS2} equal to V_{GS1} , which causes problems, we can force V_{GS1} equal to V_{DS2} .

Accomplishing Conditions

If $V_{GS0}=V_{GS3}$, we can ensure $V_{DS1}=V_{DS2}=V_b$ -

 $\mathsf{V}_{\mathsf{GS0,3}}$

under some conditions:

- 1. V_{GS0} - V_{TH} < V_{TH} \rightarrow M_0 Sizing
- 2. $V_b = V_{GS0} + (V_{GS1} V_{TH}) \rightarrow This topology$

 $ightharpoonup V_b = V_{GS7} + (V_{GS6} - V_{TH}), V_{GS7} = V_{GS0}, V_{GS6} = V_{GS1}$. This topology produces a headroom of

Exercise - CMs in Typical Circuits

Thanks

Universidad Industrial de Santander

javier.ardila@correo.uis.edu.co

