by FPS Technical Publications Staff

Maintenance II Abstract Manual

860-7308-000;

CONTENTS

AP-120B Organizational Overview

APPENDIX	A	Standard Operating Procedure Component Numbering System
APPENDIX	В	Chip Specifications
APPENDIX	С	Micro-Instructions Forced by Panel Logic
APPENDIX	D	AP-120B Backplane Signal Glossary

ILLUSTRATIONS

Figure No.	Title	Page
1	AP-120 Virtual Front Panel	3
2	Array Processor to Host Interface Data Paths	4
3	AP-120B Interface Register Block Diagram	5.
4	Control Detail of Virtual Front Panel	6
5	Virtual Front Panel Interconnection Block	
	Diagram	7
6	Detail of Virtual Front Panel Data Paths	8
7	Virtual Front Panel Timing	9
8	Control Unit Specifications	10
9	The AP-120B Control Unit	11
10	Program Source System Interconnection Block	
	Diagram	12
11	Program Source Memory	13
12	Program Source Address Logic	14
13	Program Source Address Calculation and	
	Distribution Logic	15
14	Program Source Address Timing	16
15 .	Functional Block Diagram of Subroutine Return	
	Stack Logic	17
16	Subroutine Return Stack Timing	18
17	Functional Elements of a General Purpose	
•	Computer	19
18 .	Functional Elements of the AP-120B	20
19	Array Processor 38-Bit Data Paths	21
20	Array Processor Data Paths	22
21	Array Processor to Host Interface Data Paths	23

AP-120B ORGANIZATIONAL OVERVIEW

AP-120B is a high-speed arithmetic -processor.

Cycle:

167ns cycle

Word Size:

38-bit word size

Registers:

64 accumulators (D-Pad) 38-bit 16 Address Registers (S-Pad) 16 bit

Memory:

64-bit wide Program Source (PS) memory in 1K word increments to 4096 words

38-bit Main Data Memory (MD) in 8192

increments to 64K words

38-bit Table Memory (TMRAM/TMROM) in 512

increments to 64K words

Arithmetic:

16-bit Integer Address Process (S-Pad)
13 operation Floating Adder (FA) in two stage

pipeline

3-stage pipelined Floating Multiplier (FM)

Both FA and FM produce normalized, rounded results with overflow/underflow detection

and correction

Processor Control:

Conditional branches based on 25 different conditions (15 locations forward or 16 locations backward). Global jumps to anywhere

in 4K of PS either absolute or relative.

Hardware subroutine return stack allowing nested routines up to 16 levels deep.

Instructions to read and write PS memory thus allowing the processor to bootstrap

and to alter programs dynamically.

Input/Output:

Internal programmed I/O Bus (38-bit) or

DMA to/from Main Data Memory.

- 1 -

Figure 1 AP-120 Virtual Front Panel

Figure 2 Array Processor to Host Interface Data Paths

Figure 3' AP-120B Interface Register Block Diagram

Figure 4 Control Detail of Virtual Front Panel

- 6 -

Figure 5 Virtual Front Panel Interconnection Block Diagram

Figure 6 Detail of Virtual Front Panel Data Paths

Figure 7 Virtual Front Panel Timing

CONTROL UNIT SPECIFICATIONS

- PROGRAM SOURCE MEMORY
 64-BIT WORD SIZE
 167 NSEC CYCLE TIME
 4K WORDS MAXIMUM
 INSTRUCTIONS ALLOW READING AND WRITING
- CONTROL BUFFER
 CONTROLS 10 INSTRUCTION FIELDS IN PARALLEL
 167 NS EXECUTION TIME
 25 BRANCH CONDITIONS
 16 ELEMENT HARDWARE SUBROUTINE RETURN STACK

-1654-

Figure 8 Control Unit Specifications

-1655-

Figure 9 The AP-12ØB Control Unit

,

Figure 10 Program Source System Interconnection Block Diagram

Figure 11 Program Source Memory

Figure 12 Program Source Address Logic

Figure 13 Program Source Address Calculation and Distribution Logic

Figure 14 Program Source Address Timing

A+1

Figure 15 Functional Block Diagram of Subroutine Return Stack Logic

Figure 16 Subroutine Return Stack Timing

- 18 -

MEMORY I/O

ARITHMETIC CONTROL

-1663-

Figure 17 Functional Elements of a General Purpose Computer

_)

Figure 18 Functional Elements of the AP-12@B

Figure 19 Array Processor 38-Bit Data Paths

Figure 21 Array Processor to Host Interface Data Paths

Figure 22 AP-12ØB System Clock Timing

Figure 23 Scratch Pad

Figure 24 SPAD Interconnection Block Diagram

-1671-

Figure 25 SPAD Block Diagram

Figure 26 SPAD Register

Figure 27 Control Detail of SPAD Block Diagram

Figure 28 Main Data Block Diagram

Figure 29 Main Data System Interconnection Block Diagram

Figure 30 Main Data System Block Diagram

Figure 31 Memory Address Simplified Block

Figure 32 Memory Address Block Diagram

Figure 33 MI REG Block Diagram

Figure 34 Main Data Memory Element Block Diagram

Figure 35 Main Data Register Block Diagram

Figure 36 MD Timing (Isolated Cycle)

- 38 -

Figure 37 MD Timing (Isolated Cycle)

- 39 -

Figure 38 MD Timing (Consecutive Cycles)

Figure 39 AP-12ØB Interface Register Block Diagram

Figure 40 DMA to DMA Startup

- 42 -

Figure 41 Control Logic for Formatter

Figure 42 Formatter Block Diagram

-1689-

Figure 43 Data Pad Block Diagram

Figure 44 Data Pad System Interconnection Block Diagram

٤.

Figure 45 Data Pad Memory Element Detail Showing Stack Address

Figure 46 Block Diagram of DPX

Figure 47 Data Pad Output Logic

-1691-

Figure 48 Data Pad

- 50 -

Figure 50 Timing Diagram of Writing DPX

Figure 51 Data Pad Timing

-1698-

Figure 52 Floating Point Adder

Figure 53 Flow Chart AP-12Ø Floating Adder Logic

Figure 55 Floating Adder Block Diagram

Figure 56 Floating Point Multiplier

Figure 57 Floating Multiplier System Interconnection Block Diagram

-1703-

FMnn*

Figure 58 Floating Multiplier Block Diagram

- 60 -

Figure 59 Table Memory System Block Diagram

- 61 -

Figure 60 Table Memory System Interconnection Block Diagram

Figure 61 Table Memory Address Logic

Figure 62 TM ROM Memory Elements

Figure 63 Table Memory Register Block Diagram

Figure 64 Table Memory Input Register Block Diagram

TMnn* -1711-

Figure 65 TMRAM Nemory Elements

- 67 -

APPENDIX A

STANDARD OPERATING PROCEDURE COMPONENT NUMBERING SYSTEM

It has been our generally accepted practice to label components such as resistors and capacitors to the left and above a particular I.C. with the same number as that I.C.

Because of the ever increasing density of components on etched circuit boards, it has become necessary to document this procedure with the attached topological examples.

13	A13R-1 A13R-2 A13R-4 A13R-6 A13R-6 A13R-7	A13R-9 A13R-10 A13R-12 A13R-14 A13R-16 A13R-16 A13R-16	A13R-18 A13R-19 (C13C .1)
12	A1.2	B1.2	C12R-2 C12R-3
	A12R-2 A12R-3 A12R-4 A12R-6 A12R-6	A12R-8 (*B12C .1) B12R-1 B12R-2 B12R-4 B12R-5 B12R-6 B12R-6	B12R-8 C12R-1
=	N All	BII	
	A11R-1 A11R-2 A11R-4 A11R-5 A11R-6 A11R-6	B11R-1 B11R-2 B11R-4 B11R-6 B11R-6 B11R-6	B11R-8

APPENDIX B

CHIP SPECIFICATIONS

Am25S05

Four-Bit by Two-Bit 2's Complement Multiplier

Distinctive Characteristics

- Provides 2's complement multiplication at high speed without correction.
- Can be used in a combinatorial array or in a time sequenced mode.
- Multiplies two 12-bit signed numbers in typically 115 ns.
- Multiplies in active HIGH (positive logic) or active LOW (negative logic) representations.
- Reduced input loading as compared to Am2505.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION:

The Am2SSDs is a high-speed digital multiplier that can multiply numbers represented in the 2s complement notation and produce a 2s complement product without correction. The device consists of a 4s2 multiplier that can be connected to form iterative arrays able to multiply number either directly, or in a time sequenced arrangement. The device assumes that the most significant digit in a word carrier a negative weight, and can interestore be used in arrays where the multiplicant and multiplier have different word lengths. The multiplier uses the quaternary algorithm and performs the function S = XY + K where K is the input field used to said derital products generated in the array. At the beginning of the array the K inputs are available to add a signed constant to the least significant part of the product, Multiplication of an m bit number by an bit number in an array results in a product having men of an in bit number by an in bit number in an array results in a product having men-bits so that all possible combinations of product are accounted for. If a conventional 2s combinement product is required the most significant bit can be ignored, and overflow conditions can be detected by comparing the last two product digits.

A number of connection schemes are possible. Figure 1 shows the connection scheme that results in the fattest multioly. If higher speed is required an array can be split into several parts, and the parts added with high-speed flook-ahead carry adders. Provision is made in the cession for multiplication in the active high (positive logic) or active low (negative logic) representations simply by reinterpreting the active lowed of this induct operator, the product, and a polarity control F. For a more complete description and apolications the user is referred to the Application Note on page 5-18.

OPERATION TABLE

Y Multiplier			Operation	
Y-1	Υœ	Y 1	X Multiplicand	
0	0	0	K+0	
1	0	0	K+X	
0	1	0	K+X	
1	1	0	K+2X	
0	0	1	K ~ 2X	
1	0	1	K-X	
0	1	1	K-X	
1	1	1.	K-0	

Active Low Inputs and Outputs '1' = Low, '0' = High, P = High Active High Inputs and Outputs '1' = High, '0' = Low, P = Low

CONNECTION DIAGRAM Top View

Note: Fin 1 is marked for orientation

Am25S07·Am25S08

Hex/Quad Parallel D Registers With Register Enable

Distinctive Characteristics

- · 4-bit and 6-bit high-speed parallel registers
- Common clock and common enable

- Positive edge triggered D flip-flops
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am25S07 is a 6-bit, high-speed Schottky register with a buffered common register enable. The Am25S08 is a 4-bit register with a buffered common register enable. The devices are similiar to the Am54S/74S174 and Am54S/74S175 but feature the common register enable rather than common clear.

Both registers will find application in digital systems where information is associated with a logic gating signal. When the enable is LOW, data on the D inputs is stored in the register on the positive going edge of the clock pulse. When the enable is HIGH, the register will not change state regardless of the clock or data input transitions.

LOGIC DIAGRAMS

Am25S08

FUNCTION TABLE

	Inputs	Outputs				
Ē	Di	СР	ċΪ	۵į		
Н	×	X	NC	NC		
L	×	н	NC	NC		
L	. x	L	NC	NC		
L	L	t	L	н		
L	н	t	н	L		

H = HIGH

NC = No Change X = Don't Care

t = LOW-to-HIGH Transition Q on Am25508 Only

CONNECTION DIAGRAMS Top Views

Note: Fin 1 is marked for orientation.

Am25S09

Quad Two-Input, High-Speed Register

Distinctive Characteristics

- Four-bit register accepts data from one of two 4-bit input fields.
- Edge triggered clock action
- High-speed Schottky technology.

- 100% reliability assurance testing in compliance with MIL-STD-883.
- Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am25SO9 is a dual port high-speed, four-bit register using advanced Schottky technology to reduce the effect of transistor storage time. The register consists of four D flip-flops with a buffered common clock, and a two-input multiplexer at the input of each flip-flop. A common select line, S, controls the four multiplexers. Data on the four inputs selected by the S line is stored in the four flip-flops at the clock LOW-to-HIGH transition. When the S input is LOW, the DiA input data will be stored in the register. When the S input is HIGH, the DiB input data will be stored in the register.

FUNCTION TABLE

SELECT S	CLOCK CP	DATA D _{iA}	INPUTS DiB	OUTPUT Q _i
L	t	L	×	L
Ł	t	н	×	н
н	t	×	ı	Ĺ
Н	t	x	н	н

H = HIGH Voltage Level

X = Don't Care

1 = LOW-to-HIGH Transition

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation

L = LOW Voltage Level i = 0, 1, 2, or 3

Four-Bit Shifter With Three-State Outputs

Distinctive Characteristics

- Shifts 4-bits of data to 0, 1, 2 or 3 places under control of two select lines.
- Three-state outputs for bus organized systems.
- 6.5ns typical data propagation delay.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am25S10 is a combinatorial logic circuit that accepts a four-bit data word and shifts the word 0, 1, 2 or 3 places. The number of places to be shifted is determined by a twobit select field So and S1. An active-LOW enable controls the three-state outputs. This feature allows expansion of shifting over a larger number of places with one delay.

By suitable interconnection, the Am25S10 can be used to shift any number of bits any number of places up or down. Shifting can be logical, with logic zeroes pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

LOGIC EQUATIONS

Yo = \$0 \$1 10 + \$0 \$1 1-1 + \$0 \$1 1-2 + \$0 \$1 1-3

Y1 = \$0 \$1 11 + 50 \$1 10 + \$0 \$1 1-1 + 50 \$1 1-2

Y2 = 30 51 12 + 50 51 11 + 50 51 10 + 50 51 1-1

Y3 = 30 \$1 13+50 \$1 12 +\$0 \$1 11 +\$0 \$1 10

Note: For additional information, see page 5-54

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation

TRUTH TABLE

													Yo
н	X	X	×	×	×	×	X	X	X	Z	Z	Z	Z
ㄴ	L	L	03	02	01	00	x	x	X	2ء	02	01	D O
L	L	H	×	02	01	00	D ₋₁	X	×	07	01	DĞ.	'0 <u>.1</u> "
													0.2
													0.3

X = Don't Care

L = LOW Z = High Impedance State D_n at input I_n may be either HIGH or LOW and output Y_m will follow the selected On input level.

MOS LSI

TMS 4027 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORY

- Industry Standard 16-Pin 300-Mil Package Configuration
- 10% Tolerance on All Supplies
- All Inputs Including Clocks TTL Compatible
- Three-State Fully TTL-Compatible Output Latched and Valid Into Next Cycle
- 3 Performance Ranges:

ACCESS	ACCESS	READ	READ,
TIME	TIME	OR	MODIFY-
ROW	COLUMN	WRITE	WRITE
ADDRESS	ADDRESS	CYCLE	CYCLE
(MAX)	(MAX)	(MIN)	(MIN)
150 ns	100 ns	320 ns	330 ns
200 ns	135 ns	375 ns	420 ns
250 ns	165 ns	375 ns	480 ns
	TIME ROW ADDRESS (MAX) 150 ns 200 ns	TIME TIME ROW COLUMN ADDRESS ADDRESS (MAX) (MAX) 150 ns 100 ns 200 ns 135 ns	TIME TIME OR ROW COLUMN WRITE ADDRESS ADDRESS CYCLE (MAX) (MIN) 150 ns 100 ns 320 ns 200 ns 135 ns 375 ns

- Page-Mode Operation for Faster Access Time
- Low-Power Dissipation

Operating

460 mW (max)

- Standby

27 mW (max)

 1-T Cell Design, N-Channel Silicon-Gate Technology

description

The TMS 4027 JL, NL series is composed of monolithic high-speed dynamic 4096-bit MOS randomaccess memories, organized as 4096 one-bit words, employing single-transistor storage cells and Nchannel silicon-gate technology.

16-PIN CERAMIC **DUAL-IN-LINE PACKAGE** (TOP VIEW) 1 16 Vss Ves CAS 2 15 0 ₩ 3 14 DATA OUT RAS 3 4 13 5 12 A3 AG **A2** 6 11 A1 10 A5 8 9 ۷DD Vcc

	PIN NAMES
A0-A5	Address inputs
CAS	Column address strope
٥	Data input
DATA OUT	Data output
RAS	Row address strobe
\$	Chio select
W	Write enable
Vgg	-5 V power supply
Vcc	+5 V power supply
V ₀₀	+12 V power supply
V _{SS}	0 V ground

All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row Address Strobe (RAS) or (R) and Column Address Strobe (CAS) or (C). All address lines (A0 through A5) and data-in (D) are latched on chip to simplify system design. Data out is latched and available until the negative edge of CAS in the next memory cycle returns the output to the high-impedance state.

Typical power dissipation is less than 300 milliwatts active and 14 milliwatts during standby (VCC is not required during standby operation). To retain data, only 20 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS 4027 JL, NL series is offered in a 16-pin dual-in-line package and is guaranteed for operation from 0°C to 70°C. Packages are designed for insertion in mounting-hole rows on 300-mil centers.

operation

address (A0 through A5)

Twelve address bits are required to decode 1 of 4096 storage cell locations. Six row-address bits are set up on pins A0 through A5 and latched onto the chip by the row-address strobe (RAS). Then the six column-address bits are set up on

The term "read-write cycle" is sometimes used as an alternative title to "read-modify-write cycle".

PRELIMINARY DATA SHEET: Supplementary data will be published at a later date.

TEXAS INSTRUMENTS
INCORPORATED
PORT OFFICE BOX 3612 . GALLAG, TEXAS 75222

TMS 4027 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORY

pins A0 through A5 and latched onto the chip by the column-address strobe (CAS). RAS activates the sense amplifiers as well as the row decoder, and CAS activates the column decoder and the input and output buffers.

chip select (S)

When the chip select (S) input is high, the column decode and the input and output buffers are disabled. However, the row decode is unaffected by chip select so that row addresses are latched and refresh can continue to take place.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} (early write), data-out will contain the data written into the selected cell.

data-in (D

Data is written during a write or read modify-write cycle. The latter falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data-out

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data-out is the same polarity as data-in. The output goes into the high-impedance state after the negative transition of CAS. The output becomes valid after the access time has elapsed, and it remains valid into the next memory cycle before CAS going low returns it to a high-impedance state.

refresh

A refresh operation must be performed at least every two milliseconds to retain data. Since the output buffer is in the high-impedance state unless CAS is applied, the RAS only refresh sequence avoids any output during refresh. Strobing each of the 64 row addresses (A0 through A5) with RAS causes all bits in each row to be refreshed. CAS remains high (inactive) for this refresh sequence, thus conserving power.

page mode

Page mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe the row addresses is eliminated. To extend beyond the 64 column locations on a single RAM, apply the row address and RAS to multiple 4K RAMs, then decode chip select to select the proper RAM. (A RAM need not be selected during the first page mode cycles to have the row address latched on chip.)

power up

VBB must be applied to the device either before or at the same time as the other supplies and removed last. Failure to observe this precaution will cause dissipation in excess of the absolute maximum ratings due to internal forward bias conditions. This also applied to system use where failure of the VBB supply must immediately shut down the other supplies. After power up, eight memory cycles must be performed to achieve proper device operation.

TEXAS INSTRUMENTS

TMS 4027 JL, NL 4096-BIT DYNAMIC RANDOM-ACCESS MEMORY

functional block diagram

absolute maximum ratings over oper	ati	ng	fre	e-:	air	te	mp	er	atı	ure	e ra	and	1e	(ui	nie	SS (oti	ier	wis	e i	not	ed)*	
Supply voltage, VCC (see Note 1)													٠.	•										-0.3 to 20 V
Voltage on VDD, VCC, relative to V	SS																							-1.0 to 15 V
Supply voltage, Vpp (see Note 1)																								
Supply voltage, VSS (see Note 1)																								-0.3 to 20 V
All input voltages (see Note 1) .																								-0.3 to 20 V
Output voltage (operating, with resp	ect	ta	٧s	s)																				2 to 10 V
Operating free-air temperature range				_																				0°C to 70°C
Storage temperature range																							_	.55°C to 150°C

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, V_{BB} (substrate), unless otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to V_{SS}.

^{*}Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, Vgg	-4.5	-5	-5.5	V
Supply voltage, V _{CC}	4.5	5	5.5	V
Supply voltage, VDO	10.8	12	13.2	V
Supply voltage, VSS		0		٧
High-level input voltage, except RAS, CAS, and WRITE, VIH	2.2	3.5	7	V
High-level input voltage, RAS, CAS, and WRITE, VIH(R)	2.4	3.5	7	V
Low-level input voltage, V11		0	8.0	٧
Refresh time, trefresh			2	ms
Operating free-air temperature, TA	0		70	²c.

TEXAS INSTRUMENTS

MOS LSI

TMS 4116 JL 16,384-BIT DYNAMIC RANDOM-ACCESS MEMORY

OCTOBER 1977

- 16,384 X 1 Organization
- 10% Tolerance on All Supplies
- All Inputs Including Clocks TTL-Compatible
- Unlatched Three-State Fully TTL-Compatible Output
- 3 Performance Ranges:

	ACCESS	ACCESS	READ	READ.
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
TMS 4116-15	150 ns	100 ns	375 ns	375 ns
TMS 4116-20	200 ns	135 ns	375 ns	375 as
TMS 4116-25	250 ns	165 ns	410 ns	515 ns
n			T'	_

- Page-Mode Operation for Faster Access Time
- Common I/O Capability with "Early Write" Feature
- Low-Power Dissipation
 - Operating 462 mW (max)
 - Standby
- 20 mW (max)
- 1-T Cell Design, N-Channel Silicon-Gate Technology
- 16-Pin 300-Mil Package Configuration

(TOP VIEW)	GE
• [

16-PIN CERAMIC

	PIN NOMENCLATURE							
AG-A6	Address Inputs	W	Write Enable					
CAS	Column address strobe	VBB	-5-V power supply					
D	Data input	Vcc	+5-V power supply					
a	Data output	VDD	+12-V power supply					
RAS	Row address strobe	Vss	0 V ground					

description

The TMS 4116 JL series is composed of monolithic high-speed dynamic 16,384-bit MOS random-access memories is organized as 16,384 one-bit words, and employs single-transistor storage cells and N-channel silicon-gate technology.

All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row Address Strobe \overline{RAS} (or \overline{R}) and Column Address Strobe \overline{CAS} (or \overline{C}). All address lines (A0 through A6) and data-in (D) are latched on chip to simplify system design. Data out (Q) is unlatched to allow greater system flexibility.

Typical power dissipation is less than 350 milliwatts active and 6 milliwatts during standby (VCC is not required during standby operation). To retain data, only 10 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS 4116 JL series is offered in a 16-pin dual-in-line package and is guaranteed for operation from 0°C to 70°C. Packages are designed for insertion in mounting-hole rows on 300-mil centers.

operation

address (AQ through A6)

Fourteen address bits are required to decode 1 of 16,384 storage cell locations. Seven row-address bits are set up on pins A0 through A6 and latched onto the chip by the row-address strobe (RAS). Then the seven column-address bits are set up on pins A0 through A6 and latched onto the chip by the column-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the column decoder and the input and output buffers.

*The term "read-write cycle" is sometimes used as an alternative title to "read-modify-write cycle".

PRELIMINARY DATA SHEET: Supplementary data will be published at a later date.

TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE SOX 1912 . OALLAS, TEXAS 79222

TMS 4116 JL 16.384-BIT DYNAMIC RANDOM-ACCESS MEMORY

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data-out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data-in (D)

Data is written during a write or read-modify write cycle. The latter falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard \overline{TTL} circuits without a pull-up resistor. In an early write cycle \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data-out (Q)

The three state output buffer provides direct.TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data-out is the same polarity as data-in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the enable time interval $t_a(c)$ that begins with the negative transition of CAS as long as $t_a(R)$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least every two milliseconds to retain data. Since the output buffer is in the high-impedance state unless \overline{CAS} is applied, the \overline{RAS} only refresh sequence avoids any output during refresh. Strobing each of the 128 row addresses (A0 through A6) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} remains high (inactive) for this refresh sequence, thus conserving power.

page mode

Page mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe the row addresses is eliminated. To extend beyond the 128 column locations on a single RAM, the row address and RAS is applied to multiple 16K RAMs CAS is decoded to select the proper RAM.

power-up

VBB must be applied to the device either before or at the same time as the other supplies and removed last. Failure to observe this precaution will cause dissipation in excess of the absolute maximum ratings due to internal forward bias conditions. This also applies to system use, where failure of the VBB supply must immediately shut down the other supplies. After power up, eight memory cycles must be performed to achieve proper device operation.

TEXAS INSTRUMENTS

TMS 4116 JL 16,384-BIT DYNAMIC RANDOM-ACCESS MEMORY

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

Voltage on any pin (see Note 1)	 0.5 to 20 V
Voltage on VCC, VDD supplies with respect to VSS	 1 to 15 V
Short circuit output current	 50 mA
Power dissipation	 1W
Operating free-air temperature range	 0°C to 70°C
Storage temperature range	 65°C to 150°C

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, VBB (substrate), unless otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to VSS.

recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, VBB		-4.5	5	-5.5	V
Supply voltage, VCC		4.5	5	5.5	V
Supply voltage, VDD		10.8	12	13.2	٧
Supply voltage, VSS			Q		٧
High-level input voltage, VIH	All inputs except RAS, CAS, WRITE	2.4		7	v
uidu-ienei iubnt noitade" AIH	RAS, CAS, WRITE	2.7		7	<u> </u>
Low-level input valtage, VIL		-1	0	0.8	٧
Refresh time, trefresh				2	ភាទ
Operating free-air temperature, TA		0		70	°C

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 - OALLAS, TEXAS 75222

[&]quot;Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TTL

TYPE SN74172 16-BIT MULTIPLE-PORT REGISTER FILE WITH 3-STATE OUTPUTS

SULLETIN NO. DL-S 7211744 MAY 1972 - REVISED DECEMBER 1972

- Independent Read/Write Addressing Permits Simultaneous Reading and Writing
- Organized as Eight Words of Two Bits Each
- Fast Access Times:
 From Read Enable . . . 15 ns Typical

 From Read Select . . . 33 ns Typical
- Three-State Outputs Simplify Use in Bus-Organized Systems
- Applications:
 Stacked Data Registers
 Scratch-Pad Memory
 Buffer Storage Between Processors
 Fast Multiplication Schemes

description

The SN74172, containing the equivalent of 201 gates on a monolithic chip, is a high-performance 16-bit register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This orovides a true simultaneous read/write capability. Basically, the file consists of two distinct sections (see Figure A).

Section 1 permits the writing of data into any two-bit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

- 1) Writing new data into two bits
- 2) Reading from two bits
- Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.

JOR N DUAL-IN-LINE PACKAGE (TOP VIEW)

FIGURE A

TEXAS INSTRUMENTS

POST OFFICE BOX SOLZ + DALLAS, TEXAS 7522

Am54S/74S189 · Am54S/74S289

64-Bit Random Access Memories

Distinctive Characteristics

- Fully decoded 16-word x 4-bit Schottky technology high-speed RAMs
- Access time typically 25ns

- Available with three-state outputs (S189) or with open collector outputs (S289)
- Switching speeds guaranteed over temperature
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The 54S/74S189 and 54S/74S289 are 64-bit RAMs built using Schottky diode clamped transistors and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (CE) input and open collector OR tieable outputs 54S/74S289 or three-state outputs (54S/74S189). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am9301 and Am9311.

An active LOW Write line R/W controls the writing/reading operation of the memory. When the chip select and write

lines are LOW the information on the four data inputs D_1 to D_4 is written into the addressed memory word.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{Y}_1 to \overline{Y}_4

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5V to +7V
DC Voltage Applied to Outputs for High Output State	5.5V
DC Input Voltage	5.5V
Output Current, Into Outputs	100mA
DC Input Current	30mA to +5.0mA

OPERATING RANGE

Part Number	TA	vcc
745189	0°C to +70°C	5.0V ±5%
745289	0 C to +/0 C	3.04 23%
545189	-55°C to +125°C	5.0V ±10%
545289	-55 C to +125 C	5.0V = 10%

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

arameters	Description	Test Conditions		Min.	Typ. (Nate 1)	Max.	Units
V _{OH} (S189 only)	Output HIGH Voitage	VCC=MIN., IOH = -2.		2.4	3.6		Voits
¥	Output LOW Voltage	VCC = MIN.,	IOL = 16mA	_	0.3	0.45	Volts
AOT	Odtput CON Voltage	VIN - VIH or VIL			į i	0,5	1
VIH	Input HIGH Level	Guaranteed input logica voltage for all inputs	HIGH	2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				8.0	Volts
111	Input LOW Current	VCC = MAX., VIN = 5.5V			1	-0.25	mA
1;	Input HIGH Current	VIN =	5.5∨		:	1	mA
lін	indut High Current	V _{CC} = MAX. V _{IN} = 5.5V :			1	25	, дА
IOS (S189 only)	Output Short Circuit Crrrent	V _{CC} = MAX., V _{OUT} = 0.0V		-12	-35	-90	mA
Icc	Pawer Supply Current	CE = R/W = GND All other inputs = 4.5V VCC = MAX.			75	110	mA
V _I	Input Clamp Voltage	. VCC = MIN., IIN = -18mA				-1.2	Volts
la-u		V== = 1/	V0UT~5.5V		! ,	100	
lozh	Output Leakage Current	VCS = VIH or VWE = V	IL VOUT=2.4V		1	40	μΑ.
[†] OZL	Odiput Leakaya Current	VCS = VtH or VWE = V		 50			μА

Note 1. Typical limits are at VCC = 5.0V and TA = 25°C

SWITCHING CHARACTERISTICS AND OPERATING REQUIREMENTS OVER OPERATING RANGE (See Figure for Test Loads, Measure at 1.5V)

arameters	Description			25°C Typ.	0°C to Min.	+70°C Max.	-55°C to Min.	+125°C Max.	Units
. (25)	Delay Chip Select to Output	0 -30-5	545/745289	12		17		25	
t _{pd±} (CE)	HIGH or LOW	CLI=30pF	545/745189	15		25		35	ns
t _{pdz} (ČĒ)	Delay Chip Select HIGH to Output OFF	CLI = SpF		12		17		25	ns
t _{pd+} (A)	Delay Address to Output HIGH	l		22	10	25	10	50	ns
tpd_(A)	Delay Address to Output LOW			22	10	35	10	50	ns
trec(R/W)	Write Recovery Time					35		50	ns.
*t _{DW} (R/W)	Write Pulse Width				25		25		ns
*t ₃ (D)	Data Set-up Time	CL1 - 30 pf	:		25		25		ns
*th(D)	Data Hold Time	1			0		0		ns
°t ₃ (A)	Address Set-up Time]			0		0		ns
°th(A)	Address Hold Time]			0		0		ПS
tpd:(R/W)	Delay R/W HIGH to Output Active			12		35		40	ns
tpdz(R/W)	Delay R/W LOW to Output OFF	CLI - SpF		12		25		35	Πŝ

^{*}System requirement, Parameters preceeded by an asterisk are specified as system forcing requirements rather than device characteristics. In general minimum system requirements result from maximum device characteristics. Typical values are not meaningful for system requirements.

KEY TO TIMING DIAGRAM

anverunw	HPUTS	DUTPUTS
	MIDT EF STEAU+	mile at oftafin
<i>IIIII</i>	HAT CHANGE FROM IN TO L	4474 4 LG E Carring 4167 86
	MAT CHANGE FROM L 10 H	arke BE CHANGING FROM E TO H
XXXX	DON'T CARE ANY CHANGE PERMITTED	CHANGING STATE UNKNOWN
⋙ €€	DOES NOT	OFF STATE

Write Cycle Timing. The cycle is initiated by an address change. After ${}^{*}t_{s}(A)$ min., the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, ${}^{*}t_{h}(A)$ min. must be allowed before the address may be changed again. The output will be inactive (floating for the 7.4S189) while the write enable is LOW. The three parameters $t_{s}(A)$, $t_{h}(A)$ and $t_{pw}(R/\overline{W})$ apply to the condition $\overline{\text{CE}}$ LOW AND R/\overline{W} LOW.

Switching delays from address and chip select inputs to the data output. For the S189 disabled output is "OFF", represented by a single center line. For the S289 a disabled output is HIGH.

Am54S/74S189 Test Load

Am54S/74S289 Test Load

DELAY	OUTPUT CHANGES		S ₁	S ₂	MEASURE
FROM	FROM	TO	91	32	AT
Address	HIGH	LOW	Closed	Closed	1.5V
Address	LOW	HIGH	Closed	Ciosea	1.50
R/W, CE	HIGH	OFF	0	Closed	0.5V
R/W, CE	nign	OFF	Open	Closed	Change
					0.5V
R/W, CE	LOW	OFF	Closed	Open	Change
R/W, CE	OFF	LOW	Closed	Open	1.5V
R/W, CE	OFF	HIGH	Open	Closed	1.5V

TRUTH TABLE

1	NPUTS		OUTPUTS	MODE
CE	₽Ŵ	Dį	Ÿ _I (t _m)	
н	L	L	Off	No Selection
н	L	н	Off	No Selection
н	н	X	Off	No Selection
L	L	L	Off	Write 'O'
L	L	Н	Off	Write '1'
L,	н	×	$\overline{D}_{i}(t_{n-x})$	Read

H = HIGH Voltage Level L = LOW Voltage Level OFF = HIGH Impedance

- Static Fully Decoded RAM's Organized 1024 Words of One Bit Each
- · Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector
 Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Enable/Select Inputs Simplify External Decoding
- Typical Performance

TYPES	READ ACCESS TIMES		POWER DISS
'S214/'S314	40 ns	1	550 mW
'L3214/'LS314	75 ns	1	200 mW
'LS215/'LS315	75 ns	1	290 mW
'LS215/'LS315	75 ns	-	125 mW
POWER DOWN	(to power-up)		123 mm

SN74LS214, SN74LS314 SN74LS216, SN74LS315 SN74S214, SN74S314 . . . J OR N PACKAGE (TOP VIEW)

Pin essignments are same for all packages

E = Chio-Eneole for 'LS215, 'LS315

S - Citio-Select for 'LS214, 'LS314, 'S214, 'S314

description

These 1024-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 1024 words of one bit. They are fully decoded and have a chip-enable or chip-select input to simplify decoding required to achieve expanded system organizations. When the 'LS215/'LS315 is disabled, all read and write functions are in a power-down mode, that is, turned off.

write cycle

The information applied at the data input is written into the selected location when the chip-enable/select input and the write-enable input are low. While the write-enable input is low, the 'S214, 'LS214, and 'LS215 outputs are in the high-impedance state and the 'S314, 'LS314, and 'LS315 outputs are off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

read cycle

The stored information is available at the output when the write-enable input is high and the chip-enable/select input is low. When the chip-enable/select input is high, the 'S214, 'LS214, or 'LS215 output will be in the high-impedance state, the S314, 'LS314, or 'LS315 output will be off, and 'LS215 or 'LS315 will be in a power-down mode.

TENTATIVE DATA SHEST

This document provides tentative information on new groducts. Texas Instruments reserves the right to change specifications for these groducts in any manner without notice.

TEXAS INSTRUMENTS

†Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments, U. S. Patent Number 3,463,975.

APPENDIX C

"MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC

11	T N	rc	TR
	T7,	u	$\tau \tau$

010103 110000 000000 000000	PNLLIT; RPSA	Examine PSA (PSA) PNL LITES
010103 111000 000000 000000	PNLLIT; RSPD	Examine SPD (SPD) PNL LITES
010103 112000 000000 000000	PNLLIT; RMA	Examine MA (MA) PNL LITES
010103 113000 000000 000000	PNLLIT; RTMA	Examine TMA (TMA) PNL LITES
010103 114000 000000 000000	PNLLIT; RDPA	Examine DPA (DPA) PNL LITES
010103 115000 000000 000000	PNLLIT; RSPFN	Examine SPFN SPFN PNL LITES
010103 116000 000000 000000	PNLLIT; RAPS	Examine APSTATUS (APSTATUS) PNL LITES
010103 117000 000000 000000	PNLLIT; RDA	Examine DA (DA) PNL LITES
011120 000000 000000 000000	RPSOT .	Examine PS, WORDO PSO PNL LITES

C - 1

"MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC (cont.)

011220 000000 000000 000000	RPSIT	Examine PS, WORD1 PS1 PNL LITES
011124 000000 000000 000000	RPS 2T	Examine PS, WORD2 PS2 PNL LITES
011224 000000 000000 000000	RPS 3T	Examine PS, WORD3 PS3 PNL LITES
010107 144000 001000 000000	DBELIT; IN; DB=INBS	Examine IOBS EXP IOBS DPBS PNL LITES
010113 144000 001000 000000	DBHLIT; IN; DB=INBS	Examine IOBS HMAN IOBS DPBS PNL LITES (
010117 144000 001000 000000	DBLLIT; IN; DB=INBS	Examine IOBS LMAN IOBS DPBS PNL LITES
010114 000000 000000 000000	DBLLIT; DB=ZERO	CB, WORD3
010104 000000 003000 000000	DBELIT; DB=DPX (-4)	Examine DPX, EXP DPX (-4) DPBS PNL LITES
010110 000000 003000 000000	DBHLIT; DB=DPX (-4)	Examine DPX HMANN DPX (-4) DPBS PNL LITES
010114 000000 003000 000000	DBLLIT; DP=DPX (-4)	Examine DPX_LMANN DPX (-4) DPBS PNL LITES

C - 2

MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC (cont.)

010104 000000 004000 000000	DBELIT; DS=DPY (-4)	Examine DPY, EXP DPY (-4) DPBS PNL LITES
010110 000000 004000 000000	DBHLIT; DP=DPY (-4)	Examine DPY DPY (-4) DPBS PNL LITES
010114 000000 004000 000000	DBLLIT; DB=DPY (-4)	Examine DPY, LMAN DPY (-4) DPBS PNL LITES
010104 000000 005000 000000	DBELIT; DB=MD; SPMDAV	Examine MD, EXP MD DPBS PNL LITES
010110 000000 005000 000000	DBHLIT; DB=MD; SPMDAV	Examine MD, HMAN MD DPBS PNL LITES
010114 000000 005000 000000	DBLLIT; DB≒MD; SPMDAV	Examine MD, LMAN MD DPBS PNL LITES
010114 000000 006000 000000	DBLLIT; DB=SPFN	Examine SPFN, WORD3 SPFN FPBS PNL LITES
010104 000000 007000 000000	DBELIT; DB=TM	Examine TM, EXP TM DPBS PNL LITES
010110 000000 007000 000000	DBHLIT; DB=TM	Examine TM, HMAN TM DPBS PNL LITES
010114 000000 007000 000000	DBLLIT;DB=TM	Examine IM, LMAN TM DPBS PNL LITES

"MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC

011030 000000 000000 000000	ЈМРР	Deposit (SWR)		
010143 101000 000000 000000	SWDB; LDSPD	Deposit (SWR)	SPD PNL SPD	
010143 102000 000000 000000	SWDB; LDMA	Deposit (SWR)	MA PNL MA	
010143 103000 000000 000000	SWDB; LDTMA	Deposit (SWR)	TMA PNL TMA	
010143 104000 000000 000000	SWDB; LDDPA	Deposit (SWR)		
010143 105000 000000 000000	SWDB; LDSP	Deposit (SWR)	SP(SPD) PNL SP(SP	D)
010143 106000 000000 000000	SWDB; LDAPS	Deposit (SWR)	APSTATUS PNL APSTA	r
010143 107000 000000 000000	SWDB; LDDA	Deposit (SWR)	DA PNL DA	
011160 000000 000000 000000	wps or	Deposit (SWR)	PS, WORDO PNL PS	
011260 000000 000000 000000	WPSIT	Deposit (SWR)	PS WORD1 PNL PS	

"MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC

011164 000000 000000 000000	WPS 2T	Deposit PS WORD2 (SWR) PNL PS
011264 000000 000000 000000	WPS 3T	Deposit PS, WORD3 (SWR) PNL PS
010144 000000 040000 000000	SWDBE; DPX (-4) < DB	Deposit DPX, EXP (SWR) PNL DPBS. DPX (-4)
010150 000000 040000 000000	SWDBH; DPX (-4) < DB	Deposit DPX, HMAN (SWR) PNL DPBS DPX (-4)
010154 000000 040000 000000	SWDBL; DPX (-4) < DB	Deposit DPX, LMAN (SWR) PNL DPBS DPX (-4)
010144 000000 010000 000000	SWDBE; DPY (-4) < DB	Deposit DPY, EXP (SWR) PNL DPBS DPY (-4)
010150 000000 010000 000000	SWDBH; DPY (-4) < DB	Deposit DPY, HMAN (SWR) PNL DPBS DPY (-4)
010154 000000 010000 000000	SWDBL; DPY (-4) < DB	Deposit DPY, LMAN (SWR) PNL DPBS DPY (-4)
010144 000000 000000 000300	SWDBE; MI < DB	Deposit MD, EXP (SWR) PNL DPBS MD
010150 000000 000000 000300	SWDBH; MI < DB	Deposit MD, HMAN (SWR) PNL DPBS MD

"MICRO-INSTRUCTIONS FORCED BY PANEL LOGIC

010154 000000 000000 000300	SWDBL; MI < DB	Deposit MD, LMAN (SWR) PNL DPBS MD
000000 000000 000000 000020	INCMA	INC MA
000000 000000 000000 000001	INCTMA	INC TMA
000000 000000 000000 000004	INCDPA	INC DPA
001403 106000 000000 000000	LDSPNL 0; LDAPS	RESET
011030 000000 000000 000000	JMPP	START

APPENDIX D

AP-120B BACKPLANE SIGNAL GLOSSARY

			500
!ALCLK	Clock for Al Register of FA		,500 , 10
!A2CLK	Clock for A2 Register of FA ·		
!CBCLK1	Clock for Bd. 210, CB-1	· '	1 1/1. 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
!CBCLK2	Clock for Bd. 211, BC-2	,\ *:	00 c 3 4 5.5
!DPLCLK	Clock for Bd. 200L DPAD		· · · · · · · · · · · · · · · · · · ·
!DPLCLK*	Inverted clock for Bd. 200L DPAD		
!DPRCLK	Clock for Bd. 200R DPAD		,
!DPRCLK*	Inverted clock for Bd. 200R DPAD	•	•
!FACLK2	Clock for Bd. 204, FADD2	•	
!FACLK3	Clock for Bd. 205, FADD3		
! FMCLKA	Clock for Bd. 206, FMULA		
! FMCLKB	Clock for Bd. 207, FMULB		
! FMCLKC	Clock for Bd. 208, FMULC		
!IOCLK	Clock for Interface Bd.	\$'	ักอา
!Mlclk	Clock for Ml Register of FM		
!M2CLK	Clock for M2 Register of FM		
!MCLK .	Clock for Main Data Memory Cards		
!MDCLK*	Inverted Clock for MDREG Bg. 202		
!MICLK	Clock for MIREG Bd. 213		
!PNLCLK	Clock for Panel Logic on EXPAN,	Bd. 214	
!SPCLK	Clock for SPAD, Bd. 201		
!T69	Clock delayed by 69ns for MD Tim	ing Bd. 21	0

Clock for TMREG Bd. 209

1TMCLK

!WRT* Low true write pulse used to write PS, and

the Subroutine Return Stack

(:

!WRTL* Write pulse for DPL

!WRTR* Write pulse for DPR

"GND Extra Grounds not included in the standard

set provided by the motherboard

AlCLKD* Al Clock Data (low true) causes AlCLK

AlEBS02* to AlEBS11* Al Exponent Bus

AlMBS00* to AlMBS27* Al Mantissa Bus

A2CLKD* A2 Clock Data causes A2CLK

A2EBS02* to A2EBS11* A2 Exponent Bus

A2M00Q* A2 Register Bit 00 (sign bit)

A2MBS00* to A2MBS27* A2 Mantissa Bus

ABORT* Internal System Reset Line

BOCLK Byte O Clock to FMT Bd.

BICLK Byte 1 Clock to FMT Bd.

B2CLK Byte 2 Clock to FMT Bd.

B3CLK Byte 3 Clock to FMT Bd.

B2IO FMT Buffer to I/O Bus Enable

BH2HD FMT Buffer High to Host Data Enable

BL2HD FMT Buffer Low to Host Data Enable

BS2Al AlBS to Al input select line

BS2A2 A2BS to A2 input select line

BS2M1 MIBS to MI select line

BS 2M2	M2BS to M2 select line	"T:T.
BUF 2CLK	FMT BUFFER #2 Clock	
CAP2PNL*	Control Buffer AP to PNLBUS .	*IT I'.
CB 2A 1E*	Control Buffer to AlEBS Enable	
CB2A2E*	Control Buffer to A2EBS Enable	are.
CB 2A 2M*	Control Buffer to A2MBS Enable	(ii. '. à
CBCLKE*	Control Buffer Clock Enable	. 181.
	<u>:</u> "	5 10 T
		2 3.3
		au Luacii.
(2000)	NO MARK TAMESMETONIA TAK DA ANIO	o(*.:*

(BOTTOM HALF INTENTIONALLY BLANK)

D - 3

DAO to DA3: SPAD Destination Address Bits

DALD* Device Address Load Enable

DE07 to DE11 Floating Adder

DE07* and DE08* Delta Exponent Bits for shift of mantissa of

DE10A and DE11A smaller argument

DECIMATE* Bit-Reverse enable to SPAD source.

DMA00* to DMA15* Direct Memory Address to MD from Host

Interface

DMASAME - DMA Bank Address same as last bank

DP2AlE Min DPAD to AlBS Enable

DP2A2E - 33 4 - DPAD to A2BS Enable

DP2DPE DPAD to DPBS Enable

DP2M1E DPAD to M1BS Enable

DP2M2E DPAD to M2BS Enable

DPA2PNL* ... DPAD Address to Panel Bus Enable

DPALD*A DPAD Address Load Enable

DPBS2PSI* DPBS to Program Source Input Select

DPE 2PNL DPBS Exponent to Panel Bus Enable

DPEBS02* to DPEBS11* DPAD Exponent Bus Bits

DPH2PNL DPBS HMAN to Panel Bus Enable

DPL2PNL DPBS LMAN to Panel Bus Enable

DPMBS00*:to.DPMBS27* DPAD Mantissa Bus

EOVCRY FA Exponent overflow carry

EOVG* FA Exponent overflow carry generated

2 0 moligo 20

ಕ. ಶಿ.ಮಾರ್ಯಗಳ

EOVP*	FA Exponent overflow carry propagate ct 0AC
EX2PNL*	Exit to PNLBUS *** ********************************
EXIA	Exit Input Select A . 1170 or 7030
EXIB	Exit Input Select B %0Fd bms %1020
EXP*	Exponent Write Select
FAA*	FA answer select A
FAB*	FA answer select B
FACIN*	Floating Adder Carry Input
FADD*	Floating Add microinstruction decode $\pm 1.424 \times$
FAE00* to FAE11*	Floating Adder Exponent output SIASG
FAM00* to FAM27*	Floating Adder Mantissa output
FANEG*	FA result negative:'
FAOVF*	FA result overflow - 1
FASO to FAS3	FA ALU mode select controls *1M99/A40
FAUNF*	FA result underflower A*33A70
FAZRO*	FA results= zero 1980 *IST_3490
FFTQ	FFT mode flag SEG SEG
FL07*A to FL09*A	FA normalization shift county com *2032 40
FL10* to FL11*	(Float number) J.FIS.MG
FLAGO to FLAG3	Program selectable Flags INTLITE
FME02* to FME11*	Floating Multiplier Exponent outgut 000, 2000
FMM00* to FMM27*	FM Mantissa output /SOVCE
FMOVF*	FM result overflow ×5701
FMUL*	Floating Multiply micro-instruction decode
FMUL*A	Floating Multiply micro-instruction decode

FMUNF* FM Result underflow' FN 2HD* Function Register to Host Data Enable FRSGN* FA Force Sign ³Lc₂ForceLSign Latch FŔŚĠŃQ* FSCALE* Floating Scale FSCALEO Floating Scale Latch FSCALEO* Floating Scale Latch FSM(-1)'* to FSM30* Floating Summer Mantissa bits (Connection from Stage 1 to Stage 2 of FA) . = .~ HDOO to HD15 Host Data Bus 5220200 20 HD 2D P Host Data to DPBS Enable HRSET* Host Reset audinti sud Lei II (* - - -) IO OR HOST Data Bit 09 I+H09 mor Adults Cont Anthie I/II10 IO OR HOST Data Bit 10 and vileus Inc eme t Select 1 11113 IO OR HOST Data Bit 13 . . r id.ress leri Inabia IHI14 IO OR HOST Data Bit 14 te c : Address Load Edable FFFTO* Inverse FFT Flag contained leader ĒΝ Decode of IO Input instruction און אין אמבר וענ INTEN Interrupt Enable " ast 3" mi. 7 : ..] INTR:* Interrupt Request INTRQ Interrupt Request Latch I000* to I039* IO BUS IOACK* . IO Acknowledge **HODRDY*** IO Data Ready (.(20 =) (st interface)

 $D \rightarrow 6$

IODRDYQ	IO Data Ready Latch *THUMA
IODRD YQ*	-IO Data Ready Latch #GHS 47
IOSPMD*	IO Spin if MD Bust . *MDakg
LT2HD*	LITES to Host;Data,Enable *9M928f
M1EBS02* to M1EBS11*	M1 Exponent Bus (T) (T) *EJCACE*
M1MBS00* to M1MBS27*	FECALEQ F1. 2 - suB. sesitneM 1M
M1R00Q* to M1R27Q*	M1 Register outputs_fg *pt.TAGST
M2EBS02* to M2EBS11*	· · · · · · · · · · · · · · · · · · ·
M2MBS00* to M2MBS27*	M2 Mantissa Bus
M2R02Q* to M2R27Q*	M2 Register outputs
MA00* to MA15*	Memory Address (MD)
MA2PNL	Memory Address to Panel Bus Enable
MACE*	Memory Address Count Enable
MAINC*	Memory Address Increment Select
MALD*	Memory Address load Enable
MALD*A	Memory Address Load Enable
MAN*	Mantissa Write Select
MANOV	Mantissa overflow
MASAME	MA Bank same as last Bank
MD02* to MD39*	Main Data outputs
MD2A2	MD to A2BS Enable
MD 2D P	MD to DPBS Enable
MD2M2	MD to M2BS Enable

MDCA0	MD Cycle Acknowledge 0 (refresh)
MDCA1	MD Cycle Acknowledge 1 (Host ințerface)

MDCAY A vertae to sime MD Cycle Acknowledge: P

MDCA93 MD Cycle Acknowledge 3 (AP Internal)

MDCLKE* (012) MD Register Clock Enable

MDR 10% YARAA 16 AR YAD Cycle Request 1114!

MDCR2* MD Cycly Request 2

MDCR3* ambigOycleaRequests 3

MDEXP sldknZ MW Exponent Write Enable

MDHMAN 9MD Hillgh Mantissa Write Enable

MDIO1 to MDI39 sidenembringut bus! brow &

MDINA* sMD cycle initiate v 20

MDIMAN sidenJMD: Low: MantissarWrite Enable

MDWRT* sMD_Write; Enablerow ...

MDWRT3 91 dana MDuWritte Request 38 (7

MTA swittelectian of

MIB suppression selected by it for the selected by its selecte

MICIKE* MDdInputoClock Enable

OUT* IO OUT micro-instruction decode

OVFL* Overflow statuses Are

PCYLI* Panels sycles 429

PCYL2* Panels cycle 2,500 ARY

PNLOO* to PNL15* a Panel Bus or 3 = ASC

PNL2DP 9 Panel Bus to DPBS; Enable

FNL2HOST* Panel Bush to Host (Lites Load Enable)

PNL2MD* Panel Bus to MD write request

D - 8

PPA01* to PPA26* PPA27Q* to PPA30Q* PPA31* to PPA52*	FMP Partial Product outputs	of Array A SADOM
	,	
PPAUSE	·Panel Rause from sCB-1: (210)	•
PPB(-1)* TO PPB24* PPB25Q* to PPB28Q*	FAM Partial Product Outputs	of ARRAY BOLICE
PPB29* to PPB	No Cycay Reques: 1	;@GR2*
PS00* to PS63*	Program Source Contputs	*६४वेस
PS 02PNL*	'PS Word =0' to ⊕Panel Bas Enab	Je zvičk
PSOWRT - st.	· PS :Word :0 Write :Strake	MDHMAN
PS12PNL*	PS Word 19to PNL_BusMEnable	Majul to Mairs
PS 1WRT	PS Word-11Write-Ströße	*ANI <u>C</u> %
PS 22PNL*	PS Word = 2 - to = PNE = BusMEnable	r nviriák
PS 2WRT	PS Word 2 NTite: Strobe	*ISWCW
PS32PNL*	PS Word-Spto PML BuSM Enable	EXTYTE
PS 3WRT	PS Word-SiWriteqStr@be	MIA, ,
PSA04* to PSA15*	Program Source Address	. FIM
PSA2PNL	PSAstó PNL Bus: Enablé	· · *EMTOÌÀ
PSAAD DUSLIE TO	·· PSA: Select: AlbaElO DI	*arō
PSABD .	PSA Selecti B Datarevo	*1£%0
PSACD	PSA Select C Date as 9	FCKF1*
PSACLKE*	PSA Clock Enable - 784	*2'IADd
PSAZRO	PSA = Zero, PS Disable	ENI 00% to PML15%
PSH2DP* 91	PS High to DPBS Enable	FATTED E
PSIOO to PSI31 300 45	7-PS Input Bus	PXL2ECST*
PSL2DP 7 ps.	PS Low-to DPBS Enable	PNL 2MD*
REFSYNC*	Refresh Sync	

AP 4120B BACKPLANE (SIGNATI SGEOSSART) A (cont.) 4.

```
RUN*
                     SPAD-120B ARMINITHE TO LAYS
instru, 'n)
SAO to SA3
                     SPAD Source Address
                     SFIN LE KOPRDY LATA=0
                                                          Off
SAMEX
                     DPX Read and Write Addresses equal
                                 SPER hade
SAMEY
                     DPY Read and Write Addresses equal
                         SPFN ALU Conumols
                                                    7 5233
SC00*
                     Sign bit out of FA Stage 1 mantissa scaler
                               SEAT - CARD
                     FA Scaler inhibit
SCIN
       Sarten Register to Host Data Enable
                                                          116.
SELA LA
                     Select Al as larger input to FA
       Switch Register to Panel Bus Enable
                                                          .77.
                     Select A2 as larger input to FA
    Cubrouting Return Address Count Enable
                     SPAD Function Write Enable
Sub . : tine Feingr Address Denvinent Selact
                     SPFN Shift Select 0
   Erpaonites Trand Vegases Onshirom Date
                     SPFN Shift Select 1
      S.brautine Rojurn Stack Frite Enable
                     SPAD Input Write Enable
SIWE*
               AP SIATUE to PNL Bus Enable
                     Sign Magnitude to two's complement
SM2TC*
                      APPILTUL Load Enable
SNSA
                     IO sense A
                      Table Maucry Outputs
                                                 * PCM 3.
SP+DP00* to SP+DP15*
                     SPFN OR DPBS Bus
                        IN to Alks Enable
SP2ADDR
                     SPFN to Address (SP + DP Bus) select
                        THE GO DEES Enable
                     SPFN to DPBS Enable
SP2DP
                        IN to Mi35 Enrole
                     SPFN to PNL Bus Enable
SP2PNL
                     Table Memory Address
                                                 · TM-15
                     SPAD Address to PNL Bus Enable
SPA2PNL*
                    IMA to PNL Bus Ensile
                     SPAD Destination Address Load Enable
SPALD*
                         TMA Count nable
SPCIN
                     SPFN Carry Input
                     TMA Decreasit Sel :
SPFN00*
                     SPFN Sign Bit
                         os. Krábla
                     SPFN Carry Output
SPFNCRY*
```

SPILD*	SPAD INPUT: LOADOEnable	ि#शुद्धिः
SPIN*-1 . '2	<pre>sMicro-processor(SPIN) (hangs on c instruction)</pre>	urrent#%542
SPIODO	SPIN if IODRDY DATA=0	SÃO Éo SAS
SPM	bbA as 'r' bna beag Y90 SPFN Mode	ŠAMEK
SPSO to SPS3	55A silfW bra beed YOU SPFN ALU Controls	S-AMÉY
spzed spzed sest sugar sest	Sign the run of AS Steamers SPFN = zero	ร์ดั้ดบ∻
SR2HD*	trdicinh সংগ্রহাই সমূ Switch Register to Host Data End	
SR2PNL	it ingust as in insing Switch Register to Panel Bus Ena	SE LA LA
SRACE*	at reguring the theiled Subroutine Return Address Count at equiv notices: 3 C448	SETTS alders
SRADEC*	Subroutine Return Address Decrem	ent Select
SRAOVD*	O doeles thids MESS Subroutine Return Address Overfl I reales think then	
SRSWE*	From the Return Stack Write Enders I gath with the Index I gath with the Index I gath I shall sh	
STA 2PNL	AP STATUS to PNL Bus Enable `owd of abordingsM ngi3	ŞŢŅĒ:
STALD*	APSTATUS Load Enable A same 01	SMZIC
TM02* to TM39*	Table Memory Outputs	SNJA
TM2A1	TM to AlBS Enable SPEN to Addition (SPEN to Addition	SP+DPCO# *0 SZZÁDDR
TM 2D P	to DRS Enable HI see DRS Enable Figure 1978 To DRS Enable	
TM2M1	TM to MIBS Enable	SPŽPUL SPŽPUL
TMA00 to TMA15	Table Memory Address of MMM of describe MAMM	SPA 2PKL*
TMA 2PNL	TMA to PNL Bus Enable	Sr.d.p*
TMACE*	TMA Count Enable sugar years The	SECIN
TMADEC*	TMA Decrement Select	SPFN0C*
TMALD*	TMA Load Enable	SFFNGRY*
•	**	4

AP-120B' BACKPLANE SIGNAL GOSSARTICE ont 1 1-94

DPV to Williams on you TMALD*A Table Memory Tillibit 190 TMINH, DEF STEED VEGET STEEL TMNEG* *J%J^ FA Truncate TRUNC* TRUNCQ FA Truncate Latch TRUNCQ* - FA Truncate Latch . TSPIN True Spin UNFL* , Underflow, Status Use Control Buffer Bits 48 to 63 as . USECB* a Value ...Use PSAQ as Source for PSA USEPSA* WRTEXP MD Exponent Write Enable WRTHM : HMAN : Write Enable , WRŢĻM . LMAN, Write Enable X01 to XQ5 DPX, Address X02A to X05A DPX Exponent Clock Enable XECLKE* XHMCLKE* DPX-HMAN Clock Enable XIA DPX Input Select A XIB DPX Input Select B XľMĆľKE* DPX LMAN Clock Enable

Y01 to Y05 Y02A to Y05A

Y2A1 DPY to AlBS Select

DPY Address

Y2A2 ppy to A2BS Select

Y2DP DPY to DPBS Select

Y2M1 DPY to MIBS Select

		•
Y2M2	DPY to M2BS Select ANT	TiALD*A
YECLKE*	DPY Exponent Clock Enab	le EXIMI
YHMCLKE*	DPY HMAN Clock Enable	· *pamur
	FA Truncate	TRUNC*.
	F& Trune see Lacch	TRUNCO
	FA Truncat, Laten	*dońnri
	True Spin	NIdel
	Underfic Status	Wrt*
	Use Control huffer Birs 48 to 63 as a ' Las	USEUR*
	New PSAG . 1 apr - is PSA	.S.(PSA*
	' J Kaçonest W. (te Flasie	ध्यवास्त्र
	sidsna - LW Mama	.HTA:
	LMAN Vrice inspie	KTIM.
	DPA Address .	XO1 .c XO5 XO1A to XJ5A
	DPX Erponent Clock-Enable	XECLUE*
	DPX HMAN Clock Enable	KEMOLKE?
	DPY Input Select s	AIX
	DPK Input Select 5	2.73
	DEN LMAN Clock Ensble	XTWCFKZ*
	D2Y Address	YO: to YO5 YO2A to YO5A
	FDE to ADDS Select	Y2A1
	Til to Alfi Taler:	Y2A2
	1. T to DPSS Salent	Y2D? ,
	OUN Ed MIBS C.	YCMI