

集合的笛卡儿积和二元关系

- 有序对
- 笛卡儿积及其性质
- 二元关系的定义
- 二元关系的表示

有序对

定义 由两个元素x和y,按照一定的顺序组成的

二元组称为有序对(也称序偶),记作<x,y>

实例:点的直角坐标(3,-4)

有序对性质

有序性 $\langle x,y \rangle \neq \langle y,x \rangle$ (当 $x \neq y$ 时) $\langle x,y \rangle$ 与 $\langle u,v \rangle$ 相等的充分必要条件是 $\langle x,y \rangle = \langle u,v \rangle \Leftrightarrow x = u \land y = v$

例1
$$\langle 2, x+5 \rangle = \langle 3y-4, y \rangle$$
, 求 x, y .
解 $3y-4=2, x+5=y \Rightarrow y=2, x=-3$

有序n元组

定义 一个有序 n ($n \ge 3$) 元组 $< x_1, x_2, ..., x_n >$ 是一个有序 n ($n \ge 3$) 元组 $< x_1, x_2, ..., x_n >$ = $< < x_1, x_2, ..., x_n >$ = $< < x_1, x_2, ..., x_n >$ 当 n = 1 时,< x > 形式上可以看成有序 1 元组.

实例 n 维向量是有序 n元组.

笛卡儿积

定义 设A,B为集合,A与B的笛卡儿积记作 $A \times B$,定义为 $A \times B = \{ \langle x,y \rangle \mid x \in A \land y \in B \}$

例2
$$A$$
={1,2,3}, B ={ a , b , c }
 $A \times B$ ={ <1 , $a>$, <1 , $b>$, <1 , $c>$, <2 , $a>$, <2 , $b>$, <2 , $c>$,
 <3 , $a>$, <3 , $b>$, <3 , $c>}
 $B \times A$ ={ $, $1>$, $, $1>$, $, $1>$, $, $2>$, $, $2>$, $, $2>$,
 $, $3>$, $, $3>$, $, $3>$ }
 A ={ \emptyset }, $P(A) \times A$ ={ $<\emptyset$, $\emptyset>$, $<$ { \emptyset }, $\emptyset>$ }$$$$$$$$$$

笛卡儿积的性质

$$A \times \emptyset = \emptyset \times B = \emptyset$$

不适合交换律 $A \times B \neq B \times A$

不适合结合律 $(A \times B) \times C \neq A \times (B \times C)$

对于并或交运算满足分配律

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

若|A|=m, |B|=n, 则 $|A\times B|=mn$

雨课堂 Rain Classroor

性质的证明

证明
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

证任取 $< x, y >$
 $< x, y > \in A \times (B \cup C)$
 $\Leftrightarrow x \in A \land y \in B \cup C$
 $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$
 $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$
 $\Leftrightarrow < x, y > \in A \times B \lor < x, y > \in A \times C$
 $\Leftrightarrow < x, y > \in (A \times B) \cup (A \times C)$
所以有 $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

例题

例3 (1) 证明 $A=B \land C=D \Rightarrow A \times C=B \times D$ (2) $A \times C=B \times D$ 是否推出 $A=B \land C=D$? 为什么?

解 (1) 任取 < x,y > $< x,y > \in A \times C \Leftrightarrow x \in A \land y \in C$ $\Leftrightarrow x \in B \land y \in D \Leftrightarrow < x,y > \in B \times D$

(2) 不一定. 反例如下: $A=\{1\}$, $B=\{2\}$, $C=D=\emptyset$, 则 $A\times C=B\times D$ 但是 $A\neq B$.

雨课堂 Rain Classroom

例题

例题

例3 (4) 设A、B、C、D为任意集合,以下等式是否成立?

- $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$
- $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$
- $(A-B)\times(C-D) = (A\times C) (B\times D)$
- $(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$

二元关系的定义

定义 如果一个集合满足以下条件之一:

- (1) 集合非空,且它的元素都是有序对
- (2) 集合是空集

则称该集合为一个二元关系,简称为关系,记作R.

如 $\langle x,y \rangle \in R$,可记作 xRy;

实例: $R=\{<1,2>,<a,b>\}, S=\{<1,2>,a,b\}.$

R是二元关系,当a,b不是有序对时,S不是二元关系

根据上面的记法,可以写 1R2, aRb等.

雨课堂 Rain Classroom

从A到B的关系与A上的关系

定义 设A,B为集合, $A \times B$ 的任何子集所定义的二元关系叫做从A到B的二元关系,当A = B时则叫做 A上的二元关系.

例4 A={0,1}, B={1,2,3}, R₁={<0,2>}, R₂=A×B, R₃= \emptyset , R₄={<0,1>}. 那么 R₁, R₂, R₃, R₄是从 A 到 B 的二元关系, R₃和R₄同时也是 A上的二元关系. 计数

|A|=n, $|A \times A|=n^2$, $A \times A$ 的子集有 $_2^{n^2}$ 个. 所以 A上有 $_2^{n^2}$ 个不同的二元关系. 例如 |A|=3, 则 A上有=512个不同的二元关系.

A上重要关系的实例

设A为任意集合,

Ø是A上的关系,称为空关系

 E_A, I_A 分别称为全域关系与恒等关系,定义如下:

$$E_A = \{\langle x,y \rangle | x \in A \land y \in A \} = A \times A$$
$$I_A = \{\langle x,x \rangle | x \in A \}$$

例如, A={1,2}, 则

$$E_A = \{<1,1>,<1,2>,<2,1>,<2,2>\}$$

 $I_A = \{<1,1>,<2,2>\}$

A上重要关系的实例(续)

小于等于关系 L_A , 整除关系 D_A , 包含关系 R_{\subset} 定义:

 L_A ={ $\langle x,y \rangle | x,y \in A \land x \leq y$ }, 这里 $A \subseteq \mathbb{R}$, R为实数集合

 D_B ={ $\langle x,y \rangle | x,y \in B \land x$ 整除y}, 这里 $B \subseteq \mathbb{Z}^*$, \mathbb{Z}^* 为非0整数集

 R_{\subseteq} ={<x,y>|x,y

实例

例如
$$A = \{1, 2, 3\}, B = \{a, b\}, 则$$

$$L_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>\}$$

$$D_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\}$$

$$A=P(B)=\{\emptyset,\{a\},\{b\},\{a,b\}\}, 则 A 上 的包含关系是$$
 $R_{\subseteq}=\{\langle\emptyset,\emptyset\rangle,\langle\emptyset\rangle,\{a\}\rangle,\langle\emptyset,\{b\}\rangle,\langle\emptyset,\{a,b\}\rangle,\langle\{a\},\{a\}\rangle,\langle\{a\}\rangle,\langle\{a,b\}\rangle,\langle\{a,b\}\rangle,\langle\{a,b\}\rangle,\langle\{a,b\}\rangle,\langle\{a,b\}\rangle\}$

关系的表示

表示方式: 关系的集合表达式、关系矩阵、关系图

关系矩阵: 若 $A=\{a_1, a_2, ..., a_m\}$, $B=\{b_1, b_2, ..., b_n\}$,R是从A到B的关系,R的关系矩阵是布尔矩阵 $M_R=[r_{ij}]_{m\times n}$,其中 $r_{ij}=1\Leftrightarrow < a_i, b_i> \in R$.

关系图: 若 $A = \{x_1, x_2, ..., x_m\}$,R是A上的关系,R的关系图是 $G_R = \langle V, E \rangle$,其中V = A为顶点集,E为边集.如果 $\langle x_i, x_j \rangle$ 属于关系R,在图中就有一条从 x_i 到 x_i 的有向边.

注意: A, B为有穷集,关系矩阵适于表示从A到B的关系或者 A上的关系,关系图适于表示A上的关系

实例

$$A=\{1,2,3,4\},$$

R的关系矩阵 M_R 和关系图 G_R 如下:

$$\boldsymbol{M}_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

关系的运算

- ■基本运算定义
 - □定义域、值域、域
 - □逆、合成、限制、像
- ■基本运算的性质
- ■幂运算
 - □定义
 - □ 求法
 - □性质

关系的基本运算定义

```
定义域、值域和域
domR = \{x \mid \exists y (\langle x,y \rangle \in R)\}
ranR = \{y \mid \exists x (\langle x,y \rangle \in R)\}
fldR = domR \cup ranR
```

例1
$$R=\{<1,2>,<1,3>,<2,4>,<4,3>\}$$
,则 $dom R=\{1,2,4\}$ $ran R=\{2,3,4\}$ $fld R=\{1,2,3,4\}$

关系的基本运算定义(续)

逆与合成

$$R^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in R \}$$

$$R \circ S = |\langle x, z \rangle \mid \exists \ y \ (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \ \}$$

例2
$$R = \{<1,2>, <2,3>, <1,4>, <2,2>\}$$

 $S = \{<1,1>, <1,3>, <2,3>, <3,2>, <3,3>\}$
 $R^{-1} = \{<2,1>, <3,2>, <4,1>, <2,2>\}$
 $R \circ S = \{<1,3>, <2,2>, <2,3>\}$
 $S \circ R = \{<1,2>, <1,4>, <3,2>, <3,3>\}$

合成运算的图示方法

利用图示 (不是关系图) 方法求合成

$$R \circ S = \{<1,3>, <2,2>, <2,3>\}$$

$$S \circ R = \{<1,2>,<1,4>,<3,2>,<3,3>\}$$

限制与像

定义
$$F$$
 在 A 上的限制 $F \upharpoonright A = \{ \langle x,y \rangle \mid xFy \land x \in A \}$ A 在 $F \rhd h$ 像 $F[A] = ran(F \upharpoonright A)$ 实例 $R = \{ \langle 1,2 \rangle, \langle 2,3 \rangle, \langle 1,4 \rangle, \langle 2,2 \rangle \}$ $R \upharpoonright \{1\} = \{ \langle 1,2 \rangle, \langle 1,4 \rangle \}$ $R \upharpoonright \emptyset = \emptyset$ $R \upharpoonright \{1,2\} = \{2,3,4\}$ 注意: $F \upharpoonright A \subseteq F$, $F[A] \subseteq ran F$

关系基本运算的性质

定理1 设F是任意的关系,则

- $(1) (F^{-1})^{-1} = F$
- (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$

证 (1) 任取< x,y >, 由逆的定义有 $< x,y > \in (F^{-1})^{-1} \Leftrightarrow < y,x > \in F^{-1} \Leftrightarrow < x,y > \in F$ 所以有 $(F^{-1})^{-1} = F$

(2) 任取x,

 $x \in \text{dom} F^{-1} \Leftrightarrow \exists y (\langle x, y \rangle \in F^{-1})$

 $\Leftrightarrow \exists y (\langle y, x \rangle \in F) \Leftrightarrow x \in \operatorname{ran} F$

所以有 $dom F^{-1} = ran F$. 同理可证 $ran F^{-1} = dom F$.

雨课堂 Rain Classroom

关系基本运算的性质

令R,S ⊆ A × B ,则有性质1:

 $dom(R \cup S) = dom R \cup dom S$ $ran(R \cup S) = ran R \cup ran S$ $dom(R \cap S) \subseteq dom R \cap dom S$ $ran(R \cap S) \subseteq ran R \cap ran S$

性质2:

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

 $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
 $(R - S)^{-1} = R^{-1} - S^{-1}$
 $R \subseteq S \Rightarrow R^{-1} \subseteq S^{-1}$

关系基本运算的性质 (续)

定理2 设F, G, H是任意的关系, 则

$$(1) (F \circ G) \circ H = F \circ (G \circ H)$$

(2)
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

证(1)任取<x,y>,

$$\langle x,y\rangle\in (F\circ G)\circ H\Leftrightarrow \exists t(\langle x,t\rangle\in F\circ G\wedge\langle t,y\rangle\in H)$$

$$\Leftrightarrow \exists t \ (\exists s (\langle x,s \rangle \in F \land \langle s,t \rangle \in G) \land \langle t,y \rangle \in H)$$

$$\Leftrightarrow \exists t \exists s (\langle x,s \rangle \in F \land \langle s,t \rangle \in G \land \langle t,y \rangle \in H)$$

$$\Leftrightarrow \exists s \ (\langle x,s \rangle \in F \land \exists t \ (\langle s,t \rangle \in G \land \langle t,y \rangle \in H))$$

$$\Leftrightarrow \exists s \ (\langle x,s \rangle \in F \land \langle s,y \rangle \in G \circ H)$$

$$\Leftrightarrow \langle x,y \rangle \in F \circ (G \circ H)$$

所以
$$(F \circ G) \circ H = F \circ (G \circ H)$$

关系基本运算的性质(续)

(2) 任取 $\langle x,y \rangle$, $\langle x,y \rangle \in (F \circ G)^{-1}$ $\Leftrightarrow \langle y,x \rangle \in F \circ G$ $\Leftrightarrow \exists t \ (\langle y,t \rangle \in F \land (t,x) \in G)$ $\Leftrightarrow \exists t \ (\langle x,t \rangle \in G^{-1} \land (t,y) \in F^{-1})$ $\Leftrightarrow \langle x,y \rangle \in G^{-1} \circ F^{-1}$ 所以 $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

关系基本运算的性质(续)

$$(1) F \circ (G \cup H) = (F \circ G) \cup (F \circ H)$$

$$(2) F \circ (G \cap H) \subseteq (F \circ G) \cap (F \circ H)$$

证(1):

任取 $\langle x, y \rangle$,有

 $\langle x,y\rangle\in F\circ (G\cup H)$

- $\Leftrightarrow \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in G \cup H)$
- $\Leftrightarrow \exists t \big(\langle x, t \rangle \in F \land (\langle t, y \rangle \in G \lor \langle t, y \rangle \in H) \big)$
- $\Leftrightarrow \exists t \big((\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \lor (\langle x, t \rangle \in F \land \langle t, y \rangle \in H) \big)$
- $\Leftrightarrow \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in G) \lor \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in H)$
- $\Leftrightarrow \langle x, y \rangle \in F \circ G \vee \langle x, y \rangle \in F \circ H$
- $\Leftrightarrow \langle x,y\rangle \in (F\circ G)\cup (F\circ H)$

关系基本运算的性质 (续)

$$(1) F \circ (G \cup H) = (F \circ G) \cup (F \circ H)$$

$$(2) F \circ (G \cap H) \subseteq (F \circ G) \cap (F \circ H)$$

证(2):

任取 $\langle x, y \rangle$,有

 $\langle x,y\rangle\in F\circ (G\cap H)$

- $\Leftrightarrow \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in G \cap H)$
- $\Leftrightarrow \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in G \land \langle t,y\rangle \in H)$
- $\Leftrightarrow \exists t \big((\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \land (\langle x, t \rangle \in F \land \langle t, y \rangle \in H) \big)$
- $\Rightarrow \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in G) \land \exists t(\langle x,t\rangle \in F \land \langle t,y\rangle \in H)$
- $\Leftrightarrow \langle x, y \rangle \in F \circ G \land \langle x, y \rangle \in F \circ H$
- $\Leftrightarrow \langle x,y\rangle \in (F\circ G)\cap (F\circ H)$

A上关系的幂运算

设R为A上的关系,n为自然数,则R的n次幂定义为:

(1)
$$R^0 = \{ \langle x, x \rangle \mid x \in A \} = I_A$$

$$(2) R^{n+1} = R^n \circ R$$

注意:

对于A上的任何关系 R_1 和 R_2 都有

$$R_1^0 = R_2^0 = I_A$$

对于A上的任何关系R都有

$$R^1 = R$$

幂的求法

对于集合表示的关系R,计算 R^n 就是n个R右复合.

矩阵表示就是n个矩阵相乘,其中相加采用逻辑加.

例3 设 $A=\{a,b,c,d\}, R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle\},$

求R的各次幂、分别用矩阵和关系图表示。

解 $R与R^2$ 的关系矩阵分别为

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

幂的求法(续)

同理, $R^0=I_A$, R^3 和 R^4 的矩阵分别是:

$$M^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad M^{3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M^{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

因此 $M^4=M^2$, 即 $R^4=R^2$. 因此可以得到 $R^2=R^4=R^6=...$, $R^3=R^5=R^7=...$

幂的求法(续)

 R^0 , R^1 , R^2 , R^3 , … 的关系图如下图所示

$$R^3=R^5=\cdots$$

幂运算的性质

定理3 设A为n元集, R是A上的关系, 则存在自然数s和t, 使得 $R^s = R^t$.

证 R为A上的关系,由于|A|=n,A上的不同关系只有 2^{\triangle} .

当列出 R 的各次幂

$$R^0, R^1, R^2, \dots, \dots,$$

必存在自然数s和t使得 $R^s=R^t$.

定理4 设 R 是 A 上的关系, m, $n \in \mathbb{N}$, 则

- (1) $R^m \circ R^n = R^{m+n}$
- (2) $(R^m)^n = R^{mn}$

证用归纳法

(1) 对于任意给定的m∈N, 施归纳于n.

若n=0,则有

 $R^{m} \circ R^{0} = R^{m} \circ I_{A} = R^{m} = R^{m+0}$

假设 $R^m \circ R^n = R^{m+n}$,则有

 $R^m \circ R^{n+1} = R^m \circ (R^n \circ R) = (R^m \circ R^n) \circ R = R^{m+n+1}$

所以对一切 $m, n \in \mathbb{N}$ 有 $R^m \circ R^n = R^{m+n}$.

(接上页证明)

(2) 对于任意给定的 m ∈ N, 施归纳于n.

若n=0,则有

$$(R^m)^0 = I_A = R^0 = R^{m \times 0}$$

假设 $(R^m)^n=R^{mn}$,则有

$$(R^m)^{n+1} = (R^m)^n \circ R^m = (R^{mn}) \circ R^m = R^{mn+m} = R^{m(n+1)}$$

所以对一切 $m,n \in \mathbb{N}$ 有 $(R^m)^n = R^{mn}$.

定理5 设R 是A上的关系, 若存在自然数s, t (s<t) 使得 $R^s = R^t$, 则

- (1) 对任何 $k \in \mathbb{N}$ 有 $\mathbb{R}^{s+k} = \mathbb{R}^{t+k}$
- (2) 对任何 $k, i \in \mathbb{N}$ 有 $R^{s+kp+i} = R^{s+i}$, 其中p = t-s
- (3) 令 $S=\{R^0,R^1,...,R^{t-1}\}$,则对于任意的 $q \in N$ 有 $R^q \in S$

证明 (1)
$$R^{s+k} = R^s \circ R^k = R^t \circ R^k = R^{t+k}$$

(2) 对 k 归纳. 若k=0, 则有

$$R^{s+0p+i} = R^{s+i}$$

假设 $R^{s+kp+i}=R^{s+i}$, 其中p=t-s, 则

$$R^{s+(k+1)p+i} = R^{s+kp+i+p} = R^{s+kp+i} \circ R^p$$

$$= R^{s+i} \circ R^p = R^{s+p+i} = R^{s+t-s+i} = R^{t+i} = R^{s+i}$$

由归纳法命题得证.

(3) 任取 $q \in \mathbb{N}$, 若q < t, 显然有 $\mathbb{R}^q \in S$. 若 $q \ge t$, 则存在自然数 k 和 i 使得 q = s + kp + i,其中 $0 \le i \le p - 1$.

于是

重新审视前例:

 R^0 , R^1 , R^2 , R^3 , … 的关系图如下图所示

 $R^2=R^4=\cdots$

$$R^3=R^5=\cdots$$