编译原理

第六章 LR语法分析技术(2)

方徽星

扬州大学信息工程学院(505)

fanghuixing@yzu.edu.cn

2018年春季学期

本章主要内容

一. 自下向上语法分析

二.LR分析

- SLR
- LR(1)
- LALR

三. 使用二义性文法

四. Yacc

SLR语法分析表构造算法

- 输入:一个文法G的增广文法G'
- 输出:G'的SLR语法分析表函数ACTION和GOTO
- 方法:
 - 1. 构造G'的规范LR(0)项集族 $C = \{I_0, I_1, ..., I_n\}$
 - 2. 根据 I_i 构造得到**状态**i
 - 3. 如果 $GOTO(I_i, A_N) = I_j$,则 $GOTO[i, A_N] = j$
 - 4. 规则2和3没有定义的条目均设置为"报错"
 - 5. 初始状态为由[$S' \rightarrow \bullet S$]所在项集构造所得的状态

该算法得到的语法分析表称为文法G的SLR(1)分析表

- 根据 I_i 构造得到**状态**i,状态i的语法分析动作按照如下规则设定:
 - 如果 $[A \rightarrow \alpha \cdot a_T \beta] \in I_i \land GOTO(I_i, a_T) = I_j$,则 $ACTION[i, a_T] \coloneqq "移进状态j"$
 - 如果 $[A \to \alpha \bullet] \in I_i \land A \neq S'$,则(由Follow实现向前看1个符号) $\forall a_T \in Follow(A).ACTION[i, a_T] := "归约<math>A \to \alpha$ "
 - 如果 $[S' \rightarrow S \bullet] \in I_i$,则 $ACTION[i, \$] \coloneqq "接受"$

如果由上述规则导致冲突发生,则文法不是SLR(1) 文法,此时该算法无法生成一个语法分析器

- 与SLR相关的两个概念:
 - 使用G的SLR(1)分析表的LR语法分析器称为G的SLR(1)语法分析器
 - 一个具有SLR(1)分析表的文法称为SLR(1)的

SLR后的(1)常可省略,因为此处 不会处理多于1个向前看符号

• 例:为增广表达式文法构造SLR分析表

1.
$$E \rightarrow E + T$$

2.
$$E \rightarrow T$$

3.
$$T \rightarrow T * F$$

4.
$$T \rightarrow F$$

5.
$$F \rightarrow (E)$$

6.
$$F \rightarrow id$$

- ✓ I_0 中的项 $F \rightarrow \bullet(E)$ 使得条目ACTION[0,(] = *8进状态4*
- ✓ I_0 中的项 $F \rightarrow \bullet id$ 使得条目ACTION[0,id] = "移进状态5"

• 例:为增广表达式文法构造SLR分析表

1.
$$E \rightarrow E + T$$

- $2. E \rightarrow T$
- 3. $T \rightarrow T * F$
- 4. $T \rightarrow F$
- 5. $F \rightarrow (E)$
- 6. $F \rightarrow id$

- ✓ I_1 中的项 $E' \to E \bullet$ 使得ACTION[1,\$] = "接受"
- ✓ I_1 中的项 $E \rightarrow E + T$ 使得ACTION[1, +] = "移进状态6"

• 例:为增广表达式文法构造SLR分析表

 $E \rightarrow T \bullet$

 $T \rightarrow T \bullet * F$

- 1. $E \rightarrow E + T$
- 2. $E \rightarrow T$
- 3. $T \rightarrow T * F$
- 4. $T \rightarrow F$
- 5. $F \rightarrow (E)$
- 6. $F \rightarrow id$
- ✓ 因为 $Follow(E) = \{\$, +, \}, I_2$ 中的项 $E \rightarrow T \bullet$ 使得 ACTION[2,\$] = ACTION[2,+] = ACTION[2,)] = "归约 $E \rightarrow T$ "

 $T \rightarrow T * \bullet F$

 $F \rightarrow \bullet(E)$

 $F \rightarrow \bullet id$

✓ I_2 中的项 $T \rightarrow T \bullet * F$ 使得ACTION[2,*] = "移进状态7"

状		ACTION						GOTO		
状 态	id	+	*	()	\$	E	T	F	
0	s 5			s 4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s 5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s 5			s4				9	3	
7	s 5			s 4					10	
8		s6			s11					
9		r1	s 7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

- 例:每个SLR(1)文法都是无二义性的,但存在非 SLR(1)的无二义性文法,如:
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$

SLR分析器不够强大,具备的上下文信息不够

• 给定文法G, 如果存在如下的**最右推导**:

$$S \stackrel{*}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$$
, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则称串 $\gamma \in G$ 的一个可行前缀

• 可以在**可行前缀**后面增加一些**终结符号**来得到一个**最右句型**

如从文法G的开始符号S进行推导,可以得到串 α :

 $S \stackrel{*}{\Rightarrow} \alpha \in (V_N \cup V_T)^*$ 则称 α 为文法G的一个句型

• 给定文法G, 如果存在如下的**最右推导**:

$$S \stackrel{*}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$$
, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则LR(0)项[$N \rightarrow \beta_1 \cdot \beta_2$]是串 γ 的一个有效项(Valid Item)

- 项[$N \rightarrow \beta_1 \cdot \beta_2$]对可行前缀 $\alpha\beta_1$ 有效可以让我们知道:
 - \triangleright 如果 $\beta_2 \neq \varepsilon$,则句柄没有完全入栈,因此选择移进
 - ho如果 $oldsymbol{eta}_2 = oldsymbol{arepsilon}$,则 $oldsymbol{eta}_1$ 就是句柄,因此可以按照产生式 $N
 ightarrow oldsymbol{eta}_1$ 进行归约

可能存在多个不同的项要求对同 一个可行前缀做不同的动作

• 将项看作一个NFA N的状态

$CLOSURE(I) \equiv \varepsilon$ -closure(T)

· *I*:项集

• T:N的状态集合

• GOTO(I, X)给出由NFA N通过子集构造法得到的DFA中状态 I在符号X上的转换

• 例:考虑增广表达式文法,串 $\gamma = E + T *$ 是该文法的一个可行前缀,LR(0)自动机在读入 γ 后位于状态7上:

$$I_7$$
 $T o T * ullet F$
 $F o ullet (E)$
 $F o ullet id$

给定文法G,如果存在如下的**最右推导:**

 $S \stackrel{*}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则LR(0)项[$N \rightarrow \beta_1 \cdot \beta_2$]是串 γ 的一个有效项

$$\gamma = E + T *$$
 $1.$
 β 虑最右推导
 $E' \Rightarrow E$
 $\Rightarrow E + T$
 $\Rightarrow E + T * F$
 $\gamma = \alpha \beta_1$
 γ

• 例:考虑增广表达式文法,串 $\gamma = E + T *$ 是该文法的一个可行前缀,LR(0)自动机在读入 γ 后位于状态7上:

$$I_7$$
 $T o T * ullet F$
 $F o ullet (E)$
 $F o ullet id$

给定文法G,如果存在如下的**最右推导:**

 $S \stackrel{*}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则LR(0)项[$N \rightarrow \beta_1 \cdot \beta_2$]是串 γ 的一个有效项

$$\gamma = E + T * [F \rightarrow \bullet(E)]$$

$$\gamma = \alpha \beta_1 [N \rightarrow \beta_1 \bullet \beta_2]$$

2.考虑最右推导

$$E' \Rightarrow E$$

$$\Rightarrow E + T$$

$$\Rightarrow E + T * F$$

$$\Rightarrow E + T * (E)$$

• 例:考虑增广表达式文法,串 $\gamma = E + T *$ 是该文法的一个可行前缀,LR(0)自动机在读入 γ 后位于状态7上:

$$I_7$$
 $T o T * ullet F$
 $F o ullet (E)$
 $F o ullet id$

 $\Rightarrow E + T * (E)$

给定文法G,如果存在如下的**最右推导:**

$$S \stackrel{\hat{}}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$$
, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则LR(0)项[$N \rightarrow \beta_1 \cdot \beta_2$]是串 γ 的一个有效项

$$\gamma = E + T * \varepsilon$$
 $E' \Rightarrow E$
 $\Rightarrow E + T$
 $\Rightarrow E + T * F$
 $\gamma = A \beta_1$
 γ

• 例:考虑增广表达式文法,串 $\gamma = E + T *$ 是该文法的一个可行前缀,LR(0)自动机在读入 γ 后位于状态7上:

$$I_7$$
 $T o T * ullet F$
 $F o ullet (E)$
 $F o ullet id$

 $\Rightarrow E + T * id$

给定文法G,如果存在如下的**最右推导:**

$$S \stackrel{\hat{}}{\Rightarrow} \alpha N \omega \Rightarrow \alpha \beta_1 \beta_2 \omega$$
, $\gamma = \alpha \beta_1 \in (V_N \cup V_T)^*$ 则LR(0)项[$N \rightarrow \beta_1 \cdot \beta_2$]是串 γ 的一个有效项

$$\gamma = E + T * \varepsilon$$
 $E' \Rightarrow E$
 $\Rightarrow E + T$
 $\Rightarrow E + T * F$
 $\gamma = \alpha \beta_1$
 $\gamma = E + T * \beta_2$
 $\gamma = \alpha \beta_1$
 $\gamma = \alpha \beta_1$

• 例:考虑增广表达式文法,串 $\gamma = E + T *$ 是该文法的一个可行前缀,LR(0)自动机在读入 γ 后位于状态7上:

$$I_7$$
 $T o T * ullet F$
 $F o ullet (E)$
 $F o ullet id$

在LR(0)自动机中,从初始状态开始沿着标号为某个可行前缀γ的路径到达一个状态,则该状态对应的项集就是γ的有效项集

- 例:重新考虑如下文法
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$

$$egin{aligned} I_2 \ S
ightarrow Lullet = R \ R
ightarrow Lullet \end{aligned}$$

当输入为符号=时,有两种可能性:

- 1. 因为[$R \rightarrow L$ •] ∈ I_2 ,所以按照 $R \rightarrow L$ 进行归约
- 2. 因为[$S \rightarrow L \bullet = R$] $\in I_2$, 所以执行移进动作
- 如果按照 $R \to L$ 进行归约则要求该文法能够产生以R = ...开头的最右句型
- 但该文法无法产生以R = ... 开头的最右句型,因此状态2只和可行前缀L对应,不应该执行从L到R的归约

- 如果在状态中包含更多信息,则可能可以排除不正确的归约
- 方法:对项可行精化,使它包含第二个分量,项 的一般形式修改为

其中 $A \rightarrow \alpha \beta$ 是一个产生式,c是一个终结符号或 \$, 上述项称为LR(1)项,1表示第二个分量的长度

- 如果LR(1)项[$A \rightarrow \alpha \cdot \beta, c$]中的 $\beta \neq \varepsilon$,则向前看符号没有任何作用
- LR(1)项[$A \rightarrow \alpha$ •, c]只在下一个输入符号等于c时 才要求按照 $A \rightarrow \alpha$ 进行归约
 - 只有当栈顶状态中包含一个LR(1)项[$A \rightarrow \alpha$ •, c]时,才会在输入为c时按照 $A \rightarrow \alpha$ 进行归约
 - 这样的c的集合总是Follow(A)的子集(可能是真子集)

• LR(1)项[$A \rightarrow \alpha \cdot \beta, c$]对于一个可行前缀 γ 有效的条件是存在一个**最右推导**

$$S \stackrel{*}{\Rightarrow} \delta A \omega \Rightarrow \delta \alpha \beta \omega$$

其中

- $\gamma = \delta \alpha$, 而且
- c是 ω 的第一个符号,或者 $\omega = \varepsilon \wedge c = \$$

由最右推导可知ω是一个仅由终结符号构成的串

- 例:考虑如下文法
 - $S \rightarrow BB$
 - $B \rightarrow aB \mid b$ 该文法有一个最右推导

$$S \stackrel{*}{\Rightarrow} \underline{aaBab} \Rightarrow aaaBab$$

$$\downarrow \uparrow \uparrow \uparrow \uparrow$$

$$S \stackrel{*}{\Rightarrow} \delta A \omega \Rightarrow \delta \alpha \beta \omega$$

项[$B \rightarrow a \cdot B$, a](a是ω=ab的第一个符号)对于可行前缀

$$\gamma = \delta \alpha = aaa$$

是有效的

- 例: 考虑如下文法
 - $S \rightarrow BB$
 - $B \rightarrow aB \mid b$

该文法还有一个最右推导

$$S \stackrel{*}{\Rightarrow} \underline{B}\underline{\alpha}\underline{B} \Rightarrow B\alpha\underline{\alpha}\underline{B}$$

$$S \stackrel{*}{\Rightarrow} \delta A\omega \Rightarrow \delta\alpha\beta\omega$$

项
$$[B
ightarrow a ullet B$$
,\$]]($\omega = \varepsilon$)对于可行前缀 $\gamma = \delta \alpha = Baa$

是有效的

- LR(1)项集族的构造算法
 - 输入:一个增广文法G'
 - **输出:**LR(1)项集族,其中的每个项集对文法*G*′的一个或多个可行前缀有效

```
SetOfItems CLOSURE(I) {
repeat
for (I中的每个项[A \rightarrow \alpha \cdot B\beta, \alpha])
for (G'中的每个产生式B \rightarrow \gamma)
for (First(\beta a)中的每个终结符号b)
m[B \rightarrow \bullet \gamma, b]放入I中;
until 不能向I中加入更多的项;
return I ;
}
```

- LR(1)项集族的构造算法
 - 输入:一个增广文法G'
 - **输出:**LR(1)项集族,其中的每个项集对文法*G*'的一个或多个可行前缀有效

```
② SetOfItems GOTO(I, X) {
J \coloneqq \emptyset;
for (I中的每个项[A \rightarrow \alpha \cdot X \beta, a])
将项[A \rightarrow \alpha X \cdot \beta, a]加入到集合J中;
return CLOSURE(J)
```

- LR(1)项集族的构造算法
 - 输入:一个增广文法G'
 - **输出:**LR(1)项集族,其中的每个项集对文法*G*′的一个或多个可行前缀有效

```
③ void items(G') {
C \coloneqq \{ \text{CLOSURE}(\{[S' \rightarrow \bullet S, \$]\}) \} ;
repeat
for (C中每个项集I)
for (每个文法符号)
if (GOTO(I, X) \neq \emptyset \land GOTO(I, X) \notin C)
将GOTO(I, X)加入C中;
until 不在有新的项集加入到C中;
```

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

首先计算 $\{[S' \rightarrow \bullet S, \$]\}$ 的闭包:

将*CC*归约为*S*之后可遇见的第一个终结符号

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

首先计算{[$S' \rightarrow \bullet S$, \$]}的闭包:

$$I_0$$
 $[S' \rightarrow \bullet S, \$]$
 $[S \rightarrow \bullet CC, \$]$

再看由新加入的项[$S \rightarrow \bullet CC$, \$] 能否引入更多的项?

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_0 $[S' \rightarrow \bullet S, \$]$ $[S \rightarrow \bullet CC, \$]$

首先计算{[$S' \rightarrow \bullet S$, \$]}的闭包:

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

首先计算{[$S' \rightarrow \bullet S$, \$]}的闭包:

$$I_0$$
 $[S' o extbf{.}S, \$]$
 $[S o extbf{.}CC, \$]$
 $[C o extbf{.}CC, c]$
 $[C o extbf{.}CC, d]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

首先计算{ $[S' \rightarrow \bullet S, \$]$ }的闭包:

$$I_0$$
 $[S' o extbf{.}S, \$]$
 $[S o extbf{.}CC, \$]$
 $[C o extbf{.}CC, c]$
 $[C o extbf{.}CC, d]$

$$[S \rightarrow \varepsilon \bullet CC, \$]$$
 对于每个产生式 $B \rightarrow \gamma$ 和 所证 $[C \rightarrow \bullet d, c]$ 对于每个产生式 $B \rightarrow \gamma$ 和 First(βa)中的终结符号 b 将项[$B \rightarrow \bullet \gamma, b$]加入闭包 [$C \rightarrow \bullet d, c$]

$$First(\beta a) = First(C\$) = \{c, d\}$$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

首先计算 $\{[S' \rightarrow \bullet S, \$]\}$ 的闭包:

$$I_0$$
 $[S' o extbf{.}S, \$]$
 $[S o extbf{.}CC, \$]$
 $[C o extbf{.}cC, c/d]$
 $[C o extbf{.}d, c/d]$

此时没有更多新项, I_0 已确定完成下一步计算 $GOTO(I_0, X)$!

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

I_0 $[S' o extbf{.}S, \$]$ $[S o extbf{.}CC, \$]$ $[C o extbf{.}CC, c/d]$ $[C o extbf{.}d, c/d]$

对不同的文法符号X计算 $GOTO(I_0, X)$:

1. 对于X = S求{[$S' \rightarrow S \cdot , \$$]}的闭包,点(\cdot)后没有非终结符号,从而没有产生式可以处理,所以无法加入新的项,则

$$\begin{matrix} I_1 \\ [S' \rightarrow S \bullet, \$] \end{matrix}$$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_0 $[S' o extbf{.}S, \$]$ $[S o extbf{.}CC, \$]$ $[C o extbf{.}cC, c/d]$ $[C o extbf{.}d, c/d]$

对不同的文法符号X计算 $GOTO(I_0, X)$:

2. 对于X = C求{[$S \rightarrow C \cdot C$, \$]}的闭包

$$[S \to C \bullet C \varepsilon, \$]$$
 对于每个产生式 $B \to \gamma$ 和 $First(\beta a)$ 中的终结符号 b 将项 $[B \to \bullet \gamma, b]$ 加入闭包 $[C \to \bullet d, \$]$ $[C \to \bullet d, \$]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_0, X)$:

2. 对于X = C求{[$S \rightarrow C \cdot C$, \$]}的闭包

$$egin{aligned} I_2\ [S
ightarrow C
ightharpoonup C, \$]\ [C
ightharpoonup c d, \$] \end{aligned}$$

$$I_0$$
 $[S' o extbf{.}S, \$]$
 $[S o extbf{.}CC, \$]$
 $[C o extbf{.}cC, c/d]$
 $[C o extbf{.}d, c/d]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 $[S' \rightarrow \bullet S, \$]$ $[S \rightarrow \bullet CC, \$]$ $[C \rightarrow \bullet cC, c/d]$ $[C \rightarrow \bullet d, c/d]$

对不同的文法符号X计算 $GOTO(I_0, X)$:

3. 对于
$$X = c$$
求 $\{[C \rightarrow c \cdot C, c/d]\}$ 的闭包

3. 对于
$$X = C$$
来{[$C \to C \circ C, C/a$]}的闭包 [$C \to \circ c \circ C, c/d$] 对于每个产生式 $B \to \gamma$ 和 $First(\beta a)$ 中的终结符号 b 将项[$B \to \circ \gamma, b$]加入闭包 [$C \to \circ d, c/d$]

$$First(\beta a) = First(c/d) = \{c, d\}$$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_0, X)$:

3. 对于X = c求{[$C \rightarrow c \cdot C, c/d$]}的闭包

$$egin{aligned} I_3\ [extbf{ extit{C}} &
ightarrow extbf{ extit{C}}, c/d]\ [extbf{ extit{C}} &
ightarrow extbf{ extit{c}} extbf{ extit{c}}, c/d]\ [extbf{ extit{C}} &
ightarrow extbf{ extit{d}}, c/d] \end{aligned}$$

$$I_0$$
 $[S' o extbf{.}S, \$]$
 $[S o extbf{.}CC, \$]$
 $[C o extbf{.}cC, c/d]$
 $[C o extbf{.}d, c/d]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_0 $[S' o extbf{.}S, \$]$ $[S o extbf{.}CC, \$]$ $[C o extbf{.}CC, c/d]$ $[C o extbf{.}d, c/d]$

对不同的文法符号X计算 $GOTO(I_0, X)$:

4. 对于X = d求{[$C \rightarrow d \cdot , c/d$]}的闭包

$$[C \rightarrow d \cdot \varepsilon \varepsilon, \underline{c/d}]$$
 对于每个产生式 $B \rightarrow \gamma$ 和 $First(\beta a)$ 中的终结符号 b 将项 $[B \rightarrow \bullet \gamma, b]$ 加入闭包

不存在 以*ε*为头的产生式!

 $First(\boldsymbol{\beta}\boldsymbol{a}) = F\overline{irst}(\boldsymbol{c}/\boldsymbol{d}) = \{\boldsymbol{c}, \boldsymbol{d}\}$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_0 [S' o ullet S, \$] [S o ullet CC, \$] [C o ullet cC, c/d] [C o ullet d, c/d]

对不同的文法符号X计算 $GOTO(I_0, X)$:

4. 对于X = d求{[$C \rightarrow d \cdot , c/d$]}的闭包

$$[C
ightharpoonup d^{\bullet}, c/d]$$

到此, I_0 上的GOTO函数完成计算!

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_1, X)$:

 $[S' \to S^{\bullet}, \$]$

项 $[S' \rightarrow S \bullet, \$]$ 中红点 (\bullet) 在最后,没有文法符号在点之后,所以没有对应的GOTO项集!

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_2 $[S \rightarrow C \cdot C, \$]$ $[C \rightarrow \cdot cC, \$]$ $[C \rightarrow \cdot d, \$]$

对不同的文法符号X计算 $GOTO(I_2, X)$:

1. 对于X = C求{[$S \rightarrow CC \cdot$, \$]}的闭包

点后没有非终结符号,所以闭包只包含[$S \rightarrow CC \cdot$, \$]

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_2 [S
ightharpoonup C
ightharpoonup C, \$] [C
ightharpoonup c C, \$] [C
ightharpoonup d, \$]

对不同的文法符号X计算 $GOTO(I_2, X)$:

2. 对于
$$X = c$$
求 $\{[C \to c \cdot C, \$]\}$ 的闭包
$$[C \to c \cdot C\varepsilon, \$]$$
 对于每个产生式 $B \to \gamma$ 和 First(βa)中的终结符号 b 将项 $[B \to \circ \gamma, b]$ 为例包
$$[C \to \alpha \cdot B\beta, a]$$
 First(βa) = First(βa) = First(βa) = $\{\$\}$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_2 $[S \rightarrow C \cdot C, \$]$ $[C \rightarrow \cdot cC, \$]$ $[C \rightarrow \cdot d, \$]$

对不同的文法符号X计算 $GOTO(I_2, X)$:

2. 对于X = c求{[$C \rightarrow c \cdot C$, \$]}的闭包

$$I_6$$
 $[C
ightharpoonup c
ightharpoon$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_2 $[S \rightarrow C \cdot C, \$]$ $[C \rightarrow \cdot cC, \$]$ $[C \rightarrow \cdot d, \$]$

对不同的文法符号X计算 $GOTO(I_2, X)$:

3. 对于X = d求{[$C \rightarrow d \cdot ,$ \$]}的闭包

$$I_7$$
 $[C o d ext{-}, \$]$

点后没有非终结符号,所以闭包只包含[$C \rightarrow d \cdot , \$$]

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_3 [C
ightharpoonup c
ightharpoon

对不同的文法符号X计算 $GOTO(I_3, X)$:

1. 对于
$$X = C$$
求{[$C \rightarrow cC \cdot , c/d$]}的闭包

$$I_8$$
 $[C
ightharpoonup cC
ightharpoonup , c/d]$

点后没有非终结符号,所以闭包只包含[$C \rightarrow cC \cdot, c/d$]

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_3 [C
ightharpoonup c
ightharpoon

对不同的文法符号X计算 $GOTO(I_3, X)$:

2. 对于
$$X = c$$
求{[$C \rightarrow c \cdot C, c/d$]}的闭包

前面已经计算过:

$$I_3$$
 $[C
ightharpoonup c
ightharpoon$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 $[C \rightarrow c \cdot C, c/d]$ $[C \rightarrow \bullet cC, c/d]$ $[C \rightarrow \bullet d, c/d]$

对不同的文法符号X计算 $GOTO(I_3, X)$:

3. 对于X = d求 $\{[C \rightarrow d \cdot, c/d]\}$ 的闭包

前面已经计算过:
$$[C \rightarrow d \cdot, c/d]$$

$$[C \rightarrow \frac{I_4}{d \bullet}, c/d]$$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_4, X)$:

$$[C \rightarrow \frac{I_4}{d^{\bullet}}, c/d]$$

 $[C \rightarrow d \cdot, c/d]$ 中点后没有非终结符号, 因此没有相应的GOTO项集

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_5, X)$:

 $[S \rightarrow CC \cdot, \$]$ 中点后没有非终结符号, 因此没有相应的GOTO项集

 $[S \rightarrow CC \cdot, \$]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_6 [C
ightharpoonup c
ightharpoon

对不同的文法符号X计算 $GOTO(I_6, X)$:

1. 对于X = C求{[$C \rightarrow cC \cdot$, \$]}的闭包

$$[C \rightarrow CC^{\bullet}, \$]$$

点后没有非终结符号,所以闭包只包含[$C \rightarrow cC \cdot , \$$]

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_6, X)$:

2. 对于X = c求{[$C \rightarrow c \cdot C$, \$]}的闭包

前面已经计算过:

$$I_6$$
 $[C \rightarrow c \cdot C, \$]$
 $[C \rightarrow c \cdot C, \$]$
 $[C \rightarrow d, \$]$

$$I_6$$
 $[C
ightharpoonup c
ightharpoon$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_6, X)$:

3. 对于X = d求{[$C \rightarrow d \cdot$, \$]}的闭包

前面已经计算过:
$$[C \rightarrow d \cdot , \$]$$

$$I_6$$
 $[C
ightharpoonup c
ightharpoon$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

对不同的文法符号X计算 $GOTO(I_7, X)$:

没有对应的GOTO项集!

 $[C \rightarrow d \cdot , \$]$

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 I_8 [C
ightharpoonup cC
ightharpoonup , c/d]

对不同的文法符号X计算 $GOTO(I_8, X)$:

没有对应的GOTO项集!

- 例:考虑增广文法:
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

 $[C \rightarrow CC^{\bullet}, \$]$

对不同的文法符号X计算 $GOTO(I_9, X)$:

没有对应的GOTO项集!

终于完成了所有项集计算!!!

2.7 规范LR(1)语法分析表

- 规范LR(1)语法分析表构造算法
 - 输入:一个增广文法G'
 - **输出:** G'的规范LR语法分析表的函数ACTION和 GOTO
 - 方法:
 - 1. 构造G'的**LR(1)**项集族 $C' = \{I_0, I_1, ..., I_n\}$
 - 2. 语法分析器的状态i根据I_i构造得到
 - 3. 如果 $GOTO(I_i, A_N) = I_j$, 则 $GOTO[i, A_N] = j$
 - 4. 规则2和3没有定义的条目均设置为"报错"
 - 5. 初始状态为由[$S' \rightarrow \bullet S$, \$]所在项集构造所得的状态

2.7 规范LR(1)语法分析表

- 根据 I_i 构造得到**状态**i,状态i的语法分析动作按照如下规则设定:
 - 如果 $[A \rightarrow \alpha \bullet a_T \beta, b] \in I_i \land GOTO(I_i, a_T) = I_j$,则 $ACTION[i, a_T] \coloneqq "移进状态j"$
 - 如果 $[A \to \alpha \bullet, \alpha] \in I_i \land A \neq S'$,则 $ACTION[i, \alpha] \coloneqq "归约A \to \alpha"$
 - 如果 $[S' \rightarrow S \bullet, \$] \in I_i$,则 $ACTION[i, \$] \coloneqq "接受"$

如果由上述规则导致冲突发生,则文法不是LR(1) 文法,此时该算法无法生成一个语法分析器

2.7 规范LR(1)语法分析表

• 例:考虑文法:

1.
$$S \rightarrow CC$$

2.
$$C \rightarrow cC$$

3.
$$C \rightarrow d$$

状 态	ACTION			GОТО	
	С	d	\$	S	С
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s 4			8
4	r3	r4			
5			r1		
6	s6	s 7			9
7			r3		
8	r2	r2			
9			r2		