Continuous Distributions

distribution	pdf	mean	variance	mgf/moment
$\overline{\mathrm{Beta}(\alpha,\beta)}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; \ x \in (0,1), \ \alpha,\beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$
$Cauchy(\theta, \sigma)$	$\frac{1}{\pi\sigma} \frac{1}{1 + (\frac{x-\theta}{2})^2}; \ \sigma > 0$	does not exist	does not exist	does not exist
Notes: Special case of Students's t with 1 degree of freedom. Also, if X, Y are iid $N(0,1), \frac{X}{Y}$ is Cauchy				
χ_p^2 Notes: Gamma($\frac{p}{2}, 2$).	$\frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{\frac{p}{2}-1}e^{-\frac{x}{2}}; \ x>0, \ p\in N$	p	2p	$\left(\frac{1}{1-2t}\right)^{\frac{p}{2}},\ t<\frac{1}{2}$
Double Exponential (μ, σ)	$\frac{1}{2\sigma}e^{-\frac{ x-\mu }{\sigma}}; \ \sigma>0$	μ	$2\sigma^2$	$\frac{e^{\mu t}}{1 - (\sigma t)^2}$
Exponential (θ)	$\frac{1}{\theta}e^{-\frac{x}{\theta}}; \ x \ge 0, \ \theta > 0$	θ	θ^2	$\frac{1}{1-\theta t}$, $t<\frac{1}{\theta}$
Notes: Gamma $(1,\theta)$. Memoryless. $Y=X^{\frac{1}{\gamma}}$ is Weibull. $Y=\sqrt{\frac{2X}{\beta}}$ is Rayleigh. $Y=\alpha-\gamma\log\frac{X}{\beta}$ is Gumbel.				
$F_{ u_1, u_2}$	$\frac{\Gamma\left(\frac{\nu_1+\nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \frac{x^{\frac{\nu_1-2}{2}}}{\left(1+\left(\frac{\nu_1}{\nu_2}\right)x\right)^{\frac{\nu_1+\nu_2}{2}}}; \ x>0$	$\frac{\nu_2}{\nu_2 - 2}, \ \nu_2 > 2$	$2(\frac{\nu_2}{\nu_2-2})^2 \frac{\nu_1+\nu_2-2}{\nu_1(\nu_2-4)}, \ \nu_2 > 4$	$EX^{n} = \frac{\Gamma(\frac{\nu_{1}+2n}{2})\Gamma(\frac{\nu_{2}-2n}{2})}{\Gamma(\frac{\nu_{1}}{2})\Gamma(\frac{\nu_{2}}{2})} \left(\frac{\nu_{2}}{\nu_{1}}\right)^{n}, \ n < \infty$
Notes: $F_{\nu_1,\nu_2} = \frac{\chi_{\nu_1}^2/\nu_1}{\chi_{\nu_2}^2/\nu_2}$, where the χ^2 s are independent. $F_{1,\nu} = t_{\nu}^2$.				
$\operatorname{Gamma}(lpha,eta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}; \ x>0, \ \alpha,\beta>0$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha},\ t<\frac{1}{\beta}$
Notes: Some special cases are exponential $(\alpha = 1)$ and χ^2 $(\alpha = \frac{p}{2}, \beta = 2)$. If $\alpha = \frac{2}{3}$, $Y = \sqrt{\frac{X}{\beta}}$ is Maxwell. $Y = \frac{1}{X}$ is inverted gamma.				
$\operatorname{Logistic}(\mu, \beta)$	$\frac{1}{\beta} \frac{e^{-\frac{x-\mu}{\beta}}}{\left[1+e^{-\frac{x-\mu}{\beta}}\right]^2}; \ \beta > 0$	μ	$\frac{\pi^2 \beta^2}{3}$	$e^{\mu t}\Gamma(1+\beta t), t <\frac{1}{\beta}$
Notes: The cdf is $F(x \mu,\beta) = \frac{1}{1+e^{-\frac{x-\mu}{\beta}}}$.				
$Lognormal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} \frac{1}{x} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}; \ x > 0, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)} - e^{2\mu+\sigma^2}$	$EX^n = e^{n\mu + \frac{n^2\sigma^2}{2}}$
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \ \sigma > 0$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
$Pareto(\alpha, \beta)$	$\frac{\beta\alpha^{\beta}}{x^{\beta+1}}; \ x > \alpha, \ \alpha, \beta > 0$	$\frac{\beta\alpha}{\beta-1}, \ \beta>1$	$\frac{\beta\alpha^2}{(\beta-1)^2(\beta-2)}, \ \beta > 2$	does not exist
$t_ u$	$\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}} \frac{1}{(1+\frac{x^2}{2})^{\frac{\nu+1}{2}}}$		$\frac{\nu}{\nu-2}, \nu > 2$	$EX^n = \frac{\Gamma(\frac{\nu+1}{2})\Gamma(\nu-\frac{n}{2})}{\sqrt{\pi}\Gamma(\frac{\nu}{2})}\nu^{\frac{n}{2}}, n \text{ even}$
Notes: $t_{\nu}^2 = F_{1,\nu}$.	$(1+\frac{\omega}{\nu})$ 2			V (2)
Uniform (a, b)	$\frac{1}{b-a}$, $a \le x \le b$ 1, this is special case of beta $(\alpha = \beta = 1)$.	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Notes: If $a = 0$, $b = 1$ Weibull (γ, β) Notes: The mgf only	$\frac{\gamma}{\beta}x^{\gamma-1}e^{-\frac{x^{\gamma}}{\beta}}; \ x > 0, \ \gamma, \beta > 0$	$\beta^{\frac{1}{\gamma}}\Gamma(1+\frac{1}{\gamma})$	$\beta^{\frac{2}{\gamma}} \left[\Gamma(1 + \frac{2}{\gamma}) - \Gamma^2(1 + \frac{1}{\gamma}) \right]$	$EX^n = \beta^{\frac{n}{\gamma}} \Gamma(1 + \frac{n}{\gamma})$