05_Decision_Tree_Learning

5.2 Entropy

5.2.1 Attributes & Purity of Decision

- We want to know which attribute is the best classifier.
- Each attribute can be represented as a node, splitting test sample into 2 classes (in the binary case)
- The *purer* the splitting, the better the decision.

5.2.2 Entropy 熵

[DEF] Entropy 熵

- Given a split from collection S with **portions** of both positive and negative p_+, p_- , the entropy of the collection would be:
 - $\bullet \ \ Entropy(S) = -p_+\log_2 p_+ p_-\log_2 p_-$
- The higher the entropy, the fewer the information the sample contains.
 - High Entropy = More Messy, Lower Entropy = Less Messy

• $f(p) = -p \log_2 p - (1-p) \log_2 (1-p)$

[Prop] Entropy 熵的性质

- Domain is [0,1];
 - Monotonically, Increase in $p_+\in[0,rac{1}{2}]$, Decrease in $p_+\in[rac{1}{2},1]$ (symmetric in p_-);

- Range is [0,1];
 - Reaches the peak at $p=rac{1}{2}$, reaches the lowest point at $p_+=0$ and $p_+=1$.

5.2.3 Information Gain

By calculating the difference between

- The entropy BEFORE splitting, and
- The entropy AFTER splitting,
 we can calculate the "Information Gained" from the splitting.
- When calculating, we should also consider the weights, i.e., the significance of each branch.

Basics

• Suppose that a collection S has x = |S| samples, separated into n branches S_1, S_2, \dots, S_n . For a specific branch S_i , it contains $x_i = |S_i|$ samples.

$$\bullet \ \ x = x_1 + x_2 + \cdots + x_n$$

• Among the x samples, there are x_+ positive samples and x_- negative samples.

•
$$x = x^+ + x^-$$

• For each branch x_i , there are x_+^i positive samples and x_-^i negative samples.

$$\bullet \ \ x_i = x_i^+ + x_i^-$$

• Obviously,
$$x^+ = \sum_{i=1}^n x_i^+$$
 , and $x^- = \sum_{i=1}^n x_i^-$

Entropy Before Split

$$ullet \;\; p_+ = rac{x^+}{x^+ + x^-}, \, p^- = rac{x^-}{x^+ + x^-}$$

$$\bullet \ \ Entropy(S) = -p^+\log_2 p^+ - p^-\log_2 p^-$$

Weighted Entropy After Split

• For each branch S_i :

$$ullet \;\; p_i^+ = rac{x_i^+}{x_i^+ + x_i^-}, \, p_i^- = rac{x_i^-}{x_i^+ + x_i^-}$$

- Weight of this branch $w_i = \dfrac{x_i}{x} = \dfrac{|S_i|}{|S|}$
- Entropy of this branch $Entropy(S_i) = -p_i^+ \log_2 p_i^+ p_i^- \log_2 p_i^-$
- Total weighted entropy after split:

$$ullet \ \sum_{i=1}^n rac{x_i}{x} (-p_i^+ \log_2 p_i^+ - p_i^- \log_2 p_i^-)$$

$$ullet = \sum_{i=1}^n rac{|S_i|}{|S|} Entropy(S_i)$$

Information Gain

• Gain(S) = Entropy Before Split - Entropy After Split

$$ullet = Entropy(S) - \sum_{i=1}^n rac{|S_i|}{|S|} Entropy(S_i)$$

5.2.4 From Entropy to Information Gain

Given:

- A decision node, with the amounts in each class:
 - Collection 1 (*S*₁):
 - Positive: n₁⁺
 - Negative: n₁⁻
 - Collection 2 (S2):
 - Positive : n_2^+
 - Negative: n_2^-
- Example:
 - $ullet n_1^+ = 3, n_1^- = 4$
 - $\bullet \ \ n_2^+ = 6, n_2^- = 1$

Do:

- Get the proportion of positive & negative samples in both collections.
 - S_1 :

$$ullet \ p_1^+ = rac{n_1^+}{n_1^+ + n_1^-} = rac{3}{3+4} = rac{3}{7}$$

$$ullet p_1^- = rac{n_-^1}{n_+^1 + n_-^1} = rac{4}{3+4} = rac{4}{7}$$

 \bullet S_2 :

$$egin{align} ullet p_2^+ &= rac{n_2^+}{n_2^+ + n_2^-} = rac{5}{5+1} = rac{5}{6} \ ullet p_2^- &= rac{n_2^-}{n_2^+ + n_2^-} = rac{1}{5+1} = rac{1}{6} \ ullet \end{array}$$

- Calculate Entropies:
 - Calculate entropy AFTER splitting:

$$ullet Entropy(S_1) = -p_1^+ \log_2 p_1^+ - p_1^- \log_2 p_1^- = -rac{3}{7} \log_2 rac{3}{7} - rac{4}{7} log_2 rac{4}{7} = 0.9852$$

$$\bullet \;\; Entropy(S_2) = -p_2^+ \log_2 p_2^+ - p_2^- \log_2 p_2^- = -\frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} log_2 \frac{1}{6} = 0.6500$$

Calculate overall BEFORE splitting:

$$ullet p^+ = rac{n^+}{n^+ + n^-} = rac{9}{9+4} = rac{9}{13}$$

$$ullet p^- = rac{n^-}{n^+ + n^-} = rac{4}{9+4} = rac{4}{13}$$

$$\bullet \ \ Entropy(S) = -p_{+}log_{2}p_{+} - p_{-}log_{2}p_{-} = -\frac{9}{13}\log_{2}\frac{9}{13} - \frac{4}{13}\log_{2}\frac{4}{13} = 0.8905$$

• Calculate Information Gain:

$$ullet \ Gain(S) = Entropy(S) - \sum_{i \in \{1,2\}} rac{|S_i|}{|S|} Entropy(S_i)$$

• =
$$0.8905 - (\frac{7}{13} \times 0.9852 + \frac{6}{13} \times 0.6500)$$

•
$$= 0.0600$$