Introduction to R

Outline

- Processing Data in R
- Programming in R
- Graphical Analysis in R
- Statistical Analysis in R

RStudio

Select Start → All Programs → RStudio → Rstudio

Select File → New File → R Script

- Script pane
- Console pane
- Workspace / History pane
- Files, Plots, Packages and Help pane

Creating Subsets in Data Frames

```
sales<- read.csv("yearly_sales.csv", header = TRUE);
sales<- read.csv(file.choose(), header = TRUE);</pre>
```

```
>str(sales) ## structure of sales
>head(sales) ## Top few records
>sales$sales_total
>sales$sales_total[sales$sales_total > 200]
```

Subset(): Creating Subsets in Data Frames

>subset(sales\$cust_id, sales\$sales_total>200)

>subset(sales, sales_total>200)

Subset(): Creating Subsets in Data Frames.....

> subset(sales ,sales_total >200 & num_of_orders >5, select = - num_of_orders)

>subset(sales ,sales_total >200 & num_of_orders >5, c(num_of_orders, sales_total))

>subset(sales ,sales_total >500 | num_of_orders >8, c(num_of_orders, sales_total))

Statistical functions

rnorm, dnorm, pnorm, qnorm	Normal distribution random sample, density, cdf and quantiles
lm, glm, anova	Model fitting
loess, lowess	Smooth curve fitting
sample	Resampling (bootstrap, permutation)
.Random.seed	Random number generation
mean, median	Location statistics
<pre>var, cor, cov, mad, range</pre>	Scale statistics
svd, qr, chol, eigen	Linear algebra

DESCRIPTIVE STATISTICS

summary(sales)

x<-sales\$sales total

y<- sales\$num_of_orders

sd(x)

var(x)

apply(sales [,c(1:3)],

MARGIN=2, FUN=sd)

IQR(x)

mean(x)

median(x)

range(x)

cor(x,y)

cov(x,y)

Graphical functions

plot	Generic plot eg: scatter
points	Add points
lines, abline	Add lines
text, mtext	Add text
legend	Add a legend
axis	Add axes
box	Add box around all axes
par	Plotting parameters (lots!)
colors, palette	Use colors

Demo

>demo(graphics)

Plots for single variable

- \triangleright NormDist<-rnorm(n=500, m=24.2, sd=2.2)
- hist(NormDist)
- histinfo <-hist(NormDist)</p>
- > histinfo
 - Lists breaks, counts, density, mids...

hist(NormDist, breaks=20)

Iris Data set

- > str(iris) 'data.frame': 150 obs. of 5 variables: \$
 Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4
 4.9 ...
- \$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
- \$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5
 1.4 1.5 ...
- \$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
- \$ Species : Factor w/ 3 levels "setosa", "versicolor", "verginica"

- Histogram
 - hist(iris\$sepal.length)

- Add a title...
 - The "main" statement will give the plot an overall heading.
 - hist(iris\$sepal.wi
 dth , main='iris:
 Sepal Width')

- Adding axis labels...
- Use "xlab" and "ylab" to label the X and Y axes, respectively.
- hist(iris\$Sepal.Width, main="iris Data Set", xlab="Sepal width", ylab="Freq")

- Changing colors...
- Use the col statement.
 - ?colors will give you help on the colors.
 - Common colors may simply put in using the name.
 - hist(iris\$Sepal.Width, main="iris Data Set", xlab="Sepal width", ylab="Freq", col="red")

Basic Graphics – Colors

Pie Charts

totalSales1<-sales\$sales_total[1:20] time<-1995:2014

- pie(totalSales1, labels=as.character(time))
- pie(totalSales1[1:5], labels=as.character(time[1:5]))

Box Plots

outliers

outliers

outer fence

suspected outliers

10

outer fence

1.5 IQR

inner fence

1.5 IQR

third quartile

IQR

first quartile

boxplot(iris\$Sepal.Length)

Boxplots

- Change it!
- boxplot(iris\$Sepal.Length
 , main="iris", ylab="sepal
 length")

Box-Plots - Groupings

- What if we want several box plots side by side to be able to compare them.
- First Subset the Data into separate variables.
 - irisSetosa<-subset(iris, Species="setosa")</p>
 - irisVersicolor<-subset(iris, Species="versicolor")</p>
 - irisVirginica<-subset(iris, Species="virginica")</p>
- Then Create the box plot.
 - boxplot(irisSetosa\$Sepal.Length, irisVersicolor\$Sepal.Length, irisVirginica\$Sepal.Length)

Boxplots – Groupings

Boxplots - Groupings

boxplot(irisSetosa\$Sepal.Length, irisVersicolor\$Sepal.Length, irisVirginica\$Sepal.Length, main="iris", ylab="sepal Length", names=c("Setosa", "Versicolor", "Virginica"))

Using Plots for Bivariate

Scatter Plots

- Suppose we have two variables and we wish to see the relationship between them.
- A scatter plot works very well.
- R code:
 - plot(x,y)
- Example
 - plot(iris\$Sepal.Length, iris\$Sepal.Width)
 - plot(iris\$Sepal.Length, iris\$petal.Width)

Scatterplots

Scatterplots

plot(iris\$Sepal.Length, iris\$petal.Width, main="sepal length vs petal width", xlab="petal width", ylab= "sepal length")

- Often data comes through time.
- Consider Dell stock
 - totalSales1<-sales\$sales_total[1:20]</p>
 - time<-1995:2014
 - plot(time,totalSales1)

plot(time, totalSales1, type="o")

plot(time, totalSales1, type="o", main="Total Sales over the Years", xlab="Year", ylab="Total Sales")

Overlaying Plots

 Often we have more than one variable measured against the same predictor (X).

- plot(time, totalSales1, type="o", main="Total Sales over the Years", xlab="Year", ylab="Total Sales")
- lines(time, totalSales2)

Overlaying Graphs

Overlaying Graphs

lines(time, totalSales2, lty=2)

Adding a Legend

- Adding a legend is a bit tricky in R.
- Syntax

Adding a Legend

Paneling Graphics

- Suppose we want more than one graphic on a panel.
- We can partition the graphics panel to give us a framework in which to panel our plots.

```
    par(mfrow = c(nrow, ncol))
    Number of Number of columns rows
```

Paneling Graphics

- Consider the following:
- par(mfrow=c(2,2))
- hist(iris\$Sepal.Width, main="iris Data Set", xlab="Sepal width", ylab="Freq", col="red")
- boxplot(irisSetosa\$Sepal.Length, irisVersicolor\$Sepal.Length, irisVirginica\$Sepal.Length, main="iris", ylib="sepal Length", names=c("Setosa", "Versicolor", "Virginica"))
- plot(iris\$Sepal.Length, iris\$petal.Width, main="sepal length vs petal width", xlab="petal width", ylab= "sepal length")
- plot(time1, totalSales1, type="o", main="Total Sales over the Years", xlab="Year", ylab="Total Sales")
- lines(time, totalSales2, lty=2)

Paneling Graphics

Plots for multiple variables

pairs(iris)

Plots for multiple variables

coplot(iris\$Sepal.Length~iris\$Sepal.Width|iris\$Petal.Length)

