Vysoké Učení Technické v Brně Fakulta informačních technologií

Documentation for IPK - Project 2

Packet sniffer Implementation

Marek Sarvaš (xsarva00) Brno, 03.05.2020

Contents

C	ontents	1
1	Preface	2
2	Theory	2
3	Implementation 3.1 Main 3.2 CHECK _ ARGS 3.3 CALLBACK	3 3 3
4	Testing 4.1 Basic filter testing	3 4
5	References	5

1 Preface

Documentation for packet sniffer implemented in C++ language with libraries for manipulating with packets, for neccessary header structures such as ethernet header, ip header tcp header etc., namely **pcap.h**, **netinet/ip.h**, **netinet/ip6.h**, **netinet/tcp.h** etc.. Programme is sniffing packets using IPv4/IPv6 and UDP/TCP protocol on various ports.

2 Theory

Transport layer

Is 4th layer which transports application-layer messages between application endpoints using TCP and UDP protocols (in the internet). It breaks application messages into segments i.e. packets and sends them into internet layer where the recieving side reassembles them and passes to application layer.

Packet

Packet is an unit that carries data over network, it represents the smallest amount of data that can be transferred over a network at once. It contains control information (source destination addresses, error detection and correction etc.) and the data it is carrying. User data are encapsulated between header and trailer where control information are carried.

TCP

It is connection-oriented protocol in which the connection between client and server is established before any data is sent. TCP uses three way handshake for better error detection and reliability but adds on latency. The minimum size of header is 20 bytes and maximum 60 bytes where main segments used in this project where source port and destination port, each of them takes 16 bits.

UDP

UDP is another transport layer protocol but is unreliable and connectionless unlike TCP. It does not use three way handshake because there is no need to establish connection before data transfer. Using UDP performance is heigher it does not check for errors, drops delayed packets and hase better latency than TCP. It is highly used in pc gaming or video communication. UDP header has fixed length to 8 bytes and contains neccessary information for this project such as *source port* and *destination port* with same 16 bits length as TCP.

3 Implementation

Sniffer is implemented in one file ipk-sniffer, whole program is divided into few functions and main function. Compilation and how to run the sniffer is

3.1 Main

First part of main function is for parsing given arguments using check_args function. If interface was not given as argument all interfaces are printed in loop. If program got interface (or other optional arguments such as port, tcp, etc.) Firstly opens given interface for sniffing using pcap _open _live, on success compile given filter composed from given program arguments - tcp, udp, port. If compiled successfuly filter is applied on interface handler. For actual sniffing pcap _loop function is used with arguments interface handler, number of packets to be sniffed (stored int argument structure), callback function (documented below). There is no time limit in which packet has to be sniffed, because if user wants to sniffed eg. 2 packets program will run until 2 packets are sniffed. After wanted number of packets is sniffed programme closes interface handler and frees allocated memory. Otherwise if interface where tcp/udp packets could be sniffed were given sniffer will run infinitely until interuption (eg.: with CTRL+C).

3.2 CHECK ARGS

Verify arguments given to program using getopt, in case of -p (port filter) convert port number into integer and checks its correct value which has to be between 0 and 65535.

CREATE _FILTER Creates a string filter using tcp, udp, port number from values given as programme arguments eg.: "port 80", "tcp", "udp port 5353" etc. Because programme is sniffing only tcp or udp packets filter "tcp udp" is same as none.

3.3 CALLBACK

Function passed into peaploop called for every packet sniffed. Is responsible for parsing packet to get necessary information such as: time, protocol of packet, source and destination ports and ip addresses; resolving ip addresses into names and printing these information and whole packet on standard output.

4 Testing

For testing purpose **Wireshark** application was used. Sniffer was tested only manually, filters number of packets etc., no automated testing was involved, for different configuration. Output of implemented ipk-sniffer was compared with the same packet in Wireshark for same time, source and destination ports and addresses length and data of packet.

4.1 Basic filter testing

This involved testing differen configuration of filter i.e. combination of **tcp**, **udp** and **port number**. Also manually added in code filter for IPv6 but IPv6 address did not occure that often in ethernet traffic so that was a bit time consuming.

4.2 Name resolving with cache

When resolving FQDN from ip address using getaddrinfo() and getnameinfo() additional packets are sent. This fact with combination of more packet sniffing e.g.: argument -n 10 can result into repeatedly sniffing only these packet for name resolving.

Examples are run with -n 20 configuration

•	wit	hout	cach	ıe

±⊍				131.101.113.7	192.100.00.101	TCP		h-ative ack] 442 → 24200
10	2020-05-02	22:19:39.5	140019	192.168.55.101	192.168.55.1	DNS	98 Standard	query 0x973c PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0x973c N
				192.168.55.101	192.168.55.1	DNS		query 0x973c PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0x973c N
10	2020-05-02	22:19:39.5	383296	192.168.55.101	192.168.55.1	DNS		query 0x871b PTR 7.113.
10	2020-05-02	22:19:40.3	3411516	192.168.55.101	192.168.55.1	DNS	97 Standard	query 0x871b PTR 7.113.
				192.168.55.1	192.168.55.101	DNS		query response 0x871b N
				192.168.55.1	192.168.55.101	DNS		query response 0x871b
				192.168.55.101	192.168.55.1	DNS		query 0x871b PTR 7.113.
10	2020-05-02	22:19:40.3	3531691	192.168.55.101	192.168.55.1	DNS	97 Standard	query 0xc993 PTR 7.113.
10	2020-05-02	22:19:40.3	3567809	192.168.55.1	192.168.55.101	DNS	86 Standard	query response 0x871b N
10				192.168.55.101	192.168.55.1	ICMP		ion unreachable (Port ur
						DNS		
				192.168.55.1	192.168.55.101			query response 0xc993 N
				192.168.55.101	192.168.55.1	DNS		query 0xc993 PTR 7.113.
10	2020-05-02	22:19:40.3	8665340	192.168.55.1	192.168.55.101	DNS	86 Standard	query response 0xc993 N
10	2020-05-02	22:19:40.3	673009	192.168.55.101	192.168.55.1	DNS	98 Standard	query 0x60b6 PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0x60b6 N
						DNS		
				192.168.55.101	192.168.55.1			query 0x60b6 PTR 101.55
				192.168.55.1	192.168.55.101	DNS	87 Standard	query response 0x60b6 N
10	2020-05-02	22:19:40.5	370740	192.168.55.101	192.168.55.1	DNS	98 Standard	query 0x9409 PTR 101.55
10	2020-05-02	22:19:40.6	677574	192.168.55.1	192.168.55.101	DNS	98 Standard	query response 0x9409 N
				192.168.55.101	192.168.55.1	DNS		query 0x9409 PTR 101.55
				192.168.55.1		DNS		
					192.168.55.101			query response 0x9409 N
				192.168.55.101	192.168.55.1	DNS		query 0xf26c PTR 1.55.1
10	2020-05-02	22:19:40.7	015813	192.168.55.1	192.168.55.101	DNS	145 Standard	query response 0xf26c N
10	2020-05-02	22:19:40.7	016886	192.168.55.101	192.168.55.1	DNS	85 Standard	query 0xf26c PTR 1.55.1
				192.168.55.1	192.168.55.101	DNS		query response 0xf26c N
				192.168.55.101		DNS		
					192.168.55.1			query 0x3765 PTR 1.55.1
				192.168.55.1	192.168.55.101	DNS		query response 0x3765 N
10	2020-05-02	22:19:40.7	119042	192.168.55.101	192.168.55.1	DNS	85 Standard	query 0x3765 PTR 1.55.1
10	2020-05-02	22:19:40.7	167133	192.168.55.1	192.168.55.101	DNS	85 Standard	query response 0x3765 N
				192.168.55.101	192.168.55.1	DNS		query Oxdeab PTR 101.55
				192.168.55.1	192.168.55.101	DNS		
								query response Oxdeab N
				192.168.55.101	192.168.55.1	DNS		query 0xdeab PTR 101.55
10	2020-05-02	22:19:40.7	272998	192.168.55.1	192.168.55.101	DNS	87 Standard	query response 0xdeab N
10	2020-05-02	22:19:40.7	278548	192.168.55.101	192.168.55.1	DNS	98 Standard	query 0xf502 PTR 101.55
				192.168.55.1	192,168,55,101	DNS		query response 0xf502 N
				192.168.55.101	192.168.55.1	DNS		
								query 0xf502 PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0xf502 N
10	2020-05-02	22:19:40.7	429984	192.168.55.101	192.168.55.1	DNS	96 Standard	query 0xf458 PTR 1.55.1
10	2020-05-02	22:19:40.7	475254	192.168.55.1	192.168.55.101	DNS	96 Standard	query response 0xf458 N
				192.168.55.101	192.168.55.1	DNS		query 0xf458 PTR 1.55.1
				192.168.55.1	192.168.55.101	DNS		query response 0xf458 N
				192.168.55.101	192.168.55.1	DNS		query 0xc726 PTR 1.55.1
				192.168.55.1	192.168.55.101	DNS		query response 0xc726 N
10	2020-05-02	22:19:40.7	597689	192.168.55.101	192.168.55.1	DNS	85 Standard	query 0xc726 PTR 1.55.1
				192.168.55.1	192.168.55.101	DNS	85 Standard	query response 0xc726 N
				192.168.55.101	192.168.55.1	DNS		query 0xfd59 PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0xfd59 N
				192.168.55.101	192.168.55.1	DNS		query 0xfd59 PTR 101.55
10	2020-05-02	22:19:40.7	751876	192.168.55.1	192.168.55.101	DNS	87 Standard	query response 0xfd59 N
10	2020-05-02	22:19:40.7	772421	192.168.55.101	192.168.55.1	DNS		query 0x36a5 PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0x36a5 N
				192.168.55.101	192.168.55.1	DNS		query 0x36a5 PTR 101.55
				192.168.55.1	192.168.55.101	DNS		query response 0x36a5 N
10	2020-05-02	22:19:40.7	871985	192.168.55.101	192.168.55.1	DNS	96 Standard	query 0x3abc PTR 1.55.1
10	2020-05-02	22:19:40.7	916013	192.168.55.1	192.168.55.101	DNS	96 Standard	query response 0x3abc N
				192.168.55.101	192.168.55.1	DNS		query 0x3abc PTR 1.55.1
10	2020 00-02	2211014011	020002	101.100.00.101	102110010011	DITO	oo ocanaan u	quely onoube i'm 110011

• using cache

1	1	2020-05-02 22:22:47.0306554 192.168.55.1	192.168.55.101	DNS	142 Standard query response 0x7864 F
1	1	2020-05-02 22:22:47.0311667 192.168.55.101	192.168.55.1	DNS	98 Standard query 0xb0a6 PTR 101.55
1	1	2020-05-02 22:22:47.0389344 192.168.55.1	192.168.55.101	DNS	98 Standard query response 0xb0a6 N
1	1	2020-05-02 22:22:47.0390677 192.168.55.101	192.168.55.1	DNS	87 Standard query 0xb0a6 PTR 101.55
1	1	2020-05-02 22:22:47.0415917 192.168.55.1	192.168.55.101	DNS	87 Standard query response 0xb0a6 N
1	1	2020-05-02 22:22:47.6780748 192.168.55.101	192.168.55.1	DNS	86 Standard query 0x9d08 A live.git
1	1	2020-05-02 22:22:47.9928247 192.168.55.101	192.168.55.1	DNS	96 Standard query 0xd447 PTR 1.55.1
1	1	2020-05-02 22:22:48.0087703 192.168.55.1	192.168.55.101	DNS	102 Standard query response 0x9d08 /
1	1	2020-05-02 22:22:48.0087895 192.168.55.1	192.168.55.101	DNS	96 Standard query response 0xd447 N
1	1	2020-05-02 22:22:48.0089786 192.168.55.101	192.168.55.1	DNS	85 Standard query 0xd447 PTR 1.55.1
1	1	2020-05-02 22:22:48.0090875 192.168.55.101	140.82.113.25	TCP	74 47514 → 443 [SYN] Seq=0 Win=6424
1	1	2020-05-02 22:22:48.0125807 192.168.55.1	192.168.55.101	DNS	85 Standard query response 0xd447 N

5 References

- [1] James F. Kurose, Keith W. Ross. Computer networking: a top-down approach. -6th edition
- [2] Protocol Numbers, https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
- [3] Linux manual, https://linux.die.net/man/
- [4] WinPcap Unix-compatible Functions, https://www.winpcap.org/docs/docs_40_2/html/group__wpcapfunc.html
- [5] LibPcap, https://www.tcpdump.org/pcap.html
- [6] tcpdump pcap_loop, https://www.tcpdump.org/manpages/pcap_loop.3pcap.html