

KHOA CÔNG NGHỆ THÔNG TIN TROJÒNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

227 Nguyễn Văn Cừ, Phường 4, Quận 5, TP.HCM Điện thoại: (08) 38.354.266 – Fax: (08) 38.350.096

BÁO CÁO BÀI TẬP HỆ THỐNG MÁY TÍNH ĐỀ TÀI

TÍNH TOÁN TRÊN SỐ NGUYÊN

(38)

Giảng viên hướng dẫn: Thầy Lê Viết Long

STT Họ và tên MSSV

1 Trương Tiến Anh 22120017

TP. Hồ Chí Minh, tháng 3 năm 2024

PHẦN ĐÁNH GIÁ

1. Bảng đánh giá

Yêu cầu	Trạng thái	Mức độ hoàn thành (%)
1. Bài tập 1	Hoàn thành	100%
2. Bài tập 2	Hoàn thành	100%

^{=&}gt; Tổng thể mức độ hoàn thành của bài nộp: Hoàn thành 100%

2. Đánh giá tổng kết

Bài nộp đã hoàn thành đầy đủ yêu cầu đề ra, bao gồm việc xử lý bits, áp dụng các phép toán trên bits

KÉT QUẢ LÀM BÀI

1. Chuyển đổi số từ hệ 10 về hệ 2.

Nhập vào số nguyên X (4 byte) có dấu hãy "đọc" dãy bit nhị phân của X và xuất ra màn hình

```
//a)
□void printBinary(int x)
      cout << "Day bits (4 bytes) cua X: ";</pre>
      for (int i = 31; i >= 0; --i)
          cout << ((x >> i) & 1);
 //b)
□void printBinaryArr(int Arr[])
      cout << "Day bits tuong ung voi mang Arr[]: ";</pre>
      for (int i = 0; i < 32; i++)
           cout << ((Arr[i] >> 0) & 1);
      cout << endl;</pre>
⊟int main()
     cout << "Number: ";</pre>
     long long number; cin >> number;
     printBinary(number);
     cout << endl;</pre>
     srand(time(NULL));
     int Arr[32];
     cout << "Mang Arr[]: ";</pre>
     for (int i = 0; i < 32; ++i) {
         Arr[i] = rand() % 2;
         cout << Arr[i];</pre>
     cout << endl;
     printBinaryArr(Arr);
     return 0;
```

2. Viết chương trình Nhập vào 2 dãy bit 8 bit (ở dạng bù 2). Hãy thực hiện các phép tính cộng, trừ,nhân, chia trên 2 dãy bit đã nhập

Phép cộng:

```
Estring addBits(string bitA, string bitB)
{
    string result = "";
    int carry = 0;
    int i = bitA.length() - 1, j = bitB.length() - 1;
    while (i >= 0 || j >= 0 || carry) {
        int sum = carry;
        if (i >= 0) sum += bitA[i--] - '0';
        if (j >= 0) sum += bitB[j--] - '0';

        result = to_string(sum % 2) + result;
        carry = sum / 2;
    }
    if (result.length() > bitA.length())
        result = result.substr(1);
    return result;
}
```

Phép trừ:

```
string TwoFromOne(string bit)
{
    string bit1 = "00000001";
    for (int i = 0; i < bit.size(); i++)
    {
        bit[i] = (bit[i] == '0') ? '1' : '0';
    }
    string result = addBits(bit, bit1);
    return result;
}

=string subtractBits(string bitA, string bitB)
{
    bitB = TwoFromOne(bitB);//Bu B
    return addBits(bitA, bitB);
}</pre>
```

Phép nhân:

```
int numA = binaryToDecimal(bitA);
int numB = binaryToDecimal(bitB);

if (numA * numB > 0)
{
    return decimalToBinary(abs(numA) * abs(numB));
}
else if (numA * numB < 0)
{
    string res = decimalToBinary(abs(numA) * abs(numB));
    return TwoFromOne(res);
}
</pre>
```

Phép chia:

```
Bapair-string.string> divBits(string bitA, string bitB)

int Q = binaryToDecimal(bitB);

bool num = Sign(Q);

bool de = Sign(R);

Q = abs(Q);
 H = abs(R);
int A = 0;
int k = bitA.length();
while (k > 0)

{
    A = A < 1;
    Q = Q << 1;
    A = A - H;
    if (A < 0)
    {
        string temp = decimalToBinary(Q);
        temp(temp.size() - 1) = '0';
        Q = binaryToDecimal(temp);
        A = A + H;
    else
    {
        string temp = decimalToBinary(Q);
        temp(temp.size() - 1) = '1';
        Q = binaryToDecimal(temp);
        k--;
        string res1, res2;
    if (num & decimalToBinary(Q));
    if (num & decimalToBinary(Q));
    if (num < 0)
    {
        res2 = TwoFromOne(decimalToBinary(A));
        return { res1, res2 };
    }
}</pre>
```