

Output: 4

VNUHCM-UNIVESRITY OF SCICENCE FINAL EXAMNINATION Semester III – Academic year 2021-2022

ARCHIVE CODE

(written by ET&QA Office)

CLC_CK21223_ CSC10004

Course names	Data Stru	ctures and Algorithms(21CLC	(02) Course code:	CSC10004
Course name:		20 minutes	Date:	08/08/2022
Time:	1	20 minutes		the examination
Note: Students are [allowed / not allowed] to use electronic devices during the examination Full name of Student:				
Question 1 (20 poi	ints).			
Consider the following algorithm:				
ALGO A(X) {				
$d = \infty$;				
for $(i = 1; i \le X.length - 1; i++)$				
for $(j = i + 1; j \le X.length; j++)$				
if (X[i] - X[j] < d)				
d = X[i] - X[j] ;				
return d; }				
 a. Interpreting X as an array of coordinates of points on the x-axis (horizontal axis), explain concisely what ALGO_A(X) does, and give a tight asymptotic bound for the complexity of ALGO_A(X). b. Write an algorithm BETTER_A(X) that is functionally equivalent to ALGO_A(X), but with a better asymptotic complexity. Show the complexity of BETTER_A(X). 				
Question 2 (20 po	ints).		a 1	liam, functions
if needed) i duplicates i	running in (n the array a	by of n integers, write a $C/C++1$ $O(\log n)$ to search an element and the rotation is in counterclosed.	III It. I TODOUTILE COLO	
The prototype of the function is as follows:				
int searchArray(int a[], int n, int k); where k is the value to be searched for and the return value of the function is the index of				
where k is the the element wh	value to be soos value is	searched for and the return value k or -1 if the element is not p	oresent in the inpu	is the index of array.
Example:		and the		345
Input array: 7 9 1	1135	Input array: 9 11 1 3 5 7	Input array: 3 5 7	
Search value: $k =$		Search value: $k = 11$	Search value: $k =$	= 10
Output: 4		Output: 1	Output: -1	

Full name of paper setter/staff code:[page 1/2]

VNUHCM-UNIVESRITY OF SCICENCE FINAL EXAMNINATION Semester III – Academic year 2021-2022

ARCHIVE

written by ET&QA Office

CLC_CK21223_ CSC10004

Question 3 (30 points).

Given a binary tree, you are asked to write a C/C++ function (and auxiliary functions if needed) to display the keys of all the nodes in the longest path going from the root to a leaf of the tree. If there are many such paths, display any of them. The prototype of the function is as follows:

void printLongestPath(Ref r);

Question 4 (30 points).

Initially, assume that the given AVL tree is empty. You are asked to expand the tree by inserting keys (one at a time) to it. Draw the tree after each node insertion. If the tree is imbalanced at a node, rebalance the (sub)tree rooted at that node and draw the resulting tree. The expanding process takes place continuously until all of four imbalanced cases: LL, RR, LR, and RL have been occurred.

Note:

- The keys to be inserted to the tree are positive integers selected arbitrarily.
- Rebalancing a (sub)tree with only three nodes is not counted.
- Do not use the example shown in class.