RLPBWT

Davide Cozzi

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

Outline

RLPBWT

2 Example

3 A new Idea

Outline

RLPBWT

2 Example

3 A new Idea

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

The positions in the columns of the PBWT of the bits in the i-th row of M are:

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

The positions in the columns of the PBWT of the bits in the i-th row of M are:

$$i, \pi_1(i), \pi_2(\pi_1(i)), \ldots, \pi_{m-1}(\cdots(\pi_2(\pi_1(i)))\cdots)$$

Extracting the bits of the *i*-th row of M reduces to iteratively applying the π_{m-1} permutations, corresponding to iteratively apply LF in a standard BWT

The permutation

Computing the permutation

$$\pi_j(p) = egin{cases} p-count_1 & ext{if } column[pref[p]] = 0 \ count_0 + count_1 - 1 & ext{if } column[pref[p]] = 1 \end{cases}$$

- count₀: total number of zeros in the PBWT column
- $count_1$: number of ones in the PBWT column as far as index p

"LF-mapping" in Durbin's algorithm

$$w(i,\sigma) = \begin{cases} u[i] & \text{if } \sigma = 0 \\ c + v[i] & \text{if } \sigma = 1 \end{cases}$$

- c: total number of zeros in the column
- $\mathbf{u}[i]$: number of zeros in the column as far as index i
- $\mathbf{v}[i]$: number of ones in the column as far as index i

Travis's example

	1	2	3	4	5	6	7	8	9	10	11	12
0	0 1		00	0 0	0 0	01	0 0	0 0	01	0 1	0 1	0 1
1	0 1	0 1	0 0	0 0	0 0	0 1 0 1	0 0	0 0	0 1	0 1	0 1	0 1
2	0 1	0 1	0 1	0	0 0	0 0	0 1	0 1	01	0 0	0 1	0 1
3	0 1	0 1	0	0 0	0 0	0 1	0 0	0 0	0 1	0 1	0 0	0 1
4	0 1	0 0	0 1	0 0	0 0	0 <u>1</u> 0 0	0 0	0 0	0 1	0 1	0 0	0 1
5	0 1	0	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 1
6	0 1	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0
7	0 1	0 1	0 1	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	0 1
8	0 0	0 1	0 0	0 0	0 0	0 1	0 0	0 0	0 0	1 1	0 0	0 1
9	0 1	$\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$	0 0	0 0	0 0	0 1	0 0	0 0	$\begin{array}{ccc} 0 & \underline{0} \\ 0 & \overline{1} \end{array}$	$\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$	0 0	0 1
10	0 1	1 1	0	0 0	0 0	0 0	0 0	0 0		1 1	0 0	0 1
11	0 0	1 1	10	0 1	0 1	0 0	0 0	0 0	0 1 0	1 0	0 0	0 1
12	0 0	$\begin{array}{c c} 1 & \underline{1} \\ 1 & \overline{0} \end{array}$	1 0	0 0	0 1	0 0	0 0	0 0	0 0	1 0	0 0	0 1
13	0 0	1 0	1 0	0 0	0 1	0 0	0 0	0 0	0 0	1 0	1 0	0 1
14	0 0	1 0	10	0 0	0 0	0 0	10	0 0	0 0	10	1 0	0 1
15	0 0	10	1 0	$\square 0$	0 0	0 0	10	0 0	0 0	10	1 0	0 1
16	0 1	10	1 0	1 0	0 0	0 0	1 0	0 0	11	1 0	1 0	0 1
17	0 0	1 0	$\mathbb{I} 0$	1 0	0 0	1 0	1 0	0 1	1 1	1 0	10	1 1
18	10	10	1 0	1 0	0 0	1 0	10	0 1	1 1	1 0	10	1 1
19	10	$\square 0$	10	10	10	10	10	1 1	1 1	10	10	1 1

The compressed data structure

The tables

- a set of m tables in which the m-th table stores only the positions of the run-heads in the m-th column and a bool to check the first symbol: 0 or 1
- the *i*-th row of the *j*-th table stores a quadruple

The compressed data structure

The tables

- a set of m tables in which the m-th table stores only the positions of the run-heads in the m-th column and a bool to check the first symbol: 0 or 1
- the i-th row of the j-th table stores a quadruple

The quadruple

- the position p of the i-th run-head in the j-th column of the PBWT
- 2 the permutation $\pi_j(p)$
- lacksquare the index of the run containing bit $\pi_j(p)$ in the (j+1)-st column of the PBWT
- the threshold, that's the index of the minimum LCP value (current column minus divergence array value) in the run

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

$$\pi_1(i) = \pi_1(p) + i - p$$

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

$$\pi_1(i) = \pi_1(p) + i - p$$

looking up the row for the run containing bit $\pi_1(p)$ in the the second table and scanning down the table until we find the row for the run containing bit $\pi_1(i)$

Next step

We continue repeating this procedure for each column

Travis's example I

	ta	ble 1	Ĺ	ta	table 2			ble :	3	table 4			$t\epsilon$	ble 5	5	ta	ible 6	3
0	0	9	3	0	11	4	0	0	0	0	0	0	0	0	0	0	14	2
1	8	0	0	4	0	0	2	15	2	11	19	2	11	17	5	2	0	0
2	9	17	5	7	15	4	3	2	0	12	11	1	14	11	5	3	16	2
3	11	1	0	9	3	2	4	16	2							5	1	0
4	16	19	5	10	17	4	8	3	0							8	18	2
5	17	6	1	13	4	3										10	4	2

	ta	ble 7	7	ta	ble 8	3	ta	ble 9	9	table 10			ta	ble 1	1	table 12
0	0	0	0	0	0	0	0	7	4	0	13	1	0	17	2	0
1	2	19	3	2	16	4	7	0	0	2	0	0	3	0	0	6
2	3	2	1	3	2	0	10	14	7	3	15	1				7
3				17	17	4	12	3	2	5	1	0				
4							16	16	7	7	17	1				
5										9	3	1				
6										10	19	1				
7										11	4	1				

Travis's example II

Extraction of row 9, $\pi_i(i) = \pi_i(p) + i - p$

$$\pi_1(9) = 17 + 9 - 9 = 17$$

$$\pi_2(17) = 4 + 17 - 13 = 8$$

$$\pi_3(8) = 4 + 8 - 8 = 3$$

$$\pi_4(3) = 0 + 3 - 0 = 3$$

$$\pi_5(3) = 0 + 3 - 0 = 3$$

$$\pi_6(3) = 16 + 3 - 3 = 16$$

$$\pi_7(16) = 2 + 16 - 3 = 15$$

$$\pi_8(15) = 2 + 15 - 3 = 14$$

$$\pi_9(14) = 3 + 14 - 12 = 5$$

$$\pi_{10}(5) = 1 + 5 - 5 = 1$$

$$\pi_{11}(1) = 17 + 1 - 0 = 18$$

Outline

RLPBWT

2 Example

3 A new Idea

The matrixes

Panel and query

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	0	1	0	0	1	1	1	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	0	1	1	1	1	1	0	0	1	1	1	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0	1	0	1	0
1	0	0	1	1	0	1	0	1	0	0	0	1	1	1	0	0	0	1	0
0	1	1	0	1	1	1	1	1	0	0	1	0	0	1	1	1	1	0	0
1	1	0	0	1	0	1	0	1	0	1	0	1	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	0	1	1
								_									,		=

PBWT Matrix

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1	0	1	1
0	0	0	1	1	0	0	1	1	0	0	1	1	1	1	0	1	0	1	0
0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0	1	1
1	0	0	0	0	0	1	0	1	1	1	1	0	0	0	1	0	1	1	0
0	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0
0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	0	1	0	1

Prefix and Divergence Arrays

Prefix Arrays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	1	2	2	1	1	1	2	2	2	5	3	3	1	4	5	5	6	6	0
1	2	6	6	5	2	2	1	5	5	3	4	5	0	6	2	2	3	3	4
2	4	3	3	4	6	0	0	3	3	4	5	1	4	5	0	0	1	1	6
3	6	1	1	2	0	5	5	1	1	2	2	0	6	2	4	6	5	2	3
4	0	4	0	6	5	3	3	0	0	1	1	4	3	1	6	3	2	0	1
5	3	0	5	3	4	6	6	6	6	0	0	2	5	0	1	4	0	5	2
6	5	5	4	0	3	4	4	4	4	6	6	6	2	3	3	1	4	4	5

LCP Arrays: current k minus the original Durbin's divergence arrays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	2	3	3	1	2	0	1	0	6	3	1	9	3	3	4	3	4	1
0	1	1	2	1	5	4	3	4	5	2	0	2	1	1	1	2	1	2	0
0	1	0	1	0	3	1	2	0	1	0	1	8	2	2	0	1	0	1	5
0	0	2	2	4	0	2	3	4	5	1	2	0	0	0	4	2	5	4	3
0	1	1	3	3	2	0	1	2	3	6	7	1	2	10	1	0	3	0	2
0	1	2	0	2	1	1	2	3	4	4	5	3	1	1	2	2	1	2	1

Run-Length PBWT I, p, perm, next perm, threshold

[0, 1, 2, 3, 4]

[5, 6, 7, 8, 9]

Run-Length PBWT II

[10, 11, 12, 13, 14]

[15, 16, 17, 18, 19]

Match with external haplotype I

First case, bits matches at column j-th

- we are looking at *d*-th bit of the *k*-th run, that come from the *i*-th row of the panel
- if this bit match the next bit of the pattern we can go to column j+1 and we figure out which bit to look at in that column
- the next bit we look at is still from row i-th

Match with external haplotype II

Second case, bits doesn't matches at column j-th

- we are looking at *d*-th bit of the *k*-th run and that bit doesn't match the next bit in the pattern
- we look at the threshold for the k-th run:
 - if d is at most the threshold (check this "at most") than we move to the last bit of the (k-1)-st run in the j-th column and then we proceed as in case 1
 - if d is greater than the threshold than we move to the first bit of the (k-1)-st run in the j-th column and then we proceed as in case 1

Travis's New Version

A column C's representation consists of a bitvector B[0..m-1] and a sequence of thresholds T. It supports the guery CANDIDATE STEP, which takes a single integer i and a bit b and returns a boolean flag f and a single integer i'. If B[i] = b, then f = TRUE and i' is the position of B[i] after B is stably sorted. If $B[i] \neq b$ but there is some copy of b in B, the f = FALSE and i' is the position after B is stably sorted of either of the last copy of b before B[i] or of the first copy of b after B[i], depending on whether B[i] is before or after the threshold for the run containing B[i]. If there is no copy of b in B, then f = FALSE and i' = -1. We store B and T run-length compressed, so they take $O(r_c)$ words of space and $CANDIDATE_STEP$ takes $O(\log \log m)$ time. We start a search with i = 0; we go from one column to the next setting i = i' when $i' \geq 0$, with f telling us whether we've jumped or not (but not telling us whether we've hit the end of a MEM); when i' = -1, we were unable to match a column and we start over at the next column with i=0.

Outline

RLPBWT

2 Example

3 A new Idea

New Idea I

Let's take a step back and get closer to Durbin's original idea.

At the moment we save:

- the position of every head of a run
- a boolean to mark if the first run is composed by zeros or ones
- the c value of the column
- \blacksquare a single value for u and v (that are as in Durbin)
- the whole divergence array, actually the LCP array, (WIP)

New Idea I

```
column: 5
start with 0? yes, c: 15
0
    0
   5
0 5 4 1 3 5 5 5 5 5 5 0 5 5 5 2 5 1 5 5
```

Figura: Example, column 5: 0010111100000000000

New Idea II

uv values trick

Values u and v increase alternately in the biallelic case so we save every time the only value that increase at the head of a run.

The, with a simple If/Else selection based on the first element of the column and the index of the run and on being even or odd of the index we can extract both u and v values. Infact the two values are, alternatively, saved in the current index and in the previous one.

$w(i, \sigma)$ function

We can use the same *LF-mapping* as in Durbin but we have to consider every time an *offset* between the position of the head of the run, that's *i*, which contains the "virtual" index, and the index itself.

$$w(i, \sigma) = egin{cases} u[i] + \textit{offset} & \text{if } \sigma = 0 \\ c + v[i] + \textit{offset} & \text{if } \sigma = 1 \end{cases}$$

New Idea III

External haplotype matches

Than we proceed as in Durbin, updating f and g using $w(i, \sigma)$.

Every time we "virtually" use indexes over the whole column but actually run heads plus offsets are used.

In case we update e using f and the divergence/LCP array (WIP).

In order to update e we should in theory follow the line indicated in i+1 by f in the original panel which we have not memorized. So, at most at a cost of O(r) for every column, we proceed to reverse te use of u and v to move backwards between the columns virtually following a row of the original panel.

Than we use the *divergence/LCP array* (**WIP**) to update f and g depending on the case.

After detect a match, we can know the cardinality of the lines that match but not what they are,

New Idea IV

WIP

At the moment *divergence array* is saved as an sdsl::int_vector<> on which it's used sdsl::util::bit_compress() in order to save space. The original idea of thresholds seems to me absolutely not applicable but maybe we can think of storing only a subset of the *divergence/LCP array* and I'm thinking how to do it.

