We consider the cases n=2 and n=3. For n=2, let \mathcal{C} be a non-semisimple finite tensor category. For n=3, let \mathcal{C} be a non-semisimple finite ribbon category. In both cases, consider the tensor ideal \mathcal{P} of projective objects in \mathcal{C} .

Perform a string-net construction where you admit as labels only objects of \mathcal{P} .

Questions:

- 1. Compute for n = 2 the vector space associated to S^2 and T^2 and a surface of arbitrary genus.
- 2. Compute for n = 2 the cylinder category for the circle. Compare to the $\sqrt{}$ Drinfeld center.
- 3. Compute for n = 3 the vector space associated to S^3 . Can we make statements about other 3-manifolds?
- 4. For n = 3, compute categories for oriented surfaces. Are they related to modules of known algebras (elliptic Drinfeld center etc.)
- 5. Investigate whether for n=2 the construction can be extended to 3-manifolds. You are allowed to use the modified trace on \mathcal{P} .
- 6. Investigate whether for n=3 the construction can be extended to 4-manifolds. You are allowed to use the modified trace on \mathcal{P} .

Possible variations of the problems:

- 1. Do not work with the monoidal ideal \mathcal{P} , but consider stringnets in which at least one component is colored by a projective object.
- 2. Replace the monoidal ideal \mathcal{P} by some other monoidal ideal that also admits a modified trace.

Elaboration of variation: For $n=2+\epsilon$: Fix a pivotal finite tensor category \mathcal{C} and a tensor ideal $\mathcal{I}\subset\mathcal{C}$. Declare a string net to be \mathcal{I} -admissible if on each connected component of the surface there is an \mathcal{I} -coloured edge.

- 1. Show that the string net space for \mathcal{I} -admissible string nets on the sphere is the vector space dual of the space of two-sided modified traces on \mathcal{I} .
- 2. Compute the \mathcal{I} -admissible string net space on the torus. Can this be \times non-zero even if there are no two-sided traces?

- 3. Maybe look at the symplectic fermion example. This has intermediate ideals which are not too complicated. (And there is an example of an intermediate ideal which has a left and a right modified trace, but no two-sided trace.)
- 4. If \mathcal{I} is the projective ideal, are the string net spaces related to state space of the non-ssi TFT for the Drinfeld centre of \mathcal{C} , or, equivalently, to the spaces Lyubasheko's modular functor for $\mathcal{Z}(\mathcal{C})$ assigns to surfaces?

Rinse and repeat for $n = 3 + \varepsilon$.