Analysis

Nhan Trong

July 3, 2016—July 12, 2016

In mathematics you don't understand things. You just get used to them.

John von Neumann

Part I

Polynomial Approximation

Theorem 1 (Taylor's Theorem). If $f', \ldots, f^{(n+1)}$ are defined on [a, x], then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

where $R_n(x) = \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$ for some t in (a,x).

Note 2. The Mean Value Theorem is a special case of Taylor's Theorem:

$$f(b) = f(a) + f'(c)(b - a)$$

for some c between a and b.

Keywords 1. Taylor's Theorem, Taylor polynomial, error / remainder term, Cauchy, Lagrange, integral form.

Part II Sequences

4 8 15 16 23 42

Lost

Theorem 3 (Uniform Limit Theorem). Uniform convergence of functions preserves continuity, i.e. if f_n are continuous and approach f uniformly, then f is continuous.

Proposition 4. The uniform limit of uniformly continuous functions is uniformly continuous.

Question 5. What about differentiability, i.e. if f_n are differentiable and approach f uniformly, is f always differentiable, and is $\lim f'_n = f'$?

Example 6. No to the second question: the functions $f_n(x) = \frac{1}{n}\sin(nx)$ converge uniformly to the zero function, which is differentiable. But, the limit of the derivatives don't exist. What about just differentiability?

Example 7. Still No, e.g. the functions $f_n(x) = \sqrt{x^2 + 1/n}$ converge uniformly to f = |x|, which is not differentiable at zero.

Example 8 (Weierstrass function). The Weierstrass function

$$f(x) = \sum_{k=0}^{\infty} a^k \cos(b^k \pi x),$$

for appropriate values a and b, is the uniform limit of

$$f_n = \sum_{k=0}^n a^k \cos(b^k \pi x),$$

but is nowhere differentiable.

 ${\bf Question~9.}~{\it Is~the~Koch~snowflake~nowhere~differentiable?}$

Yes. Proof?

Definition 10. Let $\{a_n\}$ be a sequence, and $0 \le a < b \le 1$. Let N(n; a, b) be the number of integers $j \le n$ s.t. $a_j \in [a, b]$. A sequence $\{a_n\}$ of numbers in [0, 1] is called uniformly distributed in [0, 1] if

$$\lim_{n\to\infty}\frac{N(n;a,b)}{n}=b-a$$

for all a, b, s.t. $0 \le a < b \le 1$.

Proposition 11. If s is a step function on [0,1], and $\{a_n\}$ is uniformly distributed in [0,1], then

$$\int_0^1 s = \lim_{n \to \infty} \frac{s(a_1) + \dots + s(a_n)}{n}.$$

Proof. Let $\Delta_1, \ldots, \Delta_m$ be a partition of [0,1] corresponding to the steps in s. Then

(with a slight abuse of notation) we have

$$\int_{0}^{1} s = \sum_{i=1}^{m} s(\Delta_{i}) \Delta_{i}$$

$$= \sum_{i=1}^{m} s(\Delta_{i}) \lim_{n \to \infty} \frac{1}{n} N(n; \Delta_{i})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{m} s(\Delta_{i}) N(n; \Delta_{i})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} s(a_{i}).$$

Proposition 12. If f is integrable on [0,1], and $\{a_n\}$ is uniformly distributed in [0,1], then

$$\int_0^1 f = \lim_{n \to \infty} \frac{f(a_1) + \dots + f(a_n)}{n}.$$

Sketch. Since f is integrable, there is a step function s such that $\int_0^1 f$ is close to $\int_0^1 s$, which is close to $\frac{s(a_1)+\dots+s(a_n)}{n}$, which is close to $\frac{f(a_1)+\dots+f(a_n)}{n}$.

1 Bolzano-Weierstrass Theorem

Theorem 13 (Bolzano-Weierstrass Theorem). An infinite sequence contained in a closed interval I has a limit point in I.

Proof uses the Nested Interval Theorem:

Theorem 14 (Nested Interval Theorem). The intersection of closed nested intervals is nonempty. If the interval lengths tend to zero, then the intersection is a point. Otherwise it's a closed interval.

Definition 15. A function f defined on an interval I is called limitful if $\lim_{y\to a} f(y)$ exists for all $a\in I$.

Proposition 16. Let f be a limitful function on [0,1]. Then for any $\epsilon > 0$ there are only finitely many points $a \in [0,1]$ with

$$|\lim_{y \to a} f(y) - f(a)| > \epsilon.$$

Sketch 1. Suppose that there are infinitely many such points a. Then by the Bolzano-Weierstrass Theorem, these points have a limit $x \in [0, 1]$. Let

$$L := \lim_{y \to x} f(y) = \lim_{a \to x} f(a).$$

The condition

$$|\lim_{y \to a} f(y) - f(a)| > \epsilon$$

means that for y close to a, f(y) is far from f(a). Similarly $\lim_{a\to x} f(a) = L$ means that for a close to x, f(a) is close to L. Together this means that for y close to x and y close to a for some a, we have that f(y) is far from L, but this contradicts the fact that $L = \lim_{y\to x} f(y)$, i.e. for all y close to x, f(y) is close to x.

Sketch 2. Another way to see this is to let a_n be the convergent subsequence given by Bolzano-Weierstrass, and choose y_n close to a_n so that $|f(y_n) - f(a_n)|$ is big. Since $|f(a_n) - L|$ is small, the triangle inequality

$$|f(y_n) - L| \ge |f(y_n) - f(a_n)| - |f(a_n) - L|$$

says $|f(y_n) - L|$ is big, thus contradiction.

Aside from rigor, is this proof correct?

Math.StackExchange 2016

Theorem 17. A limitful function on [0,1] has at most countably many discontinuities.

Proof. By the previous Proposition, for each $\epsilon_q > 0$ there are at most finitely many points a s.t.

$$\left| \lim_{y \to a} f(y) - f(a) \right| > \epsilon_q.$$

Taking a sequence $\epsilon_q \in \mathbf{Q}$ converging to zero, we have countably many such points

Corollary 18. If f has only removable discontinuities, then f is continuous except at countably many points. In particular, f cannot be discontinuous everywhere.

2 Keywords

Uniform Limit Theorem, point-wise, uniform convergence, metric space, Cauchy criterion, Koch snowflake, Weierstrass function, uniformly distributed / equidistributed sequence, Bolzano-Weierstrass / Sequential Compactness Theorem, limitful function, removable discontinuity.

Part III Infinite Series

Infinite growth of material consumption in a finite world is an impossibility.

E. F. Schumacher

References

[1] Spivak's Calculus.