On the method of Chabauty and Coleman

Corijn Rudrum

London School of Geometry and Number Theory

Y-RANT 2023

This talk is about rational points on curves ${\it C}$ over ${\mathbb Q}.$

This talk is about rational points on curves C over \mathbb{Q} . We distinguish three cases using the genus g of C:

 $\mathbf{g} = \mathbf{0}$:

This talk is about rational points on curves C over \mathbb{Q} . We distinguish three cases using the genus g of C:

■ g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .

- g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .
- $\mathbf{g} = 1$:

- g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .
- g = 1: Either $C(\mathbb{Q}) = \emptyset$, or C is an *elliptic curve*.

- g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .
- g = 1: Either $C(\mathbb{Q}) = \emptyset$, or C is an *elliptic curve*.
- **■** *g* > 2:

- g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .
- g = 1: Either $C(\mathbb{Q}) = \emptyset$, or C is an *elliptic curve*.
- $g \ge 2$: $C(\mathbb{Q})$ is always finite!

- g = 0: The simple case. Either $C(\mathbb{Q}) = \emptyset$, or it is isomorphic to \mathbb{P}^1 .
- g = 1: Either $C(\mathbb{Q}) = \emptyset$, or C is an *elliptic curve*.
- $g \ge 2$: $C(\mathbb{Q})$ is always finite!

Conjecture (Mordell¹, 1922)

A curve over \mathbb{Q} of genus $g \geq 2$ has only finitely many rational points.

¹Louis Mordell. "On the rational solutions of the indeterminate equations of the third and fourth degrees". In: *Proc. Cambridge Phil. Soc.* 21 (1922), pp. 179–192.

Theorem (Chabauty², 1941)

The Mordell conjecture holds for curves for which the rank of their Jacobian is strictly less than their genus.

²Claude Chabauty. "Sur les points rationnels des courbes algébriques de genre supérieur à l'unité". (French). In: *C. R. Acad. Sci. Paris* 212 (1941), pp. 882–885.

Theorem (Faltings³, 1983)

The Mordell conjecture is true: Any curve over $\mathbb Q$ of genus $g\geq 2$ has only finitely many rational points.

³Gerd Faltings. "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". In: *Invent. Math.* 73.3 (1983), pp. 349–366.

Theorem (Faltings³, 1983)

The Mordell conjecture is true: Any curve over $\mathbb Q$ of genus $g\geq 2$ has only finitely many rational points.

Ineffective!

³Gerd Faltings. "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". In: *Invent. Math.* 73.3 (1983), pp. 349–366.

Theorem (Coleman⁴, 1985)

Chabauty's argument can be used to give an effective bound on $\#C(\mathbb{Q})$, for curves C for which the rank of their Jacobian is strictly less than their genus.

⁴Robert F. Coleman. "Effective Chabauty". In: *Duke Math. J.* 52.3 (1985), pp. 765–770.

■ C

lacksquare C a curve over $\mathbb Q$

lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- g

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- lacksquare g the genus of C

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C
- \blacksquare r

- lacksquare C a curve over \mathbb{Q} (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C
- ightharpoonup r the rank of $J(\mathbb{Q})$

- lacksquare C a curve over $\mathbb Q$ (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C
- ightharpoonup r the rank of $J(\mathbb{Q})$
- **■** *p*

- lacksquare C a curve over \mathbb{Q} (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C
- ightharpoonup r the rank of $J(\mathbb{Q})$
- \blacksquare p a prime at which C has good reduction

- lacktriangleright C a curve over \mathbb{Q} (projective, smooth, geom. integral)
- \blacksquare g the genus of C
- J the Jacobian of C
- ightharpoonup r the rank of $J(\mathbb{Q})$
- \blacksquare p a prime at which C has good reduction

For the rest of this presentation we assume that r < g.

Chabauty's method

To prove: $C(\mathbb{Q})$ is finite.

Chabauty's method

To prove: $C(\mathbb{Q})$ is finite.

Suppose we have found at least one point $P_0 \in C(\mathbb{Q})$.

Chabauty's method

To prove: $C(\mathbb{Q})$ is finite.

Suppose we have found at least one point $P_0 \in C(\mathbb{Q})$. Then we have the *Abel–Jacobi embedding*

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

To prove: $C(\mathbb{Q})$ is finite.

To prove: $C(\mathbb{Q})$ is finite.

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longleftrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longleftrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

■ $J(\mathbb{Q}_p)$ of dimension g

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longleftrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

- $J(\mathbb{Q}_p)$ of dimension g
- $lackbox{ } C(\mathbb{Q}_p)$ of dimension 1

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longleftrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

- $J(\mathbb{Q}_p)$ of dimension g
- $lackbox{ } C(\mathbb{Q}_p)$ of dimension 1
- $\overline{J(\mathbb{Q})}$ (p-adic closure) of dimension $\leq r$.

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

- $J(\mathbb{Q}_p)$ of dimension g
- $lackbox{}{\bullet}$ $C(\mathbb{Q}_p)$ of dimension 1
- $\overline{J(\mathbb{Q})}$ (*p*-adic closure) of dimension $\leq r$.

From the dimensions, we would expect $C(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})}$ to be 0-dimensional.

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

- $J(\mathbb{Q}_p)$ of dimension g
- $lackbox{}{\bullet}$ $C(\mathbb{Q}_p)$ of dimension 1
- $\overline{J(\mathbb{Q})}$ (*p*-adic closure) of dimension $\leq r$.

From the dimensions, we would expect $C(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})}$ to be 0-dimensional. Then compactness of $J(\mathbb{Q}_p)$ implies that it is finite.

To prove: $C(\mathbb{Q})$ is finite.

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longleftrightarrow} J(\mathbb{Q}_p).$$

Some *p*-adic manifolds in $J(\mathbb{Q}_p)$:

- $J(\mathbb{Q}_p)$ of dimension g
- $lackbox{ } C(\mathbb{Q}_p)$ of dimension 1
- $\overline{J(\mathbb{Q})}$ (*p*-adic closure) of dimension $\leq r$.

From the dimensions, we would expect $C(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})}$ to be 0-dimensional. Then compactness of $J(\mathbb{Q}_p)$ implies that it is finite. That is what Chabauty proved.

Enter Coleman

Now, let's see what Coleman did with this.

We view C and J as varieties over \mathbb{Q}_p .

We view C and J as varieties over \mathbb{Q}_p . Let $\omega \in H^0(J, \Omega^1)$ be a holomorphic differential 1-form on J.

We view C and J as varieties over \mathbb{Q}_p . Let $\omega \in H^0(J,\Omega^1)$ be a holomorphic differential 1-form on J. Before he gave an effective version of Chabauty's argument, Coleman had just developed a theory of integration of such differentials.

We view C and J as varieties over \mathbb{Q}_p . Let $\omega \in H^0(J,\Omega^1)$ be a holomorphic differential 1-form on J. Before he gave an effective version of Chabauty's argument, Coleman had just developed a theory of integration of such differentials. He defined a map

$$\lambda_{\omega}:J(\mathbb{Q}_p)\longrightarrow\mathbb{Q}_p,\qquad P\longmapsto\lambda_{\omega}(P)=\int_0^P\omega.$$

We view C and J as varieties over \mathbb{Q}_p . Let $\omega \in H^0(J,\Omega^1)$ be a holomorphic differential 1-form on J. Before he gave an effective version of Chabauty's argument, Coleman had just developed a theory of integration of such differentials. He defined a map

$$\lambda_\omega:J(\mathbb{Q}_p)\longrightarrow\mathbb{Q}_p,\qquad P\longmapsto\lambda_\omega(P)=\int_0^P\omega.$$

A differential ω satisfying

$$\lambda_{\omega}(P) = 0, \qquad \text{for all } P \in J(\mathbb{Q})$$

is called an annihilating differential.

We view C and J as varieties over \mathbb{Q}_p . Let $\omega \in H^0(J,\Omega^1)$ be a holomorphic differential 1-form on J. Before he gave an effective version of Chabauty's argument, Coleman had just developed a theory of integration of such differentials. He defined a map

$$\lambda_{\omega}:J(\mathbb{Q}_p)\longrightarrow\mathbb{Q}_p,\qquad P\longmapsto\lambda_{\omega}(P)=\int_O^P\omega.$$

A differential ω satisfying

$$\lambda_{\omega}(P) = 0, \qquad \text{for all } P \in J(\mathbb{Q})$$

is called an annihilating differential.

Lemma

If r < g then there exists an annihilating differential ω .

Let ω be an annihilating differential on J.

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: \mathcal{C}(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{Q}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{O}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{O}^{\varphi(P)} \omega,$$

$$C(\mathbb{Q}) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p) \stackrel{\varphi}{\longrightarrow} J(\mathbb{Q}_p).$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{O}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{Q}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{Q}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{O}^{\varphi(P)} \omega,$$

Let ω be an annihilating differential on J. Coleman considered the function

$$\eta_{\omega}: C(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \qquad P \longmapsto \lambda_{\omega}(\varphi(P)) = \int_{O}^{\varphi(P)} \omega,$$

and gave an effective bound for its number of zeroes.

This gives an effective bound for $\#C(\mathbb{Q})!$

Theorem (Coleman)

Let p > 2g. Then

$$\#C(\mathbb{Q}) \leq \#\widetilde{C}(\mathbb{F}_p) + (2g-2).$$

Theorem (Coleman)

Let p > 2g. Then

$$\#C(\mathbb{Q}) \leq \#\widetilde{C}(\mathbb{F}_p) + (2g-2).$$

This bound is sometimes sharp

Theorem (Coleman)

Let p > 2g. Then

$$\#C(\mathbb{Q}) \leq \#\widetilde{C}(\mathbb{F}_p) + (2g-2).$$

This bound is sometimes sharp, but most of the time it is not.

Theorem (Coleman)

Let p > 2g. Then

$$\#C(\mathbb{Q}) \leq \#\widetilde{C}(\mathbb{F}_p) + (2g-2).$$

This bound is sometimes sharp, but most of the time it is not.

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

1 Determine an annihilating differential ω on J,

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

This requires full knowledge of $J(\mathbb{Q})$,

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

This requires full knowledge of $J(\mathbb{Q})$, which is generally hard to obtain.

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

This requires full knowledge of $J(\mathbb{Q})$, which is generally hard to obtain.

Stoll⁵ described a variation on the method called Selmer–Chabauty, which tries to circumvent this problem using only the 2-Selmer group of J.

⁵Michael Stoll. "Chabauty without the Mordell-Weil group". In: *Algorithmic and experimental methods in algebra, geometry, and number theory.* Springer, Cham, 2017, pp. 623–663.

Coleman's approach can also be used to explicitly compute the rational points on a curve as follows (very roughly):

- **1** Determine an annihilating differential ω on J,
- 2 and then explicitly compute the zeroes of η_{ω} by locally writing it as a power series.

This requires full knowledge of $J(\mathbb{Q})$, which is generally hard to obtain.

Stoll⁵ described a variation on the method called Selmer–Chabauty, which tries to circumvent this problem using only the 2-Selmer group of J. One drawback is that this method may sometimes fail.

⁵Michael Stoll. "Chabauty without the Mordell-Weil group". In: *Algorithmic and experimental methods in algebra, geometry, and number theory.* Springer, Cham, 2017, pp. 623–663.

Questions?