Лабораторная работа №2 По дисциплине «Прикладная математика»

Выполнили:

Копецкий Данил M33051 Подколзин Олег M33071 Юрченко Владислав M33031 Якимов Даниил M33011

Где строить? Две конкурирующие крупные торговые фирмы F_1 и F_2 , планируют построить в одном из четырех небольших городов G_1 , G_2 , G_3 , G_4 , лежащих вдоль автомагистрали, по одному универсаму. Взаимное расположение городов, расстояние между ними и численность населения показаны на следующей схеме:

140 км	30 км	40 км	50 км	150 км
	G_1	G_2	G_3	G_4
Число покупателей	30 тыс	50 тыс	40 тыс	30 тыс

Доход, получаемый каждой фирмой, определяется численностью населения городов, а также степенью удаленности универсамов от места жительства потенциальных покупателей. Специально проведенное исследование показало, что доход универсамов будет распределяться между фирмами так, как это показано в следующей таблице:

Условие			
Универсам фирмы F_1 расположен от города ближе универсама фирмы F_2	75%	25%	
Универсамы обеих фирм расположены на одинаковом расстоянии от города			
Универсам фирмы F_1 расположен от города дальше универсама фирмы F_2			

Например, если универсам фирмы F_1 расположен от города G_1 ближе универсама фирмы F_2 , то доход фирм от покупок, сделанных жителями данного города, распределится следующим образом: 75% получит F_1 , остальное – F_2 .

- а) Представьте описанную ситуацию, как игру двух лиц;
- б) В каких городах фирмам целесообразно построить свои универсамы?

Пусть игроком 1 будет фирма F_1 , а игроком 2 — F_2 . Стратегии обоих игроков — построить свой магазин в городах: G_1 , G_2 , G_3 , G_4 . Элементами матрицы будут объемы дохода фирмы F1, которые пропорциональны числу покупателей.

Платежная матрица:

	G_1	G_2	G_3	G_4	$a = min A_i$
G_1	90	76.5	91.5	91.5	76.5
G_2	103.5	90	91.5	103.5	90
G_3	88.5	88.5	90	103.5	88.5
G_4	88.5	76.5	76.5	90	76.5
$b = \max B_i$	103.5	90	91.5	103.5	

 A_i — элеметны в строке, B_i — элементы в столбце

Пример расчета (G_2 , G_3)

$$(0.75 \cdot 30 + 0.75 \cdot 50)^* + (0.45 \cdot 40 + 0.45 \cdot 30)^{**} = 91.5$$
 тыс. руб.

st К городам G_1 и G_2 ближе магазин F_1 stst К городам G_3 и G_4 ближе магазин F_2

Нижняя цена игры a=90, верхняя цена игры b=90. a=b=90=> седловая точка (2;2), т. е. $(G_2,\ G_2)$. Значит, обеим формам выгоднее строить универсамы в городе G_2 . Доход фирмы F_1 будет равен 90 тыс. руб., а F_2 60 тыс. руб.

Двум погрузчикам разной мощности за 24 часа нужно погрузить на первой площадке 230 т, на второй - 68 т. Первый погрузчик на 1-ой площадке может погрузить 10 т в час, а на 2-ой - 12 т в час. Второй погрузчик на каждой площадке может погрузить по 13 т в час. Стоимость работ, связанных с погрузкой 1 т первым погрузчиком на первой площадке 8 руб., на второй - 7 руб., вторым погрузчиком на первой площадке - 12 руб., на второй - 13 руб. Нужно найти, какой объем работ должен выполнить каждый погрузчик на каждой площадке, чтобы стоимость всех работ по погрузке была минимальной.

Пусть x_1 — время, потраченное 1-м погрузчиком на 1-й площадке, x_2 — на 2-й площадке, x_3 — время, потраченное 2-м погрузчиком на 1-й площадке, x_4 — на 2-й площадке.

Целевая функция $F(x) = 8x_1 + 7x_2 + 12x_3 + 13x_4 \rightarrow min$

Ограничения:

$$\begin{cases} x_1 + x_2 \le 24 * \\ x_3 + x_4 \le 24 * \\ 10x_1 + 13x_3 = 230 ** \\ 12x_2 + 13x_4 = 68 ** \end{cases}$$

* лимит на время

** ограчничения на задания

$$x_1 = 18\frac{1}{3}, x_2 = 5\frac{2}{3}, x_3 = 3\frac{23}{39}, x_4 = 0$$

 $F(x) = 8 \cdot 18\frac{1}{3} + 7 \cdot 5\frac{2}{3} + 12 \cdot 3\frac{23}{39} + 13 \cdot 0 = 229\frac{16}{39}$

Тогда по оптимальному плану первый погрузчик должен погрузить $18\frac{1}{3}$ т на первой площадке и $5\frac{2}{3}$ т на второй.

Второй погрузчик должен погрузить $3\frac{23}{39}$ т на первой площадке и 0 т на второй.

При составлении суточного рациона кормления скота используют сено и силос. Рацион должен обладать определенной питательностью и содержать белка не менее 1 кг, кальция не менее 100 г и фосфора не менее 80 г. При этом количество питательного рациона должно быть не менее 60 кг. Содержание питательных компонентов в 1 кг сена и силоса приведено в следующей таблице. В ней указана также стоимость единицы того или иного корма. Требуется определить оптимальный суточный рацион кормления животных, обеспечивающий минимальную стоимость корма.

Название ингредиента	Норма (г)	Содержание ингредиента в 1 кг корма (г/кг)		
		Сено	Силос	
Белок	1000	40	10	
Кальций	100	1,25	2,5	
Фосфор	80	2	1	
Стоимость ед. корма (ден. ед.)		12	8	

Пусть x_1 – количество кг сена и x_2 — количество кг силоса, составляющих рацион на одно животное в течение суток.

Тогда нужно минимизировать функцию стоимости $F(X) = 12x_1 + 8x_2 \rightarrow min$

Ограничения:

$$\begin{cases} 40x_1 + 10x_2 \ge 1000 \\ 1.25x_1 + 2.5x_2 \ge 100 \\ 2x_1 + x_2 \ge 80 \\ x_1 + x_2 \ge 60 \end{cases}$$

$$x_1 = 20, x_2 = 40$$

 $F(x) = 12 \cdot 20 + 8 \cdot 40 = 560$

20 кг сена и 40 кг силоса составляют оптимальный суточный рацион, при этом его минимальная стоимость 560 рублей в день.

Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

Дана матрица проигрышей. Найти стратегию для первого игрока:

$$\begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$$

Так как мы должны минимизировать проигрыш сведем задачу к задаче ЛП:

$$\begin{cases} 4x_1 + 2x_2 \le 1 \\ 2x_1 + 3x_2 \le 1 \end{cases}$$

$$F(x) = x_1 + x_2 \to max$$

Приведем к канонической форме:

$$\begin{cases}
4x_1 + 2x_2 + x_3 = 1 \\
2x_1 + 3x_2 + x_4 = 1
\end{cases}$$

$$F(x) = x_1 + x_2 + 0x_3 + 0x_4 \rightarrow max$$

Внесем каноническую форму во входной файл формата json, чтобы получить решения при помощи алгоритма, реализованного для лабораторной №1:

```
{
  "fx": [1, 1, 0, 0],
  "matrix_a": [
       [4, 2, 1, 0],
       [2, 3, 0, 1]
  ],
  "matrix_b": [1, 1],
  "isMaximize": true
}
```

Вывод алгоритма: ([0.125, 0.25, 0, 0], 0.375)

$$x_1 = \frac{1}{8}$$
; $x_2 = \frac{1}{4}$;

$$F(x) = 0.375$$

$$p_1 = \frac{1}{8} \cdot \frac{1}{0.375} = \frac{1}{3}; \ p_2 = \frac{1}{4} \cdot \frac{1}{0.375} = \frac{2}{3};$$

И получим, что оптимальная смешанная стратегия для первого игрока будет $P(\frac{1}{3}\,,\,\frac{2}{3})$

Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 8 & 4 & 6 \\ 4 & 8 & 5 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

Дана матрица проигрышей. Найти стратегию для первого игрока:

$$\begin{pmatrix} 8 & 4 & 6 \\ 4 & 8 & 5 \end{pmatrix}$$

Так как мы должны минимизировать проигрыш сведем задачу к задаче ЛП:

$$\begin{cases} 8x_1 + 4x_2 + 6x_3 \le 1\\ 4x_1 + 8x_2 + 5x_3 \le 1 \end{cases}$$

$$F(x) = x_1 + x_2 + x_3 \rightarrow max$$

Приведем к канонической форме:

$$\begin{cases} 8x_1 + 4x_2 + 6x_3 + x_4 = 1 \\ 4x_1 + 8x_2 + 5x_3 + x_5 = 1 \end{cases}$$

$$F(x) = x_1 + x_2 + x_3 + 0x_4 + 0x_5 \rightarrow max$$

Внесем каноническую форму во входной файл формата json, чтобы получить решения при помощи алгоритма, реализованного для лабораторной №1:

```
{
  "fx": [1, 1, 1, 0, 0],
  "matrix_a": [
       [8, 4, 6, 1, 0],
       [4, 8, 5, 0, 1]
  ],
  "matrix_b": [1, 1],
  "isMaximize": true
}
```

Вывод алгоритма: ([0, 0.03571, 0.14285, 0, 0], 0.17857)

$$x_1 = 0$$
; $x_2 = \frac{1}{28}$; $x_3 = \frac{1}{7}$;

$$F(x) = \frac{5}{28}$$

$$p_1 = 0; \ p_2 = \frac{1}{28} \cdot \frac{1}{0.17857} = \frac{1}{5}; \ p_3 = \frac{1}{7} \cdot \frac{1}{0.17857} = \frac{4}{5};$$

И получим, что оптимальная смешанная стратегия для первого игрока будет P(0, $\frac{1}{5}$, $\frac{4}{5}$)

Пусть матрица проигрышей первого игрока имеет вид

$$\begin{pmatrix}
7 & 2 & 5 & 1 \\
2 & 2 & 3 & 4 \\
5 & 3 & 4 & 4 \\
3 & 2 & 1 & 6
\end{pmatrix}$$

Решить соответствующую матричную игру. Чему равно математическое ожидание проигрыша первого игрока, если и первый игрок, и второй игрок используют свои оптимальные стратегии?

Найдем нижнюю и верхнюю цену игры:

$$\begin{pmatrix} 7 & 2 & 5 & 1 \\ 2 & 2 & 3 & 4 \\ 5 & 3 & 4 & 4 \\ 3 & 2 & 1 & 6 \end{pmatrix}$$

Нижняя цена игры совпадает с верхней ценой игры => матричная игра имеет седловую точку, и она равна 3.

Поскольку первый и второй игрок используют свои оптимальные стратегии, мат. ожидание равно седловой точке. Мат. Ожидание проигрыша первого игрока равно -3.

Ответ: -3

Платежная матрица в некоторой игре имеет вид

$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{pmatrix}$$

Пусть первый игрок придерживается следующей смешанной стратегии: (6/13, 3/13, 4/13), а второй (6/13, 4/13, 3/13). Вычислить математическое ожидание проигрыша первого игрока.

Платежная матрица имеет вид:

$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{pmatrix}$$

Смешанная стратегия первого игрока - $(\frac{6}{13}; \frac{3}{13}; \frac{4}{13})$

Смешанная стратегия второго игрока - $(\frac{6}{13}; \frac{4}{13}; \frac{3}{13})$

Требуется найти мат. ожидание проигрыша первого игрока.

Воспользуемся формулой $\mu(p,q)=p\cdot A\cdot q$, где p-см. стратегия 1го игрока,

q — см. стратегия 2го игрока,

A - пл. матрицы

$$\mu(p,q) = \begin{pmatrix} \frac{6}{13}; \frac{3}{13}; \frac{4}{13} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{6}{13}; \frac{4}{13}; \frac{3}{13} \end{pmatrix}^{T} = \frac{108}{169}$$

Ответ: мат. ожидание проигрыша 1-го игрока равно $\frac{108}{169}$

Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \rightarrow \min$

$$\begin{cases} 7x_1 + 2x_2 \ge 1, \\ x_1 + 11x_2 \ge 1, \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Решить Матричную игру любым известным способом.

$$\mathcal{L}(\mathbf{x}) = x_1 + x_2 \to min$$

$$\begin{cases} 7x_1 + 2x_2 \ge 1 \\ x_1 + 11x_2 \ge 1 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases} = > \begin{pmatrix} 7 & 1 \\ 2 & 11 \end{pmatrix}$$

Решим матричную игру симплекс-методом.

Первая задача ЛП:

$$x_1 + x_2 \rightarrow max$$

$$\begin{cases} 7x_1 + x_2 \le 1\\ 2x_1 + 11x_2 \le 1 = > x_1 = \frac{2}{15}, \ x_2 = \frac{1}{15}; \ F(x) = \frac{1}{5} \end{cases}$$

Вторая задача ЛП:

$$y_1 + y_2 \rightarrow min$$

$$\begin{cases} 7y_1 + 2y_2 \ge 1 \\ y_1 + 11y_2 \ge 1 \\ y_1 \ge 0, \ y_2 \ge 0 \end{cases} = y_1 = \frac{3}{25}, \ y_2 = \frac{2}{25}; \ \mathcal{L}(y) = \frac{1}{5}$$

$$y = \frac{1}{F(x)} = \left(\frac{1}{5}\right)^{-1} = 5$$

Тогда, смешанная стратегия 1-го игрока p равна $5 \cdot \left(\frac{3}{25}; \frac{2}{25}\right) = \left(\frac{3}{5}; \frac{2}{5}\right)$

Смешанная стратегия 2-го игрока q равна $5 \cdot \left(\frac{2}{15}; \frac{1}{15}\right) = \left(\frac{2}{3}; \frac{1}{3}\right)$

Otbet: $\left(\frac{3}{5}; \frac{2}{5}\right)$, $\left(\frac{2}{3}; \frac{1}{3}\right)$

Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \rightarrow \max$

$$\begin{cases} 7x_1 + 2x_2 + 5x_3 + x_4 \le 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 \le 1, \\ 5x_1 + 3x_2 + 4x_3 + 4x_4 \le 1, \\ 3x_1 + 2x_2 + x_3 + 6x_4 \le 1, \\ x_1 \ge 0, \dots, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Можно ли упростить матричную игру, используя понятие доминирования стратегий? Решить матричную игру любым известным вам способом.

Перейдем к матричной игре:

$$\mathcal{L}(\mathbf{x}) = x_1 + x_2 + x_3 + x_4 \to max$$

$$\begin{cases} 7x_1 + 2x_2 + 5x_3 + x_4 \le 1 \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 \le 1 \\ 5x_1 + 3x_2 + 4x_3 + 4x_4 \le 1 \\ 3x_1 + 2x_2 + 3x_3 + 6x_4 \le 1 \end{cases} > \begin{pmatrix} 7 & 2 & 5 & 1 \\ 2 & 2 & 3 & 4 \\ 5 & 3 & 4 & 4 \\ 3 & 2 & 1 & 6 \end{pmatrix}$$

$$x_i \ge 0, i = \{1..4\}$$

Упростим матричную игру, используя доминирование стратегий:

$$\begin{pmatrix} 7 & 2 & 5 & 1 \\ 2 & 2 & 3 & 4 \\ 5 & 3 & 4 & 4 \\ 3 & 2 & 1 & 6 \end{pmatrix} = > \begin{pmatrix} 2 & 5 & 1 \\ 3 & 4 & 4 \\ 2 & 1 & 6 \end{pmatrix}$$

Найдем нижнюю и верхнюю цену игры. Матричная игра имеет седловую точку - 3 => игроки используют свои оптимальные стратегии:

(0, 1, 0) – для первого игрока; (1, 0, 0) – для второго игрока.

Ответ: (0, 1, 0); (1, 0, 0)