# Basi di Dati

Esercizi di algebra relazionale

#### Gestione ordini



Quali ordini (codice) ha emesso Paolo?

$$\pi_{COD\text{-}ORD}$$
 ( $\sigma_{NOME = 'Paolo'}$  (

CLIENTE  $\triangleright$  ORDINE))

Quali prodotti (nomi) sono ordinati da un cliente di Milano?

```
π <sub>PRODOTTO.NOME</sub> ( (σ<sub>CITTA = 'Milano'</sub> CLIENTE)

✓ ORDINE ✓ DETTAGLIO

✓ PRODOTTO )
```

Quali prodotti (nomi) hanno prezzo inferiore a 10 € e non sono presenti in nessun ordine?

```
(\pi_{NOME} (\sigma_{PREZZO < 10} PRODOTTO)) - (\pi_{NOME} (PRODOTTO))
```

NOTA: nella soluzione precedente, abbiamo assunto che il nome del prodotto sia univoco Una soluzione valida anche in caso contrario può essere la seguente:

```
\pi_{NOME} ( PRODOTTO \triangleright\)
(\pi_{COD-PROD} (\sigma_{PREZZO < 10} PRODOTTO) - (\pi_{COD-PROD} DETTAGLIO)
```

# Esempio: gestione personale

## impiegato

| MATR | NOME     | DATA-ASS | SALARIO | MATR-MGR |
|------|----------|----------|---------|----------|
| 1    | Piero    | 1-1-12   | 1500 €  | 2        |
| 2    | Giorgio  | 1-1-14   | 2000 €  | null     |
| 3    | Giovanni | 1-7-13   | 1000 €  | 2        |

#### assegnamento

| MATR | NUM-PROG | PERC |
|------|----------|------|
| 1    | 3        | 50   |
| 1    | 4        | 50   |
| 2    | 3        | 100  |
| 3    | 4        | 100  |

#### progetto

| NUM-PROG | TITOLO | TIPO   |
|----------|--------|--------|
| 3        | Idea   | Esprit |
| 4        | Wide   | Esprit |

•In quali tipi di progetti lavora Giovanni?

$$\pi_{TIPO}$$
 ( $\sigma_{NOME = 'Giovanni'}$  (IMPIEGATO  $\bowtie$  ASSEGNAMENTO  $\bowtie$  PROGETTO))

•Chi e' il manager di Piero?

$$\pi_{NOME}$$
 (  $(\pi_{MATR-MGR} (\sigma_{NOME = 'Piero'} | IMPIEGATO) ) 
 $\bowtie_{MATR-MGR=MATR} | IMPIEGATO )$$ 

Quale impiegato e' stato assunto per primo?

$$\pi_{\text{MATR}}$$
 IMPIEGATO -  $\pi_{\text{MATR}}$  (IMPIEGATO  $\bowtie$  DATA-ASS>DATA-ASS  $\pi_{\text{DATA-ASS}}$  IMPIEGATO )



Per evitare confusione, è anche possibile, specie nei casi di self-join, utilizzare **alias** diversi per la stessa tabella (eventualmente evitando anche proiezioni intermedie). Ad esempio, nel caso precedente:

```
IMP1 = IMPIEGATO
IMP2 = IMPIEGATO
```

```
\pi_{MATR} IMPIEGATO - \pi_{IMP1.MATR} (IMP1 \searrow DATA-ASS>DATA-ASS IMP2)
```

# Divisione (÷)

Il risultato dell'operazione di divisione (÷) tra due relazioni r ed s, con schemi R(X) ed S(Y), Y sottoinsieme di X, è una relazione d, con schema D(X-Y), contenente le tuple di r associate a tutte le tuple di s.

#### r R(X)

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 3    | 4        |



L'operatore di divisione non è un operatore di base, ma può essere derivato dagli operatori che già conosciamo. In particolare:

```
r÷s ≡ π [X-Y] r

-

π [X-Y]

( ( (π [X-Y] r) x s)

- r)
```

Quale impiegato e' assegnato a tutti i progetti?

π [MATR, NUM-PROG]

ASSEGNAMENTO



π [NUM-PROG]
PROGETTO

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 3    | 4        |



Quale impiegato e' assegnato a tutti i progetti?

 $\pi_{\text{MATR, NUM-PROG}}$  ASSEGNAMENTO

÷

 $\pi_{\text{NUM-PROG}} \ \ \text{PROGETTO}$ 

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 3    | 4        |



#### $r = \pi$ [MATR, NUM-PROG] **ASSEGNAMENTO**

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 3    | 4        |

#### $s = \pi [NUM-PROG]$ **PROGETTO**

| NUM-PROG |   |
|----------|---|
| 3        | - |
| 4        |   |

#### $(\pi [MATR] r) x s$

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 2    | 4        |
| 3    | 3        |
| 3    | 4        |

# $((\pi [MATR] r) x s) - r$

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 2    | 4        |
| 3    | 3        |
| 3    | 4        |

| MATR | NUM-PROG |
|------|----------|
| 1    | 3        |
| 1    | 4        |
| 2    | 3        |
| 3    | 4        |

| MATR | NUM-PROG |
|------|----------|
| 2    | 4        |
| 3    | 3        |

Gli impiegati 3 e 4 (della tabella risultante), sono quelli NON assegnati a ciascun progetto

```
π [MATR]
( ( (π [MATR] r) x s ) – r)
```

**MATR** 

2

3

Proiettiamo sulla Matricola

```
π [MATR] r
-
π [MATR]
( ( (π [MATR] r) x s ) – r)

MATR
1
```

Tutte le matricole, meno quelle NON assegnate a ciascun progetto

#### Schema Relazionale

CD(CODCD, AUTORE, CASADISCO)

CLIENTE(NTESS, NOME, INDIRIZZO)

ACQUISTO(CODCD, NTESS, DATA, QTY)

FK: CODCD REFERENCES CD

FK: NTESS REFERENCES CLIENTE

Il cliente identificato da NTESS ha acquistato, in una certa DATA, un certo numero QTY di copie del compact disk CODCD

- selezionare tutti i dati dei clienti che dopo il 1/1/1997 non hanno aquistato nessun CD prodotto dalla casa discografica 'Mute';
- selezionare il numero tessera dei clienti che hanno acquistato tutti i CD dell'autore 'Depeche Mode'.

#### Schema Relazionale

DIPENDENTE(<u>CF</u>,NOME,CITT`A)
PROGETTO(<u>CP</u>,NOME,ANNO,DURATA)
LAVORA(<u>CP</u>,CF,MESI,RUOLO)

FK: CP REFERENCES PROGETTO

FK: CF REFERENCES DIPENDENTE

Nel progetto CP, il dipendente CF lavora per un certo numero di MESI, svolgendo un certo RUOLO.

- selezionare i dati dei dipendenti di Modena che non hanno lavorato in alcun progetto dell'anno 1995;
- selezionare i dati dei dipendenti che non hanno mai lavorato insieme ad un dipendente di Modena, cioè nello stesso progetto in cui lavorava anche un dipendente di Modena.

#### Schema Relazionale

TECNICO(CF,INDIRIZZO,QUALIFICA,COSTO-ORARIO)

PC(<u>CP</u>,NOME,TIPO,NOMEPROPRIETARIO)

RIPARAZIONE(<u>DATA,CF,CP</u>,ORE)

FK: CF REFERENCES TECNICO

FK: CP REFERENCES PC

Nella DATA specificata, il tecnico CF ha riparato il personal computer CP impiegando un certo numero di ORE

- selezionare i personal di tipo 'Mac' che non sono stati riparati tra il 1/7/97 e il 1/11/97;
- selezionare i tecnici che hanno riparato tutti i personal di tipo 'Mac'.

#### Schema Relazionale

NAZIONE(<u>CN</u>, PRESIDENTE, CONTINENTE)

CONFERENZA(<u>CC</u>, DESCRIZIONE, CNSEDE)

FK: CNSEDE REFERENCES NAZIONE

CNSEDE rappresenta la nazione in cui si è tenuta la conferenza CC

PARTECIPA(<u>CC,CN</u>,NUMEROP)

FK: CC REFERENCES CONFERENZA

FK: CN REFERENCES NAZIONE

NUMEROP è il numero di rappresentanti della nazione CN partecipanti alla conferenza CC

- selezionare i dati relativi alle nazioni che hanno partecipato ad una conferenza tenutasi in una nazione del continente Europa;
- selezionare i dati relativi alle nazioni che hanno partecipato ad una conferenza tenutasi nella nazione stessa;
- selezionare i dati relativi alle nazioni che non hanno mai partecipato ad una conferenza assieme ad una nazione del continente Europa.

#### Schema Relazionale

QUADRO(<u>CQ</u>,AUTORE,PERIODO)

MOSTRA(CM, NOME, ANNO, ORGANIZZATORE)

ESPONE(CM,CQ,SALA)

FK: CM REFERENCES MOSTRA

FK: CQ REFERENCES QUADRO

Nella mostra CM, il quadro CQ è stato esposto in una certa SALA

- selezionare tutti i dati sulle mostre nelle quali è stato esposto un quadro di Picasso nel 97 oppure nel 96;
- selezionare il nome della mostra nella quale sono stati esposti tutti i quadri di Picasso.