

DSC 204A: Scalable Data Systems Winter 2024

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

Recap

How should OLTP database be improved to accommodate OLAP use?

Today's topic: Column-oriented storage and schemas

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage

Data analytic queries

- What was the total revenue of each of our stores in Jan?
- How many more bananas that usual did we sell during our latest data?
- Which brand of baby food is most often purchased together with brand X diapers?

Popular Schemas in Database (DSC 102)

- Relation (SQL)
- Document (NoSQL)
- Graph (GraphQL)
- Network
- Hierarchy
- Stars
- Snowflake

Star

Snowflake

Star schema

- Fact table in the middle
 - A collection of events
 - e.g., click events, page views, retail sales
 - Two types of columns
 - Attributes
 - References to dimension tables.
- Fact table: event meta data
- Dimensions: who, what, where, when, how, and why of the event.

Example: dim_date table

- Speed up the analysis.
- Easier development.

dim_date table									
date_key	year	month	day	weekday	is_holiday				
140101	2014	jan	1	wed	yes				
140102	2014	jan	2	thu	no				
140103	2014	jan	3	fri	no				
					•				

Today's topic: Column-oriented storage

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage

Data scale

- Fact tables
 - Hundreds of columns
 - Trillions of rows
 - Petabytes of data
- Dimension tables
 - Million of rows.
 - Can be wide. But less common.

How many columns do we need suct sk

- What was the total revenue of each of our stores in Jan?
- How many more bananas that usual did we sell during our latest data?
- Which brand of baby food is most often purchased together with brand X diapers?

How does a Row-oriented storage work?

- Storage:
 - All the values from one row of a table are stored next to each other.
- What was the total revenue in January?
 - Load indexes into the memory
 - Find all the records in January.
 - Load all of these rows (100+ attributes)
 from disk into memory
 - Parse
 - Filter

Implementations for column-oriented

fact_sales table

date_key	product_sk	store_sk	promotion_sk	customer_sk	quantity	net_price	discount_price
140102	69	4	NULL	NULL	1	13.99	13.99
140102	69	5	19	NULL	3	14.99	9.99
140102	69	5	NULL	191	1	14.99	14.99
140102	74	3	23	202	5	0.99	0.89
140103	31	2	NULL	NULL	1	2.49	2.49
140103	31	3	NULL	NULL	3	14.99	9.99
140103	31	3	21	123	1	49.99	39.99
140103	31	8	NULL	233	1	0.99	0.99

Columnar storage layout:

date_key file contents: 140102, 140102, 140102, 140103, 140103, 140103, 140103

product_sk file contents: 69, 69, 69, 74, 31, 31, 31

store_sk file contents: 4, 5, 5, 3, 2, 3, 3, 8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL customer_sk file contents: NULL, 191, 202, NULL, NULL, 123, 233

quantity file contents: 1, 3, 1, 5, 1, 3, 1, 1

net_price file contents: 13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99 discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

How does a column-oriented storage work?

- Storage:
 - Store all the values from each column together instead.
- What was the total revenue in January?
 - Load indexes into the memory
 - Find all the records in January.
 - Load all of these rows (100+ attributes -> 1 row) from disk into memory
 - 100 times improvement
 - Parse
 - Filter

fact_sales table

date_key	product_sk	store_sk	promotion_sk	customer_sk	quantity	net_price	discount_price
140102	69	4	NULL	NULL	1	13.99	13.99
140102	69	5	19	NULL	3	14.99	9.99
140102	69	5	NULL	191	1	14.99	14.99
140102	74	3	23	202	5	0.99	0.89
140103	31	2	NULL	NULL	1	2.49	2.49
140103	31	3	NULL	NULL	3	14.99	9.99
140103	31	3	21	123	1	49.99	39.99
140103	31	8	NULL	233	1	0.99	0.99

Columnar storage layout:

date_key file contents: 140102, 140102, 140102, 140103, 140103, 140103, 140103

product_sk file contents: 69, 69, 69, 74, 31, 31, 31

store_sk file contents: 4, 5, 5, 3, 2, 3, 3, 8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL customer_sk file contents: NULL, 191, 202, NULL, NULL, 123, 233

quantity file contents: 1, 3, 1, 5, 1, 3, 1, 1

net_price file contents: 13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99 discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Column compression

- Data in the same column are more repetitive.
- Save storage space
- Improve I/O bandwidth usage

fact_sales table

date_key	product_sk	store_sk	promotion_sk	customer_sk	quantity	net_price	discount_price
140102	69	4	NULL	NULL	1	13.99	13.99
140102	69	5	19	NULL	3	14.99	9.99
140102	69	5	NULL	191	1	14.99	14.99
140102	74	3	23	202	5	0.99	0.89
140103	31	2	NULL	NULL	1	2.49	2.49
140103	31	3	NULL	NULL	3	14.99	9.99
140103	31	3	21	123	1	49.99	39.99
140103	31	8	NULL	233	1	0.99	0.99

Columnar storage layout:

date_key file contents: 140102, 140102, 140102, 140103, 140103, 140103, 140103

product_sk file contents: 69, 69, 69, 74, 31, 31, 31

store_sk file contents: 4, 5, 5, 3, 2, 3, 3, 8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL customer_sk file contents: NULL, 191, 202, NULL, NULL, 123, 233

quantity file contents: 1, 3, 1, 5, 1, 3, 1, 1

net_price file contents: 13.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99 discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Bitmap encoding

Column values:

product_sk: 69 69 69 69 74 31 31 31 31 29 30 30 31 31 31 68 69 69

Bitmap for each possible value:

- Many transactions
- A small amount of distinct values
- Transform them into bitmaps
 - Bitmap => One unique value
 - Bit => Occurrence & Order

Bitmap encoding

Column values:

product_sk: 69 69 69 69 74 31 31 31 31 29 30 30 31 31 31 68 69 69

Bitmap for each possible value:

Run-length encoding:

product_sk = 29: 9, 1 (9 zeros, 1 one, rest zeros)
 product_sk = 30: 10, 2 (10 zeros, 2 ones, rest zeros)
 product_sk = 31: 5, 4, 3, 3 (5 zeros, 4 ones, 3 zeros, 3 ones, rest zeros)
 product_sk = 68: 15, 1 (15 zeros, 1 one, rest zeros)
 product_sk = 69: 0, 4, 12, 2 (0 zeros, 4 ones, 12 zeros, 2 ones)
 product_sk = 74: 4, 1 (4 zeros, 1 one, rest zeros)

- Many transactions
- A small amount of distinct values
- Transform them into bitmaps
 - Bitmap => One unique value
 - Bit => Occurrence & Order
- Run-length encoding for sparse bitmaps

Bitmap indexes for queries

WHERE product_sk IN (30, 68, 69):

Load the three bitmaps for product_sk = 30, product_sk = 68, and product_sk = 69, and calculate the bitwise OR of the three bitmaps, which can be done very efficiently.

WHERE product_sk = 31 AND store_sk = 3:

Load the bitmaps for product_sk = 31 and store_sk = 3, and calculate the bitwise AND. This works because the columns contain the rows in the same order, so the kth bit in one column's bitmap corresponds to the same row as the kth bit in another column's bitmap.

Summary of Important Concepts

- Hashtable indexes, SSTable, LSM, B-tree
 - Self-balanced tree
 - Bloom Filter
- General rule of thumbs:
 - LSM Tree -> in-memory database
 - B-Tree -> classic relational / on-disk database
- OLAP vs. OLTP
- Data warehouse
 - Schemas for Analytics
 - Column-oriented storage

Where We Are

Machine Learning Systems

Big Data

2010 - Now

Cloud

2000 - 2016

Foundations of Data Systems

1980 - 2000

Where We Are

Motivations, Economics, Ecosystems, Trends

Networking

Storage

Part3: Compute

Datacenter networking

Collective

(Distributed) File communication Systems / Database

Cloud storage

Distributed Computing

Big data processing

Distributed Computing and Big Data

- Parallelism Basics
- Data Replication and partitioning
- [Maybe] Consensus
- Batched Processing
- Streaming Processing
- Guest Lectures

Today's topic: Parallelism

- Express data processing in abstraction
- Parallelisms
 - Task parallelism
 - Data parallelism
 - Terms: SIMD, SIMT, SPMD, MPMD

Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps also across machines/workers (aka "Divide and Conquer")

Data Processing: Abstraction

Q: How to represent various processing functions?

How to Express Arbitrarily Complex Processing Functions?

Dataflow Graph: common in parallel data processing

- A directed graph representation of a program
 - **Vertices:** abstract operations from a restricted set of computational primitives:
 - Edges: data flowing directions (hence data dependency)
- Examples
 - Relational dataflows: RDBMS, Pandas, Modin
 - Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow
- Enables us to reason about data-intensive programs at a higher level

Example: Relational Dataflow Graph

Aka Logical Query Plan in the DB systems world

Example: Machine Learning Dataflow Graph

$$ReLU(WX+b)$$

Aka Neural network computational graph in ML systems

What is ChatGPT's dataflow graph Looking like?

Parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps also across machines/workers (aka "Divide and Conquer")

Key parallelism paradigms in data systems

assuming there will be coordination:

data func	Shared	Replicated	Partitioned
Replicated	N/A (ro	are cases)	Data parallelism
Partitioned	Taskp	arallelism	Hybrid parallelism

Terms are confusing

- Different domains term them differently in different contexts
- Architecture/parallel computing: single-node multi-cores
 - SIMD, MIMD, SIMT
- Distributed system: multiple-node multi-cores
 - SPMD vs. MPMD
- Machine learning community
 - Data parallelism vs. Model parallelism
 - Inter-operator parallelism vs. Intra-operator parallelism

Today's topic: Parallelism

- Express data processing in abstraction
- Parallelisms
 - Task parallelism
 - Data parallelism
 - Terms: SIMD, SIMT, SPMD, MPMD

Task Parallelism

Basic Idea: Split up *tasks* across workers; if there is a common dataset that they read, just make copies of it (aka *replication*)

Example:

- 4) After T4 & T5 end, run T6 on W1; W2 is idle
- 3) After T1 ends, run T4 on W1; after T2 ends, run T5 on W2; after T3 ends, W3 is idle
 - 2) Put T1 on worker 1 (W1), T2 on W2, T3 on W3; run all 3 in parallel
 - 1) Copy whole D to all workers

Task Parallelism

- Topological sort of tasks in task graph for scheduling
- Notion of a "worker" can be at processor/core level, not just at node/server level
 - Thread-level parallelism possible instead of process-level
 - E.g., Dask: 4 worker nodes x 4 cores = 16 workers total
- Main pros of task parallelism:
 - Simple to understand
 - Independence of workers => low software complexity
- Main cons of task parallelism:
 - Can be difficult to implement
 - Idle times possible on workers

Degree of Parallelism

The largest amount of concurrency possible in the task graph, i.e., how many task can be run simultaneously

Example: Given 3 workers T1 T2 T3

Q: How do we quantify the runtime performance benefits of task parallelism?

But over time, degree of parallelism keeps dropping in this example

Degree of parallelism is only 3

So, more than 3 workers is not useful for this workload!

Quantifying Benefit of Parallelism: Speedup

Completion time given only 1 worker

Speedup =

Completion time given n (>1) workers

Q: But given n workers, can we get a speedup of n?

It depends!

(On degree of parallelism, task dependency graph structure, intermediate data sizes, etc.)

Q: what kind of graphs can give a speedup of n?

Weak and Strong Scaling

Q: Is superlinear speedup/scaleup ever possible?

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of parallelism in workload, idle workers waste resources

Gantt Chart visualization of schedule:

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of parallelism in workload, idle workers waste resources

Example: Given 3 workers T5 T4 T3

- In general, overall workload's completion time on task-parallel setup is always lower bounded by the longest path in the task graph
- Possibility: A task-parallel scheduler can "release" a worker if it knows that will be idle till the end
- Can saves costs in cloud