

Universidade do Minho Departamento de Informática

Engenharia de Telecomunicações e Informática

PROCESSAMENTO DIGITAL DE SINAL

Reconhecimento de Voz

Grupo 9
Fernando João Santos Mendes A101263
Junlin Lu A101270

Conteúdo

Re	esumo		3	
1.	. Intro	dução	3	
	1.1 Obje	1.1 Objetivo do Trabalho		
	1.2 Fund	1.2 Funcionalidades/Possibilidade		
	1.3 Púb	L3 Público-Alvo		
2.	. Instal	lação de Software/Bibliotecas	4	
	2.1	Software/configuração necessário	4	
	2.2 Req	uisitos das bibliotecas	5	
	2.2	Configuração	5	
3.	. Interf	face do Utilizador	6	
4.	. Funci	Funcionalidades Principais6		
5.	Gestâ	Gestão de dados8		
•	Impo	ortação de dados	8	
•	Expo	rtação de Dados	8	
•	Backı	up e Restauração	8	
6.	. Resol	lução de problemas	8	
7.	. Exem	nplos Práticos	8	
8.	. Atual	lizações futuras	9	
9.	. Concl	lusão	9	
10	0. Lin	nks	10	
	Github	do projeto	10	
	Dataset	ataset		
	Training	raining script		
	Gravaçã	Gravação com filtro10		
	Diagran	na(early version)	10	

Resumo

Este projeto consistiu na criação de um programa que permitisse otimizar e automatizar a interação entre um utilizador e o seu próprio dispositivo através do reconhecimento de voz.

Através de comandos pré-definidos é possível aceder a aplicações que estejam no nosso dispositivo mediante a voz do utilizador.

Para que tal fosse possível procuramos criar um código que se sustentasse sobre nos Modelos Ocultos de Markov (HMMs) como fundamento principal do projeto e seguimos então com o treinamento deste modelo segundo o contexto a cima descrito. As palavras chave utilizadas foram "Excel","Yes","No".

Assim sendo conseguimos de forma um pouco mais restrita simular uma situação exemplo onde colocamos em prática o reconhecimento de voz.

Além dos filtros aplicados no processamento do HMMs tentamos ainda implementar um filtro passa-baixo (utilizando uma biblioteca) para reduzir o ruído de forma a tornar as gravações mais percetíveis e fundamentar os conceitos abordados em sala de aula.

1. Introdução

1.1 Objetivo do Trabalho

O objetivo deste trabalho foi pensado e criado tendo em conta as aprendizagens retiradas ao longo das aulas referentes a filtros, processamento da informação e também foi fomentado pela curiosidade sobre a área das IA e métodos relacionados.

Definimos que a nossa aplicação deveria responder a uma necessidade ou utilidade da qual serviria de interesse comum.

Como tal o nosso programa foca-se em otimizar a procura das aplicações no nosso computador e incentivar à tecnologia moderna de comunicação com os dispositivos.

1.2 Funcionalidades/Possibilidade

Algumas das funcionalidades do nosso projeto que se destacam são:

- A utilização da voz para ordenar a abertura de aplicações em tempo real;
- O uso de filtros que permitem suavizar as amostras para assim uma melhor comparação;
- Possibilidade de incrementar o número de aplicações executáveis;

1.3 Público-Alvo

O nosso projeto foca-se naqueles que tem por hábito a utilização do computador para as suas tarefas, lazer ou trabalho e que queiram tornar esta interação com a sua máquina algo mais dinâmico e iterativo de uma forma divertida e otimizada.

2. Instalação de Software/Bibliotecas

2.1 Software/configuração necessário

Para o desenvolvimento e funcionamento do nosso projeto, é imprescindível que você tenha instalado o IDE (recomenda VS code) e a versão 3.10.5 do Python. Estas são as ferramentas fundamentais para o trabalho com o nosso projeto.

VS code: https://code.visualstudio.com/download
Python 3.10.5: https://www.python.org/downloads/release/python-3105/

Após concluir todas as instalações, abra qualquer script Python e configure o

2.2 Requisitos das bibliotecas

- scipy
- python_speech_features
- time
- hmmlearn.hmm
- joblib
- os
- pyaudio

Instalação das bibliotecas é feita através seguintes comandos no terminal:

```
pip install scipy
pip install numpy
pip install python_speech_features
pip install hmmlearn
pip install joblib
pip install pyaudio
pip install matplotlib
```

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS SE

PS D:\3Ano\3ano\PDS\Projeto> pip install scipy
>> pip install numpy
>> pip install python_speech_features
>> pip install hmmlearn
>> pip install joblib
>> pip install pyaudio
>> pip install matplotlib
>> [
```

2.2 Configuração

Por favor, lembre-se de alterar o endereço e o nome do arquivo de saída no código. O caminho padrão está configurado como:

X:\\xxx\\xxx\\ PDS G9 A101263 A101270\\Voice\\test\\test.wav

 $\label{lem:continuous} $$X:\xxx\\PDS_G9_A101263_A101270\\Voice\\response.wav $$$

o que significa que o arquivo será salvo no diretório atual.

Se desejar salvar em um local diferente, ajuste a variável WAVE_OUTPUT_FILENAME com o caminho desejado. Além disso, verifique e ajuste o caminho do modelo wave que será carregado, para garantir que o programa funcione corretamente.

```
MAVE_OUTPUT_FILENAME = "D:\\3Ano\\3ano\\PDS\\PDS_G9_ A101263_A101270\\Voice\\test\\test.wav"

RESPONSE_WAVE_OUTPUT_FILENAME = "D:\\3Ano\\3ano\\PDS\\PDS_G9_ A101263_A101270\\Voice\\response\\response.wav"

models = joblib.load('wave.ckpt')
```

3. Interface do Utilizador

Para que a interação com utilizador seja mínima procuramos ter uma interface simples e objetiva.

4. Funcionalidades Principais

• Reconhecimento de voz:

Descrição:

A funcionalidade permite captar a voz do utilizador;

Passos para a utilização:

Inicie o programa e aguarde que lhe seja dada uma mensagem a sinalizar o início da captação do áudio;

Dicas / Boas práticas:

Evitar ambiente com altas perturbações sonoras;

Evitar diversos locutores ao mesmo tempo;

Escolha da aplicação que deseja executar:

Descrição:

A funcionalidade permite captar qual a aplicação pronunciada pelo utilizador;

Passos para a utilização:

Após iniciar a gravação pronuncie a palavra que se refere à sua aplicação;

Dicas / Boas práticas:

Pronunciar os nomes e não os seus diminutivos ou abreviaturas;

• Filtragem do áudio:

Descrição:

A funcionalidade permite utilizar um filtro que diminua o ruído externo de forma a suavizar o som para melhor recolha das características do mesmo:

Passos para a utilização:

Utilizar um outro ficheiro onde colocamos o filtro em questão a funcionar para treinar o modelo;

Dicas / Boas práticas:

Pronunciar os nomes e não os seus diminutivos ou abreviaturas;

Evitar ambiente com altas perturbações sonoras;

Evitar diversos locutores ao mesmo tempo;

5. Gestão de dados

Importação de dados

Os dados usados são importados de ficheiros Wav. Devidamente organizados nas suas pastas.

Exportação de Dados

Caso seja utilizada a funcionalidade de treino do modelo o resultado da mesma será um ficheiro Way.

Backup e Restauração

Não implementamos nenhum método que permita fazer o Backup e a Restauração.

6. Resolução de problemas

Nas situações onde eventualmente o programa sofre algum erro como não identificar as palavras que fazem parte das palavras chave, ele envia uma mensagem a mostrar aquilo que foi percebido pelo mesmo e desta forma o utilizador poderá recomeçar a sua interação.

7. Exemplos Práticos

Casos de uso comuns:

Navegar pelas aplicações do sistema através do uso da voz.

Demonstração de funcionalidades em Situações Reais

Para comprovar o funcionamento do nosso projeto vamos enviar junto com o relatório um vídeo expositivo.

8. Atualizações futuras

Num futuro próximo pretendemos realizar uma interface que seja intuitiva e se possível criarmos um atalho no ambiente de trabalho de fácil e rápido acesso para se utilizar o programa.

Esperamos também aumentar o nosso DataSet treinando o modelo com mais exemplos para que seja maior a sua assertividade.

9. Conclusão

O desenvolvimento deste projeto proporcionou-nos o desenvolvimento de um equalizador do zero, uma ferramenta que já nos era familiar, mas que ganhou uma nova dimensão ao ser desenvolvida por nós. A experiência de desenvolver o equalizador, desde a captura do áudio até a implementação dos filtros digitais, tornou o resultado final mais gratificante.

Aplicamos na prática os conhecimentos que adquirimos na disciplina de Processamento Digital de Sinal, desde a parte da amostragem até aos filtros digitais, fomos capazes de entender cada etapa do processo. Termos tido o objetivo bem definido desde o início do projeto foi importante e o resultado final foi ao encontro do que tínhamos planeado

Este projeto permitiu-nos enfrentar desafios reais no processamento digital de sinal. A capacidade de criar um equalizador personalizado, onde é possível ajustar os parâmetros como frequência de corte, largura de banda e ganho, demonstrou-nos realmente qual a utilidade dos conceitos aprendidos ao longo do semestre.

10. Links

Github do projeto

https://github.com/K0Kosuki/3ano/tree/main/PDS/Projeto

Dataset

https://github.com/K0Kosuki/3ano/tree/main/PDS/Projeto/Dataset

Training script

https://github.com/K0Kosuki/3ano/blob/main/PDS/Projeto/Train.py

Gravação com filtro

https://github.com/KOKosuki/3ano/blob/main/PDS/Projeto/Record Filter.py

Reconhecimento de voz

https://github.com/K0Kosuki/3ano/blob/main/PDS/Projeto/test.py

Diagrama(early version)

https://github.com/K0Kosuki/3ano/blob/main/PDS/Voice%20test/Reconhecimento_de_Voz2.doocx