Elliptic Curves and Cryptography (6)

Group Law

- From points Q₁,Q₂ on an elliptic curve, we can create a new point Q₃.
- \triangleright We write $\mathbf{Q_3} = \mathbf{Q_1} \oplus \mathbf{Q_2}$.
- > We define $Q \oplus ∞ = Q$.

Elliptic Curves and Cryptography (7)

Elliptic Curve $Y^2 = X^3 + AX + B$

- (1) If Q_1 or $Q_2 = \infty$,
 - If $Q_1 = \infty$, put $Q_3 = Q_2$.
 - If $Q_2 = \infty$, put $Q_3 = Q_1$.
- (2) Otherwise, put $Q_1(S_1, T_1)$ and $Q_2(S_2, T_2)$.
 - If $S_1 = S_2$ and $T_1 \neq T_2$, put $Q_3 = \infty$.
 - Otherwise, define $Q_3(S_3, T_3)$ by

$$\begin{split} S_3 &= K^2 - S_1 - S_2 \\ T_3 &= K(S_1 - S_3) - T_1 \\ K &= \begin{cases} (T_2 - T_1)/(S_2 - S_1) & \text{if } S_1 \neq S_2 \\ (3S_1^2 + A)/(2T_1) & \text{if } S_1 = S_2. \end{cases} \end{split}$$

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Elliptic Curves and Cryptography (8)

- Figure 6. Given two points Q_1 and Q_2 on the elliptic curve, there is a law (**Group Law**) creating a new point Q_3 .
- Everything is calculated in terms of usual four operations of coordinates.
- We can also define the Group Law for mod P points.

Elliptic Curves and Cryptography (9)

- For a mod P point Q, we define $[K]Q = Q \oplus \cdots \oplus Q \quad (K-1 \text{ times}).$
- [K]Q is an analogue of the exponential A^K (mod P).
- Using [K]Q instead of A^K, we can construct cryptosystems.
 - ⇒ Elliptic Curve Cryptography (ECC)

: 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 19

Summary of Week 4

- Basics on Cryptography, Carsar cipher
- The use of Modular Arithmetic in Cryptography.
 - Discrete Logarithm Problem
 - Integer Factorization
- > The RSA Cryptosystems
- Elliptic Curve Cryptography (ECC)

Plan of Week 5

We will learn more advanced laws of prime numbers for elliptic curves.

Let's explore attractive theorems and conjectures on elliptic curves!
See you next week!

Bryan John Birch (1931-)

Peter Swinnerton-Dyer (1927-)

https://en.wikipedia.org/wiki/Bryan_John_Birch https://en.wikipedia.org/wiki/Peter_Swinnerton-Dyer