Interpolation (X21 /2) (x1, y1) (+0170) f(x) Interpolant Linear Interpolation (X1 171) f(x) = a + ax (06,0x)

	time(s)	velocates (m/s)
	0	O
	0	227.04
	5	362.78
	20	517·35
	22.5	602-97
	30	901.67
	V(t) = ao + a, t hence we have to take	
-> We have to find two unknowns (a,, a,), hence we have to take		
two equations 362.78 = 00(1) + 0, (15)		
517.35 = ao(1) + a1 (20)		
	Note: (introverse of a 2x2 matrix	
	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A' = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	
	(2) Identity matrix I = A A = A A	

$$\frac{362.78}{517.36} = \begin{bmatrix} 1 & 15 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 15 \end{bmatrix} \begin{bmatrix} 362.78 \\ 517.35 \end{bmatrix} = \begin{bmatrix} 1 & 15 \end{bmatrix} \begin{bmatrix} 1 & 16 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

$$\frac{1}{1\times20-1\times15}\begin{bmatrix}20 & -15\\ -1 & 1\end{bmatrix}\begin{bmatrix}312.78\\ 517.35\end{bmatrix} = \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}\begin{bmatrix}a_0\\ a_1\end{bmatrix}$$

$$\frac{1}{5} \begin{bmatrix} 20 & -15 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 362.78 \\ 517.35 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ -1/5 & 1/5 \end{bmatrix} \begin{bmatrix} 362.78 \\ 517.35 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \times 362.78 - 3 \times 517.35 \\ -1/5 \times 362.78 + 1/5 \times 517.35 \end{bmatrix} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$

$$\begin{bmatrix} -100.93 \\ 30.91 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

Hence
$$a_0 = -[00.93]$$
 $a_1 = 30.91$
 $a_1 = -[00.93] + 30.91 \times 1$
 $a_1 = -[00.93] + 30.91 \times 1$

Step 1)
$$a_0 + a_1 = 362.78 \longrightarrow \text{Cal}$$

$$a_0 + a_1 = 517.36 \longrightarrow \text{Cal}$$

$$step 3$$
) $a_1 = 154.57/5$
= 30.914