

St Mary's Anglican Girls' School Organic Chemistry

CHAPTER 1 BONDING in HYDROCARBONS

1-1 COVALENT BONDING

When two atoms share a pair of valence electrons to form a chemical bond the resulting bond is called a COVALENT bond.

Since a carbon atom has four valence electrons it can form 4 covalent bonds. Hydrogen, oxygen, chlorine and fluorine are common examples of elements that can share electrons with carbon to form covalent bonds.

Carbon atoms can also form covalent bonds with other carbon atoms. The strength of a carbon – carbon bond is quite strong compared to other covalent bonds.

1-2 HYDROCARBONS

A hydrocarbon is a carbon based compound that contains only carbon atoms and hydrogen atoms. There are three distinct types of hydrocarbons:

- a) ALIPHATIC HYDROCARBONS: the carbon atoms are arranged in a continuous chain
 - e.g. -C-C-C-C-C etc.
- b) CYCLIC HYDROCARBONS: the carbon atoms form a ring or a cycle
 - e.g. C-C-C C-C
- c) AROMATIC HYDROCARBONS: these contain a 'benzene' ring of carbon atoms. The bonding in this type of hydrocarbon will be discussed later.

1-3 NAMING HYDROCARBONS

There are a number of strict (but highly logical) rules which are used to name hydrocarbons. These rules use the IUPAC system of conventions.

The number of carbon atoms present is indicated by a PREFIX as indicated below:

one carbon	meth	six carbons he x	
two carbons	eth	seven carbons	hept
three carbons	prop	eight carbons	oct
four carbons	but		
five carbons	pent		

The ending attached to each of these prefixes differs according to the type of bonding present. We will gradually introduce the procedure as we discuss the various hydrocarbons.

1-4 ALKANES

These are hydrocarbons in which all of the bonds between the carbon atoms are SINGLE covalent bonds.

They are described as SATURATED hydrocarbons because they cannot be made to react with hydrogen. The table below shows the first four members of the alkane family.

NAME	FORMULA	STRUCTURAL FORMULA
Methane	CH ₄	Ĥ
		H–Ç–H
		Н
Ethane	C_2H_6	ΗΉ
		H-C-C-H
		нн
Propane	C_3H_8	ннн
		H-C-C-C-H
		ннн
Butane	C_4H_{10}	н н н н
		H-C-C-C-H
		нннн

NOTE!!

1. Alkanes are named by adding the suffix ANE to the prefix indicating the number of carbon atoms present.

e.g. a six carbon alkane would be called HEXANE

2. The general formula for any alkane is

$$C_nH_{2n} + 2$$

3. Alkanes are often used as fuels

e.g. octane is a major constituent of petrol.

	SOME	ALKANES	
Alkane	Formula	Melting point C	Boiling point C
Methane	CH₄	-183	-161
Ethane	C_2H_6	-172	-89
Propane	C₃H ₈	-190	-42
Butane	C_4H_{10}	-135	-1
Pentane	C_5H_{12}	-130	36
Hexane	C_6H_{14}	-94	68
Heptanes	C_7H_{16}	-90	98
Decane	$C_{10}H_{22}$	-30	174
Pentadecane	$C_{15}H_{32}$	10	271
Triacontane	$C_{30}H_{62}$	66	450

1-5 ALKENES

These have a DOUBLE covalent bond between carbon atoms. We say that alkenes are UNSATURATED because the carbon atoms on either side of the double bond can react with further hydrogen atoms. The presence of the double bond makes alkenes more reactive than alkenes.

NAME	FORMULA	STRUCTURAL FORMULA
Ethene	C_2H_4	Н Н С С
		н н
Propene	C_3H_6	H H
		H CH₃
Butene	C_4H_8	H H C C
		H CH ₂ –CH ₃

NOTE!!

1. Alkanes are named by adding the suffix **ENE** to the appropriate carbon prefix

e.g. a five carbon alkene would be called PENTENE

2. The general formula for an alkene is

 C_nH_{2n}

3. In some larger alkenes the position of the double bond in the carbon chain can lead to molecules of a different structure.

The number in front of the name is used to show the position of the double bond. Such compounds are called ISOMERS and will be discussed in a later chapter.

1-6 ALKYNES

These are UNSATURATED hydrocarbons which have a TRIPLE covalent bond between two carbon atoms in the chain.

NAME	FORMULA	STRUCTURAL FORMULA
Ethyne	C_2H_{42}	H–C: C–H
Propyne	C ₃ H ₄	Ĥ
		H-C C-C-H
		Н
Butyne	C_4H_6	Η̈́Η
		H-C: C-C-C-H
		нн

NOTE!!

- 1. Alkynes are named by adding the suffix YNE to the carbon prefix e.g. an 8 carbon alkyne would be called OCTYNE
- 2. The general formula for any alkyne is

 $C_nH_{2n} - 2$

3. For the larger alkynes the position of the triple bond can lead to the existence of isomers.

e.g. 1-hexyne 2-hexyne 3-hexyne

DRAW

4. The most common alkyne is ethyne (acetylene) which is used in oxyacetylene cutting flames.

1-7 CYCLIC HYDROCARBONS

These may involve the presence of single, double or triple covalent bonds between carbon atoms. The rules for naming such hydrocarbons simply extend upon those discussed earlier.

Since drawing cyclic hydrocarbons tends to be time consuming there are a number of shorthand symbols used.

For example:

You will see that the naming procedure incorporates the ideas developed earlier but uses the 'cyclo' prefix to convey the cyclic nature of the bonding between the carbon atoms.

1-8 AROMATIC HYDROCARBONS

As mentioned earlier these compounds are based on a structure called a benzene ring which consists of 6 carbon atoms arranged hexagonally, each attached to one hydrogen atom (i.e. C_6H_6). The structure may be represented as

In reality the bonds are thought to be neither single nor double bonds. Some of the valence electrons are delocalised around the ring with the result that all of the bonds are identical.

The benzene ring is **very stable** (due to the presence of the delocalised electrons) and is not easily split open.

A benzene ring is commonly represented by either of the following symbols:

CHAPTER 1 REVISION QUESTIONS

1. Which of the following compounds are hydrocarbons?

HCN, C₄H₈, C₉H₂O, CH₃OH, CO₂, C₆H₁₂

2. Draw electron dot diagrams to show the bonding in

ethane, ethene, ethyne

3. Draw structural formulae for:

propane, pentane, octane, 2-hexene, 1-butyne, 3-heptyne, propene, 1-pentene, hexane

4. Classify each of the following hydrocarbons as alkanes / alkenes / alkynes

 C_3H_6 , $C_{11}H_{24}$, C_9H_{16} , C_4H_6 , $C_{20}H_{40}$, $C_{10}H_{22}$

5. Draw structural formulas for

cyclopropane, cyclobutane, cyclohexane, cyclopentyne, cyclopropene, cyclohexyne

6. Name each of the following

CHAPTER 2 BRANCHED HYDROCARBONS

2-1 ALKYL GROUPS

These are groups of atoms formed by the removal of a hydrogen atom from an alkene.

For example:

 CH_4 forms CH_3 (methyl group) C_2H_6 forms C_2H_5 (ethyl group) C_3H_8 forms C_3H_7 (propyl group)

Each of these groups CANNOT exist on their own since they contain a carbon atom with only 7 valence electrons in the outer shell. However, they are often found joined to large chains of carbon atoms.

2-2 NAMING BRANCHED HYDROCARBONS

There are 2 basic rules which need to be applied:

- 1. Select the longest continuous carbon chain in the molecule (this becomes the basic structure for deducing the name)
- 2. Using the LOWEST numbers possible, identify the alkyl groups attached to the main carbon chain.

This may seem complicated but with practice it can be easily mastered. You should study each of the following examples very closely:

Example 1
$$-C-C-C-C-C-$$
 2-methylpentane where group longest chain Example 2 $-C-C-C-C-C-C-$ 2,5-dimethylhexane CH_3 CH_3

Branched alkenes and alkynes are named in a similar manner except that the double (or triple) bond is always given preference when the numbers for each carbon are determined.

Just a quick point to remember!!!!

Commas are used between NUMBERS whereas dashes are used between NUMBERS and WORDS.

2-3 ISOMERS

Two or more compounds which have the same molecular formula but with a different structural arrangement of atoms are called **ISOMERS**.

A simple example would be the two alkanes shown below, both of which have the molecular formula C_4H_{10} .

It is possible to deduce the number of isomers in a logical way. For example there are three isomers having the molecular formula C_5H_{12} :

$$-C$$
 $-C$ $-C$ pentane $-C$ $-C$ 2-methylbutane CH_3 $-C$ $-C$ $-C$ 2,2-dimethylpropane CH_3

The greater the number of carbon atoms in the molecule the greater the number of possible isomers. For example the alkane C_9H_{20} has 35 possible isomers.

Isomers also exist for alkenes and alkynes for a variety of reasons:

- the position of the double/triple bond may be varied along the carbon chain
 e.g. 1-butyne and 2-butyne
- 2. Alkyl groups may be attached in different places along the carbon chain e.g. 1 butene and 2-methylpropene are isomers both having the same molecular formula C_4H_8

3. Alkenes may exist as GEOMETRIC isomers due to the fact that rotation of atoms about a DOUBLE bond is not possible.

For example, consider 2-butene

The first structure cannot be converted into the second without breaking the double bond (and thus forming a total different compound) so they are actually distinct molecular structures.

This is an example of "cis and trans" isomerism. We would name each of the above compounds as

cis-2-butene and trans-2-butene

Aromatic compounds also show isomerism. For example there are 3 different compounds having the general name of dimethylbenzene. They are drawn below, see if you can name them correctly!!

1. Draw each of the following:

2-methylpentane 2,3-dimethylhexane

2,3,3-trimethyloctane 3-ethylheptane

methyl benzene 3-methyl-2-pentene

3,4-dimethyl-hexene 1,4-diethylbenzene

2. Name each of the following:

- 3. What is wrong with the name 2,3-dimethyl-2-butene?
- 4. Draw and name all of the isomers of C_6H_{14} .
- 5. Draw and name all of the isomers of C_5H_{10} .

- 6. There are 3 isomers of the compound 'dichloroethene" Draw their structures and give their IUPAC names.
- 7. Name each of the following cyclic hydrocarbons:

3-1 COMBUSTION

Whenever a hydrocarbon is burnt in excess oxygen or air carbon dioxide and water vapour are always produced. The reactions are very exothermic and hence many hydrocarbon are used as fuels.

e.g.
$$CH_4$$
 + $2O_2$ \rightarrow CO_2 + $2H_2O$
 CH_3 + $5O_2$ \rightarrow $3CO_2$ + $4H_2O$
 $2C_2H_2$ + $5O_2$ \rightarrow $4CO_2$ + $2H_2O$

3-2 SUBSTITUTION REACTIONS

These are relatively slow reactions that occur between saturated hydrocarbons and halogens (chlorine, iodine, fluorine and bromine) and involve the replacement or substitution of a hydrogen atom.

For example:

$$CH_4 + CI_2 \rightarrow CH_3CI + HCI$$

methane chloromethane CH_3 - $CH_3 + Br_2 \rightarrow CH_3$ - CH_2 Br + HBr ethane bromoethane

In some cases substitution reactions may lead to a mix of isomeric products. For example the reaction between propane and fluorine will produce both 1-fluoropropane and 2-fluoropropane depending on where the substitution actually occurs.

Because of the high stability of the bonding within a benzene ring it is common to find substitution reactions among aromatic compounds.

3-3 ADDITION REACTIONS

Due to the presence of the double bond, alkenes are much more reactive than alkanes. The double bond can be broken to form a single bond and so new atoms can 'add' to the existing molecule. Such reactions are called **ADDITION** reactions.

e.g.
$$CH_2=CH_2$$
 + H_2 \rightarrow CH_3-CH_3 ethene ethane
$$CH_3-CH=CH_2$$
 + H_2 \rightarrow $CH_3-CH_2-CH_3$ propene propane
$$CH_2=CH_2$$
 + Br_2 \rightarrow CH_2Br-CH_2Br ethene 1,2-dibromoethane

NOTE!!!

- Addition reactions provide a simple means of identifying whether a given hydrocarbon is an alkene or alkane. By looking for a rapid reaction with bromine water the presence of an unsaturated hydrocarbon can be inferred.
- 2. Alkynes also undergo addition reactions but more **slowly** than alkenes. The reaction usually involves two stages; the triple bond is converted to a double bond and then to a single bond.

e.g.
$$H-C\equiv C-H$$
 + H_2 \rightarrow $CH_2=CH_2$ ethene

then $CH_2=CH_2$ + H_2 \rightarrow CH_3-CH_3 ethene ethane

3-4 COMPARING ADDITION and SUBSTITUTION

The chart below compares some of the important aspects of the two types of reactions:

	FEATURE	SUBSTITUTION	ADDITION
1.	Involves	alkanes and aromatics	alkenes and alkynes
2.	Rate	usually slow	usually rapid
3.	Changes	replace h by x	add two x atoms to
			molecule
4.	Number of products	two	one

3-5 HYDROCARBONS AS FUELS

As discussed in 3-1 the combustion of hydrocarbons in air produces carbon dioxide, water vapour and large amounts of **energy in the form of heat and or light**.

Small hydrocarbons are more volatile than larger ones and are therefore more flammable. Some common fuels are discussed below:

1. NATURAL GAS (mainly methane with small amounts of ethane and propane)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \quad \Delta H = -890 \text{ kJ}$$

It is used for domestic cooking and heating.

2. LIQUID PETROLEUM GAS(LPG) is mainly propane gas.

$$C_3H_8 + 5O_2 \rightarrow 2CO_2 + 4H_2O \Delta H = -220 \text{ kJ}$$

It is used as a portable energy source for BBQ's and camping uses.

3. BUTANE (cigarette lighter fuel)

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O \quad \Delta H = 02879 \text{ kJ}$$

4. PETROL (mainly octane)

$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O \quad \Delta H = -5471 \text{ kJ}$$

5. ETHYNE (used as a welding gas called acetylene)

$$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O \quad \Delta H = -1300 \text{ kJ}$$

6. KEROSENE (mainly a mixture of alkanes/alkenes in the range C_8 to C_{16})

The suitability of a given fuel depends on such factors as:

- a) the rate at which it burns
- b) the cleanliness of the combustion process
- c) the cost
- d) the energy output per mole (or per gram)
- e) the relative proportions of the heat and light formed.

REVIEW QUESTIONS FOR CHAPTER 3

1. Write balanced equations to show the combustion of

ethane, pentane, hexane, propene, benzene

- 2. Write a balanced equation to show the reaction of ethene with bromine water. what would you expect to see?
- 3. Write equations for the following and state whether the reaction involves addition or substitution.
 - a) propene and chlorine
 - c) 1-pentene and hydrogen
 - e) benzene and chlorine
 - g) propane and fluorine
 - i) cyclohexane an chlorine
- b) methane and bromine
- d) ethene and fluorine
- f) ethyne and bromine
- h) propene and HCl
- i) cyclohexene and bromine

ORGANIC TASK 1

1. Draw neat structural formulas for:

- a) propane d) methane
- g) cyclobutane
- 2,3-dimethylpentane j)
- m) 2,3,3-trimethyloctane
- b) ethene
- e) 3-hexyne
- h) 2-methylbutane
- k) 2-methyl-2-butene
- c) 2-pentene
- f) propyne
- i) ethyl benzene
- I) cyclohexene

2. Name each of the following:

- a) CH₃–C≡C–H
- b) CH₃-CH=CH-CH₃
- d) CH₂=CH₂-CH₃

3. Explain what is meant by the term ISOMER.

There are 3 isomers having the formula C₅H₁₂. Name and draw them.

- 4. Draw and name all of the isomers having the general name of dichlorobenzene.
- 5. How many different isomers have the formula C₄H₆? Name and draw them all.
- 6. Name and draw all the isomers of dibromobutene.
- 7. What is the general formula for a cycloalkane?

ORGANIC TASK 2

1. Draw structures for the following:

- a) trichloromethane
- c) 1-bromo-1-pentene
- e) 1,2,3-tribromopropane
- g) 3-heptyne

- b) 4,4-dimethyl-2-pentene
- d) 1,1,1-trichloroethane
- 1,3-dimethylcyclobutan f)
- h) 4-methyl-2-chloro-1-hexene

2. Give the IUPAC name for each of the following:

- 3. For each of the following state whether an addition or substitution reaction occurs, write the balanced equation and name the organic product formed.
 - a) ethane and bromine gas
 - b) propene and hydrogen gas
 - c) 1-butene with chlorine
 - d) cyclopropane with fluorine gas
 - e) propane with fluorine
 - f) benzene with iodine
 - g) 1-hexene with hydrogen
 - h) cyclobutyne with bromine

Organic Compounds with Functional Groups

Compounds other than hydrocarbons are classified by the nature of a functional group which largely determines the properties of the substance.

We are interested in the properties of

alcohols aldehydes carboxylic acids ketones esters amines	like like like like like	ethanol methanal acetic acid propanone (acetone) ethyl acetate ethanamine
amines	like	ethanamine
alkyl halides	like	chloromethane

We shall consider the structure and naming of these groups first and then look in detail at some of their properties.

Alcohols

R-OH

e.g.	CH₃OH	C_2H_5OH	C_3H_7OH	
	methanol	ethanol	1-propanol	1-pentanol

These are all classified as **primary alcohols**. The OH group (hydroxyl) is positioned on a carbon atom which is, in turn, bonded to only one other carbon. The OH group may be located on any carbon atom in the chain thus many isomers

of alcohols are possible.

•	Draw structures	s for the alcohols liste	d above	
•	Draw structures	s for isomers of prope	nol and pentanol.	
•	Are the isomer	you have drawn all p	rimary alcohols?	
•	Suggest which	may be secondary or	tertiary and why.	
•	What type of in molecules?	itermolecular force wo	ould be most signific	cant between alcohol
•	Describe some	of the physical prope	rties associated wi	th these forces.
•	List some uses	s of the more common	alcohols.	
<u>Al</u>	<u>dehydes</u>			
CI	CHO H₃CHO hanal	C₂H₅CHO propanal	C₄H ₉ CHO pentanal	C ₇ H ₁₅ CHO octanal
•	Draw structures for ethanal, methanal and pentanal.			

	or the –CHO group to on chain? Explain yo	b be situated anywhere apart from on the end of ur answer.
Carboxylic acids		
RCOOH CH₃COOH acetic acid	C₂H₅COOH propanoic acid	C₃H₁COOH butanoic acid
Draw the structure	ctures of the acids list	ted above.
What do these	e acid structures have	e in common with the aldehyde structures?
• And also?		
<u>Ketones</u>		
R-CO-R CH ₃ COCH ₃ propanone (acetone)	CH₃COCH₂CH₃ butanone	$C_2H_5COC_2H_5$ 3-pentanone
Draw structure	es for these ketones.	
• Draw isomers	for pentanone.	
What does the and carboxylic		ve in common with the structure of aldehydes

Esters

RCOOR C⊓₃COOCH₃ methyl acetate C₂H₅COCH₃ C₂H₅COOC₂H₅ methyl propanoate ethyl propanoate These compounds are named as though they were salts of carboxylic acids. Esters

derived from acetic acid are acetates, from propanoic acid are propanoates etc.

Draw these structures.

• Draw the isomers of ethyl propanoate which are also esters.

Do esters contain a carbonyl group?

Amines

RNH₂

CH₃NH₂ $C_2H_5NH_2$ $C_6H_5NH_2$ ethanamine methanamine aminobenzene

Amines have structures similar to that of ammonia.

• Draw the structure of the pyramidal methanamine molecule.

How would the presence of a lone pair of electrons on the nitrogen atom influence the chemical properties of this amine?

Alkyl halides (haloalkanes)

R-X

CH₃Cl C₂H₅I chloromethane iodethane

C₃H₇F fluoropropane

C₆H₅Br bromobenzene

Organic Task 3

1. Copy and complete the following table which describes some aspects of the chemistry of hydrocarbons.

Name	Formula	Reacts by	Products of this reaction
methane			
	C ₂ H ₂		
		addition	1,2-dichloroethane
			1,1-dichloroethane

- 2. Draw structural formulae for each of the following compounds. dichloromethane, bromoethane, propyne, methyl butane, ethyl pentane, 4-methyl-2-hexene, 2,2,4-trimethyl pentane.
- 3. Describe the intermolecular forces that exist between molecules in a solid alkane.
- 4. Write a general equation to describe the complete combustion of alkanes.
- 5. Explain how alkenes are capable of exhibiting geometric (cis-trans) isomerism whilst alkanes are not.
- 6. Draw structural formulae for the following cis-2-butene, 4,4-dimethyl-trans-2-pentene
- 7. Write equations for the following reactions.

The chlorination of propene

The hydration of ethene

The bromination of ethane.

8. Two important derivatives of benzene are phenol and toluene. Draw their structures and state their IUPAC names.

Reactions of organic compounds with functional groups

Amines

Amines, based on the ammonia structure, having a lone pair of electrons on the nitrogen atom, are readily hydrolysed to form basic solutions.

$$R-NH_2 + H_2O \rightarrow R-NH_3^+ + OH^-$$

Carboxylic acids

These acids are weak. They perform the usual reactions of dilute acids such as those with metals, carbonates, bases etc.

$$2CH_3COOH + Mg \rightarrow 2CH_3COO^- + Mg^{2+} + H_2$$

Carboxylic acids also react with alcohols, in the presence of conc. sulfuric acid, to form ester (described in detail under reactions of alcohols)

Alcohols

Alcohols react with the **strong reducing metals** like sodium.

$$2R$$
-OH + $2Na \rightarrow 2R$ -O $^{-}Na^{+} + H_{2}$
 $2C_{2}H_{5}OH + 2Na \rightarrow 2C_{2}H_{5}O^{-}Na^{+} + H_{2}$
ethanol sodium ethoxide

alcohols undergo **esterification** when reacted with carboxylic acids. Such reactions proceed most readily if the reagents are heated slightly and if the reaction is carried out in the presence of conc. sulfuric acid.

Esters are fruity smelling, oily liquids. They occur naturally as oils in fruit and vegetables and are responsible for the perfume emitted by many plants.

```
C_2H_5OH + CH_3COOH \rightarrow CH_3COOC_2H_5 + H_2O ethanol acetic acid ethyl acetate CH_3OH + C_2H_5COOH \rightarrow C_2H_5COOH_3 + H_2O methanol propanoic acid methyl propanoate
```

STAWA Exp't

Alcohols may be **oxidised** by common oxidising agents like acidified MnO₄ and $Cr_2O_7^{2-}$.

Oxidation of primary alcohols

```
1° alcohol → aldehyde → carboxylic acid
```

 Work out the oxid'n and red'n half equations and hence develop the overall equations for the complete oxidation of ethanol with acidified potassium permanganate solution.

Oxid'n

Red'n

Overall

 Work out the oxid'n and red'n half equations and hence develop the overall equations for the incomplete oxidation of propenol with acidified potassium dichromate solution.

Oxid'n

Red'n

Overall

Secondary alcohols are similarly oxidised to form **ketones**.

 Work out the oxid'n and red'n half equations and hence develop the overall equations for the oxidation of 2-propanol with acidified potassium dichromate solution

Solution.
Oxid'n
Red'n
Overall
 Work out the oxid'n and red'n half equations and hence develop the overall equations for the oxidation of 3-pentanol with acidified potassium permanganate solution.
Oxid'n
Red'n

STAWA Exp't

Overall

Organic Task 4

- 1. Draw structures for the following compounds 2-chloropropane, bromocyclohexane, 2-chloro-1-propanol, 2-methyl phenol, methanamine, 2-butanone, ethyl butanoate.
- 2. Branching of the hydrocarbon chains in alcohol lowers their boiling points. Explain why this is so. Draw structures of four isomeric alcohols of formula $C_4H_{10}O$ and match these structures with the boiling points 83°C, 100°C, 108°C and 118°C.
- 3. Ethanol and ethanamine have similar molecular weights but remarkably different boiling points. State which compound has the higher boiling point and explain why this is so.
- 4. Write equations for the following reactions sodium with 2-propanol water with 2-methyl-2-butene acetic acid with calcium carbonate methanoic acid with ethanol ethanal with acidified potassium dichromate solution
- 5. Draw structures for

3-hydroxybutanal, 2-methyl-3-pentanone, 4-fluorohepanoic acid, propyl butanoate, 5-hydroxy-3-methyl pentanal

1.

all hydrogen atoms)

a) CH₃CH₂OH

b) CH₃CHO

c) CH₃COOH

Organic Chemistry Revision

Give names and clearly draw the structures of the following compounds. (Show

	d) $C_2H_5NH_2$				
2.	Draw structural formulae for all the isomeric dichloro-benzenes.				
3.	Name the functional groups presents in each of the following compounds.				
	a) CH ₃ CH ₂ CHO				
	b) CH ₃ OH				
	c) CH ₃ CH ₂ COOH				
	d) $C_6H_5NH_2$				
	e) CH ₃ COOC ₂ H ₅				
4.	Draw and name all of the esters with the molecular formula $C_4H_8O_2$.				
5.	Draw structures for these compounds and state which compound is not isomeric with the other four.				
	 a) 1-butene b) cis-2-butene c) trans-2-butene d) 2-methyl propene e) cyclobutene 				

6. Arrange these compounds in order of **increasing** solubility in water.

CH₃CI CCl₄ CH₃CHO CH₃COCH₃ CH₃CH₂OH

7. Write structural formulae for all carboxylic acids that are isomeric with ethyl ethanoate.

- 8. a) When 4.60 g of an organic compound containing C, H and O were burned in oxygen, 8.80 g of CO₂ and 5.40 g of H₂O were obtained. What is the empirical formula of the compound?
 - b) When the compound is heated to 100°C at a pressure of 101 kPa is it gaseous and has a density of 1.50 gL⁻¹.
 Calculate the molecular formula of the compound and suggest one possible, named, structure for it.
- 9. Ethanol can be prepared from the following series of reactions

If the reaction is 90% efficient what weight of alcohol is produced from 1.12 L of propane measured at STP?

- 10. Write balanced equations for each of the following reactions. In each case state one observation that you would expect to make.
 - a) methanol and ethanoic acid are warmed together in the presence of conc. sulfuric acid.
 - b) acidified potassium permanganate is added to a sample of 2-pentanol.

	c)	propane gas is bubbled through bromine water.
	d)	sodium metal is added to ethanol.
	e)	acidified potassium dichromate solution is added to methanal.
11.	foll	scribe how you could use a chemical test to distinguish between the owing pairs of substances. You should describe the observations that make distinction between the compounds.
	a)	ethanol and ethanal
	b)	cyclobutene and cyclobutane
	c)	2-butanol and 2-methyl propenol
	d)	propanoic acid and ethyl ethanoate
	e)	propanone and propenol
12.	rec	nen ethanol is treated with acidified potassium permanganate solution a lox reaction occurs. Write the oxidation and reduction halves of the equation d hence develop the overall balanced equation.
	Ох	id'n

Red'n		
Working		

Overall