WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

A61K 9/14, 47/18, 47/26

A2

(11) Internationale Veröffentlichungsnummer:

WO 97/15288

(43) Internationales Veröffentlichungsdatum:

1. Mai 1997 (01.05.97)

(21) Internationales Aktenzeichen:

PCT/EP96/04627

(22) Internationales Anmeldedatum: 24. Oktober 1996 (24.10.96)

(30) Prioritätsdaten:

195 39 574.3

25. Oktober 1995 (25.10.95)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser BOEHRINGER MANNHEIM GMBH [DE/DE]; D-68298 Mannheim (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MATTERN, Markus [DE/DE]; Am alten Neckar 7, D-64646 Heppenheim (DE). WINTER, Gerhard [DE/DE]; Jahnstrasse 20E, D-69221 Dossenheim (DE).

BOEHRINGER MANNHEIM (74) Gemeinsamer Vertreter: GMBH; Patentabteilung, D-68298 Mannheim (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO Patent (KE, LS, MW, SD, SZ, UG), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: METHOD AND PREPARATIONS FOR STABILIZING BIOLOGICAL MATERIALS BY DRYING METHODS WITHOUT **FREEZING**

(54) Bezeichnung: ZUBEREITUNGEN UND VERFAHREN ZUR STABILISIERUNG BIOLOGISCHER MATERIALIEN MITTELS TROCKNUNGSVERFAHREN OHNE EINFRIEREN

(57) Abstract

The invention concerns a method of producing dry partially amorphous products containing biological, in particular therapeutically active, material, the products comprising macroscopically homogeneous substance mixtures. The substance mixtures are selected from at least one substance of the group comprising: (i) carbohydrate or zwitterion with a polar residue and its derivatives; and (ii) zwitterion with an apolar residue and its derivatives. The method is characterized in that a solution of the biologically or therapeutically active material and substances (i) and (ii) is produced and dried at a product temperature above the freezing point of the solution. The invention further concerns novel substance mixtures obtained by the above method and their use in diagnostic or therapeutic processes.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Verfahren zur Herstellung von trockenen, teilamorphen, biologisches, insbesondere therapeutisch aktives Material enthaltenden Produkten, die makroskopisch homogene Substanzgemische darstellen, wobei die Substanzgemische ausgewählt sind aus je mindestens einer Substanz der Gruppe (i) Kohlenhydrat oder Zwitterion mit polarem Rest und deren Derivate, und (ii) Zwitterion mit apolarem Rest und dessen Derivate, dadurch gekennzeichnet, daß eine Lösung des biologischen oder therapeutisch aktiven Materials und der Substanzen (i) und (ii) hergestellt wird und die Lösung bei einer Produkttemperatur oberhalb des Gefrierpunktes der Lösung getrocknet wird. Ferner betrifft die Erfindung neue Substanzgemische, die durch das genannte Verfahren erhalten werden, sowie deren Verwendung in diagnostischen oder therapeutischen Verfahren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
ΑU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neusceland
BF	Burkina Faso	Œ	Irland ·	PL	Polen
BG	Bulgarien	. IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
СН	Schweiz	LI	Liechtenstein	SK	Slowakei
Cī	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Danemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerik
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

10

15

20

25

30

Zubereitungen und Verfahren zur Stabilisierung biologischer Materialien mittels Trocknungsverfahren ohne Einfrieren

Technisches Gebiet

Die vorliegende Erfindung betrifft Zubereitungen und Verfahren zur Stabilisierung biologischer Materialien mittels Trocknungsverfahren ohne Einfrieren. Dabei werden gezielt ausgewählte Mischungen von Zuckern und Aminosäuren und deren Derivate sowie von verschiedenen Aminosäuren und deren Derivate beschrieben, mit denen nach Herstellung trockener, teilamorpher Produkte durch Trockenverfahren bei denen nicht eingefroren wird, besonders vorteilhafte Stabilisierung von Peptiden, Proteinen, Glycoproteinen, Antikörpern u.ä. Substanzen erreicht werden kann.

Stand der Technik

Die Herstellung lagerstabiler (insbesondere bei Raumtemperatur) Zubereitungen von biologisch aktiven und therapeutischen Substanzen wie Peptiden, Proteinen, Glycoproteinen, Nukleotiden, Plasmide, Zellfragmenten, Viren, etc. zu diagnostischen und therapeutischen Zwecken ist heute von großer, ständig wachsender Bedeutung.

Verschiedene Verfahren und Formulierungen zur Herstellung von trockenem biologisch oder therapeutisch aktiven Material sind beschrieben. Unter trockenem Material werden Stoffe und Stoffgemische verstanden, die eine Restfeuchte von höchstens 8% (g/g) bevorzugt höchstens 4% (g/g), besonders bevorzugt höchstens 2% besitzen. Gefriertrocknungsverfahren sind weit verbreitet [F. Franks, Cryo Lett. 11, 93 - 110, (1990); M. J. Pikal, Biopharm. 3 (9), 26 - 30 (1990); M. Hora, Pharm. Research 8 (3), 285 - 291 (1992); F. Franks, Jap. J. Freezing Drying 38, 15 - 16, (1992)], weisen aber Nachteile auf. Sie verbrauchen große Energiemengen, erfordern den Einsatz teilweise schädlicher Kältemittel (Frigene), dauern lange Zeit. Für eine Vielzahl von Substanzen, insbes. Proteinen ist der für die Gefriertrocknung notwendige Schritt des Einfrierens

10

schädlich, d.h. destabilisierend. Daher ist dieses Verfahren für manche biologische Materialien gar nicht anwendbar.

Alternativen zur Gefriertrocknung bei der Herstellung trockener Proteinzubereitungen sind Verfahren, die durch Anwendung von Wärme und oder Vakuum das Gut trocknen [F. Franks. R. M. H. Hatley: Stability and Stabilization of Enzymes; Eds. W. J. J. van den Teel, A. Harder, R. M. Butlaar, Elsevier Sci. Publ. 1993. pp. 45 - 54; B. Roser, Biopharm, 4(9), 47 - 53 (1991); J. F. Carpenter, J. H. Crowe, Cryobiol. 25, 459 - 470 (1988)]. Hier sind beispielsweise Vakuumtrocknung mit oder ohne Anwendung von erhöhter Temperatur, Sprühtrocknungsverfahren in verschiedensten Modifikationen inkl. der kombinierten Anwendung von Vakuum und Sprühtechnik sowie Walzentrocknung u.a. Dünnschichttrockenverfahren zu nennen.

In J. F. Carpenter, J. H. Crowe, Biochemistry 28, 3916 - 3922 (1989); K. Tanaka, 15 T. Taluda, K. Miyajima, Chem. Pharm. Bull. 39 (5), 1091 - 94 (1991), DE-C-3520228, EP-B-0229810, WO 91/18091, EP-B-0383569, US 5,290,765, werden Zubereitungen beschrieben, die Zucker oder zuckerartige Stoffe enthalten. Bei der Herstellung trockener Zuckerzubereitungen sind folgende Nachteile, bzw. Probleme bei den im Stand der Technik beschriebenen Verfahren festzustellen. Die Herstellung von wirklich ausrei-20 chend trockenen Zuckerzubereitungen ist nicht ohne signifikanten Energie-Einsatz möglich. Dies gilt besonders für Zubereitungen im Endbehältnis. Dabei kommt die Anwendung von Wärme/Hitze in Betracht, die jedoch bezüglich der Stabilität der eingesetzten biologischen Materialien äußerst kritisch zu bewerten ist. Um bei geringer Wärmezufuhr ausreichend Trocknung zu erzielen, sind alternativ drastisch verlängerte 25 Prozeßzeiten oder extrem dunne Schichtdicken anwendbar. Beide Verfahrenswege sind nicht zielführend. Lange Prozeßzeiten sind ökonomisch äußerst ungünstig, außerdem ist das lange Verweilen eines biologischen Wirkstoffes in einer nur langsam an Wasser verarmenden Matrix destabilisierend und somit ebenfalls kritisch. Die Trocknung dünner Schichtdicken führt in vielen Fällen nicht zu der ökonomisch sinnvollen Ausbeute am 30 Produkt, d.h. pro Zeiteinheit und/oder Trocknungsfläche werden nur minimale Produktmengen erhalten. Außerdem ist die Bearbeitung von biologischen Materialien auf

10

15

20

25

30

sehr großen offenen Trocknungsflächen für die in der pharmazeutischen und diagnostischen Anwendung oftmals erforderliche Sterilität kaum realisierbar.

Trocknungsverfahren, die mittels Vakuum bei niedriger oder geringfügig gegenüber Raumtemperatur erhöhter Temperatur ablaufen, sind schonender. Die Herstellung trockener, lagerstabiler Zuckerzubereitungen ist jedoch in vielen Fällen praktisch kaum durchführbar. Beim Eintrocknen von Zuckerlösungen entstehen zunehmend viskose, zähe Massen. Die in diesen Massen verbliebene Restwassermenge oder Restfeuchte läßt sich nicht in ökonomisch sinnvoller Zeit entfernen, in vielen Fällen kommt die Trocknung auf einem zur Stabilisierung nicht geeigneten, hohen Niveau zum Stillstand. Die Degradation manifestiert sich z. B. in einer Abnahme der Aktivität des gelagerten Materials, in der Bildung von Aggregationsprodukten oder durch das Austreten von Abbauprodukten mit geringerem Molekulargewicht. Ein zur Stabilisierung von Proteinen etc. geeigneter, niedriger Restwassergehalt läßt sich anhand physikalischer Meßgrößen erkennen. Aus der oben zitierten Literatur geht hervor, daß zur Stabilisierung von Proteinen etc. geeignete Zubereitungen glasartige, das heißt amorphe Struktur aufweisen sollen, deren Glasübergangstemperatur oberhalb der angestrebten Lagertemperatur liegt. Die Glasübergangstemperatur ist diejenige Temperatur, bei der ein amorpher Festkörper aus dem Glaszustand in den zäh-viskosen Zustand übergeht und umgekehrt. Dabei treten Viskosität auf damit verbunden drastische Änderungen der und Diffusionskoeffizienten und der kinetischen Mobilität der Proteine und anderer Moleküle. Physikalischen Kenngrößen, wie Härte und Modul ändern sich ebenso wie die thermodynamische Zustandsgrößen Volumen, Enthalpie und Entropie. Die Glasübergangstemperatur einer beispielsweise zuckerhaltigen Masse und Restwassergehalt sind physikalisch derart miteinander verknüpft, daß steigende Restwassermengen zu sinkenden Glasübergangstemperaturen führen und umgekehrt. Somit läßt sich aus der Messung der Glasübergangstemperatur z.B. durch Differential Scanning Calorimetrie (DSC), ableiten, ob eine Zubereitung einen zur Stabilisierung geeigneten Restwassergehalt aufweist, bzw. wie oben ausgeführt, ein Trocknungsverfahren erfolgreich ist oder nicht. Neben der Bestimmung der Glasübergangstemperatur mittels DSC läßt sich das Vorhandensein amorpher Strukturen auch mittels

20

25

30

Röntgenbeugungsuntersuchungen, optischer und elektronen-mikroskopischer Betrachtungen belegen.

Wünschenswert ist daher die Bereitstellung einer Stabilisierungsmatrix für biologisch oder pharmazeutisch aktive Materialien mit über Lagertemperatur liegender Glasübergangstemperatur, die eine geringe Restfeuchte enthält und Verfahren zur kostengünstigen Herstellung solcher Stabilisierungsmatrizes.

Beschreibung der Erfindung:

Überraschenderweise wurde gefunden, daß sich durch Hinzufügen von Zwitterionen mit apolaren Resten zu kohlenhydrathaltigen Massen deren Trocknungsverhalten derart positiv verändern läßt, daß zuvor schlecht trocknende Güter, die dementsprechend keine ausreichend stabilisierenden Eigenschaften aufwiesen, nun sehr schnell zu trocknen waren und ausgezeichnete Stabilität der darin formulierten biologisch, insbesondere therapeutisch aktiven Materialien hervorbrachten.

Weiterhin wurde gefunden, daß überraschenderweise auch kohlenhydratfreie, aus Mischungen bestimmter Zwitterionen bestehende Formulierungen sehr rasch zu trocknen sind und sehr gute stabilisierende Eigenschaften aufweisen. Dabei muß ein Zwitterion mit polarem Rest zusammen mit einem Zwitterion mit apolarem Rest verwendet werden. Solche Zwitterionen sind bevorzugt Aminocarbonsäuren und deren Derivate, besonders bevorzugt pharmazeutisch verträgliche Aminosäuren. Unter Zwitterionen werden niedermolekulare Verbindungen verstanden, deren Molekulargewicht unter 10 kDa, bevorzugt unter 5 kDa liegt. Verfahren werden beschrieben, die es erlauben ohne Anwendung erhöhter Temperatur, d.h. bei Raumtemperatur erfindungsgemäße Zubereitungen so zu trocknen, daß für Zubereitungen zur Stabilisierung von biologisch aktiven insbesondere therapeutisch aktiven Substanzen. die geeigneten Glasübergangstemperaturen erreicht werden. Biologisch aktive Substanzen sind neben therapeutisch wirksamen Substanzen auch solche, die in biotechnologischen Verfahren, wie z. B. Fermentation, verwendet werden. Ebenso solche Substanzen, die z. B. im Pflanzenschutz oder als Insektizide verwendet werden. Solche biologisch, insbesondere

therapeutisch aktiven Materialien können z. B. aus einer oder mehrere Substanzen der Gruppen Proteine, Peptide, Glycoproteine, Lipoproteine, Enzyme, Coenzyme, biologische Membranen, Antikörper, Antikörperfragmente, Zellen, Zellbestandteile, Viren, Virusbestandteile, Vaccine, DNA, RNA, PNA, Plasmide, Vektoren, Pheromone, biologische Therapeutica und Diagnostica und deren Derivate ausgewählt werden. Unter biologisch aktiven Substanzen werden keine Lebensmittel als solche verstanden.

Die besonderen Vorteile der hier beschriebenen Zubereitungen und Verfahren bestehen darin:

10

30

- daß ein Einfrieren während der Trocknung vermieden wird,
- die Durchführung der Trocknung mittels in der chemisch-pharmazeutischen Industrie bereits vorhandenen Gefriertrocknungsanlagen ohne jegliche Umrüstung möglich ist,
- die zur aseptischen Herstellung besonders vorteilhafte Abfüllung in handelsübliche Gefäße, z. B. Glasfläschchen, unverändert beibehalten werden kann,
 - Prozeßzeiten in der Größenordnung von Gefriertrocknungsverfahren und weit darunter liegen,
 - toxikologisch unbedenkliche Hilfsstoffe eingesetzt werden können,
- alle zum Einfrieren erforderlichen Energiemengen eingespart und der Gebrauch von umweltschädlichen Kältemitteln drastisch reduziert werden kann,
 - die erhaltenen Produkte gut sichtbar, rasch sich wieder auflösende "Kuchen" darstellen,
- durch das rasche Erreichen des teilamorphen Zustandes, das biologische Material
 weniger degradiert als durch die im Stand der Technik beschriebenen Verfahren.

Es ist festzustellen, daß die besonderen Vorteile der hier dargestellten Rezepturen aus bestimmten Mischungen von Zuckern und Aminosäuren, sowie von bestimmten Mischungen von mindestens 2 Aminosäuren auch wirksam werden, wenn sie im Rahmen anderer Trocknungsverfahren, die das Einfrieren vermeiden, eingesetzt werden. Auch bei Sprühtrocknung, Walzentrocknung etc. kommt die trocknungsbeschleunigte Wirkung

der Zusätze sowie die Eigenschaft der Zubereitungen zur Ausbildung amorpher oder teilamorpher Systeme voll zu Tage.

Es ist wesentlich, daß durch DSC und/oder Röntgenstrukturanalyse oder andere geeignete Verfahren nachweisbar signifikante amorphe Anteile vorhanden sind und die Zubereitung nicht vollständig kristallinen Charakter hat. Kristalline Zubereitungen sind nicht geeignet um ausreichende Stabilität bei empfindlichen biologischen Substanzen zu erzielen Vollständig amorphe Zubereitungen sind zur Stabilisierung geeignet und somit prinzipiell erfindungsgemäß, besonders jedoch teilamorphen Zubereitungen.

10

5

Beschreibung der Abbildungen

Abb. 1 a: Glasübergangstemperaturen der einzelnen Maltose-L-Phenylalaninmischungen

15 Abb. 1 b:

Restwassergehalt der einzelnen Maltose-L-Phenylalaninmischungen

Abb. 2:

Pulverdiffraktogramme von vakuumgetrockneten

- (a) Phenylalanin (Wasergehalt 1.2%/kristallin),
- (b) Maltose (Wassergehalt 4.0%, Tg=50°C) und
- (c) Phenylalanin und Maltose in erfindungsgemäßer Weise zubereitet (Wassergehalt 0.7%, Tg=88°C).

20 (Wassergehalt 0.7%, Tg=88°C).

Die Diffraktogramme wurden mit einem konventionellen Gerät

(Phillips 1730 X-ray) und dazugehöriger Software aufgenommen.

Die Meßtemperatur beträgt 25°C, die Winkelauflösung (2θ) 0. 05°. Meßbedingungen: 1 s pro Winkel bei 40 kV Röhrenspannung und 40

mA Stromstärke.

25

Abb. 3: Zeitlicher Verlauf des

- (a) Restwassergehalts und der
- (b) Glasübergangstemperatur einer erfindungsgemäßen Maltose/Phenylalaninzubereitung.

Detaillierte Beschreibung der Erfindung

In 13 Beispielen und 10 Vergleichsbeispielen ist die Erfindung exemplarisch dargelegt, und wird nachfolgend erläutert. Dabei wurden Formulierungen und Verfahren gefunden, die die Trocknung zuckerhaltiger Massen mittels Vakuumtrocknung drastisch verbessern und beschleunigen und zur Stabilisierung relevanter therapeutischer und diagnostischer biologischer Materialien geeignet sind. Des weiteren werden völlig neuartige Zusammensetzungen aufgezeigt, die den Zweck der Stabilisierung unter Beibehalt der optimierten Trocknungscharakteristik erfüllen.

10

15

20

25

30

5

Diese Zusammensetzungen enthalten bevorzugt entweder mindestens ein Zwitterion mit apolarem Rest (z. B. eine Aminosäure wie Phenylalanin) und Zucker, wobei die Glasübergangstemperatur des Zuckers durch diesen Zwitterionzusatz deutlich erhöht wird. Alternativ können auch Gemische von verschiedenen speziell ausgewählten Aminosäuren oder deren Derivate verwendet werden. Diese Gemische setzen sich aus einem Zwitterion mit apolarem und einem Zwitterion mit polarem Rest zusammen. Zu diesen Gemischen können auch noch Zucker zugesetzt werden.

Als Arbeitshypothese wurde gefunden, daß besonders Mischungen zwischen einem Zucker oder polar zwitterionischen Substanz (z. B. Arginin, Asparaginsäure, Glutaminsäure, Histidin, Citrullin, Lysin) und apolaren zwitterionischen Substanz (z. B. Phenylalanin, Isolencin, Methionin, Valin, Alanin, Glycin, Tryptophan, Cystein) oder deren Derivate (z. B. Acetylphenylalaninethylester) die erfindungsgemäß gewünschten Resultate ergibt. Es ist leicht möglich sowohl das Verfahren abzuwandeln, wie die anhand der Beispiele beschriebenen Stofflisten zu erweitern.

Besonders bevorzugte biologisch oder therapeutisch aktiven Materialien sind Antikörper (monoklonal oder polyklonal), Enzyme und Humanproteine bzw. Humanpeptide, wie z. B. rekombinantes humanes Erythropoietin (rh-EPO), rekombinanter humaner Granulocyten Colony Stimulating Factor (rh-G-CSF) oder rekombinanter Plasminogen Aktivator (rPA), nGF, PTH, Ularitide, Plasmide, Viren, GUP, BP-5.

10

An wirkstoffreien Zubereitungen wurde erarbeitet, in welcher Weise der Zusatz von Aminosäuren die Trocknung von Zuckermatrices verändert. In Beispiel 1 ist dargestellt, daß der Zusatz von Phenylalanin und Arginin zu Maltose deren Trockenverhalten in Abhängigkeit von der zugesetzten Menge dieser Zuschlagstoffe verbessert. Die Glasübergangstemperatur läßt sich durch gezielten Zusatz dieser Hilfsstoffe bei gleichen Trocknungsbedingungen um über 65 K erhöhen, der korrespondierende Restwassergehalt läßt sich leicht auf unter 1 % absenken. Aus Beispiel 1 geht hervor, daß das dabei angewandte Verfahren innerhalb von 48 h ohne jegliche Wärmeeinwirkung zum gewünschten Ergebnis führt. Maltose ohne die erfindungsgemäß zugesetzten Hilfsstoffe weist unter diesen Bedingungen einen Restwassergehalt von 7-8 % auf, die Glasübergangstemperatur (Tg) liegt unterhalb der Raumtemperatur und somit ist dieses System nicht zur Stabilisierung von Proteinen etc. geeignet.

15 Die Herstellung erfindungsgemäßer Zubereitungen aus Saccharose und einer Aminosäure aus der Gruppe der erfindungsgemäß zur Herstellung stabilisierender, teilamorpher Produkte geeigneten Aminosäuren vermag bestimmte Nachteile bei der Formulierung mit Saccharose zu vermeiden, während die der Saccharose eigenen Vorteile voll zum Tragen kommen können. Saccharose hat im Vergleich zu anderen, in der Literatur erwähnte 20. Zuckern eine relativ niedrigere Glasübergangstemperatur bei entsprechend normierten Wassergehalten. Es ist deshalb bei der Herstellung saccharosehaltiger, trockener Zubereitungen besonders schwierig, hohe Tgs zu erreichen, die deutlich oberhalb der angestrebten Lagertemperatur liegen. Weiterhin ist es schwierig Saccharose durch Verdunstungstrocknung überhaupt in eine amorphe Form zu überführen, der Zucker kristal-25 lisiert leicht aus und bildet somit leicht die zur Stabilisierung biologische Wirkstoffe ungünstige kristalline Struktur. Außerdem kann beobachtet werden, daß amorphe Saccharosemassen im Laufe der Lagerung vergleichsweise rasch in großem Ausmaß Kristalle bilden und nach Ablauf bestimmter Lagerzeiten vollständig kristallisieren können. Auch bei diesem Vorgang verliert eine derartige Zubereitung ihre 30 stabilisierenden Eigenschaften. Alle diese mit der Anwendung von Saccharose verknüpsten Probleme, Risiken und Unzulänglichkeiten können

erfindungsgemäßen Zusatz von Aminosäuren der entsprechende Gruppe behoben werden. Besonders bevorzugt ist dabei die Anwendung von Phenylalanin und Arginin (Beispiel 2). In Vergleichsbeispiel A wird gezeigt, daß auch unter Anwendung längerer Trocknungszeiten und erhöhter Temperaturen reine Zuckermassen sich nicht effizient trocknen lassen. Der trocknungsverbessernde Effekt von Aminosäuren und Zucker läßt sich sowohl mit einzelnen Aminosäuren als auch mit Aminosäuremischungen erreichen. Beispiele 3 und 4 liefern dazu entsprechende Ergebnisse an Maltose und Saccharose-Aminosäuren gefunden worden. keine sind auch Systemen. Es trocknungsverbessernden Effekte haben, z. B. Histidin (Vergleichsbeispiel B). In Beispiel 5 wird gezeigt, daß neben Aminosäuren auch deren strukturverwandte Derivate trocknungsverbessernde Effekte aufweisen können. Die Auswahl bestimmter Aminosäuren wird ausführlich, wenn auch nicht limitierend oder völlig umfassend in Beispiel 6 beschrieben. Es ist festzuhalten, daß bei weitem nicht jede Aminosäure den gewünschten Effekt herbeiführt, sondern nur bestimmte Aminosäuren. Auch das Ausmaß der Effekte ist unterschiedlich, so daß besonders bevorzugte Kombinationen oder Zubereitungen benannt werden können. Diese sind vor allem Phenylalanin, Tryptophan, Leucin und Isoleucin. Aus Beispiel 1 und 6 läßt sich weiterhin ableiten, daß die Mischung von Aminosäuren unter Beibehaltung des trocknungsverbessernden Effektes möglich ist. Arginin allein zeigt keinen positiven Effekt, wohl aber in Mischung mit Phenylalanin.

20

. 25

30

5

10

15

Das Verhalten von Aminosäuren bei der Vakuumtrocknung wurde untersucht, um festzustellen, ob auch ohne Zuckermatrix mittels Aminosäuren Zubereitungen erhalten werden können, die eine Glasübergangstemperatur oberhalb der Raumtemperatur aufweisen.
Überraschenderweise wurde gefunden, daß eine reine Aminosäure alleine nur kristalline
Strukturen ausbildet, während bestimmte Aminosäuresalze und Mischungen von
Aminosäuren glasartige Matrizes bilden (Vergleichsbeispiel C und Beispiel 7). Zur Herstellung von amorphen Strukturen ist es erforderlich, gezielt verschieden Aminosäuren
auszuwählen. Überraschenderweise wurde gefunden, daß sich Aminosäuren in 2
Gruppen einteilen lassen, die offensichtlich unterschiedliche Eigenschaften aufweisen. Es
ist notwendig aus jeder Gruppe mindestens eine Aminosäure auszuwählen und eine entsprechende Mischung herzustellen und diese zu trocknen. Wie bei der Formulierung von

Zucker-Aminosäure-Mischungen, ist auch hier ein bestimmtes Mischungsverhältnis erforderlich um erfindungsgemäße Zubereitungen zu erhalten (Beispiel 7). Dann erhält man eine Matrix mit amorphen Anteilen, die zur Stabilisierung biologischer Wirkstoffe geeignet ist.

5

10

15

20

25

30

Die Wirksamkeit der verbesserten Trocknung bezüglich des eigentlichen Zieles, der Stabilisierung von biologisch aktivem Material, exemplarisch gezeigt an Proteinen, wird ausführlich in den Beispielen 8 - 12 und den Vergleichsbeispielen D - J belegt. Beispiele 8 und 9 mit den Vergleichsbeispielen D - G beschreiben die Stabilisierung von rh-G-CSF, Beispiel 10 und Vergleichsbeispiel H von Erythropoietin und Beispiele 11 und 12 sowie Vergleichsbeispiele I und J die Stabilisierung von Lactat-Dehydrogenase. Anhand von Lagerzeiten von einem Protein (rh-G-CSF, Beispiele 8 und 9 bzw. Vergleichsbeispiele D, E und F, G), einem Glykoprotein (rh-EPO, Beispiel 10 und Vergleichsbeispiel H) und einem Enzym (LDH, Beispiele 11, 12 und Vergleichsbeispiel I und J) wird beispielhaft die überraschend stark verbesserte Lagerstabilität der erfindungsgemäßen Zubereitungen gegenüber vakuumgetrockneten Zubereitungen ohne Hilfsstoffe und weiteren Zubereitungen gezeigt. Die Veränderungen an verschiedenen rh-G-CSF-Zubereitungen unter Lagerbedingungen bei verschiedenen Temperaturen wird in den Beispielen dargestellt. Nur erfindungsgemäße, d. h. teilamorphe, glasartige Zubereitungen zeigen nach 6 Monaten keine nennenswerte Degradation im Lager-Temperaturbereich von wenigen Grad Celsius (Kühlschrank) bis zu 40 °C (Beispiele 8 und 9). Entsprechende hilfsstoffreie vakuumgetrocknete Zubereitungen (Vergleichsbeispiel D) zeigen bei Raumtemperatur und erhöhter Lagertemperatur (40 °C) eine deutliche Monomerenabnahme von bis zu 20 %. Nicht-amorphe, sondern zäh-viskose Zubereitungen, die oberhalb der Glasübergangstemperatur gelagert werden, zeigen schon bei RT nach 5 Wochen signifikante Abnahmen der Monomerenkonzentration (Vergleichsbeispiele D + E). Kristalline Zubereitungen (Vergleichsbeispiel G und J) zeigen ebenso signifikant verkürzte Lagerzeiten. Aus einem Vergleich von Beispiel 8 und Vergleichsbeispiel E erkennt man, daß bei erhöhter Lagertemperatur (40 °C) der Zusatz von Aminosäuren zu Maltose als Stabilisatoren die Lagerzeit, bei der weniger als 10 % der Monomeren von G-CSF aggregieren, mehr als verzehnfacht wird. Ein Vergleich von Beispiel 9 mit

10

15

Vergleichsbeispiel G zeigt, daß auch die Wahl der Aminosäuren entscheidend für die stark verlängerte Lagerzeit ist. Ein Vergleich des Monomerenanteils bei dem Glycoprotein EPO (Beispiel 10, Vergleichsbeispiel H) zeigt, daß erfindungsgemäße Zubereitungen bei Raumtemperatur und erhöhter Lagertemperatur gegenüber vakuumgetrocknetem EPO ohne Hilfsstoffe deutlich überlegen sind. Bei 5wöchiger Lagerung des empfindlichen Enzyms LDH als erfindungsgemäße Zubereitungen (Beispiele 11 und 12) im Vergleich zum vakuumgetrockneten LDH ohne Hilfsstoffe (Vergleichsbeispiel I) und kristalliner Zubereitung (Vergleichsbeispiel J) zeigt sich, daß nur erfindungsgemäße Zubereitungen bei Raumtemperatur oder höheren Lagertemperaturen (30 °C) ohne drastischen Aktivitätsverlust gelagert werden können. Beachtenswert ist dabei auch die zusätzliche Stabilisierung des Enzyms durch die erfindungsgemäße Zubereitung direkt nach der Präparation der Proben (Aktivität bei 0 Wochen > 80 % vs 65 % bei hilfsstoffreier Zubereitung bzw. 10% bei krist. Zubereitung). Ein typischer zeitlicher Verlauf des Trockungsvorgangs einer erfindungsgemäßen Mischung ist in Beispiel 13 exemplarisch gezeigt.

Zur Herstellung erfindungsgemäßer Mischungen mindestens zweier Aminosäuren zur Erzielung schnelltrocknender, glasartiger Zubereitungen sind jeweils mindestens eine Aminosäure und deren Derivate aus den nachfolgend genannten 2 Gruppen auszuwählen:

20 <u>Gruppe 1:</u> Arginin, Asparaginsäure, Glutaminsäure, Histidin, Citrullin, Lysin,
Ornithin

Gruppe 2: Phenylalanin, Isoleucin, Leucin, Methionin, Valin, Alanin, Glycin, Tryptophan, Acetylphenylalaninethylester, Cystein, Sarcosin

25

30

Die alleinige Anwendung nur einer Aminosäure oder mehrerer Aminosäuren aus nur einer der beiden Gruppen führt nicht zu den erfindungsgemäß vorteilhaften Zubereitungen. Erfindungsgemäße Stoffgemische können, wie exemplarisch gezeigt, aufgefunden werden, indem einer Lösung eines Stabilisators biologisch oder therapeutisch aktiver Substanzen ein Zwitterion mit apolarem Rest, z. B. Phenylalanin oder dessen Derivate in verschiedenen Mengen zugemischt wird. Die bei

10

15

20

Raumtemperatur getrockneten Gemische werden anschließend mittels DSC überprüft, ob sie eine durch den zwitterionischen Zusatz erhöhte Glasübergangstemperatur aufweisen. Die Glasübergangstemperatur hat sich dabei gegenüber Zubereitungen ohne erfindungsgemäße Zusätze um 10K, bevorzugt um 20K, besonders bevorzugt um 40K erhöht. Die erfindungsgemäßen vorteilhaften Zubereitungen sind teilamorph, besitzen eine Glasübergangstemperatur über 4°C, bevorzugt über 20°C, besonders bevorzugt über 40°C und haben entsprechende Restfeuchten von weniger als 6%, bevorzugt weniger als 4%. Ihre scheinbare Dichte entsprechend der Schüttdichte ist zumindest 10%, bevorzugt 50% höher als die der entsprechenden Lypophilisate. Sie behalten ihre spröde, glasartige, kompakte, teilamorphe Struktur über mindestens 2 Wochen. bevorzugt 2 Monate, besonders bevorzugt 1 Jahr. Außerdem ist ihre Trocknungszeit, (d.h. der Zeitpunkt an dem die gleiche Restfeuchte erreicht wird), gegenüber Stoffmischungen, die nur ein Kohlenhydrat oder Zwitterion mit apolarem Rest enthalten, vorzugsweise um 25% verringert, besonders bevorzugt halbiert oder sogar geviertelt. Diese Substanzgemische können auch gemahlen oder anderweitig weiterverarbeitet werden, z. B. in therapeutischen Mitteln oder Diagnostika in Kombination mit üblichen Hilfs- und Trägerstoffen verwendet werden. Therapeutische Mittel sind therapeutische Zubereitungen, die ein oder mehrere therapeutisch wirksame Agens neben üblichen Hilfsund Zusatzstoffen enthalten. Sie können in Form von Tabletten, Kapseln oder Feststoffen, aus denen durch Zugabe von Flüssigkeit (z. B. steriles Wasser oder Puffer) therapeutisch wirksame Lösungen (z. B. Infusionslösungen) hergestellt werden, vorliegen. Sie sind weiterhin besonders geeignet, um mittels verschiedener Verfahren als feste Substanz appliziert zu werden, z. B. als Nasenspray, Inhalat oder transdermales Pulver usw.

25

30

Beispiel 1:

Vakuumtrocknung von Maltose-L-Arginin-L-Phenylalaninmischungen

Es wurde eine Lösung mit einem Gehalt von 50 mg Maltosemonohydrat und 0,1 mg Polysorbat 80 pro ml hergestellt. Dieser wurden dann steigende Mengen an L-Arginin und L-Phenylalanin zu gleichen Anteilen (g/g) zugefügt. Die so hergestellten Lösungen wurden sterilfiltriert (0,22 µm Cellulosenitratfilter) und dann jeweils 1 ml der Lösung in

2ml-Vials gefüllt und Gefriertrocknungsstopfen aufgesetzt. Die so vorbereiteten Proben wurden in gleicher Weise bei 20°C unter vermindertem Druck 48 h lang vakuumgetrocknet. Nach der Trocknung wurde der Wassergehalt der Proben nach Karl-Fischer bestimmt und die Glasübergangstemperatur mittels Differentialthermoanalyse (Perkin Elmer DSC7 - Aufheizrate der Proben = 10 K/min) ermittelt. Die Meßergebnisse zeigen, daß sich das Trockenverhalten der Maltose durch Zugabe bestimmter Mengen der Aminosäuren deutlich ändert. Ab 7,5 mg jeder Aminosäure nimmt der Wassergehalt der Proben deutlich ab und die Glasübergangstemperatur steigt dementsprechend an. Bei je 10 mg L-Arginin und L-Phenylalanin sind Werte erreicht, die sich durch weitere Erhöhung der Aminosäureanteile im trockenen Produkt nicht mehr steigern lassen. Zu der Zuckerlösung mit 50 mg Maltosemonohydrat und 0,1 mg Polysorbat 80 pro ml wurden steigende Mengen an Aminosäuren gegeben. Die nach der Trocknung reangegebenen Wassergehalte sultierenden Produkte wiesen die hier Glasübergangstemperaturen auf.

15

10

5

Tabelle 1:

L-Arginin [mg/ml]	L-Phenylalanin [mg/ml]	Restwassergehalt [%]	Glasübergangs- temperatur
			[°C]
0	0	7,68	12,86
1	1	7,95	12,47
2,5	2,5	7,71	12,91
5	5	7,75	13,67
7,5	7,5	3,55	52,04
10	10	0,54	80,57
12,5	12,5	0,76	73,14

Beispiel 2:

Vakuumtrocknung von Saccharose - L-Arginin-L-Phenylalaninmischungen

20 Zu einer Saccharoselösung, die 50 mg Saccharose und 0,1 mg Polysorbat 80 pro ml enthielt, wurden steigende Mengen L-Arginin und L-Phenylalanin zu gleichen Anteilen (g/g)

zugefügt. Die Proben wurden wie bei Beispiel 1 hergestellt, getrocknet und analysiert. Bei Mengen bis je 10 mg Aminosäure erhielt man vollkommen kristalline Produkte. Erst ab 10 mg L-Arginin und 10 mg L-Phenylalanin pro ml waren teilamorphe Produkte mit einem Glasübergang zu identifizieren. In diesem Beispiel wurde durch Zugabe von Aminosäuren nicht nur das Trockenverhalten einer Lösung verbessert, sondern das System durch diese Zugabe in den teilamorphen Zustand überführt. Zu der Zuckerlösung mit 50 mg Saccharose und 0,1 mg Polysorbat 80 pro ml wurden steigende Mengen an Aminosäuren gegeben. Die nach der Trocknung resultierenden Produkte wiesen die hier angegebenen Wassergehalte und Glasüber-

10 gangstemperaturen auf.

Tabelle 2:

5

L-Arginin [mg/ml]	L-Phenylalanin [mg/ml]	Restwassergehalt	Glasübergangs- temperatur
0	0	2,97	kristallin
1	1	1,11	kristallin
2,5	2,5	3,46	kristallin
5	5	6,11	kristallin
10	10	3,43	18,56
15	15	1,53	53,70
20	20	1,60	58,78

Vergleichsbeispiel A

20

15 Vakuumtrocknung reiner Zuckerlösungen

Es wurden eine Maltosemonohydrat- und eine Saccharoselösung mit der Konzentration 50 mg/ml hergestellt. Diese Zuckerlösungen wurden dann filtriert, abgefüllt und analysiert wie in Beispiel 1 beschrieben. Es konnte gezeigt werden, daß es selbst bei einer 72 stündigen Trocknung bei 50°C unter vermindertem Druck nicht möglich ist, 50 mg Zucker in einem 2ml Vial auf eine befriedigende Restfeuchte zu trocknen, so daß der Glasübergang oberhalb 25°C liegt. Das Maltoseprodukt wies zähe Konsistenz auf und

hatten einen Restwassergehalt von 6,4%. Der Glasübergang lag bei 20°C. Bei der Saccharose waren noch 6,0% Restwasser vorhanden, der Glasübergang lag bei 14°C. Zum Vergleich wurden die reinen Zuckerlösungen auch 48 h bei 20°C unter vermindertem Druck getrocknet. Die resultierenden Produkte waren noch feuchter und der Glasübergang lag deshalb noch tiefer, als bei den bei 50°C getrockneten Proben. Dieser Versuch zeigt deutlich, daß es nur durch Zugabe von bestimmten Aminosäuren möglich ist, Zuckerschichten in Injektionsfläschchen oder ähnlichen Behältnissen mittels Vakkumtrocknung auf geringe Restfeuchten zu trocknen. Das verbesserte Trockenverhalten durch Zugabe der Aminosäuren wird so deutlich.

10

5

Tabelle 3:

	Maltose		Saccharose	
Trocknung	Restwasser- gehalt	Glasübergangs- temperatur	Restwasser- gehalt	Glasübergangs- temperatur
72 h bei 50°C	6,4 %	20,0°C	6,0 %	14,0°C
48 h bei 20°C	8,9 %	6,1°C	9,3 %	- 1,8°C

Beispiel 3:

20

15 Vakuumtrocknung von Maltose -L-Phenylalanin und Maltose-L-Isoleucingemischen

In diesem Versuch wurden nun binäre Mischungen von Aminosäuren und Maltosemonohydrat hergestellt. Er soll überprüfen, ob die hier eingesetzten Aminosäuren trocknungsverbessernde Eigenschaften besitzen und welche Mengenabhängigkeit des trocknungsverbessernden Effekts bei den einzelnen Aminosäuren besteht. Zu einer Lösung, die 50 mg Maltosemonohydrat pro ml enthielt, wurden steigende Mengen an L-Phenylalanin oder L-Isoleucin hinzugegeben. Die so hergestellten Lösungen wurden sterilfiltriert (0,22 µm Cellulosenitratfilter) und dann jeweils 1 ml der Lösung in 2ml-

Vials gefüllt und Gefriertrocknungsstopfen aufgesetzt. Die so vorbereiteten Proben wurden bei 20°C unter vermindertem Druck 48 h lang vakuumgetrocknet. Nach der Trocknung wurde der Wassergehalt der Proben nach Karl-Fischer jeweils 4fach bestimmt und die Glasübergangstemperatur mittels Differentialthermoanalyse (Perkin Elmer DSC7 - Aufheizrate der Proben = 10 K/min) bei je zwei Proben pro Mischung ermittelt.

a. Ergebnis Maltose - L-Phenylalanin

Die Meßergebnisse zeigen deutlich den positiven Einfluß des L-Phenylalanins auf das 10 Trockenverhalten von Maltose. Bereits geringe Mengen an L-Phenylalanin reichen aus, um die Glasübergangstemperatur eines Zuckerglases bei gleichbleibenden Trockenbedingungen um ca. 50°C zu steigern (Abb. 1 a und 1 b). Bei 10 mg/ml L-Phenylalanin erreicht der trocknungsverbessernde Effekt ein Maximum. Durch Zugabe von größeren Mengen an L-Phenylalanin ist keine Verbesserung mehr möglich. Die 15 Glasübergangstemperatur wurde so durch den Zusatz von L-Phenylalanin gegenüber der reinen Maltose um ca. 80 °C gesteigert. Bei großen Mengen L-Phenylalanin (10-20 mg/ml) kann man in diesem Versuch keine Unterschiede bezüglich des Trockenverhaltens erkennen. Dies ändert sich aber bei verkürzten Trockenzeiten. Hier ist mit steigenden L-Phenylalaninmengen ein Ansteigen der Glasübergänge auch im Bereich 10 - 20 mg L-Phenylalanin pro ml zu sehen. Die Tabelle 4 zeigt die Menge an L-20 Phenylalanin in der Zuckerlösung und den daraus resultierenden Restwassergehalt und die Glasübergangstemperatur Tg.

Tabelle 4:

15

20

L-Phenylalanin	Restwassergehalt	Glasübergangstemperatur
[mg/ml]	[%]	[°C]
0	8,91	6,1
5	3,21	62,8
7,5	0,95	77,7
10	1,12	86,0
15	0,99	85,2
20	0,99	88,2

Außerdem wurden Pulverdiffraktogramme von vakuumgetrockneten Phenylalanin, Maltose und einer erfindungsgemäßen Mischung von Phenylalanin und Maltose 5 aufgenommen (Abb. 2a, 2b, 2c). Das reine Phenylalanin zeigt ein typisches Diffraktogramm einer kristallinen Substanz (Abb. 2a), während Maltose das Diffraktogramm einer amorphen Substanz zeigt (Abb. 2b). Nur bei erfindungsgemäßen Mischung kommt es zur Ausbildung teilamorpher Strukturen, erkennbar an den diskreten Beugungsmaxima auf einem breiten Hintergrundssignal (Abb. 2c).

b. Ergebnis Maltose -L-Isoleucin

Der Stammlösung mit 50 mg Maltosemonohydrat pro ml wurden verschiedene Mengen L-Isoleucin zugegeben, und die einzelnen Mischungen wurden bei 20°C getrocknet. Mit steigender Aminosäuremenge wird ein trocknungsverbessernder Effekt deutlich. Mit einer Zugabe von 20 mg/ml L-Isoleucin (Mischungsverhältnis 5:2 nach Gewicht) läßt sich der Tg eines Maltoseproduktes um ca. 20°C steigern. Die Tabelle 5 zeigt die Menge an L-Isoleucin in der Zuckerlösung und den daraus resultierenden Restwassergehalt und die Glasübergangstemperatur Tg.

Tabelle 5:

Isoleucin	Restwassergehalt	Glasübergangstemperatur
[mg/ml]	[%]	[°C]
0	8,91	6,1
5	7,84	13,7
10	7,52	17,7
15	6,77	19,4
20	5,34	24,7

Beispiel 4:

Vakuumtrocknung von Saccharose-L-Leucin

In folgenden Versuchen wurden binäre Mischungen von Saccharose mit verschiedenen Aminosäuren hergestellt. Es sollte überprüft werden, ob die eingesetzten Aminosäuren auf die Saccharose einen trocknungsverbessernden Effekt ausüben. Zu einer Lösung die 50 mg Saccharose pro ml enthielt wurden steigende Mengen an L-Leucin zugegeben. Die Lösungen wurden wie in Beispiel 3 beschrieben behandelt.

10

15

20

Ergebnis Saccharose - L-Leucin

Saccharose bildet mit geringen Mengen L-Leucin ein kristallines Produkt. Diese Kristallbildung konnte auch schon in Beispiel 2 mit L-Arginin und L-Phenylalanin beobachtet werden. Saccharose bildet also bei der Mischung mit bestimmten Aminosäuren kristalline Produkte. Der reine Zucker und Mischungen mit größeren Anteilen an L-Leucin bilden Systeme mit einem Glasübergang. Dies bedeutet, daß ein teilamorphes Gerüst vorliegt. So wird deutlich, daß erst Konzentrationen ab 15 mg/ml L-Leucin die Trocknungseigenschaften der reinen Saccharose verbessern und der Glasübergang durch Zugabe dieser Aminosäure um ca. 18 °C gesteigert werden kann. L-Leucin ist somit eine Aminosäure mit einem trocknungsverbessernden Effekt. Die Tabelle 6 zeigt die Menge an L-Leucin in der Zuckerlösung und den daraus resultierenden Restwassergehalt und die Glasübergangstemperatur Tg der Endprodukte.

Tabelle 6:

L-Leucin	Restwassergehalt	Glasübergangstemperatur	
[mg/ml]	[%]	[°C]	
0	9,34	- 1,8	
5	6,23	kristallin	
10	6,50	kristallin	
15	5,81	16,4	
20	5,02	16,1	

Vergleichsbeispiel B

5 Vakuumtrocknung von Saccharose-L-Histidin-Gemischen

Die Versuche wurden durchgeführt wie in Beispiel 4 angegeben. Statt L-Leucin wurde L-Histidin verwendet. Die Mischung Saccharose - L-Histidin bildet bei der Vakuumtrocknung amorphe Produkte, bei denen kein trocknungsverbessernder Effekt zu beobachten ist. Unabhängig vom Mischungsverhältnis trocknen die Gerüste schlecht und die Restwassergehalte und Glasübergänge der Mischungen liegen in der gleichen Größenordnung wie die Ergebnisse des reinen Zuckers. Folglich hat L-Histidin keinen trocknungsverbessernden Effekt. Die Tabelle 7 zeigt die Menge an L-Histidin in der Zuckerlösung und den daraus resultierenden Restwassergehalt und die Glasübergangstemperatur Tg der Endprodukte.

15

10

Tabelle 7:

L-Histidin	Restwassergehalt	Glasübergangstemperatur	
[mg/ml]	[%]	[°C]	
0	9,34	- 1,8	
5	11,23	-1,4	
20	9,78	-2,6	

Beispiel 5:

5

10

Vakuumtrocknung von Saccharose - L-Tryptophan und Saccharose - N-acetyl-Lphenylalaninethylester (APE) Gemischen

In diesem Versuch wurde eine Lösung mit 10 mg L-Tryptophan pro ml und eine Lösung mit 3 mg APE pro ml hergestellt (APE hat nur eine begrenzte Löslichkeit in Wasser). Beiden Lösungen wurde in steigenden Mengen Saccharose zugegeben. Die so erhaltenen Lösungen wurden wie in Beispiel 3 beschrieben behandelt und getrocknet. Zum Vergleich wurde bei diesem Versuch unter gleichen Trockenbedingungen eine Saccharoselösung (50 mg/ml) mit getrocknet. Diese wies im Endprodukt einen Restwassergehalt von 9,98% und einen Glasübergang von -6,25°C auf.

a. Die Tabelle 8 zeigt die Menge an Saccharose in der L-Tryptophanlösung (10mg/ml) und den daraus resultierenden Restwassergehalt und die Glas übergangstemperatur der Endprodukte.

15 Tabelle 8:

Saccharose	Restwassergehalt	Glasübergangstemperatur	
[mg/ml]	[%]	[°C]	
20	3,09	37,30	
40	4,19	22,51	
60	5,37	14,44	

b. Die Tabelle 9 zeigt die Menge an Saccharose in der APE-Lösung (3mg/ml) und den daraus resultierenden Restwassergehalt und die Glasübergangstemperatur der Endprodukte.

Tabelle 9:

20

Saccharose	Restwassergehalt	Glasübergangstemperatur	
[mg/ml]	[%]	[°C]	
10	6,15	13,3	
40	8,33	1,4	

Die Ergebnisse zeigen, daß beide untersuchten Substanzen, L-Tryptophan und APE, einen trocknungsverbessernden Effekt aufweisen. Mit L-Tryptophan läßt sich die Glasübergangstemperatur des teilamorphen Produkts bei gleichbleibenden Trockenbedingungen um ca. 45°C steigern. Mit APE ist eine Steigerung der Glasübergangstemperatur bei gleichbleibenden Trockenbedingungen um 20°C möglich.

Beispiel 6:

5

10

Vakkumtrocknung von anderen Zucker-Aminosäuremischungen

In diesem Versuch wurden binäre Mischungen von Maltosemonohydrat oder Saccharose mit einer L-Aminosäure hergestellt. Hierbei wurden der Zuckerlösung Aminosäuren im Mengenverhältnis Zucker-Aminosäure 5:2 bis 1:1 zugesetzt. Es sollte überprüft werden, ob die jeweilige Aminosäure bei den entsprechenden Zuckern einen trocknungsverbessernden Effekt aufweist. Die Herstellung, Behandlung und Trocknung der Lösungen erfolgte wie in Beispiel 4 beschrieben. Im einzelnen handelte

es sich um folgende Mischungen:

a. Mischungen mit Maltosemonohydrat

Tabelle 10:

eingesetzte	Menge an AS	Zuckermenge	Restwasser-	Glasübergang
Aminosäure	[mg/ml]	[mg/ml]	gehalt [%]	[°C]
-	-	50	8,91	6,1
L-Arginin .	10	50	8,10	10,3
L-Arginin	20	50	8,63	7,1
L-Leucin	20	50	5,42	20,9
L-Leucin	20	20	1,87	56,05
L-Histidin	20	50	9,78	5,3
L-Isoleucin	20	20	3,12	37,9
L-Methionin	15	30	7,45	9,7
L-Methionin	20	20	2,70	34,4
L-Valin	20	20	4,93	18,8

b. Mischungen mit Saccharose

Tabelle 11:

eingesetzte	Menge an AS	Zuckermenge	Restwasser-	Glasübergang
Aminosäure	[mg/ml]	[mg/ml]	gehalt [%]	[°C]
-	-	50	9,34	- 1,8
L-Alanin	15	30	6,04	2,8
L-Alanin	20	20	4,46	11,7
L-Glycin	20	20	4,47	5,3
L-Phenylalanin	20	50	1,12	62,7
L-Serin	15	30	11,77	- 15,1
L-Serin	20	20	10,61	- 14,4

Die Ergebnisse der Trocknung zeigen, daß L-Histidin keinen positiven Einfluß auf das Trockenverhalten von Zuckern hat (Tab. 10). L-Serin verschlechtert die Trocknung von Zuckern sogar noch weiter (Tab. 11). L-Leucin, L-Isoleucin und L-Methionin haben einen trocknungsverbessernden Effekt (Tab. 10). Dieser wird deutlich, wenn man steigende Mengen dieser Aminosäuren zu der Zuckerlösung hinzu gibt. Bei L-Valin und L-Alanin ist nur bei großen Mengen Aminosäure im Produkt eine Verbesserung der Trocknung festzustellen; L-Arginin und L-Glycin haben einen schwach positiven Einfluß. Die sehr gute Wirkung von L-Phenylalanin auf das Trockenverhalten wird auch bei der binären Mischung mit Saccharose deutlich (Tab. 11). Das Produkt trocknet gut und weist einen sehr hohen Glasübergang auf.

15

Vergleichsbeispiel C

Vakuumtrocknung von Aminosäurelösungen oder von Lösungen von Aminosäuresalzen

Von den einzelnen Aminosäuren oder von Salzen einzelner Aminosäuren wurden
20 Lösungen hergestellt und sterilfiltriert (0,22 µm Cellulosenitratfilter). Jeweils 1 ml der
Lösung wurde in 2ml-Vials gefüllt und Gefriertrocknungsstopfen aufgesetzt. Die so vorbereiteten Proben wurden bei 20°C unter vermindertem Druck 48 h lang vakuum-

getrocknet. Nach der Trocknung wurde der Wassergehalt der Proben nach Karl-Fischer bestimmt und die Glasübergangstemperatur mittels Differentialthermoanalyse (Perkin Elmer DSC7 - Aufheizrate der Proben = 10 K/min) ermittelt. Im einzelnen wurden folgende Lösungen getrocknet und es resultierten die hier angegebenen Restwassergehalte und DSC-Meßergebnisse:

a. Aminosauren

Tabelle 12:

5

Aminosäure	Konzentrat	ion	Restwasser-	DSC-
			gehalt	Meßergebnis
	[mol/l]	[mg/ml]	[%]	[°C]
L-Alanin	0,24	21,38	0,81	kristallin
L-Arginin	0,24	41,80	0,52	kristallin
L-Citrullin	0,24	42,05	4,9	kristallin
L-Cystein	0,24	29,08	2,61	kristallin
Glycin	0,24	18,02	0,76	kristallin
L-Histidin	0,12	18,62	0,77	kristallin
L-Isoleucin	0,12	15,74	1,10	kristallin
L-Leucin	0,12	15,74	1,62	kristallin
L-Lysin	0,24	35,09	0,79	kristallin
L-Methionin	0,12	17,91	1,57	kristallin
L-Phenylalanin	0,12	19,82	1,53	kristallin
L-Prolin	0,24	27,63	19,93	kristallin
L-Serin	0,24	25,22	0,44	kristallin
L-Threonin	0,24	28,59	0,45	kristallin
L-Valin	0,24	28,12	0,57	kristallin

b. Salze von Aminosäuren

Tabelle 13:

Aminosäure	Konzentration		pH-Wert	Restwasser- gehalt	DSC- meßergebnis
	[mol/l]	[mg/ml]		[%]	[°C]
L-Arginin	0,25	43,55	2,70	6,46	3,51
HCI	0,30	10,93			
L-Arginin	0,25	43,55	6,81	3,3	5,17
H ₃ PO ₄	0,15	14,70			
L-Arginin	0,25	43,55	2,89	3,24	6,67
H ₂ SO ₄	0,15	14,71			
L-Arginin	0,25	43,55	2,58	2,66	kristallin
HNO ₃	0,30	18,90			
L-Arginin	0,25	43,55	5,24	11,04	kristallin
Essigsäure	0,30	18,0			
L-Asparagin-	0,12	15,97	4,97	9,65	27,7
säure NaOH	0,12	4,8	·		
L-Glutamin-	0,12	17,66	5,14	14,69	5,5
säure NaOH	0,12	4,8			
L-Ornithin	0,24	40,47	5,39	0,4	kristallin
HCI					

Das Ergebnis zeigt, daß Aminosäuren nach der Vakuumtrocknung kristallin vorliegen.

Nur Salze basischer und saurer Aminosäuren bilden während diesen Trockenbedingungen amorphe Gerüste, die allerdings sehr schlecht trocknen und deren Glasübergangstemperatur unter den gewählten Bedingungen unterhalb der Raumtemperatur liegt.

Beispiel 7:

Vakuumtrocknung von L-Arginin-L-Phenylalaninmischungen und einer L-Arginin-L-Isoleucinmischung

In diesem Versuch wurden verschiedene Mischungen von L-Arginin und L-Phenylalanin hergestellt, behandelt, getrocknet und untersucht wie in Vergleichsbeispiel C beschrieben. Im einzelnen wurden folgende binäre Mischungen hergestellt und getrocknet:

Tabelle 14:

5

molares Mischungs	L-Argii	nin	L-Phenylalanin		Restwasser- gehalt [%]	Glasüber- gangstem- peratur	
verhältnis	[mol/l]	[mg/ml]	[mol/l]	[mg/ml]		[°C]	
1:1	0,12	20,90	0,12	19,82	2,27	59,5	
2:1	0,16	27,87	0,08	13,21	9,32	1,7	
3:1	0,18	31,35	0,06	9,91	9,40	2,8	
4:1	0,192	33,44	0,048	7,928	9,96	1,3	
5:1	0,20	34,83	0,04	6,61	10,73	0,0	
6:1	0,206	35,88	0,034	5,61	10,03	1,3	
7:1	0,21	36,58	0,03	4,96	11,38	1,0	
1:2	0,06	10,45	0,12	19,82	2,85	47,2	
1:3	0,04	6,97	0,12	19,82	3,43	46,2	
1:4	0,03	5,23	0,12	19,82	3,66	43,45	

- Dieser Versuch zeigt, daß es durch Mischen zweier Aminosäuren, die alleine getrocknet kristalline Produkte ergeben, möglich ist, teilamorphe Gerüste herzustellen. Diese trocknen bei ausgewählten Mischungsverhältnissen so gut, daß teilamorphe Gerüste mit einer hohen Glasübergangstemperatur und einem niederen Restwassergehalt resultieren.
- 15 Interessant ist, daß es ein optimales Mischungsverhältnis mit dem höchsten Glasübergang gibt. Innerhalb dieses Versuches wurde noch eine Lösung hergestellt, die L-Arginin und L-Isoleucin jeweils 0,15 molar enthielt.

Tabelle 15:

molares	L-Arginin		L-Isole:	ıcin	Restwasser-	Glasüber-	
Mischungs					gehalt	gangstem-	
verhältnis	[mol/l]	[mg/ml]	[mol/l]	[mg/ml]	[%]	peratur [°C]	
1:1	0,15	26,13	0,15	19,68	1,05	53,27	

Hier resultierte ein Produkt mit einem Glasübergang von 53,27°C und 1,05% Restwassergehalt. Durch Mischen zweier Aminosäuren konnte so ein gut trockenbares teilamorphes Gerüst konstruiert werden; die Glasübergangstemperatur wurde um ca. 50°C gesteigert, verglichen mit Argininsalzen von mineralischen Säuren (Vergleichsbeispiel C).

10 Beispiel 8:

15

20

rh-G-CSF in einer L-arginin- und L-phenylalaninhaltigen Maltoserezeptur vakuumgetrocknet

Es wurde eine Lösung mit 50 mg Maltose, 10 mg L-Phenylalanin und 10 mg L-Arginin pro ml hergestellt. Außerdem enthielt diese Lösung 0,1 mg Polysorbat 80 und 0,35 mg rhG-CSF pro ml. Der pH-Wert der Rezeptur wurde mit Salzsäure auf pH 7,4 eingestellt. Die proteinhaltige Lösung wurde unter aseptischen Bedingungen hergestellt und sterilfiltriert (Polyvinylidendifluoridfilter 0,22 µm). Dann wurde jeweils 1 ml der Lösung in 2ml-Vials abgefüllt. Die befüllten und mit Gefriertrocknungsstopfen versehenen Vials wurden dann 48 h bei 20°C isotherm unter vermindertem Druck getrocknet. Es resultierte ein trockenes Produkt mit einem Restwassergehalt von 1,16 % und einer Glasübergangstemperatur von 75°C. Die so hergestellten Proben wurden bei verschiedenen Temperaturen eingelagert und die Proteinstabilität wurde nach verschiedenen Lagerzeiten beurteilt.

25 Bei rh-G-CSF ist der Anteil an entstandenem Dimer in dem hergestellten Produkt ein gutes Kriterium für die Stabilitätsbeurteilung des Produktes. Daher sind die mittels Aus-

schlußchromatographie (pro Bedingung 4 Einfachmessungen) ermittelten Mono- und Dimermengen ein Maß für die stabilisierende Wirkung unserer durch Trocknung hergestellten Zubereitungen. Bei der Ausschlußchromatographie werden Proteinmoleküle aufgrund ihrer Teilchengröße in gelöstem Zustand aufgetrennt, d.h. hochmolekulare Bestandteile (Dimere) werden vom rh-G-CSF Monomeren separiert. Die Untersuchung 5 (HP-SEC) wurde an einer HPLC-Anlage von Shimadzu unter Verwendung eines kühlbaren Autosamplers (Waters TM 717) durchgeführt. Als Trennsäule wurde eine TSK-Gel G2000 SW (7,5x300 mm) Säule der Fa. TosoHaas verwendet. Die Detektion der getrennten Bestandteile erfolgte photometrisch bei 214 nm (Photometer Shimadzu LC-GA). Als Fließmittel wurde ein 0.1 m Natrium-Kaliumphosphatpuffer pH 6,2 10 verwendet, mit dem eine Flußrate von 0,6 ml/min bei Raumtemperatur angelegt wurde. Die zu untersuchenden Proben wurden mit Aqua bidest. so gelöst, daß die Ausgangskonzentration wieder hergestellt war (Zugabe von 1ml). Diese gelösten Proben wurden dann in dem auf 6°C gekühlten Autosampler bis zur Untersuchung aufbewahrt. Die Einspritzmenge einer Probe betrug 20µl (= 7 µg G-CSF), die Laufzeit einer Probe 32 min. 15 Die Auswertung der Ergebnisse erfolgte unter Benutzung eines G-CSF-Arbeitsstandards. Um die Produkte zusätzlich qualitativ beurteilen zu können, wurde außerdem bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Die Ergebnisse zur SDS-Gelelektrophorese sind in Beispiel 8 b Abb.9 dargestellt. In wässrigen Lösungen denaturiert das Protein bei Temperaturen zwischen 45° und 47°C 20 innerhalb weniger Stunden vollständig. Mit dieser Rezeptur gelang es, das Protein selbst bei 50°C Lagertemperatur über Wochen zu stabilisieren.

a. Stabilität von rhG-CSF in einer vakuumgetrockneten Maltoserezeptur mit L-Arginin
 und L-Phenylalanin.

Tabelle 16: Angegeben sind die Monomergehalte in % wie in der HP-SEC erhalten

Lagertemperatur							
KS	RT	30°C	40°C	50°C			
-	99,83 %	-	•	-			
99,94 %	99,93 %	99,86 %	99,89 %	99,87 %			
99,83 %	99,86 %	99,88 %	99,83 %	99,83 %			
99,76 %	99,75 %	99,55 %	99,36 %	99,21 %			
99,68 %	96,73 %	96,40 %	93,81 %	89,27 %			
98,34 %	94,81 %	94,70 %	91,27 %	86,27 %			
	Fig. 1. Sept. 1. Sept	KS RT - 99,83 % 99,94 % 99,93 % 99,83 % 99,86 % 99,76 % 99,75 % 99,68 % 96,73 %	KS RT 30°C - 99,83 % - 99,94 % 99,93 % 99,86 % 99,83 % 99,86 % 99,88 % 99,76 % 99,75 % 99,55 % 99,68 % 96,73 % 96,40 %	KS RT 30°C 40°C - 99,83 % - - 99,94 % 99,93 % 99,86 % 99,89 % 99,83 % 99,86 % 99,88 % 99,83 % 99,76 % 99,75 % 99,55 % 99,36 % 99,68 % 96,73 % 96,40 % 93,81 %			

KS = Kühlschranktemperatur = 4 - 6°C

 $RT = Raumtemperatur = 20 - 22^{\circ}C$

5

Die Ergebnisse der Ausschlußehromatographie zeigen deutlich, daß es mit dieser Rezeptur möglich ist, das Protein rhG-CSF über einen längeren Zeitraum in einer solchen vakuumgetrockneten Zubereitung zu stabilisieren. Der Versuch zeigt, daß es möglich ist, rhG-CSF in einer vakuumgetrockneten, teilamorphen, L-arginin- und L-phenylalaninhaltigen Maltoserezeptur unterhalb der Glasübergangstemperatur über längere Zeit zu stabilisieren.

b. Übersicht der Ergebnisse der SDS-Gelelektrophorese aller Rezepturen, die den Wirkstoff rh-G-CSF enthielten.

15

20

10

Zunächst wurden SDS-haltige Polyacrylamidgele, deren Trenngel 15% Acrylamid und deren Sammelgel 3% Acrylamid und 1% Natrium-Dodecylsulfat (SDS) enthielt, hergestellt. Die Vorbereitung der Proben erfolgte so, daß aus 3 Injektionsflaschen 1 Mischmuster hergestellt wurde. Anschließend wurde diese Probelösung mit einem dithiothreithaltigen (DTT) und bromphenolblauhaltigem Probenpuffer verdünnt, so daß eine rh-G-CSF-Konzentration von 150 µg/ml entstand. Die Proben wurden 5 min bei 95°C im vorgeheizten Heizblock denaturiert. Als Eichproteine wurden die Proteine "Combithek Eichproteine für die Chromatographie MG 18000 - 300000" von Boehringer

Mannheim verwendet. Diese wurden genauso wie die rh-G-CSF-Proben vorbereitet und behandelt. Außerdem wurde ein rh-G-CSF Arbeitsstandard präpariert, der als Vergleich eingesetzt wurde. Die Gelelektrophorese wurde mittels einer Midget Gelelektrophoresis Unit (Pharmacia - LKB 2050) und einem dazugehörigen Spannungsgerät durchgeführt.

Nachdem der Elektrophoresepuffer eingefüllt worden war, wurde in jede Geltasche 20 μl Probe (d.h. 3 μg rh-G-CSF) eingefüllt. Nach Verschließen der Elektrophoresekammer und Anstellen der Wasserkühlung wurde eine Spannung von 80 V angelegt, die nachdem das Sammelgel durchlaufen war, auf 130 V erhöht wurde. Kurz bevor die Bromphenolblaubande das Ende des Gels erreichte, wurde die Elektrophorese beendet.

Die Gele wurden aus der Kammer entfernt und mit Aqua bidest. kurz gewaschen. Dann wurde eine silver-stain-Färbung mit einem Daiichi 2D-silver-stain II Kit gemäß der dort enthaltenen Anweisung durchgeführt. Nach Ende der Färbung erfolgte die optische Begutachtung der Gele.

15 Tabelle 17: Ergebnis der Gelelektrophorese

Spur	Zubereitung	Sichtergebnis
1	Eichproteine	
2	Beispiel. 8: L-arginin- und L-phenyl- alaninhaltige Maltoserezeptur	nur Monomere
3	Vergleichsbeispiel D: Trocknung ohne Hilfsstoffe	Monomere und Dimere
4	Vergleichsbeispiel E: reine Maltoserezeptur	Monomere, Dimere und Trimere
5	Eichproteine	
6	Beispiel 9: L-arginin- und L-phenyl- alaninhaltige, zuckerfreie Rezeptur	nur Monomere
7	Vergleichsbeispiel F: L-Argininrezeptur mit Phosphorsäure	Monomere und Dimere
8	Vergleichsbeispiel G: kristalline L-Valin - L-Glycinrezeptur	Monomere, Dimere und Abbauprodukte

Die Rezepturen der Beispiele 8 und 9 zeigen bei dieser Untersuchung nur Monomere. Bei Vergleichsbeispiel D und F sind neben dem Monomer noch Dimere, bei Beispiel E außerdem noch zusätzlich Trimere zu erkennen. In der kristallinen L-Valin - L-Glycin Zubereitung Vergleichsbeispiel G sieht man außerdem noch 2 Abbauprodukte, deren Molekülmasse kleiner ist, als die des Monomers und 2 schwache Banden von Abbauprodukten, deren Molekülmasse zwischen der des Monomers und des Dimers liegt.

Anhand dieser empfindlichen Methode konnten sehr gut Abbau- und Aggregations-10 produkte des Monomers, die in Mengen > 1% vorlagen, sichtbar gemacht werden.

Vergleichsbeispiel D

Vakuumtrocknung von rhG-CSF ohne Zugabe von Hilsstoffen

Bei diesem Versuch wurde eine Lösung hergestellt, die nur das Protein rhG-CSF in einer Konzentration von 0,35 mg/ml in einem verdünnten Phosphatpuffer (ca. 0,01m) enthielt. Diese Proteinlösung wurde hergestellt, behandelt und analysiert wie in Beispiel 8 beschrieben. Bei dieser Zubereitung war es aus technische Gründen nicht möglich, bei den Endprodukten den Restwassergehalt und die Glasübergangstemperatur zu bestimmen. Stabilitätsdaten von rhG-CSF ohne Hilsstoffe vakuumgetrocknet

20

15

Tabelle 18: Angegeben sind die Monomeranteile in % wie in der HP-SEC erhalten

Lagerzeit [Wochen]	Lagertemperatur						
	KS	RT	40°C				
0	-	97,84 %					
5	94,90 %	94,53 %	93,96 %				
13	91,31 %	89,66 %	78,23 %				
26	80,06 %	73,60 %	52,22 %				

KS = Kühlschranktemperatur = 4 - 6°C

RT = Raumtemperatur = 20 - 22°C

Die Stabilitätsdaten des reinen Proteins zeigen sehr deutlich die stabilisierende Wirkung der Hilfsstoffe der in Beispiel 8 beschriebenen Rezeptur. Auch bei dieser Rezeptur wurde bei jeder Untersuchung eine SDS-Gelelektrophorese mit silverstain Färbung durchgeführt. Ergebnisse siehe Beispiel 8 b.

5

10

15

20

25

Vergleichsbeispiel E

rhG-CSF in einer reinen Maltoserezeptur vakuumgetrocknet

Es wurde eine Lösung mit 50 mg Maltosemonohydrat, 0,1 mg Polysorbat 80 und 0,35 mg rhG-CSF pro ml hergestellt. Der pH-Wert der Rezeptur wurde mit Natronlauge auf 7,4 eingestellt. Die Ausgangslösung und die Endprodukte wurden hergestellt, behandelt und analysiert wie in Beispiel 8 beschrieben. Wie schon Beispiel 1 zeigt, ist es schwierig, Maltose ohne Zusatz von Aminosäuren innerhalb von 48 h auf geringe Restfeuchten zu trocknen. Deshalb resultieren Produkte mit einem Restwassergehalt von 10,43 % und einer Glasübergangstemperatur von - 2C. Bei den Lagertemperaturen, also oberhalb des Glasübergangs, lag kein amorphes, sprödes Glas sondern eine hochviskose, zähelastische Masse vor. Stabilität von rhG-CSF in einer vakuumgetrockneten Maltosezubereitung ohne Aminosäuren.

Tabelle 19: Angegeben sind die Monomergehalte in % wie in der HP-SEC erhalten.

Lagerzeit [Wochen]	Lagertemperatur							
	KS	RT	30 C	40 C	50 C			
0	•	97,99 %	-	-	-			
5	98,26 %	96,82 %	93,91 %	67,45 %	42,63 %			
13	97,15 %	90,49 %	73,70 %	30,05 %	18,52 %			
26	97,05 %	88,23 %	71,32 %	22,30 %	15,27 %			

Zu den Ergebnissen der SDS-Gelelektrophorese siehe Beispiel 8 b. Das Ergebnis zeigt, daß es nicht vorteilhaft ist, rhG-CSF in einer Zuckermasse ohne Aminosauren aufzubewahren. Die Stabilität ist deutlich geringer, als bei vakuumgetrocknetem Bulk (Vergleichsbeispiel D) und einer optimierten, vakuumgetrockneten Rezeptur (Beispiel 8).

Dieser Versuch zeigt deutlich die Notwendigkeit der Zugabe von Aminosäuren zu Zuckern bei der Vakuumtrocknung, um Produkte mit hohen Glasübergängen zu erhalten, in denen das Protein dann durch das amorphe Hilfsstoffgerüst stabilisiert wird. Eine Lagerung der Produkte unterhalb der Glasübergangstemperatur erweist sich als Notwendigkeit für die Stabilisierung des Wirkstoffs. Zu bemerken ist noch, daß in den Proben, die bei 40 und 50 C eingelagert waren, bereits nach 4 Wochen die Maltose vollständig auskristallisiert war. Solche physikalischen Veränderungen in den Proben während der Lagerung sind zu vermeiden; sie beschleunigen die Abnahme des Monomergehaltes.

10

15

Beispiel 9:

rh-G-CSF in einer zuckerfreien L-Arginin-L-Phenylalaninrezeptur vakuumgetrocknet

Eine Lösung mit 20 mg L-Arginin und 20 mg L-Phenylalanin, 0,1 mg Polysorbat 80 und 0,35 mg rh-G-CSF pro ml wurde hergestellt. Nachdem der pH-Wert mit Salzsäure auf pH 7,4 eingestellt war, wurde die Lösung behandelt, getrocknet und analysiert wie in Beispiel 8 beschrieben. Nach Ende der Trocknung lag ein homogenes Produkt mit einer Glasübergangstemperatur von 77,0°C und einem Restwassergehalt von 1,30% vor. Stabilität von rh-G-CSF in einer vakuumgetrockneten Arginin-Phenylalaninrezeptur.

20

Tabelle 20: Angegeben sind die Monomeranteile wie in der HP-SEC erhalten

Lagerzeit	Lagertemperaturen							
[Wochen]	KS	RT	30°C	40°C	60°C	80°C		
0	-	99,57 %	 -	-	 -	-		
4	99,36 %	99,36 %	99,50 %	99,81 %	96,56 %	1,44 %		
13	99,17 %	99,31 %	99,40 %	99,64 %		-		
26	98,64 %	98,62 %	96,52 %	91,06 %	-	-		
39	99,64 %	94,18 %	88,99 %	79,05 %	†	-		

KS = Kühlschranktemperatur = 4-6°C

RT = Raumtemperatur = 20-22°C

10

Die Ergebnisse der Haltbarkeitsuntersuchung zeigen deutlich, daß es mit dieser Rezeptur möglich ist, das Protein rh-G-CSF über einen längeren Zeitraum in einer teilamorphen, vakuumgetrockneten Aminosäurenzubereitung zu stabilisieren, solange die Lagertemperaturen deutlich unterhalb der Glasübergangstemperaturen liegen (vergleiche auch Vergleichsbeispiel C). Die Lagerung bei 80°C versus der Lagerung bei 60°C zeigt dieses Phänomen bezüglich des Glasübergangs bei 77°C.

Um die Produkte zusätzlich qualitativ beurteilen zu können, wurde außerdem bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Die Ergebnisse dieser SDS-Gelelektrophorese sind in Beispiel 8 b dargestellt. Die selbe Rezeptur wurde auch bei verschiedenen Temperaturen 1 Jahr lang gelagert. Das Ergebnis ist in Tabelle 20a gezeigt.

	Wassergehalt	Tg	Monomergehalt
	[%]	[°C]	G-CSF [%]
Start	0,77	82,1	99,82

15 nach 52 Wochen:

KS	1,20	79,52	98,34
RT	2,08	69,47	94,81
30°	2,21	67,91	94,70
40°	2,32	67,36	91,27
50°	2,40	68,63	86,26

KS = Kühlschranktemperatur = 4-6°C

RT = Raumtemperatur = 20-22°C

Der Versuch zeigt, daß es möglich rh-G-CSF in einer vakuumgetrockneten, teilamorphen L-Arginin-L-Phenylalaninrezeptur unterhalb der Glasübergangstemperatur zu stabilisieren.

Vergleichsbeispiel F

rh-G-CSF in einer vakuumgetrockneten L-Argininrezeptur mit Phosphorsäure

Es wurde eine Lösung mit 40 mg L-Arginin, 0,1 mg Polysorbat 80 und 0,35 mg rh-G-CSF pro ml hergestellt. Nachdem der pH-Wert mit Phosphorsäure auf pH 7,4 eingestellt war, wurde die Lösung behandelt, getrocknet und analysiert wie in Beispiel 8 be-5 schrieben. Das getrocknete Endprodukt wies einen Restwassergehalt von 3,59 % und eine Glasübergangstemperatur von 8,6°C auf. Dieses Produkt lag folglich nach Abschluß der Trocknung bei Raumtemperatur nicht als sprödes, amophes Glas, sondern als zähplastische Masse vor. hochviskose. Stabilität von rh-G-CSF einer 10 vakuumgetrockneten L-Argininrezeptur.

Tabelle 21: Angegeben sind die Monomeranteile in % wie in der HP-SEC erhalten

Lagerzeit [Wochen]	Lagertemperaturen								
	-20°C	KS	RT	30°C	40°C	60°C	80°C		
0	•	-	99,60 %	-	-	-	-		
4	99,57 %	99,60 %	99,37 %	99,34 %	99,20 %	89,46 %	31,81 %		
13	99,75 %	98,17%	98,06 %	97,31 %	93,41 %	-	-		
33	99,28 %	99,30 %	99,21 %	97,86 %	93,02 %	-	-		

Es wird nicht der stabilisierende Effekt erreicht, den man in einem trockenen, teilamorphen Glas erhält (Beispiel 8 und 17). Dies zeigt die Bedeutung der geschickten Mischung von Hilfsstoffen, um deren Trockenverhalten während der Vakuumtrocknung zu verbessern und so bei Raumtemperatur teilamorphe Gläser vor sich zu haben. Vor allem bei höheren Temperaturen (30° und 40°C) wird dies deutlich. Die Stabilität ist gegenüber dem vakuumgetrockneten Wirkstoff ohne Hilfsstoffe in dieser Masse erhöht 20 (Vergleiche Vergleichsbeispiel D). Um die Produkte zusätzlich qualitativ beurteilen zu können, wurde außerdem bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Die Ergebnisse dieser SDS-Gelelektrophorese sind in Beispiel 8 b dargestellt.

Vergleichsbeispiel G

rh-G-CSF in einer kristallinen L-Valin - Glycinrezeptur vakuumgetrocknet

0,35 mg rh-G-CSF pro ml wurden in eine Lösung gegeben, die je 20 mg L-Valin und Glycin und 0,1 mg Polysorbat 80 pro ml enthielt und deren pH-Wert mit Natronlauge auf pH 7,4 eingestellt war. Die fertig angesetzte Lösung wurde behandelt, getrocknet und analysiert wie in Beispiel 8 beschrieben. Die Untersuchung nach Ende der Trocknung zeigte, daß es sich bei den fertigen Mustern um ein kristallines Produkt mit einem Restwassergehalt von 0,82 % handelte. Stabilität von rh-G-CSF in einer vakuumgetrockneten, kristallinen L-Valin -Glycinrezeptur.

10

5

Tabelle 22: Angegeben sind die Monomeranteile in % wie in der HP-SEC erhalten

Lagerzeit	Lagertemperaturen								
[Wochen]	KS	RT	30°C	40°C	60°C	80°C			
0	-	94,36 %	-	-	-	-			
4	89,93 %	89,66 %	84,26 %	72,47 %	44,54 %	27,44 %			
13	74,14 %	73,91 %	64,90 %	46,82 %	-	-			
33	73,75 %	70,04 %	54,93 %	40,40 %	-	-			

KS = Kühlschranktemperatur = 4-6°C

RT = Raumtemperatur = 20-22°C

- Dieses Ergebnis zeigt deutlich, daß eine kristalline Aminosäurerezeptur, selbst bei niedrigen Restwassergehalten, nicht in der Lage ist, rh-G-CSF zu stabilisieren. Verglichen mit dem ohne Hilfsstoffe vakuumgetrockneten rh-G-CSF zeigt sich deutlich der destabilisierende Effekt einer solchen Zubereitung (siehe Vergleichsbeispiel D).
- Um die Produkte zusätzlich qualitativ beurteilen zu können, wurde außerdem bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Ergebnisse dieser SDS-Gelelektrophorese sind in Beispiel 8 b dargestellt.

Beispiel 10:

Vakuumtrocknung von Erythropoietin in einer Larginin- und

L-phenylalaninhaltigen Saccharoserezeptur

Eine Lösung mit 50 mg Saccharose, je 10 mg L-Arginin und L-Phenylalanin und 0,1 mg

Polysorbat 20 pro ml wurde hergestellt. In diese Lösung wurden 5000 U Erythropoietin
(EPO) pro ml zugegeben und der pH-Wert mit Phosphorsäure auf pH 7,2 eingestellt. Die
Lösung wurde behandelt und getrocknet wie in Beispiel 8 beschrieben. Es resultierte ein
trockenes, teilamorphes Produkt mit einem Restwassergehalt von 0,56 % und einer
Glasübergangstemperatur von 86,6°C. Bei EPO ist der Anteil an entstandenem Dimer in
dem hergestellten Produkt ein gutes Kriterium für die Stabilitätsbeurteilung des
Produktes. Daher sind die mittels Ausschlußchromatographie (pro Bedingung 3
Einfachmessungen) ermittelten Mono- und Dimermengen ein Maß für die stabilisierende
Wirkung unserer durch Trocknung hergestellten Zubereitungen.

- 15 Bei der Ausschlußchromatographie werden Proteinmoleküle aufgrund ihrer Teilchengröße in gelöstem Zustand aufgetrennt, d.h. hochmolekulare Bestandteile (Dimere) werden vom EPO Monomeren separiert. Die Untersuchung (HP-SEC) wurde an einer HPLC-Anlage von Shimadzu unter Verwendung eines Autosamplers (Gilson Abimed 231) durchgeführt. Als Trennsäule wurde eine TSK-Gel G3000 SWXL (7,8x300 mm) 20 Säule der Fa. TosoHaas verwendet. Die Detektion der getrennten Bestandteile erfolgte photometrisch bei 280 nm (Merck Fluorescence Spectrophotometer 820 FP). Als Fließmittel wurde ein 0,41m Natrium-Kaliumphosphatpuffer mit Natriumchlorid pH 7,3 verwendet, mit dem eine Flußrate von 0,6 ml/min bei Raumtemperatur angelegt wurde. Die zu untersuchenden Proben wurden mit Aqua bidest, so gelöst, daß die Ausgangs-25 konzentration wieder hergestellt war (Zugabe von 1ml). Diese gelösten Proben wurden dann im Autosampler bis zur Untersuchung aufbewahrt. Die Einspritzmenge einer Probe betrug 100µl (= 2 µg EPO), die Laufzeit einer Probe 25 min. Die Auswertung der Ergebnisse erfolgte unter Benutzung eines EPO-Arbeitsstandards.
- Stabilität von EPO in einer vakuumgetrockneten, L-arginin- und L-phenylalaninhaltigen Saccharoserezeptur.

Tabelle 23: Angegeben sind die Monomergehalte in % wie in der HP-SEC erhalten

Lagerzeit	Lagertemperatur					
[Wochen]	KS	RT	40°C			
0	•	100%	-			
4	100%	100%	100%			
9	100%	100%	100%			
13	100 %	100 %	100 %			
26	100 %	100 %	99,9 %			

KS = Kühlschranktemperatur = 4-6°C

RT = Raumtemperatur = 20-22°C

5

10

15

20

Das Ergebnis zeigt, daß es möglich ist, EPO mittels Vakuumtrocknung mit der hier gewählten Hilfsstoffkombination zu stabilisieren. Um die Produkte zusätzlich qualitativ beurteilen zu können, wurde außerdem bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Die Herstellung der Gele, die Durchführung der Elektrophorese und die Färbung der Gele erfolgten wie in Beispiel 8 b beschrieben. Die Vorbereitung der Proben erfolgte so, daß aus 3 Injektionsflaschen 1 Mischmuster hergestellt wurde. Anschließend wurde diese Probelösung mit einem bromphenolblauhaltigem Probenpuffer verdünnt, so daß eine EPO-Konzentration von 20 μg/ml entstand. Die Proben wurden 5 min bei 95°C im vorgeheizten Heizblock denaturiert. Als Eichproteine wurden ein "Bio-Rad Standard Low" verwendet. Dieser wurde genauso wie die EPO-Proben vorbereitet und behandelt. Außerdem wurde ein Vergleich eingesetzt wurde. Die präpariert, der als EPO-Arbeitsstandard Gelelektrophorese wurde mittels einer Midget Gelelektrophoresis Unit (Pharmacia -LKB 2050) und einem dazugehörigen Spannungsgerät durchgeführt. Nachdem der Elektrophoresepuffer eingefüllt worden war, wurde in jede Geltasche 20 µl Probe (d.h. 400 ng EPO) eingefüllt. Nach Ende der Färbung erfolgte die optische Begutachtung der Gele und die Gele wurden fotografiert. Anhand dieser empfindlichen Methode konnten sehr gut Abbau- und Aggregationsprodukte des Monomers, die in Mengen > 1% vorlagen, sichtbar gemacht werden.

Ergebnis der Elektrophorese

Bei der hier beschriebenen Rezeptur war bei allen Proben nach 9 Wochen im Gel nur eine Monomerbande entsprechend dem Arbeitsstandard zu erkennen. Dies unterstreicht die Stabilität des Proteins in dieser Zubereitung.

Vergleichsbeispiel H

Vakuumtrocknung von Erythropoietin ohne Zugabe von Hilfsstoffen

In diesem Versuch wurde eine Ausgangslösung hergestellt, die nur den Wirkstoff EPO (50000 U/ml) in einem verdünnten Phosphatpuffer (ca. 5 mM) enthielt. Die Lösung wurde hergestellt, behandelt und getrocknet wie in Beispiel 8 beschrieben.

Bei dieser Zubereitung war es aus technische Gründen nicht möglich, bei den Endprodukten den Restwassergehalt und die Glasübergangstemperatur zu bestimmen, da die vorhandenen Mengen in einem Vial zu gering waren (ca. 0,2 mg). Die Stabilität des Proteins wurde, wie in Beispiel 10 beschrieben, mittels Ausschlußchromatographie beurteilt.

20 Stabilität von EPO ohne Hilfsstoffe vakuumgetrocknet.

Tabelle 24: Angegeben sind die Monomergehalte in % wie in der HP-SEC erhalten

Lagerzeit	Lagertemperatur					
[Wochen]	KS	RT	40° C			
0	•	99,5%	-			
4	98,6%	94,4%	88,0%			
9	96,0%	89,0%	75,0%			
13	95,7 %	87,0 %	76,3 %			
26	94,7 %	88,2 %	66,6 %			

KS = Kühlschranktemperatur = 4-6° C

 $RT = Raumtemperatur = 20-22^{\circ} C$

20

25

30

Ebenfalls wurde bei jeder Gehaltsbestimmung eine SDS-Gelelektrophorese mit silver stain Färbung durchgeführt. Die Herstellung der Gele, Vorbereitung der Proben, die Durchführung der Elektrophorese und die Färbung der Gele erfolgten wie in Beispiel 10 beschrieben. Nach dem Färben der Gele konnte man bei den Proben jeder Bande des entsprechend Monomerbande, der neben Lagertemperatur Arbeitsstandards, deutlich eine Dimerbande erkennen. Dieser Versuch macht die stabilisierende Wirkung der in Beispiel 10 eingesetzten Hilfsstoffkombination deutlich. Die Stabilität des reinen Wirkstoffes in diesem Beispiel ist gegenüber der Stabilität des Wirkstoffes in der Rezeptur Beispiel 10 deutlich erniedrigt; es ist eine Dimerbildung zu beobachten. Je höher die Lagertemperatur ist, um so deutlicher wird der protektive Effekt der gewählten Kombination an Hilfsstoffen in Versuch 10.

Beispiel 11:

15 Lactatdehydrogenase in einer Maltose-L-Arginin-L-Phenylalaninrezeptur vakuum-getrocknet

Es wurde eine Lösung mit 50 mg Maltosemonohydrat, 10 mg L-Arginin und 10 mg L-Phenylalanin pro ml hergestellt. Dieser Lösung wurde Lactatdehydrogenase (LDH) zugefügt, so daß eine Proteinaktivität von 165 U/ml resultierte. Der pH-Wert der Lösung wurde mit Phosphorsäure auf pH 7,0 eingestellt. Die Lösung wurde hergestellt, behandelt und getrocknet wie in Beispiel 8 beschrieben. Nach der Trocknung lag ein homogenes Produkt mit einer Glasübergangstemperatur von 96°C und einem Restwassergehalt von 0,82% vor. Die fertigen Proben wurden bei verschiedenen Temperaturen eingelagert und die Proteinaktivität nach verschiedenen Lagerzeiten beurteilt. Bei der LDH wurde die enzymatische Aktivität als Maß für die Proteinstabilität bestimmt. Diese Bestimmung erfolgt photometrisch. In einer Probelösung wird Pyruvat mit NADH unter katalytischer Wirkung der LDH zu Lactat und NAD reduziert. Die Abnahme des NADH-Gehaltes in der Lösung kann photometrisch verfolgt werden (λ = 365 nm; ϵ = 3,4 cm²/µmol). Die Aktivität wurde in 100 oder 200fach verdünnten Ausgangslösungen in einer Kunststoffküvette (Schichtdicke = 1cm) gemessen (Perkin-Elmer 552 UV/VIS Spectrophotometer). Aus der Abnahme pro Zeiteinheit kann dann

die Proteinakivität der LDH berechnet werden. Stabilität von LDH in einer vakuumgetrockneten, arginin- und phenylalaninhaltigen Maltoserezeptur. Die Aktivität der Ausgangslösung entsprach einem Wert von 100%.

5 Tabelle 25: Angegeben ist die Aktivität in % wie in der Untersuchung erhalten

Lagerzeit	Lagertemperatur							
[Wochen]	KS	RT	30°	40°	60°			
0	-	85,3 %		-	-			
5	87,81 %	87,45 %	81,15 %	80,42 %	64,42 %			
13	83,28 %	79,41 %	78,79 %	61,74 %	-			

KS = Kühlschranktemperatur = 4-6°C

RT = Raumtemperatur = 20-22°C

Der Versuch zeigt deutlich die stabilisierende Wirkung der Rezeptur für das sehr empfindliche Protein LDH.

Vergleichsbeispiel I

Vakuumtrocknung von Lactatdehydrogenase ohne Zugabe von Hilfsstoffen

In diesem Versuch wurde eine Lösung des reinen Wirkstoffes Lactatdehydrogenase

(LDH) mit einer Aktivität von 136 U/ml in einem verdünnten Phosphatpuffer (8 mM)

hergestellt. Die Lösung wurde hergestellt, behandelt und getrocknet wie in Beispiel 8

beschrieben. Bei dieser Zubereitung war es aus technischen Gründen nicht möglich, bei

den Endprodukten den Restwassergehalt und die Glasübergangstemperatur zu

bestimmen, da die vorhandenen Mengen in einem Vial zu gering waren (ca. 0,2 mg). Die

Stabilität des Proteins wurde, wie in Beispiel 11 beschrieben, beurteilt. Stabilität von

LDH ohne Hilfsstoffe vakuumgetrocknet. Die Aktivität der Ausgangslösung entsprach

einem Wert von 100%.

Tabelle 26: Angegeben ist die Aktivität in % wie in der Untersuchung erhalten

Lagerzeit	Lagertemperatur					
[Wochen]	KS	RT	40° C			
0	•	64,52 %	-			
5	66,54 %	23,03 %	1,57 %			
13	50,63 %	6,81 %	0 %			

KS = Kühlschranktemperatur = 4-6° C,RT = Raumtemperatur

 $= 20-22^{\circ} C$

Dieser Versuch macht die stabilisierende Wirkung der in Beispiel 11 eingesetzten Hilfsstoffkombination deutlich. Die Stabilität des reinen Wirkstoffes in diesem Beispiel ist gegenüber der Stabilität des Wirkstoffes in der Rezeptur Beispiel 11 deutlich erniedrigt. Je höher die Lagertemperatur ist, um so deutlicher wird der protektive Effekt der gewählten Kombination an Hilfsstoffen in Versuch 11. Der Unterschied zwischen der Stabilität von reinem Protein und dem Protein in einer Hilfsstoffkombination getrocknet ist bei der LDH am deutlichsten.

Beispiel 12:

5

10

15

20

25

Lactatdehydrogenase in einer zuckerfreien, vakuumgetrockneten L-Arginin -L-Phenylalanin-rezeptur

Eine Stammlösung mit 20 mg L-Arginin und 20 mg L-Phenylalanin pro ml wurde hergestellt. Dieser wurde nach Einstellung des pH-Wertes auf pH 7,0 mit Phosphorsäure Lactatdehydrogenase (LDH) zugefügt, so daß eine Ausgangslösung mit einer Proteinaktivität von 168 U/ml resultierte. Die Lösung wurde hergestellt, behandelt und getrocknet wie in Beispiel 8 beschrieben. Nach der Trocknung lag ein homogenes Produkt mit einer Glasübergangstemperatur von 103,9°C und einem Restwassergehalt von 1,18% vor. Die fertigen Proben wurden bei verschiedenen Temperaturen eingelagert und die Proteinaktivität nach verschiedenen Lagerzeiten beurteilt. Die Proteinanalytik wurde durchgeführt wie in Beispiel 11 beschrieben. Stabilität von LDH in einer vakuumgetrockneten, zuckerfreien L-Arginin - L-Phenylalaninzubereitung. Die Aktivität der Ausgangslösung vor der Trocknung entsprach einem Wert von 100%.

Tabelle 27: Angegeben ist die Enzymaktivität in % wie im Aktivitätstest erhalten

Lagerzeit	Lagertemperaturen						
[Wochen]	KS	RT	30°C	40°C	60°C		
0	-	80,36 %	-	-	-		
4	79,70 %	82,08 %	79,34 %	77,62 %	70,54 %		
13	82,25 %	76,11 %	75,21 %	73,06 %	-		

Der Versuch zeigt deutlich die stabilisierende Wirkung dieser Aminosäurezubereitung über den ganzen untersuchten Temperaturbereich. Die Stabilität der LDH ist gegenüber der Trocknung des reinen Wirkstoffes (Vergleichsbeispiel I) deutlich erhöht.

Vergleichsbeispiel J:

5

20

Lactatdehydrogenase in einer kristallinen L-Valin - Glycinrezeptur vakuumgetrocknet

Dieser wurde nach Einstellen des pH-Wertes auf pH 7,0 mit NaOH-Lösung Lactatdehydrogenase (LDH) zugefügt, so daß eine Ausgangslösung mit einer Proteinaktivität
von 147 U/ml resultierte. Die Lösung wurde hergestellt, behandelt und getrocknet wie in
Beispiel 8 beschrieben. Nach der Trocknung lag ein homogenes, vollkommen kristallines
Produkt mit einem Restwassergehalt von 1,12 % vor. Die fertigen Proben wurden bei
verschiedenen Temperaturen eingelagert und die Proteinaktivität wurde nach bestimmten
Lagerzeiten, wie in Beispiel 11 beschrieben, bestimmt. Stabilität von LDH in einer
vakuumgetrockneten, vollkommen kristallinen L-Valin - Glycinrezeptur. Die Aktivität
der Ausgangslösung vor der Trocknung entsprach einem Wert von 100%.

77 1 11 A0

Tabelle 28: Angegeben ist die Enzymaktivität in % wie im Aktivitätstest erhalten

Lagerzeit	Lagertemperaturen						
[Wochen]	KS	RT	30°C	40°C	60°C		
0		9,26 %					
5	3,69 %	2,11 %	1,09 %	0,80 %	0,0 %		
13	0,08 %	0,01 %	0 %	0%	0%		

Dieser Versuch zeigt deutlich, daß eine kristalline Aminosäurenrezeptur während der Vakuumtrocknung einen sehr negativen Einfluß auf das Enzym hat. Schon während der Trocknung, dies bedeutet während der Bildung des kristallinen Gerüstes, gehen schon 90% der Aktivität verloren. Auch bei der Einlagerung bei verschiedenen Temperaturen kann die noch vorhandene Aktivität nicht erhalten werden. Nach 5 Wochern haben sich die Startwerte der Proben noch weiter verschlechtert. Eine vollkommen kristalline Aminosäurenrezeptur ist zur Stabilisierung von LDH also gänzlich ungeeignet.

10 Beispiel 13

5

15

20

25

In diesem Versuch wurden eine reine Maltoselösung (50 mg/ml) und eine Lösung mit Maltose und Phenylalanin (40mg/ml Maltose und 10 mg/ml Phenylalanin) vakuumgetrocknet. Parallel dazu wurden derartige Zubereitungen mit Zusatz von 10 μg/ml rh-ngf oder 100 μg/ml PTH(1-37) oder 500 μg/ml Ularitide hergestellt. Die Lösungen wurden nach der Herstellung sterilfiltriert und in 2ml-Vials gefüllt. Die Proben wurden bei 20°C vakuumgetrocknet und nach vorgegebenen Zeiten wurden von beiden Rezepturen Proben entnommen. Bei den entnommenen Mustern wurden die Restfüllmenge, der Wassergehalt nach Karl Fischer und der Tg bestimmt. Während der ganzen Trockenzeit wurde eine Plattentemperatur von 20°C gehalten. Der Kammerdruck wurde schrittweise bis auf ca. 10⁻³ mbar abgesenkt. Das Füllgewicht der Vials nimmt bei beiden Rezepturen von 7 h auf etwa 6% des Ausgangswertes ab, d.h. die Lösungen werden sehr schnell aufkonzentriert. Bei der reinen Maltose-Rezeptur entsteht zunächst eine übersättigte Lösung, die dann in einen gummiartigen Zustand übergeht. Im weiteren Verlauf der Trocknung ist ein geringer Vorteil bei der Massenabnahme in der phenylalaninhaltigen Zubereitung gegenüber der reinen Zuckerlösung erkennbar. Nach Ende der Trocknung ist bei den Maltoseproben noch ca. 5,5 % des ursprünglichen Füllgewichts in den Vials, während bei der Maltose - Phenylalaninmischung noch ca. 4,9 % der Füllmenge in den Vials vorhanden ist.

30 Dieses Ergebnis wird noch deutlicher, wenn man statt der Veränderung des Füllgewichtes die Veränderung des Wassergehaltes in den Proben betrachtet. Zu Beginn

25

30

der Trocknung besteht die Lösung zu 95,08% aus Wasser, d.h. pro Vial sind ca. 965 mg Wasser enthalten. Ziel ist ein trockenes Produkt mit einer Restfeuchte von 1-2 %. Bei einer Feststoffmenge von 50 mg entsprechend diese 1 - 2% dann 0.5 - 1 mg Wasser pro Fläschchen. Dementsprechend müssen während der Trocknung ca. 99,95 % des 5 vorhandenen Wassers aus der Probe sublimieren, um ein trockenens Produkt zu erhalten. Im fortgeschrittenen Stadium der Trocknung wurde der Wassergehalt der Proben nach Karl Fischer bestimmt. Dies erfolgte bei den phenylalaninhaltigen Proben durch direktes Einbringen der Proben in die Methanollösung. Der sehr klebrige Zucker läßt sich nicht direkt in die Methanolösung überführen. Dieser wurde zunächst in wasserfreiem DMF gelöst. Dann wurde der Wassergehalt dieser Lösung bestimmt. Abbildung 3a zeigt die 10 Ergebnisse der so erfolgten Restwasserbestimmung. Man erkennt sehr deutlich die Überlegenheit der aminosäurehaltigen Zubereitung. Schon nach 17 h Trocknung ist hier der Restwassergehalt auf 2,7 % zurückgegangen, während er bei der Maltose-Rezeptur noch bei 13,59% liegt. Dieses Ergebnis zeigt den Vorteil der phenylalaninhaltigen 15 Lösung. Es ist nicht möglich, Maltose unter diesen Verfahrensbedingungen innerhalb von 48 h zu trocknen. Nach Ende der Trocknung liegt bei RT immer noch ein 'rubber' mit einem beträchtlichen Restwassergehalt vor. Neben den Restwassergehalten wurden auch die Glasübergangstemperaturen der einzelnen Proben mittels DSC bestimmt. Da die Glasübergangstemperaturen direkt mit dem Wassergehalt der Proben korrespondieren, weist die Maltose-Phenylalaninmischung deutlich höhere Werte auf. Das Ergebnis zeigt, daß der Tg der Aminosäure-Zuckermischungen bereits nach ca. 10 h im Bereich der Plattentemperatur liegt. Die entsprechenden Meßwerte sind in Abb. 3 b dargestellt. Da in diesem Stadium der Trocknung nur noch sehr wenig Wasser verdampst, liegt auch die Produkttemperatur im Bereich der Plattentemperatur. So liegt bereits nach 10 h des Trocknungsprozesses in den Vials bei RT ein Glas vor. Im Falle der Stabilisierung von Proteinen mit einer solchen Rezeptur bedeutet dies, daß das Protein bereits nach 10 h in ein stabilisierendes Glas eingebettet ist. Die Zeit in der das Protein in einer aufkonzentrierten Lösung oder in einem 'rubber' verweilt ist also sehr kurz, was für die Sabilität des Wirkstoffes von großem Vorteil ist. Der reine Zucker liegt dagegen selbst nach Abschluß der Trocknng bei Raumtermperatur noch als 'rubber' vor, und hat so im Falle eines proteinhaltigen Produktes keine stabiliserende Wirkung auf den Wirkstoff.

Die verschiedenen, proteinhaltigen Zubereitungen unterscheiden sich in den physikalischen Restgrößen nicht von den wirkstoffreien Basisrezepturen.

Patentansprüche

- Verfahren zur Herstellung von trockenen, teilamorphen Produkten, die neben biologisch aktivem, insbesondere therapeutisch aktivem Material, Substanzgemische enthalten, wobei die Substanzgemische ausgewählt sind aus je mindestens einer Substanz der Gruppe
 - (i) Kohlenhydrat oder Zwitterion mit polarem Rest und deren Derivate, und
- 10 (ii) Zwitterion mit apolaren Rest und dessen Derivate,

dadurch gekennzeichnet, daß eine Lösung des biologischen oder therapeutisch aktiven Materials und der Substanzen (i) und (ii) hergestellt wird und die Lösung bei einer Produktemperatur oberhalb des Gefrierpunktes der Lösung getrocknet wird.

15

- 2. Verfahren nach Anspruch 1, wobei das Zwitterion mit apolarem Rest eine Aminocarbonsäure oder deren Derivat ist.
- Verfahren nach einem der Ansprüche 1 oder 2, wobei das Zwitterion mit polarem
 Rest eine Aminocarbonsäure oder deren Derivat ist.
 - 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Substanzgemische aus einem oder mehreren Stoffen der jeweiligen Gruppe,

Mono-, Disacharide, Arginin, Asparaginsäure, Citrullin, Glutaminsäure,

- Ornithin, Histidin, Lysin und deren Derivate und
 Acetylphenylalaninethylester, Alanin, Cystein, Glycin, Isoleucin, Leucin,
 Methionin, Phenylalanin, Tryptophan, Valin, Sarcosin und deren Derivate
 ausgewählt werden.
- Verfahren nach einem der Ansprüche 1-4, wobei das biologische Material aus einer der mehrerer Substanzen der Gruppen Proteine, Peptide, Glycoproteine, Lipoproteine,

Enzyme, Coenzyme, Antikörper, Antikörperfragmente, Viren, Virusbestandteile, Zellen und Zellbestandteile, Vaccine, DNA, RNA, PNA, biologische Therapeutica und Diagnostica und deren Derivate ausgewählt werden kann.

- Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Lösung zusätzlich übliche Hilfsstoffe aus den Gruppen Puffer, Tenside, Antioxidantien, Isotonisierungsmittel, Konservierungsmittel enthält.
- 7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die
 10 Trocknung mittels Vakuumtrocknung erfolgt.
 - 8. Verfahren nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß die Vakuumtrocknung in kontinuierlicher Trocknungsweise erfolgt.
- 15 9. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die Trocknung mittels Sprühtrocknung erfolgt.
 - 10. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die Trocknung mittels Walzentrocknung erfolgt.
 - 11. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die Trocknung mittels Infrarotstrahlen, Mikrowellen oder anderen Verfahren der Strahlungstrocknung erfolgt.
- 25 12. Verfahren nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß ein Zwitterion mit apolarem Rest derart ausgewählt wird, daß das getrocknete Substanzgemisch einen erhöhten Glaspunkt gegenüber einem Substanzgemisch ohne entsprechenden Zusatz aufweist.
- 30 13. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß die Trocknung in einer Gefriertrockenanlage ohne vorheriges Einfrieren erfolgt.

- 14. Verfahren nach einem der Ansprüche 1-8, 12 oder 13, dadurch gekennzeichnet, daß die Trocknung des Substanzgemisches in Einzeldosisbehältern durchgeführt wird.
- 5 15. Verfahren nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß das erhaltene Stoffgemisch anschließend zu Pulver gemahlen wird.
 - 16. Substanzgemische enthaltend, neben einem biologisch aktiven, insbesondere therapeutisch aktivem Material, Stoffe ausgewählt aus je einer oder mehreren Substanzen der folgenden Gruppen
 - (i) einem Kohlenhydrat oder Zwitterion mit polaren Resten und deren Derivate
- (ii) Zwitterionen mit apolaren Resten und deren Derivate,
 dadurch gekennzeichnet, daß die Substanzgemische durch Zusatz einer oder
 mehrerer Substanzen der Gruppe (ii) eine erhöhte Glasübergangstemperatur
 gegenüber Substanzen der Gruppe (i) ohne entsprechenden Zusatz, aufweisen,
 wobei Lyophilisate ausgenommen sind.
- 17. Substanzgemische erhältlich nach einem Verfahren, bei dem eine Lösung, die neben einem biologisch aktiven, insbesondere therapeutisch aktiven Material, je mindestens eine Substanz ausgewählt aus den Gruppen
 - (i) Kohlenhydrat oder Zwitterion mit polarem Rest und deren Derivate
- (ii) Zwitterion mit apolarem Rest und dessen Derivate enthält,
 bei eine Produkttemperatur oberhalb des Gefrierpunkts der Lösung getrocknet wird.
 - 18. Substanzgemische nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß sie teilamorph sind.

25

- 19. Substanzgemische nach einem der Ansprüche 16-18, dadurch gekennzeichnet, daß die Glasübergangstemperatur über 4°C liegt, bevorzugt über 20 °C, und die Restfeuchte weniger als 6% (g/g), vorzugsweise weniger als 4% (g/g) beträgt.
- 5 20. Substanzgemische nach einem der Ansprüche 16-19, dadurch gekennzeichnet, daß sie eine mindestens 10% höhere scheinbare Dichte als Lyophilisate aufweisen.
 - 21. Substanzgemische nach einem der Ansprüche 16-20, dadurch gekennzeichnet, daß sie eine spröde, teilamorphe, glasartige, kompakte Struktur aufweisen.
 - 22. Substanzgemische nach einem der Ansprüche 16-21, dadurch gekennzeichnet, daß sie die teilamorphe Struktur über Lagerzeiten von mindestens 2 Wochen behalten.
- 23. Substanzgemische nach einem der Ansprüche 16-22, dadurch gekennzeichnet, daß
 deren Trockungszeiten gegenüber Substanzen der Gruppe (i) mindestens halbiert sind.
 - 24. Diagnostische Mittel, dadurch gekennzeichnet, daß sie Substanzgemische nach einem der Ansprüche 16-23 enthalten.
- 20 25. Verwendung von Substanzgemischen gemäß einem der Ansprüche 16-23 zur Herstellung von Diagnostika.
 - 26. Therapeutische Zubereitungen, dadurch gekennzeichnet, daß sie Stoffgemische nach einem der Ansprüche 16-23 enthalten.
 - 27. Verwendung von Substanzgemischen gemäß einem der Ansprüche 16-23 neben üblichen Hilfs- und Zusatzstoffen zur Herstellung von therapeutischen Mitteln.
- Verfahren zur Stabilisierung von biologischen oder therapeutisch aktiven Material,
 dadurch gekennzeichnet, daß eine Lösung aus diesem Material zusammen mit üblichen
 Stabilisatoren und einer weiteren Substanz hergestellt wird, die bei Trocknen über dem

Gefrierpunkt der resultierenden Lösung in einem teilamorphen, homogenen Substanzgemisch resultiert, dessen Glasübergangstemperatur durch die weitere Substanz um mindestens 10 K erhöht ist.

- 1 / 6 -Vakuumtrocknung von Maltose - L-Phenylalaninmischungen

Abbildung 1 a: Glasübergangstemperatur der einzelnen Maltose-L-Phenylalanimmischungen

Abbildung 1 b: Restwassergehalt der einzelnen Maltose-L-Phenylalaninmischungen

- 2 / 6 -

Abbildung 2 a:

Phenylalanin 0,12m vakuumgetrocknet (kristallin. Wassergehalt 1,2%)

Abbildung 2 b:

5 Winkel

10

15

Maltose vakuumgetrocknet (Tg = 50.1°C. Wassergehalt = 4.0%)

20

25

30

Abbildung 2 c.

Maltose + 10 mg Phenylalanin/mi - vakuumgetrocknet (Tg = 88°C. Wassergehalt = 0.7%)

Abbildung 3 a

Trockendauer (h)

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

A61K 9/14, 9/19, 47/26, 47/18

(11) Internationale Veröffentlichungsnummer:

WO 97/15288

A3

(43) Internationales Veröffentlichungsdatum:

1. Mai 1997 (01.05.97)

(21) Internationales Aktenzeichen:

PCT/EP96/04627

(22) Internationales Anmeldedatum: 24. Oktober 1996 (24.10.96)

(30) Prioritätsdaten:

195 39 574.3

25. Oktober 1995 (25.10.95)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BOEHRINGER MANNHEIM GMBH [DE/DE]; D-68298 Mannheim (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): MATTERN, Markus [DE/DE]; Am alten Neckar 7, D-64646 Heppenheim (DE). WINTER, Gerhard [DE/DE]; Jahnstrasse 20E, D-69221 Dossenheim (DE).
- BOEHRINGER MANNHEIM (74) Gemeinsamer Vertreter: GMBH; Patentabteilung, D-68298 Mannheim (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO Patent (KE, LS, MW, SD, SZ, UG). eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR. GB. GR. IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(88) Veröffentlichungsdatum des internationalen Recherchen-29. Mai 1997 (29.05.97) berichts:

- (54) Title: METHOD AND PREPARATIONS FOR STABILIZING BIOLOGICAL MATERIALS BY DRYING METHODS WITHOUT **FREEZING**
- (54) Bezeichnung: ZUBEREITUNGEN UND VERFAHREN ZUR STABILISIERUNG BIOLOGISCHER MATERIALIEN MITTELS TROCKNUNGSVERFAHREN OHNE EINFRIEREN

(57) Abstract

The invention concerns a method of producing dry partially amorphous products containing biological, in particular therapeutically active, material, the products comprising macroscopically homogeneous substance mixtures. The substance mixtures are selected from at least one substance of the group comprising: (i) carbohydrate or zwitterion with a polar residue and its derivatives; and (ii) zwitterion with an apolar residue and its derivatives. The method is characterized in that a solution of the biologically or therapeutically active material and substances (i) and (ii) is produced and dried at a product temperature above the freezing point of the solution. The invention further concerns novel substance mixtures obtained by the above method and their use in diagnostic or therapeutic processes.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Verfahren zur Herstellung von trockenen, teilamorphen, biologisches, insbesondere therapeutisch aktives Material enthaltenden Produkten, die makroskopisch homogene Substanzgemische darstellen, wobei die Substanzgemische ausgewählt sind aus je mindestens einer Substanz der Gruppe (i) Kohlenhydrat oder Zwitterion mit polarem Rest und deren Derivate, und (ii) Zwitterion mit apolarem Rest und dessen Derivate, dadurch gekennzeichnet, daß eine Lösung des biologischen oder therapeutisch aktiven Materials und der Substanzen (i) und (ii) hergestellt wird und die Lösung bei einer Produkttemperatur oberhalb des Gefrierpunktes der Lösung getrocknet wird. Ferner betrifft die Erfindung neue Substanzgemische, die durch das genannte Verfahren erhalten werden, sowie deren Verwendung in diagnostischen oder therapeutischen Verfahren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
ΑT	Osterreich	GE	Georgien	NE	Niger
ΑU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neusceland
BF	Burkina Faso	ſΕ	Irland	PL	Polen
BG	Bulgarien	tT -	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland.	MC	Мопасо	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI ·	Finaland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN .	Vietnam
GA	Gabon	MW	Malawi		

Inte onal Application No PCT/EP 96/04627

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 A61K9/14 A61K9/ A61K9/19 A61K47/18 A61K47/26 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' 1-6,9, EP 0 547 422 A (BASF AG) 23 June 1993 X 12,13, 16-18, 26-28 see page 26; example 1 1-6,11, EP 0 444 692 A (MOCHIDA PHARM CO LTD) 4 X 12, September 1991 14-18. 26-28 see page 6; example 1 1-6,9, EP 0 325 112 A (HOECHST AG) 26 July 1989 Х 12, 14-17, 26-28 see claims 1,5,6 Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 8. 04. 97 9 April 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Boulois, D Fax: (+31-70) 340-3016

Interior No. PCT/EP 96/04627

C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 96/04627
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	and appropriate, or me research passages	recevant to claim No.
(DE 42 42 863 A (BOEHRINGER MANNHEIM GMBH) 23 June 1994 see page 6 - page 7; example 4	16,17
(EP 0 306 824 A (BOEHRINGER MANNHEIM GMBH) 15 March 1989	1-8,16, 17
	see page 4 - page 5; example 1	
١	WO 90 12029 A (IMMUNOBIOLOGY RES INST INC) 18 October 1990 see page 8, line 5 - page 9, line 4	1-28
	1	

Information on patent family members

Inu onal Application No PCT/EP 96/04627

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0547422 A	23-06-93	DE 4141351 A CA 2083754 A DE 59205688 D IL 103866 A JP 2519008 B JP 6065062 A US 5356636 A	17-06-93 15-06-93 18-04-96 05-12-96 31-07-96 08-03-94 18-10-94
EP 0444692 A	04-09-91	JP 3255035 A JP 8013750 B AT 116858 T AU 643753 B AU 7199291 A CA 2037325 A DE 69106549 D DE 69106549 T ES 2069761 T US 5149540 A	13-11-91 14-02-96 15-01-95 25-11-93 05-09-91 02-09-91 23-02-95 22-06-95 16-05-95 22-09-92
EP 0325112 A	26-07-89	DE 3801179 A AU 2853989 A CN 1034670 A JP 1216996 A	27-07-89 20-07-89 16-08-89 30-08-89
DE 4242863 A	23-06-94	AU 676573 B AU 6808694 A WO 9414465 A EP 0674524 A JP 8504784 T	13-03-97 19-07-94 07-07-94 04-10-95 21-05-96
EP 0306824 A	15-03-89	DE 3729863 A AU 2173988 A CA 1330301 A CN 1031801 A,B DE 3872334 A ES 2051806 T FI 93517 B HK 89495 A IE 60310 B JP 1071818 A	16-03-89 27-04-89 21-06-94 22-03-89 30-07-92 01-07-94 13-01-95 16-06-95 29-06-94 16-03-89

Information on patent family members

Intermedia Application No PCT/EP 96/04627

Patent document cited in search report	Publication date		atent family member(s)	Publication date
EP 0306824 A		JP	7080782 B	30-08-95
٠.		KR	9609929 B	25-07-96
		· LV	10178 B	20-04-95
•		LV	10393 B	20-10-95
		NO	178687 B	05-02-96
		RU	2043118 C	10-09-95
		US	4992419 A	12-02-91
WO 9012029 A	18-10-90	CA	2028848 A	12-10-90
	•		0420964 A	10-04-91
		JP	3505334 T	21-11-91
			5036049 A	30-07-91

Form PCT/ISA/210 (patent family annex) (July 1992)

nales Aktenzeichen PCT/EP 96/04627

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES 1PK 6 A61K9/14 A61K9/19 A61K47/26 A61K47/18 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 A61K Recherchierte aber nicht zum Mindestprüstoff gehörende Veröffendlichungen, soweit diese unter die recherchierten Gehiete sallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegnise)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 547 422 A (BASF AG) 23.Juni 1993	1-6,9, 12,13, 16-18, 26-28
	siehe Seite 26; Beispiel 1	
X	EP 0 444 692 A (MOCHIDA PHARM CO LTD) 4.September 1991	1-6,11, 12, 14-18, 26-28
	siehe Seite 6; Beispiel 1	
X	EP 0 325 112 A (HOECHST AG) 26.Juli 1989	1-6,9, 12, 14-17, 26-28
	siehe Ansprüche 1,5,6	20 20

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
*Besondere Kategorien von angegebenen Veröffentlichungen: 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbencht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	"T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritäsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X' Veröffentlichung von besonderer Bedeutung, die beansprüchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit berühend betrachtet werden "Y' Veröffentlichung von besonderer Bedeutung, die beansprüchte Erfindung kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&' Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschiusses der internationalen Recherche	Absendedatum des internationalen Recherchenbenchts
9.April 1997	18.04.97
Name und Postanschrist der Internationale Recherchenbehörde	Bevoilmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rigwijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Boulois, D

Inten nales Aktenzeichen
PCT/EP 96/04627

C.(Fortsetzu	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN	PCT/EP 9	0/0402/
Kategone*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
(DE 42 42 863 A (BOEHRINGER MANNHEIM GMBH) 23.Juni 1994 siehe Seite 6 - Seite 7; Beispiel 4		16,17
(EP 0 306 824 A (BOEHRINGER MANNHEIM GMBH) 15.März 1989 siehe Seite 4 - Seite 5; Beispiel 1		1-8,16, 17
	WO 90 12029 A (IMMUNOBIOLOGY RES INST INC) 18.0ktober 1990 siehe Seite 8, Zeile 5 - Seite 9, Zeile 4	•	1-28
٠.			
·			

Angaben zu Veroffentlichtungen, die zur selben Patentfamilie gehoren

Inte: males Aktenzeichen
PCT/EP 96/04627

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0547422 A	23-06-93	DE 4141351 A CA 2083754 A DE 59205688 D IL 103866 A JP 2519008 B JP 6065062 A US 5356636 A	17-06-93 15-06-93 18-04-96 05-12-96 31-07-96 08-03-94 18-10-94
EP 0444692 A	04-09-91	JP 3255035 A JP 8013750 B AT 116858 T AU 643753 B AU 7199291 A CA 2037325 A DE 69106549 D DE 69106549 T ES 2069761 T US 5149540 A	13-11-91 14-02-96 15-01-95 25-11-93 05-09-91 02-09-91 23-02-95 22-06-95 16-05-95 22-09-92
EP 0325112 A	26-07-89	DE 3801179 A AU 2853989 A CN 1034670 A JP 1216996 A	27-07-89 20-07-89 16-08-89 30-08-89
DE 4242863 A	23-06-94	AU 676573 B AU 6808694 A WO 9414465 A EP 0674524 A JP 8504784 T	13-03-97 19-07-94 07-07-94 04-10-95 21-05-96
EP 0306824 A	15-03-89	DE 3729863 A AU 2173988 A CA 1330301 A CN 1031801 A,B DE 3872334 A ES 2051806 T FI 93517 B HK 89495 A IE 60310 B JP 1071818 A	16-03-89 27-04-89 21-06-94 22-03-89 30-07-92 01-07-94 13-01-95 16-06-95 29-06-94 16-03-89

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

Inte males Aktenzeichen
PCT/EP 96/04627

Im Recherchenbericht eführtes Patentdokument	Datum der Veröffendlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0306824 A		JP 7080782 B	30-08-95
•		KR 9609929 B	25-07-96
	•	LV 10178 B	20-04-95
•		LV 10393 B	20-10-95
		NO 178687 B	05-02-96
		RU 2043118 C	10-09-95
		US 4992419 A	12-02-91
WO 9012029 A	18-10-90	CA 2028848 A	12-10-90
		EP 0420964 A	10-04-91
		JP 3505334 T	21-11-91
		US 5036049 A	30-07-91