Problème 1

Notations

On désigne par $\mathbb R$ l'ensemble des nombres réels et par $\mathbb C$ celui des nombres complexes.

Étant donné un entier naturel $n \geq 2$, pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathcal{M}_n(\mathbb{K})$ (resp. $\mathcal{M}_{n,1}(\mathbb{K})$) le \mathbb{K} -espace vectoriel des matrices carrées à n lignes (resp. des matrices colonnes à n lignes), à coefficients dans \mathbb{K} . La notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de A. On note tA la transposée d'une matrice A.

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\det(A)$ le déterminant de A, $\operatorname{tr}(A)$ la trace de A; on note $\operatorname{Sp}_{\mathbb{C}}(A)$ le spectre complexe de A et si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on note $E_{\lambda}(A)$ le sous-espace propre des vecteurs $X \in \mathcal{M}_{n,1}(\mathbb{C})$ qui vérifient $AX = \lambda X$. Soit I_n la matrice diagonale de $\mathcal{M}_n(\mathbb{K})$ dont les coefficients diagonaux sont égaux à 1.

On note [1; n] l'ensemble des entiers naturels k tels que $1 \le k \le n$.

Pour tout nombre complexe z, on note |z| le module de z.

On dit qu'une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété (ST > 0) lorsque

$$\forall (i,j) \in [1; n]^2, \ a_{i,j} > 0 \tag{1}$$

$$\forall i \in [1; n], \sum_{j=1}^{n} a_{i,j} = 1$$
 (2)

Objectifs

Dans ce problème, on considère les matrices de $\mathcal{M}_n(\mathbb{R})$ qui vérifient la propriété (ST > 0).

Dans la première partie, on démontre une caractérisation géométrique d'une classe de matrices vérifiant la propriété (ST > 0).

Dans la deuxième partie, on fait établir des propriétés sur les éléments propres des matrices vérifiant la propriété (ST > 0).

Partie 1

Dans cette partie, on suppose n=3. Étant donné un nombre complexe z, on note M(z) le point du plan complexe d'affixe z=x+iy, c'est à dire le point de coordonnées (x,y). On considère le triangle du plan complexe dont les sommets sont les points P(1), Q(j), $R(j^2)$, où $j=e^{\frac{2i\pi}{3}}$. On note T l'intérieur de ce triangle, bords non compris. Soit D le disque ouvert du plan complexe de centre O (origine du repère) et de rayon 1, c'est à dire l'ensemble des points M(z) tels que |z| < 1.

I.1 Dessiner les ensembles T et D sur un même dessin. En notant x et y l'abscisse et l'ordonnée d'un point du plan complexe, donner les équations cartésiennes des droites (PQ), (QR) et (RP). Montrer qu'un point M(x+iy) appartient à T si et seulement si x et y vérifient les trois inégalités :

$$2x + 1 > 0$$
, $x - \sqrt{3}y - 1 < 0$, $x + \sqrt{3}y - 1 < 0$.

- **I.2** Dans cette question, on considère une matrice $A=(a_{i,j})\in \mathcal{M}_3(\mathbb{R})$ qui vérifie la propriété (ST>0).
 - **I.2.1** Montrer que 1 est valeur propre de A.

Dans la suite de la question 1.2, on suppose que les autres valeurs propres de A sont des nombres complexes conjugués distincts λ et $\overline{\lambda}$, avec $0 < |\lambda| < 1$. On note $\lambda = a + ib$.

I.2.2 Exprimer tr(A) et $tr(A^2)$ en fonction de λ et $\overline{\lambda}$, puis en fonction de a et b.

I.2.3 Montrer les inégalités tr(A) > 0 et $tr(A^2) > a_{1,1}^2 + a_{2,2}^2 + a_{3,3}^2$.

En déduire l'inégalité $(\operatorname{tr}(A))^2 < 3\operatorname{tr}(A^2)$ (on pourra utiliser l'inégalité de Cauchy-Schwarz appliquée aux vecteurs $u = (a_{1,1}, a_{2,2}, a_{3,3})$ et v = (1,1,1) de \mathbb{R}^3).

1.2.4 Déduire de 1.2.2 et 1.2.3 les inégalités

$$2a+1>0$$
 et $(a-\sqrt{3}b-1)(a+\sqrt{3}b-1)>0$.

- **I.2.5** Déduire des questions précédentes que le point $M(\lambda)$ appartient à T (on pourra considérer les régions de D délimitées par les côtés du triangle PQR).
- **I.3** Dans cette question, on note $\lambda = re^{i\theta}$ avec 0 < r < 1 et $0 < \theta < \pi$ et on suppose que le point $M(\lambda)$ appartient à T. On note

$$\alpha = \frac{1 + 2r\cos(\theta)}{3}, \ \beta = \frac{1 + 2r\cos(\theta + \frac{2\pi}{3})}{3}, \ \gamma = \frac{1 - 2r\cos(\theta + \frac{\pi}{3})}{3}.$$

I.3.1 Montrer les égalités $\alpha = \frac{1+\lambda+\overline{\lambda}}{3}$, $\beta = \frac{1+j\lambda+j^2\overline{\lambda}}{3}$, $\gamma = \frac{1+j^2\lambda+j\overline{\lambda}}{3}$.

Dans la suite de la question **1.3**, on considère la matrice $A = \begin{pmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{pmatrix}$.

- **I.3.2** Montrer que la matrice A vérifie la propriété (ST > 0).
- **I.3.3** Soit $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Calculer J^2 et J^3 . Déterminer les valeurs propres, réelles ou complexes, de la matrice J.
- **I.3.4** Exprimer la matrice A en fonction de I_3, J et J^2 . Déterminer un polynôme P de degré ≤ 2 tel que A = P(J). En déduire que $1, \lambda$ et $\overline{\lambda}$ sont les valeurs propres de A.

Partie 2

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{R})$ qui vérifie la propriété (ST > 0).

- II.1 Soit $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ le vecteur colonne dont tous les coefficients valent 1. Calculer AU et en déduire que 1 est valeur propre de A.
- II.2 Précision sur $\mathrm{Sp}_{\mathbb{C}}(A)$.
 - **II.2.1** Soient une matrice $B=(b_{i,j})\in\mathcal{M}_n(\mathbb{C})$ telle que $\det(B)=0$ et un vecteur colonne

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \ X \neq 0, \text{ tel que } BX = 0.$$

Soit $k \in [1; n]$ tel que $|x_k| = \max\{|x_i|, i \in [1; n]\}$.

Justifier l'inégalité

$$|b_{k,k}| \leqslant \sum_{j \neq k} |b_{k,j}|.$$

- **II.2.2** Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$. En appliquant **II.2.1** à la matrice $B = A \lambda I_n$, montrer que $|a_{k,k} \lambda| \leq 1 a_{k,k}$, où k est l'entier défini en **II.2.1**. En déduire $|\lambda| \leq 1$.
- **II.2.3** On suppose que $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ vérifie $|\lambda| = 1$ et on note $\lambda = e^{i\theta}$ avec $\theta \in \mathbb{R}$. Déduire de l'inégalité $|a_{k,k} e^{i\theta}| \leq 1 a_{k,k}$ de **II.2.2** que $\cos(\theta) = 1$, puis en déduire λ .

II.3 Dimension de $E_1(A)$.

II.3.1 Montrer que $1 \in \operatorname{Sp}_{\mathbb{C}}({}^tA)$. En comparant le rang de $A - I_n$ et celui de ${}^tA - I_n$, montrer que les sous-espaces $E_1(A)$ et $E_1({}^tA)$ ont même dimension.

II.3.2 Soit
$$V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \ V \neq 0$$
, tel que ${}^tAV = V$. Montrer que pour tout $i \in \llbracket 1; n \rrbracket$, on a $|v_i| \leq \sum_{j \in \llbracket 1; n \rrbracket} a_{j,i} |v_j|$. En calculant $\sum_{i \in \llbracket 1; n \rrbracket} |v_i|$, montrer que toutes ces inégalités sont en fait des égalités

On note
$$|V| = \begin{pmatrix} |v_1| \\ \vdots \\ |v_n| \end{pmatrix}$$
. Montrer que ${}^tA|V| = |V|$, puis que pour tout $i \in [1;n]$, on a $|v_i| > 0$.

II.3.3 Soient
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ des matrices non nulles de $\mathcal{M}_{n,1}(\mathbb{C})$ qui appartiennent à $E_1({}^tA)$. En considérant la matrice $X - \frac{x_1}{y_1}Y$, déterminer la dimension de $E_1({}^tA)$.

Justifier qu'il existe un vecteur unique
$$\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$$
 qui engendre $E_1({}^tA)$, tel que pour tout $i \in [\![1\,;n]\!]$, on ait $\omega_i > 0$ et $\sum_{i=1}^n \omega_i = 1$.

Montrer que, pour tout
$$i \in [1; n]$$
, on a $\sum_{j=1}^{n} a_{j,i}\omega_j = \omega_i$.

II.3.4 Bilan des propriétés spectrales de A et de ${}^{t}A$.

Citer les propriétés des vecteurs propres et des sous-espaces propres de A et de tA qui ont été démontrées dans les questions précédentes de la deuxième partie.

II.4 A l'aide la matrice
$$\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$$
 définie en II.3.3, on considère l'application N définie de $\mathcal{M}_{n,1}(\mathbb{C})$

dans \mathbb{R} par

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \ N(X) = \sum_{i=1}^n \omega_i |x_i|.$$

Montrer que N est une norme sur $\mathcal{M}_{n,1}(\mathbb{C})$. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $N(AX) \leq N(X)$. Retrouver le résultat de **II.2.2**: pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $|\lambda| \leq 1$.

II.5 Ordre de multiplicité de la valeur propre 1 de A.

A l'aide la matrice colonne $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$, on considère la forme linéaire $\Phi : \mathcal{M}_{n,1}(\mathbb{C}) \to \mathbb{C}$ définie par

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \ \Phi(X) = \sum_{i=1}^n \omega_i x_i$$

On note $Ker(\Phi)$ le noyau de Φ .

- **II.5.1** Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $\Phi(AX) = \Phi(X)$.
- **II.5.2** Justifier que $\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \oplus \operatorname{Ker}(\Phi)$.
- **II.5.3** Soit $X \in E_{\lambda}(A)$ avec $\lambda \neq 1$. Montrer que $X \in \text{Ker}(\Phi)$.
- II.5.4 En utilisant les résultats précédents, déterminer l'ordre de multiplicité de la la valeur propre 1 de la matrice A.

— FIN DU PREMIER PROBLÈME —