Architecture Matérielle en Mécatronique

TD N°1 portant sur la partie Électronique Analogique du CM

Exercice N°1

Calculer la résistance équivalente de ce montage , soit $R_{AB} = R/4$

Exercice N°2

Pour chacun de ces cas, déterminer la valeur manquante

Exercice N°3

Soit R1=6k Ω , R2=3k Ω , R3=6k Ω E1=6V , E2=12V

Calculer V aux bornes de R3 $V_{R3}=7.5V$

Exercice N°4

Calculer le courant circulant à travers la résistance r $R=6\Omega$, I=8A , E=4V , $r=2\Omega$ I=4A

Exercice N°5

On considère la diode comme étant semi-idéale et Vd=0.6V. $R1=320\Omega$; $R2=460\Omega$

- a) Pour quelle valeur de V_E la diode est passante ? $\approx 1V$
- b) Soit $V_E=6V$, calculer le courant circulant dans la diode ainsi que les tensions V_{R1} et V_{R2} $I_D=23mA$ $V_{R1}=5,4V$ et $V_{R2}=0,6V$

Exercice N°6

Pour le circuit suivant et pour une diode présentant une tension de seuil de 0,7V et une résistance interne nulle, tracer la tension de sortie Vs sur ce même graphe.

Exercice N°7

La tension de seuil de chaque diode est supposée égale à 0,6V.

Calculer Vout si:

- Vin = 15V *Vout = 5,6V*
- Vin = 3V *Vout = Vin = 3V*
- Vin = 0V **Vout = Vin = 0V**
- Vin = -10V **Vout = -0,6V**

Exercice N°8

- a) On souhaite un courant dans R_C de 100mA. Calculer RB 11,3kΩ
- b) On souhaite maintenant saturer complètement ce transistor. Quelle valeur minimale devra prendre R_B ? $R_B \leq 5,65k\Omega$

c) On considère maintenant que β =80, et désire que ce montage fonctionne en amplification uniquement. Son point de fonctionnement se situera approximativement aux coordonnées (V_{CE0} =6V et I_{C0} =3,6mA). Sachant que vous ne disposez que de résistances de la série E12, déterminer la valeur de R_B et de R_C

 $R_B = 251k\Omega \Rightarrow 220k\Omega$ en série avec $33k\Omega$

 $RC=1.6k\Omega \Rightarrow 1.5k\Omega$ en

série avec 100Ω

Exercice N°9

Démontrer que le gain en courant de ce montage est approximativement égal à :

Exercice N°10

On suppose que les 2 amplificateurs sont identiques.

 $R_C=2k\Omega$, $Z_E=2k\Omega$, $Z_S=1k\Omega$ et $A_{V0}=20$ (A_{V0} étant le gain à vide)

Rép. : $V_S = 3,55V$

Si Ve a une amplitude de 20mV, quelle sera celle de Vs aux bornes de Rc. Eventuellement, justifier la réponse par un schéma.

Exercice N°11

On suppose que la tension d'entrée Ve est telle qu'illustrée ci-dessus, où T1 et T2 sont des constantes avec T=T1+T2 et T1≠T2.

À l'instant t=kT (k \in N), le courant qui traverse le circuit est supposé connu et noté $i_{kT} \neq 0$.

1) Trouver l'équation décrivant l'évolution du courant dans le dipôle en fonction des paramètres du circuit lorsque $kT \le t \le (kT+T_1)$

Rép.:

$$i(t) = \frac{Vcc}{R} (1 - e^{\frac{R}{L} \cdot (kT - t)}) + i_{kT} \cdot e^{\frac{R}{L} \cdot (kT - t)}$$

2) Trouver l'équation décrivant l'évolution du courant dans le dipôle en fonction des paramètres du circuit lorsque $kT+T_1 \le t \le (k+1)T$

Rép.:

$$i(t) = \left(\frac{Vcc}{R} \cdot \left(e^{\frac{R}{L}T_1} - 1\right) + i_{kT}\right) \cdot e^{\frac{R}{L} \cdot (kT - t)}$$

3) Donner l'expression du courant i_{kT} si l'on suppose que la valeur du courant à l'instant t=(k+1)T est aussi i_{kT} , c'est à dire que $i_{kT}=i_{(k+1)T}$.

$$i_{kT} = -\frac{Vcc}{R} \cdot e^{\frac{-R}{L}T} \cdot \frac{1 - e^{\frac{R}{L}T_1}}{1 - e^{\frac{-R}{L}T}}$$