1	Ancestral process for infectious disease outbreaks with superspreading
2	Xavier Didelot $^{1,2,*},$ David Helekal 3, Ian Roberts 2, \dots
3 4 5 6 7 8 9	 School of Life Sciences, University of Warwick, Coventry, United Kingdom Department of Statistics, University of Warwick, Coventry, United Kingdom Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health Boston, Massachusetts, USA * Corresponding author. Tel: 0044 (0)2476 572827. Email: xavier.didelot@gmail.com
11	Running title: Ancestry for outbreaks with superspreading
	Keywords: infectious disease epidemiology modelling; offspring distribution; superspreading outbreaks; lambda-coalescent model; multiple mergers

4 1 Introduction

An outbreak of an infectious disease typically starts when a single or a small number of infected individuals appear within a susceptible population. Each infected individual may come in contact and infected each of the susceptible individuals, who will then become infected in their turn and spread 17 the disease further. Most infectious disease modelling theory describes situations where the disease is 18 at an equilibrium, when the number of infected individuals is high and/or with a significant part of 19 the population already infected (Anderson and May 1991; Keeling and Rohani 2008). Here however 20 we focus on the early stages of an epidemic, where the number of infected individuals is small and the 21 number of susceptibles relatively high and unchanging. In this situation it is useful to think about 22 23 the number of infections that each newly infected individual is likely to cause, and the probabilistic distribution for this number is often called the offspring distribution (Grassly and Fraser 2008). The 24 mean of the offspring distribution is called the basic reproduction number R_0 and has been given much 25 attention especially since it determines how likely the outbreak is to spread, and how much effort would 26 be needed to bring it under control (Fraser et al. 2004; Ferguson et al. 2006). 27

If we consider that all individuals are infectious for the same duration and with the same infectiousness, the offspring distribution is Poisson distributed with mean R_0 , which means that the variance of the 29 offspring distribution is also R_0 . We would then say that there is no transmission heterogeneity. 30 However, in practice there are many reasons why this may not be the case, with some individuals being 31 infectious for longer, or being more infectious than others, or having more contacts with susceptibles, or 32 being less symptomatic and therefore less likely to reduce contact numbers, etc. All these factors cause the offspring distribution to be more dispersed than it would otherwise be, that is to have a variance 34 greater than its mean R_0 . A frequent choice to capture this overdispersion is to model the offspring distribution using a Negative-Binomial distribution with mean R_0 and dispersion parameter r (Lloyd-Smith et al. 2005; Grassly and Fraser 2008). When r is close to zero the variance is high compared to the mean, whereas when r is high the variance becomes close to the mean. This transmission 38 heterogeneity is often called superspreading, although this is perhaps misleading as it is the rule rather than the exception of how infectious diseases spread. Superspreading has indeed been described in many diseases (Woolhouse et al. 1997; Stein 2011; Kucharski and Althaus 2015; Wang et al. 2021), and most recently for SARS-CoV-2 (Wang et al. 2020; Lemieux et al. 2021; Gómez-Carballa et al. 2021; Du et al. 2022). 43

As an outbreak unfolds forward-in-time, a transmission tree is generated representing who-infectedwhom, in which each node is an infected individual and points towards a number of nodes distributed according to the offspring distribution. Here we consider the reverse problem of the transmission ancestry, going backward-in-time, from a sample of infected individuals.

$_{ iny 18}$ 2 General case

Let time be measured in discrete units and denoted t. Each discrete value of t correspond to a unique non-overlapping generations of infected individuals, so that individuals infected at t will have offspring at t+1, etc. Let N_t denote the number of infectious individuals at time t. Each of them creates a number $s_{t,i}$ of secondary infections at time t+1, following the offspring distribution $\alpha_t(s)$. The mean of this distribution is the basic reproduction number R_t and the variance is V_t . We have:

$$N_{t+1} = \sum_{i=1}^{N_t} s_{t,i} \tag{1}$$

54 2.1 Inclusive coalescence probability

- We define the inclusive coalescence probability $p_{k,t}(N_t, N_{t+1})$ as the probability that a specific set of
- k individuals from generation t+1 find a common ancestor in generation t, conditional on population
- sizes N_t and N_{t+1} .
- Given full information about offspring counts from individuals in generation t, $\mathbf{s}_t = (s_{t,1}, \dots s_{t,N_t})$, we
- 59 have

$$p_{k,t}(\mathbf{s}_t, N_t) = \sum_{i=1}^{N_t} \frac{\binom{s_{t,i}}{k}}{\binom{N_{t+1}}{k}}$$

$$= \sum_{i=1}^{N_t} \frac{\Gamma(s_{t,i}+1)\Gamma(N_{t+1}-k+1)}{\Gamma(s_{t,i}-k+1)\Gamma(N_{t+1})}$$
(2)

60

- Full information $\{s_{t,i}\}$ yields the population size N_{t+1} but is not feasible to observe in practice. We
- $_{62}$ can instead express the inclusive coalescence probability conditioning on the next population size N_{t+1}
- by summing over possible offspring counts $\mathbf{s}_t = (s_{t,1}, \dots s_{t,N_t})$ conditional on the total generation size.
- Let $S_t^{-(1)} = (S_{t,2}, \dots, S_{t,N_t}).$

$$\begin{split} p_{k,t}(N_t, N_{t+1}) &= \sum_{\mathbf{s}_t \in \mathbb{N}_0^{N_t}} \mathbb{P} \bigg[\mathbf{S}_t = \mathbf{s}_t \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] p_{k,t}(\mathbf{s}_t, N_t) \\ &= \sum_{\mathbf{s}_t \in \mathbb{N}_0^{N_t}} \mathbb{P} \bigg[\mathbf{S}_t = \mathbf{s}_t \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] \sum_{i=1}^{N_t} \frac{\binom{s_{t,i}}{k}}{\binom{N_{t+1}}{k}} \\ &= \sum_{i=1}^{N_t} \sum_{\mathbf{s}_t \in \mathbb{N}_0^{N_t}} \frac{\binom{s_{t,i}}{k}}{\binom{N_{t+1}}{k}} \mathbb{P} \bigg[S_{t,1} = s_{t,1}, \mathbf{S}_t^{-(1)} = \mathbf{s}_t^{-(1)} \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] \\ &= \frac{N_t}{\binom{N_{t+1}}{k}} \sum_{\mathbf{s}_t \in \mathbb{N}_0^{N_t}} \binom{s_{t,1}}{k} \mathbb{P} \bigg[S_{t,1} = s_{t,1} \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] \\ &= \frac{N_t}{\binom{N_{t+1}}{k}} \sum_{s_{t,1}=0}^{N_{t+1}} \binom{s_{t,1}}{k} \mathbb{P} \bigg[S_{t,1} = s_{t,1} \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] \\ &= \frac{N_t}{\binom{N_{t+1}}{k}} \sum_{s_{t,1}=0}^{N_{t+1}} \binom{s_{t,1}}{k} \mathbb{P} \bigg[S_{t,1} = s_{t,1} \bigg| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \bigg] \end{split}$$

$$\times \underbrace{\sum_{\mathbf{s}_{t}^{-(1)} \in \mathbb{N}_{0}^{N_{t}-1}} \mathbb{P}\left[\mathbf{S}_{t}^{-(1)} = \mathbf{s}_{t}^{-(1)} \middle| \sum_{i=2}^{N_{t}} S_{t,i} = N_{t+1} - s_{1,t}\right]}_{=1}$$

$$= \frac{N_{t}}{\binom{N_{t+1}}{t+1}} \mathbb{E}\left[\binom{S_{t,1}}{k}\middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1}\right] \tag{3}$$

65

- The k-th falling factorial moments $\mathbb{E}\left[\frac{S_{t,1}!}{(S_{t,1}-k)!}\Big|\sum_{i=1}^{N_t}S_{t,i}=N_{t+1}\right]$ in Equation (3) can be readily
- obtained by differentiating the probability generating function of $S_{t,1}|(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1})$.

⁶⁸ 2.2 Exclusive coalescence probability

- 69 Generally, we observe a sample of individuals from each generation rather than the entire population.
- n In this case, we are interested in the exclusive coalescence probability $p_{n,k,t}(N_t,N_{t+1})$ that exactly k
- 71 individuals from a sample of n arose from a common ancestor one generation in the past given knowlege
- of the total population sizes N_t and N_{t+1} .
- Given full information about offspring counts of the parents of sampled individuals at the present,
- $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,N_t}), \text{ we have}$

$$p_{n,k,t}(\mathbf{x}_t, N_t) = \sum_{i=1}^{N_t} \frac{\binom{x_{t,i}}{k}}{\binom{n}{k}} \mathbb{I}\{x_{t,i} = k\}$$

$$= \sum_{i=1}^{N_t} \frac{x_{t,i}!}{(x_{t,i} - k)!} \frac{(n-k)!}{n!} \mathbb{I}\{x_{t,i} = k\}$$
(4)

- $_{75}$ Similarly to the exclusive coalescence probability, we can use this to evaluate the exclusive probability
- given N_t and N_{t+1} by summing over possible parent offspring configurations (for $k \leq n$),

$$p_{n,k,t}(N_{t}, N_{t+1}) = \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{n} X_{t,i} = n \right] p_{n,k,t}(\mathbf{x}_{t}, N_{t})$$

$$= \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{n} X_{t,i} = n \right] \sum_{i=1}^{N_{t}} \frac{\binom{x_{t,i}}{k}}{\binom{n}{k}} \mathbb{I} \{x_{t,i} = k\}$$

$$= \frac{N_{t}}{\binom{n}{k}} \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \binom{x_{t,1}}{k} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right] \mathbb{I} \{x_{t,1} = k\}$$

$$= \frac{N_{t}}{\binom{n}{k}} \sum_{\mathbf{x}_{t}^{-(1)} \in \mathbb{N}_{0}^{N_{t-1}}} \binom{k}{k} \mathbb{P} \left[X_{t,1} = k, \mathbf{X}_{t}^{-(1)} = \mathbf{x}_{t}^{-(1)} \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{i,t} = n \right]$$

Note that $X_{t,i}$ does not follow the same offspring distribution as $S_{t,i}$. $(X_{t,1}, \ldots, X_{t,N_t})$ consists of n individuals sampled from generation t+1 without replacement - there is no guarantee that all offspring from any given parent are included in the sample.

2.3 Complementarity of exclusive coalescence probabilities

If we consider one of the lines observed amongst a set of n, it can either remain uncoalesced (with probability $p_{n,1,t}$) or coalesce in an event of size k (with probability $p_{n,k,t}$) with any set of k-1 lines among the n-1 other lines, leading to the following complementarity equation:

$$\sum_{k=1}^{n} \binom{n-1}{k-1} p_{n,k,t} = 1 \tag{6}$$

We can show that it is indeed satisfied by the formula in Equation (5):

$$\sum_{k=1}^{n} \binom{n-1}{k-1} p_{n,k,t} = \sum_{k=1}^{n} \binom{n-1}{k-1} \frac{N_t}{\binom{n}{k}} \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \sum_{k=1}^{n} N_t \frac{k}{n} \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{N_t}{n} \sum_{k=0}^{n} k \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{N_t}{n} \mathbb{E} \left[X_1 \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{1}{n} \sum_{i=1}^{N_t} \mathbb{E} \left[X_i \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{N_t} X_i \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= 1$$

$$= 1$$
(7)

85 3 Poisson case

Here the offspring distribution is $\alpha_t = Poisson(R_t)$. In this case, we have

$$\sum_{i=1}^{N_t} S_{t,i} \sim \text{Poisson}(N_t R_t)$$
 (8)

and conditional distribution

$$\mathbb{P}\left[S_{t,1} = s \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{\mathbb{P}\left[S_{t,1} = s, \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}$$

$$= \frac{\alpha_t(s) \,\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} - s\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}$$

$$= \frac{\frac{R_t^s e^{-R_t}}{s!} \cdot \frac{((N_t - 1)R_t)^{N_{t+1} - s}}{(N_{t+1} - s)!}$$

$$= \frac{(N_t + 1)}{s!} \left(\frac{1}{N_t}\right)^s \left(1 - \frac{1}{N_t}\right)^{N_{t+1} - s}$$
(9)

88

⁸⁹ This is the probability mass function of a Binomial distribution and therefore we deduce that:

$$S_{t,1} \left| \left(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \right) \sim \text{Binomial}\left(N_{t+1}, \frac{1}{N_t} \right) \right|$$
 (10)

The k-th falling factorial moments of $X \sim \text{Binomial}(n, p)$ are (Potts 1953):

$$\mathbb{E}\left[\frac{X!}{(X-k)!}\right] = \binom{n}{k} p^k k! \tag{11}$$

By injecting this formula into Equation (3) we obtain the inclusive probability of coalescence for k lines:

$$\mathbb{E}\left[\binom{S_{t,1}}{k} \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{1}{k!} \mathbb{E}\left[\frac{S_{t,1}!}{(S_{t,1} - k)!} \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{1}{k!} \frac{N_{t+1}!}{(N_{t+1} - k)!} \left(\frac{1}{N_t}\right)^k \tag{12}$$

Consequently, the inclusive probability of coalescence for k lines is

$$p_{k,t} = \frac{1}{N_t^{k-1}} \tag{13}$$

By injecting the probability mass function of a Binomial distribution in Equation (5) we deduce that the exclusive probability of coalescence for k lines from a sample of n ($n \ge k$) is

$$p_{n,k,t} = \frac{(N_t - 1)^{n-k}}{N_t^{n-1}} \tag{14}$$

It is interesting to note that neither the inclusive nor the exclusive coalescence probability depend on the mean R_t of the Poisson offspring distribution or the size N_{t+1} of the population at time t+1. The inclusive coalescent probability in Equation (13) can also be obtained conceptually by considering that among the k lines, the first one has an ancestor with probability one, and the remaining k-1 need to have the same ancestor among a set of N_t from which they choose uniformly at random so that the probability of picking the same ancestor is $1/N_t$. The exclusive coalescent probability in Equation (14) can be derived likewise by considering that in addition to the above, each of the n-k other lines need to choose a different ancestor, which happens with probability $(N_t-1)/N_t$.

Figure 1 illustrates the inclusive and exclusive coalescence probabilities for the Poisson case for a set of size k = 1 to k = 10 amongst a total of n = 10 observed lines, in a population of size $N_t = 10$, $N_t = 20$ or $N_t = 30$.

4 Negative-Binomial case

Here the offspring distribution is $\alpha_t = \text{Negative-Binomial}(r, p)$ with parameters (r, p) set my momentmatching mean R_t and variance V_t . The resulting parameters for this distribution are $r = R_t^2/(V_t - R_t)$

Figure 1: Inclusive and exclusive coalescence probabilities for the Poisson case.

and $p = R_t/V_t$. In this case, we have

113

$$\sum_{i=1}^{N_t} S_{t,i} \sim \text{Negative-Binomial}(N_t r, p)$$
 (15)

and similarly to the Poisson(λ) offspring distribution identify the conditional distribution of $S_{t,1}|\sum_{i=1}^{N_t} S_{t,i}$ as follows,

$$\mathbb{P}\left[S_{t,1} = s \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{\alpha_t(s) \cdot \mathbb{P}\left[\sum_{i=2}^{N_t} S_{t,i} = N_{t+1} - s\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]} \\
= \frac{\frac{\Gamma(r+s)}{s!\Gamma(r)} (1-p)^s p^r \cdot \frac{\Gamma((N_t-1)r + (N_{t+1}-s))}{(N_{t+1}-s)!\Gamma((N_t-1)r)} (1-p)^{N_{t+1}-s} p^{(N_t-1)r}}{\frac{\Gamma(N_tr + N_{t+1})}{N_{t+1}!\Gamma(N_tr)} (1-p)^{N_{t+1}} p^{N_tr}} \\
= \frac{N_{t+1}!}{s!(N_{t+1}-s)!} \frac{\Gamma(r+s)\Gamma((N_t-1)r + (N_{t+1}-s))}{\Gamma(N_tr + N_{t+1})} \frac{\Gamma(N_tr)}{\Gamma(r)\Gamma((N_t-1)r)} \\
= \binom{N_{t+1}}{s} \frac{B(s+r, N_{t+1}-s + (N_t-1)r)}{B(r, (N_t-1)r)} \tag{16}$$

where B(x, y) denotes the Beta function defined as $B(x, y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$. This is the probability mass function of Beta-Binomial and therefore we deduce that:

$$S_{t,1} \left| \left(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \right) \sim \text{Beta-Binomial}(r, (N_t - 1)r) \right|$$
 (17)

The k-th falling factorial moments of $X \sim \text{Beta-Binomial}(\alpha, \beta)$ are (Tripathi et al. 1994):

$$\mathbb{E}\left[\frac{X!}{(X-k)!}\right] = \binom{n}{k} \frac{\mathrm{B}(\alpha+k,\beta)k!}{\mathrm{B}(\alpha,\beta)}$$
(18)

Injecting this formula into Equation (3), we deduce that the inclusive probability of coalescence for k lines is:

$$p_{k,t} = \frac{B(N_t r + 1, r + k)}{B(r + 1, N_t r + k)}$$
(19)

By injecting the probability mass function of a beta-binomial distribution in Equation (5) we deduce that the exclusive probability of coalescence for k lines is:

$$p_{n,k,t} = \frac{N_t B(k+r, n-k+N_t r - r)}{B(r, N_t r - r)}$$
(20)

It is interesting to note that as for the Poisson case, the inclusive and exclusive coalescence probabilities do not depend on the size N_{t+1} of the population at time t+1. They both depend on the Negative-Binomial offspring distribution only through the dispersion parameter r.

Figure 2 illustrates the inclusive and exclusive coalescence probabilities for the Negative-Binomial case for a set of size k=1 to k=10 amongst a total of n=10 observed lines, in a population of size $N_t=12$. Several Negative-Binomial offspring distributions are compared, all of which have the same mean $R_t=2$, and with the dispersion parameter equal to r=1, r=2, r=10 and r=100. When r=1 the Negative-Binomial reduces to a Geometric distribution. When r=1 is high (for example r=100 as shown in Figure 2) the dispersion is low and the Negative-Binomial case behaves almost like the Poisson case. When r=1 is lower the dispersion of the offspring distribution increases, so that both the inclusive and exclusive probabilities of larger multimerger events increase.

$_{\scriptscriptstyle 132}$ 5 Limit when the population size is large

If we consider that the population size N_t is fixed and large, we can show the connections between our model and several previous studies.

Show that inclusive probabilities $p_{k,t}$ for k > 2 are small compared to $p_{2,t}$.

Show that exclusive probabilities $p_{n,k,t}$ for k > 2 are small compared to $p_{n,2,t}$, when $n << N_t$.

Show that inclusive and exclusive probabilities become equal, when $n \ll N_t$ in exclusive probabilities.

For Poisson offspring distribution we have:

$$p_{2,t} = p_{n,2,t} = \frac{1}{N_t} \tag{21}$$

For Negative-Binomial offspring distribution we have:

$$p_{2,t} = p_{n,2,t} = \frac{r+1}{N_t r + 1} \approx \frac{r+1}{N_t r} \tag{22}$$

Fraser and Li (2017) calculated the effective population size $N_e(t)$ as a function of the actual population size N(t) and the mean and variance of the offspring distribution R and σ^2 :

$$N_e(t) = \frac{N(t)}{\sigma^2/R + R - 1} \tag{23}$$

Figure 2: (A) Offspring distribution. (B) Inclusive probability of coalescence. (C) Exclusive probability of coalescence.

This formula was used to estimate the dispersion parameter from genetic data (Li et al. 2017). In our notation, this is equivalent to:

$$p_{2,t} = \frac{V_t/R_t + R_t - 1}{N_t R_t} \tag{24}$$

In the Poisson case we have $V_t = R_t$ so that Equation (24) simplifies to $p_{2,t} = 1/N_t$ which agrees with Equation (21). In the Negative-Binomial case we have $V_t/R_t = 1/p = (r + R_t)/r$ so that Equation (24) simplifies to $(r + 1)/(rN_t)$ which agrees with our Equation (22). Conversely, if we substitute $r = R_t^2/(V_t - R_t)$ in Equation (22) we obtain the formula Equation (24).

Koelle and Rasmussen (2012) derived the rates of coalescence of two lineages for several epidemiological models, assuming a large population at equilibrium. For each model they use the equation $N_e = N/\sigma^2$ to relate the effective population size N_e to the actual population size N and the variance σ^2 in the number of offspring. This relationship was first established by Kingman (1982a) to apply the coalescent model to Cannings exchangeable models (Cannings 1974). From Equation (22) we can take $R_t = 1$ to achieve equilibrium of the population size and $r = R_t^2/(V_t - R_t) = 1/(V_t - 1)$ to deduce the equivalent $p_{2,t} = V_t/N_t$.

Volz (2012) showed that the rate of coalescence for two lineages under a continuous-time epidemic coalescent model is $2f(t)/I(t)^2$ where f(t) is the incidence and I(t) the prevalence. Setting in this formula the prevalence as $I(t) = N_{t+1} = N_t R_t$ and the incidence as $f(t) = R_t N_{t+1} = R_t^2 N_t$ we get a coalescent rate of $2/N_t$. To apply the Equation (22) we need to set r=1 so that the offspring distribution is Geometric, which yields the same result.

$_{\circ}~~6~~{ m Lambda}$ -coalescent

The coalescent model (Kingman 1982a,b) describes the ancestry of a sample from a large population evolving according to many forward-in-time models such as the Wright-Fisher model (Wright 1931; Fisher 1930), the Moran model (Moran 1958) and the Cannings exchangeable model (Cannings 1974). Since the coalescent considers a large population in which each individual only has a number of offspring that is small compared to the population size, coalescent trees are always binary and do not feature multimergers, making them unsuitable to represent the ancestry of outbreaks considered in this study. However, the lambda-coalescent models are an extension of the coalescent model that do allow multimergers (Pitman 1999; Sagitov 1999; Donnelly and Kurtz 1999).

A lambda-coalescent model is defined by a probability measure $\Lambda(dx)$ on the interval [0,1], from which we can deduce the rate $\lambda_{n,k}$ at which any subset of k lineages within a set of n observed lineages coalesce:

$$\lambda_{n,k} = \int_0^1 x^{k-2} (1-x)^{n-k} \Lambda(dx)$$
 (25)

The beta-coalescent (Schweinsberg 2003) is a specific type of lambda-coalescent. Was used in (Hoscheit and Pybus 2019) and (Menardo et al. 2021). David's paper on inference of multiple mergers while

dating a pathogen phylogeny (Helekal et al. 2024). The Beta $(2 - \alpha, \alpha)$ -coalescent model has a single parameter $\alpha \in [0, 2]$ and is defined as:

$$\Lambda(\mathrm{d}x) = \frac{x^{1-\alpha}(1-x)^{\alpha-1}}{\mathrm{B}(2-\alpha,\alpha)}\mathrm{d}x\tag{26}$$

By combining Equations (25) and (26) we can deduce that:

$$\lambda_{n,k} = \frac{B(k - \alpha, n - k + \alpha)}{B(2 - \alpha, \alpha)}$$
(27)

Special cases of the beta-coalescent include $\alpha=2$ corresponding to the Kingman coalescent, $\alpha=1$ which is known as the Bolthausen-Sznitman coalescent and $\alpha=0$ for which the phylogeny is always star-shaped.

We now define our own lambda-coalescent based on the Negative-Binomial case described previously.

For ease of comparison with other coalescent models, we consider that time is continuous and that
the population size remains constant equal to N_t . The exclusive coalescent probability $p_{n,k,t}$ in the
Negative-Binomial case given by Equation (20) can be used to determine the corresponding rate of
our lambda-coalescent, if we consider that the probability of each event in discrete time is the result
of the event happening at a constant rate in continuous time:

$$\lambda_{n,k} = -\log(1 - p_{n,k,t}) \tag{28}$$

In order to compare our lambda-coalescent with other models, we consider the distribution of the size k of the next event among a set of n lineages. For any lambda-coalescent this can be computed as:

$$p(k|n) = \frac{\binom{n}{k} \lambda_{n,k}}{\sum_{i=2}^{n} \binom{n}{i} \lambda_{n,i}}$$
 (29)

Figure 3 compares this distribution for n=10 in the Beta-coalescent with parameter $\alpha \in \{0.5, 1, 1.5\}$ and for our lambda-coalescent with parameters $N_t \in \{15, 25, 50\}$ and $r \in \{0.1, 0.5, 1\}$.

Figure 4 shows examples of trees simulated for a sample of size n = 20 and with constant population size $N_t = 40$.

Figure 5 shows summary statistics for 10,000 trees simulated in the same conditions as the individual trees shown in Figure 4. As the dispersion parameter increases from r = 0.1 to r = 10 multimerger events become less and less likely and large. Simultaneously, the time to the most recent common ancestor increases, as well as the stemminess of the tree (ie the proportion of branch lengths in non-terminal branches).

Figure 3: Distribution of the size of the next event among a set of n = 10 lineages, compared between the Beta-coalescent and our lambda-coalescent model with various parameters.

Figure 4: Example of trees simulated under our lambda-coalescent with r=0.1 (A), r=1 (B), r=5 (C) and r=10 (D).

Figure 5: Summary statistics for trees simulated under our lambda-coalescent with r = 0.1, r = 1, r = 5 and r = 10, namely the time to the most recent common ancestor (A), stemminess (B), number of multimergers (C) and the size of the largest multimerger (D).

7 Implementation

We implemented the analytical methods described in this paper in a new R package entitled *EpiLambda* which is available at https://github.com/xavierdidelot/EpiLambda for R version 3.5 or later. All code and data needed to replicate the results are included in the "run" directory of the *EpiLambda* repository.

2 8 Discussion

- Our lambda-coalescent could be defined in a varying population size and/or with temporally offset leaves following the same approach as previously described for the coalescent (Griffiths and Tavare 1994) and the beta-coalescent (Hoscheit and Pybus 2019).
- ²⁰⁶ The Xi-coalescent models admit multiple simultaneous mergers (Schweinsberg 2000).
- Difference between transmission tree and phylogenetic tree (Jombart et al. 2011). Modelling within-host evolution to bridge the gap (Didelot et al. 2014, 2017). Superspreading individuals vs superspreading events (Riley et al. 2003; Wallinga and Teunis 2004; Ho et al. 2023).

210 Acknowledgements

We acknowledge funding from the National Institute for Health Research (NIHR) Health Protection Research Unit in Genomics and Enabling Data.

13 References

- Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, USA.
- Cannings, C., 1974. The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Probab. 6, 260–290. doi:10.2307/1426293.
- Didelot, X., Fraser, C., Gardy, J., Colijn, C., 2017. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Molecular Biology and Evolution 34, 997–1007. doi:10.1093/molbev/msw275.
- Didelot, X., Gardy, J., Colijn, C., 2014. Bayesian inference of infectious disease transmission from whole genome sequence data. Molecular Biology and Evolution 31, 1869–1879. doi:10.1093/molbev/msu121.
- Donnelly, P., Kurtz, T.G., 1999. Particle Representations for Measure-Valued Population Models. The
 Annals of Probability 27. doi:10.1214/aop/1022677258.
- Du, Z., Wang, C., Liu, C., Bai, Y., Pei, S., Adam, D.C., Wang, L., Wu, P., Lau, E.H.Y., Cowling,
 B.J., 2022. Systematic review and meta-analyses of superspreading of SARS-CoV-2 infections.
 Transboundary and Emerging Diseases 69. doi:10.1111/tbed.14655.
- Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S., 2006. Strategies for mitigating an influenza pandemic. Nature 442, 448–452. doi:10.1038/nature04795.
- Fisher, R.A., 1930. The genetical theory of natural selection. Clarendon Press. doi:10.5962/bhl. title.27468.
- Fraser, C., Li, L.M., 2017. Coalescent models for populations with time-varying population sizes and arbitrary offspring distributions. bioRxiv, 10.1101/131730doi:10.1101/131730.
- Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M., 2004. Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences 101, 6146–6151. doi:10.1073/pnas.0307506101.
- Gómez-Carballa, A., Pardo-Seco, J., Bello, X., Martinón-Torres, F., Salas, A., 2021. Superspreading
 in the emergence of COVID-19 variants. Trends in Genetics 37, 1069–1080. doi:10.1016/j.tig.
 2021.09.003.
- Grassly, N.C., Fraser, C., 2008. Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6, 477–87. doi:10.1038/nrmicro1845.
- Griffiths, RC., Tavare, S., 1994. Sampling theory for neutral alleles in a varying environment.
 Philosophical Transactions of the Royal Society B 344, 403–410.
- Helekal, D., Koskela, J., Didelot, X., 2024. Inference of multiple mergers while dating a pathogen phylogeny. bioRxiv, 2023.09.12.557403doi:10.1101/2023.09.12.557403.
- Ho, F., Parag, K.V., Adam, D.C., Lau, E.H.Y., Cowling, B.J., Tsang, T.K., 2023. Accounting for the
 Potential of Overdispersion in Estimation of the Time-varying Reproduction Number. Epidemiology
 34, 201–205. doi:10.1097/EDE.000000000001563.
- Hoscheit, P., Pybus, O.G., 2019. The multifurcating skyline plot. Virus Evolution 5, 1–10. doi:10.1093/ve/vez031.
- Jombart, T., Eggo, R.M., Dodd, P.J., Balloux, F., 2011. Reconstructing disease outbreaks from genetic data: A graph approach. Heredity 106, 383–90. doi:10.1038/hdy.2010.78.

- Keeling, M.J., Rohani, P., 2008. Modeling infectious diseases in humans and animals. Princeton university press.
- Kingman, J., 1982a. The coalescent. Stochastic Processes and their Applications 13, 235–248.
 doi:10.1016/0304-4149(82)90011-4.
- Kingman, J.F.C., 1982b. On the genealogy of large populations. Journal of Applied Probability 19, 27–43. doi:10.2307/3213548.
- Koelle, K., Rasmussen, D.A., 2012. Rates of coalescence for common epidemiological models at equilibrium. Journal of The Royal Society Interface 9, 997–1007. doi:10.1098/rsif.2011.0495.
- Kucharski, A.J., Althaus, C.L., 2015. The role of superspreading in Middle East respiratory syndrome
 coronavirus (MERS-CoV) transmission. Eurosurveillance 20. doi:10.2807/1560-7917.ES2015.20.
 25.21167.
- Lemieux, J.E., Siddle, K.J., Shaw, B.M., Loreth, C., Schaffner, S.F., Gladden-Young, A., Adams, 265 G., Fink, T., Tomkins-Tinch, C.H., Krasilnikova, L.A., DeRuff, K.C., Rudy, M., Bauer, M.R., 266 Lagerborg, K.A., Normandin, E., Chapman, S.B., Reilly, S.K., Anahtar, M.N., Lin, A.E., Carter, 267 A., Myhrvold, C., Kemball, M.E., Chaluvadi, S., Cusick, C., Flowers, K., Neumann, A., Cerrato, F., Farhat, M., Slater, D., Harris, J.B., Branda, J.A., Hooper, D., Gaeta, J.M., Baggett, T.P., 269 O'Connell, J., Gnirke, A., Lieberman, T.D., Philippakis, A., Burns, M., Brown, C.M., Luban, J., 270 Ryan, E.T., Turbett, S.E., LaRocque, R.C., Hanage, W.P., Gallagher, G.R., Madoff, L.C., Smole, S., 271 Pierce, V.M., Rosenberg, E., Sabeti, P.C., Park, D.J., MacInnis, B.L., 2021. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science 371, eabe3261. 273 doi:10.1126/science.abe3261. 274
- Li, L.M., Grassly, N.C., Fraser, C., 2017. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series. Molecular Biology and Evolution 34, 2982–2995. doi:10.1093/molbev/msx195.
- Lloyd-Smith, J., Schreiber, S., Kopp, P., Getz, W., 2005. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–9. doi:10.1038/nature04153.
- Menardo, F., Gagneux, S., Freund, F., 2021. Multiple Merger Genealogies in Outbreaks of Mycobacterium tuberculosis. Molecular Biology and Evolution 38, 290–306. doi:10.1093/molbev/msaa179.
- Moran, P., 1958. Random Processes in Genetics. Mathematical Proceedings of the Cambridge Philosophical Society 54, 60–71.
- Pitman, J., 1999. Coalescents with multiple collisions. The Annals of Probability 27, 1870–1902.
- Potts, R.B., 1953. Note on the Factorial Moments of Standard Distributions. Australian Journal of Physics 6, 498–499. URL: https://www.publish.csiro.au/ph/ph530498, doi:10.1071/ph530498. publisher: CSIRO PUBLISHING.
- Riley, S., Fraser, C., a Donnelly, C., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Leung, G.M.,
 Ho, L.M., Lam, T.H., Thach, T.Q., Chau, P., Chan, K.P., Lo, S.V., Leung, P.Y., Tsang, T., Ho,
 W., Lee, K.H., Lau, E.M.C., Ferguson, N.M., Anderson, R.M., 2003. Transmission dynamics of the
 etiological agent of SARS in Hong Kong: Impact of public health interventions. Science 300, 1961–6.
 doi:10.1126/science.1086478.
- Sagitov, S., 1999. The general coalescent with asynchronous mergers of ancestral lines. Journal of Applied Probability 36, 1116–1125. doi:10.1239/jap/1032374759.

- Schweinsberg, J., 2000. Coalescents with Simultaneous Multiple Collisions. Electronic Journal of
 Probability 5. doi:10.1214/EJP.v5-68.
- Schweinsberg, J., 2003. Coalescent processes obtained from supercritical Galton-Watson processes.

 Stochastic Processes and their Applications 106, 107–139. doi:10.1016/S0304-4149(03)00028-0.
- Stein, R.A., 2011. Super-spreaders in infectious diseases. International Journal of Infectious Diseases 15, e510-e513. doi:10.1016/j.ijid.2010.06.020.
- Tripathi, R.C., Gupta, R.C., Gurland, J., 1994. Estimation of parameters in the beta binomial model.

 Annals of the Institute of Statistical Mathematics 46, 317–331. URL: https://doi.org/10.1007/

 BF01720588, doi:10.1007/BF01720588.
- Volz, E.M., 2012. Complex population dynamics and the coalescent under neutrality. Genetics 190, 187–201. doi:10.1534/genetics.111.134627.
- Wallinga, J., Teunis, P., 2004. Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures. American Journal of Epidemiology 160, 509–516.
- Wang, J., Chen, X., Guo, Z., Zhao, S., Huang, Z., Zhuang, Z., Wong, E.L.y., Zee, B.C.Y., Chong,
 M.K.C., Wang, M.H., Yeoh, E.K., 2021. Superspreading and heterogeneity in transmission of SARS,
 MERS, and COVID-19: A systematic review. Computational and Structural Biotechnology Journal
 19, 5039-5046. doi:10.1016/j.csbj.2021.08.045.
- Wang, L., Didelot, X., Yang, J., Wong, G., Shi, Y., Liu, W., Gao, G.F., Bi, Y., 2020. Inference of person-to-person transmission of COVID-19 reveals hidden super-spreading events during the early outbreak phase. Nature Communications 11, 5006. doi:10.1038/s41467-020-18836-4.
- Woolhouse, M.E.J., Dye, C., Etard, J.F., Smith, T., Charlwood, J.D., Garnett, G.P., Hagan, P., Hii,
 J.L.K., Ndhlovu, P.D., Quinnell, R.J., Watts, C.H., Chandiwana, S.K., Anderson, R.M., 1997.
 Heterogeneities in the transmission of infectious agents: Implications for the design of control
 programs. Proceedings of the National Academy of Sciences 94, 338–342. doi:10.1073/pnas.94.1.
 338.
- Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97-159. doi:10.1093/genetics/ 16.2.97.