

# Arquitectura de computadoras

Aritmética entera y flotante



#### Sumador de un bit







#### Sumador total



#### Sumador secuencial



## Sumador paralelo con propagación de acarreo en serie



## Hacia un mejor sumador...

- El sumador con propagación de acarreo en serie es muy lento.
- Si no conocemos el acarreo, ¿que podemos hacer?
- ; Siempre se genera acarreo?  $g_i = a_i.b_i$
- ¿cuándo propagamos?  $p_i = a_i + b_i$
- $c_{i+1} = g_i + p_i.c_i$

$$c_1 = g_0 + p_0.c_0$$
  
 $c_2 = g_1 + p_1.c_1$   
 $c_3 = g_2 + p_2.c_2$   
 $c_4 = g_3 + p_3.c_3$ 

#### Sumador de acarreo adelantado

$$c_2 = g_1 + p_1.c_1 = g_1 + p_1.(g_0 + p_0.c_0) = g_1 + p_1.g_0 + p_1.p_0.c_0$$

$$c_3 = g_2 + p_2.c_2 = g_2 + p_2.g_1 + p_2.p_1.g_0 + p_2.p_1.p_0.c_0$$

$$c_4 = g_3 + p_3.c_3 = g_3 + p_3.g_2 + p_3.p_2.g_1 + p_3.p_2.p_1.g_0 + p_3.p_2.p_1.p_0.c_0$$

#### Pasos:

- 1. Generar  $g_i \vee p_i$ .
- 2. Generar  $c_i$  (usando  $g_i$  y  $p_i$ ).
- 3. Generar la suma si bit.

#### Sumador de acarreo adelantado



#### Operaciones en Complemento a 2

- ullet Negar: Complemento A1 + 1
- Extensión de signo.



#### Suma y resta

0001

• Es fácil operar en complemento A2.

Resta usando suma de números 0111

1101

Overflow (resultado que supera el valor máximo representable)
 0111

0001

$$+$$
 $0001$ 
 $1000$ 

#### Detección de overflow

- Overflow: El resultado es demasiado grande (o chico) para representarlo correctamente.
  - No ocurre cuando se suman operandos de distinto signo
- Overflow ocurre cuando se suman:
  - 2 números positivos y la suma da negativa
  - 2 números negativos y la suma da positiva
- Se puede detectar observando el acarreo de salida y el de mayor peso. Si son distintos hay overflow. Se utiliza una compuerta XOR para detectarlo.

# Ejemplos de overflow



#### Multiplicación

| b | R           | Sa                | $S_b$                   | $S_R$                         |  |
|---|-------------|-------------------|-------------------------|-------------------------------|--|
| 0 | 0           | 0                 | 0                       | 0                             |  |
| 1 | 0           | 0                 | 1                       | 1                             |  |
| 0 | 0           | 1                 | 0                       | 1                             |  |
| 1 | 1           | 1                 | 1                       | 0                             |  |
|   | 0<br>1<br>0 | 0 0<br>1 0<br>0 0 | 0 0 0<br>1 0 0<br>0 0 1 | 0 0 0 0<br>1 0 0 1<br>0 0 1 0 |  |

$$R = a \times b$$
$$S_R = S_a \oplus S_b$$

Para cualquier base el producto de 2 números de n cifras da por resultado un número que tendrá el doble de cifras.

#### El multiplicador paralelo

 Multiplicar n bits del multiplicando por 1 bit del multiplicador es cuestión de poner n compuertas AND



## Multiplicador paralelo



#### Multiplicador secuencial

- Multiplicar por 1 es sumar el multiplicando
- Multiplicar por 0 no suma.
- Después de cada paso hay que desplazar (En decimal desplazamos un lugar para multiplicar por 10; lo mismo en binario para multiplicar por 2)
- Tema: Como hacer para hacer la multiplicación de n bits con una ALU de 2n bits. Solución: Sumador y registro de desplazamiento.

#### Multiplicación magnitud y signo

El dispositivo utilizado tiene los siguientes registros:

- Contador: se carga con el número de bits de multiplicador.
- Acumulador: Se pone a cero inicialmente. Queda al final la parte más significativa del producto.
- Q: Se carga con el multiplicador. Queda la parte menos significativa del producto.
- **D**: Se carga con el multiplicando.





$$12_{10} = 1100_2$$
  $01111000_2 = 120_{10}$   $10_{10} = 1010_2$   $1 \oplus 0 = 1 (negativo)$ 



$$12_{10} = 1100_2$$
  $01111000_2 = 120_{10}$   $10_{10} = 1010_2$   $1 \oplus 0 = 1 (\textit{negativo})$ 



$$\begin{array}{ll} 12_{10} = 1100_2 & & 01111000_2 = 120_{10} \\ 10_{10} = 1010_2 & & 1 \oplus 0 = 1 (\textit{negativo}) \end{array}$$



$$12_{10} = 1100_2$$
  $01111000_2 = 120_{10}$   $10_{10} = 1010_2$   $1 \oplus 0 = 1 (\textit{negativo})$ 



$$12_{10} = 1100_2$$
  $01111000_2 = 120_{10}$   $10_{10} = 1010_2$   $1 \oplus 0 = 1 (\textit{negativo})$ 



$$12_{10} = 1100_2$$
  $01111000_2 = 120_{10}$   $10_{10} = 1010_2$   $1 \oplus 0 = 1(\textit{negativo})$ 



$$\begin{array}{ll} 12_{10} = 1100_2 & & 01111000_2 = 120_{10} \\ 10_{10} = 1010_2 & & 1 \oplus 0 = 1 (\textit{negativo}) \end{array}$$



#### Algoritmo de Booth

```
bit extra
     multiplicando
A=0000 0110
               0000 0000 0
   multiplicando en ca2
         1010
                0000 0000 0
                0000
P=0000 0000
```

#### CASOS BASE

-> No se realiza ninguna acción ninguna acción

## Algoritmo de Booth

| 0000 | 0000 | 0000 | 001[0 | 0] | $\rightarrow$ |
|------|------|------|-------|----|---------------|
| 0000 | 0000 | 0000 | 000[1 | 0] | P = P + S     |
| 1111 | 1010 | 0000 | 000[1 | 0] | $\rightarrow$ |
| 1111 | 1101 | 0000 | 0]000 | 1] | P = P + A     |
| 0000 | 0011 | 0000 | 0]000 | 1] | $\rightarrow$ |
| 0000 | 0001 | 1000 | 0]000 | 0] | $\rightarrow$ |
| 0000 | 0000 | 1100 | 0]000 | 0] | $\rightarrow$ |
| 0000 | 0000 | 0110 | 0]000 | 0] | $\rightarrow$ |
| 0000 | 0000 | 0011 | 0]000 | 0] | $\rightarrow$ |
| 0000 | 0000 | 0001 | 100[0 | 0] | $\rightarrow$ |
|      |      |      |       |    |               |
| 0000 | 0000 | 0000 | 1100  | 0  | (12)          |
|      |      |      |       |    |               |

#### División con restauración



#### División con restauración





























































#### División sin restauración

















67





















77















