Diskrete Strukturen I WS 19/20 - Klausur

21. Februar 2020

Ersttermin

Dozent: Dr. Jörg Vogel

Bearbeitungszeit: 120 min

Es waren 5 Aufgaben zu bearbeiten. Alternativ zu einer Aufgabe war Aufgabe A). Bearbeitete man alle Aufgaben, wurde die schlechteste nicht gewertet.

Aufgabe 1)

a) Geben Sie das Rekursionsschema der Josephus-Nummern J(n) an.

- b) Ausgehend von diesem Schema formulieren Sie eine Hypothese für eine explizite (geschlossene Formel) der Josephus-Nummern J(n).
- c) Beweisen Sie die Hypothese mittels vollständiger Induktion über eine geeignete Induktionsvariable.

Aufgabe 2)

a) Geben die das vollständige Rekursionsschema der Fibonacci-Zahlen an.

b) Von diesem Schema ausgehend beweisen Sie durch vollständige Induktion über $m \ge 1$ (mit Induktionsanfang, Induktionsschritt usw.) die folgende Gleichung:

$$f_{n+m} = f_{m+1} \cdot f_n + f_m \cdot f_{n-1}$$

c) Benutzen Sie diese, um folgende Gleichung herzuleiten:

$$f_{2n} = f_{n+1}^2 - f_{n-1}^2$$

Aufgabe 3)

Beweisen Sie folgende Aussagen:

- a) Aus $A \cap B = A \cap C$ und $A \cup B = A \cup C$ folgt B = C
- **b)** $(A \cup B) \setminus (A \cap B) = (A \triangle B)$
- c) $(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) = (A \cup B \cup C) \setminus (A \cap B \cap C)$

Aufgabe 4)

Beweisen Sie folgende Aussagen oder geben Sie ein Gegenbeispiel an. Erklären Sie den Begriff $\underline{\text{Modell}}$ und definieren Sie die unterstrichenen Wörter.

- a) $(F \vee G)$ ist <u>erfüllbar</u> gdw. F erfüllbar oder G erfüllbar ist.
- **b)** $(F \wedge G)$ ist erfüllbar gdw. F erfüllbar und G erfüllbar ist.
- c) $(F \vee G)$ ist Tautologie gdw. F Tautologie G Tautologie ist.
- d) $(F \wedge G)$ ist Tautologie gdw. F Tautologie und G Tautologie ist.

Aufgabe 5)

Geben Sie die exakte Definition an für:

- a1) die Kongruenz modulo m über N
- **b1)** die Teilerrelation über \mathbb{N}

Beweisen Sie anschließend, dass

- a2) die Kongruenz modulo m eine Äquivalenzrelation über \mathbb{N} ist.
- **b2)** die Teilerrelation eine Halbordungsrelation über N ist.

Aufgabe A)

Es sei M eine Menge und es seien R und S zwei binäre Relationen über M.

- a) Definieren Sie die identische Relation Id_M über M, die zu R inverse Relation R^{-1} , sowie das Produkt $R \circ S$.
- b) Beweisen Sie: R ist transitiv gdw. gilt: $R \circ R \subseteq R$
- c) Beweisen Sie: R ist eine Äquivalenzrelation über M gdw. gilt: $Id_M \subseteq R$ und $R \circ R^{-1} \subseteq R$