

วิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์

จัดทำโดย นายไชยพร ศรีดาเลิศ ปวส.ชั้นปีที่ 1 รหัสนักศึกษา 6031040059

เสนอ อาจารย์อภิญญา ขอชิดกาง

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชาวงจรไฟฟ้า ภาคเรียนที่ 2 ปีการศึกษา 2559

วิทยาลัยเทคโนโลยีวิศวกรรมแหลมฉบัง

คำนำ

รายงานเล่มนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของวิชาวิชาวงจรไฟฟ้า ชั้นปีที่ 1 เพื่อให้ได้ศึกษาหาความรู้ใน เรื่องวิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์และได้ศึกษาอย่างเข้าใจเพื่อเป็นประโยชน์กับการเรียน

ผู้จัดทำหวังว่ารายงานเล่มนี้จะเป็นประโยชน์กับผู้อ่าน หรือนักเรียน นักศึกษา ที่กำลังหาข้อมูลเรื่องนี้ อยู่หากมีข้อแนะนำหรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อมรับไว้และขออภัยมา ณ ที่นี้ด้วย

ไชยพร ศรีดาเลิศ

วันที่ 4 มีนาคม 2561

สารบัญ

เรื่อง	หน้า
ทฤษฎีวิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์	
1.1 หลักการใช้และวิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์	1
1.2 ขั้นตอนและหลักการของเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์	2
1.3 การคำนวณหาค่าต่าง ๆ โดยใช้หลักการและวิ่ธีการของเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์	6
เอกสารอ้างอิง	14

ทฤษฎีวิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์

เมชเคอร์เรนท์ (Mesh Current) หรือ ลูปเคอร์เรนต์ (Loop Current) เป็นขบวนการหรือวิธีการอีก รูปแบบหนึ่ง ค้นคิดขึ้นมาโดยนักฟิสิกส์ ชาวอังกฤษ ชื่อ เจมส์ คลาค แมกซิเวลล์ ที่พัฒนาขึ้นมากจากกฎของ เคอร์ชอฟฟ์ โดยการสมมุติให้มีกระแสไหลวนอยู่ในวงจรปิด มีกระแสไฟฟ้าที่ไหลแยกเป็นอิสระต่อกัน และจะ กำหนดทิศทางกระแสให้ไหลในลักษณะใดก็ได้ ตัวอย่างการกำหนดทิศทางกระแสเมช ดังรูปที่ 1

รูปที่ 1 ตัวอย่างการกำหนดทิศทางกระแสเมช

1.1 หลักการใช้และวิธีเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์

ในการแก้ปัญหาโจทย์วงจรไฟฟ้าที่มีความยุ่งยากซับซ้อนบางครั้งเมื่อนำกฏของเคอร์ชอฟฟ์มาใช้อาจ ทำให้ยุ่งยากสับสนและเสียเวลา ดังนั้นนักฟิสิกส์ชาวอังกฤษ เจมส์ คลาก แมกซ์เวลล์ จึงคิดวิธีการแก้ปัญหา วงจรดังกล่าวให้รวดเร็วขึ้น โดยสมมติ ให้มีกระแสไฟฟ้าไหลวนอยู่ในวงจรปิด ซึ่งแบ่งแยกเป็นวงจรย่อยๆ และถือว่ากระแสไฟฟ้าที่ ไหลวนอยู่ในวงจรปิดต่างๆ ต่างเป็นอิสระต่อกัน ส่วนการกำหนดทิศทางของกระแสที่ ไหลในวงจรปิดแต่ละวงจรจะให้ ไหลไปทางไหนก็ได้ วิธีการเมชเคอร์เรนต์ จะกำหนดให้ว่าในวงจรปิดหนึ่งๆ จะมีกระแสไฟฟ้าไหลวนอยู่อย่างต่อเนื่องและเป็นอิสระ ต่อกัน ซึ่งกระแสไฟฟ้าที่ ไหลวนเรียกว่า เมชเคอร์ เรนท์ (Mesh Current) หรือ ลูปเคอร์เรนต์

วิธีเมชเคอร์เรนท์ เป็นวิธีการแก้ไขปัญหาโจทย์ในวงจรไฟฟ้าที่ใช้กฎของเคอร์ซอฟฟ์ข้อที่ 2 ที่ว่า "ผลบวกทางพีชคณิตของแรงดันไฟฟ้าในวงจรปิดหนึ่ง ๆ มีค่าเป็น 0 หรือ ผลบวกทางพีชคณิตขอแรงดันไฟฟ้า ที่ตกคร่อมส่วนต่าง ๆ ของวงจรปิดหนึ่ง ๆ มีค่าเท่ากับผลบวกทางพีชคณิตของแรงดันไฟฟ้าที่แหล่งจ่ายไฟฟ้า ให้กับวงจรปิดนั้น ๆ" ซึ่งวิธีเมชเคอร์เรนท์นี้จะกำหนดให้ว่าในวงจรปิดหนึ่ง ๆ จะมีกระแสไฟฟ้าไหลวนอย่าง ต่อเนื่องและเป็นอิสระต่อกัน กระแสไฟฟ้าไหลวนนี้ เรียกว่า "เมชเคอร์เรนท์" (Mesh Current Method) หรือ ลูปเคอร์เรนท์ (Loop Current) โดยวิธี**เมชเคอร์เรนต์มีวิธีดังต่อไปนี้**

- 1. กำหนดเมชเคอร์เรนท์ลงในวงจรปิดของวงจรที่กำหนดให้
- 2. สร้างสมการแรงดันไฟฟ้าของแต่ละวงจรปิด โดยยึดหลักที่ว่า
 - 2.1) $^{\Sigma}$ แรงดันไฟฟ้าที่ตกคร่อมส่วนต่าง ๆ = แรงดันไฟฟ้าที่แหล่งจ่ายไฟจ่ายให้
 - 2.2) ทิศทางของวงจรที่พิจารณา ก็คือ ทิศทางของเมชเคอร์เรนท์ที่เรากำหนดขึ้น
- 2.3) จำนวนสมการแรงดันไฟฟ้าที่ต้องสร้างขึ้นเพื่อหาค่าของตัวแปรต่าง ๆ นั้นจะมีจำนวนเท่ากับ จำนวนวงจรปิด นั่นคือ จำนวนสมการที่ต้องการ = จำนวนวงจรปิด

3. จัดสมการที่สร้างขึ้นให้อยู่ในรูปเมตริกและใช้ดีเทอร์มีแนนท์เข้าช่วยในการหาค่าตัวแปรที่เราสร้าง ขึ้น

จากรูป 4.1 จะพบว่า จำนวนวงจรปิด หรือ เมช หรือ ลูป มีจำนวน = 3
I1,I2 ,I3 คือ เมชเคอร์เรนท์ที่เรากำหนดให้
วงจรปิดที่ 1 หมายถึง วงจรปิดที่มี เป็นเมชเคอร์เรนท์
วงจรปิดที่ 2 หมายถึง วงจรปิดที่มี เป็นเมชเคอร์เรนท์
วงจรปิดที่ 3 หมายถึง วงจรปิดที่มี เป็นเมชเคอร์เรนท์
และเวลาที่เราพิจารณาวงจรปิดที่ 1, วงจรปิดที่ 2 , วงจรปิดที่ 3 เพื่อสร้าง
สมการแรงดันไฟฟ้าในแต่ละวงจรปิดจะได้ว่าทิศทางของวงจรปิดที่เราพิจารณาคือ ทิศทางของ I1.I2 .I3

1.2 ขั้นตอนและหลักการของเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์

การนำวิธีเมชเคอร์เรนต์ หรือ ลูปเคอร์เรนต์ ((Loop Current) มาแก้ปัญหาในวงจรไฟฟ้ามีลำดับ ขั้นตอน ดังต่อไปนี้

1. สมมติและกำหนดทิศทางการไหลวนของกระแสในวงจรปิดหรือภายในลูปแต่ละลูปก่อน โดย กำหนดทิศทางของกระแสให้ไหลทางใดก็ได้

2. กำหนดขั้วของแหล่งจ่ายและแรงดันตกคร่อมความต้านทานแต่ละตัวโดยกำหนดดังนี้ คือ เครื่องหมายบวก(+) แสดงทิศทางกระแสไฟฟ้าไหลเข้าตัวต้านทาน และเครื่องหมาย (-) แสดงทิศทาง กระแสไฟฟ้าไหลออก และก าหนดตัวแปร (ABCDEF) แทนวงลูป

3. เขียนสมการแรงดันโดยใช้ทฤษฎีของเคอร์ชอฟฟ์ (Kirchhoff's Law) ในแต่ละลูป โดยมี ข้อสังเกตคือ ถ้ากระแสไหลในทิศทางเดียวกันให้รวมกันและทิศทางกระแสสวนทางกันให้หักล้างกัน โดยเขียน สมการได้ดังนี้

Loop 1 (ABEF)

$$+I_1R_1 + (I_1 + I_2)R_2 - E_1 = 0$$
(1)

Loop 2 (CBED)

$$+I_2R_3 + (I_2 + I_1)R_2 - E_2 = 0$$
(2)

หรือเขียนสมการแรงดันกำหนดเป็น 3 ลูป ดังนี้

- 4. แทนค่าความต้านทานไฟฟ้าแต่ละตัวและแรงดันไฟฟ้า ตามสมการแต่ละลูป แล้วจึงแก้สมการหา ค่าตัว แปร I1.I2.I3 ตามลำดับโดยวิธีดีเทอร์มิแนนต์ (Determinants)
 - 5. หาจำนวนสมการของเมชเคอร์เรนต์

รูปที่ 1 การไหลของกระแสไฟฟ้า ก.

จากวงจรรูปที่ 1 กระแสไฟฟ้าที่ไหลในแต่ละสาขาของวงจร คือ กระแสไฟฟ้าไหลวน I_1 และ I_2 นั่นเอง แต่กระแสไฟฟ้าที่ไหลในบางสาขาจะได้มาจากผลรวมระหว่างกระแสไฟฟ้าไหลวน I_1 และ I_2 ดังจะเห็น ว่ากระแสไฟฟ้าที่ไหลผ่านตัวความต้านทาน R_1 มีค่าเท่ากับกระแสไฟฟ้า I_1 กระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน R_2 มีค่าเท่ากับกระแสไฟฟ้า I_2 ส่วนกระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน I_3 มีค่าเท่ากับ I_1+I_2 จากกฎแรงดันของเคอร์ชอฟฟ์ (Kirchhoff Voltage Law) สามารถเขียนสมการได้ดังนี้

ในวงที่ 1 ใช้กระแสไฟฟ้าไหลวน I_1 เป็นหลักในการเขียนสมการจะได้

$$R_1I_1 + R_3(I_1 + I_2) = E_1$$

 $(R_1 + R_3)I_1 + R_3I_2 = E_1$

ในวงที่ 2 ใช้กระแสไฟฟ้าไหลวน I_2 เป็นหลักในการเขียนสมการจะได้

$$R_2I_2 + R_3(I_1 + I_2) = E_2$$

 $R_3I_1 + (R_2 + R_3)I_2 = E_2$

จากวงจรในรูปที่ 1 ถ้ากำหนดให้ค่าของกระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน R_3 เพียงค่าเดียวเราก็ เลือกกระแสไฟฟ้าไหลวนใหม่ โดยสมมติให้กระแสไฟฟ้าไหลวน I_1 และ I_2 มีทิศทางดังรูปที่ 2

รูปที่ 2 การไหลของกระแสไฟฟ้า ข.

จากวงจรรูปที่ 2 พิจารณาเห็นว่าเมื่อคำนวณหาค่ากระแสไฟฟ้าไหลวน I_1 ออกมาแล้วจะได้ค่า กระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน R_3 ในทันทีเพราะกระแสไฟฟ้า I_1 ก็คือกระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน R_3 นั่นเอง โดยไม่จำเป็นต้องคำนวณหาค่าของกระแสไฟฟ้า I_2 ซึ่งการสมมติกระแสไฟฟ้าไหลวนแบบนี้ จะช่วย ลดขั้นตอนในการแก้ปัญหาโจทย์ให้ลดน้อยลงได้

จากรูปที่ 2 เมื่ออาศัยกฎแรงดันของเคอร์ชอฟฟ์ (Kirchhoff Voltage Law) จะเขียนสมการได้ดังนี้ ในวงที่ 1 ใช้กระแสไฟฟ้าไหลวน I₁ เป็นหลักในการเขียนสมการจะได้

$$(R_1 + R_3)I_1 + R_1I_2 = E_1$$

ในวงที่ 2 ใช้กระแสไฟฟ้าไหลวน I_2 เป็นหลักในการเขียนสมการจะได้

$$R_1I_1 + (R_1 + R_2)I_2 = E_1 - E_2$$

1.3 การคำนวณหาค่าต่าง ๆ โดยใช้หลักการและวิธีการของเมชเคอร์เรนต์ หรือลูปเคอร์เรนต์

ตัวอย่างที่ 1 จากวงจรรูปที่ 3 ให้แสดงวิธีการคำนวณหาค่ากระแสไฟฟ้าไหลผ่านตัวต้านทาน R_1,R_2 และ R_3 เมื่อแหล่งจ่ายไฟตรง E_1 มีค่า 7 V และแหล่งจ่ายไฟตรง E_2 มีค่า 3 V

<u>วิธีทำ</u>

สมมติให้กระแสไฟฟ้าไหลวน I_1 , I_2 และ I_3 มีทิศทางดังรูปที่ 1 จากกฎแรงดันของเคอร์ชอฟฟ์ จะเขียนสมการได้ดังนี้

1. นำสมการที่ (1), (2) และ (3) เขียนในรูปของเมตริกซ์จะได้

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2.2 & 0 \\ 0 & 0 & 3.3 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 3 \end{bmatrix}$$

2. นำค่าสัมประสิทธิ์ของ I_1 , I_2 และ I_3 มาหาค่าของดีเทอร์มีแนนท์ (D) โดยการคูณไขว้นั่นคือคูณลงเป็น บวกคูณขึ้นเป็นลบ โดยคูณให้ครบทั้ง 3 ตำแหน่ง

 $D = (1 \times 2.2 \times 3.3) + (0 \times 0 \times 0) + (0 \times 0 \times 0) - (0 \times 2.2 \times 0) - (0 \times 0 \times 1) - (3.3 \times 0 \times 0)$ = 7.26 + 0 + 0 - 0 - 0 = 7.26

3. หาค่าตัวแปร I_1 โดยการนำคอลัมน์ค่าคงที่ของสมการในข้อ 1 แทนลงในคอลัมน์สัมประสิทธิ์ I_1 และหารด้วยดีเทอร์มีแนนท์ (D) ซึ่งการหาค่า I_1 จะอาศัยการคูณไขว้

 $I_1 = (7 \times 2.2 \times 3.3) + (0 \times 0 \times 3) + (0 \times 4 \times 0) - (3 \times 2.2 \times 0) - (0 \times 0 \times 7) - (3.3 \times 4 \times 0) / D$

= 50.82 / D

= 50.82 / 7.26

= 7 mA

4. หาค่าตัวแปร I_2 โดยการนำคอลัมน์ค่าคงที่ของสมการในข้อ 1 แทนลงในคอลัมน์สัมประสิทธิ์ I_2 และหารด้วยดีเทอร์มีแนนท์ (D) ซึ่งการหาค่า I_2 จะอาศัยการคูณไขว้เช่นกัน

- $= ((1 \times 4 \times 3.3) + (7 \times 0 \times 0) + (0 \times 0 \times 3) (0 \times 4 \times 0) (3 \times 0 \times 1) (3.3 \times 0 \times 7))$
- = 13.2 / 7.26
- = 1.818 mA

5. หาค่าตัวแปร I_3 โดยการนำคอลัมน์ค่าคงที่ของสมการในข้อ 1 แทนลงในคอลัมน์สัมประสิทธิ์ I_3 และหารด้วยดีเทอร์มีแนนท์ (D) ซึ่งการหาค่า I_3 จะอาศัยการคูณไขว้เช่นกัน

- $= ((1 \times 2.2 \times 5) + (0 \times 4 \times 0) + (7 \times 0 \times 0) (0 \times 2.2 \times 7) (0 \times 4 \times 1) (5 \times 0 \times 0)) / D$
- = 11 / 7.26
- = 1.515 mA

<u>ตัวอย่างที่ 2</u> จากวงจรต่อไปนี้ จงคำนวณหากระไฟฟ้าที่ไหลผ่านภาระทางไฟฟ้าแต่ละตัว

รูปที่ 2.2 การกำหนดทิศทางของกระแสเมช

<u>วิธีทำ</u>

- 1. กำหนดทิศทางกระแสให้ไหลครบวงรอบหรือครบลูป
- 2. ตั้งสมการโดยใช้กฎแรงเคลื่อนของเคอร์ชอฟฟ์

Loopที่1 ได้
$$-E1+R1I1+R3I1+R3I2=0$$

$$(R1+R3)I1+R3I2=E1$$
แทนค่า
$$(10+30)I1+30I2=9V$$

$$40I1+30I2=9V$$

$$-E2+R2I2+R3I2+R3I1=0$$

$$R3I1+(R2+R3)I2=E2$$
แทนค่า
$$30I1+(20+30)I2=4.5V$$

$$30I1+50I2=4.5V$$

3. แก้สมการโดยใช้เมทริกซ์และดีเทอร์มิแนนต์

$$40I1 + 30I2 = 9V$$
$$30I1 + 50I2 = 4.5V$$

นำสมการมาเขียนในรูปเมทริกซ์

$$\begin{bmatrix} 40 & 30 \\ 30 & 50 \end{bmatrix} \begin{bmatrix} I1 \\ I2 \end{bmatrix} = \begin{bmatrix} 9 \\ 4.5 \end{bmatrix}$$

$$\Delta = \begin{vmatrix} 40 & 30 \\ 30 & 50 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 40 & 30 \\ 30 & 50 \end{vmatrix}$$

$$\Delta = (40 \times 50) + \{(-1) \times 30 \times 30\}$$

$$\Delta = 2,000 + (-900) = 1,100$$

$$\Delta I1 = \begin{vmatrix} 9 & 30 \\ 4.5 & 50 \end{vmatrix}$$

$$\Delta I2 = \begin{vmatrix} 9 & 30 \\ 4.5 & 50 \end{vmatrix}$$

$$\Delta I1 = (9 \times 50) + \{(-1) \times 4.5 \times 30\}$$

$$\Delta I1 = 450 + (-135) = 315$$

$$\Delta I2 = \begin{vmatrix} 40 & 9 \\ 30 & 4.5 \end{vmatrix}$$

$$\Delta I2 = \begin{vmatrix} 40 & 9 \\ 30 & 4.5 \end{vmatrix}$$

$$\Delta I2 = [40 \times 4.5]$$

$$\Delta I3 = [40 \times 4.5]$$

$$\Delta I4 = [40 \times 4.5]$$

$$\Delta I5 = [40 \times 4.5]$$

$$\Delta I4 = [40 \times 4.5]$$

$$\Delta I4 = [40 \times 4.5]$$

$$\Delta I5 = [40 \times 4.5]$$

$$\Delta I4 = [40 \times 4.5]$$

$$\Delta I4$$

... กระแสที่ไหลผ่าน R1 มีค่าเท่ากับ 0.28 แอมแปร์ กระแสที่ไหลผ่าน R2 มีค่าเท่ากับ -0.081 แอมแปร์ และกระแสที่ไหลผ่าน R3 มีค่าเท่ากับ 0.199 แอมแปร์ ซึ่งกระแส I2 ที่ติดลบก็เป็นเพราะว่า ทิศทางที่สมมุติขึ้นสวนทางกับความเป็นจริง

 $I2 = \Delta I2/\Delta = -90/1100 = -0.081A$ I3 = I1 + I2 = 0.28 + (-0.081 = 0.199A)

<u>ตัวอย่างที่ 3</u> จากวงจรต่อไปนี้ จงคำนวณหาค่าแรงเคลื่อนตกคร่อมภาระแต่ละตัว

รูปที่ 3.1

<u>วิธีทำ</u>

แทนค่า
$$2I1 = 4 - 6$$
 $2I1 = -2V$ $1 = -2V$

นำสมการมาเขียนในรูปของเมทริกซ์

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 8 & 4 \\ 0 & 4 & 6 \end{bmatrix} \begin{bmatrix} I1 \\ I2 \\ I3 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \\ 4 \end{bmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 8 & 4 \\ 0 & 4 & 6 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 0 & 0 & 2 & 0 \\ 0 & 8 & 4 & 0 & 8 \\ 0 & 4 & 6 & 0 & 6 \end{vmatrix}$$

$$\Delta = (2 \times 8 \times 6) + (0 \times 4 \times 0) + (0 \times 0 \times 6) + \{(-1) \times 0 \times 8 \times 0 \} + \{(-1) \times 4 \times 4 \times 2\} + \{(-1) \times 6 \times 0 \times 0\}$$
$$\Delta = 96 + (-32) = 64$$

$$\Delta I1 = \begin{vmatrix} -2 & 0 & 0 \\ 6 & 8 & 4 \\ 4 & 4 & 6 \end{vmatrix}$$

$$\Delta I1 = \begin{vmatrix} -2 & 0 & 0 \\ 6 & 8 & 4 \\ 4 & 4 & 6 \end{vmatrix} \begin{vmatrix} -2 & 0 \\ 6 & 8 \end{vmatrix}$$

$$\Delta I1 = \{(-2) \times 8 \times 6\} + (0 \times 4 \times 4) + (0 \times 6 \times 4) + \{(-1) \times 4 \times 8 \times 0\} + \{(-1) \times 4 \times 4 \times (-2)\}$$

$$+ \{(-1) \times 6 \times 6 \times 0\}$$

$$\Delta I1 = -96 + 32 = -64$$

$$\Delta I 2 = \begin{vmatrix} 2 & -2 & 0 \\ 0 & 6 & 4 \\ 0 & 4 & 6 \end{vmatrix}$$

$$\Delta I 2 = \begin{vmatrix} 2 & -2 & 0 \\ 0 & 6 & 4 \\ 0 & 4 & 6 \end{vmatrix} \begin{array}{ccc} 2 - 2 \\ 0 & 6 \end{array}$$

$$\Delta I2 = (2 \times 6 \times 6) + \{(-2) \times 4 \times 0\} + (0 \times 0 \times 4) + \{(-1) \times 0 \times 6 \times 0\} + \{(-1) \times 4 \times 4 \times 2\} + \{(-1) \times 6 \times 0 \times (-3)\}$$

$$\Delta I2 = 72 + (-32) = 40$$

$$\Delta I3 = \begin{vmatrix} 2 & 0 & -2 \\ 0 & 8 & 6 \\ 0 & 4 & 4 \end{vmatrix}$$

$$\Delta I3 = \begin{vmatrix} 2 & 0 & -2 & 2 & 0 \\ 0 & 8 & 6 & 0 & 8 \\ 0 & 4 & 4 & 0 & 4 \end{vmatrix}$$

$$\Delta I3 = (2 \times 8 \times 4) + (0 \times 6 \times 0) + \{(-2) \times 0 \times 4\} + \{(-1) \times 0 \times 8 \times (-2)\} + \{(-1) \times 4 \times 6 \times 2\} + \{(-1) \times 4 \times 0 \times 0\}$$
$$\Delta I3 = 64 + (-48) = 16$$

$$I1 = \Delta I 1/\Delta$$
 = $(-64)/64$ = $-1A$
 $I2 = \Delta I 2/\Delta$ = $40/64$ = $0.625A$
 $I3 = \Delta I 3/\Delta$ = $16/64$ = $0.25A$

แรงเคลื่อนตกคร่อมภาระแต่ละตัว

$$V1 = R1 \times I1$$
 = 2×1 = 2V
 $V2 = R2 \times I2$ = 4×0.625 = 2.5V
 $V3 = R3 \times I3$ = 2×0.25 = 0.5V
 $V4 = R4 \times (I2 + I3)$ = 4×(0.625 + 0.25) = 3.5V

: แรงเคลื่อนที่ตกคร่อม R1,R2,R3 และ R4มีค่าเท่ากับ 0.2 โวลต์, 2.5 โวลต์, 0.5 โวลต์ และ 3.5 โวลต์ ตามลำดับ ส่วนค่ากระแส I1 ที่ติดค่าลบเกิดจากการกำหนดทิศทางกระแสที่ส่วนทางกับความ เป็นจริง

เอกสารอ้างอิง

[1] **เมชเคอร์เรนต์** [ออนไลน์] เข้าถึงจาก:

bpc.ac.th/knowledge/article/faifa17.doc (วันที่สืบค้นข้อมูล: 4 มีนาคม 2561)

[2] **เมชเคอร์เรนต์** [ออนไลน์] เข้าถึงจาก:

https://sites.google.com/site/krupornsakat/dc13 (วันที่สืบค้นข้อมูล: 4 มีนาคม 2561)

[3] ว**ิธีเมชเคอร์เรนท์** [ออนไลน์] เข้าถึงจาก:

http://www.oocities.org/hs60144/Saranaroo/CirNet/lesson2.htm (วันที่สืบค้นข้อมูล: 4 มีนาคม 2561)