Complementi di Algebra 1

EVAN CHEN

5 ottobre 2022

Indice

1	Insiemi di generatori	3
2	Gruppo diedrale	3
	2.1 Elementi del gruppo	3
	2.2 Sottogruppi	5

§1 Insiemi di generatori

Definizione 1.1. Dati un gruppo G e x_1, \ldots, x_n elementi di G, chiamiamo sottogruppo generato da x_1, \ldots, x_n il più piccolo sottogruppo $\langle x_1, \ldots, x_n \rangle$ di G contenente x_1, \ldots, x_n , cioè

$$\langle x_1, \dots, x_n \rangle = \bigcap_{\substack{H \le G \\ \{x_1, \dots, x_n\} \subseteq H}} H$$

Osservazione 1.2 — La definizione è ben posta, infatti l'intersezione avviene su una famiglia non vuota di insiemi dal momento che G è un sottogruppo di G contenente x_1, \ldots, x_n . Inoltre l'intersezione non è vuota in quanto contiene almeno l'identità e gli elementi x_1, \ldots, x_n .

La definizione data non dà informazioni su come sono fatti gli elementi di $\langle x_1, dots, x_n \rangle$, cerchiamo quindi di caratterizzare in modo diverso tale sottogruppo. In quanto sottogruppo, $\langle x_1, \ldots, x_n \rangle$ deve contenere tutti i prodotti finiti, in qualsiasi ordine, delle potenze di x_1, \ldots, x_n , cioè deve contenere l'insieme

$$\{g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\}$$

Proposizione 1.3

Dati un gruppo G e x_1, \ldots, x_n elementi di G, allora

$$\langle \langle x_1, \dots, x_n \rangle = \{g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\}.$$

Dimostrazione. Poniamo $S = \{g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\},$ mostriamo che S è un sottogruppo di G. Effettivamente $e \in S$ in quanto è prodotto nessuna potenza di x_1, \dots, x_n , il prodotto di due elementi di S è ancora un elemento di S in quanto prodotto finito di potenze di x_1, \dots, x_n e l'inverso di un elemento $g_1^{\pm 1} \dots g_r^{\pm 1} \in S$ è $(g_1^{\pm 1} \dots g_r^{\pm 1})^{-1} = g_r^{\mp 1} \dots g_1^{\mp 1}$, che è un elemento di S. Abbiamo quindi che S è un sottogruppo di G contenente x_1, \dots, x_n , pertanto $\langle x_1, \dots, x_n \rangle \subseteq S$ per minimalità di $\langle \langle x_1, \dots, x_n \rangle$. D'altra parte, per quanto osservato sopra abbiamo che tutti gli elementi della forma $g_1^{\pm 1} \dots g_r^{\pm 1}$ con $r \in \mathbb{N}$, $g_i \in \{x_1, \dots, x_n\}$ per ogni $i \in \{1, \dots, r\}$ devono essere contenuti in $\langle \langle x_1, \dots, x_n \rangle$, pertanto i due sottogruppi coincidono.

Osservazione 1.4 — Se G è un gruppo ciclico abbiamo che esiste $x \in G$ tale che $\langle x \rangle = G$, cioè tutti gli elementi di G sono potenze di x.

Diciamo che $x_1, \ldots, x_n \in G$ sono **generatori** per G, o che l'insieme $\{x_1, \ldots, x_n\}$ **genera** G se $\langle x_1, \ldots, x_n \rangle = G$.

§2 Gruppo diedrale

§2.1 Elementi del gruppo

Definizione 2.1. Dato $n \ge 2$ un naturale, consideriamo un poligono regolare di n vertici, definiamo il **gruppo diedrale** su n vertici D_n come l'insieme delle isometrie del piano

che mandano i vertici in se stessi, cioè che fissano il poligono (per n=2 consideriamo le isometrie che mandano un segmento si se stesso).

Osservazione 2.2 — D_n è effettivamente un gruppo, in quanto l'applicazione identità che fissa tutti i vertici è un'isometria dal poligono in se stesso, la composizione di isometrie è un'isometria e un'isometria ammette sempre un'inversa, che è anch'essa un'isometria.

Osservazione 2.3 — Una rotazione di angolo $\frac{2\pi}{5}$ è un elemento di D_n , così come una simmetria rispetto a un asse.

Proseguendo con questa intuizione geometrica, indicheremo con r una rotazione di angolo $\frac{2\pi}{n}$ e con s una simmetria rispetto a un qualsiasi asse, notiamo che $\operatorname{ord}(r) = n$ e $\operatorname{ord}(s) = 2$ (per convenzione, indichiamo con un angolo positivo una rotazione in senso antiorario e con un angolo negativo una rotazione in senso orario).

Definizione 2.4. Data $r \in D_n$ una rotazione di ordine n, indichiamo con \mathcal{R} il sottogruppo delle rotazioni $\langle r \rangle$.

Osservazione 2.5 — Il sottogruppo \mathcal{R} contiene tutte le rotazioni di D_n , infatti se r' è una rotazione di angolo $\frac{2k\pi}{n}$, $k \in \mathbb{Z}$, allora $r^k = r'$ in quanto anche r^k è una rotazione di angolo $\frac{2k\pi}{n}$.

Per determinare come sono fatti gli elementi di D_n , studiamo il sottogruppo $\langle r, s \rangle$. Sicuramente $\langle r, s \rangle$ contiene il sottogruppo \mathcal{R} e tutti gli elementi della forma sr^k , sr^ks , sr^ksr^h e così via, vogliamo mostrare che in effetti D_n è generato da r e s

Osservazione 2.6 — Gli elementi della forma r^k e sr^h sono distinti per ogni $h, k \in \mathbb{Z}$. Infatti sappiamo dall'algebra lineare che il determinante di una simmetria è -1 mentre il determinante di una rotazione è 1, per la moltiplicatività del determinante abbiamo quindi $\det(r^k) = (\det r)^k = 1$ e $\det(sr^h) = (\det s)(\det r)^h = -1$, cioè $r^k \neq sr^h$.

Lemma 2.7

Per ogni rotazione $r \in D_n$ e per ogni simmetria $s \in D_n$ vale

$$srs^{-1} = r^{-1}$$
.

Dimostrazione. $srs^{-1} = r^{-1} \iff sr = r^{-1}s = (s^{-1}r)^{-1}$. Si conclude osservando che $s^2 = 1$, pertanto $s^{-1} = s$ e $(s^{-1}r)^{-1} = (sr)^{-1} = r^{-1}s^{-1} = r^{-1}s$.

Proposizione 2.8

Se $n \geq 3$ allora $|D_n| = 2n$.

Osservazione 2.9 — Abbiamo mostrato che effettivamente $D_n = \langle r, s \rangle$, quindi i suoi elementi sono tutti della forma r^k , sr^h .

§2.2 Sottogruppi

Consideriamo un sottogruppo $H \leq D_n$, abbiamo due casi distinti: $H \subseteq \mathcal{R}$ oppure $H \nsubseteq \mathcal{R}$. Nel primo caso abbiamo che $|H| \mid n$, ed è l'unico sottogruppo di \mathcal{R} con questa proprietà in quanto \mathcal{R} è ciclico, in particolare H è ciclico della forma $\langle \frac{n}{d} \rangle$, con $d \mid n$. Studiamo quindi il caso $H \nsubseteq \mathcal{R}$. Osserviamo che $\mathcal{R} \leq D_n$ in quanto $[D_n : \mathcal{R}] = 2$, pertanto il gruppo D_n/\mathcal{R} è ben definito e risulta essere isomorfo a $\mathbb{Z}/2\mathbb{Z}$. Consideriamo la proiezione al quoziente

$$\pi_{\mathcal{R}}: D_n \longrightarrow D_{n/\mathcal{R}}: g \mapsto [g],$$

poiché $H \nsubseteq \mathcal{R}$ abbiamo che esiste $h \in H$ tale che $h \notin \mathcal{R}$, pertanto $\pi_{\mathcal{R}}(h) \notin [\mathcal{R}]$ e in particolare $\pi_{\mathcal{R}}(H) \nsubseteq [\mathcal{R}]$. Dato che i sottogruppi di $D_{n/\mathcal{R}}$ sono solo $\{[\mathcal{R}]\}$ e $D_{n/\mathcal{R}}$ abbiamo quindi $\pi_{\mathcal{R}}(H) = D_{n/\mathcal{R}}$. Osserviamo che ker $\pi_{|H} = \ker \pi \cap H = \mathcal{R} \cap H$, per il Primo Teorema di Omomorfismo allora $H/H \cap \mathcal{R} \cong \mathbb{Z}/2\mathbb{Z}$, quindi $|H \cap \mathcal{R}| = \frac{1}{2}|H|$. Dato che $R \cap H \subseteq \mathcal{R}$, esiste $k \in \mathbb{Z}$ tale che $H \cap \mathcal{R} = \langle r^k \rangle$ in particolare $\langle r^k \rangle$ e $\langle sr^h \rangle$, $h \in \mathbb{Z}$, sono contenuti in H.

Proposizione 2.10

Dati $H \leq D_n$ un sottogruppo tale che $H \nsubseteq \mathcal{R}$, se $r \in \mathcal{R}$ è tale che $H \cap \mathcal{R} = \langle r^k \rangle$ e s è una simmetria allora

$$H = \langle r^k \rangle \cdot \langle sr^h \rangle = \{ xy \mid x \in \langle r^k \rangle, y \in \langle sr^h \rangle \}, h, k \in \mathbb{Z}.$$

Dimostrazione. Per quanto visto sopra, abbiamo che $|\langle r^k \rangle| = \frac{1}{2}|H|$, osserviamo inoltre che $(sr^h)^2 = sr^hsr^h = (srs)^hr^h = (srs^{-1})^hr^h = r^{-h}r^h = e$, pertanto $\langle sr^h \rangle \cong \mathbb{Z}/2\mathbb{Z}$. Ricordiamo che, se K, N sono sottogruppi di un gruppo G, se vale almeno una delle inclusioni $K \subseteq N_G(N)$, $N \subseteq N_G(K)$. Nel nostro caso abbiamo che $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$, infatti per ogni $m \in \mathbb{Z}$ abbiamo

$$(sr^h)r^{mk}(sr^h)^{-1} = sr^{h+mk}sr^h = r^{-h-mk}r^h = r^{-mk} \in \langle r^k \rangle,$$

cioè $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$, quindi $\langle r^k \rangle \cdot \langle sr^h \rangle$ è un sottogruppo di D_n . Poiché $\langle r^k \rangle$ e $\langle sr^h \rangle$ sono contenuti in H abbiamo che $\langle r^k \rangle \cdot \langle sr^h \rangle \subseteq H$, inoltre

$$|\langle r^k \rangle \cdot \langle sr^h \rangle| = \frac{1}{2} |H| \cdot 2 = |H|$$

in quanto $\langle r^k \rangle \cap \langle sr^h \rangle = \{e\}$, quindi i due sottogruppi coincidono.

Osservazione 2.11 — Per $k \mid n \in 0 \leq h < k$, i sottogruppi $H_{k,h} = \langle r^k, sr^h \rangle$ e $H = \langle r^k \rangle \cdot \langle sr^h \rangle$ coincidono. Infatti $H_{k,h} \subseteq H$ in quanto r^k, sr^h sono elementi di H, d'altra parte $H \subseteq H_{k,h}$ in quanto $H_{h,k}$ contiene tutti i prodotti finiti delle potenze di r^k e sr^h , in particolare gli elementi di H.

Osservazione 2.12 — Per $k \mid n \in 0 \leq h < k, \langle r^k, sr^h \rangle = \langle r^k, sr^{h+k} \rangle$, infatti $\langle r^k, sr^h \rangle \subseteq \langle r^k, sr^{h+k} \rangle$ in quanto $sr^h = (sr^{h+k})r^{-k}$ è un elemento del secondo gruppo, simmetricamente $\langle r^k, sr^{h+k} \rangle \subseteq \langle r^k, sr^h \rangle$ in quanto $sr^{h+k} = (sr^h)r^k$ è un elemento del primo gruppo.

Abbiamo quindi finito la classificazione dei sottogruppi di D_n .

Teorema 2.13 (Classificazione dei sottogruppi di D_n)

I sottogruppi di D_n sono della forma

- (1) $\langle r^k \rangle \operatorname{con} k \mid n;$
- (2) $\langle r^k, sr^h \rangle$ con $k \mid n, 0 \le h < k$.

con $r \in \mathcal{R}$ e s una simmetria. Inoltre tali sottogruppi sono tutti distinti.

Dimostrazione. Abbiamo già visto che i sottogruppi di D_n hanno una di queste forme, mostriamo quindi che sono tutti distinti. A meno di cambiare k, possiamo supporre che r generi \mathcal{R} , cioè ord(r) = n. Consideriamo $H, K \leq D_n$ due sottogruppi, distinguiamo tre casi

- se $H = \langle r^k \rangle$ e $K = \langle r^m \rangle$, $m \in \mathbb{Z}$, allora $H = K \iff k = m$ in quanto entrambi sottogruppi di un gruppo ciclico, pertanto esiste un unico sottogruppo della forma $\langle r^k \rangle$ per ogni $k \mid n$;
- se $H = \langle r^k \rangle$ e $K = \langle sr^h \rangle$ allora $H \neq K$ in quanto H è ciclico e K no;
- se $H = \langle r^k, sr^h \rangle$ e $K = \langle r^m, sr^l \rangle$, con $m \mid n$ e $0 \leq l < m$, considerando le intersezioni con \mathcal{R} $H \cap \mathcal{R} = \langle r^k \rangle$ e $K \cap \mathcal{R} = \langle r^m \rangle$ abbiamo

$$H \cap \mathcal{R} = K \cap \mathcal{R} \iff \langle r^k \rangle = \langle r^m \rangle \iff k = m.$$

Inoltre, se $sr^h \in \langle r^m, sr^l \rangle = \langle r^m \rangle \cdot \langle sr^l \rangle$, allora esiste $t \in \mathbb{Z}$ tale che

$$sr^h = (r^m)^t sr^l \iff sr^h = s^2 r^{mt} sr^l \iff r^h = r^{-mt+l} \iff h \equiv l - mt \mod n,$$

da cui ricaviamo $h \equiv l \mod m$. Ma allora h = l in quanto $0 \le h < k, 0 \le l < m$.

Lemma 2.14

Dati un gruppo G e A,B due sottogruppi tali che $A\leq B\leq G$, se $B\leqslant G$ e A è caratteristico in B allora $A\leqslant G$.

Dimostrazione. Fissato $g \in G$, consideriamo l'omomorfismo di coniugio

$$\varphi_q: G \longrightarrow G: x \longmapsto gxg^{-1},$$

poiché $B \leqslant G$ è ben definita la restrizione

$$\varphi_{q|B}: B \longrightarrow B: b \longmapsto gbg^{-1},$$

in particolare $\varphi_{g|B} \in Aut(G)$. Dal momento che A è un sottogruppo caratteristico di B abbiamo che $\varphi_{g|B}(A) = A$, pertanto $A \leq G$.

Corollario 2.15

Ogni sottogruppo di \mathcal{R} è normale in D_n .

Dimostrazione. Siano $\langle r^k \rangle$ un sottogruppo di \mathcal{R} e $\varphi \in Aut(\mathcal{R})$, allora $\varphi(\langle r^k \rangle) = \langle r^k \rangle$ in quanto φ preserva l'ordine del sottogruppo e $\langle r^k \rangle$ è l'unico sottogruppo di \mathcal{R} di tale ordine, pertanto $\langle r^k \rangle$ è caratteristico in \mathcal{R} . Allora per il Lemma 2.14 abbiamo che $\langle r^k \rangle \leq D_n$.