Invertibilitet og underrum af \mathbb{R}^n , Afsnit 2.3, 2.8

10. marts 2025

Lineær Algebra

Forår 2025

Del I Repetition

Quiz

Gå til hjemmesiden

https://poll.math.aau.dk/wjahjgtr

Matrixinvers

Definition

En $n \times n$ -matrix A kaldes inverterbar, hvis der eksisterer en matrix A^{-1} , så

$$AA^{-1} = I_n$$
 og $A^{-1}A = I_n$.

Matricen A^{-1} kaldes den inverse til A.

Beregning af matrixinvers

For en 2 × 2-matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ med det $A \neq 0$ har vi

$$A^{-1} = \frac{1}{\det A} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

For større matricer skal vi

- ► Opskrive matricen [A | I], og rækkereducere til [R | B]
- ► Hvis...
 - ightharpoonup ...R = I, er A inverterbar, og $A^{-1} = B$
 - $ightharpoonup ...R \neq I$, er A ikke inverterbar

Egenskaber

Hvis A og B er inverterbare, gælder

$$(A^{-1})^{-1} = A$$

$$ightharpoonup (AB)^{-1} = B^{-1}A^{-1}$$

Bemærk desuden, at den inverse er entydig

Kriterier for invertibilitet

Vi har set, at vi kan finde den inverse, hvis den eksisterer.

Kan vi sige noget generelt om, hvornår den inverse eksisterer?

En LAAANG sætning

His Ax=Ay, &c

Sætning (side 130)

Lad A være en $n \times n$ -matrix. Følgende udsagn er ækvivalente.

- 1. A er inverterbar
- 2. A er rækkeækvivalent til I_n $A \sim I_N$
- 3. A har n pivotsøjler
- 4. Ligningen $A\mathbf{x} = \mathbf{0}$ har kun den trivielle løsning
- 5. Søjlerne i A er lineært uafhængige
- 6. Den lineære transformation $\mathbf{x} \mapsto A\mathbf{x}$ er injektiv

- 9. Den lineære afbildning $\mathbf{x}\mapsto A\mathbf{x}$ afbilder \mathbb{R}^n surjektivt til \mathbb{R}^n eksisterer en $n\times n$ -matrix B, så BA=I1. Der eksisterer
- 10. Der eksisterer en $n \times n$ -matrix B, så $BA = I_n$
- 11. Der eksisterer en $n \times n$ -matrix C, så $AC = I_n$
- 12. A^{T} er en inverterbar matrix

Lang sætning, korte eksempler

$$Er A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$$
 inverterbar?

Eksempel

$$Er A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & -2 \\ a_1 & a_2 & a_3 \end{bmatrix}$$
 inverterbar?

Solving give desired, at A this er inverterbar.

Eksempel

En $n \times n$ -matrix B er inverterbar, og $\mathbf{b} \in \mathbb{R}^n$. Har ligningen $B\mathbf{x} = \mathbf{b}$ en løsning?

on
$$n \times n$$
-matrix B er inverterbar, og $b \in \mathbb{R}^n$. Har ligningen $Bx = b$ en isning?

Phr. 7 giv, av $Bx = b$ har mindst en læning

Faktish har it process en læsnig;

 $Bx = b$ $Extit{S} \times = B^{-1}b$

Inverterbare lineære afbildninger

Vi siger, at en lineær afbildning $T: \mathbb{R}^n \to \mathbb{R}^n$ er inverterbar, hvis der eksisterer en afbildning $S: \mathbb{R}^n \to \mathbb{R}^n$, sådan at

$$S(T(x)) = (S \circ T)(x) = x$$
 for alle $x \in \mathbb{R}^n$

og

$$(T \circ S)(\mathbf{x}) = \mathbf{x}$$
 for alle $\mathbf{x} \in \mathbb{R}^n$

I stil med matricer, kaldes S den inverse til T og den noteres $S = T^{-1}$

Sammenhæng med standardmatricer

Sætning

Lad $T: \mathbb{R}^n \to \mathbb{R}^n$ være en lineær afbildning med standardmatrix A. Da er T inverterbar, hvis og kun hvis A er inverterbar.

Når T er inverterbar gælder desuden, at T^{-1} har standardmatrix A^{-1} .

Sammenhæng med standardmatricer

Eksempel

Den lineære afbildning $R_{\frac{\pi}{4}}:\mathbb{R}^2\to\mathbb{R}^2$ er en rotation med $\frac{\pi}{4}$ radianer omkring Origo. Dens standardmatrix er

$$A_{\frac{\pi}{4}} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$$

I kan tjekke, at
$$A_{\frac{\pi}{4}}^{-1}=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\-1&1\end{bmatrix}$$
, som svarer til rotationen $(R_{\frac{\pi}{4}})^{-1}=R_{\frac{-\pi}{4}}$ i modsat retning

Underrum af \mathbb{R}^n

Når vi taler om *underrum* af \mathbb{R}^n , mener vi en mængde af vektorer i \mathbb{R}^n , der opfører sig "pænt" under linearkombinationer.

Mere præcist kaldes $V \subseteq \mathbb{R}^n$ et underrum, hvis

- ▶ 0 ligger i V
- ightharpoonup Hvis m f u og m f v begge er vektorer i V, så er også m f u + f v i V
- ► Hvis **u** er en vektor i *V* og *s* er en skalar, så ligger *s***u** i *V*

Underrum af \mathbb{R}^n

Eksempel
$$Linjen L = Span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} = \left\{ r \begin{bmatrix} 1 \\ 2 \end{bmatrix} \middle| r \in \mathbb{R} \right\} i \mathbb{R}^2.$$

$$0 \mathcal{L} \quad \triangleright \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 ligger i L

$$\begin{bmatrix} 0 \\ \delta \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in L$$
OV Hvis $\mathbf{u}, \mathbf{v} \in L$, har vi...

$$u=r_{u}\begin{bmatrix}1\\2\end{bmatrix}, v=v_{v}\begin{bmatrix}1\\2\end{bmatrix}.$$

SV = (Srv) [2] EL Erban et nyt r

 $M+V = r_{V} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + r_{V} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \underbrace{\left(r_{M}+r_{V}\right)} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Simple underrum

Eksempel

 \mathbb{R}^n er et underrum af sig selv

Eksempel

 $V = \{\mathbf{0}\}$ er et underrum

Eksempel

Linjer gennem Origo er underrum

Ikke-eksempler

Eksempel Er
$$V = \left\{ r \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mid r \ge 0 \right\}$$
 et underrum af \mathbb{R}^2 ?

Home Hair Met lisser sie også snev?

Tag N=[12] 08 5=-1 SN=[-1][2], -1=0 Ny

Søjlerummet for en matrix

For en matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ definerer vi søjlerummet

$$Col(A) = Span\{a_1 a_2 \cdots a_n\}$$

Det vil sige, at søjlerummet er... alle velkber på form

Søjlerummet for en matrix

Eksempel
$$Col(I_n) = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} = \mathbb{R}^N$$

Eksempel

Lad
$$A = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 4 & 1 & 1 & -1 \\ 3 & -2 & 2 & 2 \end{bmatrix}$$
. Hvad er Col(A)?

$$Col(A) = Span \left\{ \begin{bmatrix} 2 \\ y \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$$

Col(A) er et underrum

Lad A være en $n \times m$ -matrix

Der er en grund til, at vi kalder Col(A) for søjle*rummet*: Det er nemlig et underrum af \mathbb{R}^n

Nulrummet for en matrix

For en matrix A definerer vi nulrummet Nul(A) til at være mængden af alle løsninger til $A\mathbf{x} = \mathbf{0}$.

Hvor mange indgange har vektorerne i Nul(A), når A er en

 $n \times m$ -matrix?

n [A]x]m

Voktorene: Nul(A)
her in indgay, si de
ligger: Rul

Nulrummet for en matrix

$$[0,0,0,0]_{\underline{1}} \in \mathsf{NM}(\mathsf{W})$$

Eksempel

Lad
$$A = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 4 & 1 & 1 & -1 \\ 3 & -2 & 2 & 2 \end{bmatrix}$$
. Ligger $[0, 0, 0]^T$ i Nul (A) ? No, for $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Ligger $[0, 0, 0]^T$ i Nul (A) ? No, for $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Dots. and $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ by the Eksembel

$$A\begin{bmatrix} 5 \\ 6 \\ 5 \end{bmatrix} = 5\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + 5\begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Dvs. ab

Eksempel

I får at vide, at vektorerne \mathbf{v} og \mathbf{w} begge ligger i $\mathrm{Nul}(A)$. Ligger $\mathbf{v} + \mathbf{w}$ dus Av=0 02 Av=0 også i Nul(A)?

Nulrummet for en matrix

Eksempel

Systemet med totalmatrix $[A \mid \mathbf{0}] = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & -3 & 0 \end{bmatrix}$ har løsningerne

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

Det vil sige, at
$$Nul(A) = 5$$
 par $\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \right\}$

Nul(A) er et underrum

Lad A være en $n \times m$ -matrix

Igen Nul(A) kaldes nulrummet: Det er et underrum af \mathbb{R}^m

Forskel mellem Col(A) og Nul(A)

Bemærk forskellen mellem søjlerummet og nulrummet

Når A er en $n \times m$ -matrix, indeholder...

- ▶ ...Col(A) vektorer fra \mathbb{R}^n
- ► ... Nul(A) vektorer fra \mathbb{R}^m

Overflødige vektorer

Vi så tidligere, at matricen
$$A = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 4 & 1 & 1 & -1 \\ 3 & -2 & 2 & 2 \end{bmatrix}$$
 har søjlerum

Span
$$\left\{ \begin{bmatrix} 2\\4\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right\}$$

$$\alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \alpha_4 = -\alpha_2$$

Basis for underrum

Definition

En mængde $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ kaldes en basis for underrummet V, hvis

- ► B er lineært uafhængig
- $ightharpoonup V = \operatorname{Span}(\mathcal{B})$

Et underrum kan have flere forskellige baser Det kan dog vises, at alle baser har samme antal vektorer

Basis for Col(A)

Lad R være matricen

$$R = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

på reduceret trappeform. Heraf aflæses $R[2, -1, 0, 0]^T = \mathbf{0}$ og $R[2, 0, 2, -1]^T = \mathbf{0}.$

I forhold til søjlerne i R betyder dette... $2r_1 - r_2 = 0$

I forhold til søjlerne i
$$R$$
 betyder dette... $2r_1 - r_2 = 3$

$$2r_1 + 2r_3 - r_4 = 0$$

$$\Rightarrow r_4 = 2r_1 + 2r_3$$
Altså er de lineært uafhængige søjler i R ...

V. 95. r_2

Altså er de lineært uafhængige søjler i R...

Basis for Col(A)

Matricen
$$A = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ 1 & 2 & 0 & 2 \\ 2 & 4 & 1 & 6 \\ 3 & 6 & 1 & 8 \end{bmatrix}$$
 opfylder $A \sim R$.

Dermed er \mathbf{x} en løsning til $A\mathbf{x} = 0$, hvis og kun hvis... $\mathbf{e}_{\mathbf{x}} = \mathbf{0}$

Løsningerne
$$[2, -1, 0, 0]^T$$
 og $[2, 0, 2, -1]^T$ giver altså ligningerne

 $2a_1 - a_2 = \overline{0}$
 $a_2 = 2a_1$
 $a_3 + 2a_3 - a_4 = \overline{0}$
 $a_4 = 2a_1 + 2a_3$
 $a_4 = \overline{0}$
 $a_4 = 2a_1 + 2a_3$
 $a_5 = \overline{0}$
 $a_6 = 2a_1 + 2a_3$
 $a_6 = \overline{0}$
 $a_6 = 2a_1 + 2a_3$
 $a_6 = \overline{0}$
 $a_6 = 2a_1 + 2a_3$
 $a_6 = 2a_1 + 2a_3$

Igen er de lineært uafhængige søjler...? a, azz h brosis for a, oz az - Fahrit v Pa, azz h brokspilere.

Pas på

Vi skal tage pivotsøjlerne fra den oprindelige matrix A, ikke den rækkereducerede R

Generelt ligger søjlerne i R ikke i Col(A)

At finde en basis

Eksempel

Det kan vises, at

$$B = \left[\begin{array}{ccccc} 4 & 2 & 2 & 7 & 8 \\ 3 & 7 & -4 & 3 & 5 \\ 1 & 3 & -2 & 4 & 4 \end{array} \right] \sim \left[\begin{array}{cccccc} 1 & 0 & 1 & 0 & \frac{5}{8} \\ 0 & 1 & -1 & 0 & \frac{1}{8} \\ 0 & 0 & 0 & 1 & \frac{3}{4} \end{array} \right].$$

Find en basis for Col(B), og udtryk \mathbf{b}_5 i denne basis.

En basis for
$$(ol(b))$$
 er $\{\begin{bmatrix} 4\\3 \end{bmatrix}, \begin{bmatrix} 7\\4\\5 \end{bmatrix}$

$$V: sight c_1, c_2 b_2 + c_4 b_4 = b_5$$

$$b_5 = \begin{bmatrix} 8\\5 \end{bmatrix} = \frac{5}{8} \begin{bmatrix} 4\\3 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} 2\\7\\3 \end{bmatrix} + \frac{3}{4} \begin{bmatrix} 7\\3 \end{bmatrix}$$

Basis for Nul(A)

For nulrummet har vi allerede en metode til at finde en basis: den parametriske løsning

Vektorerne, der indgår i den parametriske løsning, danner en basis

Basis for Nul(A)

Eksempel

Vi så tidligere på $\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & -3 & 0 \end{bmatrix}$ med parametrisk løsning

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix} \right\}$$