COSC 290 Discrete Structures

Lecture 24: Recurrence Relations & Relations

Prof. Michael Hay Monday, Oct. 30, 2017 Colgate University

Solving recurrence relations

Plan for today

- 1. Solving recurrence relations
- 2. Relations

Recall: recurrence relations

To analyze runtime of recursive algorithm, we can express runtime recursively.

A recurrence relation is a function T(n) that is defined (for some n) in terms of the values T(k) for input values k < n.

We will express runtime using a recurrence relation T(n) (where n typically captures some measure of input size).

Solving a recurrence relation

Suppose we have the following recurrence

How do we solve it? I.e., express it is a (non-recursive) function of n.

Two methods:

- 1. Guess. Then verify (using proof by induction). (\leftarrow cosc290)
- 2. Master method. (← cosc302)

Poll: guess for stack search

Recurrence for STACKSEARCH

•
$$T(n) = T(n-1) + c$$

What is your guess for the solution to T(n)?

2.
$$T(n) = c \cdot n$$

3.
$$T(n) = c \cdot (n+1)$$

4.
$$T(n) = c \cdot (n+2)$$

5. None of above / More than one

Guess + verify

Recurrence for RECBINARYSEARCH:

Guess: "Iterate" the recurrence starting at T(o) and look for a pattern. $T(n) = c \cdot (\lfloor \log_2 n \rfloor + 2)$.

Verify: We will prove that $\forall n \geq 1 : T(n) = c \cdot (\lfloor \log_2 n \rfloor + 2)$

Base case:
$$n = 1$$
, $T(1) = T(0) + c = 2c$ and $c \cdot (\lfloor \log_2 1 \rfloor + 2) = 2c$.

Inductive case: assume true for 1
$$\leq$$
 \emph{m} \leq \emph{n} $-$ 1. Show it's true for $\emph{n}.$

$$\begin{split} & \mathsf{T}(n) = \mathsf{T}(\lfloor n/2 \rfloor) + c & \text{def of recurrence} \\ & = c \cdot (\lfloor \log_2 \lfloor n/2 \rfloor \rfloor + 2) + c & \text{inductive hypothesis} \\ & = c \cdot (\lfloor \log_2 n/ - 1 + 2) + c & \text{math tricks with logs and floors} \\ & = c \cdot (\lfloor \log_2 n/ + 2) & \text{simplify} \end{split}$$

Poll: guess for tree search

Recurrence for TREESEARCH:

•
$$T(-1) = c$$

•
$$T(h) = 2T(h-1) + c$$

What is your guess for asymptotic solution to T(h)?

1.
$$T(h) = O(1)$$

2.
$$T(h) = O(h)$$

4.
$$T(h) = O(2^h)$$

5. None of the above / more than one

Relations

Examples

- EnrolledAt is a relation on Persons × College: ⟨p, c⟩ ∈ EnrolledAt if person p attends college c.
- · FacebookFriends is a relation on FacebookUsers: $\langle u, v \rangle \in FacebookFriends$ if u has friended v on Facebook.
- < is a relation on \mathbb{R} : $\langle x, y \rangle \in <$ if x is less than or equal to y. (We often write using infix notation: x < y.)
- abs is a relation on R × R≥o: ⟨x, v⟩ ∈ abs if |x| = v.

Relations

A (binary) relation on $A \times B$ is a subset of $A \times B$.

Sometimes interested in relations on A v A which is sometimes simply called a relation on A.

Poll: Interpreting formal definitions

Here is the formal definition of the inverse of a relation:

Definition (Inverse)

Let R be a relation on $A \times B$. The inverse R^{-1} of R is a relation on $B \times A$ defined by $R^{-1} := \{ \langle b, a \rangle \in B \times A : \langle a, b \rangle \in R \}$

Let relation S on $\{1,2,3\} \times \{a,b\}$ be $S := \{\langle 1,a \rangle, \langle 1,b \rangle, \langle 3,b \rangle\}$. Which of the following is S-1?

A)
$$S^{-1} = \{ \langle 2, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle \}$$

B) $S^{-1} = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle a, 3 \rangle \}$

C)
$$S^{-1} = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle b, 3 \rangle \}$$

Composition

Let R be a relation on $A \times B$ and S be a relation on $B \times C$.

Definition (Composition)

The composition of R and S is a relation on $A \times C$, denoted $S \circ R$, where $\langle a,c \rangle \in S \circ R$ iff there exists a $b \in B$ such that $\langle a,b \rangle \in R$ and $\langle b,c \rangle \in S$.

Example 1: let relation
$$R$$
 on $\{x,y,z\} \times \{1,2,3\}$ be $R := \{(x,1),(y,1),(z,2)\}$. Let relation S on $\{1,2,3\} \times \{a,b,c\}$ be $S := \{(1,a),(1,b),(2,b),(3,b)\}$.

Then, $S \circ R$ is

$$\{ \langle x, a \rangle, \langle x, b \rangle, \langle y, a \rangle, \langle y, b \rangle, \langle z, b \rangle \}$$

10

Suppose we have the following three relations:

- $taughtIn \subseteq Classes \times Rooms$
- $taking \subseteq Students \times Classes$
- at ⊂ Classes × Times

Example

Let's derive a new relation R from the above relations plus the inverse and composition operators.

Example: $R \subseteq Students \times Times$ where $\langle s, t \rangle \in R$ indicates that student s is taking a class at time t.

How do we express R?

 $R = at \circ taking$

11

Poll: deriving new relations, 1

Suppose we have the following three relations:

- tauahtin ⊆ Classes × Rooms
- $taking \subseteq Students \times Classes$
- at ⊂ Classes × Times

Let's derive a new relation R from the above relations plus the inverse and composition operators: $R \subseteq Students \times Students$ where $\langle s, s' \rangle \in R$ indicates that students s and s' are taking at least one class together.

- 1. taking o taking
- 2. taking ∘ taking⁻¹
- 3. taking⁻¹ ∘ taking
- 4. None of the above / More than one

Poll: deriving new relations, 2

Suppose we have the following three relations:

- tauahtin ⊆ Classes × Rooms
- $\bullet \ taking \subseteq Students \times Classes$
- at \subseteq Classes \times Times

Let's derive a new relation R from the above relations plus the inverse and composition operators: $R \subseteq \mathit{Students} \times \mathit{Students}$ where $(s,s') \in R$ indicates that students s and s' sit in the same room (but not necessarily for the same class).

- A) (taughtIn ∘ taking) ∘ (taughtIn ∘ taking)-1
- B) taking⁻¹ ∘ taughtln⁻¹ ∘ taughtln ∘ taking
- C) (taughtIn ∘ taking)⁻¹ ∘ (taughtIn ∘ taking)
- D) ((taughtIn o taking) o (taughtIn o taking))-1
- E) None of the above / More than one

Poll: Cardinality

Suppose that sets A, B, C have cardinalities n_A , n_B , n_C respectively. Let R be a relation on $A \times B$ and S a relation on $B \times C$. What is the maximum cardinality of $S \circ R$? (In discussion, justify your answer.)

- 1. n_B
- 2. $n_A + n_C$
- 3. $n_A \cdot n_C$
- min { n_A, n_C }
 min { n_A, n_B, n_C }
- 5. min { n_A, n_B, n_C