Aula 3 – Sistemas de Produção

Parte 1 – Inferência Lógica 22705/1001336 - Inteligência Artificial 2019/1 - Turma A Prof. Dr. Murilo Naldi

Agradecimentos

 Agradecimentos pela base do material utilizado nesta aula foi cedido ou adapatado do material dos professores Heloísa Camargo e Ricardo Cerri e Andréia Bonfante.

Na aula anterior

- Vimos como conhecimento pode ser representado
- Dois exemplos:
 - Através de lógica
 - Estabelecer um modelo
 - Uso de categorias
 - Facilite organização e generalização

Lógica de Primeira Ordem

- Vimos na aula anterior que lógica de primeira ordem é uma das formas mais naturais de representar conhecimento
 - Também categorias, representadas por predicados e quantificadores ∀ e ∃
 - Vimos também algumas regras de inferência importantes, como *Modus Ponens*:

$$\alpha \Rightarrow \beta, \alpha$$
 β

Exemplo de modelagem

Podemos modelar um cenário usando LPO

Exemplo de modelagem

- No exemplo:
 - Constantes: ricardo, joao, coroa, espada
 - Predicados: pessoa, rei, irmao, pertence
- Relações:
 - pessoa(ricardo), pessoa(joao)
 - irmao(ricardo,joao), irmao(joao,ricardo)
 - pertence(espada, ricardo), pertence(coroa, joao)
 - rei(joao)

- Como modelar o cenário usando LPO?
- "João é irmão de Ricardo"
 - ???
- "Se João tem coroa, então ele é rei"
 - ???
- "Todo rei possui sua coroa"
 - ???
- "O pai de uma pessoa é pai do irmão dessa pessoa"
 - ???

- Como modelar o cenário usando LPO?
- "João é irmão de Ricardo"
 - irmao(joao,ricardo)
- "Se João tem coroa, então ele é rei"
 - ???
- "Todo rei possui sua coroa"
 - ???
- "O pai de uma pessoa é pai do irmão dessa pessoa"
 - ???

- Como modelar o cenário usando LPO?
- "João é irmão de Ricardo"
 - irmao(joao,ricardo)
- "Se João tem coroa, então ele é rei"
 - pertence(coroa,joao) → rei(joao)
- "Todo rei possui sua coroa"
 - ???
- "O pai de uma pessoa é pai do irmão dessa pessoa"
 - ???

- Como modelar o cenário usando LPO?
- "João é irmão de Ricardo"
 - irmao(joao,ricardo)
- "Se João tem coroa, então ele é rei"
 - pertence(coroa,joao) → rei(joao)
- "Todo rei possui sua coroa"
 - \forall X rei(X) \rightarrow pertence(coroa(X), X)
- "O pai de uma pessoa é pai do irmão dessa pessoa"
 - ???

- Como modelar o cenário usando LPO?
- "João é irmão de Ricardo"
 - irmao(joao,ricardo)
- "Se João tem coroa, então ele é rei"
 - pertence(coroa,joao) → rei(joao)
- "Todo rei possui sua coroa"
 - \forall X rei(X) \rightarrow pertence(coroa(X), X)
- "O pai de uma pessoa é pai do irmão dessa pessoa"
 - \forall X, Y, Z pai(X,Y) \(^\) irmao(Y,Z) \(^\) pai(X,Z)

Inferência em LPO

- A inferência em LPO pode ser obtida reduzindo a base de conhecimento em lógica proposicional e utilizando inferência proposicional.
- Para isso é necessário aplicar algumas regras para os quantificadores universal e existencial.

Instanciação Universal

- Consiste em gerar todas as instancias possíveis para uma determinada variável, substituindo-a:
- Exemplo:
 - \forall X rei(X) $^{\land}$ ganancioso(X) → mal(X)
- A instanciação universal deve ver obtida com a substituição {X/joão}, {X/ricardo}, {X/pai(joão)}...

Instanciação Universal

- Substituindo:
 - rei(joão) ^ ganancioso(joão) → mal(joão)
 - rei(ricardo) ^ ganancioso(ricardo) →
 mal(ricardo)
 - rei(pai(joão)) ^ ganancioso(pai(joão)) →
 mal(pai(joão))

- ...

– ...

Instanciação Existencial

- Consiste em substituir a variável da sentença por um símbolo constante qualquer que não apareça em nenhum outro lugar da base de conhecimento.
- Exemplo:
 - $\exists X coroa(X) \land nacabeça(X, joão)$
- Substituindo ficaria:
 - $coroa(c_1) ^n nacabeça(c_1, joão)$
- de forma que c_1 não existia na base de conhecimento.

- Uma sentença está na Forma Normal Conjuntiva (FNC) se, e somente se está na forma:
 - $-a_1 \wedge a_2 \wedge a_3 \wedge \dots \wedge a_n$ com $n \ge 1$
- onde cada a_i está na forma:
 - $-b_1 v b_2 v b_3 v \dots v b_m \text{ com } m \ge 1$
- e cada b_j é uma variável proposicional, ou a negação de uma.

- Para toda sentença existe uma FNC equivalente, que pode ser obtida assim:
 - Elimine ↔ e → substituindo:
 - $-a \rightarrow b \text{ por } \neg a \lor b$
 - $-a \leftrightarrow b \text{ por } (\neg a \lor b) \land (a \lor \neg b)$
- Reduza o escopo de ¬ substituindo até não poder mais:
 - $\neg \neg a \text{ por } a$
 - $-\neg(a \lor b)$ por $(\neg a \land \neg b)$
 - $\neg \neg (a \land b) \text{ por } (\neg a \lor \neg b)$

- Em seguida, coloque toda disjunção para as posições internas das fórmulas por meio de distribuição:
 - $-av(b \wedge c)$ por $(avb) \wedge (avc)$
- Desta forma, os termos são formados por disjunções e ligados por conjunções

- Diferentes operadores v possuem precedência igual e o resultado não muda com a ordem de aplicação
 - $(a \lor b) \lor (c \lor d) = a \lor b \lor c \lor d$
- O mesmo pode ser feito com o operador ∧
 - $-(a \wedge b) \wedge (c \wedge d) = a \wedge b \wedge c \wedge d$
- Contudo, ν e Λ possuem precedência distintas ou seja:
 - $-(a \land b) \lor (c \land d) \neq a \land b \lor c \land d$

Exercícios

Converta para FNC as seguintes fórmulas:

$$-(A \rightarrow B) \rightarrow C$$

$$-A \rightarrow (B \rightarrow C)$$

$$-(A \rightarrow B) \lor (B \rightarrow A)$$

$$-A \rightarrow B) \rightarrow (\neg C \rightarrow (D \land E))$$

Inferência LPO

- Para inferência é essencial que se possa aplicar a regra de *Modus Ponens*
- Como generalizar essa regra para que ela possa ser utilizada na LPO?

Modus Ponens Generalizado

- Para sentenças atômicas p_i , p_i' e q, onde há uma substituição θ tal que subst(θ , p_i') = subst(θ , p_i) para todo i:
 - $\underline{p_1}', \underline{p_2}', \dots, \underline{p_n}', (\underline{p_1}^{\lambda}, \underline{p_2}^{\lambda}, \dots^{\lambda}, \underline{p_n} \rightarrow \underline{q})$
 - subst(θ,q)
- existem n+1 premissas a essa regra: as n sentenças atômicas p_i e a implicação de q.
- É importante observar que a premissa deve estar na FNC

Modus Ponens Generalizado

- Exemplo:
 - \forall X rei(X) $^{\land}$ ganancioso(X) \rightarrow mal(X)
 - $-p_1 = rei(X)$
 - $-p_2$ = ganancioso(X)
 - -q = mal(X)
- aplicando a substituição:
 - $-\theta = \{X/jo\tilde{a}o\}$
 - − p₁'= rei(joão)
 - $-p_2' = ganancioso(joão)$
- Sabendo que $p_1'^{\wedge}p_2' \rightarrow q$, logo podemos utilizar a regra
 - $subst(\theta, q) = mal(jo\tilde{a}o)$

- Algumas substituições fazem com que diferentes expressões lógicas se mostrem idênticas!
- Esse processo é chamado de unificação e é
 o componente chave para todos os
 algoritmos de inferência de primeira ordem.

 Tomemos um procedimento unifica que pega duas sentenças e retorna um unificador para elas, se este existir.

unifica(P,Q) = θ , onde subst(θ ,P) = subst(θ ,Q)

 Esse unificador é a substituição que torna as duas sentanças idênticas!

- A unifica(P,Q) é bem sucedida se:
 - P e Q forem constantes iguais
 - P e/ou Q forem variáveis e assumirem um único valor por variável
 - P e Q forem funções ou predicados que:
 - possuam o mesmo identificador (funtor);
 - possuam a mesma aridade
 - cada elemento também se unifique

- Exemplos:
 - unifica(A, A) = ???
 - unifica(unifica(A, B), unifica(B, abc)) = ???
 - unifica(unifica(xyz, C), unifica(C, D)) = ???

- Exemplos:
 - $unifica(A, A) = \{A/A\}$ (tautologia)
 - unifica(unifica(A, B), unifica(B, abc)) = ???
 - unifica(unifica(xyz, C), unifica(C, D)) = ???

- Exemplos:
 - $-unifica(A, A) = \{A/A\}$ (tautologia)
 - unifica(unifica(A, B), unifica(B, abc)) =
 {A/abc, B/abc}
 - unifica(unifica(xyz, C), unifica(C, D)) = ???

- Exemplos:
 - $-unifica(A, A) = \{A/A\}$ (tautologia)
 - unifica(unifica(A, B), unifica(B, abc)) = {A/abc, B/abc}
 - unifica(unifica(xyz, C), unifica(C, D)) = {C/xyz,
 D/xyz} (a unificação é simétrica)

- Exemplos:
 - unifica(abc, abc) = ???
 - unifica(abc, xyz) = ???
 - unifica(f(A), f(B)) = ???

- Exemplos:
 - unifica(abc, abc) = A unificação é bem sucedida
 - -unifica(abc, xyz) = ???
 - unifica(f(A), f(B)) = ???

- Exemplos:
 - unifica(abc, abc) = A unificação é bem sucedida
 - unifica(abc, xyz) = Falha em unificar porque são constantes diferentes
 - unifica(f(A), f(B)) = ???

- Exemplos:
 - unifica(abc, abc) = A unificação é bem sucedida
 - unifica(abc, xyz) = Falha em unificar porque são constantes diferentes
 - $unifica(f(A), f(B)) = \{A/B\}$

- Exemplos:
 - unifica(f(A), g(B)) = ???
 - unifica(f(A), f(B, C)) = ???
 - unifica(f(g(A)), f(B)) = ???

- Exemplos:
 - unifica(f(A), g(B)) = Falha porque o
 identificador dos termos são diferentes
 - unifica(f(A), f(B, C)) = ???
 - unifica(f(g(A)), f(B)) = ???

- Exemplos:
 - unifica(f(A), g(B)) = Falha porque o
 identificador dos termos são diferentes
 - unifica(f(A), f(B, C)) = A unificação falha
 porque os termos têm aridades diferentes
 - unifica(f(g(A)), f(B)) = ???

- Exemplos:
 - unifica(f(A), g(B)) = Falha porque o
 identificador dos termos são diferentes
 - unifica(f(A), f(B, C)) = A unificação falha
 porque os termos têm aridades diferentes
 - $unifica(f(g(A)), f(B)) = \{B/g(A)\}$

- Exemplos:
 - unifica(f(g(A), A), f(B, xyz)) = ???
 - unifica(A, f(A)) = ???

- Exemplos:
 - $unifica(f(g(A), A), f(B, xyz)) = \{A/xyz, B/g(xyz)\}$
 - unifica(A, f(A)) = ???

- Exemplos:
 - $unifica(f(g(A), A), f(B, xyz)) = \{A/xyz, B/g(xyz)\}$
 - unifica(A, f(A)) = Unificação infinita, A é unificado com f(f(f(f(...)))). Na Lógica de Primeira Ordem propriamente dita e em vários dialetos modernos de Prolog, isto é proibido (OCCUR CHECK).

Exemplos:

```
- unifica(gosta(joão,X),gosta(joão,jane)) =
???
- unifica(gosta(joão,X),gosta(Y,bill)) =
???
- unifica(gosta(joão,X),gosta(Y,mãe(Y))) =
???
- unifica(gosta(joão,X),gosta(X,elizabete)) =
???
```

Exemplos:

```
- unifica(gosta(joão,X),gosta(joão,jane)) =
{X/jane}
- unifica(gosta(joão,X),gosta(Y,bill)) =
???
- unifica(gosta(joão,X),gosta(Y,mãe(Y))) =
???
- unifica(gosta(joão,X),gosta(X,elizabete)) =
???
```

- Exemplos:
 - unifica(gosta(joão,X),gosta(joão,jane)) =

{X/jane}

- unifica(gosta(joão,X),gosta(Y,bill)) =

```
{X/bill, Y/joão}
```

- unifica(gosta(joão,X),gosta(Y,mãe(Y))) =

???

- unifica(gosta(joão,X),gosta(X,elizabete)) =

???

- Exemplos:
 - unifica(gosta(joão,X),gosta(joão,jane)) =

{X/jane}

- unifica(gosta(joão,X),gosta(Y,bill)) =

```
{X/bill, Y/joão}
```

- unifica(gosta(joão,X),gosta(Y,mãe(Y))) =

```
{Y/joão, X/mãe(joão)}
```

- unifica(gosta(joão,X),gosta(X,elizabete)) =

???

- Exemplos:
 - unifica(gosta(joão,X),gosta(joão,jane)) =

{X/jane}

- unifica(gosta(joão,X),gosta(Y,bill)) =

```
{X/bill, Y/joão}
```

- unifica(gosta(joão,X),gosta(Y,mãe(Y))) =

```
{Y/joão, X/mãe(joão)}
```

unifica(gosta(joão,X),gosta(X,elizabete)) =falha.

- unifica(gosta(joão,X),gosta(X,elizabete)) = falha.
 - Pode ser resolvida com padronização
 - Que consiste em renomear X em uma das sentenças, se X não fizer referência ao mesmo objeto em ambas as sentenças
 - Somente neste caso, a unificação fica:
 - unifica(gosta(joão,X),gosta(Z,elizabete)) = {Z/joão,X/elizabete}

unifica(gosta(joão,X),gosta(Y,Z))=???

- unifica(gosta(joão,X),gosta(Y,Z))=
 - {Y/joão, X/joão, Z/joão} // possível solução
 - {Y/joão, X/Z} // unificação mais geral
- Ver algoritmo detalhado na página 269 do livro de IA do Russel e Norvig

Sistemas de produção

- Modelo de Computação usado em IA para busca e resolução de problemas
- Os Sistemas de Produção são úteis para o projeto de Sistemas Especialistas baseados em regras, por fornecerem um modelo para as tarefas que são centrais para esses sistemas, como:
 - Codificar a perícia humana na forma de regras
 - Projetar algoritmos de busca guiada por padrão

Sistemas de Produção

- Pode ser aplicado em diversos problemas e cenários distintos
 - Em especial, no apoio a decisão
- Um sistema de produção é definido por:
 - Conjunto de regras de produção
 - Memória de trabalho
 - Ciclo reconhecimento ação

Componentes do SBC

 Sistema de produção pode ser usado como componente de um SBC, produzindo das ações

Composição

- Conjunto de regras de produção
- Uma regra (ou produção) é um par condição-ação :
 SE <condição> ENTÃO <ação>

que define uma parcela de conhecimento

- <condição>: padrão que determina quando a regra pode ser aplicada
- <ação>: define um passo na resolução do problema

Composição

Memória de trabalho

- Conteúdo: descrição do estado corrente do problema num processo de raciocínio.
- A descrição é formada por um ou mais padrões que são comparados com as condições das produções.
- Finalidade: quando a condição de uma regra casa com o conteúdo da memória de trabalho, a ação correspondente deve ser tomada.
- As ações são projetadas para alterar o conteúdo da memória de trabalho.

Composição

- O SP aplica um ciclo reconhecimento-ação
 - Reconhecimento da memória de trabalho
 - Ação sobre a memória de trabalho
- Memória de trabalho é inicializada com a descrição inicial do problema
- Os padrões da memória de trabalho são comparados com as condições das regras de produção
 - Que por sua vez produzem um subconjunto de regras habilitadas
 - Uma entre elas é escolhida (resolução de conflito)
- O ciclo é repetido usando a memória de trabalho modificada, até que nenhuma regra case com o conteúdo da memória de trabalho

Esquema básico de um SP

• O controle realiza ciclos até que o padrão contido na memória de trabalho não case mais com nenhuma condição das produções

Resolução de conflito

- Mais de uma regra pode ser disparada
 - Qual utilizar para produzir?
- A resolução de conflito é a seleção de uma regra para disparar, dentre as regras habilitadas
- Estratégias precisam ser definidas podendo ser:
 - Simples (primeira regra, regra menos usada, etc)
 - ou envolver heurísticas mais complexas, dependendo do problema sendo resolvido.

Exemplo

- Problema: Ordenar uma cadeia de caracteres composta de letras a, b, c
- Regras de Produção:
 - 1. ba \Rightarrow ab
 - 2. ca \Rightarrow ac
 - 3. $cb \Rightarrow bc$
- Uma produção está habilitada se sua condição casar com uma subcadeia da cadeia que está na memória de trabalho.
- O disparo de uma regra causa a substituição da subcadeia que casou com a condição da regra pelo consequente da regra.

Exemplo

Iteração	Memória de	Conjunto	Regra
	Trabalho	de Conflito	Disparada
0	cbaca	1,2,3	1
1	cabca	2	2
2	acbca	3,2	2
3	acbac	1,3	1
4	acabc	2	2
5	aacbc	3	3
6	aabcc	0	Pare

Representação do SP

- O conjunto de regras pode ser representado na forma de grafo and/or
- Essa representação é chamada de **grafo completo** do SP.

Grafo AND/OR

Supor regras com apenas um consequente:

$$a,b,c \rightarrow d,e$$
 equivale a $a,b,c \rightarrow d$

$$a,b,c \rightarrow d$$

$$a,b,c \rightarrow e$$

- Dois tipos de nós:
 - AND / conjunção
 - OR / disjunção

Representação de Regras

- $a,b,c \rightarrow w$
- $a,b \rightarrow x$
- $c,d,e \rightarrow x$

