Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access

Muhammad A. Jadoon

ITN WindMILL Study Group Meeting

May 13, 2020 (Quarantine day 62)

Agenda

Introduction

System Model and Problem Formulation

Proposed Multiuser RL

Results

Introduction

Introduction

- ALOHA-based random access
- Each user is an RL agent and learns to access the spectrum independently
- No coordination among users. message passing or carrier sensing. Learning is only based on ACK signal
- Deep Q-network (with LSTM, dueling and doubling)

System Model and Problem

Formulation

System Model

- Set $\mathcal{N} = \{1, 2, \dots, N\}$ of users
- Set $\mathcal{K} = \{1, 2, \dots, K\}$ of shared orthogonal channels
- At each time slot t, each users transmits its own packet with some probability (ALOHA-like)
- ullet Partially observable environment each user relies on its own ACK received in the past t-1 time slots
- Each user, after transmission, receives ACK as a binary observation:

$$o_n(t) = \begin{cases} 1, & \text{if success} \\ 0, & \text{if collision} \end{cases}$$
 (1)

Problem Formulation (1/2)

- Distributed setting no message exchange between users for access
- Partially observable environment
- Let a_n(t) ∈ {0,1,..., K} be the action of user n at time t.
 For each user n, actions till time t and the binary observations o_n(t) together define the history:

$$H_n(t) = \{a_n(0), a_n(1), \dots, a_n(t-1), a_n(t)\} \times \{o_n(0), o_n(1), \dots, o_n(t-1), o_n(t)\}$$
(2)

Problem Formulation (2/2)

Since each user has the goal to find the empty slots independently; the policy π_n for each user n at time t is defined as a mapping from history $H_n(t)$ to a probability mass function over action space $\mathcal{K} = \{0, 1, \ldots, K\}$. We write the policy for user n as

$$\pi_n(t) = (p_{n,0}(t), p_{n,1}(t), \dots, p_{n,K}(t)),$$
 (3)

where

$$p_{n,k}(t) = Pr(a_n(t) = k) \tag{4}$$

is the probability that user n takes action $a_n(t) = k$ at time t.

Deep Q Network

I am not going in the details of Q learning, rewards, policy and deep Q network assuming you already know about it... if you don't, you should!

Proposed Multiuser RL

Proposed DQN (1/3)

Input $x_n(t)$: a vector of size 2K + 2. First K + 1 entries are one-hot vectors of action at t - 1. If users didn't choose to transmit, the first entry will be 1 and rest K entries equal to zero. (k+1)th entry is 1, if user selected channel k. The next K entries are residual channel capacity and the last entry is ACK.

Proposed DQN (2/3)

Input Layer Example:

For 2 users and 2 channels case,

if action
$$a = [2, 2]$$
, then $x_1(t) = [0, 0, 1, 1, 1, 0]$ and $x_2(t) = [0, 0, 1, 1, 1, 0]$;

and

if action
$$a=[0,1]$$
 then $x_1(t)=[1,0,0,1,1,0]$ and $x_2(t)=[0,1,0,0,1,1]$

Proposed DQN (3/3)

Value and Advantage layers: Q-value for selecting action $a_n(t)$ at time t is updated by:

$$Q(a_n(t)) \leftarrow V + A(a_n(t))$$
(5)

 Double Q-learning (DQN₁ and DQN₂) is used to decouple the selection of actions from the evaluation of Q-values.

How it works

- At each time slot t, obtain observation $o_n(t)$, and feed the input vector $\mathbf{x}_n(t)$ to DQN_1
- Generate Q-values Q(a) for all actions
- Play strategy $\pi_n(t)$ and draw action $a_n(t)$ according to the following distribution:

$$\Pr(a_n(t) = a) = \frac{(1 - \alpha)e^{\beta Q(a)}}{\sum\limits_{a \in \{0, 1, \dots, K\}} e^{\beta Q(a)}} + \frac{\alpha}{K + 1}$$

$$\forall a \in \{0, 1, \dots, K\},$$

$$(6)$$

for small $\alpha > 0$, and temperature β .

Competitive Reward Maximizaton

When each user aims at maximizing its own rate then

$$r_n(t) = \mathbf{1}_n(t-1). \tag{7}$$

Where

$$\mathbf{1}_{n}(t) = \begin{cases} 1 & \text{if ACK} = 1\\ 0 & \text{otherwise,} \end{cases}$$
 (8)

for user n at time slot t.

Equilibrium points for this case are efficient when $N \leq K$, and highly inefficient when $N \geq K$.

Cooperative Reward Maximization

When each user aims to maximize a global utility function. Let,

$$r_n(t) = 0, \text{ for all } 1 \le t \le T - 1, \tag{9}$$

and

$$r_n(T) = \sum_{n=1}^{N} f\left(\sum_{t=1}^{T} \mathbf{1}_n(t-1)\right)$$
 (10)

Results

Channel Utilization Results

Figure 1: Channel Throughput

Average Rate Results

Figure 2: Average user rate for 100 users and 50 shared channels

That's all:)

Thank You!

