

City University

Dept. of Computer Science and Engineering **SE 401 Computer Simulation and Modelling** Fahim Shahriar, Lecturer, Dept. of CSE

Class Lecture Notes (SE401)

Auto-Correlation Test (Algorithm)

Step-1: Define the hypothesis for uniformity.

 H_0 : $\rho_i = 0 \rightarrow No's$ independent

 H_1 : $\rho_i \neq 0 \rightarrow No's$ aren't independent

Step-2: Find i and lag m.

Step-3: Using i, m, N

Find M→ largest integer

by $i+(M+1)m \leq N$

N→ total no of values in the sequence

Step-4:
$$\hat{\rho}_{im} = \frac{1}{M+1}$$
, $\left[\sum_{k=0}^{M} R_{i+k_m}, R_{i+[k+1]m}\right] - 0.25$

Step-5: Find the S.D pf the estimator,

$$\sigma_{\widehat{p}_m} = \frac{\sqrt{13M} + 7}{12(M+1)}$$

Step-6:
$$Z_0 = \frac{\hat{\rho}_{im}}{\sigma_{\hat{p}_m}} = ?$$

Step-7: Determine $+\mathbf{Z}_{\alpha/2}$, $-\mathbf{Z}_{\alpha/2}$

Step-8: If $-Z_{\alpha/2} \le Z_0 \le +Z_{\alpha/2} \rightarrow H_0$ isn't rejected.

Here, i= initial no.

lag m= constant (harmony projection)

Geometry projection

Auto-Correlation Test (Example)

0.12, 0.01, 0.23, 0.28, 0.89, 0.31, 0.64, 0.28, 0.83, 0.93, 0.99, 0.15, 0.33, 0.35, 0.91, 0.41, 0.60, 0.27, 0.75, 0.88, 0.68, 0.49, 0.05, 0.43, 0.95, 0.58, 0.19, 0.36, 0.69, 0.87. (α =0.025, Test No=3 at position 3rd, 8th, 13th are auto correlated) N=30

S1: Define Hypothesis,

$$3+(M+1)5 \le 30$$

$$\rightarrow$$
 (M+1) <= 5.4

M=4

S4:
$$\hat{\rho}_{im} = \frac{1}{M+1}$$
, $\left[\sum_{k=0}^{M} R_{i+k_m} . R_{i+[k+1]m}\right] - 0.25$

$$\hat{\rho}_{35} = \frac{1}{4+1} \left[\sum_{k=0}^{4} R_{3+5k} . R_{3+5[k+1]} \right] - 0.25$$

=
$$\frac{1}{5}$$
 [R₃. R₈ + R₈. R₁₃ + R₁₃. R₁₈ + R₁₈. R₂₃ + R₂₃. R₂₈]-0.25

$$= \frac{1}{5} [0.23*0.28 + 0.28*0.33 + 0.33*0.27 + 0.27*0.05 + 0.05*0.36]$$

$$= \frac{1}{5} (0.2774) - 0.25$$

$$= 0.05548 - 0.25$$

= -0.19452, This is the estimator

S5:
$$\sigma_{\widehat{p}_m} = \frac{\sqrt{13(4)} + 7}{12(4+1)} = \frac{\sqrt{52} + 7}{60} = 0.128$$

S6:
$$Z_0 = \frac{\hat{\rho}_{im}}{\sigma_{\hat{p}_{m}}} = \frac{-0.19452}{0.128} = -1.51$$

S7:
$$Z_{0.025} = 1.96$$

S8: $-Z_{\alpha/2} \le Z_0 \le +Z_{\alpha/2}$

 $-1.96 \le -1.51 \le 1.96$, H₀ is accepted.

Auto-Correlation Test (Example)

0.19, 0.16, 0.82, 0.63, 0.04, 0.16, 0.30, 0.22, 0.88, 0.48, 0.29, 0.56, 0.44, 0.05, 0.81, 0.38, 0.59, 0.37, 0.71, 0.43, 0.92, 0.45, 0.57, 0.99, 0.20, 0.14, 0.64, 0.50, 0.73, 0.15, 0.02, 0.49, 0.86, 0.24, 0.90, 0.74, 0.41, 0.09, 0.80, 0.42. (α =0.025, $Z_{0.025}$ = 1.96. Test No=3 at position 2nd, 7th, 12th are auto correlated)

N = 40

S1: Define Hypothesis,

S2: i=2, lag m=5

S3: Find M, $i+(M+1)m \le N$

$$2+(M+1)5 \le 40$$

$$\rightarrow$$
 M <= 6.6 [So, M= max (6,5, 4...0)]

M=6

S4:
$$\hat{\mathbf{\rho}}_{im} = \frac{1}{M+1}$$
, $\left[\sum_{k=0}^{M} R_{i+k_m} \cdot R_{i+[k+1]m}\right] - 0.25$

$$\hat{\mathbf{p}}_{25} = \frac{1}{6+1} \left[\sum_{k=0}^{6} R_{2+5k} . R_{2+5[k+1]} \right] - 0.25$$

=
$$\frac{1}{7}$$
 [R₂. R₇ + R₇. R₁₂ + R₁₂. R₁₇ + R₁₇. R₂₂ + R₂₂. R₂₇ + R₂₇. R₃₂ + R₃₂. R₃₇]-0.25

$$= \frac{1}{7} [0.16*0.30 + 0.30*0.56 + 0.56*0.59 + 0.59*0.45 + 0.45*0.64 + 0.64*0.49 + 0.49*0.41]$$

$$=\frac{1}{7}(1.6144)-0.25$$

$$= 0.23063 - 0.25$$

= -0.0193, This is the estimator

S5:
$$\sigma_{\widehat{p}_m} = \frac{\sqrt{13(6)} + 7}{12(6+1)} = \frac{\sqrt{78} + 7}{84} = 0.10975$$

S6:
$$Z_0 = \frac{\hat{\rho}_{im}}{\sigma_{\hat{p}_m}} = \frac{-0.0193}{0.10975} = -0.17$$

S7:
$$Z_{0.025} = 1.96$$

S8:
$$-Z_{\alpha/2} \le Z_0 \le +Z_{\alpha/2}$$

$$-1.96 \le -0.17 \le 1.96$$
, H₀ is accepted.