From Chisel to Chips in Fully Open-Source

Martin Schoeberl, Luca Pezzarossa Technical University of Denmark

Open-Source SW is a BIG Success

- UC Berkeley's TCP/IP stack powers the Internet
- Gcc is used to compile Linux
- Linux runs the servers for the Internet
 - Mobile phones run with Linux
 - Linux is used in embedded devices
- Apache serves the web pages
- Java and the JVM run the cloud apps
- We can browse the Internet with OS Firefox
- Most languages have an open-source compiler

OS Hardware and Tools

- Some processor implementations are available
 - Eg., Rocket, Patmos, and some more
- Tools (simulators, synthesis) are mostly closed source
- With a few exceptions
 - Chisel as HW construction language
 - Verilator for simulation
 - Yosys and ABC for synthesis

Producing a Chip

- Is usually very expensive
- Needs expensive tools
- Needs a production development kit (PDK)
 - Closed source, NDA
- We can share a wafer with several projects
 - Multi-project wafer

Google Enters the HW Scene

- Tim Ansell was asking: what is missing to make HW design as "easy" as SW development?
 - We are missing digital designers
- How to provide incentives for students to learn hardware design?
 - The open-source infrastructure and
 - A free Chip!
 - Including test PCBs with the mounted Chip

Google and SkyWater

- SkyWater is a fab producing 130 nm chips
 - Former fab of Cypress
- SkyWater together with Google put the PDK into open source
- PDK is integrated with open-source tools
- If the hardware design is open source, Google pays the production

Open-Source Tools

- Chisel as a modern design language
 - I am using only Chisel since 2012
 - Teaching digital design with Chisel
 - Patmos is a processor written in Chisel
- Simulation
 - For Chisel we use Treadle for unit tests
 - For a full (Patmos) system: Verilator
 - For the chip tests Icarus Verilog

Synthesis

- YoSys as synthesis tool
 - Was a BSc project at TU Vienna (2013)
 - Now used for most OS tools flows
- ABC is integrated in YoSys
 - Translates design to primitives
 - Does the mapping
- OpenLane/Road for the rest
 - Floor planning, placement, clock tree, routing,...

OpenLane Tool Flow

Caravel

- The harness for the design
 - With a 10 mm2 user area
- The harness contains a RISC-V processor
 - As management core
 - To communication via a UART
- Integrates all the mentioned tools
- Tests for precheck before tapeout

Caravel

A Multi-Project Waver

A Class Idea

- We (at our section) do not know the OS tools
 - Luca and me have no ASIC backend experience
- Let us explore this in a special course
- 12 students join
 - Mostly BSc in their 4th semester
- Use an open-source design (Patmos)
 - Build all needed clue components
- Get a chip from Google/SkyWater

What Students Know

- They had Digital Electronics 1 and 2
- Basic digital electronics
 - Boolean algebra
 - A little VHDL and basic Chisel
 - Final project: a vending machine
 - FSM plus datapath
- Project is done with an FPGA board
 - They know how to use Xilinx Vivado

The Patmos Project

- A time-predictable processor for real-time systems
- Was part of a large EU funded project
 - As a multicore processor with a network-on-chip
 - All in open-source from the start on
- Initially written in VHDL
- I ported it during a UC Berkeley visit to Chisel
 - As an exercise to learn Chisel

Patmos Pipeline

The Design

Work Groups

- General tool flow and server setup
- SPI Controller
- Memory controller with the SPI controller
- Loadable boot memory
 - Including setting the PC
- RAM compiler

Finishing

- After integration
 - We had many precheck errors
 - Consumed a lot of time to fix them
- Missed deadline for MPW 6 by hours
- Submitted later to MPW 7
 - We are now in position #3
 - Increases the chance in the lottery

Our Final Patmos Chip

What Did We Learn

- A chip is doable within one semester
 - With 4th semester students
- It is not as simple as FPGA synthesis
 - No "Play" button
- We should have run the hardening and precheck earlier
- Memories are a pain
- Installation was not so easy
 - Needed some help from a Slack channel

Summary

- The open-source move approaches hardware
- Complete flow from Chisel to chips is possible
- Sponsored by Google
- Produced by SkyWater on a MPW
- We managed to finish one chip in a semester
 - with 4th semester students
- It was quite fun to do it
- Getting a real chip was a strong motivation for the students