上 海 交 通 大 学 试 卷(<u>A</u>卷)

(2021 至 2022 学年 第 1 学期)

班级号	学号	姓名
课程名称 _	AI2615 算法设计与分析	成绩

Question 1 (25 Points). Consider the following variant of Kruskal Algorithm. Does it correctly find a maximum spanning tree on an undirected weighted graph? If so, prove its correctness. If not, give a counterexample $(G = (V, E), w: E \to \mathbb{R}^+)$ showing that it fails to find a maximum spanning tree.

Kruskal variant($G = (V, E), w: E \to \mathbb{R}^+$)

- Sort the edges by the weight *descending* order, and initialize $S \leftarrow \emptyset$.
- ullet For each edge e in the order, if adding e to S does not create a cycle, then add it to S.
- \bullet Terminate when S forms a spanning tree.

我承诺,我将严

格遵守考试纪律。

题号					
得分					
批阅人(流水阅					
卷教师签名处)					

承诺人: _____

Question 2 (25 Points). Suppose we want to allocate m different items to n agents. Let M be the set of items and $N = \{1, ..., n\}$ be the set of agents. Each agent i has a demand set $N(i) \subseteq M$ which describes the subset of items wanted by agent i. In addition, each agent i can be allocated at most $c(i) \in \mathbb{Z}^+$ items. Design a polynomial time algorithm that allocates the maximum number of demanded items. That is, your algorithm takes $(\{N(i), c(i)\}_{i=1,...,n})$ as the input and outputs an allocation $(A_1, ..., A_n)$ maximizing $\sum_{i=1}^n |A_i|$ subject to that

- $A_i \subseteq N(i) \subseteq M$ and $A_i \cap A_j = \emptyset$ for any $i \neq j$, and
- $|A_i| \le c(i)$.

Prove the correctness of your algorithm and analyze its running time.

Question 3 (25 Points). Given a $m \times n$ non-negative integer matrix $A \in \mathbb{Z}_{\geq 0}^{m \times n}$, suppose we want to walk from the entry (1,1) to the entry (m,n). In each step, you can walk from (i,j) to either (i+1,j) or (i,j+1). Design a polynomial time algorithm that finds a valid walk which maximizes the sum of the visited entries. Prove the correctness of your algorithm and analyze its time complexity.

Question 4 (25 Points). Consider the *Knapsack* problem. You have a set of items $N = \{1, ..., n\}$ and a capacity constraint $K \in \mathbb{Z}^+$. Each item i has a weight $w_i \in \mathbb{Z}^+$ and a value $v_i \in \mathbb{Z}^+$. The objective is to find a subset of items $S \subseteq N$ with maximum total value $\sum_{i \in S} v_i$ subject to the capacity constraint $\sum_{i \in S} w_i \leq K$. You can assume $w_i \leq K$ for each item i.

- (a) (10 Points) Prove that Knapsack is NP-hard.
- (b) (10 Points) Consider a special case of this problem where we have $w_i = v_i$ for each item *i*. Prove that the following greedy algorithm gives an 0.5-approximation: iteratively pick an item with maximum $w_i = v_i$ until no more item can be added to S.
- (c) (5 Points) Provide a tight example showing that the algorithm in (b) cannot do better than 0.5-approximation.