α) Η C έχει εστίες τα σημεία E(5,0), E'(-5,0) οπότε έχει εξίσωση της μορφής $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1 \quad \text{και} \quad \gamma = 5 \; . \quad \text{Από τον ορισμό της υπερβολής γνωρίζουμε ότι}$ $|(ME) - (ME')| = 2\alpha \; . \; \text{Είναι}$

$$(ME) - (ME') = \sqrt{(5-5)^2 + (\frac{9}{4} - 0)^2} - \sqrt{(5+5)^2 + (\frac{9}{4} - 0)^2} = \sqrt{\frac{81}{16}} - \sqrt{100 + \frac{81}{16}} = \frac{9}{4} - \sqrt{\frac{1681}{16}} = \frac{9}{4} - \frac{41}{4} = -\frac{32}{4} = -8$$

Συνεπώς $2\alpha = \left| -8 \right| \Leftrightarrow \alpha = 4$ οπότε έχει εκκεντρότητα $\varepsilon = \frac{\gamma}{\alpha} = \frac{5}{4}$.

β) Από τη σχέση $\gamma^2=\alpha^2+\beta^2$ έχουμε ότι $5^2=4^2+\beta^2 \Leftrightarrow \beta^2=9 \Leftrightarrow \beta=3$. Τελικά η ζητούμενη εξίσωση της C είναι η $\frac{x^2}{16}-\frac{y^2}{9}=1$.

γ) Η διχοτόμος της γωνίας $\hat{\text{EME}}'$ είναι η εφαπτόμενη στο $M(5,\frac{9}{4})$ που έχει εξίσωση

$$\frac{5 \cdot x}{16} - \frac{9}{4} \cdot \frac{y}{9} = 1 \Leftrightarrow \frac{5x}{16} - \frac{y}{4} = 1.$$

δ) Οι ασύμπτωτες της C έχουν εξισώσεις $\varepsilon_1:y=\frac{3}{4}x\Leftrightarrow 3x-4y=0$ και $\varepsilon_2:y=-\frac{3}{4}x\Leftrightarrow 3x+4y=0\,.$ Τα διανύσματα $\vec{\delta}_1:(4,3)$ και $\vec{\delta}_2:(-4,3)$ είναι παράλληλα στις ευθείες ε_1 και ε_2 αντίστοιχα.

Είναι
$$\sigma v (\vec{\delta}_1, \vec{\delta}_2) = \frac{\vec{\delta}_1 \cdot \vec{\delta}_2}{\left|\vec{\delta}_1\right| \cdot \left|\vec{\delta}_2\right|} = \frac{-4 \cdot 4 + 3 \cdot 3}{\sqrt{(-4)^2 + 3^2} \cdot \sqrt{4^2 + 3^2}} = \frac{-16 + 9}{\sqrt{25} \cdot \sqrt{25}} = \frac{-7}{25}$$
 οπότε το

συνημίτονο της οξείας γωνίας που σχηματίζουν οι ασύμπτωτές της C είναι $\frac{7}{25}$.

