**Project Management Course (GEP)** 

New real-time GNSS algorithms for detection and measurement of potential geoeffective stellar flares

Author: David Moreno Borràs

Supervisor: Manuel Hernández-Pajares

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH





#### Introduction and areas of interest



Stellar flares



Global Navigation Satellite System (GNSS)

- Physics, astronomy, algorithms and the study of large sets of data
- Could be expanded to fields like AI

#### Main objectives

- Detecting solar flares without knowing the position of the sun
- Adapting the method to stellar flares
- Adapting the method to run in real time

#### State of the art

- Far-away stars: detected only using dedicated telescopes.
  - First study as a Bachelor Thesis conducted in 2016
- Solar flares: detected with currently existing algorithms

#### **Development tools**

- Version control: Git and GitHub
- Coding: GFortran, AWK, Python
- Report: LaTeX
- OS: Ubuntu 18.04.2 LTS
- Other tools: Sublime Text 3, Google Slides, teamgantt.com, etc

#### **Scheduling | Task description**

- Introduction: understanding the problem
- Project management (GEP)
- Study of the detection of flares from far-away stars
- Detection of solar flares with no information of the Sun's location
- Adapting the algorithms to run in real time
- Writing the report and final presentation

## Scheduling | Time Table

| Task                                | Dedication Time (hours) |
|-------------------------------------|-------------------------|
| Introduction                        | 20                      |
| GEP                                 | 90                      |
| Study of flares from far-away stars | 120                     |
| Detection of solar flares           | 120                     |
| Detection in real-time              | 100                     |
| Writing report                      | 90                      |
| Final presentation                  | 4                       |
| Total                               | 544                     |

#### Scheduling | Gantt chart



## Scheduling | Action plan

- Weekly meetings
- Email communication
- Rescheduling if any problem appears

#### **Obstacles and risks**

- Understanding the problem
- Unfeasibility of the solution
- Interferences with the Sun
- Computational power
- Bugs

## **Cost estimation | Hardware resources**

| Product    | Units | Price        | Useful life (years) | Amortization |
|------------|-------|--------------|---------------------|--------------|
| Asus X555L | 1     | 750 <b>€</b> | 6                   | 60 €         |
| PC devices | 1     | 200 €        | 6                   | 20 €         |
| Total      |       | 950 €        |                     | 80 €         |

## **Cost estimation | Software resources**

#### Common

| Product       | Units | Price | Useful life (years) | Amortization |
|---------------|-------|-------|---------------------|--------------|
| Ubuntu 18.04  | 1     | 0 €   | E                   | 0 €          |
| Google Chrome | 1     | 0 €   | -                   | 0 €          |
| Evince        | 1     | 0 €   | -                   | 0 €          |
| Total         |       | 0 €   |                     | 0 €          |

#### **Cost estimation | Software resources**

#### **Developing the algorithms**

| Product        | Units | Price | Useful life (years) | Amortization |
|----------------|-------|-------|---------------------|--------------|
| Git            | 1     | 0 €   | -                   | 0 €          |
| GitHub         | 1     | 0 €   | =                   | 0 €          |
| Sublime Text 3 | 1     | 0 €   | Ħ                   | 0 €          |
| Python         | 1     | 0 €   | -                   | 0 €          |
| GNSS Data      | 1     | 0 €   | -                   | 0 €          |
| GFortran       | 1     | 0 €   | -                   | 0 €          |
| Total          |       | 0 €   |                     | 0 €          |

#### **Cost estimation | Software resources**

## Writing the report

| Product     | Units | Price | Useful life (years) | Amortization |
|-------------|-------|-------|---------------------|--------------|
| LibreOffice | 1     | 0 €   | _                   | 0 €          |
| LaTeX       | 1     | 0 €   | -                   | 0 €          |
| TeamGantt   | 1     | 0 €   | -                   | 0 €          |
| Total       |       | 0 €   |                     | 0 €          |

## **Cost estimation | Human resources**

| Role               | €/hour | Hours | Cost  |
|--------------------|--------|-------|-------|
| Project manager    | 45     | 100   | 4500  |
| Software developer | 40     | 300   | 12000 |
| Tester             | 30     | 150   | 4500  |
| Total              |        | 550   | 21000 |

## **Cost estimation | Indirect costs**

| Product     | Use      | Price        | Estimated cost |
|-------------|----------|--------------|----------------|
| ADSL        | 4 months | 40 €/month   | 160 €          |
| Electricity | 110  kWh | 0.1067 €/kWh | 11.7 €         |
| Total       |          |              | 172 €          |

## Total budget divided by task

| Task                                                                        | Estimated cost |
|-----------------------------------------------------------------------------|----------------|
| Introduction to the problem                                                 | 1106 €         |
| GEP                                                                         | 4424 €         |
| Feasibility of the detection of flares from far-away stars                  | 4424 €         |
| Detection of solar flares with no information about the location of the Sun | 4424 €         |
| Detection of stellar flares in real-time                                    | 3318 €         |
| Writing the report and final presentation                                   | 4424 €         |
| Total                                                                       | 22122 €        |

# Sustainability

|               | PPP                         | Exploitation                | Risks                      |
|---------------|-----------------------------|-----------------------------|----------------------------|
| Environmental | (2) Design<br>consumption   | (2) Ecological<br>footprint | (2) Environmental<br>risks |
| Economic      | (4) Resources needed        | (2) Cost                    | (7) Human resources        |
| Social        | (9) High personal<br>impact | (5) Medium social<br>impact | (2) Low social risks       |

#### **Social sustainability**

- Relevant project personally
- Experience in research
- Useful tool for astronomers

## **Economic sustainability**

- Low cost compared to other alternatives:
  - GLAST
  - GOES

#### **Environmental sustainability**

- Low environmental impact for the setup
- Alternatives use solar energy to function

Thanks for your time