

随机 机 年 Stochastic Process 上框

§ 5.7 排队链

主讲: 王湘君

用 X_t 表示t时刻"服务系统"中的"顾客"数,由于顾客的到达和所需的服务时间都是随机的,所以 $\{X_t, t \geq 0\}$ 为一S.P..

"顾客"和"服务系统"的概念很宽泛

排队论是随机过程的一个重要分支,也涉及大量的优化运筹问题。

Basic notation of today was standardized in 1971 (Queueing Standardization Conference Report, May 11, 1971)

(arrival process / service / number of servers / maximum possible in system / queue discipline)

M Markovian inter-arrival or service time

D Deterministic inter-arrival or service time

G Gerneral inter-arrival or service time

1,2,···, ∞ Number of parallel servers or capacity

FIFO First in, first out queue discipline

SIRO Service in random order

PRI Priority queue discipline

排队模型的四个基本量

The average number of customers in the system.

The average number of customers waiting in queue.

The average amount of time of a customer spend in the

system.

The average amount of time of a customer waiting in

queue.

04

M/M/1/∞

01

顾客以速率为λ的Poisson 过程达到服务机构

03

只有一位服务人员

02

每位顾客的服务时间

 $i.i.d \sim E(\mu)$

04

系统的容量无穷大

 ${X_t, t \ge 0}$ 为一生灭过程, $\lambda_n = \lambda, \mu_n = \mu$.

则当且仅当 $\lambda < \mu$ 时, $\{X_t, t \geq 0\}$ 存在平稳分布 $\pi_n = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right), n \in \mathbb{N}_0$.

四个基本量的计算

以 X^* 平稳状态下的顾客数,分别以 ξ , η 表示每位顾客总的花费时间和等待时间.则,

$$L = \sum_{n=0}^{+\infty} n\pi_n = \sum_{n=1}^{+\infty} n \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) = \frac{\lambda}{\mu - \lambda};$$

$$L_Q = \sum_{n=1}^{+\infty} (n-1)\pi_n = \sum_{n=2}^{+\infty} (n-1) \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) = \frac{\lambda^2}{\mu(\mu - \lambda)};$$

$$W = \sum_{n=0}^{+\infty} E(\xi | X^* = n)\pi_n = \sum_{n=0}^{+\infty} \frac{n+1}{\mu} \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) = \frac{1}{\mu - \lambda};$$

$$W_Q = \sum_{n=0}^{+\infty} E(\eta | X^* = n)\pi_n = \sum_{n=0}^{+\infty} \frac{n}{\mu} \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) = \frac{\lambda}{\mu(\mu - \lambda)}.$$

若M/M/1/∞排队系统中,顾客在系统中每单位时间损失 C_1 元,服务机构每单位服务时间d的费用为 $C_2\mu$,求最优的服务率 μ .

- ² 考虑M/M/s/∞排队系统,
 - (1)给出其出生率和灭亡率;
 - (2)给出其存在平稳分布的条件并求平稳分布.

谢

调

•