Progress Report - 밑빠진독에코인붓기조

조원: 정재환(2018-26716)

이택희(2018-23598)

0. Feedback from Proposal

- 0.1. 두 개의 큰 Category 중 After ARC 로 Project 진행 결정.
 - page list *L*₁과 *L*₂의 크기 비율 (*L*₁ 크기의 상한)
 - Learning rate 함수
 - parameter *p*의 초기값

0.2. About DataSet

● 특정 몇 가지 상황을 가정하여 가상으로 만든 데이터를 이용해 실험을 진행 하려 했으나, 피드백 이후 Real Workload data도 같이 사용하기로 결정함

1. TimeTable

	5-1	5-2	5-3	5-4	5-5	6-1	6-2	6-3
Workload								
선정								
Workload								
Parsing								
Synthetic								
Workload								
creation								
Algorithm(ARC)								
Implementation								
Experiment								
Evaluation result								
analysis								
Report 작성								

2. 진행상황 요약

- Real-Workload 선정 : 완료

- Real-Workload Parsing : 완료

- Synthetic Workload Creation : 진행중

- Algorithm(ARC) implementation : 진행중

- Experiment by Simulation : 미시작

- Evaluation Result Analysis : 미시작

- Report 작성 : 미시작

3. Benchmark 선정

1.1) Synthetic Benchmark:

trace 1 : 자주 접근하는 영역이 시간에 따라 변하고 scan 이 존재하는 등, ARC 가 featured performance 를 보여줄 수 있는 trace.

trace 2 : Completely LRU-Biased trace form.

trace 3: Completely LFU-Biased trace form.

trace 4: Phase 를 나누어 trace 2/3 혼합.

1.2) Real-Workload Benchmark

- **Searching** : "IEEE International Symposium on Workload Characterization" conference 에 publish 된 논문 및 SNIA(Storage Networking Industry Association) IOTTA(Input Output Traces, Tools, Analysis) organization 의 무료 제공 benchmark 등을 참고하였다.
- Description on each trace

Trace 1: Systor'17 paper 에서 사용한 Benchmark

- SYSTOR17-SINA/IOTTA

Property: VDI System 에서의 user-behavior에 대한 trace collection, 관련 application 으로는 McAfee, Outlook, MS Office, Outlook 등이 존재. VM read/write는 30초 간격으로, FC capture system은 full payload에서 relative offset을 통한 transaction size의 추론. (Read-dominant)

Measured time: 28 일

Trace 2 : MS Enterprise benchmark

- Exch(Exchange Server)

Property: 5000 명이 사용하는 Mail-Server

Measured time : 24 시간(1), 5 시간(평일 오후)(2)

- TPC-C

Property: database benchmark 로 online transaction processing 기능 수행.

5 개의 동시적 transaction 을 different complexity 로 구성.

측정시간: steady state 5 분 단위로 trace

- TPC-E

Property: TPC-C 보다 더 modern OLTP 와 비슷하도록 만든 benchmark 측정시간: steady state 10 단위로 trace

Trace 3: MS Production

- LM-TFE(Live Maps front-end server)

Property: Windows Live Maps Application 에서 user 가 location-request, BFE 로 부터 받은 image 에 route, marker 등의 정보를 더해서 user 에게 전송.

측정시간: 24 시간

- LM-TBE(Live Maps back-end serer)

Property: user 의 location 에 대한 image-access 후 해당 image file Frontend server 로 전송.

측정시간: 24 시간

- DAP-DS(Display Ads Platform Data Servers)

Property: front-end server 가 DS 에 advertisement request(with user id)시,

해당 user 에 대한 appendable information 을 찾기 위해, cache lookup 후 information PS 으로 전달.

측정시간: 24 시간

- DAP-PS(Display Ads Platform Payload Servers)

Property : PS 는 DS 로부터 받은 information 을 바탕으로 적절한 광고를 선택 후 front-end server 로 send.

측정시간: 24 시간

- MSN(MSN storage metadata and file servers)

Property: CFS 가 metadata information 저장, 해당 metadata 에 대한 file request 를 BEFS(Back-End File Server)로 전송, BEFS 는 해당 file 을 찾아 CFS 로 제공

측정시간:6시간

- WBS(Windows Build Server)

Property : 32bit version 의 Windows Server OS 의 complete build 를 매일 수행

측정시간: 24 시간

- DTRS(Developer Tools Release Server)

Property : MS Visual Studio 의 build 를 다운로드 하기 위한 File server

측정시간: 24 시간

- RAD(RADIUS authentication and back-end servers)

Property: 원격 접속 및 무선 접속에 대한 authentication 기능 수행하는 server(SQL Replication 이 back-end SQL Server 에 수행됨)

측정시간: 18 시간

Trace 4 : FIU trace(Florida International University trace)

- homes

Property : NFS Server 로 FIU Research group 이 사용하는 각종 software 를 가지고 있음

측정시간:3주

- web-vm

Property: 2 개의 Web-server 를 돌리는 virtual machine. FIU CS-department의 2개의 서버(1: online course management system, 2: web-based email access portal), local virtual disk 에 대해서만 trace (http 용 NAS는 trace 하지 않음)

측정시간:3주

- mail

Property: FIU CS department 의 user e-mail INBOX 관리.

측정시간:3주

- 각각의 trace 들이 갖는 I/O 특성에 대해서는 실험 결과와 함께 정리할 예정.

4. Evaluation Plan

2.1) Evaluation Method : base 가 되는 논문 ARC [1]과 같이 page 의 개수와 요청의 수를 각 trace 에 대해 정리한 후, 각 데이터에서의 시뮬레이션 결과를 통해 기존의 ARC 와 Parameter 를 변경한 ARC 에서의 결과를 분석하는 것을 목표로 한다. [1]과 마찬가지로 hit ratio 를 측정하여 평가할 계획이다.

Trace Name	Number of Requests	Unique Pages	
OLTP	914145	186880	
P1	32055473	2311485	
P2	12729495	913347	
P3	3912296	762543	
P4	19776090	5146832	
P5	22937097	3403835	
P6	12672123	773770	
P7	14521148	1619941	
P8	42243785	977545	
P9	10533489	1369543	
P10	33400528	5679543	
P11	141528425	4579339	
P12	13208930	3153310	
P13	15629738	2497353	
P14	114990968	13814927	
ConCat	490139585	47003313	
Merge(P)	490139585	47003313	
DS1	43704979	10516352	
SPC1 like	41351279	6050363	
S1	3995316	1309698	
S2	17253074	1693344	
S3	16407702	1689882	
Merge (S)	37656092	4692924	

Fig 1. Trace Description Table Example

2.2) Evaluation Result : 모든 데이터에 대해서 실험 완료 후, 몇 가지 주목할 만한 결과가 보이는 데이터 위주로 분석할 계획이다.

Fig 2. Evaluation Result Graph Example

5. Reference

- [1] Megiddo, Nimrod, and Dharmendra S. Modha. "ARC: A Self-Tuning, Low Overhead Replacement Cache." *FAST.* Vol. 3. No. 2003. 2003.
- [2] Lee, Chunghan, et al. "Understanding storage traffic characteristics on enterprise virtual desktop infrastructure." *Proceedings of the 10th ACM International Systems and Storage Conference*. ACM, 2017.
- [3] Kavalanekar, Swaroop, et al. "Characterization of storage workload traces from production windows servers." *2008 IEEE International Symposium on Workload Characterization*. IEEE, 2008.
- [4] Koller, Ricardo, and Raju Rangaswami. "I/O deduplication: Utilizing content similarity to improve I/O performance." *ACM Transactions on Storage (TOS)* 6.3 (2010): 13.
- [5] "TPC Benchmark C, Standard Specification," June 2007. Available:http://tpc.org/tpcc/spec/tpcc_current.pdf.
- [6] "TPC Benchmark E, Standard Specification," Feb. 2008. Available: http://tpc.org/tpce/spec/TPCE-v1.5.0.pdf.