Deep Brother 인공지능 출석체크

BOAZ 9th 컨퍼런스

2018.01.19

팀: 박성현, 구교정, 김용규, 심지원, 김자령, 이준호

미션 임파서블4 - 고스트 프로토콜 영화 장면

해상도증가 or Pass

Step3

Face Embedding + Classification

[MTCNN]

(1) Resize

- 이미지의 크기를 다양하게 바꿔, Face Detection에 활용
- 이미지의 크기가 작아질수록 박스가 윤곽선 특징을 잘 찾아내 고, 이에 따라 강한 특징을 보기 쉬워짐.

(2) P-Net, R-Net, O-Net

- P-Net → R-Net → O-Net 순서로 진행
- 각 Network는 NMS와 Box regression을 진행
- P-Net, R-Net, O-Net는 Input Image size가 각각 다름 (P-Net: 12x12 / R-Net: 24x24 / O-Net: 48x48)
- NMS & Box regression

[MTCNN 결과]

[Face Detection] Face Alignment

[고해상도 얼굴 이미지(128x128)]

[저해상도 얼굴 이미지 (32x32)]

[고해상도 → 저해상도] (1-to-1 mapping)

[저해상도 → 고해상도] (1-to-many mapping)

- 이미지 해상도를 증가시키는 기술을 Image Super-resolution이라고 함.
- 저해상도에서 고해상도로 복원하는 것은 1-to-many mapping이라 답이 여러 개 있으므로 **완벽한 복원은 불가능**

- **Pixel MSE**는 여러 Solution들을 Average하는 방법 → Image의 Detail이 사라짐.
- GAN은 여러 Solution 중 하나를 선택하는 개념 → Image의 Detail은 유지하지만, 가짜 Image

Input

[SRGAN 구조]

$$l^{SR} = \underbrace{l_{\rm X}^{SR}}_{\rm content\ loss} + \underbrace{10^{-3}l_{Gen}^{SR}}_{\rm adversarial\ loss}$$

perceptual loss (for VGG based content losses)

[SRGAN 전체 Loss]

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2$$

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$

[GAN Loss]

[저해상도 얼굴 이미지 (32x32)]

SRGAN

[SRGAN 결과 (128x128)]

[Face Embedding 설명]

L2 distance between same person's images

L2 distance between different people's images

$$L_7 = -\frac{1}{m} \sum_{i=1}^{m} \log \frac{e^{s(\cos(\theta_{y_i} + m))}}{e^{s(\cos(\theta_{y_i} + m))} + \sum_{i=1, i \neq y_i}^{n} e^{s\cos\theta_i}}$$

[ResNet 구조]

[ArcFace의 Additive Angular Margin Loss]

- 기존의 ResNet 등의 Network를 이용하여 얼굴 이미지를 Vector로 바꾸는 방법
- ArcFace에서는 Additive Angular Margin Loss를 활용하여, Face Embedding의 성능을 향상시킴
- Face Embedding 이후, Face Vector를 이용하여 SVM, Cosine Similarity 등으로 Classification

[ArcFace의 Additive Angular Margin Loss]

[Loss에 따른 Decision Boundary 변화]

Loss	LFW	CFP-FP	AgeDB-30
Softmax	99.7	91.4	95.56
SphereFace (m=4, $\lambda = 5$)	99.76	93.7	97.56
CosineFace (m=0.35)	99.80	94.4	97.91
ArcFace(m=0.4)	99.80	94.5	98.0
ArcFace(m=0.5)	99.83	94.04	98.08

[ArcFace 성능 비교(논문)]

[CASIA-Webface 사진 예시]

453,453개의 이미지 10,575명의 사람들로 구성된 Dataset 해당 Dataset을 이용하여 ArcFace의 weights를 학습

[BOAZ 데이터셋]

BOAZ 10, 11기 총 43명의 얼굴 사진 (1인당 5장씩) 해당 Dataset을 학습된 ArcFace를 이용하여 512Dimension의 Face Feature Vector로 바꿔서 저장한 후, 새로운 사진에서 사람을 예측!!

도와주셔서 정말 감사합니다!!!

[Feature vector들 간의 Cosine Similarity 계산]

BOAZ 데이터셋을 이용하여 Embedding한 Feature Vector와 새로운 사진에서 찾아낸 얼굴의 Feature Vector 간의 Cosine Similarity를 계산 Cosine Similarity가 높은 Top5개의 Vector로 Voting해서 예측 (SVM, KNN 등의 방법으로 Classification해봤으나, 이 방법이 성능이 좋았음)

(하정우)

손지현 (민무제)

염정아

19명중 14명정답!

Deep-Brother 결과: 19명의 얼굴을 모두 찿고, 14명 얼굴 인식 성공!

[BOAZ 출석체크 결과 - 사진1] 13명 모두 찿음. (11명 맞춤)

틀린 ex. 김자령 → 박보정 / 박소현 → 유재현 (예측 → 정답)

[BOAZ 출석체크 결과 - 사진2] 14명 중 13명 찾음. (11명 맞춤)

틀린 ex. 조단비 → 박보정 / 전윤회 → 위승민 (예측 → 정답)

[BOAZ 출석체크 결과 - 사진3] 13명 모두 찾음. (11명 맞춤)

틀린 ex. 곽현석 → 박보정 / 신문선 → 곽현석 (예측 → 정답)

Positive Pairs in LFW

Abel Pacheco

Hamzah Haz

Kristin_Davis

Laurent Jalabert

Isaiah Washington

Martin_Sheen

Jacques_Rogge

lfw_test_pair.txt

Abel_Pacheco/Abel_Pacheco_0001.jpg Abel_Pacheco/Abel_Pacheco_0004.jpg 1 Akhmed_Zakayev/Akhmed_Zakayev_0001.jpg Akhmed_Zakayev/Akhmed_Zakayev_0003.jpg 1 Akhmed_Zakayev/Akhmed_Zakayev_0002.jpg Akhmed_Zakayev/Akhmed_Zakayev_0003.jpg 1 Amber_Tamblyn/Amber_Tamblyn_0001.jpg Amber_Tamblyn/Amber_Tamblyn_0002.jpg 1-Anders Fogh Rasmussen/Anders Fogh Rasmussen 0001.jpg Anders Fogh Rasmussen/Anders Fogh Ra Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen_0001.jpg Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen/Anders_Fogh_Rasmussen Angela_Bassett/Angela_Bassett_0001.jpg Angela_Bassett/Angela_Bassett_0005.jpg 1 Angela_Bassett/Angela_Bassett_0002.jpg Angela_Bassett/Angela_Bassett_0005.jpg 1 Angela Bassett/Angela Bassett 0003.jpg Angela Bassett/Angela Bassett 0004.jpg 1 Ann_Veneman/Ann_Veneman_0003.jpg Ann_Veneman/Ann_Veneman_0005.jpg 1

Maria Shkolnikova/Maria Shkolnikova 0001.jpg Martin Rodriguez/Martin Rodriguez 0001.jpg 0 Mariana_Ohata/Mariana_Ohata_0001.jpg Xavier_Malisse/Xavier_Malisse_0003.jpg 0 Mario_Kreutzberger/Mario_Kreutzberger_0001.jpg Shavon_Earp/Shavon_Earp_0001.jpg 0 Mario_Kreutzberger/Mario_Kreutzberger_0002.jpg Raul_Cubas/Raul_Cubas_0001.jpg 0 Maritza_Macias_Furano/Maritza_Macias_Furano_0001.jpg Qusai_Hussein/Qusai_Hussein_0001.jpg 0 Mark_Butcher/Mark_Butcher_0001.jpg Scott_Hoch/Scott_Hoch_0001.jpg 0 Mark_Sisk/Mark_Sisk_0001.jpg Mehdi_Baala/Mehdi_Baala_0001.jpg 0 Mark_Sisk/Mark_Sisk_0001.jpg Stephen_Swindal/Stephen_Swindal_0001.jpg 0 Masao_Azuma/Masao_Azuma_0001.jpg Mikhail_Kalashnikov/Mikhail_Kalashnikov_0001.jpg 0

McGuire_Gibson/McGuire_Gibson_0001.jpg Richard_Haass/Richard_Haass_0001.jpg 0-

Mehdi_Baala/Mehdi_Baala_0001.jpg Steve_Avery/Steve_Avery_0001.jpg 0

Model	Accuracy (LFW Dataset)		
FaceNet (Paper)	99.63%		
ArcFace (Paper)	99.83%		
ArcFace (직접 구현)	99.33%		
OpenFace (오픈 소스 라이브러리)	92.92%		

total time is 19.33043336868286, average time is 0.07521569404156755 lfw face verification accuracy: 0.993333333333333 threshold: 0.25572857

참고: Openface - https://cmusatyalab.github.io/openface/

참고:비교한 코드 - https://github.com/ageitgey/face_recognition

[Our Model의 실행 결과 - BOAZ 사진 1,2,3]

[**공개 코드**의 실행 결과 - BOAZ 사진 1,2,3]

	Our Model		다른 공개 코드	
	찾은 얼굴	인식 성공	찾은 얼굴	인식 성공
사진1(13명)	13명	11명	7명	5명
사진2(14명)	13명	11명	9명	8명
사진3(13명)	13명	11명	6명	6명

T H A N K Y O U

발표 들어주셔서 감사합니다. 10기 여러분, 1년 동안 수고하셨습니다