Introduction

Reinforcement Learning

- Jones

What is RL?

(Machine-based) learning how agents map situations to actions in an environment so as to maximize a numerical reward signal. (Sutton & Barto)

Machine Learning

- · Labeled data
- · Direct feedback
- · Predict outcome/future

Field of study that gives computers the ability to learn without being explicitly programmed (A. Samuel, 1959)

- · No labels
- · No feedback
- "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

SNU RL 2018

What is RL?

RL Problems : Sequential Decision-making Problems

- Go player plans (anticipating possible replies & counter-replies)
- A gazelle struggles to its feet minutes after being born. Half an hour later it is running at 20 miles per hour.
- Robot vacuum cleaner needs to visit all the floor area.
- Multi-armed bandit problem.
- Grid World problem

All involve interaction between an active decision-making agent and its environment, within which the agent seeks to achieve a goal despite uncertainty about its environment

RL Problems : Sequential Decision-making Problems

- ✓ State (e.g. Go position, robot's location & charge level of battery)
- ✓ Action (e.g. up/down movement, next Go position)
- ✓ Reward: the goal in RL problems (on time step basis)
- ✓ Policy: the learning agent's way of behaving at a given time.
 Agent can maximize reward following the optimal policy.

RL Example: when there are a handful of states

The 'most efficient' path?

✓ Several approaches

RL Example : when there are a handful of states

Agent .59	.66	.73	.81	.73
.66	.59	R = -1	9.	.81
.73	R = -1	R = +1	1.0	.9
.81	.9	1.0	.9	.81
.73	.81	.9	.81	.73

✓ (Action-) Value Function

= The "Guide Map" from experience

✓ Decision Making

= Reward + Value

RL Example: when there are a colossal number of states

< 3^(19*19) ~ 2*10^172 number of states

Type "atari breakout" on Google Image Search https://www.youtube.com/watch?v=V1eYniJ0Rnk

RL Example: when there are a colossal number of states

- ✓ Monte-Carlo Tree Search
- ✓ RL Policy Network
- ✓ Value Network

RL Example: when there are a colossal number of states

✓ Pre-processing (using CNN)

✓ Q-value prediction from Deep Q-Network

✓ Optimize Deep Q-Network using experience