

Instituto Politécnico Nacional Escuela Superior de Cómputo

Programa académico / Plan de estudios

Ingeniería en Sistemas Computacionales / 2020

Unidad de aprendizaje

Desarrollo de aplicaciones móviles nativas

Práctica 6: Manejo de sensores del dispositivo móvil

Objetivo: Desarrollar aplicaciones móviles nativas para Android que implementen la utilización de sensores del dispositivo y tecnologías de comunicación inalámbrica como Bluetooth, con énfasis en la creación de soluciones que permitan la interconexión entre dispositivos y el aprovechamiento de los recursos de hardware disponibles.

Instrucciones Generales:

- La práctica consta de 3 ejercicios, de los cuales el estudiante debe completar 1
- Las aplicaciones deben implementar los temas personalizables especificados
- Se debe utilizar Kotlin como lenguaje de programación principal
- Se debe documentar adecuadamente el uso de sensores y comunicaciones inalámbricas

Ejercicio 1: Implementación de Sensores en Aplicaciones Existentes

Descripción: Seleccione una de las aplicaciones desarrolladas en prácticas anteriores (Gestor de Archivos, Aplicación de Cámara y Micrófono, o Juego) e integre funcionalidades que utilicen sensores del dispositivo. **Requisitos técnicos:**

- 1. Implementación de sensores:
 - o Integrar al menos 2 de los siguientes sensores:
 - Acelerómetro
 - Giroscopio
 - Sensor de proximidad
 - Sensor de luz ambiental
 - Magnetómetro
 - Barómetro
 - Sensor de huellas dactilares (para autenticación)
 - Sensor de ritmo cardíaco (en dispositivos compatibles)
- 2. Funcionalidades específicas por tipo de aplicación:
 - Para Gestor de Archivos:
 - Implementar autenticación biométrica para acceder a carpetas protegidas
 - Para Aplicación de Cámara y Micrófono:
 - Crear mecánicas de que utilicen la proximidad del dispositivo a objetos
 - Para Juego:
 - Implementar modo multijugador Blueetooth.
- 3. Interfaz de Usuario:
 - Implementar temas personalizables:
 - Tema Guinda (color representativo del IPN)

- Tema Azul (color representativo de la ESCOM)
- Adaptación automática al modo del sistema (claro/oscuro)
- Proporcionar visualización en tiempo real de los datos de los sensores
- Incluir opciones para habilitar/deshabilitar sensores individuales y su visualización en tiempo real
- 4. Gestión de Recursos:
 - o Implementar manejo eficiente de la batería al utilizar sensores
 - o Permitir funcionamiento en segundo plano con notificaciones relevantes
 - Gestionar correctamente los permisos necesarios para acceder a sensores

Ejercicio 2: Compartir Archivos vía Bluetooth

Descripción: Extender el Gestor de Archivos desarrollado anteriormente para incluir funcionalidades de compartir archivos mediante Bluetooth.

Requisitos técnicos:

- 1. Funcionalidades de Bluetooth:
 - o Implementar descubrimiento de dispositivos cercanos
 - o Establecer conexión segura entre dispositivos
 - o Enviar y recibir archivos de diferentes formatos
 - Mostrar progreso de transferencia en tiempo real
 - Permitir cancelación de transferencias en curso
- 2. Gestor de Transferencias:
 - Desarrollar una interfaz para visualizar:
 - Historial de transferencias (enviadas y recibidas)
 - Estado actual de transferencias en curso
 - Cola de transferencias pendientes
 - o Implementar notificaciones para informar sobre el estado de las transferencias
- 3. Seguridad y Permisos:
 - o Solicitar y gestionar permisos de Bluetooth adecuadamente
 - Implementar verificación de integridad de archivos transferidos
 - o Añadir opciones de cifrado para transferencias sensibles
 - o Gestionar correctamente los roles de servidor/cliente en la comunicación
- 4. Interfaz de Usuario:
 - Aplicar los mismos temas personalizables:
 - Tema Guinda (color representativo del IPN)
 - Tema Azul (color representativo de la ESCOM)
 - Adaptación automática al modo del sistema (claro/oscuro)
 - o Diseñar una interfaz intuitiva para la gestión de conexiones Bluetooth
 - o Proporcionar retroalimentación visual sobre el estado de la conexión

Ejercicio 3: Navegador Bluetooth (Internet Sharing)

Descripción: Desarrollar una aplicación que permita a un dispositivo sin conexión a Internet (Dispositivo B) navegar por Internet a través de otro dispositivo (Dispositivo A) que sí dispone de conexión, utilizando Bluetooth como medio de comunicación.

Requisitos técnicos:

- 1. Arquitectura Cliente-Servidor:
 - Dispositivo A (Servidor):
 - Actuar como punto de acceso a Internet
 - Procesar solicitudes HTTP/HTTPS del cliente
 - Devolver resultados de búsquedas y contenido web
 - Implementar caché para optimizar transferencias repetidas
 - Dispositivo B (Cliente):

- Interfaz de navegación web sencilla
- Envío de solicitudes al servidor
- Renderizado de contenido recibido
- Gestión de histórico de navegación local
- 2. Comunicación Bluetooth:
 - Implementar protocolo eficiente para transferencia de datos
 - o Optimizar la compresión de contenido para mejorar velocidad
 - Gestionar reconexiones automáticas en caso de pérdida
 - Implementar priorización de tráfico (texto antes que imágenes)
 - Mostrar indicadores de calidad de conexión
- 3. Características del Navegador:
 - o Implementar funcionalidades básicas:
 - Barra de direcciones
 - Botones de navegación (adelante/atrás)
 - Marcadores/favoritos
 - Historial
 - Optimizar el renderizado para dispositivos móviles
 - o Implementar modo de bajo consumo de datos
- 4. Seguridad:
 - Implementar cifrado en la comunicación entre dispositivos
 - Gestionar correctamente las credenciales de sitios web
 - o Advertir sobre conexiones no seguras
 - o Implementar opciones de privacidad (modo incógnito)
- 5. Interfaz de Usuario:
 - Aplicar los mismos temas personalizables:
 - Tema Guinda (color representativo del IPN)
 - Tema Azul (color representativo de la ESCOM)
 - Adaptación automática al modo del sistema (claro/oscuro)
 - o Diseñar interfaces diferenciadas para roles de servidor y cliente
 - o Proporcionar indicadores claros del estado de conexión y transferencia

Consideraciones importantes:

- Optimización del consumo de energía: Todas las aplicaciones deben implementar estrategias para minimizar el consumo de batería al utilizar sensores y Bluetooth.
- **Gestión de permisos:** Solicitar y gestionar adecuadamente todos los permisos necesarios para acceder a los sensores y comunicaciones Bluetooth.
- Compatibilidad: Las aplicaciones deben funcionar en dispositivos con Android 7.0 (API 24) o superior.
- **Manejo de errores:** Implementar manejo robusto de excepciones y situaciones de error relacionadas con sensores o comunicación Bluetooth.

Entrega de la Práctica:

- 1. Código fuente:
 - Repositorio GitHub con el código de las aplicaciones desarrolladas
 - README detallado con instrucciones de instalación y uso
 - o Estructura clara y comentarios explicativos sobre la implementación de sensores y Bluetooth
- 2. APK instalable:
 - Versión compilada y firmada de las aplicaciones
- 3. Informe de la práctica: Siguiendo esta estructura:
 - o Portada: Nombre completo, número de boleta, asignatura, profesor y fecha.
 - o Introducción: Explicación general de las aplicaciones desarrolladas y justificación de elección.
 - o Desarrollo: Descripción técnica de la implementación de sensores y comunicación Bluetooth.
 - o Diagramas: UML de clases y diagramas de secuencia para operaciones principales.

- o Capturas de pantalla: Incluir capturas de las principales funcionalidades implementadas.
- o Pruebas realizadas: Documentación de pruebas en diferentes dispositivos.
- o Conclusiones: Reflexiones sobre la experiencia y aprendizajes obtenidos.
- Bibliografía: Fuentes consultadas en formato APA.

Fecha de Entrega: La fecha límite para la entrega de esta práctica es el martes 27 de mayo de 2025. No se aceptarán entregas fuera de tiempo y forma.