Differentiation Rules

LLE - Mathematics and Statistics Skills

Power Rule

Given the function $y = ax^n$, the derivative is:

$$\frac{dy}{dx} = nax^{n-1}$$

Use this rule to differentiate:

- 1. $y = 5x^4$
- 2. $y = 7x^2$
- 3. $y = \frac{2}{3}x^6$

These indices facts will be useful for the next questions:

$$x^{-n} = \frac{1}{x^n}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$x^a \times x^b = x^{a+b}$$

$$\frac{x^a}{x^b} = x^{a-b}$$

$$(x^a)^b = x^{ab}$$

1

Use the power rule to differentiate:

4.
$$y = \frac{3x^3}{x^5}$$

5.
$$y = \frac{10}{x^2}$$

- 6. $y = 2x^{\frac{2}{3}}$
- 7. $y = 4\sqrt{x}$
- 8. $y = \frac{2}{3x^2}$
- 9. $y = \frac{10}{x}$

The power rule can be used to show:

$$y = ax, \quad \frac{dy}{dx} = a$$

$$y = a$$
, $\frac{dy}{dx} = 0$

Put this altogether and differentiate:

10.
$$y = 5x^2 + 4x + 3$$

11.
$$y = x^4 - 2x^{-5} + \frac{1}{x}$$

12.
$$y = 1 + 2\sqrt{x} + \frac{2}{5x} + \frac{3}{4x^2} + \frac{5}{2x^3}$$

Exponentials

Given the function $y = ae^x$, the derivative is:

$$\frac{dy}{dx} = ae^x$$

Not many questions here, differentiate:

1.
$$y = 5e^x$$

Logarithms

Given the function $y = a \ln x$, the derivative is:

$$\frac{dy}{dx} = \frac{a}{x}$$

Differentiate:

- 1. $y = 5 \ln x$
- 2. $y = \frac{\ln x}{2} 3e^x$

The following log laws will be useful:

$$\ln(AB) = \ln A + \ln B$$

$$\ln\left(\frac{A}{B}\right) = \ln A - \ln B$$

$$\ln(A^n) = n \ln A$$

Differentiate:

- 3. $y = \ln 4x$
- 4. $y = \ln 0.443x$
- 5. $y = \ln \frac{2}{x}$
- 6. $y = \ln x^{10}$
- 7. $y = 6 \ln \frac{1}{2}x$

Mixed Questions

For each question find the requested derivative:

1.
$$y = 5x^3 + x^2 - 4x + 1 + 3e^x + \ln 2x$$
 $\frac{dy}{dx} =$

2.
$$y = 2x + 5\sqrt{x} - \frac{4}{x} + \frac{3}{x^2}$$
 $\frac{dy}{dx} =$

3.
$$y = 5t^2 - 2t^{\frac{3}{4}} + 6\ln 0.1t$$
 $\frac{dy}{dt} =$

4.
$$P = 6e^n - 4 + \frac{5}{2}n - \frac{6}{\sqrt{n}}$$
 $\frac{dP}{dn} =$

5.
$$G = 5s^2(3s - 4)$$
 $\frac{dG}{ds} =$

By substituting into the function and into the derived function, find the value of the function and the value of the gradient at the given x values:

6.
$$y = 5x^2 - 12x + 2$$
, $x = 2$

7.
$$y = 4x^3 + x + 10$$
, $x = -1$

8.
$$y = x^2 + 5x - 1$$
, $x = -2.5$

9.
$$y = 4e^x - 10\sqrt{x}, \quad x = 2$$

10.
$$y = 5 - \frac{5}{x} + \frac{5}{x^2}$$
, $x = 1$