Name: Hael Larenz Y. Manalo

No.:

Class & Section: BSCDE 4-4

Date: November 22, 2024

No.: Name: Hoel Larenz 4. Manalo Date: November 22 2024 Class & Section: BSCOE 4-4 x(n) = Ssin (0.2 tra)u(n) c.) x(n) = 5cos (0,1 Trn + 30°) u(n) x(4) = 5 cos (0.17 (4) +30) u(9), cmp = -1.04, u(n)=4 x(0) = 5cos (0.17(0)+300) u(0) Jamp = 4.33, u(n)=0 x(5) · Scos(0.1 r(5)+30°) u(5) amp = -2.5, u(n) · 5 x(1)= Scos(0,1m(1)+30+) u(1), emp: 3.35, u(n):1 x(6)= Scos(0.1 T (6) +30°) 4(6) 15mp = -3.72, 4(1)=6 x(7)= Scos(0.1T (7)+30°) 4(7), 5mp = -4.57, 4(1)=7 x(2): 5cus (0.1 m (2) + 30') u (1), cmp = 2.03, u(n)=2 x(3): Sess (0.10 (3) +30) u(3), smp. 0.52, u(n)=3 -7 a) x(n) = 5(0.75) sin(0.177) u(n) x(4) = 5(0,75) 4 sip(0,1 17(4)) u(4), amp 71.5, u(n) 4 x(0) = 5(0.75) sin (0.17(0) u(0), amp = 0, uh = 0 x(1) = 5 (0.75) sin (0.17(1))uli), smp = 1.16, u(n)=1 x(s)=5(0.75) sin(0.117(5))u(s), simp=1.19, u(n)=5 x(6) -5(075) = sin(0/17(6)) uli), amp :0.85, u(n) -6 x(2)= 5(0.75)2 sin (0.17 (2)4(2), smp=1.65, u(n)2 x(7)=5(0.75)'sin(0.1 T(7)) u(7), amo = 0.54, u(n)=7 x(3)= 5(0.75) sin (0.11-(3)) u(3), amp: 1,71, u(n)=3 1.75 1,50 1.25 0.75 0.50 0.25

Name: Had Larenz Y. Manalu

Class & Section: BSCOE 4-9

No.:

Date: November 22, 2024

Name: Hael Laitnz Y. Manalo No.:

Class & Section: BSCOE 4-4

Date: November 22, 2024

2.0	Determine	which	of th	foll	owin	9 1	nece	. \$4	ster	ms i	s ca	MS)	4		110	-	-	-	-	-	-4	1	4
	9.) y(n) = (5×(n	1100	x.Cn	-2)	- 2	0xC	n -1	0	-	ca	usa)		-	-				_		-	-	1
	E Cary Cal											cau	- 0										1
3.9.	Determine	the ca	usalit	for.	esd	20	+4	fo	1102	MM	lines	er s	yste	ms		L						_	
	a.) y(n) =																						1
	h) v(n) =																					-	1
-	c.) y(n)=											-	-	1000			-			-		+	+
3.10.	Find the	unit - i	mpulse	recp	onse	F	ur e	ach	of	tle	follo	wha	lio	USC.	sys	tem							1
	a.) y(n) = 0	5xln) - 0.	5 x (n	-2);	for 1	1	a.	x (-	2) =	0	XC-	1):	0								
	(h(n) =	0.5 %	(n) -	0. 5.	8 (n	-2		1	01							7.							
										_													
	b.) y(n)=0	.75 v (n-1)+	x(n)	. f	or r	14),	41	>=1	0								77.				
	h(n)= 0																			1			
	Mathem	sticks i	ndukti	on i		Ī					1		1							- ;			
	h(-1)	=0,	a+n=0	2: 1	70)) = (0.75	h (0-1	7+	8(0)—	ل ﴿	hea) =	0.7	s.h	6	1	- 60	(0		
		0.75						///		-			+					-					
		Libe) -	> (2175	1 40	2) +	80	1)-	2	7.7	3.2	1)	+0	-	60)=	0.
	at n=	2 : h(2	3.0.	75hl	2-1)	+ 8	(2)	+	0	.75	6(1) +	8/2) →	0.	751	0.7	57	+0	-	h	2)=	0.
	Therefore	: h	(n) =	0.75	רו	4	OJ	-	-	+	-	-	+			-	-	-				+	+
	c.) y(n) =	0.846	n-1)	+ x(1-1)	; (or h	70	, ×	(-1)	= 0	, 4	(-1)	= 0									
	h(n)=.																	_			: - 7		_
	at n=0																				0) =	0	-
	_atn=1:	n(1)=-C	2.8h (-17	+ 50	1-1)-	-0.8	(h(0)	3+6	(0)	-> -	0.8	(0).	-1	->	h		2			Ç-3	, -
1	a+ n=2:h																			<u> </u>	-	-	
+-	at n=3: h	(3) = -	0.8hl	3-1)	4 8	(3-1)-	0.8	h (2	3+6	(2)	-6 -	8.0	60.8)+	0-	0	.64				-	_
	Therefore.				-	-	-	-	-	-		,112	+	-				20	-	-			_
-		h(n)	= 4	0,	n= ((-	-	-	+		-	-	+-	_				-		-		
			\[\(\frac{1}{2} \)	0.8)	7-1	_n_	71	-	-	+		-	-	-		-	1	_			-	\vdash	
						_		4	-	+-	-		-	-	,	-		-	-	-			
3.11.	For each of	the fo	loving	Lives	575	ten	15, 6	ind	14	unit	-Imp	ulsa	resp	on se	9	nd o	ica	4	le	blo	ck.	disa	csn
	(a.) y(n) = 5					-	-	-	-	-	_	-	1		-	-	5_		<u> </u>	ř.,	-		
	[h(n) =:	-	(0)		-	<u></u>		-	-	+	-	-	_	-	-	-			-		-	-	
	Block di	agram:		1. XV				-		+	-	_	-	-	-			_		-	-		
-	X(n),	h(n)=58	(n-10	X	(n)=	5x(1	n-10)	+	-	7.	+	-	-	7	-		-	-	-		
	b.) y(n) =					_								1									
-	h(n) =	8(0)	0.5	8(n-	1)]	-							-		-	2	-	-	1	1	-		
1	Block d	ea em	(n) = {								-			1	1	+	1) 5.		-13	- (27.2		
					_	_					1	77			1	1			100	-			

