Lista de Exercícios — Regressão Logística e Regressão Linear

Use apenas papel, caneta e calculadora básica. Nada de Python nesta parte!

Parte A — Regressão Logística

Considere sempre a função sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}.$$

Conjunto (3 pontos)

i	x_{1i}	x_{2i}	y_i
1	0	0	0
2	1	0	0
3	0	1	1

- 1. Predições iniciais. Tome $w_0 = w_1 = w_2 = 1$. Calcule z_i e $\hat{y}_i = \sigma(z_i)$ para cada linha.
- 2. Gradientes. Derive $\partial J/\partial w_0$, $\partial J/\partial w_1$, $\partial J/\partial w_2$ para entropia-cruzada (-log(verossimilhança)) e substitua os valores do item 1.
- 3. **Primeira atualização**. No algoritmo de descida do gradiente, use taxa $\alpha = 0.4$ e calcule a primeira atualização dos pesos. Mantenha quatro casas decimais.
- 4. **Perda**. Com os novos pesos, recalcule \hat{y}_i e avalie J.
- 5. **Segunda iteração**. Repita os itens 2-4. Compare o novo J com o anterior.
- 6. Variação da taxa. Refaça apenas a primeira atualização com $\alpha = 1.2$ e discuta.

Parte B — Regressão Linear por Mínimos Quadrados

i	x_{1i}	x_{2i}	y_i
1	0	0	1
2	1	0	2
3	0	1	2
4	1	1	3

- 1. Monte X (com coluna de 1's) e \boldsymbol{y} .
- 2. Calcule $X^{\mathsf{T}}X$ e $X^{\mathsf{T}}\boldsymbol{y}$.
- 3. Inverta $X^{\mathsf{T}}X$ via **Gauss–Jordan**. Documente cada operação de linha.
- 4. Inverta novamente pelo método da adjunta: cofatores, adjunta e determinante.
- 5. Obtenha os pesos $\hat{\boldsymbol{w}}$ multiplicando a inversa por $X^{\top}\boldsymbol{y}$.
- 6. Calcule o erro quadrático do modelo com os pesos calculados.

Novo conjunto

Dados $(x_1, x_2, y) \in \{(0, 0, 2), (2, 0, 3), (0, 2, 3), (2, 2, 6)\}$, repita os itens 1–6 acima e verifique se os dois métodos de inversão produzem o mesmo $\hat{\boldsymbol{w}}$.

Parte C — Regressão linear com descida do gradiente

- 1. Derive o gradiente de $J(\boldsymbol{w}) = \frac{1}{2} ||X\boldsymbol{w} \boldsymbol{y}||^2$ e execute três iterações manuais de descida do gradiente com $\alpha = 0.1$ no primeiro conjunto da Parte B.
- 2. Para cada iteração, calcule o erro quadrado total e compare com o erro quadrado do método analítico. Comente a taxa de convergência.