

WuXi Silicon Technology Co., Ltd

WS3085

ESD Enhanced, Fail-Safe, Slew-Rate-limited RS-485/RS-422 Transceivers

WST 2015.07.20

General Description

The WS3085 5V, half-duplex, ±20kV ESD-RS-485/RS-422 protected compatible transceivers feature one driver and one receiver.

The WS3085 features enhanced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing errorfree transmission up to 500kbps.

The WS3085 feature a 1/8-unit load receiver input impedance, allowing up to 256 transceivers on the bus. These devices are intended for halfduplex communications. All driver outputs are protected to ±20kV ESD using the Human Body Model and ±15kV ESD using the IEC 61000-4-2 Contact Discharge Method.

TheWS3085 is available in an 8-pin SO package. The devices operate over the extended $-40 \, \text{°C}$ to +125 °C temperature range.

ABSOLUTE MAXIMUM RATINGS (All voltages referenced to GND.)

Supply Voltage VCC+6V
DE, RE-, DI0.3V to +6V
A, B8V to +13V
Short-Circuit Duration (RO, A, B) to GNDContinuous
Continuous Power Dissipation (TA = +70°C)
8-Pin SO (derate 5.9mW/°C above +70°C)471mW
Operating Temperature Range40°C to +125°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Features

- **5V** Operation
- Hot-Swappable for Telecom Applications Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission
- Extended ESD Protection for RS-485 I/O Pins ± 20 kV HBM
- 1/8Unit Load Allowing Up to 256Transceivers on the Bus
- 8 Pin-SO Package

Applications

- Isolated RS-485 Interfaces
- **Utility Meters**
- **Industrial Controls**
- **Industrial Motor Drives**
- Automated HVAC Systems

Package: SOIC8

PACKAGE INFORMATON

DC ELECTRICAL CHARACTERICS

(VCC = $+5V \pm 5\%$, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
Differential Driver Output (no load)	VOD1	Figure1		5		V
Differential Driver Outset	V	Figure1,R = 50Ω (RS- 422)	2			
Differential Driver Output	V _{OD2}	Figure1,R = 27Ω (RS- 485)	1.5		X	V
Change in Magnitude of Differential Output Voltage (Note 2)	ΔV _{OD}	Figure1,R =50 Ω or R= 27 Ω			0.2	V
Driver Common-Mode Output Voltage	Voc	Figure1,R=50 Ω or R = 27 Ω			2	V
Change In Magnitude of Common-Mode Voltage (Note 2)	ΔVoc	Figure1,R=50 Ω or R = 27 Ω		C	0.2	V
Input High Voltage	V _{IH1}	DE , DI ,RE- ,	2.0	7		V
Input Low Voltage	V _{IL1}	DE, DI, RE-,			0.8	V
DI Input Hysteresis	VHYS	WS3085		100		mV
Input Current	I _{IN1}	DE, DI, RE-,			±2	μA
Input Current (A and B)	l _{IN4}	DE = GND, VCC=5V VIN=12V VIN=-7V	-75		125	μΑ
		-7V≤ V _{OUT} ≤V _{CC}	-250			mA
Driver Short-Circuit Output Current (Note 3)	l _{OD1}	0V ≤ V _{OUT} ≤ 12V			250	mA
		0V≤ V _{OUT} ≤V _{CC}	±25			mA
RECEIVER						
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ +12V	-200		-50	mV
Receiver Input Hysteresis	ΔVτΗ			60		mV
Receiver Output High Voltage	Voн	IO = 4mA, VID = -200mV;	Vcc-1.5			V
Receiver Output Low Voltage	VoL	$I_O = -4mA$, $V_{ID} = -50mV$			0.4	V
Three-State Output Current at Receiver	I _{OZR}	$0.4 \text{V} \leq \text{V}_{\text{O}} \leq 2.4 \text{V}$			±1	μΑ
Receiver Input Resistance	R _{IN}	-7V ≤ V _{CM} ≤ +12V	96			kΩ
Receiver Output Short-Circuit Current	Iosr	$0V \le V_{RO} \le V_{CC}$	±7		±95	mA

SUPPLY CURRENT							
Supply Current	Icc	No load, RE- =DI=GND or VCC	DE = VCC		450	900	^
			DE = GND		450	600	- μΑ
Supply Current in Shutdown Mode	ISHDN	DE = GND, VRE-= VCC			1.8	10	μA
ESD Protection							
ESD Protection(A,B)		IEC 61000-4-2 Contact model Human Body Model		±15			KV
, , ,				± 20			
ESD Protection(all other pins)		Human Body Model		±4			KV

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: Δ VOD and Δ VOC are the changes in VOD and VOC, respectively, when the DI input changes state.

Note 3: Maximum current level applies to peak current just prior to fold-back-current limiting; minimum current level applies during current limiting.

SWITCHING CHARACTERISTICS

(VCC = $+5V \pm 5\%$, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25 %.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Driver Input to Output	t _{DPLH} t _{DPHL}	Figures3 and 5, RDIFF = 54Ω , CL1 = CL2 = 100 pF	250 720 1000 250 720 1000	ns
Driver Output Skew tDPLH - tDPHL	tDSKEW	Figures 3 and 5, RDIFF = 54Ω , CL1 = CL2 = 100 pF	-3 ±100	ns
Driver Rise or Fall Time	tDR, tDF	Figures 3 and 5, RDIFF = 54Ω , CL1 = CL2 = 100 pF	400 700 1200	ns
Maximum Data Rate	fMAX		500	kbps
Driver Enable to Output High	tDZH	Figures4 and 6, C _L = 100pF, S2 closed	2500	ns
Driver Enable to Output Low	t _{DZL}	Figures4 and 6,C _L = 100pF, S1 closed	2500	ns
Driver Disable Time from Low	tDLZ	Figures 4 and 6, C _L = 15pF, S1 closed	500	ns
Driver Disable Time from High	t _{DHZ}	Figures 4 and 6, C _L = 15pF, S2 closed	500	ns
Receiver Input to Output	tRPLH, tRPHL	Figures 7 and 9; $\mid V_{ID} \mid \ge$ 2.0V;rise and fall time of $V_{ID} \le 15$ ns	127 250	ns
t _{RPLH} - t _{RPHL} Differential Receiver Skew	trskd	Figures 7 and 9; $ V_{ID} \ge$ 2.0V; rise and fall time of $V_{ID} \le 15$ ns	10 ±50	ns
Receiver Enable to Output Low	tRZL	Figures 2 and 8, C _L = 100pF, S1 closed	20 120	ns
Receiver Enable to Output High	^t RZH	Figures 2 and 8, C _L = 100pF, S2 closed	20 120	ns
Receiver Disable Time from Low	tRLZ	Figures 2 and 8 , C _L = 100pF, S1 closed	20 120	ns
Receiver Disable Time from High	tRHZ	Figures 2 and 8, C _L = 100pF, S2 closed	20 120	ns
Time to Shutdown	tSHDN	(Note 4)	50 200 600	ns
Driver Enable from Shutdown to Output High	tdzh(shdn)	Figures 4 and 6, C _L = 15pF, S2 closed	4500	ns

Driver Enable from Shutdown to Output Low	tDZL(SHDN)	Figures 4 and 6, C _L = 15pF, S1 closed	4500	ns
Receiver Enable from Shutdown to Output High	trzh(SHDN)	Figures 2 and 8, C _L = 100pF, S2 closed	3500	ns
Receiver Enable from Shutdown to Output Low	tRZL(SHDN)	Figures 2 and 8, C _L = 100pF, S1 closed	3500	ns

Note 4: The device is put into shutdown by bringing RE- high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

Figure 1 Driver DC Test Load

Figure 2 Receiver Enable/Disable Timing Test Load

Figure 4 Driver Enable/Disable Timing Test Load

Figure 5 Driver Propagation Delays

Figure 6 Driver Enable and Disable Times

Figure 7 Receiver Propagation Delays

Figure 8 Receiver Enable and Disable Times

Figure 9 Receiver Propagation Delay Test Circuit

Pin Description

PIN	NAME	FUNCTION			
1	RO	Receiver Output. When RE is low and if A - B \geq -50mV, RO will be high; if A - B \leq -200mV, RO will be low.			
2	\overline{RE}	Receiver Output Enable. Drive \overline{RE} low to enable RO; RO is high impedance when \overline{RE} is high. Drive \overline{RE} high and DE low to enter low-power shutdown mode.			
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode			
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high Similarly, a high on DI forces non-inverting output high and inverting output low.			
5	GND	Ground			
6	A	Non-inverting Receiver Input and Non-inverting Driver Output			
7	В	Inverting Receiver Input and Inverting Driver Output			
8	Vcc	Positive Supply, V_{CC} = +5V ±5%. Bypass V_{CC} to GND with a 0.1µF capacitor.			

Function Table

TRANSMITTING						
INP	OUT	PUTS				
RE-	DE	DI	B/Z	A/Y		
X	1	1	0	1		
X	1	0	1	0		
0	0	X	High-Z	High-Z		
1	0	X	Shut	tdown		

WS3085 Rev.1.0 www.wst-micro.com

RECEIVING						
INPUTS			OUTPUTS			
RE-	DE	RO				
0	X	≥ -0.05V	1			
0	X	≤ -0.2V	0			
0	X	Open/shorted	1			
1	1	X	High-Z			
1	0	X	Shutdown			

Applications Information

256 Transceivers on the Bus

The standard RS-485 receiver input impedance is $12k\Omega$ (one-unit load), and the standard driver can drive up to 32 unit loads. The WS3085 family of transceivers have a 1/8-unit-load receiver input impedance (96k Ω), allowing up to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

Low-Power Shutdown Mode

Low-power shutdown mode is initiated by bringing both RE- high and DE low. In shutdown, the devices typically draw only 1.8uA of supply current.

 \overline{RE} and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if \overline{RE} is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.

Reduced EMI and Reflections

WS3085 is slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a fold-back current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature becomes excessive.

Fail-Safe

The WS3085 guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver threshold between -50mV and -200mV. If the differential receiver input voltage (A-B) is greater than or equal to -50mV, RO is logic high. If A-B is less than or equal to -200mV, RO is logic low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to 0V by the termination. With the receiver thresholds of WS3085, this results in a logic high with a 50mV minimum noise margin. Unlike previous fail-safe devices, the -50mV to -200mV threshold complies with the ±200mV EIA/TIA-485 standard.

ESD Protection

As with all WST devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handing and assembly. The driver outputs and receiver inputs of WS3085 have extra protection against static electricity. WST's engineers have developed state-of-the-art structures to protect these pins against ESD of ±20kV HBM without damage. The ESD structures withstand high ESD in all states: normal operation shutdown, and powered down. After an ESD event the WS3085 keep working without latch-up or damage.

ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the WS3085 are characterized for protection to the following limits:

• ±20kV using the Human Body Model

• ±15kV using the Contact Discharge Method specified in IEC61000-4-2

Figure 100 Typical Half-Duplex RS-485 Network