Post-Test AI/ML - Chennai

Points: 20/24

- 1. What is the output size of a convolution mechanism where image height*width are 7*7, filter size is 3*3 and stride is 2. (1/1 Points)
 - 5*5
 - 3*3

 - None of the above
- 2. Sigmoid function is usually used for creating a neural network activation function. A sigmoid function is denoted as def sigmoid(x): return (1 / (1 + math.exp(-x))) It is necessary to know how to find the derivatives of sigmoid, as it would be essential for backpropagation. Select the option for finding derivative? (1/1 Points)
 - import scipy Dv = scipy.misc.derive(sigmoid)
 - from sympy import * x = symbol(x) y = sigmoid(x) Dv = y.differentiate(x)
 - Dv = sigmoid(x) * (1 sigmoid(x))
 - All of the above

3. Which loss function is better to use in case of a multiclass neural network (1/1 Points)				
	Accuracy			
	Cross-entropy 🗸			
	F1 Score			
	Mean Absolute Error			
	What is the purpose of linear regression? 1/1 Points)			
	To assess whether there is a significant difference between independent groups			
	To predict scores on a dependent variable from scores on multiple independent variables			
	To predict scores on a dependent variable from scores on multiple dependent variables			
	All of the above			
>	×			
W	or an image recognition problem which architecture of deep neural network rould be better suited? O/1 Points)			
	RNN			
	CNN ✓			
	Perceptron			
	Fully connected layer			

6. What statement is correct with regards to Topic Modeling? (0/1 Points)				
It is a supervised learning technique				
LDA (Linear Discriminant Analysis) can be used to perform topic modeling				
Selection of number of topics in a model does not depend on the size of data				
Number of topic terms are directly proportional to size of the data				
■ All the above are wrong ✓				
7. Overfitting will create (1/1 Points)				
No impact on the model's predictive power				
 Negative impact on the model's predictive power 				
Positive impact on the model's predictive power				
8. Which of the following algorithm doesn't uses learning Rate as of one of its hyperparameter? (1/1 Points)				
Stochastic Gradient Descent				
Random Forest				
Perceptron				
Neural Network				
9. Which distance metric is used in K-means algorithm? (1/1 Points)				
Centimeter				

		Manhattan
		Cosine
		Euclidian 🗸
	×	
10.		dient overshooting of weights caused by Points)
		High initial values of weights
		High Learning Rate 🗸
		Low Learning Rate
		Poor optimization algorithm used
11. You have collected a data of about 10,000 rows of tweet text and no other information. You have created a document term matrix of the data, treating every tweet as one document. Which of the following is correct, in regards to document term matrix? (1/1 Points) 1.Removal of stopwords from the data will affect the dimensionality of data 2.Normalization of words in the data will reduce the dimensionality of data 3. Converting all the words in lowercase will not affect the dimensionality of the data		
		Only 1
		Only 2
		Only 3
		1 and 2 🗸
		2 and 3
		1 and 3
		1. 2 and 3

12. Pandas is built on which library? (1/1 Points)				
	•	Numpy 🗸		
		Scipy		
		Rpy		
		None of the above		
13.	Wh	en the data, one needs to predict if a person has a particular disease or not. lat kind of problem is this? 1 Points)		
	•	Supervised learning – Classification 🗸		
		Supervised learning – Regression		
		Unsupervised learning		
		None of the above		
14.		ne sample is completely homogenous what is the value of entropy? 1 Points)		
		1		
		0.5		
		0 🗸		
		Infinity		

15. Which module includes score functions, performance metrics and pairwise metric and distance computations. (1/1 Points)		
sklearn.linear_model		
sklearn.exceptions		
sklearn.metrics 🗸		
None of the above		
16. Supervised learning adopts (1/1 Points)		
Unlabeled Data		
Unstructured data		
Labeled data		
None of the above		
17. Which of the following techniques perform similar operations as a dropout in a neural network? (1/1 Points)		
Dimensionality Reduction		
Boosting		
Bagging		
None of the above		
18. Example of high bias algorithm is (1/1 Points)		

Linear Regression

	Decision Tree				
	Neural Network				
	All of the above				
19. Which of the following statement is true for Word2Vec model? (1/1 Points)					
	The architecture of word2vec consists of only two layers – continuous bag of words and skip-gram model				
	Continuous bag of word (CBOW) is a Recurrent Neural Network model				
	Both CBOW and Skip-gram are shallow neural network models 🗸				
	All of the above				
20. What problem you could face if you have a non-differentiable function in one of the layers of the network. (1/1 Points)					
	Network will work as intended				
	Information will not pass to next layer				
	Will need more epochs to learn				
	Weights will not update 🗸				
×	•				
	e gradient of a differential and continuous function is 1 Points)				
	zero at saddle point				
	zero at minima				

	<u> </u>	zero at maxima		
		All of the above 🗸		
	22. What is the advantage of Pytorch over tensorflow (1/1 Points)			
	9	Speed		
) (Can use GPU		
		Can have dynamic graphs 🗸		
) F	Pytorch has no advantage		
C	23. Which of the following features can be used for accuracy improvement of a classification model? (1/1 Points)			
) F	Frequency count of terms		
) \	Vector Notation of sentence		
) F	Part of Speech Tag		
		Dependency Grammar		
	• /	All of these 🗸		
24. What is K in K-means algorithm? (1/1 Points)				
	1	No of cores used		
	1	No of cluster centers 🗸		
	1	No of optimization parameters		

None of the above

This content is created by the owner of the form. The data you submit will be sent to the form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies (https://go.microsoft.com/fwlink/p/?linkid=857875) | Terms of use (http://go.microsoft.com/fwlink/p/?LinkId=2083423)