отримати трикутники потужностей, опорів, напруг аналогічно тому, як ми їх отримували раніше.

З отриманих діаграм видно, що можливий варіант, коли вектори напруг на індуктивності і конденсаторі будуть рівними. У цьому випадку вектори напруг на активних опорах U_R , $U_$

Рис.13

Отже, при резонансі напруг повний реактивний опір кола дорівнює нулю: $X=X_L-X_C=0$, кут ф дорівнює нулю, напруги на індуктивності і конденсаторі (при малих внутрішніх активних опорах цих елементів) $U_L=U_C$ рівні, а значення струму в ланцюгу в цей момент досягає максимального значення I_{max}

Резонане напруг в лабораторії можна отримати різними способами, а саме: використовуючи змінну індуктивності при незмінному значенні ємності та частоти джерела живлення, використовуючи змінний конденсатор при незмінному значенні індуктивності і частоти, змінюючи частоту джерела живлення при незмінних значеннях індуктивності і конденсатора. Значення індуктивності L_0 , ємності конденсатора C_0 і частоти ω_0 називають резонансними і визначають із співвіднощень:

$$X_L = X_C$$
; $\omega_0 L = 1/\omega_0 C$; $\omega_0^2 L C = 1$;
 $L_0 = 1/\omega_0^2 C$; $C_0 = 1/\omega_0^2 L = 1/\omega_0 X_K$; $\omega_0 = 1/\sqrt{LC}$.

Крім того, існують й інші величини, які характеризують резонанс, а саме, хвильовий або характеристичний опір р. Якщо хвильовий опір менший за активний опір контуру, то в ньому на реактивних елементах виникають напруги, що значно перевищують вхідну напругу. Хвильовий опір можна визначити ак:

$$\rho = \frac{U_L}{I} = \frac{U_C}{I} .$$

Добротність контура Q – величина, яка показує, у скільки разів напруга на індуктивності або на конденсаторі перевищує напругу на вході схеми в момент резонансу:

$$Q = \frac{\omega_0 L}{R}.$$

3. Порядок виконання роботи

1. Зібрати вимірювальну частину схеми (рис.14), використовуючи амперметр, фазометр, мультиметр і, підключаючи (лабораторний блок №8) по черзі резистор, котушку індуктивності і конденсатор, зробити необхідні вимірювання, які занести в табл. 4.

Тоблиця 4

1	Коло	Вимиряти						Обчислити опір,Ом.				
-	Į.	U,B	I,A	ф,град	U_R , B	U_{K} ,B	U_C,B	R	R_{K}	R_C	X _K	X _C
1	R						-		-		-	
	L				_		-	_		_	*	_
-	С					-			-		-	,

2. Використовуючи виміряні величини, обчислити значення активного опору резистора, активного і реактивного опорів