GOSE:

Une bibliothèque pour l'informatique quantique en OCaml

Denis Carnier, Arthur Correnson, Christopher McNally, Youssef Moawad

$$p_0 + p_1 = 1$$

$$|c_0|^2 + |c_1|^2 = 1$$

Que peut-on faire avec ça?

Chercher dans des bases de données

Borne inférieure classique: $\Omega(N)$ étapes.

Algorithmes aléatoires

Ceci prend aussi $\Omega(N)$ échantillons.

Algorithmes aléatoires

...ou moins, avec une distribution biaisée.

L'algorithme de Grover : la vie en couleur

Complexité quantique : $\Theta(\sqrt{N})$ étapes.

GOOSE Démonstration

En direct!

GOOSE

Une infrastructure de compilation

Perspectives

- Optimisations
- Verification formelle
- D'autres front-ends
- Dessiner les diagrammes
- Stabilité d'API

Références

- Site-web: https://qgoose.github.io/
- A. Cross et al., Open Quantum Assembly Language, arXiv1707.03429v2

Les ordinateurs quantiques

État de l'art pratique

Limitée par la durabilité des appareils

Relativement artisanale

Principalement opérés manuellement

Des questions prévues