Remok 2.9.: Let [m<1] me 22+]. This is empty.

This trice to convey that we still need to prove that P(1) is tone

when using the "Second Principle of Finite Induction".

Assume P(m) is true for m < n, then P(n) is time.

Doing this with u=1 gives h wall me72+ } = of.

Claim 2.12.:

a=n, b=m

Skol: N=N-1 a=N-1

The claim holds for fixed N=N-1 and

all m.

a=2=3-1, N=3

Step 2: N=N w=M a=N b=M

The claim holds for fixed n=N and m=M.

a=3=N, b=2=M

Corollary 2.13.: There exist infinitely many a consecutive composite positive

ی در ملون

incregas.

Poof: Let $u \in \mathbb{Z}^+$ and $N = u (u + i) \cdots (u + i)$. Then $(u + i)! \mid N$. This weaks that $N = c \cdot (u + i)!$ for some $c \in \mathbb{Z}^+$. Pick any $2 \le s \le u + i$, then: $N + S = c \cdot (u + i)! + S = (c \cdot (u + i) \cdots (s + i)(s - i) \cdots 2 \cdot 1 + i) \cdot S$. $(u + i)! = (u + i) \cdots S \cdots 2 \cdot 1$

Hence S N+S. This is time for all 2454 u+1, so:

N+2, N+3, ..., N+ n+1 are all composite.

\$... }

divisible by 2 divisible by n+1

 $\mathbf{1}$

Corollary 2.14.:

 $(m) := \frac{m \cdot (m-1) \cdots (m-n+1)}{n!}$ unaltiplication of n consecutive positive integers, since $n \le m$.

$$= \frac{(m-n+1)\cdot(m-n+2)\cdots(m-n+(n-1))\cdot(m-n+n)}{n!} = \frac{(m-n+1)n}{n!}$$

Definition: (m) ~ := m·(m+1) ··· (m+n-1)

Trick on 4.14.:

c = cax + cby = cax + ady = a. (c.x + dy) so a | c.

a | cb so cb = a.d for some de72+

Definition: pe || u, then pe |u lut pet ju.

 $u = p_i^{e_1} \dots p_r^{e_r}$, $1 < p_i < \dots < p_r$ prime, $e_1, \dots, e_r \in \mathbb{Z}^+$. $p^e \mid \mid u$ if and only if $p = p_i$ and $e = e_i$.