Complexidade de Algoritmos

Paulino Ng

2020-03-27

Plano da aula

Esta aula apresenta a aproximação das funções que representam o tempo de execução com o crescimento do tamanho da entrada.

- 1. Comparação de tempos de execução
- 2. Comportamento assintótico de curvas
- 3. Notação \mathcal{O} , Ω , Θ , o, ω

Comparação de Tempos de Execução

Para comparar tempos de execução, vamos resolver o problema 1-1 do [CLRS]:

Para cada função f(n) e o tempo t na tabela abaixo, determine o maior tamanho n de um problema que pode ser resolvido em tempo t. Assume-se que o algoritmo para resolver o problema leva f(n) microsegundos.

	1	1	1	1	1	1	1
	segundo	minuto	hora	dia	mes	ano	século
lg n							
\sqrt{n}							
n							
n lg n							
n^2							
n^3							
2 ⁿ							
n!							

Solução para t =1s $=10^6 \mu ext{s}=1.000.000~\mu ext{s}$

Ig
$$n = 10^6 \rightarrow n = 2^{10^6} \approx 10^{301030}$$

$$\sqrt{n} = 10^6 \rightarrow n = 10^{12}$$

$$n = 10^6$$

$$n^2 = 10^6 \rightarrow n = 10^3$$

$$n^3 = 10^6 \rightarrow n = 10^2$$

$$ightharpoonup 2^n = 10^6 \to n = 6. \log_2 10 \approx 20$$

Calcule o restante da tabela. Observe como o aumento do tempo não resulta num aumento muito significativo do n para as duas últimas funções.

$$\begin{array}{cccc} 1s = 10^6 \mu s & 1 \mathrm{min} = 60 \cdot 10^6 \mu s = 6 \cdot 10^7 \mu s; \\ 1h = 3, 6 \cdot 10^9 \mu s & 1 \mathrm{dia} = 8, 64 \cdot 10^{10} \mu s; \\ 1 \mathrm{mes} = 2, 592 \cdot 10^{12} \mu s & 1 \mathrm{ano} = 3, 1104 \cdot 10^{13} \mu s \\ 1 \mathrm{s\'eculo} = 3, 1104 \cdot 10^{16} \mu s & 1 \mathrm{ano} = 3, 1104 \cdot 10^{13} \mu s \end{array}$$

Observações sobre este Exercício

- No lugar de calcular o tempo para cada uma destas funções para um dado tamanho (n), o exercício pede algo mais prático (e difícil de ser calculado) que é o maior problema que podemos resolver com um algoritmo que tenha a função como tempo de execução.
- É óbvio que não desejamos usar um computador para resolver problemas que precisem de 1 século de cálculo para ser resolvido. Mas o que interessa neste exercício é entender que mesmo se um computador não quebrar durante a execução de um programa durante um século de execução, o problema resolvido não terá sido muito maior do que o que precisou de uma hora para ser resolvido, se a função for exponencial ou fatorial.
- Conforme veremos, existem problemas que não podem ser resolvidos muito rapidamente (com uma função de complexidade simples). Estes problemas limitam o melhor algoritmo que pode ser usado para resolvê-los.

Assíntotas

- [ZIVIANI] afirma que a escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno. Logo, a análise de algoritmos é realizada para valores grandes de n.
- Estuda-se o comportamento assintótico das **funções de custo**. **Definição**: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, temos $|g(n)| \le c|f(n)|$.

Figure 1: A função f(n) domina assintoticamente a função g(n) [ZIVIANI].

Exemplos de dominação assintótica

- ▶ g(n) = n é assintoticamente dominada por $f(n) = -n^2$ para todo n natural.
- ▶ $g(n) = (n+1)^2$ e $f(n) = n^2$ dominam assintoticamente uma à outra.
- As funções dadas na tabela exercício do início da aula foram escolhidas de maneira que as funções das linhas inferiores dominam assintoticamente as funções das linhas superiores.

Notação big-O

- Segundo [ZIVIANI], Knuth sugeriu a notação usada atualmente para indicar que uma função f(n) domina assintoticamente a outra, g(n): $\mathcal{O}(f(n)) = g(n)$
- A wikipedia diz que a notação é parte da notação de Bachmann-Landau.
- ▶ Uma definição mais formal é: Seja g uma função complexa, ou real, e f uma função real, ambas definidas num subconjunto não limitado dos números reais positivos, tais que f(x) é estritamente positiva para todos os x suficientemente grandes. Escreve-se: $g(x) = \mathcal{O}(f(x))$ $com x \to \infty$ se, e apenas se, para todo valor suficientemente grande de x, o valor absoluto de g(x)é no máximo igual a uma constante positiva vezes o f(x).

Propriedades e Exemplos

[ZIVIANI] Uma função g(n) é $\mathcal{O}(f(n))$ se existem duas constantes positivas c e m tais e $g(n) \le c$ f(n), \forall $n \ge m$.

- Exemplo: Seja $g(n) = (n+1)^2$. Logo, $g(n) \in \mathcal{O}(n^2)$, quando m=1 e c=4. Isso porque $(n+1)^2 \le 4$ n^2 para $n \ge 1$.
- Exemplo: A função $g(n) = 3 n^3 + 2 n^2 + n \in \mathcal{O}(n^3)$.
- ▶ Exemplo: A função $g(n) = \log_5 n$ é $\mathcal{O}(\log n)$.

Propriedades

$$f(n) = \mathcal{O}(f(n))$$

$$c \times \mathcal{O}(f(n)) = \mathcal{O}(f(n)) \quad c = constante$$

$$\mathcal{O}(f(n)) + \mathcal{O}(f(n)) = \mathcal{O}(f(n))$$

$$\mathcal{O}(\mathcal{O}(f(n))) = \mathcal{O}(f(n))$$

$$\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(max(f(n), g(n)))$$

$$\mathcal{O}(f(n)) \mathcal{O}(g(n)) = \mathcal{O}(f(n) g(n))$$

$$f(n) \mathcal{O}(g(n)) = \mathcal{O}(f(n) g(n))$$

Exercícios

- 1. Suponha que um programa tenha 3 trechos com tempos de execução $\mathcal{O}(n)$, $\mathcal{O}(n^2)$ e $\mathcal{O}(n\log n)$. Qual o tempo de execução do programa como um todo?
- 2. Indique quais afirmações abaixo são verdadeiras ou falsas:
 - a. $2^{n+1} = \mathcal{O}(2^n)$
 - b. $2^{2n} = \mathcal{O}(2^n)$
 - c. $f(n) = \mathcal{O}(u(n)) \in g(n) = \mathcal{O}(v(n)) \Rightarrow f(n) + g(n) = \mathcal{O}(u(n) + v(n))$
 - d. $f(n) = \mathcal{O}(u(n)) \in g(n) = \mathcal{O}(v(n)) \Rightarrow f(n) g(n) = \mathcal{O}(u(n) v(n))$
- 3. [desafio] Prove que $f(n) = 1^2 + 2^2 + \ldots + n^2$ é igual a $\frac{n^3}{3} + \mathcal{O}(n^2)$

Outras definições

- A notação big-O diz que f(n) é um limite superior para a taxa de crescimento da função g(n). Outras definições permitem outras aproximações assintóticas.
- Definição da notação Ω : Uma função g(n) é $\Omega(f(n))$ se existirem duas constantes c e m tais que $g(n) \ge c$ f(n), para todo $n \ge m$.
 - ▶ g(n) é $\Omega(f(n))$ quer dizer que f(n) é um limite inferior para a taxa de crescimento de g(n).
 - Exemplo: $g(n) = 3 n^3 + 2 n^2 ∈ Ω(n^3)$
- ▶ Definição notação Θ : Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que
 - $0 \le c_1 \ f(n) \le g(n) \le c_2 \ f(n)$, para todo $n \ge m$.
 - $ightharpoonup c_1 f(n)$ está abaixo de g(n), $c_2 f(n)$ está acima de g(n), dizemos que f(n) é um **limite assintótico firme** de g(n).

Mais definições

- ▶ Definição notação o: Uma função g(n) é o(f(n)) se, para qualquer constante c > 0, então $0 \le g(n) < c$ f(n), $\forall n \ge m$.
 - Exemplo: $2n = o(n^2)$, mas $2n^2 \neq o(n^2)$
 - A diferença entre \mathcal{O} e o é que na big-O existe uma constante c e na o a relação vale para todo c positivo.
- ▶ Definição da notação ω : Uma função g(n) é $\omega(f(n))$ se, para qualquer constante c > 0, então $0 \le c f(n) \le g(n)$, $\forall n \ge m$.
 - Exemplo: $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$

Classes de Comportamento

- ▶ Se f é uma função de complexidade para um algoritmo F, então $\mathcal{O}(f)$ é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F.
- ▶ Um programa com tempo de execução $\mathcal{O}(n)$ é melhor do que um programa com tempo de execução $\mathcal{O}(n^2)$ para n acima de um certo valor.
- A maioria dos algoritmos possui um parâmetro que afeta mais significativamente o tempo de execução do que os outros. Em geral, este parâmetro é o número de itens a ser processado.
- ▶ O *n* que representa o tamanho da entrada pode ser: o número de registros num arquivo ou o número de nós de um grafo.

- As principais classes de problemas com suas funções de complexidade são:
 - 1. $f(n) = \mathcal{O}(1)$: Algoritmos de **complexidade constante**.
 - 2. $f(n) = \mathcal{O}(\log n)$: Algoritmos de **complexidade logarítmica**.
 - 3. $f(n) = \mathcal{O}(n)$: Algoritmos de **complexidade linear**. 4. $f(n) = \mathcal{O}(n \log n)$: Algoritmos que resolvem um problema particionando-o em problemas menores e resolvendo os
 - problemas menores para compor a solução do problema original. 5. $f(n) = \mathcal{O}(n^2)$: Algoritmos de **complexidade quadrática**.
 - 6. $f(n) = \mathcal{O}(n^3)$: Algoritmos de **complexidade cúbica**. 7. $f(n) = \mathcal{O}(2^n)$: Algoritmos de **complexidade exponencial**.
 - 8. $f(n) = \mathcal{O}(n!)$: Algoritmos de **complexidade fatorial**, ou complexidade combinatório.

Técnicas para Análise de Algoritmos

- Aho, Hopcroft e Ullman enumeram alguns princípios a serem seguidos na análise de algoritmos, não existem técnicas gerais:
 - 1. O tempo de execução de um comando de atribuição, de leitura ou de escrita pode ser considerado $\mathcal{O}(1)$.
 - O tempo de execução de uma sequência de comandos é determinado pelo maior tempo de execução de qualquer comando da sequência.
 - 3. O tempo de execução de um comando de decisão é composto pelo tempo de execução dos comandos executados dentro do comando condicional mais o tempo para calcular a condição, $\mathcal{O}(1)$.
 - 4. O tempo para executar um laço é a soma do tempo de execução do corpo do laço mais o tempo de calcular a condição para terminar multiplicado pelo número de iterações do laço.

5. Quando o programa possui procedimentos não recursivos, o tempo de execução de cada procedimento deve ser computado separadamente, um a um, iniciando com os procedimentos que não chamam outros procedimentos. A seguir devem ser avaliados os procedimentos que chamam os procedimentos

cujos tempos já foram computados. Esse processo é repetido

até chegar ao programa principal.

6. Quando o programa possui **procedimentos recursivos**, a cada procedimento é associada uma função de complexidade f(n) desconhecida, na qual n mede o tamanho dos argumentos para o procedimento, conforme veremos depois.

Exercício

- 1. Este exercício procura mostrar que a complexidade depende do que se considera como tamanho da entrada, n.
 - a. Seja N um número inteiro positivo escrito na base 10, analise a complexidade do algoritmo para encontrar o seu valor binário (base 2) pelas divisões sucessivas por 2. O tamanho do problema inicial é o próprio valor de N.
 - b. Seja o mesmo problema do item a., mas agora o tamanho do problema é dado pelo número de digitos de N.