Elementi di Topologia Algebrica - 2024/25 Esercizi - Gruppo 1 - 18/10/2024

da consegnare entro il 28 ottobre 2024

Definizione 1. Un complesso simpliciale astratto è una famiglia Δ costituita da sottoinsiemi finiti di un insieme X tale che: se $\tau \in \Delta$ e $\sigma \subseteq \tau$, allora $\sigma \in \Delta$. I membri di un complesso simpliciale Δ sono chiamati facce di Δ , e la dimensione di una faccia τ è $|\tau| - 1$.

- (1) Mostrare che ogni complesso simpliciale finito può essere realizzato geometricamente, cioè esiste un sottoinsieme $X(\Delta) \subset \mathbb{R}^n$ tale che tale che
 - (a) $X(\Delta) = \bigcup_{\tau \in \Delta} X(\tau)$, dove $X(\tau)$ è immagine tramite una mappa affine iniettiva del simplesso standard di dimensione $|\tau| 1$;
 - (b) $X(\tau) \cap X(\tau') = X(\tau \cap \tau')$.

Definizione 2. Per ogni $n \geq 0$, consideriamo lo \mathbb{Z} -modulo libero $C_n(\Delta)$ generato dall'insieme $\{e_{\tau}|\tau\in\Delta, \dim(\tau)=n\}$ in corrispondenza con le facce τ n-dimensionali di Δ . Definiamo le mappe di bordo ∂_n , tali che

$$\partial_n e_\tau := \sum_{x \in \tau} (-1)^{|\{x' \in \tau, x' < x\}} e_{\tau \setminus \{x\}}.$$

Estendendo per linearità otteniamo un omomorfismo $\partial_n: C_n(\Delta) \to C_{n-1}(\Delta)$. Si verifica facilmente che le mappe di bordo soddisfano l'equazione $\partial_n \circ \partial_{n+1} = 0$. Poniamo:

$$Z_n(\Delta) := \ker \partial_n = \{ z \in C_n(\Delta) | \partial_n(z) = 0 \},$$

$$B_n(\Delta) := \operatorname{Im} \partial_{n+1} = \{ z \in C_n(\Delta) | z = \partial_{n+1}(x) \text{ per qualche } x \in C_{n+1}(\Delta) \}.$$

Abbiamo che $B_n(\Delta)$ è un sottomodulo di $Z_n(\Delta)$. Definiamo l'omologia simpliciale di grado n di Δ come il quoziente

$$H_n(\Delta) = Z_n(\Delta)/B_n(\Delta).$$

- (2) Indichiamo con [n] l'insieme $\{0, 1, ..., n\}$. Sia $\Delta^n = \mathcal{P}([n]) \setminus \{[n]\}$, cioè il simplesso n dimensionale astratto senza la sua parte interna. Calcolare i gruppi di omologia $H_*(\Delta^n)$. [sugg.: confrontarli con l'omologia aumentata del simplesso pieno; quest'ultima può essere calcolata per induzione, tramite un'omotopia di complessi]
- (3) Siano X,Y due spazi topologici con punto base e $f:X\to Y$ una mappa continua. Sia $f_\#:\pi_1(X,x_0)\to\pi_1(Y,f(x_0))$ la mappa indotta tra i gruppi fondamentali e $f_*:H_n(X)\to H_n(Y)$ la mappa indotta in omologia. Detto $h_X:\pi_1(X,x_0)\to H_1(X)$ l'omomorfismo costruito a lezione. Mostrare che h è naturale, ovvero $h_Y\circ f_\#=f_*\circ h_X$.
- (4) Calcolare i gruppi di omologia singolare di $S^1 \times S^1$. [sugg.: utilizzare la successione di Mayer-Vietoris]
- (5) Descrivere un complesso simpliciale astratto Δ che abbia una realizzazione geometrica omeomorfa al toro $S^1 \times S^1$ e calcolare esplicitamente l'omologia simpliciale di Δ .