P1 Chapter 3: Inequalities

Quadratic Inequalities

Solving Quadratic Inequalities

Solve
$$x^2 + 2x - 15 > 0$$

$$(x+5)(x-3) > 0$$

Step 1: Get 0 on one side (already done!)

Step 2: Factorise

Step 3: Sketch and reason

Since we sketched y = (x + 5)(x - 3) we're interested where y > 0, i.e. the parts of the line where the y value is positive.

What can you say about the x values of points in this region?

$$x < -5$$

What can you say about the x values of points in this region?

$${x: x < -5} \cup {x: x > 3}$$

Note: If the y value is 'strictly' greater than 0, i.e. > 0, then the x value is strictly less than -5. So the < vs \leq must match the original question.

Solving Quadratic Inequalities

Solve
$$x^2 + 2x - 15 \le 0$$

$$(x+5)(x-3) \le 0$$

Again, what can we say about the x value of any point in this region?

Step 1: Get 0 on one side (already done!)

Step 2: Factorise

Step 3: Sketch and reason

Bro Note: As discussed previously, we need ≤ rather than < to be consistent with the original inequality.

Further Examples

Solve $x^2 + 5x \ge -4$

Note: The most common error I've seen students make with quadratic inequalities is to skip the 'sketch step'. Sod's Law states that even though you have a 50% chance of getting it right without a sketch (presuming you've factorised correctly).

Solve $x^2 < 9$

Use of Technology:

Use the quadratic inequality solver on my ClassWiz. Just go to Menu \rightarrow Inequalities, then choose 'order 2' (i.e. quadratic)

Further Examples

Solve
$$x^2 + 5x \ge -4$$

 $x^2 + 5x + 4 \ge 0$
 $(x + 4)(x + 1) \ge 0$

$$x \le -4$$
 or $x \ge -1$

Fro Note: The most common error I've seen students make with quadratic inequalities is to skip the 'sketch step'. Sod's Law states that even though you have a 50% chance of getting it right without a sketch (presuming you've factorised correctly), you will get it wrong.

$$-3 < x < 3$$

Use of Technology:

Use the quadratic inequality solver on my ClassWiz. Just go to Menu \rightarrow Inequalities, then choose 'order 2' (i.e. quadratic)

Test Your Understanding

Edexcel C1 June 2008 Q8

Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,

(a) show that $q^2 + 8q < 0$.

(2)

(b) Hence find the set of possible values of q.

(3)

(a) (b)

Test Your Understanding

Edexcel C1 June 2008 Q8

Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,

(a) show that $q^2 + 8q < 0$.

(2)

(b) Hence find the set of possible values of q.

(3)

(a) [No real roots implies
$$b^2 - 4ac < 0$$
 .] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$ M1
So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*) A1 cso (2)
(b) $q(q+8) = 0$ or $(q\pm 4)^2 \pm 16 = 0$ M1
 $(q) = 0$ or -8 (2 cvs) A1
 $-8 < q < 0$ or $q \in (-8, 0)$ or $q < 0$ and $q > -8$ A1 ft (3)

Note: What often confuses students is that the original equation has no solutions, but the inequality $q^2 + 8q < 0$ <u>did</u> have solutions. But think carefully what we've done: We've found the solutions for q that result in the original equation not having any solutions for x. These are different variables, so have different solutions sets, even if the solution set of q influences the solution set of x.

Exercise 3.5

Pearson Pure Mathematics Year 1/AS Page 20

Homework Exercise

1 Find the set of values of x for which:

a
$$x^2 - 11x + 24 < 0$$

b
$$12 - x - x^2 > 0$$

$$x^2 - 3x - 10 > 0$$

d
$$x^2 + 7x + 12 \ge 0$$
 e $7 + 13x - 2x^2 > 0$

e
$$7 + 13x - 2x^2 > 0$$

$$\mathbf{f} = 10 + x - 2x^2 < 0$$

$$\mathbf{g} \ 4x^2 - 8x + 3 \le 0$$

g
$$4x^2 - 8x + 3 \le 0$$
 h $-2 + 7x - 3x^2 < 0$

i
$$x^2 - 9 < 0$$

i
$$6x^2 + 11x - 10 > 0$$
 k $x^2 - 5x > 0$

$$k x^2 - 5x > 0$$

$$1 \ 2x^2 + 3x \le 0$$

2 Find the set of values of x for which:

a
$$x^2 < 10 - 3x$$

b
$$11 < x^2 + 10$$

$$c x(3-2x) > 1$$

d
$$x(x+11) < 3(1-x^2)$$

3 Use set notation to describe the set of values of x for which:

a
$$x^2 - 7x + 10 < 0$$
 and $3x + 5 < 17$

b
$$x^2 - x - 6 > 0$$
 and $10 - 2x < 5$

c
$$4x^2 - 3x - 1 < 0$$
 and $4(x + 2) < 15 - (x + 7)$

d
$$2x^2 - x - 1 < 0$$
 and $14 < 3x - 2$

e
$$x^2 - x - 12 > 0$$
 and $3x + 17 > 2$

$$\mathbf{f} \quad x^2 - 2x - 3 < 0 \text{ and } x^2 - 3x + 2 > 0$$

4 Given that $x \neq 0$, find the set of values of x for which:

a
$$\frac{2}{x} < 1$$

b
$$5 > \frac{4}{x}$$

$$c \frac{1}{x} + 3 > 2$$

d
$$6 + \frac{5}{x} > \frac{8}{x}$$

e
$$25 > \frac{1}{x^2}$$

$$f \frac{6}{x^2} + \frac{7}{x} \le 3$$

Homework Exercise

- 5 a Find the range of values of k for which the equation $x^2 kx + (k + 3) = 0$ has no real roots.
 - **b** Find the range of values of p for which the roots of the equation $px^2 + px 2 = 0$ are real.

Hint The quadratic equation $ax^2 + bx + c = 0$ has real roots if $b^2 - 4ac \ge 0$. \leftarrow Section 2.5

- 6 Find the set of values of x for which $x^2 5x 14 > 0$. (4 marks)
- 7 Find the set of values of x for which

a
$$2(3x-1) < 4-3x$$
 (2 marks)

b
$$2x^2 - 5x - 3 < 0$$
 (4 marks)

c both
$$2(3x-1) < 4-3x$$
 and $2x^2-5x-3 < 0$. (2 marks)

8 Given that $x \ne 3$, find the set of values for which $\frac{5}{x-3} < 2$.

(6 marks)

Problem-solving

Multiply both sides of the inequality by $(x - 3)^2$.

9 The equation $kx^2 - 2kx + 3 = 0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \le k < 3$. (4 marks)

Homework Answers

1 a
$$3 < x < 8$$

c
$$x < -2, x > 5$$

e
$$-\frac{1}{2} < x < 7$$

$$\mathbf{g} \quad \frac{1}{2} \le x \le 1\frac{1}{2}$$

i
$$-3 < x < 3$$

k
$$x < 0, x > 5$$

2 a
$$-5 < x < 2$$

c
$$\frac{1}{2} < x < 1$$

3 **a**
$$\{x: 2 < x < 4\}$$

c
$$\{x: -\frac{1}{4} < x < 0\}$$

e
$$\{x: -5 < x < -3\} \cup \{x: x > 4\}$$

f
$$\{x: -1 < x < 1\} \cup \{x: 2 < x < 3\}$$

4 a
$$x < 0$$
 or $x > 2$

c
$$x < -1$$
 or $x > 0$

e
$$x < -\frac{1}{5}$$
 or $x > \frac{1}{5}$

b
$$-4 < x < 3$$

d
$$x \leq -4, x \geq -3$$

f
$$x < -2, x > 2\frac{1}{2}$$

h
$$x < \frac{1}{3}, x > 2$$

j
$$x < -2\frac{1}{2}, x > \frac{2}{3}$$

$$1 -1\frac{1}{2} \le x \le 0$$

b
$$x < -1, x > 1$$

d
$$-3 < x < \frac{1}{4}$$

b
$$\{x: x > 3\}$$

d No values

b
$$x < 0 \text{ or } x > 0.8$$

d
$$x < 0 \text{ or } x > 0.5$$

$$\mathbf{f} \quad x \leq -\frac{2}{3} \text{ or } x \geq 3$$

5 a
$$-2 < k < 6$$

6
$$\{x: x < -2\} \cup \{x: x > 7\}$$

7 **a**
$$\{x: x < \frac{2}{3}\}$$

c
$$\{x: -\frac{1}{2} < x < \frac{2}{3}\}$$

8
$$x < 3 \text{ or } x > 5.5$$

9 No real roots
$$b^2 - 4ac < 0$$
 $(-2k)^2 - 4 \times k \times 3 < 0$ $4k^2 - 12k = 0$ when $k = 0$ and $k = 3$

b $p \le -8$ or $p \ge 0$

b $\{x: -\frac{1}{2} < x < 3\}$

solution
$$0 \le k < 3$$

note when k = 0 equation gives 3 = 0