Global Weight:

심층 신경망의 압축을 위한 네트워크 수준의 가중치 공유

2020. 07. 13 신은섭 배성호

Machine Learning and Visual Computing Lab.

INDEX

- 배경 및 동기
- 방법
- 실험 결과
- 결론 및 향후 연구

배경 및 동기

배경

모델	Top 5 on Image Net	매개변수	FLOPs
AlexNet	84.70%	62M	1.5B
VGGNet	92.30%	138M	19.6B
Inception	93.30%	6.4M	2B
ResNet-152	95.51%	60.3M	11B

- 심층신경망은 Computer Vision분야에서 매우 좋은 성능을 보이고 있음
- 그러나 사용하는 리소스가 매우 많기 때문에 하드웨어 제한이 있는 장치에서는 실행하기 어려움
- 이를 해결하기 위해 모델 압축이라는 분야가 활발하게 연구 중

배경

- 그 중 가중치 공유기법은 학습된 가중치를 여러 곳에서 공유하는 기법
- 그러나 기존의 선행연구들[1, 2, 3]은 레어어 단에서만 가중치를 공유

- [1] WSNet: Compact and Efficient Networks with Weight Sampling. ICLR Workshop, 2018.
- [2] FSNet: Compression of Deep Convolutional Neural Networks by Filter Summary, ICLR, 2
- [3] Neural Epitome Search for Architecture-Agnostic Network Compression, ICLR, 2020.

동기

0

- 그러나 Weight 중복은 레이어 내부에만 있는 것이 아니라 네트워크 전체에 있음
- 본 논문에서는 레이어 내부에서만 가중치를 공유하는 것이 아닌 전체 네트워크에서 가중치를 공유하는 Global Weight방법을 제안

Global Weight

- Global Weight
- Global Weight Convolution
- Global Weight Networks

Global Weight

alobal Maight

 Global Weight는 기존의 Layer-wise 가중치 공유 방법에서 벗어나, 전체 네트워크에서 하나의 가중치 셋을 공유하는 패러다임.

- 장점
 - 가중치의 **중복성**을 획기적으로 줄일 수 있음
 - 매개변수도 효율적으로 **압축**할 수 있음

Global weight 패러다임을 적용한 convolution연산

가중치 공유를 하지 않는 방식

각 레이어마다 필터가 독립적으로 존재

Global Weight를 적용한 방식

각 레이어는 필터의 인덱스만 저장하고 Global Weight에 저장된 실제 필터를 사용

alobal vveignt convolution

• GWConv의 작동 원리

alubai vveigni convolution

• GWConv의 작동 원리

Global Weight

Global

Weight

실제 Convolution의 Filter가 학습 되는 부분

전체 네트워크에서 공유됨

크기: KxKxL

(K: 커널 크기, L: GW 크기)

alobal Melynt Convolution

• GWConv의 작동 원리

Selector

Global Weight의 몇 번 째 Weight를 사용할 지를 학습 GWConv에서 학습되는 유일한 부분

Selector의 크기: in_channel x out_channel

Selector의 값: 0~1

Selector

alobal weight convolution

• GWConv의 작동 원리

Local Kernel

Forward시 생성되는 중간물 Selector와 Global Kernel의 조합으로 구성 LK를 이용하여 실제 Convolution 수행

구성 방법:

- 1. Selector에 GW 크기 L을 곱하고 반올 림하여 Indices 계산
- 2. 해당 Indices위치에 있는 GW실제 Wei ght를 이용하여 Local Kernel을 구성

● 매개변수 크기

Baseline	GWConv	
$K \sum_{n=0}^{N} I_n O_n$	$KL + \sum_{n=0}^{N} I_n O_n$	

Notation

N: Number of Layer

L: Number of Global Kernel

K: kernel size

I_n: number of input channel O_n: number of input channel

alonal vycigin convolution

• 압축비

$$Let) \sum_{n=0}^{N} I_n O_n = H$$

$$CR = \frac{KH}{KL + H}$$

$$=\frac{1}{\frac{L}{H}+\frac{1}{K}}$$

$$\approx \frac{H}{L}$$

압축비 CR은 왼쪽과 같이 구해 짐

K는 일반적으로 1, 9, 25와 같이 L과 H에 비해 매우 작은 값임으로 무시가 가능

즉, GWConv는 L을 조절 함으로써 압축비를 조절

Notation

N: Number of Layer

K: kernel size

L: Number of Global Kernel

 I_n : number of input channel O_n: number of input channel

Global Weight Networks

aloudi melyili melyona

● GWConv는 추가적인 연결이나, 학습에서만 사용되는 매개변수가 없기 때문에 기존의 Convolution연산을 바로 대체하여 사용이 가능

● 기존의 Convolution연산을 GWConv로 대체한 네트워크를 GWNet 이라 함

실험 결과

실험 결과

Model	# Params	Top-1	CR
ResNet-20	272,474	92.02%	1.00
GWNet-10000	124,810	85.64%	2.18
GWNet-7500	102,310	85.73%	2.66
GWNet-5000	79,810	85.46%	3.41
GWNet-2500	57,310	84.36%	4.75
GWNet-1000	43,810	80.96%	6.22
GWNet-500	39,310	78.30%	6.93

CIFAR10에서 GW의 크기를 변화해가며 실험

실험 결과

CIFAR10에서 GW의 크기를 변화해가며 실험

결론 및 향후 연구

결론 및 향후 연구

2 L Z O T L I

- 심층신경망의 가중치를 네트워크 전체에서 공유하는 방법 Global Weight 제시
- Global Weight로 가중치를 공유하며 압축이 가능함을 보임

- 압축이 됨에 따라 정확도가 약 2배 압축에서 약 **6% 하락**함
- 겹침 패턴 가중치 공유방식, 가중치 증강 방식을 추가로 도입하여 정확도는 올 리고 압축율은 높이는 방식으로 연구 진행 예정

Thank you

Any Question?

Machine Learning and Visual Computing Lab.

