PCT/KR 3 / 0 1 1 1 9 RO/KR 09. 06. 2003

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0032147

Application Number

출 원 년 월 일 Date of Application 2002년 06월 08일

JUN 08, 2002

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
SUBMITTED OR TRANSMITTED IN
TO LANCE WITH RULE 17.1(a) OR (b)

출 원 인 Applicant(s) 엘지이노텍 주식회사 LG INNOTEC CO., LTD.

2003

년 06

o. 0

일

특

하

청

COMMISSIONER

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN

BEST AVAILABLE COPY

출력 일자: 2003/6/18

【서지사항】

【서류명】 특허출원서

[권리구분] 특허

【수신처】 특허청장

【참조번호】 0002

[제출일자] 2002.06.08

【국제특허분류】 H03H

【발명의 명칭】 슬릿탄성파를 이용한 유동체 센서

【발명의 영문명칭】 LIQUID SENSOR USING OF SAW

【출원인】

【명칭】 엘지이노텍 주식회사

[출원인코드] 1-1998-000285-5

[대리인]

【성명】 허용록

[대리인코드] 9-1998-000616-9

【포괄위임등록번호】 2002-038994-0

【방명자】

【성명의 국문표기】 최용림

【성명의 영문표기】CHOI, Yong Lim[주민등록번호]700420-1079511

[우편번호] 449-846

【주소】 경기도 용인시 풍덕천동 691번지 동부아파트 105동 1604:

[국적] KR

【발명자】

【성명의 국문표기】 체레드닉 , 발렌틴

【성명의 영문班기】 CHEREDNICK, Valentin

[주소] 니즈니 노브고로드 스테이트 유니버시티, 캐미컬 패컬티

603022, 니 즈니 노브고로드, 러시아, 가가린 애비뉴 23.

[주소의 영문표기] Nizhny Novgorod State University, Chemical Faculty 60

3022, Nizhny Novgorod, Russia, Gagarin avenue 23

[국적] RU

【발명자】

【성명의 국문표기】 드보에서스토프 , 미하일

【성명의 영문표기】 DVOESHERSTOV, Michail

출력 일자: 2003/6/18

【주소】

니즈니 노브고로드 스테이트 유니버시티, 캐미컬 패컬티 603022. 니 즈니 노브고로드, 러시아, 가가린 애비뉴 23.

【주소의 영문표기】

Nizhny Novgorod State University, Chemical Faculty 60

3022, Nizhny Novgorod, Russia, Gagarin avenue 23

【국적】

RU

【심사청구】

청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

허용록 (인)

면

【수수료】

【기본출원료】

10 0 29,000 원

【가산출원료】

) 면

0 원

【우선권주장료】

0 건

0 원

【심사청구료】

2 항

173,000 원

【합계】

202,000 원

[첨부서류]

1. 요약서· 명세서(도면)_1통

출력 일자: 2003/6/18

【요약서】

[요약]

본 발명은 슬릿탄성파를 이용한 유동체 센서에 대해 개시된다. 개시된 본 발명에 따른 슬릿탄성파를 이용한 유동체 센서는, 상판과 하판으로 슬릿을 형성하는 압전기판과; 상기 압전기판의 슬릿을 통과하는 슬릿탄성파와; 상기 압전기판의 일측에 형성되면서, 전기적인 입력 신호를 상기 슬릿탄성파로 변환하는 입력 IDT와; 상기 압전기판의 상기 입력 IDT와 반대되는 일측에 형성되면서, 전파된 상기 슬릿탄성파를 수신하여 전기적인 신호로 변환하는 출력 IDT; 상기 압전기판의 슬릿내에 유동체가 입력될 수 있도록 하는 유동체 입력 포트와; 상기 압전기판의 슬릿내의 유동체가 출력될 수 있도록 하는 유동체 입력 포트와; 상기 압전기판의 슬릿내의 유동체가 출력될 수 있도록 하는 유동체 출력 포트를 포함하는 점에 그 특징이 있다.

본 발명에 따른 슬릿탄성파를 이용한 유동체 센서는, 슬릿내의 공진기에서 발생된 슬릿표면파의 변화되는 주파수와 속도의 상관 관계를 적용하여 슬릿에 통과되는 유동체 의 점성도와 유전율을 알 수 있다.

【대표도】

도 2

【색인어】

유동체, 압전 기판, 슬릿탄성파

출력 일자: 2003/6/18

[명세서]

【발명의 명칭】

슬릿탄성파를 이용한 유동체 센서{LIQUID SENSOR USING OF SAW}

【도면의 간단한 설명】

도 1은 일반적인 표면탄성파(SAW) 필터를 개략적으로 나타낸 도면.

도 2는 본 발명에 따른 유동체 센서의 구성을 개략적으로 도시한 단면도.

<도면의 주요부분에 대한 부호의 설명>

201 --- 압전 기판

202 --- 입력 IDT

203 --- 출력 IDT

204 --- 슬릿

205 --- 유동체 입력 포트

206 --- 유동체 출력 포트

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 유동체 센서에 관한 것으로서, 특히 슬릿내의 공진기에서 발생된 슬릿표면파의 변화되는 주파수와 속도의 상관 관계를 적용하여 슬릿에 통과되는 유동체의 점성도와 유전율을 알 수 있는 슬릿탄성파를 이용한 유동체 센서에 관한 것이다.
- ◈ 최근, 이동 통신 시스템의 발전에 따라, 휴대 전화, 휴대형의 정보 단말 등의 이동
 통신 기기가 급속히 보급되어, 이들 기기의 소형화 및 고성능화의 요구로부터 이들에
 ・ 사용되는 부품의 소형화 및 고성능화가 요구되고 있다. 또한, 휴대 전화에 있어서는 아

--

û.

020032147

출력 일자: 2003/6/18

날로그 방식과 디지털 방식의 2개의 종류의 무선 통신 시스템이 이용되고 있고, 무선 통신 시아 사용하는 주파수도 800版 ~ 1版 대와, 1.5版 ~ 2.0版 대로 다방면에 걸쳐 있다.

- 상기 이동 통신 시스템에 있어서, 일반적으로 사용되는 안테나 듀플렉서에는 대부분 저손실, 내전력성, 온도 안정성 등이 고려된 유전체 공진기 듀플렉서가 사용되어 왔다.
- 그러나, 최근 SAW 필터의 저손실 설계방법, 내전력성 재료 개발, 온도 특성이 안정된 기판 개발이 급속히 진행되면서, 상기 SAW 듀플렉서를 적용하는 움직임이 진행되고 있다.
- <12> 도 1은 일반적인 표면탄성파(SAW) 필터를 개략적으로 나타낸 도면이다. 이에 도시된 바와 같이, 표면 탄성파 필터는 단결정 기판(101), 입력 변환기(102), 출력 변환기(103)로 이루어진다.
- <13> 상기 단결정 기판(101)은 일반적으로 쿼츠(Q uartz),리튬탄탈레이트(LiTaO3), 리튬 나이오베이트(LiNbO3), 등의 압전 단결정 기판으로 형성되면, 상기 입력 변환기 (102)와 상기 출력 변환기(103)는 금속 박막으로 형성된다.

상기 도 1에서, 입력 변환기(102)에 인가된 전기적 신호는 압전 단결정 기판(101)에 의해 기계적인 파동으로 변환되어, 매질인 단결정 기판(101)을 통해 출력 변환기(103)로 전파되어 나간다. 출력 변환기(103)에 도달된 파동을 압전 효과에 의해 다시 전기적인 신호로 변환되어 출력된다.

즉, 상기 SAW 필터는 이동 통신 단말기에서 고주파 신호를 필터링하기 위해 일반적으로 사용되는 필터로서, 압전 단결정 기판 위에 금속 박막으로 변환기를 패턴화하여 입출력 단자에 연결함으로써 원하는 주파수의 신호만을 선택적으로 통과시키는 수동소자이다.

<16> 상기 SAW 필터의 공진기에서 주파수 응답전체 전달함수는 압전체의 재료물성과 결정체의 순도, 금속박막의 재료특성 등의 재료적인 특성과 전극 설계시 고려되는 변수들을 포함하는 디바이스 변수의 복합적인 함수로 주어진다.

이 때, 상기 공진주파수 범위의 최소값의 한계는 디바이스의 크기에 의해 결정되며, 최대값의 한계는 전극의 선폭과 전파손실에 의해 제약받는 것으로 알려져 있다. 공진기는 특성상 대역폭이 매우 좁은 주파수응답과 긴 임펄스 응답을 가지므로 전극설계에 따른 매우 정확한 전극의 제조에 의해서만이 원하는 특성을 구현할 수 있다.

<18> 상기에서 살펴본 바와 같이, SAW에 적용되는 특성들을 고려하여 다른 응용분야에서 도 적용되는 움직임들이 있다. 그 중에서도 유동체 센서에 상기 SAW 필터 공진기를 적용 하여 보다 유동체의 성질을 판별할 수 있는 유동체 센서를 제공하고자 한다.

【발명이 이루고자 하는 기술적 파제】

보 발명은 상기와 같은 문제점을 개선하기 위하여 창출된 것으로서, 슬릿내의 공진기에서 발생된 슬릿표면파의 변화되는 주파수와 속도의 상관 관계를 적용하여 슬릿에 통과되는 유동체의 점성도와 유전율을 알 수 있는 슬릿탄성파를 이용한 유동체 센서를 제공함에 그 목적이 있다.

【발명의 구성 및 작용】

- 20> 상기의 목적을 달성하기 위하여 본 발명에 따른 슬릿탄성파를 이용한 유동체 센서 는,
- ♂21> 상판과 하판으로 슬릿을 형성하는 압전기판과;
- <22> 상기 압전기판의 슬릿을 통과하는 슬릿탄성파와;
- <23> 상기 압전기판의 일측에 형성되면서, 전기적인 입력 신호를 상기 슬릿탄성파로 변환하는 입력 IDT와;
- <24> 상기 압전기판의 상기 입력 IDT와 반대되는 일측에 형성되면서, 전파된 상기 슬릿 탄성파를 수신하여 전기적인 신호로 변환하는 출력 IDT;
- <25> 상기 압전기판의 슬릿내에 유동체가 입력될 수 있도록 하는 유동체 입력 포트와;
- <26> 상기 압전기판의 슬릿내의 유동체가 출력될 수 있도록 하는 유동체 출력 포트를 포함하는 점에 그 특징이 있다.
- <27> 여기서, 특히 상기 슬릿내에 소정의 유동체가 흐르면, 슬릿내 유동체 슬릿탄성파의 속도와 주파수를 측정하여 그 유동체의 유전율과 점성도를 알 수 있는 점에 그 특징이 있다.

30>

출력 일자: 2003/6/18

이와 같은 본 발명에 의하면, 슬릿내의 공진기에서 발생된 슬릿표면파의 변화되는
 주파수와 속도의 상관 관계를 적용하여 슬릿에 통과되는 유동체의 점성도와 유전율을 알수 있다.

이하 첨부된 도면을 참조하면서 본 발명의 실시 예를 상세히 설명한다.

도 2는 본 발명에 따른 유동체 센서의 구성을 개략적으로 도시한 단면도이다. 이에 도시된 바와 같이, 슬릿탄성파를 이용한 유동체 센서는, 상판과 하판으로 슬릿을 형성하는 압전기판(201)과; 상기 압전기판(201)의 슬릿을 통과하는 슬릿탄성파와; 상기 압전기판(201)의 일측에 형성되면서, 전기적인 입력 신호를 상기 슬릿탄성파로 변환하는 압력 IDT(202)와; 상기 압전기판(201)의 상기 입력 IDT(202)와 반대되는 일측에 형성되면서, 전파된 상기 슬릿탄성파를 수신하여 전기적인 신호로 변환하는 출력 IDT(203); 상기 압전기판(201)의 슬릿내에 유동체가 입력될 수 있도록 하는 유동체 입력 포트(205)와; 상기 압전기판(201)의 슬릿내의 유동체가 출력될 수 있도록 하는 유동체 합력 포트(206)를 포함하여 구성된다.

◇31〉 상기 압전 기판(201)의 내부에 슬릿을 형성하고, 상기 슬릿(204)을 기준으로 상기 압전 기판(201)을 상부와 하부로 나눈다. 상기 슬릿(204)내의 하부 압전 기판(201)의 외 측에 상기 입력 IDT(202)를 형성하여 전기적인 신호를 진동 형태의 슬릿탄성파로 변환시 킨다.

생기 입력 IDT(202)에서 변환된 슬릿탄성파는 상기 압전 기판(201)에 의해 전달되며, 상기 출력 IDT(203)에서 다시 슬릿탄성파를 전기적인 신호로 전환하게 된다. 상기 압전기판(201)의 슬릿(204)을 통과하는 슬릿탄성파는 특정 주파수만을 통과시키게 된다.

즉, SAW 소자에서 절연성이 큰 기판에 금속 전국을 형성해 압전을 걸면 일시적으로 기판 표면이 뒤틀리는데, 이 작용을 이용해 물리적인 파를 일으키게 된다. 상기 SAW 소자 표면을 전달하는 물결 속도가 전자파보다 느리기 때문에 일시적으로 전기 신호를 지연시키거나 특정 주파수 신호만을 통과시키는 필터와 같은 원리이다.

따라서, 상기 압전기판(203)을 따라 전파되는 특정 주파수 신호인 슬릿탄성파는 일반적인 SAW 소자의 표면탄성파와 같은 개념으로 기판의 표면을 따라 전달되는 파동의 상태를 나타내는 것이다. 여기서, 파동 형태는 상기 압전 기판(201)의 성질에 따라 진행되는 파의 종류가 횡파, 종파 등으로 달라질 수 있다. 또한, 상기 종류의 진행파들은 매질의 특성등 여러가지 조건들에 의해 감쇄되는 특징을 지난다.

0.05 한편, 유동체의 점성도와 유전율을 알기 위해서는 먼저 상기 슬릿0.04 내부가 빈 상태에서 진행되는 슬릿탄성파의 속도0.0를 측정하고, 주파수0.0를 계산한다. 여기서 , 상기 속도와 주파수는 0.0 라는 식을 적용하여 상관 관계를 구할 수 있다.

그리고, 상기 유동체 입력 포트(205)를 통해 상기 슬릿내에 소정의 유동체가 흐르게 되면, 상기 슬릿(204)내의 속도(ν₁)를 측정하고 주파수(f₁)를 계산한다. 여기서, 상기 유동체는 상기 유동체 출력 포드(206)까지 채워졌을 때의 슬릿탄성파의 속도와 주파수를 구하게 된다.

(37) 따라서, 상기 속도(ν0)와 속도(ν)의 차이, 상기 주파수(f0)와 주파수(f1)의 차이를 고려하여 상기 슬릿(204)을 통과하는 유동체의 유전율과 점성도를 알 수 있다. 여기서, 상기 유동체의 유전율이나 점성도를 알 수 있는 것은 미리 외부적인 장치에 각 종류의 유동체들의 유전율과 점성도 데이터를 구비하기 때문에 그 데이터 값과 비교하여 유사한 값을 가지는 것을 찾게 된다.

본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

【발명의 효과】

이상의 설명에서와 같이 본 발명에 따른 슬릿탄성파를 이용한 유동체 센서는, 슬릿 내의 공진기에서 발생된 슬릿표면파의 변화되는 주파수와 속도의 상관 관계를 적용하여 슬릿에 통과되는 유동체의 점성도와 유전율을 알 수 있다.

【특허청구범위】

【청구항 1】

상판과 하판으로 슬릿을 형성하는 압전기판과;

상기 압전기판의 슬릿을 통과하는 슬릿탄성파와;

상기 압전기판의 일측에 형성되면서, 전기적인 입력 신호를 상기 슬릿탄성파로 변환하는 입력 IDT와;

상기 압전기판의 상기 입력 IDT와 반대되는 일측에 형성되면서, 전파된 상기 슬릿 탄성파를 수신하여 전기적인 신호로 변환하는 출력 IDT;

상기 압전기판의 슬릿내에 유동체가 입력될 수 있도록 하는 유동체 입력 포트와;

상기 압전기판의 슬릿내의 유동체가 출력될 수 있도록 하는 유동체 출력 포트를 포함하는 것을 특징으로 하는 유동체 센서.

[청구항 2]

제 1항에 있어서,

상기 슬릿내에 소정의 유동체가 흐르면, 슬릿내 유동체 슬릿탄성파의 속도와 주파수를 측정하여 그 유동체의 유전율과 점성도를 알 수 있는 것을 특징으로 하는 유동체센서.

【도면】

[도 1]

[도 2]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
, no company	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.