

Circuitos Digitais (116351) - 2º Experimento

PORTAS LÓGICAS: NAND, NOR E XOR

OBJETIVO: Apresentar os conceitos, símbolos e tabelas da verdade das portas **NAND**, **NOR** e **XOR**. Mostrar o caráter universal das portas NAND e NOR. Discutir ainda os conceitos de *fanin*, *fan-out* e teorema de De Morgan.

1. INTRODUÇÃO TEÓRICA

1.1. PORTAS NAND, NOR E XOR

Uma porta NAND é equivalente a uma porta AND seguida de uma porta NOT, como mostra a **Figura 1**. Logo, a tabela da verdade de uma porta NAND é a tabela da verdade de uma porta AND com a saída invertida. De maneira análoga, uma porta NOR é equivalente a uma porta OR seguida de uma porta NOT.

Figura 1 – Portas NAND e NOR

Porta NAND			
Entr	Saída		
A	В	Y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Porta NOR			
Entr	Saída		
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Tabela I – Tabela da verdade das portas NAND e NOR

As portas NAND e NOR são universais pois podemos implementar qualquer função booleana usando apenas um desses dois tipos de portas, não havendo necessidade de qualquer outro tipo.

Em aplicações digitais, um nível lógico 1 ou 0 na saída de uma porta é considerado um *bit* e um grupo ordenado de *bits* é chamado de **palavra**.

A porta XOR de duas entradas compara dois *bits* e a saída será 1 se e somente se eles forem diferentes. Uma porta XOR de várias entradas terá a saída igual a 1 se tiver um número ímpar de 1's nas entradas.

A porta XNOR compara dois *bits* e a saída será 1 se e somente se eles forem iguais. No caso de várias entradas a saída só será 1 se houver um número par de 1's nas entradas. Esta porta é também conhecida como porta **comparadora**.

As portas XOR e XNOR são muito utilizadas para comparar palavras em tomada de decisões. O emprego do *bit* de paridade para detecção de erros é um exemplo típico de sua aplicação.

A expressão booleana da saída de uma porta XOR de entradas A e B é $\overline{AB} + A\overline{B}$. O símbolo utilizado para representar esta função é $A \oplus B$. Esta porta é também chamada de **comparador de desigualdade**. Analogamente, a expressão booleana para a saída de uma porta XNOR de entradas A e B é:

$$\overline{\overline{A}B + A\overline{B}} = AB + \overline{A}\overline{B} = \overline{A \oplus B}$$

e esta porta é também chamada de comparador de igualdade.

$$A \longrightarrow Y = A \oplus B$$

$$B \longrightarrow Y = \overline{A \oplus B}$$

Figura 2 – Portas XOR e XNOR

Porta XOR			
Entr	Saída		
A	В	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Porta XNOR			
Entr	Entradas		
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Tabela II – Tabela da verdade das portas XOR e XNOR

1.2. FATORES DE CARGA

Com a finalidade de facilitar os projetos usando dispositivos TTL, os parâmetros de carga para a entrada e saída de todas as famílias lógicas foram normalizados para os valores abaixo descritos. Esses valores refletem as condições de pior caso a temperatura ambiente e no intervalo de variação de V_{CC} tolerado. Assim, para a série TTL 74XX, tem-se:

1 unidade de carga TTL = $40 \mu A$, no nível lógico 1. = 1.6 mA, no nível lógico 0.

Em outras palavras, uma porta 7400 que requeira uma corrente de entrada máxima de I_{IL} = 1,6 mA para o nível lógico 0 e uma corrente de entrada máxima I_{IH} = 40 μ A para o nível lógico 1 é especificada como tendo um **fator de carga** unitário. Isto é, possui um *fan-in* de 1. Por outro lado, a saída de uma porta 7400 absorverá 16 mA no nível lógico 0 e fornecerá 800 μ A no nível lógico 1. Portanto, ela tem capacidade de acionar 10 portas no nível lógico 0 (pois 16 mA / 1,6 mA = 10). Isto é, possui um *fan-out* de 10 para o nível lógico 0. Da mesma forma, o *fan-out* para o nível lógico 1 é 800 μ A / 40 μ A = 20. Considera-se o pior caso e diz-se que o *fan-out* da porta 7400 é 10. Se em um determinado circuito houver necessidade de acionar mais que 10 entradas, podemos usar portas especiais como *buffer* para aumentar esta capacidade.

1.3. TEOREMA DE DE MORGAN

Dois teoremas muito úteis na implementação de circuitos lógicos são os teoremas de De Morgan.

a)
$$\overline{A} + \overline{B} = \overline{A \cdot B}$$

b)
$$\overline{A} \cdot \overline{B} = \overline{A + B}$$

Eles são demonstrados utilizando-se axiomas e outros teoremas da álgebra de Boole. Uma regra prática para memorizar estas relações diz: **se a barra de inversão entre duas variáveis for quebrada, a operação (· ou +) entre elas deve ser intercambiada**. Eles mostram ainda a equivalência das portas indicadas na **Figura 3**.

Figura 3 – Teorema de De Morgan

Um corolário muito importante destes teoremas permite concluir que qualquer função lógica pode ser implementada utilizando-se somente portas NAND (ou somente portas NOR). Como uma função lógica é um conjunto de variáveis inter-relacionadas por soma lógica, produto lógico e negação, basta mostrar que é possível realizar estas relações usando, por exemplo, somente portas NAND.

A **Figura 4** mostra como realizar as operações AND, OR e NOT usando portas NAND.

Figura 4 – Realização das operações NOT, AND e OR usando portas NAND

Figura 5 - Realização das operações NOT, OR e AND usando portas NOR

De forma análoga pode-se realizar as operações AND, OR e NOT utilizando somente portas NOR; isto é mostrado na **Figura 5**.

Assim, fica mostrado o caráter universal das portas NAND e NOR.

2. PARTE EXPERIMENTAL

- 2.1. Implementação de uma porta NAND de 3 entradas com 3 níveis de portas.
 - a) Construa o circuito da Figura 6.

Figura 6 – Porta NAND de 3 entradas

- b) Ligue o painel.
- c) Preencha a tabela da verdade abaixo.

I	Entrada	S		Saídas	
A	В	C	$\overline{A\cdot B}$	$A \cdot B$	$\overline{A \cdot B \cdot C}$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- 2.2. Implementação da função XOR usando portas NAND.
 - a) Monte o circuito da Figura 7.

Figura 7 - Função XOR

b) Complete a tabela da verdade da abaixo.

Entr	adas	Saída
A	В	$A \oplus B$
0	0	
0	1	
1	0	
1	1	

- 2.3. Verificação da função XOR usando a porta XOR (CI 7486).
 - a) Complete a tabela da verdade abaixo.
 - b) Compare as tabelas da verdade obtidas neste item e no anterior.

Entr	adas	Saída
A	В	$A \oplus B$
0	0	
0	1	
1	0	
1	1	

- 2.4. Implementação da porta XOR de 4 entradas usando portas XOR de 2 entradas.
 - a) Projete e monte o circuito adequado.
 - b) Verifique em que casos a saída é um.

3. SUMÁRIO

As portas NAND, NOR e XOR são apresentadas, assim como seus símbolos e tabelas da verdade. O caráter universal das portas NAND e NOR é mostrado como corolário dos teoremas de De Morgan. São dados ainda os conceitos de fatores de carga *fan-in* e *fan-out*.

4. EQUIPAMENTOS E MATERIAL

- Painel digital;
- Protoboard;
- Ponta lógica;
- Fios conectores;
- Portas NAND e XOR.

5. TESTE DE AUTO-AVALIAÇÃO

- 1. Se uma porta NAND de 3 entradas tiver duas de suas entradas ligadas a 5 V e a terceira entrada for A, então a saída será:
 - a) *A*
 - b) \overline{A}
 - c) 1
 - d) 0
- 2. Se uma entrada de uma porta NOR de 3 entradas for 1 e as outras entradas não forem conhecidas, então a saída será:
 - a) 0
 - b) 1
 - c) Indeterminada
 - d) NDA
- 3. Pelo teorema de De Morgan a função $f = (A \cdot B) + C$ é igual a:
 - a) $[(A+B)\cdot C]$
 - b) $\left[\left(\overline{A} + B\right) \cdot \overline{C}\right]$

 - c) $\left[(\overline{A} + \overline{B}) \cdot C \right]$ d) $\left[(\overline{A} + \overline{B}) \cdot \overline{C} \right]$
- 4. Para usar uma porta XOR como NOT:
 - a) ambas as entradas devem ser 1
 - b) ambas as entradas devem ser 0
 - c) uma das entradas deve ser aterrada
 - d) uma das entradas deve ser ligada a 5V
- 5. Se as entradas de uma porta XOR forem iguais, a saída será 1?
 - a) Certo.
 - b) Errado.
 - c) Depende do valor das entradas