Exerice 2

Finalement on obtient R=1

$$(a_n)_{n\in\mathbb{N}} \underset{n\to\infty}{\longrightarrow} = 0$$

$$\sum_{n\in\mathbb{N}} a_n \text{ diverge}$$
 Soit la série entière
$$\sum_{n\in\mathbb{N}} a_n x_n$$

$$R = \sup\{x \in \mathbb{R}_+ \mid a_n x_n \text{ borné} \}$$
 Si $x = 1$ on $a_n x^n = a_n \underset{n\to\infty}{\longrightarrow} 0$ et donc $a_n x_n$ est borné Si $x < 1$ donc $x^n \underset{n\to\infty}{\longrightarrow} 0$ et $a_n x^n \underset{n\to\infty}{\longrightarrow} 0$ donc borné Si $x > 1$ on a $x^n \underset{n\to\infty}{\longrightarrow} \infty$ mais $a_n x_n \underset{n\to\infty}{\longrightarrow} \text{ est indeterminé}$ Mais on sait que $R \ge 1$ On sait aussi que $R = \sup\{x \in \mathbb{R}_+ \mid \sum_{n\to\infty} |a_n| x_n \text{ converge} \}$ Comme
$$\sum_{n\to\infty} a_n \text{ diverge}, \sum_{n\to\infty} |a_n| \text{ diverge aussi}$$
 or
$$\sum_{n\to\infty} |a_n| \le \sum_{n\to\infty} |a_n| x_n \text{ quand } x > 1$$
 or comme
$$\sum_{n\to\infty} |a_n| \text{ diverge} \sum_{n\to\infty} |a_n| x_n \text{ diverge aussi quand } x > 1$$
 Donc on sait que $R \le 1$