

LOAN APPROVAL PREDICTION

HENRY

PURWADHIKA STARTUP AND CODING SCHOOL DATA SCIENCE AND MACHINE LEARNING

Masih banyak Bank yang salah dalam memberikan pinjaman kepada nasabah. Banyak nasabah yang pada akhirnya gagal dalam melakukan pembayaran pinjaman. Hal tersebut diakibatkan oleh banyak faktor.

Tujuan dari machine learning ini adalah untuk meminimalisir resiko kesalahan pemberian pinjaman kepada nasabah dan dapat melakukkan prediksi secara real time.

Source: Kaggle (<u>Bank Loan Status Dataset | Kaggle</u>) Shape of Dataset: (10514, 19)

	loan id	customer id	loan status	current Ioan amount	term	credit score	annual income	years in current job	home ownership	purpose	monthly debt	years of credit history	months since last delinquent	number of open accounts	number of credit problems	current credit balance	maximum open credit	bankruptcies	tax liens
	14dd8831-6af5-) 400b-83ec- 68e61888a048	981165ec-3274- 42f5-a3b4- d104041a9ca9	Fully Paid	445412.0	Short Term	709.0	1167493.0	8 years	Home Mortgage	Home Improvements	5214.74	17.2	NaN	6.0	1.0	228190.0	416746.0	1.0	0.0
,	4771cc26-131a- I 45db-b5aa- 537ea4ba5342	2de017a3-2e01- 49cb-a581- 08169e83be29	Fully Paid	262328.0	Short Term	NaN	NaN	10+ years	Home Mortgage	Debt Consolidation	33295.98	21.1	8.0	35.0	0.0	229976.0	850784.0	0.0	0.0
2	4eed4e6a-aa2f- 2 4c91-8651- ce984ee8fb26	5efb2b2b-bf11- 4dfd-a572- 3761a2694725		99999999.0	Short Term	741.0	2231892.0	8 years	Own Home	Debt Consolidation	29200.53	14.9	29.0	18.0	1.0	297996.0	750090.0	0.0	0.0
1	77598f7b-32e7- 3 4e3b-a6e5- 06ba0d98fe8a	e777faab-98ae-45af- 9a86-7ce5b33b1011	Fully Paid	347666.0	Long Term	721.0	806949.0	3 years	Own Home	Debt Consolidation	8741.90	12.0	NaN	9.0	0.0	256329.0	386958.0	0.0	0.0
4	d4062e70-befa- 4 4995-8643- a0de73938182	81536ad9-5ccf- 4eb8-befb- 47a4d608658e	Fully Paid	176220.0	Short Term	NaN	NaN	5 years	Rent	Debt Consolidation	20639.70	6.1	NaN	15.0	0.0	253460.0	427174.0	0.0	0.0

EDA

PLEPLOT LOAN STATUS

Persentase nasabah yang berhasil bayar sebanyak 77.36% dibandingkan nasabah yang gagal bayar

Piechart Loan Status

GRAFIK LOAN STATUS BERDASARKAN TERM

- Persentase nasabah yang gagal bayar pada long term lebih tinggi dibandingkan pada short term.
- Nasabah yang melakukan pinjaman dengan jangka waktu yang panjang memiliki pinjaman yang lebih besar dibanding dengan nasabah yang meminjam dengan jangka waktu yang pendek. Pihak bank harus lebih berhati – hati dalam meminjamkan nasabah dengan jangka waktu yang panjang karena memiliki potensi untuk gagal bayar yang tinggi dengan loan amount yang tinggi pula.

GRAFIK LOAN STATUS BERDASARKAN CREDIT SCORE

- Semakin buruk credit score nasabah, semakin tinggi persentase nasabah tersebut gagal bayar.
- Nasabah dengan credit score fair dan poor memiliki distribusi pinjaman yang lebih besar dibanding nasabah dengan credit score good dan excellent. Oleh sebab itu, pihak bank harus lebih teliti lagi dalam memberikan pinjaman kepada nasabah dengan credit score fair dan poor.

GRAFIK LOAN STATUS BERDASARKAN CREDIT SCORE

- Persentase tertinggi nasabah gagal bayar memiliki tujuan untuk bisnis, bukan untuk personal. Peminjam dengan tujuan personal seperti membeli mobil, melanjutkan sekolah, perbaikan rumah, dan sebagainya cenderung lebih aman untuk diberikan pinjaman.
- Small business menjadi tujuan nasabah meminjam yang memiliki persentase gagal bayar tertinggi. Bank seharusnya lebih teliti dalam memberikan pinjaman kepada small business karena ada kemungkinan bisnis tersebut mengalami kerugian sehingga nasabah menjadi gagal bayar pinjaman.

GRAFIK YEARS IN CURRENT JOB, ANNUAL INCOME

 Pengalaman nasabah dalam bekerja tidak berpengaruh signifikan dalam status peminjaman nasabah tersebut. Namun, semakin lama pengalaman nasabah dalam bekerja membuat annual income semakin besar. Hal tersebut berdampak pada semakin besarnya pinjaman yang dapat diajukan oleh nasabah itu.

GRAFIK ANNUAL INCOME VS MAX OPEN CREDIT

 Semakin besar pendapatan nasabah, plafon yang diberikan dalam pinjaman relatif makin besar. Hal tersebut tentu berpengaruh terhadapt current loan amount dan monthly debt dari nasabah tersebut.

MACHINE LEARNING ALGORITHM

LOGISTIC REGRESSION

CLASSIFIER

Recall Score tiap model:

Logistic Regression Score: 0.5762 Random Forest Classifier Score: 0.6448

K-Nearest Neighbors Score: 0.4754

RANDOM FOREST

CLASSIFIER

K-NEAREST NEIGHBORS

Recall dapat didefinisikan sebagai rasio dari jumlah total contoh positif yang diklasifikasikan bernilai benar dibagi dengan jumlah total contoh positif. High Recall menunjukkan kelas dikenali dengan baik (FN rendah).

$$Recall = \frac{TP}{TP + FN}$$

Precision merupakan pembagian dari *jumlah total contoh* positif yang diklasifikasikan bernilai benar dengan jumlah diprediksi. total contoh positif yang High Precision menunjukkan contoh berlabel positif memang positif (FP rendah).

$$Precission = \frac{TP}{TP + FP}$$

HIGH RECALL, LOW PRECISION

LOW RECALL, HIGH PRECISION:

CONFUSION MATRIX BETWEEN DTC DAN ABC

Decision Tree Classifier

Ada Boost Classifier

CONFUSION MATRIX ABC AFTER HYPERPARAMETER TUNING

Before Hyperparameter Tuning

After Hyperparameter Tuning

THRESHOLD ADJUSTMENT BERDASARKAN PRECISION-RECALL CURVE

Threshold yang digunakan bernilai 0.499394525800627, hal ini berarti probability di bawah nilai tersebut akan diklasifikasikan sebagai 0 dan probability di atas nilai tersebut akan diklasifikasikan sebagai 1.

Confusion Matrix

	pred	iction				
	0	1	total actual			
0	6619	6084	12703			
1	979	2455	3434			
total prediction	7598	8539	16137			

Confusion Matrix

	pred	iction	
	0	1	total actual
0	4766	7937	12703
1	459	2975	3434
total prediction	5225	10912	16137

ADA Boost Classifier

Confusion Matrix

	pred	iction	
	0	1	total actua
0	4766	7937	12703
1	459	2975	3434
total prediction	5225	10912	16137

Classification Report

	precision	recall	f1-score	
0	0.91	0.38	0.53	X
1	0.27	0.87	0.41	
accuracy			0.48	0
macro avg weighted avg	0.59 0.78	0.62 0.48	0.47 0.51	
weighted avg	0.70	0.40	0.51	

Modeling Report

Ada Boost Classifier merupakan model yang akhirnya dipakai. Model tersebut memiliki nilai recall 0.87 dan precision 0.27

Dengan mengatur threshold, kita dapat mengurangi potensi untuk memberikan pinjaman kepada nasabah yang salah sebesar 4.05%

