

Open Data + Mongo DB + R

Víctor Hugo Males John Alexander Carvajal Agudelo

R Users Cali

Open Data + Mongo DB + R

- Introducción Open Data
- Ejemplo práctico OD + R
- Introducción MongoDB
- Ejemplo práctico MongoDB + R

Open Data

Open Data

Los datos abiertos u Open Data son información de libre acceso y gratuidad, que toman forma de archivos que respetan formatos interoperables.

Pueden ser de origen público: Servicios públicos, de colectividades o de comunas.

Pueden ser de origen privado: Provenientes de empresas o instituciones cuyos datos son concursables a proyectos de utilidad pública.

Características Open Data

- <u>Disponibilidad y acceso</u>: los datos deben estar disponibles mediante la descarga a través de Internet y en una forma legible.
- <u>Reutilización y redistribución</u>: los datos deben ser proporcionados bajo términos que permitan la reutilización y redistribución.
- Participación universal: Cualquier persona debe ser capaz de utilizar, reutilizar y redistribuirlos – no debe haber discriminación por campos de la actividad o en contra de personas o grupos.
- <u>Descriptivos y explicativos</u>: Deben contener una descripción de lo que contiene el archivo, condiciones de generación y descripción de cada campo del mismo

Tipos de archivos Open Data

Estadísticas

Gubernamentales

Cultural

Públicos

Transporte

Estado Financieros

Políticos

Medio Ambiente

Open Data + R

MongoDB

Principales cambios en la tecnología

- Masificación del uso de internet.
- Surgimiento de las redes sociales.
- Crecimiento exponencial de dispositivos móviles.
- Posibilidad de distintos dispositivos conectados a internet (Internet de las cosas).
- Interfaces de usuario más simples e intuitivas.
- Cambios en las formas de procesamiento.
- Fuerte baja en los costos de almacenamiento.

PINTEREST

SOCIAL SITE THAT IS ALL ABOUT DISCOVERY

POST TO 14 LARGES **OPPORTUNITIES**

USERS ARE:

HAPPEN EVERY SECOND

LARGEST

PENETRATION

US

BUT SPREADING

SLOWLY AND STEADIL

5.700 TWEETS

LARGES **OPPORTUNITIES**

FACEBOOK

+ **BILLION ACTIVE USERS**

INSTAGRAM

MANY BRANDS ARE PARTICIPATING THROUGH THE USE OF

HASHTAGS

AND POSTING

PICTURES / CONSUMERS CAN RELATE TO

MOST FOLLOWED **BRAND IS** NATIONAL GEOGRAPHIC

GOOGLE+

TO BUILD CIRCLES

NOT AS MANY BRANDS ACTIVE BUT THE ONES THAT ARE TEND TO BE A GOOD FIT WITH A **GREAT FOLLOWING**

25-35 YEAR OLDS ACTIVE

in

LINKEDIN

BUSINESS

ORIENTED

BRANDS GIVING POTENTIAL AND CURRENT ASSOCIATES A PLACE TO NETWORK & CONNECT

Statistics as of 4.25.2014 Designed by: Leverage - leveragenewagemedia.com

ARGES' **OPPORTUNITIES**

USERS ARE:

TWITTER

MICRO BLOGGING

SOCIAL SITE

THAT LIMITS EACH

CHARACTERS

.ARGES

PENETRATION

BUT SPREADING

POST TO

140

FACEBOOK

SOCIAL SHARING SITE THAT HAS 1.86 BILLION USERS WORLDWIDE

> GEST OPPORTUNITIES

COMMUNICATING WITH IN A NON-OBTRUSIVE WAY

1.86 BILLION

INSTAGRAM

SOCIAL SHARING SITE ALL AROUND AND NOW 60 SECONI

HASHTAGS

AND POSTING

PICTURES / (30 HASHTAGS MAX PER PIC)

0

600 MILLION

in

LINKEDIN

BUSINESS

ORIENTED

SOCIAL NETWORKING SITE

BRANDS THAT ARE

PARTICIPATING

ARE CORPORATE

BRANDS

GIVING POTENTIAL AND

CURRENT ASSOCIATES

A PLACE TO NETWORK

& CONNECT

79% OF USERS

ARE 35

OR OLDER

SOCIAL NETWORK BUILT BY GOOGLE THAT ALLOWS FOR AND USERS TO BUILD CIRCLES

GREAT FOLLOWING GROWING RAPIDLY

NEW USERS EVERY DAY

375

2014 Design by: Leverage, 2017 Design By: MarketingStrategyX.com

MongoDB

Es una bases de datos Open Source orienta a documentos diseñada para facilitar el desarrollo y la escalabilidad de las aplicaciones:

- No usan SQL como lenguaje de consulta
- Los datos almacenados no requieren estructuras fijas como tablas
- No garantizan consistencia
- Escalan horizontalmente
- Distribución, Auto-Replicación y Particionamiento
- Los datos se almacenan de forma atómica
- Posee distintos tipos de modelamiento

Características

- Soporta JSON, XML, BSON Modelos documentales con esquema dinámico
- Soporte de Índices
- Consultas Complejas
- Manejo de Seguridad Avanzada
- Almacenamiento de archivos de gran tamaño en su file system interno GridFS
- Búsquedas de texto(Full Text Search)
- Aggregation Framework y Map Reduce Nativo o con Hadooop

Tamaño máximo de un documento 16 MB Tamaño máximo de una base de datos en 32 Bit es 2GB

```
"_id" : NumberLong("722951307997401088"),
        "Text" : "RT @TaxisLibres4: Accidente de transito en la Cl 16 con Cr 100
. #traficocali Celpaiscali CTwiterosCali",
        "RetweetCount" : 1,
        "GeoLocation" : null,
        "Cuenta" : 1.
        "DateCreate" : "2016-04-20T21:53:18.000Z",
        "DateInsert" : "2016-04-27T00:15:47.066Z".
        "User" : {
                "isFavorited" : 0.
                "isRetweet" : 1,
                "isRetweetedByMe" : 0,
                "UserID" : NumberLong(185627001),
                "ScreenName" : "CHEFZIBA_CALI",
                "CreatedAt": "2010-09-01T10:05:36.000Z",
                "Name" : "Luz Marina Ramirez".
                "Description" : "",
                "Followers": 73,
                "Friends" : 206,
                "Location" : "Cali".
                "ProfileImageURL" : "http://pbs.twimg.com/profile_images/1127225
509/Karen_tia_y_mami_hot_normal.jpg".
                "TimeZone" : null,
                "URL" : null,
                "isGeoEnabled" : 0,
                "isVerified" : 0
```

```
"_id" : ObjectId("57310f4072f120a28c1d8e31"),
"cliente" : "GOMESA S.A.",
"cuit" : "30404884831",
"region" : [
        "CENTRO"
"direccion" :[{
        "calle" : "9 de julio",
        "numero" : 1010,
        "localidad" : "TANDIL",
        "provincia" : "BUENOS AIRES" >.
        {"calle" : "25 de mayo",
         "numero" : 941,
                                  e32"),
         "piso" : "2do",
         "dto" : "B",
         "localidad" : "CABA" >,
        {"calle" : "Reconquista",
         "numero" : 654,
         "piso" : "1er",
         "dto" : "A",
         "localidad" : "CABA" >]
```

```
> db.reservas.find().limit(3).pretty()
         "_id" : ObjectId("59924e03c049295f1dd5b3d7"),
         "Cliente" : {
                  "edad" : 28,
                  "profesion": "Blogger",
                  "paisOrigen" : "Chile",
"nombre" : "Doug Cutting",
                  "aerolinea" : "Qatar Airways"
         "fechaReserva" : ISODate("2014-05-08T12:51:00Z"),
         "mes" : "May",
"diasHospedaje" : 4,
         "origen" : "Agencia de Viajes",
"Equipaje" : 8,
         "calificacion" : 2,
         "monedaPago" : "Euro"
>
₹
         "_id" : ObjectId("59924e03c049295f1dd5b3d8"),
         "Cliente" : {
                  "edad" : 48,
                  "profesion" : "Medico",
                  "paisOrigen" : "Australia"
         },
"fechaReserva" : ISODate("2010-01-01T20:42:00Z"),
         "mes" : "Ene",
         "diasHospedaje" : 7,
"origen" : "Portal",
         "Equipaje" : 9,
         "calificacion" : 4,
         "monedaPago" : "Euro"
}
€
         "_id" : ObjectId("59924e03c049295f1dd5b3d9"),
        "Cliente" : {
    "edad" : 38,
                  "profesion": "Estudiante",
                  "paisOrigen" : "España",
                  "idiomas" : [
                           "Ingles",
"Español",
                           "Portugues"
         },
"fechaReserva" : ISODate("2015-08-21T14:56:00Z"),
         "mes" : "Ago",
"diasHospedaje" : 1,
         "origen" : "Llamada",
"Equipaje" : 1,
         "calificacion": 1,
         "monedaPago" : "Dolar"
>
```

Donde podemos usar MongoDB?

- Aplicaciones donde el crecimiento de registros sea grande y a gran velocidad
- Aplicaciones donde la estructura de los datos varíe sin previo aviso
- Aplicaciones donde distintas entidades se puedan relacionar entre si
- Aplicaciones CMS o blogging
- Debido a sus características escalables y soporte en velocidad es perfecto para Web-analytics y Real - Time analytics.
- Por el comportamiento variable de órdenes de compras y productos es una buena opción para E-Commerce

Ventajas

- En una sola consulta se puede obtener mucha información
- Los conceptos entre un RDBMS y MongoDB no difieren mucho
- Facilidad en la integración con aplicaciones
- Posee variedad de drivers que facilitan su utilización en distintos ambientes
- Permite trabajar JavaScript
- A pesar de ser Open Source, posee un gran soporte y escalabilidad
- Manejo sencillo e intuitivo

	Rank				Score	
Aug 2017	Jul 2017	Aug 2016	DBMS	Database Model	Aug Jul Aug 2017 2017 2016	
1.	1.	1.	Oracle 🔠 🙀	Relational DBMS	1367.88 -7.00 -59.85	
2.	2.	2.	MySQL 😷 🔐	Relational DBMS	1340.30 -8.81 -16.73	
3.	3.	3.	Microsoft SQL Server 🖽 🙀	Relational DBMS	1225.47 -0.52 +20.43	
4.	4.	∱ 5.	PostgreSQL 😷 🙀	Relational DBMS	369.76 +0.32 +54.51	
5.	5.	4 .	MongoDB 🞦 👾	Document store	330.50 -2.27 +12.01	
6.	6.	6.	DB2 #	Relational DBMS	197.47 +6.22 +11.58	
7.	7.	↑ 8.	Microsoft Access	Relational DBMS	127.03 +0.90 +2.98	
8.	8.	4 7.	Cassandra 🖽	Wide column store	126.72 +2.60 -3.52	
9.	9.	1 0.	Redis 🖽	Key-value store	121.90 +0.38 +14.57	
10.	10.	1 1.	Elasticsearch 🖽	Search engine	117.65 +1.67 +25.16	
11.	11.	↓ 9.	SQLite	Relational DBMS	110.85 -3.02 +0.99	
12.	12.	12.	Teradata	Relational DBMS	79.23 +0.86 +5.59	
13.	1 4.	1 4.	Solr	Search engine	66.96 +0.93 +1.18	
14.	4 13.	4 13.	SAP Adaptive Server	Relational DBMS	66.92 +0.00 -4.13	
15.	15.	15.	HBase	Wide column store	63.52 -0.10 +8.01	
16.	16.	1 7.	Splunk	Search engine	61.46 +1.17 +12.56	
17.	17.	4 16.	FileMaker	Relational DBMS	59.65 +1.00 +4.64	
18.	18.	1 20.	MariaDB 😛	Relational DBMS	54.70 +0.33 +17.82	
19.	19.	19.	SAP HANA 🚹	Relational DBMS	47.97 +0.03 +5.24	
20.	20.	4 18.	Hive 🖪	Relational DBMS	47.30 +1.10 -0.51	
21.	21.	21.	Neo4j ⊕	Graph DBMS	38.00 -0.52 +2.43	
22.	22.	1 25.	Amazon DynamoDB 🔠	Document store	37.62 +1.16 +11.02	
23.	23.	1 24.	Couchbase 😛	Document store	32.97 -0.05 +5.57	
24.	24.	4 23.	Memcached	Key-value store	29.96 +1.43 +2.27	
25.	25.	4 22.	Informix	Relational DBMS	27.42 -0.25 -1.63	

MongoDB + R

Muchas Gracias!!!

También puedes visitar nuestros blogs blog.jacagudelo.com datavictor.wordpress.com