Numerical Analysis - Winter 2019

Assignment #5

Please upload to the 'hw5' directory if you submit your homework in time.

Problem 1:

Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	x	f(x)	f'(x)	b.	x	f(x)	f'(x)
	1.1	9.025013			8.1	16.94410	
	1.2	11.02318			8.3	17.56492	
	1.3	13.46374			8.5	18.19056	
	1.4	16.44465			8.7	18.82091	

Problem 2:

Suppose that N(h) is an approximation to M for every h > 0 and that

$$M = N(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots,$$

for some constants K_1 , K_2 , K_3 , Use the values N(h), $N\left(\frac{h}{3}\right)$, and $N\left(\frac{h}{9}\right)$ to produce an $O(h^6)$ approximation to M.

Problem 3:

a. Derive the Five-Point Midpoint Formula for numerical differentiation.

b Examine the above five-point midpoint formula. Suppose that in evaluating every f(x), we encounter round-off errors bounded by some number ϵ and the fifth derivative of f(x) is bounded by a number M>0. Please find the optimal value of h that minimizes the total error (including both truncation error and round-off error) with respect to ϵ and M.

Problem 4:

Approximate the following integrals using the Trapezoidal rule and Simpson's rule, respectively.

a.
$$\int_{-0.25}^{0.25} (\cos x)^2 dx$$
b.
$$\int_{-0.5}^{0} x \ln(x+1) dx$$
c.
$$\int_{0.75}^{1.3} ((\sin x)^2 - 2x \sin x + 1) dx$$
d.
$$\int_{e}^{e+1} \frac{1}{x \ln x} dx$$

Problem 5:

Use Romberg integration to compute $R_{3,3}$ for the following integrals.

a.
$$\int_{-1}^{1} (\cos x)^{2} dx$$
b.
$$\int_{-0.75}^{0.75} x \ln(x+1) dx$$
c.
$$\int_{1}^{4} ((\sin x)^{2} - 2x \sin x + 1) dx$$
d.
$$\int_{e}^{2e} \frac{1}{x \ln x} dx$$

Problem 6:

Use Euler's method to approximate the solutions for each of the following initial-value problems.

a.
$$y' = y/t - (y/t)^2$$
, $1 \le t \le 2$, $y(1) = 1$, with $h = 0.1$

b.
$$y' = 1 + y/t + (y/t)^2$$
, $1 \le t \le 3$, $y(1) = 0$, with $h = 0.2$