Beyond Birthday-Bound Security

Bart Mennink Radboud University (The Netherlands)

COST Training School on Symmetric Cryptography and Blockchain

February 22, 2018

Birthday Paradox

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

HAPPY BIRTHDAY

Birthday Paradox

FAPPY BIRTIDAY

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

- Consider space $S = \{0, 1\}^n$
- ullet Randomly draw q elements from ${\cal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathsf{collisions}\right] = \binom{q}{2}/2^n$$

Birthday Paradox

FAPPY BIRTHDAY

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

- Consider space $S = \{0, 1\}^n$
- ullet Randomly draw q elements from ${\cal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathrm{collisions}\right] = \binom{q}{2}/2^n$$

Important phenomenon in cryptography

 \bullet Two oracles: E_k (for secret random key k) and p

- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p

- Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\cal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

$$\mathbf{Adv}_{E}^{\mathrm{prp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{E_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^p = 1 \right] \right|$$

Pseudorandom Function

- ullet Two oracles: F_k (for secret random key k) and f
- ullet Distinguisher ${\mathcal D}$ has query access to either F_k or f
- ullet ${\cal D}$ tries to determine which oracle it communicates with

$$\mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{F_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^f = 1 \right] \right|$$

Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$

Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$

- $\mathsf{CTR}[E]$ is secure as long as:
 - E_k is a secure PRP
 - Number of encrypted blocks $\sigma \ll 2^{n/2}$

- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string

- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string
- Distinguishing attack in $\sigma \approx 2^{n/2}$ blocks:

$$\binom{\sigma}{2}/2^n \lesssim \mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma)$$

Counter Mode Based on Pseudorandom Function

Counter Mode Based on Pseudorandom Function

• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

Counter Mode Based on Pseudorandom Function

• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

- $\mathsf{CTR}[F]$ is secure as long as F_k is a secure PRF
- Birthday bound security loss disappeared

Beyond Birthday-Bound Security

Disclaimer

Beyond birthday-bound $\not\leftarrow$ Better security

Disclaimer

Beyond birthday-bound $\not\leftarrow$ Better security

- n large enough: birthday-bound security is okay
 - --> Permutation-based constructions
- n too small: birthday-bound security could be bogus
 - Lightweight blockciphers at risk

Disclaimer

Beyond birthday-bound $\not\leftarrow$ Better security

- n large enough: birthday-bound security is okay
 - Permutation-based constructions
- n too small: birthday-bound security could be bogus
 - Lightweight blockciphers at risk
- ullet Beyond birthday-bound: relevant if n/2 is on the edge

Sweet32 Attack

On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN

Bhargavan, Leurent, ACM CCS 2016

- TLS supported Triple-DES
- OpenVPN used Blowfish
- Both Blowfish and Triple-DES have 64-bit state
- Practical birthday-bound attack on encryption mode

Outline

PRP-PRF Conversion

Dedicated PRF Design

Conclusion

Outline

PRP-PRF Conversion

Dedicated PRF Design

Conclusion

PRP-PRF Conversion

PRP PRF

PRP-PRF Conversion

PRP-PRF Conversion

Naive PRP-PRF Conversion

PRP-PRF Switch

ullet Simply view E_k as a PRF

Naive PRP-PRF Conversion

PRP-PRF Switch

- Simply view E_k as a PRF
- E_k does not expose collisions but f does
- ullet E_k can be distinguished from f in $pprox 2^{n/2}$ queries

$$\binom{q}{2}/2^n \lesssim \mathbf{Adv}_E^{\mathrm{prf}}(q) \leq \mathbf{Adv}_E^{\mathrm{prp}}(q) + \binom{q}{2}/2^n$$

• First suggested by Bellare et al. [BKR98]

• First suggested by Bellare et al. [BKR98]

- First suggested by Bellare et al. [BKR98]
- Lucks [Luc00]: $2^{2n/3}$
- Bellare and Impagliazzo [BI99]: $2^n/n^{2/3}$
- ullet Patarin [Pat08] and Dai et al. [DHT17]: 2^n

- First suggested by Bellare et al. [BKR98]
- Lucks [Luc00]: $2^{2n/3}$
- Bellare and Impagliazzo [BI99]: $2^n/n^{2/3}$
- ullet Patarin [Pat08] and Dai et al. [DHT17]: 2^n

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(2q) + q/2^{n}$$

Counter Mode Based on XoP

• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(\sigma)$$

Counter Mode Based on XoP

• Security bound:

$$\begin{aligned} \mathbf{Adv}^{\text{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(\sigma) &\leq \mathbf{Adv}^{\text{prf}}_{\mathsf{XoP}}(\sigma) \\ &\leq \mathbf{Adv}^{\text{prp}}_{E}(2\sigma) + \sigma/2^{n} \end{aligned}$$

Counter Mode Based on XoP

• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathsf{cpa}}(\sigma) \leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathsf{prf}}(\sigma)$$
$$\leq \mathbf{Adv}_{E}^{\mathsf{prp}}(2\sigma) + \sigma/2^{n}$$

ullet Beyond birthday-bound but 2x as expensive as $\mathsf{CTR}[E]$

 \bullet One subkey used for $w \geq 1$ encryptions

- ullet One subkey used for $w\geq 1$ encryptions
- $\bullet \ \, \mathsf{Almost} \,\, \mathsf{as} \,\, \mathsf{expensive} \,\, \mathsf{as} \,\, \mathsf{CTR}[E] \\$

- ullet One subkey used for $w\geq 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]

- ullet One subkey used for $w\geq 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]

- $\bullet \ \, \hbox{One subkey used for} \,\, w \geq 1 \,\, \hbox{encryptions} \\$
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]
 - Well, we did not really prove it ourselves
 - Immediate consequence of mirror theory from 2005

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi: \{a_1, b_1, \dots, a_q, b_q\} \to \{1, \dots, r\}$

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\}\to\{1,\ldots,r\}$

Goal

• Lower bound on the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$

Patarin's Result

• Extremely powerful lower bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin Patarin	CRYPTO 2003 CRYPTO 2004	Feistel Feistel	Suboptimal
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feiste	
Patarin	ICISC 2005	Feiste	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Publication	Application	Mirror Bound
CRYPTO 2003	Feistel	Suboptimal
CRYPTO 2004	Feistel	
ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
ICISC 2005	Benes	
ICITS 2008	ΧoP	
AFRICACRYPT 2008	Benes	
	CRYPTO 2003 CRYPTO 2004 ICISC 2005 ICISC 2005 ICITS 2008	CRYPTO 2003 Feistel CRYPTO 2004 Feistel ICISC 2005 Feistel ICISC 2005 Benes ICITS 2008 XoP

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	XoP	Concrete bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Iwata, Mennink, Vizár	ePrint 2016/1087	CENC	

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet System of equations $P_{a_i}\oplus P_{b_i}=\lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\}\to\{1,\ldots,r\}$

Graph Based View

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- ullet Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

• 2^n choices for P_a

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)
- Fixes $P_c = \lambda_2 \oplus P_b$ (which is $\neq P_a, P_b$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_1 \\ P_2 & \lambda_2 & P_2 \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_b \\ P_a = \begin{array}{ccc} \lambda_2 & P_b \end{array}$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

• 2^n choices for P_a (which fixes P_b)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_b \\ P_c = \begin{array}{ccc} \lambda_2 & P_c \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$

System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & & P_b \\ P_c & & \lambda_2 & & P_d \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$
- At least $2^n 4$ choices for P_c (which fixes P_d)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- ullet Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

If
$$\lambda_1 \oplus \lambda_2 \oplus \lambda_3 = 0$$

- One redundant equation, no contradiction
- Still counted as circle

Mirror Theory: Two Problematic Cases

Circle

Degeneracy

Mirror Theory: Main Result

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet System of equations $P_{a_i}\oplus P_{b_i}=\lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} \to \{1,\ldots,r\}$

Main Result

If the system of equations is circle-free and non-degenerate, the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$ is at least

$$\frac{(2^n)_r}{2^{nq}}$$

provided the maximum tree size ξ satisfies $(\xi-1)^2 \cdot r \leq 2^n/67$

General Setting

ullet Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=y_i$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0||x_i) =: P_{a_i}$ and $x_i \mapsto p(1||x_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = y_i$
- Inputs to p are all distinct: 2q unknowns

- ullet Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i
 - → Call this a bad transcript
- Maximum tree size 2

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i \longrightarrow Call this a bad transcript
- Maximum tree size 2
- If $2q \leq 2^n/67$: at least $\frac{(2^n)_{2q}}{2^{nq}}$ solutions to unknowns

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

- Bad transcript: if $y_i = 0$ for some i
 - ullet $\mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f\right] = q/2^n$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - ullet $\Pr\left[ext{XoP gives } au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

- Bad transcript: if $y_i = 0$ for some i
 - \mathbf{Pr} [bad transcript for f] = $q/2^n$
- For any good transcript:
 - $\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$
 - $\mathbf{Pr}\left[f \text{ gives } \tau\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad} \text{ transcript for } f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq q/2^n$$

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1
- If $2w^2q \leq 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1
- If $2w^2q \le 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns
- H-coefficient technique: $\mathbf{Adv}^{\text{cpa}}_{\mathsf{CENC}}(q) \leq q/2^n + wq/2^{n+1}$

New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory Mennink, Neves, CRYPTO 2017

- Refurbish and modernize mirror theory
- Prove optimal PRF security of:

General Setting

• Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

General Setting

• Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Xor of permutations in the middle

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i\mapsto p_1(x_i)=:P_{a_i}$ and $y_i\mapsto p_2^{-1}(y_i)=:P_{b_i}$

- Adversary gets transcript $au = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i \mapsto p_1(x_i) =: P_{a_i}$ and $y_i \mapsto p_2^{-1}(y_i) =: P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=x_i$

- Adversary gets transcript $au = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Xor of permutations in the middle
- Each tuple corresponds to $x_i \mapsto p_1(x_i) =: P_{a_i}$ and $y_i \mapsto p_2^{-1}(y_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = x_i$
- ullet x_i 's all unique, y_i 's may collide

- **Applying Relaxed Mirror Theory**
 - ullet Circle-free: no collisions in inputs to p_1
 - Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
 - Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: at least $\frac{(2^n)_s \cdot (2^n-1)_q}{2^{nq}}$ solutions to unknowns

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- Non-degenerate: as $x_i \neq x_j$ for all $i \neq j$
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: at least $\frac{(2^n)_s \cdot (2^n-1)_q}{2^{nq}}$ solutions to unknowns
- H-coefficient technique: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EDM}}(q) \leq q/2^n + \binom{q}{\xi+1}/2^{n\xi}$

General Setting

• Adversary gets transcript $au = \{(
u_1, m_1, t_1), \dots, (
u_q, m_q, t_q)\}$

General Setting

• Adversary gets transcript $au = \{(
u_1, m_1, t_1), \dots, (
u_q, m_q, t_q)\}$

- Adversary gets transcript $au = \{(
 u_1, m_1, t_1), \dots, (
 u_q, m_q, t_q)\}$
- Each tuple corresponds to $\nu_i\mapsto p_1(\nu_i)=:P_{a_i}$ and $t_i\mapsto p_2^{-1}(t_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=
 u_i\oplus h(m_i)$

- Adversary gets transcript $au = \{(
 u_1, m_1, t_1), \dots, (
 u_q, m_q, t_q)\}$
- Each tuple corresponds to $\nu_i\mapsto p_1(\nu_i)=:P_{a_i}$ and $t_i\mapsto p_2^{-1}(t_i)=:P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = \nu_i \oplus h(m_i)$
- ullet Extra issue: $u_i \oplus h(m_i)$ may collide

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- Non-degenerate: provided $u_i \oplus h(m_i) \neq
 u_j \oplus h(m_j)$ in all trees
- Max tree size $\xi+1$: provided no $(\xi+1)$ -fold collision

Mirror Theory Applied to EWCDM

Applying Relaxed Mirror Theory

- ullet Circle-free: no collisions in inputs to p_1
- ullet Non-degenerate: provided $u_i \oplus h(m_i)
 eq
 u_j \oplus h(m_j)$ in all trees
- Max tree size $\xi + 1$: provided no $(\xi + 1)$ -fold collision
- If $\xi^2 q \leq 2^n/67$: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EWCDM}}(q) \leq q/2^n + \binom{q}{2}\epsilon/2^n + \binom{q}{\xi+1}/2^{n\xi}$

- EDMD is at least as secure as XoP
- If $q \le 2^n/67$: $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{EDMD}}(\mathcal{D}) \le q/2^n$

Outline

PRP-PRF Conversion

Dedicated PRF Design

Conclusion

Dedicated PRF Design

AES

Dedicated PRF Design

AES

AES-PRF [MN17]

Dedicated PRF Design

AES

AES-PRF [MN17]

- Almost equally efficient
- $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{AES-PRF}}(\sigma) \approx \mathbf{Adv}^{\mathrm{prp}}_{\mathsf{AES}}(\sigma)$?
- Analysis and other variants in paper

Application to GCM for 96-bit nonce N

Application to GCM for 96-bit nonce N

$$\mathbf{Adv}^{\mathrm{ae}}_{\mathsf{GCM}[E]}(\sigma) \lesssim \binom{\sigma}{2}/2^n + q/2^\tau + \mathbf{Adv}^{\mathrm{prp}}_E(\sigma')$$

Application to GCM for 96-bit nonce N

$$\begin{split} \mathbf{A}\mathbf{d}\mathbf{v}_{\mathsf{GCM}[E]}^{\mathrm{ae}}(\sigma) &\lesssim \binom{\sigma}{2}/2^n + q/2^\tau + \mathbf{A}\mathbf{d}\mathbf{v}_E^{\mathrm{prp}}(\sigma') \\ \mathbf{A}\mathbf{d}\mathbf{v}_{\mathsf{GCM}[F]}^{\mathrm{ae}}(\sigma) &\lesssim q/2^\tau + \mathbf{A}\mathbf{d}\mathbf{v}_F^{\mathrm{prf}}(\sigma') \end{split}$$

GCM-SIV (Nonce-Reuse Security)

- Similar improvement occurs
- Bound more fine-grained

Outline

PRP-PRF Conversion

Dedicated PRF Design

Conclusion

Conclusion

Beyond Birthday-Bound Security

- Not the holy grail
- Relevant for certain applications
- Often achieved using
 - Extra randomness
 - Extra state size

Challenges

- Trade-off between security and efficiency
- Dedicated PRF design
- Many open problems in BBB security
 - Existing analyses not always tight

Thank you for your attention!

SUPPORTING SLIDES

Detailed Picture of GCM

Detailed Picture of GCM-SIV

Indistinguishability

Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O} \; ; \; \mathcal{P})$$

Indistinguishability

Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left|\mathbf{Pr}\left[\mathcal{D}^{\mathcal{O}} = 1\right] - \mathbf{Pr}\left[\mathcal{D}^{\mathcal{P}} = 1\right]\right| = \Delta_{\mathcal{D}}(\mathcal{O}\;;\;\mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

Indistinguishability

Indistinguishability of Random Systems

$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O}; \mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

- Game-playing technique
- H-coefficient technique

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps
 - Intermediate steps (presumably) easy to analyze

Triangle Inequality

Fundamental Lemma

Triangle Inequality

$$\Delta(\mathcal{O};\mathcal{P}) \leq \Delta(\mathcal{O};\mathcal{R}) + \Delta(\mathcal{R};\mathcal{P})$$

Fundamental Lemma

Triangle Inequality

$$\Delta(\mathcal{O}; \mathcal{P}) \leq \Delta(\mathcal{O}; \mathcal{R}) + \Delta(\mathcal{R}; \mathcal{P})$$

Fundamental Lemma

If \mathcal{O} and \mathcal{P} are identical until bad, then:

$$\Delta(\mathcal{O}; \mathcal{P}) \leq \mathbf{Pr}\left[\mathcal{P} \text{ sets bad}\right]$$

Theorem

For any distinguisher ${\mathcal D}$ making Q queries to E_k/p and T offline evaluations

$$\Delta_{\mathcal{D}}(E_k; f) \leq \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D}) + \frac{\binom{Q}{2}}{2^n}$$

 $\Delta_{\mathcal{D}}(E_k;f)$

Step 1. "Replace" E_k by Random Permutation p

 $\Delta_{\mathcal{D}}(E_k;f)$

Step 1. "Replace" E_k by Random Permutation p

• Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

Step 1. "Replace" E_k by Random Permutation p

Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

• $\Delta_{\mathcal{D}}(E_k; p) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition

Step 1. "Replace" E_k by Random Permutation p

Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

- $\Delta_{\mathcal{D}}(E_k; p) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition
- $\Delta_{\mathcal{D}}(p;f)$
 - ullet ${\cal D}$ is parametrized by Q queries to p/f

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - Initially empty list of responses L
 - Randomly generated response for every new query

$\mathsf{Oracle}\ p$

$$y \xleftarrow{\$} \{0,1\}^n \backslash \mathcal{L}$$

$$\mathcal{L} \xleftarrow{\cup} y$$
 return y

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle p	
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
- 11	
$\mathcal{L} \stackrel{\smile}{\leftarrow} y$ return y	return y

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle p	Oracle p^\prime	$ \overline{ \text{Oracle } f } $
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$ bad	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y	return y

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	$y \overset{\$}{\leftarrow} \{0,1\}^n ackslash \mathcal{L}$ bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return \boldsymbol{y}	return y	return y

$$\Delta_{\mathcal{D}}(p;f)$$

Oracle p	Oracle p'	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$	
	$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	
	bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y	return y

• Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \leq \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$	
	$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	
	bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return \boldsymbol{y}	return y	return y

• Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \leq \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$

$$\leq 0 +$$

Oracle p			Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	3	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$	1) 11) 12	
	$y \leftarrow \{0\}$	$(0,1)^n \setminus \mathcal{L}$	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \stackrel{\cup}{\leftarrow} y$		
return y	$return^{"}y$		return y
	1		1
ider	ntical	identical	until bad

Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \le \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$
 $\le 0 + \mathbf{Pr}[p' \text{ sets bad}]$

Oracle p	Oracle p^\prime		Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$		$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}_{_{_{\!\mathfrak{g}}}}$		
	, ,	$(0,1)^n \setminus \mathcal{L}$	
	bad		
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$		
return y	return y		return y
ide	ntical	identical	until had

• Triangle inequality:

$$\begin{split} \Delta_{\mathcal{D}}(p;f) \leq & \ \Delta_{\mathcal{D}}(p;p') \ + \ \Delta_{\mathcal{D}}(p';f) \\ \leq & \ 0 \ + \ \mathbf{Pr}\left[p' \text{ sets bad}\right] \leq \frac{\binom{Q}{2}}{2^n} \end{split}$$

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - ullet Each conversation defines a transcript au

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts
 - Remaining transcripts occur with small probability

- ullet ${\cal D}$ is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au

- \bullet \mathcal{D} is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right]}{\mathbf{Pr}\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for \mathcal{P}

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right]}{\mathbf{Pr}\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } \mathcal{P}\right]$

Trade-off: define bad transcripts smartly!

 $E_k(m) = P(m \oplus k) \oplus k$

Slightly Different Security Model

Slightly Different Security Model

Underlying permutation

- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - Q construction queries
 - ullet T offline evaluations pprox T primitive queries

- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - Q construction queries
 - ullet T offline evaluations pprox T primitive queries
 - Unbounded computational power

- Without loss of generality, \mathcal{D} is deterministic
 - No random choices

- Without loss of generality, \mathcal{D} is deterministic
 - No random choices
- Reason: at the end we maximize over all distinguishers

Theorem

For any deterministic distinguisher $\mathcal D$ making Q queries to E_k/f and T primitive queries

$$\mathbf{Adv}_{E}^{\mathrm{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_{k}^{\pm}, P^{\pm}; p^{\pm}, P^{\pm}) \le \frac{2QT}{2^{n}}$$

- Step 1. Define how transcripts look like
- Step 2. Define good and bad transcripts
- Step 3. Upper bound $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $(p^{\pm},P^{\pm})]$
- Step 4. Lower bound $\frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(P^{\pm}, P^{\pm}) \text{ gives } \tau\right]} \geq 1 \varepsilon \left(\forall \text{ good } \tau\right)$

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}$$

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)

1. Define how transcripts look like

• Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - After interaction of D with oracles: reveal the key

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - ullet After interaction of ${\mathcal D}$ with oracles: reveal the key
 - Real world (E_k^\pm, P^\pm) : key used for encryption

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!

- Real world (E_k^{\pm}, P^{\pm}) : key used for encryption
- Ideal world (p^{\pm}, P^{\pm}) : dummy key $k \xleftarrow{\$} \{0, 1\}^n$

- 2. Define good and bad transcripts
 - Intuition:

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$

2. Define good and bad transcripts

- Intuition:
 - $\bullet \ (m,c) \in \tau_E \text{ ``defines'' } P\text{-query } (m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

 $\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$

2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

 $\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$

ullet Note: no internal collisions in au_E and au_P

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$k \in \{m \oplus x, c \oplus y \mid (m, c) \in \tau_E, (x, y) \in \tau_P\}$$

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$
 - Transcript $\tau = (\tau_E, \tau_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\updownarrow$$

$$k \in \{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}$$

of size $\leq 2QT$

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$k \in \underbrace{\left\{m \oplus x, c \oplus y \mid (m, c) \in \tau_E, (x, y) \in \tau_P\right\}}_{\text{of size} \le 2QT}$$

independently generated $n\text{-}\mathrm{bit}$ dummy key

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\updownarrow$$

$$k \in \{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}$$

independently generated n-bit dummy key

$$\mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } (p^\pm, P^\pm)\right] \leq \frac{2QT}{2^n}$$

 $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = ----$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } au
ight] = rac{-2^n\cdot 2^n!}{}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n\cdot 2^n!}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm, P^\pm) \text{ gives } \tau\right]}{\Pr\left[(p^\pm, P^\pm) \text{ gives } \tau\right]} \geq 1 \varepsilon \text{ (}\forall \text{ good } \tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } au
ight] = rac{\left| ext{oracles } \mathcal{O} \text{ that could give } au
ight|}{\left| ext{oracles } \mathcal{O}
ight|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^{\pm},P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n \cdot 2^n!}$$

• For ideal world (p^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \end{split}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

 $\bullet \ \ {\rm We \ put} \ \varepsilon = 0$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

- We put $\varepsilon=0$
- Conclusion:

$$\mathbf{Adv}_E^{\text{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_k^{\pm}, P^{\pm}; p^{\pm}, P^{\pm}) \le \frac{2QT}{2^n} + 0$$

Beyond Masking-Based Tweakable Blockciphers

- ullet "Birthday-bound" $2^{n/2}$ security at best
- Overlying modes inherit security bound

Beyond Masking-Based Tweakable Blockciphers

- "Birthday-bound" $2^{n/2}$ security at best
- Overlying modes inherit security bound
- ullet If n is large enough \longrightarrow no problem
- ullet If n is small \longrightarrow "beyond birthday-bound" solutions
 - Cascading
 - Tweak-rekeying

Cascading LRW's

- LRW $_2[
 ho]$: concatenation of ho LRW $_2$'s
- ullet $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent

Cascading LRW's

- LRW₂[ρ]: concatenation of ρ LRW₂'s
- ullet $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent
- ullet ho=2: secure up to $2^{2n/3}$ queries [LST12,Pro14]
- $ho \geq 2$ even: secure up to $2^{
 ho n/(
 ho + 2)}$ queries [LS13]
- Conjecture: optimal $2^{\rho n/(\rho+1)}$ security

Cascading TEM's

- $\mathsf{TEM}[\rho]$: concatenation of ρ $\mathsf{TEM's}$
- ullet $P_1,\ldots,P_
 ho$ and $h_1,\ldots,h_
 ho$ independent

Cascading TEM's

- TEM[ρ]: concatenation of ρ TEM's
- ullet $P_1,\ldots,P_
 ho$ and $h_1,\ldots,h_
 ho$ independent
- ho=2: secure up to $2^{2n/3}$ queries [CLS15]
- $ho \geq 2$ even: secure up to $2^{
 ho n/(
 ho + 2)}$ queries [CLS15]
- Conjecture: optimal $2^{\rho n/(\rho+1)}$ security

Tweak-Rekeying

- Mingling tweak into both key and state works
- Secure up to 2^n queries (in ICM!)
- Alternative constructions exist [Min09, Men15, WGZ+16]