Reg.	No.								
reg.									

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18ECE313T - DIGITAL COMMUNICATION SYSTEMS

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time	e: 3	hour	S			Max. I	/Iarl	ks: 1	00
			$PART - A (20 \times 1)$		-	Marks	BL	СО	РО
	;	CO1	Answer ALL (_		1	1	1	1
	l,		difference between two adjacen			1	. 1	1	1
			Step size	, ,	Quantum				
		(C)	Pulse	(D)	Sample				
	_	0				1	. B	1	1
	2.	_	ntization noise occurs in	(D)	EDA (1	1	1
			TDM	` /	FDM				
		(C)	PCM	(D)	PWM				
	2	N.T.				1	1	1	1
	3.		uist frequency is given by	(D)		1	1	1	1
			$f_m > 2f_s$		$f_m = 2f_s$				
		(C)	$f_s \ge 2f_m$	(D)	$f_s < 2f_m$				
	4.	In P	CM, the process of signal compa	1	1	1	1		
		(A)	Compression	(B)	Companding				
		(C)	Counter		Modulation				
	5.	Incr	easing the step size leads to	in t	he quantization error	1	1	2	1
			Increase		Decrease				
		` '	No change	` '	Oscillation				
	6	Mai	n advantage of DPCM over PCN	A is		1	1	2	1
			Reduces bandwidth		Less complexity				
		` /	Noise reduction	, ,	Cost is less				
	7	Dod	untant hita in the massace signal	vvvi11 1	an removed by	1	2	2	1
	1		untant bits in the message signal Reduces bandwidth		Less complexity				
		` /							
		(C)	Noise reduction	(D)	Cost is less				
	8.		ptive DPCM is used to			1	1	2	1
		(A)	Increase bandwidth	(B)	Decrease bandwidth				
		(C)	Increase SNR	(D)	Decreases SNR				

9.		n M-ary system the eye patter ced up where M is the number of		ontains eye openings rete amplitude levels	1	1	3	1
	(A)	$M+\bar{1}$	(B)	2M+1				
	` '	M-1		2M-1				
10.	A ba	and pass signal has			1	1	4	1
		DC component	(B)	No DC component				
		No sidelobes		No error				
11	Ove	rlapping of spectra of BPSK sign	al lea	ads to	1	1	4	1
				Aliasing				
	` '	Inter symbol interference	` '	•				
12	Whi	ch modulation scheme have mini	mum	probability of error?	1	1	4	1
12.		ASK		BFSK				
	` /	BPSK	` '	DPSK				
13	A d	evice for the combined operation	n of	modulation and demodulation is	1	1	4	1
15,	calle		u or	modulation and domodulation is				
	(A)	Modern	(B)	Transmitter				
	(C)	Modulator	(D)	Compander				
14.	Mod	lified duabinary systems has zero	DC	by delay in feedback	1	1	3	1
	(A)	Reversing	(B)	Reducing				
	(C)	Increasing	(D)	Avoiding				
15.	In b	ase band transmission, pulser are	dispe	ered due to	1	1	3	1
	` '	Bandwidth	` ′	Efficiency				
	(C)	Amplitude	(D)	ISI				
16.	The	entropy of a single message, with	n pro	bability is	1	1	5	1
	(A)	0	. ,	0.5				
	(C)	1	(D)	Infinite				
17.			l and	assigned with 0's or 1's in	1	1	5	1
		ng technique.	(D)	Times :				
		Huffmann Shannon Fano	` /	Linear Non linear				
	(C)	Shannon Pano	(D)	Non linear				
18.		channel capacity of 20 kHz band			1	1	5	1
		1000 bits/s	` ′	10000 bits/s				
	(C)	2000 bits/s	(D)	20000 bits/s				
19.	The	mutual information of a channe	l witl	h independent input and output is	1	1	5	1
	$\overline{(A)}$	Constant	(B)	Zero				
	(C)	Infinite	(D)					
20.		is the measure of uncertain	ntv		1	1	5	1
	$\overline{(A)}$	Entropy		Mean				
	(C)	Average		Ensemble				

	$PART - B (5 \times 4 = 20 \text{ Marks})$ Answer ANY FIVE Questions	Marks	BL	со	PO
21.	Sketch the waveform for the binary data sequence 0110011. i. Manchester code ii. NRZ-M	4	3	1	1
22.	What is meant by granular noise, slope overload distortion in delta modulation system?	4	1	2	1
23.	Compare Pulse Code Modulation (PCM). Differential Pulse Code Modulation (PCM) and Delta Modulation (DM).	4	2	2	3
24.	An analog waveform with amplitude range of -10V to 610V and bandwidth of 200Hz is transmitted using PCM. Find minimum sampling rate, minimum bit rate.	4	3	1	3
25.	What is M-ary signaling? Draw the constellation diagram of 8-QAM.	4	1	4	1
26.	Define source coding. Why do we need source coding?	4	2	5	1
27.	Explain the principle of maximum likelihood receiver structure.	4	2	3	1
	PART – C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	BL	со	PO
28. a	Derive the below given SNR for quantizer of the input signal starting with quantization difference. $Q = M - V$ where M and V represent the quantized and input voltages respectively. $SNR = \left(\frac{3P}{m_{\text{max}}^2}\right) 2^{2R}$	12	3	1	3
	(OR)	12	2	1	1
b	e. Explain the process of sampling and signal reconstruction in detail.	12			
29. a	 Discuss about differential pulse code modulation and demodulation with neat diagram. 	1 ¹²	1	2	1
ł	(OR) Explain the process of delta modulation and demodulation.	12	2	. 2	1
30. :	 i. Maximum likelihood detector ii. Correlation receiver 	6	2	2 3	
	(OR) b. The binary data stream 001101101 is applied to the input of a duo-binary system. Determine the duo binary code output and the resulting receive output for with and without precoder.	y ¹² e		3 3	3 1

31. a. Explain the generation and detection of QPSK. 12 2 3 (OR) b. Derive an expression for probability of error in BPSK. 12 32. a. Find the encoded sequence for the work "COMMITTEE" using Huffman - 5 3 coding. Calculate coding efficiency. (OR) b. Consider a channel with 2 inputs outputs and noise matrix of channel is 12 3 given. If input symbols are transmitted with probabilities of $\frac{3}{4}$ and $\frac{1}{4}$. Calculate all entropies and mutual information of give channel matrix $\frac{1}{3}$ $\frac{2}{3}$

 $\frac{2}{3}$