COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II
Winter 2020

0 Introduction to the Course

William M. Farmer

Department of Computing and Software McMaster University

January 7, 2020

Outline

0 Introduction to the Course (Tuesday).

- 1. Instructional staff.
- 2. Who are you?
- 3. My goals.
- 4. Learning objectives.
- 5. Required and recommended resources.
- 6. Work plan.
- 7. Marking scheme.
- 8. Other resources and policy issues.
- 1 Mathematical Proof (Wednesday).
- 2 Recursion and Induction (Friday).

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

2/24

Instructor: Dr. William M. Farmer

- Professor, Dept. of Computing and Software.
- B.A., University of Notre Dame.
 M.A., M.S., Ph.D., University of Wisconsin-Madison.
- P.Eng. (Licensed Professional Engineer in Ontario).
- Industrial experience. Research computer scientist for 12 years at The MITRE Corporation in Bedford, MA, USA.
- Teaching: Discrete mathematics, logic, principles of programming, software design, communication skills.
- Research: Logic, mechanized mathematics, formal methods, mathematical knowledge management.
- Software development: In the early 1990s, I developed the IMPS interactive theorem prover with Joshua D. Guttman and F. Javier Thayer at the MITRE Corporation.

My Contact Information

• Office: ITB 163.

• Email: wmfarmer@mcmaster.ca.

• Web: http://imps.mcmaster.ca/wmfarmer/.

• Office hours: To see me please send me a note with times.

Please use McMaster e-mail for all correspondence, NOT Avenue email.

Teaching Assistants

Musa Al-hassy Grad TA alhassm@mcmaster.ca Lekhani Ray Grad TA rayl10mcmaster.ca Akram Elwazani Undergrad TA elwazana@mcmaster.ca Meijing Li lim147@mcmaster.ca Undergrad TA Kumail Naqvi naqvis8@mcmaster.ca Undergrad TA Shyam Shah Undergrad TA T02, T05 shahs1@mcmaster.ca

Students

T02

T04

T04, T05

T01, T03

T01, T03

CS C01: 90 Computer Science students (34.6%).

SE C01: 127 Software Engineering students (48.9%).

CS C02: 43 Other students (16.5%).

Total: 260

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

Who are You?

- I would like to get to know each of you.
- Please complete a bio sheet for yourself using my bio sheet as a model.

William M. Farmer

Pronunciation: As expected

Pronouns: he/him/his. Hometown: South Bend, Indiana, USA

- M.A., mathematics, Wisconsin-Madison (1980)
- B.A., mathematics, Notre Dame (1978).

Work Experience

- Professor at McMaster University (2005 present).
- Associate Professor at McMaster University (1999 2005)
- Assistant Professor at St. Cloud State University (1997 1999)

Research Interests

- Mechanized mathematics

Formal methods. Personal Information

- Family. I am married and have a son and a daughter. I am the oldest of nine children.
 I have 41 cousins, 20 aunts and uncles, and 20 niblings (nieces and nephews).
- · Sports. I am an avid basketball player and greatly enjoy hiking and canoeing
- Film. Classics and foreign. Favorite directors are Bergman, Hitchcock, and Kurosawa
- Music. I like all kinds of music. A favorite performer and composer is Mark O'Connor.
- · Reading. Novels, history, biographies, plays, poetry, mythology, math papers, op-eds.
- · Volunteer work. I have been a Scout leader for 19 years
- Citizenship. I am a dual American and Canadian citizer

In 10 years, I hope that I will: Be retired and writing a blog about my interests, insights

Importance of CS/SE 2FA3 (iClicker)

Why do you think this course is a crucial component of an educational program in computer science or software engineering?

- A. A proficient understanding of mathematics is needed to communicate ideas about computing.
- B. Discrete mathematics and logic are the mathematics underlying computing.
- C. Learning to read and write proofs is the most effective way to learn mathematics.
- D. Automata and formal languages are a key part of the foundation of computing.

My Goals

- I want to:
 - 1. Help you lay a foundation on which to build a sophisticated understanding of discrete math and logic.
 - 2. Help you become proficient at reading and writing mathematical proofs.
 - 3. Help you gain a solid understanding of the theory of automata and formal languages.
 - 4. Provide you with opportunities for active learning.
- Will this course be challenging?
 - 1. Yes, it will take you out of your comfort zone.
 - 2. You will be expected to learn new things.
 - 3. You are capable of meeting the challenge.

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

9/24 W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

10/24

Mission

- The mission of the course is to:
 - 1. Teach students to read and write traditional-style (informal) proofs.
 - 2. Provide students a foundational understanding of recursion, induction, and predicate logic.
 - 3. Introduce students to the theory of automata and formal languages.
- These goals are best achieved by active learning!
 - 1. Engaging in interactive discussion.
 - 2. Solving problems.

Major Topics

- 1. Mathematical proof.
 - 1 lecture.
- 2. Recursion and induction.
 - 3 lectures.
- 3. Predicate logic.
 - 4 lectures.
- 4. Finite automata and regular expressions.
 - 5 lectures.
- 5. Push-down automata and context-free languages.
 - 6 lectures.
- 6. Turing machines and computability.
 - 4 lectures.

Models (iClicker) Do you know what a model of a set of formulas is? A. Yes. B. No.

Logical Consequence (iClicker)

Do you know the meaning of "logical consequence"?

- A. Yes.
- B. No.

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

13/24 W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

14/24

Axiomatic Theories (iClicker)

Do you know what an axiomatic theory is?

- A. Yes.
- B. No.

Lambda Notation (iClicker)

Do you know what lambda notation is?

- A. Yes.
- B. No.

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

15/24

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

Learning Objectives (Knowledge)

Students should know and understand:

- 1. Mathematical proof.
- 2. Recursion and induction.
- 3. Predicate logic.
- 4. Finite automata and regular expressions.
- 5. Push-down automata and context-free languages.
- 6. Turing machines and computability.

Learning Objectives (Skills)

Students should be able to:

- 1. Write traditional-style proofs using LaTeX.
- 2. Prove statements by different forms of induction.
- 3. Formulate axiomatic theories.
- 4. Construct finite automata, pushdown automata, and Turing machines.
- 5. Construct regular sets and context-free grammars.

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

17/24

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

18/24

Required and Recommended Resources

- Textbook 1: R. Hammock, Book of Proof, Second Edition, Richard Hammock, 2016. ISBN-13: 978-0989472111. Recommended.
- Textbook 2: Dexter C. Kozen, Automata and Computability [abbreviated AC], Springer, 1997. ISBN-13: 978-0387949079. Required.
- Equipment: An iClicker+ remote. Required.
- Course web site: All course materials will be available on Avenue to Learn at

http://avenue.mcmaster.ca/.

Required.

• Collaborative software: Discord. Required.

Work Plan per Week

- Lectures: Presentation of the course material.
 - ► 1-hour lectures on Tuesday and Wednesday given by the Instructor.
- Discussion session: Interactive discussion.
 - ▶ 1-hour discussion session on Friday lead by the Instructor.
- Tutorial: Second look at material and problem solving.
 - ▶ 1-hour tutorial lead by the TAs.
- Homework: 5 hours outside of class.
- Assessment: What has been learned.
 - Weekly assignments produced using LaTeX.
 - ► Two midterm tests (on Wed, Feb 5, and Wed, Mar 11).
 - Final exam.

LaTeX (iClicker)

Have you used the LaTeX document preparation system before?

- A. Yes.
- B. No.

Class Participation

- Clicker questions in lectures.
 - Students will answer clicker questions in the lectures.
- Discussion session questions.
 - ► Students selected from a randomized list will be asked questions about the material covered during the week
- Meaningfuls and memorables (M&Ms).
 - ► Students will submit a short paragraph via Discord at the end of each week.
 - M&Ms start next week.
- Bio sheet.
 - ► Students must submit a bio sheet using the Instructor's as a model.

W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

21/24 W. M. Farmer

COMPSCI/SFWRENG 2FA3 Winter 2020: 0 Introduction to the Course

22/24

Marking Scheme

Class participation

elass participation	
a. Clicker questions	4%
b. Discussion session questions	4%
c. Meaningfuls and memorables (M&Ms)	4%
d. Bio sheet	1%
Assignments	20%
Midterm test 1	12%
Midterm test 2	15%
Final exam	40%
Total	100%
Course review session bonus	1%

Other Resources and Policy Issues

- 1. Midterm course review.
- End-of-term course evaluation.
- 3. Clickers.
- 4. Academic dishonesty.
- Discrimination.
- 6. Missed work.
- 7. Academic accommodation.
- 8. Course modifications.
- 9. Course schedule.
- 10. Assignments and M&Ms may not be submitted late nor may midterms be taken later without prior approval.
- 11. Cell phones are not allowed during lectures, discussion sessions, and tutorials unless approved by the instructor.
- 12. No electronic devices may be used during exams.
- 13. Use McMaster email for all correspondence, NOT Avenue.