UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA AUTOMATIKU I UPRAVLJANJE SISTEMIMA

Distribuirani upravljački sistemi (računarski)

Distribuirani sistemi Distribuirano programiranje

Istorijat

- Krajem 70-tih prvi DS u upravljanju sistemima
- Od tada se neprekidno razvijaju "rastu"
 (Distributed Computer Control Systems DCCS)
- Primene
 - postrojenja procesne industrije
 hemijska i petrohemijska postrojenja, rafinerije nafte, željezare i čeličane, cementare, fabrike papira,
 prehrambena industrija, vodosnabdevanje, postrojenja za tretman otpadnih voda, naftna i gasna
 polja, ...
 - proizvodna postrojenja
 - energetska postrojenja
 - automatka složenijih laboratorijskih postrojenja
 - nova proizvodna postrojenja i
 - revitalizacija postojećih postrojenja

Pogodnosti DRUS-a

- Primenjuje se zbog povećanja:
 - produktivnosti proizvodnje
 - kvaliteta proizvoda
 - sigurnosti i raspoloživosti postrojenja
 - fleksibilnosti rada postrojenja
 - kvaliteta uvida u rad postrojenja
- Povećanje automatike kod postrojenja i procesa Primene novih:
 - računarskih i komunikacijskih tehnologija
 - naprednih metoda automatskog upravljanja

- Sprovodi se hijerarhijskom arhitekturom
 - Funkcionalna arhitektura
 - Fizička arhitektura

Hijerarhijska arhitektura DRUS-a

- Opšte je prihvaćena
- Omogućava funkcionalnu dekompoziciju na nekoliko nivoa
 - Nivo 4: vođenja preduzeća (Plant Management or Corporate Management Level)
 - Nivo 3: vođenja proizvodnje (Production Control or Production Management Level)
 - Nivo 2: vođenje postrojenja/procesa (Plant Supervisory or Process Control Level)
 - Nivo 1: lokalno upravljanje i regulacija (Direct Control or Local Control Level)
 - Nivo 0: tehnički proces
 (Field or Sensor-Actuator Level)

Hijerarhijski nivo

- pokreće i nadzire izvođenje funkcija automatike nižeg nivoa
- pokreće se i nadzire funkcijama automatike nadređenog novoa

Primer - PID algoritam:

- nivo 2 optimizacija rada upravljanog procesa i nadzor
 - optimalne referentne vrednosti regulisane veličine
 - prikaz stanja regulacije
- nivo 1 PID regulator
 - upravljanje funkcija automatike
 - Izveštavanje o radu
- nivo 0 merno-regulaciona oprema
 - šalje se upravljački signal izvršnom organu
 - očitava se vrednost regulisane procesne veličine sa mernog senzora

DRUS procesne industrije

Primer: Hijerarhija sistema upravljanja u JP Elektrovojvodina

Lokalno upravljanje i regulacija – Nivo 1

- Akvizicija procesnih veličina
 - prikupljanje <u>trenutnih vrednosti</u> mernih veličina i stanja komponenata postrojenja (npr. stanja pumpi, ventila, motora i sl.)
 - neophodna za upravljanje procesom u otvorenoj i/ili zatvorenoj petlji, nadzor procesa, izradu izveštaja o stanju procesa
- Nadzor procesa/postrojenja i provera ispravnosti sistema
 - procesiranje prikupljenih podataka, proveravanje njihove prihvatljivosti, donošenje odluka o akcijama koje treba preduzeti, provera funkcionalnosti računara i periferija, alarmiranje, dojavljivanje grešaka i neispravnih stanja.
- Sekvencijalno upravljanje i upravljanje u zatvorenoj petlji

Vođenje postrojenja/procesa – Nivo 2

- određivanje optimalnih radnih uslova procesa
- Implementiraju se funkcije:
 - Optimalno upravljanje procesom

Optimizacija se sprovodi na osnovu matematičkog modela procesa, a prema nekom kriterijumu optimalnosti koji treba da osigura optimalan rad procesa/postrojenja u promenljivim radnim uslovima.

Adaptivno upravljanje

Na osnovu merenih vrednosti procesnih veličina estimiraju se parametri matematičkog modela procesa iz kojih se zatim izračunavaju optimalne vrednosti parametara regulatora.

- Optimalna koordinacija rada postrojenja
 - Sprovodi se na osnovu: produktivnosti proizvodnje, stanja sirovina, stanja skladišta proizvedene robe, cene energije i dodatnih kriterijuma optimalnosti.
- Nadzor, skladištenje i izveštavanje
 Nadzor performansi postrojenja, skladištenje podataka i izveštavanje o stanju.

Vođenje proizvodnje – Nivo 3

- određivanje redosleda proizvodnje (*production scheduling*) za jedinice proizvodnog postrojenja u zaisnosti od:
 - narudžbi kupaca
 - stanja zaliha
 - energetskih ograničenja i zahteva.

- Promene narudžbi kupaca
- Nepredviđeni događaji u postrojenju
- sprovodi se promenom redosleda proizvodnje i promenom proizvodnog programa
 - Sofisticirane tehnike koordinacije rada proizvodnog postrojenja
 - Područje operacionih istraživanja, a ne automatskog upravljanja
- Nadzor celokupnog proizvodnog postrojenja
 - izrada izveštaja
- Najviši nivo manjih proizvodnih postrojenja

Vođenje preduzeća – Nivo 4

- Najviši nivo složenih industrijskih postrojenja
 - obuhvaćeni inženjerski, ekonomski, komercijalni i kadrovski aspekti vođenja preduzeća.
- Softverski sistem za optimalno planiranje proizvodnje
 - složena optimizacija plana proizvodnje u promjenljivim radnim i tržišnim uslovima
 - Koordinacija: menadžmenta, odelenja prodaje, nabavke, računovodstva i pogonskog osoblja.

• Tipične funkcije su:

- analiza tržišta
- prikupljanje podataka o kupcima
- statistika narudžbi
- planiranje prodaje i proizvodnje
- ugovaranje
- prihvatanje narudžbi i provera rokova
- koordinacija rada proizvodnih postrojenja
- izračunavanje cena
- uravnoteživanje proizvodnih kapaciteta i narudžbi
- deoba narudžbi
- praćenje rokova proizvodnje i isporuke
- izveštaji o proizvodnji, narudžbama i ugovorima
- izveštaji o produktivnosti, prodanosti, dobiti/gubitku i sl.

Fizička i funkcionalna arhitektura

- Funkcionalna arhitektura i fizička arhitektura sistema nisu iste
- Fizička arhitektura je sabirnički orijentisana
- Često se funkcije dva ili više funkcionalnih nivoa implementiraju u jednom fizičkom nivou
 - Dobija se jednostavniji DS

Fizička - Sabirnički orijentisana arhitektura

Tipično tri komunikacione mreže

1) Fieldbus

Povezivanje upravljačkih uređaja sa "pametnim" senzorima i izvršnim organima

 Upravljačka mreža na nivou postrojenja Povezivanje više upravljačkih uređaja (i SCADA sistema)

Poslovna magistrala
 Povezivanje upravljačkog sistema sa ostalim aplikacijama

Jednostavna sabirnička arhitektura

- Smanjuje cenu i troškove održavanja
- Dva fizička nivoa (dve mreže) u manjim proizvodnim postrojenjima
 - 1. Funkcije **nižih** slojeva: lokalno upravljanje
 - automatika u nivoima 1 i 2
 - 2. Funkcije **viših** slojeva: kombinacija vođenja postrojenja i proizvodnje
 - vođenje preduzeća se izvodi na izdvojenom (nezavisnom) računarskom sistemu
- Jedna mreža za sve
 - Još jednostavnije

Jedinstven distribuiran sistem

- Jedinstven distribuiran sistem povezuje brojne aplikacije
 - Informacija se unosi/nastaje jednom (u jednoj aplikaciji)
 - Informaciju koriste druge aplikacije
 - Objedinjeno rešavanje problema (saradnja aplikacija)

- Često se naziva Informacioni sistem
- Otežano je povezivanje aplikacija
 - Svaka aplikacija ima svoj model podataka
 - Postoje različite softverske tehnologije (komunikacije, ...)
 - Aplikacije su pisane od strane raznih proizvođača
- Uvode se specifikacije i standardi radi olakšanog povezivanja aplikacija

Primer: Aplikacije u distribuciji električne energije

IEC 61968 Interface Reference Model