行列輪講: 練習問題

杉浦 圭祐

慶應義塾大学理工学部情報工学科 松谷研究室

July 28, 2023

目次

- 🕕 練習問題
- 2 解答

1 以下の行列積の (i,j) 成分を、各行列の成分を用いて書いてください。

$$egin{aligned} \mathbf{AB} \\ \mathbf{A}^{ op} \mathbf{B} \\ \mathbf{ABC} \\ \mathbf{ABCD} \\ \mathbf{AB}^{ op} \mathbf{CD}^{ op} \\ \mathbf{A}^n \\ \mathbf{\emptyset} \colon \left(\mathbf{ABA}^{ op}
ight)_{ij} = \sum_k \sum_l a_{ik} b_{kl} a_{jl} \end{aligned}$$

2 対称行列, エルミート行列, 正定値行列, 直交行列, ユニタリ行列とは何か, 確認しましょう.

Sherman-Morrison-Woodbury の公式があります. どのようなときに, この公式が役に立つでしょうか.

$$\left(\mathbf{A}^{-1} + \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A} - \mathbf{A}\mathbf{B}\left(\mathbf{D} + \mathbf{C}\mathbf{A}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}$$

4 上式から,以下の式を導出してください.

$$\left(\mathbf{A} + \mathbf{b}\mathbf{c}^{\top}\right)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{b}\mathbf{c}^{\top}\mathbf{A}^{-1}}{1 + \mathbf{c}^{\top}\mathbf{A}^{-1}\mathbf{b}}$$

5 シューア補行列による以下の式を,確認してください.

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{C}\mathbf{A}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

同じ列ベクトルを 2 箇所に含んだ行列の, 行列式が 0 になることを確認してください.

$$\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)=0$$

2 n 次正方行列 \mathbf{A} を c 倍したとき、行列式は元の c^n 倍になることを確認してください (置換による行列式の定義を用いる).

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A})$$

③ 上を用いて, i 列目に j 列目の c 倍を足しても $(i \neq j)$, 行列式が変わらないことを確認してください.

$$\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i}+c\mathbf{a}_{j},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{n}\right)\right)$$

$$=\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{n}\right)\right)$$

4 以下を確認してください (1 行目から 2 行目を引き, 2 列目に 1 列目を 足す).

$$\det \left(\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \right) = \det(\mathbf{A} + \mathbf{B}) \det(\mathbf{A} - \mathbf{B})$$

5 以下を確認してください. ${f A}$ の余因子行列 ${
m adj}$ ${f A}$, 行列式 ${
m det}({f A})$, 逆行列 ${f A}^{-1}$ について,

$$(\operatorname{adj} \mathbf{A}) \mathbf{A} = (\operatorname{det}(\mathbf{A})) \mathbf{I}$$

6 以下を確認してください.

$$\mathrm{tr}\big(\mathbf{X}^{-1}\mathbf{A}\mathbf{X}\big)=\mathrm{tr}(\mathbf{A})$$

第3回: 行列とベクトルの微分

1 \mathbf{x}, \mathbf{y} を n, m 次縦ベクトルとします. 以下の微分の形 (サイズ) を確認しましょう. 分子レイアウト, 分母レイアウトの双方で考えてください.

$$\frac{\partial \mathbf{y}}{\partial x}, \ \frac{\partial y}{\partial \mathbf{x}}, \ \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

目次

- 1 練習問題
- 2 解答

11 以下のようになる.

$$(\mathbf{A}\mathbf{B})_{ij} = \sum_{k} a_{ik} b_{kj}$$

$$(\mathbf{A}^{\top}\mathbf{B})_{ij} = \sum_{k} a_{ki} b_{kj}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C})_{ij} = \sum_{k} \sum_{m} a_{ik} b_{km} c_{mj}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D})_{ij} = \sum_{k} \sum_{m} \sum_{n} a_{ik} b_{km} c_{mn} d_{nk}$$

$$(\mathbf{A}\mathbf{B}^{\top}\mathbf{C}\mathbf{D}^{\top})_{ij} = \sum_{k} \sum_{m} \sum_{n} a_{ik} b_{mk} c_{mn} d_{kn}$$

$$(\mathbf{A}^{n})_{ij} = \sum_{u_{1}} \sum_{u_{2}} \cdots \sum_{u_{n-1}} a_{i,u_{1}} a_{u_{1},u_{2}} \cdots a_{u_{n-2},u_{n-1}} a_{u_{n-1},j}$$

- 2 省略.
- 3 A, B, C, D を, $m \times m$, $m \times n$, $n \times m$, $n \times n$ 行列とする. ここで $m \gg n$ とすると, 左辺を計算するためには, 大きな m 次行列の逆行列 が必要である. 一方, 左辺の代わりに右辺を計算することにすれば, 小さな n 次行列の逆行列を求めるだけでよい.

$$\left(\mathbf{A}^{-1} + \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A} - \mathbf{A}\mathbf{B}\left(\mathbf{D} + \mathbf{C}\mathbf{A}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}$$

- 4 省略.
- 5 省略.

- 1 $\lambda=\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)$ とする. 列を交換すると, 行列式の符号は反転する. しかし, 列を交換しても, 元と同じ行列であるから, $\lambda=-\lambda$ である. よって, $\lambda=0$ である.
- 2 省略.
- 3 以下のように示せる. 最初の式変形では, 列の線形変換と行列式との関係を用いる. 最後の式変形では, 同じ列を含んでいれば行列式が 0 となることを用いる.

$$det((\mathbf{a}_1, \dots, \mathbf{a}_i + c\mathbf{a}_j, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n))$$

$$= det((\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n)) + c det((\mathbf{a}_1, \dots, \mathbf{a}_j, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n))$$

$$= det(((\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n)))$$

以下のように示せる.最後の式変形では、ブロック下三角行列の関係を 用いる.

$$\det \begin{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{A} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{0} \\ \mathbf{B} & \mathbf{A} + \mathbf{B} \end{pmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} (\mathbf{A} - \mathbf{B}) \det (\mathbf{A} + \mathbf{B}) \end{pmatrix}$$

5 $(\operatorname{adj} \mathbf{A}) \mathbf{A}$ の (i,j) 要素は、次のようになる。 δ_{ij} は、クロネッカーのデルタである。 余因子行列 $\operatorname{adj} \mathbf{A}$ の (i,k) 要素は、 \mathbf{A} の (k,i) 余因子 Δ_{ki} となることに注意する。

$$((\operatorname{adj} \mathbf{A}) \mathbf{A})_{ij} = \sum_{k} (\operatorname{adj} \mathbf{A})_{ik} a_{kj} = \sum_{k} \Delta_{ki} a_{kj}$$
$$= \delta_{ij} \det(\mathbf{A}) = (\det(\mathbf{A})\mathbf{I})_{ij}$$

6 トレースの循環性を用いる.

$$\operatorname{tr}(\mathbf{X}^{-1}\mathbf{A}\mathbf{X}) = \operatorname{tr}(\mathbf{A}\mathbf{X}\mathbf{X}^{-1}) = \operatorname{tr}(\mathbf{A})$$