3000788 Intro to Comp Molec Biol

Lecture 14: Single-cell data analysis

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Recap: QC and batch effect removal
- Visualization of single-cell data
- Cell type inference
- Trajectory (pseudotime) reconstruction

Recap: Key steps in single-cell data processing

- Quality filter
 - Low read count & gene count = non-cells
 - Very high read count & gene count = multi-cells (doublets)
 - High mitochondrial expression ~ dead cells (or special cell types)
- Normalization and impute missing values
- Multi-sample integration
 - Some cell types/genes are detected in some batches
 - Some genes are affected by conditions \rightarrow affect visualization and clustering

Visualization of single-cell data

How were these plots generated?

- Each cell is described by >5,000 genes
- But visualized on the screen, each cell is represented by just (x, y)-coordinates
- How to reduce >5,000 dimension to 2 while still retaining key information about the data?

What is the dimension of a transcriptomics dataset?

	Gene 1	Gene 2	Gene 3	Gene 4	
Sample 1					

- Number of genes?
- Number of non-redundant genes (aggregated into pathways)?
- The minimal number of values from which the entire transcriptomics profile can be accurately recreated?

Dimensionality reduction

https://www.sc-best-practices.org/preprocessing_visualization/dimensionality_reduction.html

- Reduce dimension (number of features) while maintaining information
 - We measured more genes than needed
 - To distinguish cell types, a few gene combination may be enough

A digit dataset example

A digit dataset example

https://twitter.com/lkmklsmn/status/1436357177887895555

Both data source and digit identity can be distinguished

Principal component analysis (PCA)

Variance is information

https://shapeofdata.wordpress.com/2013/04/16/visualization-and-projection/

- High variances = more power to distinguish groups of data points

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d

PCA follows the directions of maximal variance

Source: the paleontological association

PCA for dimensionality reduction

- By default, PCA does not reduce the number of dimensions
- We can select only the first *k* PC for downstream analyses

Interpretation of PCA result

Exploring PCA results

- Color by feature values to understand how PCA group data points
- Color by potential confounding factors

Pros and cons of PCA

- Each PC can be interpreted from the loadings
- Highly correlated features tend to be grouped into the same PC
- PCA is a good initial dimensionality reduction step
- PCA strictly preserves Euclidean distance
 - But some datasets require different distance metric!

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Multidimensional Scaling (MDS) Principal Coordinate Analysis (PCoA)

Different distances for different data types

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Pairwise distance matrix

	Α	В	С	D	E	F	G
Α							
В	19.00						
С	27.00	31.00					
D	8.00	18.00	26.00				
E	33.00	36.00	41.00	31.00			
F	18.00	1.00	32.00	17.00	35.00		
G	13.00	13.00	29.00	14.00	28.00	12.00	

http://www.slimsuite.unsw.edu.au/teaching/upgma/

- For each pair of samples, calculate the distance between them
- Some samples are similar to each other, some are not
- When we reduce the dimension or visualize the data on the plot, we want similar samples to remain closer to each other than to dissimilar samples

MDS / PCoA general principles

 x_4

Limitation of MDS / PCoA

- A single definition of distance is used throughout the dataset
- What if some data groups are noisier or have higher variances than the others?
- Distance *d* can mean either similar or dissimilar depending on cell types
- Can we account for the density of the data?

t-distributed Stochastic Neighbor Embedding (*t*-SNE) Uniform Manifold Approximation and Projection (UMAP)

How to measure data density?

- Naïve approach: Count number of data points within a distance
- Measure distance to the *k*-th nearest neighbor
- Different interpretations of distance d

Probability of being a neighbor

score(o | o) = probability that o would pick o as neighbor under a **normal distribution** center at o

$$= \frac{e^{-\frac{d^2}{2\sigma^2}/\sigma}}{\sum_{o = \text{other data points}} e^{-\frac{(\text{dist}(o, o))^2}{2\sigma^2}/\sigma}$$

- Distance d is normalized against density σ and distances from o to other nearby data points

t-SNE's general framework

Uniform density

x x x x
x
x
x

Dimension 1

Probability of being neighbor (various σ)

Probability of being neighbor $(\sigma = 1)$

Perplexity: Which kth nearest neighbor to consider?

- Too small perplexity = poor estimate of density, resulting in a lot of scatted data clusters
- Optimal perplexity varies across datasets
- Advice: Vary the perplexity and identify patterns that appear consistently

Source: blog.paperspace.com/dimension-reduction-with-t-sne/

t-SNE vs UMAP on single-cell data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

- Both are good for visualization
- t-SNE focuses more on clustering the cells
- UMAP also displays transitions across cell clusters

t-SNE vs UMAP on single-cell data

Analysis of single-cell data

Cell type clustering and trajectory reconstruction

Clustering of cells with similar omics signatures reveals distinct cell types

Trajectory reconstruction (pseudotime) reveals the developmental pathways across cell types

Embedding dimension 1

Source: Moon et al. Nature Biotechnology 37:1482-92 (2019)

Network clustering

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

https://github.com/topics/graph-clustering

- View cell-cell distance as a network
- Apply some threshold on the distance to create sparse network
- Split network into modules with dense edges

Network clustering with modularity score

- Good clustering characteristics
 - Cells within the same cluster are highly connected
 - Cells across cluster are not connected
- Modularity score = normalized ratio of within-cluster edges versus betweencluster edges
- Louvain / Leiden algorithms

Cell type annotation

- Compare to previous scRNA-seq
- Use known marker genes and gene functions
- Advice: Always visualize the expression of marker genes on your data

Multiple cell sub-clusters

Expression pattern of marker genes across cells can guide the discovery

Trajectory (pseudotime) analysis

- Adjacent cells are likely in adjacent developmental stages
- Reconstruct path through cells, from one type to another
- Called **pseudotime** because all cells are collected at the same time (not an actual time-series experiment)

Minimum spanning tree

Assumption: Cell development follows the simplest, shortest routes

Diffusion modeling for cell-cell transitions

Estimating differentiation potential

Capability to differentiate into multiple cell types

Limitation of trajectory reconstruction

- The model does not know the direction of development
 - Require user to specify
- Assume that similarity in overall transcriptomics profiles define the direction of development
 - Development is driven by a few genes and pathways

RNA velocity model

Interpreting unspliced transcripts

 When a gene is activated, the level of unspliced transcripts will increase first, followed by the spliced form

- **Assumption**: Cell development is driven mostly by activation (rather than repression)
- Increase in unspliced transcripts ~
 direction of development!

La Manno et al. Nature 2018

RNA velocity model

Bergen, V. et al. Mol Sys Biol 17:e10282 (2021)

- Use the ratio of spliced and unspliced isoforms to estimate whether a gene is being activated or repressed
- Compare ratios between nearby cells to identify direction of changes

Support of RNA velocity model

 Analyze the expression of circadian genes, whose expression cycle with the time of day

scRNA-seq already capture unspliced transcripts

- Require full-length scRNA-seq protocols
- Specialized tools identify reads that map to introns versus reads that map to splice junctions

La Manno et al. Nature 2018

The use of highly variable genes

Gene sets affect analysis result

- A key component of single-cell analysis is the similarity between cells
 - Similarity metric
 - Gene set
- Some gene are differentially expressed across cell types, some are differentially expressed across treatment conditions, some are differentially expressed across donors
 - Different gene sets reveal different biological information
 - Advice: Use highly-variable genes (within sample) that are consistently observed in multiple samples -> reveal cell types

Any question?

See you next time