Aufgabe 1 Ein Bürogebäude mit $240\,\text{m}^2$ Nutzfläche, $3.20\,\text{m}$ Geschosshöhe wird mit 50 Personen belegt. Jede Person gibt etwa $20\,\ell/\text{h}$ CO₂ ab.

- a) Berechnen Sie den erforderlichen Außenluftvolumenstrom in $\rm m^3/h$ und geben Sie die Luftwechselzahl β an.
- b) Die Außenluftkonzentration an CO₂ soll zu 400 ppM angenommen werden, im Gebäude sollen 1100 ppM zulässig sein.
 - Geben Sie unter diesen Bedingungen die Zeitkonstante an und stellen Sie den Funktionsverlauf der CO₂-Konzentration in einem Diagramm dar.
- c) Nach welcher Zeit ist die Schadstoffkonzentration $k = 1050 \,\mathrm{ppM}$ erreicht?

Aufgabe 2 Für einen Raum wurde der folgende Verlauf der CO₂-Konzentration in der Raumluft gemessen.

Ermitteln Sie aus diesem Grafen die Zeitkonstante in Stunden und geben Sie die Luftwechselzahl dieses Raumes an.

Nach welcher Zeit wird die Schadstoffkonzentration $k = 900 \,\mathrm{ppM}$ gemessen? Berechnen Sie diese Zeit und vergleichen Sie das Ergebnis mit dem Diagramm.

Aufgabe 3 Ein Klassenraum mit $7 \text{ m} \times 8 \text{ m} \times 3.5 \text{ m}$ wird von 20 Personen belegt, die je Person $18 \ell/\text{h}$ CO₂ abgeben.

Nach einer intensiven Arbeitsphase ist die CO_2 -Konzentration des Klassenraumes auf 2400 ppM angewachsen. Im Klassenraum soll die zulässige CO_2 -Konzentration von 1000 ppM eingehalten werden.

Der Raum wird nun für eine Pause geleert, so dass keine Personen mehr im Raum sind und damit auch kein CO₂ mehr produziert wird.

Nach welcher Zeit ist die zulässige CO₂-Konzentration von 1000 ppM erreicht, wenn die Lüftungsanlage mit dem erforderlichen Volumenstrom in der Pause weiterläuft?