Least Absolute Shrinkage And Seletion Operator (LASSO)

Peter von Rohr

20 März 2017

Lineare Modell und Least Squares

 Als Ausgangspunkt haben wir das Lineare Modell und Least Squares

$$\mathbf{y} = \mathbf{X}\beta + \epsilon \tag{1}$$

$$\hat{\beta} = \operatorname{argmin}_{\beta} ||\mathbf{y} - \mathbf{X}\beta||^2 \tag{2}$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{3}$$

▶ Bedinung, dass $\hat{\beta}$ in Gleichung (3) berechenbar: **X** muss vollen Kolonnenrang haben, d.h. p < n (mehr Beobachtungen als Parameter)

Genomische Selektion

- Paper: Meuwissen, Hayes und Goddard (2001) Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157: 1819–1829 (April 2001). (abgekürzt als MHG2001)
- ▶ Simulationsstudie: effektive Populationsgrösse: $N_e = 100$, Genom: 10 Chromosomen, pro Chromosom: 100 QTL und 101 SNP $\rightarrow n = 100$, p = 1010 und somit n << p
- Aktuelle Populationen: Anzahl typisierte Tiere: $\approx 10^4$, Genom: 50k oder 150k
- ➤ Achtung: kein Overfitting! Auch wenn Anzahl typisierter Tiere
 > Anzahl SNP, soll Least Squares nicht verwendet werden.
 Beispiel: Pläne von SEMEX 800000 Kühe zu typisieren. (Siehe auch: https://de.wikipedia.org/wiki/Überanpassung)

Lösungsansätze in MHG2001 (I): Stepwise

- ▶ Idee: Schrittweises Hinzufügen von SNP-Effekten als fixe erklärende Variablen zu einem Regressionsmodell.
- Im Paper wird das als stepwise-approach bezeichnet, besser wäre stepwise-forward-approach
- ▶ Problem: wie finde ich die "richtigen" SNPs? Anzahl möglicher Kombinationen: 2^p, wobei p: Anzahl SNPs
- Lösung in MHG2001: Likelihood Ratio Test mit Single-Marker Modell

Wie funktionieren Stepwise Ansätze

- Bisher: Zielgrösse als lineare Funktion aller erklärender Variablen
- ▶ **Neu**: Nur erklärende Variablen mit "relevantem" Effekt auf Zielgrösse berücksichtigen
- Suche nach dem optimalen Modells anstelle des kompletten Modells
- Forward:
 - Starte mit minimalen Modell
 - hinzufügen von neuen erklärenden Variablen bis gewähltes Kriterium optimiert
 - ▶ Mögliche Kriterien: C_p, AIC oder BIC
- Backward:
 - Starte mit vollem Modell
 - entfernen von erklärenden Variablen aus dem Modell
 - bis gewähltes Kriterium optimal

Lösungsansätze in MHG2001 (II): BLUP

- ▶ BLUP für SNP-allel Effekte (a-Werte) können berechnet werden.
- Wir weisen aber a-priori allen SNPs den gleichen Varianzanteil zu
- ▶ Bei totaler genetischer Varianz V_g ohne polygene Effekte erklärt jeder SNP fix die Varianz V_g/p
- ▶ Vorteil: nur ein Varianzparameter muss geschätzt werden
- Kaum realistische Annahme, dass alle SNP-Loci gleich wichtig sind
- Bei dichteren Markerkarten erhöht sich die Anzahl der Loci mit erklärendem Einfluss
- Kaum sinnvoll, da von fixer Anzahl von Gene im Genom ausgegangen wird
- ▶ Mit BLUP ist keine Auswahl der erklärenden Loci möglich

Lösungsansätze in MHG2001 (III): Bayes

- Bayes'sche Statistik basiert Parameterschätzung auf a posteriori Verteilungen
- ▶ A posteriori Verteilungen sind proportional zu der a priori Verteilung und der Likelihood
- A priori, d.h. vor der Beobachtung der Daten sind die Parameter, so zum Beispiel die durch einen SNP-Locus erklärten Varianzanteil, durch die a-priori Verteilung bestimmt.
- ► Im Gegensatz zu BLUP, erlaubt Dies eine Variabilität zwischen den Varianzanteilen der einzelnen SNP-Loci

Lösungsansatz nicht in MHG2001: LASSO

- LASSO steht für Least Absolute Shrinkage and Selection Operator
- ► LASSO ist Teil einer grösseren Klasse von Methoden zur Selektion und Regularisierung von Parameterschätzungen in linearen Modellen
- ▶ Weshalb braucht es solche Methoden?
 - ► Falls n >> p funktioniert Least Squares gut, d.h. Parameterschätzungen sind unbiased und haben tiefe Varianz
 - Ist $n \approx p$ dann zeigen Least Square Schätzer erhöhte Variabilität und das Problem des Overfitting tritt auf
 - ▶ Ist *n* < *p*, dann können Least Squares Schätzer nicht berechnet werden.
- Positive Eigenschaften des Linearen Modells möchten wir trotzdem erhalten, somit suchen wir nach Alternativen zu Least Squares

Selektion und Regularisierung (I)

Drei mögliche Alternativen zu Least Squares sind

▶ **Subset Selection**: Identifikation einer Teilmenge der *p*Parameter. Lineares Modell wird mit dieser Teilmenge an
Parametern angepasst

Selektion und Regularisierung (II)

Shrinkage:

- ▶ Alle *p* Parameter werden verwendet um Modell anzupassen
- Variabilität der geschätzten Parameter wird kontrolliert durch Schrumpfung (Shrinkage, wird auch als Regularisierung bezeichnet) der Parameterschätzungen zum Nullpunkt.
- ▶ Je nach verwendeter Art der Regularisierung, werden dadurch gewisse Parameterschätzwerten auf Null gesetzt.
- Dadurch wird Regularisierung und Parameterselektion kombiniert

Regularisierung

Selektion und Regularisierung (III)

Reduktion der Dimensionen:

- Projektion der p erklärenden Variablen in einen M-dimensionalen Unterraum, wobei M < p
- ► Projektion wird erreicht durch Berechnung von *M* linearen Kombinationen aus den *p* erklärenden Variablen
- ▶ Least Squares wird mit den *M* Projektionen gemacht
- ► Techniken sind: Principal Components Analysis (PCA), Faktoranalyse, . . .
- Problem: Interpretation der Ergebnisse, da Linearkombinationen oft keine Bedeutung (Bsp genomische Selektion, was bedeuten lineare Kombinationen aus SNP-Effekten?)

LASSO

 LASSO kombiniert Regularisierung und Parameterselektion durch geschickte Veränderung der Zielgrösse aus Least Squares

Vergleich Ridge Regression

 Ridge Regression führt zu Regularisierung aber nicht zu Parameterselektion

Parameterschätzung

Residual Sums of Squares:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Least Squares

$$\hat{\beta}_{LS} = \operatorname{argmin}_{\beta} \{RSS\}$$

LASSO

$$\hat{\beta}_{LASSO} = argmin_{\beta} \{RSS + \lambda \sum_{i=1}^{p} |\beta_{j}|\}$$

Ridge

$$\hat{\beta}_{Ridge} = argmin_{\beta} \{RSS + \lambda \sum_{i=1}^{p} \beta_{j}^{2} \}$$