# Implementation of Unsupervised Machine Learning to Create Clusters in Main-Game Dataset

By: Azis Muslim Role: Data Scientist

## Background

In Main-Game Datasets consisted by 631 rows and 127 columns and It would be laborious to groups the dataset to some clusters. The easiest way to create clusters in large dataset especially with high dimensional features was by utilizing unsupervised machine learning. Unsupervised that would be used in this research was k-means.

#### Main-Game Dataset Overview

|         | Unnamed:<br>0          | Country | Gender | Game                         | Total<br>Follower | Broadcast<br>Hours | PaidStarPerWatchedHour | Character_Facet_Cont_Rigidity | Character_Facet_Cont_AchievementStriving |  |  |
|---------|------------------------|---------|--------|------------------------------|-------------------|--------------------|------------------------|-------------------------------|------------------------------------------|--|--|
| 0       | 0                      | ID      | Male   | MLBB                         | 96751.0           | 104                | 0.004113               | 0.663442                      | 0.718679                                 |  |  |
| 1       | 1                      | ID      | Male   | 8 Ball Pool                  | 4781.0            | 174                | 0.002855               | 0.543255                      | 0.427887                                 |  |  |
| 2       | 2                      | ID      | Female | Free Fire 0<br>Battlegrounds | 68246.0           | 83                 | 0.003007               | 0.527279                      | 0.399873                                 |  |  |
| 3       | 3                      | ID      | Male   | MLBB                         | 142037.0          | 127                | 0.005171               | 0.677222                      | 0.603534                                 |  |  |
| 4       | 4                      | ID      | Male   | Free Fire 0<br>Battlegrounds | 15416.0           | 86                 | 0.001213               | 0.238194                      | 0.543285                                 |  |  |
|         |                        |         |        |                              |                   |                    |                        |                               |                                          |  |  |
| 626     | 942                    | VN      | Male   | PUBG                         | 330969.0          | 182                | 0.001082               | 0.534637                      | 0.399738                                 |  |  |
| 627     | 943                    | VN      | Male   | MU Online                    | 33450.0           | 102                | 817000.000000          | 0.664025                      | 0.597952                                 |  |  |
| 628     | 944                    | VN      | Male   | Age of<br>Empires            | 29000.0           | 103                | 0.000724               | 0.561336                      | 0.378814                                 |  |  |
| 629     | 945                    | VN      | Female | PUBG                         | 19771.0           | 143                | 0.000433               | 0.600844                      | 0.364150                                 |  |  |
| 630     | 946                    | VN      | Male   | League of<br>Legends         | 515000.0          | 105                | 0.002266               | 0.664025                      | 0.597952                                 |  |  |
| 631 rov | 631 rows × 127 columns |         |        |                              |                   |                    |                        |                               |                                          |  |  |

#### Feature Importance Analysis



## Feature Importance Analysis



# Principal Component Analysis (PCA)



#### Elbow Method



# **PCA** Visualization



### Clusters Count for K-means



#### Final Result

| Country | Game                      | Total Follower | Broadcast Hours | PaidStarPerWatchedHour | Cluster |
|---------|---------------------------|----------------|-----------------|------------------------|---------|
| VN      | Free Fire 0 Battlegrounds | 311785.0       | 100             | 0.000803               | 1       |
| ID      | Free Fire 0 Battlegrounds | 57532.0        | 96              | 0.010847               | 1       |
| VN      | The Last of Us            | 196718.0       | 145             | 0.005211               | 1       |
| PH      | Grand Theft Auto V        | 37413.0        | 168             | 0.005550               | 1       |
| ID      | MLBB                      | 7987.0         | 141             | 0.003610               | 0       |
| PH      | MLBB                      | 51215.0        | 109             | 0.012097               | 1       |
| PH      | League of Legends         | 151274.0       | 214             | 0.031874               | 2       |
| ID      | Worms Zone                | 12886.0        | 91              | 0.002302               | 1       |
| ID      | PUBG                      | 25606.0        | 81              | 0.000590               | 0       |
| VN      | Arena of Valor            | 74978.0        | 121             | 0.000177               | 1       |

From the sample of final result above we can see that games such as Free Fire, The Last of Us, GTA V, MLBB, Worms Zone, and Arena of Valor were in cluster 1

#### Conclusion

Based on the final result of k-means three clusters were the optimum clusters that could be implemented on this research. That means one group of data can be stated significantly different than the other group of clusters.

The k-means algorithm has successfully separated the data into three clusters. Nevertheless further research to break down the feature importance from each cluster in the dataset after clustering is still needed to get the point of what cluster 0,1,2 really are.