Test - Probabilités et Statistique

NOM / Prénom:

(Sur la loi normale) Soit X une variable aléatoire de loi normale $N(\mu, \sigma^2)$.

1. Donner l'expression analytique de la densité f(x) de la variable X :

$$f(x) = \frac{1}{6\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) >$$

2. Expression de la moyenne µ sous forme intégrale

$$\mu = EX = \int_{-\infty}^{+\infty} x \, f(x) \, dx$$

3. Expression de la variance
$$\sigma^2$$
 sous forme intégrale $\sigma^2 = Var(X) = E(X-p)^2 = EX^2 - p^2 = \int_{-\infty}^{\infty} (x-p)^2 f(x) dx$ (messure de dispersion usuelle)

(Sur la loi binomiale) Soient X₁, ..., X_n des variables aléatoires indépendantes et de même loi de Bernoulli B(p) où $0 . On rappelle que <math>P(X_i = 1) = p$ et $P(X_i = 0) = 1 - p$.

1. Soit $S_n = X_1 + ... + X_n$. Expliciter la loi de S_n :

$$0 \le k \le n: P(S_n = k) = {m \choose k} p^k (1-p)^{m-k} ou {m \choose k} = \frac{m!}{(m-k)! k!} coeff. \text{ binomial}$$

2. On considère $\overline{X} = \frac{S_n}{n}$ l'estimateur usuel de p (estimateur de la moyenne). Rappeler les expressions de

E
$$\overline{X} = P$$
; $Var(\overline{X}) = \frac{P(1-P)}{n} \longrightarrow 0$ (estimateur convergent LGN)

Par quelle loi peut-on bien approcher la loi de $\overline{\mathbf{X}}$ si n est suffisamment grand?

3. On suppose n grand. Donner un intervalle de confiance bilatéral sur p de niveau de confiance 95% (ou au risque $\alpha = 5\%$)

confiance 95% (ou au risque
$$\alpha = 5\%$$
) $x_{4},...,x_{m}$ valeurs observers $\Rightarrow \overline{x}$ realisation de X
Réponse: $\pm C_{95\%} = \left[\overline{x} - 1.96\sqrt{\frac{\overline{x}(1-\overline{x})}{m}}; \overline{x} + 1.96\sqrt{\frac{\overline{x}(1-\overline{x})}{m}}\right]$ (intervalle de WALD)

4. On teste l'hypothèse $H_0: p = p_0$ avec $p_0 = 0.5$ contre l'hypothèse alternative $H_1: p \neq p_0$. On rejette l'hypothèse H_0 au risque $\alpha = 5\%$ si l'écart $|x - p_0|$ est supérieur à un seuil critique λ . Donner l'expression de λ :

$$\lambda = 4.96 \sqrt{\frac{p_0(1-p_0)}{m}} \quad \text{car} \quad \times -p_0 \approx N(0, \frac{p_0(n-p_0)}{m})$$
Sous l'hypothèm Ho