



# HAND BOOK OF CASINGHEAD GAS

*By*

**HENRY P. WESTCOTT**

Member of A. S. M. E.

Author of "HAND BOOK OF NATURAL GAS," "MEASUREMENT OF GASES WHERE DENSITY CHANGES."

FIRST EDITION

1916

PUBLISHED BY  
METRIC METAL WORKS  
ERIE, PENNSYLVANIA

COPYRIGHTED  
BY METRIC METAL WORKS

PRESS OF  
ASHBY PRINTING CO.  
ERIE - PITTSBURGH

# PREFACE

ONE of the greatest steps taken during the past few years for the conservation of natural resources has been the utilization of natural gas (using the term in its broadest sense) to produce gasoline. There are already several processes for extracting gasoline from natural gas, and the industry is being developed to a wonderful extent. With the inception of any new business comes the desire for reliable information on the part of the operator and investor.

Following our long established policy of trying to keep abreast of all developments in the gas industry so that we may be of real service to those already interested or to those who may become interested, we have been directing our resources and energies during the past year towards the collection of facts and figures together with data pertaining to the actual producing of gasoline from natural gas. We now, under the editorship of Mr. H. P. Westcott, take pleasure in presenting this Hand Book of Casinghead Gas.

No expenditure of time or money has been spared to corroborate the statements and information here presented. The author has visited a great number of gasoline plants that are in successful operation, he has had access to their reports, and has been given opportunity to prove their accuracy. While there will be future developments modifying or supplementing present theories and practices, as is natural in any new industry, at the present time we believe that we are presenting the most reliable data that is available.

Together with the author, we desire to thank personally Mr. George A. Burrell, Mr. A. N. Kerr, Mr. W. P. Donovan, Mr. P. M. Biddison, Mr. W. H. Cooper, and many others who have in a large or small way assisted in furnishing the material for this book.



# TABLE OF CONTENTS

|                                                                                                                             | PAGE |
|-----------------------------------------------------------------------------------------------------------------------------|------|
| PREFACE.....                                                                                                                | iii  |
| <b>PART ONE—GENERAL</b>                                                                                                     |      |
| Casinghead Gas.....                                                                                                         | 5    |
| History.....                                                                                                                | 8    |
| Marketed Production of Gasoline from Natural Gas in 1914.....                                                               | 11   |
| Gasoline Content of Crude Petroleum produced during 1915.....                                                               | 12   |
| Gasoline Produced by Refineries in 1915.....                                                                                | 14   |
| Gasoline Produced, Purchased and Sold in 1915.....                                                                          | 15   |
| Exports of Gasoline, Naphtha and Benzine in 1915.....                                                                       | 17   |
| Average Monthly Prices.....                                                                                                 | 18   |
| <b>PART TWO—PHYSICAL PROPERTIES OF<br/>CASINGHEAD GAS</b>                                                                   |      |
| Vacuum.....                                                                                                                 | 19   |
| Gasoline Gas.....                                                                                                           | 19   |
| Vapor Tensions of Various Hydrocarbons.....                                                                                 | 26   |
| Natural Gas.....                                                                                                            | 27   |
| Methane.....                                                                                                                | 27   |
| Ethane.....                                                                                                                 | 27   |
| Chart of Various Hydrocarbons.....                                                                                          | 28   |
| Oxygen.....                                                                                                                 | 29   |
| Nitrogen.....                                                                                                               | 29   |
| Hydrocarbons.....                                                                                                           | 29   |
| British Thermal Units.....                                                                                                  | 29   |
| Specific Gravity.....                                                                                                       | 30   |
| Heating Value and Specific Gravity.....                                                                                     | 31   |
| Analysis of Casinghead Gas for Gasoline.....                                                                                | 33   |
| Experiments in Liquefying Crude Casinghead Gas.....                                                                         | 34   |
| Testing Casinghead Gas for Gasoline Content.....                                                                            | 36   |
| Absorption Analysis to Determine Gasoline Content in<br>Casinghead Gas.....                                                 | 36   |
| Properties of Seven Paraffin Hydrocarbons.....                                                                              | 41   |
| Solution of Gas in Condensates.....                                                                                         | 42   |
| Interpretation of Results of Tests.....                                                                                     | 42   |
| Tests of Grade and Quantity of Gasoline Produced when<br>Crude Casinghead Gas is Subjected to Different Pres-<br>sures..... | 43   |
| Heat Values of Lighter Hydrocarbons.....                                                                                    | 45   |
| Low Explosive Mixtures for Paraffin Gases and Vapors.....                                                                   | 46   |
| Explosive Mixtures of Combustible Gases.....                                                                                | 46   |
| Physical Constants of Different Gases.....                                                                                  | 47   |
| Vapor per Gallon and Air Required for Complete Combus-<br>tion.....                                                         | 48   |
| <b>PART THREE—CASINGHEAD GAS WELLS</b>                                                                                      |      |
| Quality of Casinghead Gas.....                                                                                              | 50   |
| Capacity of Casinghead Gas Wells.....                                                                                       | 54   |

## T A B L E   O F   C O N T E N T S

---

|                                                                       | PAGE  |
|-----------------------------------------------------------------------|-------|
| Capacities of Thin Orifices.....                                      | 56-62 |
| Casing Sizes.....                                                     | 63    |
| Booster Station.....                                                  | 65    |
| Advantage of Pumping Gas under a Vacuum.....                          | 65    |
| Air in Casinghead Gas.....                                            | 67    |
| Capacities of Various Sized Vacuum Pumps —(Chart).....                | 68    |
| Eliminating Air from Suction Lines.....                               | 69    |
| Loss of Production.....                                               | 69    |
| Damage to Plant Machinery.....                                        | 69    |
| Increased Cost of Gas Due to Mixture of Air.....                      | 70    |
| Taking Sample of Gas from Pipe Line under Vacuum.....                 | 72    |
| Orsat Apparatus for Determining Oxygen and Carbon Dioxide in Gas..... | 73    |
| Method of Operation.....                                              | 75    |
| Method of Calculating Orsat Analysis.....                             | 78    |
| Tank for Separating Gas from Oil Flowing from Well.....               | 79    |

### PART FOUR—CONSTRUCTION OF PIPE LINES

|                                                           |        |
|-----------------------------------------------------------|--------|
| Welding Gas Lines.....                                    | 80     |
| Plan of Pipe Line System on an Oil Well Lease.....        | 81     |
| Comparative Capacities of Pipe Lines.....                 | 84     |
| Pipe Line Loss.....                                       | 86     |
| Pipe Line Drips.....                                      | 86     |
| Dimensions, Capacity and Weight of Wrought Iron Pipe..... | 88     |
| Formula for Computing Flow of Gas in Pipe Lines.....      | 89     |
| Capacities of Pipe Lines.....                             | 91-105 |

### PART FIVE—MEASURING CASINGHEAD GAS

|                                                                                           |     |
|-------------------------------------------------------------------------------------------|-----|
| Table to Determine Proper Size Meter in Measuring Gas at a Vacuum.....                    | 106 |
| To Read a Meter.....                                                                      | 108 |
| Table to Determine Proper Size Meter for Power Installations.....                         | 108 |
| Proving Meters in the Field.....                                                          | 109 |
| Pressures to be Used in Measuring Air Through a Funnel Meter.....                         | 110 |
| Table of Percentages used in Testing Large Capacity Meters                                | 112 |
| Recording Volume and Pressure Gauges.....                                                 | 113 |
| Density Changes in Gas Volumes Above and Below Atmospheric Pressure.....                  | 114 |
| Formula for Determining Quantity of Gas When Measured Above or Below Normal Pressure..... | 116 |
| Multipliers for Reducing Gas Volumes or Meter Readings to Different Pressure Bases.....   | 117 |
| Siphon or "U" Gauge.....                                                                  | 120 |
| Equivalents of Ounces per Square Inch, in Inches of Water and Mercury.....                | 121 |

### PART SIX—GASOLINE PLANT—COMPRESSION METHOD

|                         |     |
|-------------------------|-----|
| Compression Method..... | 122 |
|-------------------------|-----|

## T A B L E   O F   C O N T E N T S

---

|                                                                                                                 | PAGE |
|-----------------------------------------------------------------------------------------------------------------|------|
| Capacity of Compressors.....                                                                                    | 126  |
| Expander - Compressor.....                                                                                      | 127  |
| Table of Indicated Horse Power on the Compressor Piston<br>per Million Cubic Feet of Gas per Day.....           | 128  |
| Condensing Pressures.....                                                                                       | 133  |
| Compression and Liquefaction of the Constituents of<br>Casinghead Gas in Plant Operation.....                   | 133  |
| Percentage of Vapor Condensed by Compression and Cool-<br>ing.....                                              | 133  |
| Lighting Plant.....                                                                                             | 135  |
| Gas Relief Regulator.....                                                                                       | 136  |
| Results of Analysis of Gases from Different Plant Opera-<br>tion.....                                           | 136  |
| Results of Laboratory Tests of Gas from Different Gaso-<br>line Plants.....                                     | 137  |
| Ammonia Refrigerating Machine.....                                                                              | 139  |
| Horse Power of Gas Engines.....                                                                                 | 141  |
| Length and Diameter of Services for Gas Engines.....                                                            | 142  |
| Exhaust Pipe.....                                                                                               | 142  |
| Circulating Water.....                                                                                          | 142  |
| Blending.....                                                                                                   | 144  |
| Evaporation Losses in Blending.....                                                                             | 144  |
| Table of Evaporation Losses of Different Mixtures of Casing-<br>head Gas Condensates and Refinery Naphthas..... | 144  |
| Boiling Point.....                                                                                              | 146  |
| Chart—Per Cent Loss for Different Boiling Points.....                                                           | 148  |
| Transporting Gasoline from Plant to Loading Rack.....                                                           | 150  |
| Residue Gas.....                                                                                                | 150  |
| Residue Gas and Absorption Method.....                                                                          | 152  |
| Carbon Black.....                                                                                               | 152  |
| Hazards in Handling Gasoline.....                                                                               | 155  |
| Detailed Precautions Concerning the Handling of Gasoline                                                        | 155  |
| Extinguishing Burning Liquids.....                                                                              | 156  |
| Use of Foam or a Frothy Liquid Mixture as an Extinguisher                                                       | 158  |
| Relation of Properties of Gasoline and Gasoline Vapor to<br>Inflammability.....                                 | 159  |
| Action of Gasoline Vapor in Air.....                                                                            | 159  |
| Proportions of Different Grades of Gasoline Vapor that Air<br>Will Carry.....                                   | 160  |
| Comparison of Inflammability of Gasoline and of Gasoline<br>Vapor.....                                          | 160  |
| Explosive Range of Mixtures of Gasoline Vapor and Air.....                                                      | 161  |
| Resume.....                                                                                                     | 161  |
| Dangers of the Electric Flash Light.....                                                                        | 163  |
| To Extinguish Fires.....                                                                                        | 163  |
| <br><b>PART SEVEN—GASOLINE PLANT—ABSORPTION METHOD</b>                                                          |      |
| "Lean" Natural Gas.....                                                                                         | 164  |
| Extraction of Gasoline from Natural Gas by Absorption<br>Methods.....                                           | 164  |

# T A B L E   O F   C O N T E N T S

---

|                                                                                                                                      |      |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                      | P. 1 |
| Development of the General Principle of Absorption of Gases Through Oil or Naphtha and the Use of a Gasoline Line                    | 115  |
| Description of Experimental Plant for Gasoline and Steam Distillation                                                                | 116  |
| Yield of Gasoline Using the Small Apparatus of Fig. 45 and the Plant in Fig. 46 and the Plant in Fig. 47                             | 119  |
| Table of Tests of Natural Gas from Pipe Lines                                                                                        | 119  |
| Table of Tests Using Three Small Apparatuses                                                                                         | 123  |
| Change in Composition and Temperature of Gasoline Before and After the Extraction Process                                            | 124  |
| Tests of Fresh Gas                                                                                                                   | 124  |
| Tests of Treated Gas                                                                                                                 | 124  |
| Comments on Analysis                                                                                                                 | 125  |
| Amount of Oil Used per Thousand Cubic Feet of Gas to Obtain the Largest Amount of Gasoline by Distillation Test of Gasoline          | 126  |
| Evaporation Loss of Gasoline by Means of the Method and a Comparison with the Refinery Gasoline                                      | 126  |
| Evaporation Loss of Gasoline                                                                                                         | 127  |
| Vapor Tension Tests of Gasoline by Means of Gasoline and Steam Distillation                                                          | 128  |
| Vapor Pressure Test of Gasoline by Means of Gasoline and Steam Distillation                                                          | 129  |
| Uncondensed Vapor from Gasoline                                                                                                      | 130  |
| Data Regarding Extraction of Gasoline                                                                                                | 131  |
| Table Showing Effect of Pressure and Temperature on the Effect of Pressure and Temperature on the Yield of Gasoline from Natural Gas | 132  |
| Cost Data of Absorption Method                                                                                                       | 133  |
| Combination Process of Absorption Method of Treating Gas by Means of Gasoline                                                        | 134  |
| Comments on Test                                                                                                                     | 135  |
| Extraction of Gasoline from Natural Gas by Naphtha                                                                                   | 136  |
| Testing "Lean" Natural Gas by Naphtha                                                                                                | 137  |
| Determination of the Content of Lean Natural Gas                                                                                     | 138  |
| Calculation of Amount of Gasoline to Extract from Lean Natural Gas by the Absorption Method                                          | 139  |
| Absorption of Gasoline from Natural Gas                                                                                              | 140  |
| <b>PART EIGHT—TRANSPORTATION</b>                                                                                                     |      |
| Shipping Gasoline                                                                                                                    | 141  |
| Chart of Normal Daily Temperature                                                                                                    | 142  |
| Rule of Thumb of Vapor Pressure                                                                                                      | 143  |
| Rule of Thumb for Liquid Temperature                                                                                                 | 144  |
| Normal Daily Temperature                                                                                                             | 145  |
| Normal Daily Temperature                                                                                                             | 146  |

## T A B L E   O F   C O N T E N T S

---

|                                                                                               | PAGE       |
|-----------------------------------------------------------------------------------------------|------------|
| Pressures Generated by Heating Gasoline and Confined<br>Liquefied Natural Gas.....            | 202        |
| Tank Cars.....                                                                                | 204        |
| Insulated Tank Cars.....                                                                      | 204        |
| Description of Insulated Tank Car.....                                                        | 204        |
| To Find the Gauge of Tank Cars.....                                                           | 204        |
| Tank Car Outage Table.....                                                                    | 206        |
| Sealing Tank Cars.....                                                                        | 208        |
| Prevention of Fires and Explosions from Blowing Safety<br>Valves on Tank Cars.....            | 208        |
| Care of Tank Cars.....                                                                        | 208        |
| Demurrage Rules on Railroads.....                                                             | 210        |
| Freight Rates on Car Shipments .....                                                          | 211        |
| Limit of Load.....                                                                            | 211        |
| Mileage Rules of Railroads.....                                                               | 212        |
| Rules of Interstate Commerce Commission.....                                                  | 213        |
| Method of Making Vapor Pressure Tests and Remarks on<br>Shipping Liquefied Petroleum Gas..... | 216        |
| Apparatus for Testing Vapor Pressure of Gasoline.....                                         | 217        |
| <b>PART NINETY—MISCELLANEOUS</b>                                                              |            |
| Baume Scale and Specific Gravity Equivalent.....                                              | 219        |
| Gravities and Weights of Liquids Lighter than Water.....                                      | 221 to 229 |
| Gravities and Weights of Liquids Heavier than Water.....                                      | 230 to 232 |
| Centigrade and Fahrenheit Scales.....                                                         | 233        |
| Table for Converting Centigrade to Fahrenheit.....                                            | 234        |
| Tank Measurements.....                                                                        | 235        |
| Vertical Tank Tables.....                                                                     | 237 to 244 |
| Horizontal Tank Tables.....                                                                   | 245 to 267 |



# PART ONE

## GENERAL

From the very beginning of the oil industry, the flambeau torch, burning casinghead gas, was found in every oil pool, and was typical of the industry. Without it an oil pool would hardly be recognized. This was really the first use that casinghead gas was put to, and it was considered a necessity. Now their numbers are restricted and it is considered a wasteful custom.

After the flambeau torch, the gas was used under boilers and for domestic purposes on the lease; then followed its use in gas engines for pumping and drilling, but it was not until 1903 that the true value of the gas became known. In that year the extraction of gasoline from casinghead gas was first accomplished. Like the oil business, the beginning was small, yet this year, 1916, but thirteen years later, the extraction of gasoline from gas has grown to enormous proportions.

For many years the gas was allowed to go to waste in the atmosphere, with no attempt to conserve or use it except as in the beginning, in flambeau torches and later for power and domestic purposes. Generally but a very small percentage of the casinghead gas produced on any one lease was used and the balance was allowed to escape in the atmosphere. It is absolutely impossible to place a monetary value on the waste of casinghead gas in years past, and while there is still great waste going on, it is fast becoming a thing of the past.

In 1915 it is estimated that there was over 30 billion cubic feet of casinghead gas used in making gasoline by the compression process. This volume of gas carried approxi-



Fig 1—RENO GASOLINE PLANT AT SISTERSVILLE, WEST VIRGINIA  
*One of the First Installed*

## G E N E R A L

---

mately two and one-half gallons of gasoline per thousand cubic feet. This wonderful growth exceeded all previous predictions of the government experts.

It might be said here that government experts estimate that there is as much more casinghead gas as was treated in the year 1915 that does not carry enough gasoline to make it profitable to extract the gasoline by the compression process but enough to make it profitable to utilize by the absorption process.

While the casinghead gasoline business has shown wonderful growth, the demand for gasoline has far outgrown the increased supply. In 1915 the estimated sale of natural gas in the United States was a little less than \$100,000,000 and of gasoline extracted from casinghead gas approximately \$8,000,000.

In 1914 the average price received per thousand cubic feet of natural gas sold in the United States was 15.9 cents. In 1915 the average amount received for the gasoline extracted from 1000 cubic feet of casinghead gas, on a basis of two and one-half gallons of gasoline extracted from 1000 cubic feet of gas, was 25 cents or approximately 10 cents greater than the average price received for 1000 cubic feet of natural gas.

In 1914 the extraction of gasoline from casinghead gas by the compression and condensation method amounted to 43,000,000\* gallons of gasoline.

In addition there was used in marketing the casinghead gasoline at many plants an equivalent quantity of naptha with which casinghead gasoline was blended, thereby utilizing for the automobile, fuel, and other purposes, a very large quantity of naptha that otherwise would have been unsuited for these purposes.

\*Mineral Resources of the United States U. S. Geological Survey 1914, J. D. Northrup.

## G E N E R A L

---



Fig. 2—GLENN POOL. Many Gasoline Plants can be seen in the Distance

## CASINGHEAD GAS

Casinghead Gas is the gas that flows from oil wells, coming out between the casing and the tubing. The volume is generally small, often amounting to but one or two thousand cubic feet in twenty-four hours, though some wells in the Cushing, Oklahoma, field flow two or three hundred thousand cubic feet of gas in twenty-four hours. Invariably the oldest wells show the richest gas. If the well is shut in at the casinghead or top of the well, it may accumulate a pressure of from twenty to sixty pounds.

With small wells, many are required to supply a sufficient amount of gas to make it profitable for the extraction of gasoline.

The gas generally comes in through the oil sand with the oil. The pumping of the oil has a tendency to increase the flow of gas from the oil sand. Likewise pumping the gas at a vacuum increases the flow of oil and increases the quantity of gasoline that the gas will pick up. Consequently pumping the gas under a vacuum which increases both the flow of gas and oil, is a valuable aid to the oil producer in the production of oil from the well.

**Producing Gasoline from Casinghead Gas**—Generally a gasoline plant or property consists of a number of oil leases grouped around a main compressor station in which the actual making of gasoline takes place. The gas lines from different wells on each lease run to a main line in which is placed a meter to measure the gas from that lease. The main line runs to the compressor station or plant.

There are a few plants extracting gasoline from a volume as small as five thousand cubic feet of gas per day while some of the large plants are extracting gasoline from a volume of two and three million cubic feet per day.

The amount of gas necessary to make a profitable proposition is not only dependent upon the volume of gas but also on the quality of the gas. In other words, a plant

## G E N E R A L



*Fig. 3—GENERAL PLAN OF A GASOLINE PLANT  
Showing Casinghead Gas and Residue Gas Lines to Various Groups of Leases*

making six gallons of gasoline per thousand cubic feet from a volume of 100,000 cubic feet of gas per day is more profitable than a plant making but three gallons of gasoline per thousand cubic feet from a volume of 200,000 cubic feet of gas per day. The advantage is slight and arises from the fact that a smaller plant would be required for the smaller volume.

When there are scattered leases producing casinghead gas, booster stations consisting of a small compressor, are located on the separate leases to assist in forcing the gas to the main plant where the gasoline is produced.

To further assist in the production, a vacuum pump or compressor is installed in the same building with the booster compressor. The object of the vacuum pump is to pump the gas from the wells and place a vacuum on them which materially increases the flow of the gas.

Casinghead gas is generally purchased at a few cents per thousand cubic feet, figured on a four ounce basis, settlements being made monthly. The price varies according to the market price of gasoline. In some contracts the price of gas changes with the price of gasoline.

There are two processes of extracting gasoline. The one most commonly used is that by compression. The other is the absorption process, which is not only used with casinghead gas but also with natural gas, commonly called "lean gas," which carries as low as one-tenth of a gallon or less of gasoline per one thousand cubic feet. The absorption process is used with gas at high pressure as well as at low pressure.

In the compression process, the equipment consists of one or more two stage compressors, coils, accumulating tanks, electric generator and other accessories.

The casinghead gas is compressed to a pressure of from fifty to three hundred pounds and then passed through a system of coils on which cold water is constantly dripping.

This cools the gas, condensing the gasoline from it, the liquid being separated into respective accumulating tanks and the residue gas passing off to be used for power or heating purposes.

After the gasoline is collected in the accumulating tanks, it passes into blending-tanks, where it is blended with naphtha or other blending mediums to lower the gravity so as to permit of shipping without severe loss through evaporation and to make the shipping of it a safe matter.

The absorption process requires mainly a series of large size pipes or tanks capable of holding high pressure, in which are placed small pipes carrying a large number of small holes, generally 1-16 of an inch in diameter. The tanks or pipes are partially filled with an oil heavier than gasoline, from which the lighter hydrocarbons have previously been extracted, and the gas is turned into the tanks or pipes through the small perforated lines. The gas flowing from the small perforations comes in contact with the oil and intimately mixes with the oil as it passes through it. The absorption of gasoline from the gas takes place as the oil and gas come together. The oil is then run off and distilled by steam distillation in the same manner as at an oil refinery. The oil can be used over and over again. Sealing fluid or torch oil is commonly used for the absorption process.

**History**—While a few isolated instances are known where gasoline was condensed from high pressure natural gas, it was not until 1903 that the collection of gasoline from casinghead gas, and the sale of it, became an established business. In that year, across the Ohio River from Sistersville, West Virginia, were located several oil wells flowing casinghead gas. This gas was used under boilers often three or four miles distant. A steam jet at the wells was used to force the gas to the point of consumption.

G E N E R A L

---



*Fig. 4.—GASOLINE PLANT AT KIEFER, OKLA.*

## G E N E R A L

---

It was soon discovered that the gas lines were showing considerable quantities of gasoline, especially in the low spots or sags, which led to the installation of common pipe drips along the lines. From this came the use of a system of coils placed in old boilers or tanks filled with running water. The gasoline was collected daily in wooden barrels, hauled to the river and shipped to Parkersburg, where a ready market was found.

The gasoline ran about 70 degrees Baume.

To the writer's knowledge, the first ones to establish the business of collection and sale of gasoline from casing-head gas were Sutton Bros. & Edmonds, of Sistersville, W. Va. Later on, regular vacuum pumps were installed at the casinghead gas wells for pumping gas to increase the gas supply, and compressors to assist in forcing the gas to the boilers at distant points. It was soon noted by the installation of the foregoing that the yield of gasoline was considerably increased.

In the year 1905, the first known plant especially built for extracting gasoline by the compression method was installed by William Richards, at Mayburg, Pennsylvania.

From this and the small beginning in 1903, but thirteen years ago, this industry has grown and broadened until now there are many hundred hundreds of plants scattered from the eastern oil fields to the Pacific Coast producing, in 1915, approximately eight million dollars' worth of gasoline.

MARKETED PRODUCTION OF GASOLINE FROM NATURAL GAS IN THE  
UNITED STATES IN 1914, BY STATES

1914

G E N E R A L

| State               | Plants              |                | Gasoline produced |             | Gas used           |               | Average yield in gasoline per M cubic feet |
|---------------------|---------------------|----------------|-------------------|-------------|--------------------|---------------|--------------------------------------------|
|                     | Number of operators | Daily capacity | Quantity          | Value       | Estimated quantity | Value         |                                            |
| Oklahoma . . .      | 35                  | 58             | 74,793            | \$1,113,059 | 6.44               | 5,738,549,000 | \$273,940                                  |
| West Virginia . . . | 65                  | 121            | 34,460            | 691,899     | 7.45               | 3,005,292,000 | 172,396                                    |
| California . . .    | 17                  | 19             | 32,360            | 7,581,309   | 8.36               | 5,129,709,000 | 197,066                                    |
| Pennsylvania . . .  | 96                  | 119            | 21,456            | 4,611,738   | 7.79               | 1,560,064,000 | 125,690                                    |
| Ohio . . . . .      | 25                  | 47             | 9,319             | 2,440,171   | 7.54               | 852,277,000   | 68,935                                     |
| Illinois . . . . .  | 7                   | 14             | 5,300             | 1,164,178   | 8.62               | 462,321,000   | 43,017                                     |
| Kansas . . . . .    | 3                   | 3              | 2                 | 1,665       | 23,604             | 146,345,000   | 8,862                                      |
| New York . . . . .  | 3                   | 2              | 2                 | { a299,573  | 7.88               |               | 2.03                                       |
| Colorado . . . . .  | 2                   | 1              | 2                 |             |                    |               |                                            |
| Kentucky . . . . .  | 1                   | ...            |                   |             |                    |               |                                            |
| Total. . . . .      | 254                 | 386            | 179,353           | 42,652,632  | 3,105,909          | 7.28          | 16,894,557,000                             |
|                     |                     |                |                   |             |                    |               | 889,906                                    |
|                     |                     |                |                   |             |                    |               | 2.43                                       |

<sup>a</sup> Includes gasoline produced in Kentucky which came from natural condensation in gas mains.

## GENERAL

ESTIMATED GASOLINE CONTENT OF THE CRUDE PETROLEUM PRODUCED  
DURING 1915\*

|                | Appalachian | Lima-Indiana | Illinois    | FIELD                                         |             |          | Gallons    |
|----------------|-------------|--------------|-------------|-----------------------------------------------|-------------|----------|------------|
|                |             |              |             | Kansas-Oklahoma (except Cushing and Healdton) | Cushing     | Healdton |            |
| 1915           |             |              |             | Gallons                                       | Gallons     | Gallons  | Gallons    |
| January.....   | 17,509,800  | 1,779,120    | 13,532,400  | 24,911,040                                    | 86,138,640  |          | 1,219,000  |
| February.....  | 16,909,200  | 1,804,320    | 12,902,400  | 22,800,960                                    | 74,923,380  |          | 126,000    |
| March.....     | 18,738,720  | 1,925,280    | 14,338,800  | 21,268,800                                    | 86,569,560  |          | 218,400    |
| April.....     | 18,406,080  | 1,960,560    | 13,448,400  | 23,029,440                                    | 96,040,540  |          | 567,000    |
| May.....       | 17,297,280  | 1,774,080    | 13,440,000  | 25,650,240                                    | 87,805,620  |          | 588,000    |
| June.....      | 18,081,720  | 1,854,720    | 13,213,200  | 23,284,800                                    | 85,344,840  |          | 924,000    |
| July.....      | 17,897,880  | 1,804,320    | 13,322,400  | 26,093,760                                    | 73,086,300  |          | 1,554,000  |
| August.....    | 17,380,440  | 1,688,400    | 13,053,600  | 26,013,120                                    | 63,367,920  |          | 1,457,400  |
| September..... | 17,186,400  | 1,663,200    | 12,692,400  | 25,623,360                                    | 50,226,960  |          | 2,520,000  |
| October.....   | 16,890,720  | 1,688,400    | 12,700,800  | 27,115,200                                    | 43,171,380  |          | 3,351,600  |
| November.....  | 16,456,440  | 1,587,600    | 12,163,200  | 24,850,560                                    | 37,864,260  |          | 5,040,000  |
| December.....  | 17,676,120  | 1,632,960    | 12,129,600  | 29,272,320                                    | 36,117,900  |          | 9,765,000  |
| Total.....     | 210,430,800 | 21,162,960   | 156,937,200 | 299,913,600                                   | 820,657,300 |          | 27,330,400 |

ESTIMATED GASOLINE CONTENT OF THE CRUDE PETROLEUM PRODUCED  
DURING 1915\*—Continued

| 1915           | FIELD       |                     |            |            |            | Total <sup>1</sup> |
|----------------|-------------|---------------------|------------|------------|------------|--------------------|
|                | North Texas | Northwest Louisiana | Wyoming    | Gulf Coast | California |                    |
| January.....   | 5,434,800   | 12,173,600          | 2,914,800  | 1,692,180  | 8,082,900  | 175,388,280        |
| February.....  | 5,224,800   | 7,912,800           | 2,234,400  | 1,911,420  | 7,296,450  | 154,046,130        |
| March.....     | 5,896,800   | 9,366,000           | 3,057,600  | 1,738,800  | 7,945,350  | 171,064,110        |
| April.....     | 5,804,400   | 9,962,400           | 1,747,200  | 1,578,780  | 7,703,950  | 180,248,750        |
| May.....       | 6,804,000   | 10,894,800          | 2,074,800  | 1,721,160  | 8,071,350  | 176,121,330        |
| June.....      | 6,342,000   | 11,499,600          | 3,149,200  | 1,728,720  | 7,812,000  | 173,234,800        |
| July.....      | 5,678,400   | 12,583,200          | 3,074,400  | 2,239,020  | 8,125,950  | 165,459,630        |
| August.....    | 5,510,400   | 12,852,000          | 3,729,600  | 2,162,160  | 8,064,000  | 155,279,040        |
| September..... | 5,166,000   | 12,658,800          | 3,183,600  | 2,561,580  | 7,706,500  | 141,188,800        |
| October.....   | 5,191,000   | 11,205,600          | 3,864,000  | 3,814,020  | 8,058,750  | 137,051,470        |
| November.....  | 5,056,800   | 10,903,200          | 3,292,800  | 3,666,340  | 7,626,150  | 128,507,350        |
| December.....  | 4,225,200   | 9,954,000           | 3,494,400  | 2,879,100  | 7,766,850  | 134,913,450        |
| Total.....     | 66,384,600  | 131,966,000         | 35,816,800 | 27,693,280 | 94,260,200 | 1,892,503,140      |

\* From "Investigation of the Price of Gasoline," published by the Federal Trade Commission, 1916.

<sup>1</sup> To this total must be added about 63,000,000 gallons extracted from natural gas by compression; also the gasoline contents of the Colorado production and of a small amount of Illinois production are not included.

## GENERAL

## QUANTITY OF GASOLINE PRODUCED BY REFINERIES REPORTING TO THE COMMISSION, 1915\*

|                | REFINERS           |                 |                |
|----------------|--------------------|-----------------|----------------|
|                | Standard companies | Other companies | Total          |
| 1915           | <i>Gallons</i>     | <i>Gallons</i>  | <i>Gallons</i> |
| January.....   | 49,500,619         | 27,162,918      | 76,668,537     |
| February.....  | 46,053,843         | 24,531,091      | 70,584,934     |
| March.....     | 52,079,421         | 28,824,590      | 80,904,011     |
| April.....     | 61,039,714         | 30,124,059      | 91,163,773     |
| May.....       | 61,048,885         | 32,936,152      | 93,985,037     |
| June.....      | 58,117,943         | 35,660,139      | 88,778,082     |
| July.....      | 60,074,304         | 35,844,836      | 95,919,140     |
| August.....    | 58,545,829         | 34,366,594      | 92,912,423     |
| September..... | 62,337,332         | 35,078,242      | 97,415,574     |
| October.....   | 62,275,051         | 36,785,848      | 99,060,399     |
| November.....  | 54,406,103         | 36,093,920      | 90,500,023     |
| December.....  | 61,242,672         | 36,263,545      | 97,506,217     |
| Total.....     | 681,721,716        | 393,671,434     | 1,075,398,150  |

\* From "Investigation of the Price of Gasoline," published by Federal Trade Commission.

Returns not having been received as yet from several large refineries, the statistics in the preceding table are only approximate. They indicate accurately, however, the movement of gasoline production during 1915 and correspond rather closely to the estimated gasoline content of the total crude production.

G E N E R A L

QUANTITIES OF GASOLINE PRODUCED, PURCHASED AND SOLD, AND STOCKS ON HAND THE  
FIRST OF THE MONTH, FOR COMPANIES REPORTING TO THE FEDERAL  
TRADE COMMISSION, BY MONTHS, 1915 \*

|                | Purchases by Refiners |            | Production  |             | Sales by Refiners |             |
|----------------|-----------------------|------------|-------------|-------------|-------------------|-------------|
|                | Standard              | Other      | Standard    | Other       | Standard          | Other       |
| 1915           |                       |            |             |             |                   |             |
| January.....   | Gallons               | Gallons    | Gallons     | Gallons     | Gallons           | Gallons     |
|                | 6,240,825             | 1,045,644  | 49,500,619  | 27,162,918  | 36,448,134        | 19,266,760  |
| February.....  | 5,930,406             | 818,180    | 46,053,843  | 24,531,091  | 32,877,068        | 17,883,501  |
| March.....     | 8,265,957             | 1,142,346  | 52,079,421  | 28,824,590  | 44,322,764        | 24,307,277  |
| April.....     | 13,726,850            | 1,243,012  | 61,079,714  | 30,124,059  | 68,228,731        | 35,811,130  |
| May.....       | 15,627,810            | 1,562,474  | 61,048,885  | 32,936,152  | 81,911,575        | 40,829,697  |
| June.....      | 18,941,357            | 1,681,652  | 53,117,943  | 35,660,139  | 94,498,266        | 40,590,043  |
| July.....      | 28,024,690            | 4,225,171  | 60,074,304  | 35,844,836  | 106,319,090       | 45,492,308  |
| August.....    | 26,237,735            | 6,265,769  | 58,545,829  | 34,866,594  | 115,382,292       | 45,438,390  |
| September..... | 25,722,318            | 3,780,265  | 62,337,332  | 35,078,242  | 113,198,043       | 44,447,488  |
| October.....   | 26,303,596            | 3,916,012  | 62,275,051  | 36,785,348  | 103,807,908       | 39,958,056  |
| November.....  | 18,374,192            | 2,901,309  | 54,406,103  | 36,093,920  | 83,447,295        | 38,592,897  |
| December.....  | 18,873,221            | 2,004,965  | 61,242,672  | 36,263,545  | 66,172,685        | 35,841,820  |
| Total.....     | 212,268,457           | 30,586,799 | 681,721,716 | 393,671,434 | 946,613,851       | 428,459,367 |

\* From "Investigation of the Price of Gasoline," published by Federal Trade Commission.

## GENERAL

QUANTITIES OF GASOLINE PRODUCED, PURCHASED AND SOLD, AND STOCKS ON HAND THE  
FIRST OF THE MONTH, FOR COMPANIES REPORTING TO THE FEDERAL  
TRADE COMMISSION, BY MONTHS, 1915\*—Continued.

|                | Stocks on hand on the 1st day of the month |            |            |           | Total stocks on hand (refiners and jobbers) |  |
|----------------|--------------------------------------------|------------|------------|-----------|---------------------------------------------|--|
|                | Refiners                                   |            | Jobbers    |           |                                             |  |
|                | Standard                                   | Other      | Standard   | Other     |                                             |  |
| 1915           |                                            |            |            |           |                                             |  |
| January.....   | 170,997,303                                | 24,048,121 | 12,309,428 | 2,934,598 | 210,289,460                                 |  |
| February.....  | 194,469,231                                | 31,655,356 | 12,753,903 | 2,784,713 | 241,663,203                                 |  |
| March.....     | 215,628,092                                | 39,253,379 | 11,559,997 | 3,026,637 | 269,448,085                                 |  |
| April.....     | 232,828,867                                | 45,147,614 | 11,621,994 | 3,487,141 | 293,085,616                                 |  |
| May.....       | 240,236,121                                | 41,416,775 | 10,562,705 | 3,522,426 | 295,738,027                                 |  |
| June.....      | 240,440,067                                | 35,021,614 | 13,132,496 | 4,014,886 | 292,609,063                                 |  |
| July.....      | 217,881,531                                | 30,714,128 | 14,903,028 | 3,717,726 | 267,216,413                                 |  |
| August.....    | 202,682,999                                | 26,859,626 | 13,795,622 | 3,507,094 | 246,845,341                                 |  |
| September..... | 168,866,420                                | 22,189,934 | 14,908,848 | 3,122,967 | 209,088,169                                 |  |
| October.....   | 139,490,540                                | 17,835,655 | 15,281,999 | 2,822,250 | 175,430,444                                 |  |
| November.....  | 122,699,611                                | 19,192,970 | 14,328,596 | 2,978,578 | 159,199,755                                 |  |
| December.....  | 111,904,034                                | 20,631,394 | 16,659,496 | 3,317,354 | 152,512,278                                 |  |

\* From "Investigation of the Price of Gasoline," published by Federal Trade Commission.

## G E N E R A L

---

### **EXPORTS OF GASOLINE, NAPHTHA AND BENZINE (COMBINED), BY MONTHS, 1915 \***

| 1915                                                                          | Gallons     |
|-------------------------------------------------------------------------------|-------------|
| January.....                                                                  | 13,624,708  |
| February.....                                                                 | 23,346,701  |
| March.....                                                                    | 22,084,941  |
| April.....                                                                    | 24,259,214  |
| May.....                                                                      | 25,117,025  |
| June.....                                                                     | 28,372,830  |
| July.....                                                                     | 24,947,975  |
| August.....                                                                   | 33,067,432  |
| September.....                                                                | 21,035,160  |
| October.....                                                                  | 18,543,754  |
| November.....                                                                 | 27,424,510  |
| December.....                                                                 | 22,895,570  |
| <br>1916                                                                      |             |
| January.....                                                                  | 17,129,972  |
| Annual totals:                                                                |             |
| 1915.....                                                                     | 284,669,820 |
| 1914.....                                                                     | 238,671,187 |
| 1913.....                                                                     | 188,043,379 |
| Per cent of total gasoline content of 1915 crude exported<br>during 1915..... | 15          |

\* From "Investigation of the Price of Gasoline" published by Federal Trade Commission, 1916.

The foregoing statistics are taken from the monthly reports of the Bureau of Foreign and Domestic Commerce. At the end it is shown that the total exports of all volatile petroleum products during 1915 were equal to 15 per cent of the total estimated gasoline content of all the crude petroleum produced in the United States during 1915, as estimated in Table No. 2.

## GENERAL

**AVERAGE MONTHLY F. O. B. REFINERY PRICES OF  
GASOLINE, STANDARD COMPANIES AND  
OTHER COMPANIES, BY  
MONTHS, 1915 \***

(Cents per gallon).

|                | Standard<br>companies<br>(8 refin-<br>eries). | Other<br>companies<br>(47 refin-<br>eries). | Average,<br>all refiners<br>(55 refin-<br>eries). |
|----------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------|
| 1915           |                                               |                                             |                                                   |
| January.....   | 7.82                                          | 8.88                                        | 8.26                                              |
| February.....  | 7.66                                          | 8.13                                        | 8.06                                              |
| March.....     | 7.63                                          | 7.76                                        | 7.74                                              |
| April.....     | 7.46                                          | 7.64                                        | 7.61                                              |
| May.....       | 7.42                                          | 7.59                                        | 7.57                                              |
| June.....      | 7.36                                          | 7.61                                        | 7.57                                              |
| July.....      | 7.47                                          | 7.79                                        | 7.68                                              |
| August.....    | 7.88                                          | 8.02                                        | 8.00                                              |
| September..... | 8.93                                          | 9.14                                        | 9.11                                              |
| October.....   | 9.84                                          | 10.61                                       | 10.50                                             |
| November.....  | 11.09                                         | 11.65                                       | 11.57                                             |
| December.....  | 12.84                                         | 13.07                                       | 13.03                                             |

\* From "Investigation of the Price of Gasoline" published by Federal Trade Commission, 1916.

The average prices f. o. b. refinery are calculated by dividing the total net receipts from sales of gasoline at the refinery by the gallons of gasoline sold. The figures are subject to slight revision, but indicate the general trend.

## PART TWO

### PHYSICAL PROPERTIES OF CASINGHEAD GAS

#### VACUUM

Throughout this book the word vacuum will be used in place of the expression "minus pressure or 'vacuum.'" A perfect vacuum has never been obtained and probably never will be. The true meaning of the word vacuum is—a void, a vacuity, a space where no material substance exists.

The meaning intended and understood by the casing-head gas fraternity is that of a partial vacuum or any minus pressure below atmospheric pressure. It is in that sense that the word vacuum is used in this book.

**Gasoline Gas** (*By O. J. Sieplein, Ph. D.*)—"A when exposed to the air or to any gas, gradually c vapor. The rate at which this change takes place as the temperature of the liquid rises. When the vapor is being formed quietly, we speak of the liquid as evaporating or vaporizing. When the temperature is sufficiently high, the vapor forms rapidly in the body of the liquid and appears as bubbles which rise through the liquid. We say the liquid is boiling, and its temperature is its boiling point. If the liquid is pure, the boiling point will remain constant as long as there is any liquid. If we are dealing with a mixture of two liquids of different boiling points, the boiling will usually begin at the boiling point of the lower boiling liquid. The temperature will gradually rise as the boiling continues until, as the last portion boils away, the temperature has reached the boiling point of the higher boiling liquid. By boiling the liquid slowly, condensing the vapors and collecting the first portions of condensate separately from the later ones,

we bring about a rough separation of the two constituents of the mixture. This is the principle made use of in the separation of petroleum into its various products by distillation, also in the manufacture of the various distilled liquors.

The boiling point of a liquid varies with the pressure exerted upon the liquid. Thus, water can be made to boil at any temperature from 32 deg. fahr. to 698 deg. fahr. Inasmuch as the normal pressure of the air is fifteen pounds per square inch, and the boiling point of water at this pressure is 212 deg. fahr., we ordinarily speak of 212 deg. fahr. as the boiling point of water.

If we close a vessel partly full of water, with a safety valve set at fifteen pounds, the pressure of the steam, i. e., the pressure on the water, when boiling takes place and the valve is opened, is fifteen pounds greater than the pressure of the air, or a total of thirty pounds. The boiling point at this pressure is 249 deg. fahr. Similarly the boiling point for a gauge pressure of thirty pounds (a total pressure of 45 pounds) is 273 deg. fahr. Speaking of these facts from a mechanical engineer's standpoint, we would say the temperature of saturated steam at fifteen pounds is 249 deg. fahr. and at thirty pounds is 273 deg. fahr.

Previous to 1880, it was thought impossible to liquefy certain gases such as air and hydrogen. These were therefore known as permanent or perfect gases. Following up the work of Cailletet, Pictet, Dewar and others in the perfection of means of producing and maintaining cold, all gases have been liquefied. The last to be liquefied was helium, an inert gas first discovered in the sun and later found to be present in the air and some minerals. The boiling point of helium is the lowest known, it being 451.6 deg. fahr. below zero. The invention by Dewar of vacuum-jacketed vessels aided more than any other one thing in the development of our knowledge in the field. This invention has become of

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

commercial importance, its outgrowth being the vacuum-jacketed bottle such as the thermos.

It was early recognized that there is a certain definite temperature for each substance above which it cannot be liquefied by pressure. This temperature is known as the critical temperature, and the pressure needed to produce the liquid at this temperature as the critical pressure. An example will make this point clear.

The critical temperature of water is 698 deg. fahr.; its critical pressure is 2.933 pounds per square inch. This means that at a temperature below 698 deg. fahr. steam may, by application of pressure, be converted to liquid water, and that at 698 deg. fahr. 2.933 pounds are necessary. Stated otherwise, it means that steam generated at this temperature has a total pressure of 2.933 pounds or a noticeable pressure of 2.918 pounds, the excess above the atmospheric pressure of 15 pounds. At the critical temperature the liquid passes over into the gas without expansion.

The term vapor is now applied to gases below their critical temperatures—that is, to gases which by pressure alone can be converted to liquids. The term, true, perfect or permanent gas, is applied to gases above their critical temperatures.

The volume of a gas is increased by the application of heat. These facts are known to anyone who is observant. Scientific experiment has proven that these changes in volume are perfectly regular for true gases, and are independent of the nature or composition of the gas. The changes in volume for a given change in temperature or pressure are the same for all true gases. Double pressure reduces the volume of a gas to one-half the original volume; triple pressure reduces it to one-third, etc. Four hundred and sixty cubic feet of gas at 0 deg. fahr. will increase one cubic foot for each degree that the temperature is raised. It would be 470 cubic feet at 10 deg. fahr., 480 cubic feet at

20 deg. fahr., etc. An increase of pressure on a gas meets with a certain resistance, which resistance is expressed as heat, warming the gas. If the change in pressure is gradual, the heat is radiated to surrounding objects, and not noticed. If, as in commercial practice, the change in pressure is sudden, the heat does not have opportunity to radiate and the warming of the gas is considerable. Therefore the volume resulting on doubling the pressure would be more than one-half the original volume because the temperature of the compressed gas is higher than that of the original gas. This increase of temperature varies with original temperatures, original pressures, final pressures, and also with the amount of radiation. The loss of heat by radiation is dependent on the nature of the containing vessel.

Whenever a gas bubbles through or comes into contact with a liquid it takes up vapor of that liquid. The amount of vapor, as would be inferred from former statements, increases as the temperature rises and is quite independent of the nature of the gas. Inasmuch as in the resulting mixture the gas is mixed with vapor the mixture occupies more space than the original gas. Thus 1,000 cubic feet of dry air at 50 deg. fahr. will take up nine and one-third ounces by weight of water yielding 1,012 cubic feet of moist air; 1,000 cubic feet of dry air at 80 deg. fahr. will take up twenty-five ounces, by weight, of water, yielding 1,035 cubic feet of moist air.

When natural gas in the earth comes into contact with petroleum it takes up some of the petroleum as vapor. Petroleum is composed of a large number of substances, with boiling points ranging from 320 deg. fahr. to perhaps 1,000 deg. fahr. The low boiling constituents of petroleum, when separated from the others by distillation, compose the various grades of gasolines. Higher boiling portions constitute the various grades of burning oils, paraffin, etc. Inasmuch as the temperature of the gas in the earth is nearer the

## **PHYSICAL PROPERTIES OF CASINGHEAD GAS**

---

boiling points of the gasoline constituents of the petroleum, these are taken up in much larger amounts than any other portions.

If the well is under vacuum the boiling points of the various portions are lowered. Thus the temperature of the natural gas is still nearer the boiling points of the gasoline portions and greater evaporation takes place. On the other hand, if the gas is present in the well under high pressure, this pressure on the petroleum raises the boiling points. The temperature of the gas is far from the boiling points of even the gasoline constituents and consequently vaporization is small. This is exactly what we find in practice. From petroleum and gas of the same character, the gas from a well under vacuum is richer in gasoline vapor than that from a well under pressure.

When we have a mixture of gases exerting a certain total pressure, each individual constituent of the mixture exerts that fraction of the total pressure. For example, air is roughly one-fifth oxygen and four-fifths nitrogen. Of the ordinary atmospheric pressure of fifteen pounds, oxygen exerting one-fifth or three pounds while the nitrogen is exerting four-fifths or twelve pounds. If we fill a cylinder or other vessel with air, we would find exactly the same ratio of oxygen to nitrogen in all parts of the vessel. That is, oxygen and nitrogen are each present in all parts of the vessel. Each cubic inch of the vessel would contain 0.07 grains of oxygen and 0.25 grains of nitrogen. This corresponds to one-fifth of a cubic inch of oxygen and four-fifths of a cubic inch of nitrogen, if both gases are under a pressure of fifteen pounds. From five cubic feet of air we could therefore obtain one cubic foot of oxygen and four cubic feet of nitrogen, if all these were under fifteen pounds pressure. From the law of gas volume in relation to pressure, if we transfer the one cubic foot of oxygen at fifteen pounds to a five-cubic-foot cylinder, the pressure in this

cylinder would be three pounds. This is one-fifth of fifteen pounds. Similarly the four cubic feet of nitrogen would exert twelve pounds pressure if transferred to a five-cubic-foot cylinder. Now suppose the five cubic feet of oxygen at three pounds to be added to the five cubic feet of nitrogen at twelve pounds. Suppose also that the space occupied by the mixture be restricted to five cubic feet. The pressure must necessarily be the sum of three pounds and twelve pounds, or fifteen pounds.

In order to condense vapor, pressure must be exerted upon it or it must be cooled. If we wish to condense it by pressure alone, we must exert a pressure equal to the pressure of the vapor when the liquid is boiling at the temperature of the experiment. But if the vapor is present in mixture with another gaseous substance, only a portion of the total pressure is being exerted on the vapor. If the vapor constitutes ten per cent of the mixture, the pressure on the vapor is ten per cent of the pressure on the mixture. In such a case we would need 150 pounds pressure on the mixture to have fifteen pounds on the vapor. With the pressure of fifteen pounds on the vapor, this would condense to a liquid at the temperature at which the liquid would normally boil.

Commercial cymogene is mainly butane which boils at 34 deg. fahr. That is, at 34 deg. fahr. butane vapor exerts a pressure of fifteen pounds. To condense butane vapor at 34 deg. fahr. to a liquid by the application of pressure, we would need fifteen pounds per square inch. If the butane constituted twenty per cent of a mixture, we would need a total pressure of seventy-five pounds in order to have fifteen pounds on the butane vapor. If the butane were ten per cent of the mixture, a total pressure of 150 pounds would be necessary. With five per cent of butane, a pressure of 300 pounds would be needed. From this it will be seen why one gas may produce gasoline with 75 to 100 pounds, while

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

another gas will need 250 to 300 pounds to produce the same quality of gasoline.

Butane is either liquid or gas as temperature and pressure conditions may demand. As a gas it weighs almost exactly twice as much as the same volume of air. As a liquid, it weighs almost exactly (a little over) five pounds per gallon. Air weighs at sea level pressure and zero fahr. temperature 86 pounds per thousand cubic feet. A thousand feet of butane would produce about thirty-four gallons of gasoline. Then when the specific gravity of a gas runs up in the neighborhood of one and a half as referred to air, we may easily suspect that more than three and one half gallons of condensate can be recovered from it."

PHYSICAL PROPERTIES OF CASINGHEAD GAS



Fig. 5

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

While laboratory tests may show that it is possible to obtain from six to twelve gallons of gasoline from 1000 cubic feet of casinghead gas, it is always safer to figure from three to six gallons per 1000 cubic feet of gas.

There have been many instances where casinghead gas has, after compression and cooling, proven not to have carried enough gasoline to make it a profitable proposition. This was due to the gas having come through an oil-bearing strata, where the oil was of an asphaltum basis, and therefore very low in paraffin hydrocarbons for the gas to pick up.

All casinghead gas contains hydrocarbons of the higher orders in the paraffin group, such as propane, butane, pentane, hexane and heptane, and it is the relative percentage of these present in the gas that determines the quantity and quality of the gasoline that may be extracted from it.

The specific gravity of casinghead gas has been known to test as high as 1.65 (air=1.0), due to the large percentage of heavy hydrocarbons present.

**Natural Gas**—The principal constituent is marsh gas. The exact composition varies with the different districts.

**Methane**—In natural gas the chief member of the marsh gas series is methane or marsh gas itself, having the formula  $\text{CH}_4$ , and a composition of 25.03% hydrogen and 74.97% carbon by weight. The name marsh gas comes from the fact that it is frequently produced by the decay of plants in swamps and the bottom of rivers. When pure it is a colorless, odorless gas, lighter than air and having a specific gravity of .559. Its gross heating value is 1003 B. t. u. per cubic foot at 60 deg. fahr. and 29.33 inches of mercury (14.65 pounds per square inch absolute.)

**Ethane**—Ethane  $\text{C}_2\text{H}_6$ , the next member of the marsh gas series, is sometimes found in considerable quantities in natural gas. It greatly resembles methane in its general properties, being a better fuel and burning with a slightly

AL PROPERTIES OF CASINGHEAD GAS

|      |            |                 |        |
|------|------------|-----------------|--------|
| 1003 | Methane    | $C_1 H_4$       | -256.5 |
| 1754 | Ethane     | $C_2 H_6$       | -135.4 |
| 2496 | Propane    | $C_3 H_8$       | -49.0  |
| 3241 | Butane     | $C_4 H_{10}$    | + 33.8 |
| 3995 | Pentane    | $C_5 H_{12}$    | +100.4 |
| 4712 | Hexane     | $C_6 H_{14}$    | +158.0 |
|      | Heptane    | $C_7 H_{16}$    | +208.4 |
|      | Octane     | $C_8 H_{18}$    | +257.0 |
|      | Nonane     | $C_9 H_{20}$    | +298.3 |
|      | Decane     | $C_{10} H_{22}$ | +334.3 |
|      | Dodecane   | $C_{12} H_{26}$ | +395.7 |
|      | Hexadecane | $C_{16} H_{34}$ | +532.3 |

Fig. 6

tinous flame, which makes it a better illuminant than ethane. The heat value per cubic foot is 1754 B. t. u.

Ethane contains 79.96% of carbon and 20.04% of hydrogen by weight.

**Oxygen O<sub>2</sub>**—This is tasteless, odorless, invisible and slightly heavier than air. It exists in a free state in the atmosphere and in combination in the ocean. It forms about two-fifths of the former and eight-ninths of the latter.

**Nitrogen N<sub>2</sub>**—This is a colorless, odorless, non-combustible gas and is always present in large quantity in gases produced by incomplete combustion. It forms four-fifths of the volume of air.

**Hydrocarbons**—The number of known hydrocarbons is nearly two hundred. The term is applied to all compounds consisting only of hydrogen and carbon. These compounds exist in gaseous, vaporous, liquid and solid states. Low temperatures are conducive to the formation of the easily condensed, tarry compounds, while with high temperatures, the yield of hydrogen and permanent gases is greatly increased.

**British Thermal Units (B. t. u.)**—The B. t. u. standard determining the quality of natural gas is universally recognized by the natural gas fraternity.

British Heat Unit, or British Thermal Unit, indicates the heat necessary to raise the temperature of one pound of water at 39 deg. fahr. through one degree.

There are two methods employed to ascertain the B. t. u. of any gas. One is to use the calorimeter, and the other is to compute it from the gas analysis. In the latter case, it is necessary to have the B. t. u.'s of the different gases found in the analysis. These are given on page 32.

**Vapor**—Vapor or vapour is essentially the same as gas, but the word vapor is conventionally limited to the gaseous state of a body which is liquid or solid at ordinary temperatures, while the term "gas" is applied to aeriform bodies which are in that rarified state at ordinary temperatures.

Vaporize and evaporate have the same meaning—that of changing from a liquid body to a gaseous state.

**Specific Gravity**—It is essential to know the specific gravity to determine whether the gas from any one lease or well is of proper density to carry a sufficient amount of hydrocarbons to warrant having an analysis and test made.



*Fig. 7.—SPECIFIC GRAVITY OUTFIT*

By making a gravity test, the density of the gas can be accurately determined. If in testing the gravity of a certain gas it is found to be near .6, which is the gravity of natural gas, to proceed further and have an analysis made would be useless, unless one were going to use the absorption process. However, if the gravity proves to be .8 or greater, there would be little doubt of the gas carrying

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

enough hydrocarbons to make it profitable to make gasoline by the compression method.

The mode of operation is as follows: The glass jar is filled with water to or a little above the top graduation of the tube. The tube is then withdrawn so as to fill it with air. The cock on the standard is then closed and the tube replaced in the jar. The cock is then opened and with a stop watch the time is taken that elapses while the water passes from the lowest graduation to the top or the next to the top graduation.

The tube is then withdrawn and filled with gas and the procedure repeated the same as with air, care being taken to use the same graduation in both cases.

The specific gravity, air being one, is obtained by dividing the gas time squared by the air time squared.

Formula is—

$$\text{Specific Gravity} = \frac{G^2}{A^2} = \left(\frac{G}{A}\right)^2$$

$G$  = Time gas requires to pass through orifice.  
 $A$  = Time air requires to pass through orifice.

While boring out the hole in the tip will shorten the time for each individual test it will also greatly increase the liability of error in the final results. The longer time it takes for each test, the more accurate the results.

It is good policy not to make any gravity tests during freezing weather, as the orifice in the tip is liable to become frosted, which would cause varying and inaccurate results.

**Heating Value and Specific Gravity**—When it is impossible to obtain a calorimetric determination of the heating value of a particular gas, the next best procedure is to compute it from the chemical analysis of the gas, using the values shown in the following table for the heating value of the constituent gases.

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

Multiply the percentage of each gas present by its corresponding heating value per cubic foot, and add the products.

The specific gravity is obtained in the same manner from the specific gravities and proportions of the constituent gases shown by the analysis.

Such computed results are necessarily subject to whatever errors there may be in the analysis of the gas, and unless this has been done with great care and precision, a wide discrepancy may exist between the calculated and the actual values. The following B. t. u. values are gross or high values, and are based on one cubic foot of gas at 60 deg. fahr. and four ounce pressure, or 14.65 pounds per square inch absolute.

| KIND OF GAS            | Symbol                        | Gross<br>Heating Value<br>B. t. u. per<br>Cu. Ft. | Specific<br>Gravity<br>(Air=1) |
|------------------------|-------------------------------|---------------------------------------------------|--------------------------------|
| Methane.....           | CH <sub>4</sub>               | 1003                                              | 0.5529                         |
| Ethane.....            | C <sub>2</sub> H <sub>6</sub> | 1754                                              | 1.0368                         |
| Ethylene.....          | C <sub>2</sub> H <sub>4</sub> | 1578                                              | 0.9676                         |
| Carbon monoxide.....   | CO                            | 322                                               | 0.9671                         |
| Hydrogen.....          | H <sub>2</sub>                | 324                                               | 0.0692                         |
| Hydrogen sulphide..... | H <sub>2</sub> S              | 668                                               | 1.1769                         |
| Nitrogen.....          | N <sub>2</sub>                | ....                                              | 0.9701                         |
| Carbon dioxide.....    | CO <sub>2</sub>               | ....                                              | 1.5195                         |
| Helium.....            | H <sub>e</sub>                | ....                                              | 0.1382                         |
| Oxygen.....            | O <sub>2</sub>                | ....                                              | 1.1052                         |

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

## ANALYSIS OF CASINGHEAD GAS FOR GASOLINE CONTENT\*

| Analysis No. | Date of analysis | Location of field         | Absorption heavy hydrocarbons | Carbon dioxide | Oxygen | Nitro- gen | Specific gravity | Combustion ratios |                | R.    | R <sup>1</sup> . | Gallons per thou- sand cu- bic feet of gas |
|--------------|------------------|---------------------------|-------------------------------|----------------|--------|------------|------------------|-------------------|----------------|-------|------------------|--------------------------------------------|
|              |                  |                           |                               |                |        |            |                  | CO <sub>2</sub>   | O <sub>2</sub> |       |                  |                                            |
| 2500         | Apr. 2, 1913     | Calgary, Alberta, Can.    | 15                            | None           | None   | None       | 0.67             | 2.17              | 1.26           | 0.390 | Dry              |                                            |
| 2430         | Jan. 25, 1913    | Electra, Tex. ....        | 50                            | None           | None   | 1.12       | 2.56             | 1.20              | 1.26           | .889  | 3.5              |                                            |
| 2242         | May 20, 1912     | Oilfields, Cal. ....      | 36                            | 170            | 0.70   | 3.8        | .79              | 2.21              | 1.32           | 3.54  | 1.0              |                                            |
| 2747         | Nov. 17, 1913    | Casper, Wyo. ....         | 45.1                          | None           | None   | None       | 1.04             | 2.57              | 1.98           | 1.29  | .806             | 3.0                                        |
| 2748         | do. ....         | do. ....                  | 35.5                          | None           | None   | None       | .94              | 2.47              | 1.72           | 1.44  | .653             | 2.0                                        |
| 1477         | Feb. 23, 1911    | Glen Pool, Okla. ....     | 62.5                          | 4.7            | .80    | 3.0        | 1.16             | 2.62              | 1.21           | 1.22  | .951             | 4.                                         |
| 2181         | Jan. 2, 1912     | Childers, Okla. ....      | 79.3                          | None           | None   | None       | 1.37             | 2.89              | 2.55           | 1.43  | 1.13             | 120                                        |
| 2065         | July 17, 1911    | Bremen, Ohio. ....        | 25.0                          | None           | .30    | (a)        | .67              | 2.09              | 1.10           | 2.19  | 1.98             | 338                                        |
| D45          | Oct. 17, 1911    | Cherryvale, Kans. ....    | 21.2                          | .95            | None   | None       | .60              | 2.03              | 1.01           | 1.04  | 2.00             | Dry                                        |
| 2533         | Apr. 28, 1913    | Titusville, Pa. ....      | 49.2                          | 1.50           | None   | None       | .90              | 2.48              | 1.64           | 1.3   | 1.51             | .596                                       |
| 1632         | Mar. 18, 1911    | Sistersville, W. Va. .... | 45                            | .70            | 6.90   | 28.3       | 1.52             | 2.82              | 2.89           | 4.72  | 976              | 1.56                                       |
| 1186         | Jan. 26, 1910    | do. ....                  | 62.0                          | None           | 2.5    | (a)        | 1.23             | 2.72              | 2.24           | 3.95  | 1.21             | Air-free                                   |
| 1494         | Feb. 23, 1911    | Kiefer, Okla. ....        | 68.6                          | 3.90           | None   | None       | 1.30             | 2.66              | 2.19           | 3.85  | 1.21             | 1.02                                       |
| 2478         | Mar. 1, 1913     | Charleston, W. Va. ....   | 22                            | None           | None   | None       | .74              | 2.24              | 1.29           | 2.54  | 1.73             | 427                                        |
| A-15         | Feb. 10, 1910    | Grove City, Pa. ....      | 15                            | None           | None   | None       | .63              | 2.04              | 1.02           | 2.06  | 2.00             | .5                                         |
|              |                  |                           |                               |                |        |            |                  |                   |                |       |                  | .315                                       |

 \* Hill, B.—The Production of Natural Gas in 1913. <sup>a</sup> Not determined.

**EXPERIMENTS IN LIQUEFYING CRUDE CASINGHEAD GAS**  
*Properties of crude natural gas and of the volatilized liquid products of compression*  
(G. A. BURRELL, Analyst)

| KIND OF GAS                                                                 | Specific gravity <sup>a</sup><br>(air=1) | Heating<br>value per cu.<br>ft. (0 deg.<br>cent., and<br>760 mm.<br>pressure) | COMPOSITION |         |          |          | Per cent<br>Nitro-<br>gen |
|-----------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|-------------|---------|----------|----------|---------------------------|
|                                                                             |                                          |                                                                               | B. t. u.    | Methane | Ethane   | Propane  |                           |
| Natural gas (Pa. and W. Va.)                                                | 0.64                                     | 1,189                                                                         | Per cent    | 16.4    | Per cent | Per cent | 0.6                       |
|                                                                             | 1.39                                     | 2,468                                                                         | 83.0        | 21.8    | 77.7     | .....    | 0.5                       |
| Natural gas (Follansbee, W. Va.)                                            |                                          |                                                                               |             |         |          |          |                           |
| Residual gas after 50-pound com-<br>pression product has been re-<br>moved  | 1.35                                     | 2,364                                                                         | .....       | 34.9    | 64.6     | .....    | 0.5                       |
| Residual gas after 250-pound com-<br>pression product has been re-<br>moved | 1.15                                     | 2,008                                                                         | .....       | 79.4    | 20.0     | .....    | 0.6                       |
|                                                                             | 1.01                                     | 1,808                                                                         | 3.8         | 95.0    | 27.0     | .....    | 1.2                       |
|                                                                             | 1.28                                     | 2,066                                                                         | .....       | 72.5    | .....    | .....    | 0.5                       |
|                                                                             | 1.28                                     | 2,214                                                                         | .....       | 52.1    | 46.9     | .....    | 1.0                       |
|                                                                             | 1.02                                     | 2,621                                                                         | .....       | 1.1     | 98.0     | .....    | 0.9                       |
| Gas from liquefied gas (400 pounds<br>pressure, 0 deg. cent.)               | 1.02                                     | 1,816                                                                         | 4.7         | 94.9    | .....    | .....    | 0.4                       |
|                                                                             | 1.02                                     | 1,925                                                                         | .....       | 89.3    | 9.9      | .....    | 0.8                       |
|                                                                             | 1.02                                     | 2,108                                                                         | .....       | 67.0    | 32.5     | .....    | 0.5                       |
|                                                                             | 1.02                                     | 2,161                                                                         | .....       | 59.4    | 39.8     | .....    | 0.8                       |
|                                                                             | 1.02                                     | 2,708                                                                         | .....       | .....   | 89.2     | 9.9      | 0.9                       |
|                                                                             | 1.02                                     | 3,221                                                                         | .....       | .....   | 24.0     | 75.0     | 1.0                       |

<sup>a</sup> By effusion method.  
From Technical Paper No. 10—Bureau of Mines. By Irving C. Allen and George A. Burrell—1912.

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---



Fig. 8—ANALYZING OUTFIT FOR DETERMINING GASOLINE  
CONTENT IN CASINGHEAD GAS. DESIGNED BY  
GEORGE A. BURRELL, BUREAU OF MINES

## APPARATUS FOR TESTING CASINGHEAD GAS FOR GASOLINE CONTENT

*By George A. Burrell*

"This apparatus consists of six gas sample tubes (A) for collecting the samples of gas; one gas measuring burette (B) for measuring the gas; one absorption pipette (C) for absorbing the gas in oil and one bottle of oil (D).

**Collection of Samples**—To collect the gas sample, the sample tubes are first filled with water by opening the pinch-cocks on each tube, putting one end of the sample in the mouth, the other end in a basin of water, and filling the tube with water by sucking the latter into the tube. When the tubes are full of water the pinch-cocks are closed, thereby preventing the water from running out of the tube.

Next the end of the sample tube with the glass tube attached is placed in one of the two inch openings of the oil well casing-head (the other openings are closed) and the tube packed around with a bushing of waste or cloth or some packing that will cause a portion of the gas to pass through the tube. The pinch-cocks on the sample tube are then opened whereupon the gas will enter the sampling tube, forcing the water out. After the water has been forced out the gas should then be allowed to pass through the sampling tube for at least five minutes longer, and under such pressure that it can be easily felt or heard escaping from the tube. Next the pinch-cocks are closed. The sample of gas will then be trapped and ready for analysis.

## ABSORPTION ANALYSIS TO DETERMINE GASOLINE CONTENT IN CASINGHEAD GAS

This is accomplished by shaking the natural gas with oil and noting how much of the gas is absorbed by the oil. The oil used can be Russian White oil, Claroline oil, Olive oil, Cottonseed oil, Mineral Seal oil or Rape-seed oil. They all give about the same results.

The absorption pipette C is first filled with clean potable water by pouring same in the bottle H. Enough water is poured into H so that it fills the part C up to the stop-cock K and fills the bottle H about one-fourth full. Water can be forced from H up into C by raising H and opening the stop-cock K to the air. When the water reaches K and H and is about one-fourth full the stop-cock K is closed, thereby trapping the water so it can not run out of C into H. Next oil is poured into the cup up to the mark N. This cup holds 50 cubic centimeters of oil. Then this oil is allowed to flow into the pipette C by turning the stop-cock K so the latter is in communication between M and C. The oil is allowed to flow into C so it rests on the water between the level of same and the stop-cock K. The oil is trapped in this position by closing the stop-cock K.

The gas sample is transferred to the burette B from the sample tube A by first filling the burette with water, attaching the burette to the sample tube, placing one end of the latter in a basin of water and drawing the sample into the burette. The burette B is filled by pouring the water into the level bottle P and forcing it into the burette by raising the bottle P with the pinch-cock R open. When the water has risen to R, the latter is closed thereby trapping the water in the burette. Next the sample tube is placed in the position shown with one end dipping into a basin of water. Connection is made between the sample tube and burette by means of the tube S and all of the stop-cocks are opened. The water will rise in A, will fall in B, and the gas will pass from the sample tube A to the burette B. By lowering P sufficiently as much of the gas sample can be drawn into P as is desired. It is best to transfer about 100 c. c. of gas into the burette.

The burette B is next connected to the pipette C by means of the tube T. The pinch-cock R and stop-cock K are opened and the gas forced from the burette to the pipette

PHYSICAL PROPERTIES OF CASINGHEAD GA

---



Fig. 9—SHOWING METHOD OF MAKING AN ANALYSIS OF  
CASINGHEAD GAS FOR GASOLINE CONTENT

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

by raising the bottle P. When all the gas has passed into the pipette the pinch-cock R is closed and the pipette C shaken for three minutes. This shakes the oil and gas together and causes some of the gas with its gasoline to dissolve in the oil. Next the gas is transferred back to the burette, by opening R and lowering P. The gas is then measured and the loss in volume noted. The gas is measured by closing R and holding the bottle P so the level of the water in it is on a line with the level of the water in the burette. This means that the gas in the burette is under the same pressure as the outside atmosphere. All of the gas measurements are made in this manner. If exactly 100 cubic centimeters of gas were taken for the analysis then the actual contraction in volume, i. e., the difference between the first and second burette readings gives the per cent. of natural gas absorbed, but if the amount of gas originally introduced into the burette was less than 100 c. c., then a calculation has to be made to find the true percentage. A sample calculation follows:

No. 1 analysis.

|                                           |           |
|-------------------------------------------|-----------|
| Volume of gas taken.....                  | 100 c. c. |
| Volume of gas taken after absorption..... | 60 c. c.  |
| Contraction.....                          | 40 c. c.  |
| Per cent. absorbed.....                   | 40 c. c.  |

No. 2 analysis.

|                                     |                                 |
|-------------------------------------|---------------------------------|
| Volume of gas taken.....            | 90 c. c.                        |
| Volume of gas after absorption..... | 54 c. c.                        |
| Contraction.....                    | 36 c. c.                        |
| Per cent. absorbed.....             | $\frac{36}{90} \times 100 = 40$ |

A new sample of oil must be taken for each absorption test. After one determination is finished the oil over the water in C is forced out of the pipette by raising the bottle H and opening the stop-cock K until the water rises to K. The latter is then closed.

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

A table follows that shows the absorption percentage corresponding to yield of gasoline in gallons per 1000 cubic feet. Yield of gasoline per 1000 cubic feet of natural gas corresponding to different absorption percentages."

| Absorption Percentage | Yield of Gasoline<br>Gallons per 1000<br>Cu. Ft. of Gas |
|-----------------------|---------------------------------------------------------|
| 25.....               | .50                                                     |
| 30.....               | .75                                                     |
| 35.....               | 1.50                                                    |
| 40.....               | 2.00                                                    |
| 50.....               | 2.50                                                    |
| 60.....               | 3.50                                                    |
| 80.....               | 5.00                                                    |

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

PROPERTIES OF SEVEN PARAFFIN HYDROCARBONS (Bureau of Mines—Paper No. 88)

| Hydrocarbon            | Formula                              | Boiling point <i>b</i> | Specific gravity (at 0 deg. cent. and 760 mm.; air=1) | Weight of 1 litre | Heating value per cubic foot at 0 deg. cent. and 760 mm. <i>c</i> | Illuminating value   | Liquefaction point   | Calculated volume of gas (at 60 deg. fahr. and 30 in. barometer) pressure from 1 gallon | Theoretical volume of gas (at 60 deg. fahr. air necessary to burn 1 cubic ft. of gas) |
|------------------------|--------------------------------------|------------------------|-------------------------------------------------------|-------------------|-------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                        |                                      |                        |                                                       |                   | Grams                                                             | B. t. u.             | British candle-power | lb. per sq. in.                                                                         | Cu. ft.                                                                               |
| Methane <i>d</i> . . . | CH <sub>4</sub> . . .                | —160                   | 0.554                                                 | 0.7159            | 1,065                                                             | 5.0 (—81.8a/1807 g.) | 5.0 (—95.5a/735 f.)  | .....                                                                                   | 9.57                                                                                  |
| Ethane <i>d</i> . . .  | C <sub>2</sub> H <sub>6</sub> . . .  | —93                    | 1.049                                                 | 1.3567            | 1,861                                                             | <i>h</i> 35.0        | <i>h</i> 35.0        | .....                                                                                   | 16.72                                                                                 |
| Propane <i>d</i> . . . | C <sub>3</sub> H <sub>8</sub> . . .  | —45                    | 1.520                                                 | 1.9660            | 2,654                                                             | <i>h</i> 53.9        | <i>h</i> 53.9        | +35 at 664 <sup>i</sup><br>+97 at 647 <sup>j</sup>                                      | 23.92                                                                                 |
| Butane <i>d</i> . . .  | C <sub>4</sub> H <sub>10</sub> . . . | 1.0                    | 2.004                                                 | 2.594             | 3,447                                                             | .....                | .....                | .....                                                                                   | 45                                                                                    |
| Pentane <i>k</i> . . . | C <sub>5</sub> H <sub>12</sub> . . . | 36.4                   | ...                                                   | ...               | 4,250                                                             | .....                | .....                | .....                                                                                   | 37                                                                                    |
| Hexane <i>k</i> . . .  | C <sub>6</sub> H <sub>14</sub> . . . | 68.9                   | ...                                                   | ...               | 5,012                                                             | .....                | .....                | .....                                                                                   | 31                                                                                    |
| Heptane <i>k</i> . . . | C <sub>7</sub> H <sub>16</sub> . . . | 98.4                   | ...                                                   | ...               | .....                                                             | .....                | .....                | .....                                                                                   | 27                                                                                    |

*b* Holloman, A. F., Organic chemistry, edited by A. J. Walker, 1910, p. 41.

*c* Landolt and Bornstein, Physikalisch-chemische Tabellen, 3d ed., 1905, pp. 416, 425 (J. Thompson).

*d* Gas at ordinary temperature.

*e* Wright, L. T., Illuminating power of methane; Jour. Chem. Soc., vol. 47, 1885, p. 200.

*f* Landolt and Bornstein, Physikalisch-chemische Tabellen, 3d ed., 1905, pp. 185 (Dewar).

*g* Landolt and Bornstein, Physikalisch-chemische Tabellen, 3d ed., 1905, p. 185 (Olszewski).

*h* Frankland, P., Illuminating power of methane; Jour. Chem. Soc., vol. 47, 1885 p. 235.

*i* Landolt and Bornstein, Physikalisch-chemische Tabellen, 3d ed., 1905, p. 182 (Dewar).

*k* Liquid at ordinary temperature.

**Solution of Gas in Condensates**—One of the physical changes occurring in the operation of a gasoline plant has to do with the solution of gas in the condensate, that is, when the residual gas is in contact with the condensate in the storage tank. The following experiment and calculation will serve to show how small and insignificant this change may be.

A residual gas from an operating plant was shaken with refinery naphtha. The naphtha had a specific gravity of 61 deg. B. The solution was effected at a temperature of 20 deg. cent. (68 deg. fahr.) and atmospheric pressure. The naphtha was shaken with the gas supply until no more gas would go into solution. It was found that 1 liter of the naphtha dissolved 1,760 liters of the gas; or 500 gallons of the naphtha would have dissolved 3,331.7 liters of the gas. If the assumption be made that this residual gas was ethane only, then it can be calculated that 3,331.7 liters of gaseous ethane at 16 deg. cent. (60 deg. fahr.) and 30 inches of mercury is equivalent to 2.7 gallons of liquid ethane. This quantity of liquid is so small as to seem insignificant, although as regards raising the vapor pressure of the condensate it is important.

**Interpretation of Results of Tests** (from Bulletin No. 88 Bureau of Mines)—“Many experiments have shown that gasoline may be obtained from natural gas having a specific gravity of 0.80 and higher (air = 1). Some inconsistencies have been noted, however, so that the authors would hesitate to recommend the installation of a plant to handle a gas that tests showed to have a specific gravity as low as 0.80 or to have an absorption percentage of 30.0 (Bureau of Mines test), although the gas might be all right for the purpose, especially if it were from wells in a field where other gases of low specific gravity were already producing gasoline. The authors do believe, however, that a gas with a tested specific

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

gravity as high as 0.80 and an absorption percentage as high as 40 might warrant an installation.

Natural gases differ much in composition. A so-called 'wet' gas might, for instance, contain a very large proportion of methane, with little ethane, propane, or butane, but enough of the gasoline hydrocarbons to warrant a plant installation. Such a gas when subjected to comparatively low pressures would deposit the gasoline vapors. Another gas of the same specific gravity might contain a comparatively small proportion of methane and ethane and a large proportion of propane and butane, but not enough of the gasoline hydrocarbons to warrant plant installations. Therein lies the reason why specific gravity, solubility, or combustion tests can not always be relied on.

As regards a natural gas of low specific gravity and low absorption percentage (known as a 'lean' gas), the safest recourse is to test by means of a portable outfit consisting of a gas meter, small gas engine, compressor, cooling coils, and receiver. Such an outfit can be hauled from place to place on a wagon. This method is in all cases to be recommended as having distinct advantages over laboratory tests. However, it is true that tests made with the portable outfit may be misleading unless in charge of a careful and experienced person.

### RESULTS OF TESTS OF THE GRADE AND QUANTITY OF GASOLINE PRODUCED WHEN CRUDE CASINGHEAD GAS IS SUBJECTED TO DIFFERENT PRESSURES

| Pressure               | Tempera-ture of cooling water | Gravity of gasoline | Yield of gasoline per 1,000 cubic feet of gas |
|------------------------|-------------------------------|---------------------|-----------------------------------------------|
| Pounds per square inch | deg. cent.                    | deg. Baume          | Gallons                                       |
| 110 . . . . .          | 10                            | .....               | 1.8                                           |
| 140 . . . . .          | 10                            | 90                  | 3.0                                           |
| 190 . . . . .          | 10                            | 94                  | 4.5                                           |

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

It has been found by experiment at this plant that pressures of 140 to 150 pounds per square inch produced the most marketable gasoline. It will be observed that a pressure of 190 pounds produced more gasoline. The extra  $1\frac{1}{2}$  gallons, however, was of such a volatile character that it only escaped into the atmosphere upon exposure to the air; hence high pressures at this plant were unnecessary. Gasoline could be obtained by the application of pressures as little as 50 pounds per square inch, but the yield was small.

As natural gas is of different character in many different sections of the country and even in the same oil field, data obtained at one plant can not always be used as a basis for operating other plants—that is, as far as the pressures that should be used are concerned. Each operator should thoroughly test his own gas. Different pressures should be applied and the quantity and character of the gasoline noted. A reliable meter for measuring the gas becomes indispensable. If, in certain plants operating to-day, meters were installed and a series of tests conducted as above outlined, much greater efficiency of operation could be attained. Other apparatus that could be used to advantage are thermometers, graduated vessels for measuring the gasoline, hydrometers for determining the specific gravity of the gasoline, and gas-analysis apparatus, especially an apparatus for detecting air leaks in pipes through analyses of the gas for oxygen."

PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

TABLE OF HEAT VALUES OF THE LIGHTER HYDRO-CARBON PRODUCTS FROM CRUDE OIL

| Commercial Term               | Baume | B. t. u.<br>per lb. | B. t. u.<br>per Standard<br>U. S. Gallon |
|-------------------------------|-------|---------------------|------------------------------------------|
| Gasoline.....                 | 100   | 22,250              | .....                                    |
|                               | 95    | 22,050              | .....                                    |
|                               | 90    | 21,850              | 115,805                                  |
|                               | 85    | 21,650              | 117,343                                  |
|                               | 80    | 21,450              | 119,476                                  |
|                               | 76    | 21,290              | 120,927                                  |
|                               | 75    | 21,250              | 121,837                                  |
|                               | 73    | 21,170              | 122,150                                  |
|                               | 70    | 21,050              | 123,142                                  |
|                               | 68    | 20,970              | 123,932                                  |
| Kerosene:<br>(Water White)... | 65    | 20,850              | 125,100                                  |
|                               | 64    | 20,810              | 125,484                                  |
|                               | 62    | 20,730              | 126,453                                  |
|                               | 58    | 20,570              | 127,945                                  |
|                               | 48    | 20,170              | 132,516                                  |
|                               | 46    | 20,090              | 133,397                                  |
|                               | 44    | 20,010              | 134,467                                  |
|                               | 42    | 19,930              | 135,524                                  |
|                               | 40    | 19,850              | 136,369                                  |

A gallon of 65 deg. gasoline, which weighs 5.999 pounds, will produce 22.7 cubic feet of gas; and one gallon of 70 deg. gasoline, weighing 5.85 pounds, will produce 23.1 cubic feet of gas. Temperature 60 deg. fahr.

LOW EXPLOSIVE LIMITS FOR PARAFFIN GASES AND VAPORS<sup>a</sup> (Bureau of Mines)

The following table shows the small percentages of gases and vapors occurring in natural gas that are required to explosive mixtures with air:

| Hydrocarbon | Proportion of<br>gas-air mixture con-<br>stituting low<br>explosive<br>limit<br><i>per cent.</i> | Hydrocarbon | Proportion<br>of gas-air<br>mixture<br>constituting<br>explosive<br>limit<br><i>per cent.</i> |
|-------------|--------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|
| Methane     | 5.60 to 5.70                                                                                     | Butane      | 1.60 to 1.65                                                                                  |
| Ethane      | 3.00 to 3.20                                                                                     | Pentane     | 1.32 to 1.35                                                                                  |
| Propane     | 2.15 to 2.30                                                                                     |             |                                                                                               |

<sup>a</sup> Burgess, M. L., and Wheeler, R. A.: "The Lower Limit of the Explosive Mixtures of the Paraffin Hydrocarbons with Air," Trans. Chem. Eng., 1911, pp. 2013, 2030.

According to the above table, even if a natural gas consisted almost entirely of methane, as some natural gases do, an explosion would follow an ignition of a mixture of 5.60 per cent of methane.

## EXPLOSIVE MIXTURES OF COMBUSTIBLE GASES

| Combustible Gas                    | Lower Explosive<br>Mixture<br><i>per cent.</i> | Upper<br>Explosive<br>Mixture<br><i>per cent.</i> |
|------------------------------------|------------------------------------------------|---------------------------------------------------|
| Temperature 60° Fahr. to 66° Fahr. |                                                |                                                   |
| Air gas, approximate               | 1.00                                           | 1.41                                              |
| Hydrogen                           | 3.45                                           | 7.25                                              |
| Water gas                          | 17.40                                          | 21.00                                             |
| Acetylene                          | 3.15                                           | 4.75                                              |
| Coal gas                           | 5.90                                           | 8.50                                              |
| Ethylene                           | 4.10                                           | 8.44                                              |
| Methane                            | 6.10                                           | 16.75                                             |
| Benzene vapor                      | 21.60                                          | 23.00                                             |
| Pentane vapor                      | 21.40                                          | 23.00                                             |
| Benzoline vapor                    | 21.40                                          | 23.00                                             |
| Alcohol                            | 5.60                                           | 20.00                                             |
| Ethyl alcohol                      | 4.60                                           | 21.25                                             |
| Ether                              | 21.60                                          | 23.00                                             |
| Petrol                             | 21.30                                          | 23.00                                             |

<sup>a</sup> Petrol Air Gas by Hunt, U.S. Bureau of Mines.

## PHYSICAL PROPERTIES OF CASINGHEAD GAS

## PHYSICAL CONSTANTS OF DIFFERENT GASES \*

| SUBSTANCE             | $\frac{10^5 \text{ cu ft}}{\text{lbm}}$ | Critical temperatures |           | Temp. of saturated vapor at atmospheric pressure |        | Freezing point |           | Pressure at which freezing point was determined mm. | Density of liquid at temperature given | Density of liquid at 0° C. | Color of liquid             |
|-----------------------|-----------------------------------------|-----------------------|-----------|--------------------------------------------------|--------|----------------|-----------|-----------------------------------------------------|----------------------------------------|----------------------------|-----------------------------|
|                       |                                         | deg cent.             | deg fahr. | Critical pressure                                | Atmos. | deg cent.      | deg fahr. |                                                     |                                        |                            |                             |
| 1 Water.....          | H <sub>2</sub> O                        | 365                   | 689       | 200                                              | 100    | 212            | 0         | 32                                                  | 40                                     | 0.0364<br>at 0° C.         | Colorless.                  |
| 2 Hyd. selenide       | H <sub>2</sub> Se                       | 138                   | 280.4     | 91                                               | -41    | -41.8          | -68       | -90.4                                               | 8.5                                    | { 0.0364<br>at 0° C.       | "                           |
| 3 Ammonia .....       | NH <sub>3</sub>                         | 130                   | 266       | 115                                              | -33    | -27            | -77       | -107                                                | ...                                    | { 0.0364<br>at 0° C.       | "                           |
| 4 Propane.....        | C <sub>3</sub> H <sub>8</sub>           | 97                    | 206.6     | 44                                               | -45    | -49            | -151° C.  | ...                                                 | 20.95                                  | ...                        | "                           |
| 5 Acetylene .....     | C <sub>2</sub> H <sub>2</sub>           | 37                    | 98.6      | ...                                              | -85    | -121           | -81       | -113.8                                              | 950                                    | 12.97                      | "                           |
| 6 Nitrous oxide       | N <sub>2</sub> O                        | 35                    | 96        | 75                                               | -89    | -128           | -115      | -175                                                | 760                                    | 21.99                      | "                           |
| 7 Ethane.....         | C <sub>2</sub> H <sub>6</sub>           | 34                    | 93.2      | 50.2                                             | 93     | -135.4         | -151° C.  | ...                                                 | 19.97                                  | ...                        | "                           |
| 8 Carb. dioxide.      | CO <sub>2</sub>                         | 31                    | 88        | 75                                               | -80    | -112           | -56       | -69                                                 | 760                                    | 21.94                      | 0.83 at 0° C.               |
| 9 Ozone.....          | O <sub>3</sub>                          | ...                   | ...       | ...                                              | -106   | -158.8         | ...       | ...                                                 | 23.89                                  | ...                        | Dark blue, easily exploded. |
| 10 Ethylene.....      | C <sub>2</sub> H <sub>4</sub>           | 10                    | 50        | 51.7                                             | -102   | -150           | -169      | -272                                                | ...                                    | 13.97                      | Colorless.                  |
| 11 Methane.....       | CH <sub>4</sub>                         | -81.8                 | -115.2    | 54.9                                             | -164   | -263.4         | -185.8    | -302.4                                              | 80                                     | 7.98                       | { 0.415<br>at -164° C.      |
| 12 Nitric oxide ..... | NO                                      | -93.5                 | -135      | 71.2                                             | -153.6 | -254           | -167      | -369                                                | 138                                    | 14.98                      | { " 0.415<br>at -164° C.    |
| 13 Oxygen.....        | O <sub>2</sub>                          | -118.8                | -181.4    | 50.8                                             | -181.4 | -294.5         | ...       | ...                                                 | 15.96                                  | 1.124                      | Blue.                       |
| 14 Argon.....         | A                                       | -121                  | -185.8    | 50.6                                             | -187   | -304.6         | -189.6    | -309.3                                              | ...                                    | 19.9                       | { about 1.5<br>at -187° C.  |
| 15 Car. monoxide      | CO                                      | -139.5                | -219.1    | 35.5                                             | -190   | -310           | -207      | -340.6                                              | 100                                    | 13.96                      | { 0.933<br>at -187° C.      |
| 16 Air.....           | ...                                     | -140                  | -220      | 39                                               | -191.4 | -312.6         | ...       | ...                                                 | ...                                    | ...                        | Light blue.                 |
| 17 Nitrogen.....      | N <sub>2</sub>                          | -146                  | -231      | 35                                               | -194.4 | -318           | -214      | -353.2                                              | 60                                     | 14.01                      | { 0.933<br>at -194.4° C.    |
| 18 Hydrogen .....     | H <sub>2</sub>                          | -234                  | -389      | 20                                               | -243   | -405           | ...       | ...                                                 | 1                                      | ...                        | Colorless.                  |
| 19 Helium .....       | H <sub>2</sub>                          | ...                   | ...       | ...                                              | -264   | -443.2         | ...       | ...                                                 | 2.02                                   | ...                        | "                           |

Data collected and tabulated by Walter H. Dickerson, M. E. \* Liquid Air and Liquefaction of Gases by T. O. Connor Sloane, Ph.D.

PHYSICAL PROPERTIES OF CASINGHEAD GAS

---

VAPOR PER GALLON AND AIR REQUIRED FOR COMPLETE COMBUSTION\*

|           | Baume | Specific gravity | Vapor cubic feet per gal. at 32 deg. fahr.<br>14.7 atmos. | Proportion required for perfect combustion |       |
|-----------|-------|------------------|-----------------------------------------------------------|--------------------------------------------|-------|
|           |       |                  |                                                           | Vapor                                      | Air   |
| Pentane . | 94    | 0.626            | 31.2                                                      | 2.53                                       | 97.47 |
| Hexane .. | 81    | 0.663            | 27.7                                                      | 2.17                                       | 97.83 |
| Heptane   | 73    | 0.688            | 24.7                                                      | 1.86                                       | 98.14 |
| Octane .. | 65    | 0.719            | 22.6                                                      | 1.64                                       | 98.36 |
| Nonane .  | 59    | 0.741            | 20.8                                                      | 1.47                                       | 98.53 |

\* Petrol Air Gas by Henry O'Connor.

# PART THREE

## CASINGHEAD GAS WELLS



*Fig. 10—A PUMPING OIL WELL SHOWING CASINGHEAD AND LEAD LINES TO CARRY THE CASINGHEAD GAS TO THE VACUUM PUMP*

Throughout this book the expression casinghead gas wells refers to oil wells flowing casinghead gas. They are distinct from a natural gas well as they do not supply gas alone but a combination of gas and oil. All oil wells do not flow casinghead gas but some oil wells that have practically ceased flowing oil show a flow of casinghead gas which is worth conserving. Consequently the author considers they are in a class by themselves distinct from either oil or natural gas wells.

Preliminary to installing an expensive compression or absorption plant, with lines, etc., one should make a very careful test as to the quality and quantity of gas obtainable.

**Quality of Casinghead Gas**—While it is possible to send samples of casinghead gas to some laboratory or chemist for analysis and gravity test, and the practice has been quite common, the results obtained are not as satisfactory as in taking the tests on the ground at the well. The opportunity of leakage of oxygen or air into the sample bottle while enroute to the laboratory is very great and the time required enroute to the chemist entails considerable delay. Heretofore it has been the only course open to the possible investor; but with the manufacturing of a simple analyzing outfit that is portable, and with the plain instructions accompanying same, the operations in the field have become far less difficult and good reliable results are obtained.

The preliminary operations in testing casinghead gas for quality are as follows:

First—Take the specific gravity of each well under consideration and eliminate the poor well, i. e., all wells that show a gravity of less than 0.80 when intending to extract the gasoline by the compression method.

Gasoline can be extracted from casinghead gas under 0.80 by the absorption method. Some casinghead gas is, however, too low for the latter. This particularly applies to those gases that contain only methane as the paraffin hydrocarbon.

Full instructions for use of the specific gravity apparatus will be found on pages 30 and 31.

Keep a careful record of all wells showing gas of gravity of better than 0.80 or less as the case may be.

While the gravity of the gas merely shows that it may carry gasoline or in other words the gas is dense or heavy,

it must not be taken for granted that the gas carries gasoline in paying quantity for either process. The high gravity shows that the gas carries constituents other than methane but it does not show what the additional constituents are.

Second—Assuming that the gas ran high enough in gravity to warrant further investigation—make an analysis for gasoline content with some such portable analyzing outfit as shown in figure number 8, on page 35.

Full instructions for use of this instrument are found on pages 36-40.

If by this analysis the gas shows enough gasoline to warrant considering, it is far more conclusive than if merely the specific gravity of the gas is known, but even this is not sufficiently conclusive to warrant the investment of a large amount of money in a plant.

Third or Final Step—That is to prove the quality of the gas in a practical experiment by use of a portable testing outfit, which is nothing more than a miniature gasoline plant built on a wagon and drawn by a team of horses from well to well.

The portable testing outfit consists of a 6 h. p. gasoline engine, a small compressor, a 300 cu. ft. per hour gas meter, 30 or more feet of cooling coils made of 1 inch pipe immersed in a tank of water, and a small storage tank. To the latter should be attached a relief valve which can be set to operate at the pressure desired. A trap should be installed between the compressor and the cooling coils to catch oil that is sometimes brought from the well with the gas. A glass gauge should be connected to the storage tank to indicate the volume of gasoline obtained.

Some companies have their portable testing outfit installed on an automobile truck in which case power for operating the compressor is obtained by jacking up one of the rear wheels of the truck, connecting the compressor by a belt to a special drum on the wheel. This outfit is not



*Fig. 11—PORTABLE COMPRESSION PLANT FOR TESTING CASINGHEAD GAS FOR GASOLINE CONTENT*

so cumbersome and is more quickly transported from one well to another.

There are two reasons for first testing with the specific gravity outfit, one—the gravity is necessary in obtaining the volume or capacity of the well and the other—that the poor wells can quickly be determined and eliminated from further consideration.

The two outfits—specific gravity and analyzing outfits—are easily carried from well to well without any great inconvenience.

In conducting tests of casinghead gas, the plant should first be run long enough to expel all air from the compressor and lines. The meter and pressure gauges must be in good order. The cooling coils should dip enough to readily drain the gasoline into the storage tank. The efficiency of the cooling coils can be ascertained fairly well by measuring the temperature at different places in the water of the tank. At the point where the coils enter the water it will be hot enough to warm the water appreciably, but if the tank is large and a sufficient length of pipe for cooling purposes is installed the warming of the water is only local.

The pressure of the gas passing through the meter must be taken in order to ascertain the actual volume of gas treated. (For multiplier tables see page 117.)

It can hardly be said necessary to make a compressor test on the gas from every well in a group of wells on one lease or adjoining leases but it is essential to do so on at least four or five wells in twelve. The specific gravity test on each well will show any variation in density of the gas and is very essential in determining the capacity of the wells.

After the quality of the gas is fully and carefully determined then the only remaining question is as to the quantity of gas a well or group of wells will supply.

**Capacity of Casinghead Gas Wells**—On account of the small size of most casinghead gas wells, the old method of testing the flow by using a Pitot Tube is not practical. The orifice well tester for this character of work is considered very accurate and reliable.

To use the orifice well tester the specific gravity of the gas must be taken. This is fully described on pages 30-31.

To test a well, close all openings but one or if the well is shut in at the casinghead, blow off the well before inserting the orifice well tester. Allow the well to blow into the atmosphere for half an hour or until there is no appreciable decrease in the volume of the gas flowing from it. Screw in the orifice well tester, which carries a two-inch thread, and allow the gas to flow into the atmosphere through the proper size orifice.



Fig. 12—ORIFICE WELL TESTER

Connect a siphon gauge to the nipple on the side of the orifice well tester, using a short piece of common three eighths inch rubber hose. The siphon gauge should be filled with water up to the zero mark on the scale. If the well appears to be large use the large sized orifice. To correctly determine the proper size orifice it is necessary to read the gauge and note the height of the water in the glass. Read both sides of the scale and add them together. In other words measure the difference between the two water levels which is the true pressure in inches of water. By referring to tables

that accompany each instrument or as found on pages 56-62 the flow of a well for a twenty-four hour period will be found under the proper gravity and opposite the pressure.



*Fig. 18 SHOWS METHOD OF TAKING [PRESSURE ON THE ORIFICE WELL TESTER, USING THE SPECIFIC GRAVITY TUBE IN PLACE OF A SYPHON GAUGE*

The specific gravity tube can be used to take the water pressure of the gas flowing through the orifice in place of the syphon gauge. In this case measure the difference between the two levels of the water.

Use as large an orifice as possible so as not to permit the gas to create a back pressure in the well. To form a back pressure on the well will decrease the flow of the gas.

C A S I N G H E A D      G A S      W E L L S

---

CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR  
HOURS, OF A THREE EIGHTH INCH  
THIN PLATE ORIFICE.

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Press.<br>in. of<br>Water | .6   | .65  | .7   | .75  | .8   | .85  | .9   | .95  | 1.   |
|---------------------------|------|------|------|------|------|------|------|------|------|
| .5                        | 2270 | 2180 | 2100 | 2030 | 1970 | 1910 | 1850 | 1810 | 1760 |
| 1                         | 3460 | 3320 | 3200 | 3090 | 3000 | 2910 | 2820 | 2750 | 2680 |
| 1.5                       | 4810 | 4140 | 3990 | 3860 | 3730 | 3620 | 3520 | 3420 | 3339 |
| 2                         | 4880 | 4640 | 4470 | 4320 | 4180 | 4060 | 3940 | 3840 | 3740 |
| 2.5                       | 5400 | 5190 | 5000 | 4830 | 4680 | 4540 | 4410 | 4290 | 4186 |
| 3                         | 5770 | 5550 | 5350 | 5170 | 5000 | 4850 | 4720 | 4590 | 4474 |
| 3.5                       | 6290 | 6050 | 5830 | 5630 | 5450 | 5290 | 5140 | 5000 | 4875 |
| 4                         | 6650 | 6390 | 6160 | 5950 | 5760 | 5590 | 5430 | 5280 | 5152 |
| 4.5                       | 7210 | 6930 | 6680 | 6450 | 6240 | 6060 | 5890 | 5730 | 5585 |
| 5                         | 7680 | 7380 | 7110 | 6870 | 6650 | 6450 | 6270 | 6100 | 5946 |
| 5.5                       | 8100 | 7790 | 7500 | 7250 | 7020 | 6810 | 6620 | 6440 | 6278 |
| 6                         | 8290 | 7970 | 7680 | 7420 | 7180 | 6970 | 6770 | 6590 | 6423 |

| Press.<br>in. of<br>Water | 1.05 | 1.10 | 1.15 | 1.20 | 1.30 | 1.40 | 1.50 | 1.60 | 1.70 |
|---------------------------|------|------|------|------|------|------|------|------|------|
| .5                        | 4720 | 1680 | 1640 | 1610 | 1540 | 1490 | 1440 | 1390 | 1350 |
| 1                         | 2620 | 2550 | 2500 | 2450 | 2350 | 2260 | 2190 | 2120 | 2050 |
| 1.5                       | 3260 | 3180 | 3110 | 3050 | 2930 | 2820 | 2730 | 2640 | 2560 |
| 2                         | 3650 | 3560 | 3490 | 3410 | 3280 | 3160 | 3050 | 2960 | 2870 |
| 2.5                       | 4080 | 3990 | 3900 | 3820 | 3670 | 3540 | 3420 | 3310 | 3210 |
| 3                         | 4370 | 4260 | 4170 | 4080 | 3920 | 3780 | 3650 | 3540 | 3430 |
| 3.5                       | 4760 | 4650 | 4550 | 4450 | 4270 | 4120 | 3980 | 3850 | 3740 |
| 4                         | 5030 | 4910 | 4800 | 4700 | 4520 | 4350 | 4210 | 4070 | 3950 |
| 4.5                       | 5450 | 5280 | 5100 | 4920 | 4730 | 4550 | 4390 | 4230 | 4050 |

C A S I N G H E A D      G A S      W E L L S

---

**CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR  
HOURS, OF A ONE HALF INCH  
THIN PLATE ORIFICE.**

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Press.<br>in. of<br>Water | .6    | .65   | .7    | .75   | .8    | .85   | .9    | .95   | 1.    |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| .5                        | 4490  | 4820  | 4160  | 4020  | 3890  | 3770  | 3670  | 3570  | 3480  |
| 1                         | 6260  | 6010  | 5790  | 5600  | 5440  | 5260  | 5110  | 4970  | 4850  |
| 1.5                       | 7900  | 7590  | 7310  | 7070  | 6840  | 6640  | 6450  | 6280  | 6120  |
| 2                         | 9140  | 8780  | 8460  | 8170  | 7910  | 7680  | 7460  | 7260  | 7080  |
| 2.5                       | 10220 | 9820  | 9470  | 9140  | 8850  | 8590  | 8350  | 8120  | 7920  |
| 3                         | 11150 | 10720 | 10330 | 9980  | 9660  | 9370  | 9110  | 8860  | 8640  |
| 3.5                       | 12020 | 11550 | 11130 | 10750 | 10410 | 10100 | 9810  | 9550  | 9310  |
| 4                         | 12800 | 12290 | 11850 | 11440 | 11080 | 10750 | 10450 | 10170 | 9910  |
| 4.5                       | 13480 | 12950 | 12480 | 12050 | 11670 | 11320 | 11000 | 10710 | 10440 |
| 5                         | 14130 | 13570 | 13080 | 12640 | 12230 | 11870 | 11530 | 11230 | 10940 |
| 5.5                       | 14690 | 14110 | 13600 | 13130 | 12720 | 12340 | 11990 | 11670 | 11380 |
| 6                         | 15210 | 14620 | 14080 | 13610 | 13170 | 12780 | 12420 | 12090 | 11780 |

| Press.<br>in. of<br>Water | 1.05  | 1.10  | 1.15  | 1.20  | 1.30  | 1.40 | 1.50 | 1.60 | 1.70 |
|---------------------------|-------|-------|-------|-------|-------|------|------|------|------|
| .5                        | 3400  | 3320  | 3250  | 3180  | 3050  | 2940 | 2840 | 2750 | 2670 |
| 1                         | 4730  | 4620  | 4520  | 4420  | 4250  | 4100 | 3960 | 3830 | 3720 |
| 1.5                       | 5970  | 5830  | 5710  | 5590  | 5370  | 5170 | 5000 | 4840 | 4690 |
| 2                         | 6910  | 6750  | 6600  | 6460  | 6210  | 5980 | 5780 | 5600 | 5430 |
| 2.5                       | 7730  | 7550  | 7380  | 7230  | 6950  | 6690 | 6470 | 6260 | 6070 |
| 3                         | 8430  | 8240  | 8060  | 7890  | 7580  | 7300 | 7050 | 6830 | 6630 |
| 3.5                       | 9090  | 8880  | 8680  | 8500  | 8170  | 7870 | 7600 | 7361 | 7140 |
| 4                         | 9670  | 9450  | 9240  | 9050  | 8690  | 8380 | 8090 | 7840 | 7600 |
| 4.5                       | 10190 | 9950  | 9730  | 9530  | 9160  | 8820 | 8520 | 8250 | 8010 |
| 5                         | 10680 | 10430 | 10200 | 9990  | 9600  | 9250 | 8930 | 8650 | 8390 |
| 5.5                       | 11100 | 10850 | 10610 | 10380 | 9980  | 9610 | 9290 | 8990 | 8720 |
| 6                         | 11500 | 11230 | 10990 | 10760 | 10330 | 9960 | 9620 | 9310 | 9040 |

## C A S I N G H E A D      G A S      W E L L S

**CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR  
HOURS, OF A THREE QUARTER INCH  
THIN PLATE ORIFICE.**

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Press.<br>in. of<br>Water | .6    | .65   | .7    | .75   | .8    | .85   | .9    | .95   | 1.    |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| .5                        | 10560 | 10150 | 9780  | 9450  | 9150  | 8880  | 8630  | 8400  | 8180  |
| 1.                        | 14530 | 13960 | 13450 | 13000 | 12580 | 12210 | 11860 | 11550 | 11260 |
| 1.5                       | 17720 | 17030 | 16410 | 15850 | 15350 | 14890 | 14470 | 14080 | 13730 |
| 2.                        | 20390 | 19590 | 18870 | 18230 | 17650 | 17130 | 16650 | 16200 | 15790 |
| 2.5                       | 22740 | 21850 | 21050 | 20340 | 19700 | 19110 | 18570 | 18070 | 17620 |
| 3.                        | 24880 | 23900 | 23030 | 22250 | 21550 | 20900 | 20310 | 19770 | 19270 |
| 3.5                       | 26990 | 25980 | 24980 | 24140 | 23370 | 22670 | 22030 | 21450 | 20900 |
| 4.                        | 28970 | 27830 | 26820 | 25910 | 25090 | 24340 | 23650 | 23020 | 22440 |
| 4.5                       | 30800 | 29590 | 28510 | 27550 | 26670 | 25870 | 25150 | 24470 | 23860 |
| 5.                        | 32500 | 31230 | 30090 | 29070 | 28150 | 27210 | 26540 | 25830 | 25180 |
| 5.5                       | 34080 | 32740 | 31530 | 30480 | 29510 | 28630 | 27830 | 27080 | 26400 |
| 6                         | 35630 | 34230 | 32990 | 31870 | 30860 | 29940 | 29090 | 28320 | 27600 |

| Press.<br>in. of<br>Water | 1.05  | 1.10  | 1.15  | 1.20  | 1.30  | 1.40  | 1.50  | 1.60  | 1.70  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| .5                        | 7990  | 7800  | 7630  | 7470  | 7170  | 6920  | 6680  | 6470  | 6280  |
| 1.                        | 10980 | 10730 | 10500 | 10280 | 9870  | 9510  | 9190  | 8900  | 8630  |
| 1.5                       | 13400 | 13090 | 12800 | 12530 | 12040 | 11600 | 11210 | 10850 | 10530 |
| 2.                        | 15410 | 15060 | 14730 | 14420 | 13850 | 13350 | 12890 | 12480 | 12110 |
| 2.5                       | 17190 | 16800 | 16430 | 16080 | 15450 | 14890 | 14380 | 13930 | 13510 |
| 3.                        | 18810 | 18380 | 17970 | 17590 | 16900 | 16290 | 15730 | 15230 | 14780 |
| 3.5                       | 20400 | 19930 | 19490 | 19080 | 18330 | 17670 | 17070 | 16530 | 16030 |
| 4.                        | 21900 | 21400 | 20920 | 20480 | 19680 | 18960 | 18320 | 17740 | 17210 |
| 4.5                       | 23280 | 22750 | 22250 | 21770 | 20920 | 20160 | 19480 | 18860 | 18300 |
| 5.                        | 24570 | 24000 | 23580 | 22980 | 22080 | 21280 | 20550 | 19900 | 19310 |
| 5.5                       | 25760 | 25170 | 24620 | 24100 | 23150 | 22310 | 21550 | 20870 | 20250 |
| 6.                        | 26930 | 26310 | 25740 | 25200 | 24200 | 23330 | 22530 | 21820 | 21170 |

## C A S I N G H E A D   G A S   W E L L S

CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR HOURS, OF A ONE INCH THIN PLATE ORIFICE.

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Pressure<br>in. of<br>Water | .6      | .65     | .7      | .75     | .8      | .85     |
|-----------------------------|---------|---------|---------|---------|---------|---------|
| 1                           | 26,440  | 25,440  | 24,500  | 23,660  | 22,920  | 22,220  |
| 2                           | 37,510  | 36,040  | 34,750  | 33,600  | 32,520  | 31,530  |
| 3                           | 46,440  | 44,640  | 43,000  | 41,540  | 40,240  | 39,020  |
| 4                           | 52,630  | 50,590  | 48,740  | 47,060  | 45,600  | 44,200  |
| 5                           | 57,880  | 55,630  | 53,610  | 51,790  | 50,160  | 48,640  |
| 6                           | 63,140  | 60,720  | 58,480  | 56,490  | 54,720  | 53,060  |
| 7                           | 68,110  | 65,470  | 63,090  | 60,910  | 59,040  | 57,210  |
| 8                           | 73,050  | 70,220  | 67,680  | 65,350  | 63,810  | 61,390  |
| 9                           | 77,680  | 74,680  | 72,000  | 69,500  | 67,840  | 65,280  |
| 10                          | 82,340  | 79,150  | 76,270  | 73,650  | 71,370  | 69,190  |
| 11                          | 86,680  | 83,320  | 80,300  | 77,540  | 75,120  | 72,840  |
| 12                          | 90,720  | 87,190  | 84,000  | 81,140  | 78,600  | 76,220  |
| Mercury                     |         |         |         |         |         |         |
| .5                          | 67,200  | 64,600  | 62,300  | 60,100  | 58,200  | 56,500  |
| 1                           | 95,200  | 91,500  | 88,200  | 85,100  | 82,500  | 80,000  |
| 1.5                         | 116,600 | 112,000 | 108,000 | 104,300 | 101,000 | 97,900  |
| 2                           | 134,600 | 129,400 | 124,700 | 120,400 | 116,700 | 113,100 |
| 2.5                         | 145,600 | 139,900 | 134,900 | 130,200 | 126,200 | 122,400 |
| 3                           | 164,900 | 158,500 | 152,700 | 147,500 | 142,900 | 138,600 |
| 3.5                         | 178,200 | 171,300 | 165,100 | 159,400 | 154,500 | 149,800 |
| 4                           | 190,400 | 183,000 | 176,400 | 170,300 | 165,000 | 160,000 |
| 5                           | 212,900 | 204,600 | 197,200 | 190,400 | 184,500 | 178,900 |
| 6                           | 233,200 | 224,100 | 216,000 | 208,600 | 202,100 | 195,900 |
| 7                           | 251,900 | 242,100 | 233,400 | 225,300 | 218,300 | 211,700 |
| 8                           | 269,400 | 258,900 | 249,500 | 240,900 | 233,400 | 226,400 |
| 9                           | 285,700 | 274,600 | 264,700 | 255,600 | 247,600 | 240,100 |
| 10                          | 301,200 | 289,500 | 279,000 | 269,400 | 261,000 | 253,100 |
| 11                          | 315,800 | 303,600 | 292,500 | 282,500 | 273,700 | 265,400 |
| 12                          | 328,400 | 315,700 | 304,200 | 293,800 | 284,600 | 276,000 |

C A S I N G H E A D      G A S      W E L L S

---

**CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR  
HOURS, OF ONE INCH THIN PLATE ORIFICE.**

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINHGEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Pressure<br>in. of<br>Water | .9      | .95     | 1.      | 1.05    | 1.1     | 1.15    |
|-----------------------------|---------|---------|---------|---------|---------|---------|
| 1                           | 21,600  | 21,020  | 20,520  | 20,010  | 19,560  | 19,120  |
| 2                           | 30,640  | 29,800  | 29,080  | 28,360  | 27,720  | 27,120  |
| 3                           | 37,940  | 36,880  | 36,000  | 35,130  | 34,320  | 33,550  |
| 4                           | 42,980  | 41,800  | 40,800  | 39,790  | 38,880  | 38,040  |
| 5                           | 47,280  | 45,980  | 44,880  | 43,770  | 42,760  | 41,880  |
| 6                           | 51,600  | 50,180  | 48,960  | 47,760  | 46,650  | 45,640  |
| 7                           | 55,630  | 54,120  | 52,800  | 51,500  | 50,320  | 49,220  |
| 8                           | 59,680  | 58,050  | 56,640  | 55,240  | 54,000  | 52,800  |
| 9                           | 63,480  | 61,720  | 60,240  | 58,800  | 57,430  | 56,160  |
| 10                          | 67,270  | 65,420  | 63,840  | 62,280  | 60,860  | 59,520  |
| 11                          | 70,800  | 68,880  | 67,200  | 65,560  | 64,080  | 62,660  |
| 12                          | 74,110  | 72,000  | 70,320  | 68,610  | 67,030  | 65,560  |
| <hr/>                       |         |         |         |         |         |         |
| Mercury                     |         |         |         |         |         |         |
| .5                          | 54,900  | 53,400  | 52,100  | 50,800  | 49,600  | 48,600  |
| 1                           | 77,800  | 75,600  | 73,800  | 72,800  | 70,300  | 68,800  |
| 1.5                         | 95,300  | 92,600  | 90,400  | 88,200  | 86,200  | 84,300  |
| 2                           | 110,000 | 107,000 | 104,400 | 101,800 | 99,500  | 97,300  |
| 2.5                         | 118,900 | 115,700 | 112,900 | 110,100 | 107,600 | 105,300 |
| 3                           | 134,700 | 131,000 | 127,800 | 124,700 | 121,800 | 119,200 |
| 3.5                         | 145,600 | 141,600 | 138,200 | 134,800 | 131,700 | 128,800 |
| 4                           | 155,600 | 151,300 | 147,600 | 144,000 | 140,700 | 137,600 |
| 5                           | 174,000 | 169,200 | 165,000 | 161,000 | 157,300 | 153,900 |
| 6                           | 190,500 | 185,300 | 180,800 | 176,400 | 172,300 | 168,600 |
| 7                           | 205,800 | 200,200 | 195,300 | 190,600 | 186,200 | 182,100 |
| 8                           | 220,100 | 214,000 | 208,800 | 203,700 | 199,100 | 194,700 |
| 9                           | 233,500 | 227,000 | 221,500 | 216,100 | 211,200 | 206,500 |
| 10                          | 246,100 | 239,300 | 233,500 | 227,800 | 222,600 | 217,700 |
| 11                          | 258,000 | 250,900 | 244,800 | 238,900 | 233,400 | 228,300 |
| 12                          | 268,400 | 261,000 | 254,600 | 248,400 | 242,700 | 237,400 |

C A S I N G H E A D      G A S      W E L L S

---

CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR HOURS, OF A ONE INCH THIN PLATE ORIFICE.

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Pressure<br>in. of<br>Water | 1.2     | 1.3     | 1.4     | 1.5     | 1.6     | 1.7     |
|-----------------------------|---------|---------|---------|---------|---------|---------|
| 1                           | 18,720  | 18,000  | 17,320  | 16,750  | 16,200  | 15,720  |
| 2                           | 26,540  | 25,480  | 24,570  | 23,760  | 22,990  | 22,290  |
| 3                           | 32,850  | 31,560  | 30,400  | 29,370  | 28,440  | 27,600  |
| 4                           | 37,220  | 35,760  | 34,460  | 33,310  | 32,230  | 31,270  |
| 5                           | 40,940  | 39,860  | 37,920  | 36,620  | 35,470  | 34,410  |
| 6                           | 44,680  | 42,960  | 41,370  | 39,960  | 38,680  | 37,530  |
| 7                           | 48,190  | 46,320  | 44,610  | 43,100  | 41,730  | 40,480  |
| 8                           | 51,690  | 49,680  | 47,850  | 46,220  | 44,760  | 43,410  |
| 9                           | 54,960  | 52,800  | 50,880  | 49,170  | 47,610  | 46,200  |
| 10                          | 58,240  | 55,960  | 53,920  | 52,100  | 50,440  | 48,960  |
| 11                          | 61,320  | 58,920  | 56,780  | 54,860  | 53,110  | 51,520  |
| 12                          | 64,170  | 61,680  | 59,400  | 57,400  | 55,580  | 53,920  |
| Mercury                     |         |         |         |         |         |         |
| .5                          | 47,500  | 45,700  | 44,000  | 42,500  | 41,100  | 39,900  |
| 1                           | 67,300  | 64,700  | 62,300  | 60,200  | 58,300  | 56,600  |
| 1.5                         | 82,500  | 79,200  | 76,300  | 73,800  | 71,400  | 69,300  |
| 2                           | 95,300  | 91,500  | 88,200  | 85,200  | 82,500  | 80,000  |
| 2.5                         | 103,000 | 99,000  | 95,400  | 92,200  | 89,200  | 86,500  |
| 3                           | 116,600 | 112,000 | 108,000 | 104,300 | 101,000 | 98,000  |
| 3.5                         | 126,100 | 121,200 | 116,700 | 112,800 | 109,200 | 105,900 |
| 4                           | 134,700 | 129,400 | 124,700 | 120,500 | 116,600 | 113,200 |
| 5                           | 150,600 | 144,700 | 139,400 | 134,700 | 130,400 | 126,500 |
| 6                           | 165,000 | 158,500 | 152,700 | 147,600 | 142,900 | 138,600 |
| 7                           | 178,200 | 171,200 | 165,000 | 159,400 | 154,300 | 149,700 |
| 8                           | 190,600 | 183,100 | 176,400 | 170,500 | 165,000 | 160,100 |
| 9                           | 202,100 | 194,200 | 187,100 | 180,800 | 175,000 | 169,800 |
| 10                          | 213,100 | 204,700 | 197,300 | 190,600 | 184,500 | 179,000 |
| 11                          | 223,400 | 214,700 | 206,800 | 199,900 | 193,500 | 187,700 |
| 12                          | 232,400 | 223,300 | 215,100 | 207,900 | 201,200 | 195,200 |

C A S I N G H E A D      G A S      W E L L S

---

CAPACITIES, IN CUBIC FEET, PER TWENTY FOUR  
HOURS, OF A ONE AND ONE QUARTER  
INCH THIN PLATE ORIFICE.

THICKNESS OF PLATE, ONE EIGHTH INCH.

USED IN TESTING SMALL NATURAL AND CASINGHEAD GAS WELLS.

Specific Gravities—.6 to 1.7.

Temperature—60 deg. fahr.

Atmospheric Pressure—14.4.

| Press.<br>in. of<br>Water | .6     | .65    | .7    | .75   | .8    | .85   | .9    | .95   | 1.    |
|---------------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| .5                        | 82780  | 81490  | 80350 | 29320 | 28390 | 27540 | 26760 | 26050 | 25390 |
| 1.0                       | 46260  | 44440  | 42830 | 41380 | 40060 | 38860 | 37770 | 36760 | 35830 |
| 1.5                       | 56600  | 54380  | 52410 | 50630 | 49020 | 47560 | 46210 | 44980 | 43850 |
| 2.                        | 64840  | 62300  | 60040 | 58000 | 56160 | 54480 | 52940 | 51530 | 50230 |
| 2.5                       | 72400  | 69570  | 67040 | 64760 | 62710 | 60830 | 59120 | 57540 | 56090 |
| 3.                        | 77980  | 74920  | 72200 | 69750 | 67540 | 65520 | 63670 | 61970 | 60410 |
| 3.5                       | 84490  | 81180  | 78220 | 75570 | 73170 | 70980 | 68980 | 67140 | 65450 |
| 4.                        | 91400  | 87810  | 84620 | 81750 | 79150 | 76790 | 74620 | 72630 | 70800 |
| 4.5                       | 97810  | 93980  | 90560 | 87490 | 84710 | 82180 | 79860 | 77730 | 75770 |
| 5                         | 103260 | 99210  | 95610 | 92370 | 89430 | 86760 | 84310 | 82060 | 80000 |
| 5.5                       | 107230 | 103020 | 99280 | 95910 | 92870 | 90090 | 87550 | 85210 | 83060 |

| Press.<br>in. of<br>Water | 1.05  | 1.10  | 1.15  | 1.20  | 1.30  | 1.40  | 1.50  | 1.60  | 1.70  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| .5                        | 24779 | 24210 | 23680 | 23180 | 22270 | 21458 | 20730 | 20070 | 19470 |
| 1.                        | 34968 | 34160 | 33410 | 32710 | 31420 | 30280 | 29250 | 28320 | 27480 |
| 1.5                       | 42790 | 41810 | 40890 | 40030 | 38460 | 37060 | 35800 | 34670 | 33630 |
| 2.                        | 49020 | 47890 | 46840 | 45850 | 44050 | 42450 | 41010 | 39710 | 38520 |
| 2.5                       | 54735 | 53480 | 52300 | 51200 | 49190 | 47400 | 45800 | 44340 | 43020 |
| 3.                        | 58950 | 57600 | 56330 | 55150 | 52980 | 51050 | 49320 | 47760 | 46330 |
| 3.5                       | 63870 | 62400 | 61030 | 59750 | 57400 | 55310 | 53440 | 51740 | 50200 |
| 4.                        | 69090 | 67500 | 66020 | 64630 | 62090 | 59840 | 57810 | 55970 | 54300 |
| 4.5                       | 73940 | 72240 | 70650 | 69170 | 66450 | 64040 | 61860 | 59900 | 58110 |
| 5.                        | 78070 | 76280 | 74600 | 73030 | 70160 | 67610 | 65320 | 63240 | 61360 |
| 5.5                       | 81060 | 79194 | 77450 | 75820 | 72850 | 70200 | 67820 | 65660 | 63700 |

## C A S I N G H E A D      G A S      W E L L S

## SIZES OF CASING

| Nominal Inside Diameter Inches | Outside Diameter Inches       | Nominal Weight per Foot Pounds | Number of Threads per Inch     | Outside Diameter of Couplings Inches |
|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------------|
| 2                              | 2 <sup>1</sup> / <sub>4</sub> | 2.16                           | 14                             | 2.687                                |
| 2 <sup>1</sup> / <sub>4</sub>  | 2 <sup>1</sup> / <sub>2</sub> | 2.75                           | 14                             | 2.875                                |
| 2 <sup>1</sup> / <sub>2</sub>  | 2 <sup>3</sup> / <sub>4</sub> | 3.04                           | 14                             | 3.187                                |
| 2 <sup>3</sup> / <sub>4</sub>  | 3                             | 3.33                           | 14                             | 3.500                                |
| 3                              | 3 <sup>1</sup> / <sub>4</sub> | 3.96                           | 14                             | 3.781                                |
| 3 <sup>1</sup> / <sub>4</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 4.28                           | 14                             | 4.000                                |
| 3 <sup>1</sup> / <sub>2</sub>  | 3 <sup>3</sup> / <sub>4</sub> | 4.60                           | 14                             | 4.250                                |
| 3 <sup>3</sup> / <sub>4</sub>  | 4                             | 5.47                           | 14                             | 4.625                                |
| 4                              | 4 <sup>1</sup> / <sub>4</sub> | 5.85                           | 14                             | 4.687                                |
| 4 <sup>1</sup> / <sub>4</sub>  | 4 <sup>1</sup> / <sub>2</sub> | 6.00                           | 14                             | 4.937                                |
| 4 <sup>1</sup> / <sub>2</sub>  | 4 <sup>1</sup> / <sub>2</sub> | 9.00                           | 14                             | 4.937                                |
| 4 <sup>1</sup> / <sub>2</sub>  | 4 <sup>3</sup> / <sub>4</sub> | 6.55                           | 14                             | 5.218                                |
| 4 <sup>1</sup> / <sub>2</sub>  | 4 <sup>3</sup> / <sub>4</sub> | 9.00                           | 14                             | 5.218                                |
| 4 <sup>3</sup> / <sub>4</sub>  | 5                             | 7.58                           | 14                             | 5.562                                |
| 5                              | 5 <sup>1</sup> / <sub>4</sub> | 8.00                           | 14                             | 5.781                                |
| 5                              | 5 <sup>1</sup> / <sub>4</sub> | 10.00                          | 14                             | 5.781                                |
| 5                              | 5 <sup>1</sup> / <sub>4</sub> | 13.00                          | 11 <sup>1</sup> / <sub>2</sub> | 5.781                                |
| 5                              | 5 <sup>1</sup> / <sub>4</sub> | 17.00                          | 11 <sup>1</sup> / <sub>2</sub> | 5.781                                |
| 5 <sup>1</sup> / <sub>6</sub>  | 5 <sup>1</sup> / <sub>2</sub> | 8.40                           | 14                             | 6.062                                |
| 5 <sup>1</sup> / <sub>6</sub>  | 5 <sup>1</sup> / <sub>2</sub> | 13.00                          | 11 <sup>1</sup> / <sub>2</sub> | 6.062                                |
| 5 <sup>5</sup> / <sub>8</sub>  | 6                             | 10.16                          | 14                             | 6.062                                |
| 5 <sup>5</sup> / <sub>8</sub>  | 6                             | 12.00                          | 11 <sup>1</sup> / <sub>2</sub> | 6.625                                |
| 5 <sup>5</sup> / <sub>8</sub>  | 6                             | 14.00                          | 11 <sup>1</sup> / <sub>2</sub> | 6.625                                |
| 5 <sup>5</sup> / <sub>8</sub>  | 6                             | 17.00                          | 11 <sup>1</sup> / <sub>2</sub> | 6.625                                |
| 6 <sup>1</sup> / <sub>4</sub>  | 6 <sup>5</sup> / <sub>8</sub> | 11.50                          | 14                             | 7.125                                |
| 6 <sup>1</sup> / <sub>4</sub>  | 6 <sup>5</sup> / <sub>8</sub> | 13.00                          | 11 <sup>1</sup> / <sub>2</sub> | 7.125                                |
| 6 <sup>1</sup> / <sub>4</sub>  | 6 <sup>5</sup> / <sub>8</sub> | 17.00                          | 11 <sup>1</sup> / <sub>2</sub> | 7.125                                |
| 6 <sup>5</sup> / <sub>8</sub>  | 7                             | 12.45                          | 14                             | 7.687                                |
| 6 <sup>5</sup> / <sub>8</sub>  | 7                             | 17.00                          | 10                             | 7.687                                |
| 7 <sup>1</sup> / <sub>4</sub>  | 7 <sup>5</sup> / <sub>8</sub> | 13.50                          | 14                             | 8.220                                |
| 7 <sup>5</sup> / <sub>8</sub>  | 8                             | 15.00                          | 11 <sup>1</sup> / <sub>2</sub> | 8.625                                |
| 7 <sup>5</sup> / <sub>8</sub>  | 8                             | 20.00                          | 11 <sup>1</sup> / <sub>2</sub> | 8.625                                |
| 8 <sup>1</sup> / <sub>4</sub>  | 8 <sup>5</sup> / <sub>8</sub> | 16.00                          | 11 <sup>1</sup> / <sub>2</sub> | 9.312                                |
| 8 <sup>1</sup> / <sub>4</sub>  | 8 <sup>5</sup> / <sub>8</sub> | 20.00                          | 11 <sup>1</sup> / <sub>2</sub> | 9.312                                |
| 8 <sup>1</sup> / <sub>4</sub>  | 8 <sup>5</sup> / <sub>8</sub> | 24.00                          | 8                              | 9.312                                |
| 8 <sup>5</sup> / <sub>8</sub>  | 9                             | 17.50                          | 11 <sup>1</sup> / <sub>2</sub> | 9.750                                |
| 9 <sup>5</sup> / <sub>8</sub>  | 10                            | 21.00                          | 11 <sup>1</sup> / <sub>2</sub> | 10.812                               |
| 10 <sup>5</sup> / <sub>8</sub> | 11                            | 23.00                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |
| 11 <sup>5</sup> / <sub>8</sub> | 12                            | 25.15                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |
| 12 <sup>1</sup> / <sub>2</sub> | 13                            | 35.75                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |
| 13 <sup>1</sup> / <sub>2</sub> | 14                            | 42.02                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |
| 14 <sup>1</sup> / <sub>2</sub> | 15                            | 47.66                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |
| 15 <sup>1</sup> / <sub>2</sub> | 16                            | 51.47                          | 11 <sup>1</sup> / <sub>2</sub> | .....                                |

C A S I N G H E A D      G A S      W E L L S

---



Fig. 14.—BOOSTER STATION. BOTH THE VACUUM PUMP AND BOOSTER COMPRESSOR ARE INSTALLED IN THIS STATION

**Booster Station**—A booster station generally refers to a building near a group of casinghead gas wells in which is installed a vacuum pump and a booster or compressor. The power used is generally a gas engine for each compressor.

The vacuum pump is built with large size cylinders and is run at low speed. It is connected directly on gas lines from the casinghead gas wells.

The object in use of same is to pump or create a vacuum on the lines and wells and to deliver a large volume of gas at approximately atmospheric pressure to the booster or compressor adjoining it.

The booster or compressor receives the gas from the vacuum pump at about atmospheric pressure and raises the pressure from 25 to 40 lb. to overcome the friction in the pipe line between the booster station and the main plant.

Large tanks with baffle plates on the interior are installed on the discharge side of the vacuum pump and the booster or compressor. Considerable gasoline of low gravity is collected in same. This gasoline is placed in drums and hauled to the main plant. If the color is good it is put into a stock tank, but if it is off color, i. e., yellow, it is refined in a steam still similar to the method employed at refineries.

**Advantage of Pumping Gas from a Well Under a Vacuum**—It is a well known fact that the lower the pressure on a liquid the lower the boiling point, and the higher the pressure the higher the boiling point. It is just as essential to compress casinghead gas to a high pressure to condense the gasoline gases, as it is to lower the pressure on the well to lower the boiling point and increase the evaporation of the gasoline in the oil lying in the natural state in the oil sand.

To illustrate: Water will boil at 212 deg. fahr. at sea level or atmospheric pressure of 14.7 lb. per sq. inch. Water in a boiler under pressure of 15 lb. per sq. inch above atmos-



Fig. 15—INTERIOR OF BOOSTER STATION SHOWING VACUUM PUMP AND BOOSTER COMPRESSOR

pheric pressure will boil at a temperature of 249 deg. fahr. and under a pressure of thirty pounds above atmospheric pressure will boil at a temperature of 273 deg. fahr. Likewise when the pressure is lowered to below atmospheric pressure the boiling point of water drops below 212 deg. fahr. With a pressure of 25 in. or 26 in. vacuum the water will boil at 32 deg. fahr.

The same theory applies to all hydrocarbons. Therefore it is good practice to apply as great a vacuum as possible on a casinghead gas well, provided the oil sand is not so loose that the vacuum draws the loose sand into the well which would cause trouble.

Placing a vacuum on a casinghead gas well increases both the flow of the oil and the flow of the gas.

**Air in Casinghead Gas**—It is good policy to take samples of the gas from each of the main field lines monthly or even weekly and to make an analysis of same for oxygen.

Instances have been known to the writer where a gasoline plant after running for several weeks did not produce the quantity of gasoline per thousand cubic feet of gas treated that the preliminary tests, which included the portable compressor tests, showed the gas carried. After an extended investigation of the plant, lines, etc., the trouble was located in defective casingheads, which permitted the entrance of air into the lines due to the vacuum pressure on the wells and lines. It was then evident that the reason for the low production of gasoline from the gas at this particular plant was due to the fact that the plant was receiving a mixture of casinghead gas and air. After the lines and casingheads were placed in gas tight condition the production of gasoline increased to a greater amount per thousand cubic feet of gas treated than the portable compressor test had shown in preliminary tests.

In addition to the production loss at the plant there was a loss through the air passing through the meter and being

C A S I N G H E A D      G A S      W E L L S



registered the same as gas. In other words, all the air that leaked into the lines back of the meter was charged for at the same rate as for the gas.

An incident is known to the writer where the analysis of casinghead gas from one well showed as much as 65 per cent air while being pumped under vacuum pressure. This was due to a loose fitting two inch plug in the casinghead.

It is good policy to have the pipe lines on each lease or group of leases so arranged that it is possible to put a pressure on them to determine any leakage. If the natural pressure of the casinghead gas when shut in, does not run up high enough, it is possible to shut the stops on lines running to the lease and connect the residue gas line to them. As the residue gas is generally under a pressure of twenty-five pounds or greater, the test for leakage can be made with this gas.

Invariably the leakage on a system of lines is due to many leaks of small size. All leaks, however small, should be stopped.

It is hardly necessary to mention that a mixture of casinghead gas and air would be liable to cause an explosive mixture, the same as found in a gas engine cylinder. All that would be lacking would be the spark. This might be caused by a pebble rolling along the inside of the pipe and hitting some obstruction.

**Eliminating Air from Suction Lines**—Air is one of the greatest sources of trouble in the operation of a casinghead plant. It causes trouble in the following ways:

**FIRST—Loss of Production**—The air, in mixing with the casinghead gasoline mixes with vapors of the gasoline and raises the temperature and pressure required to liquefy gasoline constituents to so high a point that the plant cannot properly condense and remove the gasoline.

**SECOND—Damage to Plant Machinery**—In many plants the most destructive affect of air is its affect upon the

engines, owing to the gasoline not being extracted from the gas and being carried to the engines. A gas engine works in the same manner as a gasoline engine. Most gas engines have too high a compression to take gasoline gas without ignition. Gasoline engines should not have over 75 pounds compression, whereas the gas engines regularly employed in gasoline plants have much more. When the rich mixture of air and casinghead gas strikes the engines, it causes excessive heating in the cylinder due to pre-ignition and quick burning of the charge. This causes frequent shut downs and often it becomes necessary to rebore the cylinders. As the plant becomes older and the vacuum on the sand increases, the engine trouble increases, due to greater leakage of air. Engines have been known to become so hot from running on mixtures of air and gas as to melt the ignition apparatus inside the cylinders. The cost of operating a plant suffering from air troubles run to an excessive figure from engine repairs alone.

**THIRD—Increased Cost of Gas Due to Mixture of Air**—The amount of gas decreases directly in proportion to the amount of air in it and this loss is considerable. However, it is much less than the two above losses. Plants have been built on quantities of gas amounting to three to four hundred thousand cubic feet, and when the air has been eliminated, the amount of gas remaining has fallen to the original, owing to the fact that the gas as originally measured contained more than 50 per cent air.

Most gas pumps will show 9 to 10 per cent air. The ordinary pump in good condition will show not over 14 per cent. Wells and lines on some leases in poor condition will show from 35 to 65 per cent air. Most of this leakage takes place around the casinghead, or in the casing. Stuffing boxes on pumps also cause trouble.

In a general way it may be said that the affects of air accumulative, that is, the admission of air causes other bubbles which in turn create still others, until the plant operator has so much trouble on his hands it takes most of profit from the plant operation.

Conversely, removing air will decrease the amount of work to be done by the engines at the plant, the working pressure can be lowered as the gas will be richer and easier work, and the engines will operate under more favorable conditions, as they have better gas on which to do the work.



**A**—Sample collecting tube or tank.

**B**—Water storage tank.

**C**—Three eighth inch union.

**D**—Three eighth inch tap in gas line.

**E, F, G, H, J**—Three eighth inch wheel valves.

**L**—Three eighth inch pipe.

**M**—Brace to hold **L** and **A** in relative position.

7.—APPARATUS FOR TAKING SAMPLE OF GAS FROM PIPE LINE UNDER VACUUM

If air cannot be eliminated, it is best to reduce the compression of the engines by using deeper cylinder heads. Compression rings, owing to the insulating effect of the gaskets adjoining them have a tendency to become hot and cause pre-ignition. Increasing the water flow to the jackets will give some help, also.

**Taking Sample of Gas from a Pipe Line under a Vacuum**—Figure 17 shows the method of taking a sample of gas from a pipe line under a vacuum pressure.

To take a sample of gas proceed as follows:

Make two three eighths inch taps on top of the gas line the proper distance apart to fit similar connections on the sampling outfit. Screw in each tap a three eighths inch nipple with wheel valve and in each valve screw a short nipple with a half three eighths inch union. The face of the union in each connection should be the same distance from the pipe line.

Before attaching portable sampling outfit to the three eighths inch connections on the pipe line, close valve F, invert apparatus and fill tank A with water while both valves G and J are open. After filling close valves G and J.

Fill the pipe connections on the pipe line between H and C and between E and C with water. Place the apparatus with all the valves closed and connect unions C and C. Make sure that there are no leaks in any of the connections.

After attaching apparatus fill the storage tank B to the top with water.

To obtain the sample, open valves G and H and then valves J and E. Water will flow into the pipe line and the gas will flow through pipe L into tank A. After allowing sufficient time for the water to flow out of the tank, close valves G and J and then open valve F, allowing the water to flow from the storage tank B into A. After the water has equalized between A and B close valve. Repeat the

operation of flowing the water from A into the pipe line, by opening valves G and J. This second operation greatly assists in obtaining a true sample.

Close all valves and remove apparatus by disconnecting unions C and C. To overcome the vacuum in the sample of gas, refill B and allow water to flow into A by opening valve F.

Sample of gas can be forced out of pipe L from A into pipette by placing water in B and opening the valve F.

Connections D-H and D-E can be left in the pipe line permanently.

#### ORSAT APPARATUS FOR DETERMINING OXYGEN AND CARBON DIOXIDE IN NATURAL GAS

*By George A. Burrell*

"This is an apparatus especially designed for the determination of oxygen and carbon dioxide in casinghead gas at gasoline plants and in lines. Very often the gas as it comes from the wells, is under reduced pressure so that air leaks into the gas if joints in tubing are not tight.

The Orsat apparatus shown at figures 18 and 19 consists essentially of the burette C, the caustic potash pipette A and the Pyro pipette B. A sample tube D is shown connected to the apparatus. The gas is measured in the burette C and then passed into the pipette A, where the carbon dioxide is removed. After again measuring the sample and recording the contraction in volume due to the absorption of carbon dioxide by the caustic potash solution, it is passed into the pyro, pipette B, where the oxygen is removed. The sample is again measured and the amount of oxygen absorbed by the pyro. solution is recorded. From the amount of the oxygen present in the sample the amount of air can be calculated.

C A S I N G H E A D      G A S      W E L L S

---



*Fig. 18 ORSAT APPARATUS FOR ANALYZING CASINGHEAD GAS FOR OXYGEN*

**Method of Operation**—To charge the apparatus with solutions, water is poured into the bottle H, and from there caused to rise in the burette C by raising H and opening the three-way stop-cock F to the air. When the water has risen in C to about the point M the stopcock F is closed. The bottle H should then be about one fourth full of water.

Caustic potash solution is then poured into the pipette A until the latter is one half full. The solution is poured into the wide mouth opening of the pipette at the rear of the apparatus. The two limbs of the pipette (the pipette is "u" shaped) should be one-half full. When the pipette is filled the pinchcock N and stopcock F should both be open.

The pipette B is filled with "pyro" solution in the same manner. The caustic potash solution in pipette A is drawn up to the etch mark, just below the rubber tubing, by closing the stopcock F and the pinchcock O, opening the pinchcock N, and letting the water fall in the burette C. As this water falls it pulls the solution up in the pipette. To draw the solution clear to the etch mark the level bottle H is lowered. Care must be exercised to draw the solution very slowly and carefully to the etch mark and not by a sudden jerk draw the solution into the stopcock or up into the tube P. To regulate this process the rubber tubing attached to H can be slightly pinched, whereupon the solution will rise in H slowly and evenly.

The "pyro" solution is adjusted in B in the same manner. Rubber bags are provided with each pipette. These are fastened by means of rubber stoppers to the rear of each pipette to keep air from entering the pipettes.

A sample of gas is collected in the sampling tube D, much in the manner described under the heading "Apparatus for Testing Casinghead Gas for Gasoline Content." The sample is collected after the gas has been compressed, because if the natural gas is under much reduced pressure

C A S I N G H E A D      G A S      W E L L S



FIG. 19.—SHOWING METHOD OF MAKING ANALYSIS OF CASINGHEAD GAS FOR OXYGEN

between the "plant" and the wells, it will be difficult to collect a sample at the latter place. The sample tube filled with water is attached to a petcock somewhere in the "plant" where the gas is under pressure, the petcock opened, the water forced out, and the gas allowed to blow through the sample tube for several minutes. The pinch-cocks on each end of the sample tubes are then closed and the sample carried to the Orsat apparatus for analysis.

The sample tube D is attached to the apparatus as shown with its lower end dipping in a basin of water. Previous to this the burette C should be filled with water to the mark M and the pipettes A and B filled with solution to the etch marks just below the rubber tubing on each pipette.

To transfer the sample from the pipette D to the burette C, the pinchcocks on the sample tube, and the stopcock F are opened, whereupon the water will fall in the burette C and rise in the sample tube D, the gas passing from the tube D into the burette C. When approximately 100 c. c. of gas have passed into C, the stopcock F and the pinchcocks on the sample tube are closed. Next the gas in the burette is measured by holding the bottle H so the level of the water in it is on a line with the level of the water in the burette. The number of cubic centimeters of gas are then read on the burette. Next the gas is passed into the pipette A by raising the level bottle H, and opening the pinchcock on the pipette A. The water in C will rise and the caustic potash solution in A will fall, the gas passing from the burette C to the pipette A. The water in C is allowed to rise to the point M. The caustic potash solution will then react with the carbon dioxide in the gas sample and remove it from the sample. The gas is allowed to remain in contact with the caustic potash solution about three minutes. Then the gas is passed back into the burette and again measured. The contraction in volume shows the

cubic centimeters of carbon dioxide that have been removed from the gas.

The gas is next passed into the "pyro" pipette and the oxygen removed from the gas sample. It is best to pass the gas sample back and forth between the burette and "pyro" pipette until no more oxygen is removed as determined by successive readings of the sample in the burette. "Pyro" removes oxygen more slowly than caustic potash removes carbon dioxide.

The caustic potash solution can be used for a great number of determinations, while the "Pyro" solution should be renewed more often, depending of course on the oxygen content of the samples that are tested. It should be occasionally tried out by analyzing a sample of atmospheric air. The latter contains 20.9 per cent oxygen. "Pyro" solution also removes carbon dioxide from a gas mixture, hence if it is not removed first by means of caustic potash solution, it will be removed by the "Pyro" and misleads the analyst into believing there is more oxygen present in the mixture than the true amount.

The following example shows the method of calculation:

#### Method of Calculating Orsat Analysis.

|                                                         | c. c. |
|---------------------------------------------------------|-------|
| Sample taken for analysis.....                          | 95.0  |
| Volume after absorption in caustic potash solution..... | 94.1  |
| Carbon dioxide.....                                     | 0.9   |
| Volume after "Pyro" absorption.....                     | 90.0  |
| Oxygen.....                                             | 4.1   |

These values become as follows when calculated to a percentage basis.

$$\text{Carbon dioxide} = \frac{0.9}{95} \times 100 = 0.9 \text{ per cent.}$$

## C A S I N G H E A D      G A S      W E L L S

---

$$\text{Oxygen} = \frac{4.1}{95.0} \times 100 = 4.3 \text{ per cent.}$$

The air in the sample becomes:

$$\frac{4.3}{20.9} \times 100 = 20.6 \text{ per cent.}$$

### Tank for Separating Gas from Oil Flowing from Well—

Tanks are often used on oil leases showing large quantities of gas where the oil flows or is pumped. The gas taken from the oil is of first-class quality to run a gas engine at the power house, or could be compressed to extract the gasoline, provided there is a sufficient quantity of gas to make it pay. The separating tank should be set high enough to allow the oil, after separation, to flow freely to the regular oil tanks.



Fig. 20  
AUTOMATIC OIL AND GAS SEPARATOR

## PART FOUR

### CONSTRUCTION OF PIPE LINES

Little need be said on this subject, as it is a very familiar one to all gas and oil men.

Seldom are the lines very long or very large in diameter. Most of the lines in use are from two inch to eight inch.

As the pressure is often many inches of mercury below atmospheric pressure, though the gas volumes to be carried are generally small, considerably larger lines are required than if the same volume of gas were carried at a pressure much higher than atmospheric.

Pipe lines should be large, thereby decreasing the loss in pressure between the vacuum pumps and the wells and increasing the vacuum in the wells due to less friction in large lines.

While plain end pipe is occasionally used to transport casinghead gas, screw pipe is more commonly used. The effect of free gasoline on the rubber rings used on plain end pipe, quickly rots the rubber and creates leaks. With the screw joint, gasoline has also a tendency to cut the asphaltum paint used on the thread and this creates small leaks.

When screw pipe is used, thick shellac is better than asphaltum to use on the pipe threads. In addition it is good policy to use collar leak clamps on every joint.

With welded pipe joints, all liability of leaks is eliminated. The reader will appreciate that deposited gasoline, which is always found in casinghead gas pipe lines, is a very difficult liquid to control, consequently the advantage of the welded joint over the plain end and screwed joints should open a very large field for the former.

**Welding Gas Lines**—In welding gas lines, the pipe is strung along on top of the ground, outside of the trench.

## PIPE LINES



Fig. 22—PLAN OF PIPE LINE SYSTEM ON AN OIL WELL LEASE

Two or more lengths of pipe are butted together and welded by an operator, assisted by two helpers, one at each end of the section. The helpers turn the section with chain tongs or other devices so that the operator is always welding on top of the pipe—a position in which the fastest work can be accomplished.

Various engineers use different methods of handling the pipe for welding. While many follow the method described above for all sizes of pipe, some engineers weld the larger sizes, namely, 8, 10 and 12 inches, supported on skids directly above the trench. In this way frequently two operators work on opposite sides of the pipe, which is turned, as the work progresses, by one or more helpers.

With the small oxy-acetylene flame, which has a temperature of approximately 6300 degrees, the metal on each side of the joint is heated to the fusion point, when pure Norway iron wire is fused into the molten metal, forming a true fusion weld. By this simple method the operator does the work, building up the weld to any desired thickness, making the joint as strong as desired.

Where the pipes are cut off straight, the two sections are butted up to within  $\frac{1}{16}$  to  $\frac{1}{4}$  inch of each other according to the size of the pipe, and the weld is made as described.

Fig. 22 illustrates a welding unit most suitable for field use. The unit consists of two steel cylinders, one each of compressed acetylene and oxygen, welding blow-pipe, necessary regulators, hose, etc. The entire outfit is mounted on a two-wheeled truck and is easily and quickly moved from place to place as required.

As fast as a section of welded pipe is finished it is capped at both ends and tested for leaks, under any desired pressure.

After the welded section has been tested and found satisfactory, it is rolled to the trench and lowered into place.

Although the pipe in the trench should be graded as carefully as is customary in ordinary practice, no care need

be taken to have it lie absolutely straight. In fact the more snake-like the pipe lies in the trench, the better, as by this

method contraction and expansion are taken care of. Common practice has demonstrated that because of the great strength and flexibility of the welded joint this is the only provision necessary to take care of expansion and contraction.



Fig. 22 — PORTABLE WELDING OUTFIT  
CONSISTING OF TWO STEEL CYLINDERS  
—ONE OF OXYGEN AND ONE OF ACETYLENE  
WITH REGULATORS, HOSE, ETC.

which good welding is readily accomplished after proper practice.

Where laterals are required, a hole of the proper size is cut in the main with the cutting blowpipe, and the lateral is welded into place at any angle desired.

One of the great advantages in this method of pipe line construction is the eliminating of joints, collars, sleeves, fittings, etc., thus greatly decreasing the leakage.

## PIPE LINES

COMPARATIVE CAPACITY OF PIPES OF DIFFERENT  
GAS APPLIED TO LINES IN WHICH A

| SIZE<br>OF<br>PIPE<br>IN.           | 1     | 2     | 3     | 4     | 5     | 6     | 8      |
|-------------------------------------|-------|-------|-------|-------|-------|-------|--------|
| COMPARATIVE                         |       |       |       |       |       |       |        |
| Note—In making computations observe |       |       |       |       |       |       |        |
| 1                                   | 1     | .34   | .265  | 1,150 | 3,573 | 9,085 | 39,000 |
| 2                                   | .0294 | 1     | 7.8   | 34    | 105   | 266   | 1,150  |
| 3                                   | .0037 | .128  | 1     | 4.34  | 13.45 | 34    | 147    |
| 4                                   | ..... | .0295 | .231  | 1     | 3.11  | 7.80  | 34     |
| 5                                   | ..... | ..... | .0741 | .3274 | 1     | 2.51  | 10.94  |
| 6                                   | ..... | ..... | .0293 | .1272 | .3954 | 1     | 4.34   |
| 8                                   | ..... | ..... | .0037 | .0295 | .0915 | .2316 | 1      |
| 10                                  | ..... | ..... | ..... | .0094 | .0295 | .0741 | .3260  |
| 12                                  | ..... | ..... | ..... | ..... | .0116 | .0295 | .1272  |
| 15 $\frac{1}{4}$                    | ..... | ..... | ..... | ..... | ..... | .0086 | .0373  |
| 16                                  | ..... | ..... | ..... | ..... | ..... | ..... | .0295  |
| 17 $\frac{1}{4}$                    | ..... | ..... | ..... | ..... | ..... | ..... | .....  |
| 18                                  | ..... | ..... | ..... | ..... | ..... | ..... | .....  |
| 19 $\frac{1}{4}$                    | ..... | ..... | ..... | ..... | ..... | ..... | .....  |
| 20                                  | ..... | ..... | ..... | ..... | ..... | ..... | .....  |

The above table is based upon the fact that the length of pipes for the same quantity of gas varies as the 5.0835 power of their diameters. The value of the increasing or decreasing sizes can readily be appreciated by an inspection of the table.

It is particularly useful in securing the value of a series of different sizes of pipes in the same line by reducing the values of the several sizes to some one of the sizes in use. For example, on the horizontal line in the table a unit, say 1 foot or 1 mile of 8 inch pipe,

P I P E   L I N E S

---

DIAMETERS CONVEYING THE SAME QUANTITY OF  
NUMBER OF DIFFERENT SIZES ARE USED

(By F. H. Oliphant)

| 10 | 12 | 15½ | 16 | 17½ | 18 | 19½ | 20 |
|----|----|-----|----|-----|----|-----|----|
|----|----|-----|----|-----|----|-----|----|

VALUES

carefully the decimal notations.

|         |         |           |           |           |           |           |           |
|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| 121,210 | 306,380 | 1,043,700 | 1,326,000 | 1,937,700 | 2,406,100 | 3,382,300 | 4,120,000 |
| 3,570   | 9,035   | 30,700    | 39,000    | 57,000    | 70,765    | 99,480    | 121,178   |
| 457     | 1,150   | 3,940     | 5,004     | 7,312     | 9,040     | 12,760    | 15,550    |
| 105     | 265     | 908       | 1,150     | 1,685     | 2,092     | 2,940     | 3,575     |
| 34      | 85.75   | 292       | 371       | 542.3     | 673.4     | 946.6     | 1,150     |
| 13.45   | 34      | 115.5     | 147       | 215       | 265       | 375       | 457       |
| 3.11    | 7.80    | 26.75     | 34        | 50        | 61.70     | 86.70     | 105       |
| 1       | 2.52    | 8.61      | 10.94     | 16        | 19.85     | 27.90     | 34        |
| .3954   | 1       | 3.41      | 4.34      | 6.32      | 7.80      | 11.00     | 13.45     |
| .1161   | .2935   | 1         | 1.27      | 1.85      | 2.30      | 3.24      | 3.95      |
| .0915   | .2316   | .7871     | 1         | 1.46      | 1.81      | 2.55      | 3.11      |
| .0630   | .1582   | .5386     | .6843     | 1         | 1.24      | 1.75      | 2.13      |
| .....   | .1273   | .4337     | .5510     | .8053     | 1         | 1.41      | 1.71      |
| .....   | .....   | .3085     | .3920     | .5728     | .7113     | 1         | 1.22      |
| .....   | .....   | .....     | .3218     | .4703     | .5840     | .8209     | 1         |

has the same value as 3.11 feet or miles of 10 inch, 7.80 feet or miles of 12 inch and 105 feet or miles of 20 inch.

When smaller sizes are used 1 foot or 1 mile of 8 inch pipe is equivalent to 0.2316 feet or mile of 6 inch pipe, etc.

Larger diameters, when compared to smaller, give the equivalent in an increased length, and smaller diameters give a less length when compared with a diameter assumed to be 1.

**Pipe Line Losses**—With many of the large gasoline plants, the gas is not only measured at the gas producing leases where it is purchased, but also through one or more large meters at the plant. If there was no condensation of the casinghead gas in the pipe line between the leases and the plant, the lease meters and the plant meter should check within a very small per cent of one another. Nearly all field lines are equipped with drips that collect gasoline condensed in the lines. This condensation is caused through changes in temperature, not only between day and night temperatures but also from different parts of the lines being exposed to the atmosphere while other parts are either covered or buried. The greatest amount of condensation occurs in cold weather. The drips are pumped or "blown off" and the gasoline and light oils are saved for refining into gasoline.

When checking lease meters with a plant meter, due consideration must be given to drip accumulation. Between 32 to 42 gallons of gasoline will make 1,000 cubic feet of gasoline vapor or gas.

The number of gallons of gasoline in one thousand cubic feet of gas varies with the gravity of the gasoline.

**Pipe Line Drips**—The heavy hydrocarbons in casing-head gas are easily condensed in pipe lines due to the gas coming in contact with a cold section of pipe line. The pipe line temperatures vary according to their location above or below the surface and according to the temperatures of the ground and the atmosphere. It is very important to install drips along the lines, especially in low spots.

Accumulations from drips should be drawn off and refined. Often they are of a yellowish tint which color comes from the oil in the well. If gasoline is found clear in color, it can be put into stock tanks but if off color, it is necessary to refine it. By distilling in a steam still, the same as employed at a refinery, the gasoline recovered will be of

## PIPE LINES

---



Fig 23—PLAN OF A DRIP FOR USE ON PIPE LINE UNDER VACUUM

**STANDARD DIMENSIONS, CAPACITY AND WEIGHT  
OF WROUGHT IRON PIPE FOR STEAM,  
GAS, OIL OR WATER**

| DIAMETERS, INCHES |                  |                   | Thick-<br>ness<br>of Pipe<br>Inch | Outside<br>Diam-<br>eter of<br>Coup'gs<br>Inches | Feet of<br>Pipe for<br>1 Cu. Ft.<br>Volume | Weight<br>of Pipe<br>per Ft.<br>Pounds | No. of<br>Threads<br>per<br>Inch |
|-------------------|------------------|-------------------|-----------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------|
| Nom.<br>Inside    | Actual<br>Inside | Actual<br>Outside |                                   |                                                  |                                            |                                        |                                  |
| $\frac{1}{8}$     | .270             | .405              | .068                              | .510                                             | 2500.                                      | .243                                   | 27                               |
| $\frac{1}{4}$     | .364             | .54               | .086                              | .720                                             | 1385.                                      | .422                                   | 18                               |
| $\frac{3}{8}$     | .494             | .675              | .091                              | .844                                             | 751.5                                      | .561                                   | 18                               |
| $\frac{1}{2}$     | .623             | .84               | .109                              | 1.156                                            | 472.4                                      | .845                                   | 14                               |
| $\frac{3}{4}$     | .824             | 1.05              | .113                              | 1.375                                            | 270.                                       | 1.126                                  | 14                               |
| 1                 | 1.048            | 1.315             | .134                              | 1.625                                            | 166.9                                      | 1.670                                  | $11\frac{1}{2}$                  |
| $1\frac{1}{4}$    | 1.380            | 1.66              | .140                              | 2.125                                            | 96.25                                      | 2.258                                  | $11\frac{1}{2}$                  |
| $1\frac{1}{2}$    | 1.611            | 1.9               | .145                              | 2.375                                            | 70.65                                      | 2.694                                  | $11\frac{1}{2}$                  |
| 2                 | 2.067            | 2.375             | .154                              | 2.937                                            | 42.36                                      | 3.667                                  | $11\frac{1}{2}$                  |
| $2\frac{1}{2}$    | 2.468            | 2.875             | .204                              | 3.500                                            | 30.11                                      | 5.778                                  | 8                                |
| 3                 | 3.067            | 3.5               | .217                              | 4.062                                            | 19.49                                      | 7.547                                  | 8                                |
| $3\frac{1}{2}$    | 3.548            | 4.                | .226                              | 4.687                                            | 14.56                                      | 9.055                                  | 8                                |
| 4                 | 4.026            | 4.5               | .237                              | 5.187                                            | 11.81                                      | 10.728                                 | 8                                |
| $4\frac{1}{2}$    | 4.508            | 5.                | .247                              | 5.750                                            | 9.03                                       | 12.492                                 | 8                                |
| 5                 | 5.045            | 5.563             | .259                              | 6.343                                            | 7.20                                       | 14.564                                 | 8                                |
| 6                 | 6.065            | 6.625             | .280                              | 7.343                                            | 4.98                                       | 18.767                                 | 8                                |
| 7                 | 7.023            | 7.625             | .301                              | 8.437                                            | 3.72                                       | 23.410                                 | 8                                |
| 8                 | 7.982            | 8.625             | .322                              | 9.375                                            | 2.88                                       | 28.348                                 | 8                                |
| 9                 | 9.001            | 9.688             | .344                              | 10.560                                           | 2.26                                       | 34.077                                 | 8                                |
| 10                | 10.019           | 10.75             | .366                              | 11.680                                           | 1.80                                       | 40.641                                 | 8                                |
| 12                | 12.000           | 12.75             | .375                              | 13.930                                           | 1.27                                       | 49.000                                 | 8                                |

proper color and of good quality though not as high in gravity as that obtained from the compression method. This is due to the fact that uncondensed vapors escape in the process of distilling. These vapors are those portions of gasoline that are the most volatile.

Fig. 23 shows a gasoline drip for a pipe line when the pressure of the gas is below the atmospheric pressure. If the pressure of the gas is above the atmosphere only one gate is necessary and that should be placed at the blow-off.

To blow the drip when the pressure of the gas is below atmospheric pressure, close the gate nearest the pipe line

## P I P E   L I N E S

---

and then open the "blow-off" gate. After the drip is drained close the "blow-off" gate and open the gate next to the pipe line.

A drip should be placed at a low spot in the line. The length of the drip is dependent upon the amount of gasoline that is condensed in the line. The drip can be made up of several joints of pipe instead of one. Extra long drips can be placed on small sized lines, if desired.

**Formula for Computing the Flow of Natural Gas in Pipe Lines**—Based upon formula by F. H. Oliphant in "Production of Natural Gas in 1900," United States Geological Survey.

$$\text{Formula}—Q = 42a \cdot \sqrt{\frac{P_1^2 - P_2^2}{L}}$$

$Q$  = cubic feet per hour.

42 = constant.

$a$  = computed value for diameters.

$L$  = length of line in miles.

$P_1$  = gauge pressure + 14.4 pounds at intake end of line.

If the gas is under a vacuum,  $P_1 = 14.4$ —gauge pressure at the intake end of the line.

$P_2$  = gauge pressure + 14.4 pounds at discharge end of line.

If the gas is under a vacuum  $P_2 = 14.4$ —gauge pressure at the discharge end of the line.

Do not use inches of mercury for the value of  $P_1$  and  $P_2$ . Reduce the inches of mercury to lb. One inch of mercury equals .4908 lb.

For value of  $a$ , see Table of Multipliers on page 90.

## P I P E   L I N E S

---

Specific gravity of gas taken at 1.0. For any other specific gravity multiply final result by  $\sqrt{\frac{1.0}{\text{sp.gr.gas}}}$

For other diameters, or value A, use the following multipliers:

|                            |        |                            |       |                |        |
|----------------------------|--------|----------------------------|-------|----------------|--------|
| $\frac{1}{4}$ inch.....    | .0317  | $2\frac{1}{4}$ inches..... | 10.37 | 8 inches.....  | 198.0  |
| $\frac{1}{2}$ inch.....    | .1810  | 3 inches.....              | 16.50 | 10 inches..... | 350.0  |
| $\frac{3}{4}$ inch.....    | .5012  | 4 inches.....              | 34.10 | 12 inches..... | 556.0  |
| 1 inch.....                | 1.0000 | 5 inches.....              | 60.00 | 16 inches..... | 1160.0 |
| $1\frac{1}{2}$ inches..... | 2.9300 | $5\frac{5}{8}$ inches..... | 81.00 | 18 inches..... | 1570.0 |
| 2 inches.....              | 5.9200 | 6 inches.....              | 95.00 |                |        |

For pipes greater than 12 inches in diameter the measure is taken from the outside and for pipes of ordinary thickness the corresponding inside diameters and multipliers are as follows:

| Outside      | Inside                    | Multiplier |
|--------------|---------------------------|------------|
| 15 inch..... | $14\frac{1}{4}$ inch..... | 863        |
| 16 inch..... | $15\frac{1}{4}$ inch..... | 1025       |
| 18 inch..... | $17\frac{1}{4}$ inch..... | 1410       |
| 20 inch..... | $19\frac{1}{4}$ inch..... | 1860       |

For riveted or cast pipe with inside diameters as below, use multipliers opposite:

|              |      |              |      |
|--------------|------|--------------|------|
| 20 inch..... | 2055 | 30 inch..... | 5830 |
| 24 inch..... | 3285 | 36 inch..... | 9330 |

All pipe line capacity tables on pages 91 to 104 are based on the foregoing formula.

P I P E   L I N E S

---

**Pipe Line Capacities for Gas at a Vacuum and Pressure.**  
 Specific Gravity=1. For other Specific Gravities see  
 table, page 105.

**Capacity of 2 in. Pipe Line, 1 Mile Long, for 24 Hours.**

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                         | 18                       |     |     |     |     |                 |     |     |
| 15                             | 30                       | 24  |     |     |     |                 |     |     |
| 10                             | 42                       | 38  | 29  |     |     |                 |     |     |
| 5                              | 54                       | 51  | 44  | 33  |     |                 |     |     |
| L.b. per sq. in.               |                          |     |     |     |     |                 |     |     |
| 0                              | 67                       | 62  | 58  | 50  | 37  |                 |     |     |
| 3                              | 79                       | 77  | 73  | 67  | 58  | 44              |     |     |
| 6                              | 93                       | 92  | 88  | 83  | 76  | 66              | 49  |     |
| 10                             | 112                      | 110 | 107 | 103 | 98  | 91              | 78  |     |
| 25                             | 181                      |     |     |     | 173 | 169             | 163 | 142 |

**Capacity of 2 in. Pipe Line, 2 Miles Long, for 24 Hours.**  
 Specific Gravity of Gas=1.

| Intake<br>Pressure             | DISCHARGE PRESSURE       |    |    |    |     |                  |     |     |
|--------------------------------|--------------------------|----|----|----|-----|------------------|-----|-----|
|                                | Inches of Mercury Vacuum |    |    |    |     | L.b. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20 | 15 | 10 | 5   | 0                | 3   | 10  |
| 20 in.                         | 18                       |    |    |    |     |                  |     |     |
| 15                             | 21                       | 17 |    |    |     |                  |     |     |
| 10                             | 30                       | 27 | 20 |    |     |                  |     |     |
| 5                              | 38                       | 36 | 31 | 23 |     |                  |     |     |
| L.b. per sq. in.               |                          |    |    |    |     |                  |     |     |
| 0                              | 46                       | 44 | 41 | 35 | 26  |                  |     |     |
| 3                              | 56                       | 54 | 51 | 47 | 41  | 31               |     |     |
| 6                              | 66                       | 65 | 62 | 58 | 54  | 47               | 34  |     |
| 10                             | 79                       | 78 | 76 | 73 | 69  | 64               | 55  |     |
| 25                             | 128                      |    |    |    | 122 | 119              | 114 | 100 |

All capacities are given in thousands.  
 For other specific gravities, apply multiplier found in table, page 105.

P I P E   L I N E S

---

Capacity of 2 in. Pipe Line, 3 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |    |    |    |     |                 |    |    |
|--------------------------|--------------------------|----|----|----|-----|-----------------|----|----|
|                          | Inches of Mercury Vacuum |    |    |    |     | Lb. per sq. in. |    |    |
| Inches of Mercury Vacuum | 25                       | 20 | 15 | 10 | 5   | 0               | 3  | 10 |
| 20 in.                   | 10                       |    |    |    |     |                 |    |    |
| 15                       | 17                       | 14 |    |    |     |                 |    |    |
| 10                       | 24                       | 22 | 17 |    |     |                 |    |    |
| 5                        | 31                       | 29 | 25 | 19 |     |                 |    |    |
| Lb. per sq. in.          |                          |    |    |    |     |                 |    |    |
| 0                        | 37                       | 36 | 33 | 28 | 21  |                 |    |    |
| 3                        | 46                       | 44 | 42 | 38 | 34  | 26              |    |    |
| 6                        | 54                       | 52 | 51 | 47 | 44  | 38              | 28 |    |
| 10                       | 65                       | 64 | 61 | 59 | 56  | 52              | 45 |    |
| 25                       | 104                      |    |    |    | 100 | 97              | 94 | 82 |

Capacity of 3 in. Pipe Line, 1 Mile Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                          | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of Mercury Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                   | 52                       |     |     |     |     |                 |     |     |
| 15                       | 86                       | 68  |     |     |     |                 |     |     |
| 10                       | 110                      | 106 | 82  |     |     |                 |     |     |
| 5                        | 150                      | 141 | 124 | 93  |     |                 |     |     |
| Lb. per sq. in.          |                          |     |     |     |     |                 |     |     |
| 0                        | 187                      | 175 | 161 | 139 | 103 |                 |     |     |
| 3                        | 222                      | 215 | 205 | 188 | 162 | 125             |     |     |
| 6                        | 261                      | 256 | 246 | 232 | 212 | 185             | 136 |     |
| 10                       | 312                      | 308 | 301 | 289 | 273 | 253             | 220 |     |
| 25                       | 505                      |     |     |     | 482 | 471             | 454 | 397 |

All capacities are given in thousands.  
For other specific gravities, apply multiplier found in table, page 105.

**P I P E   L I N E S**

---

**Capacity of 3 in. Pipe Line, 2 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5   | 0   | 3               | 10  |     |
| 20 in.                                      | 36                       |     |     |     |     |                 |     |     |
| 15                                          | 61                       | 48  |     |     |     |                 |     |     |
| 10                                          | 84                       | 75  | 58  |     |     |                 |     |     |
| 5                                           | 106                      | 100 | 88  | 65  |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |     |     |                 |     |     |
| 0                                           | 129                      | 124 | 114 | 98  | 73  |                 |     |     |
| 3                                           | 157                      | 152 | 144 | 132 | 115 | 89              |     |     |
| 6                                           | 184                      | 181 | 174 | 164 | 150 | 131             | 96  |     |
| 10                                          | 221                      | 218 | 212 | 204 | 193 | 179             | 155 |     |
| 25                                          | 357                      |     |     |     | 341 | 333             | 320 | 280 |

**Capacity of 3 in. Pipe Line, 3 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5   | 0   | 3               | 10  |     |
| 20 in.                                      | 30                       |     |     |     |     |                 |     |     |
| 15                                          | 49                       | 39  |     |     |     |                 |     |     |
| 10                                          | 68                       | 61  | 47  |     |     |                 |     |     |
| 5                                           | 87                       | 82  | 71  | 54  |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |     |     |                 |     |     |
| 0                                           | 105                      | 101 | 93  | 80  | 59  |                 |     |     |
| 3                                           | 128                      | 124 | 118 | 108 | 93  | 72              |     |     |
| 6                                           | 150                      | 147 | 142 | 133 | 123 | 107             | 78  |     |
| 10                                          | 180                      | 178 | 173 | 167 | 157 | 146             | 126 |     |
| 25                                          | 292                      |     |     |     | 278 | 272             | 262 | 229 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

P I P E   L I N E S

---

Capacity of 3 in. Pipe Line, 4 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                         | 26                       |     |     |     |     |                 |     |     |
| 15                             | 43                       | 34  |     |     |     |                 |     |     |
| 10                             | 59                       | 53  | 41  |     |     |                 |     |     |
| 5                              | 75                       | 71  | 61  | 46  |     |                 |     |     |
| Lb. per sq. in.                |                          |     |     |     |     |                 |     |     |
| 0                              | 91                       | 88  | 80  | 69  | 51  |                 |     |     |
| 3                              | 111                      | 108 | 102 | 93  | 81  | 62              |     |     |
| 6                              | 130                      | 127 | 123 | 116 | 106 | 92              | 68  |     |
| 10                             | 156                      | 154 | 150 | 144 | 136 | 126             | 109 |     |
| 25                             | 252                      |     |     |     | 240 | 235             | 226 | 198 |

Capacity of 4 in. Pipe Line, 1 Mile Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                         | 107                      |     |     |     |     |                 |     |     |
| 15                             | 177                      | 142 |     |     |     |                 |     |     |
| 10                             | 246                      | 221 | 169 |     |     |                 |     |     |
| 5                              | 311                      | 293 | 256 | 192 |     |                 |     |     |
| Lb. per sq. in.                |                          |     |     |     |     |                 |     |     |
| 0                              | 387                      | 363 | 334 | 287 | 213 |                 |     |     |
| 3                              | 459                      | 446 | 423 | 387 | 336 | 260             |     |     |
| 6                              | 539                      | 528 | 509 | 480 | 439 | 384             | 283 |     |
| 10                             | 646                      | 637 | 621 | 598 | 565 | 523             | 455 |     |
| 25                             | 1045                     |     |     |     | 997 | 973             | 938 | 821 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

# P I P E   L I N E S

---

**Capacity of 4 in. Pipe Line, 2 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5   | 0   | 3               | 10  |     |
| 20 in.                                      | 76                       |     |     |     |     |                 |     |     |
| 15                                          | 126                      | 100 |     |     |     |                 |     |     |
| 10                                          | 173                      | 156 | 119 |     |     |                 |     |     |
| 5                                           | 221                      | 207 | 181 | 136 |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |     |     |                 |     |     |
| 0                                           | 267                      | 256 | 236 | 203 | 150 |                 |     |     |
| 3                                           | 324                      | 315 | 299 | 273 | 238 | 183             |     |     |
| 6                                           | 381                      | 373 | 359 | 339 | 311 | 271             | 200 |     |
| 10                                          | 456                      | 450 | 439 | 422 | 400 | 370             | 321 |     |
| 25                                          | 739                      |     |     |     | 705 | 688             | 662 | 579 |

**Capacity of 4 in. Pipe Line, 3 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5   | 0   | 3               | 10  |     |
| 20 in.                                      | 62                       |     |     |     |     |                 |     |     |
| 15                                          | 102                      | 81  |     |     |     |                 |     |     |
| 10                                          | 142                      | 127 | 97  |     |     |                 |     |     |
| 5                                           | 180                      | 169 | 148 | 111 |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |     |     |                 |     |     |
| 0                                           | 218                      | 209 | 192 | 166 | 123 |                 |     |     |
| 3                                           | 265                      | 257 | 249 | 223 | 194 | 150             |     |     |
| 6                                           | 311                      | 304 | 294 | 277 | 253 | 222             | 163 |     |
| 10                                          | 373                      | 368 | 359 | 345 | 326 | 302             | 263 |     |
| 25                                          | 576                      |     |     |     | 563 | 560             | 542 | 473 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

# PIPE LINES

---

**Capacity of 4 in. Pipe Line, 4 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                         | 53                       |     |     |     |     |                 |     |     |
| 15                             | 89                       | 71  |     |     |     |                 |     |     |
| 10                             | 122                      | 110 | 84  |     |     |                 |     |     |
| 5                              | 156                      | 147 | 128 | 96  |     |                 |     |     |
| Lb. per sq. in.                |                          |     |     |     |     |                 |     |     |
| 0                              | 189                      | 181 | 167 | 143 | 106 |                 |     |     |
| 3                              | 229                      | 222 | 211 | 194 | 167 | 130             |     |     |
| 6                              | 269                      | 264 | 254 | 239 | 219 | 191             | 141 |     |
| 10                             | 323                      | 318 | 311 | 298 | 283 | 262             | 227 |     |
| 25                             | 521                      |     |     | 508 | 497 | 486             | 468 | 409 |

**Capacity of 4 in. Pipe Line, 5 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|--------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10  | 5   | 0               | 3   | 10  |
| 20 in.                         | 48                       |     |     |     |     |                 |     |     |
| 15                             | 79                       | 63  |     |     |     |                 |     |     |
| 10                             | 109                      | 99  | 75  |     |     |                 |     |     |
| 5                              | 139                      | 131 | 114 | 85  |     |                 |     |     |
| Lb. per sq. in.                |                          |     |     |     |     |                 |     |     |
| 0                              | 169                      | 162 | 149 | 128 | 95  |                 |     |     |
| 3                              | 205                      | 199 | 189 | 173 | 150 | 115             |     |     |
| 6                              | 241                      | 236 | 227 | 215 | 196 | 171             | 126 |     |
| 10                             | 287                      | 284 | 277 | 267 | 253 | 234             | 203 |     |
| 25                             | 465                      |     |     | 454 | 444 | 436             | 420 | 369 |

All capacities are given in thousands.  
For other specific gravities, apply multiplier found in table, page 105.

P I P E   L I N E S

---

Capacity of 6 in. Pipe Line, 1 Mile Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|--------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20   | 15   | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 300                      |      |      |      |      |                 |      |      |
| 15                       | 495                      | 395  |      |      |      |                 |      |      |
| 10                       | 685                      | 616  | 472  |      |      |                 |      |      |
| 5                        | 867                      | 817  | 715  | 587  |      |                 |      |      |
| Lb. per sq. in.          |                          |      |      |      |      |                 |      |      |
| 0                        | 1080                     | 1011 | 931  | 802  | 595  |                 |      |      |
| 3                        | 1279                     | 1243 | 1179 | 1080 | 937  | 723             |      |      |
| 6                        | 1503                     | 1473 | 1419 | 1338 | 1226 | 1071            | 789  |      |
| 10                       | 1801                     | 1776 | 1731 | 1665 | 1576 | 1459            | 1267 |      |
| 25                       | 2912                     |      |      | 2831 | 2779 | 2712            | 2616 | 2290 |

Capacity of 6 in. Pipe Line, 2 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|--------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20   | 15   | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 212                      |      |      |      |      |                 |      |      |
| 15                       | 351                      | 279  |      |      |      |                 |      |      |
| 10                       | 484                      | 435  | 333  |      |      |                 |      |      |
| 5                        | 615                      | 578  | 506  | 380  |      |                 |      |      |
| Lb. per sq. in.          |                          |      |      |      |      |                 |      |      |
| 0                        | 746                      | 715  | 658  | 567  | 423  |                 |      |      |
| 3                        | 904                      | 880  | 834  | 763  | 663  | 510             |      |      |
| 6                        | 1062                     | 1041 | 1003 | 946  | 866  | 756             | 558  |      |
| 10                       | 1273                     | 1256 | 1224 | 1178 | 1115 | 1032            | 896  |      |
| 25                       | 2061                     |      |      | 2017 | 1967 | 1919            | 1845 | 1615 |

All capacities are given in thousands.  
For other specific gravities, apply multiplier found in table, page 105.

P I P E L I N E S

---

Capacity of 6 in. Pipe Line, 3 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|--------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20   | 15   | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 173                      |      |      |      |      |                 |      |      |
| 15                       | 286                      | 227  |      |      |      |                 |      |      |
| 10                       | 395                      | 355  | 272  |      |      |                 |      |      |
| 5                        | 502                      | 472  | 413  | 310  |      |                 |      |      |
| Lb. per sq. in.          |                          |      |      |      |      |                 |      |      |
| 0                        | 609                      | 584  | 537  | 463  | 344  |                 |      |      |
| 3                        | 738                      | 718  | 681  | 623  | 543  | 417             |      |      |
| 6                        | 867                      | 850  | 819  | 772  | 707  | 618             | 455  |      |
| 10                       | 1039                     | 1025 | 1000 | 962  | 910  | 842             | 732  |      |
| 25                       | 1684                     |      |      | 1635 | 1606 | 1569            | 1512 | 1319 |

Capacity of 6 in. Pipe Line, 4 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure          | DISCHARGE PRESSURE       |     |     |      |      |                 |      |      |
|--------------------------|--------------------------|-----|-----|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |     |     |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20  | 15  | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 149                      |     |     |      |      |                 |      |      |
| 15                       | 248                      | 197 |     |      |      |                 |      |      |
| 10                       | 342                      | 308 | 236 |      |      |                 |      |      |
| 5                        | 435                      | 408 | 357 | 268  |      |                 |      |      |
| Lb. per sq. in.          |                          |     |     |      |      |                 |      |      |
| 0                        | 527                      | 506 | 465 | 400  | 297  |                 |      |      |
| 3                        | 639                      | 622 | 589 | 540  | 469  | 362             |      |      |
| 6                        | 751                      | 736 | 709 | 669  | 613  | 535             | 394  |      |
| 10                       | 900                      | 887 | 866 | 832  | 788  | 729             | 633  |      |
| 25                       | 1452                     |     |     | 1415 | 1386 | 1356            | 1304 | 1141 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

**P I P E   L I N E S**

---

**Capacity of 6 in. Pipe Line, 5 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.**

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |      |      |                 |      |      |
|--------------------------------|--------------------------|-----|-----|------|------|-----------------|------|------|
|                                | Inches of Mercury Vacuum |     |     |      |      | Lb. per sq. in. |      |      |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10   | 5    | 0               | 3    | 10   |
| 20 in.                         | 134                      |     |     |      |      |                 |      |      |
| 15                             | 222                      | 176 |     |      |      |                 |      |      |
| 10                             | 306                      | 275 | 211 |      |      |                 |      |      |
| 5                              | 389                      | 366 | 319 | 240  |      |                 |      |      |
| Lb. per sq. in.                |                          |     |     |      |      |                 |      |      |
| 0                              | 471                      | 452 | 416 | 359  | 266  |                 |      |      |
| 3                              | 572                      | 556 | 527 | 483  | 419  | 321             |      |      |
| 6                              | 672                      | 658 | 634 | 598  | 547  | 479             | 352  |      |
| 10                             | 800                      | 794 | 774 | 745  | 705  | 653             | 566  |      |
| 25                             | 1297                     |     |     | 1267 | 1237 | 1215            | 1171 | 1080 |

**Capacity of 6 in. Pipe Line, 6 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.**

| Intake<br>Pressure             | DISCHARGE PRESSURE       |     |     |      |      |                 |      |     |
|--------------------------------|--------------------------|-----|-----|------|------|-----------------|------|-----|
|                                | Inches of Mercury Vacuum |     |     |      |      | Lb. per sq. in. |      |     |
| Inches of<br>Mercury<br>Vacuum | 25                       | 20  | 15  | 10   | 5    | 0               | 3    | 10  |
| 20 in.                         | 122                      |     |     |      |      |                 |      |     |
| 15                             | 202                      | 161 |     |      |      |                 |      |     |
| 10                             | 279                      | 251 | 192 |      |      |                 |      |     |
| 5                              | 355                      | 333 | 291 | 219  |      |                 |      |     |
| Lb. per sq. in.                |                          |     |     |      |      |                 |      |     |
| 0                              | 430                      | 413 | 380 | 327  | 243  |                 |      |     |
| 3                              | 522                      | 507 | 481 | 441  | 383  | 295             |      |     |
| 6                              | 613                      | 601 | 579 | 546  | 498  | 437             | 321  |     |
| 10                             | 735                      | 725 | 706 | 680  | 643  | 595             | 517  |     |
| 25                             | 1190                     |     |     | 1156 | 1135 | 1108            | 1069 | 985 |

All capacities are given in thousands.  
For other specific gravities, apply multiplier found in table, page 105.

**P I P E   L I N E S**

---

**Capacity of 6 in. Pipe Line, 8 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |      |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|------|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |      |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5    | 0   | 3               | 10  |     |
| 20 in.                                      | 105                      |     |     |      |     |                 |     |     |
| 15                                          | 175                      | 139 |     |      |     |                 |     |     |
| 10                                          | 242                      | 217 | 167 |      |     |                 |     |     |
| 5                                           | 307                      | 288 | 253 | 190  |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |      |     |                 |     |     |
| 0                                           | 372                      | 357 | 328 | 284  | 210 |                 |     |     |
| 3                                           | 455                      | 439 | 417 | 382  | 331 | 256             |     |     |
| 6                                           | 531                      | 520 | 501 | 472  | 433 | 378             | 278 |     |
| 10                                          | 636                      | 627 | 612 | 589  | 557 | 516             | 448 |     |
| 25                                          | 1030                     |     |     | 1001 | 983 | 957             | 925 | 807 |

**Capacity of 6 in. Pipe Line, 10 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |     |     |     |     |                 |     |     |
|---------------------------------------------|--------------------------|-----|-----|-----|-----|-----------------|-----|-----|
|                                             | Inches of Mercury Vacuum |     |     |     |     | Lb. per sq. in. |     |     |
| 25                                          | 20                       | 15  | 10  | 5   | 0   | 3               | 10  |     |
| 20 in.                                      | 94                       |     |     |     |     |                 |     |     |
| 15                                          | 157                      | 124 |     |     |     |                 |     |     |
| 10                                          | 216                      | 195 | 149 |     |     |                 |     |     |
| 5                                           | 274                      | 258 | 226 | 170 |     |                 |     |     |
| Lb. per sq. in.                             |                          |     |     |     |     |                 |     |     |
| 0                                           | 333                      | 319 | 294 | 253 | 188 |                 |     |     |
| 3                                           | 404                      | 393 | 373 | 342 | 296 | 229             |     |     |
| 6                                           | 475                      | 465 | 448 | 423 | 387 | 339             | 249 |     |
| 10                                          | 569                      | 561 | 547 | 527 | 498 | 461             | 400 |     |
| 25                                          | 923                      |     |     | 896 | 879 | 859             | 827 | 724 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

P I P E L I N E S

---

Capacity of 8 in. Pipe Line, 1 Mile Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 625                      |      |      |      |      |                 |      |      |
| 15                                          | 1033                     | 824  |      |      |      |                 |      |      |
| 10                                          | 1428                     | 1284 | 983  |      |      |                 |      |      |
| 5                                           | 1807                     | 1704 | 1491 | 1120 |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 2252                     | 2109 | 1940 | 1672 | 1242 |                 |      |      |
| 3                                           | 2666                     | 2592 | 2458 | 2252 | 1954 | 1508            |      |      |
| 6                                           | 3132                     | 3070 | 2958 | 2789 | 2554 | 2232            | 1644 |      |
| 10                                          | 3758                     | 3702 | 3609 | 3472 | 3286 | 3042            | 2433 |      |
| 25                                          | 6070                     |      |      | 5901 | 5792 | 5653            | 5453 | 4773 |

Capacity of 8 in. Pipe Line, 2 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 443                      |      |      |      |      |                 |      |      |
| 15                                          | 732                      | 582  |      |      |      |                 |      |      |
| 10                                          | 1010                     | 907  | 695  |      |      |                 |      |      |
| 5                                           | 1283                     | 1205 | 1054 | 792  |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 1555                     | 1491 | 1372 | 1182 | 878  |                 |      |      |
| 3                                           | 1886                     | 1833 | 1738 | 1592 | 1382 | 1066            |      |      |
| 6                                           | 2215                     | 2171 | 2091 | 1972 | 1806 | 1578            | 1163 |      |
| 10                                          | 2653                     | 2617 | 2551 | 2455 | 2324 | 2151            | 1868 |      |
| 25                                          | 4296                     |      |      | 4204 | 4099 | 4000            | 3846 | 3367 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

P I P E L I N E S

---

Capacity of 8 in. Pipe Line, 3 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 361                      |      |      |      |      |                 |      |      |
| 15                                          | 597                      | 474  |      |      |      |                 |      |      |
| 10                                          | 824                      | 741  | 568  |      |      |                 |      |      |
| 5                                           | 1047                     | 983  | 860  | 647  |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 1269                     | 1217 | 1120 | 965  | 717  |                 |      |      |
| 3                                           | 1540                     | 1496 | 1419 | 1299 | 1128 | 870             |      |      |
| 6                                           | 1808                     | 1773 | 1707 | 1610 | 1474 | 1288            | 949  |      |
| 10                                          | 2167                     | 2137 | 2083 | 2004 | 1897 | 1756            | 1525 |      |
| 25                                          | 3511                     |      |      | 3409 | 3347 | 3270            | 3151 | 2749 |

Capacity of 8 in. Pipe Line, 4 Miles Long, for 24 Hours.  
Specific Gravity of Gas=1.

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 312                      |      |      |      |      |                 |      |      |
| 15                                          | 517                      | 412  |      |      |      |                 |      |      |
| 10                                          | 713                      | 641  | 492  |      |      |                 |      |      |
| 5                                           | 906                      | 852  | 745  | 560  |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 1099                     | 1054 | 970  | 836  | 620  |                 |      |      |
| 3                                           | 1333                     | 1296 | 1229 | 1126 | 976  | 754             |      |      |
| 6                                           | 1566                     | 1535 | 1479 | 1394 | 1277 | 1116            | 822  |      |
| 10                                          | 1876                     | 1851 | 1804 | 1736 | 1643 | 1521            | 1321 |      |
| 25                                          | 3027                     |      |      | 2950 | 2888 | 2826            | 2718 | 2378 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

# PIPE LINES

---

**Capacity of 8 in. Pipe Line, 5 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure          | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|--------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20   | 15   | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 279                      |      |      |      |      |                 |      |      |
| 15                       | 463                      | 367  |      |      |      |                 |      |      |
| 10                       | 637                      | 574  | 439  |      |      |                 |      |      |
| 5                        | 811                      | 762  | 667  | 500  |      |                 |      |      |
| Lb. per sq. in.          |                          |      |      |      |      |                 |      |      |
| 0                        | 982                      | 942  | 867  | 748  | 555  |                 |      |      |
| 3                        | 1192                     | 1159 | 1099 | 1007 | 873  | 669             |      |      |
| 6                        | 1401                     | 1373 | 1322 | 1247 | 1142 | 998             | 735  |      |
| 10                       | 1668                     | 1655 | 1613 | 1552 | 1469 | 1360            | 1180 |      |
| 25                       | 2703                     |      |      | 2641 | 2579 | 2533            | 2440 | 2147 |

**Capacity of 8 in. Pipe Line, 6 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure          | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|--------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                          | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| Inches of Mercury Vacuum | 25                       | 20   | 15   | 10   | 5    | 0               | 3    | 10   |
| 20 in.                   | 254                      |      |      |      |      |                 |      |      |
| 15                       | 421                      | 336  |      |      |      |                 |      |      |
| 10                       | 582                      | 523  | 401  |      |      |                 |      |      |
| 5                        | 739                      | 695  | 608  | 457  |      |                 |      |      |
| Lb. per sq. in.          |                          |      |      |      |      |                 |      |      |
| 0                        | 897                      | 860  | 792  | 682  | 506  |                 |      |      |
| 3                        | 1089                     | 1058 | 1003 | 919  | 797  | 616             |      |      |
| 6                        | 1279                     | 1253 | 1207 | 1138 | 1037 | 911             | 671  |      |
| 10                       | 1532                     | 1511 | 1473 | 1417 | 1342 | 1242            | 1078 |      |
| 25                       | 2480                     |      |      | 2411 | 2366 | 2310            | 2229 | 1949 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

## P I P E L I N E S

---

**Capacity of 8 in. Pipe Line, 8 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 220                      |      |      |      |      |                 |      |      |
| 15                                          | 366                      | 290  |      |      |      |                 |      |      |
| 10                                          | 505                      | 453  | 347  |      |      |                 |      |      |
| 5                                           | 641                      | 602  | 527  | 396  |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 777                      | 745  | 685  | 591  | 438  |                 |      |      |
| 3                                           | 950                      | 916  | 869  | 796  | 691  | 533             |      |      |
| 6                                           | 1107                     | 1085 | 1045 | 986  | 903  | 789             | 581  |      |
| 10                                          | 1326                     | 1308 | 1276 | 1227 | 1161 | 1075            | 784  |      |
| 25                                          | 2147                     |      |      | 2086 | 2049 | 1995            | 1929 | 1682 |

**Capacity of 8 in. Pipe Line, 10 Miles Long, for 24 Hours.**  
**Specific Gravity of Gas=1.**

| Intake Pressure<br>Inches of Mercury Vacuum | DISCHARGE PRESSURE       |      |      |      |      |                 |      |      |
|---------------------------------------------|--------------------------|------|------|------|------|-----------------|------|------|
|                                             | Inches of Mercury Vacuum |      |      |      |      | Lb. per sq. in. |      |      |
| 25                                          | 20                       | 15   | 10   | 5    | 0    | 3               | 10   |      |
| 20 in.                                      | 197                      |      |      |      |      |                 |      |      |
| 15                                          | 327                      | 259  |      |      |      |                 |      |      |
| 10                                          | 451                      | 405  | 311  |      |      |                 |      |      |
| 5                                           | 573                      | 538  | 471  | 354  |      |                 |      |      |
| Lb. per sq. in.                             |                          |      |      |      |      |                 |      |      |
| 0                                           | 695                      | 667  | 613  | 528  | 392  |                 |      |      |
| 3                                           | 843                      | 819  | 777  | 712  | 617  | 476             |      |      |
| 6                                           | 990                      | 971  | 934  | 882  | 808  | 705             | 520  |      |
| 10                                          | 1186                     | 1171 | 1141 | 1098 | 1039 | 962             | 835  |      |
| 25                                          | 1921                     |      |      | 1867 | 1832 | 1790            | 1725 | 1510 |

All capacities are given in thousands.

For other specific gravities, apply multiplier found in table, page 105.

P I P E L I N E S

---

Multipliers to be Used for Gas of Specific Gravity Other than 1.00.

| Specific Gravity | Multiplier | Specific Gravity | Multiplier |
|------------------|------------|------------------|------------|
| 0.6              | 1.29099    | 1.20             | 0.91287    |
| 0.65             | 1.24034    | 1.25             | 0.89442    |
| 0.7              | 1.19522    | 1.30             | 0.87705    |
| 0.75             | 1.15470    | 1.35             | 0.86066    |
| 0.8              | 1.11803    | 1.40             | 0.84515    |
| 0.85             | 1.08465    | 1.45             | 0.83045    |
| 0.9              | 1.05409    | 1.50             | 0.81649    |
| 0.95             | 1.02597    | 1.55             | 0.80321    |
| 1.00             | 1.00000    | 1.60             | 0.79056    |
| 1.05             | 0.97589    | 1.65             | 0.77849    |
| 1.10             | 0.95346    | 1.70             | 0.76696    |
| 1.15             | 0.93250    |                  |            |

## PART FIVE

### MEASURING CASINGHEAD GAS

When gasoline gas is purchased by the cubic foot it is necessary to provide some means of securing an accurate measurement of it. A meter is also desirable for checking the efficient operation of the plant. A casinghead gas meter is built for this character of work whether the gas measured is under pressure or a vacuum.

It is only necessary to keep the meter clean and note the condition of the diaphragms from time to time. If the gas is measured at vacuum pressure, either straight recording pressure or recording volume and pressure gauges are necessary.

In installing meters for this work it is essential to set the meter far enough away from the compressor so that the pulsation of the piston will not be felt in the meter.

**Table to Determine the Proper Size Meter in Measuring Gas at a Vacuum Pressure, in Inches of Mercury, where the Maximum Volume per 24 Hours or per Hour is Given at Four Ounce Pressure Above an Atmospheric Pressure of 14.4 Lb. per Square Inch.**

| Maximum Volume Per 24 Hours | Maximum Volume Per Hour | SIZE OF METER REQUIRED TO MEASURE DIFFERENT VOLUMES AT DIFFERENT VACUUM PRESSURES |        |        |        |
|-----------------------------|-------------------------|-----------------------------------------------------------------------------------|--------|--------|--------|
|                             |                         | 5 in.                                                                             | 10 in. | 15 in. | 20 in. |
| 50,000                      | 2,080                   | 3M                                                                                | 3M     | 6M     | 10M    |
| 100,000                     | 4,160                   | 6M                                                                                | 10M    | 10M    | 20M    |
| 150,000                     | 6,250                   | 10M                                                                               | 10M    | 20M    | 20M    |
| 200,000                     | 8,330                   | 10M                                                                               | 20M    | 20M    | 35M    |
| 250,000                     | 10,410                  | 20M                                                                               | 20M    | 20M    | 35M    |
| 300,000                     | 12,500                  | 20M                                                                               | 20M    | 35M    | 50M    |
| 400,000                     | 16,660                  | 20M                                                                               | 35M    | 35M    | 50M    |
| 500,000                     | 20,830                  | 35M                                                                               | 35M    | 50M    | 75M    |
| 600,000                     | 25,000                  | 35M                                                                               | 50M    | 50M    | 75M    |
| 800,000                     | 33,330                  | 50M                                                                               | 50M    | 75M    | 100M   |
| 1,000,000                   | 41,660                  | 50M                                                                               | 75M    | 100M   | 125M   |
| 1,500,000                   | 62,500                  | 75M                                                                               | 100M   | 125M   | *200M  |
| 2,000,000                   | 83,300                  | 100M                                                                              | 125M   | *200M  | *275M  |

\* Means use two or more meters in battery form.

## MEASURING CASING HEAD GAS



Fig. 24—CASING HEAD GAS MEASURING STATION. Note by-pass and tee ahead of meter to permit testing meter with residue gas

## M E A S U R I N G C A S I N G H E A D G A S



*Fig. 25—INSTALLATION OF A METER FOR MEASURING CASINGHEAD GAS*

**To Read a Meter**—In reading a meter the small or 100-foot dial should not be considered. Each sub-division in the circle represents one tenth of the figures placed above the circle. In other words, on the 10,000 dial, if the hand points between 7 and 8, the figure the hand has just passed (which would be 7) indicates that over 7,000 cubic feet have passed. The 1,000-foot dial is only taken into consideration when the hand points between 5 and 0, in which case it is counted as 1,000. In the foregoing case, if the hand on the 10,000-foot dial was close to 8 and the hand in the 1,000-foot dial pointed at 8 or 9, the reading of the 10,000-foot dial would be 8,000. Each dial above the 10,000-foot dial is read the same as the 10,000-foot dial above described.

In reading the dial no attention should be paid to the wording "one per cent" or "two per cent" printed on the face of the dial. The wording is intended for use when ordering new clock or tally, and has no bearing on the meter reading.

### Proper Sized Meter to Install Where Gas is Used to Generate Power Either in a Gas Engine or Under Steam Boilers

| Horse-power<br>of Engine<br>or Boilers | CAPACITY OF METER<br>In Cu. Ft. per Hour |                          | Horsepower<br>of Engine<br>or Boilers | CAPACITY OF METER<br>In Cu. Ft. per Hour |                          |
|----------------------------------------|------------------------------------------|--------------------------|---------------------------------------|------------------------------------------|--------------------------|
|                                        | In Gas<br>Engine                         | Under<br>Steam<br>Boiler |                                       | In Gas<br>Engine                         | Under<br>Steam<br>Boiler |
| 10                                     | 500                                      | 800                      | 150                                   | 3,000                                    | 10,000                   |
| 15                                     | 500                                      | 1,500                    | 200                                   | 6,000                                    | 20,000                   |
| 20                                     | 800                                      | 1,500                    | 300                                   | 6,000                                    | 20,000                   |
| 25                                     | 800                                      | 3,000                    | 400                                   | 10,000                                   | 35,000                   |
| 35                                     | 1,500                                    | 3,000                    | 500                                   | 10,000                                   | 35,000                   |
| 50                                     | 1,500                                    | 6,000                    | 600                                   | 10,000                                   | 50,000                   |
| 75                                     | 3,000                                    | 6,000                    | 800                                   | 20,000                                   | 50,000                   |
| 100                                    | 3,000                                    | 10,000                   | 1,000                                 | 20,000                                   | 75,000                   |

## M E A S U R I N G C A S I N G H E A D G A S

---



*Fig. 26—FUNNEL METER FOR PROVING METERS IN THE FIELD*

**Proving Meters in the Field**—In proving meters in the field use residue gas. Take the specific gravity of the gas twice daily, even though working on one meter. The gravity of the residue gas will run as high as 1.1 or higher, even after the gasoline has been extracted. This is due to the fact that some of the hydrocarbons that have been extracted evaporate in the accumulator tank and pass out with the residue gas. The gravity of the residue gas will be highest in warm weather.

Greater caution should be used in proving with this gas, than with natural gas, as the residue gas, being so heavy, will hang near the ground and not rise. Do not run any tests within a building.

The error generally allowed in the field is 3 per cent fast or slow, while the factory is confined to a two per cent error either fast or slow.

M E A S U R I N G C A S I N G H E A D G A S

---

P R E S S U R E S T O B E U S E D I N M E A S U R I N G A I R  
B A R O M E T R I C P R E S S U R E S

Standard barometer ..... 29.2 inches Standard temperature...

| deg. fahr. | BAROMETER READING           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------------|-----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|            | 28.6                        | 28.7 | 28.8 | 28.9 | 29.0 | 29.1 | 29.2 | 29.3 | 29.4 | 29.5 | 29.6 | 29.7 | 29.8 | 29.9 | 30.0 |      |
|            | PRESSURE IN INCHES OF WATER |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 30         | 4.23                        | 4.24 | 4.26 | 4.27 | 4.29 | 4.30 | 4.32 | 4.33 | 4.35 | 4.36 | 4.38 | 4.39 | 4.40 | 4.42 | 4.44 |      |
| 31         | 4.22                        | 4.24 | 4.25 | 4.27 | 4.28 | 4.29 | 4.31 | 4.32 | 4.34 | 4.35 | 4.37 | 4.38 | 4.39 | 4.41 | 4.43 |      |
| 32         | 4.21                        | 4.23 | 4.24 | 4.26 | 4.27 | 4.29 | 4.30 | 4.32 | 4.33 | 4.34 | 4.36 | 4.37 | 4.39 | 4.40 | 4.42 |      |
| 33         | 4.20                        | 4.22 | 4.23 | 4.25 | 4.26 | 4.28 | 4.29 | 4.31 | 4.32 | 4.34 | 4.35 | 4.37 | 4.38 | 4.39 | 4.41 |      |
| 34         | 4.20                        | 4.21 | 4.22 | 4.24 | 4.25 | 4.27 | 4.28 | 4.30 | 4.31 | 4.34 | 4.35 | 4.37 | 4.38 | 4.39 | 4.40 |      |
| 35         | 4.19                        | 4.20 | 4.22 | 4.23 | 4.25 | 4.26 | 4.27 | 4.29 | 4.30 | 4.32 | 4.33 | 4.34 | 4.36 | 4.37 | 4.39 | 4.40 |
| 36         | 4.18                        | 4.19 | 4.21 | 4.23 | 4.24 | 4.25 | 4.27 | 4.28 | 4.30 | 4.31 | 4.32 | 4.35 | 4.36 | 4.38 | 4.39 |      |
| 37         | 4.17                        | 4.18 | 4.20 | 4.21 | 4.23 | 4.24 | 4.26 | 4.27 | 4.29 | 4.30 | 4.32 | 4.34 | 4.35 | 4.37 | 4.38 |      |
| 38         | 4.16                        | 4.17 | 4.19 | 4.21 | 4.22 | 4.23 | 4.25 | 4.26 | 4.28 | 4.29 | 4.31 | 4.32 | 4.34 | 4.36 | 4.37 |      |
| 39         | 4.15                        | 4.17 | 4.18 | 4.20 | 4.21 | 4.23 | 4.24 | 4.25 | 4.27 | 4.28 | 4.30 | 4.31 | 4.33 | 4.34 | 4.35 |      |
| 40         | 4.14                        | 4.15 | 4.17 | 4.19 | 4.20 | 4.22 | 4.23 | 4.25 | 4.26 | 4.28 | 4.29 | 4.30 | 4.32 | 4.33 | 4.35 |      |
| 41         | 4.14                        | 4.15 | 4.17 | 4.18 | 4.19 | 4.21 | 4.22 | 4.24 | 4.25 | 4.27 | 4.28 | 4.29 | 4.31 | 4.32 | 4.34 |      |
| 42         | 4.13                        | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 | 4.22 | 4.23 | 4.24 | 4.26 | 4.27 | 4.29 | 4.30 | 4.32 | 4.33 |      |
| 43         | 4.12                        | 4.12 | 4.15 | 4.16 | 4.18 | 4.19 | 4.21 | 4.22 | 4.24 | 4.25 | 4.26 | 4.28 | 4.29 | 4.31 | 4.32 |      |
| 44         | 4.11                        | 4.13 | 4.14 | 4.16 | 4.17 | 4.18 | 4.20 | 4.21 | 4.23 | 4.24 | 4.26 | 4.27 | 4.28 | 4.30 | 4.31 |      |
| 45         | 4.10                        | 4.12 | 4.13 | 4.15 | 4.16 | 4.18 | 4.19 | 4.20 | 4.22 | 4.23 | 4.25 | 4.26 | 4.28 | 4.29 | 4.30 |      |
| 46         | 4.10                        | 4.11 | 4.12 | 4.14 | 4.15 | 4.17 | 4.18 | 4.20 | 4.21 | 4.23 | 4.24 | 4.25 | 4.27 | 4.28 | 4.30 |      |
| 47         | 4.09                        | 4.10 | 4.12 | 4.13 | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 | 4.22 | 4.23 | 4.24 | 4.27 | 4.28 | 4.29 |      |
| 48         | 4.08                        | 4.09 | 4.11 | 4.12 | 4.14 | 4.15 | 4.17 | 4.18 | 4.19 | 4.21 | 4.22 | 4.24 | 4.26 | 4.27 | 4.28 |      |
| 49         | 4.07                        | 4.09 | 4.10 | 4.11 | 4.13 | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 | 4.21 | 4.24 | 4.25 | 4.27 | 4.28 |      |
| 50         | 4.06                        | 4.08 | 4.09 | 4.11 | 4.12 | 4.13 | 4.15 | 4.16 | 4.18 | 4.19 | 4.20 | 4.22 | 4.23 | 4.25 | 4.26 |      |
| 51         | 4.06                        | 4.07 | 4.08 | 4.10 | 4.11 | 4.13 | 4.14 | 4.15 | 4.17 | 4.18 | 4.20 | 4.21 | 4.23 | 4.24 | 4.25 |      |
| 52         | 4.05                        | 4.06 | 4.08 | 4.09 | 4.10 | 4.12 | 4.13 | 4.15 | 4.16 | 4.18 | 4.19 | 4.20 | 4.22 | 4.23 | 4.25 |      |
| 53         | 4.04                        | 4.05 | 4.07 | 4.08 | 4.10 | 4.11 | 4.12 | 4.14 | 4.15 | 4.17 | 4.18 | 4.20 | 4.21 | 4.22 | 4.24 |      |
| 54         | 4.03                        | 4.05 | 4.06 | 4.07 | 4.09 | 4.10 | 4.12 | 4.13 | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 | 4.21 | 4.22 |      |
| 55         | 4.02                        | 4.04 | 4.05 | 4.07 | 4.08 | 4.09 | 4.11 | 4.12 | 4.14 | 4.15 | 4.17 | 4.18 | 4.19 | 4.21 | 4.22 |      |
| 56         | 4.02                        | 4.03 | 4.04 | 4.06 | 4.07 | 4.09 | 4.10 | 4.11 | 4.13 | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 | 4.21 |      |
| 57         | 4.01                        | 4.02 | 4.04 | 4.05 | 4.06 | 4.08 | 4.09 | 4.11 | 4.12 | 4.13 | 4.14 | 4.16 | 4.17 | 4.19 | 4.20 |      |
| 58         | 4.00                        | 4.01 | 4.03 | 4.04 | 4.06 | 4.07 | 4.09 | 4.10 | 4.11 | 4.13 | 4.14 | 4.15 | 4.17 | 4.18 | 4.20 |      |
| 59         | 4.00                        | 4.01 | 4.02 | 4.04 | 4.05 | 4.06 | 4.08 | 4.09 | 4.10 | 4.12 | 4.13 | 4.15 | 4.16 | 4.17 | 4.19 |      |
| 60         | 3.99                        | 4.01 | 4.02 | 4.03 | 4.04 | 4.06 | 4.07 | 4.08 | 4.10 | 4.12 | 4.13 | 4.14 | 4.16 | 4.17 | 4.18 |      |
| 61         | 3.98                        | 4.00 | 4.01 | 4.02 | 4.04 | 4.06 | 4.07 | 4.08 | 4.10 | 4.11 | 4.12 | 4.14 | 4.15 | 4.16 | 4.17 |      |
| 62         | 3.97                        | 3.99 | 4.00 | 4.02 | 4.03 | 4.04 | 4.06 | 4.07 | 4.08 | 4.10 | 4.11 | 4.12 | 4.14 | 4.15 | 4.16 |      |
| 63         | 3.97                        | 3.98 | 3.99 | 4.00 | 4.02 | 4.04 | 4.05 | 4.06 | 4.08 | 4.09 | 4.11 | 4.12 | 4.14 | 4.15 | 4.16 |      |
| 64         | 3.96                        | 3.97 | 3.99 | 4.00 | 4.01 | 4.03 | 4.04 | 4.06 | 4.07 | 4.09 | 4.10 | 4.11 | 4.12 | 4.14 | 4.15 |      |
| 65         | 3.95                        | 3.96 | 3.98 | 3.99 | 4.01 | 4.02 | 4.04 | 4.05 | 4.06 | 4.08 | 4.09 | 4.10 | 4.12 | 4.13 | 4.15 |      |
| 66         | 3.94                        | 3.96 | 3.97 | 3.99 | 4.00 | 4.01 | 4.03 | 4.04 | 4.05 | 4.07 | 4.08 | 4.09 | 4.10 | 4.11 | 4.13 |      |
| 67         | 3.93                        | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.02 | 4.03 | 4.05 | 4.07 | 4.08 | 4.09 | 4.10 | 4.11 | 4.12 |      |
| 68         | 3.93                        | 3.94 | 3.96 | 3.97 | 3.98 | 4.00 | 4.01 | 4.03 | 4.04 | 4.05 | 4.07 | 4.08 | 4.09 | 4.11 | 4.12 |      |
| 69         | 3.92                        | 3.93 | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.02 | 4.03 | 4.05 | 4.06 | 4.07 | 4.09 | 4.10 | 4.11 |      |

M E A S U R I N G C A S I N G H E A D G A S

---

THROUGH A FUNNEL METER AT DIFFERENT  
AND TEMPERATURES

..... 70 deg. fahr. Standard pressure ..... 4 inches water

| deg. fahr.                  | BAROMETER READING |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                             | 28.6              | 28.7 | 28.8 | 28.9 | 29.0 | 29.1 | 29.2 | 29.3 | 29.4 | 29.5 | 29.6 | 29.7 | 29.8 | 29.9 | 30.0 |
| PRESSURE IN INCHES OF WATER |                   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 70                          | 3.91              | 3.92 | 3.94 | 3.96 | 3.97 | 3.98 | 4.00 | 4.01 | 4.02 | 4.04 | 4.06 | 4.07 | 4.07 | 4.08 | 4.10 |
| 71                          | 3.91              | 3.92 | 3.94 | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.02 | 4.03 | 4.05 | 4.05 | 4.05 | 4.07 | 4.09 |
| 72                          | 3.91              | 3.91 | 3.93 | 3.94 | 3.96 | 3.97 | 3.99 | 4.00 | 4.01 | 4.01 | 4.02 | 4.03 | 4.05 | 4.06 | 4.08 |
| 73                          | 3.90              | 3.91 | 3.92 | 3.94 | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.01 | 4.02 | 4.03 | 4.05 | 4.06 | 4.08 |
| 74                          | 3.90              | 3.90 | 3.91 | 3.93 | 3.94 | 3.96 | 3.97 | 3.98 | 4.00 | 4.01 | 4.02 | 4.03 | 4.05 | 4.06 | 4.08 |
| 75                          | 3.88              | 3.90 | 3.90 | 3.92 | 3.98 | 3.95 | 3.96 | 3.97 | 3.98 | 4.00 | 4.01 | 4.02 | 4.03 | 4.06 | 4.07 |
| 76                          | 3.87              | 3.88 | 3.89 | 3.90 | 3.93 | 3.94 | 3.95 | 3.96 | 3.97 | 4.00 | 4.01 | 4.01 | 4.02 | 4.04 | 4.06 |
| 77                          | 3.86              | 3.88 | 3.89 | 3.90 | 3.92 | 3.93 | 3.95 | 3.96 | 3.97 | 3.99 | 4.01 | 4.01 | 4.03 | 4.04 | 4.06 |
| 78                          | 3.86              | 3.87 | 3.88 | 3.89 | 3.91 | 3.92 | 3.94 | 3.95 | 3.97 | 3.98 | 3.99 | 4.01 | 4.02 | 4.03 | 4.05 |
| 79                          | 3.85              | 3.86 | 3.88 | 3.89 | 3.90 | 3.92 | 3.93 | 3.94 | 3.96 | 3.97 | 3.98 | 4.00 | 4.01 | 4.02 | 4.04 |
| 80                          | 3.84              | 3.85 | 3.87 | 3.89 | 3.90 | 3.91 | 3.92 | 3.94 | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.01 | 4.03 |
| 81                          | 3.84              | 3.85 | 3.86 | 3.88 | 3.89 | 3.90 | 3.91 | 3.93 | 3.94 | 3.96 | 3.98 | 3.99 | 4.00 | 4.01 | 4.02 |
| 82                          | 3.83              | 3.84 | 3.85 | 3.87 | 3.88 | 3.90 | 3.92 | 3.93 | 3.95 | 3.96 | 3.98 | 3.99 | 4.00 | 4.01 | 4.04 |
| 83                          | 3.82              | 3.84 | 3.85 | 3.86 | 3.88 | 3.89 | 3.90 | 3.91 | 3.93 | 3.94 | 3.96 | 3.97 | 3.98 | 3.99 | 4.00 |
| 84                          | 3.82              | 3.83 | 3.85 | 3.86 | 3.86 | 3.89 | 3.90 | 3.91 | 3.93 | 3.94 | 3.96 | 3.97 | 3.97 | 3.99 | 4.00 |
| 85                          | 3.81              | 3.82 | 3.84 | 3.85 | 3.86 | 3.88 | 3.88 | 3.90 | 3.91 | 3.92 | 3.94 | 3.95 | 3.96 | 3.98 | 3.99 |
| 86                          | 3.80              | 3.81 | 3.83 | 3.84 | 3.85 | 3.87 | 3.88 | 3.89 | 3.90 | 3.92 | 3.93 | 3.95 | 3.96 | 3.97 | 3.99 |
| 87                          | 3.80              | 3.80 | 3.82 | 3.83 | 3.84 | 3.86 | 3.87 | 3.88 | 3.89 | 3.90 | 3.92 | 3.94 | 3.95 | 3.97 | 3.98 |
| 88                          | 3.79              | 3.80 | 3.81 | 3.83 | 3.84 | 3.85 | 3.87 | 3.88 | 3.89 | 3.90 | 3.91 | 3.93 | 3.95 | 3.96 | 3.97 |
| 89                          | 3.78              | 3.80 | 3.81 | 3.82 | 3.84 | 3.84 | 3.86 | 3.87 | 3.88 | 3.89 | 3.91 | 3.92 | 3.94 | 3.95 | 3.97 |
| 90                          | 3.77              | 3.79 | 3.80 | 3.82 | 3.83 | 3.84 | 3.85 | 3.86 | 3.87 | 3.88 | 3.90 | 3.91 | 3.93 | 3.95 | 3.96 |
| 91                          | 3.76              | 3.78 | 3.80 | 3.81 | 3.83 | 3.84 | 3.84 | 3.86 | 3.87 | 3.88 | 3.90 | 3.91 | 3.92 | 3.94 | 3.96 |
| 92                          | 3.76              | 3.77 | 3.79 | 3.81 | 3.82 | 3.82 | 3.83 | 3.85 | 3.86 | 3.87 | 3.89 | 3.90 | 3.91 | 3.93 | 3.94 |
| 93                          | 3.75              | 3.76 | 3.78 | 3.79 | 3.80 | 3.82 | 3.83 | 3.84 | 3.86 | 3.87 | 3.88 | 3.89 | 3.90 | 3.92 | 3.93 |
| 94                          | 3.75              | 3.76 | 3.77 | 3.78 | 3.79 | 3.81 | 3.82 | 3.84 | 3.85 | 3.86 | 3.87 | 3.88 | 3.90 | 3.91 | 3.92 |
| 95                          | 3.74              | 3.75 | 3.76 | 3.78 | 3.79 | 3.81 | 3.82 | 3.83 | 3.84 | 3.85 | 3.86 | 3.88 | 3.89 | 3.91 | 3.92 |
| 96                          | 3.74              | 3.75 | 3.76 | 3.77 | 3.78 | 3.80 | 3.81 | 3.82 | 3.84 | 3.86 | 3.86 | 3.87 | 3.88 | 3.90 | 3.91 |
| 97                          | 3.73              | 3.74 | 3.75 | 3.77 | 3.78 | 3.79 | 3.80 | 3.82 | 3.84 | 3.85 | 3.87 | 3.87 | 3.88 | 3.90 | 3.91 |
| 98                          | 3.72              | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.80 | 3.81 | 3.82 | 3.83 | 3.85 | 3.86 | 3.87 | 3.88 | 3.90 |
| 99                          | 3.71              | 3.73 | 3.73 | 3.75 | 3.77 | 3.78 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 | 3.86 | 3.87 | 3.88 | 3.89 |
| 100                         | 3.71              | 3.72 | 3.72 | 3.74 | 3.76 | 3.77 | 3.78 | 3.79 | 3.80 | 3.82 | 3.83 | 3.85 | 3.86 | 3.87 | 3.88 |
| 101                         | 3.70              | 3.71 | 3.72 | 3.74 | 3.75 | 3.76 | 3.77 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 | 3.85 | 3.86 | 3.88 |
| 102                         | 3.69              | 3.70 | 3.71 | 3.73 | 3.74 | 3.75 | 3.76 | 3.78 | 3.79 | 3.81 | 3.82 | 3.83 | 3.84 | 3.85 | 3.87 |
| 103                         | 3.68              | 3.70 | 3.71 | 3.72 | 3.74 | 3.75 | 3.76 | 3.77 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 | 3.85 | 3.87 |
| 104                         | 3.67              | 3.69 | 3.70 | 3.71 | 3.72 | 3.74 | 3.75 | 3.76 | 3.78 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 | 3.86 |
| 105                         | 3.67              | 3.68 | 3.70 | 3.71 | 3.72 | 3.73 | 3.74 | 3.76 | 3.77 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 | 3.86 |
| 106                         | 3.66              | 3.68 | 3.69 | 3.70 | 3.72 | 3.73 | 3.74 | 3.76 | 3.77 | 3.78 | 3.79 | 3.80 | 3.82 | 3.83 | 3.84 |
| 107                         | 3.66              | 3.68 | 3.68 | 3.70 | 3.71 | 3.72 | 3.73 | 3.75 | 3.76 | 3.78 | 3.79 | 3.80 | 3.81 | 3.83 | 3.84 |
| 108                         | 3.65              | 3.67 | 3.68 | 3.69 | 3.70 | 3.72 | 3.73 | 3.74 | 3.75 | 3.77 | 3.78 | 3.79 | 3.80 | 3.82 | 3.83 |

M E A S U R I N G C A S I N G H E A D G A S

Table Giving Percentages Fast (+) and Slow (-) with Correcting Factors to be Used in Testing Large Capacity Meters with the Funnel Meter. All Figures Given on the Basis of a  $1\frac{1}{2}$  in. Orifice Passing One Cubic Foot Per Second at a Four Inch Water Pressure Corrected for Barometer and Thermometer Changes and for Specific Gravity of Gas Used.

| FAST METERS                                               |                                             |                                                  | SLOW METERS                                               |                                             |                                                  |
|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Time Required by Meter to Register 100 Cu. Ft. in Seconds | Per Cent Fast (Funnel Meter being Standard) | Correcting Factor. Deduct Meter Reading Per Cent | Time Required by Meter to Register 100 Cu. Ft. in Seconds | Per Cent Slow (Funnel Meter being Standard) | Correcting Factor. Add to Meter Reading Per Cent |
| 100                                                       | O. K.                                       | none                                             | 100                                                       | O. K.                                       | none                                             |
| 99                                                        | 1 +                                         | 1                                                | 101                                                       | .9 -                                        | 1                                                |
| 98                                                        | 2 +                                         | 2                                                | 102                                                       | 1.9 -                                       | 2                                                |
| 97                                                        | 3 +                                         | 3                                                | 103                                                       | 2.9 -                                       | 3                                                |
| 96                                                        | 4.1 +                                       | 4                                                | 104                                                       | 3.8 -                                       | 4                                                |
| 95                                                        | 5.2 +                                       | 5                                                | 105                                                       | 4.7 -                                       | 5                                                |
| 94                                                        | 6.3 +                                       | 6                                                | 106                                                       | 5.6 -                                       | 6                                                |
| 93                                                        | 7.5 +                                       | 7                                                | 107                                                       | 6.5 -                                       | 7                                                |
| 92                                                        | 8.6 +                                       | 8                                                | 108                                                       | 7.4 -                                       | 8                                                |
| 91                                                        | 9.8 +                                       | 9                                                | 109                                                       | 8.2 -                                       | 9                                                |
| 90                                                        | 11.1 +                                      | 10                                               | 110                                                       | 9. -                                        | 10                                               |
| 89                                                        | 12.3 +                                      | 11                                               | 111                                                       | 9.9 -                                       | 11                                               |
| 88                                                        | 13.6 +                                      | 12                                               | 112                                                       | 10.7 -                                      | 12                                               |
| 87                                                        | 14.9 +                                      | 13                                               | 113                                                       | 11.5 -                                      | 13                                               |
| 86                                                        | 16.2 +                                      | 14                                               | 114                                                       | 12.2 -                                      | 14                                               |
| 85                                                        | 17.6 +                                      | 15                                               | 115                                                       | 13. -                                       | 15                                               |
| 84                                                        | 19. +                                       | 16                                               | 116                                                       | 13.7 -                                      | 16                                               |
| 83                                                        | 20.4 +                                      | 17                                               | 117                                                       | 14.5 -                                      | 17                                               |
| 82                                                        | 21.9 +                                      | 18                                               | 118                                                       | 15.2 -                                      | 18                                               |
| 81                                                        | 23.4 +                                      | 19                                               | 119                                                       | 15.9 -                                      | 19                                               |
| 80                                                        | 25. +                                       | 20                                               | 120                                                       | 16.6 -                                      | 20                                               |
| 79                                                        | 26.5 +                                      | 21                                               | 121                                                       | 17.3 -                                      | 21                                               |
| 78                                                        | 28.1 +                                      | 22                                               | 122                                                       | 18. -                                       | 22                                               |
| 77                                                        | 29.8 +                                      | 23                                               | 123                                                       | 18.6 -                                      | 23                                               |
| 76                                                        | 31.5 +                                      | 24                                               | 124                                                       | 19.3 -                                      | 24                                               |
| 75                                                        | 33.3 +                                      | 25                                               | 125                                                       | 20. -                                       | 25                                               |
| 74                                                        | 35.1 +                                      | 26                                               | 126                                                       | 20.6 -                                      | 26                                               |
| 73                                                        | 36.9 +                                      | 27                                               | 127                                                       | 21.2 -                                      | 27                                               |
| 72                                                        | 38.8 +                                      | 28                                               | 128                                                       | 21.8 -                                      | 28                                               |

Example:—If a meter passes 100 cubic feet in 80 seconds the meter is 25 per cent fast on a basis of the funnel being standard but the correcting factor being 20, to correct meter reading, deduct 20 per cent.

## MEASURING CASING HEAD GAS

**Recording Volume and Pressure Gauge**—This type of gauge is of great assistance in measuring casinghead gas at pressure or a vacuum.



Fig. 27—RECORDING VOLUME AND PRESSURE GAUGE CHART

One great advantage in the use of a pressure and volume recording gauge when used on a large capacity meter in measuring casinghead gas is fully illustrated in Fig. 27.

In this instance the meter was installed on a six inch line leading from an oil lease to the main compressor station.

## M E A S U R I N G C A S I N G H E A D G A S

---

The compressor was using residue gas for fuel and during the morning of the 28th (the chart was removed on the 29th) the engineer noticed that the engine was "getting air." On visiting the nearby meters the source of trouble was soon located and remedied. It was discovered that the line on which this meter and gauge were located had been broken and the compressor was "getting air" through this meter. The pressure on the oil wells at the end of this line was about 12 inches mercury vacuum pressure when being pumped, and as the atmosphere was about 29.5 inches mercury pressure naturally this higher pressure caused the meter readings to jump up and the compressor to pump more air than it did gas at the lower pressure through this line.

As each dash on the chart indicated a volume of 10,000 cubic feet, approximately 160,000 cubic feet of air meter reading had passed the meter which without the pressure and volume recording gauge would have been paid for at five cents per thousand. With this type of gauge the gasoline company could show just when the break occurred, when it was repaired and how much meter reading should be deducted in making settlement for gas at the end of the month from that particular lease.

**Density Changes in Gas Volumes at Pressures Above and Below the Atmospheric Pressure**—In measuring gas at a vacuum the same formula for determining the multiplier based on Boyle's law applies as in high pressure.

To illustrate: One cubic foot of gas at four ounce pressure contains a certain number of molecules. Take a cylinder of a diameter that will contain one cubic foot for each foot in length, fitted with a tight plunger.

If the plunger in the cylinder is placed at the one foot mark and the space thus formed filled with gas to a pressure of four ounces the cylinder then holds one cubic foot at a pressure of four ounces. Now, if the plunger is moved

## M E A S U R I N G C A S I N G H E A D G A S

---



Fig. 28—PRESSURES IN CUTS ARE GAUGE PRESSURES

outward to the two foot mark the space within the cylinder would measure two cubic feet and the one cubic foot of four ounce gas would expand to fill the space while the pressure would drop to slightly greater than 14 in. of mercury vacuum pressure. To correct the two cubic feet of gas at 14 in. mercury of vacuum to a four ounce basis, multiply the two cubic feet by the multiplier for 14 in. mercury vacuum or approximately .5 as found in the four ounce multiplier table on page 117, and the result will be one cubic foot of four ounce gas.

As all gas meters in the factory are proved and corrected to a low pressure basis, measuring gas by displacement, they may be compared to the cylinder and the plunger as illustrated above.

In measuring gas in the meter, the diaphragms contain just so much space. If the pressure of the gas contained in each quantity or volume of gas measured by the diaphragm filling and discharging is four ounce, then the meter reading needs no correction; but each time the meter diaphragm fills and discharges a volume of gas at a pressure higher or lower than four ounces, the meter reading must be corrected by applying a multiplier, to reduce the volume of gas measured to a four ounce basis; and the higher the pressure the greater will be the density of the gas and the lower the pressure below the four ounce base the less the density of the gas, and the greater or less the number of the atoms contained in each cubic foot of space.

The multipliers for density are based on Boyle's law written in 1660, that the "volume of a gas varies inversely as the pressure."

## M E A S U R I N G C A S I N G H E A D G A S

---

While the four ounce basis is generally accepted when no other pressure basis is stated in buying and selling agreement, some other basis can be used and very often is used, particularly when gas is bought or sold in large volumes in the field.

### Formula for Determining the Quantity of Natural Gas When Measured Above or Below Normal Pressure—In which

For pressure above atmospheric pressure

$$Q = q \frac{p+h}{h+.25}$$

For pressure below atmospheric pressure

$$Q = q \frac{h-p}{h+.25}$$

$Q$  = cubic feet required.

$q$  = cubic feet shown by the meter.

$p$  = gauge pressure in pounds.

$h$  = atmospheric pressure of 14.4 pounds.

0.25 = 4 ounce pressure reduced to pounds.

By substituting the known values in the above it becomes

$$Q = q \frac{p+14.4}{14.65} \quad \text{or} \quad Q = q \frac{14.4-p}{14.65}$$

Example:

As 1 lb. = .4908 inches of mercury, to determine the multiplier for 10 in. vacuum pressure, then the formula becomes:

$$Q = \frac{14.4 - .4908}{14.65} = .64790 \text{ multiplier for 10 in. vacuum}$$

pressure.

M E A S U R I N G C A S I N G H E A D G A S

Multipliers for Reducing Gas Volumes or Meter Readings  
to Different Pressure Bases

| Inches of<br>Mercury<br>Vacuum | 2 oz.                       | 4 oz.                       | 8 oz.                       | 10 oz.                      | 1 lb.                       |
|--------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| GAUGE<br>PRESSURE              | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density |
| —28                            | .04527                      | .04488                      | .04413                      | .04376                      | .04270                      |
| —27                            | .07906                      | .07838                      | .07707                      | .07643                      | .07457                      |
| —26                            | .11285                      | .11188                      | .11031                      | .10909                      | .10644                      |
| —25                            | .14660                      | .14535                      | .14291                      | .14172                      | .13827                      |
| —24                            | .18039                      | .17885                      | .17585                      | .17439                      | .17014                      |
| —23                            | .21418                      | .21236                      | .20879                      | .20706                      | .20201                      |
| —22                            | .24798                      | .24586                      | .24173                      | .23972                      | .23389                      |
| —21                            | .28177                      | .27936                      | .27468                      | .27239                      | .26576                      |
| —20                            | .31556                      | .31287                      | .30762                      | .30506                      | .29763                      |
| —19                            | .34935                      | .34637                      | .34056                      | .33772                      | .32950                      |
| —18                            | .38314                      | .37987                      | .37350                      | .37039                      | .36137                      |
| —17                            | .41693                      | .41338                      | .40644                      | .40306                      | .39324                      |
| —16                            | .45073                      | .44688                      | .43938                      | .43573                      | .42512                      |
| —15                            | .48452                      | .48038                      | .47232                      | .46839                      | .45799                      |
| —14                            | .51831                      | .51389                      | .50526                      | .50106                      | .48880                      |
| —13                            | .55210                      | .54739                      | .53820                      | .53373                      | .52073                      |
| —12                            | .58590                      | .58090                      | .57115                      | .56639                      | .55260                      |
| —11                            | .61970                      | .61440                      | .60409                      | .59906                      | .58447                      |
| —10                            | .65348                      | .64790                      | .63703                      | .63173                      | .61634                      |
| —9                             | .68727                      | .68141                      | .66997                      | .66439                      | .64822                      |
| —8                             | .72107                      | .71491                      | .70291                      | .69706                      | .68009                      |
| —7                             | .75485                      | .74841                      | .73585                      | .72973                      | .71196                      |
| —6                             | .78865                      | .78191                      | .76879                      | .76240                      | .74383                      |
| —5                             | .82244                      | .81542                      | .80173                      | .79506                      | .77570                      |
| —4                             | .85623                      | .84892                      | .83467                      | .82773                      | .80757                      |
| —3                             | .89002                      | .88242                      | .86761                      | .86040                      | .83945                      |
| —2                             | .92381                      | .91593                      | .90056                      | .89306                      | .87132                      |
| —1                             | .95760                      | .94943                      | .93350                      | .92573                      | .90319                      |
| Atmos.                         | .99139                      | .98293                      | .96644                      | .95840                      | .93506                      |
| Lb.<br>per Sq. In.             |                             |                             |                             |                             |                             |
| .125                           | 1.00000                     | .99146                      | .97483                      | .96672                      | .94318                      |
| .25                            | 1.00860                     | 1.00000                     | .98322                      | .97504                      | .95129                      |
| .5                             | 1.02581                     | 1.01706                     | 1.00000                     | .99168                      | .96753                      |

M E A S U R I N G C A S I N G H E A D G A

---

Multipliers for Reducing Gas Volumes or Meter Readings  
to Different Pressure Bases

| Inches of<br>Mercury<br>Vacuum           | 2 oz.                       | 4 oz.                       | 8 oz.                       | 10 oz.                      | 1 lb.                       |
|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| GAUGE<br>PRESSURE<br>L.b.<br>per Sq. In. | Mulitplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density |
| .625                                     | 1.03442                     | 1.02559                     | 1.00838                     | 1.00000                     | .97564                      |
| 1                                        | 1.06024                     | 1.05119                     | 1.03355                     | 1.02495                     | 1.00000                     |
| 1.5                                      | 1.09466                     | 1.08532                     | 1.06711                     | 1.05823                     | 1.03246                     |
| 2                                        | 1.12908                     | 1.11945                     | 1.10067                     | 1.09151                     | 1.06493                     |
| 2.5                                      | 1.16351                     | 1.15358                     | 1.13422                     | 1.12479                     | 1.09740                     |
| 3                                        | 1.19793                     | 1.18771                     | 1.16778                     | 1.15806                     | 1.12987                     |
| 3.5                                      | 1.23235                     | 1.22184                     | 1.20134                     | 1.19134                     | 1.16233                     |
| 4                                        | 1.26678                     | 1.25597                     | 1.23489                     | 1.22462                     | 1.19480                     |
| 4.5                                      | 1.30120                     | 1.29010                     | 1.26845                     | 1.25790                     | 1.22727                     |
| 5                                        | 1.33562                     | 1.32423                     | 1.30201                     | 1.29118                     | 1.25974                     |
| 5.5                                      | 1.37005                     | 1.35836                     | 1.33557                     | 1.32445                     | 1.29220                     |
| 6                                        | 1.40447                     | 1.39249                     | 1.36912                     | 1.35778                     | 1.32467                     |
| 6.5                                      | 1.43889                     | 1.42662                     | 1.40268                     | 1.39101                     | 1.35714                     |
| 7                                        | 1.47332                     | 1.46075                     | 1.43624                     | 1.42429                     | 1.38961                     |
| 7.5                                      | 1.50774                     | 1.49488                     | 1.46979                     | 1.45757                     | 1.42207                     |
| 8                                        | 1.54216                     | 1.52901                     | 1.50335                     | 1.49084                     | 1.45454                     |
| 8.5                                      | 1.57659                     | 1.56313                     | 1.53691                     | 1.52412                     | 1.48701                     |
| 9                                        | 1.61101                     | 1.59726                     | 1.57046                     | 1.55740                     | 1.51948                     |
| 9.5                                      | 1.64543                     | 1.63139                     | 1.60402                     | 1.59068                     | 1.55194                     |
| 10                                       | 1.67986                     | 1.66552                     | 1.63758                     | 1.62396                     | 1.58441                     |
| 10.5                                     | 1.71428                     | 1.69965                     | 1.67114                     | 1.65723                     | 1.61688                     |
| 11                                       | 1.74870                     | 1.73378                     | 1.70469                     | 1.69051                     | 1.64935                     |
| 11.5                                     | 1.78313                     | 1.76791                     | 1.73825                     | 1.72379                     | 1.68181                     |
| 12                                       | 1.81755                     | 1.80204                     | 1.77181                     | 1.75707                     | 1.71428                     |
| 12.5                                     | 1.85197                     | 1.83617                     | 1.80536                     | 1.79034                     | 1.74675                     |
| 13                                       | 1.88640                     | 1.87030                     | 1.83892                     | 1.82362                     | 1.77922                     |
| 13.5                                     | 1.92082                     | 1.90443                     | 1.87248                     | 1.85690                     | 1.81168                     |
| 14                                       | 1.95524                     | 1.93856                     | 1.90604                     | 1.89018                     | 1.84415                     |
| 14.5                                     | 1.98967                     | 1.97269                     | 1.93959                     | 1.92346                     | 1.87662                     |
| 15                                       | 2.02409                     | 2.00682                     | 1.97315                     | 1.95673                     | 1.90909                     |
| 16                                       | 2.09294                     | 2.07508                     | 2.04026                     | 2.02329                     | 1.97402                     |
| 17                                       | 2.16178                     | 2.14334                     | 2.10738                     | 2.08985                     | 2.03896                     |
| 18                                       | 2.23063                     | 2.21160                     | 2.17449                     | 2.15640                     | 2.10389                     |
| 19                                       | 2.29948                     | 2.27986                     | 2.24161                     | 2.22296                     | 2.16883                     |
| 20                                       | 2.36833                     | 2.34812                     | 2.30872                     | 2.28951                     | 2.23376                     |

M E A S U R I N G C A S I N G H E A D G A S

---

Multipliers for Reducing Gas Volumes or Meter Readings  
to Different Pressure Bases

| Inches of<br>Mercury<br>Vacuum          | 2 oz.                       | 4 oz.                       | 8 oz.                       | 10 oz.                      | 1 lb.                       |
|-----------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| GAUGE<br>PRESSURE<br>Lb.<br>per Sq. In. | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density | Multiplier<br>or<br>Density |
| 21                                      | 2.43717                     | 2.41638                     | 2.37583                     | 2.35607                     | 2.29870                     |
| 22                                      | 2.50602                     | 2.48464                     | 2.44295                     | 2.42262                     | 2.36363                     |
| 23                                      | 2.57487                     | 2.55290                     | 2.51006                     | 2.48918                     | 2.42857                     |
| 24                                      | 2.64371                     | 2.62116                     | 2.57718                     | 2.55574                     | 2.49350                     |
| 25                                      | 2.71256                     | 2.68941                     | 2.64429                     | 2.62229                     | 2.55844                     |
| 26                                      | 2.78141                     | 2.75767                     | 2.71140                     | 2.68885                     | 2.62387                     |
| 27                                      | 2.85025                     | 2.82593                     | 2.77852                     | 2.75540                     | 2.68881                     |
| 28                                      | 2.91910                     | 2.89419                     | 2.84563                     | 2.82196                     | 2.75324                     |
| 29                                      | 2.98795                     | 2.96245                     | 2.91275                     | 2.88851                     | 2.81818                     |
| 30                                      | 3.05679                     | 3.03071                     | 2.97986                     | 2.95507                     | 2.88311                     |
| 31                                      | 3.12564                     | 3.09879                     | 3.04697                     | 3.02163                     | 2.94805                     |
| 32                                      | 3.19449                     | 3.16723                     | 3.11409                     | 3.08818                     | 3.01298                     |
| 33                                      | 3.26333                     | 3.23549                     | 3.18120                     | 3.15474                     | 3.07792                     |
| 34                                      | 3.33218                     | 3.30375                     | 3.24832                     | 3.22129                     | 3.14285                     |
| 35                                      | 3.40103                     | 3.37201                     | 3.31543                     | 3.28785                     | 3.20779                     |
| 36                                      | 3.46987                     | 3.44027                     | 3.38255                     | 3.35440                     | 3.27272                     |
| 37                                      | 3.53872                     | 3.50853                     | 3.44966                     | 3.42096                     | 3.33766                     |
| 38                                      | 3.60757                     | 3.57679                     | 3.51677                     | 3.48752                     | 3.40259                     |
| 39                                      | 3.67641                     | 3.64505                     | 3.58389                     | 3.55407                     | 3.46753                     |
| 40                                      | 3.74526                     | 3.71331                     | 3.65100                     | 3.62063                     | 3.53246                     |
| 41                                      | 3.81411                     | 3.78156                     | 3.71812                     | 3.68718                     | 3.59740                     |
| 42                                      | 3.88296                     | 3.84982                     | 3.78523                     | 3.75374                     | 3.66233                     |
| 43                                      | 3.95180                     | 3.91808                     | 3.85234                     | 3.82029                     | 3.72727                     |
| 44                                      | 4.02065                     | 3.98634                     | 3.91946                     | 3.88685                     | 3.79220                     |
| 45                                      | 4.08950                     | 4.05460                     | 3.98657                     | 3.95341                     | 3.85714                     |
| 46                                      | 4.15834                     | 4.12286                     | 4.05369                     | 4.01996                     | 3.92207                     |
| 47                                      | 4.22719                     | 4.19112                     | 4.12080                     | 4.08652                     | 3.98701                     |
| 48                                      | 4.29604                     | 4.25938                     | 4.18791                     | 4.15307                     | 4.05194                     |
| 49                                      | 4.36488                     | 4.32764                     | 4.25503                     | 4.21963                     | 4.11688                     |
| 50                                      | 4.43373                     | 4.39590                     | 4.32214                     | 4.28618                     | 4.18181                     |

**Siphon or "U" Gauges**—These are the most convenient low pressure gauges in use, being portable and simply screwed to the piping wherever it is desired to take the pressure.

They consist of a U-shaped glass tube with a metal goose-neck, in sizes from 4 inch to 36 inch. Between the two sides or legs of this tube is set a scale graduated in inches and tenths, or pounds and ounces, as desired. A bent brass tube, or goose-neck, is connected to the "U" tube at the top and runs down the side to the gas connection.

When used the gauge is filled with water or mercury to the center of the scale, which is zero. The gauge is connected to the gas supply and the pressure turned on. The



liquid will fall below zero on the inlet side of the "U" tube and rise on the opposite side the same distance. The distance between the two levels of the liquid as shown by the scale will give the amount of pressure in inches and tenths or in pounds and ounces, according to the graduation.

While the gauge is in use the downward motion of the liquid in one column, due to the pressure of the gas, should equal the rise of liquid in the opposite column. In case the water, after being set at zero, should not drop on the pressure side as much as it rises on the other side, it is an indication that the glass tubes are not of equal diameter, and both columns must be read, their sum being the true pressure.

Water is generally used in siphon gauges in testing domestic meters and measuring small gas wells. It is also used in testing large capacity meters in the field.

Fig. 29.—SIPHON  
OR "U" GAUGE

M E A S U R I N G C A S I N G H E A D G A S

---

The Equivalents of Ounces, per Square Inch, in Inches of Height of Columns of Water and Mercury

| Ounces | Inches of Water | Inches of Mercury | Ounces | Inches of Water | Inches of Mercury |
|--------|-----------------|-------------------|--------|-----------------|-------------------|
| 0.146  | 0.25            | 0.018             | 7      | 12.11           | 0.892             |
| 0.292  | 0.51            | 0.037             | 8      | 13.85           | 1.019             |
| 0.438  | 0.76            | 0.055             | 9      | 15.58           | 1.146             |
| 0.584  | 1.01            | 0.074             | 10     | 17.31           | 1.277             |
| 1      | 1.73            | 0.127             | 11     | 19.05           | 1.401             |
| 2      | 3.46            | 0.255             | 12     | 20.78           | 1.528             |
| 3      | 5.19            | 0.382             | 13     | 22.51           | 1.655             |
| 4      | 6.92            | 0.510             | 14     | 24.24           | 1.783             |
| 5      | 8.65            | 0.637             | 15     | 25.97           | 1.910             |
| 6      | 10.38           | 0.765             | 16     | 27.71           | 2.037             |

27.71 inches of water and 2.0374 inches of mercury equal one pound per square inch at atmospheric pressure and 62 deg. fahr. temperature. Mercury is 13.59 times as heavy as water.

## PART SIX

### GASOLINE PLANTS—COMPRESSION METHOD

Gasoline plants vary in size from single well plants compressing from 3 to 5,000 cubic feet of casinghead gas per day and making as small as fifty gallons of gasoline per day to plants with six and eight compressors compressing several million cubic feet of gas daily making from twenty to thirty thousand gallons of gasoline.

In the former a fifteen h. p. gas engine is used which in addition to furnishing power to run a vacuum pump and a single stage compressor, also furnishes power to the walking beam for pumping oil.

The compressor generally used is a 6 by 6 size running about 100 rev. per min., while the vacuum pump is a Duplex type with much larger cylinders and running about 40 rev. per min. The gas is compressed to about 80 lb. pressure while the vacuum maintained on the oil sand is about 18 to 19 inches vacuum.

At several plants in the Sistersville, W. Va., district the gas is very rich, showing on test as high as 13 gallons of gasoline per thousand cubic feet of gas, consequently, after the extraction of gasoline there is too small a quantity of residue gas left to run the gas engine, compelling the purchase of natural gas from the local gas company.

The gasoline extracted is of 86 deg. to 90 deg. Baume. It is collected in iron drums and hauled by wagon to a nearby market.

Generally one man has charge of three or four plants which are run twenty-four hours daily same as with large installations.

Some of the larger plants in Oklahoma are as complete in every detail and cost as much to install as many of the

## GASOLINE PLANT — COMPRESSION METHOD



Fig. 30—GENERAL PLAN OF GASOLINE PLANT. COMPRESSOR SYSTEM

large gas compressing stations operated by the large natural gas companies.

In addition to compressors, cooling coils, tanks and gas engines their equipment included a complete electric lighting system with storage batteries, lathes, drill presses, grinders, overhead crane, a complete water system under fire pressure, a chemical cart for extinguishing fires, private telephone and telegraph lines to main office and to booster

stations, a well equipped steam heating system for entire plant, a suitable office, garage and employees' houses.

The completeness and attractive appearance of many plants visited by the author are a credit to their owners. In one instance the meter installation was more complete in every detail and kept in better condition than any similar installation the author has ever seen on a natural gas line.

In the Sistersville district the casinghead gas is compressed to from 80 lb. to 100 lb. and the discharge lines from the compressor lead through tanks containing running water. The coldest water is at the outlet of the coil from the tank.

In the Oklahoma field the casinghead gas is compressed as high as 225 to 275 lb. and the compressed gas is conducted through a series of coils which are cooled by constantly dripping water.

As the compressed gas passes through the cooling coils under high pressure the hydrocarbons or gasoline condense and are trapped at the discharge end of the coils from which point they are pumped into blending tanks where the gravity is attained by blending with naphtha. After blending it is ready for the market.

It is more profitable to make the lower gravity gasoline (even though less of it is obtained from 1,000 cubic feet of gas) than it is to install expensive machinery and extract a greater number of gallons of high gravity gasoline, because the latter is so volatile that one is able to market but a fraction of the quantity actually made.

**Construction of Gasoline Plant**--If the range of pressures through which the gas is to be compressed exceeds seven or eight compressions, it is necessary to use a two-stage compressor in order to keep the temperature within proper working limits. For this class of work a single two-stage unit, with an intercooler forming a part of it, is satisfactory.

GASOLINE PLANT — COMPRESSION METHOD

---



*Fig. 31—INTERIOR OF COMPRESSOR PLANT*

## GASOLINE PLANT — COMPRESSION METHOD

TABLE OF INDICATED HORSE POWER ON THE COMPRESSOR PISTON PER MILLION CUBIC FEET OF GAS PER DAY

| SUCTION<br>PRESSURE | DISCHARGE PRESSURE, POUNDS, PER SQUARE INCH, GAUGE |       |       |       |       |       | 100   | 100   | 100   | 100   | 100   | 100   |
|---------------------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     | 50                                                 | 60    | 70    | 80    | 90    | 125   |       |       |       |       |       |       |
| 10 In. Vac.         | 111.3                                              | 107.0 | 123.0 | 114.0 | 133.7 | 121.6 | 144.3 | 128.2 | 133.8 | 139.0 | 126.2 | 150.0 |
| 5                   | 96.0                                               | 95.8  | 105.7 | 103.0 | 115.1 | 110.5 | 124.0 | 116.0 | 132.8 | 141.3 | 121.0 | 137.8 |
| 0 Lb.               | 84.3                                               | ...   | 93.8  | 93.8  | 102.0 | 100.0 | 106.0 | 110.0 | 117.5 | 125.0 | 111.2 | 127.4 |
| 5                   | 67.0                                               | ...   | 75.3  | 75.3  | 82.8  | 82.8  | 89.5  | 89.5  | 95.8  | 102.2 | 100.2 | 116.8 |
| 10                  | 54.5                                               | ...   | 62.5  | 62.5  | 69.5  | 69.5  | 75.9  | 75.9  | 81.8  | 88.8  | 88.8  | 110.2 |
| 15                  | 44.6                                               | ...   | 52.5  | 52.5  | 59.0  | 59.0  | 65.4  | 65.4  | 71.0  | 76.3  | 76.3  | 100.0 |
| 20                  | ...                                                | ...   | 44.0  | 44.0  | 50.8  | 50.8  | 56.9  | 56.9  | 62.3  | 67.4  | 67.4  | 98.2  |
| 25                  | ...                                                | ...   | ...   | ...   | 43.8  | 43.8  | 49.5  | 49.5  | 54.8  | 59.6  | 59.6  | 88.0  |
| 30                  | ...                                                | ...   | ...   | ...   | ...   | ...   | 43.4  | 43.4  | 48.7  | 53.2  | 53.2  | 78.6  |
| 35                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 42.9  | 48.0  | 48.0  | 71.0  |
| 40                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 42.5  | 42.5  | 64.1  |
| 45                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 58.1  |
| 50                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 53.0  |
| 60                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 48.5  |
| 70                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | 44.0  |
| 80                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 90                  | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 100                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 120                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 140                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 160                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 180                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |
| 200                 | ...                                                | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   | ...   |

## GASOLINE PLANT — COMPRESSION METHOD

TABLE OF INDICATED HORSE POWER ON THE COMPRESSOR PISTON PER MILLION CUBIC FEET OF NATURAL GAS PER DAY—Continued

| SUCTION<br>PRESSURE | DISCHARGE PRESSURE, POUNDS PER SQUARE INCH, GAUGE |              |              |              |              |              |              |              |              |              |              |              |
|---------------------|---------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                     | 150                                               |              | 175          |              | 200          |              | 225          |              | 250          |              | 275          |              |
|                     | One<br>Stage                                      | Two<br>Stage | One<br>Stage | Two<br>Stage | One<br>Stage | Two<br>Stage | One<br>Stage | Two<br>Stage | One<br>Stage | Two<br>Stage | One<br>Stage | Two<br>Stage |
| 10 In. Vac.         | 159.6                                             | 168.0        | 176.0        | 182.2        | 189.0        | 194.6        | 200.0        | 200.0        | 200.0        | 200.0        | 200.0        | 200.0        |
| 5                   | 146.4                                             | 154.6        | 162.2        | 168.6        | 175.0        | 180.2        | 185.8        | 185.8        | 185.8        | 185.8        | 185.8        | 185.8        |
| 0 Lb.               | 136.2                                             | 144.6        | 151.4        | 158.0        | 164.0        | 169.0        | 174.2        | 174.2        | 174.2        | 174.2        | 174.2        | 174.2        |
| 5                   | 130.3                                             | 120.0        | 143.5        | 127.8        | 134.5        | 141.0        | 146.0        | 151.6        | 156.6        | 156.6        | 156.6        | 156.6        |
| 10                  | 112.0                                             | 107.6        | 123.0        | 114.6        | 133.8        | 122.0        | 144.1        | 128.0        | 133.6        | 138.6        | 143.4        | 143.4        |
| 15                  | 98.5                                              | 97.6         | 108.3        | 105.6        | 118.0        | 111.6        | 126.9        | 117.4        | 123.0        | 144.4        | 128.2        | 132.6        |
| 20                  | 88.3                                              | 97.5         | 97.0         | 106.0        | 103.4        | 114.2        | 109.4        | 122.1        | 114.0        | 129.9        | 119.4        | 137.4        |
| 25                  | 80.1                                              | 88.8         | 88.8         | 96.8         | 96.0         | 104.2        | 102.0        | 111.4        | 107.2        | 118.5        | 112.0        | 124.0        |
| 30                  | 73.3                                              | 81.7         | 81.7         | 89.1         | 96.1         | 95.6         | 103.0        | 100.6        | 109.4        | 106.0        | 115.8        | 116.2        |
| 35                  | 67.3                                              | 75.1         | 75.1         | 82.5         | 89.3         | 95.8         | 95.4         | 101.7        | 100.0        | 107.7        | 104.4        | 104.4        |
| 40                  | 62.0                                              | 69.9         | 69.9         | 76.9         | 83.3         | 89.4         | 95.2         | 94.8         | 100.7        | 99.0         | 99.0         | 99.0         |
| 45                  | 57.0                                              | 65.0         | 71.8         | 78.2         | 84.2         | 89.7         | 95.0         | 94.6         | 95.0         | 94.6         | 94.6         | 94.6         |
| 50                  | 52.9                                              | 60.5         | 67.3         | 73.5         | 79.1         | 84.7         | 89.7         | 89.7         | 89.7         | 89.7         | 89.7         | 89.7         |
| 60                  | 45.1                                              | 52.9         | 59.1         | 65.3         | 71.1         | 76.2         | 81.0         | 81.0         | 81.0         | 81.0         | 81.0         | 81.0         |
| 70                  | —                                                 | 45.9         | 52.8         | 58.2         | 64.0         | 69.1         | 73.6         | 73.6         | 73.6         | 73.6         | 73.6         | 73.6         |
| 80                  | —                                                 | 40.2         | 46.5         | 52.8         | 57.7         | 62.8         | 67.3         | 67.3         | 67.3         | 67.3         | 67.3         | 67.3         |
| 90                  | —                                                 | —            | 41.5         | 47.0         | 52.5         | 57.0         | 62.0         | 62.0         | 62.0         | 62.0         | 62.0         | 62.0         |
| 100                 | —                                                 | —            | —            | 42.1         | 47.5         | 52.7         | 56.9         | 56.9         | 56.9         | 56.9         | 56.9         | 56.9         |
| 120                 | —                                                 | —            | —            | —            | —            | 43.9         | 48.4         | 48.4         | 48.4         | 48.4         | 48.4         | 48.4         |
| 140                 | —                                                 | —            | —            | —            | —            | —            | 41.0         | 41.0         | 41.0         | 41.0         | 41.0         | 41.0         |
| 160                 | —                                                 | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            |
| 180                 | —                                                 | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            |
| 200                 | —                                                 | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            | —            |

# GASOLINE PLANT — COMPRESSION METHOD



## GASOLINE PLANT — COMPRESSION METHOD

---

low pressure expanding cylinder and is expanded in the low pressure cylinder to the neighborhood of five pounds pressure, and sometimes to as low as five inches vacuum at the exhaust outlet. The expansion of the gas is regulated by hand cut-off valves on both the high and low pressure cylinders. The expanded gas, due to its low temperature, is used for the further cooling of the casinghead gas after it leaves the high pressure water cooled coils and accumulator tanks. The expanded gas leaves the exhaust of the expander at a temperature of from 40 to 60 degrees below zero fahr. and passes through a set of double pipe coils counter current to the travel of the casinghead gas. These coils are generally inclosed in a long narrow cork insulated house. After the cooling gas has passed through the double pipe coils it passes on to the intake of the duplex single stage or two stage compressor, as the case might be, and is discharged by the compressor into the field return line, where the gas is used for fuel.

The amount of gasoline that can be extracted from casinghead gas by the use of an expander-compressor depends entirely on the efficiency of the water cooled coils. With proper designed water cooled coils and sufficient cooling water the expander-compressor generally adds from six to ten per cent of the gasoline yield. While with poorly designed and inefficient water cooled coils, due to scarcity of cooling water, or other causes, the expander-compressor in some cases, has increased the yield of the gasoline as high as twenty per cent.

Owing to the extreme low temperatures within the cylinder walls of the expansion cylinders it has been found quite difficult to properly lubricate the valves in cylinders; in fact, the only dependable lubricant so far found is glycerine.

In some cases the compressor end of the expander-compressor is used to compress casinghead gas instead of compressing the dry gas for its return to the field. When the compressor end of the expander is used for compressing casinghead gas it is then necessary to use auxiliary machinery to discharge the dry gas to the field for fuel.

See diagram, Fig. 32 on page 130 and illustration, Fig. 33 on page 132.

## GASOLINE PLANT — COMPRESSION METHOD

---



Fig. 33.—AN EXPANDER USED TO INCREASE THE YIELD OF GASOLINE EXTRACTED FROM CASINGHEAD GAS.  
*Expander is Installed on Gas Lines After Gas Leaves the Cooling Coils*

**Condensing Pressures**—While the higher the pressure of the casinghead gas the greater the amount of the gasoline obtained through proper cooling agents, it is not profitable to subject the casinghead gas to a greater pressure than three hundred pounds. Many gasoline plants operate at pressures that do not exceed 100 lbs. The reason for this is that the gasoline obtained at high pressure is of such high gravity that after it is condensed it is very difficult to keep the condensate in the liquid form. A large percentage of the higher gravity gasoline after entering the accumulator tanks re-evaporates and passes off in the residue gas which accounts for the residue gas being richer than most natural gas in heating value.

**Compression and Liquefaction of the Constituents of Casinghead Gas in Plant Operation**—The condensation of gasoline from natural gas is essentially a physical process. If any chemical reactions take place, they are slight, and inappreciable. G. A. Burrell tested residual gases from 10 different plant operations to determine whether carbon monoxide or olefin hydrocarbons were produced. These gases with others are found when the higher paraffins are decomposed at high temperatures and pressures in the absence of air. Neither carbon monoxide nor olefin hydrocarbons were found.

**Percentage of Vapor Condensed by Compression and Cooling (from Bulletin 88, Bureau of Mines)**—“The change in the raw gas that takes place in the compressors and coolers of a plant consists in the conversion of certain vapors and gases into liquid condition, and the solution of gases in these liquids. To give exact figures for the proportions of gas and vapor that disappear is impossible. An approximation, however, can be reached. One gallon of liquid propane when converted into gas produces about 31 cubic feet of gas at 0° cent. and 760 mm. pressure. One gallon of propane in the liquid condition produces about 45 cubic feet of

## GASOLINE PLANT — COMPRESSION METHOD

---



Fig. 34—COOLING COILS

## GASOLINE PLANT — COMPRESSION METHOD

gas. One gallon of butane produces 37 cubic feet of gas. Butane and pentane are probably the two paraffins that are removed in greatest quantity.

Aside from such liquefaction a certain amount of gas is absorbed by the liquid, as stated above. It is small as compared to the total disappearance of gas. The authors estimate that at some plants about 35 cubic feet of gas disappears for each gallon of condensate produced from 1,000 cubic feet of gas. If 4 gallons of condensate per 1,000 cubic feet of gas is obtained, then 140 cubic feet, or about 14 per cent of the gas treated, has disappeared. At some plants, however, as much as 50 per cent of gas disappears, and at others the quantity of residual gas is almost insignificant."

**Lighting Plant**—While there is danger of explosion due to the breaking of an incandescent light bulb in an explosive mixture of gas and air, nevertheless the electric light furnishes the least dangerous method of lighting a gasoline-gas plant and should invariably be used. Good ventilation should always be provided to prevent the accumulation of gas, and all light bulbs should be guarded to prevent breakage.



Fig. 35 — GAS RELIEF VALVE OR REGULATOR FOR GASOLINE PLANTS

**Gas Relief Regulator**—This regulator is of special interest to gasoline makers.

After the gasoline has been compressed to a high pressure, generally about three hundred pounds, per square inch, this type of regulator will reduce the pressure to twenty or thirty pounds and retain that pressure. If the pressure ahead of the regulator drops below that at which it is set, it will cut off. In other words it acts the opposite of a standard regulator used in distributing gas.

**Results of Analyses of Gases from Different Stages of Plant Operation**—(George A. Burrell.)—“Table following shows the results of laboratory tests of various gases derived from the different stages of plant operation. The percentage of air was calculated from the oxygen content as determined by analysis.

Regarding the results shown in table on page 137, the chemical analysis, the specific gravity determination, and the claroline oil absorption show the gas represented to be a rich one. It will be seen that little difference existed between the composition of the crude gas and the same gas after it had been compressed to a pressure of 50 pounds per square inch. Only after the compression to a pressure of 250 pounds per square inch and cooling, did the composition of the gas mixture change appreciably.

Under existing methods of plant operation, condensate is extracted from natural gas that ranges in specific gravity from as low as 0.8 to as high as 1.65 (air=1) and the solubilities of the gas in claroline oil ranges from 36.9 (air free) to 85.7 per cent, according to the well from which it comes.

The authors hesitate to recommend the installation of a plant to handle natural gas that shows results as poor as the minimum values given in the table. Such gas might produce gasoline in paying quantities and might not. Probably the safest extremes would be a specific gravity of 0.85

## GASOLINE PLANT — COMPRESSION METHOD

## RESULTS OF LABORATORY TESTS OF SAMPLES OF GAS FROM DIFFERENT GASOLINE PLANTS

(Bureau of Mines—Paper No. 88).

PLANT NEAR FOLLANSBEE, W. VA.

| Condition of gas                                                 | Composition |                 |                               |                               |                                |                | Remarks                                                                                                 |
|------------------------------------------------------------------|-------------|-----------------|-------------------------------|-------------------------------|--------------------------------|----------------|---------------------------------------------------------------------------------------------------------|
|                                                                  | Air         | CH <sub>4</sub> | C <sub>2</sub> H <sub>6</sub> | C <sub>3</sub> H <sub>8</sub> | C <sub>4</sub> H <sub>10</sub> | N <sub>2</sub> |                                                                                                         |
| Natural gas as drawn from the well.                              | 2,544       | 1.46            | 85.7                          | 10.8                          | 88.3                           | 0.9            | 100<br>The gas was drawn from 75 producing oil wells, under a reduced pressure of 20 inches of mercury. |
| Residual gas after removal of 50 pounds of compression product.  | 2,515       | 1.46            | .....                         | .....                         | 16.9                           | 82.9           | 0.2                                                                                                     |
| Residual gas after removal of 250 pounds of compression product. | 2,171       | 1.23            | 78.2                          | .....                         | 59.2                           | 40.3           | 0.5                                                                                                     |
| Natural gas as drawn from the well.                              | 2,474       | 1.41            | 83.6                          | .....                         | 21.4                           | 78.2           | .4                                                                                                      |
| Residual gas after removal of 50 pounds of compression product.  | 2,415       | 1.38            | 82.0                          | .....                         | 26.5                           | 72.4           | 1.1                                                                                                     |
| Residual gas after removal of 250 pounds of compression product. | 2,022       | 1.15            | 63.6                          | .....                         | 77.3                           | 22.0           | .7                                                                                                      |

NOTE—This table does not apply to residue gas but to casinghead gas direct from wells.

## GASOLINE PLANT — COMPRESSION METHOD

---



Fig. 36—COOLING COIL. Showing Water Pit Before Roof and Sun Screen Have Been Installed

(air=1), and a claroline-oil absorption of 35 per cent. The natural gas supplied to Pittsburgh, Pa., with which the authors are most familiar, contains little of the gaseous hydrocarbons, has a specific gravity of 0.64 (air=1), and has a claroline-oil absorption of about 16 per cent. It is a dry gas and is unsuitable for gasoline production by the compression method.

**Description of Ordinary Ammonia Refrigerating Machine** (from Bulletin 88, Bureau of Mines)—“An ordinary ammonia refrigerating machine, such as is used for cooling purposes, in general consists essentially of three parts—a refrigerator or evaporator, a compression pump and a condenser.

The refrigerator, which consists of a coil or a series of coils, is connected to the suction side of the pump, and the delivery from the pump is connected to the condenser, which is generally of a somewhat similar construction to the refrigerator. The condenser and the refrigerator are joined by a pipe in which is a valve called the regulator. Outside the refrigerating coils is the air, brine, or other substance that is to be cooled in the refrigeration system; and outside the condenser is the cooling medium, which is water. The liquid ammonia passes from the bottom of the condenser through the regulating valve into the refrigerator in a continuous stream. As the pressure in the refrigerator is reduced by the pump and maintained at such a degree as to give the desired boiling point—which is, of course, always lower than the temperature outside the coils—heat passes from the substance outside through the coil surfaces and is taken up by the entering liquid, which is converted into vapor. The vapors thus generated are drawn into the pump, compressed, and discharged into the condenser, the temperature of which is somewhat above that of the cooling water. Heat is transferred from the compressed vapor to the cooling water, and the vapor is converted into a liquid which collects at the

bottom and returns by the regulating valve into the refrigerator. The compressor may be driven by a gas engine or in any other convenient manner. The pressure in the condenser varies according to the temperature of the cooling water, and that in the refrigerator is dependent upon the temperature to which the outside substance is cooled.

Anhydrous ammonia is a gas at ordinary temperatures and under atmospheric temperatures. The liquid anhydrous ammonia is commercially sold in iron drums in which it is contained under a pressure varying between 120 and 200 pounds per square inch, the pressure in the drum depending on the temperature of the liquid in it.

Some idea of the nature of the natural gas condensate obtained can be had by considering the liquefaction points of the constituents that are found in natural gases used for gasoline condensation. The boiling point of liquid propane is — 45 deg. cent. (—49 deg. fahr.), and of liquid butane 1 deg. cent. (34 deg. fahr.)

The lowest temperature obtained in the refrigerating coils of the Olinda plant is — 10 deg. cent. (14 deg. fahr.) Hence it can be accepted that no propane is liquefied, but some butane and higher paraffins are. The efficiency of the extraction of the condensable constituents from the natural gas for any given temperature will depend upon the velocity of the gas through the coils, or, what is the same thing, the area of cooling surface. Heat is of course extracted from the natural gas when it enters the cooling system. If the cooling area of the pipes is not great enough, the residual natural gas will leave the system still containing gasoline vapors that could have been condensed by further cooling treatment. By proper experimentation the amount of cooling surface required to produce the greatest quantity of salable condensate can be ascertained. Presumably the operators of the Olinda plant have made such a determination. They

believe that the refrigeration method offers much promise and that more plants of this type will be installed.

In the United States at least 85 per cent of the refrigeration plants used for various purposes use ammonia as the refrigerant. Other refrigerants that may be used are sulphur dioxide, carbon dioxide, and water vapor."

**Horse Power of Gas Engines**—The horse power of a gas engine is usually rated as the actual power delivered to the belt on average fuel. This power delivered to the belt bears a close relationship to the power developed in the cylinder and the more excellent the design and construction of the engine the more nearly will these two powers be equal.

Power is developed by compressing a mixed charge of gas and air in the cylinder and then igniting it. The heat produced by the combustion causes the gases to expand and exert a pressure on the piston which drives the latter forward to the end of its stroke when the pressure is released by means of the exhaust valve.

The pressure due to rapid combustion is the same for any size engine provided the compression and mixture are the same and the horse power of the engine depends upon the size of the cylinder.

Various ratings are used to designate the size of an engine, but the surest guide to comparative power is to compare the sizes of cylinders.

Size for size a two cycle engine will develop something less than twice the power of a four cycle engine.

In buying engines, do not be guided altogether by horse power rating, but look well into cylinder sizes to determine whether the engine is large enough to justify its rating.

## Length and Diameter of Services for Small Gas Engines

| Horse Power<br>of Engine | 50 Feet<br>of Pipe<br>Diam. In. | 100 Feet<br>of Pipe<br>Diam. In. | 150 Feet<br>of Pipe<br>Diam. In. | 225 Feet<br>of Pipe<br>Diam. In. |
|--------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 5                        | 1                               | 1                                | 1½                               | 1¼                               |
| 10                       | 1½                              | 1½                               | 1½                               | 1½                               |
| 15                       | 1½                              | 2                                | 2                                | 2                                |
| 20                       | 1½                              | 2                                | 2                                | 2                                |
| 30                       | 1½                              | 2½                               | 2½                               | 2½                               |
| 40                       | 2                               | 2½                               | 2½                               | 3                                |
| 50                       | 2½                              | 2½                               | 3                                | 3                                |

Multiply the horse power of the engine by 0.03 and add three quarters of one inch to find the proper size of gas supply pipe.

**Exhaust Pipe**—The exhaust pipe should be as straight and free from bends as possible and the outlet also should be shielded to prevent rain collecting therein. The diameter of the exhaust pipe should be between one third and one quarter of the cylinder diameter.

**Circulating Water**—Water must be kept circulating in the jacket of the engine cylinder to cool the walls and make lubrication possible. This requires from four to six gallons per horse power per hour. Where a tank is used its capacity should be such as to allow twenty to forty gallons per horse power.

The water circulating pipes should be free from bends and the top or return pipe should be one half inch larger than the bottom or inlet pipe. The return pipe should enter the tank below the top level of the water therein.

When hard water is used for the jacket put a handful of ordinary washing soda into the tank about once a month.

Circulating water should first be pumped through the compressor cylinder jacket, then through the gas engine cylinder jacket. Tempered water for the latter is far better while the compressor cylinder will stand colder water.

GASOLINE PLANT — COMPRESSION METHOD



Fig. 37—SIX 50 H. P. DIRECT DRIVEN TWO STAGE COMPRESSORS

**Blending**—The gravity of gasoline may be reduced by mixing with it a quantity of lower gravity gasoline or naphtha. For instance, 50 lb. of 86 deg. gravity gasoline mixed with 50 lb. of 56 deg. gravity gasoline will give 100 lb. of 71 deg. gravity gasoline. This does not, however, result in a stable mixture if left unconfined, as the lighter gravity gasoline will gradually evaporate from the mixture.

**Evaporation Losses in Blending**—(George A. Burrell)—“The following table shows the results of some blending tests made by the author. The condensate, as it was drawn from the storage tank, was allowed to stand in graduated vessels, and the loss sustained by evaporation over different periods of time was noted. The containers were graduated glass cylinders having a capacity of 1,000 c. c. Their inside diameter was  $2\frac{3}{8}$  inches and they were 13 inches high. Some of the same condensate, as it was drawn from the storage tanks, was also mixed with naphtha and allowed to stand and the loss noted.”

### EVAPORATION LOSSES OF DIFFERENT MIXTURES OF CASINGHEAD GAS CONDENSATES AND REFINERY NAPHTHAS

| Test No. | Proportions in mixture |                     | Specific gravity of—     |                       | Specific gravity of mixture | End of 1 hour    |                  | End of 2 hours   |                  |
|----------|------------------------|---------------------|--------------------------|-----------------------|-----------------------------|------------------|------------------|------------------|------------------|
|          | Condensate<br>per cent | Naphtha<br>per cent | Condensate<br>deg. Baume | Naphtha<br>deg. Baume |                             | Specific gravity | Loss<br>per cent | Specific gravity | Loss<br>per cent |
| 1.....   | 50                     | 50                  | 93                       | 60                    | 76.5                        | 76               | 4                | 75               | 10               |
| 2.....   | 70                     | 30                  | 93                       | 44                    | 76                          | 75.5             | 6                | 74.5             | 14               |
| 3a....   | 70                     | 30                  | 95                       | 44                    | 74.5                        | 74               | 13               | 72.5             | 20               |
| 4a....   | 50                     | 50                  | 95                       | 44                    | 67                          | 65.5             | 8                | 65               | 16               |

# GASOLINE PLANT — COMPRESSION METHOD



# GASOLINE PLANT — COMPRESSION METHOD

---

| Test No. | End of 3 hours   |             | End of 4 hours   |             | Proportions in mixture |             | Specific gravity of— |               | Specific gravity of mixture |
|----------|------------------|-------------|------------------|-------------|------------------------|-------------|----------------------|---------------|-----------------------------|
|          | Specific gravity | Loss        | Specific gravity | Loss        | Condensate             | Naphtha     | Condensate           | Naphtha       |                             |
| 1.....   | deg.<br>Baume    | per<br>cent | deg.<br>Baume    | per<br>cent | per<br>cent            | per<br>cent | deg.<br>Baume        | deg.<br>Baume | deg.<br>Baume               |
| 1.....   | 75               | 12          | 74               | 16          | 50                     | 50          | 93                   | 60            | 76.5                        |
| 2.....   | 73.5             | 20          | 72.5             | 24          | 70                     | 30          | 93                   | 44            | 76                          |
| 3a.....  | 72               | 26          | 71.5             | 29          | 70                     | 30          | 95                   | 44            | 74.5                        |
| 4a.....  | 64               | 20          | 64               | 22          | 50                     | 95          | 95                   | 44            | 67                          |

| Test No. | End of 5 hours   |             | End of 6 hours   |             | End of 7 hours   |             | End of 24 hours  |             | Temperature of atmosphere |
|----------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|---------------------------|
|          | Specific gravity | Loss        |                           |
| 1.....   | deg.<br>Baume    | per<br>cent | deg.<br>Baume    | per<br>cent | deg.<br>Baume    | per<br>cent | deg.<br>Baume    | per<br>cent | deg. fahr.                |
| 1.....   | 74               | 18          | 73               | 22          | 70.5             | 31          | 67               | 43          | 65 to 70                  |
| 2.....   | 71.5             | 29          | 71               | 30          | .....            | .....       | .....            | .....       | 18 to 21                  |
| 3a....   | 71               | 30          | 69               | 34          | 68.5             | 37          | 65               | 50          | 60 to 70                  |
| 4a....   | 63               | 25          | 62               | 30          | 61               | 36          | 56               | 54          | 16 to 21                  |

*a* In conducting this test the mixture was exposed to the atmosphere to a greater extent than in tests 1 and 2. It was poured from one vessel to another eight times, thus exposing more liquid surface to the atmosphere and causing more rapid evaporation than would have occurred if it had been allowed to remain in the same vessel all the time without disturbance.

**Boiling Point**—From the time gasoline is released from the accumulator tanks, it boils until it reaches the temperature of the surrounding tank. As it boils, the boiling point rises steadily. If the boiling stops at any time due to any drop in temperature in the surrounding tank, it always begins

GASOLINE PLANT — COMPRESSION METHOD

---



*Fig. 39—ACCUMULATING AND BLENDING TANKS*

# GASOLINE PLANT — COMPRESSION METHOD



Per cent loss for different boiling points

Fig. 40—BOILING POINTS IN DEGREES FAHRENHEIT. GRAVITIES OF CASINGHEAD GASOLINE AT DIFFERENT BOILING POINTS SHOWING PERCENTAGE OF LOSS

## GASOLINE PLANT — COMPRESSION METHOD



Fig. 41—METHOD OF TAKING THE BOILING POINT OF GASOLINE

to boil just where it left off when there is a rise in temperature. Boiling is usually most pronounced from 10 a. m. to 4 p. m., i. e., during the hot period of the day.

The air first starts to come out of the gasoline when it is heated and care must be taken not to mistake the small air bubbles for gas forming. As soon as the bubbles begin to come up repeatedly and grow larger as they come near the top the boiling point should be taken. Sometimes when the boiling point is taken the liquid will not begin to bubble until it has reached five or ten degrees higher than the true boiling point. This seems to be the case when the liquid is exceedingly pure and clean.

Boiling is best started from a point or particle. If no rough surface or point is present, the boiling often fails to

start at the proper time. To insure getting the right boiling point, a little pebble or a little fresh earth should be put in to the sample before the test is taken.

### Transporting Gasoline from Plant to Loading Rack

After the gasoline is blended it is stored in tanks built at a reasonable distance from the plant as a matter of safety. A pipe line is used to transport the gasoline from the storage tanks to the tank car at the loading rack. A specially designed pump is used to force the gasoline through the pipe line. Residue gas under high pressure is quite commonly used to run the pump. As these lines need not be large in size, galvanized pipe is most commonly used. The lines should be buried to protect it from the heat of the sun.

It is a very interesting fact to note the large number of loading racks formerly used for loading oil at the nearby shipping points to some of the large oil pools, that recently have been changed and are now used for loading gasoline.

**Residue Gas** — Residue gas is the gas coming from a gasoline plant after the gasoline has been extracted. On account of this gas being higher in B. t. u. than natural gas the latter is hardly the correct name to apply to it.

The volume ratio of dry residue gas to the wet gas before the gasoline is extracted varies, depending upon the the quantity and quality of gasoline extracted. Five hundred or more cubic feet of dry gas will remain after extracting the gasoline from 1,000 cubic feet of wet gas.

Some casinghead gas will run greater than 2,500 B. t. u. to the cubic foot, while the average natural gas will run approximately 1,000 B. t. u. The extraction of gasoline by the compression method from one cubic foot of casinghead gas lowers the B. t. u., but on account of the impossibility of condensing and holding all the gasoline in the gas the residue gas may carry as high as 1,500 B. t. u., making it a exceptional gas for all purposes that natural gas is used.

## GASOLINE PLANT — COMPRESSION METHOD

---



Fig. 42—ABSORPTION PROCESS PLANT USED ON RESIDUE GAS

As the absorption process is generally applied to "lean" natural gas under high pressure which may test as low as .64 or lower in gravity and may only produce as low as one tenth or less of a gallon of gasoline to the 1,000 cubic feet of gas there is very little change in the gravity or in the B. t. u. in the gas. In extracting gasoline from "lean" natural gas by the absorption process the term residue is not applied to the gas after the gasoline has been extracted but it is properly termed natural gas.

**Residue Gas and Absorption Method**—Some companies state that it is profitable to apply the absorption process to the residue gas before distributing the gas for power. This is done by installing a system of large pipe coils as shown in Fig. 42 page 151.

The number of coils is dependent upon the quality of the gas and the amount to be treated. The gas must pass slowly through the oil to allow all of the gas to come in contact with all of the oil.

The oil is pumped into coils and the gas pressure in the coils gives the oil a flowing pressure to the steam still. The inlet and outlet of oil lines should be so regulated as to keep a constant level in the coils.

Torch oil or mineral seal oil can be used successfully.

A glass gauge can be installed on each joint of 12-in. pipe to assist in maintaining a constant oil level in the coil.

While the results may be judged by the gasoline recovered in the still, an analysis of the gas before and after entering the coils will more accurately determine whether the coils are operated successfully or not.

**Carbon Black**—It is a well known fact that the residue gas coming from a gasoline plant is very high in hydrocarbons. The opportunity of making carbon black from this gas should prove to be a profitable proposition.

There are many plants from which the residue gas is allowed to go to waste into the atmosphere due to the fact

## GASOLINE PLANT—COMPRESSION METHOD

---



Fig. 43—STEAM STILL FOR REFINING OIL FROM ABSORPTION PLANT AS IS SHOWN IN FIG. 42

that there is no market nearby. In cases of this kind the installation of a carbon black plant in conjunction with the gasoline plant ought to be a profitable proposition. On account of the residue gas or any gasoline gas being so extremely heavy it would be advisable to place the carbon making plant at a safe distance.

It requires about 1,000 cubic feet of natural gas to make one pound of carbon black. This gas referred to is a gas of about .68 gravity. No doubt it would require less than 1,000 cubic feet of the average residue gas to make one pound of carbon black.

The operation of making carbon black is very simple. It consists of burning the gas without mixture with air—i. e., no air mixers—under a series of sheet iron shields which collect the carbon from the yellow flame.

The type of burner used is the old style lava tip originally used for lighting purposes with artificial gas. Many thousand tips are used at one plant.

The carbon is scraped off the shields and packed for shipment in 12½ lb. sacks.

Plants of this character require very little labor and can be run under the supervision of the regular plant foreman thus carrying little or no overhead expense.

Carbon black is mainly used in printers' ink, and is therefore a very necessary article. Every book or newspaper we read carries evidence of its usefulness.

Since the European war started a new use has been found for carbon black. Before the war tire makers imported from Germany oxide of zinc which was used in the outer rubber covering of the tire to protect the rubber. It gave the tire a white color. Since the importation of oxide of zinc has been cut off the tire makers on experiment, found that carbon black was far superior for tires hence the black faced tire now so commonly used.

This new market greatly stimulated the carbon black industry and caused a raise in the price.

The market price of carbon black at this writing, 1916, is from 10 to 15 cents per pound.

## HAZARDS OF HANDLING GASOLINE

(*From Technical Paper No. 127, Petroleum Technology No. 28, Bureau of Mines.*)

**Detailed Precautions Concerning the Handling of Gasoline**—(By George A. Burrell)—“No open light or flame of any kind, nor any machine or belt capable of producing a spark should be allowed in the room where the gasoline is being used. All shafting and machines with belts that are liable to cause a static electric spark should be well grounded.

Only incandescent electric lights should be used, and these should be provided with guards to prevent their being smashed.

All electric switches, fuses, etc., should be outside the room.

Danger signs should be posted on all doors opening into the room, warning against the carrying of open lights of any kind inside.

Oily waste should at all times be placed in a safe receptacle to avoid the danger of spontaneous combustion. Oily waste will decay, smolder, and in time burst into flame. Sawdust when soaked with oil drippings will do the same thing, and its use should be forbidden. Sand is a safe material to use as an absorbent of oil.

A dangerous practice, common in many garages, is the cleaning of automobile parts with gasoline from an open can. Employees find it easy to clean grease and oil from the motor and other parts with a brush saturated with gasoline, and the gasoline is readily ignited by a spark. Such a spark may be caused by striking two pieces of metal to-

## GASOLINE PLANT — COMPRESSION METHOD

gether, by the ignition system on the automobile when the starting crank is turned, and in other ways. In one instance a nut that stuck was struck with a wrench, causing a spark. The car was instantly enveloped in flame.

When the use of an open pan is necessary the opening should be as small as possible and a cover should be provided. The cover should be put on whenever the pan is not in use.

Signs should be posted prohibiting an open flame near the place of storage or near a pump or other handling apparatus. The signs should explain the danger involved and give instructions for safe methods of operation.

Empty gasoline barrels should be stored with bung-holes down, in safe places in the open air.

Rooms in which explosive or dangerous gases or vapors are used or generated should be safely inclosed, and should be provided with an improved system of ventilation.

Gasoline vapor is heavier than air, and a suction fan should be used to insure proper ventilation.

Joints in tanks, pipes, conveyors, etc., used for storage of explosive liquids, gases, or vapors should be kept tight.

Before work is done on vessels, pipes, etc., sufficient time should be given to allow gas to escape.

Special care should be exercised before work requiring the use of heat or flame is done. Apparatus that has contained explosive gas should be filled with water or steam to force out the gas.

**Extinguishing Burning Liquids**—There are two principal methods of extinguishing burning liquids, as follows:

1. To form a blanket of gas or solid material over the burning liquid and cut off the air (oxygen) supply.

2. To dilute the burning liquid with a non-inflammable extinguishing agent that will mix with it.

Water may be used for extinguishing burning liquids, such as denatured alcohol, wood alcohol and acetone, that are miscible with it. If such a liquid as gasoline, which is not miscible with water, catches fire, the application of water produces little or no effect except to spread the burning liquid, and thus scatter the fire over a larger area. However, the application of a large quantity of water to a small quantity of burning oil, by its cooling effect, may aid in extinguishing the fire.

Of materials used to form a blanket of gas or solid material over burning liquid, thus cutting off the oxygen supply, several are in common use. These include sawdust, sand, carbon, tetrachloride, and the so-called foam or frothy mixtures.

The efficiency of sawdust is due to its floating for a time on the liquid and excluding the oxygen of the air. Sawdust itself is not easily ignitable, and when it does ignite burns without flame. The character of the sawdust and its moisture content is of little or no importance. It may be well handled for extinguishing small fires, when just started, by means of long handled wooden shovels.

Sand probably serves about as well as sawdust for extinguishing fires on the ground, but is heavier and more awkward to handle. When thrown on a burning tank it sinks, whereas sawdust floats.

Carbon tetrachloride, the basis of various chemical fire extinguishers, if thrown on a fire forms a heavy non-inflammable vapor over the liquid, and mixes readily with oils, waxes, japan, etc. The vapor is about five times as heavy as air. Much of the carbon tetrachloride contains impurities that give it a bad odor, but when pure its specific

gravity is 1.632 at 32 deg. fahr. When thrown on a fire, it produces black smoke, the hue of which is caused by unconsumed particles of carbon. Pungent gases are also produced probably hydrochloric acid gas and small volumes of chlorine gas. Although the fumes are pungent, brief exposure to them does not cause permanent injury.

The efficacy of carbon tetrachloride depends largely on the skill of the user. If liquid in a tank is on fire, the height of the liquid is important. When the liquid is low, the sides of the tank form a wall which retains the vapor, but when a tank is nearly full of a highly volatile liquid like gasoline, only the most skilled operator can extinguish the fire.

For smothering some small fires of burning gasoline an ordinary blanket may be used.

**Use of Foam or a Frothy Liquid Mixture as an Extinguisher** Installations embracing the use of foam or frothy liquid mixtures to extinguish fires in large gasoline storage tanks originated in Germany. For such an extinguisher two liquids are caused to mix in a tank, whereupon foam is produced. The tank is made air tight and sufficiently strong to permit the foam to be forced out under pressure of a gas (carbon dioxide) simultaneously generated. The frothy mixture owes its efficacy to its blanketing action in excluding air (oxygen) from the fire. It is stiff and shrinks only slightly in volume even after half an hour. In one installation water, bicarbonate of soda, and soap bark are used in one tank, and acid in another tank. A fusible link, which will melt at 212 deg. fahr., releases a hammer, which breaks the glass tank containing the acid. The released acid is led through two perforated pipes into the solution, producing a violent ebullition of foam, which finds its way into the tank of burning oil.

In some large plants gasoline is continually stored under the pressure of noninflammable gas, as nitrogen or carbon

dioxide. In other plants it is stored in a tank, which is always kept filled, no air being admitted at any time. The tank may be filled with all gasoline or part gasoline and part water, water being pumped into the tank to force out the gasoline, when desired. The water may be drained off when more gasoline is to be added to the tank.

**Relation of Properties of Gasoline and Gasoline Vapor to Inflammability**—Some grades of gasoline, particularly the better grades used to drive automobiles, are much more hazardous to handle than are others. They mix with air in larger proportions and pass into the vapor form (evaporate) more rapidly, and hence more quickly render a given volume of air explosive than do the heavier grades, such as are used for cleaning purposes and for fuel in the engines of some motor trucks and other large internal-combustion engines.

**Action of Gasoline Vapor in Air**—Gasoline vapor mingles with air in the same manner that water vapor does. At any particular temperature a definite proportion of water vapor will be found in the atmosphere if it has become completely saturated, a condition that seldom exists. Usually a limited supply of water has been given off into the air, and the atmosphere is spoken of as having a certain relative humidity, meaning that the saturation is incomplete or that more water vapor could exist in the air were a source of moisture available. In a similar manner gasoline vapor mixes with air. The amount of vapor carried will depend on the temperature of the air and the readiness with which the vapor can be obtained.

If gasoline is exposed to the air of a room and for a long enough time, the air will contain at a certain temperature a fixed proportion of gasoline vapor, differing for different grades of gasoline, that can not be exceeded. The author has worked out the values for four different grades. The results for a temperature of 17.5 deg. cent. (63.5 deg. fahr.) are shown in the following table:

## **GASOLINE PLANT — COMPRESSION METHOD**

---

### **Proportions of Different Grades of Gasoline Vapor that Air will Carry at a Temperature of 17.5 deg. cent. (63.5 deg. fahr.)**

| Grade of Gasoline           | Proportion of Gasoline vapor (per cent.) |
|-----------------------------|------------------------------------------|
| Cleaner's naphtha.....      | 5.0                                      |
| 64 deg. Baume gasoline..... | 11.0                                     |
| 69 deg. Baume gasoline..... | 15.0                                     |
| 73 deg. Baume gasoline..... | 28.0                                     |

It will be noticed that air will hold almost six times as much vapor from the lighter gasoline as from the heavier cleaner's naphtha. If the lighter and better grades of gasoline are heated, their vapors, when a light is applied, also flash and burn at lower temperatures than do the heavier grades. This difference does not mean that some gasoline is a dangerous inflammable liquid and some is not. All grades are classed as highly inflammable and dangerous liquids.

**Comparison of Inflammability of Gasoline and of Gasoline Vapor**—If one takes the cover off a full pail of tightly inclosed gasoline and applies a match to the surface, the gasoline will flare up and burn as long as the gasoline lasts. On the other hand, if one puts a few drops of gasoline in a small tightly inclosed pail, waits a few minutes, and then introduces a flame or an electrical spark a violent explosion will most likely result. In the first case the vapor burns as fast as it comes from the gasoline, and mixes with the oxygen of the air. In the second case the oil vaporizes in the pail and mixes uniformly with the air therein to form an explosive mixture and upon ignition explodes. Consequently, when one hears of a disastrous gasoline explosion one may be sure that the explosion resulted from the mixing of the vapor from the gasoline with air in the proportions necessary to form an explosive mixture.

One gallon of gasoline when entirely vaporized produces about 32 cubic feet of vapor. If a lighted match could be applied to pure gasoline vapor in the absence of air no fire

## **GASOLINE PLANT — COMPRESSION METHOD**

---

or explosion would result. Gasoline liquid or vapor, like any other combustible material, needs the oxygen of the air in order to burn.

**Explosive Range of Mixtures of Gasoline Vapor and Air**—It is fortunate that gasoline vapor, like other gases and vapors, needs a certain proportion of air before an explosion can take place. The author found that in 100 parts by volume of air and gasoline, an explosion will not take place if there is less than 1.4 parts of gasoline vapor or more than 6 parts.<sup>a</sup> In other words, the explosive range is between 1.4 and about 6 per cent of vapor. Flashes of flame will appear in mixtures containing considerably smaller and larger proportions of vapor, and considerable pressure will be developed, but propagation through the mixture will not take place.

Although the range of explosibility mentioned is narrow as compared to that of many other mixtures of combustible gases and air, yet the proportion of gasoline vapor representing the lower limit is small, and indicates the great importance of not allowing even a little gasoline to be exposed in a room, because of the small quantity of vapor needed to make an explosive mixture with all the air in the room. If 1 gallon of gasoline is allowed to change completely into vapor simply by exposing it to the room air; and if the room is gas-tight, the 1 gallon can render explosive 2,100 cubic feet of air, the amount contained in a room measuring 21 by 10 by 10 feet.

In the actual use of gasoline such conditions seldom exist. However, an assumed case may be that of a person filling an open pail from a larger tank or using gasoline for cleaning. When the pail is first filled with the gasoline, a small volume of pure gasoline vapor forms over the surface of the gasoline. Just above this layer of pure gasoline

---

<sup>a</sup> Burrell, G. A., and Boyd, H. T., *Inflammability of mixtures of gasoline vapor and air*; Technical Paper 115, Bureau of Mines 1915, p 10.

vapor is a mixture of vapor and air; at some point there will be an explosive proportion, and farther away from the pail there will be a small proportion of vapor, and finally still farther away no vapor at all, but pure air. However, all the time the user of the gasoline is at work, the vapor keeps forming, from both the gasoline in the pail and that applied to the object being cleaned, rendering more and more air inflammable or explosive, until finally there will exist a dangerous atmosphere that may completely surround him, so that a chance ignition will envelope him in flames and perhaps cause great damage to property. Ignition of the gasoline vapor may take place even some distance from the gasoline in a room adjoining the room in which the person works. As the gasoline evaporates, and more and more vapor is given off, it mixes with air farther and farther from the gasoline, and, if the evaporation lasts long enough, may travel to an adjoining room, where it may be ignited. On ignition a sharp flash will travel back through the adjoining room to the room where the gasoline is.

**Resume**—At ordinary temperatures air will hold about 5 to 28 per cent of gasoline vapor. As gasoline vapor is about three times as heavy as air, in a room containing a mixture of the vapor with air the vapor is found in largest proportion near the floor.

The limits of explosibility of mixtures of gasoline vapor and air are between 1.4 and 6 per cent of gasoline vapor, although dangerous flashes may be produced with mixtures, containing less and more than these proportions. In other words, there is needed only a small proportion of gasoline vapor to render air explosive—1.4 cubic feet of the vapor to 97.5 cubic feet of air. One gallon of gasoline can under ideal conditions render 2,100 cubic feet of air explosive.

A dangerous feature of gasoline vapor is that it may travel a considerable distance from the gasoline and there

## GASOLINE PLANT — COMPRESSION METHOD

---

be ignited, the flash traveling back to the container of the liquid and causing a roaring fire in a few seconds."

**Dangers of the Electric Flash Light**—The pocket electric flash light while generally considered perfectly safe in gas is dangerous when the light is first equipped with a new battery, unless the light is turned on away from the gas zone and kept turned on while in the gas and till it is carried away from the gas.

The danger lies in releasing the button on the light when equipped with a new strong battery at which time the act of releasing the button is liable to cause a make-and-break spark strong enough to cause an explosion.

**To Extinguish Fires**—The fire extinguisher is very effective in extinguishing small fires. It is good policy to have in an accessible location, a hand chemical cart holding at least twenty-five gallons. This size cart will extinguish a fire or blaze several feet in height.

Other methods employed are to have at various points around a plant, quantities of sand or salt. The sand and salt have a tendency to smother gasoline fires.

## PART SEVEN

### GASOLINE PLANT—ABSORPTION METHOD

**“Lean” Natural Gas**—“Lean” natural gas is the name applied to natural gas that carries a small percentage or trace of gasoline often amounting to only one tenth of a gallon per thousand cubic feet.

Nearly all high pressure pipe lines show some condensation of gasoline from the gas. The presence of free gasoline in a plain end pipe line invariably causes an extra heavy expense to the pipe line company on account of the constant repairs necessary. The gasoline softens and decomposes the rubber rings at the joints, causing leaks and blowouts. There are some rings made from a composition that withstands the action of gasoline better than rubber.

While the extraction of gasoline from “lean” natural gas is a profitable proposition in itself, you will also find that the life of the rubber or composition rings is prolonged and with a corresponding decrease in line loss from leakage, the overhead expense is greatly reduced.

On many high pressure gas lines the drips will show quantities of gasoline. This should not be taken as conclusive that the gas carries a sufficient amount of gasoline per thousand cubic feet, to warrant the installation of an absorption plant. Though the amount of gasoline taken out of the drips may be large in quantity, it is impossible to determine from this condition just how much gasoline a thousand cubic feet of gas will carry.

The only true method to accurately determine the quantity of gasoline in a thousand cubic feet of gas is by actual test as described below.

**Extraction of Gasoline from Natural Gas by Absorption Methods**—(By George A. Burrell, P. M. Biddison, and S. S. Oberfell. Proceedings of Natural Gas Association, 1916)—

The Development of the General Process of Passing Natural Gases Through Oils or Naphtha for the Extraction of Gasoline—“The idea follows closely the process of extracting benzole, toluol, and other vapors (light oil) from gases made by destructively distilling coal. In this process the gases are caused to flow at about atmospheric pressure counter current to a stream of wash oil, a petroleum distillate as so called “straw” oil or “mineral seal” oil or a coal tar distillate such as creosote oil. Absorbing towers in which this is accomplished are 50 to 75 feet high and about 10 to 15 feet in diameter. After the benzole and toluol have been scrubbed from the gas, the charged oil is sent to steam stills where the benzole and toluol are extracted. The process is continuous in that the absorbent oil is used over and over again. The process has been used for many years in Germany and to a very large extent during 1915 and 1916 in the United States. Many types of absorbers and steam stills and different conditions of temperature and pressure were employed before a standard procedure was evolved. The difference between the process of extracting gasoline from natural gas and extracting benzole and toluol from coke oven gases is that with the natural gas, the absorption is conducted at high pressure. This is an economic necessity because the natural gas at present being treated by the absorption process exists at this high pressure, and cannot be profitably treated any other way. The transportation system must not be disturbed.

There might also be mentioned a process in vogue for a number of years past, and practiced at some refineries, of subjecting uncondensed gas and petroleum vapors from stills to absorption in naphtha, thereby increasing the gasoline yield considerably. Also a scheme sometimes practiced of passing natural gas through crude oil in tanks, and later compressing and cooling the natural gas to obtain the gasoline extracted from the oil.

The first large scale installation for extracting gasoline from natural gas was placed at Hastings, W. Va., by the Hope Natural Gas Company of Pittsburgh, Pa. The plant was put in operation in 1913 as a result of the Saybolt experiments. The process consists in causing the natural gas to bubble up through mineral seal oil, the latter being then sent to steam still for the separation of the gasoline and the absorbent oil being used over and over again. The gas is passed through the absorbing oil at the high pressure of the line. The hot oil from the stills is cooled in a double pipe cooler or exchanger by the cold oil enroute to still and further cooled by passing through pipes upon which running water falls.

The general process, except for the utilization of the gas under high pressure, is identical with the process of absorbing benzol and toluol vapors from coke-oven gases.

The process of extracting gasoline from natural gas by passing the latter through oil, simply consists in the solution of the gasoline in the absorbent. In passing natural gas with its gasoline vapor through an absorbent, there will occur a point in the solution process when a particular oil will not take up any more gasoline. The authors determined that in the case of mineral seal oil this saturation was 28 per cent, as regards tests they conducted. In conducting the test natural gas was passed through mineral seal oil, using the small absorber shown in figure 46. By a percentage saturation of 28 is meant that the amount of gasoline absorbed was 28 per cent of the final total volume of gasoline and oil.

But in the practical work of absorbing gasoline from natural gas, the saturation percentage of the gasoline in the oil cannot be carried that far. It was found from actual tests that when the saturation of the gasoline exceeded 4 per cent, some of the gasoline in the natural gas was passing through the oil unabsorbed, i. e., the extraction was not

complete. As a saturation percentage of 4 per cent was exceeded more and more gasoline was absorbed, of course, from the natural gas\* but at the same time an increasingly small amount of gasoline appeared in the exit gases. This small amount was always less than the amount absorbed until a saturation of 28 per cent was reached, when the amount absorbed was equal to the amount given off, i. e., a condition of equilibrium was reached.

Two different oils were used as the absorbing medium in extracting gasoline from the natural gas in conjunction with those tests in which steam distillation was used to finally separate the gasoline from the absorbent. These oils were petroleum distillates. Their characteristics as determined by E. W. Dean, petroleum chemist of the Bureau of Mines, follow:

*Mineral Seal.*

|                                                   |                                |
|---------------------------------------------------|--------------------------------|
| Flash Point (Pensky-Martin closed apparatus)..... | 135 deg. cent., 275 deg. fahr. |
| Burning Point (Pensky-Martin open apparatus)..... | 160 deg. cent., 311 deg. fahr. |
| Specific Gravity (Water=1).....                   | .850                           |

Upon distillation the first drop appeared at 225 deg. cent. (405 deg. fahr.) and 6.2 per cent distilled up to 275 deg. cent. (527 deg. fahr.)

*Straw Oil.*

|                                 |                                |
|---------------------------------|--------------------------------|
| Flash Point.....                | 180 deg. cent., 361 deg. fahr. |
| Burning Point.....              | 208 deg. cent., 416 deg. fahr. |
| Specific Gravity (Water=1)..... | .851                           |

First drop distilled at 250 deg. cent. (482 deg. fahr.) and began to distill in quantity at 275 deg. cent. (527 deg. fahr.)

The main requirement of an absorbent oil is that its boiling points vary sufficiently from the boiling points of the gasoline so a separation of the two can be made by distillation.

**Description of Experimental Plants Using Mineral Seal Oil and Steam Distillation**—While the tests were under

\*This would occur up to 28 per cent saturation.

way, using the small scale experimental plant shown in figure 46, tests on a much larger scale were made with the plant shown in figure 44. This plant was capable of continuous operation in that natural gas was continuously passed through the absorbing oil and the latter after leaving the absorbers, charged with gasoline, were pumped to the steam stills where the gasoline was removed and the oil pumped back to the absorbers to receive another charge of gasoline. This plant has a capacity of from 15,000 to 30,000 cubic feet per hour.

A diagrammatic view of the plant is shown in figure 44.

The gas enters the absorbing tank at C and the oil enters at B. Together they pass into the T pipe D and pass from there through many small holes into the oil contained in the absorber A. The gas bubbling up through A is stripped of its gasoline by absorption in the oil and passes out of the absorber as shown and goes on its way to the cities and other places for consumption.

The oil charged with gasoline passes first to the weathering tank E, where the lighter portions of the gasoline are released through the safety valve. (Set at about 3 lb. per square inch.)

Next the oil enters the pump F and is pumped through the heat exchanger G and from there into the rock tower H of the steam still K. Live steam enters this still and distills the gasoline from the oil. The cooler M is provided to separate the water (condensed steam) from the gasoline. The gasoline is condensed in the condenser N and flows out of the system at the gasoline drip.

The hot oil after having been freed of its gasoline is passed through the heat exchanger G (thereby heating the oil passing to the still) and from No. 1 pump is forced through the water coils O, upon which running water drops. The cooled oil then passes into the absorber A to receive

## GASOLINE PLANT — ABSORPTION METHOD



Fig. 44—EXPERIMENTAL PLANT FOR ABSORBING GASOLINE FROM NATURAL GAS

## **GASOLINE PLANT—ABSORPTION METHOD**

---

another charge of gasoline. The operation is continuous, the oil being used over and over again.

In addition to the type of absorber shown at A in figure 44, several other types of absorbers were used. The most efficient was a vertical or tower absorber shown in figure 45. Oil enters as shown at A and drops onto and through a column of stones of about the size of a fist. Gas enters near the base of the tower and flows counter current to the oil and out of the gas pipe at the top of the column.

**Yield of Gasoline Using the Small Absorber Shown in Figure 46 and the Plant Shown in Figure 44**—In Table 1 are shown data of tests using the “plant” shown in figure 44. In Test No. 1 the tower absorber was used. In Test No. 2 the absorber used was connected with the plant. The tower absorber gives the best results.

In Table 2 are shown some results using the small absorber. The yield obtained with the small absorber exceeded that obtained with the larger absorber by about 0.3 of a pint.

## GASOLINE PLANT — ABSORPTION METHOD



Fig. 45.—VERTICAL ABSORBER WITH STONES

TABLE 1

## Test of Natural Gas Using Different Absorbers

| Test No.                                                 | Kind of Absorber | Tower Absorber |        |        |        | Bubble Absorber |        |        |        |
|----------------------------------------------------------|------------------|----------------|--------|--------|--------|-----------------|--------|--------|--------|
|                                                          |                  | 1              |        | 2      |        | 8               |        | 9      |        |
| Time.....                                                | 8                | 9              | 10     | 11     | 225    | 220             | 216    | 216    | 11     |
| Pressure at inlet to absorber, lb. per sq. in. ....      | 222              | 215            | 211    | 211    | 3      | 3               | 2.75   | 2.75   | 215    |
| Pressure on still, lb. per sq. in. ....                  | 3                | 3              | 2.75   | 2.75   | 66     | 66              | 66     | 66     | 68     |
| Temperature of oil, deg. fahr. ....                      | 58               | 64             | 66     | 68     | 209    | 212             | 212    | 212    | 210    |
| Temperature of oil outlet still, deg. fahr. ....         | 207              | 210            | 208    | 209    | 176    | 170             | 172    | 184    | 172    |
| Temperature of vapor outlet cooler, deg. fahr. ....      | 142              | 170            | 164    | 176    | 52     | 52              | 52     | 52     | 52     |
| Temperature of cooling water, deg. fahr. ....            | 52               | 52             | 52     | 52     | 216    | 216             | 216    | 216    | 215    |
| Temperature of still, deg. fahr. ....                    | 218              | 216            | 216    | 216    | 60     | 62              | 58     | 60     | 68     |
| Temperature of oil outlet absorber, deg. fahr. ....      | 54               | 58             | 60     | 62     | 33.4   | 34.4            | 34.5   | 34.5   | 34.4   |
| Sp. gr. absorbing oil inlet to absorber, deg. B. ....    | 34.2             | 33.7           | 33.5   | 34.4   | 34.5   | 34.5            | 34.5   | 34.5   | 34.5   |
| Sp. gr. absorbing oil outlet from absorber, deg. B. .... | 36.4             | 36.2           | 36.0   | 35.8   | 35.0   | 35.2            | 35.0   | 35.0   | 34.4   |
| Yield gasoline, c. c. ....                               | 17000            | 16000          | 16310  | 16310  | ....   | 9200            | 9600   | 11300  | 11300  |
| Gravity gasoline, deg. B. ....                           | 85.2             | 85.5           | 85.8   | 85.8   | ....   | 80.3            | 80.3   | 82.3   | 82.3   |
| Gravity of refrigerator gasoline, deg. B. ....           | 91.1             | 91.8           | 90.5   | 90.5   | ....   | 90.3            | 92.0   | 90.6   | 90.6   |
| Volume of refrigerator gasoline, c. c. ....              | 1860             | 2200           | 2030   | 2030   | ....   | 2335            | 2130   | 1810   | 1810   |
| Amount of gas passed, cu. ft. ....                       | 73,800           | 73,800         | 73,800 | 73,800 | 1.57   | 1.57            | 1.57   | 1.57   | 1.57   |
| Yield of gasoline per 1000 cu. ft., total pints. ....    | 24,600           | 24,600         | 24,600 | 24,600 | 24,600 | 24,600          | 24,600 | 24,600 | 24,600 |

Flow of gas..... 24,600 cu. ft. per hr. Rate of flow of gas..... 21,600 cu. ft. per hr.  
 Gallons of oil circulated per 1000 cu. ft. of gas. .79 Gallons of oil circulated per 1000 cubic feet of gas.87  
 Refrigerator gasoline means that obtained by condensing vapors escaping from the still and condensed by the  
 water in the condenser.

## GASOLINE PLANT — ABSORPTION METHOD

TABLE 2  
Tests with small absorber. Mineral seal oil used.  
Three absorbers in series for each test.

| Test Number.....                                                                   | No. 1 Test |         |         | No. 2 Test |         |         |
|------------------------------------------------------------------------------------|------------|---------|---------|------------|---------|---------|
|                                                                                    | 1          | 2       | 3       | 1          | 2       | 3       |
| Number of absorber.....                                                            |            |         |         |            |         |         |
| Rate of flow of gas, cubic feet per hour.....                                      | 360        | 360     | 360     | 240        | 240     | 240     |
| Cubic centimeters of oil used.....                                                 | 1,750      | 1,500   | 1,500   | 1,750      | 1,500   | 1,500   |
| Cubic feet of gas used.....                                                        | 202        | 202     | 200     | 200        | 200     | 200     |
| Temperature of oil, degrees fahr.....                                              | 58         | 60      | 62      | 60         | 60      | 64      |
| Amount of oil and gasoline recovered.....                                          | 1,950      | 1,580   | 1,550   | 1,980      | 1,600   | 1,570   |
| Saturation of oil with gasoline, per cent.....                                     | 7.9        | 2.3     | 0.4     | 7.0        | 2.1     | 0.2     |
| Amount of sample taken for distillation test, cubic centimeters.....               | 650        | 527     | 517     | 660        | 533     | 523     |
| Amount of gasoline obtained from sample by distillation, cubic centimeters.....    | 45         | 12      | 2       | 46         | 11      | 1       |
| Calculated amount of gasoline, entire oil and gasoline recovered.....              | 135        | 36      | 6       | 138        | 33      | 1       |
| Boiling point of gasoline, degrees fahrenheit.....                                 | 110-250    | 150-250 | 150-250 | 110-250    | 145-250 | 150-250 |
| Cubic centimeters of oil used per 1,000 cubic feet of gas                          | 8,750      | 7,500   | 7,500   | 8,750      | 7,500   | 7,500   |
| Pints of gasoline recovered, obtained per 1,000 cubic feet of gas.....             | 1.42       | 0.36    | 0.06    | 1.46       | 0.35    | 0.03    |
| Specific gravity of gasoline, degrees Baume.....                                   | 84         | .....   | .....   | 84         | .....   | .....   |
| Total amount of gasoline from three absorbers, pints per 1,000 cu. ft. of gas..... | 1.84       | .....   | .....   | 1.84       | .....   | .....   |

**Change in Composition and Quantity of the Natural Gas Before and After the Extraction of Gasoline**—Tests which the authors made of the natural gas before and after treatment for the absorption of gasoline follow:

### TESTS OF FRESH GAS

#### *Combustion Analysis.*

|                                                                            | Low Field Gas.<br>Per Cent. | Line L Gas.<br>Per Cent. |
|----------------------------------------------------------------------------|-----------------------------|--------------------------|
| CO <sub>2</sub> .....                                                      | trace                       | trace                    |
| CH <sub>4</sub> .....                                                      | 76.3                        | 83.9                     |
| C <sub>2</sub> H <sub>6</sub> .....                                        | 18.4                        | 11.7                     |
| N <sub>2</sub> .....                                                       | 5.3                         | 4.4                      |
| Total.....                                                                 | 100.0                       | 100.0                    |
|                                                                            | <i>Low Field Gas.</i>       | <i>Line L Gas.</i>       |
| Specific gravity.....                                                      | 0.68                        | 0.63                     |
| Absorption in Russian white oil*.....                                      | 17.0                        | 15.0                     |
| Gross heating value per cubic foot of<br>0 deg. cent. and 760 mm. pressure | 1155.0 B. t. u.             | 1111.0 B.t.u.            |

The foregoing tests were made of gas that had not been treated by the absorption process. The following table shows tests of the same gas after it had been passed through absorbers containing mineral seal oil, and after gasoline had been extracted from it.

### TESTS OF TREATED GAS

#### *Combustion Analysis.*

|                                                                            | Low Field Gas.<br>Per Cent. | Line L Gas.<br>Per Cent. |
|----------------------------------------------------------------------------|-----------------------------|--------------------------|
| CO <sub>2</sub> .....                                                      | trace                       | trace                    |
| CH <sub>4</sub> .....                                                      | 79.7                        | 88.3                     |
| C <sub>2</sub> H <sub>6</sub> .....                                        | 14.1                        | 7.9                      |
| N <sub>2</sub> .....                                                       | 6.2                         | 3.8                      |
| Total.....                                                                 | 100.0                       | 100.0                    |
|                                                                            | <i>Low Field Gas.</i>       | <i>Line L Gas.</i>       |
| Specific gravity.....                                                      | 0.65                        | 0.61                     |
| Absorption in Russian white oil.....                                       | 16.7                        | 14.0                     |
| Gross heating value per cubic foot at<br>0 deg. cent. and 760 mm. pressure | 1111.0 B.t.u.               | 1087.0 B.t.u.            |

\* The Russian white oil is used in the same way that Claroline is used, and described on page 32, Bull. 88, Bureau of Mines.

**Comments on Analyses**—Differences between the natural gas before and after gasoline had been extracted are interesting. In the case of the low field gas, the heating value was lowered 44 B. t. u. or 3.8 per cent, due to the extraction of the gasoline. The specific gravity dropped from .68 to .65 and the proportions of paraffin hydrocarbons calculated as methane and ethane, were altered. In the case of Line L gas, the heating value was lowered 24 B. t. u. or 2.2 per cent and the specific gravity dropped from .63 to .61.

The amount of gas that disappeared by conversion into gasoline is very small. It can be calculated this way: one gallon of gasoline produces about 32 cubic feet of vapor, or one pint produces 4 cubic feet. In their experiments the authors extracted from one to two pints of gasoline per 1,000 cubic feet of natural gas or from 4 to 8 cubic feet of natural gas disappeared from each 1,000 cubic feet of natural gas treated.

**Amount of Oil Used per Thousand Cubic Feet of Natural Gas to Obtain the Largest Yield of Gasoline**—A large number of tests were made with different absorbers to determine the proper amount of oil to be used per 1,000 cubic feet of natural gas in order to obtain the highest yield of gasoline. It was found that using the absorber shown in figure 44 the best results were obtained when about 7 gallons of oil were circulated per 1,000 cubic feet of gas. Using the tower absorber shown in figure 45 the amount of oil circulated could be considerably decreased and just as good results obtained by circulating 4 gallons of oil per 1,000 cubic feet of gas. Instead of decreasing the amount of oil, the practice of the authors was to keep the oil rate at about 7 gallons and increase the gas rate. The best results were obtained with the tower absorber by passing about 28,000 cubic feet of gas per minute and circulating about 7 to 8 gallons of oil.

**Distillation Test of Gasoline**—The gasoline obtained by absorption in mineral seal oil and steam distillation rather consistently had a specific gravity on the Baume scale of about 80 deg. One of many distillation tests that the authors made of it are shown in Table 1. These tests were made on gasoline obtained from the large scale experimental plant shown in figure 44.

### DISTILLATION TEST OF GASOLINE OBTAINED BY ABSORPTION METHOD

Experimental Plant. December 29, 1915.  
Specific Gravity of Mixture=80 deg. Baume.

| <i>Distillation Temperature,<br/>Degrees Fahrenheit</i> | <i>Amount of Distillate,<br/>by Volume,<br/>Per Cent</i> | <i>Specific Gravity<br/>of Distillate,<br/>Degrees Baum</i> |
|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| 80-110                                                  | 10                                                       | 91.8                                                        |
| 110-124                                                 | 20                                                       | 89.0                                                        |
| 124-136                                                 | 30                                                       | 86.7                                                        |
| 136-146                                                 | 40                                                       | 83.4                                                        |
| 146-158                                                 | 50                                                       | 80.4                                                        |
| 158-172                                                 | 60                                                       | 77.4                                                        |
| 172-188                                                 | 70                                                       | 73.3                                                        |
| 188-208                                                 | 80                                                       | 70.2                                                        |
| 208-244                                                 | 90                                                       | 65.0                                                        |
| 244-290                                                 | 93                                                       | 63.1                                                        |
| Loss.....                                               | 7                                                        |                                                             |

This test shows the gasoline to be very high grade.

**Evaporation Loss of Gasoline Obtained by Absorption Method from Natural Gas and a Comparison with Different Blends and with Refinery Gasoline.** In Table 3 there is shown the loss by evaporation, using different grades of gasoline. The liquids were exposed in glass cylinders, 12 inches high, 4 inches in diameter, and of 1,000 cubic centimeters capacity. The first column shows the evaporation loss when the gasoline obtained from natural gas by the absorption process was exposed to the air. The second column shows the evaporation loss, using refinery gasoline obtained from the Standard Oil Company.

The absorption process gasoline lost 10.5 per cent at the end of the first hour. This is far better than casinghead gasoline, much of which will lose 25 to 30 per cent of its volume by "weathering" after standing one hour.

TABLE 3  
EVAPORATION LOSS OF GASOLINE

| <i>Kind of Gasoline</i>                                           | <i>From<br/>Absorption<br/>Process</i> | <i>Refinery</i> |
|-------------------------------------------------------------------|----------------------------------------|-----------------|
| Specific gravity of gasoline at start, degrees Baume.....         | 81.1                                   | 60.4            |
| Temperature of gasoline, degrees fahrenheit....                   | 56                                     | 62              |
| Temperature of room, degrees fahrenheit.....                      | 70                                     | 70              |
| Volume of gasoline at start, cubic centimeters..                  | 1000                                   | 1000            |
| Volume of gasoline after 24 hours, cubic centi-meters.....        | 895                                    | 976             |
| Volume of gasoline after 48 hours, cubic centi-meters.....        | 840                                    | 955             |
| Volume of gasoline after 72 hours, cubic centi-meters.....        | 800                                    | 924             |
| Specific gravity of gasoline after 24 hours, de-grees Baume ..... | 79.6                                   | .....           |
| Specific gravity of gasoline after 48 hours, de-grees Baume ..... | 76.5                                   | .....           |
| Specific gravity of gasoline after 72 hours, de-grees Baume.....  | 76.0                                   | 58              |
| Temperature of gasoline after 24 hours, degrees fahrenheit .....  | 56                                     | .....           |
| Temperature of gasoline after 48 hours, degrees fahrenheit .....  | .....                                  | .....           |
| Temperature of gasoline after 72 hours, degrees fahrenheit.....   | 61                                     | 60              |
| Evaporation loss of gasoline after 24 hours, per cent.....        | 10.5                                   | 2.4             |
| Evaporation loss of gasoline after 48 hours, per cent.....        | 16.0                                   | 4.5             |
| Evaporation loss of gasoline after 72 hours, per cent.....        | 20.0                                   | 7.6             |

**Vapor Tension Tests of Gasoline Obtained by Oil Absorption and Steam Distillation**—Many vapor tension tests were made of the gasoline. Some of these tests are shown in the following table. It will be seen that the material does not develop excessive pressures with rise of temperature and that it comes well within the specification for gasoline that can be shipped in tank cars.

## GASOLINE PLANT—ABSORPTION METHOD

### VAPOR PRESSURE TESTS OF GASOLINE PRODUCED BY OIL ABSORPTION AND STEAM DISTILLATION METHOD

| Date                                                        | 12/15/15 | 12/16/15 | 12/22/15 | 12/23/15 |
|-------------------------------------------------------------|----------|----------|----------|----------|
| Specific gravity of gasoline,<br>deg. Baume.....            | 79       | 78       | 77.5     | 81.5     |
| Vapor pressure, at 70 deg.<br>fahr., lb. per sq. inch.....  | 1.25     | 1.0      | .5       | 1.25     |
| Vapor pressure, at 90 deg.<br>fahr., lb. per sq. inch.....  | 1.50     | 1.5      | 1.0      | 2.0      |
| Vapor pressure, at 100 deg.<br>fahr., lb. per sq. inch..... | 2.75     | 2.5      | 2.5      | 4.75     |

**Uncondensed Vapors from the Still**—In the process of distillation of the gasoline from the mineral seal oil by means of steam, an appreciable quantity of uncondensed vapors escaped into the air, hence some of them were liquefied by passing the vapors through a 1 in. pipe about 8 feet long, inside another pipe 2 in. in diameter and 8 feet long. Compressed natural gas which had been used to run one of the oil pumps (in place of steam) was expanded through the larger pipe to cool and condense as much of the vapors as possible. A temperature of 0 deg. to 4 deg. fahr. was obtained in this manner. The following table shows the vapor pressure and other data regarding these condensed vapors.

### DATA REGARDING UNCONDENSED VAPORS FROM STILL

#### *Vapors from Condenser*

|                                                                                                               |                                                                                 |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 130,000 cubic feet of natural gas used in the test and 450 cubic feet of<br>vapor passed through refrigerator |                                                                                 |
| Yield.....                                                                                                    | 3.25 gallons per 130,000 cubic feet of<br>natural gas used at plant.            |
| Vapor tension test.....                                                                                       | 5 lb. at 70 deg. fahr.<br>8.25 lb. at 90 deg. fahr.<br>11 lb. at 100 deg. fahr. |
| Specific gravity of refrigerator gasoline.....                                                                | 94.9 deg. Baume                                                                 |

#### *Evaporation Test*

|                             |      |      |      |      |      |
|-----------------------------|------|------|------|------|------|
| Time, p. m.....             | 1:15 | 1:20 | 1:35 | 2:00 | 2:15 |
| Volume (cc.).....           | 100  | 75   | 65   | 55   | 50   |
| Temperature, deg. fahr..... | .... | 60   | 70   | 84   | 90   |
| Per cent loss.....          | .... | 25   | 35   | 45   | 50   |

## GASOLINE PLANT — ABSORPTION METHOD

TABLE 4

Effect of pressure on yield of gasoline, using three apparatus in series like that shown at Fig. 46

| Test No.                                              |                    | 1                  | 2             |
|-------------------------------------------------------|--------------------|--------------------|---------------|
| Date .....                                            | January 26, 1916.  | January 29, 1916.  |               |
| Time .....                                            | 2:48 to 3:58 P. M. | 2:25 to 3:40 P. M. |               |
| Kind of oil used .....                                | Mineral Seal.      | Mineral Seal.      |               |
| Specific gravity of oil, degrees Baume .....          | 34.2               | 35.0               |               |
| Amount of oil used, cubic centimeters .....           | 1500               | 1500               |               |
| Pressure on absorber, lb. per sq. in. ....            | Atmospheric        | 20 lb. gauge       |               |
| Gas rate by meter, cu. ft. per hour .....             | 79                 |                    |               |
| Ratio, c. c. of oil to 1000 cu. ft. of gas.....       | 17500   15000      | 17500   15000      | 15000         |
| Cubic feet of gas consumed .....                      | 100   100          | 100   100          | 100           |
| Amount of liquid recovered, c. c. ....                | 1770   1505        | 1845   1515        | 1520          |
| Sp. gr. of liquid recovered, degrees Baume .....      | 35.1   34.5        | 34.4   35          | 35.2          |
| Temperature of liquid recovered, degrees fahr .....   | 68   67            | 66   66            | 68            |
| Per cent saturation of liquid recovered .....         | 1.2   0.6          | 0.3   2.3          | 1.2           |
| Increase in c. c. of liquid recovered .....           | 20   5             | 10   95            | 15            |
| Increase per cent, of liquid recovered .....          | 1.1   0.3          | 0.7   5.4          | 1.0           |
| Amount of sample for distillation, c. c. ....         | 590   502          | 503   615          | 505           |
| Temperature of condenser bath, deg. fahr .....        | 48   48            | ...   46           | ...           |
| Amount of distillate, c. c. ....                      | 7   3.0            | 1.5   14.0         | 5.8           |
| Temperature range of distillate, deg. fahr .....      | 166-260   199-260  | ...   160-260      | 138-260       |
| Amount of gasoline obtained, cubic centimeters .....  | 21.0   0.44        | 9.0   0.19         | 42.0          |
| Amount of gasoline obtained, pints per M cu. ft. .... | 0.44   0.44        | 0.08   0.088       | 0.368         |
| Total pints of gasoline per M cubic feet of gas....   |                    |                    | 1.427   0.171 |

## GASOLINE PLANT — ABSORPTION METHOD

TABLE 4—Continued

| Test No. ....                                         | 3                   |           |                                 | 4                  |         |           |
|-------------------------------------------------------|---------------------|-----------|---------------------------------|--------------------|---------|-----------|
| Date.....                                             | January 30, 1916.   |           |                                 | January 30, 1916.  |         |           |
| Time.....                                             | 9:35 to 10:45 A. M. |           |                                 | 1:05 to 2:25 P. M. |         |           |
| Kind of oil used.....                                 | Mineral Seal.       |           |                                 | Mineral Seal.      |         |           |
| Specific gravity of oil, deg. Baume.....              | 35.0                |           |                                 | 35.0               |         |           |
| Amount of oil used, cubic centimeters.....            | 1750                | 1500      | 1500                            | 1750               | 1500    | 1500      |
| Pressure on absorber, lb. per sq. inch.....           | 40                  | lb. gauge | 85                              | 85                 | 85      | lb. gauge |
| Gas rate by meter, cubic feet per hour.....           | 17500               | 15000     | 15000                           | 17500              | 15000   | 15000     |
| Ratio, c. c. of oil to 1000 cubic feet of gas.....    | 100                 | 100       | 100                             | 102                | 102     | 102       |
| Cubic feet of gas consumed.....                       | 1825                | 1555      | 1535                            | 1850               | 1650    | 1645      |
| Amount of liquid recovered, c. c. ....                | 35.7                | 35        | 34.8                            | 35.4               | 35.2    | 35.2      |
| Sp. gr. of liquid recovered, deg. Baume.....          | 64                  | 68        | 69                              | 68                 | 70      | 70        |
| Temperature of liquid recovered, deg. fahr.....       | 2.6                 | 1.0       | ...                             | 2.8                | 1.02    | 0.8       |
| Per cent of saturation of liquid recovered.....       | 75                  | 55        | 35                              | 100                | 50      | 45        |
| Increase in c. c. of liquid recovered.....            | 4.3                 | 3.7       | 2.8                             | 5.14               | 3       | 3         |
| Increase, per cent of liquid recovered.....           | 608                 | 518       | 512                             | 617                | 516     | 515       |
| Amount of sample for distillation, c. c. ....         | 15.6                | 5.2       | sample lost before distillation | 52                 | 52      | 52        |
| Temperature of condenser bath, deg. fahr.....         | 46                  | ...       |                                 | 20.8               | 5.2     | 4.0       |
| Amount of distillate, c. c. ....                      | 130-260             | 15.6      |                                 | 120-260            | 130-260 | 130-260   |
| Temperature range of distillate, degrees fahr.....    | 46.8                | 0.33      |                                 | 62.4               | 15.6    | 12.0      |
| Amount of gasoline obtained, cubic centimeters.....   | 0.989               |           |                                 | 1.31               | 0.33    | 0.25      |
| Amount of gasoline obtained, pints per M cu. ft. .... |                     |           |                                 |                    |         |           |
| Total pints of gasoline per M cubic foot of gas.....  |                     |           |                                 |                    |         |           |
| Estimated loss 0.17<br>(See previous test)            |                     |           |                                 |                    |         |           |
|                                                       |                     |           |                                 |                    |         |           |

## GASOLINE PLANT — ABSORPTION METHOD

TABLE 4—Continued

| Test No.                                                  | 5                     |
|-----------------------------------------------------------|-----------------------|
| Date.....                                                 | January 31, 1916.     |
| Time.....                                                 | 8:15 to 9:37 A. M.    |
| Kind of oil used.....                                     | Mineral Seal.         |
| Specific gravity of oil, deg. Baume.....                  | 34.2                  |
| Amount of oil used, cubic centimeters.....                | 1750   1500   1500    |
| Pressure on absorber, lb. per sq. inch.....               | 110 lb. gauge         |
| Gas rate by meter, cubic feet per hour.....               | 17500   15000   15000 |
| Ratio, c. c. of oil to 1000 cubic feet of gas.....        | 100   100   100       |
| Cubic feet of gas consumed.....                           | 1875   1575   1550    |
| Amount of liquid recovered, c. c. ....                    | 36.7   35.5   35.5    |
| Sp. gr. of liquid recovered, deg. Baume.....              | 64   66   66          |
| Temperature of liquid recovered, deg. fahr.....           | 125   75   50         |
| Per cent saturation of liquid recovered.....              | 7.15   5.0   3.3      |
| Increase in c. c. of liquid recovered.....                | ...   ...   ...       |
| Increase, per cent of liquid recovered.....               | ...   ...   ...       |
| Amount of sample for distillation, cubic centimeters..... | 48   48   48          |
| Temperature of condenser bath, deg. fahr.....             | 21.1   1.0   0.3      |
| Amount of distillate, c. c. ....                          | ...   ...   ...       |
| Temperature range of distillate, deg. fahr.....           | 63.3   3.0   1.2      |
| Amount of gasoline obtained, cubic centimeters.....       | 1.34   0.6   0.025    |
| Total pints of gasoline per M cubic feet of gas ..        | 1.97                  |

The yield of gasoline obtained from the steam still during this test was 0.94 pints of 80 deg. Baume gasoline per 1,000 cubic feet of gas. The yield of gasoline from the refrigerator was 3.25 gallons per 130,000 cubic feet of natural gas, or 0.2 pints per 1,000 cubic feet; 0.2 plus 0.94 pints=1.14 pints total yield.

**Effect of Pressure and Temperature on the Absorption of Gasoline from Natural Gas**—The authors found that the yield of gasoline was considerably affected by the pressure under which the absorption was effected. This is to be expected. In one test an increase in the pressure of the gas from atmospheric to 110 lb. per square inch increased the yield from 0.7 pints to about 1.8 pints per 1,000 cubic feet of gas.

An increase in the temperature of the oil in the absorber from about 75 deg. fahr. to 85 deg. fahr. lowered the yield about 0.3 pints per 1,000 cubic feet of gas.

**Cost Data**—As a result of the experiments conducted to date, a much larger plant is contemplated, capable of handling about 50 million cubic feet of natural gas per day. Exact figures regarding the cost of installing such a plant cannot be given at the present time. It is believed, however, that a conservative estimate is \$1.00 to \$1.50 per thousand cubic feet of gas handled per day for a "plant" capable of handling 60 to 90 million cubic feet and up to \$2.00 per thousand cubic feet of gas for a plant of 30 million cubic feet or less. The returns are large. At \$1.00 per thousand cubic feet, a plant to handle 60 million cubic feet would cost \$60,000. If only one pint of gasoline was extracted from each 1,000 cubic feet of gas per day, there would be extracted from 60 million cubic feet 7,500 gallons of gasoline. At twenty cents per gallon for gasoline, this is \$1,500 per day. If natural gas sells for thirty cents per 1,000 cubic feet, the extraction of the gasoline adds about two cents per 1,000 to the selling price of the gas.

**Combination Process of Absorption of Gasoline from Natural Gas by Means of Naphtha and Mineral Seal Oil—** This process, heretofore described, of extracting gasoline from natural gas by absorption, consisted in first passing the natural gas through mineral seal oil and then separating the absorbed gasoline from the oil by steam distillation. This process resulted in obtaining from one gas the authors experimented with about 1.2 pints of gasoline per 1,000 cubic feet of gas, and another gas about 1.8 to 1.9 pints of gasoline. This has reference to tests made with the small absorber shown in figure 46.

In using the mineral seal oil as the absorbent, it was found that the increase in volume of the mineral seal oil after passing natural gas through it, did not correspond with the quantity of gasoline subsequently obtained from the oil by distillation. This was due to the fact that a considerable quantity of the lighter hydrocarbons were absorbed from the natural gas, increasing the volume of the mineral seal oil, but escaping as a gas when the oil was subjected to distillation to obtain the absorbed gasoline.

The loss of material appeared to be considerable, so a solution was sought that would result in obtaining this material wasted by the oil absorption and distillation process. Therefore several tests were made, using the small absorbers of the type shown in figure 46 with naphtha, specific gravity 55 deg. Baume in the first two absorbers and mineral seal oil in the third absorber. The object was to absorb as much of the gasoline as possible, including the lighter hydrocarbons, in the first two absorbers and the rest of the gasoline in the mineral seal oil. Table No. 5 shows the results of these tests.

**Comments on Tests—** It will be observed that the gasoline extracted from the natural gas by passing the latter through naphtha amounted to 4.86 gallons per 1,000 cubic feet of gas in the case of one test. The lowest yield was 2.70

TABLE 5  
Extraction of gasoline from natural gas by passing the latter through naphtha

| Test No. ....                                                  | 1        |          | 2            |              |
|----------------------------------------------------------------|----------|----------|--------------|--------------|
|                                                                | Naph-tha | Naph-tha | Naph-tha     | Naph-tha     |
| Oil or naphtha used.....                                       | 53.5     | 53.5     | Mineral seal | Mineral seal |
| Sp. gr. of oil or naphtha, deg. Baume.....                     | 235      | 235      | 32.5         | 34.2         |
| Pressure on gas, lb. per sq. in.....                           | 50       | 50       | 235          | 230          |
| Gas rate, cubic feet per hour.....                             | 200      | 200      | 50           | 55           |
| Amount of gas used, cubic feet.....                            | 1750     | 1500     | 200          | 105          |
| Oil used, c. c. ....                                           | 1950     | 1640     | 1500         | 1750         |
| Oil recovered, c. c. ....                                      | 61.6     | 60.0     | 1565         | 1925         |
| Sp. gr. of liquid recovered, deg. Baume.....                   | 27       | 29       | 37.7         | 59.6         |
| Temperature of liquid in absorber, deg. fahr.....              | 200      | 140      | 26           | 19           |
| Increase in liquid in absorber, c. c. ....                     | .....    | .....    | 65           | 19           |
| Sample of mineral seal oil for distillation.....               | .....    | .....    | 500          | 60           |
| Amount of gasoline distilled from mineral seal oil, c. c. .... | 2.114    | 1.480    | 7            | 10           |
| Yield of gasoline, pints per 1000 cubic feet of gas.....       | 4.28     | 0.687    | 0.353        | 503          |
| Total yield, pints per 1,000 cubic feet of gas.....            | .....    | .....    | .....        | 4.86         |

TABLE 5—Continued

| Test No.                                                      | 3       |              | 4       |         | Mineral seal |
|---------------------------------------------------------------|---------|--------------|---------|---------|--------------|
|                                                               | Naphtha | Mineral seal | Naphtha | Naphtha |              |
| Oil or naphtha used.....                                      | .....   | .....        | .....   | .....   | .....        |
| Sp. gr. of oil or naphtha, deg. Baume.....                    | 55.5    | 55.5         | 33.9    | 55.5    | 34.2         |
| Pressure on gas, lb. per sq. in.....                          | 235     | 235          | 235     | 235     | 235          |
| Gas rate, cubic feet per hour.....                            | 180     | 180          | 180     | 54      | 54           |
| Amount of gas used, cubic feet.....                           | 200     | 200          | 200     | 217     | 217          |
| Oil used, c. c.....                                           | 1750    | 1500         | 1500    | 1750    | 1500         |
| Oil recovered, c. c.....                                      | 1850    | 1555         | 1600    | 2040    | 1600         |
| Sp. gr. of liquid recovered, deg. Baume.....                  | 58.2    | 54.8         | 36.2    | 62.0    | 58.6         |
| Temperature of liquid in absorber, deg. fahr.....             | 54      | 54           | 60      | 28      | 28           |
| Increase in liquid in absorber, c. c.....                     | 100     | 55           | 100     | 290     | 100          |
| Sample of mineral seal oil, for distillation.....             | .....   | .....        | 533     | .....   | .....        |
| Amount of gasoline distilled from mineral seal oil, c. c..... | .....   | .....        | 25      | .....   | .....        |
| Yield of gasoline, pints per 1000 cubic feet of gas.....      | 1.06    | 0.58         | 1.06    | 2.92    | 0.97         |
| Total yield, pints per 1000 cubic feet of gas.....            | 2.70    | .....        | 4.10    | .....   | 7.021        |

TABLE 5—Continued

| Test No.                                                      |         | 5       |              | 6       |             |
|---------------------------------------------------------------|---------|---------|--------------|---------|-------------|
|                                                               | Naphtha | Naphtha | Mineral seal | Naphtha | Naphtha     |
| Oil or naphtha used.....                                      |         |         |              |         |             |
| Sp. gr. of oil or naphtha, deg. Baume.....                    | 55.5    | 55.5    | 34.2         | 55.0    | 34.2        |
| Pressure on gas, lb. per sq. in.....                          | 235     | 235     | 235          | 235     | 235         |
| Gas rate, cubic feet per hour.....                            | 180     | 180     | 180          | 56      | 56          |
| Amount of gas used, cubic feet.....                           | 100     | 100     | 100          | 202     | 202         |
| Oil used, c. c.....                                           | 1750    | 1500    | 1500         | 1750    | 1500        |
| Oil recovered, c. c.....                                      | 1810    | 1525    | 1560         | 2020    | 1595        |
| Sp. gr. of liquid recovered, deg. Baume.....                  | 57.3    | 56.8    | 35.9         | 60.9    | 58.9        |
| Temperature of liquid in absorber, deg. fahr.....             | 60      | 60      | 66           | 18      | 18          |
| Increase in liquid in absorber, c. c.....                     | 60      | 25      | 60           | 270     | 95          |
| Sample of mineral seal oil for distillation.....              |         |         |              |         |             |
| Amount of gasoline distilled from mineral seal oil, c. c..... |         |         |              |         |             |
| Yield of gasoline, pints per 1000 cubic feet of gas.....      | 1.27    | 0.53    | 16           | 2.90    | 0.99        |
| Total yield, pints per 1000 cubic feet of gas.....            |         | 3.07    | 1.27         |         | 4.06        |
|                                                               |         |         |              |         | 5.6<br>0.17 |

gallons. The increase in yield over the oil absorption and distillation method varied between 300 and 500 per cent.

In test No. 1 the specific gravity of the naphtha was raised from 53.5 deg. Baume to 61.6 deg. Baume in the first absorber and to 60 deg. Baume in the second absorber. The increase in volume of naphtha in first absorbers was 200 cc. or 11.5 per cent, and in the second absorber 140 cc. or about 9.3 per cent.

The greatest increase in volume and specific gravity of the naphtha was obtained in No. 1 absorber, No. 4 test. The specific gravity of the naphtha was raised from 55.5 deg. Baume to 62 deg. Baume, and the increase in volume was 290 cc. or about 16.6 per cent.

The vapor pressure of the resulting naphtha in No. 1 absorber, No. 4 test, was 5 pounds per square inch at 100 deg. fahr. and the evaporation or weathering loss was 5 per cent in 24 hours. During this weathering test the temperature of the gasoline raised from 54 deg. fahr. at the start to 64 deg. fahr. at the finish. The temperature of the room changed from 56 deg. fahr. to 64 deg. fahr. The temperature of the naphtha had much influence on the results of the tests. The highest yield was that shown in No. 2 test where the temperature of the naphtha was 19 deg. fahr. This test was conducted in the open air on a cold winter day. However, even at a temperature of 60 deg. fahr. a yield as high as 3.07 pints of gasoline per 1,000 cubic feet of gas was obtained. Test No. 6 was instructive in that the vapor pressure of the resulting naphtha in No. 1 and No. 2 absorbers was 14 pounds per square inch at 100 deg. fahr. In other words, its vapor pressure exceeded that prescribed for gasoline to be shipped in tank cars.

In summing up the use of naphtha as an absorbent for extracting gasoline from natural gas, it can be stated that a greater yield can be obtained than by using the oil absorption and distillation process, as much as 300 per cent

greater than ordinary temperatures and 400 to 500 per cent greater if temperatures as low as 18 deg. to 19 deg. fahr. are employed. A further advantage lies in the fact that the resulting naphtha with its absorbed gasoline does not have to be subjected to distillation to obtain gasoline but can be sold as prepared.

An objection to it lies in the fact that a large amount of naphtha would have to be handled in large scale operations. Mineral seal oil can be used over and over again with but slight loss while the naphtha would have to be constantly received.

The greatest increase in volume of the naphtha was 16.6 per cent in No. 4 test. This amounts to about 6 to 7 times as much naphtha as gasoline, i. e., for each tank of gasoline extracted from the natural gas there would be needed 6 or 7 tanks of naphtha. One cannot absorb too much gasoline in the naphtha else the vapor pressure of the resulting mixture exceeds the limit (10 pounds per square inch at 100 deg. fahr.) set for the transportation of gasoline in tank cars.

If an absorption gasoline plant could be located at or close to a refinery where a large supply of naphtha was available, the difficulty and trouble of transporting large quantities of naphtha into the absorption plant would be largely overcome, but in most, and perhaps all cases, this is not feasible.

One can look at the problem in the following way:

By the oil absorption process there is obtained one third as much gasoline as by the naphtha process. One tank car (10,000 gallons) of the absorption process gasoline sells for about 20 cents per gallon, or \$2,000. (This figure, however, will vary.) Three tank cars will sell for \$6,000, or an increase of \$4,000. But in order to secure this increase of \$4,000, about 7 tank cars of naphtha would have to be brought into the absorption plant, i. e., at least seven times as much naphtha would have to be handled as of gasoline extracted."

**Testing “Lean” Natural Gas for Gasoline Content**—In testing this gas for gasoline content the same procedure as described on page 50, under First and Second paragraphs is followed, except the gas samples are taken from the pipe line at different times during the day. With high pressure gas in pipe lines one would be able to obtain an average sample from all wells feeding the lines, eliminating the necessity of testing each individual well or group of wells.

In the operation of testing, a portable testing outfit, consisting of absorber, meter, and a small still is used, in place of the small compressor, etc. The outfit is installed on a high pressure gas line and the gas allowed to pass into the atmosphere after being treated. Fig. 46 illustrates the outfit.

**The Determination of the Gasoline Content of “Dry” Natural Gas**—Natural gas is popularly classified as “wet” natural gas, meaning casinghead gas suitable for the extraction of gasoline by compression and condensation methods, and as “lean” natural gas meaning natural gas used in cities



Fig. 46—TESTING APPARATUS FOR DETERMINING GASOLINE CONTENT IN “LEAN” NATURAL GAS BY THE ABSORPTION PROCESS. Designed by G. A. Burrell and P. M. Biddison

and factories. This latter although producing some condensate in pipe lines, is unsuited for the extraction of gasoline by the above methods.

Much of this gas, however, can be treated for gasoline extraction, by the new absorption method, hence there follows a scheme for testing these "lean" natural gases to determine their gasoline content.

This apparatus consists of an absorber A, a meter B, a distillation flask D, with condenser C, and a graduated cylinder E.

The absorber A is made of iron pipe and welded to guard against leakage and to withstand a pressure of 500 or more pounds per square inch.

To start a test, about 2,000 c. c. of mineral seal oil, accurately measured, are poured into the absorber A through the opening H. The short pipe nipple at H is temporarily removed for this purpose. The meter B should be capable of measuring from one to 300 cubic feet of gas accurately. Gas connection is made at K and 100 cubic feet of natural gas passed through the absorber at the rate of 100 cubic feet per hour. The gas entering the absorber bubbles up through the mineral seal oil, the latter absorbing the gasoline. The gas passes out of the absorber at M and through the meter. A pressure of 100 to 300 pounds per square inch is maintained on the gas. The pressure can be read by means of the gauge N and regulated by adjusting the valve P. The absorption process is one that works best at these pressures, and usually natural gas to be treated by the absorption method is under these or higher pressures.

After the requisite amount of natural gas has passed through the absorber, the gas supply is shut off, the pressure released, and 500 c. c. of oil drawn from the absorber and transferred to the distilling flask D. This flask is connected with a condenser C and provided with a thermometer R. This thermometer should read up to 400 deg. fahr.



Fig. 47—FIELD ABSORPTION APPARATUS FOR DETERMINING  
GASOLINE CONTENT OF "LEAN" NATURAL GAS  
*Designed by G. A. Burrell and P. M. Biddison*

### Index

A = Absorber.

B = Gas meter.

H = Opening for oil.

K = Gas connection.

M = Gas outlet.

N = 500 lb. spring gauge.

P = High pressure wheel valves.

## GASOLINE PLANT — ABSORPTION METHOD



Fig. 48—DISTILLATION APPARATUS

### Index

- C Condensor.
- D Distilling flask.
- E Receiver.
- R Thermometer.
- X Water inlet.
- T Water outlet.

## **GASOLINE PLANT—ABSORPTION METHOD**

---

The flask is heated, slowly at first, and the gasoline that is driven out of the oil collected in the graduated cylinder E. The gasoline will start to drop into the receiver E at a temperature of about 80 deg. fahr., and will usually have all distilled at a temperature not higher than 330 deg. fahr. The mineral seal oil itself starts to distill at a temperature of about 375 deg. to 400 deg. fahr., hence the temperature of the oil must not be raised that high.

The distillation apparatus is connected as shown. The flask D is connected to the condenser C by means of the rubber tubing S. Water for the condenser is used to cool the hot gasoline vapor from the still and make it condense, and passes into the condenser at T and out at X.

The method of calculating the results of a test is shown by means of the following example.

### **Calculation of Amount of Gasoline Extracted from Natural Gas by Means of the Absorption Method**

|                                                                                                                                    |             |
|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Amount of oil used.....                                                                                                            | 2000 c. c.  |
| Amount of gas used.....                                                                                                            | 100 cu. ft. |
| Amount of oil taken for distillation.                                                                                              | 500 c. c.   |
| Amount of gasoline extracted .....                                                                                                 | 40 c. c.    |
| Amount of gasoline per 1,000 cubic<br>feet of gas...4 by 40 by 10=1600<br>c. c. or 3.4 pints. There are 473<br>c. c. in one pint). |             |

This small field test is a duplicate on a small scale of the actual big scale operations and gives very reliable results. The absorption method, even although a small yield of gasoline per 1,000 cubic feet of gas is obtained becomes valuable when several or many million cubic feet of gas per day are available.

## GASOLINE PLANT—ABSORPTION METHOD



Fig. 49—PLAN OF ABSORPTION SYSTEM AS APPLIED TO RESIDUE GAS

## GASOLINE PLANT — ABSORPTION METHOD



Fig. 50—PLAN OF A SINGLE SECTION OF AN ABSORPTION METHOD PLANT AS APPLIED TO RESIDUE GAS

**Absorption of Gasoline from Casinghead Gas**—The process of extracting gasoline from "lean" natural gas or from gas having a gravity of less than 0.80 differs materially from the compressor process. Primarily to extract gasoline from this gas profitably, it is necessary to treat a far greater quantity of gas, as the amount of gasoline obtained runs from only one tenth of a gallon up to possibly one and one half gallons per 1,000 cubic feet. It would not be a profitable proposition to extract so small a quantity of gasoline from one thousand cubic feet of gas by the compression method, but as there is so little expense incurred through the extracting of gasoline by the absorption process it has proven to be a great success.

There are two kinds of gas treated by this process—the well known casinghead gas which always flows from the well at a low pressure, and the natural gas which flows from gas wells at a high pressure.

With the first mentioned gas the equipment requires a high pressure blower, absorption coils or tanks and a steam still.

In some instances high pressure blowers are used on a group of leases, in the same manner that the vacuum pump is used with the compression method, to place a vacuum on the wells and to overcome friction in the pipe line between the vacuum station or booster and the main gasoline plant.

## GASOLINE PLANT — ABSORPTION METHOD

---

The gas is forced through the absorption coils or tanks with the aid of the high pressure blower, at a pressure of three or four pounds. In passing through the coils or tanks, the gas comes in contact with the oil or absorption medium, agitates it, and the gasoline content in the gas is taken up by the oil or medium. The success of the operation is dependent upon all of the gas coming in contact with all of the oil, whereupon the absorption takes place.

The oil is drawn off and treated in a steam still the same as at an oil refinery, and is used over and over again.

The oil generally used is a torch or mineral seal oil. Any oil is suitable that has previously had the higher hydrocarbons extracted. A distillate of 35 deg. Baume gravity is found to be very successful as an absorbent.

After the gas passes through the absorbing coils or tanks it is little effected and loses practically no pressure. The outfit required is far cheaper than the compression method.

With the second mentioned gas—"lean" natural gas—the absorption process is the same except that the pressure of the gas is higher and a stronger equipment is required than when treating casinghead gas.

On account of the high pressure which causes greater agitation in the oil, larger sized coils or tanks are required.

It is rapidly becoming an established business to install absorption plants on large gas lines supplying towns and cities. At this writing there is one large company installing plants in Ohio to treat one hundred million cubic feet of "lean" natural gas daily. In this instance the amount of gasoline obtained from a thousand cubic feet of gas varies from one to two pints per thousand cubic feet of gas.

## PART EIGHT

### TRANSPORTATION OF GASOLINE

**Shipping Gasoline**—Steel drums of the very best type manufactured should be used and must stand a pressure of forty pounds per square inch without any leaks whatever. A fifty-five gallon drum should weigh not more than seventy pounds without hoops and a one hundred and ten gallon drum should weigh not less than one hundred and thirty pounds without hoops.

If a drum, such as is used for shipping gasoline and high distillates, filled with 64 deg. Baume gasoline is allowed to stand in the sun with the thermometer registering 95 deg. fahr. with a pressure gauge attached, it will show that the heat has caused a gas pressure of twenty nine and one half pounds. For the purpose of transporting gasoline, special drums have been designed to withstand over eighty pounds pressure.

Do not use wooden plugs. Metal plugs should be close fitting, using a gasket of asbestos.

Glycerine drums are not satisfactory holders of gasoline.

Drums should not be filled full, but only to within about two inches of the top, to allow for expansion.

High gravity gasoline lies dormant when cold, but as its temperature rises above its boiling point it begins to agitate or boil, creating a vapor tension in the tank or drum which raises the boiling point to that corresponding to the increased vapor pressure, thus maintaining a condition of equilibrium.

It is better to ship to a colder climate than to a warmer one. This lessens the liability for losses due to boiling from increased temperature.

# TRANSPORTATION OF GASOLINE

---

NORMAL DAILY TEMPERATURES  
U.S. AND CANADIAN WEATHER BUREAU OBSERVATIONS



Fig. 51

The following simple rules have been found approximately true for Sistersville casinghead gasoline and they are probably fairly accurate for Oklahoma and other casing-head gasolines. Neither the vapor tension rise nor the evaporation loss are regular, but vary more or less with the temperature:

#### Rule of Thumb for Vapor Tension

1st—Vapor tension rises or falls about 0.28 pounds for each degree rise or fall of the boiling point.

2nd—64 deg. fahr. is approximate boiling point for 10 pound vapor tension liquid tested at 100 deg. fahr.

Example:—At what temperature will 7 pound vapor tension liquid boil in the cars? As the vapor tension will fall about 0.28 pounds per degree, a drop of 25 degrees will remove all pressure. Then the boiling point will be 75 deg. fahr. (or 25 degrees below 100) the point at which the vapor tension was seven pounds.

#### Rule of Thumb for Evaporation Losses

1st—Natural gasoline loses about 3.5 per cent for the first ten degrees rise in temperature above its boiling point, and about 7 per cent for each 10 degrees thereafter.

Example:—A—What would we lose on raw gasoline we received at 40 deg. fahr. and sent out at a temperature of 70 deg.?

The first ten deg. equals 3.5 per cent loss and the next 20 deg. 14 per cent, so the loss would be approximately 17.5 per cent altogether.

## TRANSPORTATION OF GASOLINE

## NORMAL DAILY TEMPERATURES

Parkersburg, W. Va.

*U. S. Government readings*

|    | Jan. | Feb.  | Mar. | April | May | June  | July | Aug. | Sept. | Oct. | Nov.  | Dec. |
|----|------|-------|------|-------|-----|-------|------|------|-------|------|-------|------|
| 1  | 32   | 32    | 37   | 48    | 58  | 68    | 74   | 75   | 70    | 61   | 48    | 39   |
| 2  | 32   | 32    | 38   | 48    | 59  | 68    | 75   | 75   | 70    | 60   | 48    | 38   |
| 3  | 32   | 32    | 38   | 49    | 59  | 68    | 75   | 75   | 70    | 60   | 47    | 38   |
| 4  | 32   | 32    | 38   | 49    | 60  | 69    | 75   | 75   | 70    | 60   | 47    | 38   |
| 5  | 32   | 32    | 39   | 49    | 60  | 69    | 75   | 75   | 69    | 59   | 47    | 38   |
| 6  | 32   | 32    | 39   | 50    | 60  | 69    | 75   | 75   | 69    | 59   | 46    | 37   |
| 7  | 31   | 32    | 39   | 50    | 60  | 70    | 75   | 75   | 69    | 58   | 46    | 37   |
| 8  | 31   | 32    | 40   | 50    | 61  | 70    | 75   | 75   | 68    | 58   | 46    | 37   |
| 9  | 31   | 33    | 40   | 51    | 61  | 70    | 75   | 75   | 68    | 58   | 45    | 37   |
| 10 | 31   | 33    | 40   | 51    | 62  | 70    | 75   | 74   | 68    | 57   | 45    | 37   |
| 11 | 31   | 33    | 41   | 51    | 62  | 71    | 76   | 74   | 68    | 57   | 44    | 36   |
| 12 | 31   | 33    | 41   | 52    | 62  | 71    | 76   | 74   | 67    | 56   | 44    | 36   |
| 13 | 31   | 33    | 41   | 52    | 62  | 71    | 76   | 74   | 67    | 56   | 44    | 36   |
| 14 | 31   | 34    | 42   | 52    | 63  | 71    | 76   | 74   | 67    | 55   | 44    | 36   |
| 15 | 31   | 34    | 42   | 53    | 63  | 72    | 76   | 74   | 66    | 55   | 43    | 36   |
| 16 | 31   | 34    | 42   | 53    | 63  | 72    | 76   | 74   | 66    | 54   | 43    | 35   |
| 17 | 31   | 34    | 43   | 53    | 64  | 72    | 76   | 73   | 66    | 54   | 43    | 35   |
| 18 | 31   | 34    | 43   | 54    | 64  | 72    | 76   | 73   | 66    | 54   | 42    | 35   |
| 19 | 31   | 35    | 43   | 54    | 64  | 72    | 76   | 73   | 65    | 53   | 42    | 34   |
| 20 | 31   | 35    | 44   | 54    | 65  | 73    | 76   | 73   | 65    | 53   | 42    | 34   |
| 21 | 31   | 35    | 44   | 55    | 65  | 73    | 76   | 73   | 65    | 52   | 41    | 34   |
| 22 | 31   | 35    | 44   | 55    | 65  | 73    | 76   | 72   | 64    | 52   | 41    | 34   |
| 23 | 31   | 36    | 45   | 56    | 66  | 73    | 76   | 72   | 64    | 52   | 41    | 34   |
| 24 | 31   | 36    | 45   | 56    | 66  | 73    | 76   | 72   | 64    | 51   | 40    | 33   |
| 25 | 31   | 36    | 45   | 56    | 66  | 74    | 76   | 72   | 63    | 51   | 40    | 33   |
| 26 | 31   | 36    | 46   | 57    | 66  | 74    | 76   | 72   | 63    | 50   | 40    | 33   |
| 27 | 31   | 37    | 46   | 57    | 66  | 74    | 76   | 71   | 62    | 50   | 40    | 33   |
| 28 | 32   | 37    | 46   | 58    | 67  | 74    | 76   | 71   | 62    | 50   | 40    | 32   |
| 29 | 32   | ... . | 47   | 58    | 67  | 74    | 76   | 71   | 62    | 49   | 39    | 32   |
| 30 | 32   | ... . | 47   | 58    | 67  | 74    | 75   | 71   | 61    | 49   | 39    | 32   |
| 31 | 32   | ... . | 47   | ... . | 68  | ... . | 75   | 70   | ... . | 49   | ... . | 32   |

This table shows the normal daily temperatures and boiling points which may be expected for West Virginia gasoline.

## TRANSPORTATION OF GASOLINE

## NORMAL DAILY TEMPERATURES

Oklahoma, Okla.

*U. S. Government readings*

|    | Jan. | Feb. | Mar. | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. |
|----|------|------|------|-------|-----|------|------|------|-------|------|------|------|
| 1  | 35   | 36   | 43   | 55    | 64  | 72   | 79   | 80   | 76    | 68   | 54   | 42   |
| 2  | 35   | 36   | 44   | 55    | 64  | 73   | 79   | 80   | 76    | 67   | 54   | 42   |
| 3  | 35   | 36   | 44   | 56    | 65  | 73   | 79   | 80   | 75    | 67   | 53   | 42   |
| 4  | 35   | 36   | 44   | 56    | 65  | 73   | 79   | 80   | 75    | 66   | 52   | 42   |
| 5  | 35   | 36   | 45   | 56    | 65  | 74   | 79   | 80   | 75    | 66   | 52   | 41   |
| 6  | 35   | 36   | 45   | 57    | 65  | 74   | 79   | 80   | 75    | 66   | 52   | 41   |
| 7  | 35   | 36   | 46   | 57    | 66  | 74   | 79   | 80   | 74    | 65   | 51   | 41   |
| 8  | 35   | 37   | 46   | 57    | 66  | 74   | 80   | 80   | 74    | 65   | 50   | 41   |
| 9  | 35   | 37   | 46   | 58    | 66  | 74   | 80   | 80   | 74    | 64   | 50   | 40   |
| 10 | 34   | 37   | 47   | 58    | 66  | 75   | 80   | 80   | 74    | 64   | 50   | 40   |
| 11 | 34   | 37   | 47   | 58    | 67  | 75   | 80   | 79   | 74    | 64   | 49   | 40   |
| 12 | 34   | 37   | 48   | 59    | 67  | 75   | 80   | 79   | 73    | 63   | 49   | 40   |
| 13 | 34   | 38   | 48   | 59    | 67  | 75   | 80   | 79   | 73    | 63   | 49   | 40   |
| 14 | 34   | 38   | 48   | 59    | 68  | 76   | 80   | 79   | 73    | 62   | 48   | 39   |
| 15 | 34   | 38   | 49   | 60    | 68  | 76   | 80   | 79   | 72    | 62   | 48   | 39   |
| 16 | 34   | 39   | 49   | 60    | 68  | 76   | 80   | 79   | 72    | 61   | 47   | 39   |
| 17 | 34   | 39   | 50   | 60    | 69  | 76   | 80   | 79   | 72    | 61   | 47   | 38   |
| 18 | 35   | 39   | 50   | 60    | 69  | 76   | 80   | 78   | 72    | 61   | 47   | 38   |
| 19 | 35   | 39   | 50   | 61    | 69  | 77   | 80   | 78   | 71    | 60   | 46   | 38   |
| 20 | 35   | 40   | 51   | 61    | 69  | 77   | 80   | 78   | 71    | 60   | 46   | 38   |
| 21 | 35   | 40   | 51   | 61    | 70  | 77   | 80   | 78   | 70    | 59   | 46   | 37   |
| 22 | 35   | 40   | 52   | 62    | 70  | 77   | 80   | 78   | 70    | 59   | 45   | 37   |
| 23 | 35   | 41   | 52   | 62    | 70  | 77   | 80   | 78   | 70    | 58   | 45   | 37   |
| 24 | 35   | 41   | 53   | 62    | 70  | 78   | 80   | 78   | 70    | 58   | 45   | 36   |
| 25 | 35   | 41   | 53   | 62    | 71  | 78   | 80   | 77   | 69    | 57   | 44   | 36   |
| 26 | 35   | 42   | 53   | 63    | 71  | 78   | 80   | 77   | 69    | 57   | 44   | 36   |
| 27 | 35   | 42   | 54   | 63    | 71  | 78   | 80   | 77   | 69    | 56   | 44   | 36   |
| 28 | 35   | 43   | 54   | 63    | 72  | 78   | 80   | 77   | 68    | 56   | 43   | 36   |
| 29 | 35   | .... | 54   | 64    | 72  | 78   | 80   | 76   | 68    | 55   | 43   | 36   |
| 30 | 35   | .... | 54   | 64    | 72  | 78   | 80   | 76   | 68    | 55   | 43   | 35   |
| 31 | 35   | .... | 55   | ....  | 72  | 78   | 80   | 76   | ....  | 54   | .... | 35   |

This table shows the temperatures and boiling points well weathered gasoline may be expected to show in Oklahoma.

## TRANSPORTATION OF GASOLINE

PRESSURES GENERATED BY HEATING GASOLINE  
AND CONFINED LIQUEFIED NATURAL GAS

(By G. A. Burrell)

| Tempera-ture |            | PRESSURES GENERATED BY—                 |                               |                     |                     |
|--------------|------------|-----------------------------------------|-------------------------------|---------------------|---------------------|
|              |            | Refinery gasoline<br>(80 deg.<br>Baume) | NATURAL GASOLINE OBTAINED AT— |                     |                     |
| deg. cent.   | deg. fahr. | Pounds                                  | 50 pounds pressure            | 250 pounds pressure | 400 pounds pressure |
| 0            | 32         | 0                                       | ..                            | 107                 | 360                 |
| 5            | 41         | 0                                       | 9                             | 117                 | 375                 |
| 10           | 50         | 0                                       | 12                            | 130                 | 398                 |
| 15           | 59         | 0                                       | 16                            | 144                 | 423                 |
| 20           | 68         | 3                                       | 20                            | 154                 | 453                 |
| 25           | 77         | 5                                       | 25                            | 175                 | 482                 |
| 30           | 86         | 10                                      | 30                            | 193                 | 510                 |
| 35           | 95         | 16                                      | 34                            | 210                 | 545                 |
| 40           | 104        | 26                                      | 40                            | 231                 | 585                 |
| 45           | 113        | 41                                      | 46                            | 251                 | 630                 |
| 50           | 122        | 92                                      | 52                            | 275                 | 690                 |
| 55           | 131        | 150                                     | 58                            | ...                 | 755                 |
| 60           | 140        | ..                                      | 65                            | ...                 | ...                 |

## TRANSPORTATION OF GASOLINE

---



*Fig. 52—GASOLINE LOADING RACK AT KIEFER, OKLA. FORMERLY USED FOR LOADING OIL*

**Tank Cars**—Tank cars of one kind and another have been used on American railroads for nearly forty years. Originally they were merely tubs or vats loaded on flat cars. Horizontal tanks came later and then followed the modern type of tank car.

**Insulated Tank Cars**—This design of tank car has many advantages over the old common tank car. The great advantage is that the insulation surrounding the tank keeps the temperature of the contents from being affected by the atmospheric temperature. This permits shipping higher gravity gasoline with far less loss than with the old design car. As the liquid is kept at an even temperature, there is also less liability of the gasoline boiling on a hot day, causing the safety valves to blow and allowing the gasoline and gas to escape into the atmosphere.

**Description of Insulated Tank Car**—The inner tank is made of extra heavy material, tested and made perfectly tight at 100 lb. pressure. Over this, heavy paper is wrapped and secured to prevent the sweating of the tank. Then 2-inches of the best quality of insulating material is carefully applied with joints broken. Another layer of water-proof paper is wrapped around the insulation and over this another steel tank of lighter material is built. The tank heads and dome being similarly insulated. The tanks are designed to be unloaded either by gravity through the bottom outlet or by air pressure by pipes extending through the dome.

Tanks are anchored to the underframe without the use of head blocks as shown in figure 53.

**To Find the Gauge of Tanks**—Multiply the square of the diameter of the tank by .7854; multiply the result by the length of the tank in inches, divide by 231 and the result is the capacity of the tank in U. S. gallons. If the tank has curved ends (as all car tanks have) add to the length two-thirds of the dish at each end.

TRANSPORTATION OF GASOLINE

---



Fig. 53—INSULATED TANK CAR

## TRANSPORTATION OF GASOLINE

## TANK CAR OUTAGE TABLE

Showing Capacity of an 8,000 gallon Tank Car at Different Levels

| Wet Reading |     | Contents U. S. gal. |     | Wet Reading |         | Contents U. S. gal. |     | Wet Reading |     | Contents U. S. gal. |     |
|-------------|-----|---------------------|-----|-------------|---------|---------------------|-----|-------------|-----|---------------------|-----|
| ft.         | in. | ft.                 | in. | ft.         | in.     | ft.                 | in. | ft.         | in. | ft.                 | in. |
|             | 1   | 20.4                | 3   | 4           | 4160.   | **6                 | 7   | 8084.       |     |                     |     |
|             | 2   | 63.7                | 3   | 5           | 4293.   | 6                   | 8   | 8093.8      |     |                     |     |
|             | 3   | 102.                | 3   | 6           | 4424.   | 6                   | 9   | 8103.74     |     |                     |     |
|             | 4   | 157.                | 3   | 7           | 4554.   | 6                   | 10  | 8113.66     |     |                     |     |
|             | 5   | 218.                | 3   | 8           | 4684.   | 6                   | 11  | 8123.57     |     |                     |     |
|             | 6   | 285.                | 3   | 9           | 4814.   | 7                   | 0   | 8133.49     |     |                     |     |
|             | 7   | 356.5               | 3   | 10          | 4945.   | 7                   | 1   | 8143.4      |     |                     |     |
|             | 8   | 434.6               | 3   | 11          | 5073.   | 7                   | 2   | 8153.32     |     |                     |     |
|             | 9   | 516.7               | 4   | 0           | 5201.   | 7                   | 3   | 8163.23     |     |                     |     |
|             | 10  | 602.                | 4   | 1           | 5330.   | 7                   | 4   | 8173.14     |     |                     |     |
|             | 11  | 692.2               | 4   | 2           | 5456.   | 7                   | 5   | 8183.06     |     |                     |     |
| 1           | 0   | 785.5               | 4   | 3           | 5582.   | 7                   | 6   | 8192.97     |     |                     |     |
| 1           | 1   | 881.3               | 4   | 4           | 5705.   | 7                   | 7   | 8202.89     |     |                     |     |
| 1           | 2   | 981.1               | 4   | 5           | 5829.   | 7                   | 8   | 8213.05     |     |                     |     |
| 1           | 3   | 1082.               | 4   | 6           | 5950.   | 7                   | 9   | 8223.97     |     |                     |     |
| 1           | 4   | 1187.               | 4   | 7           | 6071.   | 7                   | 10  | 8234.88     |     |                     |     |
| 1           | 5   | 1296.               | 4   | 8           | 6191.   | 7                   | 11  | 8245.04     |     |                     |     |
| 1           | 6   | 1405.               | 4   | 9           | 6308.   | 8                   | 0   | 8254.96     |     |                     |     |
| 1           | 7   | 1518.               | 4   | 10          | 6424.   | 8                   | 1   | 8264.87     |     |                     |     |
| 1           | 8   | 1630.               | 4   | 11          | 6536.   | 8                   | 2   | 8274.79     |     |                     |     |
| 1           | 9   | 1746.               | 5   | 0           | 6649.   | 8                   | 3   | 8284.7      |     |                     |     |
| 1           | 10  | 1863.               | 5   | 1           | 6758.   | 8                   | 4   | 8294.62     |     |                     |     |
| 1           | 11  | 1983.               | 5   | 2           | 6867.   | 8                   | 5   | 8304.53     |     |                     |     |
| 2           | 0   | 2104.               | 5   | 3           | 6972.   | 8                   | 6   | 8314.45     |     |                     |     |
| 2           | 1   | 2225.               | 5   | 4           | 7073.   | 8                   | 7   | 8324.36     |     |                     |     |
| 2           | 2   | 2349.               | 5   | 5           | 7173.   | 8                   | 8   | 8334.28     |     |                     |     |
| 2           | 3   | 2472.               | 5   | 6           | 7269.   | 8                   | 9   | 8342.29     |     |                     |     |
| 2           | 4   | 2598.               | 5   | 7           | 7362.   | 8                   | 10  | 8346.98     |     |                     |     |
| 2           | 5   | 2724.               | 5   | 8           | 7452.08 | 8                   | 11  | 8349.48     |     |                     |     |
| 2           | 6   | 2853.               | 5   | 9           | 7538.32 | 9                   | 0   | 8351.98     |     |                     |     |
| 2           | 7   | 2981.               | 5   | 10          | 7620.07 | 9                   | 1   | 8354.48     |     |                     |     |
| 2           | 8   | 3109.               | 5   | 11          | 7699.34 | 9                   | 2   | 8356.98     |     |                     |     |
| 2           | 9   | 3240.               | 6   | 0           | 7771.36 | 9                   | 3   | 8359.49     |     |                     |     |
| 2           | 10  | 3370.               | 6   | 1           | 7839.86 | 9                   | 4   | 8361.49     |     |                     |     |
| 2           | 11  | 3500.               | 6   | 2           | 7902.96 | 9                   | 5   | 8362.70     |     |                     |     |
| 3           | 0   | 3630.               | 6   | 3           | 7960.76 | 9                   | 6   | 8363.31     |     |                     |     |
| 3           | 1   | 3761.               | 6   | 4           | 8002.86 | 9                   | 7   | 8363.93     |     |                     |     |
| 3           | 2   | 3894.               | 6   | 5           | 8051.24 | 9                   | 8   | 8364.54     |     |                     |     |
| 3           | 3   | 4027.               | 6   | 6           | 8074.   |                     |     |             |     |                     |     |

\*\*Denotes top of tank shell (inside)

**T R A N S P O R T A T I O N      O F      G A S O L I N E**

---

**TANK CAR OUTAGE TABLE**

Calculated from 0.25 inch to 5 inches Out of Shell, at  
60 deg. fahr. Capacity of Car in Gallons at 60 deg. fahr.\*

| Inches | 4231 gallons | 6000 gallons | 6641 gallons | 7000 gallons | 8087 gallons | 8102 gallons | 8505 gallons | 10000 gallons |
|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| 0.25   | 3            | 4            | 4            | 4            | 5            | 5            | 5            | 6             |
| 0.5    | 6            | 8            | 8            | 8            | 10           | 10           | 10           | 12            |
| 0.75   | 9            | 13           | 13           | 13           | 16           | 16           | 17           | 19            |
| 1      | 13           | 18           | 18           | 18           | 23           | 23           | 25           | 26            |
| 1.25   | 18           | 24           | 25           | 25           | 31           | 31           | 33           | 36            |
| 1.5    | 23           | 31           | 33           | 33           | 39           | 39           | 45           | 46            |
| 1.75   | 29           | 38           | 41           | 41           | 48           | 48           | 56           | 58            |
| 2      | 35           | 46           | 49           | 50           | 58           | 58           | 67           | 71            |
| 2.25   | 41           | 54           | 58           | 59           | 69           | 69           | 79           | 84            |
| 2.5    | 48           | 63           | 68           | 69           | 80           | 80           | 92           | 98            |
| 2.75   | 55           | 72           | 78           | 79           | 91           | 91           | 105          | 111           |
| 3      | 63           | 82           | 88           | 90           | 103          | 103          | 119          | 125           |
| 3.25   | 71           | 92           | 99           | 101          | 115          | 115          | 133          | 140           |
| 3.5    | 79           | 103          | 110          | 113          | 128          | 128          | 148          | 156           |
| 3.75   | 87           | 114          | 123          | 125          | 141          | 141          | 163          | 171           |
| 4      | 96           | 125          | 134          | 137          | 154          | 154          | 178          | 186           |
| 4.25   | 105          | 136          | 146          | 150          | 167          | 167          | 194          | 203           |
| 4.5    | 114          | 148          | 159          | 163          | 181          | 181          | 211          | 220           |
| 4.75   | 123          | 160          | 172          | 176          | 195          | 195          | 228          | 237           |
| 5      | 133          | 173          | 186          | 190          | 210          | 210          | 244          | 254           |

\*Courtesy of Phoenix Refining Co.

**Sealing Tank Cars**—In shipping gasoline in tank cars, it is advisable to affix a wire seal or lock on the dome cover. It has been found that while loaded tank cars are enroute to destination, the dome cover is removed and considerable quantities of gasoline stolen. While the monetary loss may be considerable, the liability of an explosion from lighted lanterns endangering public safety and property is far greater.

**Prevention of Fires and Explosions from Blowing Safety Valves on Tank Cars**—Many disastrous fires and explosions have occurred indirectly and directly from blowing safety valves on tank cars filled with gasoline. Safety valves are set at 25 lb. When the pressure within the tank exceeds 25 lb. the safety valves "blow off" and permit the gasoline gas which generally is accompanied with a gasoline spray, to flow into the atmosphere. The gas being heavier than air will follow the ground. Whenever a safety valve is blowing, the first thing to be done is to turn a stream of water on the car. This cools the shell and generally lessens the boiling, thus decreasing the pressure within. If it is not possible to use the stream of water, wet blankets can be thrown over the car and water thrown on the blankets from pails.

Loaded tank cars should always be set in shady spots if possible.

Insulated tank cars greatly lessen the liability of high temperatures even on hot days, which condition creates boiling.

**Care of Tank Cars**—The tank may wear on the head blocks, allowing tank to shift. This will become worse rapidly and may result in breaking off the outlet pipe. Wide solid oak shims should be carefully driven in between the head block and the steel head block plate whenever there is a space between the head block and the tank head.

The tank bands may become loose as the tank settles on the slabbing. They can easily be tightened up and this should be carefully looked after.

Safety valves will sometimes work loose from the elbow. Where vent valves are used they will sometimes work out. Keep them firmly screwed down.

Before loading a tank always examine the interior. Open the outlet valve and wipe it and the valve seat with a cloth or waste to remove any sediment that might prevent the valve closing tightly.

The valve rod is attached to the valve by a bolt and nut. The continual pounding and jarring may cause the bolt to break or the nut to come off. This should be carefully looked after and the bolt replaced as often as necessary. Otherwise you may have to pump out a tank because you cannot open the valve.

At the upper end of the valve rod of most tanks there is a strong spring to keep the valve shut. This spring works upon a collar which is secured to the valve rod by a set screw. All these parts should be inspected frequently to see that the nut and collar do not work loose or the force of the spring weaken. By means of the collar and set screw the spring may be tightened as much as desired.

Heater pipes are secured to the saddles by means of bars bolted down. Should the nuts work loose the coils may shift and break. Have the coils inspected each trip and the nuts tightened if necessary.

Always close the outlet valve before replacing cap on the discharge pipe. This is especially necessary in freezing weather, as otherwise the outlet extension pipe may fill up from the drainings and freezing break the pipe. In removing the cap for unloading in cold weather never strike the cap or nozzle with a hammer or steel bar, especially in cold weather.

When there is a stop cock on the outlet extension they are sometimes hard to open. Do not use too great force to open the cock as this is a severe strain on the outlet pipe. Loosen the nut on the opposite side of the cock and tap it with a mallet. This will enable you to open it easily.

Dome lids and outlet caps are frequently lost in transit on account of the failure of those unloading cars to see that these are properly secured to the car by chains and that they are firmly screwed down before the car goes out. This means delay and expense in replacing missing parts at the next loading place. Never allow a car to go out with the outlet cap hanging but always screw it and the dome lid into place.

**Demurrage Rules on Tank Cars** — Railroads charge the customary demurrage on privately owned cars except when cars are on the private tracks of the car owners. This decision was made by the Interstate Commerce Commission Nov. 14, 1908. In connection with this ruling they also defined a "private track" as one "outside the carrier's right of way, and of which the railroad does not own the roadbed, rails, ties or right of way." The commission further decided on the same date that "a private car owned by one shipper and used with his consent by another shipper is not a 'private car,' as that phrase is defined by the commission in the matter of demurrage charges." This last restriction, however, does not apply in the case of cars owned by a car company and leased to a shipper.

By the foregoing is meant that when a privately owned tank car is shipped to a customer, even though such customer owns his own switching tracks (ties, rails and roadbed) the railroad will charge demurrage for any time over

T R A N S P O R T A T I O N      O F      G A S O L I N E

---

the customary allowance. In other words whenever a privately owned tank car leaves the car owner's private track it is considered in service.

**FREIGHT RATES C/S OIL IN BBL. AND TANKS**

| Cents per<br>100 lb. | Oil per Gallon |       | Cents per<br>100 lb. | Oil per Gallon |       |
|----------------------|----------------|-------|----------------------|----------------|-------|
|                      | Bbl.           | Tanks |                      | Bbl.           | Tanks |
| 5                    | 0.45           | 0.375 | 28                   | 2.52           | 2.100 |
| 6                    | 0.54           | 0.450 | 29                   | 2.61           | 2.175 |
| 7                    | 0.63           | 0.525 | 30                   | 2.70           | 2.250 |
| 8                    | 0.72           | 0.600 | 31                   | 2.79           | 2.325 |
| 9                    | 0.81           | 0.675 | 32                   | 2.88           | 2.400 |
| 10                   | 0.90           | 0.750 | 33                   | 2.97           | 2.475 |
| 11                   | 0.99           | 0.825 | 34                   | 3.06           | 2.550 |
| 12                   | 1.08           | 0.900 | 35                   | 3.15           | 2.625 |
| 13                   | 1.17           | 0.975 | 36                   | 3.24           | 2.700 |
| 14                   | 1.26           | 1.050 | 37                   | 3.33           | 2.775 |
| 15                   | 1.35           | 1.125 | 38                   | 3.42           | 2.850 |
| 16                   | 1.44           | 1.200 | 39                   | 3.51           | 2.925 |
| 17                   | 1.53           | 1.275 | 40                   | 3.60           | 3.000 |
| 18                   | 1.62           | 1.350 | 41                   | 3.69           | 3.075 |
| 19                   | 1.71           | 1.425 | 42                   | 3.78           | 3.150 |
| 20                   | 1.80           | 1.500 | 43                   | 3.87           | 3.225 |
| 21                   | 1.89           | 1.575 | 44                   | 3.96           | 3.300 |
| 22                   | 1.98           | 1.650 | 45                   | 4.05           | 3.375 |
| 23                   | 2.07           | 1.725 | 46                   | 4.14           | 3.450 |
| 24                   | 2.10           | 1.800 | 47                   | 4.23           | 3.525 |
| 25                   | 2.25           | 1.875 | 48                   | 4.32           | 3.600 |
| 26                   | 2.34           | 1.950 | 49                   | 4.41           | 3.675 |
| 27                   | 2.48           | 2.025 | 50                   | 4.50           | 3.750 |

**Limit of Load**—Under the rules formerly in force the railroads allowed cars to be loaded according to the size of car journals, 10 per cent of overloading beyond the published limit being permitted. By a new rule adopted by the Master Car Builders' Association and taking effect September 1st, 1909, the total weight of car and contents is taken into account. The rule prescribes the following "limit weights" for cars:

| Size<br>Journals | Wheel<br>Seat | Axle<br>Center | Limit weight<br>of car<br>and contents |
|------------------|---------------|----------------|----------------------------------------|
| 5½ x 10 in.      | 6¾ in.        | 5⅞ in.         | 161,000                                |
| 5 x 9            | 6¼            | 5½             | 132,000                                |
| 4¼ x 8           | 5⅝            | 4⅞             | 112,000                                |

By this rule there is a decided advantage in using steel tank cars of improved design where all superfluous and useless dead weight is eliminated.

**Mileage Rules of Railroads**—Railroads allow the use of fourths of one cent per mile run on both loaded and empty movements of tank cars. Private car owners are required to furnish printed postal cards to the railroads for reporting deliveries to connecting lines and for reporting mileage earnings.

PRACTICALLY all railroads follow the rule of handling empty tank cars free, under orders of owners. Empty mileage must, however, be equalized by loaded mileage, or paid later at tariff rates. The general rule is to furnish private car owners with a statement of their loaded and empty mileage once a year. The car owner is then allowed six months additional to equalize any excess empty mileage. If this is not done the railroad will collect for the excess empty mileage at tariff rate.

If the loaded mileage exceeds the empty mileage, the balance is carried forward as a "credit" to the next period.

The rate charged by railroads for hauling empty tank cars varies, according to territory, from ten cents per mile west of the Mississippi river to four cents per mile in Central and Eastern territory.

New, or newly acquired cars, moving empty from place where built to owners, or from place of purchase, must be billed with freight charges to the owner or lessee.

**Rules of the Interstate Commerce Commission**—The final rules of the Interstate Commerce Commission regarding the shipment of natural gas gasoline are presented below:

**Regulations for the Transportation on Railroads of Natural Gas Gasoline\***—Casinghead or natural gas gasoline, blended or unblended, and with vapor tension not exceeding 10 lb. per square inch, may be shipped as gasoline:

(1) In metal drums complying with I. C. C. Shipping Container Specification No. 5; or—

(2) In 60 lb. tested ordinary tank cars, provided such cars have valves set to 25 lb. and the dome covers are made "fool-proof" by one of the methods approved by the Master Car Builders' Association, and provided the dome cover and dome bear the special white placards cautioning employees not to remove dome cover while pressure exists.

Casinghead gas or natural gas gasoline, blended or unblended, with vapor tension above 10 lb. per square inch and not exceeding 15 lb. per square inch, must be described as Liquefied Petroleum Gas, and may be shipped:

(1) In the special insulated tank cars approved by the Master Car Builders' Association; or—

(2) In metal barrels complying with I. C. C. Shipping Container Specification No. 5 and not exceeding 55 gallons capacity.

Casinghead or natural gas gasoline, blended or unblended, with vapor tension, exceeding 15 lb. per square inch and not exceeding 25 lb. per square inch, must be described as Liquefied Petroleum Gas and can only be shipped in metal drums complying with I. C. C. Shipping Container Specification No. 5 and not exceeding 55 gallons capacity.

\* From "Regulations of the Interstate Commerce Commission for the Transportation of Explosives and Other Dangerous Articles by Freight and by Express and Specifications for Shipping Containers," published by the Bureau for the Safe Transportation of Explosives and Other Dangerous Articles, in January, 1912, pp. 72, 143, 144 and 145. Effective May 15, 1916.

Casinghead or natural gas gasoline, blended or unblended, with vapor tension exceeding 25 lb. per square inch, must be described as Liquefied Petroleum Gas and can only be shipped in steel cylinders as prescribed for compressed gases (paragraphs 1861 to 1863.)

The amended regulation becomes effective not later than May 15, 1916, at all points where casinghead gasoline is produced and shipped.

By January 1, 1917, all tank cars used for the shipment of any inflammable liquid with flash point below 20 deg. (which includes refinery gasoline, benzine or naphtha, carbon bisulphide, gas drips, etc.), must be equipped with the "fool-proof" dome covers and must have their valves set at 25 lb.

Only such cars as carry casinghead or natural gas gasoline, blended or unblended, must have the special dome placards, and it will be noted that for such cars the shipping order and billing accompanying the car must bear thereon an endorsement to show the presence of such special dome placards. This endorsement being in addition to the regular Inflammable Placard endorsement as required by the regulations.

Packages containing inflammable liquids must not be entirely filled. Sufficient interior space must be left vacant to prevent distortion by containers when heated to a temperature of 120 deg. fahr. (49 deg. cent.) This vacant space must not be less than 2 per cent of the capacity of the container including the dome capacity of tank cars.

1. The provisions of "Shipping-Container Specifications No. 5" apply to all containers specified therein that are purchased after December 31, 1911, and used for the shipment of dangerous articles other than explosives. Each such container purchased subsequently to December 31, 1911, shall have plainly stamped thereon the date of manufacture thereof.

2. An iron or steel barrel or drum with a capacity of from 50 to 55 gallons must have a minimum weight in the blank, exclusive of the weight of rolling hoops, of 70 pounds, and the minimum thickness of metal in any part of the completed barrel must not be less than that of No. 16 gauge United States standard.

3. An iron or steel barrel or drum with a capacity of from 100 to 110 gallons must have a minimum weight in the blank, exclusive of the rolling hoops, of not less than 130 pounds, and the minimum thickness of metal in any part of the completed barrel or drum must not be less than that of full No. 14 gauge United States standard.

4. Each barrel or drum must stand a manufacturers' test under water by interior compressed air at a pressure of not less than 15 pounds per square inch sustained for not less than two minutes, without leaking, and the type of barrel or drum must be capable of standing a hydrostatic test pressure of not less than 40 pounds per square inch, sustained for not less than five minutes, without any serious permanent deformation and without leaking.

5. When filled with water to 98 per cent of its capacity, the type of barrel or drum must also be capable of standing, without leakage, a test drop on its chime for a height of four feet upon a solid concrete foundation.

6. Bungs and other openings must be provided with secure closing devices that will not permit leakage through them. Threaded metal plugs must be close fitting. Gaskets must be made of lead, leather, or other suitable material. Wooden plugs must be covered with a suitable coating and must have a driving fit into a tapered hole.

7. The method of manufacturing the barrel or drum and the materials used must be well adapted to producing a uniform product. Leaks in a new barrel or drum must not be stopped by soldering, but must be repaired by the method used in constructing the barrel or drum.

**Method of Making Vapor Pressure Tests and Remarks on Shipping Liquefied Petroleum Gas**—(See Paragraph 1824, I. C. C. Regulations)—Remove the gauge from the tube and fill tube 90 per cent of its capacity. Fill tube preferably by lowering it into the storage tank in upright position by means of a cord or wire. Leave the tube entirely immersed for several minutes, withdraw it and pour off sufficient liquid so that it will contain 90 per cent of its capacity. A small measure having capacity of 10 per cent of the test tube should be used for that purpose.

In case it is impracticable to lower the tube into the storage tank, draw the liquid off into a vessel of a capacity about equal to the test tube. Pour liquid into the test tube until about half filled. Shake the tube and contents gently in order to bring both to the same temperature. After standing for several minutes, pour out all the liquid from the tube. Draw another sample from the storage tank into the cylinder and pour through funnel into the tube until the latter is entirely full. Withdraw one tenth as before. Screw gauge tightly into position using a little liquid shellac on the joint to insure a tight fit.

Immerse the tube in water at temperature of 70 deg. fahr. and allow it to remain for five minutes. Then remove it from the water and unscrew the gauge sufficiently to momentarily relieve the pressure indicated by the gauge, and immediately screw the gauge tightly into the tube again. Then place the tube in water at a temperature of 100 deg. fahr. (90 deg. fahr. from Nov. 1st to March 1st). The level of the water must be just below the lower edge of the pressure gauge. Stir the water continually and maintain the temperature exactly constant for ten minutes, then tap the gauge lightly with the finger and read the pressure.

A second test should be made on another sample of the gasoline proceeding as above except that, after closing the tube the first time, it is placed directly in water at 100 deg.

fahr., and the pressure read after 10 minutes. This second test is only for information and record.

Although the regular inspectors of the Bureau of Explosives are available for making these tests when required, still, the responsibility for knowing the vapor pressure of the liquid shipped and that it is in proper containers, rests entirely on the shippers, who should provide facilities and require frequent tests to be made of their product, and should send a copy of the results of such tests to the Chief Inspector, Bureau of Explosives, 30 Vesey Street, New York City, for information and record.

In making reports, the gravity of the liquid, the temperature of the liquid as placed in test tube, the pressure at 70 deg. fahr. before venting tube, the pressure at 100 deg. fahr. (90 deg. from Nov. 1st to March 1st) after venting at 70 deg. fahr.

and the pressure at 100 deg. fahr. on tube not vented at 70 deg. fahr. should all be recorded.

**Apparatus for Testing Vapor Pressure of Gasoline—Description of Apparatus—**Apparatus shown in figure 54 consists of iron or steel pipe of two inch size with caps screwed on ends. Upper cap has 0.25 inch nipple screwed in and is connected by a coupling to a 3 inch 30 lb. pressure gauge. Gauge is known as Inspectors' Gas Gauge. All joints must be entirely tight. Joints between large pipe and caps are best sealed with solder. Approximate external dimensions are indicated on sketch. In addition to apparatus indicated in test, there is also required a tin cylinder for filling test tube 12 by 3 inches that can be slipped over outside of tube for convenience in carrying when not in use. The tin cylinder is provided with a lip for pouring. A small tin cover 0.75 inch deep, fitting over the bottom



Fig. 54

## TRANSPORTATION OF GASOLINE

---

of the tin cylinder may be removed and used for measuring off one tenth capacity of test tube. A small tin funnel 2.5 inches in diameter with stem 3 inches long and three sixteenths inch in diameter should be used.

**Market**—The main market for gasoline is for internal combustion engines such as automobiles, traction, motor boat, factory and the small farm engines. While no doubt the automobile is the greatest consumer, even the little farm engine is fast becoming a factor in its use of gasoline.

In 1905 automobiles consumed close to 30,000,000 gallons, while in 1916 it is estimated that the consumption of gasoline will amount to approximately 1,500,000,000 gallons or fifty times that of 1905.

While the automobile shows the greatest increase, all other types of internal combustion engines for various purposes have shown a most wonderful growth in numbers and have greatly increased the demand for gasoline.

In 1908, 86,000 automobiles were marketed and in 1916 it is conservatively predicted that the sale will reach 1,200,000.

On January 1, 1916 there were 2,225,000 automobiles in use and it is estimated there will be 3,200,000 in use by Jan. 1, 1917.

When it is taken into consideration that one automobile consumes 500 gallons of gasoline in a year, we can gain a faint idea of the fast increasing demand for gasoline even with a big allowance for old cars being abandoned.

The estimated increase of automobiles this year (1916) will alone cause an increased demand for gasoline of 9,000,000 barrels over the amount used in 1915.

# PART NINE

## MISCELLANEOUS

**Baume Scale and Specific Gravity Equivalent**—The instruments used are a hydrometer and a standard thermometer. The hydrometer, which is a glass column marked with graduations from 10 to 100, was invented by Antoine Baume, a French chemist, and the scale on the instrument has always borne his name. The hydrometer, when placed in a jar or a bottle of oil, sinks to the point on the scale which indicates the gravity in degrees Baume. There are two Baume hydrometers—one which is used with liquids heavier than water with which the hydrometer sinks to 0 degrees in pure water and to 15 degrees in a 15 per cent salt solution; the other for liquids lighter than water which sinks to 0 degrees in a 10 per cent salt solution and to 10 degrees in pure water. With both hydrometers the graduations are based on the densities between the fundamental points and is continued along the stem of the hydrometer as far as desired.

The basis of temperature for testing oil is 60 deg. fahr., and for oil at a greater or less temperature, variations must be calculated. Hydrometers are usually provided with a special scale for figuring temperature variations.

All degrees on a Baume scale are thus equal in length while those on a specific gravity scale grow smaller as the density increases. There is no simple relation between degrees Baume and specific gravity; however, readings on the Baume scale may be approximately reduced to specific gravity by the following formulae:

For liquid heavier than water:

Specific gravity =  $144 : 144 - x$  in which x equals the reading on the Baume scale.

For liquid lighter than water:

Specific gravity =  $144 : 134 + x$  in which x equals the reading on the Baume scale.



Fig. 60

M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER  
THAN WATER \*

| GRAVITY  |        | Pounds<br>per<br>Gallon | GRAVITY  |        | Pounds<br>per<br>Gallon |
|----------|--------|-------------------------|----------|--------|-------------------------|
| Specific | Baume  |                         | Specific | Baume  |                         |
| 1.0000   | 10.    | 8.331                   | .9785    | 13.071 | 8.152                   |
| .9995    | 10.071 | 8.327                   | .9780    | .142   | 8.148                   |
| .9990    | .142   | 8.323                   | .9775    | .214   | 8.144                   |
| .9985    | .214   | 8.319                   | .9770    | .286   | 8.139                   |
| .9980    | .286   | 8.314                   | .9765    | .357   | 8.135                   |
| .9975    | .357   | 8.310                   | .9760    | .428   | 8.131                   |
| .9970    | .428   | 8.306                   | .9755    | .500   | 8.127                   |
| .9965    | .500   | 8.302                   | .9750    | .571   | 8.123                   |
| .9960    | .571   | 8.298                   | .9745    | .642   | 8.119                   |
| .9955    | .642   | 8.294                   | .9740    | .714   | 8.114                   |
| .9950    | .714   | 8.289                   | .9735    | .785   | 8.110                   |
| .9945    | .785   | 8.285                   | .9730    | .857   | 8.106                   |
| .9940    | .857   | 8.281                   | .9725    | 13.928 | 8.102                   |
| .9935    | 10.928 | 8.277                   | .9720    | 14.    | 8.098                   |
| .9930    | 11.    | 8.273                   | .9715    | 14.077 | 8.094                   |
| .9925    | 11.071 | 8.269                   | .9710    | .154   | 8.089                   |
| .9920    | .142   | 8.264                   | .9705    | .231   | 8.085                   |
| .9915    | .214   | 8.260                   | .9700    | .308   | 8.081                   |
| .9910    | .286   | 8.256                   | .9695    | .462   | 8.077                   |
| .9905    | .357   | 8.252                   | .9690    | .538   | 8.073                   |
| .9900    | .428   | 8.248                   | .9685    | .615   | 8.069                   |
| .9895    | .500   | 8.244                   | .9680    | .692   | 8.064                   |
| .9890    | .571   | 8.239                   | .9675    | .769   | 8.060                   |
| .9885    | .642   | 8.235                   | .9670    | .846   | 8.056                   |
| .9880    | .714   | 8.231                   | .9665    | 14.923 | 8.052                   |
| .9875    | .785   | 8.227                   | .9660    | 15.    | 8.048                   |
| .9870    | .857   | 8.223                   | .9655    | 15.077 | 8.044                   |
| .9865    | 11.928 | 8.219                   | .9650    | .165   | 8.039                   |
| .9860    | 12.    | 8.214                   | .9645    | .249   | 8.035                   |
| .9855    | 12.071 | 8.210                   | .9640    | .332   | 8.031                   |
| .9850    | .142   | 8.206                   | .9635    | .415   | 8.027                   |
| .9845    | .214   | 8.202                   | .9630    | .498   | 8.023                   |
| .9840    | .286   | 8.198                   | .9625    | .581   | 8.019                   |
| .9835    | .357   | 8.194                   | .9620    | .664   | 8.014                   |
| .9830    | .428   | 8.189                   | .9615    | .747   | 8.010                   |
| .9825    | .500   | 8.185                   | .9610    | .830   | 8.006                   |
| .9820    | .571   | 8.181                   | .9605    | .913   | 8.002                   |
| .9815    | .642   | 8.177                   | .9600    | 15.993 | 7.998                   |
| .9810    | .714   | 8.173                   | .9595    | 16.    | 7.994                   |
| .9805    | .785   | 8.169                   | .9590    | 16.083 | 7.989                   |
| .9800    | .857   | 8.164                   | .9585    | .165   | 7.985                   |
| .9795    | 12.928 | 8.160                   | .9580    | .249   | 7.981                   |
| .9790    | 13.    | 8.156                   | .9575    | .415   | 7.977                   |

\* Courtesy of Phoenix Refining Co.

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER  
THAN WATER

| GRAVITY  |        | Pounds per Gallon | GRAVITY  |        | Pounds per Gallon |
|----------|--------|-------------------|----------|--------|-------------------|
| Specific | Baume  |                   | Specific | Baume  |                   |
| .9570    | .415   | 7.973             | .9355    | .747   | 7.794             |
| .9565    | .498   | 7.969             | .9350    | .830   | 7.789             |
| .9560    | .581   | 7.964             | .9345    | 19.913 | 7.785             |
| .9555    | .664   | 7.960             | .9340    | 20.    | 7.781             |
| .9550    | .747   | 7.956             | .9335    | 20.083 | 7.777             |
| .9545    | .830   | 7.952             | .9330    | .166   | 7.773             |
| .9540    | .913   | 7.948             | .9325    | .249   | 7.769             |
| .9535    | 16.994 | 7.944             | .9320    | .332   | 7.764             |
| .9530    | 17.    | 7.939             | .9315    | .415   | 7.760             |
| .9525    | 17.077 | 7.935             | .9310    | .498   | 7.756             |
| .9520    | .154   | 7.931             | .9305    | .581   | 7.752             |
| .9515    | .231   | 7.927             | .9300    | .664   | 7.748             |
| .9510    | .308   | 7.923             | .9295    | .747   | 7.744             |
| .9505    | .385   | 7.919             | .9290    | .830   | 7.739             |
| .9500    | .462   | 7.914             | .9285    | 20.913 | 7.735             |
| .9495    | .538   | 7.910             | .9280    | .21.   | 7.731             |
| .9490    | .615   | 7.906             | .9275    | 21.083 | 7.727             |
| .9485    | .692   | 7.902             | .9270    | .166   | 7.723             |
| .9480    | .769   | 7.898             | .9265    | .249   | 7.719             |
| .9475    | .846   | 7.894             | .9260    | .332   | 7.715             |
| .9470    | 17.923 | 7.889             | .9255    | .415   | 7.710             |
| .9465    | 18.    | 7.885             | .9250    | .498   | 7.706             |
| .9460    | 18.077 | 7.881             | .9245    | .581   | 7.702             |
| .9455    | .154   | 7.877             | .9240    | .664   | 7.698             |
| .9450    | .231   | 7.873             | .9235    | .747   | 7.694             |
| .9445    | .308   | 7.869             | .9230    | .830   | 7.690             |
| .9440    | .385   | 7.864             | .9225    | 21.913 | 7.685             |
| .9435    | .462   | 7.860             | .9220    | .22.   | 7.681             |
| .9430    | .538   | 7.856             | .9215    | 22.09  | 7.677             |
| .9425    | .615   | 7.852             | .9210    | .18    | 7.673             |
| .9420    | .692   | 7.848             | .9205    | .27    | 7.669             |
| .9415    | .769   | 7.844             | .9200    | .36    | 7.665             |
| .9410    | .846   | 7.839             | .9195    | .45    | 7.660             |
| .9405    | .923   | 7.835             | .9190    | .54    | 7.656             |
| .9400    | 19.000 | 7.831             | .9185    | .63    | 7.652             |
| .9395    | 19.083 | 7.827             | .9180    | .72    | 7.648             |
| .9390    | .166   | 7.823             | .9175    | .81    | 7.644             |
| .9385    | .249   | 7.819             | .9170    | 22.90  | 7.640             |
| .9380    | .332   | 7.815             | .9165    | .23.   | 7.635             |
| .9375    | .415   | 7.811             | .9160    | 23.08  | 7.631             |
| .9370    | .498   | 7.806             | .9155    | .17    | 7.627             |
| .9365    | .581   | 7.802             | .9150    | .25    | 7.623             |
| .9360    | .664   | 7.798             | .9145    | .33    | 7.619             |

## M I S C E L L A N E O U S

## GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |       | Pounds per Gallon |
|----------|-------|-------------------|----------|-------|-------------------|
| Specific | Baume |                   | Specific | Baume |                   |
| .9140    | .42   | 7.615             | .8925    | 27.08 | 7.435             |
| .9135    | .50   | 7.610             | .8920    | .17   | 7.431             |
| .9130    | .58   | 7.606             | .8915    | .25   | 7.427             |
| .9125    | .66   | 7.602             | .8910    | .33   | 7.423             |
| .9120    | .75   | 7.598             | .8905    | .42   | 7.419             |
| .9115    | .83   | 7.594             | .8900    | .50   | 7.415             |
| .9110    | 23.91 | 7.590             | .8895    | .58   | 7.410             |
| .9105    | 24.   | 7.585             | .8890    | .66   | 7.406             |
| .9100    | 24.08 | 7.581             | .8885    | .75   | 7.402             |
| .9095    | .17   | 7.577             | .8880    | .83   | 7.398             |
| .9090    | .25   | 7.573             | .8875    | 27.91 | 7.394             |
| .9085    | .33   | 7.569             | .8870    | .28.  | 7.390             |
| .9080    | .42   | 7.565             | .8865    | 28.09 | 7.385             |
| .9075    | .50   | 7.560             | .8860    | .18   | 7.381             |
| .9070    | .58   | 7.556             | .8855    | .27   | 7.377             |
| .9065    | .66   | 7.552             | .8850    | .36   | 7.373             |
| .9060    | .75   | 7.548             | .8845    | .45   | 7.369             |
| .9055    | .83   | 7.544             | .8840    | .54   | 7.365             |
| .9050    | 24.91 | 7.540             | .8835    | .63   | 7.360             |
| .9045    | 25.   | 7.536             | .8830    | .72   | 7.356             |
| .9040    | 25.09 | 7.531             | .8825    | .81   | 7.352             |
| .9035    | .18   | 7.527             | .8820    | 28.90 | 7.348             |
| .9030    | .27   | 7.523             | .8815    | .29.  | 7.344             |
| .9025    | .36   | 7.519             | .8810    | 29.08 | 7.340             |
| .9020    | .45   | 7.515             | .8805    | .17   | 7.335             |
| .9015    | .54   | 7.510             | .8800    | .25   | 7.331             |
| .9010    | .63   | 7.506             | .8795    | .33   | 7.327             |
| .9005    | .72   | 7.502             | .8790    | .42   | 7.323             |
| .9000    | .81   | 7.498             | .8785    | .50   | 7.319             |
| .8995    | 25.90 | 7.494             | .8780    | .58   | 7.315             |
| .8990    | 26.   | 7.490             | .8775    | .66   | 7.310             |
| .8985    | 26.08 | 7.485             | .8770    | .75   | 7.306             |
| .8980    | .17   | 7.481             | .8765    | .83   | 7.302             |
| .8975    | .25   | 7.477             | .8760    | 29.91 | 7.298             |
| .8970    | .33   | 7.473             | .8755    | .30.  | 7.294             |
| .8965    | .42   | 7.469             | .8750    | 30.09 | 7.290             |
| .8960    | .50   | 7.465             | .8745    | .18   | 7.285             |
| .8955    | .58   | 7.460             | .8740    | .27   | 7.281             |
| .8950    | .66   | 7.456             | .8735    | .36   | 7.277             |
| .8945    | .75   | 7.452             | .8730    | .45   | 7.273             |
| .8940    | .83   | 7.448             | .8725    | .54   | 7.269             |
| .8935    | 26.91 | 7.444             | .8720    | .63   | 7.265             |
| .8930    | 27.   | 7.440             | .8715    | .72   | 7.260             |

## M I S C E L L A N E O U S

## GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER THAN WATER

| GRAVITY  |       | Pounds<br>per<br>Gallon | GRAVITY  |       | Pounds<br>per<br>Gallon |
|----------|-------|-------------------------|----------|-------|-------------------------|
| Specific | Baume |                         | Specific | Baume |                         |
| .8710.   | .81   | 7.256                   | .8495    | 34.90 | 7.077                   |
| .8705    | 30.90 | 7.252                   | .8490    | 35.   | 7.073                   |
| .8700    | 31.   | 7.248                   | .8485    | 35.10 | 7.069                   |
| .8695    | 31.10 | 7.244                   | .8480    | .20   | 7.065                   |
| .8690    | .20   | 7.240                   | .8475    | .30   | 7.061                   |
| .8685    | .30   | 7.235                   | .8470    | .40   | 7.056                   |
| .8680    | .40   | 7.231                   | .8465    | .50   | 7.052                   |
| .8675    | .50   | 7.227                   | .8460    | .60   | 7.048                   |
| .8670    | .60   | 7.223                   | .8455    | .70   | 7.044                   |
| .8665    | .70   | 7.219                   | .8450    | .80   | 7.040                   |
| .8660    | .80   | 7.215                   | .8445    | 35.90 | 7.036                   |
| .8655    | 31.90 | 7.210                   | .8440    | 36.   | 7.031                   |
| .8650    | 32.   | 7.206                   | .8435    | 36.11 | 7.027                   |
| .8645    | 32.09 | 7.202                   | .8430    | .22   | 7.023                   |
| .8640    | .18   | 7.198                   | .8425    | .33   | 7.019                   |
| .8635    | .27   | 7.194                   | .8420    | .44   | 7.015                   |
| .8630    | .36   | 7.190                   | .8415    | .55   | 7.011                   |
| .8625    | .45   | 7.185                   | .8410    | .66   | 7.006                   |
| .8620    | .54   | 7.181                   | .8405    | .77   | 7.002                   |
| .8615    | .63   | 7.177                   | .8400    | 36.88 | 6.998                   |
| .8610    | .72   | 7.173                   | .8395    | 37.   | 6.994                   |
| .8605    | .81   | 7.169                   | .8390    | 37.10 | 6.990                   |
| .8600    | 32.90 | 7.165                   | .8385    | .20   | 6.986                   |
| .8595    | 33.   | 7.160                   | .8380    | .30   | 6.981                   |
| .8590    | 33.10 | 7.156                   | .8375    | .40   | 6.977                   |
| .8585    | .20   | 7.152                   | .8370    | .50   | 6.973                   |
| .8580    | .30   | 7.148                   | .8365    | .60   | 6.969                   |
| .8575    | .40   | 7.144                   | .8360    | .70   | 6.965                   |
| .8570    | .50   | 7.140                   | .8355    | .80   | 6.961                   |
| .8565    | .60   | 7.136                   | .8350    | 37.90 | 6.956                   |
| .8560    | .70   | 7.131                   | .8345    | 38.   | 6.952                   |
| .8555    | .80   | 7.127                   | .8340    | 38.10 | 6.948                   |
| .8550    | 33.90 | 7.123                   | .8335    | .20   | 6.944                   |
| .8545    | 34.   | 7.119                   | .8330    | .30   | 6.940                   |
| .8540    | 34.09 | 7.115                   | .8325    | .40   | 6.936                   |
| .8535    | .18   | 7.111                   | .8320    | .50   | 6.931                   |
| .8530    | .27   | 7.106                   | .8315    | .60   | 6.927                   |
| .8525    | .36   | 7.102                   | .8310    | .70   | 6.923                   |
| .8520    | .45   | 7.098                   | .8305    | .80   | 6.919                   |
| .8515    | .54   | 7.094                   | .8300    | 38.90 | 6.915                   |

# GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER THAN WATER

| GRAVITY  |       | Pounds<br>per<br>Gallon | GRAVITY  |        | Pounds<br>per<br>Gallon |
|----------|-------|-------------------------|----------|--------|-------------------------|
| Specific | Baume |                         | Specific | Baume  |                         |
| .8280    | .33   | 6.898                   | .8065    | .44    | 6.719                   |
| .8275    | .44   | 6.894                   | .8060    | .44.10 | 6.715                   |
| .8270    | .55   | 6.890                   | .8055    | .20    | 6.711                   |
| .8265    | .66   | 6.886                   | .8050    | .30    | 6.706                   |
| .8260    | .77   | 6.881                   | .8045    | .40    | 6.702                   |
| .8255    | 39.88 | 6.877                   | .8040    | .50    | 6.698                   |
| .8250    | 40.   | 6.873                   | .8035    | .60    | 6.694                   |
| .8245    | 40.11 | 6.869                   | .8030    | .70    | 6.690                   |
| .8240    | .22   | 6.865                   | .8025    | .80    | 6.686                   |
| .8235    | .33   | 6.861                   | .8020    | 44.90  | 6.681                   |
| .8230    | .44   | 6.856                   | .8015    | .45    | 6.677                   |
| .8225    | .55   | 6.852                   | .8010    | 45.11  | 6.673                   |
| .8220    | .66   | 6.848                   | .8005    | .22    | 6.669                   |
| .8215    | .77   | 6.844                   | .8000    | .33    | 6.665                   |
| .8210    | 40.88 | 6.840                   | .7995    | .44    | 6.661                   |
| .8205    | 41.   | 6.836                   | .7990    | .55    | 6.656                   |
| .8200    | 41.10 | 6.831                   | .7985    | .66    | 6.652                   |
| .8195    | .20   | 6.827                   | .7980    | .77    | 6.648                   |
| .8190    | .30   | 6.823                   | .7975    | 45.88  | 6.644                   |
| .8185    | .40   | 6.819                   | .7970    | .46    | 6.640                   |
| .8180    | .50   | 6.815                   | .7965    | 46.11  | 6.636                   |
| .8175    | .60   | 6.811                   | .7960    | .22    | 6.631                   |
| .8170    | .70   | 6.806                   | .7955    | .33    | 6.627                   |
| .8165    | .80   | 6.802                   | .7950    | .44    | 6.623                   |
| .8160    | 41.90 | 6.798                   | .7945    | .55    | 6.619                   |
| .8155    | 42.   | 6.794                   | .7940    | .66    | 6.615                   |
| .8150    | 42.11 | 6.790                   | .7935    | .77    | 6.611                   |
| .8145    | .22   | 6.786                   | .7930    | 46.88  | 6.606                   |
| .8140    | .33   | 6.781                   | .7925    | .47    | 6.602                   |
| .8135    | .44   | 6.777                   | .7920    | 47.12  | 6.598                   |
| .8130    | .55   | 6.773                   | .7915    | .24    | 6.594                   |
| .8125    | .66   | 6.769                   | .7910    | .36    | 6.590                   |
| .8120    | .77   | 6.765                   | .7905    | .48    | 6.586                   |
| .8115    | 42.88 | 6.761                   | .7900    | .60    | 6.581                   |
| .8110    | 43.   | 6.756                   | .7895    | .72    | 6.577                   |
| .8105    | 43.11 | 6.752                   | .7890    | 47.84  | 6.573                   |
| .8100    | .22   | 6.748                   | .7885    | .48    | 6.569                   |
| .8095    | .33   | 6.744                   | .7880    | 48.11  | 6.565                   |
| .8090    | .44   | 6.740                   | .7875    | .22    | 6.561                   |
| .8085    | .55   | 6.736                   | .7870    | .33    | 6.556                   |
| .8080    | .66   | 6.731                   | .7865    | .44    | 6.552                   |
| .8075    | .77   | 6.727                   | .7860    | .55    | 6.548                   |
| .8070    | 43.88 | 6.723                   | .7855    | .66    | 6.544                   |

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER  
THAN WATER

| GRAVITY  |       | Pounds<br>per<br>Gallon | GRAVITY  |       | Pounds<br>per<br>Gallon |
|----------|-------|-------------------------|----------|-------|-------------------------|
| Specific | Baume |                         | Specific | Baume |                         |
| .7850    | .77   | 6.540                   | .7635    | 53.85 | 6.361                   |
| .7845    | 48.88 | 6.536                   | .7630    | 54.   | 6.357                   |
| .7840    | 49.   | 6.532                   | .7625    | 54.11 | 6.352                   |
| .7835    | 49.11 | 6.527                   | .7620    | .22   | 6.348                   |
| .7830    | .22   | 6.523                   | .7615    | .33   | 6.344                   |
| .7825    | .33   | 6.519                   | .7610    | .44   | 6.340                   |
| .7820    | .44   | 6.515                   | .7605    | .55   | 6.336                   |
| .7815    | .55   | 6.511                   | .7600    | .66   | 6.332                   |
| .7810    | .66   | 6.507                   | .7595    | .77   | 6.327                   |
| .7805    | .77   | 6.502                   | .7590    | 54.88 | 6.323                   |
| .7800    | 49.88 | 6.498                   | .7585    | 55.   | 6.319                   |
| .7795    | 50.   | 6.494                   | .7580    | 55.12 | 6.315                   |
| .7790    | 50.11 | 6.490                   | .7575    | .24   | 6.311                   |
| .7785    | .22   | 6.486                   | .7570    | .36   | 6.307                   |
| .7780    | .33   | 6.482                   | .7565    | .48   | 6.302                   |
| .7775    | .44   | 6.477                   | .7560    | .60   | 6.298                   |
| .7770    | .55   | 6.473                   | .7555    | .72   | 6.294                   |
| .7765    | .66   | 6.469                   | .7550    | 55.85 | 6.290                   |
| .7760    | .77   | 6.465                   | .7545    | .56.  | 6.286                   |
| .7755    | 50.88 | 6.461                   | .7540    | 56.12 | 6.282                   |
| .7750    | 51.   | 6.457                   | .7535    | .24   | 6.277                   |
| .7745    | 51.12 | 6.452                   | .7530    | .36   | 6.273                   |
| .7740    | .24   | 6.448                   | .7525    | .48   | 6.269                   |
| .7735    | .36   | 6.444                   | .7520    | .60   | 6.265                   |
| .7730    | .48   | 6.440                   | .7515    | .72   | 6.261                   |
| .7725    | .60   | 6.436                   | .7510    | 56.85 | 6.257                   |
| .7720    | .72   | 6.432                   | .7505    | .57.  | 6.252                   |
| .7715    | 51.85 | 6.427                   | .7500    | 57.14 | 6.248                   |
| .7710    | 52.   | 6.423                   | .7495    | .28   | 6.244                   |
| .7705    | 52.12 | 6.419                   | .7490    | .42   | 6.240                   |
| .7700    | .24   | 6.415                   | .7485    | .56   | 6.236                   |
| .7695    | .36   | 6.411                   | .7480    | .70   | 6.232                   |
| .7690    | .48   | 6.407                   | .7475    | 57.84 | 6.227                   |
| .7685    | .60   | 6.402                   | .7470    | .58.  | 6.223                   |
| .7680    | .72   | 6.398                   | .7465    | 58.12 | 6.219                   |
| .7675    | 52.85 | 6.394                   | .7460    | .24   | 6.215                   |
| .7670    | 53.   | 6.390                   | .7455    | .36   | 6.211                   |
| .7665    | 53.12 | 6.386                   | .7450    | .48   | 6.207                   |
| .7660    | .24   | 6.382                   | .7445    | .60   | 6.202                   |
| .7655    | .36   | 6.377                   | .7440    | .72   | 6.198                   |
| .7650    | .48   | 6.373                   | .7435    | 58.85 | 6.194                   |
| .7645    | .60   | 6.369                   | .7430    | .59.  | 6.190                   |
| .7640    | .72   | 6.365                   | .7425    | 59.12 | 6.186                   |

## GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |        | Pounds per Gallon |
|----------|-------|-------------------|----------|--------|-------------------|
| Specific | Baume |                   | Specific | Baume  |                   |
| .7420    | .24   | 6.182             | .7205    | .65    | 6.002             |
| .7415    | .36   | 6.177             | .7200    | .65.14 | 5.998             |
| .7410    | .48   | 6.173             | .7195    | .28    | 5.994             |
| .7405    | .60   | 6.169             | .7190    | .42    | 5.990             |
| .7400    | .72   | 6.165             | .7185    | .56    | 5.986             |
| .7395    | 59.84 | 6.161             | .7180    | .70    | 5.982             |
| .7390    | 60.   | 6.157             | .7175    | .84    | 5.977             |
| .7385    | 60.14 | 6.153             | .7170    | 65.95  | 5.973             |
| .7380    | .28   | 6.148             | .7165    | .66    | 5.969             |
| .7375    | .42   | 6.144             | .7160    | 66.14  | 5.965             |
| .7370    | .56   | 6.140             | .7155    | .28    | 5.961             |
| .7365    | .70   | 6.136             | .7150    | .42    | 5.957             |
| .7360    | 60.84 | 6.132             | .7145    | .56    | 5.952             |
| .7355    | 61.   | 6.127             | .7140    | .70    | 5.948             |
| .7350    | 61.12 | 6.123             | .7135    | 66.85  | 5.944             |
| .7345    | .24   | 6.119             | .7130    | .67    | 5.940             |
| .7340    | .36   | 6.115             | .7125    | 67.14  | 5.936             |
| .7335    | .48   | 6.111             | .7120    | .28    | 5.932             |
| .7330    | .60   | 6.107             | .7115    | .42    | 5.928             |
| .7325    | .72   | 6.102             | .7110    | .56    | 5.923             |
| .7320    | 61.85 | 6.098             | .7105    | .70    | 5.919             |
| .7315    | 62.   | 6.094             | .7100    | 67.85  | 5.915             |
| .7310    | 62.14 | 6.090             | .7095    | .68    | 5.911             |
| .7305    | .28   | 6.086             | .7090    | 68.14  | 5.907             |
| .7300    | .42   | 6.082             | .7085    | .28    | 5.903             |
| .7295    | .56   | 6.077             | .7080    | .42    | 5.898             |
| .7290    | .70   | 6.073             | .7075    | .56    | 5.894             |
| .7285    | 62.85 | 6.069             | .7070    | .70    | 5.890             |
| .7280    | 63.   | 6.065             | .7065    | 68.85  | 5.886             |
| .7275    | 63.12 | 6.061             | .7060    | .69    | 5.882             |
| .7270    | .24   | 6.057             | .7055    | 69.14  | 5.878             |
| .7265    | .36   | 6.052             | .7050    | .28    | 5.873             |
| .7260    | .48   | 6.048             | .7045    | .42    | 5.869             |
| .7255    | .60   | 6.044             | .7040    | .56    | 5.865             |
| .7250    | .72   | 6.040             | .7035    | .70    | 5.861             |
| .7245    | 63.85 | 6.036             | .7030    | 69.85  | 5.857             |
| .7240    | 64.   | 6.032             | .7025    | .70    | 5.853             |
| .7235    | 64.14 | 6.027             | .7020    | 70.14  | 5.848             |
| .7230    | .28   | 6.023             | .7015    | .28    | 5.844             |
| .7225    | .42   | 6.019             | .7010    | .42    | 5.840             |
| .7220    | .56   | 6.015             | .7005    | .56    | 5.836             |
| .7215    | .70   | 6.011             | .7000    | .70    | 5.832             |
| .7210    | 64.85 | 6.007             | .6995    | 70.84  | 5.828             |

## GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |       | Pounds per Gallon |
|----------|-------|-------------------|----------|-------|-------------------|
| Specific | Baume |                   | Specific | Baume |                   |
| .6990    | 71.   | 5.823             | .6775    | .42   | 5.644             |
| .6985    | 71.14 | 5.819             | .6770    | .56   | 5.640             |
| .6980    | .28   | 5.815             | .6765    | .70   | 5.636             |
| .6975    | .42   | 5.811             | .6760    | 77.85 | 5.632             |
| .6970    | .56   | 5.807             | .6755    | 78.   | 5.628             |
| .6965    | .70   | 5.803             | .6750    | 78.14 | 5.623             |
| .6960    | 71.85 | 5.798             | .6745    | .28   | 5.619             |
| .6955    | 72.   | 5.794             | .6740    | .42   | 5.615             |
| .6950    | 72.14 | 5.790             | .6735    | .56   | 5.611             |
| .6945    | .28   | 5.786             | .6730    | .70   | 5.607             |
| .6940    | .42   | 5.782             | .6725    | 78.85 | 5.603             |
| .6935    | .56   | 5.778             | .6720    | 79.   | 5.598             |
| .6930    | .70   | 5.773             | .6715    | 79.16 | 5.594             |
| .6925    | 72.85 | 5.769             | .6710    | .32   | 5.590             |
| .6920    | 73.   | 5.765             | .6705    | .48   | 5.586             |
| .6915    | 73.16 | 5.761             | .6700    | .65   | 5.582             |
| .6910    | .32   | 5.757             | .6695    | 79.82 | 5.578             |
| .6905    | .48   | 5.753             | .6690    | 80.   | 5.573             |
| .6900    | .65   | 5.748             | .6685    | 80.14 | 5.569             |
| .6895    | 73.82 | 5.744             | .6680    | .28   | 5.565             |
| .6890    | 74.   | 5.740             | .6675    | .42   | 5.561             |
| .6885    | 74.14 | 5.736             | .6670    | .56   | 5.557             |
| .6880    | .28   | 5.732             | .6665    | .70   | 5.553             |
| .6875    | .42   | 5.728             | .6660    | 80.85 | 5.548             |
| .6870    | .56   | 5.723             | .6655    | 81.   | 5.544             |
| .6865    | .70   | 5.719             | .6650    | 81.14 | 5.540             |
| .6860    | 74.85 | 5.715             | .6645    | .28   | 5.536             |
| .6855    | 75.   | 5.711             | .6640    | .42   | 5.532             |
| .6850    | 75.14 | 5.707             | .6635    | .56   | 5.528             |
| .6845    | .28   | 5.703             | .6630    | .70   | 5.523             |
| .6840    | .42   | 5.698             | .6625    | 81.85 | 5.519             |
| .6835    | .56   | 5.694             | .6620    | 82.   | 5.515             |
| .6830    | .70   | 5.690             | .6615    | 82.14 | 5.511             |
| .6825    | 75.85 | 5.686             | .6610    | .28   | 5.507             |
| .6820    | 76.   | 5.682             | .6605    | .42   | 5.503             |
| .6815    | 76.16 | 5.678             | .6600    | .56   | 5.498             |
| .6810    | .32   | 5.673             | .6595    | .70   | 5.494             |
| .6805    | .48   | 5.669             | .6590    | 82.85 | 5.490             |
| .6800    | .65   | 5.655             | .6585    | 83.   | 5.486             |
| .6795    | 76.82 | 5.661             | .6580    | 83.12 | 5.482             |
| .6790    | 77.   | 5.657             | .6575    | .24   | 5.478             |
| .6785    | 77.14 | 5.653             | .6570    | .36   | 5.473             |
| .6780    | .28   | 5.648             | .6565    | .48   | 5.469             |

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS LIGHTER  
THAN WATER

| GRAVITY  |       | Pounds<br>per<br>Gallon | GRAVITY  |       | Pounds<br>per<br>Gallon |
|----------|-------|-------------------------|----------|-------|-------------------------|
| Specific | Baume |                         | Specific | Baume |                         |
| .6560    | .60   | 5.465                   | .6460    | .65   | 5.382                   |
| .6555    | .72   | 5.461                   | .6455    | 86.82 | 5.378                   |
| .6550    | 83.85 | 5.457                   | .6450    | 87.   | 5.373                   |
| .6545    | 84.   | 5.453                   | .6445    | 87.16 | 5.369                   |
| .6540    | 84.14 | 5.448                   | .6440    | .32   | 5.365                   |
| .6535    | .28   | 5.444                   | .6435    | .48   | 5.361                   |
| .6530    | .42   | 5.440                   | .6430    | .65   | 5.357                   |
| .6525    | .56   | 5.436                   | .6425    | 87.82 | 5.353                   |
| .6520    | .70   | 5.432                   | .6420    | 88.   | 5.349                   |
| .6515    | 84.85 | 5.428                   | .6415    | 88.16 | 5.344                   |
| .6510    | 85.   | 5.423                   | .6410    | .32   | 5.340                   |
| .6505    | 85.16 | 5.419                   | .6405    | .48   | 5.336                   |
| .6500    | .32   | 5.415                   | .6400    | .65   | 5.332                   |
| .6495    | .48   | 5.411                   | .6395    | 88.82 | 5.328                   |
| .6490    | .65   | 5.407                   | .6390    | 89.   | 5.324                   |
| .6485    | 85.82 | 5.403                   | .6385    | 89.20 | 5.319                   |
| .6480    | 86.   | 5.398                   | .6380    | .40   | 5.315                   |
| .6475    | 86.16 | 5.394                   | .6375    | .60   | 5.311                   |
| .6470    | .32   | 5.390                   | .6370    | 89.80 | 5.307                   |
| .6465    | .48   | 5.386                   | .6365    | 90.   | 5.303                   |

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS HEAVIER  
THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |       | Pounds per Gallon |
|----------|-------|-------------------|----------|-------|-------------------|
| Specific | Baume |                   | Specific | Baume |                   |
| 1.0000   | 0.    | 8.331             | 1.1328   | 17.   | 9.436             |
| 1.0050   | 0.72  | 8.373             | 1.1350   | 17.25 | 9.457             |
| 1.0069   | 1.    | 8.388             | 1.1400   | 17.81 | 9.497             |
| 1.0100   | 1.44  | 8.414             | 1.1417   | 18.   | 9.512             |
| 1.0140   | 2.    | 8.448             | 1.1450   | 18.36 | 9.539             |
| 1.0150   | 2.14  | 8.456             | 1.1500   | 18.91 | 9.581             |
| 1.0200   | 2.84  | 8.498             | 1.1508   | 19.   | 9.587             |
| 1.0211   | 3.    | 8.507             | 1.1550   | 19.46 | 9.611             |
| 1.0250   | 3.54  | 8.539             | 1.1600   | 20.   | 9.664             |
| 1.0284   | 4.    | 8.568             | 1.1650   | 20.54 | 9.706             |
| 1.0300   | 4.22  | 8.581             | 1.1694   | 21.   | 9.744             |
| 1.0350   | 4.90  | 8.623             | 1.1700   | 21.07 | 9.747             |
| 1.0357   | 5.    | 8.628             | 1.1750   | 21.60 | 9.789             |
| 1.0400   | 5.58  | 8.664             | 1.1789   | 22.   | 9.821             |
| 1.0432   | 6.    | 8.691             | 1.1800   | 22.12 | 9.831             |
| 1.0450   | 6.24  | 8.706             | 1.1850   | 22.64 | 9.872             |
| 1.0500   | 6.90  | 8.748             | 1.1885   | 23.   | 9.901             |
| 1.0507   | 7.    | 8.753             | 1.1900   | 23.15 | 9.913             |
| 1.0550   | 7.56  | 8.789             | 1.1950   | 23.66 | 9.956             |
| 1.0584   | 8.    | 8.818             | 1.1983   | 24.   | 9.930             |
| 1.0600   | 8.21  | 8.841             | 1.2000   | 24.17 | 9.997             |
| 1.0650   | 8.25  | 8.873             | 1.2050   | 24.67 | 10.039            |
| 1.0662   | 9.    | 8.883             | 1.2083   | 25.   | 10.066            |
| 1.0700   | 9.49  | 8.914             | 1.2100   | 25.17 | 10.080            |
| 1.0741   | 10.   | 8.948             | 1.2150   | 25.66 | 10.122            |
| 1.0750   | 10.12 | 8.956             | 1.2185   | 26.   | 10.141            |
| 1.0800   | 10.74 | 8.997             | 1.2200   | 26.15 | 10.164            |
| 1.0821   | 11.   | 9.015             | 1.2250   | 26.63 | 10.205            |
| 1.0850   | 11.36 | 9.039             | 1.2288   | 27.   | 10.237            |
| 1.0900   | 11.97 | 9.081             | 1.2300   | 27.11 | 10.247            |
| 1.0902   | 12.   | 9.082             | 1.2350   | 27.59 | 10.289            |
| 1.0950   | 12.58 | 9.123             | 1.2393   | 28.   | 10.325            |
| 1.0985   | 13.   | 9.151             | 1.2400   | 28.06 | 10.330            |
| 1.1000   | 13.18 | 9.164             | 1.2450   | 28.53 | 10.372            |
| 1.1050   | 13.78 | 9.206             | 1.2500   | 29.   | 10.414            |
| 1.1069   | 14.   | 9.221             | 1.2550   | 29.46 | 10.455            |
| 1.1100   | 14.37 | 9.247             | 1.2600   | 29.92 | 10.497            |
| 1.1150   | 14.96 | 9.289             | 1.2609   | 30.   | 10.505            |
| 1.1154   | 15.   | 9.292             | 1.2650   | 30.38 | 10.539            |
| 1.1200   | 15.54 | 9.331             | 1.2700   | 30.83 | 10.580            |
| 1.1240   | 16.   | 9.364             | 1.2719   | 31.   | 10.596            |
| 1.1250   | 16.11 | 9.372             | 1.2750   | 31.27 | 10.622            |
| 1.1300   | 16.68 | 9.414             | 1.2800   | 31.72 | 10.664            |

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS HEAVIER  
THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |       | Pounds per Gallon |
|----------|-------|-------------------|----------|-------|-------------------|
| Specific | Baume |                   | Specific | Baume |                   |
| 1.2832   | 32.   | 10.690            | 1.4400   | 44.30 | 11.997            |
| 1.2850   | 32.16 | 10.712            | 1.4450   | 44.65 | 12.038            |
| 1.2900   | 32.60 | 10.745            | 1.4500   | 45.   | 12.080            |
| 1.2946   | 33.   | 10.785            | 1.4550   | 45.24 | 12.122            |
| 1.2950   | 33.03 | 10.789            | 1.4600   | 45.68 | 12.163            |
| 1.3000   | 33.46 | 10.830            | 1.4646   | 46.   | 12.202            |
| 1.3050   | 33.89 | 10.872            | 1.4650   | 46.02 | 12.205            |
| 1.3063   | 34.   | 10.883            | 1.4700   | 46.36 | 12.247            |
| 1.3100   | 34.31 | 10.914            | 1.4750   | 46.69 | 12.289            |
| 1.3150   | 34.73 | 10.955            | 1.4796   | 47.   | 12.327            |
| 1.3182   | 35.   | 10.982            | 1.4800   | 47.03 | 12.330            |
| 1.3200   | 35.15 | 10.997            | 1.4850   | 47.36 | 12.373            |
| 1.3250   | 35.57 | 11.039            | 1.4900   | 47.68 | 12.413            |
| 1.3300   | 35.98 | 11.071            | 1.4948   | 48.   | 12.453            |
| 1.3303   | 36.   | 11.083            | 1.4950   | 48.01 | 12.455            |
| 1.3350   | 36.38 | 11.121            | 1.5000   | 48.33 | 12.497            |
| 1.3400   | 36.79 | 11.164            | 1.5050   | 48.65 | 12.538            |
| 1.3426   | 37.   | 11.185            | 1.5100   | 48.97 | 12.580            |
| 1.3450   | 37.19 | 11.205            | 1.5104   | 49.   | 12.583            |
| 1.3500   | 37.59 | 11.247            | 1.5150   | 49.29 | 12.621            |
| 1.3551   | 38.   | 11.289            | 1.5200   | 49.61 | 12.663            |
| 1.3600   | 38.38 | 11.330            | 1.5250   | 49.92 | 12.705            |
| 1.3650   | 38.77 | 11.371            | 1.5263   | 50.   | 12.716            |
| 1.3679   | 39.   | 11.396            | 1.5300   | 50.23 | 12.746            |
| 1.3700   | 39.16 | 11.413            | 1.5350   | 50.54 | 12.788            |
| 1.3750   | 39.55 | 11.455            | 1.5400   | 50.84 | 12.830            |
| 1.3800   | 39.98 | 11.497            | 1.5426   | 51.   | 12.851            |
| 1.3810   | 40.   | 11.505            | 1.5450   | 51.15 | 12.871            |
| 1.3850   | 40.39 | 11.538            | 1.5500   | 51.45 | 12.913            |
| 1.3900   | 40.68 | 11.580            | 1.5550   | 51.75 | 12.955            |
| 1.3942   | 41.   | 11.621            | 1.5591   | 52.   | 12.999            |
| 1.3950   | 41.06 | 11.622            | 1.5600   | 52.05 | 12.996            |
| 1.4000   | 41.48 | 11.663            | 1.5650   | 52.35 | 13.038            |
| 1.4050   | 41.80 | 11.705            | 1.5700   | 52.64 | 13.080            |
| 1.4078   | 42.   | 11.728            | 1.5750   | 52.94 | 13.121            |
| 1.4100   | 42.16 | 11.747            | 1.5761   | 53.   | 13.130            |
| 1.4150   | 42.53 | 11.788            | 1.5800   | 53.23 | 13.163            |
| 1.4200   | 42.89 | 11.830            | 1.5850   | 53.52 | 13.205            |
| 1.4216   | 43.   | 11.843            | 1.5900   | 53.81 | 13.246            |
| 1.4250   | 43.24 | 11.872            | 1.5934   | 54.   | 13.275            |
| 1.4300   | 43.60 | 11.913            | 1.5950   | 54.09 | 13.288            |
| 1.4350   | 43.95 | 11.955            | 1.6000   | 54.38 | 13.330            |
| 1.4356   | 44.   | 11.960            | 1.6050   | 54.66 | 13.371            |

## M I S C E L L A N E O U S

GRAVITIES AND WEIGHTS OF LIQUIDS HEAVIER  
THAN WATER

| GRAVITY  |       | Pounds per Gallon | GRAVITY  |       | Pounds per Gallon |
|----------|-------|-------------------|----------|-------|-------------------|
| Specific | Baume |                   | Specific | Baume |                   |
| 1.6100   | 54.94 | 13.413            | 1.7700   | 63.08 | 14.746            |
| 1.6111   | 55.   | 13.422            | 1.7750   | 63.31 | 14.788            |
| 1.6150   | 55.22 | 13.456            | 1.7800   | 63.54 | 14.829            |
| 1.6200   | 55.49 | 13.496            | 1.7850   | 63.77 | 14.871            |
| 1.6250   | 55.77 | 13.538            | 1.7901   | 64.   | 14.908            |
| 1.6292   | 56.   | 13.573            | 1.7950   | 64.22 | 14.954            |
| 1.6300   | 56.04 | 13.580            | 1.8000   | 64.45 | 14.996            |
| 1.6350   | 56.31 | 13.621            | 1.8050   | 64.67 | 15.037            |
| 1.6400   | 56.59 | 13.663            | 1.8100   | 64.89 | 15.079            |
| 1.6450   | 56.85 | 13.704            | 1.8125   | 65.   | 15.100            |
| 1.6477   | 57.   | 13.726            | 1.8150   | 65.11 | 15.121            |
| 1.6500   | 57.12 | 13.746            | 1.8200   | 65.33 | 15.162            |
| 1.6550   | 57.38 | 13.788            | 1.8250   | 65.55 | 15.204            |
| 1.6600   | 57.65 | 13.829            | 1.8300   | 65.77 | 15.246            |
| 1.6650   | 57.91 | 13.871            | 1.8350   | 65.98 | 15.287            |
| 1.6667   | 58.   | 13.885            | 1.8354   | 66.   | 15.291            |
| 1.6700   | 58.17 | 13.913            | 1.8400   | 66.20 | 15.329            |
| 1.6750   | 58.43 | 13.954            | 1.8450   | 66.41 | 15.371            |
| 1.6800   | 58.69 | 13.996            | 1.8500   | 66.62 | 15.412            |
| 1.6850   | 58.95 | 14.038            | 1.8550   | 66.83 | 15.454            |
| 1.6860   | 59.   | 14.046            | 1.8589   | 67.   | 15.486            |
| 1.6900   | 59.20 | 14.079            | 1.8600   | 67.04 | 15.496            |
| 1.6950   | 59.45 | 14.121            | 1.8650   | 67.25 | 15.537            |
| 1.7000   | 59.71 | 14.163            | 1.8700   | 67.46 | 15.579            |
| 1.7050   | 59.96 | 14.204            | 1.8750   | 67.67 | 15.621            |
| 1.7059   | 60.   | 14.212            | 1.8800   | 67.87 | 15.662            |
| 1.7100   | 60.20 | 14.246            | 1.8831   | 68.   | 15.688            |
| 1.7150   | 60.45 | 14.288            | 1.8850   | 68.08 | 15.704            |
| 1.7200   | 60.70 | 14.329            | 1.8900   | 68.28 | 15.746            |
| 1.7250   | 60.94 | 14.371            | 1.8950   | 68.48 | 15.787            |
| 1.7262   | 61.   | 14.381            | 1.9000   | 68.68 | 15.829            |
| 1.7300   | 61.18 | 14.413            | 1.9050   | 68.88 | 15.871            |
| 1.7350   | 61.43 | 14.454            | 1.9079   | 69.   | 15.885            |
| 1.7400   | 61.67 | 14.496            | 1.9100   | 69.08 | 15.912            |
| 1.7450   | 61.91 | 14.538            | 1.9150   | 69.28 | 15.954            |
| 1.7470   | 62.   | 14.554            | 1.9200   | 69.48 | 15.996            |
| 1.7500   | 62.14 | 14.569            | 1.9250   | 69.68 | 16.037            |
| 1.7550   | 62.38 | 14.621            | 1.9300   | 69.87 | 16.079            |
| 1.7600   | 62.61 | 14.663            | 1.9333   | 70.   | 16.106            |
| 1.7650   | 62.85 | 14.704            |          |       |                   |
| 1.7683   | 63.   | 14.714            |          |       |                   |

Centigrade and Fahrenheit Scales — Thermometry is the art of measuring temperatures. The term "thermometer" is derived from the Greek words "therme" (heat) and "metron" (measure), meaning, therefore, "heat measure." This interpretation, however, should not be employed literally, for thermometers do not measure heat but, rather, the degree or intensity of heat.

In 1714 Gabriel Daniel Fahrenheit (1676-1736) conceived the idea of using mercury (quicksilver) as the indicating liquid in thermometers. He constructed such a thermometer and proceeded to graduate it, calling "body temperature" 24, and the freezing and boiling points of water 8 and 53 respectively. Fahrenheit considered the unit of temperature too large. Retaining his original zero as the datum point he divided each division of the scale into 4; accordingly the freezing point of water became 32 degrees and the boiling point 212 degrees.

The Centigrade or Celsius thermometric scale was originated by Anders Celsius (1701-1744) in 1741. He called the point to which the mercury fell when immersed in melting ice, zero, and the boiling point of water 100, and divided the interval between these points into 100 equal divisions. The Centigrade scale is universally used by scientists.

Comparing the Fahrenheit and Centigrade scales we note that 180 fahr. degrees equals 100 cent. degrees, or 1 cent. degree equals nine-fifths degrees. This relation exists over the entire scale. To convert Centigrade into Fahrenheit degrees, however, we cannot simply multiply the former by nine fifths, for we note that the zero or starting points of the scales are not coincident; consequently, a correction of 32 (the difference between the two scales at the melting point of ice) must be made.

The following formulae are used to convert one temperature reading into the other and are the bases of the table on page 234.

$$\text{Cent. degrees} = (\text{fahr. degrees} - 32) \times \frac{5}{9}$$

$$\text{Fahr. degrees} = (\text{cent. degrees} \times \frac{9}{5}) + 32$$

## M I S C E L L A N E O U S

TABLE FOR CONVERTING CENTIGRADE TO FAHRENHEIT

| deg. cent. | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | deg. cent. | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| -40        | -44 | -45 | -45 | -47 | -49 | -51 | -53 | -54 | -56 | -56 | 230        | 446 | 448 | 450 | 451 | 453 | 455 | 457 | 459 | 460 | 462 |
| -30        | -32 | -24 | -26 | -27 | -29 | -31 | -33 | -35 | -36 | -38 | 240        | 464 | 466 | 468 | 469 | 471 | 473 | 475 | 477 | 478 | 480 |
| -20        | -14 | -6  | 8   | -9  | -11 | -13 | -15 | -17 | -18 | -20 | 250        | 482 | 484 | 486 | 487 | 489 | 491 | 493 | 495 | 496 | 498 |
| -10        | 14  | 12  | 10  | 9   | 7   | 5   | 3   | -1  | 0   | -2  | 260        | 500 | 502 | 504 | 505 | 507 | 509 | 511 | 513 | 514 | 516 |
| 0          | 32  | 30  | 28  | 27  | 25  | 23  | 21  | 19  | 18  | 16  | 270        | 518 | 520 | 522 | 523 | 525 | 527 | 529 | 531 | 532 | 534 |
| 10         | 30  | 32  | 34  | 36  | 37  | 39  | 41  | 43  | 45  | 48  | 280        | 536 | 538 | 540 | 541 | 543 | 545 | 547 | 549 | 550 | 552 |
| 20         | 68  | 70  | 72  | 73  | 75  | 77  | 78  | 81  | 82  | 84  | 300        | 554 | 556 | 558 | 559 | 561 | 563 | 565 | 567 | 568 | 570 |
| 30         | 86  | 88  | 90  | 91  | 93  | 95  | 97  | 99  | 100 | 102 | 310        | 590 | 592 | 594 | 595 | 597 | 599 | 601 | 603 | 604 | 606 |
| 40         | 104 | 106 | 108 | 109 | 111 | 113 | 115 | 117 | 118 | 120 | 320        | 608 | 610 | 612 | 613 | 615 | 617 | 619 | 621 | 622 | 624 |
| 50         | 122 | 124 | 126 | 127 | 129 | 131 | 133 | 135 | 136 | 138 | 330        | 626 | 628 | 630 | 631 | 633 | 635 | 637 | 639 | 640 | 642 |
| 60         | 140 | 142 | 143 | 145 | 147 | 149 | 151 | 153 | 154 | 156 | 340        | 644 | 646 | 648 | 649 | 651 | 653 | 655 | 657 | 658 | 660 |
| 70         | 158 | 160 | 162 | 163 | 165 | 167 | 169 | 171 | 172 | 174 | 350        | 662 | 664 | 666 | 667 | 669 | 671 | 673 | 675 | 676 | 678 |
| 80         | 176 | 178 | 180 | 181 | 183 | 185 | 187 | 189 | 190 | 192 | 360        | 680 | 682 | 684 | 685 | 687 | 689 | 691 | 693 | 694 | 696 |
| 90         | 194 | 196 | 198 | 199 | 201 | 203 | 205 | 207 | 208 | 210 | 370        | 698 | 700 | 702 | 703 | 705 | 707 | 709 | 711 | 712 | 714 |
| 100        | 212 | 214 | 216 | 217 | 219 | 221 | 223 | 225 | 226 | 228 | 380        | 716 | 718 | 720 | 721 | 723 | 725 | 727 | 729 | 730 | 732 |
| 110        | 230 | 232 | 234 | 237 | 239 | 241 | 243 | 244 | 246 | 246 | 390        | 734 | 736 | 738 | 739 | 741 | 743 | 745 | 747 | 748 | 750 |
| 120        | 248 | 250 | 252 | 253 | 255 | 257 | 259 | 261 | 262 | 264 | 400        | 752 | 754 | 756 | 757 | 759 | 761 | 763 | 765 | 766 | 768 |
| 130        | 266 | 268 | 270 | 271 | 273 | 275 | 277 | 279 | 280 | 282 | 410        | 770 | 772 | 774 | 775 | 777 | 779 | 781 | 783 | 784 | 786 |
| 140        | 284 | 286 | 288 | 289 | 291 | 293 | 295 | 297 | 298 | 300 | 420        | 788 | 790 | 792 | 793 | 795 | 797 | 799 | 801 | 802 | 804 |
| 150        | 302 | 304 | 306 | 307 | 309 | 311 | 313 | 315 | 316 | 318 | 430        | 806 | 808 | 810 | 811 | 813 | 815 | 817 | 819 | 820 | 822 |
| 160        | 320 | 322 | 324 | 325 | 327 | 329 | 331 | 333 | 334 | 336 | 440        | 824 | 826 | 828 | 829 | 831 | 833 | 835 | 837 | 838 | 840 |
| 170        | 338 | 340 | 342 | 343 | 345 | 347 | 349 | 351 | 352 | 354 | 450        | 842 | 844 | 846 | 847 | 849 | 851 | 853 | 855 | 856 | 858 |
| 180        | 356 | 358 | 360 | 361 | 363 | 365 | 367 | 369 | 370 | 372 | 460        | 860 | 862 | 864 | 865 | 867 | 869 | 871 | 873 | 874 | 876 |
| 190        | 374 | 376 | 378 | 379 | 381 | 383 | 385 | 387 | 388 | 390 | 470        | 878 | 880 | 882 | 883 | 885 | 887 | 889 | 891 | 892 | 894 |
| 200        | 392 | 394 | 396 | 397 | 399 | 401 | 403 | 405 | 406 | 408 | 480        | 896 | 898 | 900 | 901 | 903 | 905 | 907 | 910 | 912 | 914 |
| 210        | 410 | 412 | 414 | 415 | 417 | 419 | 421 | 423 | 424 | 426 | 490        | 914 | 916 | 918 | 919 | 921 | 923 | 925 | 927 | 928 | 930 |
| 220        | 428 | 430 | 432 | 433 | 435 | 437 | 439 | 441 | 442 | 444 | 500        | 931 | 933 | 935 | 937 | 939 | 941 | 943 | 945 | 946 | 948 |

## M I S C E L L A N E O U S

---

### TANK MEASUREMENTS \*

---

THESE TABLES ARE INTENDED TO ASSIST IN COMPUTING CAPACITIES OF CIRCULAR TANKS, VERTICAL AND HORIZONTAL.

---

THE FOLLOWING FORMULAS ARE TO BE USED FOR COMPUTING CAPACITIES OF TANKS OF BOTH TYPES.

---

D = Diameter.

C = Circumference.

U. S. gal. = United States gal. of 231 cubic inches.

IMP. gal. = Imperial gal. of 277.274 cubic inches.

D in inches squared  $\times 0.0034$  = U. S. gal. per inch.

D in inches squared  $\times 0.00283257$  = Imp. gal. per inch.

D in feet squared  $\times 0.011656$  = 42 U. S. gal. bbls. per inch.

C in feet squared  $\div 20.1586$  = U. S. gal. per inch.

C in feet squared  $\times 0.04960677$  = U. S. gal. per inch.

C in feet squared  $\times 0.00118111$  = 42 U. S. gal. bbls. per inch.

C in feet squared  $\times 0.00099213$  = 50 U. S. gal. bbls. per inch.

C in feet squared  $\times 0.041327896$  = Imp. gal. per inch.

Imp. gal.  $\div 1.20032$  = U. S. gal.

U. S. gal.  $\times 0.83311$  = Imp. gal.

C of Circle = D  $\times 3.14159$ .

D of Circle = C  $\times 0.3183$ .

Area of Circle = D<sup>2</sup>  $\times 0.7854$ , also C<sup>2</sup>  $\times 0.07958$ .

D of true sphere in inches cubed  $\times 0.0022666$  = U. S. gal. in sphere.

U. S. gal. at any inch in true sphere (=3D—2N) N<sup>2</sup>  $\times 0.0022666$ , in which N = height in inches, the diameter being also in inches.

Where N is more than  $\frac{1}{2}$  D, compute capacity of sphere and deduct capacity of empty section, in which case the N in the above formula becomes inches of space.

To find internal circumference of tank, deduct from external circumference in feet 0.033 of a foot for each one sixteenth of an inch thickness of iron and use internal circumference in making table.

\*Courtesy of the Phoenix Refining Co.

## M I S C E L L A N E O U S

---

### THE MANNER OF USING TABLES FOR VERTICAL TANKS WILL BE READILY UNDERSTOOD FROM THE FOLLOWING EXAMPLES.

What is the capacity per inch of a tank 92 inches in diameter?

Opposite 92 in column "Diameter in Inches" read 28.778 United States gal.; 23.975 Imperial gal.; 0.685 bbls. of 42 gal., etc.

What is capacity per inch of a tank 92.5 inches in diameter?

Opposite 92, as above, read ..... 28.778 U. S. gal.  
Difference between 92 and 93 is 0.629. One-half... 0.8145 U. S. gal.  
92.5 = 29.0925

The tables for each foot in circumference are used in the same manner.

Example: What is the capacity per inch of a tank 210.40 feet in internal circumference?

Opposite 210 in column "Circumference in feet"

read ..... 2187.658 U. S. gal.  
Difference between 210 and 211 is 20.885, which  
multiplied by 0.40 gives ..... 8.354 U. S. gal.  
to be added, making ..... 2196.012 U. S. gal.  
Capacity at 210.40 Feet.

The following example illustrates the method of measurement of horizontal tanks:

Diameter = 50 inches.

To find U. S. gal. in segment A C E.

Height of segment 11 inches.

$\frac{14}{25}$  = Cosine angle A B D.

$\frac{2 \text{ Angle A B D}}{360} \times \text{area of circle area sector A B C E.}$

$14 \times 25 \times \text{sine angle A B D} = \text{area triangle A B C.}$

Area sector A B C E - area triangle A B C = area segment A C E in inches.

$\frac{\text{Area segment A C E in inches}}{231} \times \text{Length of tank in inches} = \text{U. S. gal.}$

when tank has 11 inches in.

The method of use of tables for horizontal tanks is to be found immediately preceding the tables for horizontal tanks on page 245.

M I S C E L L A N E O U S

---

VERTICAL TANKS

| GALLONS PER INCH |        | DIAMETER<br>IN INCHES | BARRELS PER INCH |              |
|------------------|--------|-----------------------|------------------|--------------|
| Imperial         | U. S.  |                       | 42 U.S. gal.     | 50 U.S. gal. |
| 3.671            | 4.406  | 36                    | .105             | .088         |
| 3.878            | 4.655  | 37                    | .111             | .093         |
| 4.090            | 4.910  | 38                    | .117             | .098         |
| 4.308            | 5.171  | 39                    | .123             | .103         |
| 4.532            | 5.440  | 40                    | .130             | .109         |
| 4.762            | 5.715  | 41                    | .136             | .114         |
| 4.997            | 5.998  | 42                    | .143             | .120         |
| 5.237            | 6.287  | 43                    | .150             | .126         |
| 5.484            | 6.582  | 44                    | .157             | .132         |
| 5.736            | 6.885  | 45                    | .164             | .138         |
| 5.994            | 7.194  | 46                    | .171             | .144         |
| 6.257            | 7.511  | 47                    | .179             | .150         |
| 6.526            | 7.834  | 48                    | .187             | .157         |
| 6.801            | 8.163  | 49                    | .194             | .163         |
| 7.081            | 8.500  | 50                    | .202             | .170         |
| 7.368            | 8.843  | 51                    | .211             | .177         |
| 7.659            | 9.194  | 52                    | .219             | .184         |
| 7.957            | 9.551  | 53                    | .227             | .191         |
| 8.259            | 9.914  | 54                    | .236             | .198         |
| 8.569            | 10.285 | 55                    | .245             | .206         |
| 8.883            | 10.662 | 56                    | .254             | .213         |
| 9.203            | 11.047 | 57                    | .263             | .221         |
| 9.529            | 11.438 | 58                    | .272             | .229         |
| 9.860            | 11.835 | 59                    | .282             | .237         |
| 10.197           | 12.240 | 60                    | .291             | .245         |
| 10.540           | 12.651 | 61                    | .301             | .253         |
| 10.888           | 13.070 | 62                    | .311             | .261         |
| 11.242           | 13.495 | 63                    | .321             | .270         |
| 11.602           | 13.926 | 64                    | .332             | .279         |
| 11.968           | 14.365 | 65                    | .342             | .287         |
| 12.339           | 14.810 | 66                    | .353             | .296         |
| 12.715           | 15.263 | 67                    | .363             | .305         |
| 13.098           | 15.722 | 68                    | .374             | .314         |
| 13.486           | 16.187 | 69                    | .385             | .324         |
| 13.880           | 16.660 | 70                    | .397             | .333         |
| 14.279           | 17.139 | 71                    | .408             | .343         |
| 14.684           | 17.626 | 72                    | .420             | .353         |
| 15.094           | 18.119 | 73                    | .431             | .362         |
| 15.511           | 18.618 | 74                    | .443             | .372         |
| 15.933           | 19.125 | 75                    | .455             | .383         |
| 16.361           | 19.638 | 76                    | .468             | .393         |
| 16.794           | 20.159 | 77                    | .480             | .403         |
| 17.233           | 20.686 | 78                    | .493             | .414         |
| 17.678           | 21.219 | 79                    | .505             | .424         |
| 18.128           | 21.760 | 80                    | .518             | .435         |

## VERTICAL TANKS

| GALLONS PER INCH |        | DIAMETER<br>IN INCHES | BARRELS PER INCH |              |
|------------------|--------|-----------------------|------------------|--------------|
| Imperial         | U. S.  |                       | 42 U.S. gal.     | 50 U.S. gal. |
| 18.584           | 22.307 | 81                    | .531             | .446         |
| 19.046           | 22.862 | 82                    | .544             | .457         |
| 19.514           | 23.423 | 83                    | .558             | .468         |
| 19.986           | 23.990 | 84                    | .571             | .480         |
| 20.465           | 24.565 | 85                    | .585             | .491         |
| 20.950           | 25.146 | 86                    | .599             | .503         |
| 21.440           | 25.735 | 87                    | .613             | .515         |
| 21.935           | 26.330 | 88                    | .627             | .526         |
| 22.437           | 26.931 | 89                    | .641             | .539         |
| 22.944           | 27.540 | 90                    | .656             | .551         |
| 23.457           | 28.155 | 91                    | .670             | .563         |
| 23.975           | 28.778 | 92                    | .685             | .575         |
| 24.499           | 29.407 | 93                    | .700             | .588         |
| 25.029           | 30.042 | 94                    | .715             | .601         |
| 25.564           | 30.685 | 95                    | .731             | .614         |
| 26.105           | 31.334 | 96                    | .746             | .627         |
| 26.652           | 31.991 | 97                    | .762             | .640         |
| 27.204           | 32.654 | 98                    | .777             | .653         |
| 27.762           | 33.324 | 99                    | .793             | .666         |
| 28.326           | 34.000 | 100                   | .810             | .680         |
| 28.895           | 34.683 | 101                   | .826             | .694         |
| 29.470           | 35.374 | 102                   | .842             | .707         |
| 30.051           | 36.071 | 103                   | .859             | .721         |
| 30.637           | 36.774 | 104                   | .876             | .735         |
| 31.229           | 37.485 | 105                   | .892             | .750         |
| 31.827           | 38.202 | 106                   | .910             | .764         |
| 32.430           | 38.927 | 107                   | .927             | .778         |
| 33.039           | 39.658 | 108                   | .944             | .793         |
| 33.654           | 40.395 | 109                   | .962             | .808         |
| 34.274           | 41.140 | 110                   | .980             | .823         |
| 34.900           | 41.891 | 111                   | .997             | .838         |
| 35.532           | 42.645 | 112                   | 1.015            | .853         |
| 36.169           | 43.415 | 113                   | 1.034            | .868         |
| 36.812           | 44.186 | 114                   | 1.052            | .884         |
| 37.461           | 44.965 | 115                   | 1.071            | .899         |
| 38.115           | 45.750 | 116                   | 1.089            | .915         |
| 38.775           | 46.543 | 117                   | 1.108            | .931         |
| 39.441           | 47.342 | 118                   | 1.127            | .947         |
| 40.112           | 48.147 | 119                   | 1.146            | .963         |
| 40.789           | 48.960 | 120                   | 1.166            | .979         |
| 41.472           | 49.779 | 121                   | 1.185            | .995         |
| 42.160           | 50.606 | 122                   | 1.205            | 1.012        |
| 42.854           | 51.439 | 123                   | 1.225            | 1.029        |
| 43.554           | 52.278 | 124                   | 1.244            | 1.045        |
| 44.259           | 53.125 | 125                   | 1.265            | 1.062        |

## M I S C E L L A N E O U S

## VERTICAL TANKS

| GALLONS PER INCH |        | DIAMETER<br>IN INCHES | BARRELS PER INCH |              |
|------------------|--------|-----------------------|------------------|--------------|
| Imperial         | U. S.  |                       | 42 U.S. gal.     | 50 U.S. gal. |
| 44.970           | 53.978 | 126                   | 1.285            | 1.079        |
| 45.687           | 54.839 | 127                   | 1.306            | 1.097        |
| 46.409           | 55.706 | 128                   | 1.326            | 1.114        |
| 47.137           | 56.579 | 129                   | 1.347            | 1.131        |
| 47.870           | 57.460 | 130                   | 1.368            | 1.149        |
| 48.610           | 58.347 | 131                   | 1.389            | 1.167        |
| 49.355           | 59.242 | 132                   | 1.411            | 1.185        |
| 50.105           | 60.143 | 133                   | 1.432            | 1.203        |
| 50.862           | 61.050 | 134                   | 1.454            | 1.221        |
| 51.624           | 61.965 | 135                   | 1.475            | 1.239        |
| 52.391           | 62.886 | 136                   | 1.497            | 1.258        |
| 53.165           | 63.815 | 137                   | 1.520            | 1.276        |
| 53.943           | 64.750 | 138                   | 1.542            | 1.295        |
| 54.728           | 65.691 | 139                   | 1.564            | 1.314        |
| 55.518           | 66.640 | 140                   | 1.587            | 1.333        |
| 56.314           | 67.595 | 141                   | 1.609            | 1.352        |
| 57.116           | 68.558 | 142                   | 1.632            | 1.371        |
| 57.923           | 69.527 | 143                   | 1.656            | 1.390        |
| 58.736           | 70.502 | 144                   | 1.679            | 1.410        |
| 59.555           | 71.485 | 145                   | 1.702            | 1.430        |
| 60.379           | 72.474 | 146                   | 1.726            | 1.449        |
| 61.209           | 73.471 | 147                   | 1.749            | 1.469        |
| 62.045           | 74.474 | 148                   | 1.773            | 1.489        |
| 62.886           | 75.483 | 149                   | 1.797            | 1.510        |
| 63.733           | 76.500 | 150                   | 1.822            | 1.530        |
| 64.585           | 77.523 | 151                   | 1.846            | 1.550        |
| 65.444           | 78.554 | 152                   | 1.870            | 1.571        |
| 66.308           | 79.591 | 153                   | 1.895            | 1.592        |
| 67.177           | 80.634 | 154                   | 1.920            | 1.613        |
| 68.052           | 81.685 | 155                   | 1.945            | 1.634        |
| 68.933           | 82.742 | 156                   | 1.970            | 1.655        |
| 69.820           | 83.807 | 157                   | 1.995            | 1.676        |
| 70.712           | 84.878 | 158                   | 2.021            | 1.697        |
| 71.610           | 85.955 | 159                   | 2.047            | 1.719        |
| 72.514           | 87.040 | 160                   | 2.072            | 1.741        |
| 73.423           | 88.131 | 161                   | 2.098            | 1.763        |
| 74.338           | 89.230 | 162                   | 2.124            | 1.784        |
| 75.259           | 90.335 | 163                   | 2.151            | 1.807        |
| 76.185           | 91.446 | 164                   | 2.177            | 1.829        |
| 77.117           | 92.565 | 165                   | 2.204            | 1.851        |
| 78.054           | 93.690 | 166                   | 2.231            | 1.874        |
| 78.998           | 94.823 | 167                   | 2.258            | 1.896        |
| 79.946           | 95.962 | 168                   | 2.285            | 1.919        |
| 80.901           | 97.107 | 169                   | 2.312            | 1.942        |
| 81.861           | 98.260 | 170                   | 2.340            | 1.965        |

M I S C E L L A N E O U S

---

VERTICAL TANKS

| GALLONS PER INCH |         | DIAMETER<br>IN INCHES | BARRELS PER INCH |              |
|------------------|---------|-----------------------|------------------|--------------|
| Imperial         | U. S.   |                       | 42 U.S. gal.     | 50 U.S. gal. |
| 82.827           | 99.419  | 171                   | 2.367            | 1.988        |
| 83.799           | 100.586 | 172                   | 2.395            | 2.012        |
| 84.776           | 101.759 | 173                   | 2.423            | 2.035        |
| 85.759           | 102.939 | 174                   | 2.451            | 2.059        |
| 86.747           | 104.125 | 175                   | 2.479            | 2.082        |
| 87.452           | 105.318 | 176                   | 2.508            | 2.106        |
| 88.742           | 106.519 | 177                   | 2.536            | 2.130        |
| 89.747           | 107.726 | 178                   | 2.565            | 2.154        |
| 90.758           | 108.939 | 179                   | 2.594            | 2.179        |
| 91.775           | 110.160 | 180                   | 2.623            | 2.203        |
| 92.798           | 111.387 | 181                   | 2.652            | 2.228        |
| 93.826           | 112.622 | 182                   | 2.681            | 2.252        |
| 94.860           | 113.863 | 183                   | 2.711            | 2.277        |
| 95.899           | 115.110 | 184                   | 2.741            | 2.302        |
| 96.945           | 116.365 | 185                   | 2.771            | 2.327        |
| 97.996           | 117.626 | 186                   | 2.801            | 2.352        |
| 99.052           | 118.895 | 187                   | 2.831            | 2.378        |
| 100.114          | 120.170 | 188                   | 2.861            | 2.403        |
| 101.182          | 121.451 | 189                   | 2.892            | 2.429        |
| 102.256          | 122.740 | 190                   | 2.922            | 2.454        |
| 103.335          | 124.035 | 191                   | 2.953            | 2.481        |
| 104.420          | 125.338 | 192                   | 2.984            | 2.507        |
| 105.510          | 126.647 | 193                   | 3.016            | 2.533        |
| 106.607          | 127.962 | 194                   | 3.047            | 2.559        |
| 107.708          | 129.285 | 195                   | 3.078            | 2.586        |
| 108.816          | 130.614 | 196                   | 3.110            | 2.612        |
| 109.929          | 131.951 | 197                   | 3.142            | 2.639        |
| 111.048          | 133.294 | 198                   | 3.174            | 2.666        |
| 112.173          | 134.648 | 199                   | 3.206            | 2.693        |
| 113.303          | 136.000 | 200                   | 3.238            | 2.720        |
| 114.439          | 137.363 | 201                   | 3.271            | 2.747        |
| 115.580          | 138.734 | 202                   | 3.303            | 2.775        |
| 116.727          | 140.111 | 203                   | 3.336            | 2.802        |
| 117.880          | 141.494 | 204                   | 3.369            | 2.830        |
| 119.039          | 142.885 | 205                   | 3.402            | 2.858        |
| 120.203          | 144.282 | 206                   | 3.447            | 2.896        |
| 121.373          | 145.686 | 207                   | 3.469            | 2.914        |
| 122.548          | 147.098 | 208                   | 3.502            | 2.942        |
| 123.729          | 148.515 | 209                   | 3.536            | 2.970        |
| 124.916          | 149.940 | 210                   | 3.569            | 2.999        |
| 126.109          | 151.370 | 211                   | 3.604            | 3.027        |
| 127.307          | 152.810 | 212                   | 3.638            | 3.056        |
| 128.511          | 154.255 | 213                   | 3.673            | 3.085        |
| 129.720          | 155.706 | 214                   | 3.707            | 3.114        |
| 130.936          | 157.165 | 215                   | 3.742            | 3.143        |

## VERTICAL TANKS

| GALLONS PER INCH |         | DIAMETER<br>IN INCHES | BARRELS PER INCH |               |
|------------------|---------|-----------------------|------------------|---------------|
| Imperial         | U. S.   |                       | 42 U. S. gal.    | 50 U. S. gal. |
| 132.156          | 158.630 | 216                   | 3.777            | 3.173         |
| 133.383          | 160.103 | 217                   | 3.812            | 3.202         |
| 134.615          | 161.582 | 218                   | 3.847            | 3.232         |
| 135.853          | 163.067 | 219                   | 3.882            | 3.261         |
| 137.096          | 164.560 | 220                   | 3.918            | 3.291         |
| 138.346          | 166.059 | 221                   | 3.954            | 3.321         |
| 139.600          | 167.566 | 222                   | 3.990            | 3.351         |
| 140.861          | 169.079 | 223                   | 4.026            | 3.381         |
| 142.127          | 170.598 | 224                   | 4.062            | 3.412         |
| 143.399          | 172.125 | 225                   | 4.098            | 3.442         |
| 144.676          | 173.658 | 226                   | 4.135            | 3.473         |
| 145.959          | 175.199 | 227                   | 4.172            | 3.504         |
| 147.248          | 176.746 | 228                   | 4.209            | 3.535         |
| 148.543          | 178.299 | 229                   | 4.246            | 3.566         |
| 149.843          | 179.860 | 230                   | 4.283            | 3.597         |
| 151.149          | 181.427 | 231                   | 4.320            | 3.628         |
| 152.460          | 183.002 | 232                   | 4.357            | 3.660         |
| 153.777          | 184.583 | 233                   | 4.395            | 3.692         |
| 155.100          | 186.170 | 234                   | 4.433            | 3.723         |
| 156.429          | 187.765 | 235                   | 4.471            | 3.755         |
| 157.763          | 189.366 | 236                   | 4.509            | 3.787         |
| 159.103          | 190.975 | 237                   | 4.547            | 3.819         |
| 160.448          | 192.590 | 238                   | 4.586            | 3.852         |
| 161.799          | 194.211 | 239                   | 4.624            | 3.884         |
| 163.156          | 195.840 | 240                   | 4.663            | 3.917         |
| 164.518          | 197.475 | 241                   | 4.702            | 3.949         |
| 165.887          | 199.118 | 242                   | 4.741            | 3.982         |
| 167.260          | 200.767 | 243                   | 4.781            | 4.015         |
| 168.640          | 202.422 | 244                   | 4.820            | 4.048         |
| 170.025          | 204.085 | 245                   | 4.859            | 4.082         |
| 171.416          | 205.754 | 246                   | 4.899            | 4.115         |
| 172.812          | 207.431 | 247                   | 4.939            | 4.149         |
| 174.214          | 209.114 | 248                   | 4.979            | 4.182         |
| 175.622          | 210.803 | 249                   | 5.020            | 4.216         |
| 177.036          | 212.500 | 250                   | 5.060            | 4.250         |
| 178.455          | 214.203 | 251                   | 5.100            | 4.284         |
| 179.879          | 215.914 | 252                   | 5.141            | 4.318         |
| 181.310          | 217.631 | 253                   | 5.182            | 4.353         |
| 182.746          | 219.354 | 254                   | 5.223            | 4.387         |
| 184.188          | 221.085 | 255                   | 5.264            | 4.422         |
| 185.635          | 222.822 | 256                   | 5.306            | 4.456         |
| 187.088          | 224.567 | 257                   | 5.347            | 4.491         |
| 188.547          | 226.318 | 258                   | 5.389            | 4.526         |
| 190.012          | 228.075 | 259                   | 5.431            | 4.561         |
| 191.482          | 229.840 | 260                   | 5.473            | 4.597         |

## M I S C E L L A N E O U S

## VERTICAL TANKS

| GALLONS PER INCH |         | DIAMETER<br>IN INCHES | BARRELS PER INCH |               |
|------------------|---------|-----------------------|------------------|---------------|
| Imperial         | U. S.   |                       | 42 U. S. gal.    | 50 U. S. gal. |
| 192.958          | 231.611 | 261                   | 5.515            | 4.632         |
| 194.439          | 233.390 | 262                   | 5.557            | 4.668         |
| 195.926          | 235.175 | 263                   | 5.600            | 4.703         |
| 197.419          | 236.966 | 264                   | 5.643            | 4.739         |
| 198.917          | 238.765 | 265                   | 5.686            | 4.775         |
| 200.421          | 240.570 | 266                   | 5.729            | 4.811         |
| 201.931          | 242.383 | 267                   | 5.772            | 4.848         |
| 203.447          | 244.202 | 268                   | 5.815            | 4.884         |
| 204.968          | 246.027 | 269                   | 5.858            | 4.920         |
| 206.494          | 247.860 | 270                   | 5.902            | 4.957         |
| 208.027          | 249.699 | 271                   | 5.946            | 4.994         |
| 209.565          | 251.546 | 272                   | 5.990            | 5.031         |
| 211.108          | 253.399 | 273                   | 6.034            | 5.068         |
| 212.658          | 255.258 | 274                   | 6.078            | 5.105         |
| 214.213          | 257.125 | 275                   | 6.123            | 5.142         |
| 215.774          | 258.998 | 276                   | 6.168            | 5.180         |
| 217.340          | 260.879 | 277                   | 6.212            | 5.217         |
| 218.912          | 262.766 | 278                   | 6.257            | 5.255         |
| 220.490          | 264.659 | 279                   | 6.302            | 5.293         |
| 222.073          | 266.560 | 280                   | 6.348            | 5.331         |
| 223.663          | 268.467 | 281                   | 6.392            | 5.369         |
| 225.257          | 270.382 | 282                   | 6.438            | 5.408         |
| 226.858          | 272.303 | 283                   | 6.484            | 5.446         |
| 228.464          | 274.230 | 284                   | 6.530            | 5.485         |
| 230.075          | 276.165 | 285                   | 6.576            | 5.523         |
| 231.693          | 278.106 | 286                   | 6.622            | 5.562         |
| 233.316          | 280.055 | 287                   | 6.669            | 5.601         |
| 234.945          | 282.010 | 288                   | 6.715            | 5.640         |
| 236.579          | 283.971 | 289                   | 6.762            | 5.679         |
| 238.219          | 285.940 | 290                   | 6.809            | 5.719         |
| 239.865          | 287.915 | 291                   | 6.856            | 5.758         |
| 241.516          | 289.898 | 292                   | 6.903            | 5.798         |
| 243.173          | 291.887 | 293                   | 6.951            | 5.838         |
| 244.836          | 293.882 | 294                   | 6.999            | 5.878         |
| 246.504          | 295.885 | 295                   | 7.046            | 5.918         |
| 248.178          | 297.894 | 296                   | 7.094            | 5.958         |
| 249.858          | 299.911 | 297                   | 7.141            | 5.998         |
| 251.544          | 301.934 | 298                   | 7.190            | 6.039         |
| 352.235          | 303.963 | 299                   | 7.238            | 6.079         |
| 254.931          | 306.000 | 300                   | 7.286            | 6.120         |
| 256.634          | 308.043 | 301                   | 7.335            | 6.161         |
| 258.342          | 310.094 | 302                   | 7.384            | 6.202         |
| 260.055          | 312.151 | 303                   | 7.433            | 6.243         |
| 261.775          | 314.214 | 304                   | 7.482            | 6.284         |
| 263.500          | 316.285 | 305                   | 7.532            | 6.326         |

## M I S C E L L A N E O U S

## VERTICAL TANKS

| GALLONS PER INCH |         | DIAMETER<br>IN INCHES | BARRELS PER INCH |               |
|------------------|---------|-----------------------|------------------|---------------|
| Imperial         | U. S.   |                       | 42 U. S. gal.    | 50 U. S. gal. |
| 265.231          | 318.362 | 306                   | 7.581            | 6.367         |
| 266.967          | 320.447 | 307                   | 7.630            | 6.409         |
| 268.709          | 322.538 | 308                   | 7.680            | 6.451         |
| 270.457          | 324.635 | 309                   | 7.730            | 6.493         |
| 272.210          | 326.740 | 310                   | 7.780            | 6.535         |
| 273.969          | 328.851 | 311                   | 7.830            | 6.577         |
| 275.734          | 330.970 | 312                   | 7.881            | 6.619         |
| 277.504          | 333.095 | 313                   | 7.932            | 6.662         |
| 279.280          | 335.226 | 314                   | 7.982            | 6.704         |
| 281.062          | 337.365 | 315                   | 8.032            | 6.747         |
| 282.849          | 339.510 | 316                   | 8.083            | 6.790         |
| 284.642          | 341.663 | 317                   | 8.135            | 6.833         |
| 286.441          | 343.822 | 318                   | 8.187            | 6.876         |
| 288.245          | 345.987 | 319                   | 8.239            | 6.920         |
| 290.055          | 348.160 | 320                   | 8.290            | 6.963         |
| 291.871          | 350.339 | 321                   | 8.342            | 7.007         |
| 293.692          | 352.526 | 322                   | 8.393            | 7.050         |
| 295.519          | 354.719 | 323                   | 8.446            | 7.094         |
| 297.352          | 356.918 | 324                   | 8.498            | 7.138         |
| 299.190          | 359.125 | 325                   | 8.550            | 7.182         |
| 301.034          | 361.338 | 326                   | 8.604            | 7.227         |
| 302.884          | 363.559 | 327                   | 8.657            | 7.271         |
| 304.739          | 365.786 | 328                   | 8.710            | 7.316         |
| 306.600          | 368.019 | 329                   | 8.763            | 7.360         |
| 308.467          | 370.260 | 330                   | 8.816            | 7.405         |
| 310.339          | 372.507 | 331                   | 8.870            | 7.450         |
| 312.217          | 374.762 | 332                   | 8.924            | 7.495         |
| 314.101          | 377.023 | 333                   | 8.977            | 7.540         |
| 315.990          | 379.290 | 334                   | 9.032            | 7.586         |
| 317.885          | 381.565 | 335                   | 9.086            | 7.631         |
| 319.786          | 383.846 | 336                   | 9.140            | 7.677         |
| 321.692          | 386.135 | 337                   | 9.195            | 7.723         |
| 323.604          | 388.430 | 338                   | 9.248            | 7.768         |
| 325.522          | 390.731 | 339                   | 9.304            | 7.815         |
| 327.445          | 393.040 | 340                   | 9.360            | 7.861         |
| 329.374          | 395.355 | 341                   | 9.414            | 7.907         |
| 331.309          | 397.678 | 342                   | 9.469            | 7.953         |
| 333.249          | 400.007 | 343                   | 9.525            | 8.000         |
| 335.195          | 402.342 | 344                   | 9.580            | 8.047         |
| 337.147          | 404.687 | 345                   | 9.636            | 8.094         |
| 339.104          | 407.036 | 346                   | 9.693            | 8.141         |
| 341.067          | 409.393 | 347                   | 9.748            | 8.188         |
| 343.036          | 411.756 | 348                   | 9.805            | 8.235         |
| 345.010          | 414.125 | 349                   | 9.861            | 8.282         |
| 346.990          | 416.500 | 350                   | 9.918            | 8.330         |

## VERTICAL TANKS

| GALLONS PER INCH |         | DIAMETER<br>IN INCHES | BARRELS PER INCH |               |
|------------------|---------|-----------------------|------------------|---------------|
| Imperial         | U. S.   |                       | 42 U. S. gal.    | 50 U. S. gal. |
| 348.975          | 418.883 | 351                   | 9.975            | 8.8           |
| 350.967          | 421.274 | 352                   | 10.032           | 8.4           |
| 352.964          | 423.671 | 353                   | 10.088           | 8.4           |
| 354.966          | 426.074 | 354                   | 10.146           | 8.5           |
| 356.975          | 428.485 | 355                   | 10.203           | 8.5           |
| 358.989          | 430.902 | 356                   | 10.260           | 8.6           |
| 361.008          | 433.327 | 357                   | 10.317           | 8.6           |
| 363.034          | 435.758 | 358                   | 10.376           | 8.7           |
| 365.064          | 438.195 | 359                   | 10.434           | 8.7           |
| 367.101          | 440.640 | 360                   | 10.491           | 8.8           |

## HORIZONTAL TANKS

The following tables give capacities in U. S. gal. of tanks from 36 to 120 inches in diameter and one inch in length.

To obtain capacity at a given inch, multiply figures in tables by length of tank in inches.

**EXAMPLE**—Tank 200 inches long, 36 inches in diameter; what is capacity at 15 inches?

Under column "36 inches in diameter" and opposite 15 inches read 1.739.  $1.739 \times 200 = 347.800$  U. S. gal. at 15 inches.

The upper half of a horizontal tank being the same as the lower half, the tables are figured for one half diameter of tank. The following shows a simple method of making tables.

### Horizontal Tank 36 Inches in Diameter and 100 Inches Long

| Inch | Capacity to Nearest Gallon | Difference | Capacity of Upper Half | Inch |
|------|----------------------------|------------|------------------------|------|
| 18   | 220                        | 15         | 235                    | 19   |
| 17   | 205                        | 16         | 251                    | 20   |
| 16   | 189                        | 15         | 266                    | 21   |
| 15   | 174                        | 15         | 281                    | 22   |
| 14   | 159                        | 16         | 297                    | 23   |
| 13   | 143                        | 14         | 311                    | 24   |
| 12   | 129                        | 15         | 326                    | 25   |
| 11   | 114                        | 14         | 340                    | 26   |
| 10   | 100                        | 14         | 354                    | 27   |
| 9    | 86                         | 13         | 367                    | 28   |
| 8    | 73                         | 13         | 380                    | 29   |
| 7    | 60                         | 12         | 392                    | 30   |
| 6    | 48                         | 11         | 403                    | 31   |
| 5    | 37                         | 10         | 413                    | 32   |
| 4    | 27                         | 9          | 422                    | 33   |
| 3    | 18                         | 8          | 430                    | 34   |
| 2    | 10                         | 7          | 437                    | 35   |
| 1    | 3                          | 3          | 440                    | 36   |

M I S C E L L A N E O U S

---

Horizontal tank 37 Inches in Diameter and 100 Inches Long

| Inch | Capacity to Nearest Gallon | Difference | Capacity of Upper Half | Inch |
|------|----------------------------|------------|------------------------|------|
| 18.5 | 238                        | 8          | 241                    | 19   |
| 18   | 225                        | 16         | 257                    | 20   |
| 17   | 209                        | 16         | 273                    | 21   |
| 16   | 193                        | 16         | 289                    | 22   |
| 15   | 177                        | 16         | 305                    | 23   |
| 14   | 161                        | 15         | 320                    | 24   |
| 13   | 146                        | 15         | 335                    | 25   |
| 12   | 131                        | 15         | 350                    | 26   |
| 11   | 116                        | 14         | 364                    | 27   |
| 10   | 102                        | 14         | 378                    | 28   |
| 9    | 88                         | 14         | 392                    | 29   |
| 8    | 74                         | 13         | 405                    | 30   |
| 7    | 61                         | 12         | 417                    | 31   |
| 6    | 49                         | 11         | 428                    | 32   |
| 5    | 38                         | 11         | 439                    | 33   |
| 4    | 27                         | 9          | 448                    | 34   |
| 3    | 18                         | 8          | 456                    | 35   |
| 2    | 10                         | 6          | 462                    | 36   |
| 1    | 4                          | 4          | 466                    | 37   |

The capacity opposite 18.5 being omitted when putting table on regular gauge blank, a difference of 16 (twice the difference 8) being shown as the difference between 18 and 19.

When the internal diameter is not even inches, it will be found near enough for practical purposes to make a table to the nearest inch as follows:

Tank 36.25 inches diameter and 100 inches long.

Total capacity of tank=446.8 U. S. gal. Divide this by capacity of tank 36 inches diameter and one inch long (4.406 U. S. gal.) Use result (101.407) as length of tank in making tables. This divides the actual capacity into 36 inches instead of 36.25 inches, and will be found accurate enough for most purposes.

When necessary to make table in Imp. gal., multiply length by 0.83311 and use result as length in making table.

When tanks have curved ends (similar to those on tank cars) add to length of shell=of each bilge for length of tank.

If tank is more than half full and it is desired to ascertain amount of oil in tank, proceed as follows:

Example—Length=300 inches.

Diameter=60 inches.

Height of oil=45 inches.

Capacity of tank if full..... 3672 U. S. gal.

(30—45—15 in. square capacity)

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 36 In. Dia. | 37 In. Dia. | 38 In. Dia. | Inch | 39 In. Dia. | 40 In. Dia. | 41 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
|             |             |             | 20.5 |             |             | 2.858       |
|             |             |             | 20   |             | 2.720       | 2.769       |
|             |             |             | 19.5 | 2.586       |             |             |
|             |             | 2.445       | 19   | 2.501       | 2.547       | 2.591       |
|             |             |             | 18.5 |             |             |             |
| 2.203       | 2.247       | 2.290       | 18   | 2.332       | 2.374       | 2.415       |
| 2.047       | 2.087       | 2.126       | 17   | 2.165       | 2.202       | 2.239       |
| 1.893       | 1.928       | 1.963       | 16   | 1.998       | 2.032       | 2.065       |
| 1.739       | 1.770       | 1.801       | 15   | 1.832       | 1.863       | 1.894       |
| 1.585       | 1.613       | 1.643       | 14   | 1.669       | 1.697       | 1.724       |
| 1.434       | 1.459       | 1.484       | 13   | 1.509       | 1.533       | 1.557       |
| 1.286       | 1.308       | 1.330       | 12   | 1.351       | 1.372       | 1.393       |
| 1.140       | 1.159       | 1.179       | 11   | 1.198       | 1.216       | 1.233       |
| .999        | 1.015       | 1.032       | 10   | 1.047       | 1.063       | 1.079       |
| .861        | .875        | .889        | 9    | .903        | .916        | .929        |
| .729        | .740        | .752        | 8    | .763        | .774        | .785        |
| .603        | .612        | .621        | 7    | .631        | .639        | .648        |
| .483        | .490        | .497        | 6    | .505        | .512        | .518        |
| .371        | .376        | .382        | 5    | .387        | .392        | .398        |
| .268        | .271        | .275        | 4    | .280        | .283        | .287        |
| .175        | .178        | .180        | 3    | .183        | .185        | .188        |
| .096        | .098        | .099        | 2    | .100        | .102        | .103        |
| .034        | .035        | .035        | 1    | .036        | .036        | .037        |

| 42 In. Dia. | 43 In. Dia. | 44 In. Dia. | Inch | 45 In. Dia. | 46 In. Dia. | 47 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
|             |             |             | 23.5 |             |             | 3.755       |
|             |             |             | 23   |             | 3.597       | 3.653       |
|             |             |             | 22.5 | 3.442       |             |             |
|             |             | 3.291       | 22   | 3.344       | 3.397       | 3.450       |
|             |             |             | 21.5 |             |             |             |
|             |             | 3.143       |      |             |             |             |
| 2.998       | 3.050       | 3.100       | 21   | 3.149       | 3.199       | 3.248       |
| 2.817       | 2.864       | 2.908       | 20   | 2.955       | 3.002       | 3.047       |
| 2.636       | 2.679       | 2.721       | 19   | 2.763       | 2.805       | 2.846       |
| 2.455       | 2.495       | 2.533       | 18   | 2.572       | 2.609       | 2.647       |
| 2.276       | 2.313       | 2.347       | 17   | 2.381       | 2.416       | 2.450       |
| 2.098       | 2.132       | 2.163       | 16   | 2.193       | 2.225       | 2.256       |
| 1.922       | 1.952       | 1.981       | 15   | 2.009       | 2.037       | 2.064       |
| 1.750       | 1.776       | 1.802       | 14   | 1.827       | 1.852       | 1.876       |
| 1.580       | 1.603       | 1.626       | 13   | 1.648       | 1.672       | 1.693       |
| 1.414       | 1.434       | 1.454       | 12   | 1.473       | 1.494       | 1.513       |
| 1.252       | 1.269       | 1.287       | 11   | 1.304       | 1.321       | 1.338       |
| 1.094       | 1.110       | 1.125       | 10   | 1.139       | 1.154       | 1.168       |
| .942        | .955        | .968        | 9    | .980        | .993        | 1.005       |
| .797        | .807        | .817        | 8    | .827        | .838        | .848        |
| .657        | .666        | .675        | 7    | .682        | .691        | .699        |
| .526        | .532        | .540        | 6    | .546        | .552        | .558        |
| .403        | .408        | .414        | 5    | .418        | .424        | .428        |
| .291        | .294        | .297        | 4    | .301        | .304        | .308        |
| .190        | .193        | .194        | 3    | .197        | .199        | .200        |
| .104        | .106        | .107        | 2    | .108        | .110        | .111        |
| .037        | .038        | .038        | 1    | .038        | .039        | .039        |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 48 In. Dia. | 49 In. Dia. | 50 In. Dia. | Inch | 51 In. Dia. | 52 In. Dia. | 53 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
|             |             |             | 26.5 |             |             | 4.776       |
|             |             |             | 26   |             | 4.597       | 4.660       |
|             |             |             | 25.5 | 4.422       |             |             |
|             |             | 4.250       | 25   | 4.309       | 4.371       | 4.431       |
|             | 4.082       |             | 24.5 |             |             |             |
| 3.917       | 3.975       | 4.033       | 24   | 4.085       | 4.146       | 4.203       |
| 3.707       | 3.765       | 3.817       | 23   | 3.865       | 3.922       | 3.976       |
| 3.498       | 3.555       | 3.602       | 22   | 3.647       | 3.700       | 3.749       |
| 3.289       | 3.345       | 3.388       | 21   | 3.431       | 3.479       | 3.523       |
| 3.084       | 3.136       | 3.175       | 20   | 3.216       | 3.259       | 3.300       |
| 2.881       | 2.928       | 2.964       | 19   | 3.002       | 3.044       | 3.078       |
| 2.679       | 2.722       | 2.755       | 18   | 2.790       | 2.825       | 2.859       |
| 2.478       | 2.517       | 2.548       | 17   | 2.580       | 2.613       | 2.644       |
| 2.281       | 2.316       | 2.344       | 16   | 2.374       | 2.405       | 2.432       |
| 2.087       | 2.118       | 2.145       | 15   | 2.170       | 2.199       | 2.222       |
| 1.900       | 1.924       | 1.948       | 14   | 1.971       | 1.996       | 2.016       |
| 1.716       | 1.734       | 1.756       | 13   | 1.777       | 1.797       | 1.815       |
| 1.533       | 1.550       | 1.569       | 12   | 1.585       | 1.605       | 1.622       |
| 1.353       | 1.370       | 1.386       | 11   | 1.402       | 1.417       | 1.433       |
| 1.180       | 1.195       | 1.210       | 10   | 1.223       | 1.235       | 1.251       |
| 1.017       | 1.027       | 1.040       | 9    | 1.052       | 1.063       | 1.077       |
| .859        | .866        | .878        | 8    | .888        | .897        | .907        |
| .708        | .716        | .723        | 7    | .729        | .737        | .746        |
| .565        | .575        | .578        | 6    | .583        | .587        | .595        |
| .432        | .440        | .442        | 5    | .447        | .451        | .454        |
| .310        | .317        | .319        | 4    | .319        | .326        | .329        |
| .201        | .205        | .208        | 3    | .211        | .214        | .214        |
| .113        | .114        | .114        | 2    | .114        | .117        | .119        |
| .040        | .041        | .041        | 1    | .041        | .041        | .042        |

| 54 In. Dia. | 55 In. Dia. | 56 In. Dia. | Inch | 57 In. Dia. | 58 In. Dia. | 59 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
|             |             |             | 29.5 |             |             | 5.918       |
|             |             |             | 29   |             | 5.719       | 5.790       |
|             |             | 5.331       | 28   | 5.399       | 5.467       | 5.535       |
|             | 5.143       |             | 27.5 |             |             |             |
| 4.957       | 5.023       | 5.089       | 27   | 5.153       | 5.217       | 5.280       |
| 4.723       | 4.785       | 4.847       | 26   | 4.907       | 4.967       | 5.026       |
| 4.490       | 4.547       | 4.605       | 25   | 4.662       | 4.717       | 4.773       |
| 4.258       | 4.311       | 4.365       | 24   | 4.417       | 4.469       | 4.521       |
| 4.026       | 4.076       | 4.125       | 23   | 4.175       | 4.223       | 4.271       |
| 3.794       | 3.842       | 3.886       | 22   | 3.934       | 3.978       | 4.023       |
| 3.566       | 3.611       | 3.651       | 21   | 3.694       | 3.736       | 3.777       |
| 3.340       | 3.381       | 3.418       | 20   | 3.456       | 3.495       | 3.534       |
| 3.116       | 3.152       | 3.188       | 19   | 3.222       | 3.256       | 3.293       |
| 2.893       | 2.926       | 2.959       | 18   | 2.992       | 3.020       | 3.057       |
| 2.674       | 2.704       | 2.734       | 17   | 2.766       | 2.788       | 2.823       |
| 2.459       | 2.486       | 2.513       | 16   | 2.543       | 2.563       | 2.594       |
| 2.248       | 2.271       | 2.296       | 15   | 2.321       | 2.344       | 2.369       |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 54 In. Dia. | 55 In. Dia. | 56 In. Dia. | Inch | 57 In. Dia. | 58 In. Dia. | 59 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
| 1.640       | 1.657       | 1.675       | 12   | 1.692       | 1.710       | 1.726       |
| 1.449       | 1.464       | 1.478       | 11   | 1.495       | 1.509       | 1.524       |
| 1.265       | 1.279       | 1.290       | 10   | 1.304       | 1.316       | 1.329       |
| 1.086       | 1.099       | 1.108       | 9    | 1.120       | 1.130       | 1.141       |
| .915        | .926        | .936        | 8    | .943        | .953        | .961        |
| .755        | .759        | .769        | 7    | .776        | .784        | .791        |
| .602        | .607        | .614        | 6    | .620        | .626        | .631        |
| .461        | .466        | .470        | 5    | .473        | .479        | .483        |
| .331        | .335        | .337        | 4    | .340        | .344        | .347        |
| .217        | .219        | .220        | 3    | .223        | .225        | .227        |
| .119        | .120        | .121        | 2    | .122        | .123        | .124        |
| .042        | .042        | .043        | 1    | .043        | .044        | .044        |
| 60 In. Dia. | 61 In. Dia. | 62 In. Dia. | Inch | 63 In. Dia. | 64 In. Dia. | 65 In. Dia. |
|             |             |             | 32.5 |             |             | 7.182       |
|             |             |             | 32   |             | 6.963       | 7.039       |
|             |             | 6.535       | 31.5 | 6.747       |             |             |
|             |             |             | 31   | 6.610       | 6.686       | 6.755       |
|             | 6.326       |             | 30.5 |             |             |             |
| 6.119       | 6.193       | 6.267       | 30   | 6.337       | 6.410       | 6.472       |
| 5.858       | 5.929       | 5.999       | 29   | 6.065       | 6.134       | 6.193       |
| 5.598       | 5.668       | 5.732       | 28   | 5.794       | 5.858       | 5.915       |
| 5.339       | 5.407       | 5.465       | 27   | 5.523       | 5.584       | 5.639       |
| 5.082       | 5.146       | 5.199       | 26   | 5.254       | 5.310       | 5.363       |
| 4.826       | 4.885       | 4.935       | 25   | 4.986       | 5.038       | 5.089       |
| 4.572       | 4.625       | 4.672       | 24   | 4.722       | 4.769       | 4.817       |
| 4.318       | 4.366       | 4.412       | 23   | 4.458       | 4.503       | 4.547       |
| 4.066       | 4.111       | 4.153       | 22   | 4.196       | 4.239       | 4.281       |
| 3.818       | 3.859       | 3.898       | 21   | 3.937       | 3.976       | 4.016       |
| 3.572       | 3.609       | 3.645       | 20   | 3.668       | 3.718       | 3.756       |
| 3.328       | 3.363       | 3.397       | 19   | 3.430       | 3.464       | 3.496       |
| 3.088       | 3.120       | 3.151       | 18   | 3.181       | 3.213       | 3.242       |
| 2.852       | 2.881       | 2.910       | 17   | 2.937       | 2.964       | 2.992       |
| 2.621       | 2.646       | 2.672       | 16   | 2.698       | 2.723       | 2.748       |
| 2.392       | 2.417       | 2.440       | 15   | 2.463       | 2.486       | 2.508       |
| 2.171       | 2.192       | 2.213       | 14   | 2.232       | 2.254       | 2.274       |
| 1.954       | 1.972       | 1.991       | 13   | 2.008       | 2.027       | 2.045       |
| 1.743       | 1.759       | 1.776       | 12   | 1.791       | 1.808       | 1.823       |
| 1.538       | 1.552       | 1.567       | 11   | 1.581       | 1.595       | 1.608       |
| 1.341       | 1.352       | 1.366       | 10   | 1.378       | 1.390       | 1.401       |
| 1.152       | 1.161       | 1.173       | 9    | 1.183       | 1.192       | 1.203       |
| .971        | .980        | .988        | 8    | .996        | 1.005       | 1.013       |
| .799        | .806        | .812        | 7    | .819        | .827        | .833        |
| .634        | .642        | .648        | 6    | .653        | .659        | .664        |
| .487        | .491        | .496        | 5    | .500        | .504        | .508        |
| .349        | .354        | .357        | 4    | .359        | .362        | .365        |
| .229        | .230        | .233        | 3    | .235        | .238        | .238        |
| .125        | .126        | .128        | 2    | .128        | .129        | .131        |
| .045        | .045        | .045        | 1    | .046        | .046        | .047        |

## M I S C E L L A N E O U S

## HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 66 Inches<br>in Diam. | 67 Inches<br>in Diam. | 68 Inches<br>in Diam. | Inch | 69 Inches<br>in Diam. | 70 Inches<br>in Diam. | 71 Inches<br>in Diam. |
|-----------------------|-----------------------|-----------------------|------|-----------------------|-----------------------|-----------------------|
|                       |                       |                       | 35.5 |                       |                       | 8.570                 |
|                       |                       |                       | 35   |                       | 8.380                 | 8.413                 |
|                       |                       |                       | 34.5 | 8.094                 |                       |                       |
|                       |                       | 7.861                 | 34   | 7.944                 | 8.026                 | 8.107                 |
|                       |                       |                       | 33.5 |                       |                       |                       |
|                       | 7.631                 |                       |      |                       |                       |                       |
| 7.406                 | 7.485                 | 7.567                 | 33   | 7.646                 | 7.723                 | 7.801                 |
| 7.120                 | 7.194                 | 7.273                 | 32   | 7.348                 | 7.421                 | 7.495                 |
| 6.834                 | 6.904                 | 6.979                 | 31   | 7.051                 | 7.120                 | 7.190                 |
| 6.549                 | 6.617                 | 6.687                 | 30   | 6.755                 | 6.819                 | 6.886                 |
| 6.264                 | 6.327                 | 6.395                 | 29   | 6.459                 | 6.519                 | 6.583                 |
| 5.981                 | 6.041                 | 6.104                 | 28   | 6.164                 | 6.222                 | 6.283                 |
| 5.699                 | 5.756                 | 5.814                 | 27   | 5.870                 | 5.927                 | 5.983                 |
| 5.419                 | 5.473                 | 5.528                 | 26   | 5.580                 | 5.634                 | 5.686                 |
| 5.141                 | 5.191                 | 5.244                 | 25   | 5.292                 | 5.343                 | 5.391                 |
| 4.865                 | 4.913                 | 4.961                 | 24   | 5.006                 | 5.052                 | 5.098                 |
| 4.592                 | 4.637                 | 4.681                 | 23   | 4.724                 | 4.764                 | 4.809                 |
| 4.322                 | 4.363                 | 4.403                 | 22   | 4.444                 | 4.481                 | 4.524                 |
| 4.504                 | 4.092                 | 4.129                 | 21   | 4.167                 | 4.204                 | 4.241                 |
| 3.789                 | 3.824                 | 3.859                 | 20   | 3.893                 | 3.929                 | 3.962                 |
| 3.529                 | 3.561                 | 3.593                 | 19   | 3.625                 | 3.657                 | 3.688                 |
| 3.273                 | 3.302                 | 3.331                 | 18   | 3.360                 | 3.388                 | 3.418                 |
| 3.020                 | 3.046                 | 3.074                 | 17   | 3.101                 | 3.125                 | 3.152                 |
| 2.772                 | 2.797                 | 2.821                 | 16   | 2.846                 | 2.868                 | 2.894                 |
| 2.530                 | 2.553                 | 2.575                 | 15   | 2.595                 | 2.617                 | 2.640                 |
| 2.294                 | 2.314                 | 2.333                 | 14   | 2.352                 | 2.372                 | 2.391                 |
| 2.064                 | 2.080                 | 2.099                 | 13   | 2.116                 | 2.135                 | 2.150                 |
| 1.839                 | 1.855                 | 1.871                 | 12   | 1.886                 | 1.901                 | 1.916                 |
| 1.622                 | 1.636                 | 1.650                 | 11   | 1.663                 | 1.674                 | 1.693                 |
| 1.413                 | 1.426                 | 1.439                 | 10   | 1.449                 | 1.459                 | 1.476                 |
| 1.213                 | 1.223                 | 1.235                 | 9    | 1.242                 | 1.254                 | 1.264                 |
| 1.022                 | 1.030                 | 1.041                 | 8    | 1.047                 | 1.060                 | 1.063                 |
| .841                  | .847                  | .855                  | 7    | .859                  | .871                  | .874                  |
| .670                  | .675                  | .680                  | 6    | .687                  | .689                  | .697                  |
| .512                  | .516                  | .520                  | 5    | .524                  | .528                  | .531                  |
| .368                  | .371                  | .374                  | 4    | .377                  | .378                  | .382                  |
| .240                  | .243                  | .244                  | 3    | .246                  | .249                  | .250                  |
| .181                  | .182                  | .183                  | 2    | .184                  | .185                  | .186                  |
| .047                  | .047                  | .047                  | 1    | .048                  | .048                  | .048                  |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 72 Inches<br>in Diam. | 73 Inches<br>in Diam. | 74 Inches<br>in Diam. | Inch<br>. . | 75 Inches<br>in Diam. | 76 Inches<br>in Diam. | 77 Inches<br>in Diam. |
|-----------------------|-----------------------|-----------------------|-------------|-----------------------|-----------------------|-----------------------|
|                       |                       |                       | 38.5        |                       |                       | 10.079                |
|                       |                       |                       | 38          |                       | 9.819                 | 9.912                 |
|                       |                       |                       | 37.5        | 9.562                 |                       |                       |
|                       |                       | 9.309                 | 37          | 9.400                 | 9.489                 | 9.579                 |
|                       |                       |                       | 36.5        |                       |                       |                       |
| 9.059                 |                       |                       |             |                       |                       |                       |
| 8.813                 | 8.899                 | 8.989                 | 36          | 9.076                 | 9.160                 | 9.246                 |
| 8.500                 | 8.582                 | 8.669                 | 35          | 8.752                 | 8.832                 | 8.914                 |
| 8.188                 | 8.267                 | 8.349                 | 34          | 8.428                 | 8.505                 | 8.583                 |
| 7.877                 | 7.953                 | 8.030                 | 33          | 8.104                 | 8.178                 | 8.253                 |
| 7.567                 | 7.639                 | 7.712                 | 32          | 7.782                 | 7.852                 | 7.924                 |
| 7.259                 | 7.326                 | 7.395                 | 31          | 7.461                 | 7.528                 | 7.596                 |
| 6.952                 | 7.015                 | 7.080                 | 30          | 7.142                 | 7.205                 | 7.268                 |
| 6.645                 | 6.706                 | 6.766                 | 29          | 6.824                 | 6.886                 | 6.944                 |
| 6.341                 | 6.397                 | 6.454                 | 28          | 6.509                 | 6.567                 | 6.622                 |
| 6.038                 | 6.091                 | 6.145                 | 27          | 6.195                 | 6.250                 | 6.302                 |
| 5.736                 | 5.786                 | 5.839                 | 26          | 5.885                 | 5.938                 | 5.988                 |
| 5.439                 | 5.485                 | 5.535                 | 25          | 5.578                 | 5.628                 | 5.675                 |
| 5.144                 | 5.188                 | 5.232                 | 24          | 5.274                 | 5.300                 | 5.364                 |
| 4.852                 | 4.892                 | 4.934                 | 23          | 4.975                 | 5.014                 | 5.056                 |
| 4.563                 | 4.599                 | 4.639                 | 22          | 4.677                 | 4.715                 | 4.753                 |
| 4.278                 | 4.311                 | 4.374                 | 21          | 4.383                 | 4.418                 | 4.453                 |
| 3.997                 | 4.025                 | 4.062                 | 20          | 4.094                 | 4.127                 | 4.161                 |
| 3.719                 | 3.748                 | 3.781                 | 19          | 3.809                 | 3.839                 | 3.871                 |
| 3.446                 | 3.474                 | 3.501                 | 18          | 3.529                 | 3.556                 | 3.585                 |
| 3.179                 | 3.204                 | 3.229                 | 17          | 3.255                 | 3.280                 | 3.305                 |
| 2.917                 | 2.938                 | 2.962                 | 16          | 2.985                 | 3.008                 | 3.032                 |
| 2.658                 | 2.681                 | 2.702                 | 15          | 2.723                 | 2.744                 | 2.764                 |
| 2.408                 | 2.429                 | 2.447                 | 14          | 2.487                 | 2.485                 | 2.503                 |
| 2.167                 | 2.184                 | 2.200                 | 13          | 2.216                 | 2.234                 | 2.250                 |
| 1.932                 | 1.946                 | 1.960                 | 12          | 1.978                 | 1.990                 | 2.003                 |
| 1.703                 | 1.716                 | 1.727                 | 11          | 1.742                 | 1.753                 | 1.767                 |
| 1.483                 | 1.494                 | 1.505                 | 10          | 1.515                 | 1.527                 | 1.538                 |
| 1.272                 | 1.281                 | 1.291                 | 9           | 1.300                 | 1.309                 | 1.318                 |
| 1.071                 | 1.079                 | 1.086                 | 8           | 1.095                 | 1.102                 | 1.110                 |
| .880                  | .887                  | .893                  | 7           | .899                  | .906                  | .912                  |
| .701                  | .707                  | .712                  | 6           | .717                  | .722                  | .727                  |
| .536                  | .540                  | .544                  | 5           | .548                  | .551                  | .555                  |
| .386                  | .388                  | .391                  | 4           | .393                  | .396                  | .399                  |
| .252                  | .253                  | .254                  | 3           | .256                  | .259                  | .260                  |
| .138                  | .138                  | .139                  | 2           | .140                  | .141                  | .142                  |
| .048                  | .049                  | .049                  | 1           | .050                  | .050                  | .050                  |

M I S C E L L A N E O U S

---

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 78 Inches<br>in Diam. | 79 Inches<br>in Diam. | 80 Inches<br>in Diam. | Inch | 81 Inches<br>in Diam. | 82 Inches<br>in Diam. | 83 Inches<br>in Diam. |
|-----------------------|-----------------------|-----------------------|------|-----------------------|-----------------------|-----------------------|
|                       |                       |                       | 41.5 |                       |                       | 11.711                |
|                       |                       |                       | 41   |                       |                       | 11.531                |
|                       |                       |                       | 40.5 | 11.154                | 11.431                |                       |
|                       |                       | 10.880                | 40   | 10.978                | 11.075                | 11.172                |
|                       | 10.610                |                       | 39.5 |                       |                       |                       |
| 10.343                | 10.439                | 10.533                | 39   | 10.627                | 10.720                | 10.814                |
| 10.004                | 10.097                | 10.187                | 38   | 10.277                | 10.365                | 10.456                |
| 9.666                 | 9.756                 | 9.841                 | 37   | 9.927                 | 10.012                | 10.098                |
| 9.329                 | 9.416                 | 9.496                 | 36   | 9.578                 | 9.659                 | 9.741                 |
| 8.994                 | 9.076                 | 9.151                 | 35   | 9.231                 | 9.307                 | 9.385                 |
| 8.659                 | 8.737                 | 8.809                 | 34   | 8.884                 | 8.957                 | 9.031                 |
| 8.325                 | 8.398                 | 8.468                 | 33   | 8.538                 | 8.608                 | 8.679                 |
| 7.992                 | 8.060                 | 8.128                 | 32   | 8.194                 | 8.260                 | 8.328                 |
| 7.660                 | 7.724                 | 7.789                 | 31   | 7.854                 | 7.916                 | 7.980                 |
| 7.330                 | 7.391                 | 7.454                 | 30   | 7.514                 | 7.575                 | 7.633                 |
| 7.001                 | 7.059                 | 7.120                 | 29   | 7.176                 | 7.234                 | 7.286                 |
| 6.676                 | 6.734                 | 6.788                 | 28   | 6.842                 | 6.893                 | 6.947                 |
| 6.354                 | 6.407                 | 6.458                 | 27   | 6.509                 | 6.557                 | 6.610                 |
| 6.035                 | 6.085                 | 6.132                 | 26   | 6.181                 | 6.228                 | 6.274                 |
| 5.719                 | 5.764                 | 5.809                 | 25   | 5.853                 | 5.899                 | 5.943                 |
| 5.406                 | 5.449                 | 5.490                 | 24   | 5.532                 | 5.574                 | 5.615                 |
| 5.096                 | 5.138                 | 5.175                 | 23   | 5.212                 | 5.252                 | 5.291                 |
| 4.791                 | 4.829                 | 4.864                 | 22   | 4.900                 | 4.933                 | 4.970                 |
| 4.487                 | 4.523                 | 4.557                 | 21   | 4.592                 | 4.624                 | 4.657                 |
| 4.189                 | 4.224                 | 4.254                 | 20   | 4.286                 | 4.316                 | 4.346                 |
| 3.897                 | 3.928                 | 3.956                 | 19   | 3.987                 | 4.013                 | 4.043                 |
| 3.610                 | 3.637                 | 3.665                 | 18   | 3.691                 | 3.717                 | 3.742                 |
| 3.329                 | 3.355                 | 3.377                 | 17   | 3.403                 | 3.426                 | 3.450                 |
| 3.053                 | 3.076                 | 3.098                 | 16   | 3.120                 | 3.141                 | 3.164                 |
| 2.784                 | 2.804                 | 2.825                 | 15   | 2.846                 | 2.863                 | 2.883                 |
| 2.522                 | 2.540                 | 2.558                 | 14   | 2.576                 | 2.592                 | 2.612                 |
| 2.267                 | 2.282                 | 2.299                 | 13   | 2.315                 | 2.329                 | 2.345                 |
| 2.019                 | 2.033                 | 2.047                 | 12   | 2.062                 | 2.074                 | 2.089                 |
| 1.779                 | 1.791                 | 1.804                 | 11   | 1.816                 | 1.827                 | 1.840                 |
| 1.548                 | 1.560                 | 1.570                 | 10   | 1.582                 | 1.591                 | 1.606                 |
| 1.328                 | 1.336                 | 1.345                 | 9    | 1.355                 | 1.365                 | 1.372                 |
| 1.118                 | 1.126                 | 1.132                 | 8    | 1.141                 | 1.148                 | 1.156                 |
| .919                  | .924                  | .931                  | 7    | .937                  | .943                  | .950                  |
| .731                  | .736                  | .742                  | 6    | .746                  | .752                  | .757                  |
| .559                  | .563                  | .565                  | 5    | .569                  | .574                  | .576                  |
| .401                  | .404                  | .407                  | 4    | .409                  | .412                  | .415                  |
| .261                  | .264                  | .265                  | 3    | .267                  | .269                  | .269                  |
| .143                  | .143                  | .145                  | 2    | .146                  | .147                  | .148                  |
| .051                  | .051                  | .051                  | 1    | .052                  | .052                  | .053                  |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 84 Inches<br>in<br>Diam. | 85 Inches<br>in<br>Diam. | 86 Inches<br>in<br>Diam. | Inch | 87 Inches<br>in<br>Diam. | 88 Inches<br>in<br>Diam. | 89 Inches<br>in<br>Diam. |
|--------------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|
|                          |                          |                          | 44.5 |                          |                          | 3.466                    |
|                          |                          |                          | 44   |                          |                          | 13.273                   |
|                          |                          |                          | 43.5 | 12.867                   | 13.165                   |                          |
|                          |                          | 12.573                   | 43   | 12.679                   | 12.783                   | 12.887                   |
|                          |                          |                          | 42.5 |                          |                          |                          |
| 12.283                   |                          |                          | 42   | 12.303                   | 12.401                   | 12.501                   |
| 11.995                   | 12.099                   | 12.201                   | 41   | 11.927                   | 12.019                   | 12.116                   |
| 11.632                   | 11.731                   | 11.829                   | 40   | 11.552                   | 11.638                   | 11.734                   |
| 11.269                   | 11.363                   | 11.457                   | 39   | 11.177                   | 11.261                   | 11.352                   |
| 10.906                   | 10.997                   | 11.086                   | 38   | 10.802                   | 10.884                   | 10.970                   |
| 10.544                   | 10.632                   | 10.716                   | 37   | 10.430                   | 10.508                   | 10.589                   |
| 10.183                   | 10.267                   | 10.347                   | 36   | 10.058                   | 10.132                   | 10.209                   |
| 9.822                    | 9.903                    | 9.979                    | 35   | 9.687                    | 9.759                    | 9.832                    |
| 9.462                    | 9.540                    | 9.611                    | 34   | 9.318                    | 9.387                    | 9.458                    |
| 9.104                    | 9.177                    | 9.245                    | 33   | 8.951                    | 9.018                    | 9.085                    |
| 8.747                    | 8.816                    | 8.883                    | 32   | 8.587                    | 8.651                    | 8.713                    |
| 8.392                    | 8.459                    | 8.523                    | 31   | 8.226                    | 8.287                    | 8.345                    |
| 8.040                    | 8.105                    | 8.164                    | 30   | 7.865                    | 7.925                    | 7.978                    |
| 7.690                    | 7.751                    | 7.807                    | 29   | 7.509                    | 7.566                    | 7.617                    |
| 7.344                    | 7.401                    | 7.454                    | 28   | 7.156                    | 7.210                    | 7.258                    |
| 7.000                    | 7.054                    | 7.104                    | 27   | 6.805                    | 6.856                    | 6.901                    |
| 6.658                    | 6.710                    | 6.756                    | 26   | 6.458                    | 6.504                    | 6.549                    |
| 6.320                    | 6.369                    | 6.413                    | 25   | 6.118                    | 6.158                    | 6.201                    |
| 5.986                    | 6.030                    | 6.074                    | 24   | 5.773                    | 5.816                    | 5.858                    |
| 5.656                    | 5.699                    | 5.738                    | 23   | 5.445                    | 5.482                    | 5.516                    |
| 5.330                    | 5.368                    | 5.404                    | 22   | 5.114                    | 5.150                    | 5.182                    |
| 5.007                    | 5.043                    | 5.078                    | 21   | 4.790                    | 4.821                    | 4.855                    |
| 4.690                    | 4.724                    | 4.756                    | 20   | 4.469                    | 4.499                    | 4.528                    |
| 4.378                    | 4.410                    | 4.440                    | 19   | 4.155                    | 4.181                    | 4.211                    |
| 4.071                    | 4.098                    | 4.126                    | 18   | 3.847                    | 3.872                    | 3.896                    |
| 3.770                    | 3.796                    | 3.821                    | 17   | 3.544                    | 3.576                    | 3.590                    |
| 3.475                    | 3.497                    | 3.522                    | 16   | 3.249                    | 3.269                    | 3.291                    |
| 3.186                    | 3.206                    | 3.227                    | 15   | 2.961                    | 2.980                    | 2.999                    |
| 2.904                    | 2.924                    | 2.941                    | 14   | 2.679                    | 2.699                    | 2.714                    |
| 2.629                    | 2.646                    | 2.663                    | 13   | 2.406                    | 2.421                    | 2.439                    |
| 2.362                    | 2.378                    | 2.393                    | 12   | 2.142                    | 2.154                    | 2.169                    |
| 2.104                    | 2.116                    | 2.129                    | 11   | 1.888                    | 1.900                    | 1.912                    |
| 1.853                    | 1.865                    | 1.876                    | 10   | 1.641                    | 1.656                    | 1.663                    |
| 1.613                    | 1.621                    | 1.633                    | 9    | 1.407                    | 1.416                    | 1.425                    |
| 1.383                    | 1.391                    | 1.400                    | 8    | 1.185                    | 1.190                    | 1.200                    |
| 1.162                    | 1.169                    | 1.176                    | 7    | .973                     | .979                     | .983                     |
| .954                     | .962                     | .967                     | 6    | .776                     | .778                     | .784                     |
| .760                     | .765                     | .770                     | 5    | .592                     | .595                     | .598                     |
| .580                     | .585                     | .587                     | 4    | .429                     | .429                     | .430                     |
| .417                     | .420                     | .422                     | 3    | .278                     | .279                     | .280                     |
| .272                     | .274                     | .275                     | 2    | .151                     | .153                     | .154                     |
| .148                     | .149                     | .151                     | 1    | .054                     | .055                     | .055                     |
| .053                     | .053                     | .053                     |      |                          |                          |                          |

## M I S C E L L A N E O U S

## HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| 90 In. Dia. | 91 In. Dia. | 92 In. Dia. | Inch | 93 In. Dia. | 94 In. Dia. | 95 In. Dia. |
|-------------|-------------|-------------|------|-------------|-------------|-------------|
|             |             |             | 47.5 |             |             | 15.342      |
|             |             |             | 47   |             | 15.021      | 15.136      |
|             |             | 14.388      | 46.5 | 14.703      |             |             |
|             |             |             | 46   | 14.501      | 14.612      | 14.726      |
|             | 14.078      |             | 45.5 |             |             |             |
| 13.770      | 13.880      | 13.988      | 45   | 14.098      | 14.207      | 14.316      |
| 13.378      | 13.487      | 13.590      | 44   | 13.696      | 13.802      | 13.905      |
| 12.987      | 13.094      | 13.194      | 43   | 13.296      | 13.397      | 13.495      |
| 12.597      | 12.701      | 12.798      | 42   | 12.896      | 12.993      | 13.086      |
| 12.209      | 12.308      | 12.403      | 41   | 12.497      | 12.590      | 12.679      |
| 11.822      | 11.915      | 12.008      | 40   | 12.098      | 12.187      | 12.273      |
| 11.436      | 11.525      | 11.613      | 39   | 11.699      | 11.785      | 11.867      |
| 11.051      | 11.137      | 11.218      | 38   | 11.301      | 11.384      | 11.463      |
| 10.667      | 10.750      | 10.826      | 37   | 10.906      | 10.983      | 11.061      |
| 10.284      | 10.363      | 10.438      | 36   | 10.513      | 10.587      | 10.662      |
| 9.903       | 9.977       | 10.050      | 35   | 10.123      | 10.193      | 10.265      |
| 9.524       | 9.596       | 9.665       | 34   | 9.733       | 9.800       | 9.870       |
| 9.184       | 9.216       | 9.281       | 33   | 9.344       | 9.410       | 9.476       |
| 8.773       | 8.837       | 8.900       | 32   | 8.962       | 9.024       | 9.084       |
| 8.403       | 8.463       | 8.523       | 31   | 8.580       | 8.639       | 8.697       |
| 8.035       | 8.093       | 8.149       | 30   | 8.200       | 8.257       | 8.313       |
| 7.670       | 7.724       | 7.777       | 29   | 7.827       | 7.880       | 7.932       |
| 7.308       | 7.358       | 7.409       | 28   | 7.456       | 7.506       | 7.553       |
| 6.948       | 6.996       | 7.046       | 27   | 7.089       | 7.138       | 7.182       |
| 6.593       | 6.638       | 6.687       | 26   | 6.727       | 6.771       | 6.812       |
| 6.242       | 6.283       | 6.331       | 25   | 6.367       | 6.407       | 6.450       |
| 5.894       | 5.934       | 5.976       | 24   | 6.013       | 6.052       | 6.090       |
| 5.552       | 5.588       | 5.626       | 23   | 5.662       | 5.700       | 5.734       |
| 5.215       | 5.248       | 5.284       | 22   | 5.320       | 5.352       | 5.386       |
| 4.883       | 4.916       | 4.948       | 21   | 4.979       | 5.010       | 5.042       |
| 4.656       | 4.587       | 4.617       | 20   | 4.647       | 4.673       | 4.701       |
| 4.235       | 4.264       | 4.292       | 19   | 4.317       | 4.343       | 4.368       |
| 3.921       | 3.946       | 3.972       | 18   | 3.996       | 4.021       | 4.045       |
| 3.611       | 3.635       | 3.657       | 17   | 3.681       | 3.703       | 3.727       |
| 3.309       | 3.331       | 3.353       | 16   | 3.375       | 3.393       | 3.414       |
| 3.014       | 3.035       | 3.056       | 15   | 3.073       | 3.091       | 3.109       |
| 2.729       | 2.747       | 2.763       | 14   | 2.781       | 2.796       | 2.814       |
| 2.452       | 2.468       | 2.480       | 13   | 2.497       | 2.510       | 2.524       |
| 2.183       | 2.196       | 2.210       | 12   | 2.222       | 2.232       | 2.248       |
| 1.922       | 1.934       | 1.946       | 11   | 1.957       | 1.966       | 1.981       |
| 1.673       | 1.682       | 1.696       | 10   | 1.703       | 1.714       | 1.723       |
| 1.433       | 1.443       | 1.455       | 9    | 1.459       | 1.469       | 1.474       |
| 1.204       | 1.214       | 1.216       | 8    | 1.226       | 1.232       | 1.240       |
| .989        | .995        | 1.000       | 7    | 1.007       | 1.010       | 1.019       |
| .787        | .793        | .799        | 6    | .803        | .807        | .812        |
| .601        | .605        | .608        | 5    | .613        | .616        | .618        |
| .432        | .435        | .440        | 4    | .440        | .445        | .445        |
| .281        | .284        | .290        | 3    | .290        | .291        | .292        |
| .154        | .155        | .156        | 2    | .157        | .158        | .160        |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| Inches | 96 Inches<br>in<br>Diameter | Inch | 97 Inches<br>in<br>Diameter | Inches |
|--------|-----------------------------|------|-----------------------------|--------|
| 2      | .160                        | 48.5 | 15.995                      | .160   |
| 1      | .056                        | 48   | 15.785                      | .057   |
|        | 15.668                      | 47   | 15.365                      |        |
|        | 15.248                      | 46   | 14.945                      |        |
|        | 14.828                      | 45   | 14.525                      |        |
|        | 14.410                      | 44   | 14.108                      |        |
|        | 13.992                      | 43   | 13.692                      |        |
|        | 13.574                      | 42   | 13.276                      |        |
|        | 13.158                      | 41   | 12.860                      |        |
|        | 12.744                      | 40   | 12.446                      |        |
|        | 12.336                      | 39   | 12.033                      |        |
|        | 11.930                      | 38   | 11.622                      |        |
|        | 11.524                      | 37   | 11.214                      |        |
|        | 11.119                      | 36   | 10.807                      |        |
|        | 10.716                      | 35   | 10.400                      |        |
|        | 10.315                      | 34   | 9.997                       |        |
|        | 9.915                       | 33   | 9.599                       |        |
|        | 9.518                       | 32   | 9.204                       |        |
|        | 9.124                       | 31   | 8.810                       |        |
|        | 8.736                       | 30   | 8.420                       |        |
|        | 8.352                       | 29   | 8.035                       |        |
|        | 7.974                       | 28   | 7.654                       |        |
|        | 7.600                       | 27   | 7.274                       |        |
|        | 7.230                       | 26   | 6.897                       |        |
|        | 6.862                       | 25   | 6.526                       |        |
|        | 6.494                       | 24   | 6.163                       |        |
|        | 6.128                       | 23   | 5.803                       |        |
|        | 5.770                       | 22   | 5.450                       |        |
|        | 5.416                       | 21   | 5.101                       |        |
|        | 5.066                       | 20   | 4.757                       |        |
|        | 4.726                       | 19   | 4.421                       |        |
|        | 4.394                       | 18   | 4.092                       |        |
|        | 4.068                       | 17   | 3.770                       |        |
|        | 3.752                       | 16   | 3.455                       |        |
|        | 3.444                       | 15   | 3.145                       |        |
|        | 3.139                       | 14   | 2.844                       |        |
|        | 2.838                       | 13   | 2.554                       |        |
|        | 2.546                       | 12   | 2.273                       |        |
|        | 2.260                       | 11   | 2.001                       |        |
|        | 1.990                       | 10   | 1.742                       |        |
|        | 1.728                       | 9    | 1.492                       |        |
|        | 1.480                       | 8    | 1.254                       |        |
|        | 1.240                       | 7    | 1.032                       |        |
|        | 1.016                       | 6    | .821                        |        |
|        | .804                        | 5    | .625                        |        |
|        | .620                        | 4    | .448                        |        |
|        | .447                        | 3    | .293                        |        |
|        | .292                        |      |                             |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 98 Inches<br>in<br>Diameter | Inch | 99 Inches<br>in<br>Diameter | Inches |
|--------|-----------------------------|------|-----------------------------|--------|
| 3      | .295                        | 49.5 | 16.662                      | .297   |
| 2      | .162                        | 49   | 16.446                      | .162   |
| 1      | .058                        | 48   | 16.016                      | .058   |
|        | 15.473                      | 47   | 15.587                      |        |
|        | 15.049                      | 46   | 15.159                      |        |
|        | 14.626                      | 45   | 14.732                      |        |
|        | 14.205                      | 44   | 14.305                      |        |
|        | 13.784                      | 43   | 13.880                      |        |
|        | 13.363                      | 42   | 13.458                      |        |
|        | 12.944                      | 41   | 13.036                      |        |
|        | 12.527                      | 40   | 12.615                      |        |
|        | 12.111                      | 39   | 12.197                      |        |
|        | 11.698                      | 38   | 11.780                      |        |
|        | 11.287                      | 37   | 11.365                      |        |
|        | 10.877                      | 36   | 10.952                      |        |
|        | 10.468                      | 35   | 10.539                      |        |
|        | 10.063                      | 34   | 10.128                      |        |
|        | 9.661                       | 33   | 9.723                       |        |
|        | 9.263                       | 32   | 9.322                       |        |
|        | 8.867                       | 31   | 8.921                       |        |
|        | 8.473                       | 30   | 8.526                       |        |
|        | 8.085                       | 29   | 8.136                       |        |
|        | 7.700                       | 28   | 7.747                       |        |
|        | 7.318                       | 27   | 7.362                       |        |
|        | 6.940                       | 26   | 6.982                       |        |
|        | 6.569                       | 25   | 6.607                       |        |
|        | 6.203                       | 24   | 6.239                       |        |
|        | 5.841                       | 23   | 5.874                       |        |
|        | 5.484                       | 22   | 5.514                       |        |
|        | 5.131                       | 21   | 5.160                       |        |
|        | 4.786                       | 20   | 4.814                       |        |
|        | 4.449                       | 19   | 4.472                       |        |
|        | 4.116                       | 18   | 4.138                       |        |
|        | 3.792                       | 17   | 3.811                       |        |
|        | 3.472                       | 16   | 3.491                       |        |
|        | 3.160                       | 15   | 3.181                       |        |
|        | 2.856                       | 14   | 2.878                       |        |
|        | 2.565                       | 13   | 2.583                       |        |
|        | 2.282                       | 12   | 2.298                       |        |
|        | 2.016                       | 11   | 2.025                       |        |
|        | 1.754                       | 10   | 1.759                       |        |
|        | 1.501                       | 9    | 1.508                       |        |
|        | 1.260                       | 8    | 1.266                       |        |
|        | 1.035                       | 7    | 1.040                       |        |
|        | .823                        | 6    | .828                        |        |
|        | .628                        | 5    | .633                        |        |
|        | .453                        | 4    | .453                        |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 100 Inches<br>in Diameter | Inch | 101 Inches<br>in Diameter | Inches |
|--------|---------------------------|------|---------------------------|--------|
| 4      | .456                      | 50.5 | 17.342                    | .458   |
| 3      | .297                      | 50   | 17.122                    | .298   |
| 2      | .162                      | 49   | 16.683                    | .162   |
| 1      | .058                      | 48   | 16.247                    | .058   |
|        | 15.699                    | 47   | 15.812                    | 4      |
|        | 15.267                    | 46   | 15.377                    | 3      |
|        | 14.837                    | 45   | 14.942                    | 2      |
|        | 14.407                    | 44   | 14.507                    | 1      |
|        | 13.978                    | 43   | 14.073                    |        |
|        | 13.551                    | 42   | 13.642                    |        |
|        | 13.125                    | 41   | 13.213                    |        |
|        | 12.700                    | 40   | 12.784                    |        |
|        | 12.277                    | 39   | 12.356                    |        |
|        | 11.855                    | 38   | 11.931                    |        |
|        | 11.436                    | 37   | 11.508                    |        |
|        | 11.020                    | 36   | 11.090                    |        |
|        | 10.605                    | 35   | 10.672                    |        |
|        | 10.194                    | 34   | 10.257                    |        |
|        | 9.785                     | 33   | 9.846                     |        |
|        | 9.379                     | 32   | 9.437                     |        |
|        | 8.977                     | 31   | 9.032                     |        |
|        | 8.578                     | 30   | 8.630                     |        |
|        | 8.184                     | 29   | 8.233                     |        |
|        | 7.793                     | 28   | 7.840                     |        |
|        | 7.407                     | 27   | 7.450                     |        |
|        | 7.024                     | 26   | 7.065                     |        |
|        | 6.647                     | 25   | 6.685                     |        |
|        | 6.274                     | 24   | 6.811                     |        |
|        | 5.908                     | 23   | 5.942                     |        |
|        | 5.546                     | 22   | 5.579                     |        |
|        | 5.190                     | 21   | 5.221                     |        |
|        | 4.841                     | 20   | 4.868                     |        |
|        | 4.498                     | 19   | 4.523                     |        |
|        | 4.162                     | 18   | 4.185                     |        |
|        | 3.833                     | 17   | 3.855                     |        |
|        | 3.511                     | 16   | 3.531                     |        |
|        | 3.198                     | 15   | 3.215                     |        |
|        | 2.893                     | 14   | 2.908                     |        |
|        | 2.597                     | 13   | 2.612                     |        |
|        | 2.311                     | 12   | 2.324                     |        |
|        | 2.035                     | 11   | 2.041                     |        |
|        | 1.769                     | 10   | 1.779                     |        |
|        | 1.516                     | 9    | 1.524                     |        |
|        | 1.274                     | 8    | 1.282                     |        |
|        | 1.046                     | 7    | 1.053                     |        |
|        | .833                      | 6    | .838                      |        |
|        | .636                      | 5    | .640                      |        |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| Inches | 102 Inches<br>in<br>Diameter | Inch   | 103 Inches<br>in<br>Diameter | Inches |
|--------|------------------------------|--------|------------------------------|--------|
| 5      | .642                         | 51.5   | 18.035                       | .646   |
| 4      | .458                         | 17.687 | 17.811                       | .462   |
| 3      | .300                         | 17.246 | 17.364                       | .301   |
| 2      | .163                         | 16.805 | 16.918                       | .164   |
| 1      | .058                         | 16.364 | 16.473                       | .059   |
|        | 15.924                       | 47     | 16.030                       | 5      |
|        | 15.485                       | 46     | 15.587                       | 4      |
|        | 15.047                       | 45     | 15.144                       | 3      |
|        | 14.609                       | 44     | 14.701                       | 2      |
|        | 14.172                       | 43     | 14.259                       |        |
|        | 13.738                       | 42     | 13.819                       |        |
|        | 13.304                       | 41     | 13.384                       |        |
|        | 12.871                       | 40     | 12.950                       |        |
|        | 12.440                       | 39     | 12.516                       |        |
|        | 12.011                       | 38     | 12.083                       |        |
|        | 11.587                       | 37     | 11.655                       |        |
|        | 11.163                       | 36     | 11.229                       |        |
|        | 10.743                       | 35     | 10.805                       |        |
|        | 10.325                       | 34     | 10.386                       |        |
|        | 9.911                        | 33     | 9.968                        |        |
|        | 9.498                        | 32     | 9.556                        |        |
|        | 9.087                        | 31     | 9.147                        |        |
|        | 8.680                        | 30     | 8.738                        |        |
|        | 8.282                        | 29     | 8.331                        |        |
|        | 7.884                        | 28     | 7.930                        |        |
|        | 7.497                        | 27     | 7.537                        |        |
|        | 7.108                        | 26     | 7.148                        |        |
|        | 6.722                        | 25     | 6.764                        |        |
|        | 6.340                        | 24     | 6.387                        |        |
|        | 5.972                        | 23     | 6.010                        |        |
|        | 5.608                        | 22     | 5.644                        |        |
|        | 5.251                        | 21     | 5.281                        |        |
|        | 4.895                        | 20     | 4.924                        |        |
|        | 4.549                        | 19     | 4.576                        |        |
|        | 4.208                        | 18     | 4.230                        |        |
|        | 3.877                        | 17     | 3.896                        |        |
|        | 3.554                        | 16     | 3.568                        |        |
|        | 3.235                        | 15     | 3.250                        |        |
|        | 2.916                        | 14     | 2.938                        |        |
|        | 2.622                        | 13     | 2.639                        |        |
|        | 2.333                        | 12     | 2.348                        |        |
|        | 2.056                        | 11     | 2.069                        |        |
|        | 1.787                        | 10     | 1.798                        |        |
|        | 1.531                        | 9      | 1.542                        |        |
|        | 1.278                        | 8      | 1.295                        |        |
|        | 1.057                        | 7      | 1.064                        |        |
|        | .845                         | 6      | .844                         |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 104 Inches<br>in<br>Diameter | Inch | 105 Inches<br>in<br>Diameter | Inches |
|--------|------------------------------|------|------------------------------|--------|
| 6      | .850                         | 52.5 | 18.742                       | .853   |
| 5      | .649                         | 52   | 18.513                       | .652   |
| 4      | .467                         | 51   | 18.057                       | .469   |
| 3      | .302                         | 50   | 17.603                       | .304   |
| 2      | .164                         | 49   | 17.150                       | .165   |
| 1      | .059                         | 48   | 16.697                       | .059   |
|        | 16.140                       | 47   | 16.245                       |        |
|        | 15.693                       | 46   | 15.794                       |        |
|        | 15.247                       | 45   | 15.343                       |        |
|        | 14.802                       | 44   | 14.893                       |        |
|        | 14.357                       | 43   | 14.447                       |        |
|        | 13.912                       | 42   | 14.002                       |        |
|        | 13.470                       | 41   | 13.558                       |        |
|        | 13.032                       | 40   | 13.116                       |        |
|        | 12.597                       | 39   | 12.675                       |        |
|        | 12.164                       | 38   | 12.237                       |        |
|        | 11.732                       | 37   | 11.802                       |        |
|        | 11.297                       | 36   | 11.371                       |        |
|        | 10.872                       | 35   | 10.940                       |        |
|        | 10.450                       | 34   | 10.511                       |        |
|        | 10.029                       | 33   | 10.088                       |        |
|        | 9.610                        | 32   | 9.666                        |        |
|        | 9.198                        | 31   | 9.249                        |        |
|        | 8.789                        | 30   | 8.837                        |        |
|        | 8.382                        | 29   | 8.430                        |        |
|        | 7.978                        | 28   | 8.025                        |        |
|        | 7.582                        | 27   | 7.623                        |        |
|        | 7.190                        | 26   | 7.229                        |        |
|        | 6.804                        | 25   | 6.841                        |        |
|        | 6.423                        | 24   | 6.457                        |        |
|        | 6.046                        | 23   | 6.076                        |        |
|        | 5.671                        | 22   | 5.704                        |        |
|        | 5.308                        | 21   | 5.336                        |        |
|        | 4.950                        | 20   | 4.978                        |        |
|        | 4.599                        | 19   | 4.626                        |        |
|        | 4.255                        | 18   | 4.277                        |        |
|        | 3.920                        | 17   | 3.938                        |        |
|        | 3.588                        | 16   | 3.608                        |        |
|        | 3.267                        | 15   | 3.285                        |        |
|        | 2.955                        | 14   | 2.971                        |        |
|        | 2.653                        | 13   | 2.667                        |        |
|        | 2.361                        | 12   | 2.373                        |        |
|        | 2.080                        | 11   | 2.090                        |        |
|        | 1.809                        | 10   | 1.814                        |        |
|        | 1.548                        | 9    | 1.556                        |        |
|        | 1.300                        | 8    | 1.308                        |        |
|        | 1.068                        | 7    | 1.074                        |        |

M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 106 Inches<br>in<br>Diameter | Inch | 107 Inches<br>in<br>Diameter | Inches |
|--------|------------------------------|------|------------------------------|--------|
| 7      | 1.077                        | 53.5 | 19.463                       | 1.084  |
| 6      | .858                         | 58   | 19.230                       | .862   |
| 5      | .655                         | 52   | 18.766                       | .658   |
| 4      | .470                         | 51   | 18.303                       | .473   |
| 3      | .306                         | 50   | 17.841                       | .306   |
| 2      | .166                         | 49   | 17.381                       | .167   |
| 1      | .059                         | 48   | 16.922                       | .060   |
|        | 16.354                       | 47   | 16.463                       |        |
|        | 15.898                       | 46   | 16.004                       |        |
|        | 15.444                       | 45   | 15.545                       |        |
|        | 14.991                       | 44   | 15.087                       |        |
|        | 14.539                       | 43   | 14.629                       |        |
|        | 14.089                       | 42   | 14.176                       |        |
|        | 13.642                       | 41   | 13.724                       |        |
|        | 13.196                       | 40   | 13.275                       |        |
|        | 12.752                       | 39   | 12.828                       |        |
|        | 12.310                       | 38   | 12.384                       |        |
|        | 11.869                       | 37   | 11.943                       |        |
|        | 11.434                       | 36   | 11.503                       |        |
|        | 11.005                       | 35   | 11.069                       |        |
|        | 10.576                       | 34   | 10.635                       |        |
|        | 10.150                       | 33   | 10.205                       |        |
|        | 9.725                        | 32   | 9.779                        |        |
|        | 9.303                        | 31   | 9.354                        |        |
|        | 8.888                        | 30   | 8.937                        |        |
|        | 8.474                        | 29   | 8.523                        |        |
|        | 8.069                        | 28   | 8.116                        |        |
|        | 7.668                        | 27   | 7.710                        |        |
|        | 7.272                        | 26   | 7.312                        |        |
|        | 6.877                        | 25   | 6.919                        |        |
|        | 6.491                        | 24   | 6.526                        |        |
|        | 6.111                        | 23   | 6.143                        |        |
|        | 5.733                        | 22   | 5.767                        |        |
|        | 5.366                        | 21   | 5.395                        |        |
|        | 5.005                        | 20   | 5.029                        |        |
|        | 4.648                        | 19   | 4.673                        |        |
|        | 4.300                        | 18   | 4.323                        |        |
|        | 3.960                        | 17   | 3.980                        |        |
|        | 3.626                        | 16   | 3.643                        |        |
|        | 3.302                        | 15   | 3.320                        |        |
|        | 2.988                        | 14   | 3.001                        |        |
|        | 2.680                        | 13   | 2.696                        |        |
|        | 2.384                        | 12   | 2.398                        |        |
|        | 2.101                        | 11   | 2.110                        |        |
|        | 1.824                        | 10   | 1.834                        |        |
|        | 1.564                        | 9    | 1.571                        |        |
|        | 1.314                        | 8    | 1.320                        |        |

M I S C E L L A N E O U S

HORIZONTAL TANKS.

Multiply capacity in tables by length of tank in inches.

| Inches | 108 Inches |          | Inch | 109 Inches |          | Inches |
|--------|------------|----------|------|------------|----------|--------|
|        | in         | Diameter |      | in         | Diameter |        |
| 8      | 1.323      | 19.828   | 54   | 20.198     | 1.336    | 8      |
| 7      | 1.085      | 19.359   | 53   | 19.962     | 1.095    | 7      |
| 6      | .868       | 18.892   | 52   | 19.490     | .871     | 6      |
| 5      | .662       | 18.426   | 51   | 19.019     | .665     | 5      |
| 4      | .476       | 17.961   | 50   | 18.548     | .477     | 4      |
| 3      | .309       | 17.496   | 49   | 18.077     | .309     | 3      |
| 2      | .169       | 17.031   | 48   | 17.607     | .170     | 2      |
| 1      | .060       | 16.567   | 47   | 17.137     | .060     | 1      |
|        |            | 16.103   | 46   | 16.670     |          |        |
|        |            | 15.639   | 45   | 16.203     |          |        |
|        |            | 15.178   | 44   | 15.737     |          |        |
|        |            | 14.719   | 43   | 15.272     |          |        |
|        |            | 14.263   | 42   | 14.810     |          |        |
|        |            | 13.810   | 41   | 14.349     |          |        |
|        |            | 13.359   | 40   | 13.890     |          |        |
|        |            | 12.910   | 39   | 13.435     |          |        |
|        |            | 12.464   | 38   | 12.983     |          |        |
|        |            | 12.019   | 37   | 12.531     |          |        |
|        |            | 11.576   | 36   | 12.083     |          |        |
|        |            | 11.135   | 35   | 11.639     |          |        |
|        |            | 10.698   | 34   | 11.197     |          |        |
|        |            | 10.265   | 33   | 10.758     |          |        |
|        |            | 9.836    | 32   | 10.322     |          |        |
|        |            | 9.412    | 31   | 9.892      |          |        |
|        |            | 8.992    | 30   | 9.463      |          |        |
|        |            | 8.576    | 29   | 9.037      |          |        |
|        |            | 8.165    | 28   | 8.619      |          |        |
|        |            | 7.756    | 27   | 8.207      |          |        |
|        |            | 7.352    | 26   | 7.796      |          |        |
|        |            | 6.953    | 25   | 7.391      |          |        |
|        |            | 6.560    | 24   | 6.993      |          |        |
|        |            | 6.176    | 23   | 6.597      |          |        |
|        |            | 5.797    | 22   | 6.209      |          |        |
|        |            | 5.428    | 21   | 5.827      |          |        |
|        |            | 5.059    | 20   | 5.453      |          |        |
|        |            | 4.696    | 19   | 5.084      |          |        |
|        |            | 4.343    | 18   | 4.720      |          |        |
|        |            | 4.000    | 17   | 4.367      |          |        |
|        |            | 3.661    | 16   | 4.022      |          |        |
|        |            | 3.335    | 15   | 3.682      |          |        |
|        |            | 3.020    | 14   | 3.353      |          |        |
|        |            | 2.711    | 13   | 3.032      |          |        |
|        |            | 2.409    | 12   | 2.723      |          |        |
|        |            | 2.121    | 11   | 2.422      |          |        |
|        |            | 1.843    | 10   | 2.131      |          |        |
|        |            | 1.575    | 9    | 1.852      |          |        |
|        |            |          |      | 1.586      |          |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 110 Inches<br>in<br>Diameter |        | Inch | 111 Inches<br>in<br>Diameter |       | Inches |
|--------|------------------------------|--------|------|------------------------------|-------|--------|
| 9      | 1.599                        |        | 55.5 | 20.946                       | 1.600 | 9      |
| 8      | 1.347                        | 20.570 | 55   | 20.703                       | 1.347 | 8      |
| 7      | 1.102                        | 20.093 | 54   | 20.219                       | 1.106 | 7      |
| 6      | .876                         | 19.616 | 53   | 19.738                       | .880  | 6      |
| 5      | .671                         | 19.140 | 52   | 19.259                       | .671  | 5      |
| 4      | .479                         | 18.664 | 51   | 18.781                       | .480  | 4      |
| 3      | .310                         | 18.188 | 50   | 18.305                       | .312  | 3      |
| 2      | .170                         | 17.715 | 49   | 17.829                       | .170  | 2      |
| 1      | .060                         | 17.244 | 48   | 17.353                       | .061  | 1      |
|        |                              | 16.774 | 47   | 16.877                       |       |        |
|        |                              | 16.304 | 46   | 16.403                       |       |        |
|        |                              | 15.836 | 45   | 15.932                       |       |        |
|        |                              | 15.368 | 44   | 15.461                       |       |        |
|        |                              | 14.905 | 43   | 14.992                       |       |        |
|        |                              | 14.444 | 42   | 14.523                       |       |        |
|        |                              | 13.983 | 41   | 14.064                       |       |        |
|        |                              | 13.524 | 40   | 13.589                       |       |        |
|        |                              | 13.066 | 39   | 13.130                       |       |        |
|        |                              | 12.608 | 38   | 12.676                       |       |        |
|        |                              | 12.155 | 37   | 12.223                       |       |        |
|        |                              | 11.704 | 36   | 11.772                       |       |        |
|        |                              | 11.258 | 35   | 11.323                       |       |        |
|        |                              | 10.816 | 34   | 10.879                       |       |        |
|        |                              | 10.378 | 33   | 10.437                       |       |        |
|        |                              | 9.944  | 32   | 10.002                       |       |        |
|        |                              | 9.514  | 31   | 9.570                        |       |        |
|        |                              | 9.087  | 30   | 9.141                        |       |        |
|        |                              | 8.664  | 29   | 8.714                        |       |        |
|        |                              | 8.244  | 28   | 8.290                        |       |        |
|        |                              | 7.833  | 27   | 7.878                        |       |        |
|        |                              | 7.428  | 26   | 7.468                        |       |        |
|        |                              | 7.026  | 25   | 7.063                        |       |        |
|        |                              | 6.628  | 24   | 6.665                        |       |        |
|        |                              | 6.238  | 23   | 6.274                        |       |        |
|        |                              | 5.856  | 22   | 5.888                        |       |        |
|        |                              | 5.481  | 21   | 5.509                        |       |        |
|        |                              | 5.116  | 20   | 5.136                        |       |        |
|        |                              | 4.754  | 19   | 4.771                        |       |        |
|        |                              | 4.396  | 18   | 4.413                        |       |        |
|        |                              | 4.046  | 17   | 4.059                        |       |        |
|        |                              | 3.704  | 16   | 3.718                        |       |        |
|        |                              | 3.366  | 15   | 3.385                        |       |        |
|        |                              | 3.036  | 14   | 3.062                        |       |        |
|        |                              | 2.724  | 13   | 2.748                        |       |        |
|        |                              | 2.428  | 12   | 2.445                        |       |        |
|        |                              | 2.140  | 11   | 2.153                        |       |        |
|        |                              | 1.864  | 10   | 1.870                        |       |        |

**M I S C E L L A N E O U S**

**HORIZONTAL TANKS**  
 Multiply capacity in tables by length of tank in inches.

| Inches | 112 Inches<br>in<br>Diameter | Inch | 113 Inches<br>in<br>Diameter | Inches |
|--------|------------------------------|------|------------------------------|--------|
| 10     | <b>1.881</b>                 | 56.5 | 21.707                       | 10     |
| 9      | <b>1.610</b>                 | 56   | 21.461                       | 9      |
| 8      | <b>1.350</b>                 | 55   | 20.971                       | 8      |
| 7      | <b>1.111</b>                 | 54   | 20.481                       | 7      |
| 6      | <b>.885</b>                  | 53   | 19.991                       | 6      |
| 5      | <b>.674</b>                  | 52   | 19.504                       | 5      |
| 4      | <b>.482</b>                  | 51   | 19.017                       | 4      |
| 3      | <b>.314</b>                  | 50   | 18.530                       | 3      |
| 2      | <b>.171</b>                  | 49   | 18.044                       | 2      |
| 1      | <b>.061</b>                  | 48   | 17.559                       | 1      |
|        | 16.980                       | 47   | 17.074                       |        |
|        | 16.503                       | 46   | 16.590                       |        |
|        | 16.028                       | 45   | 16.112                       |        |
|        | 15.554                       | 44   | 15.638                       |        |
|        | 15.080                       | 43   | 15.165                       |        |
|        | 14.610                       | 42   | 14.692                       |        |
|        | 14.141                       | 41   | 14.221                       |        |
|        | 13.672                       | 40   | 13.751                       |        |
|        | 13.210                       | 39   | 13.283                       |        |
|        | 12.751                       | 38   | 12.821                       |        |
|        | 12.292                       | 37   | 12.361                       |        |
|        | 11.838                       | 36   | 11.904                       |        |
|        | 11.388                       | 35   | 11.449                       |        |
|        | 10.942                       | 34   | 10.999                       |        |
|        | 10.497                       | 33   | 10.552                       |        |
|        | 10.055                       | 32   | 10.108                       |        |
|        | 9.620                        | 31   | 9.669                        |        |
|        | 9.188                        | 30   | 9.235                        |        |
|        | 8.761                        | 29   | 8.805                        |        |
|        | 8.338                        | 28   | 8.383                        |        |
|        | 7.919                        | 27   | 7.962                        |        |
|        | 7.507                        | 26   | 7.548                        |        |
|        | 7.101                        | 25   | 7.139                        |        |
|        | 6.703                        | 24   | 6.736                        |        |
|        | 6.307                        | 23   | 6.339                        |        |
|        | 5.916                        | 22   | 5.948                        |        |
|        | 5.536                        | 21   | 5.560                        |        |
|        | 5.163                        | 20   | 5.188                        |        |
|        | 4.795                        | 19   | 4.817                        |        |
|        | 4.434                        | 18   | 4.457                        |        |
|        | 4.081                        | 17   | 4.101                        |        |
|        | 3.738                        | 16   | 3.755                        |        |
|        | 3.402                        | 15   | 3.419                        |        |
|        | 3.077                        | 14   | 3.091                        |        |
|        | 2.764                        | 13   | 2.772                        |        |
|        | 2.457                        | 12   | 2.468                        |        |
|        | 2.162                        | 11   | 2.171                        |        |

## M I S C E L L A N E O U S

## HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| Inches | 114 Inches |                | Inch | 115 Inches |                | Inches |
|--------|------------|----------------|------|------------|----------------|--------|
|        |            | in<br>Diameter |      |            | in<br>Diameter |        |
| 11     | 2.183      |                | 57.5 | 22.482     | 2.192          | 11     |
| 10     | 1.898      | 22.093         | 57   | 22.230     | 1.907          | 10     |
| 9      | 1.624      | 21.599         | 56   | 21.733     | 1.632          | 9      |
| 8      | 1.365      | 21.105         | 55   | 21.236     | 1.371          | 8      |
| 7      | 1.120      | 20.611         | 54   | 20.740     | 1.126          | 7      |
| 6      | .890       | 20.117         | 53   | 20.244     | .895           | 6      |
| 5      | .681       | 19.624         | 52   | 19.748     | .684           | 5      |
| 4      | .488       | 19.132         | 51   | 19.252     | .490           | 4      |
| 3      | .317       | 18.643         | 50   | 18.756     | .319           | 3      |
| 2      | .172       | 18.155         | 49   | 18.262     | .173           | 2      |
| 1      | .062       | 17.668         | 48   | 17.772     | .062           | 1      |
|        | 17.181     |                | 47   | 17.282     |                |        |
|        | 16.695     |                | 46   | 16.795     |                |        |
|        | 16.212     |                | 45   | 16.309     |                |        |
|        | 15.731     |                | 44   | 15.823     |                |        |
|        | 15.253     |                | 43   | 15.341     |                |        |
|        | 14.775     |                | 42   | 14.862     |                |        |
|        | 14.299     |                | 41   | 14.383     |                |        |
|        | 13.828     |                | 40   | 13.906     |                |        |
|        | 13.360     |                | 39   | 13.431     |                |        |
|        | 12.893     |                | 38   | 12.964     |                |        |
|        | 12.428     |                | 37   | 12.497     |                |        |
|        | 11.967     |                | 36   | 12.033     |                |        |
|        | 11.511     |                | 35   | 11.572     |                |        |
|        | 11.057     |                | 34   | 11.116     |                |        |
|        | 10.609     |                | 33   | 10.664     |                |        |
|        | 10.165     |                | 32   | 10.217     |                |        |
|        | 9.722      |                | 31   | 9.771      |                |        |
|        | 9.288      |                | 30   | 9.331      |                |        |
|        | 8.856      |                | 29   | 8.898      |                |        |
|        | 8.425      |                | 28   | 8.468      |                |        |
|        | 8.003      |                | 27   | 8.040      |                |        |
|        | 7.583      |                | 26   | 7.622      |                |        |
|        | 7.176      |                | 25   | 7.213      |                |        |
|        | 6.770      |                | 24   | 6.806      |                |        |
|        | 6.369      |                | 23   | 6.401      |                |        |
|        | 5.978      |                | 22   | 6.007      |                |        |
|        | 5.592      |                | 21   | 5.619      |                |        |
|        | 5.212      |                | 20   | 5.238      |                |        |
|        | 4.841      |                | 19   | 4.865      |                |        |
|        | 4.476      |                | 18   | 4.499      |                |        |
|        | 4.120      |                | 17   | 4.139      |                |        |
|        | 3.771      |                | 16   | 3.786      |                |        |
|        | 3.436      |                | 15   | 3.451      |                |        |
|        | 3.109      |                | 14   | 3.121      |                |        |
|        | 2.786      |                | 13   | 2.799      |                |        |

M I S C E L L A N E O U S

HORIZONTAL TANKS

Multiply capacity in tables by length of tank in inches.

| Inches | 116 Inches<br>in<br>Diameter | Inch | 117 Inches<br>in<br>Diameter | Inches |
|--------|------------------------------|------|------------------------------|--------|
| 12     | 2.502                        | 58.5 | 23.271                       | 2.516  |
| 11     | 2.201                        | 58   | 23.016                       | 2.215  |
| 10     | 1.914                        | 57   | 22.506                       | 1.925  |
| 9      | 1.639                        | 56   | 21.998                       | 1.645  |
| 8      | 1.376                        | 55   | 21.493                       | 1.385  |
| 7      | 1.131                        | 54   | 20.989                       | 1.136  |
| 6      | .899                         | 53   | 20.485                       | .903   |
| 5      | .686                         | 52   | 19.992                       | .689   |
| 4      | .492                         | 51   | 19.479                       | .496   |
| 3      | .320                         | 50   | 18.977                       | .321   |
| 2      | .175                         | 49   | 18.476                       | .175   |
| 1      | .062                         | 48   | 17.975                       | .063   |
|        | 17.382                       | 47   | 17.478                       |        |
|        | 16.888                       | 46   | 16.984                       |        |
|        | 16.398                       | 45   | 16.491                       |        |
|        | 15.911                       | 44   | 15.999                       |        |
|        | 15.427                       | 43   | 15.510                       |        |
|        | 14.944                       | 42   | 15.024                       |        |
|        | 14.462                       | 41   | 14.540                       |        |
|        | 13.981                       | 40   | 14.056                       |        |
|        | 13.501                       | 39   | 13.578                       |        |
|        | 13.023                       | 38   | 13.102                       |        |
|        | 12.549                       | 37   | 12.632                       |        |
|        | 12.079                       | 36   | 12.162                       |        |
|        | 11.613                       | 35   | 11.698                       |        |
|        | 11.152                       | 34   | 11.238                       |        |
|        | 10.697                       | 33   | 10.778                       |        |
|        | 10.250                       | 32   | 10.323                       |        |
|        | 9.812                        | 31   | 9.872                        |        |
|        | 9.377                        | 30   | 9.428                        |        |
|        | 8.944                        | 29   | 8.988                        |        |
|        | 8.513                        | 28   | 8.555                        |        |
|        | 8.086                        | 27   | 8.125                        |        |
|        | 7.663                        | 26   | 7.701                        |        |
|        | 7.247                        | 25   | 7.282                        |        |
|        | 6.838                        | 24   | 6.870                        |        |
|        | 6.434                        | 23   | 6.460                        |        |
|        | 6.036                        | 22   | 6.065                        |        |
|        | 5.645                        | 21   | 5.675                        |        |
|        | 5.262                        | 20   | 5.292                        |        |
|        | 4.888                        | 19   | 4.913                        |        |
|        | 4.519                        | 18   | 4.541                        |        |
|        | 4.160                        | 17   | 4.179                        |        |
|        | 3.813                        | 16   | 3.826                        |        |
|        | 3.468                        | 15   | 3.483                        |        |
|        | 3.136                        | 14   | 3.149                        |        |
|        | 2.813                        | 13   | 2.828                        |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 118 Inches<br>in Diameter | Inch | 119 Inches<br>in Diameter | Inches |
|--------|---------------------------|------|---------------------------|--------|
| 12     | 2.526                     | 59.5 | 24.074                    | 2.535  |
| 11     | 2.223                     | 59   | 23.816                    | 2.232  |
| 10     | 1.932                     | 58   | 23.301                    | 1.938  |
| 9      | 1.655                     | 57   | 22.787                    | 1.659  |
| 8      | 1.390                     | 56   | 22.273                    | 1.396  |
| 7      | 1.141                     | 55   | 21.760                    | 1.146  |
| 6      | .909                      | 54   | 21.247                    | .910   |
| 5      | .694                      | 53   | 20.734                    | .696   |
| 4      | .497                      | 52   | 20.221                    | .498   |
| 3      | .322                      | 51   | 19.710                    | .325   |
| 2      | .175                      | 50   | 19.203                    | .178   |
| 1      | .063                      | 49   | 18.697                    | .063   |
|        | 18.083                    | 48   | 18.191                    |        |
|        | 17.582                    | 47   | 17.685                    |        |
|        | 17.082                    | 46   | 17.182                    |        |
|        | 16.584                    | 45   | 16.681                    |        |
|        | 16.088                    | 44   | 16.180                    |        |
|        | 15.595                    | 43   | 15.682                    |        |
|        | 15.105                    | 42   | 15.188                    |        |
|        | 14.620                    | 41   | 14.697                    |        |
|        | 14.137                    | 40   | 14.209                    |        |
|        | 13.654                    | 39   | 13.725                    |        |
|        | 13.174                    | 38   | 13.245                    |        |
|        | 12.698                    | 37   | 12.767                    |        |
|        | 12.225                    | 36   | 12.291                    |        |
|        | 11.758                    | 35   | 11.818                    |        |
|        | 11.292                    | 34   | 11.350                    |        |
|        | 10.832                    | 33   | 10.888                    |        |
|        | 10.377                    | 32   | 10.429                    |        |
|        | 9.924                     | 31   | 9.975                     |        |
|        | 9.476                     | 30   | 9.524                     |        |
|        | 9.031                     | 29   | 9.082                     |        |
|        | 8.595                     | 28   | 8.643                     |        |
|        | 8.165                     | 27   | 8.207                     |        |
|        | 7.739                     | 26   | 7.779                     |        |
|        | 7.319                     | 25   | 7.357                     |        |
|        | 6.905                     | 24   | 6.940                     |        |
|        | 6.496                     | 23   | 6.529                     |        |
|        | 6.094                     | 22   | 6.127                     |        |
|        | 5.702                     | 21   | 5.730                     |        |
|        | 5.317                     | 20   | 5.342                     |        |
|        | 4.937                     | 19   | 4.959                     |        |
|        | 4.562                     | 18   | 4.587                     |        |
|        | 4.197                     | 17   | 4.220                     |        |
|        | 3.845                     | 16   | 3.867                     |        |
|        | 3.501                     | 15   | 3.520                     |        |
|        | 3.163                     | 14   | 3.180                     |        |
|        | 2.841                     | 13   | 2.853                     |        |

## M I S C E L L A N E O U S

**HORIZONTAL TANKS**

Multiply capacity in tables by length of tank in inches.

| Inches | 120 Inches<br>in Diameter |        | Inches |
|--------|---------------------------|--------|--------|
| 13     | 2.866                     | 24.479 | 60     |
| 12     | 2.587                     | 23.954 | 59     |
| 11     | 2.239                     | 23.434 | 58     |
| 10     | 1.949                     | 22.914 | 57     |
| 9      | 1.668                     | 22.395 | 56     |
| 8      | 1.396                     | 21.877 | 55     |
| 7      | 1.151                     | 21.359 | 54     |
| 6      | .915                      | 20.842 | 53     |
| 5      | .699                      | 20.328 | 52     |
| 4      | .501                      | 19.815 | 51     |
| 3      | .326                      | 19.305 | 50     |
| 2      | .178                      | 18.795 | 49     |
| 1      | .063                      | 18.287 | 48     |
|        |                           | 17.780 | 47     |
|        |                           | 17.273 | 46     |
|        |                           | 16.767 | 45     |
|        |                           | 16.265 | 44     |
|        |                           | 15.768 | 43     |
|        |                           | 15.273 | 42     |
|        |                           | 14.779 | 41     |
|        |                           | 14.287 | 40     |
|        |                           | 13.797 | 39     |
|        |                           | 13.314 | 38     |
|        |                           | 12.833 | 37     |
|        |                           | 12.354 | 36     |
|        |                           | 11.881 | 35     |
|        |                           | 11.411 | 34     |
|        |                           | 10.944 | 33     |
|        |                           | 10.483 | 32     |
|        |                           | 10.024 | 31     |
|        |                           | 9.567  | 30     |
|        |                           | 9.124  | 29     |
|        |                           | 8.683  | 28     |
|        |                           | 8.244  | 27     |
|        |                           | 7.816  | 26     |
|        |                           | 7.393  | 25     |
|        |                           | 6.976  | 24     |
|        |                           | 6.561  | 23     |
|        |                           | 6.153  | 22     |
|        |                           | 5.751  | 21     |
|        |                           | 5.363  | 20     |
|        |                           | 4.981  | 19     |
|        |                           | 4.608  | 18     |
|        |                           | 4.240  | 17     |
|        |                           | 3.882  | 16     |
|        |                           | 3.538  | 15     |
|        |                           | 3.198  | 14     |



# INDEX

| PAGE                                                                                                        | PAGE                                                                                              |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Absorption analysis to determine gasoline content in casinghead gas.....36                                  | Boiling point.....146                                                                             |
| Absorption of gasoline from casinghead gas.....195                                                          | Boiling points, per cent loss<br>for different.....148                                            |
| Absorption method.....152                                                                                   | Booster station.....65                                                                            |
| —cost data.....182                                                                                          | British thermal units.....29                                                                      |
| —distillation test of gasoline obtained by.....176                                                          | Burning liquids, extinguishing.....156                                                            |
| —evaporation loss of gasoline obtained .....                                                                |                                                                                                   |
| Absorption of gasoline from natural gas, effect of pressure and temperature on the.....182                  | Calculation of amount of gasoline extracted from natural gas by the absorption method.....193     |
| —by means of naphtha and mineral seal oil.....183                                                           | Capacities of pipe lines.....91-105<br>—comparative.....84                                        |
| —vapor in air .....                                                                                         | Capacities of thin orifices.....56-62<br>—vacuum pumps (chart).....68                             |
| Advantage of pumping gas under a vacuum.....65                                                              | Capacity and weight of wrought iron pipe .....88                                                  |
| Air from suction lines, eliminating.....69                                                                  | Capacity of casinghead gas wells.....54                                                           |
| —gasoline vapor in.....159                                                                                  | Capacity of compressors.....126                                                                   |
| —in casinghead gas.....67                                                                                   | Carbon black.....152<br>—dioxide and oxygen in gas.....73                                         |
| Ammonia refrigerating machine.....139                                                                       | Care of tank cars.....208                                                                         |
| Amount of oil used per thousand cubic feet of.. natural gas to obtain the largest yield of gasoline.....175 | Cars, insulated tank.....204<br>—tank.....204                                                     |
| Analyses of gases from different plant operation.....136                                                    | Casinghead gas.....5<br>—absorption of gasoline from.....195<br>—air in .....                     |
| Analysis, comments on.....175                                                                               | —analysis.....33<br>—analysis for gasoline content .....                                          |
| Analysis of casinghead gas for gasoline.....33                                                              | —quality of .....                                                                                 |
| —to determine gasoline content, Absorption.....36                                                           | —testing.....36<br>—wells, capacity of .....                                                      |
| Apparatus for testing vapor pressure of gasoline.....217                                                    | Casing sizes.....63                                                                               |
| —Orsat.....73                                                                                               | Centigrade and fahrenheit scales.....233                                                          |
| Average monthly prices.....18                                                                               | Centigrade to fahrenheit, (table).....234                                                         |
| Baume scale and specific gravity equivalent.....219                                                         | Change in composition and quantity of natural gas before and after extraction of gasoline.....174 |
| Blending.....144                                                                                            |                                                                                                   |
| —evaporation losses in.....144                                                                              |                                                                                                   |

## I N D E X

---

| PAGE                                                                                                            | PAGE                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Chart of normal temperatures.....198                                                                            | Description of experimental plants using mineral seal oil and steam distillation.....167                               |
| —various hydrocarbons.....28                                                                                    | Detailed precautions concerning the handling of gasoline.....155                                                       |
| —per cent loss for different boiling points.....148                                                             | Determination of the gasoline content of "dry" natural gas.....189                                                     |
| Circulating water.....142                                                                                       | Development of the general process of passing natural gases through oils or naphtha for extraction of gasoline.....165 |
| Combination process of absorption of gasoline from natural gas by means of naphtha and mineral seal oil.....183 | Diameter and length of services for gas engines.....142                                                                |
| Combustible gases, explosive mixtures of.....46                                                                 | Dimensions, capacity and weight of wrought iron pipe.....88                                                            |
| Comments on analyses.....175                                                                                    | Distillation test of gasoline obtained by absorption method.....176                                                    |
| Comparative capacities of pipe lines.....84                                                                     | Drips, Pipe line.....86                                                                                                |
| Comparison of Inflammability of gasoline and of gasoline vapor.....160                                          | <br>                                                                                                                   |
| Composition and quantity of natural gas before and after extraction of gasoline.....174                         | Effect of Pressure and temperature on the absorption of gasoline from natural gas.....182                              |
| Compression and liquefaction of the constituents of casinghead gas in plant operation.....133                   | Electric flash light.....163                                                                                           |
| Compression method.....122                                                                                      | Eliminating air from suction lines.....69                                                                              |
| Compressor capacities.....126                                                                                   | Equivalents of ounces, per square inch, in inches of water and mercury.....121                                         |
| Computing flow of gas in pipe lines.....89                                                                      | Ethane.....27                                                                                                          |
| Condensates, solution of gas in.....41                                                                          | Evaporation losses in blending.....144                                                                                 |
| Condensing pressures.....133                                                                                    | —losses of different mixtures of casinghead gas condensate and refinery naphthas.....144                               |
| Construction of plant.....124                                                                                   | —rule of thumb.....199                                                                                                 |
| Cost data of absorption method.....182                                                                          | —of gasoline.....177                                                                                                   |
| —insulated tank car.....204                                                                                     | —obtained by absorption method and a comparison with different blends and refinery gasoline.....176                    |
| Damage to plant machinery.....69                                                                                | Exhaust pipe.....142                                                                                                   |
| Dangers of the electric flash light.....163                                                                     |                                                                                                                        |
| Data regarding uncondensed vapors from still.....178                                                            |                                                                                                                        |
| Demurrage rules on railroads.....210                                                                            |                                                                                                                        |
| Density changes in gas volumes above and below Atmospheric pressure.....114                                     |                                                                                                                        |

# I N D E X

---

| PAGE                                                                                   | PAGE                                                                         |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Expander-compressor.....127                                                            | Gasoline ( <i>cont.</i> )                                                    |
| Experimental plants using<br>mineral seal oil and<br>steam distillation.....167        | —content of "dry" natural<br>gas,—determination of...189                     |
| Experiments in liquefying<br>crude casinghead gas.....34                               | —evaporation loss of .....177                                                |
| Explosions from blowing<br>safety valves on tank<br>cars.....208                       | —extracted from natural<br>gas by absorption<br>method.....164-193           |
| Explosive mixtures for para-<br>ffin gases and vapors.....46                           | —from natural gas by<br>passing through naph-<br>tha, extraction of.....184  |
| —of combustible gases.....46                                                           | —from natural gas, pro-<br>duction in 1914.....11                            |
| Explosive range of mixtures<br>of gasoline vapor and<br>air.....161                    | —gas .....19                                                                 |
| Exports of gasoline, naphtha<br>and benzine, in 1915.....17                            | —produced, purchased<br>and sold in 1915.....15                              |
| Extinguishing burning liquids.....156                                                  | —produced by refineries<br>in 1915 .....14                                   |
| Extinguish fires, to.....163                                                           | —shipping .....197                                                           |
| Extraction of gasoline from<br>natural gas by absorp-<br>tion methods.....164          | —transportation.....197                                                      |
| —by passing through<br>naphtha .....184                                                | —transporting from plant<br>to loading rack.....150                          |
| Fahrenheit and centigrade<br>scales.....233                                            | vapor in air.....159                                                         |
| Fires and explosions from<br>blowing safety valves on<br>tank cars.....208             | —vapor that air will carry,<br>proportions of different<br>grades of.....160 |
| Foam as an extinguisher.....156                                                        | Gas relief regulator.....136                                                 |
| Formula for computing flow<br>of gas in pipe lines.....89                              | Gauge of tank cars, to find.....204                                          |
| —determining quantity of<br>gas when measured above<br>or below normal pressure.116    | Gravities and weights of<br>liquids heavier than<br>water.....230 to 232     |
| Freight rates in car ship-<br>ments.....211                                            | —lighter than water 221 to 229                                               |
| Frothy liquid mixture as as<br>extinguisher.....158                                    | Handling gasoline.....155                                                    |
| Gas engine horse power.....141                                                         | Hazards in handling gasoline.155                                             |
| Gas engines, length and<br>diameter of services for ..142                              | Heating gasoline, pressures<br>generated by.....202                          |
| Gasoline and gasoline vapor<br>to inflammability, re-<br>lation of properties of...159 | —value and specific grav-<br>ity.....31                                      |
| —content of crude petro-<br>leum produced during<br>1915 .....12                       | Heat values of lighter hydro-<br>carbons .....45                             |
|                                                                                        | History .....8                                                               |
|                                                                                        | Horizontal tank tables.245 to 267                                            |
|                                                                                        | Horse power of gas engines...141                                             |
|                                                                                        | Hydrocarbons .....29                                                         |
|                                                                                        | —Chart of various.....28                                                     |
|                                                                                        | —heat values of lighter....45                                                |
|                                                                                        | —Properties of seven par-<br>affin.....41                                    |
|                                                                                        | —vapor tension of .....26                                                    |

# I N D E X

---

| PAGE                                                                                                                                | PAGE                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Increased cost of gas due to mixture of air.....70                                                                                  | Mileage rules of railroads....212                                                                                                                |
| Inflammability of gasoline and gasoline vapors.....160                                                                              | Mixtures of gasoline vapor and air, explosive range of.....160                                                                                   |
| Insulated tank cars.....204                                                                                                         | Multipliers for reducing gas volumes or meter readings to different pressure bases.....117                                                       |
| Interpretation of results of tests.....42                                                                                           |                                                                                                                                                  |
| Interstate Commerce Commission, rules of.....213                                                                                    |                                                                                                                                                  |
| Laboratory tests of gas from different gasoline plants.137                                                                          | Natural gas.....27                                                                                                                               |
| "Lean" natural gas.....164<br>—for gasoline, testing.....189                                                                        | Nitrogen.....29                                                                                                                                  |
| Length and diameter of services for gas engines.....142                                                                             | Normal daily temperatures.198<br>—of Parkersburg, W. Va....200<br>—of Oklahoma City, Okla....201                                                 |
| Lighting plant.....135                                                                                                              |                                                                                                                                                  |
| Limit of load.....211                                                                                                               |                                                                                                                                                  |
| Liquefaction and compression of constituents of casinghead gas in plant operation.....133                                           | Orsat apparatus for determining oxygen and carbon dioxide in gas.....78                                                                          |
| Liquefying crude casinghead gas.....34                                                                                              | Ounces, equivalents of.....121                                                                                                                   |
| Loss of gasoline by evaporation.....177                                                                                             | Outage table.....206                                                                                                                             |
| Loss, pipe line.....86<br>—of production.....69                                                                                     | Oxygen.....29<br>—and carbon dioxide in gas.73                                                                                                   |
| Low explosive mixtures for paraffin gases and vapors.46                                                                             | Paraffin hydrocarbons, properties of.....41                                                                                                      |
| Market.....218                                                                                                                      | Percentage of vapor condensed by compression and cooling.....133                                                                                 |
| Marketed production of gasoline from natural gas in 1914.....11                                                                     | Percentages used in testing large capacity meter.....112                                                                                         |
| Measurements of tanks.....235                                                                                                       | Physical constants of different gases.....47                                                                                                     |
| Measuring air through a funnel, pressures to be used.....110                                                                        | Pipe line capacities.....91-105<br>—drips.....86<br>—loss.....86<br>—system plan.....81                                                          |
| Measuring casinghead gas.....106                                                                                                    | Plan of pipe line system on an oil well lease.....81                                                                                             |
| Mercury pressure, Equivalents of.....121                                                                                            | Plant construction.....124                                                                                                                       |
| Meter, Proper size to measure gas at a vacuum.....106                                                                               | —machinery, damage to .....69                                                                                                                    |
| Methane.....27                                                                                                                      | Precautions concerning the handling of gasoline.....155                                                                                          |
| Method of calculating Orsat analysis.....78<br>—making vapor pressure tests and remarks on shipping liquefied petroleum gas.....216 | Pressure and temperature effects on the absorption of gasoline from natural gas.....182                                                          |
|                                                                                                                                     | Pressures generated by heating gasoline and confined liquefied natural gas....202<br>—to be used in measuring air through a funnel meter.....110 |

# I N D E X

---

| PAGE                                                                                                  | PAGE    |
|-------------------------------------------------------------------------------------------------------|---------|
| Prevention of fires and explosions from blowing safety valves on tank cars.....                       | 197     |
| Prices of gasoline, average monthly.....                                                              | 18      |
| Production of gasoline from natural gas marketed in 1914.....                                         | 11      |
| —loss of .....                                                                                        | 69      |
| Properties of seven paraffin hydrocarbons.....                                                        | 41      |
| Proportions of different grades of gasoline vapor that air will carry.....                            | 160     |
| Proving meters in the field.....                                                                      | 109     |
| Pumping gas under a vacuum.....                                                                       | 65      |
| Pumps, capacities of vacuum.....                                                                      | 68      |
| Quality of casinghead gas.....                                                                        | 50      |
| Reading a meter.....                                                                                  | 108     |
| Recording volume and pressure gauges.....                                                             | 113     |
| Refrigerating machine, ammonia.....                                                                   | 139     |
| Regulator, gas relief.....                                                                            | 136     |
| Relation of properties of gasoline and gasoline vapor to inflammability..                             | 159     |
| Relief regulator,—gas.....                                                                            | 136     |
| Residue gas .....                                                                                     | 150     |
| —and absorption method..                                                                              | 152     |
| Results of analyses of gases from different plant operations.....                                     | 136     |
| —laboratory tests of gas from different gasoline plants .....                                         | 137     |
| Rule of thumb for evaporation losses.....                                                             | 199     |
| —of vapor tension .....                                                                               | 199     |
| Rules of Interstate Commerce Commission.....                                                          | 213     |
| Sampling gas from pipe line under vacuum.....                                                         | 72      |
| Sealing tank cars.....                                                                                | 208     |
| Separating gas from oil flowing from well.....                                                        | 79      |
| Shipping gasoline.....                                                                                | 197     |
| Siphon or "U" gauge.....                                                                              | 120     |
| Solution of gas in condensates.....                                                                   | 42      |
| Specific gravity.....                                                                                 | 30      |
| —and Baume scale equivalent .....                                                                     | 219     |
| —and heating value.....                                                                               | 31      |
| Still, uncondensed vapors from .....                                                                  | 178     |
| Table for converting centigrade to fahrenheit.....                                                    | 234     |
| —of evaporation losses of different mixtures of casinghead gas condensates and refinery naphthas..... | 144     |
| —indicated horse power on the compressor piston per million cubic feet of gas per day.....            | 128     |
| —percentages used in testing large capacity meters .....                                              | 112     |
| —tests of natural gas using different absorbers.                                                      | 172     |
| —tests using three small absorbers .....                                                              | 173     |
| —showing effect of pressure on yield of gasoline.                                                     | 179     |
| —to determine proper size meter in measuring gas at a vacuum.....                                     | 106     |
| —to determine proper size meter for power installations.....                                          | 108     |
| Taking sample of gas from pipe line under vacuum.....                                                 | 72      |
| Tank car outage table.....                                                                            | 206     |
| Tank cars.....                                                                                        | 204     |
| —care of .....                                                                                        | 208     |
| —sealing .....                                                                                        | 208     |
| Tank for separating gas from oil flowing from well.....                                               | 79      |
| Tank measurements .....                                                                               | 235     |
| Tank tables, horizontal 245 to 267<br>—vertical .....                                                 | 237-244 |
| Temperatures of Oklahoma City, Okla.....                                                              | 201     |
| —of Parkersburg, W. Va.....                                                                           | 200     |

# I N D E X

---

| PAGE                                 | PAGE                              |
|--------------------------------------|-----------------------------------|
| Tensions of various hydro-           |                                   |
| carbons, vapor.....26                | Vacuum.....19                     |
| Testing casinghead gas for           | —pumps, capacities.....68         |
| gasoline content.....36              | —taking sample of gas             |
| —“Lean” natural gas for              | from pipe line under.....72       |
| gasoline content.....189             | Vapor condensed by com-           |
| —vapor pressure of gaso-             | pression and cooling.....133      |
| line, apparatus for.....217          | —per gallon and air re-           |
| Tests of fresh gas.....174           | quired for complete com-          |
| —gas from different gaso-            | bustion.....48                    |
| line plants .....                    | —pressure tests of gaso-          |
| —grade and quantity                  | line produced by oil ab-          |
| of gasoline produced                 | sorption and steam dis-           |
| when crude casinghead                | tillation method.....178          |
| gas is subjected to differ-          | —tensions of various              |
| ent pressures.....43                 | hydrocarbons.....26               |
| —natural gas using differ-           | —tension, rule of thumb.....199   |
| ent absorbers.....172                | —tension tests of gasoline        |
| —treated gas.....174                 | obtained by absorption            |
| Tests using three small ab-          | and steam distillation.....177    |
| sorbers, table of.....173            | Vertical tank tables...237 to 244 |
| Thin orifices, capacities of ..56-62 | Volume and pressure record-       |
| To extinguish fires.....163          | ing gauge.....112                 |
| To find the gauge of tank            |                                   |
| cars.....204                         | Water pressure, equivalents       |
| To read a meter.....108              | of.....121                        |
| Transporting gasoline from           | Weights and gravities of          |
| plant to loading rack....150         | liquids heavier than              |
| “U” gauges .....                     | water.....230-232                 |
| Uncondensed vapors from              | —lighter than water.....221-229   |
| still.....178                        | Welding gas lines .....           |
| Use of foam or a frothy              | Yield of gasoline using the       |
| liquid mixture as an ex-             | small absorber shown in           |
| tinguisher.....158                   | fig. 46 and the plant in          |
|                                      | fig. 44.....170                   |

*SECOND EDITION*

# *Hand-Book of Natural Gas*

*By HENRY P. WESTCOTT  
Member A. S. M. E. and Natural Gas Association*

CAREFULLY REVISED with over 200 pages of new material and 100 new cuts.

*Containing*

640 pages, 230 illustrations, 200 tables.

### *Special Articles Featuring*

Volcanic Origin of Natural Gas and Oil.

Geology of the Mid-Continental Oil and Gas Field.

Tests to Determine Poisonous Gases in Natural Gas.

Orifice Meters.

Electrolytic Mitigating Systems.

High Gas Bills. Gas Range Tests.

Gasoline Gas with tables of pipe line capacities under Vacuum conditions.

Gas Engine and Horse Power.

Pocket size (4 $\frac{5}{8}$ x7 $\frac{1}{2}$ ). Clearly printed from new type on specially made paper.

To avoid opening numerous individual accounts we are selling this book on subscription only and ask that cash accompany order.

Price in Cloth, - - - \$3.50 Postpaid

Price in Leather, - - - 4.00 Postpaid

*Published by*

*Metric Metal Works  
Erie, Pennsylvania*