МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)

Кафедра 101 «Проектирование и сертификация авиационной техники»

Лабораторная работа №1

по дисциплине:

«Основы проектирования конструкций самолёта из композиционных материалов»

«Проектирование и расчёт составного пояса лонжерона» Задание Л-3. Вариант 3.

Выполнил: студент группы М1О-411С-17 Козлов А.И.

Проверил: профессор Попов Ю.И.

СОДЕРЖАНИЕ

1.	3	адание	3
2.		Ісходные данные	
3.		ведение	
4.		Гостановка задачи	
		Иетоды расчёта напряжённо-деформированного состояния конструкции	
	5.1 oac	Метод распределения усилий между элементами по жесткости на тяжение	10
	5.2		
5	5.3		
6.	О	Определение геометрических размеров сечения лонжерона	
		асчёт НДС по вариантам конструкции	
	7.1	Вариант 1 (Ме+КМ)	
7	7.2		
8.	A	нализ характерных графических зависимостей НДС по конструктивным	
пај	pan	иетрам	23
9.	В	ыводы	28
10	•	Список литературы	29

1. Задание

Тема работы: «Проектирование и расчёт составного пояса лонжерона»

Вариант: Л-3-3 (задание Л-3, подвариант 3 по [1]).

Материалы: эл.1 из металла - №4 (В95) и №2 (Д16АТ); эл.2 из КМ - №4-8 (КМУ-4э, КМУ-7л (лента), КМУ-7Т1А, КМУ-7э, КМУ-11э).

Цель работы: разработать конструкцию составного пояса лонжерона крыла.

Задачи:

- 1) Определить геометрические параметры сечения пояса лонжерона при условии, что пояса выполнены только из металла или только из композита;
- 2) Определить геометрические параметры и напряженно-деформированное состояние поясов лонжерона при условии, что пояс является составной конструкцией из металла и композита. Необходимо рассмотреть два варианта: к основному поясу из металла добавляется слой композиционного материала и к основному поясу из КМ добавляется слой металла. Расчёт НДС необходимо произвести несколькими методами, результаты сравнить.

2. Исходные данные

Задание Л-3. Вариант 3. Материалы: 4, 2 (эл.1-Ме) и 4-8 (эл.2-КМ)

Схема лонжерона, геометрические размеры и нагрузки берутся по методичке [1].

Схема крепления конструкции (задание Л-3)

Исходные данные (3 вариант):

Изгибающий момент, действующий в зоне соединения лонжерона и фюзеляжа (в плоскости разъема):

$$M_{_{\rm M3\Gamma}}^{\rm p} = 180 \, {\rm кH \cdot M}$$

Перерезывающая сила, действующая в зоне соединения лонжерона и фюзеляжа (в плоскости разъема):

$$Q^{p} = 120$$
 кН

Высота лонжерона (наибольшее расстояние между поясами):

$$H = 220 \text{ MM}$$

Сечение лонжерона: А

Сечение лонжерона

Физико-механические характеристики рассматриваемых металлов приведены в таблице 1, композитов – в таблице 2.

Таблица 1 «Физико-механические характеристики металлов»

№ эл.(1)	Марка	р , кг/м ³	γ , H/м ³	$\sigma_{\rm B}$, M Πa	Е , МПа	L , км	ε _{пр мет} , %
1-1	30ХГСА (профиль)	7850	76930	1100	210000	14,3	0,524
1-2	Д16АТ (профиль)	2800	27440	420	72000	15,31	0,583
1-3	ОТ-4 (профиль)	4500	44100	700	110000	15,87	0,636
1-4	B95 (профиль)	2800	27440	640	72000	23,32	0,889
1-5	BT20 (профиль)	4500	44100	1000	110000	22,68	0,909

Примечание: элементы в таблице распределены по мере возрастания $\varepsilon_{\text{пр мет}}$

В таблице:

$$ho$$
 – плотность $\left[\frac{\kappa \Gamma}{M^3}\right]$;

$$\gamma = \rho \cdot g$$
 - удельный вес $\left[\frac{H}{M^3}\right]$;

$$g = 9.8 \frac{M}{c^2}$$
 – ускорение свободного падения;

 $\sigma_{\scriptscriptstyle \rm B}$ - предел прочности металла при растяжении [МПа];

E — модуль упругости металла при растяжении [МПа];

$$L = \frac{\sigma_{\text{B}}}{\gamma}$$
 - удельная прочность металла [км];

 $arepsilon_{
m пр\,мет} = rac{\sigma_{
m B}}{E} \cdot 100\%$ - предельная относительная деформация металла при растяжении.

$$\frac{\Pi \text{ример расчётов (для 30ХГСА):}}{\gamma_{30ХГСА} = \rho \cdot g = 7850 \frac{\text{K}\Gamma}{\text{M}^3} \cdot 9,8 \frac{\text{M}}{\text{c}^2} = 76930 \frac{\text{H}}{\text{M}^3}}$$

$$L_{30ХГСА} = \frac{\sigma_B}{\gamma} = \frac{1100 \frac{\text{H}}{\text{MM}^2}}{76930 \frac{\text{H}}{\text{M}^3}} = \frac{1100 \cdot 10^6 \frac{\text{H}}{\text{M}^2}}{76930 \frac{\text{H}}{\text{M}^3}} = 14298,7 \text{ M} = 14,3 \text{ KM}$$

$$\varepsilon_{\text{пр 30ХГСА}} = \frac{\sigma_B}{E} \cdot 100\% = \frac{1100 \frac{\text{H}}{\text{MM}^2}}{210000 \frac{\text{H}}{\text{MM}^2}} \cdot 100\% = 0,524 \%$$

Таблица 2 «Физико-механические характеристики КМ»

№ эл.(2)	Марка	ρ , κε/м³	γ , <i>H/м</i> ³	$oldsymbol{\delta}_{ ext{M}}, \ \mathcal{M}\mathcal{M}$	$\sigma_{1_{\mathrm{B}}}, \ M\Pi a$	E , M∏a	L , км	ε _{пр км} ,
2-5	КМУ-7л (лента)	1550	15190	0,13	970	215000	63,86	0,451
2-7	КМУ-7э	1520	14896	0,12	900	135000	60,42	0,667
2-4	КМУ-4э	1450	14210	0,09	900	120000	63,34	0,75
2-8	КМУ-11э	1520	14896	0,12	900	120000	60,42	0,75
2-6	КМУ-7Т1А	1520	14896	0,25	1400	133000	93,98	1,052

Примечание: элементы в таблице распределены по мере возрастания $\varepsilon_{\text{пр км}}$

В таблице:

$$ho$$
 – плотность $\left[\frac{\kappa \Gamma}{M^3}\right]$;

$$\gamma = \rho \cdot g$$
 - удельный вес $\left[\frac{H}{M^3}\right]$;

$$g = 9,8 \frac{M}{c^2}$$
 – ускорение свободного падения;

 $\delta_{\scriptscriptstyle \mathrm{M}}$ – толщина монослоя [мм];

 σ_{1B} - предел прочности КМ на растяжение вдоль волокна [МПа];

 E_1 — модуль упругости КМ на растяжение вдоль волокна [МПа];

 $L = \frac{\sigma_{1B}}{\gamma}$ - удельная прочность композита [км];

 $arepsilon_{
m пр} = rac{\sigma_{
m 1B}}{E_1} \cdot 100\%$ - предельная относительная деформация элемента из КМ при растяжении.

Пример расчетов (для КМУ-4э):

$$\gamma_{\text{KMY-43}} = \rho \cdot g = 1450 \frac{\text{KT}}{\text{M}^3} \cdot 9.8 \frac{\text{M}}{\text{c}^2} = 14210 \frac{\text{H}}{\text{M}^3}$$

$$L_{\text{KMY-43}} = \frac{\sigma_{1\text{B}}}{\gamma} = \frac{900 \frac{\text{H}}{\text{MM}^2}}{14210 \frac{\text{H}}{\text{M}^3}} = \frac{900 \cdot 10^6 \frac{\text{H}}{\text{M}^2}}{14210 \frac{\text{H}}{\text{M}^3}} = 63335.7 \text{ m} = 63.34 \text{ km}$$

$$\varepsilon_{\text{пр KMY-43}} = \frac{\sigma_{1\text{B}}}{E_1} \cdot 100\% = \frac{900 \frac{\text{H}}{\text{MM}^2}}{120000 \frac{\text{H}}{\text{MM}^2}} \cdot 100\% = 0.75 \%$$

3. Введение

Составными называются конструкции, выполненные элементами из разных материалов. Это может быть лонжерон из металла с накладками из композиционного материала (рис.1а), лонжерон с присоединенной панелью из КМ (рис.1б). К составным конструкциям относятся также металло-полимерные материалы типа CUAJ, представляющие собой слоистую пластину, образованную чередующимися тонкими листами из алюминиевых или других сплавов и слоями из композиционных препрегов (рис. 1в).

Рис.1. Составные конструкции: а - лонжерон с накладками из КМ; б – лонжерон с панелью из КМ; в – слоистая пластина Металл+КМ

4. Постановка задачи

В данной работе ставится задача усиления, то есть повышения несущей способности, конструкции существующего пояса лонжерона, работающего в зоне растяжения и изготовленного из одного материала, металла или композита, за счет добавления элемента из другого материала и получения составного пояса лонжерона. Выполняются расчеты напряженно-деформированного состояния (НДС) и разрушающей нагрузки различных вариантов вновь полученной конструкции составного пояса лонжерона, с целью выбора рационального состава элементов по критерию равенства запасов прочности этих элементов.

Элементы составного пояса имеют толщину $h_{\text{мет}}$ и $h_{\text{км}}$ (рис.2 и рис. 3). Введём для обозначения параметров элемента из металла индекс 1, для элемента из композита (КМ) — индекс 2. Тогда $h_{\text{мет}} = h_1$, $h_{\text{км}} = h_2$, $h_{\text{сум}} = h_{\text{мет}} + h_{\text{км}}$. Принимаем, что погонная нагрузка, распределенная по ширине b пояса лонжерона в целом, равна N, а на его составные части действуют нагрузки N_1 и N_2 .

Рассматривается два расчетно-проектировочных варианта конструкции:

1) Вариант 1 - <u>Металл + КМ</u> (рис.2)

Считаем, что вначале был спроектирован пояс лонжерона, выполненный из металла, для которого определена высота $h_{1\, \rm ucx}$. Затем для повышения несущей способности пояса лонжерона с внешней стороны присоединяют поочередно элементы из КМ разных марок толщиной h_2 , получая различные варианты составного пояса. Требуется определить механические характеристики и конструктивные параметры КМ для рационального составного пояса.

Рис.2 Вариант составного пояса лонжерона - Металл+КМ

2) Вариант 2 - <u>КМ + Металл</u> (рис.3).

Считаем, что первоначально был спроектирован пояс лонжерона только из КМ, определена его высота $h_{2\, \text{исх}}$. Затем с внешней стороны пояса присоединяют поочередно элементы из металла разных марок, толщиной h_1 . Требуется определить элемент из металла с его механическими характеристиками и конструктивными параметрами, который создает составной пояс лонжерона увеличенной несущей способности.

Рис.3 Вариант составного пояса лонжерона - КМ+Металл

Исходную толщину $h_{1 \text{ исх}}$ и $h_{2 \text{ исх}}$ пояса лонжерона, выполненного вначале из одного материала, будем определять по величине погонного усилия N из условия равенства действующих и разрушающих напряжений, дающего запас прочности элемента равным единице. Тогда:

для варианта 1:

$$h_{1 \text{ \tiny MCX}} = \frac{N}{\sigma_{\text{B}}}$$

для варианта 2:

$$h_{2 \text{ \tiny MCX}} = \frac{N}{\sigma_{1B}}$$

где σ_{B} и σ_{1B} - пределы прочности металла и КМ при растяжении, соответственно.

Для различных сочетаний заданных механических характеристик и конструктивных параметров элементов из металла и КМ составного пояса в вариантах 1 и 2 проводим расчёты НДС элементов с использованием программы Microsoft Excel. В результате определяем погонные усилия N_i , действующие напряжения σ_i , текущие деформации $\varepsilon_{i \text{ тек}}$ и коэффициенты запасов прочности η_i , где i — номер элемента.

Определив действующие напряжения в элементах пояса, рассчитываем коэффициент запаса прочности элементов как отношение расчетного разрушающего напряжения к действующему напряжению. За расчетное разрушающее напряжение элемента из металла принимаем $\sigma_{\rm B}$ (предел прочности материала при растяжении). За разрушающее напряжение элемента из КМ принимаем $\sigma_{\rm 1B}$ (предел прочности на растяжение монослоя в направлении главной оси упругости). Отметим, что в работе не учитывается введение в запас прочности элемента из КМ дополнительного коэффициента безопасности $f_{\rm доп}=1,25$.

По характерным зависимостям НДС от конструктивных параметров выявляются рациональные сочетания элементов составного пояса.

5. Методы расчёта напряжённо-деформированного состояния конструкции

В работе изучаются и используются три метода расчета НДС элементов составного пояса лонжерона: метод распределения усилий между элементами по жёсткости, метод совместных деформаций и метод редукционных коэффициентов.

5.1 Метод распределения усилий между элементами по жесткости на растяжение

Данный метод основан на принципе нахождения напряжений, действующих в слоях составной конструкции, в зависимости от жёсткости на растяжение материалов отдельных слоёв.

Распределение сил, действующих по элементам, <u>пропорционально</u> жесткости элементов на растяжение:

$$\begin{cases} P_1 + P_2 = P \\ \frac{P_1}{P_2} = \frac{E_1 \cdot F_1}{E_2 \cdot F_2} \end{cases}$$

где $E \cdot F$ — жёсткость пояса на растяжение; индекс «1» соответствует элементу из металла, индекс «2» - элементу из КМ.

По погонным усилиям:

$$\begin{cases} N_1 + N_2 = N \\ \frac{N_1}{N_2} = \frac{E_1 \cdot h_1}{E_2 \cdot h_2} \end{cases}$$

Решая систему уравнений, получаем:

$$N_{1} = N \cdot \frac{E_{1} \cdot h_{1}}{E_{1} \cdot h_{1} + E_{2} \cdot h_{2}}$$

$$N_{2} = N \cdot \frac{E_{2} \cdot h_{2}}{E_{1} \cdot h_{1} + E_{2} \cdot h_{2}}$$

Введём обозначение:

$$E_1 \cdot h_1 + E_2 \cdot h_2 = \Sigma E \cdot h$$

Тогда:

$$N_{1} = N \cdot \frac{E_{1} \cdot h_{1}}{\sum E \cdot h}$$

$$N_{2} = N \cdot \frac{E_{2} \cdot h_{2}}{\sum E \cdot h}$$

Напряжения в элементах определим по соотношениям:

$$\sigma_1 = \frac{N_1}{h_1}$$

$$\sigma_2 = \frac{N_2}{h_2}$$

Коэффициенты запасов прочности элементов пояса:

$$\eta_1 = \frac{\sigma_{\text{B}}}{\sigma_1}$$

$$\eta_2 = \frac{\sigma_{\text{B}}}{\sigma_2}$$

Метод совместных деформаций 5.2

Метод совместных деформаций основан на балочной теории прочности авиационной конструкции, и предполагается, что при действии сил (погонных усилий) растяжения деформации составного пояса в целом и деформации составляющих элементов по величине одинаковые.

Деформации пояса в целом (по закону Гука) определяются следующим образом:

$$arepsilon_{x}=rac{\sigma_{x}}{E_{x}}$$
, где

 E_{χ} - модуль упругости пояса в целом; $\sigma_{\chi}=\frac{N}{h_{\Sigma}}$ - среднее напряжение в элементах пояса.

Действующие напряжения в элементах пояса:

$$\sigma_1 = \frac{N_1}{h_1}$$
$$\sigma_2 = \frac{N_2}{h_2}$$

Деформации в элементах пояса:

$$\varepsilon_1 = \frac{\sigma_1}{E_1}$$

$$\varepsilon_2 = \frac{\sigma_2}{E_2}$$

При принятом условии $\varepsilon_{x}=\varepsilon_{1}=\varepsilon_{2}$ получаем:

$$\varepsilon_1 = \frac{N_1}{E_1 \cdot h_1}$$

$$\varepsilon_2 = \frac{N_2}{E_2 \cdot h_2}$$

$$\varepsilon_x = \frac{N}{E_x \cdot h_\Sigma}$$

Из условия $\varepsilon_1 = \varepsilon_2$ вытекает:

$$\frac{N_1}{N_2} = \frac{E_1 \cdot h_1}{E_2 \cdot h_2}$$

Учитывая, что $N_1 + N_2 = N$, получим

$$N_{1} = N \cdot \frac{E_{1} \cdot h_{1}}{E_{1} \cdot h_{1} + E_{2} \cdot h_{2}}$$

$$N_{2} = N \cdot \frac{E_{2} \cdot h_{2}}{E_{1} \cdot h_{1} + E_{2} \cdot h_{2}}$$

Введём обозначения:

$$\overline{h_1}=\frac{h_1}{h_\Sigma}$$
, $\overline{h_2}=\frac{h_2}{h_\Sigma}$ — относительные толщины элементов пояса; $E_x=E_1\cdot\overline{h_1}+E_2\cdot\overline{h_2}$ - обобщённая жёсткость пояса в целом

Выражение для обобщенной жесткости пояса в целом соответствует общему *правилу смеси*, то есть обобщённая жёсткость пакета равна сумме произведений модуля упругости элемента на его относительную толщину, то есть:

$$E_x = \sum_{i=1}^n E_i \cdot \overline{h_i}$$
 , где $n=2$

Тогда, выражения для погонных усилий в элементах примут вид:

$$N_1 = N \cdot \frac{E_1 \cdot \overline{h_1}}{E_1 \cdot \overline{h_1} + E_2 \cdot \overline{h_2}} = N \cdot \frac{E_1 \cdot \overline{h_1}}{E_x}$$
$$N_2 = N \cdot \frac{E_2 \cdot \overline{h_2}}{E_x}$$

Общее выражение для погонных усилий в элементах:

$$N_i = N \cdot \frac{E_i \cdot \overline{h_i}}{E_x}$$

Напряжения в элементах:

$$\sigma_1 = \sigma_x \cdot \frac{E_1}{E_x}$$

$$\sigma_2 = \sigma_x \cdot \frac{E_2}{E_x}$$

Общее выражение для напряжений в элементах:

$$\sigma_i = \sigma_x \cdot \frac{E_i}{E_x}$$

Коэффициенты запасов прочности элементов пояса:

$$\eta_1 = \frac{\sigma_{\rm B}}{\sigma_1}$$

$$\eta_2 = \frac{\sigma_{\rm 1B}}{\sigma_2}$$

Замечание: также коэффициент запаса прочности можно определить по отношению предельной и текущей деформаций:

$$\eta_1 = \frac{\varepsilon_{1 \text{ mp}}}{\varepsilon_1};$$

$$\eta_2 = \frac{\varepsilon_{2 \text{ mp}}}{\varepsilon_2};$$

где $\varepsilon_{1\; \rm np}$ и $\varepsilon_{2\; \rm np}$ - предельная относительная деформация элемента из металла и КМ соответственно;

 $arepsilon_1$ и $arepsilon_2$ — текущая деформация элемента из металла и КМ соответственно.

5.3 Метод редукционных коэффициентов

Введем обозначение редукционных коэффициентов:

$$\varphi_1 = \frac{E_1}{E_2}$$

$$\varphi_2 = \frac{E_2}{E_2} = 1$$

Тогда:

$$h_{ ext{peд}} = h_1 \cdot arphi_1 + h_2 \cdot arphi_2$$
 $\sigma_{ ext{ped}} = rac{N}{h_{ ext{ped}}} = rac{N}{h_1 \cdot arphi_1 + h_2 \cdot arphi_2}$ $\sigma_1 = \sigma_{ ext{ped}} \cdot arphi_1$ $\sigma_2 = \sigma_{ ext{ped}} \cdot arphi_2$

Коэффициенты запасов прочности элементов пояса:

$$\eta_1 = \frac{\sigma_{\rm B}}{\sigma_1}$$

$$\eta_2 = \frac{\sigma_{\rm 1B}}{\sigma_2}$$

6. Определение геометрических размеров сечения лонжерона

Весь изгибающий момент, действующий на лонжерон, можно представить в виде пары сил:

$$P = \frac{\mathrm{M}_{\scriptscriptstyle \mathrm{ИЗГ}}}{0.95 \cdot H} = \frac{180 \cdot 10^6 \; \mathrm{H} \cdot \mathrm{мм}}{0.95 \cdot 220 \; \mathrm{мм}} = 861244 \; \mathrm{H},$$
где

Мизг – изгибающий момент;

H — строительная высота;

0,95 – коэффициент, учитывающий, что осевое усилие приложено примерно в центре тяжести сечения пояса, а не по краю пояса.

Примем ширину пояса лонжерона равной $B=100\ \mathrm{MM}$ (выбирается произвольно).

Погонная нагрузка, действующая на пояс лонжерона, определяется выражением:

$$N = \frac{P}{B} = \frac{861244 \text{ H}}{100 \text{ mm}} = 8612,44 \frac{\text{H}}{\text{mm}}$$

Условие прочности по растяжению:

$$\sigma_{
m pacr} \leq [\sigma_{
m pacr}]$$
, где

 $\sigma_{\mathrm{pac}}\,$ - действующие напряжения:

$$\sigma_{\mathrm{pact}} = \frac{P}{F} = \frac{P}{B \cdot h_{\mathrm{ucx}}} = \frac{N}{h_{\mathrm{ucx}}}$$

 $[\sigma_{\rm pac}]$ – расчетные разрушающие напряжения, которые примем:

Для металлов: $\left[\sigma_{\text{pact}}\right] = \sigma_{\text{в}};$

Для КМ: $\left[\sigma_{\mathrm{pact}}\right] = \sigma_{\mathrm{1B}}.$

Из условия равенства действующих и расчетных разрушающих напряжений ($\sigma_{\rm pact} = [\sigma_{\rm pact}]$) получим минимально допустимую толщину пояса:

$$\frac{N}{h_{\text{1 MCX}}} = \sigma_{\text{B}} \rightarrow h_{\text{1 MCX}} = \frac{N}{\sigma_{\text{B}}}$$

$$\frac{N}{h_{\text{2 MCX}}} = \sigma_{\text{1B}} \rightarrow h_{\text{2 MCX}} = \frac{N}{\sigma_{\text{1B}}}$$

МЕТАЛЛЫ:

№ эл. (1)	Материал	$\sigma_{\scriptscriptstyle m B}$, МПа	$h_{1 ext{ iny HCX}}$, мм
1-1	30ХГСА	1100	7,83
1-2	Д16АТ	420	20,51
1-3	OT4	700	12,3
1-4	B95	640	13,46
1-5	BT20	1000	8,61

KM:

№ эл. (2)	Материал	$oldsymbol{\sigma_{1_{\mathrm{B}}}}$, МПа	$m{h_{2}}_{ ext{пр}}$, мм	$oldsymbol{\delta}_{\scriptscriptstyle ext{M}}$, mm	Кол-во монослоёв	h _{2 исх} , мм
2-5	КМУ-7л (лента)	970	8,88	0,13	69	8,97
2-7	КМУ-7э	900	9,57	0,12	80	9,6
2-4	КМУ-4э	900	9,57	0,09	107	9,63
2-8	КМУ-11э	900	9,57	0,12	80	9,6
2-6	КМУ-7Т1А	1400	6,15	0,25	25	6,25

^{*}Толщина скорректирована с учетом того, что пояс состоит из монослоёв.

Толщину дополнительного элемента в составном поясе первоначально можем задать произвольно. Для определенности принимаем толщину дополнительного элемента для обоих вариантов равной 2 мм, то есть принимаем $h_1=h_2=2$ мм.

7. Расчёт НДС по вариантам конструкции

7.1 Вариант 1 (Ме+КМ)

1. Метод распределения усилий между элементами по жесткости

№ пары	№ элемента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	$\Sigma E \cdot h$, Н/мм	N _i , Н/мм	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TeK}},\%$
	1-4	B95	72000	640	13,46		5965,11	443,27	1,44	0,62
1	2-5	КМУ-7л (лента)	215000	970	2	1398899,52	2647,33	1323,67	0,73	0,62
2	1-4	B95	72000	640	13,46	1220000 52	6735,49	500,52	1,28	0,7
2	2-7	КМУ-7э	135000	900	2	1238899,52	1876,96	938,48	0,96	0,7
2	1-4	B95	72000	640	13,46	1200000 52	6902,63	512,94	1,25	0,71
3	2-4	КМУ-4э	120000	900	2	1208899,52	1709,81	854,9	1,05	0,71
4	1-4	B95	72000	640	13,46	1208800 52	6902,63	512,94	1,25	0,71
4	2-8	КМУ-11э	120000	900	2	1208899,52	1709,81	854,9	1,05	0,71
-	1-4	B95	72000	640	13,46	1224900 52	6757,3	502,14	1,27	0,7
5	2-6	КМУ-7Т1А	133000	1400	2	1234899,52	1855,14	927,57	1,51	0,7

2. Метод совместных деформаций

Исходный пояс лонжерона из В95

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	$oldsymbol{\Sigma}oldsymbol{h}$, мм	ħ	$\boldsymbol{E}_{\boldsymbol{x}}$, МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{Tek}},\%$
1	1-4	B95	72000	640	13,46		0,87			443,27	1,44	0,62
1	2-5	КМУ-7л (лента)	215000	970	2	15,46	0,13	90503,02	557,19	1323,67	0,73	0,62
2	1-4	B95	72000	640	13,46	15,46	0,87	80151,68	557,19	500,52	1,28	0,7
	2-7	КМУ-7э	135000	900	2	13,40	0,13	80131,08	337,19	938,48	0,96	0,7
3	1-4	B95	72000	640	13,46	15.46	0,87	79210.9	557,19	512,94	1,25	0,71
	2-4	КМУ-4э	120000	900	2	15,46	0,13	78210,8	337,19	854,9	1,05	0,71
4	1-4	B95	72000	640	13,46	15.46	0,87	70210.0	557.10	512,94	1,25	0,71
	2-8	КМУ-11э	120000	900	2	15,46	0,13	78210,8	557,19	854,9	1,05	0,71
5	1-4	B95	72000	640	13,46		0,87			502,14	1,27	0,7
3	2-6	КМУ- 7Т1А	133000	1400	2	15,46	0,13	79892,9	557,19	927,57	1,51	0,7

Исходный пояс лонжерона из Д16АТ

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	$oldsymbol{arSigma}oldsymbol{h}$, мм	ħ	Е _x , МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TEK}}, \%$
1	1-2	Д16АТ	72000	420	20,51		0,91			325,27	1,29	0,45
1	2-5	КМУ-7л (лента)	215000	970	2	22,51	0,09	84707,83	382,68	971,28	0,9987	0,45
2	1-2	Д16АТ	72000	420	20,51	22.51	0,91	77500 55	382,68	355,07	1,18	0,49
	2-7	КМУ-7э	135000	900	2	22,51	0,09	77598,55	362,06	665,75	1,35	0,49
3	1-2	Д16АТ	72000	420	20,51	22.51	0,91	76265 57	382,68	361,27	1,16	0,50
	2-4	КМУ-4э	120000	900	2	22,51	0,09	76265,57	362,06	602,12	1,49	0,50
4	1-2	Д16АТ	72000	420	20,51	22.51	0,91	76265 57	292.69	361,27	1,16	0,50
	2-8	КМУ-11э	120000	900	2	22,51	0,09	76265,57	382,68	602,12	1,49	0,50
5	1-2	Д16АТ	72000	420	20,51		0,91			355,88	1,18	0,49
	2-6	КМУ- 7Т1А	133000	1400	2	22,51	0,09	77420,82	382,68	657,39	2,13	0,49

3. Метод редукционных коэффициентов

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	φ_i	h _{ред} , мм	$oldsymbol{\sigma}_{ ext{peд}}$, МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TeK}},\%$
1	1-4	B95	72000	640	13,46	0,33			443,27	1,44	0,62
1	2-5	КМУ-7л (лента)	215000	970	2	1	6,51	1323,67	1323,67	0,73	0,62
2	1-4	B95	72000	640	13,46	0,53	0.19	938,48	500,52	1,28	0,7
	2-7	КМУ-7э	135000	900	2	1	9,18	938,48	938,48	0,96	0,7
3	1-4	B95	72000	640	13,46	0,6	10,07	854,9	512,94	1,25	0,71
	2-4	КМУ-4э	120000	900	2	1	10,07	034,9	854,9	1,05	0,71
4	1-4	B95	72000	640	13,46	0,6	10.07	9540	512,94	1,25	0,71
	2-8	КМУ-11э	120000	900	2	1	10,07	854,9	854,9	1,05	0,71
5	1-4	B95	72000	640	13,46	0,54			502,14	1,27	0,7
	2-6	КМУ- 7Т1А	133000	1400	2	1	9,28	927,57	927,57	1,51	0,7

Выводы:

- 1) Все методы дают одинаковые конечные результаты по σ_i и η_i .
- 2) В 1 варианте соединения запас прочности η_1 элемента из металла при исходной величине, равной 1, при разных дополнительных элементах из КМ увеличивается.
- 3) Элементы из КМ ведут себя по-разному. У большинства КМ запас прочности η_2 при толщине 2 мм больше единицы и, таким образом, несущая способность всего пояса увеличивается. Но при сочетаниях B95 и КМУ-7л (лента), B95 и КМУ-7э, а также Д16АТ и КМУ-7л (лента) запас прочности элемента из КМ меньше единицы и, соответственно, составной пояс имеет недостаточную прочность. Отсюда следует, что необходимо увеличить толщину пояса из КМ при соединении с B95 в паре 1 и паре 2 и при соединении с Д16АТ в паре 1.

Рассчитаем потребную толщину с помощью метода совместных деформаций.

$$\sigma_{
m pact} = \left[\sigma_{
m pact}
ight]$$

Тогда: $\sigma_2 = \sigma_{1B}$

$$\sigma_2 = \sigma_{\scriptscriptstyle \mathcal{X}} \cdot \frac{E_2}{E_{\scriptscriptstyle \mathcal{X}}} = \frac{N}{h_{\scriptscriptstyle \Sigma}} \cdot \frac{E_2}{E_1 \cdot \overline{h_1} + E_2 \cdot \overline{h_2}} = \frac{N}{h_{\scriptscriptstyle \Sigma}} \cdot \frac{E_2}{E_1 \cdot \frac{h_1}{h_{\scriptscriptstyle \Sigma}} + E_2 \cdot \frac{h_2}{h_{\scriptscriptstyle \Sigma}}} = \frac{N \cdot E_2}{E_1 \cdot h_1 + E_2 \cdot h_2} = \sigma_{\scriptscriptstyle 1B}$$

Отсюда:

$$E_{1} \cdot h_{1} + E_{2} \cdot h_{2} = \frac{N \cdot E_{2}}{\sigma_{1B}}$$

$$h_{2} = \frac{N}{\sigma_{1B}} - \frac{E_{1}}{E_{2}} \cdot h_{1}$$

Количество монослоёв:

$$n = \frac{h_2}{\delta_{\scriptscriptstyle \mathrm{M}}}$$
 (с округлением в большую сторону)

Тогда, уточнённая толщина пояса из КМ:

$$h_{2 \text{ yTOYH}} = n \cdot \delta_{\text{M}}$$

Для КМУ-7л (лента) в паре 1 с В95:

$$h_2 = \frac{8612,44 \text{ H}}{970 \frac{\text{H}}{\text{MM}}} - \frac{72000 \frac{\text{H}}{\text{MM}}}{215000 \frac{\text{H}}{\text{MM}}} \cdot 13,46 \text{ MM} = 4,37 \text{ MM}$$

$$n = \frac{4,37 \text{ MM}}{0,13 \text{ MM}} = 33,63 \ \rightarrow \ n = 34$$

$$h_{2 \text{ ytoyh}} = 34 \cdot 0,13 \text{ MM} = 4,42 \text{ MM}$$

Для КМУ-7э в паре 2 с В95:

$$h_2 = \frac{8612,44 \text{ H}}{900 \frac{\text{H}}{\text{MM}}} - \frac{72000 \frac{\text{H}}{\text{MM}}}{135000 \frac{\text{H}}{\text{MM}}} \cdot 13,46 \text{ MM} = 2,39 \text{ MM}$$

$$n = \frac{2,39 \text{ MM}}{0,12 \text{ MM}} = 19,94 \ \rightarrow \ n = 20$$

$$h_{2 \text{ yto4H}} = 20 \cdot 0,12 \text{ MM} = 2,4 \text{ MM}$$

Для КМУ-7л (лента) в паре 1 с Д16АТ:

$$h_2 = \frac{8612,44 \text{ H}}{970 \frac{\text{H}}{\text{MM}}} - \frac{72000 \frac{\text{H}}{\text{MM}}}{215000 \frac{\text{H}}{\text{MM}}} \cdot 20,51 \text{ MM} = 2,01 \text{ MM}$$

$$n = \frac{2,01 \text{ MM}}{0,13 \text{ MM}} = 15,48 \rightarrow n = 16$$

$$h_{2 \text{ ytoyh}} = 16 \cdot 0,13 \text{ MM} = 2,08 \text{ MM}$$

Метод совместных деформаций с учетом увеличения h_2 для пар 1 и 2 с В95

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	Σh , мм	ħ	Е _x , МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TeK}},\%$
1	1-4	B95	72000	640	13,46		0,75			323,1	1,98	0,45
1	2-5	КМУ-7л (лента)	215000	970	4,42	17,88	0,25	107356,17	481,76	964,82	1,005	0,45
2	1-4	B95	72000	640	13,46	15.00	0,85	01525.26	543,13	479,62	1,33	0,67
	2-7	КМУ-7э	135000	900	2,4	15,86	0,15	81535,26	343,13	899,28	1,0008	0,67
3	1-4	B95	72000	640	13,46	15.46	0,87	79210.9	557,19	512,94	1,25	0,71
	2-4	КМУ-4э	120000	900	2	15,46	0,13	78210,8	337,19	854,9	1,05	0,71
4	1-4	B95	72000	640	13,46	15.46	0,87	79210.9	557.10	512,94	1,25	0,71
	2-8	КМУ-11э	120000	900	2	15,46	0,13	78210,8	557,19	854,9	1,05	0,71
5	1-4	B95	72000	640	13,46		0,87			502,14	1,27	0,7
	2-6	КМУ- 7Т1А	133000	1400	2	15,46	0,13	79892,9	557,19	927,57	1,51	0,7

Метод совместных деформаций с учетом увеличения h_2 для пары 1 с Д16AT

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	Σh , мм	ħ	Е _x , МПа	σ_x , МПа	$σ_i$, ΜΠα	η_i	$oldsymbol{arepsilon}_{ ext{TEK}},\%$
1	1-2	Д16АТ	72000	420	20,51		0,91			322,36	1,3	0,44
1	2-5	КМУ-7л (лента)	215000	970	2,08	22,59	0,09	85169,33	381,32	962,6	1,008	0,44
2	1-2	Д16АТ	72000	420	20,51	22.51	0,91	77500 55	382,68	355,07	1,18	0,49
	2-7	КМУ-7э	135000	900	2	22,51	0,09	77598,55	362,06	665,75	1,35	0,49
3	1-2	Д16АТ	72000	420	20,51	22,51	0,91	76265,57	382,68	361,27	1,16	0,5
	2-4	КМУ-4э	120000	900	2	22,31	0,09	70203,37	362,06	602,12	1,49	0,5
4	1-2	Д16АТ	72000	420	20,51	22.51	0,91	76065 57	382,68	361,27	1,16	0,5
	2-8	КМУ-11э	120000	900	2	22,51	0,09	76265,57	362,06	602,12	1,49	0,5
5	1-2	Д16АТ	72000	420	20,51		0,91			355,88	1,18	0,49
3	2-6	КМУ- 7Т1А	133000	1400	2	22,51	0,09	77420,82	382,68	657,39	2,13	0,49

Вывод: после перерасчета видно, что запас прочности элемента из металла η_1 при исходной величине, равной 1, при присоединении дополнительных элементов из разных КМ увеличивается, при этом запас прочности всех элементов из КМ η_2 также больше 1. Это значит, что составной пояс получил дополнительную несущую способность.

7.2 Вариант 2 (КМ+Ме)

1. Метод распределения усилий между элементами по жесткости

№ пары	№ элемента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	$\Sigma E \cdot h$, Н/мм	N _i , Н/мм	$σ_i$, ΜΠα	η_i	$oldsymbol{arepsilon}_{ ext{Tek}},\%$
1	2-4	КМУ-4э	120000	900	9,63	1575600	6316,66	655,94	1,37	0,55
1	1-1	30ХГСА	210000	1100	2	1575600	2295,78	1147,89	0,96	0,55
2	2-4	КМУ-4э	120000	900	9,63	1200700	7658,15	795,24	1,13	0,66
2	1-2	Д16АТ	72000	420	2	1299600	954,29	477,14	0,88	0,66
2	2-4	КМУ-4э	120000	900	9,63	1275600	7235,05	751,3	1,2	0,63
3	1-3	OT4	110000	700	2	1375600	1377,39	688,69	1,02	0,63
4	2-4	КМУ-4э	120000	900	9,63	1200700	7658,15	795,24	1,13	0,66
4	1-4	B95	72000	640	2	1299600	954,29	477,14	1,34	0,66
5	2-4	КМУ-4э	120000	900	9,63	1275600	7235,05	751,3	1,2	0,63
5	1-5	BT20	110000	1000	2	1375600	1377,39	688,69	1,45	0,63

2. Метод совместных деформаций

Исходный пояс лонжерона из КМУ-4э

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	Σh , мм	ħ	$\boldsymbol{E}_{\boldsymbol{x}}$, МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{Tek}},\%$
1	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	135477,21	740,54	655,94	1,37	0,55
1	1-1	30ХГСА	210000	1100	2		0,17	155477,21	740,34	1147,89	0,96	0,55
2	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	111745,49	740,54	795,24	1,13	0,66
2	1-2	Д16АТ	72000	420	2		0,17	111/45,49	740,34	477,14	0,88	0,66
3	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	110200 21	740,54	751,3	1,2	0,63
3	1-3	OT4	110000	700	2		0,17	118280,31	740,34	688,69	1,02	0,63
4	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	111745 40	740,54	795,24	1,13	0,66
4	1-4	B95	72000	640	2		0,17	111745,49	740,34	477,14	1,34	0,66
_	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	110200 21	740.54	751,3	1,2	0,63
5	1-5	BT20	110000	1000	2		0,17	118280,31	740,54	688,69	1,45	0,63

Исходный пояс лонжерона из КМУ-7э

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	$oldsymbol{\Sigma}oldsymbol{h}$, мм	ħ	Е _x , МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TEK}},\%$
1	2-7	КМУ-7э	135000	900	9,6	11.6	0,83	147931,03	742,45	677,55	1,33	0,5
1	1-1	30ХГСА	210000	1100	2	11,6	0,17	14/931,03	742,43	1053,97	1,04	0,5
2	2-7	КМУ-7э	135000	900	9,6	11,6	0,83	124137,93	742,45	807,42	1,11	0,6
2	1-2	Д16АТ	72000	420	2	11,0	0,17	124137,93	742,43	430,62	0,98	0,6
3	2-7	КМУ-7э	135000	900	9,6	11,6	0,83	130689,66	742,45	766,94	1,17	0,57
3	1-3	OT4	110000	700	2	11,0	0,17	130089,00	742,43	624,92	1,12	0,57
4	2-7	КМУ-7э	135000	900	9,6	11,6	0,83	124137.93	742,45	807,42	1,11	0,6
4	1-4	B95	72000	640	2	11,0	0,17	124137,93	742,43	430,62	1,49	0,6
5	2-7	КМУ-7э	135000	900	9,6	11,6	0,83	120,000,00	742,45	766,94	1,17	0,57
5	1-5	BT20	110000	1000	2	11,0	0,17	130689,66		624,91	1,6	0,57

3. Метод редукционных коэффициентов

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle \mathrm{B}}$, МПа	h , мм	φ_i	$m{h}_{ m peg}$, мм	$oldsymbol{\sigma}_{ ext{peд}}$, МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TEK}},\%$
1	2-4	КМУ-4э	120000	900	9,63	0,57	7.5	1147.00	655,94	1,37	0,55
	1-1	30ХГСА	210000	1100	2	1	7,5	1147,89	1147,89	0,96	0,55
2	2-4	КМУ-4э	120000	900	9,63	1,67	10.05	477.14	795,24	1,13	0,66
	1-2	Д16АТ	72000	420	2	1	18,05	4//,14	477,14	0,88	0,66
3	2-4	КМУ-4э	120000	900	9,63	1,09	12.51	688,69	751,3	1,2	0,63
	1-3	OT4	110000	700	2	1	12,51	088,09	688,69	1,02	0,63
4	2-4	КМУ-4э	120000	900	9,63	1,67	10.05	477.14	795,24	1,13	0,66
	1-4	B95	72000	640	2	1	18,05	477,14	477,14	1,34	0,66
5	2-4	КМУ-4э	120000	900	9,63	1,09	12.51	699 60	751,3	1,2	0,63
	1-5	BT20	110000	1000	2	1	12,51	688,69	688,69	1,45	0,63

Выводы:

- 1) Все методы дают одинаковые конечные результаты по σ_i и η_i .
- 2) Во 2 варианте соединения уже запас прочности η_2 элемента из композита при исходной величине, равной 1, при разных дополнительных элементах из металла увеличивается.
- 3) А вот элементы из металла теперь ведут себя по-разному. У большинства металлов запас прочности η_1 при толщине 2 мм больше единицы и, таким образом, несущая способность всего пояса увеличивается. Но при сочетаниях КМУ-4э и 30ХГСА, КМУ-4э и Д16АТ, а также КМУ-7э и Д16АТ запас прочности элемента из металла меньше единицы и, соответственно, составной пояс имеет недостаточную прочность. Отсюда следует, что необходимо увеличить толщину пояса из металла при соединении с КМУ-4э в паре 1 и паре 2 и при соединении с КМУ-7э в паре 2.

Рассчитаем потребную толщину с помощью метода совместных деформаций.

$$\sigma_{\text{pact}} = [\sigma_{\text{pact}}]$$

Тогда: $\sigma_1 = \sigma_{\scriptscriptstyle \rm B}$

$$\sigma_1 = \sigma_x \cdot \frac{E_1}{E_x} = \frac{N}{h_\Sigma} \cdot \frac{E_1}{E_1 \cdot \overline{h_1} + E_2 \cdot \overline{h_2}} = \frac{N}{h_\Sigma} \cdot \frac{E_1}{E_1 \cdot \frac{h_1}{h_\Sigma} + E_2 \cdot \frac{h_2}{h_\Sigma}} = \frac{N \cdot E_1}{E_1 \cdot h_1 + E_2 \cdot h_2} = \sigma_{\mathrm{B}}$$

Отсюда:

$$\begin{split} E_1 \cdot h_1 + E_2 \cdot h_2 &= \frac{N \cdot E_1}{\sigma_{\scriptscriptstyle \mathrm{B}}} \\ h_1 &= \frac{N}{\sigma_{\scriptscriptstyle \mathrm{B}}} - \frac{E_2}{E_1} \cdot h_2 \end{split}$$

Для 30ХГСА в паре 1 с КМУ-4э:

$$h_1 = \frac{8612,44 \text{ H}}{1100 \frac{\text{H}}{\text{MM}}} - \frac{120000 \frac{\text{H}}{\text{MM}}}{210000 \frac{\text{H}}{\text{MM}}} \cdot 9,63 \text{ MM} = 2,33 \text{ MM}$$

Для Д16АТ в паре 2 с КМУ-4э:

$$h_1 = \frac{8612,44 \text{ H}}{420 \frac{\text{H}}{\text{MM}}} - \frac{120000 \frac{\text{H}}{\text{MM}}}{72000 \frac{\text{H}}{\text{MM}}} \cdot 9,63 \text{ MM} = 4,46 \text{ MM}$$

Для Д16АТ в паре 2 с КМУ-7э:

$$h_1 = \frac{8612,44 \text{ H}}{420 \frac{\text{H}}{\text{MM}}} - \frac{135000 \frac{\text{H}}{\text{MM}}}{72000 \frac{\text{H}}{\text{MM}}} \cdot 9,63 \text{ MM} = 2,51 \text{ MM}$$

Метод совместных деформаций с учетом увеличения h_1 для пар 1 и 2 с КМУ-4э

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	Σh , мм	ħ	Е _x , МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{Tek}},\%$
1	2-4	КМУ-4э	120000	900	9,63	11,96	0,81	137513,04	720,31	628,57	1,43	0,52
1	1-1	30ХГСА	210000	1100	2,33	11,90	0,19	13/313,04	720,31	1100	1	0,52
2	2-4	КМУ-4э	120000	900	9,63	14,09	0,68	104816	611,43	700	1,29	0,58
2	1-2	Д16АТ	72000	420	4,46	14,09	0,32	104816	011,43	420	1	0,58
3	2-4	КМУ-4э		0,83	118280,31	740,54	751,3	1,2	0,63			
3	1-3	OT4	110000	700	2	11,63	0,17	118280,31	740,34	688,69	1,02	0,63
4	2-4	КМУ-4э	120000	900	9,63	11.62	0,83	111745,49	740,54	795,24	1,13	0,66
4	1-4	B95	72000	640	2	11,63	0,17	111/45,49	740,34	477,14	1,34	0,66
5	2-4	КМУ-4э	120000	900	9,63	11,63	0,83	110200 21	740,54	751,3	1,2	0,63
3	1-5	BT20	110000	1000	2	11,03	0,17	118280,31	/40,54	688,69	1,45	0,63

Метод совместных деформаций с учетом увеличения h_2 для пары 2 с КМУ-7э

№ пары	№ эле- мента	Марка	Е , МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	h , мм	Σh , мм	ħ	Е _x , МПа	σ_x , МПа	σ_i , МПа	η_i	$oldsymbol{arepsilon}_{ ext{TEK}}$, $\%$
1	2-7	КМУ-7э	135000	900	9,6	11.6	0,83	147021 02	742,45	677,55	1,33	0,5
1	1-1	30ХГСА	210000	1100	2	11,6	0,17	147931,03	742,43	1053,97	1,04	0,5
2	2-7	КМУ-7э	135000	900	9,6	12,11	0,79	121959,48	711,43	787,5	1,14	0,58
2	1-2	Д16АТ	72000	420	2,51	12,11	0,21	121939,48	/11,43	420	1	0,58
3	2-7	КМУ-7э	135000	900	9,6	11.6	0,83	130689.66	742,45	766,94	1,17	0,57
3	1-3	OT4	110000	700	2	11,6	0,17	130089,00	742,43	624,91	1,12	0,57
4	2-7	КМУ-7э	135000	900	9,6	11.6	0,83	124137.93	742,45	807,42	1,11	0,6
4	1-4	B95	72000	640	2	11,6	0,17	124157,95	742,43	430,62	1,49	0,6
5	2-7	КМУ-7э	135000	900	9,6	11.6	0,83	120690 66	742,45	766,94	1,17	0,57
5	1-5	BT20	110000	1000	2	11,6	0,17	130689,66		624,91	1,6	0,57

Вывод: после перерасчета видно, что запас прочности элемента из композита η_2 при исходной величине, равной 1, при присоединении дополнительных элементов из разных КМ увеличивается, при этом запас прочности всех элементов из металла η_2 также больше 1. Это значит, что составной пояс получил дополнительную несущую способность.

8. Анализ характерных графических зависимостей НДС по конструктивным параметрам

Наиболее характерными и показательными являются зависимости параметров НДС от величины предельной деформации элементов. Построим для варианта 1 зависимости $\eta_1 = f(\varepsilon_{\text{пр км}})$ и $\eta_2 = f(\varepsilon_{\text{пр км}})$, для варианта 2: $\eta_1 = f(\varepsilon_{\text{пр мет}})$, $\eta_2 = f(\varepsilon_{\text{пр мет}})$.

Вариант 1 до исправления

Исходный металл	$arepsilon_{ m np\ MeT}$, %	№ пары	Присоеди- няемый КМ	$\varepsilon_{ m np\ km}$, %	η_2	$\eta_1(arepsilon_{ ext{пр км}},\%)$	$ \eta_1 - \eta_2 $
		1	КМУ-7л	0,45	0,73	1,44	0,71
		2	КМУ-7э	0,67	0,96	1,28	0,32
B95	0,89	3	КМУ-4э	0,75	1,05	1,25	0,19
		4	КМУ-11э	0,75	1,05	1,25	0,19
		5	КМУ-7Т1А	1,05	1,51	1,27	0,23
		6	КМУ-7л	0,45	0,9987	1,29	0,29
		7	КМУ-7э	0,67	1,35	1,18	0,17
Д16АТ	0,58	8	КМУ-4э	0,75	1,49	1,16	0,33
		9	КМУ-11э	0,75	1,49	1,16	0,33
		10	КМУ-7Т1А	1,05	2,13	1,18	0,95

Вариант 1 ДО исправления

Рис.4 Зависимость запаса прочности элементов от предельной деформации КМ до исправления

Вариант 1 после исправления

Исход- ный металл	$arepsilon_{ m np\ MeT}$, %	№ пары	Присо- единяе- мый КМ	$\varepsilon_{ m np\ km}$, %	η_2	$\eta_1(arepsilon_{ ext{пр км}},\%)$	$ \eta_1 - \eta_2 $	$\left \varepsilon_{ m np\ km} - \varepsilon_{ m np\ MeT} \right \%$
		1	КМУ-7л	0,45	1,005	1,98	0,98	0,44
		2	КМУ-7э	0,67	1,0008	1,33	0,33	0,22
B95	0,89	3	КМУ-4э	0,75	1,05	1,25	0,19	0,14
D93	0,89	4	КМУ-11э	0,75	1,05	1,25	0,19	0,14
		5	КМУ- 7Т1А	1,05	1,51	1,27	0,23	0,16
		6	КМУ-7л	0,45	1,008	1,3	0,29	0,13
		7	КМУ-7э	0,67	1,35	1,18	0,17	0,08
Д16АТ	0,58	8	КМУ-4э	0,75	1,49	1,16	0,33	0,17
ДЮАТ	0,36	9	КМУ-11э	0,75	1,49	1,16	0,33	0,17
		10	КМУ- 7Т1А	1,05	2,13	1,18	0,95	0,47

Вариант 1 ПОСЛЕ исправления

Рис.5 Зависимость запаса прочности элементов от предельной деформации КМ после исправления

Выводы:

- 1) Из графиков 4 и 5 видно, что запас прочности в элементах из металла разных марок больше 1 (исходной величины) при разных присоединяемых КМ.
- 2) При сравнении величин предельных деформаций присоединяемого КМ $\varepsilon_{\rm пр\ KM}$ и исходного металла $\varepsilon_{\rm пр\ MeT}$, а также запасов прочности η_i разных вариантов пар видна следующая зависимость. При большой разнице $\varepsilon_{\rm пр}$ запасы прочности металла и композита также существенно различаются. А для элементов с примерно равными предельными деформациями $\varepsilon_{\rm пр}$ металла и КМ запасы прочности примерно одинаковы.
- 3) Именно это сочетание металла и композита с примерно равными предельными деформациями является наиболее рациональным. По графикам видно, что для варианта 1 наиболее рациональными сочетаниями являются:
- №3 и №4 (пояс лонжерона из В95, $\varepsilon_{\rm пр\ MeT}=0.89\%$ + «усиление» из КМУ-4э или КМУ-11э, $\varepsilon_{\rm пр\ KM}=0.75\%$);
- №7 (пояс лонжерона из Д16АТ, $\varepsilon_{\rm пр\ MeT}=0.58\%$ + «усиление» из КМУ-7э, $\varepsilon_{\rm пр\ KM}=0.67\%$).

Вариант 2 до исправления

Исход-	$\varepsilon_{ m np\ KM}$, %	$N_{\underline{0}}$	Присоединяе-	$\varepsilon_{ m np\ Met}$, %	η_1	$\eta_2(arepsilon_{ ext{пр MeT}},\%)$	$ \eta_1-\eta_2 $
ный КМ	-пркму то	пары	мый металл	-пр мету то	'/1	12 (Tip Mer)	171 721
		1	30ХГСА	0,52	0,96	1,37	0,41
		2	Д16АТ	0,58	0,88	1,13	0,25
КМУ-4э	0,75	3	OT4	0,64	1,02	1,2	0,18
		4	B95	0,89	1,34	1,13	0,21
		5	BT20	0,91	1,45	1,2	0,25
		6	30ХГСА	0,52	1,04	1,33	0,28
		7	Д16АТ	0,58	0,98	1,11	0,14
КМУ-7э	0,67	8	OT4	0,64	1,12	1,17	0,05
		9	B95	0,89	1,49	1,11	0,37
		10	BT20	0,91	1,6	1,17	0,43

Рис.6 Зависимость запаса прочности элементов от предельной деформации металлов до исправления

Вариант 2 после исправления

Исход- ный КМ	$\varepsilon_{ m np\ KM}$, %	№ пары	Присоеди- няемый металл	$arepsilon_{ m np\ Met}$, %	η_1	$\eta_2(arepsilon_{ ext{пр MeT}},\%)$	$ \eta_1 - \eta_2 $	$ \varepsilon_{\text{пр км}} $ $-\varepsilon_{\text{пр мет}} \%$
		1	30ХГСА	0,52	1	1,43	0,43	0,23
		2	Д16АТ	0,58	1	1,29	0,29	0,17
КМУ-4э	0,75	3	OT4	0,64	1,02	1,2	0,18	0,11
		4	B95	0,89	1,34	1,13	0,21	0,14
		5	BT20	0,91	1,45	1,2	0,25	0,16
		6	30ХГСА	0,52	1,04	1,33	0,28	0,14
		7	Д16АТ	0,58	1	1,14	0,14	0,08
КМУ-7э	0,67	8	OT4	0,64	1,12	1,17	0,05	0,03
		9	B95	0,89	1,49	1,11	0,37	0,22
		10	BT20	0,91	1,6	1,17	0,43	0,24

Вариант 2 ПОСЛЕ исправления

Рис.7 Зависимость запаса прочности элементов от предельной деформации металлов после исправления

Выводы:

- 1) Из графиков 6 и 7 видно, что все элементы из КМ увеличивают запас прочности при добавлении к ним элементов из металла.
- 2) При сравнении величин предельных деформаций присоединяемого металла $\varepsilon_{\rm пр\ мет}$ и исходного металла $\varepsilon_{\rm пр\ км}$, а также запасов прочности η_i разных вариантов пар наблюдается следующая зависимость. При большой разнице $\varepsilon_{\rm пр}$ запасы прочности металла и композита также существенно различаются. А для элементов с примерно равными предельными деформациями $\varepsilon_{\rm пр}$ металла и КМ запасы прочности примерно одинаковы.
- 3) Именно это сочетание металла и композита с примерно равными предельными деформациями является наиболее рациональным. По графикам видно, что для варианта 2 наиболее рациональные сочетания:
- №3 (пояс лонжерона из КМУ-4э, $\varepsilon_{\rm пр\ KM}=0.75\%$ + «усиление» из ОТ-4, $\varepsilon_{\rm пр\ MET}=0.64\%$);
- №8 (пояс лонжерона из КМУ-7э, $\varepsilon_{\rm пр\ KM}=0.67\%$ + «усиление» из ОТ-4, $\varepsilon_{\rm пр\ MET}=0.64\%$).

Итак, из графиков 4-7 видна общая зависимость: «Чем меньше отличаются относительные предельные деформации металла и КМ, тем меньше разница в их запасах прочности. Следовательно, такие сочетания являются наиболее рациональными с точки зрения весового проектирования».

9. Выводы

Анализируя результаты проведенных расчетов, можно убедиться в том, что методы распределения усилий между элементами по жесткости, совместных деформаций и редукционных коэффициентов дают одни и те же результаты.

Анализируя полученные графические зависимости, убеждаемся в том, что с точки зрения весового проектирования наиболее рациональной будет составная конструкция, у материалов которой отличие предельных относительных деформаций наименьшее.

10. Список литературы

- 1) Е.С. Войт, И.М. Алявдин, А.И. Ендогур, Ю.И. Попов, И.А. Шаталов «Задачник к лабораторно-практическим занятиям по курсу «Конструирование агрегатов планера»: Учебное пособие» М.: Изд-во МАИ, 1987
 - 2) Укороченный пример лабораторной работы №1
 - 3) Укороченные полные характеристики КМ и металлов
- 4) Конспект лекций по дисциплине «Основы проектирования конструкций самолёта из композиционных материалов», читаемых профессором Поповым Ю.И.
- 5) Ю.И. Попов, Г.Н. Кравченко, В.В. Казанцев «Оценка несущей способности составной конструкции самолета из металла и композита»: статья в журнале «Полёт», выпуск №4 от 2020 года