CHAPTER 4: SOLVING NONLINEAR EQUATIONS

Vu Van Thieu, Dinh Viet Sang, Nguyen Khanh Phuong

SCIENTIFIC COMPUTING

Introduction

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method
- 8 Summary

Problem

Given the non-linear function f(x), we need to find x satisfying

$$f(x) = 0.$$

The solution x is the solution of the equation and is also called the (zero point) solution of the function f(x). The problem of finding x is called the root finding problem.

Examples of problems finding solutions of nonlinear equations

$$1 + 4x - 16x^2 + 3x^3 - 3x^4 = 0$$

$$2 \frac{x\sqrt{(2.1-0.5x)}}{(1-x)\sqrt{(1.1-0.5x)}} - 369 = 0 \text{ with } (0 < x < 1)$$

3
$$tg(x) - tanh(x) = 0$$
 where $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Problem

If the equations f(x) are nonlinear then

- it usually does not have an explicit formula solution
- numerical methods that allow us to find solutions based on iterative procedure

Solution interval

For function $f : \mathbb{R} \to \mathbb{R}$ the interval [a, b] is called **solution interval** if function f has opposite signs at both ends a, b, i.e. f(a)f(b) < 0.

Existence of solutions

If f is a continuous function on the interval [a, b] and f(a)(f(b) < 0 then there exists $x^* \in [a, b]$ such that $f(x^*) = 0$.

Examples of solutions to nonlinear equations

- $e^x + 1 = 0$ has no solution
- 2 $e^{-x} x = 0$ has a solution
- 3 $x^2 4\sin(x) = 0$ has two solutions
- $x^3 6x^2 + 11x 6 = 0$ has three solutions
- cos(x) = 0 has infinitely many solutions

Conditions for solving equations

- The absolute value of the number of conditions x^* of the function $f: \mathbb{R} \mapsto \mathbb{R}$ is $\frac{1}{|f'(x^*)|}$.
- A solution of x^* is said to be *ill-conditioned* (well) if the line tangent to it at the point of coordinates x^* is almost horizontal (vertical).

Iterative procedure

Nonlinear equations often do not have an explicit solution. Therefore, to find our solution we often have to use numerical methods based on iterative procedures.

• Stop condition: $|f(x_k)| < \epsilon$ or $|x^* - x_k| < \epsilon$ where ϵ is the given

- precision and x_k is the approximate solution obtained at step k
- Convergence rate: We denote *error* iteration step k as: $e_k = x_k x^*$. The sequence $\{e_k\}$ is said to converge to the degree r if

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^r}=C$$

where C is a non-zero constant

find our solicitions we offen how to to our numerical methods based on tractice procedures, $\begin{aligned} & \text{Stop} & \text{condition} \\ & \text{Stop} & \text{condition} \end{aligned} \left\{ \left\{ \mathbf{x}_i \in \mathbf{x}_i \right\}^{n-1} = \mathbf{x}_i^{n-1} \leq \mathbf{x}_i \text{ the priori procedure is solicited outsided of the procedure is solicited outsided of the procedure is solicited outsided of the part of the procedure is solicited outsided of the part of the procedure is solicited outsided of the part of the procedure is the procedure of the part of the pa$

Nonlinear equations often do not have an explicit solution. Therefore, to

Solve nonlinear equations

Name of the speed of convergence in some cases

- r = 1 linear convergence rate
- r > 1 linear convergence rate
- r = 2 convergence rate squared

Question

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- A Itarativa mathac
- Bairstow method
- Summary

Iterative procedure

Assume that the solution interval [a, c] has only one solution

- Gradual reduction of the solution interval through division
- ② The division to be performed is halving $b = \frac{(a+c)}{2}$ If f(b) = 0 then b is the correct solution to be found, otherwise if $f(b) \neq 0$ we have
 - f(a)f(b) < 0 then the new solution interval is [a, b]
 - Otherwise, the new interval is [b, c]

Steps 1-2 are repeated until the given $[a, c] < \epsilon$

Bisection method

Iterative procedure

Assume that the solution interval [a,c] has only one solution

□ Gradual reduction of the solution interval through division
□ The division to be performed is habring b = \(\frac{\text{Line of the bit}}{\text{Interval of the bit}}\) the correct solution to be found, otherwise if \(f(b) \neq 0\) we have
= \(f(a)f(b) \neq 0\) then the new solution interval is \([s, b] \neq 0\) Otherwise, the new interval is \([b, c]\).

Steps 1-2 are repeated until the given $[a,c]<\epsilon$

If precision $\boldsymbol{\epsilon}$ is given, the number of iterations is an integer \boldsymbol{n} satisfying

$$n \geq \log_2 \frac{ca}{\epsilon}$$

because of

$$\frac{ca}{2^n} < \epsilon$$

Example 1:

Find the solution of the equation $e^x-2=0$ having the range of solutions [0.2] with precision $\epsilon=0.01$

Loops	а	b	С	f(a)	f(b)	f(c)	error
1	0.0000	1.0000	20000	-1.0000	0.7183	5.0389	20000
2	0.0000	0.5000	1,00000	-1.0000	-0.3513	0.7183	1,0000
3	0.5000	0.7500	1,0000	-0.3513	0.1170	0.7183	0.5000
4	0.5000	0.6250	0.7500	-0.3513	-0.1318	0.1170	0.2500
5	0.6250	0.6875	0.7500	-0.1318	-0.0113	0.1170	0.1250
6	0.6875	0.7188	0.7500	-0.0113	0.0519	0.1170	0.0625
7	0.6875	0.7031	0.7188	-0.0113	0.0201	0.0519	0.0313
8	0.6875	0.6953	0.7031	-0.0113	0.0043	0.0201	0.0156
9	0.6875	0.6914	0.6953	-0.0113	-0.00349	0.0043	0.0078

Example 2

Consider the solution of the equation $f(x) = 1/(xe^{-x})$ having a solution interval [0, 1] with precision $\epsilon = 0.00001$

Error:

 $e_k = \max\{x^* - a_k, c_k - x^*\}$ Horizontal axis: number of iterations k

Vertical axis: $-\log_2(e_k)$ Apparently $e_k \approx 2^{-k}$

Comment on the split method

- Strengths: Works even with non-analytic functions.
- Weaknesses:
 - Need to determine the range of solutions and find only one solution.
 - Could not find a double solution.
 - When the function f has singularities, the bisection method can treat them as solutions.

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- A Iterative method
- Bairstow method
- Summary

Iterative procedure

Assume that the solution interval [a, c] has only one solution

- Gradual reduction of the solution interval through division
- ② The division to be performed is $b = a \frac{ca}{f(c) f(a)} f(a) = \frac{af(c) cf(a)}{f(c) f(a)}$ If f(b) = 0 then b is the solution to be found. Conversely, if $f(b) \neq 0$, we have:
 - If f(a)f(b) < 0 then the new integral is [a, b]
 - ightharpoonup Otherwise, the new integral is [b,c]

Steps 1-2 are repeated until $[a, c] < \epsilon$ is given.

So b is the intersection of the horizontal axis with the line segment connecting A(a,f(a)) to B(c,f(c))

Comment

- Advantages: like bisection, we do not need the analytic form of the equation f
- Cons:
 - Need to know the solution interval
 - Single-sided convergence is slow, especially when the segment contains large solutions
 - Can be improved using the same halving method

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- Iterative method
- Bairstow method
- Summary

Description

The basic idea of the method is to replace the nonlinear equation f(x) = 0 with an approximate, linear equation for x. Built on top of Taylor.

Assuming f(x) is continuously differentiable to the order n+1 then there exists $\xi \in (a,b)$

$$f(b) = f(a) + f(ba)f'(a) + \frac{(ba)^2}{2!}f''(a) + \cdots + \frac{(ba)^n}{n!}f^{(n)}(a) + \frac{(ba)^{(n+1)}}{(n+1)!}f^{(n+1)}(\xi)$$

Description (continued)

Taylor expansion of f(x) at the neighborhood of the original approximate solution x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O(h^2)$$

where $h = x - x_0$.

Solve the approximate equation for x:

$$f(x_0) + f'(x_0)(x - x_0) = 0$$

Obtained: $x = x_0 - \frac{f(x_0)}{f'(x_0)}$

x is an incorrect solution, but this solution will be closer to the correct solution than the initial value x_0 .

Iterative procedure

- Initialize with x_0
- 2 Calculates with k > 0

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

3 Repeat step 2 until $|f(x_k)| < \epsilon$ where ϵ is the given precision

Comment

- Advantages:
 - For a smooth enough function and we start from the point near the solution, the convergence rate of the method is squared or r = 2
 - No need to know the solution dissociation, just the initial point x_0
- Cons:
 - Need to calculate the first derivative $f'(x_k)$, we can also approximate it with the formula $f'(x_k) = \frac{f(x_k+h)-f(x_k-h)}{2h}$ where h is a very small value eg h = 0.001
 - Not always the iterative procedure converges

Example 1

Use Newton's method to find the solution of the equation

$$f(x) = x^2 - 4\sin(x) = 0$$

First derivative of f(x)

$$f'(x) = 2x - 4\cos(x)$$

The iterative formula of Newton's method is

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 4\sin(x_k)}{2x_k - 4\cos(x_k)}$$

Approximate starting point $x_0 = 3$

k	x_k	$f(x_k)$		
0	3.000000	8.435520		
1	2.153058	1.294773		
2	1.954039	0.108439		

Example 2

Solve the equation $f(x)=x^2-2=0$ because f'(x)=2x so the iterative formula will be $x_{k+1}=x_k-\frac{x_k^2-2}{2x_k}$ error $e_k=x_k-x^*=x_k-\sqrt{2}$

k	x_k	e_k		
0	4,000000000	2.5857864376		
1	2.250000000	0.8357864376		
2	1.569444444	0.1552308821		
3	1.421890364	0.0076768014		
4	1.414234286	0.0000207236		
5	1.414213563	0.0000000002		

Example 3

Solve the equation

$$f(x) = \operatorname{sign}(xa)\sqrt{|xa|}$$

This equation satisfies:

$$xa - \frac{f(x)}{f'(x)} = -(xa)$$

The zero point of the function is $x^* = a$.

If we draw a tangent to the graph at any point, it always intersects the horizontal axis at the point of symmetry with the line x = a.

Newton's method infinitely iterative, neither convergent nor divergent.

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method
- Summary

Iterative procedure

An improvement of Newton's method, instead of using the tangent f'(x), we use an approximate difference based on two successive iterations.

- **1** Starts with two starting points x_0 and x_1
- ② With $k \ge 2$, we iterate by the formula

$$s_{k} = \frac{f(x_{k}) - f(x_{k-1})}{x_{k} - x_{k-1}}$$
$$x_{k+1} = x_{k} - \frac{f(x_{k})}{s_{k}}$$

3 Repeat step 2 until $|f(x_k)| < \epsilon$ given small positive.

Comment

- Advantages:
 - No need to know the solution dissociation, just two initial points x_0 and x_1
 - No need to calculate first derivative $f'(x_k)$
- Cons:
 - Two initialization points are required
 - Convergence rate of method on linear 1 < r < 2, specifically golden ratio $r \approx \frac{1+\sqrt{5}}{2} = 1.618$

Example 1

Solve the equation

$$f(x) = sign(x-2)\sqrt{|x-2|} = 0$$

with two starting points $x_0 = 4$, $x_1 = 3$ and $\epsilon = 0.001$

$$s_{k} = \frac{f(x_{k}) - f(x_{k-1})}{x_{k} - x_{k-1}}$$

$$= \frac{\operatorname{sign}(x_{k} - 2)\sqrt{|x_{k} - 2|} - \operatorname{sign}(x_{k-1} - 2)\sqrt{|x_{k-1} - 2|}}{x_{k} - x_{k-1}}$$

$$x_{k+1} = x_{k} - \frac{f(x_{n})}{s_{n}} = x_{k} - \frac{\operatorname{sign}(x_{k} - 2)\sqrt{|x_{k} - 2|}}{s_{k}}$$

k	x_k	e_k
0	4,000000000	2,000,000000000
1	3,000000000	1,000,000,000,000
2	0.585786438	1.4142135624
3	1.897220119	0.1027798813
÷	:	i :
26	1.999989913	0.0000100868
27	1.999998528	0.0000014716
28	2,000003853	0.0000038528
29	2.000000562	0.0000005621

Example 2

Solve the equation

$$f(x) = e^{-x/2}\sin(3x) = 0$$

with two starting points x_0 , x_1 and precision ϵ entered from the keyboard

$$s_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$= \frac{e^{-x_k/2} \sin(3x_k) - e^{-x_{k-1}/2} \sin(3x_{k-1})}{x_k - x_{k-first}}$$

$$x_{k+1} = x_k - \frac{f(x_n)}{s_n} = x_k - \frac{e^{-x_k/2} \sin(3x_k)}{s_k}$$

Two starting points $x_0 = 4$ $x_1 = 5$ Accuracy $\epsilon = 0.001$

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- 6 Iterative method
- Bairstow method
- Summary

Fixed point

Instead of writing the equation as f(x) = 0, we rewrite it as a problem

Find x satisfying
$$x = g(x)$$

The point x^* is called *fixed point* of the function g(x) if $x^* = g(x^*)$, i.e. the point x^* is not transformed by g . mapping

Examples

- Newton's method, according to the formula $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$, the function g that we need to find the fixed point x^* would be g(x) = x f(x)/f'(x)
- Find the solution $f(x) = x e^{-x} \Rightarrow g(x) = e^{-x}$
- Find the solution $f(x) = x^2 x 2 \Rightarrow g(x) = \sqrt{x+2}$ or $g(x) = x^2 2$
- Find the solution $f(x) = 2x^2 x 1 \Rightarrow g(x) = 2x^2 1$

Iterative procedure

Approach to problem solving

$$x_{k+1} = g(x_k)$$
 with $k = 1, 2, \cdots$

The above iterative procedure is often called an iterative **find fixed point** with a given starting point x_1

Comment

- Advantages:
 - No need to know the solution interval
- Cons:
 - does not always converge

Example 1

Finding the solution of the equation $f(x) = x^2 - x - 2 = 0$ can lead to finding a fixed point

$$g(x) = \sqrt{x+2}$$

Approximate starting point $x_1 = -1$

Starting point $x_1 = -1$ Number of iterations n = 3

Example 2

Find the solution of the equation $f(x) = x^2 - x - 2$ by finding the point of disagreement of the function

$$g(x) = x^2 - 2$$

The starting point $x_1 = 2.02$ is very close to the solution

Starting point $x_1 = 2.02$ Number of iterations n = 50

Convergence theorem of iterative methods

Theorem 1: Assume the function g(x) is continuous and the sequence repeats

$$x_{k+1}=g(x_k), k=1,2,\cdots$$

then if $x_k \to x^*$ when $k \to \infty$ then x^* is the fixed point of g.

Theorem 2: Suppose $g \in C^1$ and |g'(x)| < 1 in some interval containing the fixed point x^* . If x_0 is also in this range, the iterative sequence $\{x_k\}$ converges to x^* .

Theorem 3: If g is a **co function** then it has only one fixed point and the iterative sequence $\{x_k\}$ converges to x^* for all points starting x_0 . Note: The function g is called a co function if there is a constant L < 1 such that for every x, y we have: |g(x) - g(y)| < L(xy)).

- Problem
 - Existence and uniqueness of solutions
 - Sensitivity and conditions for solving nonlinear equations
 - Iterative procedure
- 2 Bisection method
- Chord method
- Mewton's method
- Secant method
- A Iterative method
- Bairstow method
- 8 Summary

Description

This is the method used to find the solution of a polynomial,:

$$y = a_0 + a_1 x + \dots + a_N x_N$$

It can be rewritten as a quadratic factor plus a remainder

$$y = (x^2 + px + q)G(x) + R(x)$$

Inside,

- p and q are arbitrary values.
- G(x) is a polynomial of degree N-2
- R(x) is the remainder, usually a first degree polynomial.

Description (continued)

So the polynomial G(x) and the remainder R(x) have the form

$$G(x) = b_2 + b_3 x + b_4 x^2 + \dots + b_N x^{N-2}$$

 $R(x) = b_0 + b_1 x$

The value of b_0 and b_1 depends on the choice of p and q, the goal is to find $p=p^*$ and $q=q^*$ such that

- $b_0(p^*, q^*) = b_1(p^*, q^*) = 0 \Rightarrow R(x) = 0$
- $(x^2 + p^*x + q^*) \Rightarrow$ square factor of y

Iterative procedure

- 1 Initializes p and q and calculates b_0 and b_1 (see ct in the book)
- ② Calculates the values $(b_0)_p$, $(b_1)_p$ and $(b_0)_q$, $(b_1)_q$ (see ct in the book)
- 3 Find Δp and Δq when solving equation (9)
- **3** Obtained p^* and q^* by the formula $p^* = p + \Delta p$ and $q^* = q + \Delta q$

Comment

- Advantages:
 - method that converges to the quadratic factor $(x^2 + px + q)$ regardless of the initialization value p, q
 - ightharpoonup the coefficients of the polynomial G(x) are also automatically obtained
- Cons:
 - the accuracy of the obtained test is not high
 - to improve, you can use Newton's method to recalculate each solution

Summary

Methods	Ranges	Requirements	Styles	Features
Dharma	Dissociation	Disparity of Tao	Oriental	Special
	solutions	first order functions	equations	
Split	Yes	No	Any	Apply to the
function				has no analytic for
Chord	Yes	Yes	Any	Slow Convergence
				large separation
Newton	No	Yes	Any	Fast Convergence
				Need to calculate
Cat route	No	Yes	Any	nt
Repeat	No	Yes	Any	May not converge
Bairstow	No	Yes	Polynomials	Factorials of 2nd of
				Can find complex

5-24	Scientific Computing —Summary
2021-05	Summary

Methods Dharma	Ranges Dissociation solutions	Requirements Disparity of Tao first order functions	Styles Oriental equations	Features Special
Split	Yes	No	Any	Apply to the
function				has no analytic fo
Chord	Yes	Yes	Any	Slow Convergence large separation
Newton	No	Yes	Any	Fast Convergence Need to calculate
Cat route	No	Yes	Any	nt
Repeat	No	Yes	Any	May not converge
Bairstow	No	Yes	Polynomials	Factorials of 2nd Can find complex
			•	

Summary

The first two methods (division, chord) both require a solution dissociation interval. The Newton method and the linear sand need to have an initial guess. The iterative method has the problem that it does not always converge. The Bairstow method is limited to solving polynomial equations, which may also not converge.

Read more

Functions to find solutions in Matlab

- X = roots(C) find polynomial roots
- X = fzero(FUN,X0) find solutions to nonlinear equations

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

