

Complex Network Systems

Communities

Ilche Georgievski

2019/2020 Winter

Types

Graph-level metrics

- Size
- Density
- Paths and distances
- Neighbourhoods
- Egocentric network
- Clustering coefficient
- Transitivity
- Cores
- Cliques
- Communities

Node-level metrics

- Closeness centrality
- Betweenness centrality
- Degree centrality
- Eigenvector centrality
- Katz centrality
- PageRank

What is a community?

A group of nodes that are densely connected internally and sparsely connected to other groups

Zachary's Karate Club

Auxiliary information

Breakup of the club

Language spoken

E. coli metabolism

HI: A network's community structure is uniquely encoded in its wiring diagram

How to define communities?

H2: A community is <u>locally dense connected</u> subgraph in a network

Cliques as communities

A clique satisfies H2: it is connected subgraph with maximal link density

Internal and external degrees

$$k_i^{int} = ? \quad k_i^{int} = 3$$

$$k_i^{ext} = ? \quad k_i^{ext} = 1$$

What does it mean for i when $k_i^{ext} = 0$ in C?

What does it mean for i when $k_i^{int} = 0$ in C?

Strong community

$$k_i^{int}(\mathcal{C}) > k_i^{ext}(\mathcal{C})$$

Each node of C has more links within the community than with the rest of the graph

Weak community

$$\sum_{i \in C} k_i^{int}(C) > \sum_{i \in C} k_i^{ext}(C)$$

The total internal degree of C exceeds its total external degree

b.

Clique

Strong

Weak

Graph bisection problem

Divide a network into two non-overlapping subgraphs such that the number of links between the nodes in the two subgraphs is minimised

cut size

Partitioning problems

 Place 2.5 billion transistors on a chip such that their wires do not intersect

 Partition computation into subtasks assigned to individual processors such that the communication between them is minimised

Kerninghan-Lin algorithm

Computational complexity

N – number of nodes in a network

 N_1 – number of nodes in the first subgraph

 N_2 – number of nodes in the second subgraph

$$number\ of\ distinct\ partitions = \frac{N!}{N_1!\ N_2!}$$

Assume that
$$N_1 = N_2 = N/2$$

$$\frac{2^{N+1}}{\sqrt{N}} = e^{(N+1)\ln 2 - \frac{1}{2}\ln N}$$

$$N = 10$$
 and $N_1 = N_2 = 5$ => 252 partitions (10⁻³s)
 $N = 100$ and $N_1 = N_2 = 50$ => 10²⁹ partitions (10¹⁶ years)

Community detection

Partition is a division of a network into groups of nodes such that each node belongs to one group only

$$B_N = \frac{1}{e} \sum_{j=0}^{\infty} \frac{j^N}{j!}$$

It is impossible to inspect all partitions of a large network

NP-complete Hierarchical clustering

Modularity

H3: Randomly wired networks lack an inherent community structure

Modularity

Original network

Expect number of links if the network is randomly linked

Relative to a specific partition

Random network
$$P_{ij} = \frac{k_i k_j}{2M}$$

weights

Fortunato, S. (2010) Community detection in graphs. Physics Reports, 486(3-5):75–174.

 P_{ij} can take into account

directions

Fortunato, S. (2010) Community detection in graphs. Physics Reports, 486(3-5):75–174.

attributes or space

Expert, P., Evans, T. S., Blonder, V. D., Lambiotte, R. (2011) Uncovering space-independent communities in spatial networks. PNAS, 108(19):7663–7668.

Which partition $\{C_c, c = 1, n_c\}$?

a.

OPTIMAL PARTITION

$$Q = 0.41$$

b.

SUBOPTIMAL PARTITION

$$Q = 0.22$$

C.

SINGLE COMMUNITY

$$Q = 0$$

d.

NEGATIVE MODULARITY

$$Q = -0.12$$

H4: For a given network, the partition with maximum modularity corresponds to the optimal community structure

Find partition $\{C_c, c = 1, n_c\}$ maximises Q

Greedy algorithm

- I. Assign each node to a community of its own
- 2. Inspect each pair of communities connected by at least one link and compute ΔQ
- 3. Identify the community pair for which ΔQ is the largest and merge them. Note that the modularity of a particular partition is calculated from the full topology of the network
- 4. Repeat step 2 until all nodes are merged into a single community, recording Q for each step
- 5. Select the partition for which Q is maximal

Computational complexity

- Step I-2 (calculation of ΔQ for M links): O(M)
- Step 3 (matrix update): O(N)
- Step 4 (N-I community mergers): O((M + N)N)
- For sparse networks $O(N^2)$ M.E.J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69:066133, 2004.
- Optimised implementation $O(Nlog^2N)$ A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large networks. Physical Review E, 70:066111, 2004.
- Louvain algorithm O(M) V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech., 2008.

Community detection with modularity

- Fraction of edges that fall within the given communities minus the expected fraction if edges were distributed at random, while conserving the nodes degrees
- Measure of relative density in the network: a community has high density relative to other nodes within the community but low density with those outside
- Gives an overall score of how fractious your network is, which can be used to partition the network and return the individual communities

Community detection with modularity

 Modularity of 0.6 and above corresponds to networks that have a clearly visible community structure

 Very dense networks are often more difficult to split into sensible partitions

Modularity in NetworkX

- Requires installing an additional package called python-louvain
 - Documentation: https://perso.crans.org/aynaud/communities/api.html
- Externally visible name of the module is community
- It uses the Louvain algorithm that maximises network modularity
 - community.best_partition(G)
 - tries to determine the number of communities
 - assigns each node a number (>=0), corresponding to the community it belongs to
 - computes the partition of the graph nodes that maximises the modularity
 - community.modularity(partition, graph)
 - compute the modularity of a partition of a graph

Modularity in Gephi

Resolution assigns self-loops to nodes to increase or decrease the aversion of nodes to form communities

Characterising communities

- Community size distribution
- Communities and link weights
- Community evolution

Community size distribution

Communities and link weights

Communities and link weights

Community evolution

Community evolution

Community evolution

Do communities matter?

Midnight

Busy at midnight

Sleep at noon

Midnight

Busy at midnight Sleep at noon

Midnight

Sources

- Zinoviev, D.. Complex Network Analysis in Python: Recognize, Construct, Visualize, Analyze, Interpret, The Pragmatic Bookshelf, 2018.
- Barabási, A. Network Science, http://networksciencebook.com
- Cornelius, S. P., Towlson, E. K., Barabási, A., Communities Part I and Part II, Network Science.