Started on Saturday, 4 November 2023, 9:30 AM

State Finished

Completed on Saturday, 4 November 2023, 10:30 AM

Time taken 59 mins 48 secs

Grade 9.00 out of 15.00 (**60**%)

Question 1

Correct

Mark 1.00 out of 1.00

Consider a casual LTI system characterized by the difference equation

$$y[n] - rac{1}{2}y[n-1] + rac{1}{18}y[n-2] = 3x[n].$$

The value of impulse response $\boldsymbol{h}[\boldsymbol{n}]$ at $\boldsymbol{n}=1$ is

Select one:

- 3.5
- 0
- **3**
- **5**
- _ 2
- 1/2
- 3/2

Your answer is correct.

The correct answer is: 3/2

Question 2

Incorrect

Mark 0.00 out of 1.00

The sequence $x[n]=0.5^nu[n]$ where u[n] is the unit step sequence, is convolved with itself to obtain y[n]. Then $\sum_{n=-\infty}^{+\infty} (-1)^ny[n]$ is

Answer: 4

The correct answer is: 0.44444

Correct

Mark 1.00 out of 1.00

If the DTFT of y[n] is related to the DTFT of x[n] as

$$Y(e^{j\omega})=X(e^{j\omega})-2jrac{d}{d\omega}X(e^{j\omega})-rac{d^2}{d\omega^2}X(e^{j\omega})$$
, then $y[n]$ is related to $x[n]$ as

Select one:

- $n^2x[n-1]$
- $(n-1)^2 x[n]$
 - ****
- $\bigcirc \quad (n-2)x[n]$
- $(n+1)^2 x[n]$
- $-(n-1)^2 x[n]$
- \bigcirc (n-1)x[n]
- None of the other options are correct

Your answer is correct.

The correct answer is: $(n-1)^2x[n]$

Question 4

Correct

Mark 2.00 out of 2.00

The integral
$$\int_{-\pi}^{\pi} rac{1}{\left|1-0.5e^{-j\omega}
ight|^4} d\omega$$
 has a value

Select one:

- None of the above
- 2π
- 0.25π
- π

Your answer is correct.

The correct answer is: None of the above

Correct

Mark 1.00 out of 1.00

Let an input x[n] having discrete time fourier transform $X(e^{j\omega})=1-e^{-j\omega}+2e^{-3j\omega}$ be passed through an LTI system. The frequency response of the LTI system is $H(e^{j\omega})=1-\frac{1}{2}e^{-j2\omega}$. The output y[n] of the system is

Select one:

$$\bigcirc \quad \delta[n] + \delta[n-1] - rac{1}{4}\delta[n-2] - rac{5}{2}\delta[n-4] + \delta[n-5]$$

$$\hspace{1cm} \bigcirc \hspace{1cm} \delta[n] - \delta[n-1] - rac{1}{2}\delta[n-2] - rac{5}{2}\delta[n-3] + \delta[n-5]$$

$$\hspace{1cm} \bigcirc \hspace{1cm} \delta[n] + \delta[n-1] + rac{1}{2}\delta[n-2] + rac{5}{2}\delta[n-3] + \delta[n-5]$$

$$\hspace{1cm} \bigcirc \hspace{1cm} \delta[n] + \delta[n-1] - rac{1}{2}\delta[n-2] - rac{5}{2}\delta[n-3] + \delta[n-5]$$

$$\hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \delta[n] - \delta[n-1] - rac{1}{2}\delta[n-2] + rac{5}{2}\delta[n-3] - \delta[n-5]$$

√

None of the other options are correct

Your answer is correct

The correct answer is:
$$\delta[n]-\delta[n-1]-rac{1}{2}\delta[n-2]+rac{5}{2}\delta[n-3]-\delta[n-5]$$

Question 6

Incorrect

Mark 0.00 out of 1.00

Consider the signal

$$x[n]=6\delta[n+2]+3\delta[n+1]+8\delta[n]+7\delta[n-1]+4\delta[n-2]$$
. If $X(e^{j\omega})$ is the DTFt of $x[n]$, then $rac{1}{\pi}\int_{-\pi}^{\pi}X(e^{j\omega})\sin^2(2\omega)d\omega$ is equal to

Answer: 4

The correct answer is: 8

Correct

Mark 1.00 out of 1.00

Let h[n] denote impulse response of an LTI system such that h[0]=1/5; h[1]=2/5; h[2]=1/5 and h[n]=0 otherwise.

If $H(\omega)$ denotes the DTFT of h[n] and $H(\omega_0)=0$ for one value of ω between 0 and π , then the value of ω_0 is

Select one:

- 0

- None of the other answers are correct

Your answer is correct.

The correct answers are: π

, None of the other answers are correct

Question 8

Incorrect

Mark 0.00 out of 1.00

Let $h[n]=0.5^nu[n]$. Denote its Fourier transform by $H(e^{j\omega})$. One student who did not know how to implement an LTI system with infinite-length impulse response decided to truncate the impulse response to 3 coefficients (that is, he ignored all impulse response coefficients for $n\geq 3$) and then implement the LTI system. Denote the truncated impulse response by $\hat{h}[n]$ and its Fourier transform by $\hat{H}(e^{j\omega})$. The value of

$$rac{1}{2\pi}\int_{-\pi}^{\pi}\left|H(e^{j\omega})-\hat{H}(e^{j\omega})
ight|^{2}\!d\omega$$
 is

Answer: 0.25

The correct answer is: 0.02083

Correct

Mark 1.00 out of 1.00

The discrete-time Fourier transform $X\left(e^{j\omega}\right)$ of a sequence x[n] is of the form:

$$X(e^{j\omega}) = egin{cases} 1 & -\pi < \omega \leq -0.75\pi \ 1 & 0.75\pi \leq \omega \leq \pi \ 0 & Otherwise \end{cases}$$

 $Y(e^{j\omega})$ is the perodic convolution of $X(e^{j\omega})$ with itself. Then y[n] is

Select one:

- None of the other options are correct
- $2\pi \left(\frac{\sin(0.5\pi n)}{\pi n}\right)^2$
- $\bigcirc \quad \left(\frac{\sin(0.5\pi n)}{\pi n}\right)^2$
- $\frac{\sin(0.5\pi n)}{\pi n}$

- $\bigcirc \quad \frac{\sin(0.75\pi n)}{\pi n}$

Your answer is correct.

The correct answer is: $2\pi \bigg(\frac{\sin(0.25\pi n)}{\pi n} \bigg)^2$

Correct

Mark 1.00 out of 1.00

It is desired to find a three-tap causal filter that gives zero signal as an output to an input of the form

$$x[n]=c_1e^{-rac{j\pi n}{2}}+c_2e^{rac{j\pi n}{2}}$$
 where c_1 and c_2 are arbitrary real numbers.

The desired three-tap filter is given by

h[n]=1,a,b where origin at 1. What are the values of the filter taps a and b if the output is y[n]=0 for all n

Select one:

- None of the other choices are correct
- \bigcirc a=-1 and b=1
- $\bigcirc \quad a=0 ext{ and } b=2$
- lacksquare a=0 and b=1

- \bigcirc a=2 and b=0
- \bigcirc a=1 and b=1
- $\bigcirc \quad a=0$ and b=-1

Your answer is correct.

The correct answer is: a=0 and b=1

Incorrect

Mark 0.00 out of 2.00

If
$$x[n] = rac{1}{\pi^2} \sum_{m=1}^{\infty} rac{1}{m(n-m)}$$
 then $x[n] =$

Select one:

- $lacksquare -0.25\delta[n]$
 - X
- None of the above
- π
- $0.25\delta[n]$
- $\delta[n]$
- n

Your answer is incorrect.

The correct answer is: None of the above

Question 12

Correct

Mark 1.00 out of 1.00

It is claimed that $(-\omega + 2\pi)^7 e^{-j\omega/2}$, $0 \le \omega \le 4\pi$, is a valid discrete-time Fourier transform of a sequence x[n]. Is this statement true or False?

Select one:

- True
- False

The correct answer is 'False'.

Question 13

Incorrect

Mark 0.00 out of 1.00

The Fourier transform of a signal $\boldsymbol{x}[n]$ is given by

$$X(e^{j\omega})=rac{e^{jrac{\omega}{2}}}{2j}rac{\sin(rac{3}{2}\omega)}{\sin^2(rac{\omega}{2})}+5\pi\delta(\omega), \;\; -\pi<\omega\leq\pi.$$

The value of x[3] is

Answer: 2

The correct answer is: 4

Jump to...

✓

Quiz V ▶