Proof of Jordan-von Neumann theorem for vector spaces over \mathbb{R}

Bruno Félix Rezende Ribeiro oitofelix@ufu.br

FAMAT — Universidade Federal de Uberlândia

2017-04-15

Abstract

The present work provides a proof of Jordan-von Neumann theorem for real vector spaces. The proof presented here is a somewhat more detailed, particular case of the complex treatment given by P. Jordan and J. v. Neumann in [1].

 $Index\ terms-$ Jordan-von Neumann Theorem, Vector spaces over $\mathbb R,$ Parallelogram law

Definition 1 (Inner Product). Let E be a vector space over \mathbb{R} . A function $\langle .,. \rangle : E \times E \to \mathbb{R}$ is an **inner product** iff

P1
$$x \neq 0 \Rightarrow \langle x, x \rangle > 0, \forall x \in E$$

P2
$$\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in E$$

P3
$$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle, \forall x,y,z\in E$$

P4
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \forall \lambda \in \mathbb{R}, \forall x, y \in E$$

Definition 2. A normed vector space (E, ||.||) satisfies the **parallelogram law** iff

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \forall x, y \in E$$

Theorem 3. Let $(E, \langle .,. \rangle)$ be an inner product vector space and define $||x|| = \sqrt{\langle x, x \rangle}$. Then, the normed vector space (E, ||.||) satisfies the parallelogram law.

Proof. Given $x, y \in E$, by definition 1,

$$\begin{aligned} & \|x+y\|^2 + \|x-y\|^2 \\ & \stackrel{\mathbb{P}^3}{=} \langle x+y,x+y\rangle + \langle x-y,x-y\rangle \\ & \stackrel{\mathbb{P}^3}{=} \langle x,x+y\rangle + \langle y,x+y\rangle + \langle x,x-y\rangle + \langle -y,x-y\rangle \\ & \stackrel{\mathbb{P}^2}{=} \langle x+y,x\rangle + \langle x+y,y\rangle + \langle x-y,x\rangle + \langle x-y,-y\rangle \\ & \stackrel{\mathbb{P}^3}{=} \langle x,x\rangle + \langle y,x\rangle + \langle x,y\rangle + \langle y,y\rangle + \langle x,x\rangle + \langle -y,x\rangle + \langle x,-y\rangle + \langle -y,-y\rangle \\ & \stackrel{\mathbb{P}^4}{=} 2 \langle x,x\rangle + \langle y,x\rangle + \langle x,y\rangle + \langle y,y\rangle - \langle y,x\rangle + \langle x,-y\rangle - \langle y,-y\rangle \\ & \stackrel{\mathbb{P}^2}{=} 2 \langle x,x\rangle + \langle x,y\rangle + \langle y,y\rangle + \langle -y,x\rangle - \langle -y,y\rangle \\ & \stackrel{\mathbb{P}^2}{=} 2 \langle x,x\rangle + \langle x,y\rangle + \langle y,y\rangle - \langle y,x\rangle + \langle y,y\rangle \\ & \stackrel{\mathbb{P}^2}{=} 2 \langle x,x\rangle + \langle x,y\rangle + 2 \langle y,y\rangle - \langle x,y\rangle \\ & = 2(\langle x,x\rangle + \langle y,y\rangle) \\ & \stackrel{\mathbb{P}^2}{=} 2(\|x\|^2 + \|y\|^2) \end{aligned}$$

Theorem 4. Let $(E, \langle ., . \rangle)$ be an inner product vector space and define $||x|| = \sqrt{\langle x, x \rangle}$. Then,

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2$$

Proof. Given $x, y \in E$, by definition 1,

$$\begin{split} & \|x+y\|^2 - \|x-y\|^2 \\ & \stackrel{\mathbb{P}^3}{=} \langle x+y,x+y\rangle - \langle x-y,x-y\rangle \\ & \stackrel{\mathbb{P}^3}{=} \langle x,x+y\rangle + \langle y,x+y\rangle - \langle x,x-y\rangle - \langle -y,x-y\rangle \\ & \stackrel{\mathbb{P}^2}{=} \langle x+y,x\rangle + \langle x+y,y\rangle - \langle x-y,x\rangle - \langle x-y,-y\rangle \\ & \stackrel{\mathbb{P}^3}{=} \langle x,x\rangle + \langle y,x\rangle + \langle x,y\rangle + \langle y,y\rangle - \langle x,x\rangle - \langle -y,x\rangle - \langle x,-y\rangle - \langle -y,-y\rangle \\ & \stackrel{\mathbb{P}^3}{=} \langle y,x\rangle + \langle x,y\rangle + \langle y,y\rangle + \langle y,x\rangle - \langle x,-y\rangle + \langle y,-y\rangle \\ & \stackrel{\mathbb{P}^4}{=} 3 \langle x,y\rangle + \langle y,y\rangle - \langle -y,x\rangle + \langle -y,y\rangle \\ & \stackrel{\mathbb{P}^4}{=} 3 \langle x,y\rangle + \langle y,y\rangle + \langle y,x\rangle - \langle y,y\rangle \\ & \stackrel{\mathbb{P}^4}{=} 4 \langle x,y\rangle \end{split}$$

Theorem 5. Let (E, ||.||) be a normed vector space which satisfies the parallelogram law, and define

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}$$

Then, $\langle .,. \rangle$ is an inner product.

Proof. To prove this we verify each property of definition 1.

P1 Given $x \in E$ such that $x \neq 0$,

$$\langle x, x \rangle = \frac{{{{\left\| {x + x} \right\|}^2} - {{\left\| {x - x} \right\|}^2}}}{4} = \frac{{{{{\left\| {2x} \right\|}^2} - {{\left\| 0 \right\|}^2}}}}{4} = \frac{{{{{A}}\left\| x \right\|^2}}}{4} = {{{\left\| x \right\|}^2}} > 0$$

P2 Given $x, y \in E$,

$$\begin{split} \langle x,y \rangle &= \frac{\left\| x + y \right\|^2 - \left\| x - y \right\|^2}{4} = \frac{\left\| x + y \right\|^2 - (\left| -1 \right| \left\| x - y \right\|)^2}{4} \\ &= \frac{\left\| x + y \right\|^2 - \left\| (-1)(x - y) \right\|^2}{4} = \frac{\left\| y + x \right\|^2 - \left\| y - x \right\|^2}{4} = \langle y, x \rangle \end{split}$$

P3 Given $x, y, z \in E$, by the parallelogram law,

$$\|(x+z) + y\|^2 + \|(x+z) - y\|^2 = 2(\|x+z\|^2 + \|y\|^2)$$
(1)

$$\|(x-z) + y\|^2 + \|(x-z) - y\|^2 = 2(\|x-z\|^2 + \|y\|^2)$$
(2)

Subtracting equation 2 from equation 1,

$$||(x+z) + y||^2 - ||(x-z) + y||^2 + ||(x+z) - y||^2 - ||(x-z) - y||^2$$

$$= 2(||x+z||^2 + ||y||^2) - 2(||x-z||^2 + ||y||^2)$$

$$\Rightarrow (\|(x+y) + z\|^2 - \|(x+y) - z\|^2) + (\|(x-y) + z\|^2 - \|(x-y) - z\|^2)$$

$$= 2(\|x+z\|^2 + \|y\|^2 - \|x-z\|^2 - \|y\|^2)$$

$$\Rightarrow 4\left\langle x+y,z\right\rangle +4\left\langle x-y,z\right\rangle =8\left\langle x,z\right\rangle$$

$$\Rightarrow \langle x + y, z \rangle + \langle x - y, z \rangle = 2 \langle x, z \rangle \tag{3}$$

Therefore, given $x', y', z' \in E$ (by equation 3),

$$\left\langle \left(\frac{x'+y'}{2}\right) + \left(\frac{x'-y'}{2}\right), z' \right\rangle + \left\langle \left(\frac{x'+y'}{2}\right) - \left(\frac{x'-y'}{2}\right), z' \right\rangle = 2 \left\langle \left(\frac{x'+y'}{2}\right), z' \right\rangle$$

$$\stackrel{\mathbb{P}^{4}}{\Rightarrow} \left\langle \frac{x'+y'+x'-y'}{2}, z' \right\rangle + \left\langle \frac{x'+y'-x'+y'}{2}, z' \right\rangle = \langle x'+y', z' \rangle$$

$$\Rightarrow \left\langle \frac{2x'}{2}, z' \right\rangle + \left\langle \frac{2y'}{2}, z' \right\rangle = \langle x'+y', z' \rangle$$

$$\Rightarrow \langle x', z' \rangle + \langle y', z' \rangle = \langle x'+y', z' \rangle$$

P4 Given $x, y \in E$, define $S = \{\lambda \in \mathbb{R} \mid \lambda \langle x, y \rangle = \langle \lambda x, y \rangle \}$. Let us proceed to prove that $S = \mathbb{R}$.

($\mathbb{Z} \subset S$) Clearly $1\langle x,y\rangle=\langle 1x,y\rangle=\langle x,y\rangle$ and thus $1\in S$. Suppose that $\alpha,\beta\in S$, then

$$(\alpha \pm \beta) \langle x, y \rangle = \alpha \langle x, y \rangle \pm \beta \langle x, y \rangle \stackrel{\text{H}}{=} \langle \alpha x, y \rangle \pm \langle \beta x, y \rangle$$

$$\stackrel{\text{P3}}{=} \langle \alpha x \pm \beta x, y \rangle = \langle (\alpha \pm \beta) x, y \rangle$$

Which means that $\alpha \pm \beta \in S$, and therefore $\mathbb{Z} \subset S$.

 $(\mathbb{Q} \subset S)$ Suppose that $\alpha, \beta \in S$ and $\beta \neq 0$. Hence,

$$\begin{split} \alpha \left\langle x,y \right\rangle &\stackrel{\text{\tiny H.}}{=} \left\langle \alpha x,y \right\rangle = \left\langle \frac{\beta}{\beta} \alpha x,y \right\rangle &\stackrel{\text{\tiny H.}}{=} \beta \left\langle \frac{\alpha}{\beta} x,y \right\rangle \\ &\Rightarrow \frac{\alpha}{\beta} \left\langle x,y \right\rangle = \left\langle \frac{\alpha}{\beta} x,y \right\rangle \end{split}$$

Which means that $\frac{\alpha}{\beta} \in S$, and therefore $\mathbb{Q} \subset S$.

 $(\mathbb{R} \subset S)$ Given $x, y \in E$, let f and g be real functions such that $f(\lambda) = \lambda \langle x, y \rangle$ and $g(\lambda) = \langle \lambda x, y \rangle$, for all $\lambda \in \mathbb{R}$. Considering the previous result, it is clear that $f(\lambda) = g(\lambda), \forall \lambda \in \mathbb{Q}$. Furthermore, both functions are continuous because f is linear and g is composition of continuous functions. This means that f = g, since two real continuous functions whose values coincide for every rational number must coincide for each irrational number as well. Therefore $\mathbb{R} \subset S$.

References

[1] P. Jordan and J. v. Neumann; On inner products in linear, metric spaces; Annals of Mathematics, Vol. 36, No. 3; July, 1935.