Badanie wzmacniacza OE

Filip Orłowski Paweł Nogaj Janusz Pajor 15 października 2018

1 Wzmacniacz w konfiguracji OE

Podstawowym elementem wzmacniacza jest tranzystor w tym przypadku bipolarny. Podaną konfigurację można zobaczyć na rysunku 1

Rysunek 1: Wzmacniacz OE

1.1 Rola poszczególnych elementów

 \bullet C_1 tworzy z theveniowską rezystanją zastępczą dzielnika i r_e filtr górnoprzepustowy

 $f_c = \frac{1}{2\pi RC}$

- \bullet C_2 tworzy z rezystanją obciążenia R_L filtr górnoprzepustowy
- $\bullet \ R_1$ i R_2 to dzielnik napięcia polaryzujący bazę tranzystora. Zwykle tak aby

$$U_{wu} = U_C = 0,5U_{cc}$$

- \bullet R_3 wpływający bezpośrednio na wzmocnienie układu
- \bullet R_4 rezystor emiterowy tzw. rezystor ujemnego sprzężenia zwrotnego; stabilizuje punkt pracy wzmacniacza

• C_3 dla składowej zmiennej zwiera R_4 tym samym zwiększając wzmocnienie układu

1.2 Wzmocnienia układu

Wzmocnienie napięciowe podawane jako iloraz napięcia wyjściowego do wejściowego:

$$G = \frac{U_{wy}}{U_{we}}[V/V]$$

$$G = 20 \log(\frac{U_{wy}}{U_{we}})[dB]$$

Wzmocnienie prądowe podawane jako iloraz prądu wyjściowego do wejściowego:

$$G = \frac{I_{wy}}{I_{we}}[V/V]$$

$$G = 20 \log(\frac{I_{wy}}{I_{we}})[dB]$$

Wzmocnienie mocy podawane jako iloraz mocy wyjściowej do wejściowej:

$$G = \frac{P_{wy}}{P_{we}}[V/V]$$

$$G = 10 \log(\frac{P_{wy}}{P_{we}})[dB]$$

1.3 Pasmo przenoszenia

Zakres częstotliwości, w którym tłumienie sygnału jest nie większe niż 3 dB (spadek amplitudy o 3 dB w stosunku do amplitudy początkowej). W paśmie przenoszenia amplituda osiąga wartość nie mniejszą niż 70,7% swojej wartości maksymalnej.

2 Układ pomiarowy

Zadaniem ćwiczenia było wyznaczenie pasma przenoszenia przykładowego wzmacniacza OE. Układ pomiarowy składał się z wzmacniacza OE, generatora przebiegów elektrycznych i oscyloskopu. Za pomocą oscyloskopu i kalkulatora doknywaliśmy obliczania wzmocnienia napięciowego układu dla danych częstotliwości. Pomiary zostały zebrane w tabeli pomiarowej.

Rysunek 2: Pasmo przenoszenia $f_d=205 \mathrm{Hz}\ f_g=1,78 \mathrm{MHz}$

2.1 Wykres

W celu wyznaczenia pasma przenoszenia został wykonany prosty program w Pythonie, który pobiera dane w formacie *.csv rysuje wykres i podaje f_g i f_d . Pasmo przenoszenia jest widoczne na rysunku 2.

2.2 Oscyloskop cyfrowy

Otwarcie zakładki pomiarowej jest możliwe po kliknięciu w przycisk Measure, a następnie należy wybrać odpowiedni kanał lub kanały.

	f(Hz)	G(V/V)	G(dB)
1	30.00	19.61	25.85
2	40.00	30.77	29.76
3	50.00	36.54	31.26
4	60.00	43.85	32.84
5	70.00	49.23	33.84
6	80.00	55.77	34.93
7	90.00	60.77	35.67
8	100.00	66.66	36.48
9	130.00	77.69	37.81
10	150.00	84.61	38.55
11	180.00	95.67	39.62
12	200.00	98.82	39.90
13	250.00	117.55	41.40
14	300.00	122.00	41.73
15	400.00	128.00	42.14
16	500.00	133.00	42.48
17	750.00	138.77	42.85
18	1000.00	138.77	42.85
19	3000.00	143.33	43.13
20	7000.00	143.33	43.13
21	90000.00	143.33	43.13
22	100000.00	143.33	43.13
23	150000.00	140.00	42.92
24	300000.00	137.00	42.73
25	400000.00	139.00	42.86
26	700000.00	129.00	42.21
27	1000000.00	127.00	42.08
28	1300000.00	113.00	41.06
29	1500000.00	108.00	40.67
30	1800000.00	101.00	40.09
31	2000000.00	96.00	39.65
32	2200000.00	88.00	38.89
33	2500000.00	81.00	38.17
34	3000000.00	70.00	36.90
35	3500000.00	65.00	36.26
36	4000000.00	58.00	35.27
37	5500000.00	44.00	32.87
38	8000000.00	35.00	30.88
39	9000000.00	30.00	29.54
40	10000000.00	26.00	28.30
41	15000000.00	20.00	26.502