

Traitement du signal multimédia : fréquences et linéarisation

OIM - TD1

2014

1 Codage d'un signal

1.1 Transformation analogique-numérique

Codez en binaire le signal analogique représenté ci-dessous sur 3 bits en utilisant le quadrillage pour déterminer les valeurs à conserver.

2 Analyse de signal

1. Ordonnancement des signaux : les figures ci-dessous représentent l'amplitude du signal au cours du temps. Classez les signaux du plus grave au plus aigü.

OIM - 2014

2. Ordonnancement des spectres : classez les spectres suivants du plus grave au plus aigü.

3. Ordonnancement de fonctions.

- (a) Soient les deux sinusoïdes $f_1(x) = \cos(2\pi x)$ et $f_2(x) = \cos(4\pi x)$. Laquelle à la plus grande fréquence?
- (b) Quel est le signal avec la plus basse fréquence possible?
- (c) Quel est le signal avec la plus haute fréquence possible?

3 Traitement d'images

3.1 Codage d'une image

Soit une image en niveau de gris de taille 128×128 pixels, codés sur 8 bits.

- 1. Quelle est la taille de cette image en kilo-octets.
- 2. Si on code les pixels sur 7 bits ou sur 2 bits, quelles sont les tailles en kilo-octets correspondantes.
- 3. Pour une image codée sur 2 bits par pixel, que doit-on constater visuellement?

3.2 Analyse d'une image

Soit l'image suivante, de résolution 5×5 pixels, codée sur 8 bits par pixel.

1	2	1	2	1
0	120	0	120	0
0	120	120	120	0
0	120	0	120	0
1	2	1	2	1

- 1. Binariser l'image en seuillant la valeur des pixels à 128. Que remarquez-vous?
- 2. Tracez l'histogramme des niveaux de gris de cette image.
- 3. Binariser l'image en tenant compte de la distribution des valeurs des pixels sur l'histogramme

2/3 OIM - 2014

- 4. Tracez une courbe montrant l'évolution de la valeur des pixels sur la première ligne. Est-ce une zone de haute fréquences ou de basse fréquences.
- 5. Tracez une courbe montrant l'évolution de la valeur des pixels sur la troisième ligne, où sont les zones de haute fréquences et de basse fréquences?
- 6. En déduire une façon de détecter le ${\bf H}$ dans l'image.

3.3 Linéarisation d'une image

Nous considérons qu'une image 2D est représentée par le type de données C suivant :

```
Code 1 - Définition du type C pour une image 2D typedef struct image_s {
    int width;
    int height;
    unigned char **pixels; /* 2D array of gray level */
} image_t;
```

On souhaite transformer cette image en un vecteur construit par linéarisation de blocs de pixels de taille 8×8 . Chaque bloc sera linéarisé en ordonnant ses pixels selon le schéma suivant :

- 1. Définir un itérateur séquentiel pour un tableau 2D sous forme d'une table état/transition permettant de reproduire ce parcours.
- 2. Définir la fonction C bloc2vector permettant de transformer un bloc de pixel en un vecteur.
- 3. Définir la fonction C picture 2bloc
vector permettant de transformer une image en un vecteur linéarisé par bloc.

OIM - 2014