Phylogenetic methods for tree inference

Distance-based methods

NJ

Parsimony

Maximum Likelihood

Bayesian

I think

BIOL 435/535: Bioinformatics

Feb 17, 2021

Jukes Cantor 1970

• Equal probabilities of different probabilities

 Useful when species are <20% divergent

d = -3/4*ln(1 - 4/3*D)

Kimura 2 parameter

 Transitions and transversions have different probabilities

General Time Reversible (GTR)

- All mutations have different probabilities
- Only appropriate for very divergent taxa (parameter rich)

Model selection tools

jModelTest2

ProtTest

Phylogenetic methods for tree inference

Distance-based methods

NJ

Parsimony

Maximum Likelihood

Bayesian

I think

BIOL 435/535: Bioinformatics

Feb 17, 2021

Pros:

- Easy, fast, computationally tractable
- Gives you a single tree

Cons:

- Distance != evolutionary history
- Gives you a single tree
- Homoplasy Shared character from different ancestral origins

Works reasonably well in 95% of cases – but very poorly in the remaining 5%

1. Calculate pairwise differences (or % differences) in multiple sequence alignment, put in matrix

2. Identify pair with smallest difference, join

3. Re-calculate pairwise distance matrix

4. Repeat until all taxa are placed in the tree

MSA.NJ.fasta

MSA.NJ.fasta

	H. vulgare	T. urartu	A. speltoides	A. tauschii
A. tauschii	29	8	12	-
A. speltoides	26	6	-	2.1%
T. urartu	24	-	1.1%	1.4%
H. vulgare	-	4.2%	4.5%	5.1%

H. vulgare

T. urartu	24	-	1.1%	1.4%
A. speltoides	26	6	-	2.1%
A. tauschii	29	8	12	-
	H. vulgare	T. urartu	A. speltoides	A. tauschii
H. vulgare	-	4.3%	4.6%	5.3%
T. urartu	24.77	-	1.1%	1.4%
A. speltoides	26.59	6.35	-	2.1%
A. tauschii	30.26	8.10	12.21	_
	H. vulgare	T. urartu	A. speltoides	A. tauschii

4.2%

4.5%

5.1%

H. vulgare	-		_	
T. urartu	24	1		_
A. speltoides	26	6	-	
A. tauschii	29	8	12	-
	H. vulgare	T. urartu	A. speltoides	A. tauschii

H. vulgare	-			_
Turartu A A spoltoidos	24			
T. urartu + A. speltoides	26		-	
A. tauschii	29	8	12	-
	H. vulgare	T. urartu	+ A. speltoides	A. tauschii

H. vulgare	-			
T. urartu + A. speltoides	25.0		-	
A. tauschii	29	8	12	-
	H. vulgare	T. urartu -	+ A. speltoides	A. tauschii

H. vulgare	_		
T. urartu + A. speltoides	25.0	-	
A. tauschii	29	10.0	-
	H. vulgare	T. urartu + A. speltoides	A. tauschii

T. urartu A. speltoides A. tauschii

H. vulgare	-	
T. urartu + A. speltoides + A. tauschii	27.0	
	H. vulgare	T. urartu + A. speltoides + A. tauschii

Distance tools

MAFFT
MEGA
PAUP*
PAML

Pros:

- Searches the entire treespace (all the possible trees)
- Good for morphological data

Cons:

- Searches the entire treespace (all the possible trees)
- Bad for nucleotide sequence data, large number of taxa
- Homoplasy Shared character from different ancestral origins

1. Identify variable sites

2. For all possible trees, calculate the number of steps required to explain the tree given the data

3. Identify the tree with the fewest number of steps

1. Identify variable sites

MSA.parsimony.fasta

Identify all possible trees

Identify all possible trees

Identify all possible trees

Count number of changes necessary to explain tree

Tree #1 – 36 total changes

Count number of changes necessary to explain tree

Tree #2 – 36 total changes

Count number of changes necessary to explain tree

Tree #3 – 35 total changes Most parsimonious tree

Parsimony tools

MEGA PAUP*

Maximum likelihood methods

Pros:

- Heuristically searches the tree space
- Easier to incorporate different models of molecular evolution
- Lends itself to statistical inference (e.g., bootstrapping, likelihood ratio tests)

Cons:

- Computationally intensive
- Long-branch attraction

Maximum Likelihood methods

P (data | tree*model)

Maximum likelihood tools

IQTree

FastTree

MEGA

PAUP*

PhyML

RAXML

PAML

Bayesian methods

Pros:

- Heuristically searches the tree space
- Directly models the underlying mechanisms of evolution
- Lends itself to statistical inference

Cons:

- Long-branch attraction
- Overconfidence

Bayesian methods

P (tree | data*prior*model)

Bayesian tools

MrBayes BEAST

Statistical methods for tree inference

Bootstrapping:

- Randomly sample sites with replacement
- Re-infer tree
- Replicate 100-1000x count number of times a given split occurs in each of those replicates
- Splits with bootstrap values >60 are statistically supported splits

Jackknifing (leave-one-out analysis)

- Randomly sample sites without replacement so length of alignment = # sites 1
- Number of replicates = Number of sites

Likelihood ratio tests

Posterior probability (Bayes)

- Probability of the split, given the data, the model, and the priors
- PP values >80 are usually ok, better to go with 90

Next up: Practicum in Phylogenetics

