GLLVMs A-Å

Some inputs into performing a full analysis using GLLVMs

Audun Rugstad, Ph.D. candidate

Department of Mathematical Sciences, NTNU

2025-04-01

Intro

Outline of the session

Five-step approach:

- 1. Formulate your question in terms of a statistical model
- 2. Data exploration and preparation
- Model fitting
- 4. Model checking
- 5. Making inferences

Outline of the session

We'll go through the full analysis of an ecological dataset

Example: Dou et al. (2022): Influence of environmental variables on macroinvertebrate community structure in Lianhuan Lake

Formulating the question

Formulating the question

Formulate your research question in terms of a statistical analysis

First question: What is the goal of the analysis?

- ▶ **Prediction:** Find the model that best predict future observations
- Explanation: Investigate causal relationships between explanatory variables and response(s)

Prediction

Prediction

- ► Find the model that best predict future values of one/more response variables (i.e. species distribution)
- Variable selection based on optimizing for prediction
- ▶ I.e. forward/backward selection using AIC, Root mean square error etc.

Example: A model that predicts future distributions of wood beetles under different climate change scenarios

ro Formulating the question Data preparation Model setup Model checking Making inferences References occoordooodo occoordo

Explanation

Two types:

Confirmatory

- ► Test a **specific, clear hypothesis** with one/a few models
- Predictor variables selected based on a priori knowledge
- Ideally no variable selection and pre-registration

Formulating the question | Data preparation | Model setup | Model checking | Making inferences | References | References

Explanation

Two types:

Confirmatory

- ► Test a **specific, clear hypothesis** with one/a few models
- Predictor variables selected based on a priori knowledge
- Ideally no variable selection and pre-registration

Exploratory

- Use model(s) to explore possible causal relationships
- Should only be used to generate hypotheses
- Avoid automatic model selection

Flowchart

Exploratory "throwing everything at the wall" approaches perhaps most common

JSDMs more associated with prediction than other methods?

"True" confirmatory analyses are rare

▶ The line between the three can often be blurry

How can GLLVMs help?

- More streamlined and focused analysis
- Ideally, a single model of the community that is as complete as possible
- Can then be used to make inferences about different causal relationships etc.

Q: What type of analysis does a GLLVM with only **unconstrained** latent variables fit into?

Q: What type of analysis does a GLLVM with only **unconstrained** latent variables fit into?

A: Primarily exploratory, generating hypothesis about factors that structure the community.

But: if the goal is to test specific hypothesis about species co-occurrences, could potentially be used more confirmatory

Q: What type of analysis does a GLLVM with **constrained** latent variables fit into?

Q: What type of analysis does a GLLVM with **constrained** latent variables fit into?

A: All three, depending on approach?

Dou et al. (2022): Macroinvertebrates in 13 lakes in Lihuan, CN:

From the intro: The community composition of macro-invertebrate assemblages and their relationships with environmental variables were investigated

What type of modeling approach makes sense here?

Dou et al. (2022): Macroinvertebrates in 13 lakes in Lihuan, CN:

From the intro: The community composition of macro-invertebrate assemblages and their relationships with environmental variables were investigated

What type of modeling approach makes sense here?

A: Seems very clearly **exploratory** (which variables are potential drivers of community change?)

What should the model look like?

What should the model look like?

A concurrent ordination might be a good fit

- Allows for assessing the relative effect of many predictor variables at once, on a small number of latent variables
- Also allows us to account for potential residual variation in the L.V.s (i.e. variation not explained by the predictors)

Example 2

Haven't yet found a good dataset/study that is not exploratory in the same way:(

Data preparation

Important to always visually inspect key properties of the data before modeling

- Ensure the data meets the assumptions of the model
- Act as a "sanity check" for modeling output

Standardize and scale variables as needed

As with most other models, we recommend "common sense" practices and guidelines such as Zuur, leno, and Elphick (2010)

Some factors that can mess up a GLLVM:

- Predictor variables that are too co-linear
- Several species with very little information on abundances (i.e. zero-inflation)
- Sites with very little information on abundances
- Highly unbalanced sampling

Model philosophy

The underlying philosophy of GLLVMs is:

- Data is ideally gathered with a spesific model or analysis in mind
- If not the case: tailor a model to the data properties
- ► The model should account for different properties of the data, as far as possible

The model should suit the data, not the other way around.

Example: Lake invertebrates

```
# load data
lake_sp <- read.csv("../data/lake_inverts_sp.csv", sep = "\t")
lake_env <- read.csv("../data/lake_inverts_env.csv", sep = "\t")
# clean (according to paper)
lake_sp <- lake_sp |> select(-Site, -Group, -Season, -Lakes)
# reduce to actual counts!
lake_sp <- lake_sp / 16</pre>
```

Example: Species

We can use a (Log-)abundance occupancy plot:

 $\mathbf{X} = \text{Number of plots a species occupies}, \mathbf{Y} = \text{average log-abundance}$

Can help identify outlier species + get a sense of the commonness of species in the dataset

Species data

Table of total species abundances:

9 species with 1-2 occurrences in the dataset, and three species with very high abundances

Filtering data

Suggestion: remove species occurring in only one plot, and plots containing only one species (remove 8 species and 9 plots).

```
# remove rare species
lake_sp_filt <- lake_sp |>
    select_if(colSums(lake_sp !=0)>1)

# remove rare sites
lake_sp_filt <- lake_sp_filt[rowSums(lake_sp_filt != 0)>1,]

# remove same sites in env. dataframe
lake_env_filt <- lake_env[row.names(lake_sp_filt),]</pre>
```

Environmental variables

Correlation of all predictors (lake chemical attributes):

_10_80_60_40 200 20 40 60 81

Environmental variables

Why is this important?

- High co-linearity makes it hard for the model to converge (find estimates)
- Also makes the parameter uncertainties larger

Environmental variables

What can be done?

- Omit predictors
 - ▶ Need to consider properties of the system and analysis
- "Model tricks"
 - Regularization ("reigning in" wild estimates)
 - ► Shrinkage (finding ways to make unimportant parameters -> 0)
 - Ex: Switching to random effects or putting constraints on the response distribution

How high is too high?

Rule of thumb: no more than 0.8

Our max cor = 0.69

So we "just" standardize and scale to mean = 0 and variance = 1:

```
lake_{env}[,5:17] \leftarrow scale(lake_{env}[,5:17])
```

So all coefficient estimates are on the same magnitude

Model setup

Model setup

Our suggestion: Concurrent ordination

What to include in the model?

- Our goal is to explore the impact of environmental variables
- As such, we can maybe argue for ignoring the study design here (differences between season/lake assumed to be manifested through the water properties)

Model setup

Initial model setup:

- Two concurrent latent variables informed by the chemical properties of the water
- Random row effects (to account for site variation in overall abundance)
- Poisson distribution
- Could include quadratic effects, but might be overloading the model

Model setup

Model setup

A few (personal) tips for the gllvm() function:

- n.init: How many starting iterations you run
 - Depending on how long one run takes, maybe 5-50. Tells you when it has converged.
- trace = TRUE: tells you when each model run specified in n.init is complete (makes it less frustrating to fit)
- sd.errors = FALSE/TRUE: when diagnosing/comparing
 models, you can turn off estimation of standard errors to
 make each model fitting faster (and fit them retroactively
 using the se.gllvm() function)

Model checking with GLLVMs

What to look at to determine whether the model is "good"?

- Diagnostic plots (plot() function) for model assumptions
 - Most important!
- AIC/BIC to compare model fit (e.g. number of LVs needed)
- Goodness of fit-tests (gllvm.goodnessOfFit())
- Very small/large parameter estimates (particularly sp. coefficients) for convergence

Model checking with GLLVMs

What to do to improve the fit?

- Change response distribution
- Run more iterations
- Change starting values
- Change from fixed to random effects
- Change number of LVs

We can look at diagnostic plots:

We see some fanning and potential overdispersion in the residual and QQ plots.

Model checking: Example

After re-running the model with family = "negative.binomial":

The residual plots indicate that the NB model meets the

Model checking: Example

The difference in **AICc** values between model 1 and 2 also indicates that the negative binomial model is better.

[1] 2918.967 2476.823

Model checking: Example

Looking at some **goodness-of-fit** measures to the original data, however...

	${\tt Measure}$	Poisson	NB
1	cor	0.98382312	0.02060082
2	RMSE	0.78925359	65.12833567
3	MAE	0.28928256	2.24318316
4	MARNE	0.05016865	0.15774418

Looking at some **goodness-of-fit** measures to the original data, however...

	Measure	Poisson	NB
1	cor	0.98382312	0.02060082
2	RMSE	0.78925359	65.12833567
3	MAE	0.28928256	2.24318316
4	MARNE	0.05016865	0.15774418

Conclusion: Our N.B. model, while meeting the model assumptions (a valid model), is a pretty bad fit to our data

What has happened?

If we look at the plots of the standard errors for the species loadings, we also see that some are very large, indicating a poor convergence of the model:

plot(mod_lakes_nb\$sd\$theta) # theta = species coefficients

What has happened?

If we look at the residual

[1] 3.23946e-07 1.56823e-08

Improving the NB model

We try two things:

- Specify the LV-coefficients as random effects, drawn from a distribution unique for each coefficient
- ► Tell the model to estimate a common *dispersion* parameter for the negative binomial distribution for each species

Both could help in steering the model away from "extreme" estimates and lessen overfitting (=regularizing)

Improving the NB model

```
mod_lakes_nb_2 <- gllvm(lake_sp_filt, X = lake_env_filt,
                   lv.formula = ~WT + DO + PH + CON + CODMn +
                         TP + TN + NH3.N + NO3.N + NO2.N + Chla +
                         SS + WD.
                   row.eff = "random",
                   family = "negative.binomial",
                   ## LV coefficients are random effects:
                   randomB = "P",
                   ## Only one dispersion parameter estimated:
                   disp.formula = rep(1, ncol(lake_sp_filt)),
                   num.lv.c = 2
                   n.init = 20
```



```
NB1
                          NB2
Measure
         0.02060082 0.4658600
   RMSE 65.12833567 3.8379823
         2.24318316 0.8962227
         0.15774418 0.0670415
```

Making inferences

What you look at depends on your question.

Typical visualizations:

- Model summary
- Biplots and triplots
- Variance explained
- Coefficient plots (caterpillar plots)

Two most important parts for us:

Residual standard deviation of LVs:

[1] 4.198412e-05 1.926389e-06

Very low, implies our predictors explain all the variance in the latent variables

We could go back and fit the model again without residual LV variation (as a "classic" constrained ordination)

Model summary

Coefficients LV predictors:

		204.2002.2		204120110212	
1	WT	0.2022	0.0409	0.1724	0.0
2	DO	0.0003	0.0000	0.0003	0.0
3	PH	0.2332	0.0544	0.1989	0.0
4	CON	0.0001	0.0000	0.0001	0.0
5	${\tt CODMn}$	0.0000	0.0000	0.0000	0.0
6	TP	0.1105	0.0122	0.0942	0.0
7	TN	0.0004	0.0000	0.0003	0.0
8	NH3.N	1.0835	1.1739	0.9239	0.8
9	NO3.N	0.0000	0.0000	0.0000	0.0
10	NO2.N	0.0005	0.0000	0.0004	0.0
11	Chla	1.7938	3.2179	1.5296	2.3
12	SS	0.0003	0.0000	0.0002	4 △0 ≥ (

Name Std.Dev.CLV1 Variance.CLV1 Std.Dev.CLV2 Variance.

Audun Rugstad, Ph.D. candidate

Model summary

We can also look at the estimates for the random row effects:

Biplot and triplot

Ordination (type='conditional')

Biplot and triplot

Ordination (type='conditional')

Variance explained

varPartitioning(mod_lakes_nb_2)

```
Effect
                            Mean.explained.variance
CI.V · WT
                            20.1%
CI.V:DO
                             0.0%
CLV:PH
                            27.9%
CLV:CON
                             0.0%
CL.V: CODMn
                             0.0%
CLV:TP
                             5.2%
                             0.0%
CLV: TN
CLV: NH3.N
                            15.2%
CLV:NO3.N
                             0.0%
CLV:NO2.N
                             0.0%
CLV:Chla
                            31.5%
CLV:SS
                             0.0%
                             0.0%
CLV:WD
CI.V1
                             0.0%
CLV2
                             0.0%
Row random effect: sample
                             0.0%
```

Coefficient plots

Coefficient plots

- While the model seems well behaved and reasonably fit to the data, estimates for the effect of predictors on the species are very high
- Suggests it it not very useful for explanatory purpose (only very weak evidence)

Comparison to fully constrained model

To get a sense of the problem, we could compare it to the slightly more "shaved" model that the parameter estimates seem to suggest:

```
mod_lakes_nb_3 <- gllvm(lake_sp_filt, X = lake_env_filt,
                   lv.formula = ~WT + DO + PH + CON + CODMn +
                         TP + TN + NH3.N + NO3.N + NO2.N + Chla +
                         SS + WD.
                   ## Remove random row effects:
                   #row.eff = "random",
                   family = "negative.binomial",
                   ## LV coefficients are random effects:
                   randomB = "P",
                   ## Only one dispersion parameter estimated:
                   disp.formula = rep(1, ncol(lake_sp_filt)),
                   ## Fully constrained (reduced rank) coefs:
                   num.RR = 2.
                   n.init = 20)
```


ro Formulating the question Data preparation Model setup Model checking **Making inferences** References

Biplot (model 2)

Ordination (type='marginal')

Variance explained (model 2)

varPartitioning(mod_lakes_nb_3)

```
Effect
          Mean.explained.variance
CLV:WT
          19.5%
CLV:DO
           7.6%
CL.V: PH
          32.9%
CLV: CON
           2.7%
CLV:CODMn
           2.1%
CL.V:TP
           8.8%
CL.V:TN
           0.5%
CLV:NH3.N 18.0%
CLV:NO3.N 0.5%
CLV:NO2.N
           6.2%
CLV:Chla
           0.7%
CLV:SS
           0.2%
CI.V:WD
           0.3%
```

What has changed?

What has changed?

The effect of Chlorophyll and NH3 content has **disappeared**!

Coefficient plots (model 2)

Still extremely high uncertainty

Both models can be argued to be a reasonable, but suggest different drivers of species diversity.

- Still, some indication that PH and water temperature are important factors to look into (stood out in both models)
- Large uncertainties like this often a feature of negative binomial models

If the goal was prediction, we could have done automatic model selection or similar to (probably) get a simpler model with clearer estimates

Highlights the need to not trust model outputs blindly

The tools showed here can be useful in figuring out what is going on.

Next time: Try to collect more data in a way that could fit a Poisson model?

- Some unclearness about the actual sampling effort and pooling of samples in this study
- Unbalanced study design can have had an influence(more sampling in alkaline lakes than

In other words:

► We can say both **that** more data is needed, and something about **why** more data is needed:)

GLLVMs A-Å

References

References

- Dou, Qianming, Xue Du, Yanfeng Cong, Le Wang, Chen Zhao,
 Dan Song, Hui Liu, and Tangbin Huo. 2022. "Influence of
 Environmental Variables on Macroinvertebrate Community
 Structure in Lianhuan Lake." *Ecology and Evolution* 12 (2): e8553. https://doi.org/10.1002/ece3.8553.
- Zuur, Alain F., Elena N. Ieno, and Chris S. Elphick. 2010. "A Protocol for Data Exploration to Avoid Common Statistical Problems." *Methods in Ecology and Evolution* 1 (1): 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.