Révisions 4 – Modélisation des systèmes du premier et du deuxième ordre

Systèmes d'ordre 1

Définition Les systèmes du premier ordre sont régis par une équation différentielle de la forme suivante :

$$\tau \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t).$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \tau p}$$

 $\begin{array}{c|c}
E(p) \\
\hline
H(p) = \frac{K}{1 + \tau p}
\end{array}$

On note:

- τ la constante de temps en secondes ($\tau > 0$);
- K le gain statique du système (K > 0).

Résultat — Réponse à un échelon d'un système du premier ordre.

On appelle réponse à un échelon, l'expression de la sortie s lorsque on soumet le système à un échelon d'amplitude E_0 . Lorsque $E_0=1$ (1/p dans le domaine de Laplace) on parle de **réponse indicielle**. Ainsi, dans le domaine de Laplace :

$$S(p) = E(p)H(p) = \frac{E_0}{p} \frac{K}{1 + \tau p}.$$

Analytiquement, on montre que $s(t) = KE_0u(t)\left(1-e^{-\frac{t}{\tau}}\right)$. Si la réponse indicielle d'un système est caractéristique d'un modèle du premier ordre (pente à l'origine non nulle et pas d'oscillation), on détermine :

- le gain à partir de l'asymptote KE_0 ;
- la constante de temps à partir de $t_{5\%}$ ou du temps pour 63 % de la valeur finale.

Les caractéristiques de la courbe sont les suivantes :

- valeur finale $s_{\infty} = KE_0$;
- pente à l'origine non nulle;
- $t_{5\%} = 3\tau$;
- pour $t = \tau$, $s(\tau) = 0.63 s_{\infty}$.

Résultat — Réponse à un échelon d'un système du premier ordre.

On appelle réponse à une rampe, l'expression de la sortie s lorsque on soumet le système à une fonction linéaire de pente k :

$$S(p) = E(p)H(p) = \frac{k}{p^2} \frac{K}{1 + \tau p}.$$

Analytiquement, on montre que $s(t) = Kk(t - \tau + \tau e^{-\frac{t}{\tau}})u(t)$. Les caractéristiques de la courbe sont les suivantes :

- pente de l'asymptote *K k*;
- intersection de l'asymptote avec l'axe des abscisses : $t = \tau$;
- $\varepsilon_v = kK\tau$.

Temps (s)

2 Systèmes d'ordre 2

Définition Les systèmes du premier ordre sont régis par une équation différentielle de la forme suivante :

$$\frac{1}{\omega_0^2}\frac{\mathrm{d}^2s(t)}{\mathrm{d}t^2} + \frac{2\xi}{\omega_0}\frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t).$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}.$$

$$E(p) \longrightarrow \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}} \qquad S(p)$$

On note:

- *K* est appelé le gain statique du système (rapport des unités de *S* et de *E*);
- ξ (lire xi) est appelé coefficient d'amortissement (sans unité);
- ω_0 pulsation propre du système (rad/s ou s^{-1}).

Suivant la valeur du coefficient d'amortissement, l'allure de la réponse temporelle est différente.

Résultat

 $z \ge 1$: système non oscillant et amorti

• La fonction de transfert a deux pôles réels.

• La tangente à l'origine est nulle.

• La fonction de transfert a deux pôles réels.

• La tangente à l'origine est nulle.

• La pseudo-période est de la forme $T_p = \frac{2\pi}{\omega_0 \sqrt{1-\xi^2}}$.

• La valeur du premier dépassement vaut : D_1 $KE_0e^{\displaystyle \frac{-\pi\xi}{\sqrt{1-\xi^2}}}.$

Résultat

- Pour $\xi \simeq 0.7$ le système du second ordre le temps à un de réponse à 5% le plus petit **avec dépassement** et $t_{r5\%} \cdot \omega_0 \simeq 3$.
- Pour $\xi = 1$ on obtient le système du second ordre plus rapide sans dépassement.