

Motivación y Audiencia

Motivación: El aumento de los niveles de contaminación del aire representa un desafío global. Este análisis busca identificar los principales contaminantes y sus patrones en zonas industriales y residenciales.

Audiencia:

- Autoridades ambientales
- Investigadores
- Urbanistas y planificadores

Resumen de Metadata

Datos:

- Filas: 29531
- Columnas: 15
- Variables continuas: PM2.5, PM10, CO, etc.
- Variables categóricas: City, AQI_Bucket
- Período de tiempo: 2015-2020
- Fuente: Central Pollution Control Board, India

Preguntas e Hipótesis

- 1. ¿Cómo varía la calidad del aire entre zonas industriales y residenciales?
- 2. ¿Qué contaminantes contribuyen más al AQI?
- 3. ¿Existen patrones temporales en los niveles de contaminación?
- 4. ¿Se ha observado alguna mejora en la calidad del aire a lo largo de los años?

Visualización 1: Zonas Industriales vs. Residenciales

Las zonas industriales muestran niveles de contaminación significativamente mayores.

Visualización 2: Contaminantes Relevantes

	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	О3	Benzene	Toluene	AQI	Month	Year
PM2.5	1.000000	0.495538	0.247373	0.307173	0.287263	0.133149	0.093466	0.091212	0.145758	0.018672	0.108318	0.589519	0.021488	-0.196280
PM10	0.495538	1.000000	0.294324	0.344601	0.387465	0.200548	0.023932	0.085846	0.206202	0.015059	0.126400	0.423907	-0.012204	-0.067119
NO	0.247373	0.294324	1.000000	0.296795	0.633110	0.086097	0.126906	0.386170	-0.021975	-0.006313	0.065911	0.303906	0.031187	-0.057621
NO2	0.307173	0.344601	0.296795	1.000000	0.490100	0.153089	0.356839	0.132928	0.303297	0.028523	0.298395	0.508065	0.027706	-0.034138
NOx	0.287263	0.387465	0.633110	0.490100	1.000000	0.085657	0.191990	0.274049	0.082911	0.015677	0.145559	0.367207	0.022836	-0.007535
NH3	0.133149	0.200548	0.086097	0.153089	0.085657	1.000000	-0.014252	-0.077562	0.077555	0.009828	0.020040	0.083633	0.013439	-0.116269
со	0.093466	0.023932	0.126906	0.356839	0.191990	-0.014252	1.000000	0.263244	0.051878	0.069262	0.285559	0.635978	-0.001473	-0.057421
SO2	0.091212	0.085846	0.386170	0.132928	0.274049	-0.077562	0.263244	1.000000	0.039959	-0.016178	0.106775	0.249397	0.004764	-0.102122
О3	0.145758	0.206202	-0.021975	0.303297	0.082911	0.077555	0.051878	0.039959	1.000000	0.032433	0.144332	0.193956	-0.079560	-0.001898
Benzene	0.018672	0.015059	-0.006313	0.028523	0.015677	0.009828	0.069262	-0.016178	0.032433	1.000000	0.623681	0.036467	-0.016032	0.005503
Toluene	0.108318	0.126400	0.065911	0.298395	0.145559	0.020040	0.285559	0.106775	0.144332	0.623681	1.000000	0.269121	0.008292	0.069144
AQI	0.589519	0.423907	0.303906	0.508065	0.367207	0.083633	0.635978	0.249397	0.193956	0.036467	0.269121	1.000000	0.013649	-0.177626
Month	0.021488	-0.012204	0.031187	0.027706	0.022836	0.013439	-0.001473	0.004764	-0.079560	-0.016032	0.008292	0.013649	1.000000	-0.203102
Year	-0.196280	-0.067119	-0.057621	-0.034138	-0.007535	-0.116269	-0.057421	-0.102122	-0.001898	0.005503	0.069144	-0.177626	-0.203102	1.000000

Gráfico de correlación: PM2.5 y CO tienen la mayor correlación con el AQI.

Visualización 3: Patrones Temporales

Evolución de PM2.5 y AQI a lo largo de los meses. Los niveles de contaminación son más altos en invierno, con disminución en verano.

Visualización 4: Evolución del AQI

Gráfico comparativo del AQI promedio anual. Desde 2019, se observa una mejora en los niveles de AQI debido a políticas ambientales más estrictas.

Insights Finales

1. Las ciudades industriales presentan mayores niveles de contaminación.

2. PM2.5 y CO son los contaminantes clave.

3. Patrones estacionales claros con picos en invierno.

4. Mejora en los niveles de AQI desde 2019.

Conclusiones

Las ciudades industriales requieren mayor atención.

 Las políticas implementadas desde 2019 han mostrado efectos positivos.

 Se recomienda intensificar las medidas de control en las ciudades más afectadas.