

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ONR LONDON REPORT

R-7-84

OFFICE OF NAVAL RESEARCH

BRANCH OFFICE LONDON ENGLAND PHYSICS IN EUROPE--A DATA FILE OF SELECTED RESEARCH

DAVID MOSHER

18 June 1984

OTIC FILE COPY

UNITED STATES OF AMERICA

This document is issued primarily for the information of U.S. Government scientific personnel and contractors. It is not considered part of the scientific literature and should not be cited as such.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

84

07 24

4 018

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
R-7-84	AD-114342	8 '
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Physics in EuropeA Data File		Technical
of Selected Research		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(*)
David Mosher		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	·	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Office of Naval Research Brand	ch Office London	
Box 39	i	
FPO NY 09510		12. REPORT DATE
	ı	18 June 1984
		13. NUMBER OF PAGES 187
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release;	distribution un	nlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
1		
19. KEY WORDS (Continue on reverse side if necessary	nd identify by block number)	
Physics		
Data file		
European research		
20. ABSTRACT (Cantinue on reverse side if necessary an	d Identify by block number)	
This report describes a data physics and related areas. The projects by subject matter and lo	tables provided	tries on European research in allow one to access research

CONTENTS

	Page
The Database	1
File Anatomy	2
Using the Data File	3
Biases	4
Acknowledgement	5
Appendix A: Contributions to European Scientific Notes	6
Appendix B: Full File Listing	13
Appendix C: Subject List	137
Appendix D: Location List	163

Access	sion For	
NTIS	CPA&I	
DITC	TAD	
	ounced	
Justi	riodulio	n
Distr	1but.1on	
Distr	1but1on 1ab11it	y Codes
Distr Avai	1bution 1abilit Avail 8	y Codes and/or
Distr	1but1on 1ab11it	y Codes and/or
Distr Avai	1bution 1abilit Avail 8	y Codes and/or
Distr Avai	1bution 1abilit Avail 8	y Codes and/or

PHYSICS IN EUROPE--A DATA FILE OF SELECTED RESEARCH

In preparation for my 2-year tour as biaison Scientist with the Office of Naval Research, London (ONRL), I began in 1981 to compile a hard-copy file of excerpts from the scientific literature composed of interesting European research in physics and related areas and grouped according to discipline and application. This project continued for the duration of my ONRL tour. To manage the large body of accumulated information and to make it accessible and useful to other researchers, a computerized data file was developed. The file currently occupies approximately half of an 8-inch, single-density, floppy disk (IBM Diskette). It was compiled and manipulated by the IBM Displaywriter System (already installed at ONRL) using the file management software contained on the IBM Report Pack Diskette. This report introduces the data file and presents the 1200 entries in a form useful to scientists for planning contact with European researchers and accessing their work.

The Database

Entries to the data file were excerpted primarily from 20 routinely scanned journals, periodicals, and fact sheets. These sources were selected from those available at ONRL to provide detailed European coverage of plasma physics, controlled fusion, and related research; good coverage of significant advances in other fields of physics; and highlights of important results in related physical sciences of interest to the US Navy. The routinely scanned sources are grouped according to the degree of coverage.

Those for plasma physics and controlled fusion are: Nuclear Fusion, published by the International Atomic Energy Agency, Vienna; Physics of Fluids, published by the American Institute of Physics; and Plasma Physics, recently renamed Plasma Physics and Controlled Fusion, a Europhysics Journal published by the UK Institute of Physics and Pergamon Press.

The general physics journals are: Applied Physics Letters, Journal of Applied Physics, Physics of Fluids, Physical Review A (General Physics), Physical Review Letters, and Physics Today, published by the American Institute of Physics and/or the American Physical Society; Europhysics News (The European Physical Society Bulletin), Journal of Physics A (Mathematics and General), Journal of Physics B (Atomic and Molecular), Journal of Physics D (Applied Physics), Physics Letters, and Reports on Progress in Physics, published by the European Physical Society and the UK Institute of Physics.

The general science publications are: *Nature*, published by MacMillan Journals Ltd.; *New Scientist*, published by New Scientist Publications, London; and *Science*, published by the American Association for the Advancement of Science.

In addition to the above well-known journals, the following more specialized sources were also routinely scanned: CERN Courier (International Journal of High Energy Physics), published by the European Laboratory for Particle Physics; EOARD Proposals and Project Briefs, distributed by the US Air Force European Office of Aerospace Research and Development, London; Energy Report (Energy Policy and Technology News Bulletin), published by Microinfo Ltd., Alton, Hamps.; and USARSG R and D Proposal Files, distributed by the US Army Research, Development and Standardization Group, London.

A large number of entries are excerpted from the proceedings of conferences attended during the past 2 years. These include:

 Solitons '82--The Scott Russell Centenary Conference, 23-27 August 1982, Edinburgh;

- The Fourth International Symposium on Gas Flow and Chemical Lasers, 13-17 September 1982, Stresa;
- The Challenge of Ultra-High Energies, 27-30 September 1982, Oxford;
- The Seventh International Conference of IR and MM Waves, 14-18 February 1983, Marseille;
- The Symposium on International Facilities for Physics Research, 21-23 March 1983, Copenhagen;
- The Third International Conference on Emerging Nuclear Systems, 6-9 June 1983, Helsinki;
- The Seventh International Conference on VUV Radiation Physics, 8-12 August 1983, Jerusalem;
- The Fifth International Conference on High-Power Particle Beams, 12-14 September 1983, San Francisco;
- The 16th European Conference on Laser Interactions with Matter, 26-30 September 1983, London;
- The Royal Society Meeting for Discussion on Optical Bistability, Dynamical Nonlinearity, and Photonic Logic, 21-22 March 1984, London.

Other journal and meeting references appear in the file as results of follow-up investigations or discussions with scientists. Research projects described in articles I wrote for *European Scientific Notes (ESN)* are referenced accordingly. A list of these articles with brief abstracts is provided in Appendix A.

File Anatomy

The data file consists of about 1200 records—each record recording a particular European research activity. Every record consists of 10 alphanumeric fields containing specific information. Individual fields can be independently searched, formatted, and manipulated (alphabetized, etc.) to form various lists. The fields are described below.

Rec ID. A five-character field containing the identifying number of the record. The number is given by the word processor when data for the record is entered.

<u>Topic.</u> A six-character field of upper-case letters describing the general research discipline of the record. There are 13 topics currently listed within the data file:

- ATOMIC--Atomic and molecular physics, spectroscopy, and bond structure; BASICS--Mathematics and fundamental physics, emphasizing current problems in fractal geometry, percolation, nonlinear dynamics, and self-avoiding walks;
- BMSRAD--Particle and radiation physics, charged particle accelerators, neutron sources, synchrotrons, free electron lasers based on conventional accelerators, electromagnetic theory, high-intensity lamps;
- CHEMAT--Industrial chemistry and materials processing, catalysts, laser processing, solid state fabrication, nondestructive testing;
- COMPUT--Computing and data processing, artificial intelligence, robotics, displays, fluid codes;
- CPBICF--Inertial confinement fusion, pulsed power technology, charged particle beams created with dielectric-pulse-line technology, free electron lasers based on this technology, dense plasma physics and diagnosis, and plasma radiation sources;

- DIAGNO--Diagnostic techniques and tools for all areas of research (except plasma physics), microscopy, holography, beam probes, ultrasonics, x-ray optics;
- ENERGY--Energy and environmental research; solar energy; geothermal,
 wave, and wind powers; pollution;
- HYDROD--Hydrodynamics, fluid mechanics, oceanography, reacting flows, nonlinear convection, acoustic and water waves, turbulence, shocks;
- LASERS--Laser research and development, performance, gas kinetics, nonlinear optics, pumps, mode analysis and conversion. Laser applications are listed under other topics;
- PLASMA--Magnetic confinement fusion, low-density plasma physics and diagnosis, waves and instabilities;
- SOLIDS--Solid state and condensed matter physics, electronics, integrated circuits, optical bistability and logic, superconductors, nonlinear behavior;
- WETHER--Atmospheric, ionospheric, and solar physics; communication by electromagnetic wave propagation; remote sensing; and meteorology.
- KW1, KW2, KW3. Three, 18-character key-word fields specifying the details of research for each record. Usually, KW1 is the most general modifier of the topic, KW3 the most specific. Often, KW3 specifies a method or technique used to carry out the research or indicates whether it is experimental, theoretical, or computational.
- Country. A six-character field containing either the name of the country in which the research was conducted or an obvious abbreviation.
- City. A 22-character field specifying the city in which the research was conducted. Major cities are identified by their English-language names.
- Institute. A 30-character field containing the name of the institute in which the research was conducted. Usually, the highest level organization is specified--for example, the name of a university rather than a laboratory within it. Any particular institution name can either be in English or the native language, but all references to it are identical.
- Name. A 16-character field containing the last name of either the lead author of the reference or the first European author.
- Ref and Notes. An 80-character field containing a literature reference to the research described by the record. Infrequently, this field contains additional information about the reference or a note clarifying the subject matter.

Using the Data File

With access to an IBM word processing system, the best way to use the data file is to obtain a copy of the floppy disk containing it and carry out data searches. (To obtain a copy of the file, send a blank IBM Diskette to ONRL, Box 39, FPO, NY 09510.) The user may then also add to the file since the existing data occupies approximately one half of the disk. Alternately, one may use the three lists contained in the Appendices B, C, and D.

Appendix B contains the full contents of the data file in numerical order according to Rec ID and is formatted as shown at the top of each page. Appendix C, an alphabetized list of topic and key words, is used to locate research projects on specific subjects. The country is listed so that searches can be limited geographically along with Rec ID. Records of potential interest can be investigated by referring to the appropriate Rec ID in Appendix B to determine precise location and a technical reference. Appendix D lists all records alphabetically according to location, along with the topic for a determination of rough subject area and Rec ID for cross reference to Appendix B.

It is important to realize that research projects in a particular field may be found under a number of topics depending on specifics and emphasis. For example, projects associated with nonlinear dynamics—such as bistable, chaotic, or solitonic behavior—are found under BASICS if the work is purely mathematical or deals with simple electrical analogues. Research investigating the same phenomena appears under HYDROD if associated with fluid dynamics, under LASERS if associated with optical cavities filled with nonlinear gaseous media, under SOLIDS for semiconductor opto-electronic systems, and under PLASMA. In these cases, the specific medium investigated determines the topic.

Solid state research may be listed under ATOMIC if the main concern is band structure or spectroscopy, under CHEMAT if industrial processing is important, under DIAGNO if defect structure or topography are investigated, and under SOLIDS if electronic behavior is of primary interest. This example indicates how research projects are distributed according to emphasis.

The CPBICF and PLASMA topics are the most self-contained in this regard. All low-density plasma physics and magnetic confinement fusion studies are contained in PLASMA, including associated diagnostic techniques. Essentially all high-density plasma research (ablation plasmas, arcs, high-pressure discharges, and pinches), inertial confinement fusion research, and associated diagnostic techniques are contained in CPBICF. This topic also contains pulsed power research and development and free-electron-laser research based on pulse-line technology. Two notable exceptions are two-phase ablation flows associated with laser processing of materials (HYDROD) and high-pressure discharge lamps where their use as UV light sources is emphasized (BMSRAD).

One should rely on key words under a number of topics to identify research of interest rather than the contents of a particular topic.

Biases

The compiled data file cannot, by any measure, be considered a balanced presentation of physics research in Europe and is therefore inappropriate for demographic use. There are at least four reasons why this so. First, the standard literature base is limited to English-language publications that were continuously available at ONRL. Time constraints further limited the number which could be routinely read or scanned to those listed above. That list was chosen for comprehensive coverage in plasma physics, electromagnetic and intense charged particle beam physics. Coverage of work in other areas of physics and applied math was limited to that provided by leading general physics journals which (presumably) report on the more important research in diverse fields. Records of interesting work in other physical sciences, such as chemistry, energy and environment, and computer science, come from popular, general-science publications and are usually limited to news-making projects. A lopsided presentation also results from the large body of entries culled from the proceedings of attended meetings. These tend to emphasize the

importance of electromagnetic radiation physics in the microwave, infrared, and vacuum ultraviolet regimes and the associated solid state phenomena.

The second bias is the obvious one of expertise. Entries in BMSRAD, CPBICF, HYDROD, and PLASMA benefit from a knowledge of major research efforts and the literature, association with a large number of experts, and the ability to determine the importance of individual efforts. At the opposite extreme, entries in the condensed matter and solid state areas lack such discrimination, are limited to those which "pass before my eyes," and are included because of perceived interest in the US Navy's research community rather than a full understanding of their importance.

Third, personal interest in a few areas outside my expertise and preparation of background information for ESN articles have led to literature searches and subsequent unnatural "swellings" of the file in these areas. Of particular note are entries associated with nonlinear dynamics dealing with solitonic and chaotic behavior.

Fourth, a number of important areas of fundamental physics have been excluded from the file because they are not relevant to Navy programs. Entries in the broad category of astronomy and astrophysics are limited to the near-Earth studies of ionospheric and solar physics because phenomena in these fields can affect communications. Although a hard-copy file has been maintained of European research in deep-space and exotic astronomy, it has been left off the disk file. The same is true for research in elementary particle physics. Research with high-energy accelerators has been included only if probing radiation for material studies was an actual or potential end product or if the work is relevant to Department of Defense directed energy programs.

It is hoped that even with the above provisos, the data file will be useful for establishing European contacts and as a guide to at least some areas of European physics research.

Acknowledgement

The author is deeply indebted to Mrs. Donna Bruggeman, who entered the data, maintained the file, and skillfully manipulated its contents. This document could not have been produced without her efforts.

APPENDIX A: CONTRIBUTIONS TO EUROPEAN SCIENTIFIC NOTES

ESN	36,	1982 pa	ge no
No.	8	High-Power Glass Laser Research at the Rutherford Appleton Laboratory and the Centre d'Etudes de Limeil	192
		The Nd-glass laser research programs at the Rutherford Appleton Laboratory and the Centre d'Etudes de Limeil are discussed.	
No.	9	Solitons '82: The Scott Russell Centenary Conference Part I	219
		In the first part of a two-part article reviewing the Solitons '82 Conference, the history of solitary-wave theory is briefly reviewed, and applications to hydrodynamics and electronics are presented.	
No.	10	Solitons '82: The Scott Russell Centenary Conference Part II	267
		In the second part of a two-part article reviewing the Solitons '82 conference, applications of soliton theory to condensed matter physics are presented, and applications to other areas are noted.	
		Short Wavelength Laser	271
		Research at the Ecole Polytechnique in Palaiseau, France, has demonstrated gain at 105.7 angstroms in recombining lithium-like aluminum.	
No.	11	The Fourth International Symposium on Gas Flow and Chemical Lasers	303
		Applications of gas lasers to materials processing and atmospheric propagation presented at the 4th International Symposium on Gas Flow and Chemical Lasers are reviewed.	
No.	12	Daresbury Revisited	345
		The Daresbury Synchrotron Radiation Source is the world's first high-energy electron accelerator dedicated to radiation production for scientific experiments. Its operational status and the current experimental program are described.	
		A Dutch Diagnostic Sampler	348
		Laboratories in the Netherlands have developed several new diagnostic techniques and processes related to plasma, atomic, and molecular physics. The techniques are describ- ed, and their applications to other research areas are noted.	

<u>ESN</u>	37	(1983) page	e no.
No.	1	An Optical Diagnostic for High Current Measurements	30
		An optical Rogowski loop for high-current measurements with excellent voltage stand-off and bandwidth characteristics is described.	
		New Concepts in Particle Acceleration	32
		New concepts for the acceleration of charged particles presented at "The Challenge of Ultra High Energies" conference held in Oxford in September 1982 are described.	
No.	2	Electroviscous Torque Transmission	73
		Mechanical engineers at the University of Liverpool have developed a clutch controlled by the application of an electric field in an electroviscous medium that has torque transmission, controlled damping, and braking applications.	
		Laser Projection Video	75
		A novel video projection system employing modulation of three primary color laser beams is described. The system has wide commercial, industrial, research, and military applications involving the display of computer generated graphics.	
No.	3	Novel Plasma Annuli for Implosion Experiments 1	115
		A new technique for the production of plasma annuli researched at the Ecole Polytechnique, Palaiseau, France, is described. The plasma puff technique represents an important advance for the development of intense x-radiation sources.	
No.	4	Lightning Vulnerability Studies at the Culham Laboratory	148
		The Culham Lightning Studies Unit conducts a research program devoted to vulnerability testing of aircraft, ships, and ground-based installations. Lightning phenomena, the types of damage produced, and the CLSU research program are reviewed.	
No.	6	A Siting Proposal for ESRF	226
		The availability of synchrotron radiation from electron storage rings has been responsible for many recent advances in condensed matter research. In response to a European Science Foundation feasibility study, the Risø National Laboratory in Denmark has prepared a siting proposal for a new European Synchrotron Radiation Facility (ESRF) dedicated as an x-ray source for condensed matter studies.	

		New Directions for Physics Research in Greece	227
		New legislation has changed the emphasis, administration, and teaching of physics in Greece. Prominent changes include the democratic election of department chairmen, redirection of research to high technology applications, and initiation of US-style training. Programs at four centers for research are discussed in light of these changes.	
No.	7	Contact Electrification Research at UMIST	276
		This is the first of two articles on static electrification research at the University of Manchester Institute of Science and Technology. Investigations of contact electrification of insulators by metals are described. The phenomenon is responsible for damage of semiconductor electronic components during manufacture. A discussion of static charging by collisions of aircraft with ice particles will appear in a future article.	
		Navy-Relevant Research at the University of Liverpool	280
		The Mechanical Engineering Department is performing research in hydrodynamics and aerodynamics of immediate interest to the US Navy.	
No.	8	Neutron Beams Probe Condensed Matter at AERE	329
		Research and development programs at the UK's Atomic Energy Research Establishment (AERE) are guided by the needs of the nuclear industry. This article provides basic information about the interaction of low energy neutrons with matter, describes neutron sources available at AERE and elsewhere for material physics, and presents some highlights of condensed matter studies at AERE.	
No.	9	A New Gas-Puff Plasma Source for X-Radiation	373
		Preliminary results of a new gas-puff plasma radiator experiment at Imperial College, London, are presented. The x-ray source will be used to study photo-pumping of x-ray lasers.	
		Static Charging of Aircraft by Collisions with Ice Particles	376
		The University of Manchester Institute of Science and Technology is examining the static electrification of aircraft moving through ice storms. Use of modern insulating components such as fiber composites increases the threat of	

page no.

static-charge-induced breakdowns.

		<u>pa</u>	ge no.
No.	10/11	A UK Free Electron Laser	419
		The UK's Science and Engineering Research Council is funding a new free electron laser project. The objective of the project is demonstration of high gain and power, tunable over the 2.0- to 20-µm region of the infrared spectrum, for applications to laser photochemistry, isotope separation, and solid state physics.	
		Infrared Atmospheric Transmittance	424
		Research at Technion is providing infrared atmospheric transmission data over long path lengths in various climates. Results are important for electro-optic communications and are used to check predictions of codes developed by the US Air Force.	
No.	12	A New Diagnostic Technique for Collective Ion Acceleration	472
		The Weizmann Institute of Science in Rehovot, Israel, has developed a new diagnostic tool to probe the structure of the electric field in collective ion acceleration experiments.	
ESN	38 (198	4)	
No.	1	Channeling Research in Switzerland	42
		High-energy positrons and electrons incident at small angles on crystal planes experience strong electrostatic steering forces which guide the particles and cause oscillations in their orbits. This phenomenon is under study at CERN with a view toward developing coherent gamma-ray sources. A group at the Swiss Institute for Nuclear Research is studying channeling of muon-decay positrons as a new means to probe the electronic structure of semiconductors.	
		Muon-Catalyzed Fusion	46
		Muon-catalyzed fusion may be scientifically feasible, but it will be interesting for commercial power production only if the high energy cost of creating the muons with an accelerator can be offset by incorporating fissile-fuel breeding assemblies to boost energy gain.	
No.	2	New Flexibility for Plasma Radiation Sources	93
		Researchers in the Federal Republic of Germany have developed the gas-liner pinch to overcome limitations of	

	X-Ray Laser Research Reported at ECLIM	101
	Although the focus of the 16th European Conference on Laser Interactions with Matter (ELCIM) was inertial confinement fusion, a number of presentations dealt with experiments and theory concerning soft x-ray lasers. Results in this area are presented.	
No. 3	A 50-Picosecond Gated X-Ray Intensifier	140
	British researchers have developed a gated x-ray intensifier with the high spatial and temporal resolution required for the diagnosis of laser-driven plasmas and for pulsed-power x-ray sources.	
	Material-Response Research with High Power Gas Lasers	142
	Work at the University of Düsseldorf is devoted to the refinement of high-power, continuous-wave lasers for materials research and processing and the interaction of such lasers with matter. Although not the intent, some research results address issues important to directed energy applications.	
No. 4	Operation of a Storage Ring FEL	206
	A French-American collaboration working at the University of Paris-Sud has reported the first successful operation of a free electron laser in a storage ring.	
	Progress in Plasma Puff Research in France	211
	A new interferometry technique used for neutral density measurements on annular imploding plasma loads leads recent advances in research at the Ecole Polytechnique (Palaiseau, France).	
No. 5	An Adaptive Mesh Technique for the Solution of Radiation-Hydrodynamic Equations	275
	Researchers at the Max Planck Institute for Physics and Astrophysics have developed an implicit finite-difference technique designed to locate and track arbitrary shock fronts, interfaces, and other narrow structures in a radiation-hydrodynamic flow. Calculational results are impressive.	
	A New Type of Natural Radioactivity	279
	Physicists at Oxford University have discovered a new form of natural radioactivity: the emission of carbon by	

page no.

	page no.
No. 6	Computer Analysis of a Turbulent Mixing Layer 327
	Researchers in Spain have developed digital-image- analysis techniques to probe the dynamic evolution of large eddies in a plane mixing layer.
	Guerre d'EtoileFrench Research in Atmospheric Electron-Beam Propagation
	French scientists have begun experiments designed to test a multifluid plasma code that models the atmospheric response to defense-level relativistic electron beams.

Appendix B:

Full File Listing

Rec ID Topic KW2 KW3 <u>Institute</u> Country City Name Ref and Notes PLASMA EM waves variational prin. dispersion Nether Eindhoven Eindhoven Univ. of Tech. Phys. Lett. 92, no.5 (1982) PLASMA 2D escillations Bose-Einstein plasmons Hopfel Austri Innsbruck Univ. Innsbruck Phys. Rev. Lett. 49, no.22 (1982) PLASMA disruption Alfven waves tokamak Switz Lausanne de Chambrier Ecole Poly. Federale Phys. Lett. 92A, no.6, p279 (1982) CPBICF HIF emittance space Charge W Ger Garching MPI fur Plasmaphysik Hofmann private comm. PLASMA ion-ion instability nonlinear Riso Nat. Lab. Pecseli Denmrk Roskilde Phys. Rev. Lett. 48, no.19 (1982) CPBICF coronas drift approx. space charge Norway Trondheim Sigmond Norwegian Inst. of Tech. J. Appl. Phys. 53, no.2 (1982) CPBICF LIB slowing down plasma target Israel Rehovot Weizmann Inst. of Sci. Zinamon WIS-82/22-May-Ph CPBCIF REB enhanced deposit k-alpha Israel Rehovot Weizmann Inst. of Sci. Nardi WIS-82/39-July-Ph CPBICF laser Rayleigh Taylor target instab.

UK Didcot Rutherford Appleton Lab Evans Phys. Rev. Lett. 49, no.22 (1982)

10 CPBICF HIF high gain targets W Ger Karlsruhe Kernforsch. Karlsruhe Long

Phys. Lett. 91A, no.9 (1982)

Rec ID Country Ref and	City	<u>KW1</u>	KW2 Institute	<u>КW3</u>	Name
11 Italy Sci. Am		laser	applications Fiat Auto S.P.A.	manufacturin	g La Rocca
12 UK New Scie	Bath	zeolite p773, 10 Dec 81	photoproduction Univ. of Bath	ammonia	Yue
Finlnd	Helsink	diffusion i 53, no.4 (1982)	aluminum Univ. of Helsinki	iron	Hirvonen
UK	CHEMAT Abingdo entist,		welding Culham Lab.	CO2	
Israel	Beer-Sh	engine eva 53, no.3 (1982)	internal combus. Ben Gurion Univ. Negev	model	Aizenbud
France	Gramat	shock loaded 53, no.2 (1982)	stresses Centre d'Etudes de Gram	determinatio at	n Chartagnac
17 UK New Sci	Cambrid	zeolite ge p435, 18 Nov 82	ZSM-5 Univ. of Cambridge	structure	Thomas
18 Czech J. Phys	CHEMAT Prague . D15, p	PECVD 1179 (1982)	nitride Inst. of Plasma Physics	deposition	Bardos
19 UK Nature	ENERGY Leeds 299, p20	CO2	global model Univ. of Leeds g. report	predictions	Lockwood
20 Switz	CHEMAT Lausann	water splitting	photochemical Ecole Poly. Federale	hydrogen	Gratzel

New Scientist, p768, 16 Sept 82

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3	Name
21 ENERGY pollution France Paris New Scientist, p90, 14 Oct 82	detector Univ. Pierre et Marie C		Huve
22 HYDROD wave power Norway Oslo New Scientist, p599, 3 Sept 81	Central Inst. for Indus		
23 ENERGY solar ponds UK London New Scientist, p735, 17 Sept 81	Queen Mary College		Colbeck
24 ENERGY purple membrane Israel Rehovot New Scientist, p160, 15 Oct 81	Weizmann Inst. of Sci.		Caplan
25 ENERGY oil pollution UK Sunbury New Scientist, p676, 11 June 81	Brit. Petrol Res. Lab.		on Beynon
26 ENERGY acid rain UK Norwich Nature 298, p460, 29 July 82	nitrates Univ. of East Anglia		Brimblecombe
27 ENERGY photovoltaic Belgum Heverlee Rep. Prog. Phys. 49, pl041 (82)	Lab. ESAT	energy	Van Overstraeten
	Univ. de Tech. de Compi	magnetic fie .egne	
29 ENERGY wind power UK Carmarthen Bay New Scientist, p505, 25 Nov 82	turbine Central Elec. Gen. Boar	national gri d	d. Rees

oscillating

Nat. Engng. Lab.

water column

Elliot

HYDROD wave power

East Kilbride

New Scientist, p422, 18 Nov 82

30

Rec ID Country Ref and	City	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
31 UK Nature	Leicest	acoustic er 8, 7 Oct 82	gravity waves Univ. of Leicester	ionosphere	Jones
Israel	Tel Avi		cloud seeding Tel Aviv Univ.	rain making	Yanofsky
33 Sweden Nature	Umea		magnetosphere Kiruna Geophys. Inst. e below	GEOS	Ronnmark
34 UK Nature	Brighto		Univ. of Sussex	variations	Horne
35 Sweden New Sci	Umea	Aurora p642, 10 Sep 81	radar Kiruna Geophys. Inst.	Eiscat	
36 UK Nature	Cardiff	solar wind	Mars Univ. College	Venus	Wallis
France	Paris	•	Univ. of Paris	correlation	Courtillot
	WETHER Lindau 295, p68	ionosphere 0, 25 Feb 82 al:	radio waves MPI fur Aeronomie so Leicester	reflectivity	Kopka
39 UK J. Appl	LASERS Bristol . Phys.		charge circuits British Aerospace Dynam	performance ics	Cridland
40 Poland	LASERS Warsav	CO2	impedance Warsaw Tech. Univ	fluctuations	Nowicki

J. Phys. D15, p1165 (1982)

KW3 KW2 Rec ID Topic Name Institute Country City Ref and Notes modeling gas mixing LASERS CO Tilleman Technion Israel Haifa J. Appl. Phys. 53, no.5 (1982) photon statistics model of expt. LASERS dye Graham Univ. Essen W Ger Essen Phys. Rev. Lett. 48, no.20 (1982) LASERS CO2 TE spark arrays 43 British Aerospace Dynamics Cridland Bristol J. Appl. Phys. 53, no.2 (1982) LASERS DIMER NA2 operation Schmeile Switz Bern Univ. of Bern J. Appl. Phys. 53, no.3 (1982) Lithium vapor dye laser excited LASERS two photon Univ. of Heidelberg Nikolaus W Ger Heidelberg New Scientist, p344, 6 Aug 81. and Phys. Rev. Lett. 47, p171 (1981) .1 mm spheres argon 1-10 W 46 LASERS levitation Roosen Inst. d'Optique France Orsay Laser Focus. Aug. 1982, pp22-26 Ar/HCl mixture vibrational LASERS HC1 47 Rokn1 Hebrew Univ. Israel Jerusalem Appl. Phys. Lett. 41, no.2 (1982) R.E. Center et al. optically pumped theory LASERS gamma ray 48 Olariu Central Inst. of Physics Roman Bucharest J. Appl. Phys. 53, no.7 (1982) C.B. Collins et al. recombination LASERS XUV carbon 49 Pert Univ. of Hull Hull UK New Scientist, p910, 30 Sept 82

CF4

Culham Lab.

LASERS IR

Abingdon J. Phys. B15, p3639 (1982)

UK

optically pumped

Stamatakis

KW3 KW2 Rec ID Topic Name Institute Country City Ref and Notes CF4 and CO2 ENERGY isotope separation uranium Koren Technion Israel Haifa Appl. Phys. Lett. 41, no.5 (1982) LASERS semiconductor picosecond pulses GaAs DH laser Inst. fur Festkorperphysik Klein W Ger Berlin Appl. Phys. Lett. 41, no.5 (1982) photoionization ΤĘ LASERS CO2 53 Univ. of Strathclyde Scott Glasgow Appl. Phys. Lett. 41, no.9 (1982) silicon SOLIDS laser annealing Cen. Nat. d'Etudes Telecom. Colinge France Meylan Appl. Phys. Lett. 41, no.4 (1982) light & microwaves SOLIDS Schottky diode mixer W Ger Garching MPI fur Quantenoptik Daniel Appl. Phys. Lett. 41, no.4 (1982) electron bombard ribbon growth 56 SOLIDS silicon Casenave Inst. Nat. de Sci. Appliquees France Lyon Appl. Phys. Lett. 40, no.8 (1982) SOLIDS superconductors organic 57 Denmark Copenhagen Univ. of Copenhagen Bechgaard Sci. Am. with Denis Jerome, Univ. Paris Sud SOLIDS change of state molec. rearrange computer 58 Pawley Univ. of Edinburgh Edinburgh ÜΚ New Scientist, p20, 1 April 82 SOLIDS optical recording silicon laser annealing Janai Technion Israel Haifa J. Appl. Phys. 53, no.3 (1982)

Royal Sig. & Radar Estab.

LCD

60

SOLIDS flat displays

Great Malvern

New Scientist, p376, 5 Nov 81 team at Dundee U.

color

Hilsum

Rec ID Topic KW2 KW3 Country City Institute Ref and Notes SOLIDS photoresist 61 gratings fabrication Israel Tel Aviv Tel Aviv Univ. Kapon J. Appl. Phys. 53, no.3 (1982) SOLIDS rare-earths 62 applications mtg review UK Wembley Hirst Research Centre GEC Kelly Nature 296, p310, 25 Mar 82, European contributions 63 SOLIDS memory superconducting Josephson W Ger Tubingen Univ. Tubingen Parisi Appl. Phys. Lett. 40, no.10 (1982) SOLIDS polysilicon 64 transistors laser annealing France Lannion Cen. Nat. d'Etudes Telecom. Morin J. Appl. Phys. 53, no.5 (1982) 65 SOLIDS conducting plastics polyacetylene UK London Queen Mary College Boor New Scientist, p577, 4 Mar 82 66 SOLIDS Josephson junction fluxons dynamics Denmark Lyngby Tech. Univ. of Denmark Joergensen Phys. Rev. Lett. 49, no.15 (1982) 67 SOLIDS microcircuit limitations size Sweden Goteborg Chalmers Univ. of Tech. Wallmark Institute of Physics 1982, 0031-9112/82/100362 68 COMPUT AI dataflow processor Manchester Manchester Univ. Gurd New Scientist, p358, 5 Aug 82 COMPUT graphics 3D modeling 69 UK Leeds Univ. of Leeds de Pennington New Scientist, p913, 30 Sept 82

70 COMPUT image processing speckle fluid flow
Belgum Brussels Univ. Libre de Bruxelles Meynant
Rev. Sci. Instrum. 53, no.1 (1982)

Rec ID Topi Country City Ref and Note		<u>KW2</u> <u>Institute</u>	<u>KW3</u>	Name
UK Surr	PUT AI Tey St, p206, 22 April 82	music Univ. of Surrey	composing	Maconie
72 COMI UK Chel New Scientis		voice recognition Govt. Communications HQ		Holmes
UK Lone	PUT graphics don st, p775 10 Dec 81	3D movie Univ. of London	haemoglobin	Clark
UK Oxf	PUT information ord Lett. 48, no.4 (1982	processing Oxford Univ.	limitations	Deutsch
France Par	PUT robotics is st, p234, 28 Oct 82	laser INRIA	range finder	
	PUT 3D delberg st, p358, 11 Nov 82	display Univ. of Heidelberg	laser on hel	ix Hartwig
UK Ply	ROD sea water mouth p538, 17 June 1982	eqn. of state Marine Biological Assoc		
W Ger Got	ROD chaos tingen Lett. 47, no.20 (198	acoustic Univ. of Gottingen 1)	cavitation	Lauterborn
UK God	ROD ocean floor alming p550, 18 Feb 1982	conductivity Inst. of Oceanographic	_	Francis

side-scan sonar

Inst. of Oceanographic Sci.

bubbles

Thorpe

80

WETHER breaking wave

UK Godalming Nature 296, p637, 13 April 82

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3 <u>Name</u>
81 HYDROD sea ice Norway Bergen J. Appl. Phys. 53, no.2	Univ. of Bergen	high frequency Farrelly
82 HYDROD electron Spain Madrid Phys. Fluids 24, no.10	Univ. Auto. de Madrid	<u>-</u>
83 HYDROD Antarct: Nether Utrecht Nature 297, p550, 17 Jun	Univ. of Utrecht	model Oerlemans
84 DIAGNO electron Switz Zurich Phys. Lett. 92A, no.3, p	IBM Zurich Research I	tunnel current Lab. Epperlein
85 DIAGNO chemical UK Oxford Nature 290, p556 and New	n micro. photoelectron Oxford Univ. Scientist, 21 May 81, p490	energy resolved Turner
86 DIAGNO holograp UK New Scientist, p225, 23	Rank Wharfedale	Doppler effect Fryer
87 DIAGNO holograp Sweden Stockholm New Scientist, p465, 20	Royal Inst. of Tech	wavefront Abramson
88 DIAGNO electron UK Leeds New Scientist, p667, 3 1	Univ. of Leeds	corrosion Griffiths
89 DIAGNO NMR UK Oxford New Scientist, p213, 22	medicine Oxford Univ. April 82	meeting report Ross
90 DIAGNO optical UK Cranfield	fibers stress cracks Cranfield Inst. of Te	

New Scientist, p798, 24 Sept. 81

Rec ID Topic KWl Country City Ref and Notes	KW2 Institute	<u>KW3</u>	Name
91 DIAGNO x-ray W Ger Stuttgart Appl. Phys. Lett. 1.3.80 +prepri	waveguide MPI fur FestkorperforsC Int		Fischer
92 DIAGNO x-ray UK Dorking Nature 295, p678, 25 Feb 82	energy Mullard Space Sci. Lab.	electron cou	nting Siegmund
93 DIAGNO electron micro. Switz Zurich Physics Today, April 82, p21.	tunneling IBM Zurich Research Lab	topography •	Binnig
94 DIAGNO desorption Belgum Liege Rev. Sci. Instrum. 53, no.1 (19	Univ. of Liege	crystal	Derochette
95 DIAGNO electron Italy Bari Rev. Sci. Instrum. 53, no.1 (19	Univ. of Bari	low voltage	Calicchio
96 DIAGNO x-ray W Ger Stuttgart Appl. Phys. Lett. 40, no.7 (198	interferometer MPI fur Festkorperforse (2)	=	Chang
97 DIAGNO spectrometer W Ger Munich Rev. Sci. Instrum. 53, no.2 (19	Abteilung fur Okologis	water che	Dumke
98 DIAGNO x-ray France Reims J. Appl. Phys. 53, no.4 (1982)	scanning U.E.R. des Sciences	radiography	Cazaux
99 DIAGNO aerosols Switz Zurich	photoelectrons Eidgenossisch Tech. H.	•	Burtescher

J. Appl. Phys. 53, no.5 (1982)

J. Phys. D15, p1385 (1982)

DIAGNO holography

100

Poland Warsaw

binary liquid

Univ. of Warsaw

diffusion

Szydlowska

Rec ID Topic KW3 KW1 KW2 Country City Institute Name Ref and Notes 101 DIAGNO microscope confocal surface profile IJΚ Oxford Oxford Univ. Hamilton J. Appl. Phys. 53, no.7 (1982) 102 DIAGNO atomic beams scattering vibrations W Ger Gottingen MPI for Fluid Dynamics Brusleylins Science 218, 1 Oct 82, p40, mtg. review DIAGNO atomic beams 103 scattering vibrations Nether Noordwijk Eur. Space Res. and Tech. Cen. Feuerbacher Science 218, 1 Oct 82, p41, mtg. review 104 DIAGNO atomic beams vibrations scattering Spain Madrid Univ. Auto. de Madrid Benedek Science 218, 1 Oct 82, p42, mtg. review 105 DIAGNO holography gratings profile model Sweden Stockholm Royal Inst. of Tech. Lindau Optica Acta 29, no.10 (1982) 106 DIAGNO neutrons applications industry UK Birmingham Univ. of Birmingham Walker Phys. Technol. 13, p239 (1982) (Inst. of Physics) DIAGNO CR39 107 track detector medicine & tech. UK Bristol Bristol Univ. Henshaw Phys. Technol. 13, p266 (1982) (Inst. of Physics) 108 DIAGNO x-ray detector satellite UK Leicester Univ. of Leicester Turner New Scientist, p142, 21 Oct 82 109 DIAGNO x-ray synchrotron microscopy UK Warrington Daresbury Lab. Duke Daresbury Lab Preprint DL/SCI/P 349E

110 DIAGNO contact image energy transfer 100 nm
W Ger Gottingen MPI fur BiophysikalischeChemie Fischer
Appl. Phys. Lett. 40, no.3 (1982)

Rec ID Country Ref and	City	<u>KW1</u>		KW2 itute			KW3	Name
111 UK SPIE 310	DIAGNO Tedding	-	Nat.	mirrors Phys. L Optics			testing	Stedman
112 UK SPIE 31	DIAGNO London 6, High	x-ray Resolution So	Impe	mirrors rial Col Optics	-		testing	Mrowka
W Ger	DIAGNO Sindelf 6, High		IBM		and GmbH (1981) i		testing Proc.	Makosch
114 W Ger SPIE 31	Berlin	x-ray Resolution So	Frei	scatteri e Univ. Optics	Berlin		chloroplast	Parodies
	Gotting	x-ray gen Resolution So		zone pla . of Got Optics	tingen	Mtg	microscopy Proc.	Rudolph
116 W Ger SPIE 31	Gotting	x-ray gen Resolution Sc		microsco 7. of Got 7 Optics	tingen		synchrotron	Niemann
	Garchin	x-ray ng Resolution Sc		-	sik und A	str	astronomy ophys. Proc.	Predehl
118 W Ger SPIE 31	Garchi	x-ray ng Resolution So			sik und A	lstr		s Brauninger
119 W Ger SPIE 3	Garchin	x-ray ng Resolution So			sik und A			Stephen
120 E Ger	Rostoc	dense k	Wil	quantum helm-Pie			oscil. stre	ngth Hohne

J. Phys. B15, p2551 (1982)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>KW3</u>	Name
121 PLASMA electron-hole W Ger Bochum Phys. Rev. A26, pll20 (1982)	diffusion Ruhr Univ.	magnetostati	C Rahman
122 PLASMA diffusion Norway Trondheim Phys. Rev. Lett. 49, no.5 (1982)	Fokker-Planck Univ. of Trondheim	boundary con	dition Naqvi
123 PLASMA tearing modes W Ger Garching Phys. Rev. Lett. 49, no.9 (1982	MPI fur Plasmaphysik	tokamak	Kerner
124 PLASMA ion acoustic war France St. Maur des Fosses Phys. Lett. 91A, no.7 (1982)	ves beam excite Cen. Res. Phys. de l'En	experiment viron	Pottelette
125 PLASMA stellarators W Ger Garching European Phys. Soc. Bull.	status MPI fur Plasmaphysik	future	Wob1g
126 PLASMA neutral heating UK Abingdon Phys. Lett. 91A, no.8 (1982)	confinement	tokamak	G111
127 PLASMA discharge Bulgar Sofia J. Phys. D15, p1419 (1982)	longitudinal waves Inst. of Electronics	cathode	Vranchev
128 PLASMA discharge Italy Genova J. Phys. D15, p1403 (1982)	microwave Ist. di Ellettrotecnica	diagnostic	Cicconi
129 PLASMA drift velocity Norway Trondheim J. Phys. Al5, p3255 (1982)	Lorentz gas Univ. of Trondheim	Boltzmann Eq	n. Olaussen
130 PLASMA solid state Denmrk Aalborg Phys. Rev. A26, no.3 (1982)	EM wave interac. Aalborg Univ. Centre	conductivity	Keller

Rec ID Country Ref and	City	KW1	KW2 Institute	<u>КW3</u>	Name
France	Paris	electron-hole . 48, no.20 (1982	high temperature Ecole Normale Superieur 2)		Combescot
France	Grenobl		collisional Inst. Laue-Langevin	correlations	; Hansen
133 Sweden Phys. R	Umea		filaments Univ. of Umea 1) Christiansen et al.	turbulence	Stenflo
	Eindhov	instability ven i, no.2 (1982)	flr Eindhoven Univ. of Tech	rotational	Janssen
	Bochum	Alfven waves 5, no.3 (1982)	turbulence Ruhr Univ.	magnetosphe:	re Yu
		_	tuu antantan	Thompson an	alveic
W Ger	Stuttga		ion emission Univ. Stuttgart	THOMPSON GI	Mozer
	Paris	strongly couple	ed thermal cond. Univ. Pierre et Marie 32)	simulation Curie	Bernn
138 UK Euroabs	Abingd	collisions on Sec. 1, no.10,	multipole Culham Lab. p489 (1982)	fast electr	ons Holmes
139 UK Euroab	Abingd		ch helical field Culham Lab. p489 (1982)	CLEO	Robinson
140	PLASMA	RF heating	Alfven waves	AERH	h-nowb
Carl La			Foole Poly Federale		Appert

Ecole Poly. Federale

Appert

Switz Lausanne

Euroabstracts, Sec. 1, no.10, p489 (1982)

Rec ID Topic KW2 KW3 Country City Institute Name Ref and Notes 14. PLASMA toroidal z-pinch stabilization octopole Sweden Stockholm Royal Inst. of Tech. Dalhed Euroabstracts, Sec. 1, no.10, p489 (1982) 142 CPBICF HIF slowing down charge state Israel Rehovot Weizmann Inst. of Sci. Nardi Phys. Rev. Lett. 49, p1251 (1982) 143 BASICS vortices superfluid He3 NMD Finlná helsinki Helsinki Univ. of Tech. Hakonen Phys. Rev. Lett. 49, pl258 (1982) RASICS liquid helium nucleation critical point W Ger Garching Tech. Univ. der Munchen Alpern Phys. Rev. Lett. 49, pl267 (1982) 145 HYDPOD water wave evolution instability W Ger Essen Univ. Essen Laedke Phys. Rev. Lett. 49, p1401 (1982) 146 BASICS solitons Sine-Gordon quasiperiodic Poland Warsaw Polish Acad. of Sci. Jaworski Phys. Lett. 92A, p427 (1982) 147 PLASMA discharge hollow cathode magnetron Yugos Belgrade Kidric Inst. of Nuclear Sci. Miljevic Phys. Lett. 92A, p439, (1982) 148 LASERS chaos bistable cavity numerics UK Edinburgh Heriot Watt Univ. Firth Phys. Lett. 92, no.5, p211 (1982). CPBICF fireball 149 generation arc Nether Terneuzen Zeldenrust College Dijkhuis J. Appl. Phys. 53, no.5, p3516 (1982). 150 BASICS hydrogen rf cavity parity

Robiscoe

ETH Zurich

Switz Zurich

J. Appl. Phys. 53, no.5, p3380 (1982).

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

HYDROD chaos temperature Rayleigh-Benard

Italy Milan Societa per Azioni Giglio

Phys. Rev. Lett. 47, no.4, p243 (1981).

152 BASICS chaos electronic nonlin circuit
Italy Florence Univ. of Florence Arecchi
Phys. Rev. Lett. 49, no.2, p94 (1982).

Israel Ramat-Gan Bar-Ilan Univ. Deutsch
Appl. Phys. Lett. 41, no.1, p27 (1982).

154 EASICS chaos chem diffusion model
Czech Prague Prague Inst. of Chem. Tech. Schreiber
Phys. Lett. 91, no.6, p263 (1982).

155 BASICS quantum mech. Bells ineq. two photon expt.

France Orsay Univ. Paris Sud Aspect
Science 217, 30 July 1982, p435 & many others.

156 PASICS travelling salesman algorithm
Czech Bratislava Inst. of Phys. and Biophys. Cerny
New Scientist, p554, 26 Aug 1982.

157 BASICS primes tests
France Bordeaux Univ. of Bordeaux Cohen
Sci. Am. Dec 82.

158 BASICS primes tests
Nether Amsterdam Univ. of Amsterdam Lenstra
Sci. Am. Dec 82.

159 BASICS primes public key codes cryptography
Israel Rehovot Weizmann Inst. of Sci. Shamir
Sci. Am. Dec 82.

160 BMSRAD electrostatic lenses ray trace
W Ger Julich Inst. fur Fest. der Kern. Kisker
Rev. Sci. Instrum. 53, no.1, pl14 (1982)

Rec ID Topic KW2 KW3 Country City Institute Name Ref and Notes

BMSRAD neutron 161 Fresnel zone plate France Grenoble Inst. Laue-Langevin

New Scientist, p631, 2 Sept 1982.

162 BMSRAD heavy ion accelerator nuclear physics France Caen Lefort

Physics Today, Oct 1982, p20.

163 BMSRAD neutrons SNS components Didcot Rutherford Appleton Lab.

CERN Courier, Nov. 1982, p372.

164 BMSRAD arc lamps mercury acoustics W Ger Aachen Philips GmbH Forsch. Schafer J. Appl. Phys. 53, no.5, p3476 (1982).

SOLIDS organic 165 superconductor TMTSF Tech. Univ. of Denmark Denmrk Lyngby Bechgaard New Scientist, p419, 18 Nov 1982.

ATOMIC heavy ion wake interference W Ger Frankfurt Goethe Univ.

Frischkorn

Phys. Rev. Lett. 49, no.22, p1671 (1982).

167 ATOMIC helium ionization ions Denmrk Aarhus Univ. of Aarhus Haugen Phys. Rev. A26, no.4, p1950 (1982). p1962 noble gases.

168 ATOMIC electron backscatter thin films W Ger Berlin Tech. Univ. Berlin Niedrig J. Appl. Phys. 53, no.4, pR15 (1982). review paper

169 ATOMIC optical linewidth subnatural Poland Krakow Gawlik Univ. Jagiellonski Phys. Rev. Lett. 48, p871 (1982).

170 ATOMIC hydrogen atomic stable Nether Amsterdam Univ. of Amsterdam Silvera New Scientist, p204, 22 Jan 1981.

Rec ID Country Ref and	City	KW2 Institute	KW3	Name
Sweden	ATOMIC electron Uppsala 1. Phys. 54, p709 (1982)	spectroscopy Uppsala Univ.	review	Siegbahn
172 Italy Phys. Re	ATOMIC electron Parma ev. A26, p902 (1982).	mobility Univ. di Padova	gases	Braglia
Poland		slowing down Inst. of Nuclear Resea: (1982).		ium Gryzinski
174 UK New Sci	ENERGY plastic sand entist, p443, 17 Feb 196	water retention Chemical Discoveries 83.	desert recl	aim Cooke
	COMPUT robot arm Scunthrope entist, p806, 24 Mar 19	CO2 laser Flexible Laser Systems 83.		Johnson
176 UK	DIAGNO holography Marchwood	nuclear reactors CEGB Engineering Labs.		Webster
177 UK	DIAGNO holography	3d Royal Sussex County Ho	tomography osp.	Keane
178 UK	DIAGNO holography Teddington	nondistructive Nat. Phys. Lab.	testing	Ennos
179 UK Plasma	PLASMA Langmuir waves Brighton Phys. 24, no.12, p1495	Univ. of Sussex	argon	Bond
	CPBICF fuse Gdansk Tans. Plasma Sci. PS-10	exploded wire Gdansk Tech. Univ. , no.4, 339 (1982).	arcing	Lipski

Rec ID Topic Country City

Institute

KW3

Name

181 CPBICF fusion pellet Israel Tel Aviv

boron Tel Aviv Univ. advanced fuel

Nucl. Fusion 22, no.11, p1519 (1982).

182 BMSRAD wave packets

cosmic ray

trapped waves

Norway Tromso

Ref and Notes

Univ. of Tromso

Dysthe

Levush

Phys. Rev. Lett. 50, no.5, p353 (1983).

183 LASERS CO2 pulsed

efficiencies

UK Glasgow Univ. of Strathclyde

Smith

Appl. Phys. Lett. 41, no.11, p1037 (1982).

184 LASERS bistability

Fabry-Perot

quadratic

W Ger Munster

Univ. Munster

Wedding

Appl. Phys. Lett. 41, no.11, p1028 (1982).

185 SOLIDS transport theory

semiconductor

surface

energy conversion

UK

UWIST

Parrott

J. Appl. Phys. 53, no.12, p9105 (1982).

186 CPBICF discharge

spectroscopy

France Gif-sur-Yvette

CNRS E.S.E. Plateau du Moulan

J. Appl. Phys. 53, no.12, p8568 (1982).

modulation

semicon. laser

SOLIDS optoelectronic W Ger Stuttgart

187

MPI fur Festkorperforschung

Gobel

Bordage

Appl. Phys. Lett. 42, no.1, p25 (1983).

188 LASERS semiconductor

waveguide

mode spectrum

W Ger Munich

Technische Univ.

Segmuller

Appl. Phys. Lett. 42, no.1, p15 (1983).

189 HYDROD burning

propellants

velocimetry

Italy Milan Ist. di Macchine-CNPM

Volpi

AFOSR-81-0143 Final Report, Feb. 1983.

190 LASERS CO2

polarization

injection-locked

UK Edinburgh

Heriot Watt Univ.

Kar

Appl. Phys. Lett. 42, no.1, pl2 (1983).

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

191 WETHER gravity waves magnetoacoustic atmosphere
UK Cambridge Univ. of Cambridge Campos
J. Phys. A16, p1417 (1983).

192 BMSRAD accelerators high-energy review
Switz Geneva CERN Crowley-Mil.
Rep. Prog. Phys. 46, p51 (1983).

193 LASERS excitation line profiles self reversed
UK Brighton Univ. of Sussex Eicher
Phys. Lett. 93A, no.3, pl19 (1983).

194 PLASMA waves magnetosonic toroidal geometry
France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Cotsaftis
Phys. Lett. 93A, no.4, p193 (1983).

195 PLASMA iron ions dielec. recom. PLT
France Nice Observ. de Nice Bely-Dubau
Phys. Lett. 93A, no.4, p189 (1983).

196 WETHER ball lightning survey
UK Egham Hill Royal Holloway Col. Stenhoff
Phys. Bull. 1983.

197 PLASMA electromagnetic beam-plasma waves
W Ger Bochum Ruhr Univ. Shukla
Phys. Rev. A27, no.1, p552 (1983).

198 PLASMA relativistic distributions equilibrium

Spain Santander Univ. de Santander Lapiedra

Phys. Rev. A27, no.1, p442 (1983).

199 ATOMIC HeH molecular states
Spain Madrid Univ. Auto. de Madrid Macias
Phys. Rev. A27, no.1, p206 (1983).

200 SOLIDS glass structure synchrotron rad.

UK Warrington Daresbury Lab. Freaves

New Scientist, p246, 27 Jan 1983.

Rec ID Topic KW1 KW2 KW3 Country City Institute Name Ref and Notes ATOMIC autoinization laser induced spectrum W Ger Essen Univ. Essen Lewenstein Phys. Rev. Lett. 50, no.6, p417 (1983). 202 PLASMA diagnostic laser scat. ASDEX W Ger Garching MPI fur Plasmaphysik Steuer Phys. Bull. 1983. 203 SOLIDS neutron doping Si wafers transmutation UK Didcot AERE Harwell Smith Phys. Bull. 1983. 204 PLASMA propulsion MHD arcs W Ger Stuttgart Univ. Stuttgart Schrade EOARD Proposal 83-056 (1983). 205 DIAGNO atom bombardment mass spectroscopy FARMS UK Manchester UMIST Vickerman New Scientist, p524, 24 Feb 1983. PLASMA diffuse pinch 206 minimum energy UK Manchester UMIST Rusbridge Nucl. Fusion 22, no.10, pl291 (1982). 207 CPBICF vacuum arc anode region multi spot Israel Tel Aviv Tel Aviv Univ. Boxman J. Appl. Phys. 54, no.2, p592 (1983). 208 BASICS ferromagnetic self energy cylinder Israel Rehovot Weizmann Inst. of Sci. Aharoni J. Appl. Phys. 54, no.2, p488 (1983). 209 LASERS two frequency three level modulation Israel Haifa Technion Senitzky USARSG R&D proposal file 3027ph.

neon

Wasserstrom

stability

Technion

210

Israel Haifa

PLASMA glow discharge

J. Appl. Phys. 53, no.8, p5565 (1982).

KW2 KW3 Rec ID Topic Name Institute Country City Ref and Notes expansion diffusion CPBICF laser plasma 211 Avivi Hebrew Univ. Israel Jerusalem Phys. Fluids 25, no.10, p1894 (1982). pellets shaped voltage CPBICF ion beam 212 Havazelet Nuclear Res. Cen. Negev Israel Beer-Sheva J. Phys. D16, p315 (1983). pulsed supersonic 213 LASERS HF Rosenwaks Ben Gurion Univ. Negev Israel Beer-Sheva J. Appl. Phys. 54, no.1, p48 (1983). dynamics fast bank CPBICF plasma focus 214 Univ. of Dusseldorf Decker W Ger Dusseldorf Phys. Fluids 26, no.2, p571 (1983). 2D model multipole PLASMA diffusion 215 Koch Univ. Paris Sud France Orsay Phys. Fluids 26, no.2, p545 (1983). torodial equilibria PLASMA finite beta 216 Edinstrasser Univ. Innsburck Austri Innsbruck Phys. Fluids 26, no.2, p500 (1983). reflection ion cyclotron 217 PLASMA waves Ruhr Univ. Schukla W Ger Bochum Phys. Fluids 26, no.2, p480 (1983). magnetized quasilinear 218 PLASMA inhomogeneous Yasseen Ecole Poly. Federale Switz Lausanne Phys. Fluids 26, no.2, p468 (1983). HYDROD turbulent wake evolution 219 Labo. de Mecan. des Fluides Morel France Ecully Phys. Fluids 26, no.2, p416 (1983).

220 SOLIDS electron beam annealing silicon
France Villeurbanne Univ. Claude Bernard Lyon Tholomier
J. Appl. Phys. 54, no.3, p1588 (1983).

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

221 SOLIDS etching rf discharge fluorocarbon

Italy Bari Univ. of Bari d'Agostino

J. Appl. Phys. 54, no.3, pl284 (1983).

J. Appl. Phys. 54, no.3, pi264 (1983).

222 DIAGNO thermal waves flaws stereoscopic
W Ger Neubiberg Hochschule de Bundeswehr Busse
Appl. Phys. Lett. 42, no.4, p366 (1983).

223 SOLIDS bistability optical InSb
UK Edinburgh Heriot Watt Univ. Kar
Appl. Phys. Lett. 42, no.4, p334 (1983).

224 SOLIDS coupler optical liquid crystal
UK London Imperial College Busurin
Appl. Phys. Lett. 42, no.4, p322 (1983).

225 ENERGY electrokinetic energy conversion liquid mixture

Spain Granada Univ. of Granada Hidalgo-Alva

Phys. Lett. 94A, p325 (1983).

226 SOLIDS laser annealing germanium

Italy Rome Ist. di Fisica Vitali

Phys. Lett. 94A, p320 (1983).

227 SOLIDS dry etch plasma parameters impedance
Nether Eindhoven Philips Research Labs. Roosmalen
Appl. Phys. Lett. 42, no.5, p416 (1983).

228 DIAGNO SAW microscope confocal
UK London Univ. College Smith
Appl. Phys. Lett. 42, no.5, p411 (1983). SAW = surface acoustic wave

229 CPBICF laser plasma electron trans. ion waves
UK Didcot Rutherford Appleton Lab. Bell
Phys. Fluids 26, no.1, p279 (1983).

230 PLASMA double layer steady state analysis
W Ger Bochum Ruhr Univ. Schamel
Phys. Fluids 26, no.1, p190 (1983).

Rec ID Topic Country City	KW1	<u>KW2</u> Institute	<u>KW3</u>	Naile
Ref and Notes				

231 PLASMA coupling ion cyclotron wave impedance
W Ger Garching MPI fur Plasmaphysik Puri
Phys. Fluids 26, no.1, pl64 (1983).

232 PLASMA two-stream oscillating ohmic nonlin.

Norway Tromso Univ. of Tromso Dysthe

Phys. Fluids 26, no.1, p146 (1983).

233 PLASMA electrostatic nonlinear wave mode conversion
W Ger Bochum Ruhr Univ. Sharma
Phys. Fluids 26, no.1, p87 (1983).

234 PLASMA Langmuir waves quasilinear breakdown
France Palaiseau Ecole Poly. Laval
Phys. Fluids 26, no.1, p52 (1983).

235 PLASMA diatomic hydrodynamics Boltzmann Eqn.
France Toulouse Cen. Nat. d'Etudes Spatiales Zappoli
Phys. Fluids 26, no.1, p50 (1983).

236 CPBICF laser plasma Schlieren diagnostic
France Palaiseau Ecole Poly.

J. Appl. Phys. 54, no.2, p603 (1983).

237 CHEMAT neutron diffrac. crystal orient. weld material UK Didcot AERE Harwell Allen J. Appl. Phys. 54, no.2, p555 (1983).

238 WETHER earthquake lights data collection
Hungry Budapest Georgiana Observ. Hedervari
Nature 301, p368, 3 Feb 1983.

239 WETHER volcanic eruption stratosphere warming
UK Bracknell Meteorological Office Parker
Nature 301, p406, 3 Feb 1983.

240 LASERS focusing optics multiwavelength
UK Didcot Rutherford Appleton Lab. Nicholas
J. Phys. D16, pL53 (1983).

Rec ID Topic KW1 Country City	<u>KW2</u> <u>Institute</u>	KW3	Name
Ref and Notes			
241 HYDROD friction UK Brickendonbury J. Phys. D16, p275 1983).	rubber Rubber Producers' Res.	ice Assoc.	Roberts
242 CPBICF EM wave Portug Lisbon J. Phys. D16, p287 (1983).	gas interaction Inst. Superior Tecnico	Stark mirror	Faro
243 CPBICF laser target France Orsay J. Phys. D16, p321 (1983).	ionization Univ. Paris Sud	algorithm	Gauthier
244 PLASMA rev. field pind UK London J. Phys. D16, p333 (1983).	ch fluorescence Imperial College	diagnostic	Gohi1
245 CPBICF metal arc Bulgar Sofia J. Phys. D16, p343 (1983).	cathode Bulgarian Acad. of Sci.	model	Djekov
246 CPBICF air France Pau J. Phys. D16, p379 (1983).	streamers Inst. Univ. de Recherch	spark transi e Sci.	tion Dupuy
247 CPBICF electron emiss: UK Birmingham J. Phys. D16, p455 (1983).	ion carbon fiber Univ. of Aston	cathodes	Latham
248 ENERGY wave power UK Energy Report 10, no.4 (1983).	Sea Clam Sea Energy Assoc. Ltd.	funding	
249 BMSRAD XUV W Ger Karlsruhe Phys. Lett. 94A, p135 (1983).	line source Kernforsch. Karlsruhe	tunable	Poth
250 HYDROD water W Ger Dusseldorf J. Phys. D16, p385 (1983).	conductivity Univ. of Dusseldorf	high pressure	e Hollenberg

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

251 PLA MA heating tokamak turbulent
Nether Nieuwegein Inst. voor Plasmafysica Kluiver
Phys. Lett. 94A, pl56 (1983).

252 BASICS solitons Davydov 11fetime
Denmrk Lyngby Tech. Univ. of Denmark Scott
Phys. Lett. 94A, pl93 (1983).

253 PLASMA microwave discharge travelling wave
Poland Gdansk Polish Acad. of Sci. Zakrzewski
J. Phys. D16, p171 (1983).

254 BMSRAD EM radiation scattering dielectrics
UK Colchester Univ. of Essex Shepherd
J. Phys. A16, p651 (1983).

255 ENERGY tritium separation resonance rad.
UK Oxford Oxford Univ. Allen
J. Appl. Phys. 54, no.1, p14 (1983).

256 SOLIDS recrystallization silicon halogen lamp
France Grenoble Labo. d'Electronique et des Tech. Dupuy
J. Appl. Phys. 54, no.1, p437 (1983).

257 BASICS chaos bifurcation RCL circuit
Portug Lisbon CAUL-CFMC Cascais
Phys. Lett. 93A, no.5, p213 (1983).

258 SOLIDS GaAs evaporation laser irradiation
Nether Groningen Univ. of Groningen Boerma
Phys. Lett. 93A, no.5, p253 (1983).

259 BASICS stability electric system thermodynamics

Spain Barcelona Univ. Auto. de Barcelona PerezGarcia

Phys. Lett. 93A, no.6, p279 (1983).

260 HYDROD Rayleigh-Benard convection tranient order
France Gif-sur-Yvette CEN Saclay Berge
Phys. Lett. 93A, no.8, p365 (1983).

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

261 BMSRAD magnetic field iron Green's Function
UK Newcastle upon Tyne Newcastle Poly. Caldwell
J. Appl. Phys. 54, no.2, p484 (1983).

262 BASICS universality period n-tupling complex maps

Denmrk Copenhagen NORDITA Cvitanovic

Phys. Lett. 94A, no.8, p329 (1983).

263 BASICS enzyme strange attractor oscillating model
Denmrk Odense Univ. Olsen

Phys. Lett. 94A, no.9, p454 (1983).

264 CPBICF REB enhanced stopping applied B-field Israel Rehovot Weizmann Inst. of Sci. Maron J. Appl. Phys. 54, no.4, p1666 (1983).

265 CPBICF REB ion accelaration
UK London Imperial College Kerslick

J. Phys. D16, p613 (1983).

266 PLASMA double layer ionization numerical
Sweden Stockholm Royal Inst. of Tech. Andersson
J. Phys. D16, p601 (1983).

267 HYDROD turbulent flow electric current dielectrics
UK Chester Thornton Research Cen. Walmsley
J. Phys. D16, p553 (1983).

268 CHEMAT eroding surface particle collision machinery
UK Cambridge Univ. of Cambridge Andrews
J. Phys. D16, p525 (1983).

269 LASERS CO2 stabilization Stark effect UK Cambridge Cavendish Lab. Rackley J. Phys. D16, p505 (1983).

270 CPBICF REB source thermionic

Israel Beer-Sheva Nuclear Res. Cen. Negev Yeheskel

J. Phys. D16, p499 (1983).

Rec ID Country Ref and		KW2 Institute	КМЗ	Name
UK	DIAGNO refractive inde Cambridge . D16, p489 (1983).	x complex Cavendish Lab.	thin films	Phillips
Italy	LASERS N2 Florence D16, pL67 (1983).	waveguide Ist. di Elettronica Qu	high rep rat ant. CNR	
UK		mode structure Royal Sig. & Radar Est		ator Jordan
UK	DIAGNO gyrocompass Slough Bull. 1982.	NMR Admiralty Compass Obse	rvatory	
UK	DIAGNO ultrasonic Didcot Bull. 1982.	transmission AERE Harwell	Rayleigh wa	ve Gillespie
UK	DIAGNO channel plate Leicester 300, p509, Dec. 82.	x-ray Univ. of Leicester	efficiency	Fraser
UK	ENERGY liquid Oxford 300, p687, 23 Dec 1982.	electrolyte Oxford Univ.	solar cells	Hamnett
W Ger	SOLIDS ultra low temp Julich an Phys. Soc. Bull. QE-19	Inst. fur Fest. der Ke	em.	Pobell
		_		

279 ENERGY automobile microwave engine timing UK Ipswich EDI Electronic Engineering Energy Report, Dec. 1982.

280 ATOMIC spectrum weak lines observed law
UK London Imperial College Learner
J. Phys. B15, pL891 (1982).

Rec ID Topic KW2 KW3 Country City Institute Name Ref and Notes CPBICF vacuum arc 281 cathode spot motion Nether Eindhoven Eindhoven Univ. of Tech. Daalder J. Phys. D16, p17 (1983). 282 LASERS white light He-Cd three color UK Swansea (Wales) Univ. Coll. of Swansea Kin-Hung J. Phys. D16, pL1 (1983). 283 CPBICF ion source liquid metal space charge UK Birmingham Univ. of Aston Mair J. Phys. D15, p2523 (1982). CPBICF double layer insulator-liquid interface France Grenoble Labo. d'Elec. et de Mat. Dielec. Saad J. Phys. D15, p2505 (1982). 285 CPBICF fast electrons laser plasma 2D effects W Ger Garching MPI fur Quantenoptik Amiranoff J. Phys. D15, p2463 (1982) also J. Kilkenny at Blacket Lab. LASERS cavity density 286 perturbations hydrodynamics UK Great Malvern Royal Sig. & Radar Estab. J. Phys. D15, p2433 (1982). 287 BMSRAD neutrons pulsed source moderation UK Birmingham Univ. of Birmingham **Picton** J. Phys. D15, p2369 (1982) also A. Taylor at RAL. CPBICF laser target 288 ionization computer code UK Glasgow Univ. of Glasgow Novak J. Phys. D15, p2017 (1982). 289 ENERGY photovoltaic conversion eff. formula Belgum Gent Rijksuniversiteit te Gent DeVos J. Phys. D15, p2003 (1982). 290 PLASMA double layer high voltage magnetized Sweden Stockholm Royal Inst. of Tech. torven

J. Phys. D15, p1943 (1982).

Rec ID Topic KW2 KW3 Country City Institute Name Ref and Notes 291 HYDROD shear layer transonic flow laser anemometer Marchwood CEGB Engineering Labs. Richards J. Phys. D15, p1891 (1982). LASERS transmission attenuation coefs. sea water France Brest Univ. de Bretagne Occidentale Cariou J. Phys. D15, p1873 (1982). 293 DIAGNO ultrasonic diffraction periodic surface France Paris Univ. Paris VII deBilly J. Phys. D15, p1835 (1982). BASICS Hamiltonions 294 nonlinear intermittent Univ. di Roma Italy Rome **Fucito** J. Phys. A16, pl17 (1983). 295 BASICS Schrodinger Eqn. quartic potential exact solution UK Glasgow Univ. of Glasgow Flessas J. Phys. A16, p85 (1983). 296 BASICS solitons EM effects DNA function London UK Univ. of London Balanovski Phys. Lett. 93A, no.1, p52 (1982). 297 PLASMA solitons spikey whistler W Ger Bochum Ruhr Univ. Yu Phys. Lett. 93A, no.1, p24 (1982). 298 LASERS distributed feedback gas Switz Zurich ETH Zurich Preiswerk Phys. Lett. 93A, no.1, pl5 (1982). 299

299 CHEMAT melting impact responce copper
UK Cambridge Cavendish Lab. Andrews
J. Phys. D15, p2357 (1982).

300 PLASMA glow discharge cathode region Monte Carlo
France Gif-sur-Yvette Ecole Sup. d'Electricite Boeuf
J. Phys. D15, p2169 (1982).

Rec ID Topic KW2 KW3 · KW1 Country City Institute Name Ref and Notes 301 DIAGNO light scattering fiber sizing approximations UK Cardiff Univ. College Sharma J. Phys. D15, p2149 (1982). 302 LASERS CO additive gases plasma effects Smith UK Univ. of Strathclyde Glasgow J. Phys. D15, p2125 (1982). CPBICF liquid metal 303 emitter shape ion source UK Univ. of Aston Forbes Birmingham J. Phys. D15, pL153 (1982). 304 PLASMA thermal conduction field ergodicity tokamak IIK Abingdon Culham Lab. Cook J. Phys. D15, pL137 (1982). PLASMA confinement 305 neutral heating ASDEX W Ger Garching MPI fur Plasmaphysik Wagner Phys. Rev. Lett. 49, no.19, p1408 (1982). 306 HYDROD water wave solitons finite wave no. W Ger Essen Univ. Essen Laedke Phys. Rev. Lett. 49, no.19, p1401 (1982). 307 HYDROD blast waves flow field dust and water Israel Beer-Sheva Ben Gurion Univ. Negev Ben-Dor USARSG R&D proposal file 4070ph. 308 SOLIDS Josephson junction solitons Sine Gordon Tech. Univ. of Denmark Christiansen Denmrk Lyngby USARSG R&D proposal file 4007ph. 309 SOLIDS optical fiber communications coherent modulat. Tech. Univ. of Denmark Nilsson Denmark Lyngby USARSG R&D proposal file 4091ph.

spectroscopy

King's College

molecular forces

Sherman

ATOMIC high pressure

USARSG R&D proposal file 2829ph.

London

310

UK

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

311 SOLIDS semiconductor annealing lasers
France Paris Univ. Pierre et Marie Curie Balkanski
USARSG R&D proposal file 3088ph.

312 ATOMIC rare-halogen atomic processes lasing theory
UK Belfast Queen's Univ. Bates
USARSG R&D grant file 2613.

313 BASICS partial d.e. nonlinear asymptotic anal.
Nether Nijmegen Katholieke Univ. Frank
USARSG R&D grant file 30789ma.

314 HYDROD diffusion eqns. travelling waves moving boundary UK Oxford Oxford Univ. McLeod USARSG R&D grant file 3063ma.

315 BASICS sparse matrix iterative method convergence

Nether Utrecht Academic Computer Cen. van der Vorst

USARSG R&D grant file 2712.

316 LASERS bifurcation gas laser chaotic behavior
Italy Florence Ist. Nazionale di Ottica Arecchi
Phys. Rev. Lett. 49, no.17, p1217 (1982).

317 PLASMA hollow cathode magnetic field discharge
Yugos Belgrade Kidric Inst. of Nuclear Sci. Miljevic
Phys. Lett. 92A, no.9, p439 (1982).

318 BASICS quasiperiodic solitons Sine Gordon
Poland Warsaw Polish Acad. of Sci. Jaworski
Phys. Lett. 92A, no.9, p427 (1982).

319 ATOMIC water bond network molecular dynam.
W Ger Aachen Reinisch-Westfalische Tech HS Geiger
Phys. Rev. Lett. 49, no.24, p1749 (1982).

320 LASERS CO2 H2 buffer repetitive
UK Hull Univ. of Hull Dyer
Appl. Phys. Lett. 41, no.6, p506 (1982).

Rec ID Country Ref and	City	KW1	KW2 Institute	<u>KW3</u>	Name
Italy	Milan	clusters	plasma frequency CISE S.p.A. 82).	particle siz	e Parmigiani
Yugos	Belgrad		magnetic field Kidric Inst. of Nuclear 82).	decay proces	
Belgum	Rhode S	gas-droplet t. Genese , July 1982.	liquid spray Von Karman Inst.	cooling towe	ers Weinacht
324 France ONERA re	Chatill	Euler Eqn. on	implicit ONERA	solutions	Lerat
	Chatil	oxygen-iodine lon	kinetics ONERA	spectroscop	y Pigache
	Chatil		ng reacting flows ONERA	numerics	Schmitt
	Chatil	corner flows	numerics ONERA		Arnal
	Chatil	aerodynamics lon	flow visualization	n optical	Veret
France	DIAGNO Chatil report.) Raman scatter: lon	ing gases ONERA	temp. and	density Taran
					_

velocimetry

ONERA

DIAGNO laser

France Chatillon ONERA report.

330

wind tunnels

Boutier

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

Ref and Notes

331 ATOMIC spectroscopy He-like titanium plasma
France Nice Observ. de Nice

Phys. Rev. A26, no.6, p3459 (1982).

332 RMSRAD gamma rays coherent REB-laser interac.

Italy Rome Univ. di Roma Bertolotti
Phys. Rev. A26, no.6, p3187 (1982).

Bely-Dubau

333 BMSRAD channeling polarized photons electron beams Switz Geneva CERN
CERN Courier, Dec. 1982, p414.

334 LASERS nitrogen high power discharge
Italy Casaccia Lab. Tec. Speciali-CNEN Armandillo
Appl. Phys. Lett. 41, no.7, p611 (1982).

335 DIAGNO surface studies scanning optics response
UK Oxford Oxford Univ. Cox
Appl. Phys. Lett. 41, no.7, p604 (1982).

336 HYDROD ring vortex turbulent behavior
W Ger Gottingen MPI fur Stromungsforsch Schneider
MPI report ISSN 0436-119, (1982).

337 BMSRAD laser accelerator guide structure IR pulses
Italy Frascati Ist. Naz. di Fisica Nucleare Solimeno
LNF report F-82/30 (p), 1982.

338 BMSRAD lamp Hg discharge pressure measure

Greece Iraklion Univ. of Crete Karabourniotis

J. Appl. Phys. 53, no.4, p2965 (1982).

339 SOLIDS liquid crystal conducting copper core
France Strasbourg Cen. des Res. Macromolecules Simon
New Scientist, p799, 23 Dec. 1982.

340 DIAGNO microscopy tunneling surface contour
Switz Zurich IBM Zurich Research Lab. Binnig
Science 220, 1 Apr 83, p43.

Rec ID Topic KW1 KW2 KW3

Country City Institute Name

Ref and Notes

341 WETHER laser ranging satellite facility

UK Leicester Univ. of Leicester Meadows

Nature 302, p213, 17 Mar 83

342 DIAGNO microscopy acoustic gas coupling
UK London Univ. College Ash

New Scientist, p148, 20 Jan 83

343 SOLIDS Langmuir-Blodgett photoresist polymerization

France Gif-sur-Yvette Nuclear Studies Center Barraud

New Scientist, p912, 30 Sept 82.

344 SOLIDS Langmuir-Blodgett semiconductors InP

UK Durham Durham Univ Roberts

New Scientist, p21, 1 Oct 81.

345 SOLIDS Chem FETS chip sensors enzymes

UK Cardiff UWIST Thomas

New Scientist, p236, 28 Jan 82.

346 SOLIDS biochip calcium ions muscle control

UK Warwick Univ. of Warwick Barker

New Scientist, p68, 14 Jan 82

347 ATOMIC deuteron reflection first wall

Sweden Stockholm Research Inst. of Physics Braun

J. Appl. Phys. 53, no.9, p6446 (1982)

348 SOLIDS Raman Scattering annealing silicon

W Ger Essen Univ. Essen von der Lind

Appl. Phys. Lett. 41, no.8, p700 (1982)

349 BASICS solitons Korteweg de Vries recurrence

W Ger Munster Univ. Munster Wedding

J. Appl. Phys. 54, no.8, p5377 (1982)

350 LASERS CO2 synchronization phase locking

ustri Wien Tech. Univ. Wien Leeb

Appl. Phys. Lett. 41, no.7, p592 (1982).

Rec ID Topic KW1 KW2 KW3 Country City Institute Name Ref and Notes LASERS CO2 351 lifetime miniature Italy Pomezia Selenia S.P.A. Marchetti Appl. Phys. Lett. 41, no.7, p601 (1982) 352 SOLIDS Schottky barrier photo responce absorption Israel Jerusalem Hebrew Univ. Milshtein Phys. Lett. 95A, no.3-4, p194 (1983) 353 SOLIDS monolayer films self assembling biochips Israel Rehovot Weizmann Inst. of Sci. Netzer New Scientist, p20, 7 April 1983. 354 SOLIDS Mossbauer spectra biological sys. dynamics Israel Jerusalem Hebrew Univ. Nowik Phys. Rev. Lett. 50, no.19, p1528 (1983). ATOMIC UF6 355 laser absorption isotope sep. Israel Haifa Technion Koren J. Appl. Phys. 54, no.5, p2827 (1983). CPBICF REB 356 neutralized stability Israel Tel Aviv Tel Aviv Univ. Petran Plasma Phys. 25, no.1, pl (1983). BASICS self avoiding 357 walks scaling Israel Ramat-Gan Bar-Ilan Univ. Havlin Phys. Rev. A27, no.5 (1983) 358 HYDROD fluid layer bounded dynamics Weizmann Inst. of Sci. Israel Rehovot Procaccia Phys. Rev. A27, no.5, p2585 (1983) LASERS optical bistab. 359 Fabry-Perot rad. pressure W Ger Garching Univ. Munchen Dorsel Phys. Rev. Lett. 51, no.17, p1550 (1983). 360 ATOMIC stopping power light ions low velocity

Oddershede

Odense Univ.

Denmrk Odense

Phys. Rev. Lett. 51, no.15, pl332 (1983)

Rec ID Topic KW2 KW3 Country City Institute Name

Ref and Notes

PLASMA drift waves MPI fur Plasmaphysik KdV equation k-spectrum W Ger Garching Tasso

Phys. Lett. 97A, no.9, p384 (1983)

pumped fiber 362 LASERS XeCl Raman conversion Italy Florence Ist. di Elettronica Quant. CNR Pini Appl. Phys. Lett. 43, no.6, p517 (1983)

363 ENERGY atmospheric CO2 ice core isotope data

UK Univ. of Cambridge Cambridge Shackleton

Nature 306, p319, 24 Nov 83

364 PLASMA impurity transport drift waves

W Ger Julich Kernforsch. Julich Rogister

Nucl. Fusion 23, no.11, pl455 (1983)

365 BASICS random walks fractals 2D

France Grenoble Cen. for Res. at Very Low Temp. d'Auriac

J. Phys. A16, p4039 (1983)

366 BASICS fractals aggregation surface

Hungry Budapest Inst. for Tech. Physics Vicsek

J. Phys. A16, pL647 (1983)

CPBICF laser target 367 hot electron ${\tt deposition}$

W Ger Garching MPI fur Quantenoptik Eidman

Appl. Phys. Lett. 43, no.5, p440 (1983)

CHEMAT laser 368 welding penetration

UK Abingdon Culham Lab. Kaye

Appl. Phys. Lett. 43, no.5, p412 (1983)

369 DIAGNO Kerr cell shutter femtosecond

France Palaiseau Ecole Poly. Etchepare

Appl. Phys. Lett. 43, no.5, p406 (1983)

370 ATOMIC microwave sensitivity yeast

W Ger Neuherberg Gesellschaft fur Strahlen Grundler

Phys. Rev. Lett. 51, no.13, pl214 (1983)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3	Name
371 PLASMA solitons Austri Innsbruck Phys. Lett. 98A, no.3, pll0 (19	ion-acoustic Univ. Innsbruck 83)	reflection	Popa
372 SOLIDS Si(111) Switz Zurich Phys. Rev. Lett. 50, no. 2, p12	scanning tunnel IBM Zurich Research Lan 0 (1983)		Rohrer
373 BASICS fractal Israel Rehovot Phys. Rev. Lett. 51, no.15, pl3	aggregates Weizmann Inst. of Sci. 194 (1983)	simulation	Bensiman
374 PLASMA drift waves Denmrk Roskilde Plasma Phys. 25, no.11, pl173 (turbulence Riso Nat. Lab. (1983)	low beta	Pecseli
375 BMSRAD electron UK Redhill J. Phys. D16, p2269 (1983)	back scattering Philips Research Labs.	CRT	Mansell
376 BMSRAD sodium lamp UK Leicester J. Phys. D16, p2167 (1983)	high pressure Thorn EMI Lighting Ltd		Denbigh
377 PLASMA arc W Ger Essen J. Phys. D16, p2135 (1983)	unipolar Univ. Essen	simulation	Stampa
378 DIAGNO flowmeter UK Cranfield J. Phys. D16, p2103 (1983)	electromagnetic Cranfield Inst. of Tec	pulseđ h	Tarabađ
379 CHEMAT gamma ray W Ger Karlsruhe J. Phys. D16, p2061 (1983)	spectroscopy Kernforsch. Karlsruhe	analytic	Hassan
380 ENERGY hot water Sweden Stockholm J. Phys. D16, p2039 (1983)	storage Swed. Rock Mech. Res.	dynamics Found.	Rehbinder

Rec ID Topic KW2 Country City Institute Name Ref and Notes 381 ENERGY water trees power cables neutron analysis UK Glasgow Univ. of Strathclyde Crichton J. Phys. D16, pL223 (1983) 382 BASICS nonlin. oscil. Poincare map neon lamp Nether Amsterdam Univ. of Amsterdam Van Exter Phys. Lett. 99A, No.1, pl (1983) 383 SOLIDS ALE CdTe films Finlnd Tampere Tampere Univ. of Tech. Pessa J. Appl. Phys. 54, p6047 (1983). ALE = atomic layer epitaxy 384 CPBICF vacuum arc zinc spectroscopy Israel Tel Aviv Tel Aviv Univ. GoldsmithJ. Appl. Phys. 54, p5961 (1983) 385 BMSRAD negative ions Cs W surface H minus Nether Amsterdam Inst. for Atomic & Molec. Phys. Van Bommel J. Appl. Phys. 54, p5676 (1983) 386 BASICS information quantum limit entropy UK London Imperial College Pendry J. Phys. A16, p2161 (1983) 387 PLASMA stability thermal equil. bifurcation Italy Frascati Centro Richerche Energia-ENEA Zampaglione Phys. Lett. 97A, no.4, p155 (1983) 388 HYDROD Rayleigh-Talylor bubble motion nonlinear W Ger Darmstadt Inst. fur Angewandte Physik Kull Phys. Rev. Lett. 51, no.16, p1434 (1983) 389 HYDROD turbulence small-scale experiments W Ger Gottingen MPI fur Stromungsforsch Johnson Phys. Fluids 26, no.9, p2408 (1983) 390 HYDROD turbulence transition boundary layer

National Maritime Inst.

Gaster

UK

Teddington

EOARD Proposal 83-100 (1983)

Count	Topic ry City nd Notes	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
201	DMCDAD	channeling	dechan length	expression	

391 BMSRAD channeling dechan length expression
W Ger Stuttgart MPI fur Metallforsch Seegar
Phys. Lett. 100A, No.8, p433 (1984)

392 PLASMA non-Markovian kinetic eqn magnetoplasma
UK Oxford Oxford Univ. Woods
Nature 307, p614, 16 Feb 1984

393 HYDROD Couette flow Taylor vortices numerics
W Ger Julich Kernforsch. Julich Lucke
Phys. Rev. Lett. 52, No. 8, p625 (1984)

394 SOLIDS Josephson junction ring oscillator dynamics
Denmrk Lyngby Tech. Univ. of Denmark Soerensen
Phys. Lett. 100A, No.2, p68 (1984)

395 LASERS chaos optical cavity numerics
UK Ipswich British Telecom Res. Labs Blow
Phys. Rev. Lett. 52, No.7, p526 (1984)

396 CHEMAT isotope sep. laser assisted gas dynamic
Switz Lausanne Ecole Poly. Federale Zellweger
Phys. Rev. Lett. 52, No.7, p522 (1984)

397 BMSRAD acceleration random potential stat. models
W Ger Bochum Ruhr Univ. Elsasser
Phys. Lett. 100A, No.7, p360 (1984)

398 BASICS channeling positrons lattice blocking
Switz Zurich Univ. of Zurich Patterson
ESN 38-1 and Phys. Rev. Lett. 52, 938 (1984)

399 CPBICF electron depos. thin anode K-alpha
Israel Rehovot Weizmann Inst. of Sci. Nardi
J. Appl. Phys. 55, No.1, p273 (1984)

400 HYDROD shaped charges optimization analytics
Norway Kjeller Norwegian Defense Res. Estab. Haugstrad
J. Appl. Phys. 55, No.1, pl00 (1984)

Rec ID Topic KW1 KW2 Institute Country City Name Ref and Notes DIAGNO SAW cylin. focusing nondestruc test France Valenciennes Univ. de Valenciennes Nongaillard J. Appl. Phys. 55, No.1, p75 (1984). SAW = surface acoustic wave 402 PLASMA negative ions hydrogen plasma multicusp field France Palaiseau Ecole Poly. Bacal J. Appl. Phys. 55, No.1, pl5 (1984) 403 COMPUT dissipation limits computers Austri Graz Tech. Univ. Graz Porod Phys. Rev. Lett. 52, No.3, p232 (1984) 404 LASERS KrF e-beam pumped kinetics Twente Univ. of Tech. Nether Enschede Witteman J. Appl. Phys. 55, No.5, pl299 (1984) 405 LASERS phase conjugate review mirrors IJК Didcot Rutherford Appleton Lab. Gower Nature 308, pl10, 8 Mar 1984 406 ATOMIC fractal surface molecules adsorption Israel Jerusalem Hebrew Univ. Avnir Nature 308, p261, 15 Mar 1984 407 DIAGNO x-ray synchrotron rad microscopy UK Warrington Daresbury Lab. Rush Daresbury Lab. Progress Report 408 DIAGNO soft x-ray microscopy collaboration UK Warrington Daresbury Lab. Daresbury Lab. Progress Report BASICS fractals 409 dielectric breakdown Switz Baden-Dattwil Brown Boveri & Cie Res. Cen. Niemeyer Phys. Rev. Lett. 52, No.12, p1033 (1984)

410 HYDROD acoustic Brillouin scat. supercooled water
Italy Messina Consig. Nac. delle Richerche Maisano
Phys. Rev. Lett. 52, No.12, p1025 (1984)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3	Name
411 ATOMIC surface states Switz Lausanne Phys. Rev. Lett. 52, No.10, p86	Ecole Poly. Federale	graphite	Posternak
412 SOLIDS phonon echoes UK Lancaster Phys. Rev. Lett. 52, No.10, p86	structure defect Univ. of Lancaster 13 (1984)	quartz	Miyasato
413 CPBICF laser France Villeneuve-St-Georges Phys. Rev. Lett. 52, No.10, p8:		layered tare	gets Bocher
414 CPBICF plasma focus W Ger Darmstadt Phys. Lett. 101A, No.2, p86 (19	collapse Tech. Hochschule 984)	dynamics	Noll
415 CPBICF heat transport Belgum Brussels Phys. Rev. Lett. 52, No.13, pl	Univ. Libre de Bruxelle	Vlasov-Pois: es	son Clause
416 BASICS quantum Poland Warsaw Phys. Rev. Lett. 52, No.13, pl	operational Univ. of Warsaw 064 (1984)	measurement:	s Wodkiewicz
417 SOLIDS conductance Italy Rome Appl. Phys. Lett. 44, No.2, p2	measurements Univ. La Sapienza 25 (1984)	semiconducto	ors Migliorato
418 BASICS self avoiding Nether Delft J. Phys. A17, pL111 (1984)	walks Lab. voor Tech. Natuur	spiralling kunde	Blote
419 BASICS critical phen. W Ger Wuppertal J. Phys. Al7, pL105 (1984)	kinetic Univ. of Wuppertal	lD lattice	Grassburger
420 BASICS SAWs	group renorm.	gamma expon	ent

J. Phys. A17, pL215 (1984). SAW = self avoiding walk

Rec ID To Country Ci Ref and No	ity	KW2 Institute	KW3	Name
Sweden St		z-pinch Royal Inst. of Tech. n 26, No.2, p387 (1984)	experiments	Drake
UK Le	ASRAD sodium lamp eicester D17, p367 (1984)	high pressure Thorn EMI Lighting Ltd	energy balan	ce Wharmby
Israel Be	-	non-Maxwellian Nuclear Res. Cen. Negev		nt Strauss
UK Ed	/DROD Laser-Doppler dinburgh D17, p533 (1984)	anemometry Univ. of Edinburgh	turbulent st	ruc Allan
UK Lo	ETHER EM transmission ondon 017, p509 (1984)	coagulating Queen Mary College	aerosol	Williamsq
Spain Ma	MSRAD slow neutron adrid D17, p475 (1984)	fibers Univ. Complutense	propagation	Alvarez-Estrada
UK Gu	DLIDS channeling mildford D17, pL47 (1984)	damage measure Univ. of Surrey	LiN603	Barfoot
UK AL	oingdon	r ergodic behavior Culham Lab. n 26, no.1B, p321 (1984)	model	Martin
UK Ox	ASICS radioactivity kford & Nature 307, p245, 19	carbon emission Oxford Univ. Jan 1984	223Ra	Rose
Spain Ta	YDROD vortex shedding arragona ids 26, No.12, p3454 ()	Univ. de Barcelona	experiments	Diaz

KW3 Rec ID Topic KW2 Name Country City Institute Ref and Notes ps modulation e-beams 431 CPBICF plasma focus Noll Tech. Hochschule W Ger Darmstadt Phys. Lett. 99A, No.9, p435 (1983) liquid metals CHEMAT laser-driven corrugations 432 MPI fur Festkorperforschung Keilmann Stuttgart W Ger Phys. Rev. Lett. 51, No.23, p2097 (1983) large amplitude trapping 433 PLASMA Langmuir oscil Kono MPI fur Quantenoptik W Ger Garching Phys. Fluids 26, No.10, p3004 (1983) PLASMA convective cells drift waves nonlinear 434 Yu W Ger Bochum Ruhr Univ. Phys. Fluids 26, No.10, p2983 (1983) shear flow effects 435 PLASMA tearing instab. Paris France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Phys. Fluids 26, No.10, p2966 (1983) flux saturation 436 CPBICF laser-pellet corona Sanz Univ. Poli. de Madrid Spain Madrid Phys. Fluids 26, No.11, p3361 (1983) dynamics ion turbulence CPBICF laser plasma 437 Monchicourt CEA Limeil France Villeneuve-St-Georges Phys. Fluids 26, No.11, p3354 (1983) emit. and absorb. rf tokamak PLASMA ECH waves 438 Cen. d'Etudes Nucleaires Fidone France Fontenay-aux-Roses Phys. Fluids 26, No.11, p3284 (1983) resonant elec. numerics PLASMA KdV solitons 439 Lynov Riso Nat. Lab. Denmrk Roskilde Phys. Fluids 26, No.11, p3262 (1983) high velocity 440 DIAGNO laser-Doppler interferometry Weizmann Inst. of Sci. Kaplan Israel Rehovot

J. Appl. Phys. 54, No.11, p6086 (1983)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>KW3</u>	Name
441 SOLIDS magnetic hole Norway Kjeller Phys. Rev. Lett. 51, No.25, p	es crystallization Inst. for Energy Tech. 02306 (1983)		luid Skjeltorp
442 HYDROD shallow waves Turkey Istanbul J. Phys. Al6, p4195 (1983)	s canonical form Bosphorus Univ.	Hamiltonian	Nutku
443 SOLIDS crystal Belgum Gent J. Phys. Al6, pL771 (1983)	Schrodinger eqn. Rijksuniversiteit te Ge	ld model nt	Wille
444 BMSRAD keV electron Spain Barcelona J. Phys. D17, p185 (1984)	transport Univ. de Barcelona	Monte Carlo	Salvat
445 DIAGNO cold neutron UK Birmingham J. Phys. D17, p99 (1984)	radiography Univ. of Birmingham	grain size	Allen
446 DIAGNO laser-Dopple: France Nont-St-Aignan J. Phys. D17, p43 (1984)	r droplet sizing Fac. des Sci. de Rouen		Allano
447 WETHER ocean wave UK London J. Phys. D17, p25, (1984)	synth. aper. radar Queen Elizabeth College		Ouchi
448 BMSRAD ion source Uk Birmingham J. Phys. D17, pL13 (1984)	liquid metal Univ. of Aston	heating effe	ects Mair
449 PLASMA EC emission UK Abingdon Plasma Phys. 25, No.12, p150	measurements Culham Lab. 1 (1983)	DITE tokamak	: Clark
450 PLASMA MHD waves Sweden Stockholm Plasma Phys. 25, No.12, pl38	cold gas mantle Royal Inst. of Tech. 9 (1983)	interactions	; Bures

Rec ID Topic KW1 KW2 KW3

Country City Institute Name

451 CPBICF opening switch Israel Beer-Sheva Ben Gurion Univ. Negev Shuker

EOARD Proposal 84-028 (1983)

452 LASERS CC2 corona discharge optimization

Italy Pomezia Selenia S.P.A. Marchetti

J. Appl. Phys. 54, No.10, p5672 (1983)

453 HYDROD ultrasonic waves diffraction interface

Belgum Kortrijk Katholieke Univ. Claeys

J. Appl. Phys. 54, No.10, p5657 (1983)

454 PLASMA divertor magnetic axisymmetric
France Grenoble Assoc. Euratom-CEA Savas
J. Appl. Phys. 54, No.10, p5626 (1983)

455 CPBCIF heat transport steep gradient non local
France Palaiseau Ecole Poly.

Phys. Rev. Lett. 51, No.18, p1664 (1983)

456 CPBICF laser plasma nonlinear waves Brillouin scat.
W Ger Bochum Ruhr Univ. Handke
Phys. Rev. Lett. 51, No.18, p1660 (1983)

457 SOLIDS organic super. (TMTSF)2C104 resistance
France Toulouse Labo. de Physique des Solides Ulmet
Phys. Lett. 98A, No.8-9, p457 (1983)

458 PLASMA ion Bernstein B-field diagnostic
France Palaiseau Ecole Poly.
Phys. Lett. 98A, No.8-9, p414 (1983)

459 BASICS chaos nonlinear TL experiment
UK Oxford Clarendon Lab. Usher
Phys. Lett. 98A, No.8-9, p396 (1983)

460 DIAGNO laser-Doppler multicolor entrained drops
UK Cardiff Univ. College Yeoman
Phys. Bull. 1983, p497

Rec ID Topic KW1 KW2 KW3 Country City Institute Name Ref and Notes 461 LASERS CO2 waveguide rf excited Univ. of Hull Hull He Appl. Phys. Lett. 43, No.8, p726 (1983) 462 CHEMAT etching polymers XeCl laser UK Univ. of Hull Andrew Appl. Phys. Lett. 43, No.8, p717 (1983) ganic electronics review
Hirst Research Centre GEC 463 SOLIDS organic UK Wembley Scotter European Phys. Soc. Bull. p5 (1983) 464 HYDROD surface waves visco-elastic theory Spain Madrid Univ. Complutense Tejero Phys. Lett. 98A, No.7, p371 (1983) 465 PLASMA muon catalyzed back decay resonances UK AERE Harwell Didcot Lane Phys. Lett. 98A, No.7, p337 (1983) LASERS dye 466 photon sca Univ. Essen photon stat. non-Markovian W Ger Essen Schenzle Phys. Lett. 98A, No.7, p319 (1983) BMSRAD 2d beam varying B-field 467 Brillouin flow France Orleans Duranceau Phys. Lett. 98A, No.7, p309 (1983) 468 PLASMA disruption driftwave transport W Ger Julich Kernforsch. Julich Hasselberg Nucl. Fusion 23, No.10, pl351 (1983) 469 PLASMA tokamak Sweden Stockholm density limit MHD theory Royal Inst. of Tech. Lehnhert Nucl. Fusion 23, No.10, pl327 (1983)

470 PLASMA spin polarized reactors B-field effect
Nether Nieuwegein Inst. voor Plasmafysica Lodder
Phys. Lett. 98A, No.4, pl79 (1983)

Rec ID Country Ref and	City	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
	Cambrid	sea ice ge 5, 20 Oct 83	acceleration Polar Res. Inst.	effect on gro	owth Langhorne
UK	Cambrid		oscillating Univ. of Cambridge	constriction	Stephanoff
W Ger	Bochum	EM waves	relativistic plas Ruhr Univ. 983)	solitions	Shukla
France	Toulous	boundary layer se 5, No.9, p3299 (l	ONERA	expt. and th	eory Cousteix
W Ger	Munich		x-ray and neutron Univ. Munchen 69 (1983)	scattering	Dietrich
France	HYDROD Marseil Rev. Let		dynamics Univ. de Provence 50 (1983)	laser diagno	Searby
W Ger	Dortmu	neutron nd t. 51, No.16, p14	interference Univ. Dortmund (01 (1983)	accel. frame	Bonse
	HYDROD Beer-Si	=	metals Nuclear Res. Cen. Negev	1D simulatio	on Havazelet
479 UK J. Phy	Colera	negative ions ine, N. Ire. pl907 (1983)	production New Univ. of Ulster	wall effects	s Graham
32.5	ATOMIC Giza s. D16,	ionization	laser induced Cairo Univ.	two-step pro	ocess Gamal

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>KW3</u>	<u>Name</u>
481 HYDROD detonation UK Dyfed J. Phys. D16, p1881 (1983)	blast waves Univ. College of Wales	kinematics	Thomas
482 LASERS atomic Hg UK Manchester J. Phys. D16, p1837 (1983)	gain Manchester Univ.	spectroscopy	Skippon
483 LASERS CO2 UK Great Malvern J. Phys. D16, p1827 (1983)	e-beam pumped Royal Sig. & Radar Esta	thermal defo	oc. Gorton
484 LASERS CO2 waveguide Irland Cork EOARD Proposal 84-004 (1983)	capillary Univ. College	rf discharge	Sexton
485 PLASMA low p discharge France Orsay J. Phys. D16, p1673 (1983)	microwave excited Univ. Paris Sud	model	Ferreira
	time dependence Philips GmbH Forsch. (1983)	numerics	Stromberg
487 CHEMAT thin films W Ger Freiburg J. Appl. Phys. 54, no.8, p4590	plasma deposition Fraunhofer Inst. (1983)	amorphous C	Bubenzer
488 LASERS rf waveguide UK Hull J. Appl. Phys. 54, No.8, p4367	voltage distrib Univ. of Hull (1983)	TL theory	Не
489 CHEMAT Si annealing Italy Bologna J. Appl. Phys. 54, No.8, p4330	e-beam CNR-Inst. Lamel (1983)	thermal stre	ss Correra

performance

Dodel

SOLIDS Ge photoconductor IR detection

W Ger Stuttgart Univ. Stuttgart

J. Appl. Phys. 54, No.8, p4254 (1983)

490

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>KW3</u>	<u>Name</u>
491 PLASMA boundary laye Israel Haifa Phys. Fluids 26, No.8, p2276	Technion	analysis	Ron
492 HYDROD liquid metal W Ger Munich Phys. Fluids 26, No.8, p2120	Hochs. der Bendeswehr		Hornung
493 HYDROD shear flow France Marseille Phys. Fluids 26, No.8, p2105	Inst. Mecan. Stat. de	•	Fulachier
494 HYDROD vortex pairin Belgum Brussels Phys. Fluids 26, No.8, p2074	Univ. Libre de Bruxelle	-	Meynart
495 COMPUT Monte Carlo Denmrk Copenhagen Phys. Lett. 97A, no.4, p147 (Univ. of Copenhagen	experiments	Larsen
496 WETHER Earthquake li UK Welshpool New Scientist, p627, 1 Sept 8	TLH	study	Devereux
497 PLASMA impurities UK Abingdon Plasma Phys. 25, No.10, p1065		coronal mode	l Carolan
498 PLASMA laser fluores UK London Plasma Phys. 25, No.10, p1149	Imperial College	measurement	Gohi1
499 DIAGNO thermometry Italy Orbassano J. Phys. D16, p1583 (1983)	CARS Fiat Research Center	auto engines	Alessandretti

cross sections

Ferreira

excitation

Univ. Tecnica

500

Portug Lisbon

ATOMIC argon

J. Phys. D16, p1611 (1983)

KW2 KW3 Rec ID Topic KW1 Institute Name Country City Ref and Notes glow discharge ionization 501 ATOMIC He-Co Kagan Hebrew Univ. Israel Jerusalem J. Phys. D16, p1687 (1983) effect of liquid 502 HYDROD water-ice friction Ellingsen Central Inst. for Indus. Res. Norway Oslo J. Phys. D16, p1715 (1983) E-field effect organic solid 503 SOLIDS charge trapping Seiferheld Phillips Univ. W Ger Marburg Phys. Rev. Lett. 51, No.9, p813 (1983) phase shifter high precision 504 SOLIDS microwave Forrest Univ. College UK London EOARD Project Brief, July 1983 satellite DIAGNO energetic part. 505 spectrometer Korth MPI fur Aeronomie W Ger Lindau EOARD Proposal 83-127 (1983) development CPBICF plasma thruster arc electrodes 506 Buhler Univ. Stuttgart W Ger Stuttgart EOARD Proposal 83-124 (1983) DIAGNO thin film in situ measure development 507 Pelletier Univ. de Provence France Marseille EOARD Proposal 83-119 (1983) expt & theory 508 ATOMIC electron penetration Tech. Univ. of Denmark Hansen Denmrk Lyngby J. Phys. D16, p1353 (1983) inhomo gaps 509 CPBICF SF6 breakdown Brown Boveri & Cie Res. Cen. Pinnekamp Baden-Dattwil Switz J. Phys. D16, p1293 (1983)

temp. deter.

Univ. of Crete

510

Greece Iraklion

BMSRAD high p lamp

ESN 37-6 and J. Phys. D16, p1267 (1983)

spectral line

Karabourniotis

Rec ID Country Ref and	City	<u>KW1</u>	<u>KW2</u> Institute	<u>KW3</u>	<u> Nаше</u>
UK !	Didcot	laser target 245 (1983)	compression Rutherford Appleton Lab.	uniformity	Ross
E Ger	Berlin	nonideal 235 (1983)	screening Akad. der Wissenschafter	conductivity	Gunther
UK	Guildfor	shear flow rd 1201 (1983)	strong rotation Univ. of Surrey	free-molecula	ar Johnson
France	Fontenay	turbulence y-aux-Roses , No.6, p641 (198	atom heat flow Cen. d'Etudes Nucleaires 33)		Equipe TFR
UK	Abingđo	turbulence n , No.6, p617 (198	Culham Lab.	forward scat	Evans
UK	Abingdo	density clamp n , no.7, p933 (19	Culham Lab.		Erents
UK	London	laser target	compression Imperial College 3 (1983)	polymer shel	l Kilkenny
UK	London	GaAs-GaA1As t. 43, no.3, p22	Imperial College	short pulse	Dawson
Nether	DeBilt	solitons , no.5, pl279 (1	Schrodinger eqn Royal Nether. Meteor. I 983)		nst a b Janssen

Chalmers Univ. of Tech.

PLASMA magnetic island coalescence

520

Sweden Goteborg

Phys. Fluids 26, no.5, pl275 (1983)

MHD

Bondeson

Rec ID Country Ref and	City	KW2 Institute	<u>кwз</u>	<u>Name</u>
UK	PLASMA mode conversion St. Andrews Luids 26, no.5, pl268 (1	Univ. of St. Andrews	unified theo	ry Cairns
France	PLASMA tearing mode Fontenay-aux-Roses luids 26, no.5, pl165 (Cen. d'Etudes Nucleaire	inertia & vi es	scos Edery
523 France J. Phys	CPBICF spark discharge Pau . D16, p1439 (1983)	e air & SF6 Univ. de Pau	Schlieren ph	oto Gibert
UK	LASERS HgBr & HgI Manchester . D16, p1419 (1983)	TE discharge Manchester Univ.	performance	Kvasnik
525 UK J. Phys	HYDROD gas centrifuge London . D16, p1391 (1983)	couette flow City of London Poly	integral equ	Cassell
526 Italy Plasma	PLASMA rev. field pin Padua Phys. 25, no.7, p799 (1	Assoc. Euratom, CNR	Eta-Beta II	Antoni
UK		ng ECRH and ohmic Culham Lab. 983)	Fokker-Plan	ck Start
	PLASMA oxygen impur. Stockholm Phys. 25, no.7, p767 (1	edge penetration Royal Inst. of Tech. 1983)	tokamak	Tendler
	PLASMA ICRH coupling Brussels Phys. 25, no.7, p755 (Ecole Royale Militaire		on Bhatnager
	CPBICF REB-FM wave co Sofia Phys. 25, no.8, p865 (Sofia Univ.	microwaves	Ivanov

Rec ID Topic Country City Ref and Notes	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
Austri Innsbru		modes in torus Univ. Innsbruck 3)	numerics	Keil
W Ger Stuttga	•	self-organization Univ. Stuttgart 3)	min. energy	Deutsch
533 HYDROD France Paris Phys. Lett. 96A		Univ. Paris VII	guided waves	Fekih
France Fontena		viscous effect Cen. d'Etudes Nucleaire 3)	-	Paris
UK Didcot	ablation , no.7, p2011 (19	laser-target Rutherford Appleton Lab 83)		th Key
France Villene	strong EM wave euve-St-Georges , no.7, p1804 (19		relativistic	Bourdier
Egypt Cairo	Rayleigh-Taylor	Ain Shams Univ.	nonlinear	El Magd
	double layer es-Moulineaux 5, no.6, p1584 (19	ion acoustic CNET/CRPE 83)	KdV equation	Chanteur
Italy Catania	strong shocks a 5, no.6, p1450 (19	relativistic Univ. di Catania 083)	damping	Anile
540 PLASMA Denmrk Roskilo		e external excite Riso Nat. Lab	evolution	Sugai

Phys. Fluids 26, no.6, pl388 (1983)

Rec ID Topic KW1 Country City Ref and Notes	<u>KW2</u> Institute	<u>кwз</u>	<u>Name</u>
541 WETHER solar UK St. Andrews Nature 304, p401, 4 Aug 83	flux tubes Univ. of St. Andrews		Roberts
542 SOLIDS polymers Israel Rehovot Phys. Rev. Lett. 50, no.24, pl9	elec-phonon sys Weizmann Inst. of Sci. 42 (1983)	phase trans.	Horovitz
543 PLASMA strong coupled France Paris Phys. Lett. 97A, no.1-2, p42 (1	Univ. Pierre et Marie C		Hansen
544 PLASMA electro-hydro UK London Phys. Lett. 97A, no.1-2, p35 (1	Queen Mary College	micro. eqns.	Sewell
545 ATOMIC VUV spectra Belgum Brussels Appl. Phys. Lett. 43, no.1, p35	Facultes Univ. N.D. de	in Al and tin la Paix	
546 ATOMIC spontan emissic France Paris Phys. Rev. Lett. 50, no.24, p19	Ecole Normale Superieur		Goy
547 LASERS chemical Israel Beer-Sheva EOARD proposal 83-045 (1983)	O2-heavy metal Ben Gurion Univ. Negev		Rosenwaks
548 CPBICF propulsion W Ger Stuttgart FOARD Project Brief, 3 Aug 1983	discharge dynamics Univ. Stuttgart	stability	Schrade
549 LASERS diode amplifier Irland Dublin EOARD Proposal 83-136 (1983)	optical & elec Trinity College	sensors	Bradley
550 ENERGY geothermal	hot rocks	water inject.	ion

Inst. for Geological Sci. Batcheler

UK

West Cornwall

New Scientist, p24, 7 Jul 83

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3 Name
551 ENERGY wind turbine UK Reading New Scientist, pl02, 14 Jul 83	vertical axis Univ. of Reading	Carmarthan Bay Musgrove
552 CHEMAT catalyst W Ger Aachen New Scientist, pl00, 14 Jul 83	metal clusters Aachen Tech. College	gasification Roper
553 SOLIDS polyacetylene Israel Haifa Phys. Rev. Lett. 50, no.25, p20	Technion	photoinduced Vardeny
554 CPBICF REB Israel Jerusalem Appl. Phys. Lett. 42, no.11, ps	drift velocity Hebrew Univ. 948 (1983)	measurements Avivi
555 CPBICF arc plasma France Toulouse J. Appl. Phys. 54, no.7, p3777	SF6-N2 Univ. Paul Sabatier (1983)	transport coef. Gleizes
556 LASERS flashlamps Switz Bern J. Appl. Phys. 54, no.7, p3732	excimers Univ. of Bern (1983)	TlI pump Gerber
557 ATOMIC optogalvanic Israel Beer-Sheva J. Appl. Phys. 54, no.7, p3688	-	
558 PLASMA surface wave Bulgar Sofia J. Appl. Phys. 54, no.6, p3049	rf launcher Sofia Univ. (1983)	theory Mateev
559 HYDROD solitons W Ger Kiel J. Appl. Phys. 54, no.6, p3036	fluid in tubes Univ. of Kiel (1983)	nonlin wave eqn Thielheim
560 WETHER solar oscil UK Cardiff	Doppler measure Univ. College	temp. inhomo Edmunds

Nature 302, p810, 28 Apr 83

Rec ID Topic KW2 KW3 Country City Institute Ref and Notes 561 SOLIDS solitons diatomic chains quartic potential France Dijon Univ. de Dijon Pnevmatikos J. Phys. C16, pL305 (1983) optically pumped 562 LASERS Na-dimer supersonic W Ger Kaiserslautern Univ. Kaiserslautern Jones Appl. Phys. Lett. 42, no.3, p222 (1983) 563 BASICS Abel inversion analytic rep. exptl data UK London King's College Deutsch Appl. Phys. Lett. 42, no.3, p237 (1983) 564 PLASMA trap-elec instab. curvature driven EM theory Chalmers Univ. of Tech. Anderson Sweden Goteborg Phys. Rev. A27, no.3, p1556 (1983) 565 DIAGNO soft x-ray optics multilayer films UK Aberdeen Univ. of Aberdeen Phys. Bull. 1983. 566 ATOMIC Rydberg maser super-radiant France Paris Ecole Normale Superieure Moi Phys. Rev. A27, no.4, p2043 (1983) CPBICF laser plasma non LTE brems. emission Ecole Poly. Lamoureux France Palaiseau Phys. Lett. 95A, no.6, p297 (1983) 568 DIAGNO e-beam scan Joshephson junc imaging W Ger Tubingen Univ. Tubingen Seifert Phys. Lett. 95A, no.6, p326 (1983) 569 PLASMA impurity transport heavy lines Cen. d'Etudes Nucleaires TFR group France Fontenay-aux-Roses Nucl. Fusion 23, no.5, p559 (1983)

refrac & absorb

Univ. of Hull

ray optics

Pert

570

Hull

CPBICF laser plasma

Plasma Phys. 25, no.4, p387 (1983)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>Name</u>
571 PLASMA ECRH drive UK Abingdon Plasma Phys. 25, no.4, p447 (19	local absorp Culham Lab. 983)	Fokker-Planck Start
572 DIAGNO fiber size UK Cardiff J. Phys. D16, p733 (1983)	forward scat Univ. College	eikonal approx Sharma
573 HYDROD Stokes flow UK Sheffield J. Phys. D16, p743 (1983)	fibrous filters Health & Safety Execut	variational prin ive Brown
574 CPBICF nozzle arcs UK Liverpool J. Phys. D16, p793 (9183)	wall ablation Univ. of Liverpool	dc expts Fang
575 CPBICF carbon arc UK Colchester J. Phys. D16, p811 (1983)	CO2 laser Univ. of Essex	interaction Hughes
576 CPBICF nitrogen arc France Toulouse J. Phys. D16, p829 (1983)	atm pressure Univ. Paul Sabatier	non LTE expts Bacri
577 CPBICF CO2 target UK Hull J. Phys. D16, p889 (1983)	voltage generate Univ. of Hull	pulse shape det. Cook
578 CPBICF line radiation UK London J. Phys. Al4, pL239 (1983)	non-LTE Imperial College	transfer theory Bond
579 BASICS jellium Norway Oslo J. Phys. Al6, p1449 (1983)	stat. mech. Univ. of Oslo	2d circular Johannesen
580 ATOMIC dissoc. recomb, UK Birmingham	. afterglow Univ. of Birmingham	temp. depend. Alge

J. Phys. B16, p1433 (1983)

KW3 KW2 Rec ID Topic Name Institute Country City Ref and Notes photon absorp rare gases ATOMIC multiple ions 581 L'Huillier CEN Saclay France Gif-sur-Yvette J. Phys. El6, pl363 (1983) emission spec temp. measure ATOMIC N2 glow dis. 582 Univ. Paris Sud Plain France Orsay Phys. Lett. 95A, no.5, p235 (1983) rf heating WETHER ionosphere 583 Budden Univ. of Cambridge UK Cambridge Plasma Phys. 25, no.2, pl13 (1983) WETHER solar activity summary 584 Priest Univ. of St. Andrews St. Andrews UK Plasma Phys. 25, no.2, pl61 (1983) MC-FP compar. PLASMA neutral injec 585 fast ions TFR Group Cen. d'Etudes Nucleaires France Fonteney-aux-Roses Nucl. Fusion 23, no.4, p425 (1983) effect of climate ENERGY photochem convert yield limits 586 Amato Univ. degli Studi Italy Naples J. Phys. D16, p1371 (1983) operation hollow cathode LASERS He-I 587 Kassab Univ. of York UK York J. Phys. D16, p1167 (1983) coatings mirrors 588 DIAGNO far UV astron. Burton Rutherford Appleton Lab. Didcot J. Phys. D16, pL129 (1983) quantized evaporation BASICS liquid helium 589 Baird Univ. of Exeter UK Exeter Nature 304, p325, 28 Jul 83

selection rules

Esteva

ATOMIC x-ray absorbtion photoemission

Phys. Rev. Lett. 50, no.12, p910 (1983)

Univ. Paris Sud

590

France Orsay

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

591 PLASMA solitons character expts + KdV
France Nancy Faculte des Science, CNRS Pierre
Phys. Lett. 95A, no.3-4, p159 (1983)

592 BASICS solitons DNA micro. model
W Ger Berlin Freie Univ. Berlin Jensen
Phys. Lett. 95A, no.3-4, p204 (1983)

593 PLASMA solitons surface waves electrostatics
Sweden Umea Univ. of Umea Stenflo
Phys. Fluids 26, no.3, p604 (1983), Gradov and Stenflo

594 HYDROD laminar flow rotating pipe numerics
UK Manchester Manchester Univ. Duck
Phys. Fluids 26, no.3, p614 (1983)

595 HYDROD binary alloy melt hydro. stability
Uk Great Malvern Royal Sig. & Radar Estab. Hurle
Phys. Fluids 26, no.3, p624 (1983)

596 HYDROD intermittency near wake cylin expts.
France Toulouse Cen. Nat. de la Res. Sci. Boisson
Phys. Fluids 26, no.3, p653 (1983)

597 WETHER solar rotation internal hydro.instab
W Ger Garching MPI fur Physik und Astrophys. Spruit
Nature 304, p520, 11 Aug 83

598 PLASMA Saha equation relativistic perfect gas
France Paris Labo. de Phys. Theorique, CNRS Kichenassamy
J. Phys. A16, p2347 (1983)

599 PLASMA disruptions TFR tokamak expt + model
France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Dubois
Nucl. Fusion 23, no.2, p147 (1983)

600 PLASMA charge-exch. neutral tof Tortur II
Nether Nieuwegein Inst. voor Plasmafysica Brocken
Plasma Phys. 25, no.3, p317 (1983)

Rec ID Topic KW3 KW2 Country City Institute Name Ref and Notes PLASMA magsonic waves atenuation drift turb. Switz Fribourg Univ. of Fribourg Vaucher Plasma Phys. 25, no.3, p331 (1983) 602 ATOMIC Rydberg state stimulated rad. corrections France Orsay Cen. Nat. de la Res. Sci. II Liberman Phys. Rev. Lett. 50, no.12, p888 (1983) SOLIDS Si melt & resolid laser irrad. velocities UK Great Malvern Royal Sig. & Radar Estab. Cullis Phys. Rev. Lett. 50, no.12, p896 (1983), Thompson et al 604 CPBICF res. absorption density profile self consistant France Gif-sur-Yvette CEN Saclay David Phys. Fluids 26, no.3, p747 (1983) 605 PLASMA D2 pellet vaporization tokamak Denmrk Roskilde Riso Nat. Lab. Chang Phys. Fluids 26, no.3, p805 (1983) 606 SOLIDS electrostatics semiconductors hazards ΠK Southhampton Univ. of Southampton Hughes Phys. Bull. 34 (1983) Conf. review 607 SOLIDS N2 diffusion titanium annealing Finlnd Helsinki Univ. of Helsinki Anttila Appl. Phys. Lett. 42, no.6, p498 (1983) 608 HYDROD turb. transport rotating sys. helicity UK Cambridge Univ. of Cambridge Moffatt Rep. Prog. Phys. 46, p621 (1983) 609 SOLIDS polarons doped plastic electron scat. W Ger Julich Kernforsch. Julich Crecelius Phys. Rev. Lett. 50, no.19, p1498 (1983)

density limit

Univ. di Padova

Eta-Beta II

Costa

610

Italy Padua

PLASMA radiation loss

Nucl. Fusion 23, no.10, p1301 (1983)

Rec ID Topic KW1 KW2 KW3 Institute Country City Name Ref and Notes 611 LASERS CO2 self absorption runaway UK Abingdon Culham Lab. Kaye Appl. Phys. Lett. 42, no.8, p641 (1983) 612 SOLIDS bioelectronics Langmuir-Blodgett optical switch W Ger Gottingen MPI fur BiophysikalischeChemie Science 220, p940 (1983). NRL mtg. review 613 DIAGNO electron micro surface imaging metal particles UK Cambridge Univ. of Cambridge Marks Nature 303, p316, 26 May 83 614 CHEMAT laser processing silicon review UK Edinburgh Heriot Watt Univ. Boyd Nature 303, p481, 9 Jun 83 615 CHEMAT ignition hazard rf radiation assessment UK Bradford Univ. of Bradford Excell EOARD Proposal 83-110 (1983) 616 PLASMA viscosity spectroscopy traveling wave W Ger Essen Fachbereich Physik Hellermann Phys. Fluids 26, no.4, pl054 (1983) 617 CPBICF Ar pos. column low pressure expt & model Portug Lisbon Inst. Superior Tecnico Ferreira J. Appl. Phys. 54, no.5, p2261 (1983) CPBICF ion acoustic 618 stim. Brillouin harmonic theory Switz Baden-Dattwil Brown Boveri & Cie Res. Cen. Gellert Phys. Lett. 96A, no.1, pl6 (1983) 619 BASICS Sine Gordon Weierstrass f solutions Denmrk Lyngby Tech. Univ. of Denmark Saermark Phys. Lett. 95A, no.8, p409 (1983) 620 SOLIDS heavy ion slowing down numerics

Hautala

Univ. of Helsinki

Finlnd Helsinki

Phys. Lett. 95A, no.8, p436 (1983)

	Rec ID Country Ret and	City	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
	621 Italy Phys. Re	Milan	relativistic ga	Politecnico di Milano	kinetic the	ory Cercignani
	France	Nice	stim. Brillouin	backscattering Observ. de Nice 29 (1983)	prevention	Montes
	UK	London	laser plasma	self focusing Westfield College	numerics	Sartang
	UK	Birmingh	scattering am 77 (1983)	test particle Univ. of Birmingham	random phase	Beynon
	France	Meudon	Langmuir probe	argon jet Univ. Pierre et Marie C	shock wake urie	Dudeck
:	Switz :	Baden-Da	leader discharge ttwil 031 (1983)	e SF6 Brown Boveri & Cie Res.	model Cen.	Niemeyer
1	rance 1	Marseille	stored ions e no.5, p2321 (198	buffer gas Univ. de Provence (3)	distribution	func Vedel
h	Ger A	achen	ohase interface no.5, p2698 (198	fluctuations Tech. Univ. Aachen 3)	dynamics	Schlogl
В	elgum B	russels	aylor diffusion	Vrije Univ. Bruxelles	laminar flow	Vanden Broe
_	••					

laser initiated

Dangor

gas embl. Imperial College

630

UK

CPBICF z-pinch

Phys. Rev. A27, no.5, p2751 (1983)

London

Rec ID Topic KW3 Country City Institute Name Ref and Notes HYDROD gas diffu. column steady state simplified Spain Pais Vasco Faculdad de Ciencias Madariaga J. Phys. Al6, p1947 (1983) DIAGNO phototelec. micro x-ray & atom image generators Oxford Oxford Univ. Plummer Nature 303, p599, 16 Jun 83 633 PLASMA neutral heating ion tail ICRF Chalmers Univ. of Tech Sweden Goteborg Pekkari Nucl. Fusion 23, no.6, p781 (1983) 634 HYDROD Scholte wave Rayleigh wave wetting & angle France Paris Univ. Paris VIII De Billy Phys. Lett. 96A, no.2, p85 (1983) 635 PLASMA LF modes tokamak 2-fluid model UK Abingdon Culham Lab. Thyagaraja Plasma Phys. 25, no.5, p459 (1983) 636 ATOMIC Raman spectra LF lines living cells Italy Milan Univ. degli Studi di Milano Rottoli Phys. Lett. 96A, no.3, p157 (1983) 637 LASERS semiconductor bistability hysteresis Irland Dublin Trinity College Stallard Appl. Phys. Lett. 42, no.10, p858 (1983) 638 LASERS KrCl excimer discharge pumped performance Italy Lecce Armandillo Appl. Phys. Lett. 42, no.10, p860 (1983) COMPUT display 639 electrochromic viologen based IBM UK Labs Ltd. UΚ Winchester Barclay Appl. Phys. Lett. 42, no.10, p911 (1983)

spectral search

Vandersteeg

BASICS fractional charge semiconductor

Nether Nijmegen Univ. of Nijmegen

Phys. Rev. Lett. 50, no.17, p1234 (1983)

640

Rec ID Topic Country City Institute Name Ref and Notes 641 WETHER magnetosphere plasma composite solar cycle UK London Imperial College Cowley Nature 303, p661, 23 Jun 83 642 SOLIDS ferromagnetic domains observation UK Durham Durham Univ. Parpia Nature 303, p684, 23 June 83 643 CPBICF soliton laser pulse plasma propagate W Ger Bochum Ruhr Univ. Shukla Phys. Fluids 27, no.2, p327 (1984) 644 BASICS noise identity map random function Cavendish Lab. UK Cambridge Deutsch Phys. Rev. Lett. 52, no.14, pl230 (1984) BASICS attractor laser master equation Great Malvern Royal Sig. & Radar Estab. Elgin 645 UK Phys. Rev. Lett. 52, no.14, p1215 (1984) 646 BASICS chaos elec. circuit Toda oscillator W Ger Gottingen Univ. of Gottingen Phys. Lett. 101A, no.8, p371 (1984) 647 HYDROD gas motion absorbing wall 1d Boltzmann Norway Trondheim Norwegian Inst. of Tech. Bergstrom Phys. Fluids 27, no.3, p583 (1984) 648 BASICS quadratic map population map log link Belgum Brussels Univ. Libre de Bruxelles Brenig Phys. Lett. 101A, no.9, p479 (1984) 649 BASICS ld maps intermittency period sequence Portug Lisbon CFMC-INIC Dias de Deus Phys. Lett. 101A, no.9, p459 (1984)

650 BASICS chaos hopping elec. circuit

Italy Florence Univ. of Florence Arecchi

ONRL Tech. Rep. R-6-84 and Phys. Lett. 101A, no.9, p443 (1984)

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Pef and Notes
 Notes

BASICS Ising and Potts cellular automata exact results

Israel Rehovot Weizmann Inst. of Sci. Doman,

Phys. Rev. Lett. 52, p871 (1984)

652 CPBICF breakdown elec.emission norlin.phenom
UK Birmingham Univ. of Aston Athwal
J. Phys. D17, p1029 (1984)

653 SOLIDS contact charge insulators solid rare gas
UK Manchester 'MMIST Cottrell
FSN 37-7 and J. Phys. D17, p989 (1984)

654 SOLIDS Hall effect palladium H2 diffusion
Nether Amsterdam Univ. of Amsterdam Verbruggen
Phys. Rev. Lett. 52, no.18, p1625 (1984)

655 CPBICF REB scattering turbulent plamsa
Nether Amsterdam Inst. for Atomic & Molec. Phys. Hopman
Phys. Rev. Lett. 52, no.18, p1613 (1984)

656 SOLIDS Hall conductance fractional explaination

Italy Frascati Ist. Naz. di Fisica Nucleare Srivastava

Phys. Rev. Lett. 52, no.18, p1587 (1984), Friedman et al

BASICS fractals

Brownian motion parameter

UK

Canterbury

Univ. of Canterbury

Powles

Phys. Rev. Lett. 52, no.18, p1571 (1984)

658 BASICS ring gyros adiabat. invar. model
UK Canterbury Univ. of Kent Forder
J. Phys. Al7, pl343 (1984)

659 WETHER convection earth, sun, sea mtg. review
UK Cambridge Univ. of Cambridge Huppert
Nature 303, p478, 9 Jun 83

660 SOLIDS solitons acetanilide ir absorbtion

Italy Rome Univ. di Roma Careri

Phys. Rev. Lett. 51, no.4, p304 (1983)

Rec ID Topic KW2 Country City Institute

Ref and Notes

661 PLASMA alpha particle confinement polarized DT

Italy Frascati Centro Richerche Energia-ENEA Bittoni

Name

Nucl. Fusion 23, no.6, p830 (1983)

662 LASERS XeC1 TEA grating res. spec. narrowing Italy Florence Ist. di Elettronica Quant. CNR Buffa

J. Phys. D16, pL125 (1983)

663 PLASMA dielec. sat. res. line Cr XXIII

Italy Frascati Centro Richerche Energia-ENEA Apicella

Phys. Lett. 98A, no.4, pl74 (1983)

PLASMA energy transport ohmic heating scaling laws 664

Italy Frascati Centro Richerche Energia-ENEA Zampaglione

Nucl. Fusion 23, no.2, p239 (1983)

BMSRAD FEL 665 Adone ring Adone ring preiim. resurcs Ist. Naz. di Fisica Nucleare Barbini prelim. results Italy Frascati

Labo. Naz. di Frascati Rep. LNF-82/77 (P), 1982

CPBICF ion interaction ICF targets numerics 666

Spain Madrid Univ. Poli. de Madrid Velarde

Dept. of Nucl. Energy Rep. DENIM 003 (1983)

667 CPBICF laser coupling wave length dep elec. temp.

Spain Madrid Univ. Poli. de Madrid Ramis

Nucl. Fusion 23, no.6, p739 (1983)

DIAGNO tunnel micro gold 668 model for expt.

Univ. Auto. de Madrid Spain Madrid

Phys. Rev. Lett. 50, no.25, p2002 (1983)

669 HYDROD mixing layer 3d effects water tunnel

Spain Madrid Univ. Poli. de Madrid

USARSG Final Rep., grant 78-G-079 (1979)

HYDROD mixing layer cine film computer analysis 670 Spain Madrid Univ. Poli. de Madrid Hernan

ESN 38-6 and J. Fluid Mech. 119, p323 (1982)

Rec ID Topic KWl Country City Ref and Notes 671 HYDROD diffusion flame	KW2 Institute extinction	KW3	<u>Name</u>
Spain Madrid U Combustion Sci. and Tech 27, p143	Univ. Poli. de Madrid 3 (1982). Sohrab et al		Linan
Nature 305, p668, 20 Oct 83. MQW	Royal Sig. & Radar Esta V ≃ multiple quantum we	nb.	Anderson
Phys. Lett. 101A, no.3, p158 (198	'echnion 84). MQW = multiple qu	antum well	Katriel
674 SOLIDS photonic logic UK Edinburgh H Nature 307, p315, 26 Jan 84	-	review	Smith
675 SOLIDS optical bistab. UK Edinburgh H EOAPD Proposal 84-031 (1984)	InSb & GaAs Heriot Watt Univ.	signal proc.	Smith
676 SOLIDS optical nonlin. UK Edinburgh H Proc. Op. Bistab. Mtg. Royal Soc.	Meriot Watt Univ.		y Wherrett
677 SOLIDS optical nonlin. W Ger Frankfurt U Proc. Op. Bistab. Mtg. Royal Soc.	niv. of Frankfurt		eory Haug
678 SOLIDS optical bistab. France Strasbourg U Proc. Op. Bistab. Mtg. Royal Soc.	CuCl Iniv. Louis Pasteur , London Mar. 21-22, 1	experiments	Levy
679 SOLIDS optical comput. UK Edinburgh H Proc. Op. Bistab. Mtg. Royal Soc.	InSb Meriot Watt Univ. , London Mar. 21-22, 1	switches & g. 98 4	ates Prise
680 SOLIDS optical bistab W Ger Frankfurt G	CdS oethe Univ.	nonlin. effe	cts Klingshirn

Proc. Op. Bistab. Mtg. Royal Soc., London Mar. 21-22, 1984

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes
 Name

681 SOLIDS optical bistab. CdHgTe fast processes
UK Great Malvern Royal Sig. & Radar Estab. Miller
Proc. Op. Bistab. Mtg. Royal Soc., London Mar. 21-22, 1984

682 SOLIDS optical bistab. dynamics theory
Belgum Brussels Univ. Libre de Bruxelles Mandel
Proc. Op. Bistab. Mtg. Royal Soc., London Mar. 21-22, 1984

683 SOLIDS optical bistab. chaotic behav. modeling
Italy Milan Univ. di Milano Lugiato
Proc. Op. Bistab. Mtg. Royal Soc., London Mar. 21-22, 1984

684 SOLIDS optical bistab size limits diffu & defrac
UK Edinburgh Heriot Watt Univ. Firth
Proc. Op. Bistab. Mtg. Royal Soc., London Mar, 21-22, 1984

685 SOLIDS optical bistab semicon. lasers twin stripe
UK Cambridge Univ. of Cambridge Carroll
Proc. Op. Bistab. Mtg. Royal Soc., London Mar. 21-22, 1984

686 CPBICF FEL guide field elec. dynamics
France Palaiseau Ecole Poly. Vallier
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

687 DIAGNO polychromator far IR conical diff.
Nether Nieuwegein Inst. voor Plasmafysica Piekaar
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

688 ATOMIC hemoglobin ps relaxation mm spectra
W Ger Stuttgart MPI fur Festkorperforschung Genzel
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

689 SOLIDS polymers mm-wave absorp temp. depend.
W Ger Stuttgart MPI fur Festkorperforschung Kremer
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

690 SOLIDS quartz fibers IR properties measurements
Switz Zurich ETH Zurich Thieband
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

Rec ID Topic Country City Ref and Note		KW2 Institute	<u>KW3</u>	Name
UK Colc	hester	IR detectors Univ. of Essex aves, Marseille, 14-1		Kimmitt
France Gren		ECR absorb Labo. de Spectro. P aves, Marseille, 14-1	-	t Dorelon
France Font	enay-aux-Roses	tokamaks Cen. d'Etudes Nucle aves, Marseille, 14-1	aires	del Bartlett
UK Card	iff	stabilization UWIST aves, Marseille, 14-1		Morgan
Switz Zuri		IR emit & trans ETH Zurich aves, Marseille, 14-1	chamber tes 8 Feb. 1983	ts Kneubuhl
UK Oxfo	rd	IR absorption Clarenden Lab. aves, Marseille, 14-1		er Zammit
UK Card	iff	scat & atten UWIST Waves, Marseille, 14		Harris
France Pari	s	mm wave interac Ecole Normale Super aves, Marseille, 14-1	ieure	Goy
Austri Inns	DS heterodyne dete bruck t. Conf. IR & mm Wa	ec. FIR Univ. Innsbruck aves, Marseille, 14-1	Ge photocon 8 Feb. 1983	Dodel
700 SOLI W Ger Bonn Proc. 7th In	•	. diplexer MPI fur Radioastron aves, Marseille, 14-1		Roser

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

701 PLASMA Fabry-Perot ECR measure tokamak
France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Laurent
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

702 PLASMA reflectometer microwave density measure
France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Simonet
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

703 PLASMA interferometer HCN-laser ASDEX
W Ger Garching MPI fur Plasmaphysik Gehre
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

704 EMSRAD gyrotron trav. wave oscil. nonlinear effects
UK London Univ. of London Lindsay
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

705 SOLIDS W-Ni diodes rectification 30-120 THz
E Ger Braunschweig Phys-Tech Bundesanstalt Klingenberg
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

706 IASERS CH3OH CO2 pumped Stark effect
France Marseille Univ. de Provence Botzanowski
Proc. 7th Int. Conf. IK & mm Waves, Marseille, 14-18 Feb. 1983

767 SOLIDS polar liquids absorb & refrac 50-100 GHz
Poland Warsaw Polish Acad. of Sci. Leibler
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

708 SOLIUS FIR paramagnetism low temperature
Belgum Leuren Katholieke Univ. Janssen
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

709 DIAGNO IR radiography liq. interface imaging
France Orsay Centre Univ. d'Orsay Loulergue
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

710 LASERS D20 FIR lines CO2 pumped
W Ger Stuttgart Univ. Stuttgarc Dodel
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec_ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref_and
 Notes

711 LASERS CO2 20 atm e-beam preion
W Ger Garching MII fur Quantenoptik Wan
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Peb. 1983

712 LASERS molecular gas mid-IR optically pumped
UK Edinburgh Heriot Watt Univ. Harrison
Proc. 7th Int. Conf. IR & mm waves, Marseille, 14-18 Feb. 1983

713 LASERS FIR freq. measure RF beating
Italy Pisa Univ. di Pisa Inguscio
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

714 DIAGNO bolometer semiconductor elec-ther. model
France Verrieres-le-Buisson Service d'Atero. CNRS Chanin
Proc. 7th Int. Corf. IR & mm Waves, Marseille, 14-18 Feb. 1983

715 WFTHER atmosphere trace species IR absorp lines
France Reims Labo. de Phys. Molec. CNRS Marche
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

716 WETHER atmos. abund. CO mol. rot. trans.
W Ger Born MPI fur Radioastronomie Wattenback
Prec. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

717 WETHER stratosphere sub mm spectra balloon instrum.

Italy Florence Ist. Ricerca Onde EM Carli

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

718 SOLIDS IR absorp insul & semicon phonon model
France Orleans Univ. d'Orleans Billard
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

719 LASERS solid state IR and FIR elec. pumped
Austri Innsbruck Univ. Innsbruck Gernik
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

720 DIAGNO interferometer refrac.index mm wavelength
UK Teddington Nat. Phys. Lab. Birch
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes
 Name

721 WETHER solar observation FIR balloons

Switz Zurich ETH Zurich Degiacomi

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

722 WETHER planetary atmos H2-He spectra simulation
France Marseille Faculte St. Jerome Bachet
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

723 SOLIDS acoustic waves laser driven nonlinear
Switz Zurich ETH Zurich Sigrist
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

724 LASERS CW MIR CO2 pumped NH3 model + expt
France Orsay Univ. Paris XI Lourtioz
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

725 LASERS CH3OH CO2 pumped new FIR line
Italy Pisa Univ. di Pisa Inguscio
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

726 LASERS CW DCOF CO2 pumped FIR lines
W Ger Ulm Univ. Ulm Jones
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

727 LASERS FIR molec transients dynamic model
France Villeneuve d'Ascq Univ. de Lille I Bootz
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

728 LASERS liq. N2 FIR spectra compressed
France Villetaneuse Univ. Paris Nord Marteau
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

729 ATOMIC molec. interac. ps time scale IR study
France Paris Univ. Pierre et Marie Curie Vincent-Geisse
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

730 ATOMIC mag. resonance mm wave range exptl tech.
W Ger Wurzburg Physikalisches Inst. Geick
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec_ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref_and
 Notes

731 ATOMIC FIR spectra ferroelectrics improved method
France Vardoeuvre les Nancy Univ. Nancy I Hadni

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

732 SOLIDS bulk crystals FIR freq. doupling
W Ger Stuttgart MPI fur Festkorperforschung Mayer
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

733 SOLIDS GaP LED up conversion IR to visible
W Ger Regensburg Univ. Regensburg Eisfield
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

734 DIAGNO tunable filter Fabry-Perot FIR

ITaly Florence Ist. Ricerca Onde EM Natale

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

735 PLASMA ion spectra CO2 scattering coherent detect
W Ger Stuttgart Univ. Stuttgart Kasparek
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

736 PLASMA density fluc. CO2 probe Tosca tokamak
UK Abingdon Culham Lab. Evans
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

737 PLASMA density fluc. forward scat. detector array
W Ger Stuttgart Univ. Stuttgart Hellermann
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

738 PLASMA position control FIR interfer. Textor tokamak
W Ger Julich Kernforsch. Julich Soltwisch
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

739 SOLIDS optical fiber Mid IR telecommun.

France Marcoussis Compagnie Generale d'Electricite Brehm

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

740 DIAGNO spectroscopy moving mirror FIR to VUV
UK London Univ. of London Burton
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

741 SOLIDS avalanche inj. Impatt diode above 100 GHz
France Villeneuve d'Ascq Univ. de Lille I Lippens
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

742 SOLIDS mm wave detec metal-semicon junctions

Sweden Goteborg Chalmers Univ. of Tech. Zirath

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-16 Feb. 1983

743 SOLIDS mm wave mixer cryo Schottky low noise
Finlnd Helsinki Helsinki Univ. of Tech. Raisanen
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

744 SOLIDS plasmon excit. Cd3As2 FT mag reflec
Nether Eindhoven Eindhoven Univ. of Tech. Blom
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

745 SOLIDS surface polarons CsBr mesh coupler W Ger Wurzburg Univ. Wurzburg Tegtmeier Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

746 DIAGNO FIR interfer. small gap semis magneto-optics
Austri Leoben Montanuniv. Leoben Krenn.
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

747 BMSRAD back wave oscil. properties, modes setups
France Boulogne-Billancourt Thomson-CSF Epsztein
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

748 HYDROD Benard convec. temp. dist. IR camera
France Marseille Labo. de Thermophysique Cerisier
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

749 WETHER mm wave imaging antenna array
UK Redhill Philips Research Labs. Dewey
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

750 WETHER atmos. transmit FIR laser Scottky detec.
UK Seven Oaks Royal Armament Res. & Devel. Estab. Thomas
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes
 Name

751 WETHER atmos. transmit. CO2 bands experiment
France Rennes Univ. de Rennes I Boulet
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-48 Feb. 1983

752 WETHER atmos. transmit N2O absorp. line profile calc
France Orsay Univ. Paris Sud Lacome
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

753 WETHER atmos. detection NC2 FT spectra
France Orsay Labo. Phys. Mol. et Opt. Atmo CNRS Flaud
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

754 LASERS FIR optically pumped stability
France Paris Labo. Primaire Temps & Freq. Dahmani
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

755 LASERS D20 performance effect of buffer Switz Lausanne Ecole Poly. Federale Behn Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

756 LASERS FIR high power multi modes
Switz Lausanne Ecole Poly. Federale Dupertuis
Froc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

757 IASFRS distrib feedback dispersion rel. theory
Switz Zurich ETH Zurich Gnepf
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

758 LASERS distrib feedback helical waveguide optically pumped
Switz Zurich ETH Zurich Preiswerk
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

759 LASERS FIR waveguide outcoupling under 40 micron
Nether Nijmegen Univ. of Nijmegen Sigg
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

760 SOLIDS GaAs optical const. FIR spectra
UK London Univ. of London Jamshidi
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

761 SOLIDS FIR freq. measure Schottky diodes
W Ger Braunschweig Phys.-Tech. Bundesanstalt Weiss

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

762 SOLIDS Schottky diodes heterodyne sub mm
W Ger Bonn MPI fur Radioastronomie Durwin
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

763 SOLIDS Schottky varistor back radiation sub mm excite
France Paris Univ. Pierre et Marie Curie Kreisler
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

764 DIAGNO FIR interfer. Fabry-Perot grating spec.
France Marseille Faculte St. Jerome Blancher
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

765 CHEMAT sub mm FIR industry appl.
UK Teddington Nat. Phys. Lab. Blaney
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

766 LASERS HeNe chaos experiments
W Ger Braunschweig Phys.-Tech. Bundesanstalt Weiss
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

767 LASERS NH3 ground state FIR gain calc
W Ger Braunschweig Phys.-Tech. Bundesanstalt Willenberg
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

768 LASERS N20 bistability Q-switching
W Ger Braunschweig Phys.-Tech. Bundesanstalt Won
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

769 LASERS CH3OH FIR lines optically pumped

Denmrk Cpoenhagen Univ. of Copenhagen Henningsen

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

770 LASERS CH30H and isotopes FIR spectra

Italy Pisa Univ. di Pisa Moruzzi

Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

Rec ID Topic KW1
Country City
Ref and Notes

<u>KW2</u> Institute KW3

Name

771 CPBICF FEL wiggler-free nonlin. effects
Israel Jerusalem Hebrew. Univ. Friedland
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

772 LASERS CO2 waveguide tunability diff. grating
Irland Cork Univ. College Holohan
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

773 SOLIDS optical const. commercial mat. mm & sub mm
UK Teddington Nat. Phys. Lab. Birch
Proc. 7th Int. Conf. IR & mm Waves, Marseille, 14-18 Feb. 1983

774 CPBICF plasma targets cp interactions deposition calc
Israel Rehovot Weizmann Inst. of Sci. Nardi
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

775 CPBICF LIB target interac. Sidonix II expt
France Is-sur-Tille CEA Valduc Bernard
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

776 CPBICF ion generation carbon laser heat anode
France Is-sur-Tille CEA Valduc Camarcat
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

777 CPBICF ion diode self-B insul beam character
W Ger Karlsruhe Kernforsch. Kalsruhe Zieher
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

778 CPBICF ion diode gas filled pseudo spark
W Ger Erlangen Univ. Erlangen Schultheiss
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

779 CPBICF z-pinch gas embedded x-ray init.
France Palaiseau Ecole Poly. Doucet
Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

780 CPBICF annular z-pinch plasma puff x-ray source
France Palaiseau Ecole Poly. Doucet
ESN 38-4 and Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983 also ESN 37-3

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute

Ref and Notes

781 CPBICF REB generator compact 100 kV

Israel Haifa Min'stry of Defense Goldstein

Name

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

782 CPBICF radiography erosion switch Grec facility

France Sevran CEA Vaujours Buchet

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

783 CPBICF wire plasma x-ray eff. Sidonix I

France Is-sur-Tille CEA Valduc Bruno

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

784 PLASMA REB rf sustained current drive
France Fontenay-aux-Roses Cen. d'Etudes Nucleaires Fidone

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

785 CPBICF REB Star Wars plasma channel numerics

France Grenoble Univ. Grenoble I Dolique

ESN 38-6 and Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

786 CPBICF REB Star Wars plasma channel experiment

France Is-sur-Tille CEA Valduc Bailly-Salins

ESN 38-6 and Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

787 CPBICF REB drift injection analytics

E Ger Berlin Akad. der Wissenschaften Hintze

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

788 BMSRAD HIB hollow beam trans. strong focusing

W Ger Julich Kernforsch. Julich Krejcik

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

789 CPBICF REB collective accel. diagnostic

Israel Rehovot Weizmann Inst. of Sci. Markovits

ESN 37-12 and Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983 and ESN 37-12

790 CPBICF REB beam quality Thomson scat.

France Palaiseau Ecole Poly. Vallier

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

Rec ID Topic KW1 KW2 KW3

Country City Institute Name

Ref and Notes

791 CPBICF FEL microwave REB quality

France Palaiseau Ecole Poly. Buzzi

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

792 CPBICF REB microwave rippled field

Israel Haifa Ministry of Defense Shraga

Proc. BEAMS 83, San Francisco, 12-14 Sept. 1983

793 BMSRAD accelerators types review

UK Didcot Rutherford Appleton Lab. Lawson

ESN 37-1 & Proc. the Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 1982

794 BMSRAD accelerators conventional limits

W Ger Hamburg DESY Voss

Proc. the Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 198^

795 BMSRAD electron ring ion accelerator review

W Ger Garching MPI fur Plasmaphysik Schumacher

ESN 37-1 & Proc. The Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 1982

796 BMSRAD wakefield accel. dynamics simulation

W Ger Hamburg DESY Voss

FSN 37-1 & Proc. the Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 1982

797 BMSRAD accel. processes cosmic rays astrophysics

UK Cambridge Inst. of Astronomy Rees

Proc. the Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 1982

798 BMSRAD future accel. requirements new ideas

Switz Geneva CERN Adams

Proc. the Challenge of Ultra-High Energies, Oxford, Sept. 27-30, 1982

799 LASERS VUV res. enhanced tunable

France Palaiseau Ecole Poly. Lukasik

Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983

800 LASERS VUV tunable Stim. Raman scat.

W Ger Garching MPI fur Quantenoptik Proch

Proc. 7th Intnl. Conf. VUV Radiacion Physics, Jerusalem, Aug. 8-12, 1983

Rec ID Topic Country City Ref and Notes	<u>KW1</u>	<u>KW2</u> <u>Institute</u>	<u>KW3</u>	<u>Name</u>
Uk Tedding	ton	VUV radianse Nat. Physicals atlen rhysics, Servicese		Nettleton
France Orsay	-	<pre>ce container Univ. Fario λ! ation Physics, Cero alem</pre>		Girard
W Ger Berlin		laser ;lasma Phys-Tech Pendesanstalt ation Physics, Jerusalem		Kuhne
Sweden Uppsala	l	deformed grating Uppsala Univ. ation Physics, Jerusalem		Pettersson
France Marseil	le	overlap contam. Faculte St. Jerome ation Physics, Jerusalem		Neviere 1983
Sweden Uppsala	1	contam. films Uppsala Univ. ation Physics, Jerusalem		Mattsson
Israel Jerusal	em	r multichann∈l Hebrew Univ. ation Physics, Jerusalem		Finkerthal
W Ger Berlin		er synchrotron rad. RESSY GmbH ation Physics, Jerusalem		Peterson
809 DIAGNO Israel Jerusal Proc. 7th Intnl	em	wavelength deter Hebrew Univ. ation Physics, Jerusalem		Fraenkel

EMSRAD synchrotron rad. photo electrons source character Univ. Paris Sud Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983

810

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Rec ID Topic	KW1	KW2	KW3	
Country City		Institute		Name
Ref and Notes				

- 811 ATOMIC transition rates atoms and ions computer code
 UK Oxford Oxford Univ. Grant
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 812 ATOMIC light ions absorption spec VUV

 Italy Padua Univ. di Padova Jannitti

 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 813 CPBICF VUV emission Al plasma calculated
 France Orsay Univ. Paris Sud Lamoureux
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 814 CPBICF laser plasma Cu-like lines rare earths

 Israel Yavne Soreq Nuclear Res. Cen. Spector

 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 815 ATOMIC XUV photoemission atomic iodine
 France Orsay Univ. Paris Sud Ben Amar
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 816 ATOMIC line broadening Thomas-Fermi finite temp.

 Israel Jerusalem Hebrew Univ. Shalitin
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 817 CPBICF line broadening dense plasma Thomas-Fermi
 Israel Jerusalem Hebrew Univ. Stein
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 818 ATOMIC electron states polyatomic mol. experiment
 Yugos Zagreb Inst. Rudjer Boskovic Doering
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983
- 819 ATOMIC photoemission rare gas solid excitons
 W Ger Hamburg Univ. of Hamburg Bernstorff
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalme, Aug. 8-12, 1983
- 820 ATOMIC photoionization Xenon excimers VUV synch.

 Israel Jerusalem Hebrew Univ. Reininger
 Proc. 7th Intnl. Conf. VUV Radiation Physics, Jerusalem, Aug. 8-12, 1983

Rec ID Topic Country City Ref and Notes	<u>KW1</u>	KW2 Institute	<u>кwз</u>	Name
W Ger Hamburg	ı	argon solid Univ. of Hamburg ation Physics, Jerusale	-	Bernstorff , 1983
Israel Jerusal	em	argon solid Hebrew Univ. ation Physics, Jerusale		Reininger
Sweden Lund		on metals Univ. of Lund ation Physics, Jerusale		Almbladh , 1983
W Ger Bielefe	14	tunable Univ. Bielefeld ation Physics, Jerusale	-	Hilbig
UK London		high resolution Imperial College ation Physics, Jerusale	-	Connerade
France Orsay		highly excited Univ. Paris SUd ation Physics, Jerusale		Jungen , 1983
Israel Jerusal	em	x-ray & VUV Hebrew Univ. ation Physics, Jerusale		Finkenthal
UK Didcot	disc system	development Rutherford Appleton La RL-83-043, 1983	commission:	ing Brett
829 LASERS UK Didcot	beam diagnostic	energy monitor Rutherford Appleton Le	profile imab.	aging Brasher

830 LASERS control data acquisition energy monitor
UK Didcot Rutherford Appleton Lab. Forster
RAL Laser Committee Annual Rep. RL-83-043, 1983

RAL Laser Committee Annual Rep. RL-83-043, 1983

Rec ID Country		KW1	KW2 Institute	<u>KW3</u>	Name
Ref and	Notes				
831	CPBICF	multi-beam	illumination	uniformity	
UK	Didcot		Rutherford Appleton Lab.	,	Nicholas
RAL Las	er Commit	ttee Annual Rep.	RL-83-043, 1983		
832	CPBICF	target production	on microballoon	laser etched	
UK	Didcot		Rutherford Appleton Lab.	•	Brown
RAL Las	er Commit	ttee Annual Rep.	RL-83-043, 1983		
		framing camera		electronics	
	Essex		Univ. of Essex		Hall
RAL Las	er Commit	ttee Annual Rep.	RL-83-043, 1983		
		_		50 ps resolut	
	London		Imperial College		Kilkenny
ESN 38-	2 and RA	L Laser Committe	e Annual Rep. RL-83-043,	1983	
	LASERS		REB excited		
UK	Didcot		Rutherford Appleton Lab.	•	Shaw
RAI. Las					
	er Commi	ttee Annual Rep.	RL-83-043, 1983		
836	LASERS	pulse compression	on Raman amplifier		
836 UK	LASERS Didcot	pulse compression	on Raman amplifier Rutherford Appleton Lab.		Edwards
836 UK	LASERS Didcot	pulse compression	on Raman amplifier		
836 UK RAL Las	LASERS Didcot er Commi	pulse compression	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983	,	Edwards
836 UK RAL Las	LASERS Didcot er Commi	pulse compression ttee Annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse	,	Edwards Lne
836 UK RAL Las 837 UK	LASERS Didcot er Commit	pulse compression ttee Annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd.	,	Edwards
836 UK RAL Las 837 UK	LASERS Didcot er Commit	pulse compression ttee Annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd.	,	Edwards Lne
836 UK RAL Las 837 UK RAL Las	LASERS Didcot er Commit LASERS Oxford er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983	pulse form li	Edwards Lne
836 UK RAL Las 837 UK RAL Las	LASERS Didcot er Commit LASERS Oxford er Commit	pulse compression ttee Annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror	pulse form li	Edwards ine Kearsley
836 UK RAL Las 837 UK RAL Las 838 UK	LASERS Didcot er Commit LASERS Oxford er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep. phase conjugate	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror Rutherford Appleton Lab.	pulse form li	Edwards Lne
836 UK RAL Las 837 UK RAL Las 838 UK	LASERS Didcot er Commit LASERS Oxford er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep. phase conjugate	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror	pulse form li	Edwards ine Kearsley
836 UK RAL Las 837 UK RAL Las UK RAL Las	LASERS Didcot er Commit LASERS Oxford er Commit LASERS Didcot er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep. phase conjugate ttee annual Rep.	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror Rutherford Appleton Lab. RL-83-043, 1983	pulse form li	Edwards ine Kearsley Gower
836 UK RAL Las 837 UK RAL Las UK RAL Las	LASERS Didcot er Commit LASERS Oxford er Commit LASERS Didcot er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep. phase conjugate	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror Rutherford Appleton Lab. RL-83-043, 1983 stim Brill scat	pulse form li	Edwards ine Kearsley Gower
836 UK RAL Las 837 UK RAL Las UK RAL Las	LASERS Didcot er Commit LASERS Oxford er Commit LASERS Didcot er Commit	pulse compression ttee Annual Rep. KrF ttee Annual Rep. phase conjugate ttee annual Rep. compression	on Raman amplifier Rutherford Appleton Lab. RL-83-043, 1983 long pulse Oxford Lasers Ltd. RL-83-043, 1983 Brillouin mirror Rutherford Appleton Lab. RL-83-043, 1983	pulse form li	Edwards ine Kearsley Gower

97

320-980 nm

Gower

facility

Rutherford Appleton Lab.

LASERS UV

RAL Laser Committee Annual Rep. RL-83-043, 1983

Didcot

840

UK

Rec ID Topic Country City Ref and Notes	<u>KW1</u>	KW2 Institute	<u>KW3</u>	Name
UK Oxford	lithography ttee Annual Rep.	Oxford Univ.	ArF	₩ebb
842 LASERS UK Belfast RAL Laser Commi	-	saturable absorb Queen's Univ. RL-83-043, 1983	anthracene	Morrow
UK Essex	laser plasma	harmonic emission Univ. of Essex RL-83-043, 1983	526 nm pump	McGoldrick
UK Oxford	laser plasma	filamentation Oxford Univ. RL-83-043, 1983	backscatter	Willi
UK London		t fast electrons Imperial College RL-83-043, 1983	1.05 micron	Bradley
UK London		x-ray spectra Imperial College e Annual Rep. RL-83-043,	-	expt Kilkenney
UK Didcot		thermal smoothing Rutherford Appleton Lab RL-83-043, 1983	-	ght Evans
UK Didcot	plasma stopping	alpha particles Rutherford Appleton Lab e Annual Rep. RL-83-043,		oon Toner
849 CPBICF UK London RAL Laser Commi		high gradient Imperial College RL-83-043, 1983	laser scatte	ring Dangor
850 CPBICF UK Belfast ESN 36-8 and RA	:	x-radiography Queen's Univ. e Annual Rep. RL-83-043,	1.06 micron	Lewis

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3	Name
851 CPBICF ablative a UK London RAL Laser Committee Annual	Imperial College	rippled foil	s Cole
852 CPBICF implosions Uk London RAL Laser Committee Annual	Imperial College	0.53 micron	MacGowan
853 LASERS x~ray UK Hull RAL Laser Committee Annual	carbon recomb. Univ. of Hull Rep. R1-83-043, 1983	gain measure	Pert
854 CPBICF dielec sat Irland Dublin RAL Laser Committee Annual	Trinity College	Si spectra	Lunney
855 CPBICF dielec sat UK London RAL Laser Committee Annual	Imperial College	density dep.	Kilkenny
856 CPBICF planar tar UK London RAL Laser Committee Annual	Imperial College	S102 & CH	Lee
857 CPBICF target x-r UK Didcot RAL Laser Committee Annual	Rutherford Appleton La	of Al	Eason
858 COMPUT fluid code UK Hull RAL Laser Committee Annual	Univ. of Hull	flux correct	ion Pert
859 CPBICF Rayleigh T UK Didcot RAL Laser Committee Annual	Taylor flat target Rutherford Appleton La 1 Rep. RL-83-043, 1983	numerics b.	Evans
860 CPBICF thermal sm UK Didcot RAL Laser Committee Annual	moothing heat flux limit Rutherford Appleton La Rep. RL-83-043, 1983	analytics b.	Evans

Rec ID Topic KN1 Country City Ref and Notes	IN2 Institute	KW3	Name
861 CPBICP ion diposition UK Didcot RAL Laser Committee Annual Rep.	ablation plasma Rutherford Appleton Lab RL-83-043, 1983	•	Evans
862 CPBICF preheat UK Didcot RAL Laser Committee Annual Rep.	x-ray Rutherford Appleton Lab RL-83-043, 1983	effect on imp	plo. Key
863 CPBICF Raman scattering UK Bangor RAL Laser Committee Annual Rep.	g es particle code Univ. of Wales RL-83-043, 1983	kinetic theo	ry Boyd
864 CPBICF heat transport UK St. Andrews RAL Laser Committee Annual Rep.	Univ. of St. Andrews	moment eqns.	Sanderson
865 CPBICF heat transport UK London RAL Laser Committee Annaul Rep.	Imperial College	nonlinear	Haines
866 CPBICF heat transport UK Didcot RAL Laser Committee Annual Rep.	Rutherford Appleton Lab	planar ablat •	ion Bell
867 CPBICF heat flow UK London RAL Laser Committee Annual Rep.	instabilities Imperial College RL-83-043, 1983	laser plasma	Epperlein
868 CPBICF rad transport UK Glasgow RAL Laser Committee Annual Rep.	Planckian Univ. of Glasgow RL-83-043, 1983	LTE	White
869 CPBICF opacity UK St. Andrews RAL Laser Committee Annual Rep.	LTE Univ. of St. Andrews RL-83-043, 1983	calculations	Carson
870 BASICS chaos Portug Lisbon	reverse bifur.	RCL circuit	Cascais

ONRL Tech. Rep. R-6-84 and Phys. Lett. 93A, no.5, p213 (1983)

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 Name

 Ref and Notes
 Notes

871 BASICS bifurcation frequency div. Schottky circuit
UK Oxford Clarendon Lab. Jefferies
ONRL Tech. Rep. R-6-84 and Phys. Lett. 99A, no.8, p356 (1983)

872 BASICS chaos noise bistable circuit

Italy Plorence Ist. Nazionale di Ottica Arecchi
ONRL Tech. Rep. R-6-84 and Phys. Rev. Lett. 49, no.2, p94 (1982)

873 BASICS chaos Joshephson junc. circuit analog
W Ger Tubingen Univ. Tubingen Seifert
ONRL Tech. Rep. R-6-84 and Phys. Lett. 101A, no.4, p230 (1984)

874 RASICS chaos forced pendulum expt. & numerics E Ger Griefswald E.M. Arndt Univ. Koch Phys. Lett. 96A, no.5, p219 (1983)

875 BASICS chaos RCL circuit general study
UK Oxford Clarendon Lab. Robinson
ONRL Tech. Rep. R-6-84

876 HYDROD chaos Taylor-Couette rotating flow
W Ger Kiel Univ. of Kiel Mullin
Phys. Lett. 96A, no.5, p236 (1983)

877 HYDROD chaos elechydro instab. ion + dielec liq
France Grenoble Cen. Nat. de la Recherche Sci. Malraison
Phys. Rev. Lett. 49, no.10, p723, (1982)

878 HYDROD bifurcation Rayleigh-Benard large cells
Israel Tel Aviv Tel Aviv Univ. Sivashinsky
Phys. Lett. 95A, no.3-4, p152 (1983)

879 HYDROD intermittency Rayleigh-Benard confined geo.
France Gif-sur-Yvette CEN Saclay Dubois
Phys. Rev. Lett. 51, no.16, p1446 (1983)

880 BASICS chaos chem. oscil. stirred & forced Czech Prague Prague Inst. of Chem. Tech. Dolnik Phys. Lett. 100A, no.6, p316 (1984)

 Rec ID Country
 Topic City
 KW1
 KW2
 KW3

 Country Ref and Notes
 Institute
 Name

881 BASICS chem reactions nonlinear spatial structure
Israel Jerusalem Hebrew Univ. Avnir
Nature 307, p717, 23 Feb. 84

882 BASICS chemical waves nonlin diffusion 3-D
UK Glasgow Glasgow College of Tech. Welsh
Nature 304, p611, 18 Aug. 83

883 BASICS chaos Hamiltonian sys. quartic potential UK London Queen Mary College Carnegie J. Phys. A17, p801 (1984)

884 LASERS bifurcation optical reson. CO2 pumped
UK Edinburgh Heriot Watt Univ. Harrison
Phys. Rev. Lett. 51, no.7, p562 (1983)

885 HYDROD chaos thermosolutal convection model
UK Cambridge Univ. of Cambridge Knobloch
Nature 303, p663, 23 Jun. 83

886 BASICS self avoid walks renorm group critical prop.
UK Oxford Cxford Univ. Queiroz
J. Phys. Al6, pL617 (1983)

887 BASICS self avoid walks fractals Monte Carlo
France Grenoble Cen. for Res. at Very Low Temp. d'Auriac
J. Phys. A17, pL15 (1984)

888 BASICS self avoid walks statistics Monte Carlo
France Grenoble Cen. for Res. at Very Low Temp. Rammal
J. Phys. A17, pL9 (1984)

889 BASICS clusters growth & coalesc theory & sim
France Gif-sur-Yvette CEN Saclay Herrmann
J. Phys. Al6, pL611 (1983)

890 BASICS automata quantum mech. self measure
Israel Tel Aviv Tel Aviv Univ. Albert
Phys. Lett. 98A, no.5-6, p249 (1983)

891 BASICS percolation fractal lattice renorm group
Israel Ramat-Gan Bar-Ilan Univ. Ben-Avraham
Phys. Rev. Lett. 51, no.26, p2347 (1983)

892 BASICS phase trans. fractals Ising models
Israel Tel Aviv Tel Aviv Univ. Gefen
J. Phys. Al7, p435 (1984)

893 WETHER fractal scattering reflected light
UK Great Malvern Royal Sig. & Radar Estab. Jakeman
Nature 307, pll0, 12 Jan. 84

894 BASICS heavy nuclei synthesis stability limit
W Ger Darmstadt Heavy Ion Res. Estab. Armsbruster
European Phys. Soc. Bull. p4 1983

895 CPBICF switching trig. discharge optical diag.
W Ger Darmstadt Tech. Hochschule Pfeiffer
EOARD Proposal 83-138 (1983)

896 PLASMA scrape-off neutral heated Asdex
W Ger Garching MPI fur Plasmaphysik Shimonura
Nucl. Fusion 23, no.7, p869 (1983)

897 PLASMA disruption anom. resistance mag. turbulence
W Ger Garching MPI fur Plasmaphysik Biskamp
Phys. Lett. 96A, no.1, p25 (1983)

898 PLASMA drift waves nonlinear KdV eqn.
W Ger Garching MPI fur Plasmaphysik Tasso
Phys. Lett. 96A, no.1, p33 (1983)

899 PLASMA transport ohmic tokamak scaling laws
W Ger Garching MPI fur Plasmaphysik Gruber
Nucl. Pusion 22, no.10, pl349 (1982)

900 LASERS He Ar HIB pumped 100 MeV Sulpher W Ger Garching Tech. Univ. der Munchen Ulrich Appl. Phys. Lett. 42, no.9, p782 (1983)

Rec ID Topic KW1 KW2 KW3

Country City Institute

Ref and Notes

901 PLASMA ion heating lower hybrid quasi linear
W Ger Garching MPI fur Plasmaphysik Brambilla
Nucl. Pusion 23, no.4, p541 (1983)

Name

902 CPBICF plasma focus electron beam mm waves
W Ger Darmstadt Tech. Hochschule Schmitt

Phys. Lett. 95A, no.5, p239 (1983)

903 ATOMIC line broadening nonlinear Poisson stat.
W Ger Heidelberg Univ. of Heidelberg Hermann
J. Phys. B16, p1323 (1983)

904 HYDROD shear layers curved 2-eqn turbulence
W Ger Karlsruhe Univ. of Karlsruhe Rodi
Phys. Fluids 26, no.6, pl422 (1983)

905 PLASMA disruption tearing mode evolution
W Ger Garching MPI fur Plasmaphysik Smeulders
Nucl. Fusion 23, no.4, p529 (1983)

906 CPBICF HIB pellet caluclations
W Ger Karlsruhe Kernforsch. Karlsruhe Tahir
Nucl. Pusion 23, no.7, p887 (1983)

907 CPBICF laser plasma mode conversion inhomo analysis W Ger Garching MPI fur Quantenoptik Kull Phys. Fluids 26, no.7, pl881 (1983)

908 ATOMIC line broadening Stark effect rf discharge
W Ger Bochum Ruhr Univ. Himmel
J. Phys. B16, p4117 (1983)

909 COMPUT rad. hydro adaptive mesh shocks
W Ger Garching MPI fur Physik und Astrophys. Winkler
ESN 38-5

910 PLASMA excited state decay rates deut. plasma
W Ger Bochum Ruhr Univ. Himmel
J. Quant. Spec. Radiat. Transfer 30, no.4, p357 (1983)

KW3 KW2 Rec ID Topic Name Institute Country City Ref and Notes magnetoconvection review WETHER solar 911 Univ. of Cambridge Proctor Cambridge Rep. Prog. Phys. 45, p1317 (1982) WETHER solar oscillation active region connection 912 Kiepenheuer Inst. Durrant W Ger Freiburg Nature 301, p589, 17 Feb 83 n interferometer uranium 913 BASICS neutron scatter Boeuf CEC Joint Res. Cen. Italy Ispra Phys. Rev. Lett. p1086, 11 Oct 82 Fe + Bi HI collisions 914 BASICS element 109 Armsbruster Heavy Ion Res. Estab. W Ger Darmstadt New Scientist, 14 Oct 82 various solids 915 CPBICF ion range uranium Laichter Heavy Ion Res. Estab. Darmstadt Phys. Rev. A26, no.4, p1915 (1982) unstable nuclei DIAGNO nuclear probe laser light 916 Eastham Daresbury Lab. UK Warrington New Scientist, p789, 24 Mar 83 momentum trans. heavy ion reac. BASICS solitons 917 Univ. of Marburg Raha W Ger Marbury Phys. Rev. Lett. 50, no.6, p407 (1983) BASICS nuclear splitting high E protons break point 918 Bohrmann Univ. of Heidelberg W Ger Heidelberg Phys. Lett. 120B, no.1-3, p59 (1983) 919 BMSRAD FEL IR tunable linac Poole Warrington Daresbury Lab. UK ESN 37-10/11 and J. de Physique C1, no.2, pC1 (1983)

920 CPBICF FEL wiggler free orbit eqns.

Israel Jerusalem Hebrew Univ. Fruchtman

J. Appl. Phys. 54, no.8, p4289 (1983)

Rec ID Topic KW1 KW2 KW3

Country City Institute Name

Ref and Notes

921 BMSRAD FEL IR tunable microtron

Italy Frascati Centro Richerche Energia-ENEA Dattoli

IEEE Trans. Nucl. Sci. NS-28, no.3, p3133 (1981)

922 BMSRAD FEL undulator optimization

France Orsay Univ. Paris Sud Ortega

J. Appl. Phys. 54, no.9, p4776 (1983)

923 BMSRAD FEL optical klystron gain studies

France Orsay Univ. Paris Sud Elleaume

Proc. 1982 Bendor FEL Conf.

924 BMSRAD FEL visible storage ring

France Orsay Univ. Paris Sud Billardon

ESN 38-4 and Phys. Rev. Lett. 51, 1652 (1983)

925 BMSRAD FEL multilayer mirror degradation

France Orsay Univ. Paris Sud Elleaume

ESN 38-4

926 BMSRAD FEL bunch lengthening anomolies

France Orsay Univ. Paris Sud Velghe

IEEE J. Quant Elec. QE-19, no.3, p365 (1983)

927 BMSRAD FEL time structure nonlin theory

France Orsay Univ. Paris Sud Elleaume

ESN 38-4 and submitted to J. de Physique, 1983

928 BMSRAD FEL optical klystron gain & spread expt

France Orsay Univ. Paris Sud Billardon

ESN 38-4 and submitted to Appl. Phys. B, 1983

929 CPBICF FEL guide field dispersion rel.

Israel Jerusalem Hebrew Univ. Friedland

Phys. Rev. A25, no.5, p2693 (1982)

930 CPBICF FEL axial field nonlin theory

Israel Jerusalem Hebrew Univ. Friedland

Phys. Rev. A26, no.5, p2778 (1982)

Countr	Topic KW1 Y City d Notes	KW2 Institute	KW3	Name
931 UK New Sc	ENERGY pollution Liverpool ientist, p26, 29 Mar 84	magnetic part. Univ. of Liverpool	new measure	Oldfield
	WETHER geomagnetism Paris 304, p328, 28 Jul 83	reversals Univ. Paris VI	15 Myr perio	d Mazaud
Italy	BASICS electron Milan Lett. 124B, no.5, p435 (1	stability Univ. di Milano 1983)	new limit	Bellotti
934 Norway Nature	WETHER solar core Oslo 302, p808, 28 Apr 83	rotation Univ. of Oslo	sun spots	Nyborg
935 UK Nature	WETHER baroclinic eddy Bracknell 308, p45, 1 Mar 84	Red Spot. anal. Geophys. Fluid Dynam. I		Read
936 UK Nature	WETHER solar Cambridge 296, p633, 15 Apr 82	disturbances Cavendish Lab.	ground obser	v Gapper
937 UK Nature	WETHER ionosphere Cambridge 297, p537, 17 Jun 82	rocket hole Brit. Antartic Survey	chem reaction	ns Rycroft
938 UK Nature	HYDROD viscous flow Cambridge 300, p427, 2 Dec 82	instability Univ. of Cambridge	đown slope	Huppert
939 UK SRS Bul	ATOMIC trace element Warwick 1., Daresbury Lab. June	analysis Univ. of Warwick 1982	synch. rad.	Davies
940 UK	SOLIDS metal layers Warrington	ultrathin Daresbury Lab.	photoelec. sp	ec. Padmore

SRS Bull., Daresbury Lab. June 1982

Rec ID Topic KW3 Country City Institute Name Ref and Notes 941 BMSRAD electron beam positioning synch. rad. UK Warrington Daresbury Lab. Greaves SRS Bull., Daresbury Lab., June 1982 942 SOLIDS SAW imaging synch. rad. UK Durham Durham Univ. Tanner SRS Bull., Daresbury Lab., Dec. 1982. SAW = surface acoustic wave 943 BMSRAD synch. rad. undulator development UK Warrington Daresbury Lab. Poole ESN 36-12 and SRS Bull., Daresbury Lab., Dec. 1982 944 BMSRAD synch. rad. wiggler measurements UK Warrington Daresbury Lab. Greaves ESN 36-12 and SRS Bull., Daresbury Lab., Dec. 1982 SOLIDS EXAFS 945 synch. rad. data base UK Warrington Daresbury Lab. **Pantos** ESN 36-12 and SRS Bull., Daresbury Lab., Dec. 1982 946 BMSRAD accelerator laser beat wave modeling ΠK Didcot Rutherford Appleton Lab. Lawson RAL Rep. RL-83-057, June 1983 947 BMSRAD accelerators nuclear physics review W Ger Darmstadt Heavy Ion Res. Estab. Proc. Sym. Intl. Facilities for Phys. Res., Copenhagen 21-23 Mar. 1983 948 BMSRAD accelerators elem. particles review Switz CERN Geneva Schopper Proc. Sym. Intl. Facilities for Phys. Res., Copenhagen, 21-23 Mar. 1983 949 PLASMA fusion research JET review UK Culham Lab. Abingdon Wuster

950 BMSRAD neutron beams facilities review
UK Oxford Clarendon Lab. Mitchell
Proc. Sym. Intl. Facilities for Phys. Res., Copenhagen 21-23 Mar. 1983

Proc. Sym. Intl. Facilities for Phys. Res., Copenhagen 21-23 Mar. 1983

951 BMSRAD synch. rad. facilities review

Denmrk Copenhagen Univ. of Copenhagen Buras

Proc. Sym. Intl. Facilities for Phys. Res., Copenhagen 21-23 Mar. 1983

952 PLASMA reactors advanced fuels feasibility
Austri Graz Tech. Univ. Graz Niederl
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

953 PLASMA reactors aneutronic requirements
Austri Graz Tech. Univ. Graz Heindler
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

954 PLASMA blankets neutronic code KFA expt. compar Poland Krakow Inst. of Phys. and Nucl. Tech Morstin Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June 1983

955 PLASMA fission-fusion breeder economics

Israel Beer-Sheva Nuclear Res. Cen. Negev Greenspan

Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

956 PLASMA fission-fusion D-cycle tokamak satellites
Austri Innsbruck Univ. Innsbruck Schoepf
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

957 PLASMA fission-fusion blanket experiment
Switz Lausanne Ecole Poly. Federale Haldy
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

958 PLASMA fission-fusion blanket time dependence
Austri Innsbruck Univ. Innsbruck Schoepf
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

959 CPBICF plasma focus neutrons ion emission
W Ger Stuttgart Univ. Stuttgart Schmidt
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

960 CPBICF plasma focus deut.emission energy & angle
Poland Warsaw Inst. Flasma Phys. & Laser Fusion Czekaj
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

961 CPBICF pellet gain superthermals numerics

Switz Lausanne Ecole Poly. Federale Tran

Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

962 CPBICF particle beam transport analytics
Yugos Maribor Univ. of Maribor Paulin
Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

963 PLASMA muon catalyzed hyperfine trans. liquid HD
Switz Villigen Swiss Inst. for Nucl. Phys. Petitjean
ESN 38-1 & Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

964 PLASMA muon catalyzed hyperfine trans. experiments
Austri Vienna Austrian Acad. of Sci. Breunlich
ESN 38-1 & Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

965 CPBICF muon catalyzed polarized ICF feasibility
Switz Wuerenlingen Swiss Fed. Inst. for Reactor Res. Seifritz
ESN 38-1 & Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

966 PLASMA muon catalyzed approaches evaluation

Switz Lausanne Ecole Poly. Federale Kumar

ESN 38-1 & Proc. 3rd Intl. Conf. on Emerging Nucl. Sys., Helsinki 6-9 June, 1983

967 CPBICF laser interaction GRECC review
France Palaiseau Ecole Poly. Fabre
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

968 CPBICF implosion pellet coating effect of
France Villeneuve-St-Georges CEA Limeil Bernard
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

969 CPBICF implosion plastic shells x-radiography
UK Belfast Queen's Univ. Lewis
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

970 CPBICF implosions emission diagno hot cores
UK London Imperial College MacGowan
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

Rec ID Topic	KW1	KW2	KW3	
Country City		<u>Institute</u>		Name
Ref and Notes	<u> </u>			

971 CPBICF planar target ablative wavelength dep
France Palaiseau Ecole Poly. Faral
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

972 CPBICF z-pinch spectroscopy non-Debye
UK London Imperial College Baldwin
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

973 LASERS x-ray laser plasma photoexcitation
Irland Dublin Trinity College Lunney
ESN 38-2 & 16th Euro. Conf. on Laser Interac. Matter, London 26-30 Sept 83

974 CPBICF laser target magnetic field Faraday rotation
France Toulouse Univ. Paul Sabatier Adrian
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

975 CPBICF heat flow inverse brems. Fokker-Planck
France Palaiseau Ecole Foly. Virmont
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

976 CPBICF Raman scattering ion fluctutations WKB model
Finland Helsinki Tech. Res. Cen. of Finland Heikkinen
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London, 26-30 Sept. 1983

977 CPBICF critical density spectral diag. non LTE
France Orsay Univ. Paris Sud Lamoureaux
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

978 CPBICF res. absorption steep gradient capacitor model
France Falaiseau Ecole Poly. Colunga
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

979 CPBICF He plasma laser heated density profiles

Italy Pisa Ist. di Fisica Atom. e Molec. Giulietti

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-36 Sept. 1983

980 CPEICF carbon plasma laser heated ion profiles
W Ger Kaiserslautern Univ. Keiserslautern Mann
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

KW2 Rec ID Topic KW3 Country City Institute Name Ref and Notes 981 LASERS x-ray rad. transport numerics UK London Imperial College Bond Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 CPBICF laser plasma 982 chaos wave coupling France Paris Univ. Pierre et Marie Curie Bobin Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 CPBICF smoothing 983 foil targets vs. wavelength UK London Imperial College Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Spet. 1983 984 CPBICF Al plasma line broadening time resolved UK London Imperial College Tabatabaei Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 985 BASICS random walks chaos diffusion W Ger Regensburg Univ. Regensburg Geisel European Phys. Soc. Bull. p5, May 1984 986 CPBICF heat transport spherical target 1.02 & .53 micron Imperial College UK Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 CPBICF laser interaction electron waves 987 theory Darmstadt Tech. Hochschule Mulser W Ger Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 988 CPBICF multilayer target plasma spectra vs. wavelength France Palaiseau Ecole Poly. Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983 989 CPBICF superthermals transport CO2 laser France Palaiseau Ecole Poly. Amiranoff Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

990 CPBICF planar target harmonic gen. Nd glass expt
France Toulouse Univ. Paul Sabatier Adrian
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

991 CPBICF ablative flow pellets theory + expt
Spain Madrid Univ. Poli. de Madrid Sanmartin
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

992 CPBICF ion spectra laser plasma pulse analysis
W Ger Kaiserslautern Univ. Kaiserslautern Eicher
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

993 CPBICF heat transport steep gradient numerics
France Palaiseau Ecole Poly. Luciani
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

994 CPBICF electron wave acceleration laser plasma
W Ger Darmstadt Tech. Hochschule Schneider
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

995 CPBICF light scattering solid target spectra
W Ger Garching MPI fur Quantenoptik Banfi
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

996 CPBICF Brillouin scat. damping mech. ruby expt.
W Ger Bochum Ruhr Univ. Gellert
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

997 CPBICF harmonic emission thin foils 1.06 micron expt
UK Colchester Univ. of Essex Aboites
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

998 CPBICF laser interaction hydro + EM SUNION code
W Ger Bochum Ruhr Univ. Sack
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

999 CPBICF electron transport harmonic gen foil accel.

W Ger Garching MPI fur Quantenoptik Withkowski

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1000 CPBICF spherical target Rayleigh Taylor laser etched
UK Didcot Rutherford Appleton Lab. Cole
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1001 HYDROD Al foils shock waves laser expts

France Poitiers Labo. d'Energetique et Detonique Cottet

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1002 CPBICF back reflection plastic foils spectra

France Palaiseau Ecole Poly. Fabre

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1003 CPBICF laser plasma x-ray absorption density measure

France Villeneuve-St-Georges CEA Limeil Combis

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1004 CPBICF rad. hydro high Z ld code
Czech Prague Univ. of Prague Drska
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1005 CPBICF smoothing layered target 0.35 micron expt
France Villeneuve-St-Georges CEA Limeil Meyer
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1006 CPBICF plastic foil acceleration 1.3 & 0.44 micron
W Ger Garching MPI fur Quantenoptik Maaswinkel
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1007 CPBICF nonuniformity illumination hydro effects
UK Didcot Rutherford Appleton Lab. Evans
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1008 CPBICF planar foil acceleration numerics
W Ger Garching MPI fur Quantenoptik Meyer-ter-Vehn
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1009 CPBICF planar target x-ray emission vs. wavelength
France Palaiseau Ecole Poly. Alaterre
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1010 CPBICF K edge preheat diagno x-ray spectra
Uk London Imperial College Hares
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

 Rec ID Country
 Topic KW1
 KW2
 KW3

 Institute
 Institute

Ref and Notes

1011 CPBICF high Z targets x-ray emission code analysis
France Villeneuve-St-Georges CEA Limeil Babonneau
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

Name

1012 CPBICF planar target x-ray emission vs wavelength
France Villeneuve-St-Georges CEA Limeil Bocher
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1013 CPBICF planar plastic x-ray emission PIN diode arrey
Switz Bern Univ. of Bern Schwarzenback
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1014 CPBICF laser hydro review theory + expt.

France Villeneuve-St-Georges CEA Limeil Berthier

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1015 CPBICF laser plasma review compression
UK Didcot Rutherford Appleton Lab. Key
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1016 CPBICF microballoon compression plasma expansion
Poland Warsaw Inst. Plasma Phys. & Laser Fusion Denus
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1017 ATOMIC laser plasma XUV lines Cu-like
Israel Yavne Soreq Nuclear Res. Cen. Gazit
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1018 CPBICF thin foil acceleration optical measure
France Palaiseau Ecole Poly. Fabre
Proc. 16th Euro. Conf. on Laser Interac. With Matter, London 26-30 Sept. 1983

1019 HYDROD laser craters hypervel. impact simulation

Prance Poitiers Labo. d'Energetique et Detonique Hallouin

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26~30 Sept. 1983

1020 CPBICF high-2 plasma ion emission vs. wavelength
W Ger Kaiserslautern Univ. Kaiserslautern Dinger
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	<u>KW3</u> <u>Name</u>
1021 CPBICF harmonic gen France Toulouse Proc. 16th Euro. Conf. on Laser	Univ. Paul Sabatier	Adrian
1022 CPBICF multilayer targe France Palaiseau Proc. 16th Euor. Conf. on Laser	et spectra Ecole Poly. Interac. with Matter,	numerics Alaterre London 26-30 Sept. 1983
1023 CPBICF radiation Czech Prague Proc. 16th Euro. Conf. on Laser	Univ. of Prague	Drska
1024 CPBICF ion beam target Israel Beer-Sheva Proc. 16th Euro. Conf. on Laser	Nuclear Res. Cen. Neg	ev Sapir
1025 CPBICF laser plasma France Palaiseau Proc. 16th Euro. Conf. on Laser		
1026 CPBICF laser plasma Switz Bern Proc. 16th Euro. Conf. on Laser	Univ. of Bern	Ladrach
1027 CPBICF rad transport UK London Proc. 16th Euro. Conf. on Laser	Imperial College	Rose
1028 CPBICF ablative flow Spain Madrid Proc. 16th Euro. Conf. on Laser	planar targets Univ. Poli. de Madrid Interac. with Matter,	
1029 CPBICF harmonic emissic Finlnd Helsinki Proc. 16th Euro. Conf. on Laser	Tech. Res. Cen. of Fi	

Raman scattering

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

Univ. Col. of North Wales

simulation

1030

Bangor

CPBICF mode conversion

Rec ID Topic KW1 Country City Ref and Notes	<u>KW2</u> <u>Institute</u>	<u>KW3</u> <u>Name</u>
1031 CPBICF microballoon	harmonic imaging	x-ray imaging
	Imperial College	Wark
Proc. 16th Euro. Conf. on Las	er Interac. with Matter	, London 26-30 Sept. 1983
1032 CPBICF foil targets	shock propagate	Nd glass expts
UK London	Imperial College	Rankin
Proc. 16th Euro. Conf. on Las	er Interac. with Matter	, London 26-30 Sept. 1983
1033 CPEICF microballoon UK Bristol	compression diag Bristol Univ.	alpha tracks Pews
Proc. 16th Euro. Conf. on Las		. London 26-30 Sept. 1983
1034 CPBICF laser plasma UK Aldermaston	diagnostics	HELEN facility Estab. Summers
Proc. 16th Euro. Conf. on Las		
1035 CPEICF x-ray pulses	Czech Tech. Univ.	Kalal
<u>-</u>		
ESN 38-2 & Proc. 16th Euro. C		•
1036 CPBICF foil target		
France Palaiseau	-	Fabbro
Proc. 16th Euro. Conf. on Las	er Interac. With Matter	, London 26-30 Sept. 1983
1037 CPBICF framing camer		sub ns
UK Colchester		Finn
Proc. 16th Euro. Conf. on Las	er Interac. with Matter	, London 26-30 Sept. 1983

1038 CPBICF intensifier x-ray 50 ps
UK London Imperial College Bradshaw
ESN 38-3 & Proc. 16th Euro. Conf. on Laser Interac. Matter, London 26-30 Sept 83

1039 CPBICF high-Z plasma x-ray spectra Nd glass expts
E Ger Berlin Cen. Inst. for Optics and Spec. Brunner
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1040 CPBICF polymer target laser etching UV lithography
UK Didcot Rutherford Appleton Lab. Rumsby
Proc. 16th Euro. Conf. on Laser Interac. With Matter, London 26-30 Sept. 1983

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute

Ref and Notes

1041 ATOMIC EXAFS laser x-rays Al K edge

UK London Imperial College Bradley
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

Name

1042 LASERS x-ray carbon recomb. gain calc.

E Ger Berlin Cen. Inst. for Optics and Spec. Brunner

ESN 38-2 & Proc. 16th Euro. Conf. on Laser Interac. Matter, London 26-30 Sept 83

1043 LASERS x-ray carbon recomb. gain measure

UK Hull Univ. of Hull Pert

ESN 38-2 & Proc. 16th Euro. Conf. on Laser Interac. Matter, London 26-30 Sept 83

1044 CPBICF LIB generation focusing expts

W Ger Karlsruhe Univ. of Karlsruhe Schmidt

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1045 CPBICF beam-plasma rad transport numerics

Spain Madrid Univ. Poli. de Madrid Minquez

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1046 CPBICF HIB targets synchrotron expt numerics

W Ger Garching MPI fur Quantenoptik Arnold

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1047 CPBICF ion stopping DT alphas track detector

UK Bristol Bristol Univ. Fews

ESN 36-8 & Proc. 16th Euro. Conf. on Laser Interac. Matter, London 26-30 Sept 83

1048 CPBICF ion stopping solid & plasma model

UK Birmingham Univ. of Birmingham Beynon

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1049 CPBICF laser plasma experiments review

Italy Frascati Centro Richerche Energia-ENEA Caruso

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1050 CPBICF heat flow ablation plasma nonlinear

UK London Imperial College Kho

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1051 CPBICF heat flow steep gradient Fokker Planck
France Palaiseau Ecole Poly. Luciani
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1052 CPBICF heat flow nonlocal hybrid model

Israel Beer-Sheva Nuclear Res. Cen. Negev Shvarts

Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1053 CPBICF heat flow instabilities high-z
UK London Imperial College Epperlein
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1054 CPBICF heat flow ablation plasma Fokker Planck
Uk Didcot Rutherford Appleton Lab. Bell
Proc. 16th Euro. Conf. on Laser Interac. with Matter, London 26-30 Sept. 1983

1055 CHEMAT laser processing beam target review
W Ger Darmstadt Tech. Hochschule Herziger
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1056 WETHER IR laser atmos. prop. turbulent expt.
France Chatillon ONERA Billard
FSN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1057 LASERS resonators high power design integral eqn.

W Ger Kaiserslautern Univ. Kaiserslautern Weber

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1058 LASERS DF spectral output floures. expts
W Ger Stuttgart DFVLR Massig
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1059 CHEMAT CO2 processing heat transfer anal + expt.

Italy Orbassano Cen. Richerche FIAT Alessandretti
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1060 LASERS pulsed discharge charging system high rep rate

Israel Beer-Sheva Nuclear Res. Cen. Negev Chuchem

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1061 LASERS CO2 TE CW highpower flow effects

Italy Milan CISE S.p.A. Fantini

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1062 LASERS CO2 CW industrial 10 KW
UK Abingdon Culham Lab. Kaye
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept. 82

1063 LASERS elec discharge turbulent flow stochastic model
Israel Beer-Sheva Ben Gurion Univ. Negev Khait
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1064 CHEMAT laser cutting oxygen assisted steel sheet

Italy Naples Univ. di Napoli Sergi
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1065 CHEMAT laser cutting inert gas assist steel sheet

Italy Naples Univ. di Napoli Memola

ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1066 LASERS oxy-iodine cw chemical compact

Israel Beer-Sheva Ben Gurion Univ. Negev Rosenwaks

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1067 LASERS supersonic HF high rep rate performance

Israel Beer-Sheva Nuclear Res. Cen. Negev Chuchem

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1068 HYDROD laser interaction target response reduced atmos.

France Marseille IMFM Creput

FSN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1069 HYDROD atmos. breakdown aerosols hydro model
France Marseille IMFM Vigliano
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1070 LASERS freq. tripling laser excited Xenon
France Toulouse Univ. Paul Sabatier Salamero
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1983

Rec ID Topic KW1 KW2 KW3

Country City Institute Name
Ref and Notes

1071 LASERS Ar-Kr VUV emission kinetics
France Toulouse Univ. Paul Sabatier Brunet
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1072 LASERS resonators tapered reflec. numerics

Italy Naples Univ. di Napoli Luchini

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1073 LASERS x-ray Al recomb. inversion
France Orsay Univ. Paris Sud Jamelot
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1074 LASERS XeF excimer long. discharge 352 nm

Switz Bern Inst. fur Angewandte Phys. Gerber

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1075 LASERS turbulent mixing laser cavity numerics
France Chatillon ONERA Schmitt
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1076 LASERS gas dynamic optical cavity analytics
Poland Gdansk Polish Acad. of Sci. Rabcznk
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept. 1982

1077 LASERS CO2 nozzle mixing semi-empirical W Ger Stuttgart DFVLR Schall Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1078 LASERS CO2 microwave excited cw performance
W Ger Stuttgart DFVLR Schall
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1079 LASERS CO2 subsonic rf excitation W Ger Stuttgart DFVLR Schock Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1080 LASERS IR waveguides dielec. coated

Italy Naples Univ. di Napoli Cutolo

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute

Ref and Notes

lo

1081 LASERS x-ray plasma recomb. scaling laws
W Ger Stuttgart DFVLR Bohn
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

Name

1082 LASERS XeCl x-ray preion. high rep. rate
France Marseille IMFM Fontaine
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1083 CHEMAT laser cutting guided flow bulk steel
Austri Wien Tech. Univ. Wien Schuocker
ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1034 CHEMAT laser treatment alloy surface Larameters

Italy Padua Univ. di Padova Ramons

ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1085 HYDROD laser interaction metal vapor gas dynamics

Italy Turin Poli. di Torino Germano

ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

1086 LASERS beam profile thermography expt & theory
Italy Naples Univ. di Napoli Monti
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1087 HYDROD flow mixing trip jets visualization

Relgum Rhode St. Genese Von Karman Inst. Manfriani

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1088 LASERS gas dynamic expansion nozzle array design

Israel Beer-Sheva Nuclear Res. Cen. Negev Chuchem

Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept. 1982

1089 LASERS CO2 research matter processing
W Ger Dusseldorf Univ. of Dusseldorf Uhlenbusch
ESN 38-3 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept 82

1090 CHEMAT laser absorption waves metal processing

Italy Milan CISE S.p.A. Donati

ESN 36-11 & Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 82

Rec ID Topic KW1 KW2 KW3

Country City Institute Name
Ref and Notes

1091 ATOMIC vibrat. states supersonic jets CO-N2 mix

France Gif-sur-Yvette CEN Saclay Gaveau
Proc. 4th Intl. Sym. Gas Flow & Chem. Lasers, Stresa, 13-17 Sept, 1982

1092 PLASMA mag. quadrupole steady flow orbit theory

UK Manchester UMIST Daly

Plasma Phys. 24, no.8, p923 (1982)

1093 ATOMIC many atom sys. Dicke model Fokker Planck

UK Manchester UMIST Bullough

J. Phys. B15, p2635 (1982)

1094 ATOMIC bistability refractive index theory

UK Manchester UMIST Bullough

Quantum Elec. & Electro-Optics, P.L. Kinghted., John Wiley, 1983, p229

1095 SOLIDS electrification contact dielectrics

UK Manchester UMIST Rose-Innes

ESN 37-7 and J. Phys. D15, p2283 (1982)

1096 SOLIDS electrification contact tunnelling

UK Manchester UMIST Lowell

ESN 37-7

1097 SOLIDS electrification aircraft ice particles

UK Manchester UMIST Illingworth

ESN 37-9 and EOARD Project Brief, 18 Nov. 82

1098 BASICS solitons Sine-Gordon stat mech

UK Manchester UMIST Bullough

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1099 BASICS solitons integral eqns linearization

Nether Leiden Inst. Lorentz Capel

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1100 SOLIDS solitons Josephson junc. sine-Gordon

Denmark Lyngby Tech. Univ. of Denmark Christiansen

ESN 36-9 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1101 BASICS solitons space-time numerics UK Oxford Oxford Univ. Curir

ESN 36-10 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1102 BASICS solitons spin systems inverse method
France Paris Univ. Pierre et Marie Curie de Vega
Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1103 BASICS solitons inv. scattering initial potential UK London Imperial College Elgin Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1104 SOLIDS solitons ferromagnets domain walls

UK Lancaster Univ. of Lancaster Fairbairn

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1105 BASICS solitons nonlin. evo. eq. structure

UK Manchester UMIST Fordy

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1106 BASICS solitons KdV eqn Backlund trans.
UK Newcastle upon Tyne Univ. of Newcastle upon Tyne Freeman
Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1107 SOLIDS solitons diatomic chains anal. & numerics
France Dijon Univ. de Dijon Pnevmatikos
ESN 36-10 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1108 HYDROD internal waves stratified finite depth eqn

Italy Rome Univ. degli Studi-Roma Gibbons

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1109 BASICS solitons KdV eqn nuclear appli.
W Ger Hannover Univ. of Hannover Hefter
Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1110 SOLIDS solitons sine-Gordon numeric kinks
France Nice Observ. de Nice Fernandez

France Nice Observ. de Nice Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute
 N

Ref and Notes

1111 SOLIDS solitons ferromagnet compressible

Poland Warsaw Tech. Univ. Holyst

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1112 BASICS solitons Boussinesq eqn numerics

UK Dundee Univ. of Dundee Manoranjan

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1113 BASICS solitons nonlin TL KdV tunneling

Italy Padua Univ. di Padova Minelli

ESN 36-9 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1114 HYDROD solitons internal waves Andaman Sea

Italy Turin Ist. Cosmo-Geofisica CNR Osborne

ESN 36-9 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1115 SOLIDS solitons atomic chain substrate poten.

France Dijon Univ. de Dijon Peyrard
ESN 36-10 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1116 BASICS solitons Schrodinger eqn conservation laws
Italy Rome Univ. di Roma Bruschi

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1117 BASICS solitons Heisenberg, chain spin dynamics

Switz Zurich IBM Zurich Research Lab. Schneider

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1118 BASICS solitons KdV egn phase shifts

Nether Utrecht Rijksuniv. Utrecht Schuur

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1119 BASICS solitons Backlund trans. gauge trans.

Italy Lecce Univ. di Lecce Boiti

Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

1120 BASICS solitons phase boundary stat. mech.

UK Edinburgh Univ. of Edinburgh Wallace

ESN 36-10 and Proc. Solitons 82 Conf., Edinburgh 23-27 Aug. 1982

Countr	Topic KW1 Zity Notes	KW2 Institute	KW3	<u> Nаше</u>
		large screen Dwight Cavendish Co.	laser projec	tion Shortle
	-	ship hulls Univ. of Liverpool	water channe	l Millward
	HYDROD turbulence Liverpool -7	pipe flow Univ. of Liverpool	hull roughne	ss Lewkowicz
UK	~	ter electroviscous Univ. of Liverpool Rep. FM/83/82, 1982	clutch	Sproston
	Liverpool	boundary layer Univ. of Liverpool	velocity pro	be Gibbings
UK		metallurgy AERE Harwell aterials Tech., p67, Feb.	applications	Windsor
UK	BMSRAD neutron source Didcot -8 and Phys. Bull, 33, p	AERE Harwell	scattering d	iag Windsor
	CPBICF REB Amsterdam Phys. 24, no.6, p691 (1	angular dist. Inst. for Atomic & Mole 982)	radial profi ec. Phys.	le Janssen
	PLASMA temp. measure Nieuwegein zen Rep. 82-140, 1982	Rutherford scat. Inst. voor Plasmafysica		Brocken
	HYDROD diffusion Leiden ætt. 91, no.6, p290 (19	suspensions Inst. Lorentz 082)	3-body hydro	Beenakker

 Rec ID
 Topic
 KW1
 KW2
 KW3

 Country
 City
 Institute

Ref and Notes

1131 BASICS solitons Boussinesq eqn linearization

Nether Leiden Inst. Lorentz Quispe

Name

Phys. Lett. 91A, no.4, p143 (1982)

1132 ENERGY air pollution analysis ion source

Nether Amsterdam Inst. for Atomic & Molec. Phys. Genuit

ESN 36-12

1133 BMSRAD negative ions rf accel MEQALAC

Nether Amsterdam Inst. for Atomic & Molec. Phys. Granneman

ESN 36-12

1134 DIAGNO XUV windows fabrication

Nether Leiden Huygens Lab. Dekorta

ESN 36-12 and Rev. Sci. Instrum. 52, no.5, p673 (1981)

1135 HYDROD acoustic waves laser generated solid diagnosis

UK Hull Univ. of Hull Dewhurst

J. Appl. Phys. 53, no.6, p4064 (1982)

1136 CHEMAT neutron beam material testing review

UK Didcot AERE Harwell Schofield

ESN 37-8

1137 CPBICF REB injection neutral H2

Nether Amsterdam Inst. for Atomic & Molec. Phys. de Haan

Phys. Fluids 25, no.4, p592 (1982)

1138 DIAGNO mass spectra laser desorption thermal effects

Nether Amsterdam Inst. for Atomic & Molec. Phys. Peyl

J. Mass Spectr. & Ion Phys. 42, pl25 (1982)

1139 SOLIDS laser annealing implanted Si threshold

Nether Amsterdam Inst. for Atomic & Molec. Phys. Hoonhout

J. Appl. Phys. 53, no.6, p4379 (1982)

1140 ATOMIC negative ions W-Cs contact models

Nether Amsterdam Inst. for Atomic & Molec. Phys. Rasser

ESN 36-12 and Surf. Sci. 118, p697 (1982)

1141 CPBICF REB LF instability neutralized

Nether Amsterdam Inst. for Atomic & Molec. Phys. Hopman

Name

Plasma Phys. 24, p951 (1982)

1142 PLASMA high beta turbulent heating tokamak
Nether Nieuwegein Inst. voor Plasmafysica de Kluiver
Rijnhuizen Rep. I.R. 82/053, 1982

1143 CPBICF current loop optical faraday rotation
Nether Nieuwegein Inst. voor Plasmafysica Bobeldijk
ESN 37-1

1144 LASERS bistability saturable absorb limit cycle
Spain Madrid Univ. Nac. de Educacion a Distancia Velarde
Phys. Rev. Lett. 49, p35 (1982)

1145 BMSRAD arc lamps high pressure temp. determine
France Toulouse Univ. Paul Sabatier Damelincourt
ESN 37-6 and J. Appl. Phys. 53, no.11, p7259 (1982)

1146 SOLIDS plasmon-phonon Raman scattering Sb2Te3

Greece Athens Nat. Tech. Univ. of Athens Anastassakis
ESN 37-6 and Zeits. Phys. B-Condensed Matter 49, pl91 (1982)

1147 WETHER underground tunnels EM scattering
Greece Athens Nat. Tech. Univ. of Athens Uzunoglu
ESN 37-6 and J. Phys. A15, p459 (1982)

1148 BMSRAD EM scattering dielectric wg inhomogeneity

Greece Athens Nat. Tech. Univ. of Athens Uzunoglu
ESN 37-6 and J. Opt. Soc. Am. 72, no.5, p628 (1982)

1149 BMSRAD optical fiber eccentric clad symmetric modes
Greece Athens Nat. Tech. Univ. of Athens Metrou
ESN 37-6 and IEEE Trans. MTT-30, no.3 p217 (1982)

1150 BMSRAD microstrip dipole radiation gyromagnet

Greece Athens Nat. Tech. Univ. of Athens Tsalamengas

ESN 37-6 and J. Appl. Phys. 53, no.11, p7149 (1982)

1151 SOLIDS Raman spectra FIR scattering semiconductors

Greece Athens Nat. Tech. Univ. Zografu Anastassakis
ESN 37-6

1152 CHEMAT neutron reactions metals reactor material

Greece Athens Nat. Tech. Univ. Zografu Xenoulis
ESN 37-6

1153 SOLIDS x-ray analysis crystals organic molecules

Greece Athens Nucl. Res. Cen. Demokritos Filippakis
ESN 37-6

1154 SOLIDS Mossbauer spectra pottery chemical bonds

Greece Athens Nucl. Res. Cen. Demokritos Kostikas

ESN 37-6

1155 COMPUT software acous tomography signal processing
Greece Athens Nucl. Res. Cen. Demokritos Laskaris
ESN 37-6

1156 PLASMA drift waves argon discharge rf heated

Greece Athens Nucl. Res. Cen. Demokritos Anastassiades

ESN 37-6 and J. Phys. Soc. Japan 52, p492 (1983)

1157 SOLIDS plasmons Al matrix He cavities
W Ger Julich Kernforsch. Julich Manzke
Phys. Rev. Lett. 51, no.12, p1095 (1983)

1158 PLASMA limiter metal impurity transport
W Ger Julich Kernforsch. Julich Claassen
Nucl. Fusion 23, no.5, p597 (1983)

1159 PLASMA drift waves spectra magnetic shear
W Ger Julich Kernforsch. Julich Rogister
Phys. Fluids 26, no.6, p1467 (1983)

1160 EMSRAD channeling positrons silicon

Switz Zurich Univ. of Zurich Patterson

ESN 38-1 and SIN Newsletter no.15, Jan. 1983

1161 BMSRAD pion therapy supercon magnet progress report
Switz Villigen Swiss Inst. for Nucl. Res. von Essen
SIN Medical Newsletter no.4, Aug. 1982

1162 PLASMA LCT coil NbTi He cooled
Switz Villigen Swiss Inst. for Nucl. Res. Vecsey
Proc. 8th Intnl. Conf. on Magnet Tech., Grenoble, 5-9 Sept. 1983

1163 BMSRAD meson source 2 GeV accelerator ASTOR

Switz Villigen Swiss Inst. for Nucl. Res. Joho

Proc. Particle Accelerator Conf., Santa Fe, 1983

1164 EMSRAD channeling radiation anharmonic poten
Switz Geneva CERN Moller
ESN 38-1 and CERN Rep. EP/82-10, Jan. 1982

1165 CPBICF Brillouin scat z-pinch plasma theory + expt
W Ger Bochum Ruhr Univ. Gellert
App. Phys. B32, p2562 (1983)

1166 WETHER solar flares stability 2d theory
W Ger Bochum Ruhr Univ. Schindler
Solar Physics 87, pl03 (1983)

1167 CPBICF gas puff plasma formation Stark broadening
W Ger Bochum Ruhr Univ. Ackermann
ESN 38-2 and J. Phys. D16, p773 (1983)

1168 PLASMA energy principle kinetic 2d theory
W Ger Bochum Ruhr Univ. Schindler
Phys. Fluids 26, no.8, p2222 (1983)

1169 WETHER active plasmas planetary solar
W Ger Bochum Ruhr Univ. Schindler
Physica Scripta T2/1, p163 (1982)

1170 PLASMA solitons electromagnetic quasistatic
W Ger Bochum Ruhr Univ. Shukla
Phys. Fluids 26, no.7, p1769 (1983)

Rec ID Topic KW1 Country City Ref and Notes	KW2 Institute	KW3	Name
1171 PLASMA Alfven waves W Ger Bochum Phys. Rev. A27, no.3, p1702 (nonlinear Ruhr Univ. (1983)	propagation	Shukla
1172 PLASMA Langmuir wave W Ger Bochum Phys. Fluids 26, no.4, p959	es EM instability Ruhr Univ. (1983)	analytics	Shukla
1173 CPBICF z-pinch W Ger Bochum Phys. Fluids 26, no.6, pl630	laser scattering Ruhr Univ. (1983)	theory + exp	ot Maurmann
1174 PLASMA ion plasma wa W Ger Bochum Phys. Lett. 96A, no.4, p195	ave mode conversion Ruhr Univ. (1983)	slow wave st	ruc. Kramer
1175 PLASMA LH waves W Ger Bochum Plasma Phys. 25, no.8, p911	absorption Ruhr Univ. (1983)	turbulent	Bohm
1176 PLASMA ion acous was W Ger Bochum Plasma Phys. 25, no.4, p435	Ruhr Univ.	diagnostic	Derra
1177 PLASMA diffusion W Ger Bochum Phys. Fluids 26, no.5, pl240	high B-field Ruhr Univ. (1983)	guiding cent	ter Fromling
1178 SOLIDS aluminum W Ger Dusseldorf ESN 38-3 and to be publ. in 3	reflectivity Univ. of Dusseldorf J. Appl. Phys.	melting poin	nt Dreehsen
1179 PLASMA neutral trans W Ger Dusseldorf J. Nucl. Materials 111 & 112	Univ. of Dusseldorf	res. fluores	s. Hackmann
1180 CPBICF plasma focus W Ger Dusseldorf	high speed Univ. of Dusseldorf	polarity ef	fects Decker

Phys. Lett. 89A, no.8, p393 (1982)

Rec ID Topic KW1 KW2 KW3 Institute Country City Name Ref and Notes 1181 LASERS D20 high power CO2 pumped Ecole Poly. Federale Switz Lausanne Behn J. Appl. Phys. 54, no.6, p2995 (1983) 1182 PLASMA MHD stability helical symmetry 2d code MPI fur Plasmaphysik W Ger Garching Merkel Nucl. Fusion 23, no.8, pl061 (1983) PLASMA potential jumps argon 1183 electron dist. Switz Lausanne Ecole Poly. Federale Guyot Phys. Fluids 26, no.6, pl596 (1983) PLASMA MHD stability spheromak 1184 vs aspect ratio Switz Lausanne Ecole Poly. Federale Pfersich Nucl. Fusion 23, no.9, pll27 (1983) PLASMA Alfven waves 1185 plasma heating tokamak Switz Lausanne Ecole Poly. Federale de Chambrier Plasma Phys. 25, no.9, pl021 (1983) PLASMA MHD modes radial structure tokamak 1186 Switz Lausanne Ecole Poly. Federale Troyon Plasma Phys. 25, no.2, p207 (1983) PLASMA nonlinear waves 3-fluid plasma 1187 numerics Switz Lausanne Ecole Poly. Federale Festeau-Barrioz Computer Phys. Comm. 27, pll (1982) PLASMA Langmuir waves nonlin evolut 1188 QUIPS device Switz Lausanne Ecole Poly. Federale Michel Physica Scripta T2/2, p571 (1982) 1189 LASERS D20 oscillators
Switz Lausanne Ecole Poly. Federale comparisons Green IEEE J. Quant Elect. QE-19, no.2, p222 (1983)

132

FIR laser

Ecole Poly. Federale

diagnostic

Siegrist

PLASMA transport

Appl. Optics 22, no.9, pl318 (1983)

1190

Switz Lausanne

KW2 KW3 Rec ID Topic Institute Name Country City Ref and Notes nonrel elec. in CO2 field BMSRAD FEL 1191 Gover Tel Aviv Univ. Israel Tel Aviv EOARD Proposal 83-076 (1983) BMSRAD Smith Purcell rad. electron beam grating 1192 Tel Aviv Univ. Gover Israel Tel Aviv AFOSR Rep., May 1983 communication expt. + compute 1193 WETHER atmos. trans. Lipson Technion Israel Haifa ESN 37-10/11 and Infrared Phys. 20, pl65 (1980) LASERS gas mixtures electron attach chlorine donors 1194 Kligler Hebrew Univ. Israel Jerusalem J. Chem. Phys. 77, no.7, p3458 (1982) overview CPBICF HIF 1195 Rutherford Appleton Lab. Lawson Didcot RAL Rep. RL-83-083, Sept. 1983 vunerability aircraft CPBICF lightening 1196 Culham Lab. Burrows UK Abingdon ESN 37-4 and Culham Rep. CLM-R212, 1981 PLASMA argon e-beam excited elec distrib 1197 Univ. Paris Sud Bretagne France Orsay J. Phys. D15, p2205 (1982) CPBICF ion stopping dense plasma random phase 1198 Univ. Paris XI Maynard France Orsay Phys. Rev. A26, no.1, p665 (1982) 1199 PLASMA surfatron microwave excited expt.

J. Physique-Letters 43, pL71 (1982)

Univ. Paris XI

Chaker

1200 PLASMA surfatron inhomo plasma propagation
France Orsay Univ. Paris XI Nghiem
J. Appl. Phys. 53, no.4, p2920 (1982)

France Crsay

Rec ID Topic KW1 KW3 Institute KW2 Name Country City Ref and Notes 1201 LASERS ring resonator bistability solitons Univ. Munster Paulus W Ger Munster Phys. Lett. 102A, no.3, p89 (1984) 1202 CPBICF breakdown air water vapor Eindhoven Univ. of Tech. Verhaart Nether Eindhoven J. Appl. Phys. 55, no.9, p3286 (1984) SOLIDS optical bistab. band shrinkage theory 1203 W Ger Frankfurt Univ. of Frankfurt Schmidt Appl. Phys. Lett. 44, no.8, p787 (1984) SOLIDS thin films organic ion implanted Catania Univ. di Catania C 1204 Calcagno Italy Catania Appl. Phys. Lett. 44, no.8, p761 (1984) LASERS ring cavity molecular yall Heriot Watt Univ. molecular gas hysteresis 1205 Harrison UK Appl. Phys. Lett. 44, no.8, p716 (1984) electroplate MFQ devices CHEMAT e-beam litho 1206 Tech. Univ. Aachen Kratschmer W Ger Aachen Appl. Phys. Lett. 44, no.10, p1011 (1984) EM emission lab simulation WETHER earthquake 1207 Ist. di Astrofisica Spaziale Bianchi Italy Rome Nature 308, p830, 26 Apr. 84 BASICS fractal dendritic growth electric expt 1208 Univ. of Cambridge Brady UK Cambridge Nature 309, p225, 17 May 84 laser driven metal targets 1209 HYDROD shock waves Ecole Nationale Superieure Cottet France Poitiers Phys. Rev. Lett. 52, no.21, p1884 (1984)

Univ. degli Studi di Milano Casati

BASICS many body system chaotic conductivity

1210

Italy Milan

Phys. Rev. Lett. 52, no.21, p1861 (1984)

Rec ID Topic KV Country City Ref and Notes		KW2 titute	KW3	<u>Name</u>
1211 BASICS of France Nice Phys. Rev. Lett.	Uni	random walks v. de Nice 1984)	Monte Carlo	Arneodo
1212 BASICS ra W Ger Julich Phys. Rev. Lett. !	Ker	linear chain nforsch. Julich 1984)	trapping	Anlauf
1213 BASICS it Portug Lisbon Phys. Lett. 102A,	CFM		time evolutio	on de Deus
	Phi	acoustic res. lips Research Labs. 4)		Jongerius
	MPI	bolometer fur Plasmaphysik 4)	thin film	Muller
1216 CPBICF at	nnular z-pinch Imp	gas puff erial College	x-ray source	Dangor

ESN 37-9

Appendix C:

Subject List

Rec ID	Topic	KMI	KW2	KW3	Country
500	ATOMIC	argon	excitation	cross sections	D
201	ATOMIC	autoinization	laser induced	spectrum	Portug W Ger
1094	ATOMIC	bistability	refractive index	theory	uk UK
321	ATOMIC	clusters	plasma frequency	particle size	
347	ATOMIC	deuteron	reflection	first wall	Italy Sweden
580	ATOMIC	dissoc. recomb.	afterglow	temp. depend.	UK
168	ATOMIC	electron	backscatter	thin films	W Ger
172	ATOMIC	electron	mobility	gases	Italy
508	ATOMIC	electron	penetration	expt & theory	Denmrk
171	ATOMIC	electron	spectroscopy	review	Sweden
818	ATOMIC	electron states	polyatomic mol.	experiment	Yugos
1041	ATOMIC	EXAFS	laser x-rays	Al K edge	uk Uk
821	ATOMIC	excitons	argon solid	VUV synch.	W Ger
731	ATOMIC	FIR spectra	ferroelectrics	improved method	France
406	ATOMIC	fractal surface	molecules	adsorption	Israel
501	ATOMIC	He-Co	ionization	glow discharge	Israel
166	ATOMIC	heavy ion	wake	interference	W Ger
199	ATOMIC	HeH	molecular states		Spain
167	ATOMIC	helium	ionization	ions	Denmrk
688	ATOMIC	hemoglobin	ps relaxation	mm spectra	W Ger
310	ATOMIC	high pressure	spectroscopy	molecular forces	UK GCZ
170	ATOMIC	hydrogen	atomic	stable	Nether
480	ATOMIC	ionization	laser induced	two-step process	Egypt
1017	ATOMIC	laser plasma	XUV lines	Cu-like	Israel
812	ATOMIC	light ions	absorption spec	VUV	Italy
903	ATOMIC	line broadening	nonlinear	Poisson stat.	W Ger
908	ATOMIC	line broadening	Stark effect	rf discharge	W Ger
816	ATOMIC	line broadening	Thomas-Fermi	finite temp.	Israel
730	ATOMIC	mag. resonance	mm wave range	exptl tech.	W Ger
1093	ATOMIC	many atom sys.	Dicke model	Fokker Planck	UK
370 730	ATOMIC	microwave	sensitivity	yeast	W Ger
729 826	ATOMIC	molec. interac.	ps time scale	IR study	France
581	ATOMIC	molec. states	highly excited	structure	France
1140	ATOMIC	multiple ions	photon absorp	rare gases	France
582	ATOMIC ATOMIC	negative ions	W-Cs contact	models	Nether
169	ATOMIC	N2 glow dis.	emission spec	temp. measure	France
557	ATOMIC	optical	linewidth	subnatural	Poland
325		optogalvanic	dye laser pumped	neon discharge	Israel
822	ATOMIC ATOMIC	oxygen-iodine photoconduction	kinetics	spectroscopy	France
819	ATOMIC		argon solid	VUV synch.	Israel
820	ATOMIC	photoemission photoionization	rare gas solid	excitons	W Ger
636	ATOMIC	Raman spectra	Xenon excimers	VUV synch.	Israel
312	ATOMIC	rare-halogen	living cells	LF lines	Italy
823	ATOMIC	resonant emission	atomic processes	lasing theory	UK
698	ATOMIC	Rydberg atoms	metals	theory	Sweden
566	ATOMIC	Rydberg maser	mm wave interac. super-radiant	Na beam	France
602	ATOMIC	Rydberg state	stimulated rad.	microwaves	France
331	ATOMIC	spectroscopy	He-like titanium	corrections	France
825	ATOMIC	spectroscopy	high resolution	plasma	France
280	ATOMIC	spectrum	weak lines	magnetic field	UK
546	ATOMIC	spontan emission	cavity enhanced	observed law	UK
			area amanced	single atom	France

Rec ID	Topic	KW1	KW2	КМЗ	Country
360	ATOMIC	stopping power	light ions	low velocity	Denmrk
627	ATOMIC	stored ions	buffer gas	distribution func	France
411	ATOMIC	surface states	layered matter	graphite	Switz
939	ATOMIC	trace element	analysis	synch. rad.	UK
811	ATOMIC	transition rates	atoms and ions	computer code	UK
355	ATOMIC	UF6	laser absorption	isotope sep.	Israel
1091	ATOMIC	vibrat. states	supersonic jets	CO-N2 mix	France
545	ATOMIC	VUV spectra	He bubbles	in Al and tin	Belgum
319	ATOMIC	water	bond network	molecular dynam.	W Ger
590	ATOMIC	x-ray absorbtion	photoemission	selection rules	France
815	ATOMIC	XUV	photoemission	atomic iodine	France
153	BASICS	Abel	inversion	integral eqn.	Israel
563	BASICS	Abel inversion	analytic rep.	exptl data	UK
645	BASICS	attractor	laser	master equation	UK
890	BASICS	automata	quantum mech.	self measure	Israel
871	BASICS	bifurcation	frequency div.	Schottky circuit	UK
398	BASICS	channeling	positrons	lattice blocking	Switz
257	BASICS	chaos	bifurcation	RCL circuit	Portug
154	BASICS	chaos	chem diffusion	model	Czech
880	BASICS	chaos	chem. oscil.	stirred & forced	Czech
646	BASICS	chaos	elec. circuit	Toda oscillator	W Ger
152	BASICS	chaos	electronic	nonlin circuit	Italy
874	BASICS	chaos	forced pendulum	expt. & numerics	E Ger
883	BASICS	chaos	Hamiltonian sys.	quartic potential	UK
650	BASICS	chaos	hopping	elec. circuit	Italy
873	BASICS	chaos	Joshephson junc.	circuit analog	W Ger
872	BASICS	chaos	noise	bistable circuit	Italy
459	BASICS	chaos	nonlinear TL	experiment	UK
875	BASICS	chaos	RCL circuit	general study	UK
870	BASICS	chaos	reverse bifur.	RCL circuit	Portug
1211	BASICS	chaotic maps	random walks	Monte Carlo	France
881	BASICS	chem reactions	nonlinear	spatial structure	Israel
882	BASICS	chemical waves	nonlin diffusion	3-D	UK
889	BASICS	clusters	growth & coalesc	theory & sim	France
419	BASICS	critical phen.	kinetic	1D lattice	W Ger
933	BASICS	electron	stability	new limit	Italy
914	BASICS	element 109	HI collisions	Fe + Bi	W Ger
263	BASICS	enzyme	strange attractor	oscillating model	Denmrk
324	BASICS	Euler Eqn.	implicit	solutions	France
208	BASICS	ferromagnetic	self energy	cylinder	Israel
373	BASICS	fractal	aggregates	simulation	Israel
1208	BASICS	fractal	dendritic growth	electric expt	UK
366	BASICS	fractals	aggregation	surface	Hungry
657	BASICS	fractals	Brownian motion	parameter	UK
409	BASICS		dielectric	breakdown	Switz
640	BASICS	fractional charge	semiconductor	spectral search	Nether
294	BASICS		nonlinear	intermittent	Italy
894	BASICS	heavy nuclei	synthesis	stability limit	W Ger
150	BASICS		rf cavity	parity	Switz
386	BASICS	information	quantum limit	entropy	UK
651	BASICS	-	cellular automata	exact results	Israel
1213	BASICS	iterative maps	cellular automata	time evolution	Portug

Rec ID	Topic	KW1	KW2	КW3	Country
579	BASICS	iellium	stat. mech.	2d circular	Norway
144	BASICS	liquid helium	nucleation	critical point	W Ger
589	BASICS	liquid helium	quantized	evaporation	UK
1210	BASICS	many body system	chaotic	conductivity	Italy
477	BASICS	neutron	interference	accel. frame	W Ger
913	BASICS	neutron scatter	uranium	n interferometer	Italy
644	BASICS	noise	identity map	random function	UK
382	BASICS	nonlin. oscil.	Poincare Map	neon lamp	Nether
918	BASICS	nuclear splitting	high E protons	break point	W Ger
313	BASICS	partial d.e.	nonlinear	asymptotic anal.	Nether
891	BASICS	percolation	fractal lattice	renorm group	Israel
628	BASICS	phase interface	fluctuations	dynamics	W Ger
892	BASICS	phase trans.	fractals	Ising models	Israel
159	BASICS	primes	public key codes	cryptography	Israel
157	BASICS	primes	tests		France
158	BASICS	primes	tests		Nether
648	BASICS	quadratic map	population map	log link	Belgum
416	BASICS	quantum	operational	measurements	Poland
155	BASICS	quantum mech.	Bells ineq.	two photon expt.	France
318	BASICS	quasiperiodic	solitons	Sine Gordon	Poland
429	BASICS	radioactivity	carbon emission	223Ra	UK
985	BASICS	random walks	chaos	diffusion	W Ger
365	BASICS	random walks	fractals	2D	France
1212	BASICS	random walks	linear chain	trapping	W Ger
658	BASICS	ring gyros	adiabat. invar.	model	UK
420	BASICS	SAWs	group renorm.	gamma exponent	W Ger
295	BASICS	Schrodinger Eqn.	quartic potential	exact solution	UK
887	BASICS	self avoid walks	fractals	Monte Carlo	France
886	BASICS	self avoid walks	renorm group	critical prop.	UK
888	BASICS	self avoid walks	statistics	Monte Carlo	France
357	BASICS	self avoiding	walks	scaling	Israel
418	BASICS	self avoiding	walks	spiralling	Nether
619	BASICS	Sine Gordon	Weierstrass f	solutions	Denmrk
1119	BASICS	solitons	Backlund trans.	gauge trans.	Italy
1131	BASICS	solitons	Boussinesq eqn	linearization	Nether
1112	BASICS	solitons	Boussinesq eqn	numerics	UK
252	BASICS	solitons	Davydov	lifetime	Denmrk
592	BASICS	solitons	DNA	micro. model	W Ger
296	BASICS	solitons	EM effects	DNA function	UK
917	BASICS	solitons	heavy ion reac.	momentum trans.	W Ger
1117	BASICS	solitons	Heisenberg, chain	spin dynamics	Switz
1099	BASICS	solitons	integral eqns	linearization	Nether
1103	BASICS	solitons	inv. scattering	initial potential	UK
1106	BASICS	solitons	KdV eqn	Backlund trans.	UK
1109	BASICS	solitons	KdV eqn	nuclear appli.	W Ger
1118	BASICS	solitons	KdV eqn	phase shifts	Nether
349	BASICS	solitons	Korteweg de Vries	recurrence	W Ger
1113	BASICS	solitons	nonlin TL	KdV tunneling	Italy
1105	BASICS	solitons	nonlin. evo. eq.	structure	UK
1120	BASICS	solitons	phase boundary	stat. mech.	UK
1116	BASICS	solitons	Schrodinger eqn	conservation laws	Italy
519	BASICS	solitons	Schrodinger eqn	transverse instab	Nether

Rec ID	Topic	KW1	KW2	KW3	Country
146	BASICS	solitons	Sine-Gordon	quasiperiodic	Poland
1098	BASICS	solitons	Sine-Gordon	stat mech	UK
1101	BASICS	solitons	space-time	numerics	UK
1102	BASICS	solitons	spin systems	inverse method	France
315	BASICS	sparse matrix	iterative method	convergence	Nether
259	BASICS	stability	electric system	thermodynamics	Spain
156	BASICS	travelling	salesman	algorithm	Czech
262	BASICS	universality	period n-tupling	complex maps	Denmrk
143	BASICS	vortices	superfluid He3	NMR	Finlnd
649	BASICS	ld maps	intermittency	period sequence	Portug
797	BMSRAD	accel. processes	cosmic rays	astrophysics	UK
397	BMSRAD	acceleration	random potential	stat. models	W Ger
946	BMSRAD	accelerator	laser beat wave	modeling	UK
794	BMSRAD	accelerators	conventional	limits	W Ger
948	BMSRAD	accelerators	elem. particles	review	Switz
192	BMSRAD	accelerators	high-energy	review	Switz
947	BMSRAD	accelerators	nuclear physics	review	W Ger
793	BMSRAD	accelerators	types	review	UK
1145	BMSRAD	arc lamps	high pressure	temp. determine	France
164	BMSRAD	arc lamps	mercury	acoustics	W Ger
747	BMSRAD	back wave oscil.	properties, modes	setups	France
391	BMSRAD	channeling	dechan length	expression	W Ger
333	BMSRAD	channeling	polarized photons	electron beams	Switz
1160	BMSRAD	channeling	positrons	silicon	Switz
1164	BMSRAD	channeling	radiation	anharmonic poten	Switz
801	BMSRAD	deuterium lamp	VUV radiance	MgFl window	Uk
375	BMSRAD	electron	back scattering	CRT	ŪΚ
941	BMSRAD	electron beam	positioning	synch. rad.	UK
795	BMSRAD	electron ring	ion accelerator	review	W Ger
160	BMSRAD	electrostatic	lenses	ray trace	W Ger
254	BMSRAD	EM radiation	scattering	dielectrics	UK -
1148	BMSRAD	EM scattering	dielectric wg	inhomogeneity	Greece
665	BMSRAD	FEL	Adone ring	prelim. results	Italy -
926	BMSRAD	FEL	bunch lengthening	anomolies	France
919	BMSRAD	FEL	IR tunable	linac	UK
921	BMSRAD	FEL	IR tunable	microtron	Italy -
925	BMSRAD	FEL	multilayer mirror	degradation	France
1191	BMSRAD	FEL	nonrel elec.	in CO2 field	Israel
928	BMSRAD	FEL	optical klystron	gain & spread expt	France
923	BMSRAD	FEL	optical klystron	gain studies	France
927	BMSRAD	FEL	time structure	nonlin theory	France
922	BMSRAD	FEL	undulator	optimization	France
924	BMSRAD		visible	storage ring	France
798	BMSRAD		requirements	new ideas	Switz
332	BMSRAD	-	coherent	REB-laser interac.	Italy UK
704	BMSRAD		trav. wave oscil.		France
162	BMSRAD	-	accelerator	nuclear physics	W Ger
486	BMSRAD	· -	time dependence	numerics strong focusing	W Ger
788	BMSRAD		hollow beam trans.	•	Greece
510	BMSRAD	· -	temp. deter.	spectral line heating effects	Uk
448	BMSRAD		liquid metal	Monte Carlo	Spain
444	BMSRAD	keV electron	transport	Monce Carto	oparn

Rec ID	Topic	KW1	KW2	<u>KW3</u>	Country
338	BMSRAD	lamp	Hg discharge	pressure measure	Greece
337	BMSRAD	laser accelerator	guide structure	IR pulses	Italy
261	BMSRAD	magnetic field	iron	Green's Function	UK
1163	BMSRAD	meson source	2 GeV accelerator	ASTOR	Switz
1150	BMSRAD	microstrip	dipole radiation	gyromagnet	Greece
385	BMSRAD	negative ions	Cs W surface	H minus	Nether
1133	BMSRAD	negative ions	rf accel	MEQALAC	Nether
161	BMSRAD	neutron	Fresnel	zone plate	France
950	BMSRAD	neutron beams	facilities	review	UK
1127	BMSRAD	neutron source	linear accel	scattering diag	UK
287	BMSRAD	neutrons	pulsed source	moderation	UK
163	BMSRAD	neutrons	SNS	components	UK
1149	BMSRAD	optical fiber	eccentric clad	symmetric modes	Greece
1161	BMSRAD	pion therapy	supercon magnet	progress report	Switz
426	BMSRAD	slow neutron	fibers	propagation	Spain
1192	BMSRAD	Smith Purcell rad.	electron beam	grating	Israel
376	BMSRAD	sodium lamp	high pressure	arcs	UK
422	BMSRAD	sodium lamp	high pressure	energy balance	UK
1214	EMSRAD	sodium lamps	acoustic res.	detection	Nether
951	BMSRAD	synch. rad.	facilities	review	Denmrk
943	BMSRAD	synch. rad.	undulator	development	UK
944	BMSRAD	synch. rad.	wiggler	measurements	UK
810	BMSRAD	synchrotron rad.	photo electrons	source character	France
802	BMSRAD	VUV plasma source	surfatron	microwave excited	France
803	BMSRAD	VUV standard	laser plasma	BESSY comparison	W Ger
796	BMSRAD	wakefield accel.	dynamics	simulation	W Ger
182	BMSRAD	wave packets	cosmic ray	trapped waves	Norway
249	BMSRAD	XUV	line source	tunable	W Ger
467	BMSRAD	2d beam	varying B-field	Brillouin flow	France
552	CHEMAT	catalyst	metal clusters	gasification	W Ger
1059	CHEMAT	CO2 processing	heat transfer	anal + expt.	Italy
13	CHEMAT	diffusion	aluminum	iron	Finlnd
1206	CHEMAT	e-beam litho	electroplate	MFQ devices	W Ger
15	CHEMAT	engine	internal combus.	model	Israel
268	СНЕМАТ	eroding surface	particle collision	machinery	UK
462	CHEMAT	etching	polymers	XeCl laser	UK
379	CHEMAT	gamma ray	spectroscopy	analytic	W Ger
615	CHEMAT	ignition hazard	rf radiation	assessment	UK
396	CHEMAT	isotope sep.	laser assisted	gas dynamic	Switz
1090	CHEMAT	laser	absorption waves	metal processing	Italy
11	CHEMAT	laser	applications	manufacturing	Italy
14	CHEMAT	laser	welding	CO2	UK
368	CHEMAT	laser	welding	penetration	UK
1083	CHEMAT	laser cutting	guided flow	bulk steel	Austri
1065	CHEMAT	laser cutting	inert gas assist	steel sheet	Italy
1064	CHEMAT	laser cutting	oxygen assisted	steel sheet	Italy
1055	CHEMAT	laser processing	beam target	review	W Ger
614	CHEMAT	laser processing	silicon	review	UK
1084	CHEMAT	laser treatment	alloy surface	parameters	Italy
432	CHEMAT	laser-driven	corrugations	liquid metals	W Ger
841	CHEMAT	lithography	excimer laser	ArF	UK
2 99	CHEMAT	melting	impact responce	copper	UK

Rec ID	Topic	KW1	KW2	KW3	Country
1136	CHEMAT	neutron beam	material testing	review	UK
1126	CHEMAT	neutron beam	metallurgy	applications	UK
237	CHEMAT	neutron diffrac.	crystal orient.	weld material	UK
1152	CHEMAT	neutron reactions	metals	reactor material	Greece
18	CHEMAT	PECVD	nitride	deposition	Czech
16	CHEMAT	shock loaded	stresses	determination	France
489	CHEMAT	Si annealing	e-beam	thermal stress	Italy
765	CHEMAT	sub mm	FIR	industry appl.	UK
487	CHEMAT	thin films	plasma deposition	amorphous C	W Ger
1124	CHEMAT	torque converter	electroviscous	clutch	UK
20	CHEMAT	water splitting	photochemical	hydrogen	Switz
12	CHEMAT	zeolite	photoproduction	ammonia	UK
17	CHEMAT	zeolite	ZSM-5	structure	UK
68	COMPUT	AI	dataflow	processor	UK
71	COMPUT	AI	music	composing	UK
72	COMPUT	AI	voice recognition	Logos	U K
639	COMPUT		electrochromic	viologen based	UK
	COMPUT	display display	large screen	laser projection	UK
1121	COMPUT	dissipation	computers	limits	Austrí
403	COMPUT	fluid code	Lagrang. rezone	flux correction	UK
858	COMPUT		3D modeling	rian correction.	UK
69	COMPUT	graphics	3D movie	haemoglobin	UK
73 70	COMPUT	graphics image processing	speckle	fluid flow	Belgum
		information	processing	limitations	UK
74	COMPUT	Monte Carlo	time scale	experiments	Denmrk
495	COMPUT		adaptive mesh	shocks	W Ger
909	COMPUT	rad. hydro	CO2 laser	31100.103	UK
175	COMPUT	robot arm	laser	range finder	France
75	COMPUT	robotics software	acous tomography	signal processing	Greece
1155	COMPUT	-	display	laser on helix	W Ger
76	COMPUT	3D	st ee p gradient	non local	France
455	CPBCIF	heat transport REB	enhanced deposit	k-alpha	Israel
8	CPBCIF	ablation	laser-target	vs. wavelength	UK
535	CPBICF	ablative accel.	stability	rippled foils	UK
851	CPBICF	ablative flow	pellets	theory + expt	Spain
991	CPBICF	ablative flow	planar targets	theory + expt	Spain
1028	CPBICF		streamers	spark transition	France
246	CPBICF	air Al plasma	line broadening	time resolved	UK
984	CPBICF	annular z-pinch	gas puff	x-ray source	UK
1216	CPBICF		plasma puff	x-ray source	France
780	CPBICF	annular z-pinch Ar pos. column	low pressure	expt & model	Portug
617	CPBICF	•	SF6-N2	transport coef.	France
5 55	CPBICF	arc plasma back reflection	plastic foils	spectra	France
1002	CPBICF	back refrection beam-plasma	rad transport	numerics	Spain
1045	CPBICE	•	air	water vapor	Nether
1202	CPBICF	breakdown breakdown	elec. emission	nonlin. phenom	UK
652	CPBICF	Brillouin scat	z-pinch plasma	theory + expt	W Ger
1165	CPBICF	Brillouin scat.	damping mech.	ruby expt.	W Ger
996 575	CPBICF CPBICF	carbon arc	CO2 laser	interaction	UK
575		carbon arc	laser heated	ion profiles	W Ger
980	CPBICF		space charge	drift approx.	Norway
6	CPBICF		voltage generate	pulse shape det.	UK
577	CPBICF	CO2 target	vorcage generace	parse shape acce	-

Rec ID	Topic	KW1	KW2	КМЗ	Country
977	CPBICF	critical density	spectral diag.	non LTE	France
1143	CPBICF	current loop	optical	faraday rotation	Nether
854	CPBICF	dielec satellite	implosions	Si spectra	Irland
855	CPBICF	dielec satellite	Si He-like	density dep.	UK
847	CPBICF	disc target	thermal smoothing	x-ray backlight	UK
186	CPBICF	discharge	surface	spectroscopy	France
284	CPBICF	double layer	insulator-liquid	interface	France
399	CPBICF	electron depos.	thin anode	K-alpha	Israel
247	CPBICF	electron emission	carbon fiber	cathodes	UK
999	CPBICF	electron transport	harmonic gen	foil accel.	W Ger
994	CPBICF	electron wave	acceleration	laser plasma	W Ger
242	CPBICF	EM wave	gas interaction	Stark mirror	Portug
473	CPBICF	EM waves	relativistic plas	solitions	W Ger
285	CPBICF	fast electrons	laser plasma	2D effects	W Ger
930	CPBICF	FEL	axial field	nonlin theory	Israel
929	CPBICF	FEL	guide field	dispersion rel.	Israel
686	CPBICF	FEL	guide field	elec. dynamics	France
791	CPBICF	FEL	microwave	REB quality	France
920	CPBICF	FEL	wiggler free	orbit egns.	Israel
771	CPBICF	FEL	wiggler-free	nonlin. effects	Israel
149	CPBICF	fireball	generation	arc	Nether
1036	CPBICF	foil target	acceleration	0.26 micron expt	France
1032	CPBICF	foil targets	shock propagate	Nd glass expts	UK
833	CPBICF	framing camera	x-ray	electronics	UK
1037	CPBICF	framing camera	x-ray	sub ns	UK
180	CPBICF	fuse	exploded wire	arcing	Poland
181	CPBICF	fusion pellet	boron	advanced fuel	Israel
1167	CPBICF	gas puff	plasma formation	Stark broadening	W Ger
1029	CPBICF	harmonic emission	spectral anal	inhomo. model	Finlnd
997	CPBICF	harmonic emission	thin foils	1.06 micron expt	UK
1021	CPBICF	harmonic gen	fine structure	Nd glass expts	France
97 9	CPBICF	He plasma	laser heated	density profiles	Italy
1054	CPBICF	heat flow	ablation plasma	Fokker Planck	Uk
1050	CPBICF	heat flow	ablation plasma	nonlinear	UK
849	CPBICF	heat flow	high gradient	laser scattering	UK
1053	CPBICF	heat flow	instabilities	high-z	UK
867	CPBICF	heat flow	instabilities	laser plasma	UK
975	CPBICF	heat flow	inverse brems.	Fokker-Planck	France
1052	CPBICF	heat flow	nonlocal	hybrid model	Israel
1051	CPBICF	heat flow	steep gradient	Fokker Planck	France
866	CPBICF	heat transport	Fokker-Plank	planar ablation	UK ·
864	CPBICF	heat transport	laser plasma	moment eqns.	UK
865	CPBICF	heat transport	Lorentz plasma	nonlinear	עוג
423	CPBICF	heat transport	non-Maxwellian	steep gradient	Israel
415	CPBICF	heat transport	non-neutral	Vlasov-Poisson	Belgum
986	CPBICF	heat transport	spherical target	1.02 & .53 micron	UK
993	CPBICF	heat transport	steep gradient	numerics	France
906	CPBICF	HIB	pellet	caluclations	W Ger
1046	CPBICF	HIB targets	synchrotron expt	numerics	W Ger
4	CPBICF	HIF	emittance	space charge	W Ger
10	CPBICF	HIF	high gain	targets	W Ger
1195	CPBICF	HIF	overview		UK

Rec ID	Topic	KW1	KW2	KW3	Country
142	CPBICF	HIF	slowing down	charge state	Israel
1011	CPBICF	high Z targets	x-ray emission	code analysis	France
1020	CPBICF	high-Z plasma	ion emission	vs. wavelength	W Ger
1039	CPBICF	high-Z plasma	x-ray spectra	Nd glass expts	E Ger
968	CPBICF	implosion	pellet coating	effect of	France
969	CPBICF	implosion	plastic shells	x-radiography	UK
852	CPBICF	implosions	analysis	0.53 micron	Uk
970	CPBICF	implosions	emission diagno	hot cores	UK
850	CPBICF	implosions	x-radiography	1.06 micron	UK
1038	CPBICF	intensifier	x-ray	50 ps	UK
618	CPBICF	ion acoustic	stim. Brillouin	harmonic theory	Switz
212	CPBICF	ion beam	pellets	shaped voltage	Israel
1024	CPBICF	ion beam target	Rayleigh Taylor	beam shaping	Israel
778	CPBICF	ion diode	gas filled	pseudo spark	W Ger
777	CPBICF	ion diode	self-B insul	beam character	W Ger
861	CPBICF	ion diposition	ablation plasma	analytics	UK
776	CPBICF	ion generation	carbon	laser heat anode	France
666	CPBICF	ion interaction	ICF targets	numerics	Spain
915	CPBICF	ion range	uranium	various solids	W Ger
283	CPBICF	ion source	liquid metal	space charge	UK
263 992	CPBICF	ion spectra	laser plasma	pulse analysis	W Ger
	CPBICF	₹'	dense plasma	random phase	France
1198		ion stopping	DT alphas	track detector	UK
1047	CPBICF	ion stopping	-	model	UK
1048	CPBICF	ion stopping	solid & plasma		Uk
1010 9	CPBICF	K edge	preheat diagno	x-ray spectra	UK
-	CPBICF	laser	Rayleigh Taylor	target instab.	France
413	CPBICF	laser	x-ray smoothing	layered targets	
667	CPBICF	laser coupling	wave length dep	elec. temp.	Spain France
1014	CPBICF	laser hydro	review	theory + expt.	W Ger
987	CPBICF	laser interaction	electron waves	theory	
967	CPBICF	laser interaction	GRECO	review	France W Ger
998	CPBICF	laser interaction	hydro + EM	SUNION code	
982	CPBICF	laser plasma	chaos	wave coupling	France
814	CPBICF	laser plasma	Cu-like lines	rare earths	Israel
1034	CPBICF	laser plasma	diagnostics	HELEN facility	UK
229	CPBICF	laser plasma	electron trans.	ion waves	UK Taman 1
211	CPBICF	laser plasma	expansion	diffusion	Israel
1049	CPBICF	laser plasma	experiments	review	Italy
844	CPBICF	laser plasma	filamentation	backscatter	UK
843	CPBICF	laser plasma	harmonic emission	526 nm pump	UK
437	CPBICF	laser plasma	ion turbulence	dynamics	France
907	CPBICF	laser plasma	mode conversion	inhomo analysis	W Ger
567	CPBICF	laser plasma	non LTE	brems. emission	France
456	CPBICF	laser plasma	nonlinear waves	Brillouin scat.	W Ger
570	CPBICF	laser plasma	refrac & absorb	ray optics	UK
1015	CPBICF	laser plasma	review	compression	UK
236	CPBICF	laser plasma	Schlieren	diagnostic	France
623	CPBICF	laser plasma	self focusing	numerics	UK
1025	CPBICF	laser plasma	soft x-ray	refractometry	France
1003	CPBICF	laser plasma	x-ray absorption	density measure	France
1026	CPBICF	laser plasma	x-ray emission	perspex model	Switz
517	CPBICF	laser target	compression	polymer shell	UK

Rec ID	Topic	KW1	KW2	KW3	Country
511	CPBICF	laser target	compression	uniformity	UK
367	CPBICF	laser target	hot electron	deposition	W Ger
243	CPBICF	laser target	ionization	algorithm	France
288	CPBICF	laser target	ionization	computer code	UK
974	CPBICF	laser target	magnetic field	Faraday rotation	France
436	CPBICF	laser-pellet	corona	flux saturation	Spain
626	CPBICF	leader discharge	SF6	model	Switz
1044	CPBICF	LIB	generation	focusing expts	W Ger
7	CPBICF	LIB	slowing down	plasma target	Israel
, 775	CPBICF	LIB	target interac.	Sidonix II expt	France
995	CPBICF	light scattering	solid target	spectra	W Ger
993 119€	CPBICF	lightening	vunerability	aircraft	UK
817	CPBICF	line broadening	dense plasma	Thomas-Fermi	Israel
578	CPBICF	line radiation	non-LTE	transfer theory	UK
303	CPBICF	liquid metal	ion source	emitter shape	UK
245	CPBICF	metal arc	cathode	model	Bulgar
1016	CPBICF	microballoon	compression	plasma expansion	Poland
1016	CPBICF	microballoon	compression diag	alpha tracks	UK
	CPBICF	microballoon	harmonic imaging	x-ray imaging	UK
1031	CPBICF	mode conversion	Raman scattering	simulation	UK
1030	CPBICF	multi-beam	illumination	uniformity	UK
831		multilayer target	plasma spectra	vs. wavelength	France
988	CPBICF	multilayer target	spectra	numerics	France
1022	CFBICF CPBICF	multilayer target muon catalyzed	polarized	ICF feasibility	Switz
965		nitrogen arc	atm pressure	non LTE expts	France
576	CPBICF	nonuniformity	illumination	hydro effects	UK
1007	CPBICE	nonunitormicy nozzle arcs	wall ablation	dc expts	UK
574	CPBICE		LTE	calculations	UK
869	CPBICF CPBICF	opacity opening switch	optical	neon discharge	Israel
451	CPBICF	particle beam	transport	analytics	Yugos
962		partitle beam pellet gain	superthermals	numerics	Switz
961	CPBICF	planar foil	acceleration	numerics	W Ger
1008	CPRICE	planar plastic	x-ray emission	PIN diode arrey	Switz
1013	CPBICF	planar target	ablative	wavelength dep	France
971	CPBICF	planar target	harmonic gen.	Nd glass expt	France
990	CPBICF	planar target	x-ray emission	vs wavelength	France
1012	CPBICF CPBICF	planar target	x-ray emission	vs. wavelength	France
1009	CPBICF	planar targets	Stark broadening	S102 & CH	UK
856		plasma focus	collapse	dynamics	W Ger
414	CPBICF CPBICF	plasma focus	deut. emission	energy & angle	Poland
960		plasma focus	e-beams	ps modulation	W Ger
431	CPBICE	plasma focus	electron beam	mm waves	W Ger
902	CPBICE	plasma focus	fast bank	dynamics	W Ger
214	CPBICF CPBICF	plasma focus	high speed	polarity effects	W Ger
1180 959	CPBICF	plasma focus	neutrons	ion emission	W Ger
	CPBICF	plasma focus	self-organization	min. energy	W Ger
532	CPBICF	plasma stopping	alpha particles	dt microballoon	UK
848 774	CPBICF	plasma targets	cp interactions	deposition calc	Israel
	CPBICF	plasma thruster	arc electrodes	development	W Ger
506 1006	CPBICF	plastic foil	acceleration	1.3 & 0.44 micron	W Ger
1006	CPBICF	•	laser etching	UV lithography	UK
1040		polymer targets	x-ray spectra	compression expt	UK
846	CPBICF	horamer carders	y ral phonera	Same-andari anta	

Rec ID	Topic	KW1	KW2	KW3	Country
	<u> </u>				
862	CPBICF	preheat	x-ray	effect on implo.	UK
548	CPBICF	propulsion	discharge dynamics	stability	W Ger
1027	CPBICF	rad transport	implosions	microballoons	UK
868	CPBICF	rad transport	Planckian	LTE	UK
1004	CPBICF	rad. hydro	high Z	ld code	Czech
1023	CPBICF	radiation	average ion	numerics	Czech
782	CPBICF	radiography	erosion switch	Grec facility	France
863	CPBICF	Raman scattering	es particle code	kinetic theory	UK
976	CPBICF	Raman scattering	ion fluctutations	WKB model	Finlnd
859	CPBICF	Rayleigh Taylor	flat target	numerics	UK
1128	CPBICF	REB	angular dist.	radial profile	Nether
790	CPBICF	REB	beam quality	Thomson scat.	France
789	CPBICF	REB	collective accel.	diagnostic	Israel
787	CPBICF	REB	drift injection	analytics	E Ger
554	CPBICF	REB	drift velocity	measurements	Israel
264	CPBICF	REB	enhanced stopping	applied B-field	Israel
781	CPBICF	REB	generator	compact 100 kV	Israel
1137	CPBICF	REB	injection	neutral H2	Nether
265	CPBICF	REB	ion accelaration		עג
1141	CPBICF	REB	LF instability	neutralized	Nether
792	CPBICF	REB	microwave	rippled field	Israel
356	CPBICF	REB	neutralized	stability	Israel
655	CPBICF	REB	scattering	turbulent plamsa	Nether
270	CPBICF	REB	source	thermionic	Israel
786	CPBICF	REB Star Wars	plasma channel	experiment	France
785	CPBICF	REB Star Wars	plasma channel	numerics	France
530	CPBICF	REB-EM wave coup	plasma equilib	microwaves	Bulgar
604	CPBICF	res. absorption	density profile	self consistant	France
978	CPBICF	res. absorption	steep gradient	capacitor model	France
624	CPBICF	scattering	test particle	random phase	UK
509	CPBICF	SF6	breakdown	inhomo gaps	Switz
983	CPBICF	smoothing	foil targets	vs. wavelength	υĸ
1005	CPBICF	smoothing	layered target	0.35 micron expt	France
643	CPBICF	soliton	laser pulse	plasma propagate	W Ger
523	CPRICE	spark discharge	air & SF6	Schlieren photo	France
845	CPBICF	spherical target	fast electrons	1.05 micron	uк
1000	CPBICF	spherical target	Rayleigh Taylor	laser etched	UK
622	CPRICE	stim. Brillouin	backscattering	prevention	France
989	CPBICF	superthermals	transport	CO2 laser	France
895	CPBICF	switching	trig. discharge	optical diag.	W Ger
832	CPBICF	target production	microballoon	laser etched	UK.
857	CPBICF	target x-rays	EXAFS spectra	of Al	UK
860	CPBICF	thermal smoothing	heat flux limit	analytics	ИK
1018	CPBICF	thin coil	acceleration	optical measure	France
207	CPBICF	vacuum arc	anode region	multi spot	Israel
281	CPBICF	vacuum arc	cathode spot	motion	Nether
384	CPBICF	vacuum arc	zinc	spectroscopy	Israel
813	CPBICF		Al plasma	calculated	France
783	CPBICF	wire plasma	x-ray cif.	Sidonix I	France
834	CPBICF	x-ray intensifer	gated	50 ps resolution	UK
1035	CPBICF	x-ray pulses	plasma mirrors	superradiant	Czech
630	CPBICF	z-pinch	gas embedded	laser initiated	ŭĶ

Rec ID	Topic	KW1	KW2	КМЗ	Country
779	CPBICF	z-pinch	gas embedded	x-ray init.	France
1173	CPBICF	z-pinch	laser scattering	theory + expt	W Ger
972	CPBICF	z-pinch	spectroscopy	non-Debye	UK
328	DIAGNO	aerodynamics	flow visualization	optical	France
99	DIAGNO	aerosols	photoelectrons	Hg arc	Switz
205	DIAGNO	atom bombardment	mass spectroscopy	FARMS	UK
103	DIAGNO	atomic beams	scattering	vibrations	Nether
104	DIAGNO	atomic beams	scattering	vibrations	Spain
102	DIAGNO	atomic beams	scattering	vibrations	W Ger
714	DIAGNO	bolometer	semiconductor	elec-ther. model	France
276	DIAGNO	channel plate	x-ray	efficiency	UK
85	DIAGNO	chemical micro.	photoelectron	energy resolved	UK
445	DIAGNO	cold neutron	radiography	grain size	UK
110	DIAGNO	contact image	energy transfer	100 nm	W Ger
107	DIAGNO	CR39	track detector	medicine & tech.	UK
94	DIAGNO	desorption	spectrometer	crystal	Belgum
568	DIAGNO	e-beam scan	Joshephson junc	imaging	W Ger
88	DIAGNO	electron	absorp. spectra.	corrosion	UK
95	DIAGNO	electron	monochrometer	low voltage	Italy
613	DIAGNO	electron micro	surface imaging	metal particles	UK
84	DIAGNO	electron micro.	imaging	tunnel current	Switz
93	DIAGNO	electron micro.	tunneling	topography	Switz
505	DIAGNO	energetic part.	spectrometer	satellite	W Ger
588	DIAGNO	far UV astron.	mirrors	coatings	UK
572	DIAGNO	fiber size	forward scat	eikonal approx	UK
764	DIAGNO	FIR interfer.	Fabry-Perot	grating spec.	France
746	DIAGNO	FIR interfer.	small gap semis	magneto-optics	Austri
378	DIAGNO	flowmeter	electromagnetic	pulsed	UK
274	DIAGNO	gyrocompass	NMR	parsed	UK
100	DIAGNO	holography	binary liquid	diffusion	Poland
105	DIAGNO	holography	gratings	profile model	Sweden
178	DIAGNO	holography	nondistructive	testing	UK
176	DIAGNO	holography	nuclear reactors	coocing	UK
86	DIAGNO	holography	vibration	Doppler effect	UK
87	DIAGNO	holography	10 ps pulse	wavefront	Sweden
177	DIAGNO	holography	3d	tomography	UK
720	DIAGNO	interferometer	refrac. index	mm wavelength	UK
709	DIAGNO	IR radiography	lig. interface	imaging	France
369	DIAGNO	Kerr cell	shutter	femtosecond	France
330	DIAGNO	laser	velocimetry	wind tunnels	France
446	DIAGNO	laser-Doppler	droplet sizing		France
440	DIAGNO	laser-Doppler	interferometry	high velocity	Israel
460	DIAGNO	laser-Doppler	multicolor	entrained drops	UK
301	DIAGNO	light scattering	fiber sizing	approximations	UK
1138	DIAGNO	mass spectra	laser desorption	thermal effects	Nether
101	DIAGNO	microscope	confocal	surface profile	UK
342	DIAGNO	microscopy	acoustic	gas coupling	UK
340	DIAGNO	microscopy	tunneling	surface contour	Switz
106	DIAGNO	neutrons	industry	applications	UK
89	DIAGNO	NMR	medicine	meeting report	UK
916	DIAGNO	nuclear probe	laser light	unstable nuclei	UK
90	DIAGNO	optical fibers	stress cracks	marine structures	UK

Rec ID	Topic	KW1	KW2	кмз	Country
691	DIAGNO	photon drag	IR detectors	InSb	UK
632	DIAGNO	phototelec. micro	x-ray & atom	image generators	UK
632 687	DIAGNO	polychromator	far IR	conical diff.	Nether
329	DIAGNO	Raman scattering	gases	temp. and density	France
	DIAGNO	refractive index	complex	thin films	UK
271	DIAGNO	SAW	cylin. focusing	nondestruc test	France
401	DIAGNO	SAW	microscope	confocal	UK
228	DIAGNO	soft x-ray	bolometer	thin film	W Ger
1215		=	microscopy	collaboration	UK
408	DIAGNO	soft x-ray soft x-ray	optics	multilayer films	UK
565	DIAGNO		deuterium	water	W Ger
97	DIAGNO	spectrometer	moving mirror	FIR to VUV	UK
740	DIAGNO	spectroscopy	scanning optics	response	UK
335	DIAGNO	surface studies	flaws	stereoscopic	W Ger
222	DIAGNO	thermal waves	CARS	auto engines	Italy
499	DIAGNO	thermometry	in situ measure	development	France
507	DIAGNO	thin film		FIR	ITaly
734	DIAGNO	tunable filter	Fabry-Perot	model for expt.	Spain
668	DIAGNO	tunnel micro	gold	periodic surface	France
293	DIAGNO	ultrasonic	diffraction	Rayleigh wave	UK
275	DIAGNO	ultrasonic	transmission	· -	Sweden
804	DIAGNO	VUV focusing	deformed grating	grazing inc.	Sweden
806	DIAGNO	VUV optics	contam. films	topography satellite	UK
108	DIAGNO	x-ray	detector		ŭK
92	DIAGNO	x-ray	energy	electron counting	W Ger
117	DIAGNO	x-ray	gratings	astronomy	W Ger
96	DIAGNO	x-ray	interferometer	crystal	w Ger
116	DIAGNO	x-ray	microscope	synchrotron	UK
109	DIAGNO	x-ray	microscopy	synchrotron	UK
407	DIAGNO	x-ray	microscopy	synchrotron rad	UK
111	DIAGNO	x-ray	mirrors	testing	UK
112	DIAGNO	x-ray	mirrors	testing	W Ger
113	DIAGNO	x-ray	mirrors	testing	
98	DIAGNO	x-ray	scanning	radiography	France W Ger
114	DIAGNO	x-ray	scattering	chloroplast	w Ger
118	DIAGNO	x-ray	scattering	optical flats	
119	DIAGNO	x-ray	sources	testing	W Ger
91	DI AGN O	x-ray	waveguide	imaging	W Ger
115	DIAGNO	x-ray	zone plate	microscopy	W Ger
809	DIAGNO	XUV	wavelength deter	crystal property	Israel
1134	DIAGNO	XUV	windows	fabrication	Nether
805	DIAGNO		overlap contam.	EM theory	France
808	DIAGNO	XUV monochrometer	synchrotron rad.	characteristics	W Ger
807	DIAGNO	XUV spectrometer	multichannel	time resolved	Israel
26	ENERGY	acid rain	nitrates	historical	UK
1132	ENERGY	air pollution	analysis	ion source	Nether
363	ENERGY	atmospheric CO2	ice core	isotope data	UK
279	ENERGY	automobile	microwave	engine timing	עוג
19	ENERGY	CO2	global model	predictions	UK
225	ENERGY	electrokinetic	energy conversion	liquid mixture	Spain
28	ENERGY	electromechanical	energy	magnetic field	France
550	ENERGY	geothermal	hot rocks	water injection	UK
380	ENERGY	hot water	storage	dynamics	Sweden

Rec ID	Topic	KW1	KW2	KW3	Country
51	ENERGY	isotope separation	uranium	CF4 and CO2	Israel
277	ENERGY	liquid	electrolyte	solar cells	UK
25	ENERGY	oil pollution	polymer	solidification	UK
586	ENERGY	photochem convert	yield limits	effect of climate	Italy
289	ENERGY	photovoltaic	conversion eff.	formula	Belgum
27	ENERGY	photovoltaic	review	energy	Belgum
174	ENERGY	plastic sand	water retention	desert reclaim	UK UK
21	ENERGY	pollution	detector	trout	France
931	ENERGY	pollution	magnetic part.	new measure	UK
24	ENERGY	purple membrane	solar energy	bacteria	Israel
23	ENERGY	solar ponds	house heating	-4000214	UK
255	ENERGY	tritium	separation	resonance rad.	UK
381	ENERGY	water trees	power cables	neutron analysis	UK
248	ENERGY	wave power	Sea Clam	funding	UK
29	ENERGY	wind power	turbine	national grid	UK
551	ENERGY	wind turbine	vertical axis	Carmarthan Bay	UK
410	HYDROD	acoustic	Brillouin scat.	supercooled water	
1135	HYDROD	acoustic waves	laser generated	solid diagnosis	Italy UK
1001	HYDROD	Al foils	shock waves	laser expts	France
83	HYDROD	Antarctic	ice sheet	model	Nether
1069	HYDROD	atmos. breakdown	aerosols	hydro model	
748	HYDROD	Benard convec.	temp. dist.	IR camera	France France
878	HYDROD	bifurcation	Rayleigh-Benard	large cells	
595	HYDROD	binary alloy	melt	hydro. stability	Israel Uk
307	HYDROD	blast waves	flow field	dust and water	
474	HYDROD	boundary layer	strained	expt. and theory	Israel
189	HYDROD	burning	propellants	velocimetry	France
472	HYDROD	channel flow	oscillating	constriction	Italy UK
78	HYDROD	chaos	acoustic	Cavitation	W Ger
877	HYDROD	chaos	elechydro instab.	ion + dielec liq	France
876	HYDROD	chaos	Taylor-Couette	rotating flow	W Ger
151	HYDROD	chaos	temperature	Rayleigh-Benard	Italy
885	HYDROD	chaos	thermosolutal	convection model	UK
327	HYDROD	corner flows	numerics		France
393	HYDROD	Couette flow	Taylor vortices	numerics	W Ger
481	HYDROD	detonation	blast waves	kinematics	UK
1130	HYDROD	diffusion	suspensions	3-body hydro	Nether
314	HYDROD	diffusion eqns.	travelling waves	moving boundary	UK
671	HYDROD	diffusion flame	extinction	asymp. theory	Spain
82	HYDROD	electrohydro	stability	thermal grad.	Spain
478	HYDROD	evaporation	metals	lD simulation	Israel
476	HYDROD	flame	dynamics	laser diagno	France
1087	HYDROD	flow mixing	trip jets	visualization	Belgum
358	HYDROD	fluid layer	bounded	dynamics	Israel
241	HYDROD	friction	rubber	ice	UK
525	HYDROD	gas centrifuge	couette flow	integral eqn	UK
631	HYDROD	gas diffu. column	steady state	simplified	Spain
647	HYDROD	gas motion	absorbing wall	ld Boltzmann	Norway
323	HYDROD	gas-droplet	liquid spray	cooling towers	Belgum
596	HYDROD	intermittency	near wake	cylin expts.	France
879	HYDROD	intermittency	Payleigh-Benard	confined geo.	France
1108	HYDROD	internal waves	stratified	finite depth eqn	Italy

Rec ID	Topic	KW1	KW2	KW3	Country
594	HYDROD	laminar flow	rotating pipe	numerics	UK
1019	HYDROD	laser craters	hypervel. impact	simulation	France
1085	HYDROD	laser interaction	metal vapor	gas dynamics	Italy
1068	HYDROD	laser interaction	target response	reduced atmos.	France
424	HYDROD	Laser-Doppler	anemometry	turbulent struc	UK
492	HYDROD	liquid metal	blow off	two phase	W Ger
670	HYDROD	mixing layer	cine film	computer analysis	Spain
669	HYDROD	mixing layer	3d effects	water tunnel	Spain
79	HYDROD	ocean floor	conductivity	EM sounding	UK
260	HYDROD	Rayleigh-Benard	convection	tranient order	France
388	HYDROD	Rayleigh-Talylor	bubble motion	nonlinear	W Ger
537	HYDROD	Rayleigh-Taylor	electrohydro	nonlinear	Egypt
621	HYDROD	relativistic gas	distribution func	kinetic theory	Italy
336	HYDROD	ring vortex	turbulent	behavior	W Ger
634	HYDROD	Scholte wave	Rayleigh wave	wetting & angle	France
471	HYDROD	sea ice	acceleration	effect on growth	UK
81	HYDROD	sea ice	dielectric const.	high frequency	Norway
77	HYDROD	sea water	eqn. of state	high pressure	UK
442	HYDROD	shallow waves	canonical form	Hamiltonian	Turkey
400	HYDROD	shaped charges	optimization	analytics	Norway
513	HYDROD	shear flow	strong rotation	free-molecular	UK
493	HYDROD	shear flow	turbulence	spectra	France
291	HYDROD	shear layer	transonic flow	laser anemometer	UK
904	HYDROD	shear layers	curved	2-eqn turbulence	W Ger
1209	HYDROD	shock waves	laser driven	metal targets	France
559	HYDROD	solitons	fluid in tubes	nonlin wave eqn	W Ger
1114	HYDROD	solitons	internal waves	Andaman Sea	Italy
573	HYDROD	Stokes flow	fibrous filters	variational prin	UK
539	HYDROD	strong shocks	relativistic	damping	Italy
464	HYDROD	surface waves	visco-elastic	theory	Spain
629	HYDROD	Taylor diffusion	sedimentation	laminar flow	Belgum UK
1122	HYDROD	test facility	ship hulls	water channel	UK
608	HYDROD	turb. transport	rotating sys.	helicity	UK
1125	HYDROD	turbulence	boundary layer	velocity probe	UK
1123	HYDROD	turbulence	pipe flow	hull roughness	W Ger
389	HYDROD	turbulence	small-scale	experiments	UK
390	HYDROD	turbulence	transition	boundary layer evolution	France
219	HYDROD	turbulent	wake	dielectrics	UK
267	HYDROD	turbulent flow	electric current	numerics	France
326	HYDROD	turbulent mixing	reacting flows	guided waves	France
533	HYDROD	ultrasonic	scattering	interface	Belgum
453	HYDROD	ultrasonic waves	diffraction	down slope	UK
938	HYDROD	viscous flow	instability low-Re jet	velocimetry	Belgum
494	HYDROD	vortex pairing	spinning cylinder	experiments	Spain
430	HYDROD		conductivity	high pressure	W Ger
250	HYDROD	_	evolution	instability	W Ger
145	HYDROD		solitons	finite wave no.	W Ger
306	HYDROD HYDROD		friction	effect of liquid	Norway
502			focusing	bay contour	Norway
22	HYDROD HYDROD	-	oscillating	water column	UK
30 1071	LASERS	=	VUV emission	kinetics	France
1071	いいっとなっ	U* 1.*			

Rec ID	Topic	KW1	KW2	Кพз	Country
482	LASERS	atomic Hq	gain	spectroscopy	UK
829	LASERS	beam diagnostic	energy monitor	profile imaging	UK
1086	LASERS	beam profile	thermography	expt & theory	
316	LASERS	bifurcation	gas laser	Chaotic behavior	Italy
884	LASERS	bifurcation	optical reson.	CO2 pumped	Italy
184	LASERS	bistability	Fabry-Perot	quadratic	UK M. Carr
1144	LASERS	bistability	saturable absorb	-	W Ger
286	LASERS	cavity density	perturbations	limit cycle	Spain
148	LASERS	chaos	bistable cavity	hydrodynamics	UK
395	LASERS	chaos	optical cavity	numerics	UK
547	LASERS	chemical	O2-heavy metal	numerics visible cw	UK
770	LASERS	СНЗОН	and isotopes		Israel
725	LASERS	CH3OH	CO2 pumped	FIR spectra	Italy
706	LASERS	СНЗОН	CO2 pumped	new FIR line	Italy
769	LASERS	СНЗОН	FIR lines	Stark effect	France
302	LASERS	CO	additive gases	optically pumped	Denmrk
41	LASERS	CO	•	plasma effects	UK
839	LASERS	compression	gas mixing	modeling	Israel
830	LASERS	control	stim Brill scat	phase conjugate	UK
39	LASERS	CO2	data acquisition	energy monitor	UK
452	LASERS	CO2	charge circuits	performance	UK
483	LASERS	CO2	corona discharge	optimization	Italy
320	LASERS	CO2	e-beam pumped	thermal defoc.	UK
40	LASERS	CO2	H2 buffer	repetitive	UK
351	LASERS	CO2	impedance	fluctuations	Poland
1078	LASERS	CO2	lifetime	miniature	Italy
273	LASERS	CO2	microwave excited	cw performance	W Ger
1077	LASERS	CO2	mode structure	plane resonator	UK
190	LASERS	CO2	nozzle mixing	semi-empirical	W Ger
183	LASERS	CO2	polarization	injection-locked	UK
1089	LASERS	CO2	pulsed	efficiencies	UK
611	LASERS	CO2	research	matter processing	W Ger
269	LASERS	CO2	self absorption	runaway	UK
1079		CO2	stabilization	Stark effect	UK
350	LASERS LASERS	CO2	subsonic	rf excitation	W Ger
53			synchronization	phase locking	Austri
43	LASERS	CO2	TE	photoionization	UK
461	LASERS LASERS	CO2 CO2	TE	spark arrays	UK
711		· · · =	waveguide	rf excited	UK
1062	LASERS	CO2	20 atm	e-beam preion	W Ger
1061	LASERS	CO2 CW	industrial	10 KW	UK
484	LASERS	CO2 TE	CW highpower	flow effects	Italy
772	LASERS LASERS	CO2 waveguide	capillary	rf discharge	Irland
726		CO2 waveguide	tunability	diff. grating	Irland
724	LASERS	CW DCOF	CO2 pumped	FIR lines	W Ger
1058	LASERS LASERS	CW MIR DF	CO2 pumped	NH3 model + expt	France
44	LASERS	DIMER	spectral output	floures. expts	W Ger
549			NA2	operation	Switz
828	LASERS	diode amplifier	optical & elec	sensors	Irland
757	LASERS	disc system	development	commissioning	UK
757 758	LASERS	distrib feedback	dispersion rel.	theory	Switz
	LASERS	distrib feedback	helical waveguide	optically pumped	Switz
298	LASERS	distributed	feedback	gas	Switz

Rec ID	Topic	KW1	KW2	KW3	Country
466	LASERS	dye	photon stat.	non-Markovian	W Ger
42	LASERS	dye	photon statistics	model of expt.	W Ger
710	LASERS	D20	FIR lines	CO2 pumped	W Ger
1181	LASERS	D20	high power	CO2 pumped	Switz
1189	LASERS	D20	oscillators	comparisons	Switz
755	LASERS	D20	performance	effect of buffer	Switz
1063	LASERS	elec discharge	turbulent flow	stochastic model	Israel
842	LASERS	excimer	saturable absorb	anthracene	UK
193	LASERS	excitation	line profiles	self reversed	UK
713	LASERS	FIR	freq. measure	RF beating	Italy
756	LASERS	FIR	high power	multi modes	Switz
75 4	LASERS	FIR	optically pumped	stability	France
727	LASERS	FIR molec	transients	dynamic model	France
759	LASERS	FIR waveguide	outcoupling	under 40 micron	Nether
556	LASERS	flashlamps	excimers	TlI pump	Switz
240	LASERS	focusing	optics	multiwavelength	UK
	LASERS	freq. tripling	laser excited	Xenon	France
1070		GaAs-GaAlAs	optical pump	short pulse	UK
518	Lasers Lasers	gamma ray	optically pumped	theory	Roman
48		gas dynamic	expansion nozzle	array design	Israel
1088	LASERS	gas dynamic	optical cavity	analytics	Poland
1076	LASERS	gas dynamic gas mixtures	electron attach	chlorine donors	Israel
1194	LASERS	-	vibrational	Ar/HCl mixture	Israel
47	LASERS	HC1 He Ar	HIB pumped	100 MeV Sulpher	W Ger
900	LASERS	He-I	hollow cathode	operation	UK
587	LASERS	HeNe	chaos	experiments	W Ger
766	LASERS	HF	supersonic	pulsed	Israel
213	LASERS	nr HqBr & HgI	TE discharge	performance	UK
524	LASERS	•	CF4	optically pumped	UK
50	LASERS	IR IR	waveguides	dielec. coated	Italy
1080	LASERS	KrCl excimer	discharge pumped	performance	Italy
638	LASERS		e-beam pumped	kinetics	Nether
404	LASERS	KrF	long pulse	pulse form line	UK
837	LASERS	KrF KrF	REB excited	Sprite	UK
835	LASERS	levitation	.1 mm spheres	argon 1-10 W	France
46	LASERS		FIR spectra	compressed	France
728	LASERS	liq. N2	mid-IR	optically pumped	UΚ
712	LASERS	molecular gas Na-dimer	supersonic	optically pumped	W Ger
562			ground state	FIR gain calc	W Ger
767	LASERS	NH3	high power	discharge	Italy
334	LASERS	nitrogen N2	waveguide	high rep rate	Italy
272	LASERS		bistability	O-switching	W Ger
768	LASERS	N20 optical bistab.	Fabry-Pero:	rad. pressure	W Ger
359	LASERS	•	cw chemica?	compact	Israel
1066	LASERS		Brillouin mirror	KrF	UK
838	LASERS	- ·	mirrors	review	UΚ
405	LASERS		Raman amplifier	multiplexing	UK
836	LASERS		charging system	high rep rate	Israel
1060	LASERS		high power design	integral eqn.	W Ger
1057	LASERS		tapered reflec.	numerics	Italy
1072	LASERS		voltage distrib	TL theory	UK
488	LASERS		molecular gas	hysteresis	υK
1205	LASERS	IIII Cavity	morougue you	.	

Rec ID	Topic	KW1	KW2	<u>KW3</u>	Country
1201	LASERS	ring resonator	bistability	solitons	W Ger
637	LASERS	semiconductor	bistability	hysteresis	Irland
52	LASERS	semiconductor	picosecond pulses	GaAs DH laser	W Ger
188	LASERS	semiconductor	waveguide	mode spectrum	W Ger
719	LASERS	solid state	IR and FIR	elec. pumped	Austri
1067	LASERS	supersonic HF	high rep rate	performance	Israel
292	LASERS	transmission	sea water	attenuation coefs.	France
1075	LASERS	turbulent mixing	laser cavity	numerics	France
209	LASERS	two frequency	three level	modulation	Israel
45	LASERS	two photon	Lithium vapor	dye laser excited	W Ger
840	LASERS	บง	facility	320-980 nm	UK
799	LASERS	VUV	res. enhanced	tunable	France
800	LASERS	VUV	tunable	Stim. Raman scat.	W Ger
824	LASERS	VUV	tunable	upconversion	W Ger
282	LASERS	white light	He-Cd	three color	UK
1073	LASERS	x-ray	Al recomb.	inversion	France
1042	LASERS	x-ray	carbon recomb.	gain calc.	E Ger
853	LASERS	x-ray	carbon recomb.	gain measure	UK
1043	LASERS	x-ray	carbon recomb.	gain measure	UK
973	LASERS	x-ray	laser plasma	photoexcitation	Irland
1081	LASERS	x-ray	plasma recomb.	scaling laws	W Ger
981	LASERS	x-ray	rad. transport	numerics	UK
362	LASERS	XeC1	pumped fiber	Raman conversion	Italy
1082	LASERS	XeCl	x-ray preion.	high rep. rate	France
662	LASERS	XeCl TEA	grating res.	spec. narrowing	Italy
1074	LASERS	XeF excimer	long. discharge	352 nm	Switz
49	LASERS	XUV	carbon	recombination	UK
515	PLASMA	turbulence	diagnosis	forward scat.	UK
1171	PLASMA	Alfven waves	nonlinear	propagation	W Ger
1185	PLASMA	Alfven waves	plasma heating	tokamak	Switz
135	PLASMA	Alfven waves	turbulence	magnetosphere	W Ger
661	PLASMA	alpha particle	confinement	polarized DT	Italy
37 7	PLASMA	arc	unipolar	simulation	W Ger
1197	PLASMA	argon	e-beam excited	elec distrib	France
954	PLASMA	blankets	neutronic code	KFA expt. compar	Poland
491	PLASMA	boundary layer	instability	analysis	Israel
600	PLASMA	charge-exch.	neutral tof	Tortur II	Nether
138	PLASMA	collisions	multipole	fast electrons	UK
305	PLASMA	confinement	neutral heating	ASDEX	W Ger
534	PLASMA	convection	viscous effect	interchange	France
434	PLASMA	convective cells	drift waves	nonlinear	W Ger
540	PLASMA	convective cells	external excite	evolution	Denmrk
231	PLASMA	coupling	ion cyclotron wave	impedance	W Ger
527	PLASMA	current coupling	ECRH and ohmic	Fokker-Planck	UK
120	PLASMA	dense	quantum mech.	oscil. strength	E Ger
516	PLASMA	density clamp	neutral heating		UK
736	PLASMA	density fluc.	CO2 probe	Tosca tokamak	UK
737	PLASMA	density fluc.	forward scat.	detector array	W Ger
202	PLASMA	diagnostic	laser scat.	ASDEX	W Ger
827	PLASMA	diagnostics	x-ray & VUV	tokamaks	Israel
235	PLASMA	diatomic	hydrodynamics	Boltzmann Eqn.	France
206	PLASMA	diffuse pinch	minimum energy		UK

Rec ID	Topic	KW1	KW2	KW3	Country
122	PLASMA	diffusion	Fokker-Planck	boundary condition	Norway
1177	PLASMA	diffusion	high B-field	quiding center	W Ger
215	PLASMA	diffusion	multipole	2D model	France
147	PLASMA	discharge	hollow cathode	magnetron	Yugos
127	PLASMA	discharge	longitudinal waves	cathode	Bulgar
128	PLASMA	discharge	microwave	diagnostic	Italy
3	PLASMA	disruption	Alfven waves	tokamak	Switz
897	PLASMA	disruption	anom. resistance	mag. turbulence	W Ger
468	PLASMA	disruption	driftwave	transport	W Ger
905	PLASMA	disruption	tearing mode	evolution	W Ger
599	PLASMA	disruptions	TFR tokamak	expt + model	France
454	PLASMA	divertor	magnetic	axisymmetric	France
290	PLASMA	double layer	high voltage	magnetized	Sweden
538	PLASMA	double layer	ion acoustic	KdV equation	France
266	PLASMA	double layer	ionization	numerical	Sweden
230	PLASMA	double layer	steady state	analysis	W Ger
129	PLASMA	drift velocity	Lorentz gas	Boltzmann Eqn.	Norway
1156	PLASMA	drift waves	argon discharge	rf heated	Greece
361	PLASMA	drift waves	KdV equation	k-spectrum	W Ger
898	PLASMA	drift waves	nonlinear	KdV eqn.	W Ger
1159	PLASMA	drift waves	spectra	magnetic shear	W Ger
374	PLASMA	drift waves	turbulence	low beta	Denmrk
605	PLASMA	D2 pellet	vaporization	tokamak	Denmrk
449	PLASMA	EC emission	measurements	DITE tokamak	UK
693	PLASMA	EC emission	tokamaks	op. thin model	France
438	PLASMA	ECH waves	emit. and absorb.	rf tokamak	France
571	PLASMA	ECRH drive	local absorp	Fokker-Planck	UK
544	PLASMA	electro-hydro	quantum mech	micro. egns.	UK
197	PLASMA	electromagnetic	beam-plasma	waves	W Ger
692	PLASM.	electron temp	ECR absorb	FIR transmit	France
133	PLASMA	electron-beam	filaments	turbulence	Sweden
121	PLASMA	electron-hole	diffusion	magnetostatic	W Ger
131	PLASMA	electron-hole	high temperature	instability	France
531	PLASMA	electrostatic	modes in torus	numerics	Austri
233	PLASMA	electrostatic	nonlinear wave	mode conversion	W Ger
1	PLASMA	EM waves	dispersion	variational prin.	Nether
1168	PLASMA	energy principle	kinetic	2d theory	W Ger
664	PLASMA	energy transport	ohmic heating	scaling laws	Italy
910	PLASMA	excited state	decay rates	deut. plasma	W Ger
701	PLASMA	Fabry-Perot	ECR measure	tokamak	France
216	PLASMA	finite beta	equilibria	torodial	Austri
957	PLASMA	fission-fusion	blanket	experiment	Switz
958	PLASMA	fission-fusion	blanket	time dependence	Austri
955	PLASMA	fission-fusion	breeder	economics	Israel
956	PLASMA	fission-fusion	D-cycle tokamak	satellites	Austri
949	PLASMA	fusion research	JET	review	UK
30 0	PLASMA	glow discharge	cathode region	Monte Carlo	France
210	PLASMA	glow discharge	stability	neon	Israel
251	PLASMA	heating	tokamak	turbulent	Nether
1142	PLASMA	high beta	turbulent heating	tokamak	Nether
317	PLASMA	hollow cathode	magnetic field	discharge	Yugos
529	PLASMA	ICRH coupling	tokamak plasma	wave equation	Belgum

Rec ID	Topic	KW1	KW2	KW3	Country
497	PLASMA	impurities	non-equilibrium	coronal model	UK
364	PLASMA	impurity	transport	drift waves	W Ger
569	PLASMA	impurity	transport	heavy lines	France
218	PLASMA	inhomogeneous	magnetized	quasilinear	Switz
134	PLASMA	instability	flr	rotational	Nether
703	PLASMA	interferometer	HCN-laser	ASDEX	W Ger
1176	PLASMA	ion acous wave	afterglow	diagnostic	W Ger
124	PLASMA	ion acoustic waves	beam excite	experiment	France
173	PLASMA	ion beams	slowing down	nonequilibrium	Poland -
458	PLASMA	ion Bernstein	B-field	diagnostic	France
901	PLASMA	ion heating	lower hybrid	quasi linear	W Ger
1174	PLASMA	ion plasma wave	mode conversion	slow wave struc.	W Ger
735	PLASMA	ion spectra	CO2 scattering	coherent detect	W Ger
5	PLASMA	ion-ion	instability	nonlinear	Denmrk
195	PLASMA	iron ions	dielec. recom.	PLT	France
439	PLASMA	KdV solitons	resonant elec.	numerics	Denmrk
433	PLASMA	Langmuir oscil	large amplitude	trapping	W Ger
625	PLASMA	Langmuir probe	argon jet	shock wake	France
179	PLASMA	Langmuir waves	e-beam	argon	UK
1172	PLASMA	Langmuir waves	EM instability	analytics	W Ger
322	PLASMA	Langmuir waves	magnetic field	decay process	Yugos
1188	PLASMA	Langmuir waves	nonlin evolut	QUIPS device	Switz
234	PLASMA	Langmuir waves	quasilinear	breakdown	France
498	PLASMA	laser fluores	H density	measurement	UK
1162	PLASMA	LCT coil	NbTi	He cooled	Switz
635	PLASMA	LF modes	tokamak	2-fluid model	UK
1175	PLASMA	LH waves	absorption	turbulent	W Ger
1158	PLASMA	limiter	metal impurity	transport	W Ger
485	PLASMA	low p discharge	microwave excited	model	France
1092	PLASMA	mag. quadrupole	steady flow	orbit theory	UK
520	PLASMA	magnetic island	coalescence	MHD	Sweden
428	PLASMA	magnetic limiter	ergodic behavior	model	UK
601	PLASMA	magsonic waves	atenuation	drift turb.	Switz
1186	PLASMA	MHD modes	radial structure	tokamak	Switz
1182	PLASMA	MHD stability	helical symmetry	2d code	W Ger
1184	PLASMA	MHD stability	spheromak	vs aspect ratio	Switz
450	PLASMA	MHD waves	cold gas mantle	interactions	Sweden
253	PLASMA	microwave	discharge	travelling wave	Poland
521	PLASMA	mode conversion	rf heating	unified theory	UK
966	PLASMA	muon catalyzed	approaches	evaluation	Switz
465	PLASMA	muon catalyzed	back decay	resonances	UΚ
964	PLASMA	muon catalyzed	hyperfine trans.	experiments	Austri
963	PLASMA	muon catalyzed	hyperfine trans.	liquid HD	Switz
402	PLASMA	negative ions	hydrogen plasma	multicusp field	France
479	PLASMA	negative ions	production	wall effects	UK
126	PLASMA	neutral heating	confinement	tokamak	UK
633	PLASMA	neutral heating	ion tail	ICRF	Sweden
585	PLASMA	neutral injec	fast ions	MC-FP compar.	France
1179	PLASMA	neutral transport	tokamak	res. fluores.	W Ger
392	PLASMA	non-Markovian	kinetic eqn	magnetoplasma	ÜK
512	PLASMA	nonideal	screening	conductivity	E Ger
1187	PLASMA	nonlinear waves	3-fluid plasma	numerics	Switz

Rec ID	Topic	KW1	KW2	KW3	Country
421	PLASMA	octupole	z-pinch	experiments	Sweden
528	PLASMA	oxygen impur.	edge penetration	tokamak	Sweden
136	PLASMA	plasma focus	ion emission	Thompson analysis	W Ger
738	PLASMA	position control	FIR interfer.	Textor tokamak	W Ger
1183	PLASMA	potential jumps	argon	electron dist.	Switz
204	PLASMA	propulsion	MHD	arcs	W Ger
610	PLASMA	radiation loss	density limit	Eta-Beta II	Italy
952	PLASMA	reactors	advanced fuels	feasibility	Austri
953	PLASMA	reactors	aneutronic	requirements	Austri
784	PLASMA	REB	rf sustained	current drive	France
702	PLASMA	reflectometer	microwave	density measure	France
198	PLASMA	relativistic	distributions	equilibrium	Spain
526	PLASMA	rev. field pinch	B-field fluc.	Eta-Beta II	Italy
244	PLASMA	rev. field pinch	fluorescence	diagnostic	UK
139	PLASMA	rev. field pinch	helical field	CLEO	UK
140	PLASMA	RF heating	Alfven waves	AERH	Switz
598	PLASMA	Saha equation	relativistic	perfect gas	France
896	PLASMA	scrape-off	neutral heated	Asdex	W Ger
130	PLASMA	solid state	EM wave interac.	conductivity	Denmrk
591	PLASMA	solitons	character	expts + KdV	France
1170	PLASMA	solitons	electromagnetic	quasistatic	W Ger
371	PLASMA	solitons	ion-acoustic	reflection	Austri
297	PLASMA	solitons	spikey whistler		W Ger
593	PLASMA	solitons	surface waves	electrostatics	Sweden
132	PLASMA	sound waves	collisional	correlations	France
470	PLASMA	spin polarized	reactors	B-field effect	Nether
387	PLASMA	stability	thermal equil.	bifurcation	Italy
125	PLASMA	stellarators	status	future	W Ger
543	PLASMA	strong coupled	thermal relax.	numerics	France
536	PLASMA	strong EM wave	inhomo plasma	relativistic	France
137	PLASMA	strongly coupled	thermal cond.	simulation	France
558	PLASMA	surface wave	rf launcher	theory	Bulgar
1200	PLASMA	surfatron	inhomo plasma	propagation	France
1199	PLASMA	surfatron	microwave excited	expt.	France
435	PLASMA	tearing instab.	shear flow	effects	France
522	PLASMA	tearing mode	nonlinear	inertia & viscos	France
123	PLASMA	tearing modes	stability	tokamak	W Ger
1129	PLASMA	temp. measure	Rutherford scat.	JET	Nether
304	PLASMA	thermal conduction	field ergodicity	tokamak	UK
469	PLASMA	tokamak	density limit	MHD theory	Sweden
141	PLASMA	toroidal z-pinch	stabilization	octopole	Sweden
1190	PLASMA	transport	FIR laser	diagnostic	Switz
899	PLASMA	transport	ohmic tokamak	scaling laws	W Ger
564	PLASMA	trap-elec instab.	curvature driven	EM theory	Sweden
514	PLASMA	turbulence	atom heat flow	TFR tokamak	France
232	PLASMA	two-stream	oscillating	ohmic nonlin.	Norway
616	PLASMA	viscosity	spectroscopy	traveling wave	W Ger
217	PLASMA	waves	ion cyclotron	reflection	W Ger
194	PLASMA	waves	magnetosonic	toroidal geometry	France
2	PLASMA	2D oscillations	plasmons	Bose-Einstein	Austri
663	PLASMA	dielec. sat.	res. line	Cr XXIII	Italy
723	SOLIDS	acoustic waves	laser driven	nonlinear	Switz

Rec ID	Topic	KW1	KW2	KW3	Country
383	SOLIDS	ALE	CdTe films		Finlnd
1178	SOLIDS	aluminum	reflectivity	melting point	W Ger
741	SOLIDS	avalanche inj.	Impatt diode	above 100 GHz	France
346	SOLIDS	biochip	calcium ions	muscle control	UK
	SOLIDS	bioelectronics	Langmuir-Blodgett	optical switch	W Ger
612		bistability	optical	InSb	UK
223	SOLIDS SOLIDS	bulk crystals	FIR	freq. doupling	W Ger
732		change of state	molec. rearrange	computer	UK
58	SOLIDS	•	damage measure	Lin603	UK
427	SOLIDS	channeling	organic solid	E-field effect	W Ger
503	SOLIDS	charge trapping	•	enzymes	UK
345	SOLIDS	Chem FETS	chip sensors	semiconductors	Italy
417	SOLIDS	conductance	measurements		UK
65	SOLIDS	conducting	plastics	polyacetylene	UK
653	SOLIDS	contact charge	insulators	solid rare gas	UK
224	SOLIDS	coupler	optical	liquid crystal	
475	SOLIDS	critical behav	x-ray and neutron	scattering	W Ger
443	SOLIDS	crystal	Schrodinger eqn.	ld model	Belgum
227	SOLIDS	dry etch	plasma parameters	impedance	Nether
1097	SOLIDS	electrification	aircraft	ice particles	UK
1095	SOLIDS	electrification	contact	dielectrics	UK
1096	SOLIDS	electrification	contact.	tunnelling	UK
220	SOLIDS	electron beam	annealing	silicon	France
606	SOLIDS	electrostatics	hazards	semiconductors	UK
221	SOLIDS	etching	rf discharge	fluorocarbon	Italy
945	SOLIDS	EXAFS	synch. rad.	data base	UK
642	SOLIDS	ferromagnetic	domains	observation	UK
761	SOLIDS	FIR	freq. measure	Schottky diodes	W Ger
708	SOLIDS	FIR	paramagnetism	low temperature	Belgum
60	SOLIDS	flat displays	LCD	color	UK
258	SOLIDS	GaAs	evaporation	laser irradiation	Nether
760	SOLIDS	GaAs	optical const.	FIR spectra	UK
733	SOLIDS	GaP LED	up conversion	IR to visible	W Ger
490	SOLIDS	Ge photoconductor	IR detection	performance	W Ger
200	SOLIDS	glass	structure	synchrotron rad.	UK
	SOLIDS	Hall conductance	fractional	explaination	Italy
656		Hall effect	palladium	H2 diffusion	Nether
654	SOLIDS	heavy ion	slowing down	numerics	Finlnd
620	SOLIDS	heterodyne detec.	FIR	Ge photocon	Austri
699	SOLIDS	heterodyne rec.	diplexer	693 GHz	W Ger
700	SOLIDS	-	insul & semicon	phonon model	France
718	SOLIDS	IR absorp	fluxons	dynamics	Denmrk
66	SOLIDS	Josephson junction	ring oscillator	dynamics	Denmark
394	SOLIDS	Josephson junction	•	Sine Gordon	Denmrk
308	SOLIDS	Josephson junction	solitons	polymerization	France
343	SOLIDS	Langmuir-Blodgett	photoresist	InP	UK
344	SOLIDS	Langmuir-Blodgett	semiconductors		Italy
226	SOLIDS	laser	annealing	germanium	
54	SOLIDS	laser	annealing	silicon	France
1139	SOLIDS	laser annealing	implanted Si	threshold	Nether
339	SOLIDS	liquid crystal	conducting	copper core	France
441	SOLIDS	magnetic holes	crystallization	plastic in fluid	Norway
63	SOLIDS	memory	superconducting	Josephson	W Ger
940	SOLIDS	metal layers	ultrathin	photoelec. spec.	UK

Rec ID	Topic	KW1	KW2	KW3	Country
67	SOLIDS	microcircuit	limitations	size	Sweden
504	SOLIDS	microwave	phase shifter	high precision	UK
742	SOLIDS	mm wave detec	metal-semicon	junctions	Sweden
743	SOLIDS	mm wave mixer	cryo Schottky	low noise	Finlnd
353	SOLIDS	monolayer films	self assembling	biochips	Israel
354	SOLIDS	Mossbauer spectra	biological sys.	dynamics	Israel
1154	SOLIDS	Mossbauer spectra	pottery	chemical bonds	Greece
672	SOLIDS	MQW devices	GaAs-GaAlAs	mtg. review	UK
673	SOLIDS	MQW devices	2d excitons	spectrum	Israel
203	SOLIDS	neutron doping	Si wafers	transmutation	UK
607	SOLIDS	N2 diffusion	titanium	annealing	Finlnd
680	SOLIDS	optical bistab	CdS	nonlin. effects	W Ger
685	SOLIDS	optical bistab	semicon. lasers	twin stripe	UK
684	SOLIDS	optical bistab	size limits	diffu & defrac	UK
1203	SOLIDS	optical bistab.	band shrinkage	theory	W Ger
681	SOLIDS	optical bistab.	CdHg Te	fast processes	UK
683	SOLIDS	optical bistab.	chaotic behav.	modeling	Italy
678	SOLIDS	optical bistab.	CuC1	experiments	France
682	SOLIDS	optical bistab.	dynamics	theory	Belgum
675	SOLIDS	optical bistab.	InSb & GaAs	signal proc.	UK
679	SOLIDS	optical comput.	InSb	switches & gates	UK
773	SOLIDS	optical const.	commercial mat.	mm & sub mm	UK
309	SOLIDS	optical fiber	communications	coherent modulat.	Denmrk
739	SOLIDS	optical fiber	Mid IR	telecommun.	France
676	SOLIDS	optical nonlin.	nonlin refrac.	1-elec theory	UK
677	SOLIDS	optical nonlin.	semiconductors	many-body theory	W Ger
59	SOLIDS	optical recording	silicon	laser annealing	Israel
187	SOLIDS	optoelectronic	modulation	semicon. laser	W Ger
463	SOLIDS	organic	electronics	review	UK
165	SOLIDS	organic	superconductor	TMTSF	Denmrk
457	SOLIDS	organic super.	(TMTSF) 2C104	resistance	France
412	SOLIDS	phonon echoes	structure defect	quartz	UK
674	SOLIDS	photonic logic	optical comput	review	UK
61	SOLIDS	photoresist	gratings	fabrication	Israel
744	SOLIDS	plasmon excit.	Cd3As2	FT mag reflec	Nether
1146	SOLIDS	plasmon-phonon	Raman scattering	Sb2Te3	Greece
1157	SOLIDS	plasmons	Al matrix	He cavities	W Ger
707	SOLIDS	polar liquids	absorb & refrac	50-100 GHz	Poland
609	SOLIDS	polarons	doped plastic	electron scat.	W Ger
553	SOLIDS	polyacetylene	IR activity	photoinduced	Israel
542	SOLIDS	polymers	elec-phonon sys	phase trans.	Israel
689	SOLIDS	polymers	mm-wave absorp	temp. depend.	W Ger
64	SOLIDS	polysilicon	transistors	laser annealing	France
690	SOLIDS	quartz fibers	IR properties	measurements	Switz
3 4 8	SOLIDS	Raman Scattering	annealing	silicon	W Ger
1151 62	SOLIDS	Raman spectra	FIR scattering	semiconductors	Greece
62 256	SOLIDS SOLIDS	rare-earths	applications	mtg review	UK
9 42	SOLIDS	recrystallization SAW	silicon	halogen lamp	France
352	SOLIDS	Schottky barrier	imaging	synch. rad.	UK Tampal
552 55	SOLIDS	Schottky diode	photo responce mixer	absorption	Israel
762	SOLIDS	Schottky diodes	heterodyne	light & microwaves sub mm	W Ger W Ger
702	COTIDO	benoteky utodes	necerogyne	San Hilli	w Get

Rec ID	Topic	KW1	KW2	KW3	Country
763	SOLIDS	Schottky varistor	back radiation	sub mm excite	France
311	SOLIDS	semiconductor	annealing	lasers	France
603	SOLIDS	Si melt & resolid	laser irrad.	velocities	UK
372	SOLIDS	Si (111)	scanning tunnel	microscope	Switz
56	SOLIDS	silicon	ribbon growth	electron bombard	France
660	SOLIDS	solitons	acetanilide	ir absorbtion	Italy
1115	SOLIDS	solitons	atomic chain	substrate poten.	France
1107	SOLIDS	solitons	diatomic chains	anal. & numerics	France
561	SOLIDS	solitons	diatomic chains	quartic potential	France
1111	SOLIDS	solitons	ferromagnet	compressible	Poland
1104	SOLIDS	solitons	ferromagnets	domain walls	UK
1100	SOLIDS	solitons	Josephson junc.	sine-Gordon	Denmrk
1110	SOLIDS	solitons	sine-Gordon	numeric kinks	France
57	SOLIDS	superconductors	organic		Denmrk
745	SOLIDS	surface polarons	CsBr	mesh coupler	W Ger
1204	SOLIDS	thin films	organic	ion implanted	Italy
185	SOLIDS	transport theory	semiconductor	energy conversion	UK
278	SOLIDS	ultra low temp.	refrigeration		W Ger
694	SOLIDS	W band oscil.	stabilization	Ba2Ti9O2O	UK
705	SOLIDS	W-Ni diodes	rectification	30-120 THz	E Ger
1153	SOLIDS	x-ray analysis	crystals	organic molecules	Greece
31	WETHER	acoustic	gravity waves	ionosphere	UK
1169	WETHER	active plasmas	planetary	solar	W Ger
716	WETHER	atmos. abund.	co	mol. rot. trans.	W Ger
753	WETHER	atmos. detection	NO2	FT spectra	France
1193	WETHER	atmos, trans.	communication	expt. + compute	Israel
750	WETHER	atmos. transmit	FIR laser	Scottky detec.	ΩK
752	WETHER	atmos. transmit	N2O absorp.	line profile calc	France
751	WETHER	atmos. transmit.	CO2 bands	experiment	France
695	WETHER	atmosphere	IR emit & trans	chamber tests	Switz
715	WETHER	atmosphere	trace species	IR absorp lines	France
35	WETHER	Aurora	radar	Eiscat	Sweden
32	WETHER	bacteria	cloud seeding	rain making	Israel
196	WETHER	ball lightning	survey		UK
935	WETHER	baroclinic eddy	Red Spot. anal.	convection	UK
80	WETHER	breaking wave	side-scan sonar	bubbles	UK
659	WETHER	convection	earth, sun, sea	mtg. review	U K
1207	WETHER	earthquake	EM emission	lab simulation	Italy
238	WETHER		lights	data collection	Hungry
496	WETHER		UF0s	study	UK
33	WETHER		magnetosphere	GEOS	Sweden
34	WETHER		magnetosphere	variations	UK
425	WETHER		coagulating	aerosol	UK
893	WETHER		scattering	reflected light	UK
932	WETHER		reversals	15 Myr period	France
191	WETHER	•	magnetoacoustic	atmosphere	UK
38	WETHER		radio waves	reflectivity	₩ Ger
583	WETHER		rf heating		UK
937	WETHER		rocket hole	chem reactions	UK
1056	WETHER		atmos. prop.	turbulent expt.	France
341	WETHER		satellite	facility	UK
37	WETHER		temperature	correlation	France
٠,	******	403.0000	-		

Rec ID	Topic	KW1	KW2	KW3	Country
641	WETHER	magnetosphere	plasma composite	solar cycle	UK
749	WETHER	mm wave	imaging	antenna array	UК
447	WETHER	ocean wave	synth. aper. radar	imaging	UK
722	WETHER	planetary atmos	H2-He spectra	simulation	France
936	WETHER	solar	disturbances	ground observ	UK
541	WETHER	solar	flux tubes		UK
911	WETHER	solar	magnetoconvection	review	ÜΚ
584	WETHER	solar activity	MHD	summary	UK
934	WETHER	solar core	rotation	sun spots	Norway
1166	WETHER	solar flares	stability	2d theory	W Ger
721	WETHER	solar observation	FIR	balloons	Switz
560	WETHER	solar oscil	Doppler measure	temp. inhomo	UK
912	WETHER	solar oscillation	active region	connection	W Ger
597	WETHER	solar rotation	internal	hydro. instab	W Ger
36	WETHER	solar wind	Mars	Venus	UK
717	WETHER	stratosphere	sub mm spectra	balloon instrum.	Italy
1147	WETHER	underground	tunnels	EM scattering	Greece
239	WETHER	volcanic eruption	stratosphere	warming	UK
697	WETHER	water drops	scat & atten	100 GHz	UK
696	WETHER	water vapor	IR absorption	inteferometer	UK

| -

Appendix D:

Location List

Rec ID	Country	City	Institute	Topic
403	Austri	Graz	Tech. Univ. Graz	COMPUT
952	Austri	Graz	Tech. Univ. Graz	PLASMA
953	Austri	Graz	Tech. Univ. Graz	PLASMA
719	Austri	Innsbruck	Univ. Innsbruck	LASERS
2	Austri	Innsbruck	Univ. Innsbruck	PLASMA
371	Austri	Innsbruck	Univ. Innsbruck	PLASMA
531	Austri	Innsbruck	Univ. Innsbruck	PLASMA
956	Austri	Innsbruck	Univ. Innsbruck	PLASMA
958	Austri	Innsbruck	Univ. Innsbruck	PLASMA
699	Austri	Innsbruck	Univ. Innsbruck	SOLIDS
216	Austri	Innsbruck	Univ. Innsburck	PLASMA
746	Austri	Leoben	Montanuniv. Leoben	DIAGNO
964	Austri	Vienna	Austrian Acad. of Sci.	PLASMA
1083	Austri	Wien	Tech. Univ. Wien	CHEMAT
350	Austri	Wien	Tech. Univ. Wien	LASERS
529	Belgum	Brussels	Ecole Royale Militaire	PLASMA
545	Belgum	Brussels	Facultes Univ. N.D. de la Paix	ATOMIC
648	Belgum	Brussels	Univ. Libre de Bruxelles	BASICS
70	Belgum	Brussels	Univ. Libre de Bruxelles	COMPUT
415	Belgum	Brussels	Univ. Libre de Bruxelles	CPBICF
494	Belgum	Brussels	Univ. Libre de Bruxelles	HYDROD
682	Belgum	Brussels	Univ. Libre de Bruxelles	SOLIDS
629	Belgum	Brussels	Vrije Univ. Bruxelles	HYDROD
289	Belgum	Gent	Rijksuniversiteit te Gent	ENERGY
443	Belgum	Gent	Rijksuniversiteit te Gent	SOLIDS
27	Belgum	Heverlee	Lab. ESAT	ENERGY
453	Belgum	Kortrijk	Katholieke Univ.	HYDROD
708	Belgum	Leuren	Katholieke Univ.	SOLIDS
94	Belgum	Liege	Univ. of Liege	DIAGNO
323	Belgum	Rhode St. Genese	Von Karman Inst.	HYDROD
1087	Belgum	Rhode St. Genese	Von Karman Inst.	HYDROD
245	Bulgar	Sofia	Bulgarian Acad. of Sci.	CPBICF
127	Bulgar	Sofia	Inst. of Electronics	PLASMA
530	Bulgar	Sofia	Sofia Univ.	CPBICF
558	Bulgar	Sofia	Sofia Univ.	PLASMA
156	Czech	Bratislava	Inst. of Phys. and Biophys.	BASICS
1035	Czech	Prague	Czech Tech. Univ.	CPBICF
18	Czech	Prague	Inst. of Plasma Physics	CHEMAT
154	Czech	Prague	Prague Inst. of Chem. Tech.	BASICS
880	Czech	Prague	Prague Inst. of Chem. Tech.	BASICS
1004	Czech	Prague	Univ. of Prague	CPBICF
1023	Czech	Prague	Univ. of Prague	CPBICF
130	Denmrk	Aalborg	Aalborg Univ. Centre	PLASMA
167	Denmrk	Aarhus	Univ. of Aarhus	ATOMIC
262	Denmrk	Copenhagen	NORDITA	BASICS
951	Dermrk	Copenhagen	Univ. of Copenhagen	BMSRAD
495	Denmrk	Copenhagen	Univ. of Copenhagen	COMPUT
57	Denmrk	Copenhagen	Univ. of Copenhagen	SOLIDS
769 500	Denmrk	Cpoenhagen	Univ. of Copenhagen	LASERS
508	Denmrk	Lyngby	Tech. Univ. of Denmark	ATOMIC
252	Denmrk	Lyngby	Tech. Univ. of Denmark	BASICS
619	Denmrk	Lyngby	Tech. Univ. of Denmark	BASICS

Rec ID	Country	City	Institute	Topic
66	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
165	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
308	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
309	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
394	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
1100	Denmrk	Lyngby	Tech. Univ. of Denmark	SOLIDS
360	De .mrk	Odense	Odense Univ.	ATOMIC
263	Denmrk	Odense	Odense Univ.	BASICS
540	Denmrk	Roskilde	Riso Nat. Lab	PLASMA
5	Denmrk	Roskilđe	Riso Nat. Lab.	PLASMA
374	Denmrk	Roskilde	Riso Nat. Lab.	PLASMA
439	Denmrk	Roskilde	Riso Nat. Lab.	PLASMA
605	Denmrk	Roskilde	Riso Nat. Lab.	PLASMA
787	E Ger	Berlin	Akad. der Wissenschaften	CPBICF
512	E Ger	Berlin	Akad. der Wissenschaften	PLASMA
1039	E Ger	Berlin	Cen. Inst. for Optics and Spec.	CPBICF
1042	E Ger	Berlin	Cen. Inst. for Optics and Spec.	LASERS
705	E Ger	Braunschweig	Phys-Tech Bundesanstalt	SOLIDS
874	E Ger	Griefswald	E.M. Arndt Univ.	BASICS
120	E Ger	Rostock	Wilhelm-Pieck Univ.	PLASMA
537	Egypt	Cairo	Ain Shams Univ.	HYDROD
480	Egypt	Giza	Cairo Univ.	ATOMIC
143	Finlnd	Helsinki	Helsinki Univ. of Tech.	BASICS
743	Finlnd	Helsinki	Helsinki Univ. of Tech.	SOLIDS
976	Finlnd	Helsinki	Tech. Res. Cen. of Finland	CPBICF
1029	Finlnd	Helsinki	Tech. Res. Cen. of Finland	CPBICF
13	Finlnd	Helsinki	Univ. of Helsinki	CHEMAT
607	Finlnd	Helsinki	Univ. of Helsinki	SOLIDS
620	Finlnd	Helsinki	Univ. of Helsinki	SOLIDS
383	Finlnd	Tampere	Tampere Univ. of Tech.	SOLIDS
157	France	Bordeaux	Univ. of Bordeaux	BASICS
747	France	Boulogne-Billancourt	Thomson-CSF	BMSRAD
292	France	Brest	Univ. de Bretagne Occidentale	LASERS
162	France	Caen	GANIL	BMSRAD
325	France	Chatillon	ONERA	ATOMIC
324	France	Chatillon	ONERA	BASICS
328	France	Chatillon	ONERA	DIAGNO
329	France	Chatillon	ONERA	DIAGNO
330	France	Chatillon	ONERA	DIAGNO
326	France	Chatillon	ONERA	HYDROD
327	France	Chatillon	ONERA	HYDROD
1075	France	Chatillon	ONERA	LASERS
1056	France	Chatillon	ONERA	WETHER
28	France	Compiegne	Univ. de Tech. de Compiegne	ENERGY
561	France	Dijon	Univ. de Dijon	SOLIDS
1107	France	Dijon	Univ. de Dijon	SOLIDS
1115	France	Dijon	Univ. de Dijon	SOLIDS
219	France	Ecully	Labo. de Mecan. des Fluides	HYDROD
194	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
435	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
438	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
514	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA

1 .

Rec ID	Country	City	Institute	Topic
522	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
53 4	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
569	France	Fontenay-aux-Roses	Cen. d'Etudes Eucleaires	FLASMA
599	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	FLASMA
693	France	Fontenay-aux-Roses	Cen. d'Etudes Mucleaires	FLASMA
701	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
702	France	Fontenay-aux-Roses	Cen. d'Etudes Nucleaires	FLASMA
784	France	Fontenay+aux-Roses	Cen. d'Etudes Nucleaires	PLASMA
585	France	Fonteney-aux-Roses	Cen. d'Etudes Nucleaires	FLASMA
581	France	Gif-sur-Yvette	CEN Saclay	ATOMIC
1091	France	Gif-sur-Yvette	CEN Saclay	ATOMIC
889	France	Gif-sur-Yvette	CEN Saclay	PASICS
604	France	Gif-sur-Yvette	CEN Saciay	CFBICF
260	France	Gif-sur-Yvette	CEN Saclay	. HYDROD
879	France	Gif-sur-Yvette	CEN Saclay	HYDROD
186	France	Gif-sur-Yvette	CNRS E.S.E. Plateau du Moulan	CPBICE
300	France	Gif-sur-Yvette	Ecole Sup. d'Electricite	PLASMA
343	France	Gif-sur-Yvette	Nuclear Studies Center	SOT IDS
16	France	Gramat	Centre d'Etudes de Gramat	СНЕМАТ
454	France	Grenoble	Assoc. Euratom-CEA	PLASMA
365	France	Grenoble	Cen. for Res. at Very Low Temp.	BASICS
887	France	Grenoble	Cen. for Res. at Very Low Temp.	BASICS
888	France	Grenoble	Cen. for Res. at Very Low Temp.	BASICS
677	France	Grenoble	Cen. Nat. de la Recherche Sci.	HYDROD
161	France	Grenoble	Inst. Laue-Langevin	EMSRAD
132	France	Grenoble	Inst. Laue-Langevin	PLASMA
692	France	Grenoble	Labo. de Spectro. Phys.	PLASMA
284	France	Grenoble	Labo. d'Elec. et de Mat. Dielec.	CPBICF
256	France	Grenoble	Labo. d'Electronique et des Tech.	SOLIDS
785	France	Grenoble	Univ. Grenoble I	CPBICF
775	France	Is-sur-Tille	CEA Valduc	CPBICF
776	France	Is-sur-Tille	CEA Valduc	CPBICF
783	France	Is-sur-Tille	CEA Valduc	CPBICF
786	France	Is-sur-Tille	CEA Valduc	CPBICF
538	France	Issy-les-Moulineaux	CNET/CRPE	PLASMA
64	France	Lannion	Cen. Nat. d'Etudes Telecom.	SOLIDS
56	France	Lyon	Inst. Nat. de Sci. Appliquees	SOLIDS
739	France	Marcoussis	Compagnie Generale d'Electricite	SOLIDS
764	France	Marseille	Faculte St. Jerome	DIAGNO
805	France	Marseille	Faculte St. Jerome	DIAGNO
722	France	Marseille	Faculte St. Jerome	WETHER
1068	France	Marseille	IMFM	HYDROD
1069	France	Marseille	IMFM	HYDROD
1082	France	Marseille	IMFM	LASERS
493 7 4 8	France France	Marseille Marseille	Inst. Mecan. Stat. de la Turb.	HYDROD
7 4 8 627	France	Marseille	Labo. de Thermophysique	HYDROD
507	France	Marseille	Univ. de Provence	ATOMIC
476	France	Marseille	Univ. de Provence	DIAGNO
706	France	Marseille	Univ. de Provence	HYDROD
62 5	France	Meudon	Univ. de Provence	LASERS
54	France	Meylan	Univ. Pierre et Marie Curie	PLASMA
-			Cen. Nat. d'Etudes Telecom.	SOLIDS

Rec ID	Country	City	Institute	Topic
591	France	Nancy	Faculte des Science, CNRS	PLASMA
331	France	Nice	Observ. de Nice	ATOMIC
622	France	Nice	Observ. de Nice	CPBICF
195	France	Nice	Observ. de Nice	PLASMA
1110	France	Nice	Observ. de Nice	SOLIDS
1211	France	Nice	Univ. de Nice	BASICS
446	France	Nont-St-Aigman	Fac. des Sci. de Rouen	DIAGNO
467	France	Orleans	CNRS	EMSRAD
718	France	Orleans	Univ. d'Orleans	SOLIDS
602	France	Orsay	Cen. Nat. de la Res. Sci. IJ	ATOMIC
709	France	Orsay	Centre Univ. d'Orsay	DIAGNO
46	France	Orsay	Inst. d'Optique	LASERS
753	France	Orsay	Labo. Phys. Mol. et Opt. Acmo CNRS	WETHER
582	France	Orsay	Univ. Paris Sud	ATOMIC
5 90	France	Orsay	Univ. Paris Sud	ATOMIC
815	France	Orsay	Univ. Paris Sud	ATOMIC
826	France	Orsay	Univ. Paris SUd	ATOMIC
155	France	Orsay	Univ. Paris Sud	BASICS
810	France	Orsay	Univ. Paris Sud	BMSRAD
922	France	Orsay	Univ. Paris Sud	BMSRAD
923	France	Orsay	Univ. Paris Sud	BMSRAD
924	France	Orsay	Univ. Paris Sud	BMSRAD
925	France	Orsay	Univ. Paris Sud	BMSRAD
926	France	Orsay	Univ. Paris Sud	BMSRAD
927	France	Orsay	Univ. Paris Sud	BMSRAD
928	France	Orsay	Univ. Paris Sud	BMSRAD
243	France	Orsay	Univ. Paris Sud	CPBICF
813	France	Orsay	Univ. Paris Sud	CPBICF
977	France	Orsay	Univ. Paris Sud	CPBICF
1073	France	Orsay	Univ. Paris Sud	LASERS
215	France	Orsay	Univ. Paris Sud	PLASMA
485	France	Orsay	Univ. Paris Sud	PLASMA
1197	France	Orsay	Univ. Paris Sud	PLASMA
752	France	Orsay	Univ. Paris Sud	WETHER
802	France	Orsay	Univ. Paris XI	BMSRAD
1198	France	Orsay	Univ. Paris XI	CPBICF
724	France	Orsay	Univ. Paris XI	LASERS
1199	France	Orsay	Univ. Paris XI	PLASMA
1200 4 55	France	Orsay	Univ. Paris XI	PLASMA
236	France France	Palaiseau	Ecole Poly.	CPBCIF
567	France	Palaiseau Palaiseau	Ecole Poly.	CPBICF
686	France	Palaiseau	Ecole Poly.	CPBICF
779	France	Palaiseau	Ecole Poly.	CPBICF
780	France	Palaiseau	Ecole Poly.	CPBICE
790	France	Palaiseau	Ecole Poly.	CPBICE
791	France	Palaiseau	Ecole Poly.	CPRICE
967	France	Palaiseau	Ecole Poly.	CPBICF CPBICF
971	France	Palaiseau	Ecole Poly.	CPBICF
975	France	Palaiseau	Ecole Poly.	CPBICF
978	France	Palaiseau	Ecole Poly.	CPBICF
988	France	Palaiseau	Ecole Poly.	CPBICF
		-	**	01 D101

Rec ID	Country	City	Institute	Topic
989	France	Palaiseau	Ecole Poly.	CPBICF
993	France	Palaiseau	Ecole Poly.	CPBICF
1002	France	Palaiseau	Ecole Poly.	CPBICF
1009	France	Palaiseau	Ecole Poly.	CPBICF
1018	France	Palaiseau	Ecole Poly.	CPBICF
1022	France	Palaiseau	Ecole Poly.	CPBICF
1025	France	Palaiseau	Ecole Poly.	CPBICF
1036	France	Palaiseau	Ecole Poly.	CPBICF
1051	France	Palais ea u	Ecole Poly.	CPBICF
369	France	Palaiseau	Ecole Poly.	DIAGNO
799	France	Palaiseau	Ecole Poly.	LASERS
234	France	Palaiseau	Ecole Poly.	PLASMA
402	France	Palaiseau	Ecole Poly.	PLASMA
458	France	Palaiseau	Ecole Poly.	PLASMA
546	France	Paris	Ecole Normale Superieure	ATOMIC
566	France	Paris	Ecole Normale Superieure	ATOMIC
698	France	Paris	Ecole Normale Superieure	ATOMIC
131	France	Paris	Ecole Normale Superieure	PLASMA
75	France	Paris	INRIA	COMPUT
598	France	Paris	Labo. de Phys. Theorique, CNRS	PLASMA
754	France	Paris	Labo. Primaire Temps & Freq.	LASERS
37	France	Paris	Univ. of Paris	WETHER
932	France	Paris	Univ. Paris VI	WETHER
293	France	Paris	Univ. Paris VII	DIAGNO
533	France	Paris	Univ. Paris VII	HYDROD
634	France	Paris	Univ. Paris VIII	HYDROD
729	France	Paris	Univ. Pierre et Marie Curie	ATOMIC
1102	France	Paris	Univ. Pierre et Marie Curie	BASICS
982	France	Paris	Univ. Pierre et Marie Curie	CPBICF
21	France	Paris	Univ. Pierre et Marie Curie	ENERGY
137	France	Paris	Univ. Pierre et Marie Curie	PLASMA
543	France	Paris	Univ. Pierre et Marie Curie	PLASMA
311	France	Paris	Univ. Pierre et Marie Curie	SOLIDS
763	France	Paris	Univ. Pierre et Marie Curie	SOLIDS
246	France	Pau	Inst. Univ. de Recherche Sci.	CPBICF
523	France	Pau	Univ. de Pau	CPBICF
1209	France	Poitiers	Ecole Nationale Superieure	HYDROD
1001	France	Poitiers	Labo. d'Energetique et Detonique	HYDROD
1019	France	Poitiers	Labo. d'Energetique et Detonique	HYDROD
715	France	Reims	Labo. de Phys. Molec. CNRS	WETHER
98	France	Reims	U.E.R. des Sciences	DIAGNO WETHER
751	France	Rennes	Univ. de Rennes I	CPBICF
782	France	Sevran	CEA Vaujours Cen. Res. Phys. de l'Environ	PLASMA
124	France	St. Maur des Fosses	Cen. des Res. Macromolecules	SOLIDS
339	France	Strasbourg	Univ. Louis Pasteur	SOLIDS
678	France	Strasbourg	Cen. Nat. de la Res. Sci.	HYDROD
596	France	Toulouse	Cen. Nat. d'Etudes Spatiales	PLASMA
235	France	Toulouse	Labo. de Physique des Solides	SOLIDS
457 47 4	France	Toulouse Toulouse	ONERA	HYDROD
	France France	Toulouse	Univ. Paul Sabatier	BMSRAD
1 145 555		Toulouse	Univ. Paul Sabatier	CPBICF
555	France	10010036	Julia raa- oabat	

Rec ID	Country	City	Institute	Topic
576	France	Toulouse	Univ. Paul Sabatier	CPBICF
974	France	Toulouse	Univ. Paul Sabatier	CPBIC F
990	France	Toulouse	Univ. Paul Sabatier	CPBICF
1021	France	Toulouse	Univ. Paul Sabatier	CPBICF
1070	France	Toulouse	Univ. Paul Sabatier	LASERS
1071	France	Toulouse	Univ. Paul Sabatier	LASERS
401	France	Valenciennes	Univ. de Valenciennes	DIAGNO
731	France	Vardoeuvre les Nancy	Univ. Nancy I	ATOMIC
714	France	Verrieres-le-Buisson	Service d'Atero. CNRS	DIAGNO
727	France	Villeneuve d'Ascq	Univ. de Lille I	LASERS
741	France	Villeneuve d'Ascq	Univ. de Lille I	SOLIDS
413	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
437	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
968	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
1003	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
1005	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
1011	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
1012	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
1014	France	Villeneuve-St-Georges	CEA Limeil	CPBICF
536	France	Villeneuve-St-Georges	CEA Limeil	PLASMA
728	France	Villetaneuse	Univ. Paris Nord	LASERS
220	France	Villeurbanne	Univ. Claude Bernard Lyon	SOLIDS
1148	Greece	Athens	Nat. Tech. Univ. of Athens	BMSRAD
1149	Greece	Athens	Nat. Tech. Univ. of Athens	BMSRAD
1150	Greece	Athens	Nat. Tech. Univ. of Athens	BMSRAD
1146	Greece	Athens	Nat. Tech. Univ. of Athens	SOLIDS
1147	Greece	Athens	Nat. Tech. Univ. of Athens	WETHER
1152	Greece	Athens	Nat. Tech. Univ. Zografu	CHEMAT
1151	Greece	Athens	Nat. Tech. Univ. Zografu	SOLIDS
1155	Greece	Athens	Nucl. Res. Cen. Demokritos	COMPUT
1156	Greece	Athens	Nucl. Res. Cen. Demokritos	PLASMA
1153	Greece	Athens	Nucl. Res. Cen. Demokritos	SOLIDS
1154	Greece	Athens	Nucl. Res. Cen. Demokritos	SOLIDS
338	Greece	Iraklion	Univ. of Crete	BMSRAD
510	Greece	Iraklion	Univ. of Crete	BMSRAD
238	Hungry	Budapest	Georgiana Observ.	WETHER
366	Hungry	Budapest	Inst. for Tech. Physics	BASICS
484	Irland	Cork	Univ. College	LASERS
772	Irland	Cork	Univ. College	LASERS
854	Irland	Dublin	Trinity College	CPBICF LASERS
549	Irland	Dublin	Trinity College	LASERS
637	Irland	Dublin	Trinity College	LASERS
973	Irland	Dublin	Trinity College	ATOMIC
557	Israel	Beer-Sheva	Ben Gurion Univ. Negev	
15	Israel	Beer-Sheva	Ben Gurion Univ. Negev	CHEMAT CPBICF
451	Israel	Beer-Sheva	Ben Gurion Univ. Negev	HYDROD
307	Israel	Beer-Sheva	Ben Gurion Univ. Negev	LASERS
213	Israel	Beer-Sheva	Ben Gurion Univ. Negev Ben Gurion Univ. Negev	LASERS
547	Israel	Beer-Sheva	Ben Gurion Univ. Negev	LASERS
1063	Israel	Beer-Sheva	Ben Gurion Univ. Negev	LASERS
1066	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	CPBICF
212	Israel	Beer-Sheva	nucled hes. cen. negev	Cipici

Rec ID	Country	City	Institute	Topic
270	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	CPBICF
423	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	CPBICF
1024	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	CPBICF
1052	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	CPBICF
478	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	HYDROD
1060	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	LASERS
1067	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	LASERS
1088	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	LASERS
955	Israel	Beer-Sheva	Nuclear Res. Cen. Negev	PLASMA
781	Israel	Haifa	Ministry of Defense	CPBICF
792	Israel	Haifa	Ministry of Defense	CPBICF
355	Israel	Haifa	Technion	ATOMIC
51	Israel	Haifa	Technion	ENERGY
41	Israel	Haifa	Technion	LASERS
209	Israel	Haifa	Technion	LASERS
210	Israel	Haifa	Technion	PLASMA
491	Israel	Haifa	Technion	PLASMA
59	Israel	Haifa	Technion	SOLIDS
553	Israel	Haifa	Technion	SOLIDS
673	Israel	Haifa	Technion	SOLIDS
1193	Israel	Haifa	Technion	WETHER
406	Israel	Jerusalem	Hebrew Univ.	ATOMIC
501	Israel	Jerusalem	Hebrew Univ.	ATOMIC
816	Israel	Jerusalem	Hebrew Univ.	ATOMIC
820	Israel	Jerusalem	Hebrew Univ.	ATOMIC
822	Israel	Jerusalem	Hebrew Univ.	ATOMIC
881	Israel	Jerusalem	Hebrew Univ.	BASICS
211	Israel	Jerusalem	Hebrew Univ.	CPBICF
554	Israel	Jerusalem	Hebrew Univ.	CPBICF
817	Israel	Jerusalem	Hebrew Univ.	CPBICF
920	Israel	Jerusalem	Hebrew Univ.	CPBICF
929	Israel	Jerusalem	Hebrew Univ.	CPBICF
930	Israel	Jerusalem	Hebrew Univ.	CPBICF
807	Israel	Jerusalem	Hebrew Univ.	DIAGNO
809	Israel	Jerusalem	Hebrew Univ.	DIAGNO
47	Israel	Jerusalem	Hebrew Univ.	LASERS
1194	Israel	Jerusalem	Hebrew Univ.	LASERS
827	Israel	Jerusalem	Hebrew Univ.	PLASMA
352	Israel	Jerusalem	Hebrew Univ.	SOLIDS
354	Israel	Jerusalem	Hebrew Univ.	SOLIDS
771	Israel	Jerusalem	Hebrew. Univ.	CPBICF
153	Israel	Ramat-Gan	Bar-Ilan Univ.	BASICS
357	Israel	Ramat-Gan	Bar-Ilan Univ.	BASICS
891	Israel	Ramat-Gan	Bar-Ilan Univ.	BASICS
159	Israel	Rehovot	Weizmann Inst. of Sci.	BASICS
208	Israel	Rehovot	Weizmann Inst. of Sci.	BASICS
373	Israel	Rehovot	Weizmann Inst. of Sci.	BASICS
651	· Israel	Rehovot	Weizmann Inst. of Sci.	BASICS
8	Israel	Rehovot	Weizmann Inst. of Sci.	CPBCIF
7	Israel	Rehovot	Weizmann Inst. of Sci.	CPBICF
142	Israel	Rehovot	Weizmann Inst. of Sci.	CPBICF
264	Israel	Rehovot	Weizmann Inst. of Sci.	CPBICF

Rec ID	Country	City	Institute	Topic
399	Israel	Rehovot	Weizmann Inst. of Sci.	CPBICF
774	Israel	Rehovot	Weizmann Inst. of Sci.	CPBIC F
789	Israel	Rehovot	Weizmann Inst. of Sci.	CPBICF
440	Israel	Rehovot	Weizmann Inst. of Sci.	DIAGNO
24	Israel	Rehovot	Weizmann Inst. of Sci.	ENERGY
358	Israel	Rehovot	Weizmann Inst. of Sci.	HYDROD
353	Israel	Rehovot	Weizmann Inst. of Sci.	SOLIDS
542	Israel	Rehovot	Weizmann Inst. of Sci.	SOLIDS
890	Israel	Tel Aviv	Tel Aviv Univ.	BASICS
892	Israel	Tel Aviv	Tel Aviv Univ.	BASICS
1191	Israel	Tel Aviv	Tel Aviv Univ.	BMSRAD
1192	Israel	Tel Aviv	Tel Aviv Univ.	BMSRAD
181	Israel	Tel Aviv	Tel Aviv Univ.	CPBICF
207	Israel	Tel Aviv	Tel Aviv Univ.	CPBICF
356	Israel	Tel Aviv	Tel Aviv Univ.	CPBICF
384	Israel	Tel Aviv	Tel Aviv Univ.	CPBICF
878	Israel	Tel Aviv	Tel Aviv Univ.	HYDROD
61	Israel	Tel Aviv	Tel Aviv Univ.	SOLIDS
32	Israel	Tel Aviv	Tel Aviv Univ.	WETHER
1017	Israel	Yavne	Soreq Nuclear Res. Cen.	ATOMIC
814	Israel	Yavne	Soreq Nuclear Res. Cen.	CPBICF
95	Italy	Bari	Univ. of Bari	DIAGNO
221	Italy	Bari	Univ. of Bari	SOLIDS
489	Italy	Bologna	CNR-Inst. Lamel	CHEMAT
334	Italy	Casaccia	Lab. Tec. Speciali-CNEN	LASERS
539	Italy	Catania	Univ. di Catania	HYDROD
1204	Italy	Catania	Univ. di Catania	SOLIDS
272	Italy	Florence	Ist. di Elettronica Quant. CNR	LASERS
362	Italy	Florence	Ist. di Elettronica Quant. CNR	LASERS
662	Italy	Florence	Ist. di Elettronica Quant. CNR	LASERS
872	Italy	Florence	Ist. Nazionale di Ottica	BASICS
316	Italy	Florence	Ist. Nazionale di Ottica	LASERS
734	ITaly	Florence	Ist. Ricerca Onde EM	DIAGNO
717	Italy	Florence	Ist. Ricerca Onde EM	WETHER BASICS
152	Italy	Florence	Univ. of Florence	BASICS
650	Italy	Florence	Univ. of Florence	BMSRAD
921	Italy	Frascati	Centro Richerche Energia-ENEA Centro Richerche Energia-ENEA	CPBICF
1049	Italy	Frascati	Centro Richerche Energia-ENEA	PLASMA
387	Italy	Frascati	Centro Richerche Energia-ENEA	PLASMA
661	Italy	Frascati	Centro Richerche Energia-ENEA	PLASMA
664	Italy	Frascati	Centro Richerche Energia-ENEA	PLASMS
663	Italy	Frascati	Ist. Naz. di Fisica Nucleare	BMSRAD
337	Italy	Frascati	Ist. Naz. di Fisica Nucleare	BMSRAD
665	Italy	Frascati Frascati	Ist. Naz. di Fisica Nucleare	SOLIDS
656	Italy Italy	Genova	Ist. di Ellettrotecnica	PLASMA
128	Italy Italy		CEC Joint Res. Cen.	BASICS
913	Italy	Ispra Lecce	Univ. di Lecce	BASICS
1119	Italy Italy	Lecce Lecce	Univ. di Lecce	LASERS
638	Italy Italy	Messina	Consig. Nac. delle Richerche	HYDROD
410	Italy Italy	Milan	CISE S.p.A.	ATOMIC
321	Italy	Milan	CISE S.p.A.	CHEMAT
1090	Italy	WIIGH	CION O. P. O.	

Rec ID	Country	City	Institute	Topic
1061	Italy	Milan	CISE S.p.A.	LASERS
189	Italy	Milan	Ist. di Macchine-CNPM	HYDROD
621	Italy	Milan	Politecnico di Milano	HYDROD
151	Italy	Milan	Societa per Azioni	HYDROD
636	Italy	Milan	Univ. degli Studi di Milano	ATOMIC
1210	Italy	Milan	Univ. degli Studi di Milano	BASICS
933	Italy	Milan	Univ. di Milano	BASICS
683	Italy	Milan	Univ. di Milano	SOLIDS
586	Italy	Naples	Univ. degli Studi	ENERGY
1064	Italy	Naples	Univ. di Napoli	CHEMAT
1065	Italy	Naples	Univ. di Napoli	CHEMAT
1072	Italy	Naples	Univ. di Napoli	LASERS
1080	Italy	Naples	Univ. di Napoli	LASERS
1086	Italy	Naples	Univ. di Napoli	LASERS
1059	Italy	Orbassano	Cen. Richerche FIAT	CHEMAT
499	Italy	Orbassano	Fiat Research Center	DIAGNO
526	Italy	Padua	Assoc. Euratom, CNR	PLASMA
812	Italy	Padua	Univ. đi Padova	ATOMIC
1113	Italy	Padua	Univ. di Padova	BASICS
1084	Italy	Padua	Univ. di Padova	CHEMAT
610	Italy	Padua	Univ. di Padova	PLASMA
172	Italy	Parma	Univ. đi Padova	ATOMIC
979	Italy	Pisa	Ist. di Fisica Atom. e Molec.	CPBICF
713	Italy	Pisa	Univ. di Pisa	LASERS
725	Italy	Pisa	Univ. di Pisa	LASERS
770	Italy	Pisa	Univ. di Pisa	LASERS
351	Italy	Pomezia	Selenia S.P.A.	LASERS
452	Italy	Pomezia	Selenia S.P.A.	LASERS
1207	Italy	Rome	Ist. di Astrofisica Spaziale	WETHER
226	Italy	Rome	Ist. di Fisica	SOLIDS
1108	Italy	Rome	Univ. degli Studi-Roma	HYDROD
294	Italy	Rome	Univ. di Roma	BASICS
1116	Italy	Rome	Univ. di Roma	BASICS
332	Italy	Rome	Univ. di Roma	BMSRAD
660	Italy	Rome	Univ. di Roma	SOLIDS
417	Italy	Rome	Univ. La Sapienza	SOLIDS
11	Italy	Turin	Fiat Auto S.P.A.	CHEMAT
1114	Italy	Turin	Ist. Cosmo-Geofisica CNR	HYDROD
1085	Italy	Turin	Poli. di Torino	HYDROD
1140	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	ATOMIC
385	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	BMSRAD BMSRAD
1133	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	
655	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	CPBICF
1128	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	CPBICF CPBICF
1137	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	CPBICF
1141	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	DIAGNO
1138	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	ENERGY
1132	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	SOLIDS
1139	Nether	Amsterdam	Inst. for Atomic & Molec. Phys.	ATOMIC
170	Nether	Amsterdam	Univ. of Amsterdam	BASICS
158	Nether	Amsterdam	Univ. of Amsterdam	BASICS
382	Nether	Amsterdam	Univ. of Amsterdam	2.0100

 $(x_1, x_2, \dots, x_n) = (x_1, \dots, x_n) + (x_1, \dots$

Rec ID	Country	City	Institute	Topic
654	Nether	Amsterdam	Univ. of Amsterdam	SOLIDS
519	Nether	DeBilt	Royal Nether. Meteor. Inst.	BASICS
418	Nether	Delft	Lab. voor Tech. Natuurkunde	BASICS
281	Nether	Eindhoven	Eindhoven Univ. of Tech.	CPBICF
1202	Nether	Eindhoven	Eindhoven Univ. of Tech.	CPBICF
1	Nether	Eindhoven	Eindhoven Univ. of Tech.	PLASMA
134	Nether	Eindhoven	Eindhoven Univ. of Tech.	PLASMA
744	Nether	Eindhoven	Eindhoven Univ. of Tech.	SOLIDS
1214	Nether	Eindhoven	Philips Research Labs.	BMSRAD
227	Nether	Eindhoven	Philips Research Labs.	SOLIDS
404	Nether	Enschede	Twente Univ. of Tech.	LASERS
258	Nether	Groningen	Univ. of Groningen	SOLIDS
1134	Nether	Le iden	Huygens Lab.	DIAGNO
1099	Nether	Leiden	Inst. Lorentz	BASICS
1131	Nether	Leiden	Inst. Lorentz	BASICS
1130	Nether	Leiden	Inst. Lorentz	HYDROD
1143	Nether	Nieuwegein	Inst. voor Plasmafysica	CPBICF
687	Nether	Nieuwegein	Inst. voor Plasmafysica	DIAGNO
251	Nether	Nieuwegein	Inst. voor Plasmafysica	PLASMA
470	Nether	Nieuwegein	Inst. voor Plasmafysica	PLASMA
600	Nether	Nieuwegein	Inst. voor Plasmafysica	PLASMA
1129	Nether	Nieuwegein	Inst. voor Plasmafysica	PLASMA
1142	Nether	Nieuwegein	Inst. voor Plasmafysica	PLASMA
313	Nether	Nijmegen	Katholieke Univ.	BASICS
640	Nether	Nijmegen	Univ. of Nijmegen	BASICS
759	Nether	Nijmegen	Univ. of Nijmegen	LASERS
103	Nether	Noorđwijk	Eur. Space Res. and Tech. Cen.	DIAGNO
149	Nether	Terneuzen	Zeldenrust College	CPBICF
315	Nether	Utrecht	Academic Computer Cen.	BASICS
1118	Nether	Utrecht	Rijksuniv. Utrecht	BASICS
83	Nether	Utrecht	Univ. of Utrecht	HYDROD
81	Norway	Bergen	Univ. of Bergen	HYDROD
441	Norway	Kjeller	Inst. for Energy Tech.	SOLIDS
400	Norway	Kjeller	Norwegian Defense Res. Estab.	HYDROD
22	Norway	Oslo	Central Inst. for Indus. Res.	HYDROD
502	Norway	Oslo	Central Inst. for Indus. Res.	HYDROD
579	Norway	Oslo	Univ. of Oslo	BASICS
934	Norway	Oslo	Univ. of Oslo	WETHER
182	Norway	Tromso	Univ. of Tromso	BMSRAD
232	Norway	Tromso	Univ. of Tromso	PLASMA
6	Norway	Trondheim	Norwegian Inst. of Tech.	CPBICF
647	Norway	Trondheim	Norwegian Inst. of Tech.	HYDROD
122	Norway	Trondheim	Univ. of Trondheim	PLASMA
129	Norway	Trondheim	Univ. of Trondheim	PLASMA
180	Poland	Gdansk	Gdansk Tech. Univ.	CPBICF
1076	Poland	Gdansk	Polish Acad. of Sci.	LASERS
253	Poland	Gdansk	Polish Acad. of Sci.	PLASMA
954	Poland	Krakow	Inst. of Phys. and Nucl. Tech Univ. Jagiellonski	PLASMA
169	Poland	Krakow Swierk-Otwook	Inst. of Nuclear Research	ATOMIC
173 960	Poland	Swierk-Otwock	Inst. or Nuclear Research Inst. Plasma Phys. & Laser Fusion	PLASMA
	Poland Poland	Warsaw	Inst. Plasma Phys. & Laser Fusion	CPBICE
1016	Poland	Warsaw	inst. ridsma rnys, a baser rusion	CPBICF

Rec ID	Country	City	Institute	Topic
146	Poland	Warsaw	Polish Acad. of Sci.	BASICS
318	Poland	Warsaw	Polish Acad. of Sci.	BASICS
707	Poland	Warsaw	Polish Acad. of Sci.	SOLIDS
416	Poland	Warsaw	Univ. of Warsaw	BASICS
100	Poland	Warsaw	Univ. of Warsaw	DIAGNO
40	Poland	Warsaw	Warsaw Tech. Univ	LASERS
1111	Poland	Warsaw	Warsaw Tech. Univ.	SOLIDS
257	Portug	Lisbon	CAUL-CFMC	BASICS
870	Portug	Lisbon	CAUL-CFMC	BASICS
649	Portug	Lisbon	CFMC-INIC	BASICS
1213	Portug	Lisbon	CFMC-INIC	BASICS
242	Portug	Lisbon	Inst. Superior Tecnico	CPBICF
617	Portug	Lisbon	Inst. Superior Tecnico	CPBICF
500	Portug	Lisbon	Univ. Tecnica	ATOMIC
48	Roman	Bucharest	Central Inst. of Physics	LASERS
259	Spain	Barcelona	Univ. Auto. de Barcelona	BASICS
444	Spain	Barcelona	Univ. de Barcelona	BMSRAD
225	Spain	Granada	Univ. of Granada	ENERGY
199	Spain	Madrid	Univ. Auto. de Madrid	ATOMIC
104	Spain	Madrid	Univ. Auto. de Madrid	DIAGNO
668	Spain	Madrid	Univ. Auto. de Madrid	DIAGNO
82	Spain	Madrid	Univ. Auto. de Madrid	HYDROD
426	Spain	Madrid	Univ. Complutense	BMSRAD
464	Spain	Madrid	Univ. Complutense	HYDROD
1144	Spain	Madrid	Univ. Nac. de Educacion a Distancia	LASERS
436	Spain	Madrid	Univ. Poli. de Madrid	CPBICF
666	Spain	Madrid	Univ. Poli. de Madrid	CPBICF
667	Spain	Madrid	Univ. Poli. de Madrid	CPBICF
9 91	Spain	Madrid	Univ. Poli. de Madrid	CPBICF
1028	Spain	Madrid	Univ. Poli. de Madrid	CPBICF
1045	Spain	Madrid	Univ. Poli, de Madrid	CPBICF
669	Spain	Madrid	Univ. Poli. de Madrid	HYDROD
670	Spain	Madrid	Univ. Poli. de Madrid	HYDROD
671	Spain	Madrid	Univ. Poli. de Madrid	HYDROD
631	Spain	Pais Vasco	Faculdad de Ciencias	HYDROD
198	Spain	Santander	Univ. de Santander	PLASMA
430	Spain	Tarragona	Univ. de Barcelona	HYDROD
633	Sweden	Goteborg	Chalmers Univ. of Tech	PLASMA
520	Sweden	Goteborg	Chalmers Univ. of Tech.	PLASMA
564	Sweden	Goteborg	Chalmers Univ. of Tech.	PLASMA
67	Sweden	Goteborg	Chalmers Univ. of Tech.	SOLIDS
742	Sweden	Goteborg	Chalmers Univ. of Tech.	SOLIDS
823	Sweden	Lund	Univ. of Lund	ATOMIC
347	Sweden	Stockholm	Research Inst. of Physics	ATOMIC
87	Sweden	Stockholm	Royal Inst. of Tech	DIAGNO
105	Sweden	Stockholm	Royal Inst. of Tech.	DIAGNO
141	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
266	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
290	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
421	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
450	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
469	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA

Rec ID	Country	City	Institute	Topic
528	Sweden	Stockholm	Royal Inst. of Tech.	PLASMA
380	Sweden	Stockholm	Swed. Rock Mech. Res. Found.	ENERGY
33	Sweden	Umea	Kiruna Geophys. Inst.	WETHER
35	Sweden	Umea	Kiruna Geophys. Inst.	WETHER
133	Sweden	Umea	Univ. of Umea	PLASMA
593	Sweden	Umea	Univ. of Umea	PLASMA
171	Sweden	Uppsala	Uppsala Univ.	ATOMIC
804	Sweden	Uppsala	Uppsala Univ.	DIAGNO
806	Sweden	Uppsala	Uppsala Univ.	DIAGNO
409	Switz	Baden-Dattwil	Brown Boveri & Cie Res. Cen.	BASICS
509	Switz	Baden-Dattwil	Brown Boveri & Cie Res. Cen.	CPBICF
618	Switz	Baden-Dattwil	Brown Boveri & Cie Res. Cen.	CPBICF
626	Switz	Baden-Dattwil	Brown Boveri & Cie Res. Cen.	CPBICF
1074	Switz	Bern	Inst. fur Angewandte Phys.	LASERS
1013	Switz	Bern	Univ. of Bern	CPBICF
1026	Switz	Bern	Univ. of Bern	CPBICF
44	Switz	Bern	Univ. of Bern	LASERS
556	Switz	Bern	Univ. of Bern	LASERS
601	Switz	Fribourg	Univ. of Fribourg	PLASMA
192	Switz	Geneva	CERN	BMSRAD
333	Switz	Geneva	CERN	BMSRAD
798	Switz	Geneva	CERN	BMSRAD
948	Switz	Geneva	CERN	BMSRAD
1164	Switz	Geneva	CERN	BMSRAD
411	Switz	Lausanne	Ecole Poly. Federale	ATOMIC
20	Switz	Lausanne	Ecole Poly. Federale	CHEMAT
396	Switz	Lausanne	Ecole Poly. Federale	CHEMAT
961	Switz	Lausanne	Ecole Poly. Federale	CPBICF
755	Switz	Lausanne	Ecole Poly. Federale	LASERS
756	Switz	Lausanne	Ecole Poly. Federale	LASERS
1181	Switz	Lausanne	Ecole Poly. Federale	LASERS
1189	Switz	Lausanne	Ecole Poly. Federale	LASERS
3	Switz	Lausanne	Ecole Poly. Federale	PLASMA
140	Switz	Lausanne	Ecole Poly. Federale	PLASMA
218	Switz	Lausanne	Ecole Poly. Federale	PLASMA
957	Switz	Lausanne	Ecole Poly. Federale	PLASMA
966	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1183	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1184	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1185	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1186	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1187	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1188	Switz	Lausanne	Ecole Poly. Federale	PLASMA
1190	Switz	Lausanne	Ecole Poly. Federale	PLASMA
963	Switz	Villigen	Swiss Inst. for Nucl. Phys.	PLASMA
1161	Switz	Villigen	Swiss Inst. for Nucl. Res.	BMSRAD
1163	Switz	Villigen	Swiss Inst. for Nucl. Res.	BMSRAD
1162	Switz	Villigen	Swiss Inst. for Nucl. Res.	PLASMA
965	Switz	Wuerenlingen	Swiss Fed. Inst. for Reactor Res.	CPBICF
99	Switz	Zurich	Eidgenossisch Tech. H.S.	DIAGNO
150	Switz	Zurich	ETH Zurich	BASICS
298	Switz	Zurich	ETH Zurich	LASERS

Rec ID	Country	City	Institute	Topic
757	Switz	Zurich	ETH Zurich	LASERS
758	Switz	Zurich	ETH Zurich	LASERS
690	Switz	Zurich	ETH Zurich	SOLIDS
723	Switz	Zurich	ETH Zurich	SOLIDS
695	Switz	Zurich	ETH Zurich	WETHER
721	Switz	Zurich	ETH Zurich	WETHER
1117	Switz	Zurich	IBM Zurich Research Lab.	BASICS
84	Switz	Zurich	IBM Zurich Research Lab.	DIAGNO
93	Switz	Zurich	IRM Zurich Research Lab.	DIAGNO
340	Switz	Zurich	IBM Zurich Research Lab.	DIAGNO
372	Switz	Zurich	IBM Zurich Research Lab.	SOLIDS
398	Switz	Zurich	Univ. of Zurich	BASICS
1160	Switz	Zurich	Univ. of Zurich	BMSRAD
442	Turkey	Istanbul	Bosphorus Univ.	HYDROD
174	UK		Chemical Discoveries	ENERGY
86	UK		Rank Wharfedale	DIAGNO
177	UK		Royal Sussex County Hosp.	DIAGNO
248	UK		Sea Energy Assoc. Ltd.	ENERGY
565	UK	Aberdeen	Univ. of Aberdeen	DIAGNO
14	UK	Abingdon	Culham Lab.	CHEMAT
368	UK	Abingdon	Culham Lab.	CHEMAT
1196	UK	Abingdon	Culham Lab.	CPBICF
50	UK	Abingdon	Culham Lab.	LASERS
611	UK	Abingdon	Culham Lab.	LASERS
1062	UK	Abingdon	Culham Lab.	LASERS
515	UK	Abingdon	Culham Lab.	PLAMSA
126	UK	Abingdon	Culham Lab.	PLASMA
138	UK	Abingdon	Culham Lab.	PLASMA
139	UK	Abingdon	Culham Lab.	PLASMA
304	UK	Abingdon	Culham Lab.	PLASMA
428	UK	Abingdon	Culham Lab.	PLASMA
449	UK	Abingdon	Culham Lab.	PLASMA
497	UK	Abingdon	Culham Lab.	PLASMA
516	UK	Abingdon	Culham Lab.	PLASMA
527	UK	Abingdon	Culham Lab.	PLASMA
571	UK	Abingdon	Culham Lab.	PLASMA
635	UK	Abingdon	Culham Lab.	PLASMA
736	UK	Abingdon	Culham Lab.	PLASMA
949	UK	Abingdon	Culham Lab.	PLASMA
1034	UK	Aldermaston	Atomic Weapons Res. Estab.	CPBICF
1030	UK	Bangor	Univ. Col. of North Wales	CPBICF
863	UK	Bangor	Univ. of Wales	CPBICF
12	UK	Bath	Univ. of Bath	CHEMAT
312	UK	Belfast	Queen's Univ.	ATOMIC
850	UK	Belfast	Queen's Univ.	CPBICF
969	UK	Belfast	Queen's Univ.	CPBICF
842	UK	Belfast	Queen's Univ.	LASERS
448	Uk	Birmingham	Univ. of Aston	BMSRAD
247	UTK	Birmingham	Univ. of Aston	CPBICF
283	UK	Birmingham	Univ. of Aston	CPBICF
303	UK	Birmingham	Univ. of Aston	CPBICF
652	UK	Birmingham	Univ. of Aston	CPBICF

Rec ID	Country	City	Institute	Topic
580	UK	Birmingham	Univ. of Birmingham	ATOMIC
287	UK	Birmingham	Univ. of Birmingham	BMSRAD
624	UK	Birmingham	Univ. of Birmingham	CPBICF
1048	UK	Birmingham	Univ. of Birmingham	CPBICF
106	UK	Birmingham	Univ. of Birmingham	DIAGNO
445	UK	Birmingham	Univ. of Birmingham	DIAGNO
935	UK	Bracknell	Geophys. Fluid Dynam. Lab.	WETHER
239	UK	Bracknell	Meteorological Office	WETHER
615	UK	Bradford	Univ. of Bradford	СНЕМАТ
241	UK	Brickendonbury	Rubber Producers' Res. Assoc.	HYDROD
193	UK	Brighton	Univ. of Sussex	LASERS
179	UK	Brighton	Univ. of Sussex	PLASMA
34	UK	Brighton	Univ. of Sussex	WETHER
1033	UK	Bristol	Bristol Univ.	CPBICF
1047	UK	Bristol	Bristol Univ.	CPBICF
107	UK	Bristol	Bristol Univ.	DIAGNO
39	UK	Bristol	British Aerospace Dynamics	LASERS
43	UK	Bristol	British Aerospace Dynamics	LASERS
937	UK	Cambridge	Brit. Antartic Survey	WETHER
644	UK	Cambridge	Cavendish Lab.	BASICS
299	UK	Cambridge	Cavendish Lab.	CHEMAT
271	UK	Cambridge	Cavendish Lab.	DIAGNO
269	UK	Cambridge	Cavendish Lab.	LASERS
936	UK	Cambridge	Cavendish Lab.	WETHER
797	UK	Cambridge	Inst. of Astronomy	BMSRAD
471	UK	Cambridge	Polar Res. Inst.	HYDROD
1208	UK	Cambridge	Univ. of Cambridge	BASICS
17	UK	Cambridge	Univ. of Cambridge	CHEMAT
268	UK	Cambridge	Univ. of Cambridge	CHEMAT
613	UK	Cambridge	Univ. of Cambridge	DIAGNO
363	UK	Cambridge	Univ. of Cambridge	ENERGY
472	UK	Cambridge	Univ. of Cambridge	HYDROD
608	UK	Cambridge	Univ. of Cambridge	HYDROD
885	UK	Cambridge	Univ. of Cambridge	HYDROD
938	UK	Cambridge	Univ. of Cambridge	HYDROD
685	UK	Cambridge	Univ. of Cambridge	SOLIDS
191	UK	Cambridge	Univ. of Cambridge	WETHER
583	UK	Cambridge	Univ. of Cambridge	WETHER
659	UK	Cambridge	Univ. of Cambridge	WETHER
911	UK	Cambridge	Univ. of Cambridge	WETHER
657	UK	Canterbury	Univ. of Canterbury	BASICS
658	UK	Canterbury	Univ. of Kent	BASICS
301	UK	Cardiff	Univ. College	DIAGNO
460	UK	Cardiff	Univ. College	DIAGNO
572	UK	Cardiff	Univ. College	DIAGNO
36	UK	Cardiff	Univ. College	WETHER
560	UK	Cardiff	Univ. College	WETHER
185	UK	Cardiff	UWIST	SOLIDS
345	UK	Cardiff	UWIST	SOLIDS
694	UK	Cardiff	UWIST	SOLIDS
697	UK	Cardiff	UWIST	WETHER
29	UK	Carmarthen Bay	Central Elec. Gen. Board	ENERGY

Rec ID	Country	City	Institute	Topic
72	UK	Cheltenham	Govt. Communications HQ	COMPUT
267	UK	Chester	Thornton Research Cen.	HYDROD
254	UK	Colchester	Univ. of Essex	BMSRAD
575	UK	Colchester	Univ. of Essex	CPBICF
997	UK	Colchester	Univ. of Essex	CPBICF
1037	UK	Colchester	Univ. of Essex	CPBICF
691	UK	Colchester	Univ. of Essex	DIAGNO
479	UK	Coleraine, N. Ire.	New Univ. of Ulster	PLASMA
378	UK	Cranfield	Cranfield Inst. of Tech	DIAGNO
90	UK	Cranfield	Cranfield Inst. of Tech.	DIAGNO
1127	UK	Didcot	AERE Harwell	BMSRAD
237	UK	Didcot	AERE Harwell	CHEMAT
1126	UK	Didcot	AERE Harwell	CHEMAT
1136	UK	Didcot	AERE Harwell	CHEMAT
275	UK	Didcot	AERE Harwell	DIAGNO
465	UK	Didcot	AERE Harwell	PLASMA
203	UK	Didcot	AERE Harwell	SOLIDS
9	UK	Didcot	Rutherford Appleton Lab	CPBICF
163	UK	Didcot	Rutherford Appleton Lab.	BMSRAD
793	UK	Didcot	Rutherford Appleton Lab.	BMSRAD
946	UK	Didcot	Rutherford Appleton Lab.	BMSRAD
229	UK	Didcot	Rutherford Appleton Lab.	CPBICF
511	UK	Didcot	Rutherford Appleton Lab.	CPBICF
535	UK	Didcot	Rutherford Appleton Lab.	CPBICF
831	UK	Didcot	Rutherford Appleton Lab.	CPBICF
832	UK	Didcot	Rutherford Appleton Lab.	CPBICF
847	UK	Didcot	Rutherford Appleton Lab.	CPBICF
8 48	UK UK	Didcot	Rutherford Appleton Lab.	CPBICF
857	UK	Didcot	Rutherford Appleton Lab.	CPBICF
859	UK	Didcot	Rutherford Appleton Lab.	CPBICF
86C	UK	Didcot	Rutherford Appleton Lab.	CPBICF
861	UK	Didcot	Rutherford Appleton Lab.	CPBICF
862	UK	Didcot	Rutherford Appleton Lab.	CPBICF
866	UK	Didcot	Rutherford Appleton Lab.	CPBICF
1000	UK	Didcot	Rutherford Appleton Lab.	CPBICF
1007	UK	Didcot	Rutherford Appleton Lab.	CPBICF
1015	UK	Didcot	Rutherford Appleton Lab.	CPBICF
1040	UK	Didcot	Rutherford Appleton Lab.	CPBICF
1054	Ük	Didcot	Rutherford Appleton Lab.	CPBIC F
1195	UK	Didcot	Rutherford Appleton Lab.	CPBICF
588	UK	Didcot	Rutherford Appleton Lab.	DIAGNO
240	UK	Didcot	Rutherford Appleton Lab.	LASERS
405	UK	Didcot	Rutherford Appleton Lab.	LASERS
828	ŬK	Didcot	Rutherford Appleton Lab.	LASERS
829	UK	Didcot	Rutherford Appleton Lab.	LASERS
830	UK	Didcot	Rutherford Appleton Lab.	LASERS
835	UK	Didcot	Rutherford Appleton Lab.	LASERS
836	UK	Didcot	Rutherford Appleton Lab.	LASERS
838	UK	Didcot	Rutherford Appleton Lab.	LASERS
840	UK	Didcot	Rutherford Appleton Lab.	LASERS
92	UK	Dorking	Mullard Space Sci. Lab.	DIAGNO
1112	ĽК	Dundee	Univ. of Dundee	BASICS

Rec ID	Country	City	Institute	Topic
344	UK	Durham	Durham Univ	SOLIDS
642	UK	Durham	Durham Univ.	SOLIDS
942	UK	Durham	Durham Univ.	SOLIDS
481	UK	Dyfed	Univ. College of Wales	HYDROD
30	UK	East Kilbride	Nat. Engng. Lab.	HYDROD
614	UK	Edinburgh	Heriot Watt Univ.	CHEMAT
148	UK	Edinburgh	Heriot Watt Univ.	LASERS
190	UK	Edinburgh	Heriot Watt Univ.	LASERS
712	UK	Edinburgh	Heriot Watt Univ.	LASERS
884	UK	Edinburgh	Heriot Watt Univ.	LASERS
1205	UK	Edinburgh	Heriot Watt Univ.	LASERS
223	ÜK	Edinburgh	Heriot Watt Univ.	SOLIDS
674	UK	Edinburgh	Heriot Watt Univ.	SOLIDS
675	UK	Edinburgh	Heriot Watt Univ.	SOLIDS
676	UK	Edinburgh	Heriot Watt Univ.	SOLIDS
679	UK	Edinburgh	Heriot Watt Univ.	SOLIDS
684	UK	Edinburgh	Herict Watt Univ.	SOLIDS
1120	UK	Edinburgh	Univ. of Edinburgh	BASICS
424	UK	Edinburgh	Univ. of Edinburgh	HYDROD
58	UK	Edinburgh	Univ. of Edinburgh	SOLIDS
196	UK	Egham Hill	Royal Holloway Col.	WETHER
833	UK	Essex	Univ. of Essex	CPBICF
843	UK	Essex	Univ. of Essex	CPBICF
589	UK	Exeter	Univ. of Exeter	BASICS
882	UK	Glasgow	Glasgow College of Tech.	BASICS
295	UK	Glasgow	Univ. of Glasgow	BASICS
288	UK	Glasgow	Univ. of Glasgow	CPBICF
868	UK	Glasgow	Univ. of Glasgow	CPBICF
381	UK.	Glasgow	Univ. of Strathclyde	ENERGY
53	UK	Glasgow	Univ. of Strathclyde	LASERS
183	UK	Glasgow	Univ. of Strathclyde	LASERS
302	UK	Glasgow	Univ. of Strathclyde	LASERS
79	ĽK	Godalming	Inst. of Oceanographic Sci.	HYDROD
80	UK	Godalming	Inst. of Oceanographic Sci.	WETHER
64 5	UK	Great Malvern	Royal Sig. & Radar Estab.	BASICS
595	Uk	Great Malvern	Royal Sig. & Radar Estab.	HYDROD
273	UK	Great Malvern	Royal Sig. & Radar Estab.	LASERS
28€	UK	Great Malvern	Royal Sig. & Radar Estab.	LASERS
4 83	UK	Great Malvern	Royal Sig. & Radar Estab.	LASERS
60	UK	Great Malvern	Royal Sig. & Radar Estab.	SOLIDS
603	ПK	Great Malvern	Royal Sig. & Radar Estab.	SOLIDS
672	UΚ	Great Malvern	Royal Sig. & Radar Estab.	SOLIDS
681	UK	Great Malvern	Royal Sig. & Radar Estab.	SOLIDS
893	UK	Great Malvern	Royal Sig. & Radar Estab.	WETHER
513	UK	Guildford	Univ. of Surrey	HYDROD
427	UΚ	Guildford	Univ. of Surrey	SOLIDS
462	UΚ	Hull	Univ. of Hull	CHEMAT
858	ПK	Hull	Univ. of Hull	COMPUT
570	UK	Hull	Univ. of Hull	CPBICF
577	UK	Hull	Univ. of Hull	CPBICF
1135	UK	Hull	Univ. of Hull	HYDROD
49	UK	Hull	Univ. of Hull	LASERS

Rec ID	Country	City	Institute	Topic
320	UK	Hull	Univ. of Hull	LASERS
461	UK	Hull	Univ. of Hull	LASERS
488	UK	Hull	Univ. of Hull	LASERS
853	UK	Hull	Univ. of Hull	LASERS
1043	UK	Hull	Univ. of Hull	LASERS
395	UK	Ipswich	British Telecom Res. Labs	LASERS
279	UK	Ipswich	EDI Electronic Engineering	ENERGY
412	UK	Lancaster	Univ. of Lancaster	SOLIDS
1104	UK	Lancaster	Univ. of Lancaster	SOLIDS
69	UK	Leeds	Univ. of Leeds	COMPUT
88	UK	Leeds	Univ. of Leeds	DIAGNO
19	UK	Leeds	Univ. of Leeds	ENERGY
422	UK	Leicester	Thorn EMI Lighting Ltd	BMSRAD
376	UK	Leicester	Thorn EMI Lighting Ltd.	BMSRAD
108	UK	Leicester	Univ. of Leicester	DIAGNO
276	UK	Leicester	Univ. of Leicester	DIAGNO
31	UK	Leicester	Univ. of Leicester	WETHER
341	UK	Leicester	Univ. of Leicester	WETHER
1121	UK	Little Paxton	Dwight Cavendish Co.	COMPUT
1124	UK	Liverpool	Univ. of Liverpool	CHEMAT
574	UK	Liverpool	Univ. of Liverpool	CPBICF
931	UK	Liverpool	Univ. of Liverpool	ENERGY
1122	UK	Liverpool	Univ. of Liverpool	HYDROD
1123	UK	Liverpool	Univ. of Liverpool	HYDROD
1125	UK	Liverpool	Univ. of Liverpool	HYDROD
525	UK	London	City of London Poly	HYDROD
280	UK	London	Imperial College	ATOMIC
825	UK	London	Imperial College	ATOMIC
1041	UK	London	Imperial College	ATOMIC
386	UK	London	Imperial College	BASICS
1103	UK	London	Imperial College	BASICS
265	UK	London	Imperial College	CPBICF
517	UK	London	Imperial College	CPBICF
578	UK	London	Imperial College	CPBIC F
630	UK	London	Imperial College	CPBICF
834	UK	London	Imperial College	CPBICF
845	UK	London	Imperial College	CPBICF
846	ŲK	London	Imperial College	CPBICF
849	UK	London	Imperial College	CPBICF
851	UK	London	Imperial College	CPBICF
852	Uk	London	Imperial College	CPBIC F
855	UK	London	Imperial College	CPBICF
856	UK	London	Imperial College	CPBICF
865	UK	London	Imperial College	CPBICF
867	UK	London	Imperial College	CPBICF
970	UK	London	Imperial College	CPBICF
972	UK	London	Imperial College	CPBICF
983	UK	London	imperial College	CPBICF
984	ŬK	London	Imperial College	CPBICF
986	UK	London	Imperial College	CPBICF
1010	Uk	London	Imperial College	CPBICF
1027	UK	London	Imperial College	CPBICF

Rec ID	Country	City	Institute	Topic
1021	υK	London	Imperial College	CPBICF
1031 1032	UK	London	Imperial College	CPBICF
1032	UK	London	Imperial College	CPBICF
1050	UK	London	Imperial College	CPBICF
1053	UK	London	Imperial College	CPBICF
1216	UK	London	Imperial College	CPBICF
112	UΚ	London	Imperial College	DIAGNO
518	UK	London	Imperial College	LASERS
839	UK	London	Imperial College	LASERS
981	UK	I ondon	Imperial College	LASERS
244	UK	London	Imperial College	PLASMA
498	UK	London	Imperial College	PLASMA
224	UK	London	Imperial College	SOLIDS
641	UΚ	London	Imperial College	WETHER
310	UK	London	King's College	ATOMIC
563	UK	London	King's College	BASICS
447	UK	London	Queen Elizabeth College	WETHER
883	UK	London	Queen Mary College	BASICS
23	UK	London	Queen Mary College	ENERGY
544	UK	London	Queen Mary College	PLASMA
65	UK	London	Queen Mary College	SOLIDS
425	UK	London	Queen Mary College	WETHER
228	UK	London	Univ. College	DIAGNO
342	UK	London	Univ. College	DIAGNO
504	UK	London	Univ. College	SOLIDS
296	UK	London	Univ. of London	BASICS
704	UK	London	Univ. of London	BMSRAD
73	UK	London	Univ. of London	COMPUT
740	UK	London	Univ. of London	DIAGNO
760	UK	London	Univ. of London	SOLIDS
623	UK	London	Westfield College	CPBICF COMPUT
68	UK	Manchester	Manchester Univ.	
594	UK	Manchester	Manchester Univ.	HYDROD LASERS
482	UK	Manchester	Manchester Univ.	
524	UK	Manchester	Manchester Univ.	LASERS ATOMIC
1093	UΚ	Manchester	UMIST	ATOMIC
1094	UK	Manchester	UMIST	BASICS
1098	UK	Manchester	UMIST	BASICS
1105	UK	Manchester	UMIST	DIAGNO
205	UK	Manchester	UMIST	PLASMA
206	UK	Manchester	UMIST	PLASMA
1092	UK	Manchester	UMIST UMIST	SOLIDS
653	ሆለ	Manchester	UMIST	SOLIDS
1095	υK	Manchester	UMIST	SOLIDS
1096	UK	Manchester Manchester	UMIST	SOLIDS
1097	ΩK	Marchwood	CEGB Engineering Labs.	DIAGNO
176	UK UK	Marchwood	CEGB Engineering Labs.	HYDROD
291	UK	Newcastle upon Tyne	Newcastle Poly.	BMSRAD
261 1106	ΩK	Newcastle upon Tyne	Univ. of Newcastle upon Tyne	BASICS
26	ŰΚ	Norwich	Univ. of East Anglia	ENEPGY
	ΩK	Oxford	Clarenden Lab.	WETHER
696	OI/	5n101 4		

Rec ID	Country	City	Institute	Topic
459	UK	Oxford	Clarendon Lab.	BASICS
871	UK	Oxford	Clarendon Lab.	BASICS
875	UK	Oxford	Clarendon Lab.	BASICS
950	UK	Oxford	Clarendon Lab.	BMSRAD
837	UK	Oxford	Oxford Lasers Ltd.	LASERS
811	UK	Oxford	Oxford Univ.	ATOMIC
429	UK	Oxford	Oxford Univ.	BASICS
886	UK	Oxford	Oxford Univ.	
1101	Ū K	Oxford	Oxford Univ.	BASICS
841	UK	Oxford	Oxford Univ.	BASICS
74	UK	Oxford	Oxford Univ.	CHEMAT
844	UK	Oxford	Oxford Univ.	COMPUT
85	UK	Oxford	Oxford Univ.	CPBICF
89	UK	Oxford	Oxford Univ.	DIAGNO
101	UK	Oxford	Oxford Univ.	DIAGNO
335	UK	Oxford	Oxford Univ.	DIAGNO
632	UK	Oxford	Oxford Univ.	DIAGNO
255	UK	Oxford	Oxford Univ.	DIAGNO
277	UK	Oxford		ENERGY
314	UK	Oxford	Oxford Univ. Oxford Univ.	ENERGY
392	UK	Oxford		HYDROD
77	UK	Plymouth	Oxford Univ.	PLASMA
551	UK	Reading	Marine Biological Assoc. of UK	HYDROD
375	UK	Redhill	Univ. of Reading	ENERGY
749	UK		Philips Research Labs.	BMSRAD
175	UK	Redhill	Philips Research Labs.	WETHER
750	UK	Scunthrope	Flexible Laser Systems	COMPUT
573	UK	Seven Oaks	Royal Armament Res. & Devel. Estab.	WETHER
274	UK	Sheffield	Health & Safety Executive	HYDROD
606	UK	Slough	Admiralty Compass Observatory	DIAGNO
864	UK	Southhampton	Univ. of Southampton	SOLIDS
869	UK	St. Andrews	Univ. of St. Andrews	CPBICF
521	UK	St. Andrews	Univ. of St. Andrews	CPBICF
541	UK	St. Andrews	Univ. of St. Andrews	PLASMA
584	UK	St. Andrews	Univ. of St. Andrews	WETHER
25	UK	St. Andrews	Univ. of St. Andrews	WETHER
71	UK	Sunbury	Brit. Petrol Res. Lab.	ENERGY
282	UK	Surrey	Univ. of Surrey	COMPUT
801		Swansea (Wales)	Univ. Coll. of Swansea	LASERS
765	UK UK	Teddington	Nat. Phys. Lab.	BMSRAD
111	UK	Teddington	Nat. Phys. Lab.	CHEMAT
178	UK	Teddington	Nat. Phys. Lab.	DIAGNO
720	UK	Teddington	Nat. Phys. Lab.	DIAGNO
773		Teddington	Nat. Phys. Lab.	DIAGNO
390	UK UK	Teddington	Nat. Phys. Lab.	SOLIDS
919	UK	Teddington	National Maritime Inst.	HYDROD
941	UK	Warrington	Daresbury Lab.	BMSRAD
943	UK	Warrington	Daresbury Lab.	BMSRAD
944	UK	Warrington	Daresbury Lab.	BMSRAD
109	UK	Warrington	Daresbury Lab.	BMSRAD
407	UK	Warrington	Daresbury Lab.	DIAGNO
407 408	UK	Warrington	Daresbury Lab.	DIAGNO
400	UN	Warrington	Daresbury Lab.	DIAGNO

Rec ID	Country	City	Institute	Topic
916	UK	Warrington	Daresbury Lab.	DIAGNO
200	UK	Warrington	Daresbury Lab.	SOLIDS
940	UK	Warrington	Daresbury Lab.	SOLIDS
945	UK	Warrington	Daresbury Lab.	SOLIDS
939	UK	Warwick	Univ. of Warwick	ATOMIC
346	UK	Warwick	Univ. of Warwick	SOLIDS
496	UK	Welshpool	TLH	WETHER
62	UK	Wembley	Hirst Research Centre GEC	SOLIDS
463	UK	Wembley	Hirst Research Centre GEC	SOLIDS
550	UK	West Cornwall	Inst. for Geological Sci.	ENERGY
639	UK	Winchester	IBM UK Labs Ltd.	COMPUT
587	UK	York	Univ. of York	LASERS
552	W Ger	Aachen	Aachen Tech. College	CHEMAT
164	W Ger	Aachen	Philips GmbH Forsch.	BMSRAD
486	W Ger	Aachen	Philips GmbH Forsch.	BMSRAD
319	W Ger	Aachen	Reinisch-Westfalische Tech HS	ATOMIC
628	W Ger	Aachen	Tech. Univ. Aachen	BASICS
1206	W Ger	Aachen	Tech. Univ. Aachen	CHEMAT
808	W Ger	Berlin	BESSY GmbH	DIAGNO
592	W Ger	Berlin	Freie Univ. Berlin	BASICS
114	W Ger	Berlin	Freie Univ. Berlin	DIAGNO
52	W Ger	Berlin	Inst. fur Festkorperphysik	LASERS
803	W Ger	Berlin	Phys-Tech Bendesanstalt	BMSRAD
168	W Ger	Berlin	Tech. Univ. Berlin	ATOMIC
824	W Ger	Bielefeld	Univ. Bielefeld	LASERS
908	W Ger	Bochum	Ruhr Univ.	ATOMIC
397	W Ger	Bochum	Ruhr Univ.	BMSRAD
456	W Ger	Bochum	Ruhr Univ.	CPBICF
473	W Ger	Bochum	Ruhr Univ.	CPBICF
643	W Ger	Bochum	Ruhr Univ.	CPBICF
996	W Ger	Bochum	Ruhr Univ.	CPBICF
998	W Ger	Bochum	Ruhr Univ.	CPBICF
1165	W Ger	Bochum	Ruhr Univ.	CPBICF
1167	W Ger	Bochum	Ruhr Univ.	CPBICF
1173	W Ger	Bochum	Ruhr Univ.	CPBICF
121	W Ger	Bochum	Ruhr Univ.	PLASMA
135	W Ger	Bochum	Ruhr Univ.	PLASMA
197	W Ger	Bochum	Ruhr Univ.	PLASMA
217	W Ger	Bochum	Ruhr Univ.	PLASMA
230	W Ger	Bochum	Ruhr Univ.	PLASMA
233	W Ger	Bochum	Ruhr Univ.	PLASMA
297	W Ger	Bochum	Ruhr Univ.	PLASMA
434	W Ger	Bochum	Ruhr Univ.	PLASMA
910	W Ger	Bochum	Ruhr Univ.	PLASMA
1168	W Ger	Bochum	Ruhr Univ.	PLASMA
1170	W Ger	Bochum	Ruhr Univ.	PLASMA
1171	W Ger	Bochum	Ruhr Univ.	PLASMA
1172	W Ger	Bochum	Ruhr Univ.	PLASMA
1174	W Ger	Bochum	Ruhr Univ.	PLASMA
1175	W Ger	Bochum	Ruhr Univ.	PLASMA
1176	W Ger	Bochum	Ruhr Univ.	PLASMA
1177	W Ger	Bochum	Ruhr Univ.	PLASMA

Rec ID	Country	City	Institute	Topic
1166	W Ger	Bochum	Ruhr Univ.	WETHER
1169	W Ger	Bochum	Ruhr Univ.	WETHER
700	W Ger	Bonn	MPI fur Radioastronomie	SOLIDS
762	W Ger	Bonn	MPI fur Radioastronomie	SOLIDS
716	W Ger	Bonn	MPI fur Radioastronomie	WETHER
766	W Ger	Braunschweig	PhysTech. Bundesanstalt	LASERS
767	W Ger	Braunschweig	PhysTech. Bundesanstalt	LASERS
768	W Ger	Braunschweig	PhysTech. Bundesanstalt	LASERS
761	W Ger	Braunschweig	PhysTech. Bundesanstalt	SOLIDS
894	W Ger	Darmstadt	Heavy Ion Res. Estab.	BASICS
914	W Ger	Darmstadt	Heavy Ion Res. Estab.	BASICS
947	W Ger	Darmstadt	Heavy Ion Res. Estab.	BMSRAD
915	W Ger	Darmstadt	Heavy Ion Res. Estab.	CPBICF
388	W Ger	Darmstadt	Inst. fur Angewandte Physik	HYDROD
1055	W Ger	Darmstadt	Tech. Hochschule	CHEMAT
414	W Ger	Darmstadt	Tech. Hochschule	CPBICF
431	W Ger	Darmstadt	Tech. Hochschule	CPBICF
895	W Ger	Darmstadt	Tech. Hochschule	CPBICF
902	W Ger	Darmstadt	Tech. Hochschule	CPBICF
987	W Ger	Darmstadt	Tech. Hochschule	CPBICF
994	W Ger	Darmstadt	Tech. Hochschule	CPBICF
477	W Ger	Dortmund	Univ. Dortmund	BASICS
214	W Ger	Dusseldorf	Univ. of Dusseldorf	CPBICF
1180	W Ger	Dusseldorf	Univ. of Dusseldorf	CPBICF
250	W Ger	Dusseldorf	Univ. of Dusseldorf	HYDROD
1089	W Ger	Dusseldorf	Univ. of Dusseldorf	LASERS
1179	W Ger	Dusseldorf	Univ. of Dusseldorf	PLASMA
1178	W Ger	Dusseldorf	Univ. of Dusseldorf	SOLIDS
778	W Ger	Erlangen	Univ. Erlangen	CPBICF
616	W Ger	Essen	Fachbereich Physik	PLASMA
201	W Ger	Essen	Univ. Essen	ATOMIC
145	W Ger	Essen	Univ. Essen	HYDROD
306	W Ger	Essen	Univ. Essen	HYDROD
42	W Ger	Essen	Univ. Essen	LASERS
466	W Ger	Essen	Univ. Essen	LASERS
377	W Ger	Essen	Univ. Essen	PLASMA
348	W Ger	Essen	Univ. Essen	SOLIDS
166	W Ger	Frankfurt	Goethe Univ.	ATOMIC
680	W Ger	Frankfurt	Goethe Univ.	SOLIDS
677	W Ger	Frankfurt	Univ. of Frankfurt	SOLIDS
1203	W Ger	Frankfurt	Univ. of Frankfurt	SOLIDS
487	W Ger	Freiburg	Fraunhofer Inst.	CHEMAT
912	W Ger	Freiburg	Kiepenheuer Inst.	WETHER
909	W Ger	Garching	MPI fur Physik und Astrophys.	COMPUT
117	W Ger	Garching	MPI fur Physik und Astrophys.	DIAGNO
118	W Ger	Garching	MPI fur Physik und Astrophys.	DIAGNO
119	W Ger	Garching	MPI fur Physik und Astrophys.	DIAGNO
597	W Ger	Garching	MPI fur Physik und Astrophys.	WETHER
795	W Ger	Garching	MPI fur Plasmaphysik	BMSRAD
4	W Ger	Garching	MPI fur Plasmaphysik	CPBICF
1215	W Ger	Garching	MPI fur Plasmaphysik	DIAGNO
123	W Ger	Garching	MPI fur Plasmaphysik	PLASMA

unt tim Diagraphically	
125 W Ger Garching MPI fur Plasmaphysik	PLASMA
202 W Ger Garching MPI fur Plasmaphysik	PLASMA
231 W Ger Garching MPI fur Plasmaphysik	PLASMA
305 W Ger Garching MPI fur Plasmaphysik	PLASMA
361 W Ger Garching MPI fur Plasmaphysik	PLASMA
703 W Ger Garching MPI fur Plasmaphysik	PLASMA
896 W Ger Garching MPI fur Plasmaphysik	PLASMA
897 W Ger Garching MPI fur Plasmaphysik	PLASMA
898 W Ger Garching MPI fur Plasmaphysik	PLASMA
899 W Ger Garching MPI fur Plasmaphysik	PLASMA
901 W Ger Garching MPI fur Plasmaphysik	PLASMA
905 W Ger Garching MPI fur Plasmaphysik	PLASMA
1182 W Ger Garching MPI fur Plasmaphysik	PLASMA
285 W Ger Garching MPI fur Quantenoptik	CPBICF
367 W Ger Garching MPI fur Quantenoptik	CPBICF
907 W Ger Garching MPI fur Quantenoptik	CPBICF
995 W Ger Garching MPI fur Quantenoptik	CPBICF
999 W Ger Garching MPI fur Quantenoptik	CPBIC F
1006 W Ger Garching MPI fur Quantenoptik	CPBICF
1008 W Ger Garching MPI fur Quantenoptik	CPBICF
1046 W Ger Garching MPI fur Quantenoptik	CPBICF
711 W Ger Garching MPI fur Quantenoptik	LASERS
800 W Ger Garching MPI fur Quantenoptik	LASERS
433 W Ger Garching MPI fur Quantenoptik	PLASMA
55 W Ger Garching MPI fur Quantenoptik	SOLIDS
144 W Ger Garching Tech. Univ. der Munchen	BASICS
900 W Ger Garching Tech. Univ. der Munchen	LASERS
359 W Ger Garching Univ. Munchen	LASERS
102 W Ger Gottingen MPI for Fluid Dynamics	DIAGNO
110 W Ger Gottingen MPI fur BiophysikalischeChemi	
612 W Ger Gottingen MPI fur BiophysikalischeChemi	e SOLIDS
336 W Ger Gottingen MPI fur Stromungsforsch	HYDROD
389 W Ger Gottingen MPI fur Stromungsforsch	HYDROD
646 W Ger Gottingen Univ. of Gottingen	BASICS
115 W Ger Gottingen Univ. of Gottingen	DIAGNO
116 W Ger Gottingen Univ. of Gottingen	DIAGNO
78 W Ger Gottingen Univ. of Gottingen	HYDROD
794 W Ger Hamburg DESY	BMSRAD
796 W Ger Hamburg DESY	BMSRAD
819 W Ger Hamburg Univ. of Hamburg	ATOMIC
821 W Ger Hamburg Univ. of Hamburg	ATOMIC
1109 W Ger Hannover Univ. of Hannover	BASICS
903 W Ger Heidelberg Univ. of Heidelberg	ATOMIC
918 W Ger Heidelberg Univ. of Heidelberg	BASICS
76 W Ger Heidelberg Univ. of Heidelberg	COMPUT
45 W Ger Heidelberg Univ. of Heidelberg	LASERS
160 W Ger Julich Inst. fur Fest. der Kern.	BMSRAD SOLIDS
278 W Ger Julich Inst. fur Fest. der Kern.	BASICS
420 W Ger Julich Kernforsch. Julich	
1212 W Ger Julich Kernforsch. Julich	BASICS
788 W Ger Julich Kernforsch. Julich	BMSRAD HYDROD
393 W Ger Julich Kernforsch. Julich	TIDROD

Rec ID	Country	City	Institute	Topic
364	W Ger	Julich	Kernforsch, Julich	PLASMA
468	W Ger	Julich	Kernforsch. Julich	PLASMA
738	W Ger	Julich	Kernforsch. Julich	PLASMA
1158	W Ger	Julich	Kernforsch, Julich	PLASMA
1159	W Ger	Julich	Kernforsch. Julich	PLASMA
609	W Ger	Julich	Kernforsch. Julich	SOLIDS
1157	W Ger	Julich	Kernforsch. Julich	SOLIDS
980	W Ger	Kaiserslautern	Univ. Kaiserslautern	CPBICF
992	W Ger	Kaiserslautern	Univ. Kaiserslautern	CPBICF
1020	W Ger	Kaiserslautern	Univ. Kaiserslautern	CPBICF
562	W Ger	Kaiserslautern	Univ. Kaiserslautern	LASERS
1057	W Ger	Kaiserslautern	Univ. Kaiserslautern	LASERS
777	W Ger	Karlsruhe	Kernforsch. Kalsruhe	CPBICF
249	W Ger	Karlsruhe	Kernforsch. Karlsruhe	BMSRAD
379	W Ger	Karlsruhe	Kernforsch, karlsruhe	CHEMAT
10	W Ger	Karlsruhe	Kernforsch. Karlsruhe	CPBICF
906	W Ger	Karlsruhe	Kernforsch. Karlsruhe	CPBICF
1044	W Ger	Karlsruhe	Univ. of Karlsruhe	CPBICF
904	W Ger	Karlsruhe	Univ. of Karlsruhe	HYDROD
559	W Ger	Kiel	Univ. of Kiel	HYDROD
876	W Ger	Kiel	Univ. of Kiel	HYDROD
505	W Ger	Lindau	MPI fur Aeronomie	DIAGNO
38	W Ger	Lindau	MPI fur Aeronomie	WETHER
503	W Ger	Marburg	Phillips Univ.	SOLIDS
917	W Ger	Marbury	Univ. of Marburg	BASICS
97	W Ger	Munich	Abteilung fur Okologische	DIAGNO
492	W Ger	Munich	Hochs. der Bendeswehr	HYDROD
188	W Ger	Munich	Technische Univ.	LASERS
475	W Ger	Munich	Univ. Munchen	SOLIDS
349	W Ger	Munster	Univ. Munster	BASICS
184	W Ger	Munster	Univ. Munster	LASERS
1201	W Ger	Munster	Univ. Munster	LASERS
222	W Ger	Neubiberg	Hochschule de Bundeswehr	DIAGNO
370	W Ger	Neuherberg	Gesellschaft fur Strahlen	ATOMIC
985	W Ger	Regensburg	Univ. Regensburg	BASICS
733	W Ger	Regensburg	Univ. Regensburg	SOLIDS
113	W Ger	Sindelfingen	IBM Deutschland GmbH	DIAGNO
1058	W Ger	Stuttgart	DFVLR	LASERS
1077	W Ger	Stuttgart	DFVLR	LASERS
1078	W Ger	Stuttgart	DFVLR	LASERS
1079	W Ger	Stuttgart	DFVLR	LASERS
1081	W Ger	Stuttgart	DFVLR	LASERS
688	W Ger	Stuttgart	MPI fur Festkorperforschung	ATOMIC
432	W Ger	Stuttgart	MPI fur Festkorperforschung	CHEMAT
91	W Ger	Stuttgart	MPI fur Festkorperforschung	DIAGNO
96	W Ger	Stuttgart	MPI fur Festkorperforschung	DIAGNO
187	W Ger	Stuttgart	MPI fur Festkorperforschung	SOLIDS
689	W Ger	Stuttgart	MPI fur Festkorperforschung	SOLIDS
732	W Ger	Stuttgart	MPI fur Festkorperforschung	SOLIDS
391	W Ger	Stuttgart	MPI fur Metallforsch	BMSRAD
506	W Ger	Stuttgart	Univ. Stuttgart	CPBICF
532	W Ger	Stuttgart	Univ. Stuttgart	CPBICF

Rec ID	Country	City	Institute	Topic
548	W Ger	Stuttgart	Univ. Stuttgart	CPBICF
959	W Ger	Stuttgart	Univ. Stuttgart	CPBICF
710	W Ger	Stuttgart	Univ. Stuttgart	LASERS
136	W Ger	Stuttgart	Univ. Stuttgart	PLASMA
204	W Ger	Stuttgart	Univ. Stuttgart	PLASMA
735	W Ger	Stuttgart	Univ. Stuttgart	PLASMA
737	W Ger	Stuttgart	Univ. Stuttgart	PLASMA
490	W Ger	Stuttgart	Univ. Stuttgart	SOLIDS
873	W Ger	Tubingen	Univ. Tubingen	BASICS
568	W Ger	Tubingen	Univ. Tubingen	DIAGNO
63	W Ger	Tubingen	Univ. Tubingen	SOLIDS
726	W Ger	Ulm	Univ. Ulm	LASERS
419	W Ger	Wuppertal	Univ. of Wuppertal	BASICS
730	W Ger	Wurzburg	Physikalisches Inst.	ATOMIC
745	W Ger	Wurzburg	Univ. Wurzburg	SOLIDS
147	Yugos	Belgrade	Kidric Inst. of Nuclear Sci.	PLASMA
317	Yugos	Belgrade	Kidric Inst. of Nuclear Sci.	PLASMA
322	Yugos	Belgrade	Kidric Inst. of Nuclear Sci.	PLASMA
962	Yugos	Maribor	Univ. of Maribor	CPBICF
818	Yugos	Zagreb	Inst. Rudjer Boskovic	ATOMIC

a c

•

T a