Discrete mathematics 2002

Long question A

State Fermat's Little Theorem and derive the Diffie-Hellman key exchange protocol [6 marks]

The protocol requires repeated multiplication (mod p), for some prime p, to achieve exponentiation. On most computers this requires division by p after each multiplication to calculate the remainder, which can be slow. *Montgommery multiplication* avoids the division as follows:

Given an odd prime p, let B be a power of 2 with B > p. Define $m(x) \equiv xB \pmod{p}$. Prove that:

- $m: \mathbb{Z}_p \to \mathbb{Z}_p$ is a bijection.
- $m(x \times y) = m^{-1}(m(x) \times m(y)).$ [6 marks]

Given u < pB, let $v \equiv -up^{-1} \pmod{B}$ and $x = (u + vp) \div B$. If $x \ge p$, then subtract p from x. Prove that:

- x is an integer.
- $x \equiv uB^{-1} \pmod{p}$.

• x < p.

Deduce that $x = m^{-1}(u)$.

Observe that its calculation and [6 marks]

[2 marks]

Answer

Fermat:

Given a prime p and a value a which does not have p as a factor, then $a^{p-1} \equiv 1 \pmod{p}$. [2]

Diffie-Hellman:

Choose a large prime modulus, p. Pick e with (e, p-1) = 1 and find d such that $de \equiv 1 \pmod{p-1}$ so de = 1 + (p-1)t for some t.

Observe
$$(a^e)^d = a^{ed} = a^{1+(p-1)t} = a(a^{p-1})^t \equiv a1^t \pmod{p} = a$$
 by Fermat. [2]

- Alice chooses p and the value e and sends p and the message a^e to Bob.
- Bob picks another value f with inverse g and sends $(a^e)^f$ back to Alice.
- Alice works out $((a^e)^f)^d = ((a^e)^d)^f = a^f$ and sends it back to Bob.
- Bob now works out $(a^l)^g$ to recover a. [2]

Montgommery:

B is a power of 2 and p is odd, so they are co-prime and B has a reciprocal (mod p). Therefore m has inverse $m^{-1}(u) \equiv uB^{-1} \pmod{p}$. [4]

$$m(x \times y) \equiv xyB \pmod{p} = xB \ yB \ B^{-1} \pmod{p} \equiv m^{-1}(m(x) \times m(y)). \tag{2}$$

$$u + vp \equiv u - up^{-1}p \pmod{B}$$
 $vp \equiv u - u = 0$, so $u + vp$ is a multiple of B. [2]

$$x = (u + vp) B^{-1} \equiv uB^{-1} \pmod{p}.$$
 [2]

u < pB and v < B so u + vp < 2pB and x < 2p. But we then subtract p from x if $x \ge p$, leaving x < p.

$$x \equiv uB^{-1} \pmod{p}$$
 and $x < p$ so $x = m^{-1}(u)$. [2]