Cas de la fonction booléenne "XOR"

Signal post-synaptique et fonction d'Heaviside :

X ¹	X ²	XOR
1	1	0
1	0	1
0	1	1
0	0	0

$$w_0 + w_1 X^1 + w_2 X^2 \leq 0$$

$$\begin{cases} w_0 + w_1 + w_2 \leq 0 \\ w_0 + w_1 > 0 \\ w_0 + w_2 > 0 \\ w_0 \leq 0 \end{cases}$$

Ensemble de contraintes incompatibles.

24 / 43

Et pourtant, une solution existe...

On peut apprendre le XOR avec un réseau à une couche cachée :

25 / 43

Et pourtant, une solution existe...

On peut apprendre le XOR avec un réseau à une couche cachée :

25 / 43

Plan

ntroduction générale

Le perceptron simple

Le perceptron multicouches

Le perceptron multicouches

 Les modèles précédents définissent des modèles linéaires avec certaines limites.

27 / 43

Le perceptron multicouches

- Les modèles précédents définissent des modèles linéaires avec certaines limites.
- Le perceptron multicouche ("multilayer perceptron") est une généralisation de ces modèles :
 - □ en régression il permet de traiter les cas **non linéaires** de régression

27 / 43

Le perceptron multicouches

- Les modèles précédents définissent des modèles linéaires avec certaines limites.
- Le perceptron multicouche ("multilayer perceptron") est une généralisation de ces modèles :

27 / 43

Le perceptron multicouches

- Les modèles précédents définissent des modèles linéaires avec certaines limites.
- Le perceptron multicouche ("multilayer perceptron") est une généralisation de ces modèles :
 - □ en régression il permet de traiter les cas **non linéaires** de régression
 - en classification, il permet de déterminer des fonctions de décision textbfnon linéaire permettant de résoudre le problème "XOR" précédent par exemple

Le perceptron multicouches

- Les modèles précédents définissent des modèles linéaires avec certaines limites.
- Le perceptron multicouche ("multilayer perceptron") est une généralisation de ces modèles :
 - □ en régression il permet de traiter les cas **non linéaires** de régression
 - en classification, il permet de déterminer des fonctions de décision textbfnon linéaire permettant de résoudre le problème "XOR" précédent par exemple
- Il consiste en l'ajout de couches de neurones dites cachées entre les données en entrée et les données en sortie.

27 / 43

Le perceptron multicouches

Petite démo avec TensorFlow:

http://playground.tensorflow.org

Le perceptron multicouches

28 / 43

Architecture des réseaux de neurones

Perceptron - Apprentissage des poids

Loi de Hebb

Lorsque deux neurones sont excités conjointement, il se crée ou renforce un lien les unissant : $w'_i = w_i + \eta(\hat{y}.x_i)$

30 / 43

Perceptron - Apprentissage des poids

Loi de Hebb

Lorsque deux neurones sont excités conjointement, il se crée ou renforce un lien les unissant : $w'_i = w_i + \eta(\hat{y}.x_i)$

Cette loi a inspiré le perceptron de Rosenblatt qui l'adapte pour prendre en compte l'erreur observée :

$$\mathbf{w}_i' = \mathbf{w}_i + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x}_i$$

Dans le perceptron de Rosenblatt, la règle passe par la fonction

d'activation :
$$\hat{y} = h(\sum_{i=0}^{n} w_i x_i)$$

Avec Adaline (1960), la règle de Widrow-Hoff utilise directement la somme pondérée des entrées : $\hat{y} = \sum_{i=1}^{n} w_i x_i$

30 / 43

Perceptron - Apprentissage des poids

Loi de Hebb

Lorsque deux neurones sont excités conjointement, il se crée ou renforce un lien les unissant : $w'_i = w_i + \eta(\hat{y}.x_i)$

Cette loi a inspiré le perceptron de Rosenblatt qui l'adapte pour prendre en compte l'erreur observée :

$$\mathbf{w}_i' = \mathbf{w}_i + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x}_i$$

30 / 43

Schéma général de l'algorithme pour un neurone

Pour chaque observation :

Schéma général de l'algorithme pour un neurone

Pour chaque observation:

- Phase de propagation
 - calculer l'activation du neurone
 - calculer la sortie de la fonction choisie

31 / 43

Schéma général de l'algorithme pour un neurone

Pour chaque observation:

- Phase de propagation
 - calculer l'activation du neurone
 - calculer la sortie de la fonction choisie
- Calcul de l'erreur
- Mise à jour des poids pour réduire l'erreur attendue

Schéma général de l'algorithme pour un neurone

Pour chaque observation:

- Phase de propagation
 - calculer l'activation du neurone
 - calculer la sortie de la fonction choisie
- Calcul de l'erreur

31 / 43

Schéma général de l'algorithme pour un neurone

Pour chaque observation:

- Phase de propagation
 - calculer l'activation du neurone
 - calculer la sortie de la fonction choisie
- Calcul de l'erreur
- Mise à jour des poids pour réduire l'erreur attendue Dans le cas d'une fonction simple à seuil (heaviside), les règles sont simples :

```
□ w_{t+1} = w_t + x si x est positif et w_t . x \le 0
```

 $w_{t+1} = w_t - x$ si x est négatif et $w_t \cdot x > 0$

Illustration de l'apprentissage

32 / 43

Illustration de l'apprentissage

Illustration de l'apprentissage

32 / 43

Illustration de l'apprentissage

43 _____

Interprétation géométrique

Le problème revient revient à trouver un vecteur \overrightarrow{w} dans l'espace des objets tel que $\overrightarrow{w}^T . \overrightarrow{z} \ge 0$, avec $\overrightarrow{z} = \overrightarrow{x}$ si \overrightarrow{x} est de la classe positive et $\overrightarrow{z} = -\overrightarrow{x}$ sinon.

33 / 43

Interprétation géométrique

Le problème revient revient à trouver un vecteur \overrightarrow{w} dans l'espace des objets tel que $\overrightarrow{w}^T . \overrightarrow{Z} \ge 0$, avec $\overrightarrow{Z} = \overrightarrow{x}$ si \overrightarrow{x} est de la classe positive et $\overrightarrow{Z} = -\overrightarrow{x}$ sinon.

Donc, la loi d'apprentissage de Widrow-Hoff revient simplement à faire pivoter le vecteur \overrightarrow{w} de manière que les projections des \overrightarrow{z} soient positives.

Rappel: la projection d'un vecteur \overrightarrow{u} sur un vecteur \overrightarrow{v} s'obtient par $\operatorname{proj}_{\overrightarrow{v}}\overrightarrow{u} = \frac{\overrightarrow{u}^{\,\mathcal{T}}.\overrightarrow{v}}{||\overrightarrow{v}||}\overrightarrow{v}$ Donc chaque fois qu'un \overrightarrow{z} ne se projette pas sur la partie positive de \overrightarrow{w} , on fait pivoter \overrightarrow{w} vers \overrightarrow{z} de manière proportionnelle à l'écart entre \overrightarrow{w} et \overrightarrow{z} :

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x} = \mathbf{w}_t + \Delta\mathbf{w}$$

33 / 43

Interprétation géométrique

Le problème revient revient à trouver un vecteur \overrightarrow{w} dans l'espace des objets tel que \overrightarrow{w}^T . $\overrightarrow{z} \ge 0$, avec $\overrightarrow{z} = \overrightarrow{x}$ si \overrightarrow{x} est de la classe positive et $\overrightarrow{z} = -\overrightarrow{x}$ sinon.

Donc, la loi d'apprentissage de Widrow-Hoff revient simplement à faire pivoter le vecteur \overrightarrow{w} de manière que les projections des \overrightarrow{z} soient positives.

33 / 43

Illustration de l'apprentissage

Les O sont les objets positifs, les X les objets négatifs et les + la transformation de ces derniers.

Perceptron - Apprentissage des poids

Sortie du neurone:
$$\hat{y} = \sum_{i=0}^{n} w_i x_i$$

35 / 43

Perceptron - Apprentissage des poids

Sortie du neurone:
$$\hat{y} = \sum_{i=0}^{n} w_i x_i$$

rates point $x_1 = x_2 = x_3 = x_3 = x_4 = x_4 = x_5 = x_5$

Apprentissage: On veut minimiser l'erreur

quadratique
$$E = \frac{1}{2} \sum_{\mathbf{x}} (y - \hat{y})^2$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$= -\frac{\eta}{2} \sum_{\mathbf{x}} \frac{\partial (y - \hat{y})^2}{\partial w_i}$$

$$= -\frac{\eta}{2} \sum_{\mathbf{x}} \frac{\partial \hat{y}}{\partial w_i} (y - \hat{y})^2$$

Perceptron - Apprentissage des poids

Sortie du neurone:
$$\hat{y} = \sum_{i=0}^{n} w_i x_i$$

Apprentissage: On veut minimiser l'erreur

quadratique
$$E = \frac{1}{2} \sum_{\mathbf{x}} (y - \hat{y})^2$$

35 / 43

Perceptron - Apprentissage des poids

Sortie du neurone: $\hat{y} = \sum_{i=0}^{n} w_i x_i$

Apprentissage: On veut minimiser l'erreur

quadratique
$$E = \frac{1}{2} \sum_{\mathbf{x}} (y - \hat{y})^2$$
 par descente de gradient stochastique: $\Delta \mathbf{w} = \eta \mathbf{x} (y - \hat{y})$

Optimisation de E par descente du gradient stochastique :

$$\Delta \mathbf{w} = \eta \mathbf{x} (\mathbf{y} - \hat{\mathbf{y}})$$

Propriétés

- Classifieur linéaire
- Convergence garantie si η est faible (même si les données ne sont pas linéairement séparables)
- Convergence efficace (car la fonction à optimiser est quadratique)
- Convergence souvent plus rapide en mode en ligne mais pas garantie comme en mode batch

36 / 43

Cross-entropy vs. Mean Squared Error

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Modèle num. 1:

		ŷ			У		correct?
<i>e</i> ₁	0.3	0.3 0.4 0.2	0.4	0	0	1	oui
e_2	0.3	0.4	0.3	0	1	0	oui
e_3	0.1	0.2	0.7	1	0	0	non

38 / 43

Pseudo-code de l'algorithme

```
Require: E un ensemble de données : E = \{(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)\} W les paramètres du réseau de neurones initialisés h la fonction d'activation \eta le pas d'apprentissage repeat for all e_i = (x_i, y_i) dans E do for all j dans \{1, 2 \dots k\} do in = w_j.x_i err = y_i - h(in) w_j = w_j + \eta.err.h'(in).x_i end for end for until un certain critère de convergence
```

37 / 43

Cross-entropy vs. Mean Squared Error

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Modèle num. 1:

		ŷ			У		correct?
<i>e</i> ₁	0.3	0.3	0.4	0	0	1	oui
e_2	0.3	0.4	0.3	0	1	0	oui
e 3	0.1	0.2	0.7	1	0	0	non

Modèle num. 2:

		ŷ			У		correct?
<i>e</i> ₁	0.1	0.2	0.7	0	0	1	oui
e ₁ e ₂ e ₃	0.1	0.7	0.2	0	1	0	oui
e_3	0.3	0.2 0.7 0.4	0.3	1	0	0	non

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Sortie du neurone:

$$s = \sum_{i=0}^{n} w_i x_i$$
$$\hat{y} = \frac{1}{1 + e^{-s}}$$

39 / 43

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Réseau: connectivité complète entre la couche d'entrée, la(les) couche(s) cachée(s) et la couche de sortie

39 / 43

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Sortie du neurone:

$$s = \sum_{i=0}^{n} w_i x_i$$

$$\hat{y} = \frac{1}{1 + e^{-s}}$$

Apprentissage: On veut minimiser l'erreur quadratique $E = \frac{1}{2} \sum (y - \hat{y})^2$ par

descente de gradient stochastique:

$$\Delta \mathbf{w} = \eta \mathbf{x} (y - \hat{y}) \hat{y} (1 - \hat{y})$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = -\eta \frac{\partial E}{\partial s} \frac{\partial s}{\partial w_i} = \eta \sum_{\mathbf{x}} \frac{\partial \hat{y}}{\partial s} (y - \hat{y}) \frac{\partial s}{\partial w_i} = \sum_{\mathbf{x}} \eta \hat{y} (1 - \hat{y}) (y - \hat{y}) x_i$$

39 / 43

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

<u>Réseau</u>: connectivité complète entre la couche d'entrée, la(les) couche(s) cachée(s) et la couche de sortie

 $\frac{\textbf{Apprentissage}}{\text{quadratique }E} = \frac{1}{2} \sum_{\mathbf{x}} (y - \hat{y})^2 \text{ par descente de}$

gradient stochastique, on suppose connus les $\delta_{\mathbf{k}} = -\frac{\partial E}{\partial \mathbf{s}_{\mathbf{k}}}$ de la couche supérieure

$$-\frac{\partial E}{\partial s_{j}} = -\sum_{k} \frac{\partial E}{\partial s_{k}} \frac{\partial s_{k}}{\partial y_{j}} \frac{\partial y_{j}}{\partial s_{j}}$$
$$= -\sum_{k} -\delta_{k} w_{jk} \hat{y}_{j} (1 - \hat{y}_{j})$$
$$= \hat{y}_{j} (1 - \hat{y}_{j}) \sum_{k} \delta_{k} w_{jk}$$

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Réseau: connectivité complète entre la couche d'entrée, la(les) couche(s) cachée(s) et la couche de sortie

$$-\frac{\partial E}{\partial s_{j}} = -\sum_{k} \frac{\partial E}{\partial s_{k}} \frac{\partial s_{k}}{\partial y_{j}} \frac{\partial y_{j}}{\partial s_{j}}$$

$$= -\sum_{k} -\delta_{k} w_{jk} \hat{y}_{j} (1 - \hat{y}_{j})$$

$$= \hat{y}_{j} (1 - \hat{y}_{j}) \sum_{k} \delta_{k} w_{jk}$$
39/43

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Réseau: connectivité complète entre la couche d'entrée, la(les) couche(s) cachée(s) et la couche de sortie

Apprentissage: Pour chaque entrée reçue:

- 1. Calculer la sortie \hat{y} du réseau par propagation (couche par couche) de l'activité
- 2. Calculer l'erreur de la couche de sortie: $\delta_k = \hat{y}_k (1 \hat{y}_k)(y_k \hat{y}_k)$
- 3. Rétropropager l'erreur à travers chaque couche j du réseau $\delta_j = \hat{y}_j (1 \hat{y}_j) \sum_k \delta_k w_{jk}$
- 4. Modifier chaque poids $\Delta w_{ij} = \eta \delta_j x_i$

Perceptron multi-couches - Werbos & Rumelhard (1984-1986)

Réseau: connectivité complète entre la couche d'entrée, la(les) couche(s) cachée(s) et la couche de sortie

Apprentissage: Pour chaque entrée reçue:

- 1. Calculer la sortie \hat{y} du réseau par propagation (couche par couche) de l'activité
- 2. Calculer l'erreur de la couche de sortie: $\delta_k = \hat{y}_k (1 \hat{y}_k)(y_k \hat{y}_k)$
- 3. Rétropropager l'erreur à travers chaque couche j du réseau $\delta_j = \hat{y}_j (1 \hat{y}_j) \sum_k \delta_k w_{jk}$
- 4. Modifier chaque poids $\Delta w_{ij} = \eta \delta_j x_i$

39 / 43

Bref aperçu de l'apprentissage profond

Perceptron / Multi-layer perceptron

Bref aperçu de l'apprentissage profond

- Perceptron / Multi-layer perceptron
- Auto-encoder / Stacked auto-encoder

40 / 43

Bref aperçu de l'apprentissage profond

- Perceptron / Multi-layer perceptron
- Auto-encoder / Stacked auto-encoder
- Restricted Boltzmann machine / Deep belief network
- Convolutional neural network

Bref aperçu de l'apprentissage profond

- Perceptron / Multi-layer perceptron
- Auto-encoder / Stacked auto-encoder
- Restricted Boltzmann machine / Deep belief network

Bref aperçu de l'apprentissage profond

- Perceptron / Multi-layer perceptron
- Auto-encoder / Stacked auto-encoder
- Restricted Boltzmann machine / Deep belief network
- Convolutional neural network
- Recurrent neural network

Bref aperçu de l'apprentissage profond

- Perceptron / Multi-layer perceptron
- Auto-encoder / Stacked auto-encoder
- Restricted Boltzmann machine / Deep belief network
- Convolutional neural network
- Recurrent neural network
- Long Short Term Memory

40 / 43

Régularisation

Comme pour les autres modèles d'apprentissage automatique, les réseaux de neurones sont menacés par le sur-apprentissage (*overfitting*).

42 / 43

Tips and tricks

Quelques "règles du pouce" (rules of thumb) :

- Préférer des fonctions symmétriques autour de l'origine (simoïde ou tanh) car elles fournissent une entrée centrée en 0 pour la couche suivante; on a observé que tanh a de meilleurs propriétés de convergence
- Cependant, la fonction reLU semble très employée ces derniers temps (bonnes propriétés héritées de la linéarité)
- Les poids initiaux doivent être petits et proches de 0 afin d'avoir des variations linéaires au démarrage
 - □ pour tanh : $uniforme[-\frac{\sqrt{6}}{\sqrt{fan_{in}+fan_{out}}}, \frac{\sqrt{6}}{\sqrt{fan_{in}+fan_{out}}}]$ où f_{in} et f_{out} sont le nombre de connexions entrantes et sortantes respectivement
 - \Box pour la sigmoïde : $uniforme[-\frac{4*\sqrt{6}}{\sqrt{tan_{in}+tan_{out}}}, \frac{4*\sqrt{6}}{\sqrt{tan_{in}+tan_{out}}}]$
- Taux d'apprentissage η , nombre de neurones, régularisation...
- cf. http://deeplearning.net/tutorial/deeplearning.pdf

41 / 43

Régularisation

Comme pour les autres modèles d'apprentissage automatique, les réseaux de neurones sont menacés par le sur-apprentissage (*overfitting*). Une solution est de *régulariser* la fonction objectif :

$$f_{obj} = f_{err} + \lambda.\Omega(\theta)$$

où $\lambda \in [0,\infty)$ est un hyper-paramètre à fixer.

Régularisation

Comme pour les autres modèles d'apprentissage automatique, les réseaux de neurones sont menacés par le sur-apprentissage (*overfitting*). Une solution est de *régulariser* la fonction objectif :

$$f_{obi} = f_{err} + \lambda . \Omega(\theta)$$

où $\lambda \in [0, \infty)$ est un hyper-paramètre à fixer. Des valeurs typiques à essayer pour λ sont 10^{-2} , 10^{-3} , etc.

42 / 43

Régularisation

Comme pour les autres modèles d'apprentissage automatique, les réseaux de neurones sont menacés par le sur-apprentissage (*overfitting*). Une solution est de *régulariser* la fonction objectif :

$$f_{obj} = f_{err} + \lambda.\Omega(\theta)$$

où $\lambda \in [0,\infty)$ est un hyper-paramètre à fixer. Des valeurs typiques à essayer pour λ sont 10^{-2} , 10^{-3} , etc.

 Ω est souvent une norme, telle que la norme L1 (cf. LASSO), L2 (cf. *ridge regression*) ou les deux à la fois (cf. *elastic net*).

Une autre manière de régulariser consiste à arrêter l'apprentissage à temps (*early stopping*).

42 / 43

Régularisation

Comme pour les autres modèles d'apprentissage automatique, les réseaux de neurones sont menacés par le sur-apprentissage (*overfitting*). Une solution est de *régulariser* la fonction objectif :

$$f_{obj} = f_{err} + \lambda.\Omega(\theta)$$

où $\lambda \in [0, \infty)$ est un hyper-paramètre à fixer. Des valeurs typiques à essayer pour λ sont 10^{-2} , 10^{-3} , etc.

 Ω est souvent une norme, telle que la norme L1 (cf. LASSO), L2 (cf. *ridge regression*) ou les deux à la fois (cf. *elastic net*).

42 / 43

Drop-out

Forme de régularisation basée sur l'estimation d'un *ensemble* de réseaux calculés à partir du réseau initial :

tiré de Goodfellow et al. (2015)