Relatório de Sistemas Digitais

Relatório Neander

ALUNOS: RODRIGO BRICKMANN ROCHA

JOÃO LOURENÇO

LUCCA ABBADO NERES

Introdução:

O **Neander** se trata de um computador voltado para o ensino de conceitos introdutórios de Organização e Arquitetura de Computadores. Tem como característica o fato de não apresentar entrada nem saída de dados (os quais são carregados na memória principal), não apresentar identificador de variáveis e Endereçamento Direto.

Solução:

Organização se divide em 3 principais partes (Modulo de Memória, Módulo ULA e Módulo de Controle), como segue a Figura 01:

Figura 01 – Modelo de organização do Neander

Módulo ULA:

- Composto por um registrador AC;
 - Sinal de dados de entrada e saída com 8 bits;
- Registrador FLAGS;
 - Com sinal de carga para palavras de 2 bits;
 - Sinais de controle e dados iguais ao Registrador AC;
- ULA;
 - Componente responsável por executar as operações lógicas e aritméticas;
 - As operações são determinadas segundo a tabela 01:

ULA_op ABC	Instrução	Descrição Operação NEANDER	Descrição ULA (ALU)
000	LDA	AC ← MEM[end]	s ← y
001	ADD	AC ← AC + MEM[end]	$s \leftarrow x + y$
010	OR	AC ← AC or MEM[end]	s ← x or y
011	AND	AC ← AC and MEM[end]	$s \leftarrow x$ and y
100	NOT	AC ← not(AC)	$s \leftarrow not(x)$

Tabela 01 – tabela contendo as instruções da ULA

Módulo Memória:

- Registrador RDM (MBR);
 - Sinais de controle e dados semelhantes ao Registrador AC;
 - Armazena temporariamente os dados de saída da Memória;
 - 8 bits de dados;
- Registrador REM (MAR);
 - Sinais de controle e dados semelhantes ao Registrador AC;
 - Armazena temporariamente o endereço a ser acessado pela Memória;
 - 8 bits de endereço;
- Multiplexador 2x8;
 - 2 canais de 8 bits cada;
 - Fluxo de endereço do PC ou do Barramento para REM (MAR);
 - Operação: REM(MAR) <- PC;</p>
 - Operação acesso à dados: REM(MAR) <- Barramento;
- Memória 256x8;
 - Não foi necessário implementar;

Módulo de Controle:

- Program Counter PC (RIP);
 - Incrementador;
 - Mux8x2;
 - Registrador PC;

Tem objetivo de "apontar" para a próxima instrução a ser executada e seu desenvolvimento foi planejado conforme a **Tabela 2**;

Sinais de	Controle	Descrição	
barr/inc (in)	PC_rw (in)		
0	0	Não carrega PC	
0	1	PC ← barr	para saltos
1	0	Não carrega PC	
1	1	PC ← PC++	incremento

Tabela 2 – Tabela referente ao Componente PC

- Registrador RI(IR);
- Decodificador 8 para 11;
- Unidade de Controle;
 - Contador Síncrono incremental 0-7;
 - Circuitos Combinacionais para cada instrução;
 - Mux 11x11;

Tem a função de acionar sinais de controle no tempo correto para executar as instruções;

- o Registrador de Instruções;
 - Sinais de controle e dados semelhantes ao Registrador AC;
 - Armazena instrução para execução;
- Decodificador 8 para 11;
 - Identifica a instrução a ser executada;
 - Informa à U.C;
 - Foi elaborado de acordo com a **Tabela 3**;

Tabela 3 – Tabela referente ao Decodificador 8 para 11

A tabela de simplificações dos circuitos combinacionais da unidade de controle seguem em anexo no arquivo compactado. O arquivo gtkw se encontra nesse mesmo arquivo compacto.