Group 5: Pooling Strategies

Jacob Crabtree

Anthony Cavallero

Jason Clemens

Roadmap:

- 1. Recap of Pooling/CNN
- 2. Hypotheses
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusions and Future Work
- 7. Questions

Refresher: What is Convolution?

- Move a kernel over input areas
- Linear Operation
- Used to extract image features usually
- Replaces dense layers

Refresher: What is Pooling?

- Summarizes an area of input
- Non-linear operation
 - For Max pooling
- Loses information
 - Can be a desirable effect
- Very common in CNNs

[3]

Hypotheses

- Max pooling will perform well on sparse data, Boureau et al. 2010[5]
- Average pooling will perform well on dense data
- Pool size can reduce noise in sparse data, same with stride
 - They will both also act as a form of regularization

Hypotheses (cont.)

- Max pooling will perform well on sparse data, Boureau et al. 2010[5]
- Average pooling will perform well on dense data
- Pool size can reduce noise in sparse data, same with stride
 - They will both also act as a form of regularization

Experimental Setup

- CNN model built using Keras (see right) [1]
 - Keras is a high-level abstraction of Tensorflow
- Identical models for Max and Average pooling
 - MaxPooling2D -> AveragePooling2D

```
compile CNN(input shape, num classes, pool shape, pool stride):
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=pool shape, strides=pool stride, padding='same'))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))#, input shape=input shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=pool shape, strides=pool stride, padding='same'))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))#, input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=pool shape, strides=pool stride, padding='same'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(num classes))
model.add(Activation('softmax'))
```

Experimental Setup

Keras CNNs trained on two separate image sets:

CIFAR-10: CIFAR-10 consists of 60,000 32x32 pixel colored images across 10 different classes

Trained 100 Epochs to reach convergence

MNIST: MNIST is a database of 60,000 28x28 pixel images of handwritten digits (0 through 9)

Trained 10 Epochs before convergence

Methodology

- 1. Trained 4 (nearly) identical categories of Keras models
 - One model per dataset per pooling type
- 2. Categories broken into specific models by stride and pool size
 - CIFAR: Pool kernel sizes were 2x2,3x3,4x4,8x8, and 16x16
 - Stride: 1,2,3, and 4 for all
 - 8 for 8x8 and 16 for 16x16
 - MNIST was similar, except 16x16 because 14x14
 - MNIST images are 28x28 instead of 32x32
- 3. Trained the models on Google's Colaboratory GPU service
- 4. Collected training, validation, and test accuracy for analysis

Results: Effects of Stride

Results: Effects of Stride

Results: Effects of Pooling Size (CIFAR)

Results: Effects of Pooling Size (MNIST)

Discussion: Max vs. Average

- Max pooling almost always outperforms average pooling
- Max pooling is a non-linear operation
- Average pooling is linear
 - Model capacity may be too low with average alone
 - May succeed in more complicated models, or mixed with max pooling

Discussion: Pool Size and Stride

- Making them too large invariably hurt accuracy
 - Images are very small though
- Pool sizes of 3x3 4x4 (about 10-15% of the image size) performed best
- Smaller strides (1-3) also performed the best
 - Higher strides lose a lot of data
 - Strides larger than the pool size are generally harmful

Discussion: Hypotheses

- Max pooling and sparse data
 - Max pooling always outperformed Average on MNIST
 - MNIST is almost all black small white lines
 - CIFAR-10 is very color-dense
- Average pooling and dense data
 - Average pooling occasionally outperformed on CIFAR-10
 - Large kernels and small strides helped
 - Average improves with larger sample area [5]

Discussion: Hypotheses

- Pooling as noise reduction
 - CIFAR-10 could be considered noisy
 - Lots of color, small image
 - Performed quite poorly on CIFAR-10 in general
 - It may not reduce noise well, or our model might be weak
- Pooling as regularization
 - Test accuracy suffered with small stride and large pooling size
 - Improved when stride was also increased
 - Suggests that it can act as regularization
 - Each data point is used less

Discussion: Limitations

- Model seems to underfit CIFAR-10 dataset
 - Originally overfit until Dropout was added
- MNIST gets fairly good results
 - Makes comparison across them difficult
 - Could have tested a greater range of sizes/strides
 - These datasets are specifically small-image datasets

Conclusions: Summary

- Max outperformed average on "sparse" data
 - Filters out empty space rather than diluting
- Average sometimes outperforms max on dense data
 - Doesn't lose as much information
 - Happend with large kernels and small strides
- Pooling as a noise filter was inconclusive
- Stride and pool size acted as regularizers
 - Increasing stride decreases the amount each data is used

Conclusions: Recommendations

- Max pooling almost invariably outperforms average pooling
- Uses of average pooling seem very limited
 - Large pooling size, small stride, and you cannot let information be lost
 - Also need extra non-linearities elsewhere
- Strides and pool sizes should generally be kept small
 - Could potentially have a reason to want pool large quadrants
 - 10-15% of image size worked well here

Questions?

References

- 1. https://keras.io/
- 2. https://www.cs.toronto.edu/~kriz/cifar.html
- 3. https://www.kaggle.com/amarjeet007/visualize-cn
 n-with-keras
- 4. https://www.researchgate.net/figure/Example-images-from-the-MNIST-dataset_fig1_306056875
- 5. https://www.di.ens.fr/sierra/pdfs/icml2010b.pdf