

Prof. Dr. Dorin Andrica Asist. Drd. Tudor Micu 1st Semester, 2018-2019

Geometry 1 (Analytic Geometry)

Exercise Sheet 6

Exercise 1. The sides [BC], [CA], [AB] of the triangle $\triangle ABC$ are divided by the points M, N respectively P into the same ratio k. Prove that the triangles $\triangle ABC$ and $\triangle MNP$ have the same center of mass.

Exercise 2. Find the equation of the line passing through the intersection point of the lines $d_1: 2x - 5y - 1 = 0$ and $d_2: x + 4y - 7 = 0$ and through a point M which divides the segment [AB], given by A(4, -3) and B(-1, 2), into the ratio k = 2/3.

Exercise 3. Let A be a mobile point on the Ox axis and B a mobile point on Oy, so that for a constant k > 0:

$$\frac{1}{OA} + \frac{1}{OB} = k$$

Prove that for every one of the quadrants Q_I , Q_{II} , Q_{III} , Q_{IV} the lines AB situated inside it pass through a fixed point.

Exercise 4. Find the equation of the line passing through the intersection point of $d_1: 3x - 2y + 5 = 0$, $d_2: 4x + 3y - 1 = 0$ and intersecting the Oy axis at the point A with OA = 3.

Exercise 5. Find the parametric equations of the line through P_1 and P_2 , when

- (a) $P_1(3,-2), P_2(5,1);$
- (b) $P_1(4,1), P_2(4,3).$

Exercise 6. Find the parametric equations of the line through P(-5,2) and parallel to $\overline{v}(2,3)$.

Exercise 7. Show that the equations x = 3 - t, y = 1 + 2t and x = -1 + 3t, y = 9 - 6t. represent the same line.

Exercise 8. Find the vector equation of the line passing through P_1 and P_2 , when

- (a) $P_1(2,-1), P_2(-5,3);$
- (b) $P_1(0,3), P_2(4,3).$