Latex Template

Raffaele Castagna

Academic Year 2025-2026

Contents

1	Intro to Cryptography			
	1.1	Secure Communication	2	
	1.2	Unconditional Security	2	
	1.3	Perfect Secrecy	3	
	1 4	OTP	3	

1 Intro to Cryptography

1.1 Secure Communication

We have multiple goals in cryptography, the most important ones being:

Basically we want our message to be both **confidential**, so no-one except the intended target sees it and we it to be unmodified, so that its **integrity** has not been compromised.

There are many different ways to do this, but in our case we only see two major ways:

- Symmetric Cryptography: Where Alice and Bob share a key $k \in \mathcal{K}$, the key is random and unknown to
- Assymetric Cryptography: Where Alice and Bob do not share a key, but they have each their own key pair (p_k, s_k) where p_k is the public key and s_k is the secret/private key

1.2 Unconditional Security

To achieve confidential communication, we use symmetric cryptography.

With $m \in \mathcal{M}, c \in \mathcal{C}, k \in \mathcal{K}$

In this case we have Alice sending a message m which is then encrypted utilizing a randomly generate key k to generate the cyphertext c, after that to get back to the initial message m, Bob will then need to decrypt it utilizing his own key k on cyphertext c.

In a more formal way we can define Symmetric encryption (SKE) as $\prod = (Enc, Dec)$ such that:

- Enc: $\mathcal{M} \times \mathcal{K} \to \mathcal{C}$
- Dec: $\mathscr{C} \times \mathscr{K} \to \mathscr{C}$
- k is uniform over \mathcal{K} (k is chosen according to some distribution)

An encryption scheme must satisfy the correctness requirement:

Definition 1. $\forall k \in \mathcal{K}, \forall m \in \mathcal{M} \text{ it holds that } Dec(k, Enc(k, m)) = m$

Kerchoff's Principle:

Definition 2. Security should not depend on the secrecy of the algorithm but on the secrecy of the key.

1.3 Perfect Secrecy

Definition 3. Let M be any distribution over \mathscr{M} and K be uniform over \mathscr{K} (Then observe C = Enc(K,M) in a distribution over C), we say that $(Enc,Dec) = \prod$ is **perfectly secret** if $\forall M, \forall m \in \mathscr{M}, \forall c \in \mathscr{C} : Pr[M=m] = Pr(M=m|C=c)$ (The probability that M is m is equal to the probability that M is m knowing that C is c, so by knowing the cyphertext, we dont gain additional information).

Lemma 1. The following are equivalent:

- Perfect Secrecy
- M and C are independent
- $\forall m, m' \in \mathcal{M}, \forall c \in \mathcal{C} : Pr[Enc(k, m) = c] = Pr[Enc(k, m') = c]$ with k being uniform over \mathcal{K}

1.4 OTP

Let us see if OTP (One Time Pad) is perfectly secret

We know that the OTP uses \oplus to generate and later decypher the cyphertext, we have that $K = M = C = \{0,1\}^N$ with N being the length of the string, we know that:

- Enc (k,m) = $k \oplus m$
- Dec (k,c) = $c \oplus k = (k \oplus m) \oplus k = m$

To prove that it is perfectly secret let us utilize the third lemma:

$$Pr[C = c|M = m'] = Pr[Enc_k(m') = c] = Pr[m' \oplus K = c] = Pr[K = m' \oplus c] = 2^{-N}$$

and therefore:

$$Pr[Enc(k, m') = c] = 2^{-N}$$

There seem to be some limitations, the key can only be used once and it must as long as the message, lets assume we encrypt m" and m': $c_1 = k \oplus m_1$ $c_2 = k \oplus m_2$ therefore $c_1 \oplus c_2 = m_1 \oplus m_2$, so if I know a pair (m_1, c_1) then I could compute m_2 , therefore we cannot encrypt two messages with the same key.

Theorem 1. Let \prod be a SKE then we have $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof. Take \prod to be uniform over \mathscr{M} . Take any c s.t. $\Pr[C=c] > 0$. Consider $\mathscr{M}' = \{Dec(k,c) : k \in \mathscr{K}\}$ and assume $|\mathscr{K}| < |\mathscr{M}|$ by contraddiction, then:

$$|\mathcal{M}|' \le |\mathcal{K}| < |\mathcal{M}| \to |\mathcal{M}'| < |\mathcal{M}| \to \exists m \in \mathcal{M} \setminus \mathcal{M}'$$

Now:

$$\Pr[\mathbf{M}{=}\mathbf{m}] = |\mathcal{M}|^{-1} \text{ but } \Pr[\mathbf{M}{=}\mathbf{m} - \mathbf{C}{=}\mathbf{c}] = 0$$