

면접 CS 공부

① 작성 일시	@2023년 5월 25일 오후 8:29
① 최종 편집 일시	@2023년 6월 2일 오후 7:55
⊕ 유형	Experience
⊙ 작성자	^{종현} 종현 박
≗ 참석자	
⊙ 언어	

JAVA

Spring

DB (MySQL, PostgreSQL)

Web

기타

면접 예상 내용

지원 회사

▼ JAVA

▼ equals(), hashcode()

- 공통
 - 。 Object 메서드에서 포함된 메소드
 - 객체의 동등성 비교와 해시 기반 컬렉션 사용을 지원하기 위한 메서드

equals

- 두 객체의 레퍼런스를 비교하여 동일한 객체인지 비교합니다.(두 객체의 메모리 주소) 동일성
- 오버라이딩 규칙
 반사성 (x.equals(x) 는 반드시 true)
 대칭성 (x.equals(y) 가 true 면 y.equals(x)도 true)
 추이성 (x.equals(y) 가 true, y.equals(z) 도 true 면 x.equals(z) 도 true)
- 。 구현 방법

- 1. 자신이 참조인지 체크 한다. (==)
- 2. instanceof 명령어로 자신의 타입이 맞는지 체크한다. (with null check)
- 3. 핵심 필드 (동등성을 만족해주는 필드) 에 맞춰서 boolean 값을 반환한다.

hashcode

- native 메서드를 사용해서 메모리 주소를 참조한다.
 (즉, a.equals(b) 는 false, a.hashcode() == b.hashcode() 도 false 이다)
- 。 구현 방법
 - 1. int 변수 하나를 만든다.
 - 2. 핵심 필드 타입의 따라 다름
 - a. 기본 타입 이라면 기본타입.hashcode(field) (박싱된 기본타입)
 - b. 참조 타입 이라면 해당 타입이 equals 과 hashcode 를 재구성했다면 재귀적으로 hashcode 를 만들어 호출한다.
 - c. 배열 이라면 모든 원소가 핵심이라면 Arrays.hashcode 를 사용한다.
 - 3. 계산된 값을 지속적으로 갱신해준다. result = Integer.hashcode(a); result = 31 * result + Integer.hashcode(b);
- 31 (쉬프트 연산, 소수(소수가 아닌 수를 곱한다면, 보다 같은 hash 값을 갖을 경우의 수가 많아짐으로 소수를 택한 것으로 생각됨.)
- 만약 new Point(1, 2), new Point(1, 2) 가 있다고 치면
 - 。 둘은 사실상 같은 객체(동일성)가 아니지만 동등하다고 볼 수 있다. (동등 성)

동등성을 이루기 위해서는 두 메서드를 반드시 오버라이드해야 한다.

만약 equals 를 override 하고 hashcode 를 override 하지 않았다면,
 Collection Framewor 를 사용할 때, 정상적인 로직을 기대할 수 없다.

c

▼ String, StringBuilder, StringBuffer

- 셋 다 문자열 표현
- String

- 불변(한 번 생성되면 할당된 메모리 공간이 변하지 않음) 이기 때문에 + 연 산시 새로운 객체를 생성한다. (성능 저하)
- String a = "first name";
 a = a + " last name";
 인 경우 "first name last name" 이라는 객체가 새로 생성되는 것이다.
- 변외) String 객체는 String constant pool 을 사용하기 때문에
 String a = "str" String b = "str" 은 a == b true 이다.
 String constant pool 에서 "str" 라는 것을 저장후 다시 불러올 때 해당 "str" 이 있으면 해당 참조를 넘겨주기 때문에, 성능에 이점이 있다.
 즉, String 은 new 를 사용한 객체 생성보다 pool 을 사용하는 것이 성능 이점이 있다.

StringBuilder

- 가변으로 동일 객체내에서 문자열 크기를 변경이 가능해, String 보다 빠른
 속도로 문자열 처리가 가능하다.
- o append 동시성 보장 X

```
@Override
public StringBuilder append(Object obj) {
   return append(String.valueOf(obj));
}
```

StringBuffer

- 가변으로 동일 객체내에서 문자열 크기를 변경이 가능해, String 보다 빠른
 속도로 문자열 처리가 가능하다.
- ∘ StringBuilder 와 다르게 동시성(쓰레드 안전성)이 보장된다.
- append 동시성 보장 O

```
@Override
public synchronized StringBuffer append(Object obj) {
   toStringCache = null;
   super.append(String.valueOf(obj));
   return this;
}
```

▼ call by reference vs call by value

• Java 는 call by value 이다.

- c++ 의 pointer(*), reference(&) 를 지원하지 않는다.
- 즉, 기본 타입의 경우 메소드 호출시 사용되는 변수는 새로운 로컬 변수를 생성 해 JVM 스택 영역에 할당함으로, 로컬 변수를 변경하더라도 메소드에 호출시 사용된 변수는 그대로 입니다.

하지만, 참조 타입인 경우 객체를 힙에 저장하고 메소드 호출시 생성되는 Stack 변수는 heap의 해당 객체의 참조를 바라보게 됩니다. 그러무로, 해당 Stack 의 변수를 사용하면 해당 객체의 참조에 대한 내용을 변경하는 것임으로, 값을 변경하면 사용된 변수도 변경됩니다.

▼ HashMap vs HashTable vs ConcurrentHashMap

- HashMap
 - key와 value에 null을 허용한다.
 - 동기화를 보장하지 않는다. (싱글 쓰레드)

HashTable

- ∘ key와 value에 null을 허용하지 않는다.
- 。 동기화를 보장한다.
- HashTable 의 모든 메서드는 synchronized 키워드 가 붙어있다. 멀티 스 레드 환경에서는 동시에 작업을 하려할 때 요청마다 Lock을 걸기 때문에 병목현상이 발생할 수 있다. (성능 저하) (Jdk 1.0 때 부터 있었기 때문에, JCF 가 이후 에는 ConcurrentHashMap 를 사용하는 것 이 좋다.)

ConcurrentHashMap

- o key와 value에 null을 허용하지 않는다.
- 。 동기화를 보장한다.
- HashTable 보다 좋은 성능을 보여준다.

▼ Java 8, Java 11

- Java 8
 - LocalDate, LocalTime, LocalDateTime, Instant
 이전에 사용된 Date, Calendar 에 문제가 있어 새로운 Date-time API 를 도입해 날짜와 시간을 다루는 데 편리한 기능을 제공
 - Interface Default 메서드
 인터페이스에 기본적인 구현을 제공하는 디폴트 메서드를 정의.
 기존의 인터페이스를 확장할 때 하위 호환성을 유지 가능.

- 람다식 ((a, b) -> a + b)
 람다식을 통해 함수형 프로그래밍 요소를 지원
 람다식은 익명 함수를 표현하는 방식으로, 코드의 간결성과 가독성을 높임
- 메서드 참조 (::)메서드 참조를 사용하여 기존의 메서드를 람다식으로 대체 코드의 가독성과 재사용성을 향상
- 스트림 API
 스트림 API는 컬렉션을 다루는 데 사용되는 함수형 프로그래밍의 핵심 개념입니다. 스트림을 통해 데이터를 처리하고, 변환, 필터링, 집계 등의 작업을 효과적으로 수행할 수 있습니다.

• Java 11

Var

람다식 및 익명 클래스의 파라미터로 사용되는 로컬 변수의 선언을 더 간결 하게 할 수 있는 확장 문법을 도입

- Epsilon GCGC 비용을 줄여 성능을 최적화할 수 있는 옵션을 제공
- HTTP Client API
 HTTP/2 기술을 지원
- 싱글 파일 실행별도의 컴파일 단계 없이 Java 파일을 실행 가능

▼ Stream Parallel

- Java 8부터 추가된 Parallel Streams는 스트림(Stream) API를 이용하여 병렬 처리 수행
- 기존의 순차적인 스트림 연산과는 달리 데이터를 병렬로 처리하여 작업을 더 빠르게 처리할 수 있습니다.
- Parallel Streams를 사용하려면 parallel() 메서드를 호출하여 병렬 스트림으로 변환하면 됩니다
- 주의점
 - 데이터 소스가 Stream.iterate (무한 스트림) 이라면 병렬 처리를 기대 할수 없음

(병렬 처리는 작업을 동시에 여러 개의 스레드에서 실행하여 속도를 향상시키는 것인데, 무한 스트림의 경우 처리할 작업이 끝나지 않기 때문에 작업의분할과 병렬 실행이 어려움)

- 중간 연산으로 limit 을 쓰면 파이프라인 병렬화로는 성능 개선을 기대할 수 없음.
 - limit 이 parallel 이후에 있다면 문제인 것임. (무한 스크림에서 limit 으로 제한 후 parallel 한다면 병렬 처리 가능)
- 종단 연산으로는 축소 (reduction) 가 되는 요소인 것이 좋다. (count, sum, anymatch)

▼ ForkedJoinPool

- Java 7부터 도입된 기능
- 병렬 처리를 위해 작업을 작은 단위로 분할하고 분할된 작업들을 병렬로 실행한
 후 결과를 합치는 방식으로 동작
- RecursiveTask 또는 RecursiveAction 를 상속 받아 작업을 구현해야함.
 (compute 메서드)
 해당 작업을 fork로 분리한다. (분리된 작업은 compute 를 실행)
- ForkJoinPool 의 invoke 메소드로 작업을 시작

▼ GC (가비지 컬렉션)

- JVM 에서 자동으로 메모리 관리를 수행하는 기능
- C++ 처럼 개발자가 직접 메모리 할당, 해제하는 것 이 아닌, 가비지 컬렉터가 더 이상 사용되지 않는 객체들을 자동으로 탐지하여 해제
- 메모리가 언제 해제되는지 정확하게 알 수 없어 제어하기 힘들며, 가비지 컬렉션이 동작하는 동안에는 다른 동작을 멈추기 때문에 오버헤드가 발생됨
- Java 8 부터 효율적인 메모리 관리를 위해 JVM 에서 heap 영역을 2가지 영역으로 분리 (Young, Old 영역)
 - Young
 - 새로운 객체에 할당 되는 영역
 - 대부분 Unreachable (참조 없음) 상태가 됨으로, 할당 후 바로 해제 됨으로 해당 영역을 (Minor GC) 라고 부른다.
 - even, survivor 1, 2 영역
 - even 메모리가 꽉차면 서바이벌 1로 이동한다면 even 과 서바이 벌 2 영역 객체를 서바이벌 1로 이동하고, 그 이후 even 이 꽉차면 even 과 서바이벌 1 영역 객체를 서바이벌 2로 이동한다.

- survivor 영역 1, 2 중 하나는 반드시 비어있어야 한다. (아래 질문 과 일치)
- survivor 영역은 왜 두 개 인가? 한 개 인 경우를 상상해보자. 연속적 메모리를 사용 불가능할 것이 다.

Old

- Young영역에서 Reachable 상태를 유지하여 살아남은 객체가 복사되는 영역
- Young 영역보다 크게 할당되며, 영역의 크기가 큰 만큼 가비지는 적게 발생한다.
- 해당 영역을 Major GC 또는 Full GC라고 부른다.
- heap dump

▼ 인터페이스와 추상클래스에 대해서 설명

• 공통

- 。 둘다 IS-A 관계이다.
- Default 메서드를 갖을 수 있다.
- 。 인스턴스화 할 수 없다
- 인터페이스 혹은 추상 클래스를 상속받아 구현한 구현체의 인스턴스를 사용해야 한다.
- 인터페이스와 추상클래스를 구현, 상속한 클래스는 추상 메소드를 반드시 구현하여야 한다.

• 인터페이스

- static 변수를 갖을 수 있지만... 열거 타입으로 쓰지는 말자. (Enum 을 쓰자)
- 추상 메소드 하나만 갖고 있는 인터페이스를 함수형 인터페이스라고 한다.(@FunctionalInterface) 람다로 사용가능
- 。 다중 상속

• 추상 클래스

- 。 하위 클래스들의 공통점들을 모아 추상화하여 만든 클래스
- 。 단일 상속

• 클래스간의 연관 관계를 구축을 초점을 둔다.

▼ volatile에 대해서 설명

- CPU 캐쉬에 등록되지 않고 메인 메모리에 등록되는 변수를 뜻한다.
- 수정 가능 쓰레드 1개, 읽기 가능 쓰레드 여러개 로 사용된다.
 - 。 왜?

volatile int a = 0; 이라고 해보자

a++; 를 하면 어떻게 될까? a 를 Main Thread 에서 불러서 a 에 + 1 을 처리 해줄 것이다.

이때 만약 a를 부른 상태에서 +1 을 하기 직전에 다른 쓰레드에서 a++ 를 해서 a 를 가져왔다면 두 개 모두 1를 얻을 것이다.(안전 실패)

• 여러 쓰레드의 변경을 원한다면 synchronized 를 사용하거나 concurrent 라이 브 러리를 사용하자

▼ 자바 접근 제어자

- 캡슐화(객체의 필드 및 메소드 은닉) 기능을 위함
- public
 - 모든 곳에서 호출 가능
- protected
 - 。 상속된 곳에서만 호출 가능
- default (package-private)
 - 。 같은 패키지 내에서만 호출 가능
- private
 - 。 해당 클래스 내부에서만 호출 가능
- Spring 에서 private 인 class는 @Component 어노테이션으로 bean 등록이 될까?

된다. 왜냐면 Spring 에서는 리플렉션을 사용해 동적 로딩하고 어노테이션을 분석해서 bean 으로 등록하기 때문에 private 생성여도 bean 등록이 된다.

▼ 자바에서 불변 객체를 만드는 방식

- 불변 객체 장점
 - Thread-safe
 - 내부 상태 변경이 없어, cache, map, JCF 에 요소에 적합하다.

- 외부에서 객체 변경이 불가능함으로 안정적임.
- String, Integer, Long, Double 등은 불변 객체
- 생성 방식
 - 모든 필드를 private, final 로 생성한다.
 - 가능하다면 필드에는 불변 객체, 기본 타입을 사용한다.
 - o setter 메서드를 지원하지 않는다.
 - 클래스를 final 로 생성한다. (하위 클래스에서 override 금지)
 - 객체를 생성하기 위해서, 생성자나 정적 팩토리를 사용한다.
 - 가변 객체 기존 객체를 반환하지 않고 새로운 불변 객체를 생성해 반환
 - 가변 객체 JCF 생성자나 다른 메서드에 인자로 넘겨온 변수를 그대로 사용하지 않고 생성하고, return 하는 경우에도 JCF 의 값을 그대로 주는게 아닌 새로 생성해서 return 한다.

▼ JVM 메모리 구조

- 메서드 영역(Method Area):
 - JVM이 시작될 때 생성되며, 모든 스레드가 공유하는 영역입니다.
 - 클래스 로더에 의해 로딩된 클래스의 바이트코드, 상수 풀(Constant Pool), 필드 정보, 메서드 코드 등이 저장됩니다.

• 힙(Heap):

- 。 동적으로 생성된 객체와 배열이 할당되는 영역입니다.
- 모든 스레드에서 공유되며, 가비지 컬렉션에 의해 관리됩니다.
- 힙은 Young 영역(even, Survival1, Survival2), Old 영역 로 나뉩니다.
- Young 영역: 새로 생성된 객체들이 할당되는 공간입니다. 이 영역에서는 대부분의 객체가 빠르게 생성되고 소멸됩니다.
- Old 영역: Young 영역에서 일정 시간 살아남은 객체들이 이동하는 공간입니다. 오랜 시간동안 살아남은 객체들이 저장됩니다.

• 스택(Stack):

- 각 스레드마다 별도의 스택이 생성되는 영역입니다.
- 스레드가 메서드를 호출할 때마다 스택 프레임(Frame)이 생성되어 매개변수, 지역 변수, 리턴 값 등이 저장됩니다.

- 메서드 호출이 종료되면 해당 스택 프레임이 제거됩니다.
- 스택의 크기는 미리 정해져 있으며, 스택 오버플로우(Stack Overflow)가 발생할 수 있습니다.
- PC 레지스터(Program Counter Register):
 - 각 스레드마다 현재 실행 중인 명령어의 주소를 가리키는 포인터입니다.
 - 스레드가 명령어를 실행하고 다음 명령어로 진행할 때, PC 레지스터의 값이 업데이트됩니다.
- 네이티브 메서드 스택(Native Method Stack):
 - Java 언어 외의 언어(C, C++ 등)로 작성된 네이티브 메서드의 호출 정보를 저장하는 스택입니다.
 - 네이티브 메서드는 JVM 바깥에서 실행되는 코드이므로, 네이티브 메서드 스택은 JVM의 메모리 영역에 포함되지 않습니다.

▼ serializable, cloneable interface

- 둘 다 마커 인터페이스
- Serializable 인터페이스
 - Serializable 인터페이스는 직렬화를 지원하는 클래스와 인터페이스의 마 커 인터페이스입니다.
 - 객체를 직렬화하기 위해서는 해당 객체가 Serializable 인터페이스를 구현 해야 합니다.
 - 직렬화란, 객체의 상태를 바이트 스트림으로 변환하여 저장하거나 전송할수 있는 형태로 만드는 과정을 말합니다.
 - 직렬화된 객체는 파일에 저장하거나 네트워크를 통해 전송할 수 있습니다.
 - ObjectOutputStream과 같은 클래스를 사용하여 객체를 직렬화하고,
 ObjectInputStream을 사용하여 직렬화된 객체를 역직렬화할 수 있습니다.
- Cloneable 인터페이스
 - 。 Cloneable 인터페이스는 객체 복제를 지원하기 위한 인터페이스입니다.
 - 객체 복제란, 기존 객체의 동일한 복사본을 생성하는 과정을 말합니다.
 - Cloneable 인터페이스를 구현한 클래스에서 clone() 메서드를 사용하여 객체를 복제할 수 있습니다.

- clone() 메서드는 Object 클래스에 정의되어 있지만, Cloneable 인터페이 스를 구현하지 않은 클래스에서 clone() 메서드를 호출하면
 CloneNotSupportedException이 발생합니다.
- 객체 복제는 얕은 복사(Shallow Copy)를 수행하며, 필요에 따라 깊은 복사
 (Deep Copy)를 직접 구현해야 할 수도 있습니다.

▼ 직렬화 / 역직렬화

- 직렬화
 - 객체를 저장, 전송할 수 있는 특정 포맷 상태로 바꾸는 과정
- 역직렬화
 - 。 특정 포맷 상태의 데이터를 다시 객체로 변환하는 것
- 자바의 직렬화
 - ㅇ 장점
 - 프로그래머가 어렵지 않게 분산 객체를 만들 수 있음
 - ㅇ 단점
 - 보이지 않는 생성자, API와 구현 사이의 모호해진 경계, 잠재적인 정확 성 문제, 성능, 보안, 유지보수성 등 대가가 큼.
- 자바의 직렬화 대신 크로스-플랫폼 구조화된 데이터 표현(JSON, protobuf) 를 사용하도록 하자.
- transient 키워드를 사용하여 해당 필드를 직렬화에서 제외할 수 있습니다. (기본값 0, null 과 같이 매핑됨)
- serialVersionUID를 직접 관리하는게 좋다. (버전 관리 측면)
 그렇지 않으면 런타임에 암호 해시 함수(SHA-1)를 적용해 serialVersionUID를 생성한다.
 - 만약, 해당 클래스가 버전이 올라갔지만, 이전 직렬화된 상태와 호환된다면 수 정하면 안되지만, 직접 구현하지 않았다면, 둘은 호환되지 않는다.
- 메시지큐 (kafka, RabbitMQ) 에서는 직렬화를 사용해야 할까?
 - 직렬화를 사용하면 객체를 이진 형태로 변환하고, 역직렬화를 사용하면 이진 데이터를 다시 객체로 변환할수 있음으로, 메시지큐를 이용해 데이터를 안전하게 전송 처리 가능하다. (안 써도 사용할 수 있음) (주관적인 생각으로는 보안과 성능은 반비례한다. 직렬화도 그런류 일 듯하다.)

▼ SOLID 원칙

- 해당 원칙들은 결합력은 낮추고, 응집도를 높여 객체 지향 설계에 도움을 주고, 코드 확장, 유지보수 관리가 쉬워지고, 불필요한 복잡성을 제거해 도움을 줄 수 있다.
- 디자인 패턴들도 SOLID 원칙을 지키면서 만들어 졌다.
- SRP (Single Responsibility Principle) 단일 책임 원칙
 - 。 클래스(객체)는 단 하나의 책임만 가져야한다.
 - 만약 하나의 클래스에 책임이 여러개 있다면, 클래스 수정시, 수정할 코드가 많아진다.
 - 。 유지보수성
- OCP (Open Closed Principle) 개방 폐쇄 원칙
 - 확장에는 열려있으며, 수정에는 닫혀있어야 한다.
 - 클래스를 확장해 쉽게 구현하고. 확장에 따른 클래스 수정은 최소화
 - 추상화 (다형성, 확장)
- LSP (Liskov Substitution Principle) 리스코프 치환 원칙
 - 하위 타입은 항상 상위 타입으로 교체할 수 있어야 한다.
 - 。 다형성, 상속
- ISP (Interface Segregation Principle) 인터페이스 분리 원칙
 - 。 인터페이스를 각각 사용에 맞게 끔 잘게 분리
 - 。 클라이언트의 목적과 용도에 적합한 인터페이스 만을 제공
- DIP (Dependency Inversion Principle) 의존 역전 원칙
 - o class 를 참조해야한다면, 해당 class 가 아닌 추상 클래스 or 인터페이스로 참조 하라는 뜻이다.
 - 。 결합도를 낮춤.

▼ 함수형 프로그래밍

- Java8 부터 람다 표현식과 함수형 인터페이스가 도입 이후 함수형 프로그래밍 가능해짐.
- Stream
 - Java Stream은 데이터 요소의 시퀀스를 처리하기 위한 연속된 연산을 제공하는 API

- Stream은 데이터를 손쉽게 필터링, 변환, 정렬, 그룹화 등 다양한 작업을 수행할 수 있도록 합니다.
- Stream은 데이터 소스(예: 컬렉션, 배열, 파일)에서 요소를 추출하고, 중간
 연산과 최종 연산을 연결하여 원하는 결과를 얻을 수 있음

Optional

- Java Optional은 값이 있을 수도 있고 없을 수도 있는 상황에서 사용되는 컨테이너 클래스.
- Optional은 NullPointerException을 방지하고 코드 안정성을 높이기 위해 도입됨
 그러니까 Optional 에 Null 을 넣는 미친짓은 하지 말자

▼ 컴파일 과정 (+ 실행 과정)

- 1. 소스 코드 작성: 자바 소스 코드(java 파일)를 작성합니다. 이 소스 코드는 텍스트 파일로, 자바 프로그램의 구현을 포함하고 있습니다.
- 2. 컴파일: 자바 컴파일러(javac)를 사용하여 소스 코드를 바이트 코드(.class 파일)로 변환합니다. 컴파일러는 소스 코드를 구문 분석하고, 오류 검사, 타입 검사, 코드 최적화 등의 작업을 수행합니다. 변환된 바이트 코드는 JVM이 실행할수 있는 형식입니다.
- 3. (컴파일 이후 실행) 클래스 로더는 동적로딩(Dynamic Loading)을 통해 필요한 클래스들을 로딩 및 링크하여 메서드 영역 (JVM 메모리)에 올린다.
- 4. 실행엔진(Execution Engine)은 JVM 메모리에 올라온 바이트 코드들을 명령어 단위로 하나씩 가져와서 실행합니다. 이 때 실행 엔진은 두 가지 방식이 있다.
 - a. 인터프리터: 바이트 코드 명령어를 하나씩 읽어서 해석하고 실행합니다. 하나하나의 실행은 빠르나, 전체적인 실행 속도가 느리다는 단점을 가집니다.
 - b. 프로파일러: 전체 프로그램에서 반복되는 코드 블록으로 식별합니다. 메서드 단위로 발생하는 호출 수를 계산하는 카운터를 유지 관리한다.
 - c. JIT컴파일러: 인터프리터의 단점을 보완하기 위해 도입된 방식 프로 파일러에서 관리하는 카운터가 JVM에 미리 정의된 임계값를 넘기면, JIT 컴파일러는 이를 기계어로 변환하여 해당 메서드를 더이상 인터프리팅 하지 않고, 직접 실행하는 방식입니다. 해당 기계어는 캐쉬되어 재 사용된다.

▼ 캡슐화 vs 정보은닉

• 정보 은닉의 목적은 기능의 교체나 변경에 대한 유연성을 제공하는 것이다. 코드가 타입이나 메소드. 구현등에 의존하는 것을 막아줌으로써 객체 간의 구체

적인 결합도를 약화해 기능을 변경하거나 교체하기가 쉬워진다.

- 정보 은닉이 캡슐화 보다 큰 범위이고 3 종류로 나눌 수 있다.
 - 객체의 구체적인 타입 은닉 (업캐스팅)
 - 객체의 필드 및 메소드 은닉 (캡슐화)
 - 접근 제어자 private 으로 필드나 메소드를 은닉 할 수 있다.
 - 구현 은닉 (인터페이스 & 추상 클래스)

▼ CheckedException vs UncheckedException

- 컴파일 에러과 런타임 에러를 비교 하는 것이다.
- Checked Exception은 프로그램이 예외를 처리하거나 전파할 수 있도록 하여 안정성과 신뢰성을 높이는 데에 사용. (에러를 수정 할 수 있어서 정상 로직에 다시 돌아갈 수 있도록 해야한다.)
- Unchecked Exception은 주로 프로그래머의 실수나 예외적인 상황을 나타내는데 사용되며, 명시적인 예외 처리를 강제하지 않아 코드의 가독성과 편의성을 높일 수 있습니다.

(주로 프로그래밍 오류나 복구가 불가능한 상황)

- 궁금할 수도 있는 것
 - java 에서는 해당 프로세스가 down 되고, Spring 에서는 에러 던져진다.
 (예외가 발생하면 기본적으로 HTTP 응답 상태 코드를 반환하도록 설계되어 있음 Spring의 예외 처리 메커니즘과 서블릿 컨테이너 으로 쓰레드 종료를 방지하고 예외를 처리하여 HTTP 응답을 반환)

▼ Spring

- dispatcher-servlet (참고)
 - HTTP 프로토콜로 들어오는 모든 요청을 가장 먼저 받아 적합한 컨트롤러에 위임해주는 프론트 컨트롤러로 정의 한다.
 - request 가 전송하면, Tomcat(톰캣)과 같은 서블릿 컨테이너가 요청을 받게 됩니다. 그리고 이 모든 요청을 프론트 컨트롤러인 디스패처 서블릿이 가장 먼저 받고 해당 요청을 핸들링하고 (해당 컨트롤러로 작업 위), 공통 작업을 처리 해줍니다.
 - 정적 자원 요청까지 dispatcher-servlet 이 가져감으로 해당 요청이 실패하는 경우가 있음

- 정적 자원 요청 URL, 기본 요청 URL 분리 (*deprecated*) 모든 컨트롤러에 prefix URL 를 붙여줘야 함으로 직관적인 설계가 불가능
- 요청에 해당하는 컨트롤러를 찾으면 (기본 요청), 못 찾으면 (정적 자원 요청)으로 변경됨.
- Filter vs Interceptor
 - filter
 - interceptor
- AOP
- Bean Injection 방법
- POJO
- IOC/DI
- @Transactional
 - 성능을 개선하기 위해 메서드 내에서 스레드를 생성하여 비동기로 쿼리를 날리면 어떻게 될까요?(힌트: 병렬 처리보다 트랜잭션에 대해 묻는거다)
 - 。 스프링 내부에서 트랜잭션이 어디에 저장 될까요?
 - transactional 우선 순위
 - propagation, isolation level
- · JPA vs MyBatis
- 스프링 통신 과정 (MVC)
- JDK Dynamic Proxy vs CGLib
- DL vs DI
- PreparedStatement vs Statement

▼ DB (MySQL, PostgreSQL)

- 인덱스
- 파티션
- · explain analysis Query
- limit + offset

ACID

▼ Web

- 쿠키 vs 세션 vs JWT
- CORS

▼기타

- Non-Blocking vs Bloking
- Sync vs Async
- 싱글톤 패턴 / 팩토리 메소드 패턴 / 템플릿 메소드 패턴
- 버블 정렬/ 퀵 정렬
- 클러스터 (세션, DB, Server 등)

▼ compiler vs interpreter

- 컴파일러
 - ㅇ 전체 소스 코드를 한 번에 컴파일하여 기계어로 변환하는 프로그램
 - 컴파일러는 소스 코드를 분석하고, 문법적인 오류를 체크한 뒤, 기계어로 변환하는 과정을 거치고 변환된 기계어 코드는 컴퓨터에서 직접 실행됨
 - 컴파일러는 소스 코드를 한 번만 컴파일하고, 컴파일된 결과물을 실행하기
 때문에 실행 속도가 빠르고, 실행 중에 추가적인 변환 과정이 필요하지 않습니다.
 - 대표적인 예시로는 C++, Java와 같은 언어가 있습니다.

• 인터프리터

- 。 소스 코드를 한 줄씩 읽어 해석하고, 실행하는 프로그램
- 소스 코드를 한 줄씩 해석하기 때문에 디버깅이 쉽고, 언어에 대한 동적인 기능이 잘 작동합니다.
- 실행할 때마다 소스 코드를 해석하므로 컴파일러에 비해 실행 속도가 느릴 수 있습니다.
- 대표적인 예시로는 Python, JavaScript와 같은 언어가 있습니다.

▼ 면접 예상 내용

- ETL
 - 。 왜 만듬?

- 기존 DB 가 MySQL 로 되어 있었고 몇몇 일부 테이블은 일정 주기마다 업데이트만 되는 방식이였음. 그런데 사용자 요구 사항에 시간대 변경하여 조회가 가능해야 되었고, 몇몇 테이블은 Join 을 너무 많이 해야 하는 상황이나와 ETL 에서 미리 Join 된 마트 테이블을 생성하거나, 경량화된 테이블로변경할 수 있었습니다. 또한, 이노 개발팀에서 앞으로의 RDB 방향성은 PostgreSQL 이였기 때문에, ETL 시스템을 만들었습니다.
- Node.js 로 만들었던데 왜? Spring batch, java 가 아니고?
 - 해당 ETL 시스템 작업은 하루 빨리 만들어야 다른 개발자들에게 화면이나, WAS 단에서 코드를 작성할 수 있었기 때문에, 러닝 타임이 있는 Spring bacth 로는 시간이 부족했습니다.
 Java는 컴파일 언어이고, Node.js는 인터프리터 언어임으로, 컴파일 시간을 줄이고 싶었습니다. 또한 Java 의 장점인 멀티 쓰레드 방식이 별로 필요 없다고 느껴졌습니다. 왜냐하면 일단 공유될 데이터가 없고, 테이블 update 주기가 5분, 1시간, 1일 이렇게 진행되고 1분, 30분 이런식으로도 추가될 가능성이 있다고 판단되어, 확장성에 용이하게 Node.js 를 사용하고 주기 단위로 node를 여러 프로세스로 관리하면 된다고 판단했기 때문입니다.
- 왜 NHN PAYCO 을 오려고 하는가?
 - 저는 애플리케이션을 잘 구축된 환경을 경험해 성장하고 싶기 때문입니다. 성공된 애플리케이션 특징으로는 신뢰성, 확장성, 유지 보수성으로 볼 수 있습니다.
 이에 신뢰성에 중요하다고 생각된 PAYCO 결제 시스템을 경험해보고 싶었으며, 결제 시스템뿐만 아니라 다양한 도메인을 경험해 백엔드 개발자로 더욱 성장하고 싶었기 때문입니다.
- 이전 회사에서 프론트 작업을 많이 한 것 같은데..? 백엔드가 되고 싶은 이유는?
 - 다양한 트래픽을 경험하면서 시스템을 안정적이고 효율적으로 만들어 보고 싶다는 생각이 들었기 때문입니다. 예를 들어서 데이터 중심 애플리케이션 설계 책에서 확인 했던 내용으로 트위터 사용자에 대한 응답 시간의 대한 목표를 갖고 해당 목표를 이루기 위해 팔로워 수에 따라 데이터를 불러오는 방식을 다르게 설계 한다는 것에 큰 영감을 받았습니다.
- JPA 를 사용한 적이 없는지?
 - 개인 사이드 프로젝트로 H2, JPA 를 사용한 적이 있긴 합니다만.. 크게 사용하는 법을 알지는 못합니다. 하지만, 이전 회사에서는 통신 도메인으로 SQL에서 Join 쿼리가 많아 JPA 보다는 MyBatis 가 더 효율적이 였었고, 직접 DB를 관리할 수 있어서 RDB 에 많은 역량을 키울 수 있었습니다. (limit/offset, index,

partition, Explain analysis Query) JPA 도 DB 지식이 많아야 이해가 빨라져 습득력이 높을 것으로 예상되어 업무를 진행하는데 큰 차질은 없을 것입니다.

▼ 지원 회사

- 가고 싶은 곳 (결제 + B2C + 백엔드)
 - o NHN PAYCO Java 개발자 서탈
 - NHN PAYCO 플랫폼 개발자
 - 。 카카오 페이 플랫폼 개발자
 - 。 카카오 페이 증권 서버 개발자
 - NHN Edu 에듀 서비스 백엔드 개발자
 - 。 야놀자 백엔드 플랫폼 개발자
- 2차 (B2C + 백엔드)
 - ㅇ 패스오더 백엔드 개발자
 - 。 스테이지 파이브 백엔드 주니어
 - 。 롯데 정보 통신 Java 개발 / 운영
 - 。 페이 히어 서버 엔지니어