Unit-2: Virtualization and Resource Management

Elasticity and Scalability in Cloud Computing

Introduction to Cloud Computing

- Cloud computing provides on-demand computing resources, allowing businesses and individuals to use computing power, storage, and services without maintaining physical infrastructure.
- Two key concepts that enhance the efficiency of cloud computing are Elasticity and Scalability.

Scalability in Cloud Computing

Definition

Scalability is the ability of a cloud system to handle increasing workloads by adding (or removing) resources efficiently.

Types of Scalability

Vertical Scalability (Scaling Up/Down)

• Increasing or decreasing the capacity of a single machine (e.g., upgrading CPU, RAM, or storage).

Horizontal Scalability (Scaling Out/In)

• Adding or removing multiple machines to distribute the workload across multiple servers.

Diagonal Scalability

• A combination of both vertical and horizontal scaling for optimized performance.

Key Characteristics

- Ensures performance stability even with increased workloads.
- Involves proactive planning to accommodate future growth.
- Essential for high availability applications, such as banking and social media platforms.

Examples of Scalability

- Netflix scales its infrastructure horizontally to support millions of concurrent users.
- Facebook and Google Cloud Bigtable use distributed databases to handle massive amounts of data.
- Amazon Web Services (AWS) Elastic Load Balancer (ELB) distributes traffic efficiently among multiple servers.

Elasticity in Cloud Computing

Definition

Elasticity refers to the ability of a cloud system to dynamically allocate or deallocate resources based on demand, ensuring optimal performance and cost efficiency.

Key Characteristics

- Cloud platforms can automatically adjust resources in real-time.
- Users pay only for the resources they use, reducing costs.
- Resources are added or removed based on workload fluctuations.
- Best suited for applications with fluctuating resource demands (e.g., ecommerce sites during sales events).

Examples of Elasticity

AWS Auto Scaling

Automatically adjusts EC2 instances based on demand.

Microsoft Azure Virtual Machine Scale Sets

• Dynamically adjusts the number of VM instances.

Google Cloud Compute Engine Autoscaler

Allocates or deallocates resources in response to traffic.

Comparison: Elasticity vs. Scalability

Feature	Elasticity	Scalability
Definition	Adjusts resources dynamically based on demand	Expands infrastructure to accommodate growth
Response Time	Real-time, automatic adjustment	Requires pre-planning and resource allocation
Cost Efficiency	High, as resources are allocated only when needed	Moderate, as it requires additional infrastructure
Workload Suitability	Ideal for unpredictable workloads	Best for long-term growth and stable workloads
Example	Auto-scaling e-commerce platform	Expanding data centers for a growing business

Case Studies on Virtualization Technologies

- 1. VMware Virtualization in Healthcare
- 2. Microsoft Hyper-V in the Financial Sector
- **3. Google Cloud Virtualization for E-Commerce**

https://www.youtube.com/watch?v=fHnkuAdii_0