- (1) 平面ベクトル $\vec{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$, $\vec{y}=\begin{pmatrix}y_1\\y_2\end{pmatrix}$ から 2 行 2 列の行列 $P=\begin{pmatrix}x_1&y_1\\x_2&y_2\end{pmatrix}$ をつくる. \vec{x} , \vec{y} のどの一方も他方の実数倍ではないとき , P は逆行列をもつことを示せ.
- (2) $B=egin{pmatrix} p & b \\ c & -p \end{pmatrix}$ は単位行列の実数倍ではないとする.このとき,設問 (1) のようにして作った P が逆行列 P^{-1} をもち

$$P^{-1}BP = \begin{pmatrix} 0 & p^2 + bc \\ 1 & 0 \end{pmatrix}$$

が成り立つようなベクトル \vec{x} , \vec{y} があることを示せ.

(3) $A=egin{pmatrix} a & b \\ c & d \end{pmatrix}$ は単位行列の実数倍ではなく, $A'=egin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ も単位行列の実数倍ではないとする.A,A' が

$$a + d = a' + d', \quad ad - bc = a'd' - b'c'$$

をみたせば , $P^{-1}AP = A'$ となる P があることを示せ .