Sorbonne University Master 2 SAR

Robust $H\infty$ and μ -Synthesis to Active Suspension Control

January 5, 2024

Compte Rendu

Par Yiwen SUN 3970896 Bo WANG 3264418 M2 SAR

1 Introduction

Dans la poursuite de l'excellence technique au sein de l'industrie automobile, le développement de systèmes de suspension avancés reste un point central en raison de son rôle critique dans la stabilité, le confort et la sécurité du véhicule. Ce rapport se penche sur le domaine du contrôle de la suspension active, un saut technologique au-delà des mécanismes de suspension passive traditionnels qui ont longtemps été la norme dans l'industrie. En exploitant les principes de la théorie du contrôle robuste, notamment par l'application de H ∞ et de la μ -synthèse, ce document vise à élucider la conception et la mise en œuvre d'un contrôleur capable de gérer la dynamique complexe d'un système de suspension active. La motivation derrière cette enquête découle de la nécessité d'atténuer les compromis inhérents entre le confort de conduite, la tenue de route et la déflexion de la suspension. En utilisant la boîte à outils de contrôle robuste de Mathworks, le rapport présente une analyse complète d'un modèle de suspension de quart de voiture. Il témoigne du potentiel des suspensions actives à révolutionner la conception automobile, en offrant une expérience de conduite plus adaptative et plus réactive. La méthodologie consiste d'abord à calculer un contrôleur H∞ pour un système nominal avec des paramètres prédéfinis, puis à concevoir un contrôleur robuste capable de gérer un spectre complet d'incertitudes à l'aide de la μ -synthèse. Grâce à cette approche, le rapport vise à démontrer les avancées significatives qu'offrent les systèmes de suspension active, marquant un pas important vers l'innovation et la sophistication de l'ingénierie des véhicules.

Figure 1: Schéma du système

2 Quarter Car Suspension Model

Dans ce document, nous introduisons une description de l'état de l'art d'un modèle dynamique de suspension de type quart de voiture. Les variables d'état x_1 à x_4 sont définies comme suit : x_1 est le déplacement du corps de la voiture, x_2 est la vitesse de ce corps, x_3 est le déplacement des roues, et x_4 est la vitesse des roues. Les équations différentielles qui régissent le système sont présentées, reliant le déplacement et l'accélération du corps de la voiture et des roues, avec la présence d'une force d'actuation f_s .

Les valeurs des composants utilisés, telles que les masses m_s et m_{us} , ainsi que les constantes de ressort b_s , k_s , et k_t , sont spécifiées, avec $m_s = 300 \,\mathrm{kg}$, $m_{us} = 60 \,\mathrm{kg}$, $b_s = 1000 \,\mathrm{Ns/m}$, $k_s = 16000 \,\mathrm{N/m}$ et $k_t = 190000 \,\mathrm{N/m}$. On décrit également un modèle linéaire et invariant dans le temps pour ce système de suspension,

nommé qcar, à partir des équations de mouvement et des valeurs des paramètres. Les entrées du modèle sont la perturbation de la route r et la force d'action f_s , tandis que les sorties sont la vitesse de la déflexion du corps de la voiture \dot{x}_s , l'accélération du corps de la voiture \ddot{x}_s , la vitesse de la suspension de déflexion \dot{x}_{us} , et l'accélération de la suspension de déflexion \ddot{x}_{us} . Le vecteur d'état est défini comme $[x_1 \, x_2 \, x_3 \, x_4]^T$.

Ce résumé énonce les bases pour la modélisation et l'analyse d'un système de suspension active, offrant un cadre pour développer des stratégies de contrôle qui visent à améliorer la performance et le confort des véhicules.

2.1 1. Compute the state space model qcar in Matlab using the command ss

Nous convertissons le modèle dynamique en la forme matricielle de l'équation d'état spatiale :

$$\dot{x} = Ax + Bu \quad et \quad y = Cx + Du \tag{1}$$

avec:

$$x = \begin{pmatrix} x_s \\ \dot{x}_s \\ x_{us} \\ \dot{x}_{us} \end{pmatrix}, \quad u = \begin{pmatrix} r \\ f_s \end{pmatrix} \quad et \quad y = \begin{pmatrix} x_s \\ sd \\ \dot{x}_s \end{pmatrix}$$
 (2)

Nous pouvons donc obtenir:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_s}{m_s} & -\frac{b_s}{m_s} & \frac{k_s}{m_s} & \frac{b_s}{m_s} \\ 0 & 0 & 0 & 1 \\ \frac{k_s}{m_{us}} & \frac{b_s}{m_{us}} & -\frac{k_s + k_t}{m_{us}} & -\frac{b_s}{m_{us}} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & \frac{10^3}{m_s} \\ 0 & 0 \\ \frac{k_t}{m_{us}} & -\frac{10^3}{m_{us}} \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -\frac{k_s}{m_s} & -\frac{b_s}{m_s} & \frac{k_s}{m_s} & \frac{b_s}{m_s} \end{pmatrix} \quad et \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & \frac{10^3}{m_s} \end{pmatrix}$$

Nous allons modéliser un système linéaire invariant dans le temps de qcar pour étudier la robustesse du système de contrôle. Dans MATLAB, la fonction ss est la fonction utilisée pour créer un modèle espace-état (espace-état). Nous obtenons le code suivant :

Figure 2: The state space model qcar

2.2 2. Plot the open-loop gain from r and f_s to s_d and a_s . Deduce ω_{tirehop} and $\omega_{\text{rattlespace}}$

Lors de la conception et de l'analyse des systèmes de suspension des véhicules, les fréquences ω_{tirehop} et $\omega_{\text{rattlespace}}$ sont importantes car elles sont déterminantes pour le confort de conduite et les caractéristiques de maniabilité du véhicule. Nous devons concevoir des systèmes de suspension qui gèrent ces fréquences afin de minimiser les effets négatifs tels que le saut de pneu et le bruit, améliorant ainsi le confort des passagers et le contrôle du véhicule.

 ω_{tirehop} est connue comme la fréquence de saut du pneu. À cette fréquence, en raison de la réponse dynamique du système de suspension, les pneus du véhicule peuvent se détacher temporairement du sol, réduisant ainsi potentiellement la force de freinage et la stabilité. Dans l'étude de la fonction de transfert de force f_s de l'actionneur au déplacement x_s du corps et à l'accélération \ddot{x}_s , il est mentionné qu'à cette

fréquence intrinsèque, son axe imaginaire est nul.

 $\omega_{\rm rattlespace}$ est appelée fréquence spatiale du bruit. Elle peut être liée aux vibrations spatiales entre la carrosserie et les éléments non suspendus, qui peuvent affecter le bruit et les vibrations perçus par les passagers. Il s'agit de la fréquence à laquelle les pièces mobiles de la suspension atteignent leurs limites par le phénomène de résonance (compression ou tension). La suspension peut entrer en collision avec d'autres parties du véhicule, ce qui se produit généralement à basse fréquence. Cette fréquence est axée sur les limites dynamiques internes du système de suspension. Elle est associée à une fonction de transfert de la force de l'actionneur f_s au décalage de la suspension $x_s - x_{us}$, qui a également un point zéro sur l'axe imaginaire à cette fréquence naturelle.

Afin de trouver ces deux fréquences, nous utilisons la fonction bodemag dans MATLAB pour tracer le tracé de Bode de la fonction de transfert de r vers \ddot{x}_s , de f_s vers \ddot{x}_s , de r vers s_d et de f_s vers s_d . Les images sont présentées ci-dessous :

Figure 3: Gain de boucle fermée pour acceleration et suspension_travel

La figure 3.a représent la réponse fréquence de l'accélération du corps par rapport aux perturbations routières et à la force de l'actuateur. La réponse pour la perturbation en basse fréquence est faible et il augment avec la fréquence. Et à la fréquence 56.3 rad/s, on a un point de résonance à la quelle l'éfficacité de contrôle est très faible, donc .

Dans la figure 3.b, on voie que la réponse du déplacement de suspension aux perturbations routières est faible à basse fréquence et devient plus importante avec l'augmentation de la fréquence et se stabilise.

L'impact de de la force de l'actuateur sur le déplacement de suspension a une impulsion, à cette fréquence l'efficacité du contrôle est très faible, c'est donc un point de résonance du système, on peut trouver que .

Les tracés obtenus permettent de calculer ω_{tirehop} = 56,3 rad/s et $\omega_{\text{rattlespace}}$ = 23 rad/s.

3 Linear H∞ Controller Design

Dans cette section, nous étudions le cadre de conception d'un contrôleur linéaire $H\infty$, en mettant l'accent sur son rôle dans l'amélioration du confort des passagers et de la tenue de route en contrôlant l'accélération de la carrosserie et le débattement de la suspension. La fonction de pondération est un élément clé de la conception. Elle est utilisée pour façonner les signaux normalisés des perturbations externes telles que les irrégularités de la route et le bruit des capteurs, et pour modéliser ces effets à l'aide de constantes spécifiques. Le contrôleur utilise les mesures du système de suspension et de l'accélération du corps pour calculer les signaux de commande de l'actionneur et intègre le modèle d'actionneur représenté par la fonction de transfert. La conception vise à minimiser une fonction de coût unique reflétant les effets combinés de l'efficacité de la commande, du mouvement de la suspension et de l'accélération du corps, en vue d'un rejet optimal des perturbations. Pour ce faire, on minimise les effets des perturbations sur les signaux de commande à l'aide d'un contrôleur soigneusement calibré qui fonctionne sur la base de la norme $H\infty$, lequel évalue les performances du contrôleur en matière d'atténuation des effets de ces perturbations.

Figure 4: Augmented control scheme

3.1 3. Compute the functions W_road , W_d2 and W_d3 . Define W_act as a high-pass filter to penalize high frequency content of the control signal and thus to limit the control bandwidth.

Pour modéliser les déflexions de route avec une amplitude de 7 cm, nous utilisons une pondération constante, notée W_road , qui est fixée à 0,07. En ce qui concerne la modélisation du bruit du capteur à large bande, nous employons deux valeurs de pondération : W_d2 à 0,01 pour une intensité de bruit de 0,01, et W_d3 à 0,5 pour une intensité de bruit de 0,5. La pondération W_{act} dans notre système est analogue à la fonction de pondération W_2 dans le système augmenté. Cette pondération est reliée à la relation $|KS| < |\frac{1}{W_{act}}|$, où KS représente le rapport $\frac{U}{R}$, U étant la commande. Pour minimiser l'impact des hautes fréquences dans le signal de commande, $|\frac{1}{W_{act}}|$ est conçu comme un filtre passe-bas, tandis que W_{act} fonctionne comme un filtre passe-haut avec une fréquence de coupure ω_{c1} fixée à 50 rad/s. De plus, pour restreindre la largeur de bande de la commande, une fréquence de coupure ω_{c1} de 500 rad/s est utilisée. Finalement, nous définissons un

filtre passe-haut selon la forme suivante :

$$W_{\rm act} = 0.8 \frac{(s+50)}{(s+500)}$$

où 0.8 est le coefficient de réduction de gain et s est la variable complexe dans la transformation de Laplace.

```
Wroad = ss(0.07);
Wd2 = ss(0.01);
Wd3 = ss(0.5);
Wact_bis = 0.75*tf([1 70],[1 700]);
Wact = 0.8*tf([1 50],[1 500]);
```

Figure 5: Les functions W_road , W_d2 , W_d3 et W_act

3.2 4. Specify closed-loop targets for the gain from road disturbance r to suspension deflection s_d (handling) and body acceleration \ddot{x}_s (comfort). Because of the actuator uncertainty and imaginary-axis zeros, only seek to attenuate disturbances below $10 \ rad/s$.

En raison de l'incertitude de l'actionneur et des zéros sur l'axe imaginaire, nous cherchons seulement à atténuer les perturbations à moins de $10 \, \text{rad/s}$. Nous avons besoin de deux fonctions de transfert prédéfinies G_{HT} et G_{CT} , qui représentent respectivement les indicateurs de performance pour la maniabilité et le confort.

1. Handing Target : Il définit la fonction de transfert cible souhaitée pour la performance de maniabilité. Cette fonction de transfert décrit, dans des conditions idéales, l'impact des perturbations de la route r sur le déplacement de la suspension s_d :

$$G_{-}HT = 0.04 \times \text{tf}\left(\begin{bmatrix} \frac{1}{8} & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{80} & 1 \end{bmatrix}\right)$$

Nous pouvons voir que G_HT a un gain plus faible de 0.04, ce qui indique que nos exigences en matière de maniabilité ne sont pas très élevées.

2. Comfort Target : Il définit la fonction de transfert cible souhaitée pour la performance de confort. Cette fonction de transfert décrit, dans des conditions idéales, l'impact des perturbations de la route r sur l'accélération de la carrosserie \ddot{x}_s :

$$G_CT = 0.4 \times \text{tf}\left(\begin{bmatrix} \frac{1}{0.45} & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{150} & 1 \end{bmatrix}\right)$$

Nous pouvons voir que G_CT a un gain plus élevé de 0.4, ce qui indique que nos exigences en matière de confort sont plus élevées.

```
G_{HT} = 0.04 * tf([1/8 1],[1/80 1]); % HandlingTarget 
 <math>G_{CT} = 0.4 * tf([1/0.45 1],[1/150 1]); % ComfortTarget
```

Figure 6: Les functions G_HT et G_CT

3.3 5. Plot, using the function bodemag, the open-loop gain from road disturbance r to body acceleration \ddot{x}_s and suspension displacement $s_d = x_s - x_{us}$ and compare the curve with closed loop target.

Nous mettons en œuvre la fonction bodemag pour esquisser à la fois la caractéristique souhaitée en boucle ouverte et la réponse en boucle fermée (comme il est discuté dans la question 4).

Figure 7: Diagramme de Bode

Ça représente le gain en boucle ouverte de la perturbation routière au déplacement de la suspension et à l'accélération du corps. La ligne bleu signifie la réponse fréquentielle réelle et la ligne rouge indique l'objectif en boucle fermée(idéal). selon les figures on peut en déduire que le système se présente une bonne atténuation des perturbations à basses fréquences, l'objectif en boucle fermée est inférieur à la réponse réelle sur toute la gamme de fréquence. Mais montre un pic prononcé dans la région de fréquences moyennes, donc dans cette région la capacité de l'atténuation est faible, il y a le besoin d'une optimisation du contrôleur pour atteindre l'objectif en boucle fermée. Par contre, en haut fréquence, cette capacité augment. On peut trouver que entre 10-100 rad/s le système fonctionne correct.

3.4 6. To investigate the trade-off between passenger comfort and road handling, construct three sets of weights $(\beta W_{sd}, (1-\beta)W_{ab})$ corresponding to three different trade-offs: comfort $(\beta = 0.01)$, balanced $(\beta = 0.5)$, and handling $(\beta = 0.99)$.

Les fonctions de pondération W_{sd} et W_{ab} sont considérées comme équivalentes à la fonction de pondération W_3 dans le système augmenté. Pour la composante sd, la fonction de sensibilité complémentaire est T_{sd} , ce qui conduit à $|T_{sd}| < |\frac{1}{W_{sd}}|$. La cible de performance pour la boucle fermée, désignée par HandlingTarget, est utilisée comme T_{sd} , d'où l'on déduit que $W_{sd_all} = \frac{1}{T_{sd}} = \frac{1}{G_HT}$. De façon analogue, pour la composante as, la fonction de sensibilité complémentaire est T_{ab} , avec $|T_{ab}| < |\frac{1-\beta}{W_{ab}}|$ et nous prenons la cible de performance pour la boucle fermée, ComfortTarget, comme T_{ab} , ce qui nous donne $W_{ab_all} = \frac{(1-\beta)}{T_{ab}} = \frac{(1-\beta)}{G_CT}$. Nous définissons alors un ensemble de valeurs pour β , qui comprend trois cas de figure : confort, équilibre et maniabilité, correspondant à trois valeurs de β : 0,01, 0,05 et 0,99, respectivement.

```
beta = [0.01 0.5 0.99]; % comfort (?=0.01), balanced (?=0.5), and handling
Wsd_all = beta/G_HT;
Wab_all = (1-beta)/G_CT;
Act= tf(1,[1/60 1]); % actuator model
```

Figure 8: Les pondérations $W_{sd\ all}$ et $W_{ab\ all}$

 $W_{sd_all} = \frac{\beta}{G_HT}$: une plus petite valeur de β indique une préoccupation plus forte pour l'objectif de performance de maniabilité, tandis qu'une valeur plus grande de β indique une sensibilité réduite à cet objectif. $W_{ab_all} = \frac{(1-\beta)}{G_CT}$: lorsque β est faible (priorisant la maniabilité), $1-\beta$ est plus grand, résultant en une fonction de pondération dans W_{ab_all} qui accorde plus d'importance au confort, et vice versa.

3.5 7. Define the standard from of the augmented system corresponding to the $H\infty$ control design.

Sur la base de nos résultats ci-dessus, nous construisons le système augmenté en boucle ferme suivant en utilisant Simulink dans MATLAB

Figure 9: Le système augmenté

3.6 8. Compute the controller K_i using the Matlab function hinfsyn

Pour calculer, nous allons d'abord construire le système augmenté et déterminer les dimensions des entrées et des sorties. Ensuite, on utilise la commande hinfsyn pour concevoir le contrôleur H_{∞} , cette fonction retourne le contrôleur K_i et la norme $H_{\infty}(\gamma_i)$. La variable γ_i indique la performance du système en boucle fermée; plus elle est petite, meilleure est la performance.

```
% Controller K1 with beta=0.01;
Wsd=Wsd_all(1);
Wab=Wab_all(1);
[A1,B1,C1,D1]=linmod('QCS_Sim');
P1=ss(A1,B1,C1,D1);
[K1,Scl1,gam1] = hinfsyn(P1,2,1);
K1=tf(K1);
```

Figure 10: Code pour calculer K1 a β_1

```
% Controller K2 with beta=0.5;
Wsd=Wsd_all(2);
Wab=Wab_all(2);
[A2,B2,C2,D2]=linmod('QCS_Sim');
P2=ss(A2,B2,C2,D2);
[K2,Scl2,gam2] = hinfsyn(P2,2,1);
K2=tf(K2);
```

Figure 11: Code pour calculer K2 a β_2

```
Wsd=Wsd_all(3);
Wab=Wab_all(3);

[A3,B3,C3,D3]=linmod('QCS_Sim');
P3=ss(A3,B3,C3,D3);

[K3,Scl3,gam3] = hinfsyn(P3,2,1);
K3=tf(K3);
```

% Controller K3 with beta=0.99:

Figure 12: Code pour calculer K3 a β_3

Après calcul, nous obtenons que les valeurs de γ sont :

$$\gamma = \begin{pmatrix} 0.9410 \\ 0.6724 \\ 0.8877 \end{pmatrix}$$

Toutes les valeurs de γ sont inférieures à 1, et le contrôleur K_2 a la plus petite valeur de γ , donc la pondération équilibrée offre de meilleures performances.

4 Closed-loop analysis with the linear $H\infty$ Controller Design

Enfin, nous analysons les trois différents contrôleurs K_1 , K_2 et K_3 sur la base des normes H_∞ en boucle fermée (dénotés γ_1 , γ_2 et γ_3 , respectivement) obtenus ci-dessus. En d'autres termes, chaque contrôleur est évalué sur la base de sa capacité à minimiser le paramètre H_∞ dans la configuration en boucle fermée, qui est une mesure de l'amplification la plus défavorable des perturbations au sein du système.

4.1 9. Construct the corresponding closed-loop models $G_{cl_{i11}} = \frac{x_s}{r}$, $G_{cl_{i21}} = \frac{s_d}{r}$ and $G_{cl_{i31}} = \frac{\ddot{x}_s}{r}$ where i = 1, 2, 3 corresponds to a controller K_i

Nous allons d'abord calculer la focntion de transfert Gru qui représente le signal de commande u par rapport à la perturbation routière rr, c'est est la somme pondérée de deux fonctions de transfert en boucle ouverte de G_21 et G_31 , et leur interaction avec deux autres fonctions de transfert G_22 et G_32 à travers les actions des contrôleurs $K1_1$ et $K1_2$, ainsi que l'action de l'actionneur Act.

Figure 13: Fonction de transfert de $G_{\text{cl_ill}}$

Figure 14: Fonction de transfert de G_{cl_i21}

Figure 15: Fonction de transfert de G_{cl_i31}

 $G_c l$ se présente fonction de transfert en boucle fermée décrit la réponse du système aux déplacements du corps, aux déplacements de la suspension, et à l'accélération du corps face à la perturbations. Nous allons définir les modes de closed up en changeant les coordonnées de de contrôleur K, les formule sont donné à l'énoncé. On peut simplement changer les indices pour changer les models de pondérations

4.2 10. Compare the gains from road disturbance to x_s , s_d and \ddot{x}_s for the passive and active suspensions. Observe that all three controllers reduce suspension deflection and body acceleration below the rattlespace frequency $\omega_{\text{rattlespace}} = 23 \text{ rad/s}$.

Nous traçons les gains de perturbation de la route r a x_s , s_d et \ddot{x}_s pour les suspensions passives et actives. La suspension passive est un système en boucle ouverte et la suspension active est un système en boucle fermée dans trois cas.

L'analyse comparative entre les gains en boucle ouverte (représentés par des lignes pointillées vertes) et ceux en boucle fermée (comfort : ligne bleue ; équilibrée : ligne rouge ; maniabilité : ligne verte ; sans contrôleur : ligne noire) révèle une diminution notable du premier pic sous la fréquence de rattlespace de 23 rad/s, dans tous les scénarios. Cela s'aligne parfaitement avec nos objectifs de conception.

Figure 16: Diagramme de Bode de $G_{cl\ i11}$

Selon la figure, on constate que tous les 3 contrôleurs réduisent efficacement le déplacement de la suspension et l'accélération en desous de la fréquence derésonance qui est 23 rad/s. Par contre le système de suspension passive présente un gain plus élevé sur toute la plage de fréquence, c-à-d que le système de suspension active est plus efficace pour améliorer le comfort et la maniabilité.

Figure 17: Diagramme de Bode de $G_{\text{cl ill}}$

On peut en déduire que les système en boucle fermée surpassent le système passif à basse fréquence, donc le contrôle actif fonctionne mieux dans ce cas. Avec augmentation de la fréquence, les courbes se coïncident. le système est bien stable, mais il y a comme même un peut de influence, on peut dire que ça depende de la densité de perturbation. Si la perturbation est assez grand, le système aura plus de influence.

On trouve que la ligne vert est plus élevé que les autre entre fréquence 10Hz et 100Hz, qui représente le bode handling. Ceci correspond à la mode choisit. Et on peut voir sur toute la figure, pour pluspart de fréquence, handling est plus importante que les autres.

Les courbes sont proches dans la région des fréquences moyennes mais divergent à un certain point, il illustrant l'impact variable des système de contrôle sur les changements de fréquence. Pour tous les 3 figure, le point que les courbes se rejointent est à la fréquence environ 56-58 rad/s, ceci correspond la fréquence

Figure 18: Diagramme de Bode de $G_{cl\ i11}$

qu'on obtient à la question 2, à cette fréquence l'efficacité des contrôles sont faibles.

5 Supplémentaire

Pour étudier l'effort de perturbation, on donne une perturbation à instant 0, et déterminer un signal de forme $0.025(1-cos(8\pi t))$ pour similer les irrégularités d'une route sur une période de temps.

On peut voir que les différents réponses des différents models de la suspension pour contre la perturbation routières. D'abord ils sont opposés à la perturbation pour stabiliser le système, et en plus le model handling osciller plus petite, dans ce cas là, le déplacement de la suspension minimise mais le déplacement du corps maximise, la miniabilité est plus efficace mais le comfort est mauvais. Et le model de comfort oscille plus forte, on est dans le cas inverse. Mais dans un autre cas, il n'y a pas de perturbation mais on donne une

Figure 19: Figures de supplémentaire

accélération initiale, on a (Figure 19.b):

On trouve que cette figure est comme l'invers de la figure précédente, le handling oscille plus forte en haut amplitude pour stabilise plus rapide et ne pas prendre contact avec l'autre partie de véhicule. Quand l'amplitude est réduit à un certain valeur, le model comfort devient plus importante, pour contre le l'oscillation précédente et stabilise le corps de humain. Après on répéte ces étapes pour que le déplacement

du corps et déplacement de la suspension n'atteintent pas leurs points de résonance et inférieur à un certain valeur (le déplacement de la suspension est toujours inférieur à une limite, avec un comfort du corps accéptable).