REPUBLIQUE DU CAMEROUN Paix- Travail- Patrie MINESUP

COMPOSITION DU PREMIER SEMENTRE

Session : 2021 Spécialité :

Code module : MK2 Durée : 2 Heures Coefficient : 2

Epreuve écrite obligatoire

EPREUVE DE RESISTANCE DES MATERIAUX (RDM)

EXERCICE I : Flexion d'une poutre reposant sur deux appuis et soumise à des charges localisées

La figure ci-contre représente un robot Employé pour soulever des charges de 800N maximum.

On se propose de vérifier la résistance du bras de manœuvre (2) lorsque celui-ci est horizontal et supporte la charge maximale de 800N en A.

Hypothèses:

- Le bras (2) est assimilé à une poutre de section tubulaire rectangle de largeur b=250mm, de hauteur h=120mm et d'épaisseur a=5mm.
- Le poids du bras (2) est négligé.
- Toutes les forces appliquées à la poutre sont disposées perpendiculairement à la ligne moyenne et dans le plan de symétrie longitudinal.
- Les forces appliquées sont concentrées en un point (A en A , $\vec{B}_{1/2}$ en B et $\vec{C}_{3/2}$ en C).
- **1-1** Déterminer les actions de contact dans les articulations B et C : $\overrightarrow{B}_{1/2}$ et $\overrightarrow{C}_{3/2}$ 2 pts

:

- **1-2** Tracer le diagramme des efforts tranchants et du moment fléchissant le long de CA : 4 pts
- **1-3** Déduire la valeur et la position de $||\overrightarrow{T_{max}}||$ et $||\overrightarrow{Mf_{max}}||$ 2pts
- **1-5** Calculer le moment quadratique I_{GZ} d'une section droite de la poutre 1pt
- 1-6 Vérifier la résistance du bras (2) à la flexion : Sachant que la résistance pratique est Rp =100N/mm²
 1,5 pts
- **1-7** Ecrire l'équation de la déformée en B en fonction cde E, et I_{GZ} 2,5 pts

EXERCICE II: TORSION

/6 pts

Système : malaxeur de peinture :

Ce malaxeur prépare toutes les peintures, crépis d'intérieur et pâtes à projeter. La vitesse de malaxage est réglable de 260 à 630 tr/min, avec variateur électronique. Une tige porte hélice d'agitation de peinture est accouplée à un moto- variateur.

Données : - longueur L = 500mm.

- puissance transmise est de 1400 W.
- poids maxi à mélanger 100 Kg.

Dimensionnement de la tige d'agitateur de peinture On suppose que: le couple se fait à une vitesse constante de 630 tr/min

La puissance transmise est de 1400 W.

La résistance pratique au cisaillement du matériau de la tige est $\tau_P = 5 \, daN/mm^2$

La longueur de la tige L = 500mm.

- 1- Calculer le couple de torsion appliqué sur la tige : 1 pt
- 2- Déterminer le diamètre minimal d_{1min} de la tige : 1,5 pts
- 3- Calculer l'angle de torsion entre les deux extrémités de la tige on prendra (G = 8000 daN/mm²) 1 pts
- 4- Calculer le diamètre minimal d_{2min} de la tige dans le cas où l'angle unitaire de torsion ne doit pas dépasser la valeur de 0,1 degré par mètre : 2pts
- 5- Déduire le diamètre d minimal de l'arbre qui répond aux deux conditions (de résistance et de rigidité) : 0,5pt

EXERCICE I

1-1 Détermination des actions de contact dans les articulations B et C : $\overrightarrow{B}_{1/2}$ et $\overrightarrow{C}_{3/2}$

1-2 Traçage du diagramme des efforts tranchants et du moment fléchissant le long de CA :

				
1-3 Déduction de la valeur et de la position de $ \overrightarrow{T_{max}} $ et $ \overrightarrow{Mf_{max}} $				
1-5 Calcul du moment quadratique I_{GZ} d'une section droite de la poutre				
1-6 Vérification de la résistance du bras (2) à la flexion :				

1-7 Equation de la déformée en B en fonction cde E, et I_{GZ}
EXERCICE II : TORSION /6 pts
EXERCICE II . TORSION /0 pts
1- Calcule du couple de torsion appliqué sur la tige :
2. Détermination du diamètre minimal de de le tige :
2- Détermination du diamètre minimal d _{1min} de la tige :

3- Calcule de l'angle de torsion entre les deux extrémités de la tige
4- Calcule du diamètre minimal d _{2min} de la tige dans le cas où l'angle unitaire de torsion ne doit pas
dépasser la valeur de 0,1 degré par mètre :
5- Déduction du diamètre d minimal de l'arbre qui répond aux deux conditions (de résistance et de
rigidité) :
rigidite).

,		