

MITx: 15.053x Optimization Methods in Business Analytics

Heli

■ Bookmark

Bookmarks

- General Information
- ▶ Week 1
- ▶ Week 2
- ▶ Week 3
- Week 4
- ▼ Week 5

Lecture

Lecture questions due Oct 11, 2016 at 19:30 IST

Recitation

Problem Set 5

Homework 5 due Oct 11, 2016 at 19:30 IST

Week 5 > Problem Set 5 > Problem 1

PART A

(1/1 point)

Consider the linear program:

$$z=x_1+0x_2 \quad ext{(Objective)}$$
 s.t.: $-x_1+x_2 \leq 2 \quad ext{(Constraint 1)}$ $x_1+x_2 \leq 8 \quad ext{(Constraint 2)}$ $-x_1+x_2 \geq -4 \quad ext{(Constraint 3)}$ $x_1,x_2 \geq 0 \quad ext{(Non-negativity)}$

Solve geometrically and also trace the simplex procedure steps graphically. If the optimal solution is denoted as (x_1, x_2) , what is the optimal objective value?

6

6

You have used 1 of 3 submissions

PART B

(1/1 point)

Suppose that the objective function is changed to $z=x_1+cx_2$. Graphically determine the values of c for which the solution found in PART A remains optimal.

- 0 $-1 \le c \le 0$
- $-2 \le c \le 1$
- $0 \le c \le 1$
- $-1 \le c \le 2$
- \bullet $-1 \le c \le 1$ \checkmark

You have used 1 of 2 submissions

PART C

(1/1 point)

Starting with your graphical solution to PART A, determine the shadow price corresponding to the third constraint. What is the shadow price? -1/2 You have used 1 of 3 submissions

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

