XIX МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА «ШЁЛКОВЫЙ ПУТЬ» МАРТ 2020 ГОДА

Внимание! Так как XIX Математическая олимпиада «Шёлковый путь» проводится в Казахстане раньше, чем в других странах, мы вас убедительно просим **не разглашать** эти задачи и не обсуждать их (особенно по Интернету) до 25 мая 2020 года.

Решения задач и схемы оценивания

Задача №1. Дана строго возрастающая бесконечная последовательность натуральных чисел $a_1, a_2, a_3,$ Известно, что $a_n \le n + 2020$ и число $n^3 a_n - 1$ делится на a_{n+1} при всех натуральных n. Докажите, что $a_n = n$ при всех натуральных n.

Первое решение. Индукцией по n легко показать, что $a_n \ge n$ для любого n. Пусть существует такое натуральное k, что $a_k > k$. Выберем такое натуральное m, что m : 2021! и m > k. Тогда при всех $i = 2, 3, \ldots, 2021$, НОД(m, m + i) > 1. Из условия задачи следует, что НОД $(m, a_{m+1}) = 1$. Так как последовательность $\{a_n\}$ возрастающая и $a_k > k$, то $a_{m+1} > m + 1$. Значит, $m + 2 \le a_{m+1} \le m + 2021$, но тогда НОД $(m, a_{m+1}) > 1$ — противоречие.

Схема оценивания.

- \bullet Рассмотрение натурального числа, делящегося на каждое из чисел $2, 3, \dots, 2021-2$ балла
- Доказательство того, что для любого натурального k существует такое натуральное m>k, что $a_m=m-6$ баллов
- Эти пункты не суммируются

Второе решение. Пусть $b_n = a_n - n$ для всех n. Индукцией по n легко показать, что $b_n \ge 0$ для любого n. Если $b_k > b_{k+1}$ для какого-то k, то

$$a_k - k > a_{k+1} - k - 1 \implies a_k + 1 > a_{k+1} \implies a_k \ge a_{k+1}$$

— противоречие. Следовательно, последовательность $\{b_n\}$ неубывает. С другой стороны, она ограничена сверху: $b_n=a_n-n\leq 2020$. Следовательно, существует такое неотрицательное целое k и натуральное t, что $b_n=k$ для всех $n\geq t$. Значит, для всех $n\geq t$

$$a_{n+1} \mid n^3 a_n - 1 \implies n + k + 1 \mid n^3 (n+k) - 1 \implies$$

$$\implies n + k + 1 \mid n^3 (n+k) - 1 - (n+k+1)(n^3 - n^2 + n(k+1) - (k+1)^2) = (k+1)^3 - 1 \implies$$

$$\implies n + k + 1 \mid (k+1)^3 - 1.$$

Но это возможно только если k=0. Следовательно, $b_n=0$ для всех достаточно больших n, а значит и для всех n, т. е. $a_n=n$ для всех n.

Схема оценивания.

- (1) Доказательство того, что $b_k \le b_{k+1}$ для любого k-1 балл
- ullet (2) Доказательство того, что $\{b_n\}$ постоянна, начиная с какого-то члена 3 балла
- (3) Доказательство того, что $b_n = 0$, начиная с какого-то члена 3 балла
- Пункты (1) и (2) не суммируются

Задача №2. Треугольник ABC вписан в окружность ω . На сторонах AB, BC, CA отмечены точки K, L, M, соответственно, причем $CM \cdot CL = AM \cdot BL$. Луч LK пересекает прямую AC в точке P. Общая хорда окружности ω и описанной окружности треугольника KMP пересекает отрезок AM в точке S. Докажите, что $SK \parallel BC$.

Первое решение.

Пусть $AC \leq BC$. Отметим на стороне AB точку D такую, что $DM \parallel BC$. Тогда

$$\frac{DB}{DA} = \frac{CM}{AM} = \frac{BL}{CL},$$

то есть $DL \parallel AC$. На касательной прямой к ω в точке C отметим точку T такую, что $KT \parallel BC$. Тогда $\angle TKA = \angle CBA = \angle TCA$. Следовательно, четырехугольник AKCT — вписанный. Пусть отрезки KT и AC пересекаются в точке S_1 . Тогда

$$\frac{S_1P}{S_1C} = \frac{KP}{KL} = \frac{KA}{KD} = \frac{S_1A}{S_1M} \implies S_1P \cdot S_1M = S_1C \cdot S_1A = S_1K \cdot S_1T.$$

Значит, четырехугольник TMKP вписан в окружность, описанную около треугольника KMP. Известно, что общие хорды каждой пары трёх окружностей, центры которых не лежат на одной прямой, пересекаются в одной точке. Это значит, что общая хорда окружности ω и описанной окружности треугольника KMP проходит через точку S_1 . Следовательно, точки S_1 и S совпадают, и параллельность $S_1K \parallel BC$ верна из построения точки T.

Схема оценивания.

- ullet Доказательство того, что $DL \parallel AC 0$ баллов
- ullet Рассмотрение точки T-1 балл
- Доказательство того, что точки P, K, M, T лежат на одной окружности 4 балла

Второе решение. Введем обозначения:

$$b = AC$$
, $m = AM$, $s = AS$, $p = AP$.

Так как S лежит на радикальной оси описанных окружностей треугольников ABC и PKM, то

$$SM \cdot SP = SA \cdot SC \implies (m-s)(s+p) = s(b-s) \implies s = \frac{pm}{b+p-m}.$$

Тогда

$$\frac{AS}{SC} = \frac{s}{b-s} = \frac{pm}{(b-m)(b+p)}.$$

По теореме Менелая для треугольника ABC и секущей PKL:

$$\frac{AK}{KB} \cdot \frac{BL}{LC} \cdot \frac{CP}{PA} = 1 \implies \frac{AK}{KB} = \frac{CL}{LB} \cdot \frac{AP}{PC} = \frac{AM}{MC} \cdot \frac{AP}{PC} = \frac{m}{b-m} \cdot \frac{p}{b+n} = \frac{AS}{SC} \implies SK \parallel BC,$$

что и требовалось доказать.

Схема оценивания.

• Незаконченный счет — 0 баллов

Задача №3. Многочлен $Q(x) = k_n x^n + k_{n-1} x^{n-1} + \ldots + k_1 x + k_0$ с действительными коэффициентами назовём мощным, если выполнено равенство $|k_0| = |k_1| + |k_2| + \ldots + |k_{n-1}| + |k_n|$, и невозрастающим, если $k_0 \ge k_1 \ge \ldots \ge k_{n-1} \ge k_n$.

Пусть для многочлена $P(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_1 x + a_0$ с ненулевыми действительными коэффициентами, где $a_d > 0$, многочлен $P(x)(x-1)^t(x+1)^s$ является мощным для некоторых неотрицательных целых s и t (s+t>0). Докажите, что хотя бы один из многочленов P(x) и (-1) $^d P(-x)$ является невозрастающим.

Решение. Заметим следующий факт: если для действительных чисел x_1, x_2, \ldots, x_m выполняется равенство

$$|x_1| + |x_2| + \ldots + |x_m| = |x_1 + x_2 + \ldots + |x_m|,$$

то они одного знака.

Пусть

$$Q(x) = P(x)(x-1)^{t}(x+1)^{s} = b_{n}x^{n} + b_{n-1}x^{n-1} + \dots + b_{0},$$

где $b_n = a_d > 0$. Из условия имеем равенство

$$|b_0| = |b_1| + |b_2| + \ldots + |b_n|.$$

Лемма: Если $t \ge 1$, то $b_1, b_2, \dots, b_n \ge 0$.

Доказательство:

$$Q(1) = 0 \implies b_0 + b_1 + \dots + b_n = 0 \implies$$
$$\implies |b_1 + b_2 + \dots + b_n| = |b_0| = |b_1| + |b_2| + \dots + |b_n|,$$

а значит, числа b_1, b_2, \ldots, b_n одного знака. Так как $b_n > 0$, то $b_1, b_2, \ldots, b_{n-1} \ge 0$. Лемма доказана. Предположим, что $t \ge 2$. По лемме,

$$b_1, b_2, \dots, b_{n-1} \ge 0 \implies b_1 + 2b_2 + \dots + nb_n > 0.$$

C другой стороны, пусть $R(x) = \frac{Q(x)}{(x-1)^2}$. Тогда

$$Q'(x) = 2(x-1)R(x) + (x-1)^2 R'(x) \implies Q'(1) = 0 \implies b_1 + 2b_2 + \ldots + nb_n = 0$$

— противоречие. Следовательно, t < 1.

Аналогично можно показать, что $s \le 1$. Теперь рассмотрим три случая.

I)
$$t = 1, s = 1$$
.

$$Q(x) = P(x)(x^2 - 1) \implies Q(1) = Q(-1) = 0 \implies$$

 $\implies b_0 + b_1 + \dots + b_n = b_0 - b_1 + b_2 + \dots + (-1)^n b_n = 0 \implies$
 $\implies b_1 + b_3 + b_5 + \dots = 0.$

По лемме,

$$b_1, b_2, \dots, b_n \ge 0 \implies b_1 = b_3 = b_5 = \dots = 0,$$

— противоречие, так как $b_1 = -a_1$ и по условию $a_1 \neq 0$.

II)
$$t = 1, s = 0.$$

$$Q(x) = P(x)(x-1) = -a_0 + (a_0 - a_1)x + \dots + (a_{d-1} - a_d)x^d + a_dx^{d+1}.$$

По лемме,

$$a_0 - a_1 = b_1 \ge 0, \dots, a_{d-1} - a_d = b_d \ge 0 \implies a_0 \ge a_1 \ge \dots \ge a_d$$

Следовательно, P(x) — невозрастающий.

III) t = 0, s = 1.

$$Q(-1) = 0 \implies b_0 - b_1 + \dots + (-1)^n b_n = 0 \implies$$

$$\implies |b_1 - b_2 + \dots + (-1)^n b_n| = |b_0| = |b_1| + |-b_2| + \dots + |(-1)^n b_n|.$$

Значит, числа $b_1, -b_2, \ldots, (-1)^n b_n$ одного знака, а так как $b_n > 0$, то $(-1)^{n-i} b_i \ge 0$ для каждого $1 \le i \le n$.

$$Q(x) = P(x)(x+1) = a_0 + (a_0 + a_1)x + \ldots + (a_{d-1} + a_d)x^d + a_dx^{d+1} \implies$$

$$\implies (-1)^{d+1-i}(a_{i-1} + a_i) \ge 0 \text{ (для всех } 1 \le i \le d) \implies$$

$$\implies a_d \le -a_{d-1} \le a_{d-2} \le \ldots \le (-1)^d a_0.$$

Получается, что многочлен $(-1)^d P(-x) = a_d x^d - a_{d-1} x^{d-1} + \ldots + (-1)^d a_0$ — невозрастающий.

Схема оценивания.

- (1) Доказательство **леммы** 2 балла
- (2) Доказательство того, что $t \le 1$ и $s \le 1 4$ балла
- (3) Доказательство того, что $t \leq 1$ или $s \leq 1-3$ балла
- (4) Разбор случая t = s = 1 1 балл
- (5) Разбор случая t = 1, s = 0 1 балл
- (6) Разбор случая t = 0, s = 1 1 балл
- Пункт (1) не суммируется с другими
- Пункты (2) и (3) не суммируются

Задача №4. Докажите, что для любого натурального числа m существует такое натуральное n, что любые n различных точек на плоскости можно разбить на m непустых множеств, выпуклые оболочки которых будут иметь общую точку.

Bыпуклой оболочкой конечного множества X точек на плоскости называется множество точек, лежащих внутри или на границе хотя бы одного выпуклого многоугольника с вершинами в X, включая вырожденные, т. е. отрезок и точка считаются выпуклыми многоугольниками. Никакие три вершины выпуклого многоугольника не лежат на одной прямой. Многоугольник содержит свою границу.

Первое решение. Напомним **теорему Хелли**: если в конечном множестве выпуклых множеств точек на плоскости каждые три пересекаются, то и все пересекаются.

Докажем, что n = 9m подходит. Пусть X — произвольное множество из 9m различных точек на плоскости, а Y — множество подмножеств X размера 6m + 1.

Предположим, что существуют такие $A, B, C \in Y$, что их пересечение пусто. Пронумеруем все точки из X числами от 1 до 9m. Выпишем на листе бумаги сначала все номера точек из множества A, затем из множества B и в конце из множества C. В итоге, мы выпишем |A| + |B| + |C| = 18m + 3 числа. Так как эти три множества не пересекаются, то мы не могли выписать никакое число более, чем два раза.

Значит, мы выписали не более $2 \cdot 9m = 18m$ чисел — противоречие. Следовательно, любые три элемента Y пересекаются.

Так как выпуклая оболочка множества точек полностью содержит это множество, то выпуклые оболочки любых трех элементов Y пересекаются. Следовательно, по теореме Хелли, выпуклые оболочки всех элементов Y имеют какую-то общую точку O.

Докажем следующую **лемму**: если выпуклая оболочка какого-то конечного множества точек Z содержит какую-то точку P, то существует $W\subseteq Z$, такое что $|W|\le 3$ и выпуклая оболочка W содержит P. По определению выпуклой оболочки, существует выпуклый многоугольник с множеством вершин $V\subseteq Z$ (возможно, вырожденный), который содержит эту точку P. Если $|V|\le 3$, то V подходит в качестве W. Иначе, сделаем произвольную триангуляцию многоугольника с вершинами в V. Точка P должна лежать хотя бы в одном треугольнике разбиения. Множество вершин такого треугольника подходит в качестве W.

Заведем мешок, в который будем складировать непустые подмножества X. Определим следующую операцию, изменяющую X и Y: выберем любое $A \in Y$. Так как выпуклая оболочка A содержит O, то, по лемме, существует такое $B \subseteq A$, что $|B| \le 3$ и выпуклая оболочка B содержит O. Положим B в мешок (очевидно, B непусто), удалим элементы B из X, и удалим из Y множества, содержащие элементы B.

После одной операции мощность X уменьшается не более, чем на три, и Y непусто до тех пор, пока $|X| \geq 6m+1$. Следовательно, мы можем выполнить операцию хотя бы m раз. Выполним операцию ровно m раз. Оставшиеся в X точки распределим произвольным образом между множествами в мешке.

Итак, множества в мешке составляют разбиение начального множества точек на m множеств и выпуклая оболочка каждого из них содержит точку O, т. е. они пересекаются, что нам и было нужно.

Схема оценивания.

- Доказательство того, что выпуклые оболочки всех подмножеств размера $\left[\frac{2n}{3}\right]+1$ имеют общую точку 3 балла
- Доказательство леммы 1 балл
- Использование леммы без доказательства минус 1 балл
- ullet Правильно показано, как разбить точки на множества, но без обоснования правильности 2 балла

Второе решение. Индукцией по m докажем, что любые хотя бы $4m^2$ различных точек на плоскости можно разбить на m непустых множеств, выпуклые оболочки которых пересекаются. При m=1 утверждение, очевидно, верно. Пусть оно верно для m=k-1, где $k\geq 2$. Докажем, что оно верно и для m=k. Рассмотрим произвольное множество X из хотя бы $4k^2$ различных точек на плоскости. Пусть Y — подмножество точек X, лежащих на границе выпуклой оболочки всех точек из X. Если |Y|<4k, то $|X\setminus Y|>4k^2-4k>4(k-1)^2$. По предположению индукции, $X\setminus Y$ можно разбить на k-1 непустое множество точек, выпуклые оболочки которых пересекаются. Если добавить Y к этому k-1 множеству, то мы получим k множеств, выпуклые оболочки которых пересекаются (так как выпуклая оболочка Y содержит все точки из $X\setminus Y$).

Если же $|Y| \ge 4k$, то рассмотрим два случая. Если все точки из Y лежат на одной прямой, то и все точки из X лежат на одной прямой. Проведем вдоль этой прямой ось координат и обозначим точки из X через $A_1, A_2, \ldots, A_{|X|}$ по возрастанию координат. Так как $4k^2 > 2k$, то нам подходит разбиение:

$$X = \{A_1, A_{|X|}\} \cup \{A_2, A_{|X|-1}\} \cup \ldots \cup \{A_{k-1}, A_{|X|-k+2}\} \cup \{A_k, A_{k+1}, \ldots, A_{|X|-k+1}\}.$$

Иначе, точки Y лежат на границе какого-то невырожденного выпуклого многоугольника. Обозначим точки из Y в порядке обхода по часовой стрелке границы этого многоугольника через

$$A_1, A_2, \ldots, A_k, B_k, B_{k-1}, \ldots, B_1, C_1, C_2, \ldots, C_k, D_k, D_{k-1}, \ldots, D_1, E_1, E_2, \ldots, E_{|Y|-4k}$$

Пусть

$$Z = \{A_k, B_k, C_k, D_k, E_1, \dots, E_{|Y|-4k}\} \cup (X \setminus Y).$$

Докажем, что нам подходит следующее разбиение:

$$X = \left(\bigcup_{i=1}^{k-1} \{A_i, B_i, C_i, D_i\}\right) \cup Z.$$

Для этого достаточно доказать ключевое утверждение: выпуклые оболочки множеств

$${A_1, B_1, C_1, D_1}, {A_2, B_2, C_2, D_2}, \dots, {A_k, B_k, C_k, D_k}.$$

пересекаются. Через f(M) будем обозначать выпуклую оболочку множества точек M. Пусть

$$T \in A_1B_1 \cap A_kD_k$$
,

$$H_i = f(\{A_1, A_2, \dots, A_i, B_i, B_{i-1}, \dots, B_1, C_1, C_2, \dots, C_i, D_i, D_{i-1}, \dots, D_1\})$$

И

$$V_i = f(\{A_i, A_{i+1}, \dots, A_k, B_k, B_{k-1}, \dots, B_i, C_i, C_{i+1}, \dots, C_k, D_k, D_{k-1}, \dots, D_i\}).$$

Тогда для любого $1 \le i \le k$ верно

$$T \in A_1B_1 \subseteq H_i$$
 u $T \in A_kD_k \subseteq V_i$.

Следовательно,

$$T \in \bigcap_{i=1}^{k} (H_i \cap V_i) = \bigcap_{i=1}^{k} f(\{A_i, B_i, C_i, D_i\}),$$

что и требовалось доказать.

Схема оценивания.

- Сведение к тому, что достаточно доказать ключевое утверждение 4 балла
- Доказательство ключевого утверждения 3 балла