Answer Key to Homework #2

Raymond Deneckere

Fall 2014

- 1. Let $Y = X \setminus \{x_1, x_2, ..., x_n\}$. Then the $Y^c = X \cup \{x_1, x_2, ..., x_n\}$. Since both X^c and $\{x_1, x_2, ..., x_n\}$ are closed, their union is closed. The statement is not true if we remove a countable infinity of points from X. As a counterexample, let X = (-1, 1), $x_n = \frac{1}{n+1}$ and $Y = X \setminus \{x_n\}_{n=1}^{\infty}$. Y^c is not closed because 0 is a limit point of Y^c , $0 \notin Y^c$.
- 2. The set B is not closed. Let $(x_n, y_n) = (\frac{2}{(4n+3)\pi}, \sin \frac{1}{x_n})$; then $(x_n, y_n) \to (0, 1)$. Since (0, 1) is a limit point of B, but $(0, 1) \notin B$, the set B is not closed.

B is not open because no neighborhoods $B((\frac{1}{\pi},0),r)$ of $(\frac{1}{\pi},0)$ are contained in B.

B is not bounded, because the set of allowable values for the x coordinate is unbounded.

B is not compact, because B is not closed (and not bounded) in \mathbb{R} .

- 3. \Rightarrow Suppose A is closed. Then there are two possibilities. Either x is a limit point of A, in which case closedness of A implies $x \in A$. Otherwise, x is an isolated point of A, in which case $x_n = x$ for sufficiently large n (otherwise $\{x_n\}$ cannot converge to x).
- 4. The function $f(\cdot, \cdot)$ is separately continuous. For each fixed t_0 , f is a function of s only. Observe that $f(s, t_0)$ is linear or constant in s, and hence continuous, on each of the subdomains $[0, \frac{t_0}{2}], (\frac{t_0}{2}, t_0]$ and $(t_0, 1]$. So any possible discontinuity would have to occur at $s = \frac{t_0}{2}$ or $s = t_0$. Since $\lim_{s \downarrow \frac{t_0}{2}} f(s, t_0) = f(\frac{t_0}{2}, t_0) = 1$, $f(s, t_0)$ is continuous at $s = \frac{t_0}{2}$. Similarly, since $\lim_{s \downarrow t_0} f(s, t_0) = f(t_0, t_0) = 0$, $f(s, t_0)$ is continuous at $s = t_0$. We conclude that for each t_0 the function $f(s, t_0)$ is continuous in s on the entire interval [0, 1].

For fixed value s_0 , we can rewrite $f(s_0,t)$ as follows. If $s_0=0$, then we have:

$$f(0,t) = 0$$
, for all $t \in [0,1]$,

which is constant and hence continuous. At the same time, when $s_0 > 0$ we have:-

$$f(s_0, t) = \begin{cases} 0, & t \in [0, s_0) \\ 2 - \frac{2s_0}{t}, & t \in [s_0, 2s_0) \\ \frac{2s_0}{t}, & t \in [2s_0, 1] \end{cases}$$

Then similar arguments apply: $f(s_0, t)$ is continuous in t on each of the subdomains $[0, s_0)$, $[s_0, 2s_0)$ and $[2s_0, 1]$. Also, since $\lim_{t \uparrow s_0} f(s_0, t) = f(s_0, s_0) = 0$ and $\lim_{t \uparrow 2s_0} f(s_0, t) = f(s_0, 2s_0) = 1$, the function $f(s_0, t)$ is continuous at $t = s_0$ and $t = 2s_0$.

The function f(s,t) is not jointly continuous in s and t. This is because $\lim_{z\to 0} f(\frac{z}{2},z) = 1$, but f(0,0) = 0.

- (a) For fixed $y_0 \neq 0$, $f(x, y_0)$ is a rational function of x. It is continuous in x since the denominator is no equal to zero for any $x \in \mathbb{R}$. For $y_0 = 0$, we have $f(x, y_0) = 0$ for all x, which is constant and therefore continuous. Since f is symmetric in its arguments, a similar argument applies for fixed x_0 .
- (b) We have $g(x) = f(x, x) = \frac{1}{2}$ when $x \neq 0$, and g(0) = 0.
- (c) Since $\lim_{x\downarrow 0} g(x) = \frac{1}{2} \neq g(0) = 0$, the function f is not jointly continuous.