

Estimating the seal pup abundance in the Greenland Sea with Bayesian hierarchical modeling

Martin Jullum (NR)

Joint with Thordis Thorarinsdottir (NR) and Fabian Bachl (Uni. of Edinburgh)

Oslo, 15.06.17

Problem

- Ultimale goal: Monitor seal abundance in the North Atlantic
- Well established dynamic abundance model for seals
 - Key component is estimate + uncertainty of the number of seal <u>pups</u>
 - Existsing methods
 - Very basic ad-hoc scaling method
 - Spatial GAM (splines) model

Our task: Propose method to estimate the total number of <u>pups</u> with uncertainty + <u>validate it</u>!

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos (A) in 27 transects sparsely covering the seal domain

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos (A) in 27 transects sparsely covering the seal domain

- Additional info: Quantified satellite image to indicate ice thickness
- Seal domain Ω shown in pink

A model for the seal pup appearance

- Model the spatial distribution of the seal pups with a Log-Gaussian Cox Process (LGCP)
 - Gaussian latent field Z
 - Point pattern $Y|Z \sim \text{PoissonProcess}(\lambda(s) = \exp(Z(s)))$
 - LGCP property: Given Z, counts N(B) in disjoint Borel sets B indep. and distributed as $Poisson(\lambda = \int_{B} \exp(Z(s)) ds)$
 - LGCP Log-likelihood

$$|A| - \int_A \exp(Z(s)) ds + \sum_{i=1}^n Z(s_i),$$

Discretizing the LGCP-model

- Data are aggregated counts per photo
- Solution: Discretize the LGCP-model to the set where our data lives
- ▶ Let $N_1, ..., N_n$ be the counts in the n = 2792 photos, covering the space $A_1, ..., A_n$
- Discretize the LGCP-model to

$$p(N_1, ..., N_n | Z) = \prod_{i=1}^n \text{Poisson}(k = N_i, \lambda = \int_{A_i} Z(s) \, ds),$$

with Poisson $(k, \lambda) = \lambda^k \exp(-\lambda)/k!$

INLA and SPDE-INLA

- Integrated Nested Laplace Approximation (INLA)
 - Computational feasible approximate Bayesian inference for Gaussian latent models with discrete latent field (GMRF)
 - Based on extensive Laplace approx. and numerical optimization.

- Spatial Partial Differential Equation (SPDE) approach
 - Makes INLA applicable to Gaussian latent models with continuous fields
 - Triangulates continuous latent field which translates to certain GMRF by formulation through solution to a SPDE

Modeling approach

- Latent field $Z(s) = \alpha + \beta^t x_s + g(s)$, x_s satellite information, g(s) zero-mean Gaussian field with a Matern covariance structure
- Bayesian approach with vague priors on all parameters
- The Bayesian solution to our problem is the ***posterior predictive distribution*** of seal pup counts in the seal domain $p(N(\Omega)|Y)$
 - Easy to compute with samples from p(Z|Y)
- Use SPDE-INLA to fit the model and perform the posterior sampling

Results our approach

Method comparison

Method comparison

Result validation

- 2 different CV schemes
 - Leave out random photos
 - Leave out all photos on transect
 - Evaluate posterior predictive distribution both per photo and per transect
- Evaluation criterion

Result validation

- 2 different CV schemes
 - Leave out random photos
 - Leave out all photos on transect
 - Evaluate posterior predictive distribution both per photo and per transect
- Evaluation criterion

- ► Long story short
 - Our method is significantly better on photo level
 - ➤ We do as well as the GAM approaches (better than the simple method) on transect level

Result validation

PHOTO LEVEL

	Random 10-fold CV	Leave-out full transect
	CRPS	CRPS
Our approach	$0.18 \; (0.16, \; 0.19)$	$0.22 \ (0.20, \ 0.25)$
GAM_negbin	$0.21\ (0.19,\ 0.23)$	$0.22 \ (0.20, \ 0.24)$
GAM_poisson	$0.22\ (0.20,\ 0.24)$	$0.24 \ (0.22, \ 0.26)$
Simple_method	$0.26 \ (0.24, \ 0.28)$	$0.26 \ (0.24, \ 0.29)$

AGGREGATE/TRANSECT LEVEL

	Random 10-fold CV	Leave-out full transect
	CRPS	CRPS
Our approach	5.43 (4.04, 6.99)	9.91 (5.99, 14.80)
GAM_negbin	5.93 (4.95, 7.00)	$9.37 \ (\ 5.66,\ 13.63)$
GAM_poisson	5.90 (4.49, 7.42)	10.14 (5.86, 15.09)
Simple_method	4.83 (3.27, 6.66)	$15.57 \ (11.77, \ 19.68)$

Alternative model

- ► Arnt-Børre + Tor Arne + others (2009)
 - Let $Z_0(s) = f_{GAM}(s)$, with $f_{GAM}(s)$ a (spatial) smooth spline.
 - $\mu_i = |A_i| \exp(Z_0(s_i^*))$ for s_i^* the mid-point in cell A_i
 - Fit the counts per photo as a negative binomial regression with constant shape κ and $|A_i|$ as offset
 - Frequentist approach
 - Smoothness of $f_{GAM}(s)$ chosen through generalized CV
 - We test this formulation, also with satellite data and Poisson distributions
 - Use sampling to produce predictive distribution of total pup counts for comparison