



# Activity (Slow Learner) – With Solution Context

You have the following unnormalized table representing a student enrollment system:

Student\_Course(Student\_ID, Student\_Name, Course\_ID, Course\_Name, Instructor, Instructor\_Office)

## **Task**

Normalize the given table step-by-step through 1NF, 2NF, 3NF, and BCNF. Clearly explain and identify each step, functional dependencies, and transitive dependencies explicitly.

## **Detailed Solution**

Detailed Step 1: Identify Anomalies in Unnormalized Relation

- Insertion Anomaly: You can't add an instructor's details unless you also add a student enrolled in their course.
- Deletion Anomaly: Removing a student's enrollment might accidentally remove important instructor information.
- Update Anomaly: If an instructor's office changes, it must be updated in every row, causing potential inconsistency.

Detailed Step 2: First Normal Form (1NF)

- Definition: No repeating groups or arrays.
- Current Status: Already in 1NF as each cell contains atomic values.

Detailed Step 3: Second Normal Form (2NF)

- Definition: 1NF + no partial dependencies (attributes depending only on a part of the composite key).
- Partial Dependencies identified:
- Student ID → Student Name (student attributes depend only on Student\_ID)
- Course\_ID → Course\_Name, Instructor, Instructor\_Office (course attributes depend only on Course\_ID)
- Tables after resolving 2NF:
- Students(Student\_ID, Student\_Name)
- Courses(Course\_ID, Course\_Name, Instructor, Instructor\_Office)
- Enrollment(Student\_ID, Course\_ID)

Detailed Step 4: Third Normal Form (3NF)

- Definition: 2NF + no transitive dependencies (non-key attributes depend only on the primary key).
- Transitive Dependency identified:
- Course\_ID → Instructor → Instructor Office





- Split tables to remove transitive dependency:
- Courses(Course\_ID, Course\_Name, Instructor)
- Instructors(Instructor, Instructor\_Office)

# Detailed Step 5: Boyce-Codd Normal Form (BCNF)

- Definition: 3NF + every determinant must be a candidate key.
- Checking BCNF compliance:
- Each determinant in Students, Courses, Enrollment, and Instructors is now a candidate key.
- All tables satisfy BCNF.

## Final Set of Tables (Fully Normalized):

- Students(Student ID, Student Name)
- Courses (Course ID, Course Name, Instructor)
- Enrollment(Student ID, Course ID)
- Instructors(Instructor, Instructor\_Office)

# Task 2: Analyze the Normal Form of a New Relation

Task 6: You are given a new relation with the following attributes and dependencies. Determine the highest normal form (1NF, 2NF, 3NF, BCNF) that it satisfies, and explain your reasoning step by step.

Relation: Department\_Employee(Emp\_ID, Emp\_Name, Dept\_ID, Dept\_Name, Dept\_Location)

Functional Dependencies:

- Emp ID → Emp Name, Dept\_ID
- Dept ID → Dept Name, Dept Location

#### **Detailed Solution for Task 2**

Step 1: First Normal Form (1NF)

• All attributes are atomic (not multivalued or nested), so the relation is in 1NF.

Step 2: Second Normal Form (2NF)

- The primary key appears to be Emp\_ID (assuming one department per employee).
- All non-key attributes are fully dependent on Emp\_ID.
- Thus, the relation is in 2NF.

Step 3: Third Normal Form (3NF)

- Identify transitive dependencies:
- $Emp_ID \rightarrow Dept_ID$
- Dept ID → Dept Name, Dept Location
- Therefore, Emp ID  $\rightarrow$  Dept ID  $\rightarrow$  Dept Name, Dept Location (transitive



# dependency)

• Since Dept\_Name and Dept\_Location are transitively dependent on Emp\_ID, this violates 3NF.

Step 4: Resolve for 3NF

- Break into two relations:
- Employee(Emp\_ID, Emp\_Name, Dept\_ID)
- Department(Dept\_ID, Dept\_Name, Dept\_Location)

# Step 5: BCNF

- Now, in both relations, the only determinants are candidate keys.
- Hence, both relations satisfy BCNF.

# Final Tables:

- Employee(Emp ID, Emp Name, Dept ID)
- Department(Dept\_ID, Dept\_Name, Dept\_Location)

## Task 3:

# **Question:**

From the following data, identify any functional dependencies:

| EmpID | <b>EmpName</b> | DeptID | DeptName |
|-------|----------------|--------|----------|
| 101   | Alice          | D1     | Sales    |
| 102   | Bob            | D2     | HR       |
| 103   | Charlie        | D1     | Sales    |

#### **Answer:**

- EmpID  $\rightarrow$  EmpName
- DeptID  $\rightarrow$  DeptName

# **Task 4: Identify Partial Dependencies**

# **Question:**

Given relation R(StudentID, CourseID, Grade) with composite key (StudentID, CourseID), identify partial dependencies if Grade depends only on CourseID.

#### Answer:

 Grade depends only on CourseID, part of the composite key → partial dependency.

## Task 5: Normalize to 2NF

## **Question:**

Normalize the table R(StudentID, CourseID, Grade) with partial dependency Grade → CourseID to 2NF.

#### **Answer:**

- Split into:
  - o R1(StudentID, CourseID)
  - o R2(CourseID, Grade)