UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO

MAESTRÍA EN ESTADÍSTICA APLICADA

2019-1 : CURSO ESTADÍSTICA ACTUARIAL

TRABAJO FINAL "MÉTODOS DE INTERPOLACIÓN PARA EDADES FRACCIONALES"

Presentado por

Jaime Gómez Marín

Roberto León Leiva

Arturo Zuñiga Blanco

Docente Msc. Jesús Eduardo Gamboa Unsihuay

2 de julio de 2019

Índice general

1.	Presentación	2
2.	Introducción	3
3.	Marco Teórico	4
	3.1. Supuestos de las Edades Fraccionarias	4
	3.1.1. Distribución Uniforme de las muertes	4
	3.1.2. Fuerza de Mortalidad constante	4
	3.1.3. Supuesto Balducci	6
4.	Aplicación	7
5 .	Conclusiones	8
6.	Bibliografía	9

Presentación

Introducción

Marco Teórico

3.1. Supuestos de las Edades Fraccionarias

3.1.1. Distribución Uniforme de las muertes

3.1.2. Fuerza de Mortalidad constante

Partamos de la definición de fuerza de mortalidad: "en estadística actuarial representa la tasa de mortalidad instantanea a una cierta edad dentro una base anualizada"

$$u_x = \lim_{\Delta x \to 0} \frac{P(x < X < x + \Delta x | X > x)}{\Delta x}$$
 (3.1.2.1)

recordando que:

$$P(x < X < x + \Delta x | X > x) = \frac{F(x + \Delta x) - F(x)}{1 - F(x)}$$
(3.1.2.2)

reemplazando:

$$u_x = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x * (1 - F(x))}$$
$$u_x = \frac{1}{(1 - F(x))} * \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$
$$u_x = \frac{1}{(1 - F(x))} * F'(x)$$

$$u_x = \frac{F'(x)}{1 - F(x)} \tag{3.1.2.3}$$

se sabe que:

$$1 - F(x) = S(x)$$

$$F'(x) = -S'(x)$$

reemplazando:

$$u_x = -\frac{S'(x)}{S(x)} = -\frac{d}{dx} ln(S(x))$$
 (3.1.2.4)

Procedemos a integrar entre $x_0 < X < x_0 + t$:

$$\int_{x_0}^{x_0+t} u_x dx = \ln(S(x_0)) - \ln(S(x_0+t))$$
 (3.1.2.5)

Segundo supuesto : Fuerza de Mortalidad Constante. El supuesto consiste en que la fuerza de mortalidad μ se mantiene constante entre un rango de edades exactas; es decir para una edad exacta x_o , se tiene una variable X dentro de un rango de $x_0 \leq X < x_0 + t$ donde la fuerza de mortalidad no cambia. Lo anterior significa que la fuerza de mortalidad μ_{x_0} no depende del valor de t siempre y cuando t este entre los rangos de 0 < t < 1. A esta Fuerza de Mortalidad constante la vamos a denominar μ_x^* .

En la ecuación 3.1.2.5 aplicamos el segundo supuesto

$$\int_{x_0}^{x_0+1} \mu_x^* dx = \ln(S(x_0)) - \ln(S(x_0+1))$$

$$\mu_x^*(x_0 + 1 - x_0) = \ln(S(x_0)) - \ln(S(x_0 + 1))$$

$$\mu_x^* = \ln(S(x_0)) - \ln(S(x_0 + 1)) \tag{3.1.2.6}$$

En la ecuación 3.1.2.5 aplicamos el segundo supuesto para un periodo de tiempo t

$$\int_{x_0}^{x_0+t} \mu_x^* dx = \ln(S(x_0)) - \ln(S(x_0+t))$$

$$\mu_x^* t = \ln(S(x_0)) - \ln(S(x_0+t))$$

$$\ln(S(x_0+t)) = \ln(S(x_0)) - \mu_x^* t$$

$$\ln(S(x_0+t)) = \ln(S(x_0)) - (\ln(S(x_0)) - \ln(S(x_0+t)))t$$

$$\ln(S(x_0+t)) = (1-t)\ln(S(x_0)) + t * \ln(S(x_0+1))$$
(3.1.2.7)

3.1.3. Supuesto Balducci

Capítulo 4 Aplicación

Conclusiones

Capítulo 6 Bibliografía