Review

Final Exam Logistics

Wednesday, May 18 at 12:15PM

- 2 hours
- In the classroom
- 1 handwritten cheat sheet (front and back) with your name
- 30% of grade

Final Exam – 30 points total

5 points

- Search (Informed and Uninformed), heuristics, Hill Climbing
- Constraint Satisfaction Problems
- Adversarial Search

Final Exam – 30 points total

25 points

- First-Order Logic, Conversion to CNF, Resolution
- Default Reasoning: given a KB and default rules, what can we conclude?
- Planning: The Frame Problem, PDDL
- Uncertainty: Joint and Conditional Probabilities, Independence, Bayes' rule, Bayes nets
- Machine Learning:
 - Naïve Bayes Classification, Laplace Smoothing
 - Perceptron, Neural Nets
 - Nearest Neighbor
 - Clustering: K-means
 - Decision Trees

Review: First Order Logic

```
\forall x \ CSMajor(x) \land Took(x, CS146) \Rightarrow \exists y \ Faculty(y) \land Advisor(y, x)
What does this mean in English?
What's the scope of the universal quantifier \forall x?
\forall x (CSMajor(x) \land Took(x, CS146) \Rightarrow \exists y Faculty(y) \land Advisor(y, x))
What's the scope of the existential quantifier \exists y?
\forall x (CSMajor(x) \land Took(x, CS146) \Rightarrow \exists y (Faculty(y) \land Advisor(y, x)))
What implies what?
\forall x ((CSMajor(x) \land Took(x, CS146)) \Rightarrow (\exists y (Faculty(y) \land Advisor(y, x))))
```

Review: CNF

```
\forall x ((CSMajor(x) \land Took(x, CS146)) \Rightarrow (\exists y (Faculty(y) \land Advisor(y, x))))
Step 1: Replace \alpha \Rightarrow \beta with \neg \alpha \lor \beta
\forall x (\neg (CSMajor(x) \land Took(x, CS146)) \lor (\exists y (Faculty(y) \land Advisor(y, x))))
Step 2: Move \neg inwards: replace \neg(P \land Q) with \neg P \lor \neg Q
\forall x ((\neg CSMajor(x) \lor \neg Took(x, CS146)) \lor (\exists y (Faculty(y) \land Advisor(y, x))))
Step 3: Standardize variables. Nothing to change.
```

Review: CNF

```
\forall x ((\neg CSMajor(x) \lor \neg Took(x, CS146)) \lor (\exists y (Faculty(y) \land Advisor(y, x))))
Step 4: Skolemize. Each existential variable is replaced by a
Skolem function of the enclosing universally quantified variable.
\forall x ((\neg CSMajor(x) \ V \ \neg Took(x, CS146)) \ V (\exists y (Faculty(y) \land Advisor(y, x))))
\forall x ((\neg CSMajor(x) \ V \ \neg Took(x, CS146)) \ V ((Faculty(F(x)) \ \land Advisor(F(x), x))))
Step 5: Drop universal quantifiers.
((\neg CSMajor(x) \ V \ \neg Took(x, CS146)) \ V \ ((Faculty(F(x)) \ \land \ Advisor(F(x), x))))
Is this CNF?
```

Review: CNF

```
(\neg CSMajor(x) \ V \ \neg Took(x, CS146)) \ V \ (Faculty(F(x)) \ \land \ Advisor(F(x), x))
Step 6: Distribute V over \Lambda. A V (B \Lambda C) is (A V B) \Lambda (A V C)
(\neg CSMajor(x) \ V \neg Took(x, CS146)) \ V \ (Faculty(F(x)) \land Advisor(F(x), x))
((\neg CSMajor(x) \ V \ \neg Took(x, CS146)) \ V \ (Faculty(F(x)) \land (\neg CSMajor(x) \ V))
\neg Took(x, CS146)) \lor Advisor(F(x), x))
(\neg CSMajor(x) \ V \ \neg Took(x, CS146) \ V \ Faculty(F(x)) \land \neg CSMajor(x) \ V \neg
Took(x, CS146) \vee Advisor(F(x), x))
```

Machine Learning in Hollywood

Our goal is to predict whether a script/book will lead to a blockbuster movie.

Our training data set contains:

- 8 scripts/books we know which ones turned out to be blockbuster movies (commercial success).
- 2 reviewers reading the scripts.

Naïve Bayes

Movie	Anna	Ryan	Blockbuster?
Inside Out	⊤	⊤	T \$\$\$\$\$
Zootopia	T 🔥	F 👎	T \$\$\$\$\$
San Andreas	F 🐶	T 🔥	T \$\$\$\$\$
The Pets Take Over	F 🜎	T 🔥	F ¢
Fieldtrip to Mars	F 👎	F 👎	F ¢
Forever	F 🐶	F 👎	F ¢
Still Here	F 🜎	⊤	F ¢
A Happy Robot	F 🜎	T 🔥	F ¢

Naïve Bayes

Movie	Anna	Ryan	Blockbuster?
Inside Out	T 🔥	T 🔥	T \$\$\$\$\$
Zootopia	T 🔥	F 🗣	T \$\$\$\$\$
San Andreas	F 🐶	T 🔥	T \$\$\$\$\$
The Pets Take Over	F 💗	T 🔥	F ¢
Fieldtrip to Mars	F 👎	F 👎	F ¢
Forever	F •	F 🔽	F ¢
Still Here	F •	T 🔥	F ¢
A Happy Robot	F •	T 🔥	F ¢

A: Anna likes the script

R: Ryan likes the script

B: the movie is a

blockbuster

Naïve Bayes - Learning

Movie	Anna	Ryan	Blockbuster?
Inside Out	⊤	T 🔥	T \$\$\$\$\$
Zootopia	T 🔥	F 🐶	T \$\$\$\$\$
San Andreas	F 🐶	T 🔥	T \$\$\$\$\$
The Pets Take Over	F 💗	T 🔥	F ¢
Fieldtrip to Mars	F 👎	F 👎	F ¢
Forever	F 🐶	F 🜎	F ¢
Still Here	F •	T 🔥	F ¢
A Happy Robot	F •	T	F ¢

We need to learn:

$$P(+a|+b) = 2/3$$

$$P(+r|+b) = 2/3$$

$$P(+a|-b) = 0$$

$$P(+r|-b) = 3/5$$

 $P(+b) = 3/8$

$$P(+b) = 3/8$$

Naïve Bayes - Classification

$$P(+b) = 3/8$$

$$P(+a|+b) = 2/3$$

$$P(+a|+b) = 2/3$$
 $P(+r|+b) = 2/3$

$$P(+a|-b) = 0$$

$$P(+a|-b) = 0$$
 $P(+r|-b) = 3/5$

$$P(+b|+a,-r) = \frac{P(+b,+a,-r)}{P(+a,-r)} = \frac{P(+b,+a,-r)}{P(+b,+a,-r)+P(-b,+a,-r)}$$

$$P(+b, +a, -r) = P(+b).P(+a|+b).P(-r|+b) = ...$$

$$P(-b, +a, -r) = P(-b).P(+a|-b).P(-r|-b) = 0$$

$$P(+b|+a, -r) = 1$$

$$P(+b|+a, -r) = 1$$
 and $P(-b|+a, -r) = 0$

What is the problem here?

Naïve Bayes with Laplace Smoothing

Movie	Anna	Ryan	Blockbuster?	
Inside Out	⊤	⊤	T \$\$\$\$\$	
Zootopia	T 🙆	F 👎	T \$\$\$\$\$	
San Andreas	F 🐶	T 🔥	T \$\$\$\$\$	
The Pets Take Over	F 💗	T 🔥	F ¢	
Fieldtrip to Mars	F 🜎	F 👎	F ¢	
Forever	F •	F •	F ¢	
Still Here	F	T 🔥	F ¢	
A Happy Robot	F	T	F ¢	

Naïve Bayes Laplace Smoothing

$$P_L(+b) = \frac{2}{5}$$

$$P_L(+a|+b) = \frac{3}{5}$$
 $P_L(+r|+b) = \frac{3}{5}$
 $P_L(+a|-b) = \frac{1}{7}$ $P_L(+r|-b) = \frac{4}{7}$

$$P_L(+r|+b) = \frac{3}{5}$$

$$P_{L}(+a|-b) = \frac{1}{7}$$

$$P_L(+r|-b) = \frac{4}{7}$$

We have a new book that Anna likes and Ryan does not like. Should we make a movie?

$$P(+b|+a,-r) = \frac{P(+b,+a,-r)}{P(+a,-r)} = \frac{P(+b,+a,-r)}{P(+b,+a,-r)+P(-b,+a,-r)}$$

P(+b, +a, -r) = P(+b).P(+a|+b).P(-r|+b) =
$$\frac{2}{5}$$
. $\frac{3}{5}$. $\frac{2}{5}$ = $\frac{12}{125}$
P(-b, +a, -r) = P(-b).P(+a|-b).P(-r|-b) = $\frac{3}{5}$. $\frac{1}{7}$. $\frac{3}{7}$ = $\frac{9}{245}$

P(-b, +a, -r) = P(-b).P(+a|-b).P(-r|-b) =
$$\frac{3}{5} \cdot \frac{1}{7} \cdot \frac{3}{7} = \frac{9}{245}$$

$$P(+b|+a, -r) = 0.72$$

Decision Tree

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	T	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Т	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	Т	F	F

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	Т	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Τ	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	T	F	F

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	Т	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Т	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	Т	F	F

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	Т	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Т	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	Т	F	F

Which one is the most significant feature that will give us the best split at the root of the tree?

Expected entropy per example over all branches is:

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H(\langle \frac{p_{i}}{p_{i} + n_{i}}, \frac{n_{i}}{p_{i} + n_{i}}) \rangle)$$

$$= 0 + 6/8H(\langle 1/6, 5/6 \rangle)$$

$$= 6/8(-1/6 \log_{2} 1/6 - 5/6 \log_{2} 5/6)$$

Expected entropy per example over all branches is:

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H(\langle \frac{p_{i}}{p_{i} + n_{i}}, \frac{n_{i}}{p_{i} + n_{i}}) \rangle)$$

$$= 5/8H(\langle 2/5, 3/5 \rangle) + 3/8H(\langle 1/3, 2/3 \rangle)$$

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	Т	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Т	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	Т	F	F

Alternate Decision Tree?

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	Т	Т	Т	Т
Zootopia	Т	F	F	Т
San Andreas	F	Т	Т	Т
The Pets Take Over	F	Т	F	F
Fieldtrip to Mars	F	F	Т	F
Forever	F	F	F	F
Still Here	F	Т	F	F
A Happy Robot	F	Т	F	F

Classifying with the Decision Tree

We have a new book that Anna likes but Ryan and Zoe do not like. Should we make a movie?

What about a book that neither Anna nor Zoe like?

A book that Anna does not like but Zoe and Ryan like?

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Inside Out =

BIAS : 1
Anna : 5
Ryan : 5
Zoe : 5

w

BIAS : 1
Anna : 0
Ryan : 0
Zoe : 0

f(x) . w = 1 >= 0, no weight updates

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Zootopia = | BIAS : 1 | Anna : 4 | Ryan : 2 | Zoe : 1 |

w $\begin{vmatrix} \text{BIAS} & : 1 \\ \text{Anna} & : 0 \\ \text{Ryan} & : 0 \\ \text{Zoe} & : 0 \end{vmatrix}$

f(x) . w = 1 >= 0, no weight updates

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

San Andreas = BIAS : 1
Anna : 1
Ryan : 4
Zoe : 3

 W
 BIAS : 1

 Anna : 0

 Ryan : 0

 Zoe : 0

f(x) . w = 1 >= 0, no weight updates

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

The Pets...=

BIAS : 1
Anna : 1
Ryan : 5
Zoe : 2

w

BIAS : 1
Anna : 0
Ryan : 0
Zoe : 0

f(x). w = 1 >= 0 should be negative Update w (subtract f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

The Pets...=

BIAS : Anna :

Ryan: 5

Zoe : 2

 \overline{w}

BIAS : 0

Anna : -1

Ryan : -5

Zoe : -2

f(x). w = 1 >= 0 should be negative Update w (subtract f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Fieldtrip...=

BIAS : 1
Anna : 1
Ryan : 2
Zoe : 4

 \overline{w}

BIAS : 0
Anna : -1
Ryan : -5
Zoe : -2

f(x). w = -1 - 10 - 8 < 0 weight update

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Forever =

BIAS : 1

Anna : 2

Ryan: 1

Zoe : 2

 \overline{w}

BIAS : 0

Anna : -1

Ryan : -5

Zoe : -2

f(x). w < 0 no weight update

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Still Here =

BIAS : 1
Anna : 1
Ryan : 3
Zoe : 2

w

BIAS : 0
Anna : -1
Ryan : -5
Zoe : -2

f(x). w < 0 no weight update

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Happy Robot=

BIAS : 1
Anna : 2

Ryan: 4

Zoe : 1

 \overline{w}

BIAS : 0

Anna : -1

Ryan : -5

Zoe : -2

f(x). w < 0 no weight update

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

BIAS

w Ann

Anna : −1

Ryan : -5

Zoe : -2

Second Iteration

f(x). w = -5 - 25 - 10 < 0 should be positive update weights (add f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

w

BIAS : 1
Anna : 4
Ryan : 0
Zoe : 3

Second Iteration

f(x). w = -5 - 25 - 10 < 0 should be positive update weights (add f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

Zootopia =

BIAS : 1
Anna : 4
Ryan : 2
Zoe : 1

 \overline{w}

BIAS : 1
Anna : 4
Ryan : 0
Zoe : 3

Second Iteration

f(x). w = 1 + 16 + 3 no change

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

San Andreas = BIAS
Anna
Ryan

Ryan : 4
Zoe : 3

 \overline{w}

BIAS : 1
Anna : 4
Ryan : 0
Zoe : 3

Second Iteration

f(x). w = 1 + 4 + 9 no change

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

w | BIAS : 1

Ryan : 0

Zoe : 3

Second Iteration

f(x). w = 1 + 4 + 6 > 0 should be negative update weights (subtract f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

The Pets...=

BIAS : 1
Anna : 1
Ryan : 5
Zoe : 2

 \overline{w}

BIAS : 0
Anna : 3
Ryan : -5
Zoe : 1

Second Iteration

f(x). w = 1 + 4 + 6 > 0 should be negative update weights (subtract f(x))

Movie	Anna	Ryan	Zoe	Blockbuster?
Inside Out	5	5	5	Т
Zootopia	4	2	1	Т
San Andreas	1	4	3	Т
The Pets Take Over	1	5	2	F
Fieldtrip to Mars	1	2	4	F
Forever	2	1	2	F
Still Here	1	3	2	F
A Happy Robot	2	4	1	F

BIAS Anna : 1 Ryan : 2 Fieldtrip...= Zoe

> BIAS w

Anna : 3

Ryan : -5

Zoe

Second Iteration

$$f(x)$$
. $w = 3 - 10 + 4$ no change ...

Nearest Neighbor

Movie	Anna	Ryan	Blockbuster?
Inside Out	5	5	Т
Zootopia	4	2	Т
San Andreas	1	4	Т
The Pets Take Over	1	5	F
Fieldtrip to Mars	1	2	F
Forever	2	1	F
Still Here	1	3	F
A Happy Robot	2	4	F

We have a new book that Anna likes (+4) and Ryan does not like (+1). Should we make a movie? 1-NN? 3-NN?

Nearest Neighbor

Movie	Anna	Ryan	Blockbuster?
Inside Out	5	5	Т
Zootopia	4	2	Т
San Andreas	1	4	Т
The Pets Take Over	1	5	F
Fieldtrip to Mars	1	2	F
Forever	2	1	F
Still Here	1	3	F
A Happy Robot	2	4	F

We have a new book that Anna likes (+4) and Ryan does not like (+1). Should we make a movie? 1-NN? Yes 3-NN? No

Movie	Anna	Ryan
Inside Out	5	5
Zootopia	4	2
San Andreas	1	4
The Pets Take Over	1	5
Fieldtrip to Mars	1	2
Forever	2	1
Still Here	1	3
A Happy Robot	2	4

Clustering: unsupervised learning – no labels K-means k = 2

Movie	Anna	Ryan
Inside Out	5	5
Zootopia	4	2
San Andreas	1	4
The Pets Take Over	1	5
Fieldtrip to Mars	1	2
Forever	2	1
Still Here	1	3
A Happy Robot	2	4

Clustering: unsupervised learning – no labels K-means k = 2

Movie	Anna	Ryan
Inside Out	5	5
Zootopia	4	2
San Andreas	1	4
The Pets Take Over	1	5
Fieldtrip to Mars	1	2
Forever	2	1
Still Here	1	3
A Happy Robot	2	4

Clustering: unsupervised learning – no labels K-means k = 2

Movie	Anna	Ryan
Inside Out	5	5
Zootopia	4	2
San Andreas	1	4
The Pets Take Over	1	5
Fieldtrip to Mars	1	2
Forever	2	1
Still Here	1	3
A Happy Robot	2	4

To calculate the new position of the means:

$$(1+1+1+1+2+2)/6 = 4/3$$

$$(1+2+3+4+4+5)/6 = 19/6$$

$$(4+5)/2 = 9/2$$

$$(2+5)/2 = 7?2$$

PDDL

Goal(Has(Zoe, d) ∧ IsColdDrink(d))

Action(Buy(person, store, item),

PRECOND: At(person, store) \(\Lambda \) Sells(store, item) \(\Lambda \)

HasCreditCard(person)

EFFECT: Has(person, item))

At(person, store),
Sells(store, item),
HasCreditCard(person) are
not included in the effects
because they have not
changed.

PDDL

Goal(Has(Zoe, d) ∧ IsColdDrink(d))

Action(Buy(person, store, item),

PRECOND: At(person, store) \(\Lambda \) Sells(store, item) \(\Lambda \)

HasCreditCard(person)

EFFECT: Has(person, item))

Action(Go(person, from, to),

PRECOND: At(person, from)

EFFECT: ¬ At(person, from) ∧ At(person, to))

Init(At(Zoe, DH) ∧ HasCreditCard(Zoe) ∧ Sells(JambaJuice, Smoothie) ∧ IsColdDrink(Smoothie) ∧ IsColdDrink(Lemonade))

Solution: [Go(Zoe, DH, JambaJuice), Buy(Zoe, Smoothie)]

- Are X and Y conditionally independent given evidence variables Z?
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
 - X and Y "d-separated" by Z

- A path is active if each triple is active.
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

A Ш D | В?

Consider all (undirected) paths from A to D:

only one –ACD

The path includes one triplet only (ACD)

ACD is active

Active path => No independence

 $B \perp D \mid A$?

Consider all (undirected) paths from B to D:

only one – BACD

The path includes triplets BAC and ACD

BAC is inactive

All it takes to block a path is a single inactive segment

BACD is inactive

No active paths => independence

 $B \perp \!\!\!\perp D \mid A$

T Ⅱ D?

Consider all (undirected) paths from T to D

There are two paths: TSD and TRD

TSD inactive

TRD active => No independence

$T \perp \!\!\!\perp D \mid R$?

Consider all (undirected) paths from T to D

There are two paths: TSD and TRD

TSD inactive

TRD inactive

No active paths => independence

T ⊥ D | R, S?

Consider all (undirected) paths from T to D

TSD and TRD

TSD active

TRD inactive

One active path => No independence

The End

Good luck on the Final!

Have a great summer!

• If you're interested in grading for CS 156 in the fall, please let me know.