ICON Namelist Overview

August 2, 2023

Contents

1.	ICON Namelists	4
	1.1. Scripts, Namelist files and Programs	4
	1.2. Namelist parameters	5
2.	Namelist parameters defining the atmospheric model	Ę
	2.1. aes_bubble_nml	Ę
	2.2. aes_cop_nml	6
	2.3. aes_cov_nml	7
	2.4. aes_phy_nml	7
	2.5. aes_rad_nml	Ć
	2.6. aes vdf nml	13
	2.7. aes wmo nml	14
	2.8. assimilation nml	14
	2.9. ccycle nml	18
	2.10. cloud mig nml	19
	2.11. coupling mode nml	19
	2.12. diffusion nml	19
	2.13. dynamics_nml	21
	2.14. ensemble_pert_nml	
	2.15. gribout nml	
	2.16. grid_nml	
	2.17. gridref nml	
	2.18. initicon nml	
	2.19. interpol nml	
	2.20. io nml	
	2.20.1. Restart read/write mode:	
	2.20.2. Some notes on the output of optional diagnostics:	

	2.21. les nml (parameters for LES turbulence scheme; valid for inwp_turb=5)	49
	2.22. limarea nml (Scope: 1 limited area=.TRUE. in grid nml)	50
	2.23. lnd nml	52
	2.24. ls_forcing_nml (parameters for large-scale forcing; valid for torus geometry; is_plane_torus=.TRUE.)	58
	2.25. master_nml	
	2.26. master_model_nml (repeated for each model)	59
	2.27. master_time_control_nml	59
	2.28. meteogram_output_nml	61
	2.29. nonhydrostatic_nml (relevant if run_nml:iequations=3)	61
	2.30. nudging_nml	66
	2.31. nwp_phy_nml	
	2.31.1. Notes on use of stochastic convection schemes	77
	2.32. nwp_tuning_nml	77
	2.33. twomom_mcrph_nml	
	$2.34.\ output_nml\ (relevant\ if\ run_nml/output='nml')\ \dots$	
	2.35. parallel_nml	
	$2.36.\ radiation_nml\ (relevant\ if\ run_nml:iforcing=3\ (NWP)) \ \ldots \ldots$	
	2.37. run_nml	
	2.38. scm_nml (relevant if l_scm_mode)	
	$2.39. \ sleve_nml\ (relevant\ if\ nonhydrostatic_nml:ivctype=2)\ \dots \dots$	
	2.40. sppt_nml	
	2.41. synsat_nml	
	2.42. synradar_nml	
	2.43. time_nml	
	$2.44.\ transport_nml\ (used\ if\ run_nml/ltransport=.TRUE.)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	
	2.45. turb_vdiff_nml	
	2.46. turbdiff_nml	
	2.47. upatmo_nml	126
2	Ocean-specific namelist parameters	134
Э.	3.1. ocean physics nml	
	3.2. sea ice nml (relevant if run nml/iforcing=2 (ECHAM))	
	5.2. sea_ice_inin (relevant ii run_inin/norcing=2 (ECITANI))	154
4.	Ocean waves specific namelist parameters	135
	4.1. waves nml (used if configurated with -enable-waves and model type=98 in master model nml)	
5 .	Namelist parameters for testcases (NAMELIST_ICON)	136
	5.1. nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml)	136
		1
b.	External data	145
	6.1. extpar_nml (Scope: itopo=1 in run_nml)	145

7.	Serialization	147					
8.	3. External packages						
9.	Information on vertical level distribution	149					
10	Compile flag for mixed precision	150					
Α.	Arithmetic expression evaluation	150					
	A.1. Examples for arithmetic expressions						
	A.2. Expression syntax						
	A.2.1. List of functions	151					
	A.2.2. List of operators	151					
	A.2.3. List of available constants	151					
	A.3. Usage with Fortran						
	A.3.1. Fortran examples						
	A.3.2. Error handling						
	A.4. Remarks	152					
	Titi Italiana	102					
В.	Changes incompatible with former versions of the model code	153					

1. ICON Namelists

1.1. Scripts, Namelist files and Programs

Run scripts starting the programs for the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Table 1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	$create_global_grids.run$	grid_command
NAMELIST_GRID	Generate grids	$create_global_grids.run$	grid_command
NAMELIST_GRIDREF	Gen. nested domains	create_global_grids.run	grid_command
NAMELIST_ICON	Run ICON models	exp. <name>.run</name>	$control_model$

1.2. Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- Default is the preset value, if defined, that is assigned to this parameter within the programs.
- *Unit* shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

2. Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

2.1. aes bubble nml

The following namelist controls the parameter setting for the testcase 'aes_bubble'. In the framework of this testcase, particular initial conditions can be set by the parameters described in the table of the namelist variables hereafter:

Parameter	Type	Default	Unit	Description	Scope
aes_bubble_config% psfc	R	101325.0	Pa	Initial value of surface pressure.	
aes_bubble_config% t_am	R	180.	K	Absolute minimum of atmospheric	
				temperature in initial state.	
aes_bubble_config% t0	R	303.5	K	Temperature at bottom of atmosphere in	
				initial state.	
aes_bubble_config% gamma0	R	0.009	K/m	Lapse rate in lowest atmospheric part in	
				initial temperature profile.	
aes_bubble_config% z0	R	3000.	m	Below z0, the lapse rate gamma0 is applied	
				in the initial temperature profile, above z0,	
				the lapse rate is gamma1.	
aes_bubble_config% gamma1	R	0.00001	K/m	Lapse rate above z0 in the initial	
				temperature profile. However, temperature	
				cannot fall below t_am in the initial	
				temperature profile.	
aes_bubble_config% t_perturb	R	3.	K	Maximum temperature perturbation in	
				center of Gaussians in initial state.	
aes_bubble_config% relhum_bg	R	0.7		Background relative humidity in initial state.	

Parameter	Type	Default	Unit	Description	Scope
aes_bubble_config% relhum_mx	R	0.95		Maximum relative humidity in initial state.	
aes_bubble_config% hw_x	R	12500.	m	Half width in x-direction in meters of the	
				bubble in initial state.	
aes_bubble_config% hw_z	R	500.	m	Half width in z-direction in meters of the	
				bubble in initial state.	
aes_bubble_config% x_center	R	0.	m	Placement of maximum of Gaussian relative	
				to the origin in x-direction (if Gaussian is	
				applied into x-direction only,	
				lgaussxy=.FALSE.) or relative to the origin	
				in x- and y-direction (if Gaussian is applied	
				into x- and y- direction, lgaussxy=.TRUE.)	
				in initial state.	
aes_bubble_config% lgaussxy	L	.FALSE.	K	.TRUE., if half width calculated for	
				x-direction and x_center is applied also to y	
				direction in initial state.	

2.2. aes_cop_nml

The parameterization of cloud optical properties for the AES physics is configured by a data structure $aes_cop_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters i providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
aes_cop_config(jg)% cn1lnd	R	20.	1e6/m3	cloud droplet number concentration over	
				land	
aes_cop_config(jg)% cn2lnd	R	180.	$1\mathrm{e}6/\mathrm{m}3$	cloud droplet number concentration over	
				land	
aes_cop_config(jg)% cn1sea	R	20.	1e6/m3	cloud droplet number concentration over sea	
$aes_cop_config(jg)\% cn2sea$	R	80.	1e6/m3	cloud droplet number concentration over sea	
aes_cop_config(jg)% cinhomi	R	0.8		ice cloud inhomogeneity factor	
aes_cop_config(jg)% cinhoml1	R	0.8		liquid cloud inhomogeneity factor,	
				ktype = 0 = stratiform clouds	
aes_cop_config(jg)% cinhoml2	R	0.4		liquid cloud inhomogeneity factor,	
				ktype = 4 = shallow conv. (cf. clwprat)	
aes_cop_config(jg)% cinhoml3	R	0.8		liquid cloud inhomogeneity factor,	
				ktype = 1 = deep convection and	
				ktype = 2 = shallow conv. (cf. clwprat) and	
				ktype = 3 = mid-level conv.	
aes_cop_config(jg)% cthomi	R	tmelt-35.	K	maximum temperature for homogeneous	
				freezing	
aes_cop_config(jg)% csecfrl	R	1.5E-5	kg/kg	minimum in-cloud water mass mixing ratio	
				in mixed phase clouds	

2.3. aes cov nml

The parameterization of cloud cover for the AES physics is configured by a data structure $aes_cov_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains the following control parameters:

Parameter	Type	Default	Unit	Description	Scope
aes_cov_config(jg)% icov	I	1		selects cloud cover scheme	
				0: constant cloud cover = clcon	
				1: fractional cloud cover based on rel.	
				humidity	
				2: 0/1 cloud cover based on rel. humidity	
				>= csat	
				3: 0/1 cloud cover based on cloud	
				condensate >= cqx	
aes_cov_config(jg)% clcon	R	0.0		constant cloud cover in $m2/m2$	icov = 0
aes_cov_config(jg)% csat	R	1.0		relative humidity at which cloud cover is 1	icov = 1, 2
aes_cov_config(jg)% crs	R	0.968		critical relative humidity at surface	icov = 1
aes_cov_config(jg)% crt	R	0.8		critical relative humidity aloft	icov = 1
aes_cov_config(jg)% nex	I	2		transition parameter for critical relative	icov = 1
				humidity profile	
aes_cov_config(jg)% zmaxinv	R	2000.	m	maximum height (m) above sea level for	icov = 1
				search of inversion layer	
aes_cov_config(jg)% zmininv	R	200.	m	minimum height (m) above sea level for	icov = 1
				search of inversion layer	
aes_cov_config(jg)% cinv	R	0.25		fraction of dry adiabatic lapse rate for search	icov = 1
				of top level of inversion layer over sea	
aes_cov_config(jg)% csatsc	R	0.7		lower limit of scaling factor for saturation	icov = 1
				mixing ratio in layer below inversion	
aes_cov_config(jg)% cqx	R	1.0e-8	kg/kg	critical mass mixing ratio in kg/kg of cloud	icov = 3
				water + cloud ice	

2.4. aes phy nml

The AES physics is configured by a data structure $aes_phy_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains several parameters providing time control for the atmospheric forcing by the different parameterizations. Further logical switches control how the atmospheric boundary conditions for the AES physics are determined. Time control parameters are available for the atmospheric processes tabulated below. The time control for an atmospheric forcing by a process prc consists of three components, the time interval dt_prc for re-computing the forcing, and the start and end dates and times defining the interval $[sd_prc, ed_prc]$, in which the forcing is either computed, if the date/time coincides with the interval dt_prc , or recycled. Recycling means that the forcing stored from the last computation is used again. Outside of the interval the forcing is set to zero.

If dt_prc is not specified, or an empty string or a string of blanks or an interval of length 0s, e.g. "PT0S" is given, then the forcing is switched off for the entire experiment and the start and end dates and times are irrelevant.

If sd prc or ed prc are not specified, or an empty string or a string of blanks are given, then the experiment start date and the experiment stop date are used,

prc	parameterized process
rad	LW and SW radiation
vdf	vertical diffusion
$_{ m mig}$	graupel microphysics
two	two moment microphysics
car	Cariolle's linearized ozone chemistry
art	ART chemistry

respectively. Further the forcing control switch fc_prc can be used to decide if an active process $(dt_prc>0)$ is used for the integration $(fc_prc=1)$ or only computed for diagnostic purposes $(fc_prc=0)$.

Parameter	Type	Default	Unit	Description	Scope
aes_phy_config(jg)% dt_prc	С	""		This is the time interval in ISO 8601-2004	$run_nml/iforcing = 2$
				format at which the forcing by the process	
				prc is computed.	
aes_phy_config(jg)% sd_prc	C	" "		Defines the start date/time in ISO 8601-2004	$ run_nml/iforcing = 2 $ and
				format of the interval [sd_prc,ed_prc], in	$dt_prc > 0.000s$
				which the forcing by the process prc is	
				computed in intervals dt_prc .	
aes_phy_config(jg)% ed_prc	C	" "		Defines the end date/time in ISO 8601-2004	$ run_nml/iforcing = 2 $ and
				format of the interval sd_prc, ed_prc , in	$dt_prc > 0.000 \mathrm{s}$
				which the forcing by the process <i>prc</i> is	
				computed in intervals dt_prc .	
aes_phy_config(jg)% fc_prc	I	1		Forcing control for process prc.	$run_nml/iforcing = 2$ and
				$fc_prc = 0$: the forcing of the process is not	$dt_prc > 0.000 \mathrm{s}$
				used in the integration.	
				$fc_prc = 1$: the forcing of the process is	
				used in the integration.	
aes_phy_config(jg)% ljsb	L	.FALSE.		.TRUE. for using the JSBACH land surface	$ run_nml/iforcing = 2$
				model	
aes_phy_config(jg)% llake	L	.FALSE.		.TRUE. for using lakes in JSBACH	$ run_nml/iforcing = 2$
aes_phy_config(jg)% lamip	L	.FALSE.		.TRUE. for AMIP boundary conditions	$run_nml/iforcing = 2$
aes_phy_config(jg)% l2moment	L	.FALSE.		.TRUE. for the 2-moment microphysics	$run_nml/iforcing = 2$
				scheme	
aes_phy_config(jg)% lmlo	L	.FALSE.		.TRUE. for mixed layer ocean	$-\operatorname{run_nml/iforcing} = 2$
aes_phy_config(jg)% lice	L	.FALSE.		.TRUE. for sea-ice temperature calculation	$run_nml/iforcing = 2$
aes_phy_config(jg)% lsstice	\mid L	.FALSE.		.TRUE. for inst. 6hourly sst and ice (prelim)	${ m run_nml/iforcing}=2$

Parameter	Type	Default	Unit	Description	Scope
aes_phy_config(jg)% iqneg_d2p	I	0		If negative tracer mass fractions are found in	$run_nml/iforcing = 2$
				the dynamics to physics interface, then:	
				1,3: they are reported;	
				2,3: they are replaced with zero	
aes_phy_config(jg)% iqneg_p2d	I	0		If negative tracer mass fractions are found in	${ m run_nml/iforcing}=2$
				the physics to dynamics interface, then:	
				1,3: they are reported;	
				2,3: they are replaced with zero	
aes phy config(jg)% zmaxcloudy	R	33000.	m	maximum height (m) for cloud related	
				computations	

$2.5. \ aes_rad_nml$

The input from AES physics to the rte_rrtmgp scheme is configured by a data structure $aes_rad_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the Earth orbit, the computation of the SW incoming flux at the top of the atmosphere and the atmospheric composition:

Parameter	Type	Default	Unit	Description	Scope
aes_rad_config(jg)% isolrad	I			Selects the spectral solar irradiation (SSI) at 1 AU distance from the sun 0: SRTM default solar spectrum, TSI = 1368.222 Wm2. 1: Time dependent solar sprectrum from file 2: Average 1844–1856 of transient CMIP5 solar, TSI = 1360.875 W/m2 3: Average 1979–1988 of transient CMIP5 solar spectrum, TSI = 1361.371 W/m2 4: Solar flux for RCE simulations with diurnal cycle, TSI = 1069.315 W/m2 5: Solar flux for RCE simulations without diurnal cycle, TSI = 433.3371 W/m2 6: Average 1850-1873 of transient CMIP6 solar, TSI = 1360.744 W/m2 7: Solar flux for RCEmip analytical simulations without diurnal cycle, TSI = 551.58 W/m2	aes_phy_config(jg)% dt_rad > 0.000s
aes_rad_config(jg)% fsolrad	R	1		Scaling factor for solar irradiance	aes_phy_config(jg)% dt rad > 0.000s
aes_rad_config(jg)% l_orbvsop87	L	.TRUE.		.TRUE. for the realistic VSOP87 Earth orbit .FALSE. for the Kepler orbit	$\begin{array}{l} aes_phy_config(jg)\% \\ dt_rad > 0.000s \end{array}$

Parameter	Type	Default	Unit	Description	Scope
aes_rad_config(jg)% cecc	R	0.016715		eccentricity of the Kepler orbit	aes_phy_config(jg)%
					$dt_{rad} > 0.000s$ and
0 (1) 04		22 44100	,		$l_{orbvsop87} = .FALSE.$
$aes_{rad}_{config(jg)}\%$ cobld	R	23.44100	\deg	obliquity of the Earth rotation axis on the	aes_phy_config(jg)%
				Kepler orbit	$dt_{rad} > 0.000s$ and
					$l_{orbvsop87} = .FALSE.$
aes_rad_config(jg)% clonp	R	282.7000	deg	longitude of perihelion with respect to vernal	aes_phy_config(jg)%
				equinox on the Kepler orbit	$dt_rad > 0.000s$ and
	_				$l_{orbvsop87} = .FALSE.$
aes_rad_config(jg)% lyr_perp	L	.FALSE.		.FALSE. for transient VSOP87 Earth orbit	aes_phy_config(jg)%
				.TRUE.: VSOP87 Earth orbit of year	$dt_{rad} > 0.000s$ and
	_			yr_perp is perpertuated	$l_{orbvsop87} = .TRUE.$
$aes_rad_config(jg)\% yr_perp$	L	-99999		year of vsop87 orbit to be perpetuated for	aes_phy_config(jg)%
				$lyr_perp = .TRUE.$	$dt_{rad} > 0.000s$ and
1 0 (1) (2 11)		mp.H.E			$l_{orbvsop87} = .TRUE.$
aes_rad_config(jg)% ldiur	L	.TRUE.		TRUE. for diurnal cycle in solar irradiation	aes_phy_config(jg)%
				.FALSE. for zonally averaged solar	$ m dt_rad > 0.000s$
1 0 (1)04		DATGE		irradiation	
aes_rad_config(jg)%	L	.FALSE.		TRUE. for globally averaged irradiation;	
l_sph_symm_irr				.FALSE. for lat (lon) dependent irradiation	1 6 (1)64
aes_rad_config(jg)% icosmu0	I	3		PROVISIONAL - ONLY BEST METHODS	aes_phy_config(jg)%
				WILL BE KEPT ("0" or "3")	$ m dt_rad > 0.000s$
				0: no adjustment, the original cosmu0 is used	
				3: $0.5*SIN(dmu0)*(1+(pi/2-mu0)/dmu0)$,	
				dmu0=pi*dt_rad/86400s	
				Has small effects on the MA temp. and wind	
1 (() () 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		and the land surface temp.	1
aes_rad_config(jg)% irad_h2o	I	1		Selects source for concentration of water	aes_phy_config(jg)%
				vapor, cloud water and cloud ice	$ m dt_rad > 0.000s$
				0: No H2O(gas,liq,ice) in radiation	
				1: H2O(gas,liq,ice) mass mixing ratios from tracer fields	
and antiquiply ind2	_T			Selects source for concentration of CO2	and the confinite
aes_rad_config(jg)% irad_co2	I	2		0: No CO2 in radiation	aes_phy_config(jg)% dt rad > 0.000s and CO2
				1: CO2 mass mixing ratio from tracer field	tracer is defined
				2: CO2 volume mixing ratio from tracer field 2: CO2 volume mixing ratio set by 'vmr	tracer is defined
				co2'	
				3: CO2 volume mixing ratio from ghg	
				scenario file	
				Scenario ine	

Parameter	Type	Default	Unit	Description	Scope
aes_rad_config(jg)% irad_ch4	I	2		Selects source for concentration of CH4	aes_phy_config(jg)%
				0: No CH4 in radiation	$ m dt_rad > 0.000s$
				2: CH4 volume mixing ratio set by 'vmr	
				_ch4'	
				3: CH4 vertically constant volume mixing	
				ratio from ghg scenario file	
				12: CH4 tanh-profile with surface volume	
				mixing ratio set by 'vmr ch4'	
				13: CH4 tanh-profile with surface volume	
				mixing ratio from ghg scenario file	
aes_rad_config(jg)% irad_n2o	I	2		Selects source for concentration of N2O	aes_phy_config(jg)%
				0: No N2O in radiation	$ m dt_rad > 0.000s$
				2: N2O volume mixing ratio set by 'vmr	
				_n2o'	
				3: N2O vertically constant volume mixing	
				ratio from ghg scenario file	
				12: N2O tanh-profile with surface volume	
				mixing ratio set by 'vmr _n2o'	
				13: N2O tanh-profile with surface volume	
				mixing ratio from ghg scenario file	
aes_rad_config(jg)% irad_cfc11	I	2		Selects source for concentration of CFC11	$aes_phy_config(jg)\%$
				0: No CFC11 in radiation	$ m dt_rad > 0.000s$
				2: CFC11 volume mixing ratio set by 'vmr	
				_cfc11'	
				3: CFC11 volume mixing ration from ghg	
				scenario file	
aes_rad_config(jg)% irad_cfc12	I	2		Selects source for concentration of CFC12	$aes_phy_config(jg)\%$
				0: No CFC12 in radiation	$ m dt_rad > 0.000s$
				2: CFC12 volume mixing ratio set by 'vmr	
				_cfc12'	
				3: CFC12 volume mixing ration from ghg	
				scenario file	

Parameter	Type	Default	Unit	Description	Scope
aes_rad_config(jg)% irad_o3	I	0		Selects source for concentration of O3	
				0: No O3 in radiation	
				1: O3 mass mixing ratio from tracer field	
				4: O3 constant-in-time 3-dim. volume	
				mixing ratio from file	
				5: O3 transient 3-dim. volume mixing ratio	
				from file	
				6: O3 clim. annual cycle 3-dim. volume	
				mixing ratio from file	
				aes_phy_config(jg)% dt_rad > 0.000 s	
$aes_rad_config(jg)\% irad_o2$	I	2		Selects source for concentration of O2	aes_phy_config(jg)%
				0: No O2 in radiation	$ m dt_rad > 0.000s$
	1_			2: O2 volume mixing ratio set by 'vmr _o2'	
$aes_rad_config(jg)\% \ vmr_co2$	R	348.0e-06	m3/m3	Volume mixing ratio of CO2	aes_phy_config(jg)%
- /					$ m dt_rad > 0.000s$
$aes_rad_config(jg)\% \ vmr_ch4$	R	1650.0e-09	m3/m3	Volume mixing ratio of CH4	aes_phy_config(jg)%
					$ m dt_rad > 0.000s$
$aes_rad_config(jg)\% \ vmr_n2o$	R	306.0e-09	m3/m3	Volume mixing ratio of N2O	aes_phy_config(jg)%
					$ m dt_rad > 0.000s$
$aes_rad_config(jg)\% \ vmr_o2$	R	0.20946	m3/m3	Volume mixing ratio of O2	aes_phy_config(jg)%
			2 / 2	4 97944	$dt_rad > 0.000s$
$aes_rad_config(jg)\% \ vmr_cfc11$	R	214.5e-12	m3/m3	Volume mixing ratio of CFC11	aes_phy_config(jg)%
			2 / 2	4 97944	$dt_rad > 0.000s$
$aes_rad_config(jg)\% \ vmr_cfc12$	R	371.1e-12	m3/m3	Volume mixing ratio of CFC11	aes_phy_config(jg)%
					$ m dt_rad > 0.000s$
$aes_rad_config(jg)\% frad_h2o$	R	1.0		Scaling factor for concentration of water	aes_phy_config(jg)%
				vapor, cloud water and cloud ice	$dt_rad > 0.000s$
$aes_rad_config(jg)\% frad_co2$	R	1.0		Scaling factor for concentration of CO2	aes_phy_config(jg)%
1 0 /) \ (1 1 1 1		1.0			$dt_rad > 0.000s$
aes_rad_config(jg)% frad_ch4	R	1.0		Scaling factor for concentration of CH4	aes_phy_config(jg)%
					$dt_rad > 0.000s$
$aes_rad_config(jg)\% frad_n2o$	R	1.0		Scaling factor for concentration of N2O	aes_phy_config(jg)%
					$\mathrm{dt_rad} > 0.000\mathrm{s}$
aes_rad_config(jg)% frad_o3	R	1.0		Scaling factor for concentration of O3	aes_phy_config(jg)%
1 0 / 10 0		1.0			$dt_{rad} > 0.000s$
aes_rad_config(jg)% frad_o2	R	1.0		Scaling factor for concentration of O2	aes_phy_config(jg)%
0 /1 \\ 0 /2 0 1 0 1 1 1 1 1 1 1					$dt_rad > 0.000s$
$aes_rad_config(jg)\% frad_cfc11$	R	1.0		Scaling factor for concentration of CFC11	aes_phy_config(jg)%
0 (1)04 (1) 1 1 1 1					$dt_rad > 0.000s$
$aes_rad_config(jg)\% frad_cfc12$	R	1.0		Scaling factor for concentration of CFC12	aes_phy_config(jg)%
1					$ m dt_rad > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
aes_rad_config(jg)% lclearsky	L	.TRUE.		.TRUE.: Clear sky fluxes are computed	aes_phy_config(jg)%
					$dt_rad > 0.000s$
aes_rad_config(jg)% irad_aero	I	2		Selects source of aerosol types	·
				0: No aerosol in radiation	
				13: only Kinne aerosols are used	
				14: only Stechnikov's volcanic aerosols are	
				used (added to zero)	
				15: Kinne aerosols plus Stenchikov's volcanic	
				aerosols are used	
				18: Kinne background aerosols (of natural	
				origin, 1850) are set and Stenchikov's	
				volcanic aerosols are added to Kinne	
				background and Simple plumes are added	
				$aes_phy_config(jg)\% \ dt_rad > 0.000s$	

2.6. aes_vdf_nml

Parameter	Type	Default	Unit	Description	Scope
aes_vdf_config(jg)%	L	.TRUE.		switch on/off surface momentum flux	aes_phy_config(jg)%
lsfc_mom_flux					$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% lsfc_heat_flux	L	.TRUE.		switch on/off surface heat flux	$aes_phy_config(jg)\%$
					$ m dt_vdf > 0.000s$
$aes_vdf_config(jg)\% pr0$	R	1.0		neutral limit Prandtl number, can be varied	aes_phy_config(jg)%
				from about 0.6 to 1.0	$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% f_tau0	R	0.17		neutral non-dimensional stress factor	$aes_phy_config(jg)\%$
					$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% c_f	R	0.185		mixing length: coriolis term tuning	$aes_phy_config(jg)\%$
				parameter	$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% c_n	R	2.0		mixing length: stability term tuning	$aes_phy_config(jg)\%$
				parameter	$ m dt_vdf > 0.000s$
$aes_vdf_config(jg)\%$ wmc	R	0.5		ratio of typical horizontal velocity to wstar	$aes_phy_config(jg)\%$
				at free convection	$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% fsl	R	0.4		fraction of first-level height at which surface	$aes_phy_config(jg)\%$
				fluxes are nominally evaluated, tuning	$ m dt_vdf > 0.000s$
				param for sfc stress	
aes_vdf_config(jg)% fbl	R	3.0		1/fbl: fraction of BL height at which lmix	aes_phy_config(jg)%
				hat its max	$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% lmix_max	R	150.	m	maximum mixing length	$aes_phy_config(jg)\%$
					$dt_vdf > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
aes_vdf_config(jg)% z0m_min	R	0.000015	m	minimum roughness length	aes_phy_config(jg)%
					$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% z0m_ice	R	0.001	m	roughness length for sea ice surfaces	aes_phy_config(jg)%
					$ m dt_vdf > 0.000s$
aes_vdf_config(jg)% z0m_oce	R	0.001	m	roughness length for sea water surfaces	aes_phy_config(jg)%
	_				$dt_vdf > 0.000s$
aes_vdf_config(jg)% turb	1	1		1: TTE scheme, 2: 3D Smagorinsky	aes_phy_config(jg)%
10 0 (1)04		0.00			$dt_vdf > 0.000s$
aes_vdf_config(jg)%	R	0.23			aes_phy_config(jg)%
smag_constant	D	900			$dt_vdf > 0.000s$
aes_vdf_config(jg)%	R	300.		max turbulence length scale	aes_phy_config(jg)%
max_turb_scale	D	0.0000000000		4 1 1 4 141 1	$dt_vdf > 0.000s$
aes_vdf_config(jg)% turb_prandtl	R	0.33333333333		turbulent prandtl number	aes_phy_config(jg)%
and and and all the min	$ _{\mathrm{R}}$	0.001		min maga waighted tunbulent wigogaitu	$dt_vdf > 0.000s$
aes_vdf_config(jg)% km_min	n n	0.001		min mass weighted turbulent viscosity	aes_phy_config(jg)% dt vdf > 0.000s
aes_vdf_config(jg)% min_sfc_wind	R	1.		min sfc wind in free convection limit	aes phy config(jg)%
aes_var_comig(jg)/o mm_sic_wind	11	1.		min sic wind in free convection limit	$\frac{\text{des_phy_conng(Jg)}}{\text{dt } \text{vdf}} > 0.000\text{s}$
					ut_vui

2.7. aes_wmo_nml

The diagnostics of the tropopause pressure, following the WMO definition is configured by a data structure $aes_wmo_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains:

Parameter	Type	Default	Unit	Description	Scope
aes_wmo_config(jg)% zmaxwmo	R	38000.	m	maximum height for tropopause search	
aes_wmo_config(jg)% zminwmo	R	5000.	m	minimum height for tropopause search	

2.8. assimilation nml

The main switch for the Latent heat nudging scheme is called ldass_lhn and has to be set in run_nml.

Parameter	Type	Default	Unit	Description	Scope
nlhn_start	I	-9999	s	time in seconds when LHN is applied for the	$run_nml:ldass_lhn = .true.$
				first time	
nlhn_end	I	-9999	s	time in seconds when LHN is applied for the	$run_nml:ldass_lhn = .true.$
				last time	
lhn_coef	R	1.0		Nudging coefficient of adding the increments	
fac_lhn_up	R	2.0		Upper limit of the scaling factor of the	
				temperature profile.	

Parameter	Type	Default	Unit	Description	Scope
fac_lhn_down	R	0.5		Lower limit of the scaling factor of the	
				temperature profile.	
lhn_logscale	L	.TRUE.		Apply all scaling factors as logarithmic	fac_lhn_down,
				values	fac_lhn_up, fac_lhn_artif
lhn_updt_rule	I(max_	0		Rule for humidity update by LHN:	
	dom)			0: LHN updates qv (standard).	
				1: LHN updates qi if qi >0 and T <0 ; qv	
				update otherwise.	
thres_lhn	R	0.1/3600.	$\mathrm{mm/s}$	Minimal value of precipitation rate, either of	
				model or radar. LHN will be applied first for	
				precipitation above it.	
start_fadeout	R	1.0		Value to determine, at which model time	
				step a fading out of the increments might	
				start.	
lhn_qrs	L	.TRUE.		Use a vertical average of precipitation fluxes	
				as reference to compare with radar observed	
				precipitation, to avoid severe overestimation	
				due to displacement of model surface	
				precipitation.	
				If set .FALSE. the model surface	
				precipitation rate is used as reference.	
rqrsgmax	R	1.0		This value determines the height of the	$ln_q rs = .TRUE.$
				vertical averaging, to obtain the reference	
				precipitation rate	
				It is the model layer where the quotion of	
				the maximal precipitation flux occurred for	
	_			the first time.	
lhn_refbias	$\mid L \mid$.FALSE.		Apply a bias correction between so called	$ln_q rs = .TRUE.$
				reference precipitation (lhn_qrs = .TRUE.)	
				and modelled precipitation at ground. This	
				option is recommended when both quantities	
				shows a systematic bias which cannot be	
				adjusted by changing rqrsgmax.	11 (0.1
ref_bias0	R	1.0		In case of lhn_refbias = .TRUE. the bias	$ln_{refbias} = .TRUE.$
				correction starts with this factor. So far,	
				there is no cycling of the factor foreseen, but	
				could be implemented, when it seems to be	
	-	1000 0		beneficial.	11 (1)
dtrefbias	R	1800.0	S	Relaxation time, which defines how fast the	$ln_{refbias} = .TRUE.$
				bias correction is done.	

Parameter	Type	Default	Unit	Description	Scope
lhn_hum_adj	L	.TRUE.		Apply an increment of specific humidity	
				with respect to the estimated temperature	
				increment to maintain the relative humidty	
lhn_no_ttend	L	.FALSE.		Only apply moisture increments.	lhn_hum_adj=.TRUE.
				Temperature increments will only be used	
				for calculation of moisture increments	
lhn_incloud	L	.TRUE.		Apply increments only in model layers where	lhn_artif_only=.FALSE.
				the underlying latent heat release of the	
				model is positive.	
lhn_limit	$\mid L$.TRUE.		Limitation of temperature increments	abs_lhn_lim
abs_lhn_lim	R	50./3600.	K/s	Lower and upper limit for temperature	$ln_{limit} = .TRUE.$
				increments to be added.	
lhn_filt	L	.TRUE.		Vertical smoothing of the profile of	
				temperature increments	
lhn_relax	L	.FALSE.		Horizontal smoothing of radar data but also	nlhn_relax
				of incorporated model fields	
nlhn_relax	I	2	grid	Number of horizontal grid point, where	$ln_{relax} = .TRUE.$
			points	smoothing is applied.	
lhn_wweight	$\mid L$.FALSE.		Reduction of the LHN temperature	
				increment in case of strong advection,	
				messured by horizontal wind in 950, 850 and	
				700 hPa.	
				The reduction is done linearly down to cero.	
lhn_artif	L	.TRUE.		Apply an artificial temperature profile to	fac_lhn_artif,
				estimate increments at model grid points	tt_artif_max,
				without significant precipitation (determined	zlev_artif_max,
				by fac_lhn_artif).	std_artif_ma
fac_lhn_artif	R	5.0		Value of the ratio of radar to model	lhn_artif=.TRUE.
				precipitation rate, from which an artificial	
				temperature profile is applied	
fac_lhn_artif_tune	R	1.0		Tuning factor to optimize the effectiveness of	lhn_artif=.TRUE.
				the artificial profile.	
lhn_artif_only	L	.FALSE.		Scaling the artificial temperature profile	tt_artif_max,
				instead of local model profile of latent heat	zlev_artif_max,
				release for calculation the increments at any	std_artif_max
				model grid point.	
				The scaling factor is still be determined by	
				the ratio of observed to modelled	
				precipitation rate.	
tt_artif_max	R	0.0015	K	Maximal temperature of Gaussian shaped	lhn_artif, lhn_artif_only
				function used a artificial temperature profile.	

Parameter	Type	Default	Unit	Description	Scope
zlev_artif_max	R	1000.0	m	Height of maximum of Gaussian shaped	lhn_artif, lhn_artif_only
				function used a artificial temperature profile.	
std_artif_max	R	4.0	m	Parameter defining width of Gaussian	lhn_artif, lhn_artif_only
				shaped function used a artificial temperature	
				profile.	
nlhnverif_start	I	-9999	S	time in seconds when online verification	$run_nml:ldass_lhn = .true.$
				within LHN is active for the first time	
nlhnverif_end	I	-9999	S	time in seconds when online verification	$run_nml:ldass_lhn = .true.$
				within LHN is active for the last time	
lhn_diag	L	.FALSE.		Enable a extensive diagnostic output,	
				writing into file lhn.log.	
				lhn diag is set .TRUE. automatically, when	
				online verification is active.	
lhn dt obs	R	300.0	s	Frequency of the radar observations	
radar in	ightharpoons C	·./		Path where the radar data file is expected.	
radardata_file(:)	C	,		Name of the radar data file. This might be	
_	(n dom)			either in GRIB2 or in NetCDF	
				(recommended).	
lhn black	\mid L	.FALSE.		Apply a blacklist information in the radar	
_				data obtained by comparison against satelite	
				cloud information	
blacklist file(:)	C	'radarblacklist.ı	$_{ m nc}$	Name of blacklist file, containing a mask	lhn black=.TRUE.
(-)	(n_dom)			concerning the quality of the radar data.	
	()			Value 1: good quality	
				Value 0: bad quality	
				This might be either in GRIB2 or in	
				NetCDF (recommended).	
lhn_bright	\mid L	.FALSE.		Apply a model intern bright band detection	
~1.8		11111111111		to avoid strong overestimation due to	
				uncertain radar observations.	
height_file(:)	C	'radarheight.nc'	,	Name of file containing the height of the	lhn bright=.TRUE.
neight_ine(.)	(n dom)	radarneight.ne		lowest scan for each possible radar station	
	(n_dom)			within the given radar composite.	
				This file is required, when applying bright	
				band detection.	
				This might be either in GRIB2 or in	
				NetCDF (recommended).	
nradar	I	20		Maximal number of radar height layers	lhn bright=.TRUE.
III WAA	(n dom)	1 20		contained within height file	

Parameter	Type	Default	Unit	Description	Scope
lhn_spqual	L	.FALSE.		Use quality index to infer the horizontal	
				spatial weight of the LHN increments. The	
				quality index is read in as RAD_QUAL	
				variable (besides the RAD_PRECIP	
				variable) from the LHN input file.	
dace_coupling	L	.FALSE.		Invoke DACE for model equivalents of	
				observations	
dace_time_ctrl	I(3)	0		Steering parameters for DACE time control:	
				start,end,step	
dace_debug	I	0		Debugging level for DACE interface	
dace_output_file	C	""		Filename for redirection of DACE stdout	
dace_namelist_file	C	'namelist'		Filename of the file containing the dace	
				namelist	

Defined and used in: src/namelists/mo_assimilation_nml.f90

2.9. ccycle_nml

The coupling of the carbon cycle between the atmosphere and land and ocean is configured by the data structure $ccycle_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains.

Parameter	Type	Default	Unit	Description	Scope
ccycle_config(jg)% iccycle	I	0		controls the carbon cycle mode:	aes_phy_config(jg)%
				0: no C-cycle	$\mathrm{dt_vdf} > 0.000\mathrm{s}$ and
				1: C-cycle with interactive atmospheric CO_2	$aes_phy_config(jg)\% ljsb = 0$
				concentration	.TRUE. (and atmosphere is
				2: C-cycle with prescribed atmospheric CO_2	coupled to ocean with
				concentration	biogeochemistry)
ccycle_config(jg)% ico2conc	I	2		controls the CO_2 concentration provided to	$ccycle_config(jg)\% iccycle =$
				land/JSBACH and - if coupled to the ocean	2
				- to the ocean/ $\rm HAMOCC$	
				2: constant concentration as defined by	
				$ccycle_config(jg)\% \ vmr_co2$	
				4: transient concentration scenario from file	
				bc_greenhouse_gases.nc	
ccycle_config(jg)% vmr_co2	R	284.32	ppmv	constant CO_2 volume mixing ratio of 1850	ccycle_config(jg)% ico2conc
				(CMIP6)	=2

$2.10.\ \mathsf{cloud} _\mathsf{mig} _\mathsf{nml}$

The parameterization of cloud microphysics 'graupel' for the AES physics is configured by a data structure $cloud_mig_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains.

Parameter	Type	Default	Unit	Description	Scope
cloud_mig_config(jg)% zceff_min	R	0.01		Minimum value for sticking efficiency	aes_phy_config(jg)%
					$dt_mig > 0.000s$
cloud_mig_config(jg)% v0snow	R	25.0		factor in the terminal velocity for snow	aes_phy_config(jg)%
					$ m dt_mig > 0.000s$
cloud_mig_config(jg)% zvz0i	R	1.25		Terminal fall velocity of ice (original value of	aes_phy_config(jg)%
				Heymsfield+Donner 1990: 3.29)	$ m dt_mig > 0.000s$
cloud_mig_config(jg)% icesedi_exp	R	0.33		exponent for density correction for coud ice	aes_phy_config(jg)%
				sedimentation	$ m dt_mig > 0.000s$
cloud_mig_config(jg)% mu_rain	R	0.0		COSMO_EU default	aes_phy_config(jg)%
					$ m dt_mig > 0.000s$
$\operatorname{cloud}_{\operatorname{mig}}\operatorname{config}(\operatorname{jg})\%$	R	1.0		COSMO_EU default	aes_phy_config(jg)%
rain_n0_factor					$ m dt_mig > 0.000s$

$2.11.\ coupling_mode_nml$

Parameter	Type	Default	Unit	Description	Scope
coupled_mode	L	.FALSE.		.TRUE: if yac coupling routines have to be	
				called. Required for coupled	
				ocean-atmosphere similations.	

Defined and used in: src/namelists/mo_coupling_nml.f90

2.12. diffusion_nml

Parameter	Type	Default	Unit	Description	Scope
lhdiff_temp	L	.TRUE.		Diffusion on the temperature field	
lhdiff_vn	L	.TRUE.		Diffusion on the horizontal wind field	
lhdiff_w	L	.TRUE.		Diffusion on the vertical wind field	

Parameter	Type	Default	Unit	Description	Scope
hdiff_order	I	5		Order of ∇ operator for diffusion:	
				-1: no diffusion	
				2: ∇^2 diffusion	
				3: (removed)	
				4: ∇^4 diffusion	
				5: Smagorinsky ∇^2 diffusion combined with	
				∇^4 background diffusion as specified via	
				hdiff efdt ratio. Set hdiff efdt ratio<=0	
				for switching off background diffusion.	
lsmag 3d	L(max_don	n)FALSE.		.TRUE.: Use 3D Smagorinsky formulation	hdiff order=5;
<u> </u>	\ _	,		for computing the horizontal diffusion	itype_vn_diffu=1
				coefficient (recommended at mesh sizes finer	
				than 1 km if the LES turbulence scheme is	
				not used)	
lhdiff smag w	L(max don	n.)FALSE.		.TRUE.: Use additional Smagorinsky	hdiff order=5;
_ 3_		,		diffusion for w (recommended at mesh sizes	lhdiff w=.true.
				finer than 500 m if the LES turbulence	_
				scheme is not used)	
itype vn diffu	I	1		Reconstruction method used for	iequations=3, hdiff order=5
		_		Smagorinsky diffusion:	, <u>.</u>
				1: u/v reconstruction at vertices only	
				2: u/v reconstruction at cells and vertices	
$itype_t_diffu$	I	2		Discretization of temperature diffusion:	iequations=3, hdiff order=5
10 <i>y</i> P 0 _ 0 _ ama		_		1: $K_h \nabla^2 T$	requestions of mani_state o
				$2: \nabla \cdot (K_h \nabla T)$	
hdiff_efdt_ratio	R	36.0		ratio of e-folding time to time step (or 2^*	
		00.0		time step when using a 3 time level time	
				stepping scheme) (values above 30 are	
				recommended when using hdiff order=5)	
${ m hdiff_w_efdt_ratio}$	R	15.0		ratio of e-folding time to time step for	iequations=3
nam_w_clat_ratio		10.0		diffusion on vertical wind speed	requations—5
hdiff_min_efdt_ratio	R	1.0		minimum value of hdiff_efdt_ratio near	iequations=3 .AND.
	10	1.0		model top	hdiff order=4
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for	num_order—4
iidiii_tv_iati0	16	1.0		temperature and normal wind: $T: v_n$	
hdiff multfac	R	1.0		Multiplication factor of normalized diffusion	n dom>1
num_muntac	11	1.0		coefficient for nested domains	11_doil1/1
hdiff smag faci	R	0.015		Scaling factor for Smagorinsky diffusion at	iequations=3
$hdiff_smag_faci$	I TA	0.019			requations—3
				height $hdiff_smag_z$ and below.	
				$hdiff_smag_fac \ge 0.$	

Parameter	Type	Default	Unit	Description	Scope
hdiff smag fac2	R	$2 \cdot 10^{-6}$ ·		Scaling factor for Smagorinsky diffusion at	iequations=3
		(1600 + 25000 +		height $hdiff_smag_z2$.	
		$(1600 \cdot (1600 +$		$hdiff_smag_fac2 \ge 0$. Between	
		$50000))) \approx$		$hdiff_smag_z$ and $hdiff_smag_z2$ the	
		0.071		scaling factor changes linearly from	
				$hdiff_smag_fac$ to $hdiff_smag_fac2$.	
hdiff_smag_fac3	R	0.		Scaling factor for Smagorinsky diffusion at	iequations=3
				height $hdiff_smag_z3$.	
				$hdiff_smag_fac3 \ge 0$. The three points	
				$(hdiff_smag_z2, hdiff_smag_fac2),$	
				$(hdiff_smag_z3, hdiff_smag_fac3), and$	
				determine the quadratic function for the	
				scaling factor between $hdiff_smag_z2$ and	
				$hdiff_smag_z4.$	
hdiff_smag_fac4	R	1.0		Scaling factor for Smagorinsky diffusion at	iequations=3
				height $hdiff_smag_z4$ and higher.	
				$hdiff_smag_fac4 \ge 0.$	
$hdiff_smag_z$	R	32500.	m	Height up to which $hdiff_smag_fac$ is	iequations=3
				used, and where the linear profile up to	
				height $hdiff_smag_z2$ starts.	
$hdiff_smag_z2$	R	1600 + 50000 +	m	Height with scaling factor	iequations=3
		$(1600 \cdot (1600 +$		$hdiff_smag_fac2$ where the linear profile	
		$50000)) \approx$		starting at $hdiff_smag_z$ ends, and where	
		60686		the quadratic profile up to $hdiff_smag_z4$	
				starts. $hdiff_smag_z <$	
				$hdiff_smag_z2 < hdiff_smag_z4.$	
hdiff_smag_z3	R	50000.	m	Height with scaling factor	iequations=3
				$hdiff_smag_fac3$. Needed to determine	
				the quadratic function between	
				$hdiff_smag_z2$ and $hdiff_smag_z4$.	
				$hdiff_smag_z3 \neq hdiff_smag_z2 \land$	
1 1100		00000		$hdiff_smag_z3 \neq hdiff_smag_z4.$	
hdiff_smag_z4	R	90000.	m	Height from which $hdiff_smag_fac4$ is	iequations=3
				used. $hdiff_smag_z4 > hdiff_smag_z2$.	

Defined and used in: src/namelists/mo_diffusion_nml.f90

2.13. dynamics_nml

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	3		Equations and prognostic variables. Use	
				positive indices for the atmosphere and	
				negative indices for the ocean.	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv method	I	1		Method for divergence computation:	
_				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged	
				normal components	
				Non-hydrostatic atm. model: for averaged	
				normal components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence	$idiv_method=2$
				averaging	
lcoriolis	L	.TRUE.		Coriolis force	
ldeepatmo	L	.FALSE.		Switch for deep-atmosphere modification of	iequations = 3
				non-hydrostatic atmosphere. Specific	iforcing = 0, 2, 3
				settings can be found in upatmo_nml.	$is_plane_torus = .FALSE.$

Defined and used in: src/namelists/mo_dynamics_nml.f90

$2.14.\ ensemble_pert_nml$

Parameter	Type	Default	Unit	Description	Scope
use_ensemble_pert	L	.FALSE.		Main switch to activate physics parameter perturbations for ensemble forecasts / ensemble data assimilation; the perturbations are applied via random numbers depending on the perturbationNumber (ensemble member ID) specified in gribout_nml. Perturbations are always turned off if perturbationNumber ≤ 0	run_nml:iforcing = inwp
itype_pert_gen	I	1		Mode of ensemble perturbation generation 1: Equal distribution within perturbation range 2: Discrete distribution with 50% probability for default value and 25% probability for upper and lower extrema	

Parameter	Type	Default	Unit	Description	Scope
timedep_pert	I	0		Time-dependence of ensemble perturbations	
				(except tkred_sfc, which oscillates with a	
				time scale of 20 days)	
				0: None	
				1: Random seed for perturbation generation	
				depends on initial date	
				2: Time-dependent perturbations varying	
				sinusoidally within their range	
range gkwake	R	1.5		Variability range (multiplicative) for low	
0 _0				level wake drag constant	
range_gkdrag	R	0.04		Variability range for orographic gravity wave	
191180 - 91141 08		0.01		drag constant	
range gfrcrit	R	0.1		Variability range for critical Froude number	
range_sirent	10	0.1		in SSO scheme	
range gfluxlaun	R	0.75e-3		Variability range for non-orographic gravity	
range_gnuxiaun	10	0.750-5		wave launch momentum flux	
vango gugo;	R	0.25	m/s	Variability range for terminal fall velocity of	inwp gscp = $1 \text{ or } 2$
range_zvz0i	l N	0.25	III/S	cloud ice	$\text{mwp_gscp} = 1 \text{ or } 2$
	R	4		Multiplicative change of intercept parameter	inwp gscp = $1 \text{ or } 2$
range_rain_n0fac	l K	4.			$mwp_gscp = 1 \text{ or } 2$
,	D	0.0.0	1 /	of raindrop size distribution	
range_entrorg	R	0.2e-3	$1/\mathrm{m}$	Variability range for entrainment parameter	$inwp_convection = 1$
			-	in convection scheme	
$range_rdepths$	R	5.e3	Pa	Variability range for maximum allowed	$inwp_convection = 1$
				shallow convection depth	
range_rprcon	R	0.25e-3		Variability range for tuning parameter	$inwp_convection = 1$
				controlling conversion of cloud water into	
				precipitation	
range_capdcfac_et	R	0.75		Maximum fraction of CAPE diurnal cycle	icapdcycl = 3
				correction applied in the extratropics	
range_rhebc	R	0.05		Variability range for RH threshold for the	$inwp_convection = 1$
				onset of evaporation below cloud base	
range texc	R	0.05	K	Variability range for temperature excess	inwp convection $= 1$
~ -				value in test parcel ascent	
range qexc	R	0.005		Variability range for mixing ratio excess	inwp convection $= 1$
J _ 1				value in test parcel ascent	
range_box_liq	R	0.01		Variability range for box width scale of	inwp $cldcover = 1$
0		0.02		liquid clouds in cloud cover scheme	P_02466.02
range box liq asy	R	0.25		Variability range for asymmetry factor for	inwp $cldcover = 1$
runge_box_nq_asy	16	0.20		sub-grid scale liquid cloud distribution	mwp_cidcover = 1
				sub-grid scale liquid cloud distribution	

Parameter	Type	Default	Unit	Description	Scope
$range_thicklayfac$	R	0.0025		Variability range for thick-layer correction	$inwp_cldcover = 1$
				factor for sub-grid scale liquid cloud	
				distribution	
range_fac_ccqc	R	4		Factor for latent-heat correction in CLC-QC	$inwp_cldcover = 1$
			0 1	relationship in cloud cover scheme	
range_tkhmin	R	0.2	$\mathrm{m}^{2}\mathrm{s}^{-1}$	Variability range for minimum vertical	$inwp_turb = 1$
			0 1	diffusion for heat/moisture	
range_tkmmin	R	0.2	$\mathrm{m}^{2}\mathrm{s}^{-1}$	Variability range for minimum vertical	$\operatorname{inwp_turb} = 1$
				diffusion for momentum	
range_turlen	R	150	m	Variability range for turbulent mixing length	$inwp_turb = 1$
range_a_hshr	R	1		Variability range for scaling factor for	$\mathrm{inwp_turb} = 1$
				extended horizontal shear term	
range_a_stab	R	1		Variability range for stability correction	$inwp_turb = 1$
$range_c_diff$	R	2.0		Range for multiplicative change of length	$\mathrm{inwp_turb} = 1$
				scale factor for vertical diffusion	
$range_q_crit$	R	1		Variability range for critical value for	$\mathrm{inwp_turb} = 1$
				normalized supersaturation in turbulent	
				cloud scheme	
range_tkred_sfc	R	4.0		Range for multiplicative change of reduction	$inwp_turb = 1$
				of minimum diffusion coefficients near the	
				surface	
range_rlam_heat	R	8.0		Variability range (additive) of laminar	$inwp_turb = 1$
				transport resistance parameter	
range_charnock	R	1.5		Variability range (multiplicative!) of upper	$inwp_turb = 1$
				and lower bound of wind-speed dependent	
				Charnock parameter	
$range_minsnowfrac$	R	0.1		Variability range for minimum value to	$idiag_snowfrac = 20$
				which snow cover fraction is artificially	
				reduced in case of melting snow	
range_c_soil	R	0.25		Variability range for evaporating fraction of	
				soil	
range_cwimax_ml	R	2.0		Variability range for capacity of interception	
				storage (multiplicative)	
range_lhn_coef	R	0.0		Scaling factor for latent heat nudging	latent heat nudging; i.e.
				increments	$ldass_lhn = .true.$
range_lhn_artif_fac	R	0.0		Scaling factor for artificial heating profile in	latent heat nudging; i.e.
				latent heat nudging	$ldass_lhn = .true.$
range_lhn_down	R	0.0		Lower limit for reduction of pre-existing	latent heat nudging; i.e.
				latent heating in LHN	ldass lhn = .true.

Parameter	Type	Default	Unit	Description	Scope
range_lhn_up	R	0.0		Upper limit for increase of pre-existing	latent heat nudging; i.e.
				latent heating in LHN	$ldass_{lhn} = .true.$
range_z0_lcc	R	0.25		Variability range (relative change) of	
				roughness length attributed to each landuse	
				class	
range_rootdp	R	0.2		Variability range (relative change) of root	
				depth attributed to each landuse class	
range_rsmin	R	0.2		Variability range (relative change) of	
				minimum stomata resistance attributed to	
				each landuse class	
range_laimax	R	0.15		Variability range (relative change) of leaf	
				area index (maximum of annual cycle)	
				attributed to each landuse class	
stdev_sst_pert	R	0.	K	Inserting the standard deviation of SST	
				perturbations (present in the model input	
				data) activates a correction factor for the	
				saturation vapor pressure over oceans, which	
				compensates the systematic increase of	
				evaporation due to the SST perturbations.	

Defined and used in: src/namelists/mo_ensemble_pert_nml.f90

$2.15. \ gribout_nml$

Parameter	Type	Default	Unit	Description	Scope
preset	С	"determ"		Setting this different to "none" enables a	filetype=2
				couple of defaults for the other gribout_nml	
				namelist parameters. If, additionally, the	
				user tries to set any of these other	
				parameters to a conflicting value, an error	
				message is thrown. Possible values are	
				"none", "deterministic", "ensemble".	
tablesVersion	I	15		Main switch for Table version	filetype=2
backgroundProcess	I	0		Background process	filetype=2
_				- GRIB2 code table backgroundProcess.table	

Parameter	Type	Default	Unit	Description	Scope
generatingCenter	I	-1		Output generating center. If this key is not	filetype=2
				set, center information is taken from the grid	
		ı		file	
		•		DWD: 78	
		•		MPIMET: 98	
				ECMWF: 98	
generatingSubcenter	I	-1		Output generating Subcenter. If this key is	filetype=2
				not set, subcenter information is taken from	
		•		the grid file	
				DWD: 255	
		ı		MPIMET: 232	
		4		ECMWF: 0	
generatingProcess	I(n_dom)	1		generating Process Identifier	filetype=2
Identifier		ı		- GRIB2 code table	
1 000		1		generatingProcessIdentifier.table	C1 4 2
numberOfForecastsIn- Ensemble	I	-1		Local definition for ensemble products, (only	filetype=2
		1		set if value changed from default)	61-4
perturbationNumber	I	-1		Local definition for ensemble products, (only	filetype=2
nno duotios Ct-to-OCD	T	1		set if value changed from default)	Glotuno 9
productionStatusOfProcessedData	I	1		Production status of data - GRIB2 code table 1.3	filetype=2
cessedData significanceOfReferenceTime	I	1		- GRIB2 code table 1.3 Significance of reference time	filetype=2
2181111CauceOfficiererence I IIIIe	1	. 1		- GRIB2 code table 1.2	incoppe—2
typeOfEnsembleForecast	I	-1		Local definition for ensemble products (only	filetype=2
c, po o initiator or coust	•	. *		set if value changed from default)	
typeOfGeneratingProcess	I	-1		Type of generating process	filetype=2
V F = 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	-	. =		- GRIB2 code table 4.3	
typeOfProcessedData	I	-1		Type of data	filetype=2
V.1		ı		- GRIB2 code table 1.4	
localDefinitionNumber	I	-1		local Definition Number	filetype=2
				- GRIB2 code table	
		•		grib2LocalSectionNumber.78.table	
local Number Of Experiment	I	1		local Number of Experiment	filetype=2
localTypeOfEnsemble-	I	-1		Local definition for ensemble products (only	filetype=2
Forecast		•		set if value changed from default)	
type Of Grib 2 Tile Template	C	"DWD"		type of GRIB2 templates which are used for	filetype = 2
		ı		decoding tiled surface fields	
		ı		WMO: official WMO templates (55, 59)	
		ı		DWD: local DWD templates (40455, 40456)	

Parameter	Type	Default	Unit	Description	Scope
lspecialdate_invar	L	.FALSE.		Special reference date for invariant and	filetype = 2
				climatological fields	
				.TRUE.: set special reference date	
				0001-01-01, 00:00	
				.FASLE.: no special reference date	
ldate_grib_act	L	.TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout 24bit	L	.FALSE.		If TRUE, write thermodynamic fields ρ , θ_v ,	filetype=2
				T, p with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

2.16. grid_nml

Parameter	Type	Default	Unit	Description	Scope
lplane	L	.FALSE.		planar option	
is_plane_torus	L	.FALSE.		f-plane approximation on triangular grid	
corio_lat	R	0.0	deg	Center of the f-plane is located at this	lplane=.TRUE. and
				geographical latitude	is_plane_torus=.TRUE.
grid_angular _velocity	R	Earth's	$\rm rad/s$	The angular velocity in rad per sec.	
l_scm_mode	L	.FALSE.		Single Column Model (SCM) mode. Can be	is_plane_torus=.TRUE.
				extended to equivalent LES and CRM setups	
				by setting ldynamics=.TRUE	
l_limited_area	L	.FALSE.			
grid_rescale_factor	R	1.0		Defined as the inverse of the reduced-size	
				earth reduction factor X . Choose	
				grid_rescale_factor < 1 for a	
				reduced-size earth.	
	_	DAT GE			
lrescale_timestep	L	.FALSE.		if .TRUE. then the timestep will be	
				multiplied by grid_rescale_factor.	
11	т .	EALCE		:f TDIE the the complete coloridate will be	
lrescale_ang_vel	L	.FALSE.		if .TRUE. then the angular velocity will be	
				divided by grid_rescale_factor.	

Parameter	Type	Default	Unit	Description	Scope
lfeedback	L(n_dom)	.TRUE.		Specifies if feedback to parent grid is performed. Setting lfeedback(1)=.false. turns off feedback for all nested domains; to turn off feedback for selected nested domains, set lfeedback(1)=.true. and set ".false." for the desired model domains	n_dom>1
$ifeedback_type$	I	2		1: incremental feedback 2: relaxation-based feedback Note: vertical nesting requires option 2 to run numerically stable over longer time periods	n_dom>1
start_time	R(n_dom)	0.	S	Time when a nested domain starts to be active. Relative time w.r.t. experiment start date (ini_datetime_string / experimentStartDate). (namelist entry is ignored for the global domain)	n_dom>1
end_time	R(n_dom)	1.E30	S	Time when a nested domain terminates. Relative time w.r.t. experiment start date (ini_datetime_string / experimentStartDate). (namelist entry is ignored for the global domain)	n_dom>1
patch_weight	R(n_dom)	0.		If patch_weight is set to a value > 0 for any of the first level child patches, processor splitting will be performed, i.e. every of the first level child patches gets a subset of the total number or processors corresponding to its patch_weight. A value of 0. corresponds to exactly 1 processor for this patch, regardless of the total number of processors. For the root patch and higher level childs, patch_weight is not used. However, patch_weight must be set to 0 for these patches to avoid confusion.	n_dom>1
lredgrid_phys	L(n_dom)	.FALSE.		If set to .true. radiation is calculated on a reduced grid (= one grid level higher) Needs to be set for each model domain separately; for the global domain, the file containing the reduced grid must be specified in the variable "radiation_grid_filename"	

Parameter	Type	Default	Unit	Description	Scope
nexlevs_rrg_vnest	I	8		Maximum number of extra (additional)	
				model layers used for calculating radiation if	
				vertical nesting is combined with a reduced	
				radiation grid. For these layers, temperature	
				and pressure are copied from the parent	
				domain (thus, the difference in the number	
				of model levels constitutes another upper	
				limit). Higher values improve the	
				consistency of radiative flux divergences near	
				the top of a vertically nested domain.	
				$lredgrid_phys = .TRUE., lvert_nest =$	
				$.TRUE., latm_above_top = .TRUE.$	
$dynamics_grid_filename$	\mathbf{C}			Array of the grid filenames to be used by the	
				dycore. May contain the keyword <path></path>	
				which will be substituted by	
				model_base_dir.	
dynamics_parent_ grid_id	I(n_dom)	i-1		Array of the indexes of the parent grid	
				filenames, as described by the	
				dynamics_grid_filename array. Indexes	
				start at 1, an index of 0 indicates no parent.	
				Specification of this namelist parameter is	
				only required if more than one domain is in	
				use and the grid files are rather old s.t. they	
				do not contain a uuidOfParHGrid global	
				attribute.	
$radiation_grid_filename$	C			Grid filename to be used for the radiation	lredgrid_phys=.TRUE.
				model on the coarsest grid. Filled only if the	
				radiation grid is different from the dycore	
				grid. May contain the keyword <path> which</path>	
				will be substituted by model_base_dir.	
create_vgrid	L	.FALSE.		.TRUE.: Write vertical grid files containing	
				(vct_a, vct_b, z_ifc, and z_ifv.	
vertical_grid_filename	C(n_dom)			Array of filenames. These files contain the	
				vertical grid definition (vct_a, vct_b,	
				z_ifc). If empty, the vertical grid is created	
				within ICON during the setup phase.	
vct _filename	C			Filename of ASCII file containing the 1D	
				vertical coordinate tables vct_a, vct_b. See	
				Sect. 9 for further information on the	
				format. If empty, vct_a, vct_b are created	
				within ICON during the setup phase.	

Parameter	Type	Default	Unit	Description	Scope
use_duplicated_	L	.TRUE.		if .TRUE., the zero connectivity is replaced	
connectivity				by the last non-zero value	
use_dummy_cell_closure	L	.FALSE.		if .TRUE. then create a dummy cell and	
				connect it to cells and edges with no	
				neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

2.17. gridref_nml

Parameter	Type	Default	Unit	Description	Scope
$grf_intmethod_c$	I	2		Interpolation method for grid refinement	n_dom>1
				(cell-based dynamical variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$grf_intmethod_ct$	I	2		Interpolation method for grid refinement	n_dom>1
				(cell-based tracer variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
grf_intmethod_e	I	6		Interpolation method for grid refinement	n_dom>1
				(edge-based variables):	
				1: inverse-distance weighting (IDW)	
				2: RBF interpolation	
				3: combination gradient-based / IDW	
				4: combination gradient-based / RBF	
				5/6: same as $3/4$, respectively, but direct	
				interpolation of mass fluxes along nest	
				interface edges	
grf_velfbk	I	1		Method of velocity feedback:	n_dom>1
				1: average of child edges 1 and 2	
				2: 2nd-order method using RBF	
				interpolation	
grf_scalfbk	I	2		Feedback method for dynamical scalar	n_dom>1
				variables (T, p_{sfc}) :	
				1: area-weighted averaging	
0	_			2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables:	n_dom>1
				1: area-weighted averaging	
				2: bilinear interpolation	

Parameter	Type	Default	Unit	Description	Scope
grf_idw_exp_e12	R	1.2		exponent of generalized IDW function for	n_dom>1
				child edges $1/2$	
grf_idw_exp_e34	R	1.7		exponent of generalized IDW function for	n_dom>1
				child edges 3/4	
rbf_vec_kern_grf_e	I	1		RBF kernel for grid refinement (edges):	n_dom>1
				1: Gaussian	
				$2: 1/(1+r^2)$	
				3: inverse multiquadric	
rbf_scale_grf_e	R(n_dom)	0.5		RBF scale factor for grid refinement (lateral	n_dom>1
				boundary interpolation to edges). Refers to	
				the respective parent domain and thus does	
				not need to be specified for the innermost nest. Lower values than the default of 0.5	
				are needed for child mesh sizes less than	
				about 500 m.	
denom_diffu_t	R	135		Deniminator for lateral boundary diffusion of	n dom>1
denom_dmu_t	10	100		temperature	
denom diffu v	R	200		Deniminator for lateral boundary diffusion of	n dom>1
donom_umu_v		200		velocity	
l_mass_consvcorr	L	.FALSE.		.TRUE.: Apply mass conservation correction	n dom>1
				in feedback routine	
l_density_nudging	L	.FALSE.		.TRUE.: Apply density nudging near lateral	n dom>1 .AND. lfeedback
				nest boundary if grf_intmethod_e \le 4	= TRUE.
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	n_dom>1 .AND. lfeedback
					= .TRUEAND.
					$ifeedback_type = 2$

Defined and used in: src/namelists/mo_gridref_nml.f90

2.18. initicon_nml

Parameter	Type	Default	Unit	Description	Scope
init_mode	I	2		1: MODE_DWDANA	
				start from DWD analysis or FG	
				2: MODE_IFSANA	
				start from IFS analysis	
				3: MODE_COMBINED	
				${ m IFS~atm} + { m ICON/GME~soil}$	
				4: MODE COSMO	
				start from prognostic set of variables as	
				used by COSMO	
				5: MODE IAU	
				start from DWD analysis with incremental	
				analysis update. Extension of	
				MODE IAU OLD including snow	
				increments	
				6: MODE IAU OLD	
				start from DWD analysis with incremental	
				analysis update. NOTE: Extension of mode	
				MODE_DWDANA_INC including W_SO	
				increments.	
				7: MODE_ICONVREMAP	
				start from DWD first guess with	
				subsequent vertical remapping (work in	
				progress; so far, changing the number of	
				model levels does not yet work)	
dt ana	R	10800	s	Time interval of assimilation cycle.	$icpl_da_sfcevap>=2$
dt iau	R	10800	s	Duration of incremental analysis update	$ \begin{array}{ccc} & $
_				(IAU) procedure. Start time for IAU is the	_ ,
				actual model start time (see below).	
dt shift	R	0	s	Time by which the actual model start time is	init mode=5,6
_				shifted ahead of the nominal date. The latter	_ ′
				is given by either ini_datetime_string or	
				experimentStartDate. dt_shift must be	
				NEGATIVE, usually -0.5 dt iau.	
iterate iau	L	.FALSE.		If .TRUE., the IAU phase is calculated twice	init mode=5,6 and dt shift
_				with halved dt shift in first cycle (allows	< 0
				writing a fully initialized analysis at the	
				nominal initialization date while using a	
				centered IAU window for the forecast).	
rho incr filter wgt	R	0		Vertical filtering weight on density	init mode=5,6
				increments	

Parameter	Type	Default	Unit	Description	Scope
niter_diffu	I	10		Number of diffusion iterations applied on	init_mode=5,6
				wind increments	
$\operatorname{niter_divdamp}$	I	25		Number of divergence damping iterations	$init_mode=5,6$
				applied on wind increments	
$type_iau_wgt$	I	1		Weighting function for performing IAU	$init_mode=5,6$
				1: Top-Hat	
				2: SIN2	
$nlevsoil_in$	I	4		number of soil levels of input data	$\operatorname{init_mode}=2$
zpbl1	R	500.0	m	bottom height (AGL) of layer used for	
				gradient computation	
zpbl2	R	1000.0	m	top height (AGL) of layer used for gradient	
				computation	
lread_ana	L	.TRUE.		If .FALSE., ICON is started from first guess	$init_mode=1,3$
				only. Analysis field is not required, and	
				skipped if provided.	
use_lakeiceana	L	.FALSE.		If .TRUE., analysis data for sea ice fraction	$init_mode=5,6$
				are also used for freshwater lakes (for the	
				time being restricted to the Great Lakes;	
				extension to other lakes needs to be tested)	
qcana_mode	I	0		If > 0 , analysis increments for cloud water	init_mode=5
				concentration are read and processed.	
				1: QC increments are added to QV	
				increments	
				2: QC increments are added to QC if clouds	
				are present, otherwise to QV increments	1
qiana_mode	I	0		1: analysis increments for cloud ice	init_mode=5
1				concentration are read and processed.	1
qrsgana_mode	I	0		1: analysis increments for rain, snow and	init_mode=5
				graupel mass concentrations are read and	
				processed. In case of the 2-moment	
				microphysics (inwp_gscp=4,5,6), also hail	
				mass concentration increments are processed.	

Parameter	Type	Default	Unit	Description	Scope
qnxana_2mom_mode	I	0		Only effective in case of 2-moment	init_mode=5,
				microphysics (inwp_gscp=4,5,6). Affects the	$ inwp_gscp=4,5,6 $
				analysis increments of the the number	
				concentrations of those hydrometeors in IAU	
				which have been selected by the settings of	
				qcana_mode, qiana_mode and	
				qrsgana_mode:	
				0: analysis increments are not taken from	
				analysis files but diagnosed based on the	
				mass concentrations (from fg) and mass	
				increments.	
				1: analysis increments are taken from the	
				analysis files. If missing for a specific	
				hydrometeor type, they are diagnosed	
				similar to option 0 as a fallback.	
icpl_da_sfcevap	I	0		Coupling between data assimilation and	init_mode=5
				model parameters controlling surface	
				evaporation (bare soil and plants). Choosing	
				values > 0 requires	
				itype_vegetation_cycle=2 (in extpar_nml):	
				0: off	
				1: use time-filtered T2M bias provided by	
				the soil moisture analysis	
				2: use in addition a time-filtered RH	
				increment at the lowest model level (requires	
				assimilation of RH2M)	
				3: as option 2, but use a time-filtered	
				temperature increment at the lowest model	
				level instead of the T2M bias provided by	
				the SMA (requires assimilation of T2M and	
				RH2M)	
				4: as option 3, but uses the minimum	
				evaporation resistance (default set by	
				cr_bsmin) instead of c_soil for adaptive	
				tuning of bare-soil evaporation	

Parameter	Type	Default	Unit	Description	Scope
icpl_da_snowalb	I	0		Coupling between temperature bias inferred from data assimilation and snow albedo	init_mode=5; icpl da sfcevap=3
				0: off	icpi_da_sicevap=3
				1: on; requires assimilation of T2M and	
				cycling of a time-filtered temperature	
				increment at the lowest model level	
				2: as option 1, but additional adaptation of	
				sea-ice albedo	
icpl_da_skinc	I	0		Coupling between bias of diurnal	init_mode=5
				temperature amplitude inferred from data	
				assimilation and skin conductivity 0: off	
				1: on; requires assimilation of T2M and	
				cycling of a time-filtered weighted (with	
				cosine of local time) temperature increment	
				at the lowest model level	
				2: as option 1, but additional adaptation of	
	_			soil heat conductivity and heat capacity	
icpl_da_sfcfric	I	0		Coupling between data assimilation and	$init_mode=5$
				model parameters controlling surface friction (roughness length and SSO blocking	
				tendency at lowest level).	
				0: off	
				1: on; requires assimilation of 10m-winds and	
				cycling a time-filtered assimilation increment	
				of absolute wind speed at the lowest model	
				level; moreover, it is strongly recommended	
				to use extpar data with full SSO information	
				(generated in Feb. 2022 or later). Coupling is masked in large parts of Russia where the	
				assimilation of 10m winds is blacklisted in	
				the operational settings of 2022	
				2: on without masking over Russia, to be	
				combined with 10m wind assimilation	
				without blacklisting	
$icpl_da_tkhmin$	I	0		Coupling between data assimilation and	init_mode=5,
				near-surface reduction profile for minimum	icpl_da_sfcevap > 2 and
				vertical diffusion of heat 0: off	$icpl_da_skinc > 0$
				0: on 1: on	
	1		1	1. 011	

Parameter	Type	Default	Unit	Description	Scope
adjust_tso_tsnow	L	.FALSE.		If .TRUE., apply T increments for lowest model level also to snow and upper soil layers (full to upper 3 cm, half to 3-9 cm layer). Requires assimilation of T2M to be meaningful	init_mode=5
lconsistency_checks	L	.TRUE.		If .FALSE., consistency checks for Analysis and First Guess fields are skipped. On default, checks are performed for uvidOfHGrid and validity time.	init_mode=1,3,4,5,6
l_coarse2fine_mode	L(n_dom)	.FALSE.		If true, apply corrections for coarse-to-fine mesh interpolation to wind and temperature	
lp2cintp_incr	L(n_dom)	.FALSE.		If true, interpolate atmospheric data assimilation increments from parent domain. Can be specified separately for each nested domain; setting the first (global) entry to true activates the interpolation for all nested domains.	$init_mode=5,6$
lp2cintp_sfcana	L(n_dom)	.FALSE.		If true, interpolate atmospheric surface analysis data from parent domain. Can be specified separately for each nested domain; setting the first (global) entry to true activates the interpolation for all nested domains.	$init_mode=5,6$
ltile_init	L	.FALSE.		True: initialize tiled surface fields from a first guess coming from a run without tiles. Along coastlines and lake shores, a neighbor search is executed to fill the variables on previously non-existing land or water points with reasonable values. Should be combined with ltile coldstart = .TRUE.	$init_mode{=}1,\!5,\!6$
ltile_coldstart	L	.FALSE.		If true, tiled surface fields are initialized with tile-averaged fields from a previous run with tiles. A neighbor search is applied to subgrid-scale ocean points for SST and sea-ice fraction.	init_mode=1,5,6
lcouple_ocean_coldstart	L	.TRUE.		If true, initialize newly defined land points from ICON-O with default T and Q profiles.	is_coupled_mode=T

Parameter	Type	Default	Unit	Description	Scope
lvert_remap_fg	L	.FALSE.		If true, vertical remapping is applied to the	$init_mode=5,6$
				atmospheric first-guess fields, whereas the	
				analysis increments remain unchanged. The	
				number of model levels must be the same for	
				input and output fields, and the z_ifc (alias	
				HHL) field pertaining to the input fields	
				must be appended to the first-guess file.	
ifs2icon_filename	$\mid C \mid$			Filename of IFS2ICON input file, default	init_mode=2
				" <path>ifs2icon_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords</idom>	
				<pre><path> which will be substituted by</path></pre>	
				model_base_dir, as well as nroot, nroot0,	
				jlev, and idom defining the current patch.	
$dwdfg_filename$	ightharpoons C			Filename of DWD first-guess input file,	$ $ init_mode=1,3,5,6
				default	
				" <path>dwdFG_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords</idom>	
				<pre><path> which will be substituted by</path></pre>	
				model_base_dir, as well as nroot, nroot0,	
				jlev, and idom defining the current patch.	
${ m dwdana_filename}$	$\mid C \mid$			Filename of DWD analysis input file, default	$ $ init_mode=1,3,5,6
				" <path>dwdana_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords</idom>	
				<pre><path> which will be substituted by</path></pre>	
				model_base_dir, as well as nroot, nroot0,	
				jlev, and idom defining the current patch.	
filetype	I	-1 (undef.)		One of CDI's FILETYPE_XXX constants.	
				Possible values: 2 (=FILETYPE_GRB2), 4	
				(=FILETYPE_NC2). If this parameter has	
				not been set, we try to determine the file	
				type by its extension "*.grb*" or ".nc".	

Parameter	Type	Default	Unit	Description	Scope
check_fg(jg)%list	C(:)			In ICON a small subset of first guess input	$init_mode=1,5,6$
				fields is declared 'optional', meaning that	
				they are read in if present, but they are not	
				mandatory to start the model. By adding	
				optional fields to this list, they become	
				mandatory for domain jg, such that the	
				model aborts if any of them is missing. This	
				list may include a subset of the optional first	
				guess fields, or even the entire set of first	
				guess fields. On default this list is empty,	
				such that optional fields experience a	
				cold-start initialization if they are missing	
(,) 24-	51()			and the model does not abort.	
check_ana(jg)%list	C(:)			List of mandatory analysis fields for domain	$ $ init_mode=1,5,6
				jg that must be present in the analysis file.	
				If these fields are not found, the model	
				aborts. For all other analysis fields, the	
				FG-fields will serve as fallback position.	
ana_varnames_map_ file	C			Dictionary file which maps internal variable	
				names onto GRIB2 shortnames or NetCDF	
				var names. This is a text file with two	
				columns separated by whitespace, where left	
				column: ICON variable name, right column:	
	_			GRIB2 short name or NetCDF var name.	
itype_vert_expol	I	1		Type of vertical extrapolation of initial data:	Requires: ivctype = 2;
				1: Linear extrapolation (standard)	$l_{\text{limited_area}} = .FALSE.$
				2: Blend of linear extrapolation and simple	
				climatology. Intended for upper-atmosphere	
				simulations and specific settings can be	
				found in upatmo_nml.	

Defined and used in: src/namelists/mo_initicon_nml.f90

2.19. interpol_nml

Parameter	Type	Default	Unit	Description	Scope
l_intp_c2l	L	.TRUE.		DEPRECATED	
l_mono_c2l	L	.TRUE.		Monotonicity can be enforced by demanding	
				that the interpolated value is not higher or	
				lower than the stencil point values.	

Parameter	Type	Default	Unit	Description	Scope
llsq_high_consv	L	.TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order	
				transport	
lsq_high_ord	I	3		polynomial order of high order least-squares	$ihadv_tracer > 2$
				reconstruction for tracer transport	
				1: linear	
				2: quadratic	
		DAT OF		3: cubic	
llsq_lin_consv	L	.FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order	
1 (11 141	D	0.0		(linear) transport	
nudge_efold_width	R	2.0		e-folding width (in units of cell rows) for	
				lateral boundary nudging coefficient. This switch and the following two pertain to	
				one-way nesting and limited-area mode	
nudge max coeff	\mathbb{R}	0.02		Maximum relaxation coefficient for lateral	
nudge_max_coen	10	0.02		boundary nudging. Recommended range of	
				values for limited-area mode is $0.06 - 0.075$.	
				The range of validity is $[0 - 0.2]$.	
				Please note that the user value is internally	
				multiplied by 5.	
nudge zone width	I	8		Total width (in units of cell rows) for lateral	
				boundary nudging zone. For the limited-area	
				mode, a minimum of 10 is recommended. If	
				< 0 the patch boundary depth index is	
				used.	
rbf dim c2l	I	10		stencil size for direct lon-lat interpolation: 4	
				= nearest neighbor, $13 =$ vertex stencil, 10	
				= edge stencil.	
rbf_scale_mode_ll	I	2		Specifies, how the RBF shape parameter is	
				determined for lon-lat interpolation.	
				1 : lookup table based on grid level	
				2 : determine automatically.	
				So far, this routine only estimates the	
				smallest value for the shape parameter for	
				which the Cholesky is likely to succeed in	
				floating point arithmetic. 3: explicitly set	
				shape parameter in each output namelist	
				(namelist parameter	
				output_nml::rbf_scale, p. 92).	
rbf_vec_kern_c	I	1		Kernel type for reconstruction at cell centres:	

Parameter	Type	Default	Unit	Description	Scope
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_e	I	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_ll	I	1		Kernel type for reconstruction at	
				lon-lat-points:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_v	I	1		Kernel type for reconstruction at vertices:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_scale_c	R(n_dom)	resolution-		Scale factor for RBF reconstruction at cell	
		dependent		centres	
rbf_vec_scale_e	R(n_dom)	resolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf_vec_scale_v	R(n_dom)	resolution-		Scale factor for RBF reconstruction at	
		dependent		vertices	
support_baryctr_intp	L	.FALSE.		Flag. If .FALSE. barycentric interpolation is	
				replaced by a fallback interpolation.	
lreduced_nestbdry_stencil	L	.FALSE.		Flag. If .TRUE. then the nest boundary	
				points are taken out from the lat-lon	
				interpolation stencil.	

Defined and used in: src/namelists/mo_interpol_nml.f90

2.20. io_nml

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	L	.FALSE.		Sync output stream with file on disk after	
				each timestep	
dt_{diag}	R	86400.	s	diagnostic integral output interval	run_nml:output =
					"totint"
${ m dt_checkpoint}$	R	0	s	Time interval for writing restart files. Note	output /= "none"
				that if the value of dt_checkpoint resulting	(run_nml)
				from model default or user's specification is	
				longer than time_nml:dt_restart, it will be	
				reset (by the model) to dt_restart so that at	
				least one restart file is generated during the	
				restart cycle.	

Parameter	Type	Default	Unit	Description	Scope
inextra_2d	I	0		Number of extra 2D Fields for	$dynamics_nml:iequations =$
				diagnostic/debugging output.	3
inextra_3d	I	0		Number of extra 3D Fields for	$dynamics_nml:iequations =$
				diagnostic/debugging output.	3
lflux_avg	L	.TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average	
				values	
				from the beginning of the run, except of	
				TOT_PREC that would be accumulated	
itype_pres_msl	I	1		Specifies method for computation of mean	
				sea level pressure (and geopotential at	
				pressure levels below the surface).	
				1: GME-type extrapolation,	
				2: stepwise analytical integration,	
				3: current IFS method,	
				4: IFS method with consistency correction	
				5: New DWD method constituting a mixture	
				between IFS and old GME method	
				(departure level for downward extrapolation	
				between 10 m and 150 m AGL depending on	
				elevation)	
itype_rh	I	1		Specifies method for computation of relative	
				humidity	
				1: WMO-type: water only	
				$(e_s=e_s_water),$	
				2: IFS-type: mixed phase (water and ice),	
	5, ,			3: IFS-type with clipping (rh ≤ 100)	
gust_interval	R(n_dom)	3600.	S	Interval over which wind gusts are	iforcing=3
114 1 1 1	D(1)	2000		maximized	
celltracks_interval	R(n_dom)	3600.	S	Interval over which celltrack variables are	iforcing=3
				maximized (lpi_max, uh_max,	
				vorw_ctmax, w_ctmax, tcond_max,	
dt colltrooles	D(n dom)	120		tcond10_max, dbz_ctmax)	iforcing=3
dt_celltracks	R(n_dom)	120.	S	Interval at which celltrack variables except	norcing=5
				lpi (uh, vorw, w_ct, tcond, tcond10) are	
				calculated to determine uh_max,	
				vorw_ctmax, w_ctmax, tcond_max, tcond10_max and dbz_ctmax	
dt lpi	R(n dom)	180	s	Interval at which lpi is calculated for	iforcing=3
dv_ipi	10(11_00111)	100.	۵	determining lpi max	noronig—9
				devermining ipi_max	

Parameter	Type	Default	Unit	Description	Scope
dt_hailcast	R(n_dom)	180.	S	Interval at which hailcast is called for	iforcing=3
				determining dhail_mx, dhail_sd, dhail_av	
wdur_min_hailcast	R(n_dom)	900.	s	Minimal updraft persistence per column for	iforcing=3
				hailcast to be activated	
dt radar dbz	R(n dom)	120.	s	Interval at which radar reflectivity is	iforcing=3
	, _ /			calculated for determining dbz ctmax	
precip interval	C(n dom)	"P01Y"		Interval over which precipitation variables	iforcing=3
				are accumulated (rain gsp, snow gsp,	
				graupel gsp, ice gsp, hail gsp, prec gsp,	
				rain con, snow con, prec con, tot prec,	
				prec con rate avg, prec gsp rate avg,	
				tot prec rate avg)	
totprec d interval	C(n dom)	"PT01H"		Interval over which the special precipitation	iforcing=3
				variable tot prec d is accumulated, which	
				can be output alongside or alternatively to	
				tot prec and enables a different	
				accumulation time for this field than	
				precip interval.	
maxt_interval	C(n dom)	"PT06H"		Interval over which max/min 2-m	iforcing=3
_				temperatures are calculated	
runoff interval	C(n_dom)	"P01Y"		Interval over which surface and soil water	iforcing=3
_				runoff are accumulated	
sunshine_interval	C(n dom)	"P01Y"		Interval over which sunshine duration is	iforcing=3
-				accumulated	
itype_dursun	I	0		Type of sunshine. 0 for WMO standard and	iforcing=3
v I _				for sunshine duration counted if $>120 \text{W/m}^2$.	
				In the case of type 1 (this is the MeteoSwiss	
				definition) the sunshine duration is counted	
				only if $> 200 \mathrm{W/m^2}$	
wshear uv heights	R(max wshear)	1000.0, 3000.0,		List of height levels (m AGL) for which the	iforcing=3
	max wshear=10	6000.0		vertical windshear output variables	
				"wshear u" and "wshear v" are to be	
				output.	
srh heights	R(max srh)	1000.0, 3000.0		List of height levels (m AGL) for which the	iforcing=3
	$\begin{array}{c c} & \overline{\text{max}} & \overline{\text{srh}} = 10 \end{array}$	•		storm relative helicity "srh" is to be output.	
	_			"srh" is a vertical integral from the ground to	
				a certain height. The listed height levels	
				denote different upper bounds for this	
				integration.	

Parameter	Type	Default	Unit	Description	Scope
echotop_meta	TYPE(n_dom)			Derived type to define properties of radar reflectivity echotops for each domain. Two types of echotops are available: minimum	iforcing=3
This type contains:				pressure ('echotop') and maximum height ('echotopinm') during a given time interval	
echotop_meta(1:n_dom)%time_interval	R(1)	3600.0	S	where a given reflectivity threshold is exceeded. Takes effect if 'echotop' and/or	
echotop_meta(1:n_dom)%dbzthresh	R(max_echotop)	(/18.0,25.0,35.0/)	dBZ	'echotopinm' is/are present in the ml_varlist of any domain-specific namelist	
	max_echotop=10			output_nml. The derived type contains the echotop properties which are listed to the left, along with their defaults and units: time_interval: time interval [s] over which echotops are calculated dbzthresh: list of reflectivity thresholds [dBZ] for which echotops shall be computed You have to specify properties for each domain separately, e.g. echotop_meta(1)%time_interval=3600.0 echotop_meta(1)%dbzthresh=19.0,25.0,35.0,46.0 echotop_meta(2)%time_interval=1800.0 echotop_meta(2)%dbzthresh=27.0,36.0	
output_nml_dict	C	, ,		File containing the mapping of variable names to the internal ICON names. May contain the keyword <path> which will be substituted by model_base_dir. The format of this file: One mapping per line, first the name as given in the ml_varlist, hl_varlist, pl_varlist or il_varlist of the output_nml namelists, then the internal ICON name, separated by an arbitrary number of blanks. The line may also start and end with an arbitrary number of blanks. Empty lines or lines starting with # are treated as comments. Names not covered by the mapping are used as they are.</path>	output_nml namelists

Parameter	Type	Default	Unit	Description	Scope
linvert_dict	L	.FALSE.		If .TRUE., columns in dictionary file	
				output_nml_dict are evaluated in inverse	
				order.	
				This allows using the same dictionary file as	
				for input (ana_varnames_map_file in	
				initicon nml).	
netcdf dict	\mathbf{C}	, ,		File containing the mapping from internal	output_nml namelists,
_				names to names written to NetCDF. May	NetCDF output
				contain the keyword <path> which will be</path>	_
				substituted by model_base_dir.	
				The format of this file:	
				One mapping per line, first the name written	
				to NetCDF, then the internal name,	
				separated by an arbitrary number of blanks	
				(inverse to the definition of	
				output nml dict). The line may also start	
				and end with an arbitrary number of blanks.	
				Empty lines or lines starting with $\#$ are	
				treated as comments.	
				Names not covered by the mapping are	
				output as they are.	
				Note that the specification of output	
				variables, e.g. in ml_varlist, is independent	
				from this renaming, see the namelist	
				parameter output_nml_dict for this.	
lnetcdf flt64 output	L	.FALSE.		If .TRUE. floating point variable output in	
metear_moor_odeput				NetCDF files is written in 64-bit instead of	
				32-bit accuracy.	
restart file type	I	4		Type of restart file. One of CDI's	
restart_ine_type	1	1		FILETYPE XXX. So far, only 4	
				(=FILETYPE NC2) is allowed	
restart write mode	$ ight _{\mathrm{C}}$,, ,,		Restart read/write mode.	
restart_write_mode				Allowed settings (character strings!) are	
				listed below.	
nrestart streams	I	1		When using the restart write mode	restart_write_mode =
mestart_streams	1	1		"dedicated procs multifile", it is possible to	"dedicated procs multifile
				split the restart output into several files, as if	dedicated procs martifile
				nrestart_streams * num_io_procs restart	
				processes were involved. This speeds up the	
				read-in process, since all the files may then	
				be read in parallel.	

Parameter	Type	Default	Unit	Description	Scope
checkpoint_on_demand	L	F		.TRUE. allows checkpointing (followed by	Combination with
				stopping) during runtime triggered by a file	${\tt restart_write_mode} =$
				named 'stop_icon' in the working directory.	"joint procs multifile"
				In addition, a file named	is strongly recommended
				'ready_for_checkpoint' is generated in the	
				working directory once the model is ready	
				for checkpointing, i.e. after the end of the	
				setup phase, or, if applicable, the end of the	
				IAU phase.	
lmask_boundary	L(n_dom)	F		Set to .TRUE., if interpolation zone should	
				be masked in triangular output.	

2.20.1. Restart read/write mode:

Allowed settings for restart_write_mode are:

"sync"

'Old' synchronous mode. PE # 0 reads and writes restart files. All other PEs have to wait.

"async"

Asynchronous restart writing: Dedicated PEs (num_restart_proc > 0) write restart files while the simulation continues. Restart PEs can only parallelize over different patches. — Read-in: PE # 0 reads while other PEs have to wait.

"joint procs multifile"

All worker PEs write restart files to a dedicated directory. Therefore, the directory itself is called the restart file. The information is stored in a way that it can be read back into the model independent from the processor count and the domain decomposition. — Read-in: All worker PEs read the data in parallel.

"dedicated procs multifile"

In this case, all the restart data is first transferred to memory buffers in dedicated restart writer PEs. After that, the work processes carry on with their work immediately, while the restart writers perform the actual restart writing asynchronously. Restart PEs can parallelize over patches and horizontal indices. — Read-in: All worker PEs read the data in parallel..

,, ,,

Fallback mode.

If num_restart_proc == 0 (parallel_nml), then this behaves like ''sync'', otherwise like ''async''.

2.20.2. Some notes on the output of optional diagnostics:

 \blacksquare How can I switch on the output of one of the available diagnostics?

Let us assume that you would like to output potential vorticity (see table of available diagnostics below) on model levels. Simply add the following element to the

```
desired output namelist (see 2.34) in your run script:
&output_nml
...
ml_varlist = ..., 'pv'
...
/
```

Please note that the output of some diagnostics is restricted to the NWP mode (iforcing = inwp = 3, see column "Scope" in the table 22 below).

■ Which optional diagnostics are currently available for output?

Here is a table of the available diagnostics and some additional information on them.

Table 22: Optional diagnostics (last update Aug. 2020)

Short name*	Long name	Unit	Scope	Shape	Specifications in io_nml	Place of computation in source code**
rh	relative humidity	%	iforcing = inwp $ = 3$	3d	itype_rh	[1]
pv	potential vorticity	K m2 kg-1 s-1	iforcing = inwp	3d	-	[2]
sdi2	supercell detection index (SDI2)	s-1	iforcing = inwp	2d	-	[2]
lpi	lightning potential index (LPI)	J kg-1	iforcing = inwp	2d	-	[2]
lpi_max	lightning potential index, maximum during prescribed time interval	J kg-1	iforcing = inwp	2d	celltracks_interval dt_lpi	[2]
ceiling	ceiling height	m	iforcing = inwp	2d	-	[2]
hbas_sc	cloud base above msl, shallow convection	m	iforcing = inwp	2d	-	[2]
htop_sc	cloud top above msl, shallow convection	m	iforcing = inwp	2d	-	[2]
twater	total column-integrated water	kg m-2	iforcing = inwp	2d	_	[2]
q_sedim	specific content of precipitation particles	kg kg-1	iforcing = inwp	2d	-	[2]
tcond_max	total column-integrated condensate, maximum during prescribed time interval	kg m-2	iforcing = inwp	2d	celltracks_interval dt_celltracks	[2]
tcond10_max	total column-integrated condensate above $z(T=-10~{\rm deg}C)$, maximum during prescribed time interval	kg m-2	iforcing = inwp	2d	celltracks_interval dt_celltracks	[2]
uh_max	updraft helicity, maximum during prescribed time interval	m2 s-2	iforcing = inwp	2d	celltracks_interval dt_celltracks	[2]
vorw_ctmax	maximum rotation amplitude during prescribed time interval	s-1	iforcing = inwp	2d	celltracks_interval dt_celltracks	[2]

Table 22: Optional diagnostics (last update Aug. 2020)

Short name*	Long name	Unit	Scope	Shape	Specifications in io_nml	Place of computation in source code**
w_{ctmax}	maximum updraft track during prescribed time interval	m s-1	iforcing = inwp	2d	celltracks_interval dt_celltracks	[2]
dbz	radar reflectivity	dBZ	iforcing = inwp	3d	-	[2]
${\rm dbz_cmax}$	column maximum reflectivity	dBZ	iforcing = inwp	2d	-	[2]
$\rm dbz_850$	reflectivity in approx. 850 hPa	dBZ	iforcing = inwp	2d	-	[2]
dbz_ctmax	column and time maximum reflectivity during prescribed time interval	dBZ	iforcing = inwp	2d	celltracks_interval dt_radar_dbz	[2]
echotop	minimum pressure of exceeding radar reflectivity threshold during prescribed time interval	Pa	if orcing = in wp	3d	celltracks_interval echotop_meta	[2]
echotopinm	maximum height of exceeding radar reflectivity threshold during prescribed time interval	m	iforcing = inwp	3d	celltracks_interval echotop_meta	[2]
$pres_msl$	mean sea level pressure	Pa	-	2d	itype_pres_msl	[3]
omega	vertical (pressure) velocity	Pa s-1	-	3d	-	[2]
tot_prec_d	total accumulated precipitation during a different time interval compared to tot_prec	kg m-2	iforcing = inwp	2d	$totprec_d_interval$	[1], [4], [5]
lapse_rate	temperature gradient between 500 and 850 hPa	K m-1	iforcing = inwp	2d	-	[2]
wshear_u	difference of U component between certain heights ("wshear_uv_heights") AGL and the lowest model level	m s-1	iforcing = inwp	3d	wshear_uv_heights	[2]
wshear_v	difference of V component between certain heights ("wshear_uv_heights") AGL and the lowest model level	m s-1	iforcing = inwp	3d	wshear_uv_heights	[2]
srh	storm relative helicity considering storm motion estimate of Bunkers et al. (2000) for right-movers. srh is a vertical intergal up to a certain height AGL and may be output for different upper bounds ("srh_heights").	m2 s-2	iforcing = inwp	3d	srh_heights	[2]

Table 22: Optional diagnostics (last update Aug. 2020)

Short name*	Long name	Unit	Scope	Shape	Specifications in io_nml	Place of computation in source code**
cape_mu	approximate value of the most unstable CAPE considering a test parcel from the height level with largest equivalent potential temperature between the ground and 3000 m AGL	J kg-1	iforcing = inwp	2d	-	[2]
cin_mu	approximate value of the most unstable CIN consistent to cape_mu	J kg-1	iforcing = inwp	2d	-	[2]

^{*} To be used in output nml.

Current information: optional diagnostics vor_u and vor_v have been removed, please see section B, Change 2023-06-13 for more information.

■ Where can I find more about the computation of the diagnostics in the source code?

As for the ICON model component of the non-hydrostatic atmosphere:

Each optional diagnostic has its own switch in the source code of ICON which is set to .TRUE. if the diagnostic is found in one of the output_nml in your run script. This configuration can be found in the module:

/src/configure_model/mo_io_config.

Further information on the metadata of the diagnostics can be found in their allocation area. For the diagnostics that are meant for the NWP mode of ICON (iforcing = inwp = 3, see column "Scope" in table 22 above), the allocation takes place in:

/src/atm_phy_nwp/mo_nwp_phy_state.

Optional diagnostics with unrestricted scope are allocated in:

 $/{\tt src/atm_dyn_iconam/mo_nonhydro_state}.$

The job control of the computation and output of most of the optional diagnostics is organized by the post-processing scheduler:

/src/atm_dyn_iconam/mo_pp_scheduler,

/src/atm_dyn_iconam/mo_pp_tasks,

and integrated into the main time loop in:

/src/atm_dyn_iconam/mo_nh_stepping.

The job control of a small portion of the diagnostics is organized in:

 $/{\tt src/atm_phy_nwp/mo_nwp_diagnosis}.$

Finally, the computation of the individual diagnostics can be found in the following modules (the assignment of the keys, [1], [2], etc., to the respective diagnostic is found in the column "Place of computation in source code" of table 22 above):

^{**} The keys, [1], [2], etc., are itemized under the following point.

- [1] /src/atm_phy_nwp/mo_util_phys
- [2] /src/atm_phy_nwp/mo_opt_nwp_diagnostics
- [3] /src/atm_phy_nwp/mo_nh_diagnose_pmsl
- [4] /src/atm_phy_nwp/mo_nwp_gscp_interface
- [5] /src/atm_phy_nwp/mo_nwp_diagnosis

Defined and used in: src/namelists/mo_io_nml.f90

2.21. les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5)

Parameter	Type	Default	Unit	Description	Scope
sst	R	300	K	sea surface temperature for idealized LES	isrfc_type=5,4
				simulations	
shflx	R	0.1	${ m Km/s}$	Kinematic sensible heat flux at surface	$isrfc_type = 2$
lhflx	R	0	m/s	Kinematic latent heat flux at surface	$isrfc_type = 2$
isrfc_type	I	1		surface type	
				0 = No fluxes and zero shear stress	
				1 = TERRA land physics	
				2 = fixed surface fluxes	
				3 = fixed buoyancy fluxes	
				4 = RICO test case	
				5 = fixed SST	
				$6 = \text{time varying SST and qv_s case with}$	
				prescribed roughness length for	
				semi-idealized setups	
ufric	R	-999	m/s	friction velocity for idealized LES	
				simulations; if < 0 then it is automatically	
				diagnosed	
psfc	R	-999	Pa	surface pressure for idealized LES	
				simulations; if < 0 then it uses the surface	
				pressure from dynamics	
min_sfc_wind	R	1.0	m/s	Minimum surface wind for surface layer	
				useful in the limit of free convection	
is_dry_cbl	L	.FALSE.		switch for dry convective boundary layer	
				simulations	
smag_constant	R	0.23		Smagorinsky constant	
km_min	R	0.0		Minimum turbulent viscosity	
smag_coeff_type	I	1		choose type of coefficient setting:	
				1 = Smagorinsky model (default)	
				$2 = \text{set coeff. externally by Km}_{ext}$	
				Kh_ext (for testing purposes, e.g. Straka et	
				al. (1993))	

Parameter	Type	Default	Unit	Description	Scope
Km_ext	R	75.0	$\mathrm{m^2/s}$	externally set constant kinematic viscosity	smag_coeff_type=2
Kh_ext	R	75.0	$\mathrm{m^2/s}$	externally set constant diffusion coeff.	$smag_coeff_type=2$
max_turb_scale	R	300.0		Asymtotic maximum turblence length scale	
				(useful for coarse grid LES and when grid is	
				vertically stretched)	
turb_prandtl	R	0.333333		turbulent Prandtl number	
bflux	R	0.0007	$\mathrm{m^2/s^3}$	buoyancy flux for idealized LES simulations	isrfc_type=3
				(Stevens 2007)	
tran_coeff	R	0.02	m/s	transfer coefficient near surface for idealized	isrfc_type=3
				LES simulation (Stevens 2007)	
vert_scheme_type	I	2		type of time integration scheme in vertical	
				diffusion	
				1 = explicit	
				2 = fully implicit	
sampl_freq_sec	R	60	S	sampling frequency in seconds for statistical	
				(1D and 0D) output	
avg_interval_sec	R	900	S	(time) averaging interval in seconds for 1D	
				statistical output	
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	L	.FALSE.		Control for the statistical output in LES	
				mode	
les_metric	L	.FALSE.		Switch to turn on Smagorinsky diffusion	
				with 3D metric terms to account for	
				topography	

Defined and used in: src/namelists/mo_les_nml.f90

2.22. limarea_nml (Scope: I_limited_area=.TRUE. in grid_nml)

Parameter	Type	Default	Unit	Description	Scope
itype_latbc	I	0		Type of lateral boundary nudging.	
				0: constant lateral boundary conditions	
				derived from the initial conditions,	
				1: time-dependent lateral boundary	
				conditions provided by an external source	
				(IFS, COSMO or a coarser-resolution ICON	
				run)	

Parameter	Type	Default	Unit	Description	Scope
dtime_latbc	R	-1.0	S	Time difference between two consecutive boundary data. (Upper bound for asynchronous read-in: 1 day = 86400 s.)	$itype_latbc \ge 1$
init_latbc_from_fg	L	.FALSE.		If .TRUE., take lateral boundary conditions for initial time from first guess (or analysis) field	$itype_latbc \ge 1$
nudge_hydro_pres	L	.TRUE.		If .TRUE., hydrostatic pressure is used to compute lateral boundary nudging (recommended if boundary conditions contain hydrostatic pressure, which is usually the case)	$itype_latbc \ge 1$
fac_latbc_presbiascor	R	0.		Scaling factor for pressure bias correction at lateral boundaries. Requires running in data assimilation cycle. Recommended value for activating the option is 1.	$\begin{array}{l} itype_latbc \geq 1, \\ init_mode=5 \end{array}$
latbc_filename	C			Filename of boundary data input file, these files must be located in the latbc_path directory. Default: "prepiconR <nroot>B<jlev>_<y><m><d><h> The filename may contain keyword tokens (day, hour, etc.) which will be automatically replaced during the run-time. See the table below for a list of allowed keywords.</h></d></m></y></jlev></nroot>	$egin{aligned} & ext{itype_latbc} = 1 \ & ext{nc"}. \end{aligned}$
latbc_path latbc_boundary_grid	CC	·./',		Absolute path to boundary data. Grid file defining the lateral boundary. Empty string means: whole domain is read for the lateral boundary. This NetCDF grid file must contain two integer index arrays: int global_cell_index(cell), int global_edge_index(edge), both with attributes nglobal which contains the global size size of the non-sparse cells and edges.	$itype_latbc = 1$ $itype_latbc = 1$

Parameter	Type	Default	Unit	Description	Scope
latbc_varnames_map_ file	С			Dictionary file which maps internal variable	num_prefetch_proc=1
				names onto GRIB2 shortnames or NetCDF	
				var names. This is a text file with two	
				columns separated by whitespace, where left	
				column: ICON variable name, right column:	
				GRIB2 short name. This list contains	
				variables that are to be read asynchronously	
				for boundary data nudging in a HDCP2	
				simulation. All new boundary variables that	
				in the future, would be read asynchronously.	
				Need to be added to text file dict.latbc in	
				run folder.	
latbc_contains_qcqi	L	.TRUE.		Set to .FALSE. if there is no qc, qi in latbc	
				data.	
nretries	I	0		If LatBC data is unavailable: number of	
				retries	
retry_wait_sec	I	10		If LatBC data is unavailable: idle wait	
				seconds between retries	

Defined and used in: src/namelists/mo_limarea_nml.f90

Keyword substitution in boundary data filename (latbc_filename):

<y></y>	substituted by year (four digits)
<m></m>	substituted by month (two digits)
<d></d>	substituted by day (two digits)
<h>></h>	substituted by hour (two digits)
<min></min>	substituted by minute (two digits)
<sec></sec>	substituted by seconds (two digits)
<ddhhmmss></ddhhmmss>	substituted by a <i>relative</i> day-hour-minute-second string.
<dddhh></dddhh>	substituted by a <i>relative</i> (three-digit) day-hour string.

2.23. Ind_nml

Parameter	Type	Default	Unit	Description	Scope
nlev_snow	I	2		number of snow layers	$lmulti_snow=.true.$
ntiles	I	1		number of tiles	
zml_soil	R(:)	0.005, 0.02,	m	soil full layer depths	$\mathrm{init_mode} = 2, 3$
		0.06,			
		0.18, 0.54, 1.62,			
		4.86, 14.58			

Parameter	Type	Default	Unit	Description	Scope
czbot_w_so	R	2.5	m	thickness of the hydrological active soil layer	
lsnowtile	L	.FALSE.		.TRUE.: consider snow-covered and	ntiles>1
				snow-free tiles separately	
$frlnd_thrhld$	R	0.05		fraction threshold for creating a land grid	ntiles>1
_				point	
frlake thrhld	R	0.05		fraction threshold for creating a lake grid	ntiles>1
_				point	
frsea thrhld	R	0.05		fraction threshold for creating a sea grid	ntiles>1
_				point	
frlndtile thrhld	R	0.05		fraction threshold for retaining the	ntiles>1
_				respective tile for a grid point	
lmelt	L	.TRUE.		.TRUE. soil model with melting process	
lmelt_var	ho L	.TRUE.		.TRUE. freezing temperature dependent on	
				water content	
lana rho snow	ho L	.TRUE.		.TRUE. take rho snow-values from analysis	init mode=1
				file	
lmulti snow	L	.FALSE.		.TRUE. for use of multi-layer snow model	
5				(default is single-sayer scheme)	
l2lay rho snow	L	.FALSE.		.TRUE. predict additional snow density for	lmulti snow = .FALSE.
121ay _1110_5110W		.TTESE.		upper part of the snowpack, having a	
				maximum depth of max toplaydepth	
max toplaydepth	R	0.25	m	maximum depth of uppermost snow layer	lmulti snow=.TRUE. or
max_topiaydepth		0.20	111	maximum depth of appermost show layer	l2lay rho snow=.TRUE.
idiag_snowfrac	I	1		Type of snow-fraction diagnosis:	121ay_1110_S110w=.11toE.
idiag_showhac		1		1 = based on SWE only	
				2 = more advanced method used	
				operationally	
				20 = same as 2, but with artificial reduction	
				of snow fraction in case of melting snow	
				(should be used only in combination with	
				lsnowtile=.TRUE.	
itana anamaran	т	2		Tuning of snow evaporation in vegetated	lsnowtile=.TRUE.
itype_snowevap	I				ISHOWTHE—. I RUE.
				areas:	
				1: Tuning turned off	
				2: First level of tuning without additional control variables	
				3: Second level of tuning with additional I/O	
				variables for snow age and maximum snow	
				depth (should be used only if these	
				additional variables are avaliable from the	
				DWD assimilation cycle)	

Parameter	Type	Default	Unit	Description	Scope
itype_lndtbl	I	3		Table values used for associating surface	
				parameters to land-cover classes:	
				1 = defaults from extpar (GLC2000 and	
				GLOBCOVER2009)	
				2 = Tuned version based on IFS values for	
				globcover classes (GLOBCOVER2009 only)	
				3 = even more tuned operational version	
				(GLOBCOVER2009 only)	
				4 = tuned version for new bare soil	
				evaporation scheme (itype evsl=4)	
itype_root	I	2		type of root density distribution	
v				1 = constant	
				2 = exponential	
itype evsl	I	2		type of bare soil evaporation	
				parameterization	
				2 = BATS scheme, Dickinson (1984)	
				3 = ISBA scheme, Noilhan and Planton	
				(1989)	
				4 = Resistance-based formulation by Schulz	
				and Vogel (2020)	
				5 = same as 4, but uses the minimum	
				evaporation resistance (default set by	
				cr bsmin) instead of c soil for tuning; the	
				namelist parameter c soil is ignored in this	
				case, and a value of 2 is used internally	
itype trvg	I	2		type of vegetation transpiration	
10ypc_01vg	1	2		parameterization	
				2 = BATS scheme, Dickinson (1984)	
				3 = Extended BATS scheme with additional	
				prognostic variable for integrated plant	
				transpiration since sunrise; should be used	
				only with an appropriate first guess for this	
				variable coming from the DWD assimilation	
				cycle	

Parameter	Type	Default	Unit	Description	Scope
itype_canopy	I	1		Type of canopy parameterization with	
				respect to surface energy balance	
				1 = Surface energy balance equation solved	
				at the ground surface, canopy energetically	
				not represented	
				2 = Skin temperature formulation by Schulz	
				and Vogel (2020), based on Viterbo and	
				Beljaars (1995)	
cskinc	R	-1.0	${ m Wm^{-2}K^{-1}}$	Skin conductivity	$itype_canopy = 2$
				For cskinc < 0 , an external parameter field	
				SKC is read and used	
				For cskinc > 0, this globally constant value	
				is used in the whole model domain	
				Reasonable range: 10.0 – 1000.0	
tau_skin	R	3600.	S	Relaxation time scale for the computation of	$itype_canopy = 2$
				the skin temperature	
lterra_urb	L	.FALSE.		If .TRUE., activate urban model	
				TERRA URB by Wouters et al. (2016,	
				2017)	
				(see Schulz et al. 2023)	
lurbalb	L	.TRUE.		If .TRUE., use urban albedo and emissivity	$lterra_urb = .TRUE.$
				(Wouters et al. 2016)	
lurbahf	L	.TRUE.		If .TRUE., use urban anthropogenic heat	$lterra_urb = .TRUE.$
				flux (Wouters et al. 2016)	
itype_kbmo	I	2		Type of bluff-body thermal roughness length	$lterra_urb = .TRUE.$
				parameterisation	
				1 = Standard SAI-based turbtran	
				(Raschendorfer 2001)	
				2 = Brutsaert-Kanda parameterisation for	
				bluff-body elements (kB-1) (Kanda et al.	
				2007)	
				3 = Zilitinkevich (1970)	
$itype_eisa$	I	3		Type of evaporation from impervious surface	$lterra_urb = .TRUE.$
				area	
				1 = Evaporation like bare soil (see Schulz	
				and Vogel 2020)	
				2 = No evaporation	
				3 = PDF-based puddle evaporation	
				(Wouters et al. 2015)	

Parameter	Type	Default	Unit	Description	Scope
itype_heatcond	I	2		type of soil thermal conductivity	
				1 = constant soil thermal conductivity	
				2 = moisture dependent soil thermal	
				conductivity (see Schulz et al. 2016)	
				3 = variant of option 2 with reduced	
				near-surface thermal conductivity in the	
				presence of plant cover	
itype_interception	I	1		type of plant interception	
				1 = standard scheme, effectively switched off	
				by tiny value cwimax_ml	
				2 = Rain and snow interception (to be)	
				removed)	
cwimax ml	R	1.e - 6	m	scaling parameter for maximum interception	itype interception $= 1$
				storage (almost switched off);	
				use $5.e - 4$ to activate interception storage	
c_{soil}	R	1.		surface area density of the (evaporative) soil	itype $evsl = 2,3,4$
_				surface	V =
				allowed range: $0-2$	
c soil urb	R	1.		surface area density of the (evaporative) soil	itype $evsl = 2,3,4$
				surface, urban areas	V1
				allowed range: $0-2$	
cr bsmin	R	110.	s/m	minimum bare soil evaporation resistance	itype $evsl = 5$ or
_			,	(see Schulz and Vogel 2020)	icpl da sfcevap = 4
				Note: c_soil and c_soil_urb are ignored in	
				this case	
itype hydbound	I	1		type of hydraulic lower boundary condition	
J 1 - J				1 = none	
				3 = ground water as lower boundary of soil	
				column	
lstomata	L	.TRUE.		If .TRUE., use map of minimum stomatal	
				resistance	
				If .FALSE., use constant value of 150 s/m.	
l2tls	\mid L	.TRUE.		If .TRUE., forecast with 2-Time-Level	
				integration scheme (mandatory in ICON)	
lseaice	\mid L	.TRUE.		.TRUE. for use of sea-ice model	
lprog albsi		.FALSE.		If .TRUE., sea-ice albedo is computed	lseaice=.TRUE.
15.29 _01001				prognostically	11001
llake	_{T.}	TRUE		1 0	
llake	L	.TRUE.		.TRUE. for use of lake model	

Parameter	Type	Default	Unit	Description	Scope
sstice_mode	I	1		1: SST and sea ice fraction are read from the	iequations=3
				analysis. The SST is kept constant whereas	iforcing=3
				the sea ice fraction can be modified by the	
				seaice model. (This mode also applices to	
				coupled atmo/ocean simulations.)	
				2: SST and sea ice fraction are read from the	
				analysis. The SST is updated by	
				climatological increments on a daily basis.	
				The sea ice fraction can be modified by the	
				seaice model.	
				3: SST and sea ice fraction are updated	
				daily, based on climatological monthly means	
				4: SST and sea ice fraction are updated	
				daily, based on actual monthly means	
				5: SST and sea ice fraction are updated	
				daily, based on actual daily means (not yet	
				implemented)	
				6: SST and sea ice fraction are updated with	
				user-defined interval	
hice min	R	0.05	m	Minimum sea-ice thickness	lseaice=.TRUE.
hice max	R	3.0	m	Maximum sea-ice thickness (for coupled runs	lseaice=.TRUE.
_				assure consistency with seaice limit)	
sst td filename	C			Filename of SST input files for time	sstice mode=3,4,5,6
				dependent SST. Default is	_
				" <path>SST_<year>_<month>_<gridfile></gridfile></month></year></path>	" .
				May contain the keyword <path> which will</path>	
				be substituted by model base dir	
				In case sstice mode=6, SST data for all	
				time steps in the current simulation should	
				be prepared in one single file, variable should	
				be named SST in this file.	
ci td filename	C			Filename of sea ice fraction input files	sstice mode=3,4,5,6
				for time dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>"</gridfile></month></year></path>	
				May contain the keyword <path> which will</path>	
				be substituted by model base dir	
				In case sstice mode=6, sea ice data for all	
				time steps in the current simulation should	
				be prepared in one single file, variable should	
				be named SIC in this file.	

2.24. ls_forcing_nml (parameters for large-scale forcing; valid for torus geometry; is_plane_torus=.TRUE.)

Parameter	Type	Default	Unit	Description	Scope
is_ls_forcing	L	.TRUE.		switch for enabling LS forcing	
is_subsidence_moment	L	.FALSE.		switch for enabling LS vertical advection due	
				to subsidence for momentum equations	
is_subsidence_heat	L	.FALSE.		switch for enabling LS vertical advection due	
				to subsidence for thermal equations	
is_advection	L	.FALSE.		switch for enabling LS horizontal advection	
is_advection_uv	L	.TRUE.		switch for enabling LS horizontal advection	is_advection=.TRUE.
				for u and v	
is_advection_tq	L	.TRUE.		switch for enabling LS horizontal advection	is_advection=.TRUE.
				for temperature and moisture	
is_nudging	L	.FALSE.		switch for enabling LS Newtonian relaxation	
				(nudging)	
is_nudging_uv	L	.TRUE.		switch for enabling LS Newtonian relaxation	is_nudging=.TRUE.
				(nudging) for horizontal winds only	
is_nudging_tq	L	.TRUE.		switch for enabling LS Newtonian relaxation	is_nudging=.TRUE.
				(nudging) for temperature and specific	
				humidity only	
nudge_start_height	R	1000.	m	height where nudging starts	is_nudging=.TRUE.
nudge_full_height	R	2000.	m	height where nudging reaches full strength	is_nudging=.TRUE.
dt_relax	R	3600.	S	relaxation time scale for the nudging	is_nudging=.TRUE.
is_geowind	L	.FALSE.		switch for enabling geostrophic wind	
is_rad_forcing	L	.FALSE.		switch for enabling radiative forcing	inwp_rad=.FALSE.
is_sim_rad	L	.FALSE.		switch for enabling a simplified radiation	inwp_rad=.FALSE.
				scheme	
is_theta	L	.FALSE.		switch to indicate that the prescribed	is_rad_forcing=.TRUE.
				radiative forcing is for potential temperature	

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

2.25. master_nml

Parameter	Type	Default	Unit	Description	Scope
institute	С	, ,		Acronym of the institute for which the full	
				institute name is printed in the log file.	
				Options are DWD, MPIM, KIT, or CSCS.	
				Otherwise the full names of MPIM and	
				DWD are printed.	
lrestart	L	.FALSE.		If .TRUE.: Current experiment is started	
				from a restart.	
read restart namelists	L	.TRUE.		If .TRUE.: Namelists are read from the	
				restart file to override the default namelist	
				settings, before reading new namelists from	
				the run script. Otherwise the namelists	
				stored in the restart file are ignored.	
lrestart_write_last	L	.FALSE.		If .TRUE.: model run should create restart	
				at experiment end. This is independent from	
				the settings of the restart interval.	
${f model_base_dir}$	C	, ,		General path which may be used in file	
				names of other name lists: If a file name	
				contains the keyword " <path>", then this</path>	
				model_base_dir will be substituted.	

2.26. master_model_nml (repeated for each model)

Parameter	Type	Default	Unit	Description	Scope
model_name	С			Character string for naming this component.	
$model_namelist_$ filename	C			File name containing the model namelists.	
$\operatorname{model_type}$	I	-1		Identifies which component to run.	
				1=atmosphere	
				2=ocean	
				3=radiation	
				99=dummy_model	
model_min_rank	I	0		Start MPI rank for this model.	
model_max_rank	I	-1		End MPI rank for this model.	
model_inc_rank	I	1		Stride of MPI ranks.	

2.27. master_time_control_nml

Parameter	Type	Default	Unit	Description	Scope
calendar	С	"proleptic gregorian"		Selects the calendar type to use: "proleptic gregorian" = proleptic Gregorian calendar "365 day year" = 365 day year without leap years "360 day year" = 360 day year with 30 day months	
${f experiment Reference Date}$	C	""	ISO8601 format- ted string	This specifies the reference date for the calendar in use. It is an anchor date for cycling of events on the time line. If this namelist parameter is unspecified, then the reference date is set to the experiment start date.	
experimentStartDate	C	""	ISO8601 format- ted string	This is the start date of an experiment, which remains valid for the whole experiment. The start date is also the reference date of the experiment, which is the anchor point for cycling events. In special cases the reference date might be reset. Reasons might be debugging purposes or spinning off experiments from an existing restart of an other experiment.	
experimentStopDate	С	""	ISO8601 format- ted string	This is the date an experiment is finished.	
${\bf forecast Lead Time}$	C	"	ISO8601 format- ted string	Specifies the time span for a numerical weather forecast. It is used to set the experiment stop time with respect to the experiment start date.	
${\bf checkpoint Time Int Val}$	C	""	ISO8601 format- ted string	Time interval for writing checkpoints.	
${\bf restart Time Int Val}$	C	""	ISO8601 format- ted string	Time interval for writing a restart file and interrupt the current running job.	

$2.28.\ meteogram_output_nml$

This namelist is relevant if run_nml:output="nml". Nearest neighbour 'interpolation' is used for all variables.

Parameter	Type	Default	Unit	Description	Scope
lmeteogram_enabled	L(n_dom)	.FALSE.		Flag. True, if meteogram of output variables	
				is desired.	
zprefix	C(n_dom)	"METEO		string with file name prefix for output file	
		GRAM_"			
ldistributed	L(n_dom)	.TRUE.		Flag. Separate files for each PE.	
loutput_tiles	L	.FALSE.		Write tile-specific output for some selected	
				surface/soil fields	
$n0_mtgrm$	I(n_dom)	0		initial time step for meteogram output.	
$\operatorname{ninc_mtgrm}$	I(n_dom)	1		output interval (in time steps)	
$stationlist_tot$		53.633, 9.983,		list of meteogram stations (triples with lat,	
		'Hamburg'		lon, name string)	
silent_flush	L(n_dom)	1		do not warn about flushing to disk if .TRUE.	
\max_time_stamps	I(n_dom)	1		number of output time steps to record in	
				memory before flushing to disk	
var_list	C(:)	" "		Positive-list of variables (optional). Only	
				variables contained in this list are included	
				in the meteogram. If the default list is not	
				changed by user input, then all available	
				variables are added to the meteogram	

Defined and used in: src/namelists/mo_mtgrm_nml.f90

2.29. nonhydrostatic_nml (relevant if run_nml:iequations=3)

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	4		Options for predictor-corrector time-stepping	
				scheme:	

Parameter	Type	Default	Unit	Description	Scope
				4: Contravariant vertical velocity is	iequations=3
				computed in the predictor step only, velocity	
				tendencies are computed in the corrector	
				step only (most efficient option)	
				5: Contravariant vertical velocity is	
				computed in both substeps (beneficial for	
				numerical stability in very-high resolution	
				setups with extremely steep slops, otherwise	
				no significant impact)	
				6: As 5, but velocity tendencies are also	
				computed in both substeps (no apparent	
				benefit, but more expensive)	
rayleigh_type	I	2		Type of Rayleigh damping	
				1: CLASSICAL (requires velocity reference	
				state!)	
				2: Klemp (2008) type	
${ m rayleigh_coeff}$	R(n_dom)	0.05		Rayleigh damping coefficient $1/\tau_0$ (Klemp,	
-				Dudhia, Hassiotis: MWR136, pp.3987-4004);	
				higher values are recommended for R2B6 or	
				finer resolution	
$\operatorname{damp_height}$	R(n_dom)	45000	m	Height at which Rayleigh damping of	
				vertical wind starts (needs to be adjusted to	
				model top height; the damping layer should	
				have a depth of at least 20 km when the	
				model top is above the stratopause)	
htop_moist_proc	R	22500.0	m	Height above which moist physics and	
				advection of cloud and precipitation	
				variables are turned off	
$hbot_qvsubstep$	R	22500.0	m	Height above which QV is advected with	ihadv_tracer=22, 32, 42 or
				substepping scheme	52
htop_aero_proc	R	22500.0	m	Height above which physical processes and	ART aerosol tracers (with
				advection of ART aerosol tracer variables are	an index \geq iqt)
				turned off; the default value is set to the	
				same value as htop_moist_proc. This value	
				is taken for all ART aerosol tracers, but not	
				chemical tracers for which physical processes	
				and advection are computed in all model	
				levels per default; it may be overwritten for	
				specific ART tracers (also chemical tracers)	
				by the tag 'htop_proc' in the XML file when	
				defining the individual ART tracers.	

Parameter	Type	Default	Unit	Description	Scope
vwind_offctr	R	0.15		Off-centering in vertical wind solver. Higher	
				values may be needed for R2B5 or coarser	
				grids when the model top is above 50 km.	
				Negative values are not allowed	
rhotheta offctr	R	-0.1		Off-centering of density and potential	
				temperature at interface level (may be set to	
				0.0 for R2B6 or finer grids; positive values	
				are not recommended)	
veladv offctr	R	0.25		Off-centering of velocity advection in	
_				corrector step. Negative values are not	
				recommended	
ivctype	I	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve nml)	
ndyn substeps	I	5		number of dynamics substeps per	
_				fast-physics / transport step	
vcfl threshold	R	1.05		Threshold for vertical advection CFL	
_				number at which the adaptive time step	
				reduction (increase of ndyn substeps w.r.t.	
				the fixed fast-physics time step) is triggered.	
lextra_diffu	L	.TRUE.		.TRUE.: Apply additional momentum	
				diffusion at grid points close to the stability	
				limit for vertical advection (becomes effective	
				extremely rarely in practice; this is mostly	
				an emergency fix for pathological cases with	
				very large orographic gravity waves)	
divdamp_fac	R	0.0025		Scaling factor for divergence damping at	
				height $divdamp_z$ and below.	
				$divdamp_fac \ge 0.$	
$divdamp_fac2$	R	0.004		Scaling factor for divergence damping at	
				height $divdamp_z2$. $divdamp_fac2 \ge 0$.	
				Between $divdamp_z$ and $divdamp_z$ 2 the	
				scaling factor changes linearly from	
				divdamp fac to divdamp fac2.	

Parameter	Type	Default	Unit	Description	Scope
divdamp_fac3	R	0.004		Scaling factor for divergence damping at	
				height $divdamp_z3$. $divdamp_fac3 \ge 0$.	
				The three points	
				$(divdamp_z2, divdamp_fac2),$	
				$(divdamp_z3, divdamp_fac3), $ and	
				$(divdamp_z4, divdamp_fac4)$ determine	
				the quadratic function for the scaling factor	
				between $divdamp_z2$ and $divdamp_z4$.	
$divdamp_fac4$	R	0.004		Scaling factor for divergence damping at	
				height $divdamp_z4$ and higher.	
				$divdamp_fac4 \ge 0.$	
$\operatorname{divdamp}_{\mathbf{z}}$	R	32500.	m	Height up to which $divdamp_fac$ is used,	
				and where the linear profile up to height	
				$divdamp_z2$ starts.	
$\operatorname{divdamp}_{\mathbf{z}2}$	R	40000.	m	Height with scaling factor $divdamp_fac2$	
				where the linear profile starting at	
				$divdamp_z$ ends, and where the quadratic	
				profile up to $divdamp_z4$ starts.	
				$divdamp_z < divdamp_z < divd$	
$divdamp_z3$	R	60000.	m	Height with scaling factor $divdamp_fac3$.	
				Needed to determine the quadratic function	
				between $divdamp_z2$ and $divdamp_z4$.	
				$divdamp_z3 \neq$	
				$divdamp_z2 \wedge divdamp_z3 \neq divdamp_z4.$	
$divdamp_z4$	R	80000.	m	Height from which $divdamp_fac4$ is used.	
				$divdamp_z4 > divdamp_z2.$	
$\operatorname{divdamp_order}$	I	4		Order of divergence damping:	
				2 = second-order divergence damping	
				4 = fourth-order divergence damping	
				24 = combined second-order and	
				fourth-order divergence damping and	
				enhanced vertical wind off-centering during	
				the initial spinup phase (does not allow	
				checkpointing/restarting earlier than 2.5	
				hours of integration)	

Parameter	Type	Default	Unit	Description	Scope
divdamp_type	I	3		Type of divergence damping:	
				2 = divergence damping acting on 2D	
				divergence	
				3 = divergence damping acting on 3D	
				divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div.	
				damping in the stratosphere	
divdamp trans start	R	12500.		Lower bound of transition zone between 2D	$\operatorname{divdamp} \ \operatorname{type} = 32$
arvaamp_trams_start	10	12000.		and 3D divergence damping	arvadinp_type 02
divdamp trans end	R	17500.		Upper bound of transition zone between 2D	$\operatorname{divdamp} \ \operatorname{type} = 32$
divdamp_dams_end	10	11000.		and 3D divergence damping	divdamp_type = 52
l masscorr nest	\mid L	.FALSE.		.TRUE.: Apply mass conservation correction	ifeedback type=1
1_masscorr_nest	L	.FALSE.		also in nested domain	needback_type=1
index whathata	т	2		Advection method for rho and rhotheta:	
iadv_rhotheta	I	2			
				1: simple second-order upwind-biased scheme	
	_			2: 2nd order Miura horizontal	
$igradp_method$	I	3		Discretization of horizontal pressure	
				gradient:	
				1: conventional discretization with metric	
				correction term	
				2: Taylor-expansion-based reconstruction of	
				pressure (advantageous at very high	
				resolution)	
				3: Similar discretization as option 2, but	
				uses hydrostatic approximation for	
				downward extrapolation over steep slopes	
				4: Cubic/quadratic polynomial interpolation	
				for pressure reconstruction	
				5: Same as 4, but hydrostatic approximation	
				for downward extrapolation over steep slopes	
l_zdiffu_t	L	.TRUE.		.TRUE.: Compute Smagorinsky temperature	hdiff_order=5 .AND.
_				diffusion truly horizontally over steep slopes	lhdiff temp = .true.
thslp zdiffu	R	0.025		Slope threshold above which truly horizontal	hdiff order=5 .AND.
				temperature diffusion is activated	lhdiff temp=.trueAND.
				-	l zdiffu t=.true.
thhgtd zdiffu	R	200	m	Threshold of height difference between	$\frac{1}{\text{hdiff}}$ order=5 .AND.
0				neighboring grid points above which truly	lhdiff temp=.trueAND.
				horizontal temperature diffusion is activated	l zdiffu t=.true.
				(alternative criterion to thslp zdiffu)	

Parameter	Type	Default	Unit	Description	Scope
exner_expol	R	1./3.		Temporal extrapolation (fraction of dt) of	
				Exner function for computation of horizontal pressure gradient. This damps horizontally	
				propagating sound waves. For R2B5 or	
				coarser grids, values between $1/2$ and $2/3$	
				are recommended. Model will be numerically	
				unstable for negative values.	

Defined and used in: $src/namelists/mo_nonhydrostatic_nml.f90$

$2.30.\ nudging_nml$

Parameters for the upper boundary nudging in the limited-area mode (grid_nml: l_limited_area = .TRUE.) or global nudging. For the lateral boundary nudging, please see interpol_nml and limarea_nml. The characteristics of the driving data for the nudging can be specified in limarea_nml.

Parameter	Type	Default	Unit	Description	Scope
nudge_type	I(n_dom)	0		Nudging type:	$run_nml:iforcing = 3$
				* 0: none	(NWP)
				* 1: upper boundary nudging	ivctype = 2 (SLEVE)
				* 2: global nudging	
				Please note:	
				• nudge_type = 1 requires l_limited_area = .TRUE.	
				• nudge type = 1 is also applicable to	
				nested domains. Nudging is performed	
				against the same forcing data set for all	
				domains. If nudging is enabled for one or	
				more nested domains, it needs to be enabled	
				for the base domain, as well.	
				• nudge type = 2 (global nudging) is	
				applied in primary domain only	
				• for global nudging the following settings in	
				limarea nml are mandatory:	
				- itype $\overline{\text{latbc}} = 1$ (time-dependent driving	
				data)	
				$- dtime_latbc = \dots$	
				$- \text{ latbc_path} = ""$	
				- latbc_boundary_grid = " " (no boundary	
				grid: driving data have to be available on	
				entire grid)	
				- latbc_varnames_map_file = "" (e.g.,	
				$run/dict.latbc)$, if $num_prefetch_proc = 1$	
				(asynchronous read-in of driving data)	
				• defaults and (additional) scopes for global	
				nudging are marked by $(\cdot)_{glbndg}$, if a	
				parameter applies to both upper boundary	
				and global nudging	

Parameter	Type	Default	Unit	Description	Scope
nax_nudge_coeff_vn	R	$0.04 \ (0.016)_{ m glbndg}$	1	Max. nudging coefficient for the horizontal wind (i.e. the edge-normal wind component v_n). Given the wind update due to the nudging term on the rhs: $v_n(t) = v_n^*(t) + \text{nudge_coeff_vn}(z) * \text{ndyn_substeps} * [\overline{v_n}(t) - v_n^*(t)],$ where t and z denote time and height, respectively, $\overline{v_n}(t)$ is the target wind to nudge to, and v_n^* is the value before the nudging, the vertical profile of the coefficient for upper boundary nudging reads: $\text{nudge_coeff_vn}(z) = \text{max_nudge_coeff_vn} * [(z - \text{nudge_start_height})/(\text{top_height} - \text{nudge_start_height})]^2$, for $\text{nudge_start_height} \le z \le \text{top_height}$ (see $\text{nudge_start_height}$ below), and is zero elsewhere. The range of validity is $\text{max_nudge_coeff_vn} \in [0, \sim 0.2]$, where the lower boundary is mandatory. Please note that the user value is internally multiplied by 5.	nudge_type > 0 (nudge_var = "all" or ",vn,")glbndg
$ m max_nudge_coeff_thermdyn$	R	0.075 $(0.03)_{ m glbndg}$	1	Max. nudging coefficient for the thermodynamic variables selected by limarea_nml: nudge_hydro_pres in case of upper boundary nudging and by thermdyn_type in case of global nudging. The range of validity is $\max_n udge_coeff_thermdyn \in [0, \sim 0.2],$ where the lower boundary is mandatory. $\mathbf{Please} \ \mathbf{note} \ that \ the \ user \ value \ is \ internally \ multiplied by 5.$	nudge_type > 0 (nudge_var = "all" or ",thermdyn,") _{glbndg}

Parameter	Type	Default	Unit	Description	Scope
max_nudge_coeff_qv	R	0.008	1	Max. nudging coefficient for water vapor. The range of validity is $\max_{\text{nudge_coeff_qv}} \in [0, \sim 0.2]$, where the lower boundary is mandatory. (For global nudging only.) Please note that the user value is internally multiplied by 5.	nudge_type = 2 nudge_var = "all" or ",qv,"
nudge_start_height	R	$12000 \ (2000)_{ m glbndg}$	m	Nudging is applied for:	nudge_type > 0
nudge_end_height	R	40000	m	Nudging is applied for:	$ m nudge_type = 2$

Parameter	Type	Default	Unit	Description	Scope
nudge_profile	I	4		Vertical profile of the nudging coefficient (nudging strength) between nudge_start_height and nudge_end_height: * 1: squared scaled vertical distance from nudge_start_height (this is the profile used for upper boundary nudging) * 2: constant profile * 3: hyperbolic tangent profile * 4: trapezoidal profile The profile values range from 0 to 1. A multiplication with max_nudge_coeff_vn/thermdyn/qv and ndyn_substeps yields the final value of the nudging coefficient. (For global nudging only.)	nudge_type = 2
nudge_scale_height	R	3000	m	Scale height of nudging profile. (For global nudging only.)	$egin{array}{c} { m nudge_type} = 2 \ { m nudge_profile} = 3 { m \ or \ } 4 \end{array}$
nudge_var	C	"all"		Select the variables that shall be nudged: * "vn": horizontal wind * "thermdyn": thermodynamic variables * "qv": water vapor * comma-separated list: e.g., "vn,thermdyn" * "all": all available variables (i.e. equivalent to "vn,thermdyn,qv") Please note that the nudging of water vapor requires ltransport = .TRUE. (For global nudging only.)	nudge_type = 2
thermdyn_type	I	1		Set of variables used to compute the thermodynamic nudging increments: * 1: hydrostatic set (pressure and temperature) * 2: non-hydrostatic set (density and virtual potential temperature)	nudge_type = 2 nudge_var = "all" or ",thermdyn,"

Defined and used in: src/namelists/mo_nudging_nml.f90

2.31. nwp_phy_nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the remaining model domains.

If the time steps are not an integer multiple of the advective time step (dtime), then the time step of the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step. If the radiation time step is not an integer multiple of the cloud-cover time step it is automatically rounded to the next higher integer multiple of the cloud cover time step.

Parameter	Type	Default	Unit	Description	Scope
inwp_gscp	I (max_	1		cloud microphysics and precipitation	$run_nml:iforcing = inwp$
	dom)			0: none	
				1: hydci (COSMO-EU microphysics, 2-cat	
				ice: cloud ice, snow)	
				2: hydci_gr (COSMO-DE microphysics,	
				3-cat ice: cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation	
				scheme by C. Koehler	
				4: Two-moment microphysics by A. Seifert,	
				further configuration possible in namelist	
				/twomom_mcrph_nml/	
				9: Kessler scheme	
qi0	R	0.0	kg/kg	cloud ice threshold for autoconversion	inwp_gscp=1
qc0	R	0.0	kg/kg	cloud water threshold for autoconversion	inwp_gscp=1
mu_rain	R	0.0		shape parameter in gamma distribution for	inwp_gscp>0
				rain	
rain_n0_factor	R	1.0		tuning factor for intercept parameter of	inwp_gscp>0
				raindrop size distribution	
mu_snow	R	0.0		shape parameter in gamma distribution for	inwp_gscp>0
. ,	т.			snow	11 1 6
icpl_aero_gscp	1	0		0: off	currently only for
				1: simple coupling between autoconversion	$ \text{inwp_gscp} = 1 $
				and Tegen aerosol climatology; requires	
				irad_aero=6	
in a constant	T (****	1		More advanced options are in preparation convection	mun proliferaina incom
inwp_convection	I (max_dom)	1		0: none	run_nml:iforcing = inwp
	dom)			1: Tiedtke/Bechtold convection	
labellowgony, only	I (may	.FALSE.		TRUE: use shallow convection only	inwp convection = 1 ;
lshallowconv_only	L (max_dom)	TALSE.		.11to E use shahow convection only	cannot be combined with
	dom)				
	1	1			lgrayzone_deepconv

Parameter	Type	Default	Unit	Description	Scope
lgrayzone_deepconv	L (max_	.FALSE.		.TRUE.: activates shallow and deep	$inwp_convection = 1;$
	dom)			convection but not mid-level convection,	cannot be combined with
				together with some tuning measures targeted	lshallowconv_only
				at grayzone (convection-permitting) model	
				resolutions	
ldetrain conv prec	L (max_	.FALSE.		.TRUE.: Activate detrainment of convective	inwp convection = 1
	dom)			rain and snow	
icapdcycl	I	0		Type of CAPE correction to improve diurnal	$ inwp_convection = 1$
				cycle for convection:	
				0 = none (IFS default prior to autumn 2013)	
				1 = intermediate testing option	
				2 = correctoins over land and water now	
				operational at ECMWF	
				3 = correction over land as in 2 restricted to	
				the tropics, no correction over water (this	
				choice optimizes the NWP skill scores)	
lstoch expl	L (max	.FALSE.		.TRUE.: activate explicit stochastic shallow	inwp convection $= 1$
_	dom)			convection scheme	
				EXPERIMENTAL! will not produce clean	
				restart	
				to be used in conjunction with	
				lrestune off=.T. and lmflimiter off=.T.	
lstoch sde	L (max	.FALSE.		.TRUE.: activate stochastic differential	inwp convection $= 1$
_	dom			equation (SDE) shallow convection scheme	1 -
				to be used in conjunction with	
				lrestune off=.T. and lmflimiter off=.T.	
lstoch deep	L (max	.FALSE.		.TRUE.: activate stochastic differential	inwp convection $= 1$
	dom			equation (SDE) deep convection scheme	· –
lrestune off	L (max	.FALSE.		.TRUE.: switches off resolution-dependent	inwp convection $= 1$
_	dom			tuning of shallow convection parameters	
lmflimiter off	L (max	.FALSE.		.TRUE.: disables mass flux limiter by	inwp convection $= 1$
_	dom)			setting it to high values that are rarely	-
	/			reached by shallow convection	
lvvcouple	L (max	.FALSE.		.TRUE.: use vertical velocity at 650hPa as	inwp convection $= 1$
1	dom			criterion to couple shallow convection	
				with resolved deep convection	

Parameter	Type	Default	Unit	Description	Scope
lvv_shallow_deep	L (max_	.FALSE.		.TRUE.: use vertical velocity at 650hPa to	$inwp_convection = 1$
	dom)			distinguish between shallow and	
				deep convection within convection routines	
				(instead of cloud depth)	
lstoch_spinup	L (max_	.FALSE.		.TRUE.: spin up cloud ensemble to	$inwp_convection = 1$
	dom)			equilibrium in stochastic shallow convection	
				schemes,	
				only takes effect when lstoch_expl=T or	
				$lstoch_sde=T$	
nclds	I (max_	5000		maximum possible number of shallow clouds	$inwp_convection = 1$
	dom)			per grid box in explicit stochastic cloud	
				ensemble.	
				only takes effect when lstoch expl=T	
icpl aero conv	I	0		0: off	
				1: simple coupling between autoconversion	
				and Tegen aerosol climatology; requires	
				irad aero=6	
iprog_aero	I	0		0: off	irad aero=6
				1: simple prognostic aerosol scheme for	
				mineral dust, based on 2D aerosol optical	
				depth fields of Tegen climatology	
				2: as option 1, but for all 5 aerosol types	
icpl o3 tp	I	1		0: off	irad o $3 = 7$ or 9
				1: simple coupling between the ozone mixing	
				ratio and the thermal tropopause, restricted	
				to the extratropics	
$inwp_cldcover$	I (max	1		cloud cover scheme for radiation	run nml:iforcing = inwp
	dom)			0: no clouds (only QV)	_
	,			1: diagnostic cloud cover (by Martin	
				Koehler)	
				2: prognostic total water variance (not yet	
				started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	
lsgs cond	L (max	.TRUE.		Apply subgrid-scale condensational heating	inwp $cldcover = 1$
_	dom)			related to the non-convective part of	
				diagnosed cloud water	

Parameter	Type	Default	Unit	Description	Scope
lsbm_warm_full	L (max_	.TRUE.		TRUE: warm-phase Spectral Bin	$inwp_gscp = 8$
	dom)			Microphysics (SBM). False: 2-moment	
				scheme is applied (as for $inwp_gscp = 4$)	
				and SBM is running in a "Piggy Backing"	
				mode for diagnostic purposes	
inwp_radiation	I (max_	1		radiation	$run_nml:iforcing = inwp$
	dom)			0: none	
				1: RRTM radiation	
				2: (removed)	
				3: (removed)	
				4: ecRad radiation	
inwp_satad	I	1		saturation adjustment	$run_nml:iforcing = inwp$
				0: none	
				1: saturation adjustment at constant density	
inwp_turb	I (max_	1		vertical diffusion and transfer	run_nml:iforcing = inwp
	dom)			0: none	
				1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
				6: VDIFF turbulence scheme (requires	
				$inwp_surface = 2)$	
inwp_sso	I (max_	1		subgrid scale orographic drag	run_nml:iforcing = inwp
	dom)			0: none	$ \text{inwp_turb} > 0$
				1: Lott and Miller scheme (COSMO)	
inwp_gwd	I (max_	1		non-orographic gravity wave drag	run_nml:iforcing = inwp
	dom)			0: none	$ \text{inwp_turb} > 0$
				1: Orr-Ern-Bechtold-scheme (IFS)	
inwp_surface	I (max_	1		surface scheme	run_nml:iforcing = inwp
	dom)			0: none	
				1: TERRA	
				2: JSBACH (requires inwp_turb = 6)	
ustart_raylfric	R	160.0	m/s	wind speed at which extra Rayleigh friction	$\text{inwp_gwd} > 0$
		1.000		starts	
efdt_min_raylfric	R	10800.	S	minimum e-folding time of Rayleigh friction	$\text{inwp_gwd} > 0$
				(effective for u > ustart_raylfric + 90 m/s)	
latm_above_top	L (max_	.FALSE.		.TRUE.: take into account atmosphere	$inwp_radiation > 0$
	dom)			above model top for radiation computation	

Parameter	Type	Default	Unit	Description	Scope
itype_z0	I	2		Type of roughness length data used for	$inwp_turb > 0$
				turbulence scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography (does	
				not account for tiles)	
				2 = land-cover-related roughness based on	
				tile-specific landuse class	
				3 = land-cover-related roughness based on	
				tile-specific landuse class including	
				contribution from sub-scale orography	
${ m dt_conv}$	R (max_	600.	S	time interval of convection call.	$run_nml:iforcing = inwp$
	dom)			by default, each subdomain has the same	
				value	
${ m dt_ccov}$	R (max_	dt_conv	S	time interval of cloud-cover call.	run_nml:iforcing = inwp
	dom)			by default, dt_ccov equals dt_conv for each	
				domain	
${ m dt_rad}$	R (max_	1800.	S	time interval of radiation call	$run_nml:iforcing = inwp$
_	dom)			by default, each subdomain has the same	
				value	
${ m dt_sso}$	R (max_	1200.	S	time interval of sso call	$run_nml:iforcing = inwp$
_	dom)			by default, each subdomain has the same	
				value	
dt gwd	R (max_	1200.	S	time interval of gwd call	$run_nml:iforcing = inwp$
_	dom)			by default, each subdomain has the same	
				value	
lrtm filename	C(:)	"rrtmg lw.nc"		NetCDF file containing longwave absorption	
		- -		coefficients and other data for RRTMG_LW	
				k-distribution model.	
${ m cldopt_filename}$	C(:)	"ECHAM		NetCDF file with RRTM Cloud Optical	
- -		6_CldOpt		Properties for ECHAM6.	
		Props.nc"			
icalc_reff	I (max_	0		Parameterization set for diagnostic	run_nml:iforcing = inwp
_	dom)			calculations of effective radius:	
				0 = No calculation	
				1,2,4,5,6,7 = Consistent with microphysics	
				given by icalc reff (naming same convention	
				as inwp gscp)	
				100 = Consistent with current microphysics	
				(it sets icalc reff = inwp gscp)	
				101 = Reff given by RRTM parameterization	

Parameter	Type	Default	Unit	Description	Scope
icpl_rad_reff	I (max_dom)	0		Coupling of the effective radius with radiation: 0 = No coupling. The calculation of the effective radius happens at the radiation interface. 1 = Radiation uses the effective radius defined by icalc_reff. All hydrometeors are combined in a frozen and a liquid phase. 2 = Radiation uses the effective radius defined by icalc_reff for all hydrometeors independently (given by ecrad iset genhyd).	run_nml:iforcing = inwp inwp_radiation = 1 or 4 icalc_reff > 0
ithermo_water	I (max_dom)	0		Latent Heat Function 0 = Temperature-dependent latent heat in saturation adjustment but constant in microphysics: 1 = Temperature-dependent latent heat in saturation adjustment and microphysics	
lupatmo_phy	L (max_dom)	.FALSE.		 Switch for upper-atmosphere physics. Examples of usage for multi-domain applications: set lupatmo_phy = .TRUE. to switch on upatmo physics for all domains set lupatmo_phy = .TRUE., .TRUE., .FALSE. to switch on upatmo physics for dom 1 and 2, but switch them off for dom 3 please note that "skipping" domains is currently not possible, i.e. lupatmo_phy = .TRUE., .FALSE., .TRUE. is transformed into lupatmo_phy = .TRUE., .FALSE., .FALSE. 	run_nml:iforcing = inwp init_mode < 4 inwp_turb > 0 inwp_radiation > 0
				See upatmo_nml for configuration of the upper-atmosphere physics parameterizations.	

Defined and used in: src/namelists/mo_nwp_phy_nml.f90

2.31.1. Notes on use of stochastic convection schemes

There are currently three stochastic convection schemes available, two versions for shallow convection and one for deep convection. Conceptually, these schemes attempt to represent that for grid box sizes smaller than the size of a typical cloud ensemble, the clouds actually populating the grid box will not be fully representative of that cloud ensemble. The two stochastic shallow schemes (lstoch_expl, lstoch_sde) are therefore aimed at resolutions of a few kilometers (typically used for LAM simulations, where deep convection is resolved) and will in fact be automatically switched off for resolutions greater than 20km. The scheme converges to the standard Tiedtke-Bechtold mass flux scheme at resolutions sufficiently coarse, such that there is no additional gain from using the stochastic schemes. They should therefore be run with lshalloconv_only=T. A combination with the grayzone tuning (lgrayzone_deepconv) is technically possible, but not recommended as the grayzone tuning interferes with the intended behaviour of the stochastic scheme.

The stochastic deep convection scheme (lstoch_deep) is intended for resolutions where the deep convection parameterization is still active, but again, grid size is not large enough to contain a fully representative cloud ensemble (e.g. global runs with resolution on the order of 10s of kilometers). Thus the deep and shallow stochastic schemes are not intended to be used together, as the resolutions they are designed for are (mostly) mutually exclusive.

The shallow schemes should be run without resolution-dependent tuning of the convection parameters (lrestune_off=T) and with disabled mass flux limiters (lmflimiter_off=T). The mass flux limiters are in fact not fully disabled but set to values high enough to be rarely reached during shallow cloud simulations. The deep stochastic scheme cannot be run without mass flux limiters or simulatons will become unstable.

2.32. nwp tuning nml

Please note: These tuning parameters are NOT domain specific.

Parameter	Type	Default	Unit	Description	Scope			
SSO (Lott and Miller)								
tune_gkwake	R (max_	1.5		low level wake drag constant	$run_nml:iforcing = inwp$			
	dom)							
tune_gkdrag	R (max_	0.075		gravity wave drag constant	$run_nml:iforcing = inwp$			
	dom)							
tune_gfrcrit	R (max_	0.4		critical Froude number (controls depth of	$run_nml:iforcing = inwp$			
	dom)			blocking layer)				
tune_grcrit	R (max_	0.25		critical Richardson number (controls onset of	$run_nml:iforcing = inwp$			
	dom)			wave breaking)				
tune_minsso	R (max_	10.	m	minimum SSO standard deviation for which	$run_nml:iforcing = inwp$			
	dom)			SSO scheme is applied				
tune_blockred	R (max_	100.		multiple of SSO standard deviation above	$run_nml:iforcing = inwp$			
	dom)			which blocking tendency is reduced				
GWD (Warner McIntyre)								
tune_gfluxlaun	R	2.50e-3		total launch momentum flux in each azimuth	$run_nml:iforcing = inwp$			
				(rho_o x F_o)				
tune_gcstar	R	1.0		constant in saturation wave spectrum	$run_nml:iforcing = inwp$			
Grid scale microphysics (one moment	ent)							
tune_zceff_min	R	0.01		Minimum value for sticking efficiency	$run_nml:iforcing = inwp$			
tune_v0snow	R	25.0		factor in the terminal velocity for snow	run_nml:iforcing = inwp			

Parameter	Type	Default	Unit	Description	Scope
tune_zvz0i	R	1.25	m/s	Terminal fall velocity of ice	run_nml : $iforcing = inwp$
tune_icesedi_exp	R	0.33		Exponent for density correction of cloud ice sedimentation	run_nml:iforcing = inwp
tune_sbmccn	R	1.0		Scaling factor (0,1] for initial aerosol concentration profile, used for comparison between simulations with two-moment and warm SBM microphysics	$run_nml:iforcing = inwp$
Convection scheme					
tune_entrorg	R	1.85e-3	1/m	Entrainment parameter valid for dx=20 km (depends on model resolution)	run_nml:iforcing = inwp
tune_rprcon	R	1.4e-3		Coefficient for conversion of cloud water into precipitation	run_nml:iforcing = inwp
tune_rdepths	R	2.e4	Pa	Maximum allowed depth of shallow convection	run_nml:iforcing = inwp
tune_capdcfac_et	R	0.5		Fraction of CAPE diurnal cycle correction applied in the extratropics	icapdcycl = 3
tune_capethresh	R	7000.0	m J/kg	CAPE threshold above which the convective adjustment time scale and entrainment rate are reduced for numerical stability	run_nml:iforcing = inwp
tune_rhebc_land	R	0.75		RH threshold for onset of evaporation below cloud base over land	run_nml:iforcing = inwp
tune_rhebc_land_trop	R	0.75		RH threshold for onset of evaporation below cloud base over land in the tropics	run_nml:iforcing = inwp
tune_rhebc_ocean	R	0.85		RH threshold for onset of evaporation below cloud base over sea	run_nml:iforcing = inwp
tune_rhebc_ocean_trop	R	0.80		RH threshold for onset of evaporation below cloud base over sea in the tropics	run_nml:iforcing = inwp
tune_rcucov	R	0.05		Convective area fraction used for computing evaporation below cloud base	run_nml:iforcing = inwp
tune_rcucov_trop	R	0.05		Convective area fraction used for computing evaporation below cloud base in the tropics	$run_nml:iforcing = inwp$
tune_texc	R	0.125	K	Excess value for temperature used in test parcel ascent	run_nml:iforcing = inwp
tune_qexc	R	0.0125		Excess fraction of grid-scale QV used in test parcel ascent	$run_nml:iforcing = inwp$
tune_box_liq	R	0.05		Box width for liquid cloud diagnostic in cloud cover scheme	run_nml:iforcing = inwp; inwp_cldcover = 1
tune_thicklayfac	R	0.005	1/m	Factor for enhancing the box width for model layer thicknesses exceeding 150 m	run_nml:iforcing = inwp; inwp_cldcover = 1

Parameter	Type	Default	Unit	Description	Scope
tune_box_liq_asy	R	2.5		Asymmetry factor for liquid cloud cover diagnostic	run_nml:iforcing = inwp; inwp_cldcover = 1
tune_box_liq_sfc_fac	R	1.0		Tuning factor for box_liq reduction near the surface	$run_nml:iforcing = inwp;$ $inwp_cldcover = 1$
allow_overcast	R	1.0		Tuning factor for the dependence of liquid cloud cover on relative humidity. This is an unphysical ad-hoc parameter to improve the cloud cover in the Mediterranean	$run_nml:iforcing = inwp;$ $inwp_cldcover = 1$
tune_sgsclifac	R	0.0		Scaling factor for parameterization of subgrid-scale (turbulence-induced) cloud ice (values > 0 not recommended for global configurations with RRTM radiation)	$run_nml:iforcing = inwp;$ $inwp_cldcover = 1$
icpl_turb_clc	I	1		Mode of coupling between turbulence and cloud cover 1: strong dependency of box width on rcld with upper and lower limit 2: weak dependency of box width on rcld with additive term and upper limit	run_nml:iforcing = inwp; inwp_cldcover = 1
lcalib_clcov	L	.TRUE.		Apply calibration of layer-wise cloud cover diagnostics over land in order to improve scores against SYNOP reports	run_nml:iforcing = inwp
max_calibfac_clcl	R	4.0		Maximum allowed calibration factor for low clouds (CLCL)	run_nml:iforcing = inwp
tune_eiscrit	R	1000.0	K	Critical estimated inversion strength above which to switch off shallow convection (recommendation to activate: 7K)	run_nml:iforcing = inwp; inwp_convection = 1
tune_sc_eis	R	1000.0	K	Critical estimated inversion strength above which to use modified SGS cloud diagnostic for stratocumulus (recommendation to activate: 7K)	run_nml:iforcing = inwp; inwp_clcover = 1
tune_sc_invmin	R	200.0	m	Minimum inversion height above which to apply modified SGS cloud diagnostic for stratocumulus	run_nml:iforcing = inwp; inwp_clcover = 1
tune_sc_invmax	R	1500.0	m	Maximum inversion height below which to apply modified SGS cloud diagnostic for stratocumulus	$run_nml:iforcing = inwp; inwp_clcover = 1$
Misc					
tune_gust_factor	R	8.0		Multiplicative factor for friction velocity in gust parameterization	run_nml:iforcing = inwp

Parameter	Type	Default	Unit	Description	Scope
tune_gustsso_lim	R	100.0	$\mathrm{m}\;\mathrm{s}^{-1}$	Basic gust speed at which the SSO	$run_nml:iforcing = inwp$
				correction starts to be reduced	
				(recommendation to activate: 20 m s^{-1}	
itune_gust_diag	I	1		Method of SSO blocking correction used in	$run_nml:iforcing = inwp$
				the gust diagnostics	
				1: Use level above "SSO envelope top" for	
				gust enhancement over mountains	
				2: Use "SSO envelope top" level for gust	
				enhancement over mountains, combined with	
				an adjusted nonlinearity factor	
				(recommended for global configurations with	
				MERIT/REMA orography)	
				3: Variant of option 1, recommended for	
				ICON-D2 with subgrid-scale condensation	
				(do not use with ntiles=1)	
itune_albedo	I	0		MODIS albedo tuning	$run_nml:iforcing = inwp$
				0: None	$albedo_type=2$
				1: dimmed sahara	
				2: dimmed sahara + brightened Antarctic	
				(by 5%)	
itune_o3	I	2		Ozone tuning	$run_nml:iforcing = inwp$
				0: no tuning	irad_o3=7, 79 or 97
				1: old tuning for RRTM radiation	
				2: standard tuning for EcRad with RRTM	
				gas optics	
				3: improved (for middle/upper stratosphere)	
				tuning for EcRad with RRTM gas optics	
				4: provisional tuning for EcRad with	
				EcCKD gas optics	
tune_difrad_3dcont	R	0.5		Tuning factor for 3D contribution to	$inwp_radiation = 1 \text{ or } 4$
				diagnosed diffuse radiation (no impact on	
				prognostic results!)	
tune_minsnowfrac	R	0.2		Minimum value to which the snow cover	$lnd_nml:idiag_snowfrac =$
				fraction is artificially reduced in case of	20/30/40
				melting show	
tune_dursun_scaling	R	1.0		Tuning factor for direct solar irradiance in	
				sunshine duration diagnostic to account for	
				the delta-Eddington scaling in ecRad and	
				other possible biases (e.g. liquid/ice water	
				path)	

Parameter	Type	Default	Unit	Description	Scope
IAU					
max_freshsnow_inc	R	0.025		Maximum allowed freshsnow increment per analysis cycle (positive or negative)	init_mode=5 (MODE_IAU)

Defined and used in: src/namelists/mo_nwp_tuning_nml.f90

2.33. twomom mcrph nml

This namelist offers the possibility to adapt some configuration parameters of the two-moment cloud microphysical parameterisation by A. Seifert and K.D. Beheng. It is only effective if this scheme is used, i.e., if **inwp gscp=4**, **5**, **6**, **or 7** in namelist /nwp_phy_nml/.

The below set of parameters is a first reasonable choice to start with something. There might be coming more parameters in the future.

Please note: at the moment we do not support the option to have different configuration parameters on different domains. We did not really test this up to now, but it cannot be ruled out for the future. There are for sure parameters which could be optimized for different resolutions. Therefore, at the moment this possibility is not provided explicitly to the user via the below namelist parameters (they are scalars), but it is prepared internally in the ICON code.

Parameter	Type	Default	Unit	Description	Scope
i2mom_solver	I	1		Type of numerical time integration scheme	iforcing=3, inwp_gscp=4
				for the two-moment scheme:	
				0: explicit Euler-forward	
				1: semi-implicit solver similar to that of the	
				standard one-moment schemes	
ccn_type	I	Depends on		Choice of the aerosol scenario for cloud	iforcing=3,
		inwp_gscp:		nucleation (CCN):	$ inwp_gscp=4,5,6,7$
		for 4,7: 7		6: "low CCN" ("maritime")	
		for 5: 8		7: "intermediate CCN"	
				8: "high CCN" ("continental")	
				9: "very high CCN" ("polluted")	
				If applied together with the ART aerosol	
				physics inwp_gscp=6, this parameter has	
				no effect.	
iicephase	I	1		Turning on/off mixed phase processes in the	iforcing=3,
				two-moment scheme:	$ inwp_gscp=4,5,6,7$
				0: warm phase processes only	
				1: mixed phase processes	

Parameter	Type	Default	Unit	Description	Scope
alpha_spacefilling	R	0.01		Parameter in conversion of snow or cloud ice	iforcing=2,3
				to graupel by riming: degree of void filling	$inwp_gscp=4,5,6,7$
				by frozen supercooled droples within the ice	
				particle skeleton, above which the particle is	
				converted to the graupel class. Smaller	
				values lead to faster conversion. 0.01 means	
				very fast conversion to graupel. A value of	
				0.68 is the theoretical limit for densest	
				sphere packing and leads to rather slow	
				conversion.	
D_conv_ii	R	75.0e-6	m	diameter threshold for the onset of	iforcing=2,3
				conversion to snow by ice selfcollection	$inwp_gscp=4,5,6,7$
D_rainfrz_ig	R	0.50e-3	m	Spectral size threshold below which freezing	iforcing=2,3
				rain drops are converted to cloud ice. Larger	$inwp_gscp=4,5,6,7$
				drops are converted to graupel or hail,	
				depending on parameter D_rainfrz_gh.	
D_rainfrz_gh	R	1.25e-3	m	Spectral size threshold above which freezing	iforcing=2,3
				rain drops are converted to hail. Smaller	$inwp_gscp=4,5,6,7$
				drops are converted to cloud ice or graupel,	
	_			depending on parameter D_rainfrz_ig.	
luse_mu_Dm_rain	L	.FALSE.		To switch on the usage of the dynamical	iforcing=2,3
				μ - D_M -relation for raindrops below cloud	$inwp_gscp=4,5,6,7$
				base.	
rain_cmu0	R	6.0		Parameter of the μ - D -relation in the rain	iforcing=2,3
				size distribution for evaporation and	$inwp_gscp=4,5,6,7$
				sedimentation below cloud base:	
				asymptotic μ -value for spectra with small	
		20.0		mean diameter.	
rain_cmu1	R	30.0		Parameter of the μ -D-relation in the rain	iforcing=2,3
				size distribution for evaporation and	$inwp_gscp=4,5,6,7$
				sedimentation below cloud base:	
				asymptotic μ -value for spectra with large	
	D	1.1- 0		mean diameter.	:fi 0.2
rain_cmu3	R	1.1e-3	m	Parameter of the μ - D -relation in the rain	iforcing=2,3
				size distribution for evaporation and	inwp_gscp=4,5,6,7
				sedimentation below cloud base:	
				equilibrium mean spectral diameter for	
I				breakup and selfcollection.	

Parameter	Type	Default	Unit	Description	Scope
rain_cmu4	R	1.0		Parameter of the μ -D-relation in the rain	iforcing=2,3
				size distribution for evaporation and	$inwp_gscp=4,5,6,7$
				sedimentation below cloud base:	
				base value.	
nu_r	R	-999.99		Shape parameter ν of the rain mass	iforcing=2,3
				distribution inside clouds. Refers to the	$inwp_gscp=4,5,6,7$
				generalized gamma distribution with respect	
				to mass x :	
				$f(x) = N_0 x^{\nu} \exp(-\lambda x^{\mu})$	
				A value $<$ -900 indicates that the	
				background value $\nu = 0.0$ from	
				mo_2mom_mcrph_main.f90 is used.	
nu_g	R	-999.99		Shape parameter ν for graupel in the PSD	iforcing=2,3
				$f(x) = N_0 x^{\nu} \exp(-\lambda x^{\mu})$	$inwp_gscp=4,5,6,7$
				A value of $<$ -900 indicates that the	
				background value $\nu = 1.0$ from	
				mo_2mom_mcrph_main.f90 is used.	
mu_g	R	-999.99		Shape parameter μ for graupel in the PSD	iforcing=2,3
				$f(x) = N_0 x^{\nu} \exp(-\lambda x^{\mu})$	$inwp_gscp=4,5,6,7$
				A value of $<$ -900 indicates that the	
				background value $\nu = 1/3$ from	
				mo_2mom_mcrph_main.f90 is used.	
ageo_g	R	-999.99		Prefactor of the assumed size-mass-relation	iforcing=2,3
				for graupel $D = a_{geo}x^{b_{geo}}$ for x in kg and D	$inwp_gscp=4,5,6,7$
				in m.	
				A value of $<$ -900 indicates that the	
				background value $a_{geo} = 0.124$ from	
				mo_2mom_mcrph_main.f90 is used.	
bgeo_g	R	-999.99		Exponent of the assumed size-mass-relation	iforcing=2,3
				for graupel $D = a_{geo} x^{b_{geo}}$ for x in kg and D	$inwp_gscp=4,5,6,7$
				in m.	
				A value of $<$ -900 indicates that the	
				background value $b_{geo} = 0.314$ from	
				mo_2mom_mcrph_main.f90 is used.	
avel_g	R	-999.99		Prefactor of the assumed	iforcing=2,3
				fallspeed-mass-relation for graupel	$inwp_gscp=4,5,6,7$
				$v = a_{vel} x^{b_{vel}}$ for x in kg and v in m/s.	
				A value of $<$ -900 indicates that the	
				background value $a_{vel} = 100.0$ from	
				mo_2mom_mcrph_main.f90 is used.	

Parameter	Type	Default	Unit	Description	Scope
bvel_g	R	-999.99		Exponent of the assumed	iforcing=2,3
				fallspeed-mass-relation for graupel	$inwp_gscp=4,5,6,7$
				$v = a_{vel} x^{b_{vel}}$ for x in kg and v in m/s.	
				A value of $<$ -900 indicates that the	
				background value $b_{vel} = 0.34$ from	
				mo_2mom_mcrph_main.f90 is used.	
nu_h	\mathbb{R}	-999.99		Shape parameter ν for hail in the PSD	iforcing=2,3
				$f(x) = N_0 x^{\nu} \exp(-\lambda x^{\mu})$	inwp gscp= $4,5,6,7$
				A value of < -900 indicates that the	
				background value $\nu = 1.0$ from	
				mo 2mom mcrph main.f90 is used.	
mu h	R	-999.99		Shape parameter μ for hail in the PSD	iforcing=2,3
_				$f(x) = N_0 x^{\nu} \exp(-\lambda x^{\mu})$	inwp gscp=4,5,6,7
				A value of < -900 indicates that the	
				background value $\nu = 1/3$ from	
				mo 2mom mcrph main.f90 is used.	
ageo h	\mathbb{R}	-999.99		Prefactor of the assumed size-mass-relation	iforcing=2,3
0 _				for hail $D = a_{qeo}x^{b_{geo}}$ for x in kg and D in	inwp gscp=4,5,6,7
				m.	1_0 1 // //
				A value of < -900 indicates that the	
				background value $a_{qeo} = 0.1366$ from	
				mo 2mom mcrph main.f90 is used.	
bgeo h	\mathbb{R}	-999.99		Exponent of the assumed size-mass-relation	iforcing=2,3
0 _				for hail $D = a_{qeo}x^{b_{geo}}$ for x in kg and D in	inwp gscp=4,5,6,7
				m.	1_0 1 // //
				A value of $<$ -900 indicates that the	
				background value $b_{qeo} = 1/3$ from	
				mo 2mom mcrph main.f90 is used.	
avel h	R	-999.99		Prefactor of the assumed	iforcing=2,3
_				fallspeed-mass-relation for hail $v = a_{vel} x^{b_{vel}}$	inwp gscp=4,5,6,7
				for x in kg and v in m/s.	1_0 1 /-/-/-
				A value of $<$ -900 indicates that the	
				background value $a_{vel} = 39.3$ from	
				mo 2mom mcrph main.f90 is used.	
bvel h	R	-999.99		Exponent of the assumed	iforcing=2,3
		000100		fallspeed-mass-relation for hail $v = a_{vel} x^{b_{vel}}$	inwp gscp=4,5,6,7
				for x in kg and v in m/s.	F_0~F 1,0,0,
				A value of < -900 indicates that the	
				background value $b_{vel} = 1/6$ from	
				mo 2mom mcrph main.f90 is used.	

Parameter	Type	Default	Unit	Description	Scope
melt_h_tune_fac	R	1.0		Tuning factor for the hail melting rate.	iforcing=2,3
				Values larger than 1.0 enhance the hail	$inwp_gscp=4,5,6,7$
				melting, smaller values slow down the	
				melting.	
melt_g_tune_fac	R	1.0		Tuning factor for the graupel melting rate.	iforcing=2,3
				Values larger than 1.0 enhance the graupel	inwp_gscp=4,5,6,7
				melting, smaller values slow down the	
	D	270.10	7.7	melting.	
Tmax_gr_rime	R	270.16	K	Graupel formation by riming of snow and	iforcing=2,3
				cloud ice is only active below this	inwp_gscp=4,5,6,7
ltumb on ho	\mid L	.TRUE.		temperature threshold.	ifancing 2.2
lturb_enhc	L	.IRUE.		To switch on the turbulent enhancement of collision processes involving water droplets	iforcing=2,3 inwp gscp=4,5,6,7
				(autoconversion, accretion, rain	mwp_gscp=4,5,0,7
				selfcollection).	
lturb len	$ _{\mathrm{R}}$	300	m	Turbulent length scale used for	iforcing=2,3
		900	111	lturb_enhc=.TRUE.	inwp gscp=4,5,6,7
				Nars_onne :II(oE.	lturb enhc=.TRUE.
iice_stick	I	10		Optional choice of the sticking efficiency	iforcing=2,3
				parameterization for ice-ice-collisions as	inwp gscp=4,5,6,7
				function of temperature:	
				1: $e = \min(\exp(0.09(T - T_3)), 1.0)$ from Lin	
				et al. (1983)	
				2: $e = \min(\exp(0.025(T - T_3)), 1.0)$, even	
				larger as option 1	
				·	
				_ · · · · · · · · · · · · · · · · · · ·	
				9. option 3 times factor 0.73 $10 \cdot a = \min(10(0.035(T-T_3)-0.7) \text{ 0.2) from}$	
				, ,	
				et al. (1983) 2: $e = \min(\exp(0.025(T - T_3)), 1.0)$, even	

Parameter	Type	Default	Unit	Description	Scope
isnow_stick	I	5		Optional choice of the sticking efficiency	iforcing=2,3
				parameterization for snow-snow collisions as	$inwp_gscp=4,5,6,7$
				function of temperature.	
				Same choices as for iice_stick.	
iparti_stick	I	5		Optional choice of the sticking. efficiency	iforcing=2,3
				parameterization for other frozen category	$inwp_gscp=4,5,6,7$
				collisions as function of temperature.	
				Same choices as for iice_stick.	
				Does not apply for graupel selfcollection.	
				There, the below ecoll_gg, ecoll_gg_wet	
				and Tcoll_gg_wet apply.	
ecoll_gg	R	0.1		Collision efficiency for graupel	iforcing=2,3
				autoconversion (dry graupel). Value between	$inwp_gscp=4,5,6,7$
				0 and 1.	
ecoll_gg_wet	R	0.4		Collision efficiency for graupel	iforcing=2,3
				autoconversion (wet graupel). Value between	$inwp_gscp=4,5,6,7$
				0 and 1.	
Tcoll_gg_wet	R	270.16	K	Temperature limit above which graupel	iforcing=2,3
				autoconversion is considered to be for wet	$inwp_gscp=4,5,6,7$
				surfaces.	
cap_snow	R	-999.99		Capacitance for snow depositional growth. A	iforcing=2,3
				value < -900 indicates the usage of the	$inwp_gscp=4,5,6,7$
				code-internal backgroud value 3.0.	
vsedi_max_s	R	-999.99	m/s	Maximum allowed spectral mean	iforcing=2,3
				sedimentation velocity of snow at sea level.	$inwp_gscp=4,5,6,7$
				A value < -900 indicates the usage of the	
				code-internal backgroud value $1.2\mathrm{m/s}$.	

Defined and used in: src/namelists/mo_2mom_mcrph_nml.f90

Internally these namelist parameters are stored in the container atm_phy_nwp_config(jg)%cfg_2mom of type t_cfg_2mom.

The defaults are defined in the container $cfg_2mom_default$ in $src/atm_phy_schemes/mo_2mom_mcrph_config_default.f90$

Adding new parameters can easily be done along the lines of one of the above existing parameters.

2.34. output_nml (relevant if run_nml/output='nml')

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description	Scope
dom	I(:)	-1		Array of domains for which this name-list is used. If not specified (or specified as -1 as	
				the first array member), this name-list will	
				be used for all domains.	
				Attention: Depending on the setting of the	
				parameter l output phys patch these are	
				either logical or physical domain numbers!	
file interval	C	""		Defines the length of a file in terms of an	
_				ISO-8601 duration string. An example for	
				this time stamp format is given below. This	
				namelist parameter can be set instead of	
				steps_per_file.	
filename_format	C	see description.		Output filename format. Includes keywords	
				path, output_filename, physdom, etc. (see	
				below). Default is	
				<pre><output_filename>_DOM<physdom>_<levtype< pre=""></levtype<></physdom></output_filename></pre>	>_
				<jfile></jfile>	
filename_extn	C	"default"		User-specified filename extension (empty	
				string also possible). If this namelist	
				parameter is chosen as "default", then we	
				have ".nc" for NetCDF output files, and	
C1 /		4		".grb" for GRIB1/2.	
filetype	I	4		One of CDI's FILETYPE_XXX constants.	
				Possible values:	
				2=FILETYPE_GRB2, 4=FILETYPE_NC2,	
				5=FILETYPE NC4	
m levels	C	None		Model level indices (optional).	
III_ICVCIS		None		Allowed is a comma- (or semicolon-)	
				separated list of integers, and of integer	
				ranges like "1020". One may also use the	
				keyword "nlev" to denote the maximum	
				integer (or, equivalently, "n" or "N").	
				Furthermore, arithmetic expressions like	
				"(nlev - 2)" are possible.	
				Basic example:	
				m_levels = "1,3,510,20(nlev-2)"	
h levels	R(:)	None	m	height levels	

Parameter	Type	Default	Unit	Description	Scope
p_levels	R(:)	None	Pa	pressure levels	-
_					
i_levels	R(:)	None	K	isentropic levels	
$ml_varlist$	C(:)	None		Name of model level fields to be output.	
hl_varlist	C(:)	None		Name of height level fields to be output.	
pl_varlist	C(:)	None		Name of pressure level fields to be output.	
il_varlist	C(:)	None		Name of isentropic level fields to be output.	$ \text{itype_pres_msl} < 3 \text{ (for } $
					technical reasons?)
include_last	L	.TRUE.		Flag whether to include the last time step	
mode	I	2		1 = forecast mode, 2 = climate mode	
				In climate mode the time axis of the output	
				file is set to TAXIS_ABSOLUTE. In forecast mode it is set to	
				TAXIS RELATIVE. Till now the forecast	
				mode only works if the output is at multiples	
				of 1 hour	
taxis tunit	I	2		Time unit of the TAXIS RELATIVE time	$\mod = 1$
taxis_tarif	1	_		axis.	mode-1
				1 = TUNIT SECOND	
				2 = TUNIT MINUTE	
				$5 = \text{TUNIT}^{-}\text{HOUR}$	
				$9 = \text{TUNIT}^{-}\text{DAY}$	
				For a complete list of possible values see	
				cdilib.c	
$output_bounds$	R(k*3)	None		Post-processing times: start, end, increment.	
				The increment (output interval) must be	
				larger than the advection time step (dtime)	
				and should be an integer multiple of it.	
				Multiple triples are possible in order to	
				define multiple starts/ends/intervals. See	
				namelist parameters output_start,	
				output_end, output_interval for an	
	T	1		alternative specification of output events.	
$oxed{ ext{output_time_unit}}$	I	1		Units of output bounds specification. $1 = second$	
				1 = second 2 = minute	
				z = minute 3 = hour	
				4 = day	
				5 = month	
				6 = year	
	I			$\sigma = f$ con	

Parameter	Type	Default	Unit	Description	Scope
output_filename	С	None		Output filename prefix (which may include	
_				path). Domain number, level type, file	
				number and extension will be added,	
				according to the format given in namelist	
				parameter "filename format".	
$\operatorname{output_grid}$	L	.FALSE.		Flag whether grid information is added to	
				output.	
output start	C(:)	""		ISO8601 time stamp for begin of output. An	
				example for this time stamp format is given	
				below. More than one value is possible in	
				order to define multiple start/end/interval	
				triples. See namelist parameter	
				output_bounds for an alternative	
				specification of output events.	
output end	C(:)	""		ISO8601 time stamp for end of output. An	
• =				example for this time stamp format is given	
				below. More than one value is possible in	
				order to define multiple start/end/interval	
				triples. See namelist parameter	
				output_bounds for an alternative	
				specification of output events.	
output interval	C(:)	""		ISO8601 time stamp for repeating output	
• –				intervals. The output interval must be larger	
				than the advection time step (dtime) and	
				should be an integer multiple of it. An	
				example for this time stamp format is given	
				below. More than one value is possible in	
				order to define multiple start/end/interval	
				triples. See namelist parameter	
				output_bounds for an alternative	
				specification of output events.	

Parameter	Type	Default	Unit	Description	Scope
operation	С	None		Use this variable for internal diagnostics	
				applied on all given output variables or	
				groups except time-constant ones: mean for	
				generating time averaged, square for time	
				averaged square values, max or min for	
				maximum and minimum and acc for	
				accumulated values within the corresponding	
				interval, i.e. output_interval.	
				Supported are 2D, 3D and single values like	
				global means on model levels of all	
				components. All operations can be used on	
				global and nested grids.	
pe_placement_il	I(:)	-1		Advanced output option: Explicit	
				assignment of output MPI ranks to the	
				isentropic level output file. At most	
				stream_partitions_il different ranks can	
				be specified. See namelist parameter	
				pe_placement_ml for further details.	
pe placement hl	I(:)	-1		Advanced output option: Explicit	
				assignment of output MPI ranks to the	
				height level output file. At most	
				stream_partitions_hl different ranks can	
				be specified. See namelist parameter	
				<pre>pe_placement_ml for further details.</pre>	
pe_placement_ml	I(:)	-1		Advanced output option: Explicit	
				assignment of output MPI ranks to the	
				model level output file. At most	
				stream_partitions_ml different ranks can	
				be specified, out of the following list: 0	
				(num_io_procs - 1). If this namelist	
				parameters is not provided, then the output	
				ranks are chosen in a Round-Robin fashion	
				among those ranks that are not occupied by	
				explicitly placed output files.	
pe_placement_pl	I(:)	-1		Advanced output option: Explicit	
				assignment of output MPI ranks to the	
				pressure level output file. At most	
				stream_partitions_pl different ranks can	
				be specified. See namelist parameter	
				pe_placement_ml for further details.	

Parameter	Type	Default	Unit	Description	Scope
ready_file	C	"default"		A ready file is a technique for handling	
				dependencies between the NWP processes.	
				The completion of the write process is	
				signalled by creating a small file with name	
				ready_file. Different output_nml's may be	
				joined together to form a single ready file	
				event. The setting of ready_file =	
				"default" does not create a ready file. The	
				ready file name may contain string tokens	
				<path>, <datetime>, <ddhhmmss>,</ddhhmmss></datetime></path>	
				<pre><datetime2> which are substituted as</datetime2></pre>	
				described for the namelist parameter	
				filename_format.	
reg_def_mode	I	0		Specify if the "delta" value prescribes an	remap=1
				interval size or the total *number* of	
				intervals: 0: switch automatically between	
				increment and no. of grid points, 1:	
				reg_lon/lat_def(2) specifies increment, 2:	
				reg_lon/lat_def(2) specifies no. of grid	
				points.	
remap	I	0		interpolate horizontally	
				0: none	
				1: to regular lat-lon grid	
north_pole	R(2)	0,90		definition of north pole for rotated lon-lat	
				grids ([longitude, latitude].	
$ m reg_lat_def$	R(3)	None		start, increment, end latitude in degrees.	remap=1
				Alternatively, the user may set the number	
				of grid points instead of an increment.	
				Details for the setting of regular grids is	
				given below together with an example.	
$ m reg_lon_def$	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in	
				degrees. Alternatively, the user may set the	
				number of grid points instead of an	
				increment. Details for the setting of regular	
				grids is given below together with an	
				example.	

Parameter	Type	Default	Unit	Description	Scope
steps_per_file	I	-1		Max number of output steps in one output	
				file. If this number is reached, a new output	
				file will be opened. Setting steps_per_file to	
				1 enforces a flush when writing is completed,	
				so that the file is immediately accessible for	
				reading.	
steps_per_file_inclfirst	L	see descr.		Defines if first step is counted wrt.	
				steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE.	
				otherwise.	
stream_partitions_hl	I	1		Splits height level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml	
	_			for details.	
stream_partitions_il	I	1		Splits isentropic level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml	
-t	т	1		for details. Splits model level output of this namelist	
$stream_partitions_ml$	I	1		into several concurrent alternating files. The	
				output is split into N files, where the start	
				date of part i gets an offset of	
				$(i-1)*$ output_interval. The output	
				interval is then replaced by	
				$N*$ output_interval, the include_last	
				flag is set to .FALSE., the	
				steps_per_file_inclfirst flag is set to	
				.FALSE., and the steps_per_file counter	
				is set to 1.	
stream partitions pl	I	1		Splits pressure level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml	
				for details.	
rbf_scale	R	-1.		Explicit setting of RBF shape parameter for	interpol_nml:rbf_scale_mode_ll=
				interpolated lon-lat output. This namelist	
				parameter is only active in combination with	
				interpol nml:rbf scale mode ll=3.	

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Interpolation onto regular grids: Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the mesh is defined by the parameters

- reg_lon_def: mesh latitudes in degrees,
- reg_lat_def: mesh longitudes in degrees,
- north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points start + k * increment <= end, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment
- 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

local grid with 0.5 degree increment:

global grid with 720x361 grid points:

reg_lon_def = -30.,0.5,30. reg_lat_def = 90.,-0.5, -90. reg_lon_def = 0.,720.360.

reg_lon_def = 0.,720,360. reg_lat_def = -90.,360,90.

Time stamp format: The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications. NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PTO6H" instead of "PT6H"
- 2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0 <=nmon<=12, 0 <=nhr<=23, 0 <=nmin<=59, 0 <=nsec<=59.999. For instance use "P01D" instead of "PT01M" instead of "PT00S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

date and time representation (output_start, output_end)
duration (output_interval)

2013-10-27T13:41:00Z POODTO6HOOMOOS

Variable Groups

Keyword "group:": Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

group:all output of all variables (caution: do not combine with mixed vertical interpolation) group:atmo_ml_vars basic atmospheric variables on model levels group:atmo_pl_vars same set as atmo ml vars, but except pres same set as atmo ml vars, but expect height group:atmo_zl_vars additional prognostic variables of the nonhydrostatic model group:nh_prog_vars derived atmospheric variables group:atmo_derived_vars group:rad_vars group:precip_vars group:cloud_diag group:pbl_vars group:phys_tendencies group:land_vars snow variables group:snow_vars multi-layer snow variables group:multisnow_vars group:additional_precip_vars group:dwd_fg_atm_vars DWD first guess fields (atmosphere) DWD first guess fields (surface/soil) group:dwd_fg_sfc_vars group:ART_AERO_VOLC ART volcanic ash fields group: ART_AERO_RADIO ART radioactive tracer fields ART mineral dust aerosol fields group:ART_AERO_DUST group:ART_AERO_SEAS ART sea salt aerosol fields group:prog_timemean time mean output: temp, u, v, rho group:tracer_timemean time mean output: qv, qc, qi time mean variables from prog_timemean,tracer_timemean group:atmo_timemean

Keyword "tiles:": The "tiles:" keyword allows to add all tiles of a specific variable to the output, without the need to specify all tile fields separately. E.g. "tiles:t_g" (read: "tiles of t_g") automatically adds all t_g_t_X fields to the output. Here, X is a placeholder for the tile number. Make sure to specify the name of the aggregated variable rather than the name of the corresponding tile container (i.e. in the given example it must be t_g, and not t_g_t!).

Note:

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group.

Typing "-<varname>" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

path
output_filename
physdom
levtype
levtype_l
jfile
datetime
datetime2
datetime3
ddhhmmss
dddhhmmss
hhmmss
npartitions
ifile_partition
total_index

substituted by model_base_dir substituted by output_filename substituted by physical patch ID substituted by level type "ML", "PL", "HL", "IL" like levtype, but in lower case substituted by output file counter substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ substituted by relative day-hour-minute-second string substituted by relative three-digit day-hour-minute-second string substituted by relative hour-minute-second string If namelist is split into concurrent files: number of stream partitions. If namelist is split into concurrent files: stream partition index of this file. If namelist is split into concurrent files: substituted by the file counter (like in jfile), which an "unsplit" namelist would have produced

2.35. parallel_nml

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length.	
nblocks_c	I	0		Number of looping chunks used for cells. For	
				values ≤ 0 this is ignored. For bigger	
				values, this overwrites nproma .	
nproma_sub	I	nproma		Chunk size of subblocks used for example by	
				ecRad or rrtmgp, which is needed for the	
				GPU port to reduce the memory footprint.	
nblocks_sub	I	1		Number of looping chunks used for	
				subblocking. For values ≤ 0 this is ignored.	
				For bigger values, this overwrites	
				$nproma_sub.$	
n_ghost_rows	I	1		number of halo cell rows	
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
division_file_name	$\mid C \mid$			Name of division file	$\operatorname{division_method} = 0$
ldiv_phys_dom	L	.TRUE.		.TRUE.: split into physical domains before	$\operatorname{division_method} = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off	
				this option is not recommended except for	
				very small processor numbers)	
p_test_run	$\mid L$.FALSE.		.TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	
num_test_pe	I	-1		If set to more than 1, use this many ranks for	$p_{test_run} = .TRUE.$
				testing and switch to different consistency	
				test. This enables tests for identity in setups	
				which are too big to run on a single rank but	
				is limited to comparing one MPI	
	_	DAT CD		parallelization setup vs. another, obviously.	
l_test_openmp	L	.FALSE.		if .TRUE. is combined with	$p_{\text{test_run}} = .TRUE.$
				p_test_run=.TRUE. and OpenMP	
				parallelization, the test PE gets only 1	
				thread in order to verify the OpenMP	
				parallelization	

Parameter	Type	Default	Unit	Description	Scope
l_log_checks	L	.FALSE.		if .TRUE. messages are generated during	
				each synchonization step (use for debugging	
				only)	
l_fast_sum	L	.FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global	
				summation	
use_dycore_barrier	L	.FALSE.		if .TRUE., set an MPI barrier at the	
				beginning of the nonhydrostatic solver (do	
				not use for production runs!)	
itype_exch_barrier	I	0		1: set an MPI barrier at the beginning of	
				each MPI exchange call	
				2: set an MPI barrier after each MPI WAIT	
				call	
				3: 1+2 (do not use for production runs!)	
iorder_sendrecv	I	1		Sequence of send/receive calls:	
				1 = irecv/send	
				$2=\mathrm{isend/recv}$	
				$3=\mathrm{isend/irecv}$	
default_comm-	I	1		Default implementation of	
_pattern_type				mo_communication to be used:	
				1 = original	
				2 = YAXT	
num_io_procs	I	0		Number of I/O processors (running	
				exclusively for doing I/O)	

Parameter	Type	Default	Unit	Description	Scope
num_io_procs_radar	I	0		Number of dedicated I/O processors for the	luse_radarfwo(<idom>)</idom>
				efficient radar forward operator	=.TRUE., iequations=3,
				EMVORADO. Choosing more I/O	iforcing=3
				processors than the total number of	
				simulated radar stations of all domains is	
				not advisable, because one station is handled	
				by one I/O processor. However, less I/O	
				processors can be chosen, in which case one	
				processor handles several stations.	
				I/O tasks actually include much more than	
				plain output for each station and can be	
				very time consuming. More details can be	
				found in the EMVORADO User's Guide	
				available from the COSMO web page	
				$(www.cosmo-model.org \rightarrow Documentation$	
				\rightarrow EMVORADO) or from the emvorado	
				submodule	
				./externals/emvorado/DOC/TEX/emvorado_1	userguide.pdf.
				If num_io_procs_radar=0, a subset of the	
				worker processors (=number of radar	
				stations) are doing the I/O tasks, which may	
				slow down the model considerably.	
num restart procs	I	0		Number of restart processors (running	
				exclusively for doing restart)	
num prefetch proc	I	1		Number of processors for prefetching of	Mandatory for itype latbc
				boundary data asynchronously for a limited	= 1
				area run (running exclusively for reading	
				Input boundary data. Maximum no of	
				processors used for it is limited to 1).	
proc0 shift	I	0		Number of processors at the beginning of the	
_				rank list that are excluded from the domain	
				decomposition. Setting this parameter to 1	
				serves for offloading I/O to the vector hosts	
				of the NEC Aurora, but it works technically	
				on other platforms as well.	
use_omp_input	L	.FALSE.		Setting this parameter to .TRUE. activates	
				OpenMP sections in initicon that allow task	
				parallelism for reading atmospheric input	
				data, overlapping reading, sending, and	
				statistics calculations.	

Parameter	Type	Default	Unit	Description	Scope
pio_type	I	1		Type of parallel I/O.	
				1: Classical async I/O processors	
				2: CDI-PIO (Experimental!) Experimental!	
use icon comm	L	.FALSE.		Enable the use of MPI bulk communication	
				through the icon comm lib	
icon comm debug	L	.FALSE.		Enable debug mode for the icon_comm_lib	
max_send_recv-	I	131072		Size of the send/receive buffers for the	
_buffer_size				icon_comm_lib.	
use_dp_mpi2io	L	.FALSE.		Enable this flag if output fields shall be	
				gathered by the output processes in	
				DOUBLE PRECISION.	
restart_chunk_size	I	1		(Advanced namelist parameter:) Number of	
				levels to be buffered by the asynchronous	
				restart process. The (asynchronous) restart	
				is capable of writing and communicating	
				more than one 2D slice at once.	
num_dist_array_replicas	I	1		(Advanced namelist parameter:) Number of	
				replicas of the distributed array used for the	
				pre_patch.	
io_process_stride	I	-1		(Advanced namelist parameter:) Stride of	
				processes taking part in reading of data.	
				(Few reading processes, i.e. a large stride,	
				often gives best performance.)	
io_process_rotate	I	0		(Advanced namelist parameter:) Rotate of	
				processes taking part in reading of data.	
				(Process taking part if p_pe_work % stride	
				== rotate)	

Defined and used in: src/namelists/mo_parallel_nml.f90

2.36. radiation_nml (relevant if run_nml:iforcing=3 (NWP))

Parameter	Type	Default	Unit	Description	Scope
isolrad	I	1		Insolation scheme 0: Use original insolation (from SRTM in case inwp_radiation=1 or from ecRad in case inwp_radiation=4) 1: Use SSI values from Coddington et al. (2016) (inwp_radiation=1) or scale SSI values to Coddington et al. (2016) values (inwp_radiation=4) 2: SSI from an external file containing monthly mean time series (inwp_radiation=4)	
izenith	I	4		Choice of zenith angle formula for the radiative transfer computation. 0: Sun in zenith everywhere 1: Zenith angle depends only on latitude 2: Zenith angle depends only on latitude. Local time of day fixed at 07:14:15 for radiative transfer computation (sin(time of day) = 1/pi 3: Zenith angle changing with latitude and time of day 4: Zenith angle and irradiance changing with season, latitude, and time of day (iforcing=inwp only) 5: Zenith angle for radiative convective equilibrium test: perpetual equinox with 340 W/m2 6: Zenith angle with prescribed cosine of solar zenith angle (see parameter cos_zenith_fixed)	
cos_zenith_fixed	R	0.5		Cosine of zenith angle for test cases including SCM	izenith=6

Parameter	Type	Default	Unit	Description	Scope
islope_rad(max_dom)	I	0		Slope correction for surface radiation:	
				0: None	
				1: Slope correction for direct solar radiation	
				without shading effects	
				2: Slope and horizon / sky-view factor	
				correction for direct solar radiation including	
				shading (Remark: sky-view correction not	
				yet activated)	
				3: Slope correction for direct solar radiation	
				including shading, but no further	
				consideration of sky-view factor effects.	
albedo_type	I	1		Type of surface albedo	iforcing=inwp
				1: based on soil type specific tabulated	
				values (dry soil)	
				2: MODIS albedo 3: fixed albedo for SCM and other testcases	
albada firad	\mathbb{R}	0.5		Fixed albedo value for SCM and various	ifoncing inves
albedo_fixed	l W	0.5			iforcing=inwp albedo type=3
diment albada	I	4		testcases Direct beam surface albedo over land and	iforcing=inwp
$\operatorname{direct_albedo}$	1	4		sea-ice. Options mainly differ in terms of	albedo type=2
				their solar zenith angle (SZA) dependency.	arbedo_type=2
				1: Ritter-Geleyn (1992)	
				2: Zängl (pers. comm.): For 'rough surfaces'	
				over land direct albedo is not allowed to	
				exceed the corresponding broadband diffuse	
				albedo. Ritter-Geleyn for ice.	
				3: Yang et al (2008) for snow-free land	
				points. Ritter-Geleyn for ice and Zängl for	
				snow.	
				4: Briegleb and Ramanathan (1992) for	
				snow-free land points. Ritter-Geleyn for ice	
				and Zängl for snow.	
$\operatorname{direct_albedo_water}$	I	2		Direct beam surface albedo over water	iforcing=inwp
				(ocean or lake). Options mainly differ in	albedo_type=2
				terms of their solar zenith angle (SZA)	
				dependency.	
				1: Ritter-Geleyn (1992)	
				2: Yang (2008), originally designed for land	
				3: Taylor et al (1996) for direct and 0.06 for	
				diffuse albedo as in the IFS.	

Parameter	Type	Default	Unit	Description	Scope
albedo_whitecap	I	0		Ocean albedo increase by foam from	iforcing=inwp
_				breaking waves (whitecaps). Not applied	albedo_type=2
				over lakes.	
				0: off	
				1: whitecap describtion by Seferian et al	
				2018	
icld_overlap	I	2		Method for cloud overlap calculation in	iforcing=inwp
				shortwave part of RRTM	inwp_radiation=1 (1-4)
				1: maximum-random overlap	$inwp_radiation=4 (1,2,5)$
				2: generalized overlap (Hogan, Illingworth,	
				2000)	
				3: maximum overlap	
				4: random overlap	
				5: exponential overlap	

Parameter	Type	Default	Unit	Description	Scope
irad_h2o	I	1		Switches for the concentration of radiative	
$\operatorname{irad} _{\operatorname{co}2}$		2		agents	
irad_ch4		3		$irad_xyz = 0$: set to zero	
$\operatorname{irad}^ \operatorname{n2o}$		3		a^{-} irad a^{-} h2o = 1: vapor, cloud water and cloud	
irad o3		0		ice from tracer variables	
irad o2		2		irad $co2 = 1$: CO_2 from tracer variable	
irad cfc11		2		a^{-1} irad a^{-1} co2/ch4/n2o/o2/cfc11/cfc12 = 2:	
irad cfc12		2		concentration given by	
_				vmr co2/ch4/n2o/o2/cfc11/cfc12	
				$\frac{1}{1}$ irad $\frac{1}{1}$ ch4/n2o = 3: tanh-profile with surface	
				concentration given by vmr ch4/n2o	
				irad $co2/cfc11/cfc12 = 4$: time dependent	
				concentration from greenhouse gas file	
				irad $ch4/n2o = 4$: time dependent	
				tanh-profile with surface concentration from	
				greenhouse gas file	
				irad o $3 = 2$: ozone climatology from MPI	
				irad o3 = 4: ozone clim for Aqua Planet	
				Exp	
				irad o3 = 5: 3-dim concentration, time	
				dependent, monthly means from yearly files	
				bc ozone <year>.nc or - with nesting -</year>	
				bc ozone DOM <jg> <year>.nc</year></jg>	
				$\frac{1}{1}$ irad o3 = 6: ozone climatology with T5	
				geographical distribution and Fourier series	
				for seasonal cycle for run $nml/iforcing = 3$	
				(NWP)	
				irad o $3 = 7$: GEMS ozone climatology	
				$(\text{from IFS}) \text{ for run_nml/iforcing} = 3 (NWP)$	
				irad o3 = 9: MACC ozone climatology	
				$\frac{1}{1}$ (from IFS) for run $\frac{1}{1}$ nml/iforcing = $\frac{3}{1}$ (NWP)	
				irad o3 = 79: Blending between GEMS and	
				MACC ozone climatologies (from IFS) for	
				run $nml/iforcing = 3$ (NWP); MACC is	
				used over Antarctica	
				irad o $3 = 97$: As 79, but MACC is also	
				used above 1 hPa with transition zone	
				between 5 hPa and 1 hPa	
				irad o $3 = 10$: Linearized ozone chemistry	
				(ART extension necessary) for	
				run $nml/iforcing = 3 (NWP)$	
				irad o3 = 11: Ozone from SCM input file	

Parameter	Type	Default	Unit	Description	Scope
vmr_co2	R	348.0e-6		Volume mixing ratio of the radiative agents	
vmr_ch4		1650.0e-9			
vmr_n2o		306.0e-9			
vmr_02		0.20946			
vmr_cfc11		214.5e-12			
vmr_cfc12		371.1e-12			

Parameter	Type	Default	Unit	Description	Scope
irad_aero	I	2		Aerosols	
				0: none	
				1: prognostic variable	
				2: global constant	
				3: externally specified	
				6: Tegen aerosol climatology for	
				$run_nml/iforcing = 3 (NWP)$.AND. itopo	
				=1	
				9: ART online aerosol radiation interaction,	
				uses Tegen for aerosols not chosen to be	
				represented in ART for run_nml/iforcing =	
				3 (NWP) .AND. itopo =1 .AND.	
				lart=TRUE .AND. iart_ari=1	
				12: tropospheric 'Kinne' aerosols, constant	
				in time	
				13: total tropospheric 'Kinne' aerosols, time	
				dependent from file	
				14: volcanic stratospheric aerosols for	
				CMIP6, time dependent from file	
				15: tropospheric 'Kinne' aerosols + volcanic	
				stratospheric aerosols for CMIP6, time	
				dependent, both from file. If the 1850–file of	
				the 'Kinne' aerosols is given, only the natural	
				background from Kinne aerosol is applied.	
				18: tropospheric natural 'Kinne' aerosols	
				from pre-industry (the 1850–file has to be	
				linked for all simulations!) + time dep.	
				volcanic stratospheric aerosols for CMIP6,	
				both from file + param. time dep.	
				anthropogenic 'simple plumes'	
				19: tropospheric natural 'Kinne' aerosols	
				from pre-industry (the 1850–file has to be	
				linked for all simulations!) + param. time	
				dep. anthropogenic 'simple plumes'	
lrad aero diag	L	.FALSE.		writes actual aerosol optical properties to	
				output	
ecrad data path	C	"."		Path to the folder containing ecRad optical	inwp_radiation=4 (ecRad)
				properties files.	m.p_iadiadon—i (ceitad)

Parameter	Type	Default	Unit	Description	Scope
ecrad_isolver	I	0		Radiation solver	inwp_radiation=4 (ecRad)
				0: McICA (Pincus et al. 2003)	
				1: Tripleclouds (Shonk and Hogan 2008)	
				2: McICA for OpenACC	
				3: SPARTACUS (Hogan et al. 2016)	
ecrad_igas_model	I	0		Gas model and spectral bands	inwp_radiation=4 (ecRad)
				0: RRTMG (Iacono et al. 2008)	
				1: ecckd (Hogan and Matricardi 2020)	
ecrad_llw_cloud_scat		.FALSE.		Long-wave cloud scattering.	inwp_radiation=4 (ecRad)
ecrad_use_general_cloud_optics	L	.FALSE.		General cloud optics in ecrad.	inwp_radiation=4 (ecRad)
				It allows for different optical properties of ice	
				and liquid.	
ecrad_iliquid_scat	I	0		Optical properties for liquid cloud scattering.	inwp_radiation=4 (ecRad)
				Different options depending on	
				ecrad_use_general_cloud_optics (eugco)	
				0: SOCRATES (eugco = .FALSE.)	
				\Mie-droplet (eugco = .TRUE.)	
1				1: Slingo (1989) (eugco = .FALSE.)	
ecrad_iice_scat	I	0		Optical properties for ice cloud scattering.	inwp_radiation=4 (ecRad)
				Different options depending on	
				ecrad_use_general_cloud_optics (eugco)	
				0: Fu et al. (1996) (both)	
				1: Baran et al. (2016) (eugco=.FALSE.)	
				2: Yi (2013) (eugco=.FALSE.)	
				10: Rough Fu (eugco=.TRUE.)	
and import and	I	-1		11: Baum (eugco=.TRUE.) Optical properties for snow scattering.	inwp_radiation=4 (ecRad)
ecrad_isnow_scat	1	-1		-1: No explicit snow in radiation.	ecrad use general cloud optic
				0: Fu et al. (1996)	= .TRUE.
				10: Rough Fu	= .TROE.
decorr pole	R	2000	m	Decorrelation length scale at poles	inwp_radiation=4 (ecRad)
decorr_pole	l n	2000	m	Decorrelation length scale at poles	mwp_radiation=4 (echad)
decorr_equator	R	2000	m	Decorrelation length scale at equator	inwp_radiation=4 (ecRad)
ecrad_irain_scat	I	-1		Optical properties for rain scattering.	inwp_radiation=4 (ecRad)
				-1: No explicit rain in radiation.	ecrad_use_general_cloud_optic
				0: Mie-rain	= .TRUE.

Parameter	Type	Default	Unit	Description	Scope
ecrad_igraupel_scat	I	-1		Optical properties for graupel scattering.	inwp_radiation=4 (ecRad)
				-1: No explicit graupel in radiation.	ecrad_use_general_cloud_optic
				0: Fu et al. (1996)	= .TRUE.
				10: Rough Fu	

Defined and used in: src/namelists/mo_radiation_nml.f90

2.37. run_nml

Parameter	Type	Default	Unit	Description	Scope
nsteps	I	-999		Number of time steps of this run. Allowed	
				range is ≥ 0 ; setting a value of 0 allows	
				writing initial output (including internal	
				remapping) without calculating time steps.	
dtime	R	600.0	S	time step.	
				For real case runs the maximum allowable	
				time step can be estimated as	
				$1.8 \cdot \text{ndyn_substeps} \cdot \overline{\Delta x} \text{s km}^{-1},$	
				where $\overline{\Delta x}$ is the average resolution in km	
				and ndyn_substeps is the number of	
				dynamics substeps set in	
				nonhydrostatic_nml. ndyn_substeps should	
				not be increased beyond the default value 5.	
ltestcase		.TRUE.		Idealized testcase runs	
ldynamics	L	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	1	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive	
				indices for the atmosphere and negative	
				indices for the ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: AES forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
14	_T	EATCE		-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
				large-scale transport scheme	

Parameter	Type	Default	Unit	Description	Scope
lvert_nest	L	.FALSE.		If set to .true. vertical nesting is switched on	
				(i.e. variable number of vertical levels)	
$\operatorname{num_lev}$	I(max_	31		Number of full levels (atm.) for each domain	$lvert_nest=.TRUE.$
	dom)				
nshift	I(max_	0		vertical half level of parent domain which	lvert_nest=.TRUE.
	dom)			coincides with upper boundary of the	
				current domain required for vertical	
				refinement, which is not yet implemented	
ltimer	L	.TRUE.		TRUE: Timer for monitoring the runtime of	
				specific routines is on $(FALSE = off)$	
timers level	I	1			
activate sync timers	L	F		TRUE: Timer for monitoring runtime of	
				communication routines $(FALSE = off)$	
msg level	I	10		controls how much printout is written during	
_				runtime.	
				For values less than 5, only the time step is	
				written.	
$msg_timestamp$	L	.FALSE.		If .TRUE., precede output messages by time	
				stamp.	
debug_check_level	I	0		Setting a value larger than 0 activates debug	
				checks.	
output	C(:)	"nml", "totint"		Main switch for enabling/disabling	
				components of the model output. One or	
				more choices can be set (as an array of	
				string constants). Possible choices are:	
				• "none": switch off all output;	
				• "nml": new output mode (cf.	
				output_nml);	
				ouspus_mmi);	
				• "totint": computation of total integrals.	
				• "maxwinds": write max. winds to	
				separate ASCII file "maxwinds.log".	
				If the output namelist parameter is not set	
				explicitly, the default setting "nml","totint" is	
				assumed.	

Parameter	Type	Default	Unit	Description	Scope
restart_filename	С			File name for restart/checkpoint files	
				(containing keyword substitution patterns	
				<pre><gridfile>, <idom>, <rsttime>, <mtype>).</mtype></rsttime></idom></gridfile></pre>	
				default:	
				" <gridfile>_restart_<mtype>_<rsttime>.:</rsttime></mtype></gridfile>	nc".
profiling_output	I	1		controls how profiling printout is written:	
				$TIMER_MODE_AGGREGATED=1,$	
				TIMER_MODE_DETAILED=2,	
				TIMER_MODE_WRITE_FILES=3.	
lart	L	.FALSE.		Main switch which enables the treatment of	
				atmospheric aerosol and trace gases (The	
				ART package of KIT is needed for this	
				purpose)	
ldass_lhn	L	.FALSE.		Main switch which enables the assimilation	
				of radar derived precipitation rate via Latent	
				Heat Nudging	
check_uuid_gracefully	L	.FALSE.		If this flag is set to .TRUE. we give only	
				warnings for non-matching UUIDs.	
luse_radarfwo	L(max_	.FALSE.		For each domain, switch to activate the	iequations=3, iforcing=3,
	dom)			efficient volume scan radar forward operator	ICON configure'd with
				EMVORADO. The EMVORADO code is	enable-emvorado
				provided as a submodule named emvorado,	
				which is part of the ICON distribution.	
				ICON itself contains only some ICON	
				specific interface modules.	
				./configure (respectively the call to a	
				configure wrapper script) needs the option	
				enable-emvorado.	
				EMVORADO needs its own namelist(s) for	
				each radar-active model domain in a	
				separate namelist input file	
				RADARSIM_PARAMS. More details can be	
				found in the EMVORADO User's Guide	
				available from the COSMO web page	
				(www.cosmo-model.org → Documenta-	
				$tion \rightarrow EMVORADO)$ or from the submodule	
				./externals/emvorado/DOC/TEX/emvorado_	userguide.pdf.

Parameter	Type	Default	Unit	Description	Scope
radarnmlfile	С			The name of the file containing the	
				EMVORADO namelist. If this is empty or	
				not set, the Default from	
				radar_data_namelist.f90 is used. Only used	
				if luse_radarfwo is .TRUE	

Defined and used in: src/namelists/mo_run_nml.f90

2.38. scm_nml (relevant if I_scm_mode)

Parameter	Type	Default	Unit	Description	Scope
i_scm_netcdf	I	1		reading SCM input data from	
				0: ASCII file	
				1: normal ICON netcdf file	
				2: DEPHY unified netcdf file	
lscm_icon_ini	L	.FALSE.		read initial conditions produced by ICON on	
				the native grid	
lscm_random_noise	L	.FALSE.		initialize with random noise - for LEM runs	
				by ICON on the native grid	
$lscm_read_tke$	L	.FALSE.		read init. the from netcdf	
$lscm_read_z0$	L	.FALSE.		read z0 from netcdf	
scm_sfc_mom	I	0		prescribed surface boundary condition for	
				momentum using	
				0: TERRA	
				2: friction velocity	
				4: drag coefficient	
				5: Louis surface layer scheme	
scm_sfc_qv	I	0		prescribed surface boundary condition for	
				moisture using	
				0: TERRA	
				1: surface moisture (qv_s)	
				2: latent heat flux	
				3: saturation	
				4: draf coefficient	
				5: Louis surface layer scheme	

Parameter	Type	Default	Unit	Description	Scope
scm_sfc_temp	I	0		prescribed surface boundary condition for	
				temperature using	
				0: TERRA	
				1: surface temperature (t_g)	
				2: sensible heat flux (shfl_s)	
				4: drag coefficient	
				5: Louis surface layer scheme	

Defined and used in: src/namelists/mo_scm_nml.f90

2.39. sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	50	m	Layer thickness of lowermost layer;	
				specifying zero or a negative value leads to	
				constant layer thicknesses determined by	
				top_height and nlev	
max_lay_thckn	R	25000	m	Maximum layer thickness below the height	
				given by htop_thcknlimit (NWP	
				recommendation: 400 m)	
				Use with caution! Too ambitious settings	
				may result in numerically unstable layer	
				configurations.	
htop_thcknlimit	R	15000	m	Height below which the layer thickness does	
				not exceed max_lay_thckn	
nshift_above_thcklay	I	0		Level shift above constant-thickness layer for	
				further calculation of layer distribution. For	
				strongly stretched grids with a deep	
				constant-thickness layer, this parameter may	
				be set to 1 in order to reduce the thickness	
				jump right above the constant-thickness	
				layer.	

Parameter	Type	Default	Unit	Description	Scope
itype_laydistr	I	1		Type of analytical function used to specify	
				the distribution of the vertical coordinate	
				surfaces	
				1: transformed cosine,	
				2: third-order polynomial; in this case,	
				stretch_fac should be less than 1,	
				particularly for large numbers of model	
				levels; the algorithm always works for	
				stretch fac=0.5	
				3: second-order polynomial (see M. Baldauf	
				COSMO-TR p. 33)	
top height	R	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of	
				model levels; values <1 increase the layer	
				thickness near the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography	
				component	
decay_scale_2	R	2500	m	Decay scale of small-scale topography	
				component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	R	16000	m	Height above which the coordinate surfaces	
				are flat	
lread_smt	L	.FALSE.		read smoothed topography from file (TRUE)	
				or compute internally (FALSE)	

Defined and used in: src/namelists/mo_sleve_nml.f90

$2.40.\ sppt_nml$

The Stochastic Perturbation of Physical Tendencies (SPPT) method is controlled by the following set of Namelist parameters. Note that SPPT is only available for the NWP physics package (iforcing=3)). In addition, SPPT is not supported on a global domain (hard exit) and is untested in limited area mode where the domain extends across the poles. Running the latter is currently not recommended.

Parameter	Type	Default	Unit	Description	Scope
lsppt	L	.FALSE.		TRUE: forecast with SPPT	
hinc_rn	R	21600	second	time increment for drawing a new field of	
				random numbers	
dlat_rn	R	0.1	\deg	random number coarse grid point distance in	
				meridional direction	
dlon_rn	R	0.1	\deg	random number coarse grid point distance in	
				zonal direction	

Parameter	Type	Default	Unit	Description	Scope
range_rn	R	0.8		max magnitude of random numbers	
$stdv_rn$	R	1.0		standard deviation of the gaussian	
				distribution of random numbers	

Defined and used in: src/namelists/mo_sppt_nml.f90

2.41. synsat nml¹

This namelist enables the RTTOV library incorporated into ICON for simulating satellite radiance and brightness temperatures. RTTOV is a radiative transfer model for nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and interferometers, see

https://nwpsaf.eu/deliverables/rtm

for detailed information.

Parameter	Type	Default	Unit	Description	Scope
lsynsat	L	.FALSE.		Main switch: Enables/disables computation	
	(max_dom)		of synthetic satellite imagery for each model	
				domain.	
nlev_rttov	I	51		Number of RTTOV levels.	

Enabling the synsat module makes the following 32 two-dimensional output fields available:

SYNMSG_RAD_CL_IR3.9	SYNMSG_BT_CL_IR3.9	SYNMSG_RAD_CL_WV6.2	SYNMSG_BT_CL_WV6.2
SYNMSG_RAD_CL_WV7.3	SYNMSG_BT_CL_WV7.3	SYNMSG_RAD_CL_IR8.7	SYNMSG_BT_CL_IR8.7
SYNMSG_RAD_CL_IR9.7	SYNMSG_BT_CL_IR9.7	SYNMSG_RAD_CL_IR10.8	SYNMSG_BT_CL_IR10.8
SYNMSG_RAD_CL_IR12.1	SYNMSG_BT_CL_IR12.1	SYNMSG_RAD_CL_IR13.4	SYNMSG_BT_CL_IR13.4
SYNMSG_RAD_CS_IR3.9	SYNMSG_BT_CS_IR3.9	SYNMSG_RAD_CS_WV6.2	SYNMSG_BT_CS_WV6.2
SYNMSG_RAD_CS_WV7.3	SYNMSG_BT_CS_WV7.3	SYNMSG_RAD_CS_IR8.7	SYNMSG_BT_CS_IR8.7
SYNMSG_RAD_CS_IR9.7	SYNMSG_BT_CS_IR9.7	SYNMSG_RAD_CS_IR10.8	SYNMSG_BT_CS_IR10.8
SYNMSG_RAD_CS_IR12.1	SYNMSG_BT_CS_IR12.1	SYNMSG_RAD_CS_IR13.4	SYNMSG_BT_CS_IR13.4

Here, RAD denotes radiance, BT brightness temperature, CL cloudy, and CS clear sky, supplemented by the channel name. Defined and used in: src/namelists/mo_synsat_nml.f90

2.42. synradar nml

The list of diagnostic output variables in ICON incorporates some fields related to synthetic radar reflectivity on the model grid:

¹Important note: This feature is currently active for configuration dwd+cray only.

- 'dbz', 'dbz_850', 'dbz_cmax', 'dbz_ctmax'
- 'echotop', 'echotopinm'

By default, these are based on a simple analytic so-called Rayleigh-approximation for single-particle backscattering.

If ICON is configured with the flag --enable-emvorado and compiled with the pre-processor flag -DHAVE_RADARFWO, some alternative, more accurate Mie- or T-matrix methods from the radar forward operator EMVORADO can be used by namelist choice (see below), particularly for improving the simulation of the so-called "bright band", the enhanced reflectivity in the melting layer.

EMVORADO is the Efficient Modular VOlume RADar Operator for simulating radar volume scans for cloud- and weather radar wavelenghts, see

- EMVORADO User's Guide in ICON's EMVORADO submodule ./externals/emvorado/DOC/TEX/emvorado_userguide.pdf or on the COSMO web page (www.cosmo-model.org → Documentation → EMVORADO) http://www.cosmo-model.org/content/model/documentation/core/emvorado_userguide.pdf
- A COSMO Technical Report No. 28 on the COSMO web page (www.cosmo-model.org → COSMO Tech Reports) http://www.cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport28.pdf

for detailed information.

Parameter	Type	Default	Unit	Description	Scope
synradar_meta	TYPE(dbzcalc_params)			Instance of the derived type	iforcing=3,
				dbzcalc_params from EMVORADO to	ICON configure'd with
				specify details of the radar reflectivity	enable-emvorado
This type contains:				calculation for related outputs ('dbz',	
				'dbz_850', 'dbz_cmax', 'dbz_ctmax',	
$synradar_meta\%itype_refl$	I	4		'echotop', 'echotopinm'). The type is	
				documented in detail in the EMVORADO	
and many other parameters which				User's Guide.	
are only relevant if itype_refl is				The most important component is	
not the default (4)				itype refl:	
				1: Mie-scattering from EMVORADO	
				assuming spherical particles and including a	
				detailed melting scheme for the radar "bright	
				band".	
				3: Rayleigh-Oguchi approximation from	
				EMVORADO including a simple melting	
				scheme, but not producing pronounced	
				"bright bands".	
				4: Traditional Rayleigh approximation from	
				ICON, also without pronounced "bright	
				bands". This is the default.	
				5: T-matrix scattering from EMVORADO	
				assuming oblate spheroids, otherwise similar	
				to Mie-option 1.	
				6: T-matrix scattering from EMVORADO	
				assuming spherical particles, only for	
				sanity-checks against Mie-option 1.	
				For options 1, 5, 6 there are many more	
				relevant type components.	
ydir_mielookup_write	C	, ,		For reflectivity calculations: directory for	iforcing=3,
				storing new automatically created	ICON configure'd with
				reflectivity lookup tables in case of	enable-emvorado,
				EMVORADO-methods that employ	synradar_meta%itype_refl=1,
				reflectivity lookup tables to boost efficiency	synradar_meta%llookup_mie=.TR
				(synradar_meta%itype_refl=1, 5, 6	
				together with	
				synradar meta%llookup mie=.TRUE.)	

Parameter	Type	Default	Unit	Description	Scope
ydir_mielookup_read	C	, ,	5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	For reflectivity calculations: directory for reading the reflectivity lookup tables in case of EMVORADO-methods that employ reflectivity lookup tables to boost efficiency (synradar_meta%itype_refl=1, 5, 6 together with synradar_meta%llookup_mie=.TRUE.)	iforcing=3, ICON configure'd withenable-emvorado, synradar_meta%itype_refl=1, 5, 6 synradar_meta%llookup_mie=.TRUE.

Defined and used in: src/namelists/mo_synradar_nml.f90

$2.43.\ time_nml$

Parameter	Type	Default	Unit	Description	Scope
calendar	I	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				2=30day/month, 360day/year	
dt_restart	R	0.	s	Length of restart cycle in seconds. This	
				namelist parameter specifies how long the	
				model runs until it saves its state to a file	
				and stops. Later, the model run can be	
				resumed, s. t. a simulation over a long period	
				of time can be split into a chain of restarted	
				model runs.	
				Note that the frequency of writing restart	
				files is controlled by	
				io_nml:dt_checkpoint. Only if the value of	
				dt_checkpoint resulting from model default	
				or user's specification is longer than	
				dt_restart, it will be reset (by the model)	
				to dt_restart so that at least one restart	
				file is generated during the restart cycle. If	
				dt_restart is larger than but not a multiple	
				of dt_checkpoint, restart file will not be	
				generated at the end of the restart cycle.	
ini_datetime_string	C	'2008- 09-01T		Initial date and time of the simulation	
		00:00:00Z'			
end_datetime_string	ightharpoons C	'2008- 09-01T		End date and time of the simulation	
		01:40:00Z'			

Parameter	Type	Default	Unit	Description	Scope
is_relative_time	L	.FALSE.		TRUE., if time loop shall start with step 0 regardless whether we are in a standard run or in a restarted run (which means re-initialized run).	

Length of the run If "nsteps" in run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run. Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

2.44. transport_nml (used if run_nml/ltransport=.TRUE.)

Parameter	Type	Default	Unit	Description	Scope
lvadv_tracer	L	.TRUE.		Main switch for vertical tracer transport. TRUE/FALSE: compute/do not compute vertical tracer advection. If vertical advection is switched off, the tracer mass fraction q is kept constant.	
ihadv_tracer	I(ntracer)	2		Tracer specific method to compute horizontal advection: 0: no horiz. transport. The tracer mass fraction q is kept constant. 1: upwind (1st order) 2: Miura (2nd order, linear reconstr.) 3: Miura3 (quadr. or cubic reconstr.) 4: FFSL (quadr. or cubic reconstr.) 5: hybrid Miura3/FFSL (quadr. or cubic reconstr.) 20: miura (2nd order, lin. reconstr.) with subcycling 22: combination of miura and miura with subcycling 32: combination of miura3 and miura with subcycling 42: combination of FFSL and miura with subcycling 52: combination of hybrid FFSL/Miura3 with subcycling 52: combination of hybrid FFSL/Miura3 with subcycling Subcycling means that the integration from time step n to n+1 is splitted into substeps to meet the stability requirements. For NWP runs, substepping is generally applied above z = 22 km (see nonhydrostatic nml/hbot qvsubstep).	$\begin{aligned} & \operatorname{lsq_high_ord} \in [2,3] \\ & \operatorname{lsq_high_ord} \in [2,3] \\ & \operatorname{lsq_high_ord} \in [2,3] \end{aligned}$
ivadv_tracer	I(ntracer)	3		Tracer specific method to compute vertical advection: 0: no vert. transport. The tracer mass fraction q is kept constant. 1: upwind (1st order) 2: Parabolic Spline Method (PSM): allows for CFL > 1	lvadv_tracer=TRUE

Parameter	Type	Default	Unit	Description	Scope
				3: Piecewise parabolic method (PPM):	
				allows for $CFL > 1$	
itype_hlimit	I(ntracer)	4		Type of limiter for horizontal transport:	
				0: no limiter	
				3: monotonic flux limiter (FCT)	
				4: positive definite flux limiter	
itype_vlimit	I(ntracer)	1		Type of limiter for vertical transport:	
				0: no limiter	
				1: semi-monotonic reconstruction filter	
				2: monotonic reconstruction filter	
				3: positive definite flux limiter	
ivlimit_selective	I(ntracer)	0		Reduce detrimental effect of vertical limiter	
				by applying a method for identifying and	
				avoiding spurious limiting of smooth	
				extrema.	
				1: on	itype_vlimit=1, 2
				0: off	
$nadv_substeps$	I(max_	3		Tracer substepping:	only active for the schemes
	dom)			Number of time integration substeps per fast	ihadv_tracer=20, 22, 32, 42,
				physics/advective time step dtime.	52.
				If only one value is specified, it is copied to	Starts at minimum height
				all child domains, implying that the same	height hbot_qv_substep for
				value is used in all domains. If the number of	the schemes 22, 32, 42, 52,
				values given in the namelist is larger than 1	whereas it is applied
				but less than the number of model domains,	throughout the entire
				then the settings from the highest domain ID	domain for scheme 20.
				are used for the remaining model domains.	
beta_fct	R	1.005		global boost factor for range of permissible	$itype_hlimit = 3, 4$
				values $[q_{max}, q_{min}]$ in (semi-) monotonic flux	
				limiter. A value larger than 1 allows for	
				(small) over and undershoots, while a value	
				of 1 gives strict monotonicity (at the price of	
. 1 41	7			increased diffusivity).	
iadv_tke	I	0		Type of TKE advection	inwp_turb=1
				0: no TKE advection	
				1: vertical advection only	
				2: vertical and horizontal advection	

Parameter	Type	Default	Unit	Description	Scope
tracer_names	C(:)	'Int2Str(i)'		Tracer-specific name suffixes. When running	iforcing≠ inwp, iaes'
				idealized cases or the hydrostatic ICON, this	
				variable is used to specify tracer names. If	
				nothing is specified, the tracer name is given	
				as PREFIX+Int2String(i), where i is the	
				tracer index. Note that this namelist	
				variable has no effect for nonhydrostatic	
				real-case runs, if the NWP- or AES physics	
				packages are switched on.	
npassive tracer	I	0		number of additional passive tracers which	
_				have no sources and are transparent to any	
				physical process (no effect).	
				Passive tracers are named Qpassive_ID,	
				where ID is a number between ntracer and	
				ntracer+npassive_tracer.	
				NOTE: By default, limiters are switched off	
				for passive tracers and the scheme 52 is	
				selected for horizontal advection.	
init formula	C	, ,		Comma-separated list of initialization	npassive tracer > 0
_				formulas for additional passive tracers.	_
igrad_c_miura	I	1		Method for gradient reconstruction at cell	
				center for 2nd order miura scheme	
				1: Least-squares (linear, non-consv)	ihadv_tracer=2
				2: Green-Gauss	
ivcfl_max	I	5		determines stability range of vertical	ivadv_tracer=3,4
				PPM/PSM-scheme in terms of the	
				maximum allowable CFL-number	
llsq_svd	L	.TRUE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares	
				design matrix A	
lclip tracer	L	.FALSE.		Clipping of negative values	

Defined and used in: src/namelists/mo_advection_nml.f90

2.45. turb_vdiff_nml

The parameterization of vertical diffusion (VDIFF) module is configured by a a set of parameters, each of which is a 1-dimensional array extending over all domains. The parameters provide control over some of the parametrized effects (only active when $nwp_phy_nml\%inwp_turb = 6$):

Parameter Type Default Unit Description Scope

Parameter	Type	Default	Unit	Description	Scope
General			ı	-	-
lsfc mom flux	L	.TRUE.		switch on/off surface momentum flux	
lsfc_heat_flux	L	.TRUE.		switch on/off surface heat flux	
turb	S	'tte'		'tte': TTE scheme	
				'3dsmag': 3D Smagorinsky scheme	
z0m_min	R	1.5×10^{-5}	m	Minimum roughness length for momentum	
z0m_ice	R	0.001	m	Roughness length for momentum over ice	
z0m_oce	R	0.001	m	Roughness length for momentum over ocean	
fsl	R	0.4		fraction of first-level height at which surface	
				fluxes are nominally evaluated, tuning	
				param for sfc stress	
TTE Scheme					
pr0	R	1.0		neutral limit Prandtl number, can be varied	
				from about 0.6 to 1.0, fixes f_theta0	
f_tau0	R	0.17		neutral non-dimensional stress factor (0.1 -	
				0.22)	
f_tau_limit_fraction	R	0.25		Fraction of f_tau0 for large Ri numbers (0 -	
				0.6)	
f_theta_limit_fraction	R	0.		Fraction of f_theta0 for large Ri numbers (0	
				- 0.3)	
f_tau_decay	R	4.		Decay constant of f_tau0 for large Ri	
				numbers $(0.5 - 5)$	
f_theta_decay	R	4.		Decay constant of f_theta0 for large Ri	
				numbers (1 - 10)	
ek_ep_ratio_stable	R	3.		Ratio of TKE to TPE for large positive Ri	
	_	_		(Mauritsen: $1/(0.3 \pm 1) - 1$)	
ek_ep_ratio_unstable	R	2.		Ratio of TKE to TPE for large negative Ri	
	_			(Mauritsen: 1)	
_f	R	0.185		mixing length: coriolis term tuning	
	D. D.	0.0		parameter	
c_n	R	2.0		mixing length: stability term tuning	
	D	0.5		parameter	
wmc	R	0.5		ratio of typical horizontal velocity to wstar	
<i>g</i> ₁₋₁	D	2.0		at free convection	
fbl	R	3.0		1/fbl: fraction of BL height at which lmix	
lmir mar	R	150	, m	hat its max	
lmix_max	ıπ.	150	m	maximum mixing length	
3D Smagorinsky Scheme	D	0.001	D		I
km_min	R	0.001	Pa s	minimum mass weighted turbulent viscosity	
turb_prandtl	R	1/3		Turbulent Prandtl number	

Parameter	Type	Default	Unit	Description	Scope
min_sfc_wind	R	1.	m/s	minimum surface wind speed in	
				free-convection limit	

The limit fractions L and decay constants D for f_{τ} and f_{θ} are defined with respect to the ansatz

$$f_{\tau}(\mathrm{Ri}) = f_{\tau}(0) \left(L + \frac{1 - L}{1 + D \,\mathrm{Ri}} \right).$$

Defined and used in: src/namelists/mo_turb_vdiff_nml.f90

2.46. turbdiff_nml

Parameter	Type	Default	Unit	Description	Scope
imode_turb	I	1		Mode of solving the TKE equation for	
				atmosph. layers:	
				0: diagnostic equation	
				1: prognostic equation (current version)	
				2: prognostic equation (intrinsically positive	
				definite)	
imode_tran	I	0		Same as $imode_turb$ but only for the	
				transfer layer	
icldm_turb	I	2		Mode of water cloud representation in	
				turbulence for atmosph. layers:	
				-1: ignoring cloud water completely (pure	
				dry scheme)	
				0: no clouds considered (all cloud water is	
				evaporated)	
				1: only grid scale condensation possible	
				2: also sub grid (turbulent) condensation	
				considered	
icldm_tran	I	2		Same as $icldm_turb$ but only for the transfer	
				layer	
q_crit	R	1.6		critical value for normalized super-saturation	
itype_wcld	I	2		type of water cloud diagnosis within the	icldm_turb=2 or
				turbulence scheme:	icldm_tran=2
				1: employing a scheme based on relative	
				humitidy	
				2: employing a statistical saturation	
				adjustment	

Parameter	Type	Default	Unit	Description	Scope
itype_sher	I	0		Type of shear forcing used in turbulence:	
				0: only vertical shear of horizontal wind	
				1: previous plus horizontal shear correction	
				2: previous plus shear from vertical velocity	
				3: same as option 1, but (when combined	
				with ltkeshs=.TRUE.) scaling of coarse-grid	
				horizontal shear production term with $\frac{1}{\sqrt{Ri}}$	
ltkeshs	L	.FALSE.		Include correction term for coarse grids in	itype_sher ≥ 1
				horizontal shear production term (needed at	
				non-convection-resolving model resolutions	
				in order to get a non-negligible impact)	
ltkesso	L	.TRUE.		Consider TKE-production by sub grid SSO	inwp $sso = 1$
				wakes	
imode tkesso	I	1		mode of calculat. the SSO source term for	
_				TKE production:	
				1: original implementation	
				2: Ri-dependent reduction factor for Ri>1	
ltkecon	L	.FALSE.		Consider TKE-production by sub grid	inwp $conv = 1$
				convective plumes (inactive)	1 -
ltkeshs	L	.FALSE.		Consider TKE-production by separated	
				horizontal shear eddies (inactive)	
ltmpcor	L	.FALSE.		Consider thermal TKE sources in enthalpy	
-				equation	
lsflend	L	.TRUE.		Use lower flux condition for vertical diffusion	
				calculation (TRUE) instead of a lower	
				concentration condition (FALSE)	
lexpcor	L	.FALSE.		Explicit corrections of implicitly calculated	
-				vertical diffusion of non-conservative scalars	
				that are involved in sub grid condensation	
				processes	
tur len	R	500.0	m	Asymptotic maximal turbulent distance	
_				$(\kappa * tur_len$ is the integral turbulent master	
				length scale)	
pat_len	R	100.0	m	Effective length scale of thermal surface	
_				patterns controlling TKE-production by sub	
				grid kata/ana-batic circulations. In case of	
				pat $len = 0$, this production is switched off.	
c_diff	R	0.2	1	Length scale factor for vertical diffusion of	
				TKE. In case of $c_diff = 0$, TKE is not	
				diffused vertically.	

Parameter	Type	Default	Unit	Description	Scope
a_stab	R	0.0	1	Factor for stability correction of turbulent	
				length scale. In case of $a_stab = 0$, the	
				turbulent length scale is not reduced for	
				stable stratification.	
a_hshr	R	0.20	1	Length scale factor for the separated	ltkeshs = .TRUE.
				horizontal shear mode. In case of	
				$a_hshr = 0$, this shear mode has no effect.	
alpha0	R	0.0123	1	Lower bound of velocity-dependent	
				Charnock parameter	
alpha0 max	R	0.0335	1	Upper bound of velocity-dependent	
_				Charnock parameter. Setting this parameter	
				to 0.0335 or higher values implies	
				unconstrained velocity dependence	
alpha1	R	0.75	1	Scaling parameter for molecular roughness of	
				ocean waves	
imode charpar	I	2	1	Options for specifying the Charnock	
				parameter:	
				1: constant at alpha0	
				2: wind-speed dependent with maximum at	
				alpha0 max	
				3: as 2, but decreasing again at speeds above	
				about 25 m/s in order to improve	
				pressure-speed relationship in tropical	
				cyclones	
tkhmin	R	0.75	$\rm m^2/s$	Scaling factor for minimum vertical diffusion	
			,	coefficient (proportional to $Ri^{-2/3}$) for heat	
				and moisture	
tkmmin	R	0.75	m^2/s	Scaling factor for minimum vertical diffusion	
			_ / ~	coefficient (proportional to $Ri^{-2/3}$) for	
				momentum	
$tkmmin_strat$	R	4	m^2/s	Scaling factor for stratospheric minimum	
			,	vertical diffusion coefficient (proportional to	
				$Ri^{-1/3}$) for momentum, valid above 17.5 km	
				(tropics above 22.5 km)	
tkhmin strat	R	0.75	m^2/s	Scaling factor for stratospheric minimum	
		0.10	111 / 5	vertical diffusion coefficient (proportional to	
				$Ri^{-1/3}$) for heat and moisture, valid above	
				17.5 km (tropics above 22.5 km)	
				17.5 km (tropics above 22.5 km)	

Parameter	Type	Default	Unit	Description	Scope
itype_synd	I	2		Type of diagnostics of synoptic near surface	
				variables:	
				1: Considering the mean surface roughness	
				of a grid box	
				2: Considering a fictive surface roughness of	
				a SYNOP lawn	
rlam_heat	R	10.0	1	Scaling factor of the laminar boundary layer	
				for heat (scalars). The larger rlam_heat, the	
				larger is the laminar resistance.	
rat_sea	R	0.8	1	Ratio of laminar scaling factors for scalars	
				over sea and land. The larger rat_sea, the	
				larger is the laminar resistance for a sea	
				surface compared to a land surface.	
rat_glac	R	3.0	1	Ratio of laminar scaling factors for scalars	
				over glaciers. The larger rat_glac, the larger	
				is the laminar resistance over glaciers	
				compared to other land surfaces.	
tkesmot	R	0.15	1	Time smoothing factor within [0, 1] for TKE.	
				In case of $tkesmot = 0$, no smoothing is	
				active.	
frcsmot	R	0.0	1	Vertical smoothing factor within [0, 1] for	
				TKE forcing terms. In case of $frcmot = 0$,	
				no smoothing is active.	
imode_frcsmot	I	1		1 = apply vertical smoothing (if frcsmot > 0)	
				uniformly over the globe	
				2 = restrict vertical smoothing to the tropics	
				(reduces the moist bias in the tropics while	
				avoiding adverse effects on NWP skill scores	
				in the extratropics)	
impl_s	R	1.20	1	Implicit weight near the surface (maximal	
				value)	
impl_t	R	0.75	1	Implicit weight near top of the atmosphere	
				(minimal value)	
lconst_z0	L	.FALSE.		TRUE: horizontally homogeneous roughness	
				length z0	
const_z0	R	0.001	m	value for horizontally homogeneous	lconst_z0=.TRUE.
				roughness length z0	
ldiff_qi	L	.FALSE.		Turbulent diffusion of cloud ice, if .TRUE.	
itype_tran	I	2		type of surface-atmosphere transfer	

Parameter	Type	Default	Unit	Description	Scope
lprfcor	L	.FALSE.		using the profile values of the lowest main	
				level instead of the mean value of the lowest	
				layer for surface flux calculations	
lnonloc	L	.FALSE.		nonlocal calculation of vertical gradients	
				used for turbul. diff.	
lfreeslip	L	.FALSE.		.TRUE.: use a free-slip lower boundary	
				condition, i.e. neither momentum nor	
				heat/moisture fluxes (use for idealized runs	
				only!)	
lcpfluc	L	.FALSE.		consideration of fluctuations of the heat	
				capacity of air	

Defined and used in: src/namelists/mo_turbdiff_nml.f90

2.47. upatmo_nml

Parameter	Type	Default	Unit	Description	Scope			
Deep-atmosphere dynamics	Deep-atmosphere dynamics							
lnontrad	L	.TRUE.		TRUE.: Non-traditional terms in horizontal and vertical components of momentum budget (underlined) are switched on (standard for deep atmosphere): $ \frac{\partial v_n}{\partial t + w[v_n/(a+z) - f_t]} + \cdots = \cdots \\ \frac{\partial w}{\partial t + v_n[-v_n/(a+z) + f_t]} + \\ \frac{v_t[-v_t/(a+z) - f_n]}{\text{where } a \text{ is radius of model Earth,} } \\ \frac{f_{n,t}}{f_{n,t}} = 2\Omega \cos(\varphi) e_{\varphi} \cdot e_{n,t} \text{ are non-traditional Coriolis parameters, with edge-normal and edge-tangential components denoted by n and t, the angular velocity of the model Earth \Omega, the latitude \varphi, and unit vectors e_{\dots}.$				
lconstgrav	L	.FALSE.		.FALSE.: gravitational acceleration varies with height (standard for deep atmosphere) .TRUE.: gravitational acceleration is constant (as in case of shallow atmosphere). I.e. underlined factor in gravitational acceleration is set to 1: grav = const. * $[a/(a+z)]^2$.				

Parameter	Type	Default	Unit	Description	Scope
lcentrifugal	L	.FALSE.		.TRUE.: Explicit centrifugal acceleration is switched on. I.e. underlined terms in horizontal and vertical components of momentum budget are taken into account: $\frac{\partial v_n/\partial t + \Omega^2(a+z)\sin(\varphi)\cos(\varphi)e_{\varphi}\cdot e_{\mathbf{n}}}{\partial v_n/\partial t - \Omega^2(a+z)\cos^2(\varphi) + \cdots = \cdots}$ (If the factor const. in the gravitational acceleration of the model Earth, grav = const. * $[a/(a+z)]^2$, is assumed to be implicitly composed of a purely gravitational part and a centrifugal part, the latter is not subtracted out for lcentrifugal = .TRUE.!)	
ldeepatmo2phys	L	.FALSE.		.FALSE.: input fields to the physics parameterizations are computed in accordance with the shallow-atmosphere approximation in any case .TRUE.: input fields to the physics parameterizations are modified for the deep atmosphere. (Please note: the physics parameterizations themselves are not explicitly modified for the deep atmosphere!)	$ m iforcing = 2 \; (AES)$
Extrapolation to determine the inital s	tate of the up	pper atmosphere			$ ext{itype_vert_expol} = 2$
expol_start_height	R	70000	m	Height above which extrapolation of initial data starts.	
expol_blending_scale	R	10000	m	Vertical distance above expol_start_height within which blending of linearly extrapolated state and climatological state takes place.	
expol_vn_decay_scale	R	10000	m	Scale height of vertically exponentially decaying factor multiplied to the extrapolated horizontal wind (to alleviate stability-endangering wind magnitudes).	

Parameter	Type	Default	Unit	Description	Scope
expol_temp_infty	R	400	К	Exospheric mean reference temperature of the climatology for the extrapolation blending.	
lexpol_sanitycheck	L	.FALSE.		.TRUE.: Apply some rudimentary sanity check to the extrapolated atmospheric state in the region above expol_start_height (e.g., temperature values everywhere > 0). (Please, apply with care, since it is computationally relatively expensive.)	
Upper-atmosphere physics					(iforcing = 2 (AES) & "coming soon") or (iforcing = 3 (NWP) & lupatmo_phy = .TRUE.)
orbit_type	I	1		Orbit model for upper-atmosphere radiation (compare aes_rad_nml: l_orbvsop87): 1: vsop87 → standard and accurate model 2: kepler → simple model appropriate for idealized work	
solvar_type	I	1		Solar activity: 1: normal 2: low 3: high	
solvar_data	I	2		Data set for solar activity: 1: G. Rottman data 2: J. Lean data	
$solcyc_type$	I	2		Solar cycle: 1: standard cycle 2: 27-day cycle	
nwp_grp_ <groupname>%</groupname>				Configuration of the upper-atmosphere process groups under NWP-forcing (compare time control of processes in aes_phy_nml): <groupname> = imf: ion drag, molecular diffusion and frictional heating <groupname> = rad: radiation and chemical heating</groupname></groupname>	$iforcing = 3 \\ lupatmo_phy = .TRUE.$

Parameter	Type	Default	Unit	Description	Scope
imode	I(max_dom)	1		Group mode: 0: all processes clustered in the group <groupname> are switched off 1: all processes are switched on 2: all processes run in offline-mode, i.e. tendencies are computed, but not coupled to the dynamics Example of usage for multi-domain applications: • set nwp_grp_imf%imode = 1 to switch on the IMF-group for all domains (default) • set nwp_grp_rad%imode = 1,1,0 to switch on the RAD-group for domain 1 and 2, but to switch it off for domain 3 Please note: if imode = 1 or 2 for a domain, but lupatmo_phy = .FALSE. for this domain, imode is set to 0 and the group is switched off.</groupname>	
dt	R(max_dom)	$300.0 _{ m imf}, \ 600.0 _{ m rad}$	s	Tendency update period. New tendencies from all processes of a group are computed every dt (temperature, wind and water vapor tendencies in case of IMF, and temperature tendencies in case of RAD). Please note: internal processing will round dt to the next multiple of the domain-adjusted value of run_nml: dtime, which in turn might have been rescaled, if grid_nml: grid_rescale_factor $\neq 1$. In case of a domain-wise assignment in a multi-domain application, $dt(1) \geq dt(2) \geq \dots$ is required.	

Parameter	Type	Default	Unit	Description	Scope
t_startt_endstart_height	R	-999.0	m	Tendencies from all processes of a group are computed within the time interval [t_start, t_end]. Outside this interval the tendencies are set to zero. Format as for time_nml: ini_datetime_string, e.g. nwp_grp_imf%t_start = "2008-09-01T00:00:00Z". Empty strings will be replaced by the simulation start and/or end date and time of the domain. t_start and t_end apply to all domains, no domain-wise specification possible! All processes of a group compute tendencies above start_height. Below start_height the processes are inactive and all tendencies are set to zero. A negative value means that the default start heights of each process, listed in src/upper_atmosphere/mo_upatmo_impl_costartHeightDef, are applied. Please note: start_height applies to all domains. If it is above the top of one domain, the group is switched off for that domain (imode(idom) is	
nwp_gas_ <gasname>%</gasname>	<u> </u>	<u> </u>		set to 0). Configuration of the radiatively active gases in the upper atmosphere under NWP-forcing (compare radiation_nml and aes_rad_nml): $<$ gasname> = o3: ozone (O ₃) $<$ gasname> = o2: dioxygen (O ₂)	iforcing = 3 lupatmo_phy = .TRUE. nwp_grp_rad%imode > 0
				<pre><gasname> = o: atomic oxygen (O) <gasname> = co2: carbon dioxide (CO₂) <gasname> = no: nitric oxide (NO) (Dinitrogen (N₂) is determined diagnostically.)</gasname></gasname></gasname></pre>	

Parameter	Type	Default	Unit	Description	Scope
imode	I	2		Gas mode (comparable, but generally not	
				identical to the irad_ <gasname> in</gasname>	
				radiation_nml and aes_rad_nml).	
				0: zero gas concentration	
				1: constant gas concentration (independent	
				of space and time), specified via	
				$nwp_gas_\%vmr$	
				2: external data; meridionally, vertically and	
				monthly varying gas concentrations are read	
				from a file with name	
				nwp_extdat_gases%filename	
vmr	R	0.0	$\mathrm{m}^3/\mathrm{m}^3$	Constant volume mixing ratio for a	nwp_gas_ <gasname>%imode</gasname>
			,	radiatively active gas.	= 1
fscale	D	1.0		Cooling factor the mag concentration in each	num mag (magnama) 07 imad
Iscale	R	1.0		Scaling factor the gas concentration in each	$\begin{array}{c c} \text{nwp_gas_} < \text{gasname} > \% \text{imode} \\ > 0 \end{array}$
	-> 07			grid cell is multiplied with. Configuration of the external	
nwp_extdat_ <extdatname< td=""><td>€>%</td><td></td><td></td><td></td><td>$nwp_grp_rad\%imode > 0$</td></extdatname<>	€>%				$nwp_grp_rad\%imode > 0$
				upper-atmosphere data:	
				<pre><extdatname> = gases: concentrations of the radiatively active gases</extdatname></pre>	
				<pre><extdatname> = chemheat: temperature</extdatname></pre>	
				tendencies from chemical heating	
				Please note: the standard NWP physics use	
-14	Д	96400.0		other external gas data (e.g., for ozone)!	
$\dots dt$	R	86400.0	S	Update period for the time interpolation of	
				the external data. Currently, the external	
				data provide monthly mean values. In order to avoid too strong jumps in the transition	
				9 0 1	
				from one month to the next, the parameters	
				are "smoothed" in time by a linear	
				interpolation that is computed every dt. A	
				value of the order of a day should be entirely	
				sufficient for this purpose.	

Parameter	Type	Default	Unit	Description	Scope
filename	С	"upatmo_gases_		Name of the file containing the external	
		chemheat.nc"		data. The file of the default name can be	
				found in the folder data, to which a link	
				has to be set in the run script, following the	
				typical examples of nwp phy nml:	
				lrtm filename and cldopt filename. May	
				contain the keyword <path> which will be</path>	
				substituted by model base dir (e.g.,	
				" <path>upatmo</path>	
				gases chemheat.nc"). Please note: if you	
				would like to use other external data files,	
				their data structure has to follow exactly the	
				data structure of	
				data/upatmo_gases_chemheat.nc (variable	
				and dimension names and units, zonally	
				averaged monthly mean gas concentrations	
				on pressure levels, zonally averaged monthly	
				mean temperature tendencies from chemical	
				heating on geometric height levels etc.). Any	
				other structure cannot be processed for the	
				time being!	

Defined and used in: src/namelists/mo_upatmo_nml.f90

Some notes on the output of upper-atmosphere-specific variables (under NWP-forcing):

An output of upper-atmosphere fields is only possible, if upper-atmosphere physics are switched on. Upper-atmosphere fields cannot be output in the GRIB format (output_nml: filetype = 2). Upper-atmosphere fields entered on output_nml: m/h/pl varlist need the prefix "upatmo".

The following fields can be output, if ...

upatmo_sclrlw

Scaling factor for standard long-wave radiation heating rate from radiative processes

```
upatmo_effrsw
upatmo_o3
upatmo_o2
upatmo_o
upatmo_co2
upatmo_no
upatmo_n2
upatmo_ddt_temp_srbc
upatmo_ddt_temp_nlte
upatmo_ddt_temp_euv
upatmo_ddt_temp_no
upatmo_ddt_temp_chemheat
...lupatmo phy = .TRUE. & nwp grp imf%imode > 0:
upatmo_ddt_temp_vdfmol
upatmo_ddt_temp_fric
upatmo_ddt_temp_joule
upatmo_ddt_u_vdfmol
upatmo_ddt_v_vdfmol
upatmo_ddt_u_iondrag
```

upatmo_ddt_v_iondrag

upatmo_ddt_qv_vdfmol

```
out of local thermodynamic equilibrium

Efficiency factor for standard short-wave radiation heating rate from chemical heating

Mass mixing ratio of ozone (member of group:upatmo_rad_gases)

Mass mixing ratio of dioxygen (member of group:upatmo_rad_gases)

Mass mixing ratio of atomic oxygen (member of group:upatmo_rad_gases)

Mass mixing ratio of carbon dioxide (member of group:upatmo_rad_gases)

Mass mixing ratio of nitric oxide (member of group:upatmo_rad_gases)

Mass mixing ratio of dinitrogen (member of group:upatmo_rad_gases)

Temperature tendency due to absorbtion by O2 in Schumann-Runge band and continuum (member of group:upatmo_tendencies)

Temperature tendency due to radiative processes out of local thermodynamic equilibrium (member of group:upatmo_tendencies)

Temperature tendency due to heating from extreme ultraviolet radiation (member of group:upatmo_tendencies)

Temperature tendency due to NO heating at near infrared (member of group:upatmo_tendencies)
```

Temperature tendency due to chemical heating (member of group:upatmo_tendencies)

Temperature tendency due to molecular diffusion (member of group:upatmo_tendencies)

Temperature tendency due to frictional heating (member of group:upatmo_tendencies)

Temperature tendency due to Joule heating from ion drag (member of group:upatmo_tendencies)

Zonal component of wind tendency due to molecular diffusion (member of group:upatmo_tendencies)

Meridionl component of wind tendency due to molecular diffusion (member of group:upatmo_tendencies)

Zonal component of wind tendency due to ion drag (member of group:upatmo_tendencies)

Meridionl component of wind tendency due to ion drag (member of group:upatmo_tendencies)

Tendency of specific humidity due to molecular diffusion (member of group:upatmo_tendencies)

3. Ocean-specific namelist parameters

3.1. ocean_physics_nml

Parameter	Type	Default	Unit	Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson factor tracer	I	0.5e-5	m/s		
richardson_factor_veloc	I	0.5e-5	m/s		
l_constant_mixing	L	.FALSE.			

3.2. sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM))

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run i_sea_ice
				1: Zero-layer model	must be $>=1$. In an
				2: Two layer Winton (2000) model	atmospheric run the ice
				3: Zero-layer model with analytical forcing	surface type must be
				(for diagnostics)	defined.
				4: Zero-layer model for atmosphere-only	
				runs (for diagnostics)	
i_ice_dyn	I	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	
i_ice_albedo	I	1		Switch for albedo model. Only one is	
				implemented so far.	
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation	Defaults to 1 when
				method:	i_ice_dyn=0 and 2
				1: Proportional to ocean cell thickness (like	otherwise.
				MPI-OM)	
				2: Proportional to speed difference between	
				ice and ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach	
				correct strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

4. Ocean waves specific namelist parameters

$4.1.\ waves_nml\ (used\ if\ configurated\ with\ -enable-waves\ and\ model_type=98\ in\ master_model_nml)$

Parameter	Type	Default	Unit	Description	Scope
ndirs	I	24		number of direction of wave spectrum	
nfreqs	I	25		number of frequencies of wave spectrum	
fr1	R	0.04177248	$_{ m Hz}$	first frequency of wave spectrum	
co	R	1.1		frequency ratio	
iref	I	1		frequency bin number of reference frequency	
alpha	R	0.018		Phillips parameter	
fm	R	0.2	$_{ m Hz}$	peak frequency and/or maximum frequency	
gamma_wave	R	3.0		overshoot factor	
sigma_a	R	0.07		left peak width of wave spectrum	
sigma_b	R	0.09		right peak width of wave spectrum	
fetch	R	300000.	m	fetch	
roair	R	1.225	m kg/m3	air density	
rnuair	R	1.5e-5	m2/s	kinematic air viscosity	
rnuairm	R	0.11*rnuair	m2/s	kinematic air viscosity for momentum	
				transfer	
rowater	R	1000.	m kg/m3	water density	
xeps	R	roair/rowater		air water density ratio	
xinveps	R	1./xeps		insersed air water density ratio	
betamax	R	1.20		parameter for wind input (ECMWF cy45r1)	
zalp	R	0.0080		shifts growth curve (ECMWF cy45r1)	
jtot_tauhf	I	19		dimension of high freuency wave stress	must be odd
				(wtauhf)	
alpha_ch	R	0.0075		minimum Charnock constant (ecmwf cy45r1)	
depth	R	0.	m	ocean depth if not 0, then constant depth	
niter_smooth	I	1		number of smoothing iterations for wave	
				bathymetry	
xkappa	R	0.40		von Karman constant	
xnlev	R	10.0	m	windspeed reference level	
linput_sf1	L	.TRUE.		.TRUE.: calculate wind input source	
				function term	
linput_sf2	L	.TRUE.		.TRUE.: update wind input source function	
				term	
ldissip_sf	L	.TRUE.		.TRUE.: calculate dissipation source	
				function term	
lnon_linear_sf	L	.TRUE.		.TRUE.: calculate non linear source function	
				term	

Parameter	Type	Default	Unit	Description	Scope
lbottom_fric_sf	L	.TRUE.		.TRUE.: calculate bottom friction source	
				function term	
lwave_stress1	L	.TRUE.		.TRUE.: calculate wave stress	
lwave_stress2	L	.TRUE.		.TRUE.: update wave stress	
lgrid_refr	L	.TRUE.		.TRUE.: calculate grid refraction	
forc_file_prefix	C			common prefix of forcing files	
				if not empty, the names of forcing files will	
				be consctructed as:	
				forc_file_prefix+_wind.nc - for 10m wind	$coupled_mode = .FALSE. in$
					coupling_mode_nml
				forc_file_prefix+_ice.nc - for sea ice	$coupled_mode = .FALSE. in$
				concentration	coupling_mode_nml
				forc_file_prefix+_slh.nc - for sea level	
				height	
				forc_file_prefix+_osc.nc - for ocean surface	
				currents	
				Data for all time steps in the current	
				simulation should be prepared in a single	
				file. Variables should be named u_10m,	
				v_10m, fr_seaice, uosc, vosc	

5. Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the 2 and 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

5.1. nh_testcase_nml (Scope: Itestcase=.TRUE. and iequations=3 in run_nml)

Parameter	Type	Default	Unit	Description	Scope
nh_test_name	С	'jabw'		testcase selection	
				'zero': no orography	
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	is_plane_torus=.TRUE.
				'jabw': Initializes the full Jablonowski	
				Williamson test case.	
				'jabw s': Initializes the Jablonowski	
				Williamson steady state test case.	

Parameter	Type	Default	Unit	Description	Scope
				'jabw_m': Initializes the Jablonowski	
				Williamson test case with a mountain	
				instead of the wind perturbation (specify	
				mount height).	
				'mrw nh': Initializes the full	
				Mountain-induced Rossby wave test case.	
				'mrw2 nh': Initializes the modified	
				mountain-induced Rossby wave test case.	
				'mwbr const': Initializes the mountain	
				wave with two layers test case. The lower	
				layer is isothermal and the upper layer has	
				constant brunt vaisala frequency. The	
				interface has constant pressure.	
				'PA': Initializes the pure advection test case.	
				'HS nh': Initializes the Held-Suarez test	
				case. At the moment with an isothermal	
				atmosphere at rest (T=300K, ps=1000hPa,	
				u=v=0, topography=0.0).	
				'HS jw': Initializes the Held-Suarez test	
				case with Jablonowski Williamson initial	
				conditions and zero topography.	
				'APE_nwp, APE_aes, APE_nh,	
				APEc_nh, ': Initializes the APE	
				experiments. With the jabw test case,	
				including moisture.	
				'wk82': Initializes the Weisman Klemp test	$l_{\text{limited}_area} = .TRUE.$
				case	
				'g_lim_area': Initializes a series of general	
				limited area test cases: itype_atmos_ana	
				determines the atmospheric profile,	
				itype_anaprof_uv determines the wind	
				profile and itype_topo_ana determines the	
				topography	
				'dcmip_bw_11': Initializes (moist)	
				baroclinic instability/wave (DCMIP2016)	
				'dcmip_pa_12': Initializes Hadley-like	
				meridional circulation pure advection test	
				case.	
				'dcmip_rest_200': atmosphere at rest	lcoriolis = .FALSE.
				test (Schaer-type mountain)	

Parameter	Type	Default	Unit	Description	Scope
				'dcmip_mw_2x': nonhydrostatic	lcoriolis = .FALSE.
				mountain waves triggered by Schaer-type	
				mountain	
				'dcmip_gw_31': nonhydrostatic gravity	
				waves triggered by a localized perturbation	
				(nonlinear)	
				'dcmip_gw_32': nonhydrostatic gravity	$l_limited_area = .TRUE.$
				waves triggered by a localized perturbation	and lcoriolis $=$.FALSE.
				(linear)	
				'dcmip_tc_51': tropical cyclone test case	lcoriolis = .TRUE.
				with 'simple physics' parameterizations (not	
				yet implemented)	1 · 1 · · · · · · · · · · · · · · · · ·
				'dcmip_tc_52': tropical cyclone test case	lcoriolis = .TRUE.
				with with full physics in Aqua-planet mode	
				'CBL': convective boundary layer	is_plane_torus= .TRUE.
				simulations for LES package on torus	
				(doubly periodic) grid 'bb13': linear gravity- and sound-wave	is plane towns TDHE
				expansion in a channel (Baldauf, Brdar	is_plane_torus= .TRUE.
				(2013) QJRMS)	
				'lahade': deep-atmosphere sound wave	ldeepatmo = .TRUEAND.
				testcase providing comparison of numerical	lcoriolis = .TRUEAND.
				with analytical solution according to method	lcentrifugal = .TRUE.
				of Laeuter, Handorf and Dethloff, J. Comp.	icentifiugai — : IIto E.
				Phys. (2005) (requires to set	
				src/shared/mo physical constants: grav to	
				a very small value, e.g. grav = 1.0E-30)	
				'SCM' Single Column Mode	is plane torus= .TRUE.
is_toy_chem	L	.FALSE.		Terminator toy chemistry activated when	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.TRUE.	

Parameter	Type	Default	Unit	Description	Scope
tracer_inidist_list	I(:)	1		For a subset of testcases pre-defined initial	nh_test_name='PA',
				tracer distributions are available. This	'JABW', 'DF'
				namelist parameter specifies the initial	
				distribution for each tracer. In the following	
				the testcases and the pre-defined numbers	
				are given:	
				'PA': 4,5,6,7,8	
				'JABW':1,2,3,4	
				'DF': 5,6,7,8,9	
				For more details on the initial distributions,	
				please have a look into the code.	
dcmip_bw%				DCMIP2016 baroclinic wave test	'dcmip_bw_11'
deep	I	0		deep atmosphere	
				(1 = yes or 0 = no)	
moist	I	0		include moisture, i.e. $qv \neq 0$	
				(1 = yes or 0 = no)	
pertt	I	0		type of initial perturbation	
				(0 = exponential, 1 = stream function)	
toy_chem%				terminator toy chemistry	is_toy_chem=.TRUE.
dt _chem	R	300	s	chemistry tendency update interval	
$\mathrm{dt}\mathrm{_cpl}$	R	300	s	chemistry-transport coupling interval	
id_cl	I	1		Tracer container slice index for species CL	
id_cl2	I	2		Tracer container slice index for species CL2	
jw_up	R	1.0	m/s	amplitude of the u-perturbation in jabw test	nh_test_name='jabw'
				case	
jw_u0	R	35.0	m/s	maximum zonal wind in jabw test case	nh_test_name='jabw'
jw_temp0	R	288.0	K	horizontal-mean temperature at surface in	nh_test_name='jabw'
				jabw test case	
u0 mrw	R	20.0	m/s	wind speed for mrw(2) and mwbr const	nh test name=
_			,	cases	$\operatorname{'mrw}(2)$ nh' and
					'mwbr const'
mount height mrw	R	2000.0	m	maximum mount height in mrw(2) and	nh test name=
_ ~ ~ _				mwbr const	$\operatorname{'mrw}(2)$ nh' and
				_	'mwbr const'
mount half width	R	1500000.0	m	half width of mountain in mrw(2),	nh test name=
				mwbr const and bell	'mrw(2) nh', 'mwbr const'
				_	and 'bell'
mount width	\mathbb{R}	1000.0	m	width of mountain	
mount width 2	R	100.0	m	a 2nd width scale of mountain	nh test name='schaer'
	1	1			

Parameter	Type	Default	Unit	Description	Scope
mount_lonctr_mrw_deg	R	90.	deg	lon of mountain center in mrw(2) and	nh_test_name=
				$mwbr_const$	'mrw(2)_nh' and
					'mwbr_const'
mount_latctr_mrw_deg	R	30.	deg	lat of mountain center in mrw(2) and	$nh_test_name =$
				$mwbr_const$	'mrw(2)_nh' and
					'mwbr_const'
temp_i_mwbr_const	R	288.0	K	temp at isothermal lower layer for	$nh_test_name =$
				mwbr_const case	'mwbr_const'
p_int_mwbr_const	R	70000.	Pa	pres at the interface of the two layers for	$nh_test_name =$
				mwbr_const case	'mwbr_const'
bruntvais_u_mwbr_const	R	0.025	1/s	constant brunt vaissala frequency at upper	$nh_test_name =$
				layer for mwbr_const case	'mwbr_const'
mount_height	R	100.0	m	peak height of mountain	nh_test_name= 'bell'
layer_thickness	R	-999.0	m	thickness of vertical layers	If layer_thickness < 0 , the
					vertical level distribution is
					read in from externally given
					HYB_PARAMS_XX.
n_flat_level	I	2		level number for which the layer is still flat	$layer_thickness > 0$
				and not terrain-following	
$\mathrm{nh}_{\mathrm{u}0}$	R	0.0	m/s	initial constant zonal wind speed	$nh_test_name = 'bell'$
nh_t0	R	300.0	K	initial temperature at lowest level	$nh_test_name = 'bell'$
nh_brunt_vais	R	0.01	1/s	initial Brunt-Vaisala frequency	$nh_test_name = 'bell'$
torus_domain_length	R	100000.0	m	length of slice domain	$nh_test_name = 'bell',$
					lplane=.TRUE.
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	nh_test_name= 'PA'
lhs_nh_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in	nh_test_name= 'HS_nh'
				the Held-Suarez test.	
lhs_fric_heat	L	.FALSE.		add frictional heating from Rayleigh friction	nh_test_name= 'HS_nh'
				in the Held-Suarez test.	
hs_nh_vn_ptb_scale	R	1.	m/s	Magnitude of the random noise added to the	nh_test_name= 'HS_nh'
				initial wind field in the Held-Suarez test.	
rh_at_1000hpa	R	0.7	1	relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
qv_max	R	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'

Parameter	Type	Default	Unit	Description	Scope
ape_sst_case	C	'sst1'		SST distribution selection	nh_test_name='APE_nwp',
				'sst1': Control experiment	'APE_aes'
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
				'sst_const': constant SST	
ape_sst_val	R	29.0	$\deg C$	aqua planet SST for	$nh_test_name =$
				ape_sst_case='sst_const'	'APE_nwp', 'APE_aes'
linit tracer fv	L	.TRUE.		Finite volume initialization for tracer fields	pure advection tests, only
lcoupled_rho	L	.FALSE.		Integrate density equation 'offline'	pure advection tests, only
$qv_{max}wk$	R	0.014	$\mathrm{Kg/kg}$	maximum specific humidity near	nh_test_name='wk82'
				the surface, range 0.012 - 0.016	
				used to vary the buoyancy	
u_infty_wk	R	20.	m/s	zonal wind at infinity height	nh_test_name='wk82',
				range 0 45.	'bb13'
				used to vary the wind shear	
bub amp	R	2.	K	maximum amplitud of the thermal	nh test name='wk82'
_				perturbation	
bubctr lat	R	0.	deg	latitude of the center of the thermal	nh test name='wk82'
_				perturbation	
bubctr_lon	R	90.	deg	longitude of the center of the thermal	nh_test_name='wk82'
				perturbation	
bubctr x	R	0.0	m	x-position of the center of the thermal	is plane grid=.TRUE.
				perturbation	
bubctr y	R	0.0	m	y-position of the center of the thermal	is plane grid=.TRUE.
_				perturbation	
bubctr_z	R	1400.	m	height of the center of the thermal	nh test name='wk82'
				perturbation	
bub_hor_width	R	10000.	m	horizontal radius of the thermal perturbation	nh_test_name='wk82'
bub_ver_width	R	1400.	m	vertical radius of the thermal perturbation	nh_test_name='wk82'
itype_atmo_ana	I	1		kind of atmospheric profile:	$nh_test_name =$
				1 piecewise N constant layers	'g_lim_area'
				2 piecewise polytropic layers	
itype_anaprof_uv	I	1		kind of wind profile:	$nh_test_name =$
				1 piecewise linear wind layers	'g_lim_area'
				2 constant zonal wind	
				3 constant meridional wind	

Parameter	Type	Default	Unit	Description	Scope
itype_topo_ana	I	1		kind of orography:	nh_test_name=
				1 schaer test case mountain	'g_lim_area'
				2 gaussian_2d mountain	
				3 gaussian_3d mountain	
				any other no orography	
nlayers_nconst	I	1		Number of the desired layers with a constant	$nh_test_name =$
				Brunt-Vaisala-frequency	'g_lim_area' and
					itype atmo ana=1
p_base_nconst	R	100000.	Pa	pressure at the base of the first N constant	$nh_test_name =$
				layer	'g lim area' and
					itype_atmo_ana=1
theta0 base nconst	R	288.	K	potential temperature at the base of the first	nh test name=
				N constant layer	'g lim area' and
					itype atmo ana=1
h_nconst	R(nlayers	0., 1500., 12000.	m	height of the base of each of the N constant	nh test name=
_	_nconst)			layers	'g lim area' and
					itype atmo ana=1
N nconst	R(nlayers	0.01	1/s	Brunt-Vaisala-frequency at each of the N	nh test name=
_	nconst)		,	constant layers	'g lim area' and
					itype atmo ana=1
rh nconst	R(nlayers	0.5	%	relative humidity at the base of each N	nh test name=
_	nconst)			constant layers	'g lim area' and
				V	itype atmo ana=1
rhgr nconst	R(nlayers	0.	%	relative humidity gradient at each of the N	nh test name=
0 _	nconst)			constant layers	'g_lim_area' and
					itype atmo ana=1
nlayers poly	I	2		Number of the desired layers with constant	nh test name=
<u> </u>				gradient temperature	'g lim area' and
					itype atmo ana=2
p_base_poly	\mathbb{R}	100000.	Pa	pressure at the base of the first polytropic	nh test name=
11				layer	'g lim area' and
					itype atmo ana=2
h_poly	R(nlayers	0., 12000.	m	height of the base of each of the polytropic	nh test name=
	_poly)	, -		layers	'g lim area' and
					itype_atmo_ana=2
t_poly	R(nlayers	288., 213.	K	temperature at the base of each of the	nh test name=
	poly)			polytropic layers	'g lim area' and
	- 1 - 1 - 1 - 1			F, Pro 100, or o	itype atmo ana=2
rh poly	R(nlayers	0.8, 0.2	%	relative humidity at the base of each of the	nh test name=
<u>-</u> F	poly)	,	/ 0	polytropic layers	'g_lim_area' and
	- 19913/			poly tropic tayoro	itype atmo ana=2
I and the second se	T	1	1		103 PC_aumo_ama=2

Parameter	Type	Default	Unit	Description	Scope
rhgr_poly	R(nlayers	5.e-5, 0.	%	relative humidity gradient at each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	I	2		Number of the desired layers with constant	nh_test_name=
				U gradient	'g_lim_area' and
					itype_anaprof_uv=1
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind	$nh_test_name =$
	_lin-			layers	'g_lim_area' and
	wind)				itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	m/s	zonal wind at the base of each of the linear	nh_test_name=
	_lin-			wind layers	'g_lim_area' and
	wind)				itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear	nh_test_name=
	_lin-			wind layers	'g_lim_area' and
	wind)				itype_anaprof_uv=1
vel_const	R	20.	m/s	constant zonal/meridional wind	nh_test_name=
				(itype_anaprof_uv=2,3)	'g_lim_area' and
					itype_anaprof_uv=2,3
mount_lonc_deg	R	90.	deg	longitud of the center of the mountain	nh_test_name=
					'g_lim_area'
mount_latc_deg	R	0.	deg	latitud of the center of the mountain	nh_test_name=
		250			'g_lim_area'
schaer_h0	R	250.	m	h0 parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1
schaer_a	R	5000.	m	-a- parameter for the schaer mountain,	nh_test_name=
				also half width in the north and south side	'g_lim_area' and
	_	4000		of the finite ridge to round the sharp edges	itype_topo_ana=1,2
schaer_lambda	R	4000.	m	lambda parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
., .	_	DAT OF			itype_topo_ana=1
lshear_dcmip	L	FALSE		run dcmip_mw_2x with/without vertical	nh_test_name=
				wind shear	'dcmip_mw_2x'
				FALSE: dcmip_mw_21: non-sheared	
1 16 : 141 - 21	D	10000		TRUE: dcmip_mw_22: sheared	
halfwidth_2d	R	10000.	m	half length of the finite ridge in the	nh_test_name=
				north-south direction	'g_lim_area' and
1 . 1 .	D	1000			itype_topo_ana=1,2
m_height	R	1000.	m	height of the mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=2,3

Parameter	Type	Default	Unit	Description	Scope
m_width_x	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the	itype_topo_ana=2,3
				rounding of the finite ridge (gaussian_2d)	
m_width_y	R	5000.	m	half width of the gaussian mountain in the	$nh_test_name =$
				north-south direction	'g_lim_area' and
					itype_topo_ana=2,3
gw_u0	R	0.	m/s	maximum amplitude of the zonal wind	$nh_test_name =$
					'dcmip_gw_3X'
gw_clat	R	90.	\deg	Lat of perturbation center	$nh_test_name =$
					'dcmip_gw_3X'
gw_delta_temp	R	0.01	K	maximum temperature perturbation	nh_test_name=
					'dcmip_gw_32'
u_cbl(2)	R	0:0	m/s and	to prescribe initial zonal velocity profile for	nh_test_name=CBL
			1/s	convective boundary layer simulations where	
				u_cbl(1) sets the constant and u_cbl(2) sets	
				the vertical gradient	
v_cbl(2)	R	0:0	m/s and	to prescribe initial meridional velocity profile	nh_test_name=CBL
			1/s	for convective boundary layer simulations	
				where $v_{cbl}(1)$ sets the constant and	
				v_cbl(2) sets the vertical gradient	
$th_cbl(2)$	R	290:0.006	K and	to prescribe initial potential temperature	nh_test_name=CBL
			m K/m	profile for convective boundary layer	
				simulations where th_cbl(1) sets the	
				constant and th_cbl(2) sets the gradient	
lahade%icase	I	1		lahade sub-cases:	nh_test_name='lahade'
				1: spherical sound wave (currently the only	
				sub-case)	
lahade%omega	R	0	m/s	Model Earth's angular velocity in units of	
				the velocity the center of the sound wave is	
				advected according to the rotation	
lahade%bkg_temp	R	250	K	Temperature of background atmosphere	
lahade%bkg_pres	R	100000	Pa	Pressure of background atmosphere	
lahade%ptb_ctr_lat	R	0	\deg	Center latitude of spherical sound wave	
				perturbation	
lahade%ptb_ctr_lon	R	0	\deg	Center longitude of spherical sound wave	
				perturbation	
lahade%ptb_ctr_hgt	R	0.5	->	Center height of spherical sound wave	
				perturbation, in units of the model top	
				height [top_height]	

Parameter	Type	Default	Unit	Description	Scope
lahade%ptb_rad_min	R	0.04	->	Min. radius of spherical shell within which	
				initial perturbation is non-zero, in units of	
				distance from center to model bottom or	
				model top, whichever is shorter	
				$[\min\{ptb_ctr_hgt,(1-ptb_ctr_hgt)\} *$	
				top_height]	
lahade%ptb_rad_max	R	0.6	->	Max. radius of spherical shell	
				$[\min\{ptb_ctr_hgt,(1-ptb_ctr_hgt)\} *$	
				top_height]	
lahade%ptb_amp_temp	R	0.05	K	Temperature amplitude of initial sound wave	
				perturbation	
lahade%ptb_n_rad	R	1	1	Number of radial wave crests of initial	
				$perturbation = (ptb_rad_max -$	
				ptb_rad_min) / radial wave length	
lahade%output_ptb_var	$\mid C \mid$	""		Select, if the numerical and analytical	
				solutions of a	
				sound-wave-perturbation-variable shall be	
				output. Currently available variables are:	
				• "temp": temperature perturbation	
				• "rho": density perturbation	
				• "pres": pressure perturbation	
				Requirements: the fields "extra 3d1" and	
				"extra 3d2" will contain the numerical and	
				the analytical solutions, respectively. Both	
				have to be added to the ml_varlist of the	
				output_nml of your choice in combination	
				with inextra $3d = 2$.	

Defined and used in: src/testcases/mo_nh_testcases.f90

6. External data

6.1. extpar_nml (Scope: itopo=1 in run_nml)

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	

Parameter	Type	Default	Unit	Description	Scope
itype_vegetation_cycle	I	1		1: annual cycle of LAI solely based on NDVI	
				climatology	
				2: additional use of monthly T2M	
				climatology to get more realistic values in	
				extratropics (requires external parameter	
				data containing this field)	
$n_{iter_smooth_topo}$	I(n_dom)	0		iterations of topography smoother	itopo = 1
fac_smooth_topo	R	0.015625		pre-factor of topography smoother	$n_{topo} > 0$
hgtdiff_max_smooth_topo	R	0.	m	RMS height difference to neighbor grid	$n_{\text{iter_smooth_topo}} > 0$
				points at which the smoothing pre-factor	
				fac_smooth_topo reaches its maximum	
				value (linear proportionality for weaker	
				slopes)	
heightdiff_threshold	R(n_dom)	3000.	m	height difference between neighboring grid	
				points above which additional local nabla2	
				diffusion is applied	
pp_sso	I	1		1: Postprocess SSO standard deviation and	$n_{\text{iter_smooth_topo}} > 0$
				slope over glaciers based on the ratio	
				between grid-scale and subgrid-scale slope:	
				both quantities are reduced if the	
				subgrid-scale slope calculated in extpar	
				largely reflects the grid-scale slope.	
				2: Optimized tuning for MERIT/REMA	
				orography data: the reduction is also applied	
				at non-glacier points in the Arctic, and the	
				adjustment of the SSO standard deviation to	
				orography smoothing is turned off.	
lrevert_sea_height	ight L	.FALSE.		If .TRUE., sea point heights will be reverted	$n_{\text{iter_smooth_topo}} > 0$
				to original (raw data) heights after	
				topography smoothing was applied.	
itype_lwemiss	I	1		Type of data used for longwave surface	itopo = 1
				emissivity:	
				0: No data; use constant fallback value	
				instead	
				1: Read and use emissivities derived in	
				extpar from landuse classes	
				2: Read and use monthly climatologies	
				derived from satellite measurements	

Parameter	Type	Default	Unit	Description	Scope
extpar_filename	C			Filename of external parameter input file,	
				default: " <path>extpar_<gridfile>". May</gridfile></path>	
				contain the keyword <path> which will be</path>	
				substituted by model_base_dir.	
read_nc_via_cdi	L	.FALSE.		.TRUE.: read NetCDF input data via cdi	
				library	
				.FALSE.: read NetCDF input data using	
				parallel NetCDF library	
				Note: GRIB2 input data is always read via	
				cdi library / GRIB API. For NetCDF input,	
				this switch allows optimizing the input	
				performance, but there is no general rule	
				which option is faster.	
extpar_varnames_map_ file	C	, ,		Filename of external parameter dictionary,	
				This is a text file with two columns	
				separated by whitespace, where left column:	
				NetCDF name, right column: GRIB2 short	
				name. It is required, if external parameter	
				are read from a file in GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

7. Serialization

Some developments must not change model results. Serialbox allows reading and writing data at any point in ICON into savepoints. These savepoints can be used to restore model variables to some reference or compare different model versions. The simplest application of Serialbox is using mo_ser_debug.f90 (or writing a similar routine fitting ones needs). Following this method will allow reading and writing manually specified fields in ICON. This can be very useful for small subroutines where input and output are clearly specified (i.e. do not involve derived types) and can thus easily be translated to Serialbox read/write statements. For larger components (basically everything hanging from nh_stepping.f90, e.g. nwp_physics) the interface is specified by the in and out types. The actual fields that are read or written to in these subroutines are not specified. For this purpose, serialize_all has been implemented. It provides a wrapper for Serialbox read and write statements by looping through variable lists. This approach does not require managing lists of fields to read or write by Serialbox. At the level of mo_nh_stepping.f90 and mo_nh_interface_nwp.f90 many components are wrapped by such serialize_all calls that allow testing these components. Each of these hard-coded calls to serialize all has a name and for each name there is a namelist switch specifying the following triplet (e.g. 0,12,12):

- If 0 do not use this savepoint, else use this savepoint at every time step
- the relative threshold for errors (given as N for N in 10^{-N})
- ullet the absolute threshold for errors (given as N for N in 10^{-N})

Parameter	Type	Default	Unit	Description	Scope
ser_initialization	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for initial data (Checked	
			10^{-N}	after regular initialization at model start as	
				well as after initialization of nested domains	
				during model run)	
ser_output_diag_dyn	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for output diagnostics of	
			10^{-N}	dynamics fields	
ser_output_diag	I (3)	0,12,12	$-, 10^{-N},$ 10^{-N}	Serialization switch for output diagnostics	
ser_output_opt	I (3)	0,12,12	10^{-N} , 10^{-N}	Serialization switch for optional output	
ser_latbc_data	I (3)	0,12,12	10^{-N} , 10^{-N}	Serialization switch for the subroutine	
				recv_latbc_data	
ser_nesting_save_progvars	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	save_progvars which is related to nesting	
ser_dynamics	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	perform_dyn_substepping	
ser_diffusion	I (3)	0,12,12	$-, 10^{-N},$ 10^{-N}	Serialization switch for the subroutine	
				diffusion	
ser_nesting_compute_tendencies	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	compute_tendencies (related to nesting)	
ser_nesting_boundary_interpolation	I (3)	0,12,12	$-, 10^{-N},$ 10^{-N}	Serialization switch for the subroutine	
				boundary_interpolation (related to nesting)	
ser_nesting_relax_feedback	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	relax_feedback (related to nesting)	
ser_step_advection	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	step_advection	
ser_physics	I (3)	0,12,12	$-, 10^{-N},$ 10^{-N}	Serialization switch for the subroutine	
				nwp_nh_interface	
ser_physics_init	I (3)	0,12,12	10^{-N} , 10^{-N}	Serialization switch for the subroutine	
			10^{-N}	nwp_nh_interface during initialization	
ser_lhn	I (3)	0,12,12	$-, 10^{-N},$ 10^{-N}	Serialization switch for the subroutine	
				organize_lhn	
ser_nudging	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the nudging	
			10^{-N}	computations	
ser_surface	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_surface	
ser_microphysics	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_microphysics	
ser_turbtrans	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_turbtrans	

Parameter	Type	Default	Unit	Description	Scope
ser_turbdiff	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_turbdiff	
ser_convection	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_convection	
ser_cover	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	cover_koe	
ser_radiation	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_radiation	
ser_radheat	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the computations	
			10^{-N}	involving radiative heating	
ser_gwdrag	I (3)	0,12,12	$-, 10^{-N},$	Serialization switch for the subroutine	
			10^{-N}	nwp_gwdrag	
ser_time_loop_end	I (3)	0,12,12	$-, 10^{-N},$	Check the state at the end of the time loop	
			10^{-N}	(does not read in data)	
ser_reset_to_initial_state	I (3)	0,12,12	$-, 10^{-N},$	Check the reset to initial state after the first	
			10^{-N}	phase of IAU	
ser_all_debug	I (3)	0,12,12	$-, 10^{-N},$	Additional calls to serialize_all (for	
			10^{-N}	debugging purposes) can be controlled using	
				this switch.	
ser_nfail	R	1.0	%	Fields that fail more elements than the	
				percentage specified by ser_nfail will be	
				reported.	
ser_nreport	I	10		The detailed serialization report will include	
				the ser_nreport elements with largest	
				relative differences to the reference	
ser_debug	L	.FALSE.		Activates the debug serialization defined in	
				mo_ser_debug.f90	

Defined and used in: src/namelists/mo_ser_nml.f90

8. External packages

9. Information on vertical level distribution

The atmospheric model needs hybrid vertical level information (i.e. the so called vertical coordinate tables vct_a, vct_b specifying the distribution of coordinate surfaces) to generate the terrain following height based coordinates. The 1D fields vct_a, vct_b are created within ICON during the setup phase, given that no input file is provided (grid_nml:vct_filename=''). For the SLEVE vertical coordinate (ivctype=2), the creation of vct_a, vct_b is controlled by the Namelist sleve_nml together with the parameter num_lev (run_nml). For the Gal-Chen vertical coordinate (ivctype=1), the user has only very limited control regarding its ICON internal creation. It is e.g. possible to create an equidistant level distribution for idealized testcases, by specifying the parameters layer_thickness and n_flat_level (nh_testcase_nml). For more general grids, it is recommended to read the vertical coordinate tables from file. Example files and information

on the required format can be found in <icon home>/vertical_coord_tables, as well as in the ICON tutorial. Note that for the SLEVE coordinate, only vct_a must be provided in the input file. It is recommended to set vct_b to zero.

10. Compile flag for mixed precision

To speed up code parts strongly limited by memory bandwidth (primarily the dynamical core and the tracer advection), an option exists to use single precision for variables that are presumed to be insensitive to computational accuracy. This affects most local arrays in the dynamical core routines (solve_nonhydro and velocity_advection), some local arrays in the tracer transport routines, the metrics coefficients, arrays used for storing tendencies or differenced fields (gradients, divergence etc.), reference atmosphere fields, and interpolation coefficients. Prognostic variables and intermediate variables affecting the accuracy of mass conservation are still treated in double precision. To activate the mixed-precision option, run the configure script with the '--enable-mixed-precision' flag.

A. Arithmetic expression evaluation

The mo_expression module evaluates basic arithmetic expressions specified by character-strings. It is possible to include mathematical functions, operators, and constants. An application of this module is the evaluation of arithmetic expressions provided as namelist parameters.

Besides, Fortran variables can be linked to the expression and used in the evaluation. The implementation supports scalar input variables as well as 2D and 3D fields.

From a users' point of view, the basic usage of this module is described in Section A.1 below. Technically, infix expressions are processed based on a Finite State Machine (FSM) and Dijkstra's shunting yard algorithm. A more detailed described of the Fortran interface is given in Section A.3.

A.1. Examples for arithmetic expressions

Basic examples:

- "sqrt(2.0)"
- "sin(45*pi/180.) * 10 + 5"
- "if(1. > 2, 99, -1.*pi)"
- "min(1,2)"

Variables are used with a bracket notation:

• "sqrt([u]^2 + [v]^2)"

Note that the use of variables requires that these are enabled ("linked") by the Fortran routine that calls the mo_expression module.

A.2. Expression syntax

A.2.1. List of functions

name	#args	description
log(), exp()	1	natural logarithm and its inverse function.
sin(), cos()	1	trigonometric functions
sqrt()	1	square root
erf()	1	Gauss error function
min(), max()	2	minimum and maximum of two values
if (value, then, else)	3	conditional expression (value > 0.)

A.2.2. List of operators

name	evaluates to			
a + b, a - b,	(a+b), (a-b), (a*b), (a/b)			
a * b, a / b				
a ^ b	a^b			
a > b	$\begin{cases} 1, & \text{if } a > b, \\ 0, & \text{otherwise.} \end{cases}$			
a < b	$\begin{cases} 1, & \text{if } a < b, \\ 0, & \text{otherwise.} \end{cases}$			

A.2.3. List of available constants

name of constant	assigned value	description
pi	4 atan(1)	mathematical constant equal to a circle's cir-
		cumference divided by its diameter
r	$6.371229 \cdot 10^6$	Earth's radius ¹

A.3. Usage with Fortran

The minimal Fortran interface is as follows:

- $1. \ \, \text{The TYPE expression which is initialized with the character-string that specifies the arithmetic expression.}$
- 2. The type-bound procedure evaluate(), which returns the result (scalar or array-shaped) as a POINTER.
- 3. The type-bound procedure link() connecting a variable to a name in the character-string expression.

A.3.1. Fortran examples

The following examples illustrate the arithmetic expression parser. The calls to DEALLOCATE the data structures have been ommitted for the sake of brevity:

1. Scalar arithmetic expression:

```
formula = expression("sin(45*pi/180.) * 10 + 5")
CALL formula%evaluate(val)
... use "val" for some purpose ...
```

2. Masking of a 2D array as an example for the link procedure:

```
formula = expression("if([z_sfc] > 2., [z_sfc], 0.)")
CALL formula%link("z_sfc", z_sfc)
CALL formula%evaluate(val_2D)
... use "val_2D(:,:)" for some purpose ...
```

A.3.2. Error handling

Invalid arithmetic expressions yield "empty" expression objects. When these are evaluated, a NULL() pointer is returned. A successful expression evaluation can be tested with the err_no variable:

```
IF (formula%err_no == ERR_NONE) THEN
   ...
END IF
```

In case of error, the err_no variable also provides the reason for the aborted evaluation process.

A.4. Remarks

- Variable names are treated case-sensitive!
- For 3D array input it is implicitly assumed that 2D fields are embedded in 3D fields as "3D(:,level,:) = 2D(:,:)".

¹This number seems to be based on Hayford's 1910 estimate of the Earth. It is used in ICON as well as MPAS and was almost certainly taken from the Jablonowski and Williamson test case (QJRMS, 2006).

B. Changes incompatible with former versions of the model code

 $\begin{array}{c} var_names_map_file, \ out_varnames_map_file \\ 2013-04-25 \end{array}$ Change:

Date of Change: Revision: 12016

- $\bullet \ \operatorname{Renamed} \ \mathbf{var} \underline{\quad} \mathbf{names} \underline{\quad} \mathbf{map} \underline{\quad} \mathbf{file} \rightarrow \mathbf{output} \underline{\quad} \mathbf{nml} \underline{\quad} \mathbf{dict}.$
- $\bullet \ \operatorname{Renamed} \ \mathbf{out_varnames_map_file} \to \mathbf{netcdf_dict}.$
- The dictionary in netcdf dict is now reversed, s.t. the same map file as in output nml dict can be used to translate variable names to the ICON internal names and back.

output nml: namespace Change:

 $2013 - 0\overline{4} - 26$ Date of Change: 12051

• Removed obsolete namelist variable namespace from output_nml.

gribout nml: generatingCenter, generatingSubcenter Change:

Date of Change: 2013-04-26 Revision: 12051

- Introduced new namelist variables generatingCenter and generatingSubcenter.
- If not set explicitly, center and subcenter information is copied from the input grid file

radiation_nml: albedo_type

 $2013-05-\overline{03}$ Date of Change: 12118 Revision:

- Introduced new namelist variable albedo type
- If set to 2, the surface albedo will be based on the MODIS data set.

initicon nml: dwdinc filename

Date of Change: 2013-05-24 12266 Revision:

• Renamed dwdinc_filename to dwdana_filename

Change: initicon_nml: l_ana_sfc

 Date of Change:
 2013-06-25

 Revision:
 12582

- \bullet Introduced new namelist flag l_ana_sfc
- If true, soil/surface analysis fields are read from the analysis fiel dwdfg_filename. If false, surface analysis fields are not read. Soil and surface are initialized with the first guess instead.

Change: new nwp phy tend list: output names consistent with variable names

 Date of Change:
 2013-06-25

 Revision:
 12590

- \bullet temp tend radlw \rightarrow ddt temp radlw
- ullet temp tend turb o ddt temp turb
- $\bullet \ \operatorname{temp_tend_drag} \to \operatorname{ddt_temp_drag}$

Change: prepicon_nml, remap_nml, input_field_nml

 Date of Change:
 2013-06-25

 Revision:
 12597

- Removed the sources for the "prepicon" binary!
- The "prepicon" functionality (and most of its code) has become part of the ICON tools.

 $\begin{array}{ll} \textit{Change:} & \text{initicon_nml} \\ \textit{Date of Change:} & \textbf{2013-08-19} \\ \textit{Revision:} & \textbf{13311} \end{array}$

• The number of vertical input levels is now read from file. The namelist parameter **nlev** in has become obsolete in r12700 and has been removed.

 $\begin{array}{ll} \textit{Change:} & \text{parallel_nml} \\ \textit{Date of Change:} & \textbf{2013-10-14} \\ \textit{Revision:} & \textbf{14160} \end{array}$

• The namelist parameter exch msgsize has been removed together with the option iorder sendrecv=4.

parallel nml Change: 2013-08-14 Date of Change: 14164

• The namelist parameter use sp output has been replaced by an equivalent switch use dp mpi2io (with an inverse meaning, i.e. we have use dp mpi2io = .NOT. use sp output).

parallel nml Date of Change: 2013-08-15 14175

• The above-mentioned namelist parameter **use_dp_mpi2io** got the default .FALSE. By this, the output data are sent now in single precision to the output processes.

 $\begin{array}{c} initicon_nml:\ l_ana_sfc\\ 2013\text{-}10\text{-}21 \end{array}$

14280

• The above-mentioned namelist parameter l ana sfc has been replaced by lread ana. The default is set to .TRUE., meaning that analysis fields are required and read on default. With Iread ana=.FALSE. ICON is able to start from first guess fields only.

output_nml: lwrite_ready, ready_directory 2013-10-25

14391

- The namelist parameters lwrite ready and ready directory have been replaced by a single namelist parameter ready file, where ready_file /= 'default' enables writing ready files.
- Different output_nml's may be joined together to form a single ready file event they share the same ready_file.

output_nml: output_bounds 2013-10-25

14391

• The namelist parameter **output bounds** specifies a start, end, and increment of output invervals. It does no longer allow multiple triples.

output nml: steps per file Change:

2013-10-30 14422

• The default value of the namelist parameter **steps_per_file** has been changed to -1.

run nml $20\overline{13}$ -11-13 14759

- The dump/restore functionality for domain decompositions and interpolation coefficients has been removed from the model code. This means, that the parameters
 - ldump_states,
 - lrestore_states,
 - ldump_dd,
 - lread_dd,
 - nproc_dd,
 - dd_filename,
 - dump_filename,
 - l_one_file_per_patch

have been removed together with the corresponding functionality from the ICON model code.

output nml: filename format Change:

Date of Change: 2013 - 12 - 0215068Revision:

• The string token <ddhhmmss> is now substituted by the relative day-hour-minute-second string, whereas the absolute date-time stamp can be inserted using <datetime>.

output_nml: ready_file 2013-12-03

Change:
Date of Change: Revision: 15081 • The ready file name has been changed and may now contain string tokens <path>, <datetime>, <ddhhmmss> which are substituted as described for the namelist parameter filename_format.

Change: interpl_nml: rbf_vec_scale_ll

 Date of Change:
 2013-12-06

 Revision:
 15156

- The real-valued namelist parameter rbf_vec_scale_ll has been removed.
- Now, there exists a new integer-valued namelist parameter, rbf_scale_mode_ll which specifies the mode, how the RBF shape parameter is determined for lon-lat interpolation.

 $\begin{array}{ccc} {\it Change:} & & {\it io_nml} \\ {\it Date of Change:} & & {\it 2013-12-06} \\ {\it Revision:} & & {\it 15161} \end{array}$

- Removed remaining vlist-related namelist parameter. This means that the parameters
 - out filetype
 - out expname
 - dt data
 - dt file
 - lwrite_dblprec, lwrite_decomposition, lwrite_vorticity, lwrite_divergence, lwrite_pres, lwrite_z3, lwrite_tracer, lwrite_tend_phy, lwrite_radiation, lwrite_precip, lwrite_cloud, lwrite_tke, lwrite_surface, lwrite_omega, lwrite_initial, lwrite_oce_timestepping

are no longer available.

 $\begin{array}{ll} \textit{Change:} & \textit{gridref_nml} \\ \textit{Date of Change:} & \textit{2014-01-07} \\ \textit{Revision:} & \textit{15436} \end{array}$

• Changed namelist defaults for nesting: grf_intmethod_e, l_mass_consvcorr, l_density_nudging.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & 2014\text{-}02\text{-}10 \\ \textit{Revision:} & 16047 \end{array}$

• Changed namelist default for rbf_scale_mode_11: The RBF scale factor for lat-lon interpolation is now determined automatically by default.

Change: echam_phy_nml

Date of Change: 2014-02-27

Revision: 16313

• Replace the logical switch lcover by the integer switch icover that is used in ECHAM-6.2. Values are transferred as follows: .FALSE. = 1 (=default), .TRUE. = 2.

 $\begin{array}{ll} \textit{Change:} & \textit{turbdiff_nml} \\ \textit{Date of Change:} & \textit{2014-03-12} \\ \textit{Revision:} & \textit{16527} \end{array}$

• Change constant minimum vertical diffusion coefficients to variable ones proportional to $1/\sqrt{Ri}$ for inwp_turb = 10; at the same time the defaults for tkhmin and tkmmin are increased from $0.2 \,\mathrm{m}^2/\mathrm{s}$ to $0.75 \,\mathrm{m}^2/\mathrm{s}$.

Change: nwp_phy_nml
Date of Change: 2014-03-13
Revision: 16560

• Removed namelist parameter dt_ccov, since practically it had no effect. For the quasi-operational NWP-setup, the calling frequency of the cloud cover scheme is the same as that of the convection scheme. I.e. both are synchronized.

Change: nwp_phy_nml
Date of Change: 2014-03-24
Revision: 16668

• Changed namelist default for **itype z0**: use land cover related roughness only (itype z0=2).

Change: nonhydrostatic_nml

 Date of Change:
 2014-05-16

 Revision:
 17293

• Removed switch for vertical TKE advection in the dynamical core (lvadv_tke). TKE advection has been moved into the transport scheme and can be activated with iadv_tke=1 in the transport nml.

Change: nonhydrostatic_nml

 Date of Change:
 2014-05-27

 Revision:
 17492

• Removed namelist parameter model_restart_info_filename in namelist master_model_nml.

Change: transport_nml
Date of Change: 2014-06-05
Revision: 17654

• Changed namelist default for itype_hlimit from monotonous limiter (3) to positive definite limiter (4).

Change: nh_pzlev_nml
Date of Change: 2014-08-28
Revision: 18795

• Removed namelist nh_pzlev_nml. Instead, each output namelist specifies its separate list of p_levels, h_levels, and i_levels.

Change: nonhydrostatic_nml

 Date of Change:
 2014-10-27

 Revision:
 19670

• Removed namelist parameter l_nest_rcf in namelist nonhydrostatic_nml.

Change: nonhydrostatic_nml

 Date of Change:
 2014-11-24

 Revision:
 20073

• Removed namelist parameter iadv_rcf in namelist nonhydrostatic_nml. The number of dynamics substeps per advective step are now specified via ndyn_substeps. The meaning of run_nml:dtime has changed and denotes the advective time step.

 Change:
 io_nml

 Date of Change:
 2015-03-25

 Revision:
 21501

• Namelist parameter lzaxis_reference is deprecated and has no effect anymore. However, users are not forced to modify their scripts instantaneously: lzaxis_reference=.FALSE. is still a valid namelist setting, but it has no effect and a warning will be issued. lzaxis_reference finally removed in r24606.

 Change:
 limarea_nml

 Date of Change:
 2016-02-08

 Revision:
 26390

• Namelist parameter dt_latbc has been removed. Its value is now identical to the namelist parameter dtime_latbc.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2016-02-11} \\ \textit{Revision:} & \textbf{26423} \end{array}$

• Namelist parameter l_intp_c2l is deprecated and has no effect anymore.

 $\begin{array}{ll} \textit{Change:} & \text{lnd_nml} \\ \textit{Date of Change:} & \textbf{2016-07-21} \\ \textit{Revision:} & \textbf{28536} \end{array}$

• The numbering of the various options for sstice_mode has changed. Former option 2 became 3, former option 3 became 4, and former option 4 became 5. This was necessary, because a new option was introduced (option 2).

Change: initicon_nml
Date of Change: 2016-07-22
Revision: 28556

• Namelist parameter latbc_varnames_map_file has been moved to the namelist limarea_nml.

Change: transport_nml
Date of Change: 2016-09-22
Revision: 29339

• Namelist parameter niter_fct has been removed, since the functionality of iterative flux correction is no longer available.

Change: initicon_nml
Date of Change: 2016-10-07
Revision: 29484

• Namelist parameter 1_sst_in has been removed. In case of init_mode=2 (IFSINIT), sea points are now initialized with SST, if provided in the input file. Otherwise sea points are initialized with the skin temperature. The possibility to use the skin temperature despite having the SST available has been dropped.

Change: initicon_nml
Date of Change: 2016-12-14

Revision: 62288ed77b2975182204a2ec6fa210a3fb1ad8a7

• Namelist parameters ana_varlist, ana_varlist_n2 have been renamed to check_ana(jg)%list, with jg indicating the patch ID.

Change: initicon_nml
Date of Change: 2017-01-27
Revision: ae1be66f

• The default value of the namelist parameter num_prefetch_proc has been changed to 1, i.e. asynchronous read-in of lateral boundary data is now enabled.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2017-01-31} \\ \textit{Revision:} & \text{e1c56104} \end{array}$

• With the introduction of the namelist parameter lreduced_nestbdry_stencil in the namelist interpol_nml the nest boundary points are no longer removed from lat-lon interpolation stencil by default.

 $egin{array}{lll} {\it Change:} & & {\it limarea_nml} \\ {\it Date of Change:} & & 2017\text{-}03\text{-}14} \\ {\it Revision:} & & 631b731627 \\ \hline \end{array}$

• The namelist parameter nlev_latbc is now deprecated. Information about the vertical level number is taken directly from the input file.

Change: echam_phy_nml / mpi_phy_nml

Date of Change: 2017-04-19

Revision: icon-aes:icon-aes-mag 9ecee54f69108716308029d8d7aa0296c343a3c2

• The namelist echam_phy_nml is replaced by the namelist mpi_phy_nml, which extends the control to multiple domains and introduces time control in terms of start and end date/time [sd_prc,ed_prc] and time interval dt_prc for individual atmospheric processes prc.

Change: mpi_phy_nml / echam_phy_nml and mpi_sso_nml / echam_sso_nml

Date of Change: 2017-11-22

Revision: icon-aes:icon-aes-cfgnml f84219511329281d441d81923fe97ce1d7ecf007

• The namelists, configuration variables and related modules are renamed from ...mpi_phy... to ...echam_phy... because programmers felt that the acronym "mpi" for "Max Planck Institute" in relation to physics cannot be distinguished from "mpi" for "Message Passing Interface" as used in the parallelization.

Change: gw hines nml / echam gwd nml

Date of Change: 2017-11-24

Revision: icon-aes:icon-aes-cfgnml 699346b5d318d53be215e0b8e8b5ba8631d44c48

• The namelists gw_hines_nml is replaced by the namelist echam_gwd_nml, which extends the control to multiple domains.

Change: vdiff nml / echam vdf nml

Date of Change: 2017-11-27

Revision: icon-aes:icon-aes-cfgnml f1dec0a0d3b8ec506861975cd59a729fe43fdf8e

• The namelists vdiff_nml is replaced by the namelist echam_vdf_nml, which additionally includes tuning parameters for the total turbulent energy scheme, and extends the control to multiple domains.

Change: echam conv nml / echam cnv nml

Date of Change: 2017-11-29

Revision: icon-aes:icon-aes-cfgnml 099c40f88dbaae6c7cc79ea878e5862847ef7e27

• The namelists echam_conv_nml is replaced by the namelist echam_cnv_nml, which extends the control to multiple domains.

Change: echam_cloud_nml / echam_cld_nml

Date of Change: 2017-12-04

Revision: icon-aes-cfgnml afacc102a87b03f78ff47ad0b7af8f348bacef6f

• The namelists echam cloud nml is replaced by the namelist echam cld nml, which extends the control to multiple domains.

Change: psrad_orbit_nml / radiation_nml / echam_rad_nml

Date of Change: 2017-12-12

Revision: icon-aes:icon-aes-cfgnml 8da087238b81183c337a3b1ae81d2b2e3dafdba8

• For controlling the input of ECHAM physics to the PSrad scheme, the namelists psrad_orbit_nml and radiation_nml are replaced by the namelist echam_rad_nml, which extends the control to multiple domains. For controlling the input of NWP physics to the RRTMG radiation, the radiation_nml namelist remains valid. The psrad_orbit_nml namelist, which is not used for RRTMG radiation, is deleted.

Change: echam cld nml / echam cov nml

Date of Change: 2019-06-07

Revision: icon-aes-cover 09233f275f207d59d2cb6ad75bd13adf81c0d0c2

• The control parameters for the cloud cover parameterization (crs, crt, nex, jbmin, jbmax, cinv, csatsc) are shifted to the new namelist echam cov nml.

Change: echam_cov_nml / echam_cov_nml

Date of Change: 2019-06-12

- The control parameters jks, jbmin and jbmax, specifying heights by the index of the vertical grid, are replaced by parameters zcovmax, zinvmax, and zinvmin, respectively, which directly specify the heights of interest. The change is as follows:
 - jks=15 -> zmaxcov=echam phy config%zmaxcloudy
 - jbmin=43 -> zmaxinv=2000m
 - jbmax=45 -> zmininv=300m

Change: echam cld nml / echam cld nml

Date of Change: 2019-06-12

Revision: icon-aes:icon-aes-cover ab95fc16a944dde96a76aeb1f63a7c847d78da06 and e66e8e0f9cd439b81d7db63e0a4e03004d7f8144

- The control parameters jks, specifying height by the index of the vertical grid, is replaced by the parameters zcldmax, which directly specify the height of interest. The change is as follows:
 - jks=15 -> zmaxcld=echam phy config%zmaxcloudy

Change: extpar_nml
Date of Change: 2019-11-29

Revision: icon-nwp-icon-nwp-dev 21a16daf65aaf8df6fb581daa7dca66e2c915b94

• The logical namelist parameter l_emiss has been replaced by the integer parameter itype_lwemiss. The code executed by default does not change.

Change: transport_nml
Date of Change: 2020-06-17

Revision: icon-nwp-dev 616b4698e3a59c641a5ebe90637da2841c6f6a3a

• The logical namelist parameter 1strang has been deleted. The default behaviour of the code is unchanged.

Change: extpar_nml
Date of Change: 2021-02-01

Revision: icon-nwp-dev ebac2edb0

• The functionality of itype_vegetation_cycle=3 has been replaced by setting the new namelist parameter icpl_da_sfcevap in initicon_nml to a value of 1.

Change: ha_dyn_nml / ha_testcase_nml

Date of Change: 2021-03-29

Revision: icon-nwp-icon-nwp-dev 599f03e5

• The namelists for configuring the hydrostatic model ha_dyn_nml as well as the hydrostatic testcases ha_testcase_nml have been removed completely, as the hydrostatic model is no longer part of the official code.

Change: dynamics_nml
Date of Change: 2021-03-30

Revision: icon-nwp-icon-nwp-dev 959fb5db

• iequations=0,1,2 (shallow water and hydrostatic atmosphere $(T \text{ or } \theta \cdot dp))$ no longer supported.

• removed obsolete Namelist parameter sw_ref_height (reference height of shallow water model)

Change: diffusion_nml
Date of Change: 2021-04-16

Revision: icon-nwp:icon-nwp-dev 806be7b0

• removed obsolete Namelist parameter k2_pres_max and k2_klev_max, which were specific to the hydrostatic dynamical core.

• removed horizontal diffusion options hdiff_order=24,42

Change: transport_nml
Date of Change: 2022-05-07

Revision: icon-nwp:master 8a351b13

• removed Namelist parameter iord_backtraj, as the option for 2nd order accurate backward trajectory calculation has been removed. The default behaviour of the code is unchanged.

Change: radiation_nml
Date of Change: 2022-08-16

Revision: icon-nwp:master 6e49e2a7

• removed unused Namelist parameter ldiur, nmonth, lyr_perp and yr_perp.

Change: radiation_nml
Date of Change: 2022-10-10

Revision: icon-nwp:master 61a1ac77

• Removed Tanre aerosol option irad aero=5.

Change: radiation_nml
Date of Change: 2022-11-03

Revision: icon-nwp:master 58a5aed0

• Renamed ecRad-specific namelist settings llw_cloud_scat to ecrad_llw_cloud_scat, iliquid_scat to ecrad_iliquid_scat and iice_scat to ecrad_iice_scat.

Change: nonhydrostatic_nml

Date of Change: 2023-05-22

Revision: icon-nwp:master 1fff9207

• Removed Namelist switch l_{open_ubc} . The upper boundary condition for vertical velocity w is unconditionally set to w = 0 (with the exception of vertically nested domains).

Change: Optional output diagnostics, see table 22 on page 48

Date of Change: 2023-06-13

Revision: icon-nwp:master 0d921fd4

• Removed optional output diagnostics vor_u (zonal component of relative vorticity) and vor_v (meridional component of relative vorticity). Reason for removal: the two diagnostics have proven an unfavorable cost-benefit ratio.

Change: nonhydrostatic_nml

Date of Change: 2023-07-04

Revision: icon-nwp:master 6e5730d5

• Removed Namelist switch lhdiff_rcf. Option to compute diffusion at dynamics time steps has been removed. It is only computed at advection time steps (in combination with divergence damping in the dynamical core).

 $\begin{array}{ll} \textit{Change:} & \text{parallel_nml} \\ \textit{Date of Change:} & \textbf{2023-07-25} \end{array}$

Revision: icon-nwp:master xxx

• Removed Namelist switch itype_comm. Option to switch on asynchronous halo communication for the dynamical core has been removed.

Change: nonhydrostatic_nml

Date of Change: 2023-07-25

Revision: icon-nwp:master xxx

• Removed Namelist switch nest_substeps. Option to change the number of substeps for the child patches has never been functional.

Change:diffusion_nmlDate of Change:2023-08-02Revision:icon-nwp:master xxx

ullet Removed option for Smagorinsky ∇^2 diffusion hdiff_order=3. Use hdiff_order=5 in combination with hdiff_efdt_ratio<=0 (deactivated background) diffusion), instead.