Encoder

Encoder provides

words sorted into

(Transformers can derive a

see (Weiss et al 2021))

noun,verb,other order

sorted seguence from a seguence

and it is natively supported in RASP

v_unacc_pp: 20

scientist cat donut

A scientist lended a cat a donut beside a computer

0 1 23 45 6 78 9 A scientist lended a cat a donut beside a computer

beside (6,9)

nouns preceded by preposition ignored in this phase

Encoder attempts 19 flat pattern matches at once (matching v_dat_p2 shown here) 0 0 1 0 0 0 0 1 7 18 1 7 1 7 np v_dat_p2 np np after np 1 7 18 1 7 1 7 1 7 18 1 7 1 7 1 7 18 1 7 1 7 1 7 18 1 7 1 7 . 1 7 18 1 7 1 7 1 7 18 1 7 1 7 np det left before np 7 1 7 7 det: 1 embed to pp: 2 part-of-speech was: 3 A scientist lended a cat a donut * and verb-type by: 4 to: 5 In bidirectional Encoder that: 6 = [0, 0, 0, 0, 0, 0, 0] np_prop_seq common_noun: 7 v_dat_seq = [0, 0, 1, 0, 0, 0, 0]Encoder-Decoder proper_noun: 8 np_det_left_seq = [1, 0, 0, 1, 0, 1, 0] np_two_before_seq = [0, 1, 0, 1, 0, 0, 0] Transformer v_trans_omissible: 9 np before seg = [0, 0, 1, 0, 1, 0, 0]equivalent model v_trans_omissible_pp: 10 np_after_seq = [0, 0, 1, 0, 0, 1, 0] v_trans_not_omissible: 11 v_trans_not_omissible_pp: 12 (A) = (np_det_left_seq & np_two_before_seq) = [0, 0, 0, 1, 0, 0, 0] v_cp_taking: 13 (B) = (np_prop_seq & np_before_seq) = [0, 0, 0, 0, 0, 0, 0] v_inf_taking: 14 $np_np_seq = (A \text{ or } B) = [0, 0, 0, 1, 0, 0, 0]$ np_np_any_before_seq = [1, 1, 1, 0, 0, 0, 0] v_unacc: 15 np_v_dat_p_np_np = np_after_seq & v_dat_seq & np_before_seq & np_np_any_before_seq = [0, 0, 1, 0, 0, 0, 0] v_unerg: 16 v_inf: 17 v dat: 18 v_dat_pp: 19

*COGS official training data uses "lended",

instead of "lent"

POS/verb-type sequence matched Noun-verb POS/verb-type sequence matched Noun-verb relationship relationship template template ((det common)|proper) agent, ((det common)|proper) agent, v_dat_p2 ((det common)lproper) recipient, v_unacc_p1 ((det common)|proper) theme ((det common)|proper) theme ((det common)lproper) was v_unacc_pp_p1 theme ((det common)|proper) agent, v_dat_p1 ((det common)lproper) theme, ((det common)lproper) was v_unacc_pp_p2 theme, to ((det common)lproper) recipient by ((det common)|proper) agent ((det common)|proper) theme ((det common)lproper) v_inf_taking to v_inf agent was v_trans_omissible_pp_p1 ((det common)lproper) v_trans_omissible_p1 ((det common)|proper) v_unerg agent agent agent, ((det common)|proper) ((det common)lproper) theme v_trans_omissible_p2 ((det common)|proper) theme v_unacc_p2 ((det common)lproper) theme, ((det common)|proper) recipient, was v_trans_omissible_pp_p2 by was v_dat_pp_p3 ((det common)lproper) agent theme ((det common)lproper) ((det common)|proper) was v_dat_pp_p4 recipient ((det common)lproper) agent, ((det common)lproper) theme, v_trans_not_omissible ((det common)lproper) theme by ((det common)lproper) agent ((det common)|proper) theme ((det common)lproper) was v_dat_pp_p2 theme, to ((det common)lproper) recipient was v_trans_not_omissible_pp_p1 by ((det common)lproper) agent ((det common)|proper) theme, was v_trans_not_omissible_pp_p2 by ((det common)lproper) theme, agent ((det common)lproper) was v_dat_pp_p1 to ((det common)lproper) recipient

nmod handling phase

number of nmods in output matches number of prepositions in input?