第一组:

(1) 计算行列式
$$\mathbf{D} = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 3 & 1 & 6 \\ 1 & -5 & 10 & -10 \\ 3 & -1 & 15 & -2a \end{bmatrix}$$

(2) 求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 2 \\ 1 & 3 & 1 & 6 \\ 1 & -5 & 10 & -10 \\ 3 & -1 & 15 & -2\mathbf{a} \end{pmatrix}$$
的秩.

(3) 讨论方程组

$$\begin{cases} x_1 + x_2 + 3x_3 + 2x_4 = 0 \\ x_1 + 3x_2 + x_3 + 6x_4 = 0 \\ x_1 - 5x_2 + 10x_3 - 10x_4 = 0 \\ 3x_1 - x_2 + 15x_3 - 2ax_4 = 0 \end{cases}$$

问a取何值时方程组只有零解?有非零解?并在有非零解时求出它的通解.

在R⁴中,已知 $\boldsymbol{\alpha}_1$ =(1, 1, 1, 3) T , $\boldsymbol{\alpha}_2$ =(1, 3, -5, -1) T , $\boldsymbol{\alpha}_3$ =(3, 1, 10, 15) T , $\boldsymbol{\alpha}_4$ =(2, 6, -10, -2a), (4) 讨论 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 的线性相关性.

- (5) 求 α_1 , α_2 , α_3 , α_4 的秩和一个极大线性无关组.
- (6) 求 $L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$ 的一组基和维数.

解:

(1)
$$\mathbf{D} = \begin{vmatrix} 1 & 1 & 3 & 2 \\ 1 & 3 & 1 & 6 \\ 1 & -5 & 10 & -10 \\ 3 & -1 & 15 & -2a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & -2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1-a \end{vmatrix} = 4 & (1-a)$$

(2)
$$A = \begin{pmatrix} 1 & 1 & 3 & 2 \\ 1 & 3 & 1 & 6 \\ 1 & -5 & 10 & -10 \\ 3 & -1 & 15 & -2a \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & -2 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2(1-a) \end{pmatrix}$$
 $\therefore a = 1 \text{ Fr}(A) = 3$ $a \neq 1 \text{ Fr}(A) = 4$

(3) $\therefore a \neq 1$ 时R(A) = 4 =未知量个数,方程组只有零解; a = 1时R(A) = 3 <未知量个数,方程组有零解;此时

$$A \xrightarrow{a=1}$$
 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 通解为: $X = t \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix}$ t 为任意常数

- : (4) a=1时 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关; $a \neq 1$ 时 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关.
 - (5) *a* =1时, 极大线性无关为: α₁, α₂, α₃;
 a ≠1时, 极大线性无关为: α₁, α₂, α₃, α₄.
 - (6) a=1时, $L(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4)$ 的基可取: $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$, 维数 = 3; $a\neq 1$ 时, $L(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4)$ 的基可取: $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 维数 = 4;

(1) 求矩阵
$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 3 & 2 & 1 \\ 1 & 3 & 1 & 6 & 3 \\ 1 & -5 & 10 & -10 & b \\ 3 & -1 & 15 & -2a & 3 \end{bmatrix}$$

的秩.

(2) 讨论方程组
$$\begin{cases} x_1 + x_2 + 3x_3 + 2x_4 = 1 \\ x_1 + 3x_2 + x_3 + 6x_4 = 3 \\ x_1 - 5x_2 + 10x_3 - 10x_4 = b \\ 3x_1 - x_2 + 15x_3 - 2ax_4 = 3 \end{cases}$$

问a取何值时方程组有解, 无解?有解时何时有唯一 解,何时有无穷多解?无 穷多解时求出它的通解。

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的如前所设, $\beta = (1, 3, b, 3)^T$,

- (3) 问a,b取何值时 β 可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示? 何时不可表示? 可表 示时何时表示式唯一?何时表示法不唯一? 并写出这些表示式.
 - (4) 讨论**α**₁, **α**₂, **α**₃, **α**₄, **β**极大线性无关组.
 - (5) 求 $L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\beta})$ 的一组基和维数.

(2) 增广矩降
$$\mathbf{B} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 2 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 0 & b+5 \\ 0 & 0 & 0 & 1-a & 3+b \end{pmatrix}$$
 $\therefore a \neq 1$ 时方程组有 唯一解 $a = 1$ 且 $b = -3$ 时有无穷多解 $a = 1$ 且 $b \neq -3$ 时无解

$$a = 1$$
且 $\begin{pmatrix} 1 & 0 & 0 & 0 & -8 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 通解为:
$$X = t(0, -2, 0, 1)^{T} + (-8, 3, 2, 0)^{T}$$

$$t 为任音堂数$$

- (3) β 可由 α_1 , α_2 , α_3 , α_4 线性表示 \Longrightarrow 方程组 $AX = \beta$ 有解,而且表示法唯一 \Longleftrightarrow 方程组有唯一解,表示法不唯一 \Longleftrightarrow 方程组有无穷多解,
- (4) a = 1且b = -3时R(B) = 3, α_1 , α_2 , α_3 , α_4 , β 的极大无关组: α_1 , α_2 , α_3 $a \neq 1$ 时R(B) = 4, α_1 , α_2 , α_3 , α_4 , β 的极大无关组: α_1 , α_2 , α_3 , α_4 $b \neq -3$ 时R(B) = 4, α_1 , α_2 , α_3 , α_4 , β 的极大无关组: α_1 , α_2 , α_3 , β
 - (5) $L(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta) \text{ 的} \begin{cases} \underline{\$} : \ \alpha_{1}, \alpha_{2}, \alpha_{3}, & \text{维数=3.} \ \alpha = 1 \square b = -3 \text{ 时} \\ \underline{\$} : \ \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, & \text{维数=4.} \ \alpha \neq 1 \text{ 时} \\ \underline{\$} : \ \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, & \text{维数=4.} \ b \neq -3 \text{ 时} \end{cases}$