Math 335, Homework 2

Due Wednesday, February 10 Mark S Kim

1. Define a binary operation * on \mathbb{Z} by

$$a * b = 2a + 2b.$$

So, for example,

$$1 * 3 = 2 \cdot 1 + 2 \cdot 3 = 8.$$

Use a specific example to show that * is not associative.

Answer:

Let a = 0, b = 0, c = 1. Then

$$(a*b)*c = (2a + 2b)*c = 2(2a + 2b) + 2c$$
$$= 2(2 \cdot 0 + 2 \cdot 0) + 2(1) = 2$$
$$a*(b*c) = a*(2b + 2c) = 2a + 2(2b + 2c)$$
$$= 2 \cdot 0 + 2(2 \cdot 0 + 2 \cdot 1) = 4.$$

Hence, $(a * b) * c \neq a * (b * c)$ and * is not associative.

2. Let

$$G = \{5, 15, 25, 35\}.$$

Prove that G is a group under the operation of multiplication modulo 40. You can assume that multiplication is associative, but you should prove closure, the existence of an identity, and the existence of inverses. (**Hint**: Make a multiplication table.)

Answer:

×	5	15	25	35
5	$25 \equiv 25 \mod 40$	$75 \equiv 35 \mod 40$	$125 \equiv 5 \mod 40$	$175 \equiv 15 \mod 40$
15	$75 \equiv 35 \mod 40$	$225 \equiv 25 \mod 40$	$375 \equiv 15 \mod 40$	$525 \equiv 5 \mod 40$
25	$125 \equiv 5 \mod 40$	$375 \equiv 15 \mod 40$	$625 \equiv 25 \mod 40$	$875 \equiv 35 \mod 40$
35	$175 \equiv 15 \mod 40$	$525 \equiv 5 \mod 40$	$875 \equiv 35 \mod 40$	$1225 \equiv 25 \mod 40$

- 0. Closure: $\sqrt{\ }$: notice from the table above that G is closed under the operation of multiplication modulo 40.
- 1. Associativity: \checkmark : assumed.
- 2. Identity: \checkmark : $e = 25 \in G$. Notice that

$$5 \cdot 25 = 125 \equiv 5 \mod 40$$

$$15 \cdot 25 = 375 \equiv 15 \mod 40$$

$$25\cdot 25 = 625 \equiv 25 \mod 40$$

$$35 \cdot 25 = 875 \equiv 35 \mod 40$$

3. Inverse: \checkmark : notice from the table that the inverse of a is a. So $a \cdot a = e$ for all $a \in G$.

$$5 \cdot 5 = 25 \equiv 25 \mod 40$$

 $15 \cdot 15 = 225 \equiv 25 \mod 40$
 $25 \cdot 25 = 625 \equiv 25 \mod 40$
 $35 \cdot 35 = 1225 \equiv 25 \mod 40$

3. Let n be any positive integer, and let

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}.$$

(This is called the set of nth roots of unity.) For example,

$$U_2 = \{1, -1\}$$

$$U_4 = \{1, -1, i, -i\},$$

or, more weirdly,

$$U_3 = \left\{1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i\right\}.$$

(Don't worry, I'd never expect you to know that last one on your own!) Prove that, for all n, the set U_n is a group under the operation of multiplication. You can assume that multiplication is associative, but you should prove closure, the existence of an identity, and the existence of inverses.

Answer:

0. Closure: ✓

Consider $x^n, y^n \in U_n$. To prove closure, we must show that $(x \cdot y) \in U_n$. Since $x^n = 1, y^n = 1$, and $1 \cdot 1 = 1, x^n \cdot y^n = 1$. Then

$$1 = x^n \cdot y^n$$
$$= (x \cdot y)^n.$$

Hence, U_n is closed under the operation of multiplication.

- 1. Associativity: \checkmark : assumed.
- 2. Identity: \checkmark : Since $z^n \cdot 1 = 1 \cdot x^n = z^n$ for all $z^n \in U_n$, the identity for U_n exists and equals 1.
- 3. Inverse: ✓

Suppose the inverse to $z^n \in U_n$ is w^n . We need to prove that $w^n \in U_n$. By definition, $z^n \cdot w^n = e = 1$, so $w^n = \frac{1}{z^n}$. Since $w^n = \frac{1}{z^n} = \frac{1}{1} = 1 \in U_n$, w^n exists and is in U_n .

4. Find an example of three elements $a, b, c \in D_4$ such that

$$b \circ a = a \circ c$$
 but $b \neq c$.

What does this tell you about the cancellation property in D_4 ?

Answer:

For $a, b, c \in D_4$, an example that satisfies the given property is $a = R_{90}$, b = H, and c = V, so $H \circ R_{90} = R_{90} \circ V = D$.

The left cancellation property states that $a * b = a * c \implies b = c$, and the right cancellation property states that $b * a = c * a \implies b = c$. The above statement implies that the cancellation property in D_4 is *not* commutative (but may be commutative in certain cases).

In Problems 5, we use exponents to indicate doing the group operation repeatedly. That is, let G be a group with operation * and let $a \in G$. Then we write a^2 to mean a*a, we write a^3 to mean a*a*a, and so on.

5. Let G be any group and let $a, b \in G$. Prove that $(a*b)^2 = a^2*b^2$ if and only if a*b = b*a.

Proof. For the forward direction, let $(a*b)^2 = a^2*b^2$. Then

$$(a*b)^2 = a^2*b^2$$

$$(a*b)*(a*b) = (a*a)*(b*b)$$

$$a*(b*a)*b = a*(a*b)*b \text{ by associativity}$$

$$b*a = a*b \text{ using cancellation property}$$

For the reverse direction, let a * b = b * a. Then

$$(a*b)^{2} = (a*b)*(a*b)$$

$$= a*(b*a)*b$$
 by associativity
$$= a*(a*b)*a$$
 given
$$= (a*a)*(b*b)$$
 by associativity
$$= a^{2}*b^{2}$$