Métodos de ordenamiento

Alejandro Giraldo Herrera

Institución universitaria EAM

52410: Ingeniería de software

Ing. Julián Darío Vélez Rodríguez

10 de Marzo de 2023

No. 1	BUBBLE SORT	PASOS	Se ejecuta - VECES-
1 2 3 4 5 6 7 8 9 10 11 12	<pre>public class BubbleSort { static int[] sort(int arr[]) { int length = arr.length - 1; for (int i = 0; i < length; i++)</pre>	<pre>1 int arr[] 2 int length = arr.length - 1 3 int i = 0 4 i < length 5 i ++ 6 int j = 0 7 j < length - i 8 j ++ 9 arr[j] > arr[j + 1] 10 int temp = arr[j] 11 arr[j] = arr[j + 1] 12 arr[j + 1] = temp 13 return arr</pre>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tiempo de ejecución: $T(n) = 5 + 2n + n^2 + n^2 + n - ni + 5n^2 - 5ni \rightarrow T(n) = 5 + 3n + 7n^2 - 6ni$

No. 2	INSERTION SORT	PASOS	Se ejecuta - VECES-
1 2 3 4 5 6 7 8 9	<pre>public class InsertionSort { static int[] sort(int arr[]) { int length = arr.length; for (int value = 1; value < length; ++value) { int key = arr[value]; int j = value - 1; while (j >= 0 && arr[j] > key) { }</pre>	<pre>1 int arr[] 2 int length = arr.length 3 int value = 1 4 value < length 5 ++ value 6 int key = arr[value] 7 int j - value - 1 8 j >= 0 9 arr[j] > key</pre>	1 1 1 n n - 1 (n - 1)(1) (n - 1)(n + 2) (n - 1)(n + 1) (n - 1)(n + 1)
10 11 12	<pre>arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; }</pre>	10 arr[j + 1] = arr[j] 11 j = j - 1 12 arr[j + 1] = arr[j] 13 return arr	(n - 1) (n + 1) (n - 1) (1) 1
13	return arr; } }		

Tiempo de ejecución: $T(n) = 3 + 2n + 3n - 3 + n^2 + 2n - n - 2 + 3n^2 + 3n - 3n - 3$ $\rightarrow T(n) = 4n^2 + 6n - 5$

No. 3	SELECTION SORT	PASOS	Se ejecuta - VECES-
	<pre>public class SelectionSort {</pre>		
1	static int[] sort(int arr[])	1 int arr[]	1
	{	2 int length = arr.length	1
2	<pre>int length = arr.length;</pre>	3 int value = 0	1
3 4 5	for (int value = 0; value < length - 1;	4 value < length - 1	n
	value++)	5 value ++	n - 1
6	{	6 int min_index = value	(n - 1) 1
7 8 9	<pre>int min_index = value;</pre>	7 j = value	(n - 1) 1
	for (int j = value + 1; j < length; j++)	8 j < length	(n - 1) (n + 1) - value + 1
10	{	9 j ++	(n - 1) (n) - value + 1
	<pre>if (arr[j] < arr[min_index])</pre>	10 arr[j] < arr[min_index]	(n - 1) (n) - value + 1
11	{	11 min_index = j	(n - 1) (n) - value + 1
	<pre>min_index = j;</pre>	12 int temp = arr[min_index]	(n - 1) (n) - value + 1
	}	13 arr[min_index] = arr[value]	(n - 1) (n) - value + 1
12	}	14 arr[value] = temp	(n - 1) (n) - value + 1
13	<pre>int temp = arr[min_index];</pre>	15 return arr	1
14	<pre>arr[min_index] = arr[value];</pre>		
	<pre>arr[value] = temp;</pre>		
15	}		
	return arr;		
	}		
	}		

Tiempo de ejecución: $T(n) = 3 + 2n + 2n - 2 + n^2 + n - n - 1 - value + 1 + 6n^2 - 6n - 6value + 6$ $\rightarrow T(n) = 7n^2 - 2N - 7value + 7$