[3]

$$\cos^2 \chi = 1 + \cos 2\chi \qquad \qquad - \qquad \boxed{}$$

:. (Os² (3n) =	1+ (os(6n)	-
	2	

b) Hence find the exact value of $\int_{0}^{\frac{1}{18}\pi} \cos^2 3x \, dx.$

$$\left(\frac{\pi}{18\cdot 2} + \sin\left(\frac{\pi}{3}\right)\right) - \left(0 + \sin\left(0\right)\right) - \left(1\right)$$

. U= 1 ^{1/2}	
dy = ynth	
dr 2	
dy = 1_ 0	
dr aln'	
智工 丁	
oh Zu	
dn= aude	
$\sqrt{n} = U$	
n= u ^r	
when 1=3	
N=13	
when new	
U= 38	
	dy = 1/2 D when 1=3 u=1/3 when n=00

$$\Rightarrow \int_{3}^{\infty} \int_{(M+1)} \int_{M} d\tau = \frac{\pi}{3} (1A)$$

(a) Express $\frac{dy}{dx}$ in terms of $\tan x$, and verify that $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$. [4]

 $\frac{dy}{dx} = \frac{1}{2} \cdot (\tan u)^{\frac{1}{2}} \cdot \sec^2 u \left(\frac{1}{2} \right)$

The value of $\frac{dy}{dx}$ is also 1 at another point on the curve where x = a, as shown in the diagram.

(b) Show that $t^3 + t^2 + 3t - 1 = 0$, where $t = \tan a$. [4]

 $\frac{\sec^2 a}{2 \tan a} = 1 \qquad (1+t^2)^2 = 4t$ $\frac{1+2t^2+t^4=4t}{t^4+2t^2-4t+1=0}$

$$1+t^2=2\sqrt{t} \qquad \text{At } \gamma=7, \ d\gamma=1 \ ...$$

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

and it is given that y = 1 when x = 0.

Solve the differential equation, obtaining an expression for y in terms of x .	[7]
endy - Yny?	
dr	
1 dy = 42 dx - 1	
yr Can	
(y-2 dy = 14ne du - 1) u= n	1, dv= = 2
du	1- P-21
VI du UTIV- [vdu] Om	-2
=> y'dy = 4[uv-[vdu] _ om dn=	du
4 - 4 [- 1 No. 2 1 1 0 - 2 1]	<u> </u>
=> -y = 4[-1ne2 +1] e2d1)
(-4 45-14E-24 + 15 P-247)	
=> -y -4[-1ne-2n+1[e-2n]]	
$-5 - 4 - 21e^{-21} - e^{-27}$ $-5 - 4 - 21e^{-21} - e^{-27}$ $-5 - 4 - 21e^{-27} - e^{-27}$	