

Universidad de Costa Rica Escuela de Ingeniería Eléctrica

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control I-2018

TAREA 2

1. Para el sistema de control realimentado mostrado en la figura:

Figura 1: Sistema de control realimentado simple.

- A. Realice el análisis correspondiente para determinar el error permanente a partir del teorema del valor final, cuando el sistema opera como servo control
 - Considere que los cambios en la referencia r(s) pueden ser tipo escalón o rampa y suponga al menos dos tipos de controlador y planta para cada tipo de cambio en r(s).
- B. Suponga ahora que, para el sistema de control realimentado de la figura, el proceso controlado está dado por la función $P(s) = \frac{1}{s(s+1)}$ y el controlador es tipo proporcional con $C(s) = K_p$.
 - a) Si $K_p = 12$, determine el error permanente del sistema de control, si se considera un cambio en el valor deseado de r(t)=5+t.
 - b) Para el mismo valor de K_p , determine el error permanente del sistema de control, si se considera un cambio tipo escalón unitario en la entrada d(t).
 - c) Determine el valor de K_p , para que la respuesta y(t) a un cambio escalón en el valor deseado r(t) tenga un sobrepaso máximo del 10%.
 - d) Para el valor K_p encontrado en el punto anterior, dibuje a mano alzada la respuesta del sistema de control a un cambio escalón de magnitud 8 en el valor deseado e indique sobre ella el valor del máximo de la respuesta y el tiempo al que ocurre. Marque también sobre la gráfica como se mediría el tiempo de levantamiento, el tiempo de asentamiento al 5% y el tiempo de retardo del sistema.
 - e) Compruebe el resultado del punto anterior utilizando Matlab/Simulink, determinando además gráficamente el tiempo de levantamiento, el de asentamiento al 5% y el de retardo del sistema. Como sugerencia puede utilizar la herramienta "Data Cursor" en la figura obtenida para determinar los puntos de interés, o investigar las opciones de simulación y medición del desempeño al utilizar los comandos *lsim* o *step*.

Universidad de Costa Rica Escuela de Ingeniería Eléctrica

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control I-2018

- 2. Suponga que tiene un controlador con un algoritmo PID Serie de dos grados de libertad (2GdL), cuyos parámetros son: $K_{p'} = 1.3$, $T_{i'} = 1.3$ s, $T_{d'} = 0.3$ s, $\alpha' = 0.1$, $\beta' = 1.1$, $\gamma' = 0$.
 - Determine los parámetros de los controladores equivalentes con un algoritmo de control PID Estándar de 2GdL y un algoritmo PID Paralelo de 2GdL.
 - Realice el procedimiento inverso para obtener los parámetros del PID Serie a partir de los parámetros del PID Estándar y del PID paralelo.
- 3. Para el sistema de control que se muestra en la figura 1, se tiene que el proceso está representado por un modelo lineal dado por la función de transferencia P(s):

$$P(s) = \frac{K}{(Ts+1)(aTs+1)}$$
; $K = 0.44$; $T = 6.2$ s; $a = 0.2$

Se tiene además que el controlador es tipo proporcional con ganancia variable K_p .

- Determine analíticamente el rango de valores de K_p para el cual la respuesta del servo control ante una entrada escalón unitario será del tipo:
 - a) Sobreamortiguada.
 - b) Críticamente Amortiguada
 - c) Subamortiguada.
- Compruebe la respuesta del punto anterior al obtener en Matlab el diagrama de polos y ceros y la respuesta a una entrada escalón unitario en la referencia, para un valor de K_p en los rangos encontrados para cada caso.
- Analice el efecto de K_p sobre la respuesta y sobre la localización de los polos y ceros del proceso.

Fecha <u>límite</u> de entrega: viernes 20 de abril @ 6:00 pm, oficina 604IE Debe indicar en la tarea: Nombre, Carné y <u>Grupo</u> Matriculado