

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 10
Storage and Indexing

THE UNIVERSITY OF | What this subject is all about. Remember this?

MODELLING

SQL

ARCHITECTURE / INTERNAL WORKINGS

Components of a DBMS

MELBOURNE

This is one of several possible architectures; each system has its own slight variations.

4

- File organization (Heap & sorted files)
- Index files & indexes
- Index classification

Readings: Chapter 8, Ramakrishnan & Gehrke, Database Systems

Files (in a DBMS)

 FILE: A collection of pages, each containing a collection of records.

- DBMS must support:
 - -insert/delete/modify record
 - -read a particular record (specified using record id)
 - -scan all records (possibly with some conditions on the records to be retrieved)

MELBOURNE Alternative File Organizations

- Many alternatives exist, each good for some situations, and not so good in others:
- **Heap files**: no particular order among records
 - -Suitable when typical access is a file scan retrieving **all** records
- **Sorted Files:** pages and records within pages are ordered by some condition
 - Best for retrieval (of a range of records) in some order
- 3. Index File Organizations:
 - -Special data structure that has the fastest retrieval in some order
 - -Will cover shortly...

1. Heap (Unordered) Files

- Simplest file structure, contains records in no particular order
- As file grows and shrinks, disk pages are allocated and de-allocated
 - -Fastest for inserts compared to other alternatives

- Similar structure like heap files (pages and records), but pages and records are ordered
- Fast for range queries, but hard for maintenance (each insert potentially reshuffles records)
- Example: A sorted file ordered by age

Storage hierarchy

- Data is typically stored in pages on Hard Disks (HDD).
- To be able to process and analyze it data needs to be brought to Memory (RAM).

How does a DBMS decide which option is better?

- DBMS model the cost of all operations
- The cost is typically expressed in the number of page accesses (or disk
 I/O operations to bring data from disk to memory)
 - -1 page access (on disk) == 1 I/O (used interchangeably)
- **Example**: If we have a table of 100 records, and each page can store 10 records, what would be the cost of accessing the entire file
- **Answer**: For 100 records we have 10 pages in total (100/10), thus the cost to access the entire file is 10 I/O (or 10 pages)

Which alternative is better?

MELBOURNE

- Example: Find all records with ages between 20 and 30, for the file that has B pages. Consider both alternative: having an unsorted and sorted file. What would be the cheapest cost?
- 20 < age <30, num pages = B
- Heap file (no order) = B;

11,80
12,10
52,20
13,75

14,80	
14,10	
36,75	
18,75	

20,80
21,10
22,20
16,20

36,80
41,10
12,20
80,75

Heap file

Sorted file (exploit order) = log2 B

11,80
12,10
12,20
13,75

36,80
41,10
52,20
80,75

Sorted file

File Organization & Indexing

- File organization (Heap & sorted files)
- Index files & indexes
- Index classification

- Sometimes, we want to retrieve records by specifying the values in one or more fields, e.g.,
 - -Find all students in the "CIS" department
 - -Find all students with a gpa > 3
- An index is a data structure built on top of data pages used for efficient search. The index is built over specific fields called search key fields. E.g. we can build an index on GPA, or department name.
 - -The index speeds up selections on the search key fields
 - -Any subset of the fields of a relation can be the search key for an index on the relation
 - -Note: Search key is not the same as key (e.g., doesn't have to be unique)

Example: Simple Index on GPA

An index contains a collection of data entries, and supports efficient retrieval of data records matching a given search condition

File Organization & Indexing

MIELBOUKNE

- File organization (Heap & sorted files)
- Index files & indexes
- Index classification

MUEILIBOUUIKINII

- Classification based on various factors:
 - -Clustered vs. Unclustered
 - -Primary vs. Secondary
 - -Single Key vs. Composite
 - –Indexing technique:
 - -Tree-based, hash-based, other

Index Classification: Clustering

MELBOURNE

• Clustered vs. unclustered: If order of data records is the same as the order of index data entries, then the index is called clustered index. Otherwise is unclustered.

MELBOURNE Zoom in Clustered Index

MELBOURNE Zoom in Unclustered Index

Clustering properties

MELBOUKNE

- A data file can have a clustered index on at most one search key combination (i.e. we cannot have multiple clustered indexes over a single table)
- Cost of retrieving data records through index varies greatly based on whether index is clustered (cheaper for clustered)
- Clustered indexes are more expensive to maintain (require file reorganization), but are really efficient for range search

Clustered vs. Unclustered Index: Cost

- METROCKIAE
- (Approximated) cost of retrieving records found in range scan:
 - 1. Clustered: cost ≈ # pages in data file with matching records
 - Unclustered: cost ≈ # of matching index data entries (data records)

MELBOURNE Primary vs. Secondary Index

MIELBOUKNE

- Primary index includes the table's primary key
- Secondary is any other index
- Properties:
 - -Primary index **never** contains duplicates
 - -Secondary index may contain duplicates

Composite Search Keys

MELBOUKNE

- An index can be built over a combination of search keys
- Data entries in index sorted by search keys
- Examples:
- Index on <age, sal>
- Index on <sal, age>
- Efficient to answer:

Hash-based index

MELBOURNE

- Hash-based index:
 - -Represents index as a collection of *buckets*. Hash function maps the search key to the corresponding bucket.
 - h(r.search_key) = bucket in which record r belongs
 - -Good for **equality** selections
- Example: Hash-based index on (sal)

Find Sal = 20072007 mod 4 = 3 go to Buck.4

Tree-based index

MIELBOUKNE

- Tree-based index:
 - -Underlying data structure is a binary (B+) tree. Nodes contain pointers to lower levels (search left for lower, right for higher). Leaves contain data entries sorted by search key values.
 - -Good for range selections
 - -So far we have shown those
- Example: Tree-based index on (age)

Find age > 39

- Many alternative file organizations exist, each appropriate in some situation
- If selection queries are frequent, sorting the file or building an *index* is important
- Index is an additional data structure (i.e. file) introduced to quickly find entries with given key values
 - -Hash-based indexes only good for equality search
 - –Sorted files and tree-based indexes best for range search; also good for equality search
 - -Files rarely kept sorted in practice (because of the cost of maintaining them); B+ tree index is better

- Describe alternative file organizations
- What is an index, when do we use them
- Index classification

- Query processing part 1
 - Selection and projection (execution, costs)
 - Let's demystify how DBMS perform work