Tài liệu tham khảo

- Toán cao cấp Tập 3 Nguyễn Đình Trí (CB) NXB Giáo
 Dục
- 2) Giải Tích, Tập I, II Trần Đức Long, Nguyễn Đình Sang, Hoàng Quốc Toàn – NXB ĐHQGHN
- 3) Giải Tích Toán học Nguyễn Thủy Thanh NXB ĐHQGHN
- 4) Calculus Jame Stewart 7th.

Nội dung

- Chương I: Hàm nhiều biến (4b)
- Chương II: Tích phân bội (3b)
- Kiểm tra giữa học kỳ (1b) Tuần 8 (20%)
- Chương III: Tích phân đường, tích phân mặt (4b)
- Chương IV: Phương trình vi phân (2b)
- Ôn tập cuối học kỳ (1b) Tuần 15

Chương I: Hàm nhiều biến

· Giới hạn và liên tục

- ✓ Tính giới hạn, chứng minh hàm số không tồn tại giới hạn
- ✓ Khảo sát liên tục của hàm 2 biến

· Đạo hàm, vi phân

- ✓ Đạo hàm riêng hàm hợp, hàm ẩn
- ✓ Xét tính khả vi của hàm số
- ✓ Tìm vi phân toàn phần của hàm số, tính giá trị gần đúng

Cực trị

- ✓ Cực trị không điều kiện, cực trị có điều kiện
- ✓ Bài toán min, max

 Hàm hai biến f là một quy tắc cho tương ứng mỗi một cặp số thực (x, y) ∈ D ⊂ R² có duy nhất một số thực ký hiệu f(x, y).

$$f: D \to R$$

 $(x,y) \to f(x,y)$

• $K \dot{y} hi \hat{e}u$: $z = f(x, y) | (x, y) \in D$;

- D miền xác định: tập hợp tất cả những giá trị của x và y sao cho biểu thức f(x,y) có nghĩa.
- Miền giá trị: tập hợp các giá trị mà hàm nhận được $E \coloneqq \{z \in R | z = f(x, y), (x, y) \in D\}$
- x, y: biến độc lập; z: biến phụ thuộc.
- Giá trị của hàm tại điểm $M(x_0, y_0)$: $f(x_0, y_0)$ hoặc f(M).

• Ví dụ 1. Tìm miền D và f(3,2) của các hàm số sau:

a)
$$f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$$
; b) $f(x,y) = x \ln(y^2 - x)$

Giải:

a) Miền xác định: $D = \{(x, y) | x + y + 1 \ge 0, x \ne 1\}$

$$f(3,2) = \frac{\sqrt{3+2+1}}{3-1} = \frac{\sqrt{6}}{2}$$

b)
$$f(x,y) = x ln(y^2 - x)$$

Miền xác định: $D = \{(x, y) | x \le y^2\}$

$$f(3,2) = 3ln1 = 0.$$

Về mặt hình học:

- \circ Mỗi cặp số thực (x, y): xác định một điểm P trên (Oxy).
- o f(P): cao độ của điểm P trong không gian \mathbb{R}^3 .
- Tập hợp các điểm trong \mathbb{R}^3 mà tọa độ thỏa mãn phương trình u = f(x, y): đồ thị của hàm hai biến 1 mặt trong \mathbb{R}^3 mà hình chiếu vuông góc của nó lên (Oxy) là D.

* Đường đồng mức, mặt đồng mức

- Đường đồng mức của hàm u = f(x, y): Đường trên (Oxy) mà tại các điểm của nó: f(x, y) = C (C: hằng số).
- Mặt đồng mức của hàm u = f(x, y, z): mặt trong \mathbf{R}^3 mà tại các điểm của nó f(x, y, z) = C(C: hằng số).

Bản đồ thời tiết thế giới: nhiệt độ trung bình trong 1 tháng.

□ Ví dụ. Tìm đường mức của hàm:

$$u(x,y) = 4x^2 + y^2;$$

Đường mức là đường f(x, y) = C, C = const

$$4x^2 + y^2 = C \Leftrightarrow \frac{x^2}{C/4} + \frac{y^2}{C} = 1$$

Vậy đường đồng mức là họ các đường elip có tâm tại O(0,0), các bán trục là:

$$\frac{\sqrt{C}}{2}, \sqrt{C}, (C > 0)$$

 Bản đồ đường mức và các đường tiến ngang tăng theo các đường mức

• Cho hai hàm f(x,y), g(x,y), khảo sát các giá trị của các hàm trên khi $(x,y) \rightarrow (0,0)$:

$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}; \quad g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Bảng giá trị của f(x, y)

x	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455
-0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
-0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0	0.841	0.990	1.000		1.000	0.990	0.841
0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455

Bảng giá trị của g(x, y)

xy	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000
-0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
-0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0	-1.000	-1.000	-1.000		-1.000	-1.000	-1.000
0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000

- Nhận xét:
- ✓ Tại (0,0): f(x,y), g(x,y): không xác định;
- ✓ Khi $(x, y) \rightarrow (0,0)$: $f(x, y) \rightarrow 1$; g(x, y): không tiến tới 1 giá trị cụ thể nào.

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1; \ \not\exists \lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

• Giả sử hàm u = f(M) = f(x,y) xác định trên tập hợp D.

 $M_0(a,b)$ là điểm cố định nào đó của mặt phẳng và

$$x \to a, y \to b \Rightarrow M(x,y) \to M_0(a,b)$$

$$\Rightarrow \rho(M, M_0) = \sqrt{(x-a)^2 + (y-b)^2} \rightarrow 0$$

• **Định nghĩa 1** (Cauchy)

$$\lim_{M\to M_0} f(x,y) = L$$

Nếu: $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 : \forall M \in \{D : 0 < \rho(M, M_0) < \delta(\varepsilon)\}$ $\Rightarrow |f(M) - L| < \varepsilon.$

• Chú ý rằng:

 $0 < \rho(M, M_0) < \delta(\varepsilon)$: tập hợp các điểm M nằm trong đường tròn tâm (a,b) bán kính $\delta(\varepsilon)$.

 \triangleright M có thể tiến tới M_0 theo nhiều đường khác nhau.

• Nếu: $\begin{cases} f(x,y) \to L_1 : (x,y) \to (a,b) - C_1 \\ f(x,y) \to L_2 : (x,y) \to (a,b) - C_2 \Rightarrow \exists \lim_{(x,y) \to (a,b)} f(x,y) \\ L_1 \neq L_2 \end{cases}$

• **Dinh nghĩa 2** (Heine)

Số L: giới hạn của hàm f(M) tại điểm M_0 nếu:

$$\{M_n\} \to M_0 \mid \forall n, M_n \in D, M_n \neq M_0 \Longrightarrow \{f(M_n)\} \to L$$

Kí hiệu:
$$\lim_{M \to M_0} f(M) = L$$
; $\lim_{\substack{x \to a \\ y \to b}} f(x, y) = L$

- ➢ Giới hạn của hàm không phụ thuộc vào phương M tiến đến M₀.
- Nếu $M \rightarrow M_0$ theo các phương khác nhau mà f(M) dẫn đến các giá trị khác nhau thì hàm f(M) không có giới hạn.
- ightharpoonup Số L: giới hạn của hàm f(M) khi $M \to \infty$ nếu:

$$\forall \varepsilon > 0, \exists R > 0 : \forall M \in \{D : \rho(M, 0) > R\} \Rightarrow |f(M) - L| < \varepsilon.$$

• Ví dụ 2. Chứng minh rằng:

$$\exists \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

<u>Giải</u>.

Xét $(x, y) \rightarrow (0,0)$ theo trục Ox (y=0):

$$f(x,0) = \frac{x^2}{x^2} = 1$$

Xét $(x, y) \rightarrow (0,0)$ theo trục Oy(x=0):

$$f(0,y) = \frac{-y^2}{y^2} = -1 \neq 1$$

Vậy không tồn giới hạn của hàm f(x,y) đã cho.

• Dạng 1. Tính giới hạn kép

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{(x, y) \to (x_0, y_0)} f(x, y) = \lim_{M \to M_0} f(M) = L$$

• Ví dụ 1. Tính giới hạn

a)
$$\lim_{(x,y)\to(1,-1)} \frac{2x^2-3x-1}{xy^2+3}$$
;

b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}};$$

d)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{xy}$$

a)
$$\lim_{(x,y)\to(1,-1)} \frac{2x^2 - 3x - 1}{xy^2 + 3} = \frac{-1}{2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

Cho $(x, y) \rightarrow (0,0)$ theo phương của đường thẳng y = kx

$$f(x,kx) = \frac{k}{1+k^2} (x \neq 0) \Rightarrow \lim_{x \to 0} f(x,kx) = \frac{k}{1+k^2}.$$

Khi k khác nhau, $(x, y) \rightarrow (0,0)$ theo các phương khác nhau, f(x,y) dần tới những giới hạn khác nhau.

Giới hạn không tồn tại.

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}};$$

 $0 \le |f(x,y)| = \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| \le \left| \frac{xy}{y} \right| = |x|, \quad \lim_{(x,y)\to(0,0)} |x| = 0$
hoặc: $|xy| \le \frac{x^2 + y^2}{2}$
 $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = 0$ $\Rightarrow 0 \le \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| \le \frac{\sqrt{x^2 + y^2}}{2}$

d)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{xy}$$

$$0 \le \left| \left(x^2 + y^2 \right) \sin \frac{1}{xy} \right| \le x^2 + y^2$$

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) = 0 \Rightarrow \lim_{(x,y)\to(0,0)} \left| (x^2 + y^2) \sin \frac{1}{xy} \right| = 0$$

$$V_{ay}^{1} \lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin \frac{1}{xy} = 0$$

$$Var{ay} \lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{xy} = 0$$

Nhận xét

- Thông thường, đối với hàm phân thức, bậc của tử ≤ bậc của mẫu: xét dãy điểm tiến tới điểm cần tính giới hạn theo các đường khác nhau.
- Nếu bậc của tử > bậc của mẫu: sử dụng nguyên lý kẹp
 Chú ý:

$$|a| - |b| \le |a + b| \le |a| + |b|$$

$$\left| xy \right| \le \frac{x^2 + y^2}{2}$$

1. Giới hạn

• Dạng 2. Giới hạn lặp

Giả sử tồn tại $\lim_{x\to a} f(x,y) = \varphi(y)$ với mỗi y cố định

Nếu tồn tại $\lim_{y\to b} \varphi(y) = L$, L được gọi là giới hạn lặp

Ký hiệu:

$$\lim_{y\to b}\lim_{x\to a}f(x,y)$$

Tương tự có:

$$\lim_{x \to a} \lim_{y \to b} f(x, y)$$

1. Giới hạn

Chú ý:

Nếu

- 1) Tồn tại giới hạn kép $\lim_{\substack{x \to a \ y \to b}} f(x, y) = L$
- 2) Với mỗi y cố định, tồn tại $\lim_{x\to a} f(x,y)$

Thì

$$\begin{cases} \lim_{y \to b} \lim_{x \to a} f(x, y) \\ \lim_{x \to a} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y) \end{cases}$$

1. Giới hạn

- ***** *Vi dụ*: Cho hàm số $f:(0, +\infty) \times (0, +\infty) \to \mathbb{R}$ xác định bởi công thức $f(x, y) = \frac{x y + x^2 + y^2}{x + y}$.

 Tính các giới hạn lặp tại điểm (0,0).
- Ta có: $\lim_{x \to 0} f(x, y) = \lim_{x \to 0} \frac{x y + x^2 + y^2}{x + y} = y 1$ $\Rightarrow \lim_{y \to 0} (y - 1) = -1$ $\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{x - y + x^2 + y^2}{x + y} = x + 1$ $\Rightarrow \lim_{x \to 0} (x + 1) = 1$

Hai giới hạn lặp tồn tại nhưng khác nhau $\Rightarrow \exists \lim_{\substack{x \to 0 \\ v \to 0}} f(x, y)$.

Ví dụ 2: Tính giới hạn

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{2x^2+3y^6}$$
;

b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

c)
$$\lim_{(x,y)\to(0,2)} \frac{\sqrt{x^2 + (y-2)^2 + 1} - 1}{x^2 + (y-2)^2}$$
; d) $\lim_{(x,y)\to(0,2)} (1+xy)^{\frac{2}{x^2 + xy}}$

d)
$$\lim_{(x,y)\to(0,2)} (1+xy)^{\frac{2}{x^2+xy}}$$

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{2x^2+3y^6}$$
;

Xét dãy điểm: $\{(x_n, y_n)\} = \{\left(\frac{k}{n^3}, \frac{l}{n}\right)\} \rightarrow (0, 0), n \rightarrow +\infty$ với k, l là các hằng số.

Khi đó:
$$f(x_n, y_n) = \frac{kl^3}{2k^2 + 3l^6}, n \to +\infty$$

Với mỗi cặp giá trị (k, l) khác nhau, f(x,y) dần tới những giá trị khác nhau.

$$ightharpoonup Vây: $\not\exists \lim_{(x,y)\to(0,0)} \frac{xy^3}{2x^2 + 3y^6}$$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

- Đặt: $x^2 + y^2 = t : (x, y) \rightarrow (0, 0) \Longrightarrow t \rightarrow 0$
- Khi đó

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2} = \lim_{t\to 0} \frac{\sin t}{t} = 1$$

c)
$$\lim_{(x,y)\to(0,2)} \frac{\sqrt{x^2 + (y-2)^2 + 1} - 1}{x^2 + (y-2)^2}$$

- Đặt: $\rho = \sqrt{x^2 + (y-2)^2}$, $\rho \ge 0$, $(x,y) \to (0,2)$: $\rho \to 0$
- Khi đó:

$$\lim_{(x,y)\to(0,2)} \frac{\sqrt{x^2 + (y-2)^2 + 1} - 1}{x^2 + (y-2)^2} = \lim_{\rho\to 0} \frac{\sqrt{\rho^2 + 1} - 1}{\rho^2}$$

$$= \lim_{\rho \to 0} \frac{1}{\sqrt{\rho^2 + 1} + 1} = \frac{1}{2}$$

d)
$$\lim_{(x,y)\to(0,2)} (1+xy)^{\frac{2}{x^2+xy}}$$

- Ta có: $(1+xy)^{\frac{2}{x^2+xy}} = \left[(1+xy)^{\frac{1}{xy}} \right]^{\frac{2xy}{x^2+xy}} = \left[(1+xy)^{\frac{1}{xy}} \right]^{\frac{2y}{x+y}}$
- Đặt $t = xy, (x, y) \to (0,2): t \to 0$
- Khi đó: $\lim_{(x,y)\to(0,2)} (1+xy)^{\frac{1}{xy}} = \lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$
- Mà: $\lim_{(x,y)\to(0,2)} \frac{2y}{x+y} = 2 \Rightarrow \lim_{(x,y)\to(0,2)} (1+xy)^{\frac{2}{x^2+xy}} = e^2$

• *Dạng 2*. Khảo sát tính liên tục Hàm số f(x,y) liên tục tại $M(x_0,y_0) \in D \subset R^2$ nếu

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

• Ví dụ 3. Xét tính liên tục của hàm số:

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- Hàm f(x,y) liên tục với $\forall (x, y) \neq (0, 0)$.
- Xét tính liên tục của f(x,y) tại (0,0): f(0,0) = 0,

$$0 \le \left| \frac{x^3 - y^3}{x^2 + y^2} \right| = \left| \frac{(x - y)(x^2 + xy + y^2)}{x^2 + y^2} \right| = \left| \frac{x - y}{x^2 + y^2} \right| \left| x^2 + xy + y^2 \right|$$

Mà:
$$|x^2 + xy + y^2| = |(x^2 + y^2) + xy|$$

$$\leq |x^2 + y^2| + |xy| \leq x^2 + y^2 + \frac{x^2 + y^2}{2} = \frac{3}{2}(x^2 + y^2)$$

$$\Rightarrow 0 \leq \left| \frac{x^3 - y^3}{x^2 + y^2} \right| \leq \left| \frac{x - y}{x^2 + y^2} \right| \cdot \frac{3}{2}(x^2 + y^2) = \frac{3}{2}|x - y|$$

$$\lim_{(x,y)\to(0,0)} \frac{3}{2} |x-y| = 0 \Longrightarrow \lim_{(x,y)\to(0,0)} \left| \frac{x^3 - y^3}{x^2 + y^2} \right| = 0$$

$$\Rightarrow \lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2} = 0$$

Suy ra f(x, y) liên tục tại điểm (0,0).

 \triangleright Vậy hàm số f(x,y) đã cho liên tục trên \mathbb{R}^2 .

Cách biến đổi khác:

$$0 \le \left| \frac{x^3 - y^3}{x^2 + y^2} \right| \le \left| \frac{x^3}{x^2 + y^2} \right| + \left| \frac{y^3}{x^2 + y^2} \right| \le |x| + |y|$$

• Ví dụ 4. Xét tính liên tục của hàm số:

$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Giải:

- Hàm f(x,y) liên tục với $\forall (x, y) \neq (0, 0)$.
- Xét tính liên tục của f(x,y) tại (0,0):

$$f(0,0)=0,$$

Mặt khác:

$$|xy| \le \frac{x^2 + y^2}{2} \Longrightarrow \frac{|xy|^{\alpha}}{x^2 + y^2} \le \frac{1}{2^{\alpha}} (x^2 + y^2)^{\alpha - 1}$$

Nhận thấy: $\lim_{(x,y)\to(0,0)} \frac{1}{2^{\alpha}} (x^2 + y^2)^{\alpha-1}$ phụ thuộc vào α

$$\alpha > 1$$
 $\alpha < 1$
 $\alpha <$

> f(x,y) liên tục trên R^2 nếu $\alpha > 1$, gián đoạn tại (0,0) nếu $\alpha \le 1$

• Bài tập. Tính các giới hạn sau:

1)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 khi $(x,y) \to (0,0)$

2)
$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$
 khi $(x,y) \to (0,0)$

3)
$$f(x,y) = (x^2 + y^2)^{x^2y^2}$$
 khi $(x,y) \to (0,0)$

4)
$$f(x,y) = (1+xy)^{\frac{1}{x^2+y^2}}$$
 khi $(x,y) \to (0,0)$

5)
$$f(x,y) = \frac{x^2 + y^2}{\sqrt{4 - x^2 - y^2} - 2}$$
 khi $(x,y) \to (0,0)$

6)
$$f(x,y) = \frac{\sin xy}{x}$$
 khi $(x,y) \rightarrow (0,3)$

7)
$$f(x,y) = \frac{\sin(x^3 - y^3)}{x^2 + y^2}$$
 khi $(x,y) \to (0,0)$

8)
$$f(x,y) = x \arctan \frac{y}{x}$$
 khi $(x,y) \rightarrow (0,0)$

9)
$$f(x,y) = \frac{1+x^2+y^2}{y^2} (1-\cos y)$$
 khi $(x,y) \to (0,0)$

10)
$$f(x,y) = \frac{(x+y)\cos(x+y)}{\sin(x-y)}$$
 khi $(x,y) \to (0,0)$

11)
$$f(x,y) = \frac{(1+x^2+y^2)(1-\cos y)}{y^2}$$
khi $(x,y) \to (0,0)$

12)
$$f(x,y) = \frac{x+y}{x^2+y^2}$$
 khi $(x,y) \to (+\infty,+\infty)$

13)
$$f(x,y) = \frac{x+y}{x^2 - xy + y^2}$$
 khi $(x,y) \to (\infty,\infty)$

14)
$$f(x,y) = \left(\frac{xy}{x^2 + y^2}\right)^{x^2}$$
 khi $(x,y) \to (\infty,\infty)$

15)
$$f(x,y) = x \arctan\left(\frac{y}{x}\right)^2$$
 khi $(x,y) \to (0,0)$

16)
$$f(x,y) = \frac{x \sin y - y \sin x}{x^2 + y^2}$$
 khi $(x,y) \rightarrow (0,0)$

• Bài tập. Khảo sát sự liên tục của các hàm số sau tại (0,0):

1)
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin(\frac{1}{x^2 + y^2}), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
;

2)
$$f(x,y) = \begin{cases} \frac{x \sin y - y \sin x}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
;

3)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
;

4)
$$f(x,y) = \begin{cases} \frac{\cos(x-y) - \cos(x+y)}{2xy}, & xy \neq 0, \\ 1, & xy = 0 \end{cases}$$

Cho hàm số
$$f(x,y) = \frac{x.\sin{\frac{1}{x}} + y}{x+y}$$
. CMR tồn tại giới hạn lặp

Hướng dẫn

13)
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x + y}{x^2 - xy + y^2}$$

$$x^2 - 2xy + y^2 = (x - y)^2 \ge 0 \Rightarrow x^2 - xy + y^2 \ge xy$$

$$\Rightarrow 0 \le \left| \frac{x + y}{x^2 - xy + y^2} \right| \le \left| \frac{x + y}{xy} \right| = \frac{1}{|x|} + \frac{1}{|y|} \to 0, x \to \infty, y \to \infty$$

•