Reply to Office action of March 8, 2007

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

Listing of Claims:

Claims 1-19. (Canceled)

20. (Currently amended) The fuel injection device according to claim [[19]] 37, wherein

the central control line (31) extends through the working chamber (12) of the pressure booster

(11) and is sealed off from the further comprising a high-pressure-tight connection (33,

50, 61) for sealing off said central control line (31) from said working chamber (12) by

means of a high-pressure-tight connection (33, 50, 61).

21. (Previously presented) The fuel injection device according to claim 20, wherein the

central control line (31) extends essentially coaxial to the symmetry axis of the injector body

(4; 8, 9, 10).

22. (Canceled)

23. (Currently amended) The fuel injection device according to claim [[22]] 37, wherein

the pressure booster piston (14) contains a line section (34, 60, 74) of the central control line

Page 2 of 9

Appl. No. 10/531,166 Amdt. dated June 8, 2007

Reply to Office action of March 8, 2007

(31) through which a conduit (40) constituting the central control line (31) extends in the working chamber (12) of the pressure booster (11).

- 24. (Currently amended) The fuel injection device according to claim [[22]] 23, wherein the conduit (40) feeds into a recess (35) inside a first housing part (8) of the injector body (4; 8, 9, 10), which recess is connected to the on-off valve (5, 70) via an overflow line (43).
- 25. (Previously presented) The fuel injection device according to claim 23, wherein the line section of the central control line (31) is embodied as a tubular piston extension (34).
- 26. (Withdrawn) The fuel injection device according to claim 23, wherein the line section of the central control line (31) is embodied as a coaxial piston (74) that the pressure booster piston (14) can move in relation to.
- 27. (Currently amended) The fuel injection device according to claim 20, wherein the pressure booster piston (14) contains a line section (34, 60, 74) of the central control line (31) through which a conduit (40) constituting the central control line (31) extends in the working chamber (12) of the pressure booster (11), and wherein the line section (34) of the central control line (31) supports a spring-loaded sealing sleeve (36) that can move in relation to it said line section (34) and that produces a high-pressure seal (33) of for the working chamber (12) and a spring (38, 76) for biasing said sealing sleeve.

Appl. No. 10/531,166 Amdt. dated June 8, 2007

Reply to Office action of March 8, 2007

- 28. (Withdrawn) The fuel injection device according to claim 20, wherein the pressure booster piston (14) contains a line section (34, 60, 74) of the central control line (31) through which a conduit (40) constituting the central control line (31) extends in the working chamber (12) of the pressure booster (11) and wherein the line section (34) has a high-pressure-tight guide section (50) that is guided in a first housing part (8) of the injector body (4; 8, 9, 10).
- 29. (Withdrawn) The fuel injection device according to claim 20, wherein the pressure booster piston (14) contains a line section (34, 60, 74) of the central control line (31) through which a conduit (40) constituting the central control line (31) extends in the working chamber (12) of the pressure booster (11) and wherein a piston part (60) that constitutes a line section of the central control line (31) and is encompassed by the pressure booster piston (14) is contained in the pressure booster piston in a sliding fashion and in its head region, is provided with a sealing surface (61) that represents a high-pressure-tight connection.
- 30. (Currently amended) The fuel injection device according to claim 27, wherein said further comprising a spring element (38, 76) resting rests against either the line section (74) or against an end (15) of the pressure booster piston (14) and pressing presses the sealing sleeve (36) against the injector body (4; 8, 9, 10).

Appl. No. 10/531,166 Amdt. dated June 8, 2007

Reply to Office action of March 8, 2007

31. (Withdrawn - Currently amended) The fuel injection device according to claim 23, wherein the <u>a</u> piston part (60) that constitutes <u>a said</u> line section of the central control bore <u>line</u> (31) has a hydraulically effective surface and is pressed against a boundary surface of the working chamber (12) of the pressure booster (11) by the fluid contained in the working

chamber (12), thus producing a high-pressure-tight connection (61).

32. (Withdrawn - Currently amended) The fuel injection device according to claim 23, wherein the outlet cross sections (77, 78) from the differential pressure chamber (17) is connected to the central control line (31) by first and second outlet cross sections (77, 78) and wherein the second outlet cross section can be controlled in a stroke-dependent

manner.

33. (Withdrawn) The fuel injection device according to claim 32, further comprising a control chamber (20) connected to the first outlet cross section (77), the pressure change in the differential pressure chamber (17) occurring via the control chamber (20).

34. (Withdrawn) The fuel injection device according to claim 32, wherein the second outlet cross section (78) is greater than the cross section of the first outlet cross section (77).

35. (Currently amended) The fuel injection device according to claim [19]] 37, wherein the on-off valve (5) is embodied as a 3/2-way valve.

- 36. (Withdrawn Currently amended) The fuel injection device according to claim [19]]

 37, wherein the on-off valve (70) is embodied as a servo-hydraulic 3/2-way valve.
- 37. (New) A fuel injection device (1) adapted to be connected to a high-pressure source (2), said fuel injection device (1) comprising:

a multi-part injector body (4; 8, 9, 10);

a pressure booster (11) provided in said multi-part injector body, said pressure booster (11) comprising a pressure booster piston (14), a working chamber (12) on one side of said piston and a differential pressure chamber (17) on an opposite side of said pressure booster piston, said pressure booster piston (14) sealing the working chamber (12) off from the differential pressure chamber (17), said pressure booster piston (14) being actuated by means of a pressure change in said differential pressure chamber (17);

an on-off valve (5, 70) for actuating said fuel injection device (1);

a central control line (31) extending through said pressure booster piston (14), said pressure change in the differential pressure chamber (17) of the pressure booster (11) occurring via the central control line (31); and

wherein the central control line (31) extends essentially coaxially to an axis of symmetry of the pressure booster piston (14).