Niższe warstwy

Sieci komputerowe Wykład 5

Marcin Bieńkowski

Z punktu widzenia warstwy sieciowej

Z punktu widzenia warstwy sieciowej

Z punktu widzenia warstwy sieciowej

Co się dzieje, kiedy *A* wysyła pakiet do:

- 156.17.4.254?
- 156.17.4.255? (adres rozgłoszeniowy)

Internetowy model warstwowy

Dwie warstwy

Warstwa łącza danych

- Umożliwia komunikację między dwoma "sąsiadującymi" urządzeniami.
- * Zapewnia zawodną usługę wysyłania ramek.
- Kanał komunikacyjny może być współdzielony między wieloma urządzeniami.
- * Musi radzić sobie z błędami transmisji.

Warstwa fizyczna

Określa szczegóły przesyłania pojedynczych bitów.

Obie warstwy implementowane w kartach sieciowych

* Najczęściej implementacja sprzętowa.

Połączenia dwupunktowe

Komunikacja półdupleksowa lub pełnodupleksowa w zależności od możliwości kabla.

Komunikacja półdupleksowa.

Połączenia wielopunktowe

- Wiele urządzeń podpiętych do tego samego kanału komunikacyjnego.
- * Połączenie półdupleksowe.
- * Jak zapewnić, że tylko jedno urządzenie nadaje?

Współdzielony kanał

Właściwości

♦ 1 komputer nadaje → wszyscy go słyszą.

- ♦ ≥ 2 komputery nadają jednocześnie → zakłócony sygnał.
 - * Kolizje (sieci przewodowe).
 - Interferencje (sieci bezprzewodowe).
 - * Zazwyczaj nie można wtedy odczytać komunikatu.
- Brak dodatkowego kanału na komunikaty kontrolne.

Podejścia deterministyczne

Oparte na wybranym jednym komputerze

- * Jeden komputer odpytuje pozostałe komputery.
- Decyduje, ile czasu mają nadawać.
- * TDMA (time division multiple access): Bluetooth, sieci 2G i 4G

Oparte na przekazywaniu żetonu

- * Skomplikowane i podatne na błędy implementacyjne.
- Gubienie żetonu, duplikacja żetonu, ...

Podejście losowe #1: rundowy ALOHA

- Czas podzielony na rundy.
 - Długość rundy wystarcza do nadania jednej ramki.
- * Jeśli komputer ma ramkę danych do wysłania, wysyła ją z ppb. p.
- * Dla p = 1/n, gdzie n = liczba komputerów, które chcą wysłać ramkę, sukces średnio co $e \sim 2,71$ rund (dla dużych $n \rightarrow$ ćwiczenie)

* Problemy:

- * Musimy znać *n*, żeby wybrać optymalne *p*.
- * Potrzebujemy synchronizacji rund (globalnego zegara).

Podejście losowe #2: (bezrundowy) ALOHA

- * Brak synchronizacji (globalnego zegara): każdy komputer ma swoje rundy.
- * Przy p = 1/n, wykorzystanie łącza dwukrotnie niższe (ok. 1/(2e)).
- Wciąż musimy znać n, żeby wybrać optymalne p.

Podejście losowe #3: odczekiwanie wykładnicze

- Brak synchronizacji: każdy komputer ma swoje rundy.
- * Idea: zmniejszamy ppb. wysłania ramki po nieudanym wysłaniu.
- * Stosowane w Ethernecie i WiFi.

- * Początkowo m = 1, następnie:
 - * wylosuj k ze zbioru { $0, ..., 2^m 1$ }, odczekaj k rund i spróbuj wysłać ramkę;
 - → po nieudanym wysłaniu: $m \leftarrow m + 1$

Skąd wiemy, że nie udało się wysłać ramki?

- Wariant #1: umiemy wykrywać kiedy nastąpiła kolizja (np. Ethernet)
 - Problem: kolizja też potrzebuje czasu na dotarcie do nadawcy.

Wariant #2: brak możliwości wykrywania kolizji (np. WiFi).

- * Potwierdzanie ramek (i ich retransmisja w przypadku braku potwierdzenia).
 - * W praktyce potwierdzanie tylko w wariancie #2.

Interpretacja kolizji

- * τ = czas propagacji.
- * Załóżmy, że czas wysłania ramki $\geq 2 \tau$

Wtedy jeśli ramka nie dotrze do odbiorcy, to dowiemy się o tym (poprzez kolizję) jeszcze w trakcie jej nadawania

Interpretacja kolizji

Wtedy jeśli ramka nie dotrze do odbiorcy, to dowiemy się o tym (poprzez kolizję) jeszcze w trakcie jej nadawania

Interpretacja kolizji: Ethernet

* Jak zapewnić, że czas wysłania ramki ≥ 2 · czas propagacji?

- Ethernet definiuje:
 - * max. odległość w sieci oraz
 - * min. długość ramki
 - * np. w wariancie 100 Mbit: 100 m i 64 bajty.

Usprawnienia

- Carrier sense: na początku sprawdzamy, czy kanał jest wolny;
 nie rozpoczynamy nadawania, jeśli słyszymy transmisję.
- * Rundy są krótsze niż czas nadawania całej ramki.
- * **Ethernet**: CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Jeśli zauważymy kolizję, przerywamy nadawanie ramki.
- * WiFi: CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
 - Brak wykrywania kolizji, ramki zawsze nadawane do końca.
 - Losowe odczekiwanie również przed pierwszą próbą transmisji ramki.

Ramki i adresowanie

Budowa ramki ethernetowej

- Dane = pakiet otrzymany z warstwy sieciowej.
- * MTU = maksymalny rozmiar tych danych.
- * Typ = identyfikuje protokół w danych, np. 0x0800 = IP.

Długość ramki

- ♦ MTU ≤ 1500 bajtów:
 - * mniejsze ramki mniej podatne na uszkodzenia.

- * rozmiar ramki ≥ 64 bajty → MTU ≥ 46 bajtów:
 - wypełnienie jeśli za mało danych;
 - * wysyłanie trwa co najmniej 2 · czas propagacji.

Adresy ethernetowe (MAC)

- * 6-bajtowy unikatowy ciąg, przykładowo 00:14:2A:1F:F3:BA.
- * Przypisany (teoretycznie) na stałe do karty sieciowej.
 - * W praktyce można go łatwo zmienić.

 Pierwsze trzy bajty przyznaje IEEE producentowi kart sieciowych, trzy kolejne nadaje nadaje producent.

Fizyczna komunikacja w warstwie drugiej

a) wszystko wpięte do wspólnego łącza

b) hub replikuje sygnał na wszystkich portach wyjściowych

c) każdy komputer wysyła ramkę do punktu dostępowego, punkt dostępowy wysyła ją do wszystkich

Wysyłanie ramek

- * Ramka dociera do wszystkich komputerów w sieci.
 - * Nieprawda w przełączanym Ethernecie.

- Przetwarzanie przez kartę sieciową:
 - Czy nasz adres MAC = adres docelowy ramki
 - ♦ tak → ramka interpretowana, dane ramki → warstwa sieciowa,
 - ♦ nie → ramka wyrzucana.
 - * Karta sieciowa w trybie nasłuchu (*promiscuous mode*) przekazuje do systemu wszystkie widziane ramki (Wireshark).
 - * Rozgłaszanie: jeśli adres odbiorcy = FF:FF:FF:FF:FF, to ramkę interpretują wszyscy.

MAC vs IP

Jak warstwa sieciowa wysyła pakiety?

- * Z tablicy routingu odczytujemy kolejny adres IP na trasie do celu:
 - * albo IP następnego routera na trasie
 - albo IP docelowego komputera (jeśli leży w naszej sieci).

Adresowanie

- Adres źródłowy ramki = adres MAC naszej karty sieciowej.
- * Adres docelowy ramki = adres MAC związany z kolejnym adresem IP na trasie do celu.

Protokół ARP

ARP = Address Resolution Protocol

- * Rozgłaszamy zapytania "kto ma dany adres IP".
- Enkapsulowany w ramkach wysyłanych na adres rozgłoszeniowy FF:FF:FF:FF:FF
- * Jeden komputer odpowiada.
- Wszyscy słyszą i zapisują odpowiedź w lokalnej tablicy ARP (na pewien czas).

demonstracja

IPv6

* ICMPv6 ma wbudowane tzw. komunikaty neighbor solicitation i neighbor advertisement zastępujące ARP.

Rozgłaszanie w warstwie sieciowej

- * Pakiet skierowany do adresu rozgłoszeniowego IP:
 - * Umieszczany w ramce adresowanej do FF:FF:FF:FF:FF.
 - * Co się stanie, jeśli mamy dwie różne sieci IP działające w tej samej sieci lokalnej?
- * Uwaga na marginesie: podobnie działa translacja multicastowy adres IP → multicastowy adres ethernetowy
 - * np. 224.0.0.9 \rightarrow 01:00:5e:00:00:09

Adresy MAC vs IP

- * Dlaczego w warstwie sieciowej nie używamy adresów MAC?
 - * Nie mają hierarchii: tablice routingu byłyby nieużywalnie duże.

- * Dlaczego w warstwie łącza danych nie używamy adresów IP?
 - * Brak możliwości obsługi innych protokołów warstwy sieci.

DHCP

Protokół umożliwiający pobieranie adresu IP

- Zazwyczaj na podstawie adresu MAC dostajemy taki sam adres jak poprzednim razem.
- Umożliwia też wysyłanie bramy domyślnej, maski sieci, adresów serwerów DNS, ...

IPv6

* ICMPv6 ma wbudowane tzw. komunikaty router solicitation i router advertisement zastępujące DHCP.

Konfiguracja automatyczna (bez DHCP)

- * **IPv4:** APIPA = Automatic Private IP Addressing:
 - * komputer losuje adres z sieci 169.254.0.0/16.
- * **IPv6:** adresy *link-local*
 - * komputer przydziela sobie adres z sieci fe80::/64,
 - * ostatnie 64 bity adresu są deterministyczną funkcją adresu MAC

Przełączanie ramek

Po co?

- * Co się stanie jeśli podłączymy do koncentratora 100 komputerów?
 - * Brak prywatności.
 - * Kolizje przechodzą przez koncentrator.

Przełącznik sieciowy

Przełącznik "rozumie" protokoły warstwy drugiej.

- Uczy się w trakcie działania, jakie adresy MAC są podłączone do danych portów.
- * Zazwyczaj do portów podpięte pojedyncze komputery, ale mogą być też sieci.
- * Kolejne transmisje są rozgłaszane do wszystkich portów tylko w razie konieczności.

Przełącznik sieciowy

Przełącznik "rozumie" protokoły warstwy drugiej.

- Uczy się w trakcie działania, jakie adresy MAC są podłączone do danych portów.
- Zazwyczaj do portów podpięte pojedyncze komputery, ale mogą być też sieci.
- * Kolejne transmisje są rozgłaszane do wszystkich portów tylko w razie konieczności.

Most = przełącznik z dwoma portami

Łączy dwie sieci, często różnych technologii (np. Ethernet i WiFi).

Przełączany Ethernet

 Ramki wysłane na adres rozgłoszeniowy są przekazywane do wszystkich portów.

- Chcemy mieć topologię bez cykli
 - ◆ brak TTL → burze rozgłoszeniowe

- Chcemy mieć topologię bez cykli
 - ◆ brak TTL → burze rozgłoszeniowe
- * Przełączniki używają STP (Spanning Tree Protocol)
 - * Rozproszony algorytm budowy drzewa spinającego.
 - * Spośród połączeń wybierają drzewo, inne porty wykorzystywane tylko w wypadku awarii.

Domena rozgłoszeniowa

Domena rozgłoszeniowa

Domena kolizyjna

Domena kolizyjna

Łączenie sieci różnych technologii

Opcja 1: łączenie za pomocą routera (już poznaliśmy)

Łączenie sieci różnych technologii

Opcja 2: łączenie za pomocą mostu

- Szybsze: nie ma tablicy routingu, tylko podmiana nagłówka + przeliczenie sumy kontrolnej
- * Ale: nie rozumie IP, fragmentacja IP niemożliwa, nie poradzi sobie jeśli pakiet jest za duży w stosunku do docelowego MTU

VLAN: wirtualne sieci lokalne

VLAN: wirtualne sieci lokalne

- * Fizyczne połączenie nie musi być tożsame z logiczną konfiguracją.
- Dla każdego portu przełącznika ustalamy do jakich VLAN-ów należy.
- * W wysyłanych ramkach pojawia się dodatkowe pole będące numerem VLAN-u → przesyłana tylko w obrębie danego VLAN-u.

Sieci bezprzewodowe

Sieci WLAN z punktem dostępowym

Punkt dostępowy (access point, AP)

- Każdy komunikuje się tylko z AP
- Każdy musi być w zasięgu AP
- * AP jest połączony zazwyczaj kablem z routerem
 - może pełnić funkcję mostu między sieciami WiFi i Ethernetem,
 - może też być zintegrowany z routerem.

- * AP rozsyła ramki identyfikacyjne (*beacon frames*) zawierające m.in. nazwę sieci SSID.
- Przed transmisją trzeba się związać z wybranym AP, opcjonalne uwierzytelnianie.

Sieci ad-hoc

- Sieci WLAN bez punktu dostępowego
- Brak routingu = zakładamy, że każde urządzenie jest w zakresie nadawania każdego innego.

Problem ukrytej stacji

Strategia "nadawaj jeśli nikt nie nadaje" nie zawsze działa

- * A nadaje do do AP
- * B chce nadać do AP.
 - * *B* sprawdza stan kanału.
 - ◆ *B* nie słyszy żadnej transmisji, więc nadaje.
- * Sygnał od *A* i *B* interferuje przy AP.

Problem ukrytej stacji: RTS+CTS

Rozwiązanie wbudowane w CSMA/CA.

- * Zanim *A* nada ramkę do AP, wysyła komunikat RTS (*Request To Send*).
- * AP odsyła CTS (Clear To Send),
 - * B również słyszy CTS.
 - * *B* będzie milczeć przez czas potrzebny *A* na wysłanie ramki.
- * A wysyła ramkę do AP, AP ją potwierdza.

Warstwa fizyczna

Warianty Ethernetu

- * Karta pracuje z określoną częstotliwością nadawania → szybkość transmisji (w bit/s).
- Najczęstsze warianty:
 - + 100 Mbit/s (Fast Ethernet)
 - + 1 Gbit/s (Gigabit Ethernet)
 - + 2,5 Gbit/s
 - * 10 Gbit/sek

- * Zazwyczaj wykorzystuje skrętkę niekranowaną (8 żył), rzadziej światłowód.
 - * Do wyższych prędkości potrzebne kable o wyższych kategoriach: kat. 5e do 2,5 Gbit/s, kat. 6 do 10 GBit.

Sieci bezprzewodowe

Wykorzystują fale radiowe o określonej częstotliwości

- Nadawca i odbiorca muszą korzystać z tej samej częstotliwości.
- * Trzy pasma (zakresy częstotliwości): 2,4 Ghz, 5 Ghz, 6 Ghz
- Dostępne do nadawania bez licencji.

- Przykładowo w paśmie 2,4 Ghz wyróżniono 14 częstotliwości (tzw. kanałów)
- * Urządzenia nadające w kanale X zakłócają transmisje w sąsiednich.

Warianty WiFi

Generation	Visual	IEEE standard	Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)
_	_	802.11	1997	1–2	2.4
_	_	802.11b	1999	1–11	2.4
_	_	802.11a	1999	6–54	5
_	_	802.11g	2003		2.4
Wi-Fi 4	Ø	802.11n	2009	6.5–600	2.4, 5
Wi-Fi 5	(9	802.11ac	2013	6.5–6933	5 ^[b]
Wi-Fi 6	@	802.11ax	2021	0.4–9608	2.4, 5
Wi-Fi 6E					6 ^[c]
Wi-Fi 7	9	802.11be	2024 ^[d]	0.4-23,059	2.4, 5, 6
Wi-Fi 8 ^{[45][46]}	_	802.11bn		100,000	2.4, 5, 6

- WiFi 4 i późniejsze: większe prędkości wymagają wielu anten.
- Nagłówek ramki przesyłany jest z minimalną prędkością dopuszczoną dla danego standardu

Problemy z warstwą fizyczną

Malejąca siła sygnału

- * Zwłaszcza w WiFi: sygnał rozchodzi się wielokierunkowo, słabnie lub zanika przy przechodzeniu przez ściany.
- * Zasięg WiFi: ok. 50 m (2,4 Ghz) i ok. 20 m (5 Ghz).

Interferencje / kolizje

- Współcześnie głównie w sieciach bezprzewodowych.
- Interferencje z kartami sieciowymi, kuchenkami mikrofalowymi, Bluetoothem.
- Propagacja wielościeżkowa: ten sam sygnał wędruje do celu ścieżkami różnej długości i interferuje ze sobą.

Lektura dodatkowa

- * Kurose & Ross: rozdział 6 i 7.
- * Tanenbaum: rozdział 4.

Zagadnienia

- * Jakie są zadania warstwy łącza danych a jakie warstwy fizycznej?
- Czym różni się koncentrator od przełącznika sieciowego?
- Jak działa algorytm rundowy i bezrundowy ALOHA?
- * Jak działa algorytm odczekiwania wykładniczego?
- Wyjaśnij skróty CSMA/CD i CSMA/CA.
- Opisz budowę ramki Ethernetowej.
- Co to jest adres MAC?
- * Do czego służy tryb nasłuchu (promiscuous mode)?
- Po co w Ethernecie definiuje się minimalną długość ramki?
- Do czego służą protokoły ARP i DHCP?
- Czym różni się łączenie dwóch sieci za pomocą mostu od łączenia ich za pomocą routera?
- * Jak warstwa łącza danych realizuje rozgłaszanie?
- * Na czym polega tryb uczenia się w przełączniku sieciowym?
- Po co w przełączanym Ethernecie stosuje się algorytm drzewa spinającego?
- * Co to jest sieć VLAN? Po co się ją stosuje?
- Wyjaśnij zjawisko ukrytej stacji.
- Na czym polega rezerwowanie łącza za pomocą RTS i CTS?