Definitions and statements—series

A series is a symbol $\sum_{k=n_0}^{\infty} a_k = a_{n_0} + a_{n_0+1} + a_{n_0+2} + \dots$

where $n_0 \in \mathbb{Z}$, $a_k \in \mathbb{R}$ (series of real numbers). **Definition.** Let $\sum_{k=0}^{\infty} a_k$ be a series.

We define its **partial sums** by $s_N = \sum_{k=n}^{N} a_k$ for $N \ge n_0$.

We say that the given series **converges** if $\{s_N\}_{N=n_0}^{\infty}$ converges.

We say that the given series **converges to** A, denoted $\sum_{k=n_0}^{\infty} a_k = A$, if $\lim_{N \to \infty} (s_N) = A$.

We say that the given series **diverges** if $\{s_N\}_{N=n_0}^{\infty}$ diverge

We say that the given series **diverges to** ∞ , denoted $\sum_{k=n_0}^{\infty} a_k = \infty$, if $\lim_{N \to \infty} (s_N) = \infty$.

We say that the given series diverges to $-\infty$, denoted $\sum_{k=-\infty}^{\infty} a_k = -\infty$, if $\lim_{N\to\infty} (s_N) = -\infty$.

Definition.

Let $a, q \in IR$. The series $\sum_{k=-\infty}^{\infty} a q^k$ is called a **geometric series**.

(i) For
$$N \in \mathbb{N}_0$$
 we have $\sum_{k=0}^{N} q^k = \frac{1 - q^{N+1}}{1 - q}$;

for
$$N \in I\!\!N$$
, $N \ge n_0$ we have $\sum_{k=n_0}^N q^k = q^{n_0} \frac{1-q^{N+1-n_0}}{1-q} = \frac{q^{n_0}-q^{N+1}}{1-q}$.
(ii) We have $\sum_{k=0}^\infty q^k \begin{cases} =\frac{1}{1-q}, & |q|<1; \\ =\infty \text{ (diverges)}, & q\ge 1; \\ \text{diverges}, & q\le -1. \end{cases}$ More generally, $\sum_{k=n_0}^\infty q^k = \frac{q^{n_0}}{1-q}$ for $|q|<1$.

Theorem. Let series $\sum_{k=n_0}^{\infty} a_k$, $\sum_{k=n_0}^{\infty} b_k$ converge.

Then also the series $\sum_{k=n_0}^{\infty} (a_k + b_k)$ converges and $\sum_{k=n_0}^{\infty} (a_k + b_k) = \sum_{k=n_0}^{\infty} a_k + \sum_{k=n_0}^{\infty} a_k$.

For $c \in \mathbb{R}$ also $\sum_{k=n_0}^{\infty} (c \, a_k)$ converges and $\sum_{k=n_0}^{\infty} (c \, a_k) = c \Big(\sum_{k=n_0}^{\infty} a_k \Big)$.

• Convergence of series.

Let $n_0 < n_1$, consider a series $\sum_{k=n_0}^{\infty} a_k$. $\sum_{k=n_0}^{\infty} a_k$ converges if and only if $\sum_{k=n_0}^{\infty} a_k$ converges. Theorem.

Then we also have $\sum_{k=n_0}^{\infty} a_k = \sum_{k=n_0}^{n_1-1} a_k + \sum_{k=n_1}^{\infty} a_k$.

Theorem. (necessary condition for convergence)

If a series $\sum a_k$ converges, then necessarily $\lim_{k\to\infty} (a_k) = 0$. Equivalently: If $\lim_{k\to\infty} (a_k) = 0$ is not true, then the series $\sum a_k$ necessarily diverges. Theorem. (integral test) Let $f \geq 0$ be a non-increasing function on $[n_0, \infty)$ for $n_0 \in \mathbb{Z}$. The series $\sum_{k=n_0}^{\infty} f(k)$ converges if and only if $\int_{n_0}^{\infty} f(x) dx$ converges.

Moreover we then have $\int_{0}^{\infty} f(x) dx \leq \sum_{k=0}^{\infty} f(k) \leq f(n_0) + \int_{0}^{\infty} f(x) dx$.

Corollary.

(p-test) $\sum \frac{1}{k^p}$ converges if and only if p > 1. (comparison test) Let $\exists n_0$ so that $0 \le a_k \le b_k$ for $k \ge n_0$. Theorem.

If $\sum b_k$ converges, then also $\sum a_k$ converges. If $\sum a_k$ diverges, then also $\sum b_k$ diverges (i.e. $\sum a_k = \infty \implies \sum b_k = \infty$). Theorem. (limit comparison test) Let $\exists n_0 \in \mathbb{Z}$ so that $a_k \geq 0, b_k \geq 0$ for $k \geq n_0$. If $a_k \sim b_k$, i.e. $\lim_{k \to \infty} \left(\frac{a_k}{b_k}\right) = A > 0$, then $\sum a_k \sim \sum b_k$, i.e. $\sum a_k$ converges if and only if $\sum b_k$ converges.

Theorem. Let $a_k > 0$ for all k.

ratio test:

(i) If $\exists q < 1$ and $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0 \colon \frac{a_{k+1}}{a_k} \leq q$, then $\sum a_k$ converges. (ii) If $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0 \colon \frac{a_{k+1}}{a_k} \geq 1$, then $\sum a_k$ diverges $(= \infty)$. limit ratio test: Let $\lambda = \lim_{k \to \infty} \left(\frac{a_{k+1}}{a_k}\right)$, assuming that the limit converges.

- (i) If $\lambda < 1$, then $\sum a_k$ converges.
- (ii) If $\lambda > 1$, then $\sum a_k$ diverges $(= \infty)$.

root test:

(i) If $\exists q < 1$ and $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0 \colon \sqrt[k]{a_k} \leq q$, then $\sum a_k$ converges. (ii) If $\exists n_0 \in \mathbb{Z}$ such that $\forall k \geq n_0 \colon \sqrt[k]{a_k} \geq 1$, then $\sum a_k$ diverges $(= \infty)$. limit root test: Let $\varrho = \lim_{k \to \infty} (\sqrt[k]{a_k})$, assuming that the limit converges. (i) If $\varrho < 1$, then $\sum a_k$ converges. (ii) If $\varrho > 1$, then $\sum a_k$ diverges $(= \infty)$. Theorem. (Alternating series test or Leibniz test)

Let $b_k \geq 0$ for all k and let $\{b_k\}$ be non-increasing.

The series $\sum (-1)^k b_k$ converges if and only if $\lim_{k\to\infty} (b_k) = 0$. **Definition.** We say that a series $\sum a_k$ converges absolutely if the series $\sum |a_k|$ converges. **Theorem.** If a series $\sum a_k$ converges absolutely, then it also converges and we have $\left|\sum_{k=n_0}^{\infty} a_k\right| \leq \sum_{k=n_0}^{\infty} |a_k|$. **Definition.** We say that a series **converges conditionally** if it converges, but not absolutely.

Theorem. Consider a series $\sum_{k=n_0}^{\infty} a_k$. If $\sum a_k$ converges absolutely, then for every choice of signs $\varepsilon_k = \pm 1$ also $\sum \varepsilon_k a_k$ converges. If $\sum a_k$ converges conditionally, then there exists a choice of signs $\varepsilon_k = \pm 1$ such that $\sum \varepsilon_k a_k = \infty$.

Consider a series $\sum_{k=n_0}^{\infty} a_k$. Definition.

By a **rearrangement** of $\sum_{k=n_0}^{\infty} a_k$ we mean any series $\sum_{k=n_0}^{\infty} a_{\pi(k)}$, where π is an arbitrary bijective mapping of $\{n_0, n_0 + 1, n_0 + 2, \dots\} \subset \mathbb{Z}$ onto $\{n_0, n_0 + 1, n_0 + 2, \dots\}$, i.e. π is a permutation of $\{n_0, n_0 + 1, n_0 + 2, \dots\}$.

Consider a series $\sum_{k=n_0}^{\infty} a_k$.

If $\sum a_k$ converges absolutely, then also all its rearrangements $\sum a_{\pi(k)}$ converge and we have $\sum_{k=-1}^{\infty} a_{\pi(k)} = \sum_{k=-1}^{\infty} a_k$.

If $\sum_{k=n_0}^{\infty} a_k$ converges conditionally, then $\forall c \in \mathbb{R} \cup \{\pm \infty\}$ there exists its rearrangement such that $\sum_{k=n_0}^{\infty} a_{\pi(k)} = c$.