Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Информатика

Лабораторная работа N27 Работа c системой компьютерной вёрстки ТЕХ

Нуруллаев Даниил Романович Р3114

 ${
m Cahkt-} \Pi$ етербург 2020

....емой волны. Амплитуды радиосигналов, принимаемых антенной от передатчиков, одинаковы. При одновременной работе передатчиков мощность принимаего сигнала меняется в очень широких пределах. Объясните явление и оцените суммарный процент времени, в течении которого мощность принимаемого сигнала составляет менее 1/1000 среднего значения принимаемой мощности. Отражением радиосигналов от земли пренебречь.

Р.Александров Решение задач M1451-1460, Ф1468-1477

М1451. Даны натуральные числа а и b такие, что число $\frac{a+1}{b} + \frac{b+1}{a}$ является целым. Докажите, что наибольший общий делитель чисел a,b не превосходит числа $\sqrt{a+b}$. Пусть d - наибольший общий делитель чисел а и b. Так как

$$\frac{a+1}{b} + \frac{b+1}{a} = \frac{a^2 + b^2 + a + b}{ab}$$

 $\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}$ и аb делится на d^2 , то a^2+b^2+a+b делится на d^2 . Число $a^2 + b^2$ также делится на d^2 . Поэтому a+b делится на d^2 и $\sqrt{a+b} > d$.

А.Голованов, Е.Малинникова

М1452.Окружности S_1 и S_2 касаются внешним образом в точке F. Прямая l касается S_1 и S_2 в точках A и В соответственно. Прямая, параллельная прямой 1, касается S_2 в точке С и перекает S_1 в точках D и E. Докажите, что а)точки А, F и С лежат на одной прямой; б) общая хорда окружностей, описанных около треугольников ABC и BDE, проходит через точку F.

а)Первое решение. Так как касательные к окружности S в точках В и С параллельны, то ВС - ее диаметр, и $\angle BFC = 90$.Докажем, что и $\angle AFB = 90$.Проведем через точку F общую касательную к окружностям(см.рисунок), пусть она пересекает прямую l в точке К.Из равенства отрезков касательных, приведенных к окружности из одной точки, следует, что треугольник АКГ и ВКГ равнобедренные. Следовательно,

$$\angle AFB = \angle AFK + \angle KFB = \angle FAB + \angle FBA = 180^{\circ}/2 = 90^{\circ}$$

Второе решение. Рассмотрим гомотетию с центром F и коэффициентом, равным - r_2/r_1 , где r_1 и r_2 – радиусы окружностей S_1 и S_2 . При этом гомотетии S_1 переходит в S_2 , а прямая l – касательная к S_1 - переходит в паралельную прямую - касательную к S_2 . Следовательно, точка A переходит в точку С, поэтому точка F лежит на отрезке АС.

б) Ниже мы покажем, что центр окружности BDE находится в точку А. Посколько центр окружности АВС есть

середина $AC(\angle ABC = 90^{\circ})$, а $\angle BFC = 90^{\circ}$ (см.первое решение п. a)), отсюда будет следовать, что BF есть перпендикуляр, опущенный из общей точки окружностей BDE и АВС на прямую, соединяющею их общую хорду. Итак, нам достаточно доказать, что AD=AE=AB. Первое Из этих равенств очевидно (ибо касательная к S_1 в точке A параллельна DE). Пусть r_1 и r_2 – радиусы S_1 и S_2 . Опуская перпендикуляр АР на DE, найдем, что $AP=BC=2r_2$, и по теореме Пифагора для треугольников APD и O_1 PD , где O_1 – центр S_1 , $PD^2 = O_1D^2 - O_1P^2 = r_1^2 - (2r_2 - r_1)^2 = 4r_1r_2 - 4r_2^2,$ $AD^2 = AP^2 + PD^2 = 4r_1r_2$. Но легко найти, что общая касательная AB окружностей S_1 и S_2 равна $2\sqrt{r_1r_2}$. А.Калинин, В.Дубровский

М1453. Существует ли квадратный трехчлен P(x) с целыми коэффициентами такой, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами?

Ответ: существует.

Рассмотрим квадратный трехчлен

$$P(x) = x(9x+2)$$
 Если $n = \underbrace{11..11}_k$, то $9n+2 = \underbrace{100..001}_{k-1}$. Следовательно, $P(n) = \underbrace{11..11}_k * \underbrace{100..001}_{k-1} = \underbrace{11..11}_{2k}$.

A. Перлин

 ${\bf M1454}.\ \Pi$ рямоугольник ${\bf m}\times {\bf n}$ разрезан на уголки:

Докажите, что разность между количеством уголков вида а и количеством уголков вида b делится на 3.

Ясно, что если прямоугольник m × n разрезан на уголки, то mn делится на 3. Расставим в клетках прямоугольниках числа так, как показано на рисунке.

1	2	3	4	 n-3	n-2	n-1	n
2	3	4	5	 n-2	n-1	n	n+1
3	4	5	6	 n-1	n	n+1	n+2
		•••	•••	•••	•••	•••	
m-1	m	m+1	m+2	 m+n-5	m+n-4	m+n-3	m+n-2
m	m+1	m+2	m+3	 m+n-4	m+n-3	m+n-2	m+n-1

Сумма всех этих чисел равна mn(m+n)/2. Сумма чисел, стоящих в уголке вида а, дает при делении на 3 остаток 2; сумма чисел, стоящих в уголке вида b, - остаток 1 (или, что то же самое, -2); сумма чисел, стоящих в уголках вида с и d, делятся на 3. Если n_a и n_b – количества уголков вида а и вида b соответственно, то сумма всех чисел в прямоугольнике имеет вид $3N + 2(n_a - n_b)$, где N – некоторое целое число. Из равенства.