

CURSO DE QUALIDADE DE SOFTWARE

RELATÓRIO – TRABALHO FINAL QUALIDADE DE SOFTWARE PUBNUB

Equipe:

Luis Gomes - 428223

Professora:

Carla Ilane Moreira Bezerra

QUIXADÁ

Junho, 2021

SUMÁRIO

1	<u>DESCRIÇÃO DO PROJETO</u>	2
<u>2</u>	<u>AVALIAÇÃO DO PROJETO</u>	2
2.1	Medição 1 – Antes de refatorar o projeto	2
2.2	<u>Detecção dos Code Smells</u>	3
2.3	Medição 2 – Após Refatorar Code Smell X	4
2.4	Medição 3 – Após Refatorar Code Smell Y	4
<u>2.5</u>		4
<u>3</u>	COMPARAÇÃO DOS RESULTADOS	4
RE	<u>FERÊNCIAS</u>	4
AP	ÊNDICE A	5

DESCRIÇÃO DO PROJETO

PubNub foi desenvolvido em HTML, CSS, JavaScript, Java e PHP, sendo então uma plataforma de API para desenvolvedores que potencializa a infraestrutura em tempo real em aplicativos para criar espaços virtuais envolventes onde as comunidades online podem realmente se conectar. O PubNub serve como base para bate-papo on-line, eventos ao vivo, geolocalização, controle remoto de IoT e atualizações em tempo real em milhares de organizações em uma ampla variedade de setores, tudo em uma escala global massiva. Empresas notáveis como Adobe, Atlassian, DocuSign, Peloton, TicketMaster e RingCentral confiam na plataforma e infraestrutura global do PubNub para alimentar suas plataformas e aplicativos.

Link do projeto: https://github.com/pubnub/java

Tabela 1 – Características do Projeto

Projeto	LOC	# de classes	# de releases
Pubnub	157533	1292	59

AVALIAÇÃO DO PROJETO

• Medição 1 – Antes de refatorar o projeto

Nessa Seção deve ser incluída a Tabela com a medição das métricas de coesão, acoplamento, complexidade, herança e tamanho, antes do projeto ser refatorado. Para isso será utilizada a ferramenta Understand. A Tabela 2 apresenta a descrição das métricas, faça uma tabela similar.

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema	Coesão	são Complexidade			Hera	Herança Aco			Acoplament Tamanho				
									0				
	LCOM	ACC	SC	EVG	MaxNe	DI	NO	IFANI	СВО	LO	CLO	NI	CD
	2		С		t	Т	С	N		С	С	M	L
S1 antes	10742	102	166	989	1429	109	471	859	5884	157	4862	299	129
da		0	84			5				533		5	2
refatoraçã													
o													
S1 após													
refat. CS													
X													
S1 após													
refat. CS													
X													

Tabela 3 – Métricas dos atributos internos de qualidade (MCCABE, 1976; CHIDAMBER; KEMERER, 1994; LORENZ; KIDD, 1994; DESTEFANIS et al., 2014)

Atributos	Métricas	Descrição					
	Lack of Cohesion of Methods (LCOM2)	Mede a coesão de uma classe.					
Coesão	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, menos coesiva é a classe.					
	Coupling Between Objects (CBO)	Número de classes que uma classe está acoplada					
Acoplamento	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, maior é o acoplamento					
		de classes e métodos.					
Complexidade	Average Cyclomatic Complexity (ACC) (MCCABE, 1976)	Média da complexidade ciclomática de todos os métodos.					
	, , , , , , ,	Quanto maior o valor dessa métrica, mais complexa são a classes e métodos.					
	Sum Cyclomatic Complexity (SCC) (MCCABE, 1976)	Somatório da complexidade ciclomática de todos os métodos.					
		Quanto maior o valor dessa métrica, mais complexos são as classes e métodos.					
	Nesting (MaxNest) (LORENZ; KIDD, 1994)	Nível máximo de aninhamento de construções de controle.					
	(LORESZ, RIDD, 1999)	Quanto maior o valor dessa métrica, maior					
		é a complexidade de classes e métodos.					
	Essential Complexity (EVG)	Mede o grau na qual um módulo contém construtores não					
	(MCCABE, 1976)	estruturados.					
		Quanto maior o valor dessa métrica mais complexas são as classes e métodos.					
Heranca	Number Of Children (NOC) (CHIDAMBER: KEMERER, 1994)	Número de subclasses de uma classe.					
Hermaya		Quanto maior o valor dessa métrica maior é o grau de herança de un sistema.					
	Depth of Inheritance Tree (DIT) (CHIDAMBER; KEMERER, 1994)	O número de níveis que uma subclasse herda de métodos e atributos de uma superclasse na árvore de herança. Quanto maior o valor dessa métrica maior é o grau de herança de um sistema.					
	Bases Classes (IFANIN) (DESTEFANIS et al., 2014)	Número imediato de classes base.					
		Quanto maior o valor dessa métrica, maior o grau de herança de um sistema.					
Tamanho	Lines of Code (LOC) (LORENZ; KIDD, 1994)	Número de linhas de código, excluindo espaços e comentá rios. Quanto maior o valor dessa métrica, maior é o tamanho do sistema.					
	Lines with Comments (CLOC) (LORENZ; KIDD, 1994)	Número de linhas com comentários.					
	(LORENZ; KIDD, 1994)	Quanto maior o valor dessa métrica maior o tamanho do sis- tema.					
	Classes (CDL) (LORENZ; KIDD, 1994)	Número de classes. Quanto maior o valor , maior o tamanho do sistema.					
	Instance Methods (NIM) (LORENZ; KIDD, 1994)	Número de métodos de instância. Quanto maior o valor dessa métrica maior é o tamanho do sistema.					

• Detecção dos Code Smells

Nessa Seção deve ser indicado quais e quantos code smells foram detectados no projeto. Faça uma Tabela indicando os code smells detectados pela ferramenta JSPirit e quantos code smells para cada tipo foram detectados.

Tabela 3 – Code smells do projeto.

Nome do Code Smell	Quantidade
Long Statement	1016
Magic Number	938
Complex Conditional	20
Complex Method	25

Long Identifier	78
Long Parameter List	57
Empty Catch Clause	8
Long Method	6
Missing Default	6
Abstract Function Call from Constructor	0

Medição 2 – Após Refatorar Code Smell X

Nessa Seção você deve indicar os valores de todas as métricas da Tabela 2, após refatorar um determinado code smell. Esse code smell deve ser totalmente refatorado até não ser mais detectado pela JSPirit. Você deve também incluir a técnica de refatoração utilizada para retirar o code smell. Isso deve ser feito para cada code smell detectado no projeto. Após a refatoração de cada code smell deve ser realizada uma nova medição na ferramenta Understand. Deve ser realizada também uma análise dos 5 atributos de qualidade e que métricas pioram ou melhoram de acordo com a retirada desses code smells.

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema	Coesão	Complexidade					nça		Acoplament	Tamanho			
									0				
	LCOM	ACC	SC	EVG	MaxNe	DI	NO	IFANI	СВО	LO	CLO	NI	CD
	2		C		t	T	С	N		С	С	M	L
S1 ante	s 10742	102	166	989	1429	109	471	859	5884	157	4862	299	129
da		0	84			5				533		5	2
refatoraçã													
О													
S1 apó	s 10896	102	165	101	1444	110	471	867	5914	159	5176	301	130
refat. C	S	5	80	0		4				214		0	8
X													

S1 após							
refat. CS							
X							

Medição 3 – Após Refatorar Code Smell Y

....

Medição Z – Após a refatoração de todos os code smells do projeto

Após todos os code smells refatorados, deverá ser realizada a medição final do projeto conforme as métricas da Tabela 2. Deve também ser feita a análise final se as métricas pioraram ou melhoraram de acordo com a retirada dos code smells.

• COMPARAÇÃO DOS RESULTADOS

Leia o artigo:

https://www.sciencedirect.com/science/article/pii/S0950584920301142?casa_token=xcwL1Bwa RFUAAAAA:wZjXB0Wx-0FiMSpZSzyi0b7iRe7ZJOr8FdwihzEkvzeQHh0Iz6mxPCF769JgRiZ 69TyfI518BP0

Faça uma comparação dos resultados do seu projeto de acordo com esse artigo.

REFERÊNCIAS

AZEEM, Muhammad. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, v. 108, p. 115-138, 2019.

SABIR, Fatima. A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1, p. 3-39, 2019.

• APÊNDICE A

Incluir possíveis documentos que possam ser gerados no desenvolvimento do sistema.