10.02.2023, 14:18 OneNote

Код Шеннона

5 января 2023 г. 1:22

Рассмотрим ансамбль $X=\{1,2,\ldots,M\}$ с вероятностями $\{p_1,p_2,\ldots,p_M\}$. Предположим, что $p_1\geq p_2\geq \cdots \geq p_M$. Для каждого $x \in X$ вычислим *кумулятивную вероятность* как

$$q_1 = 0$$

$$q_i = \sum_{i=1}^{i-1} p_j, i = 2, \dots, M.$$

Кодовое слово Шеннона для x_i – двоичная запись первых $I_i = \lceil -\log p_i
ceil$ бит после запятой двоичного представления q_i

Пример:

пример.							
	X	p(x)	q(x)	I(x)	c(x)		
	а	0.35	0	2	00		
	Ь	0.20	0.35	3	010		
	С	0.15	0.55	3	100		
	d	0.1	0.70	4	1011		
	е	0.1	0.80	4	1100		
	f	0.1	0.90	4	1110		

$$\bar{l} = \sum p(x)l(x) = 2.95 > H = 2.4016$$

Построим дерево:

Графическая интерпретация:

- 1. Рисуем отрезок от 0 до 1, отмечаем на нем все посчитанные кумулятивные вероятности q
- 2. Делим отрезок пополам и смотрим, в какой половине находится q нужного символа (если справа, то первый бит кодового слова 1, иначе 0), далее рассматриваем ее
- Делим половину пополам, повторяем действия. Выполняем, пока на отрезке не останется только одна кумулятивная вероятность

Свойства кода Шеннона:

- По теореме побуквенного кодирования т.к. $l_i = \lceil -lo\,g(p_i)
 ceil < -lo\,g(p_i)+1$, то $\ \overline{l}\ < H+1$ (т.е. побуквенный неравномерный префиксный код "код Шеннона" существует)
- Т.к. код является префиксным, он однозначно декодируемый
- 3. Требует сортировки вероятностей

Свойства префиксного кода:

- 1. Любое кодовое слово не должно быть началом другого
- Декодирование однозначно (причем однозначно декодируемый код не обязательно префиксный)
- Кодовым словам соответствуют только листья двоичного кодового дерева
- 4. Древовидный код является префиксным

Преимущество по сравнению с кодом Хаффмана - алгоритм реализуется без построения дерева

Проблема: если символов очень много (близко к ∞), то сортировка вероятностей усложняет всю процедуру Мы имеем побуквенный код и стремимся расширить алфавит для улучшения сжатия, т.е. пытаемся приблизиться к наименьшей возможной избыточности. Код Шеннона такую возможность не дает, т.к. требует сортировки

Если не сортировать, получится шляпа:

X	p(x)	q(x)	I(x)	c(x)
а	0.1	0	4	0000
Ь	0.3	0.1	2	00

-			_	
С	0.6	0.4	1	0

Используя код Гилберта-Мура, можно избежать необходимость сортировки вероятностей за счет введения дополнительной избыточности

Код Гилберта-Мура сжимает еще хуже, чем код Шеннона, зато не требует сортировки