SBML Model Report

Model name: "Kerkhoven2013 - Glycolysis in T.brucei - MODEL A"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Eduard Kerkhoven² at February tenth 2014 at 10:29 a.m. and last time modified at March fifth 2014 at 3:57 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	31
events	0	constraints	0
reactions	21	function definitions	7
global parameters	0	unit definitions	5
rules	0	initial assignments	0

Model Notes

Kerkhoven2013 - Glycolysis in T.brucei - MODEL A

There are six models (Model A, B, C, C-fruc, D, D-fruc) described in the paper. Model A (BIOMD0000000513) is the model developed originally by Achar et al. (2012) (BIOMD0000000428), which describes glycolysis in T.brucei. This glycolysis model is extended to include pentose

¹EMBL-EBI, viji@ebi.ac.uk

²Chalmers University of Technology, eduardk@chalmers.se

phosphate pathway (PPP), which is Model B ((BIOMD0000000514). Model B is further extended to include glycosomal ribokinase, leading to Model C (BIOMD000000510). Model D (BIOMD0000000511) is again an extension of Model B, which includes an ATP:ADP antiporter. Model C-fruc (BIOMD0000000515) and Model D-fruc (BIOMD0000000516) are extensions of Model C and D, respectively, which includes fructose transporter and its subsequent utilizing reactions. This model correspond to Model A of the paper.

This model is described in the article: Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei. Kerkhoven EJ, Achcar F, Alibu VP, Burchmore RJ, Gilbert IH, Trybio M, Driessen NN, Gilbert D, Breitling R, Bakker BM, Barrett MP.PLoS Comput Biol. 2013 Dec;9(12):e1003371.

Abstract:

Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak,, must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.

This model is hosted on BioModels Database and identifiedby: BIOMD0000000513.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of five unit definitions.

2.1 Unit volume

Definition μl

2.2 Unit length

Definition m

2.3 Unit substance

Definition nmol

2.4 Unit time

Definition 60 s

2.5 Unit area

Definition m²

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

				I			
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cytosol	cytosol	0000290	3	5.4549	μl		
glycosome	glycosome	0000290	3	0.2451	μl	$\overline{\mathbf{Z}}$	
default	default	0000290	3	1	litre		

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of $5.4549 \mu l$.

Name cytosol

SBO:0000290 physical compartment

3.2 Compartment glycosome

This is a three dimensional compartment with a constant size of $0.2451 \mu l$.

Name glycosome

SBO:0000290 physical compartment

3.3 Compartment default

This is a three dimensional compartment with a constant size of one μl .

Name default

SBO:0000290 physical compartment

4 Species

This model contains 31 species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
_2PGA_c	_2PGA_c	cytosol	$nmol \cdot \mu l^{-1}$		
DHAP_c	$DHAP_{-}c$	cytosol	$nmol \cdot \mu l^{-1}$		\Box
ATP_g	$ATP_{-}g$	glycosome	$nmol \cdot \mu l^{-1}$		\Box
DHAP_g	$DHAP_{-}g$	glycosome	$nmol \cdot \mu l^{-1}$		\Box
ADP_g	$ADP_{-}g$	glycosome	$nmol \cdot \mu l^{-1}$		\Box
Glc6P_g	Glc6P_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
ADP_c	ADP_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
_3PGA_c	_3PGA_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
Fru6P_g	Fru6P_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
Pi_g	Pi_g	glycosome	$nmol \cdot \mu l^{-1}$		
02_c	O2_c	default	$nmol \cdot \mu l^{-1}$		
Gly_e	Gly_e	default	$nmol \cdot \mu l^{-1}$		
ATP_c	ATP_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
_13BPGA_g	_13BPGA_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
Glc_c	Glc_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
Glc_e	Glc_e	default	$nmol \cdot \mu l^{-1}$		
Glc_g	Glc_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
Pyr_c	Pyr_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
Pyr_e	Pyr_e	default	$nmol \cdot \mu l^{-1}$		
NAD_g	$NAD_{-}g$	glycosome	$nmol \cdot \mu l^{-1}$		
Fru16BP_g	Fru16BP_g	glycosome	$nmol \cdot \mu l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
GA3P_g	GA3P_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
CO2_c	CO2_c	cytosol	$nmol \cdot \mu l^{-1}$		
CO2_g	CO2_g	glycosome	$nmol \cdot \mu l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbb{Z}}$
Gly3P_c	Gly3P_c	cytosol	$nmol \cdot \mu l^{-1}$		
Gly3P_g	Gly3P_g	glycosome	$nmol \cdot \mu l^{-1}$		\Box
PEP_c	PEP_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
$\mathtt{AMP}_{-}\mathtt{g}$	AMP_{-g}	glycosome	$nmol \cdot \mu l^{-1}$		\Box
_3PGA_g	_3PGA_g	glycosome	$nmol \cdot \mu l^{-1}$		
AMP_c	AMP_c	cytosol	$nmol \cdot \mu l^{-1}$		\Box
$NADH_g$	$NADH_{-g}$	glycosome	$nmol \cdot \mu l^{-1}$	\Box	\Box

5 Function definitions

This is an overview of seven function definitions.

5.1 Function definition VAK

Name vAK

Arguments ADP, AMP, ATP, k1, k2

Mathematical Expression

$$k1 \cdot ADP^2 - AMP \cdot ATP \cdot k2 \tag{1}$$

5.2 Function definition v2sub2prod

Name v2sub2prod

Arguments Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2

Mathematical Expression

$$\frac{V f max \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)}$$
 (2)

5.3 Function definition v1sub

Name v1sub

Arguments Vfmax, S, Ks

Mathematical Expression

$$\frac{\text{Vfmax} \cdot S}{\text{Ks} \cdot \left(1 + \frac{S}{K_s}\right)} \tag{3}$$

5.4 Function definition v2sub2prod_compinhib

Name v2sub2prod_compinhib

Arguments Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2, I1, Ki1, I2, Ki2

Mathematical Expression

$$\frac{V f max \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2} + \frac{I1}{Ki1} + \frac{I2}{Ki2}\right)}$$
(4)

5.5 Function definition mass_action_rev

Name mass_action_rev

Arguments k1, S, k2, P

Mathematical Expression

$$k1 \cdot S - k2 \cdot P \tag{5}$$

5.6 Function definition v1sub1prod

Name v1sub1prod

Arguments Vfmax, Keq, S, Ks, P, Kp

Mathematical Expression

$$\frac{\text{Vfmax} \cdot \text{S} \cdot \left(1 - \frac{\text{P}}{\text{Keq} \cdot \text{S}}\right)}{\text{Ks} \cdot \left(1 + \frac{\text{S}}{\text{Ks}} + \frac{\text{P}}{\text{Kp}}\right)}$$
 (6)

5.7 Function definition mass_action_irrev

Name mass_action_irrev

 $\textbf{Arguments} \ k, S \\$

Mathematical Expression

$$\mathbf{k} \cdot \mathbf{S}$$
 (7)

6 Reactions

This model contains 21 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

	Table 4. Overview of	an reactions
Id	Name	Reaction Equation SBO
TPI_g	TPI_g	DHAP_g DHAP_g, GA3P_g, DHAP_g, GA3P_g GA3P_g
PYK_c	PYK_c	$PEP_c + ADP_c \xrightarrow{ADP_c, Pyr_c, ATP_c, PEP_c, ADP_c, Pyr_c, ATP_c, PEP_c} Pyr_c - $
PFK_g	PFK_g	ATP_c ATP_g + Fru6P_g, ATP_g, Fru16BP_g, ADP_g, Fru6P_g, ATP_g, Fru16BP_ADP_g ADP_g
$GlcT_g$	GlcT_g	$Glc_c \xrightarrow{Glc_c, Glc_g, Glc_c, Glc_g} Glc_g$
PGAM_c	PGAM_c	_3PGA_c, _2PGA_c, _3PGA_c, _2PGA_c _2PGA_c
PyrT_c	PyrT_c	$Pyr_c \xrightarrow{Pyr_c, Pyr_c} Pyr_e$
GlcT_c	GlcT_c	$Glc_e \xrightarrow{Glc_e, Glc_c, Glc_e, Glc_c} Glc_c$
ALD_g	ALD_g	Fru16BP_g ATP_g, ADP_g, AMP_g, Fru16BP_g, GA3P_g, DHAP_g, ATP_g, ADP_DHAP_g
ENO_c	ENO_c	_2PGA_c, PEP_c, _2PGA_c, PEP_c PEP_c
HXK_g	HXK_g	$\begin{array}{l} ATP_g + Glc_g \xrightarrow{Glc_g,\ ATP_g,\ Glc6P_g,\ ADP_g,\ Glc_g,\ ATP_g,\ Glc6P_g,\ ADP_g} GlcADP_g \end{array}$
_3PGAT_g	_3PGAT_g	_3PGA_g
	TPI_g PYK_c PFK_g GlcT_g PGAM_c PyrT_c GlcT_c ALD_g ENO_c HXK_g	TPI_g TPI_g PYK_c PYK_c PFK_g PFK_g GlcT_g GlcT_g PGAM_c PGAM_c PyrT_c PyrT_c GlcT_c GlcT_c ALD_g ALD_g ENO_c ENO_c HXK_g HXK_g

10	N₀	Id	Name	Reaction Equation SBO
	12	PGK_g	PGK_g	_13BPGA_g, ADP_g, _3PGA_g, ATP_g, _13BPGA_g, ADP_g, _3
	14	1 A17-R	1 OIX-g	ATP_g
	13	G3PDH_g	G3PDH_g	NADH_g + DHAP_g DHAP_g, NADH_g, Gly3P_g, NAD_g, DHAP_g, NADH_g, Gly3
				NAD_g
	14	GPO_c	GPO_c	Gly3P_c Gly3P_c, Gly3P_c DHAP_c
	15	$ATPu_c$	ATPu_c	$ATP_{-c} \xrightarrow{ATP_{-c}, ADP_{-c}, ATP_{-c}, ADP_{-c}} ADP_{-c}$
	16	$GK_{\underline{g}}$	GK_g	$Gly3P_g + ADP_g \xrightarrow{Gly3P_g, ADP_g, Gly_e, ATP_g, Gly3P_g, ADP_g, Gly_e, ATP_g} G$
Proc				ATP_g ADP_c AMP_c ATP_c ADP_c AMP_c ATP_c
Лисе	17	AK_c	AK_c	2 ADP_c ADP_c , AMP_c, ATP_c, ADP_c, AMP_c, ATP_c AMP_c + ATP_c
Produced by SBML2PTEX	10	207	por	Glc6P_g, Fru6P_g, Glc6P_g, Fru6P_g Fru6P_g Fru6P_g
&		PGI_g	PGI_g	· · · · · · · · · · · · · · · · · · ·
\ N N	19	GAPDH_g	GAPDH_g	GA3P_g + NAD_g + GA3P_g, NAD_g, _13BPGA_g, NADH_g, GA3P_g, NAD_g, _13BPGA_g, NADH
ALEX				Pi_g = 13BPGA_g
	20	AV a	AV a	$2 \text{ ADP-g} \xrightarrow{\text{ADP-g, AMP-g, ATP-g, ADP-g, AMP-g, ATP-g}} \text{AMP-g} +$
	20	AK_g	AK_g	ATD a
	21	GDA_g	$\mathrm{GDA}_{-\mathrm{g}}$	Gly3P_g, DHAP_c, Gly3P_c, DHAP_g, Gly3P_g, DHAP_c, Gly3P
				DHAP_g

6.1 Reaction TPI_g

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name TPI_g

Reaction equation

$$DHAP_g \xrightarrow{DHAP_g, GA3P_g, DHAP_g, GA3P_g} GA3P_g \tag{8}$$

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
DHAP_g	DHAP_g	

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
DHAP_g	DHAP_g	
$GA3P_g$	$GA3P_{-}g$	
$DHAP_g$	DHAP_g	
GA3P_g	GA3P_g	

Product

Table 7: Properties of each product.

Id	Name	SBO
GA3P_g	GA3P_g	

Kinetic Law

$$v_1 = v1sub1prod(TPI_g_Vmax, TPI_g_Keq, [DHAP_g], TPI_g_KmDHAP, [GA3P_g],$$
 (9)
$$TPI_g_KmGA3P)$$

$$v1sub1prod\left(Vfmax,Keq,S,Ks,P,Kp\right) = \frac{Vfmax \cdot S \cdot \left(1 - \frac{P}{Keq \cdot S}\right)}{Ks \cdot \left(1 + \frac{S}{Ks} + \frac{P}{Kp}\right)} \tag{10}$$

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
TPI_g_Vmax	TPI_g_Vmax		999.300		\square
TPI_g_Keq	TPI_g_Keq		0.046		
$\mathtt{TPI_g_KmDHAP}$	TPI_g_KmDHAP		1.200		
${\tt TPI_g_KmGA3P}$	TPI_g_KmGA3P		0.250		\square

6.2 Reaction PYK_c

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name PYK_c

Reaction equation

$$PEP_{-}c + ADP_{-}c \xrightarrow{ADP_{-}c, Pyr_{-}c, ATP_{-}c, PEP_{-}c, ADP_{-}c, Pyr_{-}c, ATP_{-}c, PEP_{-}c} Pyr_{-}c + ATP_{-}c \xrightarrow{(11)}$$

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
PEP_c	PEP_c	
ADP_c	ADP_c	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
ADP_c	ADP_c	
$Pyr_{-}c$	Pyr_c	
ATP_c	ATP_c	
PEP_c	PEP_c	
ADP_c	ADP_c	

Id	Name	SBO
Pyr_c ATP_c	Pyr_c ATP_c	
PEP_c	PEP_c	

Products

Table 11: Properties of each product.

Id	Name	SBO
Pyr_c ATP_c	Pyr_c ATP_c	

Kinetic Law

Derived unit contains undeclared units

$$\frac{\text{PYK_c_Vmax} \cdot [\text{ADP_c}] \cdot \left(1 - \frac{[\text{Pyr_c}] \cdot [\text{ATP_c}]}{\text{PYK_c_Keq} \cdot [\text{PEP_c}] \cdot [\text{ADP_c}]}\right) \cdot \left(\frac{[\text{PEP_c}]}{\text{PYK_c_KmPEP} \cdot \left(1 + \frac{[\text{ADP_c}]}{\text{PYK_c_KiADP}} + \frac{[\text{ATP_c}]}{\text{PYK_c_KiADP}}\right)}\right)^{\text{PYK_c}}}{\text{PYK_c_KmADP} \cdot \left(1 + \left(\frac{[\text{PEP_c}]}{\text{PYK_c_KmADP} \cdot \left(1 + \frac{[\text{ADP_c}]}{\text{PYK_c_KiADP}} + \frac{[\text{ATP_c}]}{\text{PYK_c_KiADP}}\right)}\right)^{\text{PYK_c_m}} + \frac{[\text{Pyr_c}]}{\text{PYK_c_KmPyr}}\right) \cdot \left(1 + \frac{[\text{ADP_c}]}{\text{PYK_c_KmADP}} + \frac{[\text{ADP_c}]}{\text{PYK_c_KmADP}}\right)^{\text{PYK_c_KmADP}} + \frac{[\text{Pyr_c}]}{\text{PYK_c_KmADP}}$$

Table 12: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
PYK_c_Vmax	PYK_c_Vmax		1020.000		
PYK_c_KmPEP	PYK_c_KmPEP		0.340		$\overline{\checkmark}$
PYK_c_KiATP	PYK_c_KiATP		0.570		$\overline{\mathbf{Z}}$
PYK_c_KiADP	PYK_c_KiADP		0.640		$\overline{\mathbf{Z}}$
PYK_c_n	PYK_c_n		2.500		$\overline{\mathbf{Z}}$
PYK_c_KmADP	PYK_c_KmADP		0.114		$ \overline{\checkmark} $
PYK_c_Keq	PYK_c_Keq		10800.000		$ \overline{\mathbf{Z}} $
PYK_c_KmPyr	PYK_c_KmPyr		50.000		$\overline{\checkmark}$
PYK_c_KmATP	PYK_c_KmATP		15.000		$\overline{\mathbf{Z}}$

6.3 Reaction PFK_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name PFK_g

Reaction equation

$$ATP_g + Fru6P_g \xrightarrow{Fru6P_g, ATP_g, Fru16BP_g, ADP_g, Fru6P_g, ATP_g, Fru16BP_g, ADP_g} Fru16BP_g + ADP_g \tag{13}$$

Reactants

Table 13: Properties of each reactant.

Id	Name	SBO
ATP_g	ATP_g	
$Fru6P_g$	$Fru6P_{-}g$	

Modifiers

Table 14: Properties of each modifier.

Id	Name	SBO
Fru6P_g	Fru6P_g	
$\mathtt{ATP}_{-}\mathtt{g}$	$ATP_{-}g$	
Fru16BP_g	Fru16BP_g	
$\mathtt{ADP}_{\mathtt{g}}$	$ADP_{-}g$	
Fru6P_g	Fru6P_g	
$\mathtt{ATP}_{-}\mathtt{g}$	$ATP_{-}g$	
Fru16BP_g	Fru16BP_g	
ADP_g	ADP_g	

Products

Table 15: Properties of each product.

Id	Name	SBO
Fru16BP_g	Fru16BP_g	
ADP_g	ADP_g	

Kinetic Law

$$v_{3} = \frac{PFK_g_Vmax \cdot PFK_g_Ki1 \cdot [Fru6P_g] \cdot [ATP_g] \cdot \left(1 - \frac{[Fru6P_g]}{PFK_g_KmFru6P} \cdot ([Fru16BP_g] + PFK_g_Ki1) \cdot \left(\frac{PFK_g_KsATP}{PFK_g_KmATP} + \frac{[Fru6P_g]}{PFK_g_KmFru6P} + \frac{[ATP_g]}{PFK_g_KmATP}\right)}{PFK_g_KmFru6P} + \frac{[ATP_g]}{PFK_g_KmATP}$$

Table 16: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
PFK_g_Vmax	PFK_g_Vmax		1708.000		\overline{Z}
PFK_g_Ki1	PFK_g_Ki1		15.800		
PFK_g-	PFK_g_KmFru6P		0.999		$ \overline{\mathscr{L}} $
_KmFru6P					
PFK_g_KmATP	PFK_g_KmATP		0.065		\mathbf{Z}
PFK_g_Keq	PFK_g_Keq		1035.000		\mathbf{Z}
PFK_g_KsATP	PFK_g_KsATP		0.039		\mathbf{Z}
PFK_g_KmADP	PFK_g_KmADP		1.000		\mathbf{Z}
PFK_g_Ki2	PFK_g_Ki2		10.700		\square

6.4 Reaction GlcT_g

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name GlcT_g

Reaction equation

$$Glc_c \xrightarrow{Glc_c, Glc_g, Glc_c, Glc_g} Glc_g$$
 (15)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
Glc_c	Glc_c	

Modifiers

Table 18: Properties of each modifier.

Id	Name	SBO
Glc_c	Glc_c	

Id	Name	SBO
Glc_g Glc_c Glc_g	Glc_c	

Product

Table 19: Properties of each product.

Id	Name	SBO
Glc_g	Glc_g	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{mass_action_rev}(\text{GlcT_g_k1}, [\text{Glc_c}], \text{GlcT_g_k2}, [\text{Glc_g}])$$
 (16)

$$mass_action_rev(k1, S, k2, P) = k1 \cdot S - k2 \cdot P$$
 (17)

Table 20: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
GlcT_g_k1	GlcT_g_k1	250000.0	Ø
$GlcT_g_k2$	GlcT_g_k2	250000.0	

6.5 Reaction PGAM_c

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name PGAM_c

Reaction equation

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
_3PGA_c	_3PGA_c	

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
_3PGA_c	_3PGA_c	
$_2PGA_c$	_2PGA_c	
$_{\tt 3PGA_c}$	_3PGA_c	
$_2PGA_c$	_2PGA_c	

Product

Table 23: Properties of each product.

Id	Name	SBO
_2PGA_c	_2PGA_c	

Kinetic Law

$$v_5 = v1sub1prod (PGAM_c_Vmax, PGAM_c_Keq, [_3PGA_c], PGAM_c_Km3PGA,$$

$$[_2PGA_c], PGAM_c_Km2PGA)$$

$$[_2PGA_c], PGAM_c_Km2PGA)$$

$$[_2PGA_c], PGAM_c_Km2PGA)$$

$$v1sub1prod\left(Vfmax,Keq,S,Ks,P,Kp\right) = \frac{Vfmax \cdot S \cdot \left(1 - \frac{P}{Keq \cdot S}\right)}{Ks \cdot \left(1 + \frac{S}{Ks} + \frac{P}{Kp}\right)} \tag{20}$$

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
PGAM_c_Vmax	PGAM_c_Vmax		225.00		\overline{Z}
PGAM_c_Keq	PGAM_c_Keq		0.17		
PGAM_c-	PGAM_c-		0.15		
_Km3PGA	_Km3PGA				

Id	Name	SBO	Value	Unit	Constant
PGAM_c- _Km2PGA	PGAM_c- _Km2PGA		0.16		Ø

6.6 Reaction PyrT_c

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name PyrT_c

Reaction equation

$$Pyr_{-}c \xrightarrow{Pyr_{-}c} Pyr_{-}c \xrightarrow{Pyr_{-}e} Pyr_{-}e$$
 (21)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
Pyr_c	Pyr_c	

Modifiers

Table 26: Properties of each modifier.

Id	Name	SBO
Pyr_c	Pyr_c	
Pyr_c	Pyr_c	

Product

Table 27: Properties of each product.

Id	Name	SBO
Pyr_e	Pyr_e	

Kinetic Law

$$v_6 = v1sub(PyrT_c_Vmax, [Pyr_c], PyrT_c_KmPyr)$$
 (22)

$$v1sub\left(Vfmax,S,Ks\right) = \frac{Vfmax \cdot S}{Ks \cdot \left(1 + \frac{S}{Ks}\right)} \tag{23}$$

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
PyrT_c_Vmax	PyrT_c_Vmax		230.00		
$PyrT_c_KmPyr$	PyrT_c_KmPyr		1.96		$\overline{\mathbf{Z}}$

6.7 Reaction GlcT_c

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name $GlcT_c$

Reaction equation

$$Glc_-e \xrightarrow{Glc_-e, Glc_-c, Glc_-e, Glc_-c} Glc_-c$$
 (24)

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
Glc_e	Glc_e	

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
${\tt Glce}$	Glc_e	
${\tt Glc_c}$	Glc_c	
${\tt Glc_e}$	Glc_e	
${\tt Glc_c}$	Glc_c	

Product

Table 31: Properties of each product.

Id	Name	SBO
Glc_c	Glc_c	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \frac{\text{GlcT_c_Vmax} \cdot ([\text{Glc_e}] - [\text{Glc_c}])}{\text{GlcT_c_KmGlc} + [\text{Glc_e}] + [\text{Glc_c}] + \frac{\text{GlcT_c_alpha} \cdot [\text{Glc_e}] \cdot [\text{Glc_c}]}{\text{GlcT_c_KmGlc}}}$$
(25)

Table 32: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
${\tt GlcT_c_Vmax}$	$GlcT_c_Vmax$		111.70		
${\tt GlcT_c_KmGlc}$	GlcT_c_KmGlc		1.00		\mathbf{Z}
${ t GlcT_c_alpha}$	GlcT_c_alpha		0.75		

6.8 Reaction ALD_g

This is a reversible reaction of one reactant forming two products influenced by 15 modifiers.

Name ALD_g

Reaction equation

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
Fru16BP_g	Fru16BP_g	

Modifiers

Table 34: Properties of each modifier.

Id	Name	SBO
ATP_g	ATP_g	
$\mathtt{ADP}_{\mathtt{g}}$	$ADP_{-}g$	
$\mathtt{AMP}_{\mathtt{g}}$	$AMP_{-}g$	
Fru16BP_g	Fru16BP_g	
GA3P_g	GA3P_g	
DHAP_g	DHAP_g	
$\mathtt{ATP}_{\mathtt{g}}$	$ATP_{-}g$	
ADP_g	$ADP_{-}g$	
$\mathtt{AMP}_{\mathtt{g}}$	$AMP_{-}g$	
Fru16BP_g	Fru16BP_g	
GA3P_g	GA3P_g	
DHAP_g	DHAP_g	
$\mathtt{ATP}_{-}\mathtt{g}$	$ATP_{-}g$	
$\mathtt{ADP}_{\mathtt{g}}$	$ADP_{-}g$	
AMP_g	$AMP_{-}g$	

Products

Table 35: Properties of each product.

Id	Name	SBO
0	GA3P_g	
DHAP_g	DHAP_g	

Kinetic Law

Table 36: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ALD_g_Vmax	ALD_g_Vmax		560.000		

Id	Name	SBO	Value	Unit	Constant
ALD_g-	ALD_g-		0.009		\overline{Z}
_KmFru16BP	_KmFru16BP				
ALD_g_KiATP	ALD_g_KiATP		0.680		
ALD_g_KiADP	ALD_g_KiADP		1.510		
ALD_g_KiAMP	ALD_g_KiAMP		3.650		
ALD_g_Keq	ALD_g_Keq		0.084		
ALD_g_KmGA3P	ALD_g_KmGA3P		0.067		$ \mathbf{Z} $
$\mathtt{ALD_g_KmDHAP}$	ALD_g_KmDHAP		0.015		$ \mathbf{Z} $
ALD_g_KiGA3P	ALD_g_KiGA3P		0.098		

6.9 Reaction ENO_c

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name ENO_c

Reaction equation

$$_{2}PGA_{c} \stackrel{= 2PGA_{c}, PEP_{c}, _{2}PGA_{c}, PEP_{c}}{=} PEP_{c}$$
 (28)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
_2PGA_c	_2PGA_c	

Modifiers

Table 38: Properties of each modifier.

Id	Name	SBO
_2PGA_c	_2PGA_c	
PEP_c	PEP_c	
_2PGA_c	_2PGA_c	
PEP_c	PEP_c	

Product

Table 39: Properties of each product.

Id	Name	SBO
PEP_c	PEP_c	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = v1sub1prod(ENO_c_Vmax,ENO_c_Keq,[_2PGA_c],ENO_c_Km2PGA,[PEP_c],$$

$$ENO_c_KmPEP)$$
(29)

$$v1sub1prod\left(Vfmax,Keq,S,Ks,P,Kp\right) = \frac{Vfmax \cdot S \cdot \left(1 - \frac{P}{Keq \cdot S}\right)}{Ks \cdot \left(1 + \frac{S}{Ks} + \frac{P}{Kp}\right)} \tag{30}$$

Table 40: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
ENO_c_Vmax	ENO_c_Vmax		598.000		
ENO_c_Keq	ENO_c_Keq		4.170		
${\tt ENO_c_Km2PGA}$	ENO_c_Km2PGA		0.054		
ENO_c_KmPEP	ENO_c_KmPEP		0.240		\square

6.10 Reaction HXK_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name HXK_g

Reaction equation

$$ATP_g + Glc_g \xleftarrow{Glc_g, \ ATP_g, \ Glc6P_g, \ ADP_g, \ Glc_g, \ ATP_g, \ Glc6P_g, \ ADP_g} Glc6P_g + ADP_g \tag{31}$$

Reactants

Table 41: Properties of each reactant.

Id	Name	SBO
ATP_g Glc_g	ATP_g Glc_g	

Modifiers

Table 42: Properties of each modifier.

Id	Name	SBO
${\tt Glc_g}$	Glc_g	
ATP_g	$ATP_{-}g$	
${\tt Glc6P_g}$	Glc6P_g	
ADP_g	$ADP_{-}g$	
${\tt Glc_g}$	Glc_g	
ATP_g	$ATP_{-}g$	
${\tt Glc6P_g}$	Glc6P_g	
ADP_g	$ADP_{-}g$	

Products

Table 43: Properties of each product.

Id	Name	SBO
Glc6P_g	Glc6P_g	
ADP_g	$ADP_{-}g$	

Kinetic Law

$$\begin{aligned} \nu_{10} &= v2sub2prod\left(HXK_g_Vmax, HXK_g_Keq, [Glc_g], HXK_g_KmGlc, [ATP_g], \\ &\quad HXK_g_KmATP, [Glc6P_g], HXK_g_KmGlc6P, [ADP_g], HXK_g_KmADP) \end{aligned} \tag{32}$$

$$\begin{aligned} &v2sub2prod\left(Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2\right) \\ &= \frac{Vfmax \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)} \end{aligned} \tag{33}$$

Table 44: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
HXK_g_Vmax HXK_g_Keq	HXK_g_Vmax HXK_g_Keq		1774.680 759.000		Ø
$ ext{HXK}_g_K ext{mGlc}$ $ ext{HXK}_g_K ext{mATP}$	HXK_g_KmGlc HXK_g_KmATP		0.100 0.116		Z Z
$ ext{HXK_g-}$ $ ext{_KmGlc6P}$	HXK_g_KmGlc6P		12.000		\mathbf{Z}
HXK_g_KmADP	$HXK_{g}_{K}MADP$		0.126		\square

6.11 Reaction _3PGAT_g

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name $_3PGAT_g$

Reaction equation

$$_{3PGA_g} = \xrightarrow{_{3PGA_g, _{3}PGA_c, _{3}PGA_g, _{3}PGA_c}} _{3PGA_c}$$
 (34)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
_3PGA_g	_3PGA_g	

Modifiers

Table 46: Properties of each modifier.

Id	Name	SBO
_3PGA_g	_3PGA_g	
$_{\tt 3PGA_c}$	_3PGA_c	
_3PGA_g	_3PGA_g	
_3PGA_c	_3PGA_c	

Product

Table 47: Properties of each product.

Id	Name	SBO
_3PGA_c	_3PGA_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{mass_action_rev} \left(-3\text{PGAT_g_k}, [-3\text{PGA_g}], -3\text{PGAT_g_k}, [-3\text{PGA_c}] \right)$$
 (35)

mass_action_rev
$$(k1, S, k2, P) = k1 \cdot S - k2 \cdot P$$
 (36)

Table 48: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
_3PGAT_g_k	_3PGAT_g_k	250.0	

6.12 Reaction PGK_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name PGK_g

Reaction equation

$$_13BPGA_g + ADP_g \xleftarrow{-13BPGA_g, ADP_g, _3PGA_g, ATP_g, _13BPGA_g, ADP_g, _3PGA_g, ATP_g} \\ _3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, _3PGA_g, ATP_g} \\ -3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, ADP_g, ADP_g, ADP_g} \\ -3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, ADP_g, ADP_g, ADP_g} \\ -3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, ADP_g, ADP_g, ADP_g} \\ -3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, ADP_g, ADP_g} \\ -3PGA_g + ADP_g \xrightarrow{-13BPGA_g, ADP_g, ADP_g} \\ -3PGA_g + ADP_g + ADP_g + AD$$

Reactants

Table 49: Properties of each reactant.

Id	Name	SBO
_13BPGA_g	_13BPGA_g	
ADP_g	$ADP_{-}g$	

Modifiers

Table 50: Properties of each modifier.

Id	Name	SBO
_13BPGA_g	_13BPGA_g	
$\mathtt{ADP}_{-}\mathtt{g}$	$ADP_{-}g$	
_3PGA_g	_3PGA_g	
$\mathtt{ATP}_{\mathtt{g}}$	$ATP_{-}g$	
_13BPGA_g	$_{-}13BPGA_{-}g$	
$\mathtt{ADP}_{\mathtt{g}}$	$ADP_{-}g$	
_3PGA_g	_3PGA_g	
ATP_g	ATP_g	

Products

Table 51: Properties of each product.

Id	Name	SBO
_3PGA_g	_3PGA_g	
$\mathtt{ATP}_{\mathtt{g}}$	ATP_g	

Kinetic Law

$$v2sub2prod(Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2)$$

$$= \frac{Vfmax \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)}$$

$$(39)$$

Table 52: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
PGK_g_Vmax	PGK_g_Vmax		2862.000		\overline{Z}
PGK_g_Keq	PGK_g_Keq		3377.000		
PGK_g-	PGK_g-		0.003		
$_{\rm L}$ Km13BPGA	_Km13BPGA				

Id	Name	SBO	Value	Unit	Constant
PGK_g_KmADP	PGK_g_KmADP		0.100		\square
$\tt PGK_g_Km3PGA$	PGK_g_Km3PGA		1.620		
$\tt PGK_g_KmATP$	PGK_{g}_{KmATP}		0.290		

6.13 Reaction G3PDH_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name G3PDH_g

Reaction equation

$$NADH_{-}g + DHAP_{-}g \xrightarrow{DHAP_{-}g, \ NADH_{-}g, \ Gly3P_{-}g, \ NAD_{-}g, \ DHAP_{-}g, \ NADH_{-}g, \ Gly3P_{-}g, \ NAD_{-}g} \underbrace{Gly3P_{-}g + NAD_{-}g, \ Gly3P_{-}g + NAD_{-}g + NAD_{-}g, \ Gly3P_{-}g + NAD_{-}g + NAD_{-}g, \ Gly3P_{-}g + NAD_{-}g + NAD$$

Reactants

Table 53: Properties of each reactant.

Id	Name	SBO
NADH_g	NADH_g	
$DHAP_g$	DHAP_g	

Modifiers

Table 54: Properties of each modifier.

Id	Name	SBO
DHAP_g	DHAP_g	
$NADH_g$	$NADH_{-}g$	
${\tt Gly3P_g}$	Gly3P_g	
NAD_g	$NAD_{-}g$	
$DHAP_g$	$DHAP_{-}g$	
$NADH_g$	$NADH_{-}g$	
Gly3P_g	Gly3P_g	
NAD_g	NAD_g	

Products

Table 55: Properties of each product.

Id	Name	SBO
Gly3P_g NAD_g	Gly3P_g NAD_g	
MAD_g	NAD_g	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = v2sub2prod (G3PDH_g_Vmax, G3PDH_g_Keq, [DHAP_g], G3PDH_g_KmDHAP, \\ [NADH_g], G3PDH_g_KmNADH, [Gly3P_g], G3PDH_g_KmGly3P, [NAD_g], \\ G3PDH_g_KmNAD)$$

$$v2sub2prod(Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2)$$

$$= \frac{Vfmax \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)}$$

$$(42)$$

Table 56: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
G3PDH_g_Vmax	G3PDH_g_Vmax		465.00		 ✓
G3PDH_g_Keq	G3PDH_g_Keq		17085.00		$ \overline{\checkmark} $
G3PDH_g-	G3PDH_g-		0.10		$ \overline{\checkmark} $
KmDHAP	${ m L}$ KmDHAP				
G3PDH_g-	G3PDH_g-		0.01		
_KmNADH	_KmNADH				
G3PDH_g-	G3PDH_g-		2.00		\mathbf{Z}
$_{ t L}{ t KmGly3P}$	_KmGly3P				
G3PDH_g-	G3PDH_g-		0.40		\mathbf{Z}
_KmNAD	_KmNAD				

6.14 Reaction GPO_c

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name GPO_c

Reaction equation

$$Gly3P_c \xrightarrow{Gly3P_c} Gly3P_c \xrightarrow{DHAP_c} DHAP_c$$
(43)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
Gly3P_c	Gly3P_c	

Modifiers

Table 58: Properties of each modifier.

Id	Name	SBO
Gly3P_c	•	
${\tt Gly3P_c}$	Gly3P_c	

Product

Table 59: Properties of each product.

Id	Name	SBO
DHAP_c	DHAP_c	

Kinetic Law

$$v_{14} = v1sub (GPO_c Vmax, [Gly3P_c], GPO_c KmGly3P)$$

$$(44)$$

$$v1sub\left(Vfmax,S,Ks\right) = \frac{Vfmax \cdot S}{Ks \cdot \left(1 + \frac{S}{Ks}\right)} \tag{45}$$

Table 60: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
GPO_c_Vmax GPO_c- _KmG1y3P	GPO_c_Vmax GPO_c_KmGly3P		368.0 1.7		2

6.15 Reaction ATPu_c

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Name ATPu_c

Reaction equation

$$ATP_{-c} \xrightarrow{ATP_{-c}, ADP_{-c}, ATP_{-c}, ADP_{-c}} ADP_{-c}$$
 (46)

Reactant

Table 61: Properties of each reactant.

Id	Name	SBO
ATP_c	ATP_c	

Modifiers

Table 62: Properties of each modifier.

Id	Name	SBO
ATP_c	ATP_c	
ADP_c	ADP_c	
ATP_c	ATP_c	
$\mathtt{ADP}_\mathtt{c}$	ADP_c	

Product

Table 63: Properties of each product.

Id	Name	SBO
ADP_c	ADP_c	

Kinetic Law

$$v_{15} = \frac{\text{ATPu_c_k} \cdot [\text{ATP_c}]}{[\text{ADP_c}]}$$
(47)

Table 64: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
ATPu_c_k	ATPu_c_k	50.0	

6.16 Reaction GK_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name $GK_{-}g$

Reaction equation

$$Gly3P_g + ADP_g \xrightarrow{Gly3P_g, ADP_g, Gly_e, ATP_g, Gly3P_g, ADP_g, Gly_e, ATP_g} Gly_e + ATP_g \tag{48}$$

Reactants

Table 65: Properties of each reactant.

Id	Name	SBO
Gly3P_g	Gly3P_g	
ADP_g	$ADP_{-}g$	

Modifiers

Table 66: Properties of each modifier.

Id	Name	SBO
Gly3P_g	Gly3P_g	
ADP_g	$ADP_{-}g$	
${\tt Gly_e}$	Gly_e	
ATP_g	$ATP_{-}g$	
Gly3P_g	Gly3P_g	
ADP_g	$ADP_{-}g$	
${\tt Gly_e}$	Gly_e	
ATP_g	ATP_g	

Products

Table 67: Properties of each product.

Id	Name	SBO
Gly_e	Gly_e	
ATP_g	ATP_g	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = v2sub2prod(GK_g_Vmax, GK_g_Keq, [Gly3P_g], GK_g_KmGly3P, [ADP_g], GK_g_KmADP, [Gly_e], GK_g_KmGly, [ATP_g], GK_g_KmATP)$$

$$(49)$$

$$v2sub2prod(Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2) = \frac{Vfmax \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)}$$
(50)

Table 68: Properties of each parameter.

	14016 00.1	roperties	or each para	illetel.	
Id	Name	SBO	Value	Unit	Constant
GK_g_Vmax	GK_g_Vmax		200.000		
GK_g_Keq	GK_g_Keq		$8.37 \cdot 10^{-4}$		\mathbf{Z}
$GK_g_KmGly3P$	GK_g_KmGly3P		3.830		\mathbf{Z}
GK_g_KmADP	GK_g_KmADP		0.560		\mathbf{Z}
GK_g_KmGly	$GK_{g}_{Km}Gly$		0.440		
${\tt GK_g_KmATP}$	$GK_{-}g_{-}KmATP$		0.240		

6.17 Reaction AK_c

This is a reversible reaction of one reactant forming two products influenced by six modifiers.

Name AK_c

Reaction equation

$$2 \text{ ADP_c}, \frac{\text{ADP_c}, \text{AMP_c}, \text{ATP_c}, \text{ADP_c}, \text{AMP_c}, \text{ATP_c}}{\longleftarrow} \text{AMP_c} + \text{ATP_c}$$

$$(51)$$

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
ADP_c	ADP_c	

Modifiers

Table 70: Properties of each modifier.

Id	Name	SBO
ADP_c	ADP_c	
$\mathtt{AMP}_{-}\mathtt{c}$	AMP_c	
ATP_c	ATP_c	
ADP_c	ADP_c	
$\mathtt{AMP}_\mathtt{C}$	$AMP_{-}c$	
ATP_c	ATP_c	

Products

Table 71: Properties of each product.

Id	Name	SBO
AMP_c	AMP_c	
$\mathtt{ATP}_\mathtt{c}$	ATP_c	

Kinetic Law

$$v_{17} = vAK([ADP_c], [AMP_c], [ATP_c], AK_c_k1, AK_c_k2)$$
 (52)

$$vAK(ADP,AMP,ATP,k1,k2) = k1 \cdot ADP^{2} - AMP \cdot ATP \cdot k2$$
 (53)

Table 72: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
AK_c_k1	AK_c_k1	480.0	
AK_c_k2	AK_c_k2	1000.0	

6.18 Reaction PGI_g

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name PGI_g

Reaction equation

$$Glc6P_g \xleftarrow{Glc6P_g, Fru6P_g, Glc6P_g, Fru6P_g} Fru6P_g \qquad (54)$$

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
Glc6P_g	Glc6P_g	

Modifiers

Table 74: Properties of each modifier.

Id	Name	SBO
Glc6P_g	Glc6P_g	
Fru6P_g	Fru6P_g	
${\tt Glc6P_g}$	Glc6P_g	
Fru6P_g	Fru6P_g	

Product

Table 75: Properties of each product.

Id	Name	SBO
Fru6P_g	Fru6P_g	

Kinetic Law

$$v_{18} = \frac{PGI_g_Vmax \cdot [Glc6P_g] \cdot \left(1 - \frac{[Fru6P_g]}{PGI_g_Keq\cdot[Glc6P_g]}\right)}{PGI_g_KmGlc6P \cdot \left(1 + \frac{[Glc6P_g]}{PGI_g_KmGlc6P} + \frac{[Fru6P_g]}{PGI_g_KmFru6P} + \frac{.6PG_g}{PGI_g_Ki6PG}\right)}$$
(55)

Table 76: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
PGI_g_Vmax PGI_g- KmGlc6P	PGI_g_Vmax PGI_g_KmGlc6P		1305.000 0.400		Ø
PGI_g_Keq PGI_gKmFru6P	PGI_g_Keq PGI_g_KmFru6P		0.457 0.120		Z
_KMFTU6P _6PG_g PGI_g_Ki6PG	_6PG_g PGI_g_Ki6PG		0.084 0.140		☑ ☑

6.19 Reaction GAPDH_g

This is a reversible reaction of three reactants forming two products influenced by eight modifiers.

Name GAPDH_g

Reaction equation

Reactants

Table 77: Properties of each reactant.

Id	Name	SBO
GA3P_g	GA3P_g	
NAD_{g}	$NAD_{-}g$	
Pi_g	Pi_g	

Modifiers

Table 78: Properties of each modifier.

Id	Name	SBO
GA3P_g	GA3P_g	
$\mathtt{NAD}_{-}\mathtt{g}$	$NAD_{-}g$	
_13BPGA_g	_13BPGA_g	
$\mathtt{NADH}_{-}\mathtt{g}$	$NADH_{-}g$	

Id	Name	SBO
GA3P_g	GA3P_g	
$\mathtt{NAD}_{\mathtt{g}}$	$NAD_{-}g$	
_13BPGA_g	$_{-}13BPGA_{-}g$	
$NADH_{-}g$	$NADH_{-}g$	

Products

Table 79: Properties of each product.

Id	Name	SBO
NADH_g	NADH_g	
_13BPGA_g	_13BPGA_g	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = v2sub2prod (GAPDH_g_Vmax, GAPDH_g_Keq, [GA3P_g], GAPDH_g_KmGA3P, \\ [NAD_g], GAPDH_g_KmNAD, [_13BPGA_g], GAPDH_g_Km13BPGA, [NADH_g], \\ GAPDH_g_KmNADH) \\ (57)$$

$$\begin{aligned} v2sub2prod & (Vfmax, Keq, S1, Ks1, S2, Ks2, P1, Kp1, P2, Kp2) \\ & = \frac{Vfmax \cdot S1 \cdot S2 \cdot \left(1 - \frac{P1 \cdot P2}{Keq \cdot S1 \cdot S2}\right)}{Ks1 \cdot Ks2 \cdot \left(1 + \frac{S1}{Ks1} + \frac{P1}{Kp1}\right) \cdot \left(1 + \frac{S2}{Ks2} + \frac{P2}{Kp2}\right)} \end{aligned}$$
 (58)

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
GAPDH_g_Vmax	GAPDH_g_Vmax		720.900		
$GAPDH_g_Keq$	GAPDH_g_Keq		0.066		$\overline{\mathbf{Z}}$
GAPDH_g-	GAPDH_g-		0.150		
_KmGA3P	_KmGA3P				
GAPDH_g-	GAPDH_g-		0.450		
_KmNAD	_KmNAD				
GAPDH_g-	GAPDH_g-		0.100		\mathbf{Z}
$_{ m L}$ Km13BPGA	_Km13BPGA				
GAPDH_g-	GAPDH_g-		0.020		
_KmNADH	_KmNADH				

6.20 Reaction AK_g

This is a reversible reaction of one reactant forming two products influenced by six modifiers.

Name AK_g

Reaction equation

$$2 \text{ ADP_g} \xrightarrow{\text{ADP_g, AMP_g, ATP_g, ADP_g, AMP_g, ATP_g}} \text{AMP_g + ATP_g} \tag{59}$$

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
ADP_g	ADP_g	

Modifiers

Table 82: Properties of each modifier.

Id	Name	SBO
ADP_g	ADP_g	
$\mathtt{AMP}_{-}\mathtt{g}$	$AMP_{-}g$	
$\mathtt{ATP}_{\mathtt{g}}$	$ATP_{-}g$	
ADP_g	$ADP_{-}g$	
$\mathtt{AMP}_{\mathtt{g}}$	$AMP_{-}g$	
ATP_g	ATP_g	

Products

Table 83: Properties of each product.

MP_g TP_g

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = vAK([ADP_g], [AMP_g], [ATP_g], AK_g_k1, AK_g_k2)$$
 (60)

$$vAK(ADP,AMP,ATP,k1,k2) = k1 \cdot ADP^2 - AMP \cdot ATP \cdot k2$$
 (61)

Table 84: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
AK_g_k1	AK_g_k1	480.0	
AK_g_k2	AK_g_k2	1000.0	

6.21 Reaction GDA_g

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name GDA_g

Reaction equation

$$Gly3P_g + DHAP_c \xleftarrow{Gly3P_g, \ DHAP_c, \ Gly3P_c, \ DHAP_g, \ Gly3P_g, \ DHAP_c, \ Gly3P_c, \ DHAP_g} (62)$$

Reactants

Table 85: Properties of each reactant.

Id	Name	SBO
Gly3P_g DHAP_c	Gly3P_g DHAP_c	

Modifiers

Table 86: Properties of each modifier.

Id	Name	SBO
Gly3P_g	Gly3P_g	
$\mathtt{DHAP}_\mathtt{C}$	DHAP_c	
${\tt Gly3P_c}$	Gly3P_c	
$DHAP_g$	DHAP_g	
${\tt Gly3P_g}$	Gly3P_g	
$DHAP_c$	DHAP_c	
${\tt Gly3P_c}$	Gly3P_c	
DHAP_g	DHAP_g	

Products

Table 87: Properties of each product.

Id	Name	SBO
Gly3P_c DHAP_g	Gly3P_c DHAP_g	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = [Gly3P_g] \cdot GDA_g_k \cdot [DHAP_c] - [Gly3P_c] \cdot GDA_g_k \cdot [DHAP_g]$$
 (63)

Table 88: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
GDA_g_k	GDA_g_k	600.0	Ø

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species _2PGA_c

Name _2PGA_c

Initial concentration $0.1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in ENO_c and as a product in PGAM_c and as a modifier in PGAM_c, PGAM_c, ENO_c, ENO_c).

$$\frac{\mathrm{d}}{\mathrm{d}t} \cdot 2PGA \cdot c = |v_5| - |v_9| \tag{64}$$

7.2 Species DHAP_c

Name DHAP_c

Initial concentration $2.23132912 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in four reactions (as a reactant in GDA_g and as a product in GPO_c and as a modifier in GDA_g, GDA_g).

$$\frac{d}{dt}DHAP_{c}c = v_{14} - v_{21}$$
 (65)

7.3 Species ATP_g

Name ATP_g

Initial concentration $0.2405 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in 18 reactions (as a reactant in PFK_g, HXK_g and as a product in PGK_g, GK_g, AK_g and as a modifier in PFK_g, PFK_g, ALD_g, ALD_g, ALD_g, HXK_g, HXK_g, PGK_g, PGK_g, GK_g, GK_g, AK_g, AK_g).

$$\frac{d}{dt}ATP_{-g} = |v_{12}| + |v_{16}| + |v_{20}| - |v_{3}| - |v_{10}|$$
(66)

7.4 Species DHAP_g

Name DHAP_g

Initial concentration 8.483130623 nmol·μl⁻¹

This species takes part in twelve reactions (as a reactant in TPI_g, G3PDH_g and as a product in ALD_g, GDA_g and as a modifier in TPI_g, TPI_g, ALD_g, ALD_g, G3PDH_g, G3PDH_g, GDA_g, GDA_g).

$$\frac{d}{dt}DHAP_{-}g = |v_8| + |v_{21}| - |v_1| - |v_{13}|$$
(67)

7.5 Species ADP_g

Name ADP_g

Initial concentration $1.519 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in 18 reactions (as a reactant in PGK_g, GK_g, AK_g and as a product in PFK_g, HXK_g and as a modifier in PFK_g, PFK_g, ALD_g, ALD_g, ALD_g, HXK_g, HXK_g, PGK_g, PGK_g, GK_g, GK_g, AK_g, AK_g).

$$\frac{d}{dt}ADP_{-}g = |v_3| + |v_{10}| - |v_{12}| - |v_{16}| - 2|v_{20}|$$
(68)

7.6 Species Glc6P_g

Name Glc6P_g

Initial concentration $0.5 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PGI_g and as a product in HXK_g and as a modifier in HXK_g, HXK_g, PGI_g, PGI_g).

$$\frac{d}{dt}Glc6P_{-}g = |v_{10}| - v_{18}$$
 (69)

7.7 Species ADP_c

Name ADP_c

Initial concentration $1.3165 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in nine reactions (as a reactant in PYK_c, AK_c and as a product in ATPu_c and as a modifier in PYK_c, PYK_c, ATPu_c, ATPu_c, AK_c, AK_c).

$$\frac{d}{dt}ADP_{c}c = |v_{15}| - |v_{2}| - 2|v_{17}|$$
(70)

7.8 Species _3PGA_c

Name _3PGA_c

Initial concentration $0.1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PGAM_c and as a product in _3PGAT_g and as a modifier in PGAM_c, _3PGAT_g, _3PGAT_g).

$$\frac{d}{dt} - 3PGA_c = |v_{11} - v_5| \tag{71}$$

7.9 Species Fru6P_g

Name Fru6P_g

Initial concentration $0.5 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PFK_g and as a product in PGI_g and as a modifier in PFK_g, PFK_g, PGI_g, PGI_g).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fru6P}_{-g} = |v_{18}| - |v_{3}| \tag{72}$$

7.10 Species Pi_g

Name Pi_g

Initial concentration $0 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in one reaction (as a reactant in GAPDH_g), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pi.g} = 0\tag{73}$$

7.11 Species 02_c

Name O2_c

Initial concentration $1 \text{ nmol} \cdot \mu l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O}2_{-}\mathrm{c} = 0\tag{74}$$

7.12 Species Gly_e

Name Gly_e

Initial concentration $0 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in three reactions (as a product in GK_g and as a modifier in GK_g, GK_g), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gly}_{-}\mathrm{e} = 0 \tag{75}$$

7.13 Species ATP_c

Name ATP_c

Initial concentration $0.3417 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in nine reactions (as a reactant in ATPu_c and as a product in PYK_c, AK_c and as a modifier in PYK_c, PYK_c, ATPu_c, ATPu_c, AK_c, AK_c).

$$\frac{d}{dt}ATP_{-}c = |v_2| + |v_{17}| - |v_{15}| \tag{76}$$

7.14 Species _13BPGA_g

Name _13BPGA_g

Initial concentration $0.5 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PGK_g and as a product in GAPDH_g and as a modifier in PGK_g, PGK_g, GAPDH_g, GAPDH_g).

$$\frac{d}{dt} - 13BPGA_g = |v_{19}| - |v_{12}| \tag{77}$$

7.15 Species Glc_c

Name Glc_c

Initial concentration $0.1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in GlcT_g and as a product in GlcT_c and as a modifier in GlcT_g, GlcT_c, GlcT_c).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glc}_{-}\mathrm{c} = |v_7| - |v_4| \tag{78}$$

7.16 Species Glc_e

Name Glc_e

Initial concentration $5 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in three reactions (as a reactant in GlcT_c and as a modifier in GlcT_c, GlcT_c), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glc}_{-}\mathrm{e} = 0 \tag{79}$$

7.17 Species Glc_g

Name Glc_g

Initial concentration $0.1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in HXK_g and as a product in GlcT_g and as a modifier in GlcT_g, GlcT_g, HXK_g, HXK_g).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glc}_{-g} = |v_4| - |v_{10}| \tag{80}$$

7.18 Species Pyr_c

Name Pyr_c

Initial concentration $10 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PyrT_c and as a product in PYK_c and as a modifier in PYK_c, PyrT_c, PyrT_c).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pyr}_{\mathbf{c}} = v_2 - v_6 \tag{81}$$

7.19 Species Pyr_e

Name Pyr_e

Initial concentration $0 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in one reaction (as a product in PyrT_c), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pyr}_{\cdot} \mathbf{e} = 0 \tag{82}$$

7.20 Species NAD_g

Name NAD_g

Initial concentration $2 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in GAPDH_g and as a product in G3PDH_g and as a modifier in G3PDH_g, G3PDH_g, GAPDH_g, GAPDH_g).

$$\frac{d}{dt}NAD_{-}g = |v_{13}| - |v_{19}| \tag{83}$$

7.21 Species Fru16BP_g

Name Fru16BP_g

Initial concentration $10 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in ALD_g and as a product in PFK_g and as a modifier in PFK_g, PFK_g, ALD_g, ALD_g).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fru}_{1}6\mathrm{BP}_{g} = v_{3} - v_{8} \tag{84}$$

7.22 Species GA3P_g

Name GA3P_g

Initial concentration $2.5 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in nine reactions (as a reactant in GAPDH_g and as a product in TPI_g, ALD_g and as a modifier in TPI_g, TPI_g, ALD_g, ALD_g, GAPDH_g, GAPDH_g).

$$\frac{d}{dt}GA3P_{-}g = |v_1| + |v_8| - |v_{19}|$$
(85)

7.23 Species C02_c

Name CO2_c

Initial concentration $0 \text{ nmol} \cdot \mu l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2_c} = 0 \tag{86}$$

7.24 Species C02_g

Name CO2_g

Initial concentration $0 \text{ nmol} \cdot \mu l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2}_{-\mathrm{g}} = 0 \tag{87}$$

7.25 Species Gly3P_c

Name Gly3P_c

Initial concentration $2.76867088 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in GPO_c and as a product in GDA_g and as a modifier in GPO_c, GPO_c, GDA_g, GDA_g).

$$\frac{d}{dt}Gly3P_{-}c = |v_{21}| - |v_{14}|$$
(88)

7.26 Species Gly3P_g

Name Gly3P_g

Initial concentration $10.51686938 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in nine reactions (as a reactant in GK_g, GDA_g and as a product in G3PDH_g and as a modifier in G3PDH_g, G3PDH_g, GK_g, GK_g, GDA_g, GDA_g).

$$\frac{d}{dt}Gly3P_{-}g = |v_{13}| - |v_{16}| - |v_{21}|$$
(89)

7.27 Species PEP_c

Name PEP_c

Initial concentration $1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in PYK_c and as a product in ENO_c and as a modifier in PYK_c, PYK_c, ENO_c, ENO_c).

$$\frac{\mathrm{d}}{\mathrm{d}t} PEP_{-}c = v_9 - v_2 \tag{90}$$

7.28 Species AMP_g

Name AMP_g

Initial concentration $4.2405 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a product in AK_g and as a modifier in ALD_g, ALD_g, ALD_g, AK_g, AK_g).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMP}_{-}\mathrm{g} = v_{20} \tag{91}$$

7.29 Species _3PGA_g

Name _3PGA_g

Initial concentration $0.1 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in _3PGAT_g and as a product in PGK_g and as a modifier in _3PGAT_g, _3PGAT_g, PGK_g, PGK_g).

$$\frac{d}{dt} - 3PGA - g = |v_{12}| - |v_{11}| \tag{92}$$

7.30 Species AMP_c

Name AMP_c

Initial concentration $2.2418 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in three reactions (as a product in AK_c and as a modifier in AK_c, AK_c).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMP}_{-}\mathrm{c} = |v_{17}| \tag{93}$$

7.31 Species NADH_g

Name NADH_g

Initial concentration $2 \text{ nmol} \cdot \mu l^{-1}$

This species takes part in six reactions (as a reactant in G3PDH_g and as a product in GAPDH_g and as a modifier in G3PDH_g, G3PDH_g, GAPDH_g, GAPDH_g).

$$\frac{d}{dt}NADH_{g} = |v_{19}| - |v_{13}| \tag{94}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany