

A 2-mm-thick piece of sheet steel is cut and bent into the machine component shown. Knowing that the density of steel is 7850 kg/m^3 , determine the moment of inertia of the component with respect to each of the coordinate axes.

SOLUTION

Have

$$m = \rho_{\rm st} V = \rho_{\rm st} t A$$

Then

$$m_1 = 7850 \text{ kg/m}^3 \times 0.002 \text{ m} \times (0.320 \times 0.240) \text{m}^2$$

= 1.20576 kg

$$m_2 = 7850 \text{ kg/m}^3 \times 0.002 \text{ m} \times (0.320 \times 0.180) \text{m}^2$$

= 0.90432 kg

$$m_3 = 7850 \text{ kg/m}^3 \times 0.002 \text{ m} \times \left(\frac{1}{2} \times 0.180 \times 0.240\right) \text{m}^2$$

= 0.33912 kg

$$m_4 = 7850 \text{ kg/m}^3 \times 0.002 \text{ m} \times \left[\frac{\pi}{2} (0.100 \text{ m})^2 \right]$$

= 0.24662 kg

Using Fig. 9-2B for components 1 and 2 and the equations derived above for components 3 and 4, have

Now

$$I_x = (I_x)_1 + (I_x)_2 + (I_x)_3 - (I_x)_4$$

$$(I_x)_1 = \frac{1}{3} (1.20576 \text{ kg}) (0.240 \text{ m})^2$$

$$= 23.151 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$(I_x)_2 = \frac{1}{3} (0.90432 \text{ kg}) (0.180 \text{ m})^2$$

$$= 9.7667 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$(I_x)_3 = \frac{1}{6} (0.33912 \text{ kg}) \left[(0.180)^2 + (0.240)^2 \right] \text{m}^2$$

$$= 5.0868 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

PROBLEM 9.141 CONTINUED

Then

Then

$$(I_x)_4 = \frac{1}{4} (0.24662 \text{ kg}) (0.100 \text{ m})^2$$
$$= 0.61655 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$
$$I_x = \left[(23.151 + 9.7667 + 5.0868 - 0.61655) \times 10^{-3} \right] \text{kg} \cdot \text{m}^2$$

or
$$I_r = 37.4 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

And
$$I_{y} = (I_{y})_{1} + (I_{y})_{2} + (I_{y})_{3} - (I_{y})_{4}$$
where
$$(I_{y})_{1} = \frac{1}{3}(1.20576 \text{ kg}) \Big[(0.320)^{2} + (0.240)^{2} \Big] \text{m}^{2}$$

$$= 64.307 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

$$(I_{y})_{2} = \frac{1}{3}(0.90432 \text{ kg})(0.320 \text{ m})^{2}$$

$$= 30.867 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

$$(I_{y})_{3} = \frac{1}{6}(0.33912 \text{ kg})(0.240 \text{ m})^{2}$$

$$= 3.2556 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

$$(I_{y})_{4} = (0.24662 \text{ kg}) \Big\{ \Big[\Big(\frac{1}{2} - \frac{16}{9\pi^{2}} \Big) (0.100 \text{ m})^{2} \Big]$$

$$+ \Big[(0.160)^{2} + \Big(\frac{4 \times 0.100}{3\pi} \Big)^{2} \Big] \text{m}^{2} \Big\}$$

$$I_y = \left[(64.307 + 30.067 + 3.2556 - 7.5466) 10^{-3} \right] \text{kg} \cdot \text{m}^2$$

 $= 7.5466 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

or
$$I_v = 90.9 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

And
$$I_z = (I_z)_1 + (I_z)_2 + (I_z)_3 - (I_z)_4$$
where
$$(I_z)_1 = \frac{1}{3} (1.20576 \text{ kg}) (0.320 \text{ m})^2 = 41.157 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$(I_z)_2 = \frac{1}{3} (0.90432 \text{ kg}) \Big[(0.320)^2 + (0.180)^2 \Big] \text{m}^2$$

$$= 40.634 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$(I_z)_3 = \frac{1}{6} (0.33912 \text{ kg}) (0.180 \text{ m})^2 = 1.83125 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

PROBLEM 9.141 CONTINUED

$$(I_z)_4 = (0.24662 \text{ kg}) \left\{ \left[\frac{1}{4} (0.100 \text{ m})^2 \right] + \left[(0.160 \text{ m})^2 \right] \right\}$$

= $6.9300 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

Then
$$(I_z)_z = [(41.157 + 40.634 + 1.83125 - 6.9300) \times 10^{-3}] \text{kg} \cdot \text{m}^2$$

or
$$I_z = 76.7 \times 10^{-3} \text{ kg} \cdot \text{m}^2 \blacktriangleleft$$

The piece of roof flashing shown is formed from sheet copper that is 0.032 in. thick. Knowing that the specific weight of copper is 558 lb/ft³, determine the mass moment of inertia of the flashing with respect to each of the coordinate axes.

SOLUTION

Have

$$m = \rho_{\text{copper}} V$$
$$= \frac{\gamma_{\text{copper}}}{g} tA$$

 $m_1 = m_2$

$$= \frac{558 \text{ lb/ft}^3}{32.2 \text{ ft/s}^2} \times 0.032 \text{ in.} \times (48 \times 6) \text{ in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^3$$

$$= 0.092422 \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$I_x = (I_x)_1 + (I_x)_2$$
 and $(I_x)_1 = (I_x)_2$

Then

$$I_x = 2 \left[\frac{1}{3} \left(0.092422 \, \text{lb} \cdot \text{s}^2 / \text{ft} \right) \left(\frac{6}{12} \, \text{ft} \right)^2 \right] = 1.54037 \, \text{lb} \cdot \text{ft} \cdot \text{s}^2$$

or
$$I_x = 1.54 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$I_{y} = \left(I_{y}\right)_{1} + \left(I_{y}\right)_{2}$$

where

and

$$(I_y)_1 = \frac{1}{3} (0.092422 \text{ lb} \cdot \text{s}^2/\text{ft}) \left[\left(\frac{48}{12} \right)^2 + \left(\frac{6}{12} \right)^2 \right] \text{ft}^2$$

$$= 500.62 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_y)_2 = \int r_y^2 dm$$

$$r_{\rm v}^2 = x^2 + z^2$$

$$= x^2 + (\zeta \cos 30)^2$$

PROBLEM 9.142 CONTINUED

and
$$dm = \rho dV = \frac{\gamma_{\text{copper}}}{g} t d\zeta dx$$

Then
$$(I_y)_2 = \frac{\gamma_{\text{copper}}}{g} t \int_0^L \int_0^a \left(x^2 + \zeta^2 \cos^2 30^\circ \right) d\zeta dx$$

$$= \frac{\gamma_{\text{copper}}}{g} t \int_0^L \left(ax^2 + \frac{1}{3} a^3 \cos^2 30^\circ \right) dx$$

$$= \frac{1}{3} \frac{\gamma_{\text{copper}}}{g} t \left(aL^3 + a^3 L \cos^2 30^\circ \right) \qquad A = aL$$

$$= \frac{1}{3} m_2 \left(L^2 + a^2 \cos^2 30^\circ \right)$$

$$= \frac{1}{3} \left(0.092422 \text{ lb} \cdot \text{s}^2/\text{ft} \right) \left[\left(4 \right)^2 + \left(\frac{1}{2} \cos 30^\circ \right)^2 \right] \text{ft}^2$$

$$= 498.69 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

Finally,
$$I_y = (500.62 + 498.69) \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

or
$$I_y = 999 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$I_z = (I_z)_1 + (I_z)_2$$

where
$$(I_z)_1 = \frac{1}{3} (0.092422 \text{ lb} \cdot \text{s}^2/\text{ft}) (\frac{48}{12} \text{ ft})^2$$

$$=492.92\times10^{-3}\ lb\cdot ft\cdot s^2$$

and
$$(I_z)_2 = \int r_z^2 dm$$

where
$$r_z^2 = x^2 + y^2$$

and
$$y = \zeta \sin 30^{\circ}$$

Then
$$(I_z)_2 = \int \left[x^2 + (\zeta \sin 30^\circ)^2 \right] dm$$

PROBLEM 9.142 CONTINUED

Similarly, as
$$(I_y)_2$$

$$(I_z)_2 = \frac{1}{3} m_2 \left(L^2 + a^2 \sin^2 30^\circ \right)$$

$$= \frac{1}{3} \left(0.092422 \text{ lb} \cdot \text{s}^2 / \text{ft} \right) \left[\left(4 \right)^2 + \left(\frac{1}{2} \right)^2 \sin^2 30^\circ \right] \text{ft}^2$$

$$= 494.84 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$I_x = (492.92 + 494.84) \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

or
$$I_z = 988 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2 \blacktriangleleft$$

The machine element shown is fabricated from steel. Determine the mass moment of inertia of the assembly with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The specific weight of steel is 0.284 lb/in^3 .)

SOLUTION

Have
$$m = \rho V = \frac{\gamma}{g} V = \frac{0.284 \text{ lb/in}^3}{32.2 \text{ ft/s}^2} \times V$$

$$= \left(0.0088199 \text{ lb} \cdot \text{s}^2/\text{ft} \cdot \text{in}^3\right) V$$

Then
$$m_1 = (0.0088199 \text{ lb} \cdot \text{s}^2/\text{ft} \cdot \text{in}^3) \left[\pi (4)^2 (2) \right] \text{in}^3 = 0.88667 \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$m_2 = (0.0088199 \text{ lb} \cdot \text{s}^2/\text{ft} \cdot \text{in}^3) \left[\pi (1)^2 (3) \right] \text{in}^3 = 0.083126 \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$m_3 = (0.0088199 \text{ lb} \cdot \text{s}^2/\text{ft} \cdot \text{in}^3) \left[\pi (1)^2 (2) \right] \text{in}^3 = 0.055417 \text{ lb} \cdot \text{s}^2/\text{ft}$$

Using Fig. 9-28 and the parallel theorem, have

(a)

$$I_{x} = (I_{x})_{1} + (I_{x})_{2} - (I_{x})_{3}$$

$$= (0.88667 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(4)^{2} + (2)^{2} \right] + (1)^{2} \right\} \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$+ (0.083126 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(1)^{2} + (3)^{2} \right] + (1.5)^{2} \right\} \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$- (0.055417 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(1)^{2} + (2)^{2} \right] + (1)^{2} \right\} \text{in.} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$= 0.034106 \text{ lb} \cdot \text{ft} \cdot \text{s}^{2}$$

or
$$I_x = 0.0341 \,\mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^2 \blacktriangleleft$$

PROBLEM 9.143 CONTINUED

(b)
$$I_{y} = (I_{y})_{1} + (I_{y})_{2} - (I_{y})_{3}$$

$$= (0.88667 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left[\frac{1}{2} (4)^{2} \right] \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$+ (0.083126 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left[\frac{1}{2} (1)^{2} + (2)^{2} \right] \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$- (0.055417 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left[\frac{1}{2} (1)^{2} + (2)^{2} \right] \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$= 5.0125 \times 10^{-2} \text{ lb} \cdot \text{ft} \cdot \text{s}^{2}$$

or $I_y = 0.0501 \, \text{lb} \cdot \text{ft} \cdot \text{s}^2 \blacktriangleleft$

(c)
$$I_{z} = (I_{z})_{1} + (I_{z})_{2} - (I_{z})_{3}$$

$$= (0.88667 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(4)^{2} + (2)^{2} \right] + (1)^{2} \right\} \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$+ (0.083126 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(1)^{2} + (3)^{2} \right] + \left[(2)^{2} + (1.5)^{2} \right] \right\} \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$- (0.055417 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \frac{1}{12} \left[3(1)^{2} + (2)^{2} \right] + \left[(2)^{2} + (1)^{2} \right] \right\} \text{in}^{2} \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^{2}$$

$$= 0.034876 \text{ lb} \cdot \text{ft} \cdot \text{s}^{2}$$

or $I_z = 0.0349 \, \text{lb} \cdot \text{ft} \cdot \text{s}^2$

The following formulas for the mass of inertia of a semicylinder are derived at this time for use in the solutions of Problems 9.144–9.147.

From Figure 9.28

Cylinder:

$$\left(I_x\right)_{\text{cyl}} = \frac{1}{2} m_{\text{cyl}} a^2$$

$$(I_y)_{\text{cyl}} = (I_z)_{\text{cyl}} = \frac{1}{12} m_{\text{cyl}} (3a^2 + L^2)$$

Symmetry and the definition of the mass moment of inertia $\left(I = \int r^2 dm\right)$ imply

$$(I)_{\text{semicylinder}} = \frac{1}{2} (I)_{\text{cylinder}}$$

$$\therefore (I_x)_{\rm sc} = \frac{1}{2} \left(\frac{1}{2} m_{\rm cyl} a^2 \right)$$

and

$$(I_y)_{sc} = (I_z)_{sc} = \frac{1}{2} \left[\frac{1}{12} m_{cyl} (3a^2 + L^2) \right]$$

However,

$$m_{\rm sc} = \frac{1}{2} m_{\rm cyl}$$

Thus,

$$\left(I_x\right)_{\rm sc} = \frac{1}{2} m_{\rm sc} a^2$$

and

$$(I_y)_{sc} = (I_z)_{sc} = \frac{1}{12} m_{sc} (3a^2 + L^2)$$

Also, using the parallel axis theorem find

$$\overline{I}_{x'} = m_{\rm sc} \left(\frac{1}{2} - \frac{16}{9\pi^2} \right) a^2$$

$$\overline{I}_{z'} = m_{\rm sc} \left[\left(\frac{1}{4} - \frac{16}{9\pi^2} \right) a^2 + \frac{1}{12} L^2 \right]$$

where x' and z' are centroidal axes.

Determine the mass moment of inertia of the steel machine element shown with respect to the y axis. (The density of steel is 7850 kg/m^3 .)

SOLUTION

Have

$$m = \rho_{\text{steel}} V$$

$$m_1 = 7850 \text{ kg/m}^3 (0.200 \times 0.120 \times 0.600) \text{m}^3$$

= 113.040 kg

$$m_2 = 7850 \text{ kg/m}^3 \times (0.200 \times 0.080 \times 0.360) \text{m}^3$$

= 45.216 kg

$$m_3 = 7850 \text{ kg/m}^3 \times \left[\frac{\pi}{2} (0.100)^2 (0.120)\right] \text{m}^3$$

= 14.7969 kg

$$m_4 = 7850 \text{ kg/m}^3 \times \left[\pi (0.050)^2 (0.120)\right] \text{m}^3$$

= 7.3985 kg

Using Figure 9.28 for components 1 and 2 and the equations derived above for components 3 and 4, have

Now

$$I_{y} = \left(I_{y}\right)_{1} + \left(I_{y}\right)_{2} + \left(I_{y}\right)_{3}$$

$$(I_y)_1 = (113.040 \text{ kg}) \left\{ \frac{1}{12} \left[(0.600)^2 + (0.200)^2 \right] + \left[\left(\frac{0.600}{2} \right)^2 + \left(\frac{0.200}{2} \right)^2 \right] \right\} m^2$$

$$= 15.0720 \text{ kg} \cdot \text{m}^2$$

PROBLEM 9.144 CONTINUED

$$(I_y)_2 = (45.216 \text{ kg}) \left\{ \frac{1}{12} \left[(0.360)^2 + (0.200)^2 \right] + \left[\left(\frac{0.360}{2} \right)^2 + \left(\frac{0.200}{2} \right)^2 \right] \right\} m^2$$

$$= 2.5562 \text{ kg} \cdot \text{m}^2$$

$$(I_y)_3 = (14.7969 \text{ kg}) \left\{ \left[\left(\frac{1}{2} - \frac{16}{9\pi^2} \right) (0.100)^2 \right] + \left[(0.100)^2 + \left(0.600 + \frac{4 \times 0.100}{3\pi} \right)^2 \right] \right\} \text{m}^2$$
$$= 6.3024 \text{ kg} \cdot \text{m}^2$$

$$(I_y)_4 = (7.3985 \text{ kg}) \left\{ \left[\frac{1}{2} (0.050)^2 \right] + \left[(0.100)^2 + (0.600)^2 \right] \right\} \text{m}^2$$

= 2.7467 kg · m²

$$I_y = (15.0720 + 2.5562 + 6.3024 - 2.7467) \text{kg} \cdot \text{m}^2$$

= 21.1839 kg · m²

or
$$I_y = 21.2 \,\mathrm{kg} \cdot \mathrm{m}^2 \blacktriangleleft$$

Determine the mass moment of inertia of the steel machine element shown with respect to the z axis. (The density of steel is 7850 kg/m^3 .)

SOLUTION

See machine elements shown in Problem 9.145

Also note

$$m_1 = 113.040 \text{ kg}$$

$$m_2 = 45.216 \,\mathrm{kg}$$

$$m_3 = 14.7969 \text{ kg}$$

$$m_{\Delta} = 7.3985 \text{ kg}$$

Using Fig. 9.28 for components 1 and 2 and the equations derived above for components 3 and 4, have

Now

$$I_z = (I_z)_1 + (I_z)_2 + (I_z)_3 - (I_z)_4$$

where

$$(I_z)_1 = (113.040 \text{ kg}) \left\{ \frac{1}{12} \left[(0.200)^2 + (0.120)^2 \right] + \left[\left(\frac{0.200}{2} \right)^2 + \left(\frac{0.120}{2} \right)^2 \right] \right\} m^2$$

$$= 2.0498 \,\mathrm{kg} \cdot \mathrm{m}^2$$

$$(I_z)_2 = (45.216 \text{ kg}) \left\{ \frac{1}{12} \left[(0.200)^2 + (0.080)^2 \right] + \left[(0.100)^2 + (0.160)^2 \right] \right\} \text{m}^2$$

$$= 1.78453 \,\mathrm{kg} \cdot \mathrm{m}^2$$

$$(I_z)_3 = (14.7969 \text{ kg}) \left\{ \frac{1}{12} \left[3(0.100)^2 + (0.120)^2 \right] + \left[(0.100)^2 + (0.060)^2 \right] \right\} \text{m}^2$$

$$= 0.25599 \,\mathrm{kg} \cdot \mathrm{m}^2$$

$$(I_z)_4 = (7.3985 \text{ kg}) \left\{ \frac{1}{12} \left[3(0.050)^2 + (0.120)^2 \right] + \left[(0.100)^2 + (0.060)^2 \right] \right\} \text{m}^2$$

$$= 0.114122 \text{ kg} \cdot \text{m}^2$$

$$I_z = (2.0498 + 1.78453 + 0.25599 - 0.114122) \text{kg} \cdot \text{m}^2$$

= 3.97629 kg·m²

or
$$I_z = 3.98 \,\mathrm{kg \cdot m^2} \, \blacktriangleleft$$

3 in. 12 in. 4.5 in. 2.75 in.

PROBLEM 9.146

An aluminum casting has the shape shown. Knowing that the specific weight of aluminum is 0.100 lb/in^3 , determine the moment of inertia of the casting with respect to the z axis.

SOLUTION

Have

$$m = \rho V = \frac{\gamma}{g} V = \frac{0.10 \text{ lb/in}^3}{32.2 \text{ ft/s}^2} V$$

$$= \left(0.0031056 \,\mathrm{lb} \cdot \mathrm{s}^2 / \mathrm{ft} \cdot \mathrm{in}^3\right) V$$

$$m_1 = (0.0031056 \,\mathrm{lb\,s^2/ft \cdot in^3})(12 \,\mathrm{in.})(3 \,\mathrm{in.})(4.8 \,\mathrm{in.})$$

$$= 0.53665 \, \text{lb} \cdot \text{s}^2/\text{ft}$$

$$m_2 = (0.0031056 \,\mathrm{lb \cdot s^2/ft \cdot in^3})(1.5 \,\mathrm{in.})(4.8 \,\mathrm{in.})(3 \,\mathrm{in.}) = 0.06708 \,\mathrm{lb \cdot s^2/ft}$$

$$m_3 = (0.0031056 \,\mathrm{lb \cdot s^2/ft \cdot in^3}) \left[\frac{\pi}{2} (2.4 \,\mathrm{in.})^2 \times (1.5 \,\mathrm{in.}) \right]$$

$$= 0.042148 \, \text{lb} \cdot \text{s}^2/\text{ft}$$

$$m_4 = m_5 = \left(0.0031056 \,\mathrm{lb \cdot s^2/ft \cdot in^3}\right) \left[\frac{\pi}{2} \left(2.75 \,\mathrm{in.}\right)^2 \times \left(1.0 \,\mathrm{in.}\right)\right]$$

$$= 0.036892 \text{ lb} \cdot \text{s}^2/\text{ft}$$

PROBLEM 9.146 CONTINUED

Using Fig. 9.28 for components 1 and 2 and the equations derived above for components 3, 4, and 5, have

$$\begin{split} I_z &= \left(I_z\right)_1 + \left(I_z\right)_2 + \left(I_z\right)_3 + \left(I_z\right)_4 + \left(I_z\right)_5 &\quad \text{where} \qquad \left(I_z\right)_4 = \left(I_z\right)_5 \\ I_z &= \left(0.53665 \, \text{lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \frac{1}{12} \left[\left(12 \, \text{in.}\right)^2 + \left(3 \, \text{in.}\right)^2 \right] + \left(\frac{12 \, \text{in.}}{2}\right)^2 + \left(\frac{3 \, \text{in.}}{2}\right)^2 \right\} \times \left(\frac{1 \, \text{ft}}{12 \, \text{in.}}\right)^2 \\ &\quad + \left(0.06708 \, \text{lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \frac{1}{12} \left[\left(3 \, \text{in.}\right)^2 + \left(1.5 \, \text{in.}\right)^2 \right] + \left(1.5 \, \text{in.}\right)^2 + \left(4.5 \, \text{in.} - 0.75 \, \text{in.}\right)^2 \right\} \times \left(\frac{1 \, \text{ft}}{12 \, \text{in.}}\right)^2 \\ &\quad + \left(0.042148 \, \text{lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \left(\frac{1}{4} - \frac{16}{4\pi}\right) \left(2.4 \, \text{in.}\right)^2 + \frac{1}{12} \left(1.5 \, \text{in.}\right)^2 \right. \\ &\quad + \left(3 \, \text{in.} + \frac{4 \times 2.4 \, \text{in.}}{3\pi}\right)^2 + \left(4.5 \, \text{in.} - 0.75 \, \text{in.}\right)^2 \right\} \times \left(\frac{1 \, \text{ft}}{12 \, \text{in.}}\right)^2 \\ &\quad + 2 \left(0.036892 \, \text{lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \frac{1}{12} \left[3 \left(2.75 \, \text{in.}\right)^2 + \left(1.0 \, \text{in.}\right)^2\right] + \left[\left(12 \, \text{in} - 2.75 \, \text{in}\right)^2 + \left(0.5 \, \text{in}\right)^2\right] \right\} \times \left(\frac{1 \, \text{ft}}{12 \, \text{in.}}\right)^2 \\ &\quad = 0.252096 \, \text{lb} \cdot \text{ft} \cdot \text{s}^2 \end{split}$$

or
$$I_z = 0.252 \, \text{lb} \cdot \text{ft} \cdot \text{s}^2 \blacktriangleleft$$

Determine the moment of inertia of the steel machine element shown with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The specific weight of steel is 490 lb/ft³.)

SOLUTION

Have

$$m = \rho_{ST} V = \frac{\delta_{ST}}{g} V$$

Then

$$m_1 = \frac{490 \text{ lb/f}t^3}{32.2 \text{ ft/s}^2} \times (3 \times 1 \times 4) \text{ in}^3 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^3$$

$$= 105.676 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$m_2 = \frac{490 \text{ lb/ft}^3}{32.2 \text{ ft/s}^2} \times (1.5 \times 1 \times 2) \text{ in}^3 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^3 = 26.419 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$m_3 = \frac{490 \text{ lb/ft}^3}{32.2 \text{ ft/s}^2} \times \left[\frac{\pi}{2} (0.5)^2 \times 1.5 \right] \text{in}^3 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^3 = 5.1874 \times 10^3 \text{ lb} \cdot \text{s}^2/\text{ft}$$

$$m_4 = \frac{490 \text{ lb/ft}^3}{32.2 \text{ ft/s}^2} \times \left[\frac{\pi}{2} (1.4)^2 \times 0.4\right] \text{in}^3 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^3$$

$$= 10.8491 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}$$

(a) Using Fig. 9.28 for components 1 and 2 and the equations derived above for components 3 and 4, have

$$I_x = (I_x)_1 + (I_x)_2 + (I_x)_3 - (I_x)_4$$

$$(I_x)_1 = (105.676 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[(1)^2 + (4)^2 \right] + \left[\left(\frac{1}{2} \right)^2 + \left(\frac{4}{2} \right)^2 \right] \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2 \right\}$$

$$= 4.1585 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_x)_2 = (26.419 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[(1)^2 + (2)^2 \right] + \left[(0.5)^2 + (5)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 4.7089 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

PROBLEM 9.147 CONTINUED

$$(I_x)_3 = \left(5.1874 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \left[\left(\frac{1}{2} - \frac{16}{9\pi^2} \right) (0.5)^2 \right] + \left[\left(0.5 \right)^2 + \left(6 + \frac{4 \times 0.5}{3\pi} \right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 1.40209 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_x)_4 = (10.8451 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[3(1.4)^2 + (0.4)^2 \right] + \left(6 \times \frac{4 \times 0.5}{3\pi} \right)^2 \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 0.38736 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

Then

$$I_x = \left[\left(4.1585 + 4.7089 + 1.40209 - 0.38736 \right) \times 10^{-3} \right] \text{lb·ft·s}^2$$
$$= 9.8821 \times 10^{-3} \text{ lb·ft·s}^2$$

or $I_r = 9.88 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

(b) Have
$$I_y = (I_y)_1 + (I_y)_2 + (I_y)_3 - (I_y)_4$$

$$(I_y)_1 = (105.676 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[(3)^2 + (4)^2 \right] + \left[\left(\frac{3}{2} \right)^2 + \left(\frac{4}{2} \right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 6.1155 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_y)_2 = (26.419 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[(1.5)^2 + (2)^2 \right] + \left[(0.75)^2 + (5)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 4.7854 \times 10^{-5} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_y)_3 = (5.1874 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \left[\left(\frac{1}{4} - \frac{16}{9\pi^2} \right) (0.5)^2 + \frac{1}{12} (1.5)^2 \right] + \left[(0.75)^2 + \left(6 + \frac{4.05}{3\pi} \right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$

$$= 1.4178 \text{ s} \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$(I_y)_4 = (10.8451 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \left[\left(\frac{1}{2} - \frac{16}{9\pi^2} \right) (1.4)^2 \right] + \left[\left(3 - \frac{4 \times 1.4}{3\pi} \right)^2 + (2)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$

$$= 0.78438 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

PROBLEM 9.147 CONTINUED

$$I_y = \left[\left(16.1155 + 4.7854 + 1.41785 - 0.78438 \right) \times 10^{-3} \right] \text{lb} \cdot \text{ft} \cdot \text{s}^2$$
$$= 11.5344 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

or $I_v = 11.53 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

$$I_z = (I_z)_1 + (I_z)_2 + (I_z)_3 - (I_z)_4$$

where

$$(I_z)_1 = (105.676 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[(3)^2 + (1)^2 \right] + \left[\left(\frac{3}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 2.4462 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$\begin{split} \left(I_z\right)_2 &= \left(26.419 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}\right) \left\{ \frac{1}{12} \left[\left(1.5\right)^2 + \left(1\right)^2 \right] + \left[\left(\frac{1.5}{2}\right)^2 + \left(\frac{1}{2}\right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^2 \\ &= 0.198754 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2 \end{split}$$

$$(I_z)_3 = (5.1874 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}) \left\{ \frac{1}{12} \left[3(0.5)^2 + (1.5)^2 \right] + \left[(0.75)^2 + (0.5)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)^2$$
$$= 0.038275 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

$$\begin{split} \left(I_z\right)_4 &= \left(10.8451 \times 10^{-3} \text{ lb} \cdot \text{s}^2/\text{ft}\right) \\ \left\{ \left[\left(\frac{1}{4} - \frac{16}{9\pi^2}\right) \left(1.4\right)^2 + \frac{1}{12} \left(0.4\right)^2 \right] \\ &+ \left[\left(3 - \frac{4 \times 1.4}{3\pi}\right)^2 + \left(0.8\right)^2 \right] \right\} \text{in}^2 \times \left(\frac{1 \text{ ft}}{12 \text{ in.}}\right)^2 \\ &= 0.49543 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2 \end{split}$$

$$I_z = \left[\left(2.4462 + 0.198754 + 0.038275 - 0.49543 \right) \times 10^{-3} \right] \text{lb·ft·s}^2$$

$$= 2.1878 \times 10^{-3} \text{ lb·ft·s}^2 \qquad \text{or } I_z = 2.19 \times 10^{-3} \text{ lb·ft·s}^2 \blacktriangleleft$$

To the instructor:

The following formulas for the mass moment of inertia of wires are derived or summarized at this time for use in the solutions of problems 9.148–9.150

Slender Rod

$$I_x = 0$$
 $\bar{I}_{y'} = \bar{I}_{z'} = \frac{1}{12} mL^2$ (Fig. 9.28)

$$I_y = I_z = \frac{1}{3}mL^2$$
 (Sample Problem 9.9)

Circle

Have $\overline{I}_y = \int r^2 dm = ma^2$

Now $\overline{I}_y = \overline{I}_x + \overline{I}_z$

And symmetry implies $\overline{I}_x = \overline{I}_x$

$$\therefore \quad \overline{I}_x = \overline{I}_z = \frac{1}{2}ma^2$$

Semicircle

Following the above arguments for a circle, have

$$\overline{I}_x = I_z = \frac{1}{2}ma^2$$
 $I_y = ma^2$

Using the parallel-axis theorem

$$I_z = \overline{I}_{z'} + m\overline{x}^2 \qquad x = \frac{2a}{\pi}$$

or $I_{z'} = m \left(\frac{1}{2} - \frac{4}{\pi^2} \right) a^2$

Aluminum wire with a mass per unit length of 0.049 kg/m is used to form the circle and the straight members of the figure shown. Determine the mass moment of inertia of the assembly with respect to each of the coordinate axes.

SOLUTION

First compute the mass of each component.

Have

$$m = \rho L$$

Then

$$m_1 = (0.049 \text{ kg/m}) [2\pi (0.32 \text{ m})]$$

= 0.09852 kg
 $m_2 = m_3 = m_4 = m_5$

$$= (0.049 \,\mathrm{kg/m})(0.160 \,\mathrm{m}) = 0.00784 \,\mathrm{kg}$$

Using the equation given above and the parallel axis theorem, have

$$I_{x} = (I_{x})_{1} + (I_{x})_{2} + (I_{x})_{3} + (I_{x})_{5}$$

$$= (0.09852 \text{kg}) \left[\left(\frac{1}{2} \right) (0.32 \text{ m})^{2} \right] + (0.00784 \text{kg}) \left[\left(\frac{1}{3} \right) (0.160 \text{ m})^{2} \right]$$

$$+ (0.00784 \text{kg}) \left[0 + (0.160 \text{ m})^{2} \right]$$

$$+ (0.00784 \text{kg}) \left[\left(\frac{1}{12} \right) (0.16 \text{ m})^{2} + (0.08 \text{ m})^{2} + (0.32 \text{ m})^{2} \right]$$

$$+ (0.00784 \text{kg}) \left[\frac{1}{12} (0.16 \text{ m})^{2} + (0.16 \text{ m})^{2} + (0.32 \text{ m} - 0.08 \text{ m})^{2} \right]$$

$$= \left[(5.0442 + 0.06690 + 0.2007 + 0.86972 + 0.66901) \times 10^{-3} \right] \text{kg} \cdot \text{m}^{2}$$

$$= 6.8505 \times 10^{-3} \text{kg} \cdot \text{m}^{2} \qquad \text{or} \quad I_{x} = 6.85 \times 10^{-3} \text{kg} \cdot \text{m}^{2} \blacktriangleleft$$

PROBLEM 9.148 CONTINUED

Have
$$I_y = (I_y)_1 + (I_y)_2 + (I_y)_3 + (I_y)_4 + (I_y)_5$$

where
$$(I_y)_2 = (I_y)_4$$
 and $(I_y)_3 = (I_y)_5$

Then
$$I_y = (0.09852 \text{ kg}) [(0.32 \text{ m})^2] + 2(0.00784 \text{ kg}) [0 + (0.32 \text{ m})^2]$$

$$\hspace*{1.5cm} + 2 \big(0.00784 \, kg \big) \! \bigg[\frac{1}{12} \big(0.16 \, m \big)^2 + \big(0.24 \, m \big)^2 \, \bigg]$$

$$= \! \left[10.088 + 2 \! \left(0.80282 \right) \! + 2 \! \left(0.46831 \right) \right] \! \times 10^{-3} \ kg \! \cdot \! m^2$$

$$=12.6303 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

or
$$I_y = 12.63 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

By symmetry
$$I_z = I_x$$
 or $I_z = 6.85 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

The figure shown is formed of 3-mm-diameter steel wire. Knowing that the density of the steel is 7850 kg/m^3 , determine the mass moment of inertia of the wire with respect to each of the coordinate axes.

SOLUTION

Have
$$m = \rho V = \rho AL$$

Then

$$m_1 = m_2 = (7850 \text{ kg/m}^3) \left[\pi (0.0015 \text{ m})^2 \right] \times (\pi \times 0.36 \text{ m})$$

 $m_2 = m_1 = 0.062756 \text{ kg}$
 $m_3 = m_4 = (7850 \text{ kg/m}^3) \left[\pi (0.0015 \text{ m})^2 \right] \times (0.36 \text{ m})$

$$m_3 = m_4 = (7850 \text{ kg/m}^3) \left[\pi (0.0015 \text{ m})^2 \right] \times (0.36 \text{ m})$$

= 0.019976 kg

\(\) Using the equations given above and the parallel axis theorem, have

$$I_x = (I_x)_1 + (I_x)_2 + (I_x)_3 + (I_x)_4$$

where

$$(I_x)_3 = (I_x)_4$$

$$I_x = (0.062756 \text{ kg}) \left[\frac{1}{2} (0.36 \text{ m})^2 \right] + (0.062756) \left[\frac{1}{2} (0.36 \text{ m})^2 + (0.36 \text{ m})^2 \right]$$

$$+ 2(0.019976 \text{ kg}) \left[\frac{1}{12} (0.36 \text{ m})^2 + (0.18 \text{ m})^2 + (0.36 \text{ m})^2 \right]$$

$$= \left[4.06659 + 12.19977 + 2(3.45185) \right] \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$= 23.1701 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

or
$$I_x = 23.2 \times 10^{-3} \text{ kg} \cdot \text{m}^2 \blacktriangleleft$$

$$I_{y} = (I_{y})_{1} + (I_{y})_{2} + (I_{y})_{3} + (I_{y})_{4}$$

$$(I_y)_1 = (I_y)_2$$

and
$$(I_y)_2 = (I_y)_4$$

PROBLEM 9.149 CONTINUED

Then

$$I_y = 2(0.062756 \text{ kg}) [(0.36 \text{ m})^2] + 2(0.019976 \text{ kg}) [0 + (0.36 \text{ m})^2]$$

$$= 2(8.13318 \times 10^{-3} \text{ kg} \cdot \text{m}^2) + 2(2.58889 \times 10^{-3} \text{ kg} \cdot \text{m}^2)$$

$$= 21.44414 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

or
$$I_v = 21.4 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

Have

$$I_z = (I_z)_1 + (I_z)_2 + (I_z)_3 + (I_z)_4$$

 $(I_z)_3 = (I_z)_4$

where

 $I_z = (0.062756 \text{ kg}) \left[\frac{1}{2} (0.36 \text{ m})^2 \right]$

+
$$\left(0.062756 \text{ kg}\right) \left[\left(\frac{1}{2} - \frac{4}{\pi^2}\right) \left(0.36 \text{ m}\right)^2 + \left(\frac{2 \times 0.36 \text{ m}^2}{\pi}\right) + \left(0.36 \text{ m}\right)^2 \right]$$

$$+2(0.019976 \text{ kg}) \left[\frac{1}{3}(0.36 \text{ m})^2\right]$$

$$= \left[4.06659 + 12.1998 + 2(0.86296)\right] 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$= 17.9923 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

or
$$I_z = 17.99 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

A homogeneous wire with a weight per unit length of 0.041 lb/ft is used to form the figure shown. Determine the moment of inertia of the wire with respect to each of the coordinate axes.

SOLUTION

First compute the mass of each component. Mass of each component is

indentical

$$m = \frac{\left(m/L\right)}{g}L$$

Have

$$=\frac{(0.041 \text{ lb/ft})(1.5 \text{ ft})}{32.2 \text{ ft/s}^2}$$

$$= 0.00190994 \text{ lb} \cdot \text{s}^2/\text{ft}$$

Using the equations given above and the parallel axis theorem, have

$$(I_x)_1 = (I_x)_3 + (I_x)_4 = (I_x)_6$$
 and $(I_x)_2 = (I_x)_5$

$$I_x = 4(I_x)_1 + 2(I_x)_2$$

$$I_x = 4(0.00190994 \text{ lb} \cdot \text{s}^2/\text{ft}) \left[\frac{1}{3} (5 \text{ ft})^2 \right]$$

$$\hspace{1.5cm} + \hspace{.1cm} 2 \Big(0.00190994 \hspace{.1cm} lb \!\cdot\! s^2 \hspace{-.1cm} / \hspace{-.1cm} ft \Big) \hspace{-.1cm} \bigg[\hspace{.1cm} 0 + \hspace{.1cm} \big(1.5 \hspace{.1cm} ft \big)^2 \hspace{.1cm} \bigg]$$

$$= 0.0143246 \, lb \cdot ft \cdot s^2$$

or
$$I_x = 14.32 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2$$

Now
$$\left(I_y\right)_1 = 0$$
 $\left(I_y\right)_2 = \left(I_y\right)_6$ $\left(I_y\right)_4 = \left(I_y\right)_5$

PROBLEM 9.150 CONTINUED

Then

$$I_{y} = 2(I_{y})_{2} + (I_{y})_{3} + 2(I_{y})_{4}$$

$$= (0.0019094 \text{ lb} \cdot \text{s}^{2}/\text{ft}) \left\{ \left[2\left(\frac{1}{3}\right) (1.5 \text{ ft})^{2} \right] + \left[0 + (1.5 \text{ ft})^{2} \right] + 2\left[\frac{1}{12} (1.5 \text{ ft})^{2} + (1.5 \text{ ft})^{2} + (0.75 \text{ ft})^{2} \right] \right\}$$

$$= 0.0019094 (1.5 + 2.25 + 6) \text{ lb} \cdot \text{ft} \cdot \text{s}^{2} = 0.0186219 \text{ lb} \cdot \text{ft} \cdot \text{s}^{2}$$

$$I_{v} = 18.62 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^{2} \blacktriangleleft$$

By symmetry

$$I_z = I_y$$

$$I_z = 18.62 \times 10^{-3} \text{ lb} \cdot \text{ft} \cdot \text{s}^2 \blacktriangleleft$$