GEOMETRÍA Capítulo 7

SEGMENTOS PROPORCIONALES @ SACO OLIVEROS

MOTIVATING | STRATEGY

1. PROPORCIÓN ÁUREA

sección áurea, se halla presente en la naturaleza, el arte y la arquitectura.

Los griegos la conocieron en el estudio del cuerpo humano y la utilizaron, en la escultura y la arquitectura y la definieron como una característica fundamental en su

estética.

También llamada

a

$$\frac{a}{b} = \frac{a+b}{a} = 0$$

b

Razón geométrica de dos segmentos

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida. *Ejemplo:*

2/3: razón geométrica de AB y CD

Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.

Son proporcionales

Teorema de Tales

Tres o más rectas paralelas determinan sobre dos rectas transversales o secantes a ellas segmentos cuyas longitudes son, respectivamente, proporcionales.

Corolario de Tales

Toda recta paralela a un lado de un triángulo divide interna o externamente a los otros lados en segmentos proporcionales.

Teorema de la bisectriz

Teorema del incentro

Teorema de Ceva

a.b.c = m.n.p

1. Halle el valor de x, si $\overrightarrow{L_1} /\!\!/ \overrightarrow{L_2} /\!\!/ \overrightarrow{L_3}$.

Resolución:

Piden: X

Aplicamos teorema de Tales

$$\frac{a}{b} = \frac{9b}{a}$$

$$a^2 = 9b^2$$

$$\frac{3\cancel{b}}{\cancel{b}} = \frac{\cancel{x}}{8}$$

$$3(8) = x$$

2. Halle el valor de x.

Resolución

- Piden: x
- Aplicamos el corolario de Tales

3. En un triángulo ABC, donde AB = 6 y BC = 12, se traza la bisectriz interior BD. Halle AD, si m∡BAD = m∡ABC.

4. Halle el valor de x.

Resolución

ABC: ángulo externo

01

 3α

$$2x = 24$$

$$x = 12u$$

5. En un triángulo rectángulo ABC, recto en B, la mediana \overline{AM} y las cevianas interiores \overline{BN} y \overline{CS} se intersecan en P. Si SB = 3, AN = 2 y NC = 6, hallo m \star BCA

6. En la figura el triángulo ABC representa el contorno de un jardín donde l es su incentro. AB=8m, BC=10m y AC=6m. Luego se traza el $\overline{\rm DE}$ // $\overline{\rm AC}$ para dividir al jardín en dos partes para cultivar flores de diferente

color. Halle la longitud del \overline{BD} .

• △ABL: aplicamos

$$\frac{BI}{IL} = \frac{x}{8-x}$$

$$3 = \frac{x}{8-x}$$

7. La estructura de un puente tiene el diseño que se muestra en la figura, tal que los triángulos ABC, CDE y EFG son equiláteros. Halle el valor de x.

Resolución

AB // CD // EF (Áng. correspondientes)

BC // DE // FG (Áng. correspondientes)

