МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 2381	 Тищенко А. М
Преподаватель	Шевская Н. В.

Санкт-Петербург 2022

Цель работы.

Изучить машину Тьюринга.

Задание.

Вариант 1: на вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' — последний в строке, то удалить его. Если первый встретившийся символ 'b' — предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- a
- b
- C
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Основные теоретические положения.

Состояние	a	b	С	"	Описание состояния
q0	a R q1	bRq2	cRq1	""R q0	Начальное, находит начало
					слова
q1	a R q1	b R q2	cRq1	""Lq4	Находит первое <i>b</i>
q2	""R q3	""R q3	""R q3	""Lq6	Удаляет 1-ый символ после b
q3	""R q7	""R q7	""R q7		Удаляет 2-ой символ после b
q4	a L q4		c L q4	""R q5	Возвращается в начало слова
q5	""R q16		""R q16		Удаляет первый символ слова
q6		"" N q16			удаляет b в конце слова
q7	""Lq8	""Lq12	""Lq14	""N q16	Начинает сдвиг символа
q8				""Lq9	сдвиг автомата
q9				a R q10	Вставка а
q10				""R q11	Возвращение
q11				""R q7	автомата
q12				""Lq13	сдвиг автомата
q13				b R q10	Вставка в
q14				""Lq15	сдвиг автомата
q15				c R q10	Вставка с

q16 – Конечное состояние

Выполнение работы.

Переменные: целочисленные R, L, N, для перемещения автомата, словарь table для хранения таблицы состояний.

Функция *turing* в соответствии с программой обрабатывает ленту, так же как и машина Тьюринга.

Разработанный программный код см. в приложении А.

Выводы.

Была изучена машина Тьюринга.

Разработана функция, симулирующая её работу, создана таблица состояний в удаляющая символы в ленте в соответствии с заданием.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
R = +1
     L = -1
     N = 0
     table = {
     'q0': {'a': ('a', R, 'q1'), 'b': ('b', R, 'q2'), 'c': ('c', R, 'q1'),
' ': (' ', R, 'q0')},
     'q1': {'a': ('a', R, 'q1'), 'b': ('b', R, 'q2'), 'c': ('c', R, 'q1'),
' ': (' ', L, 'q4')},
     'q2': {'a': (' ', R, 'q3'), 'b': (' ', R, 'q3'), 'c': (' ', R, 'q3'),
' ': (' ', L, 'q6')},
     'q3': {'a': (' ', R, 'q7'), 'b': (' ', R, 'q7'), 'c': (' ', R, 'q7'),
' ': (' ', N, 'ex')},
     'q4': {'a': ('a', L, 'q4'),
                                                       'c': ('c', L, 'q4'),
' ': (' ', R, 'q5')},
     'q5': {'a': (' ', N, 'ex'),
                                                             'c': (' ', N,
'ex'),},
                                  'b': (' ', N, 'ex'),},
     'q7': {'a': (' ', L, 'q8'), 'b': (' ', L, 'q12'), 'c': (' ', L,
'q14'), ' ': (' ', N, 'ex')},
     'q8': {
': (' ', L, 'q9')},
     'q9': {
': ('a', R, 'q10')},
     'q10': {
': (' ', R, 'q11')},
     'q11': {
': (' ', R, 'q7')},
     'q12': {
': (' ', L, 'q13')},
     'q13': {
': ('b', R, 'q10')},
     'q14': {
': (' ', L, 'q15')},
     'q15': {
': ('c', R, 'q10')},
     'ex': 'exit'}
     def turing(program: dict, tape: list, start: str) -> (list, str):
         cell = 0
         state = start
         res = ''
         while True:
             res += state + ' '
             rows = program[state]
             if rows == 'exit': break
             cur row = rows[tape[cell]]
             tape[cell] = cur row[0]
             cell += cur row[1]
             state = cur row[2]
         return tape, res
     print(*turing(table, list(input()), 'q0')[0], sep='')
```