Contents

1	Cla	sses					2
	1.1	vector	- ベクト	ルオブジェクトとその計算・・・・・・・・			2
		1.1.1	Vector -	ベクトルクラス			3
			1.1.1.1	copy - 自身のコピー			Ę
			1.1.1.2	set – 他の compo を設定			F
			1.1.1.3	indexOfNoneZero - 0 でない最初の位置			Ę
			1.1.1.4	toMatrix - Matrix オブジェクトに変換			Ę
		112	innerPro	duct(function) - 内積			7

Chapter 1

Classes

- 1.1 vector ベクトルオブジェクトとその計算
 - Classes
 - Vector
 - Functions
 - innerProduct

このモジュールはある例外クラスを提供する.

VectorSizeError: ベクトルのサイズが正しくないことを報告. (主に二つのベクトルの演算において.)

1.1.1 Vector - ベクトルクラス

Vector はベクトルに対するクラス.

Initialize (Constructor)

 $Vector(compo: \mathit{list}) o \mathit{Vector}$

compo から新しいベクトルオブジェクトを作成. compo は整数または Ring Element のインスタンスである要素のリストでなければならない.

Attributes

compo:

ベクトルの成分を表す.

Operations

数学の世界での標準の通り、インデックスは1が最初だということに注意.

operator	explanation
u+v	ベクトルの和.
u-v	ベクトルの差.
A*v	行列とベクトルの積.
a*v	ベクトルのスカラー倍.
v//a	スカラー除算.
v%n	compo の各要素の n での剰余.
-v	各要素の符号を変える.
u==v	等しいかどうか.
u!=v	等しくないかどうか.
v[i]	ベクトルの i 番目の成分を返す.
v[i] = c	ベクトルの i 番目の成分を c に置き換える.
len(v)	compo の長さを返す.
repr(v)	compo の repr 文字列を返す.
str(v)	compo の string 文字列を返す.

Examples

```
>>> A = vector.Vector([1, 2])
>>> A
Vector([1, 2])
>>> A.compo
[1, 2]
```

```
>>> B = vector.Vector([2, 1])
>>> A + B
Vector([3, 3])
>>> A % 2
Vector([1, 0])
>>> A[1]
1
>>> len(B)
```

Methods

1.1.1.1 сору – 自身のコピー

 $\operatorname{copy}(\operatorname{self}) o \operatorname{\mathit{Vector}}$

self のコピーを返す.

1.1.1.2 set – 他の compo を設定

 $\operatorname{set}(\operatorname{self},\operatorname{compo:}\ \mathit{list}) \to (\operatorname{None})$

self の compo を新しい compo で置き換える.

1.1.1.3 indexOfNoneZero - 0 でない最初の位置

 $indexOfNoneZero(self) \rightarrow integer$

self.compo の 0 でない成分の最初のインデックスを返す.

†compo の全ての成分が 0 の場合,ValueError が起こる.

1.1.1.4 toMatrix - Matrix オブジェクトに変換

 $toMatrix(self, as column: bool=False) \rightarrow Matrix$

createMatrix 関数を使い Matrix オブジェクトを返す.

もし as_column が True なら,self を縦ベクトルとみなした行列を返す. さもなくば,self を横ベクトルとみなした行列を返す.

Examples

>>> A = vector.Vector([0, 4, 5])

>>> A.indexOfNoneZero()

2

>>> print A.toMatrix()

0 4 5

>>> print A.toMatrix()

4 5

1.1.2 innerProduct(function) - 内積

```
innerProduct(bra: Vector, ket: Vector) \rightarrow RingElement
```

bra と ket の内積を返す.

この関数は複素数体上の元に対するエルミート内積もサポートする.

†返される値は成分の型に依存することに注意.

Examples

```
>>> A = vector.Vector([1, 2, 3])
>>> B = vector.Vector([2, 1, 0])
>>> vector.innerProduct(A, B)
4
>>> C = vector.Vector([1+1j, 2+2j, 3+3j])
>>> vector.innerProduct(C, C)
(28+0j)
```

Bibliography