(නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

භෞතික විදුනව

பௌதிகவியல் Physics

2019.08.09 / 0830 - 1030

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- * මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 12 ක අඩංගු වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.

I

- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි** හෝ **ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය**, පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින්** (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{m \, s^{-2}}$ ලෙස සලකන්න.)

- 1. පහත සඳහන් ඒකක අතුරෙන් මූලික ඒකකයක් නොවන්නේ කුමක් ද?
 - (1) m
- (2) J
- (4) K
- (5) mol

- $oldsymbol{2}$. ගුරුත්වාකර්ෂණ නියතය Gහි මාන දෙනු ලබන්නේ,
 - (1) $L^2M^{-1}T^{-1}$
- (2) L^2M^{-2}

- (3) $L^2M^{-2}T^{-1}$ (4) $L^3M^{-1}T^{-2}$ (5) $L^3M^{-2}T^{-2}$
- 3. ද්වි-ධුැවීය සන්ධි ටුාන්සිස්ටරයක් සංතෘප්ත අවස්ථාවේ කිුිිියාත්මක වන විට පාදම ධාරාව තවදුරටත් වැඩි කිරීම
 - (1) ටුාන්සිස්ටරය සංවෘත (ON) කරයි.
- (2) ටුාන්සිස්ටරය විවෘත (OFF) කරයි.
- (3) සංගුාහක ධාරාව වැඩි කරයි.
- (4) සංග්‍රාහක ධාරාව අඩු කරයි.
- (5) සංගුාහක ධාරාව වෙනස් නොකරයි.
- 4. අංශු භෞතික විදාහවේ සොයාගෙන ඇති සාක්ෂි අනුව පදාර්ථ සෑදී ඇත්තේ,
 - ක්වාක් 6 කිනි.

- (2) ලෙප්ටන් 6 කිනි.
- (3) ක්වාක් 4 ක් සහ ලෙප්ටන් 4 කිනි.
- (4) ක්වාක් 6 ක් සහ ලෙප්ටන් 4 කිනි.
- (5) ක්වාක් 6 ක් සහ ලෙප්ටන් 6 කිනි.
- ${f 5}$. ලක්ෂීය වස්තුවක් මගින් ඇති වන ගුරුත්වජ විභවය V(r), දූර r සමග විචලනය වීම වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 6. උෂ්ණත්වමිතිය සම්බන්ධයෙන් පහත පුකාශවලින් නිවැරදි නොවන්නේ කුමක් ද?
 - (1) උෂ්ණත්වය සමග විචලනය වන මැනිය හැකි භෞතික රාශියක් පැවතිය යුතු ය.
 - (2) රසදිය-වීදුරු උෂ්ණත්වමාන තුනී බිත්ති සහිත වීදුරු බල්බවලින් සමන්විත ය.
 - (3) විශාල රසදිය බල්බයක් සහිත රසදිය-වීදුරු උෂ්ණත්වමානයක් භාවිත කිරීමෙන් මිනුම් පරාසය වැඩි කර ගත හැකි ය.
 - (4) එකිනෙකට වෙනස් වර්ග දෙකක උෂ්ණත්වමාන එකම උෂ්ණත්වයක දී සුළු වශයෙන් වෙනස් පාඨාංකයන් ලබාදිය හැක්කේ සියලු ම උෂ්ණත්වමිතික ගුණ එක සමාන ලෙස සංවේදී නොවීම නිසා ය.
 - (5) රසදිය හා වීදුරු අතර විශාල ස්පර්ශ කෝණයක් තිබීම රසදිය-වීදුරු උෂ්ණත්වමානයකින් නිවැරදි පාඨාංක ගැනීම සඳහා වාසියක් වේ.

- 7. පාරජම්බුල සහ අතිධ්වති තරංගවල භෞතික ගුණ පිළිබඳ පහත පුකාශ සලකන්න.
 - (A) තරංග දෙකෙහිම ශක්තිය ඒවායේ සංඛාාත මත රඳා පවතී.
 - (B) තරංග දෙකටම දුවා අයනීකරණය කිරීමේ හැකියාව ඇත.
 - (C) තරංග දෙකම ධැවීකරණය කළ හැක.

ඉහත පුකාශවලින් නිවැරදි **නොවන්නේ** කුමක් ද?/කුමන ඒවා ද?

(1) A පමණි

(2) A සහ B පමණි

(3) A සහ C පමණි

(4) B සහ C පමණි

- (5) A, B, සහ C සියල්ලම
- 8. රූපයේ දක්වා ඇති ආකාරයට වස්තුවක් වෘත්තාකාර පථයක නියත v වේගයකින් චලිත වේ. A සිට B දක්වා චලිත වීමේ දී වස්තුවේ සිදු වන පුවේගයේ වෙනස් වීම වනුයේ,

- 9. බර උසුලන්නෙක් ඔහුගේ දැතින් භාරයක් සිරස්ව ඉහළට (ධන දිශාව) ඔසවයි. පිළිවෙළින්
 - (a) ඔහුගේ දෑත් මගින් භාරය මත,
 - (b) ගුරුත්වය මගින් භාරය මත, සහ
 - (c) භාරය මගින් ඔහුගේ දැක් මත කරනු ලබන කාර්යයේ ලකුණ වනුයේ,

	(a)	(b)	(c)
(1)	- +	+	+
(2)	+	-	+
(3)	+	-	
(4)	-	+	3 - -3
(5)	-	-	9 + 0

10. රූපයේ දක්වා ඇති පරිදි E_1, E_2 , සහ $E_3(E_1 < E_2 < E_3)$ ශක්තීන් සහිත, මට්ටම් තුනක ලේසර් (LASER) පද්ධතියක් සම්බන්ධයෙන් පහත සඳහන් පුකාශ සලකා බලන්න.

 $\frac{3}{2}$ මට්ටම E_3

(A) ලේසර් කියාවලිය සිදු වන්නේ ශක්ති මට්ටම් 2 හා 1 අතර ය.

1 මට්ටම

- (B) පොම්පකරණ විකිරණයේ (pumping radiation) සංඛ්‍යාතය $\frac{E_3-E_2}{h}$ වේ.
- (C) 3 මට්ටම මීතස්ථායි (metastable) ශක්ති මට්ටම ලෙස හැඳින්වේ. ඉහත පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?/කුමන ඒවා ද?
- (1) A පමණි

(2) B පමණි

(3) C පමණි

(4) A සහ C පමණි

- (5) B සහ C පමණි
- 11. පෘථිවි වායුගෝලයේ දී ධ්වනි පුවේගය පිළිබඳව කර ඇති පහත පුකාශ සලකා බලන්න.
 - (A) නියත උෂ්ණත්වයේ දී උන්නතාංශය සමග එය වෙනස් නොවේ.
 - (B) පීඩනය අඩු වීමත් සමග එය සෑම විටම වැඩි වේ.
 - (C) උන්නතාංශය වැඩි වීමත් සමග උෂ්ණත්වය අඩු වීමේ පුතිඵලයක් වශයෙන් එය අඩු වේ. ඉහත පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?/ කුමන ඒවා ද?
 - (1) A පමණි

(2) B පමණි

(3) C පමණි

(4) A සහ C පමණි

- (5) A, B, සහ C සියල්ලම
- ${f 12}$. පොදු භාවිතයන්හි දී ${f X}$ -කිරණ නිපදවීම සම්බන්ධයෙන් වූ පහත පුකාශවලින් නිවැරදි **නොවන** පුකාශය කුමක් ද?
 - (1) X -කිරණ නිපදවන පද්ධතිය තුළ පරිපථ දෙකක් භාවිත කෙරේ.
 - (2) ඉලෙක්ටුෝනවල පහර වැදීම මගින් ඇනෝඩය හානි විය හැක.
 - (3) කැතෝඩය රත්කිරීම සඳහා අඩු චෝල්ටීයතාවක් පුමාණවත් වේ.
 - (4) නිකුත්වන X-කිරණවල ශක්තිය සුතිකාව තුළින් ගලන ධාරාව මත රඳා පවතී.
 - (5) ඉලෙක්ටුෝනවල ශක්ති හානිය වළක්වා ගැනීම සඳහා X-කිරණ නළය රික්තනය කළ යුතු ය.

- 13. සංවෘත භාජනයක් තුළ ඇති ජල වාෂ්ප සහිත වාතයේ තුෂාර අංකය පිළිබඳව පහත පුකාශ සලකා බලන්න.
 - (A) තුෂාර අංකයේ දී අසංතෘප්ත ජල වාෂ්ප සංතෘප්ත ජල වාෂ්ප බවට පත් වේ.
 - (B) උෂ්ණත්වය, තුෂාර අංකයට වඩා අඩු කළහොත් වාෂ්පවලින් යම් පුමාණයක් ඝනීභවනය වේ.
 - (C) තුෂාර අංකයේ දී භාජනයේ පරිමාව අඩු කළහොත් වාතයේ නිරපේක්ෂ ආර්දුතාව අඩු වේ. ඉහත පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?/ කුමන ඒවා ද?
 - (1) A පමණි

(2) B පමණි

(3) A සහ B පමණි

- (4) A සහ C පමණි
- (5) A, B, සහ C සියල්ලම
- 14. සමානුපාතික සීමාව තුළ දී කම්බියක ආතතිය T_1 සිට T_2 දක්වා සෙමින් වැඩි කිරීමේ දී එහි දිග l_1 සිට l_2 දක්වා වෙනස් වේ. මෙම කිුයාවලියේ දී කම්බියෙහි ගබඩා වන ශක්තිය වනුයේ,
 - (1) $(T_2 + T_1)(l_2 l_1)$
- (2) $\frac{1}{2} \left(T_2 T_1 \right) \left(l_2 + l_1 \right)$
- (3) $\frac{1}{2}(T_2 T_1)(l_2 l_1)$

- (4) $\frac{1}{2} \left(T_2 + T_1 \right) \left(l_2 + l_1 \right)$
- (5) $\frac{1}{2} \left(T_2 + T_1 \right) \left(l_2 l_1 \right)$
- 15. භාජනයක් තුළ ඇති හයිඩුජන් වායුව සම්මත උෂ්ණත්වයේ ($300~{
 m K}$) හා පීඩනයේ ($1 imes10^5~{
 m N~m^{-2}}$) පවත්වා ගනී. හයිඩුජන් අණුවල වර්ග මධානා මූල වේගය $2~{
 m km~s^{-1}}$ වේ නම්, භාජනය තුළ ඇති හයිඩුජන්වල ඝනත්වය කුමක් ද?

- (1) 0.038 kg m^{-3} (2) 0.075 kg m^{-3} (3) 0.150 kg m^{-3} (4) 1.225 kg m^{-3} (5) 2.450 kg m^{-3}
- ${f 16}$. රූපයේ දැක්වෙන පරිදි A සහ B දඬු දෙකක් එකිනෙක සම්බන්ධ කර සංයුක්ත දණ්ඩක් සාදා ඇත. A සහ B දඬු තුළ අන්වායම තරංග පුවේග පිළිවෙළින් $3210~\mathrm{m~s^{-1}}$ සහ $6420~\mathrm{m~s^{-1}}$ වේ. A දණ්ඩේ නිදහස් කෙළවරට යෙදූ අන්වායාම ස්පන්දයක් $2~\mathrm{m}$ තරංග ආයාමයක් සහිත ව පුගමනය වේ. මෙම තරංගය B දණ්ඩ තුළින් පුගමනය වන විට එහි තරංග ආයාමය කුමක් ද?

- (1) 1 m
- (2) 2 m
- (3) 3 m
- (4) 4 m
- (5) 5 m
- 17. රූපයේ දක්වා ඇති ලක්ෂීය ආරෝපණ වහාප්තිය මගින් A ලක්ෂාය මත ඇති වන විදුපුත් ක්ෂේතුයේ විශාලත්වය සහ දිශාව වනුයේ,
 - $(1) \quad \frac{2q}{4\pi\varepsilon_0 a^2} \rightarrow$

 $(2) \quad \frac{q}{4\pi\varepsilon_0 a^2} \uparrow$

 $(3) \quad \frac{2q}{4\pi\varepsilon_0 a^2} \leftarrow$

- $(4) \quad \frac{6q}{4\pi\varepsilon_0 a^2} \uparrow$

- $(5) \quad \frac{6q}{4\pi\varepsilon_0 a^2} \downarrow$
- f 18. සමාන ධාරණා සහිත ධාරිතුක තුනක් සහ සමාන විද**ු**පුත් ගාමක බල (emf) සහිත බැටරි දෙකක් ශක්තිය ගබඩා කළ හැකි පරිපථයක් නිර්මාණය කිරීම සඳහා ලබා දී ඇත. පහත පරිපථ අතුරෙන් කුමන පරිපථය උපරිම ශක්තියක් ගබඩා කරනු ලබයි ද?

- 19. ක්ෂමතාව $60~\mathrm{W}$ වන පරිපූර්ණ පරිණාමකයක පුාථමික දඟරය තුළින් $6~\mathrm{A}$ ක ධාරාවක් ගලායන විට පුතිදාන වෝල්ටීයතාව 12 V වේ. පරිණාමකයෙහි වර්ගය සහ ධාරා අනුපාතය (පුාථමික ධාරාව : ද්විතීයික ධාරාව) දක්වන නිවැරදි පිළිතුර තෝරන්න.
 - (1) අවකර සහ 6:5
- (2) අවකර සහ 5:6
- අධිකර සහ 1:2

- (4) අධිකර සහ 5:6
- (5) අධිකර සහ 6:5
- ${f 20}$. රූපයේ පෙන්වා ඇති පරිදි හරස්කඩ වර්ගඵලය A සහ මධානා අරය R වන ප්ලාස්ටික් මුදුවක් වටා පොටවල් N සංඛාාවක් එතීමෙන් දඟරයක් තනා ඇත. මෙම දඟරය i ධාරාවක් රැගෙන යන, දිගු සෘජු කම්බියක් සමග සමාකෘව තබා ඇත. සෘජු කම්බියේ ධාරාව වෙනස් වීමේ ශීඝුතාව $i_0\cos\omega t$ නම්, දඟරයේ පේරණය වන විදාුුත් ගාමක බලය (emf) ලබා දෙන්නේ පහත සඳහන් කුමන පුකාශනයෙන් ද?

(2) $\mu_0 A N^2 i_0 \sin \omega t$

$$(3) \quad \frac{\mu_0 AN}{\omega} i_0 \sin \omega t$$

- (4) $\frac{\mu_0 AN}{2\pi R} i_0 \cos \omega t$
- $(5) \quad \frac{\mu_0 A N}{4 \pi^2 R^2} i_0 \cos \omega t$
- ${f 21}.$ රූපයේ පෙන්වා ඇති පරිදි සමවිභව පෘෂ්ඨ දෙකක් මත ඇති A,B, සහ C ලක්ෂා සලකන්න. පුෝටෝනයක් A සිට Bදක්වා ගමන් කරන විට විදාෘත් ක්ෂේතුය මගින් එය මත $3\cdot 2 imes 10^{-19}\,\mathrm{J}$ කාර්යයක් සිදු කරයි. ඉලෙක්ටෝනයක ආරෝපණය $-1\cdot 6 imes 10^{-19}~{
 m C}$ වේ. $V_{AB},~V_{BC},$ සහ V_{CA} විදහුත් විභව අන්තර පිළිවෙළින්,
 - (1) 2V, -2V, සහ 0V වේ.
 - (2) 2 V, −2 V, සහ 2 V වේ.
 - (3) $-2\,V, 2\,V$, සහ $0\,V$ වේ.
 - (4) 0·5 V, − 0·5 V, සහ 0 V වේ.
 - $(5) -0.5 \, \text{V}, 0.5 \, \text{V}$, සහ $0 \, \text{V}$ වේ.

- 22. ආකාශ වස්තුවක් එක්තරා අවස්ථාවක දී පෘථිවියේ හා චන්දුයාගේ කේන්දු යා කරන රේබාවේ මධා ලක්ෂායේ ස්ථානගත වී ඇත. චන්දුයාගේ ස්කන්ධය පෘථිවියේ ස්කන්ධය මෙන් $0 \cdot 0123$ ගුණයකි. පෘථිවියේ සහ චන්දුයාගේ කේන්දු අතර දුර පෘථිවියේ අරය මෙන් 60 ගුණයක් ලෙස උපකල්පනය කරන්න. පෘථිවිය සහ චන්දුයා යන දෙකේම ගුරුත්වාකර්ෂණය නිසා වස්තුවේ ඇති වන ත්වරණය ආසන්න වශයෙන් g ඇසුරෙන්,
 - (1) 1·1 × 10⁻⁶ g වේ.

- (2) $1 \cdot 1 \times 10^{-3} \ g$ ed. (5) $1 \cdot 0 \ g$ ed.
- (3) $3.3 \times 10^{-2} g$ වේ.

(4) 0.5 g වේ.

- 23. පෘෂ්ඨීය වර්ගඵලය $500\,\mathrm{cm^2}$ වූ තිරස් තහඩු දෙකක් අතර ඇති $2\,\mathrm{cm}$ ක හිඩැස දුස්සුාවිතා සංගුණකය $0.2\,\mathrm{Ns}\;\mathrm{m^{-2}}$ වූ තෙල් වර්ගයකින් පුරවා ඇත. පහළින් ඇති තහඩුව නිශ්චලව තබා ගනිමින් ඉහළින් ඇති තහඩුවට 5 N ක තිරස් බලයක් යොදනු ලැබේ. තෙල් ස්තරවල පුවේග, තහඩු අතර පරතරය හරහා රේඛීයව විචලනය වේ නම්, තෙල්වල මධා ස්තරයේ පුවේගය කුමක් ද?
 - (1) 2.5 m s^{-1}
- (2) 5 m s^{-1} (3) 10 m s^{-1}
- (4) 25 m s⁻¹
- (5) 50 m s⁻¹
- 24. බාහිර සම්බන්ධ කිරීම් සඳහා අගු දෙකක් පමණක් පවතින පරිදි ඩයෝඩයක් සහ පුතිරෝධකයක් එක්තරා ආකාරයකට සම්බන්ධ කර ඇත. බාහිර අගු හරහා $1~\mathrm{V}$ වෝල්ටීයතාවක් යෙදූ විට පරිපථය තුළින් ගලන ධාරාව $50~\mathrm{mA}$ වේ. යෙදූ වෝල්ටීයතාව පුතිවර්ත (reversed) කළ විට ධාරාව දෙගුණ වේ. ඩයෝඩයේ ඉදිරි නැඹුරු පුතිරෝධය සහ පුතිරෝධකයේ අගය කුමක් ද?

	පුතිලෙ	රා්ධය (Ω)
	ඩයෝඩය	පුතිරෝධකය
(1)	0	20
(2)	10	10
(3)	10	20
(4)	20	10
(5)	20	20

- 25. රූපයේ දැක්වෙන පරිදි සුළි කුණාටුවක ඇති වායු ස්කන්ධයක් එහි ඇස වටා සර්පිලාකාර පථයක චලිත වේ. ඇසේ කේන්දුයේ සිට 80 km අරීය දුරක දී වායු ස්කන්ධයේ පුවේගය 150 km h⁻¹ වේ. ඇසේ කේන්දුයේ සිට 40 km අරීය දුරක දී එම වායු ස්කන්ධයේ ම පුවේගය විය හැක්කේ කුමක් ද?
 - (1) 75 km h^{-1}

- (2) 150 km h^{-1}
- (3) $150\sqrt{2} \text{ km h}^{-1}$
- (4) 300 km h^{-1}

(5) 450 km h^{-1}

- 26. පරිපථයකට සම්බන්ධ කරන ලද පුතිසම බහුමීටරයක් රූපයේ දැක්වේ. බහුමීටරයේ පාඨාංකය වනුයේ,
 - (1) 8Ω
 - (2) 7 mA
 - (3) 1.4 V
 - (4) 7 V
 - (5) 14 V

- 27. ලක්ෂීය ආරෝපණ විශාල සංඛාාවක් අරය r වූ සන්නායක නොවන මුදුවක ඒකාකාරව වාාප්ත වී ඇත. මුදුවේ ඇති මුළු ආරෝපණ පුමාණය Q නම්, රූපයේ දැක්වෙන පරිදි මුදුවේ අක්ෂය මත වූ P ලක්ෂායේ ස්ථිති විදාුත් විභවය කුමක් ද?
 - (1) $\frac{Q}{4\pi\varepsilon_0 d}$

(2) $\frac{Q}{4\pi\varepsilon_0 r}$

 $(3) \quad \frac{Q}{8\pi^2 \varepsilon_0 r d}$

 $(4) \quad \frac{Q}{4\pi\varepsilon_0 \sqrt{r^2 + d^2}}$

- $(5) \quad \frac{rQ}{4\pi\varepsilon_0 d\sqrt{r^2 + d^2}}$
- 28. මිනිස් රුධිර සංසරණ පද්ධතිය, එක එකෙහි සාමානා විෂ්කම්භය 8 μm වන කේශනාලිකා බිලියනයකින් (10⁹) පමණ සමන්විත වෙයි. හෘදය මගින් මිනිත්තුවට ලීටර 5ක ශීඝුතාවකින් රුධිරය පොම්ප කරන්නේ නම්, කේශනාලිකා තුළින් රුධිරය ගලායන සාමානා වේගය මිනිත්තුවට cm වලින් කුමක් ද?
 - $(1) \quad \frac{1}{32\pi}$
- (2) $\frac{25}{16\pi}$
- (3) $\frac{25}{4\pi}$
- (4) $\frac{125}{16\pi}$
- (5) $\frac{125}{4\pi}$

29. රූපයේ දක්වා ඇති ආකාරයට තුනී ගෝලාකාර ලෝහ කබොළු දෙකක් ඒකකේන්දීයව තබා ඇත. අභාවන්තර කබොළ V විභවයක තබා ඇති අතර බාහිර කබොළ භුගත කර ඇත. විදයුත් ක්ෂේතුය E, කේන්දුයේ සිට ඇති දූර x සමග විචලනය වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

 ${f 30}$. පරිපූර්ණ වායුවක්, $P ext{-}V$ රූපසටහනේ දැක්වෙන පරිදි A අවස්ථාවේ සිට C අවස්ථාව දක්වා එකිනෙකට වෙනස් ABC සහ ADC මාර්ග දෙකක් ඔස්සේ පුසාරණය වේ. AB සහ BC කිුයාවලියන්හි දී වායුව මගින් අවශෝෂණය කළ තාපය පිළිවෙළින් 200 J සහ $700~\mathrm{J}$ වේ. වායුව ADC මාර්ගය ඔස්සේ පුසාරණය වීමේ දී අභාාන්තර ශක්තියේ සිදු වන වෙනස කුමක් ද?

(2) 520 J

- (4) 880 J
- (5) 1080 J

- ${f 31}$. පන්දුවක් $1~{
 m m}$ උසක සිට පොළොවට නිදහස්ව මුදාහරිනු ලැබේ. එක් එක් පොලා පැනීමේ දී එහි වේගය ${f 25}\%$ කින් අඩු වේ නම්, පොලා පැනීම් තුනකට පසු පන්දුව කුමන උසකට ඉහළ නගී ද?

- (1) $\frac{3}{4}$ m (2) $\left(\frac{3}{4}\right)^2$ m (3) $\left(\frac{3}{4}\right)^3$ m (4) $\left(\frac{3}{4}\right)^6$ m (5) $\left(\frac{3}{4}\right)^9$ m
- 32. කක්ෂගත චන්දිකාවක කොටසක් කාර්ය ශිුතය $5~{
 m eV}$ වන ලෝහයකින් ආලේප කර ඇත. ප්ලාන්ක් නියතය $4\cdot1 imes10^{-15}~{
 m eV}$ s සහ ආලෝකයේ වේගය $3 imes10^8~{
 m m~s^{-1}}$ වේ. ආලෝපිත ලෝහයෙන් ඉලෙක්ටුෝනයක් මුක්ත කිරීම සඳහා, පතනය වන සූර්යාලෝකයට තිබිය හැකි දීර්ඝතම තරංග ආයාමය කුමක් ද?
 - (1) 12.3 nm
- (2) 246 nm
- (3) 683 nm
- (4) 800 nm
- (5) 1230 nm
- ${f 33}$. සම්මත ඡායාරූප විනිවිදකයක (slide), රූපයේ පුමාණය $30\,{
 m mm} imes40\,{
 m mm}$ වේ. තනි-කාච විනිවිදක පුක්ෂේපකයක (slide projector) පුක්ෂේපණ කාචයේ සිට $4\cdot 0\,\mathrm{m}$ දුරින් ඇති තිරයක් මතට, විනිවිදකයේ විශාලිත පුතිබිම්බයක් පුක්ෂේපණය කෙරේ. ති්රය මත ඇති පුතිබිම්බයේ පුමාණය $1\cdot 2\,\mathrm{m} imes 1\cdot 6\,\mathrm{m}$ නම්, පුක්ෂේපණ කාචයට තිබිය යුතු නාභි දූර කුමක් ද?
 - (1) 4.9 cm
- (2) 9.8 cm
- (3) 10·2 cm
- (4) 49 cm
- (5) 98 cm

34. ලෝහ බෝලයක් පතුලේ තැන්පත් කිරීමෙන් පරීක්ෂණ නළයක් රූපයේ දැක්වෙන පරිදි උඩුකුරුව පාවීමට සලස්වා ඇත. බෝලයේ සහ නළයේ මුළු ස්කන්ධය m, දුවයේ ඝනත්වය ho , සහ නළයේ හරස්කඩ වර්ගඵලය A වේ. දුවයේ පෘෂ්ඨික ආතතියේ සහ දූස්සුාවිතාවයේ බලපෑම නොසලකා හැරිය හැකි ය. නළයට කුඩා සිරස් විස්ථාපනයක් ලබා

- (1) $2\pi\sqrt{\frac{A\rho g}{m}}$ (2) $2\pi\sqrt{\frac{m}{A\rho g}}$ (3) $2\pi\sqrt{\frac{2m}{A\rho g}}$

දුන්නේ නම්, ඊට පසු නළයේ චලිතයේ දෝලන කාලාවර්තය කුමක් ද?

- (4) $2\pi\sqrt{\frac{m}{2A\rho g}}$ (5) $2\pi\sqrt{\frac{mg}{A^2\rho}}$

35. සැහැල්ලු තන්තුවක එක් කෙළවරකට සම්බන්ධ කරන ලද ස්කන්ධය රහිත බැලූනයක් සලකන්න. රූපයේ පෙන්වා ඇති පරිදි තන්තුවේ අනෙක් කෙළවර ටුක් රථයක සවිකර ඇති ජල ටැංකියක පතුලට සම්බන්ධ කර ඇත. බැලූනය සම්පූර්ණයෙන් ම ජලයේ ගිලී ඇත. පුවේග-කාල පුස්තාරය මගින් ටුක් රථයේ චලිතය දැක්වේ.

 $t_1^{},t_2^{}$, සහ $t_3^{}$ කාලාන්තරවල දී ජල ටැංකිය තුළ බැලූනයේ සහ තන්තුවේ පිහිටීම් වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

නිරූපණය කරනු ලබන්නේ,

37. ආලෝක විමෝචක ඩයෝඩයක (LED) පුශස්ථ කිුයාකාරිත්වය සඳහා පිළිවෙළින් එහි ඉදිරි විභවය හා ධාරාව 2 V හා $10~\mathrm{mA}$ විය යුතු ය. ටුාන්සිස්ටරයේ $V_{BE}\!=\!0.7\,\mathrm{V}$ ද ධාරා ලාභය eta =100 ද $V_{CE(sat)}$ = $0.1~{
m V}$ ද වේ. රූපයේ දී ඇති පරිපථයේ ආලෝක විමෝචක ඩයෝඩයේ පුශස්ථ කිුිිියාකාරිත්වය සඳහා අවශා R_R සහ R_C අගයන් මොනවා ද?

- (1) $R_R = 100 \Omega$ සහ $R_C = 1 \text{ k}\Omega$
- (2) $R_B = 1 \text{ k}\Omega$ සහ $R_C = 1 \text{ k}\Omega$
- (3) $R_R = 1 \text{ k}\Omega \text{ total } R_C = 290 \Omega$
- (4) $R_B = 10 \text{ k}\Omega$ සහ $R_C = 1 \text{ k}\Omega$
- (5) $R_R = 10 \text{ k}\Omega$ සහ $R_C = 290 \Omega$
- 38. ජලයේ පාවෙන ඍජුකෝණාසුාකාර ලී කුට්ටියක් මත ලෝහ කැබැල්ලක් සවිකර ඇත. රූපයේ දැක්වෙන පරිදි ලී කුට්ටියේ පරිමාවෙන් 50% ක් ජලයේ ගිලී ඇත. ලෝහ කැබැල්ලට සහ **ලී කුට්ටියට සමාන ස්කන්ධ ඇත.** ලෝහ කැබැල්ල සහිත ලී කුට්ටිය උඩ යට මාරු වන ලෙස හැරවුයේ නම්, ලී කුට්ටියේ පරිමාවෙන් ජලය තුළ ගිලී යන පුතිශතය කුමක් විය හැකි ද?

- (1) 50% ට වඩා ස්වල්පයක් අඩුවෙන්
- (2) 50% ට වඩා ඉතා අඩුවෙන්
- (3) 50%

- (4) 50% ට වඩා ස්වල්පයක් වැඩියෙන්
- (5) 50% ට වඩා ඉතා වැඩියෙන්
- 39. රූපයේ දක්වා ඇති පරිදි තිරස් නළයක් තුළ අසම්පීඩා දුවයක් අනවරතව ගලා යයි. පටු සිරස් නළ දෙකක් තිරස් නළයේ හරස්කඩ වර්ගඵල A සහ 2A වන ස්ථාන දෙකක දී සවිකර ඇත. සිරස් නළ දෙකේ දුව කඳන්වල උසෙහි වෙනස h නම්, නළය තුළ දුවයේ පුවාහ ශීඝුතාව වනුයේ,

- (1) $A\sqrt{2gh}$
- $(2) \quad A\sqrt{6gh}$
- $(3) \quad A\sqrt{\frac{3gh}{2}} \qquad (4) \quad 2A\sqrt{\frac{gh}{3}}$
- $(5) \quad 2A\sqrt{\frac{2gh}{2}}$

40. මාර්ගයක් අසල ඇති පහන් කණුවකට සාපේක්ෂව මෝටර් රථ දෙකක චලිතයන්හි විස්ථාපන-කාල පුස්තාර රූප සටහනේ දැක්වේ. පහන් කණුවේ සිට දකුණු දිශාවට විස්ථාපනය ධන ලෙස සලකන්න. පුස්තාරයේ සලකුණු කර ඇති $P,\,Q,\,$ සහ R ලක්ෂායන්ට අදාළව මෝටර් රථයන්හි චලිතය සම්බන්ධයෙන් සිසුවකු විසින් පහත පුකාශ සිදු කරන

- $(A)\ P$ ට අදාළ ව: වම්පසින් පැමිණෙන 1 මෝටර් රථය, 2 මෝටර් රථය හා එකිනෙක මාරු වේ.
- $(\mathrm{B})~Q$ ට අදාළ ව: මෝටර් රථ දෙකම පහන් කණුව දෙසට පැමිණෙන අතර එකිනෙක මාරු වේ.
- $(C)\ R$ ට අදාළ ව: දකුණුපසින් පැමිණෙන 2 මෝටර් රථය පහන් කණුව පසු කර යයි.

ඉහත පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?/කුමන ඒවා ද?

(1) B පමණි

(2) C පමණි

(3) A සහ B පමණි

(4) B සහ C පමණි

(5) A, B, සහ C සියල්ලම

- 41. නියත නළා සංඛානතයක් සහිත, නළා හඬ නඟන අහස්කුරක් සිරස්ව උඩු අතට යවන ලදී. එය ආරම්භයේ දී ත්වරණයකින් හා පසුව මන්දනයකින් ගමන් කර අවසානයේ **නිශ්චලතාවට පත් වීමට පෙර පුපුරා ශශී.** පොළොව මත අහස්කුරට එක එල්ලේම පහළින් සිටින නිරීක්ෂකයෙක් අහස්කුරේ නළා හඬට සවන් දෙයි. නිරීක්ෂකයාට ඇසෙන හඬෙහි සංඛානතය පිළිබඳ පහත සඳහන් පුකාශ සලකන්න.
 - (A) ත්වරණය වන අතරතුරේ දී එය නළා සංඛාභතයට වඩා විශාල වන අතර, කාලය සමග අඩු වේ.
 - (B) මන්දනය වන අතරතුරේ දී එය නළා සංඛාාතයට වඩා කුඩා වන අතර, කාලය සමග වැඩි වේ.
 - (C) පිපිරීමට මොහොතකට පෙර එය නළා සංඛානතයට සමාන වේ.

ඉහත පුකාශවලින් නිවැරදි වන්නේ කුමක් ද?/කුමන ඒවා ද?

(1) A පමණි

(2) B පමණි

(3) C පමණි

(4) A සහ B පමණි

(5) B සහ C පමණි

42. ස්කන්ධය 700 g වූ ලෝහ බඳුනක, උෂ්ණත්වය 27 °C වන ජලය ලීටර 1ක් අඩංගු වේ. උෂ්ණත්වය 120 °C හි පවතින ස්කන්ධය 300 g වූ වානේ බෝලයක් මෙම ජල බඳුනට ඇමූ විට ජලයේ අවසාන උෂ්ණත්වය 30 °C ලෙස මැන ගන්නා ලදී. වානේවල සහ ජලයේ විශිෂ්ට තාප ධාරිතා පිළිවෙළින් 500 J kg⁻¹ K⁻¹ සහ 4200 J kg⁻¹ K⁻¹ වේ. වගුවේ දී ඇති ලෝහ අතුරෙන් බඳුන සාදා ඇති ලෝහය විය හැක්කේ කුමක් ද?

(1)	ඇලුමීනියම්
(- /	4(2)-0300

(2) තඹ

(3) ඊයම්

(5) රිදී

a colones	විශිෂ්ට තාප ධාරිතාව
ලෝහය	$(J kg^{-1} K^{-1})$
ඇලුමීනියම්	900
යකඩ	450
තඹ	385
රි දී	230
ඊයම්	128

43. වර්තන අංක n_1 , n_2 , සහ n_3 ($n_2 > n_1$, n_3) වන සෘජුකෝණී පිස්ම තුනක් රූපසටහනේ දැක්වෙන පරිදි මේසයක් මත එකිනෙකට ළඟින් තබා ඇත. පිස්මවල ස්පර්ශ පෘෂ්ඨයන් අතර පරතරයක් නොමැත. පතන කෝණය i වන පරිදි AB මුහුණතින් ඇතුළු වන කිරණයක් AB, BC, CD සහ DE මුහුණත්වල දී වර්තනයට ලක් වී අපගමනයෙන් තොරව

DE මුහුණතින් නිර්ගමනය වේ. $AB,\,BC,\,$ සහ CD මුහුණත්වල දී වර්තන කෝණ පිළිවෙළින් $r_1,\,r_2,\,$ සහ r_3 වේ. පහත සඳහන් පුකාශනවලින් නිවැරදි **නොවන්නේ** කුමක් ද?

 $(1) \sin i = n_1 \sin r_1$

(2) $n_2 \sin r_2 = n_1 \cos r_1$

(3) $\sin i = n_3 \cos r_3$

(4) $n_2 \cos r_2 = n_3 \sin r_3$

 $(5) \cos i = n_3 \cos r_3$

44. රූපවල දක්වා ඇති පරිදි xy තලය මත තබා ඇති තනි පොටකින් යුත් වයර් පුඩු එකම I ධාරාවක් රැගෙන යයි. ඒකාකාර චුම්බක ක්ෂේතුයක් x-අක්ෂයේ ධන දිශාවට යොදා ඇත. එක් එක් වයර් පුඩුවට චුම්බක ක්ෂේතුයට ලම්බක එහි සමමිතික අක්ෂය වටා නිදහසේ භුමණය විය හැකි බව උපකල්පනය කරන්න. පුඩුව මත ඇති වන ආරම්භක වාහවර්තය අවරෝහණය වන පිළිවෙළට පුඩු පෙළගස්වා ඇත්තේ කුමන වරණයේ ද?

(1) P, Q, R, S

(2) R, Q, P, S

(3) Q, P, R, S

(4) S, R, Q, P

(5) R, Q, S, P

45. විදාපුත් ගාමක බල (emf) පිළිවෙළින් E_1,E_2 , සහ E_3 ද අභාාන්තර පුතිරෝධ පිළිවෙළින් r_1, r_2 , සහ r_3 ද වන කෝෂ තුනක් රූපයේ පෙන්වා ඇති ආකාරයට සම්බන්ධ කර ඇත. පරිපථයේ P ලක්ෂායේ විභවය දෙනු ලබන්නේ පහත සඳහන් කුමන පුකාශනයෙන් ද?

(2) $\frac{E_1 E_2 E_3}{E_1 E_2 + E_2 E_3 + E_3 E_1}$

(3)
$$\frac{E_1 r_1^2 + E_2 r_2^2 + E_3 r_3^2}{r_1 r_2 + r_2 r_3 + r_1 r_3}$$

(4) $\frac{E_1 r_2 r_3 + E_2 r_1 r_3 + E_3 r_1 r_2}{r_1 r_2 + r_2 r_3 + r_1 r_2}$

- (5) $\frac{E_1 r_2 r_3 + E_2 r_1 r_3 + E_3 r_1 r_2}{r_1 r_2 r_3}$
- $oldsymbol{46}$. විදාපුත් ගාමක බලය (emf) E_0 සහ අභාlphaන්තර පුතිරෝධය r වන බැටරියක් සලකන්න. රූපයේ පෙන්වා ඇති පරිදි, එය R පුතිරෝධකයක් සහ පුතිවර්ත කළ හැකි විචලා සරල ධාරා (dc) වෝල්ටීයතා පුභවයක් සමග ශේුණිගතව සම්බන්ධ කර ඇත. විචලා පුභවයේ චෝල්ටීයතාව V_{VR} විචලනය කරන විට V එදිරියෙන් I හි පුස්තාරය වඩාත් හොඳින් නිරූපණය කරන්නේ,

වීචලා dc වෝල්ටීයතා පුභවය (පුතිවර්ත කළ හැකි)

(2)

47. රූපයේ දක්වා ඇති පරිපථය සලකන්න. භාරය L හරහා යොදා ඇති වෝල්ටීයතාවයේ සහ එය තුළින් ගලන ධාරාවේ තරංග ආකාර පුස්තාරවලින් නිරූපණය කර ඇත.

භාරයේ මධානා ක්ෂමතා උත්සර්ජනය වනුයේ,

- (1) 0
- (2) $\frac{V_m I_m}{4}$ (3) $\frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}}$ (4) $V_m I_m$
- (5) $2V_m I_m$

48. දිගු, සෘජු, සහ සමාන්තර කම්බි දෙකක් නිදහස් අවකාශයේ තබා ඇත. රූපවල දක්වා ඇති පරිදි පහත සඳහන් අවස්ථා දෙක සලකන්න.

(b) කම්බී තුළින් සමාන I ධාරාවක් පුත්වරුද්ධ දිශාවලට

කඩදාසිය තුළට චුම්බක සුාව ඝනත්වයේ දිශාව ධන ලෙස

සලකන්න. කම්බි දෙක අතර චුම්බක සුාව ඝනත්වය Bහි විචලනය වඩාත් ම හොඳින් නිරූපණය කරන්නේ කුමන

පුස්තාර යුගලය ද?

(a)

(b)

49. රූපයේ දැක්වෙන පරිපථයේ බැටරිය තුළින් ගලන ධාරාව කුමක් ද?

- (1) $\frac{V}{8R}$
- (2)
- (3)
- (5)

50. රූපයේ දක්වා ඇති පරිදි අක්ෂය සිරස්ව සහ ශීර්ෂය පහළින් ඇති සෘජු වෘත්තාකාර කේතුවක් තුළ කුඩා වස්තුවක් තබා ඇත. කේතුවේ අභාගන්තර පෘෂ්ඨය සහ වස්තුව අතර ස්ථිතික ඝර්ෂණ සංගුණකය μ වේ. වස්තුව කේතුවේ අභාගන්තර පෘෂ්ඨය මත ලිස්සා නොයන පරිදි අක්ෂයේ සිට d දුරක තබා ගනිමින් කේතුවට අක්ෂය වටා භුමණය විය හැකි උපරිම කෝණික පුවේගය කුමක් ද?

(2)
$$\sqrt{\frac{g(\sin\theta - \mu\cos\theta)}{d(\cos\theta + \mu\sin\theta)}}$$

(3)
$$\sqrt{\frac{g(\cos\theta + \mu\sin\theta)}{d(\sin\theta - \mu\cos\theta)}}$$

(4)
$$\sqrt{\frac{g\left(\sin\theta + \mu\cos\theta\right)}{d\left(\cos\theta - \mu\sin\theta\right)}}$$

සියලු ම හිමිකම් ඇපිරිනි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

டுல் நிலக் நிலக்கள் இலங்கைப் படிகள் இலங்கள் இலங்கள் இலங்கள் இலங்கைப் படிகள் இலங்கள் இ

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August **2019**

හෞතික විදනව II ධෙණුනිසඛායාහ් II Physics II

Three hours

2019.08.13 / 0830 - 1140

අමතර කියවීම කාලය மேலதிக வாசிப்பு நேரம் මිනිත්තු 10 යි

- 10 நிமிடங்கள்

Additional Reading Time

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේ දී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

වැදගත් :

- 🛠 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- * මෙම පුශ්න පතුය A සහ B යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැය** තුනකි.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වනුහගත රචනා (පිටු 2 - 8)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A සහ B කොටස් එක් පිළිතුරු පතුයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

විභාග අංකය :	
000Km200 C	A P P

	පරීක්ෂකවරුන්ගේ සඳහා පම			
	දෙවැනි පතුය	සඳහා		
කොටස	ළශ්න අංක	ලැබූ ලකුණු		
	1			
A	2			
A	3	The The		
	4			
	5			
	6			
	7			
В	8			
ь	9(A)			
	9(B)			
	10(A)	E		
	10(B)			
	ඉලක්කමෙන්			
එකතුව	අකුරෙන්			

	සංකේත අංක
උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	按
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

A කොටස- වපුහගත රචනා

පුශ්න **හතරට ම** පිළිතුරු **මෙම පතුයේ ම** සපයන්න.

(ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{m \ s^{-2}}$ ලෙස සලකන්න.)

මෙම තීරයේ කිසිවක් නො ලියන්න

1. දුවයක පෘෂ්ඨික ආතතිය නිර්ණය කිරීම සඳහා පාසල් විදනාගාරයක භාවිත කරන පරීක්ෂණ ඇටවුමක් (1) රූපයේ දැක්වේ.

අාධාරකය ත්වීක නළය දර්ශකය විදහාගාර අහුව (උස වෙනස් කළ හැකි බංකුව)

(a) (i) කේශික නළයේ අක්ෂය දිගේ සිරස් හරස්කඩක විශාලනය කළ දසුන (2) රූපයෙන් දක්වා ඇත. මෙම රූපයේ, දුවයේ මාවකය කේශික නළය තුළ ඇඳ, පෘෂ්ඨික ආතතිය T ද දුවය සහ කේශික නළයේ වීදුරු පෘෂ්ඨය අතර ස්පර්ශ කෝණය θ ද සලකුණු කරන්න.

(ii) කේශික නළය තුළ දුව කඳේ උස, කේශික නළයේ අභාවන්තර අරය, සහ දුවයේ ඝනත්වය පිළිවෙළින් h, r, සහ ho නම්, h
ho g සඳහා පුකාශනයක් T, r, සහ heta ඇසුරෙන් ලබා ගන්න.

(iii) කරනු ලබන උපකල්පනය පැහැදිලිව ලියා දක්වමින්, ඉහත (ii) හි දී ලබා ගත් සමීකරණය $h=rac{2T}{r
ho g}$ බවට ඌනනය කළ හැකි බව පෙන්වන්න.

(iv) දී ඇති දුවයක් සඳහා ඉහත (iii) හි සඳහන් කළ උපකල්පනය තෘප්ත කිරීමට අනුගමනය කළ යුතු පරීක්ෂණාත්මක කි්යා පිළිවෙළ නිවැරදී අනුපිළිවෙළින් ලියන්න.

(v)	උස h නිර්ණය කිරීම සඳහා අවශා පාඨාංක ලබා ගැනීමට පෙර, (1) රූපයේ දක්වා ඇති පරීක්ෂණ ඇටවුමේ සිදු කළ යුතු සීරුමාරුව කුමක් ද?	

(b) වෙනස් අරයයන් සහිත කේශික නළ 6ක් භාවිතයෙන් ජලයේ පෘෂ්ඨික ආතතිය නිර්ණය කර ගැනීමට ලබා ගත් පරීක්ෂණාත්මක දත්ත (SI ඒකක වලින්) පහත පුස්තාරය මගින් නිරූපණය කෙරේ.

(i) ඉහත (a)(iii) හි සමීකරණය සලකමින්, පුස්තාරයේ ස්වායත්ත විචලාය (x) සහ පරායත්ත විචලාය (y) හඳුනාගෙන ලියා දක්වන්න.

x:.....

(ii)	භාවිතයෙන් ජලයේ ඝනප		නිර්ණය	කර	පිළිතුර	SI	ඒකක	සමග	පුකාශ -

(iii) ජලය වෙනුවට සබන් වතුර භාවිත කළහොත් කේශික උද්ගමනයට කුමක් සිදු විය හැකි ද? පිළිතුර කෙටියෙන් පැහැදිලි කරන්න.

AL/2019/01-S-II(NEW) $oldsymbol{2}$. සර්ල්ගේ කුමයෙන් ලෝහයක තාප සන්නායකතාව නිර්ණය කිරීම සඳහා භාවිත කරන පරීක්ෂණාත්මක ඇටවුමක අසම්පූර්ණ රූපයක් පහත දැක්වේ. (a) හුමාල ජනකය තුළට P සහ Q නළ ඇතුළු කිරීමේ අරමුණු මොනවා ද?P: O:..... (b) නිවැරදි පුතිඵලය ලබා ගැනීමට සර්ල්ගේ ඇටවුමට හුමාල සහ ජල සැපයුම් නිසි ලෙස සම්බන්ධ කිරීම අතාාවශා වේ. ඒ අනුව, එක් එක් සම්බන්ධය තෝරාගෙන හේතු දක්වන්න. (i) නුමාල සැපයුම (A හෝ B):..... හේතුව : (ii) ජල සැපයුම (*L* හෝ *M*):..... හේතුව : (c) මෙම පරීක්ෂණයේ දී අවශා තවත් මිනුම් උපකරණ **තුනක්** සඳහන් කර, ඒ එකිනෙක මගින් මෙහි දී ලබා ගන්නා නිශ්චිත මිනුම කෙටියෙන් සඳහන් කරන්න.

	උපකරණය	මිනුම
(i)		
(ii)		
(iii)		

(d)	T_1 සහ T_2 උෂ්ණත්වමාන අතර පරතරය $8{\cdot}0\mathrm{cm}$ වේ. T_1 සහ T_2 හි නියත උෂ්ණත්ව පාඨාං x	ා පිළිවෙළින්
	$73.8~^\circ\mathrm{C}$ සහ $59.2~^\circ\mathrm{C}$ නම්, උෂ්ණත්ව අනුකුමණය ගණනය කරන්න.	

		Te
(e)	මෙම උෂ්ණත්ව අනුකුමණය දණ්ඩ දිගේ විචලනය වේ ද? පිළිතුර කෙටියෙන් පැහැදිලි කරන්න.	6 8
(f)	තාපමය අනවරත අවස්ථාවේ දී T_3 සහ T_4 උෂ්ණත්වමානවල පාඨාංක අතර අන්තරය $9.5~^{\circ}\mathrm{C}$ සහ ජලයේ පුවාහ ශීසුතාව මිනිත්තුවට $120~\mathrm{g}$ වේ. ජලය මගින් තාපය අවශෝෂණය කරන ශීසුතාව ගණනය කරන්න. (ජලයේ විශිෂ්ට තාප ධාරිතාව $4200~\mathrm{J~kg^{-1}~K^{-1}}$ වේ.)	
(g)	දණ්ඩේ හරස්කඩ වර්ගඵලය $12\cdot 0~{ m cm}^2$ නම්, ලෝහයේ තාප සන්නායකතාව ගණනය කර, පිළිතුර ${ m SI}$ ඒකක සමග පුකාශ කරන්න.	
(h)	දුර්වල සන්නායකයක තාප සන්නායකතාව සෙවීම සඳහා සර්ල්ගේ කුමය භාවිත කළ හැකි ද? පිළිතුර කෙටියෙන් පැහැදිලි කරන්න.	
		1
	The same of the sa	
වීදුර ආලෙ	ැවල වර්තන අංකය නිර්ණය කිරීම සඳහා සම්මත වර්ණාවලීමානයක්, වීදුරු පුිස්මයක්, සහ ඒකවර්ණ ලා්ක පුභවයක් භාවිත කරයි.	
(a)	මිනුම් ලබා ගැනීම ආරම්භ කිරීමට පෙර වර්ණාවලීමානයේ අතෳවශෳ සීරුමාරු කිරීම් කිහිපයක් සිදු කළ යුතුව ඇත.	
	(i) උපනෙතෙහි සිදු කළ යුතු සීරුමාරුව කුමක් ද?	
	(ii) දුරේක්ෂය ඈතින් ඇති වස්තුවකට එල්ල කර එම වස්තුවේ පැහැදිලි පුතිබිම්බයක් හරස් කම්බි මත සෑදෙන තුරු දුරේක්ෂය සීරුමාරු කරයි. මෙම සීරුමාරුවේ අරමුණ කුමක් ද?	
	(iii) සමාන්තරකයේ දික් සිදුරෙහි සිදු කළ යුතු සීරුමාරුව කුමක් ද?	
	(iv) දුරේක්ෂය සමාන්තරකය සමග ඒකරේඛීය වන පරිදි ගෙන එනු ලැබේ. ඉන් පසු දික් සිදුරේ තියුණු	

පුතිබිම්බයක් හරස් කම්බි මත සෑදෙන තුරු සමාන්තරකය සීරුමාරු කරයි. මෙම සීරුමාරුවේ

අරමුණ කුමක් ද?

මෙම තීරයේ කිසිවක් නො ලියන්ද

(b) පුිස්ම මේසය මට්ටම් කිරීම සඳහා (1) රූපයේ දැක්වෙන පරිදි පුිස්මය තබා $P,\,Q$, සහ R ඉස්කුරුප්පු සීරුමාරු කරනු ලැබේ.

(ii) ස්ප්‍රීතු ලෙවලයක් භාවිත කිරීම මගින් ප්‍රිස්ම මේසය ඉතා පහසුවෙන් මට්ටම් කළ හැකි බව ශිෂායෙක් ප්‍රකාශ කළේ ය. මෙම ප්‍රකාශය නිවැරදි ද? පිළිතුර කෙටියෙන් පැහැදිලි කරන්න.

(c) දුරේක්ෂය T_1 සහ T_2 ස්ථානවල පිහිටන විට වර්ණාවලීමානයේ පාඨාංක පිළිවෙළින් $279^\circ~58'$ සහ $38^\circ~02'$ වේ. දුරේක්ෂය T_1 සිට T_2 දක්වා ගෙන යන විට එය පුධාන පරිමාණයේ ශූනාෳය හරහා ගමන් කළ බව සලකන්න. පුිස්ම කෝණය A ගණනය කරන්න.

(d) දී ඇති වීදුරු පුිස්මය මගින් ආලෝක කිරණයක සිදු වන අපගමන කෝණය නිර්ණය කිරීම සඳහා ශිෂායකු විසින් (2) රූපයේ දැක්වෙන පරිදි පතන සහ නිර්ගමන කෝණ පිළිවෙළින් i_1 සහ i_2 මැන ගන්නා ලදී. i_1 සමග i_2 හි විචලනය පුස්තාරය මගින් දැක්වේ.

		50 St C
	(1)	අපගමන කෝණය d සඳහා පුකාශනයක් පිස්ම කෝණය A , සහ $i_1,\ i_2$ කෝණ ඇසුරෙන් ලියා දක්වන්න.
	(ii)	පුස්තාරය භාවිත කර, අවම අපගමන කෝණය D නිර්ණය කරන්න.
	(iii)	පුිස්මය තනා ඇති වීදුරුවල වර්තන අංකය ගණනය කරන්න.
වීණ	පත් ගා	මක බලය $(\mathrm{emf})\;E(<\!E_0^{})$ වන දී ඇති කෝෂයක අභාාන්තර පුතිරෝධය r නිර්ණය කිරීම සඳහා
ຄວຣີ	වුත කැ	පති මෙය (ϵ (ϵ ϵ ϵ) වන ද ඇති කොසෙක් අභ්යන්තර පුත්රොයය ϵ නවණය කිරීම සඳහා ප පු හැකි ϵ ϵ ග කම්බියක් සහිත විභවමානයක පරීක්ෂණ ඇටවුමක් (ϵ) රූපයේ දැක්වේ.
		(1) 0(000 (1,000)
		$E_0 \qquad Q \not = K_1$
		1 m
		FO
		0
		$R \rightarrow K_2$
		K ₂ 13
		(1) <
		(1) රූපය
ı)	මිනුම්	වල නිරවද¤තාවට බලපාන විභවමාන කම්බියක තිබිය හැකි ගුණාංග දෙකක් සඳහන් කරන්න.
	•••••	
5)	(1) රූ	පයේ දක්වා ඇති විභවමානය සීරුමාරු කළ හැකි පරාසයක් සහිත චෝල්ට්මීටරයක් සේ භාවිත
	කළ හ	වැකි ද? පිළිතුරට හේතු දක්වන්න.
2)	මෙසුම	යක්, ගැල්වනෝමීටරය තුළින් ධාරාව නොගලන විට දී ද එහි කුඩා උත්කුමණයක් නිරීක්ෂණය
		ය. මෙම ගැල්වනෝමීටරය මෙම පරීක්ෂණය සඳහා භාවිත කිරීම යෝගා වේ ද? පිළිතුරට හේතු
	•••••	***************************************

20)19/01-S-II(NEW) - 8 -	
		මෙම තීරයේ
d)	K_2 ස්වීචය විවෘතව ඇති විට විභවමාන කම්බියේ සංතුලන දිග l_0 වේ. K_2 සංවෘත විට සංතුලන දිග l වේ. දී ඇති කෝෂයේ අභාන්තර පුතිරෝධය r සඳහා පුකාශනයක් l,l_0 , සහ R ඇසුරෙන් ලබා ගන්න.	කිසිවක් නො ලියන්න
e)	දී ඇති විභවමානය භාවිතයෙන්, $1 \ \mathrm{mm}$ ක උපරිම දෝෂයක් සහිතව සංතුලන දිග මැන ගත හැකි ය. $R=8 \ \Omega$,	
	$l_0 = 72.4~{ m cm}$, සහ $l = 50\cdot 1~{ m cm}$ නම්, අභාාන්තර පුතිරෝධය r සඳහා ලැබිය හැකි උපරිම අගය ගණනය කරන්න.	

<i>f</i>)	පුස්තාරික කුමයක් මගින් අභාාන්තර පුතිරෝධය r වඩාත් නිවැරදිව නිර්ණය කළ හැක. ඒ සඳහා සුදුසු පුස්තාරයක් ඇඳීමට R විචලා පුතිරෝධයක් සේ සලකා (d) හි දී ලබා ගත් සමීකරණය නැවත සකසන්න. පුස්තාරයේ ස්වායත්ත (x) සහ පරායත්ත (y) විචලායන් ලියා දක්වන්න.	
	x:	
	y:	
3)	(1) රූපයේ X මගින් සලකුණු කර ඇති පරිපථ කොටස, (2) රූපයේ දැක්වෙන පරිපථය මගින් පුතිස්ථාපනය කර, (1) රූපයේ දැක්වෙන විභවමාන පරිපථය වෙනස් කර ගත හැක. මේ සඳහා (2) රූපයේ දැක්වෙන පරිපථයේ S' සහ T' අගු, (1) රූපයෙහි දැක්වෙන විභවමාන පරිපථයේ S සහ T ලක්ෂාවලට පිළිවෙළින් සම්බන්ධ	
	කරනු ලැබේ.	
	(2) රූපය	
	(i) වෙනස් කරන ලද පරිපථයේ සංතුලන ලක්ෂාය A සහ B අතර පිහිටන බව උපකල්පනය කරන්න. සර්පණ යතුර A සහ B හි තැබූ විට දැල්වෙන ආලෝක වීමෝචක ඩයෝඩයේ (LED) වර්ණය කුමක් ද?	1
	A 융 ද :	
	<i>B</i> හි දී :	
	(ii) මෙම වෙනස් කරන ලද පරිපථය භාවිතයෙන් සංතුලන ලක්ෂාය සොයා ගත හැක්කේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න.	
	(iii) සංතුලන ලක්ෂාය සොයා ගැනීමේ දී (1) රූපයේ දැක්වෙන පරිපථය හා සන්සන්දනය කළ විට, මෙම වෙනස් කරන ලද පරිපථයේ ඇති වාසි දෙකක් සඳහන් කරන්න.	

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus ර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්**ලි ලංකා විභාග ලදපාර්තමේන්තුමා** විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව අනි නිකාකාස්සභාග இலங்கைப் ப**්**රියා<mark>කුණාක්මනුණු උත්පම්මන් කුගනුණා සම්ප්රේදර</mark>් නිකාකාස්සභාග இலங்கைப் ப්රීර්*ක අනි නිකා*ක්සභාග ninations, Sri Lanka Department of **Examinations of Examinations**, Sri Lanka Department of Examinations, Sri Lanka අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019 භෞතික විදනව II பௌதிகவியல் II B කොටස – රචනා Physics II

> පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. (ගුරුත්වජ ත්වරණය, $g = 10 \,\mathrm{m \ s^{-2}}$ ලෙස සලකන්න.)

 ${\sf 5.}$ (a) විදුලි ජනක යන්තුවල පුතිදාන වෝල්ටීයතාවයේ සංඛාහතය, චුම්බක ධුැව ගණන P සහ ජනකයේ මිනිත්තුවට සිදු වන පරිභුමණ ගණන N මත රඳා පවතී.

 $f = \frac{P \times N}{120}$ මගින් සංඛ්‍යාතය f, Hz වලින් දෙනු ලැබේ.

චුම්බක ධුැව දෙකකින් සමන්විත සුවහ විදුලි ජනකයක් (portable generator) සාමානෳයෙන් මිනිත්තුවට පරිභුමණ (rpm) 3000 කින් කියා කරයි. පහත දැ සොයන්න.

- (i) ජනකයේ පුතිදාන වෝල්ටීයතාවයේ සංඛාාතය
- (ii) ජනකයේ භුමණ වේගය තත්පරයට රේඩියන (${
 m rad}\ {
 m s}^{-1}$) වලින් ($\pi=3$ ලෙස ගන්න)
- (b) ශිෂාලයක් ඉහත (a) හි සඳහන් කළ සුවහ විදුලි ජනකයේ එන්ජීම ජල පුවාහයක් මගින් භුමණය කළ හැකි තලබමරයකින් (turbine) පුතිස්ථාපනය කර ජලවිදුලි බලාගාරයක ආකෘතියක් නිර්මාණය කර ඇත. නියත ජල පුවාහයක දී පවා පුතිදාන චෝල්ටීයතාවයේ සංඛාාතය විදුලි පරිභෝජනය සමග විචලනය වන බව, ඔහු විසින් නිරීක්ෂණය කරන ලදී. පුතිදාන සංඛාාතයේ විචලනය පාලනය කිරීමට, තලබමරයට ලබා දෙන ජල පුවාහය සීරුමාරු කිරීම සඳහා, ඔහු විසින් පාලන උපකුමයක් (device) නිර්මාණය කරන ලදී. අවකර කපාටයකට සම්බන්ධිත පාලන උපකුමයේ කුමානුරූප සටහනක් (1) රූපයේ දැක්වේ.

මෙම උපකුමයේ සියලු ම සන්ධි ඝර්ෂණය රහිතව නිදහස්ව චලනය වන බව උපකල්පනය කරන්න. භුමණයේ දී ජව බෝල තිරස්ව චලිත වන අතර එමගින් විල්ල ඉහළට සහ පහළට භුමණ ඇක්සලය දිගේ චලිත වීමට සලස්වයි. මෙම උපකුමය භුමණ ඇක්සලය වටා සමමිතික වේ. තලබමරයේ භුමණ වේගය මගින් අවකර කපාටය (throttle valve) විවෘත කිරීම සහ සංවෘත කිරීම ස්වයංකී්යව පාලනය කරනු ලැබේ. ජව බෝල හැර උපකුමයේ අනෙක් සියලු ම කොටස් ස්කන්ධ රහිත යැයි උපකල්පනය කළ හැක.

- (i) ජව බෝලයකට සම්බන්ධිත එක් එක් බාහුව ආතතියකට යටත් යැයි උපකල්පනය කරමින් ජව බෝලයක් සඳහා නිදහස් බල සටහන අඳින්න. ජව බෝලයක ස්කන්ධය m ලෙස සලකන්න.
- (ii) භුමණ ඇක්සලය වටා එක් එක් ජව බෝලයේ කෝණික පුවේගය ω rad s $^{-1}$ නම්, ඉහළ සහ පහළ බාහුවල ආකතීන් පිළිවෙළින් $\frac{ml}{2}\left(\omega^2+\frac{g}{h}\right)$ සහ $\frac{ml}{2}\left(\omega^2-\frac{g}{h}\right)$ මගින් දෙනු ලබන බව පෙන්වන්න. මෙහි l යනු එක් එක් බාහුවේ දිග වන අතර h යනු පහළ කලම්පයේ සිට එක් එක් ජව බෝලයට ඇති උස වේ.
- (iii) පුතිදාන චෝල්ටීයතාවයේ සංඛ්යාතය $50~{
 m Hz}$ වන විට h හි අගය $30~{
 m cm}$ ක් වේ. ආතතිය සඳහා $\frac{g}{h}$ පදයෙහි දායකත්වය නොසලකා හැරිය හැකි බව පෙන්වන්න.
- (iv) m=1 kg සහ l=50 cm නම්, ඉහළ බාහුවක ආතතිය ගණනය කරන්න.
- (v) පුතිදාන චෝල්ටීයතාවයේ සංඛාාතය $50~{
 m Hz}$ වන විට දුන්නෙහි සංකෝචනය $20~{
 m cm}$ කි. දුන්නෙහි දුනු නියතය නිර්ණය කරන්න.
- (c) පුතිදාන වෝල්ටීයතාවයේ සංඛනතය 50 Hz වන විට පුවාහය 50% කින් අවහිර කරන පරිදි අවකර කපාටය සකසා ඇත. එනම්, කපාටය (2) රූපයේ දක්වා ඇති පරිදි පුවාහ නළයේ අක්ෂය සමග 45°ක කෝණයක් සාදයි. අවකර කපාටයේ සංවෘත වීම එය නළයේ අක්ෂය සමග සාදන කෝණයට සමානුපාතික වන බව උපකල්පනය කරන්න.

පුතිදාන චෝල්ටීයතාවයේ සංඛාාතය විදුලි පරිභෝජනය මත රඳා පවතී. පරිභෝජනය වැඩි වන විට පුතිදාන සංඛාාතය අඩු වන අතර එහි පුතිලෝමය ද සිදු වේ.

- (i) සැලසුමට අනුව, පුතිදාන චෝල්ටීයතාවයේ සංඛාාතය $25~{
 m Hz}$ වන විට, අවකර කපාටය සම්පූර්ණයෙන්ම විවෘත වේ. $25~{
 m Hz}$ ට වඩා අඩු සංඛාාත සඳහා පවා කපාටය සම්පූර්ණයෙන්ම විවෘතව පවතී. අවකර කපාටය සම්පූර්ණයෙන්ම විවෘතව වන අවස්ථාවේ දී පහත දැ නිර්ණය කරන්න. ($\frac{g}{h}$ පදයේ දායකත්වය නොසලකා හරින්න.)
 - (1) ඉහළ බාහුවක ආතතිය
 - (2) දුන්නේ සංකෝචනය
- (ii) පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය වැඩි වන විට පුවාහ ශීඝුතාව අඩු කිරීමට අවකර කපාටය අනුකුමයෙන් සංවෘත වේ. පුවාහය 75% කින් අවහිර වීමට නම්, පුතිදාන චෝල්ටීයතාවයේ සංඛාහතය කුමක් විය යුතු ද?
- 6. (a) (i) කම්පනය වන ඇදි තන්තුවක් මගින් නිපදවන මූලික විධිය සහ පළමු උපරිතාන දෙකෙහි ස්ථාවර තරංග ආකාර රූපසටහන් තුනක වෙන වෙනම ඇඳ දක්වන්න. රූපසටහන් වල නිෂ්පන්ද 'N' ලෙස ද පුස්පන්ද 'A' ලෙස ද සලකුණු කරන්න. (ආන්ත ශෝධන නොසලකා හරින්න.)
 - (ii) තන්තුවේ ආතතිය T ද දිග l ද ඒකක දිගක ස්කන්ධය m ද වේ නම්, n වන පුසංවාදයේ සංඛාහතය f_n සඳහා පුකාශනයක් n, T, l, සහ m ඇසුරෙන් ලබා ගන්න.
 - (iii) දී ඇති තන්තුවක් සඳහා, පුසංවාදී සංඛාහත වෙනස් කළ හැකි ආකාර **දෙකක්** සඳහන් කරන්න.
 - (b) (1) රූපයේ දැක්වෙන බුහුතතක් (Harp) වැනි සංගීත භාණ්ඩයක් විවිධ දිග වලින් යුතු සර්වසම ඇදි කම්බි 7කින් සමන්විත වේ. දිග l_1 වන දිගම කම්බිය මූලික සංඛ්‍යාතය $260~{\rm Hz}$ වන 'ස' (C) සංගීත ස්වරය උපදවයි. සියලු ම සංගීත ස්වර උපදවීමට අනුරූප කම්බිවල දිග, l_1 හි භාගයන් ලෙස වගුවේ දැක්වේ.

	සංගීත ස්වර	ස	8	ග	ම	ප	۵	නි
		C	D	Е	F	G	Α	В
ω	<i>-</i>	സ	ரி	<i>Б</i> Б	ம	П	த	நி
1	$\frac{l}{l_1}$	1.00	0.89	0.79	0-70	0.67	0.59	0.53

- (i) සියලු ම කම්බි එකම ආතතියක් යටතේ ඇත්නම්, 'ම' (F) සහ 'නි' (B) සංගීත ස්වරවල මූලික සංඛානත ගණනය කරන්න.
- (ii) නිවැරදි සංගීත ස්වරයක් ලබා ගැනීම සඳහා කම්බියේ ආතතිය සිරුමාරු කිරීම මගින් සංඛානතය සියුම් ව සුසර කළ හැක. සංඛානතය 1% කින් වෙනස් කිරීමට, අදාළ කම්බියෙහි ආතතිය කුමන පුතිශතයකින් සීරුමාරු කළ යුතු ද?

- (c) ශිෂායෙක් විවිධ දිග වලින් යුත් සිහින් PVC පයිප්ප භාවිත කර ඉහත වගුවේ සඳහන් සංගීත ස්වර උපදවීමට පැන්පයිප්ප (panpipe) කට්ටලයක් (2) රූපයේ දැක්වෙන පරිදි සැලසුම් කර නිපදවයි. සියලු ම පයිප්පවල පහළ කෙළවර කිරල ඇබ මගින් වසා ඇත.
 - (i) එක් කෙළවරක් වසා ඇති දිග L වන පයිප්පයකින් උපදවන මූලික විධිය සහ පළමු උපරිතාන දෙකෙහි ස්ථාවර තරංග ආකාර රූපසටහන් **තුනක** වෙන වෙනම ඇඳ දක්වන්න. රූපසටහන් වල නිෂ්පන්ද 'N' ලෙස ද පුස්පන්ද 'A' ලෙස ද සලකුණු කරන්න. (ආන්ත ශෝධන නොසලකා හරින්න.)

(iii) දිගම පයිප්පය 260 Hz වෙනුවට 255 Hz සංඛාාතයක් උපදවන බව සොයා ගන්නා ලදී. 260 Hz සංඛාාතය ලබා ගැනීම සඳහා කිරල ඇබය කුමන දුරකින් චලනය කළ යුතු ද?

කිරල ඇබය

- (a) දුව මාධා‍යයක් තුළින් වැටෙන ඝන ගෝලාකාර වස්තුවක් සඳහා රෝධක බලය ස්ටෝක්ස්ගේ නියමය මගින් පුකාශ කළ හැකි ය.
 - (i) ඝන ගෝලාකාර වස්තුවක් සඳහා ස්ටෝක්ස්ගේ සූතුය ලියා දක්වා එහි පරාමිතීන් නම් කරන්න.
 - (ii) ස්ටෝක්ස්ගේ සූතුය වාුත්පන්න කිරීමේ දී භාවිත කරන උපකල්පන **දෙකක්** ලියා දක්වන්න.
- (b) දුස්සුාවි දුවයක කුමයෙන් ඉහළ නගින වායු බුබුළක් සලකන්න. වායු බුබුළ දුව පෘෂ්ඨය කරා පැමිණීමට ගත වන කාලය නිර්ණය කිරීමට ස්ටෝක්ස්ගේ නියමය යොදා ගත හැක. උස සමග සිදු වන පීඩනයේ විචලනය නිසා ඇති වන බලපෑම නොසලකා හරිමින්, දෙන ලද කාලය t හි දී දුස්සුාවි මාධාායක දී වායු බුබුළක ක්ෂණික පුවේගය $V(t) \ \ \, \text{යන්න}, V(t) = V_T \left(1 e^{-\frac{t}{T}} \right) \ \, \text{මගින් ලබා දිය හැක. මෙහි } V_T \ \, \text{සහ } \tau \ \, \text{පිළිවෙළින් වායු බුබුළෙහි චලිකයේ ආන්ත පුවේගය සහ විශුාන්ති කාලය (relaxation time) වේ.}$
 - (i) දුස්සුාවි මාධාායක දී වායු බුබුළක චලිතය සඳහා විශාන්ති කාලය $4\,\mu s$ නම්, එය නිශ්චලතාවයේ සිට ක්ෂණික පුවේගය, V_T වලින් 50%ක් වීමට ගන්නා කාලය ගණනය කරන්න. $(\ln 0.5 = -0.7$ ලෙස ගන්න)
 - (ii) වායු බුබුළෙහි ක්ෂණික පුවේගය, V_T වලින් 50% සිට 90% දක්වා වැඩි වීමට ගන්නා කාලය ගණනය කරන්න. $(\ln 0.1 = -2.3$ ලෙස ගන්න).
 - (iii) ඉහත (b) (i) සහ (b) (ii) හි ලබා ගත් පිළිතුරු සලකමින් වායු බුබුළෙහි ක්ෂණික පුවේගයේ විචලනය, කාලයේ ශුිතයක් ලෙස ඇඳ දක්වන්න. පුස්තාරයේ V_T පැහැදිලිව දක්වන්න.
- (c) 10 m උසට තෙල් පුරවා ඇති ටැංකියක පතුලේ සිට ඉහළ නගින වායු බුබුළක් සලකන්න.
 - (i) වායු බුබුළ මත කිුිිිිිිිි කරන සම්පුයුක්ත බලය සඳහා පුකාශනයක් $\eta,
 ho_o,
 ho_a, a$, සහ v ඇසුරෙන් ලබා ගන්න. මෙහි තෙල්වල දුස්සුාවිතා සංගුණකය η , තෙල්වල ඝනත්වය ho_o , වාතයේ ඝනත්වය ho_a , වායු බුබුළෙහි අරය a, සහ වායු බුබුළෙහි පුවේගය v වේ.
 - (ii) $\eta = 7.5 \times 10^{-2} \; \mathrm{Pa} \; \mathrm{s}, \; \rho_o = 900 \, \mathrm{kg} \, \mathrm{m}^{-3} \; , \; \rho_a = 1.225 \; \mathrm{kg} \; \mathrm{m}^{-3} \; ,$ සහ වායු බුබුළක සාමානෳ අරය $a = 0.1 \; \mathrm{mm}$ ලෙස දී ඇත. වායු බුබුළෙහි බර, සහ උස සමග පීඩනයේ විචලනය නිසා ඇති වන බලපෑම නොසලකා හරිමින් වායු බුබුළෙහි ආන්ත පුවේගය ගණනය කරන්න.
 - (iii) වායු බුබුළෙහි අභාත්තර පීඩනය $100\cdot33\,\mathrm{kPa}$ ද වායුගෝලීය පීඩනය $100\,\mathrm{kPa}$ ද කෙල්වල පෘෂ්ඨික ආතතිය $2\cdot0\times10^{-2}\,\mathrm{N}\;\mathrm{m}^{-1}$ ද නම්, තෙල් පෘෂ්ඨයට මඳක් පහළ දී වායු බුබුළෙහි අරය ගණනය කරන්න.
 - (iv) වායු බුබුළෙහි අරය උස සමග වෙනස් වීම සලකමින් එහි ක්ෂණික පුවේගයේ, කාලය සමග විචලනය දළ සටහනක ඇඳ දක්වන්න.

- $m{8}$. (a) (i) ඉතා කුඩා Δl දිගක් සහිත තුනී වයරයක් තුළින් I ධාරාවක් ගලා යයි. මෙම වයරයේ සිට d ලම්බක දුරක පිහිටි ලක්ෂායක දී චුම්බක සුාව ඝනත්වය ΔB , $\dfrac{\mu_0 I \Delta l}{4\pi d^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.
 - (ii) (1) රූපයේ දක්වා ඇති පරිදි අරය R සහ පොටවල් N ගණනක් සහිත පැතලි වෘත්තාකාර දඟරයක් තුළින් I ධාරාවක් ගලා යයි. දඟරයේ කේන්දුයේ දී චුම්බක සුාව ඝනත්වයේ විශාලත්වය B සඳහා පුකාශනයක් ලබා ගන්න.

2(b) රූපය පිළිතුරු පතුයට පිටපත් කර ගෙන දඟර දෙක නිසා ඇති වන චුම්බක ක්ෂේතුය නිරූපණය කිරීමට චුම්බක බල රේඛා ඇඳ දක්වන්න.

(b) ඉලෙක්ටෝනයක ආරෝපණය එහි ස්කන්ධයට දරන අනුපාතය $\left(rac{e}{m_e}
ight)$ නිර්ණය කිරීම සඳහා (3) රූපයේ

දැක්වෙන උපකරණය භාවිත කළ හැක. රික්ත නළය තුළ සූතිකා කැතෝඩය C, ඉලෙක්ටුෝඩ A_1 සහ A_2 , සහ ජාල රේඛා සහිත සිරස් පුතිදීප්ත තිරය S ඇත. ඉලෙක්ටුෝන කදම්බයේ පථය පුතිදීප්ත තිරය මත දැක

- (i) ඉලෙක්ටෝන කදම්බයේ තීවුතාව පාලනය කිරීම A_1 ඉලෙක්ටෝඩයේ කාර්යය වේ. A_2 ඉලෙක්ටෝඩයේ කාර්යය කුමක් ද?
- (ii) A_1 ඉලෙක්ටුෝඩයට සෘණ වෝල්ටීයතාවක් (-V) යෙදුවහොත්, A_2 ඉලෙක්ටුෝඩය හරහා ගමන් කරන ඉලෙක්ටුෝනයක වේගය සඳහා පුකාශනයක් ලබා ගන්න. (ඉලෙක්ටුෝනයක ආරෝපණය -e සහ ඉලෙක්ටුෝනයක ස්කන්ධය m වේ.)
- (iii) නළයේ ගෝලාකාර කොටස (4) රූපයේ පෙන්වා ඇති පරිදි එකම ධාරාව ගෙන යන පැතලි වෘත්තාකාර දඟර දෙකක් අතර තබනු ලැබේ. එමගින් B ඒකාකාර චුම්බක ක්ෂේතුයක් S තිරයට ලම්බකව යොදනු ලැබේ. මෙමගින් ඉලෙක්ටුෝන වෘත්තාකාර පථයක ගමන් කිරීමට සලස්වයි.

- (c) (3) රූපයේ දැක්වෙන පරිදි P සහ Q සමාන්තර ලෝහ තහඩු දෙක අතරට dc වෝල්ටීයතාවක් යෙදිය හැක. P සහ Q තහඩු (4) රූපයේ දැක්වෙන පරිදි d දුරකින් වෙන් වී ඇත. චුම්බක ක්ෂේතුය B යොදා ඇති අතරතුර ඉලෙක්ටුෝන කදම්බයේ උත්කුමණයක් නැති වන තුරු තහඩු අතර විභව අන්තරය V_{PQ} සීරුමාරු කළ හැක. මෙම කිුියාවලිය ඉලෙක්ටුෝනවල වේගය නිර්ණය කිරීමට විකල්ප කුමයක් ලෙස යොදා ගත හැක.
 - (i) ඉහත සීරුමාරුව සිදු කිරීමෙන් පසු, P සහ Q තහඩු අතර ඇති ඉලෙක්ටුෝනයක් මත යෙදෙන විදයුත් සහ චුම්බක බල ඇඳ දක්වන්න.
 - (ii) ඉලෙක්ටුෝනවල වේගය සඳහා පුකාශනයක් d, B සහ V_{PQ} ඇසුරෙන් ලබා ගන්න.
 - (iii) $B=1~\mathrm{mT}$ සහ $V_{PQ}=0$ වන විට ඉලෙක්ටුෝනවල පථයේ අරය $6~\mathrm{cm}$ වේ. $V_{PQ}=840~\mathrm{V}$ වන විට ඉලෙක්ටුෝන කදම්බයේ උත්කුමණයක් නැත. P හා Q තහඩු අතර පරතරය $8~\mathrm{cm}$ වේ.
 - (1) ඉලෙක්ටුෝනයක වේගය, සහ
 - (2) ඉලෙක්ටුෝනයක ආරෝපණයට එහි ස්කන්ධයේ අනුපාතය $\left(rac{e}{m_e}
 ight)$ ගණනය කරන්න.

$oldsymbol{9.}$ (\mathbf{A}) කොටසට හෝ (\mathbf{B}) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) විදාුුත් ප්‍රභවයක් මගින් ඒකක ආරෝපණයක් මත සිදු කරන කාර්ය ප්‍රමාණය ප්‍රභවයේ විදාුුත් ගාමක බලය (emf) ලෙස අර්ථ දක්වනු ලැබේ.
 මෙම අර්ථ දැක්වීම භාවිත කරමින්;
 - (i) විදාපුත් ගාමක බලයෙහි ඒකක නිර්ණය කරන්න.
 - (ii) පුභවයක් මගින් ජනනය කරන ක්ෂමතාව සඳහා පුකාශනයක් එහි විදයුත් ගාමක බලය E සහ එය හරහා ගලන ධාරාව I ඇසුරෙන් ලබා ගන්න.
- (b) විදසුත් ගාමක බලය E සහ අභාගන්තර පුතිරෝධය r වන පුභවයක්, පුතිරෝධය R වූ බාහිර පුතිරෝධකයකට සම්බන්ධ කරනු ලැබේ. t කාලයක දී පරිපථයේ උත්සර්ජනය වන මුළු ශක්තිය සඳහා පුකාශනයක් E,r,R සහ t ඇසුරෙන් ලබා ගන්න.
- (c) (1) රූපයේ පරිපථයෙන් දැක්වෙන පරිදි, මෝටර් රථයක, කිුයාරම්භක මෝටරයට (starter motor) සහ පුධාන ලාම්පුවලට ජවය ලබා දෙන විදාුුත්-රසායනික බැටරියක් සලකන්න. එක් එක් පුධාන ලාම්පුවේ පුමත ක්ෂමතාව (rated power) $60~\mathrm{W}$ වේ. බැටරියේ අභාවන්තර පුතිරෝධය $0.03~\Omega$ වේ. ඇමීටරය පරිපූර්ණ ඇමීටරයක් ලෙස කිුයා කරන බව සලකන්න.

මෝටර් රථය පණගන්වා නොමැතිව (S_2 විවෘතව) පුධාන ලාම්පු පමණක් දැල්වූයේ (S_1 සංවෘත) නම්, වෝල්ට්මීටරය $12 \cdot 0 \ \mathrm{V}$ අගයක් පෙන්වයි.

- (i) ඇමීටරයේ පාඨාංකය කුමක් ද?
- (ii) පුධාන ලාම්පුවක පුතිරෝධය කුමක් ද?
- (iii) බැටරියේ වීදාුත් ගාමක බලය ගණනය කරන්න.
- (d) පුධාන ලාම්පු දල්වා ඇති විටෙක දී කිුයාරම්භක මෝටරය සකිුය කළ සැණින් (S_2 සංවෘත කළ සැණින්) ඇමීටරය $8\!\cdot\!0\,\mathrm{A}$ අගයක් පෙන්වයි. එවිට,
 - (i) කියාරම්භක මෝටරය හරහා ධාරාව, සහ
 - (ii) කි්යාරම්භක මෝටරයේ ප්‍රතිරෝධය ගණනය කරන්න.
- (e) පුධාන ලාම්පු දල්වා ඇති විට දී කිුයාරම්භක මෝටරයේ ආමේචරය භුමණය වන විට කිුයාරම්භක මෝටරය හරහා ධාරාව $34\cdot 2$ A සහ වෝල්ට්මීටරයේ පාඨාංකය $11\cdot 0$ V වේ. මෙවිට, කිුයාරම්භක මෝටරයේ
 - (i) පුතිවිදයුත් ගාමක බලය, සහ
 - (ii) කාර්යක්ෂමතාව ගණනය කරන්න.
- (f) මෝටරයේ පුතිවිදාුුත් ගාමක බලය E_b , එය හරහා ගලන ධාරාව සමග විචලනයේ දළ සටහනක් අඳින්න.

- (g) එක්තරා රාතියක රියදුරු පුධාන ලාම්පු නිවා නොදමා මෝටර් රථය නවතා තැබූ නිසා බැටරිය සැලකිය යුතු ලෙස විසර්ජනය විය. එහි පුතිඵලයක් ලෙස බැටරියේ විදාුත් ගාමක බලය $10\cdot 8\ V$ දක්වා අඩු වී එහි අභාගන්තර පුතිරෝධය $0\cdot 24\ \Omega$ දක්වා වැඩි විය. බැටරියේ සිදු වූ විසර්ජනය නිසා කිුිිියාරම්භක මෝටරය හරහා ගලන ලද ධාරාව එය කරකැවීමට පුමාණවත් නොවී ය. මෙම අවස්ථාවේ දී කිුිිිිියාරම්භක මෝටරය හරහා ධාරාව සොයන්න.
- (h) ඉහත (g) හි සඳහන් කළ අවස්ථාවේ දී රියදුරු විසින් විදයුත් ගාමක බලය $12\cdot 3$ V සහ අභාගන්තර පුතිරෝධය $0\cdot 02\,\Omega$ වූ බාහිර බැටරියක් මෝටර් රථය පැන්නුම් කිුියාරම්භ (jump start) කිරීමට භාවිත කරන ලදී. මේ සඳහා බාහිර බැටරිය විසර්ජනය වූ බැටරිය සමග එකිනෙකෙහි පුතිරෝධය $0\cdot 015\,\Omega$ වූ ජම්පර් කේබල් (jumper cables) දෙකක් මගින් සම්බන්ධ කර අනතුරුව මෝටර් රථය පණගැන්වූයේ ය.
 - (i) මෝටර් රථය පැන්නුම් කි්යාරම්භ කිරීමේ දී බාහිර බැටරිය විසර්ජනය වූ බැටරිය සමග සම්බන්ධ කරන ආකාරය පරිපථ රූපසටහනක ඇඳ දක්වන්න.
 - (ii) එන්ජිම පණගන්වන විට දී කිුියාරම්භක මෝටරය හරහා ගලන **උපරිම** ධාරාව ගණනය කරන්න.

(B) කොටස

- (a) (i) ක්ෂේතු ආචරණ ටුාන්සිස්ටර (FET) ඒක ධුැවීය උපකුම (unipolar devices) ලෙස හඳුන්වන්නේ ඇයි? FET කිුයාත්මක වීමට උපයෝගී වන ආරෝපණ වාහක මොනවා ද?
 - (ii) FET, වෝල්ටීයතා පාලිත (voltage-controlled) උපකුම ලෙස ද හඳුන්වන්නේ ඇයි දැයි පුකාශ කරන්න.
 - (iii) (1) රූපයෙන් දැක්වෙන පරිපථය සඳහා $V_D=5~{
 m V}$ බව උපකල්පනය කරමින් සොරොව් ධාරාව (drain current) I_D සහ ද්වාර-පුභව (Gate-Source) වෝල්ටීයතාව V_{GS} ගණනය කරන්න.

(b) (2) රූපයේ දැක්වෙන කාරකාත්මක වර්ධක පරිපථයේ එක් එක් S_i (i=0,1,2,3) විදුසුත් යාන්තුික ස්විචය D_i (i=0,1,2,3) විදුසුත් සංඥාවක් යෙදීම මගින් කියාත්මක කරවයි. D_i හි අගය 'High' $(5\,\mathrm{V})$ හෝ 'Low' $(0\,\mathrm{V})$ විය හැක. D_i හි අගය 'High' වන විට අදාළ S_i ස්වීචය සංවෘත වන අතර නැතහොත් එය විවෘත වේ.

- (i) D_2 'High' වන විට 10R පුතිරෝධය හරහා ධාරාව R ඇසුරෙන් සොයන්න.
- (ii) $(5\,{
 m V},0\,{
 m V},5\,{
 m V})$ වෝල්ටීයතා කාණ්ඩයක් පිළිවෙළින් S_3,S_2,S_1,S_0 ස්වීචයන් කි්යාත්මක කිරීමට එක විට යොදයි නම්, (2) රූපයේ දක්වා ඇති I ධාරාව R ඇසුරෙන් ගණනය කරන්න.
- (iii) (5V,5V,5V,5V) වෝල්ටීයතා කාණ්ඩයක් පිළිවෙළින් S_3,S_2,S_1,S_0 ස්වීචයන් කිුියාත්මක කිරීම සඳහා එක විට යෙදූ විට පුතිදාන වෝල්ටීයතාව V_0 ගණනය කරන්න.

- (c) මුදල් මගින් කිුිිියා කරන 'සුළු කෑම' ලබා දෙන යන්තුයක් (snack dispenser) පහත තත්ත්ව යටතේ දී '*මාරි* ' හෝ '*චොක්ලට් කුීම්*' විස්කෝතු පැකට්ටුවක් ලබා දෙයි.
 - නිවැරදි මුදල් පුමාණය ඇතුළත් කිරීම (I)
 - ullet '*මාරි* ' (M) හෝ '*චොක්ලට් කුීම්* ' (C) තේරීම
 - ullet '*මාරි* ' තේරුවේ නම් යන්තුය තුළ '*මාරි තිබීම*' (X)
 - ullet 'eචාක්ලට් කි්ම්' තේරුවේ නම් යන්තුය තුළ 'eචාක්ලට් කි්ම් තිබීම' (Y)
 - (i) විස්කෝතු පැකට්ටුවක් ලබා ගත හැකි තත්ත්ව සඳහා තාර්කික පුකාශනය ලබා ගන්න.
 - (ii) මෙය තාර්කික ද්වාර භාවිතයෙන් කිුයාවට නැංවිය හැකි ආකාරය පෙන්වන්න.

${f 10.}\,\,({ m A})$ කොටසට හෝ ${f (B)}$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) (i) බොයිල් නියමය සහ චාර්ල්ස් නියමය පුකාශ කරන්න.
 - (ii) ඉහත නියමයන් භාවිතයෙන් පරිපූර්ණ වායු සමීකරණය වනුත්පන්න කරන්න.
- (b) කාමර උෂ්ණත්වය T_R හි දී ආරම්භක පීඩනය P_0 සහ පරිමාව V වූ, හුළං අඩු වී ඇති ටයරයක් කපාටයක් හරහා සම්පීඩිත නයිටුජන් $({
 m N}_2)$ වායු ටැංකියකට සම්බන්ධ කර ඇත. ආරම්භයේ දී ටයරයේ ${
 m N}_2$ වායුව පමණක් ඇත. එම ටයරයට ${
 m N}_2$ වායුව පිරවූ පසු එහි අවසාන පීඩනය P වන අතර එහි අඩංගු මුළු ${
 m N}_2$ වායු මවුල සංඛාභව n වේ. ටයරයේ පරිමාවේ වෙනසක් සිදු නොවේ යැයි උපකල්පනය කරන්න.
 - (i) ටයරය තුළ ඇති N_2 වායුව පරිපූර්ණ වායුවක් ලෙස හැසිරේ යැයි උපකල්පනය කරමින්, ටයරයට පොම්ප කරන ලද N_2 වායු මවුල සංඛ්‍යාව $n \left(1 \frac{P_0}{P} \right)$ බව පෙන්වන්න.
 - (ii) ටයරයට ${
 m N}_2$ වායුව පිරවීමට කරන ලද කාර්යය සඳහා පුකාශනයක් ලබා ගන්න.
 - (iii) N_2 වායුව පොම්ප කරන කිුයාවලිය ස්ථීරතාපී යැයි උපකල්පනය කර, ටයරය තුළ ඇති N_2 වායුවේ උෂ්ණත්වයේ වෙනස් වීම $\frac{2}{5} \left(1 \frac{P_0}{P}\right) T_R$ බව පෙන්වන්න. පරිපූර්ණ වායුවක අභාගන්තර ශක්තියේ වෙනස් වීම $\Delta U = n C_V \Delta T$ මගින් දෙනු ලැබේ. මෙහි C_V යනු නියත පරිමාවේ දී මවුලික තාප ධාරිතාව ද ΔT යනු උෂ්ණත්වයේ වෙනස් වීම ද වේ. නියත පරිමාවේ දී ද්වීපරමාණුක පරිපූර්ණ වායුවක මවුලික තාප ධාරිතාව $\frac{5R}{2}$ වේ. මෙහි R යනු සාර්වතු වායු නියතය වේ.
 - (iv) උෂ්ණත්වයේ සිදු වන මෙම වෙනස් වීම, පීඩනය තාවකාලිකව ඉහළ අගයකට වැඩි කරයි. මෙම පීඩනයෙහි වෙනස් වීම $\frac{2}{5}ig(P-P_0ig)$ බව පෙන්වන්න.
- (c) ආමාන පීඩනය (gauge pressure) යනු වායුගෝලීය පීඩනයට සාපේක්ෂව මනිනු ලබන පීඩනය වේ. ටයරයක ආමාන පීඩනය සාමානායෙන් psi (pound per square inch) ඒකක වලින් පුකාශ කරනු ලැබේ. $(1 \, \text{atm} \approx 100 \, \text{kPa} \, \text{tm} \, 1 \, \text{psi} \approx 7 \, \text{kPa})$

කාමර උෂ්ණත්වයේ දී $(27~^{\circ}\mathrm{C})$ හුළං අඩු වූ $20~\mathrm{psi}$ පීඩනයේ ඇති ටයරයක් $30~\mathrm{psi}$ පීඩනයකට පත්වන තුරු තවදුරටත් N_2 වායුව පුරවන ලදී.

- (i) ටයරයේ ඇති N, වායුවේ උෂ්ණත්වයේ වෙනස් වීම ගණනය කරන්න.
- (ii) මෙම උෂ්ණත්වයේ වෙනස් වීම නිසා ටයරයේ ඇති වන උපරිම පීඩනය ගණනය කරන්න.
- (iii) හුළං අඩු වී ඇති ටයරයකට තවදුරටත් N_2 වායුව පුරවන විට සාමානෲයෙන් මෙම තාවකාලික පීඩනයේ වැඩි වීම නිරීක්ෂණය කළ නොහැක. මෙම පීඩනය වැඩි වීම නිරීක්ෂණය නොවීමට හේතු **දෙකක්** දෙන්න.

(B) කොටස

පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

විකිරණ විමෝචනය කිරීමෙන් අස්ථායී නාෂ්ටියක් ස්ථායී නාෂ්ටියක් බවට පත්වන ස්වයං ක්ෂය වීමේ කිුයාවලිය විකිණශීලීතාව වේ. ක්ෂය වීමේ ශීඝුතාව එම මොහොතේ ඇති විකිරණශීලී පරමාණු සංඛ්‍යාවට අනුලෝමව සමානුපාතික වන නමුත් බාහිර භෞතික තත්ත්වයන්ගෙන් ස්වායත්ත වේ.

තයිරොයිඩ් (Thyroid) පිළිකා රෝගීන්ට පුතිකාර කිරීම සඳහා විකිරණශීලී අයඩින් 131 I, නාෂ්ටික වෛදා විදාහවේ දී භාවිත කරයි. 131 I හි අර්ධ ආයු කාලය දින 8කි. එය මුලදී β^- අංශුවක් විමෝචනයෙන් ද පසුව γ ෆෝටෝනයක් විමෝචනයෙන් ද ස්ථායී 131 Xe බවට ක්ෂය වේ. මෙම β^- හි උපරිම පටක විනිවිද යාමේ දිග 2 mm වේ. සාමානාගයන් 131 I, සෝඩියම් අයඩයිඩ් (Na 131 I) ලෙස, කරලක් (capsule) ස්වරූපයෙන් රෝගීන්ට ලබා දෙනු ලැබේ. එය ලබා දීමෙන් අනතුරුව රුධිර පුවාහයට අවශෝෂණය වී තයිරොයිඩ් ගුන්ටීයෙහි සාන්දුණය වේ. 131 I වලින් නිකුත් වන විකිරණ, තයිරොයිඩ් ගුන්ටීයේ බොහෝ පිළිකා සෛල විනාශ කරයි.

රෝගියා භවා විකිරණ පුභවයක් බවට පත්වන හෙයින් අවට සිටින අනෙක් අය විකිරණවලට නිරාවරණය වීම අවම කිරීම සඳහා පූර්වාරක්ෂක කිුිිියාවලි අනුගමනය කළ යුතු ය. රෝගියා විසින් විමෝචනය කරන විකිරණ පුමාණය ලබා දුන් මාතුාවේ සකිුිියතාවට සමානුපාතික වේ. වෛදා විදාහත්මක භාවිතයේ දී සකිුිිියතාව සඳහා භාවිත කරන, SI නොවන පොදු ඒකකය කියුරි (Ci) වේ. කියුරි එකක් තත්පරයට සිදු වන පෘතක්කරණ 37×10^9 කට සමාන වේ.

ශරීරය තුළ ඇති විකිරණශීලී දුවායක්, විකිරණශීලී ක්ෂය වීමෙන් පමණක් නොව ජෛව විදහත්මක නිශ්කාෂණයෙන් ද හීන වේ. මෙම නිශ්කාෂණය හුදෙක් ජෛව විදහාත්මක කිුිිියාවලියක් වන අතර එය ක්ෂය නියතය λ_p වලින් විදහා දක්වන සාතීය (exponential) විචලනයක් අනුගමනය කරයි. එබැවින් විකිරණශීලී ක්ෂය වීම සහ ජෛව විදහාත්මක නිශ්කාෂණය යන දෙකම නිසා ඇති වන ක්ෂය වීමට අදාළ සඵල ක්ෂය නියතය λ_p යන්න, $\lambda_p = \lambda_p + \lambda_p$ ලෙස සඳහන් කළ හැක. මෙහි λ_p යනු භෞතීය විකිරණශීලී ක්ෂය වීමට අනුරූප ක්ෂය නියතය වේ. විකිරණ ආරක්ෂණ පියවර සඳහා භාවිත කරන සඵල අර්ධ ආයු කාලය, සඵල ක්ෂය නියතය මගින් ගණනය කරනු ලැබේ.

- (a) (i) eta^- සහ γ විමෝචන අතර වෙනස්කම් **දෙකක්** සඳහන් කරන්න.
 - (ii) $a,\,b,\,$ සහ c වෙනුවට නිවැරදි සංඛාා දක්වමින් පහත ක්ෂය වීමේ සමීකරණය නැවත ලියන්න. ${}^{131}_{53}{
 m I} \longrightarrow {}^{131}_a{
 m Xe} + {}^b_c \beta^-$
- (b) $100~{
 m mCi}$ සකීයතාවක් සහිත නැවුම් Na^{131} I නියැදියක් රෝහලක් මගින් ලබා ගනී. එම නියැදිය කාමර උෂ්ණත්වයේ ඇති ඊයම් භාජනයක ගබඩා කරනු ලැබේ.
 - (i) සකීයතාව සඳහා භාවිත කරන SI ඒකකය කුමක් ද?
 - (ii) ක්ෂය නියතය λ සඳහා පුකාශනයක් අර්ධ ආයු කාලය T ඇසුරෙන් ලියන්න.
 - (iii) දින 4 කට පසු ඉහත නියැදියේ සකීයතාව ගණනය කර පිළිතුර SI ඒකක වලින් පුකාශ කරන්න. $(\ln 2 = 0.7 \ {\rm ms} \ e^{-0.35} = 0.7 \ {\rm e}{\rm cm} \ {\rm s}$ ගන්න.)
 - (iv) එනයින්, සකි්යතාවයේ වෙනස් වීම පුතිශතයක් ලෙස පුකාශ කරන්න.
 - (v) $Na^{131}I$ නියැදිය කාමර උෂ්ණත්වයේ ගබඩා කිරීම වෙනුවට, $0\,^{\circ}C$ දී ගබඩා කළහොත් එහි සකි්ුයතාව අඩු කිරීමට හැකි වේ ද? පිළිතුර පැහැදිලි කරන්න.
- (c) $100~{
 m mCi}$ සකි්යතාවක් සහිත ${
 m Na}^{131}$ I නියැදියකින් කුඩා පුමාණයක් තයිරොයිඩ් රෝගියකුට ලබා දෙනු ලැබේ.
 - (i) මෙවැනි රෝගියකු සමග කටයුතු කිරීමේ දී විකිරණ ආරක්ෂණ පියවර ගත යුත්තේ කුමන විමෝචන ආකාරය සඳහා ද? පිළිතුර පැහැදිලි කරන්න.
 - (ii) තයිරොයිඩ් ගුන්ටීයේ දී 131 I හි සඵල අර්ධ ආයු කාලය T_e , $\frac{1}{T_e} = \frac{1}{T_p} + \frac{1}{T_b}$ මගින් ලබා දිය හැකි බව පෙන්වන්න. මෙහි T_p සහ T_b පිළිවෙළින් විකිරණශීලී ක්ෂය වීමට සහ ජෛව විදාහත්මක නිශ්කාෂණයට අදාළ අර්ධ ආයු කාලයන් වේ.
 - (iii) තයිරොයිඩ් ගුන්ටීයේ දී 131 I හි රෛව විදහාත්මක අර්ධ ආයු කාලය දින 24ක් නම්, 131 I වල සඵල අර්ධ ආයු කාලය (දින වලින්) ගණනය කරන්න.
 - $({
 m iv})^{-131} {
 m I}$ ලබා දීමෙන් දින 4කට පසුව සකි්යතාවයේ පුතිශත වෙනස ගණනය කරන්න. $(e^{-0.46}=0.63$ ලෙස ගන්න.)
 - (v) විකිරණ ආරක්ෂණ නියාමනයන්ට අනුව ¹³¹I පුතිකාර කළ රෝගීන් රෝහලෙන් පිට කළ හැක්කේ සකීයතාව 50 mCi ට වඩා අඩු හෝ සමාන වන විට පමණි. මෙම නියාමනය අනුගමනය කරන්නේ නම්, ඉහත ¹³¹I ලබා දුන් රෝගියා රෝහලෙන් පිට කිරීමට පෙර කොපමණ කාලයක් හුදකලාව තැබිය යුතු ද?