1: In the circuit shown, assume all switching activity is uncorrelated. Pa (the probability that at any clock cycle input a is a logic '1') = 0.5. Pb = 0.25. Pc = 0.75. Pd = 0.5.

- a) Calculate the probabilities of all nodes in the circuit.
- b) Calculate the activity factor (α) of every node in the circuit.
- c) Assuming the clock frequency is 2.5 Ghz, Vdd = 1.2 V, C_1 = 2 μF , C_2 = 5 μF , C_3 = 0.5 μF , C_4 = 17 μF , calculate the average switching power used to drive each capacitor.
- d) Calculate the overall switching power consumed by the circuit.

2: In a given computer, block X consumes 50% of the total static power, but it is only operational in bursts 10% of the time.

- a) Describe two methods for reducing the static power used by block X.
- b) Estimate the power savings for your chosen methods.
- c) Describe any drawbacks for your methods.

3: In HW2 Q4, we asked you to find the optimal number of inverters minimize delay to drive a 100-unit load starting with a unit inverter. Repeat the problem now minimizing the switching energy delay product (EDP) under a constant Vdd, f, and α . The diffusion nodes are disconnected because the inverters in the cascade are sized differently.

4: In the shown interconnect model, two wires are placed adjacent to each other with length I, thickness h, width w, and are space a distance of d apart. A dielectric of permittivity ϵ encases the wires which have a resistivity of ρ . Current flows along the length of the conductor as shown. **Fill in the table analyzing the** h effect of material parameters and dimensions on resistance (R), capacitance (C), and inductance (L) (assuming all parameters are constant except for the one listed).

	l doubles	w doubles	d doubles	h doubles	ϵ doubles	ho doubles
R:						
L:						
C:						

5: In HW2 Q4, we asked you to find the optimal number of inverters to drive a 100-unit load starting with a unit inverter. Repeat the problem minimizing delay using the Elmore delay model assuming now that due to interconnect, there is a 2R (where R is the unit NMOS ON resistance) resistor between each inverter and its load as depicted below: (recall that a unit inverter has input capacitance C and thus a 100-unit load is equivalent to 100C of capacitance)

