Chapter 2

Data Representation in Computer Systems

Chapter 2 Objectives

 Understand the concepts of error detecting and correcting codes.

- It is physically impossible for any data recording or transmission medium to be 100% perfect 100% of the time over its entire expected useful life.
- As more bits are packed onto a square centimeter of disk storage, as communications transmission speeds increase, the likelihood of error increases-sometimes geometrically.
- Thus, error detection and correction is critical to accurate data transmission, storage and retrieval.

- Check digits, appended to the end of a long number, can provide some protection against data input errors.
 - The last characters of UPC barcodes and ISBNs are check digits.
- Longer data streams require more economical and sophisticated error detection mechanisms.
- Cyclic redundancy checking (CRC) codes provide error detection for large blocks of data.

- Checksums and CRCs are examples of systematic error detection.
- In systematic error detection a group of error control bits is appended to the end of the block of transmitted data.
 - This group of bits is called a *syndrome*.
- CRCs are polynomials over the modulo 2 arithmetic field.

The mathematical theory behind modulo 2 polynomials is beyond our scope. However, we can easily work with it without knowing its theoretical underpinnings.

- Modulo 2 arithmetic works like clock arithmetic.
- In clock arithmetic, if we add 2 hours to 11:00, we get 1:00.
- In modulo 2 arithmetic if we add 1 to 1, we get 0.
 The addition rules couldn't be simpler:

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$ $1 + 1 = 0$

You will fully understand why modulo 2 arithmetic is so handy after you study digital circuits in Chapter 3.

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic.
 - As with traditional division,
 we note that the dividend is
 divisible once by the divisor.
 - We place the divisor under the dividend and perform modulo
 2 subtraction.

$$\begin{array}{r}
 1 \\
 1101 \overline{\smash{\big)}\ 1111101} \\
 \underline{1101} \\
 0010
\end{array}$$

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
 - Now we bring down the next bit of the dividend.
 - We see that 00101 is not divisible by 1101. So we place a zero in the quotient.

$$\begin{array}{r}
10 \\
1101)1111101 \\
\underline{1101} \\
00101
\end{array}$$

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
 - 1010 is divisible by 1101 in modulo 2.
 - We perform the modulo 2 subtraction.

- Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 arithmetic...
 - We find the quotient is 1011,
 and the remainder is 0010.
- This procedure is very useful to us in calculating CRC syndromes.

$$\begin{array}{r}
1011 \\
1101)1111101 \\
\underline{1101} \\
001010 \\
\underline{1101} \\
01111 \\
\underline{1101} \\
0010
\end{array}$$

Note: The divisor in this example corresponds to a modulo 2 polynomial: $X^3 + X^2 + 1$.

- Suppose we want to transmit the information string: 1111101.
- The receiver and sender decide to use the (arbitrary) polynomial pattern, 1101.
- The information string is shifted left by one position less than the number of positions in the divisor.
- The remainder is found through modulo 2 division (at right) and added to the information string: 1111101000 + 111 = 1111101111.

```
1011011
1101)1111101000
     1101
     001010
        1101
        01111
         1101
         001000
           1101
           01010
             1101
             0.111
```

- If no bits are lost or corrupted, dividing the received information string by the agreed upon pattern will give a remainder of zero.
- We see this is so in the calculation at the right.
- Real applications use longer polynomials to cover larger information strings.
 - Some of the standard polynomials are listed in the text.

```
1011011
1101)1111101111
     1101
     001010
        1101
        01111
         1101
         001011
           1101
           01101
             1101
             0000
```

- Data transmission errors are easy to fix once an error is detected.
 - Just ask the sender to transmit the data again.
- In computer memory and data storage, however, this cannot be done.
 - Too often the only copy of something important is in memory or on disk.
- Thus, to provide data integrity over the long term, error correcting codes are required.

- Hamming codes and Reed-Solomon codes are two important error correcting codes.
- Reed-Solomon codes are particularly useful in correcting burst errors that occur when a series of adjacent bits are damaged.
 - Because CD-ROMs are easily scratched, they employ a type of Reed-Solomon error correction.
- Because the mathematics of Hamming codes is much simpler than Reed-Solomon, we will only look at Hamming codes.

- For the word 11010110, assuming even parity,
 - Bit 1 *contributes* to bits 3, 5, 7, 9, and 11, so its value is 1 to ensure even parity within this group.
 - Bit 2 contributes to bits 3, 6, 7, 10, and 11, so its value is 0.

				P8				P4			
1	1	0	1		0	1	1		0	0	1
12	11	10	9	8	7	6	5	4	3	2	1

What are the values for the other parity bits?

The completed code word is shown above.

```
P1 = XOR of bits (3,5,7,9,11)

= xor(0,1,0,1,1) = 1

P2 = XOR of bits (3,6,7,10,11)

= xor(0,1,0,0,1) = 0

P4 = XOR of bits (5,6,7,12)

= xor(1,1,0,1) = 1

P8 = XOR of bits (9,10,11,12)

= xor(1,0,1,1) = 1
```

 Using the Hamming algorithm, we can not only detect single bit errors in this code word, but also correct them!

- Suppose an error occurs in bit 5, as shown above.
 Our parity bit values are:
 - Bit 1 checks 1, 3, 5, 7, 9, and 11. This is incorrect as we have a total of 3 ones (which is not even parity).
 - Bit 2 checks bits 2, 3, 6, 7, 10, and 11. The parity is correct.
 - Bit 4 checks bits 4, 5, 6, 7, and 12. This parity is incorrect, as we 3 ones.
 - Bit 8 checks bit 8, 9, 10, 11, and 12. This parity is correct.

- We have erroneous parity for check bits 1 and 4.
- With *two* parity bits that don't check, we know that the error is in the data, and not in a parity bit.
- Which data bits are in error? We find out by adding the bit positions of the erroneous bits.
- Simply, 1 + 4 = 5. This tells us that the error is in bit 5. If we change bit 5 to a 1, all parity bits check and our data is restored.

Hamming Code

Single-error detection & correction

					Bit Po	sition					1
1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	0	1	0	0	75	1	$ \setminus $	
P1	P2	1	P4	1	0	0	P8	0	4	0	0
0	0	1	1	1	0	0	1	0	1	0	0
								7	1	,]	
					I I		١ ١	W			/ .
					1	\					1/
						1/1			/	//	/

```
P1 = XOR of bits (3,5,7,9,11)

= xor(1,1,0,0,0) = 0

P2 = XOR of bits (3,6,7,10,11)

= xor(1,0,0,1,0) = 0

P4 = XOR of bits (5,6,7,12)

= xor(1,0,0,0) = 1

P8 = XOR of bits (9,10,11,12)

= xor(0,1,0,0) = 1
```

Range of Data Bits for k Check Bits

- For k check bits and n data bits
 - Total bits = n + k
 - Syndrome values has a range: 0 − (2^k-1)
 - Reserve syndrome value '0'; thus, we are left with (2^k-1) values
 - To check all data bits $(2^k-1) \ge n + k$ OR $(2^k-1) k \ge n$

Number of Check Bits, k	Range of Data Bits, n
3	2-4
4	5-11
5	12-26
6	27-57
7	58-120

20

Single-Error Correction, Double-Error Detection

- Add 1 more parity bit at the end
 - In previous example, P13
 - Data bits becomes: "001110010100P₁₃"
- To compute P13, XOR all 12 bits
 - Even parity
 - To check, the parity P over all 13 bits must be 0 (correct; even parity)
- Scenarios:
 - \circ C = 0 and P = 0 → no error
 - C ≠ 0 and P = 1 → single error (detect & correct)
 - $C \neq 0$ and P = 0 → double error (detect only)
 - C = 0 and P = 1 \rightarrow single error at P13