Lecture 2

Conditional Probability

Conditional probability of an event A assuming another event M is

$$P(A \mid M) \stackrel{\triangle}{=} P(A \cap M)$$
 $P(M)$

assuming that

L P(M)≠0

Eg 1: Toss a fair -, i.e probability of outcomes = 1/6.

What is the probability
of observing a 6 given that
we will observe an even number?

$$A = \{6\}$$
 $M = \{2, 4, 6\}$

$$P(A|M) = P(ANM) = P({63})$$
 $P(M) = P({2,4,63})$

$$= \frac{1/6}{1/6 + 1/6 + 1/6} = \frac{1}{3}$$

1	9
49	6
0	

We toss two fair dice in succession.

- (a) What is the probability that the total exceeds 6?
- (b) If the first dice shows 3, what is the conditional probability that the total exceeds 6?

Sample Space
$$\mathcal{L} = \left\{ \begin{array}{c} (1,1), (1,2) \cdots, (1,6) \\ (2,1), (2,2) \cdots, (2,6) \end{array} \right\} \quad \text{outcomes} \\
\vdots \qquad \vdots \qquad \vdots \qquad = 36 \\
(6,1), (6,2) \cdots, (6,6) \\
\end{array}$$

A = Event that the total exceeds 6

$$= \{ (1,6) \\ (2,5), (2,6) \}$$
 $\Rightarrow 21 \text{ possible}$ outcomes lead to exert A
$$\vdots$$

$$(6,1), (6,2), \dots, (6,6) \}$$

For part (a),
$$P(A) = 21 \times (186) = 21 = 7$$

 $36 \times (186) = 36$ 12

B = Event that the first dice shows
$$\mathbf{3}$$

= $\{(3,1), (3,2), \dots, (3,6)\}$

For part (b), we are interested in

$$P(A|B) = P(A \cap B)$$
 $P(B)$

sample space,

AnB =
$$\{(3,4), (3,5), (3,6)\}$$

$$= P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3 \times 1/86}{6 \times 1/36} = \frac{1}{2}$$

TOTAL PROBABILITY and BAYES THEOREM

Jotal Probability Theorem: 2 U = [A1, A2,..., An] is a partition of S

then for any event B,

$$P(B) = P(B|A_1)P(A_1) + --- + P(B|A_n)P(A_n)$$

Proof: B = BNS

these are mutually exclusive

5- Sample Space

N Visual / Venn-diag. of Total

Probability Theorem

```
Bayes' Theorem
```

$$\Rightarrow P(A_i|B) = P(B|A_i) \cdot P(A_i)$$

$$P(B)$$

$$P(A_{i}|B) = P(B|A_{i})P(A_{i})$$

$$\sum_{i=1}^{n} P(B|A_{i})P(A_{i})$$

we often use the terms

a posteriori" for P(Az | B) ? - Given that event what is prob of A;?

Independence of Events

Two events A and B are independent if

$$P(A \cap B) = P(A) P(B)$$

=) A & B
are independent if
$$P(A|B) = P(A)$$

	V Tup					
	V. Imp					
	n events A1, A2,, An are independent if any k< n of them are idependent and					
	if any k< n of them are idependent and					
	P(A1 N A2 NAn) = P(A1) P(A2) P(An)					
	Eg: Events A1, A2 and A3 are independent					
	if					
	$P(A_1 \cap A_2) = P(A_1) P(A_2)$ All					
	$P(A_1 \cap A_3) = P(A_1) P(A_3) $					
	conditions					
	$P(A_3 \cap A_2) = P(A_3) P(A_2) \qquad \text{must be}$					
	Valid					
	$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2) P(A_3)$					
_	V-					
	Example: We have two boxes, box 1 has & white balls					
[Example: We have two boxes, box 1 has & white balls and B black balls.					
(2.14	in PP") Box 2 has 8 white balls and & black balls.					
(2.14	in PP") Box 2 has 8 white balls and of black balls. We transfer one ball from box 1 to box 2.					
(2.14	and B black balls. in PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the					
	and B black balls. in PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white?					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black.					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black white black. ORiginal System (x) (B) 8 1 7					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black white black. ORiginal System Box-1 Box-2					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black white black. ORiginal System Box-1 Box-2					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black white black. ORiginal System Box-1 Box-2					
	and B black balls. in PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black white black white black. ORiginal System Box-1 Box-2 white ball is Black ball is transferred Transferred Stil 7					
	and B black balls. In PP" Box 2 has 8 white balls and 7 black balls. We transfer one ball from box 1 to box 2. Next, a ball is drawn from box 2. What is the prob. that it will be white? white black transferred transferred transferred transferred transferred					

Let W -> be the event that a white ball is transferred to box 2

B -> black ball is transferred to Box 2.

$$P(W) = \frac{\alpha}{\alpha + \beta}$$

$$P(B) = \beta$$

Recall that W and B are mutually exclusive events.

Quiz: Are W and B independent events?

Ans: No!! Why? $P(W|B) = P(W \cap B) = O$

However, for independence, we need P(W/B) = P(A) > W and B are NOT independent.

Coming back to the Example, we are interested in the event

A = { white ball is drawn from Second box}

Since W and B are mutually exclusive events and form a partition of the Sample Space, using Baye's theorem, we can write

P(A) = P(W)P(A|W) + P(B)P(A|B)

Easy to check that
$$P(A|W) = \frac{S+1}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S+\gamma+1}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S+\gamma+1}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A) = \frac{S+\gamma+1}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and } \quad P(A|B) = \frac{S}{S+\gamma+1}$$

$$P(A|B) = \frac{S}{S+\gamma+1} \quad \text{ and$$

Example: A concer diagnostic device is 95 % accurate. A person takes the test & the result is positive. It is given that apriori probability of cancer in the person's town is 0.02. What is the prob that the person has caucer? Let T denote the outcome of the diagnostic Solution: T = S H (healthy)
C (concer) device. We are given that P(T=H|H)=0.95 } 95%, and P(T=C|C)=0.95 } accurate The device detects concer, i.e T=C. We want to find P(C | T=c) Using Baye's rule: P(C|T=c) = P(C|N|T=c) P(T=c) $= P(c) \cdot P(T=c|C)$ P(T=c) $= (0.02) \times (0.95)$ P(T=c) $= (0.02) \times 0.95$ P(c) P(T=c|c) + P(H) P(T=c|H) = (0.02) x 0.95 (0.02) x 0.45 + (0.98) x 0.05 P(C|T=c)= 10.278

Lecture 2-continued

Evaluation metrics

- * Consider an experiment in which the outcomes are labeled either as positive (p) or negative (n).
- * Example: E-mails in your Inbox

Spam

Not-Spam

(P)

(n)

Group of Patients

Have a disease

Do NoT have a

(P)

disease (n)

* For the Spam Example, your browser has a "Spam-Classifier" which classifies each email as either Spam (p) or No-Spam (n). It could use some "features" of the e-mail, such as content, origin etc...

,	45		1	
	ш		,	/
ш	IK			١
н	Ш.	/		
-	4	_	-	
	ш			1
V.			_	

	There can be 4 pos "Spam Classifier"	ssible scenar	riox f	or a	72
	Spam Classifier				
	TRUE POSITIVE → (TP)	Classifier predicts Spam (P)	and	Emaîl is a Spam (P)	
2	FALSE POSITIVE → (FP)	Classifier predicts Spam (P)	and	Email is NOT a Span (N)	
	TRUE NEGATIVE ->	Classifier predicts Not Spam (N)	and	Email is NOT a Sp (N)	
	FALSE NEGATIVE → (FH)	Classifier predicts NOT Spam (N)	and	Email is a Spam (P)	
			a.		

Generalized Additive Laws

$$P(\bigcup_{k} A_{k}) = \lim_{n \to \infty} P(A_{n})$$

$$P(\bigcap_{R} A_{R}) = \lim_{n \to \infty} P(A_{n})$$

UNION BOUND

For any sequence of events A1, A2,,

Let us prove union bound for two events A1 and A2:

$$P(A_1 \cup A_2) \leq P(A_1) + P(A_2)$$

- * Recall: $A_1 \cup A_2 = A_1 \cup (A_2 \cap \overline{A_1})$
- * Now note that it and A2 NAI are mutually exclusive events.

$$\Rightarrow P(A_1 \cup A_2) = P(A_1 \cup (A_2 \cap \overline{A_1}))$$

$$\leq P(A_1) + P(A_2)$$
 because

AZNAI C AZ