

NTRODUCTION

- Deepfake rise: Media generation technology enables easy creation of deepfake videos.
- **Key issues:** Defamation, fake news, political manipulation, etc.
- Current challenges:
 - a. Lack of interpretability in deepfake detection
 - b. Poor performance on low-quality videos.

Core Issue

- Frame-by-frame
 deepfake
 generation disrupts
 facial identity
 consistency.
- Current Deepfake detectors are limited in explainability and struggle with lowquality Deepfakes

Objective

- Develop an interpretable and robust deepfake detection method.
- Focus on identifying irregularities in facial identity features over time.
- Improve detection performance on lowquality videos and ensure generalizability to unseen datasets.

DATA PREPROCESSING

Dataset: FaceForensics++ (FF++) for training, Celeb-DF v2 for cross-dataset evaluation.

Preprocessing: Detect and align faces using RetinaFace.

Faces are cropped and resized to 112x112 for identity feature extraction and 299x299 for spatial feature extraction.

TWO BRANCH ARCHITECTURE

Embeddings

Identity Feature

Identity Feature

Extracter

Spatial Feature Analysis

- Spatial artifacts: Manipulations in deepfakes leave small spatial artifacts that are detectable.
- Feature extraction: XceptionNet is used to extract spatial embeddings f_space[n] for each frame
- Feature aggregation: The spatial embeddings across frames are averaged to generate a summary feature for classification:

$$f_{\text{mean}} = \frac{1}{N} \left(\sum_{n=0}^{n-1} f_{\text{space}}[n] \right)$$

Identity Feature Analysis

- Identity inconsistency: Deepfakes generate identity features that are less stable across frames.
- Feature extraction: Identity features fid are extracted from each frame using IResNet-50 (pre-trained on face recognition).

 $f_{id}[n]=D_{id}(V[n])$

where V[n] is the n-th frame and D_id is the IResNet operator.

Identity Feature Analysis

• Temporal analysis: A temporal model analyzes the series of identity embeddings over time.

$$f_{\text{time}} = D_{\text{time}} (f_{\text{id}}[0], f_{\text{id}}[1], ..., f_{\text{id}}[N-1])$$

where f_time is the temporal embedding representing identity consistency.

MODEL ARCHITECTURE

Dual-branch architecture for processing facial identity features and spatial inconsistencies simultaneously.

- Input: Cropped, aligned face images.
- Output: Real or Fake classification.
- Components:
 - Pre-trained identity feature extractor.
 - Temporal network for identity inconsistencies.
 - Spatial feature extractor and final classification layer.

$$\hat{Y} = D_{MLP}(f_{time}, f_{mean})$$

IMPACT AND BENEFITS

Mitigate
Misinforma
tion

Improve Public Trust

Impact on Target
Audience

Enhance Media Integrity

Help Forensics in real time Maintain brand regulation and integrity

Prevents spread of explicit deepfake content

Enables real time deepfake detection

Digital
Content
Verification

Benefits

Help law to identify frauds

Prevents Identity Misuse

REFERENCES

- Liu, H., Bestagini, P., et al., "It Wasn't Me: Irregular Identity in Deepfake Videos," IEEE ICIP 2023.
- R. Durall, M. Keuper, F.-J. Pfreundt, and J. Keuper, "Unmasking DeepFakes with simple Features," *arXiv preprint arXiv:1911.00686v3*, 2020.
- Dataset: FaceForensics++ and Celeb-DF v2.

THANK YOU!