1 Principal Component Analysis

1.1 Motivation

PCA wants to identify a meaningful basis to re-express the dataset. PCA assumes that a meaningful data representation is one which

- 1. the features with large variance have meaningful structure and should be preserved
- 2. the features with small variance are noise and should be discarded
- 3. correlated features indicate redundancy and should be made uncorrelated

Suppose we have observations $\{x_i\}_{i=1}^N$ where $x_i \in \mathbb{R}^p$ for some random variable \mathbf{x} . We want to find linear transformation of \mathbf{x} to obtain \mathbf{y} . In particular, let $\mathbf{X} \in \mathbb{R}^{N \times p}$ be stacked observations, we want to find a linear map $\mathbf{P} \in \mathbb{R}^{p \times q}$, where columns of \mathbf{P} are orthonormal basis for feature space, i.e. $row(\mathbf{X})$, to re-express data \mathbf{X} to $\mathbf{Y} \in \mathbb{R}^{N \times q}$.

$$Y = XP$$

 \mathbf{Y} has a meaningful representation if $cov(\mathbf{Y})$ is a diagonal matrix (decorrelated), and that successive dimension in \mathbf{Y} are rank-ordered according to variance (preserve, discard noise).

1.2 Empirical Covariance Matrix

Note that for a random variable x with stacked observations $\mathbf{X} \in \mathbb{R}^{N \times p}$, the empirical covariance for $\mathbf{x}_i, \mathbf{x}_i$ is given by

$$\hat{\sigma}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{1}{N} \sum_{i} (x_{i} - \overline{x}_{i})(x_{j} - \overline{x}_{j}) = \frac{1}{N} \left(\mathbf{X}_{i} - \overline{\mathbf{X}}_{i} \mathbf{1}_{N} \right)^{T} \left(\mathbf{X}_{j} - \overline{\mathbf{X}}_{j} \mathbf{1}_{N} \right)$$

where $\mathbf{X}_i, \mathbf{X}_j$ are *i* and *j*-th column of \mathbf{X} and $\overline{\mathbf{X}}_i = \frac{1}{N} \sum_j \mathbf{X}_{ji}$. So then,

$$\hat{cov}(\mathbf{x}) = \left[\hat{\sigma}(\mathbf{x}_i, \mathbf{x}_j)\right]_{i,j=1}^p = \frac{1}{N} \left(\mathbf{X} - \overline{\mathbf{X}} \mathbf{1}_N\right)^T \left(\mathbf{X} - \overline{\mathbf{X}} \mathbf{1}_N\right)$$

where $\overline{\mathbf{X}}$ is column wise feature average of \mathbf{X} . For zero mean observation matrix, the empirical covariance matrix is simply $\frac{1}{N}\mathbf{X}^T\mathbf{X}$

1.3 Solving PCA using Eigenvector Decomposition

We first write covariance matrix for \mathbf{Y} ,

$$c\hat{o}v(\mathbf{y}) = \frac{1}{N}\mathbf{Y}^T\mathbf{Y} = \frac{1}{N}(\mathbf{X}\mathbf{P})^T(\mathbf{X}\mathbf{P}) = \mathbf{P}^T\left(\frac{1}{N}\mathbf{X}^T\mathbf{X}\right)\mathbf{P} = \mathbf{P}^Tc\hat{o}v(\mathbf{x})\mathbf{P}$$

We know that $c\hat{o}v(x)$ is a symmetric matrix and therefore can be written as $c\hat{o}v(x) = \mathbf{Q}\Lambda\mathbf{Q}^T$ where $\mathbf{Q} \in \mathbb{R}^{p \times p}$ are eigenvectors of $c\hat{o}v(x)$ with corresponding eigenvalues along diagonal entries in Λ . Setting projection to be eigenvectors of $c\hat{o}v(x)$ diagonalizes $c\hat{o}v(y)$,

$$\mathbf{P} \leftarrow \mathbf{Q} \qquad \Rightarrow \qquad c\hat{o}v(\mathbf{y}) = \mathbf{P}^T c\hat{o}v(\mathbf{x})\mathbf{P} = \mathbf{Q}^T \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{Q} = \mathbf{\Lambda}$$

where $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$. The *principal components* of \mathbf{X} are column vectors of \mathbf{P} , i.e. eigenvectors for $c\hat{o}v(\mathbf{x})$. \mathbf{y} is decorrelated and $\hat{\sigma}^2(\mathbf{y}_i)$ is the variance of \mathbf{x} along i-th principal component.

1.4 Solving PCA using Singular Value Decomposition

The singular value decomposition of an arbitrary matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$ is

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$

where $\mathbf{U} \in \mathbb{R}^{N \times N}$ is orthogonal, $\mathbf{\Sigma} \in \mathbb{R}^{N \times p}$ is diagonal, $\mathbf{V} \in \mathbb{R}^{p \times p}$ is orthogonal.