Multiplexers

module 10

10/30/2023

1 Multiplexers

A multiplexer is an electronic switch \rightarrow switches multiple inputs to one output. It does this according to a **select line**:

- Determine what input is switched to the output
- Passes an input to output
- Max # of inputs =, where n is # of select lines

* 4 inputs need 2 select lines. S_1 is the MSB

In the above image, S_1 is the MSB and S_0 is the LSB.

1.1 Inside of a Multiplexer

inside of a multiplexer uses the Laws of AND and OR. They are used to activate only one AND gate.

• A AND 1 is A

• A OR 0 is A

2 Mutliple bit multiplexer

A bus

- Multiple bits passed through input or output
- number denotes how many bits are on said bus

The figure below has a one bit enable and a 1 bit select line

 I_0 would be the LSB, while I_1 is the MSB.

2.1 Parallel multiplexer

achieving abus input without so many logic gates everywhere \rightarrow Placing the multiplxers in parellel will allow for bs inputs

• # multiplexers in parallel = number of bits on each bus inputsEach multiplexer will switch one digit of the multi-bit number

• EX: one switches MSB while other switches LSB on 2 bit number

A0 would be the LSB of input A and A2 the MSB.

2.2 Cascading Multiplexers

- Use the enable on multiplexer to create an additional select line
- Connect remaining select lines together
- OR outputs for each multiplexer

bottom multiplexer is the MSB multiplexer, top is the LSB in this example.

3 Implementing Combinational Circuits

Multiplexers can implement outputs of a truth table (implementing minterms).

- There will be one multiplexer per output.
- number of select lines on multiplexers is # inputs 1
- Remaining bits become the inpouts to the select lines
- 3 inputs truth table uses 2 select lines, which is a 4 input multiplexer
- Divide truth table rows by two, and compare how LSB changes to output. This becomes the input to the multiplexer

Example

s = 3 - 1 = 2 $2^2 = 4$

Implement truth table with multiplexer

table with multiplexer					
	51	50	LSB		
11	A	В	С	F-	
76	0	0	(0)	0	
_	0	0	1	1)	
TI	0	1	(0)	1	
\'_	0	1	1	0	
+	1	0	0	0	
) 2	1	0	1	0	7 /
	1	1	0	1	
13	1	1	1	0	A
1					
					B
					V