2022년 IoT기반 스마트 솔루션 개발자 양성과정

Embedded Application

6-Text LCD

담당 교수 : 윤 종 이 010-9577-1696 ojo1696@naver.com https://cafe.naver.com/yoons2022

충북대학교 공동훈련센터

Text LCD

- Text LCD
 - Text LCD(Character LCD)는 액정을 이용하여 화소에 도달하는 빛을 선택적으로 투과시키거나 차 단시켜 문자를 표시하는 시각적 전달장치
- Text LCD 기능 및 구조
 - TEXT LCD 구조는 LCD 패널(표시기)과 제어기가 함께 모듈 형태로 되어 있음
 - 제어기 내부에는 명령(Instruction) 레지스터, 데이터(Data) 레지스터, AC(Address Counter), BF(Busy Flag), 문자발생램(CGRAM), 문자발생롬(CGROM), 데이터표시램(DDRAM)이 있음

Text LCD Interface

TEXT LCD의 인터페이스 핀 연결(PIN CONNECTIONS)

No.	Symbol	Function
1	VSS	Ground 0V
2	VDD	Logic power supply, +5V
3	Δ0	Voltage for LCD drive
4	RS	Data / Instruction register select
5	R/W	Read / Write
6	E	Enable signal, start data read/write
7	DB0	
8	DB1	
9	DB2	
10	DB3	Poto Pro Lino
11	DB4	Data Bus Line
12	DB5	
13	DB6]
14	DB7	
15	LED A	LED Anode, power supply +
16	LED K	LED Cathode, ground 0V

Text LCD 제어

- LCD 제어기
 - 명령 레지스터(IR): DDRAM과 CGRAM에 관한 Clear Display, Cursor At Home, Function Set, Set Address 등의 제어명령을 가짐
 - 데이터 레지스터(DR): DDRAM과 CGRAM에 쓰고 읽은 데이터를 일시적으로 저장함 (RS(4번핀) 을 사용하여 데이터와 명령 레지스터를 선택)
 - BF: 1이면 LCD Controller가 동작 중으로 명령 수행 불능, 0이면 다음 명령 수행 가능
 - DDRAM(Data Display RAM) : 표시될 문자의 아스키(ASCII)코드가 저장되어 있는 메모리
 - CGRAM(Character Generator RAM): 사용자가 원하는 문자를 만들기 위해 사용하는 메모리

Text LCD 제어

- 제어 방법
 - TEXT LCD 장치를 제어하기 위해서 제어기에 정해진 명령을 전달하고 명령에 따라 표시부에 문자 등을 표시.
 - LCD 모듈 제어를 위해 제어신호의 동작 타이밍은 매우 중요.

Text LCD Write Timing

Write cycle (Ta=25°C, VDD=5.0V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		500	-	-	
Enable pulse width	tw	E	300	-	-	
Enable rise/fall time	tr, tf		_	1-1	25	
RS; R/W setup time	tsu1	RS; R/W	100	:	-	ns
RS; R/W address hold time	t _{h1}	RS; R/W	10	-	-	113
Read data output delay	tsu2	DB0~DB7	60	-	-	
Read data hold time	th2	DB0~DB1	10	-	-	

Write mode timing diagram

Text LCD Read Timing

Read cycle (Ta=25°C, VDD=5.0V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc	-	500	-	_	
Enable pulse width	tw	E	300	-	-	
Enable rise/fall time	tr, tf		-	-	25	
RS; R/W setup time	t su	RS; R/W	100	-	-	ns
RS; R/W address hold time	th	RS; R/W	10	-	-	113
Read data output delay	t _d	DB0~DB7	60	-	90	
Read data hold time	tdh	DB0~DB7	20	-	-	

Read mode timing diagram

Text LCD 제어 명령

Instruction				Instr	ructi	on C	Code	•			DESCRIPTION	Executed Time(fosc
instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.53mS
Cursor At Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original Position if shifted. The contents of DDRAM are not changed.	1.53mS
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39μS
Display On/Off Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor(C), and Blinking of cursor(B) ON/OFF control bit.	39µS
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shifts cursor bit, and the direction, without changing of DDRAM data.	39μS
Function Set	0	0	0	0	1	DL	N	F	-	-	Sets interface data length (DL:8-BIT/4-BIT), number of display lines(N:2-line/1-line) and, display font type (F:5x11dots/5x8 dots).	39μS
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µS
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39μS
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0μS
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM / CGRAM)	43μS
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Reads data from internal RAM (DDRAM / CGRAM).	43μS

*"-":don't care

NOTE: When an MPU program with checking the Busy Flag(DB7) is made, it must be necessary 1/2Fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag(DB7)goes to "LOW".

Text LCD 주소/코드

DDRAM 주소

ASCII문자의 종류 및 코드 값

구분	00H	10H	20H	30H	40H	50H	60H	70H	80H	90H			
0				0	@	P	,	р					
1	1	미사용			!	1	A	Q	a	q			
2	1					~	2	В	R	b	r		
3	1				#	3	С	s	С	s			
4	1					\$	4	D	т	d	t		
5	1		% 5 E	U	е	u	1						
6	1		&	6	F	v	f	v					
7	사용자		미사용	미사용	미사용	•	7	G	W	g	w	w1 11 G	otot
8	경의 영역	영역	사용 ' 7 G W g W g W g W g W g W g W g W g W g W	비사공	미사용 영역								
9	1)	9	I	Y	i	У					
Α	1		**	:	J	z	j	z	1				
В	1			+	;	к	ı	k	{				
С	1		,	<	L	¥	1	1					
D	1		-	-	м]	m	}					
E	1			>	N	^	n	→					
F	1		/	?	О	-	٥	4					

8-Digit x 2-Line의 화면 구현을 위한 예제

Step					Instr	action						
No	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	Operation
1		ver su ernal i				initi	ilized	by th	ie			Initialized. No display.
2	Fun 0	ction 0	set 0	0	1	1	1	0	*	*		Sets to 8-bit operation and selects 2-line display and 5×8 dot character font.
3	Disp 0	play o	n/off o	ontro	0	0	1	1	1	0	-	Turns on display and cursor. All display is in space mode because of initialization.
4	Ent	ry mo	de set	1								Sets mode to increment the
	0	0	0	0	0	0	0	1	1	0		address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
5	Wri	ite dat	a to C	GRA	M/DI	DRAN	1				н_	Writes H. DDRAM has already
	1	0	0	1	0	0	1	0	0	0	-	been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right
6						:					****	, out and small to the 112
7	Wri	ite dat	a to C	GRA 1	M/DI	DRAN	1	0	0	1	HITACHI_	Writes I.
8	_	DDR	-	-	-		•			•		Sets DDRAM address so that
	0	0	1	1	0	0	0	0	0	0	нітасні	t The cursor is positioned at the Head of the second lime.
9	Wri	ite dat	a to C	GRA	M/DI	DRAN	1				нітасні	Writes M.
	1	0	0	1	0	0	1	1	0	1	M_	
10												
11	Wri	ite dat	a to C	GRA	M/DI	DRAN	1				нітасні	Writes O.
	1	0	0	1	0	0	1	1	1	1	MICROCO	
12	Ent 0	ry mo 0	de set	0	0	0	0	1	1	1	HITACHI MICROCO_	Sets mode to shift display at the time of write.
13	Wri	ite dat	a to C	GRA	M/DI	DRAN	1				ITACHI	Writes M. Display is shifted to
	1	0	0	1	0	0	1	1	0	1	ICROCOM	the left. The first and second lines both shift at the same time.
14											:	
15	Ret 0	urn h	ome 0	0	0	0	0	0	1	0	HITACHI MICROCOM	Returns both display and cursor to the original position (address 0).

Text LCD 제어

- 사용 모듈
 - AVR Module
 - **TEXT LCD Module**

Text LCD Module Circuit

Ex-1: Text LCD Display

Text LCD 에 다음과 같이 표시하여 보자

Ex-1: Wiring

Ex-1: TextLCD.c Write Sub

```
#define F_CPU 14745600UL
#define LCD CD PORT PORTB
#define LCD CD DDR DDRB
#define LCD DB PORT PORTE
#define LCD_DB_DDR DDRE
#include <avr/io.h>
#include <util/delay.h>
void write_Command ( unsigned char command ) {
 LCD\_CD\_PORT = 0x00;
                                       /* E = 0, R/W = 0, RS = 0 */
 LCD_DB_PORT = command;
                                       /* Command */
 LCD_CD_PORT |= 0x04; __delay_us(110); /* E = 1 Essential Delay for Simulator */
 LCD_CD_PORT &= \sim(0x04);
                             _delay_us(110);
                                                /* E = 0 */
void write_Data ( unsigned char data ) {
  LCD CD PORT = 0x00;
                                     /* RS = 0, R/W = 0, E = 0 */
  LCD_CD_PORT |= 0x01;
                                     /* RS = 1, DR->DDRAM */
  LCD DB PORT = data;
  LCD_CD_PORT = 0x04;
                                  /* E = 1 */
  _delay_us(110);
                                     /* Essential Delay for Simulator */
  LCD_CD_PORT &= \sim(0x04);
                                      /* E = 0 */
   _delay_us(110);
```

Ex-1: TextLCD.c Init/Print

```
void printString ( char *string ) {
  while (*string != '₩0') {
      write_Data ( *string );
      string ++;
void LCD Init (void) {
  LCD DB DDR=0xFF;
 LCD_DB_PORT=0x00;
  LCD CD DDR=0x07;
                             // 신호선 3 PIN 출력설정
  LCD_CD_PORT=0x00;
  _delay_us(110);
 LCD_CD_PORT &= \sim(0x04);
                                     _delay_us(110);
                                                            /* E = 0 */
 write Command(0x38);
                                     _delay_us(220);
                                                            /* Function set */
                                                          /* Display ON */
 write Command(0x0F);
                                     _delay_us(220);
 write_Command(0x02);
                                     _delay_ms(9);
                                                            /* Cursor At Home */
 write Command(0x01);
                                     _delay_ms(9);
                                                              /* Clear Display */
 write_Command(0x06);
                                     delay us(220);
                                                              /* Entry mode set */
```

Ex-1: main.c

```
#define F CPU 14745600UL
#include <avr/io.h>
#include <util/delay.h>
int main(void){
  LCD_Init();
  while (1) {
      write_Command(0x01); /* Clear Display */
      _delay_ms(9);
      write_Command(0x80);
                                 /* 1 Line Address */
      delay us(220);
      printString ( " IoT Smart SW " );
                                 /* 2 line Address */
      write_Command(0xC0);
      _delay_us(220);
      printString ( " Jong,Yi - YOON " );
      delay ms(500);
```

Ex-2: Count Display

- Text LCD 에 다음과 같이 표시하여 보자
- Count 값은 0~999999

	1	0	Т		S	m	а	r	t		S	W		
С	o	u	n	t		=		1	2	3	4	5	6	

Ex-2: Define

```
#define F_CPU 14745600UL
#include <avr/io.h>
#include <util/delay.h>
long Count=0;
unsigned char ASCII[17]={0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x20};
unsigned char DISP[7];
void Hex2ASC(long No){
  long tmpNo=No;
  DISP[0]=ASCII[tmpNo/100000];
  tmpNo %=100000;
  DISP[1]=ASCII[tmpNo/10000];
  tmpNo %=10000;
  DISP[2]=ASCII[tmpNo/1000];
  tmpNo %=1000;
  DISP[3]=ASCII[tmpNo/100];
  tmpNo %=100;
  DISP[4]=ASCII[tmpNo/10];
  DISP[5]=ASCII[tmpNo%10];
```

Ex-2: main

```
int main(void) {
   LCD_Init();
  write_Command(0x01); __delay_ms(9); /* Clear Display */
printString ( " IoT Smart SW " );
write_Command(0x60); __delay_us(220); /* 1 Line Address */
                                           _delay_us(220); /* 2 line Address */
   write Command(0xC0);
   printString ( " Count = 000000 " );
   _delay_ms(500);
   while (1) {
       Hex2ASC(Count);
       write_Command(0xC9);
                                       _delay_us(220);
                                      _delay_ms(500);
       printString ( DISP );
       if (++Count>999999) Count=0;
```

Ex-3: Clock Display

Text LCD 에 전자 시계를 구현 하여 보자

Ex-4: 전화번호 표시

Text LCD 에 전화 번호 알림을 구현 하여 보자 전화번호는 좌측으로 부드럽게 흐르게 하자

J	0	n	g	-	Υ	i		Υ	0	0	n		
0	1	0	-	1	2	3	4	-	5	6	7	8	