

parcial-18-19.pdf

Infosalvada

Fundamentos de Electricidad y Electrónica

1º Grado en Ingeniería Informática

Facultad de Informática Universidad Complutense de Madrid

Campus virtual con acceso a material de apoyo • Tutorías para resolución de dudas previas al examen • Cursos Online en directo

Fundamentos de Electricidad y Electrónica Examen parcial del 25 de marzo de 2019 Curso 2018-2019 Grupo:

Apellidos y nombre, DNI/NIE.....

El examen consta de **3 cuestiones y 2 problemas**. Lee detenidamente los enunciados. Si tienes cualquier duda consulta al profesor. <u>Todas las respuestas deben razonarse y en los problemas debe incluirse el desarrollo necesario para obtener el resultado</u>. **La duración del examen es de 1h 50 min**.

CUESTIÓN 1 (*1,5 puntos: 0,5 cada apartado*). Sea un condensador de placas paralelas cargado a una cierta diferencia de potencial. La distancia entre placas es *d* y el campo eléctrico en la región entre las placas, lejos de los bordes, es *E*.

- a) Calcula la diferencia de potencial entre las placas en función de los datos d y E.
- b) Si el área de las placas del condensador se reduce a la mitad, ¿cómo varía su capacidad?
- c) Si duplicamos la diferencia de potencial entre placas del condensador, ¿cómo varía su capacidad?

CUESTIÓN 2 (1,5 puntos: 0,5 cada apartado). Sea un hilo de un cierto conductor de longitud l y sección s.

- a) Si se duplica la longitud de l a 2 l, ¿cómo cambia la resistencia del nuevo hilo respecto a la del anterior?
- b) Si disminuyo a la mitad el radio de la sección del cable, ¿cómo cambia la conductividad eléctrica del nuevo hilo respecto a la del anterior?
- c) Se aplica una *ddp* entre los extremos del hilo y su temperatura aumenta por efecto Joule. ¿Cómo cambia su resistividad? ¿Por qué?

CUESTIÓN 3 (1 punto). Cuatro conductores rectilíneos largos y paralelos pasan a través de los vértices de un cuadrado de lado l. Los conductores transportan corrientes iguales dos a dos de la siguiente manera: $I_I = I_3 = I$ e $I_2 = I_4 = 2$ I siendo sus sentidos los indicados en la figura. Calcula el módulo dirección y sentido del campo magnético producido por las cuatro corrientes en el centro del cuadrado, suponiendo conocidas la longitud l y la intensidad I.

Problema 1 (*3 puntos: 1 cada apartado*). Sea una partícula puntual cargada con $Q_I = -5 \times 10^{-10}$ C situada en el origen del eje X y a 8 cm de ella, a su derecha, otra cargada con $Q_2 = 3 \times 10^{-10}$ C.

- a) Calcula el campo eléctrico y el potencial eléctrico en un punto situado entre ambas a 5 cm de la mayor.
- b) Calcula los puntos del eje en los que se anula el campo.
- c) Explica hacia donde se movería una carga testigo negativa situada a la derecha de las cargas. Dato: Constante de Coulomb, $K = 1/(4\pi\epsilon_0) = 9.0 \times 10^9 \, \text{N m}^2 \, \text{C}^{-2}$.

Problema 2 (3 puntos: 1 cada apartado). Dado el circuito de la figura:

- a) Calcula las corrientes que circulan por cada rama.
- **b)** Calcula la diferencia de potencial $V_a V_b$.
- c) Halla el circuito equivalente Thévenin de la red conectada a la resistencia R_L y dibújalo.

Datos: $I_s = 2$ mA; $\varepsilon = 7$ V; $R_1 = 100$ Ω; $R_2 = 4$ kΩ; $R_3 = 300$ Ω; $R_L = 2$ kΩ

d) OPCIONAL PARA SUBIR NOTA (*0,5 puntos*) Si conectamos un condensador en serie con la fuente de corriente, ¿cambiarían los resultados obtenidos?, ¿por qué?

