Data Structures & Algorithms for Problem Solving (CS1.304)

Lecture # 17

Avinash Sharma

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Another Way Towards Balanced Trees

- Should we even try to achieve balance at all times?
- In some settings, a few elements are accessed more often.
 - Do not know which are those elements.
 - Any example systems for dictionary search?
- Does it suffice to keep these elements closer?

More on Search Trees

- Notice that a successful search operation can stop as soon as the element is found.
- If the element is a leaf node, then search operation on that node takes the longest time.
- A successive search to the same node still takes the same amount of time.
- In some settings, a few elements are searched more often than the others.
 - should focus on optimizing these searches.

More on Search Trees

- One way to make future search operations on the same node is to bring that node (closer) to the root.
- This is what we will do. Called as splaying.
- The search tree using this technique is called as splay tree.

Splay Trees

- In a splay tree, during every operation, including a search(), the current (search) tree is modified.
- The item searched is made as the root of the tree.
- During this process, other nodes also change their height.

Splay Trees Operation

- Let x be a node in the search tree.
- To make x as the root, we use operations similar to that of rotations.
- To splay a tree at node x, repeat the following splaying step until x is the root of the tree.
 - Let p(x) denotes the parent node of x and g(x) denotes the parent node
 of p(x) i.e., grand-parent of x.
 - The following cases are used depending on whether x is a left child of p(x), etc.

Four Cases

Case Zig – Zig : If p(x) is not the root, and x and p(x) are both left
 (right) children

Four Cases

Case Zig - Zig : If p(x) is not the root, and x and p(x) are both left

Four Cases

Case Zig – Zag - If p(x) is not the root, and x is right (left) child and p(x) is left (right) child.

Two More Cases

- What if p(x) is the root? g(x) is not defined.
- If x is the left child of p(x), proceed as follows.

The other case is easy to figure out.

Search(x) in a Splay Tree

- Proceed as search in a binary search tree.
- Once x is found, spaly(x) till x is the root.
- Splay uses the above cases.

Insert(x) & Delete(x)

Insert

Make x the root after inserting as in a binary search tree.

Delete

- Delete x as in a binary search tree.
- If y is the node physically deleted, then make the parent of y, p(y), as the root., i.e., splay(p(y))
- This is a bit artificial, but required for analysis to go through.

Practice Problem on Splay Tree

 Consider the following splay tree. Splay the nodes 37, then 14 in the resulting tree, and then 29 in the resulting tree.

Practice Problem on Splay Tree

 Consider the following splay tree. Splay the nodes 37, then 14 in the resulting tree, and then 29 in the resulting tree.

Analysis

- Analyzing the splay tree is a bit tough at this stage.
- Here are a few results:
- Any sequence of m operations on a splay tree can be completed in time O((m+n) log n).
- Topic for advanced classes.

Thank You