ДУПР теореми и дефиниции

Теорема за съществуване и единственост на решение на Задача на Коши (за уравнение с разделящи се променливи)

Нека f(x) е непрекъсната в интервала (a,b) и g(y) е непрекъсната в интервала (c,d). Вземаме точката $x0 \in (a,b)$ и точката $y0 \in (c,d)$. Нека също така $g(y)\neq 0$ за всяко $y\in (c,d)$. Тогава задачата на Коши

|
$$y'=f(x)g(y(x))$$

| $y(x0)=y0$

Има единствено решение.

Теорема за съществуване и единственост на решение на Задача на Коши (за хомогени уравнения)

Нека $f(z) \in C(a,b)$. Тогава за всяка точка $(x0; y0) \in \{ a < y/x < b, x \neq 0 \}$, такава че $f(y0/x0) \neq y0/x0$, съществува единствено решение на задачата на Коши

$$y'(x) = f(y(x)/x), y(x0) = y0.$$

Теорема за съществуване и единственост на решение на Задача на Коши (за линейни уравнения)

Нека a(x) , $b(x) \in C^1(\Delta)$, $x0 \in \Delta$ и $y0 \in R$. Тогава съществува единствено решение на задачата на Коши

$$y'=a(x)y+b(x), y(x0)=y0$$

и това решение е дефинирано в целия интервал Δ .

Дефиниция за удовлетворяване на условието на Липшиц

Казваме че функцията f(x,y) удовлетворява условието на Липшиц (е липшицова) в правоъгълника П, по променливата у (равномерно относно x) ако съществува K>0 такова че за всеки две точки (x,y1), (x,y2)∈П е изпълнено

$$| f(x,y1) - f(x,y2) | \le K |y1-y2|$$

Лема за липшицова функция и нейната частна производна

Нека частната производна f_y на функцията f съществува и е непрекъсната в правоъгълника Π . Тогава функцията f е липшицова по y в Π .

Локална теорема за съществуване и единственост

Нека f∈C(П) и f е липшицова по у в П. Тогава задачата на Коши

$$y' = f(x, y),$$

$$y(x_0) = y_0,$$

притежава единствено решение, дефинирано поне за $x \in [x0-h;x0+h]$ където h=min{a,b/M}, M= max_□|f(x,y)|.

Глобална теорема за съществуване и единственост

Нека f∈C(G) и f е локално-липшицова по у в G. Тогава за всяка точка (x0; y0)∈G задачата на Коши

$$y' = f(x, y),$$

$$y(x_0) = y_0,$$

притежава единствено непродължимо решение.

Дефиниция за обикновена точка

Казваме че точката (x0,y0)∈ D е обикновена точка за уравнението

F(x,y(x),y'(x))=0 ако уравнението F(x0,y0,z)=0 има краен брой различни реални решения z1<z2<....<z_m и $F'_z(x0,y0,z_j)\neq 0$ за j=1,2..m.

Дефиниция за особена точка

Казваме че точката (x0,y0)∈ D е особена точка за уравнението

F(x,y(x),y'(x))=0 ако уравнението F(x0,y0,z)=0 има поне едно реално решение z=b за което $F'_z(x0,y0,b)=0$.

Теорема за решения на задачата на Коши в околност на обикновена точка

Теорема 1.1 Нека точката $(x_0,y_0)\in D$ е обикновена точка за уравнението (1). Тогава съществува околност U на (x_0,y_0) , в която са дефинирани такива функции $f_j(x,y), \frac{\partial f_j}{\partial y}\in C(U), \ j=1,2,\ldots m,$ че всяко решение на задачата на Коши

fj(x0,y0)=zj
$$3K: F(x,y,y') = 0, y(x_0) = y_0$$

е решение на някоя от задачите на Коши

$$3K_j: y' = f_j(x, y), y(x_0) = y_0, j = 1, 2, \dots m.$$

Обратно: Всяко едно от решенията на задачита на Коши $3K_j$, j=1,2,., т е решение на задачата на Коши 3K.

Дефиниция за обвивка на фамилия

Казваме че гладката неизродена крива L е обвивка на фамилията L_с ако във всяка точка на L до нея се допира точно една крива от фамилията L_с.

(L е дискриминатна крива на уравнението F(x0,y0,z)=0 ако е обвивка на фамилията от кривите на обикновените решения.)

Линейното нехомогенно обикновено диференциално уравнение от ред n има вида

$$L(y) \equiv a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x),$$

Теорема за съществуване и единственост на решение на Задача на Коши (за линейни нехомогенни уравнения от n-ти ред)

Задача на Коши: Да се намери в Δ функция y = y(x), за която

$$\begin{cases}
L(y)(x) = f(x), & x \in \Delta, \\
y(x_0) = \alpha_1, \\
y'(x_0) = \alpha_2, \\
\dots \\
y^{(n-1)}(x_0) = \alpha_n,
\end{cases}$$

където $x_0 \in \Delta$, $\alpha_{\nu} \in \mathbb{C}$, $\nu = 1, 2, \dots n$.

Теорема 1.1 (за съществуване и единственост, без доказателство). При горните предположения задачата на Коши притежава единствено решение в целия интервал Δ .

Забележка 1.2 Производните до ред n-1 на решението са диференцируеми, и следователно непрекъснати функции в Δ . Тогава от самото уравнение следва, че и n-тата производна на решението е непрекъсната в Δ .

Лема за линейни хомогенни уравнения

Пема 1.3 Решенията на линейното хомогенно уравнение L(y)=0 образуват линейно пространство.

Доказателство. Нека $y_{\nu}\in C^k(\Delta),\ L(y_{\nu})=0,\ C_{\nu}\in {\bf C},\ \nu=1,\ldots,k.$ От линейността на L следва

$$L(C_1y_1 + \dots + C_ky_k) = C_1L(y_1) + \dots + C_kL(y_k) = 0,$$

т.е. произволна линейна комбинация от решения на хомогенното уравнение също е решение на хомогенното уравнение, с което лемата е доказана.

Ще докажем, че пространството от решения на хомогенното уравнение е крайномерно и размерността му е точно n.

Дефиниция за Линейно независими функции

Дефиниция 1.4 Казваме, че функциите y_1, \ldots, y_k , дефинирани в интервала Δ , са линейно независими в Δ , ако от

$$C_1 y_1(x) + \dots + C_k y_k(x) \equiv 0, \ x \in \Delta,$$

където $C_1, \ldots, C_k \in \mathbf{C}$, следва, че $C_1 = \cdots = C_k = 0$.

Дефиниция за Линейно зависими функции

Дефиниция 1.5 Казваме, че функциите y_1, \ldots, y_k , дефинирани в интервала Δ , са линейно зависими в Δ , ако можем да намерим такива константи $C_1, \ldots, C_k \in \mathbf{C}$, $|C_1| + \cdots + |C_k| \neq 0$, че

$$C_1y_1(x) + \cdots + C_ky_k(x) \equiv 0, x \in \Delta.$$

Дефиниция за фундаментална система

Дефиниция 1.6 Казваме, че решенията y_1, \ldots, y_n на линейното хомогенно диференциално уравнение L(y) = 0 от ред п образуват фундаментална система (накратко ΦC), ако са линейно независими в Δ .

Лема (критерии за ЛНЗ функции)

Ще получим удобни критерии за линейна независимост на диференцируеми функции чрез детерминантата на Вронски (или Вронскиан)

$$W(x) = \begin{vmatrix} y_1(x) & \cdots & y_k(x) \\ y'_1(x) & \cdots & y'_k(x) \\ \vdots & \vdots & \vdots \\ y_1^{(k-1)}(x) & \cdots & y_k^{(k-1)}(x) \end{vmatrix},$$

където $y_1, \dots, y_k \in C^{k-1}(\Delta)$.

Пема 1.7 Нека функциите $y_1, \ldots, y_k \in C^{k-1}(\Delta)$ и да допуснем, че съществува такава точка $x_0 \in \Delta$, че $W(x_0) \neq 0$. Тогава функциите y_1, \ldots, y_k са линейно независими в Δ .

Лема (критерии за ЛЗ функции)

Лема 1.8 Нека функциите $y_1, \ldots, y_n \in C^n(\Delta)$ са решения на линейното хомогенно уравнение и да допуснем, че съществува такава точка $x_0 \in \Delta$, че $W(x_0) = 0$. Тогава решенията y_1, \ldots, y_n са линейно зависими в Δ .

Лема (Необходимо и достатъчно условие за фундаментална система)

Лема 1.9 (НДУ за ΦC) Нека функциите $y_1, \ldots, y_n \in C^n(\Delta)$ са решения на линейното хомогенно уравнение и W(x) е тяхната детерминанта на Вронски. Следните три твърдения са еквивалентни:

- а) $W(x_0) \neq 0$ за поне едно $x_0 \in \Delta$;
- δ) системата y_1, \ldots, y_n е фундаментална;
- в) $W(x) \neq 0$ за всяко $x \in \Delta$.

Теорема за фундаментална система решения на линейно хомогенно диференциално уравнение

Теорема 1.10 Линейното хомогенно диференциално уравнение от ред п притежава безбройно много фундаментални системи решения.

Теорема за линейно пространство от решения на линейно хомогенно уравнение от n-ти ред

Теорема 1.11 Линейното пространство от решения на хомогенното уравнение от ред n е c размерност точно n, u ако y_1, \ldots, y_n образуват фундаментална система в Δ , a у e произволно решение на хомогенното уравнение, то

$$y(x) = C_1 y_1(x) + \dots + C_n y_n(x), \ x \in \Delta,$$

където $C_1 \dots, C_n \in \mathbf{C}$ (формула за вида на общото решение на хомогенното уравнение).

Теорема за съществуване и единственост на решение на Задача на Коши (за система линейни обикновени уравнения)

$$\dot{x}(t) = A(t)x(t) + f(t), \ t \in \Delta. \tag{2}$$

Ако към системата (2) добавим и n начални условия за n-те неизвестни функции $x_1(t), x_2(t), \dots x_n(t)$ в нея

$$x(t_0) = x_0, t_0 \in \Delta, x_0 \in \mathbf{C}^n,$$
 (3)

го получаваме задача на Коши.

Теорема 0.1 Нека функциите $a_{ij}(t)$ и f(t) са дефинирани и непрекъснати в интервала Δ , а $t_0 \in \Delta$. Тогава задачата на Коши (2), (3) притежава единствено решение, дефинирано в целия интервал Δ .

Когато $f(t) \equiv \vec{0}$, системата (2) се нарича хомогенна, в противен случай се нарича нехомогенна. Да разгледаме сега хомогенната система

$$\dot{x}(t) = A(t)x(t), \ t \in \Delta. \tag{4}$$

Лема за линейно пространство от решения на хомогенна система линейни уравнения

Пема 0.2 Решенията на системата (4) образуват линейно пространство с размерност n.

Дефиниция за фундаментална система решения на хомогенна система линейни уравнения

Дефиниция 0.3 Системата $\varphi_1, \varphi_2, \ldots, \varphi_n$ от решения на (4) се нарича фундаментална система в Δ , ако е линейно независима в този интервал.

Лема за Фундаментални системи на хомогенна система линейни уравнения

Пема 0.4 Системата (4) притежава безбройно много фундаментални системи.

Дефиниция за фундаментална матрица на хомогенна система

Дефиниция 0.5 Нека решенията $\varphi_k = (\varphi_k^1, \varphi_k^2, \dots, \varphi_k^n), \ k = 1, 2, \dots n$ на (4) са линейно независими в Δ . Матрицата

$$\Phi(t) := \left(\begin{array}{c} \varphi_1^1(t) \ \varphi_2^1(t) \dots \varphi_n^1(t) \\ \varphi_1^2(t) \ \varphi_2^2(t) \dots \varphi_n^2(t) \\ \vdots \\ \vdots \\ \varphi_1^n(t) \ \varphi_2^n(t) \dots \varphi_n^n(t) \end{array} \right), \ t \in \Delta, \ \left(\begin{array}{c} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{array} \right)$$

се нарича фундаментална за системата (4), а нейната детерминанта - детерминанта на Вронски за $\{\varphi_k\}_1^n$. Детерминанта на матрицата Φ се нарича детерминанта на Вронски и в случая, когато функциите $\{\varphi_k\}_1^n$ са линейно зависими.

Лема (критерии за линейна независимост за дадена n-торка орт решения на хомогенно уравнение)

Лема 0.6 Нека $\varphi_1,\,\varphi_2,\ldots,\varphi_n$ са решения на системата (4), дефинирани в $\Delta,\,a\,W(t)$ е тяхната детерминанта на Вронски. Следните три твърдения са еквивалентни.

- 1. Czwecneyea $t_0 \in \Delta$, за което $W(t_0) \neq 0$.
- 2. Системата $\varphi_1, \varphi_2, \dots, \varphi_n$ е линейно независима в Δ . $\mathcal{Y} = A \mathcal{Y} + \mathcal{Y}$ 3. $W(t) \neq 0$ за всяко $t \in \Delta$. $\mathcal{X} = A \mathcal{X} + \mathcal{Y}$

$$\times = A_{X+}$$

Дефиниция за равновесна точка за автономна система

Дефиниция 0.1.1 Казваме, че точката $a \in G$ е положение на равновесие за автономната система, ако f(a) = 0.

Дефиниция за устойчивост на равновесие на автономна система

Дефиниция 0.2.1 Казваме, че а е устойчиво положение на равновесие на автономната система $\dot{x}=f(x)$, ако за всяка околност U на а съществува такава околност V, че решението $x=x(t,x_0)$, удовлетворяващо началното условие $x(t_0,x_0)=x_0$, има свойствата:

- 1. Решението $x = x(t, x_0)$ е дефинирано за всички $t \ge t_0$.
- 2. Решението остава в U при $t \ge t_0$, т.е. $x(t,x_0) \in U$ за всяко $t \ge t_0$.

Положението на равновесие се нарича асимптотично устойчиво, ако е устойчиво и

$$\lim_{t \to \infty} x(t, x_0) = a.$$

Теорема на Ляпунов за устойчивост (по линейно приближение)

Теорема 0.2.1 (Ляпунов, за устойчивост) Ако а е положение на равновесие за автономната система и всички собствени числа на якобиевата матрица

$$\begin{pmatrix} f_{1x_1}(a) & \dots & f_{1x_n}(a) \\ \dots & \dots & \dots \\ f_{nx_1}(a) & \dots & f_{nx_n}(a) \end{pmatrix}$$
 (0.2.1)

имат отрицателни реални части, то а е асимптотично устойчиво положение на равновесие.

Теорема на Ляпунов за неустойчивост (по линейно приближение)

Теорема 0.2.2 (Ляпунов, за неустойчивост) Ако а е положение на равновесие за автономната система и якобиевата матрица 0.2.1 има поне едно собствено число с положителна реална части, то а е неустойчиво положение на равновесие.

Теорема за единствено решение на смесена задача на струната

описва със следната смесена задача

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, \ 0 < x < L, \ t > 0, \\ u|_{t=0} = \varphi(x), \ u_t|_{t=0} = \psi(x), \ 0 < x < L, \\ u|_{x=0} = 0, \ u|_{x=L} = 0, \ t > 0, \end{cases}$$

$$(1)$$

където a>0 е константа, $\varphi(x)\in C^2[0,L],\ \psi(x)\in C^1[0,L]$ и са изпълнени условията за съгласуване $\varphi(0)=\varphi''(0)=\psi(0)=0,\ \varphi(L)=\varphi''(L)=\psi(L)=0.$

В сила е следната

Теорема 1.1 При така напарвените предположения задачта (1) притежава единствено решение $u \in C^2(\bar{G})$, където $G := \{(x,t): 0 < x < L, t > 0\}.$

Теорема за единствено решение на смесена задача на топлопроводимост

$$\begin{cases} u_{t} = a^{2}u_{xx}, \ 0 < x < L, \ t > 0, \\ u|_{t=0} = \varphi(x), \ 0 \le x \le L, \\ u|_{x=0} = 0, \ u|_{x=L} = 0, \ 0 \le t \le T, \end{cases}$$
(2)

където $\varphi(x) \in C^2[0,L]$ и са изпълнени условията за съгласуване $\varphi(0) = \varphi(L) = 0$.

Разглежданата задача наричаме смесена задача за уравнението на топлопроводноста, защото освен начално условие имаме и гранични условия зададени в краищата на пръта.

Теорема 0.1.1. При направените предположения задачата (2) притежава единствено решение.

Уравнение от вида

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(\cancel{x},y)u_{yy} + p(x,y)u_x + q(x,y)u_y + r(x,y)u = f(x,y), \eqno(1)$$

където $(x,y) \in G$ (G-област в равнината) са независими променливи, а u(x,y) е търсената функция се нарича линейно ЧДУ от втори ред с две независими променливи. Ще предполагаме, че $|a(x,y)| + |b(x,y)| + |c(x,y)| \neq 0$.

Дефиниция за вид на точка при частно диференциално уравнение

Дефиниция 1.1 Казваме, че в точката $(x_0, y_0) \in G$ уравнението (1) е

- 1. $xunep6oлично, aкo D(x_0, y_0) := b^2(x_0, y_0) a(x_0, y_0)c(x_0, y_0) > 0;$
- 2. параболично, ако $D(x_0, y_0) = 0$;
- 3. елиптично, ако $D(x_0, y_0) < 0$.

Казваме, че уравнението е хиперболично/параболично/елиптично в областта $\Omega \subseteq G$ ако то е хиперболично/параболично/елиптично във всяка точка от Ω .