An Introduction to Molecular Dynamics

Prof. Michael Shirts

University of Colorado Boulder

7th i-CoMSE Workshop: Molecular Dynamics

Boise State University, July 8, 2024

Licence: CC-BY 4.0

Why do molecular modeling?

- Why do we bother doing molecular modeling?
- Much of engineering is about modeling a system well enough to make predictions about how to design and control the system.
- So why not model at a molecular level?

Why do molecular modeling?

- What can we get out of molecular simulations?
- Thermodynamics
 - Ensemble averages of configurations
 - Free energy related quantities
 - Distributions of molecular configurations
- Kinetics/transport
 - Dependent on the paths that molecules take
 - Rates of transfer between configurations
 - Diffusion, viscosity, protein conformations, polymer aging

Molecular dynamics simulations are classical approximations to the QM equations

- Closest to truth: relativistic, time-dependent, Schrödinger equation
 - Assumption #1: Almost always with molecules, you can ignore relativity
 - Must be solved numerically for any real system
 - Even then, anything more complex than a few atoms cannot be handled at this level of theory
- Assumption #2: We can assume that the nuclei move like classical point masses (Born-Oppenheimer approximation)
- This allows us to do Ab Initio Molecular Dynamics (AIMD)
 - Use some approximation for Schrodinger's equations to solve for the electronic wavefunction,
 - Then use Coulomb's law to describe how it the electron forces move nuclei around
- But what if we average out the electronic degrees of freedom, and just approximate the effects of the electrons on the nuclei?

Molecular dynamics simulations are classical approximations to the QM equations

- But what if we just give up on modeling the electrons, and instead average out the electronic degrees of freedom?
- A type of coarse-graining, where we just model the nuclei and electrons lumped together
- Approximate the interactions of the electrons and nuclei TOGETHER?
- And model the physics of THIS system?
- This is classical molecular dynamics.

Classical MD simulation

Cons:

- As we average out electron behavior more and more, we lose accuracy
- Usually, have to add in bonds making/breaking by hand.
- Interactions like pi-cations really hard to model.
- No understanding of interaction of light with models.

• Pros:

- Orders of magnitude faster 10³-10⁹
- Actually more accurate for many problems in condensed phase solutions
 - Converging QM to high levels of accuracy is HARD, sometimes you can
 do better by picking an approximate interaction term.
- It's a model you use the model that works for your questions.

A classical system follows Newton's equations of motion

$$m\vec{a}_i(t) = \overrightarrow{F}_i(\vec{x}(t)) = -\nabla U(\vec{x}_i) = -\left[\frac{\partial U}{\partial x_i}, \frac{\partial U}{\partial y_i}, \frac{\partial U}{\partial z_i}\right]$$

$$\frac{\partial^2 x_i}{\partial t^2} = -\frac{1}{m} \nabla U(\vec{x})$$

- General strategy:
 - Pick an energy function U(x)
 - IMPORTANT CHOICE!
 - Specify the positions and velocities at time t.
 - Approximate the positions and velocities at time t+Δt using the differential equation
- How we get "good" initial positions and velocities?
 - IMPORTANT CHOICE!

Go to the notebook!

- Simple_MD.ipynb
- We will discuss:
 - Taylor series solution
 - Verlet and higher order solutions
 - Energy drift
 - Shadow Hamiltonians
 - Stiffness

What sort of ensemble does MD generate?

- MD simulates the NVE ensemble (it conserves energy!)
- With a bit of tweaking, MD can also allow us to capture canonical (NVT) and isobaric-isothermal (NPT) ensembles

What comes out of an MD simulation?

- Time series of the energies and forces (+ other derived quantities like pressure, etc).
- Time series of the coordinates/velocities

- This is sufficient to estimate pretty much any corresponding experimental observable.
 - What are some of these observables?
- The key problem of MD analysis is how to extract data of interest when you have 3N x number of frames data points!

Why do we need thermostats for molecular dynamics?

- Molecular dynamics gives:
 - Solutions to the initial value partial differential equations defined by Newton's equation of motion
- Newton's laws of motion conserve energy
- Therefore this gives ensembles
 - constant number of particles
 - constant volume
 - constant energy
- But we want answers at, say 300 K?

We want to simulate properties at constant T

What does it mean to be a constant T ensemble?

Exchange thermal energy until at equilibrium

What does it mean if you see a graph like this from a simulation?

 $_{\bullet}$ This is actually a graph of $\frac{2KE}{N_{DOF}k_{B}}$

• $T = \frac{2\langle KE \rangle}{N_{DOF}k_B}$, but T is constant in an NVT simulation.

How does REAL LIFE thermal equilibration happen?

- Our system is surrounded by other molecules
- They bang into our system, and exchange kinetic energy
 - If they are hotter than the system average, then energy goes into the system, and it heats up
 - If they are cooler than the system average, then energy goes out of the system, and it cools down
 - Until it is in thermal equilibrium with the surroundings

A very simple thermostat (Andersen)

- "Thermo" = temperature, "stat" keeps the same
- With some probability p (or frequency N), our particles collide
 - (With what? Some imaginary particle from the multiverse)
 - And we randomize their velocity to the Maxwell-Boltzmann distribution
- This is the Andersen thermostat
- In GROMACS, tcoupl = anderson-massive
- Need to set ref_t as well!
- Go to the notebook Example_NVT!

Langevin dynamics

$$m\frac{dv}{dt} = F + R - \gamma v$$

- Add thermal energy by adding random noise
 - Like a particle colliding!
 - But, all of the particles are colliding, even ones inside your system...
- Suck excess thermal energy away with a friction term
 - Like moving through a fluid, which doesn't not necessarily make sense; the simulation IS the fluid . . .
- Balance the friction loss and random noise to be equal when you are at the right T $\langle R \rangle = 0 \ \langle R^2 \rangle = 2k_BT\gamma$
 - Implemented as integrator = sd in gromacs.
 - Very good stability!
 - If you add too much random noise, and suck out too much velocity, it slows the dynamics.

How else could we get thermal energy into and out of the system?

- We modify the kinetic energies of the particles
- First guess:
 - If the average thermal energy is too high, decrease the velocity of all particles
 - If the average thermal energy is too low, increase the velocity of all particles
- This is the weak coupling thermostat
- In GROMACS, tcoup1 = berendsen
- Need to set ref t as well!

How quickly do we pump energy in or out?

- Let's say the system has 110 kJ mol. At the temperature you specified, it should have 100 kJ/mol on average
 - Do you take out 10 kJ/mol each step?
 - Or do you take out 1 kJ/mol each step?
- We need to define a rate at which excess kinetic energy is removed

$$\frac{dKE}{dt} = k(KE_0 - KE)$$

- k has units of $1/\text{time} = 1/\tau$
- In GROMACS, this is tau_t.

There's a problem with Berendsen!

It suppresses fluctuations!

Berendsen thermostat

Bussi-Parrinello

- A simulation should not have a single target kinetic energy. It should have a Maxwell-Boltzmann kinetic energy distribution.
- Don't target a fixed kinetic energy K. Target at random K, chosen from the Maxwell-Boltzmann distribution
- This gives a correct distribution of kinetic energies
- Rigorously consistent with KE NVT distribution

$$\frac{dKE}{dt} = k(KE_{\text{Maxwell-Boltzmann}} - KE)$$

In GROMACS, tcoup1 = v-rescale

Nosé-Hoover thermostat

- Also a scaling thermostat:
 - If kinetic energy K is too big, make all particles slower
- Math is too complicated for today
- But it is essentially a second-order thermostat

$$\frac{dKE}{dt} = k(KE_0 - KE)^2$$

- Relaxes to right K faster than Berendsen
- BUT can oscillate back and forth
 - This can be bad for solids
- Almost always gives the right NVT

Do I need a thermostat?

- Unless you are measuring transport properties, almost certainly yes.
- It is VERY EASY to start a simulation at too high a total E. Need to maintain T!
- If your simulation is SLIGHTLY not obeying F=ma, it will also keep the simulation from accumulating or losing much energy

Thermostat recommendations

- Langevin is most stable, but slows system down a bit, especially at large friction values
 - Anderson is slows things down a bit more.
 - The ONLY ones you should use for gases
- Bussi-Parrinello is simple and usually very good
- Parrinello-Rahman is OK for liquids, not so good for gases/solids
- Berendsen (weak coupling) is only good to equilibrate a system.

How do we simulate bulk properties?

- Our simulation box is usually only a few nanometers across!
- We could simulated with infinitely hard walls, or simulate a droplet
 - But surface effects are at least 1-2 nanometers.
- Periodic boundary conditions:
 - We model the bulk by REPEATING the simulation cell.
- When a particle goes out one side, it comes back one the other.
- To calculate forces, we calculate the force from the neighboring copies.

Periodic Boundary Conditions

Periodic Boundary Conditions

- Minimum image convention
 - Means box can't be smaller than 2x the longest energy cutoff
- Boxes can be cubic or tilted
- When not to use:
 - Single molecule
 - Droplet
- Molecules can't be longer than than the box, or you get weirdness.

Barostats

- So: We know how to
 - Handle thermal equilibrium
 - What box volume means for a periodic system
- What about NPT
 - Where the volume is not constant?

 System exchanges volume with the surroundings until in mechanical equilibrium with its environment.

Possible ways to tile 3d space

box type	image distance	box volume	box vectors			box vector angles		
			а	b	С	∠ bc	∠ ac	∠ ab
cubic	d	d^3	d	0	0	90°	90°	90°
			0	d	0			
			0	0	d			
rhombic dodcahdron (xy-square)	d	$\frac{1}{2}\sqrt{2} \ d^3$ 0.707 d^3	d	0	$\frac{1}{2}$ d	60°	60°	60°
			0	d	$\frac{1}{2}$ d			
			0	0	$\frac{1}{2}\sqrt{2}\ d$			
rhombic dodcahdron (xy- hexagon)	d	$\frac{1}{2}\sqrt{2} d^3$ 0.707 d^3	d	$\frac{1}{2}$ d	$\frac{1}{2}$ d	60°	60°	60°
			0	$\frac{1}{2}\sqrt{3} d$	$\frac{1}{6}\sqrt{3}\ d$			
			0	0	$\frac{1}{3}\sqrt{6} d$			
truncated octahedron	d	$\frac{4}{9}\sqrt{3} \ d^3$ 0.770 d^3	d	$\frac{1}{3}$ d	$-rac{1}{3} d$	71.53°	109.47°	71.53°
			0	$\frac{2}{3}\sqrt{2} d$	J			
			0	0	$\frac{1}{3}\sqrt{6} d$			

rhombic dodecahedron

truncated octahedron

How does a real life barostat work?

- Outside particles collide with your system.
 - If there are lots of hard collisions with your system, it pushes your system together
 - If there are few hard collisions with your system, your system pushes out.
- How can we model that in a periodic boundary system?
 - There is no **outside**. . .

How does an MD barostat work?

Do we shrink molecules??

How do we know whether to shrink or grow?

$$P = \left\langle \frac{1}{V} \left(2KE + \frac{1}{3} \sum_{i>j} r_{ij} \cdot F(r_{ij}) \right) \right\rangle$$

- The virial compares the "pushing out" of the kinetic energy with the "pulling in" of the forces
- This is an "instantaneous pressure" not the external pressure. The pressure is constant.
- We compare the quantity inside the averages to P
- If it's too big, we shrink!
- If it's too small, we grow!

Properties of "instantaneous pressure"

$$P = \left\langle \frac{1}{V} \left(2KE + \frac{1}{3} \sum_{i>j} r_{ij} \cdot F(r_{ij}) \right) \right\rangle$$

Can oscillate wildly (like, several 1000 atm!)

How a simple barostat works

- "P"estimate > Pdesired
 - Shrink box by some factor s
- "P"estimate < Pdesired
 - Expand box by some factor s
- HOW BIG should s be?
- Let's make s is proportional to P_{target} -P_{instant}
- What is the constant of proportionality, i.e. how QUICKLY does one respond to differences in pressure?
- If we say: $V_{new}/V_{old} = k(P_{target}-P_{instant})$
 - in GROMACS, tau_p sets k
- Berendsen's weak coupling barostat
- pcouple=Berendsen, and set ref_p as well!
- Guess what! Weak coupling suppresses true

Parrinello-Rahman barostat

- Parrinello-Rahman barostat
 - Similar theory to Nosé-Hoover thermostat
 - 2nd order, so approaches true answer with some oscillations
 - Common in most MD packages
 - Rigorously* gives NPT
 - Has some minor errors if you have constraints, like rigid water, hydrogen bond constraints
 - Tends to be somewhat numerically unstable, especially for small systems
 - pcoupl = Parrinello-Rahman

Cell-resizing thermostat

- Very new!
- Similar theory to Bussi-Parrinello thermostat
- Like Berendsen, but with added fluctuations to get NPT right.
- Rigorously gives NPT
- Not that well understood where it might fail, but in theory it should be the best barostat
- •pcoupl = c-rescale

Monte Carlo Barostat

- Change the system volume by a random small amount
 - If U+PV is lower, then accept the change
 - If U+PV is higher, then roll a random number to accept
 - If change is accepted, then shrink/expand the box
- Gives correct NPT volume distributions!
 - implemented in OpenMM
- Doesn't this breaks the dynamics
- Barostats already break the dynamics, since particles don't magically move together and apart in nature without direct action from other molecules

Other possibilities for a barostat

- Isotropic
 - Box side ratios do not change
- Anisotropic:
 - All box sides can move independently.
 - The ratio of the sides can change
- Semiisotropic
 - x and y isotropically, but not z
 - Common for bilayer/ lamellar simulations

What can go wrong with a barostat?

- The systems of equations for MD are significantly less stable than MD alone or MD + barostat
 - Because particles can get "scaled" into each other!
- More likely to crash.
 - If you start from a bad configuration.
 - If the system is poorly equilibrated
 - If the system is very small.
 - If there is some sort of phase separation or self-assembly

Do I need a barostat?

- You almost certainly need a barostat to relax your simulation to the equilibrium volume.
 - You don't want to run at a density that is too high or too low
 - Like running at 1000 atm, or bubbles could form.
- BUT if your system is highly incompressible,
 - You may not need to run your simulation at NPT once it reaches the right P
 - You could average the volume over the last 100 ps, find the average volume, and pick a frame with that average volume, and run with that barostat
- OFTEN results are OK with the Berendsen barostat

Some guidelines

Thermostats:

- For equilibration, have a SHORT tau_t
 - 0.1 to 1 ps
- For production, have a LONGER tau_t
 - 5 or 10 ps

Barostats:

- Instantaneous pressure will frequently oscillate between +/- 1000 atm for a low compressibility fluid. THIS IS NORMAL!
- Generally, keep tau_p about 5x tau_t
- If the simulation crashes because of volume fluctuations, try a somewhat longer tau_p (2x-5x). Results will be valid as long as tau_p is < 0.1-1% of the simulation run.

