Arguments
Rules of inference
Predicates and quantified statements
Logical equivalences of quantified statements

Lecture 4: Logics (continued)

#### Table of contents

- Arguments
- 2 Rules of inference
- 3 Predicates and quantified statements
- 4 Logical equivalences of quantified statements

## Arguments

- An **argument** is a sequence of compound propositions.
  - All but the final proposition are called **premises**.
  - The final proposition is called **conclusion**.

# Arguments

- An argument is a sequence of compound propositions.
  - All but the final proposition are called **premises**.
  - The final proposition is called **conclusion**.
- An argument is valid if

whenever the premises are all true, the conclusion is true.



# Example 1

The following is a valid argument

"If you have access to the network, you can change your grade."

"You have access to the network."

.: "You can change your grade."

# Argument forms

• The **argument form** of an argument is obtained by expressing it by propositional variables (p, q, r, ...) and logical connectives  $(\neg, \land, \lor, ...)$ .

# Argument forms

- The argument form of an argument is obtained by expressing it by propositional variables (p, q, r, ...) and logical connectives  $(\neg, \land, \lor, \ldots)$ .
- An argument form is valid if whenever the premises are all true, the conclusion is true
- The notation

is used to write the conclusion of an argument (or an argument form).



Rules of inference Predicates and quantified statements

Logical equivalences of quantified statements

# Example of argument form

#### Consider the argument

"If you have access to the network, you can change your grade."

"You have access to the network."

... "You can change your grade."

# Example of argument form

#### Consider the argument

"If you have access to the network, you can change your grade."

"You have access to the network."

... "You can change your grade."

- p: You have access to the network.
  - q: You can change your grade.
- The argument form is

$$\begin{array}{c} p \rightarrow q \\ p \\ \therefore q \end{array}$$



# Argument forms

• Now we verify that the argument is valid. Valid argument means "if all premises are true, the conclusion is true"

$$p \rightarrow q$$
,  $p$ ,  $\therefore q$ .

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 0 | 1 | 1                 |
| 1 | 0 | 0                 |
| 1 | 1 | 1                 |

# Argument forms

Now we verify that the argument is valid. Valid argument means

"if all premises are true, the conclusion is true"

 $p \rightarrow q$ , p,  $\therefore q$ .

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 0 | 1 | 1                 |
| 1 | 0 | 0                 |
| 1 | 1 | 1                 |

• The last row shows that

if both premises are true, the conclusion is true.

# Test validity of an argument form

We call a row in the truth table of an argument form **critical row** if all premises are true

1 Identify premises and conclusion.

# Test validity of an argument form

We call a row in the truth table of an argument form **critical row** if all premises are true

- Identify premises and conclusion.
- 2 Construct the truth table showing all possible values of the premises and the conclusion.

# Test validity of an argument form

We call a row in the truth table of an argument form **critical row** if all premises are true

- 1 Identify premises and conclusion.
- 2 Construct the truth table showing all possible values of the premises and the conclusion.
- 3 Check the conclusion in each critical row
  - If the conclusion is false in any of these rows, the argument form is invalid.
  - If the conclusion is true at all these rows, the argument is valid.



Logical equivalences of quantified statements

# Example 2

Show that the following argument form is invalid.

$$p \quad \to \quad q \vee \neg r$$

$$q \quad \to \quad p \wedge r$$

$$\therefore p \quad \rightarrow \quad r.$$

#### Arguments

Rules of inference

Predicates and quantified statements Logical equivalences of quantified statements

### Exercise 1

Show that the following argument form is valid.

$$p \lor (q \lor r)$$
$$\neg r$$
$$\therefore p \lor q.$$

#### Rules of inference

- A rule of inference is a valid argument form
- For example, in the last lecture, we learnt that the argument form

$$p \to q$$
$$p$$
$$\therefore q.$$

is a rule of inference

# Modus ponens and modus tollens

• Modus ponens is the following valid argument form

$$p \to q$$
$$p$$
$$\therefore q$$

• Modus tollens is the following valid argument form

$$p \to q$$
$$\neg q$$
$$\therefore \neg p.$$



# Example 3: Validity of modus ponens and modus tollens

Prove that modus tollens is a valid argument form.

$$p \to q$$
$$\neg q$$

$$\neg p$$

### Logical equivalences of quantified statements

# Example 4

Write conclusions for the following arguments

(a) If my CGPA at the end of 4 years is below 2.00, then I cannot graduate in 4 years.

My CGPA is 1.49 at the end of 4 years.

Conclusion:

(b) If my CGPA at the end of 4 years is below 3.00, then I cannot graduate with honours in 4 years.

I graduated with honours in 4 years.

Conclusion:



(c) If my CGPA at the end of 4 years is below 2.00, then I cannot graduate in 4 years.

My CGPA at the end of four years is 3.11.

Conclusion:

### Basic rules of inference

| Name           | Argument form         | Example                               |
|----------------|-----------------------|---------------------------------------|
| Generalization | p                     | x = 3                                 |
|                | $\therefore p \lor q$ | $\therefore x = 3 \text{ or } x = -3$ |
| Specialization | $p \wedge q$          | y>0 and $y$ is an integer             |
|                | $\therefore p$        | $\therefore y > 0$                    |
| Elimination    | $p \lor q$            | x - 3 = 0 or $x + 2 = 0$              |
|                | $\neg q$              | $x \neq -2$                           |
|                | $\therefore p$        | $\therefore x - 3 = 0$                |

### Basic rules of inference

| Transitivity  | $p \rightarrow q$      | If $x > a$ , then $x > b$                                    |
|---------------|------------------------|--------------------------------------------------------------|
|               | $q \rightarrow r$      | If $x > b$ , then $x > c$                                    |
|               | $\therefore p \to r$   | $\therefore$ if $x > a$ , then $x > c$                       |
| Division      | $p \lor q$             | $\boldsymbol{x}$ is positive or $\boldsymbol{x}$ is negative |
| into cases    | $p \rightarrow r$      | If $x$ is positive, then $x^2 > 0$                           |
|               | $q \rightarrow r$      | If $x$ is negative, then $x^2 > 0$                           |
|               | ∴ r                    | $\therefore x^2 > 0$                                         |
| Contradiction | $\neg p 	o \mathbf{F}$ | If everyone sleeps before 12am,                              |
|               | $\therefore p$         | then there is no Covid-19                                    |
|               |                        | ∴ Not everyone sleeps before 12am                            |

# Logical equivalences of quantified statements

# Example 5

#### Show that the premises

- It is not sunny this afternoon and it is colder than yesterday,
- We will go swimming only if it is sunny,
- If we do not go swimming, then we will take a canoe trip,
- If we take a canoe trip, then we will be home by sunset,

#### lead to the conclusion

We will be home by sunset



Arguments

Rules of inference

Predicates and quantified statements Logical equivalences of quantified statements

# Example 5 solution

### Exercise 2

#### Show that the premises

- If you send me an e-mail message, then I will finish writing the program,
- If you do not send me an e-mail message, then I will go to sleep early.
- If I go to sleep early, then I will wake up feeling refreshed

#### lead to the conclusion

 If I do not finish writing the program, then I will wake up feeling refreshed.



Logics

Arguments

Rules of inference

Predicates and quantified statements Logical equivalences of quantified statements

### Exercise 2 solution

### Predicates and domains

- A **predicate** is a sentence that
  - contains a finite number of variables and
  - becomes a proposition when specific values are substituted for the variables.

Logics

### Predicates and domains

- A **predicate** is a sentence that
  - contains a finite number of variables and
  - becomes a proposition when specific values are substituted for the variables.
- The **domain** of a predicate is the set of all values that can be substituted in the variables.

# **Examples**

• "P(n): n is a prime, domain: natural numbers" is a predicate defined on the domain of natural numbers.

$$P(1)$$
 is false,  $P(2)$  is true.

Logics

# Examples

• "P(n): n is a prime, domain: natural numbers" is a predicate defined on the domain of natural numbers.

$$P(1)$$
 is false,  $P(2)$  is true.

• " $P(x): x^2 > x$ , domain:  $\mathbb{R}$ " is a predicate defined on the domain of real numbers.

$$P(2)$$
 is true,  $P(0.5)$  is false.



#### Truth sets

Let P(x) be a predicate on domain D.

• The **truth set** of P(x) is the set of all  $x \in D$  which makes P(x) true.

### Truth sets

Let P(x) be a predicate on domain D.

- The **truth set** of P(x) is the set of all  $x \in D$  which makes P(x) true.
- Example: The predicate "P(x): x > 0 on the domain of integers Z" has truth set Z<sup>+</sup>.

# Example 6

#### Consider predicates

$$P(x): |x| < 4$$
 and  $Q(x): x^2 = 8$  both defined on the domain of integers.

Find truth sets of P(x) and Q(x).

# Universal quantifier

Let P(x) be a predicate on domain D.

- The universal quantifier  $\forall$  is the notation for for all.
- A universal statement is a statement of the form

$$\forall x \in D \ P(x), \text{ or } \forall x \ P(x) \tag{1}$$

26/39

# Universal quantifier

Let P(x) be a predicate on domain D.

- The universal quantifier ∀ is the notation for for all.
- A universal statement is a statement of the form

$$\forall x \in D \ P(x), \text{ or } \forall x \ P(x) \tag{1}$$

- (1) is true if P(x) is true for all  $x \in D$ .
- (1) is false if there exists  $x \in D$  for which P(x) is false. The value x for which P(x) is false is called a **counterexample**.



Tai Do Logics

# Example 7

(a) Let  $D = \{2, 3, 4\}$ . Show that the following statement is true

$$\forall \ x \in D, x > \frac{1}{x}.$$

(b) Is the statement " $\forall x \in \mathbb{Z} - \{0\}, x \ge \frac{1}{x}$ " true?

Tai Do Logics

# Existential quantifier

Let P(x) be a predicate on domain D.

- The existential quantifier  $\exists$  is the notation for there exists.
- An existential statement is a statement of the form

$$\exists \ \mathbf{x} \in \mathbf{D} \ \mathbf{P}(\mathbf{x}), \ \text{or} \ \exists \ \mathbf{x} \ \mathbf{P}(\mathbf{x}).$$
 (2)

## Existential quantifier

Let P(x) be a predicate on domain D.

- The existential quantifier  $\exists$  is the notation for there exists.
- An existential statement is a statement of the form

$$\exists \ \mathbf{x} \in \mathbf{D} \ \mathbf{P}(\mathbf{x}), \ \text{or} \ \exists \ \mathbf{x} \ \mathbf{P}(\mathbf{x}). \tag{2}$$

- (2) is true if P(x) is true for at least one  $x \in D$ .
- (2) is false if P(x) is false for all  $x \in D$ .



Tai Do Logics

# Example 8

Which of the following statements are true? Justify your answer.

(a)  $\exists x \in \mathbb{R}$  such that  $x^4 < x^2$ .

(b) Let  $D = \{3, 4, 5\}$ . Then

 $\exists x \in D \text{ such that } x^4 < x^2.$ 

## Universal quantifier vs existential quantifier

Predicate P(x), domain D.

- $\forall$  = for all,  $\exists$  = there exists.
- Universal statement:

$$\forall x \in D \ P(x), \text{ or } \forall x \ P(x)$$

### Universal quantifier vs existential quantifier

Predicate P(x), domain D.

- $\bullet \ \forall = \text{for all}, \ \exists = \text{there exists}.$
- Universal statement:

$$\forall x \in D \ P(x), \text{ or } \forall x \ P(x)$$

• Existential statement:

$$\exists \ \mathbf{x} \in \mathbf{D} \ \mathbf{P}(\mathbf{x}), \ \mathsf{or} \ \exists \ \mathbf{x} \ \mathbf{P}(\mathbf{x}).$$



### Precedence of quantifiers

- $\forall$  and  $\exists$  have higher precedence than  $\neg$ ,  $\land$ ,  $\lor$ ,  $\oplus$ .
- For example,

$$\forall \ x \ P(x) \lor Q(x) \quad = \quad (\forall x P(x)) \lor Q(x)$$

$$\exists x \ P(x) \land Q(x) = (\exists x P(x)) \land Q(x).$$

## Precedence of quantifiers and logical operators

| Operators         | Precedence |
|-------------------|------------|
| $\forall$         | 1          |
| 3                 |            |
| Г                 | 2          |
| $\wedge$          | 3          |
| V                 |            |
| $\rightarrow$     | 4          |
| $\leftrightarrow$ |            |

## Quantified statements, logical equivalence

• A quantified statement is a statement which involves predicates  $P(x), Q(x), \ldots$  and quantifiers  $\forall, \exists$ .

# Quantified statements, logical equivalence

- A quantified statement is a statement which involves predicates  $P(x), Q(x), \ldots$  and quantifiers  $\forall, \exists$ .
- 2 quantified statements are logically equivalent if they have the same truth values under all situations.
- We use  $\equiv$  and  $\not\equiv$  to denote **equivalent** and **non-equivalent**.

### Universal quantifier and conjunction

#### Lemma 1

Let P(x) and Q(x) be predicates defined on the same domain D. Then

(a) 
$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$
.

(b) 
$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

Proof. Optional. See textbook.

# De Morgan's laws for quantifiers

#### Lemma 2

Let P(x) be a predicate defined on domain D. Then

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Proof. Optional. See textbook.

The law says that

 $\forall$  and  $\exists$  are negation of each other



## Example 9

Write negations of the following statements.

There is an honest politician.

All Americans eat cheeseburgers.

No students sleep before 12am.

 $\bullet \exists x \in \mathbb{Z}^+$  such that  $x^2 + 1$  is a square.



Logics

## Truth table for predicates?

- Let P(x) be a predicate defined on the domain D.
  - For each  $x \in D$ , P(x) is a proposition.

# Truth table for predicates?

- Let P(x) be a predicate defined on the domain D.
  - For each  $x \in D$ , P(x) is a proposition.
  - The truth table for P(x) would have |D| propositions  $\Rightarrow 2^{|D|}$  rows  $\Rightarrow$  often too large (even infinite if |D| is infinite, say  $D = \mathbb{Z}$  or  $D = \mathbb{R}$ ).

# Truth table for predicates?

- Let P(x) be a predicate defined on the domain D.
  - For each  $x \in D$ , P(x) is a proposition.
  - The truth table for P(x) would have |D| propositions  $\Rightarrow 2^{|D|}$  rows  $\Rightarrow$  often too large (even infinite if |D| is infinite, say  $D = \mathbb{Z}$  or  $D = \mathbb{R}$ ).
- To prove the equivalence between quantified statements, we often don't use truth table (D can be infinite).
   We use logical equivalence rules and Lemma 1+2.

#### Exercise 3

Let P(x), Q(x) be defined on the same domain D. Show that

$$\neg \forall x (P(x) \to Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$$

$$\mathbf{Hint} \colon P(x) \to Q(x) \equiv \neg P(x) \vee Q(x).$$

# Example 10 (Lewis Carroll)

Consider the following argument.

"All lions are fierce."

"Some lions do not drink coffee."

.: "Some fierce creatures do not drink coffee."

Let P(x), Q(x), R(x) be "x is a lion", "x is fierce", "x drinks coffee".

Assuming that the *domain consists of all creatures*, express the argument in its argument form using quantifiers and P(x), Q(x), and R(x).