

Neural Networks: Representation

Non-linear hypotheses

神经网络入门 非线性假设

通过不断增加变量x以及次方, 来实现复杂的曲线,用来划 分。

这里只需要明白,就是不断增加特征量还有参数theta。

视觉处理的例子, 计算机是 处理图像的通过矩阵形式数 据

Computer Vision: Car detection

Testing:

What is this?

Andrew Ng

0/1分类

汽车的例子

将汽车抽象化为坐标对应 的点 加号代表是汽车 减号代表不是汽车 这样就可以使用逻辑回归 分割了

上述是简单的例子 在这个复杂的坐标图中 就可以运用之前ppt上的增加特 征量和参数的方法 形成曲线来分类

同时,这也引出向量和矩阵相 关的计算

Neural Networks: Representation

Neurons and the brain

神经网络和大脑 讲解神经网络的来源

Neural Networks

Origins: Algorithms that try to mimic the brain.

Was very widely used in 80s and early 90s; popularity

diminished in late 90s.

Recent resurgence: State-of-the-art technique for many

applications

自行翻译吧

这里大脑划分了一个区域 这个区域就是大脑对视觉和 听觉处理的区域 在这个区域里,大脑学会如 何看和如何听 也就是说看懂和听懂

类似上面的ppt 这是处理其他感觉的区域

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Human echolocation (sonar)

Implanting a 3rd eye

Andrew Ng

这里举了处理各个感觉的 相关例子作为扩展

Neural Networks: Representation

Model representation I

这里开始讲解神经网络这 个模型

这是神经元核心结构,同时也抽象化为

输入,输出和隐藏层

输出/轴突 (output/Axon) 处理单元/神经核 (processing unit/ Nucleus) 输入/树突 (input/Dendrite)

有这个三个功能即可,开始参数化,进行一些基本的运算

疑问:到底如何计算? 计算的法则是什么?

Neurons in the brain

Credit: US National Institutes of Health, National Institute on Aging]

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

接下就给出具体如何计算,通过神经元

Andrew N

第一层, X1,X2,X3

 x_3

第二层,就是输出层,输出我们想要的结果

我们从图中可以列出特征量和 参数量

XO和thetaO是常量。后面会讲 到作用

这里有三层 输入层,隐藏层,输出层

$$x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Neural Network

 $a_i^{(j)} = \text{ "activation" of unit } i \text{ in layer } j$

 $\Theta^{(j)} = \text{matrix of weights controlling} \label{eq:poisson}$ function mapping from layer j to layer j+1

$$\begin{array}{c} a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \\ a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \\ a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \\ h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \ \ \mbox{为出第三层,最终得到最后} \end{array}$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ — \uparrow \circlearrowleft \circlearrowleft will be of dimension $s_{j+1} \times (s_j+1)$.

$$x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \Theta^1 = \begin{bmatrix} \Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} & \Theta_{13}^{(1)} \\ \Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} & \Theta_{23}^{(1)} \\ \Theta_{30}^{(1)} & \Theta_{31}^{(1)} & \Theta_{32}^{(1)} & \Theta_{33}^{(1)} \end{bmatrix} \quad a^2 = \Theta^1 * x$$

根据之前有个简单的列举特 征量和参量 我们可以先列出变量矩阵, 然后再公式化,便于理解

Machine Learning

Neural Networks: Representation

Model representation II

有了上一个章节的基本知识 上一章节主要说明,如何从 神经网络提取变量 这一章节,就对提取的变量 进行计算 2017年7月31日

Forward propagation: Vectorized implementation

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

$$\Theta^1 = \begin{bmatrix} \Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} & \Theta_{13}^{(1)} \\ \Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} & \Theta_{23}^{(1)} \\ \Theta_{30}^{(1)} & \Theta_{31}^{(1)} & \Theta_{32}^{(1)} & \Theta_{33}^{(1)} \end{bmatrix} \qquad \qquad \begin{tabular}{c} \ratherem{4.5em} \ratherem{$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

 $z^{(2)} = \Theta^{(1)}x$ 此处为简化公式 $a^{(2)} = g(z^{(2)})$ 引出变量Z

Add
$$a_0^{(2)} = 1$$
.
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Neural Network learning its own features

现在我们只关注后面隐藏层和输出层之间的关系

Andrew Ng

因为这里才是输出层的训练变量, 也是最终出结果的关键步骤

Other network architectures

这里给出类似的神经网络的结构 基本上只要抓住核心结构 输入,隐藏和输出这三点即可

Machine Learning

Neural Networks: Representation

Examples and intuitions I

Non-linear classification example: XOR/XNOR

 x_1 , x_2 are binary (0 or 1).

$$y = x_1 \text{ XOR } x_2$$
$$x_1 \text{ XNOR } x_2$$
$$\text{NOT } (x_1 \text{ XOR } x_2)$$

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$
$$y = x_1 \text{ AND } x_2$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Example: OR function

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

第31页

20	017年7月31日	18:20					

Machine Learning

Neural Networks: Representation

Examples and intuitions II

 x_1 AND x_2

 $x_1 \text{ OR } x_2$

Negation:

$$\begin{array}{|c|c|c|c|}\hline x_1 & h_{\Theta}(x) \\\hline \mathbf{0} & \\ \mathbf{1} & \\ \end{array}$$

$$h_{\Theta}(x) = g(10 - 20x_1)$$

 $(NOT x_1) AND (NOT x_2)$

Putting it together: $x_1 \ \mathrm{XNOR} \ x_2$

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0			
0	1			
1	0			
1	1			

Neural Network intuition

Handwritten digit classification

Courtesy of Yann LeCun]

Handwritten digit classification

Courtesy of Yann LeCun] Andrew Ng

第38页

2017年7月31日 18:20

Andrew Ng		
Andrew Ng		
		Andrew Ng

Neural Networks: Representation

Multi-class classification

Want
$$h_{\Theta}(x) pprox \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Multiple output units: One-vs-all.

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 1 \end{smallmatrix} \right]$$

pedestrian car motorcycle truck

第42页

2017年7月31日 18:20

Androw Na
Andrew Ng
Andrew Ng