BIST Part 2

- Output Response Analysis
 - Simple ORA
 - LFSR-based ORA
 - Serial: compress one bit at a time
 - CRC Theory
 - PAL analysis
 - How to design LFSR as ORA?
 - * Parallel : compress multiple bits at a time
- BIST Architecture
- Issues with BIST
- Conclusions

LFSR (Review)

- LFSR consist of FF and feedback XOR
- Two applications of LFSR:
 - 1. LFSR without external input
 - * Used for TPG

- 2. LFSR with external input
 - * Used for ORA

LFSR as ORA

cycle	LFSR input	Q_0	Q_1	Q_2	Q_3	LFSR output
0	011011011	0	0	0	0	
1-3	•••					
4	01101	1	0	1	1	
5	0110	0	1	0	0	1
6	011	0	0	1	0	01
7	01	1	0	0	1	001
8	0	0	1	0	1	1001
9		1	0	1	1	11001

Quiz

Q: Suppose CUT output is '001001'. (right bit first)

What is the signature after 6 cycles?

ANS:

cycle	LFSR input	Q_0	Q_1	Q_2	Q_3	LFSR output
0	001001	0	0	0	0	
1-3						
4						
5						
6			I			_

Too Slow. Any Better Method?

Cyclic Redundancy Code (CRC) Theory

- Represent bit streams by polynomials
 - x is dummy variable
 - Exponent represents delay
 - bits are coefficients

$$M(x) = \sum_{i} b_{i} x^{i}$$

- Example: 011011011 $\rightarrow x + x^2 + x^4 + x^5 + x^7 + x^8$
 - Left bits = LSB, right bits = MSB

For more details, see reference book (BA) or textbooks in *finite field*

Évariste Galois 1811-1832

Modular-2 Arithmetic

- Modulo-2: Addition (=subtraction) is XOR, Multiplication is AND
 - 0+0=0, 0+1=1, 1+0=1, 1+1=0
 - 0x0=0, 0x1=0, 1x0=0, 1x1=1
 - aka. Galois Field 2, GF(2)
- GF(2) Multiplication

GF(2) Division

$$(x^{3} + x^{2} + x + 1) \times (x^{2} + x + 1)$$

$$x^{3} + x^{2} + x + 1$$

$$x^{3} + x^{2} + x + 1$$

$$x^{3} + x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{3} + x^{2} + x + 1$$

$$x^{4} + 0 + x^{2}$$

$$x^{4} + 0 + x^{2}$$

$$x^{4} + x^{3} + x^{2}$$

$$x^{3} + 0 + 0$$

$$x^{4} + x^{3} + x^{2} + x$$

$$x^{5} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + 0 + x^{3} + x^{2} + 0 + 1$$

$$x^{2} + x + 1$$

Congruent

- $M(x) \div f(x) = Q(x) \dots R(x)$
- If $M_1(x)$ and $M_2(x)$ have same remainders when divided by f(x)
 - M₁(x) and M₂(x) are congruent
 - $M_1(x) \equiv M_2(x) \bmod f(x)$
- If $M(x) \equiv \theta \mod f(x)$
 - M(x) is divisible by f(x)

$$x^{3} + x^{2} + x + 1$$

$$x^{2} + x^{1} + 1)x^{5} + 0 + x^{3} + x^{2} + 0 + 1$$

$$x^{5} + x^{4} + x^{3}$$

$$x^{4} + 0 + x^{2}$$

$$x^{4} + x^{3} + x^{2}$$

$$x^{3} + 0 + 0$$

$$x^{3} + x^{2} + x$$

$$x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{2} + x + 1$$

Congruent $M_1(x) \equiv M_2(x)$

LFSR is GF(2) Divider

- Assume initial LFSR content = 0000, then
- $M(x) \div f(x) = Q(x) \ldots R(x)$
 - LFSR Input bit stream = dividend M(x)
 - LFSR characteristic polynomial = divisor f(x)
 - LFSR output bit stream = quotient Q(x)
 - Signature = Remainder R(x)
 - $R(x) \equiv M(x) \mod f(x)$

GF(2) Divider is Simple

cycle	LFSR input	Q_0	Q_1	Q_2	Q_3	LFSR output
0	011011011	0	0	0	0	
1-3						
4	01101	1	0	1	1	
5	0110	0	1	0	0	1
6	011	0	0	1	0	01
7	01	1	0	0	1	001
8	0	0	1	0	1	1001
9		1	0	1	1	11001

remainder=R(x)=
$$1+x^2+x^3$$
 quotient=Q(x)= $1+x+x^4$

$$(x+x^2+x^4+x^5+x^7+x^8) \div (1+x^3+x^4) = 1+x+x^4 \dots 1+x^2+x^3$$

$$M(x)$$
 \div $f(x) = Q(x)$ $R(x)$

Quiz

Q: Suppose CUT output is '001001'. (right bit first)
Use GF(2) division to find quotient and remainder

ANS:

LFSR Input (from CUT) 001001

cycle	LFSR input	Q_0	Q_1	Q_2	Q_3	LFSR output
0	001001	0	0	0	0	
1-3	•••					
4	00	1	0	0	1	
5	0	1	1	0	1	1
6		1	1	1	1	11

Why LFSR = Divider?

- Modular-form (Type-2) LFSR
 - shift-and-add = shift-and-subtract = mod f(x) divider

$$\frac{x^{4}}{1+x^{3}+x^{4}} \underbrace{)x+x^{2}+x^{4}+x^{5}+x^{7}+x^{8}}_{x^{4}+x^{7}+x^{8}}$$

$$\frac{x^{4}}{x+x^{2}+x^{5}}$$

cycle	LFSR input	Q ₀	Q ₁	Q ₂	Q_3	LFSR output
0	011011011	0	0	0	0	
1-3						
4	01101	1	0	1	1	
5	0110	0	1	0	0	1

So We Call It "Modular-form" LFSR

How about Standard-form LFSR?

cycle	LFSR input	Q_3	Q_2	Q_1	Q_0	LFSR output
0	011011011	0	0	0	0	
1-3	•••					
4	01101	1	0	0	1	
5	0110	1	1	0	0	1
6	011	1	1	1	0	01
7	01	0	1	1	1	001
8	0	0	0	1	1	1001
9		1	0	0	1	11001

Std-form LFSR ≠ Divider

 $1 + x^3 + 1 + x + x^4$

quotient is correct

BIST Part 2

- Output Response Analysis
 - Simple ORA
 - LFSR-based ORA
 - * Serial : compress one bit at a time
 - CRC Theory
 - PAL analysis
 - How to design LFSR as ORA?
 - * Parallel : compress multiple bits at a time
- BIST Architecture
- Issues with BIST
- Conclusions

Linearity of Signature

- $[M_1(x) + M_2(x)] \mod f(x) \equiv [M_1(x) \mod f(x)] + [M_2(x) \mod f(x)] \mod f(x)$
- **Example:**
 - $M_3(x) = M_1(x) + M_2(x)$

*
$$x+x^4+x^7+x^8 = (x+x^2+x^4+x^5+x^7+x^8)+(x^2+x^5)$$

• Then signature $R_3(x) = R_2(x) + R_1(x)$

*
$$(x+x^2+x^4+x^5+x^7+x^8) \div (1+x^3+x^4) = 1+x+x^4 \dots 1 + x^2+x^3$$

*
$$(x^2 + x^5)$$
 $\div (1 + x^3 + x^4) = 1 + x \dots 1 + x + x^2 + x^3$

.....
$$1+x+x^2+x^3$$

*
$$(x + x^4 + x^7 + x^8) \div (1 + x^3 + x^4) = x^4 \dots x$$

Signature of $(\Sigma \text{ inputs}) \equiv \Sigma \text{ (signature of inputs)}$

What Is Aliasing?

- M_{qood}(x) is good output, R_{qood}(x) is gold signature
- $M_{faulty}(x)$ is faulty output, $R_{faulty}(x)$ is faulty signature
- Aliasing occurs when R_{good}(x) = R_{faulty}(x)
- Example:
 - $M_{good}(x)$, gold signature = $1+x^2+x^3$

*
$$(x+x^2+x^4+x^5+x^7+x^8) \div (1+x^3+x^4) = 1+x+x^4 \dots 1+x^2+x^3$$

• $M_{faulty}(x)$, faulty signature = x no aliasing

*
$$(x + x^4 + x^7 + x^8) \div (1 + x^3 + x^4) = x^4 \dots x$$

• $M_{faulty2}(x)$, faulty signature = $1+x^2+x^3$ aliasing!

*
$$(x^2 + x^7 + x^8) \div (1 + x^3 + x^4) = 1 + x^4 \dots 1 + x^2 + x^3$$

Aliasing Means $R_{faulty} = R_{good}$

Aliasing Condition

- M_{good}(x) is good output
- M_{faulty}(x) is faulty output
- $M_{error}(x) = difference$ between $M_{faulty}(x)$ and $M_{good}(x)$
 - $M_{faulty}(x) = M_{good}(x) + M_{error}(x)$
- Aliasing means
 - $R_{faulty}(x) = R_{good}(x)$
 - $M_{faulty}(x) \equiv M_{good}(x) \mod f(x)$
- Aliasing condition:
 - $M_{good}(x) + M_{error}(x) \equiv M_{good}(x) \mod f(x)$
 - $M_{error}(x) \equiv 0 \mod f(x)$
 - i.e. $M_{error}(x)$ divisible by f(x) of LFSR

Aliasing when M_{error} Divisible by f

Quiz

 $M_{good}(x)$, gold signature = $1+x^2+x^3$

•
$$(x+x^2+x^4+x^5+x^7+x^8) \div (1+x^3+x^4) = 1+x+x^4 \dots 1+x^2+x^3$$

 $M_{faulty2}(x)$, faulty signature = $1+x^2+x^3$ aliasing!

•
$$(x^2 + x^7 + x^8) \div (1 + x^3 + x^4) = 1 + x^4 \dots 1 + x^2 + x^3$$

Q1: $M_{error}(x) = ?$

ANS:

Q2: Use long division to verify that $M_{error}(x) \equiv 0 \mod f(x)$

ANS:

PAL Estimate

11101

00010

11111

m = 5

- Assume M(x), length m
 - $M_{faulty}(x) = M_{good}(x) + M_{error}(x)$
 - Divisor f(x), degree N
 - Every bit has equal probability to flip
 - * Every bit of $M_{error}(x)$ can be 1 with equal probability
- Total number of errors that can occur
 - = total number of nonzero $M_{error}(x)$ polynomials
 - $\bullet = 2^{m}-1$
- Number of errors that cause aliasing
 - = number of nonzero $M_{error}(x)$ that are divisible by f(x)
 - $\bullet = 2^{m-N}-1$

$$PAL = \frac{2^{m-N} - 1}{2^m - 1} \approx 2^{-N} \ (if \ m >> N)$$

- 5-degree LFSR PAL=1/32; 6-degree LFSR PAL=1/64
 - LFSR increases 1 bit, PAL decreases 50%

BIST Part 2

- Output Response Analysis
 - Simple ORA
 - LFSR-based ORA
 - Serial : compress one bit at a time
 - CRC Theory
 - PAL analysis
 - How to design LFSR as ORA?
 - * Parallel: compress multiple bits at a time
- BIST Architecture
- Issues with BIST
- Conclusions

Design Guideline

- Given a PAL, design an LFSR
 - 1. How many stages, N =? (Degrees of LFSR)
 - * $N = -log_2 PAL$
 - 2. Which polynomial?
 - Primitive polynomial

$$PAL = \frac{2^{m-N} - 1}{2^m - 1} \approx 2^{-N} \ (if \ m >> N)$$

- 3. Test length, m must be greater than N
- Example: target PAL = 10⁻⁶, test length = 1,000
 - N = 20
 - PAL = $2^{-20} \approx 10^{-6}$
 - Find a primitive polynomial of degree 20
 - * **e.g.** $1+x^3+x^{20}$
 - Test length >> 20
 - Assumption valid

What Polynomial?

- Study shows [Williams 88]
 - PAL of primitive polynomial converge to final steady state value
 - Faster than non-primitive polynomials
 - So it is good to use primitive polynomials

Fig. 15. Aliasing probability as a function of the test length.

Fig. 16. Aliasing probability as a function of the test length $X^8 + 1$.

Use Primitive Polynomial

Summary

- LFSR-based ORA
 - Type-2 (modular form) LFSR is divider
 - Aliasing occurs when M_{error} is divisible by f
 - $PAL_{LFSR} = 2^{-N}$ very low
 - Use primitive polynomial

