(43) Internationales Veröffentlichungsdatum 14. März 2002 (14.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/20496 A1

- (51) Internationale Patentklassifikation⁷: C07D 239/84, A61K 31/517, A61P 7/02
- (21) Internationales Aktenzeichen:

PCT/EP01/09325

.(22) Internationales Anmeldedatum:

13. August 2001 (13.08.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 100 43 667.6 5. September 2000 (05.09.2000) DI
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GERICKE, Rolf [DE/DE]; Mozartstr. 19, 64342 Seeheim (DE). BEIER, Norbert [DE/DE]; Maximilian-Kolbe-Str. 11, 64354 Reinheim (DE). WILM, Claudia [DE/DE]; Dahlienweg 24, 64291 Darmstadt (DE).

- (74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: 2-GUANIDINO-4-ARYL-QUINAZOLINE
- (54) Bezeichnung: 2-GUANIDINO-4-ARYL-CHINAZOLINE

$$\begin{array}{cccc}
& NR^5R^6 \\
& NR^7R^8
\end{array} \qquad (II) \qquad \begin{array}{c}
& NR^6 \\
& NR^7R^8
\end{array} \qquad (III)$$

- (57) Abstract: The invention relates to compounds of formula (I), wherein Y represents (II) or (III) and Ar, R¹, R², R⁵, R⁶, R⁷ and R⁸ have the above-mentioned meaning, in addition to the salts and solvates thereof and the use thereof as NHE-3-inhibitors.
- (57) Zusammenfassung: Die Erfindung betrifft Verbindungen der Formel (I), worin Y (II) oder (III) bedeutet und Ar, R¹, R², R⁵, R⁶, R⁷ und R⁸ die angegebene Bedeutung aufweisen, sowie deren Salze und Solvate und deren Verwendung als NHE-3-Inhibitoren.

R⁷, R⁸

35

Phenyl

2-Guanidino-4-aryl-chinazoline

Die Erfindung betrifft Verbindungen der Formel i

5 10 worin oder 15 unsubstituiertes oder einfach durch R³ und/oder R⁴ Ar substituiertes Phenyl oder Naphthyl, R^1 , R^2 , 20 R^3 , R^4 jeweils unabhängig voneinander H, A, OA, Hal, CF₃, OH, NO₂, NH₂, NHA, NA₂, NH-CO-A, NH-CO-Ph, SA, SO-A, SO₂-A, SO₂-Ph, CN, OCF₃, CO-A, CO₂H, CO₂A, CO-NH₂, CO-NHA, CO- NA_2 , SO_2NH_2 , SO_2NHA , SO_2NA_2 oder unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal oder CF₃ substituiertes 25 Phenyl Α Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, Hal F, Cl, Br oder I 30 R⁵, R⁶,

jeweils unabhängig voneinander H, A, unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal, CF₃ substituiertes

bedeutet, wobei R5 und R7, R5 und R6, R7 und R8 5-7-gliedrige Ringe bilden können,

sowie deren Salze und Solvate, mit der Maßgabe, daß Verbindungen, worin gleichzeitig R5, R6, R7 und R8 die Bedeutung H aufweisen und keiner der Reste R¹, R², R³, R⁴ OH, NO₂, NH₂, NHA, NA₂, NH-CO-A, NH-CO-Ph, SA, SO-A, SO₂-A, SO₂-Ph, CN, OCF₃, CO-A, CO₂H, CO₂A, CO-NH₂, CO-NHA, CO-NA₂, SO₂NH₂, SO₂NHA, SO₂NA₂ oder unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal oder CF₃ substituiertes Phenyl 10 bedeuten, ausgenommen sind.

Die Erfindung betrifft ebenfalls die Verwendung der Verbindungen der Formel I und deren Salze und Solvate als NHE-3-Inhibitoren.

15

5

Andere Inhibitoren des Natrium/Protonen-Austauschers Subtyp 3 sind z.B. in der EP 0 825 178 beschrieben.

Die durch die Maßgabe ausgenommenen Verbindungen sind bereits in US 3,131,187 beschrieben, sowie deren Verwendung für andere Zwecke.

- 20 Chinazolinyl-quanidinderivate sind beschrieben von V.I.Shvedov et al. in Pharm. Chem. J. (Engl. Transl.) 1980, 14, 532-538 oder in Khim. Farm. Zh. 1980, 14, 38-43, sowie von S.C.Bell et al. in J. Med. Pharm. Chem. 1962, 5, 63-69.
- 25 Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.
- Überraschenderweise wurde gefunden, daß die Verbindungen der Formel I und ihre Salze bei guter Verträglichkeit den Natrium/Protonen-Austauscher 30 Subtyp 3 inhibieren.

Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden.

35 Es ist bekannt, daß der Na⁺/H⁺-Austauscher eine Familie mit mindestens 6 unterschiedlichen Isoformen darstellt (NHE-1 bis NHE-6), die bereits alle

10

20

30

35

kloniert sind. Während der Subtyp NHE-1 ubiquitär im ganzen Körper in allen Geweben verteilt ist, werden die übrigen NHE-Subtypen selektiv in spezifischen Organen wie in der Niere oder in der Lumenwand und Kontraluminalwand des Dünndarms exprimiert. Diese Verteilung spiegelt die spezifischen Funktionen wider, denen die verschiedenen Isoformen dienen, nämlich einerseits die Regulation des intrazellulären pH-Werts und des Zellvolumens durch den Subtyp NHE-1 und andererseits die Na[†]-Aufnahme und -Wiederaufnahme in Darm und Niere durch die Isoformen NHE-2 bzw. NHE-3. Die Isoform NHE-4 wurde hauptsächlich im Magen gefunden. Die Expression von NHE-5 beschränkt sich auf Gehirn und Neuronengewebe. NHE-6 stellt diejenige Isoform dar, die den Natriumprotonenaustauscher in den Mitochondrien bildet.

Die Isoform NHE-3 wird insbesondere in der Apicalmembran der proximalen Nierentubuli exprimiert; ein NHE-3-Hemmstoff übt daher u.a. eine Nierenschutzwirkung aus.

Die therapeutische Verwendung eines selektiven Hemmstoffs für NHE-3Isoformen ist vielseitig. NHE-3-Hemmstoffe hemmen oder verringern
Gewebeschäden und Zellnekrosen nach pathophysiologischen
hypoxischen und ischemischen Ereignissen, die zu einer Aktivierung der
NHE-Aktivität führen, wie dies während Nierenischämie oder während der
Entfernung, des Transports und der Reperfusion einer Niere bei der
Nierenverpflanzung der Fall ist.

Die Verbindungen der Formel I wirken zytoprotektiv, indem sie die überschiessende Aufnahme von Natrium und Wasser in die Zellen von mit Sauerstoff unterversorgten Organen verhindern.

Die Verbindungen der Formel I wirken blutdrucksenkend und eignen sich als Arzneimittelwirkstoffe zur Behandlung der Hypertonie. Weiterhin eignen sie sich als Diuretika.

Die Verbindungen der Formel I wirken alleine oder in Verbindung mit NHE-Inhibitoren anderer Subtypspezifität antiischämisch und können verwendet werden bei Thrombosen, Atherosklerose, Gefäßspasmen, zum Schutz von Organen, z.B. Niere und Leber, vor und während Operationen, sowie bei chronischem oder akutem Nierenversagen.

10

15

30

Weiterhin können sie verwendet werden zur Behandlung von Schlaganfall, des Hirnödems, Ischämien des Nervensystems, verschiedenen Formen des Schocks, z.B. des allergischen, kardiologischen, hypovolaäischen oder bakteroellen Schocks, sowie zur Verbesserung des Atemantriebs bei beispielsweise folgenden Zuständen: zentrale Schlafapnoen, plötzlicher Kindstod, postoperative Hypoxie und anderen Atemstörungen. Durch die Kombination mit einem Carboanhydrase-Hemmer kann die Atmungstätigkeit weiter verbessert werden. Die Verbindungen der Formel I wirken inhibierend auf die Proliferationen von Zellen, beispielsweise der Fibroblasten-Zellproliferation und der Proliferation der glatten Gefäßmuskelzellen und können daher zur Behandlung von Krankheiten verwendet werden, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt. Die Verbindungen der Formel I können verwendet werden gegen diabetische Spätkomplikationen, Krebserkrankungen, fibrotische Erkrankungen, endotheliale Disfunktion, Organhypertrophien und hyperplasien, insbesondere bei Prostatahyperplasie bzw. Prostatahypertrophie.

Ferner eignen sie sich als Diagnostika zur Bestimmung und
Unterscheidung bestimmter Formen der Hypertonie, der Atherosklerose,
des Diabetes und proliferativer Erkrankungen.
Da die Verbindungen der Formel I auch den Spiegel der Serumlipoproteine
vorteilhaft beeinflussen, können sie zur Behandlung eines erhöhten
Blutfettspiegels alleine oder in Kombination mit anderen Arzneimitteln
eingesetzt werden.

Gegenstand der Erfindung ist die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, ischämischen Zuständen des Herzens, des peripheren und zentralen Nervensystems und des Schlaganfalls, ischämischen Zuständen peripherer Organe und Gliedmaßen und zur Behandlung von Schockzuständen.

Gegenstand der Erfindung ist weiter die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen

Salze und/oder Solvate zur Herstellung eines Arzneimittels zum Einsatz bei chirurgischen Operationen und Organtransplantationen und zur Konservierung und Lagerung von Transplantaten für chirurgische Maßnahmen.

5

10

30

35

Gegenstand der Erfindung ist auch die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt, zur Behandlung oder Prophylaxe von Störungen des Fettstoffwechsels oder gestörtem Atemantrieb.

Gegenstand der Erfindung ist ferner die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen

Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von ischämischer Niere, ischämischen Darmerkrankungen oder zur Prophylaxe von akuten oder chronischen Nierenerkrankungen.

Methoden zur Identifizierung von Substanzen, die den Natrium/Protonen-20 Austauscher Substyp 3 inhibieren, sind z.B. in US 5,871,919 beschrieben.

Die Verbindungen der Formel I sind zudem zur Behandlung von bakteriellen und parasitären Krankheiten geeignet.

Für alle Reste in den Verbindungen der Formel I, die mehrfach auftreten, wie z.B. A, gilt, daß deren Bedeutungen unabhängig voneinander sind.

Unter Hydraten und Solvaten versteht man z.B. die Hemi-, Mono- oder Dihydrate, unter Solvaten z.B. Alkoholadditionsverbindungen wie z.B. mit Methanol oder Ethanol.

In den vorstehenden Formeln bedeutet A Alkyl, ist linear oder verzweigt, und hat 1, 2, 3, 4, 5 oder 6 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-

Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1-, 1,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-, 2-, 3- oder 4-Methylpentyl, 1,1-,

1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1,1,2- oder 1,2,2-Trimethylpropyl.

OA bedeutet vorzugsweise Methoxy, Ethoxy, Propoxy, Isopropoxy oder Butoxy.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I, insbesondere F, Cl oder Br.

10 Vor- und nachstehend bedeutet Ph einen unsubstituierten Phenylrest, sofern nichts anderes angegeben wurde.

Ar bedeutet vorzugsweise unsubstituiertes Phenyl oder Naphthyl, weiterhin vorzugsweise z.B. durch A, Fluor, Chlor, Brom, Iod, Methoxy, Ethoxy, Propoxy, Butoxy oder CF₃ monosubstituiertes Phenyl oder Naphthyl. Besonders bevorzugt bedeutet Ar unsubstituiertes oder durch A, Fluor, Chlor, Brom, Iod, Methoxy, Ethoxy, Propoxy, Butoxy oder CF₃ monosubstituiertes Phenyl.

20 R⁵, R⁶, R⁷ und R⁸ bedeuten bevorzugt gleichzeitig H oder unabhängig voneinander H oder A, das wie oben angegeben definiert ist.

Sofern R⁵ und R⁷ gemeinsam einen Ring bilden, nimmt Y bevorzugt eine der folgenden Strukturen an:

25

. 35

15

worin R⁶ und R⁸ die oben angegebene Bedeutung aufweisen und n 1, 2 oder 3, bevorzugt 1 oder 2 bedeutet.

Sofern R⁷ und R⁸ gemeinsam einen Ring bilden, nimmt Y bevorzugt eine der folgenden Strukturen an:

$$NR^5R^6$$
 oder NR^6

worin R⁵ und R⁶ die oben angegebene Bedeutung aufweisen und n 1, 2 oder 3, bevorzugt 1 oder 2 bedeutet.

Sofern R⁵ und R⁶ gemeinsam einen Ring bilden, nimmt Y bevorzugt eine der folgenden Strukturen an:

15

10

worin R⁷ und R⁸ die oben angegebene Bedeutung aufweisen und n 1, 2 oder 3, bevorzugt 1 oder 2 bedeutet.

Gegenstand der Erfindung sind insbesondere die Verbindungen der
Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat sowie deren Verwendung. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis le ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in la R¹

H, OH, OA, SA oder Hal, insbesondere H, OH, OCH₃ oder CH₃

bedeutet;

30

35

in lb R1

H, OH, OA, SA oder Hal, insbesondere H, OH, OCH₃

oder CH₃

 R^2

H, Hal, OH, A, NH₂, NO₂ oder CN, insbesondere H,

CI, OH, CH₃ oder NH₂.

bedeuten;

	in Ic	R ¹	H, OH, OA, SA oder Hal, insbesondere H, OH, OCH ₃ oder CH ₃
5		R ²	H, Hal, OH, A, NH ₂ , NO ₂ oder CN, insbesondere H, Cl, OH, CH ₃ oder NH ₂ .
		Ar	Phenyl
		bedeuten;	
10	in ld	R ¹	H, OH, OA, SA oder Hal, insbesondere H, OH, OCH ₃ oder CH ₃
		R ²	H, Hal, OH, A, NH ₂ , NO ₂ oder CN, insbesondere H, Cl, OH, CH ₃ oder NH ₂ .
15		Аг	Phenyl
		R ³	H, A, NH ₂ oder SA, insbesondere H oder CH ₃
		bedeuten;	·.
20	in le	R ¹	H, OH, OA, SA oder Hal, insbesondere H, OH, OCH ₃ oder CH ₃
, ·		R ²	H, Hal, OH, A, NH_2 , NO_2 oder CN, insbesondere H, CI, OH, CH_3 oder NH_2 .
25		· Ar	Phenyl
.•		R^3	H, A, NH₂ oder SA, insbesondere H oder CH₃
		R⁴	H, Hal, NH ₂ , oder NO ₂ insbesondere H oder NH ₂

Weiterhin bevorzugt sind solche Verbindungen der Formel I sowie deren Salze und Solvate, worin R gleichzeitig H, Ar Phenyl und mindestens einer der Reste R¹, R², R³, R⁴ eine der folgenden Bedeutungen aufweist: OH, NO₂, NH₂, NHA, NA₂, NH-CO-A, NH-CO-Ph, SA, SO-A, SO₂-A, SO₂-Ph, CN, OCF₃, CO-A, CO₂H, CO₂A, CO-NH₂, CO-NHA, CO-NA₂, SO₂NH₂, SO₂NHA, SO₂NA₂ oder unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal, CF₃ substituiertes Phenyl. Von diesen Verbindungen sind

20

25

30

35

diejenigen besonders bevorzugt, deren Rest R¹ CI, insbesondere in der Position 6, bedeutet und solche Verbindungen, deren Rest R³ Methyl, insbesondere in der Position 4', bedeutet.

Außerdem bevorzugt sind solche Verbindungen der Formel I sowie deren Salze und Solvate, worin die Reste R⁵, R⁶, R⁷, R⁸ gleichzeitig die Bedeutetung H aufweisen. Von diesen Verbindungen sind diejenigen besonders bevorzugt, deren Rest R¹ CI, insbesondere in der Position 6, bedeutet und solche Verbindungen, deren Rest R³ Methyl, insbesondere in der Position 4', bedeutet sowie solche Verbindungen, deren Rest R⁴ NH₂, insbesondere in der Position 2', bedeutet.

Verbindungen der Formel I, deren Rest R³ Methyl, insbesondere in der Position 4', bedeutet weisen eine besonders ausgeprägte Selektivität der Bindung an den NHE-3-Rezeptor auf.

Verbindungen der Formel I, deren Rest R⁴ NH₂, insbesondere in der Position 2', bedeutet zeigen eine besonders gute Löslichkeit in wässrigen Lösungen.

Verbindungen der Formel I, worin R¹ H, R² Cl in 6-Position und R³ Methyl in 4'-Position bedeutet sind bevorzugt. Ganz besonders bevorzugt sind Verbindungen der Formel I, deren Rest R⁴ zusätzlich NH₂ in 2'-Position bedeutet.

Besonders bevorzugt sind die Verbindungen der Formeln If bis Ik:

$$\mathbb{R}^2$$
 If \mathbb{R}^4

10

15

20

. 25

30

²35

ig lh li ij ik

worin R^1 , R^2 , R^3 , R^4 und Y die oben angegebene Bedeutung aufweisen und R^1 bevorzugt H, OH, OA, SA, oder F, insbesondere H, OH, OCH₃ oder CH₃ bedeutet. Ganz besonders bevorzugt bedeutet R^1 in den Formeln If bis Ik H.

 R^2 bedeutet bevorzugt H, Cl, A, NH₂, NO₂, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH, CN, CF₃, OCF₃ oder F, insbesondere H, Cl, F, Br, OH, CH₃, NO₂ oder NH₂, Ganz besonders bevorzugt bedeutet R^2 in den Formeln If bis lk Cl.

- R^3 bedeutet bevorzugt H, Cl, A, NH₂, NO₂, SCH₃, CN, C₂H₅, OCF₃ oder C₆H₅, insbesondere H, A oder CH₃. Ganz besonders bevorzugt bedeutet R^3 in den Formeln If bis Ik CH₃.
- R⁴ bedeutet bevorzugt H, F, NH₂ oder NO₂, insbesondere H oder NH₂.

 Ganz besonders bevorzugt bedeutet R⁴ in den Formeln If bis Ik NH₂.

Y weist in den Formeln If bis Ik die oben angegebene Bedeutung auf. Vorzugsweise nimmt Y darin eine der folgenden Bedeutungen an:

Insbesondere bevorzugt weist Y eine der folgenden Bedeutungen auf:

∴35

Weiterhin sind folgende Verbindungen I1 bis I10 sowie deren Salze und Solvate besonders bevorzugt:

	N-(6-Chlor-4-phenyl-chinazolin-2-yl)-N'-methyl-guanidin N-(6-Chlor-4-p-tolyl-chinazolin-2-yl)-N'-methyl-guanidin	I1 I2
15	N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-N'-methyl- guanidin	13
	N-[4-(2-Amino-phenyl)-6-chlor-chinazolin-2-yl]-N'-methyl-guanidin	14
·	N-[6-Chlor-4-(4-methyl-2-nitro-phenyl)-chinazolin-2-yl]-N'-methyl-guanidin	15
20	N-[4-(2-Amino-4-methyl-phenyl)-6-chlor-chinazolin-2-yl]-N'-methyl-guanidin	16 .
	N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-guanidin	17
	N-[4-(2-Amino-phenyl)-6-chlor-chinazolin-2-yl]-guanidin	18
25	N-[6-Chlor-4-(4-methyl-2-nitro-phenyl)-chinazolin-2-yl]-guanidin	19
•	N-[4-(2-Amino-4-methyl-phenyl)-6-chlor-chinazoliń-2-yl]- guanidin	I 10

Die Hydrochloride und p-Toluolsulfonate der Verbindungen der Formeln I1 bis I10 sind ganz besonders bevorzugt.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die ge-

25

30

35

nannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

- Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.
- Die 2-Guanidino-4-aryl-chinazoline der Formel I werden vorzugsweise
 hergestellt, indem man o-Aminophenylketone oder o-Aminophenylketone
 der Formel II

$$R^2$$
 NH_2
 R^1

- worin R¹, R² und Ar die in Anspruch 1 angegebenen Bedeutungen haben, mit 1-Cyanguanidin oder einem entsprechend N-alkylierten oder N-arylierten 1-Cyanguanidin der Formel NC-Y umsetzt, worin Y die oben angegebene Bedeutung aufweist.
 - Die Umsetzung kann in einem inerten Lösungsmittel erfolgen.
 - Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon (NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure

oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Vorzugsweise wird DMF, Wasser oder ein Alkohol verwendet.
Ganz besonders bevorzugt wird die Reaktion ohne ein Lösungsmittel, d.h. in der Schmelze, bei Temperaturen zwischen 100 und 200° C durchgeführt.

Von Vorteil ist die Anwesenheit eines sauren Katalysators wie AlCl₃, TiCl₄, p-Toluolsulfonsäure, BF₃, Essigsäure, Schwefelsäure, Oxalsäure, POCl₃ oder Phosphorpentoxid.

Eine bevorzugte Variante besteht darin, daß einer der Reaktanden bereits als Salz, z.B. als Hydrochlorid, eingesetzt wird.

Eine weitere wertvolle Methode zur Herstellung der Verbindungen der
Formel I besteht darin, daß man anstatt einer Verbindung der Formel NC-Y
eine Verbindung der Formel III

HN=CX-Y

20 worin

X -S-Alkyl, -S-Aryl, -O-Alkyl oder -OAryl und Alkyl vorzugsweise die oben angegebene Bedeutung von A und Aryl die obenangegebene Bedeutung von Ar aufweist, mit einer Verbindung der Formel II umsetzt.

25

35

Schließlich können die Verbindungen der Formel I durch Umsetzung von 2-Chlor-4-arylchinazolinen der Formel IV

worin Ar, R¹ und R² die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel HY hergestellt werden, worin Y die oben angegebene Bedeutung aufweist. Besonders bevorzugt bedeutet HY Guanidin.

5 Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. 10 Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische 15 ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, 20 Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefel-

können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als NHE-3-Inhibitoren und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Trägeroder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

säure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate,

30

Gegenstand der Erfindung sind ferner pharmazeutische Zubereitungen, enthaltend mindestens einen NHE-3-Inhibitor der Formel I und/oder eines seiner physiologisch unbedenklichen Salze und Solvate.

- Diese Zubereitungen können als Arzneimittel in der Human- oder Veteri-5 närmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, 10 Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugs-15 weise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder, oder transdermal in Patches.
 - Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden.
- Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.
- Als pharmazeutische Zubereitung für die Verabreichung in Form von Aerosolen oder Sprays sind geeignet z.B. Lösungen, Suspensionen oder Emulsionen des Wirkstoffs der Formel I in einem pharmazeutisch unbedenklichen Lösungsmittel.
- Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze und Solvate können zur Behandlung und/oder Prophylaxe der oben beschrieben Krankheiten oder Krankheitszuständen verwendet werden.
- Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 0,1 und 100 mg, insbesondere
 zwischen 1 und 10 mg pro Dosierungseinheit verabreicht. Die tägliche

Dosierung liegt vorzugsweise zwischen etwa 0,001 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

10 <u>Beispiele:</u>

5

25

Beispiel 1:

Eine Mischung aus 1.00 g 2-Amino-5-chlor-2'-nitrobenzophenon, 0.60 g 1-Cyanguanidin und 2.00 g p-Toluolsulfonsäure-Monohydrat wurde für 2 h bei 150°C geschmolzen. Die erkaltete Schmelze wurde mit Methanol versetzt und für 30 min. bei 65°C gerührt. Der nach Filtration erhaltene Rückstand wurde verworfen und das Filtrat mit Wasser versetzt. Anschließend stellte man die Lösung alkalisch und extrahierte mit Ethylacetat. Der Extrakt wurde eingeengt und aus Acetonitril kristallisiert, wodurch die freie Base N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-guanidin erhalten wurde.

Zur Bildung des Säureadditionssalzes wurde die Base in Methanol gelöst, die Mischung mit HCI-haltigem Isopropanol angesäuert und das Lösungsmittel anschließend entfernt. Kristalle des N-[6-Chlor-4-(2-nitrophenyl)-chinazolin-2-yl]-guanidiniumchlorids konnten aus Acetonitril erhalten werden.

Beispiel 2:

1.20 g N-(5-Methoxy-4-phenyl-chinazolin-2-yl)-guanidiniumchlorid wurden mit 8.00 g Pyridiniumchlorid für 6 h bei 170°C gerührt. Anschließend wurde die erkaltete Schmelze mit 20 ml einer Na₂S₂O₄-Lösung behandelt. Der erhaltene Niederschlag wurde isoliert, in Methanol gelöst und die Lösung mit HCl-haltigem Isopropanol angesäuert. Nach Entfernung des
 Lösungsmittels kristallisierte man den Rückstand aus Acetonitril, wodurch

N-(5-Hydroxy-4-phenyl-chinazolin-2-yl)-guanidiniumchlord erhalten wurde (Fp. 310°C).

Beispiel 3:

Eine Mischung aus 3.01 g 2-Amino-5-chlorbenzophenon, 2.55 g N-Cyan-N'-methylguanidin und 7.42 g p-Toluolsulfonsäure-Monohydrat wurde für 2 h bei 150 bis 160°C in der Schmelze gerührt. Die erkaltete Schmelze wurde mit Methanol versetzt und für 30 min. bei 65°C gerührt. Der nach Filtration erhaltene Rückstand wurde verworfen, das Filtrat mit Wasser und Ethylacetat versetzt und erneut für 30 min. bei 65°C gerührt. Anschließend ließ man unter Rühren im Eisbad auskristallisieren, wodurch N-(6-Chlor-4-phenyl-chinazolin-2-yl)-N'-methyl-guanidinium-p-toluolsulfonat erhalten wurde (Fp. 268 – 269°C).

15 Beispiel 4:

20

35

300 mg N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-guanidinium-ptoluolsulfonat wurden in 50 ml Methanol gelöst und in Gegenwart von 300 mg Raney-Nickel bei RT innerhalb von 21 h unter normalem Druck hydriert. Nach Filtration und Entfernung des Lösungsmittels wurde N-[6-Chlor-4-(2-amino-phenyl)-chinazolin-2-yl]-guanidinium-p-toluolsulfonat aus dem Filtrat erhalten. (Fp. 250°C).

Beispiel 5:

Eine Mischung aus 0.350 g N-(6-Methylsulfanyl-4-phenyl-chinazolin-2-yl)guanidiniumchlorid und 0.140 g Natriumperborat-Trihydrat in 5 ml
Essigsäure wurde für für 30 min. bei 80°C gerührt. Anschließend wurde
die Lösung eingeengt und mit Wasser versetzt. Die wäßrige Lösung wurde
auf pH 12 eingstellt und mit Ethylacetat extrahiert. Durch Einengen des
Extrakts erhielt man N-(6-Methansulfinyl-4-phenyl-chinazolin-2-yl)-guanidin
in kristalliner Form (Fp. 175 - 180°C).

Beispiel 6:

Eine Mischung aus 1.200 g N-(6-Methylsulfanyl-4-phenyl-chinazolin-2-yl)-guanidiniumchlorid und 0.154 g Natriumperborat-Trihydrat in 5 ml Essigsäure wurde für 1 h bei 80°C gerührt. Anschließend wurde die Reaktionsmischung eingeengt und mit Wasser versetzt. Die erhaltene

Lösung wurde auf pH 12 eingstellt und mit Ethylacetat extrahiert. Durch Einengen des Extrakts erhielt man N-(6-Methansulfonyl-4-phenyl-chinazolin-2-yl)-guanidin in kristalliner Form (Fp. 180 - 185°C). Zur Bildung des Säureadditionssalzes wurden 0.80 g N-(6-Methansulfonyl-4-phenyl-chinazolin-2-yl)-guanidin mit einer wäßrigen 1 N-HCl-Lösung behandelt und die erhaltenen Kristalle aus Ethanol umkristallisiert.

Beispiel 7:

2.70 g des Hydrochlorids von 2-Amino-5-chlorbenzophenon und 1.70 g N-Cyan-N',N"-dimethyl-guanidin wurden gemischt und für 3 h auf 150°C erhitzt. Das Reaktionsprodukt wurde in Methanol aufgenommen und filtriert. Das Filtrat engte man ein. Der Rückstand wurde aus einer Mischung von Isopropanol und Diethylether umkristallisiert, wodurch N-(6-Chlor-4-phenyl-chinazolin-2-yl)-N',N"-dimethyl-guanidiniumchlorid erhalten wurde (Fp. 264 - 267°C).

Beispiel 8:

Eine Mischung aus 500 mg 2-Amino-5-chlor-2'-nitrobenzophenon, 406 mg N-Cyan-N'-ethylguanidin und 1.03 g p-Toluolsulfonsäure-Monohydrat

20 wurde für 2 h-bei 150 bis 160°C in der Schmelze gerührt und wie in
Beispiel 3 aufgearbeitet, wodurch N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-N'-ethyl-guanidinium-p-toluolsulfonat erhalten wurde (Fp. 298 - 300°C).

Beispiel 9:

Eine Mischung aus 500 mg 2-Amino-5-chlor-2'-nitrobenzophenon, 580 mg N-Cyan-N-phenylguanidin und 1.03 g p-Toluolsulfonsäure-Monohydrat wurde für 2 h bei 150 bis 160°C in der Schmelze gerührt und wie in Beispiel 3 aufgearbeitet, wodurch N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-N'-phenyl-guanidinium-p-toluolsulfonat erhalten wurde (Fp. 261-263°C).

Analog zu den oben angegebenen Verfahren wurden unter Verwendung der entsprechenden Vorstufen die folgenden als NHE-3-Inhibitoren bevorzugten Säureadditionssalze erhalten:

5

Im Folgenden bedeutet pTsOH p-Toluolsulfonsäure.

Beispiele 10 - 101:

10

$$R^{2}$$
 R^{4}
 N
 NH_{2}
 NH_{2}

:	-	R ¹	R ²	R ³	R⁴	HX	
	(10)	Н	CI	Η .	SO₂CH₃	pTsOH	
20	(11)	Н	CI	CH₃	SO ₂ CH ₃	HCI	
	(12)	Н	Cl	C_2H_5	SO ₂ CH ₃	HCI	
1.4	(13)	Н	CI	OCH ₃	SO ₂ CH ₃	HCI	•
•	(14)	Н	CI	NO ₂	Н	pTsOH	
	(15)	Н	CI	NH ₂	Н	pTsOH	(Fp. 260-266°C)
25	(16)	. Н	CI	$N(CH_3)_2$	Н	pTsOH	
, •	(17)	Н	Cl	Н	NH_2	HCI	
	(18)	Н	CI	CH₃	NH_2	pTsOH	(Fp. 211-214°C)
	(19)	Н	CI	C ₂ H ₅	NH_2	HCI	
	(20)	Н	CI	OCH ₃	NH_2	HCI	
30	(21)	Н	CI	NO ₂	NH_2	HCI	
	(22)	Н	Cl	NH_2	NH_2	HCI	
	(23)	Н	CI	$N(CH_3)_2$	NH_2	HCI	
•	(24)	Н	CI	Н	NHCH₃	HCI	
	(25)	Н	CI	CH₃	NHCH ₃	HCI	*
35	(26)	Н	Cl	C ₂ H ₅	NHCH₃	HCI	
	(27)	H	CI	OCH ₃	NHCH₃	HCI	

.•	(28)	Н	CI	NO ₂	NHCH₃	HCI	
	(29)	Н	CI	NH_2	NHCH₃	HCI	
	(30)	Н	CI	$N(CH_3)_2$	NHCH₃	HCI	
	(31)	Н	CI .	Н	$N(CH_3)_2$	HCI	
5	(32)	.H.	CI	CH₃	$N(CH_3)_2$	HCI	
}	(33)	Н	CI	C_2H_5	$N(CH_3)_2$	HCI	
•	(34)	Н	CI	OCH₃	$N(CH_3)_2$	HCI	
	(35)	Н	CI	NO ₂	$N(CH_3)_2$	HCI	
	(36)	Н	CI	NH ₂	$N(CH_3)_2$	HCI	
10	(37)	Н	CI.	$N(CH_3)_2$	N(CH ₃) ₂	HCI	·
	(38)	Н	CI	Н	ОН	HCI	
	(39)	Н	CI '	CH₃	ОН	HCI	
e ^c	(40)	Н	CI	C ₂ H ₅	ОН	HCI	
	(41)	Н	Cì	OCH₃	ОН	HCI	
15	(42)	Н	CI	NO ₂	ОН	HCI	
•	(43)	Н	CI	NH ₂	ОН	HCI	•
•	(44)	Н	CI	N(CH ₃) ₂	ОН	HCI	
·	(45)	Н	CI	SO₂CH₃	CH₃	HCI	
<u>.</u>	(46)	Н	Cl	Н	CN	HCI	(Fp. >350°, ·
20							Zersetzung)
	(47)	Н	CI	C ₂ H ₅	SO ₂ NH ₂	HCI	
	(48)	Н	CI	OCF ₃	CH₃	HCI	
•	(49)	Н	CI	NO ₂	CH ₃	HCI	
.:	(50)	Н	CI	NH ₂	CH₃	HCI	
25	(51)	Н	CI	$N(CH_3)_2$	CH₃	HCI	
	(52)	Н	CI	Н	NO ₂	pTsOH	(Fp. 313-315°C)
	(53)	Н	CI	NO ₂	Н	HCI	(Fp. 346°C)
	(54)	Н	H	NH_2	Н	HCI	
•	(55)	Н	Н	NH_2	CH₃	HCI	
30	(56)	Н	CI	CH ₃	CO-NH₂	HCI	• .
•	(57)	Н	Н	CH ₃	SO ₂ CH ₃	pTsOH	
	(58)	Н	CI	ОН	F	pTsOH	
	(59)	Н	Ci .	F	SCH₃	HCI	
.:	(60)	Н	Br	Н	CONH₂	рТѕОН	
.35	(61)	Н	Br	CO-NH₂	F	pTsOH	
	(62)	Н	NO ₂	Н	Н	pTsOH	(Fp. 317-320°C)

	(63)	Н	OCH₃	Н	OCF ₃	рТѕОН	
	(64)	Н	ОН	Н	$H_{\perp} \leftarrow -$	HCI	(Fp. 333°C)
	(65)	Н	NH ₂	Н	Н	HCI ·	(Fp. 290-296°C)
	(66)	H	SCH₃	Н	Н	HCI	(Fp. 234-238°C)
5	(67)	Н	CH₃	CN	CO-NH ₂	pTsOH	
•	(68)	Н	C ₆ H ₅	Н	H	pTsOH	(Fp. 188°C)
	(69)	Н	CF ₃	SOCH ₃	Н	HCI	•
	(70)	Н	OCF ₃	Н	Н	HCI	(Fp. 255-259°C)
	(71)	Н	CN	Н	Н	HCI	(Fp. 330°C)
10	(72)	Н	F	Н	SOC₂H₅	pTsOH	
	(73)	Н	SOCH₃	Н	Н	pTsOH	
•	(74)	Н	SO₂ĊH₃	Н	Н	pTsOH	
	(75)	Н	CI	CN	Н	HCI	(Fp. 344°C)
•	(76)	NH_2	CI	Cl	CI	HCI	
15	(77)	Н	CI	Н	OCF ₃	pTsOH	(Fp. 274-277°C)
	(78)	Н	CI	OCF ₃	Н	HCI	(Fp. 310-315°C)
• • • • • • • • • • • • • • • • • • • •	(79)	. CI	CI	CH₃	ОН	HCI	
,	(80)	CI	Н	NH_2	Н	HCI	
	(81)	CI	Н	NH_2	CH ₃	HCI	•
20	(82)	CH₃	CI	CH ₃	CO₂H	HCI	
•	(83)	C_6H_5	CI	CH ₃	F	HCI	
	(84)	ОН	CO-NH ₂	Η .	Н	pTsOH	
	(85)	CI	Н	Н	SCH₃	pTsOH	
•	(86)	Н	CI	Cl	SCH₃	pTsOH	
. 25	(87)	SCH₃	Н	Н	Н	HCI	(Fp. 303-306°C)
•	(88).	Η.	F	CH₃	CN	HCI	
•	(89)	Н	CI	SCH₃	Н	HCI	(Fp. 324-327°C)
	(90)	CH₃	H	CN	Н	HCI	
·.	(91)	Н	CI	C ₆ H ₅	Н	HCI	(Fp. 200°C)
30	(92)	Η .	CI	CH₃	NO_2	pTsOH	(Fp. 210-214°C)
	(93)	Н	Н	Br	SO ₂ CH ₃	pTsOH	
	(94)	Н	H	OCH₃	OCF₃	pTsOH	
	(95)	Н	CI	Н	CN	HCI.	(Fp.>350°C,
*							Zersetzung)
35	(96)	Н	Cl .	C ₂ H ₅	NH_2	pTsOH	(Fp.>257°C,
							Zersetzung)

(97)	Н	CI	CF₃	NO ₂	pTsOH	(Fp. 304-308°C)
(98)	Н	CI	C ₂ H ₅	NO ₂	pTsOH	(Fp. 286-287°C)
(99)	Н	CI	SOCH₃	Н	HCI	(Fp. 322-324°C)
(100)	Н	CI	CF ₃	NH ₂	pTsOH	(Fp.>232°C)
(101)	Н	Cl	N(C ₂ H ₅) ₂	. H	HCI	(Fp. 200°C)

Beispiele 102 – 154:

_	_
1	n
ı	v
-	_

. 15

		R ¹	R ²	R ³	_R⁴	HX
	(102)	Н	CI	Н	SO ₂ CH ₃	рТsОН
20	(103)	Н	CI	CH ₃	SO ₂ CH ₃	HÇI
20	(104)	H ,	Cl	C_2H_5	SO₂CH₃	HĆI
	(105)	Н	CI	OCH ₃	SO ₂ CH ₃	HCI
	(106)	H	CI	NO ₂	Н	HCI
	(107)	Н	CI	NH ₂	Н	HCI
25	(108)	Н	Cl	$N(CH_3)_2$	Н	HCI
25	(109)	Н	CI	H	NH_2	HCI
	(110)	Η	Cl	CH₃	NH_2	HCI
	(111)	Н	Cl	C ₂ H ₅	NH ₂	HCI
	(112)	Н	CI	OCH₃	NH ₂	HCI
30	(113)	H	CI	NO_2	NH ₂	HCI
30	(114)	H	CI	NH ₂	NH_2	HCI
, ri	(115)	Н	CI	$N(CH_3)_2$	NH_2	HCI
	(116)	Н	CI	H	NHCH₃	HCI
	(117)	Н	CI	CH ₃	NHCH ₃	HCI
35	(118)	Н	Cl	C_2H_5	NHCH₃	HCI
Ų	(119)	Н	CI	OCH ₃	NHCH ₃	HCI
	(120)	Н	CI	NO ₂	NHCH₃	HCI

	(121)	Н	CI	NH ₂	NHCH₃	HCI .	
	(122)	Н	CI	$N(CH_3)_2$	NHCH ₃	HCI	
	(123)	Н	CI	Н	$N(CH_3)_2$	HCI	
	(124)	Н	CI	CH ₃	$N(CH_3)_2$	HCI	
5	(125)	H	CI	C ₂ H ₅	$N(CH_3)_2$	HCI	
	(126)	. H	CI	OCH ₃ ·	$N(CH_3)_2$	HCI	
	(127)	Н	CI	NO ₂	$N(CH_3)_2$	HCI	
	(128)	Н	CI	NH ₂	$N(CH_3)_2$	HCI	
	(129)	Н	CI	$N(CH_3)_2$	$N(CH_3)_2$	HCI	·
10	(130)	Н	CI	Н	OH .	HCI	
	(131)	Н	Cl	CH₃	ОН	HCI	
	(132)	Н	CI '	C ₂ H ₅	OH	HCI	
	(133)	· H	Cl	OCH ₃	ОН	HCI	
	(134)	Н	Cl	NO_2	ОН	HCI	
15	(135)	Н	Cl	NH_2	OH	HCI	
÷	(136)	Н	CI	$N(CH_3)_2$	ОН	HCI	
•	(137)	Н	CI	SCH₃	CH ₃	HCI	
	(138)	Н	CI	CH₃	CH ₃	HCI	
•	(139)	Н	Cl	C_2H_5	CH ₃	HCI	
20	(140)	Н	CI	OCH₃	CH ₃	HCI	
	(141)	Н	Cl	NO_2	CH ₃	HCI	
	(142)	Н	CI	NH_2	CH ₃	HCI	•
	(143)	Н	Cl	$N(CH_3)_2$	CH ₃	HCI	
	(144)	Н	OCF₃	NH_2	Н	HCI	
25	(145).	Н	OÇF₃	NH_2	CH₃	HCI	
	(146)	Н	OCH₃	SO ₂ CH ₃	SO₂CH₃	pTsOH	
:•	(147)	Н	ОН	Н	Н	pTsOH	
	(148)	CI	OCH ₃	NH_2	Н	HCI	
, :	(149)	. CI	CI	NH_2	CH ₃	HCI	
.30	(150)	OCH₃	SCH₃	Н	Н	pTsOH	
	(151)	ОН	Н	Н	Н	HCI	(Fp. 326°C)
* ***	(152)	CI	F	Н	CONH₂	pTsOH	
	(153)	Н	CH ₃	n-SC₅H₁₁	Н	pTsOH	
	(154)	Н	CI	SO ₂ NH ₂	F	pTsOH	

Beispiele 155 – 205:

_	
: າ	
J	

. 10

15 20

25

30

					•	2
		R ¹	R^2	\mathbb{R}^3	R⁴	HX
	(155)	ОН	CI	Н	SO ₂ CH ₃	HCI
_	(156)	ОН	CI	CH₃	SO₂CH₃	HCI
)	(157)	ОН	CI	C_2H_5	SO₂CH₃	HCI
	(158)	ОН	CI	OCH ₃	SO₂CH₃	HCI
	(159)	ОН	CI	NO ₂	, H	HCI
	(160)	ОН	Cl	NH_2	Н	HCI
`	(161)	ОН	CI	$N(CH_3)_2$	Н	HCI
,	(162)	ОН	CI	Н	NH ₂	HCI
	(163)	ОН	CI .	CH₃	NH ₂	HCI
	(164)	ОН	CI	C_2H_5	NH_2	HCI
	(165)	ОН	CI	OCH₃	NH ₂	HCI
:	(166)	ОН	CI	NO_2	NH_2	HCI
)	(167)	ОН	CI	NH ₂	NH_2	HCI
	(168)	ОН	CI	$N(CH_3)_2$	NH_2	HCI
	(169)	ОН	CI	Н	NHCH₃	HCI
	(170)	ОН	CI	CH₃	NHCH₃	HCI
	(171)	ОН	CI	C_2H_5	NHCH₃	HCI
,	(172)	ОН	CI	OCH₃	NHCH₃	HCI
	(173)	OH	CI	NO ₂	NHCH₃	HCI
	(174)	ОН	Cl	NH ₂	NHCH₃	HCI
	(175)	ОН	Cl	$N(CH_3)_2$	NHCH₃	HCI
	(176)	ОН	CI	Н	$N(CH_3)_2$	HCI
,	(177)	ОН	CI	CH ₃	$N(CH_3)_2$	HCI
	(178)	ОН	CI	C ₂ H ₅	$N(CH_3)_2$	HCI .

	(179)	ОН	Cl	OCH₃	$N(CH_3)_2$	HCI	
	(180)	ОН	CI	NO ₂	$N(CH_3)_2$	HCI	
	(181)	ОН	CI	NH ₂	$N(CH_3)_2$	HCI	
	(182)	ОН	CI	$N(CH_3)_2$	$N(CH_3)_2$	HCI	•
5	(183)	ОН	CI	Н	ОН	ОН	
	(184)	ОН	CI	CH₃	ОН	OH	
	(185)	ОН	Cl	C_2H_5	ОН	ОН	
	(186)	OH	CI	OCH ₃	OH	ОН	
	(187)	ОН	Cl	NO ₂	ОН	OH ·	
10	(188)	ОН	CI	NH ₂	OH .	OH	
	(189)	ОН	CI	$N(CH_3)_2$	ОН	OH	
	(190)	ОН	Cl '	COCH ₃	CH₃	HCI	
	(191)	ОН	Cl	CH₃	CH₃	HCI	
	(192)	ОН	CI	C ₂ H ₅	.CH₃	HCI	-
. 15	(193)	OН	Cl	OCH₃	CH₃	HCI	
	(194)	ОН	CI	NO_2	CH₃	HCI	
	(195)	ОН	Cl	NH_2	CH₃	HCI	
	(196)	ОН	CI	$N(CH_3)_2$	CH₃	HCI	
	(197)	OH	F	NH_2	Н	HCI	
20	(198)	ОН	F	NH_2	CH₃	HCI	
	(199)	ОН	F	NH_2	Н	HCI	
	(200)	ОН	F	NH_2	CH ₃	HCI	•
	(201)	ОН	OH	H	Н	HCI	(Fp.290°C)
	(202)	OCH₃	OCH ₃	Н	CO ₂ CH ₃	pTsOH	
25	(203)	CI	Cl	CO₂H	Ĥ	HCI	
	(204)	CH₃	Cl	CH₃	SCH₃	HCI	
	(205)	Cl	CI	SO₂NH₂	Н	HCI	

Beispiele 206 - 292:

5

$$R^3$$
 R^4
 R^2
 N
 NH_2
 NH_2
 NH_2

		R ¹	R ²	R ³	R⁴	HX	
	(206)	Н	CI	Н	NO ₂	HCI	(Fp. 342°C)
15	(207)	Н	CI	CH ₃	NO ₂	HCI	(*
	(208)	Н	CI	C ₂ H ₅	NO ₂	HCI	
	(209)	Н	CI	OCH₃	NO ₂	HCI	•
	(210)	Н	CI	NO_2	NO ₂	HCI	
_ <u>`</u>	(211)	Н	Cl	NH ₂	NO ₂	HCI	
20	(212)	Н	Cl	$N(CH_3)_2$	NO ₂	HCI	
	(213)	Н	Cl	Н	NH_2	HCI	(Fp. 300-340°C)
•	(214)	Н	Cl	CH₃	NH ₂	HCI	,
	(215)	Н	Ci	C_2H_5	NH_2	HCI	
	(216)	Н	Cl	OCH ₃	NH_2	HCI	
25	(217)	H	Cl	NO ₂	NH ₂	HCI	
	(218)	Н	Cl	NH_2	NH ₂	HCI	
	(219)	Н	CI	$N(CH_3)_2$	NH_2	HCI	•
	(220)	Н	CI	Н	NHCH₃	HCI	
	(221)	Н	CI	CH ₃	NHCH ₃	HCI	
30	(222)	Н	Cl	C ₂ H ₅	NHCH ₃	HCI	
	(223)	Н	CI	OCH₃	NHCH ₃	HCI	
	(224)	Н	CI	NO ₂	NHCH₃	HCI	
4:	(225)	Н	CI	NH_2	NHCH ₃	HCI	
	(226)	H	CI	$N(CH_3)_2$	·NHCH ₃	HCI	
35	(227)	Н	Cl	Н	$N(CH_3)_2$	HCI	
: 1	(228)	Н	Cĺ	CH ₃	$N(CH_3)_2$	HCI	

•							
	(229)	Н	CI	C ₂ H ₅	$N(CH_3)_2$	HCI	
;	(230)	Н	CI	OCH ₃	$N(CH_3)_2$	HCI	
	(231)	Н	CI	NO ₂	$N(CH_3)_2$	HCI	
.•	(232)	Н	CI	NH_2	$N(CH_3)_2$	HCI	
5	(233)	Н	CI	$N(CH_3)_2$	$N(CH_3)_2$	HCI	
,	(234)	Н	CI	H.	ОН	pTsOH	(Fp. 252-254°C)
	(235)	Н	CI	CH₃	ОН	HCI	
	(236)	Н	CI	C_2H_5	ОН	HCI	•
	(237)	Н	CI	OCH₃	ОН	HCI	
10	(238)	Н	CI	NO_2	OH .	HCI	
	(239)	Н	CI	NH_2	ОН	HCI	
	(240)	Н	CI ,	$N(CH_3)_2$	ОН	HCI	
	(241)	Н	CI	CN	CH ₃	HCI	
	(242)	Н	CI	CH₃	CH ₃	HCI	
15	(243)	Н	CI	C ₂ H ₅	CH ₃	HCI	
•	(244)	Н	CI	OCH₃	CH₃	HCI	
	(245)	Н	Cl	NO_2	CH ₃	HCI	
٠.	(246)	Н	CI	NH_2	CH ₃	HCI	
	(247)	Н	CI	$N(CH_3)_2$	CH₃	HCI	
20	(248)	Н	CI	CONH₂	F .	HCI	
د	(249)	Н	CI	NO_2	F	HCI	
	(250)	Н	Н	NH_2	F	HCI	• .
•	(251)	Н	Н	NH_2	CH ₃	HCI	
•	(252)	Н	Cl	SCH₃	Cl	HCI	
25	(253)	C_6H_5	Н	CH ₃	F	HCI	
•	(254)	CN	CI	F	F	HCI	
	(255)	Н	Cl	Н	CN	HCI	(Fp. 350°C)
	(256)	Н	Br	Н	CN	HCI	•
•	(257)	Н	Br	SOCH₃	F	HCI	
30	(258)	Н	NO_2	Н	F	HCI	
	(259)	Н	OCH₃	CN	F	HCI	
•.	(260)	Н	ОН	Н	F	HCI	
	. (261)	Н	NH_2	Н	F	HCI	
	(262)	Н	SCH₃	Н	F	HCI -	
35	(263)	Н	CH ₃	CONH ₂	F	HCI	
	(264)	Н	C ₆ H ₅	Н	F	HCI	

	(265)	Н	CF₃	SOCH ₃	F	1101	
	(266)	H	OCF ₃	H	F. S	HCI	
:	(267)	H	CN	H	F	HCI	
	(268)	 Н	F	SOCH₃	F	HCI	
.5.	(269)	н	SOCH₃	.H		HCI	
	(270)	 Н	SO ₂ CH ₃	Н	F	HCI	
•	(271)	., Н	Cl		F	HCI	·
•	(272)	H	Cl	CN	F	HCI	
	(273)			CONH₂	CI	HCI	
10	(274)	H	CI	Н	OCF₃	pTSOH	(Fp. 260-264°C)
10		Н	CI	OCF ₃	F	HCI	•
	(275)	Cl	CI ,	SO ₂ NH ₂	F	HCI	
	(276)	CI	Н `	NH ₂	F	HCI -	
	(277)	CI	Н	NH ₂	CH ₃	HCI	
	(278)	CH₃	Cl	NHCH ₃	F	HCI	
15	(279)	F	CI	CH₃	NHCH ₃	HCI	
	(280)	Н	Н	C_6H_5	F	HCI"	•
	(281)	CI	NH_2	F	F	HCI	
	(282)	NH_2	CI	CI	F	HCI	
	(283)	SCH₃	Н	Н	F	HCI	
20	(284)	Н	F	$N(CH_3)_2$	F	HCI	
	(285)	Н	CI	SCH₃	F	HCI	
	(286)	Н	Н	OCF ₃	CH ₃	HCI	
	(287)	Н	CI	SOCH₃	Н	HCI	(Fp. 240°C)
:	(288)	Н	CI ·	CH ₃	NH ₂	pTsOH	(Fp. 217-218°C)
25	(289)	Н	CI	Н	OCF ₃	HCI	(Fp. 260-264°C)
** ** ₁	(290)	Н	Ci	Η .	CO ₂ CH ₃	HCI	(Fp. 275-277°C)
	(291)	Н	CI	CH₃	NO ₂	pTsOH	
	(292)	Н	CI	H	NHCOCH ₃	•	(Fp. 218-220°C)
	• ,			• •	MUCOCH3	1701	(Fp. 317-320°C)

Beispiele 293 – 379:

5

		R ¹	R ²	_R ³	R⁴	HX	
•	(293)	Н	CI	Н	Н	pTsOH	(Fp. 268-296°C)
15	(294)	Н	CI	CH ₃	Н	HCI	(Fp. 291-293°C)
	(295)	Н	CI	C ₂ H ₅	Н	HCI	
•••	(296)	Н	CI	OCH ₃	Н	HCI	
•	(297)	Н	CI	NO_2	Н	HCI	
	(298)	Н	Cl	NH_2	Н	HCI .	•
20	(299)	Н	CI	$N(CH_3)_2$	Н	HCI	
· v	(300)	Н	Cl	Н	NH_2	HCI	
·.	(301)	Н	CI	CH ₃	NH ₂	HCI	
•	(302)	Н	Н	Н	NH_2	pTsOH	(Fp. 231-233°C)
	(303)	Н	CI	OCH₃	NH_2	HCI	
25	(304)	Н	CI	NO ₂	NH_2	HCI	
·	(305)	Н	CI	NH_2	NH ₂	HCI	
	(306)	Н	Cl	$N(CH_3)_2$	NH_2	HCI	
	(307)	Н	CI	Н	NHCH ₃	HCI	
	(308)	Н	CI	CH₃	NHCH₃	HCI	
30	(309)	Н	CI	C_2H_5	NHCH ₃	HCI	•
i.	(310)	Н	Ci	OCH₃	NHCH₃	HCI	
•	(311)	Н	. CI	NO ₂	NHCH₃	HCI	
•	(312)	Н	CI ·	NH_2	NHCH₃	HC!	
	(313)	Н	CI	$N(CH_3)_2$	NHCH₃	HCI ·	
35	(314)	Н	Cl	Н	$N(CH_3)_2$	HCI	
r.	(315)	Н	CI	CH₃	$N(CH_3)_2$	HCI	

	(316)	Н	Cl	C₂H₅	N(CH ₃) ₂	нсі	
	(317)	Н	CI	OCH ₃	N(CH ₃) ₂	HCI	
•	(318)	Н	CI	NO ₂	N(CH ₃) ₂	HCI	•
	(319)	Н	CI	NH ₂	N(CH ₃) ₂	HCI	
5	(320)	Н	CI	N(CH ₃) ₂	N(CH ₃) ₂	HCI	
	(321)	Н	CI	H	OH	HCI	
•	(322)	Н	CI	CH₃	ОН	HCI	•
	(323)	Н	CI	C₂H₅	ОН	HCI	
•	(324)	Н	CI	OCH₃	ОН	HCI	
10	(325)	Н	CI	NO ₂	ОН	HCI	
	(326)	Н	CI	NH ₂	ОН	HCI	
	(327)	Н	CI '	N(CH ₃) ₂	ОН	HCI	
	(328)	Н	Cl	Η	CH ₃	HCI	
	(329)	Н	CI	CH ₃	CH ₃	HCI	
15	(330)	Н	Cl	C ₂ H ₅	CH₃	HCI	
	(331)	Н	CI	OCH ₃	CH₃	HCI	•
	(332)	Н	CI .	NO ₂	CH ₃	HCI	
•,	(333)	H.	CI	NH ₂	CH₃	HCI	
	(334)	Н	Cl	N(CH ₃) ₂	CH₃	HCI	•
20	(335)	H	CI	Н	NO ₂	pTsOH	(Fp. 278-279°C)
	(336)	Н	Cl	NO_2	Н	HCI	; '
. •	(337)	Н	Н	NH_2	Н	HCI	
. •	(338)	Н	Н	NH_2	CH₃	HCI .	
•	(339)	Н	CI	CH ₃	CI	HCI	•
25	(340)	Н	Н	CH₃	Н	HCI	
	(341)	Н	CI.	H	·F	HCI	
.•	(342)	Н	CI	F	Н	HCI	
:	(343)	Н	Br	Н	Н	HCl	
	(344)	Н	Br	Н	F	HCI	
<u>3</u> 0	(345)	Н	NO ₂	Н	Н	HCI	
. :	(346)	Н	OCH ₃	Н	Н	HCI	
<i>:</i>	(347)	Н	ОН	Н	Н	HCI	•
• •	(348)	Н	NH_2	H	Н	HCI	
ı	(349)	Н	SCH₃	Н	<u>H</u>	HCI	
35	(350)	Н	CH ₃	Η .	Н	HCI	
	(351)	Н	C_6H_5	Н	Н	HCI	

	(352)	Н	CF₃	Н	Н	HCI	
	(353)	Н	OCF ₃	H ·	Н,	HCI	
	(354)	Н	CN	Ή	Н	HCI	
	(355)	Н	F	Н	Н	HCI	
5	(356)	Ĥ	SOCH ₃	Н	Н	HCI	
	(357)	Н	SO ₂ CH ₃	Н	Н	HCI	
	(358)	Н	CI	CN	Н	HCI	
	(359)	Н	CI	Н	CI	HCI	
•	(360)	Н	CI	H	OCF ₃	HCI	
10	(361)	Н	CI,	OCF ₃	Н	- HCI	
	(362)	Cl	CI	Н	Н	HCI	,
	(363)	Cl	Η ,	NH_2	Н	HCI	
	(364)	Cl	Н	NH_2	CH₃	HCI	
•	(365)	CH ₃	CI	CH ₃	Н	HCI	
15	(366)	F	CI	CH ₃	Н	HCI	
•	(367)	Н	Н	Н	Н	pTsOH	(Fp. 225-226°C)
	(368)	Cl	Н	H	Н	HCI	
	(369)	Н	CI	Cl	Н	HCI	
·	(370)	SCH₃	Н	Н	Н	HCI	• ·
20	(371)	Н	F	CH ₃	Н.,	HCI	
·	(372)	Н	CI	SCH₃	H	HCI	
•	(373)	СӉ₃	Н	Н	Н	HCI	•
	(374)	Н	CI	C ₆ H ₅	Н	HCI	
	(375)	Н	Cl	CH ₃	NO ₂	HCI	
25	(376)	Н	Н	Br	Н	HCI	•
	(377)	Н	Н	OCH₃	Н	HCI	
	(378)	Н	Н	Н	NH_2	HCI	
	(379)	Н	Cl	Н	NH_2	pTsOH	(Fp. 252-254°C)

Beispiele 380 - 465:

5

:		R ¹	R ²	R ³	R⁴	нх	
• 	(380)	Η.	CI	Н	Н	pTsOH	(Fp. 216-217°C)
15	(381)	Н	CI	CH₃	Н	pTSOH	(Fp. 176-177°C)
•	(382)	Н	CI	C ₂ H ₅	Н	HCI	(p 0)
4	(383)	Н	CI	OCH ₃	Н	HCI	
•	(384)	Н	CI	NO ₂	Н	HCI	
, 20	(385)	Н	Cl-	NH ₂	Н	HCI	
20	(386)	Н	CI	$N(CH_3)_2$	Н	HCI	
	(387)	Н	CI	Н	NH ₂	HCI	
•	(388)	H ·	CI	CH₃	NH ₂	HCI	
	(389)	Н	Н	Н .	NH_2	pTsOH	(Fp. >200°C,
							Zersetzung)
25	(390)	Н	Cl	OCH₃	NH_2	HCI	3,
•	(391)	·H	CI	NO_2	NH ₂	HCI	•
:.	(392)	Н	CI	NH_2	NH ₂	HCI	
	(393)	Н	Cl	$N(CH_3)_2$	NH ₂	HCI	
.i.	(394)	Н	CI	Н	NHCH₃	HCI	
30	(395)	Н	CI	CH ₃	NHCH₃	HCI	
	(396)	Н	CI	C ₂ H ₅	NHCH₃	HCI	
£	(397)	Н	CI	OCH₃	NHCH₃	HCI	•
•	(398)	Н	CI	NO ₂	NHCH ₃	HCI	
	(399)	Н	CI	NH_2	NHCH₃	HCI	
35	(400)	Н	Cl	$N(CH_3)_2$	NHCH ₃	HCI	
	(401)	Н	CI	Н	$N(CH_3)_2$	HCI	

	(402)	Н	CI	CH₃	N(CH ₃) ₂	HCI	
	(403)	Н	Cl	C ₂ H ₅	N(CH ₃) ₂	HCI	
	(404)	Н	CI	OCH₃	N(CH ₃) ₂	HCI	
	(405)	Н	CI	NO ₂	N(CH ₃) ₂	HCI	
5	(406)	Н	Cl	NH ₂	N(CH ₃) ₂	HCI	
•	(407)	Н	Cl	N(CH ₃) ₂	N(CH ₃) ₂	HCI	
•	(408)	[·] H	Cl	Н	ОН	HCI	
•	(409)	Н	Cl	CH₃	ОН	HCI	•
	(410)	Н	CI .	C ₂ H ₅	ОН	HCI	
10	(411)	Н	CI	OCH₃	ОН	HCI	,
•	(412)	Н	Cl	NO ₂	он .	HCI	
	(413)	Н	CI ,	NH ₂	ОН	HCI	
	(414)	Н	Cl	$N(CH_3)_2$	ОН	HCI	
	(415)	Н	CI	Н	CH₃	HCI	
1.5	(416)	Н	CI .	CH ₃	CH₃	HCI	
	(417)	Н	CI	C ₂ H ₅	CH₃	HCI	
	(418)	Н	CI	OCH ₃	CH ₃	HCI	
. 1	(419)	Н	CI	NO ₂	CH ₃	HCI	
	(420)	Н	CI	NH_2	CH₃	HCI	•
20	(421)	Н	CI	$N(CH_3)_2$	CH₃	HCI	
	(422)	Н	CI	Н	NO ₂	pTsOH	(Fp. 233-235°C)
	(423)	Н	CI	NO_2	Н	HCI	
ħ	(424)	Н	Н	NH_2	Н	HCI.	
	(425)	Н	Н	NH_2	CH₃	HCI	:
25	(426)	Н	CI	CH₃	CI	HCI	
<i>:</i>	(427)	Н	Н	CH₃	H .	HCI	
,	(428)	Н	CI	Н	F	HCI	
•	(429)	Н	CI	F	Н	HCI	
•	(430)	Н	Br	Н	H	HCI	
30	(431)	Н	Br	H.	F	HCI	
	(432)	Н	NO ₂	Н	Н	HCI	
	(433)	Н	OCH₃	Н	Н	HCI	•
•	(434)	Н	OH	Н	H	HCI	
. •	(435)	Н	NH_2	Н	Н	HCI	
35	(436)	Н	SCH₃	Н	Н	HCI	
	(437)	Н	CH₃	H	Н	HCI	

	(438)	Н	C ₆ H ₅	Н	Н	HCI
•	(439)	Н	CF ₃	Н	Η,.	HCI
	(440)	Η .	OCF ₃	Н	н	HCI
	(441)	Н	CN	Н	Н	HCI
5	(442)	Н	F	Н	Н	HCI
	(443)	Н	SOCH₃	H	Н	HCI
	(444)	Н	SO ₂ CH ₃	Н	Н	HCI
	(445)	Н	CI	CN	Н	HCI
	(446)	Н	CI	Н	CI	HCI
10	(447)	Н	CI	Н	OCF3	HCI
•	(448)	Н	CI	OCF ₃	Н	HCI
	(449)	CI	CI ·	Н	Н	HCI
	(450)	CI	Н	NH_2	Н	HCI
	(451)	CI	Η .	NH ₂	CH ₃	HCI
15	(452)	CH ₃	CI	СН₃	Н	HCI
	(453)	F	CI	CH₃	Н	HCI
	(454)	Н	Н	Н	Н	HCI
	(455)	CI	Н	H	Н	HCI
	(456)	Н	CI	CI	Н	HCI
20	(457)	SCH₃	H	Н	Н	HCI
	(458)	Н	F	CH ₃	Н	HCI
	(459)	Н	CI	SCH₃	Н	HCI
ŕ	(460)	CH ₃	Н	Н	Н	HCI
	(461)	Н	CI	C ₆ H ₅	Н	HCI
25	(462)	Н	CI	CH₃	NO ₂	HCI
	(463)	Н	Н	Br	Н	HCI
	(464)	Н	Н	OCH ₃	Н	HCI
	(465)	Н	Н	Н	NH ₂	HCI
			•		-	

Beispiele 466 - 552:

5

$$R^4$$
 * HX
$$R^2 \longrightarrow N \qquad NH_2$$

$$N \qquad NHC_2H_5$$

		R ¹	R ²	R ³	R ⁴	HX	
	(466)	Н	Cl	Н	Н	pTsOH	(Fp. 236-238°C)
	(467)	Н	CI	CH₃	Н	pTsOH	(Fp. 244-246°C)
15	(468)	Н	CI	C ₂ H ₅	Н	HCI	
	(469)	Н	CI	OCH₃	Н	HCI	
	(470)	Н	CI	NO_2	Н	HCl	
	(471)	Н	Ci	NH_2	Н	HCI	
	(472)	H	CI	$N(CH_3)_2$	Н	HCI	
20	(473)	Н	CI	Н	NH ₂	HCI	
•	(474)	Н	CI	CH₃	$N\dot{H}_2$	HCI	
:	(475)	Н	H	Н	NH ₂	pTsOH	(Fp. >200°C,
							Zersetzung)
r T	(476)	Н	CI	OCH ₃	NH_2	HCI	•
25	(477)	Н	CI	NO ₂	NH_2	HCI	·
	(478)	Н	CI	NH_2	NH_2	HCI	
•	(479)	Н	CI	N(CH ₃) ₂	NH_2	HCI.	
	(480)	Н	CI	Н	NHCH₃	HCI	
	(481)	Н	Cl	CH ₃	NHCH₃	HCI	
30	(482)	Н	CI	C_2H_5	NHCH ₃	HCI	
	(483)	Н	CI	OCH₃	NHCH₃	HCI	
	(484)	Н	CI	NO ₂	NHCH₃	. HCl	•
	(485)	Н	CI	NH ₂	NHCH ₃	HCI	
	(486)	Н	CI	$N(CH_3)_2$	NHCH₃	HCI	
3 5	(487)	Н	CI	Н	$N(CH_3)_2$	HCI	
	(488)	Н	Cl	CH₃	$N(CH_3)_2$	HCI	

	(489)	Н	CI	C ₂ H ₅	N(CH ₃) ₂	HCI
	(490)	Н	CI	OCH₃	N(CH ₃) ₂	HCI
	(491)	Н	CI	NO ₂	N(CH ₃) ₂	
	(492)	Н	CI	NH_2	N(CH ₃) ₂	HCI
5	(493)	Н	CI	N(CH ₃) ₂	N(CH ₃) ₂	HCI
· :	(494)	Н	CI	Н	ОН	HCI
	(495)	Н	CI	CH₃	ОН	HCI
	(496)	Н	Cl	C ₂ H ₅	ОН	HCI
	(497)	Н	CI	OCH₃	ОН	HCI
. 10	(498)	Н	CI	NO ₂	ОН	HCI
:	(499)	Н	CI	NH_2	OH .	HCI
	(500)	Н	CI 、	$N(CH_3)_2$	ОН	HCI
•	(501)	Н	Cl	Н	CH ₃	HCI
•	(502)	ŀΗ	CI	CH₃	CH₃	HCI
15	(503)	Н	CI	C ₂ H ₅	CH₃	HCI
•	(504)	Н	CI	OCH ₃	CH ₃	HCI
•	(505)	Н	CI	NO ₂	CH₃	HCI
	(506)	H	CI	NH_2	CH₃	HCI
•	(507)	Н	Cl	$N(CH_3)_2$	CH ₃	HCI
20	(508)	Н	CI	Н	NO ₂	HCI
-	(509)	Н	CI	NO ₂	Н	HCI
	(510)	Н	H	NH_2	Н	HCI
	(511)	Н	Н	NH ₂	CH ₃	HCI
	(512)	Н	CI	CH₃	CI	HCI
25	(513)	Н	Н	CH₃	Н	HCI
•	(514)	Н	CI	.H	F	HCI
•	(515)	Н	CI	F	H	HCI
	(516)	Н	Br	Н	Н	HCI
1	(517)	Н	Br	Н	F	HCI
30	(518)	Н	NO ₂	Н	Н	HCI
•	(519)	Н	OCH₃	Н	Н	HCI
•	(520)	Н	ОН	Н	Н	HCI
	(521)	Н	NH ₂	Н	Н	HCI
	(522)	Н	SCH ₃	Н	Н	HCI
35	(523)	Н	CH₃	Н	Н	HCI
	(524)	Н	C ₆ H ₅	Н	Н	HCI
						- 1

	(525)	Н	CF ₃	Н	Н	HCI	
	(526)	Н	OCF ₃	Н	Η , ,	HCI	
	(527)	Н	CN	Н	Н	HCI	
:	(528)	н.	F	Н	Н	HCI	
5	(529)	Н	SOCH ₃	Н	Н	HCI	
	(530)	Н	SO₂CH₃	Н	Н	HCI	
:	(531)	Н	CI	CN	H	HCI	,
•	(532)	Н	Cl	Н	CI	HCI .	
•	(533)	Н	CI	Н	OCF₃	HCI	•
10	(534)	Н	CI	OCF ₃	Н	HCI	
	(535)	CI	CI	H	Н	HCI	
	(536)	CI	Η ΄,	NH_2	Н	HCI	
	(537)	CI	Н	NH_2	CH ₃	HCI	
	(538)	CH ₃	CI	CH ₃	Н	HCI	
15	(539)	F	CI	CH₃	Н	HCI	
	(540)	Н	Н	Н	Н	HCI	
	(541)	Cl	Н	Н	Н	HCI	
	(542)	Н	CI	Cl	Н	HCI	
	(543)	SCH₃	Н	Н	Н	HCI	
20	(544)	Н	F	CH₃	Н	HCI	
	(545)	Н	Cl	SCH₃	Н	HCI	
	(546)	CH₃	Н	Н	Н	HCI	
	(547)	Н	CI	C_6H_5	Н	HCI	•
.•	(548)	Н	Cl	CH₃	NO ₂	HCI	
25	(549)	Н	H	Br	Η	HCI	
•	(550)	H	Н	OCH₃	Н	HCI	
4	(551)	Н	Н	Н	NH_2	HCI	
. i.	(552)	Н	Cl	Н	NH_2	pTsOH	(Fp. 231-232°C)

Beispiele 553-639:

5

		R ¹	R ²	R ³	_R⁴	HX	•
•	(553)	Н	CI	Н	Н	pTsOH	
15	(554)	Н	CI	СН₃	Н	HCI	
	(555)	Н	Cl	C_2H_5	Н	HCI	
	(556)	Н	Cl	OCH₃	H	HCI	•
	(557)	Н	CI	NO ₂	Н	HCI	
·:-	(558)	Н	Cl	NH ₂	Н	HCI	
20	(559)	Н	CI	$N(CH_3)_2$	Н	HCI	
•	(560)	Н	Cl	Н	NH_2	HCI	(Fp. 298-301°C)
2	(561)	H	CI	CH₃	NH ₂	HCI	•
	(562)	Н	CI	C ₂ H ₅	NH ₂	HCI	
· -	(563)	Н	CI	OCH₃	NH ₂	HCI	
25	(564)	Н	Cl	NO ₂	NH ₂	HCI	
*	(565)	Н	CI	NH_2	NH_2	HCI	
	(566)	Н	CI	$N(CH_3)_2$	NH ₂	HCI	•
	(567)	Н	CI	H	NHCH₃	HCI	
	(568)	Н	CI	CH₃	NHCH₃	HCI	
30	(569)	Н	Cl	C ₂ H ₅	NHCH₃	HCI	
	(570)	Н	CI	OCH₃	NHCH₃	HCI	
•	(571)	Н	Cl	NO ₂	NHCH₃	HCI	•
-	(572)	Н	Cl	NH ₂	NHCH ₃	HCI	
:. ·	(573)	H	CI	$N(CH_3)_2$	NHCH ₃	HCI	
35	(574)	Н	CI	Н	$N(CH_3)_2$	HCI	•
	(575)	Н	Cl	CH₃	N(CH ₃) ₂	HCI	

	(576)	Н	CI	C₂H₅	N(CH ₃) ₂	HCI .	
•	(577)	Н	CI	OCH₃	$N(CH_3)_2$	HCI	
	(578)	Н	Cl	NO ₂	N(CH ₃) ₂	HCI	
	(579)	Н	CI	NH_2	$N(CH_3)_2$	HCI	
5	(580)	Н	CI	$N(CH_3)_2$	$N(CH_3)_2$	HCI	
	(581)	Н	Cl	Н	ОН	HCI	
	(582)	Н	Cl	CH ₃	ОН	HCI	•
	(583)	Н	CI	C ₂ H ₅	ОН	HCI	
	(584)	Н	CI	OCH₃	OH	HCI	
10	(585)	Н	Cl	NO_2	ОН	HCI	
	(586)	Н	CI	NH_2	ОН	HCI	
	(587)	Н	CI ,	$N(CH_3)_2$	ОН	HCI	
*	(588)	Н	CI	H	CH ₃	HCI	
•	(589)	Н	Cl	CH₃	CH ₃	HCI	
15	(590)	Н	CI	C ₂ H ₅	CH₃	HCI	
·.	(591)	H .	Cl	OCH₃	CH₃	HCI	
	(592)	Н	Cl	NO_2	CH₃	HCI	
. •	(593)	Н	CI	NH_2	CH₃	HCI	,
	(594)	H ·	Cl	$N(CH_3)_2$	CH₃	HCI	
20	(595)	H	CI	Н	NO ₂	pTsOH	(Fp. 217-220°C)
	(596)	Н	Cl	NO_2	H .	HCI	
	(597)	Н	Н	NH_2	Н	HCI	
	(598)	Н	Н	NH_2	CH ₃	HCI	
	(599)	Н	CI	CH₃	CI	HCI	
25	(600)	Н	Н	CH₃	Н	HCI	•
	(601)	Н	CI	Н	F	HCI	
:	(602)	Н	CI	F	Н	HCI	
	(603)	Н	Br	Н	Н	HCI	
,	(604)	Н .	Br	·H	F	HCI	
30	(605)	Н	NO ₂	H.	H.	HCI	
*	(606)	Н	OCH ₃	Н	H	HCI	
	(607)	Н	ОН	H	Н	HCI	
••	(608)	Н	NH_2	Н	Н	HCI	
	(609)	Н	SCH₃	Н	Н	HCI	
35	(610)	Н	CH ₃	Н	Н	HCI	
	(611)	Н	C ₆ H ₅	Н	Н	HCI	

	(612)	Н	CF ₃	H	Н	HCI
	(613)	Н	OCF ₃	Н	Н ,	HCI
	(614)	Н	CN	Н	Н	HCI
•	(615)	H	F	Н	Н	HCI
5	(616)	Н	SOCH₃	Н	Н	HCI
•	(617)	Н	SO₂CH₃	Н	н .	HCI
•	(618)	Н	CI	CN	Н	HCI
	(619)	Н	CI	Н	CI	HCI
٠	(620)	Н	CI	Н	OCF ₃	HCI ·
10	(621)	Н	CI	OCF ₃	Η .	HCI
	(622)	Cl	CI	Н	Н	HCI
	(623)	CI	Н `	NH ₂	Н	HCI
	(624)	CI	Н	NH_2	CH ₃	HCI
	(625)	CH ₃	CI	CH ₃	Н	HCI
15	(626)	F	CI	CH₃	Н	HCI
	(627)	Н	Н	Н	Н	HCI
	(628)	CI	Н	Н	Н	HCI
	(629)	Н	Cl	Cl	Н	HCI
•	(630)	SCH₃	Н	Н	Н	HCI
20	(631)	Н	F	CH₃	Н	HCI
;	(632)	H	CI	SCH₃	Н	HCI
	(633)	CH ₃	Н	Н	Н	HCI
	(634)	H	CI	C ₆ H ₅	Н	HCI
	(635)	Н	CI	CH ₃	NO ₂	HCI
25	(636)	Η.	Н	Br	Н	HCI
	(637)	Н	Н	OCH ₃	Н	HCI.
•	(638)	H.	CI	Н	NH ₂	pTsOH
•	(639)	Н	Cl	Н	NO_2	HCI
•						

Beispiele 640 – 726:

5

		R ¹	R ²	R ³	R ⁴	нх	
·	(640)	Н	CI	Н	Н	HCI	
15	(641)	Н	Cl	CH₃	Н	HCI	
	(642)	Н	Cl	C_2H_5	Н	HCI ·	
	(643)	Н	Cl	OCH₃	Н	HCI ·	
	(644)	Н	CI .	NO_2	Н	HCI	
	(645)	Н	CI	NH_2	Н	HCI	
20	(646)	H	CI	$N(CH_3)_2$	Н	HCI	
	(647)	Н	CI	Н	NH ₂	pTsOH	(Fp. 178-180°C)
	(648)	Н	CI	CH ₃	NH_2	HCI	•
	(649)	Н	CI	C_2H_5	NH_2	HCI	
	(650)	Н	CI	OCH₃	NH_2	HCI	
25	(651)	Н	Cl	NO_2	NH_2	HCI	
•	(652)	Н	CI	NH_2	NH_2	HCI	
	(653)	Н	CI	$N(CH_3)_2$	NH_2	HCI	
	(654)	Н	CI	Н	NHCH₃	HCI	
	(655)	Н	CI	CH₃	NHCH₃	HCI	
30	(656)	Н	CI	C_2H_5	NHCH₃	HCI	
	(657)	Н	CI	OCH₃	NHCH₃	HCI	
	(658)	Н	Cl	NO_2	NHCH₃	HCI	
•	(659)	Н	Cl	NH_2	NHCH₃	HCI	
	(660)	Н	CI	$N(CH_3)_2$	NHCH ₃	HCI	
35	(661)	Н	ci	Н	$N(CH_3)_2$	HCI	
	(662)	Н	Cl	CH₃	$N(CH_3)_2$	HCI	
•			_				

	(663)	Н	Cl	C_2H_5	N(CH ₃) ₂	HCI
	(664)	Н	CI	OCH ₃	$N(CH_3)_2$	HCI
	(665)	Н	Cl	NO ₂	$N(CH_3)_2$	HCI
	(666)	Η .	Cl	NH_2	$N(CH_3)_2$	HCI
5	(667)	Н	CI	$N(CH_3)_2$	$N(CH_3)_2$	HCI
	(668)	Н	CI	Н	ОН	HCI
	(669)	Н	CI	CH ₃	ОН	HCI
	(670)	Н	CI	C ₂ H ₅	ОН	HCI
	(671)	Н	CI	OCH ₃	ОН	HCI
10	(672)	H	CI	NO ₂	ОН	HCI
	(673)	Н	CI	NH ₂	ОН	HCI
•	(674)	Н	CI ,	$N(CH_3)_2$	ОН	HCI
•	(675)	Н	CI	Н	CH₃	HCI
	(676)	Н	CI	CH ₃	CH₃	HCI
15	(677)	Н	CI	C_2H_5	CH ₃	HCI
	(678)	Н	CI	OCH ₃	CH₃	HCI
	(679)	Н	CI	NO ₂	CH₃	HCI
	(680)	Н	CI	NH ₂	CH₃	HCI
•	(681)	Н	CI	$N(CH_3)_2$	CH₃	HCI
20	(682)	Н	CI	Н	NO ₂	HCI
•	(683)	Н	CI	NO ₂	Н	HCI
	(684)	Н	Н	NH_2	Н	HCI
	(685)	Н	Н	NH_2	CH₃	HCI
	(686)	Н	CI	CH₃	CI	HCI
25	(687)	H.	Н	CH₃	Н	HCI
:	(688)	Н	CI	Н	F	HCI
	(689)	Н	CI ·	F	Н	HCI
	(690)	Н	Br	н .	Н	HCI
	(691)	Н	Br	Н	F	HCI
30	(692)	Н	NO ₂	Н	Н	HCI
	(693)	Н	OCH₃	Н	Н	HCI
	(694)	Н	ОН	Н	Н	HCI
•	(695)	Н	NH ₂	Н	Н	HCI
	(696)	Н	SCH₃	Н	Н	HCI
35	(697)	Н	CH ₃	Н	Н	HCI
	(698)	Н	C ₆ H ₅	Н	Н	HCI

•	(600)	ы	CE	Н	Н	HCI	
•	(699)	H	CF₃				
	(700)	Н	OCF ₃	H	H	HCI	
	(701)	Н	CN	Н	H	HCI	
•	(702)	Н	F	Н	Н	HCI	
5.	(703)	Н	SOCH₃	Н	H	HCI	
•	(704)	Н	SO₂CH₃	Н	Н	HCI	
	(705)	Н	CI	CN	Н	HCI	
. <i>:</i>	(706)	Н	CI	Н	CI	HCI	
	(707)	Н	CI	Н	OCF ₃	HCI	
10	(708)	Н	Cl	OCF ₃	H .	HCI	
	(709)	CI	Cl	Н	Н	HCI	
	(710)	CI	Η ,	NH_2	Н	HCI	
	(711)	CI	Н	NH_2	CH₃	HCI	
	(712)	CH₃	CI	CH₃	Н	HCI -	
15	(713)	F	Cl	CH₃	Н	HCI	•
	(714)	Н	Н	Н	Н	HCI	
	(715)	Cl	Н	Н	Н	HCI	
	(716)	Н	CI	CI	Н	HCI	
	(717)	SCH₃	Н	Н	Н	HCI	•
20	(718)	Н	F	CH ₃	Н	HCI	
	(719)	Н	CI	SCH ₃	Н	HCI	
	(720)	CH₃	H	Н	Н	HCI	
:	(721)	Н	Cl	C_6H_5	Н	HCI	
•	(722)	Н	Cl	CH ₃	NO_2	HCI	•
25	(723)	.H	Н	Br	Н	HCI	
:	(724)	Н	H	OCH ₃	Н	HCI	
	(725)	Н	Cl	Н .	NH_2	pTsOH	(Fp. 178-180°C)
	(726)	Н	CI	Н	Н	pTsOH	(Fp. 219-220°C)

Beispiele 727 – 813:

5

$$R^3$$
 R^4 * HX
 R^4
 R^4
 R^4

		R ¹	R ²	R ³	R ⁴	HX	
	(727)	Н	CI	Н	Н	HCI	(Fp. 250-252°C)
15	(728)	Н	Cl	CH ₃	Н	HCI	
	(729)	Н	Cl	C_2H_5	Н	HCI	
	(730)	Н	CI	OCH₃	Н	HCI	
	(731)	Н	Cl	NO_2	Н	HCI	
	(732)	Н	Cl	NH_2	Н	HCI	
20	(733)	Н	Cl	$N(CH_3)_2$	Н	HCI	
	(734)	Н	Cl	Н	NH ₂	pTsOH	
, ĉ	(735)	Н	Cl	CH₃	NH ₂	HCI	
	(736)	Н	ĊI	C_2H_5	NH ₂	HCI	
0.5	(737)	Н	CI	OCH ₃	NH ₂	HCI	
25	(738)	Н	CI	NO_2	NH ₂	HCI	·
	(739)	Н	CI	NH_2	NH ₂	HCI	
	(740)	Н	CI	$N(CH_3)_2$	NH ₂	HCI	· .
	(741)	Н	CI	Н	NHCH₃	HCI	•
	(742)	Н	CI	CH ₃	NHCH ₃	HCI	
30	(743)	Н	CI	C ₂ H ₅	NHCH₃	HCI	
	(744)	H	CI	OCH₃	NHCH₃	HCI	
	(745)	Н	Cl	NO ₂	NHCH₃	HCI	
	(746)	Н	CI	NH ₂	NHCH₃	HCI	
	(747)	Н	CI	$N(CH_3)_2$	NHCH₃	HCI	
35	(748)	Н	CI	Н	N(CH ₃) ₂	HCI	
	(749)	Н	CI	CH ₃	$N(CH_3)_2$	HCI	

(751) H CI OCH ₃ N(CH ₃) ₂ HCI (752) H CI NO ₂ N(CH ₃) ₂ HCI (753) H CI NH ₂ N(CH ₃) ₂ HCI (753) H CI NH ₂ N(CH ₃) ₂ HCI (755) H CI N(CH ₃) ₂ N(CH ₃) ₂ HCI (755) H CI H OH HCI (756) H CI CI H OH HCI (757) H CI C ₂ H ₅ OH HCI (757) H CI C ₂ H ₅ OH HCI (758) H CI NC ₂ OH HCI (760) H CI NC ₂ OH HCI (760) H CI NC ₂ OH HCI (761) H CI N(CH ₃) ₂ OH HCI (762) H CI N(CH ₃) ₂ OH HCI (763) H CI N(CH ₃) ₂ OH HCI (763) H CI N(CH ₃) ₂ OH HCI (763) H CI NC ₂ OH HCI (765) H CI NC ₂ OH HCI (765) H CI NC ₂ CH ₃ HCI (766) H CI NC(CH ₃) ₂ CH ₃ HCI (767) H CI NH ₂ CH ₃ HCI (767) H CI NC(CH ₃) ₂ CH ₃ HCI (777) H CI NC(CH ₃) ₂ CH ₃ HCI (777) H CI NC ₂ CH ₃ HCI (777) H CI CH ₃ CH ₃ HCI HCI (777) H CI CH ₃ CH ₃ HCI HCI (777) H CI CH ₃ CH ₃ H H CI HCI (778) H CI CH ₃ H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H H H H HCI (778) H NC ₂ H		(750)	Н	Cl	C₂H₅	N(CH ₃) ₂	HCI	
(752)		•					•	•
(753) H CI NH ₂ N(CH ₃) ₂ HCI (754) H CI N(CH ₃) ₂ N(CH ₃) ₂ HCI (755) H CI H OH HCI (756) H CI CH ₃ OH HCI (757) H CI CCH ₃ OH HCI (758) H CI NCH ₂ OH HCI (768) H CI NCH ₂ OH HCI (760) H CI NCH ₂ OH HCI (760) H CI NCH ₃ HCI (762) H CI H CH ₃ HCI (763) H CI CH ₃ HCI (764) H CI CH ₃ HCI (765) H CI NC ₂ CH ₃ HCI (767) H CI NC ₂ CH ₃ HCI (768)		•			•		HCI	
5 (754) H CI N(CH ₃) ₂ N(CH ₃) ₂ HCI (755) H CI H OH HCI (756) H CI CH ₃ OH HCI (757) H CI C2H ₅ OH HCI (758) H CI NO ₂ OH HCI (769) H CI NO ₂ OH HCI (760) H CI N(CH ₃) ₂ OH HCI (761) H CI N(CH ₃) ₂ OH HCI (762) H CI H CH ₃ HCI (762) H CI CH ₃ CH ₃ HCI (763) H CI CH ₃ CH ₃ HCI (766) H CI NO ₂ CH ₃ HCI (767) H CI NC ₂ CH ₃ HCI (770) H CI NO ₂ <td< td=""><td></td><td></td><td></td><td>Cl</td><td>•</td><td></td><td>HCI</td><td></td></td<>				Cl	•		HCI	
(755) H Cl H OH HCl (756) H Cl CH ₃ OH HCl (757) H Cl C ₂ H ₅ OH HCl (757) H Cl OC ₂ H ₅ OH HCl (758) H Cl NO ₂ OH HCl (760) H Cl NO ₂ OH HCl (760) H Cl NH ₂ OH HCl (761) H Cl N(CH ₃) ₂ OH HCl (762) H Cl H CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (766) H Cl OCH ₃ CH ₃ HCl (766) H Cl NO ₂ CH ₃ HCl (766) H Cl NO ₂ CH ₃ HCl (767) H Cl NO ₂ CH ₃ HCl (768) H Cl NO ₂ CH ₃ HCl (767) H Cl N(CH ₃) ₂ CH ₃ HCl (768) H Cl N(CH ₃) ₂ CH ₃ HCl (769) H Cl N(CH ₃) ₂ CH ₃ HCl (770) H Cl NO ₂ H HCl (771) H H NH ₂ H HCl (771) H H NH ₂ H HCl (772) H H NH ₂ CH ₃ HCl (773) H Cl CH ₃ CH ₃ HCl (773) H Cl CH ₃ CH ₃ HCl (775) H Cl CH ₃ CH ₃ HCl (776) H Cl CH ₃ CH ₃ HCl (777) H B ₁ CH HCl (777) H Cl CH ₃ CH HCl (778) H Cl F H HCl (778) H Cl F H HCl (778) H Cl F H H HCl (780) H OCH ₃ H H HCl (781) H OH H H HCl (782) H NH ₂ H H HCl (783) H SCH ₃ H H H HCl (783) H SCH ₃ H H H HCl	5	•		CI	N(CH ₃) ₂		HCI	
(756) H CI CH ₃ OH HCI (757) H CI C ₂ H ₅ OH HCI (758) H CI OCH ₃ OH HCI (759) H CI NO ₂ OH HCI (760) H CI NH ₂ OH HCI (761) H CI NH ₂ OH HCI (762) H CI CH ₃ CH ₃ HCI (763) H CI CH ₃ CH ₃ HCI (763) H CI CP ₄ ₅ CH ₃ HCI (765) H CI OCH ₃ CH ₃ HCI (766) H CI NO ₂ CH ₃ HCI (767) H CI N(CH ₃) ₂ CH ₃ HCI (769) H CI H NO ₂ H HCI (771) H H NH ₂ CH ₃	•	•	Н	Cl	Н	ОН	HCI	
(758) H Cl OCH ₃ OH HCl (769) H Cl NO ₂ OH HCl (760) H Cl NN ₂ OH HCl (761) H Cl N(CH ₃) ₂ OH HCl (762) H Cl H CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (765) H Cl OCH ₃ CH ₃ HCl (766) H Cl NO ₂ CH ₃ HCl (767) H Cl NCH ₃) ₂ CH ₃ HCl (768) H Cl NCH ₃) ₂ CH ₃ HCl (768) H Cl NCH ₃) ₂ CH ₃ HCl (769) H Cl N(CH ₃) ₂ CH ₃ HCl (770) H Cl N(CH ₃) ₂ CH ₃ HCl (771) H H NN ₂ CH ₃ HCl (771) H H NN ₂ CH ₃ HCl (772) H H NN ₂ CH ₃ HCl (773) H Cl CH ₃ CH ₃ HCl (773) H Cl CH ₃ CH ₃ HCl (775) H Cl CH ₃ CH ₃ HCl (777) H Cl CH ₃ CH ₄ HCl (777) H Cl CH ₄ CH ₄ HCl (778) H Cl H Cl CH ₃ CH ₄ HCl (778) H Cl H Cl H Cl (778) H Cl H Cl (780) H Cl H Cl (781) H Cl CH ₃ H H Cl (782) H NH ₂ H H HCl (783) H CCH ₃ H H HCl (783) H CCH ₃ H H HCl		•	Н	Cl	CH₃	ОН	HCI	
10 (759) H CI NO2 OH HCI (760) H CI NH2 OH HCI (761) H CI NH2 OH HCI (761) H CI N(CH ₃) ₂ OH HCI (762) H CI H CH ₃ HCI (763) H CI CH ₃ CH ₃ HCI (765) H CI CH ₃ CH ₃ HCI (766) H CI NO2 CH ₃ HCI (766) H CI NO2 CH ₃ HCI (767) H CI NH2 CH ₃ HCI (768) H CI NC(CH ₃) ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI (769) H CI N(CH ₃) ₂ CH ₃ HCI (770) H CI NC(CH ₃) ₂ CH ₃ HCI (771) H H NN ₂ CH ₃ HCI (772) H H NN ₂ CH ₃ HCI (772) H H NN ₂ CH ₃ HCI (773) H CI CH ₃ CI HCI (773) H CI CH ₃ CI HCI (775) H CI CH ₃ CI HCI (776) H CI CH ₃ CI HCI (777) H Br H CI H HCI (777) H Br H H HCI (777) H Br H H HCI (777) H Br H H H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H H HCI (778) H NO ₂ H H H HCI (778) H NO ₂ H H H HCI (788) H NO ₂ H H H HCI (780) H NO ₂ H H H HCI (781) H NO ₂ H H H HCI (782) H NH ₂ H H H HCI (783) H NH ₂ H H H HCI		(757)	Н	CI	C ₂ H ₅	ОН	HCI	
(760) H CI NH ₂ OH HCI (761) H CI N(CH ₃) ₂ OH HCI (762) H CI H CH ₃ HCI (763) H CI CH ₃ CH ₃ HCI (763) H CI CH ₃ CH ₃ HCI (765) H CI OCH ₃ CH ₃ HCI (766) H CI NO ₂ CH ₃ HCI (767) H CI NH ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI (769) H CI N(CH ₃) ₂ CH ₃ HCI (770) H CI N(CH ₃) ₂ CH ₃ HCI (771) H H NN ₂ H HCI (771) H H NN ₂ H HCI (772) H H NN ₂ CH ₃ HCI (773) H CI CH ₃ CH ₃ HCI (773) H CI CH ₃ CH ₃ HCI (775) H CI CH ₃ CI HCI (776) H CI CH ₃ CI HCI (777) H Br H HCI (777) H Br H HCI (777) H Br H HCI (778) H NO ₂ H HCI (778) H NO ₂ H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H HCI (780) H NO ₂ H H H HCI (781) H NH ₂ H H HCI (782) H NH ₂ H H H HCI (783) H SCH ₃ H H H HCI (783) H SCH ₃ H H H HCI (783) H SCH ₃ H H H HCI (784) H SCH ₃ H H H HCI (787) H SCH ₃ H H H HCI (787) H NH ₂ H H H HCI (783) H SCH ₃ H H H HCI		(758)	Н	Cl	OCH₃	ОН	HCI	•
(761) H Cl N(CH ₃) ₂ OH HCl (762) H Cl H CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (763) H Cl CH ₃ CH ₃ HCl (765) H Cl C2H ₅ CH ₃ HCl (765) H Cl OCH ₃ CH ₃ HCl (766) H Cl NO ₂ CH ₃ HCl (766) H Cl NO ₂ CH ₃ HCl (768) H Cl N(CH ₃) ₂ CH ₃ HCl (768) H Cl N(CH ₃) ₂ CH ₃ HCl (768) H Cl N(CH ₃) ₂ CH ₃ HCl (769) H Cl N(CH ₃) ₂ CH ₃ HCl (770) H Cl NO ₂ H HCl (771) H H NN ₂ H HCl (771) H H NN ₂ CH ₃ HCl (772) H H NN ₂ CH ₃ HCl (773) H Cl CH ₃ Cl HCl (775) H Cl CH ₃ Cl HCl (776) H Cl CH ₃ Cl HCl (777) H Br H H HCl (778) H Cl F H HCl (778) H Cl F H H HCl (778) H NO ₂ H H H HCl (781) H NO ₂ H H H HCl (781) H NO ₂ H H H HCl (782) H NN ₂ H H H HCl (783) H OCH ₃ H H H HCl (783) H SCH ₃ H H H HCl (784) H CH ₃ H H H HCl (783) H SCH ₃ H H H H HCl (783) H SCH ₃ H H H H HCl (783) H SCH ₃ H H H H HCl (783) H SCH ₃ H H H H HCl (783) H SCH ₃ H H H H HCl (784) H CH ₃ H H H HCl (785) H CH ₃ H H H HCl (786) H CH ₃ H H H HCl (786) H CH ₃ H H H H HCl (786) H CH ₃ H H H H HCl (787) H CH ₃ H H H H HCl (787) H CH ₃ H H H H HCl (788) H SCH ₃ H H H H HCl (788) H SCH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH ₃ H H H H HCl (788) H CH (788) H H H H HCl (788) H H H H HCl (788) H CH (788) H H H H HCl (788) H H H HCl (788) H H H H HCl (788	10	(759)	Н	Cl	NO ₂	ОН	HCI	
(762) H CI H CH₃ HCI (763) H CI CH₃ CH₃ HCI (764) H CI CC₂H₅ CH₃ HCI (765) H CI OCH₃ CH₃ HCI (766) H CI NO₂ CH₃ HCI (767) H CI NH₂ CH₃ HCI (768) H CI N(CH₃)₂ CH₃ HCI (769) H CI H NO₂ pTsOH (Fp. 221-224°C) (770) H CI H NO₂ H HCI (771) H H NH₂ H HCI		(760)	Н	Cl	NH ₂	ОН	HCI	
(763) H CI CH3 CH3 HCI (764) H CI C2H5 CH3 HCI (765) H CI OCH3 CH3 HCI (766) H CI NO2 CH3 HCI (767) H CI NH2 CH3 HCI (768) H CI N(CH3)2 CH3 HCI (769) H CI H NO2 pTsOH (Fp. 221-224°C) (770) H CI NO2 H HCI		(761)	Н	CI '	$N(CH_3)_2$	ОН	HCI	
15		(762)	Н	CI	Н	CH ₃	HCI	•
(765) H CI OCH ₃ CH ₃ HCI (766) H CI NO ₂ CH ₃ HCI (767) H CI NH ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI (769) H CI H NO ₂ PTsOH (Fp. 221-224°C) (770) H CI NO ₂ H HCI HCI <td>:</td> <td>(763)</td> <td>Н</td> <td>CI</td> <td>CH₃</td> <td>CH₃</td> <td>HCI</td> <td></td>	:	(763)	Н	CI	CH₃	CH₃	HCI	
(766) H CI NO ₂ CH ₃ HCI (767) H CI NH ₂ CH ₃ HCI (768) H CI N(CH ₃) ₂ CH ₃ HCI 20 (769) H CI H NO ₂ pTsOH (Fp. 221-224°C) (770) H CI NO ₂ H HCI (771) H H NH ₂ H HCI (772) H H NH ₂ CH ₃ HCI (773) H CI CH ₃ CI HCI (775) H CI H F HCI (776) H CI F H HCI (777) H Br H HCI (777) H Br H HCI (777) H Br H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H HCI (778) H NO ₂ H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H HCI (784) H CH ₃ H H HCI (785) H NH ₂ H H HCI (786) H OCH ₃ H H H HCI (787) H NH ₂ H H H HCI (787) H NH ₂ H H H HCI (788) H NH ₂ H H H HCI (788) H NH ₂ H H H HCI	15	(764)	Н	CI	C ₂ H ₅	CH ₃	HCI	
(767) H Cl NH ₂ CH ₃ HCl (768) H Cl N(CH ₃) ₂ CH ₃ HCl 20 (769) H Cl H NO ₂ pTsOH (Fp. 221-224°C) (770) H Cl NO ₂ H HCl (771) H H NH ₂ H HCl (772) H H NH ₂ CH ₃ HCl (773) H Cl CH ₃ Cl HCl (775) H Cl H F HCl (776) H Cl H F HCl (777) H Br H HCl (777) H Br H HCl (777) H Br H H HCl (778) H Cl F H HCl (778) H Br H H HCl (778) H NO ₂ H H HCl (780) H OCH ₃ H H HCl (781) H OH H H HCl (782) H NH ₂ H H H HCl (783) H SCH ₃ H H H HCl (783) H SCH ₃ H H H HCl		(765)	Н	Cl	OCH₃	CH ₃	HCI	
(768) H Cl N(CH ₃) ₂ CH ₃ HCl (769) H Cl H NO ₂ pTsOH (Fp. 221-224°C) (770) H Cl NO ₂ H HCl (771) H H NH ₂ H HCl (772) H H NN ₂ CH ₃ HCl (773) H Cl CH ₃ Cl HCl (775) H Cl H F HCl (776) H Cl F H HCl (777) H Br H HCl (777) H Br H HCl (777) H Br H HCl (778) H NO ₂ H H HCl (778) H NO ₂ H H HCl (780) H OCH ₃ H H HCl (781) H OH H H HCl (782) H NH ₂ H H HCl (783) H SCH ₃ H H HCl (784) H SCH ₃ H H HCl		(766)	Н	Cl	NO_2	CH ₃	HCI	
20 (769) H Cl H NO2 pTsOH (Fp. 221-224°C) (770) H Cl NO2 H HCl (771) H H NH2 H HCl (772) H H NH2 CH3 HCl (773) H Cl CH3 Cl HCl (775) H Cl H F HCl (776) H Cl F H HCl (777) H Br H HCl (777) H Br H HCl (778) H NO2 H H HCl (778) H NO2 H H HCl (780) H OCH3 H H HCl (781) H OH H H HCl (783) H SCH3 H H HCl (783) H SCH3 H H HCl	. t	(767)	Н	CI	NH_2	CH₃	HCI	•
(770) H Cl NO ₂ H HCl (771) H H NH ₂ H HCl (772) H H NH ₂ CH ₃ HCl (773) H Cl CH ₃ Cl HCl (775) H Cl H F HCl (776) H Cl F H HCl (777) H Br H HCl (777) H Br H HCl (778) H NO ₂ H H HCl (780) H OCH ₃ H H HCl (781) H OH H H HCl (783) H SCH ₃ H H HCl (783) H SCH ₃ H H HCl		(768)	Н	CI	N(CH ₃) ₂	CH₃	HCI	
(771) H H NH ₂ H HCI (772) H H NH ₂ CH ₃ HCI (773) H CI CH ₃ CI HCI 25 (774) H H CH ₃ H HCI (775) H CI H F HCI (776) H CI F H HCI (777) H Br H H HCI (778) H Br H H HCI (778) H NO ₂ H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H H HCI (784) H CH ₃ H H HCI (784) H CH ₃ H H H HCI	20	(769)	Н	CI	Н	NO_2	pTsOH	(Fp. 221-224°C)
(772) H H NH ₂ CH ₃ HCI (773) H CI CH ₃ CI HCI 25 (774) H H CI H F HCI (775) H CI F H HCI (776) H CI F H HCI (777) H Br H H HCI (778) H Br H H HCI (778) H NO ₂ H H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H H HCI (784) H CH ₃ H H HCI		(770)	Н	Cl	NO_2	Н	HCI	
(773) H Cl CH ₃ Cl HCl (774) H H Cl CH ₃ H HCl (775) H Cl H F HCl (776) H Cl F H HCl (777) H Br H H HCl (778) H Br H F HCl (778) H NO ₂ H H H HCl (780) H OCH ₃ H H HCl (781) H OH H H H HCl (782) H NH ₂ H H HCl (783) H SCH ₃ H H H HCl (784) H CH ₃ H H H HCl		(771)	Н	Н	NH ₂	Η .	HCI	•
25 (774) H H CH ₃ H HCI (775) H CI H F HCI (776) H CI F H HCI (777) H Br H H HCI (778) H Br H F HCI (778) H NO ₂ H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H HCI (784) H CH ₃ H H HCI		(772)	Н	Н	NH_2	CH₃	HCI	
(775) H CI H F HCI (776) H CI F H HCI (777) H Br H H HCI (778) H Br H F HCI (778) H NO ₂ H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H HCI 35 (784) H CH ₃ H H HCI	•	(773)	Н	Cl	CH₃	Cl	HCI	
(776) H Cl F H HCl (777) H Br H H HCl (778) H Br H F HCl 30 (779) H NO₂ H H HCl (780) H OCH₃ H H HCl (781) H OH H H HCl (782) H NH₂ H H HCl (783) H SCH₃ H H HCl (784) H CH₃ H H HCl	25	(774)	Н	H	CH₃	Н	HCI	
(777) H Br H H HCI (778) H Br H F HCI 30 (779) H NO ₂ H H HCI (780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H HCI 35 (784) H CH ₃ H H HCI	•	(775)	Н	CI	Н	F	HCI	
(778) H Br H F HCl 30 (779) H NO ₂ H H HCl (780) H OCH ₃ H H HCl (781) H OH H H HCl (782) H NH ₂ H H HCl (783) H SCH ₃ H H HCl 35 (784) H CH ₃ H H HCl		(776)	Η .	CI	F	Н	HCI	•
30 (779) H NO₂ H H HCI (780) H OCH₃ H H HCI (781) H OH H H HCI (782) H NH₂ H H HCI (783) H SCH₃ H H HCI 35 (784) H CH₃ H H HCI		(777)	Н	Br	Н	Н	HCI	
(780) H OCH ₃ H H HCI (781) H OH H H HCI (782) H NH₂ H H HCI (783) H SCH₃ H H HCI 35 (784) H CH₃ H H HCI		(778)	Н	Br	H ·	F _.	HCI	
(781) H OH H H HCI (782) H NH ₂ H H HCI (783) H SCH ₃ H H HCI 35 (784) H CH ₃ H H HCI	30	(779)	Н	NO_2	Н	Н	HCI	
(782) H NH₂ H H HCI (783) H SCH₃ H H HCI 35 (784) H CH₃ H H HCI		(780)	H	OCH₃	Н	Н	HCI	
(783) H SCH₃ H H HCl 35 (784) H CH₃ H H HCl		(781)	Н	ОН	Н	Н	HCI	
35 (784) H CH ₃ H H HCl	* 1	(782)	Н	NH_2	Н	Н	HCI	
	. :	(783)	Н	SCH₃	Н	Н		
(785) H C ₆ H ₅ H H HCl	35	(784)	Н	CH ₃	Н	Н	HCI	
		(785)	Н	C ₆ H ₅	Н	Н	HCI	

•	(786)	Н	CF ₃	Н	Н	HCI
•	(787)	Н	OCF ₃	Н	Η,.	HCI
•	(788)	Н	CN	Н	Н	HCI
	(789)	Н	F	Н	Н	HCI
5	(790)	Н	SOCH₃	Н	Н	HCI
	(791)	Н	SO₂CH₃	Н	Н	HCI
	(792)	Н	CI	CN	Н	HCI
	(793)	Н	Cl	Н	Cl	HCI
-	(794)	Н	CI	Н	OCF ₃	HCI
10	(795)	Н	Cl	OCF ₃	Н	HCI
	(796)	CI	CI	Н	H	HCI
	(797)	CI	Н ,	NH ₂	Н	HCI
	(798)	CI	Н	NH_2	CH₃	HCI
	(799)	CH₃	CI	CH ₃	Н	HCI
15	(800)	F	Cl	CH ₃	Н	HCI
	(801)	Н	Н	Н	Н	HCI
	(802)	CI	Н	Н	Н	HCI
4.	(803)	Н	CI	CI	Н	HCI
	(804)	SCH₃	Н	Н	Н	HCI
20	(805)	Н	F	CH₃	Н	HCI
	(806)	Н	Cl	SCH₃	Н	HCI
A	(807)	CH ₃	Н	Н	Н	HCI
	(808)	Н	Ci	C ₆ H ₅	Н	HCI
•	(809)	Н	Cl	CH₃	NO ₂	HCI
25	(810)	Н	Н	Br	Н	HCI
.	(811)	Н	Н	OCH₃	Н	HCI
	(812)	Н	CI	Н	NO ₂	HCI
	(813)	Н	CI	Н	Н	pTsOH
						•

Beispiele 814 - 900:

5

		R ¹	R ²	R ³	R ⁴	HX
	(814)	Н	Cl	Н	Н	HCI
15	(815)	Н	Cl	CH₃	Н	HCI
	(816)	Н	Cl	C ₂ H ₅	Н	HCI
	(817)	Н	CI	OCH₃	Н	HCI
	(818)	Н	CI	NO_2	Н	HCI
·;	(819)	Н	CI	NH_2	Н	HCI
20	(820)	Н	CI	$N(CH_3)_2$	H	HCI
·:	(821)	Н	Cl	Н	NH ₂	pTsOH
•	(822)	Н	Cl	CH₃	NH_2	HCI
	(823)	Н	CI	C_2H_5	NH ₂	HCI
0.5	(824)	Н	Cl	OCH₃	NH_2	HCI
25	(825)	Н	CI	NO ₂	NH_2	HCI
	(826)	Н	CI .	NH ₂	NH_2	HCI
	(827)	Н	Cl	$N(CH_3)_2$	NH_2	HCI
	(828)	Н	CI	Н	NHCH₃	HCI
20	(829)	Н	CI	CH₃	NHCH₃	HCI
30	(830)	Н	CI	C_2H_5	NHCH₃	HCI
	(831)	Η.	Cl	OCH ₃	NHCH₃	HCI
•	(832)	Н	CI	NO ₂	NHCH₃	HCI
	(833)	Н	CI	NH_2	NHCH₃	HCI
25	(834)	Ή	Cl	$N(CH_3)_2$		HCI
35	(835)	Н	CI	Н	$N(CH_3)_2$	HCI
٠,	(836)	Н	CI	CH₃	$N(CH_3)_2$	HCI

	(837)	Н	CI	C 11	NIGHT		
٠.	(838)	Н		C₂H₅	N(CH ₃) ₂	HCI	
	(839)	Н	CI CI	OCH₃	N(CH ₃) ₂	HCI	
,	(840)	H	CI	NO ₂	N(CH ₃) ₂	HCI	
5	(841)	Н		NH ₂	N(CH ₃) ₂	HCI	
•	(842)	Н	CI	N(CH ₃) ₂	N(CH ₃) ₂	HCI	
	(843)		CI	Н	OH	HCI	
	•	Н	CI	CH₃	ОН	HCI	
	(844)	Н	CI	C₂H₅	ОН	HCI	
10	(845)	Н	CI	OCH₃	ОН	HCI	
	(846)	Н	CI	NO ₂	OH .	HCI	
;	(847)	Н	CI	NH ₂	ОН	HCI	
	(848)	Н	CI ,	N(CH ₃) ₂	OH	HCI	
÷	(849)	H	CI	Н	CH ₃	HCI	
15	(850)	Н	CI	CH ₃	CH ₃	HCI	
15	(851)	Н	CI	C ₂ H ₅	CH₃	HCI	
	(852)	Н	CI	OCH ₃	CH₃	HCI	
i Ç	(853)	Н	CI	NO ₂	CH ₃	HCI	
• •	(854)	Н	Cl	NH_2	CH ₃	HCI	
20	(855)	Н	CI	$N(CH_3)_2$	CH₃	HCI	
20	(856)	Н	CI	H	NO_2	HCI	(Fp. 118-120°C)
• .	(857)	Н	CI	NO_2	Н	HCI	•
	(858)	Н	Н	NH ₂	Н	HCI	
	(859)	Н	Н	NH_2	CH₃	HCI	
	(860)	Н	CI	CH ₃	CI .	HCI	
25	(861)	Н	Н	CH ₃	Н	HCI	
	(862)	Н	CI	H	F	HCI	
	(863)	Н	Cl .	F	Ή -	HCI	•
	(864)	Н	Br	Н	Н	HCI	•
~	(865)	Н	Br	Н	F	HCI	
30	(866)	Н	NO_2	Н	Н	HCI	
F2 .	(867)	Н	OCH₃	Н	Н	HCI	
	(868)	Н	ОН	Н	Н	HCI	
•	(869)	Н	NH ₂	Н	Н	HCI	
	(870)	Н	SCH₃	H	Н	HCI	
35	(871)	Н	CH₃	Н	Н	HCI	
· :	(872)	Н	C ₆ H₅	Н	н	HCI	
	•		-		• •		

	(873)	Н	CF ₃	Н	Н	HCI	
	(874)	Н	OCF ₃	Н	Η,	HCI	
	.(875)	Н	CN	Н	Н	HCI	
	(876)	,H	F	Н	Н	HCI	
5	(877)	Н	SOCH ₃	Н	Н	HCI	
	(878)	Н	SO₂CH₃	Н	Н	HCI	
	(879)	Н	Cl	CN	Н	HCI	
	(880)	Н	CI	Н	CI	HCI	
	(881)	Н	Cl	Н	OCF ₃	HCI	
10	(882)	Н	Cl	OCF ₃	H .	HCI	
	(883)	Cl	Cl	Н	Н	HCI	
•	(884)	CI	Н,	NH_2	Н	HCI	
	(885)	CI	Н	NH_2	CH ₃	HCI	
	(886)	CH ₃	CI	CH ₃	Н	HCI .	
15	(887)	F	Cl	CH ₃	Н	HCI	
ž.	(888)	Н	Н	Н	Н	HCI	
•	(889)	CI	Н	Н	Н	HCI	
	(890)	Н	Cl	CI	H	HCI	
-	(891)	SCH₃	Н	Н	Н	HCI	
20	(892)	Н	F	CH₃	Н	HCI	
	(893)	Н	CI	SCH₃	Н	HCI	
	(894)	CH ₃	H .	H _.	Н	HCI	
	(895)	Н	CI	C_6H_5	Н	HCI	•
	(896)	Н	CI	CH₃	NO_2	HCI	
25	(897)	Н	Н	Br	Н	HCI	
•	(898)	Ή	Н	OCH₃	Н	HCI	
	(899)	Н	CI	Н	NO ₂	HCI	(Fp.118-120°C)
	(900)	Н	CI	Н	Н	pTsOH	(Fp.>242°C,
							Zersetzung)

Beispiele 901 - 961:

5

$$R^{2}$$
 R^{4}
 R^{4}
 R^{4}
 R^{1}
 R^{1}

15		R ¹	R ²	R ³	R ⁴	НХ	
	(901)	Н	CI	CI	NH ₂	pTsOH	(Fp. 322-325°C)
•	(902)	H	Cl	CI	NO_2	pTsOH	(Fp. 220-222°C)
	(903)	Н	CI	Н	SO₂CH₃	pTsOH	
00	(904)	Н	CI	CH₃	SO ₂ CH ₃	HCI	
20	(905)	Н	CI	C_2H_5	SO ₂ CH ₃	HCI	
•	(906)	Н	CI	OCH₃	SO ₂ CH ₃	HCI	
٠	(907)	Н	CI	NO ₂	Н	HCI	
-	(908)	Η .	CI	NH_2	H .	pTsOH	
	(909)	Н	CI	$N(CH_3)_2$	Н	pTsOH	
25	(910)	H	CI	Н	NH ₂	HCI	
ā•	(911)	H	CI	CH₃	NH ₂	pTsOH	
	(912)	Н	CI ·	C_2H_5	NH_2	HCI	
	(913)	Н	CI	OCH₃	NH ₂	HCI	
	(914)	Н	CI	NO ₂	NH ₂	HCI	
· 30	(915)	Н	CI	NH_2	NH_2	HCI	
	(916)	Н	CI	$N(CH_3)_2$	NH ₂	HCI	
	(917)	Н	CI	Н	NHCH₃	HCI	
	(918)	Н	Cl	CH ₃	NHCH₃	HCI	
:	(919)	Н	Cl	C_2H_5	NHCH₃	HCI	
35	(920)	Н	Cl	OCH₃	NHCH ₃	HCI	
:	(921)	Н	Cl	NO ₂	NHCH ₃	HCI	

	(000)		C 1	K11.1	NUIGH	1101
	(922)	Н	Cl	NH ₂	NHCH₃	HCI
	(923)	Н	Cl	N(CH ₃) ₂	NHCH₃	HCI
	(924)	Н	Cl	N(CH ₃) ₂	NHCH₃	HCI
_	(925)	Н	CI	H	N(CH ₃) ₂	HCI
5	(926)	Н	Cl	CH₃	$N(CH_3)_2$	HCI
	(927)	H	CI .	C ₂ H ₅	$N(CH_3)_2$	HCI
	(928)	Н	Cl	OCH₃	$N(CH_3)_2$	HCI
•	(929)	Н	CI	NO₂	$N(CH_3)_2$	HCI
	(930)	Н	CI	NH ₂	$N(CH_3)_2$	HCI
10	(931)	Н	Cl	$N(CH_3)_2$	$N(CH_3)_2$	HCI
•	(932)	Н	Cl	Н	ОН	HCI
	(933)	Н	CI '	CH₃	OH	HCI
	(934)	Н	CI	C_2H_5	OH	HCI
	(935)	H	CI	OCH₃	OH	HCI
15	(936)	Н	CI	NO ₂	ОН	HCI
	(937)	Н	Cl	NH ₂	ОН	HCI
	(938)	Н	CI	$N(CH_3)_2$	ОН	HCI
*.	(939)	Н	CI	SO₂CH₃	CH₃	HCI
	(940)	Н	CI	H	CN	HCI
20	(941)	Н	CI	C ₂ H ₅	SO ₂ NH ₂	HCI
,4	(942)	Н	CI	OCF₃	CH₃	HCI
	(943)	Н	CI	NO ₂	CH₃	HCI
٠,	(944)	Н	CI	NH ₂	CH ₃	HCI
• •	(945)	Н	CI	N(CH ₃) ₂	CH₃	HCI
25	(946)	Н	CI	Η	NO ₂	pTsOH
25	(947)	Н	Cl	NO ₂	Н	HCI
•	(948)	Н	Н	NH ₂	Н	HCI
	(949)	Н	Н	NH ₂	CH ₃	HCI
	(950)	Н	CI	CH₃	CO-NH₂	HCI
30	(951)	Н	Н	CH₃	SO ₂ CH ₃	pTsOH
	(952)	Н	CI	ОН	F	pTsOH
	(953)	Н	CI	F	SCH₃	HCI
	(954)	Н	Br	Н	CONH ₂	pTsOH
	(955)	Н	Br	CO-NH ₂	F	pTsOH
35	(956)	Н	NO₂	H .	Н	pTsOH
	(957)	н	OCH ₃	Н	OCF ₃	pTsOH
	(30.)	• •				

(958)	Н	ОН	Н	· H .	HCI
(959)	Н	NH_2	Н	н	HCI
(960)	Н	SCH₃	Н	н	HCI
(961)	Н	CH₃	CN	CO-NH₂	pTsOH

15

Pharmakologische Tests

10 Im folgenden ist die Methodik dargestellt, die zur Charakterisierung der Verbindungen der Formel I als NHE-3-Inhibitoren verwendet wurde.

Die Verbindungen der Formel I wurden in bezug auf ihre Selektivität gegenüber den Isoformen NHE-1 bis NHE-3 charakterisiert. Die drei Isoformen wurden in Maus-Fibroblastenzellinien stabil exprimiert. Die Hemmwirkung der Verbindungen wurde durch Bestimmung der EIPA-empfindlichen ²²Na⁺-Aufnahme in die Zellen nach intrazellulärer Acidose beurteilt.

20 Material und Methoden

LAP1-Zellinien, die die unterschiedlichen NHE-Isoformen exprimieren

Die LAP1-Zellinien, die die Isoformen NHE-1, -2 und -3 exprimieren (eine Maus-Fibroblastenzellinie), wurden von Prof. J. Pouysségur (Nice, Frankreich) erhalten. Die Transfektionen wurden nach dem Verfahren von Franchi et al. (1986) durchgeführt. Die Zellen wurden in Dulbeccos modifiziertem Eagle-Medium (DMEM) mit 10% inaktiviertem fötalem Kälberserum (FKS) kultiviert. Zur Selektion der NHE-exprimierenden Zellen wurde das sogenannte "Säureabtötungsverfahren" von Sardet et al. (1989) verwendet. Die Zellen wurden zuerst 30 Minuten in einem NH₄Cl-haltigen bicarbonat- und natriumfreien Puffer inkubiert. Danach wurde das extrazelluläre NH₄Cl durch Waschen mit einem bicarbonat-, NH₄Cl- und natriumfreien Puffer entfernt. Im Anschluß daran wurden die Zellen in einem bicarbonatfreien, NaCl-haltigen Puffer inkubiert. Nur diejenigen

Zellen, die NHE funktionell exprimieren, konnten in der intrazellulären Ansäuerung, der sie ausgesetzt wurden, überleben.

Charakterisierung von NHE-Hemmstoffen in bezug auf ihre Isoformselektivität

Mit den obengenannten Maus-Fibroblastenzellinien, die die Isoformen NHE-1, NHE-2 und NHE-3 exprimieren, wurden Verbindungen nach der von Counillon et al. (1993) und Scholz et al. (1995) beschriebenen 10 Vorgehensweise auf Selektivität gegnüber den Isoformen geprüft. Die Zellen wurden intrazellulär nach dem NH₄Cl-Prepulse-Verfahren und anschließend durch Inkubation in einem bicarbonatfreien ²²Na⁺-haltigen Puffer angesäuert. Aufgrund der intrazellulären Ansäuerung wurde NHE aktiviert und Natrium wurde in die Zellen aufgenommen. Die Auswirkung 15 der Prüfverbindung wurde als Hemmung der EIPA (Ethylisopropylamilorid)-empfindlichen ²²Na⁺-Aufnahme ausgedrückt. Die Zellen, die NHE-1, NHE-2 und NHE-3 exprimierten, wurden in einer Dichte von 5-7,5 x 10⁴ Zellen/Näpfchen in Mikrotiterplatten mit 24 Näpfchen ausgesät und 24 bis 48 Stunden bis zur Konfluenz gezüchtet. 20 Das Medium wurde abgesaugt und die Zellen wurden 60 Minuten bei 37° C im NH₄Cl-Puffer (50 mM NH₄Cl, 70 mM Cholinchlorid, 15 mM MOPS, pH 7,0) inkubiert. Anschließend wurde der Puffer entfernt und die Zellen wurden rasch zweimal mit dem Cholinchlorid-Waschpuffer (120 mM Cholinchlorid, 15 mM PIPES/Tris, 0,1 mM Ouabain, 1 mM MgCl₂, 2 mM 25 CaCl₂, pH 7,4) überschichtet und abgesaugt.Im Anschluß daran wurden die Zellen mit dem Cholinchlorid-Beladungspuffer (120 mM Cholinchlorid, 15 mM PIPES/Tris, 0,1 mM PIPES/Tris, 0,1 mM Quabain, 1mM MgCl₂, 2mM CaCl₂, pH 7.4, ²²Na[±] (0,925 kBg/100 ml Beladungspuffer)) überschichtet und darin für 6 Minuten inkubiert. Nach Ablaufen der 30 Inkubationszeit wurde der Inkubationspuffer abgesaugt. Zwecks Entfernung extrazellulärer Radioaktivität wurden die Zellen viermal rasch mit eiskalter phosphatgepufferter Kochsalzlösung (PBS) gewaschen. Danach wurden die Zellen durch Zusatz von 0,3 ml 0,1 N NaOH pro Näpfchen solubilisiert. Die zellfragmenthaltigen Lösungen wurden in 35 Szintillationsröhrchen überführt. Jedes Näpfchen wurde noch zweimal mit 0,3 ml 0,1 N NaOH gewaschen und die Waschlösungen wurden ebenfalls

in die entsprechenden Szintillationsröhrchen gegeben. Die das Zellysat enthaltenden Röhrchen wurden mit Szintillationscocktail versetzt und die in die Zellen aufgenommene Radioaktivität wurde durch Bestimmung der β -Strahlung bestimmt.

5

٠,٠

Literatur:

Counillon et al. (1993) Mol. Pharmacol. 44: 1041-1045

J. Membrane Biol. 120, 41-49

10 Franchi et al. (1986) Proc. Natl. Acad. Sci. USA 83: 9388-9392

J. Membrane Biol. 118, 193-214

Sardet et al. (1989) Cèll 56: 271-280

Scholz et al. (1995) Cardiovasc. Res. 29: 260-268

15

20

25

30

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

Eine Lösung von 100 g eines NHE-3-Inhibitors der Formel I und 5 g
Dinatriumhydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit
2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

10

15

.35

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines NHE-3-Inhibitors der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

Man bereitet eine Lösung aus 1 g eines NHE-3-Inhibitors der Formel I,
9,38 g NaH₂PO₄ · 2 H₂O, 28,48 g Na₂HPO₄ · 12 H₂O und 0,1 g
Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt
auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese
Lösung kann in Form von Augentropfen verwendet werden.

25 Beispiel D: Salbe

Man mischt 500 mg eines NHE-3-Inhibitors der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

30 Beispiel E: Tabletten

Ein Gemisch von 1 kg eines NHE-3-Inhibitors der Formel I, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält.

.5

20

25

30

35

Beispiel F: Dragees

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

Beispiel G: Kapseln

2 kg eines NHE-3-Inhibitors der Formel I werden in üblicher Weise in
 Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.

Beispiel H: Ampullen

Eine Lösung von 1 kg NHE-3-Inhibitor der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

Patentansprüche

1. Verbindungen der Formel I

5

$$R^2$$
 N
 N

10

worin

Υ

oder

Ar

unsubstituiertes oder einfach durch R³ und/oder R⁴ substituiertes Phenyl oder Naphthyl,

20

15

 R^1 , R^2 ,

25

R³, R⁴ jeweils unabhängig voneinander H, A, OA, Hal, CF₃, OH, NO₂, NH₂, NHA, NA₂, NH-CO-A, NH-CO-Ph, SA, SO-A, SO₂-A, SO₂-Ph, CN, OCF₃, CO-A, CO₂H, CO₂A, CO-NH₂, CO-NHA, CO-NA₂, SO₂NH₂, SO₂NHA, SO₂NA₂ oder unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal, CF₃ substituiertes Phenyl

A Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

. 30

35

Hal F, Cl, Br oder I

R⁵, R⁶,

R⁷, R⁸ jeweils unabhängig voneinander H, A, unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal, CF₃ substituiertes

Phenyl bedeutet, wobei R⁵ und R⁷, R⁵ und R⁶, R⁷ und R⁸ 5-7-gliedrige Ringe bilden können,

- sowie deren Salze und Solvate, mit der Maßgabe, daß Verbindungen, worin gleichzeitig R⁵, R⁶, R⁷ und R⁸ die Bedeutung H aufweisen und keiner der Reste R¹, R², R³, R⁴ OH, NO₂, NH₂, NHA, NA₂, NH-CO-A, NH-CO-Ph, SA, SO-A, SO₂-A, SO₂-Ph, CN, OCF₃, CO-A, CO₂H, CO₂A, CO-NH₂, CO-NHA, CO-NA₂, SO₂NH₂, SO₂NHA, SO₂NA₂ oder unsubstituiertes oder einfach oder mehrfach durch A, OA, Hal oder CF₃ substituiertes Phenyl bedeuten, ausgenommen sind.
 - 2. Verbindungen der Formel I nach Anspruch 1 sowie deren Salze und Solvate als NHE 3-Inhibitoren.
- Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze oder Solvate zur Anwendung bei der Bekämpfung von Krankheiten.
- 4. Verwendung von Verbindungen der Formel I nach Anspruch 1 und/oder ihre physiologisch unbedenklichen Salze oder Solvate zur Herstellung eines Arzneimittels.
- Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Hypertonie, von Thrombosen, ischämischen Zuständen des Herzens, des peripheren und zentralen Nervensystems und des Schlaganfalls, ischämischen Zuständen peripherer Organe und Gliedmaßen und zur Behandlung von Schockzuständen.
 - 6. Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zum Einsatz bei chirurgischen Operationen und Organtransplantationen und zur Konservierung und Lagerung von Transplantaten für chirurgische Maßnahmen.

4.

- 7. Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt, zur Behandlung oder Prophylaxe von Störungen des Fettstoffwechsels oder gestörtem Atemantrieb.
- 8. Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von ischämischer Niere, ischämischen Darmerkrankungen oder zur Prophylaxe von akutem oder chronischen Nierenerkrankungen.
- 9. Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von bakteriellen und parasitären Krankheiten.
- 20 10. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt mindestens eines NHE-3-Inhibitors nach Anspruch 1 und/oder einem ihrer physiologisch unbedenklichen Salze und/oder Solvate.
- 11. Verbindungen ausgewählt aus der Gruppe der Verbindungen 11 bis 110 25 N-(6-Chlor-4-phenyl-chinazolin-2-yl)-N'-methyl-guanidin 11 N-(6-Chlor-4-p-tolyl-chinazolin-2-yl)-N'-methyl-guanidin 12 N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-N'-methyl-13 quanidin N-[4-(2-Amino-phenyl)-6-chlor-chinazolin-2-yl]-N'-methyl-14 30 guanidin N-[6-Chlor-4-(4-methyl-2-nitro-phenyl)-chinazolin-2-yl]-N'-15 methyl-guanidin N-[4-(2-Amino-4-methyl-phenyl)-6-chlor-chinazolin-2-yl]-N'-16 methyl-guanidin .35 N-[6-Chlor-4-(2-nitro-phenyl)-chinazolin-2-yl]-guanidin 17 N-[4-(2-Amino-phenyl)-6-chlor-chinazolin-2-yl]-guanidin 18

N-[6-Chlor-4-(4-methyl-2-nitro-phenyl)-chinazolin-2-yl]guanidin
N-[4-(2-Amino-4-methyl-phenyl)-6-chlor-chinazolin-2-yl]-

guanidin

5

15

sowie deren Salze und Solvate.

- 12. Verbindungen nach Anspruch 1 als Arzneimittelwirkstoffe.
- 10 13. Verfahren zur Herstellung der 2-Guanidino-4-aryl-chinazoline der Formel I sowie deren Salze und Solvate, dadurch gekennzeichnet, daß man entweder

(a)

Verbindungen der Formel II

R² O NH₂

11

worin R¹, R² und Ar die oben angegebenen Bedeutungen haben, mit 1-Cyanguanidin oder einem entsprechend N-alkylierten oder Narylierten Cyanguanidin der Formel NC-Y umsetzt, worin Y die in Anspruch 1 angegebene Bedeutung aufweist

25 oder

(b)

anstatt einer Verbindung der Formel NC-Y eine Verbindung der Formel III

30 HN=CX-Y III

worin X -S-Alkyl, -S-Aryl, -O-Alkyl oder -OAryl bedeutet, mit einer Verbindung der Formel II umsetzt

35 oder

(c)

10

15

20

25

30

35

2-Chlor-4-arylchinazoline der Formel IV

$$R^2$$
 N
 CI
 R^1

worin Ar, R^1 und R^2 die in Anspruch 1 angegebenen Bedeutungen haben mit

einer Verbindung der Formel HY umsetzt, worin Y die in Anspruch 1 angegebene Bedeutung aufweist

und gegebenenfälls im Anschluß an die Schritte (a), (b) oder (c) eine basische oder saure Verbindung der Formel I durch Behandeln mit einer Säure oder Base in eines ihrer Salze oder Solvate umwandelt.

INTERNATIONAL SEARCH REPORT

Intermitional Application No PCT/EP 01/09325

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D239/84 A61K A61K31/517 A61P7/02 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, PAJ, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α US 3 131 187 A (A.MARXER) 1,3,4, 28 April 1964 (1964-04-28) 12,13 cited in the application column 1 -column 4 Α CHEMICAL ABSTRACTS, vol. 94, no. 28, 1,3,12 Columbus, Ohio, US; abstract no. 15668p SHVEDOV, V.I.: "SYNTHESIS A. BIOLOGICAL PROPERTIES OF SOME HETEROCYCLIC DERIVATIVES OF GUANIDINE." XP002173600 cited in the application abstract & KHIM.FARM.ZH., vol. 14, no. 8, 1980, pages 38-43. Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 3 December 2001 11/12/2001 Name and mailing address of the ISA Authorized officer European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Francois, J Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Interactional Application No
PCT/EP 01/09325

		PCT/EP 01/09325	
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		- alala Na
Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant	o claim No.
E	DE 100 19 062 A (MERCK) 25 October 2001 (2001-10-25) the whole document	1-	13
	`		
	·	·	
•			
		Ì	4
·			
•.	·		
· ·			
,			
. :		1	
4.			
	·		
l			
	1/210 (continuation of second sheet) (July 1992)		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

miformation on patent family members

Intrantional Application No
PCT/EP 01/09325

				1 . 0 . 7	01/03323
Patent document dted in search report		Publication date	Patent far member		Publication date
US 3131187	Α		NONE	· · · · · · · · · · · · · · · · · · ·	
DE 10019062	A	25-10-2001		062 A1 186 A1	25-10-2001 25-10-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internales Aktenzeichen PCT/EP 01/09325

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D239/84 A61K31/517 A61P7/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole). IPK 7 C07D A61K A61P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

.Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, PAJ, EPO-Internal

Kategorie*	Bezelchnung der Veröffentlichung, sowelt erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Α .	US 3 131 187 A (A.MARXER) 28. April 1964 (1964-04-28) in der Anmeldung erwähnt Spalte 1 -Spalte 4	1,3,4, 12,13
A	CHEMICAL ABSTRACTS, vol. 94, no. 28, 1981 Columbus, Ohio, US; abstract no. 15668p, SHVEDOV, V.I.: "SYNTHESIS A. BIOLOGICAL PROPERTIES OF SOME HETEROCYCLIC DERIVATIVES OF GUANIDINE." XP002173600 in der Anmeldung erwähnt Zusammenfassung & KHIM.FARM.ZH., Bd. 14, Nr. 8, 1980, Seiten 38-43, USSR	1,3,12

Weitere Veröffentlichungen entnehmen	sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfamilie
aber nicht als besonders bed *E* älleres Dokument, das jedoch Anmeldedalum veröffentlicht *L* Veröffentlichung, die geeignet scheinen zu lassen, oder dur anderen im Recherchenberic soll oder die aus einem ander ausgeführt) *O* Veröffentlichung, die sich auf eine Benutzung, eine Ausste *P* Veröffentlichung, die vor dem	meinen Stand der Technik definiert, eutsam anzusehen ist erst am oder nach dem internationalen worden ist ist, einen Prioritätsanspruch zweitelhaft er- ch die das Veröffentlichungsdatum einer ht genannten Veröffentlichung belegt werden ren besonderen Grund angegeben ist (wie	 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mil der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden 'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kalegorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der intern		Absendedalum des internationalen Recherchenberichts
3. Dezember 2	001	11/12/2001
	entamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter
NL - 2280 HV Rij Tel. (+31-70) 340 Fax: (+31-70) 34	-2040, Tx. 31 651 epo nl.	Francois, J

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 01/09325

Kategorie*	ang) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung soweit odgredelte unter Angele der Veröffentli		
gone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Telle	Betr. Anspruch Nr.
E .	DE 100 19 062 A (MERCK) 25. Oktober 2001 (2001-10-25) das ganze Dokument		1-13
	•		
		•	
			i
			·
	.*		·
		.	
	210 (Fortsetzung van Blatt 2) (Juli 1992)		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlich die zur selben Patentfamilie gehören

Intermionales Aktenzeichen
PCT/EP 01/09325

	lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) d Patentfamilie	Datum der Veröffentlichung	-
•	US 3131187	Α		KEINE		
	DE 10019062	Α	25-10-2001	DE 1001906 WO 017918	 25-10-2001 25-10-2001	

THIS PAGE BLANK OBSTON

THIS PAGE BLANK (USPTO)

App. No. 10/770,654
Filed: February 3, 2004
Inventor: HEINELT, et al.
Docket No. DEAV2003/0007 US NP
PRIOR ART