5 A student is studying a water wave in which all the wavefronts are parallel to one another. The variation with time *t* of the displacement *x* of a particular particle in the wave is shown in Fig. 5.1.

Fig. 5.1

The distance d of the oscillating particles from the source of the waves is measured. At a particular time, the variation of the displacement x with this distance d is shown in Fig. 5.2.

Fig. 5.2

(a)	(a) Define, for a wave, what is meant by	
	(i)	displacement,
		[1]
	(ii)	wavelength.

(b)	Figs. 5.1 and 5.2 to determine, for the water wave,
(i)	the period T of vibration,
	<i>T</i> =s [1]
(ii)	the wavelength λ ,
	$\lambda = \dots $ cm [1]
(iii)	the speed v.
	$v = \dots cms^{-1} [2]$
(c) (i)	Figs. 5.1 and 5.2 to state and explain whether the wave is losing power as it
(6) (1)	moves away from the source.
	[2]
(ii)	Determine the ratio
	intensity of wave at source intensity of wave 6.0 cm from source
	ratio =[3]