Formulario de Precálculo.

1. Los Números.

1. Leyes de los exponentes y radicales.

$$a) a^m a^n = a^{m+n}$$

$$b) (a^m)^n = a^{mn}$$

$$c) (ab)^n = a^n b^n$$

d)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 e) $\frac{a^m}{a^n} = a^{m-n}$ f) $a^{-n} = \frac{1}{a^n}$

$$e) \frac{a^m}{a^n} = a^{m-r}$$

$$f) \ a^{-n} = \frac{1}{n}$$

a)
$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \sqrt[n]{a^m}$$

$$a^{1/n} = \sqrt[n]{a}$$
 $a^{m/n} = \sqrt[n]{a^m}$ $a^{m/n} = (\sqrt[n]{a})^m$

$$j) \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \qquad k) \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \qquad l) \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

$$(x) \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$l) \quad \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

2. Productos Notables.

a) Binomios Conjugados:
$$(x + y)(x - y) = x^2 - y^2$$

b) Binomio al Cuadrado:
$$(x \pm y)^2 = x^2 \pm 2xy + y^2$$

c) Binomio al Cubo:
$$(x \pm y)^3 = x^3 \pm 3x^2y + 3xy^2 \pm y^3$$

d)
$$(x+y)^2 = x^2 + 2xy + y^2$$

e)
$$(x-y)^2 = x^2 - 2xy + y^2$$

$$f) (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

g)
$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

h)
$$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

i)
$$(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$$

$$(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$$

k)
$$(x-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5$$

3. **Teorema del Binomio.** Sea $n \in \mathbb{N}$, entonces:

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$

Nota: $\binom{n}{r} = {}_{n}C_{r} = \frac{n!}{r!(n-r)!}$

4. Factores Notables.

- a) Diferencia de Cuadrados: $x^2 y^2 = (x + y)(x y)$
- b) Suma de Cubos: $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
- c) Diferencia de Cubos: $x^3 y^3 = (x y)(x^2 + xy + y^2)$
- d) Trinomio Cuadrado Perfecto: $x^2 \pm 2xy + y^2 = (x \pm y)^2$

e)
$$x^2 - y^2 = (x - y)(x + y)$$

f)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

a)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

h)
$$x^4 - y^4 = (x - y)(x + y)(x^2 + y^2)$$

i)
$$x^5 - y^5 = (x - y)(x^4 + x^3y + x^2y^2 + xy^3 + y^4)$$

i)
$$x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

k)
$$x^6 - y^6 = (x - y)(x + y)(x^2 + xy + y^2)(x^2 - xy + y^2)$$

$$(x^4 + x^2y^2 + y^4) = (x^2 + xy + y^2)(x^2 - xy + y^2)$$

m)
$$x^4 + 4y^4 = (x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2)$$

5. Leyes de los logaritmos.

a)
$$\log_a(PQ) = \log_a(P) + \log_a(Q)$$

b)
$$\log_a \left(\frac{P}{Q}\right) = \log_a(P) - \log_a(Q)$$

$$c) \ \log_a(Q^n) = n \log_a(Q)$$

$$d) \ a^{\log_a(x)} = x$$

$$e) \log_a(a^x) = x$$

$$f) \log_a(1) = 0$$

$$a) \ a^{\log_a(a)} = 1$$

$$h) \log(x) = \log_{10}(x)$$

$$i) \ln(x) = \log_e(x)$$

$$j)$$
 Cambio de base:
$$\log_a(Q) = \frac{\log_b(Q)}{\log_b(a)}$$

2. Soluciones Exactas de ecuaciones Algebraicas

6. Soluciones Exactas de Ecuaciones Algebraicas.

a) La Ecuación Cuadrática: $ax^2 + bx + c = 0$ tiene soluciones:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

El número b^2-4ac se llama discriminante de la ecua-

i) Si $b^2 - 4ac > 0$ las raíces son reales y diferentes.

ii) Si $b^2 - 4ac = 0$ las raíces son reales e iguales.

iii) Si $b^2 - 4ac < 0$ las raíces son complejas conjuga-

b) Para la Ecuación Cúbica: $x^3 + ax^2 + bx + c = 0$

$$Q = \frac{3b - a^2}{9}, \qquad R = \frac{9ab - 27c - 2a^3}{54}$$

$$S = \sqrt[3]{R + \sqrt{Q^3 + R^2}}, \qquad T = \sqrt[3]{R - \sqrt{Q^3 + R^2}}$$

Entonces las soluciones son:

$$x_1 = S + T - \frac{a}{3}$$

$$x_2 = -\left(\frac{S+T}{2} + \frac{a}{3}\right) + \left(\frac{(S-T)\sqrt{3}}{2}\right)i$$

$$x_3 = -\left(\frac{S+T}{2} + \frac{a}{3}\right) - \left(\frac{(S-T)\sqrt{3}}{2}\right)i$$

El número Q^3+R^2 se llama discriminante de la ecua-

i) Si $Q^3 + R^2 > 0$, hay una raíz real y dos son complejas conjugadas.

ii) Si $Q^3 + R^2 = 0$, las raíces son reales y por lo menos dos son iguales.

iii) Si $Q^3 + R^2 < 0$, las raíces son reales y diferentes.

3. Funciones Trigonométricas.

3.1. Relaciones entre Funciones Trigonométricas.

$\csc(A) = \frac{1}{\operatorname{sen}(A)}$	$\operatorname{sen}^2(A) + \cos^2(A) = 1$
$\sec(A) = \frac{1}{\cos(A)}$	$\sec^2(A) - \tan^2(A) = 1$
$\tan(A) = \frac{\sin(A)}{\cos(A)}$	$\csc^2(A) - \cot^2(A) = 1$
$\cot(A) = \frac{\cos(A)}{\sin(A)} = \frac{1}{\tan(A)}$	

3.2. Potencias de Funciones Trigonométricas.

$$sen^2(A) = \frac{1}{2} - \frac{1}{2}\cos(2A)$$

$$\cos^2(A) = \frac{1}{2} + \frac{1}{2}\cos(2A)$$

$$sen^{3}(A) = \frac{3}{4} sen(A) - \frac{1}{4} sen(3A)$$

$$\cos^{3}(A) = \frac{3}{4}\cos(A) + \frac{1}{4}\cos(3A)$$

$$\operatorname{sen}^{4}(A) = \frac{3}{8} - \frac{1}{2}\cos(2A) + \frac{1}{8}\cos(4A)$$

$$\cos^4(A) = \frac{3}{8} + \frac{1}{2}\cos(2A) + \frac{1}{8}\cos(4A)$$

$$sen^{5}(A) = \frac{5}{8}sen(A) - \frac{5}{16}sen(3A) + \frac{1}{16}sen(5A)$$

$$\cos^{5}(A) = \frac{5}{8}\cos(A) + \frac{5}{16}\cos(3A) + \frac{1}{16}\cos(5A)$$

3.3. Suma, Diferencia y Producto las Funciones Trigonométricas.

$$\operatorname{sen}(A) + \operatorname{sen}(B) = 2\operatorname{sen}\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\operatorname{sen}(A) - \operatorname{sen}(B) = 2\operatorname{sen}\left(\frac{A-B}{2}\right)\operatorname{cos}\left(\frac{A+B}{2}\right)$$

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos(A) - \cos(B) = 2 \operatorname{sen}\left(\frac{A+B}{2}\right) \operatorname{sen}\left(\frac{B-A}{2}\right)$$

$$\operatorname{sen}(A)\operatorname{sen}(B) = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\cos(A)\cos(B) = \frac{1}{2} \left[\cos(A-B) + \cos(A+B)\right]$$

$$\operatorname{sen}(A)\operatorname{cos}(B) = \frac{1}{2}\left[\operatorname{sen}(A-B) + \operatorname{sen}(A+B)\right]$$

4. Funciones Hiperbólicas.

Seno hiperbólico de $x = \operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$

Coseno hiperbólico de $x = \cosh(x) = \frac{e^x + e^{-x}}{2}$

Tangente hiperbólica de $x = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Cosecante hiperbólica de $x = \operatorname{csch}(x) = \frac{2}{e^x - e^{-x}}$

Secante hiperbólica de $x = \operatorname{sech}(x) = \frac{2}{e^x + e^{-x}}$

Cotangente hiperbólica de $x = \coth(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

4.1. Relación entre las Funciones Hiperbólicas.

$$\tanh(x) = \frac{\mathrm{senh}(x)}{\mathrm{cosh}(x)}$$

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)}$$

$$\cosh^2(x) - \sinh^2(x) = 1$$

$$\coth(x) = \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)}$$

$$\operatorname{csch}(x) = \frac{1}{\operatorname{senh}(x)}$$

$$\operatorname{sech}^2(x) + \tanh^2(x) = 1$$

$$\coth^2(x) - \operatorname{csch}^2(x) = 1$$

Formulario de Cálculo.

Derivadas.

En este formulario: $k, c \in \mathbb{R}$ son constantes reales, f = f(x), u = u(x) y v = v(x) son funciones que dependen de x.

Fórmulas Básicas:

Función: Su Derivada:

f = kf' = 0

Linealidad de la derivada:

 $f' = k \cdot u'$ $f = k \cdot u$

 $f = u \pm v$ $f' = u' \pm v'$

 $f' = k \cdot u' \pm c \cdot v'$ $f = k \cdot u \pm c \cdot v$

Regla del Producto:

 $f = u \cdot v$ $f' = u \cdot v' + v \cdot u'$

Regla del Cociente:

 $f' = \frac{v \cdot u' - u \cdot v'}{a^{2}}$ $f = \frac{u}{}$

Regla de la Cadena (Composición de funciones)

 $f = u(x) \circ v(x)$ $f' = [u(v(x))]' \cdot v'(x)$

Regla de la Potencia:

 $f' = n \cdot v^{n-1} \cdot v'$ $f = v^n$

 $f' = k \cdot n \cdot v^{n-1} \cdot v'$ $f = k \cdot v^n$

Funciones Exponenciales:

 $f' = e^u \cdot u'$ $f = e^u$

 $f' = a^u \cdot \ln(a) \cdot u'$ $f = a^u$

Funciones Logarítmicas:

 $f' = \frac{u'}{}$ $f = \ln(u)$

 $f' = \frac{u'}{u \cdot \ln(a)}$ $f = \log_a(u)$

Una Función elevada a otra Función:

 $f = u^v$ $f' = u^v \left| v' \cdot \ln(u) + \frac{v \cdot u'}{u} \right|$

Funciones Trigonométricas:

Función: Su Derivada:

 $f' = \cos(u) \cdot u'$ $f = \operatorname{sen}(u)$

 $f' = -\operatorname{sen}(u) \cdot u'$ $f = \cos(u)$

 $f' = \sec^2(u) \cdot u'$ $f = \tan(u)$

 $f' = -\csc(u)\cot(u) \cdot u'$ $f = \csc(u)$

 $f = \sec(u)$ $f' = \sec(u)\tan(u) \cdot u'$

 $f' = -\csc^2(u) \cdot u'$ $f = \cot(u)$

Funciones Trigonométricas Inversas:

Función:

 $f' = \frac{u'}{\sqrt{1 - u^2}}; \quad |u| < 1$ $f = \arcsin(u)$

 $f' = -\frac{u'}{\sqrt{1-u^2}}; \quad |u| < 1$ $f = \arccos(u)$

 $f' = \frac{u'}{1 + u^2}$ $f = \arctan(u)$

 $f' = -\frac{u'}{u\sqrt{u^2 - 1}}$ $f = \operatorname{arccsc}(u)$

 $f' = \frac{u'}{u\sqrt{u^2 - 1}}; \quad |u| > 1$ $f = \operatorname{arcsec}(u)$

 $f' = -\frac{u'}{1 + u^2}; \quad |u| > 1$ $f = \operatorname{arccot}(u)$

Funciones Hiperbólicas:

3

Función: Su Derivada:

 $f' = \cosh(u) \cdot u'$ $f = \operatorname{senh}(u)$

 $f' = \operatorname{senh}(u) \cdot u'$ $f = \cosh(u)$

 $f' = \operatorname{sech}^2(u) \cdot u'$ $f = \tanh(u)$

 $f' = -\operatorname{csch}(u) \operatorname{coth}(u) \cdot u'$ $f = \operatorname{csch}(u)$

 $f = \operatorname{sech}(u)$ $f' = -\operatorname{sech}(u) \tanh(u) \cdot u'$

 $f' = -\operatorname{csch}^2(u) \cdot u'$ $f = \coth(u)$

Funciones Hiperbólicas Inversas:

Su Derivada:

$$f = \operatorname{arcsenh}(u)$$
 $f' = \frac{u'}{\sqrt{1+u^2}}$

$$f = \operatorname{arccosh}(u)$$
 $f' = \frac{u'}{\sqrt{u^2 - 1}}; \quad |u| > 1$

$$f = \operatorname{arctanh}(u)$$
 $f' = \frac{u'}{1 - u^2}; \quad |u| < 1$

$$f = \operatorname{arccsch}(u)$$
 $f' = -\frac{u'}{|u|\sqrt{1+u^2}}; \quad u \neq 0$

$$f = \operatorname{arcsech}(u)$$
 $f' = -\frac{u'}{u\sqrt{1-u^2}}; \quad 0 < u < 1$

$$f = \operatorname{arccoth}(u)$$
 $f' = \frac{u'}{1 - u^2}; \quad |u| > 1$

Integrales.

En este formulario: $k, w, C \in \mathbb{R}$ son constantes reales, u = u(x) y v = v(x) son funciones que dependen de x.

Fórmulas Básicas.

- 1) $\int 0 dx = C$
- $2) \int kdx = kx + C$
- 3) $\int (k \cdot u \pm w \cdot v) dx = k \int u dx + w \int v dx + C$
- 4) Regla de la potencia $\int u^n du = \frac{u^{n+1}}{n+1}$ para $n \neq -1$.
- 5) Regla exponencial $\int e^u du = e^u$
- 6) Regla logarítmica $\int \ln |u| du = u \ln |u| u$

$$7) \int a^u du = \frac{a^u}{\ln(a)} + C$$

8)
$$\int \frac{du}{u} = \ln|u| + C$$

Trigonométricas.

- 9) $\int \sin u du = -\cos u$
- $10) \int \cos u du = \sin u$
- 11) $\int \tan u du = \ln[\sec u] = -\ln[\cos u] + C$
- 12) $\int \cot u du = \ln \sin u$
- 13) $\int \sec u du = \ln[\sec u + \tan u] = \ln\left[\tan\left(\frac{u}{2} + \frac{\pi}{4}\right)\right]$
- 14) $\int \csc u du = \ln[\csc u \cot u] = \ln\left[\tan\frac{u}{2}\right]$
- 15) $\int \sec^2 u du = \tan u$
- $16) \int \csc^2 u du = -\cot u$

- $17) \int \tan^2 u du = \tan u u$
- $18) \int \cot^2 u du = -\cot u u$
- 19) $\int \sin^2 u du = \frac{u}{2} \frac{\sin 2u}{4} = \frac{1}{2} [u \sin u \cos u]$
- 20) $\int \cos^2 u du = \frac{u}{2} + \frac{\sin 2u}{4} = \frac{1}{2} [u + \sin u \cos u]$
- 21) $\int \sec u \tan u du = \sec u$
- 22) $\int \csc u \cot u du = -\csc u$

Hiperbólicas.

- 23) $\int \operatorname{senh} u du = \cosh u$
- 24) $\int \cosh u du = \sinh u$
- 25) $\int \tanh u du = \ln[\cosh u]$
- 26) $\int \coth u du = \ln[\sinh u]$
- 27) $\int \operatorname{sech} u du = \operatorname{sen}^{-1}[\tanh u] = 2 \tan^{-1}[e^u]$
- 28) $\int \operatorname{csch} u du = \ln \left[\tanh \frac{u}{2} \right] = -2 \coth^{-1} [e^u]$
- 29) $\int \operatorname{sech}^2 u du = \tanh u$
- $30) \int \operatorname{csch}^2 u du = -\coth u$
- 31) $\int \tanh^2 u du = u \tanh u$
- 32) $\int \coth^2 u du = u \coth u$
- 33) $\int \operatorname{senh}^2 u du = \frac{\operatorname{senh} 2u}{4} \frac{u}{2} = \frac{1}{2} [\operatorname{senh} u \cosh u u]$
- 34) $\int \cosh^2 u du = \frac{\sinh 2u}{4} + \frac{u}{2} = \frac{1}{2} [\operatorname{senh} u \cosh u + u]$
- 35) $\int \operatorname{sech} u \tanh u du = -\operatorname{sech} u$
- 36) $\int \operatorname{csch} u \operatorname{coth} u du = -\operatorname{csch} u$

Integrales con au + b.

- $37) \int \frac{du}{au+b} = \frac{1}{a} \ln \left(au + b \right)$
- 38) $\int \frac{udu}{au+b} = \frac{u}{a} \frac{b}{a^2} \ln (au+b)$
- 39) $\int \frac{u^2 du}{au+b} = \frac{(au+b)^2}{2a^3} \frac{2b(au+b)}{a^3} + \frac{b^2}{a^3} \ln(au+b)$
- 40) $\int \frac{u^3 du}{au+b} = \frac{(au+b)^3}{3a^4} \frac{3b(au+b)^2}{2a^4} + \frac{3b^2(au+b)}{a^4} \frac{b^3}{a^4} \ln(au+b)$
- 41) $\int \frac{du}{u(au+b)} = \frac{1}{b} \ln \left(\frac{u}{au+b} \right)$
- 42) $\int \frac{du}{u^2(au+b)} = -\frac{1}{bu} + \frac{a}{b^2} \ln\left(\frac{au+b}{u}\right)$
- 43) $\int \frac{du}{(au+b)^2} = \frac{-1}{a(au+b)}$
- 44) $\int \frac{udu}{(au+b)^2} = \frac{b}{a^2(au+b)} + \frac{1}{a^2} \ln(au+b)$
- 45) $\int \frac{u^2 du}{(au+b)^2} = \frac{au+b}{a^3} \frac{b^2}{a^3(au+b)} \frac{2b}{a^3} \ln(au+b)$
- 46) $\int \frac{du}{u(au+b)^2} = \frac{1}{b(au+b)} + \frac{1}{b^2} \ln \left(\frac{u}{au+b} \right)$
- 47) $\int \frac{du}{u^2(au+b)^2} = \frac{-a}{b^2(au+b)} \frac{1}{b^2u} + \frac{2a}{b^3} \ln\left(\frac{au+b}{u}\right)$
- 48) $\int \frac{du}{(au+b)^3} = \frac{-1}{2(au+b)^2}$

49)
$$\int \frac{udu}{(au+b)^3} = \frac{-1}{a^2(au+b)} + \frac{b}{2a^2(au+b)^2}$$

50)
$$\int \frac{u^2 du}{(au+b)^3} = \frac{2b}{a^3(au+b)} - \frac{b^2}{2a^3(au+b)^2} + \frac{1}{a^3} \ln(au+b)$$

51)
$$\int (au + b) du = \frac{(au+b)^2}{2a}$$

52)
$$\int (au+b)^n du = \frac{(au+b)^{n+1}}{(n+1)a}$$
 para $n \neq -1$

53)
$$\int u (au + b)^n du = \frac{(au + b)^{n+2}}{(n+2)a^2} - \frac{b(au + b)^{n+1}}{(n+1)a^2} \text{ para } n \neq -1, -2$$

54)
$$\int u^2 (au+b)^n du = \frac{(au+b)^{n+3}}{(n+3)a^3} - \frac{2b(au+b)^{n+2}}{(n+2)a^3} + \frac{b^2(au+b)^{n+1}}{(n+1)a^3}$$
para $n \neq -1, -2, -3$

55)
$$\int u^m \left(au+b\right)^n du =$$

$$= \begin{cases} \frac{u^{m+1}(au+b)^n}{m+n+1} + \frac{nb}{m+n+1} \int u^m (au+b)^{n-1} du \\ \frac{u^m (au+b)^{n+1}}{(m+n+1)a} - \frac{mb}{(m+n+1)a} \int u^{m-1} (au+b)^n du \\ \frac{-u^{m+1}(au+b)^{n+1}}{(n+1)b} + \frac{m+n+2}{(n+1)b} \int u^m (au+b)^{n+1} du \end{cases}$$

Integrales con $\sqrt{au+b}$.

56)
$$\int \frac{du}{\sqrt{au+b}} = \frac{2\sqrt{au+b}}{a}$$

57)
$$\int \frac{udu}{\sqrt{au+b}} = \frac{2(au-2b)}{3a^2} \sqrt{au+b}$$

58)
$$\int \frac{u^2 du}{\sqrt{au+b}} = \frac{2(3a^2u^2 - 4abu + 8b^2)}{15a^3} \sqrt{au+b}$$

59)
$$\int \frac{du}{u\sqrt{au+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln\left(\frac{\sqrt{au+b}-\sqrt{b}}{\sqrt{au+b}+\sqrt{b}}\right) \\ \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{au+b}{-b}} \end{cases}$$

60)
$$\int \frac{du}{u^2 \sqrt{au+b}} = -\frac{\sqrt{au+b}}{bu} - \frac{a}{2b} \int \frac{du}{u\sqrt{au+b}}$$

61)
$$\int \sqrt{au+b} \, du = \frac{2\sqrt{(au+b)^3}}{3a}$$

62)
$$\int u\sqrt{au+b} \, du = \frac{2(3au-2b)}{15a^2} \sqrt{(au+b)^3}$$

63)
$$\int u^2 \sqrt{au+b} \, du = \frac{2(15a^2u^2 - 12abu + 8b^2)}{105a^3} \sqrt{(au+b)^3}$$

64)
$$\int \frac{\sqrt{au+b}}{u} du = 2\sqrt{au+b} + b \int \frac{du}{u\sqrt{au+b}}$$

65)
$$\int \frac{\sqrt{au+b}}{u^2} du = -\frac{\sqrt{au+b}}{u} + \frac{a}{2} \int \frac{du}{u\sqrt{au+b}}$$

66)
$$\int \frac{u^m}{\sqrt{au+b}} du = \frac{2u^m \sqrt{au+b}}{(2m+1)a} - \frac{2mb}{(2m+1)a} \int \frac{u^{m-1}}{\sqrt{au+b}} du$$

67)
$$\int \frac{du}{u^m \sqrt{au+b}} = -\frac{\sqrt{au+b}}{(m-1)bu^{m-1}} - \frac{(2m-3)a}{(2m-2)b} \int \frac{du}{u^{m-1}\sqrt{au+b}}$$

68)
$$\int u^m \sqrt{au + b} du = \frac{2u^m}{(2m+3)a} (au + b)^{3/2} - \frac{2mb}{(2m+3)a} \int u^{m-1} \sqrt{au + b} du$$

69)
$$\int \frac{\sqrt{au+b}}{u^m} du = -\frac{\sqrt{au+b}}{(m-1)u^{m-1}} + \frac{a}{2(m-1)} \int \frac{du}{u^{m-1}\sqrt{au+b}}$$

70)
$$\int \frac{\sqrt{au+b}}{u^m} du = \frac{-(au+b)^{3/2}}{(m-1)bu^{m-1}} - \frac{(2m-5)a}{(2m-2)b} \int \frac{\sqrt{au+b}}{u^{m-1}} du$$

71)
$$\int (au+b)^{m/2} du = \frac{2(au+b)^{(m+2)/2}}{a(m+2)}$$

72)
$$\int u(au+b)^{m/2}du = \frac{2(au+b)^{(m+4)/2}}{a^2(m+4)} - \frac{2b(au+b)^{(m+2)/2}}{a^2(m+2)}$$

73)
$$\int u^{2}(au+b)^{m/2}du = \frac{2(au+b)^{(m+6)/2}}{a^{3}(m+6)} - \frac{4b(au+b)^{(m+4)/2}}{a^{3}(m+4)} + \frac{2b^{2}(au+b)^{(m+2)/2}}{a^{3}(m+2)}$$

74)
$$\int \frac{(au+b)^{m/2}}{u} du = \frac{2(au+b)^{m/2}}{m} + b \int \frac{(au+b)^{(m-2)/2}}{u} du$$

75)
$$\int \frac{(au+b)^{m/2}}{u^2} du = -\frac{(au+b)^{(m+2)/2}}{bu} + \frac{ma}{2b} \int \frac{(au+b)^{m/2}}{u} du$$

76)
$$\int \frac{du}{u(au+b)^{m/2}} = \frac{2}{b(m-2)(au+b)^{(m-2)/2}} + \frac{1}{b} \int \frac{du}{u(au+b)^{(m-2)/2}}$$

Integrales con $u^2 + a^2$.

77)
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a}$$

78)
$$\int \frac{udu}{u^2 + a^2} = \frac{1}{2} \ln \left(u^2 + a^2 \right)$$

79)
$$\int \frac{u^2 du}{u^2 + a^2} = u - a \tan^{-1} \frac{u}{a}$$

80)
$$\int \frac{u^3 du}{u^2 + a^2} = \frac{u^2}{2} - \frac{a^2}{2} \ln (u^2 + a^2)$$

81)
$$\int \frac{du}{u(u^2+a^2)} = \frac{1}{2a^2} \ln \left(\frac{u^2}{u^2+a^2} \right)$$

82)
$$\int \frac{du}{u^2(u^2+a^2)} = -\frac{1}{a^2u} - \frac{1}{a^3} \tan^{-1} \frac{u}{a}$$

83)
$$\int \frac{du}{u^3(u^2+a^2)} = -\frac{1}{2a^2u^2} - \frac{1}{2a^4} \ln\left(\frac{u^2}{u^2+a^2}\right)$$

84)
$$\int \frac{du}{(u^2+a^2)^2} = \frac{u}{2a^2(u^2+a^2)} + \frac{1}{2a^3} \tan^{-1} \frac{u}{a}$$

85)
$$\int \frac{udu}{(u^2+a^2)^2} = \frac{-1}{2(u^2+a^2)}$$

86)
$$\int \frac{u^2 du}{(u^2 + a^2)^2} = \frac{-u}{2(u^2 + a^2)} + \frac{1}{2a} \tan^{-1} \frac{u}{a}$$

87)
$$\int \frac{u^3 du}{(u^2 + a^2)^2} = \frac{a^2}{2(u^2 + a^2)} + \frac{1}{2} \ln(u^2 + a^2)$$

88)
$$\int \frac{du}{u(u^2+a^2)^2} = \frac{1}{2a^2(u^2+a^2)} + \frac{1}{2a^4} \ln\left(\frac{u^2}{(u^2+a^2)}\right)$$

89)
$$\int \frac{du}{u^2(u^2+a^2)^2} = -\frac{1}{a^4u} - \frac{u}{2a^4(u^2+a^2)} - \frac{3}{2a^5} \tan^{-1} \frac{u}{a}$$

90)
$$\int \frac{du}{u^3(u^2+a^2)^2} = -\frac{1}{2a^4u^2} - \frac{1}{2a^4(u^2+a^2)} - \frac{1}{a^6} \ln\left(\frac{u^2}{u^2+a^2}\right)$$

91)
$$\int \frac{du}{(u^2+a^2)^n} = \frac{u}{2a^2(n-1)(u^2+a^2)^{n-1}} + \frac{2n-3}{(2n-2)a^2} \int \frac{du}{(u^2+a^2)^{n-1}}$$

92)
$$\int \frac{udu}{(u^2+a^2)^n} = \frac{-1}{2(n-1)(u^2+a^2)^{n-1}}$$

93)
$$\int \frac{du}{u(u^2+a^2)^n} = \frac{1}{2a^2(n-1)(u^2+a^2)^{n-1}} + \frac{1}{a^2} \int \frac{du}{u(u^2+a^2)^{n-1}}$$

94)
$$\int \frac{u^m du}{(u^2 + a^2)^n} = \int \frac{u^{m-2} du}{(u^2 + a^2)^{n-1}} - a^2 \int \frac{u^{m-2} du}{(u^2 + a^2)^n}$$

95)
$$\int \frac{du}{u^m(u^2+a^2)^n} = \frac{1}{a^2} \int \frac{du}{u^m(u^2+a^2)^{n-1}} - \frac{1}{a^2} \int \frac{du}{u^{m-2}(u^2+a^2)^n}$$

Integrales con $u^2 - a^2$.

96)
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left(\frac{u - a}{u + a} \right) = -\frac{1}{a} \coth^{-1} \frac{u}{a}$$

97)
$$\int \frac{udu}{u^2 - a^2} = \frac{1}{2} \ln \left(u^2 - a^2 \right)$$

98)
$$\int \frac{u^2 du}{u^2 - a^2} = u + \frac{a}{2} \ln \left(\frac{u - a}{u + a} \right)$$

99)
$$\int \frac{u^3 du}{u^2 - a^2} = \frac{u^2}{2} + \frac{a^2}{2} \ln \left(u^2 - a^2 \right)$$

100)
$$\int \frac{du}{u(u^2-a^2)} = \frac{1}{2a^2} \ln\left(\frac{u^2-a^2}{u^2}\right)$$

101)
$$\int \frac{du}{u^2(u^2 - a^2)} = \frac{1}{a^2 u} + \frac{1}{2a^3} \ln \left(\frac{u - a}{u + a} \right)$$

102)
$$\int \frac{du}{u^3(u^2-a^2)} = \frac{1}{2a^2u^2} - \frac{1}{2a^4} \ln\left(\frac{u^2}{u^2-a^2}\right)$$

103)
$$\int \frac{du}{(u^2 - a^2)^2} = \frac{-u}{2a^2(u^2 - a^2)} - \frac{1}{4a^3} \ln\left(\frac{u - a}{u + a}\right)$$

104)
$$\int \frac{udu}{(u^2 - a^2)^2} = \frac{-1}{2(u^2 - a^2)}$$

105)
$$\int \frac{u^2 du}{(u^2 - a^2)^2} = \frac{-u}{2(u^2 - a^2)} + \frac{1}{4a} \ln \left(\frac{u - a}{u + a} \right)$$

106)
$$\int \frac{u^3 du}{(u^2 - a^2)^2} = \frac{-a}{2(u^2 - a^2)} + \frac{1}{2} \ln (u^2 - a^2)$$

107)
$$\int \frac{du}{u(u^2 - a^2)^2} = \frac{-1}{2a^2(u^2 - a^2)} + \frac{1}{2a^4} \ln\left(\frac{u^2}{u^2 - a^2}\right)$$

108)
$$\int \frac{du}{u^2(u^2-a^2)^2} = -\frac{1}{a^4u} - \frac{u}{2a^4(u^2-a^2)} - \frac{3}{4a^5} \ln\left(\frac{u-a}{u+a}\right)$$

109)
$$\int \frac{du}{u^3(u^2-a^2)^2} = -\frac{1}{2a^4u^2} - \frac{1}{2a^4(u^2-a^2)} + \frac{1}{a^6} \ln\left(\frac{u^2}{u^2-a^2}\right)$$

110)
$$\int \frac{du}{(u^2 - a^2)^n} = \frac{-u}{2a^2(n-1)(u^2 - a^2)^{n-1}} - \frac{2n-3}{(2n-2)a^2} \int \frac{du}{(u^2 - a^2)^{n-1}}$$

111)
$$\int \frac{udu}{(u^2 - a^2)^n} = \frac{-1}{2(n-1)(u^2 - a^2)^{n-1}}$$

112)
$$\int \frac{du}{u(u^2-a^2)^n} = \frac{-1}{2a^2(n-1)(u^2-a^2)^{n-1}} - \frac{1}{a^2} \int \frac{du}{u(u^2-a^2)^{n-1}}$$

113)
$$\int \frac{u^m du}{(u^2 - a^2)^n} = \int \frac{u^{m-2} du}{(u^2 - a^2)^{n-1}} + a^2 \int \frac{u^{m-2} du}{(u^2 - a^2)^n}$$

114)
$$\int \frac{du}{u^m(u^2-a^2)^n} = \frac{1}{a^2} \int \frac{du}{u^{m-2}(u^2-a^2)^n} + \frac{1}{a^2} \int \frac{du}{u^m(u^2-a^2)^{n-1}}$$

Integrales con $a^2 - u^2, u^2 < a^2$.

115)
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left(\frac{a + u}{a - u} \right) = \frac{1}{a} \tanh^{-1} \frac{u}{a}$$

116)
$$\int \frac{udu}{a^2 - u^2} = -\frac{1}{2} \ln(a^2 - u^2)$$

117)
$$\int \frac{u^2 du}{a^2 - u^2} = -u + \frac{a}{2} \ln \left(\frac{a + u}{a - u} \right)$$

118)
$$\int \frac{u^3 du}{a^2 - u^2} = -\frac{u^2}{2} - \frac{a^2}{2} \ln(a^2 - u^2)$$

119)
$$\int \frac{du}{u(a^2-u^2)} = \frac{1}{2a^2} \ln \left(\frac{u^2}{a^2-u^2} \right)$$

120)
$$\int \frac{du}{u^2(a^2-u^2)} = \frac{1}{a^2u} + \frac{1}{2a^3} \ln\left(\frac{a+u}{a-u}\right)$$

121)
$$\int \frac{du}{u^3(a^2 - u^2)} = -\frac{1}{2a^2u^2} + \frac{1}{2a^4} \ln\left(\frac{u^2}{a^2 - u^2}\right)$$

122)
$$\int \frac{du}{(a^2 - u^2)^2} = \frac{u}{2a^2(a^2 - u^2)} + \frac{1}{4a^3} \ln \left(\frac{a + u}{a - u} \right)$$

123)
$$\int \frac{udu}{(a^2 - u^2)^2} = \frac{1}{2(a^2 - u^2)}$$

124)
$$\int \frac{u^2 du}{(a^2 - u^2)^2} = \frac{u}{2(a^2 - u^2)} - \frac{1}{4a} \ln \left(\frac{a + u}{a - u} \right)$$

125)
$$\int \frac{u^3 du}{(a^2 - u^2)^2} = \frac{a^2}{2(a^2 - u^2)} + \frac{1}{2} \ln(a^2 - u^2)$$

126)
$$\int \frac{du}{u(a^2 - u^2)^2} = \frac{1}{2a^2(a^2 - u^2)} + \frac{1}{2a^4} \ln \left(\frac{u^2}{a^2 - u^2} \right)$$

127)
$$\int \frac{du}{u^2(a^2-u^2)^2} = -\frac{1}{a^4u} + \frac{u}{2a^4(a^2-u^2)} + \frac{3}{4a^5} \ln\left(\frac{a+u}{a-u}\right)$$

128)
$$\int \frac{du}{u^3(a^2-u^2)^2} = -\frac{1}{2a^4u^2} + \frac{1}{2a^4(a^2-u^2)} + \frac{1}{a^6} \ln\left(\frac{u^2}{a^2-u^2}\right)$$

129)
$$\int \frac{dx}{(a^2 - x^2)^n} = \frac{x}{2(n-1)a^2(a^2 - x^2)^{n-1}} + \frac{2n-3}{(2n-2)a^2} \int \frac{dx}{(a^2 - x^2)^{n-1}}$$

130)
$$\int \frac{xdx}{(a^2 - x^2)^n} = \frac{1}{2(n-1)(a^2 - x^2)^{n-1}}$$

Integrales con $\sqrt{u^2 + a^2}$.

131)
$$\int \sqrt{u^2 + a^2} du = \frac{u\sqrt{u^2 + a^2}}{2} + \frac{a^2}{2} \ln\left(u + \sqrt{u^2 + a^2}\right)$$

132)
$$\int u\sqrt{u^2 + a^2} du = \frac{\left(u^2 + a^2\right)^{3/2}}{3}$$

133)
$$\int u^2 \sqrt{u^2 + a^2} du = \frac{u(u^2 + a^2)^{3/2}}{4} - \frac{a^2 u \sqrt{u^2 + a^2}}{8}$$
$$- \frac{a^4}{8} \ln \left(u + \sqrt{u^2 + a^2} \right)$$

134)
$$\int u^3 \sqrt{u^2 + a^2} du = \frac{\left(u^2 + a^2\right)^{5/2}}{5} - \frac{a^2 \left(u^2 + a^2\right)^{3/2}}{3}$$

135)
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln\left(u + \sqrt{u^2 + a^2}\right) = \operatorname{senh}^{-1} \frac{u}{a}$$

136)
$$\int \frac{udu}{\sqrt{u^2+a^2}} = \sqrt{u^2+a^2}$$

137)
$$\int \frac{u^2 du}{\sqrt{u^2 + a^2}} = \frac{u\sqrt{u^2 + a^2}}{2} - \frac{a^2}{2} \ln \left(u + \sqrt{u^2 + a^2} \right)$$

138)
$$\int \frac{u^3 du}{\sqrt{u^2 + a^2}} = \frac{\left(u^2 + a^2\right)^{3/2}}{3} - a^2 \sqrt{u^2 + a^2}$$

$$139) \int \frac{du}{u\sqrt{u^2+a^2}} = -\frac{1}{a} \ln \left(\frac{a+\sqrt{u^2+a^2}}{u} \right)$$

$$140) \int \frac{du}{u^2 \sqrt{u^2 + a^2}} = -\frac{\sqrt{u^2 + a^2}}{a^2 u}$$

141)
$$\int \frac{du}{u^3 \sqrt{u^2 + a^2}} = -\frac{\sqrt{u^2 + a^2}}{2a^2 u^2} + \frac{1}{2a^3} \ln \left(\frac{a + \sqrt{u^2 + a^2}}{u} \right)$$

142)
$$\int \frac{\sqrt{u^2 + a^2}}{u} du = \sqrt{u^2 + a^2} - a \ln \left(\frac{a + \sqrt{u^2 + a^2}}{u} \right)$$

143)
$$\int \frac{\sqrt{u^2 + a^2}}{u^2} du = -\frac{\sqrt{u^2 + a^2}}{u^2} + \ln\left(u + \sqrt{u^2 + a^2}\right)$$

144)
$$\int \frac{\sqrt{u^2 + a^2}}{u^3} du = -\frac{\sqrt{u^2 + a^2}}{2u^2} - \frac{1}{2a} \ln \left(\frac{a + \sqrt{u^2 + a^2}}{u} \right)$$

$$145) \int \frac{du}{(u^2+a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2+a^2}}$$

146)
$$\int \frac{udu}{(u^2+a^2)^{3/2}} = \frac{-1}{\sqrt{u^2+a^2}}$$

147)
$$\int \frac{u^2 du}{(u^2 + a^2)^{3/2}} = \frac{-u}{\sqrt{u^2 + a^2}} + \ln\left(u + \sqrt{u^2 + a^2}\right)$$

148)
$$\int \frac{u^3 du}{(u^2 + a^2)^{3/2}} = \sqrt{u^2 + a^2} + \frac{a^2}{\sqrt{u^2 + a^2}}$$

149)
$$\int \frac{du}{u(u^2+a^2)^{3/2}} = \frac{1}{a^2\sqrt{u^2+a^2}} - \frac{1}{a^3} \ln\left(\frac{a+\sqrt{u^2+a^2}}{u}\right)$$

150)
$$\int \frac{du}{u^2(u^2+a^2)^{3/2}} = -\frac{\sqrt{u^2+a^2}}{a^4u} - \frac{u}{a^4\sqrt{u^2+a^2}}$$

151)
$$\int \frac{du}{u^3(u^2+a^2)^{3/2}} = \frac{-1}{2a^2u^2\sqrt{u^2+a^2}} - \frac{3}{2a^4\sqrt{u^2+a^2}} + \frac{3}{2a^5} \ln\left(\frac{a+\sqrt{u^2+a^2}}{u}\right)$$

152)
$$\int (u^2 + a^2)^{3/2} du = \frac{u(u^2 + a^2)^{3/2}}{4} + \frac{3a^2u\sqrt{u^2 + a^2}}{8} + \frac{3}{8}a^4 \ln\left(u + \sqrt{u^2 + a^2}\right)$$

153)
$$\int u \left(u^2 + a^2\right)^{3/2} du = \frac{\left(u^2 + a^2\right)^{5/2}}{5}$$

154)
$$\int u^2 (u^2 + a^2)^{3/2} du = \frac{u(u^2 + a^2)^{5/2}}{6} - \frac{a^2 u(u^2 + a^2)^{3/2}}{24} - \frac{a^4 u \sqrt{u^2 + a^2}}{16} - \frac{a^6}{16} \ln (u + \sqrt{u^2 + a^2})$$

155)
$$\int \frac{(u^2 + a^2)^{3/2}}{u} du = \frac{(u^2 + a^2)^{3/2}}{3} + a^2 \sqrt{u^2 + a^2} - a^3 \ln\left(\frac{a + \sqrt{u^2 + a^2}}{u}\right)$$

156)
$$\int \frac{(u^2 + a^2)^{3/2}}{u^2} du = -\frac{(u^2 + a^2)^{3/2}}{u} + \frac{3u\sqrt{u^2 + a^2}}{2} + \frac{3}{2}a^2 \ln\left(u + \sqrt{u^2 + a^2}\right)$$

157)
$$\int \frac{(u^2 + a^2)^{3/2}}{u^3} du = -\frac{(u^2 + a^2)^{3/2}}{2u^2} + \frac{3}{2}\sqrt{u^2 + a^2} - \frac{3}{2}a \ln\left(\frac{a + \sqrt{u^2 + a^2}}{u}\right)$$

Integrales con $\sqrt{u^2 - a^2}$.

158)
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln\left(u + \sqrt{u^2 - a^2}\right)$$

159)
$$\int \frac{udu}{\sqrt{u^2 - a^2}} = \sqrt{u^2 - a^2}$$

160)
$$\int \frac{u^2 du}{\sqrt{u^2 - a^2}} = \frac{u\sqrt{u^2 - a^2}}{2} + \frac{a^2}{2} \ln\left(u + \sqrt{u^2 - a^2}\right)$$

161)
$$\int \frac{u^3 du}{\sqrt{u^2 - a^2}} = \frac{\left(u^2 - a^2\right)^{3/2}}{3} + a^2 \sqrt{u^2 - a^2}$$

162)
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left(\frac{u}{a}\right)$$

163)
$$\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u}$$

164)
$$\int \frac{du}{u^3 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{2a^2 u^2} + \frac{1}{2a^3} \sec^{-1} \left(\frac{u}{a}\right)$$

165)
$$\int \sqrt{u^2 - a^2} \ du = \frac{u\sqrt{u^2 - a^2}}{2} - \frac{a^2}{2} \ln\left(u + \sqrt{u^2 - a^2}\right)$$

166)
$$\int u\sqrt{u^2 - a^2} du = \frac{\left(u^2 - a^2\right)^{3/2}}{3}$$

167)
$$\int u^2 \sqrt{u^2 - a^2} du = \frac{u(u^2 - a^2)^{3/2}}{4} + \frac{a^2 u \sqrt{u^2 - a^2}}{8}$$
$$- \frac{a^4}{8} \ln \left(u + \sqrt{u^2 - a^2} \right)$$

168)
$$\int u^3 \sqrt{u^2 - a^2} du = \frac{\left(u^2 - a^2\right)^{5/2}}{5} + \frac{a^2 \left(u^2 - a^2\right)^{3/2}}{3}$$

169)
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = \sqrt{u^2 - a^2} - a \sec^{-1} \frac{u}{a}$$

170)
$$\int \frac{\sqrt{u^2 - a^2}}{u^2} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln\left(u + \sqrt{u^2 - a^2}\right)$$

171)
$$\int \frac{\sqrt{u^2 - a^2}}{u^3} du = -\frac{\sqrt{u^2 - a^2}}{2u^2} + \frac{1}{2a} \sec^{-1} \frac{u}{a}$$

172)
$$\int \frac{du}{(u^2 - a^2)^{3/2}} = -\frac{u}{a^2 \sqrt{u^2 - a^2}}$$

173)
$$\int \frac{udu}{(u^2 - a^2)^{3/2}} = \frac{-1}{\sqrt{u^2 - a^2}}$$

174)
$$\int \frac{u^2 du}{(u^2 - a^2)^{3/2}} = -\frac{u}{\sqrt{u^2 - a^2}} + \ln\left(u + \sqrt{u^2 - a^2}\right)$$

175)
$$\int \frac{u^3 du}{(u^2 - a^2)^{3/2}} = \sqrt{u^2 - a^2} - \frac{a^2}{\sqrt{u^2 - a^2}}$$

176)
$$\int \frac{du}{u(u^2-a^2)^{3/2}} = \frac{-1}{a^2\sqrt{u^2-a^2}} - \frac{1}{a^3} \sec^{-1} \frac{u}{a}$$

177)
$$\int \frac{du}{u^2(u^2-a^2)^{3/2}} = -\frac{\sqrt{u^2-a^2}}{a^4u} - \frac{u}{a^4\sqrt{u^2-a^2}}$$

178)
$$\int \frac{du}{u^3(u^2-a^2)^{3/2}} = \frac{1}{2a^2u^2\sqrt{u^2-a^2}} - \frac{3}{2a^4\sqrt{u^2-a^2}} - \frac{3}{2a^5}\sec^{-1}\frac{u}{a}$$

179)
$$\int (u^2 - a^2)^{3/2} du = \frac{u(u^2 - a^2)^{3/2}}{4} - \frac{3a^2 u \sqrt{u^2 - a^2}}{8} + \frac{3}{8}a^4 \ln\left(u + \sqrt{u^2 + a^2}\right)$$

180)
$$\int u \left(u^2 - a^2\right)^{3/2} du = \frac{\left(u^2 - a^2\right)^{5/2}}{5}$$

181)
$$\int u^2 \left(u^2 - a^2\right)^{3/2} du = \frac{u(u^2 - a^2)^{5/2}}{6} + \frac{a^2 u(u^2 - a^2)^{3/2}}{24} - \frac{a^4 u \sqrt{u^2 - a^2}}{16} + \frac{a^6}{16} \ln\left(u + \sqrt{u^2 - a^2}\right)$$

182)
$$\int u^3 (u^2 - a^2)^{3/2} du = \frac{(u^2 - a^2)^{7/2}}{7} + \frac{a^2 (u^2 - a^2)^{5/2}}{5}$$

183)
$$\int \frac{(u^2 - a^2)^{3/2}}{u} du = \frac{(u^2 - a^2)^{3/2}}{3} - a^2 \sqrt{u^2 - a^2} + a^3 \sec^{-1} \frac{u}{a}$$

184)
$$\int \frac{(u^2 - a^2)^{3/2}}{u^2} du = -\frac{(u^2 - a^2)^{3/2}}{u} + \frac{3u\sqrt{u^2 - a^2}}{2} - \frac{3}{2}a^2 \ln\left(u + \sqrt{u^2 - a^2}\right)$$

185)
$$\int \frac{(u^2 - a^2)^{3/2}}{u^3} du = -\frac{(u^2 - a^2)^{3/2}}{2u^2} + \frac{3\sqrt{u^2 - a^2}}{2} - \frac{3}{2}a \sec^{-1} \frac{u}{a}$$

Integrales con $\sqrt{a^2 - u^2}$.

186)
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \text{sen}^{-1} \frac{u}{a}$$

187)
$$\int \frac{udu}{\sqrt{a^2-u^2}} = -\sqrt{a^2-u^2}$$

188)
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u\sqrt{a^2 - u^2}}{2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a}$$

189)
$$\int \frac{u^3 du}{\sqrt{a^2 - u^2}} = \frac{\left(a^2 - u^2\right)^{3/2}}{3} - a^2 \sqrt{a^2 - u^2}$$

190)
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln(\frac{a + \sqrt{a^2 - u^2}}{u})$$

191)
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{a^2 u}$$

192)
$$\int \frac{du}{u^3 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{2a^2 u^2} - \frac{1}{2a^3} \ln(\frac{a + \sqrt{a^2 - u^2}}{u})$$

193)
$$\int \sqrt{a^2 - u^2} \ du = \frac{u\sqrt{a^2 - u^2}}{2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a}$$

194)
$$\int u\sqrt{a^2 - u^2} \ du = -\frac{\left(a^2 - u^2\right)^{3/2}}{3}$$

195)
$$\int u^2 \sqrt{a^2 - u^2} du = -\frac{u(a^2 - u^2)^{3/2}}{4} + \frac{a^2 u \sqrt{a^2 - u^2}}{8} + \frac{a^4}{8} \operatorname{sen}^{-1} \frac{u}{a}$$

196)
$$\int u^3 \sqrt{a^2 - u^2} du = \frac{\left(a^2 - u^2\right)^{5/2}}{5} - \frac{a^2 \left(a^2 - u^2\right)^{\frac{3}{2}}}{3}$$

197)
$$\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left(\frac{a + \sqrt{a^2 - u^2}}{u} \right)$$

198)
$$\int \frac{\sqrt{a^2 - u^2}}{u^2} du = -\frac{\sqrt{a^2 - u^2}}{u} - \operatorname{sen}^{-1} \frac{u}{a}$$

199)
$$\int \frac{\sqrt{a^2 - u^2}}{u^3} du = -\frac{\sqrt{a^2 - u^2}}{2u^2} + \frac{1}{2a} \ln \left(\frac{a + \sqrt{a^2 - u^2}}{u} \right)$$

$$200) \int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}}$$

$$201) \int \frac{udu}{(a^2 - u^2)^{3/2}} = \frac{1}{\sqrt{a^2 - u^2}}$$

202)
$$\int \frac{u^2 du}{(a^2 - u^2)^{3/2}} = \frac{u}{\sqrt{a^2 - u^2}} - \operatorname{sen}^{-1} \frac{u}{a}$$

203)
$$\int \frac{u^3 du}{(a^2 - u^2)^{3/2}} = \sqrt{a^2 - u^2} + \frac{a^2}{\sqrt{a^2 - u^2}}$$

204)
$$\int \frac{du}{u(a^2 - u^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - u^2}} - \frac{1}{a^3} \ln \left(\frac{a + \sqrt{a^2 - u^2}}{u} \right)$$

205)
$$\int \frac{du}{u^2(a^2-u^2)^{3/2}} = -\frac{\sqrt{a^2-u^2}}{a^4u} + \frac{u}{a^4\sqrt{a^2-u^2}}$$

206)
$$\int \frac{du}{u^3(a^2-u^2)^{3/2}} = \frac{-1}{2a^2u^2\sqrt{a^2-u^2}} + \frac{3}{2a^4\sqrt{a^2-u^2}} - \frac{3}{2a^5} \ln\left(\frac{a+\sqrt{a^2-u^2}}{u}\right)$$

207)
$$\int (a^2 - u^2)^{3/2} du = \frac{u(a^2 - u^2)^{3/2}}{4} + \frac{3a^2u\sqrt{a^2 - u^2}}{8} + \frac{3}{8}a^4 \operatorname{sen}^{-1} \frac{u}{a}$$

208)
$$\int u \left(a^2 - u^2\right)^{3/2} du = -\frac{\left(a^2 - u^2\right)^{5/2}}{5}$$

209)
$$\int u^2 (a^2 - u^2)^{3/2} du = -\frac{u(a^2 - u^2)^{5/2}}{6} + \frac{a^2 u(a^2 - u^2)^{3/2}}{24} + \frac{a^4 u \sqrt{a^2 - u^2}}{16} + \frac{a^6}{16} \operatorname{sen}^{-1} \frac{u}{a}$$

210)
$$\int u^3 \left(a^2 - u^2\right)^{3/2} du = \frac{\left(a^2 - u^2\right)^{7/2}}{7} - \frac{a^2 \left(a^2 - u^2\right)^{5/2}}{5}$$

211)
$$\int \frac{\left(a^2 - u^2\right)^{3/2}}{u} du = \frac{\left(a^2 - u^2\right)^{3/2}}{3} + a^2 \sqrt{a^2 - u^2}$$
$$- a^3 \ln\left(\frac{a + \sqrt{a^2 - u^2}}{u}\right)$$

212)
$$\int \frac{(a^2 - u^2)^{3/2}}{u^2} du = -\frac{(a^2 - u^2)^{3/2}}{u} - \frac{3u\sqrt{a^2 - u^2}}{2} + \frac{3}{2}a^2 \operatorname{sen}^{-1} \frac{u}{a}$$

213)
$$\int \frac{\left(a^2 - u^2\right)^{3/2}}{u^3} du = -\frac{\left(a^2 - u^2\right)^{3/2}}{2u^2} - \frac{3\sqrt{a^2 - u^2}}{2} + \frac{3}{2}a \ln\left(\frac{a + \sqrt{a^2 - u^2}}{u}\right)$$

Integrales con $au^2 + bu + c$.

214)
$$\int \frac{du}{au^2 + bu + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \left(\frac{2au + b}{\sqrt{4ac - b^2}} \right) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left(\frac{2au + b - \sqrt{b^2 - 4ac}}{2au + b + \sqrt{b^2 - 4ac}} \right) \end{cases}$$

215)
$$\int \frac{udu}{au^2 + bu + c} = \frac{1}{2a} \ln \left(au^2 + bu + c \right) - \frac{b}{2a} \int \frac{du}{au^2 + bu + c}$$

216)
$$\int \frac{u^2 du}{au^2 + bu + c} = \frac{u}{a} - \frac{b}{2a^2} \ln \left(au^2 + bu + c \right) + \frac{b^2 - 2ac}{2a^2} \int \frac{du}{au^2 + bu + c}$$

217)
$$\int \frac{du}{u(au^2+bu+c)} = \frac{1}{2c} \ln \left(\frac{u^2}{au^2+bu+c} \right) - \frac{b}{2c} \int \frac{du}{au^2+bu+c}$$

218)
$$\int \frac{du}{u^2(au^2+bu+c)} = \frac{b}{2c^2} \ln\left(\frac{au^2+bu+c}{u^2}\right) - \frac{1}{cu} + \frac{b^2-2ac}{2c^2} \int \frac{du}{au^2+bu+c}$$

219)
$$\int \frac{du}{(au^2+bu+c)^2} = \frac{2au+b}{(4ac-b^2)(au^2+bu+c)} + \frac{2a}{4ac-b^2} \int \frac{du}{au^2+bu+c}$$

220)
$$\int \frac{udu}{(au^2+bu+c)^2} = -\frac{bu+2c}{(4ac-b^2)(au^2+bu+c)} - \frac{b}{4ac-b^2} \int \frac{du}{au^2+bu+c}$$

221)
$$\int \frac{u^2 du}{(au^2 + bu + c)^2} = \frac{(b^2 - 2ac)u + bc}{a(4ac + b^2)(au^2 + bu + c)} + \frac{2c}{4ac - b^2} \int \frac{du}{au^2 + bu + c}$$

222)
$$\int \frac{du}{u(au^2+bu+c)^2} = \frac{1}{2c(au^2+bu+c)} - \frac{b}{2c} \int \frac{du}{(au^2+bu+c)^2} + \frac{1}{c} \int \frac{du}{u(au^2+bu+c)}$$

223)
$$\int \frac{du}{u^2(au^2+bu+c)^2} = -\frac{1}{cu(au^2+bu+c)} - \frac{3a}{c} \int \frac{du}{(au^2+bu+c)^2} - \frac{2b}{c} \int \frac{du}{u(au^2+bu+c)^2}$$

224)
$$\int \frac{u^m du}{au^2 + bu + c} = \frac{u^{m-1}}{(m-1)a} - \frac{c}{a} \int \frac{u^{m-2} du}{au^2 + bu + c} - \frac{b}{a} \int \frac{u^{m-1} du}{au^2 + bu + c}$$

225)
$$\int \frac{du}{u^n(au^2+bu+c)} = -\frac{1}{(n-1)cu^{n-1}} - \frac{b}{c} \int \frac{du}{u^{n-1}(au^2+bu+c)}$$
$$-\frac{a}{c} \int \frac{du}{u^{n-2}(au^2+bu+c)}$$

Integrales con $u^3 + a^3$.

226)
$$\int \frac{du}{u^3+a^3} = \frac{1}{6a^2} \ln \frac{(u+a)^2}{u^2-au+a^2} + \frac{1}{a^2\sqrt{3}} \tan^{-1} \frac{2u-a}{a\sqrt{3}}$$

227)
$$\int \frac{udu}{u^3 + a^3} = \frac{1}{6a} \ln \frac{u^2 - au + a^2}{(u + a)^2} + \frac{1}{a\sqrt{3}} \tan^{-1} \frac{2u - a}{a\sqrt{3}}$$

228)
$$\int \frac{u^2 du}{u^3 + a^3} = \frac{1}{3} \ln \left(u^3 + a^3 \right)$$

229)
$$\int \frac{du}{u(u^3+a^3)} = \frac{1}{3a^3} \ln \left(\frac{u^3}{u^3+a^3} \right)$$

230)
$$\int \frac{du}{u^2(u^3+a^3)} = -\frac{1}{a^3u} - \frac{1}{6a^4} \ln \frac{u^2 - au + a^2}{(u+a)^2} - \frac{1}{a^4\sqrt{3}} \tan^{-1} \frac{2u - au}{a\sqrt{3}}$$

231)
$$\int \frac{du}{(u^3+a^3)^2} = \frac{u}{3a^3(u^3+a^3)} + \frac{1}{9a^5} \ln \frac{(u+a)^2}{u^2-au+a^2} + \frac{2}{3a^5\sqrt{3}} \tan^{-1} \frac{2u-a}{a\sqrt{3}}$$

232)
$$\int \frac{udu}{(u^3+a^3)^2} = \frac{u^2}{3a^3(u^3+a^3)} + \frac{1}{18a^4} \ln \frac{u^2-au+a^2}{(u+a)^2} + \frac{1}{3a^4\sqrt{3}} \tan^{-1} \frac{2u-a}{a\sqrt{3}}$$

233)
$$\int \frac{u^2 du}{(u^3 + a^3)^2} = -\frac{1}{3(u^3 + a^3)}$$

234)
$$\int \frac{du}{u(u^3+a^3)^2} = \frac{1}{3a^3(u^3+a^3)} + \frac{1}{3a^6} \ln\left(\frac{u^3}{u^3+a^3}\right)$$

235)
$$\int \frac{du}{u^2(u^3+a^3)^2} = -\frac{1}{a^6u} - \frac{u^2}{3a^6(u^3+a^3)} - \frac{4}{3a^6} \int \frac{udu}{u^3+a^3}$$

236)
$$\int \frac{u^m du}{u^3 + a^3} = \frac{u^{m-2}}{m-2} - a^3 \int \frac{u^{m-3} du}{u^3 + a^3}$$

237)
$$\int \frac{du}{u^n(u^3+a^3)} = \frac{-1}{a^3(n-1)u^{n-1}} - \frac{1}{a^3} \int \frac{du}{u^{n-3}(u^3+a^3)}$$

Integrales con $u^3 \pm a^3$.

238)
$$\int \frac{du}{u^4 + a^4} = \frac{1}{4a^3 \sqrt{2}} \ln \left(\frac{u^2 + au\sqrt{2} + a^2}{u^2 - au\sqrt{2} + a^2} \right)$$
$$- \frac{1}{2a^3 \sqrt{2}} \left[\tan^{-1} \left(1 - \frac{u\sqrt{2}}{a} \right) - \tan^{-1} \left(1 + \frac{u\sqrt{2}}{a} \right) \right]$$

239)
$$\int \frac{u^2 du}{u^4 + a^4} = \frac{1}{4a\sqrt{2}} \ln \left(\frac{u^2 - au\sqrt{2} + a^2}{u^2 + au\sqrt{2} + a^2} \right) - \frac{1}{2a\sqrt{2}} \left[\tan^{-1} \left(1 - \frac{u\sqrt{2}}{a} \right) - \tan^{-1} \left(1 + \frac{u\sqrt{2}}{a} \right) \right]$$

240)
$$\int \frac{du}{u^2(u^4+a^4)} = -\frac{1}{a^4u} - \frac{1}{4a^5\sqrt{2}} \ln\left(\frac{u^2 - au\sqrt{2} + a^2}{u^2 + au\sqrt{2} + a^2}\right) + \frac{1}{2a^5\sqrt{2}} \left[\tan^{-1}\left(1 - \frac{u\sqrt{2}}{a}\right) - \tan^{-1}\left(1 + \frac{u\sqrt{2}}{a}\right) \right]$$

241)
$$\int \frac{u^3 du}{u^4 + a^4} = \frac{1}{4} \ln \left(u^4 + a^4 \right)$$

242)
$$\int \frac{du}{u(u^4+a^4)} = \frac{1}{4a^4} \ln \left(\frac{u^4}{u^4+a^4} \right)$$

243)
$$\int \frac{udu}{u^4+a^4} = \frac{1}{2a^2} \tan^{-1} \frac{u^2}{a^2}$$

244)
$$\int \frac{du}{u^3(u^4+a^4)} = -\frac{1}{2a^4u^2} - \frac{1}{2a^6} \tan^{-1} \frac{u^2}{a^2}$$

245)
$$\int \frac{du}{u^4 - a^4} = \frac{1}{4a^3} \ln \left(\frac{u - a}{u + a} \right) - \frac{1}{2a^3} \tan^{-1} \frac{u}{a}$$

246)
$$\int \frac{udu}{u^4 - a^4} = \frac{1}{4a^2} \ln \left(\frac{u^2 - a^2}{u^2 + a^2} \right)$$

247)
$$\int \frac{u^2 du}{u^4 - a^4} = \frac{1}{4a} \ln \left(\frac{u - a}{u + a} \right) + \frac{1}{2a} \tan^{-1} \frac{u}{a}$$

248)
$$\int \frac{u^3 du}{u^4 - a^4} = \frac{1}{4} \ln \left(u^4 - a^4 \right)$$

249)
$$\int \frac{du}{u(u^4 - a^4)} = \frac{1}{4a^4} \ln \left(\frac{u^4 - a^4}{u^4} \right)$$

250)
$$\int \frac{du}{u^2(u^4-a^4)} = \frac{1}{a^4u} + \frac{1}{4a^5} \ln\left(\frac{u-a}{u+a}\right) + \frac{1}{2a^5} \tan^{-1} \frac{u}{a}$$

251)
$$\int \frac{du}{u^3(u^4-a^4)} = \frac{1}{2a^4u^2} + \frac{1}{4a^6} \ln \left(\frac{u^2-a^2}{u^2+a^2} \right)$$

Integrales con sen(au).

252)
$$\int \operatorname{sen}(au)du = -\frac{\cos(au)}{a}$$

253)
$$\int u \operatorname{sen}(au) du = \frac{\operatorname{sen}(au)}{a^2} - \frac{u \cos(au)}{a}$$

254)
$$\int u^2 \sin(au) du = \frac{2u}{a^2} \sin(au) + \left(\frac{2}{a^3} - \frac{u^2}{a}\right) \cos(au)$$

255)
$$\int u^3 \operatorname{sen}(au) du = \left(\frac{3u^2}{a^2} - \frac{6}{a^4}\right) \operatorname{sen}(au) + \left(\frac{6u}{a^3} - \frac{u^3}{a}\right) \cos(au)$$

256)
$$\int u^n \sin(au) du = -\frac{u^n \cos(au)}{a} + \frac{n}{a} \int u^{n-1} \cos(au) du$$

257)
$$\int u^n \sin(au) du = -\frac{u^n \cos(au)}{a} + \frac{nu^{n-1}}{a^2} \sin(au) - \frac{n(n-1)}{a^2} \int u^{n-2} \sin(au) du$$

258)
$$\int \sin^2(au)du = \frac{u}{2} - \frac{\sin(2au)}{4a}$$

259)
$$\int \sin^3(au)du = -\frac{\cos(ax)}{a} + \frac{\cos^3(au)}{3a}$$

260)
$$\int \sin^4(au)du = \frac{3u}{8} - \frac{\sin(2au)}{4a} + \frac{\sin(4au)}{32a}$$

261)
$$\int u \sec^2(au) du = \frac{u^2}{4} - \frac{u \sec(2au)}{4a} - \frac{\cos(2au)}{8a^2}$$

262)
$$\int \frac{\sin(au)}{u} du = au - \frac{(au)^3}{3 \cdot 3!} + \frac{(au)^5}{5 \cdot 5!} - \dots$$

263)
$$\int \frac{\sin(au)}{u^2} du = -\frac{\sin(au)}{u} + a \int \frac{\cos(au)}{u} du$$

264)
$$\int \frac{du}{\operatorname{sen}(au)} = \frac{1}{a} \ln \left[\csc(au) - \cot(au) \right] = \frac{1}{a} \ln \left[\tan \left(\frac{au}{2} \right) \right]$$

265)
$$\int \frac{udu}{\operatorname{sen}(au)} =$$

$$= \frac{1}{a^2} \left\{ au + \frac{(au)^3}{18} + \frac{7(au)^5}{1800} + \dots + \frac{2(2^{2n-1}-1)B_n(au)^{2n+1}}{(2n+1)!} + \dots \right\}$$

266)
$$\int \frac{du}{\sin^2(au)} = -\frac{1}{a}\cot(au)$$

267)
$$\int \frac{du}{\sin^3(au)} = -\frac{\cos(au)}{2a\sin^2(au)} + \frac{1}{2a}\ln\left[\tan\left(\frac{au}{2}\right)\right]$$

268)
$$\int \text{sen}(pu) \, \text{sen}(qu) du = \frac{\text{sen}[(p-q)u]}{2(p-q)} - \frac{\text{sen}[(p+q)u]}{2(p+q)}$$

269)
$$\int \frac{du}{1-\sin(au)} = \frac{1}{a} \tan\left(\frac{\pi}{4} + \frac{au}{2}\right)$$

270)
$$\int \frac{udu}{1-\sin(au)} = \frac{u}{a} \tan\left(\frac{\pi}{4} + \frac{au}{2}\right) + \frac{2}{a^2} \ln \sin\left(\frac{\pi}{4} - \frac{au}{2}\right)$$

271)
$$\int \frac{du}{1+\sin(au)} = -\frac{1}{a} \tan\left(\frac{\pi}{4} - \frac{au}{2}\right)$$

272)
$$\int \frac{udu}{1+\sin(au)} = -\frac{u}{a}\tan\left(\frac{\pi}{4} - \frac{au}{2}\right) + \frac{2}{a^2}\ln\sin\left(\frac{\pi}{4} + \frac{au}{2}\right)$$

273)
$$\int \frac{du}{(1-\sin(au))^2} = \frac{1}{2a} \tan\left(\frac{\pi}{4} + \frac{au}{2}\right) + \frac{1}{6a} \tan^3\left(\frac{\pi}{4} + \frac{au}{2}\right)$$

274)
$$\int \frac{dx}{(1+\sin ax)^2} = -\frac{1}{2a} \tan\left(\frac{\pi}{4} - \frac{ax}{2}\right) - \frac{1}{6a} \tan^3\left(\frac{\pi}{4} - \frac{ax}{2}\right)$$

Integrales con cos(au).

275)
$$\int \cos(au)du = \frac{\sin(au)}{a}$$

276)
$$\int u \cos(au) du = \frac{\cos(au)}{a^2} + \frac{u \sin(au)}{a}$$

277)
$$\int u^2 \cos(au) du = \frac{2u}{a^2} \cos(au) + \left(\frac{u^2}{a} - \frac{2}{a^3}\right) \sin(au)$$

278)
$$\int u^3 \cos(au) du = \left(\frac{3u^2}{a^2} - \frac{6}{a^4}\right) \cos(au) + \left(\frac{u^3}{a} - \frac{6u}{a^3}\right) \sin(au)$$

279)
$$\int u^n \cos(au) du = \frac{u^n \sin(au)}{a} - \frac{n}{a} \int u^{n-1} \sin(au) du$$

280)
$$\int u^n \cos(au) du = -\frac{u^n \sin(au)}{a} + \frac{nu^{n-1}}{a^2} \cos(au) - \frac{n(n-1)}{a^2} \int u^{n-2} \cos(au) du$$

281)
$$\int \cos^2(au)du = \frac{u}{2} + \frac{\sin(2au)}{4a}$$

282)
$$\int \cos^3(au) du = \frac{\sin(au)}{a} - \frac{\sin^3(au)}{3a}$$

283)
$$\int \cos^4(au)du = \frac{3u}{8} + \frac{\sin 2(au)}{4a} + \frac{\sin 4(au)}{32a}$$

284)
$$\int u \cos^2(au) du = \frac{u^2}{4} + \frac{u \sin 2(au)}{4a} + \frac{\cos 2(au)}{8a^2}$$

285)
$$\int \frac{\cos(au)}{u} du = \ln u - \frac{(au)^2}{2 \cdot 2!} + \frac{(au)^4}{4 \cdot 4!} - \frac{(au)^6}{6 \cdot 6!} + \dots$$

286)
$$\int \frac{\cos(au)}{u^2} du = -\frac{\cos(au)}{u} - a \int \frac{\sin(au)}{u} du$$

287)
$$\int \frac{du}{\cos(au)} = \frac{1}{a} \ln\left[\sec(au) + \tan(au)\right] = \frac{1}{a} \ln\left[\tan\left(\frac{\pi}{4} + \frac{au}{2}\right)\right]$$

288)
$$\int \frac{udu}{\cos(au)} =$$

$$= \frac{1}{a^2} \left\{ \frac{(au)^2}{2} + \frac{(au)^4}{8} + \frac{5(au)^6}{144} + \dots + \frac{E_n(au)^{2n+2}}{(2n+2)(2n)!} + \dots \right\}$$

289)
$$\int \frac{du}{\cos^2(au)} = \frac{\tan(au)}{a}$$

290)
$$\int \frac{du}{\cos^3(au)} = \frac{\sin(au)}{2a\cos^2(au)} + \frac{1}{2a} \ln\left[\tan\left(\frac{\pi}{4} + \frac{au}{2}\right)\right]$$

291)
$$\int \cos(au)\cos(pu)du = \frac{\sin[(a-p)u]}{2(a-p)} - \frac{\sin[(a+pu)]}{2(a+p)}$$

$$292) \int \frac{du}{1-\cos(au)} = -\frac{1}{a}\cot\frac{au}{2}$$

293)
$$\int \frac{udu}{1-\cos(au)} = -\frac{u}{a}\cot\frac{au}{2} + \frac{2}{a^2}\ln\sin\frac{au}{2}$$

$$294) \int \frac{du}{1+\cos(au)} = \frac{1}{a} \tan \frac{au}{2}$$

295)
$$\int \frac{udu}{1+\cos(au)} = \frac{u}{a} \tan \frac{au}{2} + \frac{2}{a^2} \ln \cos \frac{au}{2}$$

296)
$$\int \frac{du}{(1-\cos(au))^2} = -\frac{1}{2a}\cot\frac{au}{2} - \frac{1}{6a}\cot^3\frac{au}{2}$$

297)
$$\int \frac{du}{(1+\cos(au))^2} = \frac{1}{2a} \tan \frac{au}{2} + \frac{1}{6a} \tan^3 \frac{au}{2}$$

Integrales con sen(au) y cos(au).

298)
$$\int \operatorname{sen}(au) \cos(au) du = \frac{\operatorname{sen}^{2}(au)}{2a}$$

299)
$$\int \operatorname{sen}(pu) \cos(qu) du = -\frac{\cos[(p-q)u]}{2(p-q)} - \frac{\cos[(p+q)u]}{2(p+q)}$$

300)
$$\int \text{sen}^n(au) \cos(au) du = \frac{\text{sen}^{n+1}(au)}{(n+1)a}$$

301)
$$\int \cos^n(au) \sin(au) du = -\frac{\cos^{n+1}(au)}{(n+1)a}$$

302)
$$\int \sin^2(au) \cos^2(au) du = \frac{u}{8} - \frac{\sin 4(au)}{32a}$$

303)
$$\int \frac{du}{\sin(au)\cos(au)} = \frac{1}{a}\ln\left[\tan(au)\right]$$

304)
$$\int \frac{du}{\sin^2(au)\cos(au)} = \frac{1}{a}\ln\left[\tan\left(\frac{\pi}{4} + \frac{au}{2}\right)\right] - \frac{1}{a\sin(au)}$$

305)
$$\int \frac{du}{\sin(au)\cos^2(au)} = \frac{1}{a}\ln\left[\tan\left(\frac{au}{2}\right)\right] + \frac{1}{a\cos(au)}$$

$$306) \int \frac{du}{\sin^2(au)\cos^2(au)} = -\frac{2\cot(2au)}{a}$$

307)
$$\int \frac{\sin^2(au)}{\cos(au)} du = -\frac{\sin(au)}{a} + \frac{1}{a} \ln \left[\tan \left(\frac{au}{2} + \frac{\pi}{4} \right) \right]$$

308)
$$\int \frac{\cos^2(au)}{\sin(au)} du = \frac{\cos(au)}{a} + \frac{1}{a} \ln\left[\tan\left(\frac{au}{2}\right)\right]$$

309)
$$\int \frac{du}{\sin(au) + \cos(au)} = \frac{1}{a\sqrt{2}} \ln \tan \left(\frac{au}{2} \pm \frac{\pi}{8} \right)$$

310)
$$\int \frac{\sin(au)du}{\sin(au)\pm\cos(au)} = \frac{x}{2} \mp \frac{1}{2a} \ln\left[\sin(au)\pm\cos(au)\right]$$

311)
$$\int \frac{\cos(au)du}{\sin(au)\pm\cos(au)} = \pm \frac{x}{2} + \frac{1}{2a}\ln\left[\sin(au)\pm\cos(au)\right]$$

Integrales con tan(au).

312)
$$\int \tan (au) \ du = -\frac{1}{a} \ln \cos(au) = \frac{1}{a} \ln \sec(au)$$

313)
$$\int \tan^2(au)du = \frac{\tan(au)}{a} - u$$

314)
$$\int \tan^3(au) du = \frac{\tan^2(au)}{2a} + \frac{1}{a} \ln \cos(au)$$

315)
$$\int \tan^n(au) du = \frac{\tan^{n-1}(au)}{(n-1)a} - \int \tan^{n-2}(au) \ du$$

316)
$$\int \tan^n(au) \sec^2(au) du = \frac{\tan^{n+1}(au)}{(n+1)a}$$

317)
$$\int \frac{\sec^2(au)}{\tan(au)} du = \frac{1}{a} \ln \tan(au)$$

318)
$$\int \frac{du}{\tan(au)} = \frac{1}{a} \ln \operatorname{sen}(au)$$

319)
$$\int u \tan^2(au) du = \frac{u \tan(au)}{a} + \frac{1}{a^2} \ln \cos(au) - \frac{u^2}{2}$$

Integrales con $\cot(au)$.

320)
$$\int \cot(au)du = \frac{1}{a}\ln\sin(au)$$

321)
$$\int \cot^2(au)du = -\frac{\cot(au)}{a} - u$$

322)
$$\int \cot^3(au)du = -\frac{\cot^2(au)}{2a} - \frac{1}{a}\ln\sin(au)$$

323)
$$\int \cot^n(au) \csc^2(au) du = -\frac{\cot^{n+1}(au)}{(n+1)a}$$

324)
$$\int \frac{\csc^2(au)}{\cot(au)} du = -\frac{1}{a} \ln \cot(au)$$

325)
$$\int \frac{du}{\cot(au)} = -\frac{1}{a} \ln \cos(au)$$

326)
$$\int u \cot^2(au) du = -\frac{u \cot(au)}{a} + \frac{1}{a^2} \ln \sin(au) - \frac{u^2}{2}$$

327)
$$\int \cot^n(au)du = -\frac{\cot^{n-1}(au)}{(n-1)a} - \int \cot^{n-2}(au)du$$

Integrales con sec(au).

328)
$$\int \sec(au)du = \frac{1}{a}\ln\left[\sec(au) + \tan(au)\right] = \frac{1}{a}\ln\tan\left(\frac{ax}{2} + \frac{\pi}{4}\right)$$

329)
$$\int \sec^2(au)du = \frac{\tan(au)}{a}$$

330)
$$\int \sec^3(au)du = \frac{\sec(au)\tan(au)}{2a} + \frac{1}{2a}\ln[\sec(au) + \tan(au)]$$

331)
$$\int \sec^n(au)\tan(au)du = \frac{\sec^n(au)}{na}$$

332)
$$\int \frac{du}{\sec(au)} = \frac{\sin(au)}{a}$$

333)
$$\int u \sec^2(au) du = \frac{x}{a} \tan(au) + \frac{1}{a^2} \ln \cos(au)$$

334)
$$\int \sec^{n}(au)du = \frac{\sec^{n-2}(au)\tan(au)}{a(n-1)} + \frac{n-2}{n-1}\int \sec^{n-2}(au)du$$

Integrales con csc(au).

335)
$$\int \csc(au)du = \frac{1}{a}\ln\left[\csc(au) - \cot(au)\right] = \frac{1}{a}\ln\left[\tan\frac{au}{2}\right]$$

336)
$$\int \csc^2(au)du = -\frac{\cot(au)}{a}$$

337)
$$\int \csc^3(au)du = -\frac{\csc(au)\cot(au)}{2a} + \frac{1}{2a}\ln\left[\tan\frac{(au)}{2}\right]$$

338)
$$\int \csc^n(au) \cot(au) du = -\frac{\csc^n(au)}{na}$$

339)
$$\int \frac{du}{\csc(au)} = -\frac{\cos(au)}{a}$$

340)
$$\int u \csc^2(au) du = -\frac{u \cot(au)}{a} + \frac{1}{a^2} \ln\left[\operatorname{sen}(au)\right]$$

341)
$$\int \csc^{n}(au)du = -\frac{\csc^{n-2}(au)\cot(au)}{a(n-1)} + \frac{n-2}{n-1}\int \csc^{n-2}(au)du$$

Integrales de Funciones Trigonométricas Inversas.

342)
$$\int \operatorname{sen}^{-1}(u/a)du = u \operatorname{sen}^{-1}(u/a) + \sqrt{a^2 - u^2}$$

343)
$$\int u \operatorname{sen}^{-1}(u/a) du = \left(\frac{u^2}{2} - \frac{a^2}{4}\right) \operatorname{sen}^{-1}(u/a) + \frac{u\sqrt{a^2 - u^2}}{4}$$

344)
$$\int u^2 \operatorname{sen}^{-1}(u/a) du = \frac{u^3}{3} \operatorname{sen}^{-1}(u/a) + \frac{(u^2 + 2a^2)\sqrt{a^2 - u^2}}{9}$$

345)
$$\int \frac{\sin^{-1}(u/a)}{u} du = \frac{u}{a} + \frac{(u/a)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3(u/a)^5}{2 \cdot 4 \cdot 5 \cdot 5} + \frac{1 \cdot 3 \cdot 5(u/a)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots$$

346)
$$\int \frac{\sin^{-1}(u/a)}{u^2} du = -\frac{\sin^{-1}(u/a)}{u} - \frac{1}{a} \ln \left(\frac{a + \sqrt{a^2 - u^2}}{u} \right)$$

347)
$$\int \left(\sin^{-1} \frac{u}{a} \right)^2 du = u \left(\sin^{-1} \frac{u}{a} \right)^2 - 2u + 2\sqrt{a^2 - u^2} \operatorname{sen}^{-1} \frac{u}{a}$$

348)
$$\int \cos^{-1}(u/a)du = u \cos^{-1}\frac{u}{a} - \sqrt{a^2 - u^2}$$

349)
$$\int u \cos^{-1}(u/a) du = \left(\frac{u^2}{2} - \frac{a^2}{4}\right) \cos^{-1}\frac{u}{a} - \frac{u\sqrt{a^2 - u^2}}{4}$$

350)
$$\int u^2 \cos^{-1}(u/a) du = \frac{u^3}{3} \cos^{-1} \frac{u}{a} - \frac{(u^2 - 2a^2)\sqrt{a^2 - u^2}}{9}$$

351)
$$\int \frac{\cos^{-1}(u/a)}{u} du = \frac{\pi}{2} \ln(u) - \int \frac{\sin(u/a)}{u} du$$

352)
$$\int \frac{\cos^{-1}(u/a)}{u^2} du = -\frac{\cos^{-1}(u/a)}{u} + \frac{1}{a} \ln \left(\frac{a + \sqrt{a^2 - u^2}}{u} \right)$$

353)
$$\int \left(\cos^{-1}\frac{u}{a}\right)^2 du = u \left(\cos^{-1}\frac{u}{a}\right)^2 - 2u - 2\sqrt{a^2 - u^2} \cos^{-1}\frac{u}{a}$$

354)
$$\int \tan^{-1}(u/a)du = u \tan^{-1}(u/a) - \frac{a}{2} \ln(u^2 + a^2)$$

355)
$$\int u \tan^{-1}(u/a) du = \frac{1}{2} (u^2 + a^2) \tan^{-1}(u/a) - \frac{au}{2}$$

356)
$$\int u^2 \tan^{-1}(u/a) du = \frac{u^3}{3} \tan^{-1}(u/a) - \frac{au^2}{6} + \frac{a^3}{6} \ln(u^2 + a^2)$$

357)
$$\int \frac{\tan^{-1}(u/a)}{u} du = (u/a) - \frac{(u/a)^3}{3^2} + \frac{(u/a)^5}{5^2} - \frac{(u/a)^7}{7^2} + \dots$$

358)
$$\int \frac{\tan^{-1}(u/a)}{u^2} du = -\frac{1}{u} \tan^{-1}(u/a) - \frac{1}{2a} \ln\left(\frac{u^2 + a^2}{u^2}\right)$$

359)
$$\int \cot^{-1}(u/a)du = u\cot^{-1}(u/a) + \frac{a}{2}\ln(u^2 + a^2)$$

360)
$$\int u \cot^{-1}(u/a) du = \frac{1}{2} (u^2 + a^2) \cot^{-1}(u/a) + \frac{au}{2}$$

361)
$$\int u^2 \cot^{-1}(u/a) du = \frac{u^3}{3} \cot^{-1}(u/a) + \frac{au^2}{6} - \frac{a^3}{6} \ln(u^2 + a^2)$$

362)
$$\int \frac{\cot^{-1}(u/a)}{u} du = \frac{\pi}{2} \ln u - \int \frac{\tan^{-1}(u/a)}{u} du$$

363)
$$\int \frac{\cot^{-1}(u/a)}{u^2} du = -\frac{\cot^{-1}(u/a)}{u} + \frac{1}{2a} \ln \left(\frac{u^2 + a^2}{u^2} \right)$$

364)
$$\int u^m \operatorname{sen}^{-1}(u/a) du = \frac{u^{m+1}}{m+1} \operatorname{sen}^{-1}(u/a) - \frac{1}{m+1} \int \frac{u^{m+1}}{\sqrt{a^2 - u^2}} du$$

365)
$$\int u^m \cos^{-1}(u/a) du = \frac{u^{m+1}}{m+1} \cos^{-1}(u/a) + \frac{1}{m+1} \int \frac{u^{m+1}}{\sqrt{a^2 - u^2}} du$$

366)
$$\int u^m \tan^{-1}(u/a) du = \frac{u^{m+1}}{m+1} \tan^{-1}(u/a) - \frac{a}{m+1} \int \frac{u^{m+1}}{u^2 + a^2} du$$

367)
$$\int u^m \cot^{-1}(u/a) du = \frac{u^{m+1}}{m+1} \cot^{-1}(u/a) + \frac{a}{m+1} \int \frac{u^{m+1}}{u^2 + a^2} du$$

Integrales con e^{au} .

368)
$$\int e^{au} du = \frac{e^{au}}{a}$$

369)
$$\int u \ e^{au} du = \frac{e^{au}}{a} \left(u - \frac{1}{a} \right)$$

370)
$$\int u^2 e^{au} du = \frac{e^{au}}{a} \left(u^2 - \frac{2u}{a} + \frac{2}{a^2} \right)$$

371)
$$\int u^n e^{au} du = \frac{u^n e^{au}}{a} - \frac{n}{a} \int u^{n-1} e^{au} du$$
$$= \frac{e^{au}}{a} \left(u^n - \frac{nu^{n-1}}{a} + \frac{n(n-1)u^{n-2}}{a^2} + \dots + \frac{(-1)^n n!}{a^n} \right)$$
con n = entero positivo

372)
$$\int \frac{e^{au}}{u} = \ln(u) + \frac{au}{1 \cdot 1!} + \frac{(au)^2}{2 \cdot 2!} + \frac{(au)^3}{3 \cdot 3!} + \cdots$$

373)
$$\int \frac{e^{au}}{u^n} du = \frac{-e^{au}}{(n-1)u^{n-1}} + \frac{a}{n-1} \int \frac{e^{au}}{u^{n-1}} du$$

374)
$$\int \frac{du}{p+qe^{au}} = \frac{u}{p} - \frac{1}{ap} \ln(p + qe^{au})$$

375)
$$\int \frac{du}{(p+qe^{au})^2} = \frac{u}{p^2} + \frac{1}{ap(p+qe^{au})} - \frac{1}{ap^2} \ln|p+qe^{au}|$$

376)
$$\int \frac{du}{pe^{au} + qe^{-au}} = \begin{cases} \frac{1}{a\sqrt{pq}} \tan^{-1} \left(\sqrt{\frac{p}{q}} e^{au}\right) \\ \frac{1}{2a\sqrt{-pq}} \ln \left(\frac{e^{au} - \sqrt{-q/p}}{e^{au} + \sqrt{-q/p}}\right) \end{cases}$$

377)
$$\int e^{au} \operatorname{sen}(bu) du = \frac{e^{au}[a \operatorname{sen}(bu) - b \cos(bu)]}{a^2 - b^2}$$

378)
$$\int e^{au} \cos(bu) du = \frac{e^{au}[a\cos(bu) + bsen(bu)]}{a^2 + b^2}$$

379)
$$\int e^{au} \ln u du = \frac{e^{au} \ln u}{a} - \frac{1}{a} \int \frac{e^{au}}{u} du$$

Integrales con ln(u).

380)
$$\int \ln(u) du = u \ln(u) - u$$

381)
$$\int [\ln(u)]^2 du = u [\ln(u)]^2 - 2u \ln(u) + 2u$$

382)
$$\int [\ln(u)]^n du = u [\ln(u)]^n - n \int [\ln(u)]^{n-1} du$$

383)
$$\int u \ln(u) du = \frac{u^2}{2} \left[\ln(u) - \frac{1}{2} \right]$$

384)
$$\int u^m \ln u du = \frac{u^{m+1}}{m+1} \left(\ln u - \frac{1}{m+1} \right)$$

$$385) \int \frac{\ln u}{u} du = \frac{1}{2} \ln^2 u$$

386)
$$\int \frac{\ln u}{u^2} du = -\frac{\ln u}{u} - \frac{1}{u}$$

387)
$$\int \ln^2 u \, du = u \ln^2 u - 2u \ln u + 2u$$

388)
$$\int \frac{\ln^n u du}{u} = \frac{\ln^{n+1} u}{n+1}$$

$$389) \int \frac{du}{u \ln u} = \ln \left(\ln u \right)$$

390)
$$\int \ln\left(u^2 + a^2\right) du = u \ln\left(u^2 + a^2\right) - 2u + 2a \arctan\frac{u}{a}$$

391)
$$\int \ln(u^2 - a^2) du = u \ln(u^2 - a^2) - 2u + a \ln(\frac{u+a}{u-a})$$

Integrales con senh(au).

392)
$$\int \operatorname{senh}(au) du = \frac{\cosh(au)}{a}$$

393)
$$\int u \operatorname{senh}(au) du = \frac{u \cosh(au)}{a} - \frac{\operatorname{senh}(au)}{a^2}$$

394)
$$\int u^2 \sinh(au) du = \left(\frac{u^2}{a} + \frac{2}{a^3}\right) \cosh(au) - \frac{2u}{a^2} \sinh(au)$$

395)
$$\int \frac{\operatorname{senh}(au)}{u} du = au + \frac{(au)^3}{3 \cdot 3!} + \frac{(au)^5}{5 \cdot 5!} + \dots$$

396)
$$\int \frac{\sinh(au)}{u^2} du = -\frac{\sinh(au)}{u} + a \int \frac{\cosh(au)}{u} du$$

397)
$$\int \frac{du}{\operatorname{senh}(au)} = \frac{1}{a} \ln \left[\tanh \left(\frac{au}{2} \right) \right]$$

398)
$$\int \sinh^2(au)du = \frac{\sinh(au)\cosh(au)}{2a} - \frac{u}{2}$$

399)
$$\int u \operatorname{senh}^{2}(au) du = \frac{u \operatorname{senh}(2au)}{4a} - \frac{\cosh(2au)}{8a^{2}} - \frac{u^{2}}{4}$$

$$400) \int \frac{du}{\sinh^2(au)} = -\frac{\coth(au)}{a}$$

401)
$$\int \operatorname{senh}(au) \operatorname{senh}(pu) du = \frac{\operatorname{senh}[(a+p)u]}{2(a+p)} - \frac{\operatorname{senh}[(a-p)u]}{2(a-p)}$$

402)
$$\int u^m \operatorname{senh}(au) du = \frac{u^m \cosh(au)}{a} - \frac{m}{a} \int u^{m-1} \cosh(au) du$$

403)
$$\int \sinh^{n}(au)du = \frac{\sinh^{n-1}(au)\cosh(au)}{\sinh^{n-1}(au)\cosh(au)} - \frac{n-1}{\sinh^{n-2}(au)}du$$

404)
$$\int \frac{\sinh(au)}{u^n} du = \frac{-\sinh(au)}{(n-1)u^{n-1}} + \frac{a}{n-1} \int \frac{\cosh(au)}{u^{n-1}} du$$

$$405) \int \frac{du}{\sinh^n(au)} = \frac{-\cosh(au)}{a(n-1)\sinh^{n-1}(au)} - \frac{n-2}{n-1} \int \frac{du}{\sinh^{n-2}(au)}$$

Integrales con $\cosh(au)$.

406)
$$\int \cosh(au)du = \frac{\sinh(au)}{a}$$

407)
$$\int u \cosh(au) du = \frac{u \sinh(au)}{a} - \frac{\cosh(au)}{a^2}$$

408)
$$\int u^2 \cosh(au) du = -\frac{2u \cosh(au)}{a^2} + \left(\frac{u^2}{a} + \frac{2}{a^3}\right) \operatorname{senh}(au)$$

409)
$$\int \frac{\cosh(au)}{u} du = \ln u + \frac{(au)^2}{2 \cdot 2!} + \frac{(au)^4}{4 \cdot 4!} + \frac{(au)^6}{6 \cdot 6!} + \dots$$

410)
$$\int \frac{\cosh(au)}{u^2} du = -\frac{\cosh(au)}{u} + a \int \frac{\sinh(au)}{u} du$$

411)
$$\int \frac{du}{\cosh(au)} = \frac{2}{a} \tan^{-1} e^{au}$$

412)
$$\int \cosh^2(au)du = \frac{u}{2} + \frac{\operatorname{senh}(au)\cosh(au)}{2a}$$

413)
$$\int u \cosh^2(au) du = \frac{u^2}{4} + \frac{u \sinh(2au)}{4a} - \frac{\cosh(2au)}{8a^2}$$

414)
$$\int \frac{du}{\cosh^2(au)} = \frac{\tanh(au)}{a}$$

415)
$$\int \cosh(au) \cosh(pu) du = \frac{\sinh[(a-pu)]}{2(a-p)} + \frac{\sinh[(a+p)u]}{2(a+p)}$$

416)
$$\int u^m \cosh(au) du = \frac{u^m \sinh(au)}{a} - \frac{m}{a} \int u^{m-1} \sinh(au) du$$

$$403) \int \mathrm{senh}^n(au) du = \frac{\mathrm{senh}^{n-1}(au) \cosh(au)}{an} - \frac{n-1}{n} \int \mathrm{senh}^{n-2}(au) du \ 417) \int \mathrm{cosh}^n(au) du = \frac{\mathrm{cosh}^{n-1}(au) \sinh(au)}{an} + \frac{n-1}{n} \int \mathrm{cosh}^{n-2}(au) du = \frac{\mathrm{cosh}^{n-1}(au) \sinh(au)}{an} + \frac{n-1}{n} \int \mathrm{cosh}^{n-2}(au) du = \frac{\mathrm{cosh}^{n-1}(au) \cosh(au)}{an} + \frac{\mathrm{cosh}^{n-1}$$

418)
$$\int \frac{\cosh(au)}{u^n} du = \frac{-\cosh(au)}{(n-1)u^{n-1}} + \frac{a}{n-1} \int \frac{\sinh(au)}{u^{n-1}} du$$

419)
$$\int \frac{du}{\cosh^n(au)} = \frac{\sinh(au)}{a(n-1)\cosh^{n-1}(au)} + \frac{n-2}{n-1} \int \frac{du}{\cosh^{n-2}(au)}$$

Transformadas de Laplace...... **5.**

f(s)F(t)

$$\frac{k}{c}$$
 $k \quad \text{con } k = constante$

$$\frac{1}{s^2}$$
 t

$$\frac{1}{s^n}$$
 $\frac{t^{n-1}}{(n-1)!}$ con $n = 0, 1, 2, \dots$

$$\frac{1}{s^n} \qquad \qquad \frac{t^{n-1}}{\Gamma(n)} \quad \text{con } n > 0$$

$$\frac{1}{s-a}$$
 e^{at}

$$\frac{1}{(s-a)^n}$$
 $\frac{t^{n-1}e^{at}}{(n-1)!}$ con $n = 0, 1, 2, ...$

 $\frac{t^{n-1}e^{at}}{\Gamma(n)} \quad \text{con } n > 0$

$$1 ext{sen}(at)$$

f(s)F(t)

$$\frac{s}{s^2 + a^2} \qquad \frac{\cos(at)}{a}$$

$$\frac{1}{(s-b)^2 + a^2} \qquad \frac{e^{bt} \operatorname{sen}(at)}{a}$$

$$\frac{s-b}{(s-b)^2 + a^2} \qquad e^{bt}\cos(at)$$

$$\frac{1}{s^2 - a^2}$$
 $\frac{\operatorname{senh}(at)}{a}$

$$\frac{s}{s^2 - a^2} \qquad \qquad \cosh(at)$$

$$\frac{1}{(s-b)^2 - a^2} \qquad \frac{e^{bt} \operatorname{senh}(at)}{a}$$

$$\frac{s-b}{(s-b)^2 - a^2} \qquad e^{bt} \cosh(at)$$

$$\frac{1}{(s-a)(s-b)} \qquad \qquad \frac{e^{bt}-e^{at}}{b-a} \quad \text{ con } a \neq b$$

f(s)	F(t)	f(s)	F(t)
$\frac{s}{(s-a)(s-b)}$	$\frac{be^{bt} - ae^{at}}{b - a} \text{con } a \neq b$	$\frac{s^5}{(s^2+a^2)^3}$	$\frac{(8-a^2t^2)\cos(at) - 7at\operatorname{sen}(at)}{8}$
$\frac{1}{(s^2+a^2)^2}$	$\frac{\operatorname{sen}(at) - at \cos(at)}{2a^3}$	$\frac{3s^2 - a^2}{(s^2 + a^2)^3}$	$\frac{t^2 \operatorname{sen}(at)}{2a}$
$\frac{s}{(s^2+a^2)^2}$	$\frac{t \operatorname{sen}(at)}{2a}$	$\frac{s^3 - 3a^2s}{(s^2 + a^2)^3}$	$\frac{1}{2}t^2\cos(at)$
$\frac{s^2}{(s^2+a^2)^2}$	$\frac{\operatorname{sen}(at) + at \cos(at)}{2a}$	$\frac{s^4 - 6a^2s + a^4}{(s^2 + a^2)^4}$	$\frac{1}{6}t^3\cos(at)$
$\frac{s^3}{(s^2+a^2)^2}$	$\cos(at) - \frac{1}{2}at\sin(at)$	$\frac{s^3 - a^2s}{(s^2 + a^2)^4}$	$\frac{t^3 \operatorname{sen}(at)}{24a}$
$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$t\cos(at)$	$\frac{1}{(s^2-a^2)^3}$	$\frac{(3+a^2t^2)\operatorname{senh}(at) - 3at\operatorname{cosh}(at)}{8a^5}$
$\frac{1}{(s^2 - a^2)^2}$	$\frac{at\cosh(at) - \sinh(at)}{2a^3}$	$\frac{s}{(s^2 - a^2)^3}$	$\frac{at^2\cosh(at) - t\operatorname{senh}(at)}{8a^3}$
$\frac{s}{(s^2 - a^2)^2}$	$\frac{t \operatorname{senh}(at)}{2a}$	$\frac{s^2}{(s^2 - a^2)^3}$	$\frac{at\cosh(at) + (a^2t^2 - 1)\operatorname{senh}(at)}{8a^3}$
$\frac{s^2}{(s^2 - a^2)^2}$	$\frac{\operatorname{senh}(at) + at \operatorname{cosh}(at)}{2a}$	$\frac{s^3}{(s^2 - a^2)^3}$	$\frac{3t \operatorname{senh}(at) + at^2 \operatorname{cosh}(at)}{8a}$
$\frac{s^3}{(s^2 - a^2)^2}$	$\cosh(at) + \frac{1}{2}at \operatorname{senh}(at)$	$\frac{s^4}{(s^2 - a^2)^3}$	$\frac{(3+a^2t^2)\operatorname{senh}(at) + 5at\operatorname{cosh}(at)}{8a}$
$\frac{s^2 + a^2}{(s^2 - a^2)^2}$	$t \cosh(at)$	$\frac{s^5}{(s^2-a^2)^3}$	$\frac{(8+a^2t^2)\cosh(at) + 7at\operatorname{senh}(at)}{8}$
$\frac{1}{(s^2+a^2)^3}$	$\frac{(3 - a^2t^2)\sin(at) - 3at\cos(at)}{8a^5}$	$\frac{3s^2 + a^2}{(s^2 - a^2)^3}$	$\frac{t^2 \operatorname{senh}(at)}{2a}$
$\frac{s}{(s^2+a^2)^3}$	$\frac{t\operatorname{sen}(at) - at^2\operatorname{cos}(at)}{8a^3}$	$\frac{s^3 + 3a^2s}{(s^2 - a^2)^3}$	$\frac{1}{2}t^2\cosh(at)$
$\frac{s^2}{(s^2+a^2)^3}$	$\frac{(1+a^2t^2)\operatorname{sen}(at) - at\cos(at)}{8a^3}$	$\frac{s^4 + 6a^2s + a^4}{(s^2 - a^2)^4}$	$\frac{1}{6}t^3\cosh(at)$
$\frac{s^3}{(s^2+a^2)^3}$	$\frac{3t\operatorname{sen}(at) + at^2\cos(at)}{8a}$	$\frac{s^3 + a^2s}{(s^2 - a^2)^4}$	$\frac{t^3 \operatorname{senh}(at)}{24a}$
$\frac{s^4}{(s^2+a^2)a^3}$	$\frac{(3-a^2t^2)\operatorname{sen}(at) + 5at\cos(at)}{8a}$	$\frac{1}{s^3 + a^3}$	$\frac{e^{at/2}}{3a^2} \left(\sqrt{3} \sin \frac{\sqrt{3}at}{2} - \cos \frac{\sqrt{3}at}{2} + e^{-3at/2} \right)$

$\overline{f(s)}$	F(t)	$\overline{f(s)}$	F(t)
$\frac{s}{s^3 + a^3}$	$\frac{e^{at/2}}{3a} \left(\cos \frac{\sqrt{3}at}{2} + \sqrt{3} \sin \frac{\sqrt{3}at}{2} - e^{-3at/2} \right)$	$\frac{s}{s^4 - a^4}$	$\frac{1}{2a^2}\Big(\cosh(at) - \cos(at)\Big)$
$\frac{s^2}{s^3 + a^3}$	$\frac{1}{3}\left(e^{-at} + 2e^{at/2}\cos\frac{\sqrt{3}at}{2}\right)$	$\frac{s^2}{s^4 - a^4}$	$\frac{1}{2a}\Big(\operatorname{senh}(at) + \operatorname{sen}(at)\Big)$
$\frac{1}{s^3 - a^3}$	$\frac{e^{-at/2}}{3a^2} \left(e^{3at/2} - \cos \frac{\sqrt{3}at}{2} - \sqrt{3} \sin \frac{\sqrt{3}at}{2} \right)$	$\frac{s^3}{s^4 - a^4}$	$\frac{1}{2}\Big(\cosh(at) + \cos(at)\Big)$
$\frac{s}{s^3 - a^3}$	$\frac{e^{-at/2}}{3a} \left(\sqrt{3} \sin \frac{\sqrt{3}at}{2} - \cos \frac{\sqrt{3}at}{2} + e^{3at/2} \right)$	$\frac{1}{\sqrt{s+a} + \sqrt{s+b}}$	$\frac{e^{-bt} - e^{-at}}{2(b-a)\sqrt{\pi t^3}}$
$\frac{s^2}{s^3 - a^3}$	$\frac{1}{3}\left(e^{at} + 2e^{-at/2}\cos\frac{\sqrt{3}at}{2}\right)$	$\frac{1}{s\sqrt{s+a}}$	$\frac{\text{fer}\sqrt{at}}{\sqrt{a}}$
$\frac{1}{s^4 + 4a^4}$	$\frac{1}{4a^3} \left(\operatorname{sen}(at) \operatorname{cosh}(at) - \operatorname{cos}(at) \operatorname{senh}(at) \right)$	$\frac{1}{\sqrt{s}(s-a)}$	$\frac{e^{at} \text{fer} \sqrt{at}}{\sqrt{a}}$
$\frac{s}{s^4 + 4a^4}$	$\frac{\operatorname{sen}(at)\operatorname{senh}(at)}{2a^2}$	$\frac{1}{\sqrt{s-a}+b}$	$e^{at}\left(\frac{1}{\sqrt{\pi t}} - be^{b^2t} \operatorname{fcer}\left(b\sqrt{t}\right)\right)$
$\frac{s^2}{s^4 + 4a^4}$	$\frac{1}{2a} \Big(\operatorname{sen}(at) \cosh(at) + \cos(at) \operatorname{senh}(at) \Big)$	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
_e 3		$\frac{1}{\sqrt{s^2 - a^2}}$	$I_0(at)$

 $\cos(at)\cosh(at)$

 $\frac{1}{2a^3}\Big(\operatorname{senh}(at) - \operatorname{sen}(at)\Big)$

 $\frac{1}{s^4 - a^4}$

A en grados	A en radianes	$\operatorname{sen} A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	$\csc A$
0°	0	0	1	0	∞	1	∞
15°	$\pi/12$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
30°	$\pi/6$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	2
45°	$\pi/4$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi/3$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	2	$\frac{2}{3}\sqrt{3}$
75°	$5\pi/12$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{6} + \sqrt{2}$	$\sqrt{6}-\sqrt{2}$
90°	$\pi/2$	1	0	$\pm\infty$	0	$\pm\infty$	1
105°	$7\pi/12$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\left(2+\sqrt{3}\right)$	$-\left(2-\sqrt{3}\right)$	$-\left(\sqrt{6}+\sqrt{2}\right)$	$\sqrt{6}-\sqrt{2}$
120°	$2\pi/3$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	-2	$\frac{2}{3}\sqrt{3}$
135°	$3\pi/4$	$\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$5\pi/6$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	2
165°	$11\pi/12$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\left(2-\sqrt{3}\right)$	$-\left(2+\sqrt{3}\right)$	$-\left(\sqrt{6}-\sqrt{2}\right)$	$\sqrt{6} + \sqrt{2}$
180°	π	0	-1	0	$\pm\infty$	-1	$\pm\infty$
195°	$13\pi/12$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$-\left(\sqrt{6}-\sqrt{2}\right)$	$-\left(\sqrt{6}+\sqrt{2}\right)$
210°	$7\pi/6$	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	-2
225°	$5\pi/4$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$4\pi/3$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
255°	$17\pi/12$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$-\left(\sqrt{6}+\sqrt{2}\right)$	$-\left(\sqrt{6}-\sqrt{2}\right)$
270°	$3\pi/2$	-1	0	$\pm\infty$	0	$\mp\infty$	-1
285°	$19\pi/12$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\left(2+\sqrt{3}\right)$	$-\left(2-\sqrt{3}\right)$	$\sqrt{6} + \sqrt{2}$	$-\left(\sqrt{6}-\sqrt{2}\right)$
300°	$5\pi/3$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$
315°	$7\pi/4$	$-\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	$11\pi/6$	$-\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
345°	$23\pi/12$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\left(2-\sqrt{3}\right)$	$-\left(2+\sqrt{3}\right)$	$\sqrt{6} - \sqrt{2}$	$-\left(\sqrt{6}+\sqrt{2}\right)$
360°	2π	0	1	0	$\mp\infty$	1	$\mp\infty$

Definición 1. Ecuación en Variables Separadas.

Consideremos la ecuación con forma estándar:

$$M(x)dx + N(y)dy = 0 (1)$$

La solución se obtiene integrando directamente:

$$\int M(x)\mathrm{d}x + \int N(y)\mathrm{d}y = C$$

Definición 2. Ecuación en Variables Separables.

Las siguientes dos ecuaciones, son ecuaciones en variables separables.

$$M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0$$
 (2)

Para determinar la solución de la Ec.(2), se divide la ecuación entre: $M_2(x)N_1(y)$, para reducirla a la ecuación en variables separadas:

$$\frac{M_1(x)}{M_2(x)} dx + \frac{N_2(y)}{N_1(y)} dy = 0$$

ahora sólo se integra directamente:

$$\int \frac{M_1(x)}{M_2(x)} dx + \int \frac{N_2(y)}{N_1(y)} dy = C$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y) \tag{3}$$

La solución de la Ec.(3), se obtiene al dividir entre g(y) y multiplicar por dx, para reducirla a la ecuación en variables separadas:

$$\frac{1}{q(y)} \mathrm{d}y = f(x) \mathrm{d}x$$

ahora sólo se integra directamente:

$$\int \frac{1}{g(y)} dy = \int f(x) dx + C$$

Definición 3. Ecuación Lineal.

La ecuación lineal tiene la forma general:

$$a(x)y' + b(x)y = q(x) \tag{4}$$

a(x), se llama coeficiente principal. La Ec.(4) se tiene que dividir entre a(x) para obtener la forma estándar:

$$y' + P(x)y = Q(x) \tag{5}$$

La Ec.(5) tiene a 1 como coeficiente principal y a partir de aquí se obtiene la solución de la Ec.(4), La solución Es:

$$y(x) = e^{-\int P(x)dx} \left[\int e^{\int P(x)dx} Q(x)dx + C \right]$$

Si Q(x) = 0, la solución es:

$$y(x) = Ce^{-\int P(x)dx}$$

El termino $e^{\int P(x)dx}$ se llama Factor Integrante de la ecuación.

Definición 4. Ecuación de Bernoulli.

Tiene la forma:

$$y' + P(x)y = Q(x)y^n (6)$$

con $n \neq 0$ y $n \neq 1$, n puede ser positivo o negativo. Con el cambio de variable $z = y^{-n+1}$, la ecuación de Bernoulli se reduce a la ecuación lineal:

$$z' + (-n+1)P(x)z = (-n+1)Q(x)$$
(7)

al resolver la Ec.(7), se obtiene que la solución de la Ec.(6) de Bernoulli es:

$$y^{-n+1} = e^{-\int (-n+1)P(x)dx} \left[(-n+1) \int e^{\int (-n+1)P(x)dx} Q(x)dx + C \right]$$

Definición 5. Ecuaciones Exactas o en Diferenciales Totales.

Consideramos la ecuación:

$$M(x,y)dx + N(x,y)dy = 0$$
(8)

donde se cumple: $M_y = N_x$. La solución se obtiene de calcular:

i)
$$u = \int M(x, y) dx$$
,

iii)
$$v = \int [N(x,y) - u_y] dy$$

ii) calculamos:
$$u_y$$

iv) La solución general implícita es:
$$u + v = C$$

Definición 6. Factor Integrante.

Consideremos la ecuación:

$$M(x,y)dx + N(x,y)dy = 0 (9)$$

donde $M_y \neq N_x$. Para determinar la solución de esta ecuación, se tiene que reducir a una ecuación exacta; así que **primero** se debe calcular uno de los dos posibles factores integrantes:

1)
$$\mu(x) = e^{\int \frac{M_y - N_x}{N} dx}$$
 2) $\mu(y) = e^{\int \frac{N_x - M_y}{M} dy}$

segundo se multiplica la Ec.(9) por el factor integrante que exista y se obtiene la ecuación exacta:

$$\mu M(x,y)dx + \mu N(x,y)dy = 0 \tag{10}$$

la solución de la Ec.(10), que ya se sabe resolver, es la solución de la Ec.(9).

Definición 7. Función Homogénea.

Se dice que una función f(x,y) es una "función homogénea de grado n" respecto a las variables x e y, si para cualquier valor real λ se cumple la propiedad:

$$f(x\lambda, y\lambda) = \lambda^n f(x, y)$$

donde $n \in \mathbb{R}$. En particular, cuando n = 0 se tiene una función homogénea de grado cero, se cumple que:

$$f(x\lambda, y\lambda) = f(x, y)$$

Definición 8. Ecuaciones Homogéneas de Grado Cero.

Consideremos las ecuaciones:

$$M(x,y)dx + N(x,y)dy = 0 (11)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \tag{12}$$

Se dice que la Ec.(11) es homogénea de grado cero, si tanto M(x,y) y N(x,y) son funciones homogéneas del mismo grado. La Ec.(12) será homogénea si f(x,y) es una función homogénea de grado cero. Las Ecs.(11) y (12) se transforman en ecuaciones en variables separadas al utilizar los cambios de variables: $u = \frac{y}{x}$ y $v = \frac{x}{y}$.

Si N es algebraicamente más sencilla que M, se elige $u = \frac{y}{x}$. Si M es algebraicamente más sencilla que N, se elige $v = \frac{x}{y}$.

A) Con el cambio de variable $u = \frac{y}{x}$.

 $\hfill \mathbf{La}$ Ec.(11) se reduce a la ecuación en variables separadas:

$$\frac{\mathrm{d}x}{x} + \frac{N(1,u)}{M(1,u) + uN(1,u)}du = 0 \qquad \text{la cual se integra directamente} \qquad \int \frac{\mathrm{d}x}{x} + \int \frac{N(1,u)}{M(1,u) + uN(1,u)}du = C$$

la solución de la Ec.(11) se obtiene al sustituir nuevamente u por $\frac{y}{x}$ en el resultado de la integral.

La Ec.(12) se reduce a la ecuación en variables separadas:

$$\frac{du}{f(1,u)-u} = \frac{\mathrm{d}x}{x} \qquad \qquad \text{la cual se integra directamente} \qquad \qquad \int \frac{du}{f(1,u)-u} = \int \frac{\mathrm{d}x}{x} + C$$

la solución de la Ec.(12) se obtiene al sustituir nuevamente u por $\frac{y}{x}$ en el resultado de la integral.

B) Con el cambio de variable $v = \frac{x}{y}$.

La Ec.(11) se reduce a la ecuación en variables separadas:

$$\frac{\mathrm{d}y}{y} + \frac{M(v,1)}{N(v,1) + vM(v,1)} dv = 0 \qquad \text{la cual se integra directamente} \qquad \int \frac{\mathrm{d}y}{y} + \int \frac{M(v,1)}{N(v,1) + vM(v,1)} dv = C$$

la solución de la Ec.(11) se obtiene al sustituir nuevamente v por $\frac{x}{y}$ en el resultado de la integral.

La Ec.(12) se reduce a la ecuación en variables separadas:

$$\frac{dv}{\frac{1}{f(v,1)} - v} = \frac{dy}{y}$$
 la cual se integra directamente
$$\int \frac{dv}{\frac{1}{f(v,1)} - v} = \int \frac{dy}{y} + C$$

la solución de la Ec.(12) se obtiene al sustituir nuevamente v por $\frac{x}{y}$ en el resultado de la integral.

I. Wronskiano.

$$W[y_1,y_2,\ldots,y_n] = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ y_1'' & y_2'' & \cdots & y_n' \\ \vdots & \vdots & \vdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n'' \\ \end{vmatrix} \text{Renglón de las funciones.}$$

$$\text{Primera derivada de las funciones.}$$

$$\text{Segunda derivada de las funciones.}$$

$$\vdots & \vdots & \vdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \\ \end{aligned}$$

$$\text{Derivada de orden } n-1 \text{ de las funciones.}$$

- Si el $W[y_1, y_2, \dots, y_n] = 0$, entonces, el conjunto de funciones $\{y_1, y_2, \dots, y_n\}$ es linealmente dependiente (LD). Si el $W[y_1, y_2, \dots, y_n] \neq 0$, entonces, el conjunto de funciones $\{y_1, y_2, \dots, y_n\}$ es linealmente independiente (LI).

(1) CÁLCULO DE $y_h(x)$. Ecuación Auxiliar.

Primero. Dada la ecuación:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = g(x)$$

$$(13)$$

establecer la ecuación homogénea asociada:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

$$(14)$$

Segundo. Establecer la ecuación auxiliar:

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0$$
(15)

la Ec.(15) es un polinomio de grado n, en la variable m. Al resolver este polinomio se pueden tener:

- \star raíces reales y diferentes
- ⋆ raíces conjugadas complejas, y
- ★ raíces reales repetidas
- * raíces conjugadas complejas repetidas

Por esta razón $y_h(x)$ consta de cuatro partes: $y_h(x) = y_1(x) + y_2(x) + y_3(x) + y_4(x)$, ii no necesariamente existen los cuatro casos!!

Caso i. Raíces Reales y Diferentes, $y_1(x)$.

Sean m_1, m_2, m_3, \ldots las raíces reales y diferentes de (15), entonces, una parte de $y_h(x)$ se escribe como:

$$y_1(x) = C_1 e^{m_1 x} + C_2 e^{m_2 x} + C_3 e^{m_3 x} + \cdots$$
(16)

Caso ii. Raíces Reales Repetidas, $y_2(x)$.

Sean $m=m_1=m_2=m_3=m_4\cdots$ las raíces reales repetidas de (15), entonces, otra parte de $y_h(x)$ se escribe como:

$$y_2(x) = C_1 e^{mx} + C_2 x e^{mx} + C_3 x^2 e^{mx} + C_4 x^3 e^{mx} + \cdots$$
(17)

Caso iii. Raíces Conjugadas Complejas, $y_3(x)$.

Sean $m_1 = \alpha_1 \pm \beta_1 i$, $m_2 = \alpha_2 \pm \beta_2 i$, $m_3 = \alpha_3 \pm \beta_3 i$,... las raíces complejas conjugadas de (15), entonces, otra parte de $y_h(x)$ se escribe como:

$$y_{3}(x) = e^{\alpha_{1}x} \left[C_{1} \cos(\beta_{1}x) + C_{2} \sin(\beta_{1}x) \right] + e^{\alpha_{2}x} \left[C_{3} \cos(\beta_{2}x) + C_{4} \sin(\beta_{2}x) \right] + e^{\alpha_{3}x} \left[C_{5} \cos(\beta_{3}x) + C_{6} \sin(\beta_{3}x) \right] + \cdots$$
(18)

Nota: Obsérvese que se toma el valor positivo de β en todos las casos.

Caso iv. Raíces Conjugadas Complejas Repetidas, $y_4(x)$.

Sean $m_1 = \alpha \pm \beta i = m_2 = \alpha \pm \beta i = m_3 = \alpha \pm \beta i = \cdots$ las raíces conjugadas complejas repetidas de (15), entonces, otra parte de $y_h(x)$ se escribe como:

$$y_4(x) = e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right] + \mathbf{x} e^{\alpha x} \left[C_3 \cos(\beta x) + C_4 \sin(\beta x) \right] + \mathbf{x}^2 e^{\alpha x} \left[C_5 \cos(\beta x) + C_6 \sin(\beta x) \right] + \cdots$$
(19)

Nota: Obsérvese que se toma el valor positivo de β en todos las casos.

- CONJUNTO FUNDAMENTAL DE SOLUCIONES (CFS). Sean y_1, y_2, \ldots, y_n , n soluciones LI de la Ec.(14). Entonces el conjunto $\{y_1, y_2, \ldots, y_n\}$ se llama Conjunto Fundamental de Soluciones para la Ec.(14).
- (2) CÁLCULO DE SOLUCIONES PARTICULARES $y_p(x)$ PARA LA EC.(13).

<u>Primer Método</u>: Coeficientes Indeterminados.

La solución $y_p(x)$ depende de la forma que tiene g(x). Por esta razón se utiliza la siguiente tabla:

si $g(x)$ es	entonces $y_p(x)$ se propone como
k-cte	A
$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_2 x^2 + A_1 x + A_0$
$\cos(ax)$	$A\cos(ax) + B\sin(ax)$
$\operatorname{sen}(ax)$	$A\cos(ax) + B\sin(ax)$
e^{ax}	Ae^{ax}

Si g(x) es una multiplicación de las anteriores formas, $y_p(x)$ se propone como una multiplicación de las respectivas $y_p(x)$.

Una vez propuesta $y_p(x)$, se debe calcular la solución general homogénea $y_h(x)$ y verificar que los términos de $y_p(x)$ no aparezcan en $y_h(x)$; pero si algún término de $y_p(x)$ aparecen en $y_h(x)$, entonces, se deberá multiplicar dicho término por x o x^2 o x^3 ... o por alguna potencia x^n , hasta que dicho término de la solución particular $y_p(x)$ no aparezcan en la solución $y_h(x)$. Después $y_p(x)$ debe derivarse según las derivadas que aparecen en la Ec.(13); ya calculadas las derivadas, se sustituyen en la Ec.(13) para comparar coeficientes y determinar sus respectivos valores.

Segundo Método: Variación de Parámetros.

Cuando el término independiente g(x) no tiene la forma de alguno de los de la tabla de coeficientes indeterminados, es cuando se utiliza variación de parámetros.

Se debe determinar el conjunto fundamental de soluciones (CFS) de la ecuación homogénea asociada (14). En general, una manera de determinar un CFS para la Ec.(14), es a partir de la solución general homogénea $y_h(x) = C_1y_1(x) + C_2y_2(x) + C_3y_3(x) + \cdots + C_ky_k(x)$, el CFS es:

$$\{y_1(x), y_2(x), y_3(x), \dots, y_k(x)\}$$

Primero. Sólo se trabajará con EDO-LOS de segundo y tercer orden. Entonces se deben determinar los conjuntos fundamentales de soluciones $\{y_1(x), y_2(x)\}\$ o $\{y_1(x), y_2(x), y_3(x)\}\$, según se trate de una EDO de segundo o tercer orden respectivamente.

Segundo.

Caso i. Ecuación de segundo orden. La solución particular tiene la forma:

$$y_p(x) = u_1 y_1 + u_2 y_2$$

donde:

$$u'_{1} = \frac{-g(x)y_{2}}{W[y_{1}, y_{2}]}, \qquad u_{1} = \int \frac{-g(x)y_{2}}{W[y_{1}, y_{2}]} dx$$
$$u'_{2} = \frac{g(x)y_{1}}{W[y_{1}, y_{2}]}, \qquad u_{2} = \int \frac{g(x)y_{1}}{W[y_{1}, y_{2}]} dx$$

Caso ii. Ecuación de tercer orden.

La solución particular tiene la forma:

$$y_p(x) = u_1 y_1 + u_2 y_2 + u_3 y_3$$

donde:

$$u'_{1} = \frac{g(x)[y_{2}y'_{3} - y_{3}y'_{2}]}{W[y_{1}, y_{2}, y_{3}]}, \qquad u_{1} = \int \frac{g(x)[y_{2}y'_{3} - y_{3}y'_{2}]}{W[y_{1}, y_{2}, y_{3}]} dx$$

$$u'_{2} = \frac{g(x)[-y_{1}y'_{3} + y_{3}y'_{1}]}{W[y_{1}, y_{2}, y_{3}]}, \qquad u_{2} = \int \frac{g(x)[-y_{1}y'_{3} + y_{3}y'_{1}]}{W[y_{1}, y_{2}, y_{3}]} dx$$

$$u'_{3} = \frac{g(x)[y_{1}y'_{2} - y_{2}y'_{1}]}{W[y_{1}, y_{2}, y_{3}]}, \qquad u_{3} = \int \frac{g(x)[y_{1}y'_{2} - y_{2}y'_{1}]}{W[y_{1}, y_{2}, y_{3}]} dx$$

Finalmente la solución general de la Ec.(13) se obtiene de sumar $y_h(x)$ y las $y_p(x)$ obtenidas por coeficientes indeterminados y/o por variación de parámetros.

II. Transformada de Laplace \mathscr{L} .

La transformada de Laplace de una función f(t) existe si f(t) es seccionalmente (por tramos) continua en $[0, \infty)$ y es de orden exponencial.

$$\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$$

una vez calculada la integral, representamos por F(s) a $\mathcal{L}\{f(t)\}$.

Y en general: $\mathcal{L}\lbrace g(t)\rbrace = G(s), \mathcal{L}\lbrace h(t)\rbrace = H(s), \dots$

Propiedades de la Transformada de Laplace.

• La transformada de Laplace es lineal porque:

donde: k, k_1 y k_2 son constantes.

• Transformada de una Derivada.

$$\mathcal{L}{y} = Y(s)
\mathcal{L}{y'} = sY(s) - y(0)
\mathcal{L}{y''} = s^2Y(s) - sy(0) - y'(0)
\mathcal{L}{y'''} = s^3Y(s) - s^2y(0) - sy'(0) - y''(0)
\vdots
\mathcal{L}{y^{(n)}} = s^nY(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - sy^{(n-2)}(0) - y^{(n-1)}(0)$$

• Primer Teorema de Traslación o de Desplazamiento:

$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$$

Primero identificamos el valor de a y se calcula $\mathscr{L}\{f(t)\} = F(s)$. Segundo se calcula $F(s)\big|_{s=s-a}$, y así se cumple que $\mathscr{L}\{e^{at}f(t)\} = F(s-a)$.

• Función Escalón Unitario de Heaviside, denotada como $\mathcal{U}(t-a)$ o H(t-a).

$$H(t-a) = \mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t \le a; \\ 1, & t \ge a. \end{cases}$$

• Función por partes en términos la función escalón unitario. Sea

$$f(t) = \begin{cases} f_1(t) & 0 \le t \le a \\ f_2(t) & a \le t < b \\ f_3(t) & b \le t < c \\ f_4(t) & t \ge c \end{cases}$$

entonces: $f(t) = f_1(t)\mathcal{U}(t) + [f_2(t) - f_1(t)]\mathcal{U}(t-a) + [f_3(t) - f_2(t)]\mathcal{U}(t-b) + [f_4(t) - f_3(t)]\mathcal{U}(t-c)$

• Segundo Teorema de Traslación:

$$\mathscr{L}\{f(t)\mathscr{U}(t-a)\} = e^{-as}\mathscr{L}\left\{f(t)\big|_{t=t+a}\right\}$$

Primero se identifica el valor de a y f(t). Segundo, se calcula $f(t)\big|_{t=t+a}$. Tercero se calcula $\mathscr{L}\Big\{f(t)\big|_{t=t+a}\Big\}$. Y así se tiene que $\mathscr{L}\{f(t)\mathscr{U}a\}=e^{-as}\mathscr{L}\Big\{f(t)\big|_{t=t+a}\Big\}$

III. Transformada Inversa de Laplace \mathcal{L}^{-1} .

Sea F(s) la transformada de Laplace de alguna función f(t). Entonces, se dice que f(t) es la transformada inversa de Laplace de F(s), y se denota con $\mathcal{L}^{-1}{F(s)} = f(t)$.

• La Transformada Inversa de Laplace es Lineal porque:

$$\mathcal{L}^{-1}\{kF(s)\} = k\mathcal{L}^{-1}\{F(s)\}$$

$$\mathcal{L}^{-1}\{k_1F(s) + k_2G(s)\} = k_1\mathcal{L}^{-1}\{F(s)\} + k_2\mathcal{L}^{-1}\{G(s)\}$$

donde: k, k_1 y k_2 son constantes.

Propiedades de la Transformada Inversa de Laplace.

• Forma Inversa del Primer Teorema de Traslación.

$$\mathcal{L}^{-1}\{F(s-a)\} = e^{at}f(t)$$

• Forma Inversa del Segundo Teorema de Traslación.

$$\mathscr{L}^{-1}\{e^{-as}F(s)\}=f(t)\big|_{t=t-a}\mathscr{U}a$$

Primero identificar el valor de a y F(s). Segundo calcular $\mathscr{L}^{-1}\{F(s)\}=f(t)$. Tercero evaluar $f(t)\big|_{t=t-a}$ y así se tiene que $\mathscr{L}^{-1}\{e^{-as}F(s)\}=f(t)\big|_{t=t-a}\mathscr{U}a$.