## Capstone Project: Heatmap Anomaly Detection

Week 7 Progress Report

### This week:

- 1. Understand heatmap PCA vectors
- 2. Finetune and combine heatmap clustering methods
- 3. Clustering on combined datasets (pca-ed heatmap + metrics)
- 4. Feature vectors of pretrained ViT and ResNet models.

### Recap:

Definition of "clearly broken grid:"

Triangle/line structure not visible even with noisy bootstrap enhancement. We do not care about rest of heatmap as long as this pattern is clearly defined.



- Created baseline of "clearly broken banners" for two grids:
  - "Triangle grid": 57 clearly broken out of 872 → ~6.5%
  - "Line grid": 113 clearly broken out of  $861 \rightarrow \sim 13.5\%$
  - Is it reasonable that there is such a discrepancy?
- 2. Added heatmap images for banners classified as "broken" to <u>GitHub</u>.

### PCA (recap):





- PCA on 3000 dimensional binned heatmap vectors (EV ~ 4%, 3% resp.)
- Shows quite good pattern separating broken/non-broken banners.
- PCA vectors seem to be transferable between grid\_id's (at least with 3 banners).

### Analysis of PCA vectors (333519):



- Analysis of PCA-basis vectors:
  - PCA\_1 = c\_{ij} bucket\_{ij}, etc.
  - Draw heatmap for c\_{ij} coefficients.
- PCA1:
  - Captures "noise" outside of main clusters.
  - Especially focuses on two regions on the banner-border
- PCA2:
  - Focuses more on central clusters again together with similar outside regions.
- PCA3:
  - Similar to PCA1.
- PCA4:
  - Not really sure.

### Analysis of PCA vectors (333346):



#### PCA1:

- Again, captures "noise" outside of main clusters.
- Stronger focus on left border.
- Similar structure on top and bottom.

#### PCA2:

- Again similar structure on top and bottom

  → not really sure why this is
  grid\_id-independent
- PCA3:
  - Again similar to PCA1.
  - Including "bot-like" behavior
- PCA4:
  - Captures "bot-like" behavior.

# Heatmap Dataset: K-NN

#### Comparison

- PCA dimensions: range from 2 to 200
- K-nn: 1, 2, 5, 10
- Threshold: 90, 95, 99

#### Grid id 333346

#### Best Results:

- Accuracy: 0.95
- F1 score: 0.8

#### Best Hyperparameter:

- PCA: 6
- K-NN: 10
- Threshold: 90

#### Predict on Test dataset:

• Confusion matrix: [224 1]

[9 25]

- Accuracy: 0.96
- F1 Score: 0.83
- Predicted Knn labels

#### **Grid id 333519**

#### **Best Results:**

- Accuracy: 0.98
- F1 score: 0.85

#### Best Hyperparameter:

- PCA: 10
- K-NN: 5
- Threshold: 95

#### Predict on Test dataset:

- Confusion matrix: [242 3]
  - [6 11]
- Accuracy: 0.97
- F1 Score: 0.71
- Predicted Knn labels

# Heatmap Dataset: DBScan

#### Comparison

- PCA dimensions: range from 2 to 200
- Epsilons: 5,10,20,30,40,50,60,70,80,90,100
- Min # of data points: 2,3,4,5,10

#### **Grid id 333346**

#### Best Results:

- Accuracy: 0.99
- F1 score: 0.94

#### Best Hyperparameter:

- PCA: 12
- Epsilons: 10
- Min\_sample: 10

#### Predict on Test dataset:

- Confusion matrix: [213 12]
  - [ 0 34 ]
- Accuracy: 0.95
- F1 Score: 0.85
- Predicted DBScan labels

#### **Grid id 333519**

#### **Best Results:**

- Accuracy: 0.99
- F1 score: 0.93

#### Best Hyperparameter:

- PCA: 8
- Epsilons: 10
- Min\_sample: 10

#### Predict on Test dataset:

- Confusion matrix: [235 10]
  - [0 17]
- Accuracy: 0.96
- F1 Score: 0.77
- Predicted DBScan labels

### Heatmap Dataset: OVM and Isolation Forest

```
Grid ID 333346:
                                                             Grid ID 333519:
Best OVM model result:
                                                             Best OVM model result:
                                                              Confusion matrix for 163 PCA dimensions:
  Confusion matrix for 85 PCA dimensions:
                                                                [[ 56 189]
    [[ 67 158]
                                                                 0 1711
   [ 0 34]]
                                                              F1 Score for 163 PCA dimensions: 0.15
  F1 Score for 85 PCA dimensions: 0.30
Best Isolation Forest result:
                                                             Best Isolation Forest result:
Confusion matrix for 6 PCA dimensions:
                                                             Confusion matrix for 10 PCA dimensions:
  [[223 2]
                                                               [[225 20]
[ 1 33]]
                                                              [ 1 16]]
F1 Score for 6 PCA dimensions with n_estimator = 50: 0.96
                                                             F1 Score for 10 PCA dimensions with n_estimator = 100: 0.60
```

For OVM, we select the best model from grid search for *PCA dimensions range* (from 2 to 200).

For IF, we select the best model from grid search over *PCA dimensions* (from 2 to 200) and number of estimators [5,10,50,100,150,200].

### **Heatmap Dataset: K-Means**

```
Grid_ID 333346:

Best PCA dimension: 54

[[225 0]
 [ 31 3]]

Test accuracy: 0.88

Test precision: 1.00

Test recall: 0.09

Test f1-score: 0.16
```

```
Grid_ID 333519:

Best PCA dimension: 86

[[241 4]
  [ 2 15]]

Test accuracy: 0.98

Test precision: 0.79

Test recall: 0.88

Test f1-score: 0.83
```

### Heatmap Dataset: Combining all 5 models

```
Grid_ID 333346:
Confusion matrix for ((1, 1, 1, 1, 1)) included and 1:
    [[224     1]
    [ 10     24]]
Best f1 score: 0.97

Grid_ID 333519:
Confusion matrix for ((1, 1, 1, 1, 1)) included and 1:
    [[241     4]
    [ 1     16]]
Best f1 score: 0.87
```

### **Combine datasets (Recap)**







- Basic supervised classifiers (Decision Trees, Random Forest, Logistic Regression, XGBoost, etc) don't perform well
  - Problem with unbalanced dataset and overfitting.
    - Upsample/downsample → slight improvements but not competitive
  - Overfitting → Grid search over model complexity (regularization).
  - Add interactions/higher-order features
- **To Do** → Try to improve using SMOTE/other more sophisticated "upsamplying" strategies.
- PCA less powerful but shows some structure.

### **Combined Datasets**



- Different methods of aggregating PCA's:
  - PCA on both individually →
     combine → scale → combined
     PCA (top)
  - PCA on HM only → combine → scale → combined PCA (bottom)
  - Some dependence on nr of heatmap-PCA components.
- Adding more components changes scores a little bit.

### **Combined Datasets clustering performance:**

```
Grid: 333519
Training performance (KMeans & 70 PCA dim's):
 Confusion matrix for ((0, 0, 0, 1, 0)) included and 0:
   [[555 4]
  [ 0 30]]
 F1-score for ((0, 0, 0, 1, 0)) included and 0:
 Accuracy for ((0, 0, 0, 1, 0)) included and 0: 0.99
 Recall for ((0, 0, 0, 1, 0)) included and 0: 1.00
 Precision for ((0, 0, 0, 1, 0)) included and 0: 0.88
Test performance (KMeans & 70 PCA dim's):
 Confusion matrix for 70 PCA dimensions:
   [[243 0]
  [ 0 15]]
 F1-score for 70 PCA dimensions: 1.00
 Accuracy for 70 PCA dimensions: 1.00
 Recall for 70 PCA dimensions: 1.00
 Precision for 70 PCA dimensions: 1.00
```

- Run Gridsearch over different clustering methods (KNN, KMeans, DBScan, IsolationForest, OneClassSVM)
- Compare combined performance and select "best performing" model.
- DBScan on 2PCA dimension very good (but test performance worse.
- KMeans really powerful but very sensitive:

```
Confusion matrix for 30 PCA dimensions:
[[ 3 556]
[28 2]]
F1-score for 30 PCA dimensions: 0.01
Accuracy for 30 PCA dimensions: 0.07
Precision for 30 PCA dimensions: 0.07
Precision for 30 PCA dimensions: 0.00
------
Confusion matrix for 32 PCA dimensions:
[[556 3]
[ 3 27]]
F1-score for 32 PCA dimensions: 0.90
Accuracy for 32 PCA dimensions: 0.90
Precision for 32 PCA dimensions: 0.90
```

### Combined Datasets clustering performance:

Grid: 333346

Training performance KMeans & 50 PCA dim's:

```
Confusion matrix for ((0, 0, 0, 1, 0)) included and 0: [[506 2] [ 0 72]]
F1-score for ((0, 0, 0, 1, 0)) included and 0: 0.99
Accuracy for ((0, 0, 0, 1, 0)) included and 0: 1.00
Recall for ((0, 0, 0, 1, 0)) included and 0: 1.00
Precision for ((0, 0, 0, 1, 0)) included and 0: 0.97
```

Test performance (KMeans & 50 PCA dim's):

```
Confusion matrix for 50 PCA dimensions: [[219 1] [ 30 1]] F1-score for 50 PCA dimensions: 0.06 Accuracy for 50 PCA dimensions: 0.88 Recall for 50 PCA dimensions: 0.03 Precision for 50 PCA dimensions: 0.50
```

- Run Gridsearch over different clustering methods (KNN, KMeans, DBScan, IsolationForest, OneClassSVM)
- Compare combined performance and select "best performing" model.
- KMeans again excellent performance
- Other clustering methods pretty poor

### **Pretrained ViT/ResNet:**



- Feed (transformed and binned) heatmaps into pre-trained ViT/ResNeT.
  - google/ViT: Transformer-based architecture, 14M images (224x224), 21k classes
  - Microsoft/ResNet-1k: trained on ImageNet-1k (224x224), 1k classes.
- Extract features (before classification head)
  - ViT  $\rightarrow$  151296 dim'l feature vector
  - ResNet  $\rightarrow$  2048 dim'l feature vector
- Play with upsampling (bootstrapping + noise)
- PCA and other dim'l reduction techniques
  - Apply clustering methods

### ViT + PCA:

MVU Din



### ResNet + PCA:



- PCA → some structure, but not as good as vanilla method.
- (nonlinear) MVU shows clear patterns however → clearly features contain important information.
- Clustering on PCA's not performant.
- → require fine-tuning? Contrastive learning on synthetic data?

### ViT + PCA + data enhancement:

PCA Scatterplot for grid id 333346



 $PCA \rightarrow$  worse especially in the 333519

### ResNet + PCA + data enhancement:



 $PCA \rightarrow worse$  especially in the 333519

### Next steps:

- Further exploration of "basic models":
  - Stability of models across grids.
    - Access to more grid's?
- "Productionize" current models into single pipeline:
  - Clustering on heatmap
  - Clustering on Metrics+heatmap
  - Click clustering methods
  - Clustering of pretrained features (?)
  - → combine into Majority voting pipeline
     → stability?

- Pre-trained models: Can we access "nonlinear" geometry?
  - o Combine with vanilla features?
  - Re-add classification head
  - Other models trained on contrastive tasks?
  - Train Autoencoder on arbitrary synthetic clusterings (ask AE to recreate original image with discriminative loss).
  - Train/Fine-tune ResNet/ViT/... on synthetic data to count number of clusters → might lead to interesting feature vectors.

## **Appendix**

### MVU – study "data manifold":





- Study data manifold using Maximum Variance Unfolding/Semidefinite Embedding (MVU)
  - Intuition: create graph of close points in high dimensional space with distances
  - Use convex optimization to maximize distance between disconnected points s.t. connected points being nearby.

### Click clustering method (recap):



- 1. Bootstrap 100'000 clicks from fully aggregated dataset (filtered by grid\_id).
- 2. Normalize (Standardize)
- 3. Run DBSCAN cluster with eps = .2 and min\_samples = 1000
  - $\rightarrow$  4 clusters + noise.
- 4. For given (noisy bootstrap enhanced) domain, get 1-nn for each click in training data and select that label {0,1,2,3}
  - a. If pct of points labelled as noise above a certain threshold → anomalous.
  - b. Hypothesis testing: p\_0 = pct of noise points in training data. H\_0: p\_0 < noise/total, H\_A: p\_0 >= noise/total → p-value larger than threshold (cannot reject null) → anomalous.

### Click clustering method:



Epsilon: 0.13 delta pct thres: 0.00 Pct\_thres: 0.63

Broken pct: 0.14, Total in CB: 27, Missed in CB: 1, Pct missed: 0.04, Not in CB: 2 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)): ( 0.96 , 0.04 ) ( 0.01 , 0.99 )

- 100k bootstrapped samples to generate clusters.
- Use enhanced 5k bootstrapped samples per domain.
  - The two grid's perform very well upon hyperparameter tuning:
    - Grid\_id = 333346 performs best with eps = 0.13 and 1k min\_sample

### Click clustering method:



**100k** bootstrapped samples to generate clusters.

Use enhanced **5k** bootstrapped samples per domain.

- The two grid's perform very well upon hyperparameter tuning:
  - Grid\_id = 333519 performs best with eps = 0.13 and 1k min sample
  - We remove "corner clusters"

Epsilon: 0.15 delta pct thres: 0.00 Pct\_thres: 0.57

Broken pct: 0.06, Total in CB: 29, Missed in CB: 5, Pct missed: 0.17, Not in CB: 0 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)): (0.83, 0.17) (0.00, 1.00)

### Performance across grid:

Epsilon: 0.13 Estimated number of clusters: 6 Estimated number of noise points: 39161 Pct of noise points: 0.391610







- Correspondingly, translating the same parameters from one to the does perform well:
  - o 333346 → 333519:
    - Remove corner cluster:
      - TPR: 0.97 (1/40 missed)
      - FNR: 0.03 (5/600-ish)
    - Include corner cluster:
      - TPR: 0.8 (8/40 missed)
      - FNR: 0.0 (0/600-ish)
  - 333519 → 333346:

Epsilon: 0.13 Pct\_thres: 0.64

```
Broken pct: 0.07, Total in CB: 40, Missed in CB: 1, Pct missed: 0.03, Not in CB: 5 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)):
   ( 0.97 , 0.03 )
   ( 0.01 , 0.99 )
```