Support Vector Machines (SVM)

Master MLDS

Université Paris Descartes

Lazhar.labiod@parisdescartes.fr

SVM

- Said to start in 1979 with Vladimir Vapnik's paper
- Major developments throughout 1990's
- Elegant theory
 - Has good generalization properties
- Have been applied to diverse problems very successfully in the last 10-15 years
- One of the most important developments in pattern recognition in the last 15 years

Linear Discriminant Functions

A discriminant function is linear if it can be written as

$$g(x) = w^{t}x + w_{0}$$

$$g(x) > 0 \Rightarrow x \in class 1$$

$$g(x) < 0 \Rightarrow x \in class 2$$

which separating hyperplane should we choose?

Linear Discriminant Functions

- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample x_i
- If we see new sample close to sample i, it is likely to be on the wrong side of the hyperplane

Poor generalization (performance on unseen data)

Linear Discriminant Functions

Hyperplane as far as possible from any sample

- New samples close to old samples will be classified correctly
- Good generalization

SVM

Idea: maximize distance to the closest example

- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example

SVM: Linearly Separable Case

• SVM: maximize the *margin*

- margin is twice the absolute value of distance b of the closest example to the separating hyperplane
- Better generalization (performance on test data)
 - in practice
 - and in theory

SVM: Linearly Separable Case

- Support vectors are samples closest to separating hyperplane
 - they are the most difficult patterns to classify
 - Optimal hyperplane is completely defined by support vectors
 - of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $g(x) = w^t x + w_0$
- absolute distance between x and the boundary g(x) = 0

$$\frac{\left| \boldsymbol{W}^{t} \boldsymbol{X} + \boldsymbol{W}_{0} \right|}{\left\| \boldsymbol{W} \right\|}$$

distance is unchanged for hyperplane

$$g_1(x) = \alpha g(x)$$

$$\frac{\left|\alpha \mathbf{w}^{t} \mathbf{X} + \alpha \mathbf{w}_{0}\right|}{\|\alpha \mathbf{w}\|} = \frac{\left|\mathbf{w}^{t} \mathbf{X} + \mathbf{w}_{0}\right|}{\|\mathbf{w}\|}$$

• Let x_i be an example closest to the boundary. Set $|w^t x| + w| = 1$

$$\left| \mathbf{w}^{t} \mathbf{x}_{i} + \mathbf{w}_{0} \right| = 1$$

Now the largest margin hyperplane is unique

SVM: Formula for the Margin

- For uniqueness, set $|\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0| = 1$ for any example \mathbf{x}_i closest to the boundary
- now distance from closest sample x_i to g(x) = 0 is

$$\frac{\left|\mathbf{w}^{t}\mathbf{X}_{i}+\mathbf{w}_{0}\right|}{\|\mathbf{w}\|}=\frac{1}{\|\mathbf{w}\|}$$

Thus the margin is

$$m = \frac{2}{\|\mathbf{w}\|}$$

- Maximize margin $m = \frac{2}{\|\mathbf{w}\|}$
 - subject to constraints

$$\begin{cases} w^t x_i + w_0 \ge 1 & \text{if } x_i \text{ is positive example} \\ w^t x_i + w_0 \le -1 & \text{if } x_i \text{ is negative example} \end{cases}$$

- Let $\begin{cases} z_i = 1 & \text{if } x_i \text{ is positive example} \\ z_i = -1 & \text{if } x_i \text{ is negative example} \end{cases}$
- Can convert our problem to

minimize
$$J(w) = \frac{1}{2} ||w||^2$$

constrained to $Z_i(w^i x_i + w_o) \ge 1 \quad \forall i$

J(w) is a quadratic function, thus there is a single global minimum

Use Kuhn-Tucker theorem to convert our problem to:

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}$$
constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$

- $\alpha = {\alpha_1, ..., \alpha_n}$ are new variables, one for each sample
- Can rewrite $L_D(\alpha)$ using n by n matrix H:

$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}^{t} H^{t} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$

where the value in the *i*th row and *j*th column of *H* is

$$H_{ij} = Z_i Z_i X_i^t X_i$$

Use Kuhn-Tucker theorem to convert our problem to:

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}$$
constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$

- $\alpha = {\alpha_1, ..., \alpha_n}$ are new variables, one for each sample
- $L_D(\alpha)$ can be optimized by quadratic programming
- $L_D(\alpha)$ formulated in terms of α
 - depends on w and w_0

- After finding the optimal $\alpha = \{\alpha_1, ..., \alpha_n\}$
 - For every sample i, one of the following must hold
 - $\alpha_i = 0$ (sample *i* is not a support vector)
 - $\alpha_i \neq 0$ and $z_i(w^t x_i + w_0 1) = 0$ (sample i is support vector)
 - can find \mathbf{w} using $\mathbf{w} = \sum_{i} \alpha_i \mathbf{z}_i \mathbf{x}_i$
 - can solve for \mathbf{w}_0 using any $\alpha_i > 0$ and $\alpha_i \left[\mathbf{z} \left(\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0 \right) 1 \right] = 0$ $\mathbf{w}_0 = \frac{1}{7} \mathbf{w}^t \mathbf{x}_i$
 - Final discriminant function:

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i x_i\right)^t x + w_0$$

where S is the set of support vectors

$$S = \{x \mid \alpha \neq 0\}$$

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha z_{i} z_{j} x_{i}^{t} x$$
constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$

- $L_D(\alpha)$ depends on the number of samples, not on dimension of samples
- samples appear only through the dot products $\mathbf{x}_{i}^{t}\mathbf{x}_{j}$
- This will become important when looking for a *nonlinear* discriminant function, as we will see soon
- Code available on the web to optimize

Non Linear Mapping

- Cover's theorem:
 - "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a lowdimensional space"
- One dimensional space, not linearly separable

• Lift to two dimensional space with $\varphi(x) = (x, x^2)$

Non Linear Mapping

- To solve a non linear problem with a linear classifier
 - 1. Project data x to high dimension using function $\varphi(x)$
 - 2. Find a linear discriminant function for transformed data $\varphi(x)$
 - 3. Final nonlinear discriminant function is $\mathbf{g}(\mathbf{x}) = \mathbf{w}^t \varphi(\mathbf{x}) + \mathbf{w}_0$

In 2D, discriminant function is linear

$$g\left(\begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} + \mathbf{W}_0$$

• In 1D, discriminant function is not linear $g(x) = w_1 x + w_2 x^2 + w_0$

Non Linear SVM

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"
 - 1. poor generalization to test data
 - 2. computationally expensive
- SVM avoids the "curse of dimensionality" problems by
 - enforcing largest margin permits good generalization
 - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
 - computation in the higher dimensional case is performed only implicitly through the use of *kernel* functions

Recall SVM optimization

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_j z_j x_i^t x_j$$

- Note this optimization depends on samples x_i only through the dot product x_itx_j
- If we lift x_i to high dimension using $\varphi(x)$, need to compute high dimensional product $\varphi(x_i)^t \varphi(x_i)$

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{j} z_{j} \varphi(x_{i}) \varphi(x_{j})$$

$$K(x_{i}, x_{j})$$

Idea: find kernel function K(x_i,x_i) s.t.

$$K(x_i,x_j) = \varphi(x_i)^t \varphi(x_j)$$

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i \mathbf{z}_i \mathbf{z}_j \varphi(\mathbf{x}_i)^{\dagger} \varphi(\mathbf{x}_j)$$

$$K(\mathbf{x}_i, \mathbf{x}_j)$$

- Then we only need to compute $K(x_i,x_j)$ instead of $\varphi(x_i)^t \varphi(x_j)$
 - "kernel trick": do not need to perform operations in high dimensional space explicitly

- Suppose we have 2 features and $K(x,y) = (x^ty)^2$
- Which mapping $\varphi(x)$ does it correspond to?

$$K(x,y) = (x^{t}y)^{2} = \left[\left[x^{(1)} \quad x^{(2)} \right] \left[y^{(1)} \right] \right]^{2} = \left(x^{(1)}y^{(1)} + x^{(2)}y^{(2)} \right)^{2}$$

$$= (x^{(1)}y^{(1)})^{2} + 2(x^{(1)}y^{(1)})(x^{(2)}y^{(2)}) + (x^{(2)}y^{(2)})^{2}$$

$$= \left[x^{(1)} \right]^{2} \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^{2} \left[y^{(1)} \right]^{2} \sqrt{2}y^{(1)}y^{(2)} (y^{(2)})^{2} \right]$$

Thus

$$\varphi(x) = [x^{(1)}]^2 \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^2$$

- How to choose kernel function $K(x_i,x_i)$?
 - $K(x_i,x_j)$ should correspond to product $\varphi(x_i)^t \varphi(x_j)$ in a higher dimensional space
 - Mercer's condition tells us which kernel function can be expressed as dot product of two vectors
 - Kernel's not satisfying Mercer's condition can be sometimes used, but no geometrical interpretation
- Some common choices (satisfying Mercer's condition):
 - Polynomial kernel

$$K(x_i, x_j) = (x_i^t x_j + 1)^p$$

Gaussian radial Basis kernel (data is lifted in infinite dimensions)

$$K(x, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$$

Non Linear SVM

search for separating hyperplane in high dimension

$$\mathbf{w}\varphi(\mathbf{x})+\mathbf{w}_0=\mathbf{0}$$

• Choose $\varphi(x)$ so that the first ("0"th) dimension is the augmented dimension with feature value fixed to 1

$$\varphi(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(1)}\mathbf{x}^{(2)} \end{bmatrix}$$

• Threshold parameter \mathbf{w}_0 gets folded into the weight vector \mathbf{w}

$$\begin{bmatrix} w_o & w \end{bmatrix} \begin{bmatrix} 1 \\ * \end{bmatrix} = 0$$

Non Linear SVM

- Will not use notation $a = [w_0 \ w]$, we'll use old
 - notation w and seek hyperplane through the origin

$$w\varphi(x)=0$$

- If the first component of $\varphi(x)$ is not 1, the above is equivalent to saying that the hyperplane has to go through the origin in high dimension
 - removes only one degree of freedom
 - But we have introduced many new degrees when we lifted the data in high dimension

Non Linear SVM Recepie

- Start with data $x_1,...,x_n$ which lives in feature space of dimension d
- Choose kernel $K(x_i,x_j)$ or function $\varphi(x_i)$ which takes sample x_i to a higher dimensional space
- Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j K(x_i, x_j)$$

constrained to $0 \le \alpha_i \le \beta$ $\forall i$ and $\sum_{i=1}^{n} \alpha_i \mathbf{z}_i = \mathbf{0}$

Non Linear SVM Recipe

Weight vector w in the high dimensional space:

$$\mathbf{W} = \sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i)$$

- where **s** is the set of support vectors
- $S = \left\{ x_{i} \mid \alpha_{i} \neq \mathbf{0} \right\}$
- Linear discriminant function of largest margin in the high dimensional space:

$$g(\varphi(x)) = w^t \varphi(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x)$$

Non linear discriminant function in the original space:

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$

• decide class 1 if g(x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

$$g(x) = \sum_{x_i \in S} \alpha_i \mathbf{z}_i K(x_i, x)$$

$$g(x) = \sum_{x \in \mathcal{X}} f(x)$$

weight of support vector **x**_i

∓1

similarity between **x** and support vector **x**_i

most important training samples, i.e. support vectors

$$K(x_i, x) = \exp\left(-\frac{1}{2\sigma^2}||x_i - x||^2\right)$$

- Class 1: $\mathbf{x_1} = [1,-1], \mathbf{x_2} = [-1,1]$
- Class 2: $\mathbf{x_3} = [1,1], \mathbf{x_4} = [-1,-1]$

- Use polynomial kernel of degree 2:
 - $K(x_i,x_i) = (x_i^t x_i + 1)^2$
 - This kernel corresponds to mapping

$$(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}$$

Need to maximize

$$\mathbf{L}_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{j} \mathbf{z}_{j} \mathbf{z}_{j} \left(\mathbf{x}_{i}^{t} \mathbf{x}_{j} + 1 \right)$$

constrained to $0 \le \alpha_i \ \forall i \ and \ \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$

• Can rewrite
$$L_D(\alpha) = \sum_{i=1}^4 \alpha_i - \frac{1}{2} \alpha^i H \alpha$$

• where $\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$ and $H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ -1 & -1 & 1 & 9 \end{bmatrix}$

• Take derivative with respect to lpha and set it to $oldsymbol{o}$

$$\frac{d}{da}L_{D}(\alpha) = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 9 & 1 & -1 & -1\\1 & 9 & -1 & -1\\-1 & -1 & 9 & 1\\-1 & -1 & 1 & 9 \end{bmatrix} \alpha = 0$$

- Solution to the above is $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.25$
 - satisfies the constraints $\forall i$, $0 \le \alpha_i$ and $\alpha_1 + \alpha_2 \alpha_3 \alpha_4 = 0$
 - all samples are support vectors

$$(x) = \begin{bmatrix} \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}$$

Weight vector w is:

$$w = \sum_{i=1}^{4} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i) = 0.25 (\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) - \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4))$$
$$= \begin{bmatrix} 0 & 0 & 0 & \sqrt{2} & 0 & 0 \end{bmatrix}$$

- by plugging in $\mathbf{x_1} = [1,-1]$, $\mathbf{x_2} = [-1,1]$, $\mathbf{x_3} = [1,1]$, $\mathbf{x_4} = [-1,-1]$
- Thus the nonlinear discriminant function is:

$$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = \sqrt{2} (\sqrt{2} x^{(1)} x^{(2)}) = 2x^{(1)} x^{(2)}$$

$$g(x) = -2x^{(1)}x^{(2)}$$

decision boundaries nonlinear

decision boundary is linear

SVM Summary

Advantages:

- Based on nice theory
- excellent generalization properties
- objective function has no local minima
- can be used to find non linear discriminant functions
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space

Disadvantages:

- tends to be slower than other methods
- quadratic programming is computationally expensive
- Not clear how to choose the Kernel