Note of A. Weil Theorem

William

May 25, 2014

1 Basic Facts

Definition 1.1 subgroup Γ is concrete subgroup of G, if there exists a neighbourhood U of 1 such that for all $a \neq 1 \in \Gamma$, $Ua \cap U = \emptyset$, equivalently $U^{-1}U \cap \Gamma = U \cap \Gamma = \{1\}$.

Lemma 1.1 If U is a separating neighbourhood, π is the nature mapping, then π is inject on xU, namely $\pi|_{xU}: xU \leftrightarrow \pi[xU]$. If for all $x \in X \subset G$ that $X \cap x\Gamma = \{x\}$, then $\sum_{\gamma \in \Gamma} \chi_{x\gamma} = 1$

Theorem 1.1 $1 \in X$ is a measurable subset of G, $\pi|_X : X \leftrightarrow G/\Gamma$. We have

$$\int_{G} f d\nu = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} f(x\gamma) dx^{\circ} = \int_{X} \sum_{\gamma \in \Gamma} f(x\gamma) d\nu.$$

Notice that

$$\sum_{\gamma \in \Gamma} \chi_X(x\gamma) = \begin{cases} 1, & x \in X, \\ 0, & x \notin X \end{cases}$$
$$X \cap x\Gamma = \begin{cases} \{x\}, & x \in X, \\ \emptyset, & x \notin X \end{cases}$$

 ν is an A. Weil measure: $\nu(X) = 1$.

2 Weil Theorem

Assume that M is a locally compact space and G is a locally compact group acting on M, and M is G-homogeneous space.

Definition 2.1 *G* is purely noncontinuous, if for all $x \in M$, there exists the neighbourhood V of x for all $g \neq 1$, $V \cap gV = \emptyset$. It implies that $V \cap Gx = \{x\}$.

Lemma 2.1 We have the map $f^{\circ}(\pi(x)) = \int_{G} f(ax) da : C_{C}(M) \to C_{C}(M/G)$

Lemma 2.2 There exists $f \in C_C(M)$ such that $\int_G f(ax) da = 1$ for all $x \in K$ where K is any compact subset of G.

Lemma 2.3 For all $f \in C_C(M)$ there exists $g \in C_C(M)$ such that $f = fg^{\circ}$.

Remark 2.1 Assume that $K \subset U$ where K and U are compact subset and pre-compact subset of M respectively. We have $K \prec g \prec U, g \in C_C(M)$.

Extent
$$f = \begin{cases} \frac{g(x)}{g^{\circ}(x)}, & x \in GK, \\ \cdots, & else \end{cases}$$
 to M continuously.

Theorem 2.1 (A. Weil Theorem) We have

- i) ν is a Δ -relatively invariant measure iff $d\nu = \Delta d\mu$
- ii) $\Delta^r_{\nu} = \Delta^l_{\nu} \Delta_{M,G}$
- iii) There exists μ , a Δ -relatively invariant measure iff $\Delta^r_G = \Delta \Delta^r_{M,G}$
- iv) $\int_M f(x) dx = \int_{M/G} d\mu \int_G f(gx) dg$
- v) $\int_{M/H} f(x) dx = \int_{M/G} d\mu \int_{G/H} f(gx) dg$ for all subgroup H of G.