Name:				Mark =/ 44
Part 1:	Mul	tiple C	hoice Section	10 marks
1.			ontain pure substances. In each flask, only disper The substances in the two flasks could be:	rsion forces exist between
	A.	CH ₄	and H ₂ S	
	B.	NH ₃	and F_2	
	C.	SiH ₄	and H ₂ O	
	D.	CH ₄	and F_2	
2.	Dian	nond is	an electrical insulator because:	
	A.	It is a	a crystalline substance.	
	B.	All th	e valence electrons are delocalised.	
	C.	All th	e valence electrons are involved in single covaler	nt bonds.
	D.	It co	nsists only of non-conducting carbon atoms.	
3.	Whic	ch of the	e following have hydrogen bonding between the	r molecules?
		I	CH ₃ F	
		II	CH ₃ NH ₂	
		Ш	CH₃OH	
		IV	CS ₂	
	A.	II an	d III only	
	B.	III ar	d IV only	
	C.	I and	l III only	
	D.	I, II a	and III only	
4.	to ox which	tygen. I	as discrete H ₂ O molecules with the two hydrogen Below 0°C, at atmospheric pressure, water exis dividual H ₂ O molecules are held in an open netwo ater molecules together in the ice lattice is best	ts as a crystalline solid, ice, in rk lattice. The bonding that
	A.	dispe	ersion forces only	
	B.	dispe	ersion forces plus hydrogen bonding	
	C.	ionic	bonding	

ionic bonding plus hydrogen bonding

D.

5. Consider the following set of successive ionisation energies (MJ mol⁻¹):

Which of the following elements is most likely to have such a set of ionisation energies?

- A. C
- B. K
- C. Mg
- D. O
- 6. Which one of the following compounds has a net dipole?
 - A. CBr₄
 - B. CH₃Br
 - C. C₂Br₆
 - D. Br₂C=CBr₂
- 7. The molar heat of sublimation (the heat required to convert 1 mol of solid directly to the gas state) of solid helium is 0.015 kJ mol⁻¹ whereas that of ice is 46.9 kJ mol⁻¹.

Which of the following statements help to explain these facts?

- I Only dispersion forces are present between helium atoms.
- II There is strong hydrogen bonding between water molecules in ice.
- III There are strong covalent bonds within water molecules in ice.
- IV There are weak covalent bonds between helium atoms.
- A. I and II only.
- B. I, II and III only.
- C. I, II and IV only.
- D. II, III and IV only.
- 8. Which of the following equations correctly represents the second ionisation energy of the element aluminium?
 - A. $A\ell^+(s) \rightarrow A\ell^{2+}(g) + e^-$
 - B. $A\ell(g) \rightarrow A\ell^{3+}(g) + 3e^{-}$
 - C. $A\ell^+(g) \rightarrow A\ell^{2+}(g) + e^-$
 - D. $A\ell^{2+}(g) \rightarrow A\ell^{3+}(g) + e^{-}$

9. The molecule $N_2C\ell_4$ has the number **X** non-bonding pairs of electrons, number **Y** of polar bonds and the number **Z** bonding pairs of electrons. What are the values of **X**, **Y** and **Z**?

	X	Υ	Z
A.	15	5	4
B.	14	4	5
C.	15	5	5
D	14	4	4

- 10. Which of the following statements about dispersion forces in a series of molecules is correct?
 - A. An increased molecular weight leads to greater mass of the molecule and hence stronger dispersion forces.
 - B. An increased number of protons and electrons lead to stronger dispersion forces.
 - C. Larger electronegativity differences lead to stronger dispersion forces.
 - D. The presence of an atom such as O or N bonded to H leads to stronger dispersion forces.

End of Part 1

(a)	Name the bonding that would exist in a container of each substance giving reasons for your answer.
N_2	
NCℓ ₃	

; 2. Complete the following table:

Species	Electron dot diagram	Name of shape	Polarity (polar or non-polar)
SO ₂			
HCN			
SO ₄ ²⁻			N/A
PI ₃			

(11 marks)

3. The following table gives some information about three elements in the fourth row of the Periodic Table.

Element	Electrical conductivity (MS m ⁻¹)	First ionisation energy (kJ moΓ')	Melting point (°C)
Potassium	14	425	63
Calcium	29	596	650
Germanium	1 x 10 ⁻⁴	762	938

		(1 m
J	Justify your answer.	
-		
_		
_		
_		
E	Explain the trend in ionisation energies of the elements above.	(3 ma
_		
_		
_		
_		
		(1 m
	Nould the value of potassium's second ionisation energy be larger or sr hat for calcium? Explain why.	naller t
_		
_		
-		
_		

4.	Use y	our understanding of atomic structure and bondi	ng to:		
	(a)	Complete a sketch showing the boiling points of and group 17 () on the following graph.	of the hydrides	s of group 14 (()
	Melting Point		I 4	5	
				Period Numl	oer
				((4 marks)
	(b)	Explain the overall trend shown on the graph:			
					(2 marks)
	(c)	Give reasons for any exceptions to this trend.			. ,

	(2 marks
Give reasons for any exceptions to this trend.	
	(1 mark

5.	Using your	knowledge of	atomic structure and	bonding explain	the following physical data:
----	------------	--------------	----------------------	-----------------	------------------------------

Substance	Solubility in water at 25°C (g L ⁻¹)
1-pentanol	20.0
(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH)	22.0
1-hexanol	F 0
(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH)	5.9
	(4 marks)

End of Test

Year 12 Chemistry Topic Test # 2 (Bonding) - 2012

Name: ANSWERS

Part 1: Multiple Choice Section 10 marks

1. D 2. C 3. A 4. B 5. C 6. B 7. A 8. C 9. B 10. B ✓ each

Part 2: Short Answer Section 34 marks

- 1. Nitrogen (N_2) exists is a gas at room temperature. Nitrogen trichloride ($NC\ell_3$) exists as a liquid at room temperature.
 - (a) Name the bonding that would exist in a container of each substance giving reasons for your answer.
 - N_2 N-N bonds are covalent

Intermolecular bonding is dispersion forces only as N_2 molecules are non-polar

 $NC\ell_3$ N-C ℓ bonds are covalent

Intermolecular bonding is dipole-dipole and dispersion forces – dipole-dipole because molecule is polar

- dispersion forces because they occur between all particles ✓

(5 marks)

2. Complete the following table:

Species	Electron dot diagram	Name of shape	Polarity (polar or non-polar)
SO ₂	·o̯ s̄ .o̞:	bent	polar
HCN	H—C≡N:	linear	polar
SO ₄ ²⁻	[;Ö: ;Ö-\$-Ö: ;O:	tetrahedral	N/A
PI ₃	<u> </u>	pyramidal	polar

(11 marks)

3. The following table gives some information about three elements in the fourth row of the Periodic Table.

Element	Electrical conductivity (MS m ⁻¹)	First ionisation energy (kJ moΓ')	Melting point (°C)
Potassium	14	425	63
Calcium	29	596	650
Germanium	1 x 10 ⁻⁴	762	938

Calcium		29	596	650	
Germanium		1 x 10 ⁻⁴	762	938	
(a)	What type of bonding would you expect to occur in germanium?				
	cova	lent network ✓			
(b)	Justi	fy your answer.		(1 mark)	
	Poor	Poor electrical conductor, so can't be metallic ✓			
	High	melting point, so can't be r	nolecular ✓		
	Obvi	iously not ionic, so ∴ coval	ent network ✓	(3 marks	
(c)	Explain the trend in ionisation energies of the elements above.				
	Increasing nuclear charge (from K to Ca to Ge), with a similar degree of shielding				
	.:. m	ore energy required to remo	ove e^- from Ge than Ca than	ı K.✓	
				(1 mark	
(d)	Would the value of potassium's second ionisation energy be larger or smaller than that for calcium? Explain why.				
	Larg	er ✓			
		removal of 2 nd e [–] from Ca is reas K is from the third shel	` '	•	
		cted and more energy requ		√ √	
				(2 marks	

- 4. Use your understanding of atomic structure and bonding to:
 - (a) Complete a sketch showing the boiling points of the hydrides of group 14 (———) and group 17 (- - -) on the following graph.

- ✓ mp of group 14 hydrides increasing
- ✓ mp of group 17 hydrides higher than group 14
- √ mp of group 17 hydrides increasing from period 3 to period 5
- \checkmark mp of group 17 hydride in period 2 (HF) higher than period 3

(4 marks)

(b) Explain the overall trend shown on the graph:

Increasing mp with increasing size of molecules

This is due to increasing strength of dispersion forces with increasing size of molecule, as temporary dipoles become larger

(2 marks)

(c) Give reasons for any exceptions to this trend.

HF has a particularly strong form of dipole-dipole attraction, called hydrogen bonding.

This arises due to the great difference in electronegativity between H and F and the small size of F.

(1 mark)

5. Using your knowledge of atomic structure and bonding explain the following physical data:

Substance	Solubility in water at 25°C (g L^{-1})
1-pentanol (CH ₃ CH ₂ CH ₂ CH ₂ OH)	22.0
1-hexanol (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH)	5.9

Water is polar molecule and contains with dispersion forces and hydrogen bonding between molecules.

Hydrogen bonding also exists between molecules of each alcohol, but dispersion forces become more significant as the molecule becomes larger (as the carbon chain increases in length).

Only dispersion forces form between the carbon chain and water, which are much weaker than hydrogen bonds between water and dispersion forces between alcohols.

As the alcohol size increases, solubility in water decreases.

(4 marks)

End of Test