ID: 22308009

Name: Arabindo Naha

Deep Learningn Assignment

Part A: Theoretical Concepts

1. Explain Activation Functions

An **activation function** is a mathematical function applied to the output of a neuron in a neural network. It introduces non-linearity into the model, enabling the network to learn and represent complex patterns in the data. Without this non-linearity, a neural network regardless of its depth would behave like a simple linear regression model, limiting its ability to solve complex problems.

The activation function determines whether a neuron should be activated by calculating the weighted sum of its inputs and adding a bias term. This process helps the network make more nuanced decisions and predictions by incorporating non-linear transformations into the neuron's output.

Define and compare the following activation functions:

- **Sigmoid:** Sigmoid Activation function is characterized by 'S' shape. This formula ensures a smooth and continuous output that is essential for gradient-based optimization methods.
 - It allows neural networks to handle and model complex patterns that linear equations cannot.
 - The output ranges between 0 and 1, hence useful for binary classification.
 - The function exhibits a steep gradient when x values are between -2 and 2.

Formula: $\sigma(x) = 1/1 + e^{(-x)}$

Use Cases: Logistic regression, binary classification.

Limitations: Saturation at extreme values leads to vanishing gradients, slower training.

- **ReLU**(**Rectified Linear Unit**): ReLU activation is defined by A(x) max(0,x), this means that if the input x is positive, ReLU returns x, if the input is negative, it return 0.
 - Vale Range:[0,infinit), meaning the function only outputs non-negative value.

Formula: f(x) = max(0.x)

Use Cases: Most CNN architectures.

Limitations: "Dead neurons" for negative inputs.

■ **Tanh(Hyperbolic Tangent):** Tanh function or hyperbolic tangent function, is a shifted version of the sigmoid, allowing it to stretch across the y-axis.

Value Range: Outputs values from -1 to +1.

Non-linear: Enables modeling of complex data patterns.

Formula: $f(x) = (e^x - e^x)/(e^x + e^x)$

Use Cases: Hidden Layers.

Use in Hidden Layers: Commonly used in hidden layers due to its zero-centered output,

facilitating easier learning for subsequent layers.

Limitations: Similar vanishing gradient issue as Sigmoid.

Leaky ReLU:

Formula: f(x) = x if x>0, else f(x)=ax

Use Cases: Addresses "dead neurons" in ReLU.

Limitations: Introduces slight computational overhead.

2. Discuss Optimization Algorithms

Compare the following:

• SGD(Stochastic Gradient Descent):

Advantage: Simple and easy to implement.

Limitation: Can converge slowly or get stuck in local minima.

• Adam(Adaptive Moment Estimation):

Advantage: Combines momentum and adaptive learning rates, faster convergence.

Limitation: Can sometimes generalize poorly.

• RMSProp (Root Mean Square Propagation):

Advantage: Efficient for non- stationary objectives. **Limitation:** Can overfit if learning rate aren't tunes.

bLearning Rate and its Impact:

- A **high learning rate** may overshoot the optimal solution, leading to divergence.
- A **Low learning rate** may result in slow convergence or getting stuck in local mimima.

Modern Techniques to Address Learning Rate Issues:

- Learning Rate Schedules: Gradully reduce the learning rate during training.
- Adaptive Methods: Optimizers like Adam adjust learning rate dynamically for each parameter.
- Warm Restarts: Periodically reset and reduce learning rate to escape local minima.

Error Analysis

Identify and discuss three common errors:

1. Misclassification in similar classes(e.g.,truck vs. car):

solution: Use data augumentation to highlight unique features.

2. Overfitting:

Solution: Add dropout layers and reduce complexity.

3. Vanishing Gradients:

Solution: Use advanced optimizers like Adam and activation function like ReLU.

Model Design:

We are required to design a Convolutional Neural Network (CNN) with the following specifications:

- 3- convolutional layers.
- 2 -fully connected layers.
- Incorporate regularization techniques such as dropout and batch normalization to prevent overfiting.

Conclusion:

1. Performance After 3 Epochs:

The model achieved a test accuracy of around 48% after training for only 3 epochs.

2. Model Evaluation:

The model's performance can be further analyzed by reviewing the confusion matrix.

3. Final Thoughts:

This model design provides a solid starting point for a CIFAR-10 image classification task.