On Algebraic Embedding for Unstructured Lattices

Madalina Bolboceanu¹, Zvika Brakerski², Devika Sharma²

¹Bitdefender, Romania, ²Weizmann Institute of Science, Israel

PKC, April 2024

1/18

Outline of this talk

- Learning with Errors and (some of) its algebraic friends
- State of the art

Our contributions

- Improving Order-LWE (OLWE) hardness
- Gradient of hardness from Ring-LWE to LWE

2/18

Intro

Lattices

Lattice

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be linearly independent vectors from \mathbb{R}^m . Then

$$L = L(\mathbf{v}_1, \dots, \mathbf{v}_n) = \{ \sum_{i=1}^n a_i \mathbf{v}_i | a_i \in \mathbb{Z} \}$$

is the lattice generated by them.

$\mathsf{ApproxSVP}_\gamma$

Find a nonzero vector $\mathbf{v} \in L$ s.t.

$$\|\mathbf{v}\| \leq \gamma \min_{\mathbf{x} \in L \setminus \{0\}} \|\mathbf{x}\|.$$

$$\gamma = \mathsf{poly}(n) \Rightarrow \checkmark \mathsf{quantum} \mathsf{resistant}$$

4 / 18

Learning with Errors (LWE) [Reg05]

LWE

- q = poly(n)
- ψ distribution which produces "short" elements in \mathbb{Z}_q w.h.p. (e.g. D_{α})

$$A_{,\psi}$$
 distribution
$$\int \mathbf{a} \leftrightarrow U(\mathbb{Z}_q^n)$$

 $\mathbf{s} \in \mathbb{Z}_q^n$

$$\begin{cases} \mathbf{a} \longleftrightarrow U(\mathbb{Z}_q^n) \\ e \longleftrightarrow \psi \end{cases}$$

$$(\mathbf{a}, \frac{1}{q} \langle \mathbf{a}, \mathbf{s} \rangle + e \mod \mathbb{Z}).$$

Search: Given m samples from $A_{s,\psi}$, find s.

Decision: Distinguish between m samples from $A_{s,\psi}$ and $U(\mathbb{Z}_q^n \times \mathbb{R}/\mathbb{Z})$.

(ロト 4回 ト 4 至 ト 4 巨) 9 Q (^)

Learning with Errors (LWE) [Reg05]

LWE

- q = poly(n)
- ψ distribution which produces "short" elements in \mathbb{Z}_q w.h.p. (e.g. D_{α})

$$\begin{cases} \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n) \\ e \hookleftarrow \psi \end{cases}$$

$$(\mathbf{a}, \frac{1}{q}\langle \mathbf{a}, \mathbf{s} \rangle + e \mod \mathbb{Z}).$$

Search: Given m samples from $A_{s,\psi}$, find s.

Decision: Distinguish between m samples from $A_{\mathbf{s},\psi}$ and $U(\mathbb{Z}_q^n \times \mathbb{R}/\mathbb{Z})$.

Madalina Bolboceanu PKC 2024 5 / 18

Learning with Errors (LWE) [Reg05]

LWE

- q = poly(n)
- ψ distribution which produces "short" elements in \mathbb{Z}_q w.h.p. (e.g. D_{α})

$$\mathbf{s} \in \mathbb{Z}_q^n$$

$$A_{oldsymbol{,}\psi}$$
 distribution
$$\begin{cases} \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n) \\ e \hookleftarrow \psi \end{cases}$$
 $(\mathbf{a}, \frac{1}{q}\langle \mathbf{a}, \mathbf{s} \rangle + e \mod \mathbb{Z}).$

Search: Given m samples from $A_{s,\psi}$, find s.

Decision: Distinguish between m samples from $A_{s,\psi}$ and $U(\mathbb{Z}_q^n \times \mathbb{R}/\mathbb{Z})$.

X not so efficient

Madalina Bolboceanu PKC 2024 5/18

```
q integer ^1 f\in\mathbb{Z}[x] \text{ monic, irreducible, degree } n. K=\mathbb{Q}[x]/(f) \text{ number field.} \psi \text{ distribution which produces "short" elements in } K \text{ w.h.p.}
```

```
q integer<sup>1</sup>
```

 $f \in \mathbb{Z}[x]$ monic, irreducible, degree n.

$$K = \mathbb{Q}[x]/(f)$$
 number field.

 ψ distribution which produces "short" elements in K w.h.p.

$$\mathcal{O}_K$$
 ring of integers e.g. $\mathcal{O}_K = \mathbb{Z}[x]/(f)$, if $f = \text{cyclotomic}$

q integer¹

 $f \in \mathbb{Z}[x]$ monic, irreducible, degree n.

 $K = \mathbb{Q}[x]/(f)$ number field.

 ψ distribution which produces "short" elements in K w.h.p.

 \mathcal{O}_K ring of integers \mathcal{O}_K^{\vee} its *dual*

RIWE

$$\mathbf{s} \in \mathcal{O}_{K,q}^{\vee} := \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$$

$\mathcal{A}_{\mathbf{s},\psi}$ distribution

$$\begin{cases} a \hookleftarrow U(\mathcal{O}_{K,q}) \\ e \hookleftarrow \psi \end{cases}$$

$$(a, \frac{1}{q}a \cdot s + e \mod \mathcal{O}_{K}^{\vee}).$$

can be any ideal modulus of \mathcal{O} .

6/18

q integer¹

 $f \in \mathbb{Z}[x]$ monic, irreducible, degree n.

 $K = \mathbb{Q}[x]/(f)$ number field.

 ψ distribution which produces "short" elements in K w.h.p.

 \mathcal{O}_K ring of integers \mathcal{O}_K^{\vee} its *dual*

RLWE

$$\mathbf{s} \in \mathcal{O}_{K,q}^{\vee} := \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$$

$\mathcal{A}_{\bullet,\psi}$ distribution

$$\begin{cases} a \longleftrightarrow U(\mathcal{O}_{K,q}) \\ e \longleftrightarrow \psi \end{cases}$$

$$(a, \frac{1}{q}a \cdot s + e \mod \mathcal{O}_{K}^{\vee}).$$

 \mathcal{O} order (subring of \mathcal{O}_K of finite index) e.g. $\mathcal{O} = \mathbb{Z}[x]/(f), \mathcal{O}_K$

can be any ideal modulus of \mathcal{O} .

6/18

q integer¹

 $f \in \mathbb{Z}[x]$ monic, irreducible, degree n.

 $K = \mathbb{Q}[x]/(f)$ number field.

 ψ distribution which produces "short" elements in K w.h.p.

 \mathcal{O}_K ring of integers \mathcal{O}_K^{\vee} its *dual*

RLWE

$$\mathbf{s} \in \mathcal{O}_{K,q}^{\vee} := \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$$

$\mathcal{A}_{\bullet,\psi}$ distribution

$$\begin{cases} a \hookleftarrow U(\mathcal{O}_{K,q}) \\ e \hookleftarrow \psi \end{cases}$$

$$(a, \frac{1}{q}a \cdot s + e \mod \mathcal{O}_{K}^{\vee}).$$

 \mathcal{O} order (subring of \mathcal{O}_K of finite index) \mathcal{O}^\vee its *dual*

OLWE

$$s \in \mathcal{O}_q^ee := \mathcal{O}^ee/q\mathcal{O}^ee$$

$\mathcal{O}_{\mathbf{s},\psi}$ distribution

$$\begin{cases} \mathbf{a} \hookleftarrow U(\mathcal{O}_q) \\ e \hookleftarrow \psi \end{cases}$$
$$(\mathbf{a}, \frac{1}{q}\mathbf{a} \cdot \mathbf{s} + e \bmod \mathcal{O}^{\vee}).$$

6/18

Search and Decision problems are defined as before.

can be any ideal modulus of \mathcal{O} .

q integer¹

 $f \in \mathbb{Z}[x]$ monic, irreducible, degree n.

 $K = \mathbb{Q}[x]/(f)$ number field.

 ψ distribution which produces "short" elements in K w.h.p.

 \mathcal{O}_K ring of integers \mathcal{O}_K^{\vee} its *dual*

$RLWE = O_{\kappa}-LWE$

$$\mathbf{s} \in \mathcal{O}_{K,q}^{\vee} := \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$$

$\mathcal{A}_{\mathbf{s},\psi}$ distribution

$$\begin{cases} a \longleftrightarrow U(\mathcal{O}_{K,q}) \\ e \longleftrightarrow \psi \end{cases}$$
$$(a, \frac{1}{q}a \cdot s + e \mod \mathcal{O}_K^{\vee}).$$

 \mathcal{O} order (subring of \mathcal{O}_K of finite index) \mathcal{O}^{\vee} its *dual*

$OLWE = \mathcal{O}-LWE$

$$s\in\mathcal{O}_q^ee:=\mathcal{O}^ee/q\mathcal{O}^ee$$

$\overline{\mathcal{O}_{\mathbf{s},\psi}}$ distribution

$$\begin{cases} a \hookleftarrow \textit{U}(\mathcal{O}_q) \\ e \hookleftarrow \psi \end{cases}$$
$$(a, \frac{1}{q}a \cdot s + e \bmod \mathcal{O}^{\vee}).$$

6/18

Search and Decision problems are defined as before.

can be any ideal modulus of \mathcal{O} .

State of the art and contributions

Madalina Bolboceanu PKC 2024 7/18

State of the art and contributions

results hold for an ideal modulus Q with coprimality properties. $\square + 4 \nearrow +$

7/18

Improving OrderLWE hardness

(ロト 4回 ト 4 恵 ト 4 恵 ト) 重) りへの

8 / 18

How to get OLWE hardness?

9/18

How to get OLWE hardness?

Follow [PRSD17, BBPS19] hardness blueprint:

• focus only on the BDD-to-OLWE conversion.

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

9/18

BDD-to-OLWE conversion

 $= \mathsf{OLWE} \; \mathsf{samples} \\ \big(a, \frac{1}{q} a \cdot \underline{s} + e \; \mathsf{mod} \; \mathcal{O}^{\vee} \big)$

Discrete Gaussian over

$$\mathcal{I} \subseteq \mathcal{O}$$
: $\mathbf{z} \in \mathcal{I}$

BDD instance:

$$t = \mathbf{x} + \mathbf{e}', \ \mathbf{x} \in \mathcal{I}^{\vee}$$

Idea: 'Cancel' \mathcal{I} : find *compatible* maps:

$$\mathbf{z} \in \frac{\mathcal{I}}{q\mathcal{I}} \xrightarrow{\sim f} \mathbf{a} \in \frac{\mathcal{O}}{q\mathcal{O}}$$

$$\textbf{\textit{x}} \in \frac{\mathcal{I}^{\vee}}{q\mathcal{I}^{\vee}} \xrightarrow[g^{-1}]{\sim} \textbf{\textit{s}} \in \frac{\mathcal{O}^{\vee}}{q\mathcal{O}^{\vee}}$$

10 / 18

BDD-to-OLWE conversion

* t

 $= \mathsf{OLWE} \mathsf{ samples} \\ \big(a, \frac{1}{q} a \cdot \mathbf{s} + e \mathsf{ mod } \mathcal{O}^{\vee} \big)$

Discrete Gaussian over

$$\mathcal{I} \subseteq \mathcal{O}$$
: $\mathbf{z} \in \mathcal{I}$

BDD instance:

$$t = \mathbf{x} + \mathbf{e}', \ \mathbf{x} \in \mathcal{I}^{\vee}$$

Idea: 'Cancel' \mathcal{I} : find *compatible* maps:

$$\mathbf{z} \in \frac{\mathcal{I}}{q\mathcal{I}} \xrightarrow{\sim \atop f} \mathbf{a} \in \frac{\mathcal{O}}{q\mathcal{O}}$$

$$\mathbf{x} \in \frac{\mathcal{I}^{\vee}}{q\mathcal{I}^{\vee}} \xrightarrow[g^{-1}]{\sim} \mathbf{s} \in \frac{\mathcal{O}^{\vee}}{q\mathcal{O}^{\vee}}$$

Cancellation Lemma [BBPS19]

f and g exist for a subset of $\mathcal O$ ideals $\mathcal I.$

4D + 4B + 4B + B + 900

10 / 18

New Cancellation Lemma

f and g exist³, for all \mathcal{O} ideals, if $(q, [\mathcal{O}_K : \mathcal{O}]) = 1$.

efficiently computable and invertible, if given advice on K and factorization of $q\mathcal{O}$ $\Rightarrow \qquad \Rightarrow \qquad \bigcirc \bigcirc$

11 / 18

New Cancellation Lemma

f and g exist³, for all \mathcal{O} ideals, if $(q, [\mathcal{O}_K : \mathcal{O}]) = 1$.

Idea:

efficiently computable and invertible, if given advice on K and factorization of $q\mathcal{O}$ $\Rightarrow \qquad \Rightarrow \qquad \bigcirc \bigcirc$

11 / 18

New Cancellation Lemma

f and g exist³, for all \mathcal{O} ideals, if $(q, [\mathcal{O}_K : \mathcal{O}]) = 1$.

Idea:

- Embed \mathcal{I} in a good \mathcal{P} such that:
 - can apply [BBPS19]: $\frac{\mathcal{P}}{q\mathcal{P}} \xrightarrow{\sim} \frac{\mathcal{O}}{q\mathcal{O}}$.
 - can apply [PP19]: $\frac{\mathcal{I}}{q\mathcal{I}} \stackrel{\sim}{\hookrightarrow} \frac{\mathcal{P}}{q\mathcal{P}}$.

How to find a good \mathcal{P} :

Jordan-Hölder filtration

11 / 18

efficiently computable and invertible, if given advice on K and factorization of $q\mathcal{O}$ $\Rightarrow \qquad \Rightarrow \qquad \bigcirc$

New Cancellation Lemma

f and g exist³, for all \mathcal{O} ideals, if $(q, [\mathcal{O}_K : \mathcal{O}]) = 1$.

Idea:

- Embed \mathcal{I} in a good \mathcal{P} such that:
 - can apply [BBPS19]: $\frac{\mathcal{P}}{q\mathcal{P}} \xrightarrow{\sim} \frac{\mathcal{O}}{q\mathcal{O}}$.
 - can apply [PP19]: $\frac{\mathcal{I}}{q\mathcal{I}} \stackrel{\sim}{\hookrightarrow} \frac{\mathcal{P}}{q\mathcal{P}}$.
- Compose maps to get f (and g).

How to find a good \mathcal{P} :

Jordan-Hölder filtration

11 / 18

efficiently computable and invertible, if given advice on K and factorization of $q\mathcal{O}$ \Rightarrow \Rightarrow \mathcal{O}

How to get RLWE hardness?

Idea: Use
$$t \in \mathcal{C}_{\mathcal{O}} = \{x \in K | x\mathcal{O}_K \subseteq \mathcal{O}\}$$
 (the conductor ideal of \mathcal{O}): $(a,b) \longmapsto (a,tb)$.

- similar proof as in [RSW18, BBPS19].
- existence of short *t*: [RSW18, BBPS19].

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

12 / 18

Gradient of hardness from Ring-LWE to LWE

13 / 18

Gradient of hardness

K number field

q LWE modulus, p coprime with q.

 $p\mathcal{O}_K = \mathcal{P}_1 \cdot \ldots \cdot \mathcal{P}_t$, for prime ideals \mathcal{P}_i . Then,

$$\mathcal{O}_{\mathsf{K}} \supseteq \mathbb{Z} + \mathcal{P}_1 \supseteq \mathbb{Z} + \mathcal{P}_1 \cdot \mathcal{P}_2 \supseteq \ldots \supseteq \mathbb{Z} + p\mathcal{O}_{\mathsf{K}}.$$

search/decision LWE

14 / 18

all black arrows are special cases of [PP19].

Gradient of hardness

K number field

q LWE modulus, p coprime with q.

$$p\mathcal{O}_{\mathcal{K}} = \mathcal{P}_1 \cdot \ldots \cdot \mathcal{P}_t$$
, for prime ideals \mathcal{P}_i . Then,

$$\mathcal{O}_K \supseteq \mathbb{Z} + \mathcal{P}_1 \supseteq \mathbb{Z} + \mathcal{P}_1 \cdot \mathcal{P}_2 \supseteq \ldots \supseteq \mathbb{Z} + p\mathcal{O}_K.$$

preserves error

all black arrows are special cases of [PP19].

14 / 18

Gradient of hardness

K number field

q LWE modulus, p coprime with q.

$$p\mathcal{O}_K = \mathcal{P}_1 \cdot \ldots \cdot \mathcal{P}_t$$
, for prime ideals \mathcal{P}_i . Then,

$$\mathcal{O}_K \supseteq \mathbb{Z} + \mathcal{P}_1 \supseteq \mathbb{Z} + \mathcal{P}_1 \cdot \mathcal{P}_2 \supseteq \ldots \supseteq \mathbb{Z} + \rho \mathcal{O}_K.$$

preserves error

all black arrows are special cases of [PP19].

14 / 18

Let
$$e \leftarrow D_{\alpha}$$
.

How does $e \mod \mathcal{O}^{\vee}$ look like?

Let
$$e \leftarrow D_{\alpha}$$
.

How does $e \mod \mathcal{O}^{\vee}$ look like?

Take $(\mathbf{e}_0, \dots, \mathbf{e}_{n-1})$ its coefficients w.r.t \mathbb{Z} -basis of \mathcal{O}^{\vee} and mod \mathbb{Z} .

15 / 18

Let $e \leftarrow D_{\alpha}$.

How does $e \mod \mathcal{O}^{\vee}$ look like?

Take $(\mathbf{e}_0, \dots, \mathbf{e}_{n-1})$ its coefficients w.r.t \mathbb{Z} -basis of \mathcal{O}^{\vee} and mod \mathbb{Z} .

$$\mathcal{O}$$
 is α -drowning if for $e \hookleftarrow D_{\alpha}$ for $e \hookleftarrow D_{\alpha}$ $e_0 \mod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \mod \mathbb{Z}$ $e_0 \mod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \mod \mathbb{Z}$ $e_0 \mod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \mod \mathbb{Z}$ for $e \hookleftarrow D_{\alpha}$ for $e \smile D_{\alpha}$ for $e \hookleftarrow D_{\alpha}$ for $e \hookleftarrow D_{\alpha}$ for $e \hookleftarrow D_{\alpha}$ for $e \smile D_{\alpha}$

15 / 18

Let $e \leftarrow D_{\alpha}$.

How does $e \mod \mathcal{O}^{\vee}$ look like?

Take $(\mathbf{e}_0, \dots, \mathbf{e}_{n-1})$ its coefficients w.r.t \mathbb{Z} -basis of \mathcal{O}^{\vee} and mod \mathbb{Z} .

$$\mathcal{O}$$
 is α -drowning if for $e \hookleftarrow D_{\alpha}$ for $e \hookleftarrow D_{\alpha}$ $e_0 \mod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \mod \mathbb{Z}$ $(\mathbf{e}_1, \dots, \mathbf{e}_{n-1}) | \mathbf{e}_0 = x \mod \mathbb{Z}^{n-1} \stackrel{\mathsf{s.i.}}{pprox} \mathcal{U}((\mathbb{R}/\mathbb{Z})^{n-1}).$

K =power-of-two cyclotomic, $\mathcal{O} = \mathbb{Z} + p\mathcal{O}_K$ is α -drowning for $p >> \frac{1}{\alpha}$.

LWE-OLWE equivalence

Idea:

- $\{p_i\}_i$ \mathbb{Z} -basis of \mathcal{O} , $p_0 = 1$, $\{p_i^{\vee}\}_i$ dual \mathbb{Z} -basis of \mathcal{O}^{\vee}
- $u_1, \ldots, u_{n-1} \longleftrightarrow U(\mathbb{R}/\mathbb{Z})$:

$$(\mathbf{a},b_0)\longmapsto (\mathbf{a}=\sum \mathbf{a}_ip_i,b=b_0p_0^\vee+\sum u_ip_i^\vee).$$

$$A_{\mathbf{s},D_{\alpha},\sqrt{n}}$$
 to $\mathcal{O}_{\mathbf{s},D_{\alpha}}$

If
$$(\mathbf{a}, b_0 = \frac{1}{q} \langle \mathbf{a}, \mathbf{s} \rangle + e_0)$$
:

$$b \stackrel{s.i.}{\approx} \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + e$$
, as

$$e_0 p_0^{\vee} + \sum_i u_i p_i^{\vee} \stackrel{s.i.}{\approx} e \longleftrightarrow D_{\alpha} \ (\mathcal{O} \ \alpha\text{-drowning})$$

 $s = \sum_i s_i p_i^{\vee}$

uniform to uniform

If $(\mathbf{a}, b_0) \leftarrow$ uniform: (\mathbf{a}, b_0) uniform

4□▶ 4□▶ 4□▶ 4□▶ □ 990

16 / 18

Summary and follow-up works

our results hold for an ideal modulus $\ensuremath{\mathcal{Q}}$ with coprimality properties.

[PP19] holds for same coprimality property on \mathcal{Q} .

[JL22], [JL23] hold only for integer modulus q.

4□ > 4回 > 4回 > 4 回

17 / 18

Thank you.