1 Miscellaneous measure-theory related topics

Theorem 1.1 (Kolmogorov 0-1 Law). (X_1, X_2, \cdots) with any range space.

Define
$$\tau_n = \sigma(X_n, X_{n+1}, X_{n+2}, \cdots)$$
.

Define the tail σ -field

$$\tau = \bigcap_{n > 1} \tau_n \tag{1.1}$$

If (X_1, X_2, \cdots) *independent, then* τ *is* trivial *i.e.*

$$\forall A \in \tau, P(A) \in \{0, 1\} \tag{1.2}$$

Proof. Define $\mathcal{F}_{n-1} = \sigma(X_1, \dots, X_{n-1})$.

$$\mathcal{F}_{n-1}$$
 is independent of τ_n (1.3)

$$\implies \mathcal{F}_{n-1}$$
 independent of τ (1.4)

$$\implies$$
 field $\cup_n \mathcal{F}_n$ independent of τ (1.5)

TODO: Dynkin?
$$\pi - \lambda$$
 Lemma $\implies \sigma(\cup_n \mathcal{F}_n) = \sigma(X_1, X_2, \cdots)$ independent of τ (1.6)

$$\Rightarrow \tau$$
 is independent of τ (1.7)

$$A \in \tau \implies P(A \cap A) = P(A)P(A) = P(A)$$
 (1.8)

$$x^2 = x \implies x = 0 \text{ or } 1 \tag{1.9}$$

Lemma 1.2. If A is a trivial σ -field, X an A-measurable RV with values in $[-\infty, \infty]$, then $\exists x_0$ such that $P(X = x_0) = 1$.

Proof. Define
$$x_0 = \inf\{x : P(X \le x)\}$$
. TODO: Finish

1.1 Modes of convergence for \mathbb{R} -valued RVs

Almost-sure convergence $X_n \stackrel{\text{a.s.}}{\to} X$ means $P(\omega : X_n(\omega) \to X(\omega)) = 1$

Converges in L^p **space** $X_n \stackrel{L^p}{\to} X$ means $\mathbb{E}|X_n - X|^p \to 0$ and $\sup_n \mathbb{E}|X_n|^p < \infty$ ($1 \le p < \infty$)

Converges in probability $X_n \stackrel{p}{\to} X$ means $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$, $\forall \epsilon > 0$

(a) $\xrightarrow{L^p}$ implies \xrightarrow{p} , not conversely

Example 1.3. *U* uniform on [0,1]. $X_n = n1_{U \le \frac{1}{n}}$. $X_n \stackrel{p}{\to} 0$, $\mathbb{E}X_n = 1$, but $X_n \not\to 0$

(b) $\stackrel{\text{a.s.}}{\rightarrow}$ implies $\stackrel{\text{p}}{\rightarrow}$, not conversely

Proof. $X_n \stackrel{\text{a.s.}}{\to} X$ means

$$0 = P(|X_n - X| \ge \epsilon \text{ i.o.}) \ge \limsup_{n} P(|X_n - X| \ge \epsilon) = 0$$
 (1.10)

$$\implies X_n \stackrel{\mathrm{p}}{\to} X \tag{1.11}$$

Example 1.4. Take independent events (A_n) with $P(A_n) \to 0 \implies 1_{A_n} \stackrel{P}{\to} 0$.

$$\sum_{n} P(A_n) = \infty \underset{(BC 2)}{\Longrightarrow} P(A_n \text{ i.o.}) = 1$$
 (1.12)

$$\implies 1_{A_n} \stackrel{\text{a.s.}}{\not\rightarrow} 0 \tag{1.13}$$

Recall the dominated convergence theorem, restated here

Theorem 1.5. If $X_n \stackrel{a.s.}{\to} X$, if $\exists Y \ge 0$ with $\mathbb{E}Y < \infty$ and $|X_n| \le Y$ for all n, then $\mathbb{E}|X_n - X| \to 0$ and $\mathbb{E}X_n \to \mathbb{E}X$.

Lemma 1.6. If $X_n \stackrel{p}{\to} X$ then \exists subsequence $n_1 < n_2 < n_3 < \cdots$ such that $X_{n_j} \stackrel{a.s.}{\to} X$ as $j \to \infty$.

Proof. Choose n_j inductively: $n_j = \min \{ n > n_{j-1} : P(|X_n - X| \ge 2^{-j}) \le 2^{-j} \}.$

$$\sum_{j} P(|X_{n_{j}} - X| \ge 2^{-j}) \le \frac{1}{2} < \infty \tag{1.14}$$

$$\underset{\text{(BC 1)}}{\Longrightarrow} |X_{n_j} - X| \le 2^{-j} \text{ ult. in } j \text{ a.s.}$$
 (1.15)

$$\iff X_{n_i} \stackrel{\text{a.s.}}{\to} X$$
 (1.16)

Remark 1.7. Related to fact "a.s. convergence" not convergence in a metric.

Corollary 1.8. The dominated convergence theorem (DCT) remains true under assumption $X_n \stackrel{p}{\to} X$.

Proof. Suppose false: $\exists \varepsilon > 0$ and a subsequence $m_1 < m_2 < \cdots$ such that $\mathbb{E}|X_{m_j} - X| \ge \varepsilon$ for all j.

Now $X_{m_j} \stackrel{p}{\to} X$ so lemma implies \exists subsequence n_j of m_j such that $X_{n_j} \stackrel{\text{a.s.}}{\to} X$ and $\mathbb{E}|X_{n_j} - X| \ge \epsilon$ for all j, contradicting DCT.

2

2 views of integration calculus

- (1) Given f, a, b, $\int_a^b f(x)dx = a$ number
- (2) $F(x) = \int_0^x f(y) dy \iff f(x) = \frac{dF(x)}{dx}$ An operator $f \mapsto F$, opposite of $F \mapsto F'$.

The analogue of $\frac{dF(x)}{dx}$ involves measures, not functions. Consider a measurable space (S, S). Fix a σ -finite μ . Consider measurable $h: S \to S$ $[0,\infty)$. For $A \in \mathcal{S}$, define $\nu(A) = \int_A h d\mu \leq \infty$.

Proposition 1.9. ν *is a* σ -finite measure on (S, S).

Proof.
$$\mu$$
 σ -finite $\Longrightarrow \exists A_n \uparrow S, \mu(A_n) < \infty$.
 Define $B_n = A_n \cap \{s : h(s) \le n\}$. Then $B_n \uparrow S$ and $\nu(B_n) \le n, \mu(A_n) \le \infty$.

The two measures ν and μ have a relationship:

Definition 1.10. ν is absolutely continuous wrt μ , written $\nu \ll \mu$, if

$$\forall A \in \mathcal{S} : \mu(A) = 0 \implies \nu(A) = 0 \tag{1.17}$$

Theorem 1.11 (Radon-Nikodym). *If* μ *and* ν *are* σ -*finite measures on* (S, S), *if* $\nu \ll \mu$, *then* \exists *measurable* $h: S \to [0, \infty]$ *such that*

$$\forall A \in \mathcal{S} : \nu(A) = \int_{A} h d\mu \tag{1.18}$$

Proof. Two ways: (1) See MT Text, (2) Via martingales, later

Definition 1.12. We write h from theorem 1.11 as $h = \frac{dv}{du}$ and call it the Radon-Nikodym density of ν with respect to μ

In particular, if μ is a probability measure on \mathbb{R}^1 , $\mu \ll \text{Leb}$, then $h = \frac{d\mu}{d\text{Leb}}$ exists: the density function.

1.3 Probability measures on \mathbb{R}

Know 1-1 correspondence between probability measures μ and distribution functions F

$$F(x) = \mu(-\infty, x] \tag{1.19}$$

There are three basic types of PMs μ

(1) $\mu \ll \text{Leb}$, so can be described by density f

$$F(x) = \int_{-\infty}^{x} f(y)dy \tag{1.20}$$

Here, f can be any measurable function with $f \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$

(2) μ is purely atomic (discrete):

 \exists countable set of atoms x_1, x_2, \cdots and $\sum_i \mu(\{x_i\}) = 1$, $\implies \mu(\mathbb{R} \setminus \bigcup_i \{x_i\}) = 0$

Example 1.13 (Uniform distribution on Cantor set). $x \in [0,1]$, write out binary expansion $x = 0.10110100... = 0.b_1(x)b_2(x)b_3(x)...$

Put together gives measurable map $H : [0,1] \rightarrow [0,1]$. Take U uniform [0,1]. What is the distribution of H(U)?

$$F(x) = P(H(U) \le u) \tag{1.21}$$

The set of possible values of H = "base-3 expansion has no 1" = cantor set = \mathcal{C} and Leb(\mathcal{C}) = 0 while $P(H(U) \in \mathcal{C}) = 1$.

(3) μ is a singular measure:

 $\exists A \text{ such that } \text{Leb}(A) = 0, \mu(A) = 1 \text{ but no atoms.}$

Proposition 1.14. Any PM μ on \mathbb{R}^1 has a unique decomposition

$$\mu = a_1 \mu_1 + a_2 \mu_2 + a_3 \mu_3 \tag{1.22}$$

where μ_1 admits a density, μ_2 is purely atomic, and μ_3 is singular, $a_i \geq 0$, $\sum_{i=1}^{3} a_i = 1$.