Part 1: Short Answer Questions (30 points)

1. Problem Definition (6 points)

Hypothetical AI Problem:

"Predicting Student Dropout Rates in Online Courses"

Objectives:

- 1. Identify students at risk of dropping out based on engagement and performance data.
- 2. Enable timely intervention by academic advisors.
- 3. Improve course completion rates and learner retention.

Stakeholders:

- University academic advisors
- Online course platform administrators

Key Performance Indicator (KPI):

• **Recall rate** of the dropout prediction model (to minimize false negatives).

2. Data Collection & Preprocessing (8 points)

Two Data Sources:

- 1. Learning Management System (LMS) logs (login frequency, quiz submissions).
- 2. Student demographic and academic records.

Potential Bias:

• Underrepresentation of non-traditional learners (e.g., working adults, first-generation students) may skew predictions and limit model generalizability.

Three Preprocessing Steps:

- 1. **Handling missing data** Impute missing quiz scores with average performance.
- 2. **Normalization** Scale login frequency and session duration for consistent feature ranges.
- 3. **Encoding categorical variables** Convert enrollment type or program into numeric format using one-hot encoding.

3. Model Development (8 points)

Chosen Model:

• Random Forest

Justification: Robust to overfitting, handles feature importance, works well with both numerical and categorical data.

Data Splitting Strategy:

- 70% Training set
- 15% Validation set
- 15% Test set (Split using stratified sampling to maintain dropout ratio)

Two Hyperparameters to Tune:

- 1. n estimators Number of trees in the forest. Affects performance and speed.
- 2. max depth Controls tree growth to avoid overfitting.

4. Evaluation & Deployment (8 points)

Two Evaluation Metrics:

- **Recall:** Prioritizes catching at-risk students (true positives).
- **F1-Score:** Balances precision and recall for overall performance.

Concept Drift:

• Change in the statistical properties of input data over time (e.g., new learning behaviors post-COVID).

Monitoring Strategy: Retrain the model periodically with updated logs, monitor performance drop via dashboard.

One Deployment Challenge:

• **Scalability:** Serving real-time predictions to thousands of concurrent students may require a load-balanced inference API.

Part 2: Case Study Application (40 points)

Scenario: Predicting 30-day Patient Readmission Risk

Problem Scope (5 points)

Problem:

Predict whether a discharged patient will be readmitted within 30 days.

Objectives:

- 1. Reduce unnecessary hospital readmissions.
- 2. Improve patient outcomes through early intervention.

Stakeholders:

- Hospital administrators
- Clinicians (doctors, nurses)

Data Strategy (10 points)

Proposed Data Sources:

- Electronic Health Records (EHRs): diagnoses, treatment history, vitals.
- Demographic data: age, gender, socioeconomic status.

Two Ethical Concerns:

- 1. **Patient privacy and consent** when handling sensitive EHR data.
- 2. **Algorithmic bias** leading to unfair treatment across demographic groups.

Preprocessing Pipeline:

- 1. **Data Cleaning** Remove erroneous entries (e.g., age > 120).
- 2. **Feature Engineering** Generate "time since last admission", count of chronic conditions.
- 3. **Normalization & Encoding** Normalize lab results, encode diagnosis codes.

Model Development (10 points)

Selected Model:

• Gradient Boosted Trees (e.g., XGBoost)

Justification: Excellent for tabular healthcare data, interpretable with SHAP, high predictive performance.

Confusion Matrix (Hypothetical Example):

Predicted: Readmit Predicted: No Readmit

Actual: Readmit 120 (TP) 30 (FN) Actual: No Readmit 40 (FP) 210 (TN)

Metrics:

- **Precision** = 120 / (120 + 40) = 0.75
- **Recall** = 120 / (120 + 30) = 0.80

Deployment (10 points)

Integration Steps:

- 1. Develop API endpoint using Flask.
- 2. Secure API with role-based access.
- 3. Embed model into hospital dashboard for real-time risk flagging.

Compliance (HIPAA):

- Ensure data encryption, audit trails, and access logs.
- Limit model access to authorized healthcare personnel only.

Optimization (5 points)

Overfitting Solution:

• Use **cross-validation** and implement **regularization** (e.g., lambda parameter in XGBoost) to penalize overly complex models.

Part 3: Critical Thinking (20 points)

Ethics & Bias (10 points)

Effect of Bias:

If the training data underrepresents low-income patients, the model might under-predict their readmission risk, leading to reduced care and worse outcomes.

Mitigation Strategy:

- Use **IBM AI Fairness 360** to audit fairness metrics.
- Rebalance dataset or apply fairness-aware reweighting techniques during training.

Trade-offs (10 points)

Interpretability vs. Accuracy:

- A highly accurate deep learning model might be a "black box," which is problematic in clinical decision-making.
- A simpler, interpretable model (e.g., logistic regression) builds clinician trust, but may sacrifice performance.

Impact of Limited Resources:

- Resource constraints may favor **lightweight models** (e.g., Decision Trees) over compute-heavy ones like deep neural networks.
- Also impacts real-time inference capability and data storage needs.

Part 4: Reflection & Workflow Diagram (10 points)

Reflection (5 points)

Most Challenging Part:

Designing an ethically responsible data pipeline—ensuring fairness, privacy, and regulatory compliance while achieving high performance.

Improvement Suggestions:

- Use a more diverse dataset.
- Allocate more time for hyperparameter tuning and fairness auditing.

Workflow Diagram (5 points)

graph TD

A[Problem Definition] --> B[Data Collection]

B --> C[Preprocessing]

C --> D[Model Development]

D --> **E**[Evaluation]

E --> F[Deployment]

F --> G[Monitoring & Feedback]