

一个格点最短路径问题的思考

◎金晓阳 (上海市复旦大学附属中学高三(5)班 200433)

(3,3)

【摘要】将平面格点最短路径问题,放在平面直角坐标系中研究比较便捷.本文用三种不同的方法解决了一种平面格点最短路径问题,进而将问题推广到空间情形.通过对问题的探究,最终成功推广了组合数性质.

【关键词】格点; 最短路径; 概率; 组合数性质

格点最短路径问题是十分有趣的 数学问题. 它与高中数学中的排列组合、概率等概念有很大关联,让我们先来做一道这样的问题:

A O X

例 1 如图一所示,在平面直角坐标系中有一动点 P_{i0} 时刻位于原点处,之后每一秒内,点 P 沿 x 轴正方向或 y

轴正方向运动一个单位 ,两种运动方式的概率相等. 请问 6 秒后 ,点 P 运动了 6 个单位的路程 ,到达(3 ,3) 的概率为 多少?

分析: 由于整个运动过程可能的路径即基本事件数是有限的 。且向右运动 1 个单位与向上运动 1 个单位为等可能事件,即每个基本事件出现的可能性相等,故该模型符合古典概型.

解法一 点 P 到达某个格点 之前 必然经过与该格点相邻的左 方一个格点或下方一个格点,即到 达某格点的最短路径数等于到达 左方与之相邻格点的最短路径数 和到达下方与之相邻格点的最短 路径数之和. 若到达 x 轴上的某个 格点 之前必然由原点 θ 开始不断

沿着 x 轴正方向运动 这是唯一的选择 ,故到达 x 轴上每个格点的最短路径数都是 1 ,同理可得 ,到达 y 轴上每个格点的最短路径数也都是 1 .由此可计算出到达任意格点的最短路径数.

6 秒后 点 P 一共移动了 6 个单位 ,可能到达(6 ρ)、(5 ρ)、(4 ρ)、(3 ρ)、(2 ρ)、(1 ρ)、(0 ρ),可由以上方法 求出 6 秒后运动到这些格点的最短路径条数(如图二所示)。这些路径中任意两条出现的概率相等.

设 A 表示"6 秒后点 P 通过某种路径运动到(3 3)的事件"。它包含基本事件数为 20 基本事件总数为 1+6+15+20+15+6+1=64.

$$P(A) = \frac{20}{64} = \frac{5}{16}$$

解法二 到达某个格点(a,b)的概率等于少运动一个单位的情况下到达(a,b) 概率的一半与到达(a-1,b) 概

率的一半之和,到达x轴上(x, Ω)($x \in$ N)的概率为 $\left(\frac{1}{2}\right)^x$ 到达y轴上(y, Ω)(y

 $\in \mathbb{N}$) 的概率为 $\left(\frac{1}{2}\right)^{y}$. 由此可以计算出到达任一格点的概率(如图三所示).

$$\therefore P(A) = \frac{5}{16}.$$

图 三

解法三: 6 秒后点 P 到达(3 β) 即 6 次运动中恰有 3 次沿 x 轴正方向运动 β ,另有 3 次沿 β 轴正方向运动 β 的基本事件数为 β ,而每一次运动都有两种等可能的情况 基本事件总数为 β 。

$$\therefore P(A) = \frac{C_6^3}{2^6} = \frac{5}{16}.$$

由解法三 我们可以归纳得出一般结论: 经过 a+b 秒 $(a \ b \in \mathbb{N} \ \text{不都为 } 0)$ 点 P 恰好移动到 $(a \ b)$ 的不同路径有 C_{a+b}^a 条.

将解法一平面直角坐标系中每个格点的路径数都用组合数表示(如图四),再根据解法一的思路,我们可以发现 $C^a_{a+b}=C^a_{a+b-1}+C^{a-1}_{a+b-1}$. 由此易得组合数性质: $C^m_a+C^{m-1}_n=C^m_{n+1}$.

图四

以下将例1的平面情形推广到空间情形.

例2 在空间直角坐标系中,有一动点 $P \downarrow_0$ 时刻位于原点处,之后每一秒内,点 $P \mapsto_x$ 轴正方向或 y 轴正方向或 z 轴正方向运动一个单位,三种运动方式的概率相等。求:

- (1)6 秒后 点 P 运动了 6 个单位的路程 到达 $(1\ 2\ 3)$ 的概率为多少?
- (2) 经过 a+b+c 秒(a b $c \in \mathbb{N}$,不都为 0) 点 P 运动了 a+b+c 个单位的路程 ,恰好到达(a ,b ,c) 的概率为多少?

分析 本题与例 1 相似 符合古典概型 ,也同样可采用例 1 的三个解法进行求解. 然而如果采用解法一与解法二 ,解题会比较繁琐 图形也难以绘出 ,而解法三的优势就体现得更加明显 ,故在此仅采用这种解法.

解 (1) 设 A 表示 "6 秒后点 P 通过某种路径运动到 $(1\ 2\ 3)$ 的事件".

(下转105页)

$$\therefore f(x) = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) + \sqrt{2}.$$

注: 亦可以 $\left(\frac{\pi}{8} 2\sqrt{2}\right)$ 作为第二关键点求解 φ . 另本题也可用代入法求解 这里不详细叙述.

例 4 请你构造一个定义域为 \mathbf{R} ,周期为 π ,值域为 $\left[\frac{1}{2},\frac{3}{2}\right]$ 在 $\left[0,\frac{\pi}{2}\right]$ 是减函数的函数 f(x) .

解 设函数解析式为: $f(x) = A\sin(\omega x + \varphi) + b$ 根据题

意有
$$\begin{cases} A+b=\frac{3}{2} \ , \\ -A+b=\frac{1}{2} \end{cases} \therefore \begin{cases} A=\frac{1}{2} \ , \\ b=1 \end{cases}$$

又已知函数的周期 $T = \pi$ $\dot{\pi}$: $\omega = \frac{2\pi}{T} = 2$.

 $\therefore f(x) = \frac{1}{2}\sin(2x + \varphi) + 1$. 因为函数周期为 π ,且在半个周期 $\left[0, \frac{\pi}{2}\right]$ 上是减函数 根据正弦曲线在一个周期上的变化规律可知 ,当 x = 0 时 , $y_{\max} = \frac{3}{2}$. 故以点 $\left(0, \frac{3}{2}\right)$ 作为"五点法"作图的第二关键点 则有 $2 \times 0 + \varphi = \frac{\pi}{2}$,所以 $\varphi = \frac{\pi}{2}$. 于是函数 $f(x) = \frac{1}{2}\sin\left(2x + \frac{\pi}{2}\right) + 1$.

(3) 相位变换法. 将函数 $y = A\sin(\omega x + \varphi) + b(\omega > 0)$ (此时 $A \omega b$ 已经求得) 化为 $y = A\sin\omega(x - (-\varphi)) + b$,依 其与函数 $y = A\sin\omega x + b$ 图像间的关系 根据相位变换的"左加右减"原则求解 φ .

例 5 如图 3,函数 $y = A\sin(\omega x + \varphi)$ (A > 0 $\omega > 0$) 的图像上相邻的最高点与最低点的坐标分别为 $\left(\frac{5\pi}{12}\right)$ 和 $\left(\frac{11\pi}{12}\right)$, 求该函数的解析式.

 $2. \therefore y = 3\sin\left(2x + \varphi\right) = 3\sin\left(x - \left(-\frac{\varphi}{2}\right)\right).$ 根据图中点 $\left(\frac{\pi}{6} \rho\right)$ 有: $-\frac{\varphi}{2} = \frac{\pi}{6}$ $\therefore \varphi = -\frac{\pi}{3}. \therefore y = 3\sin\left(2x - \frac{\pi}{3}\right).$

例 6 已知函数 $f(x) = A\sin(\omega x + \varphi)$ (A > 0, $\omega > 0$, $|\varphi| < \pi$, $x \in \mathbb{R}$) 的一段图像如图 4 所示, 求此函数的解析式.

解 由图可知 $A = 2\sqrt{3}$. $T = 2 \times [6 - (-2)] = 16$, $\omega = \frac{2\pi}{T} = \frac{2\pi}{16} = \frac{\pi}{8}$.

$$\therefore f(x) = 2\sqrt{3}\sin\left(\frac{\pi}{8}x + \varphi\right) = 2\sqrt{3}\sin\frac{\pi}{8}\left(x - \left(-\frac{8}{\pi}\varphi\right)\right).$$

根据正弦曲线的相位变换规律 即"左加右减"原则 结合图像可知 $-\frac{8}{\pi}\varphi=6$ \therefore $\varphi=-\frac{3\pi}{4}$.

$$\therefore f(x) = 2\sqrt{3}\sin\left(\frac{\pi}{8}x - \frac{3\pi}{4}\right).$$

(上接103页)

6 秒后点 P 到达(1 2 3),即 6 次运动中恰有 1 次沿 x 轴正方向运动 其余 5 次运动中有 2 次沿 y 轴正方向运动,另外 3 次都是沿 z 轴正方向运动. A 的基本事件数为 C_6^1 C_5^2 C_3^3 而每一次运动都有三种等可能的情况。基本事件总数为 3^6 .

$$\therefore P(A) = \frac{C_6^1 C_5^2 C_3^3}{3^6} = \frac{20}{243}$$

(2) 设 B 表示 "a + b + c 秒后点 P 通过某种路径运动到 ($a \ b \ c$) 的事件".

a+b+c 秒后点 P 到达(a,b,c) ,即 a+b+c 次运动中 恰有 a 次沿 x 轴正方向运动 ,其余 b+c 次运动中有 b 次沿 y 轴正方向运动 ,另外 c 次都是沿 z 轴正方向运动. B 的基本 事件数为 $C^a_{a+b+c}C^b_{b+c}C^c_c$,而每一次运动都有三种等可能的情

况 基本事件总数为 3^{a+b+c}

$$\therefore P(B) = \frac{C_{a+b+c}^a C_{b+c}^b C_c^c}{3^{a+b+c}} = \frac{C_{a+b+c}^a C_{b+c}^b}{3^{a+b+c}}.$$