In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# File to Load (Remember to Change These)
mouse drug data to load = "../mouse drug data.csv"
clinical_trial_data_to_load = "../clinicaltrial_data.csv"
# Read the Mouse and Drug Data and the Clinical Trial Data
mouse drug data = pd.read csv("mouse drug data.csv")
mouse drug data.head()
clinical_trial_data = pd.read_csv("clinicaltrial_data.csv")
clinical_trial_data.head()
# Combine the data into a single dataset via left merge
merge_data = pd.merge(clinical_trial_data, mouse_drug_data, on="Mouse ID", how="left")
# Display the data table for preview
merge_data.head()
```

Out[1]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug
0	b128	0	45.0	0	Capomulin
1	f932	0	45.0	0	Ketapril
2	g107	0	45.0	0	Ketapril
3	a457	0	45.0	0	Ketapril
4	c819	0	45.0	0	Ketapril

In [2]:

```
# Store the Mean Tumor Volume Data Grouped by Drug and Timepoint
vol_merge_group = merge_data.groupby(["Drug","Timepoint"])
vol_merge_group.head()

avg_tumor_vol = vol_merge_group["Tumor Volume (mm3)"].mean()

# Convert to DataFrame
df_mean = pd.DataFrame(avg_tumor_vol)
df_mean.reset_index(inplace=True)

# Preview DataFrame
df_mean.head()
```

Out[2]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	45.000000
1	Capomulin	5	44.266086
2	Capomulin	10	43.084291
3	Capomulin	15	42.064317
4	Capomulin	20	40.716325

In [3]:

```
# Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoint
vol_merge_group = merge_data.groupby(["Drug", "Timepoint"])
vol_merge_group.head()
```

```
std_error_vol = vol_merge_group["Tumor Volume (mm3)"].sem()

# Convert to DataFrame
df_sem = pd.DataFrame(std_error_vol)
df_sem.reset_index(inplace=True)

# Preview DataFrame
df_sem.head()
```

Out[3]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	0.000000
1	Capomulin	5	0.448593
2	Capomulin	10	0.702684
3	Capomulin	15	0.838617
4	Capomulin	20	0.909731

In [4]:

```
# Minor Data Munging to Re-Format the Data Frames
#Drug: {Placebo, Capomulin, Ceftamin, Infubinol, Ketapril, Naftisol, Propriva, Ramicane, Stelasyn,
Zoniferol}
# Preview that Reformatting worked

tumor_vol_pivot_df = df_mean.pivot(index='Timepoint', columns="Drug", values="Tumor Volume (mm3)")
tumor_vol_pivot_df
```

Out[4]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	Stelasyn	Zoniferol
Timepoint										
0	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000
5	44.266086	46.503051	47.062001	47.389175	46.796098	47.125589	47.248967	43.944859	47.527452	46.851818
10	43.084291	48.285125	49.403909	49.582269	48.694210	49.423329	49.101541	42.531957	49.463844	48.689881
15	42.064317	50.094055	51.296397	52.399974	50.933018	51.359742	51.067318	41.495061	51.529409	50.779059
20	40.716325	52.157049	53.197691	54.920935	53.644087	54.364417	53.346737	40.238325	54.067395	53.170334
25	39.939528	54.287674	55.715252	57.678982	56.731968	57.482574	55.504138	38.974300	56.166123	55.432935
30	38.769339	56.769517	58.299397	60.994507	59.559509	59.809063	58.196374	38.703137	59.826738	57.713531
35	37.816839	58.827548	60.742461	63.371686	62.685087	62.420615	60.350199	37.451996	62.440699	60.089372
40	36.958001	61.467895	63.162824	66.068580	65.600754	65.052675	63.045537	36.574081	65.356386	62.916692
45	36.236114	64.132421	65.755562	70.662958	69.265506	68.084082	66.258529	34.955595	68.438310	65.960888

In [5]:

```
plt.xlabel("Timepoint in Treatment Course")

plt.ylim(0, 75)
plt.ylabel("Tumor Volume (mm3)")

plt.grid(color="0.50", linestyle="-")

# Save the Figure
plt.savefig("../Figure 1 Tumor Volume")
plt.show()
```


In [6]:

```
# Store the Mean Met. Site Data Grouped by Drug and Timepoint
meta_merge_group = merge_data.groupby(["Drug", "Timepoint"])
meta_merge_group.head()

avg_meta_tumor_sites = meta_merge_group["Metastatic Sites"].mean()

# Convert to DataFrame
df_meta = pd.DataFrame(avg_meta_tumor_sites)
df_meta.reset_index(inplace=True)

# Preview DataFrame
df_meta.head()
```

Out[6]:

	Drug	Timepoint	Metastatic Sites
0	Capomulin	0	0.000000
1	Capomulin	5	0.160000
2	Capomulin	10	0.320000
3	Capomulin	15	0.375000
4	Capomulin	20	0.652174

In [7]:

```
# Store the Standard Error associated with Met. Sites Grouped by Drug and Timepoint
meta_merge_group = merge_data.groupby(["Drug", "Timepoint"])
meta_merge_group.head()

std_error_meta = meta_merge_group["Metastatic Sites"].sem()

# Convert to DataFrame
df_meta_sem = pd.DataFrame(std_error_meta)
df_meta_sem.reset_index(inplace=True)

# Preview DataFrame
df_meta_sem.head()
```

	Drug	Timepoint	Metastatic Sites
0	Capomulin	0	0.000000
1	Capomulin	5	0.074833
2	Capomulin	10	0.125433
3	Capomulin	15	0.132048
4	Capomulin	20	0.161621

In [8]:

```
# Minor Data Munging to Re-Format the Data Frames
meta_vol_pivot_df = df_meta.pivot(index='Timepoint', columns="Drug", values="Metastatic Sites")
# Preview that Reformatting worked
meta_vol_pivot_df.head()
```

Out[8]:

Drug Capomulin Ceftamin Infubinol Ketapril Naftisol Placebo Propriva Ramicane Stelasyn Zoniferol Timepoint

0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
5	0.160000	0.380952	0.280000	0.304348	0.260870	0.375000	0.320000	0.120000	0.240000	0.166667
10	0.320000	0.600000	0.666667	0.590909	0.523810	0.833333	0.565217	0.250000	0.478261	0.500000
15	0.375000	0.789474	0.904762	0.842105	0.857143	1.250000	0.764706	0.333333	0.782609	0.809524
20	0.652174	1.111111	1.050000	1.210526	1.150000	1.526316	1.000000	0.347826	0.952381	1.294118

In [9]:

```
# Generate the Plot (with Error Bars)
for drug, marker, colors in drug format list:
   ste = std error meta[drug]
   meta plt = plt.errorbar(meta vol pivot df.index, meta vol pivot df[drug], ste,
                                   fmt=marker,ls='--',color=colors,linewidth=0.5)
plt.legend([('Capomulin'),('Infubinol'),('Ketapril'),('Placebo')],loc='best')
plt.title('Metastatic Spread During Treatment Course')
plt.xlim(0,50)
plt.xlabel("Timepoint in Treatment Course")
plt.ylim(0.0, 5.0)
plt.ylabel("Metastatic Sites")
plt.grid(color="0.50", linestyle="-")
# Save the Figure
plt.savefig("../Figure 2 Metastatic Spread")
plt.show()
```



```
0 10 20 30 40 50
Timepoint in Treatment Course
```

In [10]:

```
# Store the Count of Mice Grouped by Drug and Timepoint (W can pass any metric)
mice_merge_group = merge_data.groupby(["Drug", "Timepoint"])
mice_merge_group.head()

mice_count = mice_merge_group["Mouse ID"].count()

# Convert to DataFrame
df_mice_count = pd.DataFrame(mice_count)
df_mice_count.reset_index(inplace=True)

# Preview DataFrame
df_mice_count.head()
```

Out[10]:

Drug Timepoint Mouse ID

0	Capomulin	0	25
1	Capomulin	5	25
2	Capomulin	10	25
3	Capomulin	15	24
4	Capomulin	20	23

In [11]:

```
# Minor Data Munging to Re-Format the Data Frames & Preview the Data Frame
mice_count_pivot_df = df_mice_count.pivot(index='Timepoint', columns="Drug", values="Mouse ID")
mice_count_pivot_df.head()
```

Out[11]:

Drug Capomulin Ceftamin Infubinol Ketapril Naftisol Placebo Propriva Ramicane Stelasyn Zoniferol

Т	imepoint										
	0	25	25	25	25	25	25	26	25	26	25
	5	25	21	25	23	23	24	25	25	25	24
	10	25	20	21	22	21	24	23	24	23	22
	15	24	19	21	19	21	20	17	24	23	21
	20	23	18	20	19	20	19	17	23	21	17

In [12]:

```
plt.ylabel('Survival Rate (%)')
plt.grid()

# Save the Figure
plt.savefig("../Figure 3 Survival Rate.png")
# Show the Figure
plt.show()
```


In [13]:

```
# Calculate the percent changes for each drug
percent_change = ((((tumor_vol_pivot_df.iloc[9])-(tumor_vol_pivot_df.iloc[0]))/(tumor_vol_pivot_df.
iloc[0]))*100)
# Display the data to confirm
percent_change
```

Out[13]:

Drug -19.475303 Capomulin Ceftamin 42.516492 46.123472 Infubinol 57.028795 Ketapril Naftisol 53.923347 51.297960 Placebo Propriva 47.241175 Ramicane -22.320900 52.085134 Stelasyn 46.579751 Zoniferol dtype: float64

In [14]:

```
# Store all Relevant Percent Changes into a Tuple
relevant_percent_changes = (percent_change["Capomulin"],
              percent_change["Infubinol"],
               percent_change["Ketapril"],
               percent change["Placebo"])
# Splice the data between passing and failing drugs
fig, ax = plt.subplots()
ind = np.arange(len(relevant percent changes))
width = 1
rectsPass = ax.bar(ind[0], relevant percent changes[0], width, color='green')
rectsFail = ax.bar(ind[1:], relevant percent changes[1:], width, color='red')
# Orient widths. Add labels, tick marks, etc.
ax.set title('Tumor Change Over 45 Day Treatment')
ax.set xticks(ind + 0.5)
ax.set_xticklabels(('Capomulin', 'Infubinol', 'Ketapril', 'Placebo'))
ax.set ylabel('% Tumor Volume Change')
ax.set_ylim([-25,75])
```

```
ax.set_autoscaley_on(False)
ax.grid(True)
plt.hlines(0, -1, len(ind), alpha=1.0, linewidth=1.0)
# Use functions to label the percentages of changes
def autolabelFail(rects):
   for rect in rects:
       height = rect.get_height()
       ha='center', va='bottom', color="black")
def autolabelPass(rects):
   for rect in rects:
       height = rect.get_height()
       ax.text(rect.get_x() + rect.get_width()/2., -8,
               '-%d%% ' % int(height),
               ha='center', va='bottom', color="black")
# Call functions to implement the function calls
autolabelPass(rectsPass)
autolabelFail(rectsFail)
# Save the Figure
fig.savefig("../Figure 4 Percent Change.png")
# Show the Figure
fig.show()
```

