"Toshkent irrigatsiya va qishloq xo'jaligini mexanizatsiyalash muhandislari instituti" Milliy tadqiqot universiteti

Termodinamika va Issiqlik uzatish asoslari fani

Mavzu:

Bug' hosil bo'lish termodinamika jarayonlari

texnika fanlari nomzodi, dotsenti Nuritov Ikrom Rajabovich

Bug' hosil bo'lish termodinamika jarayonlari

Reja:

- 1.Suv bug'i va uning asosiy xususiyatlari.
- 2.Bug' holati o'zgarish diagrammalari. Suv bug'i uchun "P-V" va "T-S" diagrammalari.
- 3.Nam havoning xususiyatlari. Nam havo uchun "h d" diagramma.

FOYDALANILGAN ADABIYOTLAR

- 1. Joseph M Powers. LECTURE NOTES ON THERMODYNAMICS. Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana 46556-5637, USA, updated 01 July 2014.
- 2. R.A.Zohidov, M.M.Alimova, Sh.S.Mavjudova. Issiqlik texnikasi (darslik). T.: "O'zbekiston faylasuflari milliy jamiyati" nashriyoti, 2010. 200 b.
- 3. T.S.Xudoyberdiev, B.P.Shaymardanov, R.A.Abduraxmonov, A.N.Xudoyorov, B.R.Boltaboyev. Issiqlik texnikasi asoslari (darslik)–T.: "Cho'lpon" nashriyoti, 2008. 216 b.
- 4. Ш. Ж. Имомов, И. Р. Нуритов, К.Э.Усмонов. Сборник задач по основам термодинамики и теплопередачи /Учебное пособие-Т.:ТИИИМСХ.2021.-116 с.

https://vintageradio.ru/uz/termodinamicheskie-parametry-vlazhnogovozduha-opredelenie.html

https://www.google.com/search?q=%D0%B2%D0%BB%D0%B0%D

3
$$\eta_t = \frac{q_1 - q_2}{q_1} = 1 - \frac{q_2}{q_1}$$
4 $\eta_t = 1 - \frac{T_2}{T_1}$
5 $\varepsilon = \frac{q_2}{\ell}$ ёки $\varepsilon = \frac{T_2}{T_1 - T_2}$

1.Suv bug'i va uning asosiy xususiyatlari.

Suvning suyuq holatidan bug' holatiga o'tishi bug'lanish deyiladi. Suvning bug'ga aylanishi 2 xil yo'l bilan bo'lishi mumkin: bug'lanish va qaynash.

Bug'lanish - suyuqlikning ochiq turgan yuzasidan har qanday haroratda otilib chiqayotgan molekulalar hisobiga bo'ladi.

Qaynash - bug'lanishning faqat suyuqlik sirtidan tashqari, butun suyuqlik xajmi bo'yicha bo'lish jarayonidir.

Fizika kursidan ma'lumki, suyuqliklarning qaynash harorati uning turiga va asosan muhit bosimiga bog'liq.

Masalan, suv tog' sharoitlarida, ya'ni muhit bosimi past bo'lganda, 100°5 dan ancha past haroratlarda qaynab ketishi ma'lum.

Bug'ning suyuqlikka aylanish jarayonini *kondensatsiya* deyilib, bundan hosil bo'lgan suyuqlikni *kondensat* deb yuritiladi.

Masalan, distirlangan suv, yomg'ir va kor suvlari ham condensat hysoblanadi.

Muhitga otilib chiqayotgan molekulalar sonining suyuqlikka qaytib tushayotgan molekulalar soniga tenglashganida dinamik muvozanat sodir bo'ladi. Bu holatdagi bug'ni *to'yingan bug'* deb ataladi.

Bug'lanish jarayonida muhitga otilib chiqayotgan molekulalar o'zlari bilan suvning mayda tomchilarini ham olib chiqishlari mumkin.

Shuning uchun to'yingan bug'da mayda suv tomchilari ham bo'lib, bunday bug'ni to'yingan *nam bug'* deyiladi.

Agar bug'lanayotgan suvning ustki qismi (muhit) chegaralangan (aytaylik, qopqoq bilan yopilgan) bo'lsa, ma'lum sharoitda suv tomchilari qolmaydi.

Bunday sharoitdagi bug'ni – quruq to'yingan bug' deb yuritiladi.

Ko'pincha bug' tarkibida ma'lum miqdorda suv tomchichalari bo'ladi. Shu sababli, bug'lar uchun *quruqlilik darajasi degan* tushuncha kiritilgan.

Agar, bug' uchun quruqlilik darajasi x = 0.9 bo'lsa, buning mazmunibug'ning tarkibida 10 % suv tomchilari bor degani bo'ladi.

2. Bug' holati o'zgarish diagrammalari. Suv bug'i uchun "PV" va "T-S" diagrammalari.

Suv bug'ining "pv"diagrammasi

Suv bug'i uchun 3- ta (a,b,c) chiziqlarda "pv "diagramma yuzasini 4 ta qismga ajratadi:

- 1- "a" nuqtalarni birlashtiruvchi chiziq sovuq suv chizig'i;
- 2- "b" nuqtalarni birlashtiruvchi chiziq issiq suv chizig'i, qaynashning boshlanishi quyi chegara chizig'i;
- 3- "c" nuqtalarni birlashtiruvchi chiziq qaynash (bug'lanish)ning tugash chizig'i yuqori chegara chizig'i.
 - 4 o'ta qizigan bug' qismi

Suv bug'ining "pv"diagrammasi Quyi va yuqori chegara chiziqlari o'zaro kesishgan "K" nuqta - *kritik nuqta deyiladi*. Suv uchun bu nuqta ko'rsatkichlari;

 p_{kr} =220 bar (225,5 at), T_{kr} = 647 °K (374°S), v_{kr} = 0,003 m³/kg kritik holatdagi suyuqlik uchun bugʻning va suyuqlikning xususiyatlari bir xil boʻladi.

AK - quyi chegara chizig'ida bug'lanish boshlanadi, bug'ning quruqlik darajasi **X=0**, **KC** - yuqori chegara chizig'ida bug'lanish tugaydi, bug'ning quruqlik darajasi **X=1**, ya'ni **100%** li bug' hosil bo'ladi

Suv bug'ining "T-S "diagrammasi

ak va kc - quyi va yuqorichegara chiziqlari;

a - izobara chizig'ining
 boshlanishi, t=0⁰ C (273 ⁰K);

ab - suvni qaynash haroratigacha izobarik isitish;

i - qaynashgacha isitishuchun sarflangan issiqlikmiqdori;

bc - izobarik qaynash jarayoni bo'lib, bir vaqtning o'zida izoterma bo'lib ham hisoblanadi, chunki, qaynashning boshlanishidan tugaguncha suvning harorati o'zgarmaydi;

r- yuza ma'lum mashtabda suvning to'la bug'lanib tugashi uchun sarflanadigan issiqlikni bildirib bug'lanish issiqligi deyiladi;

 $q_{o'q}$ - to'yingan (quruq) bug'dan o'ta qizigan bug' hosil qilish uchun bug'ga berilgan qo'shimcha issiqlik miqdori.

Bug' hosil bulish jarayoniga sarflanadigan umumiy issiqlik miqdori quyidagiga teng.

$$q = i + r + q_{o}q$$

"O" nuqtadan chiqayotgan izobara chiziqlari X=1 chizig'igacha (qaynab tugaguncha) izoterma bilan birga ketadi. Yuqori chegara chizig'i (X=1) dan keyin izobara chizig'i yuqoriga tik ko'tariladi, izoterma chiziqlari esa pastroqqa qarab og'ib ko'tariladi

Suv bug'i uchun «hs» diagrammasi

Rasmda bug'ning quruqlik darajasi bir xil bo'lgan chiziqlar ham berilgan ($X_1=0.90$: $X_2=0.8$ va h.k). Rasmda kattaliklar MKGS birliklari sistemasida berilgan. Kerakli paytda SI sistemasiga o'tish uchun olingan qiymatlarni 1 kkal = 4.19 kJ ga ko'paytirsak yetarli bo'ladi.

3.Nam havoning xususiyatlari. Nam havo uchun "h - d" diagramma.

Tabiatda odatda har doim havo tarkibida ma'lum miqdorda suv bug`i mavjud bo`lib, quruq havo bilan suv bug`idan tashkil to`gan aralashma *nam havo* deyiladi.

Havo tarkibidagi suv bug`ini *Parsial (xususiy) bosimi* unchalik katta emas — bir necha o`n millimetr simob ustuniga teng. Shu sababli texnikaviy hisoblar uchun yetarli darajada aniqlik bilan nam havo va suv bug`i uchun ideal (keltirilgan) gazlar tenglamasini qo`llash mumkin, ideal gaz tenglamasi

$$pV = MRT$$
,

Dalton qonuniga ko'ra nam havoning bosimi - quruq havo partsial (bosim ulushi) bosimi bilan bug'ning partsial bosimlarining yig'indisiga teng:

$$P_{bar} = P_x + P_b$$
 yoki $B = P_x + P_b$

bu yerda P_{bar} - nam havoning barometrik bosimi;

P_x - quruq havoning partsial bosimi;

P_b -suv bug'ining partsial bosimi (bosim ulushi).

Bir xil haroratda havodagi mavjud bug' massasining shu harorat va bosimda havoga sig'ishi (to'yinmasdan) mumkin bo'lgan bug' massasiga nisbati *"nisbiy namlik"* deyiladi:

$$oldsymbol{arphi} = rac{p_{oldsymbol{\sigma}}}{p_{\scriptscriptstyle T}}$$

1kg quruq havodagi suv bug'ining kg lardagi ifodasi ''namlik
miqdori'' deyiladi:

$$d = \frac{m_{\delta}}{m_{x}} \qquad d = 0.622 \frac{p_{\delta}}{B - p_{\delta}}$$

L.K.Ramzin nam havo uchun quyidagi «hd» diagammasini taklif qilgan.

Nam havoning gaz doimiysi. Nam havo ilgari aytganimizdek, havo va bug' aralashmasi bolgani uchun gaz aralashmasi sababli *universal gaz doimiysi* ifodasidan foyda anamiz:

$$\mu_{ap}\cdot R_{ap}=8314$$

yoki

$$R_{ap} = \frac{8314}{\mu_{ap}} = \frac{8314}{\mu_x \cdot r_x + \mu_b \cdot r_b} = \frac{8314}{\mu_6 \frac{p_x}{B} + \mu_b \frac{p_b}{B}}.$$

tenglikdagi havo va bugʻning molekulyar massalari

$$R = \frac{8314}{28, 3 - 10, 3 \frac{\varphi \cdot p_T}{B}}.$$

Nam havoning entalpiyasi quruq havo entalpiyasi bilan d kg suv bugʻi entalpiyasining yigʻindisiga teng:

$$h = h_x + dh_h.$$

Quruq havo uchun oʻzgarmas bosimdagi issiqlik sig'imi

$$C_p = 1006 \text{ J/kg} \cdot \text{grad bo'lganligi uchun:}$$

$$h = 1006 t + dh_k$$

Nam havoning entalpiyasi. Entalpiya ham *1kg* quruq havoga nisbatan qaraladi, ya'ni

$$\left(1 + \frac{d}{1000}\right)$$

Nazorat savollari va topshiriqlar

- 1. pv, Ts-, hs-kordinatalarda bug' hosil bo'lish jarayonlarini tahlil qiling. Ularning umumiy bir xilligini va farq qiluvchi xususiyatlarini ko'rsating.
- 2. Nam to'yingan, quruq to'yingan va qizdirilgan bug' nima? Suvni qizdirish, bug' hosil bo'lish va qonuniyatlarini ko`rsating.
- 3.Bug' holati o'zgarishi jarayonlari (izoxorik, izobarik, izotermik va adiabatik) tahlilini qiling. Nam va qizdirilgan bug' sohalari jarayonlarining xususiyatlarini ko'rsating.
- 4.To'yingan va to'yinmagan nam havo haqida aniqlik bering. To'yingan nam bug' turli mumkin bo'lgan yo'llarini ko'rsating (va aksincha).
- 5.Havoning namlik saqlash xususiyati, absolyut va nisbiy namligiga aniqlik bering. ϕ <100% va ϕ >100% bo'lgan sohalardagi jarayonlar xususiyatlarini keltiring.
- 6.Hd-diagramma yordamida aniq masalalar yeching.

E`TIBORINGIZ UCHUN RAHMAT