

SÍLABO INGENIERÍA DE SOFTWARE I

ÁREA CURRICULAR: INGENIERÍA DE SOFTWARE

CICLO: VI SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 09011906050

II. CRÉDITOS : 05

III. REQUISITOS : 09093205051 Gestión de Procesos

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es naturaleza formación especializada; dirigido a que el estudiante sea capaz de realizar las actividades de gestión de proyectos de software, análisis de requisitos, realizar de manera básica el diseño de la arquitectura, construcción e implementación de software.

Unidades: Ingeniería de software – Gestión de proyecto de software – Proceso de desarrollo e implementación de software

VII. FUENTES DE CONSULTA

Bibliográficas

- Bruegge, B; Dutoit, A (2009). Object-Oriented Software Engineering con UML, Patrones y Java. 3ra edición. New York. Pearson education SA.
- Gomaa, H (2011), Modelado y Diseño de Software: UML, casos de uso, patrones y Arquitecturas Software. New York. Cambridge University Press.
- IEEE (2014). Guide to the Software Engineering Body of Knowledge Version 3.0 SWEBOK. 3.0 edition. Washington: Copyright © 2014 IEEE
- · Kim, R.; (2006) Learning UML 2.0. First Edition, California USA: Ed. O'Reilly Media.
- Pressman, R. (2009). *Ingeniería de Software*. 7ma edición. México: Ed. Mc Graw Hill.
- Sommerville, I (2010). Ingeniería del software. 9na edición. Madrid: Pearson educación. S.A
- Quatrani,T.; Palistrant, J. (2006) Visual Modeling with IBM Rational Software Architect and UML. Estados Unidos de Norteamérica. IBM Press.

Electrónicas

- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (INDECOPI)
 - http://bvirtual.indecopi.gob.pe/normas/29110-5-1-2.pdf
- Software Engineering Body of Knowledge (SWEBOK)
 - http://www.computer.org/portal/web/swebok
- UML, ejemplo sencillo sobre Modelado de un Proyecto (Microsoft)
 - https://msdn.microsoft.com/es-es/library/bb972214.aspx#XSLTsection130121120120
- Diagramas de casos de uso de UML: Instrucciones https://msdn.microsoft.com/es-es/library/dd409432.aspx
- CRUD Pattern in Use Cases (Software Engineering)
 http://www.se.cs.put.poznan.pl/knowledge-base/software-engineering-blog/crud-pattern-in-use-cases

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. INGENIERÍA DE SOFTWARE

OBJETIVOS DE APRENDIZAJE

Reconocer los conceptos de software.

- Describir el marco de proceso de software, los métodos y modelos de procesos de software.
- Diseñar estructuras de proyectos de software.

PRIMERA SEMANA

Primera sesión

Software: definición, características, dominios de aplicación y software heredados.

Ingeniería de software: definición y capas.

Segunda sesión

Proceso de Ingeniería de software: definición, ciclos de vida del software, captura de datos y mejora y herramientas.

Laboratorio

Formación del equipo de trabajo. Configuración del repositorio de documentación y completar la plantilla. Elección de la empresa en donde se desarrollará el proyecto final.

SEGUNDA SEMANA

Primera sesión

Modelos de ingeniería de software: modelos principales y tipos de modelos.

Segunda sesión

Métodos de ingeniería de software: tipos de métodos

Grupo de trabajo: identificar el modelo o método a emplear en su proyecto.

Laboratorio

Plantilla enunciado del trabajo: completar el modelo o método a emplear.

UNIDAD II. GESTIÓN DE PROYECTO DE SOFTWARE

OBJETIVOS DE APRENDIZAJE

- Reconocer el proceso de planificación de un proyecto de software.
- Describir el proceso de planificación de un proyecto de software.
- Aplicar el proceso de planificación de un proyecto de software.

TERCERA SEMANA

Primera sesión

Planificación de proyectos de software: planificación, entregables, costos, cronograma, recursos, riesgos, calidad y gestión.

Segunda sesión

Grupo de trabajo: bosquejar la planificación de su proyecto de software.

Laboratorio

Microsoft Office Project: calendario, tareas, hitos, duración, recursos y predecesoras.

CUARTA SEMANA

Primera sesión

NTP-29110 - Proceso de gestión del proyecto: propósito, objetivos, productos de entrada, salida, internos, roles involucrados y actividades.

Segunda sesión

NTP-29110 - Proceso de implementación de software: propósito, objetivos, productos de entrada, salida, internos, roles involucrados y actividades.

Laboratorio

Microsoft Office Project: costos, control, recursos, vistas, línea base, seguimiento e informes.

QUINTA SEMANA

Primera sesión

Plantillas: del proceso de gestión del proyecto y del proceso de implementación de software.

Segunda sesión

Grupo de trabajo: acoplar las fases/actividades de su modelo o método elegido con la NTP. Avanzar con el cronograma y las plantillas.

Laboratorio

Microsoft Office Project: cada grupo de trabajo realizará su cronograma de proyecto empleando la herramienta.

UNIDAD III. PROCESO DE DESARROLLO DE SOFTWARE E IMPLEMENTACIÓN DE SOFTWARE

OBJETIVOS DE APRENDIZAJE

Identificar los conceptos fundamentales de la Ingeniería de Requerimientos

SEXTA SEMANA

Primera sesión

Requerimientos: definición, principales dificultades e impacto de requerimientos incorrectos.

Ingeniería de requerimientos: definición

Segunda sesión

Requerimientos: funcionales, no funcionales y cuantificables.

Laboratorio

Rational Software Architect: introducción al uso de la herramienta.

UML: metamodelo. Resumen de notación UML. Modelo basico de un modelo de requerimiento

SÉPTIMA SEMANA

Primera sesión

Proceso de requerimientos y agente del proceso

Captura de requerimiento: definición y técnicas (Análisis de documentación existente, Glosario, Observación, Entrevista, Cuestionario)

Segunda sesión

Captura de requerimiento: técnicas (Historia del usuario, Control de problemas)

Del modelo de proceso al requerimiento

Laboratorio

Identificacion de los requerimientos a partir de I procesos de negocio con BIZAGI

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión

Clasificación de los requisitos: Funcionales y no funcionale, si el requisito es deribado de uno o mas requisitos de alto nivel, si el requisito está en el producto o proceso, la prioridad del requisito, el alcance del requisito, volatilidad estabilidad.

Segunda sesión

Modelo de actores

Paquetes lógicos

Diagrama de casos de uso

Relaciones entre Casos de Uso: include, extends, precedence, generalization

Laboratorio

Rational Software Architect: Modelo de caso de uso básico

DÉCIMA SEMANA

Primera sesión

Patrones de caso de uso

Prototipos de interfaces de usuario

Segunda sesión

Especificación de requerimientos

Revisión del documento de requerimientos

Nivel de detalle de la especificación de requerimientos

Laboratorio

Rational Software Architect: Modelo de caso de uso completo.

UNDÉCIMA SEMANA

Primera sesión

Asignación arquitectónica del diseño de los requisitos

Segunda sesión

Diagrama de actividades

Laboratorio

Rational Software Architect: Diagrama de actividades

DUODÉCIMA SEMANA

Primera sesión

Diagrama de clases

Segunda sesión

Diagrama de paquetes

Laboratorio

Rational Software Architect: Diagrama de clases

DECIMOTERCERA SEMANA

Primera sesión

Diagrama de secuencia

Segunda sesión

Validación de requisitos

Laboratorio

Rational Software Architect: Diagrama de secuencia

DECIMOCUARTA SEMANA

Exposiciones de proyectos por equipos.

DECIMOQUINTA SEMANA

Exposiciones de proyectos por equipos.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

- a. Matemática y Ciencias Básicas 0
- b. Tópicos de Ingeniería5
- c. Educación General 0

IX.PROCEDIMIENTOS DIDÁCTICOS

- **Método Expositivo Interactivo.** Comprende la exposición del docente y la interacción con el estudiante.
- **Método de Discusión Guiada.** Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- **Método de Demostración Ejecución.** Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.
- Método de la Casuística. El docente presenta casos tipo y los resuelve en clase.
- **Método Flipped Classroom.** El aula volteada, para el contenido virtual, invierte los métodos tradicionales de enseñanza, la entrega de la instrucción se realiza en línea, fuera de la clase y la tarea se realiza en el aula.

X. MEDIOS Y MATERIALES

- **Equipos**: Computadora, ecran y proyector multimedia.
- **Materiales**: Manual Universitario, material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).
- **Software:** Herramienta de diseño, modelado y desarrollo de software, herramientas para crear prototipos, Herramientas de gestión de documentos en la nube, herramientas de gestión de requisitos.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE + EP+EF) / 4 PE= ((P1+P2+P3+P4-MN)/3 + W1 + PL) /3 PL= (Lb1+Lb2+Lb3+Lb4) / 4

Donde:

PF = Promedio final del curso.

PE = Promedio de evaluación.

EP = Examen parcial (escrito).

EF = Examen final (escrito).

P1...P4 = Evaluaciones teoría

PL = Promedio de Laboratorio.

Lb1...Lb4 = Evaluaciones de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

= Trabajo final (impreso y digital)

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.					
b.	b. Habilidad para analizar un problema e identificar y definir los requerimientos apropia para su solución.					
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.					
d.	d. Habilidad para trabajar con efectividad en equipos para lograr una meta común.					
е.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.					
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.					
g.	. Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.					
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.					
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	K				
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.					

XIII. HORAS, SESIONES, DURACIÓN

a)	Teoría	Práctica	Laboratorio	Horas de clase:
	3	2	2	

b) Sesiones por semana: Tres sesiones.

c) Duración: 7 horas académicas de 45 minutos

XIV. DOCENTES DEL CURSO

Ing. Carla Palomino Guerrero Mg. Carlos Barzola Mendoza

XV. FECHA

La Molina, julio de 2018.