REPUBLIQUE DE CÔTE D'IVOIRE

Union - Discipline - Travail

Concours A2GP session 2016 Composition: Mathématiques 6 (statistiques, probabilités)

Durée : 2 Heures

Si un candidat est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre. Les exercices sont indépendants

Exercíce 1:

Un sac S contient cinq jetons : deux sont numérotés 1 et les trois autres sont numérotés 2. Les parties A, B et C de cet exercice sont indépendantes, elles correspondent à des expériences aléatoires différentes utilisant le sac S mentionné ci-dessus.

Partie A:

- 1) On extrait deux jetons simultanément de S. Calculer la probabilité que ces deux jetons portent le numéro 2.
- 2) Dans cette question on considère le sac S et on effectue 2100 tirages simultanés de deux jetons avec remise (les deux jetons obtenus à chaque tirage sont remis dans le sac S avant le tirage des deux jetons suivants). On désigne par X la variable aléatoire égale au nombre de tirages où les deux jetons tirés portent le numéro 2.
 - a) Reconnaître la loi de probabilité de la variable aléatoire X. Justifier la réponse.
 - **b)** En déduire l'espérance mathématique et la variance de X.

Partie B:

On effectue une série illimitée de tirages avec remise d'un jeton dans le sac S. On désigne par Y la variable aléatoire égale au nombre de tirages effectués avant le tirage amenant un jeton numéroté 1 pour la première fois.

- 1) a) Justifier que la variable aléatoire Z = Y + 1 suit une loi usuelle que l'on précisera.
 - b) En déduire la loi de probabilité de Y.
- 2) a) Préciser l'espérance mathématique et la variance de Z.
 - b) En déduire l'espérance mathématique et la variance de Y.

Partie C:

On extrait successivement et avec remise deux jetons du sac S. On désigne par X_1 la variable aléatoire égale à la somme des numéros des deux jetons tirés, et par X_2 la variable aléatoire égale au maximum des numéros des deux jetons tirés.

- 1) Donner la loi de probabilité du couple (X_1, X_2) en utilisant un tableau à double entrée.
- **2)** En déduire la loi de probabilité de X_1 et celle de X_2 .
- **3)** Les variables aléatoires X₁ et X₂ sont-elles indépendantes ?

Exercice 2:

Une puce se déplace indéfiniment entre trois points A, B et C. Au départ (étape 0), elle est en A. A chaque étape, elle quitte sa position et gagne indifféremment l'un des deux autres points. On suppose construit un espace probabilisé (Ω, \mathcal{T}, P) modélisant cette suite infinie de déplacements. Pour tout entier naturel n, on considère l'événement A_n (respectivement B_n ; C_n): "la puce est en A (respectivement B; C)" à l'issue de la n-ème étape, et la probabilité α_n (respectivement β_n et λ_n) de l'événement A_n (respectivement B_n et C_n). On pose $\alpha_0 = 1$, $\beta_0 = \lambda_0 = 0$.

- **1)a)** Justifier que pour tout entier naturel n, A_n , B_n , C_n forment un système complet d'événements . Et en déduire que $\alpha_n + \beta_n + \lambda_n = 1$.
 - $\textbf{b)} \text{ Donner, pour tout entier naturel n, les probabilités conditionnelles } P(A_{n+1} / A_n), P(A_{n+1} / B_n), P(A_{n+1} / C_n), P(B_{n+1} / A_n), P(B_{n+1} / B_n), P(B_{n+1} / C_n), P(C_{n+1} / A_n), P(C_{n+1} / B_n), P(C_{n+1} / C_n).$
- **2)a)** Calculer α_1 , β_1 , λ_1 et α_2 , β_2 , λ_2 .
 - $\text{b) D\'{e}montrer que pour tout naturel n, } \begin{cases} \alpha_{n+1} = \frac{1}{2}\beta_n + \frac{1}{2}\lambda_n \\ \beta_{n+1} = \frac{1}{2}\alpha_n + \frac{1}{2}\lambda_n \\ \lambda_{n+1} = \frac{1}{2}\alpha_n + \frac{1}{2}\beta_n \end{cases}.$
 - **c)** En déduire que pour tout entier naturel $n, \beta_n = \lambda_n$ et $\alpha_{n+1} = \frac{1}{2}(1 \alpha_n)$.
 - **d)** En déduire l'expression de α_n , puis de β_n et λ_n , en fonction de n.
 - **e)** En déduire la limite de $\ \alpha_n$, $\ \beta_n$ et $\ \lambda_n$ lorsque n tend vers . Interpréter ces résultats.