1. What is the limiting behaviour of

$$\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^{nt},$$

where r represents the annual risk-free rate, n is the number of periods per year and t is the number of years.

2. (a) Prove using the definition of the derivative that

$$\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}.$$

(b) Consider the function

$$y = \frac{f(x)}{g(x)}.$$

Using the product rule and chain rule, derive the quotient rule given by

$$\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{q^2(x)}.$$

Hence use the quotient rule to differentiate the function

$$y = \frac{2^x}{\sin x}.$$

- (c) Find the equation of the tangent to the curve $x = 2y^3 + \ln y$ at the point (2,1), giving your solution in the form px + qy + r = 0.
- (d) Show that the Taylor series expansion of $f(x) = \sinh x$, can be written in the form

$$\sum_{n=0}^{\infty} a_n x^{2n}$$

where a_n should be given. Hence use this result to obtain the series expansion for $g(x) = \cosh x$

3. (a) Obtain a general solution of the following differential equation

$$\frac{dy}{dx} = e^{-y} \left(2x - 4 \right).$$

(b) Find the particular solution of the following initial value problem

$$\frac{dy}{dx} - y = e^{-x}, \ y(0) = 1$$

and show that this can be written as

$$2y = 3e^x - e^{-x}.$$

(c) Solve the differential equation

$$xy'' - y' = 3x^2$$

giving the general solution in the form y = g(x).

- 4. This question is on applications of complex numbers, where $i = \sqrt{-1}$
 - (a) Solve the differential equation

$$y'' - 5y' + 6y = e^{-3x}$$

(b) Writing $\sin x$ as the imaginary part of (5), calculate

$$\int e^x \sin x dx$$

Question 5

The expression $\sinh(ix)$ is equal to

A.
$$-i\sin(ix)$$

B.
$$\sin(x)$$

C.
$$\sin(x/i)$$

D.
$$\sin(ix)$$

E.
$$i \sin(ix)$$

Question 6

If $f(x) = \log(\frac{1}{2}\cosh(x^3))$, then f'(x) is equal to

A.
$$2 \tanh (x^3)$$

B.
$$2/\tanh(3x^2)$$
 C. $6x^2\tanh(x^3)$

C.
$$6x^2 \tanh (x^3)$$

D.
$$6x^2 \tanh(x^3)$$
 E. $3x^2 \tanh(x^3)$

E.
$$3x^2 \tanh(x^3)$$

F. none of these

Question 7

For $z = \exp(2 - i\pi/4)$, z^5 equals

A.
$$\exp(10 - i\frac{\pi}{4})$$

B.
$$\exp(5 + i\frac{5\pi}{4})$$

C.
$$e^{10} + i \frac{5\pi}{4}$$

D.
$$e^{10} \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)$$

A.
$$\exp\left(10 - i\frac{\pi}{4}\right)$$
 B. $\exp\left(5 + i\frac{5\pi}{4}\right)$ C. $e^{10} + i\frac{5\pi}{4}$ D. $e^{10}\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)$ E. $-e^{10}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$

F. none of these

Question 8

For $z = \exp(2 - i3\pi/4)$, z^5 equals

A.
$$\exp(10 - i\frac{\pi}{4})$$

B.
$$\exp\left(5 + i\frac{5\pi}{4}\right)$$

C.
$$e^{10} + i \frac{5\pi}{4}$$

$$D. e^{10} \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)$$

A.
$$\exp\left(10 - i\frac{\pi}{4}\right)$$
 B. $\exp\left(5 + i\frac{5\pi}{4}\right)$ C. $e^{10} + i\frac{5\pi}{4}$ D. $e^{10}\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)$ E. $-e^{10}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$

F. none of these

Question 9

The integral $\int_0^1 e^{\sqrt{x}} dx$ is A. 0 B. 1 C. 2 D. e

E. does not exist

F. none of these

Hint: Consider a substitution $y^2 = x$ and use integration by parts.

Question 10

For $|x| < \frac{1}{2}$, the first two terms of the Taylor expansions for $f(x) = \ln(1 - 4x^2)$ about x = 0 are A. $-4x^2 - 8x^4$ B. $2x + \frac{8}{3}x^3$ C. $-4x^2 - 16x^4$ D. $-4x^2 + 96x^4$ E. $2x^2 - 48x^4$

A.
$$-4x^2 - 8x^4$$

B.
$$2x + \frac{8}{3}x^3$$

C.
$$-4x^2 - 16x^4$$

D.
$$-4x^2 + 96x^4$$

E.
$$2x^2 - 48x^4$$

F. none of these

Question 11

Let $I = \int_3^4 \frac{3x-5}{(x-2)^2} dx$. Then I equals

A. $\ln 8 + \frac{1}{2}$ B. $\ln 8 - \frac{1}{2}$ C. $\ln 8 + 2$ D. $\ln 8 - 2$ E. $\ln 8 + \frac{3}{2}$

B.
$$\ln 8 - \frac{1}{2}$$

C.
$$\ln 8 + 2$$

D.
$$\ln 8 - 2$$

E.
$$\ln 8 + \frac{3}{2}$$

F. none of these

Question 12

Consider the function $f(x,y) = xe^{xy}$, where $x = t^2$ and $y = t^{-1}$. What is the value of $\frac{df}{dt}$ at t = 1?

A. 0

C. $2e^2$

E. 2

F. none of these

- 13. Solve the equation $x^2 + 4x + 20 = 0$, giving your answers in the form c + di where $c, d \in \mathbb{Z}$.
- 14. Simplify the complex numbers by writing in the form x + iy

i.
$$\frac{1}{i-2}$$

ii.
$$\frac{1-5i}{3+4i}$$

- 15. If the complex number $z = \frac{2+3i}{1-i}$, then calculate z/\overline{z} .
- 16. What does the argument arg z of the complex number $z = 4 \exp(-i\pi/6)$ equal?
- 17. Simplify $\cos(ix)$
- 18. Given $z = \exp(2 i\pi/4)$, express z^5 in the form x + iy

$$\frac{e^{i\sqrt{x}} - 1}{e^{i\sqrt{x}} + 1}$$

simplify to?

20. Recall the argument of
$$z$$
 is given as the principal value, i.e. $\arg z \in [-\pi,\pi]$. What is $\arg z$ for $z=-2ie^{-i\pi}$?

.