HA NOI UNIVERSITY Faculty of Information Technology

FINAL EXAM (SET 1)

Subject:	K20	Calcu	ılus
Duration	: 75	minut	es

Durat	ion: 75 minutes					
I. Mul	tiple Choice Quest	ions (5 points)				
1.	(0.25 point) The m A. True	atrix multiplication is	associative. B. False			
2.	(0.25 point) We ca A. same order C. same number of	n add the matrices o	f B. same number of D. different order	f columns		
3.	(0.25 point) A system of linear equations is said to be homogeneous if it can be written in the form					
	A. AX = B	$B.\ \mathit{AX}\ =\ 0$	C. AB = X	D. $X = A^{-1}$		
4.	(0.25 point) The rofor a linear system. A. True	w reduction algorithr	n applies only to aug B. False	gmented matrices		
5.	(0.25 point) Whenever a system has no free varial contains many solutions.A. TrueB. False			olution set		
6.		are matrix $A = [a_{ij}]$ is		and only if $a_{ij} = 0$		
	forA. $i > j$	 B. <i>i</i> < <i>j</i>	C. $i \leq j$	D. $i = j$		
7.	(0.25 point) Comp	ute the determinant of $\begin{bmatrix} 4 & 2 \\ 5 & 2 \\ 7 & 7 \end{bmatrix}$	of the matrix.			
	A. 891	B197	C55	D. 55		
Q	(0.25 point) Find a	Il values of h such the	nat will he in the s	wheneve of \mathbb{R}^3		

8. (0.25 point) Find all values of h such that y will be in the subspace of \mathbb{R} spanned by v_1, v_2, v_3 if

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3 \\ 4 \\ -8 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \quad and \quad y = \begin{bmatrix} 4 \\ 2 \\ h \end{bmatrix}.$$

A.
$$h = -4$$
 or 0

C.
$$h = -4$$

B. all
$$h \neq -4$$

D.
$$h = -16$$

9. (0.25 point) Determine if the vector u is in the column space of matrix A and whether it is in the null space of A.

$$u = \begin{bmatrix} -2 \\ -5 \\ -2 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & -3 & 4 \\ -1 & 0 & -5 \\ 3 & -3 & 6 \end{bmatrix}$$

A. In Col A and in Nul A

B. In Col A, not in Null A

C. Not in Col A, not in Nul A

D. Not in Col A, in Nul A

10. (0.25 point) Determine the values of the parameters for which the system has unique solution

$$\begin{cases} 5x_1 + 9x_2 = -3 \\ 5x_1 + sx_2 = 4 \end{cases}.$$
 B. $s \neq 3$ C. $s \neq \pm 5$ D. $s \neq \pm 9$

A.
$$s \neq \pm 3$$

B.
$$s \neq 3$$

C.
$$s \neq \pm 5$$

D.
$$s \neq \pm 9$$

11.(0.25 point) For the given matrix A, find k such that Nul A is a subspace of R^k and find m such that Col A is a subspace of R^m

$$A = \begin{bmatrix} 4 & 0 & 0 & -1 & 1 & -7 \\ 2 & 6 & -5 & -1 & 0 & 3 \\ -3 & -4 & 4 & -5 & 5 & -3 \end{bmatrix}.$$

A.
$$k = 6$$
, $m = 3$

B.
$$k = 6, m = 6$$

C.
$$k = 3$$
, $m = 3$

D.
$$k = 3$$
, $m = 6$

12. (0.25 point) If two row interchanges are made in succession, then the new determinant

A. equals to the old determinant

B. equals to -1 times the old determinant

13. (0.25 point) On what intervals are the function $f(x) = x^{-2/3}$ continuous?

A.
$$(-\infty, +\infty)$$

B.
$$(0, +\infty)$$

D.
$$(-\infty,0)$$
 and $(0,+\infty)$

14. (0.25 point) Suppose that f(t) and g(t) are defined for all t and that $\lim_{t\to t_0} f(t) = -7$ and $\lim_{t\to t_0} g(t) = 0$. The limit as $t\to t_0$ of the function $\frac{f(t)}{g(t)-7}$ is

15. (0.25 point)	The vertical asymptote of the curve $f(x) =$	$\frac{x^2 + x - 6}{x^2 + 2x - 8}$ is

16. (0.25 point) Find the limit of g(x) as x approaches the indicated value

$$\lim_{x \to 0^+} (4g(x))^{1/3} = 2.$$
C. 4

A. 2

A. x = 3

B. 1

B. x = 1

C. x = -4

D. -2

D. x = -3

17. (0.25 point) At what points is the function

$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3}, & x \neq 3\\ 5, & x = 3 \end{cases}$$

continuous?

A. x = 3

B. $x \neq 3$

D. x = 1

18. (0.25 point) The limit $\lim_{x\to 1} \frac{x^{50}-1}{x-1}$ can be expressed as the derivative of what function and at what value of x.

A.
$$f(x) = \frac{x^{50}-1}{x-1}$$
, $x = 1$
B. $f(x) = x^{50}$, $x = 1$
C. $f(x) = x^{50} - 1$, $x = 1$
D. $f(x) = x^{50}$, $x = 0$

B.
$$f(x) = x^{50}$$
, $x = 1$

C.
$$f(x) = x^{\frac{x-1}{50}} - 1$$
, $x = 1$

D.
$$f(x) = x^{50}$$
, $x = 0$

19. (0.25 point) A particle moves along an s - axis with position function s = s(t)and velocity function v(t) = s'(t). Use the given information to find s(t): $v(t) = 32t; \ s(0) = 20.$

A.
$$s(t) = 16t^2 + 20$$

$$C. s(t) = 64t^2 + 20$$

B.
$$s(t) = 12t^2 + 20$$

C.
$$s(t) = 64t^2 + 20$$

D. $s(t) = 36t^2 + 20$

20. (0.25 point) Evaluate
$$\int_0^3 f(x) dx$$
 if $f(x) = \begin{cases} x^2, & x < 2 \\ 3x - 2, & x \ge 2 \end{cases}$.

A. 49/6

C. 29/6

B. 39/6

D. 19/6

II. Short answer Question (5 points)

- 1. (1.0 point) Find the limit $\lim_{x\to -1} \frac{\sin(x^2-x-2)}{x+1}$.
- **2.** (1.0 point) Suppose that a curve y = f(x) in the xy plane has the property that at each point (x, y) on the curve, the tangent line has slope x^2 . Find an equation for the curve given that its passed through the point (2,1).
- **3.** (1.0 point) Find $\frac{d^2y}{dx^2}$ by implicit differentiation for $3x^2 4y^2 = 7$.
- **4.** (1.0 point) Find the region under the curve y = 3sinx and over the interval $[0, 2\pi/3]$.
- **5.** (1.0 point) Evaluate $\int_1^\infty \frac{\ln x}{x^2} dx$.