Типы логики: ТТЛ, ТТЛШ, ЭСЛ, КМОП, быстродействующие КМОП.

Пример расшифровки: <u>ТТЛ</u> – Микросхемы <u>Транзисторно-Транзисторной Логики</u> - входная логика осуществляется транзистором (первая буква Т), а усиление (и инверсия, если предусмотрено) - также транзисторами (вторая буква Т).

- **<u>Цифровые сигналы</u>** это сигналы, имеющие два стабильных уровня уровень логического нуля и уровень логической единицы. **У микросхем, выполненных по различным технологиям, логические уровни могут отличаться друг от друга.** Единица когда напряжение высокое, ноль когда низкое (для положительной логики).
- У Нулевое напряжение на выходе микросхемы не означает, что вывод «болтается в воздухе». На самом деле, он просто подключен к общему проводу. Поэтому нельзя соединять непосредственно несколько логических выходов: если на них будут различные уровни произойдет КЗ (короткое замыкание).
- ➤ Тип логики можно узнать по названию микросхемы. Точнее по первым буквам названия, которые указывают, к какой серии принадлежит микросхема. Внутри любой серии могут быть микросхемы, произведенные только по какой-то одной технологии.

	ТТЛ	ттлш	кмоп	Быстр.КМОП	ЭСЛ
Расшифровка названия	$\underline{\underline{T}}$ ранзисторно- $\underline{\underline{T}}$ ранзисторная $\underline{\underline{J}}$ огика	<u>ТТЛ</u> с диодом Шоттки	$\underline{\underline{K}}$ омплиментарный $\underline{\underline{M}}$ еталл- $\underline{\underline{O}}$ ксид $\underline{\underline{\Pi}}$ олупроводник		<u>Э</u> миттерно- <u>С</u> вязанная <u>Л</u> огика
Основные серии отеч. микросхем	K155 K131	K555 K531 KP1533	K561 K176	KP1554 KP1564	K500 KP1500
Серии буржуйских микросхем	74	74LS 74ALS	CD40 H 4000	74AC 74 HC	MC10 F100
Задержка распространения, нс	1030	420	1550	3,55	0,52
Макс. частота, МГц	15	5070	15	50150	300500
Напряжение питания, В	5 ±0,5	5 ±0,5	315	26	$-5,2\pm0,5$
Потребляемый ток (без нагрузки), мА	20	440	0,0020,1	0,0020,1	0,4
Уровень лог.0, В	0,4	0,5	< 0,1	< 0,1	-1,65
Уровень лог. 1, В	2,4	2,7	~ U пит	~ U пит	-0,96
Макс. выходной ток, мА	16	20	0,5	75	40

Основные достоинства:

КМОП – низкое энергопотребление

ЭСЛ – высокая скорость срабатывания

TTЛ - x.3., все use'ают

- Наиболее распространены in nowdays (*по мнению некоторых*) следующие серии (и их импортные аналоги):
 - о ТТЛШ К555, К1533 (наиболее широко распространены)
 - о КМОП КР561, КР1554, КР1564 (наиболее широко распространены)
 - о ЭСЛ К1500
 - FOR ME(♥): ТТЛ К155
- № <u>Цифровые схемы рекомендуется строить, используя микросхемы только одного типа логики</u>. Это связано именно с различиями в логических уровнях цифровых сигналов. Но бывают такие ситуации, что одним типом никак не обойтись. <u>Например</u>, один блок должен иметь низкое энергопотребление, а другой высокую скорость. Низким потреблением обладают микросхемы технологии КМОП. Высокая скорость у ЭСЛ. В этом случае понадобятся ставить <u>преобразователи уровней</u>. <u>Правда</u>, некоторые типы нормально стыкуются и без преобразователей. <u>Например</u>, сигнал с выхода КМОП-микросхемы можно подать на вход микросхемы ТТЛ (при учете, что их напряжения питания одинаковы). Однако, в обратную сторону, т.е., от ТТЛ к КМОП пускать сигнал не рекомендуется.
- Тип логики выбирают, в основном, исходя из следующих соображений: скорость (рабочая частота), энергопотребление, стоимость.

Аналоговая техника	разъём	усилитель
Цифровая техника	слот	буфер