

GEBZE TEKNİK ÜNİVERSİTESİ ELEKTRONİK MÜHENDİSLİĞİ

ELM235 LOJÍK DEVRE TASARIM LABORATUVARI

LAB 0x7 Deney Raporu SONLU OTOMATLAR - II

Hazırlayanlar

1) 1901022025- AYŞE SERRA ŞİMŞEK

2) 1901022038- SELEN ERDOĞAN

1. GİRİŞ:

Bu deneyde Sequence Detector ve Counters devre tasarımı istenmiştir. Deneyde FSM kullanılmıştır. İki devre içinde Verilog donanım dili kullanılarak modelsim üzerinde kod yazılıp, Quartus Prime programında sentezlenerek RTL ve Post Mapping şemaları elde edilmiştir.

Deneye başlamadan önce sahip olunması gereken teorik bilgiler araştırılmıştır. Bu bağlamda geçen haftaki deneyin teoriğine ek olarak;

Bir **Sequence Detector** (dizi detektörü), bir giriş bit dizisini alan ve hedef dizi algılandığında bir çıktı 1 üreten bir sıralı durum makinesidir. Bir Mealy makinesinde çıktı, mevcut duruma ve harici girdiye (x) bağlıdır. Bu nedenle, diyagramda çıktı, girdilerle birlikte durumların dışında yazılmıştır. Örnek olarak,

State diagram for sequence detector using Mealy Model

> State diagram to detect a sequence 1001 using Mealy Model (Non-overlapping)

Sıralı bir devre tasarımı için aşağıdaki gibi bir prosedür izlenebilir:

- 1. Devrenin durum diyagramı ve durum tablosu üretilir.
- 2. Durum diyagramındaki durumların sayısı sayılır (N olarak adlandırılır). [2^(P-1) < N £ 2^(P)] denklemi çözülerek gereken flip-flop sayısı hesaplanır.(P olarak adlandırılır.)
- 3. Her duruma benzersiz bir P-bit ikili sayı (durum vektörü) atanır. Genellikle, ilk durum = 0, sonraki durum = 1, vb.
- 4. State transition tablosu ve çıktı tablosu üretilir.
- 5. State transition tablosu, her flip-flop için bir tane olmak üzere P tablolarına ayrılır.
- 6. Kullanılacak flip-flop türlerine karar verilir. Emin olunmadığı takdirde, tüm JK'lar kullanılır.
- 7. Her bir flip-flop için girdi tablosu üretilir.
- 8. Tüm flip-flopların giriş durumunun ve mevcut durumunun fonksiyonlarına dayalı olarak her flip-flop için giriş denklemleri türetilir.
- 9. Denklemler tek bir yere yazılarak özetlenir.
- 10. Devre şeması çizilir.

Binary Senkron sayıcıda, tüm "flip-floplar"daki saat girişi aynı kaynağı kullanır ve aynı anda aynı saat sinyalini yaratır. Aynı kaynaktan aynı anda aynı saat sinyalini kullanan sayaca Senkron sayıcı denir.

Senkron Sayaç Tasarımı

Bir **BCD sayacı**, uygulanan bir saat sinyali ile 0'dan önceden belirlenmiş bir sayıya kadar sayan 4 bitlik ikili sayaçlardan biridir. Sayım önceden belirlenen sayım değerine ulaştığında tüm flipflop'ları sıfırlar ve tekrar 0'dan saymaya başlar. Bu tip sayaç 4 JK flip flop kullanılarak tasarlanır ve 0'dan 9'a kadar sayar ve sonuç dijital olarak temsil edilir. biçim. 9 (1001) sayısına ulaştıktan sonra sıfırlanır ve yeniden başlar.

BCD Sayaç Tasarımı

2. PROBLEMLER:

2.1. Problem Problem 1 - Sequence Detector

	s2: begin
output logic myout); i	if(in)begin
1	nextstate=s0;
logic out;	out=1;
•	end
typedef enum {s0,s1,s2} statetype;	else begin
statetype state,nextstate;	nextstate=s0;
•	end
always_ff @(posedge clk)	end
if(reset) state<=s0;	
else state<=nextstate;	
	default:
always_comb r	nextstate=s0;
begin	endcase
case(state)	end
_	always_comb
	begin
	myout=out;
	end
else begin	
nextstate=s0;	
end	
end	endmodule
s1: begin	
if(in)begin	
nextstate=s0;	
end	
else begin	
nextstate=s2;	
end	
end	

.sv dosyası


```
`timescale 1ns / 1ps
module tb_detector();
logic in;
logic clk;
logic reset;
logic myout;
detector sel(in,clk,reset,myout);
integer k=0;
initial
begin
reset=0;
  for(k=0; k < 17; k=k+1)
  begin
    #5; clk=0;
    #5; clk=1;
    in=$urandom_range(0,1);
  end
 #20;
$stop;
end
endmodule
```

tb.sv dosyası

Şekil 1 Problem 1 Dalga Şeması

Şekil 2 Problem 1 RTL Şeması

Şekil 3 Problem 1 Post-Mapping

ELM235 LOJIK DEVRE TASARIM LABORATUVARI clk | IO_IBUF in~input in | IO_IBUF myout~output 1'h1 | IO_OBUF reset~input reset | IO_IBUF

Şekil 4 Problem 1 Post-Fitting

Flow Summary		
< <filter>></filter>		
Flow Status	Successful - Sat May 14 10:23:06 2022	
Quartus Prime Version	19.1.0 Build 670 09/22/2019 SJ Lite Edition	
Revision Name	detector_top	
Top-level Entity Name	detector_top	
Family	MAX 10	
Device	10M08DAF484C8G	
Timing Models	Final	
Total logic elements	1 / 8,064 (< 1 %)	
Total registers	0	
Total pins	4 / 250 (2 %)	
Total virtual pins	0	
Total memory bits	0 / 387,072 (0 %)	
Embedded Multiplier 9-bit elements	0 / 48 (0 %)	
Total PLLs	0/2(0%)	
UFM blocks	0/1(0%)	
ADC blocks	0/1(0%)	

Şekil 5 Problem 1 Utilization Raporu

Şekil 6 Problem 1 Fmax

Şekil 7 Problem 1 Devre Şematiği

10000	70-110			FIIP FIOP			
PS	II6	NS	OIP	DT DO			
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10	000000000000000000000000000000000000000	000001	000000			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

Şekil 1 State Table

Şekil 8 State Diagram for Problem 1

Diagram

tor bropiem T

Şekil 9 State Table for Problem 1

2.2. Problem Problem 2 – Counters

module detector (input logic clk,reset,	s8: begin
output logic [3:0] myout);	count= 4'b1000;
	nextstate=s9;
logic [3:0] count;	end
	s9: begin

ELIVIZOS LOJIN DEVRE TASARIIVI LAD	
typedef enum {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15}	count= 4'b1001;
statetype;	nextstate=s10;
statetype state,nextstate ;	end
always_ff @(posedge clk)	s10: begin
if(reset) state<=s0;	count= 4'b1010;
else state<=nextstate;	nextstate=s11;
	end
always_comb	
begin	s11: begin
	count= 4'b1011;
case(state)	nextstate=s12;
	end
s0: begin	
count= 4'b0000;	s12: begin
nextstate=s1;	count= 4'b1100;
end	nextstate=s13;
	end
s1: begin	
count= 4'b0001;	s13: begin
nextstate=s2;	count= 4'b1101;
end	nextstate=s14;
	end
s2: begin	
count= 4'b0010;	s14: begin
nextstate=s3;	count= 4'b1110;
end	nextstate=s15;

TEKNÍK ÜNÍVERSÍTESÍ	ELIVIZ35 LOJIK DEVRE TASAKIIVI LAB	ORATUVARI	Elektronik iviunendisiigi
		end	
s3: begin		s9: begin	
count= 4'b0011;		count= 4'b1001;	
nextstate=s4;		nextstate=s10;	
end		end	
s4: begin		s15: begin	
count= 4'b0100;		count= 4'b1111;	
nextstate=s5;		nextstate=s0;	
end		end	
s5: begin			
count= 4'b0101;		default:	
nextstate=s6;		nextstate=s0;	
end		endcase	
s6: begin		end	
count= 4'b0110;			
nextstate=s7;		always_comb	
end		begin	
		myout=count;	
s7: begin		end	
count= 4'b0111;		endmodule	
nextstate=s8;			
end			

.sv dosyası


```
`timescale 1ns / 1ps
module tb_detector();
logic in;
logic clk;
logic reset;
logic myout;
detector sel(in,clk,reset,myout);
integer k=0;
initial
begin
reset=0;
  for(k=0; k < 17; k=k+1)
  begin
     #5; clk=0;
     #5; clk=1;
     in=$urandom_range(0,1);
  end
 #20;
$stop;
end
endmodule
```

tb.sv dosyası

Şekil 2 BCD counter devre şeması

ELM235 LOJIK DEVRE TASARIM LABORATUVARI Elektronik Mühendisliği

Present State Next St			State							
(Q3 Q2 Q1 Q0) (Q3+ Q2+ Q1-			Q1+ Q	0+)	D3	D2	D1	D		
0000 00			001		0	0	0	1		
000)1			00)10		0	0	1	0
001	0			00)11		0	0	1	1
001	1			01	100		0	1	0	O
010	00			01	101		0	1	0	1
010	1			01	110		0	1	1	C
011	0			01	111		0	1	1	1
011	1			10	000		1	0	0	C
100	00			10	001		1	0	0	1
100	1			10	010		1	0	1	0
101	0			10)11		1	0	1	1
101	1			11	00		1	1	0	(
110	0		1101				1	1	0	1
110	1		1110			1	1	1	C	
111	0		1111		1	1	1	1		
111	1		0000				0	0	0	C
		D 3						D2		
Q1 Q0 Q3 Q2	00	01	11	10		Q1 Q0 Q3 Q2	00	01	11	10
00	0	0	0	0		00	0	0	1	0
01	0	0	1	0		01	1	1	0	1
11	1	1	0	1		11	1)	1	0	2
10	(1)	1 WWV	1 w.visifac	ts.com		10	0	0 www.	visifacts	0 s.com
= Q3Q2' -	F Q3Q0	' + Q30	21' + Q	3'Q2Q1	1Q0 D	2 = Q2Q0	' + Q20	21'+Q	2'Q1Q()
		D1						D0		
Q1Q0						Q1 Q0				
Q3 Q2	00	01	11	10		Q3 Q2	00	01	11	10
00	0	1	0	1		00	1	0	0	1
01	0	1	0	1		01	1	0	0	1
11	0	1	0	1		11	1	0	0	1
7000	0	1	0	1		10		0	0	1

Şekil 3 Problem 2

Şekil 4 D flip-flop kullanarak 4bit counter devre şeması

Şekil 10 Problem 2 Dalga Şeması

Şekil 11 Problem 2 State Diagram 4 bitlik Binary sayıcı için

Şekil 12 Problem 2 BCD senkron sayıcı için state diagram

Şekil 13 Problem 2 RTL Şeması

Şekil 14 Problem 2 Post-Mapping

ELM235 LOJIK DEVRE TASARIM LABORATUVARI _ Elektronik Mühendisliği

Ana	alysis & Synthesis Resource Utiliz	ation by Entity		
•	< <filter>></filter>	-		
	Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Memory Bits
1	✓ [P7_top	5 (0)	4 (0)	0
1	detector:inst	5 (5)	4 (4)	0

< <filter>></filter>							
UFM Blocks	DSP Elements	DSP 9x9	DSP 18x18	Pins	Virtual Pins	ADC blocks	Full
0	0	0	0	6	0	0	P7_tc
0	0	0	0	0	0	0	P7_tc

	< <filter>></filter>		
	Resource	Usage	
1	Estimated Total logic elements	5	
2			
3	Total combinational functions	5	
4	 Logic element usage by number of LUT inputs 		
1	4 input functions	2	
2	3 input functions	1	
3	<=2 input functions	2	
5			
6	✓ Logic elements by mode		
1	normal mode	5	
2	arithmetic mode	O	
7			
8	→ Total registers	4	
1	Dedicated logic registers	4	
2	I/O registers	0	
9			
10	I/O pins	6	
11			
12	Embedded Multiplier 9-bit elements	0	
13			
14	Maximum fan-out node	detecte[0]	
15	Maximum fan-out	5	
16	Total fan-out	33	
17	Average fan-out	1.57	

	< <filter>></filter>	Model Fmax Summar	y	
	Fmax	Restricted Fmax	Clock Name	Note
1	715.82 MHz	250.0 MHz	clk	limit due to minimum period restriction (r

Şekil 15 Problem 2 Utilization Raporu ve Fmax Değeri

3. Sonuç

Deneyde bulunan 1. Problemde, Sequence Detector (Sıralı dizi dedektörü) tasarımı istenmiştir. Bu tasarım gerçekleştirilirken föyde belirtildiği gibi her 1-0-1 dizisi için 1 çıkışı, diğer durumlarda 0 çıkışı elde edilmesi gerektiği söylenmiştir. Ayrıca belirtilen önemli bir nokta, oluşan dizinin iç içe geçtiği durumların da dahil edilmesi gerektiğidir. Örn. 1-0-1-0-1-0-1

Bu gereksinimler dikkate alanarak state diyagram oluşturulmuştur. 2 flip flop ile devre kurulmuş ve test edilmiştir. Böylece iç içe geçen 101 dizilerini tespit edilebildiği görülmektedir.

2.Problemde, 0-9 arası sayım yapan BCD counter, problem 1 deki gibi diyagram ve state table oluşturularak flip flop girişleri bulunmuş ve flip floplar kullanılarak devre elde edilmiştir. Aynı şekilde 4 bit counter flip floplar kullanılarak elde edilmiştir. Testbench ile test edildiğinde istenilen çıktılar alınmıştır. BCD sayıcı, bir saat sinyali uygulamasında ona kadar sayabilen özel bir dijital sayaç ürünüdür. Bu durum state diagram yapısında da gösterilmiştir.

4.Referanslar

https://studytronics.weebly.com/sequence-detectors.html

https://www.stickyminds.com/article/state-transition-diagrams

https://www.cs.umd.edu/~meesh/cmsc311/clin-cmsc311/Lectures/lecture29/counter.pdf

https://circuitdigest.com/tutorial/synchronous-counter

https://www.elprocus.com/bcd-counter-circuit-

 $\frac{working/\#:\text{``:text=BCD\%20or\%20decade\%20counter\%20circuit\%20is\%20designed\%20by\%20using\%20JK, decade\%20counter\%20is\%20shown\%20below. \&text=From\%20the\%20figure\%2C\%20we\%20observe, are\%20connected\%20to\%20logic\%201.$

https://www.electronics-tutorials.ws/counter/count_3.html

https://www.youtube.com/watch?v=SXE8mSRmgIU