©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Проверка гипотезы о распределения по показательному закону

Задание.

В итоге испытаний 1000 элементов на время безотказной работы (час.) получено распределение, приведенное в таблице. Требуется при уровне значимости α = 0,05 проверить гипотезу о том, что данные в генеральной совокупности распределены по показательному закону.

Время безотказной работы	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Число отказавших							
элементов	365	245	150	100	70	45	25

Решение.

Перейдем к простому вариационному ряду и вычислим выборочную среднюю:

X_i	5	15	25	35	45	55	65	Сумма
n_{i}	365	245	150	100	70	45	25	1000
$x_i n_i$	1825	3675	3750	3500	3150	2475	1625	20000

Получаем
$$\bar{x} = \frac{1}{n} \sum x_i n_i = \frac{1}{1000} 20000 = 20$$
.

В качестве оценки показательного распределения возьмем $\lambda = \frac{1}{r} = \frac{1}{20} = 0.05$.

Найдем вероятности попадания в интервалы по формуле:

$$P_{i} = P(x_{i} < X < x_{i+1}) = e^{-\lambda x_{i}} - e^{-\lambda x_{i+1}} = e^{-0.05x_{i}} - e^{-0.05x_{i+1}}.$$

Затем вычислим теоретические частоты: $n_i = P_i \cdot n = 1000P_i$.

Результаты вычислений занесем в таблицу:

X_i	X_{i+1}	n_{i}	P_{i}	n_i '	$\frac{(n_i - n_i')^2}{n_i'}$
0	10	365	0,3935	393,47	2,0599
10	20	245	0,2387	238,65	0,1689
20	30	150	0,1447	144,75	0,1905
30	40	100	0,0878	87,795	1,6967
40	50	70	0,0533	53,25	5,2686
50	60	45	0,0323	32,298	4,9954
60	70	25	0,0196	19,59	1,4942

Сумма 15,874

Из расчетной таблицы находим наблюдаемое значение критерия Пирсона $\chi^2 = 15,874$. Критическая точка для уровня значимости 5% при количестве степеней свободы k = 7 - 2 = 5 (число групп минус два) равна 11,1. Так как наблюдаемое значение критерия

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: <u>www.matburo.ru/ex_subject.php?p=ms</u>

15,874 больше критического значения, следует отвергнуть гипотезу о распределении по показательному закону на данном уровне значимости..