

化学反应与能量转化

第一单元 化学反应速率与反应限度

第1课时 化学反应速率

- 1. 了解化学反应速率的概念和表示方法。
- 2. 能够进行化学反应速率的简单计算。
- 3. 理解影响化学反应速率的因素及规律。

- 1. 变化观念:认识反应条件对化学反应速率的影响。
- 2. 模型认知: 能用一定的理论模型说明外界条件改变对反应速率的影响。

新知导学	启迪思维	探究规律
圳邓守子	/ / / / / / / / / / / / / / / / / / /	1木九州丰

- 一、化学反应速率及其表示方法
- 1. 化学反应速率及其表示方法

(1) 概今.	化学反应速率是用来衡量	的物理量。

- (2)表示方法:通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。
- (3)计算: 表达式为 $v = \frac{\Delta c}{\Delta t}$ 或 $v = \frac{\Delta n}{V \cdot \Delta t}$.

式中: Δc 为浓度的变化量,一般以 $mol \cdot L^{-1}$ 为单位;

 Δt 为时间,一般以 s 或 min 为单位。

(4)常用单位 或 。

2. 化学反应速率之比与化学计量数的关系

在一个体积为 2L 的密闭容器中发生反应 $2SO_2(g)+O_2(g)$ $2SO_3(g)$,经过 5 s 后,测得 SO_3 的物质的量为 0.8 mol。填写下表:

有关反应物质	SO ₂ (g)	$O_2(g)$	SO ₃ (g)
物质的量浓度变化			
化学反应速率			
化学反应速率之比			

■ 归纳总结 ■

- (1)表示化学反应速率时,必须指明具体的物质,因为同一化学反应,用不同的物质表示的反应速率,其数值可能不同。
- (2)化学反应速率的计算方法
- ①定义式法: 利用公式 $v=\frac{\Delta c}{\Delta t}$ 计算化学反应速率,也可以利用该公式计算浓度变化量或反应时间。
- ②关系式法: 化学反应速率之比=物质的量浓度的变化量之比=物质的量的变化量之比=化学计量数之比。
- A. 用 A 表示的反应速率是 0.4 mol·L⁻¹·min⁻¹
- B. 用 B、C、D 分别表示反应的速率,其比值是 3:2:1
- C. 在第 2 min 末的反应速率用 B 表示是 0.3 mol·L⁻¹·min⁻¹
- D. 在这 2 min 内用 B 表示的速率的值逐渐减小,用 C 表示的速率的值逐渐增大

思维启迪

- (1)固体或纯液体的浓度视为常数, $\Delta c=0$,因此不用固体或纯液体表示化学反应速率。
- (2)化学反应速率是一段时间内的平均反应速率,而不是某一时刻的瞬时速率。
- 【例 2】 $(2019 \cdot 嘉 \times$ 市期中)对于反应 A(g) + 3B(s) = 2C(g) + 2D(g),在不同条件下的化学反应速率如下,其中表示的反应速率最快的是()
- A. $v(A) = 0.5 \text{ mol} \cdot L^{-1} \cdot min^{-1}$
- B. $v(B) = 1.2 \text{ mol} \cdot L^{-1} \cdot s^{-1}$
- C. $v(D) = 0.4 \text{ mol} \cdot L^{-1} \cdot \text{min}^{-1}$
- D. $v(C) = 0.1 \text{ mol} \cdot L^{-1} \cdot s^{-1}$

方法规律——化学反应速率大小的比较方法

- (1)归一法:若单位不统一,则要换算成相同的单位;若为不同物质表示的反应速率,则要换算成同一物质来表示反应速率;再比较数值的大小。
- (2)比值法: 比较化学反应速率与化学计量数的比值,如 aA(g)+bB(g)==cC(g)+dD(g),比较 $\frac{v(A)}{a}$ 与 $\frac{v(B)}{b}$,若 $\frac{v(A)}{a}$ > $\frac{v(B)}{b}$,则说明用 A 表示的化学反应速率大于用 B 表示的化学反应速率。
- 二、影响化学反应速率的因素
- 1. 温度对化学反应速率影响的探究

2.催化剂对化学反应速率影响的探究

3.浓度对化学反应速率影响的探究

4.影响化学反应速率的因素除温度、催化剂和反应物浓度外,还有反应物的___、固体的___、 气体的压强、溶剂、光照等许多因素。

■ 归纳总结 ■

影响因素		规律		
内因	反应物本身的性质	反应物的化学性质越活泼,化学反应速率越快;反之化 学反应速率越慢		
外因	浓度	增大反应物的浓度, 化学反应速率增大; 减小反应物的浓度, 化学反应速率减小		
	温度	升高温度, 化学反应速率增大; 降低温度, 化学反应速率减小		
	催化剂	一般地,使用催化剂能极大地加快反应速率		
	固体的表面积	积 增大固体反应物的表面积,化学反应速率加快		
	其他	光照、溶剂、形成原电池等,也能影响化学反应速率		

【例 3】 (2019·浙江 6 月学考)在不同条件下进行过氧化氢分解实验,有关数据如下。四组实验中,收集相同体积(折算成标准状况)的氧气,所需时间最短的一组是()

组别 实验条件	A	В	С	D
过氧化氢溶液体积/mL	10	10	10	10
过氧化氢溶液质量分数	6%	6%	3%	6%
温度/℃	20	40	40	40
MnO ₂ 质量/g	0.05	0.05	0.05	0

【例 4】 CaCO₃ 与稀盐酸反应(放热反应)生成 CO₂ 的量与反应时间的关系如右图所示。下列结论不正确的是()

- A. 反应开始 4 min 内温度对反应速率的影响比浓度大
- B. 一段时间后,反应速率减小的原因是 $c(H^+)$ 减小
- C. 反应在 2~4 min 内平均反应速率最大
- D. 反应在 2~4 min 内生成 CO₂ 的平均反应速率为 $v(CO_2)=0.06$ mol·L⁻¹·s⁻¹

思维启迪——化学反应速率大小的分析判断

- (1)在内因不相同的情况下(即反应物不相同),只能根据反应事实及实验现象定性分析反应的快慢。
- (2)在内因相同的情况下(即反应物相同),可根据外界条件对反应速率的影响来定量判断反应

速率的大小。

◎ 学习小结

达标检测

检测评价 达标过关

- 1. 下列关于化学反应速率的说法,不正确的是()
- A. 化学反应速率是衡量化学反应进行快慢程度的物理量
- B. 化学反应速率的大小主要取决于反应物的性质
- C. 化学反应速率可以用单位时间内生成某物质的质量的多少来表示
- D. 化学反应速率常用单位有 mol·L⁻¹·s⁻¹和 mol·L⁻¹·min⁻¹
- 2. 已知合成氨反应: N₂(g)+3H₂(g) 高温、高压 催化剂

	N ₂	H ₂	NH ₃
起始浓度/mol·L ⁻¹	1.0	3.0	0
2 s 末浓度/mol·L ⁻¹	0.6	1.8	0.8

2NH₃(g)其浓度数据如下:

当用氨气浓度的增加来表示该化学反应的速率时,其速率为(

A. $0.2 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$

B. $0.4 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$

C. $0.6 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$

- D. $0.8 \text{ mol} \cdot L^{-1} \cdot s^{-1}$
- 3. 把下列四种 X 溶液分别加入四个盛有 $10 \text{ mL } 2 \text{ mol·L}^{-1}$ 盐酸的烧杯中,均加水稀释到 50 mL,此时, X 和盐酸缓慢地进行反应,其中反应最快的是()
- A. 10 °C 20 mL 3 mol·L⁻¹ 的 X 溶液
- B. 20 °C 30 mL 2 mol·L⁻¹ 的 X 溶液
- C. 20 ℃ 10 mL 4 mol·L⁻¹ 的 X 溶液
- D. 10 ℃ 10 mL 2 mol·L⁻¹ 的 X 溶液
- 4. 实验室用锌粒与 2 mol·L⁻¹ 硫酸溶液制取氢气,下列措施不能增大化学反应速率的是()
- A. 用锌粉代替锌粒
- B. 改用 3 mol·L⁻¹ 硫酸溶液
- C. 改用热的 2 mol·L⁻¹ 硫酸溶液
- D. 向该硫酸溶液中加入等体积的水