

XEAR 12 MATHEMATICS METHODS Test 3 2016

Logarithms

	45 marks	estunim 24	OVERALL:	
	34 marks		r section:	Non-Calculato
	11 marks	(xam) estunim El	Calculator section:	
		-		TEACHER:
Date: Wednesday 29 June 2016			SMAILMOS	NAME:

Show FULL working Answer all questions on this test paper INSTRUCTIONS:

Questions or parts of questions worth more than two marks require working to be shown to receive full marks.

Allowed: Maths Methods WACE formula sheets, 3 calculators, 1 A4 page of notes

Question 1 [3+2=5 marks]

Year 12 Maths Methods Test 3 (2016)

intercepts and the equations of any asymptotes. Accurately plot the graph $y = \log(x - 3)$ on the axes below, clearly detailing the coordinates of any axis

What are the values of a and b? The equation for the function shown below is $y = \alpha \times \log(x + b)$

page 1

Question 2 [2+2+2=6 marks]

The intensity of sound is measured in decibels. As a consequence of the sensitivity of the human ear, this scale is logarithmic, which allows sound intensities across a wide spectrum (from almost inaudible to ear-splittingly loud). Decibels are measured using the equation below:

$$D = 10 \log \left(\frac{I}{I_n}\right)$$

where D = Decibel level (dB)

I = Intensity of sound in watts per square metre (W/m²)

 $I_n = 1 \times 10^{-12} \text{ W/m}^2$ (this is the intensity of the least audible sound a human can hear)

- Calculate the decibel level for

normal conversation, which has a sound intensity of
$$I = 1 \times 10^{-6}$$
 W/m².

$$D = 10 \times 109 \left(\frac{1 \times 10^{-12}}{1 \times 10^{-12}} \right)^{-1} = 60 \text{ JB}$$

the kerb-side of a busy road, with a sound intensity of $I = 1 \times 10^{-4} \text{ W/m}^2$.

$$D = 10 \times \log \left(\frac{1 \times 10^{-4}}{(\times 10^{-12})^{12}} \right) = 80 \text{ dB}$$

Calculate the sound intensity (I) that corresponds to the pain threshold of 125 dB.

3. I = 3.16 W/m Z

Represent the above three points on the logarithmic graph paper, using them to plot the relationship between I and D

End of calculator section - go back and check your working Raise your hand when you are ready to go to the non-calculator section At this stage you may work on both papers (without a calculator or notes)

YEAR 12 MATHEMATICS METHODS Test 3 2016

Logarithms

42 шагкз	səinnim 24		OVERALL:
34 marks		r section:	Von-Calculato
11 marks	(xsm) estunim 21	:noi	Calculator sect
	-		LEACHER:
Date: Wednesday 29 June 2016		SOLUTIONS	AAME:

Show FULL working Answer all questions on this test paper

Allowed: Maths Methods WACE formula sheets, I A4 page of notes Questions or parts of questions worth more than two marks require working to be shown to receive full marks.

Write $log_2 64 = 6$ as an exponential statement: Question 3 [2 marks]

79=,6

Write $3^x = 7$ as a logarithmic statement:

JC = 7 = 20

Question 4 [1+1+1+1=5 marks]

Evaluate the following:

INSTRUCTIONS:

c. $5+3\ln e^2$

7 S = / 2×5 1 S = 2 1

Year 12 Maths Methods Test 3 (2016)

Question 8 [4+3=7 marks]

Calculate the equation of the tangent to the curve $y = \ln x$ at the point $(e^2, 2)$.

Evaluate the area contained between the function $y = \frac{4}{x}$ and the x-axis from an

End of non-calculator section - go back and check your working

bage 6

Year 12 Maths Methods Test 3 (2016)

Question 5 [2+2=4 marks]

Express each of the following as a single logarithm:

Express each of the following as a single logarithm:
a.
$$4\log a - 2\log b + \log c^3 = \log a + \log C - \log b^2$$

 $\log a^4 + \log C - \log b^2$

b.
$$\log_7 xy - 2 + \log_7 10$$
 = $\log_7 xy - 2 \times \log_7 7 + \log_7 10$ = $\log_7 \left(\frac{10 \times 7}{49}\right)$

Question 6 [2+3+4=9 marks]

Solve using your knowledge of logarithms, giving solutions as exact values in simplest form.

a.
$$2(5^x) = 12$$

$$5^{\circ} = 6$$

$$2 \log 5 - \log 6$$

$$2 - \log 6$$

$$2 - \log 5$$

b.
$$3^{x+1} = 4^{2x}$$

b.
$$3^{x+1} = 4^{2x}$$
 $(x+1) \log 3 = 2x \log 4$

Must be in $\log 3 = 2x \log 4 - x \log 3$
 $= x \left(2\log 4 - (\log 3)\right)$
 $= x \left(\log 6 - \log 3\right)$
 $= x \left(\log 6 - \log 3\right)$

C. $e^{2x} - 5(e^x) = 14$

Let $g = e^{2x}$
 $g^2 - 3g - 14 = 0$
 $= x \ln 7$
 $= x \ln 7$

Let
$$y = e^{2x}$$
 $y^2 - 5y - 14 = 0$

$$(y-7)(y+2)=0$$

$$g = 70 - 2$$
 $e^{x} = 7$ or $e^{x} = -2$

No north for $\ln(e^{2x}) - \ln(5e^{x}) = \ln(14)$

Year 12 Maths Methods Test 3 (2016)

page 4

x = 1,7/

Question 7 [3+4=7 marks]

Calculate $\frac{d}{dx}$ for the following:

(i)
$$\ln(3-4x)$$
 (ii) $\ln(\sqrt{2x^3+1}) = \frac{1}{2} \ln(2x^3+1)$

$$\frac{d}{dx} \left(\ln(3-4x) \right) = \frac{-4}{3-4x} \qquad \frac{d}{dx} \left(\frac{1}{2} \ln(2x^3+1) \right)$$

$$\frac{\left(\frac{1}{2} \right) (2x^3+1)^{\frac{1}{2}} 6x^2}{(2x^3+1)^{\frac{1}{2}}} \quad OR \qquad = \frac{1}{2} \times \frac{6x^2}{2x^3+1}$$

$$= \frac{3x^2}{2x^3+1} \qquad = \frac{3x^2}{2x^3+1}$$

Evaluate the following integrals:

(i)
$$\int \frac{12x^2}{7-x^3} dx$$
(ii)
$$\int 2\tan(4x+1)dx$$

$$= -4x \int \frac{-3x^2}{7-x^3} dx$$

$$= -\frac{1}{4} \ln \left| 7-x^3 \right| + C$$

- 1 once it missing absolute value signs. - I once if missing "dx" hom integral.

