L'espace vectoriel \mathbb{R}^n

1. Vecteurs de \mathbb{R}^n

Si
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ et $\lambda \in \mathbb{R}$ $u + v = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix}$ $-u = \begin{pmatrix} -u_1 \\ \vdots \\ -u_n \end{pmatrix}$
$$\lambda \cdot u = \begin{pmatrix} \lambda u_1 \\ \vdots \\ \lambda u_n \end{pmatrix} \qquad 0 = 0_{\mathbb{R}^n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Propriétés définissant l'espace vectoriel \mathbb{R}^n :

- 1. u + v = v + u
- 2. u + (v + w) = (u + v) + w
- 3. u + 0 = 0 + u = u
- 4. u + (-u) = 0
- 5. $1 \cdot u = u$
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$
- 7. $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$
- 8. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$

Produit scalaire

- u, v sont colinéaires ssi $\exists \lambda, \mu \in \mathbb{R}, \ \lambda u + \mu v = 0, (\lambda, \mu) \neq (0, 0)$ produit scalaire:

$$\langle u \mid v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i = ||u|| \, ||v|| \cos \angle (u, v)$$

— norme

$$||u|| = \sqrt{\langle u \mid u \rangle} = \sqrt{u_1^2 + \dots + u_n^2}$$

— En dimension 3 uniquement, le produit vectoriel est :

$$u \wedge v = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \wedge \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

— le produit mixte

$$[u, v, w] = \langle u \mid v \land w \rangle = \det(u, v, w) = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$

Propriétés du produit scalaire et du produit vectoriel :

- 1. $\langle v \mid u \rangle = \langle u \mid v \rangle$
- 2. $\langle \lambda u + u' \mid v \rangle = \lambda \langle u \mid v \rangle + \langle u' \mid v \rangle$
- 3. $||\lambda u|| = |\lambda| ||u||$
- 4. $||u + v|| \le ||u|| + ||v||$ avec égalité ssi u et v colinéaires (inégalité triangulaire)
- 5. $v \wedge u = -u \wedge v$, $u \wedge u = 0$
- 6. $(\lambda u + u') \wedge v = \lambda (u \wedge v) + u' \wedge v$

2. Exemples d'applications linéaires

En notation matricielle, $f: \mathbb{R}^p \to \mathbb{R}^n$ est une application linéaire si $\in \mathbb{R}^n$ et $A \in M_{n,p}(\mathbb{R})$ est une matrice notée

Mat(f).

Dans le plan \mathbb{R}^2 .

réflexion par rapport à l'axe
$$(Ox)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

réflexion par rapport à l'axe
$$(Oy)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

homothétie de rapport
$$\lambda$$
, centrée à l'origine $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

rotation d'angle
$$\theta$$
, centrée à l'origine
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

projection sur l'axe
$$(Ox)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Dans l'espace \mathbb{R}^3 .

réflexion par rapport au plan
$$(Oxy)$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ -z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

rotation d'angle
$$\theta$$
 d'axe (Oz)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3. Propriétés des applications linéaires

— $f: \mathbb{R}^p \to \mathbb{R}^n$ est linéaire ssi

$$\forall \lambda, \mu \in \mathbb{R}, \forall u, v \in \mathbb{R}^p, f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$

- $Mat(f \circ g) = Mat(f) \times Mat(g)$ Si f est bijective, $Mat(f^{-1}) = Mat(f)^{-1}$.