Nomenclature

Of the very large number of symbols required by the subject, many have more than one meaning. Usually the meaning is clear from the context in which the symbol is used.

- a Wing or wing-body lift curve slope: Acceleration. Local speed of sound
- a' Inertial or absolute acceleration
- a_0 Speed of sound at sea level. Tailplane zero incidence lift coefficient
- a₁ Tailplane lift curve slope
- a_{1t} Canard foreplane lift curve slope
- a_{1_F} Fin lift curve slope
- a₂ Elevator lift curve slope
- a_{2_A} Aileron lift curve slope
- a_{2_R} Rudder lift curve slope
- a₃ Elevator tab lift curve slope
- a_{∞} Lift curve slope of an infinite span wing
- a_h Local lift curve slope at coordinate h
- a_v Local lift curve slope at spanwise coordinate y
- ac Aerodynamic centre
- A Aspect ratio
- A State matrix
- b Wing span
- b_1 Elevator hinge moment derivative with respect to α_T
- b_2 Elevator hinge moment derivative with respect to η
- b_3 Elevator hinge moment derivative with respect to β_n
- **B** Input matrix
- c Chord: Viscous damping coefficient. Command input
- \overline{c} Standard mean chord (*smc*)
- $\overline{\overline{c}}$ Mean aerodynamic chord (*mac*)
- $\overline{\overline{c}}_n$ Mean elevator chord aft of hinge line
- c_h Local chord at coordinate h
- c_y Local chord at spanwise coordinate y
- cg Centre of gravity
- cp Centre of pressure
- C Command path transfer function
- C Output matrix
- C_D Drag coefficient
- C_{D_0} Zero lift drag coefficient
- C_l Rolling moment coefficient
- C_L Lift coefficient

- C_{L_w} Wing or wing-body lift coefficient
- C_{L_T} Tailplane lift coefficient
- C_H Elevator hinge moment coefficient
- C_m Pitching moment coefficient
- C_{m_0} Pitching moment coefficient about aerodynamic centre of wing
- $C_{m_{\alpha}}$ Slope of C_{m} - α plot
- C_n Yawing moment coefficient
- C_x Axial force coefficient
- C_y Lateral force coefficient
- C_z Normal force coefficient
- C_{τ} Thrust coefficient
- D Drag
- D' Drag in a lateral-directional perturbation
- **D** Direction cosine matrix: Direct matrix
- D_c Drag due to camber
- D_{α} Drag due to incidence
- e The exponential function
- e Oswald efficiency factor
- F Aerodynamic force: Feed forward path transfer function
- F_c Aerodynamic force due to camber
- F_{α} Aerodynamic force due to incidence
- F_{η} Elevator control force
- g Acceleration due to gravity
- g_n Elevator stick to surface mechanical gearing constant
- G Controlled system transfer function
- h Height: Centre of gravity position on reference chord: Spanwise coordinate along wing sweep line
- h_0 Aerodynamic centre position on reference chord
- h_F Fin height coordinate above roll axis
- h_m Controls fixed manoeuvre point position on reference chord
- h'_m Controls free manoeuvre point position on reference chord
- h_n Controls fixed neutral point position on reference chord
- h'_n Controls free neutral point position on reference chord
- H Elevator hinge moment: Feedback path transfer function
- H_F Fin span measured perpendicular to the roll axis
- H_m Controls fixed manoeuvre margin
- H'_m Controls free manoeuvre margin
- i_x Dimensionless moment of inertia in roll
- i_y Dimensionless moment of inertia in pitch
- i_z Dimensionless moment of inertia in yaw
- i_{xz} Dimensionless product of inertia about ox and oz axes
- I' Normalised inertia
- I_x Moment of inertia in roll
- I_{ν} Moment of inertia in pitch
- I_z Moment of inertia in yaw
- I Identity matrix
- I_{xy} Product of inertia about ox and oy axes
- I_{xz} Product of inertia about ox and oz axes

- Product of inertia about oy and oz axes I_{yz}
- The complex variable $(\sqrt{-1})$
- General constant: Spring stiffness coefficient k
- Pitch rate transfer function gain constant k_a
- k_u Axial velocity transfer function gain constant
- Normal velocity transfer function gain constant k_w
- Pitch attitude transfer function gain constant k_{θ}
- Turbo-jet engine gain constant k_{τ}
- K Feedback gain: Constant in drag polar
- K Feedback gain matrix
- K_n Controls fixed static stability margin
- K'_n Controls free static stability margin
- Fin arm measured between wing and fin quarter chord points l_f
- \dot{l}_t Tail arm measured between wing and tailplane quarter chord points
- Fin arm measured between cg and fin quarter chord point l_F
- Tail arm measured between cg and tailplane quarter chord points l_T
- L Lift: Rolling moment
- L'Lift in a lateral-directional perturbation
- L_c Lift due to camber
- Wing or wing-body lift L_w
- L_F Fin lift
- Tailplane lift L_T
- Lift due to incidence L_{α}
- m Mass
- Normalised mass m'
- M Local Mach number
- Free stream Mach number M_0
- M_{crit} Critical Mach number
- M Pitching moment
- M "Mass" matrix
- Wing-body pitching moment about wing aerodynamic centre M_0
- Tailplane pitching moment about tailplane aerodynamic centre M_T
- Total normal load factor n
- Normal load factor per unit angle of attack n_{α}
- Inertial normal load factor n'
- N Yawing moment
- Origin of axes 0
- Roll rate perturbation: Trim reference point: System pole p
- Pitch rate perturbation q
- Q Dynamic pressure
- Yaw rate perturbation: General response variable r
- R Radius of turn
- Wing semi-span: Laplace operator S
- S Wing reference area
- Projected body side reference area S_{B}
- S_F Fin reference area
- S_T Tailplane reference area
- S_n Elevator area aft of hinge line
- Time: Maximum aerofoil section thickness t

- T Time constant
- T_r Roll mode time constant
- T_s Spiral mode time constant
- T_{u} Numerator zero in axial velocity transfer function
- T_w Numerator zero in normal velocity transfer function
- T_{θ} Numerator zero in pitch rate and attitude transfer functions
- T_{τ} Turbo-jet engine time constant
- T_2 Time to double amplitude
- u Axial velocity perturbation
- u Input vector
- U Total axial velocity
- U_e Axial component of steady equilibrium velocity
- U_E Axial velocity component referred to datum-path earth axes
- v Lateral velocity perturbation
- v Eigenvector
- V Perturbed total velocity: Total lateral velocity
- Ve Lateral component of steady equilibrium velocity
- V_E Lateral velocity component referred to datum-path earth axes
- V₀ Steady equilibrium velocity
- \overline{V}_f Canard foreplane volume ratio
- \overline{V}_F Fin volume ratio
- \overline{V}_T Tailplane volume ratio
- V Eigenvector matrix
- w Normal velocity perturbation
- W Total normal velocity
- We Normal component of steady equilibrium velocity
- W_E Normal velocity component referred to datum-path earth axes
- x Longitudinal coordinate in axis system
- x_{τ} Axial coordinate of engine thrust line
- x State vector
- X Axial force component
- y Lateral coordinate in axis system
- y_B Lateral body "drag" coefficient
- y_{τ} Lateral coordinate of engine thrust line
- y Output vector
- Y Lateral force component
- z Normal coordinate in axis system: System zero
- z_{τ} Normal coordinate of engine thrust line
- z Transformed state vector
- Z Normal force component

Greek letter

- α Angle of attack or incidence perturbation
- α' Incidence perturbation
- α_e Equilibrium incidence

- Local tailplane incidence α_T
- Zero lift incidence of wing α_{w_0}
- Wing rigging angle α_{wr}
- Sideslip angle perturbation
- β_e Equilibrium sideslip angle
- Elevator trim tab angle β_n
- Flight path angle perturbation: Imaginary part of a complex number
- Equilibrium flight path angle γ_e
- Γ Wing dihedral angle
- Control angle: Increment: Unit impulse function
- δ_{ε} Roll control stick angle
- Pitch control stick angle δ_n
- Rudder pedal control angle $\delta_{\mathcal{E}}$
- Mass increment δm
- Characteristic polynomial: Transfer function denominator Δ
- Throttle lever angle: Downwash angle at tailplane: Closed loop ε system error
- Zero lift downwash angle at tail ε_0
- Rudder angle perturbation: Damping ratio
- Dutch roll damping ratio ζ_d
- Phugoid damping ratio ζ_{D}
- Short period pitching oscillation damping ratio ζ_S
- Elevator angle perturbation
- Elevator trim angle η_e
- Tailplane setting angle η_T
- Pitch angle perturbation: A general angle A
- θ_{ρ} Equilibrium pitch angle
- Thrust line inclination to aircraft ox axis κ
- λ Eigenvalue
- Λ Wing sweep angle
- Λ Eigenvalue matrix
- Longitudinal relative density factor μ_1
- Lateral relative density factor μ_2
- Aileron angle perturbation ξ
- Air density
- σ Aerodynamic time parameter: Real part of a complex number
- Engine thrust perturbation: Time parameter τ
- Trim thrust τ_{ρ}
- Dimensionless thrust
- Roll angle perturbation: Phase angle: A general angle
- Φ State transition matrix
- Yaw angle perturbation
- Undamped natural frequency (t)
- Bandwidth frequency ω_b
- Dutch roll undamped natural frequency ω_d
- Damped natural frequency ω_n
- Phugoid undamped natural frequency ω_{p}
- Short period pitching oscillation undamped natural frequency $\omega_{\rm s}$

Subscripts

- O Datum axes: Normal earth fixed axes: Wing or wing-body aerodynamic centre: Free stream flow conditions
- 1/4 Quarter chord
- 2 Double or twice
- ∞ Infinite span
- a Aerodynamic
- A Aileron
- b Aeroplane body axes: Bandwidth
- B Body or fuselage
- c Control: Chord: Compressible flow: Camber line
- d Atmospheric disturbance: Dutch roll
- D Drag
- e Equilibrium, steady or initial condition
- E Datum-path earth axes
- f Canard foreplane
- F Fin
- g Gravitational
- H Elevator hinge moment
- i Incompressible flow
- l Rolling moment
- le Leading edge
- L Lift
- m Pitching moment: Manoeuvre
- n Neutral point: Yawing moment
- p Power: Roll rate: Phugoid
- q Pitch rate
- r Yaw rate: Roll mode
- R Rudder
- s Short period pitching oscillation: Spiral mode
- Tailplane
- u Axial velocity
- v Lateral velocity
- w Aeroplane wind or stability axes: Wing or wing-body: Normal velocity
- x ox axis
- y oy axis
- z oz axis
- α Angle of attack or incidence
- ε Throttle lever
- ζ Rudder
- η Elevator
- θ Pitch
- ξ Ailerons
- τ Thrust

Examples of other symbols and notation

- A shorthand notation to denote the concise derivative, a dimensional x_u derivative divided by the appropriate mass or inertia parameters
- X_u A shorthand notation to denote the American normalised dimensional derivative X_u/m
- A shorthand notation to denote a modified North American lateral- L'_{ν} directional derivative
- C_{x_u} A shorthand coefficient notation to denote a North American dimensionless derivative
- A shorthand notation to denote the dimensionless derivative $\partial \hat{X}/\partial \hat{u}$ X_u
- A shorthand notation to denote the dimensional derivative $\partial X/\partial u$
- A shorthand notation to denote a transfer function numerator polynomial relating the output response y to the input u
- û A shorthand notation to denote that the variable u is dimensionless
- (*) A superscript to denote a complex conjugate: A superscript to denote that a derivative includes both aerodynamic and thrust effects in North American notation
- A dressing to denote a dimensional derivative in British notation (°)
- (^) A dressing to denote a dimensionaless parameter
- (T)A superscript to denote a transposed matrix