

SENSOR SYSTEMS

Dr. Federica Villa

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

Beep: 05 – C-programming

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

Embedded systems definition

An embedded system is a microprocessor-based computer hardware system with software that is designed to perform a dedicated function, either as an independent system or as a part of a large system.

Limited resources:

- Processing
- Memory
- Peripherals

Development platform

Example of a development platform

Microcontroller definition

A microcontroller is a microprocessor with added functionality such as memory and peripheral hardware.

OLITE CATO

Microcontroller peripherals

- Communication:
 - I2C
 - UART
 - SPI
 - Ethernet
 - CAN
 - USB
- Timing
 - clock generator
 - timers
 - counters
 - Pulse Width Modulators (PWM)
 - Watchdog

- Analog signal processing:
 - ADC
 - DAC
 - voltage reference
 - analog comparators
 - analog sensors
- Input / Output
- Power control circuits
- •

2 high-performance cores

Up to 10% faster
Improved branch prediction
Wider decode & execution engines

4 high-efficiency cores

Most efficient mobile CPU
3x performance/watt vs. competition

Neural Engine

16 cores
Up to 2x faster

USB controller

USB 3 support Up to 10 gigabits per second

Pro-class GPU

6 cores
Apple-designed shader architecture
Up to 20% faster
Improved efficiency
Mesh shading

Dedicated engines

ProRes codec
Pro display engine
AV1 decoder

Arm Holdings provides the I.P. for the core processor

ON Semiconductor®

ARM – Cortex → 32 bit registers

STM32F4 Block diagram

System

Power supply 1.2 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~26 MHz

Internal RC oscillators 32 kHz + 16 MHz

PLL

Clock control

RTC/AWU

SysTick timer

2x watchdogs (Independent and window)

51/82/114/140 I/Os

Cyclic redundancy check (CRC)

Control

2x 16-bit motor control PWM Synchronized AC timer

> 10x 16-bit timers 2x 32-bit timers

ART Accelerator™

ARM Cortex-M4 168 MHz

Floating point unit (FPU)

Nested vector interrupt controller (NVIC)

MPU

JTAG/SW debug/ETM

Multi-AHB bus matrix

16-channel DMA

Crypto/hash processor²

3DES, AES 256

SHA-1, MD5, HMAC

True random number generator (RNG) Up to 1-Mbyte Flash memory

Up to 192-Kbyte SRAM

FSMC/ SRAM/NOR/NAND/CF/ LCD parallel interface

80-byte + 4-Kbyte backup SRAM

512 OTP bytes

Connectivity

Camera Interface

3x SPI, 2x I2S, 3x I2C

Ethernet MAC 10/100 with IEEE 1588

2x CAN 2.0B

1x USB 2.0 OTG FS/HS1

1x USB 2.0 OTG FS

SDIO

6x USART LIN, smartcard, IrDA, modem control

Analog

2-channel 2x 12-bit DAC

3x 12-bit ADC 24 channels / 2.44 MSPS

Temperature sensor

ARM = Advanced RISC Machine

Reduced Instruction Set Computer

(Very simple instructions that execute within a single cycle, at high clock speed)

VS

CISC = Complex Instruction Set Computer

(more complex instructions to complete a task in as few lines as possible)

RISC vs CISC: an example

Pick the ball command to a pet

CISC: RISC:

Pick the ball Track the toy

Pick the toy up

Get back to the owner

Hamd over the toy to the

owner

How to execute 1800 + 1801

CISC:

ADD 1800, 1801

RISC:

Load X, 1800

Load Y, 1801

ADD X, Y

Store 1800, X

RISC vs CISC

Cisc

- Little work from the Lor compiler to pass from high- need level language into assembly fast) (and few memory needed)
- Short codes
- More clock cycles
- Pipeline more difficult
- More transistors used to store instructions

Risc

- Long codes and more RAM needed (and it must also be fast)
- More general purpose hardware
- One cycle per instruction (or even less)
- Pipeline easier
- More transistors used for register memories

ARM-Cortex families

Different «profiles»

- A: application (high-end)
- R: real time (more focus on timing performance)
- M: more wide-range and mainstream

Cortex-A

Cortex-R

Cortex-M

Business model:

Intellectual
Property
Licensing

number of ARM IP components inside.

ARM-Cortex M3 and M4 architectures

ARM-Cortex pipelining

2-level (M0+)

3-level (M3/4)

ARM-Cortex M4 memory map

SENSOR SYSTEMS: 02 – ARM microcontrollers

Summary

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

ARM-Cortex M4 exceptions and interrupts

Reset invoked on power up or warm reset, stops processor; restart is privileged Thread mode execution.

NMI interrupt by a peripheral or by software, highest priority exception other than reset; permanently enabled.

HardFault occurs because of an **error** during exception processing.

MemManage because of a memory protection related **fault**, for both instruction and data transactions.

BusFault because of a memory related **fault** for instruction or data transaction, e.g. error detected on a memory bus.

UsageFault related to instruction **faults**, such as: undefined instruction; illegal unaligned access; division by zero; etc..

SVCall SuperVisor Call triggered by the SVC instruction (e.g. to access OS kernel functions and device drivers).

PendSV interrupt-driven request for system-level service (e.g. used in OS for context switching).

SysTick generated by the system timer when it reaches zero (e.g. used as system tick for Real-Time Clock).

Interrupt IRQ **Interrupt** Servicing Request signalled by a peripheral.

ARM-Cortex M4 interrupt vector

number	number			address				
				or offset				
1		Reset	-3 the	0x00000004	Asynchronous			
			highest					
2	-14	NMI	-2	80000000x0	Asynchronous			
3	-13	HardFault	-1	0x000000C				
4	-12	MemManage	configurable	0x00000010	Synchronous			
5	-11	BusFault	configurable	0x00000014	Synch/Asynch			
6	-10	UsageFault	configurable	0x00000018	Synchronous			
7-10		Reserved			Exception	IRQ number	Offset	Vector
11	-5	SVCall	configurable	0x0000002C	-	Ing namet	OTIBEE	VCCC01
12-13		Reserved			number		·-, 	
14	-2	PendSV	configurable	0x00000038	16+n	N	i	IRQn
15	-1	SysTick	configurable	0x0000003C				
16	0	Interrupt	configurable	0x00000040		<u>.</u>		•
		IRQ₀			17	1		IRQ1
17	1	IRQ ₁	configurable	0x00000040	16	. 0	0x00000040	IRO0
		IRQ	configurable			-	1 0200000000	~
m255	m239	IRQ _{m-16}	configurable	0x00000040+	- 15	-1	0x0000003C	SysTick
				+ (m-16) ·4	14	-2	0x00000038	PendSV

Activation

Exception priorities

Vector Table

Priority

(start address for all exception handlers)

I CHOS V	0x00000038		
reserved			13
reserved for Debug			12
SVCall	0x0000002C	-5	11
			10
reserved			9
			8
			7
UsageFault	0x00000018	-10	6
BusFault	0x00000014	-11	5
MemManagement fault	0x00000010	-12	4
HardFault	0x0000000C	-13	3
NMI	0x00000008	-14	2
Reset	0x00000004		1
Initial SP value	0x00000000		

Summary

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

STM32 Family

STM32 32-bit ARM Cortex MCUs

STM32F4:

- High performance
- up to 180 MHz clock

STM32F4

STM32F4xx:

Cortex M4 core

		STM32 F4	FCPU Flash RAM (MHz) (bytes) (KB)			Ethern IEEE	1588	Camera I/F	SDRAM I/F Dual Quad- SPI		SAI3 I/F SPDIF RX		Chrom-ART Grphic Accelerator TM		TFT LCD controller	MPI DSI
							Arty	anced lines								
				E40 V to				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		STM32F469 ²	180	512 K to 2 M	384			•	•				,	•	•	•
	 ART Accelerator™ enabling 0 wait state executing from 	STM32F429 ²	180	512 K to 2 M	256	:		•	•		•				•	
Э	internal Flash Up to 2x USB2.0 OTG	STM32F427 ²	180	1 to 2 M	256		• •		•		•					
	FS/HS (except for access						Foun	dation line	s							
	lines)	STM32F446	180	256 K to 512 K	128			٠	:							
	USART, SPI, I²C I²S + audio PLL	STM32F407 ²	168	512 K to 1 M	192			•								
	16 and 32-bit timers	STM32F405 ²	168	512 K to 1 M	192											
	 Up to 3x 12-bit ADC (0.41 μs) Up to 2x 12-bit DAC External memory controller 	Product lines	FCPU (MHz)	Flash (Kbytes)	RAM (KB)	RUN current (µA/MHz)	STOP current (µA)	Small package (mm)	FSMC (NOR/ PSRAM/LCD support	QSPI	DFSDM	CAN 2.0B	DAC	TRNG	DMA Batch Acquisition Mode	USB 2.0 OTG FS
	Enternal monthly controller						Acc	cess lines								
	Low voltage 1.71 to 3.6 V	STM32F401	84	128 to 512	up to 96	Down to 128	Down to 10	Down to 3x3								٠
		STM32F410	100	64 to 128	32	Down to 89	Down to 6	Down to 2.553x 2.579							BAM	-
		STM32F411	100	256 to 512	128	Down to 100	Down to 12	Down to 3.034x 3.22							BAM	•
		STM32F412	100	512 to 1024	256	Down to 112	Down to 18	3.653x 3.651	•	•					BAM	+LPM ⁴
		STM32F413 ²	100	1024 to 1536	320	Down to 115	Down to 18	Down to 3.951x 4.039	•	•					BAM+	+LPM ⁴

STM32F401

STM32F4xx Access line: the entry-level microcontrollers

ART Accelerator™ SDI0	Access lines	FCPU (MHz)	Flash (Kbyles)	RAM (KB)	RUN current (µA/MHz)	STOP current (µA)	Small pa ckage (mm)	FSMC (NOR/ PSRAM/LCD support	OSPI	DFSDM	CAN 2.0B	DAC	TRMG	DMA Batch Acquisition Mode	USB 2.0 OTG FS
USART, SPI, I ² C I ² S + audio PLL 16 and 32-bit timers	STM32F401	84	128 to 512	up to 96	Down to 128	Down to 10	Down to 3x3								•
• 12-bit ADC (0.41 µs) • True Random Number	STM32F410	100	64 to 128	32	Down to 89	Down to 6	Down to 2.553x 2.579					•	•	ВАМ	-
Generator Batch Acquisition Mode Low voltage 1.7 to 3.6 V	STM32F411	100	256 to 512	128	Down to 100	Down to 12	3.034x 3.22							ВАМ	•
Temperature: -40 °C to 125 °C	STM32F412	100	512 to 1024	256	Down to 112	Down to 18	3.653x 3.651	•	•	•	•		•	BAM	+LPM¹
	STM32F413 ²	100	1024 to 1536	320	Down to 115	Down to 18	Down to 3.951x 4.039	•	•	•	•		•	BAM+	+LPM¹

STM32F401RE

STM32F401

WLCSP49 LQFP100 (14 × 14 mm (7 × 7 mm) (3.06 x 3.06 mm) LQFP64 (10 × 10 mm)

UFBGA100 (7 × 7 mm)

Clocks

3 clock sources for system clock (SYSCLK):

- HSI oscillator clock
- HSE oscillator clock
- main PLL clock.

2 secondary clock sources:

- a 32 kHz low-speed internal RC (LSLRC)
- a 32.768 kHz low-speed external crystal (LSE crystal)

Each source can be switched on/off independently when not used

OLITE CATO

Timer modules

Timer modules include:

- reference clock (internal or external)
- prescaler (reduce the clock frequency)
- counter
- comparison registers

Timer modules are used for:

- generating interrupts
- generating pulse trains
- driving Pulse Width Modulation (PWM) outputs
- measuring pulse length of input signals
- counting events

Timers feature

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max. Interface clock (MHz)	Max. timer clock (MHz)
Advanced- control	TIM1	16-bit	Up, Down, Up/down	Any Integer between 1 and 65536	Yes	4	Yes	84	84
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any Integer between 1 and 65536	Yes	4	No	42	84
General	TIM3, TIM4	16-bit	Up, Down, Up/down	Any Integer between 1 and 65536	Yes	4	No	42	84
purpose	тімэ	16-bit	Up	Any Integer between 1 and 65536	No	2	No	84	84
	TIM1 0, TIM11	16-bit	Up	Any Integer between 1 and 65536	No	1	No	84	84

PWM generation

Three PWM signals from the Output Compare Channels of a general purpose timer

counters can operate in Up, Down or Up/Down mode

General Purpose Input/Outputs

GPIO: 6 ports (A...E, H) each port 16 PIN

Alternate Functions

Graphical User Interface (GUI)

STM32 programming

Multiple ways to write programs for STM microcontrollers:

HAL Hardware Abstraction Layer drivers:

- ✓ Hide the MCU and peripheral complexity.
- Maximize software portability across different microcontrollers
- ✓ Exist for all peripherals
- x Larger overhead → performance penalty

LL Low-Level drivers:

- ✓ Better optimization → improved performance
- Less portability
- Require deep knowledge of the MCU and peripheral specifications

Detailed description available in ST's <u>UM1725</u> User manual – NOT required for this course

Summary

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

Development board

NUCLEO board by STMicroelectronics

for STM32F family in LQFP64 package

Provided with libraries and examples.

Divided in:

- microcontroller part
- removable ST-LINK debugger/programmer interface

Nucleo board features

- connector for Arduino Uno Revision 3
- general purpose connector (ST morpho extension)
 male pin headers accessible on both side of the board full access to STM32 I/Os
- 3 LEDs:
 - LD1 (COM) for USB communication (green, red)
 - LD2 available for user (connected to PA5) (green)
 - LD3 MCU powered, +5V power is available (red)
- 2 pushbuttons:
 - B1 for USER connected to PC13
 - B2 for RESET
- LSE (low-speed external) oscillator at 32.768 kHz
- 3 interfaces supported by the USB (Virtual Com port, Mass storage, Debug port)

42 / 52

Nucleo board layout

Summary

- ARM-Cortex cores
- Exceptions, Interrupts, and Faults
- STM32 microcontroller
- NUCLEO board
- POLIMI expansion board

POLIMI expansion board

POLIMI board features

- standard 16x2 LCD alphanumeric module
- 5x7 LEDs array area, driven by two shift registers connected to the SPI interface
- 4x4 keypad, connected directly to the GPIOs
- incremental encoder
- microphone and comparator
- amplifier and speaker, connected to PWM
- RGB led, connected to three PWM-configurable outputs
- light sensor connected to ADC
- potentiometer connected to ADC
- thermometer, which communicates through I²C peripheral
- accelerometer, which communicates through I²C peripheral
- IR led and IR receiver

POLIMI board layout

