

ĐỆ QUY TUYẾN TÍNH MẢNG MỘT CHIỀU

- 1. TS. Nguyễn Tấn Trần Minh Khang
- 2. TS. Ngô Đức Thành
- 3. ThS. Võ Duy Nguyên

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

KỸ THUẬT XUẤT MẢNG ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Xuất mảng đệ quy

Định nghĩa hàm đệ qui xuất mảng một chiều các số nguyên.
 Bài làm

```
11.void Xuat(int a[],int n)
12.{
13.         if(n==0)
14.         return;
15.         Xuat(a,n-1);
16.         cout << setw(4) << a[n-1];
17.}</pre>
```


KỸ THUẬT LIỆT KÊ ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Kỹ thuật liệt kê

Định nghĩa hàm liệt kê các giá trị lẻ trong mảng các số nguyên?
 Bài làm

```
11.void LietKe(int a[],int n)
                                                                   a, n
12.{
                                                              a, n-1
13.
        if(n==0)
                                                    2
                                                               n-2
                                            0
                                                           n-3
                                                                   n-1
14.
             return;
        LietKe(a,n-1);
15.
16.
        if(a[n-1]%2!=0)
             cout << setw(4) << a[n-1];
17.
18.}
```


KỸ THUẬT TÍNH TOÁN ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Kỹ thuật tính toán

Định nghĩa hàm tính tổng các giá trị âm trong mảng số thực.
 Bài làm

```
11.float TongAm(float a[],int n)
12.{
13.
       if(n==0)
14.
           return 0;
       float s = TongAm(a,n-1);
15.
16.
       if(a[n-1]<0)
           s = s + a[n-1];
17.
18.
       return s;
```


KỸ THUẬT ĐẾM ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Kỹ thuật đếm

Đếm số lượng số nguyên tố nhỏ hơn 100 trong mảng.

```
Bài làm
```

```
11.int DemNguyenTo(int a[],int n)
12.{
13.
       if(n==0)
14.
           return 0;
       int dem=DemNguyenTo(a,n-1);
15.
       if(ktNguyenTo(a[n-1]))
16.
17.
           dem++;
18.
       return dem;
```


KỸ THUẬT TÌM KIẾM ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Đệ quy tuyến tính trên mảng một chiều

Kỹ thuật tìm kiếm

Định nghĩa hàm tìm giá trị lớn nhất trong mảng.
 Bài làm

```
11.float LonNhat(float a[],int n)
12.{
13.         if(n==1)
14.         return a[0];
15.         float lc = LonNhat(a,n-1);
```

lc = a[n-1];

if(a[n-1]>lc)

return lc;

16.

17.

18.

KỸ THUẬT ĐẶT CỜ HIỆU ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Kỹ thuật đặt cờ hiệu

 Định nghĩa hàm kiểm tra trong mảng các số nguyên có tồn tại giá trị chẵn nhỏ hơn 2004 hay không.

```
Bài làm
                                                                  a, n
                                                             a, n-1
11.bool KiemTra(int a[],int n)
                                                          n-3
                                                              n-2
                                           0
                                                                  n-1
12.{
        if(n==0)
13.
14.
             return false;
15.
        if(a[n-1]%2==0 \&\& a[n-1]<2004)
16.
             return true;
17.
        return KiemTra(a,n-1);
```


KỸ THUẬT XÂY DỰNG MẢNG ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Đệ quy tuyến tính trên mảng một chiều

					a, n
				a, n-1	
0	1	2	 n-3	n-2	n-1

Kỹ thuật xây dựng mảng

Định nghĩa hàm xây dựng mảng b từ mảng a các số nguyên sao cho mảng b chỉ chứa các giá trị đối xứng trong mảng.
 Bài làm

Kỹ thuật xây dựng mảng

```
11.void XayDung(int a[], int n, int b[], int &k)
12.{
13.
        if(n==0)
                                                                 a, n
14.
                                                            a, n-1
15.
            k = 0;
                                                         n-3
                                                             n-2
                                          0
                                                                 n-1
            return;
16.
17.
        XayDung(a, n-1, b, k);
18.
        if(ktDoiXung(a[n-1]))
19.
            b[k++] = a[n-1];
20.
```


KỸ THUẬT SẮP XẾP MẢNG ĐỆ QUY

- Khái niệm: Một hàm được gọi là đệ qui tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Kỹ thuật sắp xếp

 Định nghĩa hàm sắp xếp mảng một chiều các số thực tăng dần bằng phương pháp đệ quy.

Bài làm

Khai báo hàm

void SapTang(float [],int);

- Giải thuật
 - + Đưa giá trị lớn nhất về cuối mảng.
 - + Gọi đệ quy để sắp tăng các phần tử trong mảng a có n-1 phần tử để được mảng a có n phần tử được sắp tăng.

Kỹ thuật sắp xếp

```
11.void SapTang(float a[],int n)
12.{
                                                                  a, n
                                                             a, n-1
13.
        if(n==1)
                                                              n-2
                                           0
                                               1
                                                   2
                                                          n-3
                                                                  n-1
14.
             return;
15.
        for(int i=0; i<=n-2; i++)
            if(a[i]>a[n-1])
16.
                 HoanVi(a[i],a[n-1]);
17.
18.
        SapTang(a,n-1);
19.}
```

