## **ADDITIONAL FILE 1**

## Venom variation and evolution in montane pitvipers (Viperidae: Cerrophidion).

Ramses Alejandro Rosales-García<sup>1†</sup>, Rhett M. Rautsaw<sup>1</sup>, Erich P. Hofmann<sup>1,2</sup>, Christoph I. Grünwald<sup>3,4</sup>, Hector Franz-Chavez<sup>3,4</sup>, Ivan T. Ahumada-Carrillo<sup>3,4</sup>, Ricardo Ramirez-Chaparro<sup>3,4</sup>, Miguel Angel De la Torre-Loranca<sup>5</sup>, Jason L. Strickland<sup>1,6</sup>, Andrew J. Mason<sup>1,7</sup>, Matthew L. Holding<sup>1,8</sup>, Miguel Borja<sup>9</sup>, Gamaliel Castañeda-Gaytan<sup>9</sup>, Edward A. Myers<sup>1</sup>, Mahmood Sasa<sup>10</sup>, Darin R. Rokyta<sup>11</sup> and Christopher L. Parkinson<sup>1\*</sup>

## Author details

<sup>1</sup>Department of Biological Sciences, Clemson University, Clemson, SC, 29634 USA. <sup>2</sup>Science Department, Cape Fear Community College, Wilmington, NC, 28401 USA. <sup>3</sup>Herp.mx A.C., Colima, Mexico. <sup>4</sup>Biodiversa A. C., Chapala, Jalisco 45900 Mexico. <sup>5</sup>Instituto Lorancai, Ocotepec, 24105 Veracruz, Mexico. <sup>6</sup>Department of Biology, University of South Alabama, Mobile, AL, 36688 USA. <sup>7</sup>Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA. <sup>8</sup>Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109 USA. <sup>9</sup>Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, 35010, Gómez Palacio, Durango, Mexico. <sup>10</sup>Centro Investigaciones en Biodiversidad y Ecología Tropical and Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica. <sup>11</sup>Department of Biological Science, Florida State University, Tallahassee, Florida, 2306, USA.

\*Correspondence:

viper@clemson.edu

<sup>1</sup>Department of Biological Sciences, Clemson University, Clemson, SC, 29634 USA Full list of author information is available at the end of the article †Co-correspondence:

ramsesr@g.clemson.edu

Rosales-García et al. Page 2 of 11



**Figure S1.** RSEM results for *C. tzotziolorum*. **A.** Average of the northern population; and **B.** Average of the southern population. (I) barplot of the log ranked expression of toxin genes; (II) pie chart of the percent expression of each toxin family for individual populations and for all the individuals.

Rosales-García et al. Page 3 of 11



**Figure S2**. Heatmap showing the log TPM expression of toxin families in C. godmani. In the left columns (Pop & SVL) the orange and red colors respectively represent significant differential expression agreement by both DESeq2 and edgeR (FDR < 0.05).

Rosales-García et al. Page 4 of 11



**Figure S3**. Heatmap showing the log TPM expression of toxins identified as differentially expressed in C. tzotzilorum ordered by the average expression. In the left columns (Pop & SVL) the darker colors represent significant differential expression agreement by both DESeq2 and edgeR (FDR < 0.05).

Rosales-García et al. Page 5 of 11



**Figure S4**. Heatmap showing the log TPM expression of toxin families in C. tzotzilorum. None of the toxin families were significally differently expressed by both DESeq2 and edgeR (FDR < 0.05), However PLA<sub>2</sub>s were differentially expressed in DESeq2 by population, and HYAL, SVMPIII, and VEGF were differentially expressed in DESeq2 by SVL.

Rosales-García et al. Page 6 of 11



**Figure S5**. Bootstrap pie charts, with 1000 repetitions of the linear model comparing toxins against nontoxins with equal sample size. True in green (p < 0.05) and false in red (p > 0.05).

Rosales-García et al. Page 7 of 11



**Figure S6**. Bootstrap pie charts, with 1000 repetitions of the linear model comparing toxins against nontoxins with equal sample size. True in green (p < 0.05) and false in red (p > 0.05). **A** Tajima's D. **B** F<sub>S</sub>T. **C** Synonymous SNPs Tajima's D. **D** Nonsynonymous SNPs Tajima's D. **E** BUSTED model LRT, tested with a non parametric Kruskal Wallis test.

Rosales-García et al. Page 8 of 11



Figure S7. Selection plots. Left: estimates of selection using A Nucleotide Diversity  $(\pi)$ , B Synonymous SNPs Tajima's D, and C Nonsynonymous SNPs Tajima's D for toxins and nontoxins, each with the nontoxin 95th percentile (dotted lines) to identify outlier toxins. The toxin family and the rank based on highest-to-lowest average expression in the transcriptome are displayed for toxins which fall outside the 95th percentile. Right: Linear regressions of the Toxin's mean expression (Average TPM) and estimates of selection including D Nucleotide Diversity  $(\pi)$ , E Synonymous SNPs Tajima's D., and F Nonsynonymous SNPs Tajima's D. For Tajima's D, dotted lines are regressions of all the transcripts (center), just positive values (top) and just negative values (bottom).

Rosales-García et al. Page 9 of 11



**Figure S8.** Selection plots. Left: estimates of selection using **A** Nucleotide Diversity  $(\pi)$ , **B** Tajima's D, **C**  $F_ST$ , and **D** BUSTED model LRT for non differentially expressed genes (FALSE) and differentially expressed (TRUE).

Rosales-García et al. Page 10 of 11



**Figure S9.** Expasy Peptide Cutter Results ([1]) for Cgodm\_PLA2\_11. The peptide cutter tool was set to identify Chimotrypsin like cleavege residuals with cut of 50 % probability of cleavage.

Rosales-García et al. Page 11 of 11

## References

1. Expasy Peptide Cutter [webpage]; 2022. Available from: https://web.expasy.org/peptide\_cutter/.