

Deep Learning for ECE EECE-580G

Image Segmentation

Recap

Single label classification

Single label classification

output_i =
$$\frac{e^{z_i^{[L]}}}{\sum_{j=1}^{K} e^{z_j^{[L]}}}$$

Multi label classification

om-space

Multi label classification

$$output_i = \frac{1}{1 + e^{-z_i^{[L]}}}$$

Semantic segmentation

Segmentation = Pixel level classification

Semantic segmentation

- Output of CNN of shape: **HxWxK**
- Where K is the number of classes

Noh, Hyeonwoo, Seunghoon Hong, and Bohvung Han. "Learning deconvolution network for semantic segmentation." Proceedings of the IEEE international conference on computer vision. 2015.

Semantic segmentation

- Output of CNN of shape: HxWxK
- Where K is the number of classes

Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation." Proceedings of the IEEE international conference on computer vision. 2015.

Upsampling

"Bed of nails" upsampling

Upsampling

Nearest Neighbor upsampling

Upsampling

Bilinear upsampling

Transposed Convolution

- **Transposed Convolution** = Learnable upsampling
- Already implemented in TF >>>>
- Also called: Deconvolution Upconvolution -Backward strided convolution - Fractionally strided convolution

Upsampling blocks

Other tricks:

<u>Subpixel convolution + ICNR initialization</u>

Losses and metrics

Pixel Cross-Entropy and Focal Loss

• Simply flatten w.r.t. **HxW** and compute the average (or total) cross-entropy loss for each pixel

$$L(y, \hat{y}) = -y \cdot \log(\hat{y})$$

• **Focal Loss:** In image segmentation: class imbalance is usually a problem (i.e. a lot of "background" pixels, small objects...)

$$L(y, \hat{y}) = -y \cdot (1 - \hat{y})^{\gamma} \cdot \log(\hat{y})$$

• \gamma = 2 is a good starting point but need to be tuned

Pixel Accuracy

- Simply flatten w.r.t. **HxW** and compute the rate of classifying a pixel correctly
- (nothing special here)

Intersection over union (IoU or Jaccard)

$$IoU = \frac{target \cap prediction}{target \cup prediction}$$

U-Net

U-Net

- "Skip" connections through resolutions sometimes called "cross connections"
- Cross connections are done as concat
- Bottleneck layer is not 1x1
- The U-Net structure generalizes to other CNN architectures + Transfer Learning

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, 2015.

Other up-sampling architectures

https://github.com/qubvel/segmentation_models

Transfer Learning + Segmentation

Example - Self driving cars

- Segmentation as a pixel classification problem
- Can be a multi label pixel classification problem if the masks are overlapping

- Doesn't have to segment all pixels of the image
- E.g. Lane detection

Van Gansbeke, Wouter, et al.
"End-to-end lane detection through
differentiable least-squares fitting."
Proceedings of the IEEE International
Conference on Computer Vision
Workshops. 2019.

TU-Simple Benchmark dataset

• Another related task = Instance segmentation = detect and segment (car A, car B, etc.)

Arnab. Anurag. and Philip HS Torr.
"Pixelwise instance segmentation with a dynamically instantiated network."

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

- In practice, U-Net works well for segmentation
- Progressive resizing is commonly used
- Can be used for other tasks: **image super resolution**, **image restoration**, ...

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style transfer and super-resolution." *European conference on computer vision*. Springer, Cham, 2016.

End