A Dynamic Dependent Type Theory with Type-in-Type and Recursion

February 28, 2021

1 Type Soundness or Blame

The proof follows the standard structure:

- All judgments respect weakening and well typed substitution
- Most judgments are marked with types to make subject reduction obvious (assuming the substitution lemma)
- definitional equality is defined in terms par-reductions, which (via confluence)
 - gives transitivity to equality
 - means that type constructors are unique, $* \equiv \Pi$
- for preservation, function elimination is the only interesting case
 - the stack of casts is inspected, all casts are values (usually either \star or Π)
 - * if all casts are Π then coersions can be calculated and a reduction can step
 - * if any casts are not Π there is a specific source location and observation to blame

1.1 Structural Properties

1.1.1 Weakening

For any derivation of $H \vdash A : \star$ the following rules are admissible:

$$\frac{H,H' \vdash}{H,x:A,H' \vdash}$$

$$\frac{H,H' \vdash b:B}{H,x:A,H' \vdash b:B}$$

$$H, H' \vdash e : \overline{\star}$$

$$H, H' \vdash b \equiv b' : B$$

$$H, H' \vdash b \equiv b' : B$$

$$H, H' \vdash b \Rightarrow_* b' : \overline{\star}$$

$$H, H' \vdash b \Rightarrow_* b' : \overline{\star}$$

$$H, H' \vdash b \Rightarrow_* b' : \overline{\star}$$

$$H, H' \vdash b \Rightarrow_* b'$$

$$H, H' \vdash b \Rightarrow_* b'$$

1.2 Substitution

1.2.1 \Rightarrow is reflexive

The following rules are admissible:

$$\begin{split} \frac{H \vdash a : A}{H \vdash a \Rightarrow a : A} \\ \frac{H \vdash e : \overline{\star}}{H \vdash e \Rightarrow e' : \overline{\star}} \\ \frac{H \vdash}{H \vdash o \Rightarrow o} \end{split}$$

by mutual induction

1.2.2 Context substitution

For any derivation of $H \vdash a : A$ the following rules are admissible:

$$\begin{split} \frac{H, x : A, H' \vdash}{H, H' \, [x \coloneqq A] \vdash} \\ \frac{H, x : A, H' \vdash b : B}{H, H' \, [x \coloneqq a] \vdash b \, [x \coloneqq a] : B \, [x \coloneqq a]} \\ \frac{H, x : A, H' \vdash e : \overline{\star}}{H, H' \, [x \coloneqq a] \vdash e \, [x \coloneqq a] : \overline{\star}} \\ \frac{H, x : A, H' \vdash e : \overline{\star}}{H, H' \, [x \coloneqq a] \vdash e \, [x \coloneqq a] : \overline{\star}} \end{split}$$

$$H, x:A, H' \vdash b \equiv b':B$$

$$\overline{H, H'}[x \coloneqq a] \vdash b[x \coloneqq a] \equiv b'[x \coloneqq a] : B[x \coloneqq a]$$

$$H, x:A, H' \vdash b \Rightarrow_* b':B$$

$$\overline{H, H'}[x \coloneqq a] \vdash b[x \coloneqq a] \Rightarrow_* b'[x \coloneqq a] : B[x \coloneqq a]$$

$$H, x:A, H' \vdash b \Rightarrow_* b':B$$

$$\overline{H, H'}[x \coloneqq a] \vdash b[x \coloneqq a] \Rightarrow_* b'[x \coloneqq a] : B[x \coloneqq a]$$

$$H, x:A, H' \vdash e \Rightarrow_* e':\overline{x}$$

$$\overline{H, H'}[x \coloneqq a] \vdash e[x \coloneqq a] \Rightarrow_* e'[x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash o \Rightarrow_* o'$$

$$\overline{H, H'}[x \coloneqq a] \vdash o[x \coloneqq a] \Rightarrow_* o'[x \coloneqq a]$$

$$H, x:A, H' \vdash b \Rightarrow_* b':B$$

$$\overline{H, H'}[x \coloneqq a] \vdash b[x \coloneqq a] \Rightarrow_* b'[x \coloneqq a] : B[x \coloneqq a]$$

$$H, x:A, H' \vdash e \Rightarrow_* e':\overline{x}$$

$$\overline{H, H'}[x \coloneqq a] \vdash e[x \coloneqq a] \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

$$H, x:A, H' \vdash e \Rightarrow_* e_* [x \coloneqq a] : \overline{x}$$

by mutual induction on the derivations with reflexivity lemmas.

1.3 Computation

1.3.1 $\Rightarrow Elim_{\star}$

if $e E lim_{\star}$ and $e \Rightarrow e'$ then $e' E lim_{\star}$ by induction on $E lim_{\star}$

1.3.2 \Rightarrow -substitution

For any $a \Rightarrow a'$. The following rules are admissible:

$$\begin{aligned} b & \Rrightarrow b' \\ \overline{b \left[x \coloneqq a \right]} & \Rrightarrow b' \left[x \coloneqq a' \right] \\ \underline{e} & \Rrightarrow e \\ \overline{e \left[x \coloneqq a \right]} & \Rrightarrow e' \left[x \coloneqq a' \right] \end{aligned}$$

$$\frac{e \Rightarrow e' \quad e\left[x \coloneqq a\right] \; Elim_\Pi x : e_A\left[x \coloneqq a\right] . e_B\left[x \coloneqq a\right]}{e_A \Rightarrow e'_A \quad e_B \Rightarrow e'_B \quad e'\left[x \coloneqq a'\right] \; Elim_\Pi x : e'_A\left[x \coloneqq a'\right] . e'_B\left[x \coloneqq a'\right]}$$

by mutual induction on the derivations

1.3.3 \Rightarrow preserves type in destination

$$\frac{H \vdash a \Rightarrow a' : A}{H \vdash a' : A}$$

Since the apparent type of a will at most $A \Rrightarrow A'$ (by \Rrightarrow -substitution) so $H \vdash A \equiv A' : \star$, and follows from conversion

1.3.4 \Rightarrow_* preserves type

The following rule is admissible:

$$\frac{H \vdash a \Rrightarrow_* a' : A}{H \vdash a : A}$$

by induction

$$\frac{H \vdash a \Rrightarrow_* \ a' : A}{H \vdash a' : A}$$

by induction

1.3.5 \sim preserves type

The following rules are admissible:

$$\frac{H \vdash a \sim a' : A}{H \vdash a' : A}$$

by induction

 $1.3.6 \equiv \text{preserves type}$

The following rules are admissible:

$$\frac{H \vdash a \equiv \, a' : A}{H \vdash a : A}$$

$$\frac{H \vdash a \equiv \, a' : A}{H \vdash a' : A}$$

by the def of \Rightarrow_*

1.3.7 def of -*

there is a maximal par-reduction step that can be computed for every syntactic form defined:

$$\begin{array}{lll} & \star^* & = \star & a^* \to a \\ & (\Pi x : A.B)^* & = \Pi x : A^*.B^* \\ & (a_h :: e)^* & = a_h^* :: e^* \\ & ((\operatorname{fun} f. y.b) :: e \, a)^* & = (b^* [f := (\operatorname{fun} f. x.b^*) \,, x := a^* :: e_A^*] :: e_B^* [x := a^*]) \text{ if } e \operatorname{Elim}_\Pi x : e_A.e_B & a_h^* \to a \\ & (b \, a)^* & = b^* \, a^* \text{ otherwise} \\ & x^* & = x \\ & (\operatorname{fun} f. x.b)^* & = \operatorname{fun} f. x.b^* \\ & (e =_{l,o} A)^* & = e^* =_{l,o^*} A^* & e^* \to e \\ & \cdot^* & = \cdot & o^* \to o \\ & (o.arg)^* & = o^*.arg \\ & (o.bod[b])^* & = o^*.bod[b^*] \end{array}$$

1.3.8 −* *Elim*_{*}

if $e E lim_{\star}$ then $e^* E lim_{\star}$ by induction on $E lim_{\star}$

1.3.9 $-^*$ $Elim_{\Pi}$

if $e E lim_{\Pi} x : e_A.e_B$ then $e^* E lim_{\Pi} x : e_A^*.e_B^*$ by induction on $E lim_{\Pi}$

1.3.10 -* is maximal

- if $a \Rightarrow a'$ then $a' \Rightarrow a^*$
- if $e \Rightarrow e'$ then $e' \Rightarrow e^*$
- if $o \Rightarrow o'$ then $o' \Rightarrow o^*$

by mutual induction on \Rightarrow relations, interesting cases include

- $\Pi C \Rightarrow \text{ since if } e E \lim_{\Pi} x : e_A.e_B \text{ then } e^* E \lim_{\Pi} x : e_A^*.e_B^*$
- $\Pi E \Rightarrow , b a \Rightarrow b' a'$
 - if the elimination is not possible with b, follows from induction
 - if the elimination is possible with b, it will still be possible with b' since, by induction $b \Rrightarrow b'$

1.3.11 \Rightarrow is confluent

if $H \vdash a \Rightarrow b : A$ and $H \vdash a \Rightarrow b' : A$ then there exists c such that $H \vdash b \Rightarrow c : A$ and $\Gamma \vdash b' \Rightarrow c : A$ by the maximality of $-^*$

1.3.12 \Rightarrow_* is transitive

The following rule is admissible:

$$\frac{H \vdash a \Rightarrow_* b : A \quad H \vdash b \Rightarrow_* c : A}{H \vdash a \Rightarrow_* c : A} \Rrightarrow *\text{-trans}$$

by induction

1.3.13 \Rightarrow_* is confluent

if $H \vdash a \Rightarrow_* b : A$ and $H \vdash a \Rightarrow_* b' : A$ then there exists c such that $H \vdash b \Rightarrow_* c : A$ and $H \vdash b' \Rightarrow_* c : A$

Follows from \Rightarrow *-trans and the confluence of \Rightarrow using standard techniques

$1.3.14 \sim$ Equivalence

The following rules are admissible:

$$\overline{a \sim a'}$$

$$\frac{a \sim a'}{a' \sim a}$$

$$\frac{a \sim a' \quad a' \sim a''}{a' \sim a''}$$

each by induction

1.3.15 \sim commutes with \Rightarrow , \Rightarrow *

The following rules are admissible:

$$\begin{array}{c} \underline{a \Rightarrow a' \quad a \sim b} \\ \underline{b \Rightarrow b' \quad a' \sim b'} \\ \\ \underline{H \vdash a \Rightarrow_* a' : A \quad a \sim b} \\ \underline{H \vdash b \Rightarrow_* b' : A \quad a' \sim b'} \end{array}$$

both by induction (observations can be ignored since \Rightarrow is reflexive)

$1.3.16 \equiv Equivalence$

The following rule is admissible:

$$\frac{H \vdash a : A}{H \vdash a \equiv a : A} \equiv \text{-refl}$$

by \Rightarrow *-refland \sim -refl

The following rule is admissible:

$$\frac{H \vdash a \equiv a' : A}{H \vdash a' \equiv a : A} \equiv \text{-sym}$$

by \sim Equivalence

The following rule is admissible:

$$\frac{H \vdash a \equiv b : A \qquad H \vdash b \equiv c : A}{H \vdash a \equiv c : A} \equiv \text{-trans}$$

by the confluence of \Rightarrow_* and \sim commutativity

$1.3.17 \rightarrow \text{preserves type}$

For any derivations of $H \vdash a : A, a \leadsto a'$,

$$H \vdash a' : A$$

since \leadsto implies \Rrightarrow and \Rrightarrow preserves types

1.4 Type constructors

1.4.1 Type constructors are stable over \Rightarrow

- if $* \Rightarrow A$ then A is *
- if $* :: e \Rightarrow A_h :: e'$ then A_h is *
- if $\Pi x : A.B \Rightarrow C$ then C is $\Pi x : A'.B'$ for some A', B'
- if $\Pi x : A.B :: e \Rightarrow C_h :: e'$ then C_h is $\Pi x : A'.B'$ for some A', B' by induction on \Rightarrow

1.4.2 Type constructors are stable over \Rightarrow_*

- if $H \vdash * \Rightarrow_* A : B$ then A_h is *
- if $H \vdash * :: e \Rightarrow_* A_h :: e' : B$ then A_h is *
- if $H \vdash \Pi x : A.B \Rightarrow_* C : D$ then C is $\Pi x : A'.B'$ for some A', B'
- if $H \vdash \Pi x : A.B :: e \Rightarrow_* C_h :: e' : D$ then C_h is $\Pi x : A'.B'$ for some A', B' by induction on \Rightarrow_*

1.4.3 Type constructors are stable over \sim

- if $* \sim A$ then A is *
- if $* :: e \sim A_h :: e'$ then A_h is *
- if $\Pi x : A.B \sim C$ then C is $\Pi x : A'.B'$ for some A', B'
- if $\Pi x : A.B :: e \sim C_h :: e'$ then C_h is $\Pi x : A'.B'$ for some A', B'

by induction on \sim

1.4.4 Type constructors definitionally unique

for any H, A, B, C, e, e'

- $H \vdash * \succeq \Pi x : A.B : C$
- $H \vdash * :: e \cong \Pi x : A.B : C$
- $H \vdash * \cong \Pi x : A.B :: e : C$
- $H \vdash * :: e \cong \Pi x : A.B :: e' : C$

from constructor stability

1.5 Canonical forms

If $\Diamond \vdash v_h : \Pi x : A.B$, then v_h is fun f.x.b, since it is the only applicable rule

1.6 Type simplification

To minimize bookkeeping, when $\Diamond \vdash v_{eq} : \overline{\star}$

- $\star :: v_{eq}$ can be said to simplify to \star if each v_{eq} simplifies to \star (if it does not simplify there is a source of blame)
- $\Pi x : A.B :: v_{eq}$ can be said to simplify to $\Pi x : A.B$ if each v_{eq} simplifies to \star (if it does not simplify there is a source of blame)

1.7 Progress

 $\Diamond \vdash c : A$ implies that c is a value, there exists c' such that $c \leadsto c'$, or a static location can be blamed. and $\Diamond \vdash e : \overline{\star}$ implies that e is a value, there exists e' such that $e \leadsto e'$, or a static location can be blamed

By mutual induction on the typing derivations with the help of the canonical forms lemma $\,$

Explicitly:

cast typing

- eq ty 1 by induction
- eq ty 2 by **induction**

term typing

- c is typed by type-in-type. c is \star , a value
- c is typed by Πty . a is a value
- \bullet c is typed by the conversion rule, then by **induction**

- c is typed by the apparent rule, then c is $a_h :: e$ by each head typing. By induction e is a value, there exists e' such that $e \leadsto e'$. If there is blame that blame can be used, if $e \leadsto e'$ preform the step. otherwise e is a value:
 - $-a_h$ cannot be typed by the variable rule in the empty context
 - $-a_h$ is typed by type-in-type. a is \star .
 - a_h is typed by Πty . a is a value
 - $-a_h$ is typed by $\Pi \text{fun} ty$. a is a value
 - $-a_h$ is typed by $\Pi app ty$. Then a_h is ba, and there are derivations of $\Diamond \vdash b : \Pi x : A.B$, and $\Diamond \vdash a : A$ for some A and B. By **induction** a is a value, there exists a' such that $a \leadsto a'$, or blame and b is a value or there exists b' such that $b \leadsto b'$ or blame.
 - * if b and a are values, then b is $b_h :: v_{eq}$, where $v_{eq} \uparrow$ is $\Pi x : A_{\uparrow}.B_{\uparrow}$ (or $v_{eq} \uparrow$ is $\Pi x : A_{\uparrow}.B_{\uparrow}$:: e, and by simplification $\Pi x : A_{\uparrow}.B_{\uparrow}$ or blame can be produced) (by **stability**)
 - · if $v_{eq} \, Elim_{\Pi} \, x : e_A.e_B$ then $v_{eq} \downarrow$ is $\Pi x : A_{\downarrow}.B_{\downarrow}$ (or $\Pi x : A_{\downarrow}.B_{\downarrow}$:: e, and by simplification $\Pi x : A_{\downarrow}.B_{\downarrow}$ or blame can be produced) by **Canonical forms** b_h is (fun f.x.b') and the step is ((fun f.x.b) :: $v_{eq} \, v$) :: $v'_{eq} \rightsquigarrow (b \, [f := (\text{fun } f.x.b) \, , x := v :: e_A] :: e'_B \, [x := v]$) (implicitly uses that $Elim_{\Pi}$ is deterministic in its first argument)
 - · if v_{eq} Etim_H then there must exist $[\mathbb{N} = l_{,o} \Pi x : A''.B''] \in v_{eq}$ (with simplification) and l, o can be blamed
 - * if b or a can construct blame then ba can use that blame
 - * if b is a value and $a \rightsquigarrow a'$ then $b a \rightsquigarrow b a'$
 - * if $b \leadsto b'$ then $b a \leadsto b' a$

1.8 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause a computation to "get stuck" without blame. Either a final value will be reached, further reductions can be taken, or blame is omitted. This follows by iterating the progress and preservation lemmas.

2 Elaboration Embeds Typing

 $\vdash m: M$, and $\vdash m Elab a$ then $\vdash M Elab A$, $\vdash a: A$ Sketch (need to extend the hypothesis further to handle conversion):

- strengthen the hypothesis to $\Gamma \operatorname{Elab} H$, $\Gamma \vdash m : M$, and $H \vdash m \operatorname{Elab} a$ then $H \vdash a : A$, $H \vdash M \operatorname{Elab} A$
- by induction if $\Gamma Elab H$, for all $x:M\in \Gamma$, implies $x:A\in H,H\vdash M Elab A$
- follows by induction on the typing derivation (of the base language)

3 Computation resulting in blame cannot be typed in the surface language

 $\vdash a:A$ and a blame then there is no $\vdash m:M$ such that $\vdash M \, Elab_{\star,l} \, A,$ and $\vdash m \, Elab_{A,l'} \, a$

Sketch: if $\vdash m: M$ then $\vdash a: A$ are elaborated without source labels (l, l') are superfluous) therefore blame is impossible to construct

4 Computation in the cast language respects computation in the surface language

```
\vdash A: * and \vdash M \ Elab_{*,l} \ A then 
1. if A \leadsto_* * then M \leadsto_* *
```

2. if $A \leadsto_* \Pi x : B.C$ then $M \leadsto_* \Pi x : N.P$

Sketch: evaluation is designed to be "correct by construction" . Casts and cast evaluation steps can be completely removed, resulting in exactly the small steps of the surface language