

Lecture Four Practice

Practice problems for Lecture Four

mac2311keeran / Lecture Four / Lecture Four Practice

Abstract. Practice problems for Lecture Four Content

Problem. 1: Determine if the limit approaches a finite number, ∞ , $-\infty$, or does not exist. (If the limit does not exist, write DNE)

$$\lim_{x o \infty} rac{\sqrt{49x^2 - 4} + 3}{x + 3} =$$

Problem. 2: Compute the following limit: $\lim_{x\to +\infty} \frac{5x^3-6x^2-9x-10}{4x^4-3x^2+4x+7} =$

Problem. 3: Determine the limit.

$$\lim_{x o 9^+} \ln((x+1)(x-9)) =$$

Problem. 4: Determine the limit.

$$\lim_{x o 7^+} rac{3}{x-7} - \ln(x-7) =$$

Problem. 5: Consider the rational function $f(x) = \frac{x^2 + 2x}{x^2 - 4}$. Identify any vertical asymptotes.

Problem. 6: Consider the rational function $f(x) = \frac{x^2 - 9x + 20}{x^2 - 3x + 2}$. Identify any vertical asymptotes. (Note: Input answers below in increasing values of x; ie if your answers were x = -3 and x = 22, then the left answer box would be -3 and the right would be 22).

$$x = \boxed{?}$$

Problem. 7: Consider the rational function $f(x) = \frac{x^2 - 7x + 12}{x^3 - 5x^2 + 3x + 9}$. Identify any vertical asymptotes. (Note: Input answers below in increasing values of x; ie if your answers were x = -3 and x = 22, then the left answer box would be -3 and the right would be 22).

$$x =$$

$$x =$$