CS 447/647

TCP/IP Networking

= None

psrc = 10.0.120.199

= who-has

hwdst = 00:00:00:00:00:00

= 10.0.120.1

= aa:00:00:fb:6c:78

plen

ор

pdst

hwsrc

News

Over 20 thousand servers have their iLO interfaces exposed to the internet, many with outdated and vulnerable versions of FW

Published: 2022-01-26

"A lot of devices and services we have seen during our research **should never be connected to the public Internet at all**. As a rule of thumb, if you believe that "nobody would connect that to the Internet, really nobody", there are at least 1000 people who did. Whenever you think "that shouldn't be on the Internet but will probably be found a few times" it's there a few hundred thousand times. Like half a million printers, or a Million Webcams, or devices that have root as a root password."

http://census2012.sourceforge.net/paper.html

7:03 AM · Nov 25, 2021

Read 657 replies

What are the core Internet Protocols? (IP, ICMP, UDP, and ARP) How is the Internet governed? (ICANN, ISOC and IGF) How are standards developed? (RFC) What are the 5 layers of the TCP/IP Model?

References

Goralski, W. (2017). The Illustrated Network: How TCP/IP works in a modern network. Amsterdam: Elsevier.

https://learning.oreilly.com/library/view/the-illustrated-network/9780128110287

TCP/IP Networking

- TCP/IP underpins the Internet
 - O Web
 - Email
 - Zoom (TCP+UDP)
- TCP/IP is flexible
 - OS Independent
 - Hardware Independent
 - Works on any size or topology

TCP/IP Networking & The Internet

- TCP/IP and the Internet have a shared history
 - TCP was created in 1974 by Vint Cerf
 - https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
- Progenitor was a network called ARPANET in 1969
 - In the 1980's in transitioned into the commercial Internet
- Collaboratively Managed
 - ICANN Internet Corporation for Assigned Names and Numbers
 - Enforcement Capabilities
 - Controls the allocation of IPs, domains and protocol ports.
 - ISOC Internet Society
 - Technical development through IETF Internet Engineering Task Force
 - IGF Internet Governance Forum
 - Created by the UN.
 - Used for policy-based discussions

POSTEL 25 FEB 82

Internet Governance

- Collaboratively Managed
 - ICANN Internet Corporation for Assigned Names and Numbers
 - Enforcement Capabilities
 - Controls the allocation of IPs, domains and protocol ports.
 - ISOC Internet Society
 - Technical development through IETF Internet Engineering Task Force
 - IGF Internet Governance Forum
 - Created by the UN.
 - Used for policy-based discussions

https://datatracker.ietf.org/wg/

Network standards and documentation

- RFCs Request for Comments
 - Protocol Standards
 - TFTP, SMTP, HTTP, DNS, etc.
 - Proposed Changes
 - SMTP Require TLS Option REQUIRETLS
 - https://www.rfc-editor.org/rfc/rfc8689.txt
 - Informational Bulletins
 - 50 years of RFCs
 - https://www.rfc-editor.org/rfc/rfc8700.txt
- RFCs can be assigned
 - BCP Best Current Practice
 - Network Time Protocol Best Current Practices
 - STD Standard
 - O FYI For Your Information

RFC Requirement Levels

Required: All systems must implement

Recommended: All systems should implement

Elective: Not required nor recommended

Limited Use: Used in certain situations, such as experimental

Not Recommended: Systems should not implement

Networking Basics - Protocol Suite

- IP Internet Protocol
 - Routes data from one machine to another
- ICMP Internet Control Message Protocol
 - Low-level support for IP error message, routing and debugging
 - ping, traceroute
- ARP Address Resolution Protocol
 - Translates IP to hardware address (MAC)
- UDP User Datagram Packet
 - Unreliable one-way delivery
- TCP Transmission Control Protocol
 - Reliable full-duplex and error corrected conversations

TCP/IP Layering model

Other TCP Client– Server Applica- tions	FTP File Transfer	SMTP Email	SSH Remote Access	NFS* Remote File Access	SNMP Network Manage- ment	DNS* Name Lookup Service	Other UDP Client– Server Applica- tions
Conn	TC ection-Orio		iable	Cor	U[nnectionles		fort
	me ting ocols	IP (Best-	effort)		ICMP		ARPs
			Access a therent LA		-		

^{*}In some instances, NFS and DNS use TCP.

IPv4 and IPv6

- IPv4
 - 32 bit addresses
 - 4,294,967,296 addresses
 - NAT Network Address Translation
- IPv6
 - 128 bit addresses
 - IPsec built in authentication and encryption
 - No checksum
 - 30% of google.com visits
- Adoption of IPv6 is slow
 - Amazon, Bing, Wordpress, craigslist
 - Waiting for services to be IPv6 only
 - Cleaned up version of IPv4
 - Python2
 - 2010 to 2020

Packet Encapsulation

- Hardware
 - O Ethernet, token ring, Infiniband, Omni-path
- Data travels as packets
 - Max length is dictated by the link layer (2)
 - Packet header has source and destination
 - Checksums, protocol options
 - Handling instructions (TTL)
 - Payload
- Encapsulation
 - Packets are added to by each layer by the sender
 - Each layer is removed by the receiver

Ethernet	IPv4	UDP	Application data	Ethernet
header	header	header		CRC
14 bytes	20 bytes	8 bytes	100 bytes	4 bytes

UDP packet (108 bytes)

IPv4 packet (128 bytes) Ethernet frame (146 bytes)

Ethernet Framing

- Adding extra bits to a packet
- Link layer adds headers to packets
 - Header contains addresses
 - Checksums
- Link layer adds separators between packets
- Two parts of link layer
 - Media Access Control Deals with hardware, puts packets onto the wire
 - Logical Link Control Ethernet framing

Physical

Data Link

Network

Transport

Maximum Transfer Unit

- Packet size is limited
 - Hardware
 - E1000 16,298 bytes
 - O Protocol
 - Ethernet 1500 bytes

Network type	Maximum transfer unit
Ethernet	1,500 bytes (1,492 with 802.2 framing)
IPv6 (all hardware)	At least 1,280 bytes at the IP layer
Token ring	Configurable ^a
Point-to-point WAN links (T1, T3)	Configurable, often 1,500 or 4,500 bytes

a. Common values are 552; 1,064; 2,088; 4,508; and 8,232. Sometimes 1,500 to match Ethernet.

MTU

- IPv4 Packets are split to conform to the MTU
 - Test with
 - ping -s 4500 google.com
- Fragmentation happens in-flight by routers
 - IPv6 moves this to the sender
- Lowest MTU link can be found with "do not fragment" flag
 - ICMP error response
 - Contains network info for lowest-MTU link
- TCP does automatic MTU discover
 - UDP does not

Packet Addressing

- MAC Address
 - Hardware
- IPv4 and IPv6 addresses
 - Software
- Hostnames
 - O Humans

Hostnames

- Domain Name System (DNS)
 - O A IPv4
 - O AAAA IPv6
 - O PTR IP to Hostname aka. Reverse lookup
- /etc/hosts (Windows: C:\Windows\System32\drivers\etc\hosts)
 - O IP hostname hostname1 hostname2
- Lookup with dig
 - dig A google.com
 - O dig A cse.unr.edu @8.8.8.8
 - O dig A cse.unr.edu @134.197.5.1

Ports

- IP is an address. IE: 127.0.0.1
- Port is a communication channel for an application
 - 1 65,535
- IP + Port = Socket
 - 127.0.0.1:80 = HTTP
- /etc/services defines common network services
 - grep daytime /etc/services
- Ports < 1024 reserved for root</p>

IPv4 Address Classes

Class	1 st byte ^a	Format	Comments
Α	1-127	N.H.H.H	Very early networks, or reserved for DoD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
C	192-223	N.N.N.H	Were easy to get, often obtained in sets
D	224-239	_	Multicast addresses, not permanently assigned
Е	240-255	_	Experimental addresses

a. The value 0 is special and is not used as the first byte of regular IP addresses. The value 127 is reserved for the loopback address.

IPv4 Subnetting

Class A	Network	Host	Host	Host	CIDR
Subnet Mask	255	0	0	0	/8

Class B	Network	Network	Host	Host	CIDR
Subnet Mask	255	255	0	0	/16

Class C	Network	Network	Network	Host	CIDR
Subnet Mask	255	255	255	0	/24

128.138.243.100/16	255.255.0.0	128.138.0.0
128.138.243.100/24	255.255.255.0	128.138.243.0
128.138.243.100/26	255.255.255.192	128.138.243.64

Netmask

192 = 1100 0000

Network

Broadcast

128.138.255.255

128.138.243.255

128.138.243.127

IP address

IPv4 Subnetting

apt install ipcalc

```
root@cs447-newellz2-server ~# ipcalc 192.168.15.0/25
Address: 192.168.15.0 11000000.10101000.00001111.0 0000000
Netmask: 255.255.255.128 = 25 111111111.11111111.1111111.1 00000000
Wildcard: 0.0.0.127
                              00000000.00000000.00000000.0 1111111
=>
Network: 192.168.15.0/25
                         11000000.10101000.00001111.0 0000000
HostMin: 192.168.15.1
                              11000000.10101000.00001111.0 0000001
HostMax: 192.168.15.126
                              11000000.10101000.00001111.0 1111110
Broadcast: 192.168.15.127
                              11000000 10101000 00001111 0 1111111
Hosts/Net: 126
                               Class C, Private Internet
```

Classless Inter-Domain Routing (CIDR)

- Splitting networks for routing purposes
- Example

Site has been given a block of eight class C addresses numbered 192.144.0.0 through 192.144.7.0

- 1 network of length /21 with 2,046 hosts, netmask 255.255.248.0
- 8 networks of length /24 with 254 hosts each, netmask 255.255.255.0
- 16 networks of length /25 with 126 hosts each, netmask 255.255.255.128
- 32 networks of length /26 with 62 hosts each, netmask 255.255.255.192

Address Allocation

Name	Site	Region covered
ARIN APNIC AfriNIC	arin.net apnic.net afrinic.net	North America, part of the Caribbean Asia/Pacific region, including Australia and New Zealand Africa
LACNIC RIPE NCC	lacnic.net ripe.net	Central and South America, part of the Caribbean Europe and surrounding areas

Special forms of IPv4 Addressing

Special Address	NetID	HostID	Example	Use
Network itself	Non-0	All zeros (0s)	192.168.14.0	Used by routers: on a host, means "some host," but it is not used.
Directed broadcast	Non-0	All ones (1s)	192.168.14.255	Destination only: used by routers to send to all host on this network.
Limited broadcast	All 1s	All 1s	225.255.255.255	Destination only: direct broad- cast when NetID is not known.
This host on this network	All 0s	All Os	0.0.0.0	Source only: used when host does not know its IPv4 address.
Specific host on this network	All 0s	Non-0	0.0.0.46	Destination only: defined, but not used
Loopback	127	Any	127.0.0.0	Destination only: packet is not sent out onto network.

Network Address Translation

- Made to deal with IPv4 exhaustion
- Private address spaces
- Border router translates between private and public

IP class	From	То	CIDR range
Class A	10.0.0.0	10.255.255.255	10.0.0.0/8
Class B	172.16.0.0	172.31.255.255	172.16.0.0/12
Class C	192.168.0.0	192.168.255.255	192.168.0.0/16

Routing

- Direct a packet to its destination
 - To reach network A
 - Send packets through machine C
 - Default route
 - Often the gateway assigned by DHCP

ip route show

ip route add default via 132.236.227.1 dev eth0

ip route add 132.236.220.64/26 via 132.236.212.6 dev eth1

Dynamic Host Control Protocol

- Enables automatic
 - IP Address
 - Netmask
 - Gateway
 - DNS Server configuration
- Offers a lease
 - Expires after a configurable amount of time
 - Must be renewed
- Software
 - isc-dhcp-server
 - dnsmasq simple

CLIENT	Client–Server File Transfer Using 1000-byte Segments	SERVER
Active OPEN	SYN SEQ (ISN) 2000 WIN 5840 MSS (OPT)1460	Passive OPEN
	SYN SEQ (ISN) 4000 WIN 8760 MSS (OPT)1460	OPEN
OPEN	ACK SEQ 2001 WIN 5840 ACK 4001	3-way Handshake Complete
Data Transfer SEQ and ACK	SEQ 2001 ACK 4001	
	SEQ 4001 ACK 3001 SEQ 3001 ACK 4001	(sends 1000 bytes back)
	SEQ 4001 ACK 4001	(3000 bytes of
	SEQ 5001 ACK 4001	window full)
(Transfer continues)	(no data) ACK 6001	
Connection	FIN SEQ 4001 ACK 10001	
Release	ACK SEQ 10001 ACK 4002	CLOSING
CLOSING	FIN SEQ 10001 ACK 4002	
WAIT!	ACK SEQ 4002 ACK 10002	WAIT!

Basic Network Configuration

```
ip link set eth0 up
ip add 192.168.47.20/24 dev eth0
ip route add default via 192.168.47.1
# Setup DNS Modify
/etc/resolv.conf
/etc/systemd/resolved.conf
```