SEL0417 - Fundamentos de Controle

Controles PI e PID

Controles PI e PID

- Os controle PI e PID podem ser projetados empiricamente a partir de ensaios no domínio do tempo;
- Já os projetos por compensação de fase exigem conhecimento da modelagem da planta ou ensaio de resposta da resposta em frequência.

Controle PID

 O Controlador Proporcional-Integrativo-Derivativo (PID) tem a seguinte estrutura:

$$\frac{U(s)}{E(s)} = \left(K_p + \frac{K_I}{s} + sK_D\right) =$$

$$\frac{U(s)}{E(s)} = \frac{K_p s + K_I + s^2 K_D}{s} =$$

$$\frac{U(s)}{E(s)} = K_{p}(1 + \frac{1}{sT_{i}} + sT_{d})$$

3

Controle PID

Observação: A ação de controle puramente integral zera o erro de regime permanente na resposta ao degrau.

$$E(s) = \frac{1}{1 + \frac{K_I}{s}G(s)} \rightarrow Se G(0) = K_G \neq 0 \rightarrow Então, \lim_{s \to 0} sE(0) = 0$$

4

Controle PID

- O ajuste de K_p, T_i e T_d é conhecido como sintonia do PID;
- Se o modelo da planta é conhecido, a sintonia pode ser realizada de forma analítica ou numérica;
- A sintonia empírica pode ser realizada mesmo que o modelo da planta não seja conhecido.

• Considere o seguinte diagrama de blocos onde está representado a FT do controlador $(G_c(s))$ e da planta $(G_p(s))$

Método 1:

 As regras são empíricas e partem do pressuposto que a função de transferência do sistema pode ser aproximada por:

$$G_{p}(s) = \frac{Ke^{-Ls}}{sT + 1}$$

 O método só funciona se a planta não tiver integradores ou polos complexos conjugados dominantes.

Método 1:

- Nesse método, o controlador deve ser sintonizado como segue:

Tipo de Controlador	K _p	T_{i}	T_d
Р	T/L	∞	0
PI	0,9T/L	L/0,3	0
PID	1,2T/L	2L	0,5L

Método 2:

- Baseia-se no ensaio do sistema em malha fechada, com as ações de controle integral e derivativa desabilitada (ou seja, $T_i = \infty$ e $T_d = 0$);
- Valor de K_p é aumentado até próximo do valor crítico K_{cr} , com o qual a resposta do sistema tem o seguinte aspecto:

Método 2:

O controlador deve ser sintonizado como segue:

Tipo de Controlador	K _p	T _i	T _d
Р	0,5K _{cr}	∞	0
PI	0,45K _{cr}	$\frac{1}{1,2}P_{cr}$	0
PID	0,6K _{cr}	0,5P _{cr}	0,125P _{cr}

Método 2:

-As regras também são empíricas e partem do pressuposto que, com K_{cr} , existe um par de polos conjugados sobre o eixo imaginário em:

$$s_{1,2} = \pm j \frac{2\pi}{P_{cr}}$$

 O método 2 pode funcionar em condições nas quais o método 1 não funciona.