Метрики качества

WER, CER, SER

where...

S = number of substitutions

D = number of deletions

I = number of insertions

N = number of words in the reference chars sentences

ASR pipeline

(Hybrid ASR)

Conventional ASR

Pipeline

Пайплайн

wav -> melspectrogram (wav2vec) -> Acoustic Model -> Decoding with language model -> (punc) -> words

Mетрика wer (word error rate)

Акустическая модель

frame-level prediction?

CTC-loss

Figure 1. Here, we have aligned audio data, where the audio is chopped up into time slices and each is labeled with a letter. But it's very difficult to go from those labels to the correct transcript, especially considering words with repeated letters (such as "book").

log (Pr (output: "BOOK" | audio)) = log (Pr (BOO-OOO - KK | audio)) + log (Pr (BBO - OO-KKK | audio)) + ...).
На практике мы можем использовать подход динамического программирования, чтобы рассчитать это, накапливая наши логарифмические вероятности по разным «путям» через выходы softmax на каждом шаге.

ккклллаасс_с-с__

класс

$$P(\mathbf{y}|\mathbf{x}) = \sum_{\hat{\mathbf{y}} \in \mathcal{B}(\mathbf{y}, \mathbf{x})} \prod_{t=1}^{T} P(\hat{y}_t | \mathbf{x})$$

CTC loss

Node (s,t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

Handwriting recognition: The input can be (x, y) coordinates of a pen stroke or pixels in an image.

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

Listen-Attent-Spell (2015) characters: {a, b, c, ..., z, 0, ..., 9, \space\, \chicomma\, \square\, \square\, \chicomma\, \square\, \squa

- RNN
- Autoregressive
- No need beam search & LM
- Cross-Entropy

input sequence of filter bank spectra features

DeepSpeech 2 (2015)

- RNN & Conv
- Non-Autoregressive
- Need LM beam search & LM
- CTC

Beam Search & LM

BEAM SEARCH

Only beam search

$$\boldsymbol{y^*} = \underset{\boldsymbol{y}}{\operatorname{arg \, max}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

Beam search & LM (shallow fusion)

$$oldsymbol{y^*} = rg \max_{oldsymbol{y}} \ \log p(oldsymbol{y} | oldsymbol{x}) + \lambda \log p_{LM}(oldsymbol{y})$$

Wav2Letter (2016)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

Jasper (2019)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

QuartzNet (2019)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

ContextNet (2020)

- RNN & Conv
- Autoregressive
- Better with beam-search & LM, but can work without it
- RNN-T loss

RNN-Transducer

Conformer (2020)

- RNN, Conv & Transformer
- Autoregressive
- Better with beam-search & LM, but can work without it
- RNN-T loss

Method	#Params (M)	WER Without LM		WER With LM	
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	: <u>-</u>	-	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	12	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

