Cubos OLAP: Definição, Arquitetura e Implementação

Definição

Cubos OLAP (Online Analytical Processing) são estruturas de dados que permitem análises multidimensionais rápidas e complexas de grandes volumes de dados. Eles são usados principalmente em sistemas de Business Intelligence (BI) para facilitar a análise de dados, como vendas, desempenho financeiro, inventário, etc.

Os cubos OLAP são organizados em dimensões e fatos:

Dimensões: Aspectos pelos quais os dados podem ser categorizados (e.g., tempo, localização, produto).

Fatos: Dados quantitativos que podem ser agregados (e.g., vendas, lucros).

Arquitetura

A arquitetura de um cubo OLAP geralmente segue uma estrutura de três níveis:

Fonte de Dados: Base de dados transacionais ou sistemas de dados externos.

Processo ETL (Extract, Transform, Load): Extrai dados das fontes, transforma-os em um formato adequado e carrega-os no data warehouse.

Data Warehouse: Armazena dados de forma estruturada, organizados em esquemas (estrela ou floco de neve) para facilitar o acesso e a análise.

OLAP Server: Processa consultas OLAP, calcula agregações e fornece acesso rápido aos dados.

Cliente OLAP: Interfaces de usuário, ferramentas de BI que permitem aos usuários finais interagir com os dados.

<u>Implementação</u>

Modelagem Dimensional:

Identifique as dimensões e fatos.

Crie o esquema estrela ou floco de neve.

Criação do Cubo OLAP:

Utilize uma ferramenta OLAP ou biblioteca que suporte a criação e manipulação de cubos OLAP.

Exemplos incluem Microsoft SQL Server Analysis Services (SSAS), Pentaho, Apache Kylin.

Exemplo de Cubo OLAP Implementado com MySQL

Embora MySQL não ofereça suporte nativo para OLAP como alguns bancos de dados especializados, é possível criar um sistema OLAP básico usando tabelas e consultas SQL.

1. Estrutura de Tabelas

Tabela de Fatos (fatos_vendas):

```
CREATE TABLE fatos_vendas (
   id INT AUTO_INCREMENT PRIMARY KEY,
   data_venda DATE,
   id_produto INT,
   id_cliente INT,
   id_localizacao INT,
   quantidade INT,
   valor DECIMAL(10,2)
);
```

Tabelas de Dimensões:

Dimensão Tempo (dim_tempo):

```
CREATE TABLE dim_tempo (

id INT AUTO_INCREMENT PRIMARY KEY,

data DATE,

ano INT,

mes INT,

dia INT,

trimestre INT
);
```

Dimensão Produto (dim_produto):

```
CREATE TABLE dim_produto (
   id INT AUTO_INCREMENT PRIMARY KEY,
   nome_produto VARCHAR(255),
   categoria VARCHAR(255)
);
```

Dimensão Cliente (dim_cliente):

```
CREATE TABLE dim_cliente (
   id INT AUTO_INCREMENT PRIMARY KEY,
   nome_cliente VARCHAR(255),
   pais VARCHAR(255),
   cidade VARCHAR(255)
);
```

Dimensão Localização (dim_localizacao):

```
CREATE TABLE dim_localizacao (
   id INT AUTO_INCREMENT PRIMARY KEY,
   pais VARCHAR(255),
   estado VARCHAR(255),
   cidade VARCHAR(255)
);
```

2. Popular as Tabelas

Insira dados nas tabelas de dimensões e fatos:

```
INSERT INTO dim_tempo (data, ano, mes, dia, trimestre)
VALUES ('2023-05-27', 2023, 5, 27, 2);

INSERT INTO dim_produto (nome_produto, categoria)
VALUES ('Produto A', 'Categoria 1');

INSERT INTO dim_cliente (nome_cliente, pais, cidade)
VALUES ('Cliente 1', 'Brasil', 'São Paulo');

INSERT INTO dim_localizacao (pais, estado, cidade)
VALUES ('Brasil', 'SP', 'São Paulo');

INSERT INTO fatos_vendas (data_venda, id_produto, id_cliente, id_localizacao, quantidade, valor)
VALUES ('2023-05-27', 1, 1, 1, 10, 100.00);
```

3. Consultas OLAP

Consulta de Agregação por Mês e Produto:

```
SELECT

dt.mes,
dp.nome_produto,
SUM(fv.quantidade) AS total_quantidade,
SUM(fv.valor) AS total_valor

FROM
fatos_vendas fv

JOIN
dim_tempo dt ON fv.data_venda = dt.data

JOIN
dim_produto dp ON fv.id_produto = dp.id

GROUP BY
dt.mes, dp.nome_produto;
```

Consulta de Agregação por Ano e Localização:

```
SELECT

dt.ano,
dl.cidade,
SUM(fv.quantidade) AS total_quantidade,
SUM(fv.valor) AS total_valor

FROM
fatos_vendas fv

JOIN
dim_tempo dt ON fv.data_venda = dt.data

JOIN
dim_localizacao dl ON fv.id_localizacao = dl.id

GROUP BY
dt.ano, dl.cidade;
```

Conclusão

Embora MySQL não seja a escolha ideal para operações OLAP complexas, é possível criar uma solução básica utilizando tabelas relacionais e consultas SQL para realizar análises multidimensionais. Para necessidades OLAP mais avançadas, ferramentas dedicadas como Microsoft SSAS, Apache Kylin ou outras plataformas de BI são recomendadas.