Human Activity Recognition - Course Project

Sridhar Pilli March 24, 2016

Summary

This project describes the analysis of human activity regonition data to predict the quality of a particular type of exercise. In this report various aspects of feature selection, building and evaluation of models would be covered and a final model would be selected. Overall a random forest with 500 trees gave a best accuracy of about **99**% and an out of sample error as **0.6**%

Data Analysis

First lets read the data and carry out exploratory analysis to select appropriate level1 and level2 covariates. At the end split the data into training and crossvalidation set.

Structure of the Data

The publication of the authors descibes data containing **actual measurements** from the sensors placed on four different locations and **derived quantities** from these actual measurements. Specifically there are 1. **4** locations where sensors are placed - Forearm, Arm, Belt, Dumbell 2. **12** Actual measurements taken from each location - Euler's angles (Roll, Pitch, Yaw), Acceleration(X,Y,Z), Gyroscope(X,Y,Z), Magnetometer(X,Y,Z) 3. **8** Derived quantities for each of the Euler's angles - Mean, Variance, Standard Deviation, Min, Max, Amplitude, Kurtosis, Skewness 4. **2** Derived quantities for acceleration overall - Total and Variance. 5. **7** Housekeeping variables such as timestamp, username etc. Of this the relevant one would be the "new_window".

Reading and cleaning the data

Read the data from csv file

```
setwd("~/Documents/Git/Github/Project8/")
# Read the csv files. Notice the data has quite a few empty cells. These are converte
d to NA while reading the file itself.
trainHAR <- read.csv("pml-training.csv", na.strings = "", stringsAsFactors = FALSE)
testHAR <- read.csv("pml-testing.csv", na.strings = "", stringsAsFactors = FALSE)</pre>
```

Level1: Rawdata -> Covariates

Convert the missing values to NAs, Divide-by-zeros to Inf and remove the first 7 columns as there isn't meaningful information there. Ideally had the testing data contained entries for the derived quantities such as mean, variance of measurementes we could have kept the num_window and new_window columns to group the data into windows and then compute the averages.

```
for(var in names(trainHAR)) { trainHAR[which(trainHAR[,var]=="#DIV/0!"),var] <- Inf }
for(i in 8:ncol(trainHAR)-1) { trainHAR[,i] <- as.numeric(trainHAR[,i]) }
trainHAR$classe <- as.factor(trainHAR$classe)
train1 <- trainHAR[8:160]

test1 <- testHAR[,8:159]
for(i in 1:152) { test1[,i] <- as.numeric(test1[,i]) }</pre>
```

Lets get rid of those columns where there is either NA or Inf.

```
id1 <- sapply(train1[,1:152], function(x) { (mean(x)==Inf) | (is.na(mean(x))) })
id2 <- sapply(test1[,1:152], function(x) { (mean(x)==Inf) | (is.na(mean(x))) })
n1 <- names(train1); n2 <- names(test1)
n <- union(n1[id1],n2[id2]) # these are the columns to get rid
train1 <- train1[,setdiff(n1,n)]
dim(train1)</pre>
```

```
## [1] 19622 53
```

```
names(train1)
```

```
##
    [1] "roll belt"
                                "pitch belt"
                                                         "yaw belt"
##
    [4] "total_accel_belt"
                                "gyros belt x"
                                                         "gyros belt y"
##
    [7] "gyros belt z"
                                "accel belt x"
                                                         "accel belt y"
                                "magnet_belt x"
## [10] "accel belt z"
                                                         "magnet belt y"
## [13] "magnet_belt_z"
                                "roll arm"
                                                         "pitch_arm"
## [16] "yaw arm"
                                "total accel arm"
                                                         "gyros arm x"
## [19] "gyros_arm_y"
                                "gyros_arm_z"
                                                         "accel_arm_x"
## [22] "accel arm y"
                                "accel arm z"
                                                         "magnet_arm_x"
## [25] "magnet_arm_y"
                                "magnet_arm_z"
                                                         "roll_dumbbell"
## [28] "pitch_dumbbell"
                                "yaw dumbbell"
                                                         "total_accel_dumbbell"
## [31] "gyros_dumbbell_x"
                                "gyros_dumbbell_y"
                                                         "gyros_dumbbell_z"
## [34] "accel dumbbell x"
                                "accel dumbbell y"
                                                         "accel dumbbell z"
## [37] "magnet dumbbell x"
                                "magnet dumbbell y"
                                                         "magnet dumbbell z"
## [40] "roll_forearm"
                                "pitch_forearm"
                                                         "yaw_forearm"
## [43] "total accel forearm"
                                "gyros forearm x"
                                                         "gyros forearm y"
## [46] "gyros_forearm_z"
                                "accel_forearm_x"
                                                         "accel_forearm_y"
## [49] "accel forearm z"
                                "magnet forearm x"
                                                         "magnet forearm y"
## [52] "magnet_forearm_z"
                                "classe"
```

```
dim(test1)
## [1] 20 52
names(test1)
##
    [1] "roll belt"
                                 "pitch belt"
                                                         "yaw belt"
##
                                 "gyros belt x"
    [4] "total accel belt"
                                                         "gyros belt y"
##
    [7] "gyros belt z"
                                 "accel belt x"
                                                         "accel belt y"
## [10] "accel belt z"
                                 "magnet belt x"
                                                         "magnet belt y"
## [13] "magnet belt z"
                                 "roll arm"
                                                         "pitch arm"
## [16] "yaw arm"
                                 "total accel arm"
                                                         "gyros arm x"
## [19] "gyros arm y"
                                 "gyros arm z"
                                                         "accel arm x"
## [22] "accel arm y"
                                 "accel arm z"
                                                         "magnet arm x"
## [25] "magnet arm y"
                                "magnet arm z"
                                                         "roll dumbbell"
## [28] "pitch dumbbell"
                                 "yaw dumbbell"
                                                         "total accel dumbbell"
## [31] "gyros dumbbell x"
                                "gyros_dumbbell_y"
                                                         "gyros dumbbell z"
## [34] "accel dumbbell x"
                                 "accel dumbbell y"
                                                         "accel dumbbell z"
## [37] "magnet dumbbell x"
                                 "magnet dumbbell y"
                                                         "magnet dumbbell z"
## [40] "roll_forearm"
                                 "pitch forearm"
                                                         "yaw forearm"
## [43] "total accel forearm"
                                 "gyros forearm x"
                                                         "gyros forearm y"
## [46] "gyros forearm z"
                                 "accel forearm x"
                                                         "accel forearm y"
## [49] "accel forearm z"
                                 "magnet forearm x"
                                                         "magnet forearm y"
## [52] "magnet forearm z"
```

At the end of this step we are down to 53 covariates from 160 in the training set

test1 <- test1[,setdiff(n2,n)]

##

Level2: Tidy covariates -> New covariates

From the tidy covariates set let first figure out which ones have zero variance and can be removed right away. Note we are monitoring the stand alone variance without comparing other covariates. Lets keep those in with large variance.

```
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

nzv <- nearZeroVar(train1, saveMetrics = TRUE)
nzv</pre>
```

## roll belt	1.101904	6.7781062	FALSE FALSE
## pitch belt	1.036082	9.3772296	FALSE FALSE
## yaw belt	1.058480	9.9734991	FALSE FALSE
## total accel belt	1.063160	0.1477933	FALSE FALSE
## gyros belt x	1.058651	0.7134849	FALSE FALSE
## gyros belt y	1.144000	0.3516461	FALSE FALSE
## gyros belt z	1.066214	0.8612782	FALSE FALSE
## accel belt x	1.055412	0.8357966	FALSE FALSE
## accel_belt_y	1.113725	0.7287738	FALSE FALSE
## accel_belt_z	1.078767	1.5237998	FALSE FALSE
## magnet_belt_x	1.090141	1.6664968	FALSE FALSE
## magnet belt y	1.099688	1.5187035	FALSE FALSE
## magnet belt z	1.006369	2.3290184	FALSE FALSE
## roll arm	52.338462	13.5256345	FALSE FALSE
## pitch arm	87.256410	15.7323412	FALSE FALSE
## yaw arm	33.029126	14.6570176	FALSE FALSE
## total_accel_arm	1.024526	0.3363572	FALSE FALSE
## gyros arm x	1.015504	3.2769341	FALSE FALSE
## gyros arm y	1.454369	1.9162165	FALSE FALSE
## gyros arm z	1.110687	1.2638875	FALSE FALSE
## accel_arm_x	1.017341	3.9598410	FALSE FALSE
## accel arm y	1.140187	2.7367241	FALSE FALSE
## accel arm z	1.128000	4.0362858	FALSE FALSE
## magnet arm x	1.000000	6.8239731	FALSE FALSE
## magnet_arm_y	1.056818	4.4439914	FALSE FALSE
## magnet arm z	1.036364	6.4468454	FALSE FALSE
## roll dumbbell	1.022388	84.2065029	FALSE FALSE
## pitch_dumbbell	2.277372	81.7449801	FALSE FALSE
## yaw_dumbbell	1.132231	83.4828254	FALSE FALSE
## total_accel_dumbbell	1.072634	0.2191418	FALSE FALSE
## gyros_dumbbell_x	1.003268	1.2282132	FALSE FALSE
## gyros_dumbbell_y	1.264957	1.4167771	FALSE FALSE
## gyros_dumbbell_z	1.060100	1.0498420	FALSE FALSE
## accel_dumbbell_x	1.018018	2.1659362	FALSE FALSE
## accel_dumbbell_y	1.053061	2.3748853	FALSE FALSE
## accel_dumbbell_z	1.133333	2.0894914	FALSE FALSE
## magnet_dumbbell_x	1.098266	5.7486495	FALSE FALSE
## magnet_dumbbell_y	1.197740	4.3012945	FALSE FALSE
## magnet_dumbbell_z	1.020833	3.4451126	FALSE FALSE
## roll_forearm	11.589286	11.0895933	FALSE FALSE
## pitch_forearm	65.983051	14.8557741	FALSE FALSE
## yaw_forearm	15.322835	10.1467740	FALSE FALSE
## total_accel_forearm	1.128928	0.3567424	FALSE FALSE
## gyros_forearm_x	1.059273	1.5187035	FALSE FALSE
## gyros_forearm_y	1.036554	3.7763735	FALSE FALSE
## gyros_forearm_z	1.122917	1.5645704	FALSE FALSE
## accel_forearm_x	1.126437	4.0464784	FALSE FALSE
<pre>## accel_forearm_y</pre>	1.059406	5.1116094	FALSE FALSE
<pre>## accel_forearm_z</pre>	1.006250	2.9558659	FALSE FALSE
<pre>## magnet_forearm_x</pre>	1.012346	7.7667924	FALSE FALSE

```
## magnet_forearm_y 1.246914 9.5403119 FALSE FALSE
## magnet_forearm_z 1.000000 8.5771073 FALSE FALSE
## classe 1.469581 0.0254816 FALSE FALSE
```

From the above output the "nzv" value for all the covaraites is FALSE indicating that their is no variable whose variance is small enough to be discarded.

Next lets use findCorrelation() function in Caret package to figure out which variables can be dropped. The idea here is the measure the correlation of a particular covariate with other covariates and then discard those variates whose correlation is high. For this I am going to use a cutoff of 0.9. In other words if variable x1 and x2 are highly correlated with absolute correlation >0.9 then I am going to drop one of these variables.

```
library(caret)
cor_vals <- cor(train1[,1:52])
drop_vars <- findCorrelation(cor_vals,cutoff=0.9)
colNames <- c(names(train1)[setdiff(1:52,drop_vars)], "classe")
train2 <- train1[,colNames]
colNames</pre>
```

```
##
    [1] "pitch belt"
                                "yaw belt"
                                                         "total accel belt"
    [4] "gyros_belt_x"
##
                                "gyros belt y"
                                                         "gyros belt z"
    [7] "magnet belt x"
                                "magnet belt y"
                                                         "magnet belt z"
##
## [10] "roll arm"
                                "pitch arm"
                                                         "yaw arm"
## [13] "total accel arm"
                                "gyros arm y"
                                                         "gyros arm z"
## [16] "accel arm x"
                                "accel arm y"
                                                         "accel arm z"
## [19] "magnet arm x"
                                "magnet arm y"
                                                         "magnet arm z"
## [22] "roll dumbbell"
                                "pitch dumbbell"
                                                         "yaw dumbbell"
## [25] "total accel dumbbell"
                                "gyros dumbbell y"
                                                         "accel dumbbell x"
## [28] "accel dumbbell y"
                                "accel dumbbell z"
                                                         "magnet dumbbell x"
## [31] "magnet dumbbell y"
                                "magnet dumbbell z"
                                                         "roll forearm"
## [34] "pitch forearm"
                                "yaw forearm"
                                                         "total accel forearm"
## [37] "gyros forearm x"
                                "gyros forearm y"
                                                         "gyros forearm z"
## [40] "accel forearm x"
                                "accel forearm y"
                                                         "accel forearm z"
## [43] "magnet forearm x"
                                "magnet forearm y"
                                                         "magnet forearm z"
## [46] "classe"
```

At the end of this step we are down to 46 covariates from 160 at the start.

Lets plot the histogram of the remaining covariates and see if any log transformation is required.

```
par(mfrow=c(4,4),mar=c(3,3,1,1))
for (i in 1:16) { hist(train2[,i],main=paste(i,colNames[i])) }
```


3 total_accel_belt

4 gyros_belt_x

2 yaw_belt

1 pitch_belt

Most of them look reasonbly bell shaped and a few aren't. This is good for now. Lets move on.

Split the data into training and cross validation set

Lets split the cleaned up training data into 75% training and 25% cross validation datasets.

```
set.seed(1234)
inTrain <- createDataPartition(train2$classe,p=0.75,list=FALSE)
training <- train2[inTrain,]
validation <- train2[-inTrain,]
dim(training)</pre>
## [1] 14718 46
```

```
dim(validation)
```

```
## [1] 4904 46
```

Model fitting

The approach I would like to take here is to evaluate a bunch of classifiers and an ensemble of them to see which one gives higher accuracy and lower error rates. ## CART

```
require(caret);
set.seed(34523)
fit1 <- train(classe~.,method="rpart",data=training)</pre>
```

```
## Loading required package: rpart
```

fit1

```
## CART
##
## 14718 samples
     45 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 14718, 14718, 14718, 14718, 14718, ...
## Resampling results across tuning parameters:
##
##
                Accuracy
                           Kappa
                                      Accuracy SD Kappa SD
    ср
##
    0.02307035 0.5667032 0.4505993 0.03696502
                                                   0.05085124
##
     0.02610842 0.5471537 0.4258219 0.03687745
                                                   0.04955390
##
     0.04196335 0.4024594 0.2013193 0.11048712 0.18509401
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.02307035.
```

```
confusionMatrix(validation$classe, predict(fit1,validation))
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
               Α
                   В
                       C
                           D
                               E
           A 858
                  17 375 143
##
##
           B 154 409 332
##
              18
                  20 811
                  59 345 286
##
              49
                              65
##
           Ε
             11 153 361
                         71 305
##
## Overall Statistics
##
##
                 Accuracy: 0.5442
##
                   95% CI: (0.5302, 0.5583)
##
      No Information Rate: 0.4535
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.4296
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.7872
                                  0.6216 0.3647 0.51346 0.81333
                                  0.8728 0.9836 0.88084 0.86840
## Specificity
                         0.8592
## Pos Pred Value
                                  0.4310 0.9485 0.35572 0.33851
                         0.6151
## Neg Pred Value
                                  0.9370 0.6510 0.93390 0.98251
                         0.9339
## Prevalence
                                 0.1342 0.4535 0.11358 0.07647
                         0.2223
## Detection Rate
                         0.1750
                                  0.0834 0.1654 0.05832 0.06219
## Detection Prevalence
                         0.2845
                                0.1935 0.1743 0.16395 0.18373
                                  0.7472
                                           0.6741 0.69715 0.84087
## Balanced Accuracy
                         0.8232
```

The accuracy is about 55% and the error is 45% (100%-accuracy). This is not a great number to start with.

Random Forest

This took quite sometime to run on my macbook air - about an hour and half.

Type rfNews() to see new features/changes/bug fixes.

```
set.seed(12121)
fit2 <- train(classe~., method="rf",data=training)

## Loading required package: randomForest

## randomForest 4.6-12</pre>
```

```
## The following object is masked from 'package:ggplot2':
##
## margin
```

fit2

##

Attaching package: 'randomForest'

```
## Random Forest
##
## 14718 samples
      45 predictor
##
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 14718, 14718, 14718, 14718, 14718, ...
## Resampling results across tuning parameters:
##
##
    mtry Accuracy
                                Accuracy SD Kappa SD
                     Kappa
##
     2
          0.9889355 0.9860021 0.001677828 0.002116915
##
     23
          0.9900645 0.9874306 0.001775286 0.002244413
##
     45
          0.9831971 0.9787418 0.004118361 0.005210087
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 23.
```

confusionMatrix(validation\$classe, predict(fit2, validation))

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                           C
                                D
                                     E
##
            A 1395
                      0
                           0
                                0
##
                 6
                   940
            C
                 0
                        844
##
                      9
                      0
                           9
##
            D
                 0
                             795
                                     0
##
            E
                 0
                      0
                           1
                                0
                                   900
##
## Overall Statistics
##
##
                  Accuracy: 0.9939
##
                    95% CI: (0.9913, 0.9959)
##
      No Information Rate: 0.2857
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 0.9923
##
   Mcnemar's Test P-Value: NA
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9957
                                   0.9905
                                            0.9848
                                                     0.9975
                                                              1.0000
## Specificity
                          1.0000
                                   0.9977 0.9973
                                                     0.9978
                                                              0.9998
## Pos Pred Value
                                   0.9905 0.9871
                          1.0000
                                                     0.9888
                                                              0.9989
## Neg Pred Value
                                          0.9968
                                                     0.9995
                          0.9983
                                   0.9977
                                                              1.0000
                                                              0.1835
## Prevalence
                                   0.1935 0.1748
                          0.2857
                                                     0.1625
## Detection Rate
                          0.2845
                                   0.1917 0.1721
                                                     0.1621
                                                              0.1835
## Detection Prevalence
                          0.2845
                                   0.1935 0.1743
                                                     0.1639
                                                              0.1837
## Balanced Accuracy
                          0.9979
                                   0.9941
                                            0.9911
                                                     0.9976
                                                              0.9999
```

This is a better model than the CART version. Accuracy is about **99**% and out of sample error rate is about **0.6**%. Lets select this model as a candidate.

Boosting with trees

This ran much faster than the random forest. It took about 30 minutes.

```
set.seed(123)
fit3 <- train(classe~., method="gbm", data=training, verbose=FALSE)</pre>
```

```
## Loading required package: gbm
```

```
## Loading required package: survival
```

```
##
## Attaching package: 'survival'

## The following object is masked from 'package:caret':
##
## cluster

## Loading required package: splines

## Loading required package: parallel

## Loaded gbm 2.1.1

## Loading required package: plyr

fit3
```

```
## Stochastic Gradient Boosting
##
## 14718 samples
##
      45 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 14718, 14718, 14718, 14718, 14718, 14718, ...
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                                        Accuracy SD
                                 Accuracy
                                            Kappa
##
                         50
                                 0.7317702
                                            0.6595433
                                                        0.005023538
     1
##
     1
                        100
                                 0.8077210
                                            0.7564694
                                                        0.005753464
##
     1
                        150
                                 0.8422993
                                            0.8003014
                                                        0.004681757
##
     2
                         50
                                           0.8087949
                                                        0.005896091
                                 0.8491311
##
     2
                        100
                                 0.9007706
                                            0.8743464
                                                        0.004623827
##
     2
                        150
                                 0.9246612 0.9046179
                                                        0.003928069
##
                                 0.8905110
                                            0.8612995 0.004346283
     3
                         50
##
     3
                        100
                                 0.9357929 0.9187208 0.004258381
##
     3
                                 0.9547286
                                            0.9427057
                                                        0.003640357
                        150
##
     Kappa SD
##
     0.006142016
##
     0.007238042
##
     0.005914252
##
     0.007488599
##
     0.005858068
##
     0.004960580
##
     0.005470098
##
     0.005355651
##
     0.004571692
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
##
    interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
```

```
confusionMatrix(validation$classe, predict(fit3,validation))
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                      В
                           C
                                 D
                                      E
##
            A 1377
                     12
                           3
                                 2
                                      1
##
            В
                28
                   896
                           21
            C
                 0
                        806
                                      3
##
                     36
                                10
                      2
##
            D
                 0
                           25
                              773
                                      4
##
            Е
                 1
                     16
                          12
                                 4
                                    868
##
## Overall Statistics
##
##
                  Accuracy: 0.9625
##
                    95% CI: (0.9568, 0.9676)
##
       No Information Rate: 0.2867
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.9525
##
    Mcnemar's Test P-Value: 7.172e-05
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9794
                                    0.9314
                                             0.9296
                                                      0.9785
                                                                0.9875
## Specificity
                          0.9949
                                    0.9866
                                             0.9879
                                                      0.9925
                                                                0.9918
## Pos Pred Value
                                    0.9442 0.9427
                          0.9871
                                                      0.9614
                                                                0.9634
## Neg Pred Value
                                    0.9833 0.9849
                                                      0.9959
                          0.9917
                                                                0.9973
## Prevalence
                                             0.1768
                          0.2867
                                    0.1962
                                                      0.1611
                                                                0.1792
## Detection Rate
                          0.2808
                                    0.1827
                                             0.1644
                                                      0.1576
                                                                0.1770
## Detection Prevalence
                          0.2845
                                    0.1935
                                             0.1743
                                                      0.1639
                                                                0.1837
## Balanced Accuracy
                           0.9871
                                    0.9590
                                             0.9588
                                                      0.9855
                                                                0.9896
```

This is not as good as the Random Forest model and better than CART. Accuracy is about **96**% and out of sample error rate is about **4**%.

Overall the final model selected is the random forest one.

```
#save all the models.
saveRDS(fit2, file = "RandomForest_model.rds")
saveRDS(fit3, file = "BoostingTrees_model.rds")
```

Predict outcome on the test dataset

Pick up relevant covariates needed for the model and then run through the model.

```
test2 <- test1[,colNames[1:45]]
predict(fit2,test2)</pre>
```

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E

Reference

The data for this project has been generously provided from the source http://groupware.les.inf.puc-rio.br/har (http://groupware.les.inf.puc-rio.br/har)

Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI, 2013.

Read more: http://groupware.les.inf.puc-rio.br/har#ixzz43rRuixaU (http://groupware.les.inf.puc-rio.br/har#ixzz43rRuixaU)