The surprizing complexity of generalized reachability games GAMES'2010 workshop

Nathanaël Fijalkow ^{1,2} & Florian Horn ¹

LIAFA

CNRS & Université Denis Diderot - Paris 7, France florian.horn@liafa.jussieu.fr

ÉNS Cachan École Normale Supérieure de Cachan, France nathanael.fijalkow@gmail.com

September 20th, 2010

Outline

- Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBF
 - Memory requirements

Outline

- Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBF
 - Memory requirements

Two players: **Eve** and **Adam**.

Outline

- 1 Generalized reachability games

 - Reachability
- Complexity

 - Memory requirements

Outline

- 1 Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBF
 - Memory requirements

Generalized reachability objectives

- Reachability objectives: given $F \subseteq Q$, reach at least one vertex in F;
- Generalized reachability objectives: given $F_1, F_2, \dots, F_p \subseteq Q$, reach at least one vertex in each F_i .

Outline

- Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBI
 - Memory requirements

Outline

- Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBF
 - Memory requirements

PSPACE-hardness: encoding QBF

Reduction from QBF to generalized reachability games

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

Reduction from QBF to generalized reachability games

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

$$F_1 = \{x, \neg y\} \qquad \qquad F_2 = \{\neg y, z\}$$

Reduction from QBF to generalized reachability games

$$\phi = \forall x \exists y \forall z \ (x \lor \neg y) \land (\neg y \lor z)$$
$$F_1 = \{x, \neg y\} \qquad F_2 = \{\neg y, z\}$$

Note that the number of literals in a clause is the size of the corresponding reachability set.

Results

Theorem (Lower bounds for generalized reachability games)

- Solving two players generalized reachability games is PSPACE-hard;
- Solving one player (Eve) generalized reachability games is NP-hard.

PSPACE-hardness: encoding QBF

Results

Theorem (Lower bounds for generalized reachability games)

- Solving two players generalized reachability games is PSPACE-hard;
- Solving one player (Eve) generalized reachability games is NP-hard.

Special cases where reachability sets have size less than 3 *might* be easier...

PSPACE-hardness: encoding QBF

An easier case

Lemma (A polynomial special case)

Solving two players generalized reachability games where reachability sets are singletons is in P.

An easier case

Lemma (A polynomial special case)

Solving two players generalized reachability games where reachability sets are singletons is in P.

Why bigger reachability sets is harder to handle?

An easier case

Lemma (A polynomial special case)

Solving two players generalized reachability games where reachability sets are singletons is in P.

If reachability sets are singletons, then Eve can predict the objectives vertices appearance order.

Outline

- Generalized reachability games
 - Games
 - Reachability
 - Generalized
- 2 Complexity
 - PSPACE-hardness: encoding QBF
 - Memory requirements

Memory requirements

Exponential lower bound for Eve, reachability sets of size 2

Memory requirements

Florian's piece of art; exponential lower bound for Eve

Conclusion and further work

- Conjuntions of easy objectives may be way harder to solve;
- Open case: reachability sets of size 2.

Memory requirements

The end.

Thank for your attention!