Operando Circuitos

Contribución de Lautaro Lasorsa

Descripción del problema

Agustín tiene un circuito electronico, el cuál está compuesto por compuertas de entrada, diversas compuertas logicas y luces LED. En total tiene *N* componentes.

Cada compuerta tiene una salida, que puede estar conectada a la entrada de otra compuerta o a una luz LED.

En cada segundo, él puede elegir algunas de las compuertas de entrada y enviar corriente por ellas, corriente que pasa hasta la salida de la compuerta.

Cada compuerta logica tiene exactamente 2 entradas, que serán las salidas de otras compuertas,

- Compuertas AND: Estas compuertas van a enviar corriente por su salida solo si reciben corriente por sus 2 entradas simultaneamente.
- Compuertas OR: Estas compuertas van a enviar corriente por su salida si reciben corriente por al menos una de sus entradas.
- Compuertas XOR: Estas compuertas van a enviar corriente por su salida si reciben corriente alguna de sus entradas, pero no por las 2 simultaneamente.

Agustín quiere saber, para cada luz LED, qué segundos va a estar encendida. Las luces LED se encienden cuando reciben electricidad por su unica entrada.

La activación de las compuertas y la transmisión de energia dentro del circuito es instantanea.

Detalles de implementación

Debes implementar la función Circuitos(tipo,input), siendo tipo un CADENA DE CARACTER, donde $tipo_i$ indica el tipo del i-esimo componente, de la

siguiente manera:

- *E*: Compuerta de entrada
- O: Compuerta OR
- A: Compuerta AND
- X: Compuerta XOR
- L: Luz LED

Por su parte *input* es un VECTOR DE VECTOR DE ENTERO. El contenido de $input_i$ dependerá del tipo del componente i - esimo:

- Si es una compuerta de entrada, input_i indicará los segundos en los cuales se enviará corriente por esa entrada.
- Si es una compuerta AND, OR o XOR, *input*_i contendrá 2 elementos, que serán los indices de las compuertas a cuyas salidas estan conectadas las entradas de esta.
- Si es una luz LED, contendra un unico entero que será el índice de la compuerta a cuya salida está conectada la entrada de la luz LED.

Notar que los indices de los componentes se indican en base 0, por lo que van de 0 a N-1.

Ambos vectores son de longitud N.

Notar que en el circuito que armo Agustín no hay ciclos, es decir, en ningún caso la salida de una compuerta está directa o indirectametne conectada a una de las entradas de la misma.

La función deberá retornar un VECTOR DE VECTOR DE ENTEROS, que en la i — esima posición contendra un vector vacio si ese componente no es una luz LED, y en el caso de que sea una luz LED un vector con los segundos en los cuales esa luz estará prendida, en cualquier orden. (sin repetidos)

Evaluador local

El evaluador local leera primero el entero N. Luego recibirá en una línea la cadena tipo, que consiste de N caracteres separados por un espacio entre si. En las siguientes N líneas leera el vector input En la (i + 2) — esima línea leera primero $|input_i|$, y luego los $|input_i|$ elementos del vector $input_i$

Posteriormente llamará a la funcion Circuitos(tipo,input), y mostrara en N líneas lo que devuelva la función. Una línea para cada uno de los vectores.

Cotas

- $1 \le N \le 100.000$
- Siendo M la suma de las longitudes de los vectores $input_i$. $1 \le M \le 300.000$
- Si $tipo_i = E$, $1 \le input_{i,j} \le 10^9$ para todo $0 \le j < |input_i|$

Ejemplos

Si el evaluador local recibe la siguiente entrada:

```
12
EEALEEOLEEXL
5 1 2 3 4 5
3 3 1 5
2 0 1
1 2
5 11 12 10 9 99
3 13 11 9
2 4 5
1 6
10 1 2 3 4 5 6 7 8 9
5 1 3 5 7 9
2 8 9
1 10
```

Una implementación correcta deberá devolver:

```
1 3 5
9 10 11 12 13 99
2 4 6 8
```

Notar que si $tipo_i \neq L$ la i - esima línea es dejada en blanco.

En cambio, si recibe:

```
16
EEEEEEEAAAAOOXL
5 1 2 3 4 5
3 3 4 5
7 1 3 5 7 9 11 13
3 1 4 9
5 10 11 12 13 14
3 2 4 6
5 2 4 8 16 32
3 2 8 32
2 0 1
2 2 3
2 4 5
2 6 7
2 8 9
2 10 11
2 12 13
1 14
```

Deberá devolver:

1 3 4 5 8 9 32

Subtareas

- 1. $1 \le N, M \le 500$. (10 puntos)
- 2. No hay compuertas OR ni XOR (10 puntos)
- 3. No hay compuertas AND ni XOR (10 puntos)
- 4. No hay compuertas ANd ni OR (10 puntos)
- 5. Si $tipo_i = E$, $1 \le input_{i,j} \le 5.000$ para todo $0 \le j < |input_i|$ (20 puntos)
- 6. Sin restricciones adicionales (40 puntos)