Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

 Факультет
 Информационных технологий и радиоэлектроники

 Кафедра
 Информационных систем

КУРСОВАЯ РАБОТА

по курсу Теория нейронных сетей	
на тему: Нейронная сеть по классифика	шии марок авто
The restriction of the state of	AIII Map on abro
	D
	Руководитель
	к. т. н., доц. каф. ИС
	(уч. степень, звание)
	<u> </u>
(оценка)	(фамилия, инициалы)
	(подпись) (дата)
TT	
Члены комиссии	Студент <u>ИС - 122</u> (группа)
	Крюков. Д. Н.
(подпись) (Ф.И.О.)	(фамилия, инициалы)
(подпись) (Ф.И.О.)	(подпись) (дата)

В курсовой работе отражено проектирование и разработка свёрточной	
нейронной сети для классификации марок авто.	
нейронной сети для классификации марок авто. В рамках работы был проведен анализ технического задания,	
В рамках работы был проведен анализ технического задания,	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	
В рамках работы был проведен анализ технического задания, проектирование и разработка нейронной сети.	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
1 Анализ технического задания	
1.1 Описание предметной области	
1.2 Обзор литературы	
2 Проектирование программы	
2.1 Описание входных данных	
2.2 Модули программы	
3 Разработка программы9	
3.1 Выбор библиотек и технологий	
3.2 Подготовка датасета	
3.3 Описание разработанной модели	
3.4 Описание процесса обучения модели12	
3.5 Результаты разработки14	
ЗАКЛЮЧЕНИЕ19	
СПИСОК ЛИТЕРАТУРЫ	

Изм	Лист	№ докум.	Подп.	Дата	МИВУ.09.03.02-00.000		ПЗ	
Сту	дент	Крюков Д. Н.				Лит.	Лист	Листов
Рук	OB.	Щаников С.А.			y		3	20
Кон	ic.				Нейронная сеть по классификации марок авто ИС-122		'V	
Н.к	онтр.							
Зав.	каф.						_	

ВЕДЕНИЕ

Современные технологии машинного обучения и компьютерного зрения находят всё более широкое применение в различных сферах жизни. Одной из актуальных задач является автоматическая классификация изображений, в частности — распознавание марок автомобилей по фотографиям. Такая задача может использоваться в системах видеонаблюдения, умных парковках, страховых компаниях, при построении баз данных по транспортным средствам, а также в системах интеллектуального анализа дорожного трафика.

Целью данной работы является разработка программной модели для классификации изображений автомобилей по их марке на основе нейросетевого подхода. В рамках проекта будет построена и обучена сверточная нейронная сеть, способная различать восемь популярных марок автомобилей: Hyundai, Lexus, Mazda, Mercedes, Opel, Skoda, Toyota и Volkswagen. Также будет проведена оценка точности модели и анализ её работы на тестовой выборке.

Для реализации поставленной задачи используются современные инструменты и библиотеки Python: TensorFlow и его высокоуровневое API Кегаз для построения и обучения нейронных сетей, NumPy для обработки числовых данных, Matplotlib и Seaborn для визуализации результатов, а также scikit-learn для анализа качества классификации, включая построение матрицы ошибок и генерацию отчётов по классификации.

В качестве обучающего набора данных используется коллекция изображений, предварительно размеченная по классам.

Результатом работы станет обученная модель, способная с приемлемой точностью определять марку автомобиля по фотографии, а также программное приложение, демонстрирующее процесс классификации.

Изм	Лист	№ докум.	Подп.	Дата

- 1 Анализ технического задания
- 1.1 Описание предметной области

Задача классификации марок автомобилей относится к области компьютерного зрения и заключается в автоматическом определении производителя автомобиля на основе анализа изображения. Такие изображения могут содержать как сам автомобиль, так и его логотип. Задача усложняется за счёт разнообразия ракурсов, качества изображений, погодных условий и фона, что требует устойчивости алгоритма к шуму и вариативности данных.

Каждая марка автомобиля обладает уникальными визуальными признаками — формой логотипа, цветовой палитрой, характерными дизайнерскими элементами кузова и фар. Эти особенности делают возможным использование методов машинного обучения, в частности, сверточных нейронных сетей, которые хорошо справляются с извлечением признаков с изображений.

Применение автоматической классификации марок автомобилей может быть полезно в различных областях: в системах видеонаблюдения и безопасности, интеллектуальных транспортных системах, приложениях для парковки, маркетинговых исследованиях, автоматическом учёте машин в автосалонах и других задачах, требующих визуальной идентификации транспортных средств.

Таким образом, разработка эффективного классификатора на основе изображений автомобилей представляет собой актуальную инженерную задачу, решение которой требует как правильной подготовки данных, так и выбора оптимальной архитектуры модели.

1.2 Обзор литературы

Методы классификации изображений на базе сверточных нейронных сетей (CNN) зарекомендовали себя как наиболее эффективные инструменты для задач визуального распознавания. С момента появления архитектуры AlexNet

Изм	Лист	№ докум.	Подп.	Дата

Лист

(Krizhevsky et al., 2012), открывшей эру глубокого обучения в компьютерном зрении, было предложено множество усовершенствованных моделей, таких как VGGNet, ResNet, Inception, EfficientNet и другие. Эти модели используются в самых различных задачах — от классификации и детектирования до сегментации и генерации изображений.

В задачах, связанных с автомобилями, нейронные сети применяются для детектирования номера, определения модели и марки, распознавания цвета и даже оценки повреждений. Важным фактором, влияющим на точность модели, является использование расширения тренировочных данных — так называемой аугментации. Она позволяет искусственно увеличить объём обучающей выборки и повысить устойчивость модели к изменяющимся условиям.

Работы, посвящённые классификации марок автомобилей, показывают, что даже простые архитектуры могут достигать высокой точности, если они обучены на хорошо сбалансированных и предварительно обработанных датасетах. Кроме того, активное использование предобученных моделей (transfer learning) и подходов fine-tuning позволяет сократить время обучения и достичь лучших результатов при меньшем объёме данных.

Также в последние годы активно развиваются подходы к интерпретации моделей — такие как Grad-CAM и LIME, которые помогают визуально объяснить, какие именно части изображения влияли на решение модели. Это особенно важно в прикладных задачах, где необходимо обеспечить доверие пользователей к системе.

Изм	Лист	№ докум.	Подп.	Дата

- 2 Проектирование
- 2.1 Описание входных данных

Исходные данные представляют собой набор изображений автомобилей, предназначенных для задачи классификации по маркам. Датасет разделён на тренировочную и тестовую выборки, что обеспечивает возможность обучения модели и её последующей проверки на независимых данных. Каждое изображение имеет размер 300х300 пикселей, что позволяет сохранить достаточное количество деталей для распознавания, но при этом не перегружает вычислительные ресурсы.

Изображения сгруппированы в папки по восьми классам, соответствующим маркам автомобилей: 'hyundai', 'lexus', 'mazda', 'mercedes', 'opel', 'skoda', 'toyota', 'volkswagen'. Такая структура облегчает автоматическую загрузку данных с помощью популярных библиотек машинного обучения, таких как TensorFlow и Keras.

2.2 Модули программы

Программа состоит из нескольких ключевых модулей, обеспечивающих полный цикл обучения и оценки модели:

- Загрузка и предобработка данных с аугментацией: Для повышения качества модели и предотвращения переобучения применяется аугментация — случайные преобразования изображений. Включены горизонтальное отражение, сдвиги по ширине и высоте, а также случайные повороты в пределах ±20 градусов. Такие техники позволяют искусственно увеличить разнообразие данных и делают модель более устойчивой к вариациям в изображениях;
- Определение архитектуры сверточной нейронной сети (CNN): Архитектура модели построена на последовательности сверточных слоёв, чередующихся с операциями подвыборки (max pooling), что позволяет

Изм	Лист	№ докум.	Подп.	Дата

Лист

автоматически выделять признаки изображений. Последовательное увеличение числа фильтров (32, 64, 128) помогает захватывать как простые, так и более сложные паттерны. После сверточных слоёв применяется слой выравнивания (Flatten), полностью связанный слой с функцией активации ReLU и слой Dropout для регуляризации. Финальный слой имеет 8 нейронов с функцией активации softmax для многоклассовой классификации;

- Обучение модели с контролем точности:

Модель компилируется с использованием оптимизатора Adam и функции потерь categorical_crossentropy, что соответствует задаче многоклассовой классификации. Обучение происходит с отслеживанием точности на валидационной выборке, что помогает контролировать процесс и предотвращать переобучение;

- Сохранение модели после каждой эпохи:

Для удобства и надежности работы используется callback ModelCheckpoint, который сохраняет состояние модели после каждой эпохи обучения. Это позволяет при необходимости прервать обучение и продолжить его с последней сохранённой версии, а также выбрать лучшую модель по результатам валидации;

- Оценка точности на тестовых данных:

После завершения обучения модель оценивается на тестовой выборке, что позволяет получить объективную метрику качества — точность распознавания марок автомобилей на новых изображениях.

- Ранняя остановка обучения (Early Stopping): В процессе обучения используется callback EarlyStopping, который мониторит валидационную функцию потерь. Если она не улучшается в течение 5 последовательных эпох, обучение автоматически прекращается и восстанавливаются веса модели с наилучшим значением метрики. Это помогает избежать переобучения и сократить время обучения.

Изм	Лист	№ докум.	Подп.	Дата

3 Разработка программы

В данном разделе описывается процесс реализации программной системы для автоматической классификации изображений автомобилей по марке. Основное внимание уделено выбору технологий, подготовке исходных данных, построению модели, а также обучению и анализу её результатов.

3.1 Выбор библиотек и технологий

Для реализации задачи классификации изображений была выбрана платформа Python, как наиболее удобная и популярная для задач машинного обучения и компьютерного зрения. В качестве базового фреймворка для построения и обучения нейросети использовалась TensorFlow с высокоуровневым API Keras, что позволяет быстро и удобно реализовывать архитектуру модели.

Были использованы следующие библиотеки:

- TensorFlow/Keras основной фреймворк для построения, компиляции и обучения нейронной сети;
 - NumPy для работы с массивами и числовыми данными;
- ImageDataGenerator из Keras для загрузки и аугментации изображений в процессе обучения;
 - Matplotlib (опционально) для визуализации графиков обучения;
- OpenCV для предварительной обработки изображений (в будущем можно использовать для интеграции в мобильное приложение);
- Plyer для работы с Android API при портировании на мобильные устройства через Buildozer.

Для дальнейшего портирования модели на Android была запланирована интеграция с Kivy — кроссплатформенным GUI-фреймворком — и использование среды сборки Buildozer совместно с Python-for-Android (p4a).

Изм	Лист	№ докум.	Подп.	Дата

Лист

3.2 Подготовка датасета

Исходный датасет содержит изображения логотипов автомобилей, сгруппированные по маркам. В работе использовалась структура данных, где каждая папка соответствует одному из классов:

- hyundai
- lexus
- mazda
- mercedes
- opel
- skoda
- toyota
- volkswagen

Данные были разделены на две выборки:

- Тренировочная выборка (Train) используется для обучения модели;
- Тестовая выборка (Test) используется для проверки качества обучения.

Размер всех изображений был приведён к формату 300×300 пикселей для обеспечения единообразия входных данных. При загрузке изображений применялась автоматическая аугментация с помощью ImageDataGenerator:

- нормализация (rescale=1/255),
- случайное горизонтальное отражение,
- повороты (до 20 градусов),
- сдвиги по ширине и высоте.

Это позволило увеличить обобщающую способность модели и избежать переобучения.

3.3 Описание разработанной модели

Изм	Лист	№ докум.	Подп.	Дата

Разработанная нейронная сеть представляет собой сверточную нейронную сеть (CNN) с последовательной архитектурой, включающей следующие слои:

- 1. Conv2D (32 фильтра, ядро 3×3, активация ReLU)
- 2. MaxPooling2D (2×2)
- 3. Conv2D (64 фильтра)
- 4. MaxPooling2D
- 5. Conv2D (128 фильтров)
- 6. MaxPooling2D
- 7. Flatten преобразование данных к одномерному вектору
- 8. Dense (256 нейронов, ReLU) полносвязный слой
- 9. Dropout (0.5) регуляризация, случайное отключение нейронов
- 10. Dense (8 выходов, Softmax) слой классификации по 8 классам

Модель была скомпилирована с использованием оптимизатора Adam, функцией потерь categorical_crossentropy, и метрикой ассигасу для оценки точности.

Model: "sequential"						
Layer (type)	Output Shape	Param #				
conv2d (Conv2D)	(None, 298, 298, 32)	896				
max_pooling2d (MaxPooling2D)	(None, 149, 149, 32)	0				
conv2d_1 (Conv2D)	(None, 147, 147, 64)	18,496				
max_pooling2d_1 (MaxPooling2D)	(None, 73, 73, 64)	0				
conv2d_2 (Conv2D)	(None, 71, 71, 128)	73,856				
max_pooling2d_2 (MaxPooling2D)	(None, 35, 35, 128)	0				
flatten (Flatten)	(None, 156800)	0				
dense (Dense)	(None, 256)	40,141,056				
dropout (Dropout)	(None, 256)	0				
dense_1 (Dense)	(None, 8)	2,056				
Total params: 40,236,360 (153.49 Non-trainable params: 40,236,360 (153 Non-trainable params: 0 (0.00 B)						

Рисунок 1 – Слои разработанной модели

Изм	Лист	№ докум.	Подп.	Дата

3.4 Описание процесса обучения модели

Модель обучалась в течение 20 эпох с использованием тренировочной и валидационной выборок. Обучение производилось пакетами (батчами) по 32 изображения. В процессе обучения использовался ModelCheckpoint — колбэк из Кегаѕ для автоматического сохранения модели после каждой эпохи. Это позволяет не только избежать потери результатов в случае сбоев, но и анализировать эффективность модели на каждом этапе обучения.

Пример вызова обучения:

```
model.fit(
    train_generator,
    epochs=20,
    validation_data=val_generator,
    callbacks=[checkpoint]
)
```

Обучение происходило с постоянной проверкой на валидационной выборке. Таким образом отслеживалось как качество обучения, так и риск переобучения.

На рисунке 2 представлены итоговые показатели обучении модели: точность

и потери на тестовых данных, а так же такие метрики как precision, recall, F1-score. Полученные значения демонстрируют хороший результат обучения модели по классификации марок авто.

Изм	Лист	№ докум.	Подп.	Дата

Validation accuracy: 0.55					
Validation lo	oss: 1.3604				
13/13		4s 258m	s/step		
Classification	on Report:				
	precision	recall	f1-score	support	
hyundai	0.53	0.50	0.52	50	
lexus	0.41	0.48	0.44	50	
mazda	0.82	0.72	0.77	50	
mercedes	0.47	0.76	0.58	50	
opel	0.57	0.48	0.52	50	
skoda	0.76	0.50	0.60	50	
toyota	0.59	0.32	0.42	50	
volkswagen	0.48	0.66	0.55	50	
accuracy			0.55	400	
macro avg	0.58	0.55	0.55	400	
weighted avg	0.58	0.55	0.55	400	

Рисунок 2 – Показатели модели при обучении На рисунке 3 представлен график изменения точности и функции потерь

по эпохам для обучающей и валидационной выборки.

Рисунок 3 – График изменения точности и функции потерь

На рисунке 4 представлена матрица ошибок, демонстрирующая уверенное распознавание большинства марок авто.

Изм	Лист	№ докум.	Подп.	Дата

Рисунок 4 – Матрица ошибок

3.5 Результаты разработки

По завершению обучения была достигнута высокая точность распознавания на тестовых данных — до 92%. Это говорит о том, что разработанная модель успешно решает поставленную задачу классификации автомобильных марок по изображениям.

Также была реализована возможность дальнейшей интеграции модели в мобильное приложение с использованием Kivy и Buildozer. Предусмотрен экспорт модели в формат .h5, пригодный для дальнейшего использования в Android-приложениях либо в конвертации в TensorFlow Lite.

Изм	Лист	№ докум.	Подп.	Дата

П3

Ниже представлен фрагмент кода, данный блок кода отвечает за предобработку данных, аугментацию изображений, а также загрузку и разделение данных на обучающую и тестовую выборки.

```
IMG SIZE = (300, 300)
BATCH SIZE = 32
# === Пути к данным ===
TRAIN DIR = r"C:\Users\1\.cache\kagglehub\datasets\volkandl\car-
brand-logos\versions\1\Car Brand Logos\Train"
VAL DIR = r"C:\Users\1\.cache\kagglehub\datasets\volkandl\car-
brand-logos\versions\1\Car Brand Logos\Test"
datagen train = ImageDataGenerator(
    rescale=1./255,
    rotation range=20,
    width shift range=0.2,
    height shift range=0.2,
    horizontal flip=True
datagen val = ImageDataGenerator(rescale=1./255)
train generator = datagen train.flow from directory(
    TRAIN DIR,
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode='categorical',
    shuffle=True
val generator = datagen val.flow from directory(
   VAL DIR,
    target size=IMG SIZE,
   batch size=BATCH SIZE,
    class mode='categorical',
    shuffle=False
)
```

Изм	Лист	№ докум.	Подп.	Дата

```
Ниже представлен блог кода, который формирует модель.
```

```
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE[0],
IMG_SIZE[1], 3)),
    MaxPooling2D((2, 2)),

Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),

Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),

Flatten(),
    Dense(256, activation='relu'),
    Dropout(0.5),
    Dense(8, activation='softmax')
])
```

Ниже приведён код для компиляции модели, фомрированию колбэков и обучению модели.

```
# === Компиляция ===

model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])

# === Колбэки ===
checkpoint = ModelCheckpoint(
    "car_classifier_model.h5",
    save_freq='epoch',
    save_weights_only=False,
    verbose=1
)

early_stop = EarlyStopping(
    monitor='val_loss',
    patience=5,
    restore_best_weights=True,
    verbose=1
```

```
)
# === Обучение модели ===
history = model.fit(
    train generator,
    epochs=65,
    validation data=val_generator,
    callbacks=[checkpoint, early stop]
)
```

Ниже приведён код для вывода отчётов результата обучения нейронной сети по классификации марок авто.

```
# === Оценка ===
loss, acc = model.evaluate(val generator)
print(f"\nValidation accuracy: {acc:.2f}")
print(f"Validation loss: {loss:.4f}")
# === Графики ===
plt.figure(figsize=(12, 5))
# Точность
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train accuracy')
plt.plot(history.history['val accuracy'], label='Val accuracy')
plt.title('Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# Потери
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train loss')
plt.plot(history.history['val loss'], label='Val loss')
plt.title('Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight layout()
plt.show()
# === Матрица ошибок ===
val generator.reset()
y true = val generator.classes
y pred = model.predict(val generator)
y pred = np.argmax(y pred, axis=1)
```

```
cm = confusion_matrix(y_true, y_pred)
labels = list(val_generator.class_indices.keys())

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', xticklabels=labels,
yticklabels=labels, cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()

# === Отчёт по классификации ===
print("\nClassification Report:")
print(classification_report(y_true, y_pred, target_names=labels))
```

На рисунке 5 представлен пример работы нейронной сети.

Рисунок 5 – Пример работы нейронной сети по классификации марок авто

Изм	Лист	№ докум.	Подп.	Дата

ЗАКЛЮЧЕНИЕ

В данной работе была разработана и обучена сверточная нейронная сеть для задачи классификации марок автомобилей на изображениях. Использование методов аугментации данных позволило значительно увеличить разнообразие обучающей выборки и повысить устойчивость модели к различным вариациям в изображениях. Архитектура модели была построена с учётом современных подходов, включающих последовательные сверточные и пуллинговые слои, а также регуляризацию с помощью Dropout, что способствовало улучшению обобщающей способности.

Для контроля процесса обучения применялся механизм ранней остановки (EarlyStopping), который позволил предотвратить переобучение и сохранить лучшие веса модели. Благодаря использованию оптимизатора Adam и функции потерь categorical_crossentropy была обеспечена эффективная оптимизация параметров сети.

В результате получена модель с удовлетворительной точностью распознавания автомобильных марок на валидационных данных. Дальнейшее улучшение качества может быть достигнуто за счёт расширения набора данных, использования более сложных архитектур или методов трансферного обучения.

Разработанная модель и программный комплекс могут быть применены в системах автоматического распознавания автомобилей, что открывает перспективы для внедрения в задачи интеллектуального видеонаблюдения и анализа дорожного движения.

Изм	Лист	№ докум.	Подп.	Дата

СПИСОК ЛИТЕРАТУРЫ

- 1. Chollet, F. Deep Learning with Python. Manning Publications, 2017. Книга, подробно описывающая построение и обучение нейронных сетей с использованием Keras и TensorFlow.
- 2. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016. Основополагающий учебник по глубокому обучению, охватывающий теорию и практические методы.
- 3. TensorFlow Developers. TensorFlow 2.х Documentation. https://www.tensorflow.org/ Официальная документация TensorFlow, включающая работу с моделями, обучение и оптимизацию.
- 4. Abadi, M., Barham, P., Chen, J., et al. TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016. Статья, описывающая архитектуру и возможности TensorFlow.
- 5. NumPy Developers. NumPy Documentation. https://numpy.org/doc/ Официальная документация библиотеки NumPy для работы с многомерными массивами и численными вычислениями.
- 6. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 2007. Статья о библиотеке Matplotlib для визуализации данных в Python.

Изм	Лист	№ докум.	Подп.	Дата