Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-054026

(43) Date of publication of application: 25.02.1994

(51)Int.CI.

H04L 29/10 G06F 13/00

(21)Application number: 03-056709

(71)Applicant: FUIITSU LTD

(22)Date of filing:

20.03.1991

(72)Inventor: FUJIWARA SHIGENOBU

(54) DATA DIVISION HIGH SPEED CONTROL SYSTEM FOR COMMUNICATION CONTROLLER

(57)Abstract:

PURPOSE: To increase the data transmission processing by a multi-layer hierarchy protocol by giving and receiving a division information buffer provided with a header length, a PDU length and a data pointer between protocol layers in a form of a list.

CONSTITUTION: User data D are stored in a data buffer BUF1, and division information buffers BUF2. BUF3 storing division information in each protocol layer are formed. The division information buffers BUF2,BUF3 store a protocol header length H of its own layer, a protocol unit data length of its own layer (PDU length), a buffer pointer representing a data storage destination and a buffer data pointer representing a storage location of division data in addition to a layer header. Then each protocol layer gives list information of the division information buffers BUF2, BUF3 of its own layer in the case of a transmission request to a subordinate layer of a next stage and implements transmission processing of division data without need of a buffer copy of divided user data for each protocol layer.

LEGAL STATUS

[Date of request for examination]

22.03.1994

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2719454

[Date of registration]

14.11.1997

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平6-54026

(43)公開日 平成6年(1994)2月25日

(51) Int. Cl. 5 H04L 29/10	識別記号		庁内整理番号	FI			技術表示箇所
G06F 13/00	353	С	7368-5B 8020-5K	H04L 13/00	309	В	

		審査請求 未請求 請求項の数5 (全13頁)
(21)出願番号	特願平3-56709	(71)出願人 000005223
		富士通株式会社
(22)出願日	平成3年(1991)3月20日	神奈川県川崎市中原区上小田中1015番地
		(72)発明者 藤原 繁信
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(74)代理人 弁理士 竹内 進 (外1名)

(54) 【発明の名称】通信制御装置のデータ分割高速制御方式

(57)【要約】

【目的】多重階層プロトコルを用いた通信制御装置のデ 一タ分割高速制御方式に関し、各階層プロトコルでのデ ータ分割のバッファコピーの処理時間による遅延を防止 して高速化する。

【構成】各プロトコル層で分割情報としてヘッダ長、プ ロトコル単位データ長 (PDU長)、データバッファ のバッファポインタ、分割データのデータポインタを格 納した分割情報バッファを作成し、下位層に対する送信 要求の際に自層の分割情報バッファのリスト情報を引き 渡し、各プロトコル層毎に分割された利用者データのバ ッファコピーを不要とする。

本発明の緊囲説明図

1

【特許請求の範囲】

【請求項1】最上位層の利用者データ (D) の送信時 に、複数のプロトコル層 (n, n-1) を経由して通信 回線にデータを送信し、各プロトコル層ではプロトロコ ルヘッダ長(H)とプロトコル単位データ長(P)に基 づいてプロトコルヘッダを付加すると共に必要に応じて データを分割して次層に送信要求を引き渡す通信制御装 置に於いて、

利用者データ(D)を第1バッファ(BUF1)に格納 すると共に各プロトコル層で分割情報を格納した分割情 10 terconnection)にみられるように、高度 報バッファ (BUF2, BUF3) を作成し、

該分割情報バッファ(BUF2、BUF3)には自屬の プロトコルヘッダ長(H)、プロトコル単位データ長

(P)、送信データの格納先を示すバッファポインタ及 び送信データのバッファ格納位置を示すデータポイン タ、及び自層ヘッダを格納し、

各プロトコル層は次層に対する送信要求の際に、自層の 分割情報バッファ (BUF2, BUF3) のリスト情報 を引き渡し、各プロトコル層毎に分割された利用者デー タのバッファコピーを必要とすることなく分割されたデ 20 ータの送信処理を行うことを特徴とする通信制御装置の データ分割高速制御方式。

【請求項2】請求項1記載の通信制御装置のデータ分割 髙速制御方式に於いて、

最上位層の直後のプロトコル層 (n) にあっては、分割 情報パッファ (BUF2) のバッファポインタ及びデー タポインタに、利用者データ(D)を格納したデータバ ツファ (BUF1) の先頭アドレスを格納したことを特 徴とする通信制御装置のデータ分割高速制御方式。

髙速制御方式に於いて、

最上位層の直後以外のプロトコル層 (n-1) にあって は、自己の分割情報バッファ(BUF3)のバッファポ インタに前段プロトコル層(n)の分割情報バッファ

(BUF2) の先頭アドレスを格納し、データポインタ・ に前段プロトコル層 (n) の分割情報バッファ (BUF 2) のヘッダ先頭アドレスを格納したことを特徴とする 通信制御装置のデータ分割高速制御方式。

【請求項4】請求項1記載の通信制御装置のデータ分割 高速制御方式に於いて、

各プロトコル層は、下位層からデータ送信完了通知を受 けた際に、未送信の分割データが残っていれば、該分割 データについて新たな分割情報バッファを作成して下位 層に送信要求を引き渡し、未送信の分割データが残って いなければ、上位層にデータ送信完了を通知することを 特徴とする通信制御装置のデータ分割高速制御方式。

【請求項5】請求項4記載の通信制御装置のデータ分割 髙速制御方式に於いて、

データ送信完了時に未送信の分割データが残っていた場 合には、既に作成した自層の分割情報バッファのデータ 50 【0007】

ポインタのみを新たな分割データのデータポイントに更 新した新たな分割情報バッファを作成することを特徴と する通信制御装置のデータ分割高速制御方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多重階層プロトコルを 用いた通信制御装置のデータ分割高速制御方式に関す る。近年、開放形システム相互接続プロトコル、即ちO SI通信プロトコル (Open Systems In な通信機能を実現する上でプロトコル階層が増加すると 共に、複雑になってきている。

【0002】このような通信プロトコルでは、各階層で のデータ分割処理は必須機能であり、ユーザデータの高 速伝送がますます要求され、データ分割時の高速処理を 実現できる制御方法が必要とされる。

[0003]

【従来の技術】従来の多重階層を用いた通信プロトコル にあっては、分割データのバッファコピーを伴う図10 に示す送信処理を行っている。図10において、最上位 層利用者と回線の間に n層、n-1層及びn-2層の多 重階層が存在した場合を例にとっている。

【0004】従来のデータ分割情報は、各層がコネクシ ョン確立時に内部のコネクション制御テーブルに相手と のネゴシェーションにより得られた結果(プロトコルへ ッダ長及びプロトコル単位データ長)をセーブしてお き、データ送信要求受付け時に、コネクション制御テー ブル内にあるプロトコルヘッダ長(以下単に「ヘッダ 長」という) 及びプロトコルヘッダ長 (Protoco 【請求項3】請求項1記載の通信制御装置のデータ分割 30 l Data Unit;以下「PDU長」という)を もとに、新たにデータ分割用のバッファを獲得し、その バッファに分割分のデータをコピーして下位層にデータ 送信要求を行う。

> 【0005】従って、必ず各層での分割時にバッファの コピー処理があり、処理時間がかかっている。例えば図 10で、最上位層利用者よりバッファBUF1に格納さ れたデータの送信要求を受付けたn層は、データ分割の ためにバッファBUF2を獲得し、コネクション制御テ ープル内のヘッダ長とPDU分割長により、利用者デー 40 タDを分割し、利用者データD1をコピー後、n-1層 に対してデータ送信要求1を行う。

【0006】同様にn-1層はバッファBUF3を獲得 し、コネクション制御テーブル内のヘッダ長とPDU分 割長により、利用者データD1を更に分割し、利用者デ ータD11をコピー後、n-2層に対してデータ送信要 求2を行う。同様に、n-2層も分割を行い、回線に対 してデータ送信3を行う。 このように処理をくり返 し、すべての利用者データを送信する間に、この例では 8回のデータコピー処理を必要とする。

【発明が解決しようとする課題】従来のデータ分割制御 方式では、各層でのヘッダ部の挿入及びPDU長分割の ために各層で新たに分割送信用のバッファを獲得し、獲 得したパッファに自層のプロトコルヘッダを挿入し、P DU長より上位層の利用者データをコピーするため、デ ータ分割のコピーが必ず行われており、その分、走行時 間を費やし、時間のロスにより高速性が失われるという 問題を生じていた。

【0008】また各層での分割データ送信後の次の分割 データ送信においても必ず自層のプロトコルヘッダを挿 10 層にデータ送信完了を通知する。 入する必要があり、同時にデータコピーも必要であり、 自層のプロトコルでの分割数の回数分のコピーを必要と する煩雑さがあった。本発明は、このような従来の問題 点に鑑みてなされたもので、多重階層プロトコルでのデ ータ分割のバッファコピーの処理時間による遅延を防止 して高速化する通信制御装置のデータ分割高速制御方式 を提供することを目的とする。

[0009]

【課題を解決するための手段】図1は本発明の原理説明 信時に、複数のプロトコル層 n, n-1, ・・・を経由 して通信回線にデータを送信し、各プロトコル層ではプ ロトコルヘッダ長Hとプロトコル単位データ長(PUD 長) Pに基づいてプロトコルヘッダを付加すると共に、 必要に応じてデータを分割して次層に送信要求を引き渡 す通信制御装置を対象とする。

【0010】このような通信制御装置につき本発明のデ ータ分割高速制御方式にあっては、例えばn層とn-1 層を例にとると、利用者データDをデータバッファBU F1に格納すると共に、各プロトコル層n, n-1で分 30 割情報を格納した分割情報バッファBUF2, BUF3 を作成する。各プロトコル層 n, n-1の分割情報バッ ファBUF2, BUF3には 層ヘッダに加えて、

- (1) 自層のプロトコルヘッダ長H;
- (2) 自層プロトコル単位データ長P:
- (3) データ格納先を示すバッファポインタ:
- (4) 分割データの格納位置を示すバッファのデータポ インタ;

の4つを格納する。

段の下位層に対する送信要求の際に自層の分割情報バッ ファBUF2, BUF3のリスト情報を引き渡し、各プ ロトコル層毎に分割された利用者データのバッファコピ ーを必要とすることなく分割されたデータの送信処理を 行うことを特徴とする。ここで、最上位層の直後のプロ トコル層nにあっては、分割情報バッファBUF2のバ ッファポインタ及びデータポインタに、利用者データ D を格納したデータバッファBUF1の先頭アドレスを格 納する。

【 $0\ 0\ 1\ 2$ 】一方、最上位層の直後以外のプロトコル層 50 の結果として決定されている。この点は残りのn-1層

n-1にあっては、自己の分割情報バッファBUF3の バッファポインタに前段プロトコル層nの分割情報バッ・ ファBUF2の先頭アドレスを格納し、データポインタ に前段プロトコル層 n の分割情報バッファ BUF 2のへ ッダ先頭アドレスを格納する。更に各プロトコル層は、 下位層からデータ送信完了通知を受けた際に、未送信の 分割データが残っていれば、この分割データについて新 たな分割情報バッファを作成して下位層に送信要求を引 き渡し、未送信の分割データが残っていなければ、上位

【0013】具体的には、データ送信完了時に未送信の 分割データが残っていた場合、既に作成した自層の分割 情報バッファのデータポインタのみを更新して新たな分 割情報バッファとすればよい。

[0014]

【作用】このような構成を備えた本発明の通信制御装置 のデータ分割高速制御方式によれば、各層のコネクショ ン単位に、コネクションの確立時の自局と相手局とのネ ゴシェーションの結果で決定されるプロトコルヘッダ長 図である。まず本発明は、最上位層の利用者データの送 20 とPDU長、更に利用者データを格納しているデータバ ッファBUF1のバッファポインタと送信すべき利用者 データの先頭を示すデータポインタを備えた分割情報バ ッファのリストによる動的分割情報管理を行う。

> 【0015】このためデータ分割時には、分割情報バッ ファによって利用者データをポイントするのみで、層間 又は回線上へデータ送信要求ができ、この際に分割デー タのバッファコピーを必要としないため、高速な分割制 御が行える。また、データ送信完了時に未送信の分割デ ータが残っていた場合には、既に作成した自層の分割情 報バッファのデータポインタを更新するのみで、次の分 割送信が簡単に行える。

[0016]

【実施例】図2、図3及び図4は、3層でなる多重階層 プロトコルを例にとって本発明のデータ分割高速制御方 式の基本的な処理構成及び動作を示した説明図である。 ここで、図中の n層、n-1層, n-2層はそれぞれデ ータ分割の発生するプロトコル層の上下関係を表わす。 またH、Pは対象とする層のコネクション制御テーブル にセーブされた分割情報の一部となるヘッダ長及びPD 【0011】そして、各プロトコル層n, n-1は、次 40 U長であり、層を示すn, n-1, n-2を付けて、例 えばHn, Pnとして示す。

> 【0017】更に利用者データはDで示され、各層で分 割された利用者データは、例えばn層を例にとると、D 1n, D2nとして示す。更に、図2は各層でのデータ 分割の状態を示し、図3及び図4は実際の分割処理の手 順を示す。

【0018】 [n層;1回目] まず n層のコネクション 制御テーブルのヘッダ長Hn及びPDU長Pnは、コネ クションの確立時の自局と相手局とのネゴシェーション 及びn-2層についても同じである。図3で最上位層利 用者から送信要求を受けたn層では、ヘッダ長Hn及び PDU長Pnに基づき利用者データDをデータバッファ BUF1に示すようにデータD1nとD2nに分割す

【0019】次に分割データD1nの送信のためバッフ アBUF2を獲得し、バッファBUF2に分割情報リス トを格納する。この分割情報リストは、

- (1) プロトコルヘッダ長Hn
- (2) PDU長Pn
- (3) バッファBUF1のバッファポインタ:
- (4) バッファBUF1のデータポインタ:

【0020】このようにn層での分割情報バッファBU F2のリスト作成が済むと次のn-1層に送信要求1を

【0021】 [n-1層:1回目] n層から送信要求1 を受けたn-1層では、ヘッダ長Hn-1及びPDU長 Pn-1に基づき利用者データD1nをn-1層のデー タバッファBUF1に示すようにデータD11n-1と 20 バッファBUF1の分割データD12n-1の先頭アド D12n-1に分割する。次に分割データD11n-1 の送信のためバッファBUF3を獲得し、バッファBU F3に分割情報リストを格納する。

【0022】この分割情報リストは、

- (1) プロトコルヘッダ長Hn-1
- (2) PDU長Pn-1
- (3) バッファBUF 2のバッファポインタ;
- (4) バッファBUF 2のデータポインタ: で構成され、さらにn-1層ヘッダが付加される。

【0023】このバッファBUF3は既にn層で作成し 30 たバッファBUF2を介してデータバッファBUF1の 中の分割データD11n-1を差し示すことになる。 n -1層での分割情報バッファBUF2のリスト作成が済 むと次のn-2層に送信要求2を行う。

【0024】 [n-2層;1回目] n-1層から送信要 求2を受けたn-2層では、ヘッダ長Hn-2及びPD U長Pn-2に基づき利用者データD1nをn-3層の データバッファBUF1に示すようにデータD111n -2とD112n-2に分割する。次に分割データD1 11n-2の送信のためバッファBUF4を獲得し、バ 40 ッファBUF4に分割情報リストを格納する。

【0025】この分割情報リストは、

- (1) プロトコルヘッダ長Hn-2
- (2) PDU長Pn-2
- (3) バッファBUF3のバッファポインタ:
- (4) バッファBUF3のデータポインタ;

で構成され、更に、n-2層ヘッダが付加される。

【0026】このバッファBUF4は既に及びn層で作 成されたバッファBUF2を介してバッファBUF1の

n-2層での分割情報バッファBUF2のリスト作成が 済むと回線を介して相手局に送信要求3を行い、最初の データ送信1が行われる。

【0027】 [n-2層; 2回目] データ送信1が済む とn-2層は、既に作成した1回目のバッファBUF4 のバッファポインタをデータバッファBUF1の先頭ア ドレスとし、且つデータポインタをデータバッファBU F1の分割データD112n-2の先頭アドレスとした 新たな分割情報バッファBUF4~を作成する。

10 【0028】この新たに作成した分割情報バッファBU F4´により、残された分割データD112n-2を差 し示し、回線を介して相手局に送信要求4を行い、次の データ送信2が行われる。データ通信2が済むと、n-2層に未送信の分割データはないので、前段のn-1層 に対しデータ送信完了を通知する。また分割情報バッフ ァBUF4は開放される。

【0029】 [n-1層; 2回目] データ送信完了報告 を受けたn-1層は、図4に示すように、既に作成した 1回目のバッファBUF3のデータポインタを、データ レスに更新し、これにより残された分割データD11n - 1 を差し示し、n - 2層に送信要求 5 を行う。

【0030】 [n-2層;3回目] 送信要求5を受けた n-2層は、この分割データD12n-1ついてはn-2層では分割しないことから、既に作成した1回目のバ ッファBUF4のをそのまま使用し、パッファBUF3 を介して分割データD121n-2(n-1層の分割デ ータD12n-1と同じもの)を差し示し、回線にデー 夕送信要求6を出しデータ送信3を行う。

【0031】データ送信3が完了するとバッファBUF 4は開放され、n-1層にデータ送信完了を通知する。 n-1層には未送信の分割データは残っていないので、 n層にデータ送信完了を通知する。

【0032】[n層;2回目]データ送信完了を受けた n層は、残されている分割データD2nを送信するた め、バッファBUF2のデータポインタをデータバッフ アBUF1の分割データD2nの先頭アドレスに更新 し、n-1層に送信要求7を行う。

【0033】 [n-1層;2回目] 送信要求7を受けた n-1層は、この分割データD2nついてはn-1層で は分割しないことから、既に作成した1回目のバッファ BUF3のをそのまま使用し、バッファBUF2を介し て分割データD21n-1 (n層の分割データD2nと 同じもの)を差し示し、n-2層にデータ送信要求8を

【0034】 [n-2層; 4回目] 送信要求8を受けた n-2層は、この分割データD21n-1ついてはn-2層では分割しないことから、既に作成した1回目のバ ッファBUF 4のをそのまま使用し、バッファBUF 中の分割データD111n-1を差し示すことになる。 50 3, BUF2を介して分割データD211n-2 (n-

1層の分割データD21n-1と同じもの)を差し示 し、回線にデータ送信要求9を出し、データ送信4を行

【0035】データ送信4が完了すると未送信の分割デ ータは残っていないので、バッファBUF4は開放さ れ、n-1層にデータ送信完了を通知する。n-1層に も未送信の分割データは残っていないので、バッファB UF3を開放してn層にデータ送信完了を通知する。 更 にn層にも未送信の分割データは残っていないので、バ ッファBUF2を開放し、最終的に最上位層利用者にデ 10 でのデータ分割制御処理を示した説明図である。ここ 一夕送信の完了を通知し、一連の送信処理を終了する。 【0036】 [PDU長のセーブ処理] 図5は図2~図 4に示した本発明のデータ分割高速制御方式において、 自局と相手局とのコネクションの確立時に行われるヘッ ダ長及びPDU長のセーブ処理を示したフローチャート である。まず相手局とのコネクションが確立すると、S 1でネゴシエーションによりPDU長を決定し、決S2 でヘッダ長をコネクショク制御テーブルにセーブし、さ らにS3で決定したPDU長を同じくコネンショク制御

【0037】 [データ送信時の分割処理] 図6は図2~ 図4に示した本発明のデータ分割高速制御方式における データ分割処理を示したフローチャートである。まずS 1で分割情報バッファBUFx(但しxはn, n-1, n-2の層を示す)を獲得する。

テーブルにセーブする。

【0038】続いてS2でバッファBUFxにヘッダ長 Hx及びPDU長Pxをセットし、S3でバッファBU Fxをすでに作成済みの分割情報バッファの先頭にチェ インする。次に、バッファBUFxのバッファポインタ にn+1層のバッファ先頭アドレスを示すポインタをセ 30 る。 ットし、更にS4でバッファBUFxのデータポインタ にn+1層の分割データの先頭アドレスを示すデータポ インタをセットする。

【0039】続いてS6でバッファBUFxのヘッダ部 を作成し、最終的にS7でn-1層に対し送信要求を行 う。

【0040】 [送信完了時の処理] 図7は図2~図4に 示した本発明のデータ分割高速制御方式において、送信 要求に基づきデータ送信が完了した時の処理を示す。ま ずS1でデータ送信完了通知を受けると、送信が完了し 40 た際にバッファチェインの先頭にあるバッファBUFx を求め、S2で先頭バッファBUFxに基づきデータ長 Dxを、

D x = P x - H x

として求める。

【0041】次に上位のn+1層から依頼された送信デ ータ長Dx+1から自層xの送信データ長Dxを引いた 値を求める。この値が0より大きければ、未送信の分割 データが残っていることから、バッファBUFxのデー タポインタの値にデータ長Dxを加算して次の分割デー 50 タの先頭アドレスを示すポインタを求め、バッファBU Fxのデータポインタを更新し、図6のS6の処理に進

【0042】一方、S3で算出値が0であればS5に進 んでパッファBUFxを開放し、Sで上位のn+1層に データ送信完了を通知する。

【0043】 [OS I 通信プロコトルの具体例] 図8及 び図9は本発明の具体例としてOSI通信プロトコルで の下位4層、即ちトランスポート層以下のプロトコル層 で、nはトランスポート層、n-1はネットワーク層、 n-2はデータリンク層とし、HTはトランスポート層 プロトコルヘッダ及びヘッダ長を示し、PTはトランス ポート層プロトコルPDU長をそれぞれ示す。

【0044】同様に、HNはネットワーク層プロトコル ヘッダ及びヘッダ長を示し、PNはネットワーク層プロ トコルPDU長を示し、更にHDはデータリンク層プロ トコルヘッダ及びヘッダ長を示し、PDはデータリンク 層プロトコルPDU長を示す。これらのヘッダ及びヘッ 20 ダ長、並びにPDU長は、各層のコネクション確立時の ネゴシェーションの結果により決定され、コネクション 制御テーブル内にセーブされる。勿論、コネクションが 異なればヘッダ長、PDU長の値も異なる可能性がある この実施例では、トランスポート層nとネットワーク層 n-1 で分割処理が発生する。また、利用者データをDとし、トランスポート層nでの分割データをD1T、D 2Tとし、ネットワーク層n-1での分割データをD1 1N, D12N, D21Nとし、データリンク層n-2 でのデータをD111D, D121D, D211Dとす

【0045】更に、利用者データ格納バッファはBUF 1、分割情報バッファはそれぞれBUF2, BUF3, BUF4で示される。データ分割の状況は、トランスポ ート層 n でのデータ分割が 1 回(データ送信要求 1 と 6)、ネットワーク層n-1でのデータ分割が1回 (デ ータ送信要求2と4)、及びヘッダ挿入のみの送信(デ ータ送信要求3,5,7と8)があり、従来、10に8 回行っていたデータ分割の際のバッファコピー処理を一 切不要とし、このバッファコピーを行わない分だけ処理 を髙速化できる。

[0046]

【発明の効果】以上説明したように本発明によれば、各 層でのプロトコルヘッダ長、PDU長、データポインタ を備えた分割情報バッファを利用者データ格納バッファ 以外に新たに付加し、層間で分割情報バッファをリスト 状に受け渡すことにより、各層プロトコルでデータ分割 及び層プロトコルのヘッダ挿入によるデータコピー処理 を不要にでき、多重階層プロトコルによるデータ送信処 理を高速化できる。

【図面の簡単な説明】

【図1】本発明の原理説明図

【図2】本発明の送信制御におけるデータ分割状態を示 した説明図

【図3】本発明の送信制御におけるデータ分割制御の手 順を示した説明図

【図4】本発明の送信制御におけるデータ分割制御の手 順を示した説明図(続き)

【図5】本発明におけるPDU長セーブ処理を示したフ ローチャト

【図6】本発明におけるデータ分割処理を示したフロー 10 Pn, Pn-1, Pn-2: PDU長 チャート

【図7】本発明におけるデータ送信完了時の処理を示し たフローチャート

10

【図8】OSI通信プロトコルの下位4層を例にとって 本発明の具体的手順を示した説明図

【図9】従来のデータ分割制御方式を示した説明図 【符号の説明】

BUF1:データバッファ

BUF1~4:分割情報パッファ

Hn, Hn-1, Hn-2:ヘッダ長

【図1】

本発明の原理説明図

【図2】 本発明の送信制御におけるデータ分割状態を示した説明図

【図3】

本発明の送信制御におけるデータ分割制御の手順を示した説明図

【図4】 本発明の送信制御におけるデータ分割制御の手順を示した説明図(続き)

【図5】

本発明における PDU 長セーブ処理を示したフローチャート

【図6】

本発明におけるデータ送信完了時の処理を示したフローチャート

OSI通信プロトコルの下位4層を例にとって本発明の具体的手順を示した説明図

【図7】

【図8】 OSI通信プロトコルの下位4層を例にとって本発明の具体的手順を示した説明図

【図9】

従来のデータ分割制御方式を示した説明図

