Prova Parziale di **Ottimizzazione Combinatoria** 23 Aprile 2013

Cognome	
Nome	
Matricola	

Esercizio 1

Sia dato un insieme discreto e finito di elementi $N = \{1, 2, ..., q, ..., n\}$. Sia $U = \{S: S \text{ è un sottoinsieme discreto, contiene l'elemento } q \text{ e } |X| <= k\}$ con k > 0.

- 1. La coppia (U, \Im) è subclusiva?
- 2. La coppia (U, \Im) soddisfa la proprietà di scambio?
- 3. Supponendo di associare un peso a ciascun elemento in N e di considerare il problema di determinare il sottoinsieme $X \subseteq \mathcal{S}$ di peso massimo, come si comporta l'algoritmo Greedy sulla coppia (U, \mathcal{S}) ?

Esercizio 2

- 1. Disegnare un grafo connesso con *n* nodi tale che
 - n sia dispari e n > 5
 - $\alpha < \rho$
 - $\mu = 4$
- 2. Quanto valgono α e ρ ?

Indicare esplicitamente sul grafo disegnato gli archi che compongono il massimo matching ed il minimo edge cover ed i nodi che compongono il massimo insieme stabile e il minimo trasversale.

Esercizio 3

Dato il grafo in figura G = (V, E) e il matching iniziale $M = \{27, 35, 69\}$

- 1. Calcolare, se possibile, il massimo matching ed il minimo trasversale su *G* (spiegando nel dettaglio i passi dell'algoritmo utilizzato).
- 2. Determinare il massimo insieme stabile S su G ed il suo valore $\alpha(G)$.

Esercizio 4

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5	6
1	-	12	14	10	9	11
2	12	-	11	13	14	11
3	14	11	_	11	10	12
4	10	13	11	-	12	19
5	9	14	10	12	_	10
6	11	11	12	19	10	-

1

Prova Parziale di **Ottimizzazione Combinatoria** 23 Aprile 2013

Cognome	
Nome	
Matricola	

- 1. Calcolare il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo (spiegando nel dettaglio i passi dell'algoritmo utilizzato). Che tipo di bound rappresenta il valore della soluzione trovata rispetto al valore della soluzione ottima?
- 2. Calcolare il valore di una soluzione euristica tramite l'algoritmo di Christofides (spiegando nel dettaglio i passi dell'algoritmo). Che tipo di bound rappresenta il valore della soluzione trovata rispetto al valore della soluzione ottima?

Esercizio 5

La tabella che segue contiene una lista di oggetti da inserire in uno zaino di capacità pari a 45Kg. Ogni oggetto ha un peso a_i e un profitto (atteso) p_i .

Oggetto	1	2	3	4	5
Peso	8	6	17	8	26
Profitto	26	16	125	47	245

- 1. Formulare il problema di scegliere gli oggetti da inserire nello zaino massimizzando il profitto finale e rispettando il vincolo di capacità.
- 2. Determinare un upper bound per il profitto massimo ottenibile.
- 3. Determinare un lower bound per il profitto massimo ottenibile.