Exercícios de Revisão

1. Faça uma análise do tempo de execução (notação Big-O) para cada um dos 4 programas a seguir. Observe que o tempo de execução corresponde aqui ao número de vezes que a operação sum++ é executado. sqrt é a função que retorna a raiz quadrada de um determinado número.

```
(a) sum = 0;
   for(i=0;i \leq rt(n)/2;i++)
    sum++;
   for(j=0;j\leq rt(n)/4;j++)
    sum++;
   for(k=0;k<8+j;k++)
    sum++;
(b) sum = 0;
   for(i=0;i < sqrt(n)/2;i++)
     for(j=i;8+i;j++)
      for(k=j;k<8+j;k++)
       sum++;
(c) sum = 0;
   for(i=1;i<2*n;i++)
    for(j=1;j<i*i;j++)
      for(k=1;k<j;k++)
         if (j \% i == 1)
           sum++:
(d) sum = 0;
   for(i=1;i<2*n;i++)
    for(j=1;j<i*i;j++)
      for(k=1;k<j;k++)
         if (j % i)
           sum++;
```

2. Compare a ordem assintótica de crescimento dos seguintes pares de funções. Em cada caso diga se:

$$f(n) \in \Theta(g(n)), f(n) \in O(g(n)) \text{ or } f(n) \in \Omega(g(n)).$$

	f(n)	g(n)
a)	$100n + \log n$	$n + (\log n)^2$
b)	$\log n$	$\log n^2$
c)	$\frac{n^2}{\log n}$	$n(\log n)^2$
d)	$(\log n)^{\log n}$	$\frac{n}{\log n}$
e)	\sqrt{n}	$(\log n)^5$
f)	$n2^n$	3^n
g)	$2^{\sqrt{\log n}}$	\sqrt{n}

3. O vetor com os seguintes valores 23,17,14,6,13,20,10,11,5,7,12 é um heap? Se não, converta-o usando o algoritmo de construção de heap visto em aula.