UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS

ESTUDIOS PROFESIONALES PARA EJECUTIVOS

Trabajo Final Fundamentos de Programación 2021-01

"Sistema para cálculo de planilla"

Presentada por:

Pumantico Bazo, Jose Antonio

Quispe Mayta, Christian Alexander

Salazar Reque, Juan Miguel

Vidal Chumbiriza, Giber Mario

LIMA – PERÚ Año 2021

Contenido

A.	Situación Actual	4
В.	Propuesta de innovación	4
1	L. Detalle del nuevo proceso	4
2	2. Algoritmo Propuesto	5
3	3. Herramienta y Tecnología por usar	. 11
4	1. Gestión del proyecto. Product Backlog en Trello	. 11
C.	Programación	13
1	. Control de versiones en GIT	. 13
D.	Conclusiones y recomendaciones	16
С	Anavas	16

A. Situación Actual

La empresa White Lion Nuts S.A.C. actualmente lleva el cálculo de su planilla de forma manual, la cual consiste en que los trabajadores marcan su ingreso, salida a refrigerio, entrada a refrigerio y salida en un marcador manual o como también se le conoce "marcador de tarjeta"; este marcador genera cartillas impresas las cuales son guardadas por el auxiliar de marcaciones y posteriormente son revisadas manualmente en una cuaderno de cálculo para asi elaborar los respectivos cálculos de :

- Inasistencias
- Tardanzas
- Descuentos
- Sueldo final

B. Propuesta de innovación

1. Detalle del nuevo proceso

Se necesita automatizar el proceso del cálculo de las planillas, para lo cual se requiere lo siguiente:

- Leer mediante el software el archivo de texto en el cual se registran las planillas.
- Obtener los datos del personal, política de asistencias, inasistencias y tardanzas
- Realizar el cálculo de los sueldos y los descuentos
- Mostrar informes:
 - Listar a los empleados indicando su sueldo , monto descontado , total de días con inasistencias , total de horas de tardanza , monto a pagar y una alerta indicando si el personal debe ser cesado
 - o Ranking de tardanzas / faltas por área

El sistema deberá simular las asistencias de un mes x.

Flujo de procesos para el sistema propuesto

2. Algoritmo Propuesto

i. Leer Datos de los empleados

El sistema leerá un archivo de texto externo, para luego devolver una matriz con los datos del personal.

- o Datos de entrada: Archivo de texto plano, cantidad de empleados
- Datos de salida : Matriz bidimensional con los datos del personal (dni , nombres y área)

Figura 2

Diagrama de flujo para el algoritmo: "Leer datos de los empleados"

Figura 3
Pseucódigo para el algoritmo: "Leer datos de los empleados"

```
Funcion Dimension <- leerArchivoTextoPersonal (dim)
    Dimension personal[dim,3]
    Dimension dato[3]
    Definir contador Como Entero
    contador ←0
    Leer archivo
    Leer linea;
    Mientras linea != null Hacer
         dato ← SepararLinea(linea)
        personal[i,0] \leftarrow dato[0]
        personal[i,1] \leftarrow dato[1]
         personal[i,2] \leftarrow dato[2]
         Leer linea;
         contador + contador + 1
    FinMientras
FinFuncion
```


ii. Simular ingresos del personal

El sistema simulará los ingresos y salidas del personal.

- Datos de entrada : Matriz bidimensional con los datos del personal (dni , nombres y área)
- Datos de salida : Matriz bidimensional con los datos de las asistencias (dni, fecha, flag_asistió,hora_ingreso,hora_salida)

Figura 4

Diagrama de flujo para el algoritmo: "Simular ingresos del personal"

Figura 5
Pseucódigo para el algoritmo: "Simular ingresos del personal"

```
Funcion Dimension <- simularAsistenciasPersonal(personal,dim)
    Definir mes como Entero
    Definir anio como Entero
    Definir dias como Entero
    Definir i como Entero
    Definir j como Entero
    Definir k Como Entero
    Definir dni como cadena
    Definir asistio Como Logico
    {\bf Definir} \ \ {\bf totalRegistros} \ \ {\bf Como} \ \ {\bf Entero}
    k←0
    dias ← calcularDiasAnio(anio,mes)
    totalRegistros ← dias * dim
    Dimension asistencias[totalRegistros,5]
    Para i←1 Hasta dias Con Paso paso Hacer
         Para j←1 Hasta dim Con Paso paso Hacer
             dni ← personal[j,0]
             asistencias[k,0] ←dni
             asistencias[k,1] ←obtenerFecha(i)
             asistio ← simularIngreso()
             Si asistio Entonces
                 asistencias[k,2]← "1"
                 asistencias[k,3]← simularHoraIngreso()
                 asistencias[k,4]← simularHoraSalida()
             SiNo
                  asistencias[k,2]← "0"
                  asistencias[k,3]← ""
                  asistencias[k,4]← ""
             Fin Si
         Fin Para
         k€k+1
    Fin Para
FinFuncion
```


iii. Simular ingreso

El sistema genera un número aleatorio del 1 al 10.

- o Datos de entrada:
 - Si el número es menor o igual que 2, el empleado no asistió
 - Si el número es mayor que 2 el usuario asistió
- O Datos de salida: Booleano que indica si el personal asistió

Figura 6
Diagrama de flujo para el algoritmo: "Simular ingreso"

Figura 7Pseudocódigo para el algoritmo: "Simular ingreso"

```
Funcion Logico <- simularIngreso()

Definir val como Entero

Definir salida como Logico

val ← generarAleatorio(1,10)

Si val ≤ 2 Entonces

salida ← Verdadero

SiNo

salida ← Falso

Fin Si

FinFuncion
```


iv. Simular hora de ingreso

El sistema parte de la hora base: 8 y genera un número aleatorio del 0 al 59 , los cuales van a ser los minutos que ingreso el personal

o Datos de salida: Cadena con la hora de ingreso del personal

Figura 8

Diagrama de flujo para el algoritmo: "Simular hora de ingreso"

Figura 9
Pseudocódigo para el algoritmo: "Simular hora de ingreso"

```
Funcion cadena <- simularHoraIngreso()

Definir hora Como Caracter

Definir minuto Como Entero

hora ← "08"

minuto ← generarAleatorio(0,59)

hora ← obtenerHora(hora,minuto)

FinFuncion
```


3. Herramienta y Tecnología por usar

- Bizagi modeler (Herramienta para modelar procesos)
- IntellijIDEA (IDE para desarrollar en java)
- Gitlab (Herramienta para el control de versiones)
- Trello (Herramienta para gestionar las tareas)
- PSeint (Herramienta para realizar diagramas de flujo)
- JFreeChart (Librería de java para generar gráficos)

4. Gestión del proyecto. Product Backlog en Trello

i. Creación del espacio de trabajo

Figura 10
Creación de un espacio de trabajo en Trello

 Se trabajaron con 2 tableros , en los cuales se asignó tareas a los miembros del equipo de trabajo

Figura 11
Tablero de proyecto "Documentación" en Trello

iii. Tareas del tablero de documentación

Figura 12
Tablero de proyecto "Programación" en Trello

C. Programación

1. Control de versiones en GIT

✓ Creación del proyecto

Figura 13
Formulario de creación de proyecto en GitHub

✓ Comandos del proyecto

Figura 14
Proyecto de GitHub sin commits o "en blanco"

✓ Carga de las actualizaciones

Figura 15
Ubicación de la carpeta y clonación del proyecto GitHub creado

```
MINGW64:/e/01.Cursos/11.UPC/Ciclo 01/Fundamentos de programación/Proyecto

juans@Kerberos MINGW64 ~
$ cd E:
juans@Kerberos MINGW64 /e
$ cd E:01.Cursos/11.UPC/Ciclo\ 01/Fundamentos\ de\ programación/Proyecto/
juans@Kerberos MINGW64 /e/01.Cursos/11.UPC/Ciclo 01/Fundamentos de programación/
Proyecto
$ git clone https://gitlab.com/Kerberos0711/lion-white.git com.javax.lion
```

Figura 16
Inicialización del proyecto git clonado y primer commit

✓ Control de modificaciones del proyecto

Figura 17
Archivo modificado en un commit visto desde GitHub

✓ Repositorio del proyecto

Figura 18
Vista del proyecto en GitHub con los archivos ya subidos

D. Conclusiones y recomendaciones

Se puede concluir a partir del proyecto propuesto que, se puede optimizar de manera exponencial el proceso de control de planillas con un programa relativamente no complejo.

Bajo la conclusión ya expuesta recomendamos a la empresa:

- A corto plazo, delegar la tarea de mantener el software a un empleado con conocimientos en el lenguaje Java, de caso contrario contratar a una persona con ese perfil técnico.
- A mediano plazo, evaluar opciones de mejora, agregar nuevos modulos relacionados al control de planilla.
- A largo plazo, al ser un software con impacto positivo para la empresa se recomienda llevarlo a dispositivos móviles, ya que estos cuentan con tecnologías para la identificación biometrica y además que es de fácil transporte.

E. Anexos

• Cargos y sueldo del personal

Cargo	Codigo	Sueldo Neto	Nivel
Ingeniería	IN001	3100.00	1
Administrativos	AD001	2500.00	1
Tecnicos de planta	TP001	2000.00	2
Operadores	OP001	1500.00	2

• Horario (Tolerancia 10 min)

Día	Hora de ingreso	Hora de salida
Lunes - Viernes	08:00	18:00

• Política de descuentos

Tipo	Estado	Nivel 1	Nivel 2	Observación
	Justificada	25.00 x día	10.00 x día	
Falta	No justificada	150.00 x día	60.00 x día	3 faltas injustificadas es causal de despido
		1 – 4 tardanzas	1 – 4 tardanzas	
		: 10.00 por	: 5.00 por	
		tardanza	tardanza	
Tardanzas		5 a más	5 a más	
		tardanzas:	tardanzas:	
		15.00 por	10.00 por	
		tardanza	tardanza	