Programme du cours de Statistique mathématique

- Partie I : Estimation ponctuelle
- Partie II : Tests statistiques

Bibliographie

- Bernard Prum, La démarche statistique (disponible à la BU).
- Milhaud, X., Statistique, Belin.
- Saporta, G., Probabilités, analyse des données et statistiques. Technip.
- Jean-François Delmas: Une introduction aux Probabilités et aux Statistiques cours et exercices corrigés (disponible en ligne sur sa page web).

Chapitre I

Estimation ponctuelle

Estimation ponctuelle

Introduction

Plan

- Introduction
- 2 Modélisation statistique
- Estimateur et propriétés
- 4 Méthode du maximum de vraisemblance

La statistique

- A pour but de fournir un ensemble de méthodes permettant, à partir d'observations,
 - d'analyser de décrire les données observées,
 - mais également d'en déduire des traitements modèles interprétations : aide à la décision, mise en évidence de facteurs explicatifs, prédiction du comportement futur, ...
- Statistique descriptive : Structurer, synthétiser, représenter les données.
- Statistique inférentielle/mathématique :
 - Etendre à toute une population les propriétés constatées sur un échantillon.
 - Confirmer ou infirmer certaines suppositions
 - Prendre des décisions
 - Repose sur la modélisation probabiliste des observations

Les observations sont vues comme des réalisations de variables aléatoires (tirages indépendants d'une variable aléatoire) définie sur un espace probabilisable (Ω, \mathcal{F})

- La théorie des probabilités vise à évaluer le comportement des observations (espérance, moments, probabilités de dépassement, comportement de sommes,...) étant donné la loi de probabilité P.
- $lue{}$ La statistique fournit des méthodes pour résoudre le problème inverse dit d'inférence statistique : caractériser \mathbb{P} au vu des observations

Estimation ponctuelle

Introduction

En général, l'objectif de déterminer complètement $\mathbb P$ à partir d'observations est trop ambitieux et il est nécessaire

- de faire des hypothèses plus restrictives sur la loi \mathbb{P} ; ces hypothèses reflètent nos connaissances à priori sur le processus qui génère les données.
- de considérer des observations dont la structure probabiliste est raisonnablement simple

Exemple 1 : Nombre de voitures à un feu rouge

- Afin de mieux gérer la circulation, on s'intéresse au nombre de voitures à un feu rouge sur un créneau donné.
- Expérience : On compte le nombre de voiture dans la file d'attente à chaque fois que le feu passe au vert.
- On récolte n = 250 observations : 5, 9, 9, 9, 11, 9,...

Exemple 2 : Durée d'un trajet

- J'ai une réunion à mon travail à 8h, à quelle heure dois-je partir pour " avoir de grandes chances" d'être à l'heure?
- Expérience : je mesure la durée de trajet domicile/travail pendant plusieurs jours.

• je récolte n = 100 observations : 20.87, 22.12, 20.90, 21.33,...

Question

Comment utiliser au mieux ces données pour gérer le nombre de voitures au feu/mon heure de départ ?

Quantité d'intérêt

- Il serait intéressant d'avoir de l'information sur la loi de probabilité du nombre de voitures arrêtées au feu à ce créneau/de la durée de trajet domicile-travail.
- On dispose juste de mesures, cette loi est donc inconnue.
- Le travail statistique va donc consister à essayer de reconstruire au mieux cette loi (discrète ou continue) à partir des mesures effectuées.

On introduit un formalisme (mathématique) précis pour représenter (modéliser) ces problèmes.

Estimation ponctuelle

Modélisation statistique

Plan

- Introduction
- 2 Modélisation statistique
- Estimateur et propriétés
- 4) Méthode du maximum de vraisemblance

Cadre général

- On suppose que les données ont été collectées.
- Ces données sont le résultat d'une expérience répétée n fois.
- On va les noter x_1, \ldots, x_n des réalisations de variables aléatoires X_1, \ldots, X_n .
- $x_1 = X_1(\omega), \ldots, x_n = X_n(\omega)$

Hypothèse

On va supposer que les variables sont indépendantes et de même loi de probabilité inconnue \mathbb{P} .

Le problème de l'estimation

Il consiste à trouver (estimer) la loi $\mathbb P$ à partir de X_1, \ldots, X_n .

Modélisation statistique

Modèle statistique

Poser un modèle revient à supposer que la loi de probabilité inconnue \mathbb{P} appartient à une famille de lois $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ où $\Theta \subseteq \mathbb{R}^d$ avec $d \in \mathbb{N}^*$.

Définition 1

On appelle modèle statistique la donnée du triplet $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta}))_{\theta \in \Theta}$ où

- Ω est l'espace des observations (l'ensemble dans lequel les observations prennent valeurs);
- \mathcal{F} est une tribu sur Ω ;
- $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ est une famille de probabilités définies sur (Ω, \mathcal{F}) , Θ est appelé espace des paramètres.
- Ω et $\mathcal F$ ne sont généralement pas difficile à caractériser.
- Le statisticien ou le praticien doit par contre choisir une famille de loi de probabilité susceptible de contenir la loi inconnue \mathbb{P} .

Exemple

- On souhaite tester l'efficacité d'un nouveau traitement à l'aide d'un essai clinique.
- On traite n = 100 patients atteints de la pathologie.
- A l'issue de l'étude, 72 patients sont guéris.

Modélisation

- On note $x_i = 1$ si le ième patient a guéri, 0 sinon.
- On suppose que x_i est la réalisation d'une variable aléatoire X_i de loi de Bernoulli de paramètre inconnu $p \in]0,1[$
- Si les individus sont choisis de manière indépendante et ont tous la même probabilité de guérir (ce qui peut revenir à dire qu'ils en sont au même stade de la pathologie), il est alors raisonnable de supposer que les variables aléatoires X_1, \ldots, X_n sont indépendantes.

Spécification du triplet

- $\Omega = \{0, 1\}.$
- \mathcal{F} ensemble des parties de $\{0,1\}$
- $\bullet \ (\mathbb{P}_{\theta})_{\theta \in \Theta} = (\mathcal{B}(p))_{p \in [0,1[}.$
- A travers ce modèle, on suppose que la variable aléatoire X_i qui représente la réaction du ième patient au traitement suit une loi de Bernoulli de paramètre inconnu $p \in [0, 1]$.
- Le problème statistique : reconstruire ou estimer ce paramètre à l'aide de l'échantillon X_1, \ldots, X_n .

Autres exemples

- Exemple 1 : Nombre de voitures au feu rouge (modèle de Poisson).
- Exemple 2 : Durée de trajet domicile/travail (modèle gaussien)

	Ω	\mathcal{F}	$(\mathbb{P}_{ heta})_{ heta \in \Theta}$
Exemple 1	N	$\mathcal{P}(\mathbb{N})$	$(\mathcal{P}(\frac{\lambda}{\lambda}))_{\lambda>0}$
Exemple 2	\mathbb{R}	$\mathcal{B}(\mathbb{R})$	$\{\mathcal{N}(m, \sigma^2), m \in \mathbb{R}, \sigma \in \mathbb{R}_+\}$

Le problème statistique sera d'estimer λ ou (m, σ^2) à partir de X_1, \ldots, X_n .

Démarche statistique

- ① On récolte n observations (n valeurs) x_1, \ldots, x_n qui sont les résultats de n expériences aléatoires indépendantes.
- **2** Modélisation : on suppose que les n valeurs sont des réalisations de n variables aléatoires indépendantes X_1, \ldots, X_n et de même loi \mathbb{P}_{θ} . Ce qui nous amène à définir le modèle $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$.
- **Solution** Sestimation: chercher dans le modèle une loi $\mathbb{P}_{\widehat{\theta}}$ qui soit la plus proche possible de \mathbb{P}_{θ} \Rightarrow chercher un estimateur $\widehat{\theta}$ de θ .

Estimation ponctuelle

Estimateur et propriétés

Plan

- Introduction
- 2 Modélisation statistique
- 3 Estimateur et propriétés
- 4 Méthode du maximum de vraisemblance

Définition 2

On appelle n-échantillon associé au modèle statistique $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ une suite X_1, \ldots, X_n de n variables aléatoires indépendantes et de même loi sous \mathbb{P}_{θ} , pour $\theta \in \Theta$.

Le statisticien dispose d'une observation de l'échantillon :

$$x_1 = X_1(\omega), \ldots, x_n = X_n(\omega),$$

Définition 3

Soit (X_1, \ldots, X_n) un n-échantillon,

- On appelle moyenne empirique la v.a. $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- On appelle variance empirique la v.a.

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2$$

Soit X_1, \ldots, X_n i.i.d. de loi commune \mathbb{P}_{θ} avec $\theta \in \Theta$ inconnue. On désigne par \mathbb{E}_{θ} et Var_{θ} l'espérance et la variance respectives sous la loi \mathbb{P}_{θ} .

Définition 4

- On appelle statistique toute application de Ω^n dans un espace \mathbb{R}^p .
- On appelle estimateur du paramètre θ toute statistique à valeurs dans Θ .

Remarque:

Une statistique ne dépend pas de θ mais seulement de l'échantillon. C'est une variable aléatoire qui a sa propre distribution (qui peut dépendre de θ)

Chercher le "meilleur " estimateur $\widehat{\theta}(X_1, \dots, X_n)$. A la fin, calculer l'estimation $\widehat{\theta}(x_1, \dots, x_n)$ (renvoyé par le logiciel).

Exemple 1 (Traitement)

Les v.a. $\hat{p}_1 = X_1$ et $\hat{p}_2 = \frac{1}{n} \sum_{i=1}^n X_i$ sont des estimateurs de p.

Exemple 2

Soit X_1, \ldots, X_n i.i.d. de loi \mathbb{P}_{θ} avec $\theta \in \Theta$ inconnue avec $m_{\theta} = \mathbb{E}_{\theta}(X)$ et $\sigma_{\theta}^2 = \text{Var}(X_1)$.

- La moyenne empirique $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ est un estimateur de $m_\theta = \mathbb{E}_\theta(X)$. $\widehat{\theta}_n = X_1$ et $\widetilde{\theta}_n = \sum_{i=1}^{\lfloor n/2 \rfloor} X_{2i} / \lfloor n/2 \rfloor$ sont aussi des estimateurs de $m_\theta = \mathbb{E}_\theta(X)$.
- Le moment empirique simple d'ordre k, $\widehat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ est un estimateur de $m_k(\theta) = \mathbb{E}_{\theta}(X^k)$, $k \in \mathbb{N}^*$.

Exemple 3

- Le moment empirique centré d'ordre k, $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^k$ est un estimateur de $\mu_k(\theta) = \mathbb{E}_{\theta} \left[(X \mathbb{E}(X))^k \right]$, $k \in \mathbb{N}^*$.
- La variance empirique $V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ est un estimateur de $\sigma_\theta^2 = \text{Var}_\theta(X_1)$.
- Les valeurs extrêmes de l'échantillon :

$$\max_{1 \le i \le n} X_i$$
 et $\min_{1 \le i \le n} X_i$

Biais d'un estimateur

Biais d'un estimateur

Soit T_n un estimateur de θ , défini à partir d'un échantillon X_1, \ldots, X_n de loi \mathbb{P}_{θ} . On désigne par \mathbb{E}_{θ} l'espérance sous la loi \mathbb{P}_{θ} .

Définition 5

- Un estimateur T_n de θ est dit sans biais si $\mathbb{E}_{\theta}(T_n) = \theta$.
- Un estimateur T_n de θ est dit biaisé si $\mathbb{E}_{\theta}(T_n) \neq \theta$.
- La quantité $B_{\theta}(T_n) = \mathbb{E}_{\theta}(T_n) \theta$ est appelé biais de l'estimateur T_n en θ .
- Un estimateur T_n de θ est dit asymptotiquement sans biais si $\lim_{n\to+\infty} \mathbb{E}_{\theta}(T_n) = \theta$.
- biais= erreur systématique due au fait que T_n fluctue en moyenne autour de $\mathbb{E}_{\theta}(T_n)$ au lieu de θ .
- Il est souhaitable d'utiliser des estimateurs sans biais.

☐Biais d'un estimateur

• On représente ci-dessous les lois de probabilité de 2 estimateurs de θ .

- L'estimateur de gauche semble être préférable à celui de droite.
- Sa loi de probabilité est en effet centrée sur le paramètre inconnu $\Rightarrow \mathbb{E}_{\theta}[T_n] \approx \theta$.

Biais d'un estimateur

Exemple 4

Soit X_1, \ldots, X_n i.i.d. de loi commune \mathbb{P}_{θ} avec $\theta \in \Theta$ inconnue où $\mathbb{E}_{\theta}(X_1) = m_{\theta}$ et $\mathsf{Var}_{\theta}(X_1) = \sigma_{\theta}^2$.

- La moyenne empirique \overline{X}_n est un estimateur sans biais de m_{θ} .
- La variance empirique $V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ est un estimateur biaisé de σ_{θ}^2 .
- La variance empirique corrigée $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$ est un estimateur sans biais de σ_{θ}^2 .
- V_n^2 est un estimateur asymptotiquement sans biais de σ_{θ}^2 .

Risque quadratique

On cherche souvent des estimateurs ayant un biais et une variance faible. Le risque quadratique permet de prendre en compte simultanément ces deux critères.

Définition 6

• On appelle risque (ou erreur) quadratique moyenne de l'estimateur T_n de θ la quantité

$$\mathcal{R}(\theta, T_n) = \mathbb{E}_{\theta}\left[(T_n - \theta)^2 \right]$$

• Soient T_n et T'_n deux estimateurs de θ . On dit que T_n est préférable à T'_n au sens du risque quadratique si

$$\mathcal{R}(\theta, T_n) < \mathcal{R}(\theta, T'_n) \ \forall \theta \in \Theta.$$

Estimation ponctuelle

Critères de performance

Estimateur convergent

Remarque 1

On a la décomposition suivante

$$\mathcal{R}(\theta, T_n) = Var_{\theta}(T_n) + B_{\theta}^2(T_n).$$

Exemple 5

Soit X_1, \ldots, X_n i.i.d. de loi commune $\mathcal{B}(\theta)$, $\theta \in]0,1[$ inconnue. L'estimateur \overline{X}_n de θ est sans biais. Par suite,

$$\mathcal{R}(\theta, \overline{X}_n) = \frac{\theta(1-\theta)}{n}$$

et

$$\mathcal{R}(\theta, X_1) = \theta(1 - \theta)$$

Convergence en moyenne quadratique

Soit T_n un estimateur de θ , défini à partir d'une observation de loi \mathbb{P}_{θ} .

Définition 7

On dit que T_n est un estimateur convergent en moyenne quadratique de θ lorsque

$$\lim_{n\to\infty}\mathcal{R}(\theta,T_n)=0$$

Exemple 6

On considère X_1, \ldots, X_n i.i.d. de loi commune \mathbb{P}_{θ} avec $m_{\theta} = \mathbb{E}_{\theta}(X_1)$ et de variance $\operatorname{Var}_{\theta}(X_1)$ inconnus. Alors, la moyenne empirique \overline{X}_n converge en moyenne quadratique vers θ .

Estimateur convergent

Soit T_n un estimateur de θ , défini à partir d'une observation de loi \mathbb{P}_{θ} .

Définition 8

• T_n est consistent si T_n converge en probabilité vers θ quand $n \to \infty$, i.e.

$$\forall \theta \in \Theta, \forall \varepsilon > 0, \quad \lim_{n \to \infty} \mathbb{P}_{\theta} \left[|T_n - \theta| > \varepsilon \right] = 0$$

• T_n est fortement consistent si T_n converge presque sûrement vers θ quand $n \to \infty$:

$$orall heta \in \Theta, \;\; \mathbb{P}_{ heta} \left(\lim_{n o \infty} T_n = heta
ight) = 1$$

Propriété 1

 T_n converge en moyenne quadratique vers θ implique que T_n converge en probabilité vers θ .

En effet, l'inégalité de Bienaymé Tchebychev implique

$$\forall \varepsilon > 0, \quad \mathbb{P}\left[|T_n - \theta| > \varepsilon\right] \leq \frac{\mathcal{R}(\theta, T_n)}{\varepsilon^2} \to 0.$$

Estimateur convergent

Exemple 7

On considère X_1, \ldots, X_n i.i.d. de loi commune \mathbb{P}_{θ} avec $m_{\theta} = \mathbb{E}_{\theta}(X_1)$ et de variance $\sigma_{\theta}^2 = \text{Var}_{\theta}(X_1)$ inconnus. Alors,

- La moyenne empirique \overline{X}_n est un estimateur fortement consistent de m_θ .
- La variance empirique $V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ est un estimateur fortement de la variance σ_{θ}^2 .

Estimation ponctuelle

Critères de performance

—Estimateur convergent

Illustration 1

FIGURE – Evolution de \overline{x}_n par rapport à n pour 4 échantillons (à gauche) et boxplots pour les \overline{x}_n obtenus pour n = 50, 100, 200, 500, 1000 à l'aide de 4000 échantillons

Illustration 2

FIGURE – Boxplots pour l'estimateur non biaisé S_n^2 (à gauche) et biaisé V_n^2 (à droite)

Exemple 8

Modèle gaussien : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{N}(m, \sigma^2)$ où $(m, \sigma) \in \mathbb{R} \times \mathbb{R}_+^*$ avec m et σ^2 inconnus. On a S_n^2 et V_n^2 sont des estimateurs consistants de σ^2 et

$$\mathcal{R}(\sigma^2, S_n^2) = \frac{2\sigma^4}{n-1}$$

$$\mathcal{R}(\sigma^2, V_n^2) = \frac{2n-1}{n^2}\sigma^4.$$

 V_n^2 est préférable à S_n^2 au sens du risque quadratique.

Exercice

On suppose que la durée de vie moyenne d'un modèle de téléphones portables peut être modélisée par une v.a. $X \rightsquigarrow \mathcal{E}(\frac{1}{\theta})$ où $\theta > 0$ est inconnu. On cherche à estimer la durée de vie moyenne θ . Pour cela, on considère un échantillon X_1, \ldots, X_n de n portables choisis au hasard.

- ① Soit $T_n = \frac{1}{n} \sum_{i=1}^n X_i$. Montrer que T_n est un estimateur sans biais de θ et calculer son risque quadratique.
- ② On pose $Y_n = \min_{1 \le i \le n} (X_i)$. Déterminer la f.d.r. de Y_n et en déduire sa loi.
- 3 Soit $\widehat{T}_n = nY_n$. Montrer que \widehat{T}_n est un estimateur sans biais de θ . Calculer son risque quadratique.
- Omparer les deux estimateurs.

Estimation ponctuelle

Méthode du maximum de vraisemblance

Plan

- Introduction
- 2 Modélisation statistique
- Stimateur et propriétés
- 4 Méthode du maximum de vraisemblance

Estimation par maximum de vraisemblance

Exemple 9

On cherche à évaluer la fréquence des jours où l'indice ATMO (mesurant la qualité de l'air) à Lille dépasse le niveau 8. On choisit au hasard 10 jours et on regarde si le niveau 8 est dépassé. On considère les $v.a X_i$ avec

$$X_i = \left\{ egin{array}{ll} 1 \ si \ la \ qualit\'e \ de \ l'air \ d\'epasse \ le \ niveau \ 8 \ au \ jour \ i \ 0 \ sinon. \end{array}
ight.$$

On obtient les réponses suivantes : Non, Oui, Oui, Non, Oui, Oui, Oui, Non, Non, Oui (4 fois Non et 6 fois Oui). le paramètre $\theta = \mathbb{P}(X=1)$ et on observe

$$(x_1, \dots, x_{10}) = (0, 1, 1, 0, 1, 1, 1, 0, 0, 1).$$

$$\mathbb{P}(X_1 = 0, X_2 = 1, \dots, X_{10} = 1) = \theta^6 (1 - \theta)^4$$

$$\frac{\theta}{\theta^6 (1 - \theta)^4 \times 10^4} \begin{vmatrix} 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\ 0.26 & 1.75 & 5.31 & 9.77 & 11.94 & 9.53 & 4.19 \end{vmatrix}$$

Il est naturel de choisir comme estimation de θ , celle pour laquelle la probabilité d'observer l'échantillon est la plus forte i.e. $\widehat{\theta}_{10} = 0.6$.

- On se place dans le cadre d'un modèle paramétrique $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta\Theta})$: On note $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d. on note $f(x, \theta)$ la densité de X_1 .
- Dans le cas discret, on a pour tout $x \in \mathbb{R}$, $f(x, \theta) = \mathbb{P}_{\theta}(X = x)$.
- Le but est d'estimer le paramètre θ de la variable aléatoire générique du modèle à partir de la réalisation (x_1, \ldots, x_n) de l'échantillon X.

Idée du maximum de vraisemblance

Estimer le paramètre θ par la valeur qui rend la réalisation de l'échantillon tiré la plus probable.

• Difficulté : Si on a des lois continues, comme des phénomènes modélisées par une loi normale, la réalisation d'un échantillon x_1, \ldots, x_n de \mathbf{X} aura une probabilité nulle. Par exemple :

Si
$$X \rightsquigarrow \mathcal{N}(0,1)$$
, alors $\mathbb{P}(X=2) = 0$

• On contourne le problème en considérant la densité jointe.

Définition 9

On appelle vraisemblance de l'échantillon X la fonction L définie pour tout $\theta \in \Theta$ par :

Dans le cas discret,

$$L(x_1, \ldots, x_n; \theta) = \mathbb{P}_{\theta}(X_1 = x_1, \ldots, X_n = x_n)$$
$$= \prod_{i=1}^n \mathbb{P}_{\theta}(X_i = x_i).$$

• Dans le cas continu,

$$L(x_1,\ldots,x_n;\theta)=\prod_{i=1}^n f(x_i,\theta).$$

Commentaires

- La vraisemblance est aléatoire. Une fois que l'échantillon est réalisé, x_1, \ldots, x_n sont des valeurs numériques connues et la vraisemblance ne dépend plus que de la valeur inconnue du paramètre (ou vecteur des paramètres).
 - Cas discret : La réalisation de la vraisemblance est la probabilité d'obtenir cette réalisation de l'échantillon.
 - Cas continue : La réalisation de la vraisemblance est la densité de X en la réalisation de l'échantillon.
- Supposons que pour 2 valeurs θ_1 et θ_2 du paramètre, $L(x_1, \ldots, x_n, \theta_1) > L(x_1, \ldots, x_n, \theta_2)$, la valeur du paramètre θ_1 est "plus vraisemblable" que θ_2 étant donné la réalisation x_1, \ldots, x_n .

└ Méthode du maximum de vraisemblance

Cas discret

Exemple 10

- Modèle de Bernouilli : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{B}(\theta)$ avec $\theta \in]0,1[$.
- Retour à l'exemple (ATMO) : la vraisemblance s'écrit $L(0,1,1,0,1,1,1,0,0,1;\theta) = \theta^{6}(1-\theta)^{4}$.
- Modèle de Poisson : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et X_1 suit une loi de Poisson de paramètre $\theta > 0$.

Cas continu

Exemple 11

- Modèle gaussien : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{N}(\theta, 1)$, $\theta \in \mathbb{R}$.
- Modèle exponentiel : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{E}(\theta)$ avec $\theta > 0$.
- On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et X_1 admet pour densité $f(\cdot, \theta)$ définie pour tout $x \in \mathbb{R}$ par

$$f(x,\theta) = \frac{\theta}{x^2} \mathbb{1}_{\{x \ge \theta\}}, \text{ avec } \theta > 0.$$

Estimation ponctuelle

└ Méthode du maximum de vraisemblance

Définition 10 (Estimateur par maximum de vraisemblance)

On appelle estimateur par maximum de vraisemblance (EMV) du paramètre θ un estimateur $\theta_n \in \Theta$ défini par

$$L(\mathbf{X}, \theta_n) = \sup_{\theta \in \Theta} L(\mathbf{X}, \theta).$$

Remarque 2

Comme la fonction log est strictement croissante de \mathbb{R}_+^* dans \mathbb{R} , $\sup_{\theta \in \Theta} L(\mathbf{x}, \theta) = \sup_{\theta \in \Theta} \log L(\mathbf{x}, \theta)$.

Définition 11

La fonction $\ell(\mathbf{x}, \theta) = \log L(\mathbf{x}, \theta)$ est appelée la log-vraisemblance :

$$\ell(\mathbf{x},\theta) = \sum_{i=1}^{n} \log f(x_i,\theta)$$

Estimation ponctuelle

└ Méthode du maximum de vraisemblance

Cas discret

Exemple 12

- Modèle de Bernouilli : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{B}(\theta)$ avec $\theta \in]0,1[$.
- Modèle de Poisson : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et X_1 suit une loi de Poisson de paramètre $\theta > 0$.

Reprenons l'exemple de la qualité de l'air ATMO

Cas continu

Exemple 13

- Modèle gaussien : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{N}(\theta, 1)$, $\theta \in \mathbb{R}$.
- Modèle exponentiel : On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{E}(\theta)$ avec $\theta > 0$.
- On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et X_1 admet pour densité $f(\cdot, \theta)$ définie pour tout $x \in \mathbb{R}$ par

$$f(x,\theta) = \frac{\theta}{x^2} \mathbb{1}_{\{x \ge \theta\}},$$

avec $\theta > 0$.

Exemple 14

On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{N}(m, \sigma^2)$, $\theta = (m, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*$ (m et σ^2 sont inconnus). La log-vraisemblance est

$$\ell(\mathbf{x}, m, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - m)^2.$$

Si on pose:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$,

alors $\widehat{\theta}_n = (\overline{X}_n, \widehat{\sigma}_n^2)$ est l'EMV du paramètre $\theta = (m, \sigma^2)$.

Exercice

On rappelle qu'une variable aléatoire X suit une loi géométrique de paramètre θ , $\theta>0$ si

$$\mathbb{P}_{\theta}(X=k) = \theta(1-\theta)^{k-1}.$$

Soit (X_1, \ldots, X_n) un *n*-échantillon de loi géométrique de paramètre $\theta > 0$.

- Déterminer la fonction de Log-vraisemblance associée à cet échantillon.
- 2 Calculer l'estimateur du maximum de vraisemblance de θ .

Estimation ponctuelle

└ Méthode du maximum de vraisemblance

Remarque 3

- ► L'EMV n'existe pas toujours car la maximisation se fait sur un ensemble ouvert
 ⊖.
- lacktriangle La vraisemblance n'est pas a priori dérivable en tout point $\theta \in \Theta$.
- Il n'y a aucune raison pour que l'EMV soit sans biais.
- L'EMV n'a aucune raison d'être unique.

Exemple 15

On considère $\mathbf{X} = (X_1, \dots, X_n)$ où les X_i sont i.i.d et $X_1 \rightsquigarrow \mathcal{U}_{[0,\theta]}$ avec $\theta > 0$. La vraisemblance s'écrit

$$L(\theta) = \frac{1}{\theta^n} \mathbb{1}_{\{0 \le \max_{1 \le i \le n} x_i \le \theta\}}$$

$$\widehat{\theta}_n = \max_{1 \le i \le n} X_i \text{ est } l'EMV \text{ de } \theta.$$