Bioinformatics identification of small RNA targets in the Glaucophyte alga Cyanophora paradoxa: Analysis of ancient evolutionary mechanisms that arose in primordial algae

Sana Wajid
Rutgers University
Nestler Lab Bioinformatician Interview
Icahn School of Medicine at Mount Sinai
August 13, 2014

Overview

- → Background and Introduction
- → Hypothesis and experimental rationale
- → Methods: Bioinformatics pipelines
- → Results
- → Future Objectives
- → References
- → Questions

Evidence for Widespread Exonic Small RNAs in the Glaucophyte Alga *Cyanophora paradoxa*

Jeferson Gross¹, Sana Wajid¹, Dana C. Price¹, Ehud Zelzion¹, Junyi Li¹, Cheong Xin Chan², Debashish Bhattacharya^{1*}

1 Department of Ecology, Evolution, and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America, 2 The University of Queensland, Institute for Molecular Bioscience, and ARC Centre of Excellence in Bioinformatics, Brisbane, Australia

Background and Introduction

Cyanophora paradoxa elucidates primary endosymbiosis

- → The plastid originated at least once > 1.5 billion years ago, where a cyanobacterial ancestor that was captured by a single-celled protist as food-stuff but remained as an endosymbiont.
- → Following many photoautotrophic cyanobacterial capture events, a *novel metabolic-toolkit*, which involved photosynthesis, emerged among microbiological life.

- Cyanophora paradoxa is a model organism for endosymbiosis
 - Contains two blue-greenish vesicles called cyanelles in its protoplasm which were are thought to be acquired endosymbiotically from cyanobacteria

Current <u>survivors in the tree of</u>
<u>life</u> possess the "core" metabolic processes which allowed for photosynthesis and other features found in plastids which were then transferred to the nuclear genome (8,10,11)

- → Molecular phylogenetics and comparative genomics toolkits
- → Inferences on evolutionary past has been bolstered by NGS platforms (31)

Post-transcriptional silencing is a form of negative regulation

- → Silencing can occur through:
 - translational repression then RNA decay or
 - endonucleolytic cleavage through argonaute slicing mechanisms

RNA Turnover mechanisms utilize RNA interference

- → RNAi/siRNA is primarily used for gene silencing (i.e. inhibition of gene expression)
- → Double-stranded RNA (dsRNA) intermediates are tagged then undergo degradation

RNAi is specific to eukaryotes

- → RNAi is an ancient process that likely existed before the split of prokaryotes and eukaryotes
- → RNAi may have served primarily as an anti-viral and transposon defense mechanism
- → For example, in early evolution, genomic defense against self and non-self RNA became an important tool to abate pervasive and parasitic self-replicating autonomous genomes

Outcomes of the RNAi gene-protein network

- → Canonical RNAi mechanism is triggered by the formation of dsRNA duplex precursor which is cleaved by Ribonuclease III enzyme Dicer at both termini and then loaded onto the Argonaute complex
- → Products of Dicer cleavage are small interfering RNAs (siRNAs) of variable sizes (21-25 nt) with siRNA 3'-2 nt overhang pairing and 5'-monophosphates

Evolutionary origins of sRNA pathways in eukaryotes

- Comparative genomic studies based on existence of the three main components of RNAi by Cerutti and Mollano (2006) and Shabalina and Koonin (2008) using also parsimonious evaluation reveal the following.
 - ◆ Several unicellular eukaryotes which have lost RNAi functionalities, perhaps independently and multiple times: Opisthokonta (*Saccharomyces cerevisiae*), Excavata, Archaeplastida, Chromalveolata (20, 22).
- It is likely that the RNAi mechanism is not necessary for unicellular eukaryotic life whereas it remains an integral part of multicellular eukaryotic developmental gene regulation (e.g. complex body pattern formation) (20).

Next-generation sequencing of non-coding RNAs

→ Genome wide analysis of small RNAs in *C.*paradoxa for a clearer picture of the composition of epigenomes (i.e. RNA expression)

→ Other reasons include, Look for essential sRNA hotspots regulating stress responses, growth and development

The 5' monophosphate is an important biochemical marker

- → The 5' monophosphate is fundamental to bioinformatic studies because it allows us to trace the *degradome*
- → Decapping prevents mRNA from translation process

Sequencing the degradome

- → A snapshot of the transcriptome is achieved using methods that exist for degradome sequencing and identification of si/miRNA cleavage sites by locating the 5' monophosphate and study 5'->3 decay.
- → Genome-wide mapping of uncapped transcripts (GMUCT) is a protocol which samples the 5'-ends of uncapped mRNAs but not 3'-5' decay (27).

Hypothesis and experimental rationale

Experimental Rationale

- → For this study, a means of visually analyzing RNA-seq degradome data from *Cyanophora paradoxa* is proposed.
- → Our lab has recently sequenced genome of *Cyanophora paradoxa* and this was used as a template for preliminary evolutionary bioinformatic checks to indicate presence of the RNAi molecular toolkit.
- According to Gross et. al (2013), *Cyanophora paradoxa* nuclear genome contains gene model matches with high BLASTp e-values to three RNAi components: Dicer, Ago and RDRp.

Methods

Sequencing of sRNA & degradome

Read profiling, trimming raw seq data and expression analysis

- → Three template sequence libraries of *C. paradoxa* exist: genomic contigs, EST contigs (nt >= 200) and and CDS.
- → Mapping filtered sRNAs against these three sequence libraries with 100% identity produced the small RNA and degradome library data used for this analysis
- → Using CLC Genomics, reads were mapped to *C. paradoxa* contigs, ESTS and CDS
- → Expression analysis of reads mapped to CDS of different conditions

Results & Discussion

```
> CDS
GAlignments with 1762675 alignments and 1 metadata column:
                                                    seanames strand
                                                                           cigar
                                                              <Rle> <character>
                                                       <Rle>
        [1] Glaucophyta-Cyanophora paradoxa dxContig10000x1
                                                                             18M
        [2] Glaucophyta-Cyanophora paradoxa dxContig10002x1
                                                                             16M
           Glaucophyta-Cyanophora_paradoxa_dxContig10002x1
                                                                             22M
           Glaucophyta-Cyanophora paradoxa dxContig10002x1
                                                                             16M
        [5] Glaucophyta-Cyanophora paradoxa dxContig10002x1
                                                                             23M
            Glaucophyta-Cyanophora paradoxa dxContig9997x3
  [1762671]
                                                                             16M
  17626721
            Glaucophyta-Cyanophora paradoxa dxContig9997x3
                                                                             24M
            Glaucophyta-Cyanophora paradoxa dxContig9998x3
  1762673]
                                                                             16M
  [1762674]
            Glaucophyta-Cyanophora paradoxa dxContig9998x3
                                                                             19M
  [1762675]
            Glaucophyta-Cyanophora paradoxa dxContig9998x3
                                                                             21M
               qwidth
                          start
                                       end
                                              width
            <integer> <integer> <integer> <integer>
       [1]
[2]
                   18
                            332
                                       349
                                                  18
                   16
                             56
                                       71
                                                  16
        [3]
                   22
                                                  22
                            160
                                       181
        [4]
                                                  16
                   16
                            178
                                       193
        [5]
                   23
                            261
                                      283
                                                  23
  1762671]
                   16
                             59
                                       74
                                                  16
  1762672]
                   24
                                                  24
                            208
                                       231
  1762673
                   16
                            194
                                       209
                                                  16
  1762674]
                   19
                            210
                                       228
                                                  19
  [1762675]
                   21
                            213
                                       233
                                                  21
                                 seq
                      <DNAStringSet>
       [1]
                  AGGCGGCCGAGGCGACGG
        [2]
                    CAAGAACAACGGGACC
        [3]
              GCAGATTCGGAAGCATCATCCG
        [4]
                    TCCGTGCCGTTGGACG
             CTCCGGAGGATTTGGGGGCTTGA
  1762671
                    ATGCGGACGAGGGAAC
           GCGATTGGCTCAGTCCGCAGCTAC
  1762672
  [1762673]
                    GCCACGGGGGGATGAA
  1762674]
                 GTCGTCCCGCAACCTACTC
  [1762675]
               GTCCCGCAACCTACTCCAGAT
```

```
SAM file <->
GappedAlignment object
stores the following information:
```

- Contig Name
- lack Strand as + or -
- Start
- End
- ◆ Width
- ◆ Sequence
- etc.

processSeqs <- function (takes in mapping) For each contig (subset):</pre>

- 1. Separate sequences based on + or
 - o sense
 - o antisense
- 2. Modify start position for antisense as plot will consist of 5' ends' first position only
 - \circ start = end
 - \circ end = end + width

- 3. For each start position
 But separately per and +
 - a. nPosition = normalized position*
 - b. **pFrequency** = actual frequency at position
 - c. **nFrequency** = normalized frequency

nFrequency = Frequency_i / $\sum_{1,i}$ Frequency_i where **i** = position of 5' end of sRNA or deg tag

4. Bind separated subsets

```
> sub.antisense.freq
  nPosition pFrequency nFrequency
                                      cName
                                  1 55596x1
         38
        346
                                  1 55596x1
3
                      5
                                  5 55596x1
        348
4
                                  1 55596x1
        433
        639
                                  1 55596x1
6
                                  1 55596x1
        716
```


5. Plot histogram

contigSize - position

5. Plot histogram

```
plotContig <- function(cds.sense.freq,cds.antisense.freq,deg.sense.freq,cds.antisense.freq){
#SIMPLE DEG + CDS PLOT
     plot(cds.sense.freq$nPosition, cds.sense.freq$pFrequency, type = "h", ylim =
c(((max(deg.antisense.freq$pFrequency)/2)*-1), max(deg.sense.freq$pFrequency)/2)) #, xlim =
c(1350,1450))
     points(cds.antisense.freq$nPosition, cds.antisense.freq$pFrequency*-1, type = "h")
     points(deg.antisense.freq$nPosition, deg.antisense.freq$pFrequency * -1, type = "h", col =
"red")
     points(deg.sense.freq$nPosition, deg.sense.freq$pFrequency, type = "h", col = "red")
     title(main=as.data.frame(seqnames(CDS))[1,])
}
cutoff <- mean(deg.sense.freq$nFrequency)</pre>
```

- Antisense / + Sense

ç

-10

Glaucophyta-Cyanophora_paradoxa_dxContig10094x2

DEG = Red, CDS = Blue

Cleavage tag abundance and noise reduction of dataset

1. For each contig

- a. Take the mean
 - i. Mean = mean of contig
 - ii. Filter peaks that are X above mean

2. For each position

a. Take the mean across all contigs

Building and filtering a "peak" database

Relevant database of peaks from all contigs

	nPosition	pFrequency	nFrequency	cName	seq
722	409	7	0.02058824	10094x2	gaggtgcgcgtcaaggcgaaccaggaggtca
724	411	8	0.02352941	10094x2	ggtgcgcgtcaaggcgaaccaggaggtcaag
726	413	9	0.02647059	10094x2	tgcgcgtcaaggcgaaccaggaggtcaaggc
727	414	10	0.02941176	10094x2	gcgcgtcaaggcgaaccaggaggtcaaggcc
784	509	10	0.02941176	10094x2	gcaaggtcaccaagctcccggtcgtcacggg
798	527	15	0.04411765	10094x2	cggtcgtcacgggcgactcgctcggg

Building and filtering a "peak" database

Normalized relative frequency of an X-multiple small RNA across this contig in that position % away from the stop codon (1-this.contig_length)

Contig Name Genomic (DNA) sequence -/+15 bases around first base position of sense strand of sRNA: used for generating fasta file when/if needed

Relevant data Ase of pet As from all con

	pPosition pFreque	ency	nFrequency	cName	seq
722	409	7	0.02058824	10094x2	gaggtgcgcgtcaaggcgaaccaggaggtca
724	414	8	0.02352941	10094x2	ggtgcgcgtcaaggcgaaccaggaggtcaag
726	Number of multiples of	of this	0.02647059	10094x2	tgcgcgtcaaggcgaaccaggaggtcaaggc
727	sRNA (regardless of le	0.02941176	10094x2	gcgcgtcaaggcgaaccaggaggtcaaggcc	
784	that start at this posi		0.02941176	10094x2	gcaaggtcaccaagctcccggtcgtcacggg
798	JLI	10	∂ .04411765	10094x2	cggtcgtcacgggcgactcgctcggg

 $Red = 3x \ above \ mean$

Peak "Mining" with BLAST

- 1. Generate fasta from non-redundant peak database top sequences: CDS and Degradome
- 2. Align with BLAST
- 3. Same with randomized 30 nt (+/- 15 nt from first position \rightarrow randomize nPosition)
- 4. Align randomized peak dataset with BLAST
- 5. Look for significance (actual vs. random peaks)

```
10002x1 , gtcgagggcgaccggaagatcgtcgacgtcg
10027x1 , cgagctggtggaccatccgtttgagacacga , 477
10038x2 , acggaatcctcttcgtttacaatcccgagga , 275
10051x1 , ggtaaacaacagcgtgttgatgagcttctgg , 985
10051x1 , aaacaacagcgtgttgatgagcttctggttc , 988
10056x1 , actgcgttccctattcctattgcaagcgctc , 760
10056x1 , ctcgaatatggtggcactcgaagatctgaaa , 846
10056x1 , ccagaccccgaaaacgcttcagtgaagggtc , 964
10056x1 , tgcaagcaagtcccttgctggtcgcaagttt , 1041
10056x1 , aagcaagtcccttgctggtcgcaagtttgca , 1044
10064x1 , cacacctcgctcgtgaagatcgagggcgtgc , 82
10064x1 , cgcaacgaggtcgacttctacctcggcaagc , 118
10064x1 , caacgaggtcgacttctacctcggcaagcgc , 120
10064x1 , cggcaacaacggcatcgtccgcgccaagttc , 279
10064x1 , catcgtccgcgccaagttccggaagaacctg , 291
10064x1 , atcgtccgcgccaagttccggaagaacctgc , 292
10064x1 , tcgtccgcgccaagttccggaagaacctgcc , 293
10064x1 , cgtccgcgccaagttccggaagaacctgccg , 294
10094x2 , gaggtgcgcgtcaaggcgaaccaggaggtca , 409
```

10094x2 , ggtgcgcgtcaaggcgaaccaggaggtcaag , 411>

```
Project standard for naming blast related files:
```

FASTA:

> 2-letter-orgName.3-letter-identifier | strand | contigName | startPosition | endPosition | coverage or

frequency

Reads Mapped to sRNAs in CDS

	CDS data	
Sense reads (+)	36,7709	20.86%
Antisense reads (-)	1,394,966	79.14%
Total reads	1,762,675	
Contigs	31,895	

Construction of peak database

Construction of a non-redundant database from RNA-seq SAM file

- → Compresses database from 1,762,675 to 322,039 rows or down to 18.2699% of the original database
- → Keeps account of frequency or coverage of each unique small RNA

	rname strand	sta	rt	seq ciq	ar qw	idth e	nd wi	dth ngap	fre	q
1	10000x1	-	332	AGGCGGCCGAGGCGACGG	18M	18	349	18	0	1
2	10000x2	+	178	CTGCTCACGGCCGCCCAG	18M	18	195	18	0	1
3	10002x1	-	160	GCAGATTCGGAAGCATCATCCG	22M	22	181	22	0	1
4	10002x1	+	178	TCCGTGCCGTTGGACG	16M	16	193	16	0	1
5	10002x1	+	261	CTCCGGAGGATTTGGGGGCTTGA	23M	23	283	23	0	1
6	10002x1	+	266	GAGGATTTGGGGGCTTGA	18M	18	283	18	0	1

Using R/lattice to generate an aggregate exonucleolytic profile: 5'->3'

Cleavage tag abundance and noise reduction of dataset

Multiple of mean threshold

Discussion

- → Degradome tags are biased to the 3' end of transcripts
 - ◆ Indicated 3' bias due to overrepresentation of 5'->3' decay

- → Bias for antisense small RNAs
 - ◆ In the CDS data: 31,895 contigs had at least one read mapped from a total pool of 1,762,675 reads
 - ◆ 1,394,966 (79.14%) were antisense and 367,709 (20.86%) were sense.

Take Aways

- → There are specific exonic hotspots of sRNA production
 - ◆ Reads mapped to the *Cyanophora paradoxa* datasets (CDS, EST, Genomic) are exonic: predominantly associated with mRNA
- → Possible secondary siRNA pathway may exist that is also seen in plants
 - ◆ May account for "blocking pattern" seen in some contigs
 - ◆ Transitivity may be a common ancestral trait in Plantae group

Conclusion & Future Objectives

User-friendly tool for exploring epigenomic data

- 1. Gross, J., Wajid, S., Price, D. C., Zelzion, E., Li, J., Chan, C. X., & Bhattacharya, D. (2013). Evidence for Widespread Exonic Small RNAs in the Glaucophyte Alga Cyanophora paradoxa. PloS one, 8(7), e67669.
- 2. Bhattacharya, D., Price, D. C., Chan, C. X., Gross, J., Steiner, J. M., & Löffelhardt, W. (2014). Analysis of the Genome of Cyanophora paradoxa: An Algal Model for Understanding Primary Endosymbiosis. In Endosymbiosis (pp. 135-148). Springer Vienna. Chicago
- 3. Reyes-Prieto, A., Weber, A. P., & Bhattacharya, D. (2007). The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet., 41, 147-168.
- 4. Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P., Schwacke,
- R. & Bhattacharya, D. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335(6070), 843-847.
- 5. Lee, R. E. (2008). Phycology. Cambridge University Press.
- 6. Seckbach, J. (Ed.). (2002). Symbiosis: mechanisms and model systems (Vol. 4). Springer.
- 7. Gross, J., & Bhattacharya, D. (2011). Endosymbiont or host: who drove mitochondrial and plastid evolution. Biol Direct, 6, 12.
- 8. Wise, R. R. (2006). The diversity of plastid form and function. In The structure and function of plastids (pp. 3-26). Springer Netherlands.

- 9. Facchinelli, F., Pribil, M., Oster, U., Ebert, N. J., Bhattacharya, D., Leister, D., & Weber, A. P. (2013). Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta, 237(2), 637-651. 10. Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879), 1034-1039.
- 11. Kim, J. D., Senn, S., Harel, A., Jelen, B. I., & Falkowski, P. G. (2013). Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1622).
- 12. Mathews, K., van Holde and Ahern. (2000) Biochemistry Third Edition. Benjamin Cummings.
- 13 Floener, L., Danneberg, G., & Bothe, H. (1982). Metabolic activities in Cyanophora paradoxa and its cyanelles. Planta, 156(1), 70-77.
- 14. Zvelebil, M. J., & Baum, J. O. (2008). Understanding bioinformatics. Garland Science.
- 15. Brown, T. A. (2006). Genomes 3. Wiley-Liss, Oxford.
- 16. Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10(2), 94-108.
- 17. Gao, Z., Wang, M., Blair, D., Zheng, Y., & Dou, Y. (2014). Phylogenetic Analysis of the Endoribonuclease Dicer Family. PloS one, 9(4), e95350.

- 18 Zhang, X., Xia, J., Lii, Y. E., Barrera-Figueroa, B. E., Zhou, X., Gao, S., Lu, L., & Jin, H. (2012). Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol, 13(3), R20. 19. -
- 20. Shabalina, S. A., & Koonin, E. V. (2008). Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution, 23(10), 578-587.
- 21. Jackowiak, P., Nowacka, M., Strozycki, P. M., & Figlerowicz, M. (2011). RNA degradome—its biogenesis and functions. Nucleic acids research, 39(17), 7361-7370.
- 22. Cerutti, H., & Casas-Mollano, J. A. (2006). On the origin and functions of RNA-mediated silencing: from protists to man. Current genetics, 50(2), 81-99.
- 23. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X. & Surani, M. A. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature methods, 6(5), 377-382.
- 24. Nakanishi, K., Weinberg, D. E., Bartel, D. P., & Patel, D. J. (2012). Structure of yeast Argonaute with guide RNA. Nature, 486(7403), 368-374.
- 25. Joshua-Tor, L., & Hannon, G. J. (2011). Ancestral roles of small RNAs: an Agocentric perspective. Cold Spring Harbor perspectives in biology, 3(10), a003772.
- 26. Tuck, A. C., & Tollervey, D. (2011). RNA in pieces. Trends in genetics, 27(10), 422-432

- 27. Poulsen, C., Vaucheret, H., & Brodersen, P. (2013). Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. The Plant Cell Online, 25(1), 22-37.
- 28. Kuhn, C. D., & Joshua-Tor, L. (2013). Eukaryotic Argonautes come into focus. Trends in biochemical sciences, 38(5), 263-271.
- 29. -
- 30. Perrineau, M. M., Zelzion, E., Gross, J., Price, D. C., Boyd, J., & Bhattacharya, D. (2014). Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environmental microbiology.
- 31. Baldauf, S. L. (2003). Phylogeny for the faint of heart: a tutorial. TRENDS in Genetics, 19(6), 345-351.
- 32. Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589), 2053-2056.
- 33. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320(5880), 1185-1190.
- 34. Willmann, M. R., Berkowitz, N. D., & Gregory, B. D. (2013). Improved genomewide mapping of uncapped and cleaved transcripts in eukaryotes—GMUCT 2.0. Methods.

- 35. Cech, T. R., & Steitz, J. A. (2014). The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell, 157(1), 77-94.
- 36. Addo-Quaye, C., Miller, W., & Axtell, M. J. (2009). CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25(1), 130-131.
- 37. Endres, M. W., Cook, R. T., & Gregory, B. D. (2011). A high-throughput sequencing-based methodology to identify all uncapped and cleaved RNA molecules in eukaryotic genomes. In MicroRNAs in Development (pp. 209-223). Humana Press.
- 38. Frohman, M. A. (1990). RACE: rapid amplification of cDNA ends. PCR protocols: A guide to methods and applications, 28.
- 40. Wu, A. R., Neff, N. F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M. E., ... & Quake, S. R. (2014). Quantitative assessment of single-cell RNA-sequencing methods. Nature methods, 11(1), 41-46.
- 41. SAM Format Specication Working Group. The sam format specification (v1. 4-r985).
- 42. Perdomo, C., Campbell, J., & Schembri, F. (2014). Detecting Noncoding RNA Expression: From Arrays to Next-Generation Sequencing. In Non-coding RNAs and Cancer (pp. 25-44). Springer New York.
- 43. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis

Thank you for your time!

Questions?