Übung 1: Boolesche Algebra

in **"Digitaltechnik"** WS 2008/09

Aufgabe 1

Gegeben sei die nachfolgende Schaltung. Bestimmen Sie ihre Logikfunktion. Um welche Schaltung handelt es sich hierbei?

$$y = \left(A \cdot \overline{B}\right) + \left(B \cdot C\right)$$

Anzahl der Zeilen: 2^n n= Anzahl der Eingänge

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Schaltung für B = 0 ist y = ASchaltung für B = 1 ist y = C

 \rightarrow 2 – zu – 1 – Multiplexer

Aufgabe 2

- a) Gegeben sei die nachfolgende Schaltung. Bestimmen Sie ihre Schaltfunktion.
- b) Minimieren Sie die Schaltfunktion unter Verwendung der Axiome und Sätze der booleschen Algebra.

$$- \overline{\overline{A \cdot B} \cdot \overline{\overline{A} \cdot B \cdot C + \overline{B \cdot C}} + A \cdot \overline{B} \cdot C}$$

| Regel (11) =
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

$$- \overline{\overline{A \cdot B}} + \overline{\overline{\overline{A} \cdot B \cdot C} + \overline{B \cdot C}} + \overline{A \cdot \overline{B} \cdot C}$$

-
$$A \cdot B + \left(\overline{\overline{A} \cdot B \cdot C + \overline{B \cdot C}}\right) + A \cdot \overline{B} \cdot C$$

-
$$A \cdot B + \overline{A \cdot B \cdot C} \cdot \overline{B \cdot C} + A \cdot \overline{B} \cdot C$$
 | Regel (12)= $\overline{a + b} = \overline{a} \cdot \overline{b}$
- $A \cdot B + \overline{A \cdot B \cdot C} \cdot B \cdot C + A \cdot \overline{B} \cdot C$
- $A \cdot B + \overline{A} \cdot B \cdot C + \overline{B} \cdot B \cdot C + \overline{C} \cdot B \cdot C + A \cdot \overline{B} \cdot C$ | Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$
- $A \cdot B + A \cdot B \cdot C + \overline{B} \cdot B \cdot C + \overline{C} \cdot B \cdot C + A \cdot \overline{B} \cdot C$ | Regel (9) und (15) = $a \cdot \overline{a} = 0$ und $a \cdot 0 = 0$
- $A \cdot B + A \cdot B \cdot C + \overline{B} \cdot B \cdot C + \overline{C} \cdot C \cdot B + A \cdot \overline{B} \cdot C$ | Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$
- $A \cdot B + A \cdot B \cdot C + \overline{A \cdot B} \cdot C$ | Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$
- $A \cdot B + A \cdot C \cdot (B + \overline{B})$ | Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$
| Regel (10) = $a + \overline{a} = 1$, (8) = $a \cdot 1 = a$
| Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$
| Regel (6) = $a \cdot (b + c) = a \cdot b + a \cdot c$

Aufgabe 3

Minimieren Sie die Schaltfunktion unter Verwendung der Axiome und Sätze der booleschen Algebra.

$$F = \overline{\overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} \cdot \overline{\overline{(\overline{C} + D)} \cdot (\overline{A + B}) \cdot \overline{\overline{A} \cdot \overline{B}} + \overline{C} \cdot D}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(\overline{C} + D)} \cdot (\overline{A} + B) \cdot \overline{\overline{A} \cdot \overline{B}}} + \overline{C} \cdot D$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}} + \overline{\overline{(A + \overline{B})} \cdot \overline{C} \cdot \overline{D}} + \overline{\overline{(C + D)} \cdot (\overline{A} + B) \cdot \overline{A} \cdot \overline{B}} + \overline{C} \cdot D$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}} + \overline{\overline{(A + \overline{B})} \cdot C \cdot D} + \overline{\overline{(C + D)} \cdot (\overline{A} + B) \cdot A \cdot B} + \overline{C} \cdot D$$

$$= \overline{\overline{A} + \overline{B} + \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})}} + \overline{\overline{C} \cdot \overline{D}} + \overline{\overline{(C + D)}} + \overline{\overline{(A + B)}} + \overline{\overline{A} \cdot \overline{B}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} + \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})}} + \overline{\overline{C} \cdot \overline{D}} + \overline{\overline{(C + D)}} + \overline{\overline{(A + B)}} + \overline{\overline{A} \cdot \overline{B}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} + \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})}} + \overline{\overline{C} \cdot \overline{D}} + \overline{\overline{(C + D)}} + \overline{\overline{(A + B)}} + \overline{\overline{A} \cdot \overline{B}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})}} + \overline{\overline{C} \cdot \overline{D}} + \overline{\overline{C} \cdot \overline{D}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(C + D)} \cdot \overline{\overline{(A + B)}} \cdot \overline{\overline{A} \cdot \overline{B}}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(C + D)} \cdot \overline{\overline{(A + B)}} \cdot \overline{\overline{A} \cdot \overline{B}}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(C + D)} \cdot \overline{\overline{(A + B)}} \cdot \overline{\overline{A} \cdot \overline{B}}} + \overline{\overline{C} \cdot \overline{D}}$$

$$= \overline{\overline{A} + \overline{B} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{(A + \overline{B})} \cdot \overline{\overline{C} \cdot \overline{D}}} + \overline{\overline{\overline{C} \cdot$$