

1311/12502 Theory of Computation

Spring 2016

BLM2502 Theory of Computation

»	Course Outline	
»	Week	Content
»	1	Introduction to Course
»	2	Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
»	3	Regular Expressions
»	4	Finite Automata
»	5	Deterministic and Nondeterministic Finite Automata
»	6	Epsilon Transition, Equivalence of Automata
»	7	Pumping Theorem
»	8	April 10 - 14 week is the first midterm week
»	9	Context Free Grammars
»	10	Parse Tree, Ambiguity,
»	11	Pumping Theorem
»	12	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
»	13	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
»	14	May 22 – 27 week is the second midterm week
»	15	Review
»	16	Final Exam date will be announced

The Pumping Lemma for CFL's

Pumping Lemma

- » Recall the pumping lemma for regular languages.
- » It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.
- For CFL's the situation is a little more complicated.
 We can always find two pieces of any sufficiently long string to "pump" in tandem. acces class 2 2000
 - > That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of the CFL Pumping Lemma

- » For every context-free language L There is an integer n, such that For every string z in L of length > n There exists z = uvwxy such that:
 - $1. \qquad |vwx| < n.$
 - 2. |vx| > 0.
 - 3. For all i > 0, $uv^i wx^i y$ is in L.

IS IN L.

Seach lear

Seach le

Proof of the Pumping Lemma

- Start with a CNF grammar for L {ε}.
 Let the grammar have m variables.
 Pick n = 2^m.
 Let Izlan
 - - > Let |z| > n.
- » We claim ("Lemma 1") that a parse tree with yield z must have a path of length m+2 or more.

Proof of Lemma 1

» If all paths in the parse tree of a CNF grammar are of length < m+1, then the longest yield has length 2^{m-1} , as in figure:

Proof of the Pumping Lemma

- » Now we know that the parse tree for z has a path with at least m+1 variables.
- » Consider some longest path.
- » There are only m different variables, so among the lowest m+1 we can find two nodes with the same label, say A.
- » The parse tree thus looks like:

Jy Pumping

Twice

Pumping

Thrice, ...

Using the Pumping Lemma

- » Non-CFL's typically involve trying to match two pairs of counts or match two strings.
- » Example: pumping lemma can be used to show
- that $L = \{ww \mid w \text{ in } (0+1)^*\}$ is not a CFL. $v \in \{0'10' \mid i > 1\}$ is a CFL.
 - > We can match one pair of counts.

U DWB.

V "w x " y

Using the Pumping Lemma

» $L = \{0^{i}10^{i}10^{i} \mid i > 1\}$ is not a CFL

- > We can't match two pairs, or three counts as a group.
- > Proof using the pumping lemma.
- > Suppose L were a CFL.
- > Let n be L's pumping-lemma constant.
- > Consider $z = 0^{n}10^{n}10^{n}$.
- > We can write z = uvwxy, where |vwx| < n, and |vx| > 1.
- > Case 1: vx has no 0's.
- > Then at least one of them is a 1, and uwy has at most one 1, which no string in L does.

Using the Pumping Lemma

- » Still considering $z = 0^{n}10^{n}10^{n}$.
- » Case 2: vx has at least one 0.
- » vwx is too short (length < n) to extend to all three blocks of 0's in 0ⁿ10ⁿ10ⁿ.
- » Thus, uwy has at least one block of n 0's, and at least one block with fewer than n 0's.
- » Thus, uwy is not in L.

