Expected Shortfall Nonparametric Estimation Statistical Properties

Conditional Expected Shortfall Nonparametric Estimation

Young-geun Kim ygeunkim.github.io 2019711358, Department of Statistics

29 Nov, 2019

Expected Shortfall Nonparametric Estimation Statistical Properties

Expected Shortfall

Nonparametric Estimation

Statistical Properties

Expected Shortfall Nonparametric Estimation Statistical Properties

Expected Shortfall

Value at Risk

Tsay (2010) says that

Measure of loss under *normal* market conditions Minimal loss under *extraordinary* market circumstances

Value at Risk

p: **Right** tail probability

1: Time horizon

L(I): loss function of the asset

F: CDF of the loss

$$p = P[L(I) \ge VaR]$$

Subadditivity

Coherent risk measure

Homogeneity

Monotonicity

Translation invariance (risk-free condition)

Subadditivity

VaR

does not satisfy subadditivity

When two portfolios are merged, the risk measure should not be greater than the sum of each.

VaR underestimates the actual loss.

Conditional VaR

Stationary log-return
$$\{Y_t: t=1,\ldots n\}$$

Exogenous variable $\{X_t: t=1,\ldots n\}$
Conditional VaR (CVaR) or Expected Shortfall (ES)

$$\nu_p(x) = S^{-1}(p \mid x)$$

where

$$S(y \mid x) := 1 - F(y \mid x)$$

F: conditional CDF of Y_t given $X_t = x$.

Conditional Expected Shortfall

We are interested in Expected Shortfall given exogenous variable values

Conditional Expected Shortfall (CES)

$$\mu_{p}(x) = E[Y_{t} \mid Y_{t} \geq \nu_{p}(x), X_{t} = x]$$

Formulating CES

Let
$$B \equiv \{\omega \colon Y_t \ge \nu_p(x)\} \in \mathcal{B}$$
. Then

$$\mu_{p}(x) = E[Y_{t} \mid Y_{t} \geq \nu_{p}(x), X_{t} = x]$$

$$= \frac{1}{P(B)} \int_{B} Y_{t} dP$$

$$= \frac{1}{P(Y_{t} \geq \nu_{p}(x) \mid X_{t} = x)} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x) dy$$

$$= \frac{1}{p} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x) dy$$

Expected Shortfall Nonparametric Estimation Statistical Properties

Nonparametric Estimation

Workflow of Estimation

Plugging-in Method

$$\hat{\mu}_p(x) = \frac{1}{p} \int_{\hat{\nu}_p(x)}^{\infty} y \hat{f}(y \mid x) dy$$

What to estimate

Conditional PDF:
$$\hat{f}(y \mid x)$$

CVaR: $\hat{\nu}_p(x) = \hat{S}^{-1}(p \mid x)$

Conditional Disribution

Taylor expansion

Consider any symmetric kernel $K_h(\cdot)$. Then

$$E[K_h(y - Y_t) \mid X_t = x] = K_h * f_{y|x}(y)$$

$$= f(y \mid x) + \frac{h^2}{2} \mu_2(K) f^{(2)}(y \mid x) + o(h^2)$$

where $\mu_j(K) = \int_{\mathbb{R}} u^j K(u) du$.

Smoothing

$$f(y \mid x) \approx E[K_h(y - Y_t) \mid X_t = x]$$

Methods

Local Linear Weighted Nadaraya Watson WDKLL (Cai and Wang 2008)

Local Linear

Denote
$$Y_t^*(y) \equiv K_h(y - Y_t)$$
.

$$\hat{f}(y \mid x) = \underset{\alpha(x), \beta(x)}{\operatorname{argmin}} \sum_{t=1}^{n} W_{\lambda}(x - X_{t}) \left[Y_{t}^{*}(y) - \alpha(x) - \beta(x)(X_{t} - x) \right]^{2}$$

Since this is involved in the two kernel $(K_h(\cdot), W_{\lambda}(\cdot))$, Cai and Wang (2008) names this as double kernel.

Local Linear Solution

Note that the local linear estimate is equivalent to WLS.

$$\begin{aligned} \mathbf{Y}_y^* &= (Y_1(y), \dots, Y_n(y))^T \in \mathbb{R}^n \\ \mathbf{b}_x(x_t) &:= (1, x_t - x)^T \in \mathbb{R}^2 \text{ and } \mathbf{b}_x(x) = \mathbf{e}_1 := (1, 0)^T \\ X_x &:= \left(\mathbf{b}_x(x_i)^T\right) \in \mathbb{R}^{n \times 2} \\ W_x &:= diag(W_\lambda(x - X_j)) \in \mathbb{R}^{n \times n} \end{aligned}$$

Then $\hat{f}_{II} = \hat{\alpha}$:

$$\hat{f}_{II}(y \mid x) = \mathbf{e}_{1}^{T} (X_{x}^{T} W_{x} X_{x})^{-1} X_{x}^{T} W_{x} \mathbf{Y}_{y}^{*}$$

$$= \mathbf{I}(x)^{T} \mathbf{Y}_{y}^{*}$$

$$\equiv \sum_{t=1}^{n} l_{t}(x) Y_{t}^{*}(y)$$

Linear Smoother

$$\mathbf{I}(x)^T = \mathbf{e}_1^T (X_x^T W_x X_x)^{-1} X_x^T W_x$$

By annoying arithmetic,

$$I_t(x) = \frac{S_2(x) - (X_t - x)S_1(x)}{S_0(x)S_2(x) - [S_1(x)]^2} W_{\lambda}(x - X_t)$$

where
$$S_{j}(x) := \sum_{t=1}^{n} W_{\lambda}(x - X_{t})(X_{t} - x)^{j}$$
.

Matrix computations

Let $w_t \equiv W_{\lambda}(x - X_t)$

$$(X_x^T W_x X_x) = \begin{bmatrix} \sum_t w_t & \sum_t w_t (x_t - x) \\ \sum_t w_t (x_t - x) & \sum_t w_t (x_t - x)^2 \end{bmatrix} \equiv \begin{bmatrix} S_0 & S_1 \\ S_1 & S_2 \end{bmatrix}$$
$$X_x^T W_x = \begin{bmatrix} w_1 & \cdots & w_n \\ w_1 (x_1 - x) & \cdots & w_n (x_n - x) \end{bmatrix}$$

Thus,

$$\mathbf{I}(x)^{T} = \frac{1}{S_{0}S_{2} - S_{1}^{2}} \left[S_{2}w_{1} - S_{1}w_{1}(x_{1} - x) \cdots S_{2}w_{n} - S_{1}w_{n}(x_{n} - x) \right]$$

Discrete Moments Conditions

$$S_j(x) := \sum_{t=1}^n W_{\lambda}(x - X_t)(X_t - x)^j = \delta_{0,j} = \begin{cases} 1 & j = 0 \\ 0 & \text{o/w} \end{cases}$$

will be used when showing the asymptotic properties

CVaR

Invert $\hat{F}_{II}(y \mid x)$

Conditional CDF

$$\hat{F}_{II}(y \mid x) = \int_{\infty}^{y} \hat{f}_{II}(y \mid x) dy$$
$$= \sum_{t=1}^{n} I_{t}(x) G_{h}(y - Y_{t})$$

where $G(\cdot)$ is the cdf of $K(\cdot)$.

Problem

It must be $\hat{F}_{II} \in [0,1]$ and monotone increasing However, LL does not guarantee these properties.

Weighted Nadaraya Watson

To get the right shape of CDF

$$\hat{F}_{NW}(y \mid x) = \sum_{t=1}^{n} H_t(x, \lambda) I(Y_t \le y)$$

where

$$H_t(x,\lambda) = \frac{p_t(x)W_{\lambda}(x-X_t)}{\sum\limits_{i=1}^{n} p_i(x)W_{\lambda}(x-X_i)}$$

 $p_t(x)$ is weighted for each NW weight. Cai (2001) finds the best weights $\{p_t\}_1^n$ by maximizing the empirical likelihood.

Choosing weights

Constraints

$$p_t(x) \ge 0$$
$$\sum_t p_t(x) = 1$$

Discrete moments conditions
$$\sum_{t=1}^{n} H_t(x,\lambda)(X_t-x)^j = \delta_{0,j}, \ 0 \le j \le 1$$

Empirical likelihood

Maximize $\sum_t \ln p_t(x)$. Lagrangian multiplier gives that

$$p_t(x) = \frac{1}{n\left[1 + \gamma(X_t - x)W_\lambda(x - X_i)\right]} \ge 0$$

and γ uniquely maximizing the log of the empirical likelihood

$$L_n(\gamma) = -\sum_{t=1}^n \ln\left[1 + \gamma(X_t - x)W_\lambda(x - X_i)\right]$$

Weighted Double Kernel Local Linear

In a local linear scheme, replace linear smoother with WNW weight

$$\hat{f}_{cai}(y \mid x) = \sum_{t=1}^{n} H_t(x, \lambda) Y_t^*(y)$$

and hence,

$$\hat{F}_{cai}(y \mid x) = \int_{\infty}^{y} \hat{f}_{cai}(y \mid x) dy$$
$$= \sum_{t=1}^{n} H_{t}(x, \lambda) G_{h}(y - Y_{t})$$

Inverting and Plugging-in

CVaR

$$\hat{\nu}_p^{(cai)}(x) = \hat{S}_{cai}^{-1}(p \mid x)$$

where $\hat{S}_{cai}(y \mid x) = 1 - \hat{F}_{cai}(y \mid x)$

CES

$$\hat{\mu}_{p}(x) = \frac{1}{p} \sum_{t=1}^{n} H_{t}(x, \lambda) \left[Y_{t} \bar{G}_{h}(\hat{\nu}_{p}(x) - Y_{t}) + hG_{1,h}(\hat{\nu}_{p}(x) - Y_{t}) \right]$$

where
$$\bar{G}(u) = 1 - G(u)$$
 and $G_1(u) = \int_u^{\infty} vK(v)dv$.

Expected Shortfall Nonparametric Estimation Statistical Properties

Statistical Properties

Asymptotic Normality

Investigate

$$\hat{f}_{cai}(y \mid x)$$
 $\hat{S}_{cai}(y \mid x) = 1 - \hat{F}_{cai}(y \mid x)$
 $\hat{\nu}_p(x)$
 $\hat{\mu}_p(x)$

at both

Interior	Boundary
X	x = ch

α -Mixing

Quite general structure, reasonably weak condition \mathcal{L}_a^b : σ -algebra generated by $\{(X_t, Y_t)\}_a^b$ Strong mixing coefficient

$$\alpha(t) := \sup \left\{ |P(AB) - P(A)P(B)| \colon A \in \mathcal{L}_{-\infty}^0, B \in \mathcal{L}_t^\infty \right\}$$
 $\{(X_t, Y_t)\}$ is a stationary α -mixing if

$$\alpha(t) \to 0$$
 as $t \to \infty$

α -Mixing Assumption

Cai and Wang (2008) assumed that

$$\exists \delta_1 > 0$$
: $\alpha(t) = O\left(t^{-(2+\delta_1)}\right)$

Conditional CDF Bias

Under regularity conditions,

$$\sqrt{nh\lambda} \left[\hat{f}(y \mid x) - f(y \mid x) - B_f(y \mid x) \right] \stackrel{d}{\to} N \left(0, \sigma_f^2(y \mid x) \right)
B_f(y \mid x) = \frac{\lambda^2}{2} \mu_2(W) f^{(2)}(y \mid x) + \frac{h^2}{2} \mu_2(K) f^{(2)}(y \mid x)
\sigma_f^2(y \mid x) = \mu_0(K^2) \mu_0(W^2) \frac{f(y \mid x)}{g(x)}$$

Conditional CDF Bias

Under regularity conditions,

$$\sqrt{n\lambda} \left[\hat{S}_{cai}(y \mid x) - S(y \mid x) - B_{S}(y \mid x) \right] \stackrel{d}{\to} N \left(0, \sigma_{S}^{2}(y \mid x) \right)
B_{S}(y \mid x) = \frac{\lambda^{2}}{2} \mu_{2}(W) S^{(2)}(y \mid x) + \frac{h^{2}}{2} \mu_{2}(K) f(y \mid x)
\text{If } h = o(\lambda), \text{ then } B_{S}(y \mid x) = \frac{\lambda^{2}}{2} \mu_{2}(W) S^{(2)}(y \mid x)
\sigma_{S}^{2}(y \mid x) = \mu_{0}(W^{2}) S(y \mid x) \frac{1 - S(y \mid x)}{g(x)}$$

CVaR Bias

Interior

Boundary

CES Bias

Interior

Boundary

References

Cai, Zongwu. 2001. "Weighted Nadaraya—Watson Regression Estimation." *Statistics & Probability Letters* 51 (3): 307–18.

Cai, Zongwu, and Xian Wang. 2008. "Nonparametric estimation of conditional VaR and expected shortfall." *Journal of Econometrics* 147 (1): 120–30. https://doi.org/10.1016/j.jeconom.2008.09.005.

Tsay, Ruey S. 2010. *Analysis of Financial Time Series*. John Wiley & Sons.