Definicja. Łańcuch C w \mathbb{B}_n nazywamy symetrycznym, jeśli $C = \{X_k, X_{k+1}, \dots, X_{n-k}\}$, gdzie $X_k \subset X_{k+1} \subset \dots \subset X_{n-k}$ oraz $|X_i| = i$ dla pewnego k. Taki łańcuch narysowany na kracie jest symetryczny względem środkowego poziomu.

Twierdzenie (Sperner, 1928; łańcuchy symetryczne). Największy antyłańcuch w \mathbb{B}_n ma rozmiar $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Dowód. Rozważmy podział \mathbb{B}_n na łańcuchy symetryczne. Każdy taki łańcuch zawiera tylko jeden element ze środkowego poziomu (rozmiaru $\lfloor \frac{n}{2} \rfloor$), a więc podział ma $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ elementów. Z twierdzenia Dilwortha anty-łańcuch nie może mieć więcej niż tyle elementów.

Twierdzenie (podział na łańcuchy symetryczne, rekurencyjnie). Dla każdej kraty boolowskiej \mathbb{B}_n istnieje jej podział na łańcuchy symetryczne.

Dowód. \mathbb{B}_0 ma jeden element, on sam jest symetrycznym łańcuchem. Mając podział \mathbb{B}_n na symetryczne łańcuchy \mathcal{C} , konstruujemy podział \mathbb{B}_{n+1} : dla $C = \{X_k, \ldots, X_{n-k}\} \in \mathcal{C}$ łańcuchami w \mathbb{B}_{n+1} są $C' = \{X_k, X_{k+1}, \ldots, X_{n-k} \cup \{n+1\}\}$ oraz $C'' = \{X_k \cup \{n+1\}, x_{k+1} \cup \{n+1\}, \ldots, X_{n-k-1} \cup \{n+1\}\}$. Te łańcuchy są symetryczne w \mathbb{B}_{n+1} (pierwszy to zbiory ze środkowych poziomów mające od k do n+1-k elementów, a drugi od k+1 do n+1-k-1), a stworzenie takich łańcuchów dla wszystkich $C \in \mathcal{C}$ daje podział.

Twierdzenie (podział na łańcuchy symetryczne, wprost). Dla każdej kraty boolowskiej \mathbb{B}_n istnieje jej podział na łańcuchy symetryczne.

Dowód. Niech $A\subseteq [n]$. Będziemy utożsamiać A z ciągiem n nawiasów, gdzie i-ty nawias jest zamykający wtedy i tylko wtedy, gdy $i\in A$. Będziemy teraz parować nawiasy, to znaczy dla każdego $i\notin A$ znajdować najmniejsze takie j>i, że $j\in A$ (o ile istnieje). Niech M_A będzie zbiorem sparowanych elementów, a $F_A=\overline{M_A}=\{x_1,x_2,\ldots,x_k\}$ zbiorem niesparowanych. Załóżmy $x_1< x_2<\ldots< x_k$. Niech $I_A=M_A\cap A$ będzie zbiorem sparowanych zamykających nawiasów. Definiujemy łańcuch \mathcal{C} : jego kolejne elementy to $C_0=I_A,C_1=I_A\cup\{x_1\},\ldots,C_k=I_A\cup\{x_1,\ldots,x_k\}$. Mamy $|C_0|=\frac{|M_A|}{2}$ oraz $|C_k|=\frac{|M_A|}{2}+|F_A|$, więc $|C_0|+|C_k|=|M_A|+|F_A|=n$ i \mathcal{C} jest symetryczny.

Zauważmy, że (x_1, \ldots, x_k) jest ciągiem najpierw zamkniętych nawiasów, a potem otwartych (inaczej można by je sparować). Zbiór A jednoznacznie wyznacza parę (M_A, I_A) . Klasy przekształcenia $A \to (M_A, I_A)$ tworzą podział \mathbb{B}_n (jak to klasy), natomiast klasa, do której należy A, to właśnie skonstruowany przez nas łańcuch C – mając ustalone (M_A, I_A) mamy dowolność tylko na elementach F_A , w C_0 one wszystkie są otwarte, po kolei domykamy kolejne, dodając kolejne elementy F_A do zbiorów tworzących łańcuch. Zatem podział wyznaczony przez klasy tego przekształcenia dzieli \mathbb{B}_n na symetryczne łańcuchy.

Definicja. Liczba Dedekinda D_n to liczba antyłańcuchów w \mathbb{B}_n .

Twierdzenie (Ograniczenie na liczby Dedekinda). Liczba Dedekinda D_n ograniczona jest nierównościami

$$2^{\left(\left\lfloor \frac{n}{2}\right\rfloor\right)} \le D_n \le 3^{\left(\left\lfloor \frac{n}{2}\right\rfloor\right)}.$$

Dowód. Dolne ograniczenie wynika z tego, że największy antyłańcuch ma $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ elementów, a dowolny jego podzbiór jest antyłańcuchem.

Ograniczenie górne: antyłańcuchy można utożsamiać z ich zbiorami dolnymi (zbiorami elementów, które są mniejsze lub równe elementom antyłańcucha) – antyłańcuch zadaje swój zbiór dolny, antyłańcuch można odzyskać, biorąc elementy maksymalne. Natomiast zbiory dolne można utożsamiać z monotonicznymi funkcjami $\mathbb{B}_n \to \{0,1\}$, które są dopełnieniami funkcji charakterystycznych tych zbiorów. Będziemy zliczać funkcje monotoniczne.

Rozważmy podział na łańcuchy symetryczne \mathcal{C} zadany przez konstrukcję z nawiasowaniem. Każdy łańcuch $C \in \mathcal{C}$ ma ustalone elementy sparowane, a zmieniają się elementy niesparowane. Dla $\{A_0, \ldots, A_k\} \in \mathcal{C}$, gdzie $A_0 \subset \ldots \subset A_k$ i $k \geq 2$, w zbiorze A_i *i*-ty niesparowany nawias jest ostatnim domkniętym. Dla 0 < i < k istnieje za nim nawias otwarty. Możemy obrócić te nawiasy i sparować je, tworząc zbiór B_i , który należy do

pewnego krótszego łańcucha w C (są w nim dwa nowe sparowane nawiasy). Zauważmy, że $A_{i-1} \subset B_i \subset A_{i+1}$ (do A_{i-1} nie należą oba elementy, które obróciliśmy, tworząc B_i , a do A_{i+1} należą).

Będziemy definiować funkcję monotoniczną f, zaczynając od najkrótszych łańcuchów w \mathcal{C} . Na tych długości co najwyżej 2 (istnieją, bo środkowe poziomy są większe od nieśrodkowych, więc łańcuchy zawierające coś z nieśrodkowych poziomów nie pokryją środkowych) mamy maksymalnie 3 opcje (oba elementy dostają tą samą lub różne wartości). Rozważmy łańcuch $\{A_0,\ldots,A_k\}$ i zbiór $\{B_1,\ldots,B_{k-1}\}$ zbiorów otrzymanych z elementów łańcucha przez opisane wyżej przekształcenie. Funkcja f jest już na nich zdefiniowana. Jeśli $f(B_1)=1$, to $f(A_2)=1$ z monotoniczności i pozostaje nam wybór wartości na dwóch zbiorach z rozważanego łańcucha. Jeśli $f(B_{k-1})=0$, to $f(A_{k-2})=0$ z monotoniczności i ponownie pozostaje nam wybór wartości na dwóch zbiorach. Jeśli $f(B_1)=0$ i $f(B_{k-1})=1$, to istnieje takie $i\in[k-2]$, że $f(B_i)=0$ i $f(B_{i+1})=1$. Wtedy z monotoniczności $f(A_{i-1})=0$ i $f(A_{i+1})=1$, więc również zostały nam do wybrania dwie wartości. Zatem dla każdego z $\binom{n}{2}$ łańcuchów mamy możliwość dokonania co najwyżej 3 wyborów, czyli razem

mamy
$$3^{\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}$$
 możliwości.

Definicja. Dla zbioru $\mathcal{B} \subset \binom{[n]}{k}$ jego cieniem dolnym nazywamy zbiór $\Delta \mathcal{B} = \{A : \exists_{B \in \mathcal{B}, x \in B} \ A = B \setminus \{x\}\}$, a cieniem górnym nazywamy zbiór $\nabla \mathcal{B} = \{A : \exists_{B \in \mathcal{B}, x \in [n] \setminus B} \ A = B \cup \{x\}\}$. Elementy cienia odpowiednio tracą lub zyskują jeden element – cień jest obcięciem stożka do najbliższego poziomu.

Twierdzenie (rozmiar cienia). Dla $\mathcal{B} \subset \binom{[n]}{k}$ zachodzi

$$|\Delta \mathcal{B}| \ge \frac{k}{n - k + 1} |\mathcal{B}| \tag{1}$$

$$|\nabla \mathcal{B}| \ge \frac{n-k}{k+1} \, |\mathcal{B}| \tag{2}$$

z czego wynika, że $|\Delta \mathcal{B}| \ge |\mathcal{B}|$ dla $k \ge \frac{n+1}{2}$ oraz $|\nabla \mathcal{B}| \ge |\mathcal{B}|$ dla $k \le \frac{n-1}{2}$.

Dowód. Zliczamy moc zbioru $W = \{(A, B) : B \in \mathcal{B}, A \in \Delta \mathcal{B}, A \subset B\}$. Jest ona równa $k |\mathcal{B}|$, bo każdy element \mathcal{B} ma dokładnie k swoich elementów cienia. Jednocześnie każdy element cienia może mieć co najwyżej n - (k - 1) swoich nadzbiorów w \mathcal{B} , więc $|W| \leq |\Delta \mathcal{B}| (n - k + 1)$, co dowodzi (1). Podobne zliczenie dla górnego cienia (każdy element \mathcal{B} ma n - k swoich elementów cienia, element cienia ma co najwyżej k + 1 elementów \mathcal{B}) daje (2).

Twierdzenie (Sperner, 1928; cienie). Największy antyłańcuch w \mathbb{B}_n ma rozmiar $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Dowód. Niech \mathcal{A} będzie antyłańcuchem w \mathbb{B}_n i niech $\mathcal{A}_j = \mathcal{A} \cap {[n] \choose j}$. Jeśli $i = \min\{j : \mathcal{A}_j \neq \emptyset\}$, to dla $i \leq \frac{n-1}{2}$ zbiór $\mathcal{A}' = (\mathcal{A} \setminus \mathcal{A}_i) \cup \nabla \mathcal{A}_i$ ma większą moc od \mathcal{A} oraz dalej jest antyłańcuchem – jeśli coś jest nad cieniem górnym \mathcal{A}_i , to jest też nad \mathcal{A}_i , więc \mathcal{A} nie byłby antyłańcuchem. Podobnie, jeśli weźmiemy $k = \max\{j : \mathcal{A}_j \neq \emptyset\}$ i będzie $k \geq \frac{n+1}{2}$. Możemy więc po kolei przesuwać kolejne poziomy bliżej środka kraty. Jeśli $2 \nmid n$, to możemy wybrać dowolny ze środkowych poziomów, bo nierówności z cieniami na to pozwalają.

Definicja. Rodzina zbiorów \mathcal{F} jest przecinająca się, jeśli $\forall_{F,F'\in\mathcal{F}}$ $F\cap F'\neq\emptyset$.

Twierdzenie. Największa rodzina przecinająca się w \mathbb{B}_n ma rozmiar 2^{n-1} .

Dowód. Zauważmy, że dla rodziny przecinającej \mathcal{F} nie może jednocześnie zachodzić $X \in \mathcal{F}$ i $\overline{X} \in \mathcal{F}$. Zatem jest $|\mathcal{F}| \leq 2^{n-1}$. Przykładem takiej rodziny mogą być wszystkie podzbiory \mathbb{B}_n zawierające 1.

Twierdzenie (Erdős-Ko-Rado; 1961). Niech $\mathcal{F} \subseteq \binom{[n]}{k}$ będzie przecinająca się i niech $2k \leq n$. Maksymalny rozmiar \mathcal{F} to $\binom{n-1}{k-1}$.

Dowód. Najpierw zauważmy, że dla 2k > n można wziąć $\mathcal{F} = \binom{[n]}{k}$, bo wszystkie takie zbiory muszą się przecinać.

Faktyczny dowód zaczniemy, rozważając σ , będące cyklem z elementów [n]. Przedziałem k-elementowym w σ nazwiemy ciąg k elementów występujących kolejno w σ . Pokażemy, że do \mathcal{F} może należeć co najwyżej k przedziałów. Załóżmy, że $X = \{x_1, \ldots, x_k\} \in \mathcal{F}$ jest przedziałem w σ . Zauważmy, że pary przedziałów, z których jeden ma prawy koniec w x_i , a drugi ma lewy koniec w x_{i+1} dla $i \in [k]$ są jedynymi przedziałami, które mogą należeć do \mathcal{F} i co najwyżej jeden z każdej pary należy do \mathcal{F} (bo muszą się wzajemnie przecinać i przecinać X, a z $2k \leq n$ nie mogą "połączyć się" z odpowiednim przedziałem z drugiej strony). Zatem zbiór $W = \{(X,\sigma): X \in \mathcal{F}, \sigma$ cyklem w [n], X przedziałem w $\sigma\}$ ma co najwyżej k(n-1)! elementów (po k na każdy cykl). Jednocześnie każdy zbiór z \mathcal{F} można dopełnić do cyklu, stawiając go na początku cyklu i permutując jego elementy i pozostałe elementy, co daje nam $|W| = |\mathcal{F}| k!(n-k)!$, zatem $|\mathcal{F}| \leq \frac{k(n-1)!}{k!(n-k)!} = \binom{n-1}{k-1}$.

Aby znaleźć rodzinę spełniającą to ograniczenie, wystarczy ustalić $x \in [n]$ i wziąć wszystkie elementy $\binom{[n]\setminus\{x\}}{k-1}$ z dorzuconym x.

Twierdzenie (k-kaskadowa reprezentacja liczb naturalnych). Niech $m, k \in \mathbb{N}_1$. Istnieją takie liczby $a_k > a_{k-1} > \ldots > a_s \ge s \ge 1$, że

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_s}{s},$$

a ponadto taka reprezentacja jest jedyna.

Dowód. Istnienie dowodzimy indukując się po (k,m), dla k=1 mamy $m=\binom{m}{1}$, dla m=1 mamy $m=\binom{k}{k}$. W kroku indukcyjnym niech $a_k=\max\big\{a:\binom{a}{k}\leq m\big\}$, mamy $m=\binom{a_k}{k}+m'$, a m' z indukcji ma (k-1)-kaskadową reprezentację (lub jest równe 0, co kończy konstrukcję), w której jest $a_{k-1}< a_k$, bo inaczej $m\geq \binom{a_k}{k}+\binom{a_k}{k-1}=\binom{a_k+1}{k}$ wbrew definicji a_k .

Załóżmy nie wprost, że taka reprezentacja nie jest jedyna, a m jest minimalnym przykładem tego. Wtedy $m = \binom{a_k}{k} + \ldots + \binom{a_s}{s} = \binom{a_k'}{k} + \ldots + \binom{a_{s'}'}{s'}$ i $a_k \neq a_k'$ (inaczej można odjąć te same czynniki i otrzymać mniejszy kontrprzykład). Bez straty ogólności $a_k > a_k'$. Wtedy jednak $\binom{a_k'}{k} + \ldots + \binom{a_{s'}'}{s'} \leq \binom{a_k-1}{k} + \binom{a_k-2}{k-1} + \ldots + \binom{a_k-k}{1}$

$$\binom{a_k}{k} \le m$$
, co daje sprzeczność (druga nierówność wynika z tożsamości $\sum_{i=0}^k \binom{n-1+i}{i} = \binom{n+k}{k}$).

Definicja (colex). Na zbiorze $\binom{\mathbb{N}}{k}$ definiujemy porządek koleksykograficzny: dla $A, B \subset \mathbb{N}$ jest $A <_{col} B$ wtedy i tylko wtedy, gdy $\max(A \div B) \in B$. Oznacza to, że o porządku colex decyduje ostatni (największy) różniący się element – stąd nazwa.

Twierdzenie (Kruskal, 1963; Katona, 1968). Niech $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ i $|\mathcal{F}| = m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \ldots + \binom{a_s}{s}$. Wtedy

$$|\Delta \mathcal{F}| \ge {a_k \choose k-1} + {a_{k-1} \choose k-2} + \ldots + {a_s \choose s-1}.$$

Co więcej, takie ograniczenie jest najlepsze możliwe.

Dowód. Najpierw pokażemy, że istnieje rodzina spełniająca to ograniczenie. Weźmy rodzinę C(m,k) pierwszych m elementów z $\binom{\mathbb{N}}{k}$ w porządku koleksykograficznym. Mając zadaną k-kaskadową reprezentację m widzimy, że C(m,k) składa się z $\binom{[a_k]}{k}$, zbiorów powstałych przez dodanie $\{a_k+1\}$ do $\binom{[a_{k-1}]}{k-1}$, dodanie $\{a_k+1,a_{k-1}+1\}$ do $\binom{[a_k]}{k-2}$ i tak dalej, aż do zbiorów powstałych przez dodanie $\{a_k+1,\ldots,a_{s+1}+1\}$ do $\binom{[a_s]}{s}$ – bierzemy tyle ile się da na najmniejszym możliwym zbiorze, potem zostają nam zbiory, w których jest liczba o jeden większa i rekurencyjnie bierzemy mniejsze zbiory. Cień takiej rodziny składa się z $\binom{[a_k]}{k-1}$, zbiorów powstałych przez dodanie $\{a_k+1\}$ do $\binom{[a_{k-1}]}{k-2}$, dodanie $\{a_k+1,a_{k-1}+1\}$ do $\binom{a_{k-2}}{k-3}$ i tak dalej, aż do zbiorów powstałych przez dodanie $\{a_k+1,\ldots,a_{s+1}+1\}$ do $\binom{[a_s]}{s-1}$ – biorąc cień kolejnych z tych zbiorów

usunięcie któregoś z wyróżnionych elementów da nam jeden z otrzymanych wcześniej zbiorów, wszystkie inne dadzą coś nowego. To daje nam poszukiwaną wielkość cienia.

Pokazanie, że osiągnięta wartość jest faktycznie najmniejsza, przebiega identycznie jak dowód twierdzenia Lovásza, z tym, że trzeba wielokrotnie stosować rekurencyjny wzór na współczynniki dwumianowe.

Definicja. Niech $\mathcal{F} \subset \binom{N}{k}$ dla pewnego $k \geq 1$ oraz ustalmy $i \geq 2$. Operator przesunięcia S_i tworzy nową rodzinę $S_i(\mathcal{F}) = \{S_i(F) : F \in \mathcal{F}\}$, gdzie

$$S_i(F) = \begin{cases} F \setminus \{i\} \cup \{1\} & \text{jeśli } i \in F, 1 \notin F \text{ oraz } F \setminus \{i\} \cup \{1\} \notin \mathcal{F}, \\ F & \text{w przeciwnym razie.} \end{cases}$$

Jeśli $S_i(F) = F$ z powodu istnienia już przesuniętego zbioru w rodzinie, to mówimy, że F został zablokowany.

Lemat 1. Dla każdego skończonego $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ i $i \geq 2$ jest $|S_i(\mathcal{F})| = |\mathcal{F}|$.

Dowód. Różne zbiory są przesuwane w różne zbiory, a zbiór nie zostanie przesunięty, jeśli jego przesunięcie już jest w rodzinie.

Lemat 2. Dla dowolnego skończonego $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ i dowolnego $i \geq 2$ jest $\Delta S_i(\mathcal{F}) \subseteq S_i(\Delta \mathcal{F})$.

Dowód. Dowód wymaga rozważenia czterech przypadków. Przypuśćmy, że $E \in \Delta S_i(\mathcal{F})$, więc $E = S_i(F) \setminus \{x\}$ dla pewnego $F \in \mathcal{F}$ i $x \in S_i(F)$.

Najpierw załóżmy, że $1, i \notin S_i(F)$. Ponieważ $1 \notin S_i(F)$, musimy mieć $S_i(F) = F$, a zatem $E \subset F$. Zatem $E \in \Delta \mathcal{F}$, a ponieważ $i \notin E$, to $S_i(E) = E$. W związku z tym $E \in S_i(\Delta \mathcal{F})$.

Teraz przypuśćmy, że $1, i \in S_i(F)$. Ponieważ $i \in S_i(F)$, mamy $S_i(F) = F$, a zatem $E \in \Delta \mathcal{F}$, jak wcześniej. Jeśli $x \neq 1$, to $1 \in E$, i zatem $E = S_i(E) \in S_i(\Delta \mathcal{F})$. Jeśli x = 1, to $E' = E \setminus \{i\} \cup \{1\} \subset F$, a zatem $E' \in \Delta \mathcal{F}$. To oznacza, że E jest zablokowane i $S_i(E) = E$, co implikuje $E \in S_i(\Delta \mathcal{F})$.

W trzecim przypadku przypuśćmy, że $S_i(F) \cap \{1, i\} = \{i\}$. Ponieważ $i \in S_i(F)$, musimy mieć $S_i(F) = F$. Jednakże, jako że $i \in F$ i $1 \notin F$, F musiało być zablokowane przez $F' = F \setminus \{i\} \cup \{1\} \in \mathcal{F}$. Ponieważ $E \subset S_i(F) = F$, $E \in \Delta \mathcal{F}$. Jeśli x = i, to $i \notin E$, i zatem $E = S_i(E) \in S_i(\Delta \mathcal{F})$. Jeśli $x \neq i$, to E byłoby zablokowane przez $E' = F' \setminus \{x\} \in \Delta \mathcal{F}$, i zatem $E = S_i(E) \in S_i(\Delta \mathcal{F})$ również w tym przypadku.

Ostatni przypadek to gdy $S_i(F) \cap \{1, i\} = \{1\}$. Zauważmy, że $i \notin E$ i zatem $S_i(E) = E$. W związku z tym, jeśli $E \in \Delta \mathcal{F}$, to $E = S_i(E) \in S_i(\Delta \mathcal{F})$. Jeśli F nie przesunął się, to $F = S_i(F)$ i $E \in \Delta \mathcal{F}$. Jeśli F przesunął się, to $S_i(F) = F \setminus \{i\} \cup \{i\}$. Jeśli x = 1, to $E \subset F$ i zatem jak wcześniej $E \in \Delta \mathcal{F}$. Jeśli $x \neq 1$, niech $E' = E \setminus \{1\} \cup \{i\}$ i zauważmy, że $E' \subset F$, i zatem $E' \in \Delta \mathcal{F}$. Wtedy albo $E \in \Delta \mathcal{F}$, albo E' nie jest zablokowane przed przesunięciem, i $E = S_i(E') \in S_i(\Delta \mathcal{F})$. To kończy analizę przypadków.

Definicja. Rodzinę $\mathcal{F} \subset {\mathbb{N} \choose k}$ nazywamy stabilną, jeśli $S_i(\mathcal{F}) = \mathcal{F}$ dla każdego $i \geq 2$.

Lemat 3. Dla każdej skończonej rodziny $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ istnieje rodzina stabilna $\mathcal{G} \subset \binom{\mathbb{N}}{k}$ taka, że $|\mathcal{G}| = |\mathcal{F}|$ i $|\Delta \mathcal{G}| \leq |\Delta \mathcal{F}|$.

Dowód. Dla stabilnej \mathcal{F} można wziąć $\mathcal{G} = \mathcal{F}$, a inaczej można wziąć $\mathcal{F}' = S_i(\mathcal{F}) \neq \mathcal{F}$ dla pewnego $i \geq 2$ – Lematy 1 i 2 dają pożądane wielkości odpowiednich zbiorów. Możemy w ten sposób przesuwać rodzinę, póki się da. Ten proces się zakończy, bo każde przesunięcie zwiększa liczbę zbiorów zawierających 1.

Lemat 4. Dla każdej stabilnej rodziny $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ zachodzi $\Delta \mathcal{F}_0 \subseteq \mathcal{F}_1'$, gdzie $\mathcal{F} = \mathcal{F}_0 \sqcup \mathcal{F}_1$ i $\mathcal{F}_0 = \{F \in \mathcal{F} : 1 \notin F\}$ oraz $\mathcal{F}_1 = \{F \in \mathcal{F} : 1 \in F\}$ i $\mathcal{F}_1' = \{F \setminus \{1\} : F \in \mathcal{F}_1\}$.

Dowód. Przypuśćmy, że $E \in \Delta \mathcal{F}_0$. Wówczas musimy mieć $E = F \setminus \{x\}$ dla pewnego $F \in \mathcal{F}_0$ oraz $x \in F$. Ponieważ $F \in \mathcal{F}_0$, $x \geq 2$. Ponieważ \mathcal{F} jest stabilna, to $S_x(\mathcal{F}) = \mathcal{F}$, a zatem $S_x(F) = F$. To oznacza, że F był zablokowany, więc $F' = F \setminus \{x\} \cup \{1\} \in \mathcal{F}$ i w szczególności jest w \mathcal{F}_1 . Zatem $E = (F \setminus \{x\} \cup \{1\}) \setminus \{1\} \in \mathcal{F}'_1$.

Lemat 5. Dla każdej stabilnej rodziny $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ zachodzi $|\Delta \mathcal{F}| = |\mathcal{F}_1'| + |\Delta \mathcal{F}_1'|$, gdzie $\mathcal{F} = \mathcal{F}_0 \sqcup \mathcal{F}_1$ i $\mathcal{F}_0 = \{F \in \mathcal{F} : 1 \notin F\}$ oraz $\mathcal{F}_1 = \{F \in \mathcal{F} : 1 \in F\}$ i $\mathcal{F}_1' = \{F \setminus \{1\} : F \in \mathcal{F}_1\}$.

Dowód. Oczywiście mamy $\Delta \mathcal{F} = \Delta \mathcal{F}_0 \cup \Delta \mathcal{F}_1$. W Lemacie 4 pokazaliśmy, że $\Delta \mathcal{F}_0 \subseteq \mathcal{F}_1'$. Niech $\mathcal{F}'' = \{F \cup \{1\} : F \in \Delta \mathcal{F}_1'\}$ Pokażemy, że $\Delta \mathcal{F}_1 = \mathcal{F}_1' \cup \mathcal{F}''$. Te dwa zbiory są rozłączne (elementy tylko jednego zawierają 1), a w pierwszym z nich zawiera się \mathcal{F}_0 , więc da nam to żądaną równość.

To, że $\mathcal{F}'_1 \subseteq \Delta \mathcal{F}_1$, wynika z jego definicji, ponieważ dla każdego $F' \in \mathcal{F}'_1$ mamy $F' = F \setminus \{1\}$ dla pewnego $F \in \mathcal{F}_1$. Usunięcie elementu i dodanie 1 do elementu \mathcal{F}'_1 (przy definiowaniu \mathcal{F}'') można zrobić w odwrotnej kolejności, więc $\mathcal{F}'' \subseteq \Delta \mathcal{F}_1$. Jednocześnie w tych dwóch zbiorach znajdują się wszystkie elementy cienia \mathcal{F}_1 – jedne z nich powstają przez usunięcie 1, a drugie przez usunięcie czegokolwiek innego. To dowodzi zawierania w drugą stronę i kończy dowód.

Twierdzenie (Lovász, 1979). Niech $\mathcal{F} \subset \binom{\mathbb{N}}{k}$ i $|\mathcal{F}| = m = \binom{x}{k}$, gdzie $x \in \mathbb{R}$. Wtedy

$$|\Delta \mathcal{F}| \ge \binom{x}{k-1}.$$

Dowód. Przeprowadzimy indukcję po (k,m). Dla k=1 cień zawiera zbiór pusty i wymagamy od niego rozmiaru 1. Dla $m=1=\binom{k}{k}$ cień składa się z $k=\binom{k}{k-1}$ elementów. Dalej zakładamy, że $k,m\geq 2$. Z Lematu 3 możemy założyć, że $\mathcal F$ jest stabilna. Niech $\mathcal F=\mathcal F_0\sqcup\mathcal F_1$ i $\mathcal F_0=\{F\in\mathcal F:1\notin F\}$ oraz $\mathcal F_1=\{F\in\mathcal F:1\in F\}$ i $\mathcal F_1'=\{F\setminus\{1\}:F\in\mathcal F_1\}$. Pokażemy, że $|\mathcal F_1'|\geq \binom{x-1}{k-1}$.

Załóżmy, że tak nie jest. Mamy $m = |\mathcal{F}| = |\mathcal{F}_0| + |\mathcal{F}_1|$ oraz $|\mathcal{F}_1'| = |\mathcal{F}_1|$, zatem $|\mathcal{F}_0| > {x \choose k} - {x-1 \choose k-1} = {x-1 \choose k}$. Dla stabilnej rodziny \mathcal{F} rodzina \mathcal{F}_1 jest niepusta i $|\mathcal{F}_0| < m$, więc z indukcji i Lematu 4 jest $|\mathcal{F}_1'| \ge |\Delta \mathcal{F}_0| \ge {x-1 \choose k-1}$, co daje sprzeczność z założeniem nie wprost.

Z indukcji mamy teraz $|\Delta \mathcal{F}_1'| \ge {x-1 \choose k-2}$. Z Lematu 5 mamy więc $|\Delta \mathcal{F}| = |\mathcal{F}_1'| + |\Delta \mathcal{F}_1'| \ge {x-1 \choose k-1} + {x-1 \choose k-2} = {x \choose k-1}$, co kończy dowód.