CSIT 5500 Advanced Algorithm

LIN Jialiang 20656855

Q1:

Final array C:

•		
13	14	15
13	15	14

Estimation of each element:

element	0	1	2	3	4	5	6	7	8	9
count	14	13	15	14	13	15	14	13	15	14

Q2:

Estimate the 20-th number:

node range	1,2	3,4	5,6	7,8
count	12	12	6	12

Scan from left to right:

12<20,

12+12>20, then output 4.

4 is the estimation of 20-th number in the non-decreasing sorted list.

Q3:

The algorithm is as the following:

O $\nabla f_x = 2x$

```
Algorithm:

1. pick an arbitrary point Polxo, yo) ED.

2. For t:=1,1, ...

2t:= arg min <\forall fle), \( \frac{2}{2} \)

if stopping condition is satisfied:

return Pt

else:

at:= arg min f(Pt + a(\frac{2}{4} - \frac{P}{4}))

at= Lo, 1]

3. Pt+1 := Pt + at (\frac{2}{4} - \frac{P}{4})
```

The detailed specification of the above algorithm and explanation: Since $f(x) = x^2 + y^2$, to avoid the confusion, we use p_t represent x_t and α represent p_t :

(3)
$$-\langle \nabla f(Pt), Zt - Pt \rangle = \langle \nabla f(Pt), Pt - Z_t \rangle$$

stopping condition is:

$$-\langle \nabla f(P_t), z_t - P_t \rangle \leq \frac{\xi}{1+\xi} f(P_t)$$

using this stopping condition can guarantee (I+ E)-approximation.

Proof:

According to Lemma 2,

$$(f(P_t) - f^* \leq \frac{\xi}{11\xi} f(P_t)$$

therefore, satisfying (I+ E) - approximation

$$= \left[\left(\frac{1}{2x} - x_{t} \right)^{2} + \left(\frac{1}{2y} - y_{t} \right)^{2} \right] x^{2} + 2(x_{t} + x_{t} - x_{t}^{2} + y_{t} + y_{t}^{2}) x$$

$$+ x_{t}^{2} + y_{t}^{2}$$

we can see it is a convex function. So the min value would appear in the extreme points or boundary points.

Therefore, we can emurate these points, [here, just 3 pts) to get best α_t .

$$\frac{1}{2} \cdot \left\| \left(2x_1, 2x_2 \right) - 2(y_1, y_2) \right\| \leq \left\| \left(x_1 - y_1, x_2 - y_2 \right) \right\|$$

and we want to minimize
$$\frac{\alpha^2 L || z_t - P_t ||^2}{2}$$