AMENDMENTS TO THE CLAIMS

1. (original): A load measuring unit for a rolling bearing unit comprising:

a stationary ring;

a rotating ring arranged concentrically with the stationary ring;

a plurality of rolling elements provided rotatably between stationary-side raceways and rotating-side raceways, which are formed on mutual opposing portions of the stationary ring and the rotating ring in two rows or more respectively, respectively to direct a contact angle in an opposite direction mutually at least between a pair of rows;

at least a pair of revolution speed sensors for sensing revolution speeds of rolling elements, directions of contact angles of which are different mutually, in a pair of rows respectively; and

a calculator for calculating a load applied between the stationary ring and the rotating ring based on sensed signals fed from the revolution speed sensors;

wherein the contact angles of the rolling elements are differentiated mutually in respective rows.

Atty. Docket: Q86675

2. (Currently Amended): A load measuring unit for a rolling bearing unit according to claim 1, comprising:

a stationary ring;

a rotating ring arranged concentrically with the stationary ring;

a plurality of rolling elements provided rotatably between stationary-side raceways and rotating-side raceways, which are formed on mutual opposing portions of the stationary ring and the rotating ring in two rows or more respectively, respectively to direct a contact angle in an opposite direction mutually at least between a pair of rows;

at least a pair of revolution speed sensors for sensing revolution speeds of rolling elements, directions of contact angles of which are different mutually, in a pair of rows respectively; and

a calculator for calculating a load applied between the stationary ring and the rotating ring based on sensed signals fed from the revolution speed sensors;

wherein the contact angles of the rolling elements are differentiated mutually in respective rows, and

wherein the rotating ring is a hub that fixes a wheel of a car to a rotary-side flange, which is fixed to an outer peripheral surface of an outer end portion in an axial direction, to rotate together with the wheel, and the contact angle of the rolling element in an inner <u>row</u> tow in the axial direction are set larger than the contact angle of the rolling element in an outer row in the axial direction.

3. (original): A load measuring unit for a rolling bearing unit comprising:

a stationary ring;

a rotating ring arranged concentrically with the stationary ring;

a plurality of rolling elements provided rotatably between stationary-side raceways and rotating-side raceways, which are formed on mutual opposing portions of the stationary ring and the rotating ring in two rows or more respectively, respectively to direct a contact angle in an

opposite direction mutually at least between a pair of rows;

at least a pair of revolution speed sensors for sensing revolution speeds of rolling elements, directions of contact angles of which are different mutually, in a pair of rows

respectively; and

a calculator for calculating a load applied between the stationary ring and the rotating

ring based on sensed signals fed from the revolution speed sensors;

wherein an expression representing a relationship between a variation of the load and an

amount of change in the revolution speeds of the rolling elements in respective rows based on a

displacement of the load applied between the stationary ring and the rotating ring is installed into

the calculator, and the calculator calculates the load based on the expression.

4. (original): A load measuring unit for a rolling bearing unit according to claim 3,

wherein the rotating ring is a hub that fixes a wheel of a car to a rotary-side flange, which is

fixed to an outer peripheral surface of an outer end portion in an axial direction, to rotate together

with the wheel.

5. (canceled)

4

Atty. Docket: Q86675

6. (currently amended): A load measuring unit for a rolling bearing unit according to elaim 1, further comprising:

a stationary ring;

a rotating ring arranged concentrically with the stationary ring;

a plurality of rolling elements provided rotatably between stationary-side raceways and rotating-side raceways, which are formed on mutual opposing portions of the stationary ring and the rotating ring in two rows or more respectively, respectively to direct a contact angle in an opposite direction mutually at least between a pair of rows;

at least a pair of revolution speed sensors for sensing revolution speeds of rolling elements, directions of contact angles of which are different mutually, in a pair of rows respectively;

a calculator for calculating a load applied between the stationary ring and the rotating ring based on sensed signals fed from the revolution speed sensors,

wherein the contact angles of the rolling elements are differentiated mutually in respective rows; and

a rotational speed sensor for sensing rotational speed of the rotating ring,

wherein the calculator calculates the rotational speed of the rotating ring based on signals fed from the rotational speed sensor, and calculates the load applied between the stationary ring and the rotating ring based on ratios of the revolution speeds of the rolling elements in respective rows to the rotational speed.

Atty. Docket: Q86675

7. (Currently Amended): A load measuring unit for a rolling bearing unit according to claim 3, further comprising:

a stationary ring;

a rotating ring arranged concentrically with the stationary ring;

a plurality of rolling elements provided rotatably between stationary-side raceways and rotating-side raceways, which are formed on mutual opposing portions of the stationary ring and the rotating ring in two rows or more respectively, respectively to direct a contact angle in an opposite direction mutually at least between a pair of rows;

at least a pair of revolution speed sensors for sensing revolution speeds of rolling elements, directions of contact angles of which are different mutually, in a pair of rows respectively;

a calculator for calculating a load applied between the stationary ring and the rotating ring based on sensed signals fed from the revolution speed sensors,

wherein an expression representing a relationship between a variation of the load and an amount of change in the revolution speeds of the rolling elements in respective rows based on a displacement of the load applied between the stationary ring and the rotating ring is installed into the calculator, and the calculator calculates the load based on the expression; and

a rotational speed sensor for sensing rotational speed of the rotating ring,

wherein the calculator calculates the rotational speed of the rotating ring based on signals fed from the rotational speed sensor, and calculates the load applied between the stationary ring and rotating ring based on ratios of the revolution speeds of the rolling elements in respective rows to the rotational speed.