The following table summarizes methods known to me.

Name	Original Recurrence	Sufficient Condition of Applicability	Original Complexity	Optimized Complexity	Links
Convex Hull Optimization1	$dp[i] = min_{j < i} \{dp[j] + b[j] \star a[i]\}$	$b[j] \ge b[j+1]$ optionally $a[i] \le a[i+1]$	$O(n^2)$	O(n)	1 2 3 p1
Convex Hull Optimization2	$dp[i][j] = min_{k < j} \{ dp[i-1][k] + b[k] * a[j] \}$	$b[k] \ge b[k+1]$ optionally $a[j] \le a[j+1]$	$O(kn^2)$	O(kn)	1 p1 p2
Divide and Conquer Optimization	$dp[i][j] = min_{k < j} \{ dp[i-1][k] + C[k][j] \}$	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	O(knlogn)	1 p1
Knuth Optimization	$dp[i][j] = min_{i < k < j} \{dp[i][k] + dp[k][j]\} + C[i][j]$	$A[i,j-1] \le A[i,j] \le A[i+1,j]$	$O(n^3)$	$O(n^2)$	1 2 p1

Notes:

- A[i][j] the smallest k that gives optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way: $dp[i] = min_{j < i} \{F[j] + b[j] * a[i] \}$, where F[j] is computed from dp[j] in constant time.
- It looks like Convex Hull Optimization2 is a special case of Divide and Conquer Optimization.
- It is claimed (in the references) that **Knuth Optimization** is applicable if C[i][j] satisfies the following 2 conditions:
- quadrangle inequality: $C[a][c] + C[b][d] \leq C[a][d] + C[b][c], \ a \leq b \leq c \leq d$ monotonicity: $C[b][c] \leq C[a][d], \ a \leq b \leq c \leq d$
- It is claimed (in the references) that the recurrence $dp[j] = min_{i < j} \{dp[i] + C[i][j]\}$ can be solved in O(nlogn) (and even O(n)) if C[i][j] satisfies quadrangle inequality. YuukaKazami described how to solve some case of this problem.