Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Determinisierung von endlichen Automaten

Prof. Dr. David Sabel

LFE Theoretische Informatik

Wiederholung: NFA

Definition

Ein nichtdeterministischer endlicher Automat. (nondeterministic finite automaton, NFA) ist ein 5-Tupel $(Z, \Sigma, \delta, S, E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- $\delta: Z \times \Sigma \to \mathcal{P}(Z)$ ist die Zustandsüberführungsfunktion.
- $S \subseteq Z$ ist die Menge der Startzustände und
- $E \subseteq Z$ ist die Menge der Endzustände.

Wiederholung: Akzeptanz beim NFA

"Ein Wort w wird vom NFA akzeptiert, wenn es einen Pfad von einem Startzustand zum Endzustand entlang w gibt "

Definition (Akzeptierte Sprache eines NFA)

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA.

Wir definieren $\widehat{\delta}: (\mathcal{P}(Z) \times \Sigma^*) \to \mathcal{P}(Z)$ induktiv durch:

$$\begin{array}{ll} \widehat{\delta}(X,\varepsilon) &:= X \text{ für alle } X \subseteq Z \\ \widehat{\delta}(X,aw) &:= \bigcup_{z \in X} \widehat{\delta}(\delta(z,a),w) \text{ für alle } X \subseteq Z \end{array}$$

Die von M akzeptierte Sprache ist

$$L(M) = \{ w \in \Sigma^* \mid \widehat{\delta}(S, w) \cap E \neq \emptyset \}$$

Theorem 4.4.1

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis: Zeige für jede reguläre Grammatik G lässt sich NFA M konstruieren mit L(G)=L(M):

• Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik mit L(G) = L.

Theorem 4.4.1

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis: Zeige für jede reguläre Grammatik G lässt sich NFA M konstruieren mit L(G) = L(M):

- Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik mit L(G) = L.
- Sei $M = (Z, \Sigma, \delta, S', E)$ ein NFA mit
 - $\bullet \ Z = V \cup \{z_E\} \ (z_E \ \text{neu}), \ S' = \{S\} \ \text{und} \ E = \left\{ \begin{array}{ll} \{z_E, S\}, & \text{falls} \ S \to \varepsilon \in P \\ \{z_E\}, & \text{sonst} \end{array} \right.$
 - $\bullet \ \delta(A,a) := \{B \mid A \to aB \in P\} \cup \{z_E \mid \mathsf{falls} \ A \to a \in P\} \quad \mathsf{und} \ \delta(z_E,a) := \emptyset \ \mathsf{für \ alle} \ a \in \Sigma.$

Theorem 4.4.1

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis: Zeige für jede reguläre Grammatik G lässt sich NFA M konstruieren mit L(G) = L(M):

- Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik mit L(G) = L.
- Sei $M = (Z, \Sigma, \delta, S', E)$ ein NFA mit
 - $\bullet \ Z = V \cup \{z_E\} \ \big(z_E \ \text{neu}\big), \ S' = \{S\} \ \text{und} \ E = \left\{ \begin{array}{ll} \{z_E, S\}, & \text{falls} \ S \to \varepsilon \in P \\ \{z_E\}, & \text{sonst} \end{array} \right.$
 - $\bullet \ \delta(A,a) := \{B \mid A \to aB \in P\} \cup \{z_E \mid \mathsf{falls} \ A \to a \in P\} \quad \mathsf{und} \ \delta(z_E,a) := \emptyset \ \mathsf{f\"{u}r} \ \mathsf{alle} \ a \in \Sigma.$
- Offensichtlich gilt: $\varepsilon \in L(M) \iff \varepsilon \in L(G)$.

Theorem 4.4.1

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis: Zeige für jede reguläre Grammatik G lässt sich NFA M konstruieren mit L(G) = L(M):

- Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik mit L(G) = L.
- Sei $M = (Z, \Sigma, \delta, S', E)$ ein NFA mit
 - $\bullet \ Z = V \cup \{z_E\} \ (z_E \ \text{neu}), \ S' = \{S\} \ \text{und} \ E = \left\{ \begin{array}{ll} \{z_E, S\}, & \text{falls} \ S \to \varepsilon \in P \\ \{z_E\}, & \text{sonst} \end{array} \right.$
 - $\bullet \ \delta(A,a) := \{B \mid A \to aB \in P\} \cup \{z_E \mid \mathsf{falls} \ A \to a \in P\} \quad \mathsf{und} \ \delta(z_E,a) := \emptyset \ \mathsf{für \ alle} \ a \in \Sigma.$
- $\begin{array}{l} \bullet \ \, \text{Offensichtlich gilt: } \varepsilon \in L(M) \iff \varepsilon \in L(G). \ \, \text{Für } w = a_1 \cdots a_n \, \, \text{gilt:} \\ w \in L(G) \, \, \text{g.d.w.} \, \, S \Rightarrow_G a_1 A_1 \Rightarrow_G \ldots \Rightarrow_G a_1 \cdots a_{n-1} A_{n-1} \Rightarrow_G a_1 \cdots a_n \\ \text{g.d.w. Es gibt Zustände} \, \, A_1, \ldots, A_{n-1} \, \, \text{mit} \, \, A_1 \in \delta(S, a_1), \, A_{i+1} \in \delta(A_i, a_{i+1}) \\ \text{für } 1 \leq i \leq n-2 \, \, \text{und} \, \, z_E \in \delta(A_{n-1}, a_n) \\ \text{g.d.w. } w \in L(M) \\ \end{array}$

Beispiel: Konstruktion NFA aus Typ 3-Grammatik

Betrachte die reguläre Grammatik
$$G=(V,\Sigma,P,A)$$
 mit $V=\{A,B,C,D\}$, $\Sigma=\{a,b,c\}$ und
$$P=\{\begin{array}{ccc|c}A\to\varepsilon\mid aB\mid bB\mid cB\mid aC,\\B\to aB\mid bB\mid cB\mid aC,\\C\to aD\mid bD\mid cD,\\D\to a\mid b\mid c\}\end{array}$$

Konstruktion des dazu passenden NFA: $M = (Z, \Sigma, \delta, S, E)$ mit

- $Z = V \cup \{z_E\} = \{A, B, C, D, z_E\},$
- $E = \{A, z_E\}, S = \{A\}$ und

$$\begin{array}{lll} \delta(A,a) \! = \! \{B,C\} & \delta(B,a) \! = \! \{B,C\} & \delta(C,a) \! = \! \{D\} & \delta(D,a) \! = \! \{z_E\} & \delta(z_E,a) \! = \! \emptyset \\ \delta(A,b) \! = \! \{B\} & \delta(B,b) \! = \! \{B\} & \delta(C,b) \! = \! \{D\} & \delta(D,b) \! = \! \{z_E\} & \delta(z_E,b) \! = \! \emptyset \\ \delta(A,c) \! = \! \{B\} & \delta(B,c) \! = \! \{B\} & \delta(C,c) \! = \! \{D\} & \delta(D,c) \! = \! \{z_E\} & \delta(z_E,c) \! = \! \emptyset \end{array}$$

Beispiel: Konstruktion NFA aus Typ 3-Grammatik (2)

Der Zustandsgraph zu M ist

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

Theorem 4.5.1 (Rabin & Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweisidee:

 Konstruiere für einen gegebenen NFA einen DFA, sodass sich "der DFA alle Zustände merkt, in denen der NFA sein könnte"

 Konstruktion: Jede Teilmenge von Zuständen des NFA wird zu einem Zustand des DFA (daher: Potenzmengenkonstruktion)

Potenzmengenkonstruktion

Für NFA $M=(Z,\Sigma,\delta,S,E)$ konstruieren wir den DFA $M'=(Z',\Sigma,\delta',S',E')$ mit

- $Z' = \mathcal{P}(Z)$ "Zustandsmenge ist Potenzmenge von Z"
- ullet S' = S "Startzustand ist Menge S aller Startzustände von M "
- $E' = \{X \in Z' \mid (E \cap X) \neq \emptyset\}$ "Jede Menge, die mind. einen Endzustand von E enthält, ist Endzustand in M'"
- $\delta'(X,a) = \bigcup_{z \in X} \delta(z,a) = \widehat{\delta}(X,a)$ " $\delta'(X,a)$ berechnet alle von einem Zustand in X aus über a erreichbaren Zustände."

Korrektheit der Potenzmengenkonstruktion

Wir beweisen, dass
$$L(M)=L(M')$$
 gilt, indem wir zeigen:
$$w\in L(M) \text{ g.d.w. } w\in L(M')$$

• Fall $w = \varepsilon$:

$$\varepsilon \in L(M)$$
 g.d.w. $S \cap E \neq \emptyset$ g.d.w $S \in E'$ g.d.w. $\varepsilon \in L(M')$

• Fall $w = a_1 \cdots a_n \in \Sigma^*$:

$$w \in L(M)$$

g.d.w.
$$\widehat{\delta}(S,w) \cap E \neq \emptyset$$

g.d.w. Es gibt Teilmengen Z_1, \ldots, Z_n von Z mit $\delta(S, a_1) = Z_1, \ \delta(Z_i, a_{i+1}) = Z_{i+1} \ \text{für } i = 1, \dots, n-1$

und
$$Z_n \cap E \neq \emptyset$$

g.d.w.
$$\widehat{\delta'}(S',w) \in E'$$

g.d.w $w \in L(M')$


```
M' = (\mathcal{P}(\{z_0, z_1, z_2, z_3\}), \{a, b, c\}, \delta', S', E') \text{ mit } S' = \{z_0, z_3\}
 E' = \{\{z_3\}, \{z_0, z_3\}, \{z_1, z_3\}, \{z_2, z_3\}, \{z_0, z_1, z_3\}, \{z_0, z_2, z_3\}, \{z_1, z_2, z_3\}, \{z_0, z_1, z_2, z_3\}\}
\begin{array}{lll} \delta'(\emptyset,d) &= \emptyset \text{ für } d \in \{a,b,c\} \\ \delta'(\{z_0\},a) &= \{z_0,z_1\} \\ \delta'(\{z_0\},d) &= \{z_0\} \text{ für } d \in \{b,c\} \end{array} \qquad \begin{array}{ll} \delta'(\{z_1,z_3\},d) &= \{z_2\} \text{ für } d \in \{a,b,c\} \\ \delta'(\{z_0\},d) &= \{z_0\} \text{ für } d \in \{b,c\} \\ \delta'(\{z_0,z_1,z_2\},a) &= \{z_0,z_1,z_2,z_3\} \end{array}
\delta'(\{z_1\},d) = \{z_2\} \text{ für } d \in \{a,b,c\} \qquad \delta'(\{z_0,z_1,z_2\},d) = \{z_0,z_2,z_3\} \text{ für } d \in \{b,c\}
\delta'(\{z_2\},d) = \{z_3\} \text{ für } d \in \{a,b,c\} \qquad \delta'(\{z_0,z_1,z_3\},a) = \{z_0,z_1,z_2\}
\delta'(\{z_3\},d) = \emptyset \text{ für } d \in \{a,b,c\} \delta'(\{z_0,z_1,z_3\},d) = \{z_0,z_2\} \text{ für } d \in \{b,c\}
\delta'(\{z_0, z_1\}, a) = \{z_0, z_1, z_2\}
                                                          \delta'(\{z_0, z_2, z_3\}, a) = \{z_0, z_1, z_3\}
\delta'(\{z_0, z_1\}, d) = \{z_0, z_2\} \text{ für } d \in \{b, c\}
                                                                           \delta'(\{z_0, z_2, z_3\}, d) = \{z_0, z_3\} \text{ für } d \in \{b, c\}
\delta'(\{z_0, z_2\}, a) = \{z_0, z_1, z_3\}
                                                                           \delta'(\{z_1, z_2, z_3\}, d) = \{z_2, z_3\} \text{ für } d \in \{a, b, c\}
\delta'(\{z_0, z_2\}, d) = \{z_0, z_3\} \text{ für } d \in \{b, c\}
                                                                          \delta'(\{z_0, z_1, z_2, z_3\}, a) = \{z_0, z_1, z_2, z_3\}
                                                                           \delta'(\{z_0, z_1, z_2, z_3\}, b) = \{z_0, z_2, z_3\}
\delta'(\{z_0, z_3\}, a) = \{z_0, z_1\}
\delta'(\{z_0, z_3\}, d) = \{z_0\} \text{ für } d \in \{b, c\} \delta'(\{z_0, z_1, z_2, z_3\}, c) = \{z_0, z_2, z_3\}
\delta'(\{z_1, z_2\}, d) = \{z_2, z_3\} \text{ für } d \in \{a, b, c\}
```


DFAs & NFAs sind Formalismen für Typ 3-Sprachen

Theorem 4.5.4

DFAs und NFAs erkennen genau die regulären Sprachen.

Das folgt aus:

- ullet Theorem 4.2.1: Sei M ein DFA. Dann ist L(M) regulär.
- ullet Theorem 4.4.1: Für jede reguläre Sprache L gibt es einen NFA M mit L(M)=L.
- Theorem 4.5.1: Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.
- Jeder DFA kann leicht auch als NFA interpretiert werden

Größe des DFAs vs NFAs

- Sei M ein NFA mit n Zuständen.
- ullet Der durch die Potenzmengenkonstruktion erstellte DFA hat 2^n Zustände!
- D.h. der Platz explodiert uns!
- Frage: Geht es besser (unsere Kodierung ist zu einfach) oder nicht?
- Das folgende Lemma zeigt, dass es nicht wirklich besser geht

Lemma

Sei $L_n = \{uav \mid u \in \{a,b\}^*, v \in \{a,b\}^{n-1}\}$ für $n \in \mathbb{N}_{>0}$. (Sprache aller Wörter aus $\{a,b\}^*$, die an n-letzter Stelle ein a haben).

- Es gibt NFA M_n mit $L(M_n) = L_n$ und M_n hat n+1 Zustände.
- Jeder DFA M'_n mit $L(M'_n) = L_n$, hat mindestens 2^n Zustände.

Beweis: Nächste Vorlesung (nur FSK)