— DFS&BFS, Cycle, DAG, SCC, and Biconnectivity

hengxin0912@gmail.com

May 19, 2016

1 / 31

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG
- 5 SCC
- 6 Biconnectivity

Contents of Tutorials

Overview:

- 1. Graph Decomposition (vs. Graph Traversal)
- 2. MST & Path \Rightarrow Greedy Algorithm
- 3. DP: Dynamic Programming

Graph decomposition vs. Graph traversal

- objects: integer vs. graph
- graph traversal as basis
- structure matters
 - states of vertices
 - ▶ undiscovered → discovered → finished
 - ightharpoonup white ightarrow gray ightarrow black
 - types of edges
 - tree edge, back edge, forward edge, cross edge
 - DFS: lifetime of vertices
 - v: d[v], f[v]
 - ▶ f[v]: DAG, SCC
 - ▶ d[v]: biconnectivity

- Overview
- DFS and BFS
- 3 Cycle
- 4 DAG
- 5 SCC
- 6 Biconnectivity

Classifying edges

Definition (Classifying edges)

Given a dfs/bfs traversal:

- ► Tree edge
- ► Back edge
- ► Forward edge
- ► Cross edge

Remarks:

- ► Applicable to both DFS and BFS
- ► With respect to DFS/BFS trees

Classifying edges [Problem: 3.4.1]

(a) DFS on directed graph.

(c) BFS on directed graph.

(b) DFS on undirected graph.

(d) BFS on undirected graph.

Classifying edges

DFS tree and BFS tree coincide [Problem: 3.4.30]

$$G = (V, E), v \in V$$
. DFS tree $T = BFS$ tree T' .

- G is an undirected graph $\Rightarrow G = T$.
- G is a digraph \Rightarrow ? G = T.

Solution.

- ▶ T: tree + back; T': tree + cross
- ightharpoonup T: tree + back + forward + cross; T': tree + back + cross

Distance constraints for BFS

Distance constraints for BFS [Problem: 3.4.4]

BFS on digraph:

BFS on undirected graph:

TE:
$$d[v] = d[u] + 1$$

$$\mathsf{TE} \colon d[v] = d[u] + 1$$

$$\mathsf{BE} \hbox{:} \ 0 \leq d[v] \leq d[u]$$

$$\mathsf{CE} \colon \, d[v] = d[u] \vee d[v] = d[u] + 1$$

 $\mathsf{CE} \colon d[v] \le d[u] + 1$

Solution to "CE in BFS on undirected graph".

- b d[v] = d[u], d[v] = d[u] + 1
- b d[v] < d[u], d[v] > d[u] + 1

Remark.

- ▶ BFS tree defines a *shortest-path* from its root to every other node.
- ▶ Layers in BFS on *undirected* graph; c.f. bipartite testing [Problem: 3.4.26]

Lifetime of vertices in DFS

Lifetime of vertices in DFS [Problem: 3.4.5]

 $\forall u, v$:

- ▶ u is an ancestor of v: $[d[v], f[v]] \subset [d[u], f[u]]; [_u [_v]_v]_u$
- ightharpoonup u,v has no ancestor/descendant relation: [d[v],f[v]]||[d[u],f[u]]

Solution.

Assume $u, v \in \mathsf{DFS}$ tree.

- c: least common ancestor of u, v [Problem: 3.4.17]
- ightharpoonup c o u' o u; c o v' o v
- $u', v' \text{ disjoint}; u \subset u' \land v \subset v'$

Remark.

 $\forall u, v : [u]_u, [v]_v$ are either *disjoint* or one is *contained* within the other.

Preprocessing for ancestor/descendant relation

Preprocessing for ancestor/descendant relation [Problem: 3.4.14]

- ightharpoonup binary tree \Rightarrow tree T
- $r \in T$

Solution.

 $v : \mathsf{d}[v], \mathsf{f}[v]$

Remark.

 $\forall v$: how many descendants?

$$(f[v] - d[v])/2$$

Edge types and lifetime of vertices in DFS

Edge types and lifetime of vertices in DFS [Problem: 3.4.3]

 $\forall u \rightarrow v$:

- ▶ tree/forward edge: $[u \ [v \]v \]u$
- lacktriangle back edge: $[v\ [u\]u\]v$
- cross edge: $[v]_v[u]_u$

Remark.

- f[v] < d[u]: cross edge
- f[u] < f[v]: back edge

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG
- 5 SCC
- 6 Biconnectivity

Cycle detection

Table: Cycle detection [Problem: 3.4.21]

	Digraph	Undirected graph
DFS	back edge ←⇒ cycle	back edge ⇔ cycle
BFS	back edge ⇒ cycle cycle ⇒ back edge	$\operatorname{cross} \operatorname{edge} \iff \operatorname{cycle}$

Remark.

- cycle in undirected graphs
- cycle in digraphs
 - DAG
 - ► SCC

Edge deletion

Edge deletion [Problem: 3.4.12]

- lacktriangle Input: connected, undirected graph G
- ▶ Problem: $\exists ?e \in E : G \setminus e$ is connected?
- ► O(|V|)

Solution.

cycle
$$\iff \exists e$$
:

Proof.

- \blacktriangleright \Leftarrow : by contradiction. connected + acyclic \Rightarrow tree
- tree: $|E| = |V| 1 \Rightarrow \operatorname{check} |E| \ge |V|$

12 / 31

Orientation of undirected graph

Orientation of undirected graph [Problem: 3.4.13]

Undirected (connected) graph G, edge oriented s.t. $\forall v, \text{in}[v] \geq 1$.

Solution.

orientation $\iff \exists$ cycle; DFS

Bipartite graph

Bipartite graph [Problem: 3.4.26; 3.4.32]

To test bipartiteness of an undirected graph.

Solution.

BFS + Coloring:

- ightharpoonup pick any s, c[s] = 0
- $u \leftarrow \mathsf{Dequeue}(Q)$
- $\blacktriangleright \ \forall (u,v)$:
 - tree edge
 - cross edge: check

Proof.

Check cross edge (u, v):

- ▶ (∃) d[v] = d[u] ⇒ the same layer ⇒ odd cycle ([Problem: 3.4.17]; EX) ⇒ non-bipartite
- ▶ (\forall) $d[v] = d[u] + 1 \Rightarrow$ different layers \Rightarrow different colors

14 / 31

- Overview
- 2 DFS and BFS
- Cycle
- DAG
- 5 SCC
- 6 Biconnectivity

DAG

no back edge \iff DAG \iff \exists topo. ordering

Topo. sorting algorithm by Tarjan(probably), 1976

DFS on digraph, $u \rightarrow v$:

- $\qquad \qquad \textbf{no back edge: } \mathbf{f}[u] < \mathbf{f}[v]$
- ▶ others: f[u] > f[v]

$$u \to v \Rightarrow f[u] > f[v]$$

 $u \to v \Rightarrow u \prec v$

Topo. sorting: sort vertices in *decreasing* order of their *finish* times.

Digraph as DAG

Digraph as DAG [Problem: 3.4.6]

Theorem

Every digraph is a dag of its SCCs.

Remark.

- SCC algorithm
- ► SCC: reachability/connectivity equivalence class
- two tiered structure of digraphs

Kahn's toposort algorithm

Kahn's toposort algorithm (1962) [Problem: 3.4.19]

- queue for source vertices (in[v] = 0)
- \triangleright repeat: dequeue v, delete it, output it

Solution.

Lemma

Every DAG has at least one source and at least one sink vertex.

Remark

DFS on DAG:

- ▶ $arg max_v f(v) \Rightarrow source (used in SCC algorithm)$
- $ightharpoonup \arg\min_{v} f(v) \Rightarrow \sinh$

Hamiltonian path in DAG

Hamilton path in DAG [Problem: 3.4.16]

- ightharpoonup DAG G
- path visiting each vertex once

Solution.

- general digraph: NP-hard
- ▶ dag: ∃ HP ⇔ ∃! topo. ordering
 - $\blacktriangleright \Leftarrow$: By contridiction. $\exists u \sim v : u \nrightarrow v$; swap

Algorithm:

- toposort, check edges
- ▶ the Kahn toposort algorithm

Semi-connected DAG

Definition

Semi-connected digraph $\forall u, v : u \leadsto v \lor v \leadsto u$

Semi-connected DAG [Problem: 3.4.21 (c) + (d)]

To test whether a DAG is semi-connected.

Solution.

dag: \exists HP \iff \exists ! topo. ordering \iff semi-connected

Proof.

- $\blacktriangleright \Leftarrow$: by contradiction; total order $(\forall u, v : u \prec v \lor v \prec u)$
- **▶** ⇒: ∃*HP*

Minimum cost reachable

Minimun cost reachable [Problem: 3.4.22]

Compute $cost[u] = min\{cost[v] \mid u \leadsto v\}.$

Solution.

- dag: reverse topo. ordering
 - ▶ backtracking: $cost[u] = min_{u \to v} \{cost[v]\}$
- ► digraph: dag of scc

Line up

Line up [Problem: 3.4.29]

- ▶ i hates j: $i \prec j$
- ▶ i hates j: #i < #j

Solution.

```
i hates j: i \rightarrow j;
```

- ► DAG?
- ▶ longest path; critical path

One-to-all reachability

One-to-all reachability [Problem: 3.4.28]

- ▶ given $v:v \leadsto^? \forall u$
- $ightharpoonup \exists ?v: v \leadsto \forall u$

Solution.

- ▶ DFS/BFS
- ▶ SCC; \exists ! source vertex $v \iff v \leadsto \forall u$

Proof.

- ightharpoonup \Rightarrow : By contradiction. $\exists u: v \nrightarrow u \land \operatorname{in}[u] > 0 \Rightarrow \exists u' \to u \land v \nrightarrow u'$. Cycle.
- $\blacktriangleright \Leftarrow : (1) \text{ source } (2) \exists !$

- Overview
- DFS and BFS
- Cycle
- 4 DAG
- SCC
- 6 Biconnectivity

SCC

Kosaraju SCC algorithm, 1978 [Problem: 3.4.7]

- ► 1st DFS ⇒? BFS
- ▶ 2nd DFS ⇒? BFS

Solution.

digraph = dag of SCCs

- ▶ (2nd round) Repeat: traversal from $s \in \text{sink scc}$; delete
- ▶ (1nd round) dag: toposort \Rightarrow decreasing finish time \Rightarrow s ∈ source scc

Remark.

- ▶ DFS on G^T ; DFS/BFS on G
- ▶ DFS on G; DFS/BFS on G^T

One-way streets

One-way streets [Problem: 3.4.23]

- $\blacktriangleright \forall u, v : u \leftrightsquigarrow v$
- $ightharpoonup s: s \leadsto v \leadsto s$

Solution.

- ightharpoonup G is an SCC
- $\{v \mid s \leadsto v\}$ is an SCC
 - ▶ compute $\{v \mid s \leadsto v\}$
 - compute SCCs
 - compare

Infinite path

Infinite path [Problem: 3.4.25]

- ▶ prove: $Inf(p) \subseteq \exists SCC$
- ▶ an infinite path?
- ... \land visiting $\exists g \in V_G$ infinitely often
- ... \wedge not visiting $\exists b \in V_B$ infinitely often

Solution.

- cycle ⊆ ∃scc
- $ightharpoonup \exists \mathsf{scc} : s \leadsto \mathsf{scc}$
- ▶ $\exists scc : s \leadsto scc \land scc \cap V_G \neq \emptyset$
- ▶ delete V_B ; $\exists scc : scc \cap V_G \neq \emptyset$; in G: $s \rightsquigarrow scc$
 - ▶ wrong: $\exists scc : s \leadsto scc \land scc \cap V_G \neq \emptyset \land scc \cap V_B = \emptyset$
 - ▶ wrong: delete V_B ; $\exists scc : s \leadsto scc \land scc \cap V_G \neq \emptyset$

Odd cycle in digraph

Odd cycle in digraph [Problem: 3.4.15]

Find an odd cycle in a digraph G.

Lemma

A digraph G has an odd directed cycle $\iff \exists scc : scc \text{ is non-bipartite}$ (when treated undirected).

Proof.

- $\blacktriangleright \Leftarrow$: undirected C; oriented
 - ▶ odd directed cycle
 - ▶ choose a direction $\forall u \to v$: Len $(v \leadsto u)$

 $\mathsf{DFS} + \mathsf{Coloring}$ on G

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG
- 5 SCC
- 6 Biconnectivity

Biconnectivity algorithm

 $G \text{ is biconnected} \iff G \text{ has no articulation vertex.}$ v is an articulation vertex $\iff \exists x,y \in V: \forall p \equiv x \sim y, x \sim v \sim y.$ Biconnectivity algorithm by Tarjan&Hopcroft, 1971

Root of DFS tree as an articulation point [Problem: 3.4.8]

DFS on undirected graph $G \Rightarrow$ DFS tree T:

- ► leaf node
- ▶ root node r: out $[r] \ge 2$

Proof.

- $\blacktriangleright \Leftarrow : (G = \mathsf{tree} + \mathsf{back}); \mathsf{delete} \ r; \mathsf{disconnect} \ \mathsf{subtrees}$
- ightharpoonup \Rightarrow : By contradiction. $\operatorname{out}[r]=1\Rightarrow r$ is not an articulation vertex $(\forall x,y)$.

Biconnectivity algorithm

```
Articulation checking, 1971 [Problem: 3.4.10]
```

DFS on undirected graph $G \Rightarrow \text{back edges}$:

v is not an articulation vertex

 \iff \forall subtree T_v of v, $\mathsf{back}[T_v] = v$.ancestor

v is an articulation vertex $\iff \exists T_v \text{ of } v, \mathsf{back}[T_v] = v \lor v.\mathsf{descendant}$

 $\exists \Rightarrow \mathsf{checking} \ \mathsf{articulation} \ \big(\mathsf{wBack} \geq \mathsf{d}[v] \big) \ \mathsf{when} \ \mathsf{backtracking} \ \mathsf{from} \ w \ \mathsf{to} \ v$

Biconnectivity algorithm

Initialization of back[v], 1971 [Problem: 3.4.9]

$$\mathsf{back}[v] = \infty, 2n+1 \text{ vs. } \mathsf{back}[v] = d[v]$$

Solution.

 $\mathsf{back}[v]$: the earliest reachable ancestor of v by tree + back edges

- ▶ tree edge ($\rightarrow v$; discovered): back[v] = d[v]
- ▶ back edge $(v \to w)$: back $[v] = \min\{\mathsf{back}[v], d[w]\}$
- $\blacktriangleright \ \mathsf{backtracking} \ \mathsf{from} \ w \colon \mathsf{back}[v] = \min\{\mathsf{back}[v], \mathsf{back}[w] = \mathsf{wBack}\}$

$\mathsf{back}[v] = \infty$:

- if updated
- \blacktriangleright if never updated: wBack $=\infty>d[v]$ vs. wBack =d[w]>d[v]

Bridge

Bridge [Problem: 3.4.24]

