

JENS NEUHALFEN

GOOD CRYPTOGRAPHY

YOUR FATHERS CRYPTO (*)

- CLIENT sends request APPLICATION applies logic
- DATABASE stores result
- Transport encrypted via TLS

(*) I'm going to gloss over the whole cryptography nomenclature in these first slides. Bear with me.

SO, EVERYTHING IS SAFE?

YOUR FATHERS CRYPTO (*)

- CLIENT sends request
- APPLICATION applies logic
- DATABASE stores result
- Transport encrypted via TLS

SO, EVERYTHING IS SAFE?

WHAT ABOUT TLS?

- Data is at rest for ~99.9998%of the time (*)
- Also: Heartbleed, POODLE, DROWN, Lucky13, Logjam, FREAK, ...
- Also: Backups!

WHAT IS THIS ABOUT?

- Protect** data 'itself'
- ▶ E.g. encrypted** data at rest
- Even: Protected** data while working with it

