Combinatorial Optimization

Dozent: Stephan Held

December 8, 2022

Contents

0	Org	anization	2
1	Mat	tchings	2
	1.1	Introduction	2
	1.2	Bipartite Matching	4
	1.3	The Tutte Matrix & Randomized Matching	5
	1.4	Tutte's Matching Theorem	6
	1.5	Ear Decompositions of Factor-Critical Graphs	8
	1.6	Edmond's Matching Algorithm	11
		1.6.1 Growing forest - $O(n^3)$	13
	1.7	Gallai-Edmonds Decomposition	16
	1.8	Minimum Weight Perfect Matching	19
2	T -J ϵ	oins and b -Matchings	26
	2.2	T-Join Applications	28
		2.2.1 TSP Approximation	28
		2.2.2 Shortest Paths in Undirected Graphs	28
		2.2.3 Chinese Postman Problem	29
	2.3	T-Joins and T -Cuts	29
		2.3.1 T -join Polytope	32
	2.4	Excursus: Gomory-Hu Trees	32
	2.5	Finding Minimum-Capacity T-Cuts	34
	2.6	b-Matchings	35
	2.7	Padberg-Rao Theorem	38
3	The	TSP Polytope	40
	3.1	The Spanning Tree Polytope	40

0 Organization

- Prerequisites
 - Basic knowledge of graph algorithms
 - Linear Programming (LP Duality)
 - Programming skills in C++

• Exam

- Qualification requires 50% of the points in theoretical & programming exercises
- Oral exam

• Books

- "Combinatorial Optimization", Korte & Vygen
- "Understanding & Using Linear Programming", B. Gärtner, J. Matouset
- Skript (theorems & definitions)
- Further book recommendations are on the website

1 Matchings

1.1 Introduction

Definition 1.1.

- 1. A matching M in a graph G = (V, E) is a set of pairwise disjointed edges, i.e. they don't have a common endpoint.
 - $\nu(G) := \max$ cardinality of a matching in G
- 2. An edge cover C of a graph G = (V, E) is a subset of E s.t. $V = \bigcup_{e \in C} e$. $\zeta(G) := \min$ cardinality of an edge cover in G
- 3. A matching is called *perfect* (or 1-factor) if it is an edge cover
- 4. $v \in V$ with $v \in e \in M$ is called M-covered
- 5. $v \in V$ is called *M-exposed* if it is not *M*-covered

Definition 1.2.

- 1. A stable set (independent set) S is a set of pairwise non-adjacent vertices.
 - $\alpha(G) := \max$ cardinality of a stable set

2. A vertex cover C is a subset of V s.t. $E = \bigcup_{\{x,y\} \in E, x \in G} \{x,y\}$ $\tau(G) := \min$ cardinality of a vertex cover

Lemma 1.3.

1.
$$\alpha(G) + \tau(G) = |V|$$

- 2. $\nu(G) + \zeta(G) = |V|$ if G has no isolated vertices
- 3. $\zeta(G) = \alpha(G)$ if G is bipartite and has no isolated vertices

Problem. Cardinalty Matching Problem

Input: Graph G = (V, E)

Task: Find a maximum cardinality matching

Problem. Maximum Weight Matching Problem (MWMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a matching M maximizing c(M)

Problem. Minimum Weight Perfect Matching (MWPMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a perfect matching of minimum weight or decide that no perfect matching exists in G

Lemma 1.4. The MWMP is equivalent to the MWPMP (i.e. there exists a transformation with linear complexity)

Proof. Given a MWPMP instance (G, c), define c' := K - c $(K := 1 + \sum_{e \in E} |c(e)|)$.

- \Rightarrow Any maximum weight matching is a maximum cardinality matching Given a MVMP instance (G, c), define G' as 2 copies of G where the 2 copies of a vertex are joined by an edge.
- \Rightarrow G' has a perfect matching. Define:

$$c'(e) := \begin{cases} -c(e) & \text{if } e \text{ is in the first copy} \\ 0 & \text{else} \end{cases}$$

A minimum weight perfect matching in G' gives us a maximum weight matching in G.

Definition 1.5. Let G = (V, E) be a graph and $M \subseteq E$ a matching in G. A path P is M-alternating if its edges are alternatingly in and not in M. If both end points of this path are M-exposed, P is an M-augmenting path.

Lemma 1.6. Given a matching M in G and an inclusion-wise maximal M-alternating path P,

$$M\Delta P \coloneqq M \setminus P \cup P \setminus M$$

is a matching. If P is M-augmenting, then $|M\Delta P| = |M| + 1$.

Figure 1: Example of the construction in Theorem 1.8

Theorem 1.7 (Petersen 1891, Berge 1957). Augmenting Path Theorem Given a graph G = (V, E) and a matching M in G:

$$|M| = \nu(G) \Leftrightarrow \not\exists M$$
-augmenting path P in G

Proof.

"⇒": Clear

"\(\phi\)": Assume there exists a matching M' with |M'| > |M|. Let $G' := (V, M\Delta M')$.

 $\Rightarrow |\delta_{G'}(v)| \leq 2 \ \forall v \in V$

 \Rightarrow G' is the union of disjoint circuits and paths

 \Rightarrow all circuits are even and have the same number of edges from M and M'

 $\Rightarrow \exists$ a path P in G' starting and ending with an edge in M'

 $\Rightarrow P$ is an alternating path

1.2 Bipartite Matching

Theorem 1.8 (König 1931). If G is bipartite, then $\nu(G) = \tau(G)$

Proof. Add vertices s and t edges between them to all vertices of the respective partition. Direct all edges from s to t. Then $\nu(G)$ is maximum number of disjoint s-t-paths. Menger \Rightarrow This is equal to the minimum number of vertices that disconnect t from s.

Theorem 1.9 (Hall 1935). Let $G = (A \dot{\cup} B, E)$ be a bipartite graph. Then:

G has a matching covering $A \Leftrightarrow |\Gamma(X)| \geq |X| \quad \forall X \subseteq A$

Corollary 1.10. Marriage Theorem

$$|\Gamma(X)| \ge |X| \ \forall X \subseteq A \ and \ |A| = |B| \Leftrightarrow G \ has \ a \ perfect \ matching$$

Definition 1.12. The MWPMP for bipartite graphs is called *Assignment Problem*.

Theorem 1.13. The Assignment Problem can be solved in time $O(nm + n^2 \log m)$.

Proof. Use the Successive Shortest Paths algorithm in an auxiliary graph. $\hfill\Box$

1.3 The Tutte Matrix & Randomized Matching

Definition 1.14. Let G be a simple, undirected graph. Let G' be an orientation of G and $(X_e)_{e \in E(G)}$. The *Tutte matrix* is defined as

$$T_G(X) := (T_{vw}^*)_{v,w \in V(G)}$$

where

$$t_{vw}^* := \begin{cases} X_{\{v,w\}} & \text{if } (v,w) \in E(G) \\ -X_{\{v,w\}} & \text{if } -(v,w) \in E(G) \\ 0 & \text{else} \end{cases}$$

Remark 1.15. $T_G(X)$ is shew-symmetric (i.e. $T_G(X) = -(T_G(X))^t$). rank $(T_G(X))$ is independent of the orientation of G. det $(T_G(X))$ is a polyomial in X.

Theorem 1.16 (Tutte). A simple graph G has a perfect matching $\Leftrightarrow \det(T_G(X)) \neq 0$

Proof. Let $V(G) = \{v_1, \dots, v_n\}$ and S_n be the permutation group.

$$\det T_G(X) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot \prod_{i=1}^n t_{v_i, v_{\pi(i)}}^*$$

Let $S'_n := \{ \pi \in S_n \mid \prod_{i=1}^n t^*_{v_i, v_{\pi_i}} \neq 0 \}$. Each $\pi \in S_n$ corresponds to a digraph $H_{\pi} := (V(G), \{(v_i, v_{\pi(i)}) \mid i \in [n]^1\})$. We have $|\delta^+(v) = 1 = |\delta^-(v)|| \quad \forall v \in V(H_{\pi}) \Rightarrow H_{\pi}$ is the union of disjoint circuits. If $\pi \in S'_n$, then $H_{\pi} \subset G'$.

If there exists $\pi \in S'_n$ s.t. H_{π} is a collection of even circuits, then this immediately yields a perfect matching in G (using every second edge of each circuit).

Otherwise, $\forall \pi \in S'_n$, H_{π} contains an odd circuit. Let $r(\pi) \in S'_n$ arise from π by reversing edges on the unique odd circuit containing a vertex with minimum index $\Rightarrow r(r(\pi)) = \pi$ and $\operatorname{sgn}(\pi) = \operatorname{sgn}(r(\pi))$. The second part is true since for reversing an odd cycle, we need an even number of swaps. Let $v_{i_1}, \ldots, v_{i_{2k+1}}$ be the "first" odd circuit. Then $r(\pi)$ is attained by 2k swaps: For $j = 1, \ldots, k$ swap $(\pi(i_{2j-1}), \pi(i_{2k}))$ and $(\pi(i_{2j}), \pi(i_{2k+1}))$.

¹This is an abbreviation for $\{1, \ldots, n\}$.

 $\prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = -\prod_{i=1}^n t_{v_i v_{r(\pi(i))}}^*$ since there is an odd number of sign changes to t^* . $\Rightarrow \det(T_G(X)) = 0$. We have shown that if G has no perfect matching, then $\det T_G(X) = 0$.

Assume that G has a perfect matching M. Define π as $\pi(i) = j, \pi(j) = i$ where $\{i, j\} \in M$. $\Rightarrow \prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = \prod_{e \in M} -X_e^2$ cannot be canceled out. In particular, $\det T_G(X) \neq 0$.

Remark 1.17. Picking $X' \in [0,1]^{E(G)}$ at random, we almost surely have (since the zero set of a non-zero polynomial is a set of measure zero):

$$\det T_G(X') \neq 0 \Leftrightarrow G$$
 has a perfect matching

Theorem 1.18 (Lovász 1979). Let G be a simple graph and $X \in [0,1]^{E(G)}$ chosen randomly. Then almost surely $\operatorname{rank}(T_G(X)) = 2\nu(G)$.

1.4 Tutte's Matching Theorem

Let $X \subseteq V(G)$. G - X consists of even and odd (in terms of the number of vertices) connected components. We define $q_G(X)$ to be the number of odd components in G - X.

Definition 1.19. A graph G satisfies the Tutte Condition if $q_G(X) \leq |X|$ for all $X \subseteq V(G)$. $\emptyset \neq X \subseteq V(G)$ is called barrier if $q_G(X) = |X|$.

Proposition 1.20. For any graph G and any $X \subseteq V(G)$:

$$q_G(X) - |X| \equiv |V(G)| \mod 2$$

Definition 1.21. A graph G is factor-critical if G-v has a perfect matching for all $v \in V(G)$. A matching is called near-perfect if it covers |V(G)| - 1 vertices.

Proposition 1.22. If G is factor-critical, then it is connected.

Theorem 1.23 (Tutte 1947). A graph G has a perfect matching \Leftrightarrow Tutte Condition holds (i.e. $q_G(X) \leq |X| \ \forall X \subseteq V(G)$)

Proof.

"⇒": Clear

"\(\infty\)": We proceed by induction on |V(G)|. The case |V(G)| = 2 is clear.

Generally, if the Tutte Condition holds, then |V(G)| must be even (pick $X = \emptyset$). Proposition $1.20 \Rightarrow q_G(X) - |X|$ is even. Every $x \in V(G)$ induces a barrier $\{x\}$. Let X be a maximum barrier. Then G - X doesn't have any even components (since otherwise a single vertex of such a component could be added to X).

Claim: Each odd component is factor-critical.

Let C be an odd component in G-X, $v \in V(C)$. Assume that C-v does not have a perfect matching. Induction Hypothesis $\Rightarrow C-v$ violates Tutte Condition.

$$\begin{array}{l} \Rightarrow \exists Y \subseteq V(C-v): q_{C-v}(Y) > |Y| \\ \stackrel{1.20}{\Rightarrow} q_{C-v}(Y) \geq |Y| + 2 \\ \text{Observe } X \cap \{v\} = Y \cap \{v\} = X \cap Y = \emptyset: \end{array}$$

$$\begin{split} q_G(X \cup Y \cup \{v\}) &= q_G(X) - 1 + q_C(Y \cup \{v\}) \\ &= |X| - 1 + q_{C-v}(Y) \\ &\geq |X| - 1 + |Y| + 2 \\ &= |X \cup Y| + 1 \\ &= |X \cup Y \cup \{v\}| \end{split}$$

 $\Rightarrow X \cup Y \cup \{v\}$ is a barrier

 \Rightarrow Claim

Let G' arise from G by contracting each odd component into a single vertex. We have $V(G') = X \dot{\cup} Z$ and G' is bipartite. We have to show that G' has a perfect matching. If not, then $\exists A \subseteq Z : |\Gamma_{G'}(A)| < |A| \Rightarrow q_G(\Gamma_{G'}(A)) \geq |A| > |\Gamma_{G'}(A)|$ which contradicts the Tutte Condition.

Theorem 1.24 (Berge 1958).

$$|V(G)| = 2\nu(G) + \max_{X \subseteq V(G)} (q_G(X) - |X|)$$

Proof. For $X \subseteq V(G)$, any matching has at least $q_G(X) - |X|$ uncovered vertices, so " \geq " holds.

For the other inequality, add $k := \max_{X \subseteq V(G)} (q_G(X) - |X|)$ new vertices and connect them to all existing vertices, yielding a new graph H.

We claim that H has a perfect matching. This then implies:

$$2\nu(G) + k > 2\nu(H) - k = |V(H)| - k = |V(G)|$$

Assume that H does not have a perfect matching. Then by Tutte's Theorem, there exists $Y \subseteq V(H)$ with $q_H(Y) > |Y|$. By 1.20, $k \equiv |V(G)| \mod 2$, therefore |V(H)| is even, so $Y \neq \emptyset$. Y must contain all new vertices, otherwise H-Y would be connected and $q_H(Y) \leq 1 \leq |Y|$.

$$\Rightarrow q_G(Y\cap |V(G)|) = q_H(Y) > |Y| = |Y\cap V(G)| + k$$

which is a contradiction to the choice of k.

1.5 Ear Decompositions of Factor-Critical Graphs

Definition 1.25. Let G be a graph. An ear decomposition of G is a sequence r, P_1, \ldots, P_k with $G = (r, \emptyset) + P_1 + \ldots + P_k$ such that each P_i is either a path with exactly the endpoints located in $\{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$ or a circuit where exactly one of the vertices belongs to $\{r\} \cup \bigcup_{j \in [i-1]}^{n} V(P_j)$. P_1, \ldots, P_k are called *ears*. If $|V(P_1)| \geq 3$ and P_2, \ldots, P_k are paths we

call it a *proper* ear decomposition

Theorem 1.27 (Whitney 1932). Let G be an undirected graph. Then:

G 2-connected $\Leftrightarrow G$ has a proper ear decomposition

Definition 1.28. An ear decomposition is *odd* if every ear has odd length (in terms of the number of edges).

Theorem 1.29. Let G be an undirected graph. Then

G factor-critical $\Leftrightarrow G$ has an odd ear decomposition

The first vertex r of the ear decomposition can be chosen arbitrarily. Proof.

- "\(\infty\)": Let G be a graph with an odd ear decomposition r, P_1, \ldots, P_k . P_1 is an odd circuit, so it is factor-critical. We use induction on the number of ears. Let P be the last ear and G' be G before adding P. By the induction hypothesis, G' is factor-critical. Given $v \in V(G)$, we have to show that G - v has a perfect matching.
 - Case 1: $v \in V(G')$. Then G' v has a perfect matching. Adding every second edge of P (excluding the endpoints) to it, yields a perfect matching of G-v.
 - Case 2: $v \in V(G) \setminus V(G')$. Let x, y be the endpoints of P. Without loss of generality let $P_{[v,x]}$ be even. There exists a perfect matching in G'-x. Together with every second edge of $P_{[v,y]}$ and $P_{[v,x]}$ this is a perfect matching in G - v.

²Note that Y cannot contain all old vertices, since otherwise $q_H(Y) < |Y|$.

" \Rightarrow ": Let $r \in V(G)$ be any vertex. Let M be a perfect matching in G - r. Suppose we have an odd ear decomposition for $G' \subseteq G$ with $r \in V(G')$ and $M \cap E(G')$ is a near-perfect matching in G' (i.e. all vertices in G' except for r are matched with other vertices in G').

If $G' \neq G$, there is an edge $\{x,y\} \in E(G) \setminus E(G')$ with $x \in V(G')$ (by Proposition 1.22). If $y \in V(G')$, then $\{x,y\}$ can be chosen as the next ear. Otherwise, construct an M-alternating odd ear, starting with $\{x,y\}$. Let N be a matching in G-y. $M\Delta N$ contains a y-r-path P. Let w be the first vertex in $P \cap V(G')$. w is M-exposed in $P_{[y,w]}$, y is N-exposed in $P_{[y,w]}$. Therefore $P_{[y,w]}$ is even and together with $\{x,y\}$ it forms an M-alternating odd ear.

Inductively, this argument yields an odd ear decomposition.

Definition 1.30. Let G be factor-critical and M a near-perfect matching. An M-alternating ear decomposition is an odd ear decomposition such that each ear is an M-alternating path or circuit C with:

$$|E(C) \cap M| = |E(C) \setminus M| - 1$$

Corollary 1.31. For any factor-critical graph G and any near-perfect matching M in G, there exists in M-alternating ear decomposition of G.

Definition 1.32. Let G be factor-critical, M a near-perfect matching and r, P_1, \ldots, P_k an M-alternating ear decomposition of G. $\mu, \varphi : V(G) \to V(G)$ are associated with the ear decomposition if:

- $\{x,y\} \in M \Rightarrow \mu(x) = y$
- $\{x,y\} \in E(P_i) \setminus M \text{ and } x \notin \{r\} \cup \bigcup_{j \in [i]} V(P_j)$ $\Rightarrow \varphi(x) = y$
- $\mu(r) = \varphi(r) = r$

Proposition 1.33. Let G be a factor-critical graph and μ, φ functions associated with an M-alternating ear decomposition. Then this ear decomposition is unique up to the order of the ears. The Ear-Decomposition-Algorithm correctly determines an explicit list of the ears in linear time.

Proof. Step 3 determines ears uniquely. The algorithm clearly runs in linear time. \Box

Lemma 1.34. Let G be factor-critical and μ, φ associated with an M-alternating ear decomposition. Then the maximal path given by the initial sequence

$$x, \mu(x), \varphi(\mu(x)), \mu(\varphi(\mu(x))), \dots$$
 (1)

defines an M-alternating x-r-path of even length.

Algorithm 1: Ear Decomposition Algorithm

```
Input: Factor-critical graph G, functions \mu, \varphi associated with an
              M-alternating ear decomposition
    Output: An M-alternating ear decomposition r, P_1, \ldots, P_k
 1 X := \{r\} where r is the vertex with \mu(r) = r
 \mathbf{2} \ k \coloneqq 0, S \coloneqq \text{empty stack}
 3 while X \neq V(G) do
        if S is non-empty then
            Let v \in V(G) \setminus X be an endpoint of the topmost element of
 5
              the stack
        else
 6
        Choose v \in V(G) \setminus X arbitrarily
 7
        x\coloneqq v,\ y\coloneqq \mu(v),\ P\coloneqq (\{x,y\},\{\{x,y\}\})
        while \varphi(\varphi(x)) = x do
 9
            P := P + \{x, \varphi(x)\} + \{\varphi(x), \mu(\varphi(x))\}
10
            x \coloneqq \mu(\varphi(x))
11
        while \varphi(\varphi(y)) = y do
12
            P := P + \{y, \varphi(y)\} + \{\varphi(y), \mu(\varphi(y))\}
13
           y \coloneqq \mu(\varphi(y))
14
        P \coloneqq P + \{x, \varphi(x)\} + \{y, \varphi(y)\}
15
        P is the ear containing y as an inner vertex. Put P on S.
16
        while Both endpoints of the topmost element P of the stack S
17
         are in X do
            Delete P from S
18
            k := k+1, \ P_k := P, \ X := X \cup V(P)
20 forall \{y,z\} \in E(G) \setminus (E(P_1) \cup \ldots \cup E(P_k)) do
    k := k + 1, P_k := (\{y, z\}, \{\{y, z\}\})
22 return r, P_1, \ldots, P_k
```


Figure 2: Counter example for the reverse implication of lemma 1.34

Proof. We proceed by induction on the number of ears. Let $x \in V(G) \setminus \{r\}$ and P_i be the ear containing x. A subsequence of (1) is a subpath Q of P_i from x to $y \in \{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$. Q starts with a matching edge and ends with a non-matching edge, so it has even length. If y = r, we are done, otherwise the statement follows from the induction hypothesis.

1.6 Edmond's Matching Algorithm

Definition 1.35. Let G be a graph, M a matching in G. A blossom in G with respect to M is a factor-critical subgraph of B of G such that $|M \cap E(B)| = \frac{|V(B)|-1}{2}$. The vertex $r \in V(B)$ that is exposed by M is called the base of \vec{B} .

Definition 1.36. Let G be a graph, M a matching in G, B a blossom and Qa M-alternating v-r-path of even length from $v \in V(G)$ that is M-exposed to the base r of B. Additionally, let $E(Q) \cap E(B) = \emptyset$. B + Q is called a M-flower.

Lemma 1.37. Let G be a graph, M a matching in G. Suppose there is a M-flower B+Q. Let G', M' result from G and M by contracting V(B) into a single vertex. Then:

M maximum matching in $G \Leftrightarrow M$ maximum matching in G'

Proof.

"\(\infty\)": Assume that M is not maximum in G. $N := M\Delta E(Q)$ is a matching with |N| = |M|. $\Rightarrow \exists N$ -augmenting path P in G. At least one endpoint x of P is in

V(B). If P and B are disjoint, let y be the other endpoint of P. Otherwise, let y be the first vertex on P in B. $P' := P_{[x,y]}$ is an N'-augmenting path in G', so $|N'| = |M'| < \mu(G')$.

" \Rightarrow ": Assume that M' is not maximum in G', so there exists a matching N'in G' with |N'| > |M'|. Let N_0 arise from N' in G, then N_0 contains ≤ 1 vertex from V(B). Since B is factor-critical, N_0 can be extended by $k := \frac{|V(G)|-1}{2}$ edges to a matching N in G. We have

$$|N| = |N_0| + k = \left|N'\right| + k > \left|M'\right| + k = |M|$$

so M is not maximum.

Lemma 1.39. Let G be a graph, M a matching in G. $X \subseteq V(G)$ is the set of exposed vertices. We can find a shortest M-alternating X-X-walk of positive length in O(|E(G)|) time.

Proof. Define D := (V(G), A) where:

$$A := \{(u, v) \mid \exists x \in V(G) : \{u, x\} \in E(G), \{x, v\} \in M\}$$

A shortest $X - \Gamma_G(X)$ -path in D corresponds to a shortest X-X-walk in G.

Theorem 1.40. Let $P = v_0, \ldots, v_t$ be a shortest M-alternating X-X-walk in G. Then either

- P is an M-augmenting path or
- v_0, \ldots, v_j is an M-flower for some $j \leq t$.

Proof. If P is not a path, choose i < j such that $v_i = v_j$ and j minimal. Then v_0, \ldots, v_{j-1} are distinct vertices. If j - i is even, deleting v_{i-1}, \ldots, v_j from P yields a shorter walk, so j - i is odd.

Case 1: j is even. Then i is odd and therefore $v_{i+1} = v_{j-1}$ must be the matching mate of $V_i = v_j$ which contradicts the minimality of j.

Case 2: j is odd. Then i is even, so v_0, \ldots, v_i is an M-alternating path of even length and v_i, \ldots, v_j is an M-alternating odd circuit, i.e. a blossom.

```
Algorithm 2: Edmond's Augmenting Path Search
```

```
Input: Graph G, matching M
   Output: An M-augmenting path (if one exists)
 1 X := \text{set of exposed vertices}
 2 if \exists M-alternating X-X-walk of positive length then
      P = v_0, \ldots, v_t := a shortest such walk
 4
      if P is a path then
       \mid return P
      else
 6
          Choose j as in Theorem 1.40
 7
          v_0, \ldots, v_i is an M-flower with blossom B
          Recurse on G/B
          Augment an M/B-augmenting path in G/B to an
10
           M-augmenting path P' in G
          return P'
11
12 else
       \not\exists M-augmenting path
```

Theorem 1.41. Given a graph G, a maximum cardinality matching can be found in time $O(n^2m)$ where n := |V(G)|, m := |E(G)|

Proof. Start with $M = \emptyset$ and iteratively find M-augmenting path P, set $M := M\Delta E(P)$. If no such path exists, then M is maximum. P can be found in time $O(mn)^3$. Since M is maximum after at most $\frac{n}{2}$ augmentation, we have total running time $O(n^2m)$.

1.6.1 Growing forest - $O(n^3)$

Definition 1.42. Let G be a graph, M a matching in G. An alternating forest with respect to M in G is a forest F in G where:

- V(F) contains all M-exposed vertices, each tree of F contains exactly one exposed vertex, its root.
- We call $v \in V(G)$ an outer (inner) vertex if it has even (odd) distance from the root of its component.
- $\forall v \in V(F)$ the unique path from v to the root of its component is M-alternating.
- $v \in V(G) \setminus V(F)$ is called *out-of-forest*.

Clearly, inner vertices always have degree 2 (we always assume that there are no matching edges that can immediately be added to F).

Proposition 1.43. In any alternating forest, the number of outer vertices that are not the root equals the number of inner vertices.

Proof. For all outer vertices, there exists exactly one inner vertex on its path to the root. \Box

Lemma 1.44. Given a graph G, a matching M, an alternating forest F with respect to M in G. Then, either M is a maximum matching or \exists outer vertex $x \in V(F)$, an edge $\{x,y\} \notin E(F)$ such that one of the following holds:

- Grow: $y \notin V(F)$ and therefore $\{y, z\} \in M$ with $z \notin V(F)$. In this case, y, z and $\{x, y\}, \{y, z\}$ can be added to F.
- Augment: y is an outer vertex in a different connected component in F. In this case, M can be augmented along $P(x) \cup \{x,y\} \cup P(y)$ where P(z) denotes the unique path from $z \in V(F)$ to the root of its connected component.

³Here, m is the time required for finding a walk and the recursion depth is bounded by n.

• Shrink: y is an outer vertex in the same component as x. Let r be the first vertex on P(x) that is also on P(y). Then $|\delta_F(r)| \geq 3$, so y is an outer vertex and $|E(F_{[x,r]})|$, $|E(F_{[y,r]})|$ are even. Together with $\{x,y\}$ these paths form a blossom with ≥ 3 vertices.

Proof. We show that if none of these cases apply, M is maximum. Let X be the set of inner vertices, s := |X| and t be the number of outer vertices. All outer vertices are isolated in G - X, so G - X and $q_G(X) - |X| = t - s$. By Berge's formula (1.24), t - s vertices are exposed by any matching, so M is maximum.

Definition 1.45. Let G be a graph, M a matching in G. A subgraph F of G is a general blossom forest with respect to M if there exists a partition $V(F) = V_1 \dot{\cup} \dots \dot{\cup} V_k$ such that $F_i = F[V_i]$ is a maximal factor-critical subgraph of F with $|M \cap E(F_i)| = \frac{|V_i|-1}{2}$ $(i \in [k])$ and after contracting each V_i , we obtain an M-alternating forest F'. F_i is called an outer (inner) blossom if V_i is an outer (inner) vertex in F'.

A *special blossom forest* is a general blossom forest where each inner blossom is a single vertex.

Store a special blossom forest with 3 functions $\mu, \varphi, \rho : V(G) \to V(G)$:

$$\mu(x) \coloneqq \begin{cases} x & \text{if } x \text{ is exposed in } M \\ y & \text{if } \{x,y\} \in M \end{cases}$$

$$\varphi(x) \coloneqq \begin{cases} x & \text{if } x \text{ is the base of an outer blossom or } x \text{ is out-of-forest} \\ y & \text{if } x \text{ is an inner vertex and } \{x,y\} \in E(F) \setminus M \end{cases}$$

$$y & \text{if } x \text{ is an outer vertex (i.e. in an outer blossom)} \\ \text{and } \mu, \varphi \text{ are associated with an } M\text{-alternating} \\ \text{ear decomposition of } x\text{'s blossom, } \{x,y\} \in E(F) \setminus M \end{cases}$$

$$\rho(x) \coloneqq \begin{cases} x & \text{if } x \text{ is an inner vertex or out-of-forest} \\ y & \text{if } x \text{ is an outer vertex and } y \text{ is the base of the outer blossom containing } x \text{ } (y = x \text{ is possible}). \end{cases}$$

Proposition 1.46. Let F be a special blossom forest with respect to M and μ, φ, ρ as above. Then:

- 1. For all outer vertices x, P(x) := maximal path given by subsequence of <math>x, $\mu(x)$, $\varphi(\mu(x))$, $\mu(\varphi(\mu(x)))$, ... is an M-alternating path from x to q where q is the root of the component containing x.
- 2. A vertex x is
 - an outer vertex $\Leftrightarrow \mu(x) = x \vee \varphi(\mu(x)) \neq \mu(x)$

- an inner vertex $\Leftrightarrow \varphi(\mu(x)) = \mu(x) \land \varphi(x) \neq x$
- out-of-forest $\Leftrightarrow \mu(x) \neq x \land \varphi(x) = x \land \varphi(\mu(x)) = \mu(x)$

Proof.

- 1. By definition of μ, φ and lemma 1.33 some initial subsequence of P(x) ends at the base r of the blossom containing x. If r = q, we are done. Otherwise $\mu(r), \varphi(\mu(r))$ are next elements in a sequence leading to outer vertex $\varphi(\mu(r))$. This can be iterated.
- 2. Since the conditions are mutually exclusive, it suffices to show one implication for all the statements.
 - If x is outer, it is a root $(\mu(x) = x)$ or P(x) is a path of length at least 2, so $\varphi(\mu(x)) \neq \mu(x)$.
 - If x is inner, then $\mu(x)$ is the base of an outer blossom. Therefore $\varphi(\mu(x)) = \mu(x)$. $P(\mu(x))$ is a path of length at least 2, so $\varphi(x) \neq x$.
 - If x is out-of-forest, then x is covered by M so $\mu(x) \neq x$. By definition of φ , $\varphi(x) = x$. $\mu(x)$ is out-of-forest as well, so $\varphi(\mu(x)) = \mu(x)$.

Lemma 1.47. Following invariants hold:

a) $\{\{x,\mu(x)\}\mid x\in V(G),\mu(x)\neq x\}$ is a matching

b) $\{\{x,\mu(x)\}\mid\underbrace{x\in V(G),\varphi(\mu(x))=\mu(x)\land\varphi(x)\neq x}\}\cup\{\{x,\varphi(x)\}\mid x\in V(G),\varphi(x)\neq x\}$ forms the edge set of a special blossom forest.

c) μ, φ, ρ satisfy the conditions in definition 1.45 (special blossom forest).

Proof. a) holds as μ only changes in *Augment*. b) is correct after initialization and after the reset in the *Augment* step. It is preserved by *Grow* steps.

In a Shrink step, r (the first vertex that the paths from x,y to the root share) is a root or has $|\delta(r)|=3$ (i.e. it is the base of a blossom), so it is an outer vertex. We define a blossom $B:=\{v\in V(G)\mid \varphi(v)\in V(P(x)_{[x,r]})\cup V(P(y)_{[y,r]})\}$. Consider $\{u,v\}\in F$ with $u\in B,v\notin B$. If $\{u,v\}\in M$, we have $u=r,v=\mu(r)$ (since F[B] contains a near-perfect matching). u was an outer vertex before shrinking and F[B] being factor-critical follows from c) and the characterization by ear-decompositions.

For c), it's clear that μ always represents a matching. $\varphi(x) = x$ if x is not an outer vertex. Therefore, $\mu + \varphi$ represent an M-alternating ear decomposition of B. During Shrink, $\varphi(v)$ is not changed if $\varphi(v) = r$. Therefore, the

odd ear decomposition for B' := blossom containing r, is the correct starting point. The next ear is $P(x)_{[x,x']} \cup P(y)_{[y,y']} + \{x,y\}$, where x'(y') is the first vertex in B' on $P(x)_{[x,r]}$ $(P(y)_{[y,r]})$.

For each ear Q of a former blossom $B'' \subseteq B$, $Q \setminus (E(P(x)) \cup E(P(y)))$ form a new ear (since it is created by removing an even path). φ, μ represent this ear-decomposition.

Theorem 1.48. Edmond's cardinality matching algorithm correctly determines a maximum matching in $O(n^3)$ time, where n := |V(G)|.

Proof. By lemma 1.47 and proposition 1.46, the algorithm maintains a special blossom forest. Let M, F be the final matching and forest. x an outer vertex implies that $\forall y \in \Gamma(x) : y$ is inner and $\varphi(y) = \varphi(x)$. Define:

B := set of inner verticesB := set of bases of (outer) blossoms

Then every unmatched vertex is in B. Matched vertices in B have matching mates in X and |B| = |X| + |V(G)| - 2|M|. (Outer) blossoms are odd connected components in G - X, so by Berge's theorem (1.24), at least |B| - |X| vertices remain uncovered by any matching, so M is maximum.

We now consider the running time: The status (outer, inner, out-offorest) for a given vertex can be checked in constant time (proposition 1.46). Therefore, Grow, Augment and Shrink can be implemented in O(n) time. There are at most n calls to Grow and Shrink per augment and at most $\frac{n}{2}$ Augments. This implies the running time $O(n^3)$.

Remark 1.49. The time for Shrink can be reduced to $O(\log n)$ using a binary tree, leading to a running time of $O(nm\log n)$ in total. Tarjan (1974), Gabow & Tarjan (1983) proved a running time of $O(nm\alpha(m,n))$ (where α is the inverse Ackermann function) or O(nm).

Remark 1.50. It's not necessary to reset everything after augmenting. It suffices to reset the 2 trees that were changed by the augmentation. Gabow & Tarjan (1983) showed that it's possible to augment all paths of the same length in O(m) time. There are $2\sqrt{\nu(G)} + 2$ different path lengths, so in total this results in a running time of $O(\sqrt{nm})$.

Remark 1.51 (Skew-symmetric flows). Goldberg & Karzanov (2003) (and Fremuth-Pagen & Jungnickel (2003)) used Generalized Max-Flow to achieve a running time of $O(\sqrt{n}m\frac{\log\frac{m}{n}}{\log n})$.

1.7 Gallai-Edmonds Decomposition

Proposition 1.52. Let G be a graph, $X \subseteq V(G)$ with $|V(G)| - 2\nu(G) = q_G(X) - |X|$. Then any maximum matching of G

Algorithm 3: Edmond's Cardinality Matching Algorithm

```
Input: A graph G
   Output: A maximum matching M (defined by \{x, \mu(x)\}\)
 1 \mu(v) := v, \ \varphi(v) := v, \ \rho(v) := v, \ scanned(v) := \text{false for all } v \in V(G)
    // Outer Vertex Scan:
 2 while \exists outer vertex x with scanned(x) = false do
       Let y be a neighbor of x such that y is either out-of-forest or y is
         outer with \rho(y) \neq \rho(x)
       if such a y does not exist then
         scanned(x) = true, continue
        // Grow:
       if y is out-of-forest then
 6
         \varphi(y) \coloneqq x, continue
        // Augment:
        else if P(x) and P(y) are vertex-disjoint then
 8
            \mu(\varphi(v)) = v, \ \mu(v) = \varphi(v) \text{ for all } v \in V(P(x) \cap P(y)) \text{ with }
             odd distance from x or y on P(x) or P(y), respectively
            \mu(x) \coloneqq y, \ \mu(y) \coloneqq x
10
           \varphi(v) := v, \rho(v) := v, scanned(v) := false for all <math>v \in V(G)
11
        // Shrink:
       else
12
            Let r be the first vertex on V(P(x)) \cap V(P(y)) with \rho(r) = r
13
            forall v \in V(P(x)_{[x,r]}) \cup V(P(y)_{y,r}) with odd distance from x
14
             or y on P(x)_{[x,r]} or P(y)_{[y,r]}, respectively and \rho(\varphi(v)) \neq r
             \varphi(\varphi(v)) \coloneqq v
15
            if \rho(x) \neq r then
16
             \varphi(x) \coloneqq y
17
            if \rho(y) \neq r then
18
             \varphi(y) \coloneqq x
19
            forall v \in V(G) with \rho(v) \in V(P(x)_{[x,r]}) \cup V(P(y)_{[u,r]}) do
20
                \rho(v) \coloneqq r
21
22 return \mu
```

- contains a perfect matching in the even components of G-X.
- contains a near-perfect matching in odd components of G-X.
- matches all $x \in X$ to distinct odd components.

Proof. Follows directly from Berge's theorem (1.24).

Theorem 1.53. Let G be a graph and:

 $Y := \{v \in V(G) \mid \exists \text{ maximum matching that exposes } v\}$

Define $X := \Gamma(Y)$ and $W := V(G) \setminus (X \cup Y)$. Then:

- 1. X attains $\max_{X' \subset V(G)} q_G(X') |X'|$.
- 2. G[Y] is the union of factor-critical subgraphs and G[W] is the union of even connected components.
- 3. Any maximum matching in G
 - contains a perfect matching in G[W].
 - contains a near-perfect matching in each component of G[Y].
 - matches all $x \in X$ to distinct connected components

Y, X, W is called Gallai-Edmonds decomposition of G.

Proof. Consider the matching M and special blossom forest F at the end of the algorithm. Let X' (Y') be the set of inner (outer) vertices and W' the set of out-of-forest vertices.

Claim. X', Y', W' satisfy 1., 2. and 3.

(Proof of theorem 1.48).

Proposition 1.52 implies that any maximum matching covers all vertices in $V(G) \setminus Y'$, so $Y \subseteq Y'$. For the other inclusion, let $v \in Y'$. Then $M\Delta P(v)$ is a maximum matching exposing v, so $v \in Y$ and Y' = Y. By definition, X = X' and W = W'.

Corollary 1.54. A graph G has a perfect matching $\Leftrightarrow \forall U \subseteq V(G), G - U$ has at most |U| factor-critical components.

1.8 Minimum Weight Perfect Matching

We use the following Integer Programming formulation:

$$\min \sum_{e \in E(G)} c_e x_e$$
s.t.
$$\sum_{e \in \delta(v)} x_e = 1 \qquad v \in V(G)$$

$$x_e \in \{0, 1\}$$

and the corresponding relaxation where we only require $x_e \geq 0$. The dual problem of this is:

$$\max \sum_{v \in V(G)} z_v$$
 s.t. $z_v + z_w \le c_e$ $\{v, w\} \in E(G)$

Proposition 1.55 (Hungarian Method). Let G be a graph, $c \in \mathbb{R}^{E(G)}$ and $z \in \mathbb{R}^{V(G)}$ with $z_v + z_w \leq c_e$ for all $e = \{v, w\} \in E(G)$. Define:

$$G_z := (V(G), \{e = \{v, w\} \mid z_v + z_w = c_e\})$$

Let M be a matching in G_z , F a maximal alternating forest in G_z with respect to M. Let X/Y be the set of inner/outer vertices. Then:

- 1. If M is a perfect matching in G_z , then it is a minimum-weight perfect matching in G.
- 2. If $\Gamma_G(y) \subseteq X$ for all $y \in Y$, then M is a maximum matching.
- 3. If neither 1. nor 2. hold, define:

$$\epsilon \coloneqq \min\{ \min_{e = \{v, w \in E(G[Y])\}} \frac{c_e - z_v - z_w}{2}, \min_{e \in \delta(Y) \cap \delta(V(F))} c_e - z_v - z_w \}$$

Set $z'_v := z_v - \epsilon$ for all $v \in X$, $z'_v := z_v + \epsilon$ for all $v \in Y$ and $z'_v := z_v$ for all $v \in V(G) \setminus (X \cup Y)$. Then z' is a feasible dual solution and $M \cup E(F) \subseteq E(G_{z'})$. Additionally, $\Gamma_{G_{z'}}(y) \setminus X \neq \emptyset$ for some $y \in Y$.

Proof. 1. Let M' be a minimum-weight perfect matching.

$$\sum_{e \in M'} c_e = \sum_{v \in V(G)} z_v + \sum_{e = \{v, w\} \in M'} (c_e - z_v - z_w)$$

$$\geq \sum_{v \in V(G)} z_v$$

$$= \sum_{v \in V(G)} z_v + \sum_{e = \{v, w\} \in M} (c_e - z_v - z_w)$$

$$= \sum_{e \in M} c_e$$

- 2. Each outer vertex is an odd blossom (singleton) of G x. By Berge (1.24), at least |Y| |X| vertices remain uncovered.
- 3. z' stays feasible by the choice of ϵ . Edges in E(F), M remain tight. By 1. and 2., $\exists y \in Y : \Gamma_{G_{z'}}(y) \setminus X \neq \emptyset$.

Remark 1.56. For bipartite graphs, the adjacency matrix is totally unimodular, so the LP has integral vertices.

We define $\mathcal{A} := \{X \subseteq V(G) \text{ odd}\}$ and add the blossom inequalities

$$\sum_{e \in \delta(X)} x_e \ge 1 \qquad \forall X \in \mathcal{A}$$

to the LP relaxation. The new dual problem is then:

$$\max \sum_{A \in \mathcal{A}} z_A$$
s.t.
$$\sum_{A \in \mathcal{A}, e \in \delta(A)} z_A \le c_e$$

$$z_A \ge 0 \qquad (A \in \mathcal{A}, |A| \ge 3)$$

Edmond's Algorithm starts with an empty matching x=0 and dual feasible solution:

$$z_A \coloneqq \begin{cases} \frac{1}{2} \min\{c(e) \mid e \in \delta(A)\} & |A| = 1 \\ 0 & \text{else} \end{cases}$$

We always ensure that z is dual feasible and that (x, z) satisfy complementary slackness:

$$\begin{aligned} x_e > 0 \Rightarrow \sum_{A \in \mathcal{A}, e \in \delta(A)} z_A = c_e \\ z_A > 0, |A| > 1 \Rightarrow \sum_{e \in \delta(A)} x_e = 1 \end{aligned}$$

Definition 1.57. $c_z(e) := c(e) - \sum_{A \in \mathcal{A}, e \in \delta(A)} z_A$ is the reduced cost of e.

Theorem 1.58. There are at most $\frac{7}{2}|V(G)|^2$ of the repeat-until loop in algorithm 4.

Proof. \mathcal{B} is laminar at any time, i.e. for $X,Y \in \mathcal{B}$ we have $(X \subseteq Y) \vee (Y \subseteq X) \vee (X \cap Y = \emptyset)$. Therefore $|\mathcal{B}| \leq 2 |V(G)|$.

Observation. Any U added to \mathcal{B} during Shrink will not be "unpacked" before the next Augment.

Proof. After *Shrink*, there exists an even length M-augmenting R-U-path. It remains in G_z until the next *Augment* or until U is included in another blossom $U' \supseteq U$ which is not resolved before an *Augment* (inductively). \square

Between 2 augments:

- # $Unpacks \leq |\mathcal{B}|$ at beginning of the sequence
- # Shrinks $\leq |\mathcal{B}|$ at the end of the sequence

Therefore, there are at most 4|V(G)| Unpack and Shrink operations between 2 augments. For each dual change without Unpack, we have: $z_B > 0 \quad \forall B \in \mathcal{B}$, so ϵ is not determined by z_B . Therefore $\exists e = \{X, Y\}$ with $X \notin \mathcal{X}, Y \in \mathcal{Y}$ where $c_z(e)$ becomes 0.

Case 1: $X \notin \mathcal{Y}$. Then $|V(G_z) \setminus (\mathcal{X} \cup \mathcal{Y})|$ decreases.

Case 2: $X \in \mathcal{Y}$. Then $\exists X-Y M$ -alternating walk in the next iteration.

In particular, such a dual change can occur at most |V(G)| times between 2 augmentations.

In total, there are at most $\frac{1}{2}|V(G)|$ Augment steps. Therefore, there are $\frac{1}{2}|V(G)|^2(4+|V(G)|+2|V(G)|)$

Algorithm 4: Minimum-Weight Perfect Matching

Input: Graph G with edge weights $c: E(G) \to \mathbb{R}$

Output: A minimum-weight perfect matching M in (G, c)

Corollary 1.59. A minimum-weight perfect matching can be computed in $O(n^2m)$ time where n := |V(G)| and m = |E(G)|.

Proof. Theorem 1.58 times O(m).

Remark 1.60. To achieve $O(n^3)$ running time, one can modify the algorithm:

1. Use a General Blossom Forest to avoid recomputing the R-R-walks from scratch. We then have mappings $\mu_v, \varphi_v^i, \rho_v^i$ for $1 \le i \le k_v$ where k_v is the number of blossoms that contain v.

2. Store all vertices in a heap (ordered by their criticality for dual-feasibility) to speed up the computation of ϵ .

Gabow (1990) showed a running time of $O(n(m+n\log n))$. Gabow & Tarjan (1991) showed a running time of $O(m\log(nW)\sqrt{n\alpha(m,n)\log n})$ where $W := \max_{e \in E(G)} |c(e)|$.

Theorem 1.61. Let G be a graph. The set of vectors $x \in \mathbb{R}^{E(G)}$ satisfying

$$x_e \ge 0$$
 $e \in E(G)$
 $x(\delta(v)) = 1$ $v \in V(G)$
 $x(\delta(A)) \ge 1$ $A \subseteq V(G)$ with $|A|$ odd

is the convex hull of all perfect matchings in G. It is called the perfect matching polytope.

Proof. For any objective function $c: E(G) \to \mathbb{R}$, the minimum-weight perfect matching algorithm produces an integral primal and a dual solution that satisfy complementary slackness. In particular, all vertices of the polytope are integral.

Theorem 1.62. Let G be a graph. The set of vectors $x \in \mathbb{R}^{E(G)}$ satisfying

$$x_e \ge 0$$

$$x(\delta(v)) \le 1$$

$$x(E(G[A])) \le \frac{|A| - 1}{2}$$

$$e \in E(G)$$

$$v \in V(G)$$

$$A \subseteq V(G) \text{ with } |A| \text{ odd}$$

is the convex hull of all matchings in G. It is called the matching polytope.

Proof. Any matching solution x satisfies these conditions. Let x be any solution that satisfies the conditions. We have to show that x is a convex combination of matching solutions. Define H by:

$$\begin{split} V(H) \coloneqq & \{(v,i) \mid v \in V(G), i \in \{1,2\}\} \\ E(H) \coloneqq & \{\{(v,i),(w,i)\} \mid \{v,w\} \in E(G), i \in \{1,2\}\} \\ & \cup \{\{(v,1),(v,2)\} \mid v \in V(G)\} \end{split}$$

We set $y_{\{(v,i),(w,i)\}} := x_{\{v,w\}}$ for all $\{v,w\} \in E(G), i \in \{1,2\}$ and $y_{\{(v,1),(v,2)\}} := 1 - x(\delta(v))$ for all $v \in V(G)$. Then $y \ge 0$ and $y(\delta_H(x)) = 1$ for all $x \in V(H)$.

Claim. y satisfies the inequalities of the perfect matching polytope (in particular the blossom inequalities).

If this is true, by 1.62 y is a convex combination of perfect matchings. $H[\{(v,1) \mid v \in V(G)\}]$ is isomorphic to G, so x is a convex combination of matchings in G.

We now prove the claim: Let $X \subseteq V(G)$ with |X| odd. We have to show that $y(\delta_H(X)) \ge 1$. Define:

$$A := \{ v \in V(G) \mid (v,1) \in X, (v,2) \notin X \}$$

$$B := \{ v \in V(G) \mid (v,1) \in X, (v,2) \in X \}$$

$$C := \{ v \in V(G) \mid (v,1) \notin X, (v,2) \in X \}$$

Define $A_i := A \cap (V(G) \times \{i\})$ and $B_i := B \cap (V(G) \times \{i\})$. $|B_1 \cup B_2|$ is even, so (since |X| is odd) |A| or |C| is odd. Without loss of generality, let |A| be odd.

$$\sum_{e \in \delta_H(X)} y_e \ge \sum_{v \in A_1} \underbrace{\sum_{e \in \delta_H(v)} y_e - 2 \cdot \sum_{e \in E(H[A_1])} y_e - \sum_{e \in \delta(A_1) \cap \delta(B_1)} y_e}_{= 1}$$

$$+ \sum_{e \in \delta(A_2) \cap \delta(B_2)}$$

$$= |A_1| - 2 \cdot \sum_{e \in E(G[A])} x_e$$

$$\ge |A_1| - (|A| - 1)$$

$$= 1$$

Theorem 1.63. The matching polyhedron is TDI (Totally Dual Integral), i.e. for all $c \in \mathbb{Z}^{E(G)}$ for which the dual program of (max $c^txs.t...$) has a finite optimum solution, it has an integral optimum solution.

Proof. The dual is

$$\min \sum_{v \in V(G)} y_v + \sum_{e \in \mathcal{A}, |A| > 1} \frac{|A| - 1}{2} z_A$$

$$s.t. \sum_{v \in e} y_v + \sum_{A \in \mathcal{A}, |A| > 1, e \in E(G[A])} z_A \ge c(e) \qquad e \in E(G)$$

$$y, z > 0$$

Let (G, c) be a counterexample such that $|V(G)| + |E(G)| + \sum_{e \in E(G)} |c(e)|$ is minimum. Then:

- $c(e) \ge 1$ for all $e \in E(G)$, since otherwise e could be deleted.
- G has no isolated vertices.

Claim. In an optimum solution (y, z), y = 0.

Proof. If $y_v > 0$, then $x(\delta(v)) = 1$ for all optimum solutions x. Decreasing c(e) by 1 for all $e \in \delta(v)$ yields a smaller feasible instance (G, c') where the weight of x is decreased by 1 and x remains optimum. By assumption, (G, c') is not a counterexample, so there exists an integral optimum solution (y', z'). Increasing y'_v by one yields some optimum in (G, c) which has optimum integral solution $(y' + \mathbb{1}_v, z')$.

Let (y = 0, z) be a dual optimum solution such that

$$\sum_{A \in \mathcal{A}, |A| > 1} |A|^2 z_A$$

is maximum.

Claim. $\mathcal{F} := \{A : z_A > 0\}$ is laminar.

If not, there exist $X, Y \in \mathcal{F} : X \cap Y, X \setminus Y, Y \setminus X \neq \emptyset$. We proceed by "uncrossing". Let $\epsilon := \{z_X, z_Y\} > 0$.

Case 1: $|X \cap Y|$ is odd. Then $|X \cup Y|$ is odd. Define:

$$\begin{aligned} z_X' &\coloneqq z_X - \epsilon \\ z_y' &\coloneqq z_y - \epsilon \\ z_{X \cap Y}' &\coloneqq z_{X \cap Y} + \epsilon \\ z_{X \cup Y}' &\coloneqq z_{X \cup Y} + \epsilon \\ z_A' &\coloneqq z_A \end{aligned} \qquad \text{(unless } |X \cap Y| = 1)$$

Then (y, z') is a dual optimum solution.

Case 2: $|X \cap Y|$ is even. Then $|X \setminus Y|$ and $|Y \setminus X|$ are odd. Define:

$$\begin{aligned} z_X' &\coloneqq z_X - \epsilon \\ z_Y' &\coloneqq z_Y - \epsilon \\ z_{X \setminus Y}' &\coloneqq z_{X \setminus Y} + \epsilon & \text{unless } |X \setminus Y| = 1 \\ z_{Y \setminus X}' &\coloneqq z_{Y \setminus X} + \epsilon & \text{unless } |Y \setminus X| = 1 \\ z_A' &\coloneqq z_A & \text{elsewhere} y_v' &\coloneqq \epsilon & \forall v \in X \cap Y \\ y_v' &\coloneqq 0 & \forall v \notin X \cap Y \end{aligned}$$

Then (y', z') is feasible. The objective value is:

$$\sum_{v \in V(G)} y'_v + \sum_{A \in \mathcal{A}, |A| > 1} z'_A \frac{|A| - 1}{2}$$

$$= \epsilon \cdot |X \cap Y| + \sum_{A \in \mathcal{A}, |A| > 1} \frac{|A| - 1}{2}$$

$$+ \epsilon \left(\frac{|X \setminus Y| - 1}{2} + \frac{|Y \setminus X| - 1}{2} - \frac{|X| - 1}{2} - \frac{|Y| - 1}{2}\right)$$

$$= \text{objective}(y, z)$$

Therefore (y', z') is an optimum solution with $y' \neq 0$, which is a contradiction to the previous claim.

We can conclude that \mathcal{F} is laminar.

Let $A \in \mathcal{F}$ with $z_A \notin \mathbb{Z}$ and |A| is maximal. Define $\epsilon := z_A - \lfloor z_A \rfloor > 0$. Let A_1, \ldots, A_k be the inclusion-wise maximal proper subsets of A in \mathcal{F} . Since \mathcal{F} is laminar, $A_i \cap A_j = \emptyset$ for $i \neq j$. Define:

$$z'_A \coloneqq z_A - \epsilon$$
 $z'_{A_i} \coloneqq z_A + \epsilon$
 $1 \le i \le k$
 $z'_D \coloneqq z_D$ elsewhere

Then (y, z') is dual feasible with objective value:

$$\sum_{B \in \mathcal{A}, |B| > 1} \frac{|B| - 1}{2} z_B' < \sum_{B \in \mathcal{A}, |B| > 1} \frac{|B| - 1}{2} z_B$$

This contradicts the optimality of (y, z), so there exists no counter example.

Theorem 1.64. Let G be a graph.

$$P := \{ x \in \mathbb{R}^{E(G)}_{>0} \mid x(\delta(v)) \le 1 \quad \forall v \in V(G) \}$$

is the functional matching polytope.

$$Q \coloneqq \{x \in \mathbb{R}^{E(G)}_{>0} \mid x(\delta(v)) = 1 \quad \forall v \in V(G)\}$$

If G is bipartite, then P and Q are integral.

Proof. The adjacency matrices of bipartite graphs are totally unimodular.

Theorem 1.65. Let G be a graph. The vertices of the fractional perfect matching polytope satisfy

$$x_e = \begin{cases} \frac{1}{2} & \text{if } e \in E(C_1) \cup \ldots \cup E(C_k) \\ 1 & \text{if } e \in M \\ 0 & \text{else} \end{cases}$$

where C_1, \ldots, C_k are vertex-disjoint odd circuits and M is a perfect matching in $G - (V(C_1) \cup \ldots \cup V(C_k))$.

Proof. Exercise 6.3

2 T-Joins and b-Matchings

Definition 2.1. Let G be a graph, $T \subseteq V(G)$. A subset $J \subseteq E(G)$ is called T-join if T is the set of odd-degree vertices in (V(G), J).

Proposition 2.2. Let G be a graph, $T, T' \subseteq V(G)$, J a T-join ad J' a T'-join. Then $J\Delta J'$ is a $T\Delta T'$ -join.

Proof. For $v \in V(G)$:

$$|\delta_{J \cap J'}(v)| \equiv |\delta_J(v)| + |\delta_{J'}(v)|$$

$$\equiv |\{v\} \cap T| + |\{v\} \cap T'|$$

$$\equiv |\{v\} \cap (T\Delta T')| \mod 2$$

Proposition 2.3. Let G be a graph, $T \subseteq V(G)$.

 $\exists T$ -join in $G \Leftrightarrow |V(C) \cap T|$ for each connected component C

Proof.

" \Rightarrow ": Let J be a T-join. For each connected component C:

$$\sum_{v \in V(C)} |J \cap \delta(v)| = 2 |J \cap E(C)|$$

Therefore $|J \cap \delta(v)|$ is odd for an even number of vertices and $|V(C) \cap T|$ is even.

"\(\infty\)": Partition T into pairs $\{v_1, w_1\}, \ldots, \{v_k, w_k\}$ such that v_i and w_i are in the same component for all i. Let P_i be a v_i - w_i -path in G. Define $J := E(P_1)\Delta E(P_2)\Delta \ldots \Delta E(P_k)$. By proposition 2.2, this is a T-join.

Theorem 2.4. Let G be a graph, $c: E(G) \to \mathbb{R}$ and $T \subseteq V(G)$. In strongly polynomial time (e.g. $O(n^2m)$) we can determine if a T-join exists and if so, compute a minimum-weight T-join.

Proof. In O(m) (m := |E(G)|), we can check if a T-join exists. If so:

1. Eliminate negative weights.

$$\begin{aligned} N &\coloneqq \{e \in E(G) \mid c(e) < 0\} \\ U &\coloneqq \{v \in V(G) \mid |\delta_N(v)| \text{ odd}\} \\ T' &\coloneqq T\Delta U \\ c'(e) &\coloneqq |c(e)| \end{aligned} \qquad e \in E(G)$$

Claim. If J' is a minimum T'-join with respect to c', then $J'\Delta N$ is a minimum T-join with respect to c.

Let \tilde{J} be a T-join. Then $\tilde{J}\Delta N$ is a T'-join, so $c'(\tilde{J}) \leq c'(\tilde{J}\Delta N)$ and

$$c(J) = c'(J') + c(N) \le c'(\tilde{J}\Delta N) + c(N) = c(\tilde{J})$$

which proves the claim.

2. We can now assume that $c \geq 0$. A minimum-weight T-join does not have cycles of positive weight. We can eliminate cycles of weight 0 without changing the cost. We can then restrict ourselves to searching for collections of T-T-paths.

Let K_T be the metric closure of T with respect to G. It can be computed in $O(n \cdot (m + n \log n))$ by using Dijkstra for all vertices. Find a minimum-weight perfect matching M in K_T . Each $e = \{s, t\} \in M$ induces a path $P_{s,t}$. Then the symmetric difference $\Delta_{\{s,t\} \in M} E(P_{s,t})$ is a minimum-weight T-join in G.

Corollary 2.6. A maximum-weight T-join can be computed as fast as a minimum-weight T-join.

Proof. Set
$$c' := -c$$
.

Corollary 2.7. Let G be a graph, $c: E(G) \to \mathbb{R}$. We can find a cycle of negative length in G in $O(n^2m)$ time.

Proof. Apply theorem 2.4 to $T = \emptyset$. If c(J) < 0, (V(G), J) contains a cycle C. If c(C) = 0, we can eliminate it and recurse, otherwise return C.

2.2 T-Join Applications

2.2.1 TSP Approximation

Let (K_n, c) with c metric be an instance of the TSP. Consider the *Double* tree algorithm:

- 1. Compute a minimum spanning tree T.
- 2. T' := T + T (doubling all edges). Then T' is Eulerian.
- 3. Walk along T' and add vertices to the TSP tour in the order of their first appearance, yielding a tour T^* . Since c is metric, we have $c(^*) \le c(T') \le 2c(T)$. Since the cost of T is a lower bound for the cost of a tour, we have $c(T^*) \le 2$ OPT (where OPT is the cost of a shortest TSP tour).

Algorithm 5: Christofides Algorithm (1976)

Input: Complete metric graph (K_n, c)

Output: A TSP-tour T

- 1 Find MST T_{MST} in (K_n, c)
- $\mathbf{2} \ W \coloneqq \{v \in V(K_n) \mid |\delta_{T_{\text{MST}}}(v)| \text{ odd}\}$
- **3** $J := \text{minimum-weight } W\text{-Join in } (K_n, c)$
- 4 Add cities to T in the order of first appearance in a Eulerian walk of $T_{\rm MST} + J$.
- 5 return T

Theorem 2.8. Algorithm 5 is a $\frac{3}{2}$ -approximation algorithm for the metric TSP, i.e. for the computed tour T we have:

$$c(T) \leq \frac{3}{2} \text{OPT}$$

Proof. We have $c(T_{\text{MST}}) \leq \text{OPT}$ and $\text{OPT}(W) \leq \text{OPT}(V(K_n))$ (since c is metric). Any tour through the vertices in W can be decomposed into 2 matchings. Therefore, $c(J) \leq \frac{1}{2}\text{OPT}(W) \leq \frac{1}{2}\text{OPT}$. It follows that $c(T) \leq (1+\frac{1}{2})\text{OPT}$.

2.2.2 Shortest Paths in Undirected Graphs

The naive reduction to digraphs requires non-negative weights.

Corollary 2.9. Given an undirected graph G, $c: E(G) \to \mathbb{R}$ such that each ciruit has length at least 0. Then for $s, t \in V(G)$, a shortest s-t-path can be found in $O(n^2m)$ time, where n := |V(G)|, m := |E(G)|.

Proof. Choose $T := \{s, t\}$. Apply theorem 2.4 to get a minimum-weight T-join J. J can be partitioned into circuits of length 0 and an s-t-path of length c(J).

2.2.3 Chinese Postman Problem

Definition 2.10. A walk $C = \{v_0, e_1, v_1, \dots, e_t, v_t\}$ is called a Chinese postman tour if $v_0 = v_t$ and each edge in E(G) is visited at least once. The Chinese Postman Problem is the problem of finding a shortest Chinese postman tour in G with respect to $c: E(G) \to \mathbb{R}_{>0}$.

Corollary 2.11. The Chinese postman problem can be solved in $O(n^2m)$ time, where n := |V(G)|, m := |E(G)|.

Proof. Set $T := \{v \in V(G) \mid \delta(v) \mid \text{odd}\}$ and let J be a minimum-weight T-join. Compute a Eulerian tour C in G + J. Let C' be a shortest Chinese postman tour. Let J' := set of edges occurring in C' an even number of times (at least twice). Then J' is a T-join, so $c(J') \geq c(J)$ and:

$$c(C') \ge c(E(G)) + c(J') \ge c(E(G)) + c(J) = c(C)$$

2.3 T-Joins and T-Cuts

Definition 2.12. Let G be a graph and $T \subseteq V(G)$. A T-cut is a cut $C = \delta(X)$ with $X \subseteq V(G)$ and $|X \cap T|$ odd.

Proposition 2.13. Let G be a graph, $T \subseteq V(G)$, |T| even. Then:

- 1. For any T-join J and any T-cut C: $J \cap C \neq \emptyset$.
- 2. The inclusion-wise minimal T-cuts (T-joins) are exactly the inclusion-wise minimal edge sets intersecting all T-joins (all T-cuts).

Proof. For 1., let $C = \delta(X)$ with $|X \cap T|$ odd be a T-cut. Then the edges in $J \cap C$ either belong to a path passing through X or have an endpoint in T. Therefore $|J \cap C|$ is odd, in particular the set is non-empty.

For 2., we prove in an exercise that each edge set intersecting all T-joins (T-cuts) contains a T-cut (T-join). Therefore minimal such sets are T-cuts (T-joins). Remark: The minimum cardinality of a T-join is at least as large as the maximum number of edge-disjoint T-cuts⁴.

Theorem 2.14 (Seymour (1981)). Let G be bipartite, $T \subseteq V(G)$ such that there exists a T-join. Then:

min. cardinality of a T-join = max. number of edge-disjoint T-cuts

The maximum is attained by a crossfree family C of cuts, i.e.

$$\forall X, Y \in \mathcal{C} : X \subseteq Y \vee Y \subseteq X \vee X \cap Y = \emptyset \vee X \cup Y = V(G)$$

⁴In general, the two numbers are not equal: Consider K_4 and $T = V(K_4)$. A minimum T-join consists of 2 edges but there are no 2 edge-disjoint T-cuts.

Proof. If $T = \emptyset$, the statement is clear. Let $T \neq \emptyset$. We proceed by induction on |V(G)| + |T|. Let J be a minimum-cardinality T-join. Set:

$$c(e) \coloneqq \begin{cases} -1 & e \in J \\ 1 & e \in E(G) \setminus J \end{cases}$$

Claim. Every circuit C has $c(C) \geq 0$.

$$c(C) = c(C \setminus J) + c(C \cap J) + |J \setminus C| - |J \setminus C|$$
$$= \left|\underbrace{C\Delta J}_{T\text{-join}}\right| - |J| \ge 0$$

Let P be a minimum length walk in (G, c) traversing no edge more than once such that |E(P)| is minimum. Then P is a path. Let t be the last vertex in P and f the edge entering t. Then $f \in J$, otherwise c(f) = 1 and deleting f would yield a shorter path. Furthermore, $|\delta_J(t)| = 1$, otherwise we could add the other edge from $J \cap \delta(t)$ to shorten c(P).

Claim. Each circuit C that contains t but not f has c(C) > 0.

Case 1: t is the only vertex in $V(C) \cap V(P)$. Let $e \ni t$ be an edge on C incident to t. Then c(e) = 1 (since $\delta_J(t) = \{f\}$) and P' := P + C - e yields a shorter walk if $c(C) \le 0$.

Case 2: $V(C) \cap V(P)$ contains another vertex x. Let u be the last vertex on P before t that is also on C. Define $P' := P_{[u,t]}$. C can be split into 2 u-t-paths C', C''. By minimality of P, c(P') < 0. P' + C', P' + C'' are circuits (by choice of u). By the first claim, c(C'), c(C'') > 0, so also c(C) > 0.

Shrink: $\{t\} \cup \Gamma(t)$ to a new vertex v_0 . This yields a bipartite graph G'. If $|T \cap (\{t\} \cup \Gamma(t))|$ is odd, set $T' := T \setminus (\{t\} \cup \Gamma(t)) \cup \{v_0\}$. Otherwise, $T' := T \setminus (\{t\} \cup \Gamma(t))$. Define $J := J \setminus \{f\}$.

Claim. J' is a minimum cardinality T'-join in G'.

If not, there exists a T'-join J'' with |J''| < |J'|. $J''\Delta J'$ is an \emptyset -Join. Therefore, there exists a circuit C' where $|C' \setminus J'| < |C' \setminus J''| = |C' \cap J'|$ (since G is bipartite). If C' results from a circuit C in G not containing T, then $|C \setminus J| < |C \cap J|$. This is a contradiction to the minimality of J.

Therefore C' results from a circuit containing T.

Case 1: C traverses f. Then

$$\begin{aligned} \left| C' \setminus J' \right| - \left| C' \cap J' \right| &= \left| C \setminus J \right| - \left| C \cap J \right| \\ &> 0 \end{aligned}$$

which is a contradiction.

Case 2: By the second claim, c(C) > 0, so since G is bipartite $c(C) \ge 2$ and $|C \setminus J| \ge |C \cap J| + 2$. Therefore

$$\begin{aligned} \left| C' \setminus J' \right| &= \left| C \setminus J \right| - 2 \\ &\geq \left| C \cap J \right| \\ &= \left| C' \cap J' \right| \end{aligned}$$

which is a contradiction to the assumption.

By the induction hypothesis on G', G' has cross-free T'-cuts $D_1, \ldots, D_{|J'|}$. Together with $\delta(t)$, we get |J'| + 1 = |J| T-cuts. Since $\Gamma(t)$ was contracted in G', they are cross-free.

Corollary 2.15. Let G be a graph, $c: E(G) \to \mathbb{Z}_{\geq 0}$, $T \subseteq V(G)$ such that a T-join exists. The minimum cost of a T-join equals half the maximum number of T-cuts covering each edge e at most $2 \cdot c(e)$ times. This maximum is attained by a cross-free family of T-cuts.

Proof. Let $E_0 := \{e \in E(G) \mid c(e) = 0\}$. Contract the connected components in $(V(G), E_0)$ and replace each $e \in E(G)$ by a path of length $2 \cdot c(e) > 0$. The resulting graph G' is bipartite. Let

 $T' \coloneqq \{v \in V(G') \mid v \text{ corresponds to a connected component } X \text{ in } G \text{ with } |X \cap T| \text{ odd} \}$

Let k be the minimum cost of a T-join in G.

Claim. The minimum cardinality of a T'-join in G' is 2k.

"\le ": Every T-join J in J corresponds to a T'-join J' in G' with $|J'| \leq 2c(J)$.

"\geq": Let J' be a T'-join in G'. J' corresponds to an edge set $J \subseteq E(G)$. Let $\overline{T} := T\Delta\{v \in V(G) \mid |\delta(v) \cap J| \text{ odd}\}$. For each connected component X in $(V(G), E_0)$:

$$|\delta(X) \cap J| \equiv |X \cap T| \mod 2$$

Therefore $|X \cap \overline{T}|$ is even, so by proposition 2.3, there exists a \overline{T} -join \overline{J} in $(V(G), E_0)$. Then $J \cup \overline{J}$ is a T-join of weight $c(J) = \frac{|J'|}{2}$.

By theorem 2.14, there exist 2k pairwise disjoint T'-cuts in G'. In G this yields 2k T-cuts such that every edge e is covered by at most $2 \cdot c(e)$ cuts and they can be created cross-free.

2.3.1 T-join Polytope

We define the T-join polytope:

$$P_{T ext{-join}} := \operatorname{conv}\{x \in \mathbb{R}^{E(G)} \mid x \text{ incidence vector of a } T ext{-join}\}$$

 $P_{T ext{-join}}^{\uparrow} := P_{T ext{-join}} + \mathbb{R}_{>0}^{E(G)}$

Corollary 2.16. $P_{T\text{-}join}^{\uparrow}$ is determined by

$$x_e \ge 0$$
 $e \in E(G)$ $x(\delta(X)) \ge 1$ $\forall T\text{-}cuts \ \delta(X)$

Proof. " \subseteq " is clear. Assume that the other inclusion does not hold. Then there exists $w: E(G) \to \mathbb{Q}$ such that the minimum weight of a T-join $\alpha > \min w^t x$ where x satisfies the stated inequalities. Without loss of generality, $w \in \mathbb{Z}_{\geq 0}^{E(G)}$, both cones are identical $(\mathbb{R}_{\geq 0}^{E(G)})$. By corollary 2.15, there exist T-cuts $C_1, \ldots, C_{2\alpha}$ such that each edge e is covered at most 2w(e) times.

$$y_C := \frac{1}{2}$$
 number of times C occurs in $C_1, \dots, C_{2\alpha}$

Then y is a feasible solution to the dual:

$$\max_{\substack{C \text{ T-cut}}} y_C$$
 s.t.
$$\sum_{\substack{C \text{ T-cut}, \ e \in C}} y_e \le w(e)$$

$$e \in E(G)$$

$$y \ge 0$$

 $\sum_C y_C = \alpha$ is a lower bound for the minimization problem which is a contradiction to the assumed inequality.

2.4 Excursus: Gomory-Hu Trees

Let G be a graph, $u: E(G) \to \mathbb{R}_{\geq 0}$. Find $\emptyset \subsetneq X \subsetneq V(G)$ minimizing $u(\delta(X))$. One approach: $\binom{|V(G)|}{2}$ s-t-cut computations (this can clearly be reduced to |V(G)| - 1 by fixing s).

Definition 2.17. For $s, t \in V(G)$, denote by λ_{st} the minimum capacity of an s-t-cut (or local edge connectivity of s, t).

Lemma 2.18. For all $u, v, w \in V(G)$:

$$\lambda_{uw} \ge \min\{\lambda_{uv}, \lambda_{vw}\}$$

Proof. Let $\delta(A)$ be a *u-w*-cut. If $v \in A$, then $\delta(A)$ is a *v-w*-cut, so $u(\delta(A)) \ge \lambda_{vw}$. Otherwise, $\delta(A)$ is a *u-v*-cut, so $u(\delta(A)) \ge \lambda_{uv}$.

Definition 2.19. Let G be a graph, $u: E(G) \to \mathbb{R}_{\geq 0}$. A tree T is a Gomory-Hu tree for (G, u) if V(T) = V(G) and

$$\lambda_{st} = \min_{e \in E(T_{[s,t]})} u(\delta_G(C_e)) \qquad \forall s, t \in V(G)$$

where C_e and $V(G) \setminus C_e$ are the connected components of $T - e^5$.

Lemma 2.20. Given (G, u) and a tree T with V(T) = V(G):

T Gomory-Hu tree $\Leftrightarrow \forall e = \{s, t\} \in E(T)$ is a minimum capacity s-t-cut

Proof. "\$\Rightharpoonup" follows directly from the definition. For the other direction, let $s,t\in V(G)$ and $e=\{u,v\}\in\arg\min_{e\in E(T_{s,t})}\lambda_{uv}$. Without loss of generality, $s\in C_e,\ t\in V(G)\setminus C_e,\ \text{so}\ \delta(C_e)\ \text{is an }s\text{-}t\text{-cut}$. Therefore: $\lambda_{st}\leq u(\delta(C_e))=\lambda_e$ (with $\lambda_e\coloneqq\lambda_{uv}$). By lemma 2.20 and induction, $\lambda_{st}\geq\min\{\lambda_{v'w'}\mid\{v',w'\}\in E(T_{[s,t]})\}=\lambda_{uv}$. Therefore $\lambda_{st}=\lambda_{uv}$.

Idea: Choose $r, s \in V(G)$ and compute a minimum capacity r-s-cut $\delta(R)$. Without loss of generality $r \in R$. Construct a graph G_R by shrinking $S := V(G) \setminus R$ into a single vertex. Find a minimum capacity p-q-cut (where $p, q \in R$ are chosen arbitrarily) in G_R . This partitions R into 2 parts. Continue this process until V(G) is partitioned into singletons.

Lemma 2.21. Let (G, u) as above, $s, t \in V(G)$, $\delta(A)$ a minimum capacity st-cut in G and $s', t' \in V(G) \setminus A$. Let (G', u') arise from (G, u) by contracting A into a single vertex. Then for any minimum capacity s'-t'-cut $\delta_{G'}(K \cup \{A\})$ in (G', u'), $\delta_G(K \cup A)$ is a minimum capacity s'-t'-cut in (G, u).

Proof. Without loss of generality, $s \in A$. We show: \exists min. capacity s'-t'-cut $\delta(A')$ in (G, u) such that $A \subseteq A'$. Let $\delta(C)$ be any s'-t'-cut in (G, u). Without loss of generality, $s \in C$. $u(\delta(\cdot))$ is a submodular function, i.e. $u(\delta(A)) + u(\delta(B)) \ge u(\delta(A \cap B)) + u(\delta(A \cup B))^6$.

 $\delta(A \cap C)$ is an s-t-cut, so $u(\delta(A \cap C)) \geq \lambda_{st} = u(\delta(A))$. Therefore, $u(\delta(A \cup C)) \leq u(\delta(C)) = \lambda_{s't'}$. Since $s' \in A \cup C$, $A \cup C$ is a minimum capacity s'-t'-cut.

In general, we now choose a component X wih $|X| \geq 2$. Contract connected components in $T - \{X\}$, yielding a graph (G', u'). Choose $s, t \in X$, minimum s-t-cut $\delta(A')$ in (G', u'). $X = (X \cap A') \dot{\cup} (X \cap (V(G') \setminus A'))$.

Lemma 2.22. At the end of MinCut:

- 1. $A \dot{\cup} B = V(G)$
- 2. E(A,B) is a minimum s-t-cut in (G,u)

 $^{^{5}\}delta(C_{e})$ is called fundamental cut induced by e

⁶This holds with equality, if we add 2u(E(A, B)) to the right side

Proof. Elements of V(T) are non-empty subsets of V(G) and V(T) form a partition of V(G). Therefore $A\dot{\cup}B$ is a partition of V(G). 2. follows from successive application of lemma 2.21 to each connected component of T-X.

Lemma 2.23. At any time before FinishTree: $w(e) = u(\delta_G(\bigcup_{Z \in C_e} Z))$ for all $e \in E(T)$. Moreover, $\forall e = \{P, Q\} \in E(T)$ there exist $p \in P, q \in Q$: $w(e) = \lambda_{pq}$.

Proof. At the start, $E(T) = \emptyset$. We show that both properties are always satisfied. Let X, s, t, A', B', A, B as determined by ChooseComponents, Contract and MinCut. Edges in $E(T) \setminus \delta(X)$ are not affected. For new edges both conditions are true after ModifyTree.

Consider an edge $e \in \{Y, X\}$ that is replaced by e' in ModifyTree. Without loss of generality $Y \subseteq A$, so $e' = \{X \cap A, Y\}$. We show that both statements hold for e'. $w(e) = w(e') = u(\delta_G(\bigcup_{Z \in C_e} Z)) = u(\delta_G(\bigcup_{Z \in C_{e'}} Z'))$ so 1. holds. Assume $p \in X, q \in Y$: $\lambda_{pq} = w(e)$. If $p \in X \cap A$, we are done.

If $p \in X \cap B$, we claim: $\lambda_{sq} = \lambda_{pq}$. This then implies $w(e') = w(e) = \lambda_{pq} = \lambda_{sq}$. By lemma 2.20, $\lambda_{sq} \geq \min\{\lambda_{st}, \lambda_{tp}, \lambda_{pq}\}$. By lemma 2.22, E(A,B) is a minimum s-t-cut. By lemma 2.21 and since $s,q \in A$, λ_{sq} does not change when contracting B. Adding $\{t,p\}$ with sufficiently high capacity does not change λ_{sq} . Therefore $\lambda_{sq} \geq \min\{\lambda_{st}, \lambda_{pq}\} = \lambda_{pq}$ because E(A,B) is also a p-q-cut. w(e) is the capacity of a cut separating s,q, so $\lambda_{sq} \leq w(e) = \lambda_{pq}$.

Theorem 2.24 (Min Cut, Gomory & Hu (1961)). Every undirected graph G with edge capacities $e: E(G) \to \mathbb{R}_{\geq 0}$ has a Gomory-Hu-tree. It can be computed using n-1 Min-s-t-cut computations, e.g. in $O(n^3\sqrt{m})$ time (using the Push-Relabel algorithm for computing the minimum cuts) where n := |V(G)| and m := |E(G)|.

Proof. Algorithm-Hu-Algorithm computes a Gomory-Hu-tree (lemma 2.23). It uses n-1 iterations in each of which we need $O(n^2\sqrt{m})$ for Push-Relabel. Everything else can be handled in $O(\min\{n^3, n^2m\})$ time.

2.5 Finding Minimum-Capacity T-Cuts

Theorem 2.25 (Padberg & Rao (1987)). Given a graph $G, u : E(G) \to \mathbb{R}_{\geq 0}$, a Gomory-Hu-tree H for $(G, u), T \subseteq V(G)$ ($|T| \geq 2$ even), a minimum capacity T-cut can be found among the fundamental cuts of H. A minimum capacity T-cut can be computed in $O(n^3\sqrt{m})$ time.

Proof. Let $\delta_G(X)$ be a minimum capacity T-cut in G. Let J be the set of edges in E(H) for where $|C_e \cap T|$ is odd (where C_e is a connected component

of H - e). For all $x \in V(G)$:

$$|\delta_J(x)| \equiv \sum_{e \in \delta_H(x)} |C_e \cap T|$$

$$\stackrel{T \text{ even}}{\equiv} |\{x\} \cap T| \mod 2$$

Therefore J is a T-join in H. Since T-cuts and T-joins intersect, there is $f \in J \cap \delta_H(X)$.

$$u(\delta_G(X)) \ge \min\{u(\delta_G(Y)) \mid |Y \cap f| = 1\}$$

= $u(\delta_G(C_f))$

We conclude that $\delta_G(C_f)$ is a minimum-capacity T-cut.

2.6 b-Matchings

Definition 2.26. Let G be a graph, $u: E(G) \to \mathbb{N}_0 \cup \{\infty\}$ and $b: V(G) \to \mathbb{N}_0$. A *b-matching* is a function $f: E(G) \to \mathbb{N}_0$ such that $f(e) \leq u(e)$ and $f(\delta(v)) \leq b(v)$ for all $e \in E(G)$ and $v \in V(G)$.

- If $u \equiv 1$, the instance is called *simple*.
- If $b \equiv 1$, this is equivalent to a matching.
- If $f(\delta(v)) = b(v)$ for all $v \in V(G)$, it is called *perfect*.
- Simple perfect b-matchings are called b-factors.

Example. A TSP-tour is a 2-factor. Therefore valid inequalities for 2-factors are valid for TSP.

Theorem 2.27 (Edmonds (1965)). Let G be a graph, $b:V(G)\to\mathbb{N}$. The b-matching polytope of (G,∞) is the set of vectors $x\in\mathbb{R}^{E(G)}_{>0}$ satisfying:

$$x_e \ge 0 \qquad e \in E(G)$$

$$x(\delta(v)) \le b(c) \qquad v \in V(G)$$

$$\sum_{e \in E(G[X])} x_e \le \lfloor \frac{1}{2} \sum_{v \in X} b(v) \rfloor \qquad X \subseteq V(G)$$

Proof. Clearly, any b-matching satisfies these inequalities. Let x satisfy the inequalities. Without loss of generality $b \geq 1$. Define H by splitting each $v \in V(G)$ into b(v) copies. Define:

$$\begin{split} X_v &\coloneqq \{(v,i) \mid i \in [b(v)]\} \qquad v \in V(G) \\ V(H) &\coloneqq \bigcup_{v \in V(G)} X_v \\ E(H) &\coloneqq \{\{v',w'\} \mid \{v,w\} \in E(G), v' \in X_v, w' \in X_w\} \\ y_{e'} &\coloneqq \frac{1}{b(v) \cdot b(w)} x_{\{v,w\}} \qquad e' = \{v',w'\} \in E(H), v' \in X_v, w' \in X_w \end{split}$$

Claim. y is a convex combination of matchings in H. Contracting all X_v $(v \in V(G))$ yields a convex combination of b-matchings for x.

We show that Y is contained in the matching polytope, i.e.:

$$y_e \ge 0$$

$$\sum_{e \in E(H[A])} y_2 \le \frac{|A| - 1}{2}$$

$$A \subseteq V(H), |A| \text{ odd}$$

If $\forall v \in V(H)$: $X_v \subseteq A$ or $X_v \cap A = \emptyset$, this follows directly from the given inequalities. Otherwise, let $a, b \in X_v$ such that $a \in A, b \notin A$.

$$\begin{split} 2\sum_{e\in E(H[A])}y_e &= \sum_{c\in A\backslash\{a\}}\sum_{e\in E(\{c\},A\backslash\{c\})}y_e + \sum_{e\in E(\{a\},A\backslash\{a\})}y_e\\ &\leq \sum_{c\in A\backslash\{a\}}\sum_{e\in\delta_H(c)\backslash\{\{c,b\}\}} + \sum_{e\in E(\{a\},A\backslash\{a\})}y_e\\ &= \sum_{c\in A\backslash\{a\}}\sum_{e\in\delta_H(c)}y_e - \sum_{e\in E(\{b\},A\backslash\{a\})}y_e + \sum_{e\in E(\{a\},A\backslash\{a\})}y_e\\ &\leq |A|-1 \end{split}$$

Theorem 2.28 (Edmonds & Johnson (1970)). Let G be a graph, $u : E(G) \to \mathbb{N} \cup \{\infty\}$, $b : V(G) \to \mathbb{N}$. The b-matching polytope is given by:

$$x \ge 0$$

$$x \le u$$

$$x(\delta(v)) \le b(v)$$

$$v \in V(G)$$

$$\sum_{e \in E(G[X])} x_e + \sum_{e \in F} x_e \le \left\lfloor \frac{1}{2} \left(\sum_{v \in X} b(v) + \sum_{e \in F} u(e) \right) \right\rfloor \quad X \subseteq V(G), F \subseteq \delta(X)$$

$$\underbrace{\sum_{e \in E(G[X])} x_e + \sum_{e \in F} x_e}_{Gomoru-Chvátal-Cut}$$

Proof.

" \subseteq ": Let x be an incidence vector of b-matchings. Then $x \leq u$ and $x(\delta(v)) \leq b(v)$ for all $v \in V(G)$.

$$\sum_{e \in E(G[X])} x_e + \sum_{e \in F} x_e = \frac{1}{2} \left(\sum_{v \in X} \sum_{e \in \delta(x)} x_e + \sum_{e \in F} x_e - \sum_{e \in \delta(X) \setminus F} x_e \right)$$

$$\leq \frac{1}{2} \left(\sum_{v \in X} b(v) + \sum_{e \in F} u(e) \right)$$

Since the left hand side is integral, the right hand side can be rounded down.

"\[\]": Let x satisfy all the inequalities. We have to show that x is a convex combinations of b-matchings. Let H arise from G by subdividing each edge $e = \{v, w\}$ with $u(e) \neq \infty$ by 2 new vertices (e, v), (e, w) and a path v-(e, v)-(e, w)-w, where b((e, v)) = u(e) = b((e, w)). Set $y_{\{v,(e,v)\}} := x_e =: y_{\{(e,w),w\}}$ and $y_{\{(e,v),(e,w)\}} := u(e) - x_e$. If $u(e) = \infty$, $y_e := x_e$.

Claim. y is in the b-matching polytope of (H, ∞) . This then implies that x is contained in the capacitated b-matching polytope of (G, u).

 $y(\delta_H(v)) \leq b(v)$ clearly holds for all $v \in V(H)$. Assume that there exists $A \subseteq V(H)$ with:

$$y(E(H[A])) > \lfloor \frac{1}{2}b(A) \rfloor$$

Let $B := A \cap V(G)$. For $\{v, w\} \in E(G[B])$, we may assume that $(e, v), (e, w) \in A$. If $(e, v) \in A$, we may assume $v \in A$:

Case 1: If $(e, w) \in A$, we can remove (e, v) and (e, w).

Case 2: If $(e, w) \notin A$, we can remove (e, v).

There are 3 remaining cases. Define:

$$F\coloneqq\{e=\{v,w\}\in E(G)\mid \ |A\cap\{(e,v),(e,w)\}|=1\}$$

Then

$$x(E(G[B])) + x(F) = y(E(H[A])) - \sum_{\substack{e \in E(G[B]) \\ u(e) < \infty}} u(e)$$

$$> \lfloor \frac{1}{2}b(A) \rfloor - \sum_{\substack{e \in E(G[B]) \\ u(e) < \infty}} u(e)$$

$$= \lfloor \frac{1}{2}(b(B) + \sum_{\substack{e \in F}} u(e)) \rfloor$$

which is a contradiction to the feasibility of x. Therefore, y satisfies the inequalities w.r.t. (H, ∞) . Let $e \in P := b$ -matching polytope for (H, ∞) , then $y \in \{z \in P \mid \sum_{e \in \delta(v)} z_e = b(v) \forall v \in V(H) \setminus V(G)\}$. Therefore, y is the convex combination of b-matchings f_1, \ldots, f_m in (H, ∞) with $f_i(\delta(v)) = b(v)$ for all $v \in V(H) \setminus V(G)$. We get:

$$f_i(\{v, (e, v)\}) = f_i(\{w, (e, w)\}) \le u(e) \qquad \forall e = \{v, w\} \in E(G)$$

Set:

$$f'_i(e) := \begin{cases} f_i(v, (e, v)) & e = \{v, w\} \in E(G), \ u(e) < \infty \\ f_i(e) & e = \{v, w\} \in E(G), \ u(e) = \infty \end{cases}$$

Then x is a convex combination of f'_1, \ldots, f'_m (of b-matchings).

2.7 Padberg-Rao Theorem

Lemma 2.30. Let G be a graph, $|E(G)| \ge 1$, $T \subseteq V(G)$ with |T| even, $c, c' : E(G) \to \mathbb{R}_{\ge 0} \cup \{\infty\}$. There exists a $O(n^2m)$ time algorithm that finds a vertex set $X \subseteq V(G)$ and $F \subseteq \delta(X)$ such that $|X \cap T| + |F|$ is odd and

$$c(\delta(X) \setminus F) + c'(F)$$

is minimum.

Proof. Without loss of generality, G is connected: Otherwise, add edges e with c(e) = 0 and $c'(e) = \infty$. Let

$$d(e) := \min\{c(e), c'(e)\}$$

$$E' := \{e \in E(G) \mid c'(e) < c(e)\}$$

$$V' := \{v \in V(G) \mid |\delta_{E'}(v)| \text{ odd}\}$$

$$T' := T\Delta V'$$

Since E' is a V'-join, for $X \subseteq V(G)$:

$$|X \cap T| + |\delta(X) \cap E'| \equiv |X \cap T| + |X \cap T'| \equiv |X \cap T'| \mod 2$$

Compute a Gomory-Hu-Tree H for (G, d). For $f \in E(H)$, let $\delta(C_f)$ be the fundamental cut of f (i.e. C_f is a connected component in H - f). Let $g_f \in \arg\min_{e \in \delta_G(C_f)} |c(e) - c'(e)|$. Let:

$$F_f := \begin{cases} \delta_G(C_f) \cap E' & \text{if } |C_f \cap T'| \text{ is odd} \\ \delta_G(C_f) \cap E' \Delta \{g_f\} & \text{else} \end{cases}$$

Finally, choose $f \in E(H)$ minimizing $c(\delta(C_f) \setminus F_f) + c'(F_f)$ and output C_f, F_f . The running time is dominated by the computation of H.

It remains to show correctness: Let X^*, F^* be an optimum solution.

Case 1: $|X^* \cap T'|$ is odd. $J' := \{ f \in E(H) \mid |C_f \cap T'| \text{ odd} \}$ is a T'-join in H. Therefore, J' intersects the T'-cut $\delta_H(X^*)$. Let $f \in \delta_H(X^*)$ with $|X_f \cap T'|$ odd. Then $d(\delta_G(C_f)) \leq d(\delta_G(X^*)) \leq \text{obj}(X^*)$, since H is a Gomory-Hu-tree. By construction, $F_f = \delta_G(C_f) \cap E'$ and:

$$c(\delta_G(C_f) \setminus F_f) + c'(F_f) \le d(\delta_G(X_f))$$

Case 2: $|X^* \cap T'|$ is even. Let $g^* \in \arg\min_{e \in \delta(X^*)} |c(e) - c'(e)|$. $H + g^*$ has a unique circuit that contains some $f \in \delta_H(X^*)$. Then

$$c(\delta_G(X^*) \setminus F^*) + c'(F^*) = d(\delta(X^*)) + |c(g^*) - c'(g^*)|$$

$$\geq d(\delta_G(C_f)) + |c(g^*) - c'(g^*)|$$

$$g^* \in \delta_G(C_f)$$

$$\geq c(\delta(C_f) \setminus F_f) + c'(F_f)$$

Theorem 2.31 (Padberg & Rao (1987)). Let G be a graph, $u: E(G) \to \mathbb{N} \cup \{\infty\}$ and $b: V(G) \to \mathbb{N}$. Then the separation problem for the b-matching polytope can be solved in $O(n^2m)$ time.

Proof. $0 \le X \le u$ and $x(\delta(v)) \le b(v)$ for all $v \in V(G)$ can be checked in linear time. It remains to check:

$$x(E(G[X])) + x(F) \le \lfloor \frac{1}{2}b(X) + u(F) \rfloor$$
 $X \subseteq V(G), F \subseteq \delta(X)$

If b(X) + u(F) is even (i.e. no rounding is done), this is implied by the other inequarities. Otherwise, the inequality is violated iff:

$$b(X) - 2x(E(G[X])) + u(F) - 2x(F) < 1$$

Extend G to H by adding a new vertex z and edges $\{z,v\}$ for every $v \in V(G)$. Set:

$$b(z) \coloneqq b(V(G))$$

$$T \coloneqq \{v \in V(H) \mid b(v) \text{ odd}\}$$

$$E' \coloneqq \{e \in E(G) \mid u(e) < \infty \text{ and odd}\}$$

$$c(e) \coloneqq \begin{cases} x_e & e \in E' \\ \min\{x_e, u(e) - x_e\} & e \in E(G) \setminus E' \\ b(v) - x(\delta(v)) & e = \{z, v\} \in E(H) \end{cases}$$

$$c'(e) \coloneqq \begin{cases} u(e) - x_e & e \in E' \\ \infty & e \in E(H) \setminus E' \end{cases}$$

For $X \subseteq V(G)$, let $D_X := \{e \in \delta_G(X) \setminus E' \mid u(e) \leq 2x_e\}$. Then $\forall X \subseteq V(G), F \subseteq \delta_G(X) \cap E'$

$$|X \cap T| + |F| \equiv b(X) + u(F \cup D_X) \mod 2$$

and

$$c(\delta_{H}(X) \setminus F) + c'(F) = b(X) - \sum_{v \in X} x(\delta_{G}(v)) + \sum_{e \in (\delta_{G}(X) \cap E') \setminus F} x_{e}$$

$$+ \sum_{e \in \delta_{G}(X) \setminus E'} \min\{x_{e}, u(e) - x_{e}\} + \sum_{e \in F} u(e) - x_{e}$$

$$= b(X) - 2x(E(G[X])) + \sum_{e \in F \cup D_{X}} u(e) - 2x_{e}$$

Apply lemma 2.30 to H, T, c, c': If there exists $X \subseteq V(H)$, $F \subseteq \delta_H(X)$ with $c(\delta(X) \setminus F) + c'(F) < 1$, then $F \subseteq E'$ and without loss of generality $z \notin X$ (otherwise use the complement). We get

$$b(X) - 2x(E(G[X])) + \sum_{e \in F \cup D_X} u(e) - 2x_e < 1$$

Setting $F' := F \cup D_X$ yields a violating of the corresponding inequality.

For the other direction, note that if the inequality holds for $X \subseteq V(G)$ and $F \subseteq \delta(X)$. Then without loss of generality, $D_X \subseteq F \subseteq E' \cup D_X$ (since adding edges in $D_X \setminus F$ increases the violation). Then:

$$c(\delta_H(X) \setminus (F \setminus D_X)) + c'(F \setminus D_X) < 1$$

Therefore, the b-matching polytope can be separated in polynomial time. \Box

Corollary 2.32. The Maximum-Weight b-Matching Problem can be solved in polynomial time.

Proof. Use the Ellipsoid method together with theorem 2.31.

3 The TSP Polytope

3.1 The Spanning Tree Polytope

Theorem 3.1 (Edmonds (1967)). Let G be a connected graph, n := |V(G)|. Then

$$P_{ST} \coloneqq \{x \in [0,1]^{E(G)} \mid x(E(G)) = n-1, \forall \emptyset \subsetneq X \subseteq V(G) : \sum_{e \in E(G[X])} x_e \leq |X|-1\}$$

is the convex hull of incidence vectors of spanning trees. It is called the spanning tree polytope.

Proof. Let T be a spanning tree with incidence vector x. Then $x \in P_{ST}$ and as $x \in \{0,1\}^{E(G)}$, x is a vertex.

For the other direction, let $x \in P_{ST} \cap \mathbb{Z}^{E(G)}$. Then x cannot contain cycles, so it is a forest. Since x(E(G)) = n - 1, it is a spanning tree.

Claim. P_{ST} is integral.

Let $c: E(G) \to \mathbb{R}$ and T be a minimum spanning tree produced by Kruskals algorithm. Let $E(T) := \{f_1, \ldots, f_{n-1}\}$ in order of addition, i.e. $c(f_1) \le c(f_2) \le \ldots \le c(f_{n-1})$. Let $X_k \subseteq V(G)$ be the connected component in $(V(G), \{f_1, \ldots, f_k\})$ containing f_k . Let $f_k = f_k$ be the incidence vector of f_k .

Claim. x^* is an optimum solution to

$$\min c^{t} x$$

$$s.t.1^{t} x = n - 1$$

$$x(E(G[X])) \le |X| - 1 \qquad \forall \emptyset \subsetneq X \subseteq V(G)$$

The dual problem is:

$$\max - \sum_{\emptyset \subsetneq X \subseteq V(G)} (|X| - 1) z_A$$

$$s.t. - \sum_{e \subseteq X \subseteq V(G)} z_X \le c(e)$$

$$z_X \ge 0$$

$$\emptyset \subsetneq X \subsetneq V(G)$$

Construct a dual solution z^* : For $k \in \{1, \ldots, n-2\}$, set $z^*_{X_k} \coloneqq c(f_l) - c(f_k) \ge 0$ where l is the minimum index larger than k with $X_k \cap f_l \ne \emptyset$. Define $z^*_{V(G)} = -c(f_{n-1})$ and $z^*_A \coloneqq 0$ for all other $A \subseteq V(G)$.

For $e = \{v, w\} \in E(G)$:

$$-\sum_{e \subseteq X \subseteq V(G)} z_X = -c(f_i) \le c(e)$$

where i is the smallest index such that $e \in X_i$. Therefore, z^* is dual feasible. For tree edges, we have equality, so for $x_e > 0$ the dual constraint is tight. Let $\emptyset \subsetneq X \subseteq V(G)$ with $z_X^* > 0$. Then T[X] is connected, so the primal constraint is tight. Complementary slackness implies that x^*, z^* are optimum primal/dual solutions.

Remark: If $c \in \mathbb{Z}^{E(G)}$, then z^* is an integral optimum dual solution, so the system is TDI.

Theorem 3.2 (Fulkerson (1974)). Let G be a digraph, $c: E(G) \to \mathbb{Z}_{\geq 0}$, $r \in V(G)$ such that G contains an r-arborescence. Then the minimum weight of an r-arborescence spanning V(G) equals the maximum number of r-cuts C_1, \ldots, C_t (where repetitions are allowed) such that no edge e is contained in more than c(e) of the cuts.

Proof. Consider the $(r\text{-cuts}) \times (\text{edges})$ matrix A, where

$$A_{Ce} = \begin{cases} 1 & e \in C \\ 0 & \text{otherwise} \end{cases}$$

Consider the LP and its dual:

$$\min\{c^t x \mid x \in \mathbb{R}^{E(G)}, Ax \ge 1, x \ge 0\}$$
$$\max\{1^t y \mid y \in \mathbb{R}^{r\text{-cuts}}yA \le c, y \ge 0\}$$

Claim. The system is TDI.