CS 584 - MACHINE LEARNING

TOPIC: PROBABILITY THEORY

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Learning
 - Statistics, expectations, etc.
 - E.g., decision trees, naïve Bayes, logistic regression, ...
- Evaluation
 - Statistics, expectations, variance, etc.
 - E.g., expected error using a sample

SOME QUESTIONS

- Given a domain with n variables, $X_1, X_2, ..., X_n$, each of which has $v_1, v_2, ..., v_n$ possible values, what is the size of the instance space?
- Given a sample dataset and a hypothesis h, calculate the mean, variance, and 95% confidence interval for the error rate of h
- Type I error has cost c_1 and type II error has cost c_2 . Correct decisions have no cost. The probability of the object belonging to Positive class is p. Should it be classified as Positive or Negative?
- Given P(Symptoms | Diseases), P(Diseases) and P(Symptoms), calculate P(Diseases | Symptoms)
- Given a probability distribution $p_1, p_2, ..., p_k$, calculate its entropy

RANDOM VARIABLES

- Pick variables of interest
 - Medical diagnosis
 - o Age, gender, weight, temperature, LT1, LT2, ...
 - Loan application
 - o Income, wealth, payment history, ...
- Every variable has a domain
 - Binary (True/False)
 - Categorical
 - Real-valued
- Possible world
 - An assignment to all variables of interest

MPTW

PROBABILITY MODEL

- A **probability model** associates a numerical probability P(w) with each possible world w
 - P(w) sums to 1 over all possible worlds
- o An **event** is the set of possible worlds where a given predicate is true
 - Roll two dice
 - The possible worlds are (1,1), (1,2), ..., (6,6); 36 possible worlds
 - Predicate = two dice sum to 10
 - Event = $\{(4,6), (5,5), (6,4)\}$
 - Toothache and cavity
 - Four possible worlds: (t,c), $(t,\sim c)$, $(\sim t,c)$, $(\sim t,\sim c)$
 - Some worlds are more likely than others
 - Predicate can be anything about these variables: $t \land c, t, t \lor \sim c$,

AXIOMS OF PROBABILITY

- 1. The probability P(a) of a proposition a is a real number between 0 and 1
- 2. P(true) = 1, P(false) = 0
- 3. $P(a \lor b) = \underline{P(a)} + \underline{P(b)} \underline{P(a \land b)}$

$P(\neg a)$

o
$$P(a \lor \neg a) = P(a) + P(\neg a) - P(a \land \neg a) \leftarrow A \times \neg m \# 3$$

- $P(true) = P(a) + P(\neg a) P(false)$
- \circ 1 = P(a) + P(\neg a) 0
- Intuitive explanation:
 - The probability of all possible worlds is 1
 - Either a or $\neg a$ holds in one world
 - The worlds that α holds and the worlds that $\neg \alpha$ holds are mutually exclusive and exhaustive

< Axom #2

RANDOM VARIABLES - NOTATION

- o Capital: X: variable
- Lowercase: x: a particular value of X
- Val(X): the set of values X can take
- Bold Capital: X: a set of variables
- Bold lowercase: x: an assignment to all variables in X
- \circ P(X=x) will be shortened as P(x)
- $P(X=x \cap Y=y)$ will be shortened as P(x,y)

JOINT DISTRIBUTION

- We have n random variables, $X_1, X_2, ..., X_n$
- We are interested in the probability of a possible world, where
 - X_1 =low, X_2 =red, ..., X_n =circle
- $P(X_1, X_2, ..., X_n)$ associates a probability for each possible world = the **joint distribution**
- How many entries are there, if we assume the variables are all binary?

TOOTHACHE EXAMPLE

Feeling	X-Ray	P(F,X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
¬toothache	¬cavity	0.70

MARGINALIZATION

- \circ Given a distribution over n variables, you can calculate the distribution over any subset of the variables by summing out the irrelevant ones
- For example
 - Given P(A, B, C, D)
 - BZZPIA,B,(,)) Calculate

LET'S ANSWER A FEW QUERIES

Feeling	X-Ray	P(F,X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
\neg toothache	¬cavity	0.70

- P(cavity) = ? 0.15 + 0.05 = 0.20
- $P(\neg cavity) = ?$
- P(toothache) = ? $0.15 + 0.15 \div 0.45$
- $P(\neg toothache) = ? ? ?$

CONDITIONAL DISTRIBUTION

$$P(A,B,C \mid D,E,F,G) = \frac{P(A,B,C,D,E,F,G)}{P(D,E,F,G)}$$

LET'S ANSWER A FEW QUERIES

Feeling	X-Ray	P(F,X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
\neg toothache	¬cavity	0.70

- P(cavity | toothache) = ?
- $P(cavity \mid \neg toothache) = ?$
- $P(\neg cavity \mid toothache) = ?$
- $P(\neg cavity \mid \neg toothache) = ?$
- P(toothache | cavity) = ?
- $P(\neg toothache \mid cavity) = ?$
- P(toothache | \neg cavity) = ?
- $P(\neg toothache \mid \neg cavity) = ?$

$$\frac{P(7t,c)}{P(c)} = \frac{0.05}{0.20}$$

$$\frac{P(7t,7c)}{P(7c)} = \frac{0.70}{0.80}$$
14

BAYES' RULE

- $P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$
- Example use
 - P(cause | effect) = P(effect | cause)*P(cause) / P(effect)
- o Why is this useful?
 - Because in practice it is easier to get probabilities for P(effect|cause) and P(cause) than for P(cause|effect)
 - E.g., P(disease|symptoms) =P(symptoms|disease)*P(disease) / P(symptoms)
 - It is easier to know what symptoms diseases cause. It is harder to diagnose a disease given symptoms

BAYES RULE

• Can we compute $P(\alpha|\beta)$ from $P(\beta|\alpha)$?

CLASS EXAMPLE

- Let's say there are 100 students in the class
- Let's say 10 of them work hard (h), 90 do not (~h)
- Probability of a randomly picked student being hardworking
 - P(h) = 0.1
- We are told that 70% of the hardworking students got an A.
 - P(a | h) = 0.7
 - 7 hardworking students got an A; 3 did not get an A.
- P(h/a) = P(a/h) P(h) • What is P(h|a) = ?

p(h)=0.10

VERY HARD CLASS

P(M) = 0.1

MEDIUM HARD CLASS

p(h): 0.10

WEIRD CLASS

$$P(h | a) = ?$$
 h, h $\frac{7}{4} \sim 0.0$.

CHAIN RULE

- P(X₁, X₂, X₃, ..., X_k) =
 - $P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) ... P(X_k | X_1, X_2, X_3, ..., X_{k-1})$ or
 - $P(X_2)$ $P(X_1 | X_2)$ $P(X_3 | X_1, X_2)$... $P(X_k | X_1, X_2, X_3, ..., X_{k-1})$ • or
 - $P(X_2) P(X_3 | X_2) P(X_1 | X_3, X_2)... P(X_k | X_1, X_2, X_3, ..., X_{k-1})$ • or
 - Pick an order, then
 - P(first)P(second | first)P(third | first, second)...P(last | all_previous)

MARGINAL INDEPENDENCE

- An event α is **independent** of event β in P, denoted as P $\models \alpha \perp \beta$, if
 - $P(\alpha \mid \beta) = P(\alpha)$, or
 - $P(\beta) = 0$
- Proposition: A distribution P satisfies $\alpha \perp \beta$ if and only if
 - $P(\alpha, \beta) = P(\alpha) P(\beta)$
 - Can you prove it?
- Corollary: $\alpha \perp \beta$ implies $\beta \perp \alpha$

MARGINAL INDEPENDENCE

X	Y	P(X, Y)
t	t	0.18
t	f	0.42
f	t	0.12
f	f	0.28

Is
$$X \perp Y$$
?

CONDITIONAL INDEPENDENCE

- Two events are independent given another event
- An event α is **independent** of event β given event γ in P, denoted as $P \models (\alpha \perp \beta \mid \gamma)$, if
 - $P(\alpha \mid \beta, \gamma) = P(\alpha \mid \gamma)$, or
 - $P(\beta, \gamma) = 0$
- Proposition: A distribution P satisfies $\alpha \perp \beta \mid \gamma$ if and only if Height 4 Knowledge
 - $P(\alpha, \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

HIK? No HIK/A Yas

Number of Parameters

- Assuming everything is binary
- \circ P(X₁) requires
 - 1 independent parameter
- \circ P(X₁, X₂, ..., X_n) requires
 - 2ⁿ-1 independent parameters
- \circ P(X₁ | X₂) requires
 - 2 independent parameters
- o $P(X_1, X_2, ..., X_n \mid X_{n+1}, X_{n+2}, ..., X_{n+m})$ requires
 - $2^m \times (2^n-1)$ independent parameters

NUMBER OF PARAMETERS

- Assuming everything is binary
- \circ P(X₁) requires
 - 1 independent parameter
- \circ P(X₁, X₂, ..., X_n) requires
 - 2ⁿ-1 independent parameters
- \circ P(X₁ (X₂) requires
 - 2 independent parameters
- o $P(X_1, X_2, ..., X_n \mid X_{n+1}, X_{n+2}, ..., X_{n+m})$ requires

P(Y X) S P(Y X=T) R G B 1 2+2 ind	P(Y/X:F)	
1P(X y:17) x P(X:y:6) T - + 1-1-1-2 1-1-1-2	X P(x y = 1	

CS 584 – Machine Learning – Illinois Institute of Technology

CONTINUOUS SPACES

- Assume X is continuous and Val(X) = [0,1]
- o If you would like to assign the same probability to all real numbers in [0, 1], what is, for e.g., P(X=0.5) = ?
- Answer: P(X=0.5) = 0.

PROBABILITY DENSITY FUNCTION

• We define **probability density function**, p(x), a non-negative integrable function, such that $\int_{Val(X)} p(x)dx = 1$

$$P(X \le a) = \int_{-\infty}^{a} p(x)dx$$

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

CONDITIONAL PROBABILITY

- We want P(Y | X=x) where X is continuous, Y is discrete
- P(Y | X=x) = P(Y,X=x) / P(X=x)
 - What's wrong with this expression?
- Instead, we use the following expression

$$P(Y \mid X = x) = \lim_{\varepsilon \to 0} P(Y \mid x - \varepsilon \le X \le x + \varepsilon)$$

CONDITIONAL PROBABILITY

- \circ We want p(Y | X) where X is discrete, Y is continuous
- o How would you represent it?

EXPECTATION

$$E_{P}[X] = \sum_{x} xP(x)$$

$$E_{P}[X] = \int_{x} xp(x)dx$$

$$E_{P}[aX + b] = aE_{P}[X] + b$$

$$E_{P}[X + Y] = E_{P}[X] + E_{P}[Y]$$

$$E_{P}[X | y] = \sum_{x} xP(x | y)$$

What about E[X*Y]?

VARIANCE

$$Var_{P}[X] = E_{P}[(X - E_{P}[X])^{2}]$$

$$Var_{P}[X] = E_{P}[X^{2}] - (E_{P}[X])^{2}$$

Can you derive the second expression using the first expression?

$$Var_{P}\left[aX+b\right] = a^{2}Var_{P}\left[X\right]$$

What is Var[X+Y]?

SOME DISTRIBUTIONS

BINOMIAL DISTRIBUTION

- Two parameters
 - n number of independent experiments each measuring a binary outcome (e.g., Yes/No, Heads/Tails, Positive/Negative, ...)
 - p "success" probability for each individual experiment (e.g., Yes, Heads, Positive, ...)
- Probability of exactly k successes
 - $P(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Expected value: *np*
- Variance: np(1-p)
- An important use for binomial distribution: estimate a binary measure using a sample
 - Given k success in n experiments, estimate p and a confidence interval for p

UNIFORM DISTRIBUTION

• A variable X has a uniform distribution over [a,b] if it has the PDF

$$p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Check and make sure that p(x) integrates to 1. What are the mean and variances of this distribution?

GAUSSIAN DISTRIBUTION

• A variable X has a Gaussian distribution with mean μ and variance σ^2 , if it has the PDF

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)}{2\sigma^2}}$$

$$0.45 \\ 0.4 \\ 0.35 \\ 0.3 \\ 0.25 \\ 0.15 \\ 0.11 \\ 0.05 \\ 0 \\ -10$$

$$N(0,4^2)$$

$$0.15 \\ 0.11 \\ 0.05 \\ 0 \\ -10$$

$$0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$$

Can p(x) be ever greater than 1?

38

OTHER TOPICS

- Information theory
- Parameter estimation
- Decision-making under uncertainty