

UNIVERSITÄT

14-15 October 2021

15th October 2021

BROWSER BASED EXPLORATION OF THE GDB CHEMICAL SPACE USING AI PLANNED SYNTHESIS FACILITATES EXPERIMENTAL **ENGAGEMENT**

AMOLTHAKKAR

INTRODUCTION - OVERVIEW

Curently individual components and we want to combine them – lower barrier to entry

AI PLANNED SYNTHESIS

BROWSER BASED EXPLORATION

EXPERIMENTAL ENGAGEMENT

Enabling experimentation by linking chemical library visualisation to predicted synthesis in one tool

GDB CHEMICAL SPACE - HOW MANY MOLECULES ARE POSSIBLE?

Target Identification Filtering Visualisation Synthesis Planning Wet Lab Candidates

ca. 166 billion

Ruddigkeit et. al., *J. Chem. Inf. Model.* **2012**, 52, 11, 2864–2875

ca. 10 million

FDB17

Visini et. al., *J. Chem. Inf. Model.* **2017**, 57, 4, 700–709

ca. 10 million

GDBMedChem

Awale et. al., *Mol. Inf.* **2019**, 38, 1900031

ca. 10 million

GDBChEMBL

Bühlmann et. al., Front. Chem. **2020**, 8 (46)

TACKLING COMPUTER AIDED SYNTHESIS COLLABORATIVELY

How do we synthesise the compounds that are generated or suggested by a chemist or computer?

PRIOR ART

- Guide chemists in the synthesis of molecules
- Codify and organise the techniques used in organic synthesis
- Propose a variety of synthetic routes given any molecule

The responsibility for the final evaluation of the merit of the routes lies with the chemist.

We need a method for getting feedback on lots of routes quickly – improving synthesis plans by iteration

LHASA-Logic and Heuristics Applied to Synthetic Analysis

DAVID A. PENSAK

Central Research and Develop. Dept., E. I. du Pont de Nemours and Co., Wilmington, Del. 19898

E. J. COREY

Dept. of Chemistry, Harvard University, Cambridge, Mass. 02138

Despite the wealth of knowledge about various chemical reactions, there exists no formal framework of interrelationships to guide the chemist in the synthesis of even moderately complex molecules. The LHASA (Logic and Heuristics Applied to Synthetic Analysis) project is an attempt to codify and organiz the techniques used in organic synthesis.

One important aspect of the project has been the writing of a general purpose computer program which will aid the laboratory chemist and will employ both the basic and more complex techniques for synthetic design as elucidated by this study. The program (hereafter also called LHASA) is intended to propose a variety of synthetic routes to whatever molecule it is given. The responsibility for final evaluation of the merit of the routes lies with the chemist. The

LEGO – ANALOGY TO SYNTHESIS PLANNING

Building Lego as an analogy to synthetic route planning

Code

•

Paper

OPEN-SOURCE APPROACHES FOR SYNTHESIS PLANNING

TEMPLATE EXTRACTION

Dataset

Proprietary

Literature

Patents

USPTO (Public)

Pistachio (NextMove)

Reaction in Dataset

Extract Rules

Forward reaction rule:

Retro reaction rule:

NEURAL NETWORK TRAINING – TEMPLATE PRIORITISATION

Paper

Product

Predict Retrosynthesis **Template**

Product and template

must have a substructure match

IMPROVING TEMPLATE PRIORITISATION

IMPROVING TEMPLATE PRIORITISATION

Network

PREDICTING MULTISTEP PATHWAYS

Paper

Node expansion according to:

$$UCB = \frac{Q}{N} + C \times \sqrt{2 \times \frac{\ln N_{-1}}{N}}$$

Q: sum of previous rewards

compound

N: number of child node visitations

N₋₁: Number of parent node visitations

C: Exploration/Exploitation hyperparameter

ACCESSIBILITY OPTIONS FOR END USERS

GitHub Repo

- For developers
- For end users familiar with scripting and command line

Graphical User Interface

- Deployed internally in AZ
- Allows interactive exploration
- Functionality not in repo

IBM RXN Graphical user interface below:

ACCESSIBILITY OPTIONS FOR END USERS

GDB CHEMICAL SPACE

AI PLANNED SYNTHESIS

BROWSER BASED EXPLORATION

EXPERIMENTAL ENGAGEMENT

- × Scripting or command line knowledge
- × Step wise compound submission
- × Wait for batch runs
- Switching between tools for visualisation, calculation of properties, synthesis prediction, prioritisation

GDB ROUTE BROWSER

TMAP – VISUALISATION OF CHEMICAL LIBRARIES

- Feature vector generated using minhashing
- Index into LSH forest
- Generation of k-nearest neighbour graph
- Minimum spanning tree algorithm for layout
- Embed into 2d using co-ordinates

https://tmap.gdb.tools/

tmap

GETTING STARTED

Supported Environments

Installat

Laying out a Simple

MinHash

LSH Forest

EXAMPLES

COIL20

MNIST

Fashion MNIST

ChEMBL

FDB17 and ChEMBL

Natural Product Atlas

DSSTox

Protein Data Bank

RNA Sequencing

ProteomeHD

PubMed Central

MiniBooNE

Gutenberg

NIPS

Drugbank

Flowcytometry

MOLECULENET.AI

Quantum Mechanics Physical Chemistry

Getting started

tmap is a very fast visualization library for large, high-dimensional data sets. Currently, tmap is available for Python.

NEW: We now provide a web-service that allows for the creaton of TMAP visualizations for small chemical data sets.

Try TMAP

Supported Environments

Language	Operating System	Status	
Python	Linux	Available	
	Windows	Available ¹	
	macOS	Available	
R		Available ²	

17

D. Probst, J.-L. Reymond, Visualization of very large high-dimensional data sets as minimum spanning trees. *J Cheminform* 12, 12 (2020).

GDB RETROSYNTHESIS

Dataset	Compounds	% Solved by AiZynthFinder	Number of Routes	Number of Steps	TMAP Created
AmineDB	44,929	17.7	427,493	2,829,675	Υ
DiamineDB	1,323	56.2	12,207	59,987	Υ
GDB13_ABCDEFGH	994,840	19.7	8,501,323	54,933,389	N
GDBChEMBL_A	1,490,508	33.8	12,826,692	75,029,188	N
Total	2,531,600	28.0	21,767,715	132,852,239	

COLORATION BY PROPERTIES

Diamine Database

Number of rings: Max 2

Ring Sizes: 5, 6, and 7

Number of Amines: Max 2

Exo- and Endocyclic

1323 Molecules

57 % Novel

- View of related compounds
- Relationships between compounds in the library

Solved(green) Unsolved(red)

ENABLING A RICHER UNDERSTANDING OF CHEMICAL SPACE

- Short synthetic routes to privelaged scaffolds
- Chemists know the reactions for disconnection
- AiZynthFinder knows the reactions and the building blocks available

PRECOMPUTED SYNTHETIC ROUTES FOR EACH COMPOUND

APPLICATION TO GDB – EXPERIMENTAL VALIDATION

ASKCOS: No Route Found

IBM RXN: No Route Found

AiZynthFinder:

KEY STEP:

Beckmann Rearrangement
-Precedented on similar motif

Interchangable Protecting Group

Successfully synthesized in the lab!

LINKING LIBRARY VIZUALISATION TO SYNTHESIS

GDB CHEMICAL SPACE

AI PLANNED SYNTHESIS

BROWSER BASED EXPLORATION

EXPERIMENTAL ENGAGEMENT

- × Scripting or command line knowledge
- × Step wise compound submission
- × Wait for batch runs
- Switching between tools for visualisation, calcultion of properties, synthesis prediction, prioritisation

- ✓ One tool
- ✓ Precomputed routes fast access
- ✓ Allows whole libary to be visualised
- Enables easier prioritsation using synthetic route information

SUMMARY

- AiZynthFinder An Open Access Retrosynthetic Planning Tool
- Established methods for improving AiZynthFiner using data augmentation and specialised models.
- Built specialised tools to target specific needs arising from chemists.
- The tools have demonstrated project impact as shown for the case of GDB.
- Nearly everything is open source and published open access for the community!

• Linking visualisation to chemical synthesis planning will be released in the near future (currently writing and refactoring the code)

ACKNOWLEDGEMENTS

Professor Jean-Louis Reymond

Dr Ola Engkvist (AZ)

Dr Esben Jannik Bjerrum (AZ)

Dr Samuel Genheden (AZ)

Reymond Group, University of Bern, Switzerland Molecular AI, AstraZeneca, Sweden Global Chemistry Community, AstraZeneca Elsevier

NextMove Software

The reviewers for their useful feedback.

Feedback or Questions?

Email: amol.thakkar@unibe.ch