

Programme Name & Branch: B.Tech ECE (IoT)

Course Name & Code: Signal Analysis and Processing & ECE1018

Class Number: VL2019201Q01099/06827. Exam Duration: 90 Minutes

Slot: Al Maximum Marks: 50

Answer ALL Questions

1. A. Consider the following DTSs whose output y(n) is related to the input x(n) by $y(n) = x^2(n)$

Determine whether the above system is (a) linear, (b) time-invariant, (c) stable, and (d) causal.

B. Determine whether the following signals are periodic and, for each signal that is periodic, determine the fundamental period.

 $y(n) = \sin(\pi + 0.2n)$

 $y(n) = e^{ine/t6}\cos(m\pi/17)$

- C. The power in a real-valued signal x(n) is defined as $P = \sum_{i=1}^{n} x^{2}(n)$. Suppose that a sequence x(n) has an even part $x_e(n)$ equal to $x_e(n) = \left(\frac{1}{2}\right)^{n}$. If the power in x(n) is P = 5 W find the power in the odd part, $x_0(n)$, of x(n). [5]
- 2. A. Given a continuous time periodic signal $x(t) = 5\cos 200\pi t +$ 10 sin 150πt,

i. Find the minimum sampling rate required to avoid aliasing.

ii. Determine the discrete-time signal obtained after sampling with sampling FOOE 110 4 10 5170 frequency $F_s = 400$ Hz.

iii. Determine the discrete-time signal x(n) or $x(nT_s)$ obtained after sampling with sampling frequency F1 = 150 Hz and comment on your results.

B. Represent the signal x(n) shown in Fig. 1 with unit impulse function and unit step function.

(n.g(n.j) +n d(n.2) +n.g(n.2))

(U(m) - Um - U) SEARCH TIT QUESTION PAPERS

ON TELEGURAM TO JOIN

- 3. A. Find the convolution sum of the following two sequences graphically: $x(n) = \begin{bmatrix} 2 & -3 \\ -3 & 1 \end{bmatrix}$, $h(n) = \begin{bmatrix} -1 & 2 \\ 0 & 4 \end{bmatrix}$ [5]
 - B. Find the convolution of x(n) and h(n) where $x(n) = \left(\frac{1}{6}\right)^{n-6} u(n)$ $h(n) = \left(\frac{1}{3}\right)^{n} u(n-3)$
- 4. A Find the convolution of x(t) and h(t) where x(t) = u(t) u(t-3)h(t) = u(t) u(t-2)
 - B. Find the overall impulse response of the system where two systems with $h_1(t) = e^{-2t}u(t)$ and $h_2(t) = 2e^{-t}u(t)$ are cascaded. [5]
- Find the trigonometric and the exponential Fourier series coefficients of the signal shown in Fig. 2 and comment on your results for both cases. [10]

