```
Code: mont13_2.sas
```

```
/* Montgomerv 13.2 */
proc import datafile="/home/u63048916/STAT571B/Homework/Homework 7/Q13-2.xlsx"
    dbms=xlsx
    out=randr
    replace;
    getnames=yes;
run;
/* 2.1: both factors are random : */
/* by GLM */
proc glm data=randr;
class Inspector Part;
model Impedance=Inspector Part;
random Inspector Part Inspector*Part/test;
/* by proc mixed and method of "type1" */
proc mixed data=randr CL covtest method=type1;
class Inspector Part;
model Impedance=;
random Inspector Part Inspector*Part;
run;
/st by proc mixed and default method: REML st/
proc mixed data=randr CL covtest method=REML;
class Inspector Part;
model Impedance=;
random Inspector Part Inspector*Part;
run:
```

ANOVA

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	29	4023.733333	138.749425	271.47	<.0001
Error	60	30.666667	0.511111		
Corrected Total	89	4054.400000			
Source	DF	Type III SS	Mean Square	F Value	Pr >
Inspector	2	39.266667	19.633333	38.41	<.00
Part	9	3935.955556	437.328395	855.64	<.00
Inspector*Part	18	48.511111	2.695062	5.27	<.000
Inspector Part		Var(Inspec	• 3 Var(Inspector*Par tor) • 3 Var(Inspector*Par		
Inspector*Part			3 Var(Inspector*Par	t)	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Error: MS(Inspector*Par	t)	.,,,			
Inspector	2	39.266667	19.633333	7.28	0.0048
Part	9	3935.955556	437.328395	162.27	<.0001
Error	18	48.511111	2.695062		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Inspector*Part	18	48.511111	2.695062	5.27	<.0001
Error: MS(Error)	60	30.666667	0.511111		

Figure 13.2.1 Analysis of Variance Method

Source	DF	Sum of Squares		Expected Mean Square	Error Term	Error DF	F Value	Pr > F
Inspector	2	39.266867	19.633333	Var(Residual) + 3 Var(Inspector*Part) + 30 Var(Inspector)	MS(Inspector*Part)	18	7.28	0.0048
Part	9	3935.955556		Var(Residual) + 3 Var(Inspector*Part) + 9 Var(Part)	MS(Inspector*Part)	18	162.27	<.0001
Inspector*Part	18	48.511111		Var(Residual) + 3 Var(Inspector*Part)	MS(Residual)	60	5.27	<.0001

13.2. An article by Hoof and Berman ("Statistical Analysis of Power Module Thermal Test Equipment Performance," IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. 11, pp. 516-520, 1988) describes an experiment conducted to investigate the capability of measurements in thermal impedance (C°/w × 100) on a power module for an induction motor starter. There are

10 parts, three operators, and three replicates. The data are shown in Table P13.2.

■ TABLE P13.2 Power Module Thermal Test Equipment Data for Problem 13.2

	Inspector 1			Inspector 2			Inspector 3		
	Test			Test			Test		
Part No.	1	2	3	1	2	3	1	2	3
1	37	38	37	41	41	40	41	42	41
2	42	41	43	42	42	42	43	42	43
3	30	31	31	31	31	31	29	30	28
4	42	43	42	43	43	43	42	42	42
5	28	30	29	29	30	29	31	29	29
6	42	42	43	45	45	45	44	46	45
7	25	26	27	28	28	30	29	27	27
8	40	40	40	43	42	42	43	43	41
9	25	25	25	27	29	28	26	26	26
10	35	34	34	35	35	34	35	34	35

- (a) Analyze the data from this experiment, assuming that both parts and operators are random effects.
- (b) Estimate the variance components using the analysis of variance method.
- (c) Estimate the variance components using the REML method. Use the confidence intervals on the variance components to assist in drawing conclusions.

REML Method

-1: Need to check assumptions

		Cov	ariance Paramet	er Estimates			
Cov Parm	Estimate	Standard Error	Z Value	Pr > Z	Alpha	Lower	Upper
Inspector	0.5646	0.6551	0.86	0.1944	0.05	0.1344	67.3537
Part	48.2926	22.9067	2.11	0.0175	0.05	22.7624	162.52
Inspector*Part	0.7280	0.3011	2.42	0.0078	0.05	0.3717	2.0164
Residual	0.5111	0.09332	5.48	<.0001	0.05	0.3682	0.7575

a.) The ANOVA is run for both factors treated as random effects. Inspector, Part, and interaction Inspector*Part are each individually significant at the $\alpha=0.05$ level. b.) See figure 13.2.2. Variance estimates calculated from Analysis of Variance method

table.

$$\begin{split} \hat{\sigma}^2 = MS_{Error} = 0.511 \\ \hat{\sigma}^2_{\tau} = \frac{MS_{Inspector} - MS_{Inspector*Part}}{j*n} = \frac{19.633 - 2.695}{10*3} = 0.5646 \\ \hat{\sigma}^2_{\beta} = \frac{MS_{Part} - MS_{Inspector*Part}}{i*n} = \frac{437.33 - 2.695}{3*3} = 48.293 \\ \hat{\sigma}^2_{\tau\beta} = \frac{MS_{Inspector*Part} - MS_{Error}}{n} = \frac{2.695 - 0.511}{3} = 0.728 \end{split}$$

These results are confirmed by estimates in table figure 13.2.2.

c,)See figure 13.2.3, REML method produces same variance estimates. However, the Inspector term is not significant at the $\alpha=0.05$ level.

about:blank